Demi-groupes, monoïdes et groupes

Soit un demi-groupe $(\mathbb{E}, +)$, c'est-à-dire que

• La loi + est associative

On dira de plus que $\mathbb E$ est un *monoïde* si il existe $e \in \mathbb E$ tel que

$$\forall x \in \mathbb{E}, xe = ex = x$$

On dira enfin que $\mathbb E$ est un groupe si il existe $\cdot^{-1}:\mathbb E\to\mathbb E$ tel que

$$\forall x \in \mathbb{E}, xx^{-1} = x^{-1}x = e$$

Question 0 Donner un groupe, puis un monoïde qui n'est pas un groupe, et enfin un demigroupe qui n'est pas un monoïde.

Si $\mathbb E$ est un monoïde, soit $\sim \in \left(\mathbb E^2\right)^2$ telle que $(a,b) \sim (c,d) \Longleftrightarrow a+d=b+c.$

Duestion 1 Que dire de \mathbb{E}^2/\sim ?

Soit Σ un ensemble fini. On appelle Σ^* le plus petit monoïde contenant Σ et tel que tous les éléments de Σ^* admettent une unique composition comme somme d'éléments de Σ . On note son neutre ε .

Question 2 Justifier que Σ^* est l'ensemble des mots finis sur Σ

On pose $\mathcal{A} := \{x \mapsto xw, w \in \Sigma^*\}$, que l'on munit de la loi de composition usuelle des fonctions.

Question 3 Justifier que Σ^* et \mathcal{A} sont en isomorphes comme monoïdes.

Associativité?

Dans cette partie, (S, +) est un demi-groupe.

Soit $n \in \mathbb{N}$ puis $a \in S^n$ un n —uplet.

Question 4 Donner le langage des expressions calculant $\sum a$. Est-il rationnel ?

 $\textit{Ind:} \ \text{Par exemple, pour } n=3, \mathcal{L}=\{a_1+(a_2+a_3), (a_1+a_2)+a_3\}.$

Question 5 Mettre en bijection $\mathcal L$ et l'ensemble des arbres binaires à n noeuds. Dénombrer $\mathcal L$.

On considère maintenant posséder une machine capable d'exécuter $\omega \in \mathbb{N}^*$ opérations "+" simultanées.

Question 6 Donner un mauvais ordre de calcul de $\sum a$, puis un choix plus raisonnable.

Retouches

Soient \mathcal{L} un langage rationnel et $M \in \Sigma^*$ un mot de longueur $n \in \mathbb{N}^*$. On appelle une requête un couple $1 \leq i \leq j \leq n$ et sa taille est $r \coloneqq j - i$.

On satisfait une requête en renvoyant si $M[i:j] \in \mathcal{L}$. On note $q \in \mathbb{N}$ le nombre d'états d'un automate qui reconnaît \mathcal{L} .

Question 7 Donner un algorithme satisfaisant une requête.

Moyennant un précalcul,

Question 8 Donnez un algorithme efficace satisfaisant une requête en temps $\mathcal{O}(1)$ Ind: On pourra introduire un ensemble de fonctions similaire à \mathcal{A} agissant sur l'automate

Une modification est une opération de la forme $M[i] \leftarrow a$ avec $a \in \Sigma$.

Question 9 Modifier l'algorithme précédent pour permettre des modifications en temps $\mathcal{O}(q \log r)$.