TERM	Buto.	
1111	第15章 静电场中的电介质	8.静电场的边界条件
	1. 的饭桶入使电场减弱.	- 2 Maria Ma
	E= 是 / 相对的电常量 (Er>1)	リカ何: Eit= Eit. Ein = Ein 以清何: Din= Din => En = En
	2. 极化机制	◆用孙路解决E,用高斯解决D.
I	少位移极化 对无极分子、有极分子都有	9. 电容器和电容.
Const	(f) → (F)	C= Q (F= C/V)
U	的取向极化 对极分子.	野板电影器。 $U=Ed=\frac{Qd}{\varepsilon \circ \varepsilon_r s}$ $\Rightarrow C=\frac{\varepsilon \circ \varepsilon_r s}{d}$ 图信电影器。 $U=\int_{R_1}^{R_2} E \cdot dr = \int_{R_1}^{R_2} Q dr$ $\Rightarrow C=\frac{2\pi \varepsilon \circ \varepsilon_r L}{\ln \frac{R_2}{R_1}}$
	P - EP	⇒ C= \(\frac{\x_0 \x_0 \x_0}{\x_0}\)
	注: 0时势运动,产程都至行正	图局电容器 U= Sp. E. dr= Sp. 271 FEOSIL - 271506
	②静电场中,取何极化为主,高频场,取	⇒ C= 2π Eo Er L
	向极化灰雾.	TR RE C RE C RE C RE C RE RE
	3.电极化3强度.	球形电容器 U= Sp. Edr= Jp. 4116.62-12 - 4116.62 []
	$\vec{P} = \lim_{N \to \infty} \vec{Z} \vec{P} \cdot (C/m^2)$	=> C= 4TEOER RIRE
	E不太强, 对各向同性的电价值.	> Q
	P= 80(8r-1) E	这类问题: E J C
	4. 面来傅电荷密度 一在电价质表面上出现的对正电荷	10. 展并联电容器.
- = =	o'= Pn (法向). 的电荷层)	串联: - = Σ - Ci
	5.整个封闭面向外後出的电荷.	并联: C= Z Ci.
Ti.	Pone = - Pin = 9 s P. ds.	11. 电容器的能量、能量体密度。
	6. 极化作电荷. 5万.12	耀 W= 1 QU= 1 Q2 = 1CU2
	P'= - also al = - P=- (an + dp + dy + d	
	7. D的高斯定律	W= SwedV.
	D= & E+P= E. Er E (电位格) (C/m²)	
	∮g D. ds = Σloin.	
	Alijan: E= Eo	
	Pz Eo(2r-1) E= 20 (1- Er) Eo. = (1- Er) D	
3	D= 80 8-E= 80E0.	