

Please feel free to introduce yourself to your neighbors—name, pronouns, a hobby, etc.

and/or

Answer first wooclap question

Learning outcome for Topic 15: Stoichiometry

Learning Outcomes:

- Describe the rules of conservation of atoms in chemical reactions.
- Predict the relative amounts of reagents consumed and leftover during chemical equations
- Carry out stoichiometry calculations with limiting reagents and specific yields

Chemical Reactions

The breaking of at least one existing chemical bond in the reagents and/or the formation of at least one new chemical bond in the products.

Example: Many modern rocket fuels are solid mixtures of substances combined in carefully measured amounts and ignited to yield a thrustgenerating chemical reaction.

https://boisestate.pressbooks.pub/chemistry/chapter/intro-7/

Stoichiometry

- The study of the quantitative aspects of a chemical reaction.
- if the quantity of reactant is known, it is possible to find the
- quantity of product that will be formed (or vice-versa)
- to simplify the process, we use the mole method:

1 mole → defined by the number of atoms in 12 g of pure 12C

Avogadro's number = N_A = $6.022x10^{23}$ units in one mole

Molar mass = the mass of 1 mole of that substance

Strategy for balancing equations

- Balance elements that occur in only one compound on each side first. Start with most complex compounds.
- Balance free elements last.
- Do not alter chemical formulas of compounds.
- Fractional coefficients are acceptable and can be cleared at the end by multiplication.

e.g. Balance:

$$Fe_3O_4 + HCI + CI_2 \rightarrow FeCI_3 + H_2O + O_2$$

Practice: balancing equations

Balance free elements last:

$$Fe_2O_3 + C \rightarrow FeO + CO$$

If an element is in two different compounds on the same side of the equation, save it for last:

$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$$

Rule of 2:3 (or 3:4)

$$Fe_2O_3 + C \rightarrow Fe + CO_2$$

Fractions vs. integers

$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$$

Molecular ions

$$Ca_3(PO_4)_2 + H_2SO_4 \rightarrow CaSO_4 + H_3PO_4$$

Practice: balancing equations

Example: Ammonium nitrate (NH_4NO_3) explodes when it is heated above 300 °C. The products are three gases: molecular nitrogen, molecular oxygen, and steam (water vapour). Write a balanced equation for the explosion of ammonium nitrate.

$$__NH_4NO_3 \rightarrow __N_2 + __H_2O + __O_2$$

Conversion Between Amount, Mass, and Number

Molar mass and Avogadro's number are essential conversion factors:

Example of a Mole Method Calculation

Example: If 454 g of NH₄NO₃ decomposes, how much N₂O and H₂O (in grams) are formed?

Step 1: Balanced chemical equation – write out "givens" and "needs"

Step 2: Calculate moles of "givens"

Step 3: Stoichiometric ratio

$$n_{\mathsf{B}} = \left(\frac{\mathsf{Coeff}_{\mathsf{B}}}{\mathsf{Coeff}_{\mathsf{A}}}\right) n_{\mathsf{A}}$$

Stoichiometric ratio

Step 4: Calculate your "needs"

Limiting Reagents

- In real reactions, one reactant can limit the amount of product that can form.
- The limiting reactant will be completely used up in the reaction.

 The reactant that is not limiting is in excess – some of this reactant will be left over.

Solving Limiting Reactant Problems

- 1. Write the balanced chemical equation.
- 2. Convert given quantities into moles.
- 3.Use reaction stoichiometry to find the amount of product that would be produced by each reagent.
- 4. The reagent that produces the smallest amount of product is limiting.

Example: What mass of solid aluminum sulfide can be prepared from the reaction of 10.0 g of aluminum and 15.0 g of sulfur? What mass of the non-limiting reagent is in excess?

Step 1: Write the balanced chemical equation.

Step 2: Convert given quantities into moles.

Step 3: Find the amount of product that would be produced by each given reagent.

Step 4: Calculate the mass of product from the amount of limiting reagent.

Step 5: What mass of the non-limiting reagent is in excess?

Calculate amount required for reaction, and subtract that from amount added to reaction.

Reaction Tables

- Used to keep track of the quantities in a limiting-reactant problem
- Top row shows balanced equation as the column headings.

The table contains rows for reactant and product:

```
Initial quantities (usually moles)
```

Change in quantities during the reaction

Final quantities remaining after the reaction

So for the previous example:

```
2 \text{ Al(s)} + 3 \text{ S(s)} \rightarrow \text{Al}_2 \text{S}_3(\text{s})
```

Initial

Change

Final

Limiting Reactant Example in Solution

Example Problem:

Lead acetate was used as a sweetener before its toxic effects were known. It is possible to distinguish it from sugar by adding it to a NaCl solution, since it will form an insoluble chloride salt.

When 268 mL of 1.50 mol/L lead(II) acetate ($Pb(OAc)_2$) reacts with 130. mL of 3.40 mol/L sodium chloride, what mass (g) of solid lead(II) chloride can form? (Sodium acetate solution also forms.)

Step 1: What is the balanced equation?

Limiting Reactant Example in Solution

Step 2: What is the limiting reagent?

Limiting Reactant Example in Solution

Step 3: Reaction Table

Step 4: Mass of $PbCl_2$ (M = 278.1 g/mol)?

Reaction Yield Calculation

In many reactions, not all the reactants are converted into the desired product. This is calculated using:

Percent yield =
$$100\%$$
 $\left(\frac{\text{Actual amount}}{\text{Theoretical amount}}\right)$

How do we calculate the yield for a multi-step reaction?

e.g. The antidepressant sertraline is synthesized in 6 steps with the following yields: 80%, 80%, 50%, 100%, 48%, and 30%.

Example calculating reactant mass from yield

Example: If the yield of the synthesis of industrial production of hydrogen cyanide is 97.5%, how many kilograms of methane should be used to produce 1.50×10^5 kg of HCN?

Step 1: BCE + givens/wants

Example calculating reactant mass from yield

Step 2: Calculate theoretical yield

Step 3: Calculate moles of theoretical yield

Example calculating reactant mass from yield

Step 4: Use stoichiometric ratio to find moles of CH₄

Step 5: Calculate mass of CH₄

Percent yield has limitations

Established Green Chemistry Metrics

1. Atom economy (atom efficiency)

$$Atom \, Economy \, = \, \frac{Mass \, of \, desired \, product \, *}{Mass \, of \, all \, reactants *}$$

*including the stoichiometric coefficient

2. Environmental (E) factor

$$E - factor = \frac{total\ waste\ (g)}{product\ (g)}$$

Established Green Chemistry Metrics

3. Life Cycle Assessment (LCA)

- An assessment of environmental impacts associated with all of the stages of a product's life.
- Environmental impact of the release of a specified amount of chemical:

$$I = P x m_{emitted}$$

Impact-based metrics:

- Global warming
- Smog formation
- Ozone depletion
- Human toxicity
- Eco-toxicity
- Acidification
- Eutrophication

/ = impact index

P = impact potential for a substance

m = mass of a substance emitted to the environment, including fugitive

emissions or waste

Green Chemistry-Related Metrics used in Chemical Manufacturing

Chemical manufacturer responses (n = 18) to the 2012 Roundtable survey question "What green chemistry and engineering related metrics does your company use? Select all that apply."

Example 1 impact-based metrics: Global warming potential

Example: Garbage decomposing in landfills releases methane gas, which is often "flared" (burned) rather than being vented into the atmosphere. Calculate the global warming caused by releasing 1 mol of methane by venting and by flaring. Which is less harmful?

The global warming potentials for $CH_4 = 28$ and $CO_2 = 1$, while those of O_2 and H_2O are negligible. $CH_4(g) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$

Natural gas flared vs. vented

Example 2 impact-based metrics: Inhalation toxicity potential

Example: CS_2 is an extremely volatile liquid solvent, boiling at 46 °C. It's commonly used to dissolve waste cellulose to make it into fibres called viscose, used in clothing. That takes much less land and water than growing cotton. CS_2 is made by reacting methane (CH_4) with elemental sulfur (S_8) at 600 °C. The products are CS_2 and CS_2 and CS_3 and CS_4 and CS_4 and CS_5 .

- a) Give the balanced reaction equation.
- b) If 100 g of methane is reacted with an excess of sulfur, how many grams of CS₂ and H₂S would be produced?
- c) Which of those two products, if released into the air, would cause more inhalation toxicity (IINHT)?

Chemical	MW (g/mol)	INHTP (inhalation toxicity potential)
CS ₂	76.14	0.84
H ₂ S	34.08	28.0

Example 2 impact-based metrics: Inhalation toxicity potential

a) Give the balanced reaction equation.

b) If 100 g of methane is reacted with an excess of sulfur, how many grams of CS₂ and H₂S would be produced?

Example 2 impact-based metrics: Inhalation toxicity potential

c) Which of those two products, if released into the air, would cause more inhalation toxicity (IINHT)?

