TIME MANAGEMENT FOR MONTE-CARLO TREE SEARCH

310551059 陳昱丞

310551069 余忠旻

Reference

- "Time Management for Monte-Carlo Tree Search Applied to the Game of Go" Published in 2010.
 - Authors: Shih-Chieh Huang, Rémi Coulom, Shun-Shii Lin
- "Time Management for Monte-Carlo Tree Search in Go" Published in 2011.
 - Authors: Hendrik Baier and Mark H.M. Winands
 - Provided by Maastricht University.

Introduction

- In the game of Go, there is only limited amount of time to think.
- MCTS has the advantage of stopping at any time.
- How much time should we allocate for each move?

Types of strategies

1. Static strategies

Decide about time allocation to all future moves before the start of the game.

2. Semi-dynamic strategies

Determine the computation time for each move before the start of the respective move search.

3. Dynamic strategies

➤ Make "live" timing decisions while the search process is running.

STATIC STRATEGIES

STATIC STRATEGIES: FIXED PLAYOUT

- Idea: assign fixed thinking time to every move.
 - The time for every move is the same.
- Ex: for every move using 100 simulation in MCTS.

STATIC STRATEGIES: BASIC FORMULA

ThinkingTime =
$$\frac{RemaingTime}{C}$$

- Idea: It leads to more thinking time in the begining.
 - RemainingTime: Total usable time left in the whole game.
 - > ThinkingTime: How much time to use in one single move.

STATIC STRATEGIES: ENHANCED FORMULA

ThinkingTime =
$$\frac{RemaingTime}{C + \max(MaxPly - Ply, 0)}$$

- Idea: Use less time in the beginning and use more time in the middle of the game.
 - > Ply: Total moves performed by both players.
 - MaxPly: Constant. Ply = MaxPly is the peak of ThinkingTime.

Comparison between Basic and Enhanced Formula

SEMI-DYNAMIC STRATEGIES

SEMI-DYNAMIC STRATEGIES: EXP (EXPECTED)

ThinkingTime =
$$\frac{RemaingTime}{m_{expected}}$$

- Idea: Like "improved" basic formula in static strategy.
 - RemainingTime: Total usable time left in the whole game.
 - $ightharpoonup m_{expected}$: Estimate remain moves to end game.

SEMI-DYNAMIC STRATEGIES: OPEN (OPENING)

ThinkingTime =
$$f_{opening}$$

RemaingTime

 $m_{expected}$

- Strategy based on EXP.
 - $\rightarrow f_{opening}: > 1$, constant.

SEMI-DYNAMIC STRATEGIES: MID (MEDIUM)

Thinking Time =
$$[1 + f_{Gaussian}(current\ move\ number)] \cdot \frac{Remaing Time}{m_{expected}}$$

- Strategy based on EXP.
 - Like **Enhanced formula** in static strategy but it is a semi-dynamic verison.
- The time is increased by a percentage determined by a Gaussian function over the set of move numbers.

SEMI-DYNAMIC STRATEGIES: KAPPA

- Critical moves have to spend more time.
- Take Chinese Chess for example:

_	game \ m	1	2	3	4	5	6		99	100
	1	k^1	k^2	k^3	k^4	k^5	k ⁶		k ⁹⁹	k^{100}
MCTS	2	k^1	k^2	k^3	k^4	k^5	k^6		k ⁹⁹	k^{100}
game	3	k^1	k^2	k^3	k^4	k^5	k^6		k ⁹⁹	k^{100}
Same										
	1000	k^1	k^2	k^3	k^4	k^5	k^6	:	k ⁹⁹	k^{100}
		k_{avg}^1	k_{avg}^2	k_{avg}^3	k_{avg}^4	k_{avg}^5	k_{avg}^6		k_{avg}^{99}	k_{avg}^{100}

criticality rate

KAPPA

- ullet k_{avg}^1 , k_{avg}^2 , k_{avg}^3 , k_{avg}^4 , k_{avg}^5 ... k_{avg}^{100}
- Store all k in a database.
- We have to spend more time on m when it has higher k.
- "Precompute" time allocated (from database) before every game was playing.

KAPPA - IDENTIFY CRITICALITY

In one MCTS game:

m = 60

KAPPA - IDENTIFY CRITICALITY

simulate until end game

7

DYNAMIC STRATEGIES

DYNAMIC STRATEGIES: BEHIND (THINK LONGER WHEN BEHIND)

- Idea: After the regular search, but the win rate of the best move is lower than a threshold (ex: win rate < 0.5).
 - We can use more time to think longer (ex: +30% of ThinkingTime).
- We can trigger it N times.
 - \rightarrow If N = 1, we call it **BEHIND-1**.
 - ▶ If N > 1, we call it BEHIND-N.

DYNAMIC STRATEGIES: UNST (UNSTABLE)

- Idea: After the regular search, if the most-visited move doesn't match the highest-valued (win rate) move, then we can think longer.
 - Maybe a better move had just been discovered.
- We can trigger it N times.
 - If N=1, we call it UNST-1.
 - ▶ If N>1, we call it UNST-N.

DYNAMIC STRATEGIES: CLOSE

- Idea: After the regular search, but the most-visited move and the second-most-visited move are "close", then we can think longer.
- We can trigger it N times.
 - ▶ If N=1, we call it CLOSE-1.
 - ▶ If N>1, we call it CLOSE-N.

DYNAMIC STRATEGIES: EARLY

- Idea: Terminating the search process as early as possible when the best move cannot change anymore.
 - When the difference between the most-visited move and the second-most-visited move is large, then we can terminate the search process.
- EARLY-A EARLY-B EARLY-C are strategies based on the idea of EARLY.

EARLY-A

planned search time T

Step 1:

- Calculate playout count per second.
- We use this to estimate how many times of playout [n] we can do
 in given remaining time [t].

EARLY-A

planned search time T

- In regular intervals (ex: 50 playouts), check 1st best move and 2nd best move.
- If total remaining expected playout all given to 2nd, and 2nd still can't pass 1st,
 then exit safely.

EARLY-A

For example:

In a certain interval:

1st visit count: 10000

2nd visit count: 4000

and we have expected 5000 playout left.

If all 5000 visits 2nd, then 2nd has 9000. We still selected 1st.

So we don't have to do the remaining 5000 playout.

EARLY-B

```
For example:
```

Origin:

```
total time = time limit = 40(s)
```

We expected that EARLY-A can save 1/5 of time.

 $f_{early exit}$

So we set total time = 40*(5/4) = 50(s)

If EARLY-A works as expected, we will spend 50*(4/5) = 40(s)

still meets the time limit.

EARLY-C

In general, not all remaining will visit 2^{nd} . So we estimate a proportion $p_{early exit}$

For example:

In a certain interval:

1st visit count: 10000

2nd visit count: 4000

and we have expected 9000 playout left, and $p_{earlyexit} = 0.25$

If $9000^{\circ}0.25 = 2250$ visits 2^{nd} , then 2^{nd} has 6250. We still selected 1^{st} .

So we don't have to do the remaining 9000 playout.

EXPERIMENT

CASE1: ERICA-BASELINE

- Erica-Baseline: Use Enhanced formula with BEHIND-1 and UNST-1.
 - Combine static strategy and dynamic strategy.

```
Algorithm 1 Think Longer When Behind
  ThinkingTime ← AllocateThinkingTime()
                                                          Enhanced formula
  Think(ThinkingTime)
  if Root.UCTmean < T then
    Think(P \times ThinkingTime)
                                                          Think-Longer-When-Behind
  end if
  if MostVisitedMove is not HighestValueMove then
    Think(ThinkingTime/2)
                                                          Unstable-Evaluation
  end if
                                                                                30
  Play(MostVisitedMove)
```

CASE1: ERICA-BASELINE

Table 1. Performance of Erica's time management according to [13].

Player	Win rate against GNU Go	95% conf. int.
Basic formula	28.6%	27.3% - 29.9%
Enhanced formula	31.4%	30.1% – 32.7%
ERICA-BASELINE	34.3%	33.0% – 35.7%

CASE2: SEMI-DYNAMIC STRATEGIES

Player	Win rate against GNU Go	95% conf. int.
EXP-STONES	25.5%	24.3% - 26.7%
EXP-STONES with OPEN	32.0%	30.8%-33.4%
EXP-STONES with MID	30.6%	29.3%-31.9%
EXP-STONES with KAPPA-EXP	31.7%	30.5% - 33.0%
EXP-STONES with KAPPA-LM	31.1%	29.9%-32.4%
ERICA-BASELINE	34.3%	33.0%-35.7%

EXP-STONES computes $m_{expected}$ by total number of stones in current board.

CASE3: DYNAMIC STRATEGIES

- Strategies based on EXP.
 - Combine dynamic strategy with EXP.

Player	Win rate against GNU Go	95% conf. int.
EXP-STONES with BEHIND	25.6%	24.4%-26.9%
EXP-STONES with UNST-1	33.6%	32.3%-34.9%
EXP-STONES with UNST-N	35.8%	34.4%-37.1%
EXP-STONES with CLOSE-1	32.6%	31.3%-33.9%
EXP-STONES with CLOSE-N	36.5%	35.2%-37.9%
EXP-STONES with EARLY-A	25.3%	24.1% - 26.5%
EXP-STONES with EARLY-B	36.7%	35.4%-38.0%
EXP-STONES with EARLY-C	39.1%	38.0%-40.8%
EXP-STONES	25.5%	24.3% - 26.7%
ERICA-BASELINE	34.3%	33.0%-35.7%

PONDERING

- Using Opponent's time.
- Standard Pondering.
 - At opponent's turn, keep thinking until my turn.
 - Re-use subtree of the opponent's played move.
- Focused Pondering.
 - Only search for N best moves.
 - If the opponent's played move is among the selected moves, then reduce ThinkingTime.