Контекстно-свободные языки и грамматики

Содержание

1 Контекстно-свободные языки и грамматики

Преобразования КС-грамматик

Нормальные формы грамматик

Контекстно-свободные языки и грамматики

Перейдем от рассмотрения регулярных языков к более широкому классу языков, которые называются контекстно-свободными. Они описываются в виде контекстно-свободных грамматик. Эти грамматики играют главную роль в технологии компиляции с начала 1960-х годов; они превратили непростую задачу реализации синтаксических анализаторов, распознающих структуру программы, из неформальной в рутинную, которую можно решить за один вечер.

Позже контекстно-свободные грамматики стали использоваться для описания форматов документов в виде так называемых определений типа документов (document-type definition — DTD), которые применяются в языке XML (extensible markup language) для обмена информацией в Internet.

В контекстно-свободных грамматиках важным является понятие дерева разбора, изображающего структуру, которую грамматика налагает на цепочки языка. Дерево разбора представляет собой выход синтаксического анализатора языка программирования и одновременно общепринятый способ выражения структуры программы.

Контекстно-свободные языки также описываются с помощью автоматов с магазинной памятью (иными словами автоматы с магазинной памятью являются распознавателями в КС-языках).

Примеры контекстно-свободных языков и грамматик

Рассмотрим следующий пример:

- \bullet ϵ , 0, 1 являются палиндромами (базис рекурсии)
- Если w палиндром, то 0w0 и 1w1 также палиндром (шаг рекурсии). Ни одна цепочка не является палиндромом, если не определяется базисом или шагом рекурсии.

Например, такие цепочки 0110, 11011 являются палиндромами, а 0011, 0101 - нет. Воспользуемся леммой о накачке, чтобы показать, что данный язык не является регулярным.

Если бы данный язык был регулярным, то существовала бы константа n, начиная с которой любую цепочку длины больше n можно было бы накачивать. Рассмотрим палиндром $w = 0^n 10^n$, представим w = xyz, где $xy = 0^n$, эту подцепочку уже можно накачать, в ней y состоит из одного или нескольких нулей, но тогда $0^{n-k}(y^k)^m 10^n$ - уже не палиндром.

Данный язык можно задать еще следующей порождающей грамматикой: $P \to \epsilon, P \to 0, P \to 1, P \to 0 P 0, P \to 1 P 1$. Эта запись по сути повторяет рекурсивное определение. В целом контекстно-свободная грамматика представляет собой формальную запись подобных рекурсивных определений языков. Грамматика состоит из одной или нескольких переменных, которые представляют классы цепочек, или языки. В данном примере нужна только одна переменная, представляющая множество палиндромов.

Преобразования КС-грамматик

Устранение бесплодных символов

Определение

Нетерминальный символ является бесплодным, если из него нельзя вывести ни одной цепочки терминальных символов.

В простейшем случае символ является бесплодным, если во всех правилах, где этот символ стоит в левой части, он также встречается и в правой части. Более сложные варианты предполагают зависимости между цепочками бесплодных символом, когда они в любой последовательности вывода порождают друг друга.

Алгоритм устранения бесплодных символов прост: 1. мы начинаем с пустого множества нетерминальных символов $Y = \emptyset$. 2. добавляем в множество Y только такие нетерминалы A, для которых имеем $A \to \beta$, где β состоит из одних терминальных символов. 3. последовательно пополняем множество Y нетерминальными символами B, из которых следует цепочки терминальных символом, а также символы самого множества Y. 4. выполняем п.3 пока множество Y изменяется.

Определение

Символ называется недостижимым, если он не участвует ни в одной цепочке вывода из целевого символа грамматики.

Очевидно, недостижимые символы можно удалить. Алгоритм удаления недостижимых символов X. Первоначально в такое множество входит только целевой символ S, затем оно пополняется на основе правил грамматики. Все символы, которые не войдут в данное множество, являются недостижимыми и могут быть исключены в новой грамматике.

Пример устранения бесплодных и недостижимых символов

Пусть грамматика задана правилами:

$$S
ightarrow aAB|E$$
 $A
ightarrow aA|bB$ $B
ightarrow ACb|b$ $C
ightarrow A|bA|cC|aE$ $E
ightarrow cE|aE|Eb|ED|FG$ $D
ightarrow a|c|Fb$ $F
ightarrow BC|EC|AC$ $G
ightarrow Ga|Gb$

Важно соблюдать последовательность преобразования: сначала удаляются бесплодные символы, потом недостижимые.

Пример устранения бесплодных и недостижимых символов

Удаляем бесплодные символы

- **1** $Y_1 = \{B, D\}$
- $Y_2 = \{B, D, A\}$
- $Y_3 = \{B, D, A, S, C\}$
- $Y_4 = \{B, D, A, S, C, F\}$
- $Y_5 = Y_4$

Окончательно в множестве продукций оставляем только те символы, которые включает в себя множество Y_4 :

Пример устранения бесплодных и недостижимых символов

Удаляем недостижимые символы

Итак, теперь из грамматики удалим недостижимые символы:

$$S
ightarrow aAB, A
ightarrow aA|bB, B
ightarrow ACb|b$$
 $C
ightarrow A|bA|cC, D
ightarrow a|c|Fb, F
ightarrow BC|AC$

- $X_1 = \{S\}$
- $X_2 = \{S, A, B\}$
- $X_3 = \{S, A, B, C\}$

Окончательно оставляем в грамматике только правила, включающие в себя достижимые символы:

$$S
ightarrow aAB \ A
ightarrow aA|bB \ B
ightarrow ACb|b \ C
ightarrow A|bA|cC$$

Неукорачивающиеся и ϵ -свободные грамматики

Определение

Грамматика, которая задается общим правилом $A \to \beta$, где A - один нетерминальный символ, β - цепочка терминальных и нетерминальных символов, называется контекстно-свободной грамматикой (КС-грамматика).

Определение

KC-грамматика называется неукорачивающей, если она не включает продукции вида $A o \epsilon$.

Определение

KC-грамматика называется ϵ -свободной, если она неукорачивающая или в ней существует ровно одна продукция вида $S \to \epsilon$, где S - начальный нетерминал, и S не встречается в правой части ни одной из продукций.

Очевидно, что любой шаг вывода в неукорачивающей грамматике не может уменьшить длину выводимой цепочки - отсюда и ее название.

Преобразования КС-грамматик

Устранение ϵ -правил

Теорема

По любой KC-грамматике может быть построена эквивалентная ϵ -свободная KC-грамматика. По любой KC-грамматике, порождающей язык, не включающий пустую цепочку, может быть построена эквивалентная неукорачивающая грамматика.

Доказательство.

Для любой пустой продукции $A \to \epsilon$ в грамматике найдем и скопируем все продукции, включающие A в правой части, c выбрасыванием символа A из правых частей этих копий, причем если A входит несколько раз в правую часть продукции, то такое выбрасывание производится во всех возможных сочетаниях. Далее продукция $A \to \epsilon$ выбрасывается из множества правил. Если A - начальный нетерминал, то выбираем новый начальный нетерминал S и к продукциям грамматики добавляем две новые: $S \to \epsilon, S \to A$.

Пример устранения ϵ правил

Пусть задана грамматика начальным нетерминалом A:

$$A
ightarrow \epsilon |AaB|BbB$$
 $B
ightarrow Ba|\epsilon$

Вводим новый символ $S \to \epsilon|A$. Удаляем A в правой части продукций во всех сочетаниях: $A \to AaB|aB|BbB$. Удаляем B в правой части продукций: $B \to Ba|a$, $A \to AaB|Aa|aB|a|BbB|bB|Bb|b$.

Окончательно имеем:

$$S
ightarrow \epsilon |A \ A
ightarrow AaB|Aa|aB|a|BbB|bB|Bb|b \ B
ightarrow Ba|a$$

Определение

 Π родукции вида A o B называются сингулярными.

Eсли в результате цепного применения правил вида A o B приходим к выводу, что из $A \Rightarrow A$, то такой вывод называется циклическим.

Любую грамматику можно преобразовать в эквивалентную ей грамматику без сингулярных продукций и циклических выводов. Для этого вместо каждой сингулярной продукции вида $A \to B$ включаем продукции $A \to \beta$, такие, что $B \to \beta$ несингулярна.

Пример устранения циклических символов

Пример 1.

$$S
ightarrow BA \ A
ightarrow C|ac \ B
ightarrow b \ C
ightarrow A$$

В данной грамматике есть две сингулярные продукции: $A \to C, C \to A$, из которых фактически следует циклический вывод $A \Rightarrow A$. Заменим продукцию $C \to A$ на несингулярную $A \to \beta$: $C \to ac$. Окончательно получаем:

$$S
ightarrow BA$$
 $A
ightarrow ac$ $B
ightarrow b$ $C
ightarrow ac$

В результате такого приведения видно, что символ C не выводим (еще говорят недостижим), а значит продукция $C \to ac$ может быть вообще исключена.

Пример 2.

$$egin{aligned} S &
ightarrow S + T|S - T|T \ T &
ightarrow T * E|T/E|E \ E &
ightarrow (S)|a|b \end{aligned}$$

Здесь мы видим две сингулярности: $S \to T, T \to E$. Поскольку для E имеем несингулярную продукцию $E \to (S)|a|b$, то вместо $T \to E$, можно написать $T \to (S)|a|b$, или в целом $T \to T*E|T/E|(S)|a|b$, которая теперь перестает быть сингулярной, а значит вместо $S \to T$ можно написать $S \to T*E|T/E|(S)|a|b$. Окончательно получаем:

$$egin{aligned} S
ightarrow S + T|S - T|T*E|T/E|S)|a|b \ & T
ightarrow T*E|T/E|S)|a|b \ & E
ightarrow (S)|a|b \end{aligned}$$

Устранение левой рекурсии

Определение

Hетерминальный символ A называется рекурсивным, если в грамматике существует вывод $A\Rightarrow \alpha A\beta$.

Определение

KC-грамматика называется леворекурсивной, если в ней существует вывод $A\Rightarrow A\beta$.

Определение

KC-грамматика называется $npasopekypcushoй, если в ней существует вывод <math>A\Rightarrow \alpha A.$

Полностью исключить рекурсию в КС-грамматике нельзя, но можно полностью исключить либо левую, либо правую.

Многие алгоритмы синтаксического анализа не могут применяться к грамматикам с левой рекурсией, поэтому возникает необходимость ее устранения.

Устранение левой рекурсии

Рассмотрим простейший случай - пусть в грамматике есть продукции $A \to A\alpha | \beta$. Очевидно, что тогда в дереве вывода присутствует следующий фрагмент:

Тогда такие продукции можно заменить нелеворекурсивными:

$$A
ightarroweta R,R
ightarrowlpha R|\epsilon$$

со следующим деревом вывода:

Пример

Рассмотрим правила грамматики арифметических выражений:

$$E
ightarrow E+T|T$$

Используя рассмотренный подход, получаем:

$$R
ightarrow + TR |\epsilon|$$

Этот метод обобщается, когда нетермилал имеет несколько альтернатив с левой рекурсией. Более сложный случай непрямой рекурсии требует более сложного алгоритма.

Приведенные грамматики

Определение

 $\Pi puведенные$ грамматики - это KC-грамматики, которые не содержат недостижимых, бесплодных символов, циклов и ϵ - правил.

Для того, чтобы преобразоватьпроизвольную грамматику к приведенному виду, необходимо:

- 📵 удалить все бесплодные символы;
- удалить все недостижимые символы;
- \odot удалить все ϵ правила;
- удалить цепные правила

Все эти преобразования необходимо выполнять строго в указанном порядке.

Определение

КС-грамматика представлена в нормальной форме Хомского, если она неукорачивающая и каждое ее правило имеет одну из следующих форм:

$$A \rightarrow BC, A \rightarrow a$$

Грамматику $G = \{T, N, S, R\}$ можно привести к форме Хомского $G' = \{T', N', S, R'\}$ следующими преобразованиями:

- ullet В множество продукций R' включаем все продукции вида A o BC, A o a.
- Для каждой продукции из R вида $A \to X_1 X_2 \dots X_k$ включаем в R' множество продукций:

$$A o X_1' < X_2 \dots X_k >, < X_2 \dots X_k > o X_2' < X_3 \dots X_k >, \dots, \ < X_{k-1} X_k > o X_{k-1}' X_k',$$

где $X_i'=X_i$, если X_i - нетерминал, иначе, если $X_i=a$, вводим новый нетерминал X_i' , а также правило $X_i'\to a$

$$< X_2 \dots X_k >, < X_3 \dots X_k >, \dots < X_{k-1} X_k >$$
 - новые нетерминалы.

Нормальная форма Хомского

Пример

Пусть дана грамматика:

$$S
ightarrow ByA \ A
ightarrow BS \ A
ightarrow x \ B
ightarrow zA$$

Вместо продукции $S \to ByA$ вводим $S \to BD, D \to EA, E \to y$ Вместо продукции $B \to zA$ вводим $B \to ZA, Z \to z$ Окончательно получаем следующую грамматику:

$$egin{aligned} S &
ightarrow BD \ D &
ightarrow EA \ E &
ightarrow y \ A &
ightarrow BS \ A &
ightarrow x \ B &
ightarrow ZA \ Z &
ightarrow z \end{aligned}$$

Выбросить все бесполезные продукции:

$$S
ightarrow aSbBc$$
 $B
ightarrow cD$ $S
ightarrow BdD$ $C
ightarrow bCc$ $A
ightarrow BcS$ $C
ightarrow cDA$ $A
ightarrow acb$ $D
ightarrow cSD$ $B
ightarrow bE$ $E
ightarrow ce$

Построить ϵ -свободную грамматику.

$$A
ightarrow \epsilon$$

$$B o \epsilon$$

По грамматике построить ациклическую грамматику:

$$S o SS|(S)|\epsilon$$

Удалить левую рекурсию:

Преобразовать к нормальной форме Хомского:

$$B \to cD$$

$$D \rightarrow DBa$$

Нормальная форма Грейбаха

Определение

KC-грамматика представлена в нормальной форме Γ рейбаха, если она ϵ -свободная и все ее продукции имеют вид: $A \to a\gamma$, где a - один терминальный символ, γ - произвольная цепочка нетерминалов, возможно пустая.

Существуют простые правила перевода КС-грамматики в нормальную форму Грейбах. Рассмотрим пример. Пусть дана грамматика:

Преобразуем ее в нормальную форму Грейбаха. Для этого в двух первых продукциях заменим символ B на цепочку zAy. Далее для последней продукции введем новый нетерминал Y вместо y, а также добавим правило $Y \to y$. Окончательно получаем:

$$A
ightarrow x$$
 , $B
ightarrow z AY$, $Y
ightarrow y$

Теорема

Kаждую ϵ -свободную KC-грамматику можно преобразовать к нормальной форме Γ рейбаха.

Для грамматики:

$$S o ABABABA, A o Aa, A o \epsilon, B o b$$

Найти нормальную форму Хомского, нормальную форму Грейбаха.

Для грамматики:

$$S o SS, B o aa, S o BS, B o bb, S o SB$$

Найти нормальную форму Хомского, нормальную форму Грейбаха.

При разработке алгоритмов синтаксического анализа КС-языков часто используются функции FIRST и FOLLOW.

Определение

Для произвольной строки α из терминальных и нетерминальных символов $FIRST(\alpha)$ определяет множество тех терминальных символов, с которых могут начинаться строки, выводимые из α . Если $\alpha \Rightarrow \epsilon$, то $\epsilon \in FIRST(\alpha)$.

$$FIRST(\alpha) = \{a \in T : \alpha \Rightarrow a\beta\} \cup \{\epsilon : \alpha \Rightarrow \epsilon\}$$

Рассмотрим правила вычисления множества *FIRST*:

- $oldsymbol{0}$ Если lpha начинается с терминала a, то $FIRST(lpha)=\{a\}.$
- $m{2}$ Если $lpha \Rightarrow \epsilon$, то $FIRST(lpha) = FIRST(lpha) \cup \{\epsilon\}$.
- \odot Если α начинается с нетерминала A, то $FIRST(\alpha) = FIRST(A) \setminus \{\epsilon\}$. Данное правило применяется рекурсивно.

Пример вычисления функции FIRST

Пусть дана грамматика:

$$S o ABCd, A o e|f|\epsilon, B o g|h|\epsilon, C o p|q|$$

Требуется вычислить FIRST(S). Цепочки вывода демонстрирует рисунок:

Таким образом, $FIRST(S) = \{e, f, g, h, p, q\}$

Определение

Функция FOLLOW(A) для нетерминала A определяется как множество таких терминальных символов, которые могут следовать за A в какой-либо форме вывода:

$$FOLLOW(A) = \{a \in T : S \Rightarrow lpha Aeta, a \in FIRST(eta)\}$$

Рекурсивный алгоритм для нахождения множества FOLLOW(A) состоит в следующем: просматриваются все продукции, в правой части которых встречается символ A, и для каждой такой продукции вида $B \to \alpha A \beta$ все элементы $FIRST(\beta)$, кроме символа ϵ помещаются в FOLLOW(A). Если в этой продукции $\beta \Rightarrow \epsilon$, то все элементы FOLLOW(B) помещаются в FOLLOW(A).

Пример нахождения FIRST, FOLLOW

Найти множества FIRST, FOLLOW для каждого нетерминала грамматики арифметических выражений:

$$egin{aligned} S &
ightarrow E \$ \ E &
ightarrow T E' \ E' &
ightarrow + T E' | \epsilon \ T &
ightarrow F T' \ T' &
ightarrow * F T' | \epsilon \ F &
ightarrow (E) | i \end{aligned}$$

Поскольу для нетерминала E имеется только одно правило $E \to TE'$, в котором первый символ - нетерминал, то FIRST(E) = FIRST(T), аналогично FIRST(T) = FIRST(F). Наконец, по двум правилам для F находим $FIRST(F) = \{(,i\}$. Итак: $FIRST(E) = FIRST(T) = FIRST(F) = \{(,i\}$

Также имеем:

$$FIRST(E') = \{+, \epsilon\}$$
 $FIRST(T') = \{*, \epsilon\}$

При нахождении FOLLOW(E) существуют две продукции, в которых E находится в правой части: $S \to E\$$ и $F \to (E)$. Отсюда:

$$FOLLOW(E) = \{\$,\}$$

Для нахождения FOLLOW(E') найдем продукции, в которых E' входит в правую часть: $E \to TE', E' \to +TE'$. Поскольку в этих продукциях E' - последний символ, то в FOLLOW(E') следует включить FOLLOW(E) и FOLLOW(E'). Значит:

$$FOLLOW(E') = FOLLOW(E) = \{\$, \}$$

Решение (продолжение)

Для нетерминала T в грамматике есть два правила: $E \to TE', E' \to +TE'$. Следовательно, в FOLLOW(T) включаем множество $FIRST(E') \setminus \{\epsilon\} = \{+\}$. В тоже время $E' \Rightarrow \epsilon$, поэтому к FOLLOW(T) следует добавить множество FOLLOW(E'):

$$FOLLOW(T) = \{+, \}$$

Также имеем:

$$FOLLOW(F) = FIRST(T') \setminus \{\epsilon\} \cup FOLLOW(T') = \{*,+,),\$\}$$

Алгоритмические проблемы для КС-языков

Проблема называется алгоритмически разрешимой, если существует разрешающий ее алгоритм. В противном случае проблема называется алгоритмически неразрешимой. К сожалению, многие содержательные проблемы неразрешимы для КС-языков - не существует соответствующего алгоритма в принципе. Среди них:

- проблема эквивалентности порождают ли две КС-грамматики один и тот же язык;
- проблема пересечения пересекаются ли множества цепочек, порождаемых двумя КС-грамматиками;
- проблема определения того, порождает ли данная КС-грамматика язык, включающий все терминальные цепочки.

Для грамматики построить множества FIRST и FOLLOW для каждого нетерминала:

$$B o \epsilon$$

$$D \rightarrow DBa$$

$$D
ightarrow \epsilon$$