# EEE4119F – practical 3

Student names: Student numbers:

#### Question 1 - Euler

Given the differential equation

$$\frac{dy}{dt} = -y$$

with analytical solution  $y(t) = Ce^{-t}$  ,

- Write a function dy = deriv(time, y) which returns the derivative of y at that point in time. This essentially characterises the differential equation in a function. In this case, the function will just return dy = -y (ie don't take the symbolic derivative)
- 2. Write a function [t, y] = euler1stOrder(y0, f, dt, t\_final) to numerically integrate the given ODE. y0 is the initial value of y, f is the deriv function written previously (passed as @deriv), dt is the simulation timestep and t\_final is the final time.
- Plot the analytical solution against the numerical solution for dt = [0.1, 0.2, 0.4, 0.8].

| Hint: if you want to put all functions in one script, make sure th | ne function definitions come AFTER you |
|--------------------------------------------------------------------|----------------------------------------|
| use them in your code (ie, at the end of your script)              |                                        |
|                                                                    |                                        |

### Question 2 - Runge Kutta 4 (RK4)

- 1. Write a function  $[t, y] = runge\_kutta\_4(y0, f, dt, t\_final)$  to numerically integrate the previous ODE for the same set of timesteps. The algorithm is given below.
- 2. Plot the Runge Kutta solution against the analytical solution and Euler method.

$$k1 = \Delta t f(t^{N}, y^{N})$$

$$k2 = \Delta t f(t^{N} + \Delta t/2, y^{N} + k1/2)$$

$$k3 = \Delta t f(t^{N} + \Delta t/2, y^{N} + k2/2)$$

$$k4 = \Delta t f(t^{N} + \Delta t, y^{N} + k3)$$

$$y^{N+1} = y^{N} + \frac{k1}{6} + \frac{k2}{3} + \frac{k3}{3} + \frac{k4}{6}$$

### Question 3 - built-in solver

In this question, you will use one of matlab's built in solvers to solve an ODE.

 Using the options = odeset( ) command, set the absolute tolerance option of the solver to 1e-6. (Use help to find out how)

| 2. | Use [t, y] = ode45(ODEFUN, TSPAN, Y0, OPTIONS) to solve the Lorenz equation              |
|----|------------------------------------------------------------------------------------------|
|    | given below. Note that it should still have the form $[dy] = Lorenz(time, y)$ , except y |
|    | and dy are vectors. Let $Y0 = [1, 1, 1]$ and simulate over 30 seconds.                   |

$$\frac{dx}{dt} = 10(y-x), \quad \frac{dy}{dt} = x \cdot (27-z) - y, \quad \frac{dz}{dt} = x \cdot y - \frac{8}{3}z$$

3. Produce a 3D plot of the output using plot3



### Question 4 – basic symbolic simplification

Use MATLAB's symbolic toolbox to simplify/prove the following identities:

- 1.  $\sin(x)^2 + \cos(x)^2 = 1$
- 2. sin(x) cos(y) + cos(x) sin(y) = sin(x+y)
- 3.  $\cosh(x)^2 \sinh(x)^2 = 1$

Hint: start with the line syms x y;

|  |  | 177 |
|--|--|-----|
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |

### Question 5 – solve a simple equation

The law of cosines for a triangle states that  $a^2 = b^2 + c^2 - 2bc\cos(A)$ , where a is the length of the side opposite the angle A, and b and c are the lengths of the other sides.

- 1. Use the symbolic toolbox to solve for b, using the solve command
- 2. Given that  $A=60^\circ$  , a=5m and c=2m , determine b using the subs command. Don't forget that MATLAB trig functions take radians as input

## Question 6 – symbolic pole placement

Given state space matrices  $A = \begin{bmatrix} 0 & -1 \\ 5 & 2 \end{bmatrix}$  and  $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ , use the characteristic equation

$$\det\left(sI - A + bK^T\right) = 0$$

to find controller gains  $K = [k_1; k_2]$  to place the resulting system's poles at s = -5, -10.

A possible approach:

- 1. Calculate your characteristic equation using the information given above, and leave it as a polynomial by not setting it equal to zero
- 2. Do the same for your pole placement equation:  $eq2 = (s + p_1)(s + p_2)$
- 3. Just as you would by hand, get the coefficients of each equation using coeffs (equation, s) and set each coefficient equal to each other (thus eliminating s from the equations).
- 4. Solve for K. You should get  $k_1 = -45$ ,  $k_2 = 17$