令和4年度

神奈川県公立高等学校入学者選抜学力検査問題

共通選抜 全日制の課程(追検査)

Ⅲ数学

注 意 事 項

- 1 開始の合図があるまで、この問題冊子を開いてはいけません。
- 2 問題は 問6まであり、1ページから8ページに印刷されています。
- 3 解答用紙の決められた欄に解答しなさい。
- 4 答えを選んで解答する問題については、選択肢の中から番号を1つ選びなさい。
- 6 マークシート方式により解答する場合は、選んだ番号の の中を塗りつ ぶしなさい。
- 7 答えに根号が含まれるときは、根号の中は最も小さい自然数にしなさい。
- 8 答えが分数になるときは、約分できる場合は約分しなさい。
- 9 計算は、問題冊子のあいているところを使いなさい。
- 10 終了の合図があったら、すぐに解答をやめなさい。

受 検 番 号	番
---------	---

① ① • ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

- 問1 次の計算をした結果として正しいものを、それぞれあとの1~4の中から1つずつ選び、その番号を 答えなさい。
 - (7) -4-(-9)
 - **1.** −13 **2.** −5
- **3.** 5
- 4. 13

- (1) $\frac{1}{4} \frac{3}{7}$
- 1. $-\frac{19}{28}$
- 2. $-\frac{5}{28}$ 3. $\frac{5}{28}$
- 4. $\frac{19}{28}$

- (ウ) $72a^2b \div 4a \times 3b$

- 1. 6a 2. $6ab^2$ 3. $54a^2b$ 4. $54ab^2$
- $(x) \quad \frac{4x-3y}{5} \frac{x-y}{2}$
- 1. $\frac{3x-11y}{10}$ 2. $\frac{3x-y}{10}$ 3. $\frac{13x-11y}{10}$ 4. $\frac{13x-y}{10}$

- $(1-\sqrt{5})(1+\sqrt{5})-2(3-\sqrt{5})$
 - **1.** $-10+2\sqrt{5}$ **2.** $-10+4\sqrt{5}$ **3.** $-2+2\sqrt{5}$ **4.** $-2+4\sqrt{5}$

- **問2** 次の問いに対する答えとして正しいものを、それぞれあとの1~4の中から1つずつ選び、その番号 を答えなさい。
 - $(x-7)^2+3(x-7)-28$ を因数分解しなさい。

1. (x-14)(x-3)

2. (x-11)(x-3)

3. x(x-11)

4. x(x-3)

(イ) 2次方程式 $3x^2+2x-2=0$ を解きなさい。

1. $x = \frac{-1 \pm \sqrt{7}}{3}$ 2. $x = \frac{-2 \pm \sqrt{7}}{6}$ 3. $x = \frac{2 \pm \sqrt{7}}{6}$ 4. $x = \frac{1 \pm \sqrt{7}}{3}$

(ウ) 関数 $y = ax^2$ について、x の値が -3 から -1 まで増加するときの変化の割合が 3 であった。このと きのaの値を求めなさい。

1. $a = -\frac{3}{2}$ 2. $a = -\frac{3}{4}$ 3. $a = \frac{3}{4}$ 4. $a = \frac{3}{2}$

(エ) 紅茶 360 m L に、ミルク 200 m L を入れてつくったミルクティーがある。このミルクティーに同じ量 の紅茶とミルクを加えて、紅茶とミルクの比が5:3のミルクティーをつくるとき、紅茶とミルクを何 mLずつ加えればよいか求めなさい。

1. 20 m L

2. 30 m L

3. 40 m L **4.** 50 m L

(オ) $\sqrt{55-3n}$ が整数となるような正の整数 n の個数を求めなさい。

1. 2個

2. 3個

3. 4個

4. 5個

問3 次の問いに答えなさい。

(ア) 右の図1のように、円0の周上に3点A、B、Cを AB=ACで、 $\angle BAC$ が鈍角となるようにとり、点C を含まない \widehat{AB} 上に、2点A、Bとは異なる点Dをとる。

また、点Eを円Oの周上に、AC//DEとなるようにとる。

さらに、線分BCと線分AEとの交点をF、線分BC と線分DEとの交点をGとする。

このとき,次の(i),(ii)に答えなさい。

(i) 三角形 AEC と三角形 EGF が相似であることを次のように証明した。 (a) , (b) に最も適するものを,それぞれ選択肢の $1\sim 4$ の中から 1 つずつ選び,その番号を答えなさい。

[証明]	
△AECと△EGFにおいて,	
まず、AC // DE より、平行線の錯角は等しいる	PB,
$\angle ACG = \angle EGC$	·····①
また、ACに対する円周角は等しいから、	
(a)	· · · · · · ②
さらに,AB=ACより,△ABCは二等辺三	角形
であり、その底角は等しいから、	
$\angle ABC = \angle ACB$	
よって、∠ABC=∠ACG	3
①, ②, ③より, ∠AEC=∠EGC	
よって、∠AEC=∠EGF	4
次に,AC∥DEより,平行線の錯角は等しいカ	16,
$\angle CAE = \angle GEA$	
よって、∠CAE=∠FEG	5
④, ⑤より, (b) から,	
△AEC ∞△EGF	

-(a)の選択肢

- 1. $\angle ABC = \angle ACB$
- 2. $\angle ABC = \angle AEC$
- 3. $\angle AFC = \angle EFG$
- 4. $\angle AFG = \angle EFC$

-(b)の選択肢-

- 1. 1組の辺とその両端の 角がそれぞれ等しい
- 2. 2組の辺の比とその間 の角がそれぞれ等しい
- 2組の角がそれぞれ等
- 3組の辺の比がすべて
 等しい

 $AG/\!\!/ CE$, $AB = 2\sqrt{5}$ cm, BC = 7 cm のとき, 三角形 AGF の面積は $\sqrt{\frac{\delta v}{|\delta|}}$ cm² である。

(イ) ある中学校では、クラス対抗の大縄跳び大会を行っており、 練習日が6日間設定されている。右の表は、あるクラスの5日 目までの記録をまとめたものである。なお、練習日に跳んだ最 高回数をその日の記録とする。

このクラスの6日間の記録の平均値と中央値について,6日 目の記録によって起こりうることがらを、次の A~Eの中から すべて選んだときの組み合わせとして最も適するものをあとの 1~8の中から1つ選び、その番号を答えなさい。

練習日	記録(回)
1日目	17
2日目	27
3日目	19
4日目	27
5 日目	31
6日目	

- A. 平均値が20回となる。
- B. 中央値が25回となる。
- C. 平均値と中央値が等しくなる。
- D. 中央値が29回となる。
- E. 平均値が30回となる。
- 1. A, B
- **2.** B, C **3.** B, E **4.** C, D

- 5. C, E 6. A, C, D 7. B, C, E 8. B, D, E
- (ウ) 次の の中の 「**え**」 「**お**」 にあてはまる数字をそれぞれ 0~9の中から1つずつ選び、その数字を答えなさい。 右の図2において、4点A、B、C、Dは円Oの周上の点 で、線分ACは∠BADの二等分線である。

また、点Eは線分ODと線分ACとの交点である。 このとき, $\angle AED =$ えお $^{\circ}$ である。

図3

(エ) 右の図3のような、AB = 24 cm の線分 AB があり、この線分上を動く2点P、Q がある。

点Pは点Aを出発点とし毎秒4cmの速さで、点Bに向かって進み、点Bに着いたところで折り返して点Aに向かって進み、点Aに着いたところで止まる。点Qは点Aを出発点とし毎秒2cmの速さで、点Bに向かって進み、点Bに着いたところで止まる。

Kさんは、2点P、Qが点Aを同時に出発して何秒後に再び出会うかを次のように求めた。 (i) 、(ii) にあてはまるものとして最も適するものを、それぞれの選択肢の中から1つずつ選び、その番号を答えなさい。

2点 P, Q が点 A を同時に出発してから x 秒後の, 2点 P, Q 間の距離を y cm とする。 点 P が点 B を折り返してから点 Q と再び出会うまでの, x と y の関係を式で表すと,

となる。

よって、2点 P、Q が再び出会うのは点 A を同時に出発してから (ii) 秒後である。

(i)の選択肢 -

1.
$$y = 2x$$

2.
$$y = 4x - 40$$

3.
$$y = -4x + 24$$

4.
$$y = -4x + 32$$

5.
$$y = -4x + 40$$

6.
$$y = 6x - 48$$

7.
$$y = -6x + 36$$

8.
$$y = -6x + 48$$

(ii)の選択肢

1. 6

2. 8

3. 10

問4 右の図において、直線①は関数 y=x のグラフであり、曲線②は関数 $y=ax^2$ のグラフである。

点 A は直線①と曲線②との交点で,そのx 座標は7である。点 B は曲線②上の点で,線分 AB はx 軸に平行である。点 C は線分 AB と y 軸との交点である。点 D はx 軸上の点で,線分 AD は y 軸に平行である。

さらに、点Gはx軸上の点で、DO:OG

=7:5であり、その x座標は負である。

このとき,次の問いに答えなさい。

(ア) 曲線②の式 $y=ax^2$ の a の値として正しいものを次の $1\sim 6$ の中から 1 つ選び,その番号を答えなさい。

1.
$$a = \frac{1}{7}$$

2.
$$a = \frac{2}{7}$$

3.
$$a = \frac{3}{7}$$

4.
$$a = \frac{4}{7}$$

5.
$$a = \frac{5}{7}$$

6.
$$a = \frac{6}{7}$$

- (イ) 直線 EG の式を y=mx+n とするときの(i) m の値と, (ii) n の値として正しいものを,それぞれ次 の $1\sim 6$ の中から 1 つずつ選び,その番号を答えなさい。
 - (i) mの値

1.
$$m = \frac{5}{8}$$

2.
$$m = \frac{3}{4}$$

3.
$$m = \frac{7}{9}$$

4.
$$m = \frac{6}{7}$$

5.
$$m = \frac{7}{8}$$

6.
$$m = \frac{8}{7}$$

(ii) nの値

1.
$$n = \frac{15}{4}$$

2.
$$n = \frac{35}{9}$$

3.
$$n=4$$

4.
$$n = \frac{35}{8}$$

5.
$$n = \frac{40}{9}$$

6.
$$n = \frac{40}{7}$$

(ウ) 次の の中の「**か**」「**き**」「**く**」「**け**」にあてはまる数字をそれぞれ**0**~**9**の中から1つずつ選び, その数字を答えなさい。

線分 OE 上に点 H を, 三角形 OHB の面積が三角形 OAF の面積と等しくなるようにとる。このと

問5 右の図1のように、1から13までの整数が1つずつ書かれた13枚のカードがある。

大、小2つのさいころを同時に1回投げ、大きいさいころの出た目の数をa、小さいさいころの出た目の数をbとする。出た目の数によって、次の【n-n】にしたがってカードを取り除き、残ったカードの枚数について考える。

図 1

【ルール】

- $\cdot a = b$ のとき、a 以上の素数が書かれたカードをすべて取り除く。
- a < b のとき、(a+b)以上の偶数が書かれたカードをすべて取り除く。
- $\cdot a > b$ のとき、b 以上の奇数が書かれたカードをすべて取り除く。

大きいさいころの出た目の数が 3, 小さいさいころの出た目の数が 5のとき, a=3, b=5 だから, a < b となり, 【ルール】により 8 以上の偶数が書かれた 8 と 10 と 12 のカードを取り除く。

この結果、図2のように、残ったカードの枚数は10枚となる。

いま、図1の状態で、大、小2つのさいころを同時に1回投げるとき、次の問いに答えなさい。ただし、大、小2つのさいころはともに、1から6までのどの目が出ることも同様に確からしいものとする。

(ア) 次の の中の「こ」「さ」「し」にあてはまる数字をそれぞれ 0~9 の中から 1 つずつ選び、その数字を答えなさい。

(4) 次の o の中の「**す**」「せ」にあてはまる数字をそれぞれo o の中からo 1 つずつ選び,その数字を答えなさい。

残ったカードの枚数が7枚となる確率は せ である。

問6 右の図は、ひし形 ABCD と、ひし形 EFGH を底面とし、 $AE = 2\,cm\, を高さとする四角柱の展開図であり、AC = 8\,cm,$ $BD = 6\,cm\, である。$

また、点Iは線分ABの中点である。

このとき, この展開図を組み立ててできる四角柱について, 次の問いに答えなさい。

(ア) この四角柱の表面積として正しいものを次の 1~6の中から 1つ選び, その番号を答えなさい。

2. 64 cm²

3. 76 cm²

4. 88 cm²

5. 96 cm²

6. 136 cm²

G

Η

(イ) この四角柱において、2点G、I間の距離として正しいものを次の $1\sim 6$ の中から1つ選び、その番号を答えなさい。

2.
$$\frac{9}{2}$$
 cm

4.
$$\frac{11}{2}$$
 cm

6.
$$\frac{13}{2}$$
 cm

(ウ) 次の \bigcirc の中の「そ」「た」「ち」にあてはまる数字をそれぞれ $\mathbf{0} \sim \mathbf{9}$ の中から $\mathbf{1}$ つずつ選び,その数字を答えなさい。

この四角柱の表面上に、点 B から辺 A D、辺 E H と交わるように、点 F まで線を引く。このような線のうち、長さが最も短くなるように引いた線の長さは $\overline{\textbf{(t)}}$ cm である。

	(ア)	3	3点
	(1)	2	3点
問 1	(ウ)	4	3点
	(工)	2	3点
	(才)	1	3 点

	(ア)	3	4点
	(1)	1	4点
問 2	(ウ)	2	4点
	(工)	3	4点
	(才)	4	4点

	(i)	(a)	2		2点
	(1)	(b)	3		2点
	(デ) (ii) √ あい う		$\frac{\sqrt{31}}{2}$	cm²	6点
問 3	(1)		7		5点
	(ウ)		69°		5点
	(i)		8		両方 できて
	(ii)		2		5点

問 4	(P)	1	4点
	(i)	5	両方
	(ii)	4	両方 できて 5点
	(ウ) かき くけ	$\frac{21}{25}$	6点

問 5	(ア)	1/12	5点
间口	(1) 호 世	$\frac{1}{4}$	5点

_			
	(P)	4	4点
	(1)	6	5 点
問 6	(ウ) そた ち	$\frac{58}{5}$ cm	6点