International Rectifier

IRFP264N

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	44		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	31	A	
I _{DM}	Pulsed Drain Current ①	170		
P _D @T _C = 25°C	Power Dissipation	380	W	
	Linear Derating Factor	2.6	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@	520	mJ	
I _{AR}	Avalanche Current®	25	A	
E _{AR}	Repetitive Avalanche Energy®	38	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	8.7	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.39	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

IRFP264N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	250			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.30		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			60	mΩ	V _{GS} = 10V, I _D = 25A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	29			S	V _{DS} = 25V, I _D = 25A ⁽⁴⁾
Inno	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 250V, V_{GS} = 0V$
I _{DSS}	Brain to Godice Leakage Guiterit			250	μΑ	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	na i	V _{GS} = -20V
Qg	Total Gate Charge			210		I _D = 25A
Q _{gs}	Gate-to-Source Charge			34	nC	$V_{DS} = 200V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			94		V _{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = 30V$
t _r	Rise Time		62		no	$I_D = 25A$
t _{d(off)}	Turn-Off Delay Time		52		ns	$R_G = 1.8\Omega$
t _f	Fall Time		53			V _{GS} = 10V, See Fig. 10 ④
L _D	Internal Drain Inductance		5.0			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		13		nH	from package and center of die contact
C _{iss}	Input Capacitance		3860			V _{GS} = 0V
Coss	Output Capacitance		480			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		110		pF	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current		44	14	MOSFET symbol		
	(Body Diode)			A	showing the		
I _{SM}	Pulsed Source Current				170		integral reverse
	(Body Diode)①	de)①	- 170	70	p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 25A, V_{GS} = 0V \oplus$	
t _{rr}	Reverse Recovery Time		270	400	ns	$T_J = 25$ °C, $I_F = 25$ A	
Q _{rr}	Reverse Recovery Charge		2.7	4.1	μC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 1.7mH $R_G = 25\Omega$, $I_{AS} = 25A$, $V_{GS} = 10$ V
- $\label{eq:loss_def} \begin{tabular}{ll} \Im & I_{SD} \leq 25A, \ di/dt \leq 500A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 175^{\circ}C \end{tabular}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

IRFP264N

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRFP264N

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP264N International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

^{***} $V_{GS} = 5.0V$ for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

IRFP264N International Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

LOI CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 5/01