Yelp Recommendation System

DS-1 Project

Sai Chaitanya Sanivada, Aayush Birla, Himanshu Kandpal, Samyak R Jain

Problem Statement

Building a recommendation system for businesses including restaurants, bars and shops using collaborative filtering by SGD.

Dataset

Yelp Dataset

- Business data containing location data, attributes and categories
- Restaurant reviews data
- User data and metadata
- Check-ins on a business
- Tips written by user on a business
- Photo data including the caption and classification

Exploratory Data Analysis

We see that the most reviewed restaurant has over 8000 reviews

We observe that the French, Spanish and British cuisines are the most popular by average rating

Exploratory Data Analysis

```
Number of businesses with minimum of 5000 reviews/ratings: 5
Number of businesses with minimum of 1000 reviews/ratings: 408
Number of businesses with minimum of 500 reviews/ratings: 1741
Number of businesses with minimum of 100 reviews/ratings: 15791
Number of businesses with minimum of 50 reviews/ratings: 29037
Number of businesses with minimum of 10 reviews/ratings: 82888
Number of businesses with minimum of 5 reviews/ratings: 113898
```


5 is the most common rating given by a user followed by 4
7 Million records with approx 2 Million unique users and around 0.2
Million businesses

Recommender System

- From e-commerce to online streaming
 platforms, recommender systems employ the
 past purchase patterns on it's user to predict
 which other products they may in interested in
 and likely to purchase.
- Recommending the right products gives a significant advantage to the business.

- Collaborative filtering uses similarities
 between users and items simultaneously to provide recommendations.
- Similar users will rate similar restaurants
 (items) similarly
- One of the requirements to be able to apply collaborative filtering is that sufficient number of products need ratings associated with them.

Collaborative Filtering Model

Estimate Function:

$$Y_{um} = \mu + \bar{\theta} \cdot I_u + \bar{\gamma} \cdot I_m + \bar{q}_m^T \cdot \bar{p}_u$$

Loss Function:

$$\sum_{u.m} \left(Y_{um} - \mu - \bar{\theta} \cdot I_u - \bar{\gamma} \cdot I_m - \bar{q}_m^T \cdot \bar{p}_u\right)^2 + \alpha \left(\theta_u^2 + \gamma_m^2 + \|\bar{q}_m\|^2 + \|\bar{p}_u\|^2\right)$$

Collaborative Filtering Model

Results

Conclusion and Future Work

- In conclusion, we have used **matrix factorization techniques with regression** to predict the user item rating.
- Recurrent Neural Networks can be used in the future as incorporating time in the model is important.
- A few restaurants serving seasonal foods can have difference in their ratings corresponding to the current season.
- We can include other businesses such as saloons, Hotels along with restaurants in our model.
- We can use the business reviews text data available in the dataset to perform sentiment analysis and predict business ratings
- We can also use the photos available in the dataset to find similarities between different restaurants.

Thank You