ALGORITMOS E ESTRUTURAS DE DADOS III

Prof. Marcos André S. Kutova

- O reconhecimento de padrões é uma busca por uma cadeia de símbolos em uma sequência maior
 - Ex.: busca de palavras em textos

- Os algoritmos são identificados como:
 - Pattern searching
 - String searching
 - String matching

 O reconhecimento de padrões não se limita a busca de texto.

• Exemplos: busca de DNA,

detecção de intrusão, correção ortográfica, detecção de plágio, reconhecimento de voz, etc.

- Reconhecimento exato de padrões
 - Força Bruta
 - KMP
 - Aho Corasick
 - Boyer Moore
- Reconhecimento aproximado de padrões
 - Distância de Levenshtein

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

• Busca do padrão "TRISTE" em um texto

Tamanho do texto: 19 caracteres

Tamanho do padrão: 6 caracteres

Problema do força bruta

Com o algoritmo da força bruta, o segundo caráter (Á) será testado duas vezes.

Problema do força bruta

Mas já sabemos que caráter é esse e que ele não aparece no padrão.

Problema do força bruta

KMP

KMP

- Criado por Donald Knuth, James Morris e Vaughan Pratt em 1977
- Baseado em uma variação de um diagrama de estados

Vetor de transição == padrão (de eventos)

0	1	2	3	4	5
Α	R	Α	Z	I	Α

Transições de falhas

Transição de falha (baseada nas repetições do prefixo)

Vetor de transição de falha

A	R	A	N	Н	A
0	0	1	0	0	1

Exemplo

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

Exemplo

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 R
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

Exemplo

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 N
 H
 A
 R
 A
 R
 A
 R
 A
 R
 A
 R
 A
 A
 A
 A
 R
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 R
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 0
 1
 2
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 R
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 0
 1
 2
 3
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 R
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 0
 1
 2
 3
 4
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 N
 H
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 0
 1
 2
 3
 4
 5
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 N
 H
 A
 R
 A
 N
 H
 A
 A
 R
 R
 A

 Estados
 0
 1
 0
 1
 2
 3
 4
 5
 6
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 A
 A
 A
 R
 A
 N
 H
 A
 R
 A
 R
 A
 N
 H
 A
 A
 R
 A

 Estados
 0
 1
 0
 1
 2
 3
 4
 5
 6
 0
 1
 2
 0
 1
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I<

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

 0
 1
 2
 3
 4
 5

 A
 R
 A
 N
 H
 A

 0
 0
 1
 0
 0
 1

Criado por Alfred V. Aho e Margaret J. Corasick em 1975

 Permite a busca de vários padrões simultaneamente

Ex.: HE, SHE, HIS, HERS

• Transições de falha continuam baseadas em prefixos

• Reconhecimento de

HERSHEYS:

0

 Reconhecimento de HERSHEYS:

0

H: 1

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

E: 5 {SHE,HE}

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

E: 5 {SHE,HE}

Y: 2

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

E: 5 {SHE,HE}

Y: 2, 0

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

E: 5 {SHE,HE}

Y: 2, 0, 0

Reconhecimento de

HERSHEYS:

0

H: 1

E: 2 {HE}

R: 8

S: 9 {HERS}

H: 3, 4

E: 5 {SHE,HE}

Y: 2, 0, 0

S: 3

Boyer Moore (1)

Boyer Moore

- Criado por Robert S. Boyer e J. Strother Moore em 1977
- Comparações de caracteres do padrão são feitas da direita para a esquerda
- São feitos dois testes a cada passo:
 - Deslocamento por caráter ruim
 - Deslocamento por sufixo bom
- O deslocamento final será o maior dos dois

Boyer Moore

- Deslocamento por caráter ruim
 - O caráter T do texto que não foi encontrado no padrão deve aparecer em outra posição do padrão (ou não adianta fazer comparações que o envolvam)

Deslocamento por caráter ruim

 Caso 1: o caráter ruim (N) aparece em outra posição do padrão

 Caso 1: o caráter ruim (N) aparece em outra posição do padrão

 Caso 2: o caráter ruim (U) não aparece em nenhuma outra posição do padrão

Н

Α

Ν

Padrão

R

Α

 Caso 2: o caráter ruim (U) não aparece em nenhuma outra posição do padrão

 Caso 2: o caráter ruim (U) não aparece em nenhuma outra posição do padrão

Cálculo

0	1	2	3	4	5
А	R	Α	N	Н	Α

Observar a ocorrência mais à direita de cada caráter, <u>exceto o último</u> e preencher o vetor (abaixo) para todos os símbolos possíveis (do texto):

•••	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	· • • •
	2	-1	-1	-1	-1	-1	-1	4	-1	-1	-1	-1	-1	3	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	•••

Boyer Moore (2)

Boyer Moore

- Deslocamento por sufixo bom
 - Analisa repetição de sufixos no padrão (ao invés de prefixos como no KMP)
 - Se um sufixo (ou parte dele) se repetir no padrão, então o deslocamento é feito para testar essa repetição.

 Caso 1: sufixo (BA) se repete com caráter anterior diferente.

```
C B A D B A D B A
```

 Caso 1: sufixo (BA) se repete com caráter anterior diferente.

 Caso 1: sufixo (BA) se repete com caráter anterior diferente.

```
        C
        B
        A
        D
        B
        A

        C
        B
        A
        D
        B
        A
```

Caso 2: sufixo não se repete com caráter anterior diferente.

```
C A B D B A D B A
```

Caso 2: sufixo não se repete com caráter anterior diferente.

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 B A C B A C B A D B A D B A D B A B A B A B B
```

```
        C
        A
        B
        D
        B
        A
        D
        B
        A

        C
        A
        B
        D
        B
        A
        D
        B
        A
```

Caso 3: parte do sufixo se repete no início do padrão

```
B A B D B A D B A
```

Caso 3: parte do sufixo se repete no início do padrão

Cálculo

Padrão

0							_
G	С	Α	G	Α	G	Α	G

Vetor para cálculo dos deslocamentos por caráter ruim (DCR)

•••	Α	В	С	D	Ε	F	G	Н	•••
•••	6	-1	1	-1	-1	-1	5	-1	•••

Vetor para cálculo dos deslocamentos por sufixo bom (DSB)

0	1	2	3	4	5	6	7
G	С	Α	G	Α	G	Α	G
7	7	7	2	7	4	7	1

... A B C D E F G H .
DCR ... 6 -1 1 -1 -1 5 -1 .

• Teste 1

DSB 0 1 2 3 4 5 6 7 7 7 7 2 7 4 7 1

Caráter ruim: A. Deslocamento: 7 - DCR['A'] = 7 - 6 = 1

Sufixo bom: - Deslocamento: DSB[7] = 1

Melhor deslocamento: 1

DCR ... A B C D E F G H ...

| 6 | -1 | 1 | -1 | -1 | 5 | -1 | ...

Teste 2

DSB 0 1 2 3 4 5 6 7 7 7 7 2 7 4 7 1

Caráter ruim: C. Deslocamento: 5 - DCR['C'] = 5 - 1 = 4

Sufixo bom: - Deslocamento: DSB[5] = 4

Melhor deslocamento: 4

DCR ... A B C D E F G H ...
6 -1 1 -1 -1 5 -1 ...

Teste 3

DSB 0 1 2 3 4 5 6 7 7 7 7 2 7 4 7 1

Padrão encontrado na posição 5 do texto

- Algoritmos buscam reconhecer padrões parecidos, considerando:
 - Erros ortográficos (ex.: atensão)
 - Mesmos fonemas (ex.: paço e passo)
 - Variações ortográficas (ex.: Luiz e Luís)
 - Etc.

- Aplicações:
 - Corretores ortográficos
 - Comparação de DNA
 - Filtragem de SPAM
 - OCR (optical character recognition)

- Distância de edição
 - Mede a diferença entre duas sequências
 - A diferença é dada pelo número de edições (inserções, exclusões e substituições) necessárias para transformar uma sequência em outra.
- Exemplos:
 - Gato → Pato (1 edição)
 - Paço → Passo (2 edições)

- Programação dinâmica
 - Método de solução de problemas por meio da sua decomposição em problemas menores
 - Requisitos:
 - Subestrutura ótima a solução pode ser obtida pela combinação da solução dos subproblemas
 - Sobreposição de subproblemas a solução do problema pode envolver resolver os mesmos subproblemas várias vezes

- Programação dinâmica
 - Exemplo de problema
 - Fibonacci F(n) = F(n-1) + F(n-2)

- Programação dinâmica
 - Solução calcular (e guardar em uma tabela) os valores dos "subproblemas"

F(1)	F(2)	F(3)	F(4)	F(5)
1	1	2	3	5

Distância de Levenshtein (1965)

$$lev_{a,b}(i,j) = \begin{cases} \max(i,j) & se \min(i,j) = 0 \\ \lim_{k=0}^{\infty} \begin{cases} lev_{a,b}(i-1,j) & +1 \\ lev_{a,b}(i,j-1) & +1 \end{cases} & nos \ outros \ casos \\ lev_{a,b}(i-1,j-1) + C \end{cases}$$

em que C=0, se $a_i=b_j$, ou C=1, se $a_i\neq b_j$.

Exemplo 1: CASACO x CASCAO

	C	А	5	А	C	O
0	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						
	1 2 3 4 5	0 1 1 2 3 4 5	0 1 2 1	0 1 2 3 1	0 1 2 3 4 1 2 3 5	0 1 2 3 4 5 1

Exemplo 1: CASACO x CASCAO

		С	Α	S	Α	С	0
	0	1	2	3	4	5	6
С	1	0	1	2	3	4	5
Α	2	1	0	1	2	3	4
S	3	2	1	0	1	2	3
С	4	3	2	1	1	1	2
Α	5	4	3	2	2	2	2
0	6	5	4	3	3	3	2

Exemplo 1: PIGARRO x CIGANO

		Р	ı	G	Α	R	R	0
	0	1	2	3	4	5	6	7
С	1	1	2	3	4	5	6	7
I	2	2	1	2	3	4	5	6
G	3	3	2	1	2	3	4	5
Α	4	4	3	2	1	2	3	4
N	5	5	4	3	2	2	3	4
0	6	6	5	4	3	3	3	3