

Машинное обучение и нейросетевые модели

Лекция 10. Современные архитектуры GAN

Лектор: Кравченя Павел Дмитриевич

Волгоград 2025

План лекции

- 1. Проблемы с KL и IS. Расстояние Вассерштейна и его особенности.
- 2. Wasserstein GAN и принцип его работы. Обучение Wasserstein GAN.
- 3. Спектральная нормализация весов GAN.
- 4. Задачи преобразования изображений, подходы к их решению.
- 5. Использование perceptual loss для контроля схожести признаков и стиля.
- 6. Super-Resolution GAN. Архитектура генератора и дискриминатора.
- 7. Архитектура CycleGAN и принцип её работы. Свойство постоянства цикла.
- 8. Обучение CycleGAN. Виды ошибок при обучении. Классическая реализация.
- 9. Выделение высокоуровневых признаков в изображениях. StyleGAN.
- 10. Style-Based генератор. Адаптивная instance-нормализация. Стили.

Проблемы метрики Йенсена-Шеннона

- Задача <u>обучения</u> генеративно-состязательных сетей сводится к попытке научить генератор G создавать данные, распределение которых $p_g(\mathbf{x})$ <u>максимально близко</u> к распределению реальных данных $p_r(\mathbf{x})$.
- Для оценки этой *«близости»* нужно уметь измерять *«расстояние»* между $p_r(\mathbf{x})$ и $p_g(\mathbf{x})$, для чего часто используются дивергенции <u>Кульбака-Лейблера</u> или <u>Йенсена-Шеннона</u>.
- Однако, у данных способов измерения степени схожести распределений имеются проблемы, такие как <u>нестабильность обучения</u> и <u>исчезающий градиент</u>, особенно если распределения $p_r(\mathbf{x})$ и $p_g(\mathbf{x})$ не пересекаются.
- Можно ли оценивать схожесть распределений по-другому?

• Еще одной мерой <u>схожести</u> двух распределений является <u>расстояние</u> <u>Вассерштейна</u> (Earth Mover's distance):

$$W(p_r, p_g) = \inf_{\gamma \sim \prod (p_r, p_g)} \mathbb{E}_{(x, y) \sim \gamma} [\|\mathbf{x} - \mathbf{y}\|].$$

- Расстояние Вассерштейна можно интерпретировать как *«стоимость»* перемещения земли между двумя кучами.
- Рассмотрим пример *дискретного* случая. Пусть $\delta_{i+1} = \delta_i + P_i Q_i$. Тогда:

$$\delta_0 = 0$$
, $\delta_1 = 0 + 3 - 1 = 2$, $\delta_2 = 2 + 2 - 2 = 2$, $\delta_3 = 2 + 1 - 4 = -1$, $\delta_4 = -1 + 4 - 3 = 0$.

• Тогда расстояние $W = \sum_i |\delta_i| = 5$.

Пример расчета различных метрик схожести распределений

• Рассмотрим два распределения p(x,y) и q(x,y) таких, что:

$$\forall (x,y) \in p(x,y) \hookrightarrow x = 0, y \sim \mathcal{U}(0,1),$$

$$\forall (x,y) \in q(x,y) \hookrightarrow x = \theta, y \sim \mathcal{U}(0,1).$$

• Когда $\theta \neq 0$:

$$KL(p||q) = \sum_{\substack{x=0 \ y \sim \mathcal{U}(0,1)}} p(x,y) \cdot \log \frac{p(x,y)}{q(x,y)} = \sum_{\substack{x=0 \ y \sim \mathcal{U}(0,1)}} 1 \cdot \log \frac{1}{0} = +\infty,$$

$$KL(q||p) = \sum_{\substack{x=\theta \\ y \sim \mathcal{U}(0,1)}} q(x,y) \cdot \log \frac{q(x,y)}{p(x,y)} = \sum_{\substack{x=0 \\ y \sim \mathcal{U}(0,1)}} 1 \cdot \log \frac{1}{0} = +\infty,$$

$$JS(p||q) = \frac{1}{2} \left[\sum_{\substack{x=0 \ y \sim \mathcal{U}(0,1)}} p(x,y) \cdot \log \frac{2 \cdot p(x,y)}{p(x,y) + q(x,y)} + \sum_{\substack{x=\theta \ y \sim \mathcal{U}(0,1)}} q(x,y) \cdot \log \frac{2 \cdot q(x,y)}{p(x,y) + q(x,y)} \right] = \log 2,$$

Преимущество расстояния Вассерштейна для GAN

$$W(p,q) = |\theta|.$$

• Но когда $\theta = 0$, распределения p(x,y) и q(x,y) полностью перекрываются. Тогда:

$$KL(p||q) = KL(q||p) = JS(p||q) = 0,$$

 $W(p,q) = 0 = |\theta|.$

• Видно, что если распределения <u>не совпадают</u>, дивергенция Кульбака-Лейблера равна <u>бесконечности</u>. Значение дивергенции Йенсена-Шеннона

испытывает <u>скачок</u>, что приводит к её <u>недифференцируемости</u> в точке $\theta = 0$. А расстояние Вассерштейна остаётся <u>гладким</u>, что обеспечивает стабильный процесс обучения GAN.

Соотношение двойственности Канторовича-Рубенштейна

• В выражении для расчета расстояния Вассерштейна присутствует infimum по распределениям, расчет которого вычислительно очень сложен (intractable). Поэтому, пользуются соотношением двойственности Канторовича-Рубинштейна:

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_{L} \le K} \left[\mathbb{E}_{x \sim p_r}[f(\mathbf{x})] - \mathbb{E}_{x \sim p_g}[f(\mathbf{x})] \right].$$

Здесь $f: \mathcal{X} \to \mathbb{R} - \underline{K\text{-Lipschitz continuous}}$ функция, т.е. для которой:

$$\exists K \ge 0 : \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X} \hookrightarrow |f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le K|\mathbf{x}_1 - \mathbf{x}_2|.$$

• Предполагая, что $f = f_w$ является <u>K-Lipschitz continuous</u> и рассчитывается с помощью дискриминатора в GAN, получим <u>Wasserstein Loss</u> для GAN:

$$\mathcal{L}(p_r, p_g) = W(p_r, p_g) = \max_{\mathbf{w} \in \mathcal{W}} \left[\mathbb{E}_{\mathbf{x} \sim p_r} [f_{\mathbf{w}}(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim p_z} [f_{\mathbf{w}}(g_{\boldsymbol{\theta}}(\mathbf{z}))] \right].$$


```
while \theta has not converged do
       for t = 0, ..., n_{critic} do
             Sample \{\mathbf{x}^{(i)}\}_{i=1}^m \sim p_r(\mathbf{x}) batch from the real data;
             Sample \{\mathbf{z}^{(i)}\}_{i=1}^{m} \sim p_z(\mathbf{z}) batch of prior samples;
             \mathbf{w} \leftarrow \mathbf{w} + \eta \cdot \text{RMSProp}\left(\mathbf{w}, \nabla_{\mathbf{w}} \left[ \frac{1}{m} \sum_{i=1}^{m} f_{\mathbf{w}}(\mathbf{x}^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_{\mathbf{w}}\left(g_{\theta}(\mathbf{z}^{(i)})\right) \right] \right);
             \mathbf{w} \leftarrow \text{clip}(\mathbf{w}, -c, c); \# \text{Weight Clipping}
       end for
       Sample \{\mathbf{z}^{(i)}\}_{i=1}^{m} \sim p_z(\mathbf{z}) batch of prior samples;
      \mathbf{\theta} \leftarrow \mathbf{\theta} - \eta \cdot \text{RMSProp}\left(\mathbf{\theta}, \nabla_{\mathbf{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} f_{\mathbf{w}}\left(g_{\mathbf{\theta}}(\mathbf{z}^{(i)})\right)\right]\right);
end while
```


- Для того, чтобы функция *дискриминатора* удовлетворяла условию <u>K-Lipschitz continuous</u>, веса дискриминатора <u>ограничивают</u> в процессе обучения.
- Модель дискриминатора выступает не в качестве *прямого критика*, а в качестве *помощника* при оценке метрики Вассерштейна между *реальным* и *сгенерированным* распределениями данных.
- Авторы алгоритма рекомендовали использовать *RMSProp*, а не *Adam*, поскольку он мог вызвать *нестабильность* в обучении модели.
- WGAN не является *совершенным*; он страдает от <u>нестабильного</u> <u>обучения</u> и <u>медленной сходимости</u> после ограничения весов.

- Для того, чтобы для обучения критика <u>можно было применить</u> условие Канторовича-Рубенштейна, <u>функция критика</u> должна быть <u>Липшицевой</u>.
- По определению, *Липшицева норма* (наименьшая константа K, при которой выполняется условие K-Lipschitz continuous):

$$||f||_{\text{Lip}} = \sup_{\mathbf{x}_1 \neq \mathbf{x}_2} \frac{||f(\mathbf{x}_1) - f(\mathbf{x}_2)||_2}{||\mathbf{x}_1 - \mathbf{x}_2||_2}.$$

• Если функция f дифференцируема, то: $f(\mathbf{x}_1) - f(\mathbf{x}_2) = \nabla f(\mathbf{h}) \cdot \Delta \mathbf{x}$, $\mathbf{h} \in [\mathbf{x}_1, \mathbf{x}_2]$, и:

$$||f||_{\text{Lip}} = \sup_{\mathbf{x}_1 \neq \mathbf{x}_2} \frac{||f(\mathbf{x}_1) - f(\mathbf{x}_2)||_2}{||\mathbf{x}_1 - \mathbf{x}_2||_2} = \sup_{\Delta \mathbf{x} \neq 0} \frac{||\nabla f(\mathbf{h}) \cdot \Delta \mathbf{x}||_2}{||\Delta \mathbf{x}||_2}.$$

• При фиксированной норме $\|\Delta \mathbf{x}\|_2$ требуется подобрать $\|\nabla f(\mathbf{h}) \cdot \Delta \mathbf{x}\|_2$ так, чтобы норма Липшица была максимальной.

• <u>Спектральная норма</u> матрицы **А** определяется как:

$$\sigma(\mathbf{A}) = \max_{\|\mathbf{x}\|_2} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$

• Таким образом, *норма Липшица*:

$$||f||_{\text{Lip}} = \sup_{\Delta \mathbf{x} \neq 0} \frac{||\nabla f(\mathbf{h}) \cdot \Delta \mathbf{x}||_2}{||\Delta \mathbf{x}||_2} = \sup_{\mathbf{h}} \sigma(\nabla f(\mathbf{h})).$$

• Для линейного слоя $f(\mathbf{h}) = \mathbf{W}\mathbf{h}$ в нейронной сети:

$$||f||_{\text{Lip}} = \sup_{\mathbf{h}} \sigma(\nabla(\mathbf{W}\mathbf{h})) = \sup_{\mathbf{h}} \sigma(\mathbf{W}) = \sigma(\mathbf{W}).$$

• Пусть Липшицева норма функции активации $\|a_l\|_{\mathrm{Lip}}$ равна <u>единице</u> (это справедливо для <u>ReLU</u>, <u>LeakyReLU</u> и других популярных функций): $\|a_l\|_{\mathrm{Lip}} = 1$.

<u>Можно показать</u> справедливость неравенства:

$$||f_1 \circ f_2||_{\text{Lip}} \le ||f_1||_{\text{Lip}} \cdot ||f_2||_{\text{Lip}}.$$

Применяя его к <u>многослойной полносвязной нейросети</u>, оценим её норму Липшица:

$$||f||_{\text{Lip}} \leq ||\mathbf{W}^{L+1}\mathbf{h}_{L}||_{\text{Lip}} \cdot ||a_{L}||_{\text{Lip}} \cdot ||\mathbf{W}^{L}\mathbf{h}_{L-1}||_{\text{Lip}} \cdots ||a_{1}||_{\text{Lip}} \cdot ||\mathbf{W}^{1}\mathbf{h}_{0}||_{\text{Lip}} = \prod_{l=1}^{L+1} \sigma(\mathbf{W}^{l}).$$

Если <u>нормализовать</u> спектральную норму матриц весов:

$$\overline{\mathbf{W}}_{\mathrm{SN}}(\mathbf{W}) = \frac{\mathbf{W}}{\sigma(\mathbf{W})},$$

то $\sigma(\bar{\mathbf{W}}_{\text{SN}}(\mathbf{W})) = 1$, и <u>норма Липшица</u> нейросети: $||f||_{\text{Lip}} \leq 1$.

$$||f||_{\text{Lip}} \le 1.$$

- Спектральная нормализация это метод <u>регуляризации</u>, используемый в генеративно-состязательных сетях (GAN) для <u>стабилизации обучения</u> и <u>улучшения качества</u> генерируемых данных.
- Обычно она применяется к весам <u>дискриминатора</u> (критика) с целью ограничения его «мощности» и предотвращения таких проблем, как исчезающий градиент или нестабильность обучения.
- Для матрицы весов **W** в слое нейронной сети спектральная норма:

$$\sigma(\mathbf{W}) = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{W}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$

Здесь $\|\cdot\|_2 - \underline{eвклидова\ норма}$. Спектральная нормализация <u>ограничивает</u> <u>спектральную норму</u> матрицы весов каждого слоя нейронной сети.

Алгоритм SGD со спектральной нормализацией

Инициализировать $\widetilde{\mathbf{u}}_l \sim \mathcal{N}(\mathbf{0}, \sigma \mathbb{I})$ для всех слоёв $l \in [1..L]$.

$$\label{eq:for_t} \begin{split} & \text{for } t = 1, \dots, T \text{ do} \\ & \text{for } l = 1, \dots, L \text{ do} \end{split}$$

Применить итерационный метод к ненормализованной матрице:

$$\widetilde{\mathbf{v}}_l \leftarrow \frac{\left(\mathbf{W}^l\right)^{\mathrm{T}} \widetilde{\mathbf{u}}_l}{\|(\mathbf{W}^l)^{\mathrm{T}} \widetilde{\mathbf{u}}_l\|_2}, \qquad \widetilde{\mathbf{u}}_l \leftarrow \frac{\mathbf{W}^l \widetilde{\mathbf{v}}_l}{\|\mathbf{W}^l \widetilde{\mathbf{v}}_l\|_2}.$$

Вычислить спектральную нормализацию:

$$\overline{\mathbf{W}}^{l}_{\mathrm{SN}}(\mathbf{W}^{l}) = \frac{\mathbf{W}^{l}}{\sigma(\mathbf{W}^{l})}, \qquad \sigma(\mathbf{W}^{l}) = \widetilde{\mathbf{u}}_{l}^{\mathrm{T}}\mathbf{W}^{l}\widetilde{\mathbf{v}}_{l}.$$

Обновить веса на мини-батче \mathcal{D}_M :

$$\mathbf{W}^l \leftarrow \mathbf{W}^l - \eta \nabla_{\mathbf{W}^l} \mathcal{L}(\mathbf{\overline{W}}^l_{SN}(\mathbf{W}^l), \mathcal{D}_M).$$

end for

end for

Обобщение функций ошибок GAN

Название	Формула	Особенности / свойства
Saturation Loss (классическая функция ошибки GAN)	$\min_{G} \max_{D} \left[\mathbb{E}_{p_r(\mathbf{x})} [\log D(\mathbf{x})] + \mathbb{E}_{p_z(\mathbf{z})} \left[\log \left(1 - D(G(\mathbf{z})) \right) \right] \right]$	 Может приводить к проблеме исчезающего градиента, особенно на ранних стадиях обучения. Генератор «насыщается», если дискриминатор слишком сильный.
Non-Saturation Loss (неклассическая функция ошибки GAN)	$\min_{G} \max_{D} \left[\mathbb{E}_{p_r(\mathbf{x})} [\log D(\mathbf{x})] + \mathbb{E}_{p_z(\mathbf{z})} [-\log D(G(\mathbf{z}))] \right]$	 Улучшает обучение генератора, так как градиенты для генератора не исчезают. Максимизирует вероятность, что созданные данные классифицируются как реальные. Часто используется на практике для стабилизации обучения.
Wasserstein Loss (функция ошибки для WGAN)	$\min_{G} \max_{D} \left[\mathbb{E}_{p_{r}(\mathbf{x})}[D(\mathbf{x})] - \mathbb{E}_{p_{z}(\mathbf{z})}[D(G(\mathbf{z}))] \right]$	 Основана на расстоянии Вассерштейна, улучшает стабильность обучения. Требует, чтобы дискриминатор был 1- Липшицевым. Уменьшает проблемы с исчезающим градиентом и коллапсом моды.

Обобщение способов регуляризации дискриминатора GAN

Название	Формула	Особенности / свойства
Weight Clipping (Original WGAN)	$w_i \leftarrow \text{clip}(w_i, -c, c), \ w_i \in \mathbf{W}$	 Простой способ <u>ограничения весов</u>. Накладывает <u>ограничение Липшица</u> на дискриминатор. Может привести к <u>нестабильности обучения</u>, если значение с выбрано неудачно.
Gradient Penalty (градиентный штраф)	$\begin{split} \lambda \cdot \mathbb{E}_{p_{\widehat{x}}(\widehat{\mathbf{x}})}[(\ \nabla_{\widehat{\mathbf{x}}}D(\widehat{\mathbf{x}})\ _2 - 1)^2], \\ \widehat{x} &= \varepsilon \mathbf{x} + (1 - \varepsilon)\widetilde{\mathbf{x}}, \\ \mathbf{x} \sim p_r(\mathbf{x}), \ \widetilde{\mathbf{x}} \sim p_g(\widetilde{\mathbf{x}}), \ \varepsilon_i \sim \mathcal{U}(0,1) \ \forall i \end{split}$	 Используется в WGAN-GP для обеспечения <u>Липшицевости критика</u>. Штрафует отклонение <u>градиента дискриминатора</u> от нормы 1. Улучшает <u>стабильность обучения</u> и <u>качество генерации</u>.
Spectral Normalization (спектральная нормализация)	$\overline{\mathbf{W}}_{\mathrm{SN}}(\mathbf{W}) = \frac{\mathbf{W}}{\sigma(\mathbf{W})}$	 Нормализует веса дискриминатора для обеспечения Липшицевости. Используется в <u>SN-GAN</u>. Прост в реализации, вычислительно эффективен, улучшает стабильность обучения.

Подход к решению задач преобразования изображений

- В задачах <u>преобразования изображений</u> требуется одно изображение преобразовать в другое (шумоподавление, увеличение разрешения, раскраска и т.д.).
- Данные задачи обычно решаются с помощью *нейросети*, обученной с использованием *ошибки различия* между изображениями.
- Однако, как измерять различие между изображениями?
- Наивный подход: <u>попиксельная ошибка</u> (*per-pixel loss*). Однако, данная функция ошибки не учитывает *внутренней структуры* изображений.
- Улучшенный подход: использование <u>ошибки восприятия</u> (perceptual loss). Данная функция ошибки использует <u>высокоуровневые признаки</u>, связанные с <u>семантикой</u> изображений.

Контроль схожести признаков и стиля с помощью perceptual loss

- В SRGAN предлагается способ контроля *схожести* <u>изображений</u> и <u>стиля</u>.
- Идея: ввести <u>две</u> нейронные сети <u>transformation network</u> и <u>loss network</u>.
 - $\mathbf{x} \in X$ в выходное $\hat{\mathbf{y}} \in Y$: $\hat{\mathbf{y}} = f_W(\mathbf{x})$.
 - Вторая осуществляет преобразование <u>входного</u> изображения в <u>тензор признаков</u>, содержащих информацию о структуре
 Style Target descript 3 des
 - изображения, которые вместе используются для <u>сравнения</u> признаков изображений и <u>стиля</u> с применением <u>perceptual loss functions</u>.

Функции ошибки для контроля схожести признаков и стиля

• Loss network используется для оценки <u>ошибки реконструкции признаков</u> (feature reconstruction loss) ℓ_{feat}^{ϕ} и <u>ошибки реконструкции стиля</u> (style reconstruction loss) ℓ_{style}^{ϕ} . Эти ошибки и составляют <u>ошибку восприятия</u> (perceptual loss). Соответствующие функции определяются следующим образом:

$$\ell_{feat}^{\phi,j}(\hat{\mathbf{y}},\mathbf{y}) = \frac{1}{C_{j}H_{j}W_{j}} \|\phi_{j}(\hat{\mathbf{y}}) - \phi_{j}(\mathbf{y})\|_{2}^{2}.$$

$$\ell_{style}^{\phi,j}(\hat{\mathbf{y}},\mathbf{y}) = \frac{1}{C_{j}H_{j}W_{j}} \|G_{j}^{\phi}(\hat{\mathbf{y}}) - G_{j}^{\phi}(\mathbf{y})\|_{F}^{2}, \qquad G_{j}^{\phi}(\mathbf{x})_{c,c'} = \frac{1}{C_{j}H_{j}W_{j}} \sum_{h=1}^{H_{j}} \sum_{w=1}^{W_{j}} \phi_{j}(\mathbf{x})_{h,w,c} \phi_{j}(\mathbf{x})_{h,w,c'},$$

Здесь $\phi_j(\mathbf{x})$ – активация j-того слоя loss network для входа \mathbf{x} , $\phi_j(\mathbf{x}) \in \mathbb{R}^{C_j \times H_j \times W_j}$, $G_i^{\phi}(\mathbf{x}) \in \mathcal{M}at(C_j \times C_j)$ – матрица Γ рама.

• Transformation network обучается с использованием <u>градиентного спуска</u> посредством <u>минимизации</u> взвешенной комбинации *функций ошибок*:

$$W^* = \arg\min_{W} \mathbb{E}_{\mathbf{x}, \{\mathbf{y}_i\}} \left[\sum_{i=1}^{M} \lambda_i \ell_i(f_W(\mathbf{x}), \mathbf{y}_i) \right].$$

- Loss network при этом <u>не обучается</u> и работает как преобразователь признаков. Она является <u>предобученной сетью</u> на задаче классификации изображений (обычно, на ImageNet).
- При решении задачи <u>переноса стиля</u> \mathbf{y}_c это *входное* изображение \mathbf{x} , а выход $\hat{\mathbf{y}}$ должен сочетать в себе $\mathbf{x} = \mathbf{y}_c$ и стиль \mathbf{y}_s .
- При решении задачи <u>увеличения разрешения</u> изображение \mathbf{x} имеет низкое разрешение, а \mathbf{y}_c высокое. <u>Style reconstruction loss</u> не используется.

• Аналогичная <u>идея</u> положена в основу <u>Super-Resolution GAN</u> (SRGAN): в процессе генерации изображений с более высоким разрешением оценивать их схожесть с помощью perceptual loss, которая, в свою очередь, вычисляется с использованием VGG loss – <u>евклидова расстояния</u> между представлениями признаков сгенерированного и реального изображений, полученных с одного из слоёв предобученной нейросети VGG-19 (признаки формируются после активации j-того сверточного слоя перед i-тым слоем пулинга): $\ell_{VGG/ij}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{v=1}^{W_{i,j}} \sum_{v=1}^{H_{i,j}} \left[\phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j} \left(G_{\theta_G}(I^{LR}) \right)_{x,y} \right]^2.$

• Тогда <u>полная ошибка</u> будет включать в себя <u>взвешенную сумму</u> <u>adversarial loss</u> и <u>perceptual loss</u>.

Архитектура генератора и дискриминатора в SRGAN

Результаты работы SRGAN

Задачи Image-to-Image Translation

• Задачи Image-to-Image Translation – это <u>класс задач</u> компьютерного зрения и графики, целью которого является изучение <u>отображения</u> между входным и выходным изображениями с использованием обучающего набора соответствующих <u>пар изображений</u>.

• Подобная задача широко изучена для <u>различных областей</u>. Она сводится к задаче <u>обучения «с учителем»</u> на подготовленных в датасете <u>парах</u>

<u>изображений</u>: $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$.

• Однако, <u>подготовка</u> датасета с парами изображений часто является <u>сложной</u> и дорогой. В ряде случаев даже неясно, как определить выходное изображение.

- Что делать, если <u>датасет пар</u> недоступен или имеет небольшой объём?
- Для решения задачи было предложено использовать Cycle-Consistent Adversarial Networks (cycleGAN).
- В основу создания алгоритма cycleGAN положена идея, что для изучения перевода одного изображения в другое можно использовать не связанные пары изображений, а просто набор изображений из двух классов. При этом алгоритм пытается изучить связь между классами изображений.

• Обучение cycleGAN выполняется на уровне <u>множеств</u> X и Y, а не <u>объектов</u>.

Свойство постоянства цикла в CycleGAN

- Изображения, используемые для обучения CycleGAN, принадлежат двум множествам: $\mathbf{x} \in X$, $\mathbf{y} \in Y$.
- Введем отображение $G: X \to Y$, так, чтобы $\hat{\mathbf{y}} = G(\mathbf{x})$ являлся изображением, неотличимым от \mathbf{y} с точки зрения *генеративно-состязательного процесса*.
- Тогда $\mathbf{y} \sim p_r(\mathbf{y})$, $\hat{\mathbf{y}} \sim p_r(\mathbf{y})$. Однако, поскольку \mathbf{x}_i и \mathbf{y}_i <u>не являются</u> парой изображений, то существует <u>бесконечно много</u> $G: G(\mathbf{x}) \sim p_r(\mathbf{y})$.
- Также, все <u>недостатки</u>, свойственные GAN, остаются (например, mode collapse). Поэтому, требуется добавить <u>новые ограничения</u> при поиске G.
- В cycleGAN вводится свойство <u>постоянства цикла</u> (cycle consistent): введём $F: Y \to X$, тогда G и F будут <u>взаимно</u> <u>обратными</u>, <u>биективными</u> функциями.

• Cycle consistent достигается <u>одновременным</u> обучением функций G и F и введением <u>ошибки постоянства цикла</u> (cycle consistency loss), которая поощряет условия $F(G(\mathbf{x})) \approx \mathbf{x}$ и $G(F(\mathbf{y})) \approx \mathbf{y}$:

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{\mathbf{x} \sim p_{rx}(\mathbf{x})} \left[\left\| F(G(\mathbf{x})) - \mathbf{x} \right\|_{1} \right] + \mathbb{E}_{\mathbf{y} \sim p_{ry}(\mathbf{y})} \left[\left\| G(F(\mathbf{y})) - \mathbf{y} \right\|_{1} \right].$$

• Для обучения CycleGAN также применяется два вида <u>состязательной</u> <u>ошибки</u> (Adversarial Loss):

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{\mathbf{y} \sim p_{ry}(\mathbf{y})}[\log D_Y(\mathbf{y})] + \mathbb{E}_{\mathbf{x} \sim p_{rx}(\mathbf{x})}[\log(1 - D_Y(G(\mathbf{x})))].$$

$$\mathcal{L}_{GAN}(F, D_X, Y, X) = \mathbb{E}_{\mathbf{x} \sim p_{rx}(\mathbf{x})}[\log D_X(\mathbf{x})] + \mathbb{E}_{\mathbf{y} \sim p_{ry}(\mathbf{y})}[\log(1 - D_X(F(\mathbf{y})))].$$

• Тогда <u>полная ошибка</u> CycleGAN может быть записана в виде:

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F).$$

• В процессе <u>обучения</u> CycleGAN требуется решить задачу:

 $G^*, F^* = \arg\min_{G,F} \max_{D_X,D_Y} \mathcal{L}(G,F,D_X,D_Y).$

• *Процесс обучения CycleGAN* можно представить так:

for i in iterations:

train discriminators

calc <u>adversarial losses</u> for D_X and D_Y ; backward() and optimize(D_X, D_Y);

train generators

calc <u>adversarial losses</u> for G and F; calc <u>cycle consistent loss</u>, append to losses; backward() and optimize(G,F);

- Использование <u>MSE</u> вместо <u>BCE</u> показало <u>лучшие результаты</u>.
- Обновление дискриминаторов выполняется по истории 50 изображений.

Результаты работы CycleGAN

- Классические генеративно-состязательные сети ведут себя как «черные ящики»: неясно, как генерируется изображение, обладающее теми или иными свойствами.
- Свойства латентного пространства изучены недостаточно.
- StyleGAN предлагает <u>новую архитектуру генератора</u> для GAN: Style-based generator. В её основе лежит <u>постепенное</u> преобразование вектора признаков при увеличении масштабов изображения с добавлением <u>шума</u>.
- Этот генератор позволяет выполнять автоматическое, неуправляемое разделение высокоуровневых признаков в генерируемых изображениях.
- Дискриминатор и функция ошибки остаются <u>неизменными</u>, которые используются в классических архитектурах GAN.

- Введём <u>обучаемый латентный вектор</u> $\mathbf{z} \in \mathcal{Z}$ и отображение $f: \mathcal{Z} \to \mathcal{W}$, задаваемое <u>нейронной сетью</u> (обычно многослойным перцептроном) (mapping network) и формирующее вектор <u>промежуточного латентного</u> пространства $\mathbf{w} = f(\mathbf{z}), \mathbf{w} \in \mathcal{W}$.
- Вектор **w** посредством обучаемого афинного преобразования преобразуется в <u>вектор стиля</u> (style vector): $\mathbf{y} = (\mathbf{y}_s, \mathbf{y}_b) = d(\mathbf{w})$, который управляет <u>адаптивной instance-нормализацией</u>:

AdaIN(
$$\mathbf{x}_i, \mathbf{y}$$
) = $\mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$.

• На вход <u>адаптивной instance-нормализации</u> подаётся также <u>шум</u>, который *суммируется* с выходом *предыдущего свёрточного слоя* генератора.

- Γ ауссовский шум добавляется после Latent $\mathbf{z} \in \mathcal{Z}$ каждой свертки, перед функцией Normalize Γ активации.
- Здесь "А" обозначает <u>обучаемое</u> аффинное преобразование, а функция "В" применяет <u>обученные коэффициенты</u> масштабирования по каналам к входному шуму.
- Mapping network f состоит из 8 слоев, а synthesis network g из 18 слоев, по два слоя на каждое разрешение.

- *Архитектура style-based генератора* позволяет <u>управлять синтезом</u> <u>изображений</u> с помощью <u>модификаций стилей</u>.
- Можно рассматривать mapping network и аффинные преобразования как способ получения <u>образцов для каждого стиля</u> из изученного распределения, а synthesis network как способ <u>генерирования нового</u> <u>изображения</u> на основе набора стилей.
- Эффекты каждого стиля <u>локализованы</u> в нейросети, т. е. изменение определенного подмножества стилей может повлиять только на определенные аспекты изображения.
- Данные свойства генератора позволяют реализовать <u>смешение стилей</u> (style mixing) и <u>стохастическую вариацию изображения</u>.

Смешение стилей в StyleGAN

- Для создания изображения с <u>различными</u> <u>стилями</u> нужно просто переключиться с одного латентного вектора на другой в произвольно выбранной точке synthesis network.
- $\mathbf{w}_1 = f(\mathbf{z}_1), \, \mathbf{w}_2 = f(\mathbf{z}_2), \, \xi_i = \operatorname{AdaIN}\left(\mathbf{x}_i, \mathbf{y}(\mathbf{w}_{k(i)})\right),$ $u = \operatorname{rand}(1, N), \qquad k(i) = \begin{cases} 1, & \text{if } i < u \\ 2, & \text{oterwise} \end{cases}$
- Чем раньше в synthesis network включается латентный вектор \mathbf{w}_2 , отвечающий за второй стиль, тем больше элементов из второго стиля появится в генерируемом изображении.

Стохастическая вариация в StyleGAN

- <u>Эффект шума</u>, подаваемого на слои сети:
 - а) Шум, поданный на все слои.
 - *b) Отсутствие* шума.
 - с) Шум, поданный на поздние слои.
 - d) Шум, поданный на *ранние* слои.
- Видно, что <u>отсутствие шума</u> ведет к "живописному" виду. Шум на ранних слоях приводит к крупным завиткам волос и появлению крупных фоновых деталей, а на поздних выявляет более мелкие завитки волос, мелкие детали фона и поры кожи.

Демонстрация практических примеров

Заключение

- 1. Рассмотрели новую меру схожести распределений и выявили её особенности, значимые для обучения генеративно-состязательных сетей.
- 2. Поговорили по Wasserstein GAN и рассмотрели алгоритм его обучения.
- 3. Рассмотрели алгоритм спектральной нормализации.
- 4. Рассмотрели задачи преобразования изображений, поговорили о подходах к её решению, выяснили место GANs среди них.
- 5. Поговорили про использование perception loss при работе со стилями и разрешением изображений, рассмотрели архитектуру SRGAN.
- 6. Рассмотрели архитектуру, функционирование и способ обучения CycleGAN.
- 7. В теории и на практическом примере рассмотрели принцип обучения StyleGAN и генерацию изображений с её использованием.

Спасибо за внимание!

Волгоград 2025