

Readings for today

Van Otterlo, M. (2009). Markov decision processes: Concepts and algorithms.
 Course on 'Learning and Reasoning.

Topics

- Markov Process
- Markov Decision Process
- The Bellman solution

Markov Process

A day in your (college) life

What to do with your day?

- Go to class
- Skip class
- Study in the library
- Go to the gym
- Eat the UC
- Sleep in the dorm
- Play video games

Can only do one of these things at a time. Each is associated with a particular "reward"

What is a Markov Process?

Definition

A stochastic (random) process that models a system moving between states based on transition probabilities.

Key components

- States: Represent all possible situations the system can be in.
- **Transitions**: Probability distributions that dictate state changes based on actions.
- Rewards: Numerical feedback given after state transitions.

What is a Markov Process?

All chance

Transitions between states happen according to fixed probabilities, without any external control or decision-making by an agent.

No memory

The future state depends only on the current state, not on the history of previous states.

→ Markov property

Markov Decision Process

What is a Markov Decision Process (MDP)?

Definition

Extends a Markov Process by adding decision-making capabilities. An agent can influence transitions by choosing actions in each state.

Key components

- States: Represent all possible situations the system can be in.
- Actions (A): Choices available to the agent in each state.
- Transitions: Probability distributions that dictate state changes based on actions.
- Rewards: Numerical feedback given after state transitions.

Formal definition

Definition

an ordered, immutable collection of elements, a set

An MDP is formally defined as a *tuple*: $\langle S, A, T, R \rangle$

- **S:** A set of states $\{s_1, s_2, ..., s_N\}$
- A: A set of actions $\{a_1, a_2, ..., a_N\}$
- **T:** Transition function T(s, a, s') reflecting the probability of moving to state s' after taking action a in state s.
- R: Reward function R(s, a, s') reflecting the reward received after moving from state s to s' using action a.

How the environment changes in response to actions

How "good" or "bad" each action is, guiding the agent toward a goal.

Goal: Maximize the cumulative reward over time, driving the system toward optimal behavior.

The Bellman solution

The Bellman equation

What is the *optimal* path through potential states that has the highest value?

$$v(s) = \mathbb{E}(G_t | S_t = s)$$
 temporal discounting term

$$v(s) = \mathbb{E}(R_{t+1} + \gamma v(S_{t+1}) | S_t = s)$$

$$\hookrightarrow G_{t+1} \longrightarrow \nu(S_{t+1})$$

The Bellman equation

Temporal difference update

How do you update your state value from one move to the next?

$$V(S_{t+1}) \leftarrow V(S_t) + \alpha [V(S_{t+1}) - V(S_t)]$$

$$\text{learning rate}$$

This works in the forward looking framing of the Bellman equation.

Take home message

- Markov processes are a useful modeling framework for understanding sequences of memoryless decisions.
- Markov decision processes conceptually capture the structure of reinforcement learning.
- The Bellman equation is the locally optimal solution to identifying the next decision that maximizes future rewards.

The Markov Game

Goal:

Simulate your day as a Markov process

The Markov Game

Rules:

- 1. Start at the "Wake Up" state
- 2. Use the random number generator to determine which state to move to next following the Transition Guide.
- 3. Record the reward the next state you move into in the worksheet you were emailed.
- **4.** Continue moving through the day until you get to the "Sleep" state **or** you complete 40 state transitions (maximum rows on the worksheet).
- 5. Record your total reward for the day.
- 6. Repeat steps 1-5 for 7 rounds.

Random Number

Generator: https://www.random.org/

Min: 1

Max: 100

Transition Guide:

		Next State (s') TikTok	Class	Study	Gym	Videogames	Bar	Sleep
Current State (s)	Wake up	<25	>=25					
	TikTok	>=20	<20					
	Class	<25		25-75	>75			
	Study					<=70		>70
	Gym		<20	20-80		>80		
	Videogames				<=50		>50	
	Bar							>0

Extra Credit (3 pts)

Task:

Use the Bellman equation to estimate the value of each state of the day. Submit answers by entering values in the last worksheet of the game spreadsheet file. Set $\gamma = 1$.

Due:

By 3pm (class time) Tuesday 10/31. Please submit by emailing to timothyv@andrew.cmu.edu

$$v(s) = \mathbf{R}_S + \gamma \sum_{s' \in S} \mathbf{P}_{ss'} v(s')$$