3/11/17

EKE at
$$l^{4}/2^{1-1}$$
-only approximations

The unit again $\hat{x} = \bar{x} + \bar{z}$ $\bar{z} \sim N(\bar{o}, \rho)$

EKE reports $\hat{x}_{i}\rho$

When me propagation as some to Side

 $f(\hat{x}_{i}) = \bar{f}(\hat{x}_{i}, \bar{t}) \neq \bar{f}(\bar{f}(\bar{x}_{i}), \bar{t})$

Fig. $\hat{f}(\hat{x}_{i}, \bar{t}) = \hat{f}(\hat{x}_{i}, \bar{t}) + \frac{\partial f}{\partial x} |_{x}(-\bar{e}) + \cdots$

$$\mathbb{E}\left[f(x,t)\right] \in \mathbb{E}\left[\tilde{f}(\hat{x},t)\right] + \mathbb{E}\left[\frac{2\tilde{f}}{2\tilde{x}}\Big|_{\hat{x}}(-\tilde{x})\right] + \mathbb{E}[...]$$

$$= \tilde{f}(x,t) + \frac{2\tilde{f}}{2\tilde{x}}\Big|_{\hat{x}} \mathbb{E}[(-\tilde{v})] + \mathbb{E}[...]$$

$$\tilde{f}(x,t) = \tilde{f}(\hat{x},t) + \tilde{b} + \mathbb{E}[...]$$

$$\tilde{f}(x,t) = \tilde{f}(\hat{x},t)$$

$$\tilde{f}(x,t) = \tilde{f}(\hat{x},t)$$
Proparation of \hat{x}_{i-1}^{t} to \hat{x}_{i}^{t} is good up to 2^{nd} onto

The home a similar problem at mass. product: $(\bar{r}_i = \bar{g}_i - \hat{h}(\bar{z}_i, t_i))$ $\hat{h}(\bar{x}, t) = \bar{E}(\bar{h}(\bar{x}, t)) \neq \bar{h}(\bar{E}[\bar{x}], t)$ $\hat{h}(\bar{x}, t)$ $\hat{h}(\bar{x}, t)$ $\hat{h}(\bar{x}, t)$ $= \bar{E}[\bar{h}(\bar{x}, t)] + \bar{E}[\frac{2\bar{L}}{2\bar{x}}] \cdot (-\bar{e})] + \bar{E}[\cdot \cdot \cdot]$ $= \bar{h}(\hat{x}, t) + \bar{h}(\bar{x}, t) + \bar{E}[\cdot \cdot \cdot]$ $= \bar{h}(\hat{x}, t) + \bar{h}(\bar{x}, t) = \bar{h}(\bar{x}, t) \text{ is good up to } 2^{-1} \text{ adu.}$ $\Rightarrow \text{mass production } \hat{h}(\bar{x}, t) \cong \bar{h}(\bar{x}, t) \text{ is good up to } 2^{-1} \text{ adu.}$ $\Rightarrow \text{notion } \text{means that } \text{the update som. is only good up}$ $\Rightarrow \text{to } \text{for } \text{$

