Two-Period Difference-in-Differences with Panel Data

Duke Kunshan University
Economics 101, Professor Luyao Zhang
The Economic Principle in Econometrics
February 15, 2022

Jeffrey M. Wooldridge Department of Economics Michigan State University

- 1. Introduction and Overview
- 2. The T = 2 Panel Data DiD Case
- 3. Adding Covariates: Linear Regression Adjustment

1. Introduction and Overview

- Difference-in-Differences methods are increasingly popular for analyzing interventions.
 - ► Currie, Kleven, and Zwiers (2020, AER P&P).
- Observing units over at least two time periods allows controlling for unobserved heterogeneity.
 - ► Can also control for observed heterogeneity (covariates).
- Here we study panel data settings.

- Standard DiD methods use common or parallel trends assumptions.
 - ► Adding covariates can help.
- Also need "no anticipation" assumption.
- Common intervention date is relatively easy to handle.
 - ightharpoonup T = 2 is the traditional special case.

2. The T=2 Panel Data DiD Case

- Two periods, $t \in \{1, 2\}$.
 - ightharpoonup t = 1 is the control period.
 - ▶ Some units are "treated" just prior to t = 2.
- Treatment indicator $D_i \in \{0,1\}$ means treated in the second time period.
- For each *i*, we have four potential outcomes:

$$[Y_{i1}(0), Y_{i1}(1), Y_{i2}(0), Y_{i2}(1)]$$

• $Y_{i1}(0)$, $Y_{i1}(1)$ are potential outcomes before the treatment is assigned.

• Common assumption:

$$Y_{i1}(1) = Y_{i1}(0)$$

- ► Heckman, Ichimura, Todd (1997); Abadie (2005).
- ► A strong form of "no anticipation."
- ► Can relax it somewhat.
- Assume random sampling across *i*.

• Parameter of interest is the average treatment effect on the treated (ATT) in second period:

$$\tau_{2,att} \equiv E[Y_2(1) - Y_2(0)|D = 1]$$

• Stronger assumptions are needed to estimate

$$\tau_{2,ate} \equiv E[Y_2(1) - Y_2(0)]$$

- Henceforth, $\tau_2 \equiv \tau_{2,att}$.
- Missing data problem: We do not observe both $Y_{i2}(1)$ and $Y_{i2}(0)$ for any i.

• The data we observe are $\{(D_i, Y_{i1}, Y_{i2}) : i = 1, ..., N\}$, where

$$Y_{i1} = (1 - D_i)Y_{i1}(0) + D_iY_{i1}(1)$$

$$Y_{i2} = (1 - D_i)Y_{i2}(0) + D_iY_{i2}(1)$$

- Suppose we only observe Y in t = 2.
- ▶ Without additional information, we are stuck with the simple difference in means:

$$\hat{\tau}_{2,SDM} = N_1^{-1} \sum_{i=1}^{N} D_i Y_{i2} - N_0^{-1} \sum_{i=1}^{N} (1 - D_i) Y_{i2}$$

$$N_1 = \sum_{i=1}^{N} D_i, \ N_0 = N - N_1 = \sum_{i=1}^{N} (1 - D_i)$$

• Generally,

$$p\lim(\hat{\tau}_{2,SDM}) = E[Y_2(1)|D = 1] - E[Y_2(0)|D = 0]$$

$$= \tau_2 + \{E[Y_2(0)|D = 1] - E[Y_2(0)|D = 0]\}$$

$$= \tau_2 + \text{selection bias}$$

• Consistency of $\hat{\tau}_{2,SDM}$ requires no selection bias:

$$E[Y_2(0)|D=1] = E[Y_2(0)|D=0]$$

► Sufficient is assignment is independent of the outcome in the control state.

- How can we exploit the T = 2 panel structure?
- The difference-in-differences estimator is

$$\hat{\tau}_{2,DD} = N_1^{-1} \sum_{i=1}^{N} D_i \Delta Y_i - N_0^{-1} \sum_{i=1}^{N} (1 - D_i) \Delta Y_i$$

$$= \overline{\Delta Y}_{treat} - \overline{\Delta Y}_{control}$$

$$\Delta Y_i = Y_{i2} - Y_{i1}$$

- Question: When does $\hat{\tau}_{2,DD}$ consistently estimate τ_2 ?
- Write TE_2 in a more complicated way:

$$TE_2 = Y_2(1) - Y_2(0) = [Y_2(1) - Y_1(1)] - [Y_2(0) - Y_1(0)]$$

$$+ [Y_1(1) - Y_1(0)]$$

$$\equiv \Delta Y(1) - \Delta Y(0) + TE_1$$

$$\Delta Y(d) \equiv Y_2(d) - Y_1(d), d \in \{0, 1\}$$

 TE_2 = [change in treated state] – [change in untreated state] + [TE in pre-treatment period]

• Take expectation conditional on D = 1:

$$\tau_2 = E(TE_2|D=1) = E[\Delta Y(1)|D=1] - E[\Delta Y(0)|D=1] + \tau_1$$

• More precisely,

$$\tau_{2,att} = E[\Delta Y(1)|D=1] - E[\Delta Y(0)|D=1] + \tau_{1,att}$$

Assumption NA (No Anticipation): With D the treatment indicator,

$$E[Y_1(1) - Y_1(0)|D = 1] = 0.$$

- $E[Y_1(1) Y_1(0)|D = 1]$ is the ATT before the intervention.
- Units cannot change behavior in anticipation in ways that would affect pre-treatment potential outcomes.
- Sufficient is the strongest form of no anticipation:

$$Y_1(1) = Y_1(0)$$

• Under Assumption NA,

$$\tau_{2,att} = E[\Delta Y(1)|D = 1] - E[\Delta Y(0)|D = 1]$$

• We can always estimate $E[\Delta Y(1)|D=1]$ because, for each i,

$$\Delta Y_i = \Delta Y_i(1)$$
 when $D_i = 1$

• Use the average change over the treated units:

$$N_1^{-1} \sum_{i=1}^{N} D_i \Delta Y_i = N_1^{-1} \sum_{i=1}^{N} D_i \Delta Y_i (1) \stackrel{p}{\to} E[\Delta Y(1) | D = 1]$$

• The difficult term to estimate is

$$E[\Delta Y(0)|D=1]$$

▶ We do not observe $\Delta Y_i(0)$ when $D_i = 1$.

Assumption CT (Common or Parallel Trends): With D the treatment indicator,

$$E[\Delta Y(0)|D=1] = E[\Delta Y(0)|D=0].$$

- In the untreated state, the average change is the same for treated and control.
 - ▶ No selection bias in the *trend* in the control state.
- Importantly, D can be correlated with $Y_1(0)$.
- D can be correlated with the change in the treated state,

$$\Delta Y(1) = Y_2(1) - Y_1(1).$$

$$E[Y_2(0)|D=1] = E[Y_2(0)|D=0] + \{E[Y_1(1)|D=1] - E[Y_1(0)|D=0]\}$$

• Under Assumption CT,

$$N_0^{-1} \sum_{i=1}^N (1 - D_i) \Delta Y_i = N_0^{-1} \sum_{i=1}^N (1 - D_i) \Delta Y_i(0) \xrightarrow{p} E[\Delta Y(0)|D = 0]$$
$$= E[\Delta Y(0)|D = 1]$$

• Conclusion: Under Assumptions NA and CT,

$$plim(\hat{\tau}_{2,DD}) = plim(\overline{\Delta Y}_{treat} - \overline{\Delta Y}_{control}) = \tau_{2,att}$$

Equivalent Methods for Obtaining $\hat{\tau}_{2,DD}$

1. Cross-Sectional OLS on Differences

• Run the regression

$$\Delta Y_i$$
 on $1, D_i, i = 1, ..., N$

and then $\hat{\tau}_{2,DD}$ is the coefficient on D_i .

- ► Heteroskedasticity-robust inference.
- Contrast the difference-in-means regression for t = 2:

$$Y_{i2}$$
 on $1, D_i, i = 1, ..., N$

▶ This produces $\hat{\tau}_{2,SDM}$.

2. Pooled OLS on Levels

• Define a second period dummy:

$$f2_t = 0 \text{ if } t = 1$$

$$f2_t = 1 \text{ if } t = 2$$

• The time-varying treatment indicator is

$$W_{it} = D_i \cdot f2_t$$

▶ In both simple and complicated settings, useful to have W_{it} .

. * w = train

. list id year lwage train d d92 in 19/34, sep(2)

_	L					
	 id 	year	lwage	train	d	d92
19.	166	1991	.9376874	0	1	0
20.	166	1992	1.432148	1	1	1
21.		1991	. 8362 4 8	0	0	0
22.	189	1992	1.46736	0	0	1
23.	∣ ∣ 193	1991	2.493875	0	0	0
24.	193	1992	1.822662	0	0	1
25.	209	1991	.765 4 077	0	0	0
26.	209	1992	1.978185	0	0	1
27.	212	1991	2.179983	0	1	0
28.	212	1992	2.048526	1	1	1
29.	218	1991	1.962152	0	0	0
30.	218	1992	2.275641	0	0	1
31.	243	1991	1.683546	0	0	0
32.	243	1992	1.690503	0	0	1
33.	259	1991	2.089011	0	1	0
34.	259	1992	2.147384	1	1	1

• Can show $\hat{\tau}_{2,DD}$ is the coefficient on W_{it} in the regression

$$Y_{it}$$
 on $1, D_i, f2_t, W_{it}, t = 1, 2; i = 1, ..., N$

- ► Cluster standard errors to account for serial correlation and heteroskedasticity.
- More traditional is to use:

$$Y_{it}$$
 on $1, D_i, f2_t, D_i \cdot f2_t, t = 1, 2; i = 1, ..., N$

- ▶ In more complicated settings (adding covariates, nonlinear models), better to use W_{it} .
- ▶ Sometimes have to compute an average partial (marginal) effect with respect to W_{it} , not D_i .

3. Two-Way Fixed Effects

• Think of an equation for random draw *i*:

$$Y_{it} = \tau_2 W_{it} + \theta_2 f 2_t + C_i + U_{it}, t = 1, 2$$

- Estimate by fixed effects. Inclusion of $f2_t$ means TWFE.
- $\hat{\tau}_{2,DD}$ is the coefficient on W_{it} .
 - ▶ Cluster standard errors to account for serial correlation.
- Recall the TWFE dummy variable regression where $ch_i = 1[h = i]$:

$$Y_{it}$$
 on W_{it} , $c1_i$, $c2_i$, ..., cN_i , $f2_t$, $t = 1, 2$; $i = 1, ..., N$

• Equivalence of POLS and TWFE: It is enough to control for D_i rather than N unit dummies.

Stata Commands

```
xtset cid tid
reg D.y w, vce(robust)
reg y w d f2, vce(cluster cid)
xtreg y w f2, fe vce(cluster cid)
```

• Standard errors allow for heteroskedasticity and serial correlation.

3. Adding Covariates: Linear Regression Adjustment

- Common to include controls (covariates) in DiD settings.
 - ► Can help with failure of the CT Assumption.
- Current thinking: Only use pre-treatment controls.
- ► Can ruin the CT assumption by conditioning on controls affected by intervention.
- Let X_i be a $1 \times K$ vector of pre-intervention covariates.

Adding Covariates in Levels has No Effect

• The POLS regressions

$$Y_{it}$$
 on 1, W_{it} , D_i , f_{2t} , $t = 1, 2$; $i = 1, ..., N$

and

$$Y_{it}$$
 on 1, W_{it} , D_i , $f2_t$, X_i , $t = 1, 2$; $i = 1, ..., N$

give identical estimates on W_{it} , $\hat{\tau}_2$.

► Follows from Wooldridge (2021, Working Paper).

- Equivalence makes sense.
- If we write

$$Y_{it} = \tau_2 W_{it} + \theta_2 f 2_t + \mathbf{X}_i \mathbf{\beta} + C_i + U_{it}, t = 1, 2$$

then using FE eliminates X_i .

• Moreover, if we use FD (equivalent to FE with T = 2),

$$\Delta Y_i = \tau_2 D_i + \theta_2 + \Delta U_i$$

Adding Covariates to Relax Common Trends

- How can we use time-constant covariates to adjust the basic DiD estimator?
- Recall under no anticipation:

$$\tau_2 = E[\Delta Y(1)|D = 1] - E[\Delta Y(0)|D = 1]$$

- $E[\Delta Y(1)|D=1]$ is estimable as before.
- $E[\Delta Y(0)|D=1]$ is still the problem.
- Want to relax Assumption CT:

$$E[\Delta Y(0)|D=1] = E[\Delta Y(0)|D=0]$$

Assumption CCT (Conditional Common Trends): For D the treatment indicator and covariates X,

$$E[Y_2(0) - Y_1(0)|D, \mathbf{X}] = E[Y_2(0) - Y_1(0)|\mathbf{X}].$$

- CT holds within each subpopulation determined by values of **X**.
 - ▶ Think of partitioning population by values $\mathbf{x} \in \mathcal{X}$.
- Assumption CCT simply says: D is unconfounded for $\Delta Y(0)$ conditional on X.
 - \blacktriangleright Cross sectional case: D is unconfounded for Y(0) conditional on X.

• Recall how unconfoundedness implies identification:

$$E[\Delta Y(0)|D=1] = E\{E[\Delta Y(0)|D=1,\mathbf{X}]|D=1\} \text{ (iterated expectations)}$$
$$= E\{E[\Delta Y(0)|D=0,\mathbf{X}]|D=1\} \text{ (CCT)}$$

• The function

$$m_0(\mathbf{x}) \equiv E[\Delta Y(0)|D=0, \mathbf{X}=\mathbf{x}] = E[\Delta Y(0)|\mathbf{X}=\mathbf{x}]$$

is estimable using data on $D_i = 0$ (control group) because

$$\Delta Y_i = \Delta Y_i(0)$$
 when $D_i = 0$

▶ Generally, can only estimate $m_0(\mathbf{x})$ for $\mathbf{x} \in \text{Support}(\mathbf{X}|D=0)$.

Assumption OV (Overlap): For all $x \in \text{Support}(X)$,

$$p(\mathbf{x}) \equiv P(D = 1 | \mathbf{X} = \mathbf{x}) > 0.$$

Overlap means that

$$Support(\mathbf{X}|D=1) \subset Support(\mathbf{X}|D=0)$$

• CCT + Overlap means we nonparametrically identify

$$E[\Delta Y(0)|D=1] = E[m_0(\mathbf{X})|D=1]$$

• Natural starting point: Apply linear regression adjustment to the cross-sectional data set

$$\{(\Delta Y_i, D_i, \mathbf{X}_i), i = 1, \dots, N\}$$

• Let $\hat{\alpha}_0$, $\hat{\beta}_0$ be from

$$\Delta Y_i$$
 on 1, \mathbf{X}_i using $D_i = 0$

• The RA estimate of τ_2 is

$$\hat{\tau}_{2,RA} = N_1^{-1} \sum_{i=1}^{N} D_i \Delta Y_i - N_1^{-1} \sum_{i=1}^{N} D_i (\hat{\alpha}_0 + \mathbf{X}_i \hat{\boldsymbol{\beta}}_0)$$

$$= \overline{\Delta Y}_{treat} - (\hat{\alpha}_0 + \overline{\mathbf{X}}_1 \hat{\boldsymbol{\beta}}_0)$$

$$\overline{\mathbf{X}}_1 = N_1^{-1} \sum_{i=1}^{N} \mathbf{X}_i$$

▶ Interpretation as imputation estimator.

• Same as the coefficient on D_i in the pooled regression

$$\Delta Y_i$$
 on $1, D_i, \mathbf{X}_i, D_i \cdot (\mathbf{X}_i - \mathbf{\bar{X}}_1), i = 1, \dots, N$

- ▶ Need to center around X_i around \bar{X}_1 .
- Some interest in coefficients on the interactions, $D_i \cdot (\mathbf{X}_i \mathbf{\bar{X}}_1)$.
 - ▶ Moderating effects of the X_j .
- Słoczyński (2021, REStat): Bias in estimating τ_{ate} when dropping $D_i \cdot (\mathbf{X}_i \mathbf{\bar{X}})$ when $P(D_i = 1)$ is far from 1/2.

• Also same as running separate regressions:

$$\Delta Y_i$$
 on 1, \mathbf{X}_i with $D_i = 0$ $(\hat{\alpha}_0, \hat{\boldsymbol{\beta}}_0)$
 ΔY_i on 1, \mathbf{X}_i with $D_i = 1$ $(\hat{\alpha}_1, \hat{\boldsymbol{\beta}}_1)$
 $\hat{\tau}_{2,RA} = (\hat{\alpha}_1 - \hat{\alpha}_0) + \mathbf{\bar{X}}_1(\hat{\boldsymbol{\beta}}_1 - \hat{\boldsymbol{\beta}}_0)$

because, by the algebra of OLS,

$$\overline{\Delta Y}_{treat} = \hat{\alpha}_1 + \mathbf{\bar{X}}_1 \hat{\boldsymbol{\beta}}_1$$

• $\hat{\tau}_{2,RA}$ is also the coefficient on $W_{it} = D_i \cdot f2_t$ in the POLS regression

$$Y_{it}$$
 on 1, W_{it} , $W_{it} \cdot (\mathbf{X}_i - \mathbf{\bar{X}}_1)$, D_i , $f2_t$, \mathbf{X}_i , $D_i \cdot \mathbf{X}_i$, $f2_t \cdot \mathbf{X}_i$

across t = 1, 2; i = 1, ..., N.

• Fixed effects applied to

$$Y_{it} = \tau_2 W_{it} + W_{it} \cdot (\mathbf{X}_i - \mathbf{\bar{X}}_1) \delta_2 + \theta_2 f 2_t + (f 2_t \cdot \mathbf{X}_i) \xi_2 + C_i + U_{it}, t = 1, 2$$
 also gives $\hat{\tau}_{2,RA}$ as coefficient on W_{it} .

- ► Extended TWFE.
- The basic TWFE analysis drops

$$W_{it} \cdot (\mathbf{X}_i - \mathbf{\bar{X}}_1), f2_t \cdot \mathbf{X}_i$$

• Equivalence of POLS and ETWFE: Special case of Wooldridge (2021, working paper).

- ullet Robust or cluster-robsust standard errors do not account for sampling error in $ar{\mathbf{X}}_1$.
- In Stata, at least two possibilities.
- 1. Use teffects ra with ΔY_i as the outcome variable.
- 2. Use POLS, do not center X_i about \bar{X}_1 , and use vce (uncond) with margins.
 - ▶ Useful in more complicated settings.
- Adjusting for sampling error in $\bar{\mathbf{X}}_1$ often has practically small effects.

• Stata commands:

```
sum x1 if d
gen x1_dm = x1 - r(mean)
sum x2 if d
gen x2_dm = x2 - r(mean)
...
sum xK if d
gen xK_dm = xK - r(mean)
```

• Get the ATT directly (not quite the correct standard errors):

```
reg d_y i.d x1 ... xK i.d#c.x1_dm ...
    i.d#c.xK_dm, vce(robust)

reg y i.w i.w#x1_dm ... i.w#xK_dm
    d f2 x1 ... xK i.d#x1 ... i.d#xK
    i.f2#x1 ... i.f2#xK, vce(cluster cid)

xtreg y i.w i.w#c.x1_dm ... i.w#c.xK_dm
    i.f2 i.f2#c.x1 ... i.f2#c.xK,
    fe vce(cluster cid)
```

- Job training data set; use only 1991 (pre) and 1992 (post).
- Outcome variable is lwage = log(wage).

. list id year lwage train d d92 in 19/34, sep(2)

_	+					
	id 	year	lwage	train	d	d92
19.	166	1991	.9376874	0	1	0
20.	166	1992	1.432148	1	1	1
21.	∣ ∣ 189	1991	. 836248	0	0	0
22.	189	1992	1.46736	0	0	1
23.	∣ ∣ 193	1991	2.493875	0	0	0
24.	193	1992	1.822662	0	0	1
25.	∣ ∣ 209	1991	.7654077	0	0	0
26.	209	1992	1.978185	0	0	1
27.	212	1991	2.179983	0	1	0
28.	212	1992	2.048526	1	1	1
29.	 218	1991	1.962152	0	0	0
30.	218	1992	2.275641	0	0	1
31.	∣ ∣ 243	1991	1.683546	0	0	0
32.	243	1992	1.690503	0	0	1
33.	⊺ ∣ 259	1991	2.089011	0	1	0
34.	259	1992	2.147384	1	1	1

. \star Basic DiD. Estimates are all the same:

•

. reg D.lwage train, vce(robust)

Linear regress	sion			Prob > F R-squared	obs = = = = = = = = = = =	0.0435 0.0085
		Robust				
D.lwage	Coefficient	std. err.	t	P> t	[95% conf.	interval]
train	.0960654	.04748	2.02	0.044	.0027985	.1893324
_cons	.0599069	.0217649	2.75	0.006	.0171532	.1026605
. reg D.(lwage	e train d92),	nocons vce	robust)			
		Robust				
D.lwage	Coefficient	std. err.	t	P > t	[95% conf.	interval]
train						
D1.	.0960654	.04748	2.02	0.044	.0027985	.1893324
d92						
D1 .	.0599069	.0217649	2.75	0.006	.0171532	.1026605

. * Pooled OLS:

. reg lwage train d d92, vce(cluster id)

linear regression	Number of obs	=	1,090
	F (3, 544)	=	20.23
	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
	R-squared	=	0.0547
	Root MSE	=	.50746

(Std. err. adjusted for 545 clusters in id)

1		Robust				
lwage	Coefficient	std. err.	t	P> t	[95% conf.	interval]
train	.0960654	.0475018	2.02	0.044	.002756	.1893748
d	.2091146	.05122	4.08	0.000	.1085014	.3097278
d92	.0599069	.0217749	2.75	0.006	.0171338	.10268
cons	1.45915	.0260405	56.03	0.000	1.407997	1.510302

. * Fixed Effects:

. xtreg lwage train d92, fe vce(cluster id)

					obs = groups =	
R-squared:				Obs per g	roup:	
Within =	= 0.0415				min =	2
Between =	= 0.0580				avg =	2.0
Overall =	= 0.0290				max =	_
				F(2,544)	=	10.62
corr(u_i, Xb)	= 0.0803			Prob > F	=	0.0000
		(St	d. err.	adjusted fo	or 545 clus	ters in id)
		Robust				
lwage	Coefficient	std. err.	t	P > t	[95% conf	. interval]
train	+ .0960654	.0474799	2.02	0.044	.002799	.1893319
d92	.0599069	.0217648	2.75	0.006	.0171535	.1026603
_cons	1.512867	.0097352	155.40	0.000	1.493744	1.53199
sigma u	+ 46243458					
	.6742751	(fraction	of varia	ance due to	u_i)	
d92 _cons sigma_u sigma_e	.0599069 1.512867 .46243458 .3214084	.0217648 .0097352 	2.75 155.40	0.006 0.000 	.0171535 1.493744 	.1026603

- * Adding time constant controls, educ and exper (in 1990) to the pooled
- * regression does nothing except for changing the degrees-of-freedom used
- . \star to construct standard errors. And the R-squared increases a lot:

.

. reg lwage train d d92 educ exper, vce(cluster id)

Linear regression	Number of obs	=	1,090
	F (5, 544)	=	28.48
	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
	R-squared	=	0.1361
	Root MSE	=	. 48557

(Std. err. adjusted for 545 clusters in id)

(Sour CII: dayasted IoI 515 Clastell In Id/

lwage	 Coefficient	Robust std. err.	t	P > t	[95% conf.	interval]
train	 .096065 4	.0475456	2.02	0.044	.00267	.1894609
d	.2048787	.0489374	4.19	0.000	.1087493	.3010081
d92	.0599069	.0217949	2.75	0.006	.0170943	.1027194
educ	.104157	.0127503	8.17	0.000	.0791112	.1292028
exper	.0568412	.0142865	3.98	0.000	.0287778	.0849046
_cons	.0632674	.1845499	0.34	0.732	2992502	. 4257851

```
. * Full regression adjustment. Demean educ and exper using treated subsample:
.
. qui sum educ if d
. gen educ_dm = educ - r(mean)
. qui sum exper if d
. gen exper_dm = exper - r(mean)
. reg D.lwage train c.train#c.educ_dm c.train#c.exper_dm ///
> d92 educ exper, nocons vce(robust)

Linear regression

Number of obs = 545
F(6, 539) = 4.36
Prob > F = 0.0003
R-squared = 0.0461
```

	 I	Robust				
D.lwage	Coefficient	std. err.	t	P> t	[95% conf.	interval]
train	.095888	.0472991	2.03	0.043	.0029748	.1888012
c.train#c.educ_dm	 0281286 	.0364286	-0.77	0.440	0996881	.0434309
c.train#c.exper_dm	044728	.0355761	-1.26	0.209	1146128	.0251568
d92	0245192	.2273547	-0.11	0.914	471129	.4220906
educ	.007221	.0150001	0.48	0.630	0222448	.0366868
exper	0001651 	.017045	-0.01	0.992	0336 4 8	.0333177

Root MSE

= .45514

. * POLS version:

Linear regression	Number of obs	=	1,090
	F (11, 544)	=	14.20
	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
	R-squared	=	0.1383
	Root MSE	=	4863

(Std. err. adjusted for 545 clusters in id)

lwage	 Coefficient	Robust std. err.	t	P > t	[95% conf.	interval]
train	.095888	.0473209	2.03	0.043	.002934	.188842
c.train#c.educ_dm	 0281286	.0364454	-0.77	0.441	0997195	.0434623
c.train#c.exper_dm	0 44728	.0355924	-1.26	0.209	1146435	.0251875
d	4698976	.5744642	-0.82	0.414	-1.598337	. 6585423
d92	0245192	.2274591	-0.11	0.914	471325	. 4222866
educ	.0954815	.0163737	5.83	0.000	.063318	.127645
exper	.0545992	.0186165	2.93	0.004	.0180302	.0911682

	1					
c.d#c.educ	.0504608	.0408213	1.24	0.217	0297259	.1306476
c.d#c.exper	.0264654	.0369413	0.72	0.474	0460997	.0990305
c.d92#c.educ	.007221	.015007	0.48	0.631	0222577	.0366998
c.d92#c.exper	 0001651	.0170529	-0.01	0.992	0336627	.0333324
_cons	 .1720381	.2396264	0.72	0.473	2986682	. 6427445

. xtreg lwage train c.train#c.educ_dm c.train#c.exper_dm ///
> d92 c.d92#c.educ c.d92#c.exper, fe vce(cluster id)

Fixed-effects (within) regression

Number of obs = 1,090

Group variable: id

Number of groups = 545

(Std. err. adjusted for 545 clusters in id)

lwage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
train	.095888	.0472115	2.03	0.043	.0031488	.1886272
c.train#c.educ_dm	 0281286	.0363611	-0.77	0.440	099554	.0432968
c.train#c.exper_dm	 044728	.0355102	-1.26	0.208	1144819	.0250259
d92	 0245192	.2269334	-0.11	0.914	4702924	. 421254
c.d92#c.educ	.007221	.0149723	0.48	0.630	0221896	.0366316
c.d92#c.exper	 0001651	.0170135	-0.01	0.992	0335853	. 033255
_cons	1.512867	.00973	155.49	0.000	1.493754	1.53198
sigma_u sigma_e rho	.3218322	(fraction	of varia	nce due 1	to u_i)	