

## StyleCLIP [Patashnik+ (Adobe Research), CVPR21]

- X StyleGANとCLIPを組み合わせた、テキストによる画像操作を行うモデル
- imes Latent Optimization :  $arg min D_{CLIP}(G(w), t) + \lambda_{L2} \|w w_s\|_2 + \lambda_{ID} \mathcal{L}_{ID}(w)$ 
  - ➤ D<sub>CLIP</sub>: CLIP埋め込み空間における、生成画像とテキストのコサイン距離
  - ➤ L2:元のwとの距離、入力画像との乖離を防ぐ
  - $\mathbf{X}$   $\mathbf{L}_{\text{ID}}$ : 入力・生成画像に対して生成した埋め込みのコサイン類似度  $\mathcal{L}_{\text{ID}}(w) = 1 \langle R(G(w_s)), R(G(w)) \rangle$   $\mathbb{X}$  RはArcFace、人物の乖離を制御

### X Latent Mapper

**※** wは3つのmapperに入力 窓 coarse, medium, fine  $w = (w_c, w_m, w_f)$  $M_t(w) = (M_t^c(w_c), M_t^m(w_m), M_t^f(w_f))$ 



#### ★ 損失関数

$$\mathcal{L}(w) = \mathcal{L}_{\text{CLIP}}(w) + \lambda_{L2} \|M_t(w)\|_2 + \lambda_{\text{ID}} \mathcal{L}_{\text{ID}}(w)$$
$$\mathcal{L}_{\text{CLIP}}(w) = D_{\text{CLIP}}(G(w + M_t(w)), t)$$



#### Video Captioning of Future Frames [Hosseinzadeh+ (University of Manitoba), WACV21]

- × 未来の出来事にキャプションを付けるタスク
- ※ 次のイベントの畳み込み特徴量を予測し、その特徴量に基づいてキャプションを生成
- X Temporal Feature Predictor
  - ➤ t番目を元にt'番目のイベントの画像特徴量を予測
  - $G_{t'} = Conv(DAP(F_t)), \text{ where } G \in \mathbb{R}^{v' \times d}$ 
    - 以 v:フレーム数 d:次元数

$$G_{t'}^{final} = \lambda \cdot \mathcal{AVG}(F_t) \oplus (1 - \lambda) \cdot \mathcal{AVG}(G_{t'})$$

図 AVG:時間次元でのAvg Pooling ⊕:要素ごとの和

### Captioning Module

- ★ m-1番目までの単語とGt'から m番目の単語を予測
- ★ Loss/tcross-entropy







# HAMLET [Islam+ (Univ. of Virginia), IROS20]

- × human activity recognition (HAR)において、テストした全データセットでベースラインを上回る
  - メ ユニモーダルなデータから特徴量を抽出し、それらを分離・融合するマルチモーダルなAttentionメカニズム
    - Multimodal Self-attention based HAR
- $\times$  Input:  $X^m$  (B  $\times$  S<sup>m</sup>  $\times$  E<sup>m</sup>)
  - B:バッチサイズ、S<sup>m</sup>: モダリティ m のセグメント数、E<sup>m</sup>: 特徴次元(channel(C<sup>m</sup>) × height(H<sup>m</sup>) × width(W<sup>m</sup>))
- Value of the second of the
  - H<sup>m</sup>: Temporal Feature Encoderの出力

- Multimodal Attention based Feature Fusion (MAT)
  - $\mathbf{F}^{Gu}$ にmulti-head self-attention、出力は $\mathbf{F}^{Ga}$  窓  $F^{G^u}=(F_1,F_2,...,F_M)$  Mは全モダリティ数、順不同
- × F<sup>Ga</sup>から2つの方法でF<sup>G</sup>を算出(CONCATの方が高性能)

$$\mathsf{MAT\text{-}SUM}$$
  $F^G = \sum_{m=1}^M F_m^{G^G}$ 

- $\label{eq:MAT-CONCAT} \begin{tabular}{lll} $\mathsf{MAT-CONCAT}$ $F^G$ & = & $[F^{G^a}_1;F^{G^a}_2;...;F^{G^a}_M]$ \end{tabular}$
- ド F<sup>G</sup>は最終的に全結合層へ  $loss(y, \hat{y}) = \frac{1}{B} \sum_{i=1}^{B} y_i \log \hat{y_i}$  Lossはcross-entropy







## VLT [Ding+ (Nanyang Technological Univ), ICCV21]

- X Attention networkによるReferring Segmentation
  - ➤ 参照画像の助けを借りて参照文を理解するQuery Generation/Balance Moduleを提案
- X Query Generation Module (QGM)
  - ■像特徴量F<sub>vq</sub>、言語特徴量F<sub>t</sub>を線形投射

$$\mathbb{X}$$
  $\mathsf{f}_{\mathsf{vgn}} \in R^{1 \times (HW)}, n = 1, 2, \dots, N_q$ 

$$\mathbb{X}$$
  $\mathsf{f}_{ti} \in R^{1 \times C}, i = 1, 2, \dots, N_l$ 

$$\mathbf{X} a_{ni} = \sigma(f_{vqn}W_v) \ \sigma(f_{ti}W_a)^T$$

$$F_{qn} = A_n \sigma(F_t W_t)$$

- X Query Balance Module (QBM)
  - ★ 各C<sub>qn</sub>は、クエリF<sub>qn</sub>が予測されたコンテキストに どれだけ適合するかを示す
- Mask Decoder
  - ※ 3つの3×3 conv の後、1×1 conv でマスクを出力
  - ★ 損失関数はマスクのBinary Cross Entropy





