Natural Language Processing

Last update: 27 October 2024

Contents

1	Basi	ic text processing
	1.1	Regular expressions
		1.1.1 Basic operators
	1.2	Tokenization
		1.2.1 Data-driven tokenization
	1.3	Normalization
	1.4	Edit distance
2	Lang	guage models 6
	2.1	Spelling correction
	2.2	Language models
	2.3	Metrics
		2.3.1 Extrinsic evaluation
		2.3.2 Intrinsic evaluation
	2.4	N-gram model problems
	2.1	2.4.1 Overfitting
		2.4.2 Out-of-vocabulary tokens
		2.4.3 Unseen sequences
		2.4.9 Unseen sequences
3		t classification 12
	3.1	Common tasks
	3.2	Classification
	3.3	Naive Bayes
		3.3.1 Optimizations
		3.3.2 Properties
	3.4	Logistic regression
		3.4.1 Properties
	3.5	Metrics
		3.5.1 Binary classification
		3.5.2 Multi-class classification
		3.5.3 Cross-validation
		3.5.4 Statistical significance
	3.6	Affective meaning
		3.6.1 Emotion
4	Sem	nantics embedding 20
	4.1	Traditional semantic representation
		4.1.1 Sense relations
		4.1.2 Common ontologies
		4.1.3 Word relations
	4.2	Vector semantics
		4.2.1 Sparse embeddings
		4.2.2 Dense non-contextual embeddings

	4.3	Embe	ddings properties	27
		4.3.1	Embeddings similarity	27
		4.3.2	Embeddings analysis	28
5	Rec	urrent :	neural networks	30
	5.1	Archit	ectures	30
		5.1.1	(Elman) recurrent neural network	3(
	5.2	Applic	eations	31
		5.2.1	Autoregressive generation	31

1 Basic text processing

Text normalization Operations such as:

Tokenization Split a sentence in tokens.

| Remark. Depending on the approach, a token is not always a word.

Lemmatization/stemming Convert words to their canonical form.

| Example. $\{$ sang, sung, sings $\} \mapsto$ sing

Sentence segmentation Split a text in sentences.

| Remark. A period does not always signal the end of a sentence.

Tokenization

Lemmatization/stemming

Sentence segmentation

1.1 Regular expressions

Regular expression (regex) Formal language to describe string patterns.

Regular expression (regex)

1.1.1 Basic operators

Disjunction (brackets) Match a single character between square brackets [].

| Example. / [wW] oodchuck/ matches Woodchuck and woodchuck.

Range Match a single character from a range of characters or digits.

Example.

- /[A-Z]/ matches a single upper case letter.
- /[a-z]/ matches a single lower case letter.
- /[0-9]/ matches a single digit.

Negation Match the negation of a pattern.

Example. /[^A-Z]/ matches a single character that is not an upper case letter.

Disjunction (pipe) Disjunction of regular expressions separated by |.

|Example. /groundhog|woodchuck/ matches groundhog and woodchuck.

Wildcards

Optional A character followed by ? can be matched optionally.

Example. /woodchucks?/ matches woodchuck and woodchucks.

Any . matches any character.

Kleene * A character followed by * can be matched zero or more times.

Kleene + A character followed by + must be matched at least once.

Counting A character followed by $\{n,m\}$ must be matched from n to m times.

Example.

- $\{n\}$ matches exactly n instances of the previous character.
- $\{n,m\}$ matches from n to m instances of the previous character.
- $\{n,\}$ matches at least n instances of the previous character.
- $\{,m\}$ matches at most m instances of the previous character.

Anchors

Start of line ^ matches only at the start of line.

| Example. $/^a$ / matches <u>a</u> but not ba.

End of line \$ matches only at the end of line.

Example. /a\$/ matches a but not ab.

Word boundary \b matches a word boundary character.

Word non-boundary \B matches a word non-boundary character.

Aliases

- \d matches a single digit (same as [0-9]).
- \D matches a single non-digit (same as [^\d]).
- \w matches a single alphanumeric or underscore character (same as [a-zA-Z0-9_]).
- $\$ matches a single non-alphanumeric and non-underscore character (same as $[^\w]$).
- \s matches a single whitespace (space or tab).
- \S matches a single non-whitespace.

Capture group Operator to refer to previously matched substrings.

Example. In the regex /the (.*)er they were, the \left\1er they will be/, $\$ should match the same content matched by (.*).

1.2 Tokenization

Lemma Words with the same stem and roughly the same semantic meaning.

Lemma

Example. cat and cats are the same lemma.

Wordform Orthographic appearance of a word.

Wordform

| Example. cat and cats do not have the same wordform.

Vocabulary Collection of text elements, each indexed by an integer.

Vocabulary

| Remark. To reduce the size of a vocabulary, words can be reduced to lemmas.

Type / Wordtype Element of a vocabulary (i.e., wordforms in the vocabulary).

Type / Wordtype

Token Instance of a type in a text.

Token

Genre Topic of a text corpus (e.g., short social media comments, books, Wikipedia pages, ...).

Remark (Herdan's law). Given a corpus with N tokens, a vocabulary V over that corpus roughly have size:

$$|V| = kN^{\beta}$$

where the typical values are $10 \le k \le 100$ and $0.4 \le \beta \le 0.6$.

Stopwords Frequent words that can be dropped.

Stopwords

Remark. If semantics is important, stopwords should be kept. LLMs keep stopwords.

Rule-based tokenization Hand-defined rules for tokenization.

Rule-based tokenization

Remark. For speed, simple tokenizers use regex.

Data-driven tokenization Determine frequent tokens from a large text corpus.

Data-driven tokenization

1.2.1 Data-driven tokenization

Tokenization is done by two components:

Token learner Learns a vocabulary from a given corpus (i.e., training).

Token learner

Token segmenter Segments a given input into tokens based on a vocabulary (i.e., inference).

Token segmenter

Byte-pair encoding (BPE) Based on the most frequent n-grams.

Byte-pair encoding (BPE)

Token learner Given a training corpus C, BPE determines the vocabulary as follows:

- 1. Start with a vocabulary V containing all the 1-grams of C and an empty set of merge rules M.
- 2. While the desired size of the vocabulary has not been reached:
 - a) Determine the pair of tokens $t_1 \in V$ and $t_2 \in V$ such that, among all the possible pairs, the *n*-gram $t_1 + t_2 = t_1 t_2$ obtained by merging them is the most frequent in the corpus C.
 - b) Add t_1t_2 to V and the merge rule $t_1 + t_2$ to M.

Example. Given the following corpus:

Occurrences	Tokens
5	1 o w \$
2	lower\$
6	newest\$
6	widest\$

The initial vocabulary is: $V = \{\$, 1, o, w, e, r, n, w, s, t, i, d\}$.

At the first iteration, e + s = es is the most frequent *n*-gram. Corpus and vocabulary are updated as:

Occurrences	Tokens
5	1 o w \$
2	lower\$
6	newest\$
6	widest\$

$$V = \{\$, 1, o, w, e, r, n, w, s, t, i, d\} \cup \{es\}$$

At the second iteration, es + t = est is the most frequent *n*-gram:

Occurrences	Tokens
5	1 o w \$
2	lower\$
6	n e w est \$
6	w i d est \$

$$V = \{\$, \texttt{l}, \texttt{o}, \texttt{w}, \texttt{e}, \texttt{r}, \texttt{n}, \texttt{w}, \texttt{s}, \texttt{t}, \texttt{i}, \texttt{d}, \texttt{es}\} \cup \{\texttt{est}\}$$

And so on...

Token segmenter Given the vocabulary V and the merge rules M, the BPE segmenter does the following:

- 1. Split the input into 1-grams.
- 2. Iteratively scan the input and do the following:
 - a) Apply a merge rule if possible.
 - b) If no merge rules can be applied, lookup the (sub)word in the vocabulary. Tokens out-of-vocabulary are marked with a special unknown token [UNK].

WordPiece Similar to BPE with the addition of merge rules ranking and a special leading/tailing set of characters (usually ##) to identify subwords (e.g., new##, ##est are possible tokens).

WordPiece

Unigram Starts with a big vocabulary and remove tokens following a loss function.

Unigram

1.3 Normalization

Normalization Convert tokens into a standard form.

Normalization

Example. U.S.A. and USA should be encoded using the same index.

Case folding Map every token to upper/lower case.

Case folding

Remark. Depending on the task, casing might be important (e.g., US vs us).

Lemmatization Reduce inflections and variant forms to their base form.

Lemmatization

| Example. $\{am, are, is\} \mapsto be$

| Remark. Accurate lemmatization requires complete morphological parsing.

Stemming Reduce terms to their stem.

Stemming

| Remark. Stemming is a simpler approach to lemmatization.

Porter stemmer Simple stemmer based on cascading rewrite rules.

| Example. ational \mapsto ate, ing $\mapsto \varepsilon$, sses \mapsto ss.

1.4 Edit distance

Minimum edit distance Minimum number of edit operations (insertions, deletions, and substitutions) needed to transform a string into another one.

Minimum edit distance

Remark. Dynamic programming can be used to efficiently determine the minimum edit distance.

Levenshtein distance Edit distance where:

Levenshtein distance

- Insertions cost 1;
- Deletions cost 1;
- Substitutions cost 2.

Example. The Levenshtein distance between intention and execution is 8.

I	N	T	Ε	*	N	T	Ι	0	N
*	Ε	Х	Ε	C	U	T	Ι	0	N
_	\pm	\pm		+	\pm				
1	2	2		1	2				

2 Language models

2.1 Spelling correction

Spelling correction Spelling errors can be of two types:

Spelling correction

Non-word spelling Typos that result in non-existing words. Possible candidates can be determined though a dictionary lookup.

Real-word spelling Can be:

Typographical error Typos that result in existing words.

Cognitive error Due to words similarity (e.g., piece vs peace).

Noisy channel model Assumes that the observable input is a distorted form of the original word. A decoder tests word hypotheses and selects the best match.

Noisy channel model

More formally, we want a model of the channel that, similarly to Bayesian inference, determines the likelihood that a word $w \in V$ is the original word for a noisy one x. From there, we can estimate the correct word \hat{w} :

By applying (i) Bayes' rule, (ii) the fact that \hat{w} is independent of $\mathcal{P}(x)$, and (iii) that a subset $C \subseteq V$ of the vocabulary can be used, the estimate becomes:

$$\hat{w} = \arg \max_{w \in C} \underbrace{\mathcal{P}(x|w)}_{\text{channel model prior}} \underbrace{\mathcal{P}(w)}_{\text{prior}}$$

Moreover, it is reasonable to include a context c when computing the prior:

$$\hat{w} = \arg\max_{w \in C} \underbrace{\mathcal{P}(x|w)}_{\text{channel model language model}} \underbrace{\mathcal{P}(w|c)}_{\text{language model}}$$

Noisy channel spelling method Spelling correction in a noisy channel model can be done as follows:

- 1. Find candidate words with similar spelling to the input based on a distance metric (e.g., Damerau-Levenshtein which is the Levenshtein distance with the addition of adjacent transpositions).
- 2. Score each candidate based on the language and channel model:
 - Use typing features of the user.
 - Use local context.
 - Use a confusion matrix with common mistakes.

Example. Consider the sentence:

[...] was called a "stellar and versatile acress whose combination of sass and glamour has defined her [...]"

By using the Corpus of Contemporary English (COCA), we can determine the following words as candidates:

 $actress \cdot cress \cdot caress \cdot access \cdot across \cdot acres$

Language model By considering a language model without context, the priors are computed as $\mathcal{P}\left(w\right) = \frac{\mathtt{count}\left(w\right)}{|\mathtt{COCA}|}$ (where $|\mathtt{COCA}| = 404\,253\,213$):

\overline{w}	$\mathtt{count}(w)$	$\mathcal{P}\left(w\right)$
actress	9321	0.0000231
cress	220	0.000000544
caress	686	0.00000170
access	37038	0.0000916
across	120844	0.000299
acres	12874	0.0000318

Channel model By using a confusion matrix of common typos, the channel model is:

w	x w	$\mathcal{P}\left(x w\right)$
actress	cct	0.000117
cress	a #	0.00000144
caress	ac ca	0.00000164
access	r c	0.000000209
across	e o	0.0000093
acres	es e	0.0000321
acres	ssss	0.0000342

The ranking is the obtained as:

w	$\mathcal{P}\left(x w\right)\mathcal{P}\left(w\right)$				
actress	$2.7\cdot 10^9$				
cress	$0.00078 \cdot 10^9$				
caress	$0.0028 \cdot 10^9$				
access	$0.019 \cdot 10^9$				
across	$2.8 \cdot 10^{9}$				
acres	$1.02 \cdot 10^{9}$				
acres	$1.09 \cdot 10^9$				

Therefore, the most likely correction of acress for this model is across. If the previous word is considered in the context, the relevant tokens of the new language model are:

w_i	$\mathcal{P}\left(w_{i} w_{i-1}\right)$
actress	0.000021
across	0.000021
whose	0.001
whose	0.000006
	actress across whose

This allows to measure the likelihood of a sentence as:

 $\mathcal{P}\left(\text{versatile } \underline{\text{actress}} \text{ whose}\right) = \mathcal{P}\left(\text{actress} | \text{versatile}\right) \mathcal{P}\left(\text{whose} | \text{actress}\right) = 210 \cdot 10^{-10}$ $\mathcal{P}\left(\text{versatile } \underline{\text{across whose}}\right) = \mathcal{P}\left(\text{across} | \text{versatile}\right) \mathcal{P}\left(\text{whose} | \text{across}\right) = 1 \cdot 10^{-10}$

Finally, we have that:

 $\mathcal{P}\left(\text{versatile } \frac{\text{actress}}{\text{across}} \text{ whose} \middle| \text{versatile acress whose} \right) = 2.7 \cdot 210 \cdot 10^{-19}$ $\mathcal{P}\left(\text{versatile } \frac{\text{across}}{\text{across}} \text{ whose} \middle| \text{versatile acress whose} \right) = 2.8 \cdot 10^{-19}$

So actress is the most likely correction for acress in this model.

Remark. In practice, log-probabilities are used to avoid underflows and to make computation faster (i.e., sums instead of products).

2.2 Language models

(Probabilistic) language model Model to determine the probability of a word w in a Language model given context c:

$$\mathcal{P}\left(w|c\right)$$

Usually, it is based on counting statistics and uses as context the sequence of previous tokens:

$$\mathcal{P}\left(w_i|w_1,\ldots,w_{i-1}\right)$$

This is equivalent to computing the probability of the whole sentence, which expanded using the chain rule becomes:

$$\mathcal{P}(w_{1},...,w_{i-1}w_{i}) = \mathcal{P}(w_{1})\mathcal{P}(w_{2}|w_{1})\mathcal{P}(w_{3}|w_{1..2})...\mathcal{P}(w_{n}|w_{1..n-1})$$
$$= \prod_{i=1}^{n} \mathcal{P}(w_{i}|w_{1..i-1})$$

Remark. Simply counting the number of occurrences of a sentence as $\mathcal{P}(w_i|w_{1..i-1}) = w_{1..i}/w_{1..i-1}$ is not ideal as there are too many possible sentences.

Markov assumption Limit the length of the context to a window of k previous tokens:

Markov assumption in language models

$$\mathcal{P}\left(w_{i}|w_{1..i-1}\right) \approx \mathcal{P}\left(w_{i}|w_{i-k..i-1}\right)$$

$$\mathcal{P}(w_{1..n}) \approx \prod_{i=1}^{n} \mathcal{P}(w_i|w_{i-k..i-1})$$

Unigram model Model without context (k = 0):

$$\mathcal{P}\left(w_{1..n}\right) \approx \prod_{i} \mathcal{P}\left(w_{i}\right)$$

Bigram model Model with a single token context (k = 1):

$$\mathcal{P}\left(w_{1..n}\right) \approx \prod_{i} \mathcal{P}\left(w_{i}|w_{i-1}\right)$$

N-gram model Model with a context of k = N - 1 tokens:

N-gram model

$$\mathcal{P}(w_{1..n}) \approx \prod_{i} \mathcal{P}(w_{i}|w_{i-N+1..i-1})$$

| Remark. N-gram models cannot capture long-range dependencies.

Estimating N-gram probabilities Consider the bigram case, the probability that a token w_i follows w_{i-1} can be determined by counting:

$$\mathcal{P}(w_i|w_{i-1}) = \frac{\texttt{count}(w_{i-1}w_i)}{\texttt{count}(w_{i-1})}$$

| Remark. N-gram models cannot handle unknown tokens.

Remark. N-gram models capture knowledge about:

- Grammar and syntax.
- Some information about the dataset (e.g., domain, genre of corpus, cultural aspects, ...).

Generation by sampling Randomly sample tokens from the distribution of a language model.

Generation by sampling

Remark. In N-gram models $(N \ge 2)$, the distribution changes depending on the previously sampled tokens.

2.3 Metrics

2.3.1 Extrinsic evaluation

Extrinsic/downstream evaluation Compare the performance of different models on specific tasks.

Extrinsic evaluation

Remark. Extrinsic evaluation is the best approach for comparing different models, but it is often computationally expensive.

2.3.2 Intrinsic evaluation

Intrinsic evaluation Measure the quality of a model independently of the task.

Intrinsic evaluation

Perplexity (PP) Probability-based metric based on the inverse probability of a sequence (usually the test set) normalized by the number of words:

Perplexity

$$\begin{split} \mathcal{P}\left(w_{1..N}\right) &= \prod_{i} \mathcal{P}\left(w_{i} | w_{1..i-1}\right) \\ \text{PP}(w_{1..N}) &= \mathcal{P}\left(w_{1..N}\right)^{-\frac{1}{N}} \in [1, +\infty] \end{split}$$

A lower perplexity represents a generally better model.

Example. For bigram models, perplexity is computed as:

$$\mathcal{P}\left(w_{1..N}\right) \approx \prod_{i} \mathcal{P}\left(w_{i} | w_{i-1}\right) \qquad \text{PP}(w_{1..N}) = \sqrt[N]{\prod_{i} \frac{1}{\mathcal{P}\left(w_{i} | w_{i-1}\right)}}$$

Remark (Perplexity intuition). Perplexity can be seen as a measure of surprise of a language model when evaluating a sequence.

Alternatively, it can also be seen as a weighted average branching factor (i.e., average number of possible next words that follow any word, accounting for their probabilities). For instance, consider a vocabulary of digits and a training corpus where every digit appears with uniform probability 0.1. The perplexity of any sequence using a

1-gram model is:

$$PP(w_{1..N}) = (0.1^N)^{-\frac{1}{N}} = 10$$

Now consider a training corpus where 0 occurs 91% of the time and the other digits 1% of the time. The perplexity of the sequence 0 0 0 0 0 3 0 0 0 is:

$$PP(0\ 0\ 0\ 0\ 0\ 3\ 0\ 0\ 0) = (0.91^9 \cdot 0.01)^{-\frac{1}{10}} \approx 1.73$$

Remark. Minimizing perplexity is the same as maximizing the probability of the tokens.

Remark. Perplexity can be artificially reduced by using a smaller vocabulary. Therefore, it is only reasonable to compare perplexity of models with the same vocabulary.

Remark. Perplexity is generally a bad approximation of extrinsic metrics and only works well if the test set is representative of the training data. Therefore, it is only useful to guide experiments and the final evaluation should be done through extrinsic evaluation.

2.4 N-gram model problems

2.4.1 Overfitting

N-gram models become better at modeling the training corpus for increasing values of N. Overfitting This risks overfitting and does not allow to obtain a generalized model.

Example. A 4-gram model is able to nearly perfectly generate sentences from Shake-speare's works.

2.4.2 Out-of-vocabulary tokens

There are two types of vocabulary systems:

Closed vocabulary system All words that can occur are known.

Closed vocabulary

Open vocabulary system Unknown words are possible. They are usually handled using a dedicated token <UNK> which allows to turn an open vocabulary system into a closed one:

Open vocabulary

- Use a vocabulary and model all other words as <UNK>.
- Model infrequent words as <UNK>.

Remark. The training set must contain <UNK> tokens to estimate its distribution as it is treated as any other token.

2.4.3 Unseen sequences

Only for n-grams that occur enough times a representative probability can be estimated. For increasing values of n, the sparsity grows causing many unseen n-grams that produce a probability of 0, with the risk of performing divisions by zero (e.g., perplexity) or zeroing probabilities (e.g., when applying the chain rule).

Laplace smoothing Adds 1 to all counts and renormalizes them. Given a vocabulary V Laplace smoothing and an N-gram model, smoothing is done as follows:

$$\mathcal{P}_{\text{Laplace}}(w_i|w_{i-N+1..i-1}) = \frac{\texttt{count}(w_{i-N+1..i-1}w_i) + 1}{\texttt{count}(w_{i-N+1..i-1}) + |V|}$$

Alternatively, by only changing the numerator, it can be formulated using an adjusted count as:

$$\mathcal{P}_{\text{Laplace}}(w_i|w_{i-N+1..i-1}) = \frac{c^*}{\text{count}(w_{i-N+1..i-1})}$$

$$c^* = \left(\text{count}(w_{i-N+1..i-1}w_i) + 1\right) \frac{\text{count}(w_{i-N+1..i-1})}{\text{count}(w_{i-N+1..i-1}) + |V|}$$

where $\frac{\mathsf{count}(w_{i-N+1..i-1})}{\mathsf{count}(w_{i-N+1..i-1})+|V|}$ is a normalization factor.

Example. For a 2-gram model, Laplace smoothing is computed as:

$$\mathcal{P}_{\text{Laplace}}(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}w_i) + 1}{\text{count}(w_{i-1}) + |V|}$$

Or by using the adjusted count as:

$$\mathcal{P}_{\text{Laplace}}(w_i|w_{i-1}) = \frac{c^*}{\text{count}(w_{i-1})} \qquad c^* = \left(\text{count}(w_{i-1}w_i) + 1\right) \frac{\text{count}(w_{i-1})}{\text{count}(w_{i-1}) + |V|}$$

3 Text classification

3.1 Common tasks

Sentiment analysis/Opinion mining Detection of attitudes. It can involve detecting:

- The holder of attitude (i.e., the source).
- The target of attitude (i.e., the aspect).
- The type of attitude (e.g., positive and negative).
- The text containing the attitude.

Spam detection

Language identification

Authorship attribution

Subject category classification

3.2 Classification

Classification task Given an input x and a set of possible classes $Y = \{y_1, \dots, y_M\}$, a Classification task classifier determines the class $\hat{y} \in Y$ associated to x.

Classification can be:

Rule-based Based on fixed (possibly handwritten) rules.

Rule-based

Sentiment analysis/Opinion

mining

Example. Blacklist, whitelist, regex, ...

In-context learning Provide a decoder (i.e., generative) large language model a In-context learning prompt describing the task and the possible classes.

| Example. Zero-shot learning, few-shot learning, ...

Supervised machine learning Use a training set of N labeled data $\{(d_i, c_i)\}$ to fit a classifier.

Supervised machine learning

An ML model can be:

Generative Informally, it learns the distribution of the data.

Discriminative Informally, it learns to exploit the features to determine the class.

3.3 Naive Bayes

Bag-of-words (BoW) Represents a document using the frequencies of its words.

Bag-of-words (BoW)

Given a vocabulary V and a document d, the bag-of-words embedding of d is a vector in $\mathbb{N}^{|V|}$ where the i-th position contains the number of occurrences of the i-th token in d.

s embedding of d is a vector

Multinomial naive Bayes classifier Generative probabilistic classifier based on the assumption that features are independent given the class.

Multinomial naive Bayes classifier

Given a document $d = \{w_1, \dots, w_n\}$, a naive Bayes classifier returns the class \hat{c} with maximum posterior probability:

$$\hat{c} = \arg \max_{c \in C} \mathcal{P}(c|d)$$

$$= \arg \max_{c \in C} \underbrace{\mathcal{P}(d|c)}_{\text{likelihood prior}} \underbrace{\mathcal{P}(c)}_{\text{prior}}$$

$$= \arg \max_{c \in C} \mathcal{P}(w_1, \dots, w_n|c) \mathcal{P}(c)$$

$$= \arg \max_{c \in C} \prod_i \mathcal{P}(w_i|c) \mathcal{P}(c)$$

$$= \arg \max_{c \in C} \sum_i \log \mathcal{P}(w_i|c) \log \mathcal{P}(c)$$

Given a training set D with N_c classes and a vocabulary V, $\mathcal{P}(w_i|c)$ and $\mathcal{P}(c)$ are determined during training by maximum likelihood estimation as follows:

$$\mathcal{P}\left(c
ight) = rac{N_c}{|D|} \qquad \mathcal{P}\left(w_i|c
ight) = rac{\mathsf{count}(w_i,c)}{\sum_{v \in V} \mathsf{count}(v,c)}$$

where count(w, c) counts the occurrences of the word w in the training samples with class c.

| Remark. Laplace smoothing is used to avoid zero probabilities.

Remark. Stop words can be removed from the training set as they are usually not relevant.

Remark. The likelihood part of the equation $(\sum_i \log \mathcal{P}(w_i|c))$ can be seen as a set of class-specific 1-gram language models.

Example. Given the following training set for sentiment analysis with two classes:

Class	Document
-	just plain boring
-	entirely predictable and lacks energy
-	no surprises and very few laughs
+	very powerful
+	the most fun film of the summer

We want to classify the sentence "predictable with no fun". Excluding stop words (i.e., with), we need to compute:

$$\mathcal{P}\left(+ | \text{predictable with no fun} \right) = \mathcal{P}\left(+ \right) \mathcal{P}\left(\text{predictable} | + \right) \mathcal{P}\left(\text{no} | + \right) \mathcal{P}\left(\text{fun} | + \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{no} | - \right) \mathcal{P}\left(\text{fun} | - \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable} | - \right) \mathcal{P}\left(\text{predictable with no fun} \right) \\ \mathcal{P}\left(- | \text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable with no fun} \right) \\ \mathcal{P}\left(- \right) \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable with no fun} \right) = \mathcal{P}\left(- \right) \mathcal{P}\left(- \right) \mathcal{P}\left(\text{predictable with no fun} \right) \\ \mathcal{P}\left(- \right) \mathcal{P}\left(- \right$$

A vocabulary of 20 tokens can be used to represent the training samples. The required likelihoods and priors with Laplace smoothing are computed as:

$$\begin{split} \mathcal{P}\left(\mathbf{+}\right) &= \frac{2}{5} \qquad \mathcal{P}\left(\mathtt{predictable}|\mathbf{+}\right) = \frac{0+1}{9+20} \quad \mathcal{P}\left(\mathtt{no}|\mathbf{+}\right) = \frac{0+1}{9+20} \quad \mathcal{P}\left(\mathtt{fun}|\mathbf{+}\right) = \frac{1+1}{9+20} \\ \mathcal{P}\left(\mathbf{-}\right) &= \frac{3}{5} \qquad \mathcal{P}\left(\mathtt{predictable}|\mathbf{-}\right) = \frac{1+1}{14+20} \quad \mathcal{P}\left(\mathtt{no}|\mathbf{-}\right) = \frac{1+1}{14+20} \quad \mathcal{P}\left(\mathtt{fun}|\mathbf{-}\right) = \frac{0+1}{14+20} \end{split}$$

3.3.1 Optimizations

Possible optimizations for naive Bayes applied to sentiment analysis are the following:

Binarization Generally, the information regarding the occurrence of a word is more important than its frequency. Therefore, instead of applying bag-of-words by counting, it is possible to produce a one-hot encoded vector to indicate which words are in the document.

Binarization

Negation encoding To encode negations, two approaches can be taken:

Negation encoding

Negation annotation Add to negated words an annotation so that they are treated as a new word.

Example. Prepend NOT_ to each word between a negation and the next punctuation:

didn't like this movie. \mapsto didn't NOT_like NOT_this NOT_movie.

Parse tree Build a tree to encode the sentiment and interactions of the words. By propagating the sentiments bottom-up it is possible to determine the overall sentiment of the sequence.

Example. The parse tree for the sentence "This film doesn't care about cleverness, wit or any other kind of intelligent humor." is the following:

Due to the negation (doesn't), the whole positive sequence is negated.

Sentiment lexicon If training data is insufficient, external domain knowledge, such as sentiment lexicon, can be used.

Sentiment lexicon

Example. A possible way to use a lexicon is to count the number of positive and negative words according to that corpus.

Remark. Possible ways to create a lexicon are through:

- Expert annotators.
- Crowdsourcing in a two-step procedure:
 - 1. Ask questions related to synonyms (e.g., which word is closest in meaning to startle?).
 - 2. Rate the association of words with emotions (e.g., how does *startle* associate with *joy*, *fear*, *anger*, . . . ?).
- Semi-supervised induction of labels from a small set of annotated data (i.e.,

seed labels). It works by looking for words that appear together with the ones with a known sentiment.

• Supervised learning using annotated data.

3.3.2 Properties

Naive Bayes has the following properties:

- It is generally effective with short sequences and fewer data samples.
- It is robust to irrelevant features (i.e., words that appear in both negative and positive sentences) as they cancel out each other.
- It has good performance in domains with many equally important features (contrarily to decision trees).
- The independence assumption might produce overestimated predictions.

| Remark. Naive Bayes is a good baseline when experimenting with text classifications.

3.4 Logistic regression

Features engineering Determine features by hand from the data (e.g., number of positive and negative lexicon).

Features engineering

Binary logistic regression Discriminative probabilistic model that computes the joint distribution $\mathcal{P}(c|d)$ of a class c and a document d.

Binary logistic regression

Given the input features $\mathbf{x} = [x_1, \dots, x_n]$, logistic regression computes the following:

$$\sigma\left(\sum_{i=1}^{n} w_i x_i\right) + b = \sigma(\mathbf{w}\mathbf{x} + b)$$

where σ is the sigmoid function.

Loss The loss function should aim to maximize the probability of predicting the correct label \hat{y} given the observation \mathbf{x} . This can be expressed as a Bernoulli distribution:

$$\mathcal{P}(y|x) = \hat{y}^{y}(1-\hat{y})^{1-y} = \begin{cases} 1-\hat{y} & \text{if } y = 0\\ \hat{y} & \text{if } y = 1 \end{cases}$$

By applying a log-transformation and inverting the sign, this corresponds to the cross-entropy loss in the binary case:

$$\mathcal{L}_{BCE}(\hat{y}, y) = -\log \mathcal{P}(y|x) = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$$

Optimization As cross-entropy is convex, SGD is well suited to find the parameters θ of a logistic regressor f over batches of m examples by solving:

$$\arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{m} \mathcal{L}_{\text{BCE}}(\hat{y}^{(i)}, f(x^{(i)}; \boldsymbol{\theta})) + \alpha \mathcal{R}(\boldsymbol{\theta})$$

where α is the regularization factor and $\mathcal{R}(\boldsymbol{\theta})$ is the regularization term. Typical regularization approaches are:

Ridge regression (L1)
$$\mathcal{R}(\theta) = \|\theta\|_2^2 = \sum_{j=1}^n \theta_j^2$$
.
Lasso regression (L2) $\mathcal{R}(\theta) = \|\theta\|_1 = \sum_{j=1}^n |\theta_j|$.

Multinomial logistic regression Extension of logistic regression to the multi-class case. The joint probability becomes $\mathcal{P}(y=c|x)$ and softmax is used in place of the sigmoid.

Multinomial logistic regression

Cross-entropy is extended over the classes C:

$$\mathcal{L}_{CE}(\hat{y}, y) = -\sum_{c \in C} \mathbb{1}\{y = c\} \log \mathcal{P} (y = c|x)$$

3.4.1 Properties

Logistic regression has the following properties:

- It is generally effective with large documents or datasets.
- It is robust to correlated features.

Remark. Logistic regression is also a good baseline when experimenting with text classifications.

As they are lightweight to train, it is a good idea to test both naive Bayes and logistic regression to determine the best baseline for other experiments.

3.5 Metrics

3.5.1 Binary classification

Contingency table 2×2 table matching predictions to ground truths. It contains true Contingency table positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

Recall $\frac{TP}{TP+FN}$.

Precision $\frac{TP}{TP+FP}$

Precision

Recall

Accuracy $\frac{TP+TN}{TP+FP+FN+TN}$

Accuracy

Remark. Accuracy is a reasonable metric only when classes are balanced.

F1 score $\frac{2 \cdot \text{recall} \cdot \text{precision}}{\text{recall} + \text{precision}}$

F1 score

3.5.2 Multi-class classification

Confusion matrix $c \times c$ table matching predictions to ground truths.

Confusion matrix

Precision/Recall Precision and recall can be defined class-wise (i.e., consider a class as the positive label and the others as the negative).

Precision/Recall

Micro-average precision/recall Compute the contingency table of each class and collapse them into a single table. Compute precision or recall on the pooled contingency table.

Micro-average precision/recall

| Remark. This approach is sensitive to the most frequent class.

Macro-average precision/recall Compute precision or recall class-wise and then average over the classes.

Macro-average precision/recall | Remark. This approach is reasonable if the classes are equally important.

| Remark. Macro-average is more common in NLP.

Example.

Figure 3.1: Confusion matrix

Figure 3.2: Class-wise contingency tables, pooled contingency table, and micro/macro-average precision

3.5.3 Cross-validation

n-fold cross-validation Tune a classifier on different sections of the training data:

n-fold cross-validation

- 1. Randomly choose a training and validation set.
- 2. Train the classifier.
- 3. Evaluate the classifier on a held-out test set.
- 4. Repeat for n times.

3.5.4 Statistical significance

p-value Measure to determine whether a model A is outperforming a model B on a given test set by chance (i.e., test the null hypothesis H_0 or, in other words, test that there is no relation between A and B).

Given:

- A test set x,
- A random variable X over the test sets (i.e., another test set),
- Two models A and B, such that A is better than B by $\delta(x)$ on the test set x,

the p-value is defined as:

$$p$$
-value $(x) = \mathcal{P}(\delta(X) > \delta(x)|H_0)$

There are two cases:

- p-value(x) is big: the null hypothesis holds (i.e., $\mathcal{P}(\delta(X) > \delta(x))$) is high under the assumption that A and B are not related), so A outperforms B by chance.
- p-value(x) is small (i.e., < 0.05 or < 0.01): the null hypothesis is rejected, so A actually outperforms B.

Bootstrapping test Approach to compute *p*-values.

Bootstrapping test

Given a test set x, multiple virtual test sets $\bar{x}^{(i)}$ are created by sampling with replacement (it is assumed that the new sets are representative). The performance difference $\delta(\cdot)$ is computed between two models and the p-value is determined as the frequency of:

$$\delta(\bar{x}^{(i)}) > 2\delta(x)$$

| **Remark.** $\delta(x)$ is doubled due to theoretical reasons.

Example. Consider two models A and B, and a test set x with 10 samples. From x, multiple new sets (in this case of the same size) can be sampled. In the following table, each cell indicates which model correctly predicted the class:

	1	2	3	4	5	6	7	8	9	10	A%	B%	$\delta(\cdot)$
x	AB	A	AB	B	A	B	A	AB	_	A	0.7	0.5	0.2
											0.6		
:	:	:	:	:	:	:	:	:	:	:	:	:	:

A possible way to sample $\bar{x}^{(1)}$ is (w.r.t. the indexes of the examples in x) [2,3,3,2,4,6,2,4,1,9,1].

3.6 Affective meaning

The affective meaning of a text corpus can vary depending on:

Personality traits Stable behavior and personality of a person (e.g., nervous, anxious, reckless, ...).

Attitude Enduring sentiment towards objects or people (e.g., liking, loving, hating, ...).

Interpersonal stance Affective stance taken in a specific interaction (e.g., distant, cold, warm, ...).

Mood Affective state of low intensity and long duration often without an apparent cause (e.g., cheerful, gloomy, irritable, ...).

Emotion Brief response to an external or internal event of major significance (e.g., angry, sad, joyful, ...).

| Remark. Emotion is the most common subject in affective computing.

3.6.1 Emotion

Theory of emotion There are two main theories of emotion:

Basic emotions Discrete and fixed range of atomic emotions.

Basic emotions

Remark. Emotions associated to a word might be in contrast. For instance, in the NRC Word-Emotion Association Lexicon the word thirst is associated to both *anticipation* and *surprise*.

Continuum emotions Describe emotions in a 2 or 3 dimensional space with the following features:

Continuum emotions

Valence Pleasantness of a stimulus.

Arousal Intensity of emotion.

Dominance Degree of control on the stimulus.

| Remark. Valence is often used as a measure of sentiment.

4 Semantics embedding

4.1 Traditional semantic representation

Lemma/citation form Syntactic form of a word.

Lemma

Example. The word pipe.

Word sense Meaning component of a word.

Word sense

Polysemous lemma Lemma with multiple senses.

Example. Possible senses of the word pipe are: the music instrument, the conduit to transport material,

Supersense Semantic category for senses.

Supersense

Word sense disambiguation (WSD) Task of determining the correct sense of a word.

Word sense disambiguation (WSD)

4.1.1 Sense relations

Synonym Relation of (near) identity between two senses of two different words (i.e., same propositional meaning).

Synonym

Remark (Principle of contrast). A different linguistic form is probably due to some, maybe subtle, difference in meaning.

Antonym Relation of opposition, with respect to one feature of meaning, between two senses. More specifically, antonyms can be:

Antonym

- An opposition between two ends of a scale (e.g., long/short).
- A reversive (e.g., up/down).

Subordination Specificity (i.e., is-a) relation between two senses.

Subordination

Example. car is a subordinate of vehicle.

Superordination Generalization relation between two senses.

Superordination

Example. furniture is a superordinate of lamp.

Meronym Part-of relation between two senses.

Meronym

| Remark. Relations among word senses can be seen as a graph.

4.1.2 Common ontologies

WordNet Database of semantic relations of English words.

WordNet

BabelNet Multilingual database of semantic relations.

BabelNet

4.1.3 Word relations

Word similarity Measure the meaning similarity of words (i.e., relation between words and not senses).

Word similarity

| Remark. Working with words is easier than senses.

Example. Cat and dog are not synonyms but have similar meaning (i.e., pets).

Word relatedness Measure the context relation of words.

Word relatedness

Example. car/bike are similar while car/fuel are related but not similar.

Semantic field Words that cover a particular domain and have structured relations with each other.

Semantic field

Example. In the context of a hospital, surgeon, scalpel, nurse, anesthetic, and hospital belong to the same semantic field.

Topic model Unsupervised method to cluster the topics in a document based on how a word is used in its context.

Topic model

Semantic frames Words that describe the perspective or participants of a particular event.

Semantic frames

Example. In a commercial transaction, a buyer trades money with a seller in return of some good or service.

Semantic role labeling (SRL) Task of determining the frames and their semantic role.

Semantic role labeling (SRL)

4.2 Vector semantics

Connotation Affective meaning of a word.

Connotation

Remark. As described in Section 3.6, emotions can be represented in a vector space. Therefore, word meanings can also be represented as vectors.

Vector semantics intuitions Vector semantics lay on two intuitions:

Distributionalism intuition The meaning of a word is defined by its environment or distribution (i.e., neighboring words). Words with a similar distribution are likely to have the same meaning.

Distributionalism intuition

Vector intuition Define the meaning of a word as a point in an N-dimensional space.

Vector intuition

Embedding Vector representation of a word where words with a similar meaning are nearby in the vector space.

Embedding

Two common embedding models are:

TF-IDF Sparse embedding based on the counts of nearby words.

TF-IDF

Word2vec Dense embedding learned by training a classifier to distinguish nearby and far-away words.

Word2vec

4.2.1 Sparse embeddings

Co-occurrence matrix Matrix representing the frequency that words occur with the others

Co-occurrence matrix

Different design choices can be considered:

- Matrix design.
- Reweighing.

- Dimensionality reduction.
- Vector comparison metric.

Matrix design Shape and content of the co-occurrence matrix.

Term-document matrix Given a vocabulary V and a set of documents D, a term-document matrix has shape $|V| \times |D|$ and counts the occurrences of each word in each document.

Term-document matrix

Remark. This representation allows to encode both documents (i.e., by considering the matrix column-wise) and words (i.e., by considering the matrix row-wise).

Example. An excerpt of a possible term-document matrix for Shakespeare is:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

The representation for the document As You Like It is [1, 114, 36, 20], while the representation of the word battle is [1, 0, 7, 13].

Word-word matrix Given a vocabulary V, a word-word matrix has shape $|V| \times |V|$. Rows represent target words and columns are context words. Given a training corpus, the word at each row is represented by counting its co-occurrences with the others within a context of N words.

Word-word matrix

Remark. A larger context window captures more semantic information. A smaller window captures more syntactic information.

Example. A possible word-word matrix is:

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Reweighing Rescale the vectors to emphasize important features and down-weigh irrelevant words.

Remark (Frequency paradox). Raw frequencies are not an ideal representation for words as they are skewed and not discriminative. Moreover, overly frequent words (e.g., stop words) do not provide context information.

Term frequency-inverse document frequency (TF-IDF) Based on term-document occurrences. Given a word t and a document d, it is computed as:

Term frequency-inverse document frequency (TF-IDF)

$$tf-idf(t,d) = tf(t,d) \cdot idf(t)$$

where:

Term frequency (tf) Log-transformed frequency count of a word t in a document d:

$$\mathtt{tf}(t,d) = \begin{cases} 1 + \log_{10}\left(\mathtt{count}(t,d)\right) & \text{if } \mathtt{count}(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Inverse document frequency (idf) Inverse occurrence count of a word t across all documents:

$$\mathrm{idf}(t) = \log_{10}\left(\frac{N}{\mathrm{df}_t}\right)$$

where \mathtt{df}_t is the number of documents in which the term t occurs.

Remark. Words that occur in a few documents have a high idf. Therefore, stop words, which appear often, have a low idf.

Example. Consider the term-document matrix with tf in parentheses:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1 (1)	0 (0)	7 (1.845)	13 (2.114)
good	114(3.057)	80 (2.903)	62(2.792)	89 (2.949)
fool	36(2.553)	58(2.763)	1 (1)	4(1.602)
wit	20(2.301)	15(2.176)	2(1.301)	3(1.477)

Assume that the df and idf of the words are:

Word	df	idf
battle	21	0.246
good	37	0
fool	36	0.012
wit	34	0.037

The resulting TF-IDF weighted matrix is:

	As You Like It	$Twelfth\ Night$	Julius Caesar	Henry V
battle	0.246	0	0.454	0.520
good	0	0	0	0
fool	0.030	0.033	0.001	0.002
wit	0.085	0.081	0.048	0.054

Positive point-wise mutual information (PPMI) Based on term-term occurrences. Given a word w and a context word c, it determines whether they are correlated or occur by chance as follows:

Positive point-wise mutual information (PPMI)

$$PPMI(w, c) = \max \{PMI(w, c), 0\}$$

where:

Point-wise mutual information (PMI)

$$\mathtt{PMI}(w,c) = \log_2 \left(\frac{\mathcal{P}\left(w,c\right)}{\mathcal{P}\left(w\right)\mathcal{P}\left(c\right)} \right) \in (-\infty,+\infty)$$

where:

- The numerator is the probability that w and c co-occur by correlation.
- The denominator is the probability that w and c co-occur by chance.

Remark. PMI > 1 indicates correlated co-occurrence. Otherwise, it is by chance.

Remark (Weighting PPMI). PMI is biased towards infrequent events and returns very high values for them. This can be solved by either:

- Using add-k smoothing (typically, $k \in [0.1, 3]$).
- Slightly increasing the probability of rare context words such that $\mathcal{P}_{\alpha}(c) = \frac{\operatorname{count}(c)^{\alpha}}{\sum_{c'} \operatorname{count}(c')^{\alpha}}$ (typically, $\alpha = 0.75$).

Example. Consider the term-term matrix:

	computer	data	result	pie	sugar	$\mathtt{count}(w)$
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
$\mathtt{count}(c)$	4977	5673	473	512	61	11716

The PPMI between information and data con be computed as:

$$\begin{split} \mathcal{P} \left(\text{information}, \text{data} \right) &= \frac{3982}{11716} = 0.3399 \\ \mathcal{P} \left(\text{information} \right) &= \frac{7703}{11716} = 0.6575 \\ \mathcal{P} \left(\text{data} \right) &= \frac{5673}{11716} = 0.4872 \\ \text{PPMI} \left(\text{information}, \text{data} \right) &= \max \left\{ \log_2 \left(\frac{0.3399}{0.6575 \cdot 0.4872} \right), 0 \right\} = 0.0944 \end{split}$$

| Remark. Reweighing loses information about the magnitude of the counts.

Dimensionality reduction Reduce the dimensionality of the embeddings.

Vector comparison Metric to determine the distance of two embeddings.

Dot product $\mathbf{w} \cdot \mathbf{v} = \sum_{i=1}^{n} w_i v_i$.

Length Compare the length $|\mathbf{v}| = \sqrt{\sum_{i=1}^{n} v_i^2}$ of the vectors.

Cosine similarity $\frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}| |\mathbf{v}|}$.

4.2.2 Dense non-contextual embeddings

Remark. Dense embeddings are usually:

- Easier to process with machine learning algorithms.
- Able to generalize better than simply counting.
- Handle synonyms better.

Neural language modeling Use a neural network to predict the next word w_{n+1} given an input sequence $w_{1..n}$. The general flow is the following:

1. Encode the input words into one-hot vectors $(\mathbb{R}^{|V|\times n})$.

- 2. Project the input vectors with an embedding matrix $E \in \mathbb{R}^{d \times |V|}$ that encodes them into d-dimensional vectors.
- 3. Pass the embedding into the hidden layers.
- 4. The final layer is a probability distribution over the vocabulary $(\mathbb{R}^{|V|\times 1})$.

Figure 4.1: Example of neural language model with a context of 3 tokens

Remark. The embedding matrix E can be used independently to embed words. In fact, by construction, the i-th column of E represents the embedding of the i-th token of the vocabulary.

Training Given a text corpus, training is done sequentially in a self-supervised manner by sliding a context window over the sequence. At each iteration, the next word is predicted and cross-entropy is used as loss.

Remark. The initial embedding matrix is usually initialized using statistical methods and not randomly.

Word2vec Word embedding framework that encodes a target word based on the context words near it.

Word2vec

Two training variants are available in Word2vec:

Continuous bag-of-words (CBOW) Given the context words, predict the target word.

Skip-gram Given the target word, predict the (position independent) context words.

Skip-gram model

Skip-gram model Given a context word c and a target word w, a classifier is trained to determine whether c appears in the context of w. After training, the weights of the classifier are used as the skip-gram model to embed words.

Remark. In practice, for an easier optimization, the skip-gram model learns two sets of embeddings $\mathbf{W} \in \mathbb{R}^{|V| \times d}$ and $\mathbf{C} \in \mathbb{R}^{|V| \times d}$ for the target and context words, respectively. Therefore, it has two sets of parameters $\boldsymbol{\theta} = \langle \mathbf{W}, \mathbf{C} \rangle$. At the end, they can either be averaged, concatenated, or one can be dropped.

Training (softmax) Given the target word w and context word c, and their embeddings \mathbf{w} and \mathbf{c} , the skip-gram model computes their similarity as the dot product. The probability that c is in the context of w is then computed though a softmax as:

$$\mathcal{P}(c|w; \boldsymbol{\theta}) = \frac{\exp(\mathbf{c} \cdot \mathbf{w})}{\sum_{v \in V} \exp(\mathbf{v} \cdot \mathbf{w})}$$

Given a training sequence w_1, \ldots, w_T and a context window of size m, training is done by iterating over each possible target word w_t and considering the conditional probabilities of its neighbors. Then, the loss is defined as the average negative log-likelihood defined as follows:

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log \left(\mathcal{P}\left(w_{t+j} | w_t; \boldsymbol{\theta}\right) \right)$$

Remark. Due to the normalization factor over the whole vocabulary, using softmax for training is expensive.

Training (negative sampling) Use a binary logistic regressor as classifier. The two classes are:

Skip-gram with negative sampling (SGNS)

- Context words within the context window (positive label).
- Words randomly sampled (negative label).

The probabilities can be computed as:

$$\mathcal{P}(+|w,c;\theta) = \sigma(\mathbf{c} \cdot \mathbf{w})$$
 $\mathcal{P}(-|w,c;\theta) = 1 - \mathcal{P}(+|w,c;\theta)$

It is assumed context-independent words, therefore, if the context is a sequence, the probability is computed as follows:

$$\mathcal{P}(+|w, c_{1..L}; \boldsymbol{\theta}) = \prod_{i=1}^{L} \sigma(\mathbf{c}_i \cdot \mathbf{w})$$

At each iteration, the batch is composed of a single positive examples and K negative examples randomly sampled according to their weighted unigram probability $\mathcal{P}_{\alpha}(w) = \frac{\mathsf{count}(w)^{\alpha}}{\sum_{v \in V} \mathsf{count}(v)^{\alpha}}$ (α it used to give rarer words a slightly higher probability).

Given a batch, the loss is defined as:

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= -\log \left(\mathcal{P}\left(+ | w, c^{\text{pos}}; \boldsymbol{\theta} \right) \prod_{i=1}^{K} \mathcal{P}\left(- | w, c^{\text{neg}}_{i}; \boldsymbol{\theta} \right) \right) \\ &= -\left(\log \left(\sigma(\mathbf{c}^{\text{pos}} \cdot \mathbf{w}) \right) + \sum_{i=1}^{K} \log \left(\sigma(-\mathbf{c}^{\text{neg}}_{i} \cdot \mathbf{w}) \right) \right) \end{split}$$

fastText Extension of Word2vec based on subwords to deal with out-of-vocabulary words.

fastText

A word is represented both as itself and a bag of n-grams. Both whole words and n-grams have an embedding. The overall embedding of a word is represented through the sum of its constituent n-grams.

Example. With n = 3, the word where is represented both as <where> and <wh, whe, her, ere, re> (< and > are boundary characters).

GloVe Based on the term-term co-occurrence (within a window) probability matrix that indicates for each word its probability of co-occurring with the other words.

GloVe

Similarly to Word2vec, the objective is to learn two sets of embeddings $\theta = \langle W, C \rangle$ such that their similarity is close to their log-probability of co-occurring. Given the term-term matrix X, the loss for a target word w and a context word c is defined as:

$$\mathcal{L}(\boldsymbol{\theta}) = (\mathbf{c} \cdot \mathbf{w} - \log(\boldsymbol{X}[c, w]))^2$$

Remark. Empirically, for GloVe it has been observed that the final embedding matrix obtained as W + C works better.

Example. A possible term-term co-occurrence probability for the words ice and steam is the following:

$k = \mathtt{solid}$	$k = { t gas}$	$k = \mathtt{water}$	$k = \mathtt{fashion}$
$1.9 \times 10^{-4} 2.2 \times 10^{-5}$			$1.7 \times 10^{-5} \\ 1.8 \times 10^{-5}$

ice is more likely to co-occur with solid while steam is more likely to co-occur with gas. GloVe uses this information when determining the embeddings.

4.3 Embeddings properties

4.3.1 Embeddings similarity

Context size The window size used to collect counts or determine context words can result in different embeddings.

Context size

As a general rule, smaller windows tend to capture more syntactic features while a larger window encodes more topically related but not necessarily similar words.

Similarity orders Two words have:

Similarity orders

First-order co-occurrence If they are nearby each other.

Second-order co-occurrence If they have similar context words.

Relational similarity Dense embeddings are able to capture relational meanings.

Relational similarity

Parallelogram model Given the problem "a is to b as a^* is to b^* " ($a:b::a^*:b^*$), the parallelogram model solves it as:

$$b^* = \arg\min_x \mathtt{distance}(x, b - a + a^*)$$

Example. In Word2vec, the following operation between embeddings can be done:

$$Paris - France + Italy \approx Rome$$

Remark. Even if it sometimes works, parallelogram model is not guaranteed to always produce the expected result.

4.3.2 Embeddings analysis

Word history Trained on different corpora, dense embeddings can provide a semantic Word history evolution of words by analyzing its neighboring embeddings.

Example.

Figure 4.2: Neighboring embeddings of the same words encoded using Word2vec trained on different corpora from different decades

Example.

Figure 4.3: Sentiment for the word terrific analyzed using the embeddings obtained by training on different corpora

Cultural bias Embeddings reflect implicit biases in the training corpus.

Cultural bias

Implicit association test Determine how associated are concepts and attributes.

Example. Using the parallelogram model to solve:

father: doctor:: mother: x

finds as the closest words x = homemaker, nurse, receptionist, ...

Example. African-American and Chinese names are closer to unpleasant words compared to European-American names.

Example. Using the Google News dataset as training corpus, there is a correlation between the women bias of the jobs embeddings and the percentage of women over men in those jobs.

Woman bias for a word w is computed as:

$$d_{\text{women}}(w) - d_{\text{men}}(w)$$

where $d_{\text{women}}(w)$ is the average embedding distance between words representing women (e.g., she, female, ...) and the word w. The same idea is applied to $d_{\text{men}}(w)$.

Figure 4.4: Relationship between the relative percentage of women in an occupation and the women bias.

Figure 4.5: Average women bias vs average women occupation difference over time.

5 Recurrent neural networks

5.1 Architectures

5.1.1 (Elman) recurrent neural network

Recurrent neural network (RNN) Neural network that processes a sequential input. At each iteration, an input is fed to the network and the hidden activation is computed considering both the input and the hidden activation of the last iteration.

Recurrent neural network (RNN)

Figure 5.1: RNN unrolled in time

RNN language model (RNN-LM) Given an input word $\boldsymbol{w}^{(t)},$ an RNN-LM does the following:

RNN language model (RNN-LM)

- 1. Compute the embedding $\mathbf{e}^{(t)}$ of $w^{(t)}$.
- 2. Compute the hidden state $\mathbf{h}^{(t)}$ considering the hidden state $\mathbf{h}^{(t-1)}$ of the previous step:

$$\mathbf{h}^{(t)} = f(\mathbf{W}_e \mathbf{e}^{(t)} + \mathbf{W}_h \mathbf{h}^{(t-1)} + b_1)$$

3. Compute the output vocabulary distribution $\hat{\mathbf{y}}^{(t)}$:

$$\hat{\mathbf{y}}^{(t)} = \mathtt{softmax}(\boldsymbol{U}\mathbf{h}^{(t)} + b_2)$$

4. Repeat for the next token.

| Remark. RNN-LMs generate the output autoregressively.

Training Given the predicted distribution $\hat{\mathbf{y}}^{(t)}$ and ground-truth $\mathbf{y}^{(t)}$ at step t, the loss is computed as the cross-entropy:

$$\mathcal{L}^{(t)}(oldsymbol{ heta}) = -\sum_{v \in V} \mathbf{y}_v^{(t)} \log \left(\hat{\mathbf{y}}_v^{(t)}\right)$$

Teacher forcing During training, as the ground-truth is known, the input at each step is the correct token even if the previous step outputted the wrong value.

Teacher forcing

Remark. This allows to stay close to the ground-truth and avoid completely wrong training steps.

5.2 Applications

5.2.1 Autoregressive generation

Autoregressive generation Repeatedly sample a token and feed it back to the network.

Autoregressive generation Decoding strategy

Decoding strategy Method to select the output token from the output distribution. Possible approaches are:

Greedy Select the token with the highest probability.

Sampling Randomly sample the token following the probabilities of the output distribution.