

Pesquisa Operacional

Professor Msc. Aparecido Vilela Junior

aparecido.vilela@unicesumar.edu.br

Dualidade

O problema Dual UniCesumar

Certas vezes estamos interessados encontrar uma estimativa da solução ótima em vez de encontrá-la, utilizando o método Simplex. Isto pode ser obtido através da procura de valores limites inferiores (para maximização) ou superiores (para minimização).

Dualidade

- Redução da quantidade de cálculos executada pelo modelo simplex
- Modelo inicial, chamado de primal, pode ser substituído por outro modelo chamado de dual.
- A solução do dual é mais rápida.
- Conhecida a solução do Dual, conheceremos em consequência a solução do primal.

GRADUAÇÃO Modelo de PL Prima l'iniCesumar

• A função objetivo é de maximização

As restrições são do tipo <=

As variáveis são não negativas

Modelo Dual

- Ao modelo anterior associa-se um outro modelo chamado de dual, construído da seguinte forma:
 - 1) Variáveis de decisão do dual: cada restrição do primal corresponderá a uma variável yi
 - 2) Objetivo: A função objetivo será de minimização.
 Cada uma de suas parcelas será o produto da variável Yi pelo termos da direita da restrição correspondente
 - 3)restrições : cada variável de decisão do primal gera uma restrição do dual
 - Termos da esquerda: cada termo é o produto da variável Yi pelo coeficiente respectivo da variável de decisão primal.
 - Sinal: >=
 - Termo da direita: é o coeficiente da variável primal na função objetivo.
- 4) As variáveis Yi são todas não negativas.

Exemplo

Primal :
$$Max Z = 2x1 + 3x2 + X3$$

Variáveis duais

SA:
$$3x1 + 4x2 + 2x3 <= 10$$
 ---- y1
 $2x1 + 6x2 + x3 <= 20$ ---- y2
 $x1 - x2 - x3 <= 30$ ---- y3

DUAL: Mín. D = 10y1 + 20y2 + 30y3

SA:
$$3y1 + 2y2 + y3 >= 2$$
 (coeficiente da FO de x1)
 $4y21 + 6y2 - y3 >= 3$ (coeficiente da FO de x2)
 $2y1 + y2 - y3 >= 1$ (coeficiente da FO de x3)

primal: modelo de Minimização

- A) função objetivo de minimização
- B) restrições do tipo >=
- C) variáveis não negativas

Modelo DUAL:

- A) Função objetivo de Maximização
- B) restrições do tipo <=
- C) variáveis todas não negativas

Exemplo: O dual do exemplo anterio será cosprim

• Mín. Z = 10 x1 + 20x2 + 30 x3

SA:
$$3x1 + 4x2 + x3 >= 2$$
 ---- y1
 $4x1 + 6x2 - x3 >= 3$ ---- y2
 $2x1 + x2 - x3 >= 1$ ---- y3

Dual

DUAL: Max. D = 2y1 + 3y2 + 1y3

SA: 3y1 +4y2 + 2y3 <=10 (coeficiente da FO de x1) 4y1 +6y2 +y3 <=20 (coeficiente da FO de x2) 1y1 - y2 - y3 <= 30 (coeficiente da FO de x3)

O dual, obtido a partir de um dual, retorna ao modelo primal

De modo geral, podemos dizer que a todo problema de maximização de programação linear na forma padrão corresponde um problema de minimização denominado Problema Dual

PRIMAL

Max
$$Z = 5x1 + 2x2$$

Sujeito a:

$$x1 \le 3$$

 $x2 \le 4$
 $x1 + 2x2 \le 9$
 $x1 \ge 0 \text{ e } x2 \ge 0$

DUAL
Min 3y1 +4y2 + 9y3
S.a:
$$y1 + y3 \ge 5$$
 $y2 + 2y3 \ge 2$
 $y1, y2, y3 \ge 0$

De uma forma geral:

Primal

$$\operatorname{Max} \sum_{j=1}^{n} c_{j} x_{j}$$

$$s.a: \sum_{i=1}^{n} a_{ij} x_i \le b_i$$

$$x_i \ge 0$$

$$(i = 1, 2, ..., m)$$

$$(j = 1, 2, ..., n)$$

Dual

$$\operatorname{Min} \sum_{i=1}^{m} b_i y_i$$

$$s.a: \sum_{i=1}^{m} a_{ij} y_i \ge c_j$$

$$y_i \ge 0$$

$$(i = 1, 2, ..., m)$$

$$(j = 1, 2, ..., n)$$

Existe uma série de relações entre o Primal e o Dual, entre as quais podemos citar:

- Os termos constantes da restrições do Dual são os coeficientes das variáveis da função objetivo do Primal;
- Os coeficientes das variáveis da função objetivo do Dual são os termos constantes das restrições do Primal;
- As restrições do Dual são do tipo maior ou igual, ao passo que as do Primal são do tipo menor ou igual (na forma padrão);
- O número de variáveis do Dual é igual ao número de restrições do Primal;
- O número de restrições do Dual é igual ao número de variáveis do Primal
- A matriz dos coeficientes do Dual é a transposta da matriz dos coeficientes do Primal

Existem algumas razões parra o estudo dos problemas duais. A primeira e mais importante são as interpretações econômicas podemos obter dos valores das varáveis do Dual na solução ótima, tais como variações marginais. A segunda está ligada ao número de restrições. Computacionalmente falando é, algumas vezes, mais eficiente resolver o problema Dual.

GRADUAÇÃO

Primal e Matriz de UniCesumar Coeficientes

• Primal:

• Max
$$Z = 5x1 + 2x2$$

•
$$X1 + 2x2 <= 9$$

Dual e Matriz de Coeficientes

Dual

• Min D =
$$3y1 + 4y2 + 9y3$$
 [3 4 9]

• sa.

•
$$y1 + y3 >= 5$$
; [1 0 1] [5]

•
$$y2 + 2y3 >= 2$$
 [0 1 2] [2]

Primal Minimização UniCesumar

- Considere um problema de minimização:
- Min Z = 5x1 + 2x2
- sa
- x1 <= 3;
- x2 <= 4;
- x1 + 2x2 >= 9;

 Nesse caso devemos realizar a preparação do problema antes de aplicar as regras anteriores.

GRADUAÇÃO UniCesumar

Observações

Observações:

- 1. A função objetivo do dual é de minimização, e a do primal é de maximização;
- 2. O elementos do vetor $b = (b_1, b_2, ..., b_m)$ (rhs) do primal formam a função objetivo do dual;
- 3. Os elementos do vetor $c = (c_1, c_2, ..., c_n)$ do primal é o vetor rhs do dual;
- As restrições do dual são do tipo ≥, e do primal são do tipo ≤;
- O número de variáveis do dual é igual ao número de restrições do primal;
- 6. O número de restrições do dual é igual ao número de variáveis do primal;
- 7. A matriz dos coeficientes do dual é a transposta da matriz dos coeficientes do dual.

Teorema I

Propriedade 1: "O dual do dual é o primal."

Primal:		1	+ 3x ₂	Dual:		•	+6y ₂
	s.a	$-x_1 + 2x_2 \le 4$	_		s.a		$+y_2 \ge 2$
		x_1	$+x_2 \le 6$			$2y_1$	$+y_2 \ge 3$
		x_1 ,	$x_1 \ge 0$			y_1 ,	$y_1 \ge 0$

GRADUAÇÃO UniCesumar

Teorema II

Propriedade 2: "Se a restrição k do primal é igualdade, então a variável y_k do dual é sem restrição de sinal."

Primal:

$$\max 2x_1 + 3x_2$$
s.a $-x_1 + 2x_2 \le 4$

$$x_1 + x_2 = 6$$

$$x_1, x_2 \ge 0$$

Dual:

min
$$4y_1 + 6y_2$$

s.a $-y_1 + y_2 \ge 2$
 $2y_1 + y_2 \ge 3$
 $y_1 \ge 0$; y_2 livre

Teorema III

Propriedade 3: "Se a restrição k do primal é maior ou igual, então a variável y_k do dual é não positiva."

$$\max \quad 2x_1 + 3x_2$$

$$s.a - x_1 + 2x_2 \le 4$$
Primal:
$$x_1 - 3x_2 \ge 9$$

$$x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

Dual:
$$\begin{aligned} & \min & 4y_1 & +9y_2 & 6y_3 \\ s.a & -y_1 & +y_2 & +y_3 \geq 2 \\ & 2y_1 & -3y_2 & y_2 \geq 3 \\ & y_1, & y_3 \geq 0 & y_2 \leq 0 \end{aligned}$$

Teorema IV

Propriedade 4: "Se a variável x_p do primal é sem restrição de sinal, então a restrição p do dual é uma igualdade."

Teorema V

Propriedade 5: "Se a variável x_p do primal é não-positiva, então a restrição p do dual é menor ou igual."

Resumo

RESUMO DAS PROPRIEDADES

Primal → Dual					
(max)	(min)				
restrição k é \leq	$y_k \ge 0$				
restrição k é =	y_k livre				
restrição k é \geq	$y_k \leq 0$				
$x_p \ge 0$	restrição p é \geq				
x_p é livre	restrição p é =				
$x_p \leq 0$	restrição <i>p</i> é ≤				
Dual ← Primal					
(max)	(min)				

Exercícios

$$\max Z = x_1 + 2x_2 - 3x_3 - 4x_4$$
s.a
$$x_1 + 3x_2 + 5x_3 + x_4 \le 7$$

$$2x_1 - x_2 - 4x_3 - 3x_4 \ge -6$$

$$3x_1 + 2x_2 - x_3 + 4x_4 = 5$$

$$x_1, x_4 \text{ livre}$$

$$x_2 \le 0$$

$$x_3 \ge 0$$

Resposta

min
$$D=7y_1-6y_2+5y_3$$

s.a $y_1+2y_2+3y_3=1$
 $3y_1-y_2+2y_3 \le 2$
 $5y_1-4y_2+2y_3 \ge -3$
 $y_1-3y_2+4y_3=-4$
 $y_1 \ge 0, y_2 \le 0, y_3$ livre

Referências

 LACHTERMACHER, G. Pesquisa Operacional na Tomada de Decisões: modelagem em Excel.
 São Paulo: Campus, 2006.