29/09/2019 README.md

ROB 311 - TP2 - September 23

Authors

Simon Queyrut, Zhi Zhou

Question 1

We count two possible policies, namely

	s_0	s_1	s_2	s 3
π_1	s_1	s_0	s_0	s_0
π_2	s_2	s_0	s_0	s_0

Question 2

Knowing

$$V^*(S) = R(s) + \max_{a} \gamma \sum_{SI} T(S, a, S') V^*(S')$$

and

$$R(s) = \begin{cases} 10, & \text{for state } S3\\ 1, & \text{for state } S2\\ 0, & \text{otherwise} \end{cases}$$

we obtain

$$V^{*}(s_{0}) = 0 + \max_{a} \gamma \sum_{S'} T(S, a, S') V^{*}(S')$$

$$V^{*}(S_{1}) = 0 + \max_{a} \gamma \sum_{S'} T(S, a, S') V^{*}(S')$$

$$V^{*}(S_{2}) = 1 + \max_{a} \gamma \sum_{S'} T(S, a, S') V^{*}(S')$$

$$V^{*}(S_{3}) = 10 + \max_{a} \gamma \sum_{S'} T(S, a, S') V^{*}(S')$$

Thus, replacing with values from $T\left(S,a0,S'\right)$, $T\left(S,a1,S'\right)$ and $T\left(S,a2,S'\right)$, we obtain

$$V^* (S_0) = \gamma \max[V^* (S_1), V^* (S_2)]$$

$$V^* (S_1) = \gamma \left[(1 - x)V^* (S_1) + xV^* (S_3) \right]$$

$$V^* (S_2) = \gamma \left[(1 - y)V^* (S_0) + yV^* (S_3) \right] + 1$$

$$V^* (S_3) = \gamma V^* (S_0) + 10$$

Question 3

We have

$$\pi^*(s) = \arg\max_{a} \sum_{S'} T(S, a, S') V^*(S')$$

• Trivial case for $\gamma=0$ leads to $V^*\left(S_1\right)=V^*\left(S_1\right)=0$. Therefore

$$\pi^*(s_0) = \arg\max_{a} \left\{ T(S_0, a_1, S_2) V^*(s_2) + T(S_0, a_1, S_3) V^*(s_3) , \right.$$
$$\left. T(S_0, a_1, S_2) V^*(s_2) + T(S_0, a_1, S_3) V^*(s_3) \right\}$$

29/09/2019 README.md

and because $T(S_0, a_1, S_2) = T(S_0, a_1, S_3) = T(S_0, a_1, S_3) = 0$ and $T(S_0, a_2, S_2) = 1$, we have $\pi^*(s_0) = \arg\max_{a} \{0 + 0, V^*(s_2) + 0\}$

$$= \arg \max_{a} \{0, 1\}$$

$$= a_{2}$$

• For $\gamma > 0$, given $T(S_0, a_1, S_1) = T(S_0, a_2, S_2) = 1$ we look for $V^*(S_2) > V^*(S_1)$ for all $y \in [0, 1]$. With x = 0, we have $V^*(S_1) = \gamma V^*(S_1)$ so

$$V^*\left(S_1\right) = 0$$

and given $V^*\left(S_2\right)=\gamma\left[\left(1-y\right)V^*\left(S_0\right)+yV^*\left(S_3\right)\right]+1\geq 1$, we obtain

$$V^*(s_2) > V^*(S_1)$$

and finally $\pi^*(S_0) = a_2$ for any $\gamma \in (0, 1)$ or $y \in [0, 1]$

Question 4

We this time would like $H_1:V^*\left(S_1\right)>V^*\left(S_2\right)$ to be true for any $\gamma\in(0,1)$ or x>0 . We know that $V^*(S_2) = \gamma \left[(1 - y)V^*(S_0) + yV^*(S_3) \right] + 1 \ge 1$ for any $\gamma \in (0, 1)$ or x > 0. We also have $V^*(S_1) = \gamma [(1 - x)V^*(S_1) + xV^*(S_3)]$ which means

$$H_1 \Rightarrow V^*(S_1) = \frac{x\gamma V^*(S_3)}{1 - \gamma(1 - x)} \ge 1, \forall \gamma \in (0, 1), x > 0$$

which is false since no matter $V^*(S_3)$ or x, we can always find an small enough γ inside [0,1] to make the fraction strictly smaller than 1.