

Yiming MA

Contents

1	Introduction	2
	1.1 Motivation	2
	1.1.1 A Deterministic Model	2
	1.1.2 A Stochastic Model	2
	1.1.3 A Network Model	2
	1.1.4 A Random Network Model	3
2	Probability and Random Variables	4
	2.1 Probability Theory	4
3	Discrete-Time Markov Chain	6
4	Continuous-Time Markov Chain	7
5	Continuous State Space Markov Processes	8
6	Stochastic Particle Systems	9
7	Networks	10
8	Random Networks	11

Introduction

1.1 Motivation

Suppose we are modelling COVID. Let

- S be he number of the susceptible;
- *I* be the number of the infected;
- R be the number of the removed (those who have either recovered or died).

1.1.1 A Deterministic Model

A deterministic model might be

$$\begin{split} \dot{S} &= - \, \beta I S, \\ \dot{I} &= \! \beta I S - \gamma I, \\ \dot{R} &= \! \gamma I. \end{split}$$

But there are some problems in this model:

- S, I and R are integers, so it does not make sense to talk about \dot{S} , \dot{I} and \dot{R} .
- There is variability in when contacts are made and lead to infection.

1.1.2 A Stochastic Model

A better model might be stochastic

$$\mathbb{P}S \to S - 1 \& I \to I - 1 \text{ in } \Delta t = \beta I S \Delta t + o(\Delta t)$$

$$\mathbb{P}I \to I - 1 \& R \to R + 1 \text{ in } \Delta t = \gamma I \Delta t + o(\Delta t).$$

The problem of this model is that contacts are usually not made uniformally in the whole population.

1.1.3 A Network Model

We can use a network model, in which nodes represent individuals and edge weights represent contact rates, to avoid uniform contacts. But tis is unrealistic: the network is too big to represent 60 million people in the UK.

1.1.4 A Random Network Model

Based on the network model, we can make probability distributions on networks and derive probabilistic conclusions over the combination of stochastic dynamics and randomness of networks.

Probability and Random Variables

2.1 Probability Theory

Suppose we are doing an experiment which have different random outcomes.

Definition 2.1.1 (Sample Spaces). The **sample space** of the experiment is the set of all possible outcomes, denoted as Ω .

Definition 2.1.2 (Sigma Algebra). The σ -algebra of subsets of Ω , denoted as \mathcal{F} , is a set of subsets of Ω which satisfies:

- $\Omega \in \mathcal{F}$;
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$:
- $\{A_i|i\in\mathcal{I}\}\subset\mathcal{F} \text{ with } \mathcal{I} \text{ being countable } \Longrightarrow \bigcup_{i\in\mathcal{I}}A_i\in\mathcal{F}.$

Remark. We say \mathcal{I} is countable if there exists a one-to-one map from \mathcal{I} into \mathbb{Z} , so "countable" includes "finite".

Example 2.1.1. If Ω is countable, we usually take $\mathcal{F} = 2^{\Omega}$, which is the power set of Ω .

Example 2.1.2. When Ω is not countable, e.g. [0,1], if you allow Axiom of Choice ¹, then there exist unmeasurable subsets, and we exclude them from \mathcal{F} , i.e. \mathcal{F} is the set of all Lebesgue-measurable subsets on [0,1].

Definition 2.1.3 (Events). The members of \mathcal{F} are called **events**.

Definition 2.1.4 (Probability). $\mathbb{P}[\cdot]: \mathcal{F} \mapsto \mathbb{R}$ is called a probability if

- $\mathbb{P}[A] \in [0,1], \forall A \in \mathcal{F};$
- $\mathbb{P}[\Omega] = 1$;
- $\mathbb{P}[\cdot]$ satisfies the **countable additivity**: $\forall \{A_i | i \in \mathcal{I}\} \subset \mathcal{F}$, where \mathcal{I} is a countable set, if A_i 's are disjoint, then

$$\mathbb{P}\left[\bigcup_{i\in\mathcal{I}}A_i\right] = \sum_{i\in\mathcal{I}}\mathbb{P}\left[A_i\right].$$

¹A Cartesian product of a collection of nonempty sets is nonempty.

Definition 2.1.5 (Independence). Say $A, B \in \mathcal{F}$ are independent if

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}[A]\mathbb{P}[B].$$

Definition 2.1.6 (Conditional Probabilities). If $\mathbb{P}[B] > 0$, then the **conditional probability** $\mathbb{P}[A|B]$ is defined by

$$\mathbb{P}\left[A|B\right] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}, \quad \forall A \in \mathcal{F}.$$

Definition 2.1.7 (Partitions). $\{B_i|i\in\mathcal{I}\}$ is called a **partition** of the sample space Ω if:

- B_i 's are **pairwise disjoint**: $B_i \cap B_j = \emptyset$, $\forall i, j \in \mathcal{I}$, $i \neq j$;
- $B_i \neq \emptyset, \forall i \in \mathcal{I};$
- $\{B_i|i\in\mathcal{I}\}\$ **covers** Ω : $\bigcup_{i\in\mathcal{I}}B_i=\Omega$.

Theorem 2.1.1 (The Law of Total Probability). Let $\{B_i|i\in\mathcal{I}\}$ be a countable partition of Ω , with $B_i\in\mathcal{F}$ and $\mathbb{P}[B_i]>0$, $\forall i\in\mathcal{I}$. Then $\forall A\subset\mathcal{F}$, we have

$$\mathbb{P}\left[A\right] = \sum_{i \in \mathcal{I}} \mathbb{P}\left[A|B_i\right] \mathbb{P}\left[B_i\right].$$

Discrete-Time Markov Chain

Continuous-Time Markov Chain

Continuous State Space Markov Processes

Chapter 6
Stochastic Particle Systems

Networks

Chapter 8 Random Networks