

Overview of Trees

This lesson is a quick overview of trees, their types, and some important formulas to compute the height and number of nodes in a tree.

We'll cover the following

- ^
- Binary Trees
- Binary Search Trees
- Red Black Trees
- AVL Trees
- 2-3 Trees

Binary Trees

Definition: A tree having a max. of two children at each internal node

Types: Perfect, Full, Complete, Skewed

Total number of nodes: $2^{(h+1)}-1$

Total number of leaf nodes: $2^h or rac{(n+1)}{2}$

Height: $log_2(n+1) - 1$

Definition: Every node has a value greater than/equal to all the node values in its left sub-tree, and has a value less than all the node values in its right sub-tree. Mathematically,

$$Keys(SubTree1) < Keys(Y) < Keys(Subtree2) < Keys(X) < Keys(SubTree3)$$

Red Black Trees

Definition: A tree where every node is colored as red or black, no two adjacent nodes have *red* coloring, and root and null nodes are considered *black*.

Height: $h <= 2log_2(n+1)$

Minimum number of nodes: $(h+1)+2\left(\sum_{i=0}^{y})2^{i}-1\right)$, where y is equal to: floor(h/2)

AVL Trees #

Definition: For each node, the height of the left and right *sub-trees* differ by a max of one.

Minimum number of nodes: N(h)=1+N(h-1)+N(h-2)

Maximum number of nodes: $N-1+2^{log(N-1)+2}$

Height: $O(log_2n)$

2-3 Trees

Definition: A balanced and ordered tree where each node can have a max. of two keys (X and Y) and three children, such that,

\$LChild.Key < X < MChild.Key < Y < RChild.Key \$

Maximum number of nodes: \$ 3^h\$

Height: $log_4(n+1) - 1 < h < log_2(n+1) - 1$

Types: 2-3-4 Trees

Now let's apply what we have learned so far on some exciting coding challenges!

