Contrôle continu 1

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Donner la formule des probabilités totales (avec ses hypothèses) et en donner une démonstration.

Voir le cours!

Exercice 2. On lance simultanément trois dés équilibrés à 6 faces (numérotées de 1 à 6).

1. Définir un espace probabilisé pour modéliser cette expérience aléatoire.

L'idée est, comme vu en TD, de "numéroter les dés" en considérant des triplets. Prendre alors l'ensemble des possibles $\Omega = \{1, \dots, 6\}^3$ muni de la tribu $\mathcal{P}(\Omega)$ et de la probabilité uniforme (les 3 dés donnant des résultats indépendants et équiprobables).

- 2. Calculer la probabilité d'obtenir :
 - (a) trois numéros de la même parité;

On considère l'évènement $A = \{1, 3, 5\}^3 \cup \{2, 4, 6\}^2$. C'est une union disjointe. On a donc $\mathbb{P}(A) = \frac{|A|}{|\Omega|} = 2\frac{3^3}{6^3} = 0.25$.

(b) un numéro strictement supérieur à la somme de deux autres;

On considère l'évènement

$$B = \underbrace{\{(a,b,c) \in \Omega | a > b + c\}}_{B_1} \cup \underbrace{\{(a,b,c) \in \Omega | b > a + c\}}_{B_2} \cup \underbrace{\{(a,b,c) \in \Omega | c > a + b\}}_{B_3}$$

C'est une union disjointe d'évènements de même probabilité. En utilisant le principe de partition $B_1 = \bigcup_{i=2}^5 \{b+c=i\} \cap \{a>i\}$ on a donc

$$|B_1| = \sum_{i=2}^{5} |\{b+c=i\}| |\{a>i\}| = 1 \times 4 + 2 \times 3 + 3 \times 2 + 4 \times 1 = 20.$$

Finalement

$$\mathbb{P}(B) = 3\mathbb{P}(B_1) = 60/6^3 = 10/36 \approx 0.27778$$

(c) un 6 sachant qu'un numéro est strictement supérieur à la somme de deux autres.

On remarque tout d'abord qu'il ne peut y avoir qu'un seul 6 dans un tel lancer et c'est le résultat qui est supérieur à la somme des 2 autres. On a alors

$$|B_1 \cap \{a=6\}| = |B_2 \cap \{b=6\}| = |B_3 \cap \{c=6\}| = \sum_{i=2}^{5} |\{a=6, b+c=i\}| = 10,$$

ce qui donne $\mathbb{P}(B\cap (\{a=6\}\cup \{b=6\}\cup \{c=6\}))=\frac{30}{6^3}.$ Enfin on a

$$\mathbb{P}(\{a=6\} \cup \{b=6\} \cup \{c=6\} \, | B) = 1/2.$$

Exercice 3. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* et vérifiant $\mathbb{P}(X > k + 1) = \frac{1}{2}\mathbb{P}(X > k)$ pour tout $k \in \mathbb{N}$.

1. Déterminer la loi de X.

On a $\mathbb{P}(X > 0) = 1$ car c'est une loi de probabilité dont le support est \mathbb{N}^* et $P(X > k) = 1/2^k$ car c'est une suite géométrique. De plus, comme $\mathbb{P}(X = k) = \mathbb{P}(X > k - 1) - \mathbb{P}(X > k) = 1/2^{k-1} - 1/2^k = 1/2^k$. C'est donc une loi géométrique (qui porte bien son nom) de paramètre 1/2.

2. Calculer la moyenne et la variance de X.

Le calcul est fait en cours. On a $\mathbb{E}(X) = Var(X) = 2$.

Exercice 4. Dans un pays où il naît autant de filles que de garçons, le docteur Glück prévoit le sexe des enfants à naître. Il se trompe 1 fois sur 10 si c'est un garçon et 1 fois sur 20 si c'est une fille. Aujourd'hui il vient d'annoncer à Mme Parisod qu'elle aurait une fille. Quelle est la probabilité pour que cela soit vrai?

On note $F = \{\text{Mme Parisod a une fille}\}\$ et $G_F = \{\text{Le Docteur prévoit une fille}\}\$. On a $\mathbb{P}(G_F|F^c) = 0.1$ et $\mathbb{P}(G_F|F) = 0.95$. On cherche la probabilité de l'évènement F sachant P_F

$$\mathbb{P}(F|G_F) = \frac{\mathbb{P}(G_F|F)\mathbb{P}(F)}{\mathbb{P}(G_F \cap F) + \mathbb{P}(G_F \cap F^c)} = \frac{0.95/2}{0.95/2 + 0.1/2} \approx 0.91.$$