Nella lezione precedente abbiano definito un'applicazione lineare tra spazi vettoriali, il nucleo e l'immagine di un'applicazione cazione lineare.

Per comodità richiamiamo queste definizioni qui di seguito.

Siano V e W due spazi velloriali su K. Una funzione f:V -> W si dice un'applicazione lineare se:

 $\forall \lambda, \mu \in K, \forall \sigma_1, \sigma_2 \in V, \quad f(\lambda \sigma_1 + \mu \sigma_2) = \lambda f(\sigma_1) + \mu f(\sigma_2).$

10 sotospasão di V

Ker({):= \v ∈ V: {(v) = Ow}

é detto Nucleo di f.

Il sottospazio di W

 $\mathcal{G}_{\mathcal{U}}(f) := f(f) = f(f) : \sigma \in \mathcal{V}_{f}$

é detto IMMAGINE di f. La dimensione dell'immagine di f è detta RANGO di f e si denota rg(f).

Sia f:V->W un'applicazione lineare di spazi vettoriali e siano ve,..., vn ∈ V. Allora

((va),..., va>) = < f(va), ..., f(va)>.

< /4, ..., Vn> = } 2 20 2 + ... + 2 n vn : 24..., 2 n EK} Dim { (< v2, --, vn>) = { (v): v∈ < v2, ..., vn> } = } { (2, v2+--+2nvn): 22, ..., 2n∈ K } =

= 1 20 f(vi) + ... + 2n f(vn): 21, ... 2n E K = < f(vi), ... f(vn) >.

Se fra,..., vn q è una bose di V allora V= <v1,..., vn>
e quindi, per la proposizione précedente, Osservazione:

Ne seque che l'immagine di f è generata da lle immagini desti e lementi di una qualsiasi base di V. Quadi:

 $rq(1) \leq dim(V)$.

Vediano	che	per	ogwi	Opp	ملانحم	hiova	line	eare f	: V—	~W,	con	dim(v))دص _,
Vediance la differ del nu	enza e	gim(r	2 - 4	g(9)	è pr	penia fatti	ے رب رو	well veiso	ela!	ما <i>ل</i> ه د ح	equen	renzi	dre
											a		
Teorev	ua d	el re	ango	- ("	'is Bur	ta	Piū	ran	رام)			
Sía V	مىرى	Spa	7i0 V	ethorio	le di	din	rensi	ione	gini!	ta	و عزه	\	>W
nn, obb												V	
	dim (Ker({) _LITA`) +	rg (1)	= di	n (n)	•						
Idea de	lla di	M											
Sia d	im(v).	- w .											
Si hoti	innav	isituto	che	Ker (1)	ha diu	<i>nensia</i>	one	linita	w	quant	Hoe o	ois og za	2; V.
Si hoti Sia qu Bossian	undi un co	mperte	مروكم ن	na bo	ise di	Ver	(1).	se di	V.	Sia	son.	wwque	
													٧
La din	asta	tione : H	si con	dude	mostra	ndo	che	3 8 (2	T0+4)	,,	g(vn) }	Ē	
	"		= n-1	P = di	w (v) -	- alm	(Ner)	. ((6)					
	61	(4)											
Osservatio	ove : si	tan ;	i du	vell'	enuncia	40	del	tronen	اما	Jel	ravac	, Vo	^
Osservatio	s	i ē	soppost	m ch	W	ĕ di	diu	venzia	مدا	finite	٠. ٥		
Pagas sizi (Na	5:04	. §.	V V	\	0 - 14	1_~ 1	مراح (۱		~O:	- 2i al	. 0.	.eo.r.
Propositie	<u> </u>	di s	ठठ इं। १.	etto rio	المالية	2. "				- Company	<u> </u>		
		rvvo											
			9.	g: 1		- (a.f.	(3)	د) و =	((0))				
		ĕ w		kazion				91					
Dim: P	දෙ වා	متحن											
9													
Esempio													
Considerio													
g: 1₹	(1 3) F	- TR	12 221	+ 4)	e	g:	R2 -		R	3.0			
Chiaramen Con il d	bourino	g 7: 8	n e d	ejinita	, poid	nt il	codo	OWN	di	9 "	con c	sincide	

```
Per aqui (x,y,z) EIR3 abbiano:
   (gof)(x,y,z) = g(f(x,y,z)) = g(x+z, 2x+y) = (x+z)+ 3(2x+y)=
                                                        = 72+39+3.
  Quindi gof & l'applicazione lineare
           901: IR3 - R
(x,y,z) - 7x+3y+2.
Richianiano ora alcun definizioni, viste nella prima lezione, che adattiano ora al contesto delle applicazioni lineari.
Def: Sia f:V-oW un'applicatione linear di spazi
          · J & detta SURIETTIVA Se J(V) = W, ossia se
                Y we W, I vev tale che f(v) = w.
            Chiaramente j e suriettion se e solo se rq(1) = dim(W).
          - le della MIETTIVA Se V V1, V2 € V
                            \begin{cases} (V_4) = \begin{cases} (V_2) \implies V_4 = V_2. \end{cases}
          · J & detta un Isonorfisho se J & BIETTIVA, Ossia se J & inichio e suriettiva.
             Se f é un isomorfismo allora existe
                               1-1:W -> V
             tale che:
                          \forall x \in W, f^{-1}(y) = x \iff f(x) = y.
              La funcione f<sup>-1</sup> è detta FUNZIONE INVERSA di f e
Verifica le sequenti vogna glianze di funcioni:
                       f \circ f^{-1} = idw, ossia \forall w \in W, f(f^{-1}(w)) = w
                       f^{-1} \circ f = id_V, ossia \forall v \in V, f^{-1}(f(v)) = v.
                  Sia 1: V -> W on sourfisus. Allora 1-1 e un'applicatione lineare biethia, assia un isomorfismo.
Proposizione:
```

Dim La funcione f-1: W -> V é chiaramente biethra. Mostrians che f-1 é un'applicazione lineare. Siono w, we EW e siono 2, MEK.
Allora 3 V, V2 EV tali du f(V2)= w, e f(V2)= w2. $V_{4} = \frac{1}{3} - \frac{1}{3} \left(\omega_{A} \right) \qquad V_{2} = \frac{1}{3} - \frac{1}{3} \left(\omega_{2} \right)$ Quindí abbiano. f-1(λωλ+μω2)= f-1 (λg(Va)+ μg(V2))= f-1 (g(λVa+μV2)) = λVλ+μV2=λg-1(Wa)+μg-1(W2), ossia j-1 é un'application linears e quindi un isomorfismo. Esempio Consideriamo l'applicazione lineare 1: 1R2 - > 1R2 (2,4) + = (x+4, x-4). Mostriano che j è un isomorfismo e determiniamone l'inversa. · INVETTIVITA Siano V1= (x1, y1), V2= (x2, y2) ∈ R2 tali che f(v2) = f(v2) => f(x2, y2) => (x2+ y2, x2-y2) =(x2+y2, x2-y2) $\Rightarrow \begin{cases} \chi_1 + y_4 = \chi_2 + y_2 \\ \chi_1 - y_4 = \chi_2 - y_2 \end{cases} \Rightarrow \begin{cases} \chi_2 = \chi_2 \\ \chi_1 - y_4 = \chi_2 - y_2 \end{cases} \Rightarrow \begin{cases} \chi_1 + \chi_2 = \chi_2 \\ \chi_1 - \chi_2 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_2 + \chi_2 \\ \chi_3 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_2 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_2 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 = \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases} \Rightarrow \begin{cases} \chi_4 - \chi_4 \\ \chi_4 - \chi_4 \end{cases}$ Quindi & & iniettina. · SURIETTIVITA $\Im (1) = f(\mathbb{R}^2) = f(\langle (1,0), (0,1) \rangle) = \langle f(1,0), f(0,1) \rangle = \langle (1,1), (1,-1) = \mathbb{R}^2.$ Quindi { ē suriettia. Ne seque che j'é un isomorfismo ed esiste quindi un isomorfismo inverso $\forall (x,y) \in \mathbb{R}^2, \int_{-1}^{-1} (x',y') = (x,y) \iff \int_{-1}^{1} (x,y) = (x',y').$ $f(x,y) = (x',y') \iff (x+y,x-y) = (x',y') \iff f(x) = x+y \iff f(y) = x'-y'$

nelle incognite z'ey'

Quindi l'isomorfismo inverso è definito da: $J^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto \left(\frac{x+y}{2}, \frac{x-y}{2}\right).$ Si può facilmente verificare che per agni (x, y) e IR² si ha: $\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\left(x,y\right)\right)=\left(x,y\right)$ Nel caso delle applicazioni lineari è possibile determinare l'iniettività di una funcione semplicemente calcelando il nucleo. Infatti abbiano il risultato sequente: Propositione: Un'applicatione lineare J: V—W di spati vettoriali è iniettiva se e solo x Ker(1) = 10v3. Dim Ricordiano che Ker({):= {v ∈ V: {v) = Ou}. =>) Suppositions the f.V->W & intertita. Chiaramente Ove Ker(f) Sia ora v ∈ Ker (1). Allora, f(v)= Ow= f(ov) => v=ov ¿ i wiethina Ne segre che l'unico elemento appartenente a Ker(1) & av, quindi Ker(1)-jar. (=) Supportion the Ker(1)= 30v4. Siano vi, vi e V tali che f(vi) = f(vi) => f(vi) - f(vi) = ov => => \(\langle \langle \tau_1 - \tau_2 \rangle \tau_1 - \tau_2 \in \text{Ker}(\frac{1}{4}) = \frac{1}{4} \Quad \frac{1}{4} => \tau_1 = \tau_2. of linearc Quind, of = investiva. Comblario (del termua del ravop) Siano V e W de spazi rettoriali tali du dim(V)=dim(W)=N. Sia f: V -> W un' applicazione lineare. Allora le seguenti affermazioni sono equivalenti: 1) } ē inieltina. 2) { ĕ suriettiva. anzifranozi nu is f (E

dim Ci basterà mostrare du se dim(v) = dim(w) allora f ē iniethina () f ē suriethino. { € iniethio €> Ker(1) = { Or} (=> dim (Ker(1)) =0 €> (s) dim (v) = rg(1) (s) dim (v) = rg(1) (s) g \(\varepsilon \) e scriettina. teorina ipoksi del rango dim(V) = dim(W) Osservazioni: Sia J. V - W un' applicazione di spazi vettoriali: · se dim(V) > dim (W) allora of non & iniettiva se dim (V) > dim (W) => dim (Ker (1)) = dim (V) - rg (1) > dim (W) - rg (1) >0. tearema del rango dim(V) > dim (W) Quindi dim (Ker(9)) >0. Ne segre che Ker(8) \neq 900 q e · se dim (V) < dim (W) allow of you & surietina. Se dim (V) < dim (W) => rq (1) = dim (V) - dim (Ker (1)) < dim (W) - dim (Ker (1)) => rg(1) < dim(W) => g non & scriettia (1) < dim(W) Esempio 1) Sia V= 1R4 W= R3. Per le osservazioni precedenti non esiste un'applicazione lineare iniettiva j: R4 - 01R3. Dal teorina del rouge si otiene infatti du din (Ker(1)) > 1. 2) Allo stesso modo non esiste un'applicazione lineare surettire 1: R3 - 1R4, poiché 19 (1) = 3.

Matrici associate alle applicazioni lineari

Vediono ora come possiono associar alle applicazioni lineari delle matrici le cui proprietà rifletto no le proprietà delle applicazioni lineari corrispondenti.

Siano V e W due spazi vettoriali di dimensione rispettivamente n e m e sia j: V -> W un'applicazione lineare.

Sia B= gvz,..., vng una base di V e sia B'= gwz,..., wmg

Le immagini di Ve,... vn si decomponegne sulla base B'

{(V1) = Q11 W1 + Q21 W2 + --- + Qm + wm

f(V2) = a2 W4 + a22 W2+--+ ans wm

{(h) = anw + anwz+--+ annw

 $con a; j \in K, \forall i=1,..., m, \forall j=1,..., n.$

Consideriano la matrice $A = (a_{ij}) \in \mathcal{H}_{m,n}(K)$. Tale matrice è la mortrice di f nelle basi $B \in B'$.

Def: Sia f: V -> W un'applicazione lineare di spazi vettoriali e siano B= dva, ..., Vny e B'= dwa, ..., wmy due basi rispettiamente di V e W.

La MATRICE DI f nelle basi Be B' è la matrice

MBB (1) E Mm,n (K)

le cui colonne sono le coordinate di $f(v_n),...,f(v_n) \in W$ nella base \mathcal{B}' :

$$M_{B'B}(3) = \begin{pmatrix} 0.41 & 0.42 & \cdots & 0.44 \\ 0.21 & 0.22 & \cdots & 0.24 \\ \vdots & \vdots & \ddots & \vdots \\ 0.41 & 0.42 & \cdots & 0.44 \end{pmatrix}$$

{ (V4) = Q44 W4+--+ Que Wm

```
Esempio
Consideriano l'applicazione lineare.

\begin{cases}
\frac{1}{x^2} = R^3 \\
\frac{1}{x^2} = (x-y) \times (x+y)
\end{cases}

 Siano B e B' le basi canoniche rispettimente di IR2 e IR3.
     B= 3 (10), (0,1) 4,
      B'= 1 (1,0,0), (0,1,0), (0,0,1) }.
  Per scriver MBB (1) dobbiano decomporre f(1,0) e f(0,1) sulla base B1:
  1(20) = (1,1,1) = 1.(1,0,0)+1.(0,1,0)+1.(0,0,1)
  {(0,1) = (-1,1,2) = -1.(1,0,0) + 1.(0,1,0) + 2.(0,0,1)
  Quindi
       \mathsf{M}_{\mathsf{B}'\mathsf{B}}(4) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}
 Sia one B2= 3(1,2), (3,4) 4 un'altra base di R2 e
 B2 = 9(0,1,1), (-1,1,0), (0,1,2) 4 un'altra base di 183
 Questa volta per scrivere MB'B(1) dobbiano determinan
le coordinate di (1,2) e (3,4) nella base B2':
    1(1,2) = (-2,3,5) = -1.(0,1,1)+1.(-1,1,0)+3.(0,1,2).
   f(3,4) = (-1,7,11)=1.(0,1,1)+1.(-1,20)+5(01,2).
  Quindi:
         M_{B_{2}^{1}B_{2}}(1) = \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ 3 & 5 \end{pmatrix}
```

Dall'esempio precedente notiamo subito che la matrice associator a j:V-> W dipende dalla scelta delle basi di V e W. Tottavia alcun proprieto della matrice sono indipendenti dalla scella di bosi. Mostriano ad exempio che per aqui scelta delle basi B e B' di V e W rispettivamente si ha: rg (M&&(1)) = rg(1), cise il raugo della matrice associata ad f e indipendenti dalli basi. Siano B= 1/4,..., vny e B'= Jwx,..., wmy basi rispettivemente di V e W. rg(1) = dim(1(1)) = dim(<1(v), ..., 1(vn)>) = dim (<(au), ..., (aun)>) = rg(Meig(1)) isonur fismo coordinato definizion di
(p: W -> Km

roman per coon rango per com (Se U'Sw, dim(v)= dim(e(v))) di una matrice Quindi abbiano il risultato sequente: Siano V e W due spazi rettoriali di dimensione rispettiament n e m e siano B e B' due basi rispettiamente di V e W.

Sia J: V -> W un' applicazione lineare.

Allora: Propositione: 1) j é suriettia (>> rg (MBB(3)) = M 2) $\frac{1}{2}$ $\frac{1}{2}$ iniethina \iff $rg\left(M_{\mathcal{G}_{\mathcal{G}}}(\frac{1}{2})\right) = n$. 3) $f \in Un$ isomorfismo \iff $rg(M_{B'B}(1)) = m = n \iff$ $\iff \mathcal{M}_{B'B}(1) \in \mathcal{M}_N(K) \in invertibile.$ Esempio Nell'exempio precedente abbiano travato. $M_{\mathcal{B}\mathcal{B}}(1) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow r_{\mathcal{B}}(H_{\mathcal{B}\mathcal{B}}(1)) = 2 \Rightarrow 1 \in \text{iniettive, me non surjettive.}$ $\frac{1}{1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$