# Learning Depth-First Search: A Unified Approach to Heuristic Search in Deterministic and Non-Deterministic Settings

Blai Bonet

Dept. de Computación

Universidad Simón Bolívar

Caracas, Venezuela

Héctor Geffner

Dept. de Tecnología

ICREA & Universitat Pompeu Fabra

Barcelona, Spain

#### **Motivation**

- Heuristic search methods can be efficient but lack common foundation: IDA\*,
   AO\*, Alpha-Beta, . . .
- Dynamic programming methods such as Value Iteration are general but not as efficient:
  - Single algorithm for wide range of models: Det, MDPs, Games, AND/OR, . . .
  - yet VI is exhaustive
- This work aims to bring these two types of methods together to obtain:
  - efficiency, generality, and understanding!

#### Result

- A simple algorithm, Learning Depth-First Search (LDFS), capable of solving a wide range of deterministic and non-deterministic models; based on three ideas
  - Depth-First Search
  - Lower bounds
  - Learning
- For some models, LDFS reduces to state-of-the-art algorithms:
  - Deterministic Models: LDFS = IDA\* w/ transposition tables
  - Game Trees: (Bounded) LDFS = Alpha-Beta w/ null windows (MTD) [Plaat et. al, 1996]
  - On others, like AND/OR and MDPs, LDFS yields new algorithms

#### **Basic Intuitions: IDA\***

#### **IDA**\*

- Performs iterative Depth-First Searches with certain bound
- Prune action a in node n leading to node n' when

$$g(n) + c(a,n) + h(n') > bound$$

#### **Basic Intuitions: IDA\***

#### **IDA**\*

- Performs iterative Depth-First Searches with certain bound
- Prune action a in node n leading to node n' when

$$g(n) + c(a,n) + h(n') > bound$$

#### IDA\* w/ Transposition Table (Cost Revisions [Reinefeld & Marsland, 1994])

- As IDA\*: performs iteratives DFS's with certain bound
- Upon backtracking from node n, **revise** heuristic value h(n) (stored in TT) to the new lower bound























#### **Monotone Heuristics and IDA\***

Monotonicity is a property of h that says

$$f(n) \leq f(n')$$

for each node n and successor n'; i.e. non-decreasing f-values along paths

- With monotone h, IDA\* has important properties:
  - $\circ$  The bound for each iteration equals  $h(n_0)$
  - $\circ$  An iteration either finds solution or increases  $h(n_0)$  which is next bound
  - The revision of the heuristic (TT) is just

$$h(n) := \min_{a \in A(n)} c(n,a) + h(n')$$

• Path  $(n_0, a_0, n_1, \dots, a_i, n_{i+1})$  is **transversed** by IDA\* (w/ TT and Monotone h) iff

$$bound = f(n_0) \le f(n_1) \le f(n_2) \le \ldots \le f(n_i) \le bound$$

$$f(n_0) = f(n_1) = f(n_2) = \dots = f(n_i)$$

### IDA\* + TT and Monotone h: Reformulated (Generalized)

- If  $Q_h(a,n) = c(a,n) + h(n')$ , the algorithm can be expressed as iterations that:
  - Starting from  $n_0$ , perform DFS along actions a such that

$$h(n) = Q_h(a,n)$$

 $\circ$  Backtrack at tip nodes n (i.e. with no such a's), restoring consistency of h(n):

$$h(n) := \min_{a \in A(n)} Q_h(a, n)$$

# IDA\* + TT and Monotone h: Reformulated (Generalized)

- If  $Q_h(a,n) = c(a,n) + h(n')$ , the algorithm can be expressed as iterations that:
  - Starting from  $n_0$ , perform DFS along actions a such that

$$h(n) = Q_h(a,n)$$

 $\circ$  Backtrack at tip nodes n (i.e. with no such a's), restoring consistency of h(n):

$$h(n) := \min_{a \in A(n)} Q_h(a, n)$$

• Good News: reformulation is very general; other models can solved be efficiently by suitable choice of  $Q_h(a,n)$ :

$$Q_h(a,n)=c(a,n)+\max_{n'}h(n')$$
 for Max and/or graphs  $Q_h(a,n)=c(a,n)+\sum_{n'}P_a(n'|n)h(n')$  for MDPs  $Q_h(a,n)=\max_{n'}h(n')$  for Game Trees

### IDA\* + TT and Monotone h: Reformulated (Generalized)

- If  $Q_h(a,n) = c(a,n) + h(n')$ , the algorithm can be expressed as iterations that:
  - Starting from  $n_0$ , perform DFS along actions a such that

$$h(n) = Q_h(a,n)$$

 $\circ$  Backtrack at tip nodes n (i.e. with no such a's), restoring consistency of h(n):

$$h(n) := \min_{a \in A(n)} Q_h(a, n)$$

• Good News: reformulation is very **general**; other models can solved be **efficiently** by suitable choice of  $Q_h(a, n)$ :

$$Q_h(a,n)=c(a,n)+\max_{n'}h(n')$$
 for Max and/or graphs  $Q_h(a,n)=c(a,n)+\sum_{n'}P_a(n'|n)h(n')$  for MDPs  $Q_h(a,n)=\max_{n'}h(n')$  for Game Trees

We call this algorithm LDFS for Learning Depth-First Search

#### **LDFS: The Code**

```
LDFS-DRIVER(n_0)
begin
      repeat solved := LDFS(n_0) until solved
      return (V,\pi)
end
LDFS(n)
begin
      if n is solved or terminal then
            if n is terminal then V(n) := c_T(n)
            Mark n as solved return true
      flag := false
                                                         % EXPANSION
      foreach a \in A(n) do
            if Q_V(a,n) > V(n) then continue
            flag := true
            foreach n' \in F(a,n) do
                  flag := LDFS(s') \& flag
                                              % Recursion
                 if \neg flag then break
            if flag then break
      if flag then
            \pi(n) := a
            Mark n as SOLVED
                                                         % LABELING
      else
            V(n) := \min_{a \in A(n)} Q_V(a, n)
                                                        % UPDATE
      return flag
end
```

#### **Rest of the Talk: Outline**

- What are Q-factors and where they come from?
- Why LDFS works?
- Properties and relation to other algorithms
- Extensions and empirical results for MDPs

### A bit of Background: Models

- a discrete and finite states space S,
- an initial state  $s_0 \in S$ ,
- a non-empty set of terminal states  $S_T \subseteq S$ ,
- actions  $A(s) \subseteq A$  applicable in each non-terminal state,
- a function that maps states and actions into sets of states  $F(a,s) \subseteq S$ ,
- action costs c(a, s) for non-terminal states s, and
- terminal costs  $c_T(s)$  for terminal states.

DETERMINISTIC: |F(a,s)| = 1 (OR Graphs),

Non-Deterministic:  $|F(a,s)| \ge 1$  (AND/OR graphs),

MDPs: probabilities  $P_a(s'|s)$  for  $s' \in F(s,a)$  that add up to 1

. . .

#### **Solutions**

• (Optimal) Solutions can be expressed in terms of value function V satisfying **Bellman** equation:

$$V(s) = \left\{ egin{array}{ll} c_T(s) & ext{if $s$ is terminal} \\ \min_{a \in A(s)} Q_V(a,s) & ext{otherwise} \end{array} 
ight.$$

where  $Q_V(a,s)$  stands for the cost-to-go value defined as:

$$Q_V(a,s)=c(a,s)+V(s')$$
,  $s'\in F(a,s)$  for OR Graphs  $Q_V(a,s)=c(a,s)+\max_{s'\in F(a,s)}V(s')$  for Max and/OR Graphs  $Q_V(a,s)=c(a,s)+\sum_{s'\in F(a,s)}V(s')$  for Add and/OR Graphs  $Q_V(a,s)=c(a,s)+\sum_{s'\in F(a,s)}P_a(s'|s)V(s')$  for MDPs  $Q_V(a,s)=\max_{s'\in F(a,s)}V(s')$  for Game Trees

#### **Solutions**

(Optimal) Solutions can be expressed in terms of value function V satisfying
 Bellman equation:

$$V(s) = \left\{ egin{array}{ll} c_T(s) & ext{if $s$ is terminal} \ \min_{a \in A(s)} Q_V(a,s) & ext{otherwise} \end{array} 
ight.$$

where  $Q_V(a,s)$  stands for the cost-to-go value defined as:

$$\begin{aligned} Q_V(a,s) &= c(a,s) + V(s'), \, s' \in F(a,s) \\ Q_V(a,s) &= c(a,s) + \max_{s' \in F(a,s)} V(s') \\ Q_V(a,s) &= c(a,s) + \sum_{s' \in F(a,s)} V(s') \\ Q_V(a,s) &= c(a,s) + \sum_{s' \in F(a,s)} V(s') \\ Q_V(a,s) &= c(a,s) + \sum_{s' \in F(a,s)} P_a(s'|s) V(s') \\ Q_V(a,s) &= \max_{s' \in F(a,s)} V(s') \end{aligned} \qquad \text{for MDPs}$$

An optimal policy can be recovered from the solution of Bellman equation as:

$$\pi(s) = \operatorname{argmin}_{a \in A(s)} Q_V(a, s)$$

# LDFS: Learning Depth-First Search

- Assuming monotone and admissible value function V (i.e. h):
  - $\circ$  Start from  $n_0$  and perform DFS along actions such that

$$V(n) = Q_V(a,n)$$

 $\circ$  Backtrack when there is no such action and update V(n) to

$$V(n) := \min_{a \in A(n)} Q_V(a, n)$$

- LDFS solves all models above, except MDPs with cyclic solutions
- LDFS is equivalent to IDA\* w/ TT on Deterministic models (OR graphs)

### **Value Iteration Algorithm**

- There is an algorithm that is almost as general, and even simpler: Value Iteration
- Value Iteration doesn't search, just makes updates:
  - Iterate until convergence:

For all node 
$$n$$
 do:  $V(n) := min_{a \in A(n)} Q_V(a,n)$ 

• VI is pretty good when all states fit in memory (e.g. around  $10^6$  states)

# Why is VI less general and less effective than LDFS?

• It doesn't work in the presence of dead-ends (states with  $V(s) = \infty$ )

# Why is VI less general and less effective than LDFS?

- It doesn't work in the presence of dead-ends (states with  $V(s) = \infty$ )
- It doesn't exploit LBs/Heuristic information; it is an exhaustive method

# Why is VI less general and less effective than LDFS?

- It doesn't work in the presence of dead-ends (states with  $V(s) = \infty$ )
- It doesn't exploit LBs/Heuristic information; it is an exhaustive method
- For example, if  $Q_V(a,n) > V^*(n)$ , LDFS will never consider action a at n;
- E.g. IDA\* never explores child n' of n if  $Q_h(a,n) > h(n)$  and h is monotone

### Find-and-Revise: An Abstraction that Searchs and Updates

- Find-and-Revise is a theoretical model for analysis; defined in terms of
  - Greedy Graph  $G_V$ : contains nodes n reachable from  $n_0$  by applying **greedy** actions a; i.e. those with  $Q_V(a,n) = min_a Q_V(a,n)$
  - Consistent nodes: those such that  $V(n) = min_a Q_V(a, n)$

# Find-and-Revise: An Abstraction that Searchs and Updates

- Find-and-Revise is a theoretical model for analysis; defined in terms of
  - Greedy Graph  $G_V$ : contains nodes n reachable from  $n_0$  by applying **greedy** actions a; i.e. those with  $Q_V(a,n) = min_a Q_V(a,n)$
  - Consistent nodes: those such that  $V(n) = min_a Q_V(a, n)$
- Find-and-Revise iterates:
  - $\circ$  Find an inconsistent node n in greedy graph  $G_V$
  - ∘ Update (revise) *V* at node *n*

until no such state exists

### Find-and-Revise: An Abstraction that Searchs and Updates

- Find-and-Revise is a theoretical model for analysis; defined in terms of
  - Greedy Graph  $G_V$ : contains nodes n reachable from  $n_0$  by applying **greedy** actions a; i.e. those with  $Q_V(a,n) = min_a Q_V(a,n)$
  - Consistent nodes: those such that  $V(n) = min_a Q_V(a, n)$
- Find-and-Revise iterates:
  - $\circ$  Find an inconsistent node n in greedy graph  $G_V$
  - ∘ Update (revise) *V* at node *n*

until no such state exists

• THM: Find-and-Revise solves all models if initial V is admissible and monotone

#### LDFS is an instance of Find-and-Revise!

#### LDFS is a Find-and-Revise that:

- Finds with a DFS search that backtracks upon inconsistent states
- Upon backtracking updates inconsistent states and ancestors
- Keeps track of SOLVED states to avoid re-exploration (labeling)

### **Some Properties of LDFS**

#### Additive Models (e.g. OR graphs, Additive AND/OR, ...)

- Each iteration of LDFS either increases the value of  $s_0$  or labels  $s_0$  as solved
- Hence, number of iterations bounded by  $V^*(s_0) h(s_0)$
- Does not deal with probabilistic models with cyclic solutions (MDPs)

### **Some Properties of LDFS**

#### Additive Models (e.g. OR graphs, Additive AND/OR, ...)

- Each iteration of LDFS either increases the value of  $s_0$  or labels  $s_0$  as solved
- Hence, number of iterations bounded by  $V^*(s_0) h(s_0)$
- Does not deal with probabilistic models with cyclic solutions (MDPs)

#### Max Models (e.g. Max AND/OR, Game Trees, ...)

- An iteration of LDFS may no increase the value of  $s_0$  neither label it
- Yet a simple variation, called Bounded LDFS, restores such property
- Bounded LDFS = Alpha-Beta w/ null windows (MTD) [Plaat et. al, 1996]

• Cannot do the bottom-up labeling because of cycles

- Cannot do the bottom-up labeling because of cycles
- In MDPs, the value function converges to  $V^{*}$  asymptotically, thus need to replace consistency

$$min_a Q_V(a,n) - V(n) = 0$$

with ε-consistency:

$$min_a Q_V(a,n) - V(n) \leq \varepsilon$$

- Cannot do the bottom-up labeling because of cycles
- In MDPs, the value function converges to  $V^{\ast}$  asymptotically, thus need to replace consistency

$$min_a Q_V(a,n) - V(n) = 0$$

with ε-consistency:

$$min_a Q_V(a,n) - V(n) \leq \varepsilon$$

 IDA\* might perform an exponential number of iterations in problems with real costs, and so do LDFS in MDPs

- Cannot do the bottom-up labeling because of cycles
- In MDPs, the value function converges to  $V^{*}$  asymptotically, thus need to replace consistency

$$min_a Q_V(a,n) - V(n) = 0$$

with ε-consistency:

$$min_a Q_V(a,n) - V(n) \leq \varepsilon$$

- IDA\* might perform an exponential number of iterations in problems with real costs, and so do LDFS in MDPs
- The resulting algorithm is called LDFS+

# **A Bit of Empirical Results**

- Four domains: noisy 8-puzzle, racetracks, rooms, tree
- Algorithms: VI, LRTDP, ILAO, HDP, LDFS+
- Two (monotone) heuristics: zero, min-min relaxation

| algorithm                            | small  | big    | bigger  | ring-1 | ring-2 | ring-3 | ring-4 | ring-5  | ring-6  |
|--------------------------------------|--------|--------|---------|--------|--------|--------|--------|---------|---------|
| S                                    | 9,394  | 22,532 | 51,941  | 429    | 1,301  | 5,949  | 33,243 | 94,396  | 352,150 |
| $V^*(s_0)$                           | 14.459 | 26.134 | 50.570  | 7.498  | 10.636 | 13.093 | 18.530 | 24.949  | 31.142  |
| $h_{min-min}(s_0)$                   | 11     | 18     | 37      | 6      | 9      | 11     | 15     | 20      | 25      |
| $VI(h_{min-min})$                    | 1.080  | 3.824  | 14.761  | 0.022  | 0.105  | 0.611  | 5.198  | 23.168  | 197.964 |
| $\texttt{LRTDP}(h_{min\text{-}min})$ | 0.369  | 3.169  | 12.492  | 0.006  | 0.027  | 0.138  | 2.173  | 15.361  | 243.130 |
| ILAO $(h_{min	ext{-}min})$           | 0.813  | 4.739  | 20.190  | 0.008  | 0.034  | 0.463  | 11.428 | 37.598  | _       |
| $	extsf{HDP}(h_{min	extsf{-}min})$   | 0.468  | 5.357  | 30.174  | 0.007  | 0.034  | 0.180  | 2.159  | 11.473  | 153.150 |
| LDFS+ $(h_{min-min})$                | 0.196  | 1.077  | 4.542   | 0.003  | 0.014  | 0.083  | 1.022  | 4.892   | 80.068  |
| VI(h=0)                              | 1.501  | 5.289  | 21.701  | 0.027  | 0.124  | 0.774  | 7.281  | 34.501  | 354.917 |
| LRTDP(h=0)                           | 0.880  | 6.232  | 29.836  | 0.012  | 0.109  | 0.356  | 6.005  | 171.829 | _       |
| ILAO(h=0)                            | 2.430  | 14.200 | 54.208  | 0.024  | 0.109  | 0.908  | 11.863 | 71.103  | _       |
| HDP(h=0)                             | 2.440  | 30.955 | 174.698 | 0.032  | 0.149  | 0.927  | 11.957 | 96.398  | _       |
| ${\tt LDFS+}(h=0)$                   | 0.792  | 3.417  | 16.080  | 0.013  | 0.057  | 0.353  | 4.390  | 24.732  | 310.019 |

### **Summary**

- A simple algorithm, Learning Depth-First Search (LDFS), capable of solving a wide range of deterministic and non-deterministic models; based on three ideas
  - Depth-First Search
  - Lower bounds
  - Learning
- For some models, LDFS reduces to state-of-the-art algorithms:
  - Deterministic Models: LDFS = IDA\* w/ transposition tables
  - Game Trees: (Bounded) LDFS = Alpha-Beta w/ null windows (MTD) [Plaat et. al, 1996]
  - On others, like AND/OR and MDPs, LDFS yields new algorithms
- Competitive results for LDFS+ on Markov Decision Processes