GUIA DE ACTIVIDADES

III. PROBLEMÁTICA

Ejercicio de la Subsecuencia Máxima

Suma de Subsecuencia máxima: Dados un conjunto de enteros consecutivos (posiblemente negativos) a₁, a₂, ...,a_n Encontrar el subconjunto a_i,...,a_k que proporcione la sumatoria máxima de los (k i+1) números consecutivos desde i hasta k consecutivos. La suma es cero si todos los números son negativos. Encontrar un algoritmo eficiente y que determinen su función tiempo y su notación asintótica.

Eiemplo:

Valores	-2	<mark>11</mark>	<mark>-4</mark>	<mark>13</mark>	<mark>-5</mark>	9	-3	2	-8	4
Posición	1	2	3	4	<mark>5</mark>	6	7	8	9	10

La sumatoria máxima consecutiva es de a₂ hasta a₆ con un valor de 24.

SOLUCIÓN:

Código(github): https://github.com/Mapach33/ADA

Función tiempo:

El algoritmo recorre el arreglo una sola vez con un bucle for, realizando operaciones constantes en cada iteración. Por lo tanto, la función tiempo es:

T(n) = c * n, donde c es una constante que representa las operaciones realizadas en cada iteración.

Notación asintótica:

La notación asintótica se enfoca en el término dominante cuando (n) tiende a infinito. En este caso, el término dominante es (n), por lo que la complejidad temporal del algoritmo es: O(n).

Esto significa que el tiempo de ejecución crece linealmente con el tamaño del arreglo de entrada.