Scratch Detection ·

바다의 왕자

INDEX

Table of Contents ·

AI 모델 소개

Object Detection 모델

Classification 모델

Segmentation 모델

AI 모델의 가치

C H A P T E R . 0 1

AI 모델 소개

3단계 모델을 거쳐 정교한 탐지

1. Object Detection

2. Classification

3. Segmentation

Unet의커스텀모델인DoubleUnet 모델 학습으로불량으로판정된이미지에대해 흠집이있는부분을세밀하게탐지

다이얼로 Confidence 조절

1. 모델 생성 이유

실제 산업 현장에선 검사 대상에 따라 일괄적인 불량 판정 기준을 적용할 수 없다 2. 모델의 기능 -----

Confidence

부품 검사의 정밀도 요구 수준 에 따라 Confidence를 조정 3. 모델의 활용 예시

용접위치에따라 용접비드표면의요철허용오차를 다르게적용가능 CHAPTER. 02

Object Detection 모델

WHY YOLOv5?

결과값 반환이 빠르면서 Detection 성능이 좋은 YOLOv5 모델

WHY mAP?

• 클래스 별로 AP(Average Precision)를 계산하여 평균을 낸 값

- TP / TP+FP (all detection)
 검출된 바운딩 박스 내부의 객체가 실제 클래스와 일치하는
 지 여부를 비교하여 정답을 맞춘 비율 측정
- 주로 **Recall** 과 함께 사용
- TP/TP+FN(algoundtruths)
 검출되어야할객체들중제대로검출된것의비율
- AP=Precision-Recall 곡선을 보간하여, 아래 면적을 계산

Object Detection 성능 평가 지표로 mAP 채택

가장 성능이 좋은 모델?

해상도가 640인 이미지로 이루어진 데이터셋을 YOLOv5 L 모델로 학습할 때 mAP 가장 높다

참고) coco dataset 기반 YOLOv5 모델의 mAP_0.5 = 46.0, mAP_0.5 : 0.95 = 28.4

가장 성능이 좋은 모델?

YOLOv5 모델은 해상도 640, 1280으로 이루어진 데이터셋 기반으로 개발된 만큼 해상도가 높을수록 성능이 좋을 것으로 예측

가장 성능이 좋은 모델?

Validation dataset의 loss 수치는 성능 평가에 있어 유의미한 요소

a. Train dataset으로 학습한 모델이 overfitting 되었는지 판단 b. 라벨링 되어 있지 않은 실제 데이터가 입력되었을 때 정확한 예측을 할 수 있는 모델인지 판단

산업 데이터를 넣어도 Object Detection 모델의 학습이 잘 이루어짐

모델을 생성하기 전에 데이터셋의 형태가 다음과 같을 때

a. YOLOv5 모델의 최적 해상도 b. 640보다 1280의 고해상도 데이터셋

c. 전처리를 통한 정제된 데이터셋

성능이 향상될 것이라는 3가지 가설을 세우고 데이터셋의 해상도와 모델의 가중치를 변형하며 객체 탐지 모델을 생성했을 때 안정적으로 학습이 이루어짐을 확인

주최 측에서 제공한 라벨링 데이터

AI 모델이 탐지해낸 불량 영역과 confidence

모델의 가능성과 보완점

1. 본 객체 탐지 모델은

a. 학습한 데이터 수가 적고 b. 바운딩 박스까지 생성해야 하는 복합적인 모델로 c. validation dataset의 loss 수치가 커질 수밖에 없음에도

2. 논문에 소개된 YOLOv5모델의 mAP값에 근접

논문의 모델은 100만장의 이미지로 이루어진 검증된 데이터셋인 coco dataset 기반으로 만들어짐

- 1. 해상도가 1280인 이미지로 이루어진 데이터셋을 학습한 YOLOv5_1280_L 모델을 생성하지 못함
- a. 모델 생성을 통해 고해상도의 데이터셋을 활용할수록 성능이 개선됨을 확인했지만
- b. 1280 L 모델 개발을 위해선 고성능의 컴퓨팅 환경이 필요함 c. 또한, 해상도가 커서 결과값 반환이 매우 느림
 - 2. 정밀하고 일관된 전처리가 된 데이터를 적용하면 성능 개선의 가능성이 있음

CHAPTER. 03

Classification 모델

Accuracy 1?

모델 개발 환경

EfficientNet 모델을 사용하여 바운딩 박스 안의 이미지에 대한 정상/불량 판정 a. 16000여 개의 정상 불량데이터 사용 b. Validation data는 20% 사용 학습 데이터셋과 검증 데이 터셋을 적절히 구성하고, 파라미터를 튜닝하여 여러 개 의 모델을 생성해도 모두 accuracy가 100%

가능성? 보완점?

Dataset의 절대량을 늘리고, 정밀한 전처리로 정제된 데이터셋을 활용하기

추후 과적합이 아님에도 계속해서 accuracy 100%가 반환되는 사항에 대해 위의 오류 검증 단계를 거칠 예정이며, 만약 오류가 없다면 classification 모델은 산업 현장에서 양품 판정 모델로 활용할 수 있음

CHAPTER. 04

Segmentation 모델

원본

주최 측에서 제공한 라벨링 데이터

AI 모델이 검출한 흠집

불량 영역을 특정해주면 segmentation 성능이 잘 나올 것으로 예측했지만, 전체 이미지를 분해하지 않고 그대로 넣었을 때 성능이 잘 나왔다는 점에서 해상도가 높을수록 성능이 개선될 가능성이 있음

AI 모델의 가치

CONTENTS I. 제조 업체 공정 효율 향상 표. 데이터 댐 구축 皿. 소비자의 편리

PORTABLE DETECTOR

1. 불량 검출부터 처리까지 카메라로 자동화

a. RPA를 통해 처리내역을 수기로 입력하기 위해 작업복장을 해체하는 등의 번거로움을 없애 작업자가 작업에 집중할 수 있음 b. 보안경에 카메라를 결합하면 작업 대상물을 자동으로 인식하고 작업을 마치면 전산에 반영할 수 있음

2. 효율적인 공정과 산업 재해 예방

제품 공정이 마무리된 후에 불량품을 선별해 다시 제품을 해체하는 역방향의 공정은 부품의 품질을 저하시키고, 산업 재해의 위험성을 높임

3. 사업적 가치와 수익성

a. 사업적 가치 = 실현 가능성

: 모든 근무자는 스마트폰을 가지고 있기 때문에 기업은 추가적인 단말기 구입 없이 품질 검사와 데이터 축적을 동시에 진행할 수 있음

b. 수익성 = 사용성

: 불량 검출 & 품질 관리 어플 유저가 많아질수록 수익의 다변화

지속적인데이터 축적 가능

a. 스마트폰으로 촬영한 하나의 사진으로부터, object detection, classification, segmentation 데이터를 취득하여 활용할 수 있음

b. 본 모델 생성 과정에 적용한 데이터 증폭(data augmentation) 기술을 통해 데이터 절대량을 늘림으로써 데이터 수집 비용과 노력을 줄일 수 있음

손쉬운 점검과 SMS 서비스

a. 스마트폰 촬영으로 흠집이 난 부분을 단번에 확인할 수 있음

b. Segmentation 데이터 축적을 통해 보수가 필요한 흠집 크기를 결정할 수 있음. 촬영한 사진 속 흠집 크기를 검출해 고객에게 수리 일정 조율 메시지를 자동으로 송신.

THANK YOU