Mini-Project: SQL - From Data to Insight

Bart and Matthew 22.01.24-26.01.24 (DA Week 3)

We'd like to understand what drives beer consumption at Oktoberfest

General trend: beer consumption at Oktoberfest is increasing

Source: Kaggle

Which variables might drive beer consumption at Oktoberfest?

ECONOMIC FACTORS FESTIVAL FACTORS CULTURAL NATURAL Price of beer Inflation rate in **How FC Bayern** Weather are performing (as measured Germany Number of (as measured by mean visitors by number of temperature in goals scored in Munich in Chicken the month of September) consumption September)

We looked at 3 data sources

Source: Kaggle

1985-2022

Source: Kaggle

1993-2018

Required filtering

Source: genesis-destatis

1985-2022

We wanted to look at a 4th data source

Mean temperature in {Munich} or {Germany} by {month} or {year}

BLOCKER: Unable to find sufficiently comprehensive data for free

TAKE-AWAY:

- Seemingly simple data-sets can be hard to come by
 - Can be time-consuming searching for the right data-set

From our 3 datasets, we built a schema

Source material

We forward engineered schema (*mydb*) to MySQL workbench

We wanted to populate schema from CSVs

While troubleshooting on SQL, we ran analyses on Jupyter Notebook

merged our 3 tables into one 'super-table'

```
merged_df_inner = pd.merge(df1, df2, on='key', how='inner')
```

ran correlation analysis on our chosen variables against data for beer consumption

```
correlation_{variable} =
df['{variable}'].corr(df['Beer_consumption'])
```

While troubleshooting on SQL, we ran analyses on Jupyter Notebook


```
VISUALIZATION IN PANDAS
   import seaborn as sns
   import matplotlib.pvplot as plt
 6 # Create a DataFrame with correlation values
   correlation data = pd.DataFrame({
            'Beer price': correlation beer price,
            'Chicken consumption': correlation chicken,
            'Goals': correlation goals,
11
             ' Inflation Rate': correlation inflation,
12
             'Visitors total': correlation visitors
13 }, index=['Beer consumption'])
15 # Create a heatmap using seaborn
16 sns.set(style="white")
17 plt.figure(figsize=(12, 6))
18 sns.heatmap(correlation_data, annot=True, cmap='coolwarm', fmt=".2f")
20 # Show the plot
21 plt.title("Correlation Heatmap")
22 plt.show()
23
```

Correlation: Guide

High positive correlation: beer price

No correlation: FC Bayern goals

Low negative correlation: chicken consumption

Challenges with Tableau

- aligning data types across tools floats in python became strings in Tableau
 - o inhibited further visualisation such as running animation

Conclusion

- only one variable (beer price) correlated to beer consumption (but relationship inverse to that which was expected)
- this investigation would need to draw on more societal variables (e.g. overall drinking habits)
- working with data across multiple tools was more time-consuming than expected; this was to the detriment of our ability to analyse and potentially introduce more variables

Feedback following presentation on 26.01

- would be useful to analyze 'purchase power' as beer price inflation YoY vs inflation YoY; it could be that beer is becoming relatively cheaper, which drives consumption
- schema could be simplified to one table in this instance as there is little value in the additional tables