Solution Manual for [Introduction to Analytic Number Theory, Apostol]

Alexander Vazquez

November 23, 2024

Contents

1 Chapter 2: Arithmetical Functions and Dirichlet Multiplication

 $\mathbf{2}$

1 Chapter 2: Arithmetical Functions and Dirichlet Multiplication

Problem 1.1

Find all integers n such that:

- (a) $\varphi(n) = \frac{n}{2}$,
- (b) $\varphi(n) = \varphi(2n)$,
- (c) $\varphi(n) = 12$.

Solution

1. a) Recall that Euler's totient function $\varphi(n)$ can be given by:

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

where the product runs over all prime divisors p of n.

Equating this with our hypothesis, we have:

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = \frac{n}{2}.$$

First, notice that when n is a power of two $n=2^k$, $k\geq 1$ the equation is satisfied, since:

$$\varphi(2^k) = 2^k \cdot \left(1 - \frac{1}{2}\right) = \frac{2^k}{2}.$$

On the other hand, n = 1 does not work because $\varphi(1) = 1 \neq \frac{1}{2}$.

Now, consider n > 2 and n not a power of two .

Case 1: $2 \mid n$

Since n is not a power of two, there is a prime $p \neq 2$ that divides n and in this case:

$$\varphi(n) = \frac{n}{2} \prod_{\substack{p \mid n \\ p \neq 2}} \left(1 - \frac{1}{p} \right).$$

Since $\prod_{\substack{p|n\\p\neq 2}} \left(1-\frac{1}{p}\right) < 1$, it follows that:

$$\varphi(n) < \frac{n}{2}.$$

Contradicting our hypothesis $\varphi(n) = \frac{n}{2}$. Hence, $2 \nmid n$.

Case 2: $2 \nmid n$

If $2 \nmid n$, then all prime divisors of n are odd. For each prime divisor p, p-1 is even. Let:

$$a = \prod_{p|n} (p-1), \quad b = \prod_{p|n} p.$$

2

Then:

$$n\frac{a}{b} = n\frac{\prod_{p|n}(p-1)}{\prod_{p|n}p} = n\prod_{p|n}\left(1 - \frac{1}{p}\right) = \varphi(n) = n/2$$

Here, a is even (product of even numbers) and b is odd (product of odd primes). Therefore:

$$\frac{a}{b} = \frac{1}{2}.$$

This implies:

$$2a = b$$
,

which is a contradiction because b is odd.

Therefore the only solution are the powers of two, $n = 2^k$.

2. b) The canonical factorization fo n can be written as: $n = \prod_{\substack{p \mid n \\ p \neq 2}}$