Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи N 1 з дисципліни

«Алгоритми та структури даних

1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 22

Виконав студент _	ІП-14 Нікулін Павло Юрійович		
-	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвише, ім'я, по батькові)		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета: дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Завдання

Із заданою точністю обчислити значення математичної константи е:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Розв'язання

- 1. **Постановка задачі**: результатом роботи має бути тотожність між числом x та числом Ейлера (e).
- 2. Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Число Ейлера	Дійсне	Е	Константа
Число, яке має дорівнювати е	Дійсне	X	Початкове дане
Номінальна змінна під	Ціле	N	Проміжне дане
факторіалом			
Змінна частина факторіала	Ціле	I	Проміжне дане
Значення факторіала	Дійсне	F	Проміжне дане

 $Kpo\kappa 1$. Визначимо основні дії дамо початкові значення змінним x, f, n та i.

Крок 2. Знайдемо значення факторіала.

Крок 3. Деталізуємо дію перетворення числа x на e.

Псевдокод крок 1 початок Знайдемо значення факторіала Знайдемо число х кінець крок 2 початок x = 1, f = 1, n = 1, i = 1, e = 2,718...якщо I <= N TO F := Nінакше повторити F := F * II++

поки I > N

все повторити

все якщо

Знайдемо число х

кінець

крок 3

початок

$$x = 1$$
, $f = 1$, $n = 1$, $i = 1$, $e = 2,718...$

якщо I <= N

TO

F := F * I

I++

інакше

повторити

return F

поки I > N

все повторити

все якщо

якщо х = е

TO

x := e

інакше

повторити

x := x + 1/f

n := n + 1

поки х != е

все повторити

все якщо

кінець

Блок-схема

Випробування алгоритму

Початок

- 1 x = 1, f = 1, n = 1, i = 1, e = 2,718...
- 2 while (i<=n) {
 F = F * I;
 I ++;}
 return F #повертає нове значення F

3 while
$$(x != e) \{$$

 $X = X + 1/F;$
 $N = N + 1;$

#тепер х дорівнює числу Ейлера (е)

Кінець

Висновок

Під час виконання лабораторної роботи було досліджено подання операторів повторення дій та набуто практичних навичок їх використання. У роботі двічі використовується цикл «while»: для обчислення факторіала та під час зрівнювання значення x з e. Точність обчислення залежить від задачі, або від можливостей програмного середовища.