Mage Classification Project Using PyTorch (Detailed Summary)

This project involves building an image classification model using the **MNIST dataset** and the **PyTorch** deep learning framework. The goal is to classify grayscale images of handwritten digits (0–9). It follows an end-to-end machine learning pipeline: data preprocessing, model design, training, evaluation, and saving the trained model for reuse.

Dataset: MNIST

The MNIST dataset is a benchmark in computer vision, containing:

- 60,000 training images
- 10,000 test images
- Each image is **28x28 pixels**, grayscale, and represents a digit from 0 to 9.

The dataset is loaded using torchvision.datasets, and a transformation pipeline is applied to:

- Convert images into tensors
- Normalize pixel values (scaling from [0, 255] to [0, 1] range)

Data Preparation

Data is loaded in mini-batches using PyTorch's DataLoader, which:

- Handles efficient memory usage
- · Batches and shuffles the training data
- Allows parallel data loading

This setup ensures that the model sees a diverse mix of examples in each epoch, promoting generalization.

Model Architecture

A **simple feedforward neural network** is implemented by subclassing nn.Module, which includes:

- An input layer for 784 features (28×28 flattened pixels)
- One or more hidden layers (e.g., 128 and 64 neurons), activated with ReLU
- An output layer with 10 neurons corresponding to digit classes

No convolutional layers are used, keeping the model architecture intentionally simple for foundational learning.

Deep Learning Concepts Applied

Forward Propagation: Input is passed through layers to generate predictions

- Loss Function: CrossEntropyLoss measures the difference between predicted and true labels
- Backpropagation: Computes gradients of the loss with respect to model weights
- Optimization: The SGD or Adam optimizer updates model weights based on gradients

Training

The training loop runs for multiple **epochs**. Each epoch:

- Loads a batch of data
- Passes it through the model to compute predictions
- Calculates loss
- · Performs backpropagation
- Updates the model's weights

This iterative process helps the model gradually learn digit patterns.

Evaluation

After training, the model is tested on unseen data:

- It is switched to evaluation mode (model.eval())
- Inference is done without computing gradients (torch.no_grad())
- Accuracy is calculated as:

Achieved Accuracy: 85%

This indicates that the model has learned meaningful features from the data, though there's room for improvement using techniques like convolutional layers or regularization.

Saving and Loading

After training, the model's parameters are saved using torch.save(model.state_dict()). The model can later be reloaded using torch.load() and load_state_dict() for inference or fine-tuning—supporting reproducibility and deployment.

Key Takeaways

- Hands-on experience with PyTorch's full deep learning pipeline
- Understanding of core concepts: activation functions, loss, backpropagation, gradient descent

- Exposure to model evaluation metrics and real-world dataset handling
- Built a working model that achieves 85% accuracy on test data with a basic architecture

★ Conclusion

This project is a foundational deep learning exercise that applies theoretical knowledge to a practical problem. With an accuracy of 85%, the model performs well given its simplicity, and it provides a strong starting point for further experimentation with CNNs, dropout, data augmentation, or learning rate scheduling.