2.9.10 Lemma. Sind x > 0, z > 0 und p & Z, g & N, so gilt VX = VX, VXZ = VX VZ Sowie $\left(\begin{array}{c} A \\ \times \end{array} \right)^{p} = \begin{array}{c} A \\ \times \end{array}$ (2.12)Beweis Vx = Vx folgt aus (Vx) = (Vx)9 = x und der Tatsache, dass nach Satz 2.9.5 Vt die eindertige Lösung y von y9 = x ist. Die Formel, aus der unsere Eigenschaft folgt gilt : Weil die erste aleichheit mit der dritten Eigenedraft (2.5) im Buch auf Seite 36 gezeigt werden kann: $x^{-p} = x^{p}$ and wir schreiben $x = \hat{x}$; $-p = \hat{p} \Leftrightarrow p = -\hat{p}$; > (2) = (1/2)-+ = 2+, wobei die letzte aleichheit wieder durch (2.5) erklärbar ist. Die zweite Gleichheit der obesen Formel allt, weil Vx die eindertige Lösung y von y = x ist. Aus dieser Formel betracktet man aber nur den ersten und letzten Term. Vxz übereinstimmen. Die Eigenschaft (x·y) = x y ist. moultin schnell bewiesen. Sie stimmt trivialesaveise für P=0 und (x.y) P+1 = (x.y) P(x.y) = xp.yp.x.y= $x^{p+1} \cdot y^{p+1}$, sowie $(x \cdot y)^{p-1} = (x \cdot y)^{p} (x \cdot y)^{-1} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{-1} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} (x \cdot y)^{p} (x \cdot y)^{p} = (x \cdot y)^{p} =$ xp. yp x 'y' = xp. yp. Wail q & N, 15t x injektiv und x = (Vxz) daher (Vx Vz) = (Vxz) = Vx Vz = Vxz 1st p = 0, so ist (2.12) trivialerweise richtia, da ja VI = 1. (9x) = ! = 10 = 91 = 19, einderfige Lösung blabla. Soust folgt (2.12) aus ((Vx)) = ((Vx)9) = x (sehe (2.5))

1	1-1-	7	71		1		.1.				1	-	- 1	4	-	20	7 1	-	10	1	P		11-				
CNO	der		at	Sac	ne	1	do	155	V	nac	1	-	at	Z	6	. 9		2	_\	*		0	ne				
einde	tige	Lo	Sc	ua		/	VO	n	Y	9	= ,	< P	is	54	. (01	ς.										
	3				_				1												-						
					+							H				-			4								
					+					-	-	-															_
				7																		•				A	
	1-1-	3		- 4													16										
120		1.5		300	44										4	_										47	
			-												-												
												1			-		-										
				14.																							4
	-				*																						
					-																						
		\vdash																							H		
												H															
			-						+	-		H				-											
					+										+												
																											20
										*5																	
			-									-															
												H															
	1.																										
				-																				47			
										+	+	H				7											
																											1
																											11
										+										-							
		-																								•	
					. 8																						
																-											
						-										-									7.6		
					-					_		_															