Pré-requis de statistique : Essentiels de théorie de la mesure

Notes de cours, Master Maths & IA

Guillermo Durand

15 septembre 2025

Tribu ou σ -algèbre sur $\Omega : \mathcal{A} \subseteq \mathcal{P}(\Omega)$ telle que $\mathcal{A} \neq \emptyset$, \mathcal{A} stable par complémentaire et par union dénombrable.

 (Ω,\mathcal{A}) s'appelle un espace mesurable, et $A\in\mathcal{A}$ une partie mesurable ou un ensemble mesurable.

Propriétés : $\emptyset \in \mathcal{A}, \Omega \in \mathcal{A}, \mathcal{A}$ stable par intersection dénombrable (Exercice).

Tribu engendrée par $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ noté $\sigma(\mathcal{C})$: plus petite tribu qui contient \mathcal{C} , intersection de toutes les tribus qui contiennent \mathcal{C} .

Exemples : $\mathcal{P}(\Omega)$, $\{\emptyset, \Omega\}$, $\{\emptyset, A, A^{\mathsf{c}}, \Omega\} = \sigma(\{A\})$, $\mathcal{B}(\mathbb{R}^d)$ la tribu borélienne de \mathbb{R}^d engendrée par les ouverts (tout espace topologique a une tribu borélienne engendrée par les ouverts).

Tribu produit de \mathcal{A}_1 et \mathcal{A}_2 notée $\mathcal{A}_1 \otimes \mathcal{A}_2$ engendrée par les $A_1 \times A_2$, $A_1 \in \mathcal{A}_1$, $A_2 \in \mathcal{A}_2$. Remarque : $\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R})$ (ça se démontre).

Soit $f: \Omega_1 \to (\Omega_2, \mathcal{A}_2)$, l'ensemble $\{f^{-1}(B), B \in \mathcal{A}_2\}$, noté $\sigma(f)$ ou $f^{-1}(\mathcal{A}_2)$, est une tribu, appelée tribu image réciproque de \mathcal{A}_2 (Exercice).

Soit $f: (\Omega_1, \mathcal{A}_1) \to \Omega_2$, $\{B \in \mathcal{P}(\Omega_2) : f^{-1}(B) \in \mathcal{A}_1\}$ est une tribu appelée tribu image de \mathcal{A}_1 (Exercice). **ATTENTION** ce n'est pas $f(\mathcal{A}_1) = \{f(A) : A \in \mathcal{A}_1\}$!! (Contre-exemple : $f: \mathbb{R} \to \mathbb{R}$ constante, $f(\mathcal{A}_1)$ n'est même pas une tribu.)

Application de la tribu image : soit $f: \Omega_1 \to (\Omega_2, \sigma(\mathcal{C}))$, alors $\sigma(f) = \sigma(\{f^{-1}(C), C \in \mathcal{C}\})$, autrement dit $f^{-1}(\sigma(\mathcal{C})) = \sigma(f^{-1}(\mathcal{C}))$. En effet, $\sigma(f)$ est une tribu qui contient les $f^{-1}(C), C \in \mathcal{C}$, donc $\sigma(\{f^{-1}(C), C \in \mathcal{C}\}) \subset \sigma(f)$. Réciproquement soit \mathcal{D} la tribu image de $\sigma(\{f^{-1}(C), C \in \mathcal{C}\})$, $\mathcal{C} \subset \mathcal{D}$ donc $\sigma(\mathcal{C}) \subset \mathcal{D}$, donc tout $f^{-1}(B), B \in \sigma(\mathcal{C})$ est dans $\sigma(\{f^{-1}(C), C \in \mathcal{C}\})$.

La tribu engendrée par une famille d'applications $f_i: \Omega \to (\Omega_i, \mathcal{A}_i), i \in I$, est $\sigma(\bigcup_{i \in I} \sigma(f_i)) = \sigma(\bigcup_{i \in I} f_i^{-1}(\mathcal{A}_i))$.

 $f:(\Omega_1,\mathcal{A}_1)\to (\Omega_2,\mathcal{A}_2)$ est mesurable si $f^{-1}(\mathcal{A}_2)\subseteq \mathcal{A}_1$. Trivialement, $f:(\Omega_1,\sigma(f))\to (\Omega_2,\mathcal{A}_2)$ et $f:(\Omega_1,\mathcal{P}(\Omega_1))\to (\Omega_2,\mathcal{A}_2)$ sont toujours mesurables.

Mesure : fonction $\mu : \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$ telle que $\mu(\emptyset) = 0$ et $\mu\left(\bigcup_{n \in \mathbb{N}} E_n\right) = \sum_{n \in \mathbb{N}} \mu(E_n)$ si les E_n sont deux à deux disjoints.

 $(\Omega, \mathcal{A}, \mu)$ s'appelle un espace mesuré.

Propriétés : $\mu\left(\bigcup_{1\leq n\leq N}E_n\right)=\sum_{1\leq n\leq N}\mu(E_n)$ si les E_n sont deux à deux disjoints. Si $A\subseteq B,\ \mu(A)\leq \mu(B)$, et si de plus $\mu(A)<\infty,\ \mu(B\setminus A)=\mu(B)-\mu(A).\ \mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq \sum_{n\in\mathbb{N}}\mu(E_n)$ (borne d'union). $\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n)$ si les E_n sont croissants pour l'inclusion, $\mu\left(\bigcap_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n)$ si les E_n sont décroissants pour l'inclusion et de mesure finie à partir d'un certain rang (Exercice).

 μ est σ-finie si $\Omega = \bigcup_{n \in \mathbb{N}} E_n$ avec $E_n \in \mathcal{A}$, $\mu(E_n) < \infty$ pour tout n. μ est finie si $\mu(\Omega) < \infty$. μ est une mesure de probabilité si $\mu(\Omega) = 1$.

Si μ est de probabilité, on la note plutôt \mathbb{P} . On dit que $(\Omega, \mathcal{A}, \mathbb{P})$ est un espace probabilisé, Ω est appelé un univers, et une partie mesurable $A \in \mathcal{A}$ est plutôt appelée un événement.

Exemples : mesure de comptage sur $(\Omega, \mathcal{P}(\Omega))$, σ -finie si et seulement si Ω est dénombrable (Exercice). Mesure de Dirac $\delta_y: A \mapsto \mathbb{1}_{\{y \in A\}}$, de proba. Combinaison dénombrable et positive de Dirac $\sum_{n \in \mathbb{N}} \alpha_n \delta_{y_n}$ toujours σ -finie (on suppose que la tribu contient les $\{y_n\}$), finie ou de proba selon la convergence de la série $\sum \alpha_n$. Mesure de Lebesgue sur les boréliens de \mathbb{R} (resp. \mathbb{R}^d) : la seule mesure λ (resp. λ_d) invariante par translation et telle que $\lambda([0,1]) = 1$ (resp. $\lambda_d([0,1]^d) = 1$). Elle est σ -finie. Toutes les mesures de probablité induites par les lois réelles usuelles, par exemple $\mathcal{N}(0,1): A \mapsto \int \mathbb{1}_{\{x \in A\}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right) dx$.

Exercice : pour une tribu qui contient tous les singletons, toute μ σ -finie ne peut charger au plus qu'un nombre dénombrable de points : $\{x: \mu(\{x\}) > 0\}$ est au plus dénombrable.

Mesure produit de μ_1 et μ_2 sur $\mathcal{A}_1 \otimes \mathcal{A}_2$: μ telle que $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$. Existe toujours, et est unique si μ_1 et μ_2 σ -finies (admis), dans ce dernier cas on la note $\mu_1 \otimes \mu_2$. Exemple : la mesure de Lebesgue sur \mathbb{R}^d : $\lambda_d = \lambda \otimes \cdots \otimes \lambda = \bigotimes_{i=1}^d \lambda = \lambda^{\otimes d}$.

Si $f:(\Omega_1,\mathcal{A}_1)\to(\Omega_2,\mathcal{A}_2)$ est mesurable et μ est une mesure sur (Ω_1,\mathcal{A}_1) ,

on note $f_{\#\mu}$ la mesure "push-forward", ou mesure induite, ou mesure image, définie sur $(\Omega_2, \mathcal{A}_2)$ par $f_{\#\mu}(A_2) = \mu \left(f^{-1}(A_2) \right)$. Dans le cas où $\mu = \mathbb{P}$ est une mesure de probabilité et f = X, on dit que X est une variable aléatoire, et sa mesure induite est souvent notée \mathbb{P}_X ou $\mathcal{L}(X)$ plutôt que $X_{\#\mathbb{P}}$. La loi de X ou distribution de X sont en fait formellement définies comme étant exactement sa push-forward \mathbb{P}_X . Exercice : la loi de X est elle-même une mesure de probabilité.

Ensemble négligeable $N\subseteq\Omega$: il existe $Z\in\mathcal{A}$ de mesure nulle avec $N\subseteq Z$. On dit que la tribu \mathcal{A} est complète pour la mesure μ ou que l'espace mesuré (Ω,\mathcal{A},μ) est complet si \mathcal{A} contient tous les ensembles négligeables. Tribu complétée $\bar{\mathcal{A}}=\{A\cup N: A\in\mathcal{A}, N \text{ négligeable}\}$, c'est bien une tribu (Exercice), μ s'étend dessus en $\bar{\mu}$ (Exercice) et $\bar{\mathcal{A}}$ contient tous les négligeables de la mesure complétée donc $(\Omega,\bar{\mathcal{A}},\bar{\mu})$ est complet (Exercice). Exemple : tribu de Lebesgue (parfois la mesure non-complétée est appelée mesure de Borel-Lebesgue pour la distinguer). Une propriété $P(\omega)$ dite vraie μ -presque partout si $\{\omega\in\Omega:\neg P(\omega)\}$ est négligeable (dépend de la mesure μ). On dit plutôt "presque sûrement" si de plus μ est une mesure de probabilité.

Intégration de fonctions mesurables à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$:
— si f étagée positive, nombre fini de valeurs $\alpha_1, \ldots, \alpha_N$:

$$\int f(x) d\mu(x) = \int f d\mu = \int f(x) \mu(dx) = \sum_{i=1}^{N} \alpha_i f_{\#\mu}(\{\alpha_i\}) = \sum_{i=1}^{N} \alpha_i \mu\left(f^{-1}(\{\alpha_i\})\right) \in [0, \infty],$$

— si f positive,

$$\int f(x) \mathrm{d}\mu(x) = \sup_{\substack{h \text{ étagée positive} \\ h \leq f}} \int h(x) \mathrm{d}\mu(x) \in [0, \infty],$$

— si $\int |f| d\mu < \infty$, on dit que f est μ -intégrable et

$$\int f d\mu = \int f_+ d\mu - \int f_- d\mu \in \mathbb{R}.$$

Théorème (admis) : chacune de ces définitions existe, est bien posée, et cohérente avec les précédentes.

FAIRE UN DESSIN

Pour p>0, on note $\mathcal{L}^p(\Omega,\mu)$ l'ensemble des fonctions f mesurables telles que $|f|^p$ est intégrable. En particulier, $\mathcal{L}^1(\Omega,\mu)$ est l'ensemble des fonctions f mesurables intégrables.

Propriétés : linéarité, croissance. $\mu(A) = \int \mathbb{1}_A d\mu$. Si $f \geq 0$, $\int f d\mu = 0 \Leftrightarrow f = 0$ presque partout (admis). Conséquence : $\int |f - g| d\mu = 0 \Leftrightarrow f = g$ presque partout.

Si $\mu=$ la mesure de Lebesgue λ , c'est l'intégrale de Lebesgue et on écrit en général juste dx au lieu de $\lambda(\mathrm{d}x)$. Si $\mu=\sum_{n\in\mathbb{N}}\alpha_n\delta_{y_n}, \int f\mathrm{d}\mu=\sum_{n\in\mathbb{N}}\alpha_nf(y_n)$ (si défini). Si $\mu=\mathbb{P}$, l'intégrale de la v.a. $X:\Omega\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ par rapport à \mathbb{P} (si elle existe) est ce que l'on appelle aussi son espérance $\mathbb{E}[X]=\int X\mathrm{d}\mathbb{P}=\int_{\omega\in\Omega}X(\omega)\mathrm{d}\mathbb{P}(\omega)$ mais on ne calcule jamais une espérance comme cela, on utilise le théorème de transfert qui dit que $\mathbb{E}[X]=\int_{x\in F}x\mathrm{d}\mathbb{P}_X(x)$: on passe donc d'une intégrale sur Ω par rapport à la mesure \mathbb{P} à une intégrale sur \mathbb{R} par rapport à la mesure induite \mathbb{P}_X .

Soit μ et ν deux mesures. ν domine μ , ou μ est absolument continue par rapport à ν , et on note $\mu \ll \nu$, si $\forall A \in \mathcal{A}, \nu(A) = 0 \Rightarrow \mu(A) = 0$. Remarque : toute mesure est dominée par la mesure de comptage (mais ce n'est pas très intéressant car elle est rarement σ -finie).

Théorème de Radon-Nikodym-Lebesgue : Soit μ et ν deux mesures σ -finies, avec $\mu \ll \nu$. Il existe une fonction h réelle positive mesurable, et unique ν -presque partout, telle que $\forall A \in \mathcal{A}, \mu(A) = \int \mathbbm{1}_A h \mathrm{d}\nu$. h s'appelle la dérivée de Radon-Nikodym de μ par rapport à ν ou la **densité** de μ par rapport à ν . On la note aussi $h = \frac{\mathrm{d}\mu}{\mathrm{d}\nu}$. La réciproque est vraie.

Exemple : la densité de $\mathcal{N}(0,1)$ par rapport à λ est $x \mapsto \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right)$. **Remarque :** on doit en principe dire "une" densité mais on peut se permettre de dire "la" grâce à l'unicité λ -p.p.

Remarque : la théorie de la mesure donne un cadre unifié pour traiter des distributions de probabilité discrètes et continues.

Lemme des classes monotones. π -système : une partie de $\mathcal{P}(\Omega)$ stable par intersection. Exemple : toute tribu. Classe monotone ou λ -système : une partie \mathcal{M} de $\mathcal{P}(\Omega)$ telle que :

- 1. $\Omega \in \mathcal{M}$
- 2. $A, B \in \mathcal{M}$ et $A \subseteq B$ entraı̂nent que $B \setminus A \in \mathcal{M}$
- 3. $A_i\in\mathcal{M},\,i\in\mathbb{N}$ avec $A_i\subseteq A_{i+1}$ entraı̂nent que $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{M}$

 \mathcal{M} est donc stable par différence ensembliste et par union dénombrable croissante. Exemple : toute tribu. Lemme des classes monotones (ou théorème π - λ de Sierpiński–Dynkin) : soit \mathcal{C} un π -système, alors la classe monotone engendrée par \mathcal{C} contient la tribu engendrée par \mathcal{C} (elles sont même égales vu qu'une tribu est une classe monotone).

Application très utile : soit 2 mesures de probabilité \mathbb{P} et \mathbb{Q} qui coïncident sur un π -système $\mathcal{C} \subseteq \mathcal{A}$, alors elles coïncident sur $\sigma(\mathcal{C})$. En effet, $\{A \in \mathcal{A} : \mathbb{P}(A) = \mathbb{Q}(A)\}$ est une classe monotone (Exercice). Conséquence : la cdf d'une loi caractérise cette loi.

Tribu cylindrique. Soit $F \subset \mathbb{R}^{\mathbb{T}}$ un sous-ensemble de fonctions à valeurs réelles définies sur un ensemble \mathbb{T} quelconque. Pour $n \geq 1, t_1, \ldots, t_n \in \mathbb{T}$, $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$, on définit le cylindre $C_{t_1, \ldots, t_n}(B_1, \ldots, B_n) = \{f \in F : \forall i \in [\![1, n]\!], f(t_i) \in B_i\}$. On pose $\Sigma_{t_1, \ldots, t_n} = \sigma\left(\{C_{t_1, \ldots, t_n}(B_1, \ldots, B_n), \forall i \in [\![1, n]\!], B_i \in \mathcal{B}(\mathbb{R})\}\right)$. L'ensemble $\mathcal{F}_F = \bigcup_{n \geq 1} \bigcup_{t_1, \ldots, t_n \in \mathbb{T}} \Sigma_{t_1, \ldots, t_n}$ est appelé l'algèbre cylindrique de F et $\sigma\left(\mathcal{F}_F\right)$ est la tribu cylindrique de F. Application : cette construction nous fournit une tribu sur tout sous-ensemble de suites réelles, où l'on prend $\mathbb{T} = \mathbb{N}$. Cette construction est d'ailleurs plus simple car on a alors $\mathcal{F}_F = \bigcup_{n \geq 1} \Sigma_{1, \ldots, n}$ (Exercice), en prenant de plus $F = \mathbb{R}^{\mathbb{N}}$ tout entier, on a donc une tribu $\sigma\left(\mathcal{F}_{\mathbb{R}^{\mathbb{N}}}\right)$ sur l'espace des suites réelles.