

BACKGROUND - WHY?

Throws off any **demand forecasting**, **advanced costing**that hotel accounted for in the
cancelled bookings

Workaround solutions

Revenue management strategies like overbooking, strict cancellation policies and dynamic pricing based on **intuition** and "**experience**"

PROBLEM STATEMENT

Problem

Overbooking and cancellation policies based on **intuition** and **"experience"** ONLY

Consequences

Loss sales

Fall in business reputation

Fall in customer loyalty

Value Generation

#1 Better forecasting and planning

#2 Constant improvement because of feedback loop

GOAL OF ANALYSIS

#1

Understand

Is booking cancellations **correlated** to factors like lead time and market segment?

#2

Predict

Can we **predict with reasonable accuracy** if a booking will be canceled, based on its attributes?

CRISP-DM APPROACH

Cross-Industry Standard Process for Data Mining

DATA SET

Key Characteristics

- 120K rows, 32 columns
- Context: Portugal
- City hotel AND Resort hotel**
- **Source**: hotel's database
- Mostly processed, no duplicates

DATA EXPLORATION

- 1. City Hotel (66%), 2x of Resort hotel (33%)
- 2. More cancelled bookings from City than Resort

Separate analysis for City/Resort Hotel?

DATA PRE-PROCESSING

- N.A. columns: Replace using corresponding column ("baby" -> "children")
- Direct indicators: removed "reservation_status" and "reservation_status_date" columns
- As.Factor: Numerical variables that are ACTUALLY categories (is_repeated_guest, arrival_date_day_of_month)

DESCRIPTIVE ANALYTICS

- Top 3 Discoveries
- Their applications ("So-what?")
- *Complete dataset

INSIGHT #1

Lead Time on Cancellations

- Scatterplot is quite concentrated
- Potential correlation

"So what?"

 For customers that book with large lead times, how might hotels incentivise customers not to cancel?

INSIGHT #2

Market Segment on Cancellations

- More bookings cancelled than booked for customer segment: "Groups"
- Related to business context, they have a lot of requirements that tend to change

"So what?"

- More sensitive to Group bookings
- Special booking process to facilitate group bookings

Number of Cancellations by Market Segment

INSIGHT #3

Seasonality of Cancellations

- City: April October (work trips?)
- Resort: July AND August (summer?)

"So what"

- Different strategies for dealing with cancellations in City-Resort hotel
- Separate analysis for City-Resort

Cancellation per month for Resort Hotel

PREDICTIVE ANALYTICS

- CART
- Random Forest

DATA PREPARATION - CART

Built predictive model based on **City Hotel data only**

Excluded reservation_status and reservation_status_date

MODEL 1: CART

Cross-validation with k=5 for a 80% to 20% training-test split

Optimal cp = **3e^-0.5**

Benefits

- All variables can be considered
- Identify first few key factors in the decision tree

AUC = **0.88**

DATA PREPARATION - RANDOM FOREST

Model cannot handle variables with >53 levels

- Attempted to create new column up to 52nd level, and 53rd level as "others"
- Not scalable, just removed variables
 (3 of them) with >53 levels

MODEL 2: RANDOM FOREST

Manually tuned to get **OPTIMAL** parameters \rightarrow "ntree" = 50, "nodesize" = 1 and "mtry" = 8

AUC = **0.925**

Results

- *Built with City data ONLY
- Better AUC as compared to CART model
- Re-ran model with Resort data, similar outcomes

Evaluation of Models

CART Model

- 1. Revealed interesting variables for further analysis:
 - a. deposit_type
 - b. previous_cancellations
 - c. total_special_requests

Random Forest Model

- Better prediction model than CART
- Might not be an issue to use City and Resort hotel data together

Next Steps:

Further validate the three customer behaviour variables pointed out by CART

DIAGNOSTIC ANALYTICS

Test for Causality

Step 1: Created new column "lead_bin"

Step 2: Decided on value of split at lead_time == 100

Step 3: Matched data based on chosen control variables less than and more than lead_time == 100

Matched Control

Logistic regression to test significance

Raw Control

Matching of data was not strong

 Probability differed more with split value of 100 changing to other values

Market Segment

Step 1: Created new column "group"

Step 2: Matched data based on market_segment == "Group"

- Better matched data
- Probability of cancellations did not change much for both groups
- Logistic regression to test significance

Step 1: Created new column "refund"

Step 2: Matched data based on deposit_type == "Non Refund"

No Deposit / No Refund Refundable 0.3048058 0.9981349

- Better matched data
- Probability of cancellations did not change much for both groups
- Logistic regression to test significance

Counter-intuitive Insight:

 Implementing a penalty on bookings (non-refundable rooms) do not prevent customers from cancelling their bookings

LIMITATIONS AND NEXT STEPS

Dataset limited to mostly customer demographic data

Demographic Data

Variables like # adults, # children, arrival dates, segments etc. don't seem to be as useful

Customer Behavior data

Variables relating to the behavior of customer bookings revealed to be more significant and insightful

Scope of our dataset: City/Resort hotels in Portugal

Non-homogeneity of customers

Customer behavior for cancellations in Portugal may not be reflective of the rest of world

Non-homogeneity of location

Context of each booking/cancellation might differ based on location (Vacation? Business?)

NEXT STEPS #1

Browser sessions data might be useful Identify other **good predictors** of cancellations

Look for sources of customer behaviour data

Understand customer booking journey better

NEXT STEPS #2

Cross-reference with results and findings with data from other countries

- Replicate model for data in other cities and continents that are different in:

 (Examples but not limited to)
 - Type of tourists they attract: Cities that attract more business or leisure customers
 - Different customer demographics: Cities with younger populations
- Found <u>another study</u> on data from a hotel chain in Finland, revealed similar insights

THANK YOU

ALL THE BEST FOR FINALS:)

Q&A