PMT Revision (Week 10)

Nicholas Sim

March 15th, 2018

1 Logic

[See handout: C140 2016 Q1c]

2 Relations

- 1. [C142 2015 Q1d.v] Let $R \subseteq A^2$. Prove that if R is symmetric, then $R \circ R$ is also symmetric.
- 2. [C142 2005 Q2b.ii] Let R be a binary relation on the natural numbers defined by xRy if and only if y = 2x. Describe the transitive closure of R.
- 3. [C142 2005 Q2b.iii] A binary relation R is antisymmetric if and only if $(a,b) \in R$ and $(b,a) \in R$ implies a=b. How many binary relations on $A=\{1,2,3,4\}$ are both symmetric and antisymmetric? Justify your answer.

[Bonus: What about an arbitrary set?]

3 Functions

[C142 2002 Q1c] Let $f:A\to B$ and $g:B\to C$ be functions. Prove the following (otherwise give a counterexample):

- 1. f surjective implies $g \circ f$ surjective;
- 2. $g \circ f$ injective implies f injective;
- 3. $g \circ f$ injective implies g injective;
- 4. f, g surjective implies $g \circ f$ surjective.

Note: these solutions are only outlines.

4 Solution to Alternative Elimination

- 1. I would argue that (2-4) are sufficient for $A \to B$. From here, we can use EM to get $A \vee \neg A$, and $\vee E$ to get B.
- 2. First use $\forall I$ to get $A \lor B \lor C$. Assume A to get C then $B \lor C$ (using $\forall I$). Now use $Alt \lor E$ to get $B \lor C$. Use $Alt \lor E$ again to get C.
- 3. Observe that $\forall E$ essentially follows from the previous part. (Say: if we have ..., then get $\vdash^a C$)
- 4. \vdash^a is complete if every valid statement expressed in propositional logic can be proven using only the rules of \vdash^a . It is sound if every statement that can be proven under the system is valid.
- 5. We know from the lectures that \vdash is sound and complete. Since $Alt \lor E$ is a derived rule of \vdash , soundness is preserved (we can't prove anything new, hence nothing invalid). Since $\lor E$ is a derived rule of \vdash ^a, completeness is preserved (we can prove at least the same things that \vdash can).

5 Solutions to Relations

- 1. Suppose that R is symmetric, i.e. $(a,b) \in R \Rightarrow (b,a) \in R$. Recall that $R \circ R = \{(a,c) : (\exists b) ((a,b) \in R \land (b,c) \in R)\}$. Fix $(a,c) \in R \circ R$. To show: $(c,a) \in R \circ R$. But this is clear as $\exists b(a,b), (b,c) \in R$, so $(b,a), (c,b) \in R$ by symmetry, and $(c,a) \in R \circ R$.
- 2. $x\overline{R}y$ if and only if $\exists n \in \mathbb{N}_{>0} : y = 2^n x$.
- 3. R is symmetric if and only if $(b,a) \in R$ whenever $(a,b) \in R$. Let R be both symmetric and antisymmetric. Suppose $(a,b) \in R$. Then $(b,a) \in R$, so a=b. We easily see that the possible relations R are those which only contain pairs of the form (a,a). So 16.

6 Solutions to Functions

- 1. False, let $C = \{0, 1\}$ and g(x) = 0... (write a surjective f and sets)
- 2. We show the contrapositive. Suppose f not injective. Then $\exists a_1, a_2 \in A : f(a_1) = f(a_2) \in B$. Clearly $g(f(a_1)) = g(f(a_2))$ (as g is a well-defined function), so $g \circ f$ is not injective.
- 3. False, let $A = \{0, 1\}, B = \{0, 1, 2\}, C = \{0, 1\}, f = id, g(0) = g(2) = 0, g(1) = 1.$
- 4. Suppose f,g surjective, i.e. $\forall b \in B \exists a \in A: f(a) = b$ and $\forall c \in C \exists b \in B: g(b) = c$. Fix $c \in C$. Want: $\exists a \in A: g(f(a)) = c$. We have $b \in B$ s.t. g(b) = c. Similarly $\exists a \in A: f(a) = b$, which is what was required.