Lesson 02

时间复杂度

Time Complexity

案例

方法 1

找到所有 两个数 配对的可能 保留最高值

伪代码:

```
\begin{split} Max2Sum(A,n) \\ sum \leftarrow 0 \\ \text{for } i \leftarrow 1 \text{ to } n \\ \text{for } j \leftarrow 1 \text{ to } n \\ \text{if } i! = j \text{ then} \\ \text{if } A_i + i_j > sum \text{ then} \\ sum = A_i + A_j \end{split}
```

return sum

方法 2

循环一遍 找到最大值 再循环一遍 找到第二个大的值

伪代码:

```
\begin{split} Max2Sum(A,n) & max_1 \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{ if } A_i > max_1 \text{ then} \\ & max_1 \leftarrow A_i \\ & max_2 \leftarrow 0 \\ & \text{ for } i \leftarrow 1 \text{ to } n \\ & \text{ if } A_i > max_2 \text{ and } A_i! = max_1 \text{ then} \\ & max_2 \leftarrow A_i \end{split}
```

return $max_1 + max_2$

方法 3

跟方法 2 一样, 但只走一趟

伪代码:

```
\begin{split} Max2Sum(A,n) & max_1 \leftarrow 0 \\ max_2 \leftarrow 0 & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{ if } A_i > max_2 \text{ then} \\ & max_2 \leftarrow A_i \\ & \text{ if } A_i > max_1 \text{ then} \\ & Swap(max_1, max_2) \end{split} return max_1 + max_2
```

相对优势 与 绝对优势

大于 某个值之后

我们比较大于某个值 ϵ 后面的

相对优势

什么是:

通过对 时间公式 叠加 常量倍数 会影响比较结果

案例:

情况	f(n) = n	$g(n) = 2n, c \cdot g(n)$	更好
n = 10, c = 1	10	20	f(n)
n = 100, c = 1	100	200	f(n)
n = 10, c = 1/10	10	2	g(n)
n = 100, c = 1/10	100	20	g(n)

实际:

如果设备一样 那么一个比一个好

但是可以通过砸钱在硬件设备上, 彻底改变结果

函数图:

 $\exists \ \epsilon > 0$

when $n \ge \epsilon$ and $n \to \infty$

 $\exists c_1 \geq 0, c_1 \cdot g(n) \geq f(n)$ and

 $\exists c_2 > 0, f(n) \ge c_2 \cdot g(n)$

绝对优势

什么是:

通过对 时间公式 叠加 常量倍数 不会 影响比较结果

案例:

情况	f(n) = n	$g(n) = n^2, c \cdot g(n)$	更好
n = 2, c = 1	2	4	f(n)
n = 2, c = 1/10	2	0.4	g(n)
n = 20, c = 1/10	20	40	f(n)
n = 20, c = 1/100	20	4	g(n)
n = 200, c = 1/100	200	400	f(n)
n = 200, c = 1/1000	200	40	g(n)

实际:

就算通过砸钱在硬件设备上,当数据量大时也无法改变结果

函数图:

 $\forall c \geq 0$

 $\exists \; \epsilon \geq 0$

when $n \ge \epsilon$ and $n \to \infty$

 $c \cdot g(n) \ge f(n)$ and

优势研究

侧重点:

应该优先专注 提高绝对优势

代码可读性:

当只有相对优势时, 我们可以 专注代码可读性

速度档位

速度档位:

互相有相对优势的时间函数,被归类到一个速度档位内

\boldsymbol{n}	时间增长慢	低档位	更好
n^2	时间增长快	高档位	不好

$\Theta(n)$

什么是:

如果 $T_1(n) = f(n)$ 和 $T_2(n) = g(n)$ 在一个速度档位上 就说 $f(n) = \Theta(g(n))$

含义:

意思就是 f(n) 与 g(n) 档位相同

集合含义:

 $\Theta(g(n))$ 代表 跟 g(n) 档位 相同的那些函数 所组成的集合 那么 $f(n)=\Theta(g(n))$ 意思就是 $f(n)\in\Theta(g(n))$

O(n)

什么是:

如果 $T_1(n) = f(n)$ 和 $T_2(n) = g(n)$ 在一个速度档位上 或者 $T_1(n) = f(n)$ 比 $T_2(n) = g(n)$ 有绝对优势 就说 f(n) = O(g(n))

含义:

意思就是 f(n) 档位 差不过 g(n)

集合含义:

O(g(n)) 代表 跟 g(n) 档位 相同 以及 更好 的那些函数 所组成的集合 那么 f(n) = O(g(n)) 意思就是 $f(n) \in O(g(n))$

练习

以下哪个是对的:

1. $n = \Theta(n)$

2. $n = \Theta(2n)$

3. $2n = \Theta(n)$

4.
$$n = \Theta(n^2)$$

5.
$$n^2 = \Theta(n)$$

6.
$$n = O(n)$$

7.
$$n = O(2n)$$

8.
$$2n = O(n)$$

9.
$$n = O(n^2)$$

10.
$$n^2 = O(n)$$

相关推论 与 常用数学公式

证明档位

 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

值	意义
1	档位一样
0	f(n) 比 $g(n)$ 有绝对优势
∞	g(n) 比 $f(n)$ 有绝对优势

多项式后面抹除

如果时间公式为一个多项式,只需要保留最高档位的部分

比如:

$$T(n) = n^2 + 2n + 1 = O(n^2)$$

常量系数抹除

如果时间公式为乘积, 可以抹除常量系数

比如:

$$T(n) = 3n^2 = O(n^2)$$

log 相关公式

去底:

$$\log_a n = O(\frac{\log_c n}{\log_c a}) = O(\log_c n) = O(\log n)$$

去幂:

$$\log n^a = O(a\log n) = O(\log n)$$

去系数:

$$\log_a bn = O(\log_a b + \log_a n) = O(\log_a n) = O(\log n)$$

档位列表

$$O(c) \le O(\log n) \le O(n) \le O(n \log n) \le O(n^2) \le O(n^c) \le O(c^n)$$