Exceptions to the Octet Rule

- B and Be are second row elements that may have fewer than 8 electrons around them.
- Second row elements never exceed the octet rule. Why? Electron configuration = 2s² 2p⁶
- Third row elements may exceed the octet rule. Why?

 Electron configuration = 3523p6...3416

Examples Odd number of electrons

NO

 NO_2

Example

Expanded octet

$$H_2SO_4$$
 $:O:$
 $:O:$

Structure and Bonding in Metals

Physical Properties:

Conduct heat/electricity well Malleable Ductile

Spherical atoms packed together and bonded equally in all directions (nondirectional bonding). Closest packing of spheres minimizes the void volume.

Metallic bonding
Difficult to break bonds
Easy to change atom arrangement

Unit Cells without Closest Packing

Simple-cubic unit cell (SC)

Each sphere has 6 nearest neighbors

latom/unit cell e=edge length = 2r f=face diagonal b=body diagonal

Body-centered cubic (bcc) unit cell
Each sphere has 8 nearest neighbors

2 atoms/unit cell b=40

chemistnate.com

Face-centered cubic unit cell: cubic closest packing (ccp) structure Each sphere has 12 nearest neighbors

4 atoms/unit cell

Unit Cell Characteristics

Unit Cell	% Void Volume	Atoms/Unit Cell	Edge length
Simple Cubic		1	20
Body-Centered Cubic		2	
Face-Centered Cubic		4	

V=
$$e^3$$

Vsphere = $\frac{4}{3}\pi r^3$
Density = $\frac{m}{V}$