Fakultet elektrotehnike i računarstva

Ak. godina: 2014./2015.

Predmet: Teorija informacije

Predavač: željko ilić

Poglavlje 1. /Zadaci za domaću zadaću

1. Zadatak: Zadane su dvije nezavisne slučajne varijable X i Y. Varijabla X poprima vrijednosti iz skupa $\{1, 2, 3, ..., 8\}$ s jednakom vjerojatnošću. Varijabla Y poprima bilo koju pozitivnu vrijednost k ($k \in \mathbb{N}$) s vjerojatnošću $p(Y = k) = 2^{-k}$, k = 1, 2, 3, ...

Odredite:
$$H(X)$$
, $H(Y)$ i $H(X, Y)$. Napomena: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ za $|x| < 1$.

Rješenje:

$$H(X) = 3$$
 bit/simbol; $H(Y) = 2$ bit/simbol; $H(X, Y) = 5$ bit/simbol

2. Zadatak: Neka su X_1 i X_2 diskretne slučajne varijable koje poprimaju vrijednosti iz skupova $\{1, 2, ..., m\}$, odnosno $\{m+1, m+2, ..., m+n\}$, $m, n \in \mathbb{N}$, te neka su njihove pripadajuće razdiobe vjerojatnosti p_{X_1} , odnosno p_{X_2} . Neka je

$$X = \begin{cases} X_1 \text{ s vjerojatnošću } \alpha \\ X_2 \text{ s vjerojatnošću } 1 - \alpha \end{cases}$$

- i) Odredite H(X) kao funkciju od α , $H(X_1)$ i $H(X_2)$.
- ii) Odredite maksimalnu vrijednost entropije H(X) u ovisnosti o parametru α .

Rješenje:

i)
$$-\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha) + \alpha H(X_1) + (1 - \alpha) H(X_2) \frac{\text{bit}}{\text{simbol}}$$

ii)

$$H(X) \le \log_2(2^{H(X_1)} + 2^{H(X_2)})$$

3. Zadatak: Neka su X i Y diskretne slučajne varijable koje poprimaju vrijednosti iz diskretnih skupova X i Y, slijedno gledano. Neka je H(X) = 11 bit/simbol i neka je H(Y|X) = H(X|Y). Odredite najmanji mogući broj elemenata skupa Y.

Rješenje: 2048

4. Zadatak: Zadan je diskretni komunikacijski sustav kao na slici. Izvorište (opisano slučajnom varijablom X) generira simbole iz skupa simbola $\{0, 1\}$. Vjerojatnosti pojavljivanja izvorišnih simbola su $p(x=0)=p_0$, odnosno $p(x=1)=p_1$ i $p_0+p_1=1$. Simboli se potom prenose preko bezmemorijskog kanala uz djelovanje aditivnog šuma Z. Neka je Z slučajna varijabla (neovisna o X) koja poprima vrijednosti

iz skupa $\{-1, 0, 1\}$ s jednakom vjerojatnošću te neka se na odredištu pojavljuju simboli y=x+z. Također, preko preklopke A moguće je dobiti informaciju o apsolutnom iznosu aditivnog šuma na kanalu, tj. w=|z|.

- Odredite kapacitet danog kanala kada je preklopka A otvorena, tj. kada odredište nema informaciju o apsolutnom iznosu aditivnog šuma.
- ii) Odredite kapacitet danog kanala kada je preklopka A zatvorena, tj. kada odredište ima informaciju o apsolutnom iznosu aditivnog šuma. **Napomena:** Ukupnu transinformaciju računajte prema izrazu $I(X;Y|W) = \sum_{w} I(X;Y|W=w) p(W=w)$.

Rješenje: i) 1/3 bit/simbol; ii) 1 bit/simbol

5. Zadatak: Odredite kapacitet diskretnog bezmemorijski kanala sa slike.

Rješenje: $C \approx 0.322$ bit/simbol

Poglavlje 2. /Zadaci za domaću zadaću

6. Zadatak: Zadan je skup simbola $X = \{x_1, x_2, ..., x_{170}\}$ s vjerojatnostima pojavljivanja $p(x_i)=1/170$, i=1,...,170. Dani skup simbola kodiran je Huffmanovim binarnim kodom. Odredite srednju duljinu kodne riječi **Napomena:** Nije potrebno predočiti postupak kodiranja!

Rješenje: \approx 7,49 bit/simbol

- 7. Zadatak: i) Potrebno je binarnim jednoznačno dekodabilnim kodom kodirati n+3 izvorišna simbola, $n \in \mathbb{N}$, ali tako da prva tri simbola imaju duljinu kodne riječi 3 bita, dok ostali simboli trebaju imati duljinu kodne riječi 8 bita. Odredite najveći n za koji je navedeni uvjet kodiranja zadovoljen.
- ii) Bezmemorijsko izvorište generira četiri simbola a_1 , a_2 , a_3 i a_4 s vjerojatnostima pojavljivanja 0.5, 0.25, 0.125 i 0.125, slijedno gledano. Odredite srednju duljinu kodne riječi binarnog Huffmanovog koda koji se koristi za kodiranje svih blokova izvorišnih simbola duljine 5 (simbola). Srednju duljinu kodne riječi izrazite jedinicom "bit/blok simbola".

Rješenje: i) $n \le 160$; ii) 8,75 bit/blok_simbola;

8. Zadatak: Razmatrajte izvor koji generira četiri simbola iz skupa $X = \{x_1, x_2, x_3, x_4\}$ s odgovarajućim vjerojatnostima pojavljivanja za koje vrijedi:

1 >
$$p(x_1) = p_1 > p(x_2) = p_2 > p(x_3) = p_3 > p(x_4) = p_4 > 0 i \sum_{i=1}^4 p_i = 1.$$

Svi su simboli potpuno neovisni jedni o drugima. Nadalje, izvor je spojen s koderom informacije koji navedene simbole kodira binarnim simbolima sukladno algoritmu Shannon-Fano, a rezultat toga je prefiksni kôd. Kodne riječi na izlazu kodera informacije, $C(x_i)$, ovise o razdiobi vjerojatnosti simbola $x_i \in X$. Neka su zadane vjerojatnosti $p_3 = 0.19$ i $p_4 = 0.15$.

- i) Odredite granice unutar kojih se smije nalaziti p_1 pa da kodna riječ $C(x_1)$ može imati duljinu jedan bit
- ii) Neka izvor informacije generira poruku duljine 10 simbola x_2 . Sukladno zahtjevu iz potpitanja i) da $C(x_1)$ može imati duljinu jedan bit, odredite koliko može iznositi najveći sadržaj informacije prenijet porukom sastavljenom od 10 simbola x_2 . Rezultat zaokružite na dvije decimalne znamenke.

Rješenje: i)
$$p_1 \in [0,34,0,47)$$
; ii) $I\left(\underbrace{x_2...x_2}_{\text{10puta}}\right) < 23,96[bit]$

2. Zadatak: Bezmemorijsko izvorište generira simbole iz skupa simbola $X=\{a, b, c, d, e, f, g\}$ s vjerojatnostima pojavljivanja p(a)=0.22, p(b)=0.35, p(c)=0.15, p(d)=0.09, p(e)=0.09, p(f)=0.05 i p(g)=0.05. Kodirajte dani skup simbola Shannon-Fano metodom (binarno kodiranje) tako da srednja duljina kodne riječi bude minimalna. Odredite srednju duljinu kodne riječi te efikasnost koda.

Rješenje:
$$[l(a)=2, l(b)=2, l(c)=3, l(d)=3, l(e)=3, l(f)=4 i l(g)=4; L=2,53 bit/simbol; 0,9797]$$

10. Zadatak: Skup simbola $X = \{x_1, x_2, x_3, x_4\}$, s vjerojatnostima pojavljivanja 0,25; 0,25; p i (0,5 -p), slijedno gledano, kodiran je prefiksnim Huffmanovim kodom. Također vrijedi 0 . Odredite za koje vrijednosti <math>p srednja duljina kodne riječi iznosi 2 bit/simbol.

Rješenje:
$$p \in [0,125;0,375]$$
.

11. Zadatak: Izvorište X generira K simbola s vjerojatnostima pojavljivanja $p_1 \ge p_2 \ge ... \ge p_K$. Odredite najveći q za koji je $p_1 < q$ i $l_1 > 1$, gdje je, općenito gledano, l_i duljina kodne riječi binarnog Huffmanovog koda pridružena simbolu x_i .

Rješenje: 1/3.

12. Zadatak: Bezmemorijsko izvorište generira simbole iz skupa simbola $X=\{a, b, c, d\}$. Vjerojatnosti pojavljivanja simbola su p(a)=0.5, p(b)=0.3, p(c)=0.1 i p(d)=0.1. Kodirajte aritmetičkim kodom poruku *aaadab* te odredite interval koji jednoznačno definira poruku. Također odredite potrebni broj bitova za jednoznačno kodiranje dane poruke.

Napomena: Postojeći redoslijed simbola u skupu X iskoristite za stvaranje kumulativnih podskupova pri čemu je simbol a najbliži nuli.

Rješenje: [interval [0.115625, 0.1175); 11 bitova]

13. Zadatak: Diskretno bezmemorijsko izvorište generira simbole iz skupa simbola $X = \{A, B\}$ s vjerojatnostima pojavljivanja p(A) = 0.99 i p(B) = 0.01. Aritmetičkim kodom kodirana je poruka

 $\underbrace{AA...AB}_{n \text{ puta}}$ te je dobiven podinterval [0,36603; 0,36973) koji jednoznačno definira poruku. Odredite

koliko simbola A se nalazi u poruci.

Napomena: Postojeći redoslijed simbola u skupu *X* iskoristite za stvaranje kumulativnih podskupova pri čemu je simbol *A* najbliži nuli.

Rješenje: [99]

14. Zadatak: Koristeći algoritam LZ77 kodirajte poruku *abaaabaab** uzimajući pritom da je maksimalna duljina posmičnog prozora i prozora za kodiranje 5, odnosno 4 simbola. **Napomena:** * označava kraj poruke.

Rješenje: (0, 0, a), (0, 0, b), (2, 1, a), (4, 3, a) i (3, 1, *)

15. Zadatak: Koristeći algoritam LZ77 kodirajte poruku 0566651122110122221005501131556602334310* uzimajući pri tome da je maksimalna duljina posmičnog prozora (PP) i prozora za kodiranje (PZK) 7, odnosno 4 simbola. **Napomena:** "*" označava kraj poruke. Koliko je memorijskog prostora potrebno za pohranu kodirane poruke, ako se svaki simbol u izlaznom tripletu kodira s ravnomjernim kodom. Usporedite dobiveni rezultat s rezultatom koji se dobije kada se svaki simbol poruke kodira ravnomjernim kodom.

Rješenje: [(0,0,0,), (0,0,5), (0,0,6),...; 184 bita; 123 bita]

16. Zadatak: Uzimajući polazni rječnik D gdje je D[0] = a, D[1] = b, D[2] = c i D[3] = d kodirajte poruku *abbababadccccd* koristeći algoritam LZW. Također, koristeći isti polazni rječnik D dekodirajte kodiranu poruku $3\ 2\ 4\ 6\ 0\ 1\ 7\ 8$.

Rješenje: [kodiranje: 0 1 1 4 7 3 2 10 2 3; dekodiranje: *dcdcdcdabdcdaab*]

Poglavlje 3. /Zadaci za domaću zadaću

17. Zadatak: Zadana je matrica provjere pariteta H linearnog binarnog blok koda [7, 3].

Dekoder danog koda koristi sindromsko dekodiranje koje mu osigurava ispravljanje svih jednostrukih kao i svih <u>susjednih</u> dvostrukih pogrešaka. Neka je primljena kodna riječ \mathbf{c} '=[0000011]. Odredite najvjerojatniju poslanu kodnu rječ \mathbf{c} .

Rješenje: **c**=[0000000]

18. Zadatak: Za neki linearni binarni blok kôd *K* zadani su svi njegovi sindromi **s** i njima pripadajući vodeći članovi razreda (tzv. reprezenti razreda) standardnog niza koda *K*.

s	Vodeći	članovi
	razreda	
0000	0000	000
1100	1000	000
1000	0100	000

S	Vodeći	članovi
	razreda	
1001	010	001
0110	001	010
0101	001	001

0100	001000
0011	000100
0010	000010
0001	000001
1010	010010

1110	100010
1101	100001
1011	010100
0111	001100
1111	100100

- i) Neka je primljena kodna riječ **c**'=[100101]. Odredite najvjerojatniju poslanu kodnu rječ **c**. **Napomena:** Pri dekodiranju se koristi sindromsko dekodiranje.
- ii) Odredite minimalnu udaljenost, d_{\min} , zadanog koda K.
- Neka je dan komunikacijski kanal u kojem je vjerojatnost ispravnog prijenosa bita jednaka p=0.998 i koji se koristi za prijenos kodnih riječi koda K. Također, neka se kanalom prenosi 10^7 bita u sekundi. Odredite približan broj pogrešno dekodiranih kodnih riječi u jednoj minuti. (**Napomena:** Kod proračuna radite sa 6 decimalnih mjesta! Pri dekodiranju se koristi sindromsko dekodiranje.)
- iv) Odredite sve kodne riječi zadanog koda *K*.

Rješenje: i) $\mathbf{c} = [000111]$; ii) 3; iii) ≈ 2397 ; iv) $K = \{000000, 111000, 000111, 1111111\}$

19. Zadatak: Zadan je binarni kôd *K* s generirajućom matricom:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

Odredite:

- i) kodnu brzinu koda $K^{\perp}(K^{\perp})$ je dualni kôd koda K).
- ii) generirajuću matricu koda K^{\perp} .
- iii) sve kodne riječi koda K^{\perp} .

$$\textit{Rješenje}: i) \ 2/5; ii) \ \textbf{G}^{\perp} = \textbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} ili \ \textbf{G}^{\perp} = \textbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}; iii) \ \textit{K}^{\perp} = \{00000, 10010, 11111, 01101\}$$

20. Zadatak: Zadan je diskretni bezmemorijski komunikacijski kanal:

Također, vrijedi ε , $\gamma \neq \{0, 1\}$.

Linearni binarni blok kôd s generirajućom matricom $\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ se koristi za zaštitu informacijskih bitova iz kodera informacije koji se prenose zadanim komunikacijskim kanalom.

5

Također, svi bitovi na izlazu kodera informacije su međusobno neovisni. Dekoder kanala koristi sva svojstva koda u cilju detektiranja pogrešaka. Odredite prosječnu vjerojatnost nedetektiranja pogrešaka.

Rješenje:

$$p_{\rm np} = \frac{3}{4} \left(\epsilon^2 (1 - \varepsilon) + \gamma^2 (1 - \varepsilon) + 2\gamma \varepsilon (1 - \gamma) \right) = \frac{3}{4} \left((\varepsilon^2 + \gamma^2)(1 - \varepsilon) + 2\gamma \varepsilon (1 - \gamma) \right)$$

21. Zadatak: Odredite matricu provjere pariteta **H** za linearni binarni blok kôd *K* čija je generirajuća matrica:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- i) Odredite minimalnu udaljenost koda *K*.
- ii) Koliko iznosi minimalna udaljenost koda $K^{\perp}(K^{\perp})$ je dualni kôd koda K)?

Rješenje:
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
; i) 1; ii) 2.

22. Zadatak: Izvorište generira 16 poruka, iz skupa od 16 jednako vjerojatnih simbola $X = \{x_0...,x_{15}\}$, koje se kodiraju binarnim kodom (Shannon-Fano!). Poruke se prije odašiljanja u kanal kodiraju Hammingovom metodom zaštitnog kodiranja. Na ulazu dekodera kanala pojavljuje se slijed bitova 10010101101... Odredite <u>prvu</u> poruku (**d**) koja je odaslana. **Napomena:** Kontrolni bitovi u kodnoj riječi nalaze se na pozicijama 1, 2, 4, 8,...

Rješenje: [1010]

- **23. Zadatak:** Zadan je binarni ciklični blok kôd [n, k] s generirajućim polinomom $g(x)=x^5+x^4+x^2+1$.
 - i) Odredite [n, k].
 - ii) Odredite prvu kodnu riječ koja se pojavljuje na izlazu kodera kanala ako se na njegovom ulazu pojavljuje niz bitova 1010101101001101...
 - iii) Nacrtajte koder kanala zadanog cikličnog koda.

Rješenje: i) [15,10]; ii) $\mathbf{c} = [\mathbf{d} \mid \mathbf{p}] = [1010101101 \mid 01001]$; iii)...

24. Zadatak: Zadan je binarni ciklični blok kôd *K* s generirajućom matricom:

- i) Odredite [n, k] i generirajući polinom g(x).
- ii) Može li g(x) iz i) dijela zadatka biti generirajući polinom koda K? Dokažite!
- iii) Nacrtajte koder kanala koda *K*.

Rješenje: i) [15, 5]; ii) Da, g(x) dijeli $x^{15}+1$ bez ostatka; iii)...

Poglavlje 4. /Zadaci za domaću zadaću

25. Zadatak: Zadana su dva paralelna kanala u kojima djeluje aditivni bijeli Gaussov šum Z_1 , odnosno Z_2 s očekivanjem nula. Isto tako, vrijedi $E[Z_1^2] = 0.5$, odnosno $E[Z_2^2] = 0.7$. Na ulazu prvog kanala djeluje signal X_1 , dok na ulazu drugog kanala djeluje signal X_2 . Neka je $E[X_1] = E[X_2] = 0$ te $E[X_1^2] + E[X_2^2] = 0.4$. Odredite maksimalnu dinamiku u zadanom sustava kanala (bit/simbol).

Rješenje: 0,435 bit/simbol

- **26. Zadatak:** Signal $x(t) = 10\cos(600\pi t)\cos^2(1600\pi t)$ [V] uzorkuje se frekvencijom uzorkovanja 4 kHz.
- i) Odredite srednju snagu signala, x(t), koja se troši na jediničnom otporu.
- ii) Skicirajte amplitudni spektar uzorkovanog signala u području frekvencija od -9 kHz do 9 kHz.
- iii) Odredite interval za gornju graničnu frekvenciju f_g niskopropusnog filtra koji se koristi za rekonstrukciju zadanog signala x(t).

Rješenje: i) 18,75 W;

- iii) 1900 Hz $< f_g < 2100$ Hz
- **27. Zadatak:** Bijeli Gaussov šum spektralne gustoće snage $N_0/2=10^{-12}$ W/Hz dovodi se na ulaz komunikacijskog kanala čija je prijenosna funkcija, H(f), dana na slici. Odredite snagu danog šuma na izlazu kanala (u W!).

Rješenje: [4,5·10⁻⁹ W]

28. Zadatak: Kontinuirani komunikacijski kanal podijeljen je na dva potkanala kako je to dano na sljedećoj slici:

| *H*(*f*) | :

U prvom potkanalu srednja snaga signala iznosi P_1 [W], a u drugom P_2 [W]. Isto tako, širina pojasa prijenosa prvog potkanala iznosi B_1 [Hz], a drugog B_2 [Hz], $(B_1 > B_2)$. Neka je ukupna snaga predajnika jednaka $P = P_1 + P_2$. Odredite koliki dio ukupne snage predajnika u pojedinom potkanalu maksimizira ukupni kapacitet $(C = C_1 + C_2)$ danog sustava prijenosa. U oba potkanala djeluje bijeli Gaussov šum spektralne gustoće snage N_0 [W/Hz].

Rješenje: $[P_1=P/(1+B_2/B_1); P_2=P/(1+B_1/B_2)]$

29. Zadatak: Dva signala $x_1(t)$ i $x_2(t)$ čiji su amplitudni spektri $|X_1(t)|$ i $|X_2(t)|$ dani na slici a), dovode se na ulaz prijenosnog sustava predočenog na slici b).

- i) Skicirajte aplitudni spektar signala u točkama A, B i C.
- ii) Odredite širinu pojasa prijenosa (u kHz) koji zauzimaju signali u točkama A, B i C.

Rješenje: [i) ...; ii) A: 10 kHz, B: 15 kHz, C: 30 kHz]