

Mining Large Scale Datasets

Graph Representation Learning

(Adapted from CS246@Starford.edu; http://www.mmds.org)

Sérgio Matos - aleixomatos@ua.pt

Machine Learning on Graphs

Node classification

Machine Learning on Graphs

Link prediction

Machine Learning on Graphs

Machine Learning requires feature engineering!

Feature Learning on Graphs

GOAL: Efficient task-independent feature learning for machine learning with graphs

Feature Learning on Graphs

TASK: Map each node in a network into a low-dimensional space

- Distributed representation of nodes
- Similarity of embeddings (node representations) between nodes indicates their network similarity
- Encode network information and generate node representation

Feature Learning on Graphs: Example

Image from: Perozzi et al. Deepwalk 2014

Feature Learning on Graphs: Differences

- Modern deep learning toolbox is designed for simple sequences or grids
 - CNNs for fixed-size images
 - RNNs or word2vec for text/sequences
- But networks are far more complex
 - Complex topographical structure: no spatial locality like grids
 - No fixed node ordering or reference point
 - Often dynamic and with multimodal features

Embedding graph nodes

- Assume a graph G
 - *V* is the vertex set
 - A is the (binary) adjacency matrix
- Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network

Embedding graph nodes

- Assume a graph G
 - V is the vertex set
 - A is the (binary) adjacency matrix
- Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network

Embedding graph nodes: Steps

- 1 Define an encoder (i.e., a mapping from nodes to embeddings)
- 2 Define a node similarity function (i.e., a measure of similarity in the original network)
- 3 Optimize the parameters of the encoder so that

$$similarity(u, v) \approx \mathbf{z}_{v}^{\mathsf{T}} \mathbf{z}_{u}$$

Embedding graph nodes: Key components

- Encoder
 - Maps a node v to a low-dimensional vector \mathbf{z}_v

$$ENC(v) = \mathbf{z}_v$$

- Similarity function
 - Specifies how the relationships in vector space map to the relationships in the original network

similarity
$$(u, v) \approx \mathbf{z}_{v}^{\mathsf{T}} \mathbf{z}_{u}$$

Shallow encoding

 Simplest encoding approach: encoder is just an embedding-lookup

$$ENC(v) = \mathbf{Z} \cdot \mathbf{v}$$

 $\mathbf{Z} \in \mathbb{R}^{d \times |\mathcal{V}|}$ matrix, each column is a node embedding

→ what we learn!

 $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ indicator vector all 0s except a 1 in column indicating node v

Shallow encoding

 Simplest encoding approach: encoder is just an embedding-lookup

Shallow encoding

 Simplest encoding approach: encoder is just an embedding-lookup

Methods: DeepWalk, node2vec, TransX, ...

Node similarity

- Key choice of methods is how they define node similarity
- E.g., should two nodes have similar embeddings if they ...
 - Are connected?
 - Share neighbours?
 - Have similar "structural roles"?
 - ...?

Random walk approaches

- Random walk on a graph
 - Given a starting point
 - Select a neighbor at random and move to that node
 - Repeat

Random walk approaches

- Random walk on a graph
 - Given a starting point
 - Select a neighbor at random and move to that node
 - Repeat
- $\mathbf{z}_{u}^{\mathsf{T}}\mathbf{z}_{v} \approx \text{probability that } u \text{ and } v \text{ co-occur on a random walk over the graph}$

Random walk embeddings

Estimate probability of visiting node v
on a random walk starting from node
u using some random walk strategy R

 $P_R(v|u)$

2. Optimize embeddings to encode these random walk statistics

Note: $\mathbf{z}_{u}^{\mathsf{T}}\mathbf{z}_{v} = cos(\theta)$ encodes the random walk 'similarity'

$$\theta \propto P_R(v|u)$$

Random walks

Expressivity

Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information

Efficiency

No need to consider all node pairs when training Only need to consider pairs that co-occur on random walks

Unsupervised feature learning

Intuition: Find *d*-dimensional embedding of nodes that preserves similarity

Idea: Learn node embedding such that nearby nodes are close together in encoding space

Given a node u how do we define nearby nodes?

 $N_R(u)$: neighbourhood of u obtained by some strategy R

Feature learning as Optimization

Given G = (V, E)

Our goal is to learn a mapping $z: u \longrightarrow R^d$

Log-likelihood objective:

$$\max_{z} \sum_{u \in V} log P(N_R(u)|z_u)$$

where $N_R(u)$ is the neighborhood of node u by strategy R

Given node u we want to learn feature representations that are predictive of the nodes in its neighborhood $N_R(u)$

- 1. Run short fixed-length random walks starting from each node on the graph using some strategy R
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u

Note: $N_R(u)$ can have repeated elements since nodes can be visited multiple times on random walks

3. Optimize embeddings according to (Given node u, predict its neighbors $N_R(u)$)

$$\max_{z} \sum_{u \in V} log P(N_{R}(u)|z_{u})$$

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -log(P(v|\mathbf{z}_u))$$

Intuition

Optimize embeddings to maximize likelihood of random walk occurrences

• Parameterize $P(v|\mathbf{z}_u)$ using softmax

$$P(v|\mathbf{z}_u) = \frac{exp(\mathbf{z}_u^{\mathsf{T}}\mathbf{z}_v)}{\sum_{n \in V} \mathbf{z}_u^{\mathsf{T}}\mathbf{z}_n}$$

Optimizing random walk embeddings = finding embeddings \mathbf{z}_u that minimize L

But doing this naively is too expensive!!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$

Nested sum over nodes means $O(|V|^2)$ complexity!

Negative Sampling

Solution: Negative sampling
 Instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples" n_i

$$log\left(\frac{exp(\mathbf{z}_{u}^{\top}\mathbf{z}_{v})}{\sum_{n \in V}\mathbf{z}_{u}^{\top}\mathbf{z}_{n}}\right) \approx log(\sigma(\mathbf{z}_{u}^{\top}\mathbf{z}_{v})) - \sum_{i=1}^{k} log(\sigma(\mathbf{z}_{u}^{\top}\mathbf{z}_{n_{i}})), n_{i} \sim P_{V}$$

 $\sigma\colon$ sigmoid function, makes each term a "probability" between 0 and 1

 P_V : random distribution over all nodes

Negative Sampling

$$log\left(\frac{exp(\mathbf{z}_{u}^{\top}\mathbf{z}_{v})}{\sum_{n \in V} \mathbf{z}_{u}^{\top}\mathbf{z}_{n}}\right) \approx log(\sigma(\mathbf{z}_{u}^{\top}\mathbf{z}_{v})) - \sum_{i=1}^{k} log(\sigma(\mathbf{z}_{u}^{\top}\mathbf{z}_{n_{i}})), n_{i} \sim P_{V}$$

- Sample k negative nodes proportionally to degree
- Two considerations for k (number of negative samples):
 - 1. Higher k gives more robust estimates
 - 2. Higher *k* corresponds to higher prior on negative events In practice *k* = 5..20

Random Walks: overview

- 1. Run short fixed-length random walks starting from each node on the graph using some strategy R
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u
- Optimize embeddings using Stochastic Gradient Descent (approximating through negative sampling)

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -log(P(v|\mathbf{z}_u))$$

Walk this (or that) way...

- We have described how to optimize embeddings given random walk statistics
- What strategies should we use to run these random walks?
 - DeepWalk (Perozzi et al., 2013): Fixed-length, unbiased random walks starting from each node
 - This notion of similarity is too constrained
- How can we generalize this?

node2vec: Overview

- Goal: Embed nodes with similar network neighborhoods close in the feature space
 - Framed as a maximum likelihood optimization problem, independent of the downstream prediction task
- Key observation: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings
- node2vec: create biased second order random walk R to generate network neighborhood $N_R(u)$ of node u

node2vec: biased walks

 Idea: use flexible, biased random walks that can trade off between local and global views of the network

node2vec: biased walks

• Walk of length 3 (or neighborhood $N_R(u)$ of size 3):

$$N_{BFS}(u) = \{s_1, s_2, s_3\}$$
 – Local microscopic view

$$N_{DFS}(u) = \{s_4, s_5, s_6\}$$
 – Global macroscopic view

node2vec: interpolating BFS and DFS

Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - Return parameter p
 Return back to the previous node
 - In-out parameter q
 Moving outwards (DFS) vs. inwards (BFS)
 Intuitively, q is the "ratio" of BFS vs. DFS

node2vec: biased random walks

Biased 2nd-order random walks explore network neighborhoods

Random walk just traversed edge (s_1, w) and is now at w Neighbors of w can only be

node2vec: biased random walks

Random walk just traversed edge (s_1, w) and is now at w Where to go next?

- p, q: model transition probabilities
 - p return parameter
 - q "walk away" parameter
- Note: 1/p, 1/q, 1, are unnormalized probabilities

node2vec: biased random walks

Random walk just traversed edge (s_1, w) and is now at w Where to go next?

- BFS-like walk: low value of p
- **DFS-like** walk: low value of q

node2vec algorithm

- 1. Compute random walk probabilities
- 2. Simulate r random walks of length l starting at each node u
- Optimize the node2vec objective using Stochastic Gradient Descent

Linear-time complexity
All 3 steps are individually parallelizable

How to use the node embeddings

- Clustering/community detection: Cluster points z_i
- Node classification: Predict label $f(z_i)$ of node based on z_i
- **Link prediction**: Predict edge (i,j) based on $f(z_i,z_j)$
 - Where we can apply:

```
Concatenation: f(z_i, z_j) = g([z_i, z_j])
```

Hadamard product: $f(z_i, z_j) = g(z_i \odot z_j)$

Sum/Average: $f(z_i, z_j) = g([z_i, z_j])$

Distance: $f(z_i, z_j) = g(||z_i - z_j||_2)$

Summary

- Basic idea: Embed nodes so that distances in embedding space reflect node similarities in the original network
- Different notions of node similarity
 - Adjacency-based (i.e., similar if connected)
 - Multi-hop similarity definitions
 - Random walk approaches (covered today)
- No single method wins in all cases...
 - e.g. node2vec performs better on node classification while multi-hop methods performs better on link prediction
- Random walk approaches are generally more efficient
- **In general**: Must choose definition of node similarity that matches your application!

Knowledge Graph Embeddings

Nodes are referred to as **entities**, edges as **relations**

Knowledge Graph complection

KG **incompleteness** can substantially affect the efficiency of systems relying on it!

Create a link prediction model that learns from local and global connectivity patterns in the KG, taking into account entities and relationships of different types at the same time

TransE

- In TransE, relationships between entities are represented as triplets
 (head entity), (relation), (tail entity): (h, l, t)
- Entities are first embedded in an entity space R^k
 similarly to the previous methods
- Relations are represented as translations
 - $h + I \approx t$ if the fact is true
 - else, $h + I \neq t$

TransE algorithm

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{L}}, \frac{6}{\sqrt{L}}) for each \ell \in L
                                                                                                  Entities and relations are
                     \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                                                                                                  initialized uniformly, and
                     e \leftarrow uniform(-\frac{6}{\sqrt{L}}, \frac{6}{\sqrt{L}}) for each entity e \in E
 3:
                                                                                                  normalized
 4: loop
         \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
 8:
          for (h, \ell, t) \in S_{batch} do
                                                                                                        Negative sampling with triplet
             (h', \overline{\ell}, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
 9:
                                                                                                        that does not appear in the KG
              T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
10:
11:
          end for
                                                                               \nabla \left[ \gamma + d(\mathbf{h} + \boldsymbol{\ell}, \mathbf{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \mathbf{t'}) \right]
12:
          Update embeddings w.r.t.
                                                  ((h,\ell,t),(h',\ell,t')) \in T_{batch}
13: end loop
```

Comparative loss: favors lower distance values for valid triplets, high distance values for corrupted ones