Tentamen EE1P21

Elektriciteit en Magnetisme

- Dit tentamen bestaat uit 3 bladzijden met 4 opgaven.
- Het totaal te behalen aantal punten bedraagt 90.
- Bij iedere opgave is het aantal voor die opgave te behalen punten vermeld.
- Begin iedere opgave op een <u>nieuw</u> vel en vermeld op ieder vel van uw uitwerkingen zowel naam als studienummer.

Veel succes!

20 punten

Opgave 1

- **a.)** Bereken het elektrisch veld $\vec{E}_1(x, y, z)$ in het punt P(x, y, z) ten gevolge van een puntlading Q_1 in (x_1, y_1, z_1) .
- **b.)** Bereken de kracht \vec{F} die het elektrisch veld $\vec{E}_1(x,y,z)$ uitoefent op een lading Q_2 in (x_2,y_2,z_2) .

In het vlak $z=-3\mathrm{m}$ is binnen een dunne vierkant plaat $-2\mathrm{m}\leqslant x\leqslant 2\mathrm{m}, -2\mathrm{m}\leqslant y\leqslant 2\mathrm{m}$ oppervlaktelading met ladingsdichtheid $\rho_s=2(x^2+y^2+9)^{3/2}\mathrm{nC/m^2}$ aanwezig.

- c.) Bereken de lading dq op het oppervlak dx dy van de plaat.
- **d.**) Bereken het elektrisch veld $\vec{E}(0,0,0)$ in de oorsprong.

25 punten

Opgave 2

Gegeven zijn twee concentrische geleidende dunne holle bollen. Binnen de binnenste bol met straal $r=R_1$ bevindt zich vacuum met permittiviteit ϵ_0 . De binnenste bol is omhuld met een concentrisch medium met straal $r=R_2$ met relatieve permitiviteit $\varepsilon_{r,2}=3$. De ruimte tussen de omhulling en de buitenste bol met straal $r=R_3$, $R_2 < r < R_3$ is gevuld met een medium met relatieve permittiviteit $\varepsilon_{r,3}=4$. Op de buitenkant van de binnenste bol bevindt zich een lading 2Q en op de buitenkant van de buitenste bol bevindt zich een negatieve lading -Q. De buitenste bol bevindt zich in vacuum. We veronderstellen dat de concentrische media geen vrije ladingdragers bevatten en dat de potentiaal op oneindig gelijk aan 0 volt is.

a.) Maak een duidelijke schets van de situatie.

- **b.)** Bereken het elektrisch veld \vec{E} in het gebied $r < R_1$ en in het gebied $r > R_3$.
- c.) Bereken het elektrisch veld \vec{E} in het gebied $R_1 < r < R_2$ en in het gebied $R_2 < r < R_3$.
- **d.**) Wat gebeurt er met het elektrisch veld \vec{E} op het grensvlak $r = R_2$?
- e.) Bereken de elektrische potentialen van de twee geleidende dunne holle bollen.
- f.) Bereken de capaciteit C tussen de twee geleidende bollen.

Opgave 3

25 punten

Gegeven een zeer lange coaxiale kabel met een geleidende massieve binnengeleider met een straal van $r=r_1=5.10^{-4}\mathrm{m}$. De geleidende buitenmantel van de kabel heeft een straal $r=r_2=2.10^{-3}\mathrm{m}$ en heeft een verwaarloosbare dikte. Het cylindrische medium tussen de geleiders heeft een relatieve permittiviteit $\varepsilon_{\rm r}=20$. De binnenste geleider heeft een oppervlaktelading q_s met $q_s=10\mathrm{nC/m^2}$.

- a.) Bereken de lading per lengte eenheid op de binnengeleider.
- **b.)** Bereken het elektrisch veld \vec{E} tussen de beide geleiders in het gebied $r_1 < r < r_2$
- c.) Bereken het potentiaalverschil tussen de binnenste en de buitenste geleider.
- **d.**) Bereken de capaciteit C per meter van de coaxiale kabel.

Neem nu aan dat het medium tussen de geleiders is gevuld met een resistief materiaal met geleidingsdichtheid σ en stel dat er over de lengte l een stroom I loopt van de binnengeleider naar de buitengeleider.

e.) Bereken de weerstand van het medium over een lengte l van de coaxiale kabel.

20 punten

Opgave 4

We beschouwen een uniform geladen geleidende dunne schijf met straal R, die is gelegen in het y, z-vlak in x = 0. De schijf bevat een uniforme oppervlakte ladingsdichtheid σ . Gegeven is dat de potentiaal tengevolge van de schijf op de x-as gegeven is door

$$V(x) = 2\pi k\sigma(\sqrt{x^2 + R^2} - |x|)$$

- a.) Bereken en schets het elektrisch veld $\vec{E}(x,0,0)$ aan de voorkant en de achterkant van de schijf.
- **b.**) Laat zien dat in het geval $R \to \infty$ het elektrisch veld \vec{E} voor x > 0 ten gevolge van de oneindige schijf wordt gegeven door:

$$\vec{E} = 2\pi k \sigma \hat{x}$$
.

- c.) Als gegeven is dat de potentiaal $V(0)=V_0$ volt, geef dan een uitdrukking voor de potentiaal van de schijf waarbij $R\to\infty$
- d.) Laat zien dat de elektrische veldsterkte \vec{E} en de elektrische fluxdichtheid \vec{D} voldoen aan de noodzakelijke randvoorwaarden op x=0.

Einde Tentamen