Регрессионный анализ 2.

1 (3 балла) Рассмотрим линейную модель $Y = \theta + \varepsilon$, где $E\varepsilon = 0$. Докажите, что значение θ , при котором величина $\|Y - \theta\|^2$ минимизируется при ограничении $A\theta = 0$, где A – известная матрица размера $q \times n$ ранга q, q < n, равно

$$\widehat{\theta} = (I_n - A^T (AA^T)^{-1} A) Y.$$

- 2 (4 балла) Выданы данные о связи между уровнем антигена (lpsa), специфичного при наличии рака простаты, с рядом клинических показателей (столбцы 1-8), которые были измерены у мужчин непосредственно перед проведением операции. Выбрав наилучшую модель линейной регрессии, предсказать lpsa на тестовой выборке. Описать и объяснить проделанные процедуры.
- 3 (5 баллов) Мистер Фаттахов большой любитель дышать свежим воздухом и совершать пешие прогулки. Часто компанию мистеру Фаттахову составляют его друзья Фадеев, Калдеев и Пепермалдеев, и тогда приятность, а также длительность прогулки существенно возрастают. Найти зависимость между длиной прогулки мистера Фаттахова и его компанией, набором предметов для прогулки и длительностью глубокой фазы его послеобеденного сна. Описать и объяснить проделанные процедуры.
- 4 (6 баллов) Выданы данные $\{(y_i, x_{ij}), i=1,\ldots,n+q,\ j=1,\ldots,k\}$, причем y_{n+1},\ldots,y_{n+q} неизвестны. Используя пройденные методы регрессионного анализа, в рамках линейной регрессионной модели произвести отбор признаков по первым n объектам и предсказать значения откликов объектов с номерами $n+1,\ldots,n+q$. Описать и объяснить проделанные процедуры.
- 5 (6 баллов) Выданы данные $\{(y_i, x_{ij}), i=1,\ldots,n+q,\ j=1,\ldots,k\}$, причем y_{n+1},\ldots,y_{n+q} . Используя стандартную и робастные регрессионные модели, произвести отбор признаков по первым n объектам и предсказать значения y_{n+1},\ldots,y_{n+q} . Какая модель дала наилучший результат и почему? Можно ли пользоваться стандартными процедурами, такими, как критерий Фишера и информационные критерии, для отбора признаков в робастных моделях?