Approved For Release STAT 2009/08/31 :

CIA-RDP88-00904R000100130

Approved For Release

2009/08/31:

CIA-RDP88-00904R000100130

Вторая Международная конференция Организации Объединенных Нации по применению атомнои энергии в мирных целях

е паръсжит осланиеним до официальнием собощения на Нонференции

ПОСТУПЛЕНИЕ В РАСТЕНИЯ И НАКОПЛЕНИЕ В УРОЖАЕ СТРОНЦИЯ, ЦЕЗИЯ И НЕКОТОРЫХ ДРУГИХ ПРОДУКТОВ ДЕЛЕНИЯ

И.В.Гулякин , Е.В. Одинцева

Радиоактивные продукты деления, попавшие на земную поверхность и в атмосферу, могут включаться в биологический цикл круговорота веществ. Кроме того, многие представители из группы продуктов деления тяжелых ядер являются радиоактивными изотопами так называемых редких и рассеянных химических элементов, которые в незначительном количестве содержатся в растениях и животных.

Методика меченых атомов, позволяющая онстро определять ничтожно маляе количества редких элементов в растениях, может помочь выяснить значение некоторых из этих элементов, которое они, возможно, имеют для растений.

Оточки зрения радиационного действия для сельскохозяйственных объектов, очевидно, наиболее существенное значение имеет изучение поведения долгоживующих продуктов деления. Возможная роль короткоживущих представителей этой группи веществ ограничивается продолжительностью их жизни, что может обусловливать и сравнительно небольшой ареал их распространения в природе, тогда как создаваемая радиоактивность в результате попадания на земную поверхность или в атмосферу долгоживущих продуктов деления является длительной и может распространяться при соответствующих условиях на эначительные площади.

Все сказанное показывает, что исследование поступления в растения радиоактивных продуктов деления, их накопление и распределение в урожае различных культур в зависимости от свойств почвы и других 25 YEAR RE-REVIEW

условий внешней среды представляет в настоящее время одну из важних задач сельскохозяйственной науки. Поэтому в последние годы у биологов естественно появился интерес к изучению поведения микроколичеств радиоактивных изотенов стронция, цезия и других продуктов деления в почвах и растениях. Джекобсон и Оверстрит (1), работая с различными радиомзотонами, наолюдали более интенсивное накопление в надземной части стронций, тогда как радиоактивние изотони иттрия, церия, циркония в основном задерживаются в корнях и относительно небольшое количество их поступает в надземние органи растения. Пил, Олафон и др. (2), изучая поступление Sv^{90} , Cs^{187} , Ru^{104} , Ce^{140} и Y^{94} из различных почв в растения, нашли, что наиболее интенсивно по сравнению с радиоактивными изотонами других элементов поступает в растения Sv^{90} .

Исследованиями этих авторов показано, что радиоактивные изотопы поступившие в растение, в основном концентрируются в вегетативных реанах и относительно небольшое количество их накапливается в семенах.

Аналогичные результаты были получены рядом других исследователей: Вламис и Пирсов (С), Редиске и Селдерс (4,5), Ромней и др.(6), Нишита и др. (7) показали зависимость поступления в растения продуктов деления от минералогического состава почвы. Эти же авторы приводят данные о влиянии органического вещества на поступление стронция-90 в растения ячменя и томата (8,9).

Авторы настоящего сообщения в течение нескольких лет проводили исследования по изучению поступления в растения радиоактивных продуктов деления и накопления их в урожае в зависимости от свойств почвы, применения удобрений и других условий внешней среды. Некоторые результаты этих исследований в последние годы были опубликованы (10-23). Большое количество опытов проводилось с радиоактивными изотопами стронция и цезия, имеющими сольшее значение, чем другие радиоизотопы из группы продуктов деления.

Поступление в растения радиоактивных продуктов деления и накопление их в урожае

Отлельные радиоактивные изотопы из группы продуктов деления, поступнание в растения, по-разному распределяются между надземной частью и корнями.

 Θ условиях водных культур при содержании продуктов деления Θ , 25 мкюри на 5, 5π раствора относительное накопление радиострон-

ция в надземной части растений (табл. Т) составляет примерно 80-90%, а радиоцезия 50% и более от содержания их во всем гастении. Радиосктивние изотопы церия, ругения, циркония и другие продукти деления концентрируются главным образом в корнях растения. Накопление этих продуктов деления в надземной части растении обычно не превышает долей процента ст содержания их во всем растении.

Таблица Л Распределение продуктов деления между надземноя частъю и корнями растении (в ж от общего содержания во всем растении, водные культуры)

Радиоизотопы	2	5 июня	16-18	июля	3-7 as	густа
	надземи. Часть	корни	надземн. часть	корни	надзем.	~
		Горох				
Стронции-90	88,07	11,93	89,26	10,74	90,33	0.67
Цезий-137	29,93	70,07	50,62	49,38	49,94	9,67
Рутения-106	0,21	99,79	2,76	97,24	1,01	50,06
Церий-144	-	•	2,38	97,62	-	98,92
Иттрин-94	4,45	95-55	3,04	96,96	5,55	94,45
Цирконий-95	0.15	99,85	0,27	99,73	1,38	98,62
Ни обий - 95	0,90	99,10	-	33 4 7 G	0,39 7,27	99,6I 92,73
	Яро	вая пшен	яца		·	•
Стронция-90	7 1, 60	28,40	61,44	20 50	00 00	70 no
Цезик-137	21,65	78,37	40,26	38,56	80,68	19,32
Рутения-106	0,05	99,95	0,04	59,74	59,14	40,86
Церий- 1 44	0,53	99 , 67	T	99,96	0,03	99,97
MIT PHH-91	0,30	99,70	0,41	99,59	0,79	99,21
Іирконий-95	0,08	•	0,3Ī	99,69		99,45
Іиобий-95	0,69	99,92	0,12	99,88		99,92
	0,03	99,31	1,08	98,92	3,84	96,16

Аналогичная закономерность (табл.2) в распределении радиовктивных изотопов стронция, цезия и церия наблюдается при выращивании растений на твердом субстрате в условиях песчаних культур. Относительно несколько большее количество радиоцезия содержалось в надземной части гороха при поступлении его из песка по сравнению с поступлением из водного раствора. В этих опитах вносилось О,03 мкюри радиоцезия на 1 кг песка.

Таблица 2 Распределение продуктов деления между надземном частью и корнями растений (в ж от общего содер-жания во всем растении, песчаные культуры)

Радиоизотопы	14	RHCIN	16-26	10ЛЯ	Созревши	ue pac-	
	надзем.	корни	надземн.			Я	
	часть		AGCIP		надземн. часть	корни	
		Яровая	пшеница				
Стронции-90	78,76	21,24	86,80	13,20	91,92	8,08	
Цезия-137	60,19	39,81	49,87	50,13	59,90	40.10	
Церия-144	1,23	98,77	5,99	94,01	3,25	96,75	
		Гор	ox				
Стронций-90	76,68	23,32	86,73	I 3,27	88,98	11,02	
Цезий-137	60,86	39,14	77,63	22,37	74,23	25,77	
Церия-144	12,57	87,43	44,71	85,29	14,79	85.21	

В течение вегетационного периода накопление радиоактивных продуктов деления в пшенице и горохе повышается с нарастанием надземной массы (рис.1,2,3,4) растений. Содержание продуктов деления на единицу сухого вещества по мере увеличения органической массы растений снижается.

Такая закономерность в накоплении продуктов деления наблюдается и в опытах с другими сельскохозяйственными растениями. Только ко времени созревения, когда органическая масса растения нарастает медленнее или совсем перестает увеличиваться, а поступление
в растения продуктов деления в условиях водных культур продолжается, содержание их на единицу сухого вещества в этот период несколько повышается. При прочих равных условиях на единицу сухого вещества гороха накапливается больше продуктов деления, чем на единицу
сухого вещества пшеницы.

В отношении накопления общего количества радиоактивных продуктов деления и их содержания на единицу сухого вещества в процессе роста растений наблюдается такая же закономерность, как и для азота, фосфора, калия и других опологически важных элементов.

Радиоактивные продукти деления, поступившие в надземную часть растения, накапливаются главным образом в вегетативных органах, и значительно меньшая часть их содержится в генеративных органах.

Данные опытов с водными культурами при концентрации продуктов деления 45,5 мккюри на Гл показывают, что накопление радиоцезия в зерне (табл.3) не превышает примерно 15-23% от содержания его в надземной части растений. Содержание других продуктов деления в зерне по сравнению с цезием значительно меньше.

Закономерность относительного распределения в надземных органах растений радиоактивных изотопов стронция и цезия в условиях почвенных культур (табл.4) сохраняется примерно такая же, как и в водных культурах. Однако радиоцезия из почвы поступает в растения значительно меньше, чем радиостронция.

Радиостронций по распределению между надземной частью и корнями сильно отличается от других продуктов деления (за исключением радиоцезия). Между различными частями урожая эти изотопы распределяются иначе.

Таолица З Распределение продуктов деления в соэревших растениях

Радиоизотопы	Тыс.имп/	ин на од тение	но рас-		содержаны емной масс	я в на л
	листья, стебли	створки боба или колосья без зер- на	зерно	листья, стебли	створки боба чли колосья без зер- на	зерно
1	2	3	4	5	6	7
Стронций-90 Рутений-106	527,6 1,1	Пшеница 51,5	31,1	86,46	8,44	5,10
Цезий-137	1432,1	0,3 270,0	0,06 305,I	75,35 71,35	20,55 I 3,45	4,10 15,20

Ĩ	2	3	4	5	6	7
Церии-144	4,6	0,4	0,1	90,20	7,84	1,96
Иттрий-91	3,6	0,5	0,4	80,00	11,12	8,88
Ниобий-95	0,5	0,1	0,06	75,76	15,16	9,01
		Г	opox			
Стронции-90	1216,9	140,5	21,8	88,23	10,19	1.58
Рутений-106	4,2	0,3	0,3	87,50	6,25	6,25
Цезии- I 37	1065,9	162,5	361,5	67,04	10,22	22,74
Церий-144	16,9	0,7	0,2	94,95	3,93	1,12
Иттрий-91	22,5	0,9	0,01	96,11	3,85	0.05
Цирко ния- 95	0,9	0,1	0	90,00	10,00	-
Ниобий-95	0,7	0,1	O	87,50	12,50	-

Таблица 4

Распределение продуктов деления в органах созревших растений

Схема опыта	Тыс .им	Bo Bce	В % от содержания во всей надземной				
	солома	створки	зерно	Солома	массе створ-	- зерно	
1	2	3	4	5	ки	7	
	Гор	0X					
Глинистый песок + $5v^{90}$	1409,7	451,6	58,8	73,42	23,52	3.06	
Средний суглинок +5 с 90	590,8	147,6	18,3	78,07	19,51	•	
Тяжелый суглинок + 5х90	171,1	53,5	6.7	73,97	23,13	•	
Глинистый песок + (15^{157})	2,4	0,7	0,9	60,0	17,50	•	
Средний суглинок + (bis)	1,9	0,5	0,5	65,52	17,24	•	
Тяжелый суглинок + Съ ⁴⁵⁷	0,6	0,1	0,2	66,67	II,II	•	
ales and	O	3ec					
Глинистий песок + Sv90	1145,3	125,2	69,4	85,49	9,34	5.17	
Средний суглинок +St ⁹⁰	604,1	20,7	22,6	93,32	3,19		
Тяжелый суглинок +5190	190,0	15,6	8,4	88,78	7,29	•	

1	2	3	4	5	6	7
Глинистий песок + С5157 Средний суглинок + С5157 Тяжелый суглинок + С5157	33,6 8,2 2,6	4,7 1,3 0,5		71,48 64,06 68,42	10,2	25,74

Цезий, поступивший в надземную часть, относительно больше (табл.5) накаплинается в зерне, чем другие радиоизотопы и, в частности, стронций-90, что видно из сопоставления отношения активности зерна и соломы в условиях водных культур.

Таблица 5
Отношение активности зерна к активности
соломы

Растения	C 5 437	Sr 90	Ru 106	Ce144
Пшеница	0,21	0,06	0,06	0,02
Овес	0,52	0,04	0,21	0,02
Горох	0,34	0,02	0,07	0,01
Фасоль	0,15	0,04	0,12	0,01

Примерно такая же закономерность в распределении радиоактивных изотопов цезия и стронция между зерном и соломой наблюдается в условиях почвенных культур (табл.6).

Таблица 6 Отношение активности зерна к активности соломы в условиях почвенных культур

Почвы	Год	ox	Овес	
	[3 ¹³⁷	5° 90	[3 ¹³⁷	5z 90
Глинистый песок Средний суглинок Тяжелый суглинок	0,37 0,27 0,33	0,04 0,03 0,04	0,26 0,40 0,30	0,06 0,04 0,04

Цезий, являясь олизким по физико-химическим свойствам калию, обладает большей подвижностью в растении, чем другие продукти деления. Этим отчасти, возможно, и объясняется более равномерное распределение по органам растения радиоцезия по сравнению с другими радиоизотопами из группы продуктов деления и повышенное его содержание в репродуктивных органах.

Польшая по сравнению со стронцием подвижность цезия в растении наблюдается (12,19) при нанесении этих элементов на листья. При нанесении радиоцезия на листья растений передвижение его в другие органы составляло в наших опытах 57-88% от количества нанесенного на лист. При этом до 10-20% от нанесенного количества цезия накапливалось в репродуктивных органах. В этих опытах передвижение радиостронция, нанесенного на листья и другие органи растений, составляло примерно 0,1-0,4% от нанесенного количества.

Аналогично кальцию (24,25) стронций, нанесенный на листья, почти не перемещается в другие органы растения.

На способность отдельных радиоизотонов из группы продуктов деления, поступивших через корни, к передвижению по растениь может в известной мере указывать накопление их в зависимости от возраста того или иного органа.

Если (при опытах в водных культурах) содержание цезил сравнительно мало колеблется в разновозрастных листьях и междоузлиях стебля (табл.7), то различие в накоплении радиоактивных изотопов других элементов в листьях и междоузлиях стебля в зависимости от их возраста выявляется весьма отчетливо.

Содержание продуктов деления, за исключением цезия, значительно внше в более старых листыях и междоузлиях стеблей растений.

Таблица 7 Содержание продуктов деления в зависимости от возраста (в тыс.имп. на 1г сухого вещества)

Органы и части растения	Co ⁴⁵⁷	5r 90	γ91	Ru ¹⁰⁶	Ce ¹⁴⁴	Zr ⁹⁵
1	2	3	4	5	6	7
Пшеница	-	•				
Лист 2-й снизу	1529,1	947,3	37,4	1,6	13,5	0,5
Лист 5-й снизу	1942,0	324,6	1,5	0,6	1,5	0,3

1	2	3	4	5	6	7
Междоузлие 2-е				 		L
снизу Междоуэлие 5-е	716,0	185,7	2,9	0,2	1,5	0,1
снизу	1130,9	248,4	0,3	0,1	1,1	0,2
Горох						
Лист 5-й снизу Лист 12-й снизу Междоузлие 5-е	2648,5 1187,0	1584,7 231,0	125,5 3,1	5,4 0,6	73,4 1,5	0,4 0,1
снизу Междоуэлме 12-е	1597,0	1, 1911	9,1	0,5	10,5	0,4
снизу	812,8	425,9	0,4	0,3	0,8	0,1

Сравнительное содержание радиоактивных продуктов деления в урожае растений и во внешней среде

живые организмы, в частности растения (26-31), способны концентрировать в своем составе радиоактивные элементы в обльших количествах, чем они содержатся в окружающей среде.

Одним из главных путей, через который радиоактивные продукты деления попадают в биологические цепи, является путь через почву и растения. При попадании продуктов деления в почву некоторые из них, например стронций и цезий, сорбируются твердой фазой почвы по типу ионообменного поглощения и вытесняются катионами нейтральных солей. Сорбированный радиоцезий закрепляется в поглощенном состоянии (19,32) сильнее, чем радиостронций. Очевидно, часть поглощенного радиоцезия фиксируется в почве безобменно, как это имеет место для калия, к которому близок по своим физико-хи-мическим свойствам цезий. Поглощенный радиоцезий вытесняется в большем количестве (22,32) при взаимодействии почвы с раствором хлористого кальция.

Некоторые продукты деления, поглощенные почвой, не поддаются вытеснению или очень слабо десорбируются катионами нейтральных солей.

В связи с поглощением и закреплением в почве продуктов деления поступление их в растения из почвы по сравнению с поступлением из водного раствора значительно снижается (15, 19). Особенно резкое различие наблюдается для радиоактивного изотопа цезия. Разница в поступлении радиостронция из почвы и водного раствора в растения значительно меньше, чем в случае радиоцезия, что объясняется различной прочностью закрепления их в почве. Поэтому продукты деления по-разному концентрируются растениями. Особенно высока степень концентрации растениями радиостронция. При содержании его в количестве 1,4.10—4 кюри на 1 кг почвы коэффициент концентрации радиостронция в зависимости от свойств почвы (табл.8) в соломе овса колебался от 4 до 15,7, в соломе гороха — от 15,7 до 69,2, в сене клевера — от 8 до 25,7 и в сене тимофеевки — от 2,6 до 16,4.

В некоторых случаях на более легких почвах коэффициент концентрации радиостронция в зерне гороха и овса был больше единицы. При таком же содержании радиоцезия в почве коэффициент концентрации его в урожае, за исключением сена тимофеевки, был значительно ниже единицы, т.е. радиоактивного цезия содержалось в 1 кг урожая меньше, чем в 1 кг почвы.

Таблица 8 Коэффициент концентрации растениями стронция и цезия из почвы

Гастения	пника	стыя песоі				желыя су- инок	
	Sr 90	C5457	Sr 90	C5 ¹⁵⁷	52 ⁹⁰	C5157	
	Вго	д внесения					
Овес							
Солома	15,7	0,6	41,5	0,21	4,0	0,07	
Зерно	1, 3	0,2	0,5	0,1	0,2	0,02	
Горох							
Солома	69,3	0,16	40,7	0,16	15,7	0,08	
Зерно	1.7	0,05	<u> </u>	0,04	G , 4	0,01	
Клевер (сено)	25,7	1,2	18,0	0,34	8,0	0,45	
Тимофеевка (сено)	45,4	2,4	10,0	1,0	2,6	0,2	

Растения	Глини	стий песок	й песок Средний сугл нок		Тяжелий су- глинок	
	\$r 90	05457	3r ⁹⁰	U5 137	Sr 90	(15157
	lla 2-11 r	од после вн	есения			
Onec						
Солома	13,2	0,44	7,5	0.36	2,3	0,10
Зерио	0,52	0,09	0,33	0,13	0,18	0,07
Γοροχ						
Солома	44,7	0,19	28,7	0,09	[4,1]	0,04
Зерно	0,38	0,05	0,42	0,03	0,14	0,01
Клевер (сено)	17,3	0,26	27,4	0,12	6.9	0.11
Тимофесвка (сено)	11,8	0,15	5.1	0,18	1.9	0.10

Данные табл. 8 показывают, что в урожае бобовых растений происходит большая концентрация стронция, чем в урожае злаковых растений.

На второй год после внесения радиостронция коэффициент концентрации его в растениях был меньше, что, по-видимому, обусловлено более прочным закреплением вследствие солее длительного взаимодействия с почвой. Разница в коэффициенте концентрации растениями радиоцезия в отдельные годы незначительная, так как поступление его в растения из почвы по сравнению со стронцием значительно женьше.

Большая концентрация стронция и цезия в урожае (таол.9) наолюдается в том случае, когда поглощение этих радиоизотопов растениями происходит не из почвы, а из водного раствора или чистого песка. В этих опытах концентрация цезия и стронция была 5.10⁻⁵ кюри на Іл раствора и 3.10⁻⁵ кюри на І кг песка. Таким образом, при известных условиях в урожае сельскохозяйственных растений может происходить значительная концентрация радиоактивных продуктов деления, в частности стронция.

-12-

Таслица 9 Коэффициент концентрации стронция и цезия растениями из водного раствора и песка

Изотопы	Вод	ные кул	ьтуры		lleсчаные культуры			
	Пшеница		Горох		Пшеница		Torox	
	СОЛО- МА	зерно	соло- ма	зерно	СОЛО- МВ	зерно	соло — м а	зерно
Стронция-90 Цезия-137	26,9 88,9	1,7 32,1	111,5 125,2	•	39,7 37,2	3,2 7,1	97,4 40,4	3,5 24,6

Коэффициент концентрации зависит от возраста и биологических особенностей растения, от свойств почвы и других условий внешней среды.

Благодаря тому, что в урожае сельскохозяйственных культур происходит концентрация радиостронция, некоторые почвы могут заметно обедняться стронцием. Вынос же с урожаем растений радиоцезия даже из легких почв весьма незначительный. В качестве примера можно привести следующие данные опытов, продолжавшихся в течение 2 лет с разными почвами (табл.10).

Таблица 10 Вынос стронция и цезия с урожаем растений из почв

		Стронци	1-90	Цезий-137		
Почвы	колич	B % OT ectba b ybe	Вынос за 2 года в 2 от вн е -	Вын от ко. ва в	Вынос за 2 года в	
	1-И год	2-й год	сенного кол-ва	1-И год	2 -й год	% от внесен ного кол-ва
- 1	2	3	4	5	6	7
		Клеве	ep			
Глинистый песок	•	18,75	39,66	0,22	0,72	0,94
Средний суглинок	13,80	10,96	23,25	0,14	0,22	0,36

1	2	3	4	5	6	7
Тяжелый суглинок	5,34	7,24	12,20	0,06	0,15	0,21
	I	'opox				
Глинистый песок	14,02	9,61	19,57	0.03	0,05	0,08
Средний суглинок	4,34	8,94	12,86	0,02	0,03	0,05
Тяжелый суглинок	4,52	3,64	4,91	0,01	0,01	0,02
	Тив	офеелка				
Глинистый песок	9,23	5 .7 3	14,43	0.46	81,0	0,64
Средний суглинок	5,11	2,45	7,44	0,26	0,14	0,40
Тяжелый суглинок	0,87	1,02	1,87	0,06	0,06	0,12
	O	вес				
Глинистый песок	8,33	5,31	13,20	0,40	0,20	0,60
Средний суглинок	4,03	2,60	6,53	0,11	0.16	0,27
Тяжелый суглинок	I,33	0,78	2,10	0,03	0.04	0.07

Влияние некоторых условий на накопление продуктов деления в урожае сельскохозяйственных растения

Свойства почвы, обусловливающие прочность закрепления сорбированных продуктов деления, особенно стронция, в значительной мере могут определять интенсивность их поступления в растения.

Усиление сорощионных свойств почвы и повышение прочности закрепления поглощенных радиоактивных продуктов деления могут существенно уменьшать размеры накопления их в урожае сельскохозяйственных растений. Кроме того, в литературе имеется указание о тесной зависимости поступления в растения радиоактивных изотопов стронция и цезия, а также биологически важных элементов - кальция и калия.

Наши исследования с проростками различных растений в условиях водных культур (14) показывают, что с увеличением в растворе концентрации кальция и калия снижается поступление соответственно радиоактивных изотопов стронция и цезия, хотя пропорциональности

При повышении концентрации кальция в растворе в 4.0 раз поступление радиостронция в растения снижалось в 2-2 раза, а при повишении концентрации калия в 400 раз поступление радиоцезия уменьшалось только в 5-7 раз.

Кроме того, по литературным данним, известна зависимость в соотношении кальция и стронция, калия и цезия во внешней среде, в частности в почве и растениях. Указивается, что для большинства растений отношение содержания стронция-90 к кольцию меньше, чем отношение этих элементов в почве.

Коэффициент расхождения в содержании стропция-90 по отношению к содержанию кальция между верхним слоем почвы и растениями считают равным приблизительно 1,4.

В опитах с песчаными культурами при содержании стронция в песке 158 тыс. "САППАЗП" нами получены довольно близкие коэфици-енты, показывающие снижение отношения стронция-90 к кальцию в растениях.

Предварительные данные показывают, что величина соответствующего коэффициента изменяется в онтогенезе растений (таол. 11).

Таолица 4/1

	Коэффициент отношени				
	Sv ⁹⁰ / Са в песке	[15 ¹³⁷ /К в песке			
	Бъ ⁹⁰ / Са в расте- нии	Сэ ^{1э3} /К в растении			
I	2	3			
Пшеница					
В начале фазы выхода в					
трубку (I4/VI)	1,6	3,4			
В колошение (10/VII)	1,2	3,2			
В период налива зерна (26/УП):					
солома	1,0	3.1			
зерно	· #	3,5			
Созревшие растения:					
солома	1,0	1,7			

1	2	3
зерно	-	2,8
l'opox		
При высоте растений 35-45 см	1,5	1,4
В цветение	1,5	2,2
Период налива зерна	1,2	1,6
Соэровшие растения:		
солома	4,4	1,1
зерно	-	2,5

С возрастом растений в условиях песчаных культур этот коэффициент для стронция приближается к единице, т.е. между отношением стронция-90 к кальцию в песке и в растениях разницы не наблюдается.

В условиях песчаных культур получен сравнительно небольшой коэффициент отношения цезия к калир в песке и в растении. Для почв в зависимости от их свойств этот коэффициент может быть больше.

В опытах, проводившихся нами в течение нескольких лет при совместном внесении в дерново-подзолистую почву извести и перегноя, содержание стронция-90 (табл.12) в соломе различных растений уменьшалось примерно в 1,5 - 3 раза, а в зерне - в 2 - 5 раз.

Лабораторные исследования показали (27), что при внесении извести и перегноя в эту почву прочность закрепления поглощенного стронция-90 в почве повышается и он меньше вытесняется нейтральными солями. При внесении извести и перегноя прочность поглощенного почвой стронция-90 повысилась в 4 раза.

На накопление продуктов деления в урожае растений может оказать существенное влияние глубина их заделки в почву. В одном из опытов, проводившихся на среднем дерново-подзолистом суглинке, при внесении смеси продуктов деления из расчета 600 кюри/га и заделке на глубину 70 см, содержание их в урожае некоторых растений (табл.13) уменьшилось более чем в 10 раз, по сравнению с заделкой на 50 см.

Таблица 12

Влияние извести и перстноя на содержание стронция-90 в урожае (в тыс.имп/мин на 1r сухого вещества)

Культура	вачоп	Почва + атоэвсть	Почва + пе- региоя	llouba + из- весть + ис- регной
Пшеница				
солома	373,8	303,8	470,0	155,9
зерно	14,9	17,8	12,9	8,8
Горох				
солома	2570,5	1490,9	833,8	862,5
зерно	34,2	13,1	10,7	6,9

Таблица 13

Содержание в урожае продуктов деления при различной глубине их заделки (тыс.имп/мин на 1г сухого вещества)

Глубина В 1-1 год внесения			Ha	2-A	7 9	На 3-и год				
заделки	OI	ec	Pop	X	Buka	Kapt	офель	CBe	кла	भूतम्बसम
	СОЛО- МВ	зерно	соло- ив	зер- но	СОЛО- МВ	dot- Ba	клуб ни	бот- ва	клу б- ни	сэлома
30 см	31,1	7,9	9,0	1,3	111,1	41,3	1,0	14,8	3,8	5,8
70 CM	1,9	0,5	1,9	0	0,6	9,5	0,1	2,0	2,0	0,6

Известное влияние на поступление продуктов деления в растения может оказывать применение органических и минеральных удобрений.

В опыте, проведенном на почве, в которую вносились удобрения по определенной схеме в течение 44 лет, наблюдалось сильное влияние удобрений на содержание продуктов деления в урожае овса (табл.14).

Таолица 74

Содержание продуктов деления в урожае овса в зависимости от применения удобрений (тис.имп/мин на 1r сухого вещества)

Удобрения	Sr 90		Co	157	Ce 144	
	солома	зерно	Солома	зерно	Солома	зерис
0	1089,1	102,4	26,9	8,7	2,3	0.02
N	827,5	102,5	19,7	6,9	2,4	0
P	895 ,1	56,8	18,5	5,3	1.8	Ö
K	858,7	123,1	1,4	0,4	2,5	Ö
NP	958,5	83,7	11,5	3,2	3.2	0
NK	863,8	105,5	2,3	0,3	3,8	10,0
PK	577,I	64,7	2,3	0,9	1,5	-
NPK	723,0	53,4	3,0	0,6	1.5	0
NРК + навоз	-	31,6	6,7	1,9	0,3	0

При совместном применении минеральных удобрений с навозом содержание стронция-90 в соломе снизилось в 5 раз, а в зерне в 4 раза по сравнению с контролем. Заметное снижение содержания радиостронция, особенно в зерне, наблюдалось при внесении фосфорных удобрений.

Поступление цезия в растения и накопление его в урожае резко снижалось при внесении одних калийных удобрений и в комбинации их с другими удобрениями.

Заключение

Радиоактивные продукты деления при попадании на земную поверхность и в атмосферу могут эключаться в биологический цикл круговорота веществ, при этом наиболее существенная роль принадлежит растениям.

Продукты деления могут накапливаться растениями в большей концентрации, чем они содержатся во внешней среде, особенно радиовктивные изотопы стронция, а при известных условиях и радиоцезий.

Продукты деления, накапливаясь в большом количестве в урожае и не вызывая существенного повреждения растений, могут, по-видимому,

иметь практическое эначение для сельского хозяйства.

Наиболее высокая способность накапливаться в урожае сельскохозяйственных растений имеется у стронция-90. Это обусловлено тем, что до 80-90% поступившего в растения стронция накапливается в надземних органах. Кроме того, радиостронция находясь в почве в более подвижном состоянии, чем другие продукты деления, интенсивней может поступать в растения. Из водного раствора радиостронций может накапливаться в растениях примерно в 100 раз больше, а из почвы в зависимости от ее свойств и особенностей растения в 5-10 раз выше, чем его концентрация во внешней среде.

При известных условиях содержание цезия-I37 в растениях может быть также высоким. При поступлении через пистья цезий интенсивно передвигается в другие органы и в значительном количестве может накапливаться в урожае, в частности в репродуктивных органах растения.

Из водной среды цезий-137 способен накапливаться в растениях в 100-1000 раз больше, чем его концентрация во внешнем растворе.

Гадиоактивные продукты деления, в частности стронций и цезий, в большем количестве накапливаются в урожае растений из легких почв. С возрастом растений увеличивается абсолютное количество в них радиоактивных продуктов деления, а содержание на единицу сухого вещества снижается.

Большое количество продуктов деления, поступившее в растение, концентрируется в вегетативных органах. Радиоцезий относительно больше накапливается в генеративных органах, чем другие радиоактивные изотопы из группы продуктов деления.

Известкование кислых почв, внесение органического вещества в почву снижают поступление в растения продуктов деления и накопление их в урожае, особенно на легких почвах.

При систематическом внесении навоза и минеральных удобрений снижается накопление стронция и цезия в урожае растений.

Наиболее существенное снижение накопления в сельскохозяйственных растениях продуктов деления наблюдается при глубокой заделке их в почву, особенно на тяжелых почвах.

На легких почвах некоторые растения с урожаем выносят относительно большое количество стронция-90 и заметно могут уменьшать его содержание в почве.

Литература

- 1. Jacobson L., Overstreet R. The uptake by plants of plutonium and some products of nuclear fission absorbed on soil colloids.~
 Soil Science, 1948, 65, 129
- 2. Neel J.W., Olndson J.H., Steen A.J., Gillooly B.E., Nishita H., Larson K.H. Soil plant interrelationships with respect to the uptake of fission products. USA AEC. Techn. Serv., UCLA 247, 1953
- 3. Wlamis I., Pearson G. Absorption of radioactive Zirconium and Niobium by plant roots from soil and its theoretical significance. Science, 1950, 111, 112
- 4. Rediske J.H., Selders A.A. The absorption and translocation of Strontium by plants. Plant Physiol., 1953, 28,594
- 5. Rediske J.H., Selders A.A. The uptake and translocation of Yttrium by higher plants. Amer. J. Bot., 1954, 41,228
- 6. Romney E., Rhoads W., Larson K. Plant uptake of Strontium-90, Ruthenium-106, Caesium-137, and Cerium-144 from three different types of soil.USA AEC, UCLA-294, 1954
- 7. Nishita H., Kowalewsky B.W., Larson K.Fixation and estrastability of fission products contaminatin various soils and clays.

 Soil Science, 1956, 84, 317
- 8. Nishita H., Kowalewsky B.W., Larson K.H. Influence of soil organic matter of mineral uptake by barley seedlings. Soil Science, 1956, 82, 307
- 9. Nishita H., Kowalewsky B.W., Larson K.H. Influence of soil organic matter on mineral uptake by tomato plants. Soil Science, 1956.82. 401
- 10. Гулякин И.В., Одинцева Е.В. Поступление в растения радиоактивных изотопов стронция, цезия, рутения, циркония и церия. Докл. АН СССР, 1956, 111, 206
- 11. Гулякин И.В., Юдинцева Е.В. К вопросу о действии радиоактивных изотопов на растения. Докл. АН СССР, 1956, 147., 275
- 12. Гулякин И.В., Одинцева Е.В. Поступление радиоактивных изотопов в растения через листья. Докл. АН СССР, 1956, 111, 709
- 43. Гулякин И.В., Юдинцева Е.В. Поступление в растения продуктов деления из водного раствора. В сб.: О поведении радиоактивных продуктов деления в почвах, их поступлении в растение и накоплении в урожае, Изд. АН СССР, 1956, 79

- 44. Гулякин И.В., Юдинцева Б.В., Селеткова Н.И. Влияние концентрации водородных ионов, калия и кальция в разтворе на поступление в растения продуктов деления. В том же ссорнике, 97
- 45. Гулякин И.В., Единцева Е.В. Поступление в растения продуктов деления из почвы. В том же сборнике, 408
- 16. Гулякин И.В., Одинцева Е.В. Поступление продуктов деления в растения при внесении в почву извести и органического вещества. В том же сборнике, 119
- 47. Гулякин И.В., Одинцева Е.В. Влияние доз извести и калия на поступление продуктов деления в растения из почвы. В том же сборнике, 438
- 18. Гулякин И.В., Одинцева Е.В. Передвижение продуктов деления в растении при нанесении на листья. В том же сборнике, 143
- 19. Гулякин И.В., Юдинцева Е.В. Поступление в растения продуктов деления и их действие на растительный организм. Изв.Тимиря— зевск. с.-х.акад., 1956, 3,122
- 20. Гулякин И.В., Одинцева Е.В. Действие на растения и накопление в урожае радиоактивных продуктов деления при различном их размещении в почве. Изв. Тимирязевск. с.-х. акад., 4957, 3, 53
- 24. Гулякин И.В., Гдинцева Е.В. О поступлении в растения радиоактивных продуктов деления и о биологическом очищении от них почвы. Изв. Тимирязевск. с.-х. акад., 1957, 3, 81
- 22. Гулякин И.В., Юдинцева Е.В. Вопросы агрохимии радиоактивных изотопов стронция, цезия и других продуктов деления. Изв. Тимирязевск.с.-х.акад., 1958, I, 20
- 23. Гулякин И.В., Одинцева Е.В. Поступление в растения радиоактивных продуктов деления и накопление их в урожае при внесении в почву извести, перегноя и калийных удобрений. Изв. Тимирязевск. с.-х. акал., 4957, 2, 423
- 24. Мосолов И.В., Лапшина А.Н., Панова А.В. Передвижение радиоактивного кальция Са 45 в растении при внекорневом его внесении. Докл. АН СССР, 1954, 98, 495
- 25. Петербургский А.В. Радиоизотопы фосфора и кальция в опытах по изучению питания растений и действия удобрений. Изв. Тимиря—
 зевск. с.-х. акад., 1956, 3, 105
- 26. Баранов В.И. Об усвоении радиоактивных элементов растениями. Докл. АН СССР, 1939, 24, 945

- 27. Баранов В.И., Кунашева К.Г. Содержание радиоактивных элементов ториевого ряда в надземных растениях. Тр. Биогеохимической лаборатории, 1954, 10, 94
- 28. Бруновский К., Кунашева К.Г. О содержании радия в некоторых растениях. Докл. АН СССР, Серия л., 1930, 20, 537
- 29. Вернадский В.И. Изотопы и живое вещество. Докл. АН СССР, 1926 ,дскоорь, 215
- 30. Вернадский В.И. О концентрации радия в растительных организмах. Докл. АН СССР, Серия А, 1930, 20, 539
- 31. Швейцер Л. О радиолктивных выпадениях. Экспресс-информация, 1957, 38
- 32. Клечковский В.М., Целищева Г.Н. Поведение радиоактивных продуктов в почвах. В сб.: О поведении радиоактивных продуктов деления в почвах, их поступлении в растения и накоплении в урожае. Изд. АН СССР, 1956, 3
- 38. Гулякин И.В., Коровкина А.В. Влияние механического состава почны и органического вещества на поступление продуктов деления в растения. В том же сборнике, 131

Рис.1. Динамика сухого вещества надземной массы пшеницы и накопление в растении продуктов деления:

I — сухой вес одного растения (в г);

2 — тыс.имп/мин на одно растение;

3 — тыс.имп/мин на 1г сухого вещества

Рис.2. Динамика сухого вещества надземной массы пшеницы и накопление в растении продуктов деления:

нии продуктов деления;

1 — сухой вес одного растения (в г);

2 — тыс.имп/мин на одно растение;

3 — тыс.имп/мин на 1г сухого вещества

СУХОГО ВЕЩЕСТВА НАДЗЕМНОЙ МАССЫ ГОРОХЯ и накопление в растении продчктов деления

Рис.3. Динамика сухого вещества надземной масси гороха и накопление в растении продуктов деления:

1 - сухой вес одного растения (в г);

2 - тыс.имп/мин на одно растение;

3 - тыс.имп/мин на 1г сухого вещества

Рис.4 Динамика сухого вещества надземной массы гороха и накопление в растении продуктов деления:

1 - сухой вес одного растения (в г);
2 - тыс.имп/мин на одно растение;
3 - тыс.имп/мин на 1г сухого вещества