

Hotel room price prediction

Team: Dragonflies

Contents

- 1. Ideation
- 2. Literature review
- 3. Dataset Analyzed
- 4. Feature overview
- 5. Variable Processing
 - a. Approach 1 separate variables by nature (categorical & continuous)
 - b. Approach 2 separate variables by relevance (property, time features, etc.)
- 6. Feature engineering
- 7. Modeling
- 8. Takeaways

"Machine Learning Predicting Airbnb Prices"	 KNN algorithm applied Find a few rooms that are similar to target room Average the listed price for the ones most similar to target Set listing price of target to this calculated average price
Zhang, K., Wang, K., Wang, X., Jin, C., & Zhou, A. (2015). Hotel recommendation based on user preference analysis. 2015 31st IEEE International Conference on Data Engineering Workshops, 134-138.	 Collaborative filtering (CF) and content-based filtering (CBF) applied Use Expedia search data to represent user data combine collaborative filtering (CF) with content-based (CBF) method to overcome sparsity issue
Fang, Z., Yang, Z., & Zhang, Y. (2015). Collaborative Embedding Features and Diversified Ensemble for E-Commerce Repeat Buyer Prediction.	 Predict linkages of "search" and "property" Build graph between "search" and "hotel property" Classify "Search - Property" pair Predict "Search - Property" linkage
Bollen, Johan et al. "Twitter mood predicts the stock market." J. Comput. Science 2 (2011): 1-8	Social popularity to predict hotel prices
	Zhang, K., Wang, K., Wang, X., Jin, C., & Zhou, A. (2015). Hotel recommendation based on user preference analysis. 2015 31st IEEE International Conference on Data Engineering Workshops, 134-138. Fang, Z., Yang, Z., & Zhang, Y. (2015). Collaborative Embedding Features and Diversified Ensemble for E-Commerce Repeat Buyer Prediction. Bollen, Johan et al. "Twitter mood predicts the stock market." J.

Dataset Analyzed

Source: Kaggle

Dataset: Personalize Expedia Hotel Searches - ICDM 2013

Data Size:

- Train.csv (2.36GB)
- test.csv(1.5GB)

Information:

- Hotel characteristics
- Location attractiveness of hotels
- User's aggregate purchase history
- Competitive online travel agencies information

Features overview

Shape: 16,540,159 * 51 **Time:** 2012-11-01 to 2013-06-30

Countries: 174 Cities: 28416 Hotel: 140821 Target: Price_usd

srch_id	date_time	site_id	visitor_loc ation_cou ntry_id	visitor_hist _starrating	visitor_hist _adr_usd	prop_coun try_id	prop_id	prop_starr ating	prop_revie w_score
prop_bran d_bool	prop_locat ion_score 1	prop_locat ion_score 2	prop_log_ historical_ price	price_usd	promotion _flag	srch_desti nation_id	srch_lengt h_of_stay	srch_book ing_windo w	srch_adult s_count
srch_child ren_count	srch_room _count	srch_satur day_night _bool	srch_quer y_affinity_ score	orig_desti nation_dis tance	random_b ool	comp1_rat e	comp1_in v	comp1_rat e_percent _diff	comp2_rat e
comp2_in v	comp2_rat e_percent _diff	comp3_rat e	comp3_in v	comp3_rat e_percent _diff	comp4_rat e	comp4_in v	comp4_rat e_percent _diff	comp5_rat e	comp5_in v
comp5_rat e_percent _diff	comp6_rat e	comp6_in v	comp6_rat e_percent _diff	comp7_rat e	comp7_in v	comp7_rat e_percent _diff	comp8_rat e	comp8_in v	comp8_rat e_percent _diff

Features structure

Approach 1

- Separate variables by nature

Pipeline structure

- Issues of approach 1
 - Hard to get the optimized result
 - Don't handle features intuitively
 - Difficult to tell features importance for each attribute
 - Don't integrate the "Date" feature

Approach 2 Separate variables by relevance

Pipeline structure

Features engineering

- Feature analysis summary from approach 1
 - 6 Categorical features (srch_id, site_id, visitor_location_country_id...)
 - 39 Numerical features (prop_starrating, prop_review_score, prop_location_score1...)
 - 3 Boolean features (prop_brand_bool, srch_saturday_night_bool, random_bool)

Numeric Features	prop_starrating, prop_review_score, prop_location_score1, prop_log_historical_price, srch_adults_count, srch_room_count, orig_destination_distance
Categorical & Boolean Features	srch_id, site_id, visitor_location_country_id, prop_country_id, prop_id, srch_destination_id prop_brand_bool, srch_saturday_night_bool, random_bool, promotion_flag

- Missing data handling:
 - > 50% NA in competitor features → drop
 - NA in numerical features → median
 - NA in categorical & boolean features → case by case
- Outlier value detection:
 - Hotel price too low \rightarrow \$0.2/night
 - Hotel price too high → \$+5million/night
 - Considering filter out outliers later (for different countries, price gaps exist)
- Transfer categorical features to numerical features
 - Using popularity values instead of ID values
- Date feature:
 - Aggregate date by day, month, quarter → chose by day

Features engineering

Feature importance

- Gradient Boosted Decision Trees (GBDT)
- Feature importance: prop_country_id, prop_historical_price, prop_review_score, prop_id, srch_booking_windows, etc. (ranked in descending order by importance)

Volatility of property features

Heatmap of correlated features

Pipeline mode change to

- Key features
 - Prop_id, prop_country_id, srch_destination_id, prop_starrating, prop_brand_bool, prop_review_score, prop_location_score, prop_log_historical_price, srch_length_of_stay
- Aggregate data by day

Select and align prop_id with time features

- o prop_id: 116942
- 242 items
- High correlation score features: srch_saturday_bool, srch_length_of_stay, srch_booking_window, prop_log_historical_price, prop_location_score1, prop_location_score2

Property features modeling result

	Linear Regression	Ridge	ElasticNet	Random Forest	Decision Tree
Training RMSE	16.1	17.2	18.3	7.9	2.9
Validation RMSE	19.4	188	19.3	19.4	22.8
Test RMSE	2408.3	41.9	17.2	22.2	22.34

Time feature modeling:

model 1: ARIMA time series model

train RMSE: 19.743

- test RMSE: 16.756

model 2: linear regression model With extracted time-related features: 'month','day','quarter','week'

- train RMSE: 16.352

test RMSE: 20.367

	date_time	price_usd	day	week	month	quarter
0	2012-11-01	105.000	1	44	11	4
1	2012-11-02	105.000	2	44	11	4
2	2012-11-03	127.140	3	44	11	4
3	2012-11-04	91.380	4	44	11	4
4	2012-11-05	91.605	5	45	11	4
-	rias data la	n. 242				

RMSE: 16.756

stacking model 1 and model 2:

Using prediction results from the previous two models as new features, and fit a second-layer regression model

2nd layer modeling	train_RMSE	test_RMSE
XGBoost (with hyperparameter tuning)	18	17

Stacking property and time modelings together: time + property modeling:

	train RMSE	test RMSE
linear regression	12	21
random forest	5	23
XGboost (with param tuning)	22	18

Work Ongoing:

- Using cross validation to avoid overfitting (K = 5)
- Set property selection threshold: 75 percentile popularity, get the corresponding popularity value = 234
- Select all property id by using the threshold
- Tuning model by iterating all qualified property id dataset to get optimized performance

Future work:

- Remove outliers: set price threshold = >\$10 and <\$100,000
- Parameter tuning for algorithms
- More feature engineering (e.g. the impact of competitors)

Takeaways of the project:

- Hotel price is predictable
- Hotel price is related with hotel's attributes and its fluctuation vary by time
- Feature engineering is the key
- Multiple layers modeling to integrate the regression model and time series model

