The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260 Data Security

GAME 3 SOLUTIONS

21st March 2019

Number of Questions: 5 Time allowed: 50min Total mark: 5

In order to score marks you need to show all the workings and not just the end result.

	Student Number	Student Name
Student 1		
Student 2		
Student 3		
Student 4		
Student 5		
Student 6		
Student 7		

Question 1	Question 2	Question 3	Question 4	Question 5	TOTAL

1. Use Fast Exponentiation to calculate 2^{57} mod 123?

Solution: $2^{57} \mod 123 = 77$

Workings:

	0	
X	a	Z
1	2	111001 (57)
2	2	111000 (56)
2	4	11100 (28)
2	16	1110 (14)
2	10	111 (7)
20	10	110 (6)
20	100	11 (3)
32	100	10 (2)
32	37	1(1)
77	37	0 (0)

2. Find the inverse of 11 modulo 296 using CRT.

Solution:

We have

$$n = 296$$

$$296 = 2^3 \times 37$$

$$n = d_1 \times d_2$$
, $d_1 = 8$, $d_2 = 37$

 $11x_1 \mod 8 = 1 \rightarrow 3x_1 \mod 8 = 1$

$\underline{\mathbf{x}_1} = \mathbf{3}$

 $\begin{array}{l} 11x_2 \ \text{mod}\ 37 = 1 \ \rightarrow \ x_2 = 11^{35} \ \text{mod}\ 37 = 11 \times 11^{34} \ \text{mod}\ 37 = 11 \times (11^2)^{19} \ \text{mod}\ 37 = 11 \times (121)^{19} \ \text{mod}\ 37 = 11 \times 10^{19} \ \text{mod}\ 37 = 11 \times 10^{19} \ \text{mod}\ 37 = 36 \times 26^9 \ \text{mod}\ 37 = 36 \times 26^8 \ \text{mod}\ 37 = 11 \times (26^2)^4 \ \text{mod}\ 37 = 11 \times 10^4 \ \text{mod}\ 37 = 11 \times (10^2)^2 \ \text{mod}\ 37 = 11 \times (26^2)^4 \ \text{mod}\ 37 = 27 \end{array}$

$x_2 = 27$

 $x \mod 8 = 3$

 $x \mod 37 = 27$

We now need to find y_1 and y_2 such that

(296/8) y₁ mod 8 = 1

(296/37) y₂ mod 37 = 1

 $37y_1 \mod 8 = 5y_1 \mod 8 = 1 \longrightarrow y_1 = 5^3 \mod 8 = 5 \times 5^2 \mod 8 = 5$

 $8y_2 \bmod 37 = 1 \longrightarrow y_2 = 8^{35} \bmod 37 = 8 \times 8^{34} \bmod 37 = 8 \times (8^2)^{17} \bmod 37 = 8 \times 27^{17} \bmod 37 = 8 \times 27 \times 27^{16} \bmod 37 = 31 \times (27^2)^8 \bmod 37 = 31 \times (26)^8 \bmod 37 = 31 \times (26^2)^4 \bmod 37 = 31 \times (10)^4 \bmod 37 = 31 \times (10^2)^2 \bmod 37 = 31 \times 26^2 \bmod 37 = 31 \times 10 \bmod 37 = 14$

We get $\underline{\mathbf{y_1}} = \underline{\mathbf{5}}$ and $\underline{\mathbf{y_2}} = \underline{\mathbf{14}}$.

We now get the solution

$$x = (37 \times 3 \times 5 + 8 \times 27 \times 14) \mod 296 = 27$$

Thus the multiplicative inverse of 11 modulo 296 is 194.

Check:
$$11 \times 27 \mod 296 = 297 \mod 296 = 1$$

3. Find the inverse of 11 modulo 296 using Euler's Totient function.

Solution:

We can use Euler's theorem:

$$x = 11^{\Phi(296)-1} \mod 296$$

$$296 = 2^3 \times 37$$

$$\Phi(296) = 2^2 \times (37-1) = 4 \times 36 = 144$$

$$x = 11^{\Phi(296)-1} \mod 296 = 11^{144-1} \mod 296 = 11^{143} \mod 296$$

Using fast exponentiation, we get

$$x = 11^{143} \mod 296 = 11 \times 11^{142} \mod 296$$

 $= 11 \times (11^2)^{71} \mod 296 = 11 \times 121^{71} \mod 296$
 $= 11 \times 121 \times 121^{70} \mod 296 = 147 \times (121^2)^{35} \mod 296$
 $= 147 \times 137^{35} \mod 296 = 147 \times 137^{34} \mod 296$
 $= 11 \times (137^2)^{17} \mod 296 = 11 \times 121^{17} \mod 296$
 $= 11 \times 121 \times 121^{16} \mod 296 = 147 \times (121^2)^8 \mod 296$
 $= 147 \times 137^8 \mod 296 = 147 \times (137^2)^4 \mod 296$
 $= 147 \times 121^4 \mod 296 = 147 \times (121^2)^2 \mod 296$
 $= 147 \times 137^2 \mod 296 = 147 \times 121 \mod 296 = 27$

4. Find the inverse of 11 modulo 296 using Extended Euclid's Algorithm.

Solution:

i	у	u	V	g
0		1	0	296
1		0	1	11
2	26	1	-26	10
3	1	-1	<u>27</u>	1
4	10	11	-296	0

5. Consider $GF(2^3)$ with the irreducible polynomial p(x)=1011 (x3+x+1). Find the multiplicative inverse of 0 1 0.

Solution:

$$a = 0 \ 1 \ 0$$
 $a^{-1} = 0 \ 1 \ 0^{7-1} \ mod \ 1011 = 0 \ 1 \ 0^6 \ mod \ 1011$
 a^2 :
$$0 \ 1 \ 0$$

$$\times 0 \ 1 \ 0$$

$$0 \ 0 \ 0$$

$$0 \ 1 \ 0$$

$$0 \ 0 \ 0$$
Thus $a^2 = 1 \ 0 \ 0$

$$x \ 1 \ 0 \ 0$$

$$x \ 1 \ 0 \ 0$$

$$0 \ 0 \ 0$$

Since the degree of a^4 is greater than 2 (recall that all elements of GF(2³) have degree at most 2) we need to divide it by the irreducible polynomial 1 0 1 1:

100

10000

Finally, we obtain a^6 as $a^4 \times a^2$:

Since the degree of a^6 is greater than 2 (recall that all elements of GF(2³) have degree at most 2) we need to divide it by the irreducible polynomial 1 0 1 1:

$$\begin{array}{c} ----1.1 \\ 1011)11000 \\ 1011 \\ ----- \\ 01110 \\ 1011 \\ ---- \\ 0101 \end{array}$$

thus $a^6 = a^{-1} = 1 \ 0 \ 1$