2. Übungsblatt

1. Boolsche Algebra/Schaltalgebra

- a) Boolsche Algebra ist Menge mit einem Nullelement und einem Einselement, über der die Konjunktion, Disjunktion und Negation definiert ist und die Kommutativität, Distributivität, Neutralität und Komplimentarität gilt.
 - Schaltalgebra ist eine spezifische Boolsche Algebra, die aus der Trägermenge {0,1} besteht.
- b) \wedge : "und" \vee : "oder" \neg : "nicht"

c)

$$\neg (a \lor b) \lor b \mid \text{ DeMorgan}$$

$$(\neg a \land \neg b) \lor b \mid \text{ Distributivit\"{a}t}$$

$$(\neg a \lor b) \land (\neg b \lor b) \mid \text{ Komplementarit\"{a}t}$$

$$(\neg a \lor b) \land 1 \mid \text{ Neutralit\"{a}t}$$

$$\neg a \lor b$$

e)

$$(\neg \wedge d) \vee (d \wedge (a \vee \neg)) \vee \iff c \vee (\neg c \wedge d) \vee (d \wedge (a \vee \neg b))$$

$$\iff c \vee d \vee (d \wedge (a \vee \neg b))$$

$$\iff d \vee ((c \vee d) \wedge (c \vee (a \vee \neg b)))$$

$$\iff d \vee ((c \vee d) \wedge (c \vee a \vee \neg b))$$

$$\iff (d \vee c \vee d) \wedge (d \vee c \vee a \vee \neg b)$$

$$\iff ((d \vee c \vee)0) \wedge ((d \vee c) \vee a \vee \neg b)$$

$$\iff (d \vee c) \vee (0 \wedge (a \vee \neg b))$$

$$\iff (d \vee c) \vee (0)$$

$$\iff (d \vee c) \vee (0)$$

$$\iff (d \vee c)$$

2. Boolesche Algebra/Schaltalgebra

a)
$$\neg(a_1 \land 1_2 \land a_3 \land \cdots \land a_{n-1} \land a_n) \iff \neg a_1 \lor \neg(a_2 \land a_3 \land \cdots \land a_{n-1} \land a_n) \\
\iff \neg a_1 \lor \neg a_2 \lor \neg(a_3 \land \cdots \land a_{n-1} \land a_n)$$

$$\Leftrightarrow \neg a_1 \lor \neg a_2 \lor \neg a_3 \lor \cdots \lor \neg(a_{n-1} \land a_n)$$

$$\iff \neg a_1 \lor \neg a_2 \lor \neg a_3 \lor \cdots \lor \neg(a_{n-1} \land a_n)$$

$$\iff \neg a_1 \lor \neg a_2 \lor \neg a_3 \lor \cdots \lor \neg a_{n-1} \lor \neg a_n$$

$$\neg(a_1 \lor 1_2 \lor a_3 \lor \cdots \lor a_{n-1} \lor a_n)$$

$$\iff \neg a_1 \land \neg a_2 \land \neg a_3 \land \cdots \lor \neg(a_{n-1} \lor a_n)$$

$$\iff \neg a_1 \land \neg a_2 \land \neg a_3 \land \cdots \land \neg(a_{n-1} \lor a_n)$$

$$\iff \neg a_1 \land \neg a_2 \land \neg a_3 \land \cdots \land \neg(a_{n-1} \lor a_n)$$

$$\iff \neg a_1 \land \neg a_2 \land \neg a_3 \land \cdots \land \neg(a_{n-1} \lor a_n)$$

b) Alle, bei denen binäre Operatoren mit Klammern vorkommen, also Distributivität, Assoziativität und Absorbtion

3. Boolesche Algebra/Schaltalgebra

zu zeigen: Term 1
$$\iff$$
 Term 2, also $(a \land \neg c) \lor b \iff \neg(\neg a \land \neg b \land \neg c) \land (a \lor b \lor \neg c) \land \neg(c \land \neg b)$

Term 2:

$$\neg(\neg a \land \neg b \land \neg c) \land (a \lor b \lor \neg c) \land \neg(c \land \neg b) \iff (\neg \neg a \lor \neg \neg b \lor \neg \neg c) \land (a \lor b \lor \neg c) \land (\neg c \lor \neg \neg b)$$

$$\iff (a \lor b \lor c) \land (a \lor b \lor \neg c) \land (\neg c \lor b)$$

$$\iff ((a \lor b) \lor c) \land ((a \lor b) \lor negc) \land (\neg c \lor b)$$

$$\iff ((a \lor b) \lor (c \land \neg c)) \land (\neg c \lor b)$$

$$\iff (a \lor b) \lor (0 \land \neg c) \lor b$$

$$\iff (a \lor b) \land (\neg c \lor b)$$

$$\iff (a \lor b) \land (\neg c \lor b)$$

$$\iff (a \lor b) \land (\neg c \lor b)$$

$$\iff (a \lor b) \land (\neg c \lor b)$$

Somit ist Term 2 logisch äquivalent zu Term 1.

Neben einem direkten Beweis durch Termumformung, könnte man auch zwei Wertetabelle erstellen, zu je einem Term eine, und dann diese auf Gleichheit überprüfen.

4. Disjunktive und konjunktive Normalform