Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

1. (currently amended) A method of connecting a subscriber unit to a fiberoptic

communication network via a fiberoptic interface device adapted to function as an

interface device in a coarse wavelength division multiplex (CWDM) system, the

interface device method comprising:

providing an electric circuit arrangement,

providing a first receiving section adapted to receive a first opto-electric transceiver

module including

a first receiver unit for receiving optical signals from an optical

conduction path, the first receiver unit comprising a first opto-electrical

converter for converting the received optical signals to electrical signals, which

are adapted to be conducted to said electric circuit arrangement, and

a first transmitter unit for transmitting optical signals to an optical

conduction path, the first transmitter unit comprising a first electro-optical

converter for converting electrical signals, received from said electric circuit

arrangement, to optical signals before they are transmitted from the

transmitter unit,

Page 2 of 18

<u>providing</u> a second receiving section adapted to receive a second opto-electric transceiver module including

a second receiver unit for receiving optical signals from an optical conduction path, the second receiver unit comprising a second opto-electrical converter for converting the received optical signals to electrical signals, which are adapted to be conducted to said electric circuit arrangement, and

a second transmitter unit for transmitting optical signals to an optical conduction path, the second transmitter unit comprising a second electrooptical converter for converting electrical signals, received from said electric circuit arrangement, to optical signals before they are transmitted from the transmitter unit,

wherein said first and second receiving sections are designed such that said first and second opto-electric transceiver modules may be plugged into the respective receiving section and unplugged therefrom, and wherein each of said first and second receiving sections is configured to receive a transceiver module of a standardized size,

wherein the method comprises the following steps:

arranging said first opto-electric transceiver module in said first receiving section and connecting this first opto-electric transceiver module to said fiberoptic communication network,

providing a first electric transceiver module including

a receiver member arranged for receiving electrical signals from an

electrical conduction path and for conducting corresponding electrical

signals to said electric circuit arrangement, and

a transmitter member for receiving electrical signals from said electric

circuit arrangement and for transmitting corresponding electrical signals to

an electrical conduction path, wherein said first electric transceiver module

is also designed such that it may be plugged into one of said receiving

sections and unplugged therefrom,

arranging said first electric transceiver module in said second receiving section rather

than the second opto-electric transceiver module, and

connecting said interface device, via said first electric transceiver module, to said

subscriber unit via electrical conduction paths.

2. (original) A method according to claim 1, wherein said first electric transceiver

module is configured such that said receiver member is a passive receiver member,

which conducts the received electrical signals from the electrical conduction path to

said electric circuit arrangement without providing any amplification.

3. (original) A method according to claim 1, wherein said first electric transceiver

module is configured such that said transmitter member is a passive transmitter

member, which conducts the received electrical signals from the electric circuit

Page 4 of 18

Filed: December 7, 2001

arrangement to the electrical conduction path without providing any amplification.

4. (original) A method according to claim 1, wherein said first electric transceiver

module is configured such that said receiver member is an active receiver member,

which provides an amplification of the

received electrical signals from the electrical conduction path before the signals are

conducted to said electric circuit arrangement.

5. (original) A method according to claim 1, wherein said first electric

transceiver module is configured such that said transmitter member is an active

transmitter member, which provides an amplification of the received electrical

signals from the electric circuit arrangement before the signals are conducted to the

electrical conduction path.

6. (cancelled)

7. (original) A method according to claim 1, wherein said first opto-electric

transceiver module is connected to said fiberoptic communication network via a

multiplexer/demultiplexer.

8. (original) A method according to claim 1, wherein said interface device,

Filed: December 7, 2001

together with said attached first opto-electric transceiver module and said attached

first electric transceiver module, is arranged to adapt the signals from said

subscriber unit before transmitting the signals to said multiplexer/demultiplexer, and

also to adapt signals from said multiplexer/demultiplexer before they are transmitted

to said subscriber unit.

9. (original) A method according to claim 1, wherein said interface device

includes a circuit board, on which said electric circuit arrangement, said first

receiving section and said second receiving section are arranged.

10. (currently amended) A method of testing the function of an interface device, the

interface device being designed to function as an interface device in a coarse

wavelength division multiplex (CWDM) system and to thereby form an interface

device between a subscriber unit and a fiberoptic communication network, the interface

device method comprising: providing an electric circuit arrangement,

providing a first receiving section adapted to receive a first opto-electric transceiver

module including

a first receiver unit for receiving optical signals from an optical conduction

path, the first receiver unit comprising a first opto-electrical converter for

converting the received optical signals to electrical signals, which are adapted to

be conducted to said electric circuit arrangement, and

Page 6 of 18

a first transmitter unit for transmitting optical signals to an optical conduction

path, the first transmitter unit comprising a first electro-optical converter for

converting electrical signals, received from said electric circuit arrangement, to

optical signals before they are transmitted from the transmitter unit,

providing a second receiving section adapted to receive a second opto-electric transceiver

module including

a second receiver unit for receiving optical signals from an optical

conduction path, the second receiver unit comprising a second opto-

electrical converter for converting the received optical signals to electrical

signals, which are adapted to be conducted to said electric circuit arrangement,

and

a second transmitter unit for transmitting optical signals to an optical

conduction path, the second transmitter unit comprising a second electro-optical

converter for converting electrical signals, received from said electric circuit ar-

rangement, to optical signals before they are transmitted from the transmitter unit,

wherein said first and second receiving sections are designed such that said first and

second opto-electric transceiver modules may be plugged into the respective

receiving section and unplugged therefrom, and wherein each of said first and second

receiving sections is configured to receive a transceiver module of a standardized size,

wherein the method comprises the following steps:

providing a first electric transceiver module including

a receiver member arranged for receiving electrical signals from an electrical conduction path and for conducting corresponding electrical signals to said electric circuit arrangement, and

a transmitter member for receiving electrical signals from said electric circuit arrangement and for transmitting corresponding electrical signals to an electrical conduction path, wherein said first electric transceiver module is also designed such that it may be plugged into one of said receiving sections and unplugged therefrom,

arranging said first electric transceiver module in said first or second receiving section rather than an opto-electric transceiver module such that the first electric transceiver module is connected to said electric circuit arrangement,

connecting said first electric transceiver module, via electrical conduction paths, to a test equipment, and

testing the functionality of said interface device with the help of the test equipment.

11. (original) A method according to claim 10, comprising the steps of: providing also a second electric transceiver module including

> a receiver member arranged for receiving electrical signals from an electrical conduction path and for conducting corresponding electrical signals to said electric circuit arrangement, and

a transmitter member for receiving electrical signals from said electric circuit arrangement and for transmitting corresponding electrical signals to an electrical conduction path, wherein said second electric transceiver module is also designed such that it may be plugged into one of said receiving sections and unplugged therefrom,

arranging said second electric transceiver module in the other of said first and second receiving sections such that the second electric transceiver module is connected to said electric circuit arrangement,

connecting also said second electric transceiver module, via electrical conduction paths, to said test equipment, and

testing the functionality of said interface device with the help of the test equipment.

12. (original) A method according to claim 11, wherein said first and second electric transceiver modules are arranged such that said receiver

members are passive receiver members, which conduct the received electrical signals from the electrical conduction paths to said electric circuit arrangement without providing any amplification.

13. (original) A method according to claim 11, wherein said first and second electric transceiver modules are arranged such that said transmitter members are passive transmitter members, which conduct the received electrical signals from the

Filed: December 7, 2001

electric circuit arrangement to the electrical conduction paths without providing any

amplification.

14. (original) A method according to claim 11, wherein said first and second

electric transceiver modules are arranged such that said receiver members are

active receiver members, which provide amplification of the received electrical

signals from the electrical conduction paths before the signals are conducted to said

electric circuit arrangement.

15. (original) A method according to claim 11, wherein said first and second

electric transceiver modules are arranged such that said transmitter members are

active transmitter members, which provide amplification of the received electrical

signals from the electric circuit arrangement before the signals are conducted to the

electrical conduction paths.

16. (cancelled)

17. (original) A method according to claim 10, wherein said interface device is

configured such that, when it is to be used between said sub-scriber unit and said

fiberoptic communication network, said first opto-electric transceiver module is to

be attached to said first receiving section and to be connected to said fiberoptic

Page 10 of 18

Filed: December 7, 2001

communication network via a multiplexer/demultiplexer.

18. (original) A method according to claim 17, wherein said interface device is

configured such that, when it is to be used in said fiberoptic communication

network, said electric circuit arrangement, together with transceiver modules

attached to said first and second receiving sections, is arranged to be able to adapt

signals from said subscriber unit before transmitting the signals to said

multiplexer/demultiplexer, and also to adapt signals from said

multiplexer/demultiplexer before they are transmitted to said subscriber unit.

19. (original) A method according to claim 10, wherein said interface device

includes a circuit board, on which said electric circuit arrangement, said first

receiving section and said second receiving section are arranged.