HW 7

Ravi Kini

November 28, 2023

Exercise 1

Algebra (Artin, 2e) Exercise 6.7.1 (partial)

Part (a)

Let $G = D_4$ be the dihedral group of symmetries of the square $[-1,1]^2 \subset \mathbb{R}^2$, generated by $\rho = \rho_{\pi/2}$ and τ reflection across the e_1 -axis. By inspection, the elements of D_4 that fix v = (1,1) are $\{e, \rho\tau\}$. These correspond, respectively, with performing no actions and performing a reflection across the e-1 axis followed by a rotation of $\theta = \frac{\pi}{2}$.

$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\tau v = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\rho \tau v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = v$$
(1)

Evidently, the vertex is mapped to itself.

Part (b)

By inspection, the elements of D_4 that fix the top edge e connecting (-1,1) and (1,1) are $\{e, \rho^2\tau\}$. These correspond, respectively, with performing no actions and performing a reflection across the e-1 axis followed by two rotations of

$$\theta = \frac{\pi}{2}$$
.

$$e = \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\tau e = \begin{bmatrix} x \\ -1 \end{bmatrix}$$

$$\rho \tau e = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$\rho^2 \tau e = \begin{bmatrix} -x \\ 1 \end{bmatrix} = e$$
(2)

Evidently, every point on the edge is bijectively mapped to a point on the edge.

Exercise 2

Algebra (Artin, 2e) Exercise 6.3.4 (extended)

Part (a)

Let $G = GL_n(\mathbb{R})$ act on the set $V = \mathbb{R}^n$ by left multiplication. Since g0 = 0 for all $g \in G$ and the null space of an invertible matrix is only the zero vector, $O_0 = \{0\}$. Further, for some nonzero vectors v, there must exist some $g \in G$ such that $ge_1 = v$. Since ge_1 is the first column of g, we see that g is a matrix where the first column is v with the other columns chosen such that the matrix is invertible. Since e_1 can therefore be mapped to every nonzero vector in \mathbb{R}^n , $O_{e_1} = V - \{0\}$. The two orbits are then the set containing only the zero vector, and the set containing the rest of $V = \mathbb{R}^n$.

Part (b)

The stabilizer of e_1 is the set of all $g \in G$ such that $ge_1 = e_1$. Since ge_1 is the first column of g, the stabilizer of e_1 is therefore the set of all invertible matrices where the first column is e_1 .

Part (c)

The action of G on $V-\{0\}$ is then observed to have a single orbit. Consequently, for $v,v'\in V-\{0\}$, there exists $g\in G$ such that gv=v', which means that the action is transitive. We see that for all $v\in V$, Iv=v. Suppose, for arbitrary v, there exists some $g'\in G$ such that g'v=v=Iv. Since a matrix is uniquely determined by the linear transformation it performs, g'=I. Consequently, gv=v iff g=I, so the action is free.