

Cálculo II Exame de Recurso

Eng. Informática 10/07/2010 [1h30m+1h30m]

Nome [Número	

- Este exame é composto por duas partes estando cada uma delas cotada para 20 valores.
- O aluno que pretender realizar apenas uma das partes terá que entregar a prova 1h30m após o seu início.

(1^a Parte)

Justifique convenientemente todas as respostas.

Exercício 1.1 [3 valores] Descreva as superfícies de nível da função f definida por $f(x, y, z) = \cos(x + y + z)$.

Exercício 1.2 [4 valores] Sabendo que g é uma função real de 2 variáveis reais definida por

$$g(x,y) = \begin{cases} \frac{x^2 + 2xy^2 + y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ c & \text{se } (x,y) = (0,0), \end{cases}$$

verifique se existe $c \in \mathbb{R}$ para o qual g é contínua em \mathbb{R}^2 .

Nome	Número [
	`	

Exercício 1.5 [3 valores] Considere a função f, real de 2 variáveis reais, definida por $f(x,y) = 1 + \sqrt{x^2 + y^2}$. Verifique que f não é diferenciável na origem.

Exercício 1.6 [3 valores] Existirá uma função diferenciável f tal que, num ponto A do seu domínio, se tem $\|\nabla f(A)\| = 0$ e, simultaneamente, $f_{\vec{u}}(A) \neq 0$?

Justifique convenientemente todas as respostas.

Exercício 2.1 [4 valores] Seja f a função definida por $f(x,y) = \frac{x}{y^2} + xy$.

- a) Determine o domínio de f.
- b) Encontre e classifique os seus pontos críticos.

Exercício 2.2 [3 valores] Seja g uma função, real de 2 variáveis reais, definida por

$$\begin{array}{cccc} g: & [0,1] \times [0,1] & \longrightarrow & \mathbb{R} \\ & & (x,y) & \longmapsto & \cos(1+e^{xy}) \end{array}$$

- a) Justifique que g tem, no seu domínio, um mínimo global.
- b) Encontre o mínimo de g.

Exercício 2.3 [4 valores] Seja \mathcal{R} a região do plano limitada pelas curvas definidas por y=x e $y=x^2$.

- a) Esboce \mathcal{R} .
- b) Encontre um integral duplo que determine a área de \mathcal{R} .
- c) Reescreva o integral anterior, trocando convenientemente a ordem de integração.
- d) Calcule a área de \mathcal{R} .

Exercício 2.4 [4 valores] Para cada uma das seguintes regiões escreva, escolhendo sistemas de coordenadas apropriadas, um integral triplo (incluindo os limites de integração) que permita calcular o seu volume.

Exercício 2.5 [5 valores] Considere o campo vectorial $\mathbf{F}(x, y, z) = (y^2, 2xy + e^{3z}, 3ye^{3z})$.

- a) Verifique que ${\pmb F}$ é um campo de gradientes, isto é, que existe uma função $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ tal que $\nabla f={\pmb F}.$
- b) Determine o integral de linha de F ao longo de qualquer caminho de classe C^1 que una o ponto (1,0,1) ao ponto (0,1,0).