TENTAMEN I TILLÄMPAD MATEMATIK OCH STATISTIK FÖR IT-FORENSIK. DEL 2: STATISTIK

$7.5~\mathrm{HP}$

15 januari, 2014 kl. 9.00 - 13.00

Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG.

Hjälpmedel: Typgodkänd miniräknare samt formelsamling som medföljer tentamenstexten.

Kursansvarig: Eric Järpe, telefon 0702-822 844, 035-16 76 53.

Till uppgifterna skall *fullständiga lösningar* lämnas. Lösningarna ska vara *utförligt* redovisade! Varje lösning ska börja överst på nytt papper. Endast en lösning per blad. Lösningar kommer finnas på internet: http://dixon.hh.se/erja/teach → Matematik och statistik för IT-forensik.

- 1. Antag att P(Arne har sitt paraply med sig) = 0.25, P(Det regnar) = 0.4 och att P(Arne har sitt paraply med sig och det regnar) = 0.2. Vad är då
 - (a) sannolikheten att Arne har sitt paraply med sig eller att det regnar? (3p)
 - (b) den betingade sannolikheten att Arne har sitt paraply med sig givet att det regnar? (3p)
- 2. En tjuv har stulit 100 mobiltelefoner. För varje mobiltelefon har tjuven 3 chanser att gissa den 4-siffriga PIN-koden. Om man gissar fel 3 gånger har man oändligt många chanser att gissa den 10-siffriga PUK-koden. Vad är tjuvens chans att lyckas
 - (a) gissa PIN-koden på minst 1 av de 100 mobiltelefonerna? (3p)
 - (b) knäcka koden till en mobiltelefon om tjuven använder ett datorprogram som gör 1 miljon försök att gissa PUK-koden om försöken att gissa PIN-koden misslyckas? (3p)
- 3. Fotbollslaget IFK Göteborg¹ slutade på tredje plats i allsvenskan efter fotbollsssongen 2013. Vid en enkät svarar 15 av 42 tränare att de rankar IFK Göteborg som 1:a eller 2:a efter 2014 års säsong.
 - (a) Bilda ett 95% konfidensintervall för sannolikheten $\pi = P(\text{en slumpmässig tränare tror att IFK Göteborg skutar 1:a eller 2:a}). (3p)$
 - (b) En annan fråga i enkäten gällde om någon allsvensk klubb skulle gå vidare till slutspel i någon av de europeiska kupperna och på denna fråga svarade 7 tränare "ja" varav 5 svarat att de rankade IFK Göteborg som 1:a eller 2:a. Är de två åsikterna beroende? Gör ett test på 1% signifikansnivå. (3p)

¹IFK Göteborg är det enda svenska fotbollslag som vunnit motsvarigheten till Champions League, och de har gjort det två gånger.

4. Låt $X \in N(3,2)$ (dvs väntevärdet är 3 och variansen är 2). Beräkna

(a)
$$P(X > 2)$$
.

(b)
$$a$$
 och b sådana att $P(a \le X \le b) = 0.48$ och $3P(a \le X \le 3) = P(3 \le X \le b)$. (4p)

5. Vid en rättegång är en man (bland annat) anklagad för att ha "porrsurfat på arbetstid" vilket han förnekar. Som bevismaterial har åklagaren log-sidor där det finns dokumenterat att mannen varit inne på sidor med pornografiskt material flera gånger och även hur länge han varit där, se följande tabell:

Mannen påstår sig dock ha hamnat på dessa sidor av misstag. Enligt tidigare undersökningar har man emellertid skattat medianen av antalet timmar folk porrsurfar till $4.22 \text{ timmar/vecka}^2$. Kan man bevisa att det förväntade antalet timmar per vecka för mannens porrsurfande är mer än 4.22 på 1% signifikansnivå? Vad blir p-värdet? (3p)

6. Antag att $X \in Poi(1 + \lambda)$ där $\lambda \in Bin(2, p)$. Beräkna det värde på p som gör att P(X = 1) = 0.3. (4p)

LYCKA TILL!

²Den skattade medianen är framräknad från siffermaterial baserat på enkäter till 796 personer i åldern 18–65 år i *An Internet Study of Cybersex Participants* av Danebäck, Cooper och Månsson publicerad 2005 i Archives of Sexual Behaviour, vol. 34, nr. 3, pp 321–328.

Matematisk statistik

Lite Mängdlära

 \mathbf{Def} Om A och B är två mängder så betecknar

 $A \cup B$ Unionen "mängden av element som ligger i A eller i B eller både och.

 $A \cap B$ Snittet "mängden av element som ligger i både A och B. A^C Komplementet "mängden av alla element som inte ligger i A".

 $a \in A$ Tillhör "elementet a ingår i mängden A". $A \subset B$ Delmängd "mängden A är delmängd av B".

De Morgans lagar
$$\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c \left(\bigcap_{i=1}^n A_i\right)^c = \bigcup_{i=1}^n A_i^c$$

Definition 1 Sannolikhet

Om ett experiment har m möjliga utfall varav g är gynnsamma för händelsen A, så är sannolikheten för A vilket betecknas P(A) = g/m.

Sats 1 KOMPLEMENTSATSEN Sats 2 ADDITIONSSATSEN
$$P(A^C) = 1 - P(A)$$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Definition 2

En slumpvariabel, X, är en (vanligtvis numerisk) generalisering av ett experiment. Mha slumpvariabeln kan olika händelser formuleras som att X har vissa värden. En slumpvariabels utfallsrum, Ω_X , är mängden av de värden som slumpvariabeln kan anta.

Definition 3

A och B är **oberoende** händelser om $P(A \cap B) = P(A)P(B)$. Två slumpvariabler, X och Y med utfallsrum Ω_X resp. Ω_Y , är **oberoende** om $P(X \in M_X, Y \in M_Y) = P(X \in M_X)P(Y \in M_Y)$ för alla M_X i Ω_X och M_Y i Ω_Y .

Sats 3 Räkneregler för väntevärde och varians $E(aX_1+bX_2)=aE(X_1)+bE(X_2)$ Om X_1 är oberoende av X_2 så är $V(aX_1+bX_2)=a^2V(X_1)+b^2V(Y_2)$.

BINOMIALFÖRDELNING

 $Om \ X = Y_1 + Y_2 + \ldots + Y_n \ d\ddot{a}r \ P(Y_k = 1) = p \ och \ P(Y_k = 0) = 1 - p \ f\ddot{o}r \ alla \ k = 1, 2, \ldots n$ och variablerna Y_1, Y_2, \dots, Y_n är oberoende av varandra, så är $X \in Bin(n, p)$ (dvs X är binomialfördelad med n och p) vilket innebär att dess sannolikhetsfunktion är $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ för } x \in \Omega_X = \{0, 1, \dots, n\}, E(X) = np \text{ och } V(X) = np(1-p).$

Sats 5 Poissonfördelning

Om X är Poissonfördelad med λ skrivs det $X \in Poi(\lambda)$. Dess sannolikhetsfunktion är $P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda} \text{ för } x \in \Omega_X = \{0, 1, 2, \ldots\}, \text{ och } E(X) = V(X) = \lambda.$

Sats 6 Normalfördelning

Denna betecknas $N(\mu, \sigma^2)$ där μ är väntevärde och σ^2 är varians. Om $X \in N(0, 1)$ kallas X standard normalfördelad, och dess fördelningsfunktion är $\Phi(x) = P(X \le x)$. Om $X \in N(\mu, \sigma^2)$ så är $P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ för alla $x \in \mathbb{R}$.

Symmetri: $\Phi(-x) = 1 - \overline{\Phi}(x)$ för alla $x \in \mathbb{R}$. Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$.

CENTRALA GRÄNSVÄRDESSATSEN (CGS)

Om X_1, X_2, \ldots, X_n är oberoende och lika fördelade med $E(X_i) = \mu$ och $V(X_i) = \sigma^2$ så är approximativt $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \in N(\mu, \frac{\sigma^2}{n})$ och $\sum_{i=1}^n X_i \in N(n\mu, n\sigma^2)$ då n är stort.

Beskrivande statistik Definition 4

Medelvärde:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Stickprovsvarians:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$$

Definition 5 Konfidensintervall

Antag X_1, X_2, \ldots, X_n och Y_1, Y_2, \ldots, Y_m är oberoende och normalfördelade $N(\mu_X, \sigma^2)$ respektive $N(\mu_Y, \sigma^2)$. Då är $100(1 - \alpha)\%$ konfidensintervall för parametern θ :

θ	Konfidensintervall	Anm.
π	$p \pm \lambda_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$	np(1-p) > 5
μ_X	$\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$\sigma^2 k \ddot{a} n d$
μ_X	$\bar{x} \pm t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}$	σ^2 okänd
	$\bar{x} - \bar{y} \pm t_{\alpha/2,(n+m-2)} s_P$	
$\mu_X - \mu_Y$		$\sigma_X^2 = \sigma_Y^2$
	$ ch \ s_P^2 = \frac{s_X^2}{n} + \frac{s_Y^2}{m} \ om \ \min(n, m) > 30 $	

Definition 6 Hypotestest

Antag X_1, \ldots, X_n stickprov på slumpvariabeln X fördelad med parameter θ . För att testa $\begin{cases} H_0: \theta = \theta_0 \quad (nollhypotesen) \\ H_1: \theta \in \Theta \quad (alternativhypotesen) \end{cases}$

används teststatistikan $U = U(X_1, \ldots, X_n)$, och det kritiska område C_{α} som svarar mot Θ enligt fördelningen F_U under H_0 vid signifikansnivån α .

Testregeln är $\begin{cases} F\ddot{o}rkasta \ H_0 \ om \ u \in C_{\alpha} \\ F\ddot{o}rkasta \ inte \ H_0 \ om \ u \not\in C_{\alpha} \end{cases}$

θ	H_0	H_1	u	C_{α}	Anm.
π	$\pi = \pi_0$	$\begin{array}{c c} \pi < \pi_0 \\ \hline \pi > \pi_0 \\ \hline \pi \neq \pi_0 \end{array}$	$\frac{\sqrt{n}(p-\pi_0)}{\sqrt{\pi_0(1-\pi_0)}}$	$ \begin{aligned} u &< -\lambda_{\alpha} \\ u &> \lambda_{\alpha} \\ u &> \lambda_{\alpha/2} \end{aligned} $	Proportion då $n\pi_0(1-\pi_0) > 5$
π_1,π_2	$\pi_1 = \pi_2$	$\begin{array}{c c} \pi_1 < \pi_2 \\ \hline \pi_1 > \pi_2 \\ \hline \pi_1 \neq \pi_2 \end{array}$	$\frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}}$	$ \begin{aligned} u &< -\lambda_{\alpha} \\ u &> \lambda_{\alpha} \\ u &> \lambda_{\alpha/2} \end{aligned} $	Proportion då $n_1 p_1 (1 - p_1) > 5$ och $n_2 p_2 (1 - p_2) > 5$
μ	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}$	$ \begin{aligned} u &< -\lambda_{\alpha} \\ u &> \lambda_{\alpha} \\ u &> \lambda_{\alpha/2} \end{aligned} $	σ känt
μ	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{s}$	$ \begin{aligned} u &< -t_{\alpha, (n-1)} \\ u &> t_{\alpha, (n-1)} \\ u &> t_{\alpha/2, (n-1)} \end{aligned} $	σ okänt
μ_1, μ_2	$\mu_1 = \mu_2$	$\begin{array}{c c} \mu_1 < \mu_2 \\ \mu_1 > \mu_2 \\ \mu_1 \neq \mu_2 \end{array}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}(\frac{1}{n_1} + \frac{1}{n_2})}}$	$ u < -t_{\alpha, (n_1+n_2-2)} $ $ u > t_{\alpha, (n_1+n_2-2)} $ $ u > t_{\alpha/2, (n_1+n_2-2)} $	$\sigma_1 = \sigma_2$ men okända, och $\min(n_1, n_2) \le 30$
μ_1, μ_2	$\mu_1 = \mu_2$	$\begin{array}{c c} \mu_1 < \mu_2 \\ \mu_1 > \mu_2 \\ \mu_1 \neq \mu_2 \end{array}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$		$\min(n_1, n_2) > 30$
A, B	$A\bot B$	$A \not\perp B$	$\frac{(n_{11}c_2 - n_{12}c_1)\sqrt{n}}{\sqrt{c_1c_2r_1r_2}}$	$ u > \lambda_{\alpha/2}$	Oberoende
F	$F = F_0$	$F \neq F_0$	$\sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \text{ där } e_i = NP(X \in I_i H_0)$	$u > \chi^2_{\alpha, (k-1)}$	Fördelning

Typ I fel är att förkasta H_0 då H_0 är sann. $P(\text{Typ I fel} \mid H_0) = \alpha$ (signifikansnivån). Typ II fel är att inte förkasta H_0 då H_1 är sann.

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x -	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
$0.0 \boxed{0}$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$0.1 \mid 0$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$0.2 \mid 0$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$0.3 \mid 0$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
$0.4 \mid 0$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
$0.5 \mid 0$	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
$0.6 \mid 0$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
$0.7 \mid 0$	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
$0.8 \mid 0$	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
$0.9 \mid 0$	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0 0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
$1.1 \mid 0$	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
$1.2 \mid 0$	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
$1.3 \mid 0$	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
$1.4 \mid 0$	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
$1.5 \mid 0$	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
$1.6 \mid 0$	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
$1.7 \mid 0$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8 0	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9 0	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
$2.2 \mid 0$	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
$2.3 \mid 0$	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
$2.4 \mid 0$	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
$2.5 \mid 0$	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
$2.7 \mid 0$	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
$2.8 \mid 0$	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
$2.9 \mid 0$	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
x	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3 0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler:

Några värden på λ_{α} sådana att $P(X > \lambda_{\alpha}) = \alpha$ där $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964	0.0005	3.290527
0.01	2.326348	0.0001	3.719016

t-percentiler

 $0 \quad t_{\alpha}(df)$

Tabell över värden på $t_{\alpha}(df)$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

Tabell över värden på $\chi^2_{\alpha}(df)$.

df	α 0.999	0.995	0.99	0.95	0.05	0.01	0.005	0.001
1	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449

Poissonfördelningsvärden Tabell över värden på $P(x) = P(X \le x)$ där $X \in Poi(\lambda)$.

λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0.5	0.607	0.910	0.986	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1	0.368	0.736	0.920	0.981	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	0.135	0.406	0.677	0.857	0.947	0.983	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000
3	0.050	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000	1.000	1.000	1.000
4	0.018	0.092	0.238	0.433	0.629	0.785	0.889	0.949	0.979	0.992	0.997	0.999	1.000	1.000
5	0.007	0.040	0.125	0.265	0.440	0.616	0.762	0.867	0.932	0.968	0.986	0.995	0.998	0.999
6	0.002	0.017	0.062	0.151	0.285	0.446	0.606	0.744	0.847	0.916	0.957	0.980	0.991	0.996

Binomialfördelningsvärden Tabell över värden på $P(x)=P(X\leq x)$ där $X\in Bin(n,p)$. För p>0.5, utnyttja att $P(X\leq x)=P(Y\geq n-x)$ där $Y\in Bin(n,1-p)$.

			1	0	9	4		e	7	0	0	10
$\underline{}$	p	0	1	2	3	4	5	6	7	8	9	10
3	0.1	0.729	0.972	0.999	1.000	_	_	_	_	_	_	_
	0.2	0.512	0.896	0.992	1.000	_	_	_	_	_	_	_
	0.3	0.343	0.784	0.973	1.000	_	_	_	_	_	_	_
	0.4	0.216	0.648	0.936	1.000	_	_	_	_	_	_	_
	0.5	0.125	0.500	0.875	1.000		. –	_	_	_	_	_
4	0.1	0.656	0.948	0.996	1.000	1.000	_	_	_	_	_	_
	0.2	0.410	0.819	0.973	0.998	1.000	_	_	_	_	_	_
	0.3	0.240	0.652	0.916	0.992	1.000	_	_	_	_	_	_
	0.4	0.130	0.475	0.821	0.974	1.000	_	_	_	_	_	_
	0.5	0.062	0.312	0.688	0.938	1.000		. –	_	_	_	_
5	0.1	0.590	0.919	0.991	1.000	1.000	1.000	_	_	_	_	_
	0.2	0.328	0.737	0.942	0.993	1.000	1.000	_	_	_	_	_
	0.3	0.168	0.528	0.837	0.969	0.998	1.000	_	_	_	_	_
	0.4	0.078	0.337	0.683	0.913	0.990	1.000	_	_	_	_	_
	0.5	0.031	0.188	0.500	0.812	0.969	1.000		_	_	_	_
6	0.1	0.531	0.886	0.984	0.999	1.000	1.000	1.000	_	_	_	_
	0.2	0.262	0.655	0.901	0.983	0.998	1.000	1.000	_	_	_	_
	0.3	0.118	0.420	0.744	0.930	0.989	0.999	1.000	_	_	_	_
	0.4	0.047	0.233	0.544	0.821	0.959	0.996	1.000	_	_	_	_
	0.5	0.016	0.109	0.344	0.656	0.891	0.984	1.000		. –	_	_
7	0.1	0.478	0.850	0.974	0.997	1.000	1.000	1.000	1.000	_	_	_
	0.2	0.210	0.577	0.852	0.967	0.995	1.000	1.000	1.000	_	_	_
	0.3	0.082	0.329	0.647	0.874	0.971	0.996	1.000	1.000	_	_	_
	0.4	0.028	0.159	0.420	0.710	0.904	0.981	0.998	1.000	_	_	_
	0.5	0.008	0.062	0.227	0.500	0.773	0.938	0.992	1.000	_	_	_
8	0.1	0.430	0.813	0.962	0.995	1.000	1.000	1.000	1.000	1.000	_	_
	0.2	0.168	0.503	0.797	0.944	0.990	0.999	1.000	1.000	1.000	_	_
	0.3	0.058	0.255	0.552	0.806	0.942	0.989	0.999	1.000	1.000	_	_
	0.4	0.017	0.106	0.315	0.594	0.826	0.950	0.991	0.999	1.000	_	_
	0.5	0.004	0.035	0.145	0.363	0.637	0.855	0.965	0.996	1.000	_	_
9	0.1	0.387	0.775	0.947	0.992	0.999	1.000	1.000	1.000	1.000	1.000	_
	0.2	0.134	0.436	0.738	0.914	0.980	0.997	1.000	1.000	1.000	1.000	_
	0.3	0.040	0.196	0.463	0.730	0.901	0.975	0.996	1.000	1.000	1.000	_
	0.4	0.010	0.071	0.232	0.483	0.733	0.901	0.975	0.996	1.000	1.000	_
	0.5	0.002	0.020	0.090	0.254	0.500	0.746	0.910	0.980	0.998	1.000	
10	0.1	0.349	0.736	0.930	0.987	0.998	1.000	1.000	1.000	1.000	1.000	1.000
	0.2	0.107	0.376	0.678	0.879	0.967	0.994	0.999	1.000	1.000	1.000	1.000
	0.3	0.028	0.149	0.383	0.650	0.850	0.953	0.989	0.998	1.000	1.000	1.000
	0.4	0.006	0.046	0.167	0.382	0.633	0.834	0.945	0.988	0.998	1.000	1.000
	0.5	0.001	0.011	0.055	0.172	0.377	0.623	0.828	0.945	0.989	0.999	1.000