	Название	_	_	Носитель	Плотность	Функция распределения	E	D	Характеристическая функция	Прочее
ДИСКРЕТНЫЕ	Бернулли	Be (<i>p</i>)	$p \in (0,1)$	{0,1}	$p^k \cdot (1-p)^{1-k}$	_	p	p·q	$q + p \cdot e^{it}$	$x_i \sim \mathbf{Be}(p), \ i = \overline{1,n}$ $\sum_{i=1}^{n} x_i \sim \mathbf{Bin}(n,p)$
	Биноминальное	Bin(n,p)	$p \in (0,1)$ $n \in \mathbb{N}$	<u>1, n</u>	$C_n^k \cdot p^k \cdot q^{n-k}$	_	$n \cdot p$	$n \cdot p \cdot q$	$(1+p\cdot e^{it})^n$	_
	Пуассоновское	$Poiss(\lambda)$	λ>0	№∪{0}	$\frac{e^{-\lambda} \cdot \lambda^k}{k!}$	$\frac{\Gamma(k+1,\lambda)}{k!}$	λ	λ	$\exp\left[\lambda\cdot\left(e^{it}-1\right)\right]$	_
НЕПРЕРЫВНЫЕ	Непрерывное	U(a,b)	$a \in \mathbb{R}$ $b \in \mathbb{R}$	[a,b]	$\begin{cases} \frac{1}{a-b}, & x \in [a,b], \\ 0, & x < a, & x > b \end{cases}$	$\begin{cases} 1, & x \ge b, \\ \frac{x-a}{b-a}, & x \in [a, b), \\ 0, & x < a. \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{it \cdot b} - e^{it \cdot a}}{it \cdot (b - a)}$	_
	Гамма	${f G}(k, heta)$	$k > 0$ $\theta > 0$	[0,+∞)	$x^{k-1} \cdot \frac{\exp\left[-\frac{x}{\theta}\right]}{\Gamma(k) \cdot \theta^k}$	_	$k \cdot \theta$	$k\cdot heta^2$	$(1-\theta\cdot it)^{-k}$	$\mathbf{G}(2, \frac{n}{2}) \equiv \mathbf{X}^2(n)$ $\mathbf{G}(\lambda^{-1}, 1) \equiv \mathbf{Exp}(\lambda)$
	Показательное	$Exp(\lambda)$	λ > 0	[0,+∞)	$\lambda \cdot \exp\left[-\lambda x\right]$	$1 - \exp\left[-\lambda \cdot x\right]$	λ^{-1}	λ^{-2}	$\left(1-\frac{it}{\lambda}\right)^{-1}$	$\mathbf{Exp}(\lambda) \equiv \mathbf{G}(\lambda^{-1}, 1)$ $\mathbf{Exp}(2^{-1}) \equiv \mathbf{X}^{2}(2)$
	Нормальное	$\mathbf{N}(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$(-\infty, +\infty)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	_	μ	σ^2	$\exp\left(\mu \cdot it - \frac{\sigma^2 \cdot t^2}{2}\right)$	_
	Хи-квадрат	$X^2(k)$	<i>k</i> > 0	[0,+∞)	$\frac{x^{\frac{k}{2}-1}\cdot e^{-\frac{x}{2}}}{2^{\frac{k}{2}}\cdot \Gamma(\frac{k}{2})}$	_	k	2k	$\left(1-2\cdot it\right)^{-\frac{k}{2}}$	$x_i \sim \mathbf{N}(0,1), i = \overline{1,k}$ $\sum_{i=1}^k x_i^2 \sim \mathbf{X}^2(k)$
	Фишер	$F(d_1,d_2)$	$d_1 > 0$ $d_2 > 0$	[0,+∞)	1	_	_	l	_	$x_i \sim \mathbf{X}^2(d_i), \ i = 1, 2$ $\frac{x_1}{d_1} \cdot \frac{d_2}{x_2} \sim \mathbf{F}(d_1, d_2)$
	Стьюдент	St(n)	$n > 0$ $n \in \mathbb{N}$	$(-\infty, +\infty)$	_	_	0	0	_	$x_{i} \sim \mathbf{N}(0,1), i = \overline{0,n}$ $x_{0} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right)^{-\frac{1}{2}} \sim \mathbf{St}(n)$

$$\xi \sim f_{\xi}(x): \qquad \mathbb{E}(\xi) = \int_{-\infty}^{+\infty} x \cdot f_{\xi}(x) \, dx \qquad \qquad \mathbb{D}(\xi) = \mathbb{E}(\xi^{2}) - \left(\mathbb{E}(\xi)\right)^{2} = \int_{-\infty}^{+\infty} f_{\xi}(x) \cdot \left(x - \mathbb{E}(\xi)\right)^{2} \, dx \qquad \qquad \varphi_{\xi} = \mathbb{E}\left(e^{it \cdot \xi}\right) = \int_{-\infty}^{+\infty} f_{\xi}(x) \cdot e^{itx} \, dx$$