Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései

Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál zárójelben néhol magyarázó megjegyzések is vannak, ezeket nem kell leírni a teljes pontszám eléréséhez.

1. Mit jelent az, hogy egy $W \subseteq \mathbb{R}^n$ részhalmaz altér?

 $W \subseteq \mathbb{R}^n$ altér \mathbb{R}^n -ben, ha: 1) W nem üres; 2) $\mathbf{a}, \mathbf{b} \in W$ esetén $\mathbf{a} + \mathbf{b} \in W$ (azaz W zárt az összeadásra); 3) $\mathbf{a} \in W$ és $\lambda \in \mathbb{R}$ esetén $\lambda \mathbf{a} \in W$ (azaz W zárt a skalárral szorzásra). (Ahelyett, hogy W nem üres, azt is írhatjuk, hogy $\mathbf{0} \in W$.)

2. Definiáljuk, mit jelent az, hogy a $\mathbf{v}_1,\dots,\mathbf{v}_k\in\mathbb{R}^n$ vektorrendszer lineárisan független.

A $\mathbf{v}_1, \dots, \mathbf{v}_k$ vektorrendszer akkor és csak akkor lineárisan független, ha csak a triviális lineáris kombinációja adja a nullvektort. Képletben: tetszőleges $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ esetén, ha $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k = \mathbf{0}$, akkor minden *i*-re $\lambda_i = 0$.

3. Mit jelent az, hogy a $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ vektorrendszer lineárisan összefüggő? A válaszban ne hivatkozzunk a lineáris függetlenség fogalmára.

A $\mathbf{v}_1, \ldots, \mathbf{v}_k$ vektorrendszer akkor és csak akkor lineárisan összefüggő (azaz nem lineárisan független), ha léteznek olyan $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ nem mind nulla számok, melyekre $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_k \mathbf{v}_k = \mathbf{0}$.)

4. Mit jelent az, hogy egy v vektor lineárisan függ az $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektoroktól?

Azt jelenti, hogy \mathbf{v} felírható $\mathbf{a}_1, \dots, \mathbf{a}_k$ lineáris kombinációjaként, azaz léteznek olyan $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ skalárok, melyekre $\mathbf{v} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_k \mathbf{a}_k$.

5. Jellemezzük egy $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektorrendszer lineáris összefüggőségét a lineáris függés fogalmával.

Egy $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektorrendszer $(k \geq 2 \text{ eset\'en})$ pontosan akkor lineárisan összefüggő, ha valamelyik *i*-re \mathbf{a}_i lineárisan függ az $\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_k$ vektoroktól.

6. Definiáljuk egy $V \leq \mathbb{R}^n$ altér bázisának fogalmát.

Egy $\mathbf{b}_1, \dots, \mathbf{b}_k$ vektorrendszert akkor mondunk a $V \leq \mathbb{R}^n$ altér bázisának, ha lineárisan független, és V minden vektorát előállíthatjuk a \mathbf{b}_i vektorok lineáris kombinációjaként. (A lineáris függetlenség helyettesíthető azzal a feltétellel, hogy ez a felírás egyértelmű, az előállíthatóság pedig azzal, hogy generátorrendszerről van szó.)

7. Definiáljuk egy $\mathbf{a} \in V \leq \mathbb{R}^n$ vektor koordinátavektorát a V egy $\mathbf{b}_1, \dots, \mathbf{b}_k$ bázisában fölírva.

Az
$$\mathbf{a}$$
 vektor koordinátavektora pontosan akkor $[\mathbf{a}]_{\mathbf{b}_1,\dots,\mathbf{b}_k} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}$, ha $\mathbf{a} = \lambda_1 \mathbf{b}_1 + \dots + \lambda_k \mathbf{b}_k$.

8. Egy $A \subseteq \mathbb{R}^n$ vektorhalmaz esetén adjuk meg az A által generált altér egy jellemzését.

Az A által generált altér azokból az \mathbb{R}^n -beli vektorokból áll, amelyek előállnak A-beli vektorok lineáris kombinációiként, azaz amelyek lineárisan függnek az A-beli vektoroktól. (Ez a halmaz megegyezik az A-t tartalmazó \mathbb{R}^n -beli alterek metszetével.)

9. Mondjuk ki a lineárisan független rendszerek és a generátorrendszerek elemszámát összehasonlító tételt (ez a kicserélési tétel egyik része).

Minden lineárisan független rendszer elemszáma legfeljebb akkora, mint bármelyik generátorrendszer elemszáma.

10. Definiáljuk egy $V \leq \mathbb{R}^n$ altér dimenzióját, dim V-t.

 $\dim V$ a V egy bázisának elemszáma, illetve 0, ha $V=\{\mathbf{0}\}$. (Ez a definíció azért értelmes, mert bármely két bázis elemszáma egyenlő.)

11. Definiáljuk egy $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ vektorrendszer rangját, $r(\mathbf{v}_1, \dots, \mathbf{v}_k)$ -t.

 $r(\mathbf{v}_1, \dots, \mathbf{v}_k) = \dim \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$, azaz egy vektorrendszer rangja megegyezik az általa generált (kifeszített) altér dimenziójával.

12. Adjuk meg képlettel két mátrix, $A \in \mathbb{R}^{k \times \ell}$ és $B \in \mathbb{R}^{\ell \times n}$ szorzatában, AB-ben az i-edik sor j-edik elemét, ${}_{i}[AB]_{j}$ -t. Azt is mondjuk meg, i és j milyen értékére létezik ez az elem.

Ha
$$1 \le i \le k$$
 és $1 \le j \le n$, akkor $_i[AB]_j = \sum_{t=1}^{\ell} {}_i[A]_t \cdot _t[B]_j$.

13. Mondjunk ki két, a mátrixok transzponálását a többi szokásos mátrixművelettel összekapcsoló összefüggést.

$$A, B \in \mathbb{R}^{k \times n} \Rightarrow (A+B)^T = A^T + B^T$$
$$\lambda \in \mathbb{R}, A \in \mathbb{R}^{k \times n} \Rightarrow (\lambda A)^T = \lambda A^T$$
$$A \in \mathbb{R}^{k \times \ell}, B \in \mathbb{R}^{\ell \times n} \Rightarrow (AB)^T = B^T A^T$$

14. Definiáljuk egy $A \in \mathbb{R}^{k \times n}$ mátrix oszloprangját, illetve sorrangját, $\rho_{\mathcal{O}}(A)$ -t és $\rho_{\mathcal{S}}(A)$ -t.

Ha $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^k$ a mátrix oszlopai, akkor $\rho_{\mathcal{O}}(A) = r(\mathbf{a}_1, \dots, \mathbf{a}_k)$, azaz az oszloprang az oszlopok rendszerének rangja (vagyis az oszlopok által generált altér dimenziója.) Analóg módon, a mátrix sorrangja a sorok által generált altér dimenziója, vagy másképpen: $\rho_{\mathcal{S}}(A) = \rho_{\mathcal{O}}(A^T)$.

15. Mondjuk ki a mátrixok szorzatának oszloprangjára vonatkozó becslést.

Ha létezik az AB mátrixszorzat, akkor $\rho_{\mathcal{O}}(AB) \leq \rho_{\mathcal{O}}(A)$. (Igaz a $\rho_{\mathcal{O}}(AB) \leq \rho_{\mathcal{O}}(B)$ becslés is.)

16. Mit nevezünk egy $A \in \mathbb{R}^{n \times m}$ mátrix jobb, illetve kétoldali inverzének?

Az $A^{(j)} \in \mathbb{R}^{m \times n}$ mátrix jobb oldali inverze A-nak, ha $AA^{(j)} = I_n$, ahol I_n az $n \times n$ -es egységmátrix. $A^{-1} \in \mathbb{R}^{m \times n}$ kétoldali inverze A-nak, ha jobb oldali és bal oldali inverze is A-nak, azaz $AA^{-1} = I_n$, és $A^{-1}A = I_m$. (Ez utóbbi létezése esetén m = n.)

17. A mátrixrang fogalmának fölhasználásával mondjuk ki annak szükséges és elégséges feltételét, hogy az $A \in \mathbb{R}^{n \times m}$ mátrixnak létezzen jobb oldali inverze.

Az $A \in \mathbb{R}^{n \times m}$ mátrixnak pontosan akkor létezik jobb oldali inverze, ha $\rho(A) = n$, azaz a mátrix rangja megegyezik a sorainak a számával.

18. Definiáljuk a geometriai vektorok skaláris szorzatának fogalmát a vektorok hosszának és szögének segítségével.

Jelölje $|\mathbf{a}|$ az \mathbf{a} geometriai vektor hosszát, $\gamma(\mathbf{a}, \mathbf{b})$ pedig az \mathbf{a} és \mathbf{b} geometriai vektorok hajlásszögét. Ekkor az \mathbf{a} és \mathbf{b} skaláris szorzata $\mathbf{a}\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \gamma(\mathbf{a}, \mathbf{b})$.

19. Definiáljuk a geometriai vektorok vektoriális szorzatának fogalmát.

Jelölje $|\mathbf{a}|$ az \mathbf{a} geometriai vektor hosszát, $\gamma(\mathbf{a}, \mathbf{b})$ pedig az \mathbf{a} és \mathbf{b} geometriai vektorok hajlásszögét. Ekkor az \mathbf{a} és \mathbf{b} vektoriális szorzata az az $\mathbf{a} \times \mathbf{b}$ -vel jelölt vektor, melyre: 1) $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \gamma(\mathbf{a}\mathbf{b})$; 2) $\mathbf{a} \times \mathbf{b} \perp \mathbf{a}, \mathbf{b}$; 3) ha $|\mathbf{a} \times \mathbf{b}| \neq 0$, akkor $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ jobbrendszert alkot.

20. Mondjuk ki a geometriai vektorokra vonatkozó kifejtési tételt.

Ha $\mathbf{a}, \mathbf{b}, \mathbf{c}$ geometriai vektorok, akkor $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{ac})\mathbf{b} - (\mathbf{bc})\mathbf{a}$.

21. Mondjuk ki a geometriai vektorokra vonatkozó felcserélési tételt.

Ha $\mathbf{a}, \mathbf{b}, \mathbf{c}$ geometriai vektorok, akkor $(\mathbf{a} \times \mathbf{b})\mathbf{c} = \mathbf{a}(\mathbf{b} \times \mathbf{c})$.

22. Definiáljuk a geometriai vektorok vegyesszorzatának fogalmát.

Ha $\mathbf{a}, \mathbf{b}, \mathbf{c}$ geometriai vektorok, akkor a vegyesszorzatuk az $(\mathbf{a} \times \mathbf{b})\mathbf{c}$ skalár.

23. Adjuk meg az A mátrix determinánsát definiáló képletet. Mit jelent ebben az $I(i_1, \ldots, i_n)$ kifejezés?

Legyen
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}$$
. Ekkor $\det A = \sum_{\substack{i_1, \dots, i_n \\ (1, \dots, n)}} (-1)^{I(i_1, \dots, i_n)} a_{1i_1} a_{2i_2} \cdots a_{ni_n}$.

Itt az összegezés az $\{1, 2, ..., n\}$ számok minden permutációjára történik, $I(i_1, ..., i_n)$ pedig az adott permutáció inverzióinak a számát jelöli.

24. Mondjunk ki egy olyan feltételt, mely ekvivalens azzal, hogy az $A \in \mathbb{R}^{n \times n}$ mátrix determinánsa nem nulla.

$$\det A \neq 0 \iff \rho(A) = n \iff A$$
oszlopai (sorai) lineárisan függetlenek $\iff \exists A^{-1}$

25. Mit értünk az $A \in \mathbb{R}^{n \times n}$ mátrix *i*-edik sorának *j*-edik eleméhez tartozó előjelezett aldeterminánson, A_{ij} -n?

Hagyjuk el az A mátrix i-edik sorát és a j-edik oszlopát; az így kapott $(n-1) \times (n-1)$ -es mátrixot jelölje B_{ij} . Ekkor a keresett előjelezett aldetermináns: $A_{ij} = (-1)^{i+j} \det B_{ij}$.

26. Adjuk meg képlettel az $A \in \mathbb{R}^{n \times n}$ mátrix determinánsának *i*-edik sora szerinti kifejtését. A mátrix elemeit, illetve előjelezett aldeterminánsait a_{ij} , ill. A_{ij} jelöli.

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij}.$$

27. Legyenek az $A \in \mathbb{R}^{n \times n}$ mátrix oszlopvektorai $\mathbf{a}_1, \dots, \mathbf{a}_n$, és legyen $\mathbf{b} \in \mathbb{R}^n$ tetszőleges. Mondjuk ki az $A\mathbf{x} = \mathbf{b}$ lineáris egyenletrendszerre vonatkozó Cramer-szabályt, és fogalmazzuk meg, mi a feltétele annak, hogy ez alkalmazható legyen.

 $\det A \neq 0 \text{ esetén az egyenletrendszernek egyértelmű megoldása van. Ha } x_j \text{ jelöli az } \mathbf{x}$ megoldásvektor j-edik komponensét, akkor $x_j = \frac{\det[\mathbf{a}_1, \dots, \mathbf{a}_{j-1}, \mathbf{b}, \mathbf{a}_{j+1}, \dots, \mathbf{a}_n]}{\det[\mathbf{a}_1, \dots, \mathbf{a}_{j-1}, \mathbf{a}_j, \mathbf{a}_{j+1}, \dots, \mathbf{a}_n]}.$

(A szabály tehát csak akkor alkalmazható, ha ugyanannyi egyenlet van, mint ismeretlen, és az egyenletrendszer mátrixának determinánsa nem nulla.)

4

28. Definiáljuk a Vandermonde-determináns fogalmát, és mondjuk ki az értékére vonatkozó állítást.

$$a_1, \dots, a_n \in \mathbb{R}, n \ge 2 \text{ eset\'en } V(a_1, \dots, a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i).$$

29. Mondjuk ki a mátrix rangja és a mátrix egyes részmátrixainak determinánsa közötti összefüggésről szóló tételt.

Legyen $A \in \mathbb{R}^{k \times n}$, melynek rangja $r \geq 1$. Ekkor A-nak van olyan $r \times r$ -es részmátrixa, amelynek determinánsa nem nulla, de minden $(r+1) \times (r+1)$ -es részmátrix determinánsa 0.

30. Mondjuk ki a determinánsokra vonatkozó szorzástételt.

Ha $A, B \in \mathbb{R}^{n \times n}$ tetszőleges mátrixok, akkor $\det(AB) = \det A \cdot \det B$.

31. Mit jelent, hogy két négyzetes mátrix hasonló \mathbb{R} felett?

 $A,B\in\mathbb{R}^{n\times n}$ hasonlók \mathbb{R} felett, ha létezik olyan invertálható $S\in\mathbb{R}^{n\times n}$ mátrix, melyre $B=S^{-1}AS$. Ezt általában $A\sim_{\mathbb{R}} B$ jelöli.

32. Mikor mondjuk egy mátrixra, hogy diagonalizálható ℝ felett?

Egy $A \in \mathbb{R}^{n \times n}$ négyzetes mátrix diagonalizálható \mathbb{R} felett, ha hasonló \mathbb{R} felett egy diagonális mátrixhoz, azaz létezik olyan S invertálható, ill. D diagonális mátrix $\mathbb{R}^{n \times n}$ -ben, hogy $D = S^{-1}AS$.

33. Definiáljuk egy mátrix jobb oldali sajátvektorának a fogalmát.

Legyen $A \in \mathbb{R}^{n \times n}$ tetszőleges négyzetes mátrix. Egy $\mathbf{x} \in \mathbb{R}^n$ vektort az A mátrix jobb oldali sajátvektorának nevezünk, ha: 1) $\mathbf{x} \neq \mathbf{0}$; 2) létezik $\lambda_0 \in \mathbb{R}$ szám, melyre $A\mathbf{x} = \lambda_0 \mathbf{x}$.

34. Definiáljuk egy mátrix jobb oldali sajátértékének a fogalmát.

Legyen $A \in \mathbb{R}^{n \times n}$ tetszőleges négyzetes mátrix. Egy $\lambda_0 \in \mathbb{R}$ számot az A mátrix jobb oldali sajátértékének nevezünk, ha van olyan $\mathbf{x} \in \mathbb{R}^n$ vektor, melyre 1) $\mathbf{x} \neq \mathbf{0}$; 2) $A\mathbf{x} = \lambda_0 \mathbf{x}$.

35. Mondjuk ki egy valós elemű mátrix $\mathbb R$ feletti diagonalizálhatóságának szükséges és elégséges feltételét a sajátvektorok fogalmának fölhasználásával.

Egy $A \in \mathbb{R}^{n \times n}$ mátrix pontosan akkor diagonalizálható \mathbb{R} felett, ha létezik A sajátvektoraiból álló bázis \mathbb{R}^n -ben.

5

36. Definiáljuk az $A \in \mathbb{R}^{n \times n}$ mátrix λ_0 (jobb oldali) sajátértékéhez tartozó sajátalterének fogalmát.

 $W_{\lambda_0} = \{ \mathbf{x} \in \mathbb{R}^n \,|\, A\mathbf{x} = \lambda_0 \mathbf{x} \}$ a λ_0 -hoz tartozó sajátaltér. (Vagyis W_{λ_0} a λ_0 sajátértékű sajátvektorok halmaza, kiegészítve a nullvektorral.)

37. Definiáljuk egy négyzetes mátrix karakterisztikus polinomjának fogalmát.

Egy $A \in \mathbb{R}^{n \times n}$ mátrix karakterisztikus polinomja $k_A(\lambda) = \det(A - I_n \lambda)$, ahol I_n az $n \times n$ -es egységmátrix.

38. Mondjuk ki a hasonló mátrixok karakterisztikus polinomjára vonatkozó állítást.

Ha $A, B \in \mathbb{R}^{n \times n}$ hasonlók \mathbb{R} felett, akkor $k_A(\lambda) = k_B(\lambda)$.

39. Definiáljuk a komplex euklideszi tér fogalmát.

Legyen V vektortér \mathbb{C} felett. V-t komplex euklideszi térnek nevezzük, ha adva van egy $\langle \mathbf{x}, \mathbf{y} \rangle : V \times V \to \mathbb{C}$ leképezés, melyre minden $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ és $\lambda \in \mathbb{C}$ esetén:

- (1) $\langle \mathbf{y}, \mathbf{x} \rangle = \overline{\langle \mathbf{x}, \mathbf{y} \rangle};$
- (2) $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ (és $\langle \mathbf{x}, \lambda \mathbf{y} \rangle = \overline{\lambda} \langle \mathbf{x}, \mathbf{y} \rangle$);
- (3) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (és $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$);
- (4) $\langle \mathbf{x}, \mathbf{x} \rangle$ mindig valós és nemnegatív, továbbá csak akkor 0, ha $\mathbf{x} = \mathbf{0}$.
- 40. Definiáljuk az x vektor normáját egy euklideszi térben.

Ha V valós vagy komplex euklideszi tér, akkor tetszőleges $\mathbf{x} \in V$ vektorra $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

41. Mondjuk ki az euklideszi terek vektoraira vonatkozó háromszög-egyenlőtlenséget.

Ha V valós vagy komplex euklideszi tér, akkor tetszőleges $\mathbf{x}, \mathbf{y} \in V$ vektorokra:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$$

42. Mondjuk ki a valós vagy komplex euklideszi terekre vonatkozó Cauchy-egyelőtlenséget, valamint azt, hogy mikor áll ebben egyenlőség.

Ha V valós vagy komplex euklideszi tér, akkor tetszőleges $\mathbf{x}, \mathbf{y} \in V$ vektorokra teljesül, hogy $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$, és egyenlőség akkor és csak akkor áll fönn, ha az \mathbf{x} és \mathbf{y} vektorok lineárisan összefüggőek (azaz párhuzamosak).

43. Definiáljuk egy V euklideszi tér ortonormált bázisának a fogalmát.

Az $\mathbf{e}_1, \dots, \mathbf{e}_n \in V$ vektorokból álló rendszert ortonormált bázisnak nevezzük a V euklideszi térben, ha: 1) bázist alkotnak V-ben; 2) az \mathbf{e}_i vektorok páronként merőlegesek, azaz $i \neq j$ esetén $\langle \mathbf{e}_i, \mathbf{e}_i \rangle = 0$; és 3) a vektorok normáltak, azaz $\|\mathbf{e}_i\| = 1$ minden $1 \leq i \leq n$ -re.

44. Mondjuk ki a valós szimmetrikus mátrixokra vonatkozó spektráltételt (azaz főtengelytételt).

Egy $A \in \mathbb{R}^{n \times n}$ mátrix esetén pontosan akkor létezik A sajátvektoraiból álló ortonormált bázis \mathbb{R}^n -ben (azaz A pontosan akkor diagonalizálható \mathbb{R} felett ortonormált bázisban), ha az A mátrix szimmetrikus (azaz $A^T = A$). (Ilyenkor az A sajátértékei mind valósak.)

45. Definiáljuk egy $A \in \mathbb{R}^{n \times n}$ valós szimmetrikus mátrixhoz tartozó kvadratikus alakot.

Az A-hoz tartozó kvadratikus alak az a $Q: \mathbb{R}^n \to \mathbb{R}$ függvény, melyre $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

46. Mondjuk meg, mit jelent az, hogy az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixhoz tartozó Q kvadratikus alak pozitív definit, és jellemezzük ezt az esetet az A sajátértékei segítségével.

Q-t akkor nevezzük pozitív definitnek, ha minden $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ vektorra $Q(\mathbf{x}) > 0$. Ez pontosan akkor teljesül, ha az A mátrix minden sajátértéke pozitív.

47. Mondjuk meg, mit jelent az, hogy az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixhoz tartozó Q kvadratikus alak negatív definit, és jellemezzük ezt az esetet az A karakterisztikus sorozata segítségével.

Q-t akkor nevezzük negatív definitnek, ha minden $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ vektorra $Q(\mathbf{x}) < 0$. Ez pontosan akkor teljesül, ha az A karakterisztikus sorozata jelváltó. (Az A mátrix $\Delta_o, \ldots, \Delta_n$ karakterisztikus sorozatának k-adik tagja az A bal fölső sarkában lévő $k \times k$ -as részmátrix determinánsa, illetve $\Delta_o = 1$.)

48. Mit értünk lineáris leképezés (vagy vektortér-homomorfizmus) alatt?

Egy $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ leképezést lineáris leképezésnek vagy vektortér-homomorfizmusnak nevezünk, ha: 1) minden $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ vektorpárra $\varphi(\mathbf{x}+\mathbf{y}) = \varphi(\mathbf{x}) + \varphi(\mathbf{y})$ (azaz φ összegtartó), és 2) minden $\mathbf{x} \in \mathbb{R}^n$ vektorra és $\lambda \in \mathbb{R}$ skalárra $\varphi(\lambda \mathbf{x}) = \lambda \varphi(\mathbf{x})$ (azaz φ skalárszorostartó). (E lineáris leképezések halmazát $\mathcal{H}om(\mathbb{R}^n, \mathbb{R}^m)$ jelöli.)

49. Mondjuk ki a lineáris leképezésekre vonatkozó egyértelmű kiterjesztési (más néven előírhatósági) tételt.

Ha $\mathbf{e}_1, \dots, \mathbf{e}_n$ bázis \mathbb{R}^n -ben és $\mathbf{v}_1, \dots, \mathbf{v}_n$ tetszőleges vektorok \mathbb{R}^m -ben, akkor pontosan egy olyan $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ vektortér-homomorfizmus van, melyre $\varphi(\mathbf{e}_i) = \mathbf{v}_i$ minden $1 \le i \le n$ -re.

50. Legyen $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ lineáris leképezés, továbbá $\mathbf{e}_1, \dots, \mathbf{e}_n$ és $\mathbf{f}_1, \dots, \mathbf{f}_m$ egy-egy bázis az \mathbb{R}^n , illetve az \mathbb{R}^m vektorterekben. Definiáljuk φ mátrixát ebben a bázispárban.

$$[\varphi]^{\mathbf{e},\mathbf{f}} = [[\varphi(\mathbf{e}_1)]_{\mathbf{f}}, \dots, [\varphi(\mathbf{e}_n)]_{\mathbf{f}}].$$

(Azaz φ mátrixa az \mathbf{e}, \mathbf{f} bázispárban az az $m \times n$ -es mátrix, melynek j-edik oszlopa a $\varphi(\mathbf{e}_i)$ vektor koordinátavektora az \mathbf{f} bázisban.)

7

51. Definiáljuk egy lineáris leképezés mag-, illetve képterének fogalmát.

```
Ha \varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^m), akkor:

a \varphi leképezés magtere: \mathcal{K}er \varphi = \{\mathbf{x} \in \mathbb{R}^n \mid \varphi(\mathbf{x}) = \mathbf{0}\};

a \varphi leképezés képtere: \mathcal{I}m \varphi = \{\mathbf{y} \in \mathbb{R}^m \mid \exists \mathbf{x} \in \mathbb{R}^n \ \varphi(\mathbf{x}) = \mathbf{y}\}.

(Ez is megfelel: \mathcal{I}m \varphi = \{\varphi(\mathbf{x}) \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}.)
```

52. Mondjuk ki a lineáris leképezésekre vonatkozó dimenzióösszefüggést.

```
Ha \varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^m), akkor dim \mathcal{K}er \varphi + \dim \mathcal{I}m \varphi = \dim \mathbb{R}^n (=n).
```

53. Definiáljuk egy lineáris transzformáció sajátvektorának fogalmát.

```
Legyen \varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^n) lineáris transzformáció. Az \mathbf{x} \in \mathbb{R}^n vektort a \varphi sajátvektorának nevezzük, ha: 1) \mathbf{x} \neq \mathbf{0}; 2) létezik olyan \lambda_0 \in \mathbb{R}, hogy \varphi(\mathbf{x}) = \lambda_0 \mathbf{x}.
```

54. Mondjuk ki sajátvektorok függetlenségének egy elégséges feltételét a megfelelő sajátértékek segítségével.

Ha $\varphi \in \mathcal{H}om(\mathbb{R}^n,\mathbb{R}^n)$, továbbá $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \mathbb{R}^n$ sajátvektorok, melyekhez páronként különböző sajátétértékek tartoznak, akkor az \mathbf{x}_i vektorok lineárisan függetlenek. (Ennek segítségével adható elégséges feltétel sajátvektorokból álló bázis létezésére.)

55. Ha $\varphi \in \mathcal{H}om(U,V)$, illetve $\psi \in \mathcal{H}om(V,W)$, akkor hogyan írható fel a $\psi \varphi$ szorzatleképezés mátrixa a φ és a ψ mátrixainak segítségével? Írjuk ki a képletben a megfelelő bázisokat is.

Vegyük az U, V, ill. W valós számok feletti vektorterek egy-egy bázisát: legyenek ezek rendre $\mathbf{e}_1, \dots, \mathbf{e}_k$, továbbá $\mathbf{f}_1, \dots, \mathbf{f}_\ell$, végül $\mathbf{g}_1, \dots, \mathbf{g}_n$. Ekkor $[\psi \varphi]^{\mathbf{e}, \mathbf{g}} = [\psi]^{\mathbf{f}, \mathbf{g}} [\varphi]^{\mathbf{e}, \mathbf{f}}$.