Dimensionamento

Os valores de capacidade de condução de correntes constantes das tabelas a seguir foram retirados da NBR 14039/2003. No caso de cabos diretamente enterrados foi adotado uma resistividade térmica do terreno igual a 2,5 km/W (NBR 14039). Para terrenos úmidos e estáveis, isto é, que mantêm um conteúdo mínimo de umidade mesmo quando submetidos a gradientes térmicos elevados, gerados pelo aquecimento dos cabos, pode ser utilizado o fator de correção para resistividade térmica do terreno igual a 1 km/W. Para terrenos secos pode ser aplicado o fator de correção para 1,5 km/W.

> FATORES DE CORREÇÃO DA CAPACIDADE DE CONDUÇÃO DE CORRENTE.

Nas tabelas de capacidade de condução de corrente, assumimos determinadas condições de instalação e de temperatura ambiente que abrangem a grande maioria de maneiras de instalar cabos de média tensão. Contudo, se as condições reais forem diferentes daquelas adotadas, torna-se necessário corrigir o valor da capacidade de condução de corrente através de fatores, que devem ser aplicados aos valores tabelados. Basicamente, dois fatores de correção são suficientes nas instalações normais:

- Fator de correção para temperatura ambiente (f_t) diferente da considerada.
- Fator de correção devido ao agrupamento de (fa) cabos.

A seguir, apresentamos tabelas de fatores de correção para diversos valores de temperatura ambiente, e para várias condições de agrupamento de cabos.

Nota:

No caso de circuitos com mais de um cabo por fase, recomenda-se adotar uma disposição geométrica tal, que minimize o desequilíbrio de impedância dos cabos de uma mesma fase.

FATORES DE CORREÇÃO DA CAPACIDADE DE CONDUÇÃO DE CORRENTE

EM FUNÇÃO DA TEMPERATURA

cabos	linha		fatores f _t pa	ra temperati	ıra ambiente	iente diferente da	considerada	1
		20	25	30	35	40	45	50
Eprotenax Compact,	subterrânea	1,00	0,96	0,93	0,89	0,85	0,80	0,76
Eprotenax e Voltalene	não subterrânea	1,08	1,04	1,00	0,96	0,91	0,87	0,82
	subterrânea	1,00	0,97	0,94	0,91	0,87	0,84	0,80
Eprotenax Compact 105	não subterrânea	1,06	1,03	1,00	0,97	0,93	0,89	0,86

FATORES DE AGRUPAMENTO

EM FUNÇÃO DO AGRUPAMENTO

man	eiras de instalar	fatores de correção	multiplicar os fatores pelos valores de cap. de condução de corrente dados nas colunas*
	bandejas	páginas 2 e 3/29	1 - 11 - 111
ao ar livre	canaletas	calculadas conforme método dado nas páginas 5, 6, 7 e 8/29	1 - 11 - 111
	banco de dutos	página 4/29	X - XI - XII
no solo	diretamente enterrados	página 4/29	XIII - XIV - XV

^(*) Tabelas das páginas 9, 10, 11 e 12/29.

FATORES DE AGRUPAMENTO

INSTALAÇÕES AO AR LIVRE

CABOS UNIPOLARES EM PLANO

CADOS ONIF	PLAKES EM FLANO		1		1	
	•		núı	mero de ter	nas	multiplicar
instalação em bandejas (*) instalação instalação instalação	•	1	2	3	pelos valores da coluna	
		número de bandejas	fator	es de corre	;ão (f _a)	
Contain 7 and	1 XI: ::: 1	1	1	0,97	0,96	
*	I 8 Tag I	2	0,97	0,94	0,93	
	● ● ● ● ● 30 cm	3	0,96	0,93	0,92	
	X	6	0,94	0,91	0,90	
instalação vertical	2 cm		0,94	0,91	0,89	ı
casos onde não há necessidade de correção	aquecimento mútuo. Entretanto, simultaneamente, a	no, aumentando-se a distância e aumentam-se as perdas nas blin ar indicação sobre as disposiçõe	dagens metá	licas.		

^(*) Nas instalações em bandejas, considera-se o número de sistemas ou cabos por bandeja. NBR 14039/2003 - Tabela 34.

FATORES EM FUNÇÃO DO AGRUPAMENTO

INSTALAÇÕES AO AR LIVRE

CABOS UNIPOLARES EM TRIFÓLIO

	de cabos em sistemas trifásicos, instalados em ambientes ntilados. Estes valores são válidos, desde que os cabos			mero de ter	nas	multiplicar
	tenham as disposições de instala	•	1	2	3	pelos valores da coluna
	2 cm 2 d 2 d	número de bandejas	fator	es de corre	ção (f _a)	
:		1	1	0,98	0,96	
instalação em bandejas (*)	30 cm	2	1	0,95	0,93	
•	30 cm	3	1	0,94	0,92	
	X	6	1	0,93	0,90	
instalação vertical	2 cm 2d 2d 2d		1	0,93	0,90	II
casos onde não há necessidade de correção	2 cm 2 cm 4d 4d 2d 2d	2d	número	qualquer de	ternas	

^(*) Nas instalações em bandejas, considera-se o número de sistemas ou cabos por bandeja. NBR 14039/2003 - Tabela 35.

CABOS TRIPOLARES

- .	Agrupamento de cabos em sistemas trifásicos, instalados em ambientes abertos e ventilados. Estes valores são válidos, desde que os cabos			núme	ro de t	multiplicar		
	enham as disposições de instal	•	1	2	3	6	9	pelos valores da coluna
	2 cm d d	número de bandejas	fatores de correção (f _a)					
instalação om		1	1	0,98	0,96	0,93	0,92	
instalação em bandejas (*)	30 cm	2	1	0,95	0,93	0,90	0,89	
	30 cm	3	1	0,94	0,92	0,89	0,88	
		6	1	0,93	0,90	0,87	0,86	
instalação vertical	2 cm		1	0,93	0,90	0,87	0,87	III
casos onde não há necessidade de correção	2 cm 2 cm 2 d 2 d	d •	n	úmero q	ualquer	de cab	os	

^(*) Nas instalações em bandejas, considera-se o número de sistemas ou cabos por bandeja. NBR 14039/2003 - Tabela 36.

FATORES EM FUNÇÃO DO AGRUPAMENTO

INSTALAÇÕES NO SOLO

EM BANCO DE DUTOS

multiplicar pelos valores da coluna X	48 cm 20 cm 20 cm	20 cm 76 cm 20 cm 88 cm	68 cm 20 cm 58 cm
até seção 95 mm² inclusive	1,00	0,90	0,82
acima de 95 mm²	1,00	0,87	0,77
multiplicar pelos valores da coluna XI	48 cm 20 cm 20 cm	48 cm 20 cm 20 cm	48 cm 20 cm 20 cm
até seção 95 mm² inclusive	0,91	0,85	0,79
acima de 95 mm²	0,88	0,81	0,73
multiplicar pelos valores da coluna XII	48 cm 20 cm 20 cm	48 cm 20 cm 20 cm	48 cm 20 cm 20 cm
até seção 95 mm² inclusive	0,91	0,85	0,79
acima de 95 mm²	0,88	0,81	0,73

^(*) Nas instalações em bandejas, considera-se o número de sistemas ou cabos por bandeja. NBR 14039/2003 - Tabela 37.

DIRETAMENTE ENTERRADOS

multiplicar pelos valores da coluna XIII (A ou B)	90 cm	90 cm	90 cm
até seção 95 mm² inclusive	1,00	0,87	0,80
acima de 95 mm²	1,00	0,85	0,78
multiplicar pelos valores da coluna XIV (A ou B)	20 cm 90 cm	20 cm 20 cm 90 cm	20 cm, 20 cm, 90 cm
até seção 95 mm² inclusive	0,86	0,79	0,71
acima de 95 mm²	0,83	0,76	0,67
multiplicar pelos valores da coluna XV (A ou B)	90 cm	20 cm ,20 cm ,90 cm	20 cm , 20 cm , 90 cm
até seção 95 mm² inclusive	0,86	0,79	0,71
acima de 95 mm²	0,83	0,76	0,67

^(*) Nas instalações em bandejas, considera-se o número de sistemas ou cabos por bandeja. NBR 14039/2003 - Tabela 38.

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

FATOR DE CORREÇÃO PARA CABOS EM CANALETAS

MÉTODO DE CÁLCULO DO FATOR DE CORREÇÃO PARA CABOS INSTALADOS EM CANALETAS

- Nas tabelas de capacidade de condução de corrente (colunas IV, V e VI), foram fixadas para efeito de cálculo determinadas condições de instalação como: dimensões da canaleta e agrupamentos dos cabos.
 - A alteração de uma ou duas dessas condições de instalação poderá implicar num acréscimo de temperatura na canaleta, diferente do considerado em tabela.
 - O acréscimo de temperatura devido as perdas nos cabos por efeito joule e capacitivo, nos possibilita determinar o fator de correção f_C, que deverá corrigir a capacidade de condução de corrente para as novas condições.
 - Nas circunstâncias acima mencionadas devemos, quando necessário, corrigir a capacidade de condução de corrente aplicando os seguintes fatores de correção:
 - fator de correção (f_C)
 - fator de correção por agrupamento (fa)
 - fator de correção por temperatura ambiente (f_t)

Esses fatores de correção deverão, neste caso, ser aplicados aos valores das colunas I, II e III constantes nas tabelas de capacidade de condução de corrente.

FATOR DE CORREÇÃO PARA CABOS EM CANALETAS

PERDAS DE POTÊNCIA NOS CABOS E CÁLCULO DO FATOR DE CORREÇÃO (fc)

A perda total (W_{tot}), em um cabo de potência corresponde à soma das perdas por efeito joule (W_j) geradas no condutor e na blindagem e as perdas no dielétrico (W_d).

Assim temos as expressões:

$$W_{tot} = W_j + W_d \text{ (em W/km)}$$

$$W_j = R_{ca} \cdot I_n^2$$

$$W_d = \frac{(U_o^2 \cdot tg\delta)}{X_r}$$

O fator f_c é calculado a partir do acréscimo de tempertaura no interior da canaleta. Assim temos:

$$\Delta T = \frac{(W_{\text{tot}} \cdot 10^{-3})}{3_p} \text{ (em °C)}$$

$$f_c = \sqrt{\frac{T_c - T_a - \Delta T}{T_c - T_a}}$$

FATOR DE CORREÇÃO PARA CABOS EM CANALETAS

SIMBOLOGIA

W_{tot} - perda total de potência no cabo (W/km)

Wi - perdas por efeito joule geradas no condutor e na blindagem (W/km)

W_d - perdas no dielétrico (W/km)

R_{ca}* - parte real da impedância de linha cujos valores são tabelados no capítulo "Paramêtros Elétricos" (W/km)

In - corrente nominal a ser transportada pelo cabo (A)

U_o - tensão fase-terra do sistema (V)

tg8 - fator de perdas no dielétrico (ver valores abaixo)

X_c - reatância capacitiva cujos valores são tabelados no capítulo "Paramêtros Elétricos" (W.km)

 ΔT - acréscimo de temperatura na canaleta, devido às perdas no cabo (°C)

p - perímetro enterrado na canaleta (m)

 f_c – fator de correção da capacidade de condução de corrente devido ao acréscimo de temperatura na canaleta

T_c - máxima temperatura admissível no condutor em regime normal de operação (°C)

Ta - máxima temperatura ambiente da canaleta, antes da energização dos cabos (°C)

* Nota:

Lembramos que os valores já incluem o efeito de circulação de corrente na blindagem metálica e, sendo assim, quando multiplicados por I_n^2 fornecem as perdas geradas no condutor e na blindagem.

Valores de $tg\delta$ para cabos isolados em EPR e XLPE:

EPR - 0,040 XLPE - 0,008

FATOR DE CORREÇÃO PARA CABOS EM CANALETAS

EXEMPLO DE DIMENSIONAMENTO

Suponhamos uma instalação de cabos em canaleta, a uma temperatura ambiente máxima de 35°C e que compreenda 6 circuitos trifásicos dispostos conforme croquis abaixo:

FATOR DE CORREÇÃO PARA CABOS EM CANALETAS

DESCRIÇÃO DOS CIRCUITOS

circuito	tensão do sistema (kV)	corrente (I _n) a transportar (A)	cabo a ser utilizado
Α	13,8	180	Eprotenax 8,7/15kV - Unipolar
В	13,8	400	Eprotenax 8,7/15kV - Unipolar
С	13,8	200	Eprotenax 8,7/15kV - Unipolar
D	34,5	160	Eprotenax 20/35kV - Unipolar
E	13,8	2 x 120	Voltalene 8,7/15kV - Unipolar
F	13,8	80	Voltalene 8,7/15kV - Unipolar

SEQÜÊNCIA DE CÁLCULO

1. Adote, inicialmente, uma seção consultando as tabelas de capacidade de condução de corrente (colunas I, II ou III) de cada cabo. Por praticidade, adote uma seção superior em 2 ou 3 à correpondente à corrente nominal (I_n).

circuito	I _n (A)	seção adotada	corrente máxima admissível	parâmetr	os elétricos	tgδ
		(mm²)	(A)	R _{ca}	X _c	
Α	180	95	407 *	0,251	9,632	0,040
В	400	240	721 *	0,103	6,780	0,040
С	200	70	333 *	0,347	10,757	0,040
D	160	70	323 *	0,348	17,244	0,040
E	120	50	222 **	0,495	13,678	0,008
F	80	35	184 **	0.670	14.866	0.008

- (*) Tabela de capacidade de condução de corrente Coluna I
- (**) Tabela de capacidade de condução de corrente Coluna II
- 2. Consulte a tabela de Parâmetros Elétricos que determina para cada cabo os valores de R_{ca} e X_c .
- 3. Calcule as perdas por efeito joule.

$$\begin{aligned} W_{jtot} &= \sum R_{ca} \cdot I_{n}^{^{2}} \\ W_{jtot} &= 3 \times 0,25 \times 1 \times 180^{^{2}} + 3 \times 0,103 \times 400^{^{2}} + 3 \times 0,347 \times 200^{^{2}} + 3 \times 0,348 \times 160^{^{2}} + 2 \times 3 \times 0,495 \times 120^{^{2}} + 3 \times 0,670 \times 80^{^{2}} \\ W_{itot} &= 197.836 \text{ W/km} \end{aligned}$$

4. Calcule as perdas por feito capacitivo.

$$W_{dtot} = \frac{\Sigma \left(U_{o}^2 \cdot tg\delta \right)}{X_{c}} \quad \text{sendo } U_{o1} = \frac{13.800}{\sqrt{3}} \cdot e \cdot U_{o}^2 = \frac{34.500}{\sqrt{3}}$$

$$W_{dtot} = \left(\frac{13.800}{\sqrt{3}} \right)^2 \left(3 \cdot \frac{0.04}{9.632} + 3 \cdot \frac{0.04}{6.780} + 3 \cdot \frac{0.04}{10.757} + 6 \cdot \frac{0.008}{13.678} + 3 \cdot \frac{0.008}{14.866} \right) + \left(\frac{34.500}{\sqrt{3}} \right)^2 \cdot 3 \cdot \frac{0.04}{17.244}$$

$$W_{dtot} = 5.709 \text{ W/km} \qquad W_{tot} = 197.836 + 5.706 = 203.545 \text{ W/km}$$

5. Determine o acréscimo de temperatura no interior da canaleta devido às perdas nos cabos.

$$\Delta T = \frac{W_{tot}}{3_p} \cdot 10^{-3} \qquad \text{sendo p = 2 . 0,7 + 1,0 = 2,4m}$$

$$\Delta T = \frac{203.545 \cdot 10^{-3}}{3 \cdot 2.4} \qquad \Delta T = 28,3^{\circ}C$$

6. Calcule o fator de correção (f_c).

$$f_{c} = \sqrt{\frac{T_{c} - T_{a} - \Delta_{T}}{T_{c} - T_{a}}}$$

$$f_{c} = \sqrt{\frac{90 - 35 - 28,3}{90 - 35}}$$

$$f_{c} = 0,697 \text{ Eprotenax e Voltalene}$$

- 7. Determine o fator de correção em função da temperatura ambiente (f_t) .
- 8. Determine o fator de correção em função do agrupamento (f_a). Os circuitos A, B, C e D estão instalados em bandejas (cabos unipolares em plano) e possuem 2 ternas por bandeja (f_a = 0,94). Os circuitos E e F, em trifólio, estão instalados na vertical e são consideradas 3 ternas (f_a = 0,90).
- 9. Multiplique a corrente máxima admissível pelos fatores de correção.
- 10. Compare os valores da corrente corrigida (última coluna) com os valores da corrente nominal (segunda coluna). Os circuitos B e C apresentam ótimos resultados, enquanto os circuitos A, D, E e F poderão ser refeitos tentando-se seções menores.

QUADRO RESUMO

circuito	I _n (A)	seção adotada (mm²)	corrente máxima admissível (A)	f _c	ft	fa	corrente corrigida (A)
Α	180	95	407	0,697	0,96	0,94	256
В	400	240	721	0,697	0,96	0,94	453
С	200	70	333	0,697	0,96	0,94	209
D	160	70	323	0,697	0,96	0,94	203
E	120	50	222	0,697	0,96	0,90	134
F	80	35	184	0,697	0,96	0,90	111

CAPACIDADE DE CONDUÇÃO DE CORRENTE

CORRENTES MÁXIMAS ADMISSÍVEIS POR CONDUTOR AO AR LIVRE

seção	I		temperatu	ra no condutor	· 105°C — ter	mneratura amh	iente: 30°C		
nominal		em bandejas	temperatur		em canaletas	·		n eletrodutos (*)
		1	 		I	ı		i	
	1	II	III	IV	v	VI	VII	VIII	IX
	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar
(mm²)	© Q Q Q	2 cm		E 50 cm	B (0)0	·			
E	PROTENAX C	OMPACT 105	DE 3,6/6 kV	A 8,7/15 kV					
10	116	97	97	102	88	88	96	75	75
16	152	127	127	133	115	115	124	97	97
25	201	167	167	173	150	150	161	126	126
35	245	204	204	209	182	182	195	153	153
50	297	246	246	250	218	218	233	183	183
70	370	307	307	308	269	269	287	225	225
95	453	376	376	372	327	327	346	273	273
120	523	435	435	425	375	375	396	313	313
150	596	496	496	479	424	424	447	354	354
185	683	568	568	543	482	482	508	403	403
240	802	672	672	630	564	564	593	472	472
300	918	767	767	712	639	639	673	535	535
400	1.070	890	890	814	731	731	774	613	613
500	1.229	1.015	_	920	825	_	881	693	
E	PROTENAX C	OMPACT 105	DE 12/20 kV	/ A 20/35 kV					
16	151	131	131	132	118	118	126	102	102
25	199	171	171	171	153	153	163	131	131
35	240	207	207	206	184	184	196	156	156
50	286	250	250	244	220	220	235	187	187
70	357	311	311	301	272	272	289	230	230
95	436	379	379	362	329	329	349	278	278
120	503	438	438	414	377	377	399	319	319
150	572	498	498	467	426	426	450	360	360
185	660	571	571	532	484	484	511	409	409
240	779	672	672	619	565	565	597	479	479
300	891	768	_	699	641	_	676	542	
400	1.037	891	_	800	734	_	778	621	
500	1.192	1.018	_	905	829	_	885	703	

^(*) Eletrodutos não-metálicos. NBR 14039/2003 - Tabela 30.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

CORRENTES MÁXIMAS ADMISSÍVEIS POR CONDUTOR NO SOLO

seção nominal		fator de ca	mbiente: 20°C irga: 100%		resistivid	resistividade térmica do terreno: coluna a: 2,5 K.m/W coluna b: 1,0 K.m/W banco de dutos: 1,2 K.m/W				
	em t	oanco de duto	s (s)			diretamente	e enterrado	1		
	×	ХI	XII	X	XIII XIV			×	(V	
	1 cabo unipolar por duto	3 cabos unipolares em trifólio	1 cabo tripolar		abo olar				3 cabos unipolares em trifólio	
	em plano	no duto	no duto	coluna a	coluna b	coluna a	coluna b	coluna a	coluna b	
(mm²)	48 cm 48 cm	76 cm 30 cm	76 cm E S S S S S S S S S S S S S S S S S S	90	cm -	20 di			0 cm	
Е	PROTENAX C	OMPACT 10	5 DE 3,6/6 k	V A 8,7/15	kV					
10	68	60	60	70	102	84	123	70	102	
16	88	76	76	90	131	107	156	90	131	
25	112	98	98	115	168	136	199	115	168	
35	134	117	117	137	200	162	237	137	200	
50	158	138	138	162	237	190	277	162	237	
70	192	168	168	197	288	229	334	197	288	
95	229	200	200	235	343	270	394	235	343	
120	260	227	227	266	388	303	442	266	388	
150	291	254	254	298	435	336	491	298	435	
185	328	286	286	335	489	375	548	335	489	
240	379	330	330	387	565	427	623	387	565	
300	426	369	369	434	634	473	691	434	634	
400	483	416	416	490	715	529	772	490	715	
500	543	465	_	_	_	588	858	548	800	
Е	PROTENAX O	OMPACT 10	5 DE 12/20 I	kV A 20/35	kV					
16	90	78	78	91	133	106	155	91	133	
25	114	100	100	116	169	135	197	116	169	
35	136	118	118	138	201	161	235	138	201	
50	160	139	139	163	238	189	276	163	238	
70	195	169	169	198	289	228	333	198	289	
95	232	202	202	236	345	269	393	236	345	
120	263	229	229	267	390	303	442	267	390	
150	294	256	256	299	437	336	491	299	437	
185	331	288	288	337	492	375	548	337	492	
240	383	332	332	389	568	427	623	389	568	
300	430	372	_	_	_	475	694	436	637	
400	488	420	_		_	531	775	493	720	
500	549	469	_	_	_	590	861	553	807	

NBR 14039/2003 - Tabela 30.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

CORRENTES MÁXIMAS ADMISSÍVEIS POR CONDUTOR AO AR LIVRE

seção			temperatura	a no conduto:	r: 90°C — tei	mperatura am	biente: 30°C	:	
nominal		em bandejas			em canaletas	;	em	eletrodutos	(*)
	1	II	Ш	IV	v	VI	VII	VIII	IX
	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar	3 cabos unipolares em plano	3 cabos unipolares em trifólio	1 cabo tripolar
(mm²)	• • • • • • • • • • • • • • • • • • •	2 cm	2 cm	#5 P P P P P P P P P P P P P P P P P P P	шо 09 50 ст	ED 09			
E	PROTENAX C	OMPACT, EPR	OTENAX E V	OLTALENE DE	3,6/6 kV A 8	3,7/15 kV			
10	105	87	87	92	80	80	87	67	67
16	137	114	114	120	104	104	114	87	87
25	181	150	150	156	135	135	147	112	112
35	221	183	183	189	164	164	178	136	136
50	267	221	221	226	196	196	213	162	162
70	333	275	275	279	243	243	262	200	200
95	407	337	337	336	294	294	316	243	243
120	470	390	390	384	338	338	361	278	278
150	536	445	445	433	382	382	408	315	315
185	613	510	510	491	435	435	463	357	357
240	721	602	602	569	509	509	541	419	419
300	824	687	687	643	575	575	614	474	474
400	959	796	796	734	658	658	706	543	543
500	1.100	907	_	829	741	_	803	613	_
E	PROTENAX C	OMPACT, EPR	OTENAX E V	OLTALENE DE	12/20 kV A	20/35 kV			
16	137	118	118	120	107	107	115	91	91
25	179	154	154	155	138	138	149	117	117
35	217	186	186	187	166	166	179	139	139
50	259	225	225	221	199	199	215	166	166
70	323	279	279	273	245	245	264	205	205
95	394	341	341	329	297	297	319	247	247
120	454	393	393	375	340	340	364	283	283
150	516	448	448	423	385	385	411	320	320
185	595	513	513	482	437	437	466	363	363
240	702	604	604	560	510	510	545	425	425
300	802	690	_	633	578		618	481	_
400	933	800	_	723	661	_	711	550	_
500	1.070	912	_	817	746	_	809	622	_

^(*) Eletrodutos não-metálicos. NBR 14039/2003 - Tabela 28.

CAPACIDADE DE CONDUÇÃO DE CORRENTE

CORRENTES MÁXIMAS ADMISSÍVEIS POR CONDUTOR NO SOLO

seção nominal	t	temperatura a	condutor: 90° imbiente: 20°C arga: 100%	С	resistivida	ade térmica do	col	una A: 2,5 K.n una B: 1,0 K.n nco de dutos: 1	n/W
	em	banco de duto:	s (s)			diretament	e enterrado		
	X	ΧI	ХII	х	Ш	x	IV	x	.v
	1 cabo unipolar por duto em plano	3 cabos unipolares em trifólio no duto	1 cabo tripolar no duto	. •	abo olar coluna b		nipolares Ilano coluna b		inipolares rifólio coluna b
(mm²)	76 cm 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	COMPACT, EPROTENAX 55 55 70 70 90 90			cm	200 to 1	-90 cm -		0 cm
El	PROTENAX (OMPACT, EF	ROTENAX E	VOLTALENE	DE 3,6/6 kV	/ A 8,7/15 k\	/		
10	63	55	55	65	95	78	114	65	95
16	81			84	123	99	145	84	123
25	104			107	156	126	184	107	156
35	124	108	108	128	187	150	219	128	187
50	147	127	127	150	219	176	257	150	219
70	178	154	154	183	267	212	310	183	267
95	213	184	184	218	318	250	365	218	318
120	241	209	209	247	361	281	410	247	361
150	270	234	234	276	403	311	454	276	403
185	304	263	263	311	454	347	507	311	454
240	351	303	303	358	523	395	577	358	523
300	394	340	340	402	587	437	638	402	587
400	447	382	382	453	661	489	714	453	661
500	502	426	_	_	_	542	791	506	739
EI	PROTENAX C	OMPACT, EPR	OTENAX E V	OLTALENE DE	12/20 kV A	20/35 kV			
16	83	72	72	84	123	98	143	84	123
25	106	92	92	108	158	125	183	108	158
35	126	109	109	128	187	149	218	128	187
50	148	128	128	151	220	175	256	151	220
70	181	156	156	184	269	211	308	184	269
95	215	186	186	219	320	250	365	219	320
120	244	211	211	248	362	281	410	248	362
150	273	236	236	278	406	311	454	278	406
185	307	265	265	312	456	347	507	312	456
240	355	306	306	360	526	395	577	360	526
300	398	342	_	_	_	439	641	404	590
400	452	386	_	_	_	491	717	457	667
500	507	431	_			544	794	511	746

NBR 14039/2003 - Tabela 28.

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

CORRENTES DE CURTO-CIRCUITO NA BLINDAGEM

Este capítulo tem por finalidade possibilitar a determinação da operabilidade de um cabo sob condições de curto-circuito, limitada pelo fluxo de correntes de falha através da blindagem metálica do cabo.

Essa determinação de operabilidade consiste no cálculo do tempo máximo que uma blindagem metálica pode ser submetida a uma determinada corrente de curto-circuito à terra, sem danos para a isolação e cobertura de proteção.

CONSIDERAÇÕES TÉCNICAS

> Uma fórmula foi desenvolvida para o cálculo da corrente de curto-circuito em blindagem de cobre, aplicada sob a forma de fios ou fitas. É baseada na energia térmica armazenada na blindagem metálica e no limite máximo de temperatura admitida pela isolação ou pela cobertura, com a hipótese de que o intervalo de tempo para o fluxo de corrente seja tão pequeno que o calor desenvolvido durante o curto-circuito fica contido na blindagem.

A temperatura máxima de curto-circuito para cabos com cobertura de polietileno ou PVC é de 200°C. A seção efetiva da blindagem encontra-se indicada na tabela de Dados Construtivos.

FÓRMULAS SIMPLIFICADAS

A fórmula apresentada pode ser simplificada, uma vez fixadas as temperaturas em regime contínuo (T₁) e em curto-circuito (T₂). A tabela abaixo apresenta fórmulas simplificadas.

Cumpre assinalar que, no caso de cabos tripolares com blindagem a fios de cobre, a corrente de retorno em um curto-circuito unipolar circulará pelas blindagens dos três condutores, portanto os valores dados podem, neste caso, ser multiplicados por três.

SIMBOLOGIA

S = seção efetiva de blindagem (mm²)

t = tempo de duração do curto-circuito (s)

T₁ = temperatura de operação da blindagem (°C)

T₂ = temperatura de curto-circuito da blindagem (°C)

 β = 234,5 = temperatura deduzida para resistência ôhmica da blindagem nula (°C abaixo de zero)

K = parâmetro função das características do material da blindagem

Fórmula básica:

$$\left(\frac{1}{S}\right)^2 \cdot t = 115.679 \log \frac{T_2 + \beta}{T_1 + \beta}$$

Referências: ICEA P-45-482 e IEC 949

tipo de cabo	T ₁ (°C)	T ₂ (°C)	fórmula simplificada
Eprotenax Compact Eprotenax Voltalene	85	200	l√t = 122,4 S
Eprotenax Compact 105	100	200	$I\sqrt{t} = 115 S$

PARÂMETROS ELÉTRICOS

Na análise de circuitos elétricos faz-se necessário o conhecimento de alguns parâmetros elétricos dos cabos que apresentamos a sequir. Esses parâmetros por fase são:

R_{CC} – resistência ôhmica máxima em cc

R_{ca} – resistência em ca

X_L - reatância indutiva

X_C - reatância capacitiva

- Os valores de R_{CC} foram extraídos da NBR NM 280 classe de encordoamento 2 e se referem à temperatura de 20°C. Os parâmetros R_{Ca}, X_L e X_C são válidos para cabos aplicados em sistemas trifásicos, simétricos e equilibrados, na freqüência de 60Hz.
- O parâmetro R_{Ca} foi calculado para a temperatura máxima permitida pela isolação do cabo em regime contínuo. Os valores de R_{Ca} e X_L, que dependem da maneira de instalar os cabos, são os componentes da impedância série da linha. A parte real da impedância é representada por R_{Ca} e a parte imaginária por X_L.
- > Foi também considerado no cálculo de R_{Ca} e X_L o efeito da circulação de correntes pelas blindagens, pois a maior parte das instalações de cabos de potência de média tensão têm a blindagem aterrada em dois ou mais pontos. O parâmetro X_C, reatância capacitiva, é considerado entre fase-terra (condutor-blindagem).

seção	R _{cc}	Хc					unij	oolar					tripo	lar
nominal	máxima em CC								1 _		20	cm	·	
	à 20°C				• s									
					S	S								
					l .	_	1 -							
				2D		3 cm		0 cm	trifé		banco d			
4 25	(0,1,)		R _{ca}	XL	R _{ca}	XL	R _{ca}	XL	R _{ca}	ΧL	R _{ca}	XL	R _{ca}	XL
(mm²)	(Ω/km)	$(\Omega.km)$	(Ω/km)	(Ω/km)	(22/km)	(52/km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω/km)	(Ω/km)
EPF	ROTENAX (OMPACT	105 - 3,	6/6 kV										
10	1,830	11.360	2,447	0,247	2,459	0,357	2,464	0,389	2,443	0,178	2,461	0,381	2,442	0,162
16	1,150	10.023	1,540	0,235	1,551	0,341	1,556	0,373	1,536	0,165	1,553	0,364	1,534	0,150
25	0,727	8.772	0,976	0,223	0,986	0,324	0,991	0,356	0,971	0,154	0,988	0,348	0,970	0,140
35	0,524	7.804	0,705	0,215	0,715	0,311	0,719	0,343	0,701	0,145	0,716	0,334	0,700	0,132
50	0,387	6.908	0,522	0,206	0,531	0,298	0,534	0,330	0,518	0,137	0,533	0,321	0,517	0,125
70	0,268	6.150	0,363	0,200	0,372	0,285	0,376	0,317	0,359	0,130	0,373	0,309	0,358	0,119
95	0,193	5.467	0,263	0,194	0,271	0,274	0,275	0,306	0,260	0,125	0,273	0,297	0,259	0,114
120	0,153	4.983	0,210	0,190	0,217	0,265	0,221	0,297	0,207	0,120	0,219	0,288	0,206	0,110
150	0,124	4.579	0,172	0,186	0,178	0,257	0,182	0,289	0,168	0,117	0,179	0,280	0,168	0,107
185	0,099	4.213	0,139	0,183	0,144	0,249	0,148	0,281	0,135	0,114	0,146	0,273	0,135	0,104
240	0,075	4.169	0,107	0,181	0,112	0,239	0,116	0,271	0,105	0,111	0,114	0,263	0,104	0,102
300	0,060	3.811	0,087	0,178	0,092	0,231	0,095	0,263	0,085	0,109	0,093	0,254	0,085	0,100
400	0,047	3.363	0,070	0,174	0,074	0,220	0,077	0,252	0,069	0,105	0,075	0,243	0,069	0,096
500	0,037	3.062	0,057	0,172	0,060	0,212	0,063	0,244	0,056	0,102	0,061	0,235	_	_
EPF	ROTENAX	OMPACT	105 - 6/	10 kV										
16	1,150	10.023	1,540	0,235	1,551	0,341	1,556	0,373	1,536	0,165	1,553	0,364	1,534	0,150
25	0,727	8.772	0,976	0,223	0,986	0,324	0,991	0,356	0,971	0,154	0,988	0,348	0,970	0,140
35	0,524	7.804	0,705	0,215	0,715	0,311	0,719	0,343	0,701	0,145	0,716	0,334	0,700	0,132
50	0,387	6.908	0,522	0,206	0,531	0,298	0,534	0,330	0,518	0,137	0,533	0,321	0,517	0,125
70	0,268	6.150	0,363	0,200	0,372	0,285	0,376	0,317	0,359	0,130	0,373	0,309	0,358	0,119
95	0,193	5.467	0,263	0,194	0,271	0,274	0,275	0,306	0,260	0,125	0,273	0,297	0,259	0,114
120	0,153	4.983	0,210	0,190	0,217	0,265	0,221	0,297	0,207	0,120	0,219	0,288	0,206	0,110
150	0,124	4.579	0,172	0,186	0,178	0,257	0,182	0,289	0,168	0,117	0,179	0,280	0,168	0,107
185	0,099	4.213	0,139	0,183	0,144	0,249	0,148	0,281	0,135	0,114	0,146	0,273	0,135	0,104
240	0,075	4.169	0,107	0,181	0,112	0,239	0,116	0,271	0,105	0,111	0,114	0,263	0,104	0,102
300	0,060	3.811	0,087	0,178	0,092	0,231	0,095	0,263	0,085	0,109	0,093	0,254	0,085	0,100
400	0,047	3.363	0,070	0,174	0,074	0,220	0,077	0,252	0,069	0,105	0,075	0,243	0,069	0,096
500	0,037	3.062	0,057	0,172	0,060	0,212	0,063	0,244	0,056	0,102	0,061	0,235	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção nominal	R _{CC} máxima	X _c					uni	polar					tripo	lar
	em CC à 20°C				o s	s	ı				<u>20</u>	cm •		
			s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
			R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	XL
(m m²)	(Ω /km)	(Ω .km)	(Ω /km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω /km)	(Ω /km)	(Ω/km)	(Ω/km)
EPF	ROTENAX	ОМРАСТ	105 - 8,	7/15 kV	,									
16	1,150	12.750	1,540	0,244	1,550	0,341	1,554	0,373	1,536	0,174	1,552	0,364	1,534	0,161
25	0,727	10.067	0,976	0,228	0,986	0,324	0,990	0,356	0,971	0,158	0,987	0,348	0,970	0,145
35	0,524	8.993	0,705	0,219	0,714	0,311	0,718	0,343	0,701	0,149	0,716	0,334	0,700	0,137
50	0,387	7.991	0,522	0,210	0,531	0,298	0,535	0,330	0,518	0,141	0,532	0,321	0,517	0,130
70	0,268	7.139	0,363	0,204	0,371	0,285	0,375	0,318	0,359	0,134	0,373	0,309	0,358	0,123
95	0,193	6.366	0,263	0,197	0,271	0,274	0,275	0,306	0,260	0,128	0,272	0,297	0,259	0,118
120	0,153	5.816	0,210	0,193	0,217	0,265	0,221	0,297	0,206	0,124	0,218	0,288	0,206	0,114
150	0,124	5.355	0,172	0,189	0,178	0,257	0,182	0,289	0,168	0,120	0,179	0,280	0,168	0,110
185	0,099	4.936	0,139	0,186	0,144	0,249	0,148	0,281	0,135	0,117	0,145	0,273	0,135	0,107
240	0,075	5.061	0,107	0,185	0,112	0,239	0,115	0,271	0,104	0,115	0,113	0,263	0,104	0,106
300	0,060	4.636	0,087	0,182	0,091	0,231	0,095	0,263	0,085	0,112	0,092	0,254	0,085	0,103
400	0,047	4.103	0,070	0,178	0,074	0,220	0,077	0,252	0,068	0,108	0,075	0,243		
500	0,037	3.743	0,057	0,175	0,060	0,212	0,062	0,244	0,056	0,105	0,061	0,235	_	_
EPF	ROTENAX	COMPACT	105 - 12	2/20 kV										
16	1,150	16.526	1,540	0,257	1,548	0,341	1,552	0,373	1,535	0,187	1,549	0,364	1,534	0,177
25	0,727	13.816	0,975	0,241	0,984	0,324	0,998	0,357	0,971	0,172	0,985	0,348	0,970	0,161
35	0,524	11.132	0,705	0,226	0,713	0,311	0,717	0,343	0,701	0,157	0,715	0,334	0,700	0,146
50	0,387	9.958	0,522	0,218	0,530	0,298	0,534	0,330	0,518	0,149	0,531	0,321	0,517	0,138
70	0,268	8.949	0,363	0,210	0,370	0,286	0,374	0,318	0,359	0,141	0,372	0,309	0,358	0,131
95	0,193	8.025	0,263	0,204	0,270	0,274	0,274	0,306	0,259	0,135	0,271	0,297	0,259	0,125
120	0,153	7.363	0,210	0,199	0,216	0,265	0,220	0,297	0,206	0,130	0,217	0,288	0,206	0,120
150	0,124	6.803	0,172	0,195	0,177	0,257	0,181	0,289	0,168	0,126	0,178	0,280	0,167	0,116
185	0,099	6.292	0,139	0,191	0,144	0,249	0,147	0,281	0,135	0,122	0,145	0,273	0,135	0,113
240	0,075	6.253	0,107	0,190	0,111	0,239	0,115	0,271	0,104	0,120	0,112	0,263	0,104	0,111
300	0,060	5.746	0,087	0,186	0,091	0,231	0,094	0,263	0,085	0,117	0,092	0,255		
400	0,047	5.105	0,070	0,182	0,073	0,220	0,076	0,252	0,068	0,112	0,074	0,243		
500	0,037	4.669	0,057	0,179	0,059	0,212	0,062	0,244	0,055	0,109	0,060	0,235	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção nominal	R _{CC} máxima	Xc					uniį	oolar					tripo	lar
nominai	em CC à 20°C			20	o s		l	0.000			(a)	cm		
				2D	s = 1			0 cm		ólio v		e dutos		
4	(0.11.)	(0)	R _{ca}	XL	R _{ca}	XL	R _{ca}	XL	R _{ca}	XL	R _{ca}	ΧL	R _{ca}	XL
(mm²)	(Ω/km)	$(\Omega.km)$	Ω/km	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	Ω/km	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
EPF	ROTENAX	COMPACT	105 -	15/25 k	V									
35	0,524	15.020	0,705	0,242	0,711	0,311	0,715	0,343	0,700	0,172	0,712	0,335	0,700	0,162
50	0,387	12.517	0,522	0,228	0,528	0,298	0,532	0,330	0,518	0,159	0,530	0,321	0,517	0,149
70	0,268	11.329	0,363	0,220	0,369	0,286	0,373	0,318	0,359	0,151	0,371	0,309	0,358	0,141
95	0,193	10.229	0,263	0,213	0,269	0,274	0,272	0,306	0,259	0,144	0,270	0,297	0,259	0,134
120	0,153	9.433	0,210	0,208	0,215	0,265	0,219	0,297	0,206	0,138	0,216	0,288	0,205	0,129
150	0,124	8.754	0,171	0,203	0,176	0,257	0,180	0,289	0,168	0,134	0,177	0,280		_
185	0,099	8.130	0,138	0,199	0,143	0,249	0,146	0,281	0,135	0,130	0,144	0,273	_	
240	0,075	6.818	0,107	0,192	0,111	0,239	0,115	0,271	0,104	0,123	0,112	0,263	_	
300	0,060	6.273	0,087	0,189	0,091	0,231	0,094	0,263	0,084	0,119	0,092	0,255		
400	0,047	5.583	0,070	0,184	0,073	0,220	0,076	0,252	0,068	0,114	0,074	0,243		
500	0,037	5.112	0,057	0,181	0,059	0,212	0,062	0,244	0,055	0,111	0,060	0,235	_	_
EPR	ROTENAX (OMPACT	105 - 20)/35 kV										
50	0,387	16.288	0,522	0,243	0,527	0,298	0,530	0,330	0,518	0,174	0,528	0,322	_	_
70	0,268	14.033	0,363	0,231	0,368	0,286	0,372	0,318	0,359	0,162	0,369	0,309		
95	0,193	12.761	0,263	0,223	0,268	0,274	0,271	0,306	0,259	0,154	0,269	0,298	_	
120	0,153	11.831	0,210	0,218	0,214	0,265	0,217	0,297	0,206	0,148	0,215	0,289	_	
150	0,124	11.032	0,171	0,213	0,175	0,257	0,178	0,289	0,168	0,143	0,176	0,281	_	
185	0,099	9.247	0,138	0,204	0,142	0,249	0,146	0,281	0,135	0,134	0,143	0,273	_	
240	0,075	8.400	0,107	0,199	0,110	0,239	0,114	0,271	0,104	0,129	0,111	0,263	_	
300	0,060	7.757	0,087	0,195	0,090	0,231	0,093	0,263	0,084	0,125	0,091	0,255	_	
400	0,047	6.936	0,070	0,190	0,072	0,220	0,075	0,252	0,068	0,120	0,073	0,244		
500	0,037	6.373	0,057	0,186	0,059	0,212	0,062	0,244	0,055	0,117	0,059	0,235	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção nominal	R _{CC} máxima	Xc					unij	polar					tripo	lar
	em CC à 20°C				o s	s	ı				20	cm o		
			s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
			R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL
(mm²)	(Ω /km)	(Ω .km)	(Ω /km)	(Ω/km)	(Ω /km)									
EPF	ROTENAX	COMPACT	- 3,6/6	5 kV										
10	1,830	11.360	2,339	0,245	2,351	0,357	2,356	0,389	2,335	0,176	2,353	0,381	2,334	0,162
16	1,150	10.023	1,472	0,234	1,484	0,341	1,488	0,373	1,468	0,164	1,485	0,364	1,467	0,150
25	0,727	8.772	0,933	0,222	0,943	0,324	0,948	0,356	0,928	0,153	0,945	0,348	0,927	0,140
35	0,524	7.804	0,674	0,214	0,684	0,311	0,688	0,343	0,670	0,144	0,686	0,334	0,669	0,132
50	0,387	6.908	0,499	0,206	0,508	0,298	0,513	0,330	0,495	0,137	0,510	0,321	0,494	0,125
70	0,268	6.150	0,348	0,200	0,356	0,285	0,360	0,317	0,344	0,130	0,358	0,309	0,343	0,119
95	0,193	5.467	0,252	0,194	0,260	0,274	0,264	0,306	0,248	0,125	0,261	0,297	0,248	0,114
120	0,153	4.983	0,201	0,190	0,208	0,265	0,212	0,297	0,198	0,120	0,210	0,288	0,197	0,110
150	0,124	4.579	0,164	0,186	0,171	0,257	0,175	0,289	0,161	0,117	0,172	0,280	0,160	0,107
185	0,099	4.213	0,133	0,183	0,139	0,249	0,143	0,281	0,130	0,114	0,140	0,273	0,129	0,104
240	0,075	4.169	0,103	0,181	0,108	0,239	0,112	0,271	0,100	0,111	0,109	0,263	0,100	0,102
300	0,060	3.811	0,084	0,178	0,088	0,231	0,092	0,263	0,082	0,109	0,089	0,254	0,082	0,100
400	0,047	3.363	0,068	0,174	0,071	0,220	0,075	0,252	0,066	0,105	0,072	0,243	0,066	0,096
500	0,037	3.062	0,055	0,172	0,058	0,212	0,061	0,244	0,054	0,102	0,059	0,235	_	_
EPF	ROTENAX	COMPACT	- 6/10	kV										
16	1,150	10.023	1,472	0,234	1,484	0,341	1,488	0,373	1,468	0,164	1,485	0,364	1,467	0,150
25	0,727	8.772	0,933	0,222	0,943	0,324	0,948	0,356	0,928	0,153	0,945	0,348	0,927	0,140
35	0,524	7.804	0,674	0,214	0,684	0,311	0,688	0,343	0,670	0,144	0,686	0,334	0,669	0,132
50	0,387	6.908	0,499	0,206	0,508	0,298	0,513	0,330	0,495	0,137	0,510	0,321	0,494	0,125
70	0,268	6.150	0,348	0,200	0,356	0,285	0,360	0,317	0,344	0,130	0,358	0,309	0,343	0,119
95	0,193	5.467	0,252	0,194	0,260	0,274	0,264	0,306	0,248	0,125	0,261	0,297	0,248	0,114
120	0,153	4.983	0,201	0,190	0,208	0,265	0,212	0,297	0,198	0,120	0,210	0,288	0,197	0,110
150	0,124	4.579	0,164	0,186	0,171	0,257	0,175	0,289	0,161	0,117	0,172	0,280	0,160	0,107
185	0,099	4.213	0,133	0,183	0,139	0,249	0,143	0,281	0,130	0,114	0,140	0,273	0,129	0,104
240	0,075	4.169	0,103	0,181	0,108	0,239	0,112	0,271	0,100	0,111	0,109	0,263	0,100	0,102
300	0,060	3.811	0,084	0,178	0,088	0,231	0,092	0,263	0,082	0,109	0,089	0,254	0,082	0,100
400	0,047	3.363	0,068	0,174	0,071	0,220	0,075	0,252	0,066	0,105	0,072	0,243	0,066	0,096
500	0,037	3.062	0,055	0,172	0,058	0,212	0,061	0,244	0,054	0,102	0,059	0,235		_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção	R _{CC}	Хc					uni	polar					tripo	olar
nominal	máxima em CC								_ ا		20	cm		
	à 20°C													
					S	S								
										, .				
			s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
			R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	X _L						
(m m²)	(Ω/km)	(Ω .km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω /km)	(Ω /km)	(Ω/km)
EPR	ROTENAX	ОМРАСТ	- 8,7/15	kV										
16	1,150	12.750	1,472	0,243	1,482	0,341	1,487	0,373	1,468	0,173	1,484	0,364	1,467	0,161
25	0,727	10.067	0,933	0,227	0,943	0,324	0,947	0,356	0,928	0,157	0,944	0,348	0,927	0,145
35	0,524	8.993	0,674	0,219	0,683	0,311	0,688	0,343	0,670	0,149	0,685	0,334	0,669	0,137
50	0,387	7.991	0,499	0,210	0,508	0,298	0,512	0,330	0,495	0,141	0,509	0,321	0,494	0,130
70	0,268	7.139	0,348	0,204	0,355	0,285	0,360	0,318	0,344	0,134	0,357	0,309	0,343	0,123
95	0,193	6.366	0,252	0,197	0,259	0,274	0,263	0,306	0,248	0,128	0,261	0,297	0,247	0,118
120	0,153	5.816	0,201	0,193	0,208	0,265	0,212	0,297	0,197	0,124	0,209	0,288	0,197	0,114
150	0,124	5.355	0,164	0,189	0,170	0,257	0,174	0,289	0,161	0,120	0,172	0,280	0,160	0,110
185	0,099	4.936	0,133	0,186	0,138	0,249	0,142	0,281	0,130	0,117	0,140	0,273	0,129	0,107
240	0,075	5.061	0,103	0,185	0,107	0,239	0,111	0,271	0,100	0,115	0,109	0,263	0,100	0,106
300	0,060	4.636	0,084	0,182	0,088	0,231	0,091	0,263	0,081	0,112	0,089	0,254	0,081	0,103
400	0,047	4.103	0,068	0,178	0,071	0,220	0,074	0,252	0,066	0,108	0,072	0,243		
500	0,037	3.743	0,055	0,175	0,058	0,212	0,061	0,244	0,054	0,105	0,059	0,235	_	_
EPR	ROTENAX	OMPACT	- 12/20	kV										
16	1,150	16.526	1,472	0,257	1,480	0,341	1,484	0,373	1,467	0,187	1,482	0,364	1,467	0,177
25	0,727	13.816	0,933	0,241	0,941	0,324	0,945	0,357	0,928	0,172	0,942	0,348	0,927	0,161
35	0,524	11.132	0,674	0,226	0,682	0,311	0,686	0,343	0,670	0,157	0,684	0,334	0,669	0,146
50	0,387	9.958	0,499	0,218	0,507	0,298	0,511	0,330	0,495	0,149	0,508	0,321	0,494	0,138
70	0,268	8.949	0,347	0,210	0,355	0,286	0,359	0,318	0,343	0,141	0,356	0,309	0,343	0,131
95	0,193	8.025	0,252	0,204	0,258	0,274	0,262	0,306	0,248	0,135	0,260	0,297	0,247	0,125
120	0,153	7.363	0,201	0,199	0,207	0,265	0,211	0,297	0,197	0,130	0,208	0,288	0,197	0,120
150	0,124	6.803	0,164	0,195	0,170	0,257	0,173	0,289	0,161	0,126	0,171	0,280	0,160	0,116
185	0,099	6.292	0,133	0,191	0,138	0,249	0,141	0,281	0,129	0,122	0,139	0,273	0,129	0,113
240	0,075	6.253	0,103	0,190	0,107	0,239	0,110	0,271	0,100	0,120	0,108	0,263	0,099	0,111
300	0,060	5.746	0,084	0,186	0,087	0,231	0,091	0,263	0,081	0,117	0,088	0,255		
400	0,047	5.105	0,068	0,182	0,070	0,220	0,074	0,252	0,066	0,112	0,071	0,243		
500	0,037	4.669	0,055	0,179	0,057	0,212	0,060	0,244	0,054	0,109	0,058	0,235	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção nominal	R _{CC} máxima	Xc					uniį	oolar					tripo	lar
	em CC à 20°C				s	s					(a)	cm o		
			s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
			R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	X _L
(mm²)	(Ω /km)	(Ω .km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω /km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω/km)				
EPR	ROTENAX	OMPACT -	- 15/25	kV										
35	0,524	15.020	0,674	0,242	0,680	0,311	0,684	0,343	0,670	0,172	0,682	0,335	0,669	0,162
50	0,387	12.517	0,499	0,228	0,506	0,298	0,509	0,330	0,495	0,159	0,507	0,321	0,494	0,149
70	0,268	11.329	0,347	0,220	0,353	0,286	0,357	0,318	0,343	0,151	0,355	0,309	0,343	0,141
95	0,193	10.229	0,252	0,213	0,257	0,274	0,261	0,306	0,248	0,144	0,259	0,297	0,247	0,134
120	0,153	9.433	0,201	0,208	0,206	0,265	0,210	0,297	0,197	0,138	0,207	0,288	0,196	0,129
150	0,124	8.754	0,164	0,203	0,169	0,257	0,172	0,289	0,161	0,134	0,170	0,280		
185	0,099	8.130	0,133	0,199	0,137	0,249	0,140	0,281	0,129	0,130	0,138	0,273	_	
240	0,075	6.818	0,103	0,192	0,107	0,239	0,110	0,271	0,100	0,123	0,108	0,263		
300	0,060	6.273	0,084	0,189	0,087	0,231	0,090	0,263	0,081	0,119	0,088	0,255		
400	0,047	5.583	0,068	0,184	0,070	0,220	0,073	0,252	0,065	0,114	0,071	0,243		
500	0,037	5.112	0,055	0,181	0,057	0,212	0,060	0,244	0,053	0,111	0,058	0,235	_	_
EPF	ROTENAX	COMPACT	- 20/3	5 kV										
50	0,387	16.288	0,499	0,243	0,504	0,298	0,507	0,330	0,495	0,174	0,505	0,322	_	_
70	0,268	14.033	0,347	0,231	0,352	0,286	0,356	0,318	0,343	0,162	0,353	0,309	_	
95	0,193	12.761	0,252	0,223	0,256	0,274	0,260	0,306	0,248	0,154	0,257	0,298	_	
120	0,153	11.831	0,201	0,218	0,205	0,265	0,208	0,297	0,197	0,148	0,206	0,289		
150	0,124	11.032	0,164	0,213	0,168	0,257	0,171	0,289	0,160	0,143	0,169	0,281		
185	0,099	9.247	0,133	0,204	0,136	0,249	0,140	0,281	0,129	0,134	0,138	0,273		
240	0,075	8.400	0,103	0,199	0,106	0,239	0,109	0,271	0,100	0,129	0,107	0,263		
300	0,060	7.757	0,084	0,195	0,086	0,231	0,090	0,263	0,081	0,125	0,088	0,255		
400	0,047	6.936	0,068	0,190	0,070	0,220	0,073	0,252	0,065	0,120	0,071	0,244		
500	0,037	6.373	0,055	0,186	0,057	0,212	0,059	0,244	0,053	0,117	0,057	0,235	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção	R _{CC} I máxima	>	(_c					uni	polar					tripo	lar
nomina	em CC											20	cm		
	à 20°C					lacksquare									
						S	<u>S</u>)
		(Ω.	.km)	e -	2D	s = 1	3 cm	s- 2	0 cm	trif	ólio	banco d	e dutos		
		epro-	volta-	R _{ca}	X _L	R _{ca}	ΧL								
(mm²)	(Ω/km)		lene	(Ω/km)	_	(Ω/km)		(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)	(Ω/km)
	1		1	I	ı	((,)	(((,)	((==,)	(,,	(,)	(
	EPROTE	NAX E V	OLTALE	NE - 3,6	5/6 kV										
16	1,150		13.809	1,470	0,240	1,480	0,337	1,480	0,369	1,470	0,171	1,480	0,361	1,470	0,158
25	0,727	10.739	12.140	0,933	0,228	0,941	0,320	0,945	0,353	0,928	0,159	0,944	0,344	0,928	0,147
35	0,524	9.719	10.987	0,673	0,220	0,681	0,308	0,685	0,340	0,670	0,151	0,684	0,332	0,669	0,139
50	0,387	8.879	10.037	0,498	0,214	0,506	0,298	0,510	0,330	0,495	0,144	0,509	0,321	0,495	0,133
70	0,268	7.821	8.841	0,347	0,205	0,354	0,284	0,358	0,316	0,343	0,136	0,356	0,307	0,343	0,125
95	0,193	6.946	7.852	0,251	0,199	0,258	0,271	0,261	0,303	0,248	0,129	0,260	0,295	0,248	0,119
120	0,153	6.396	7.230	0,200	0,194	0,206	0,263	0,210	0,295	0,197	0,125	0,209	0,286	0,197	0,115
150	0,124	5.895	6.664	0,164	0,191	0,169	0,255	0,172	0,287	0,161	0,121	0,171	0,278	0,162	0,112
185	0,099	5.413	6.119	0,133	0,187	0,140	0,246	0,144	0,278	0,130	0,118	0,143	0,270	0,130	0,109
240	0,075	4.786	5.410	0,103	0,182	0,109	0,235	0,113	0,267	0,100	0,113	0,112	0,258	0,101	0,104
300	0,060	4.366	4.936	0,084	0,179	0,089	0,226	0,093	0,258	0,082	0,110	0,098	0,250	0,082	0,101
400	0,047	3.993	4.514	0,068	0,177	0,072	0,218	0,076	0,250	0,066	0,107	0,075	0,242	0,067	0,099
500	0,037	3.804	4.301	0,055	0,174	0,058	0,209	0,062	0,241	0,054	0,105	0,061	0,232	_	_
	EPROTE	NAX E V	OLTALE	NE - 6/1	0 kV										
16	1,150	13.368	15.112	1,470	0,244	1,480	0,337	1,480	0,369	1,470	0,174	1,480	0,361	1,470	0,162
25	0,727	11.793	13.331	0,932	0,232	0,940	0,320	0,944	0,353	0,928	0,162	0,943	0,344	0,928	0,150
35	0,524	10.698	13.595	0,673	0,223	0,681	0,308	0,685	0,340	0,670	0,154	0,684	0,332	0,669	0,142
50	0,387	9.794	11.072	0,498	0,216	0,506	0,298	0,510	0,330	0,495	0,147	0,509	0,321	0,495	0,136
70	0,268	8.651	9.779	0,347	0,208	0,353	0,284	0,357	0,316	0,343	0,139	0,356	0,307	0,343	0,128
95	0,193	7.702	8.706	0,251	0,201	0,258	0,271	0,261	0,303	0,248	0,132	0,260	0,295	0,248	0,122
120	0,153	7.102	8.029	0,200	0,197	0,206	0,263	0,209	0,295	0,197	0,128	0,208	0,286	0,197	0,118
150	0,124	6.555	7.410	0,164	0,193	0,169	0,255	0,172	0,287	0,161	0,124	0,171	0,278	0,162	0,114
185	0,099	6.028	6.814	0,133	0,189	0,139	0,246	0,144	0,278	0,130	0,120	0,142	0,270	0,130	0,111
240	0,075	5.339	6.036	0,103	0,185	0,109	0,235	0,113	0,267	0,100	0,115	0,112	0,258	0,100	0,106
300	0,060	4.878	5.514	0,084	0,181	0,089	0,226	0,093	0,258	0,082	0,112	0,092	0,250	0,082	0,103
400	0,047	4.465	5.048	0,071	0,178	0,076	0,218	0,082	0,249	0,067	0,109	0,080	0,241	0,067	0,101
500	0,037	4.018	4.542	0,058	0,175	0,063	0,208	0,068	0,240	0,055	0,106	0,067	0,232		_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção	R _{CC} máxima	×	(c					unij	oolar					tripo	lar
nominai	em CC à 20°C					• s	s					20	cm		5
		(Ω.	km)	s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
		epro-	volta-	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	X _L	R _{ca}	X _L
(mm²)	(Ω /km)	tenax	lene	(Ω /km)	(Ω/km)	(Ω /km)	(Ω/km)	(Ω /km)	(Ω /km)	(Ω /km)	(Ω /km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω/km)
	EPROTE	NAYEN	/OLTAL	· FNF _ Q	7/15 b	V									
					-			0.043	0.353	0.000	0.470	0.040	0.744		0.150
25	0,727	14.412		0,932	0,239	0,939	0,321	0,943	0,353	0,928	0,170	0,942	0,344	0,928	0,159
35	0,524	13.151	14.866	0,673	0,231	0,680	0,308	0,684	0,340	0,670	0,162	0,683	0,332	0,669	0,151
50	0,387	12.099	13.678	0,498	0,224	0,505	0,298	0,509	0,330	0,495	0,155	0,507	0,321	0,494	0,144
70	0,268	10.757	12.161	0,347	0,215	0,353	0,284	0,356	0,316	0,343	0,145	0,355	0,307	0,343	0,136
95	0,193	9.632	10.888	0,251	0,208	0,257	0,271	0,260	0,304	0,248	0,138	0,259	0,295	0,248	0,129
120	0,153	8.915	10.078	0,202	0,204	0,208	0,263	0,212	0,295	0,198	0,134	0,211	0,286	0,197	0,125
150	0,124	8.258	9.335	0,165	0,199	0,171	0,255	0,175	0,287	0,161	0,130	0,174	0,278	0,161	0,121
185	0,099	7.620	8.613	0,133	0,195	0,139	0,246	0,143	0,278	0,130	0,126	0,142	0,270	0,129	0,117
240	0,075	6.780	7.665	0,103	0,189	0,108	0,235	0,112	0,267	0,100	0,120	0,111	0,258	0,100	0,112
300	0,060	6.214	7.024	0,087	0,186	0,093	0,226	0,098	0,257	0,082	0,117	0,097	0,249	0,082	0,109
400	0,047	5.705	6.449	0,071	0,183	0,076	0,218	0,081	0,250	0,066	0,113	0,080	0,241		
500	0,037	5.150	5.882	0,058	0,179	0,062	0,208	0,067	0,240	0,054	0,110	0,066	0,232	_	_
	EPROTE	NAX E \	VOLTAL	ENE - 1	2/20 k\	/									
35	0,524	15.127	17.100	0,673	0,238	0,679	0,308	0,683	0,341	0,669	0,168	0,682	0,332	0,669	0,158
50	0,387	13.970	15.792	0,498	0,231	0,504	0,298	0,508	0,330	0,495	0,161	0,507	0,321	0,495	0,151
70	0,268	12.483	14.111	0,347	0,221	0,352	0,284	0,355	0,316	0,343	0,152	0,354	0,307	0,343	0,142
95	0,193	11.226	12.691	0,253	0,214	0,259	0,271	0,263	0,303	0,248	0,144	0,262	0,295	0,248	0,135
120	0,153	10.421	11.781	0,202	0,208	0,207	0,263	0,212	0,295	0,197	0,139	0,210	0,286	0,197	0,130
150	0,124	9.679	10.942	0,165	0,204	0,170	0,255	0,174	0,287	0,161	0,135	0,173	0,278	0,161	0,126
185	0,099	8.956	10.124	0,133	0,200	0,138	0,246	0,142	0,279	0,129	0,130	0,141	0,270	0,129	0,122
240	0,075	7.999	9.042	0,103	0,194	0,107	0,235	0,111	0,267	0,100	0,125	0,110	0,258	0,100	0,116
300	0,060	7.349	8.308	0,087	0,190	0,092	0,226	0,098	0,258	0,082	0,121	0,096	0,249		
400	0,047	6.764	7.646	0,071	0,187	0,075	0,218	0,080	0,250	0,066	0,117	0,079	0,241	_	
500	0,037	6.122	6.920	0,060	0,182	0,065	0,208	0,071	0,239	0,054	0,114	0,070	0,231	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

seção	R _{CC} máxima	х	^C c					unij	oolar					tripo	lar
nomina	em CC à 20°C					s	s	ı				20	cm i		
		(Ω.	km)	s =	2D	s = 1	3 cm	s= 2	0 cm	trif	ólio	banco d	e dutos		
		epro-	volta-	R _{ca}	ΧL	R _{ca}	x_L	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL	R _{ca}	ΧL
(mm²)	(Ω /km)	tenax	lene	(Ω /km)	(Ω/km)	(Ω/km)	(Ω /km)	(Ω /km)							
	PROTE	NAX E V	OLTALE	NE - 15	/25 kV										
35	0,524	17.743	19.155	0,673	0,247	0,678	0,308	0,682	0,341	0,669	0,177	0,680	0,332	0,669	0,168
50	0,387	16.148	17.149	0,498	0,238	0,503	0,298	0,507	0,330	0,495	0,169	0,506	0,322	0,495	0,159
70	0,268	14.508	15.537	0,348	0,228	0,354	0,284	0,358	0,316	0,344	0,159	0,357	0,307	0,343	0,150
95	0,193	13.111	13.997	0,252	0,220	0,258	0,271	0,262	0,303	0,248	0,151	0,261	0,295	0,248	0,142
120	0,153	12.211	12.937	0,202	0,215	0,206	0,263	0,211	0,295	0,197	0,145	0,209	0,286	0,197	0,137
150	0,124	11.376	12.082	0,165	0,210	0,169	0,255	0,173	0,287	0,161	0,141	0,172	0,278	_	
185	0,099	10.559	11.186	0,133	0,206	0,137	0,247	0,141	0,279	0,129	0,136	0,140	0,270		
240	0,075	9.471	10.126	0,106	0,199	0,111	0,234	0,117	0,266	0,100	0,130	0,115	0,258		
300	0,060	8.728	9.327	0,087	0,195	0,091	0,226	0,097	0,258	0,082	0,126	0,095	0,249		
400	0,047	8.055	8.475	0,071	0,191	0,074	0,218	0,080	0,250	0,066	0,122	0,078	0,241		
500	0,037	7.313	7.700	0,060	0,187	0,064	0,208	0,070	0,239	0,054	0,118	0,069	0,231	_	_
	PROTE	NAX E V	OLTALE	NE - 20	/35 kV										
50	0,387	19.063	20.218	0,499	0,248	0,505	0,298	0,509	0,330	0,495	0,179	0,508	0,321	_	_
70	0,268	17.244	18.433	0,348	0,238	0,353	0,284	0,357	0,316	0,344	0,168	0,356	0,307	_	
95	0,193	15.680	16.713	0,252	0,229	0,257	0,271	0,261	0,303	0,248	0,160	0,260	0,295	_	
120	0,153	14.663	15.518	0,204	0,224	0,210	0,262	0,216	0,294	0,198	0,155	0,214	0,285		
150	0,124	13.715	14.549	0,167	0,219	0,173	0,254	0,179	0,286	0,161	0,149	0,177	0,277		
185	0,099	12.781	13.527	0,136	0,214	0,141	0,246	0,146	0,278	0,130	0,145	0,145	0,269		
240	0,075	11.528	12.308	0,106	0,207	0,110	0,234	0,115	0,266	0,100	0,138	0,114	0,258		
300	0,060	10.665	11.382	0,089	0,202	0,093	0,226	0,100	0,257	0,082	0,133	0,098	0,248		
400	0,047	9.879	10.389	0,073	0,198	0,076	0,218	0,083	0,249	0,066	0,129	0,081	0,241		
500	0,037	9.007	9.478	0,060	0,193	0,063	0,208	0,069	0,240	0,054	0,124	0,067	0,231	_	_

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

CORRENTES DE CURTO-CIRCUITO NO CONDUTOR

INTRODUÇÃO

- Este capítulo tem por finalidade auxiliar os usuários de cabos de potência na determinação das condições de operação do cabo, durante um curto-circuito. Os ábacos fornecidos adiante podem ser usados nas sequintes situações:
 - a) para determinar a máxima corrente de curto-circuito permitida num cabo (condutor e blindagem);
 - b) para determinar a seção do condutor necessária para suportar uma particular condição de curto-circuito;
 - c) para determinar o tempo máximo que um cabo pode funcionar, com uma particular corrente de curto-circuito, sem danificação da isolação (condutor e blindagem).

CONSIDERAÇÕES TÉCNICAS

- Para a resolução do problema de curto-circuito em cabos isolados foram desenvolvidas duas fórmulas: uma para condutor de cobre e a outra para condutor de alumínio. São baseadas na energia térmica armazenada no material condutor e no limite máximo de temperatura admitida pela isolação.
 - Admite-se ainda que o intervalo de tempo da passagem de corrente de curto-circuito é pequeno, de forma que o calor desenvolvido durante o curto fica contido no condutor.

condutor	fórmula				
cobre	$\left(\frac{1}{S}\right)^2$.t = 115.679 log $\left(\frac{T_2 + 234}{T_1 + 234}\right)$				
alumínio	$\left(\frac{1}{5}\right)^2$.t = 48.686 log $\left[\frac{T_2 + 228}{T_1 + 228}\right]$				
Referências: ICEA P-32-382 e IEC 949	` '				

SIMBOLOGIA

I = corrente de curto-circuito (A)

S = seção transversal (mm²)

t = tempo de duração do curto-circuito (s)

T₁ = máxima temperatura admissível no condutor em operação normal (°C)

T₂ = máxima temperatura admitida para o condutor no curto-circuito (°C)

- É importante realçar que a temperatura anormal no condutor persiste por um intervalo de tempo maior do que o de duração do curto. Por exemplo, uma corrente de 36000 ampères num cabo de 240mm² eleva a temperatura do cobre num cabo Eprotenax, de 90°C para 250°C, em aproximadamente 1 segundo.
- > Enquanto que, com a corrente reduzida a zero, levaria esse cabo 3000 segundos para voltar à temperatura de operação normal do condutor. O tempo de resfriamento variará com a geometria do cabo e local da instalação. Este atraso térmico no resfriamento é de uma especial importância em casos onde os circuitos são protegidos por religadores automáticos e onde um imediato religamento manual às vezes é praticado.
- Geralmente a tempertura inicial do condutor não é precisamente conhecida, pois depende da carga do cabo e das condições ambientais. Por motivos de segurança deve-se adotar a máxima temperatura admissível no condutor, nas condições normais de trabalho do cabo.

CORRENTES DE CURTO-CIRCUITO NO CONDUTOR

CONSIDERAÇÕES SOBRE EMENDAS, TERMINAIS E TERMINAÇÕES

- Na instalação de um cabo de potência, existe a possibilidade das conexões serem executadas com solda estanho-chumbo. Estas soldas têm suas características mecânicas depreciadas com a temperatura; recomenda-se, em geral, que a temperatura não ultrapasse 160 °C. Vemos, então, que embora a isolação admita temperaturas superiores a 160 °C, é a emenda ou terminal que fixará a máxima temperatura para as condições de emergência.
- Como, eventualmente, as conexões poderão ser executadas por meio de conectores de compressão ou aparafusados, ou por meio de soldas especiais (soldas a arco ou autógenas), sendo a temperatura máxima de curto-circuito fixada pela isolação, fornecemos ábacos referentes a cabos instalados com todas as conexões por pressão e por meio de solda de estanho (T₂ = 160°C).

FÓRMULAS SIMPLIFICADAS

> As fórmulas apresentadas podem ser simplificadas, uma vez fixadas as temperaturas máximas em regime contínuo e de curtocircuito. A tabela abaixo resume estas fórmulas, para todos os cabos de potência de média tensão.

т1	fórmula baseada na máxima temperatura de curto-circuito									
	condutor de cobre				condutor de alumínio					
	conexões prensadas		conexões soldadas		conexões prensadas		conexões soldadas			
(°C)	T ₂ (°C)	fórmula	T ₂ (°C)	fórmula	T ₂ (°C)	fórmula	T ₂ (°C)	fórmula		
90		IVt = 142 S		I√t = 99 S		I√t = 93 S		I√t = 65 S		
105	- 250	IVt = 134 S	– 160 <i>–</i>	IVt = 87 S	- 250	I√t = 88 S	160	I √t = 57 S		

PRYSMIAN

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

CORRENTES MÁXIMAS DE CURTO-CIRCUITO NO CONDUTOR

A Prysmian reserva-se ao direito de modificar sem aviso prévio as características técnicas, pesos e dimensões apresentadas neste catálogo, sempre respeitando os valores previstos nas normas citadas. A Prysmian não se responsabiliza por danos pessoais ou materiais decorrentes do uso inadequado e/ou negligente das informações contidas neste catálogo.

29