TTK4100 Kybernetikk introduksjon Løsningsforslag til øving 4

Oppgave 1

En dynamisk modell for en likestrømsmotor er gitt av

$$L_a \frac{d}{dt} i_a = -R_a i_a - K_E \omega_m + u_a \tag{1}$$

$$J_m \dot{\omega}_m = K_M i_a - M_L \tag{2}$$

$$\dot{\theta}_m = \omega_m, \tag{3}$$

der i_a er ankerstrømmen, ω_m er moterens vinkelhastighet, θ_m er motorvinkelen, K_M er motorens momentkonstant, K_E er motorens spenningskonstant, R_a er ankermotstanden, L_a er ankerinduktansen, J_m er motorens treghetsmoment, M_L er et konstant moment som virker på motoren fra lasten og u_a er ankerspenningen som er moterens pådrag. Motorvinkelen θ_m er den eneste målte verdien i systemet. Parameterne i modellen har verdier gitt av $L_a=1$, $R_a=10$, $K_E=K_M=1$ og $J_m=0.01$. Du kan anta at det ikke virker noe moment fra lasten på motoren.

- a) Det er brukt spennigsbalanse og momentbalanse.
- b) Systemet er monovariabelt da det kun er ett pådrag u_a og én målt verdi θ_m .
- c) Blokkdiagram er vist i figur 1.
- e) Derivering av støy eller høyfrekvente signaler vil gi meget store pådragsverdier.
- f) $K_{kp} = 10$ får man $T_k = 0.625s$, dvs $K_P = 0.6K_{pk} = 6$, $T_i = 0.5T_k = 0.3125$ og $T_d = 0.125T_k = 0.078125$. I PID-blokken blir dette P = 6, $I = \frac{1}{T_i} = 3.2$ og D = 0.78125.
- g) De nye regulatorparameterene er vist i figur 2, og responsen til motorvinkelen er vist i figur 3. Som vi kan se har vinkelen mye mindre oversving med de nye parameterene, men vinkelen bruker også noe lenger tid på å nå referansen.

Figur 1: Motormodellen med PID implementert i SIMULINK

	Tuned	Block
P	5.6471	6
I	0.87373	3.2
D	0.10854	0.08
N	931.9072	100

Figur 2: Nye PID-paramtere

Figur 3: Responsen for systemet med to forskjellige sett regulatorparametere