SMART INDIA HACKATHON 2025

- **Problem Statement ID** SIH25040
- Organization Name: Ministry of Earth Sciences (MoES)
- Problem Statement Title: ARGO ocean data is vast but locked behind complexity, leaving non-experts without an easy way to explore and gain insights.
- **Team Name :** Epic Innovators
- Team Leader Name: KIRIT P S
- **PS Category**: Software
- **Team Name :** Epic Innovators
- Theme Name: Al-Powered Software for Ocean Data
 Discovery

Jal VaaniAI

Proposed Solution:

1. Data Pipeline:

Ingest ARGO NetCDF files and convert them into MongoDB, storing Vector DB and summaries for efficient querying.

2. Al Backend:

Use RAG pipelines with multimodal LLMs to translate natural language queries into database queries, supporting multilingual input and output.

3. Visualization:

Interactive dashboards with maps, depth-time plots, and profile comparisons; enable exporting summaries to ASCII or NetCDF.

4. Chat Interface:

Conversational AI allows users to query floats, salinity, or BGC parameters, guiding discovery in multiple languages.

5. PoC Scope:

Demonstrate Indian Ocean ARGO dataset functionality, scalable to BGC floats, gliders, satellites, and future datasets.

Link: https://drive.google.com/file/d/1LQ0DB-
IREfgnwdxrhIncKqCivC5Qii1e/view?usp=sharing

TECHNICAL APPROACH

Technologies:

Programming & Databases: Python, MongoDB

Vector Search & RAG: Chroma, LangChain

Frontend & Visualization: Flask, Dash, Plotly, React

AI & Cloud: GPT, GEMINI, Custom LLM(Developing Model), AWS

Integration Protocol: MCP (Model Context Protocol

Methodology:)

Data Ingestion: ARGO NetCDF → MongoDB + Vector Database for structured storage.

Al Query Engine: RAG pipeline converts user queries \rightarrow LLM \rightarrow Vector DB + Web Search for precise insights.

Interactive Visualization: Maps, profiles, depth-time plots for intuitive exploration.

PoC & Scalability: Indian Ocean ARGO datasets demonstrated; easily extendable to BGC floats, gliders, and satellite data.

FEASIBILITY AND VIABILITY

Feasibility & Scalability:

- Fully feasible using **Python**, **SQL**, **LLMs**, **interactive** dashboards, and cloud infrastructure.
- ➤ Hybrid scalable databases (MongoDB + VectorDB) enable efficient handling of large ARGO datasets.

Challenges & Risks:

- Managing massive data volumes, ensuring real-time updates, and driving user adoption.
- Risks include misinterpretation of scientific queries and high infrastructure costs.

Strategies & User Support:

- Optimize storage, deploy domain-tuned LLMs, and leverage cloud GPU scaling.
- Provide a simple, multilingual UI with guided workflows for effortless use by non-experts.

IMPACT AND BENEFITS

Easy Insights: Data-driven tools for Researchers & Policymakers.

Economic Growth: Boosts Fisheries, Shipping & Renewable Energy.

Environmental
Health: Enhances Climate &
Marine Ecosystem
Monitoring.

Social Equity: Democratizes Access, Boosts Awareness & Education.

Scientific
Breakthroughs: Accelerates
Oceanographic Research &
Innovation.

Global
Resilience: Strengthens
Climate Resilience &
Sustainable Development.

RESEARCH AND REFERENCES

Argo Data Anomaly Detection with Transformer Models – https://www.sciencedirect.com/science/article/pii/S1385110124000169 Machine Learning Quality Control for Argo Float Profiles - https://www.sciencedirect.com/science/article/pii/S1674283422001751 OceanGPT: Large Language Model for Ocean Science Tasks – https://arxiv.org/html/2310.02031v6 Al Language Models for Marine Environmental Policy – https://www.nature.com/articles/s44183-025-00132-7 Machine Learning with BGC-Argo for Biogeochemical Model Assessment – https://bg.copernicus.org/articles/20/1405/2023/ NetCDF-Based Marine Environment Data Visualization using Virtual Earth – https://www.scientific.net/AMR.518-523.5719 USGS Oceanographic Time-Series NetCDF Documentation – https://pubs.usgs.gov/of/2007/1194/netcdf.html World Ocean Circulation Experiment (WOCE) NetCDF Format – https://www.bodc.ac.uk/data/hosted data systems/sea level/international/woce netcdf.html IDEA: AI Assistant for Geoscience Data Exploration – https://www.eurekalert.org/news-releases/1094334 Klarety: Geospatial Data Analysis with Conversational AI – https://klarety.ai/features/geospatial-ai-analysis Esri Geospatial AI and Machine Learning – https://www.esri.com/en-us/geospatial-artificial-intelligence/overview Anthropic's Official MCP Introduction – https://www.anthropic.com/news/model-context-protocol Model Context Protocol Official Documentation – https://modelcontextprotocol.io Moveworks Guide to Model Context Protocol – https://www.moveworks.com/us/en/resources/blog/model-context-protocol-mcp-explained World Ocean Database - NOAA's Largest Ocean Profile Collection - https://www.ncei.noaa.gov/products/world-ocean-database argoFloats R Package for Analyzing Argo Data - https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.635922/full Argo Float Data Visualizations and Access Tools – https://argo.ucsd.edu/data/data-visualizations/

GO-BGC Data Access and Visualization – https://www.go-bgc.org/data/access-and-visualization

Al for Ocean Monitoring Special Issue – https://www.sciencedirect.com/special-issue/10FCZL672Q7