Data Visualization and Pre-processing Assignment -2

Assignment Date	26 September 2022
Team ID	PNTIBMBI49
Project Name	AI BASED POWERED NUTRION ANALYZER FOR
	FITNESS ENTHUSIASTS
Student Name	NADAVALA SASI VADHAN
Student Roll Number	110119106020
Maximum Marks	2 Marks

Question-1.Download dataset

Solution:

RowNumb	Customer Surname	CreditScor Geograph	Gender	Age	Tenure	Balance	NumOfPrc Has	CrCard IsAd	tiveM	Estimated Exit	ed
1	15634602 Hargrave	619 France	Female	42	2	0	1	1	1	101348.9	1
2	15647311 Hill	608 Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3	15619304 Onio	502 France	Female	42	8	159660.8	3	1	0	113931.6	1
4	15701354 Boni	699 France	Female	39	1	0	2	0	0	93826.63	0
5	15737888 Mitchell	850 Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6	15574012 Chu	645 Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531 Bartlett	822 France	Male	50	7	0	2	1	1	10062.8	0
8	15656148 Obinna	376 Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365 He	501 France	Male	44	4	142051.1	. 2	0	1	74940.5	0
10	15592389 H?	684 France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821 Bearce	528 France	Male	31	6	102016.7	2	0	0	80181.12	0
12	15737173 Andrews	497 Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264 Kay	476 France	Female	34	10	0	2	1	0	26260.98	0
14	15691483 Chin	549 France	Female	25	5	0	2	0	0	190857.8	0
15	15600882 Scott	635 Spain	Female	35	7	0	2	1	1	65951.65	0
16	15643966 Goforth	616 Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452 Romeo	653 Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18	15788218 Henderso	549 Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507 Muldrow	587 Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982 Hao	726 France	Female	24	6	0	2	1	1	54724.03	0
21	15577657 McDonal	d 732 France	Male	41	8	0	2	1	1	170886.2	0
22	15597945 Dellucci	636 Spain	Female	32	8	0	2	1	0	138555.5	0
23	15699309 Gerasimo	510 Spain	Female	38	4	0	1	1	0	118913.5	1
24	15725737 Mosman	669 France	Male	46	3	0	2	0	1	8487.75	0
25	15625047 Yen	846 France	Female	38	5	0	1	1	1	187616.2	0
26	15738191 Maclean	577 France	Male	25	3	0	2	0	1	124508.3	0
27	15736816 Young	756 Germany	Male	36	2	136815.6	1	1	1	170042	0
28	15700772 Nebechi	571 France	Male	44	9	0	2	0	0	38433.35	0
29	15728693 McWillia	n 574 Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300 Lucciano	411 France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475 Azikiwe	591 Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552 Odinakao	f 533 France	Male	36	7	85311.7	1	0	1	156731.9	0
33	15750181 Sanderso	r 553 Germany	Male	41	9	110112.5	2	0	0	81898.81	0
34	15659428 Maggard	520 Spain	Female	42	6	0	2	1	1	34410.55	0
35	15732963 Clements	722 Spain	Female	29	9	0	2	1	1	142033.1	0
36	15794171 Lombard	o 475 France	Female	45	0	134264	1	1	0	27822.99	1
37	15788448 Watson	490 Spain	Male	31	3	145260.2	1	0	1	114066.8	0
38	15729599 Lorenzo	804 Spain	Male	33	7	76548.6	1	0	1	98453.45	0
39	15717426 Armstron	§ 850 France	Male	36	7	0	1	1	1	40812.9	0
40	15585768 Cameron	582 Germany	Male	41	6	70349.48	2	0	1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
importmatplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df head

<bound< th=""><th>method</th><th>NDFrame.he</th><th>ead of Ro</th><th>wNumber Cus</th><th>stomerId</th><th>Surname</th><th>CreditScore</th><th>Geography</th><th>Gender</th><th>A</th></bound<>	method	NDFrame.he	ead of Ro	wNumber Cus	stomerId	Surname	CreditScore	Geography	Gender	A
0		1 15634	1602 Hargrave	6:	19 Franc	e Female	42			
1			7311 Hill		08 Spai					
2		3 15619	9304 Onio	56	32 Franc	e Female	42			
3		4 15701	1354 Boni	69	99 Franc	e Female	39			
4		5 15737	7888 Mitchell	85	50 Spai	n Female	43			
		•	•••	7	• • • • • • • • • • • • • • • • • • • •		***			
9995	99	96 15606	5229 Obijiaku	7	71 Franc	e Male	39			
9996	99	97 15569	9892 Johnstone	53	16 Franc	e Male	35			
9997	99	98 15584	4532 Liu	76	99 Franc	e Female	36			
9998	99	99 15682	2355 Sabbatini	7	72 German	y Male	42			
		00 15628			92 Franc	e Female	28			
2	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM	lember \				
0	2	0.00	1	1		1				
1	1	83807.86	1	0		1				
2	8	159660.80	3	1		0				
3	1	0.00	2	0		0				
4	2	125510.82	1	1		1				
• • •		• • •								
9995	5		2			0				
		57369.61				1				
	7			_		1				
		75075.31				0				
9999	4	130142.79	1	1		0				
		edSalary E								
0		01348.88								
1	1	12542.58	0							
2	1	13931.57	1							
3		93826.63	0							
4		79084.10	0							
9995		96270.64	0							
9996		01699.77	0							
9997		42085.58	1							
9998		92888.52	1							
9999		38190.78	0							

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10)) sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))

sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns. scatterplot (data['Age'], data['[alance'], hue = data['Gender'])

sns.pairplot(data)

Question-4.Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

r	RowNumber	5.000500e+03					
	CustomerId	1.569094e+07					
	CreditScore	6.505288e+02					
	Age	3.892180e+01					
	Tenure	5.012800e+00					
	Balance	7.648589e+04					
	NumOfProducts	1.530200e+00					
	HasCrCard	7.055000e-01					
	IsActiveMember	5.151000e-01					
	EstimatedSalary	1.000902e+05					
	Exited	2.037000e-01					
	dtype: float64						

data.median(numeric_only = True)

```
        RowNumber
        5.000500e+03

        CustomerId
        1.569074e+07

        CreditScore
        6.520000e+02

        Age
        3.70000e+01

        Tenure
        5.00000e+00

        Balance
        9.719854e+04

        NumOfProducts
        1.000000e+00

        HasCrCard
        1.000000e+00

        IsActiveMember
        1.000000e+00

        EstimatedSalary
        1.001939e+05

        Exited
        0.000000e+00

        dtype: float64
```

data['CreditScore'].mode()

```
0 850
dtype: int64
```

data['EstimatedSalary'].mode()

```
0 24924.92
dtype: float64
```

data['HasCrCard'].unique()

```
array([1, 0])
```

data['Tenure'].unique()

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric_only=True)

2886.895680
71936.186123
96.653299
10.487806
2.892174
62397.405202
0.581654
0.455840
0.499797
57510.492818
0.402769

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

False
False

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	
	CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

Question-6. Find the outliers and replace the outliers

Solution:

sns.boxplot(data['CreditScore'])#Outlier detection - box plot

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0
       0.332952
1
       0.447540
2
       1.551761
       0.500422
4
      2.073415
        . . .
9995 1.250458
9996 1.405920
9997
     0.604594
9998 1.260876
9999 1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25])

q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

```
u = q.iloc[0] + (1.5*iqr)
RowNumber 1.499950e+04
CustomerId 1.594029e+07
Surname 4.435000e+03
CreditScore 9.190000e+02
Geography 2.500000e+00
Gender 2.500000e+01
Tenure 1.300000e+01
Tenure 3.191106e+05
NumOfProducts 3.500000e+00

        NumOfProducts
        3.500000e+00

        HasCrCard
        2.500000e+00

        IsActiveMember
        2.500000e+00

 EstimatedSalary 2.969675e+05
                         0.000000e+00
 Exited
 dtype: float64
l = q.iloc[1] - (1.5*iqr)
 RowNumber -4.998500e+03
CustomerId 1.544147e+07
Surname -1.423000e+03
CreditScore 3.830000e+02
Geography -1.500000e+00
Gender -1.500000e+00
                         1.400000e+01
              -3.000000e+00
-1.914664e+05
 Tenure
 Balance
 NumOfProducts -5.000000e-01
                         -1.500000e+00
 HasCrCard
 IsActiveMember
                         -1.500000e+00
 EstimatedSalary -9.657710e+04
 Exited
                           0.0000000+00
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers:', count)
 98386.1375
 No. of outliers: 0
data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore'])
sns.boxplot(data['CreditScore'])
```



```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
   Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1

upper=Q3 + 1.5 * iqr

lower=Q1 - 1.5 * iqr

count = np.size(np.where(data[i] > upper))

count = count + np.size(np.where(data[i] < lower))

print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs)

x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	550	.000	***	80%	1200	1000	1775	1507	100	200	553	555	400
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	-1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

y # dependent values (output) y = data['Exited']

```
0
       1
1
       0
2
       1
3
       0
4
       0
9995 0
9996
       0
9997
       1
9998
     1
9999
Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
```

x_train

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
      1
9031 0
3691 0
202
      1
5625 0
9225 0
4859
     0
3264
     0
9845
     0
2732
      1
Name: Exited, Length: 7000, dtype: int64
y_test
 9394
      0
 898
      1
 2398
      0
 5906
      0
 2343
      0
 4004
      0
```

Name: Exited, Length: 3000, dtype: int64