Introduction to Formal Language, Fall 2016 Due: 29-Mar-2016 (Tuesday)

Homework 3 Solutions

Instructor: Prof. Wen-Guey Tzeng Scribe: Yi-Ruei Chen

1. The symmetric difference of two sets S_1 and S_2 is defined as

$$S_1 \ominus S_2 = \{x : x \in S_1 \text{ or } x \in S_2, \text{ but } x \text{ is not in both } S_1 \text{ and } S_2\}.$$

Show that the family of regular languages is closed under symmetric difference.

Answer.

From the definition of symmetric difference of two sets, we have that $S_1 \ominus S_2 = (S_1 \cap \overline{S}_2) \cup (S_2 \cap \overline{S}_1)$. Because of the closure of regular languages under intersection (\cap) , complementation (\overline{L}) , and union (\cup) , the family of regular languages is closed under symmetric difference.

2. Let $L_1 = L(a^*baa^*)$ and $L_2 = L(aba^*)$. Find L_1/L_2 . Answer.

We first construct a DFA that accepts L_1 as follows. We check each state $q_0, q_1, q_2,$

and q_3 to see whether there is a walk labeled aba^* to the final state q_2 . We see that only q_0 qualifies. Thus, the result $L_1/L_2 = L(a^*)$.

3. If L is a regular language, prove that $L_1 = \{uv : u \in L, |v| = 2\}$ is also regular. Answer.

From the definition of L_1 , we have that $L_1 = LL'$, where $L' = \{v : |v| = 2\}$. L' is regular since we can construct a DFA that accepts strings with two symbols. Thus, $L_1 = LL'$ is regular since the family of regular languages is closed under concatenation. \Box

4. For a string $a_1a_2\cdots a_n$ define the operation shift as

$$shift(a_1a_2\cdots a_n)=a_2\cdots a_na_1.$$

From this, we can define the operation on a language as

$$shift(L) = \{v : v = shift(w) \text{ for some } w \in L\}.$$

Show that the regularity is preserved under the shift operation.

Answer.

Assume that the language L is given in DFA $M=(Q,\Sigma,\delta,q_0,F)$. We construct an NFA $N=(Q',\Sigma,\delta',q_s,\{q_f\})$ satisfies that shift(L)=L(N) with $Q'=Q\times\Sigma\cup\{q_s,q_f\}$ and δ' as follows. (Note that $Q\times\Sigma=\{[q,\sigma]:q\in Q,\sigma\in\Sigma\}$, where $[q,\sigma]$ is a state for the first symbol of the string in L to be σ .)

- $\delta'(q_s, \lambda) = \{ [\delta(q_0, \sigma), \sigma] : \sigma \in \Sigma \}$ (here we guess the first symbol to be σ , we will verify this guess "in the end" when the last symbol appears);
- $\delta'([q, \sigma], \sigma') = \{ [\delta(q, \sigma'), \sigma] \}, \forall q \in Q, \forall \sigma, \sigma' \in \Sigma;$
- Add q_f to $\delta'([r, \sigma], \sigma), \forall r \in F, \forall \sigma \in \Sigma$;

For example, the following is a DFA M such that L = L(M). The construction of the

NFA N satisfies that shift(L) = L(N) is shown as follows.

Thus, the regularity is preserved under the shift operation.

5. Exhibit an algorithm that, given any three regular language, L, L_1 , L_2 , determines whether or not $L = L_1L_2$.

Answer.

Check if L xor L_1L_2 is empty or not. If yes, then $L = L_1L_2$. Otherwise, $L \neq L_1L_2$. The algorithm for the check of L xor L_1L_2 : Assume that the three languages are given in DFAs M, M_1 , and M_2 .

- Construct an NFA N for $L(M_1)L(M_2)$ by the algorithm in the textbook;
- Convert N into DFA M';
- Construct $M'' = M \times M'$ for L(M) xor $L(M_1)L(M_2)$ by the algorithm given in the class:
- Minimize M'' as M''' and determine whether M''' is equivalent to the following DFA:

6. Describe an algorithm which, when given a regular grammar G, can tell us whether or not $L(G) = \Sigma^*$.

Answer.

[Solution 1] Check if L(G) xor Σ^* is empty or not. If yes, then $L(G) = \Sigma^*$. Otherwise, $\overline{L(G) \neq \Sigma^*}$. (This can be done by the method in Problem 5.)

[Solution 2] A desirable algorithm is described as follows.

- Convert the regular grammar G to an NFA M';
- Convert M to a DFA M;
- Construct the complement DFA \overline{M} of M (change the non-final states in M to final states and final states in M to non-final states);
- Check if \overline{M} accepts any string in Σ^* or not. If no, that means $L(\overline{M}) = \emptyset$, i.e., $L(G) = \Sigma^*$. Otherwise, $L(G) \neq \Sigma^*$.

7. Prove that the following language is not regular.

$$L = \{a^n b^{\ell} a^k : n = \ell \text{ or } \ell \neq k\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w = a^m b^m a^m \in L$, $|w| = 3m \ge m$. For all possible x, y, z with w = xyz, $|xy| \le m$, $|y| \ge 1$, there are following cases:

- Case 1: $x=a^r, y=b^s, z=a^{m-r-s}b^ma^m, r+s \le m, s \ge 1$. We let i=0. $xy^0z=a^r(b^s)^0z=a^{m-s}b^ma^m \notin L$.
- Case 2: no other cases.

Thus, L is not regular.

8. Prove that the following language is not regular.

$$L = \{ww : w \in \{a, b\}^*\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w = a^m b^m a^m b^m \in L$, $|w| = 4m \ge m$. For all possible x, y, z with w = xyz, $|xy| \le m$, $|y| \ge 1$, there are following cases:

- Case 1: $x = a^r$, $y = b^s$, $z = a^{m-r-s}b^ma^mb^m$, $r + s \le m$, $s \ge 1$. We let i = 0. $xy^0z = a^r(b^s)^0z = a^{m-s}b^ma^mb^m \notin L$.
- Case 2: no other cases.

Thus, L is not regular.

9. Determine whether or not the following language on $\Sigma = \{a\}$ is regular

$$L = \{a^n : n = 2^k \text{ for some } k \ge 0\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w=a^{2^m}\in L, |w|=2^m\geq m$. For all possible x,y,z with $w=xyz, |xy|\leq m, |y|\geq 1$, there are following cases:

• Case 1: $x = a^r$, $y = b^s$, $z = a^{2^m - r - s}$, $r + s \le m$, $s \ge 1$. We let i = 2. $xy^2z = a^r(b^s)^2z = a^{2^m + s} \notin L$, because

$$2^m < 2^m + s \le 2^m + m < 2^m + 2^m = 2^{m+1}, 2^m + s \ne 2^k$$
 for any k

• Case 2: no other cases.

Thus, L is not regular.

10. Make a conjecture whether or not the following language is regular. Then prove your conjecture.

$$L = \{a^n b^\ell : |n - \ell| = 2\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w=a^mb^{m+2}\in L, |w|=2m+2\geq m$. For all possible x,y,z with $w=xyz, |xy|\leq m, |y|\geq 1$, there are following cases:

• Case 1: $x = a^r$, $y = b^s$, $z = a^{m-r-s}b^{m+2}$, $r+s \le m$, $s \ge 1$. We let i=0. $xy^0z = a^r(b^s)^0z = a^{m-s}b^{m+2} \notin L$, because

$$|(m-s)-(m+2)| = |-s-2| \neq 2$$

• Case 2: no other cases.

Thus, L is not regular.