Tabulation of Chemical Source Terms for Turbulent Combustion Simulations

Emmet Cleary
Daniel Floryan
Jeffry Lew
Bruce Perry
Emre Turkoz

January 8, 2014

Introduction

Key Capabilities:

- Sorting
- ► Monotonicity checking
- ► Convolution
- ▶ Interpolation

SWIG will be used to interface C++ and Python.

Git will be used for version control.

DOxygen will be used for documentation.

Progress Variable

Table Generation

Python: User Interface

Modules: Sorting

Modules: MonoCheck

Modules: MaxSlope/LeastNonMono

Modules: PDF

PDF.h/.i

- ▶ deltaPDF.h/.cc
- ▶ betaPDF.h/.cc

Constructors:

- ► DeltaPDF(const double *Mean)
- ► BetaPDF(const double *Mean, const double *Variance)

Virtual Functions:

int valPDF(const double *Z, const int ZPoints, Matrix3D *pdfValues)

Tests:

- ▶ Delta PDF: various means
- ▶ Beta PDF: zero variance (Delta PDF), symmetric/skewed distributions, infinite boundaries

Modules: Integrator

Integrator.h/.i

- ► Trapz.h/.cc
- ► Simpson.h/.cc
- ► GLQuad.h/.cc

Constructors

- ► Trapz()
- ► Simpson()
- ► GLQuad(int Nodes)

Virtual Functions:

▶ double integrate(const double *integrand, const double *Z, const int ZPoints)

Tests:

Various functions

Modules: Convolute

Convolute.h/.i

► Convolute.h/.cc

Functions:

▶ int convVal(double *Z, double *data, Matrix3D *pdfValues, Matrix *return, Integrator *intgr)

Tests:

► Convolute with 1 using all PDFs/Integrators

Modules: FitToGrid

Profiling