《抽象代数》期中考试

2022年11月5日9:00-12:00

答题要求: 所有题目均需要写出详细的解题过程。

题 1 (20 分). 判断以下命题是否正确。若正确则证明之,否则请举一个反例。

- (1) 设 a,b 是群 G 内的元素,满足 ab=ba, $\operatorname{ord}(a)=m$, $\operatorname{ord}(b)=n$, 则 $\operatorname{ord}(ab)=\operatorname{lcm}(m,n)$. 这里 lcm 表示最小公倍数。
- (2) S_n 内的奇数阶置换必是偶置换。
- (3) 设 G 是群且 G/Z(G) 是循环群,则 G 是 Abel 群。
- (4) 设 G 是群, $a \in G$, $H \leq G$, [G:H] = n, 则 $a^n \in H$.

题 2 (15 分). 设 $\sigma = (1234567)$ 是 S_7 内的一个 7-循环, $H = \langle \sigma \rangle$ 是其生成的 S_7 的子群。

- (1) 求 σ 的中心化子 $Z(\sigma)$. 说明你的理由。
- (2) 求 H 的正规化子 N(H) 的阶。说明你的理由。
- (3) 证明: S₇ 有 21 阶子群。

题 3 (20 分). 设 G 是 28 阶非 Abel 群且 G 有 4 阶循环子群 $H = \langle a \rangle$.

- (1) 证明: $N_G(H) = H$.
- (2) 设 $b \in G$ 的任一 7 阶元, 证明: $aba^{-1} = b^{-1}$.
- (3) 证明: G 有唯一 14 阶子群 K 且 $K \cong C_{14}$.
- (4) 求 G 中 2,4,7,14 阶元的个数。说明你的理由。

题 4 (10 分). 设 G 是有限群, $p \mid |G|$,H 是 G 的一 p-子群。证明 Sylow 定理的如下推广:G 的含 H 的 Sylow p-子群的个数模 p 余 1. 注:本题允许使用 Sylow 定理的结论。

题 5 (15 分). 设 G 是 p3 阶非 Abel 群, p 是素数。

- (1) 求 |Z(G)|. 说明你的理由。
- (2) 对任意 $a \notin Z(G)$, 求 $|Z_G(a)|$. 说明你的理由。
- (3) 求 G 的类方程。说明你的理由。
- (4) 求 G 的 p^2 阶子群的个数。说明你的理由。

题 6 (10 分). 设 G_1, G_2 是有限群且 $|G_1|$ 与 $|G_2|$ 互素,证明:

$$\operatorname{Aut}(G_1 \times G_2) \cong \operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)$$

并举例说明当 $|G_1|$, $|G_2|$ 不互素时, 结论不一定成立。

题 7 (10 分). 设 G 是有限群, $N \triangleleft G$.

(1) 证明: 若 $P \in G$ 的一 Sylow p-子群,则 $PN/N \in G/N$ 的一 Sylow p-子群。

(2) 证明: 对 G/N 的任一 Sylow p-子群 \hat{P} , 存在 G 的 Sylow p-子群 P 使 $\hat{P} = PN/N$.

本题默认:如果p不是|G|的素因子,那么G的Sylowp-子群是1.