Discrete Structures	1	1	0	_
	_	_		

Course Objectives: 1. Learn the Concepts of Formal Logics.

- 2. Appraise the need for properties of relations, functions, and sequences to complete operations on discrete structures such as sets, functions, relations, and sequences.
- 3. Appraise the need for mathematical proofs using counter-examples, direct proofs, proof by contrapositive, proof by contradiction, case analysis, and mathematical induction.
- 4. Illustrate the use of Lattices and Boolean Algebra.
- 5. Demonstrate the use of Graph Theory.
- 6. Demonstrate the use of counting techniques and combinatorics to determine the discrete probability

S. NO	Course Outcomes (CO)					
CO1	Apply the properties of relations, functions, and sequences to complete operations on discrete structures such as sets, functions, relations, and sequences.					
CO2	Verify the correctness of an argument using propositional logic, predicate logic, a	and truth table				
CO3	Construct mathematical proofs using counter-examples, direct proofs, proof by c proof by contradiction, case analysis, and mathematical induction	ontrapositive,				
CO4	Apply counting techniques and combinatorics to determine discrete probability					
CO5	Model relationships using graphs and trees					
S. NO	Contents	Contact Hour				
UNIT 1	IFormal Logic: Statement, Symbolic Representation and Tautologies, Quantifiers, Predicator and validity, Normal form, Prepositional Logic, Predicate Logic, Logic Programming and Proof of correctors	3				
UNIT 2	Proof, Relation and Analysis of Algorithm: Technique for theorem proving: Direct Proof, Proof by Contra position, proof by exhausting cases and proof by contradiction, Principle of mathematical induction, principle of complete induction, recursive definition, solution methods for linear, first-order recurrence relations with constant coefficients, analysis of algorithms involving recurrence rotations-recursive selection sort, binary search, quick sort, solution method for a divide-and-conquer recurrence relation.	7				
UNIT 3	Sets and Combinations: Sets, Subsets, power sets, binary and unary operations on a set, set operations/set identities, fundamental counting principles, principle of inclusion, exclusion and pigeonhole, permutation and combination, Pascal's triangles, binomial theorem, representation of discrete structures.	8				
UNIT 4	Relation/function and matrices: Rotations, properties of binary rotations, operation on b equivalence relation, properties of function, composition of function, inverse, binary ar function, composition of cycles, Boolean matrices, Boolean matrices multiplication.	8				

	TOTAL	42
UNIT 6	Graph Theory Terminology, isomorphic graphs, Euler's formula (Proof) four color problem and the chromatic number of a graph, five color theorem. Trees terminology, directed graphs, Computer representation of graphs, Warshall's algorithms, Decision Trees, Euler path & Hamiltonian circuits, Shortest path & minimal spanning trees, Depth-first and breadth first searches, analysis of search algorithm, trees associated with DFS & BFS Connected components, in order, preorder & post order tree traversal algorithms.	8
UNIT 5	Lattices & Boolean Algebra: Lattices: definition, sublattices, direct product, homomorphism Boolean algebra: Definition, properties, isomorphic structures (in particular, structures with binary operations) subs algebra, direct product and homomorphism, Boolean function, Boolean expression, representation & minimization of Boolean function.	8