VideoSDK - IOT Assignment

Objective

Create an ESP32-based system that detects loud sounds using a microphone, records a short audio snippet, and sends an MQTT alert containing event metadata.

Estimated Time

2 days

Deliverables

1. ESP32 Firmware

- Continuously monitor analog microphone input via ADC (I2C) using ESP-IDF.
- Detect loud sound events based on a configurable threshold.
- On detection:
 - Record 3 seconds of audio (via ADC sampling).
 - Save as `.wav` or raw `.bin` file using SPIFFS.
 - Publish an MQTT message containing metadata.

2. MQTT Integration

- Use a public MQTT broker (e.g., 'test.mosquitto.org').
- Topic: `esp32/audio_alerts/{device_id}`.
- Payload example:

```
{
"event": "sound_detected",

"device": "esp32-audio-01",

"timestamp": "2025-06-28T13:10:00Z",

"amplitude": 0.91,

"audio_filename": "recording_168.wav"
```

3. Serial Logging

- Log:
 - Threshold crossings
 - Recording events
 - File path
 - MQTT publishing result (success/failure)

4. README.md

- Setup Instructions: Mic wiring, SPIFFS formatting, MQTT config
- Usage: Test using Serial Monitor and MQTT dashboard
- Known Issues

5. Demo Recording

- A brief (1–2 min) screen capture showing:
 - Serial log during recording
 - MQTT alert being published
 - SPIFFS file listing after recording

Technical Constraints

- Must use ADC (I2C) for audio capture (no external audio ICs).
- Only SPIFFS or internal RAM for storage.
- MQTT messages must be JSON formatted with minimal payload.

Bonus Points (Optional)

- Implement HTTPS Dile upload to a webhook (e.g., Mailgun or Discord)
 - Attach the `.wav` or `.bin` file
 - Use secure HTTPS POST with necessary headers
 - Include metadata (timestamp, filename) in the body or subject
- Add a second MQTT message (`audio/upload_status`) indicating success/failure of the upload.