Jan Romanovský Gymnázium Brno, tř. Kpt. Jaroše 4.A A-I-1

Předpokládejme, že pro reálná čísla a,b mají výrazy a^2+b a $a+b^2$ stejnou hodnotu. Jaká nejmenší může tato hodnota být?

$$a^{2} + b = a + b^{2}$$
$$a^{2} - b^{2} = a - b$$
$$(a+b)(a-b) = a - b$$

i.
$$a-b=0 \implies a=b$$
:

 \implies hledáme min. fce $f:y=x^2+x$
 $f':y=2x+1$, extrém pro $y=0 \implies x=\frac{-1}{2}$
 $f'':y=2 \implies \text{minimum}$
 $\implies a=b=\frac{-1}{2},\ a^2+b=a+b^2=\frac{-1}{4}$

ii. $a-b\neq 0 \implies a\neq b$
 $(a+b)(a-b)=(a-b)$
 $a+b=1$
 $b=1-a$
 \implies hledáme min. fce $F:y=x^2-x+1$
 $f':y=2x-1$, extrém pro $y=0 \implies x=\frac{1}{2}$
 $f'':y=2x-1$, extrém pro $y=0 \implies x=\frac{1}{2}$

Tato hodnota bude nejmenší pro $a=b=\frac{-1}{2},\,a^2+b=a+b^2=\frac{-1}{4}.$