Final Data Management Project

Christina Chang 12/8/2017

1. Data Preparation

Load Packages

```
# read data
library(foreign)
library(readr)
# clean & manipulate data
library(tidyverse)
library(dplyr)
library(reshape2)
# plots
library(ggplot2)
# time series
library(tseries)
library(dynlm)
library(urca)
# forecast
library(forecast)
library(scales)
# knit
library(knitr)
library(rvest)
```

Import Data

By visual inspection of the file, we don't want R to read the first two rows. NA argument to specify that any blanks ("") or asterisks ("*") would be considered missing data. Note: the asterisks are specified to be redacted information, based on the UNHCR website.

```
setwd("/Users/Berlin/Desktop/HertieDataScience/final project")

d1 <- read_csv("unhcr_popstats_people of concern.csv", skip = 2, na = c("","*"))
d2 <- read_csv("unhcr_popstats_refugee status.csv", skip = 2, na = c("", "*"))

View(d1)
View(d2)</pre>
```

Tidy Data

The UNHCR data is an unbalanced panel dataset. After tidying the data, we have created a balanced panel dataset with all entities (countries) observed in all years (from 2000 to 2016).

Steps to clean and manipulate data:

```
str(d1)
# Year correctly structured as integer
# Country destination and origin correctly structured as character
# All other variables should be numeric
d1[4:11] <- lapply(d1[4:11], as.numeric)</pre>
summary(d1) # years from 1951 to 2016
str(d2)
# Year correctly structured as integer
# Country destination and origin correctly structured as character
# Do not need RSD procedure type information
# All other variables should be numeric
d2[4] <- NULL
d2[4:13] <- lapply(d2[4:13], as.numeric)
summary(d2) # years from 2000 to 2016
df <- merge(d1, d2, by = c("Year", "Country / territory of asylum/residence", "Origin"))
View(df)
str(df)
summary(df) # after merge, data before the year 2000 drops out.
# identify missing data
apply(df,2, function(x) sum(is.na(x)))
```

2. Exploratory Data Analysis

People of Concern:

```
# subset for only PoC category counts by year
PoC_count <- df[c(1,4:10)]
PoC_count <- melt(PoC_count, id=c("Year"))</pre>
str(PoC_count)
## 'data.frame':
                  813456 obs. of 3 variables:
             $ variable: Factor w/ 7 levels "Refugees (incl. refugee-like situations)",..: 1 1 1 1 1 1 1 1 1 1 1 1
                   NA NA 9 507 2 5 NA 1 5 20 ...
plot1 <- ggplot(PoC_count,aes(Year,value, na.rm = TRUE)) +</pre>
  geom_bar(aes(fill=variable),stat="identity") +
  labs(title="UNHCR Population Statistics Database",
      subtitle="Populations of Concern (2000 - 2016)",
      x="Year",
      y="Number of People (Millions)")
plot1
```

UNHCR Population Statistics Database

Percent Change in Total Population by "People of Concern"

Percent Change in People of Concern

(2000 - 2016)

Top Countries of Destination

```
destination_country_total <- df %>%
  group_by(`Country / territory of asylum/residence`, Year) %>%
  summarise(Total = sum(`Total Population`))
View(destination country total)
top_destcountries <- destination_country_total %>%
  group_by(`Country / territory of asylum/residence`) %>%
  summarise(Total = sum(Total, na.rm = TRUE)) %>%
  top_n(20)
View(top_destcountries)
top_destcountries2 <- as.character(top_destcountries$`Country / territory of asylum/residence`)
plot3 <- destination_country_total %>%
  filter(`Country / territory of asylum/residence` %in% top_destcountries2) %>%
  ggplot(mapping = aes(x = Year, y = Total)) +
  geom_line() + coord_cartesian(ylim = c(0, 3e6)) +
  facet_wrap(~`Country / territory of asylum/residence`, ncol=4)
plot3
```


Top Countries of Origin

```
origin_country_total <- df %>%
  group_by(Origin, Year) %>%
  summarise(Total = sum(`Total Population`))

top_origcountries <- origin_country_total %>%
  group_by(Origin) %>%
  summarise(Total = sum(Total, na.rm = TRUE)) %>%
  top_n(20)

top_origcountries2 <- as.character(top_origcountries$Origin)

plot4 <- origin_country_total %>%
  filter(Origin %in% top_origcountries2) %>%
  ggplot(mapping = aes(x = Year, y = Total)) +
  geom_line() + coord_cartesian(ylim = c(0, 1e7)) +
  facet_wrap( ~ Origin, ncol=4)
```


3. Time Series Analysis

We run a time-series analysis to see if the total number of "Persons of Concern" (POC) in world effects the total number of POCs in Germany over time. y = Total PoC in Germany; x = Total PoC in the world; t = Years (2000 to 2016)

Prepare data for Time Series analysis

```
# create new dataframe
Germany_Poc <- df %>% group_by(`Country / territory of asylum/residence`, Year) %>%
  filter('Germany' %in% `Country / territory of asylum/residence`) %>%
  summarise(German_Total = sum(`Total Population`, na.rm = TRUE))
View(Germany_Poc)
df_ts <- merge(Germany_Poc, Year_Pop, by = "Year")</pre>
View(df_ts)
# declare variables to be time series using ts()
df_ts$Year <- ts(df_ts$Year)</pre>
df_ts$German_Total<- ts(df_ts$German_Total)</pre>
df_ts$x <- ts(df_ts$x)</pre>
# run preliminary OLS model
summary(m1 <- dynlm(German_Total ~ x, data = df_ts))</pre>
## Time series regression with "ts" data:
## Start = 1, End = 17
## Call:
## dynlm(formula = German_Total ~ x, data = df_ts)
##
## Residuals:
##
       Min
                  1Q
                                    3Q
                     Median
                                            Max
## -1211808 -170365
                        16838
                               237008 1383368
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.862e+06 3.388e+05 5.494 6.17e-05 ***
## x
               1.533e-02 1.662e-02
                                    0.922
                                               0.371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 579400 on 15 degrees of freedom
## Multiple R-squared: 0.05367,
                                    Adjusted R-squared:
## F-statistic: 0.8507 on 1 and 15 DF, p-value: 0.3709
```

Results of OLS model (m1): Positive and substantially small coefficient, but not statistically significant.

Can only use OLS regression with time series data if the following two conditions are met:

(a) Weak Dependence / Weak Persistence

```
summary(dynlm(German_Total ~ L(German_Total, 1), data = df_ts))
## Time series regression with "ts" data:
## Start = 2, End = 17
##
## Call:
## dynlm(formula = German_Total ~ L(German_Total, 1), data = df_ts)
##
## Residuals:
       Min
##
                      Median
                  1Q
                                    3Q
                                            Max
## -1167925 -222002 -102511
                                197473 1559245
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      1.184e+06 7.852e+05
                                             1.508
                                                      0.154
## L(German_Total, 1) 4.728e-01 3.777e-01
                                             1.252
                                                      0.231
## Residual standard error: 584500 on 14 degrees of freedom
## Multiple R-squared: 0.1006, Adjusted R-squared: 0.03641
## F-statistic: 1.567 on 1 and 14 DF, p-value: 0.2312
# The rho is less than 1, so stability condition is met
acf(df_ts$German_Total, na.action = na.pass, lag.max = 5)
```

Series df_ts\$German_Total

Correlation coefficient is statistically insignificant after 1 lag, so it is not persistent

Conclusion: The data is weakly dependent allowing for a dynamically complete model.

(b) Stationarity

1000000

5

10

Time

15

```
# Unit Root - Dickey Fuller Test
adf.test(df_ts$German_Total)
##
##
    Augmented Dickey-Fuller Test
##
## data: df_ts$German_Total
## Dickey-Fuller = -3.9925, Lag order = 2, p-value = 0.02352
## alternative hypothesis: stationary
# p-value is less than .05, so it has no unit root
# Trends
par(mfrow = c(1, 2))
plot(df_ts$German_Total) #Total POCs in Germany
plot(df_ts$x) #Total POCs in the world
      3000000
                                                       3.0e+07
df_ts$German_Total
      2000000
                                                       2.0e+07
```


1.0e+07

5

10

Time

15

Need to account for this trend in total POCs in the world before running an OLS regression.

Method 1: First Differencing

##

```
df_ts$d.German_Total <- c(NA, diff(df_ts$German_Total))
df_ts$d.x <- c(NA, diff(df_ts$x))

par(mfrow = c(1, 2))
plot(df_ts$d.German_Total)
plot(df_ts$d.x)</pre>
```



```
summary(m2 <- dynlm(d.German_Total ~ d.x, data = df_ts))</pre>
```

```
## Time series regression with "numeric" data:
## Start = 1, End = 16
##
## Call:
## dynlm(formula = d.German_Total ~ d.x, data = df_ts)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -1194561 -237301
                       -53873
                                 184974
                                         1573241
##
##
##
  Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
  (Intercept) 6.535e+04 1.660e+05
                                       0.394
                                                0.700
##
##
               2.854e-02 4.299e-02
                                       0.664
                                                0.518
##
## Residual standard error: 614200 on 14 degrees of freedom
     (1 observation deleted due to missingness)
```

```
## Multiple R-squared: 0.03051, Adjusted R-squared: -0.03874
## F-statistic: 0.4406 on 1 and 14 DF, p-value: 0.5176
```

Results of OLS model (m2): Positive and substantially small coefficient, but not statistically significant.

The problem with first differencing is that we lose statistical power as we lose observations.

Method 2: Detrending

```
fit1 <- lm(German_Total ~ Year, df_ts)</pre>
df ts$resid.German Total <- residuals(fit1)</pre>
fit2 <- lm(x ~ Year, df_ts)</pre>
df_ts$resid.x <- residuals(fit2)</pre>
summary(m3 <- dynlm(resid.German_Total ~ resid.x, data = df_ts))</pre>
##
## Time series regression with "numeric" data:
## Start = 1, End = 17
##
## Call:
## dynlm(formula = resid.German_Total ~ resid.x, data = df_ts)
##
## Residuals:
##
       Min
                 1Q Median
                                 3Q
## -975522 -208415
                      51245
                            174882 1348800
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.412e-11 1.330e+05
                                        0.000
                                                 1.000
               4.494e-02 2.743e-02
                                        1.638
                                                 0.122
##
## Residual standard error: 548500 on 15 degrees of freedom
## Multiple R-squared: 0.1518, Adjusted R-squared: 0.09523
## F-statistic: 2.684 on 1 and 15 DF, p-value: 0.1222
```

Results of OLS model (m3): Positive and substantially small coefficient, but not statistically significant

So even after detrending, there is no statistically significant coefficient to show a causal effect between the total POC in the world and the total POCs in Germany over time.

4. Forecasting

As we have monthly data on asylum-seekers in Germany, we can use it to predict future numbers of asylum-seekers using a forecasting model.

Import Data

By visual inspection of the file, we don't want R to read the first two rows.

```
df3 <- read_csv("unhcr_popstats_export_asylum_seekers_monthly_2017_12_04_203715.csv", skip = 2)
View(df3)
str(df3)
summary(df3)</pre>
```

Tidy Data

In the forecasting model, NA values returns errors. As such, we specify that any NA values are assigned a value of 0.

```
df3[5] <- lapply(df3[5], as.numeric)
apply(df3,2, function(x) sum(is.na(x)))
df3$Value[is.na(df3$Value)] <- 0</pre>
```

Declare variables as time series

Test for weak dependence (weak persistence):

```
summary(dynlm(Germany_monthly ~ L(Germany_monthly, 1)))
##
## Time series regression with "ts" data:
## Start = 1999(2), End = 2017(9)
##
## Call:
## dynlm(formula = Germany_monthly ~ L(Germany_monthly, 1))
##
## Residuals:
     Min
              1Q Median
                            3Q
                                  Max
## -57837 -1677 -1197
                            32 55483
##
```

```
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                                               2.658 0.00842 **
## (Intercept)
                        1919.7596
                                    722.1649
## L(Germany_monthly, 1)
                           0.8129
                                      0.0391 20.792 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9061 on 222 degrees of freedom
## Multiple R-squared: 0.6607, Adjusted R-squared: 0.6592
## F-statistic: 432.3 on 1 and 222 DF, p-value: < 2.2e-16
# The rho is less than 1, so stability condition is met
acf(Germany_monthly, na.action = na.pass, lag.max = 40)
```

Series Germany_monthly

Correlation coefficient is statistically insignificant after 2.5 lag, so it is not persistent

Test for stationarity

```
# Unit Root - Dickey Fuller Test
adf.test(Germany_monthly)

##
## Augmented Dickey-Fuller Test
##
## data: Germany_monthly
## Dickey-Fuller = -2.4282, Lag order = 6, p-value = 0.3961
## alternative hypothesis: stationary
```

```
# p value is less than .05, there is no unit root.

# Trends
autoplot(as.zoo(Germany_monthly), geom = "line")
```


For forecasting, just observe the trend.
Clear spike since 2015 that seems to have dropped off in 2016.

Decompose

Decompose the additives of time series. This returns estimates of the seasonal component, trend component and irregular components ("random" components).

plot(decompose(Germany_monthly))

Decomposition of additive time series

Seasonal Changes

Look more closely at the seasonal changes in the number of a sylum seekers.

```
stl(Germany_monthly, s.window="periodic")
# Germany has had a positive net flow of asylum seekers in February, June, July, November and December.
```

We attempt two methods for forecasting future monthly flows of asylum seekers for 2018 and 2019 in Germany.

Method 1: ARIMA Forecasting

```
plot(forecast(auto.arima(Germany_monthly), 30),
    main = "ARIMA Forecast: Germany Asylum Seeker Arrivals",
    ylab = "Number of Asylum Seekers",
    xlab = "Year", ylim=c(0, 90000))
```

ARIMA Forecast: Germany Asylum Seeker Arrivals

The wide confidence intervals show the uncertainty in forecasting with the dark grey representing 95

ARIMA forecast values:

forecast(auto.arima(Germany_monthly), 24)

```
##
            Point Forecast
                                   Lo 80
                                            Hi 80
                                                       Lo 95
                                                                 Hi 95
## Oct 2017
                 13600.045
                              4001.42590 23198.66
                                                   -1079.776 28279.87
                 12602.114
## Nov 2017
                              2690.66757 22513.56
                                                   -2556.135 27760.36
## Dec 2017
                  9783.970
                              -539.22427 20107.16
                                                   -6003.993 25571.93
## Jan 2018
                 12492.452
                                                   -4872.455 29857.36
                             1138.14968 23846.75
## Feb 2018
                  4125.247
                            -8174.02286 16424.52 -14684.863 22935.36
## Mar 2018
                             9277.32413 35630.61
                                                    2302.031 42605.90
                 22453.966
## Apr 2018
                 10594.123
                            -3405.01062 24593.26 -10815.704 32003.95
## May 2018
                 14587.126
                             -188.78676 29363.04
                                                  -8010.682 37184.93
## Jun 2018
                            -7007.31837 24020.38 -15219.853 32232.91
                  8506.528
## Jul 2018
                  7885.977
                            -8332.26208 24104.22 -16917.679 32689.63
## Aug 2018
                 12268.575
                            -4624.71179 29161.86 -13567.478 38104.63
## Sep 2018
                            -3568.15671 31516.60 -12854.530 40802.97
                 13974.220
## Oct 2018
                 19766.918
                              1900.25116 37633.58
                                                   -7557.791 47091.63
## Nov 2018
                 18144.497
                             -251.95305 36540.95
                                                   -9990.446 46279.44
## Dec 2018
                  8374.367 -10523.66592 27272.40 -20527.680 37276.41
## Jan 2019
                 22188.573
                              2857.62113 41519.53
                                                  -7375.567 51752.71
## Feb 2019
                 19746.164
                                -8.22251 39500.55 -10465.563 49957.89
## Mar 2019
                 21940.352
                              1771.41815 42109.29
                                                   -8905.370 52786.07
## Apr 2019
                 21460.855
                              885.72496 42035.98 -10006.091 52927.80
## May 2019
                 22219.733
                             1246.27226 43193.19
                                                  -9856.407 54295.87
## Jun 2019
                             -413.19458 42315.54 -11722.807 53625.15
                 20951.172
## Jul 2019
                 20087.011 -1661.23559 41835.26 -13174.062 53348.08
## Aug 2019
                              -552.98949 43697.95 -12265.504 55410.46
                 21572.478
## Sep 2019
                 22135.917
                             -360.44712 44632.28 -12269.303 56541.14
```

Method 2: TBATS Forecasting

```
plot(forecast(tbats(Germany_monthly), 30),
    main = "TBATS Forecast: Germany Asylum Seeker Arrivals",
    ylab = "Number of Asylum Seekers",
    xlab = "Year", ylim=c(0, 90000))
```

TBATS Forecast: Germany Asylum Seeker Arrivals


```
#TBATS forecast values:
forecast(tbats(Germany_monthly), 24)
```

```
Lo 80
                                                   Lo 95
##
            Point Forecast
                                        Hi 80
                                                            Hi 95
                  17677.72 12843.324 24331.86 10844.966 28815.39
## Oct 2017
## Nov 2017
                  21482.21 15101.356 30559.19 12531.104 36827.17
                  17205.55 11693.651 25315.53
## Dec 2017
                                                9531.590 31057.88
## Jan 2018
                  15371.73 10134.801 23314.71
                                                8129.215 29066.77
## Feb 2018
                  17522.07 11242.393 27309.38
                                                8888.643 34541.02
## Mar 2018
                  15753.26
                            9844.956 25207.34
                                                7676.085 32329.65
## Apr 2018
                  14612.84
                            8911.857 23960.77
                                                6859.269 31130.86
## May 2018
                  17094.15 10186.737 28685.32
                                                7745.093 37728.38
## Jun 2018
                  17283.33 10070.144 29663.29
                                                7565.720 39482.50
## Jul 2018
                  16052.74
                            9158.985 28135.25
                                                6805.177 37866.81
                  15243.82
                            8521.070 27270.52
                                                6262.908 37103.21
## Aug 2018
## Sep 2018
                  14373.66
                            7877.165 26227.99
                                                5729.283 36060.75
## Oct 2018
                  17677.72
                            9519.380 32827.97
                                                6859.701 45556.21
## Nov 2018
                  21482.21 11365.829 40602.86
                                                8114.143 56874.17
## Dec 2018
                  17205.55
                           8929.264 33152.89
                                                6309.918 46915.19
## Jan 2019
                                                5481.564 43106.30
                  15371.73
                            7832.675 30167.21
## Feb 2019
                  17522.07
                            8776.609 34981.94
                                                6086.666 50441.87
                            7756.225 31995.61
## Mar 2019
                  15753.26
                                                5330.319 46557.28
                           7077.428 30171.27
## Apr 2019
                  14612.84
                                                4821.688 44286.35
```

##	May	2019	17094.15	8148.019	35862.68	5504.322	53087.34
##	Jun	2019	17283.33	8108.219	36840.83	5431.517	54996.34
##	Jul	2019	16052.74	7417.964	34738.70	4929.540	52274.73
##	Aug	2019	15243.82	6939.160	33487.34	4574.840	50793.91
##	Sen	2019	14373 66	6447 303	32044 75	4217 526	48986 59