

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Eléctrica IEE2753 - Diseño de Circuitos Integrados Digitales

Tarea 3

24 de abril de 2020

Agustín Campeny

1. Intento de buffer

A. Se presenta un bosquejo de la curva de transferencia del circuito.

Figura 1: Bosquejo de la curva de transferencia del circuito

Se pueden notar 5 estados diferentes:

- 1 Ambos transistores en corte.
- 2 NMOS en región de saturación, PMOS en corte.
- (3) Ambos transistores en corte.
- 4 PMOS en región de saturación, NMOS en corte.
- (5) Ambos transistores en corte.
- B. Se presenta un gráfico con las formas de onda correspondientes a $V_{\rm in}$ y $V_{\rm out}$:

Figura 2: Voltaje (eje y) vs. tiempo (eje x) para $V_{\rm in}$ y $V_{\rm out}$

2. Modelo de transistor

Se determinan los voltajes de cada uno de los nodos indicados, aplicando criterios de voltajes de umbral y tipos de transistor para determinar el comportamiento de cada uno con respecto a sus entradas.

A continuación se presenta una tabla en donde se encuentran los voltajes determinados para cada nodo solicitado del circuito, con respecto al voltaje en V_{in} .

$V_{in} \mid A$	В	С	D	Ε	F	G	Н	Ι	J	K
$\begin{array}{c c} \hline 0 & 2 \\ 2.5 & 2 \end{array}$	1.5 1.5	2 0	1 0	1 0	1 0	1 0	2.5 2.5	0	2 0	1.5 0.5

Cuadro 1: Voltajes en nodos intermedios del circuito con respecto a V_{in}