Конструкторсько-технологічний розрахунок елементів друкованого монтажу.

При конструкторсько-технологічному розрахунку необхідно використовувати граничні значення елементів друкованого монтажу (ДМ) з урахуванням похибки їх виконання. Необхідні граничні значення елементів друкованого монтажу та допустимі похибки наведені в таблицях 1 та 2.

Таблиця 1. Граничні значення основних параметрів ДМ

Параметер	Позначення	Клас точності			
		2	3	4	5
Ширина друкованого провідника, мм	pub _L	0,45	0,25	0,15	0,10
Відстань між елементами друкованого монтажу, мм	ļr	0,45	0,25	0,15	0,10
Гарантований поясок, мм	рио	0,20	0,10	0,05	0,03
Відношення номінального діаметру найменшого з металізованих отворів до товщини друкованої плати, мм	К _{дт}	0,40	0,33	0,25	0,20

Таблиця 2. Допустимі похибки виконання елементів ДМ

Похибка	Обозначення	Максимальне значення, мм
Зміщення провідників відносно ліній КС	δ_{cn}	0,05
Розташування отворів (всіх) відносно вузлу КС	$\delta_{ m o}$	0,07
Розташування КМ відносно вузлу КС	$\delta_{\scriptscriptstyleKM}$	0.015(0.05)
Фотокопії та фотошаблону	$\delta_{ ext{pp}}$	0,06
Розташування КМ відносно вузлу КС на фотошаблоні	$\delta_{\scriptscriptstyle{f \Phi}}$	0,05

1. Визначення мінімальної ширини друкованого провідника по постійному струмі для ланцюгів живлення та землі.

Мінімальна ширина друкованого провідника по постіному струму **b**_{min I} (мм) для ланцюгів живлення та "землі" визначається виразом 1.1:

$$b_{\min I} = \frac{I_{\max}}{j_{\text{DOR}} \cdot t_{\text{IDOR}}},$$

де I_{max} - максимально можливий струм в ланцюгу, A

 $j_{\rm доп}$ - допустима щільність струму для ДП, що виготовлені комбінованим позитивним методом, $j_{\rm доn}=48 \frac{A}{mm^2}$

 $t_{
m npos}$ - товщина друкованого провідника, що визначається виразом (1.2), мм

Друкований провідник виготовлено комбінованим позитивним методом. Згідно методу виготовлення:

$$t_{\rm npob} = h_{\rm p} + h_{\rm fm} + h_{\rm xm} \,,$$

де $h_{\rm \phi}$ - товщина фольги та залежить від матеріалу, який ви вибрали для виготовлення друкованої плати. Ми з вами матеріал вибрали (розглядали, пам'ятаєте?) СФ-2-35-1.5 або FR4-2-35-1.5. Тобто у нашому випадку $h_{\rm \phi}=0.035$ мм

 $h_{_{\!\mathsf{\Gamma M}}}$ - товщина шару гальванічно осадженої міді, $h_{_{\!\mathsf{\Gamma M}}} = 0.055 \mathsf{MM}$

 $h_{\scriptscriptstyle {\sf XM}}$ - товщина шару хімічно осадженої міді, $h_{\scriptscriptstyle {\sf XM}}=0.0065$ мм

$$t_{\text{пров}} = 0.035 + 0.055 + 0.007 = 0.097 \text{ MM}$$

Параметер I_{\max} у виразі (1.1) визначається як сума струмів, що споживають всі активні елементи схеми. Значення струмів, що споживаються елементами моєї схеми (див. попередню практику), представлені в таблиці 3

Таблиця 3. Струми, що споживаються елементами схеми

IC	Кількість IC	І _{спож} , мА
K555IP27	2	2 x 28 = 56
Κ572ΠΑ1Α	2	2 x 3 = 6
К140УД6	1	4
K554CA3A	1	13,6
K561TM2	1	0,2
K142EH1A	1	4

В результаті

$$I_{\text{max}} = 56 + 6 + 4 + 13.6 + 0.2 + 4 = 83.8 \text{ mA}$$

Тоді мінімальна ширина друкованого провідника на постійному струмі для ланцюгів живлення та "землі" визначається наступним чином:

$$b_{\min I} = \frac{I_{\max}}{j_{non} \cdot t_{nnon}} = \frac{83.8 \cdot 10^{-3}}{48 \cdot 0.097} = 0.018 \ mm$$

Проаналізуйте згідно вибраного класу точності.

Отримане значення $b_{\min I} = 0.018 \ mm$ мінімальної ширини провідника 3 класу точності **b**_{пр}г = **0.25 мм**. Таким чином, оптимальна ширина провідника на постійному струмі для ланцюгів живлення та "землі" дорівнює **0.25 мм**.

2. Визначення мінімальної ширини провідника з урахуванням допустимого падіння на ньому напруги.

Мінімальна ширина провідника з урахуванням допустимого падіння напруги на ньому визначається наступним виразом (2.1):

$$b_{\min U} = \frac{\rho \cdot I_{\max} \cdot L_{\text{пров}}}{t_{\text{пров}} \cdot U_{\text{доп}}} \,,$$

де ρ - питомий опір провідника, виготовленого комбінованим позитивним методом, $\rho = 0.0175 \; \frac{Om \cdot mm^2}{m}$

 $L_{\text{пров}}$ - довжина самого довгого друкованого провідника на ДП (*потрібно вибрати* з креслення своєї ДП).

 $U_{ exttt{don}}$ - допустиме падіння на пруги на друкованому провіднику, $U_{ exttt{don}}$ = $5\% \cdot E_{ exttt{n}}$

$$\begin{split} &U_{\text{доп}} = 0.05 \cdot 13 = 0.65 \text{ B} \\ &L_{\text{пров}} = 0.1 \text{ m} \\ &b_{\text{min}U} = \frac{\rho \cdot I_{\text{max}} \cdot L_{\text{пров}}}{t_{\text{пров}} \cdot U_{\text{доп}}} = \frac{0.0175 \cdot 83.8 \cdot 10^{-3} \cdot 0.1}{0.097 \cdot 0.65} = 2.32 \cdot 10^{-3} \text{ mm} \end{split}$$

3. Визначимо номінальний діаметер монтажного отвору.

$$d \ge d_{\text{RP}} + \Delta d_{\text{MO}} + r$$

де: $d_{\text{ве}}$ - діаметер виводу елемента, для яког овизначається діаметер монтажного отвору Δd_{MO} - нижнє граничне відхилення від номінального діаметру МО, $\Delta d_{\text{MO}} = 0.1$ мм r - різниця між мінімальним діаметром МО та максимальним діаметром виводу елементу, r = 0.1...0.2 мм. В цьомк випадку виходить якісне заповнення МО при пайці та оптимальна вага самої пайки.

$$d \ge d_{\text{Be}} + \Delta d_{\text{MO}} + r = 0.5 + 0.1 + 0.2 = 0.8 \text{ MM}$$

4. Визначемо діаметер контактного майданчику.

$$D_{\min} = D_{\min 1} + 1.5 h_{\Phi} + 0.03$$
,

де: $D_{\min 1}$ - мінімальний ефективний діаметер КМ, мм

 $h_{\rm \phi}$ - товщина фольги, $h_{\rm \phi}=0.035\,{\rm MM}$. Коефіцієнт $1.5h_{\rm \phi}$ враховує підравлювання фольги друкованого провідника в ширину.

0.03 - КМ виготовляють комбінованим позитивним методом. Цю добавку ми розглядали на лекції.

$$D_{\min 1} = 2\left(b_{\mathsf{no}} + \frac{d_{\max}}{2} + \delta_{\mathsf{o}} + \delta_{\mathsf{KM}}\right)$$

де: d_{\max} - максимальний діаметер просвердленого отвору в ДП, мм

 $b_{\rm no}$ - ширина пояска КМ, $b_{\rm no} = 0.1\,{\rm MM}$ (табл. 1)

 $\delta_{\rm o}$ - похибка розташування центру отвору відносно вузла КС, $\delta_{\rm o}$ = $0.07\,{\rm MM}\,$ (табл. 2)

 $\delta_{\rm KM}$ - похибка розташування центру КМ відносно вузлу КС, $\delta_{\rm KM} = 0.05\,{\rm MM}$ (табл. 2)

Максимальний діаметер просвердленого отвору ДП:

$$d_{\text{max}} = d + \Delta d + (0.1...0.15)$$

де: d - номінальний діаметер MO, мм

 Δd - допуск на діаметер отвору, $\Delta d = 0.05$ мм

$$d_{\text{max}} = d + \Delta d + (0.1...0.15) = 0.8 + 0.05 + 0.1 = 0.95 \text{ mm}$$

$$\begin{split} D_{\min} &= 2 \bigg(b_{\mathsf{no}} + \frac{d_{\max}}{2} + \delta_{\mathsf{o}} + \delta_{\mathsf{KM}} \bigg) = 2 \bigg(0.1 + \frac{0.95}{2} + 0.07 + 0.05 \bigg) = 1.4 \; \mathsf{MM} \\ D_{\min} &= D_{\min} + 1.5 h_{\mathsf{d}} + 0.03 = 1.4 + 1.5 \cdot 0.035 + 0.03 = 1.48 \; \mathsf{MM} \end{split}$$

Нас цікавить максимальний діаметер КМ:

$$D_{\text{max}} = D_{\text{min}} + 0.02$$

$$D_{\rm max} = 1.48 + 0.02 = 1.5 \, \mathrm{MM}$$

5. Визначемо мінімальну ширину провідника:

$$b_{\min} = b_{\text{np}}^{\text{r}} + 1.5h_{\Phi} + 0.03$$

де: $b_{\rm np}^{\rm r}$ - мінімальна ширина провідника. Визначаємо з таблиці класів точності (табл. 1). Для третього класу точності ДМ $b_{\rm np}^{\rm r}=0.25\,{\rm mm}$

$$b_{\min} = b_{\text{np}}^{\text{r}} + 1.5 h_{\Phi} + 0.03 = 0.25 + 1.5 \cdot 0.035 + 0.03 = 0.33 \text{ mm}$$

Нас цікавить максимальна ширина провідника:

$$b_{\text{max}} = b_{\text{min}} + 0.02$$

$$b_{\text{max}} = 0.33 + 0.02 = 0.35 \text{ MM}$$

6. Визначимо мінімальну відстань між провідником та контактним майданчиком.

$$l_{\rm \Pi KM \; min} = L_0 - \left(\frac{D_{\rm max}}{2} + \delta_{\rm KM} + \frac{b_{\rm max}}{2} + \delta_{\rm cn}\right)$$

де: $L_{\scriptscriptstyle 0}$ - відстань між центрами отвору та друкованого провідника, що є кратним кроку КС:

 $L_0 = 1.25$ мм (це ε найгіршим випадком)

 $D_{
m max}$ - максимальний діаметер КМ

 $b_{
m max}$ - максимальна ширина провідника

 $\delta_{\rm KM}$ - похибка розташування центру КМ відносно вузлу КС, $\delta_{\rm KM}$ = $0.05\,{\rm MM}$ (табл. 2)

 $\delta_{\rm cn}$ - похибка, що враховує зміщення провідника, $\delta_{\rm cn}$ = $0.05\,{\rm mm}$

$$l_{\mathsf{\Pi KM \; min}} = L_0 - \left(\frac{D_{\mathsf{max}}}{2} + \delta_{\mathsf{KM}} + \frac{b_{\mathsf{max}}}{2} + \delta_{\mathsf{cn}}\right) = 1.25 - \left(\frac{1.5}{2} + 0.05 + \frac{0.35}{2} + 0.05\right) = 0.225 \; \mathsf{MM}$$

7. Визначимо **мінімальну відстань між двома сусідніми провідниками** (між краями провідників):

$$l_{\Pi\Pi \text{ min}} = L_0 - (b_{\text{max}} + 2\delta_{\text{cn}})$$

$$l_{\Pi\Pi \; \mathrm{min}} = L_0 - \left(b_{\mathrm{max}} + 2\delta_{\mathrm{cn}}\right) = 1.25 - \left(0.35 + 2 \cdot 0.05\right) = 0.8 \; \mathrm{mm}$$

8. Визначимо мінімальну відстань між двома контактними майданчиками

$$l_{\rm minKM~KM} = L_0 - \left(D_{\rm max} + 2\delta_{\rm KM}\right)$$

де: $L_{0}^{'}$ - відстань між центрами сусідніх КМ, $L_{0}^{'}=2.5$ мм.

$$l_{\rm minKM~KM} = L_0 - \left(D_{\rm max} + 2\delta_{\rm KM}\right) = 2.5 - \left(1.5 + 2 \cdot 0.05\right) = 0.9~{\rm MM}.$$

Покажіть, що між двома КМ можна провести провідник для третього класу точності друкованого монтажу.

Домашнє завдання

- 1. Вибрати тип та матеріал ДП (див. методичні вказівки)
- 2. Вибрати клас точності ДП.
- 3. Обоснувати метод виготовлення ДП
- 4. Виконати конструкторсько-технологічний розрахунок елементів ДМ.
- 5. Виконати повірочні розрахунки, та впевнитися, що отримані елементи друкованого монтажу відповідають вибраному класу точності