

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	17
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-17
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Škrcení vodní páry
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Škrcení vodní páry

V armaturách, regulačních ventilech, clonách …, dochází při průchodu páry k termodynamickému ději, který nazýváme škrcení. Stejně jako u plynů škrcení vodní páry je změna, při které se nemění entalpie.

$$i_2 = i_1 = konst$$

Diagram i – s:

Při škrcení se snižuje tlak, ale nezískáváme žádnou užitečnou práci ($w_t = 0$). Pro adiabatické škrcení q = 0 tedy platí:

$$i_2 - i_1 = konst$$

$$c_n \cdot (T_2 - T_1) = 0 \rightarrow T_2 = T_1$$

c_P – střední měrné teplo za stálého tlaku.

Při škrcení skutečných plynů a par však dochází ke snižování teploty. Přesto se mokrá pára vysušuje, suchá sytá pára se stává přehřátou. U přehřáté páry roste její přehřátí. Kapalina přechází do stavu mokré páry.

Jedná se o nevratnou změnu stavu.

Př.: Určete tepelný výkon Q_{τ} přehřívače vodní páry. Tlak páry p = 10 MPa, t_{pp} = 500°C, hmotnostní průtok Q_m = 200 t/h. Určete střední měrné teplo.

$$Q_m = 200\ 000\ kg/h = \frac{200\ 000}{3600} = 55.6\ kg/s$$
.

Ze strojnických tabulek str. 65 přehřátá pára: $i=H=3372\,\frac{kJ}{kg}$.

Z tabulek: str. 67 sytá pára:
$$i'' = H'' = 2725 \frac{kJ}{kg}$$
, $t'' = 310,96$ °C

Jen přehříváme: $w_{\scriptscriptstyle t} = 0 \rightarrow \Delta i = i - i'' = q - w_{\scriptscriptstyle T} = q$

$$Q_{\tau} = Q_m \cdot q = Q_m \cdot (i - i'') = 55.6 \cdot (3372000 - 2725000) \cong 36000000W = 36MW$$

 $c_{\it nns}$ – střední měrné teplo při konstantním tlaku.

$$\Delta i = i - i'' = c_{pps} \cdot (t - t'') \rightarrow c_{pps} = \frac{i - i''}{t - t''} = \frac{3372000 - 2725000}{500 - 310.96} = 3423 J/kg \cdot K$$

Tepelné oběhy

Při změnách stavu se teplo vzdušnin mění na mechanickou práci. Z hlediska praxe je požadavek, aby přeměna tepla na práci nebyla jen jednorázová, ale plynulá. Tento požadavek se dá splnit za

2/5

předpokladu, že se vzdušnina bude vracet po řadě tepelných změn jinou cestou do původního stavu. Uzavřený sled změn tvoří tepelný cyklus, který je v tepelných diagramech znázorněn uzavřenou křivkou. Cykly, které se periodicky opakují s určitým množstvím měrné látky, označujeme jako uzavřené (např. pracovní cyklus kondenzační parní turbíny).

U většiny strojů (hlavně výfukových) přivádíme při každém cyklu novou vzdušninu se stejným počátečním stavem.

Tepelné změny stavu jsou u skutečných strojů složité. Abychom mohli matematicky porovnávat jednotlivé oběhy, nahrazujeme skutečný oběh oběhem ideálním, složeným z jednotlivých vratných změn stavů, které se skutečným změnám nejvíc přibližují.

V p – V diagramu křivka 1-2 znázorňuje expanzi. Plocha pod touto křivku vyjadřuje **práci získanou expanzí**. Křivka 2-1 znázorňuje kompresi vzdušniny do původního stavu. Plocha pod touto křivkou znázorňuje **práci spotřebovanou při kompresi**. Má–li se při tomto pracovním cyklu získat užitečná práce, musí být expanzní práce větší než práce kompresní. \rightarrow Expanze musí probíhat při vyšších tlacích a teplotách než komprese. Abychom mohli posoudit dokonalost pracovních cyklů určitého pracovního stroje, zjišťujeme tzv. termickou (tepelnou) účinnost, která nám vyjadřuje, jakou část přivedeného tepla jsme využili k vykonání práce.

$$\eta_{t} = \frac{q}{q_{p}} = \frac{q_{p} - q_{o}}{q_{p}} = 1 - \frac{q_{o}}{q_{p}}$$

 $q_{\scriptscriptstyle p}$ – teplo přivedené v pracovnímu cyklu;

 q_o – teplo odvedené;

q – teplo využité.

Carnotův oběh

Je to teoretický (prakticky neproveditelný) oběh, který je tvořen 2 změnami adiabatickými a 2 izotermickými.

1 – 2 izotermická expanze;

2 – 3 adiabatická expanze;

3 – 4 izotermická komprese;

4-1 adiabatická komprese.

Teplo přivedené v průběhu izotermické expanze je T – s diagramu vyjádřeno plochou $1-2-s_2-s_1-1=q_p=T_1\cdot \left(s_2-s_1\right)$

Adiabatická expanze i komprese jsou změny stavu bez výměny tepla s okolím, proto v T–s diagramu jsou vyjádřeny svislými úsečkami.

Při izotermické kompresi odvádíme teplo $q_o = 3 - 4 - s_1 - s_2 - 3 = T_2 \cdot (s_2 - s_1)$

Termická účinnost Carnetova oběhu:

$$\eta_t = 1 - \frac{q_o}{q_p} = 1 - \frac{T_2 \cdot (s_2 - s_1)}{T_1 \cdot (s_2 - s_1)} = 1 - \frac{T_2}{T_1}$$

Carnotův oběh je oběh, který dosahuje nejvyšší termické účinnosti mezi teplotami $T_1\,a\,T_2$.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: ΜΕCHANIKA Sbírkα úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.