

planetmath.org

Math for the people, by the people.

polynomial identity algebra

 ${\bf Canonical\ name} \quad {\bf Polynomial Identity Algebra}$

Date of creation 2013-03-22 14:20:38 Last modified on 2013-03-22 14:20:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Definition
Classification msc 16U80
Classification msc 16R10
Synonym PI-algebra

Synonym algebra with polynomial identity

Defines Hall identity

Let R be a commutative ring with 1. Let X be a countable set of *variables*, and let $R\langle X\rangle$ denote the free associative algebra over R. If X is finite, we can also write $R\langle X\rangle$ as $R\langle x_1, \ldots x_n\rangle$, where the $x_i's \in X$. Because of the freeness condition on the algebra, the variables are non-commuting among themselves. However, the variables do commute with elements of R. A typical element f of $R\langle X\rangle$ is a polynomial over R in n (finite) non-commuting variables of X.

Definition. Let A be a R-algebra and $f = f(x_1, \ldots, x_n) \in R\langle X \rangle$. For any $a_1, \ldots, a_n \in A$, $f(a_1, \ldots, a_n) \in A$ is called an *evaluation of* f *at* n-tuple (a_1, \ldots, a_n) . If the evaluation vanishes (=0) for all n-tuples of $\prod_{i=1}^n A$, then f is called a *polynomial identity for* A.

A polynomial $f \in R\langle X \rangle$ is *proper*, or *monic*, if, in the homogeneous component of the highest degree in f, one of its monomials has coefficient =

Definition. An algebra A over a commutative ring R is said to be a polynomial identity algebra over R, or a PI-algebra over R, if there is a proper polynomial $f \in R\langle x_1, \ldots, x_n \rangle$, such that f is a polynomial identity for A. A polynomial identity ring, or PI-ring, R is a polynomial identity \mathbb{Z} -algebra.

Examples

- 1. A commutative ring is a PI-ring, satisfying the polynomial [x, y] = xy yx.
- 2. A finite field (with q elements) is a PI-ring, satisfying $x^q x$.
- 3. The ring T of upper triangular $n \times n$ matrices over a field is a PI-ring. This is true because for any $a, b \in T$, ab-ba is strictly upper triangular (zeros along the diagonal). Any product of n strictly upper triangular matrices in T is 0. Therefore, T satisfies $[x_1, y_1][x_2, y_2] \cdots [x_n, y_n]$.
- 4. The ring S of 2×2 matrices over a field is a PI-ring. One can show that S satisfies $[[x_1, x_2]^2, x_3]$. This identity is called the *Hall identity*.
- 5. A subring of a PI-ring is a PI-ring. A homomorphic image of a PI-ring is a PI-ring.
- 6. One can show that a ring R with polynomial identity $x^n x$ is commutative. Thus, one sees that $x^n x$ and xy yx, although very different (one is homogeneous of degree 2 in 2 variables, the other one is not

even homogeneous, in one variable of degree n), are both polynomial identities for R.