Nan	ne:	•••••	•••••	•••••	•••••
			ignature :		
			CS	/BCA/SEM	-1/BCA-101/2013-14
				2013	
DIGITAL ELECTRONICS					
Time Allotted: 3 Hours Full Marks: 7					
		T	ne figures in the r	nargin indica	ite full marks.
Ca	ndid	ates		ive their ansi ar as practico	wers in their own words able.
	• • •		GI	ROUP – A	
(Multiple Choice Type Questions)					
1. Choose the correct alternatives for the following: $10 \times 1 = 10$					
	i) Excess-3 code representation of decimal 984 is				
		a) .	1011 1010 110)1 b)	1100 1011 0111
		c)	1110 1001 101	0 d)	1101 1111 0111
	ii)	Hexadecimal equivalent of (1586) ₁₀ is			
		a)	(362) 16	b)	(623) ₁₆
		c)	(632) ₁₆	d)	(263) ₁₆ .
	iii)	2's compliment of 1010111 is			
		a)	0101001	b)	0110110
		c)	0101100	d)	0101101.
			•		

[Turn over

1057

CS/BCA/SEM-1/BCA-101/2013-14

iv) A function of three variables

 $F(A, B, C) = \Sigma(1, 3, 5, 6)$ is given by

- a) an 8-to-1 multiplexer
- b) two 4-to-1 multiplexer
- c) one 4-to-1 multipexer
- d) none of these.
- v) Multiplexer is also known as
 - a) Data selector
- b) Data distributor
- c) Multiplexer
- d) Encoder.
- vi) Parallel Binary Adders are
 - a) combinational logic circuit
 - b) sequential logic circuit
 - c) both (a) and (b)
 - d) none of these.
- vii) A Half Adder adds bits.
 - a) 16

b) 10

c) 8

- d) 2.
- viii) Control Unit does not process data.
 - a) true

- b) false
- c) unpredictable
- d) none of these.
- ix) $(ABC + \overline{ABC} + AB\overline{C})$ is equal to
 - a) A(B+C)
- b) $\overline{A}(B+C)$
- c) $A(B+\overline{C})$
- d) $A(\overline{B}+C)$
- x) Race Condition is avoided by
 - a) J-K flip-flop
- b) Master-Slave flip-flop
- c) D flip-flop
- d) S-R flip-flop.

1057

CS/BCA/SEM-1/BCA-101/2013-14

GROUP - B

(Short Answer Type Questions) Answer any three of the following.

 Draw the logic symbol, Boolean expression and truth table of NOR and NAND gates.
 1 + 2 + 2

3. State and prove De Morgan's theorem in Boolean algebra.

2 + 3

 $3 \times 5 = 15$

- 4. Represent the decimal number '27' in
 - a) Binary code
 - b) BCD code
 - c) Octal code
 - d) Hexadecimal code
 - e) Gray code.

1 + 1 + 1 + 1 + 1

- 5. Prove the following logical equation using Boolean algebra : $(A+BC) \cdot (B+A\overline{C}) = BC + A\overline{C}$
- 6. Realize the EX-OR logic operation using either NAND gate or NOR gate.
- 7. Discuss the function of *T*-type flip-flop with the help of graphic symbol and characteristic table. 3 + 2

GROUP - C

(Long Answer Type Questions)

 $3\times15=45$

- 8. a) Write down the truth table and logic symbol of a 3-input OR gate.
 - b) Using NOR gates, design Full Adder and describe with diagram.
 - c) Explain Universal Gate.
 - d) Express the function $Y = A + \overline{BC}$ in a canonical SOP form.

2 + 5 + 5 + 3

1057

3

Turn over

CS/BCA/SEM-1/BCA-101/2013-14

- 9. a) Using K-map method simplify the following Boolean function and obtain minimal SOP expression: $Y = \sum_{m} (0,2,3,6,7) + \sum_{d} (8,10,11,15).$
 - b) Implement the Boolean function $F = (A, B, C, D) = \sum_{m} (0, 1, 3, 8, 9, 15)$ using two 4-to-1 multiplexer and one OR gate.
 - c) Describe the application of Data Distributor.
 - d) What is Decoder?

6 + 6 + 2 + 1

- 10. a) Explain the concept of parity checking.
 - b) Write down the 4-bit gray code in the ascending order of its decimal value.
 - c) Design a synchronous Mod-12 down-counter using J-K flip-flops. 5 + 5 + 5
- 11. a) Design and implement Mod-6 synchronous counter considering lock-out problem. Is the counter selfstarting?
 - b) Using the logic diagram convert a J-K flip-flop to a D flip-flop and T flip-flop.
 - c) Explain the difference between Ring and Johnson counter with proper state and a circuit diagram.

7 + 5 + 3

- 12. a) What do you mean by race condition in flip-flop?
 - b) Design a Master-Slave flip-flop and discuss its operation.
 - c) Design and explain 4 bit Parallel Adder/Subtractor.

3 + 5 + 7