Matrix Computations Chapter 6: Singular value, Singular Vectors, and Singular Value Decomposition

Section 6.1 Singular Value Decomposition

Jie Lu ShanghaiTech University

Singular Value Decomposition

Theorem

Given any $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exists a 3-tuple $(\mathbf{U}, \Sigma, \mathbf{V}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times n}$ s.t.

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$$

where U and V are orthogonal matrices and

$$[\Sigma]_{ij} = \begin{cases} \sigma_i, & i = j \\ 0, & i \neq j \end{cases} \text{ with } \sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_p \ge 0, \ p = \min\{m, n\}$$

- The above decomposition is called the singular value decomposition (SVD)
- σ_i is called the *i*th singular value
- \mathbf{u}_i and \mathbf{v}_i are called the *i*th left and right singular vectors, respectively
- Notations denoting singular values of A:

$$\sigma_{\max}(\mathbf{A}) = \sigma_1(\mathbf{A}) \ge \sigma_2(\mathbf{A}) \ge \ldots \ge \sigma_p(\mathbf{A}) = \sigma_{\min}(\mathbf{A})$$

Different Forms of SVD

• Partitioned form: Let r be the number of nonzero singular values, so that $\sigma_1 \ge \dots \sigma_r > 0$, $\sigma_{r+1} = \dots = \sigma_p = 0$. Then,

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \tilde{\Sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix}$$

where

- $\tilde{\Sigma} = \text{Diag}(\sigma_1, \dots, \sigma_r)$
- $\mathbf{U}_1 = [\mathbf{u}_1, \dots, \mathbf{u}_r] \in \mathbb{R}^{m \times r}, \ \mathbf{U}_2 = [\mathbf{u}_{r+1}, \dots, \mathbf{u}_m] \in \mathbb{R}^{m \times (m-r)}$
- $\mathbf{V}_1 = [\mathbf{v}_1, \dots, \mathbf{v}_r] \in \mathbb{R}^{n \times r}, \mathbf{V}_2 = [\mathbf{v}_{r+1}, \dots, \mathbf{v}_n] \in \mathbb{R}^{n \times (n-r)}$
- Thin SVD: $\mathbf{A} = \mathbf{U}_1 \tilde{\Sigma} \mathbf{V}_1^T$
- Outer-product form: $\mathbf{A} = \sum_{i=1}^{p} \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

SVD and Eigendecomposition

Note from the SVD $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$ that

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}_1\mathbf{U}^T, \ \mathbf{D}_1 = \Sigma\Sigma^T = \mathrm{Diag}(\sigma_1^2, \dots, \sigma_p^2, \underbrace{0, \dots, 0}_{m-p, \text{ zeros}})$$
(*)

$$\mathbf{A}^{T}\mathbf{A} = \mathbf{V}\mathbf{D}_{2}\mathbf{V}^{T}, \ \mathbf{D}_{2} = \boldsymbol{\Sigma}^{T}\boldsymbol{\Sigma} = \operatorname{Diag}(\sigma_{1}^{2}, \dots, \sigma_{p}^{2}, \underbrace{0, \dots, 0}_{n-p \text{ zeros}})$$
 (**)

Observations:

- (*) is an eigendecomposition of $\mathbf{A}\mathbf{A}^T$
- (**) is an eigendecomposition of A^TA
- The left singular vector matrix \mathbf{U} of \mathbf{A} is the eigenvector matrix of $\mathbf{A}\mathbf{A}^T$
- The right singular vector matrix V of A is the eigenvector matrix of A^TA
- $\sigma_1^2, \dots, \sigma_r^2$ are the nonzero eigenvalues of both $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$

Insights of the Proof of SVD

- To see the insights of the constructive proof, consider the special case of square nonsingular A
- AA^T is PD with eigendecomposition

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\Lambda\mathbf{U}^T, \qquad \lambda_1 \geq \ldots \geq \lambda_n > 0$$

- Let $\Sigma = \operatorname{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_m})$ and $\mathbf{V} = \mathbf{A}^T \mathbf{U} \Sigma^{-1}$
- It can be verified that $\mathbf{U}\Sigma\mathbf{V}^T = \mathbf{A}, \mathbf{V}^T\mathbf{V} = \mathbf{I}$

Proof of SVD

Proof of SVD (cont'd)

Proof of SVD (cont'd)

SVD and Subspaces

Properties:

- (a) $\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{U}_1), \ \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{U}_2)$
- (b) $\mathcal{R}(\mathbf{A}^T) = \mathcal{R}(\mathbf{V}_1), \ \mathcal{R}(\mathbf{A}^T)^{\perp} = \mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{V}_2)$
- (c) $rank(\mathbf{A}) = r$ (the number of nonzero singular values)
 - In practice, SVD can be used a numerical tool for computing bases of $\mathcal{R}(\mathbf{A})$, $\mathcal{R}(\mathbf{A})^{\perp}$, $\mathcal{R}(\mathbf{A}^{T})$, $\mathcal{N}(\mathbf{A})$
 - Using SVD, we can easily show the following facts:
 - $\operatorname{rank}(\mathbf{A}^T) = \operatorname{rank}(\mathbf{A})$
 - dim $\mathcal{N}(\mathbf{A}) = n \text{rank}(\mathbf{A})$