Complex Analysis Qual Prep Week 1: Preliminaries

D. Zack Garza

Table of Contents

Contents

Ta	Table of Contents		
1	Wee	k 1: Preliminaries	3
	1.1	Topics	3
	1.2	Warmup	3
	1.3	Exercises	5
	1.4	Qual Problems	7

Table of Contents

1 Week 1: Preliminaries

1.1 Topics

- Complex arithmetic and geometry, conic section equations
- Uniform (continuity, differentiability, convergence)
- Inverse and implicit function theorems
- Green's theorem, Stokes theorem
- Complex plane, Riemann sphere

1.2 Warmup

- State the Cauchy-Riemann equations.
- Define what it means for a function to be
 - Holomorphic
 - Meromorphic
 - Analytic
 - Harmonic
 - Uniformly continuous
 - Uniformly bounded
 - Entire
- What does it mean for a sequence or series to uniformly converge?
- State the Laplace equation.
- What is the Dirichlet problem?
- Discuss how to carry out partial fraction decomposition
- Determine the radius of convergence of the power series for \sqrt{z} expanded at $z_0 = 4 + 3i$.
- What is the logarithmic derivative?
- Find a function f such that f^2 is analytic on the open unit disc but f is not.

20. Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .

3.3.3 c

Identify \mathbb{R}^2 with \mathbb{C} and give a necessary and sufficient condition for a real-differentiable function at (a, b) to be complex differentiable at the point a + ib.

Week 1: Preliminaries 3

∽ 3.4 4 ►

Let f = u + iv be complex-differentiable with continuous partial derivatives at a point $z = re^{i\theta}$ with $r \neq 0$. Show that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta} \,.$$

→ 9.1 1 [†]

→

Suppose f is analytic on a region Ω such that $\mathbb{D} \subseteq \Omega \subseteq \mathbb{C}$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence exactly 1.

9.1.1 a 🙀

Give an example of such an f that converges at every point of S^1 .

9.1.2 b

Give an example of such an f which is analytic at 1 but $\sum_{n=0}^{\infty} a_n$ diverges.

9.1.3 с

Prove that f can not be analytic at *every* point of S^1 .

1.3 3

Find the Laurent expansion of

$$f(z) = \frac{z+1}{z(z-1)^2}$$

about z = 0 and z = 1 respectively.

Hint: recall that power series can be differentiated.

1.3 Exercises

3. Use n-th roots of unity (i.e. solutions of $z^n - 1 = 0$) to show that

$$2^{n-1}\sin\frac{\pi}{n}\sin\frac{2\pi}{n}\cdots\sin\frac{(n-1)\pi}{n}=n.$$

Hint: $1 - \cos 2\theta = 2\sin^2 \theta$, $\sin 2\theta = 2\sin \theta \cos \theta$.

2. Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be analytic and one-to-one in |z| < 1. For $0 < r_0 < 1$, let \overline{D}_{r_0} be the closed disk $|z| \le r_0$. Show that the area A of $f(\overline{D}_{r_0})$ is finite and is given by

$$A = \pi \sum_{n=1}^{\infty} n |c_n|^2 r_0^{2n}.$$

[Hint: First find a formula in terms of polar coordinates in xy-plane for the area element dudv using complex analysis, where f = u + iv. Note that $dxdy = rdrd\theta$.]

4. Prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$ for any two complex numbers z_1, z_2 , and explain the geometric meaning of this identity.

Find the Laurent expansion of

$$f(z) = \frac{z+1}{z(z-1)}$$

about z = 0 and z = 1 respectively.

If t

wh

5. Prove the following:

- (a) The power series $\sum_{n=1}^{\infty} nz^n$ does not converge at any point of the unit circle.
- (b) The power series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges at every point of the unit circle.
- (c) The power series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges at every point of the unit circle except at z=1.
- 6. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f'(z) exists in an open set containing γ and Ω_2 and $\lim_{z\to\infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1, \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}$$

1. COMPLEA ANALISIS I RACTICE I RODLEMS 2.0

Complex 2.0 #9.2

Let D be a domain which contains in its interior the closed unit disk $|z| \le 1$. Let f(z) be analytic in D except at a finite number of points z_1, \ldots, z_k on the unit circle |z| = 1 where f(z) has first order poles with residues s_1, \ldots, s_k . Let the Taylor series of f(z) at the origin be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Prove that there exists a positive constant M such that $|a_n| \le M$.

Additional Problem

Let $f: \mathbb{R} \to \mathbb{R}$ satisfy

- (1) f is continuous on $[0, \infty)$.
- (2) f'(x) exists for all $x \ge 0$.
- (3) f(0) = 0.
- (4) f' is increasing.

For x > 0, define $g(x) = \frac{f(x)}{x}$. Prove that g is increasing.

Problem: Prove or disprove that there is a sequence of analytic polynomials $\{p_n(z)\}, n \in \mathbb{N}$, so that $p_n(z) \to \bar{z}^4$ as $n \to \infty$ uniformly for $z \in \partial D(0,1)$.

n=0

Problem: Show that for R > 0, there is N_R such that when $n > N_R$, the function

$$P_n(z) = 1 + z + \frac{z^2}{2} + \dots + \frac{z^n}{n!} \neq 0, \quad \forall |z| \leq R.$$

Problem: Let f(z) be analytic in the disk $U = \{|z| < 1\}$, with f(0) = f'(0) = 0. Show that $g(z) = \sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ defines an analytic function on U. Moreover, show that the above function g(z) satisfies

$$g(z) = f(z) \sum_{n=1}^{\infty} \frac{1}{n^2}$$

if and only if $f(z) = cz^2$.

1.4 Qual Problems

2. Prove that the distinct complex numbers z_1 , z_2 and z_3 are the vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

1. (a) Prove that if
$$|w_1| = c|w_2|$$
 where $c > 0$, then $|w_1 - c^2w_2| = c|w_1 - w_2|$.

(b) Prove that if
$$c > 0$$
, $c \neq 1$ and $z_1 \neq z_2$, then $\left| \frac{z - z_1}{z - z_2} \right| = c$ represents a circle. Find its center and radius.

2. Expand
$$\frac{1}{1-z^2} + \frac{1}{z-3}$$
 in a series of the form $\sum_{-\infty}^{\infty} a_n z^n$ so it converges for (a) $|z| < 1$, (b) $1 < |z| < 3$; and (c) $|z| > 3$.

1. Let z_1 and z_2 be two complex numbers.

(a) Show that
$$|z_1 - \bar{z}_1 z_2|^2 - |z_1 - z_2|^2 = (1 - |z_1|^2)(1 - |z_2|)$$
.

(b) Show that if
$$|z_1| < 1$$
 and $|z_2| < 1$, then $\left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right| < 1$.

(c) Assume that
$$z_1 \neq z_2$$
. Show that $\left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right| = 1$ if only if $|z_1| = 1$ or $|z_2| = 1$.

6. Suppose
$$\{f_n(z)\}_{n=1}^{\infty}$$
 is a sequence of holomorphic functions on the unit disk \mathbb{D} , and $f(z)$ is a holomorphic function on the unit disk \mathbb{D} . Show that the following are equivalent.

(a)
$$\{f_n(z)\}\$$
 converges to $f(z)$ uniformly on compact subsets in \mathbb{D} .

(b)
$$\int_{|z|=r} |f_n(z) - f(z)| |dz|$$
 converges to 0 if $0 < r < 1$.

1.4 Qual Problems

1. Let $n \geq 2$ be an integer. Show that $2^{n-1} \prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = n$.

[Hint: Use n-th roots of unity i.e., solutions of $z^n - 1 = 0$]

. . . ox

- 2. Let u(x,y) be a harmonic functions defined in an open disk of radius R > 0. Suppose that u(x,y) has continuous partial derivatives of order two in its domain.
 - a) Let two points (a, b), (x, y) in this disk be given. Show that the following integral is independent of the path in this disk joining these points:

$$v(x,y) = \int_{(a,b)}^{(x,y)} \left(-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy\right).$$

- b) (i) Prove that u(x,y) + iv(x,y) is an analytic function in this disk.
 - (ii) Prove that v(x, y) is harmonic in this disk.
- 3. a) $f: D \to \mathbb{C}$ be a continuous function, where $D \subset \mathbb{C}$ is a domain. Let $\alpha: [a, b] \to D$ be a smooth curve.
 - a) Define the complex line integral $\int_{\alpha} f$.
 - b) Assume that there exists a constant M such that $|f(\tau)| \leq M$ for all $\tau \in \text{Image}(\alpha)$. Prove that

$$\left| \int_{\Omega} f \right| \leq M \times \operatorname{length}(\alpha).$$

c) Let C_R be the circle |z|=R, described in the counterclockwise direction, where R>1. Provide an upper bound for $|\int_{C_R} \frac{\log{(z)}}{z^2}|$, which depends only on R and (possibly) other constants.