Lab4b

- 1 Aproksymacja średniokwadratowa funkcjami trygonometrycznymi
- 1.1 Bartosz Kucharz
- 2 Funkcja zadana do analizy

$$k = 3m = 0.2f(x) = \sin\left(\frac{xk}{\pi}\right)e^{\frac{-mx}{\pi}}$$

[<matplotlib.lines.Line2D at 0x7fa4f7dcc3d0>]

3 Błąd przybliżenia

$$\frac{1}{n}||F(x) - f(x)|| = \frac{1}{n}\sum_{i=0}^{n} w(x_i)[F(x_i) - f(x_i)]^2$$

4 Ekperymenty

+		
+	Liczba funkcji bazowych	Biąd przyblizenia
I 5	1	0.122993678334601
J 5	2	0.02042473353802
J 5	3	0.014796802440083
l 5	4	0.066902152133445
10	1	0.0
10	2	0.0
10	3	0.0
10	4	0.0
10	5	0.0
10	6	0.0
10	7	0.0
10	8	0.0
15	1	0.416061822637931
15	2	0.412295213452311
15	3	0.407684433544704
15	4	0.39680017717942
15	5	0.290000820665602
15	6	0.064232072947008
15	7	0.016260638535267
15	8	0.012871814948569
25	1	0.430664627171142
25	2	0.422481803139625
25	3	0.412235022864898
25	4	0.391230706966146
25	5	0.249310811447962
25	6	0.058275936452121
25	7	0.027997967022997
25	8	0.016405581087188
l 50	1	0.438921707335366
l 50	2	0.427973348436846
l 50	3	0.413572463186518
l 50	4	0.384620110732966
50	5	0.216124699235248
l 50	6	0.043778197524003
l 50	7	0.020047322192103
l 50	8	0.011897631893493
100	1	0.443125314472998
100	2	0.431126891913742
100	3	0.414888127237727
100	4	0.382131340917889
100	5	0.200461087430905
100	6	0.036674864016669
100	7	0.015681042609459

	100	1	8	0.008843543719977
	200	- 1	1	0.445277166793113
	200	- 1	2	0.432854845654356
	200		3	0.415790499235943
	200	- 1	4	0.381230480996361
	200	- 1	5	0.193108522565984
	200	- 1	6	0.033430984865639
	200	- 1	7	0.013706186622893
	200	- 1	8	0.007458339404551
+		+		+

4.1 Liczba węzłów 10

Błąd przybliżenia 3.8214e-32

W powyższym przypadku dla liczby węzłów równej 10, węzły niefortunnie ułożyły się prawie w lini prostej, przez co błąd przybliżenia dla 10 węzłów wyniósł 0.

4.2 Wybrane wykresy

4.2.1 Liczba węzłow 15, liczba funkcji bazowych 5

Błąd przybliżenia 0.29

4.2.2 Liczba węzłow 15, liczba funkcji bazowych 8

Błąd przybliżenia 0.012872

4.2.3 Liczba węzłow 100, liczba funkcji bazowych 8

Błąd przybliżenia 0.0088435

Zależności między liczbą węzłów i liczbą funkcji bazowych a dokładnością przybliżenia są takie same jak w przypadku aproksymacji wielomianami algebraicznymi. Tzn. zwiększenie liczby funkcji bazowych zwiększa dokładność aproksymacji natomiast liczba węzłów nie ma wpływu na błąd przybliżenia.

Ze względu na okresowość funkcji trygonometrycznych oraz fakt, że zadana funkcja ma różne pochodne na końcach przedziałów na końcu prawego przedziału można zaobserwować rozbieżność funkcji aproksymującej z funkcją zadaną.