Interpretability in Deep Learning 2023

Yandex Research

ML mistakes have a cost

Uber self-driving car crashes dur **US** tests

"panda" 57.7% confidence

 $+.007 \times$

8.2% confidence

"gibbon" 99.3 % confidence

3. Robot injured a child

A so-called "crime fighting robot," created by the platform into a child in a Silicon Valley mall in July, injuring the 16-1

Chinese billionaire's face identified as jaywalker

Traffic police in major Chinese cities are using AI to address jaywalking. They deploy smart cameras using facial recognition techniques at intersections to detect and identify in walkers, whose partially obscured

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?
Can I rely on this prediction?

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?
Can I rely on this prediction?

Can I trust this data? Is something missing? Is there any bias?

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?
Can I rely on this prediction?

Can I trust this data? Is something missing? Is there any bias?

Simple stuff like K Nearest Neighbors

Simple stuff like Linear models

Simple stuff like **Decision Trees**

Survival on Titanic

Neural networks are **not** naturally interpretable

Image source: https://playground.tensorflow.org

Power vs interpretability

Neighbors

Linear

Tree

Gradient Boosting

Neural Network

Power vs interpretability

Neighbors

Linear

Today: explain powerful models

Tree

Gradient Boosting

Neural Network

Explanation by occlusion

Idea:

- Let's add noise to inputs and see what happens!
- For images: slide
 a gray square over
 the image, measure
 how it affects
 predictions

(d) Classifier, probability of correct class

Your guess?

Explanation by occlusion

Idea:

- Let's add noise to inputs and see what happens!
- For images: slide
 a gray square over
 the image, measure
 how it affects
 predictions

Explanation by occlusion

Idea:

- Let's add noise to inputs and see what happens!
- For texts: drop individual words and measure how it affects predictions

senior developer aspnet, c, sql

my client are looking for a senior . net developer to join their team designing and developing business solutions with a focus on buildir

sales specialist iv access and infusion

sales representative medical sales iv access and infusion an access and infusion solutions . formally recognised as the nu

cleaning operative

12. 5 hours per week monday friday 9am 11. 30am duties to include staff toilets and rest room. must be able to read as they will be using

Image: salary prediction

Idea: use gradients!
$$\nabla_{x_i} model(x) = \frac{\partial model(x)}{\partial x_i}$$

Idea: use gradients!

$$\nabla_{x_i} model(x) = \frac{\partial model(x)}{\partial x_i}$$

Gradients are too sensitive to small changes in **x**

Q: How would you fix that?

Idea: use gradients!

$$\nabla_{x_i} model(x) = \frac{\partial model(x)}{\partial x_i}$$

Original Gradient **Image** Junco Bird Corn Wheaten Terrier

Gradients are too sensitive to small changes in **x**

Smoothgrad: average gradients over several noisy copies of x

(one of many heuristics)

Idea: use gradients!

$$\nabla_{x_i} model(x) = \frac{\partial model(x)}{\partial x_i}$$

Explanation by optimization

Idea: build an image that maximizes the activation of a particular neuron

Must read: distill.pub/2018/building-blocks

Explanation by optimization

Idea: build an image that maximizes the activation of a particular neuron Must read: distill.pub/2018/building-blocks

More:

https://distill.pub

https://poloclub.github.io

https://karpathy.github.io

Don't trust yourself!

The method outputs a noisy image **you** see something reasonable should you be satisfied?

How can you **verify** the explanation?

Don't trust yourself!

Idea: train a bogus model to see if the method can "explain" the fake model

Source: Sanity Checks for Saliency Maps

Don't trust yourself!

Idea: replace weights with random one layer at a time (top to bottom)

Source: Sanity Checks for Saliency Maps

Idea:

- Approximate your model with something explainable e.g. linear model
- The approximation only needs to hold **locally** *i.e. on similar inputs*

Read more in the paper

Idea:

- Approximate your model with something explainable e.g. linear model
- The approximation only needs to hold locally i.e. on similar inputs

Read more in the paper

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Idea:

- Approximate your model with something explainable e.g. linear model
- The approximation only needs to hold **locally** *i.e. on similar inputs*

(a) Husky classified as wolf

(b) Explanation

Left image: model mislabeled a husky dog as a wolf; explanation: snow:)

Figures taken from the paper Why Should I Trust You?

Idea:

- Approximate your model with something explainable e.g. linear model
- The approximation only needs to hold **locally** *i.e. on similar inputs*

(a) Husky classified as wolf

(b) Explanation

Read more:

arxiv.org/abs/1602.04938 arxiv.org/abs/1705.07874 arxiv.org/abs/1904.12991

Idea: features are a "players" that play a cooperative game of making a prediction

Idea: features are a "players" that play a cooperative game of making a prediction

Equivalent "game":

Alice, Bob and Carol ordered a \$1000 meal at a restaurant

Q: How should they split the bill?

Hint: here's what it would cost for them individually & in pairs

Who goes	Alice	Bob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Ideas?

Idea: features are a "players" that play a cooperative game of making a prediction

Equivalent "game":

Alice, Bob and Carol ordered a \$1000 meal at a restaurant Q: How should they split the bill?

Hint: here's what it would cost for them individually & in pairs

Who goes	Alice	Bob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Game theorist's answer: Shapley values!

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N| - |S| - 1)!}{|N|!} (v(S \cup \{i\}) - v(S))$$

Idea: features are a "players" that play a cooperative game of making a prediction

Equivalent "game":

Alice, Bob and Carol ordered a \$1000 meal at a restaurant Q: How should they split the bill?

Hint: here's what it would cost for them individually & in pairs

Who goes	Alice	B ob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Game the

$\phi_i(v)$

WARNING

Do **NOT** take your game theorist friend to a restaurant! You'll thank me later.

v(S))

Shapley values explained

Same old table

Who goes	Alice	B ob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Shapley(X) = average increase in cost from adding X to a group

Note: average over all *paths*.

Shapley values explained

Same old table

Who goes	Alice	B ob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Shapley(X) = average increase in cost from adding X to a group

Note: average over all *paths*.

Shapley(A) =
$$\frac{2}{6} \cdot 400 + ...$$

Q: What else?

Shapley values explained

Same old table

Who goes	Alice	Bob	Carol	A & B	A & C	B & C	A, B & C
Total price	400	560	720	740	780	980	1000

Shapley(X) = average increase in cost from adding X to a group

Note: average over all *paths*.

Shapley(A) =
$$\frac{2}{6} \cdot 400 + \dots$$

+ $\frac{1}{6} \cdot (740 - 560) + \frac{1}{6} \cdot (780 - 720) + \frac{2}{6} \cdot (1000 - 990) = 180$

SHAP = Shapley values for features + clever approximation State of the art in after-the-fact model explanation

MOAR:

- SHAP original paper: tinyurl.com/shap-paper (NeurIPS'17)
- SHAP explained by paper author: youtu.be/ngOBhhINWb8
- Shapley values in game theory: youtu.be/w9O0fkfMkx0

Frameworks

SHAP - https://github.com/slundberg/shap (tensorflow, keras, pytorch, sklearn-like) ELI5 - https://github.com/TeamHG-Memex/eli5 (popular explainers for keras/tf, sklearn-like)

So far: explaining black-box models

Now: model-specific methods

hidden layer activations

hidden layer activations

hidden layer activations

hidden layer activations

Idea: design architecture to be interpretable

Prototype objects and answers: $(\hat{x}_0, \hat{y}_0), ..., (\hat{x}_N, \hat{y}_N)$

"Attention" weights:
$$a(x, \hat{x}_i) = \frac{e^{\langle f(x, theta), f(\hat{x}_i, theta) \rangle}}{\sum_{j=0}^{N} e^{\langle f(x, theta), f(\hat{x}_j, theta) \rangle}}$$

Prediction by averaging: $y^{pred}(x) = \sum_{i} \hat{y}_{i} \cdot a_{i}(x, \hat{x}_{i})$

Idea: design architecture to be interpretable

Prototype objects and answers: $(\hat{x}_0, \hat{y}_0), ..., (\hat{x}_N, \hat{y}_N)$

"Attention" weights:
$$a(x, \hat{x}_i) = \frac{e^{\langle f(x, theta), f(\hat{x}_i, theta) \rangle}}{\sum_{j=0}^{N} e^{\langle f(x, theta), f(\hat{x}_j, theta) \rangle}}$$

 $y^{pred}(x) = \sum_{i} \hat{y}_{i} \cdot a_{i}(x, \hat{x}_{i})$

Read more: KNN

arxiv.org/abs/1703.05175 arxiv.org/abs/1803.04765 arxiv.org/abs/1809.02847

Read more: Linear arxiv.org/abs/1705.08078 arxiv.org/abs/1806.07538

Taking it to the extreme

Paper: https://arxiv.org/abs/2010.11929

Vision Transformer (ViT) Class Bird **MLP** Ball Head Car Transformer Encoder Patch + Position **Embedding** * Extra learnable Linear Projection of Flattened Patches [class] embedding

Taking it to the extreme

Paper: https://arxiv.org/abs/2104.14294

View attention maps: https://epfml.github.io/attention-cnn/

The question of trust

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?
Can I rely on this prediction?

Can I trust this data? Is something missing? Is there any bias?

example: binary classification

example: binary classification

Statistical (aleatoric) uncertainty "I know there's randomness"

Statistical (aleatoric) uncertainty "I know there's randomness"

Systematic (epistemic) uncertainty "I have no idea!"

Statistical (aleatoric) uncertainty "I know there's randomness"

Systematic (epistemic) uncertainty "I have no idea!"

Aleatoric uncertainty: use predicted probability! Exception: neural networks can be overconfident Fix it by *calibrating* model predictions after the fact, Read more: tinyurl.com/sklearn-calibration

Aleatoric uncertainty: use predicted probability! Exception: neural networks can be overconfident Fix it by *calibrating* model predictions after the fact, Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Ideas?

Aleatoric uncertainty: use predicted probability! Exception: neural networks can be **overconfident** Fix it by *calibrating* model predictions after the fact, Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train *autoencoder* on input features Low reconstruction error = **certain or not?** High reconstruction error = **certain or not?**

Aleatoric uncertainty: use predicted probability! Exception: neural networks can be **overconfident** Fix it by *calibrating* model predictions after the fact, Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train *autoencoder* on input features Low reconstruction error = familiar data High reconstruction error = unfamiliar data (For NLP: use language models)

Aleatoric uncertainty: use predicted probability! Exception: neural networks can be overconfident Fix it by *calibrating* model predictions after the fact, Read more: tinyurl.com/sklearn-calibration

Epistemic (systematic) uncertainty: it gets tricky

Approach A: train *autoencoder* on input features Low reconstruction error = familiar data High reconstruction error = unfamiliar data

Approach B: train an *ensemble* of predictors Predictors agree = familiar data Predictors disagree = unfamiliar data

More: tinyurl.com/ uncertainty-ensembles

Uncertainty from dropout

Idea:

measure how robust does your network perform under noise

Example (left): use dropout and estimate variance

Systematic uncertainty for different input images, source: arXiv:1506.02142

Read more in the paper or in a blog post

Disclaimer: this is a hacker's guide to BNNs!

It does not cover all the philosophy and general cases.

Disclaimer: this is a hacker's guide to BNNs!

It does not cover all the philosophy and general cases.

Idea:

- No explicit weights
 - Maintain parametric distribution on them instead!
 - Practical: fully-factorized normal or similar

$$q(\theta|\phi:[\mu,\sigma]) = \prod_{i} N(\theta_{i}|\mu_{i},\sigma_{i})$$

$$P(y|x) = E_{\theta \sim q(\theta|\phi)} P(y|x,\theta)$$

Idea:

- No explicit weights
 - Maintain parametric distribution on them instead!
 - Practical: fully-factorized normal or similar

$$q(\theta|\phi:[\mu,\sigma]) = \prod_{i} N(\theta_{i}|\mu_{i},\sigma_{i})$$

$$P(y|x) = E_{\theta \sim q(\theta|\phi)} P(y|x,\theta)$$

Idea:

- No explicit weights
- Inference: sample from weight distributions, predict 1 "sample"
- To get distribution, aggregate K samples (e.g. with histogram)
 - Yes, it means running network multiple times per one X

$$P(y|x) = E_{\theta \sim q(\theta|\phi)} P(y|x,\theta)$$

Idea:

- No explicit weights
 - Maintain parametric distribution on them instead!
 - Practical: fully-factorized normal or similar

$$q(\theta|\phi:[\mu,\sigma]) = \prod_{i} N(\theta_{i}|\mu_{i},\sigma_{i})$$

$$P(y|x) = E_{\theta \sim q(\theta|\phi)} P(y|x,\theta)$$

- Learn parameters of that distribution (reparameterization trick)
 - Less variance: local reparameterization trick.

$$\phi = \operatorname{argmax}_{\phi} E_{x_i, y_i \sim d} E_{\theta \sim q(\theta \mid \phi)} P(y_i | x_i, \theta)$$

wanna explicit formulae? d = dataset

Evidence Lower bound

$$-KL(q(\theta|\phi)||p(\theta|d)) = -\int_{\theta} q(\theta|\phi) \cdot \log \frac{q(\theta|\phi)}{p(\theta|d)}$$

$$-\int_{\theta} q(\theta|\phi) \cdot \log \frac{q(\theta|\phi)}{\left[\frac{p(d|\theta) \cdot p(\theta)}{p(d)}\right]} = -\int_{\theta} q(\theta|\phi) \cdot \log \frac{q(\theta|\phi) \cdot p(d)}{p(d|\theta) \cdot p(\theta)}$$

$$-\int_{\theta} q(\theta|\phi) \cdot \left[\log \frac{q(\theta|\phi)}{p(\theta)} - \log p(d|\theta) + \log p(d)\right]$$

$$[E_{\theta \sim q(\theta|\phi)}\log p(d|\theta)] - KL(q(\theta|\phi)||p(\theta)) + \log p(d)$$

loglikelihood -distance to prior +const

Evidence Lower bound

$$\phi = \underset{\phi}{argmax} (-KL(q(\theta|\phi)||p(\theta|d)))$$

$$\frac{argmax([E_{\theta \sim q(\theta|\varphi)}\log p(d|\theta)] - \textit{KL}(q(\theta|\varphi)||p(\theta)))}{\text{fit to the data}} \\ \frac{\text{don't be too}}{\text{certain}}$$

Evidence Lower bound

$$\phi = \underset{\phi}{argmax} (-KL(q(\theta|\phi)||p(\theta|d)))$$

$$arg\!\max_{\boldsymbol{\uptheta}} ([E_{\boldsymbol{\uptheta} \sim q(\boldsymbol{\uptheta}|\boldsymbol{\uptheta})} \log p(\boldsymbol{d}|\boldsymbol{\uptheta})] - \mathit{KL}(q(\boldsymbol{\uptheta}|\boldsymbol{\uptheta}) || p(\boldsymbol{\uptheta})))$$

Can we perform gradient ascent directly?

Reparameterization trick

$$\phi = arg_{\phi} ax(-KL(q(\theta|\phi)||p(\theta|d)))$$

$$argmax([E_{\theta \sim q(\theta|\phi)}\log p(d|\theta)] - KL(q(\theta|\phi)||p(\theta)))$$
 Use reparameterization trick simple formula (for normal q)

What does this log

P(*d*|...) *mean?*

BNN likelihood

$$E_{\theta \sim N(\theta \mid \mu_{\phi}, \sigma_{\phi})} \log p(d \mid \theta) = E_{\psi \sim N(0,1)} \log p(d \mid (\mu_{\phi} + \sigma_{\phi} \cdot \psi))$$

Reparameterization trick

$$\phi = arg_{\phi} \max(-KL(q(\theta|\phi)||p(\theta|d)))$$

$$arg\!\max_{\boldsymbol{\uptheta}} ([E_{\boldsymbol{\uptheta} \sim q(\boldsymbol{\uptheta}|\boldsymbol{\uptheta})} \log p(\boldsymbol{d}|\boldsymbol{\uptheta})] - \mathit{KL}(q(\boldsymbol{\uptheta}|\boldsymbol{\uptheta}) || p(\boldsymbol{\uptheta})))$$

BNN likelihood

NN likelihood
$$\sum_{\mathbf{x},\mathbf{y}\sim d} \log p(\mathbf{y}|\mathbf{x},\boldsymbol{\mu}+\sigma\boldsymbol{\psi}) \\ E_{\theta\sim N(\theta|\mu_{\phi},\,\sigma_{\phi})} \log p\left(d|\theta\right) = E_{\psi\sim N(0,1)} \log p\left(d|(\mu_{\phi}+\sigma_{\phi}\cdot\boldsymbol{\psi})\right)$$

In other words,
$$\Sigma_{x,y\sim d} \log p(y|x,\mu+\sigma\psi)$$

Estimating uncertainty:

- 1. sample weights several times
- 2. predict by averaging outputs
- 3. uncertainty = standard deviation

Read more...

Papers on uncertainty

bayesian neural networks: blog post

prior networks: arxiv.org/abs/1802.10501

batchnorm: arxiv.org/abs/1802.04893

dropout: arxiv.org/abs/1506.02142

video stuff: youtube.com/watch?v=HRfDiqgh6CE

The question of trust

How can I explain my model's prediction?
Why did it make this decision/mistake?
What features does it rely on?

Is my model certain about what it says?
Is there something wrong with this input?
Can I rely on this prediction?

Can I trust this data? Is something missing? Is there any bias?

aka "seeing for yourself what's in your data"

2 dimensions

3 dimensions

4 dimensions

5 dimensions

Q: How many dimensions can you show on a plot?

Your data has 200 dimensions... any ideas?

Idea:

 Linearly project data to lower-dim space

$$X \approx (X \times W_1) \times W_2$$

Minimize MSE

$$argmin_{W_1,W_2} || X - (X \times W_1) \times W_2 ||$$

Idea:

- Linearly project data to lower-dim space
- Attempt to preserve as much variance as possible

Idea:

- Linearly project data to lower-dim space
- Attempt to preserve as much variance as possible

Q: What if linear projection is not enough?

Idea:

- Linearly project data to lower-dim space
- Attempt to preserve as much variance as possible

Q: What if linear projection is not enough? deep autoencoders... or better

Manifold learning

Idea: let's directly "learn" 2d point coordinates

Multidimensional Scaling

preserve pairwise distances

$$\hat{x} = argmin_{\hat{x}} \frac{2}{N^2 - N} \sum_{i \neq j} (||x_i - x_j|| - ||\hat{x}_i - \hat{x}_j||)^2$$

Stochastic Neighborhood Embedding

preserve neighbor "probabilities"

$$P_{j|i} = \frac{e^{-||x_i - x_j||_2^2}}{\sum_k e^{-||x_k - x_j||_2^2}}$$
 • large for nearest neighbors • small for distant points • adds up to 1

- adds up to 1

$$\hat{P}_{j|i} = \frac{e^{-\|\hat{x}_i - \hat{x}_j\|_2^2}}{\sum_{k} e^{-\|\hat{x}_k - \hat{x}_j\|_2^2}} \quad \text{* same as P}$$
• but in learned space

optimize crossentropy w.r.t. \hat{x}

$$\hat{x} = argmin_{\hat{x}} - \frac{1}{N} \sum_{i} \sum_{j} P_{j|i} \cdot \log \hat{P}_{j|i}$$

T-SNE

Like SNE from prev slide, but

P is now Student's t-distribution

$$\hat{P}_{j|i} = \frac{\left(1 + ||\hat{x}_i - \hat{x}_j||_2^2\right)^{-1}}{\sum_{k \neq l} \left(1 + ||\hat{x}_k - \hat{x}_l||_2^2\right)^{-1}}$$

- A lot of optimization hacks
- By far the most popular method

Read More:
Original paper
Interactive demo

T-SNE + deep encoder

T-SNE + deep encoder (CIFAR10)

T-SNE + deep encoder (atari DQN)

Thank you

[question time!]

note 2self: if you reach this slide early, cover

- https://arxiv.org/abs/2002.00937
- https://arxiv.org/abs/1812.02766
- https://arxiv.org/abs/2004.00345
- https://arxiv.org/abs/2103.09274