Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: Unidad 10

Tema: Problemas de valores iniciales.

Profesor Titular: Manuel Carlevaro Jefe de Trabajos Prácticos: Diego Amiconi

Ejercicio 1.

Para cada problema de valor inicial siguiente, determine la constante de Lipschitz L en el dominio dado.

a)
$$y' = 1 - 3y, y(0) = 0, D = \{(t, y) \mid -1 \le t \le 1; 0 \le y \le 2\};$$

b)
$$y' = y(1-y), y(0) = 1/2, D = (-1,1) \times (0,2);$$

c)
$$y' = y^2, y(0) = 1, D = (-1, 1) \times (0, 2).$$

Ejercicio 2.

Use el método de Euler con h=1/4 para calcular aproximadamente los valores de y(1) para cada problema de valor inicial siguiente. Realizar los cálculos, sin un programa de computadora, para producir una tabla ordenada de pares (t_k,y_k) .

a)
$$y' = y(1-y), y(0) = 1/2;$$

b)
$$ty' = y(\sin t), y(0) = 2;$$

c)
$$y' = y(1 + e^{2t}), y(0) = 1;$$

d)
$$y' + 2y = 1, y(0) = 2.$$

Ejercicio 3.

Escriba un programa en Python que resuelva cada uno de los problemas de valor inicial del Ejercicio 2, utilizando el método de Euler con un paso h=1/16.

Ejercicio 4.

Para cada uno de los problemas de valor inicial siguiente, aproxime la solución utilizando el método de Euler con una secuencia de pasos decreciente $h^{-1}=2,4,8,\ldots$ Para los problemas en que se da la solución exacta, compare la precisión alcanzada en el intervalo [0,1] con la precisión teórica.

a)
$$y' + 4y = 1, y(0) = 1; y(t) = \frac{1}{4}(3e^{-4t} + 1);$$

b)
$$y' = -y \ln y, y(0) = 3; y(t) = e^{(\ln 3)e^{-t}};$$

c)
$$y' + y = \sin 4\pi t, y(0) = 1/2;$$

d)
$$y' + \sin y = 0, y(0) = 1.$$

Ejercicio 5.

Utilize el método de Runge-Kutta de segundo orden para resolver el Ejercicio 2.

Ejercicio 6.

Repita el Ejercicio anterior usando el método de Runge-Kutta de cuarto orden. Compare la precisión obtenida con los resultados generados con los métodos anteriores.

Ejercicio 7.

Escriba un programa en Python que resuelva los problemas con valores iniciales del Ejercicio 2 utilizando el método de Runge-Kutta de cuarto orden con h=1/16. Compare los resultados obtenidos con los del Ejercicio 3.

Ejercicio 8.

Repita el Ejercicio 4, pero utilizando ahora el método de Runge-Kutta de cuarto orden.