Introduction to Intelligent Systems CO528

An Introduction to Evolutionary Algorithms

Dominique Chu

Basic Flow Chart of EAs

Return best individual (solution)

Simple Genetic Algorithm (SGA) (1)

- Clearly described in Goldberg's book [1989]
- Fixed-size population of individuals (solutions)
- Individual (or "chromosome") representation: binary string e.g., 001101
- Proportionate selection, simulating a Roulette Wheel
- Simple genetic operators (to produce offspring):
 - Simple one-point crossover
 - Simple Mutation: flip a bit

Simple Genetic Algorithm (2)

- Basic Operators of a Simple GA (binary strings):
 - Single-point crossover & single-point mutation

Fig. 1: Single-point crossover

Fig. 2: Single-point mutation

A pedagogical example of SGA (1)

Goldberg's book [1989]

- "Toy" problem: finding the maximum value of the function x^2 in the interval [0..31]
- Individual encoding: five bits representing x in [0..31]
- Fitness function: x² (the larger the fitness, the better the individual)
- Fitness evaluation: obtain x, decode the 5 bits (genotype), and then compute x² (phenotype)
- Initial population (randomly generated):

01101

11000

01000

10011

A pedagogical example of SGA (2)

Measuring fitness of each individual in the population:

			(fitness)	% of total
No.	individual	X	X ²	fitness
1	01101	13	169	14.4
2	$1\ 1\ 0\ 0\ 0$	24	576	49.2
3	$0\ 1\ 0\ 0\ 0$	8	64	5.5
4	10011	19	361	30.9

E.g.: decoding individual 1:

$$0*24 + 1*23 + 1*22 + 0*21 + 1*20 = 13$$

A pedagogical example of SGA (3)

Selection of the best individuals for reproduction

- To select an individual for reproduction, we "spin" the above "biased" roulette wheel, whose slots have sizes proportional to the fitness of the individuals
- This is called roulette-wheel selection

A pedagogical example of SGA (4)

- Suppose the selected individuals are
 - one copy of individual No. 1
 - one copy of individual No. 4
 - two copies of individual No. 2
 - (individual No. 3 was not selected)
- Selected individuals (parents) probably undergo crossover, to produce two new individuals (children)
 - User-defined crossover probability: about 80%
- Children can also undergo mutation
 - User-defined mutation probability: 1%
 (in nature most mutations are harmful)

A pedagogical example of SGA (5)

• Example of one-point crossover:

crossover of individuals No. 2 and 4, after the 2nd bit parents children

Note: crossover point is randomly chosen

A pedagogical example of SGA (6)

Population at generation 0

(fitness)

individual	X	X ²
01101	13	169
$1\ 1\ 0\ 0\ 0$	24	576
$0\ 1\ 0\ 0\ 0$	8	64
10011	19	361
Aver	293	
Maxin	576	

Population at generation 1

(fitness)

individual	X	\mathbf{X}^2
01100	12	144
11001	25	625
11011	27	729
10000	16	256
Aver	439	
Maxim	729	

Note: Generation 1 has better individuals than generation 0, i.e., the population evolves...

Another Selection Technique

- Tournament Selection: a small subset of K individuals is chosen at random, then the best individual in this set (the tournament winner) is selected
- K = tournament size (a user-specified parameter)
- The higher the value of K, the higher the "selective pressure"

Questions:

- 1) What happens if K = 1?
- 2) What happens if K = population size?

The Travelling Salesman Problem

Well-known combinatorial optimisation problem

GA for the Travelling Salesman Problem (1)

- Individual (candidate solution) representation:
 - A permutation of integer numbers (each gene = a city index): € ⟨1, 8, 14, 2, 15, 3, 4, 11, 12, 13, 6, 9, 10, 5, 7⟩
- Fitness function:
 - distance (length) of each tour

GA for the Travelling Salesman Problem (2)

• Conventional single-point crossover and single-bit mutation would produce invalid offspring:

GA for the Travelling Salesman Problem (3)

- Operator specific for permutation problems:
 - Swapping two genes of the same chromosome
 - Creates one new child from a given parent

Advantages of Genetic Algorithms

- Perform a "global" search in the search space
 - work with a *population* of individuals (candidate solutions), rather than with just one candidate solution at a time)
 - Avoid the use of "greedy" heuristics (e.g., start at a given city and visit one city at a time, choosing the nearest city at each step)
 - Global search allows a broader exploration of the search space
- Represent a candidate solution in a declarative way, independent of the method used to search for a solution, so they allow the easy specification of constraints on the type of solutions to be found
- Easy to implement

Disadvantages of Genetic Algorithms

- Do not offer any guarantee of finding the optimal solution, nor any lower bound on the quality of the solutions to be found
- Are computationally expensive in large-scale problems
- Have several parameters (crossover probability, mutation probabilities, population size, number of generations, etc.), whose "optimisation" is not a trivial task

Typical GA run

References

- D. E. Goldberg. *Genetic Algorithms in Search, Optimization and Machine Learning*. Addison-Wesley, 1989. Chapters 1 and 3.
- A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003. Chapters 1 and 2; sections 3.3, 3.4, 3.7.

Assessment 1

- Solve two different problems using genetic algorithms.
- You need to implement 2 different GAs (easiest).
- The fitness function is given to you as a class (Assess.class).
- Your mark will depend partially on the quality of the result (i.e. how good a solution you find).
- You are allowed a maximum time to run code. This time will be measured on raptor (not your home machine)!!! Careful!

Asessment: Exercise 1

- It takes an array of 20 doubles as input.
- A fitness function is implemented in Asess.class, hence you do not need to worry about that.
- You need to find the minimum fitness.
- You can limit the search to the interval [-5, 5] for all variables.

Asessment: Example 2

- The second exercise is an instance of the suitcase packing problem.
- You have a maximum weight that you are allowed to pack.
- You want to maximise your utility.
- I am not giving you a table of the values for the utility and the weight. These are encoded in the class file and you do not need this information.
- Calling a method in Assess.class gives you the relevant weights and utility.
- You need to be careful to take into account the weight constraint. You need to construct a fitness function to reflect that.

Dos and don'ts

- Do follow the instructions in every detail.
- Do not add any external libraries or graphical user interfaces.
- Do make sure your code compiles from the command line and Example.java contains the Main method.
- Do not put your code into subdirectories. This will result in points deductions.
- Check the runtime of your code on raptor.
- Do not forget to check in the results once you generated it.
- Do not check in fixed solutions, but the ones you generated. You will be marked on a (numerically) different problem!