Lecture no 2

Differentiation

Week no 2

Chapter no 2

2.2 THE DERIVATIVE FUNCTION

2.2.1 DEFINITION The function f' defined by the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (2)

is called the *derivative of f with respect to x*. The domain of f' consists of all x in the domain of f for which the limit exists.

Example 1 Find the derivative with respect to x of $f(x) = x^2$, and use it to find the equation of the tangent line to $y = x^2$ at x = 2.

► Example 2

- (a) Find the derivative with respect to x of $f(x) = x^3 x$.
- (b) Graph f and f' together, and discuss the relationship between the two graphs.

- f'(x) is positive where the tangent line has positive slope,
- f'(x) is negative where the tangent line has negative slope,
- f'(x) is zero where the tangent line is horizontal.

$$f(x) = x^3 - x$$
$$f'(x) = 3x^2 - 1$$

DIFFERENTIABILITY

2.2.2 DEFINITION A function f is said to be differentiable at x_0 if the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{5}$$

exists. If f is differentiable at each point of the open interval (a, b), then we say that it is *differentiable on* (a, b), and similarly for open intervals of the form $(a, +\infty)$, $(-\infty, b)$, and $(-\infty, +\infty)$. In the last case we say that f is *differentiable everywhere*.

■ THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

2.2.3 THEOREM If a function f is differentiable at x_0 , then f is continuous at x_0 .

2.6.1 THEOREM (The Chain Rule) If g is differentiable at x and f is differentiable at g(x), then the composition $f \circ g$ is differentiable at x. Moreover, if

$$y = f(g(x))$$
 and $u = g(x)$

then y = f(u) and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

(1)

Example 1 Find dy/dx if $y = \cos(x^3)$.

AN ALTERNATIVE VERSION OF THE CHAIN RULE

$$\frac{d}{dx}[f(g(x))] = (f \circ g)'(x) = f'(g(x))g'(x)$$

► Example 4

$$\frac{d}{dx}[\tan^2 x] =$$

Exercise 2.6

FOCUS ON CONCEPTS

Given the following table of values, find the indicated derivatives in parts (a) and (b).

Х	f(x)	f'(x)	g(x)	g'(x)
3	5	-2	5	7
5	3	-1	12	4

- (a) F'(3), where F(x) = f(g(x))
- (b) G'(3), where G(x) = g(f(x))
- Given the following table of values, find the indicated derivatives in parts (a) and (b).

X	f(x)	f'(x)	g(x)	g'(x)
-1	2	3	2	-3
2	0	4	1	-5

- (a) F'(-1), where F(x) = f(g(x))
- (b) G'(-1), where G(x) = g(f(x))

Implicit Differentiation:

Example 2 Use implicit differentiation to find dy/dx if $5y^2 + \sin y = x^2$.

Assignment No 1

Exercise	Questions	
2.3	12-18	
2.4	16-24	
2.5	1-18	
2.6	21-26,35-40	
3.1	3-18	
5.2	43-46	
5.3	1-12, 15-30	

3.5 LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

for values of x near x_0 we can approximate values of f(x) by

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

This is called the *local linear approximation* of f at x_0 . This formula can also be expressed in terms of the increment $\Delta x = x - x_0$ as

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x \tag{2}$$

► Example 1

- (a) Find the local linear approximation of $f(x) = \sqrt{x}$ at $x_0 = 1$.
- (b) Use the local linear approximation obtained in part (a) to approximate $\sqrt{1.1}$, and compare your approximation to the result produced directly by a calculating utility.

► Example 2

- (a) Find the local linear approximation of $f(x) = \sin x$ at $x_0 = 0$.
- (b) Use the local linear approximation obtained in part (a) to approximate sin 2°, and compare your approximation to the result produced directly by your calculating device.

▲ Figure 3.5.3

11–16 Confirm that the stated formula is the local linear approximation of f at $x_0 = 1$, where $\Delta x = x - 1$.

11.
$$f(x) = x^4$$
; $(1 + \Delta x)^4 \approx 1 + 4\Delta x$

12.
$$f(x) = \sqrt{x}$$
; $\sqrt{1 + \Delta x} \approx 1 + \frac{1}{2} \Delta x$

13.
$$f(x) = \frac{1}{2+x}$$
; $\frac{1}{3+\Delta x} \approx \frac{1}{3} - \frac{1}{9}\Delta x$

14.
$$f(x) = (4+x)^3$$
; $(5+\Delta x)^3 \approx 125 + 75\Delta x$

15.
$$\tan^{-1} x$$
; $\tan^{-1} (1 + \Delta x) \approx \frac{\pi}{4} + \frac{1}{2} \Delta x$

16.
$$\sin^{-1}\left(\frac{x}{2}\right)$$
; $\sin^{-1}\left(\frac{1}{2} + \frac{1}{2}\Delta x\right) \approx \frac{\pi}{6} + \frac{1}{\sqrt{3}}\Delta x$

Practice Questions: Pg no 217 Exercise 3.5 Q no 1-18

3.6 L'HÔPITAL'S RULE; INDETERMINATE FORMS

■ INDETERMINATE FORMS OF TYPE 0/0

$$7. \lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

■ INDETERMINATE FORMS OF TYPE ∞ / ∞

$$13. \lim_{x \to +\infty} \frac{\ln x}{x}$$

■ INDETERMINATE FORMS OF TYPE $0 \cdot \infty$

Example 4 Evaluate

- (a) $\lim_{x \to 0^+} x \ln x$ (b) $\lim_{x \to \pi/4} (1 \tan x) \sec 2x$

■ INDETERMINATE FORMS OF TYPE $\infty - \infty$

34.
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos 3x}{x^2} \right)$$

■ INDETERMINATE FORMS OF TYPE $0^0, \infty^0, 1^\infty$

41.
$$\lim_{x \to 0^+} \left[-\frac{1}{\ln x} \right]^x$$

42.
$$\lim_{x \to +\infty} x^{1/x}$$

28.
$$\lim_{x \to 0} (1 + 2x)^{-3/x}$$

Practice Questions: Pg no 227 Exercise 3.6 Q no 7-45