БИЛЕТ 6. Функции многих переменных. Частные производные и полный дифференциал для функциий многих переменных. Достаточное условие дифференцируемости. Градиент.

Определение 1. т-мерное координатное пространство:

m-мерным координатным пространством A^n называется множество всевозможных упорядоченных совокупностей $(x_1, x_2, ..., x_m)$ m чисел $x_1, x_2, ..., x_m$

Определение 2. т-мерное евклидово пространство:

m-мерное евклидово пространство E^n - координатное пространство A^n , в котором для любых двух точек $M'(x'_1, x'_2, ..., x'_m)$ и $M''(x''_1, x''_2, ..., x''_m)$ определено расстояние p(M', M'') по формуле

$$p(M', M'') = \sqrt{(x_1'' - x_1')^2 + (x_2'' - x_2')^2 + \dots + (x_m'' - x_m')^2}$$

Определение 3. Предел функции:

(по Коши) Число в называется пределом функции f(M) в точке A, если $\forall \epsilon > 0 \exists \delta > 0 \forall M \in \{M\}$: $(\{M\}$ - область определения функции) $0 < p(M,A) < \delta$ выполняется

$$|f(M) - b| < \epsilon$$

(по Гейне) Говорят, что функция f(x), имеет при $M \to A$ предел b, если для любой последовательности M_k такой, что

$$\lim_{k \to \infty} M_k = A,$$

выполнено равенство

$$\lim_{k \to \infty} f(M_k) = b.$$

ПРИМЕР 1. Доказать, что $\lim_{x \to 0, y \to 0} (x^2 + y^2)^a = 0$, если a > 0.

Возьмем любое $\epsilon > 0$. Положим $\delta = \epsilon^{1/(2a)}$. Пусть $(x,y) \in S_{\delta}(0,0)$, тогда

$$(x^2 + y^2)^a < \delta^{2a} < \epsilon,$$

т.е.

$$\lim_{x \to 0, y \to 0} (x^2 + y^2)^a = 0.$$

ПРИМЕР 2. Функция $f(x,y) = \frac{2xy}{x^2+y^2}$ не имеет предела $(x,y) \to (0,0)$.

Рассмотрим последовательность точек $(x_n,y_n)=(\frac{1}{n},\frac{1}{n})$. Тогда $f(x_n,y_n)=1$ и, следовательно, $\lim_{n\to\infty}f(x_n,y_n)=1$. Если же взять последовательность точек $(x'_n,y'_n)=(\frac{1}{n},-\frac{1}{n})$, то $\lim_{n\to\infty}f(x'_n,y'_n)=-1$. Так как при любом $n\in N$ точки (x_n,y_n) и (x'_n,y'_n) не совпадают с точкой (0,0), а последовательности точек (x_n,y_n) и (x'_n,y'_n) сходятся к точке (0,0), то, используя определение 2 предела, получаем, что функция f(x,y) не имеет предела при $(x,y)\to (0,0)$.

Определение 4. Непрерывность (формальное):

Функция f непрерывна в точке A, если $\exists \lim_{M \to A} f(M) = f(A)$.

Определение 5. Непрерывность (Гейне):

Функция f непрерывна в точке A, если $\forall \{M_n\}: M_n \to A$ выполняется

$$f(M_n) \to f(A)$$
.

Определение 6. Непрерывность (Коши):

Функция f непрерывна в точке A, если $\forall \ \varepsilon > 0 \ \exists \delta(\varepsilon) = \delta > 0 \ : \ \forall M \in \{M\} \ : \ \rho(M,A) < \delta$ выполняется

$$|f(M) - f(A)| < \varepsilon.$$

Определение 7. Функция f, определенная на $\{M\}$, непрерывна на нем, если она непрерывна в каждой точке $\in \{M\}$.

Определение 8. $f(x_1,...,x_m)$ непрерывна в точке $M(x_1,...,x_m)$ по переменной x_k , если

$$\lim_{\Delta x_k \to 0} \Delta x_k f = 0,$$

m.e.

$$\Delta x_k f = f(x_1, ..., x_{k-1}, x_k + \Delta x_k, x_{k+1}, ..., x_m) - f(x_1, ..., x_m).$$

Определение 9. Eсли $\exists\lim_{\Delta x_k \to 0} \frac{\Delta x_k f}{\Delta x_k} = \frac{f(x_1, \dots, x_{k-1}, x_k + \Delta x_k, x_{k+1}, \dots, x_m) - f(x_1, \dots, x_m)}{\Delta x_k}$ в точке M, то этот предел называется **частной производной** f в точке M по x_k и обозначается $\frac{\partial f}{\partial x_k}$.

Определение 10. Функция $U = f(x_1, ..., x_m)$ дифференцируема в $M(x_1, ..., x_m)$, если ее полное приращение

$$\Delta U := f(x_1 + \Delta x_1, ..., x_m + \Delta x_m) - f(x_1, ..., x_m)$$
 представимо в виде

$$\Delta U = A_1 \Delta x_1 + \dots + A_m \Delta x_m + \alpha_1 \Delta x_1 + \dots + \alpha_m \Delta x_m, \ (*)$$

 $\epsilon \partial e\ A_1,...,A_m$ - независимые от Δx_i числа;

 $\alpha_{1},...,\alpha_{m}$ - бесконечно малые функции, которые равны 0 при $\Delta x_{i}=0$.

Теорема 1. Если функция $U = f(x_1, ..., x_m)$ дифференцируема в точке M, то в этой точке существует частные производные по всем аргументам, где $\frac{\partial U}{\partial x_k} = A_i$ $(A_i \text{ us } (*)).$

Доказательство к теореме 1. • $\Delta U = A_1 \Delta x_1 + \ldots + A_m \Delta x_m + o(\rho)$. $o(\rho) \geq |\alpha_1 \Delta x_1 + \ldots + \alpha_m \Delta x_m|$, $\epsilon \partial e \ o = (|\alpha_1| + \ldots + |\alpha_m|)\rho, \ \rho = \sqrt{\Delta x_1^2 + \ldots + \Delta x_m^2}$.

$$\lim_{\Delta x_i \to 0} \frac{\Delta x_i U}{\Delta x_i} = \lim_{\Delta x_i \to 0} \frac{A_i \Delta x_i + \alpha_i \Delta x_i}{\Delta x_i} = A = \frac{\partial U}{\partial x_i}. \bullet$$

Следствие 1. $\Delta U = \frac{\partial U}{\partial x_1} \Delta x_1 + ... + \frac{\partial U}{\partial x_m} \Delta x_m + o(\rho)$. Если U дифференцируема в точке $M(x_1, ..., x_n)$, то она непрерывна в этой точке.

Теорема 2. (Достаточные условия дифференцируемости) Если функция $U = f(x_1, ..., x_m)$ имеет частные производные по всем аргументам в некоторой окрестности точки $M_0(x_1^0, ..., x_m^0)$, причем они непрерывны в точке M_0 , тогда $U = f(x_1, ..., x_m)$ дифференцируема в M_0 .

Доказательство к теореме 2. Докажем для функции от двух переменных (для остальных функций аналогично) $U = f(x,y) \; \exists \; f_x, f_y \;$ в окрестности M_0 и они непрерывны. Выберем $\Delta x, \Delta y$ так, чтобы $M(x_0 + \Delta x, y_0 + \Delta y)$ не выходила из окрестности $M_0(x_0, y_0)$.

 $\Delta U = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = [f(x_0 + \delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)].$ Можно рассматривать $f(x_0 + \Delta x_0, y_0 + \Delta y_0) - f(x_0, y_0 + \Delta y)$, как приращение функции одной переменной $f(x, y_0 + \Delta y)$ на $[x_0, x_0 + \Delta x]$. Т.к. U = f(x, y) имеет частные производные, то применим теорему Лагранжа

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) = f'_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x$$

аналогично,

$$f(x_0, y_0 + \Delta y) - f(x_0, y_0) = f'_y(x_0, y_0 + \theta_2 \Delta y) \Delta y.$$

 $T.к. f'_x, f'_y$ — непрерывны в M_0 , то

$$f'_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y) = f'_x(x_0, y_0) + \alpha,$$

$$f_y'(x_0, y_0 + \theta_2 + \Delta y) = f(x_0, y_0) + \beta.$$

 α и β - бесконечно малые npu $\Delta x \to 0$ и $\Delta y \to 0$ соответственно. Следовательно

$$\Delta U = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y => U = f(x, y).$$

Определение 11. (Производная по направлению.)

Пусть функция f(x,y,z) определена в области $G \subset R^3$ и пусть точка $P(x_0,y_0,z_0)$ inG. Рассмотрим луч, проходящий через точку и параллельный направлению $l=(\cos\alpha,\cos\beta,\cos\gamma)$, где $\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$. Т.к. P - внутреняя точка G, то найдется число t_0 такое, что отрезок $x=x_0+t\cos\alpha$, $y=y_0+t\cos\beta$, $z=z_0+t\cos\gamma$, $-t_0\leq t\leq t_0$, лежит в области G. Производной функции f(x,y,z) в точке (x_0,y_0,z_0) в направлении l назовем

$$\frac{\partial f}{\partial l}(x_0, y_0, z_0) = \lim_{t \to +0} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}.$$

Определение 12. (Градиент)

функция U = f(x, y, z) в $M_0(x_0, y_0, z_0)$ - вектор,

$$GradU = (\frac{\partial U}{\partial x} M_0, \frac{\partial U}{\partial y} M_0, \frac{\partial U}{\partial z}) = > \frac{\partial U}{\partial e} = (e, GradU)$$

Из этого видно, что градиент U в точке M_0 характеризует направление и величину максимального роста функции в точке M_0 .

(Градиент не зависит от выбора системы координат)