5. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

4. Dezember 2020

Abgabe bis 11. Dezember 2020, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 47 des Vorlesungsskripts behandelt.

Aufgabe 17 (K):

Untersuchen Sie die folgenden Reihen auf Konvergenz, absolute Konvergenz und Divergenz:

(iii)
$$\sum_{n=1}^{\infty} \frac{\frac{\kappa}{5^n}}{\frac{(2n)!}{(3n)^n n!}}$$

(ii)
$$\sum_{\substack{n=3\\ \infty}} (-1)^{n+1} \frac{\sqrt{n+1}}{n}$$
,

(ii)
$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n},$$
(iv)
$$\sum_{n=1}^{\infty} (1 + (-1)^n)^n \left(\frac{n+3}{4n}\right)^n.$$

Aufgabe 18:

(i) Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n n^2 + n}{n^3 + 1},$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(1 + \frac{(-1)^n}{n}\right)^{n^2}$$
.

(ii) Es sei (a_n) eine Folge mit $|a_n| > 0$ für alle $n \in \mathbb{N}$. Dann kann man zeigen, dass folgende Ungleichungskette gilt:

$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \le \liminf_{n \to \infty} \sqrt[n]{|a_n|} \le \limsup_{n \to \infty} \sqrt[n]{|a_n|} \le \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \tag{1}$$

Zeigen Sie unter Verwendung von (1), dass gilt:

$$\frac{n}{\sqrt[n]{n!}} \to e \quad (n \to \infty).$$

Aufgabe 19 (K):

- (i) Bestimmen Sie das Cauchyprodukt der Reihen $\sum_{n=0}^{\infty} 3^{-n}$ und $\sum_{n=0}^{\infty} 5^{-n}$ und berechnen Sie dessen Reihenwert.
- (ii) Die Folge $(a_n)_{n=0}^{\infty}$ sei definiert durch $a_0 := 0$ und $a_n := \frac{(-1)^n}{\sqrt{n}}$ für alle $n \in \mathbb{N}$.
 - (a) Zeigen Sie die Konvergenz der Reihe $\sum_{n=0}^{\infty} a_n$.
 - (b) Zeigen Sie die Divergenz des Cauchyprodukts von $\sum_{n=0}^{\infty} a_n$ mit sich selbst. Begründen Sie, warum dies nicht dem Satz über die Konvergenz des Cauchyprodukts widerspricht.

Aufgabe 20:

(i) Zeigen Sie, dass das Cauchyprodukt der beiden divergenten Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ mit $a_0 :=$ -1, $a_n := 1$ $(n \in \mathbb{N})$ und $b_0 := 2$, $b_n := 2^n$ $(n \in \mathbb{N})$ absolut konvergiert.

(ii) Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen sowie die Menge aller $x \in \mathbb{R}$, in denen die Potenzreihe konvergiert.

(a)
$$\sum_{n=0}^{\infty} \frac{n}{2^n} x^{n^2},$$

(b)
$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n!} \frac{1}{k} \right) x^n.$$

 $\mathit{Hinweis}\ zu\ (b)\colon \mathbf{Zeigen}\ \mathsf{Sie}\ \mathsf{zun\"{a}chst}\ \sum_{k=1}^{n!}\frac{1}{k}\leq n^2.$

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs **Höhere Mathematik I (Analysis) für die Fachrichtung Informatik** bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

https://ilias.studium.kit.edu/goto.php?target=crs_1253943_rcodeHa6wkYEysN&client_id=produktiv

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 9-10 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten. Das kommende Übungsblatt wird den Vorlesungsstoff bis einschließlich Seite 58 beinhalten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal.