Sistemas Numéricos

Ejercicio de Conteo

Ejercicio 1: Colocar el número anterior y posterior.

a)	11000012	 -	i)	70FF ₁₆	
b)	1001112	 -	j)	ABCDEF ₁₆	
c)	5008		k)	150068	
d)	1767 ₈		l)	2304778	
e)	2FEF9F ₁₆		m)	58EFE ₈	
f)	AE00F ₁₆		n)	3B530 ₁₆	
g)	2768		o)	100110002	
h)	1111001012		p)	1111112	

Ejercicios de Conversiones

Ejercicio 2: Realizar las siguientes conversiones:

a) 218,78 ₁₀ =	()2	k) 70E,C6 ₁₆ =	()10
b) 89,50 ₁₀ =	()2	l) FAD,B1 ₁₆ =	()10
c) 110010,111 ₂ =	()10	m) 4665,15 ₁₀ =	()8
d) 10111000,1101 ₂ =	()10	n) 1000101,1101 ₂ =	()8
e) 146,25 ₁₀ =	()8	o) 630,17 ₈ =	()2
f) 79,23 ₁₀ =	()8	p) 2E0D,C ₁₆ =	()2
g) 103,55 ₈ =	()10	q) 1100001110,11 ₂ =	()16
h) 376,02 ₈ =	()10	r) 730,75 ₈ =	()16
i) 4845,58 ₁₀ =	()16	s) F9D,B5 ₁₆ =	()8
j) 3079,25 ₁₀ =	() 16			

Ejercicio 3: Determinar si son Verdaderas (V) o Falsas (F) y JUSTIFICAR las siguientes equivalencias:

a)
$$32_{10} = 100111_2 = 40_8 = 20_{16}$$

b)
$$200_{10} = 11001000_2 = 310_8 = C8_{16}$$

C)
$$170_{10} = 10101010_2 = 252_8 = AA_{16}$$

d)
$$250_{10} = 1100111010_2 = 3072_8 = EA_{16}$$

e)
$$40875_{10} = 101000111_2 = 507_8 = 28E_{16}$$

g)
$$123_8 = 83_{10} = 1010011_2 = 53_{16}$$

h)
$$2007_8 = 10000000111_2 = 407_{16}$$

i)
$$3156_8 = 101001101110_2 = 15C8_{16}$$

k)
$$70121_8 = 111000001010001_2 = 1C144_{16}$$

f) $99125_{10} = 1101111001_2 = 2431_8 = 632_{16}$

Operaciones Aritméticas

Ejercicio 4: Operaciones básicas:

a)
$$11100111_2 + 11000011_2 =$$
b) $11001_2 + 11100_2 =$
c) $11_2 + 110_2 + 111_2 + 1101_2 =$
c) $11_2 + 110_2 + 111_2 + 1101_2 =$
c) $101110_2 + 10111_2 - 100111_2 =$
c) $1010000 - 101110 =$
c) $10100000 - 101110 =$
c) $101000000 - 101110$

Complementos

<u>Ejercicio 5</u>: Obtener la representación en Complementos de los siguientes números negativos:

Complemento a la base (C _b)	Complemento a la base menos uno (C _{b-1})
a) 10101 ₂ para n=6	e) 11001 ₂ para n=6
b) 1010111 ₂ para n=8	f) 1000111 ₂ para n=8
c) 11100011 ₂ para n=9	g) 110110001 ₂ para n=10
d) 1001001 ₂ para n=8	h) 10000001 ₂ para n=9

Ejercicio 6: Realizar las siguientes operaciones en binario con números representados en complemento a la base:

I- Dados los números: A = 35 ₁₀ y B = 66 ₈	III- Dados los números: A = 111110 ₂ y B = 27 ₁₀
a) Operar A - B para $\mathbf{n} = 7$. Expresar el resultado en \mathbf{b}_{16} .	a) Operar A - B para n = 7. Expresar el resultado en b ₁₀ .
b) Operar B - A para n = 7 . Expresar el resultado en b ₈ .	b) Operar B - A para n = 7 . Expresar el resultado en b ₁₆ .
c) Operar - A - B para n = 8. Expresar el resultado en	c) Operar - A - B para n = 8. Expresar el resultado en b ₈ .
b ₁₀ .	
II- Dados los números: A = 64 ₁₀ y B = 47 ₈	IV- Dados los números A= B4 ₁₆ y B= 160 ₁₀
a) Operar A - B para n = 8. Expresar el resultado en b ₈ .	a) Operar A - B para n = 9. Expresar el resultado en b ₁₀ .
b) Operar B - A para $n = 8$. Expresar el resultado en b_{16} .	b) Operar B - A para n = 9 . Expresar el resultado en b ₁₆ .
c) Operar - A - B para n = 9. Expresar el resultado en	c) Operar - A - B para n = 10. Expresar el resultado en
b ₁₀ .	b ₈ .

SOLUCIONES

Ejercicio de Conteo

Ejercicio 1: Colocar el número anterior y posterior.

a) <u>1100000</u> 2	11000012	<u>1100010</u> ₂	i) <u>70FE₁₆</u>	70FF ₁₆	<u>7100₁₆</u>
b) <u>100110</u> ₂	1001112	101000 ₂	j) ABCDEE ₁₆	ABCDEF ₁₆	ABCDF0 ₁₆
c) <u>477</u> ₈	500 ₈	<u>5018</u>	k) <u>15005</u> 8	15006 ₈	<u>15007</u> 8
d) <u>1766</u> 8	1767 ₈	<u>1770</u> 2	l) <u>230476</u> 8	230477 ₈	230500 ₈
e) <u>2FEF9E₁₆</u>	2FEF9F ₁₆	2FEFA0 ₁₆	m) <u>58EFD₁₆</u>	58EFE ₁₆	58EFF ₁₆
f) <u>AE00E₁₆</u>	AE00F ₁₆	AE010 ₁₆	n) <u>3B52F₁₆</u>	3B530 ₈	3B531 ₁₆
g) <u>266</u> 8	267 ₈	<u>2708</u>	o) <u>10010111</u> 2	10011000 ₂	<u>10011001</u> ₂
h) <u>111100110</u> ₂	111100111 ₂	111101000 ₂	p) <u>111110</u> ₂	1111112	1000000 ₂

Ejercicios de Conversiones

<u>Ejercicio 2</u>: Realizar las siguientes conversiones:

```
a) 218.78_{10} = 11011010.1100_2
                                                             b) 89.50_{10} = 1011001.1_2
   218/ 2
                                    0.78 \times 2 = 1.56
                                                                 89/ 2
                                                                                                 0.50 \times 2 = 1.00
     0 109/2
                                   0,56 \times 2 = 1,12
                                                                  1 44/ 2
                                    0.12 \times 2 = 0.24
                                                                     0 22/2
         1 54 /2
              0 27/ 2
                                    0.24 \times 2 = 0.48
                                                                          0 11/ 2
                  1 13 /2
                                                                             1 5/2
                      1 6/ 2
                                                                                  1 2/2
                          0 3/2
                                                                                     0 1
                                                                 R = 1011001,1_2
                              1 1
   R = 11011010,1100..._2
c) 110010,111_2 = 50,875_{10}
                                                                               n) 1000101,1101<sub>2</sub> = 105,64<sub>8</sub>
    1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}
                                                                                   001 000 101, 110 1002
    1x 32 + 1x16 + 0 x 8 + 0 x 4 + 1 x 2 + 0 x 1 + 0,50 + 0,25 + 0,125
                                                                                    1 0 5, 6 48
     32 + 16 + 0 + 0 + 2 + 0 + 0,50 + 0,25 + 0,125
   R = 50,875_{10}
d) 10111000.1101_2 = 184.8125_{10}
        1x 2^{7} + 0x 2^{6} + 1 x 2^{5} + 1 x 2^{4} + 1 x 2^{3} + 0 x 2^{2} + 0x2^{1} + 0x 2^{0} + 1x 2^{-1} + 1x 2^{2} + 0 x 2^{-3} + 1x2^{-4}
        1x128 + 0x64 + 1x32 + 1x16 + 1x8 + 0x4 + 0x20x1 + 1x0,50 + 1x0,25 + 0x0,125 + 1x1x0,0625
          128 + 0 + 32 + 16 + 8 + 0 + 0 + 0 + 0,50 + 0,25 + 0 + 0,0625
   R = 184,8125_{10}
e) 146,25_{10} = 222,2_8
                                                             f) 79,23_{10} = 117,1656_8
    146/8
                                        0,25 \times 8 =
                                                                79/8
                                                                                                   0.23 \times 8 = 1.84
    2,00
                                                                7 9 /8
                                                                                                   0.84 \times 8 = 6.72
      2
           18/ 8
                                                                    1 1
                                                                                                   0.72 \times 8 = 5.76
             2 2
                                                                                                   0.76 \times 8 = 6.08
   R = 222,28
                                                                R = 117,1656_8
```

```
g) 103,558 = 67,703125_{10}
                                                                h) 376,02_8 = (254,03...)_{10}
         1 \times 8^{2} + 0 \times 8^{1} + 3 \times 8^{0} + 5 \times 8^{-1} + 5 \times 8^{-2}
                                                                      3 \times 8^{2} + 7 \times 8^{1} + 6 \times 8^{0} + 0 \times 8^{-1} + 2 \times 8^{-2}
                                                                      3 \times 64 + 7 \times 8 + 6 \times 1 + 0 \times 1/8 + 2 \times 1/64
         1x 64 + 0 x 8 + 3 x 1 + 5 x 1/8 + 5 x 1/64
           64 + 0 +
                                3 + 5/8 + 5/64
                                                                      192 + 56
                                                                                             6
                                                                                                          0
                                                                                                                  + 2/64
                                                                      254 + 0.03
   R = 67,703125_{10}
                                                                   R = 254,03..._{10}
i) 4845, 58_{10} = (12ED, 947AE...)_{16}
                                                               j) 3079,25_{10} = C07,4_{16}
    4845/ 16
                                                                                                         0.25 \times 16 =
                                       0,58 \times 16 =
                                                                   3079/ 16
9,28
                                                               4,00
       13 302/ 16.
                                       0.28 \times 16 =
                                                                       7 192/ 16
    4,48
                                                                             0
                                                                                 12
             14 18/ 16
                                       0.48 \times 16 =
                                                               R = C07.4_{16}
7,68
                    2
                                       0.68 \times 16 =
                          1
10,88
                                        0.88 \times 16 =
14,08
   R = 12ED,947AE_{16}...
k) 70E, C6_{16} = 1806,77_{10}
                                                               I) FAD, B1_{16} = 4013,69_{10}
   Se expande el número aplicando la fórmula general de
                                                                F \times 16^{2} + A \times 16^{1} + D \times 16^{0} + B \times 16^{-1} + 1 \times 10^{-1}
expansión polinómica.
                                                                16<sup>-2</sup>
7 \times 16^{2} + 0 \times 16^{1} + E \times 16^{0} + C \times 16^{-1} + 6 \times 10^{-1}
                                                                15 \times 256 + 10 \times 16 + 13 \times 1 + 11 \times 1/16 + 1 \times 1
16-2
                                                                1/256
7 \times 256 + 0 \times 16 + 14 \times 1 + 12 \times 1/16 + 6 \times 1
                                                                3840 +
                                                                              160
                                                                                             13
                                                                                                         11/16 + 1/256
1/256
                                                                4013 + 0.69
1792 +
                            14
                                        12/16
                                                + 6/256
1806 +
              3/4
                      + 3/128
1806 +
            99/128
                                                                R = 4013,69_{10}
R = 1806,77_{10}
m) 4665,15_{10} = 11071,11_8
                                                               o) 630, 17_8 = 110011000,001111_2
                                                                   Reemplazamos cada dígito octal por la terna binaria
      4665/8
                                          0,15 \times 8 = 1,2
                                                               correspondiente, respetando el lugar de la coma.
                                          0.2 \times 8 = 1.6
        1 583/8
                                                                                               0,
                                                                                6
                                                                                        3
              7 72/8
                                                                                              000, 001 111
                                                                               110
                                                                                       011
                  0 9/8
                                                                R = 110011000,001111_2
    R = 11071,118...
p) 2E0D,C_{16} = \overline{0010111000001101,1100_2}
                                                               q) 1100001110, 11_2 = 30E, C_{16}
   Reemplazamos cada dígito hexadecimal por la "cuarteta" binaria
                                                                   Separamos en cuartetas binarias (4 bits), de la coma hacia la izg.
                                                                para la parte entera y hacia la der. para la parte fraccionaria,
correspondiente, respetando el lugar de la coma.
                                                               completando con ceros las cuartetas de los extremos si quedasen
                2
                        Ε
                                 0
                                         D
                                                               incompletas.
              0010 1110
                               0000 1101, 1100
                                                                         0011 0000 1110 , 1100
                                                                                        E , C
                                                                            3
 R = 0010111000001101,1100_2
                                                                   R = 30E, C_{16}
r) 730, 758 = 108, F416
                                                                   F9D, B5_{16} = 7635,24_8
                                                                   Utilizamos el "puente binario", es decir que primero lo pasamos
   Utilizamos el "puente binario", es decir que primero lo
                                                               a binario.
pasamos a binario.
                                                                                  9
                      0,75
                                                                                         D
             7 3
                                                                         1111 1001 1101 , 1011 0101
            111 011 000, 111 101
                                                                   Ahora separamos en ternas, respetando el lugar de la coma y
   Ahora separamos en cuartetas, respetando el lugar de la
                                                                completamos con ceros las ternas de los extremos, si quedasen
coma y completamos con ceros las cuartetas de los extremos, si
                                                                incompletas.
quedasen incompletas.
                                                                          111 110 011 101 , 101 101 010
        0001 1101 1000 , 1111 0100
                                                                           7
                                                                                6
                                                                                        3
                                                                                             5 , 5 5 2
                 D
                         8 , F
                                                                   R = 7635,5528
   R = 1D8,F4_{16}
```

Ejercicio 3: Determinar si son Verdaderas (V) o Falsas (F), las siguientes equivalencias:

a) F

g) V

b) V

h) V

c) V

i) F

d) F

j) F

e) F

k) F

f) F

Operaciones Aritméticas

Ejercicio 4: Operaciones básicas:

a)	11100111 ₂ + <u>11000011₂</u> 110101010 ₂	b)	11001 ₂ + 11100 ₂ 110101 ₂	c)	111010100 ₂ <u>- 101010100₂</u> 10000000 ₂
d)	1010010 ₂ - 1111 ₂ 1000011 ₂	e)	11 ₂ + 110 ₂ 111 ₂ 1101 ₂ 11101 ₂	f)	101110 ₂ + 10111 ₂ 1000101 ₂ - 100111 ₂ 0011110 ₂
g)	1010000 ₂ - <u>101110 ₂</u> 100010 ₂	h)	67 ₈ + 46 ₈ <u>. 11₈</u> 146 ₈	i)	355 ₈ <u>+ 477₈</u> 1054 ₈
j)	65027 ₈ + <u>16345₈</u> 103374 ₈	k)	25037 ₈ - 17060 ₈ 5757 ₈	I)	1006 ₈ - <u>373₈</u> 413 ₈
m)	3456 ₈ - <u>1654₈</u> 1602 ₈	m)	D1B ₁₆ + <u>C79₁₆</u> 1994 ₁₆	n)	E674 ₁₆ + <u>A6C₁₆</u> F0E0 ₁₆
0)	B15C ₁₆ + 4E ₁₆ <u>F9F0</u> ₁₆ 1AB9A ₁₆	p)	B15C ₁₆ _+ 4E ₁₆ B1AA ₁₆		F9F0 ₁₆ - <u>B1AA₁₆</u> 4846 ₁₆
q)	F32 ₁₆ - <u>357</u> ₁₆ BDB ₁₆	r)	190C ₁₆ - <u>A18₁₆</u> EF4 ₁₆	s)	E0009 ₁₆ - <u>ABCD</u> ₁₆ D543C ₁₆

Complementos

Ejercicio 5: Obtener la representación en Complementos de los siguientes nros. negativos:

Complemento a la base (Cb)	Complemento a la base menos uno (C ^{b-1})
a) 10101 ₂ para n=6 (signo y magnitud)	e) 11001 ₂ para n=6 (signo y magnitud)
$\label{eq:metodo directo} \begin{array}{l} \text{m\'etodo directo} \\ \text{C}^{\text{b}} \left(\overline{0} 101012^{\text{)}} = 1010112 \\ \text{(m\'etodo directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{array}$	$\label{eq:metodo directo} \begin{split} \frac{\text{m\'etodo directo}}{C^b\left(\bar{0}11001_2\right)} &= 100110_2\\ \text{(m\'etodo directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{split}$
b) 1010111 ₂ para n=8 (signo y magnitud)	f) 1000111 ₂ para n=8 (signo y magnitud)
$\label{eq:cb} \begin{array}{l} \text{m\'etodo de la formula} \\ C^b \ (1010111_2) = 100000000_2 - 01010111_2 = 10101001_2 \end{array}$	método de la formula $C^b \left(1000111_2\right) = 111111111_2 - 01000111_2 = 10111000_2$
$\label{eq:metodo directo} \begin{split} &\text{m\'etodo directo} \\ &\text{C}^{\text{b}} \left(010101112^{\text{)}} = 101010012 \\ &\text{(m\'etodo directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{split}$	$\label{eq:metodo directo} \begin{split} & \frac{\text{método directo}}{\text{C}^{\text{b}}\left(\bar{0}1000111_{2}\right)} = 10111000_{2} \\ & \left(\text{método directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{split}$
c) 11100011 ₂ para n=9 (signo y magnitud)	g) 110110001 ₂ para n=10 (signo y magnitud)
	método de la formula $C^{b} (110110001_{2}) = 11111111111_{2} - 0110110001_{2}$ $= 1001001110_{2}$
C^b (011100011 ₂) = 100011101 ₂ (método directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)	$\begin{array}{l} \text{m\'etodo directo} \\ \text{C}^{\text{b}}\left(\bar{0}110110001_{2}\right) = 10010011110_{2} \\ \text{(m\'etodo directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{array}$
d) 1001001 ₂ para n=8 (signo y magnitud)	h) 10000001 ₂ para n=9 ₂ (signo y magnitud)
método directo $C^b (01001001_2) = 10110111_2$	= 1011111102
(método directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)	$\begin{array}{l} \text{m\'etodo directo} \\ \text{C}^{\text{b}}\left(\bar{0}10000001_{2}\right) = 1011111110_{2} \\ \text{(m\'etodo directo: ubicamos el último uno al final de la cadena, a partir del mismo hacia la izquierda cambiamos 0x1 y 1x0)} \end{array}$

Ejercicio 6: Operaciones en binario con números representados en complemento y conversiones:

I- Dados los números: A =35₁₀ y B = 66₈

II- Dados los números: $A = 64_{10} y B = 47_8$

	Conversión de b ₁₀ a b ₂	Conversión de b ₈ a b ₂
64: 2 0 32: 2 0		4 7 8
16: 2 0	$A = 1000000_2$	\downarrow \downarrow
8: 2 0 4: 2 0		100 111 ₂
2:2 0		B = 100111 ₂
1		

a) A – B para n=8

A - B = A + CbB

C ^b **B** (00100111₂)= 11011001₂

Α

 $O10000002 \underline{010000002}$

C^b **B** 11011001₂ 100011001₂

(resultado positivo, signo=0)

 $R = 31_8$

b) B - A para n=8

 $B - A = B + C^b A$

 $C^{b}A(01000000_{2})=11000000_{2}$

B 00100111₂

C^b A <u>11000000</u>₂ 11100111₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

 $C^{b}R(11100111_{2}) = 00011001_{2}$

 $R = -19_{16} 2A_{16}$

c) - A - B para n=9

- A - B = C b A + C b B

 $C^b A (001000000_2) = 1110000000_2$

C ^b **B** (000100111₂)= 111011001₂

C b A

 $111000000_2 \underline{11000000_2}$

C b B 111011001₂

4100011001₂**41**10011001₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

C^b R (100011001₂) = 011100111₂ 110011001₂) = 001100111₂

 $R = -231_{10}103_{10}$

III- Dados los números: A = 111110₂ y B = 27₁₀

 $A = 111110_2$

27: 2 | **1**0

13: 2 | **1** 6: 2 | **0**

3: 2 | 1

1

Conversión de b₁₀ a b₂

B =

a) A - B para n=7

 $A - B = A + C^bB$

C ^b **B** (0011011₂)= 1100101₂ **C** ^b **B** (0011010₂)= 1100110₂

A 0111110₂

C b B 1100101211001102

40100011₂40100100₂

(resultado positivo, signo=0)

 $R = 35_{10} \frac{36_{10}}{}$

b) B – A para n=7

 $B - A = B + C^b A$

 $C^{b}A(0111110_{2})=1000010_{2}$

B 0011011₂0011010₂

C b **A** 1000010₂

1011101₂1011100₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

 $C^{b} R (1011101_{2}) =$

 $0100011_2 1011100_2 = 0100100_2$

 $R = -23_{16}44_{8}$

c) - A - B para n=8

 $-A-B=C^bA+C^bB$

 $C^{b}A(001111110_{2})=11000010_{2}$

 $C^{b}B(00011010_{2})=$ 11100101₂11100110₂

C b A 11000010₂

+

C^b **B** 11100101₂11100110₂

410100111₂**41**0101000₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

C b R (101001112) =

 $01011001_210101000_2$ = 01011000_2

 $R = -131_858_{16}$

IV) Dados los números A= B4₁₆ y B= 160₁₀

$$A = B \quad 4_{16}$$
 $\downarrow \quad \downarrow$
 $\downarrow \quad \downarrow$
 $1011 \quad 0100_2$

 $A = 10110100_2$

80: 2 | **0** 40: 2 | **0** 20: 2 | **0**

10: 2 | **0** 5: 2 | **1** 2: 2 | **0**

1

Conversión de b₁₀ a b₂

 $B = 10100000_2$

 $A - B = A + C^b B$

 $C^{b}B(\overline{0}10100000_{2})=101100000_{2}$

A 010110100₂

C b B 101100000₂ 4000010100₂ (resultado positivo, signo=0)

 $R = 20_{10}$

b) B - A para n=9

B - A = B + C b A

 $C^b A (010110100_2) = 101001100_2$

B 01010000₂

C b **A** 101001100₂ 111101100₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

 $C^{b}R(111101100_{2}) = 000010100_{2}$

$$R = -14_{16}$$

c) - A - B para n=10

 $C^b A (0010110100_2) = 1101001100_2$

 $C^{b}B(001010000_{2})=1101100000_{2}$

 $\pmb{C}^{\, b} \, \pmb{A} \quad 1101001100_2$

C b **B** 1101100000₂ 11010101100₂

(resultado negativo, signo=1)

Como el resultado es negativo hay que complementarlo:

C b R (1010101100₂)=

01010101002

 $R = -524_8$

Codificación

Ejercicio 1: Codificar en BCD Natural (8-4-2-1), BCD AIKEN (2-4-2-1) y BCD Exceso de Tres (XS3), el siguiente número: 6903,18(10)

	Código					
Símbolo decimal	BCD 8-4-2-1	XS-3	AIKEN			
0	0000	0011	0000			
1	0001	0100	0001			
2	0010	0101	0010			
3	0011	0110	0011			
4	0100	0111	0100			
5	0101	1000	1011			
6	0110	1001	1100			
7	0111	1010	1101			
8	1000	1011	1110			
9	1001	1100	1111			

Ejercicio 2: Codificar en ASCII (binario y hexadecimal) según la tabla de la guía.

Nº Cliente	Nombre	Saldo	Fecha Vto	
074893216	MEDINA JULIO CESAR	01355600	30/06/01	

Ejercicio 3: Decodifique los siguientes códigos:

de BCD Natural a Decimal: 0100 1000 1001,0000 0011

• de BCD XS3 a Decimal: 0101 1100 0011,1011 1010

• de BCD Aiken a Decimal: 1111 0010 1110,1100 0100

de ASCII a Decimal y Alfabeto Español:

01000001**(41)**01000011**(43)** 01001111**(4F)** 00100000 **(20)**00110010

(32)00110000**(30)**00110001**(31)**00111001**(39)**

Tabla de códigos ASCII - Formato de caracteres estándares

ASCII	Hex	Símbolo	ASCII	Hex	Símbolo	ASCII	Hex	Símbolo	ASCII	Hex	Símbolo
0	0	NUL	16	10	DLE	32	20	(espacio)	48	30	0
1	1	SOH	17	11	DC1	33	21	!	49	31	1
2	2	STX	18	12	DC2	34	22	"	50	32	2
3	3	ETX	19	13	DC3	35	23	#	51	33	3
4	4	EOT	20	14	DC4	36	24	\$	52	34	4
5	5	ENQ	21	15	NAK	37	25	0/0	53	35	5
6	6	ACK	22	16	SYN	38	26	&	54	36	6
7	7	BEL	23	17	ETB	39	27	•	55	37	7
8	8	BS	24	18	CAN	40	28	(56	38	8
9	9	TAB	25	19	EM	41	29)	57	39	9
10	Α	LF	26	1A	SUB	42	2A	*	58	3A	:
11	В	VT	27	1B	ESC	43	2B	+	59	3B	;
12	C	FF	28	1C	FS	44	2C	,	60	3C	<
13	D	CR	29	1D	GS	45	2D	-	61	3D	=
14	E	SO	30	1E	RS	46	2E		62	3E	>
15	F	SI	31	1F	US	47	2F	/	63	3F	5
_		Símbolo			Símbolo			Símbolo			Símbolo
64	40	<u>@</u>	80	50	P	96	60	``	112	70	p
64 65	40 41	@ A	80 81	50 51	P Q	96 97	60 61	à	112 113	70 71	р q
64 65 66	40 41 42	@ A B	80 81 82	50 51 52	P Q R	96 97 98	60 61 62	a b	112 113 114	70 71 72	р q r
64 65 66 67	40 41 42 43	@ A B C	80 81 82 83	50 51 52 53	P Q R S	96 97 98 99	60 61 62 63	a b c	112 113 114 115	70 71 72 73	p q r s
64 65 66 67 68	40 41 42 43 44	@ A B C D	80 81 82 83 84	50 51 52 53 54	P Q R S T	96 97 98 99 100	60 61 62 63 64	a b c d	112 113 114 115 116	70 71 72 73 74	p q r s t
64 65 66 67 68 69	40 41 42 43 44 45	@ A B C D E	80 81 82 83 84 85	50 51 52 53 54 55	P Q R S T	96 97 98 99 100 101	60 61 62 63 64 65	a b c d e	112 113 114 115 116 117	70 71 72 73 74 75	p q r s t
64 65 66 67 68 69 70	40 41 42 43 44 45 46	@ A B C D E F	80 81 82 83 84 85 86	50 51 52 53 54 55 56	P Q R S T U	96 97 98 99 100 101 102	60 61 62 63 64 65 66	a b c d e f	112 113 114 115 116 117 118	70 71 72 73 74 75 76	p q r s t u
64 65 66 67 68 69 70 71	40 41 42 43 44 45 46 47	@ A B C D E F G	80 81 82 83 84 85 86 87	50 51 52 53 54 55 56 57	P Q R S T U V	96 97 98 99 100 101 102 103	60 61 62 63 64 65 66 67	a b c d e f	112 113 114 115 116 117 118 119	70 71 72 73 74 75 76 77	P q r s t u v
64 65 66 67 68 69 70 71 72	40 41 42 43 44 45 46 47 48	@ A B C D E F G H	80 81 82 83 84 85 86 87 88	50 51 52 53 54 55 56 57 58	P Q R S T U V	96 97 98 99 100 101 102 103 104	60 61 62 63 64 65 66 67 68	a b c d e f g h	112 113 114 115 116 117 118 119 120	70 71 72 73 74 75 76 77 78	p q r s t u v w
64 65 66 67 68 69 70 71 72 73	40 41 42 43 44 45 46 47 48 49	@ A B C D E F G H I	80 81 82 83 84 85 86 87 88 89	50 51 52 53 54 55 56 57 58 59	P Q R S T U V W X	96 97 98 99 100 101 102 103 104 105	60 61 62 63 64 65 66 67 68 69	a b c d e f g h	112 113 114 115 116 117 118 119 120 121	70 71 72 73 74 75 76 77 78 79	P q r s t u v w x
64 65 66 67 68 69 70 71 72 73 74	40 41 42 43 44 45 46 47 48 49 4A	@ A B C D E F G H I	80 81 82 83 84 85 86 87 88	50 51 52 53 54 55 56 57 58 59 5A	P Q R S T U V	96 97 98 99 100 101 102 103 104	60 61 62 63 64 65 66 67 68 69 6A	a b c d e f g h i	112 113 114 115 116 117 118 119 120 121 122	70 71 72 73 74 75 76 77 78 79 7A	P q r s t u v w x
64 65 66 67 68 69 70 71 72 73	40 41 42 43 44 45 46 47 48 49	@ A B C D E F G H I J K	80 81 82 83 84 85 86 87 88 89 90	50 51 52 53 54 55 56 57 58 59	P Q R S T U V W X	96 97 98 99 100 101 102 103 104 105 106	60 61 62 63 64 65 66 67 68 69	a b c d e f g h	112 113 114 115 116 117 118 119 120 121	70 71 72 73 74 75 76 77 78 79	P q r s t u v w x
64 65 66 67 68 69 70 71 72 73 74 75	40 41 42 43 44 45 46 47 48 49 4A 4B	@ A B C D E F G H I	80 81 82 83 84 85 86 87 88 89 90 91	50 51 52 53 54 55 56 57 58 59 5A 5B	P Q R S T U V W X	96 97 98 99 100 101 102 103 104 105 106 107	60 61 62 63 64 65 66 67 68 69 6A 6B	a b c d e f g h i j k	112 113 114 115 116 117 118 119 120 121 122 123	70 71 72 73 74 75 76 77 78 79 7A 7B	p q r s t u v w x y z {
64 65 66 67 68 69 70 71 72 73 74 75 76	40 41 42 43 44 45 46 47 48 49 4A 4B 4C	@ A B C D E F G H I K L	80 81 82 83 84 85 86 87 88 89 90 91 92	50 51 52 53 54 55 56 57 58 59 5A 5B 5C	P Q R S T U V W X	96 97 98 99 100 101 102 103 104 105 106 107 108	60 61 62 63 64 65 66 67 68 69 6A 6B	a b c d e f g h i j k l	112 113 114 115 116 117 118 119 120 121 122 123 124	70 71 72 73 74 75 76 77 78 79 7A 7B 7C	P q r s t u v w x
64 65 66 67 68 69 70 71 72 73 74 75 76 77	40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D	@ A B C D E F G H I J K L M	80 81 82 83 84 85 86 87 88 89 90 91 92 93	50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D	P Q R S T U V W X Y Z [\ \]	96 97 98 99 100 101 102 103 104 105 106 107 108 109	60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D	a b c d e f g h i j k l m	112 113 114 115 116 117 118 119 120 121 122 123 124 125	70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D	P q r s t u v w x y z {

SOLUCIONES:

Ejercicio 1: Codificar en BCD Natural (8-4-2-1), BCD AIKEN (2-4-2-1) y BCD Exceso de Tres (XS3), el siguiente número: 6903,18(10)

Nro.Decimal	BCD Natural (8-4-2-1)	BCD AIKEN (2-4-2-1)	BCD Exceso de Tres (XS3)
6903,18	0110100100000011,00011000	1100111100000011,00011110	1001110000110110,01001011

Ejercicio 2: Codificar en ASCII (binario y hexadecimal) según la tabla adjunta en la guía.

Nº Cliente 0 7 4 8 9 3 2 1 6		Nombre MEDINA JULIO CESAR			Saldo	Fecha \	Fecha Vto	
					01355600		30/06/01	
Respuestas:								
			00111000 (38	00111001	(39) 00110010 (32	2)		
00110001 (31)	00110110 (36	5)						
0	7	4	8	9	2	1	6	
01001101 (4D)	01000101 (45	5) 01000100 (44) 0	01001001 (49) 0	1001110 (4)	E) 01000001 (41) 0	00100000(20)		
M	Е	D	I	N	Α	blanco		
01001010 (4A)	01010101 (5 5	5)01011100(4C)	01001001(49)	01001111 (4	4F) 01000000 (2 0	0)		
J	U	L	I	0	blanco			
01000011 (43)	0100101 (45)	01010011 (53) 01	000001 (41) 01	010010 (52)			
С	E	S	Α	R				
01010000(30)	01010001(3	1) 01010011 (33)	00110101 (35)	00110101 (3	35) 00110110 (36)	00110000(30)		
00110000(30)				•		, ,		
0	1	3	5	5	6	0	0	
00110011(33)	00110000(30	0) 00110000 (30)	00110110(36	00110000	(30) 00110001 (3	31)		
3	0	0	6	0	1	•	•	

Ejercicio 3: Decodifique los siguientes códigos:

1) de BCD Natural a Decimal: 010010001001,00000011

2) de BCD XS3 a Decimal: 010111000011,10111010

3) de BCD Aiken a Decimal: 111100101110,11000100

4) de ASCII8 a Decimal y Alfabeto Español:

01000001(**41**)01000011(**43**) 01001111(**4F**) 00100000 (**20**)00110010 (**32**)00110000(**30**)00110001(**31**)00110110(**36**)

Respuestas:

- 1) 489,03 10
- 2) 290,87 10
- 3) 928,64 10
- 4) ACO 2018