CA KINI LIBOLIKA

7517

RESEARCH MEMORANDUM

PRESSURES AND ASSOCIATED AERODYNAMIC AND LOAD

CHARACTERISTICS FOR TWO BODIES OF

REVOLUTION AT TRANSONIC SPEEDS

By Harold L. Robinson

Langley Aeronautical Laboratory
Langley Field, Valuetes (Cray)

Proceedings of the Changes

The state of the s

Ву

GRADE OF OFFICE MENING CHANGE)

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

March 11, 1954

CONFIDENTIAL

NACA RM L53L28a

CONTRACTOR

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURES AND ASSOCIATED AERODYNAMIC AND LOAD

CHARACTERISTICS FOR TWO BODIES OF

REVOLUTION AT TRANSONIC SPEEDS

By Harold L. Robinson

SUMMARY

Analysis of the results obtained from a transonic wind-tunnel investigation of two bodies of revolution having the same nose shape, one incorporating a cylindrical afterbody and the other incorporating a curved afterbody, indicated that the pressures over the forward portions of the bodies were the same, whereas, the induced velocities over the rearward portions of the curved body were greater than those over the cylindrical body. However, the cross-section normal loads were greater over the rearward portions of the cylindrical body. Variation of the aerodynamic characteristics with Mach number was rather small for both bodies. The cylindrical body exhibits better stability characteristics than the curved body. The theory of NACA Rep. 1048 regarding the aerodynamic characteristics of the bodies is in fair agreement with the results of this paper.

INTRODUCTION

A detailed study of the pressures and resulting forces for a body of revolution, designated "curved body" in this report, at transonic speeds has been presented in reference 1.

The present tests were undertaken in order to provide aerodynamic load data for a body of revolution having an ogive nose and cylindrical afterbody and to compare the aerodynamic characteristics of this body with the body of reference 1 at transonic speeds. The body used in the present test is designated "cylindrical body" herein. A comparison of various theoretical aerodynamic parameters with experimental values is included.

The tests reported herein were made for a Mach number range from 0.6 to 1.13 and an angle-of-attack range from 0° to 20°. The Reynolds number

COLLEGE

the come

range corresponding to the Mach number range varied from 3.3×10^6 to 3.9×10^6 per foot of length.

SYMBOLS

A_p	plan-form area of body
$c_{M_{\overline{F}}}$	pitching-moment coefficient around the nose, based on maximum body cross-sectional area and body length
$\mathtt{c}_{\mathtt{N}_{\mathtt{F}}}$	normal-force coefficient, based on maximum body cross- sectional area
$\mathbf{c}_{ t d_{\mathbf{C}}}$	section drag coefficient of an infinite cylinder
en	transverse section normal-force coefficient, $\frac{N_{\rm t}}{{ m qD~d(x)}}$
c _{nn}	meridian load coefficient, $\frac{N_n}{qLR_{max} d(\theta)}$
D	diameter of body at any station
L	length of body
M	Mach number
N _n	elemental force on meridian body section of width R d(θ) (force vector is normal to body axis and makes an angle θ with vertical plane of symmetry)
Nt	elemental force on transverse body section of length d(x) (force vector is normal to horizontal plane of symmetry)
P	pressure coefficient —
Q	volume of body
q	dynamic pressure
R	radius of body at any station
S _b	base area of body

x	distance	from	nose	of	model,	positive	rearward

x_m moment center

 \mathbf{x}_{p} centroid of body plan-form area

x_{cp} center-of-pressure location

y distance from vertical plane of symmetry

α angle of attack

η ratio of the drag coefficient of a finite cylinder to the section drag coefficient of an infinite cylinder at

 $\alpha = 90^{\circ}$

 θ meridian station, 0° at top

Subscripts:

max maximum value

L lower surface

U upper surface

APPARATUS AND METHODS

Tunnel

All the data discussed herein were obtained from tests conducted in the Langley 8-foot transonic tunnel. At present, this tunnel has a dodecagonal slotted test section and is capable of continuously variable operation through the speed range up to a Mach number of 1.14. A test section used previously in this tunnel did not incorporate slots, but had a closed throat. All the data for the cylindrical body and most of the data for the curved body were obtained from tests in the slotted test section. A small portion of the data for the curved body was obtained from tests in the closed-throat test section.

Tunnel-wall-interference corrections were not applied to the data obtained from tests in the slotted test section because choking and blockage effects are negligible, especially for the small ratio of model to tunnel size of the present tests. Effects of wall-reflected disturbances have been reduced by offsetting the model from the tunnel center line.

TATA

Bodies

A drawing of the two bodies is presented in figure 1. The cylindrical body has the same dimensions as body D of reference 2. The curved body is the same body as that used in references 1 and 3 and is similar to, but slightly longer than, body A of reference 2. Both the curved and cylindrical bodies have the same dimensions forward of the 20-inch body station.

Each of the models was instrumented with six rows of orifices spaced along meridians of the body. Each row contained 20 or more orifices. The relative size of the stings employed to support the model in the tunnel is indicated in figure 1.

Measurements

Pressure. The pressures existing on the surface of the cylindrical body were measured by connecting the orifices to a multitubed manometer. In order to determine the forces on the model, these pressures were integrated as discussed in the section of this report entitled "Presentation of Results." The pressure data and associated aerodynamic parameters for the curved body were obtained from references 1 and 3.

The repeatability of the pressure data presented herein as affected by the pressure measurements, angle of attack, orifice size and location, and other factors may be judged from figure 2. The largest errors occur near the nose where they are as large as $\Delta P = \pm 0.015$. The accuracy is much better over the remainder of the body. The average error, as determined from the data presented in figure 2, is $\Delta P = \pm 0.005$.

Angle of attack.— The angle of attack for the cylindrical body was measured by an electrical strain-gage pendulum device mounted internally near the base of the support sting. Sting and model deflections occurring ahead of this point, due to forces and moments acting on the model, were determined from static tests. These corrections were applied to the angles of attack, although the maximum deflections occurring during the investigation were approximately 0.1°. The angles of attack were also corrected for the approximately 0.1° upflow existing in the Langley 8-foot transonic tunnel. The absolute accuracy of the angle-of-attack measurements is estimated to be within 0.1°.

TATIFICATION OF THE PARTY OF TH

PRESENTATION OF RESULTS

Pressure Coefficients

All the pressures measured for the cylindrical body are presented in table 1. The longitudinal distribution of pressure coefficients for the cylindrical body at 0° angle of attack is presented in figure 3. Also shown in this figure is the pressure distribution for the curved body from references 1 and 3. The longitudinal distribution of pressure coefficient at the other angles of attack are presented in figure 4 at three Mach numbers (approximately 0.8, 1.00, and 1.13).

Normal Force and Pitching Moment

A comparison of the normal-force and pitching-moment coefficients for the two bodies is presented in figures 5 and 6, respectively. All the data for the curved body were obtained from reference 1. In order to compare the pitching-moment characteristics of the two bodies, the moment coefficients were taken about the nose of the bodies.

The integral equation used to compute the normal-force coefficients for the cylindrical body was

$$C_{N_{\overline{F}}} = -\frac{8L}{D_{\text{max}}} \int_{0}^{0.5} \cos \theta \left[\int_{0}^{1} P \frac{D}{D_{\text{max}}} d\left(\frac{x}{L}\right) \right] d\left(\frac{\theta}{2\pi}\right)$$

and that used to compute the pitching-moment coefficient was

$$\mathtt{C}_{\underline{M}_{F}} = \frac{8\mathtt{L}}{\mathtt{D}_{\max}} \int_{0}^{0.5} \cos \ \theta \boxed{\int_{0}^{\mathtt{l}} \mathtt{P} \ \frac{\mathtt{D}}{\mathtt{D}_{\max}} \left(\!\!\frac{\mathtt{x}}{\mathtt{L}}\!\!\right) \ \mathtt{d}\!\left(\!\!\frac{\mathtt{x}}{\mathtt{L}}\!\!\right)} \ \mathtt{d}\!\left(\!\!\frac{\mathtt{g}}{\mathtt{2}\pi}\!\!\right)$$

The coefficients presented at $\alpha=20^{\circ}$ could have been lowered as much as 25 percent of the value shown by changing the fairings of the graphical integrations. However, the data presented for the cylindrical body agree with the strain-gage data presented in reference 2. The fairing choice does not exist at $\alpha \leq 8^{\circ}$ but this margin increases with angle of attack as the angle is increased from 8° .

The theoretical values of normal-force and pitching-moment coefficient shown in figures 5 and 6 were computed by the method described in reference 4. The equations for these coefficients may be written as follows:

TATUUT AT.

$$C_{NF} = \frac{8S_b}{\pi D_{max}^2} \alpha + 4\eta c_{dc} \frac{A_p}{\pi D_{max}^2} \alpha^2 - \frac{1}{\pi D_{max}^2}$$

$$C_{M_{F}} = \frac{8}{\pi D_{\text{max}}^{2}} \left(\frac{Q}{L} - S_{b}\right) \alpha - 4\eta c_{d_{c}} \frac{A_{p}}{\pi D_{\text{max}}^{2}} \left(\frac{x_{p}}{L}\right) \alpha^{2}$$

The values of η and $c_{d_{\mathbf{c}}}$ used in the calculations for the cylindrical body were 0.7 and 1.2 and were chosen from reference 5 and references 6 and 7, respectively. The plan-form area A_p , the body volume Q, and the location of the centroid of the body plan-form area x_p were determined from graphical integrations of suitable geometric parameters.

Center of Pressure --

A comparison of the center-of-pressure locations for the two bodies is presented in figure 7. The data for the cylindrical body were computed from the normal-force and pitching-moment coefficients of figures 5 and 6. The center-of-pressure data for the curved body were obtained from reference 1.

Detailed Aerodynamic Loads

The meridian normal-load distribution is presented for three Mach numbers (0.80, 1.00, and 1.13) through the angle-of-attack range in figure 8. This coefficient c_{nn} is defined in such a manner that the load perpendicular to the fuselage center line on a stringer section $Rd(\theta)$ wide is $c_{nn}qIR_{max}\ d(\theta)$. Accordingly, c_{nn} is computed from the graphical integration along a body meridian as follows:

$$c_{nn} = -\int_{0}^{1} \frac{D}{D_{max}} P d\left(\frac{x}{L}\right)$$

The longitudinal distribution of body cross-section normal loads at M=1.00 is presented in figure 9. The pressure data were computed by a graphical integration

$$c_n = \int_0^1 (P_L - P_U) d(\frac{y}{R})$$

The theoretical values of $c_n \frac{D}{D_{max}}$ were computed by the method of reference 4. The equation for a body of revolution may be written as follows:

$$c_n = \pi \left(\frac{dD}{dx} \right) \alpha + \eta c_{de} \alpha^2$$

DISCUSSION OF RESULTS

Pressure Distribution

The pressures over the nose of both bodies, forward of the 20-inch station, are very similar to each other through the range investigated (figs. 3 and 4). Some of the differences observed near the tip of the nose are due to slight differences in the body shape at the apex. In general, the pressures over the rearward portions of the curved body are lower than those over the rearward portions of the cylindrical body. The typically characteristic rearward movement of the shock location with Mach number increases may be observed in figure 3. At M = 0.99 the shock is located at approximately the 20-inch body station of the cylindrical body, whereas at M = 1.03 the shock has moved to the 37-inch body station.

The compressions shown for the cylindrical body in figure 3 at M = 1.08 and 1.10 at approximately the 30- and 34-inch stations, respectively, are probably due to the bow wave reflected from the tunnel wall and would not be evidenced in free flight. The expansions seen at the rear of the cylindrical body are caused by the air turning around the corner.

Normal-Force Characteristics

As shown in figure 5, the cylindrical body develops greater normal force at a given angle of attack and Mach number than the curved body. The change in normal-force coefficient with Mach number is insignificant at the lower angles of attack, but there is a small increase in normal-force coefficient with Mach number at the higher angles of attack.

The prediction of the normal-force coefficients by the method of reference 4 is rather accurate at the lower angles of attack. In general, the measured values fall well below the theoretical values at the higher angles of attack. As mentioned previously, alternative fairings permissible for the integrations would result in even lower values for the measured data. The cross-flow Mach number is less than 0.4 at the highest

COMPANIE TA L

stream Mach number and at an angle of attack of 20°. Accordingly, the values of $c_{\rm dc}$ are constant. Therefore, the theory does not predict the variation of normal force with Mach number shown by the measurements.

Pitching-Moment and Center-of-Pressure Characteristics

Examination of the pitching-moment data (fig. 6) indicates that the curved body exhibits either neutral or slightly unstable characteristics for the center of gravity at the nose or unstable characteristics for more rearward locations of the center of gravity. The cylindrical body exhibited more stable characteristics inasmuch as the center of pressure is located behind the 12-inch station for all conditions. It is also noted that the variation of the center-of-pressure location with Mach number is irregular and small (fig. 7).

The agreement of the measured pitching-moment coefficient with the theory is similar to that found for the normal-force coefficients. In general, when the normal-force coefficients are overpredicted, the negative pitching-moment coefficients are also overpredicted. Examination of the equations for $C_{\rm N_F}$ and $C_{\rm M_F}$, given in the section entitled "Presentation of Results," indicates that the probable cause for the disagreement noted between the measured and predicted coefficients is associated with the values selected for η and $c_{\rm d_c}$. Had lower values of $c_{\rm d_c}$ and η been used the agreement would have been better.

Detailed Load Characteristics

The maximum meridian load is developed at approximately the 105° meridian (fig. 8). It is observed that the loads do not vary appreciably with Mach number.

Examination of figure 9 indicates that although the cross-section normal loads over the forward portions of both bodies are similar, the loads over the rear portion of the cylindrical body are greater than those for the curved body. This is the reason that the pitching-moment characteristics of the cylindrical body are more stable than those for the curved body. The differences observed between the normal-force and pitching-moment characteristics for the two bodies are not caused by the added length of the cylindrical body.

Comparisons of the measured and theoretical values of cross-section normal-load coefficient indicate that the theory is in fair agreement with the measured values at angles of attack below 12°. The theoretical values show the same agreement at the forward and rearward portions of the cylindrical body. It is concluded that the errors between theory

-COMMITTAL

and measurement for the cylindrical body at the higher angles of attack are due to the inadequacy of available data for selecting η and $c_{d_{\mathbf{C}}}.$ The disagreement between the theory and the measurements at the rearward end of the curved body may be due to sting interference. It should be noted that, at angles of attack above 12° , integration of the curves of figure 9 does not give as large a value for $C_{N_{\overline{k}}}$ as those plotted in figure 5. The data presented for the cylindrical body in figure 9 have been faired consistently with the data of reference 1, whereas the data of figure 5 agree with the strain-gage data of reference 2.

CONCLUSIONS

Analysis of the results obtained from a transonic wind-tunnel investigation of two bodies of revolution, one incorporating a cylindrical afterbody, the other incorporating a curved afterbody, indicates:

- 1. The pressures over the nose of both bodies are very similar although higher induced velocities exist over the rearward portions of the curved body; however, the cross-section normal-force coefficient is greater over the rearward portions of the cylindrical body.
- 2. At a given Mach number and angle of attack, the normal-force coefficient for the cylindrical body is greater than that for the curved body.
- 3. The center-of-pressure location was more rearward for the cylindrical body than for the curved body. Consequently, the cylindrical body exhibited more desirable stability characteristics.
- 4. The variation of normal-force and pitching-moment coefficients with Mach number is rather small, especially at the lower angles of attack.
- 5. The maximum meridian load for the cylindrical body occurs at approximately the 1050 meridian.
- 6. The theoretical normal-force and pitching-moment characteristics of both bodies are in fair agreement with the results of this investigation.

Iangley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., December 9, 1953.

REFERENCES

- 1. Estabrooks, Bruce B.: An Analysis of the Pressure Distribution Measured on a Body of Revolution at Transonic Speeds in the Slotted Test Section of the Langley 8-Foot Transonic Tunnel. NACA RM L52D2la, 1952.
- 2. Loving, Donald L., and Wornom, Dewey E.: Transonic Wind-Tunnel Investigation of the Interference Between a 45° Sweptback Wing and a Systematic Series of Four Bodies. NACA RM L52J01, 1952.
- 3. Loving, Donald L., and Williams, Claude V.: Basic Pressure Measurements on a Fuselage and a 45° Sweptback Wing-Fuselage Combination at Transonic Speeds in the Slotted Test Section of the Langley 8-Foot High-Speed Tunnel. NACA RM L51F05, 1951.
- 4. Allen, H. Julian, and Perkins, Edward W.: A Study of Effects of Viscosity on Flow Over Slender Inclined Bodies of Revolution. NACA Rep. 1048, 1951. (Supersedes NACA TN 2044.)
- 5. Fluid Motion Panel of the Aeronautical Research Committee and Others: Modern Developments in Fluid Dynamics. Vol. I, S. Goldstein, ed., The Clarendon Press (Oxford), 1938, pp. 425, 439.
- 6. Lindsey, W. F.: Drag of Cylinders of Simple Shapes. NACA Rep. 619, 1938.
- 7. Stack, John: Compressibility Effects in Aeronautical Engineering. NACA ACR, Aug. 1941.

TABLE I
PRESSURE DATA, CYLINDRICAL BODY

(a) M = 0.60

x, in.								Pressu		icients	at row -							
х, ш.	8 = 0 ^C	0 = 45°	0 = 75°	e = 105°	6 = 135°	6 = 180°	+= 0°	8 = 45°			8 = 155°	8 = 180°	8 = QQ	e = 45°	8 = 75°	e =105°	4 = 135°	8 = 180°
			•	20°			,		œ.	16°					α.	120		
0.50 1.50 2.50 3.50 4.50 5.50 6.50	-0.657 -062 -057 -067 -070 -074	-0.265 161	-0.304 342 334	-0.221 268 298	0.078	0.126	-0.002 055 051 058 060 065	-0.158 141 141	-0.187 218	-0.100 1k1 179	0.109 .041.	0.300	0.027 025 051 056 046 051 059	-0.0 0 5 097 106	-0.094 127 140	-0.025 071 105	0.113	0.235
8.50 10.50 12.50 14.50 16.50 17.17 18.17	- 058 - 046 - 047 - 058	124 138 130 124 118	- 326 - 508 - 280 - 252 - 216 - 191	500 504 305 308 301	065 095 095 106 115	.156 .151 .146 .124 .125	049 040 4056 059 056 057	126 112 102 096 094	250 22 209 198 176	190 205 202 211 211	- 052 - 051 - 065 - 079 - 086 - 088	199 99	045 042 054 028 020 017 016	- 105 - 095 - 080 - 075 - 065	146 147 139 140 129 118	110 121 121 131 130	005 022 052 045 049 050	.092 .080 .065 .044 .044
19.17 20.17 21.17 22.17 25.17 25.17 25.17	046 038 056 050 026 027	099 094 091	- 167 - 175 - 164 - 149	285 272 266 260 253 256	106 100 097 096 092 095	.132	027 056 052 024 022 024	072 065 057	136 141 132 117	194 189 181 174 168 168	- 050	.0%	-,005 -,011 -,006 -,006 -,004 -,005 -,008	044 058 034	104 111 098 095	11A 110 102 101 099 100	~ 044 ~ 055 ~ 056 ~ 052 ~ 068 ~ 028	.048 .053 .054
26.17 27.17 26.17 29.17 30.17 31.17 32.17	- 026 - 028 - 054 - 055 - 056 - 043	~088 ~085 078 077	-107	-248 -254 -251 -244 -241 -241	- 081 - 081 - 094 - 095	.158 .158 .140	019 016 021 018 013	055 051 046 044	103 078 068 060	160 167 162 158 155 189	053 058 054 060	.076 .076 .082	009 011 012 010 007 012	~-051 052 025		095 096 096 098 098 095	025 025 025	.052 .054 .056
53.17 54.17 55.17 56.17 57.17 58.15 58.40	- 045 - 047 - 055 - 067 - 067 - 064	072	095 097	259 259 243	092 092 107	.138	019 018 015 024 030 036	056 057 040	050 056 057	145 141 147	061	.082	010 007 007 005 010 011	027 028 034	057 057 065	091 095 104	026 024 '057	.058
38.65 38.90 59.15	095 118 181	125	128	268 - 8°	-210	0124	046 065 151	-, 083	086	187	160	056	025 041 102	072	101 a.	~162	158	072
0.50 1.50 2.50 5.50 4.50 5.50 6.50	0.075 .011 004 010 025 029 059	-0.025 041 058	-0.01A 049	0.05A 012	0.105	0.176	0.115 .040 .021 .007 012 022	0.025 011		0.059 .01k	0.091	.065	0.175 .087 .049 .053 .015 001					
8.50 10.50 12.50 14.50 16.50 17.17 18.17	- 054 - 053 - 066 - 064 - 010	- 057 - 058 - 045 - 047 - 057	999999	052 062 068 070 068	.005 013 019 026 029	.056 .054 .054 .080 .080	059 059 058 051 051 026	-045 -046 -042 -045 -059	059 045 041 047 041	024 050 052 040 058	006 012 018 028 026	9 / / / / 6 9 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 /	- 016 - 027 - 029 - 034 - 028 - 029 - 020	i !				
19.17 20.17 21.17 22.17 25.17 24.17 25.17	.005 .010 .010 .021	01h 009	- 045 - 048 - 050 - 050	055 049 040 059 056 057	- 022 - 015 - 009 - 007 - 005	.027	- 615 - 615 - 611 - 607 - 605 - 605	020 01A 007	- 026 - 031 - 019 - 019 - 018	027 021 013 015 011 011	016 008 006 004 005 001	.000.	016 016 014 007 004 005					
26.17 27.17 26.17 29.17 30.17 31.17 32.17	.023 .024 .024 .024 .025	.001		050 055 054 055 050 029 026	.004 .006 .006	.045 .045	001 001 001 001 001	005 004 002	015	006 009 008 009 008 006	.002	- BB - B	001 001 001 001					
35.17 54.17 35.17 36.17 36.17 36.15 38.10	.024 .027 .027 .050 .028 .022	.006	002	024 052	.005 .007 001	.050	.001 .000 .002 .000 006	001 005	007	005 008 018	.004	.03. .03.	-000 -002 -001 -002 -004 -012 -015					
38.65 38.90 39.15	-005 059	029	O49	092	- 087	-,064	01k 028 054	047	066	085	087	- 085	025 036 065					

TABLE I.- Continued
PRESSURE DATA, CYLINDRICAL BODY

(b) M = 0.80

_										(p) N:	0.80								
									Press	ime coe	fficient					=	<u> </u>		- =:-
×,	in. 0 =	0° a =	45° 8	= 75°	0 = 105	9 = 13	5° e = 180°	0 = 0	-	_		_	-	e = 0°	9 - 45	e = 75°	1		
				a	_			+-			-	10.00	7 0 - 100	1000	>		-	0 = 135	6 = 190 ₀
0.	50 -0.	202		<u> </u>	1	Ť		-			160						= 12°		
1.	0	358						020	5					0.053					
3.	50	755 -0.	238 -	298	-0.205	0.10	0.394	- 03	-0.12	7 -0.175	-0.084	0.126	0.321	011	-0.07	-0.00	-0.014	0,126	0.247
3. 4.	0	69	257	-339	262	.024		056	-,12	219	156	.054		026		-			0.247
6.5	0	779	156	.545	291	053	-252	057	·				·	- 048	087	-,116	063	.060	
8.5	- 1	- 1				ì		066	1	1	181	005	.186	059	10	-143	092	.012	.125
170-2	0 0	45 :	149 - 148 -	•330 •306	305	- 065	.212	049 042	120			055	151	048	100	148	115	009	.094
12.5	0 0	47 ~	139 i -	267 258	315	- 08	.166	058 043	099	205	210	053	.127	042 053	093	-150	122	- 025	.094 .078 .064
16.5	0	<u>ر</u> کو		.198	317 308	109	.135 .134	II 056	1 089	191	~.218	085	1 .081	051	076	143	-, 137	050	.041
17.1	7 0		<u>. </u>	.171	299	120		- 058 - 059		·				020	066		154	053	-041
19.1					12,7		1		075	~-141	207	092	.074	017	~-055	117	128	055	.055
20,1	7 0	55	ioe -	144	284	109	.132	026 035	065	113	190	080		004					
22.1	7 [0	36	07	153	270	098		028		1 121	_ 788	071		012 005	~0+2	-100 -107	117	043 037	.046
25.1 24.1	70	51	/	129	257	- 096 - 094 - 085	.137	~.025 ~.022	062	~.110	-171	070	-089	004	- 058	095 087	100	- 055	.055
25.1	7 -0	<u>ي</u> ر	90 -	=	- 253 - 254	085 089	.158	020	- 055		- 161	059	.092	002	054		- 099	052	057
26.1			00		243	,					163	060		006		~075	096	027	
27.1 28.1	0	22		110	-240	076	.136	016	- 052	082	155 157	051	-089	006	050	ļ	090		-055
29.17	7 0	29		096	251		.137	020	047	064	157		.091	008	029		092	019	.058
30.1 31.1	0	0	æ	094	- 239	085	.142	-,018	045		157 149 145	053	.094	001	026		091	004	-060
32.17	0		81 -	095	237	079 089	.158	018	~. O+1	- 054	-145	049	.095	006	025		088	021	
55.17	02	s	_ _					016		,		0,4	1 .035		025		089	026	-059
55.17 54.17 55.17	- 0	0	77	091	256	094	.139	015	036	045	140	054	- 095	008	025	- 050	089	- 028	
36.17	0	40	77	092	236	- 086	.145	016	057	045	141	047	.097	005					.059
37.17 38.15	0		94	093	245	204	.115	021						002	027	054	090	024	.065
38.40	06	3	-	-				029	012	051	146	065	-071	~- 007	~ 035	- 009	205	040	.036
58.65	07							-,041											
58.90 59.15	17			127	268	217	-,027	061						-,020 059					
	1	-	21		80		027	150	090	088	191	171	- 067	104	080	104	175	156	094
		_	1	<u>-</u>	- T					α.=	70					a =	O _O		
0.50	0.09	8						0.142						0.198					
2.50 3.50 4.50	01	5 ~0. QI	84-0.0	no	0.039	0.116	0.18	.027	0.056	0.053	0.068	0.099	0.125	.062]
4.50	02	3)05	9	244	010	. 055		005	002	.005	.020	.044	-068	.041					
5.50	05	06	8	775	040	-010	-073	019						-005					- 1
8.50	04	1				- 1			054	027	010	.009	.051	012					
エルフリ	C4	06	5 - 0	851	058 068	005	.058 .058	056	041	059	027	008	.009	026					- }
12.50 14.50	05	05		72 I	071	024	.050	038 041	041	-042	- 056	022	~.00k	026					1
16,50	- 02	04	30			- 056	-012	030	- 059	048	042	031	021	055					- 1
17.17 18.17	016	05	0	65	071	034	.011	050	030	035	058	028		028					- 1
19.17	002		_	_ _			ı ı	035	-10,0	055	020	023	015	027					- 1
20.17 P1.17	004	i oz		50	058	025	-024	01/4		025	028	020	002	015					- 1
22.17	.006	~-01	: ::	: [2	- 051	- 016	.054	009		051	021	012		009					
23.17 24.17	.012	00	0		045	011		.000		015	- 011	010	.008	005					- 1
25.17	.013		0			006	.036	.001	006	014		001	.020	.000					
26.17		00		-	.055		.057		~ 005 -	i									1
27.17	.018	00		-	055	s 002		.001		OIA .	~008	,002	.006	.002					
19.17	.016				.055		.010	.005 .00L	004		010		.ബ.	.002					I
50.17	.018	.000		= =	055	.001	· Okt	.004	001 -		- 009	.001	.01k	.002					
2.17	.015	-002			-028	.005	.044	.003	001 -		008	.002	.012	.003			•		
3.17	.017]	[.005						.004					
5.17	.020	.004		7 -	.026	.005	.045	.00	.000	005	006	.000	.013	.005					
6.17	. ozk	.005	00	9 -	-025	.006	-052	-004	005	.007	- 008	.000	.016	005					
5.17 6.17 7.17 8.13	.016	002	07	6 -	.036	- 006		.001 -			-	-024		.000					
8.40	.013								، احسب	019	- (52)	-014	. 1	008					
			1				-	.011 -					11						,
8.65	• 006						-	- 020 -						02/4 02/4					- 1
8.65 8.90 9.15		059	06	0 -		.108		.020 - .028 -	051	.074	.099	.105		- 000 - 000 - 068					

TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY

(c) H = 0.85

								Pressur	ne coefi	ficients	of row		-					
x, in.	8 = 00	8 = 450	• = 75°	6 = 105°	8 = 135°	e = 180°	6 = 0 ²	8 = 45°	0 = 75°	8 = 105°	8 = 135°	e = 180°	6 = 0°	0 = 45°	0 = 75°	e = 105°	9 = 135°	8 = 180°
			e.	20 ⁰					a =	16°					e 1	120		
0.50	0.005						0.055						0.062					
2.50	- 054	-0.229	-0.295	-0.199	0.109	0.402	- 052 - 011	-0.125	-0.171	-0.079	0.133	0.328	017	-0.071	-0.084	-0.070	0.128	0.252
3.50 3.50 5.50	074 078	158	341	260	027		- 058	128	212	132	-057		042	086	116	062	.063	
6.50	009	160	~.349	292	~.051	.252	067	133	254	180	.000	.188	061	108	147	097	.016	.124
8.50	066 054	156 155 145	557 509	511 517	~062	.213	050 045	125 115	255 226	199	055	.150 .125	049 045	105 096	155 157	117	013	.096
12.50	- 059	145 141	268 255	318 324	098	.166	039 044	105 102	208	212	068	.110	- 052	082	1A7	- 132	040	.051
16.50	067	129	196	312	119	.129	059 041	091	165	217	090	.079	022	069	152	-,158	055	.037
18.17	070	116	- 169	305	124	.121	0\2	079	1/4	209	094	.072	021	058	120	135	~.061	.032
20.17	055	107	141	286	110	.130	~ 058	066	113	191	085	.085	006 014	043	099	122	048	.044
21.17	- 051 - 044	101	- 151 - 159	271	101	.136	- 050 - 026	060	122 110	179 170 168	072	.091	006 005	040	108	- 115	040 037	.052
25.17	- 059	095	-,126	- 259	097	-137	024 019	054	094	- 164 - 165	066 059	.091	004 004 007	055	007	100	~ 055 - 028	.052
25.17	053	091		~-25k 2k5	090	.157	022	052		154	060	.090	00,	055	015	099	050	.055
27.17 28.17	028	091	111	250	082	.158	017	048	065 065	- 155 - 155	051	.091	007 009	~ 052		095 097	023	.055
29.17	- 055	066		251	085	.142	019	044	-,000	- 157 - 152		.095	012	029		- 096	028	.057
51.17 32.17	- 051	086	095 095	259 241	082	.140	015	-,042	- 056 - 050	- 147	05k 048 055	-095	006 011	- 028		092	024	.057
33.17	039						017						~009					
外.17 55.17	040	082	095	258	095	.140	013 015	038	047	142	056	.092	006	027	~051	092	052	.056
36.17 57.17	045 051	085	092	240	087	.148	020	059	048	141	048	.098	005	~ 051	054	092	027	.061
38.15 38.40	057 065	~090	098	252	-,107	.116	024 027	047	057	150	064	.068	013	041	065	109	045	.054
38.65	075						059						022 041					
58.90 59.15	096 175	139	151	275	251	055	059 150	095	092	200	182	077	109	065	108	-,180	-,167	106
			•	- 8ª					u. =	40					•	- 0°		
0.50 1.50	0.105						0.155						.115 0.500					
2.50 3.50	007	-0.01)	-0.006	0.044	0.120	0.187	.021	0.041	0.056	0.075	0.105	0.150	.069 .047					
3.50 5.50	025	058	042	009			015	-000	.005	.028	.049	-073	.006					
6.50	049	066	075	042	005	.072	055	055 042	027	007	009	.051	010 015					
8,50 10,50 12,50	- 016	- 068	088	070	- 020	055	041	046	- 045	- 055	017	001	- 025					
14.50	- 058 - 024	059	086	- 005	01	.006	056 041 052	- 047	- 050 - 045	-0.5	031	022	- 055 - 050					
17.17	- 022	057	~.066	076	059	.009	- 050	051	056	057	026	015	028 025					
19.17	~.002						015						014					
20.17	006	022	049	060 051	028	.025	011	015	025	026	018	001	015 008					
22.17 25.17	.008	015	01 059	045 043	015	-055	.000	011	- 016 - 013	012	002	<u>-7</u> -	005					
25.17	.015	009	050	041	007	-054	.005	006	013	006	001	-015	.002					
26.17	.017	006		055 054	-000	.056	.004	005	012	~007	.004	.00.1	.005					
27.17 28.17 29.17	999	~005		- 055		-040	.005	002		006		.014	.004					
30.17 31.17	.018	001		- 051	.000	.044	.006	.001		- 006	.005	810.	.006					
32.17	.016	.000		- 029	.002	.046	.005	001		005	.005	.03.6	.004					
55.17 54.17	.01.7	.005	008	029	.002	.046	.006	000	005	004	.005	.016	.004					
54.17 55.17 56.17	.017	.005	010	029	.005	.051	.004	005	006	006	.004	.018	.005					
57.17 58.15	.015	006	019	011	007	.029	007	015	019	022	012	004	011					
58.40 58.65	.001						011						015					
38.90	016	043	-,067	111	116	095	050	053		105	110	110	027 044 072	Δ				
39.15	0(1		007	1.14	110	~.050	070	055	~077	105		110	~012	L				

TABLE I. - Continued
PRESSURE DATA, CYLINDRICAL BODY

(d) K = 0.90

	T							Pressy	re coef	Ticient	of row	-						
x, in	6 = 00	0 = 450	8 = 75	0 = 105	0 = 155	e = 180°	8 = 00	7		_	1	8 = 1800	0 = 00	6 _ k=0	8 = 75°	0 = 105°	e = 135°	0 = 180°
	1		a				1	1 .		= 16°	10-27		1	10-47	a .		133	100-
0.50 1.50 2.50 3.50 4.50 5.50 6.50	054 051 058	-0.218	540	255	0.120	0.407	0.047 007 028 059 055 060 070	-0.115	-0.165	-0.068	0.141	0.334	0.076 .002 015 018 041 050	-0.065	-0.076	-0.002	0.156	0.259
8.50 10.50 12.50 11.50 16.50 17.17 18.17	069 059 060	162 162 153 149	- 542 - 514 - 268 - 256	516 525 527 529	064 086 105 121 129	.214 .185 .164 .127 .125	- 055 - 049 - 042 - 049 - 045 - 045	126 126 107 096	239 230 211 198	204 215 219 250 225	054 059 073 091 097	.150 .122 .106 .072 .073	- 063 - 052 - 058 - 058 - 057 - 027 - 022	108 106 100 085 085 073	147 157 158 149 151 136	097 120 130 135 147 142	-015 -052 -042 -058 -062	.126 .095 .073 .058 .053 .053
19.17 20.17 21.17 22.17 25.17 24.17 25.17	059 067 055 047 040 055	110	136 145 134 125	- 286 - 264 - 262 - 260 - 255 - 255	116 099 099 097 086 088	.129	028 042 054 027 026 022 024	068		-,196	085 076 079 070 061 063	.080	007 016 008 005 004 007	045 058 055	100 109 092 065	121 111 101 101 097 097	050 040 057 055 028 029	.044
26.17 27.17 28.17 29.17 50.17 51.17 52.17	026 050 055 050 052 038	095 095 088 088	110 099 097 095	247 242 249 242 254 258	08e 084 079 088	.136 .138 .142	019 021 021 019 015 019	055 050 047 046	- 062 - 065 - 056 - 053	159 158 159 161 153 147 148	054 058 051 056	.088	07 009 012 007 008	053 052 028 029		- 090 - 090 - 095 - 098 - 095 - 089 - 089	022 028 024 028	.052 .055 .058
35.17 34.17 35.17 36.17 37.17 38.15 38.40	059 054 045 049 058	084 086 097	095 095 106	240 242 255	095	.138	- 019 - 016 - 015 - 024 - 029	040 042 050	049 050 060	145 157	058	.092	009 006 007 006 010 013	028 051 043	050 054 068	090 090 110	029 026 043	.057
58.65 58.90 59.15	069 090 162	-,145	136	286	266	040	058 055 126	-,102	097	-,213	200	085	025 040 111	091	-,111	195	-,180	111
	<u> </u>		α.	- 8°					G-1	40					G =	O _O		
0.50 1.50 2.50 5.50 4.50 5.50 6.50	0.115 .052 .004 004 025 056 052	-0.006 055 068	0.001 059 076	0.050	0.126 .062	0.194	0.166 075 040 024 .000 016	0.048	0.064	0.079	0.109	0.136	0.221 .120 .075 .051 .028 .007 012					
8.50 10.50 12.50 14.50 16.50 17.17 18.17	- 559 - 547 - 558 - 588 - 588	069 071 060 061 051	087 090 084 091 079	059 070 087 081	005 024 029 045 042	.052 .055 .025 .005 .007	059 044 040 046 055 055 028	- 045 - 048 - 045 - 049 - 041	- 047 - 044 - 054 - 057	050 058 058 051 045	010 021 024 056 053	.007 002 006 026 018	015 028 028 040 055 051 029					
19.17 20.17 21.17 22.17 23.17 24.17 29.17	006 009 .000 .010 .012	021	051 060 043 040	062 053 046 045 040	029 019 017 015 010	.020	016 013 009 005 .001 .002	015	024 055 014 015 015	027 019 015 010 009 008	019 010 007 004 002 .000	.013	015 014 010 002 .002 .005 .002					
26.17 27.17 28.17 29.17 50.17 31.17 52.17	015 013 015 015 015	008 007 004 002		055 056 057 058 054 052 051	002	.052	.005 .005 .002 .005 .005	002 000 .002	00.4	006 008 007 008 007 004	.003 .001 .004 .005	.010	.005 .004 .005 .007 .004					
55.17 54.17 55.17 56.17 57.17 58.15 58.40	015 015 017 012 007	.002	013 014 025	029 029 043	005 .002 012	.041	.005 .005 .005 .005 001 010	.001 003 018	003 007 021	006 009 086	.005	.015	.005 .006 .002 .005 002 015					
58.65 58.90 59.15	002 019 078	050	076	127	-, 152	109	021 035 062	057	-1082	115	-,192	119	053 049 079]

TABLE I.- Continued
PRESSURE DATA, CYLINDRICAL BODY

(e) X = 0.95

	T							Pressur	e coeff	icients	of row -							
x, in.	8 = 0°	8 = 45°	9 = 75°	6 = 105°	9 = 135 ⁰	e = 180°	6 - 0°	_	• - 75°	,	,	e = 180°	8 = 0°	0 = 45°	8 = 750	0 = 105°	0 = 135°	• = 180°
			•	_		-			/	160	1 -22					12°		- 200
0.50	0.041	·					0.062				Ī		0.094	T				
0.50 1.50 2.50 3.50 4.50 5.50 6.50	021	-0.200	-0.278	-0.170	0.134	0.421	022	-0.107	-0. 155	-0.057	0.151	0.342	006	-0.056	-0.066	0.007	0.146	0.266
4.50	052 069 080	155	~331	244	.046		- 058 - 056	123	207	119	.067		012 058	081	108	050	.075	
6.50	- 097	170	359	294	024	-257	065 079	140	240	184	.000	.187	052 063	-,115	152	096	.018	.126
8.50 10.50	079 066	169 168	350 317	516 541	065 096	.215 .180	065 061	134	245 258	208 226	057 065	.118	059	112	165	121	~016	.095
12.50 14.50	062	- 160 - 156	266 258	545 557 542	108	157	- 055	116	- 215	- 226 - 242	060	.098	056 044 046	- 002	- 165 - 154 - 160	137 139	- 057 - 048 - 069	054
16.50	072	142	194	342	134	.119	- 055	102	173	- 255	106	.066	052 050	- 095 - 080	143	- 137	069	.026
17.17	076	127	166	326	139	.108	052	088	147	223	108	.058	027	-, 068	127	143	070	.025
19.17 20.17	061 068	113	13k	299	119	-125	- 055	071	111	201	090	.075	050	047	101	124	055	.040
21.17	064	107	- 136	269	108	-130	- 055 - 041 - 055	064	122	179	078	.085	01.0	042	112	112	055 042 058	.049
25.17 24.17	042	098	125	258	099	.134	052	057	091	169 166	072	.088	006	036	005	101	- 055 - 050	.053
25.17	057			259	096		051			164	066		009		070	098	050	
26.17 27.17 28.17	029	096	117	248 258	084	.151	025	055	085	- 158 - 155 - 161	054	-086	010	054		- 092	022	.051
29.17	055	091	105	259 256 246	091	.135	026 029	055	067	- 161	_	.069	02	054		- 097		.055
31.17 32.17	051	092	100 101	- 246 - 246	- 084	.134	- 021	050	059 057	157 151 151	057 054 060	.090	010 010 015	050		095 091 092	028 026 050	.056
	040						025	0,0	051				013	052		092		.0,0
55.17 54.17 55.17 56.17	058 04k	090	099	246	100	.137	023 017	043	055	147	061	.089	- 010	051	052	092	051	.055
56.17 57.17 58.15	045 051	092	102	252	095	.142	015 025	047	058	148	~ 055	.095	011	054	056	094	029	.065
56.15 58.40	~ 057 - 059	104	118	267	112	.112	027	058	~072	165	069	.069	020	052	075	112	045	.059
18 6s	064						035						050					
38.90 39.15	080 159	159	146	562	251	029	048	115	114	267	505	065	045 101	102	130	227	178	092
			Œ	= 8°						40					a.	• 0°		
0.50	0.131						0.180						0.255 .151 .062					
2.50 3.50	.002	0.000	0.008	0.056	0.135	0.201	.048 .025	0.055	0.071	0.086	0.117	0.142	062 057 054					
4.50 5.50 6.50	021	~052	056	001	.067	=	.001 8.00	-006	-011	.050	-055	.078	.009					
8.50	058 056	072	079	~, OAA	.010	.071	041	-,057	052	01)+	-011	.029	015					
10.50	- 059	077 080 069	098	- 065 - 079 - 080	010 029 034	.048 .027 .019	045 054 047	048 057	047	- 055	~026	007	019					
12.50 14.50 16.50	- 055	- 061	101	096	- 056 - 052	009	- 056 - 046	050 061 050	- 051 - 064 - 055	- 023	~.028 ~.049 ~.042	011 056 026	- 055 - 034 - 047 - 059					
17:17	035	047	079	095	051	004	044	058	046	047	058	025	- 058 - 054					
19.17	011						022						020					
20.17	013 005	028	- 057 - 065	- 066 - 055 - 048	- 025	.015	- 018 - 014	017	- 026 - 036	029	- 025	005	- 015 - 015					
22.17	.007	020	048 044	045	018	.027	001	012	- 016	075	004	-007	005					
25.17	.007	016	056	044	07T -		001	004	015	011	002	-011	.002					
26.17 27.17	.008	015		058 057	006	.050	001	004	017	006 007	001	.010	.001					
28.17	.008	014		057 040 042		.053	001	004		- 007		.013	.002					
30.17 31.17	.009	010		058	008	.056	-001	001		008	001	.01k	.006					
32.17	.005	010		- 055	005	.056	- 001	004		006	.002	.015	.001					
55.17 54.17	.005	008	019	055	007	.058	.000	005	007	008	.001	.015	.002					
34.17 35.17 36.17	.005	~010	022	056	004	.043	007	006	010	012	-001	.015	.001					
38.15	001	024	057	052	017	.022	006	026	051	~.050	016	-,006	006					
38.40	007						020						027					
58.65 58.90	016						050					==	040 061					
39.15	090	066	099	161	150	105	071	068	102	134	1AI	136	093					

TABLE I.- Continued
PRESSURE DATA, CYLINDRICAL BODY

(f) N = 0.98

								Press	ure oce	fficient	s of row	3-1-						
x, 1	B = 0) 0 = #	5° 0 = 7:	5° 0 = 10,	s° s = 13	0 = 180	0 = 0		_	,		-	0-00	0 = 450	0 = 750	0 = 105	0 = 155	9 = 180
				r = 50 ₀						- 16°				1:	>	- 12°	10.1.27	10-200
0.5 1.5 2.5 3.5 4.5 5.5 6.5	0 00	0 -0.16 414 814	131	. 236	.058		0.08 -020 -020 -023 -043 -053	-0.09	719	7112	.079	0.3%	0.111 .025 .005 005 032 046 070	-0.042	-0. 055 056 251	0.022 044	0.155	0.276
8.50 10.50 12.50 14.50 16.50 17.11 18.11	06	2 - 18 0 - 16 5 - 17 2 - 16 2 - 16	3433 3826 3224 5221	0 - 356 7 - 359	062 095 125 157 159	.180	060 074 082 087 047 048	12	22	9244 6247 1242 3262	071 093 106	.1k9 .112 .091 .061 .049	065 065 .047 065 043 059 051	116 116 095 108 089	176 161 179	125 149 144 174 162	016 047 054 080 060	.092 .061 .049 .013 .024
19.17 20.17 21.17 22.17 25.17 24.17 25.17	- 06 - 05 - 05 - 04	10	713	6 - 305 2 - 246	- 112 - 111 - 108 - 091 - 093 - 090	.129	026 061 040 026 027 022	072	09	186	105 071 067 060 068	.072	008 021 009 004 005 004	047 040 055	100 117 087 081	127 106 099 098 097 097	- 056 - 043 - 043 - 056 - 050 - 051	.058
26.17 27.17 28.17 29.17 50.17 51.17 52.17	- 050 - 050 - 050 - 050 - 050	09	710	6 - 262 - 261 - 272 - 248	083 	.152 .134 .137	018 022 024 019 011 018	054 054 049	08 06 05 057	- 170 - 169 - 159	055 057 055 060	.087	011 012 015 010 011 017	053 054 051 052		095 085 097 099 095 095	025 050 028 051	.051
55.17 54.17 55.17 56.17 57.17 58.15 58.40	- 066	09	10	255	100	.135	022 017 025 020 055 041 041	045 050 067	054	148 150 161	059 053 064	.089	015 015 016 013 020 051	052 056 057	050 057 075	094 096 111	052 029 040	.055
58.65 58.90 59.15	074 065 126	1	190		232	005	052 057 095	240	155	274	-,177	053	042 052 097	-,126	169	229	157	066
	-	_	Œ.	= 8º			<u> </u>		α.	40						O ^O		
0.50 1.50 2.50 5.50 4.50 5.50 6.50	0.149 020 010 - 014 - 055 - 059	0.012	027	0.069	0.144	0.210	0.199 .099 .062 .059 .019 009	0.065	0.081	0.096	0,126	0.155	0.255 .145 .094 .065 .042 .014					
8.50 10.50 12.50 14.50 16.50 17.17 18.17	- 060 - 063 - 052 - 069 - 049 - 045	078 084 069 087 070	105 091 117	090	009 057 043 071 063	.048 .021 .012 022 013	045 052 045 067 049 046	- 049 - 060 - 049 - 075 - 056	048 059 051 079 061	055 048 043 076 060	015 075 072 048 048	.001 014 015 052 054	020 057 053 065 047 047					
19.17 20.17 21.17 22.17 25.17 24.17 25.17	- 015 - 015 - 002 - 005 - 007 - 009 - 008	026	056 067 044 042	070 058 050 048 047 046	057 024 020 018 015	.024	018 016 008 .000 .002 .004	018 011 004	028 037 016 013 012	050 022 015 009 008	026 014 004 002	006 008 011	020 018 012 002 .002 .002					
26.17 27.17 28.17 29.18 30.17 31.17 32.17	.006 .005 .008 .004	014 014 013		041 058 045 045 040 040	008 012 009 011	.051	.004 .004 .005 .007 .015 .002	003	016	005 009 010 011 009 007	.001	100. 110. 110.	.005 .005 .002 .007 .002					
33.17 34.17 35.17 36.17 36.17 37.17 38.15 38.40	.001 .005 .000 .000 008 022 025	012 016 057	025 028 047	041 043 058	012	.051	.003 .001 001 009 024 050	002	006 012 032	008 011 029	002	.012	.005 .004 .001 .000 ~007 ~024					
58.65 58.90 59.15	- 055 - 050 - 105	095	-, 1k0	179	145	095	042 056 085	085	125	158	146	132	047 074 117					

17

TABLE I.- Continued PRESSURE DATA, CYLINDRICAL BODY

(g) N = 1.00

										icients	of www.							
x, in.	0	n		6 =105 ⁰	e = 135°	9 18/0	0 = 0°	0 = 45°			0 = 235°	e = 180°	* = 0°	8 = 45°	9 = T5°	0 = 105°	0 = 135°	s = 180°
-	8 = Q _Q	e = 45°		20°	150	- 100		***		16°		0 - 220	1-0	>		120		
0.50	0.078						0,106						0.129					
1.50	.007 018	-0.125	-0.259	-0.138	0,164	0.442	.057	-0.078	-0.127	-0.026	0.180	0.369	.010	-0.050	-0.041	0.054	0.170	0.269
3.50	- 054 - 046	131	514	- 219	.075	_	026	097	174	100	.093		018	059	088	028	.095	
5.50 6.50	- 067	165	552	279	005	.270	047 066	-,132	227	168	.015	.205	054 065	-,107	-,1A1	080	.026	.138
8.50	078	168	355	317	052	.219	059	131 142	241	205	030	.156	056	107	158	119	011	.097 .065
10.50	082	- 181	- 295	- 550 - 565	095	.185 .150	070	- 136 - 139	255 259 241	255 251	- 069	.071	070	117	177 175 189	146 158 182	043 065 068	.043
14.50 16.50	115	187 176	265 225	378	146 160	.106	095 061	149	212	272	125 138	.050	00	118	176	102	- 097	.005
17.17 18.17	122	170	205	570	168	.080	096 091	136	194	-,273	152	.024	067 065	108	169	189	109	012
19.17	105	138	-,164	347	750	.088	067 052	111	1k7	250	~158	.058	-, 042 057	072	134	165	096	.000
20.17	084	078	- 100	- 525	- 159 - 149 - 158	.105	070	075	110	220	125	.054	.001	021	- 059	155	- 079	.046
22.17 25.17 24.17	028	086	086	- 193	- 072	.161	.001	- 054	062	- 179	092	.099	.019	020	056	069	011	-077
25.17	05T 025			218	070		.001			126	052		.007		050		014	
26.17	056	086	105	255	072	.148	006	058	061	128 151 157	051	.115	004	024	===	072	OIA	.066
27.17 28.17 29.17	026	054	096	- 256		.140	010 018	047	- 057	156		.107	015	050		096		.061
50.17 51.17	055	079	087	259	087 078	-137	015	044	062	- 151	055 051	.097	008	028		096 091 095	051 025 052	.058
32.17	044	080	005	232	067	,136	009	048	062	154	058	.009	015 015	052			052	.001
35.17 34.17	- 018	-,080	086	226	090	.138	018 012 018	O47	058	155	065	.085	008	050	049	091	053	.057
35.17 36.17	055	062	087	250	~.080	.146	016	048	058	~.150	054	.095	018	054	054	092	026	.065
37.17 38.15 38.40	065 077 065	105	106	-,240	091	.126	-042	067	070	- 155	059	.081	055 058	057	070	105	055	.048
38.65	~095						~061						056					
58,90 59,15	- 109	-,214	220	347	201	.018	082	185	- 195	260	156	009	076 119	171	201	214	135	042
-		1		= 8º						- 4°				•	Œ.	- 0°		
0.50	0.162						0.211						0.226					
2.50	.068	0.022	0.055	0.082	0.155	0.221	072	0.076	0.090	0.106	0.138	0.164	.104					
2.50 3.50	002	013	016	-016	.083		- 005	.029	.028	.046	.073	-097	.055	1				
6.50	051	065	1	058	.02.6	.078	034	05	027	1	.018	.058	006					
8.50	070	071	087	065	005	.051	- 058 - 065 - 065	041	042	- 055	009 058	~018	01A					
12.50	067	100	- 109	102	- 079 - 079	050	ll ~.000	00	000	062	069	- 029	050 069					
16.50 17.17 16.17	072	09	120	124		051	015	080			070	056	070					
1	066	086	-116	127	090	040	075 057	076	00	005		-10,5	051					
19.17	045 026	043	076	100	- 074 - 057	025	045	O4	05	062	059	-,042	059					
21,17	.022	00		057	008	.040	.020	.00		.00k	.006	.022	.020	1				
25.17 24.17 25.17	024	00	00	051	001	.043	.019	.01			.016	.051	.017					
26.17		00	1	056		.034	I			.005		.020						
27.17	.002	01		051 043	~.005	.050	.006	00	-01	006	.008	.016	.006	i				
29.17 50.17	.006		-	048	014	.051	.001	00	2	009	001	.013	.00					
51.17 52.17	.007	01	=	042	011	.029	002		5	007	.000		.006					
55.17	.005			O41	014	.068	.000	00	00	7007	.001	.013	.00					
54.17 55.17	.000				011	.020	00		-		.001		.00	2				
36.17 37.17	010				019	.020	008	3	-		010		00	5				
38.40	035		7				057		-	-		-	029	'				
38.65 38.90	073		1==		=		- 052	31			=		OH	1				
39.1	- 12	15	717	176	129	078	122		5 15	6159	139	115	14	r				

TABLE I. - Continued
PRESSURE DATA, CYLDURICAL BODY

(b) H = 1.05

	T							Pressu	ure coef	ficient	of row							
x, 1	9 = 0	9 = 45	0 - 75	0 8 = 105	0 = 135	9 = 1809	8 = 0°	7			1	0 = 180	0-00	0 = 450	0 = 750	8 = 1050	8 = 1550	8 = 180°
Г			α	= 20°					α	- 16°		_				- 12°		
0.54 1.55 2.55 3.55 4.55 5.56	0 -012	-0.090	27	179	0.197	0.467	0.127 .058 .040 .021 .011 008	-0.057	-0.106	0.000	0.200	0.388	0.158 .072 .046 .044 .015	0.001	-0.009	0.065	0.197	0.316
8.50 10.50 12.50 14.50 16.50 17.17	051 057 065 101	- 135 - 155 - 160 - 176	30 27	6275 314 335 337	014 057 085 121 144	.502 .251 .214 .176 .127 .115	029 040 046 081 082 096	094 093 107 112 135 157	215 225	127 162 194 219 250 262	.052 .008 051 065 101 124	.255 .188 .151 .118 .070	- 027 - 029 - 045 - 044 - 063 - 059 - 068	070 077 092 089 107 108	104 127 150 155 175 171	049 087 138 157 176	.055 .021 014 040 074 090	.166 .194 .095 .004 .025
18.17 19.17 20.17 21.17 22.17 23.17 24.17 25.17	125 125 116 107 106 094 085	166	192 191	571	162 166 163 162 157 122 138	.086	- 088 - 084 - 076 - 071 - 078 - 067	159 129 119	197 175 176 156 158	272 267 252 242 251 219 216	146 138 137 134 118 112	.050	070 077 075 078 045 045	096 091 076	171 155 160 144 132	186 180 162 154 155 149	105 094 088 087 080	007
26.17 27.17 28.17 29.17 30.17 31.17	064 064 068 062	128 124 112 102	135 125 111 107	285 291 278 278 267	115 124 104 110	.106	060 054 060 050 054 058	096 091 081	113 099 067 061	199 198 205 201 191 180 178	- 092 - 098 - 085 - 087	.049	045 055 055 056 025 .000	071 062 049	105	139 132 122 130 126 122 111 107	077 065 059 050 050	.027
33.17 34.17 35.17 36.17 37.17 38.15 38.40	053	090	095 078 075	259 222 208	107	.138	041 029 018 .000 015 011 015	058 059 041	069 047 046	167	085 060 044	.067	021 005 .016 .057 .055 .018 .014	027 004 008	009 018	09A 055 050	042 005	.080
58.65 58.90 59.15	055 050 056	135	136		159	.052	023 028 057	191	129	-,219	122	.022	005 021 062	115	140	161	085	.005
	2.06		4	- 8°						40					α =	00		-
0.50 1.50 2.50 3.50 4.50 5.50 6.50	0.186 .091 .058 .052 .055 .015	0.050	0.058	.052	0.179	0.242	0.256 .155 .101 .078 .057 .056 .008	0.105	.060	.079	.102	0.186	0.288 .180 .131 .107 .085 .059					
8.50 10.50 12.50 14.50 16.50 17.17 18.17	018 044 052 070 070 075 072	- 057 - 065 - 070 - 090 - 091	052 083 094 118 117	027 062 085 114 119	.029 012 057 067 078	.085 .046 .021 017 026	005 055 045 064 066 069 071	009 039 048 071 075	008 058 050 075 079	.005 025 042 076 076	- 024 - 007 - 026 - 056 - 065	.042 .012 009 043 048	.019 018 058 064 065 072 072					
19.17 20.17 21.17 22.17 23.17 25.17 25.17	060 063 057 046 040 033	074 072 059	108 114 099 095	119 100 105 098 095 095	086 075 067 061 062	054 020	061 060 059 049 042 057	063 064 049	- 068	076 060 064 055 054 051	069 057 054 051 045	050 057 029	065 062 060 050 040 041					
26.17 27.17 28.17 29.17 20.17 20.17	022 020 025 015 015	051 045 038 028		080 067 076 076 072 062 058	047 044 055 054	.006	051 028 025 017 017	057		040 057 040 056 050 025	051 051 025 020	032 019 013	029 021 027 015 080					
5.17 4.17 5.17 6.17 7.17 8.15 8.40	005 .018 .050 .040 .058 .029	-,002 .025 .012	013 .015 .008	059	017 050 055	.022	004 .006 .017 .052 .056 .025	.000	.019	008 021 027	.029	.006	005 -014 -053 -050 -055 -057 -026					
8.65 8.90 9.15	.009 010 061	-,069	104	119	074		.005 017 057	055	087	-,102	085	067	.008 024 086					

TABLE I. - Continued PRESSURE DATA, CYLLEDRICAL BODY

(1) N = 1.08

							Pressi	ure coef	ficient	of ros	· -							
x, in.	8 = 0°	8 = 45°	0 = 75°	e = 105°	8 = 135°	e = 180°	8 = 0°	6 = 45°	9 = 75°	8 = 105°	e = 155°	9 = 180°	8 = 0º	8 = 45°	9 = 75°	6 = 105°	9 = 155°	e = 180°
			œ =	20°					α-	160					œ.	120		
0.50	0,112						0.192						0.124		<u></u>			
2.50	.001	-0.097	-0.228	-0.099	0.205	0.471	.017	-0.069	-0.104	0.000	0.202	0.384	.057 .049	-0.004	-0.013	0.062	0.197	0.317
3.50 50	009	105	280	174	.113		005	065	1kk	066	.125		.026	017	046	.009	.128	
5.50 6.50	025	114	505	257	.039	.303	055	~097	186	124	.056	.254	025	062	096	043	.060	.169
8.50 10.50	058	~.139 175	316 326	269 318	010	.255 .214	034	107	225	177	.001 840	.184	051 052 05	078 085	126 152	084	009	.128
12.50 14.50	071	~157 156	270 207	- 554 - 565	092 114	.172	057 045	108 111	202	- 205 - 248	055	.089	077	- 087 - 115	150 178	141 164	047 068	.063
16.50	072	150	170	522	129	.125	052	102	160	248	111	-075	- 032 - 057	085	151	- 165	082	.016
17.17	065	139	162	329	130	.117	051	100	146	229	115	.047	053 016	077				.025
19.17	087	-,122	143	508	120	.125	046	089	119	220	106	.062	017	055	108 109	- 144 - 192	075 064	-027
21.17 22.17	067	101	144 126	294 506	111	.124	045	085	111	- 192 - 182	094	.065	- 007	045	062	105	050 054	.057
25.17 24.17	059	094	109	266 255	111	.125	056 056	075	099	- 176 - 181	071	.076	.021	007	051	- 064	026	-055
25.17	065	-,104		249	096	.151	059	.002		156		.089		021		059		.094
27.17 28.17	060	100	110	- 249	079	.135	.054	012	.001	062	.005	.163	- 015	Oh1		071	001	.085
29.17	056 049 010	061		- 255	055	.174	- 025 - 054 - 068	- 055		140	046	.119	043	056		101	055	:050
31.17 32.17	- 019 - 058	068	071	207	- 017	.189	068 061	076	076	- 169 - 184	- 059	.072	009 015	-,022		075	001	.108
35.17	049						068			-,188	098	.054	01 015	052	064	124	045	.056
55.17	058 070	087	100		099	.145	065 062	080	094	195	095	.065	029	050		126	060	.038
36.17 37.17 38.15	- 082	-,109	-,114	274	111	.128	069		097	196	101	.042	- 052 - 045 - 048	07		139	073	.008
38.40 38.40	100 099	126	-,124	275	126	-097	075	~ 096					048					
58.65 58.90	105 111	===					079 081			=			052 062	18	169	185	-,115	025
39.15	12	226		-0	171	.060	098	204		245	1k3	.007	088	10		= 00		02)
				- 8-	_		0.206	T		Ī	T	T	0.246					
0.50	0.152 .062	0.059	0.046	0.095	0.175	0.241	.107	0,066	0.100	0,114	0.149	0.177	.169	1				
2.50 3.50 4.50	.051				.110		.061	.056	-	.077	-099	.124	.090	1				
5.50	017	050			.050	.108	.055	.006			.050	.067	.026					
8.50	025	Oh?	059	056	.018	.074	009	01	015	.001	-016	.052	.012					
10.50	010	079	106	094	006 038	-024	028	050	055	059	006 018 062	.009 .005	018					
14.50 16.50	055	080		091	071	020	054	060	069		056	039	029					
17.17	058 042	06	107	106	061	00h	066 056	~ 06	068	057	056	016	057					
19.17	024	05	5070	160-	065	009	025 021	026	5040	050	053	051	042 046					
21.17	017	05	073	066	047 057	.00k	020	02	044	027	031	001	017	3 I				
25-17 24-17	.008	·	052	- 060	037	.024	.001	00	- 013	015	009	.003	001	!				
25.17	.010	-	05	052	024		.016		-	009	~005		.009	'				
26.17	.035	00		- 059	-,005	.018	.041		-1 -013	.005 .017	.019	.006	.051					
28.17 29.17	.058	·	-	006		.068	.010)		040	.050	·	059					
30.17	.011			006 050 051	.036 .009 018		.019 .014		_	- 010			00	[
32.17	027		1	07			00	, l	_				02	<u>.</u>				
34.17 35.17 36.17	- 023	05			047	005	- 012	02	-	-	054		07	5				
36.17 37.37	- 01	0		_	050	—	020	03		-			05	١.				
57.17 38.15 58.40	1 OH	∍.co	2 07	2089	054	017	042 050		05	2 - 051	040	052	05					
58,65	051	,	-	-			06		_				04	2				
58.90 59.15	10	17	217	6152	109	058	1k6	-15	6 15	6 -,134	111	091	14	3				

TABLE I.- Continued
PRESSURE DATA, CYLENDRICAL BODY

(j) H = 1.10

									(3) H=	1.10					_			
						·		Press	ure coef	ficient	of row		<u></u>	-				
x, in	0= 00	9 - 45	° e = 75°	8 = 105	0 = 135	0 = 1800	6=00	6-45	9 = 75°	0 = 105	0 - 155	0 - 180	0-00	0=450		8 = 1050	0 = 155°	9 = 180 ⁰
		•	•	= 20°		,				= 16°			1		4		10-10	10-100
0.50	0.097				T		0.119	1		T	T		0.117	_		1	γ	
1.50 2.50	.006	-0.092	-0.22	-0.089	0.215	0.476	.051	-0.06	-0.098	0.001	0.205	0.390	.010	-0.023	-0.031			
5.50	012			161	.123		.024					0.590	.041			0.045	0.175	0.290
5.50 6.50	058						014	06	. {	066	.125		.002	~017	045	.006	.125	
1		1		.—.	.051	.511	051	095		127	.055	.254	017	057	- 093	041	.066	-177
8:50 10:50	042	160	al - 307	271	048	.260	029	094	201	161	022	.187 .157	025 048	069	- 118 - 146	079 112	010	.129
12.50	090	167	246	375	075	.181	055 085	- 116	217	- 245	077	.062	027	078 096	- 155 - 158	151	028	.074
12.50 14.50 16.50 17.17	095	160	185	374	139	.119	063 068	122	193	255	097	.065	069 054	111	-170	168	077	.021
18.17	090	155	165	314	155	.096	056	204	166	256	110	.066	049	092	~165	186	102	.000
19.17	090	138	145	515	118	.112	049	090	305	235			057					
21.17	089	-,125	145	302	-114	,119	- 047 - 048	085	- 124	210	- 129	.051	024	070	- 121 - 119	159 152	105	.001
25.17	067		127	267	-,116		055		087	200	094	-079	022	065	- 104 - 004	120	065 048	.015
24.17 25.17	069	110		- 265 - 269	099 087	.123	028 058	069		171	069	.077	014	049	071	111	041 044	.046
26.17		080		258		.152		067		167		.076		045		201		5.0kg
27.17 28.17	~.029	075	~. 093 082	- 258	086	.127	040 059	071	087	168	064	.080	051 .034	024		095	052	.052
29.17 30.17	- 054 - 047	077		246	097	.122	059 040 051	055		179 181		.074	.015	005		- 089		
51.17 52.17	012	083	067	187	097 081 059	.125	008	.016	045	165	079 074 068	-074	.015	019		061	028	.052
55.17	066			-1211	-20039		.045	.010	.005		000	.0/4		019		056	006	-055
5k.17	061	~065	~.066	215	059	.164	.094	.005	.004	064	.060	.202	016	050	O43	065	016	.080
35.17 36.17	013	037	052	179		.224	024	059	044	136	026	.159	017	026	042	074	00A	.087
37.17 58.15	056	065	080	238	063	.164	046 057	065	077	174	075	.070	018	028	050	087	007	.088
38.40	058						057						011					
38.65 38.90	064						062						019					
39.15	094	-,181	200	290	132	.099	079	274	188	220	-, 122	.028	051 057	149	- 151	156	074	.026
			۵.	- 8°					a =	40					w =	oo]
0.50	0.154						0.199 .112						0.255					
2.50	.015	.0.010	0.024	0.078	0.158	0.226	.049 .045	0.063	0.081	0.099	0.152	0.161	.092					1
4.50 5.50	.012	.027	.017	054	. 114		051	052	.053	.072	.098	.131	.085		\$			1
6.50	007	022	055	001	.059	.113	.013	.015	.020	.037	.057	.075	.046					
8.50	022	040 059	057 078	- 055 - 058	.020 009	.046	005	020	-,009	.001	.019	.058	.013					
12.50	056	051	- 073	- 065	-,025	.029	- 055	- 054 - 058	055 058	024	020	002	022					- 1
24.50 16.50	- 063	086	102	101 113	045	020	- 050	- 060	065	074	051	016	022					1
17.17 18.17	062	082	111	115	085	056	057 068	071	072	074	067	025	071		-			1
19.17	057						066						046					
20.17	- 060	067	- 104	105	065	017	059 057	063	070	063 051	052 045	~.059	044 041					- 1
22.17	012	041	069 057	082	048	- 002	- 010	031	- 057	- 043	055	020	041					- 1
24.17	.003	~. 027	-,047	060	055	.005	004	015	022	019	015	001	.001					
			047	060	029		004			021	015		- 001					
26.17 27.17 28.17	.005	022		045 031 042	008	.024	007	008	~015	017	.000	001	.002					
29.17	001	017		017		.053	006 007	009		- 008		.018	.006					
50.17 31.17	005	024		- 051	019	.027	.001	004		009	001	.01.5	.006		27			
2.17	- 054	-003		- 054	025	.01.9	.052	.046		002	007	.004	.003					
3-17 4-17	.059 .067	.012	.059	.042	.047	.068	.043	.025	.026	.032	.045	. 065	.070					- }
5.17	019	-016	.006	.000	-042	.105	.025	.018	.023				.064					1
7.17	.007	026	935	049	017		.011			.050	.048	.070	.052 .005					
8.40	016					.025	009	016	017	020	009	005	019		-			
8.65	028						033						050		-			
	046	150	146	117	074	028	058	135	131	109	085	065	055					
								_										

TABLE I. - Concluded PRESSURE DATA, CYLINDIRCAL BODY

(k) H = 1.15

	Fressure coefficients of row -																		
x, in.	0= 0°	8=450	9 - 75°	9 = 1050	e = 135°	6 = 180°	0=0°	e=45°	e = 75°	9 = 105°	8 = 155°	0 = 180°	8 = 0°	0 = 45°	e = 15°	• = 105°	0 = 155°	9 = 180°	
			•	- 20°			a = 16°						α = 12 ⁰						
0.50 1.50 2.50 5.50 4.50	0.079 .025 .005 .012 .005	-0.096	-0.225	-0.080 147	0.219	0.473	0.076 .053 .006 .029 .013	-0.081	-0.10A 133	0.002	0.209	0.585	0.116 .057 .019 .029 .013	-0.018 018	-0.026 040	0.050	0,182	0.300	
5.50 6.50 8.50 10.50 12.50	~.041 ~.055 056 ~.070	111 134 135 134 170	280 308 289 288 258	206 244 294 332 336 349	.069 .021 024 061	.524 .274 .251 .196 .145	019 018 054 059 058	065 085 097 097	174 194 208 186	109 147 182 196	.077 012 010	.251 .200 .160 .129	015 027 057	055 058 068 075	- 132	010 075 099 112	.069 .053 .002 017	.138 .109 .087	
14.50 16.50 17.17 18.17	099 097 092 094	- 136	211	~.368	106 117 156	.129	072 081 089	122	252 179 169	252 265 251	065 109 152	.068	052 055 050 065	095	150 146 147	- 151	068	.012	
20.17 21.17 22.17 25.17 28.17 25.17	084 095 095 069 061 071	150 145 117	- 150 - 148 - 159 - 126	544 506 520 268 261 265	- 147 - 144 - 124 - 129 - 085	.105	066 068 066 050 042 041	102	161 161 142 117	~228 ~255 ~250 ~219 ~201 ~189	106 107 107 113 093 095	.050	026 027 019 021 027	077 069 057	128 112 099 060	175 154 145 130 128 129	090 090 076 065 068	.013	
26.17 27.17 28.17 29.17 30.17 31.17 32.17	- 055 - 058 - 058 - 055 - 050 - 055	104 102 090 065	113 111 096 095	251 255 268 265 250 259	080 087 078 080	.125	029 056 041 040 050 046	071 063 067	068 072	~175 ~179 ~167 ~166 ~155 ~151 ~151	072 057 041 056	.062 .068 .088	050 025 040 056 061 017	054 047 050 047		11k 107 107 102 102 109	034 034 028 042	.025	
55.17 54.17 55.17 56.17 57.17 58.15 58.40	99999999999999999999999999999999999999	074 057 061	08z 058 044	245 215 175	100 091 062	.126	041 046 051 056 055 055	066 062 063	062 062 069	178 180 161	081	.076	079 018 007 .005 .005 .012	035 012	060 053 020	118 095 095	041 057 058	.052 .059	
58.65 58.90 59.15	-051 -061	160	149	195	098	.102	055 054 057	154	160	186	102	.037	001 026	-, 125	127	11%	058	.015	
	e. = 8°							α = ‡0						a= 0°					
0.50 1.50 2.50 3.50 3.50 5.50 6.50	0.000 0.000 0.000 0.000 0.000 0.000	0.032	.011	0.094	0.170	0.240	989 989 989 989 989 989 989	0.068 .042	0.105 .048	0.115	0.1k5 -095 -044	0.172	0.291 .182 .106 .068 .067 .065						
8.50 10.50 12.50 14.50 16.50 17.17 18.17	- 050 - 050 - 050 - 055 - 056 - 052	- 051 - 046 - 048 - 053 - 074 - 069	- 667 - 6689 - 689 - 13	022 045 065 078 088	.052 .002 019 056 056	.088 .059 .054 .009 .010	999999999999999999999999999999999999999	001 022 040 047 062	001 022 029 043 047	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.051 .009 015 027 020	.050 .051 .005 017 017	- 65 - 65 - 65 - 65 - 65 - 64						
19.17 20.17 21.17 22.17 25.17 24.17 25.17	- 058 - 049 - 041 - 042 - 016 - 015	057 067 043	090 091 095 061	- 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65	081 062 045 050 053	051 008	- 051 - 051 - 051 - 051 - 057 - 057 - 059	~045 ~057 ~028	051 062 057 057 047	- 056 - 045 - 046 - 049 - 059	- 055 - 050 - 026 - 055 - 059 - 040	046	- 056 - 061 - 084 - 085 - 054 - 054						
26.17 27.17 28.17 29.17 30.17 31.17 52.17	00k 001 002 001 005 012	052 026 024 024		060 050 057 053 047 041	030 027 018 011	009 01A 013	013 009 004 009 015	022 01h 009	024	030	018 006 006 008	026 005 009 008	- 002						
33.17 34.17 35.17 36.17 37.17 38.15 38.40	- 017 - 019 - 009 - 014 - 015 - 015	025 025	040 043 058	047 065 061	012	.05Å	- 017 - 013 - 009 - 010 - 008 - 008	012	027 00A	022 018 006	010	.015	- 618 - 618 - 618 - 605 - 605						
58,65 58,90 39,15	026 011	079	105	101	067	- 024	.029 .009 045	054	-1066	061	060	052	.010 009 081						

Figure 1.- Body details. (Linear dimensions in inches.)

Figure 2.- Accuracy of pressure measurements. $\alpha = 0^{\circ}$.

CHI TELLISTIC

Figure 3.- Longitudinal pressure distribution at zero angle of attack.

FILE

Figure 4.- Longitudinal pressure distribution at six radial stations.

TOWN TOWN THE PARTY OF THE PART

Figure 4 .- Continued.

(c) $\alpha = 12^{0}$.

Figure 4.- Continued.

COMPTENENT THE

(d) $\alpha = 16^{\circ}$.

Figure 4.- Continued.

(e) $\alpha = 20^{\circ}$.

Figure 4.- Concluded.

Figure 5.- Comparison of normal-force coefficients. (Flagged symbols represent data from closed-throat tunnel; unflagged symbols represent data from slotted-throat tunnel.)

(a) Cylindrical body.

(b) Curved body.

Figure 6.- Comparison of pitching-moment coefficients. (Flagged symbols represent data from closed-throat tunnel; unflagged symbols represent data from slotted-throat tunnel.)

Figure 7.- Comparison of center-of-pressure locations.

COMPTDENT LAIL

Figure 8.- Meridian load coefficient. Cylindrical body.

Figure 9.- Comparison of cross-section normal loads. M = 1.00.