Série 12

Exercice 1. 1. Calculer les parametres complexes des symetries axiales, s_1 et s_2 par rapport aux droites d'equation

$$3x + 4y = 2$$
, $-2x + 5y = 3$.

2. A quoi est egale la composee

$$s_1 \circ s_2$$
?

quels sont ses parametres complexes?

3. Meme question pour les droites

$$3x + 4y = 2$$
, $6x + 8y = 6$.

Exercice 2. Soit $r_{\alpha,\mu}$ et $s_{\beta,\nu}$ des isometries affines (rotation et symetrie) associees aux parametres complexes $\alpha, \beta \in \mathbb{C}^1, \mu, \nu \in \mathbb{C}$.

1. Calculer les parametres de l'isometrie conjuguee

$$r_{\alpha,\mu} \circ s_{\beta,\nu} \circ r_{\alpha,\mu}^{-1};$$

interpreter geometriquement le resultat.

2. Que dire si $s_{\beta,\nu}$ est une symetrie axiale? Si $s_{\beta,\nu}$ est une symetrie glissee?

Exercice 3. Soit φ une isometrie et

$$Fix(\varphi) = \{ P \in \mathbb{R}^2, \ \varphi(P) = P \}$$

l'ensemble des points fixes de ϕ . Plus generalement pour $\Phi \subset \text{Isom}(\mathbb{R}^2)$ un ensemble quelconque d'isometries, soit

$$\operatorname{Fix}(\Phi) = \{ P \in \mathbb{R}^2, \ \forall \varphi \in \Phi, \ \varphi(P) = P \}$$

l'ensemble des points fixes de Φ .

- 1. Soit ψ une autre isometrie, et $\varphi' = \operatorname{Ad}(\psi)(\varphi) = \psi \circ \varphi \circ \psi^{-1}$ l'isometrie conjuguee; que vaut $\operatorname{Fix}(\varphi')$ en fonction de $\operatorname{Fix}(\varphi)$. Meme question pour $\operatorname{Ad}(\psi)(\Phi)$.
- 2. Montrer (sans calcul) que le conjugue d'une symetrie axiale par une isometrie est une symetrie axiale; meme question pour une symetrie glisssseeeee.

- 3. Montrer que toute droite (affine) peut etre envoyee sur toute autre droite par une rotation (affine). En deduire que toute symetrie axiale est conjuguee a la symetrie lineaire $s_1 = s_{1,0}$.
- 4. Etant donne $s_{\beta,\nu}$ une symetrie axiale ou glissee donner une condition necessaire et suffisante sur (β,ν) pour que $s_{\beta,\nu}$ soit conjuguee a $s_{1,0}$ par une rotation; quand c'est le cas quels sont les parametres de cette rotation et retrouver ainsi les formules qui donnent l'axe d'une symetrie axiale en fonction de (β,ν) .

Retour sur les angles

On a vu que la mesure d'un angle etait la longueur d'arc du cercle unite. Grace au theoreme suivant (admis) on a une construction plus algebrique et abstraite de cette mesure d'angle. On va l'utiliser pour revoir la trigonometrie.

Théorème 1. Il existe un morphisme de groupe non-trivial (non-constant egal a 1)

$$\phi: (\mathbb{R}, +) \mapsto (\mathbb{C}^1, \times)$$

qui est derivable (la fonction $t \mapsto \phi(t) = x(t) + iy(t)$ est derivable c'est a dire que x(t) et y(t) le sont) Ce morphisme est surjectif et son noyau est de la forme

$$\ker \phi = \lambda \mathbb{Z} \subset \mathbb{R}$$

ou $\lambda \neq 0$.

Exercice 4. Admettons le theoreme precedent

- 1. Que vaut $\phi(0)$?
- 2. Montrer que $\phi(-t) = \overline{\phi(t)}$ et en deduire que x(t) est paire et y(t) est impaire.
- 3. Montrer que $\phi'(0) = i\nu$ avec $\nu \in \mathbb{R}^{\times}$.
- 4. Montrer que pour tout $s, t \in \mathbb{R}$

$$\phi'(s+t) = \phi'(s)\phi(t).$$

- 5. Trouver une relation simple entre la derivee x'(t) et y(t) et entre y'(t) et x(t). Montrer que $t \mapsto |\phi'(t)|^2$ est constante.
- 6. Montrer que pour $\nu' \in \mathbb{R}^{\times}$, $t \in (\mathbb{R}, +) \mapsto \phi(\nu' t) \in \mathbb{C}^1$ est un morphisme de groupe non-trivial, derivable, surjectif, de noyau

$$\ker \phi = \lambda' \mathbb{Z} \subset \mathbb{R}$$

ou $\lambda' \neq 0$.

7. Montrer qu'on peut trouver $\phi = \phi_1$ tel que $\nu = 1$.

On note habituellement le morphisme ϕ_1 sous la forme

$$\exp(i \cdot): t \mapsto \exp(it)$$
 ou bien $e^{i \cdot}: t \mapsto e^{it}$

et sa partie reelles et imaginaire $x_1(t)$ et $y_1(t)$, sont notees

$$\cos(t)$$
 et $\sin(t)$

et sont appellees fonctions cosinus et sinus.

Dans ce cas le parametre λ associe a ker ϕ_1 est note 2π ou $\pi=3,14159\cdots$ et 2π est la longueur du cercle unite convenablement defini.

7. Montrer que tout autre morphisme de groupe derivable $\phi : \mathbb{R} \to \mathbb{C}^1$ est de la forme $\phi_{\mu}(t) = e^{i\mu t}$. Pour cela on pourra etudier l'application $t \mapsto \phi(t) \times e^{-i\mu t}$, montrer que c'est un morphisme de groupes qui est constant pour μ bien choisi.

Exercice 5 (\star) . Le but de cet exercice est de montrer le resultat suivant : Soit un morphisme de groupe continu

$$\phi: (\mathbb{R}, +) \mapsto (\mathbb{C}^1, \times)$$

(la fonction $t \mapsto \phi(t) = x(t) + iy(t)$ est continue c'est a dire que x(t) et y(t) le sont) alors ϕ est derivable.

Pour demontrer ce resultat on procede comme suit : on pose

$$\Phi(u) = \int_0^u \phi(t)dt = \int_0^u x(t)dt + i \int_0^u y(t)dt.$$

Comme ϕ est continue sa primitive $\Phi(u)$ existe, est derivable de derivee

$$\Phi'(u) = \phi(u).$$

1. Montrer que

$$\Phi(u+1) = \Phi(u) + \phi(u)\Phi(1)$$

(on pourra ecrire $\int_0^{u+1} \cdots = \int_0^u \cdots + \int_u^{u+1} \cdots$, effectuer un changement de variable et utiliser la propriete principale de ϕ).

2. Montrer que ϕ est derivable.

FIGURE 1 – Le cercle trigonometrique

Trigonometrie

Ainsi tout nombre complexe de module 1, z=x+iy tel que $x^2+y^2=1$, est represente de maniere unique par un nombre reel $t \in [0, 2\pi[$: l'unique element t dans cet intervalle tel que

$$e^{it} = \cos(t) + i\sin(t) = z;$$

alternativement z est represente de maniere unique par le sous-ensemble de \mathbb{R} (l'ensemble des translates de t par les elements du sous-groupe $(2\pi\mathbb{Z}, +)$)

$$t \pmod{2\pi} = t + 2\pi \mathbb{Z} \subset \mathbb{R}.$$

(si si $t' \in t \pmod{2\pi}$, $t' \pmod{2\pi} = t \pmod{2\pi}$.) Ce nombre t (ou cet classe) est appelle l'argument de z et est note $\arg(z)$.

Si on considere l'angle forme par les deux vecteurs (1,0) sur (x,y); le parametre complexe qui envoie le premier vecteur sur le second est precisement z qu'on identifie avec t. On parlera "d'angle de mesure t ou egal a t".

Exercice $6 (\star)$. A partir de l'exercice precedent on va retrouver les proprietes bien connues des fonctions cosinus et sinus. On doit repondre aux questions sans utiliser les resultats qu'on a admis au gymnase mais par deduction a partir de l'exercice precedent a l'aide de manipulations algebriques, en utilisant les proprietes du morphisme de groupe e^i qu'on vient d'etablir et en resolvant des equations polynomiales et en utilisant les resultats de bases de l'etude des fonctions derivables.

1. Montrer que

$$\cos(t+t') = \cos(t)\cos(t') - \sin(t)\sin(t'),$$

$$\sin(t + t') = \sin(t)\cos(t') + \cos(t)\sin(t').$$

- 2. Montrer que $\cos(0) = \cos(2\pi) = 1$, $\sin(0) = \sin(2\pi) = 0$.
- 3. Montrer que $\cos(\pi) = -1$, $\sin(\pi) = 0$ (utiliser que $\pi = \frac{2\pi}{2}$ et trouver une equation polynomiale satisfaite par $e^{i\pi}$).
- 4. Montrer que pour tout t,

$$\cos(\pi - t) = -\cos(t), \ \sin(\pi - t) = \sin(t)$$

- 5. Montrer que $\cos(\frac{\pi}{2}) = 0$, $\sin(\frac{\pi}{2}) = -\sin(\frac{3\pi}{2}) = \pm 1$.
- 6. Montrer que cos ne s'annule pas sur l'intervalle $[0, \pi/2[$ et en deduire que $\cos(t)$ puis $\sin(t)$ sont strictement positive sur ce meme intervalle.
- 7. Montrer que $e^{i\pi/2} = i$.
- 8. Soit $\omega_3 = e^{i\frac{2\pi}{3}}$. Montrer que ω_3 verifie

$$\omega_3^2 + \omega_3 + 1 = 0$$

(factoriser dans \mathbb{R} le polynome $X^3 - 1$) puis que

$$\cos(\frac{2\pi}{3}) = -\frac{1}{2}, \ \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}.$$

9. Soit $\omega_5 = e^{i\frac{2\pi}{5}}$. Montrer que

$$\omega_5^4 + \omega_5^3 + \omega_5^2 + \omega_5 + 1 = 0$$

puis que

$$\omega_5^2 + \omega_5^{-2} + \omega_5 + \omega_5^{-1} + 1 = 0$$

et enfin que

$$4\cos(\frac{2\pi}{5})^2 + 2\cos(\frac{2\pi}{5}) - 1 = 0$$

et en deduire la valeur de ω_5 .

10. **(a faire bien plus tard) Expliquer comment construire a la regle et au compas un pentagone regulier inscrit dans le cercle unite.