Al-Autonomous Robots for Agriculture - Weeding with Laser

Precision agriculture: farm economics and B2B management

Dr. Joachim J. Schouteten July 10th, 2023

Overview

- 1. Short bio
- 2. Farmers' adoption and willingness to adopt field robots and unmanned aerial vehicles
- 3. PESTLE review and SWOT analysis of autonomous vehicles with laser treatment for weed control
- 4. Farmers' preference for laser weeding techniques
- 5. Setting up the business model: the business model canvas

1. Short Bio

Overview

•	Joachim J. Schouteten, PhD
	□ Joachim.Schouteten@ugent.be
	□ Post-doctoral researcher @ Ghent University (Belgium)
	Lecturer for several courses related to entrepreneurschip and innovations of agri-food products
	☐ Daily management of 4 EU projects (WeLASER, Cropdiva, FAIRCHAIN and SmartProtein)
•	Research topics
	☐ Agri-food innovations
	□ Entrepreneurship
	☐ Sensory analysis
•	Div. Agri-food marketing and chain management
	☐ Website: https://agecon.ugent.be/agri-food-marketing-and-chain-management/
	☐ Thanks to Margo Degieter, Duc Tran, Hans De Steur and Xavier Gellynck for shared efforts and materials

2. Farmers' adoption and willingness to adopt field robots and unmanned aerial vehicles

Background

- FOOD insecurity => increased agricultural production needed BUT
 big impact of our agri-food system on the environment
- Emerging new technologies to decrease footprint of agriculture (Araújo et al., 2021; Dayloglu and Turker, 2021)
 - → Agriculture 4.0 (da Silveira et al., 2021),
 - → e.g., robotics and unmanned aerial vehicles (UAVs)
 - O Multiple purposes, e.g., soil preparation, sowing, plant treatment,... (del Cerro et al., 2021; Oliveira et al., 2021)
 - Majority of robots still at research stage (Oliveira et al., 2021)
 - Multiple benefits, e.g., higher yields while using less inputs, replacement of heavy machines can lead to less soil
 compaction, replacement of human labor,... (Aravind et al., 2017; Sparrow and Howard, 2021)
- BUT, overall adoption still low (Dayloglu and Turker, 2021; Klerkx et al., 2019; Lowenberg-DeBoer et al., 2020)
- Some existing reviews on intention to adopt precision agriculture, innovations, technologies (Feylsa, 2020; Olum et al., 2020; Tey and Brindal, 2012) BUT review specifically focussing on robotics/UAVs is missing
- Objectives:
 - (1) insight into farmers' readiness for the uptake of robotics and UAVs
 - (2) identify the factors that influence the acceptance

Methodology

Systematic Review

Syntax:

- (1) Adoption/ acceptance
- (2) Farmer
- (3) Robotics/ UAVs

Results – Adoption (Intention)

UAVs

- Some adoption, depending on country
 - O 22% of German farmers (Michels et al., 2020)
 - O 8% of farmers in Missouri (Skevas and Kalaitzandonakes, 2020; Skevas et al., 2022)
- Some intention, depending on country
 - O 20% of farmers in Missouri (Skevas and Kalaitzandonakes, 2020)
 - O 66% of Chinese farmers (Wachenheim et al., 2021)

Field robots

- No adoption
- High intention (Spykman et al., 2021; von Veltheim and Heise, 2021)

Results – Factors affecting intention

Only 7 studies used a theoretical model to explain the intention to adopt

- Internal factors
 - 3 categories: socio-demographics, farm characteristics, perceptions/ knowledge
 - → Most identified factors

Socio-demographics/ farm characteristics	Age	Negative	Groher et al. (2020); Michels et al. (2020); Skevas and Kalaitzandonakes (2020); Skevas et al. (2022)
	Gender (male)	Positive	Groher et al. (2020); Michels et al. (2020); Wachenheim et al. (2021); Zheng et al. (2019)
	Income	Positive	Skevas and Kalaitzandonakes (2020); Skevas et al. (2022); Wachenheim et al. (2021); Zheng et al. (2019)
	Farm size	Positive	Michels et al. (2020); Wachenheim et al. (2021); Hansen (2015)*
Perceptions/ knowledge	Perceived usefulness/ expected economic and environmental benefits	Positive	Caffaro et al. (2020); Michels et al. (2021); Wachenheim et al. (2021); Zheng et al. (2019); Barrett and Rose (2020); Carolan (2020); Spykman et al. (2021); Skevas and Kalaitzandonakes (2020); Skevas et al. (2022); Hashem et al. (2021); Silvi et al. (2021); von

Veltheim and Heise (2020). Hansen (2015)

Results – Factors affecting intention

External factors

- Less studied than internal factors
- 2 categories: social factors & socio-technical landscape

→ Most identified factors:

- Price (Barrett and Rose, 2020; Hansen, 2015; Hashem et al., 2021; Silvi et al., 2021)
- Compatibility with other software/ equipment (Silvi et al., 2021; Spykman et al., 2021; von Veltheim and Heise, 2020)
- Labor scarcity (Carolan, 2020; Hansen, 2015; von Veltheim and Heise, 2020)

Discussion

 Similar results found in other reviews (e.g., on the intention to adopt precision agriculture, agricultural innovations/ technologies)

Some differences:

- Education only identified as important in a limited amount of studies BUT often in other reviews (Dissanayake et al., 2022; Olum et al., 2020)
- Mixed results in literature for age of the farmer (Feyisa, 2020; Tamirat et al., 2018)
- Mixed results in literature for gender (Olum et al., 2020)

Limitations/ Opportunities

- Limited amount of studies
 - → limits generalizability of results
 - → Lots of potential for future research
- Most studies focus on Europe and USA
- Future research could apply different models or combine models
- More focus on external factors needed

Conclusion

- Current usage is still limited
- This study underlined the potential of these technologies
- Limited use of technology adoption models in studies
- Internal factors most often studied
- Most identified factors: age, gender, income, farm size, perceived usefulness, price,
 compatibility with other equipment and labor scarcity

3. PESTLE review and SWOT analysis of autonomous vehicles with laser treatment for weed control

Full article: https://doi.org/10.1007/s11119-023-10037-5

Introduction

- Issues with conventional weed control
 - ☐ Chemical weed control (herbicides): clear negative environmental impacts
 - ☐ Mechanical weed control: soil turbulence & compaction, nutrient degradation, harm to soil animals.
 - ☐ Manual weed control: high cost, labor demanding.
- A new solution with Autonomous Laser-Weeding Solution (ALWS)

Methods & Materials

Stage 3: Merging

	S	W	0	Т
P				
Е				
S				
Т				
L				
Е				

Focus group procedure

SWOT analysis (shown as percentages of votes)

	Strengths	Weaknesses	Opportunities	Threats
Polit cal	ou enguis	Tream.resses	Favoured policies (Green Deal, CAP)	Insufficient policies (e.g., farmers' incentives).
Econ omic	Labour reduction.	High cost.	High demand (demand for non- chemical weeding in organic farming). High agricultural labour cost.	Crises (COVID-19, energy). Fierce competition.
Soci al	Positive impact on food safety.	Lower the rate of low-skilled employment.	High farmers' awareness of innovative weed control. Establishment of specialised companies.	Human safety (users, right to roam). Insufficient knowledge and farmers' education. Low willingness-to-adopt of farmers and related service.
	Precision (in-row weeding). Efficient production (24/7).	Short (optimal) treatment period. Uncertainty due to novelty. Limited capacity. Automation issues (e.g., low connection in remote areas). Dependence on external services.	Advancement of other precision agriculture development to learn and/or combine.	Theft, vandalism. Laser igniting fire. Data security.
Legal			Favoured regulations (e.g., stricter chemical use).	Insufficient regulations (e.g., lack of regulation for argirobots, farming data protection).
onm ental	Organic farming. No chemicals. Less soil compaction & disturbance. Preserve biodiversity.			Undesirable weather. Uneven farmland.

Conclusion & Recommendations

	_					
	Л	ca	\sim	$\boldsymbol{\wedge}$	2	
•	\boldsymbol{H}					

☐ Combining PESTLE & SWOT analysis = comprehensive landscape for the adoption of ALWS and other precision agriculture (to some extent).

Machinery producers

- ☐ Take advantage of favored policies & regulations + high demand for organic farming solutions + high labor cost & scarcity.
- ☐ Accelerate the development process (due to fierce competitions in the agrimachinery market)
- ☐ Concise communication on operational and technical indicators
- ☐ Proof of viable return on investment

Policymakers

- ☐ Timely financial support with ease of administration.
- ☐ Schemes to improve farmers' understanding of precision agriculture.

Legislators

☐ Address the gaps in farming data protection/sharing, liability for agrirobots.

Limitation & Future studies

- ➤ Personal biases → call for confirmatory studies
 - ➤ A survey for perceptions regarding farmers' preference with a quantitative approach
 - > Field tests for perceptions regarding technical performances
- ➤ More advanced analyses: SWOT-AHP (Analytical Hierarchy Process) or SWOT-SOR (Strategic Orientation Round).
- > Alternative method: Delphi with experts.
- > European context cannot be generalized for other regions.
 - > Future studies in different contexts

4. Farmers' preference for laser weeding techniques

Introduction

Issues with conventional weed control

- ☐ Chemical weed control (herbicides): clear negative environmental impacts
- ☐ Mechanical weed control: soil turbulence & compaction, nutrient degradation, harm to soil animals.
- ☐ Manual weed control: costly and labour intensive.

A new solution with laser weeding

WeLASER (EU project)

Carbon Robotics (US company)

Materials and methods

Data collection Online survey

Convenience sample

Growers in 4 countries: Denmark, Italy, Spain, and Poland.

Linear regression

Independent variables

Dependent variable

Socio-demographics of farmers

Perceived usefulness (PU)

Intention to adopt

Perceived ease of use (PEU)

(in different given scenarios)

Farm characteristics

Environmental concern (EC)

Technological interest (TI)

Social influence (SI)

Materials and methods

Choice experiment

8 choice sets.

Each set = 2 options A, B & 1 status quo.

D-optimal orthogonal design = Ngene

Random parameter logit (RPL) models = Rstudio

- Autonomous vehicle (0)

- Mounted on tractors (1)

Efficacy

- Slow - 80-90% kill rate (0)

- Fast -70-80% kill rate (1)

Service

- Alone service (0)

- Hybrid service (1)

Energy

- Fossil fuel (0)

- Rechargeable battery (1)

Cost

- 100€; 150€, 200€, 250€/ha

Α	В
Laser	Laser 24/7
0,8-1 ha/h 70-80%	0,4-0,6 ha/h **80-90%
Laser	Laser
(F)	Diesel
250 €/ha	200 €/ha

Yes

No

Result 1: Sample descriptive (n=203)

Summer School				
Farmers' characteristics	Percentages (%)			
Age	Mean = 39.89			
18 - 30	31.53%		Farm's characteristics Pe	rcentages (%)
30 - 40	25.62%		Crops	
40 - 50	18.72%		Cereals (e.g., wheat, maize,)	36.45%
50 - 60	13.30%		Root crops (e.g., potatoes, sugar beets,)	23.65%
Above 60	10.84%		Oilseeds	16.26%
Country				
Denmark	25.62%	NA octivi from	Fruits	32.02%
Poland	24.63%	Mostly from	Vegetables	33.99%
Italy	26.11%	4 countries	Vineyard	26.11%
Spain	21.67%	J	Olives	26.11%
Netherlands	1.48%		Seedlings	15.27%
UK	0.49%		None	0.00%
Gender		Masthumala	Others, please specify	6.90%
Male	64.04%	Mostly male	Farm type	0.507
Female	33.50%			27.440/
Other	0.99%		Conventional	37.44%
Prefer not to tell	1.48%		Regenerative	12.81%
Experience	22.254		Organic	32.02%
0 -> 5	30.05%	Young farmers	Converting to regenerative/organic	6.90%
5 -> 10	20.69%	_	Mixed (conventional and regenerative/organic)	10.84%
10 -> 15	10.84%			
15 -> 20	11.82%			
Above 20	26.60%		Diverse crops and farming typ	ıΔς
Education	40.200/			163
High school or below	48.28%	½ higher educ	ation Nearly 50% of farms are	
Bachelor's degree	27.09%		organic/regenerative	
Master's degree/Study diploma Doctorate	21.67% 2.96%			
Agricultural training/education	<u> </u>			

40.89%

59.11%

Result 2: Intention to adopt (descriptive)

Result 3: Intention to adopt (linear regression)

Result 4: Choice experiment

	Total san (n = 20 β (SE)	•	Adoption ((n= 6 β (SE)		Non-adoptio (n=13 β (SE)	•		
Cost	-0.004	***	-0.01	***	-0.002	*	_ Cost is critical	
Status quo	-1.68	***	-3.35	***	-1.00	***	Preferred	
Mobility	-0.06		-0.18		0.01		laser-weeding	
SD Mobility	0.89	***	1.22	***	0.76	***		
Efficacy	-0.03		-0.05		-0.02		\	
SD Efficacy	0.59	***	0.54	**	0.63	***		
Service	-0.01		-0.09		0.03		Preference	
SD Service	0.54	***	0.49	**	0.60	***	heterogeneity	
Energy	0.01		0.37	*	-0.13			
SD Energy	0.94	***	1.10	***	0.84	***	, De els essere la le	
Goodness-of-fit							Rechargeable	
AIC	3215		942		2230		battery =	
BIC	3269		985		2280		preferred by	
Observation	1624		544		1080		prospective adopters	

Discussions and conclusions

- Relatively high intention to adopt laser-weeding.
- → Promising, but need suitable support actions (policies, regulations).
- Critical factors for intention to adopt: (1) Technology interest > (2)
 Perceived usefulness > (3) Environmental concerns.
- → Education and communication (to improve awareness and interest) are key.
- Heterogeneous preferences for mobility mode, service and efficacy/speed of laser-weeding solutions.
- →Larger sample size is needed to explain.
- Green energy source is important for prospective adopters.

5. Setting up the business model: Business model canvas

Business model canvas

Business canvas model

- Shared language to describe, visualize, asses and change your business model
- Create new strategic alternatives
- Frequently applied in industry
- Facilitates the process of challenging assumptions and successful innovation
- Nine building blocks
- Osterwalder & Pigneur

Business model canvas

Delivering value

Key Activities

Business model canvas

Thank you for your attention!

MSc. Margo Degieter

MSc. Duc Tran

Prof. Xavier Gellynck

