Реализация теста Graph500 для параллельной СУБД PargreSQL

Научный руководитель: кандидат физ.-мат. наук, доцент М.Л. Цымблер Автор работы: Студент группы ВМИ-456 А.Ю. Сафонов

Рецензент: кандидат пед. наук А.Ю. Эвнин

Home Complete Results

Benchmarks

Green Graph 500

Log In

The Graph 500 List

Top 10 (November 2013)

DOE/NNSA/LLNL Sequoia - Lawrence Livermore National Laboratory (65536 nodes, 1048576 cores) DOE/SC/Argonne National Laboratory Mira - Argonne 2 National Laboratory (49152 nodes, 786432 cores) JUQUEEN -Forschungszentrum Juelich (FZJ) (16384 nodes, 262144 cores) K computer - RIKEN Advanced Institute for Computational Science (AICS) (65536 nodes, 524288 cores)

Fermi - CINECA (8192 nodes, 131072 cores) Tianhe-2

November 2013

No.	<u>Rank</u>	<u>Machine</u>	Installation Site	<u>Number</u> <u>of</u> <u>nodes</u>	<u>Number</u> of cores	<u>Problem</u> <u>scale</u>	<u>GTEPS</u> ▼
1	1	DOE/NNSA/LLNL Sequoia (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Lawrence Livermore National Laboratory	65536	1048576	40	15363
2	2	DOE/SC/Argonne National Laboratory Mira (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Argonne National Laboratory	49152	786432	40	14328
3	3	JUQUEEN (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Forschungszentrum Juelich (FZJ)	16384	262144	38	5848
4	4	K computer (Fujitsu - Custom supercomputer)	RIKEN Advanced Institute for Computational Science (AICS)	65536	524288	40	5524.12
5	5	Fermi (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	CINECA	8192	131072	37	2567
6	6	Tianhe-2 (MilkyWay-2) (National University of Defense Technology - MPP)	Changsha, China	8192	196608	36	2061.48
		Turing (IBM -					

Цель и задачи исследования

Цель:

Оценка эффективности параллельной СУБД PargreSQL на задачах интенсивной обработки данных с помощью сравнительного теста Graph500

Задачи:

- ▶ Изучить архитектуру параллельной СУБД PargreSQL и спецификацию теста Graph500
- ▶ Разработать схему базы данных для хранения графа и промежуточных данных в соответствии со спецификацией теста Graph500
- ▶ Выполнить проектирование и разработку алгоритмов на языке SQL, реализующих тест Graph500 для параллельной СУБД PargreSQL
- ▶ Провести вычислительные эксперименты на суперкомпьютере «Торнадо ЮУрГУ», исследующие эффективность параллельной СУБД PargreSQL на тесте Graph500

Параллельная СУБД PargreSQL

Фрагментный параллелизм

Apxutektypa PargreSQL

Tecт Graph500

Тест Graph500. Генерация ребер

Начальная	
вершина	вершина
0	1
2	0
1	2
3	1
4	2
4	1
2	5
3	2

Тест Graph500. Первое ядро

Тест Graph500. Второе ядро

Тест Graph500. Второе ядро

Тест Graph500. Второе ядро

Проверка корректности

Для каждого ключа поиска после завершения обхода графа в ширину нужно проверить, что соблюдены условия:

- 1 Полученное BFS-дерево является деревом и не содержит циклов.
- 2.Каждое ребро BFS-дерева соединяет вершины, чей уровень при обходе в ширину различается ровно на 1.
- 3 Каждое ребро из входного списка ребер соединяет вершины, уровень которых в BFS-дереве различается не более чем на единицу или же обе эти вершины не включены в BFS-дерево.
- 4.BFS-дерево связывает все вершины данной компоненты связности.
- 5.Каждая вершина и ее родитель соединены ребром в исходном графе.

Tecт Graph500

 TEPS (traversed edges per second) — количество пройденных ребер за секунду:

$$TEPS = \frac{m}{time_{K2}}$$

- m количество ребер в итоговом дереве обхода
- ▶ timeK2 время работы алгоритма обхода в ширину

Варианты использования системы

Модульная структура

Схема классов

Tаблица в PargreSQL

Обход в ширину


```
BFS (start_node) {
    for (all nodes i) {
        parent[i] = -1;
    }

    queue.push(start_node);
    parent[start_node] = start_node;

    while( !queue.empty() ) {
        node = queue.pop();
        foreach(child in expand(node)) {
          if(parent[child] == -1) {
               queue.push(child);
               parent[child] = node;
          }
     }
}
```

Эксперименты

Основные результаты

- Изучена архитектура параллельной СУБД PargreSQL и спецификация теста Graph500
- Разработана схема базы данных для хранения графа и промежуточных данных в соответствии со спецификацией теста Graph500
- Выполнено проектирование и разработка алгоритмов на языке SQL, реализующих тест Graph500 для параллельной СУБД PargreSQL
- Проведены вычислительные эксперименты на суперкомпьютере «Торнадо ЮУрГУ», исследующие эффективность параллельной СУБД PargreSQL на тесте Graph500