Predictable Data-driven Resource Management: an Implementation using Autoware on Autonomous Platforms

Soroush Bateni and Cong Liu

Department of Computer Science Erik Jonsson School of Engineering & Computer Science The University of Texas at Dallas

Logical Execution Time: Motivation

- Unpredictable output is undesirable in AES¹
 - Harder to verify and certify
 - Harder to schedule
 - Can be classified as unexpected behavior pattern, specifically prohibited in most standards
 - A self-driving car sometimes takes 30ms to react and sometimes 25ms

Logical Execution Time: Intuition

Task system always takes **LET (fixed time)** to execute.

Logical Execution Time: Intuition

The periodic output must be met and not violated.

Logical Execution Time: Example


```
Example Abstract Code mode m() Period 20 { inputfreq do P_I(d_I) \rightarrow P/inputfreq: input interval (period) tasksetfreq do \Delta(d_{\Delta}) \rightarrow P/tasksetfreq: period of task set \Delta outputfreq do P_O(d_O) \rightarrow P/outputfreq: output interval (period) }
```


Integrated CPU/GPU Architecture

DNN

Waighte

Code

Program

Integrated CPU/GPU Architecture

Logical Execution Time: Flaw under Integrated CPU/GPU Architecture

GPU

Temporal Data Availability Problem

Spatial Data Availability Problem

Spatial Data Availability Problem

To Summarize

- LET is beneficial for autonomous embedded systems
 - Periodic Input
 - Predictable and verifiable output
- Has a flawed assumption: periodic task release
 - The flaw is due to ignorance to data (when memory is limited)
 - Temporal data availability
 - Spatial data availability
- Existing work
 - Has considered aperiodic input interval on LET (sporadic input events)
 - None to the best of our knowledge has considered aperiodic task release due to data and memory size limitation

Heijunka (Production Leveling)

- * $\underline{\alpha}$, $\underline{\beta}$, and $\underline{\gamma}$ are supply rates for each supplier
 - \bullet **B** is the size of the parts bin to store parts

W is the worst-case time it takes to manufacture a car

Heijunka (Production Leveling)

- * $\underline{\alpha}$, $\underline{\beta}$, and $\underline{\gamma}$ are supply rates for each supplier
 - \bullet **B** is the size of the parts bin to store parts
- <u>Mallas</u> ♦ <u>W</u> is the worst-case time it takes to manufacture a car

LET-based System Model with Heijunka Expansion

Ensuring Spatial Data Availability

Ensuring Spatial Data Availability

Ensuring Spatial Data Availability

|Buffer| =
$$(l_1 - S) \cdot r_D + \sum_{T_i \in \Delta} |l_{i+1} - l_i| \cdot r_D$$

GPU T₂

Unifi Mem The above calculation is very pessimistic, resulting in a large buffer size. By using a technique of Heijunka, we can shrink the reservation window (i.e., the buffer size) to $\gamma \cdot r_D$.

(Please see the paper for details and proof)

Disk Supplier Supplier

Program DNN Code Code Weights oad code om <u>buffer</u> processor

r

oad code rom <u>disk</u> memory

Evaluation

- We implement ResCue, a runtime solution with:
 - A dynamic data scheduler
 - A dynamic memory reservation
- Evaluation Platform
 - Autoware
 - Open-source autonomous driving full-stack software
 - NVIDIA Jetson AGX Xavier
 - 8-core CPU, 512-core Volta-based
 GPU, 16GB of RAM

Autoware

Results

 \bullet First, we calculate r_D for the on-board SSD of AGX Xavier

• $r_D = 5882$, the low 99.9th percentile

Calculated Parameters for Autoware

TABLE I: Components of Autoware sorted in order of execution, and their WCET, WCMC, and the value of 1 for each component under various input and output periods (LCR value is for the first period). All times are in milliseconds and memory size is in megabytes.

Color	Category	Process	WCET(ms)	WCMC(MB)	LCR(I=42,O=300)	LCR(I=33,O=200)	LCR(I=171,O=171)
	LIDAR (Sensing)	velodyne_nodelet_manager	2.64	56.01	206.100	106.100	77.100
	Downsampling (Perception)	voxel_grid_filter	3.96	52.75	208.740	108.740	79.740
	Localizer (Perception)	ndt_matching	45.37	2063.05 (static)	212.700	112.700	83.700
		nmea2tfpose	20.7	13.32	258.070	158.070	129.070
	Positioning (Perception)	pose_relay (Positioning) vel_relay (Velocity)	12.78	11.98 11.97	278.770	178.770	149.770
	Planning	waypoint_replanner	2.06	9.84	291.550	191.550	162.550
		lane_rule	1.2	28.29	293.610	193.610	164.610
		lane_stop	0.86	11.76	294.810	194.810	165.810
		lane_select	0.84	12.18	295.670	195.670	166.670
		pure_pursuit	1.31	10.09	296.510	196.510	167.510
	Output (rviz)	waypoint_marker_publisher	1.35	275.1	297.820	197.820	168.820
		vehicle_sender	0.83	9.48	299.170	199.170	170.170
Summary		SUM	93.9	483.2			
Parameters		$rac{S}{\gamma}$			129.994 0.83	29.994 0.83	0.994 0.83
Memory Reservation					9.76	9.76	9.76
Deadline Miss (% over 1e09 steps)				0%	0%	0%	

Calculated Parameters for Autoware

TABLE I: Components of Autoware sorted in order of execution, and their WCET, VCMC and the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the intermediate of the sorted in order of execution, and their WCET, VCMC and the intermediate of the i

Color	Category	Process	WCET(m: S	cenarios:	LCR(I=42,O=300)	LCR(I=33,O=200)	LCR(I=171,O=171)
	LIDAR (Sensing)	velodyne_nodelet_manager	2.64	56.01	S 1 206.100	S ₂ 106.100	S ₃ 77.100
	Downsampling (Perception)	voxel_grid_filter	3.96	52.75	208.740	108.740	79.740
	Localizer (Perception)	ndt_matching	45.37	2063.05 (static)	212.700	112.700	83.700
		nmea2tfpose	20.7	13.32	258.070	158.070	129.070
	Positioning (Perception)	pose_relay (Positioning) vel_relay (Velocity)	12.78	11.98 11.97	278.770	178.770	149.770
	Planning	waypoint_replanner	2.06	9.84	291.550	191.550	162.550
		lane_rule	1.2	28.29	293.610	193.610	164.610
		lane_stop	0.86	11.76	294.810	194.810	165.810
		lane_select	0.84	12.18	295.670	195.670	166.670
		pure_pursuit	1.31	10.09	296.510	196.510	167.510
	Output (rviz)	waypoint_marker_publisher	1.35	275.1	297.820	197.820	168.820
		vehicle_sender	0.83	9.48	17	Values for S and γ	
Summary		SUM	93.9	483.2		arues for 5	and y
Parameters		$rac{S}{\gamma}$			129.994 0.83	29.994 0.83	0.994 0.83
Memory Reservation					9.76	9.76	9.76
Deadline Miss (% over 1e09 steps)				0%	0%	0%	

Calculated Parameters for Autoware

TABLE I: Components of Autoware sorted in order of execution, and their WCET, WCMC Calculated LCR for each task various input and output periods (LCR value is for the first period). All times are in n

Color	Category	Process	WCET(ms)	WCMC(MB)	LCR(I=42,O=300)	LCR(I=33,O=200)	LCR(I=171,O=171)
	LIDAR (Sensing)	velodyne_nodelet_manager	2.64	56.01	206.100	106.100	77.100
	Downsampling (Perception)	voxel_grid_filter	3.96	52.75	208.740	108.740	79.740
	Localizer (Perception)	ndt_matching	45.37	2063.05 (static)	212.700	112.700	83.700
		nmea2tfpose	20.7	13.32	258.070	158.070	129.070
	Positioning (Perception)	pose_relay (Positioning) vel_relay (Velocity)	12.78	11.98 11.97	278.770	178.770	149.770
	Planning	waypoint_replanner	2.06	9.84	291.550	191.550	162.550
		lane_rule	1.2	28.29	293.610	193.610	164.610
		lane_stop	0.86	11.76	294.810	194.810	165.810
		lane_select	0.84	12.18	295.670	195.670	166.670
		pure_pursuit	1.31	10.09	296.510	196.510	167.510
	Output (rviz)	waypoint_marker_publisher	1.35	275.1	297.820	197.820	168.820
		vehicle_sender	0.83	9.48	299.170	199.170	170.170
Summary		SUM	93.9	483.2			
Parameters		S			129.994	29.994	0.994
		γ			0.83	0.83	0.83
Memory Reservation				9.76	9.76	9.76	
Deadline Miss (% over 1e09 steps)					0%	0%	0%

Response Time Analysis

Fig. 9: Response time under Res-Fig. 10: Response time under Cue with the three scenarios. ResCue with no data scheduler.

Fig. 11: Response time under Fig. 12: Response time with all ResCue with reservation disabled. features of ResCue disabled.

Overhead

Overhead is relatively negligible compared to savings

Conclusion

- LET cannot be applied directly to integrated CPU/GPU architectures in Autonomous Embedded Systems
 - Memory is limited
 - Task release times can be sporadic
- We found inspiration from Heijunka, with goals similar to LET (i.e., meeting a constant output) but with a limited supply of parts and storage (e.g., limited disk transfer rate and small unified memory)
- We presented a data-aware expanded system model based on a combination of LET and Heijunka
- Based on our model, we presented ResCue, a runtime solution that provides:
 - Dynamic data scheduling to ensure temporal data availability (e.g., by calculating γ and S)
 - Dynamic memory reservation to ensure spatial data availability (e.g., by calculating the size of the buffer and handling the reservation)

