

Evaluierung von KI-basierten Modellen zur automatisierten Schwachstellenanalyse im Rahmen von Penetrationstests

Problemstellung & Motivation (1/2)

Problemstellung

- Pentests sind etabliert, aber teuer & aufwendig
 - hoher Zeitaufwand
 - Bedarf an Fachwissen
 - kostenintensiv
- Wachsende Angriffsflächen
 - Cloud
 - Microservices
 - DevOps erhöhen Komplexität und Angriffsrisiko
- Limitierungen klassischer Methoden
 - rein manuelle Tests skalieren nicht mehr
 - Ergebnisse abhängig von Erfahrung einzelner Tester

Fachkräftemangel als Motivation

IT-Fachkräftelücke vervierfacht sich

2040 werden über alle Sektoren hinweg etwa 663.000 IT-Fachkräfte fehlen

Abbildung: Bitkom: IT-Fachkräftelücke bis 2040

Ziel der Arbeit

Forschungsfrage: Wie können KI-Tools Sicherheitsexperten in Penetrationstests unterstützen und entlasten?

Vorgehen:

- Untersuchung von drei Tools:
 - RamiGPT (Privilege Escalation)
 - PentestGPT CLI (strukturierte Webtests)
 - PentestGPT Web (dialogorientierte Tests)

Teilziele:

- Entwicklung eines praxisnahen Bewertungsrahmens
- Durchführung reproduzierbarer Praxistests
- Vergleich: Stärken, Schwächen & Einsatzpotenziale

Grundlagen - Penetrationstests

- Definition: Gezielte Simulation von Angriffen auf IT-Systeme
- Zweck: Schwachstellen frühzeitig finden & Sicherheitsniveau bewerten
- Abgrenzung: Unterschied zu reinen Scans → kreatives, manuelles Vorgehen
- Arten:
 - Black-Box (keine Vorkenntnisse)
 - Grey-Box (teilweise Infos)
 - White-Box (vollständige Infos)

Grundlagen – Phasenmodell nach BSI

- Vorbereitung: Scope, Ziele & Rahmenbedingungen definieren
- Informationsbeschaffung: Scans, OSINT, Reconnaissance
- Analyse & Bewertung: Identifikation & Bewertung möglicher Schwachstellen
- Exploitation: Gezielte Ausnutzung, um Ausnutzbarkeit realistisch einzuschätzen
- Abschluss & Reporting: Ergebnisse dokumentieren & Empfehlungen ableiten

Grundlage (1/4)

Penetrationstests

- Ziel: Schwachstellen finden, bevor Angreifer sie ausnutzen
- BSI-Phasenmodell:
 - Vorbereitung
 - 2 Informationsbeschaffung
 - Analyse & Bewertung
 - 4 Exploitation
 - 6 Abschluss & Reporting

Abbildung: Das Bild der Danke-Seite

Grundlagen – Typische Schwachstellen (OWASP Top 10)

A01 – Broken Access Control

- Fehlende oder fehlerhafte Zugriffsbeschränkungen
- z. B. Manipulation von JWT, IDOR

A02 – Cryptographic Failures

- Unsichere oder falsch eingesetzte Verschlüsselung
- z. B. schwache Hashes, Klartextübertragung

A03 – Injection

- ► Unsichere Eingabevalidierung → Angriffe möglich
- z. B. SQL Injection, Cross-Site Scripting (XSS)

Grundlagen - Privilege Escalation

- Ziel: unberechtigter Zugriff auf höhere Rechte (Admin/Root)
- Häufig in Post-Exploitation-Phase
- Typische Techniken (nach MITRE ATT&CK):
 - Exploitation von Systemschwachstellen (T1068)
 - Missbrauch von Sudo/SetUID (T1548)
 - Manipulation von Zugriffstokens (T1134)
 - Nutzung gültiger, privilegierter Accounts (T1078)

Grundlagen – Künstliche Intelligenz & LLMs

- KI: Mustererkennung, Automatisierung, Entscheidungsunterstützung
- Maschinelles Lernen (ML):
 - ▶ Überwachtes Lernen (z. B. Klassifikation)
 - Unüberwachtes Lernen (z. B. Anomalieerkennung)
 - ► Bestärkendes Lernen (adaptives Verhalten)
- Large Language Models (LLMs):
 - Zerlegen komplexer Aufgaben in Schritte
 - ► Generieren von Exploit-Vorschlägen & Payloads
 - Automatisierte Dokumentation
- Schwächen: Halluzinationen, begrenztes Kontextfenster, fehlende Security-Spezialisierung

Methodik - Toolauswahl

RamiGPT

- Speziell für Privilege Escalation (Linux/Windows)
- Kombination von KI-Logik & Tools wie LinPEAS, BeRoot

PentestGPT (CLI)

- Open-Source, textbasiert, strukturierte Workflows
- Unterstützt systematische Web-Pentest-Phasen

PentestGPT (Web)

- Kommerziell, dialogorientiert, direkte Nutzung im Browser
- Eignet sich für schnelle Ad-hoc-Analysen

Testumgebungen

- 3 VMs (Kali, Parrot, Ubuntu)
- OWASP Juice Shop (Web-Testumgebung)
- Isoliert & reproduzierbar

Bewertungsmatrix

- 6 Kriterien:
 - Schwachstellenabdeckung
 - Exploit-Vorschläge
 - Automatisierungsgrad
 - Kontextverständnis
 - Reporting
 - Kosten-Nutzen

RamiGPT - Szenario

- Ziel: Privilege Escalation unter Linux (Root-Rechte erlangen)
- Setup: Ubuntu-VM mit absichtlich fehlerhafter SetUID-Konfiguration ("rootbash")
- Testmodus:
 - Full-Al (komplett automatisch)
 - ► Halb-automatisch (mit manueller Unterstützung)

RamiGPT - Ergebnisse

- Full-AI-Modus:
 - scheiterte an sudo-Passwortabfrage
 - erkannte "rootbash" nicht eigenständig
- Halb-automatischer Modus:
 - mit manuellen Eingaben erfolgreich
 - Privilege Escalation durch rootbash möglich
- Fazit: Nur mit Benutzerhilfe nutzbar, geringe Automatisierung

PentestGPT (CLI) - Szenarien

- Zielsystem: OWASP Juice Shop (verwundbare Web-App)
- Testschwerpunkte (OWASP Top 10):
 - ► Broken Access Control � JWT-Manipulation, IDOR
 - Cryptographic Failures unsichere Hashes, "Weird Crypto"-Challenge
 - ► Injection � SQLi, DOM-basiertes XSS
- Interaktion:
 - Strukturierte Workflows über CLI-Befehle (next, more, discuss)
 - ► GPT-gestützte Vorschläge, manuelle Ausführung durch Nutzer

PentestGPT (CLI) - Ergebnisse

Stärken:

- Liefern valider Payloads (z. B. ' OR '1'='1 → Login-Bypass, Admin-Zugriff)
- Systematische Struktur didaktisch wertvoll (Ausbildung, Training)
- Gute Unterstützung bei IDOR & XSS durch Payload-Beispiele

Schwächen:

- ► Keine echte Automatisierung → alles manuell auszuführen
- ► Teilweise generische Antworten, Detailtiefe nur mit Nachfragen
- Kein Reporting-Export, nur Logfiles
- Fazit: Hilfreiches Assistenztool, besonders für strukturierte Tests und Ausbildung

PentestGPT (Web) - Szenarien

- Zielsystem: OWASP Juice Shop (wie CLI-Version)
- Testschwerpunkte:
 - Broken Access Control (z. B. JWT-Manipulation, IDOR)
 - Cryptographic Failures ("Weird Crypto")
 - Injection (SQLi, XSS)
- Interaktion:
 - Dialogorientiert, ähnlich wie ChatGPT
 - Prompts in natürlicher Sprache (DE & EN)
 - Schnelle Ad-hoc-Analysen im Browser

PentestGPT (Web) - Ergebnisse

Stärken:

- Schnelle & präzise Antworten → sofort Exploit-Beispiele
- ► Einfache Bedienung, keine Installation notwendig
- Kontextsensitiv (Deutsch/Englisch kein Unterschied)

Schwächen:

- ▶ Keine Automatisierung → alles manuell auszuführen
- Kein Reporting-Export, Ergebnisse nur im Chat
- ► Volle Funktionen nur in kostenpflichtiger Version
- Fazit: Praktisch für schnelle Analysen & Proof-of-Concepts, weniger für strukturierte Tests

Vergleich der Tools

- Bewertungskriterien: Schwachstellenabdeckung, Exploit-Vorschläge, Automatisierung, Kontextverständnis, Reporting, Kosten-Nutzen
- Gesamtpunkte (max. 12):
 - RamiGPT: 5/12
 - PentestGPT (CLI): 8/12
 - PentestGPT (Web): 7/12
- Stärken & Schwächen:
 - RamiGPT: interessant für Privilege Escalation, aber unreif, wenig Automatisierung
 - ► CLI: methodisch klar, gute Payloads, aber langsamer & manuell
 - ▶ Web: schnell & flexibel, aber limitiert ohne Automatisierung/Reporting

Stärken & Schwächen der KI-Tools

Stärken

- Unterstützung bei Routineaufgaben (z. B. Payload-Generierung)
- Nützliche Exploit-Vorschläge und Erklärungen
- Methodische Unterstützung (CLI) bzw. schnelle Ad-hoc-Analysen (Web)
- Niedrige Einstiegshürden für Einsteiger & Ausbildung

Schwächen

- Geringe Automatisierung → keine End-to-End-Pentests
- Schwaches Kontextverständnis (z. B. RamiGPT bei Passwortabfragen)
- Ergebnisse oft nicht reproduzierbar
- Fehlende Reporting-/Exportfunktionen

Fazit

 KI = Unterstützung, kein Ersatz menschliche Expertise bleibt unverzichtbar

Nutzen:

- Effizienzsteigerung bei Routineaufgaben
- Hilfreich für Ausbildung & strukturierte Analysen
- Schnelle Proof-of-Concepts möglich

Grenzen:

- Keine vollständige Automatisierung
- Ergebnisse nicht immer reproduzierbar
- Eingeschränktes Kontextverständnis

Ausblick

- Integration in DevSecOps KI-gestützte Tools als Teil kontinuierlicher Sicherheitsprozesse
- Technische Weiterentwicklung Größere Kontextfenster & verbesserte Modelle Retrieval-Augmented Generation (RAG) für aktuelles Wissen
- Anwendung in der Ausbildung & KI als interaktiver Trainingspartner & Unterstützung beim Erlernen von Angriffstechniken & Abwehrmaßnahmen
- Langfristige Perspektive � KI erweitert klassische Pentests � Richtung: skalierbare & adaptive Sicherheitsprüfungen

Literatur I

Mangel an IT-Fachkräften droht sich zu verschärfen.

https://www.bitkom.org/Presse/Presseinformation/

Mangel-an-IT-Fachkraeften-droht-sich-zu-verschaerfen

