卷一甲部

題號	答案	題號	答案
1.	D (83)	26.	A (58)
2.	A (55)	27.	D (22)
3.	C (75)	28.	D (68)
4.	A (54)	29.	B (28)
5.	B (37)	30.	B (57)
6.	D (45)	31.	D (54)
7.	C (26)	32.	A (61)
8.	C (54)	33.	C (56)
9.	B (91)		
10.	B (66)		
11.	B (29)		
12.	B (58)		
13.	B (74)		
14.	A (80)		
15.	C (78)		
16.	A (76)		
17.	B (53)		
18.	C (41)		
19.	A (76)		
20.	C (44)		
21.	D (43)		
22.	D (61)		
23.	B (53)		
24.	C (20)		
25.	D (48)		

註: 括號內數字為答對百分率。

卷一乙部

			答案	分數	說明
1.	(a)	5 分鐘 (或 300 s)		1A	
	(b)	電熱	·器關掉後,其溫度仍比金屬方塊高。	1A	
			內由電熱器傳導至金屬直至兩者溫度相同。 需要一段時間兩者才達至相同的溫度。	1A 1A	
				1	
	(c)	(i)	$mc\Delta T = IVt$ (0.80) $c (45 - 20) = (4.0)(12)(5 \times 60)$ $c = 720 \text{ J kg}^{-1} {}^{\circ}\text{C}^{-1}$	1M 1A	
-		(ii)	實驗結果所得的金屬比熱容較實際數值大。 電熱器所提供的能量並非全部傳給金屬。	1A 1A	
			或 部分能量被電熱器吸收/或被溫度計吸收。 或 熱散失至周圍。	1A 1A	
				2	
	(d)	或虫	日並非熱的良好導體。 整個玻璃方塊需要較長時間才達至均勻溫度。 沒有理想的絕緣體,因此有一定程度的熱散失。	1A 1A 1A	

			答案	分數	說明
2.	(a)	(1	= 於壓強 P_0 時所需的空氣總體積,包括球的空氣 $P_1V_1 = P_0V_0$ $56 \mathrm{kPa}) (6000 \mathrm{cm}^3) = (100 \mathrm{kPa}) (V_0)$ $V_0 = 9360 \mathrm{cm}^3$ 空氣體積 = V_0 - 籃球的體積 = $9360 \mathrm{cm}^3$ - $6000 \mathrm{cm}^3$ = $3360 \mathrm{cm}^3$	内殘留 IM IA IM	
		$\frac{\therefore n}{\frac{156}{R^2}}$	代方法: $= \frac{PV}{RT}$ $\frac{V}{T} - \frac{100V}{RT} = n'$ $V = \frac{56V}{RT} \bullet \frac{RT}{100} = 3360 \text{ cm}^3$	1M 1M + 1A	•
		(ii) 活塞	医内推的次數= 3360 cm³ ÷ 120 cm³ = 28	3 1A	:
	(b)	$pV = \frac{Nm}{3}$ 因體積和	·運動論,壓強 p 由下式得出 $\frac{nc^2}{3} = \frac{2N}{3} \cdot \frac{mc^2}{2}$ 溫度 (\propto 空氣分子的動能)保持不變,是由於每單位時間撞擊容器壁的空氣分子數	1A 1A	
		或 空氣分	子撞擊容器壁的頻率增加。	1A	
				2	

			答案	分數	說明
. (a)		0 s: 恆 / 勻加速度 80 s: 恆速度 / 勻速運動	1A 1A	
((b)	(i)	B 車。 取 B 車在 $10 \text{ s} 至 20 \text{ s}$ 期間斜率最陡的部分。 $a = \frac{20 - 0}{20 - 10} = 2 \text{ m s}^{-2}$	1A 1A	
		(ii)	a / m s ⁻² 3 2 1 0 10 -1 -2 -3 在 10 s 至 20 s 間為勻加速和在 60 s 至80 s 間為勻減速。		0 t/s
((c)	(i)	或 正確的加速度或減速度。 全對。	1A 1A 2	
`	,		20 s 內 A 車的總面積 = $\frac{(10+20)}{2} \times 15 = 225 \text{ m}$ 20 s 內 B 車的總面積 = $\frac{(10\times20)}{2} = 100 \text{ m}$ A 車和 B 車的間距, $s_{AB} = 225 \text{ m} - 100 \text{ m} = 125 \text{ m}$	1M 1A	
		(ii)	設 B 與 A 於時間 $(20 + T)$ s 相遇, $(v_B - v_A) \times T = s_{AB}$ $(20 \text{ m s}^{-1} - 15 \text{ m s}^{-1}) \times T = 125 \text{ m}$ $T = 25 \text{ s}$ $\therefore B$ 追趕上 A 在時間 $t = (20 + 25) \text{ s} = 45 \text{ s} \circ$ 或 $s_A + v_A \times T = s_B + v_B \times T$ $225 \text{ m} + 15 \text{ m s}^{-1} \times T = 100 \text{ m} + 20 \text{ m s}^{-1} \times T$ 或 接受利用圖解方法 和從線圖讀出答案。	1M 1A 1M 1M 1A	
(0		A 車具	車與 B 車引擎輸出的驅動力分別為 F_A 和 F_B 。 與 B 車引擎輸出功率的比率為 $P_B = F_A \times \nu_A : F_B \times \nu_B$ $= \nu_A^2 \times \nu_A : \nu_B^2 \times \nu_B$ $= 3^3 : 4^3 = 27 : 64$	2 1M 1A	

		答案	分數	說明
4.	(a)	正確箭號 標示(張力 / T, 重量 / Mg) 或 任何一個正確標示的力 全部正確。	1A 1A 1A 1A	
		加速度		
		重量, Mg 正當 M 向上加速,		
		T - Mg = Ma 即 $T = Mg + Ma$	1M	
		需要更大的張力 $(T > 原張力 = Mg)$,因此彈簧伸長更多。即 M 較接近箱底,圖 4.2 的 h 值更小。	1A 4	
	(b)	張力 / 讀數的改變 = 2 N cm ⁻¹ × 0.5 cm = 1 N $\therefore T - Mg = 1$ N 即 $T = 6$ N	1A	
		$T - Mg = Ma$ $1 \text{ N} = \frac{5\text{N}}{\text{g}} \ a \text{ (接受 } M = 0.5 \text{ kg)}$	1M	
		$a = \frac{1}{5}g \otimes 0.2 g \text{ (向上) } (\otimes \frac{g}{5} = 2 \text{ m s}^{-2} \otimes 1.96 \text{ m s}^{-2})$	1A 3	
	(c)	$a_Y = -0.5g = -g \cos \theta$ $\therefore \theta = 60^\circ > 45^\circ$,结果是'横向顯示', 或 當電話以順時針旋轉 45°時。	1M 1A	
		$a_{\rm Y} = -g \cos 45^{\circ}$ 或 $-g \sin 45^{\circ}$ $= -\frac{g}{\sqrt{2}} = -0.71 g$ 或 -6.94m s^{-2} (或 -7.07m s^{-2})	1M	
		5	1A	
		或結果是'橫向顯示'因 a _Y 值 < 其在 45° 時的量值	1A	
			2	

		答案	分數	說明
5.	(a)	$n = \frac{\sin i}{\sin r} \qquad (\implies n_1 \sin \theta_1 = n_2 \sin \theta_2)$ $= \frac{\sin(90^\circ - 30^\circ)}{\sin(90^\circ - 54^\circ)} = \frac{\sin 60^\circ}{\sin 36^\circ}$	1M	
		= 1.47	1A 2	接受 1.47 至 1.50
	(b)	$\sin c = \frac{1}{n} = \frac{1}{1.47}$ $c = 42.7^{\circ}$ (倘 $n = 1.50$, $c = 41.8^{\circ}$) 因在 AC 面的入射角 (= 54°) > c (= 42.7°) \circ	1M 1M 2	
	(c)	A Q C 54° B C		
		正確反射光線 $i=r$ 出射光線偏離法線。	1A 1A	
	(d)	看到光譜。 或 分開成不同顏色的光線。	1A 1A	

	答案	分數	說明
7. (a)	(i) $\tan \theta = 0.38$ $\theta = 20.8^{\circ}$	1A	接受 20.8° 至 21°
	(ii) $ d \sin \theta = n\lambda $	1M	
	$(\frac{1}{300} \times 10^{-3}) \times \sin 20.8^{\circ} = 2\lambda$ $\lambda = 5.92 \times 10^{-7} \text{ m } (\vec{x} 592 \text{ nm})$	1M 1A	接受 5.90×10 ⁻⁷ m 至 5.97×10 ⁻⁷ m
	(iii) x 值 / 衍射角 θ 的百分誤差較小。 或 x 值較大,百分誤差減少。	1A 1A	
(b)	在左方 / 在觀測者的另一方以長針重複實驗。 實驗中取兩邊所得 x 數據的平均值以計算 λ 。	1A 1A	

		答案	分數	說明
8.	(a)	$P = \frac{V^2}{R}$ $500 = \frac{220^2}{R}$ $R = 96.8 \Omega$	1A	接受 97 Ω
	(b)	因模式 X 中電路的總電阻倍增, 總功率耗散 = $\frac{V^2}{2R}$	1M	
		$= \frac{220^2}{2 \times 96.8} = 250 \text{ W}$	1A	接受 249 W相應於97 Ω
		替代方法: 因每個發熱元件 (1 和 2) 的電壓減半, 每個發熱元件的功率耗散		
	或	$P_{1} \vec{\boxtimes} P_{2} = \frac{500}{4} = 125 \text{ W } ($	1M 1M	:
	义	$R_1 + R_2 = 2 \times 96.8$ P_1 或 $P_2 = i^2 R = 1.14^2 \times 96.8 = 125 W$ 總功率耗散= 2 × 125 W = 250 W	1M 1A	
	(c)	因在模式 Z 中發熱元件為並聯連接,其等效電阻為最少,固此在相同電壓下,總功率耗散變成最大,因 $P = \frac{V^2}{R}$ 。	1A 1A	
	(d)	(i) 在模式 Z , 總功率耗散 = $500 + 500 = 1000$ W $I_z = \frac{P}{V} = \frac{1000}{220} = 4.55$ A	1M+1M	
		替代方法: $R_{\text{eq}} = \frac{96.8}{2} \Omega = 48.4 \Omega$ $I = \frac{220 \text{ V}}{48.4 \Omega} = 4.55 \text{ A}$	1M+1M	
		48.4 Ω 最適合的保險絲量值 = 5 A	1A 3	
		(ii) 雖然發熱器在該兩種接駁中仍能運作,但開關 S 安 裝在 B 線 (中線) 是危險的,因即使開關制斷開,發熱器 / 電線仍然帶電。	1A 3 1+	
		(iii) 導線 C (接地) 電流經外殼由這導線傳至地。	1A 1A	

		答案	分數	說明
9.	(a)	以接線將線圈通過開關接駁到低壓直流電源的端鈕 (圖示)。	1A	
		銀環 1100 匝 線圈 接線		低壓直流電源
		把鋁環穿過鐵架的鐵竿放在線圈頂上, 合上開關使接通電源,鋁環彈上鐵竿一次, 因剛開始通電時,鋁環感應到線圈所產生的磁場變化, 根據楞次定律,鋁環中流動的渦電流抗拒改變。 或渦電流產生方向相反的磁場以抗拒線圈所生的磁場。 然而當電流及其導致的磁場穩定時,鋁環跌回線圈頂 上,因渦電流已不再流動。	1A 1A 1A 1A 1A	·
	(b)	(i) 鋁環浮在空中。	1A 1	
		(ii) 斷開一縫的鋁環保持靜止。	1A	:

		答案	分數	說明
10. (a)	發射	的 α粒子會被(薄)金屬外殼阻隔。	1A	
	或知	記射程/低穿透力。	1A	
(b)	(i)	$k = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{87.74 \times 3.16 \times 10^7}$ $= 2.5 \times 10^{-10} \text{s}^{-1} \text{s} 7.9 \times 10^{-3} \text{year}^{-1}$	1M	
		放射強度 $A = kN$ $= \frac{\ln 2}{87.74 \times 3.16 \times 10^7} (3.2 \times 10^{25})$ $= 8.000 \times 10^{15} \text{ (Bq)}$	1M 1A	
	(ii)	功率 = 每衰變的能量 × 放射強度 = $5.5 \text{ MeV} \times 8.000 \times 10^{15} \text{ Bq}$ = $5.5 \times 10^6 \times 1.60 \times 10^{-19} \times 8.000 \times 10^{15}$ = $7040 \text{ W 或 } 7.040 \text{ (kW)}$	1M 1A 2	
	(iii)	功率 ∞ 放射強度 放射強度 $\propto N$::剩餘功率的百分比 = $(\frac{1}{2})^{\frac{1}{2}} \times 100\%$ = $(\frac{1}{2})^{\frac{36}{87.74}} \times 100\%$ = $75.25\% \approx 75\%$	1M 1A	
		或 剩餘功率的百分比/分數 = 3/4 <i>替代方法</i> : $N = N_0 e^{-kt}$ ∴剩餘功率的百分比 = $e^{-kt} \times 100\%$ = $e^{-(\ln 2 + 87.74) \times 36} \times 100\%$ = $e^{-0.2844} \times 100\%$ = 75.25% ≈ 75%	1M	

卷二

甲部:天文學和航天科學

	1. D(55%)	2. A(31%)	3. C(53%)	4. A(39%)
Ī	5. B(58%)	6. D(50%)	7. C(30%)	8. B(36%)

	•			分數	說明
1.	(a)	(i)	恆星光度 $L = 4\pi R^2 \sigma T_s^4$ 離恆星距離 d 處的每單位面積的功率		
1			$=\frac{L}{4\pi d^2}=\frac{R^2}{d^2}\sigma T_s^4$	1M	
			吸收的功率 = $\pi r^2 \times \frac{R^2}{d^2} \sigma T_s^4$	1M	
		(ii)	處於平衡狀態時,吸收的功率 = 輻射出的功率	2	
			$\frac{R^2}{d^2} \pi r^2 \sigma T_s^4 = 4 \pi r^2 \sigma T_p^4$	1M	
			$\frac{R^2}{d^2} T_s^4 = 4 T_p^4$	1+1	
			$T_p^4 = \frac{R^2}{4d^2} T_s^4$	1M	
			$T_p = \sqrt{\frac{R}{2d}} T_s$	2	
	(b)	(i)	$T_p = \sqrt{\frac{R}{2d}} T_s$		
			$= \sqrt{\frac{6.82 \times 10^8}{2 \times (0.84 \times 1.50 \times 10^{11})}} 5518$	1M	
			= 287 K (或 14°C)	1A 2	
		(ii)	溫度介乎 273 K 和 373 K, 行星上可能有(液態)水。	1A 1A	
			因此,條件有利於生物存活。	2	
		(iii)	平衡表面溫度會較低 / 減少。 一顆屬 K 等的恆星較一顆屬 G 等的恆星冷。	1A 1A	

乙部:原子世界

1. A(71%)		2. D(45%)	3. C(57%)	4. C(49%)
	5. D(52%)	6. B(46%)	7. A(43%)	8. B(60%)

		答案	分數	說明
2.	(a)	A - (4): 陽極 B - (3): 聚焦磁透鏡 C - (1): 磁物鏡 D - (2): 投影磁透鏡	2A 2	
	(b)	(i) 動能 = 電子獲得的能量 $\frac{1}{2}mv^2 = eV$ $(mv)^2 = 2meV$	1M	
		$p = mv = \sqrt{2meV}$ $\therefore \lambda = \frac{h}{\sqrt{2meV}}$	1M	
		(ii) $\lambda = \frac{h}{\sqrt{2meV}}$ 6.63×10^{-34}		
		$= \frac{6.63 \times 10^{-34}}{\sqrt{2(9.11 \times 10^{-31})(1.60 \times 10^{-19})(10 \times 10^{3})}}$ $\lambda = 1.2279 \times 10^{-11} \text{ m (= 0.012 nm)}$	1M 1A 2	$1.20 \times 10^{-11} \sim 1.23 \times 10^{-11} \text{m}$
		(iii) 由於電子束的波長 ($\sim 10^{-11}$ m) 較可見光的波長 ($\sim 10^{-7}$ m) 小/短, 顯微鏡採用的波長較短(衍射較少)則其解像能力 $\theta = \frac{1.22\lambda}{d}$ 較大。	1A 1A	
	(c)	透射電子顯微鏡 (TEM)。 掃描隧穿顯微鏡 (STM) 只能展示樣本的表面結構。	1A 1A	

丙部:能量及能源的使用

1. A(53%)	2. C(72%)	3. D(47%)	4. C(61%)	
5. B(44%)	6. D(27%)	7. B(53%)	8. A(39%)	

	***************************************		答案	分數	說明
3.	(a)	23 ×	E = VIt $1000 = 220 \times 13 \times t$ t = 8.04 (小時)	1M 1A	28951 秒 或 482.5 分鐘
	(b)	(i)	將電池組的電能/能量轉換為動能/機械能/驅動車子的力/使車子加速 <u>或</u> 電動機制動時,車輪/車輛的部分動能經電動機/發電機/元件X轉換為電能。 然後,電能儲存至充電電池/把充電電池充電。	1A 1A	
		(ii)	高速。 於高速時制動車輛,可轉換為電能 (把電池組充電)的動能總量較大。	1A 1A	車的動能 = E ; 耗散為熱的能量 = αE 把電池充電的能量 = $(1 - \alpha)E$ α 為固定。高速 => 較多能量 $(1 - \alpha)E$ 可用以充電。 接受高速和低速的效果相同倘解
		(iii)	當再生制動系統出現故障時,機械制動系統可發揮制動作用。 或 機械制動系統可把車輛位置鎖定。 或 當電池組完全充電後,再生制動系統便無法 運作。		釋中提到 $\frac{E-\alpha E}{E} = (1-\alpha)$ 的意思。
	(c)	21%)	源效益 = 45% × 60% = 27% > 另外兩種模式的 20% 或	1 1A 1A 2	

丁部:醫學物理學

1. A(48%)	2. D(46%)	3. B(54%)	4. C(63%)	
5. C(37%)	6. D(44%)	7. B(63%)	8. A(57%)	

			答案	分數	說明
4.	(a)	(i)	當電勢差施於換能器內一小塊壓電晶體時,晶 體會變形, 若將電勢差除去,它便會回復原狀,因着其隨 後的振盪而產生超聲波。	1A 1A 2	
		(ii)	優點:解像度較佳/較清晰 缺點:較大的衰減/穿透較少	1A 1A	
	(b)	(i)	$P = \frac{1}{u} + \frac{1}{v} \implies P = \frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ $59 = \frac{1}{\infty} + \frac{1}{v}$	1M	
			v = 0.01695 m (或 1.695 cm) ≈ 17 mm	1A2	接受16.9~17.0 mm
		(ii)	$\theta = \frac{1.22 \ \lambda}{d}$ $\theta = \frac{1.22 \times 5.35 \times 10^{-7}}{4.0 \times 10^{-3}}$	1M	
		<i>~</i>	$= 1.63175 \times 10^{-4} \text{ (rad)} \approx 1.63 \times 10^{-4} \text{ (rad)}$	1A 2	接 受 0 .0093°
		(iii)	$\theta = \frac{r}{L}$ 以弧度表示的角 θ 很小時 $r = 1.632 \times 10^{-4} \times 0.30$ m $= 4.89525 \times 10^{-5}$ m (或 0.0489525 mm) ≈ 49.0 μm		接受 $ an heta = rac{r}{L}$ 接受 $ an heta = 49.0 \ ext{ mum}$