Raphael Poulain

PHD STUDENT IN COMPUTER SCIENCE 439 Smith Hall, Newark, DE

□ 816-616-6698 | ☑ rpoulain@udel.edu | 🎓 www.rpoulain.github.io | 📂 Raphael Poulain

Research Interests

Applied Machine Learning, Artificial Intelligence, Health Data Science, Deep Learning, Electronic Health Records

Education

B.S. IN ENGINEERING

University of DelawareNewark, DEPH.D. IN COMPUTER SCIENCE2020 - PresentEFREI ParisVillejuif, FranceM.S. IN ENGINEERING2018 - 2020EFREI ParisVillejuif, France

Research Experience

healthy lAIfe Lab, University of Delaware

Newark, DE

2015 - 2020

PHD STUDENT

Sep. 2020 - Present

- Utilizing Transformers and Electronic Health Records to perform a multi-target regression for primordial prevention of cardiovascular disease.
- Leveraging a BERT-based architecture to extract the bidirectional representation of patients' medical data by defining medical codes as words, visits as sentences, and the medical history as a document.
- Coupled the transformer architecture with another deep neural network using four main EHR modalities: demographics, conditions, prescriptions, and lab measurements.
- Implementation of a single RNN and GAN-based model to predict obesity status at different time-points in the future.
- Participating in the BARDA Pediatric COVID-19 Data Challenge (Ongoing).

Teaching Experience

CISC106, University of Delaware

Newark, DE

TEACHING ASSISTANT

Fall 20 - Fall 21

Work Experience

Euronext Paris, France

SOFTWARE ENGINEER INTERN

Mar. 2020 - Aug. 2019

- Built an automated API testing tool using Python and Cucumber during the development of the company's new on-demand market data platform.
- Participated actively in the choice of the technologies and tools used throughout the project.
- Organized the deployment of the tool to serve as the company's main testing engine for newly developed APIs.

Euronext Paris, France

SOFTWARE ENGINEER INTERN

Apr. 2019 - Sep. 2019

- Built a cartography tool of the Optiq Trading system that allow engineers to better visualize the architecture of the system.
- Designed the Graph Database Model from the choice of the technology to the model itself.
- Realized a WebApp using JavaScript to keep the database up-to-date automatically and to help visualize each connection between Optiq's components.

Publications

PEER REVIEWED CONFERENCE PAPERS

M. Gupta, **R. Poulain**, TL. T. Phan, H. T. Bunnell and R. Beheshti. "Flexible-window Predictions on Electronic Health Records". The Thirty-Fourth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), 2022

R. Poulain, M. Gupta, R. Foraker, and R. Beheshti. "Transformer-based Multi-target Regression on Electronic Health Records for Primordial Prevention of Cardiovascular Disease". 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 726-731, 2021. <u>Link</u>

Services & Activities

Conference Volunteer IEEE International Conference on Bioinformatics and Biomedicine 2021

Projects

Portfolio Optimization 2020

Portfolio creation following the Markowitz's Optimal Portfolio using the predicted returns of an LSTM-based network.

NHL Players' salaries Prediction

2018

Developed a Random Forest Regression model to predict NHL Players' salaries given their in-game statistics and personal information.

Self Driving Cars 2018

Programmed a parking lot simulation populated by autonomous cars to teach them how to park using a genetic algorithm.

Relevant Coursework

University of Delaware

 $Artificial\ Intelligence,\ Bioinformatics,\ Introduction\ to\ Data\ Mining,\ Advanced\ Algorithms,\ Game$

Theory, Theory of Computation

EFREI Paris

Numerical Analysis Applied to Finance, Financial Risk, Econometrics, Big Data for Finance,

Advanced Databases, Deep Learning and Applications

Skills and Certifications

Programming Python, R, Keras, PyTorch, Tensorflow, SQL, C / C++, Java

Machine Learning Neural Networks, RNN, Transformers, CNN, GNN

Certifications Coursera Deep Learning Specialization