一阶逻辑

第7章-自然数的模型

姚宁远

复旦大学哲学学院

December 6, 2021

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

皮亚诺公理系统

皮亚诺公理系统

语言 $L_{ar} = \{0, s, +, \times\}$,则皮亚诺公理系统 PA 由下列公式的全 称概括组成:

- 1 $Sx \neq 0$;
- $Sx = Sy \rightarrow x = y;$
- 3 X + 0 = X;
- 4 x + Sy = S(x + y);
- 5 $x \times Sy = x \times y + x$;
- **6** 对每个一阶公式 ϕ ,都有 ϕ 的归纳公理:

$$(\phi(0) \land \forall x(\phi(x) \to \phi(Sx))) \to \forall x\phi(x)$$

记作 $I(\phi)$ 。

- 1 称 $\mathfrak{N} = (\mathbb{N}, 0, S, +, \times)$ 为 PA 的标准模型;
- 2 称与 ℜ 不同构的 PA 的其他模型为 PA 的非标准模型。

例

存在 PA 的非标准模型

- 1 引入一个新常元 c;
- **2 ♦** $\Sigma = \{c > S^n 0 | n \in \mathbb{N}\};$
- 3 PA∪Σ有限可满足;
- 4 由紧致性,存在 $\mathfrak{M} \models PA \cup \Sigma$;
- 5 设 $h: \mathfrak{M} \to \mathfrak{N}$ 是一个同构;
- 6 $h(c^{\mathfrak{M}}) = ?.$

基数I

定义

设 A, B 是两个集, 如果存在一个双射 $f: A \rightarrow B$, 则称 $A \subseteq B$ 等势。

- 每个集合 A 都与某个基数等式;
- 2 最小的无穷基数是自然数集 № 的基数,记作 №;
- 3 具有基数 № 的集合称为可数(无穷)集合;

基数 ||

定理

(康托尔) 自然数的幂集 $\mathcal{P}(\mathbb{N})$ 是不可数的

证明:

- 设 $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ 是双射;
- \diamondsuit $A = \{x \in \mathbb{N} | x \notin f(x)\};$
- 设 $x_0 \in \mathbb{N}$ 使得 $f(x_0) = A$;
- 如果 $x_0 \in A$,则 $x \notin f(x_0) = A$;
- 如果 $x_0 \notin A$,则 $x \in f(x_0) = A$.

基数 Ⅲ

注

以上的方法为"对角线法"

- 把每个 X ⊂ N 编码为 0-1 序列;
- 则 $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ 是 0-1 序列的一个可数枚举;
- 则 A 的编码恰好是将该枚举的对角线取反而得到的序列

定理

(基数算术定理) 对任何基数 κ 与 λ , 如果 $\kappa \le \lambda$, 并且 λ 是无穷的,则 $\kappa + \lambda = \lambda$ 。此外,如果 $\kappa \ne 0$,则 $k \cdot \lambda = \lambda$.

定理

假设 A 是无穷集合,则 A 上有穷序列的集合 $\bigcup_{n\in\mathbb{N}} A^n$ 与 A 等势。

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - ■司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型

└─勒文海姆-司寇伦定理

定义

设 $\mathfrak{M} = (M, ...)$ 与 $\mathfrak{N} = (N, ...)$ 均是 L 结构且 $M \subseteq N$ 。

■ 如果对任意不带量词的公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(a_1,...,a_n) \iff \mathfrak{N} \models \phi(a_1,...,a_n)$$

则称 \mathfrak{M} 是 \mathfrak{N} 的子结构;

- \mathfrak{M} 是 \mathfrak{N} 的子结构当且仅当 $i: M \to N$ 是同态。
- 如果对任意公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathfrak{N} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n)$$

则称 \mathfrak{M} 是 \mathfrak{N} 的初等子结构,记作 $\mathfrak{M} \prec \mathfrak{N}$;

 $\blacksquare \mathfrak{M} \prec \mathfrak{N} \Rightarrow \mathfrak{M} \equiv \mathfrak{N}$

勒文海姆-司寇伦定理

定义

设 $\mathfrak{M} = (M, ...)$ 是 L 结构, $A \subseteq M$

■ 称 A 是子结构是指 A 包含了所有的常元且对函数运算封闭;

■ 称 A 是初等子结构指 A 是子结构且

$$\mathcal{A} = (A, Z^{\mathfrak{M}} \upharpoonright A)_{Z \in L}$$

是 🕅 的初等子结构;

例

例

域 $\mathcal{R}=(\mathbb{R},+, imes,0,1)$ 是域 $\mathcal{C}=(\mathbb{C},+, imes,0,1)$ 的子结构,但不是 初等子结构;

- $\blacksquare \mathbb{R} \subset \mathbb{C};$
- ℝ 包含常元 0,1 且关于加法和乘法封闭;
- $\blacksquare \mathcal{R} \models \forall x(x^2 \neq -1);$
- $\square \mathcal{C} \models \exists x(x^2 = -1);$

<u>└</u>勤文海姆-司寇伦定理

例

例

$$\mathcal{Z}=(\mathbb{Z},<)$$
 是 $\mathcal{Q}=(\mathbb{Q},<)$ 的子结构,但不是初等子结构.

- $\blacksquare \mathbb{Z} \subset \mathbb{Q};$
- 没有常元和函数;
- $\blacksquare \mathcal{Z} \models \exists x, y (x < y \land \forall z \neg (x < z < y));$
- $\blacksquare Q \models \forall x, y(x < y \rightarrow \exists z(x < z < y));$

─阶逻辑 └─ 一阶算术公理系统 └─ 勒文海姆-司寇伦定理

例I

例

 $(\mathbb{Q},<)$ 是 $(\mathbb{R},<)$ 的初等子结构.

- $\blacksquare \mathbb{Q} \subseteq \mathbb{R};$
- 没有常元和函数;
- 初等子结构?

- 所逻辑 - 一阶算术公理系统 - 一勒文海姆-司寇伦定理

例Ⅱ

断言

对任意公式 $\phi(x_1,...,x_n)$,对任意的 $r_1 < ... < r_n \in \mathbb{R}$ 以及 $q_1 < ... < q_n \in \mathbb{Q}$ 有

$$(\mathbb{R},<) \models \phi(\mathbf{r}_1,...,\mathbf{r}_n) \iff (\mathbb{Q},<) \models \phi(\mathbf{q}_1,...,\mathbf{q}_n).$$

证明:

- φ 不含量词时显然成立;
- 设 ϕ 形如 $\exists y \psi(x_1,...,x_n,y)$;
- 如果 (\mathbb{R} , <) $\models \phi(\mathbf{r}_1, ..., \mathbf{r}_n)$,则存在 $\mathbf{r}_{n+1} \in \mathbb{R}$ 使得 (\mathbb{R} , <) $\models \psi(\mathbf{r}_1, ..., \mathbf{r}_n, \mathbf{r}_{n+1})$;

例III

- 由稠密性,存在 $q_{n+1} \in \mathbb{Q}$ 使得 $r_1, ..., r_n, r_{n+1}$ 和 $q_1, ..., q_n, q_{n+1}$ 有相同的序型;
- 由归纳假设, $(\mathbb{Q},<) \models \psi(q_1,...,q_n,q_{n+1});$
- 故 (\mathbb{Q} , <) |= $\exists y \psi(q_1, ..., q_n, y)$;
- 同理可证另外一个方向;

由以上断言可证: 对任意公式 $\phi(x_1,...,x_n)$, 对任意的 $q_1 < ... < q_n \in \mathbb{Q}$ 有

$$(\mathbb{R},<) \models \phi(q_1,...,q_n) \iff (\mathbb{Q},<) \models \phi(q_1,...,q_n).$$

例

例

 \mathfrak{M} 是其超积 $\Pi_{\mathcal{U}}\mathfrak{M}^{I}$ 的初等子结构.

例

例

标准模型 $\mathcal{N}=(\mathbb{N},0,\textbf{\textit{S}},+,\times)$ 是所有非标准模型的子结构,但不一定是初等子结构。

- 设 颁 是一个非标准模型;
- $0 \mapsto 0^{\mathfrak{M}}, 1 \mapsto S^{\mathfrak{M}}(0^{\mathfrak{M}}), \dots, n \mapsto S^{\mathfrak{M}^{n}}(0^{\mathfrak{M}})$ 是 \mathfrak{N} 到 \mathfrak{M} 的同态嵌入。

塔斯基定理

设 $\mathfrak{M} = (M,...)$ 是 L 结构, $A \subseteq M$ 。则 A 是 \mathfrak{M} 的初等子结构当 且仅当对任意的非空 A-可定义集合 X,都有 $X \cap A \neq \emptyset$ 。

等价地,对任意的 L-公式 $\phi(x,y)$,其中 $x=x_1,...,x_n$, $y=y_1,...,y_m$,对任意的 $b=(b_1,...,b_m)\in A^m$,如果

$$\mathfrak{M} \models \exists x_1 ... \exists x_n \phi(x, b),$$

则存在 $a \in A^n$ 使得 $\mathfrak{M} \models \phi(a, b)$ 。

证明

 \Rightarrow :

- 设 A 是初等子结构,即 $\mathbb{A} = (A, Z^{\mathfrak{M}}|A)_{Z \in L}$ 是 \mathfrak{M} 的初等子结构;
- 设 $\phi(x,y)$ 是公式, 其中 $x = x_1, ..., x_n$, $y = y_1, ..., y_m$;
- **退** 设 $\mathfrak{M} \models \exists x_1 ... \exists x_n \phi(x, b);$
- **■** 则 $\mathbb{A} \models \exists x_1 ... \exists x_n \phi(x, b)$;
- 故存在 $a \in A^n$ 使得 $\mathbb{A} \models \phi(a, b)$;
- $\blacksquare \mathfrak{M} \models \phi(\mathbf{a}, \mathbf{b})$

─阶逻辑 └─ ─阶算术公理系统 └─ 勒文海姆-司寇伦定理

证明

⇐: 首先证明 A 是子结构

- 设 c 是常元,则 $\mathfrak{M} \models \exists x(x=c)$;
- 存在 $a \in A$ 使得 $\mathfrak{M} \models (a = c)$,即 $c^{\mathfrak{M}} \in A$;
- 设 $f \in m$ -元函数符号, $b = (b_1, ..., b_m) \in A^m$;
- 则 $\mathfrak{M} \models \exists y(y = f(b));$
- 存在 $a \in A$ 使得 $\mathfrak{M} \models (a = f(b)),$, 即 $f^{\mathfrak{M}}(b) \in A$;
- 故 A 包含所有常元且对函数封闭。

证明

 \Leftarrow : 接下来证明 $\mathbb{A} = (A, Z^{\mathfrak{M}}|A)_{Z \in L}$ 是 \mathfrak{M} 的初等子结构。对公式 $\psi(x)$ 归纳证明 $(x = (x_1, ..., x_m))$: 对任意 $b \in A^m$

$$\mathfrak{M} \models \psi(\mathbf{b}) \iff \mathbb{A} \models \psi(\mathbf{b}). \tag{1}$$

■ $\psi(x)$ 不含量词,则对 $b \in A^m$,总是有

$$\mathfrak{M} \models \psi(\mathbf{b}) \iff \mathbb{A} \models \psi(\mathbf{b});$$

- 设 ψ 是 $\neg \psi_1$ 或 $\psi_1 \wedge \psi_2$,且 ψ_1 与 ψ_2 满足归纳假设,则 ψ 显然满足 (1);
- 设 $\psi(x)$ 是 $\exists y \phi(x, y)$;

一阶算术公理系统

└ 勒文海姆-司寇伦定理

证明

■ 如果 $\mathbb{A} \models \exists y \phi(b, y)$,则存在 $a \in A$ 使得

$$\mathbb{A} \models \phi(\mathbf{b}, \mathbf{a})$$

由归纳假设

$$\mathfrak{M} \models \phi(\mathbf{b}, \mathbf{a});$$

故 $\mathfrak{M} \models \exists y \phi(b, y)$.

■ 如果 $\mathfrak{M} \models \exists y \phi(b, y)$,则根据定理条件,存在 $a \in A$ 使得

$$\mathfrak{M} \models \phi(\mathbf{b}, \mathbf{a});$$

由归纳假设

$$\mathbb{A} \models \phi(\mathbf{b}, \mathbf{a})$$

故 $\mathbb{A} \models \exists y \phi(b, y).$

设 L 是一个语言,我们定义 L 的基数为 $\max\{|L|, \aleph_0\}$,仍然记作 |L|。

下行的勒文海姆-司寇伦定理

设 $\mathfrak{M} = (M,...)$ 是 L 结构, $A \subseteq M$ 。则存在 $M_0 \subseteq M$ 使得

- \blacksquare $A \subseteq M_0$;
- M₀ 是 M 的初等子结构;
- $|M_0| \leq \max\{|A|, |L|\}$

证明概要

构造一个个集合序列

$$A = A_0 \subset A_1 \subset A_2...$$

使得对任意的自然数 k,对任意的 L-公式 $\phi(x,y)$,以及对任意的 $b \in A_k^m$,如果

$$\mathfrak{M} \models \exists x_1 ... \exists x_n \phi(x, b),$$

则存在 $a \in A_{k+1}^n$ 使得 $\mathfrak{M} \models \phi(a,b)$.

- **1** $A_0 = A$,则至多 $\lambda_0 \leq \max\{|A_0|, |L|\}$ 个 A_0 -可定义集合;
- ② 设 $\{X_i^0 | i < \lambda\}$ 是所有的非空的 A_0 -可定义集合;
- 3 在每个 X_i^0 中选取一个元素 b_i^0 ,令

$$A_1 = A_0 \cup \{b_i^0 | i < \lambda_0\}.$$

- 4 则 $A_0 \subseteq A_1$
- 5 $|A_1| \leq \max\{|A_0|, |L|\}$
- **6** 每个非空的 A_0 -可定义集合与 A_1 相交非空。

- 一般地, 设 A₁ 已经定义好了;
- ② 则至多 $\lambda_n \leq \max\{|A_n|, |L|\}$ 个 A_n -可定义集合;
- 3 设 $\{X_i^n | i < \lambda_n\}$ 是所有的非空的 A_n -可定义集合;
- 4 在每个 X_i^n 中选取一个元素 b_i^n ,令

$$A_{n+1} = A_n \cup \{b_i^n | i < \lambda_n\}.$$

则
$$A_n \subseteq A_{n+1}$$
, $|A_{n+1}| \le \max\{|A_n|, |L|\}$;

- **5** 每个非空的 A_n -可定义集合与 A_{n+1} 相交非空;
- 6 最后,令 $M_0 = \bigcup_{n \in \mathbb{N}} A_n$ 。

__勒文海姆-司寇伦定理

- **1** 设 $X = \phi(M, b_1, ..., b_n) \subseteq M$ 是 M_0 -可定义的非空集合;
- **3** $X \subseteq M$ 是 A_k -可定义的非空集合;
- **4** X 与 A_{k+1} 相交非空;
- 5 最后,对 n 归纳证明每个 A_n 的基数 $\leq \max\{|A|,|L|\}$;
- 6 故 M_0 的基数 $\leq \max\{|A|, |L|\}$ 。

─阶逻辑 └─ 一阶算术公理系统 ─ └─ 勒文海姆-司寇伦定理

上行的勒文海姆-司寇伦定理

设 $\mathfrak{M}=(M,...)$ 是无穷的 L-结构, $\lambda \geq \max\{|M|,|L|\}$,则存在一个基数为 λ 的结构 \mathfrak{M} 使得 $\mathfrak{M} \prec \mathfrak{N}$ 。

语言和结构的扩张

- **1** 将 L-结构 $\mathfrak{M} = (M, ...)$ 中的元素作为常元 / 参数引入语言 L;
- ② 得到扩张后语言 $L \cup M$,记作 L_M ;
- 3 构造 L_M-结构 317 如下:
- 4 m' 的论域是 M;
- **5** L 中的符号在 \mathfrak{M}' 中的解释与在 \mathfrak{M} 中相同;
- 6 新的常元 $a \in M$ 在 \mathfrak{M}' 中解释为 a,即 $a^{\mathfrak{M}'} = a$;
- **7** 对任意的 *L*-公式 $\phi(x_1,...x_n)$, $a_1,...,a_n \in M$ 有

$$\mathfrak{M} \models \phi(a_1,...,a_n) \iff \mathfrak{M}' \models \phi(a_1,...,a_n)$$
 此处也可理解为句子

证明

- 1 将 M 中的元素作为常元 / 参数引入语言 L,得到 $L_M = L \cup M$;
- ② 引入 λ 个新常元,得到 $L^* = L_M \cup \{c_i | i < \lambda\};$
- 3 令 Σ_M 为 L_M -句子集

$$\{\phi(\textbf{\textit{a}}_1,...,\textbf{\textit{a}}_{\textit{n}})|\ \mathfrak{M}\models\phi(\textbf{\textit{a}}_1,...,\textbf{\textit{a}}_{\textit{n}}),\phi\in\textbf{\textit{L}},\textbf{\textit{a}}_{\textit{i}}\in\textbf{\textit{M}},\textbf{\textit{n}}\in\mathbb{N}\},$$

4 令 \mathfrak{M}' 入上,则 $\Sigma_M = \{ \sigma | \mathfrak{M}' \models \sigma, \sigma \in L_M$ 句子) \};

证明

断言

设 \mathbb{A} 是一个 L_M -结构,如果 $\mathbb{A} \models \Sigma_M$, \mathbb{A} 在 L 上的约化 $\mathbb{A}|L$ 在如下意义下是 \mathfrak{M} 的初等膨胀: 对任意的 L-公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathbb{A} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n)$$

注意

$$\mathbb{A} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathbb{A} \models \phi(\mathbf{a}_1^{\mathbb{A}}, ..., \mathbf{a}_n^{\mathbb{A}})$$

__勒文海姆-司寇伦定理

- 1 $\diamondsuit \Sigma^* = \Sigma_M \cup \{c_i \neq c_i | i < j < \lambda\};$
- **3** $|L|, |M| \leq \lambda$,故 $|L^*| = \lambda$;
- 4 根据辛钦构造, Σ^* 有一个基数不超过 λ 的模型 \mathfrak{N} ;
- **5** 另一方面, Σ^* 的模型基数总是 $\geq \lambda$ 。

─阶逻辑 ──一阶算术公理系统 ──一勒文海姆-司寇伦定理

推论

设 L 的基数为 κ , Σ 是一个可满足的 L-公式集,且有一个无穷模型。则对任意的 $\lambda \geq \kappa$,都存在 $\mathfrak{N} \models \Sigma$ 使得 $|\mathfrak{N}| = \lambda$ 。特别地, Σ 有一个基数不超过 κ 的模型。

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型

ZFC

```
集合论的语言 L = \{ \in \}.
```

- **1** 存在公理 ∃x(x = x);
- **2** 外延公理 $\forall x \forall y (\forall u (u \in x \leftrightarrow u \in y)) \rightarrow x = y;$
- ③ 分离公理模式 $\forall x \exists y \forall u (u \in y \leftrightarrow u \in x \land \phi(u));$
- 4 并集公理 $\forall x \exists y \forall u (u \in y \leftrightarrow \exists z (z \in x \land u \in z));$
- 5 对集公理 $\forall x \forall y \exists z \forall u (u \in z \leftrightarrow u = x \lor u = y)$;
- **6** 幂集公理 $\forall x \exists y \forall u (u \in y \leftrightarrow u \subseteq x)$;
- **7** 无穷公理 $\exists x(\emptyset \in x \land \forall u(u \in x \rightarrow S(u) \in x))$;
- 8 替换公理模式

 $\forall x \in A \exists ! y(\psi(x,y)) \rightarrow \exists B \forall x \in A \exists y \in B \psi(x,y);$

- 9 基础公理 $\forall x (x \neq \emptyset \rightarrow \exists y (y \in x \land x \cap y = \emptyset));$
- **10** 选择公理;

$$\left(\emptyset \notin X \land \forall x, y \in X(x \cap y = \emptyset)\right) \to \exists S \forall x \in X \exists ! y (S \cap x = \{y\}).$$

1 一阶算术公理系统

- 勒文海姆-司寇伦定理
- 集合论的公理系统 ZFC
- 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型

司寇伦佯谬

- 1 集合论的语言可数;
- **2** ZFC 有可数模型;
- 3 *ZFC* $\models \exists x(x = \omega);$
- 4 $ZFC \models \exists x \exists y (x = \omega \land y = \mathcal{P}(x));$
- 5 设 \mathfrak{M} 是 ZFC 的可数传递模型,即 $\forall y(y \in M \rightarrow \forall x \in y(x \in M));$
- **6** $\mathfrak{M} \models \exists y(y不可数);$
- **7** 而 *y* 的元素都是 *M* 的元素;
- 8 故 M 不可数;

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

理论

定义

如果闭语句集合 T 满足对任意的闭语句 σ 都满足: $T \models \sigma$ 蕴含着 $\sigma \in T$. 则称 T 是一个理论。

- 1 设 U 是一个结构,则 Th(U) 是一个理论
- 2 设 \mathcal{K} 是一类结构,则

$$Th(\mathcal{K}) = \{ \sigma | \forall \mathcal{U} \in \mathcal{K}, \mathcal{U} \models \sigma \}$$

是一个理论。

称理论 T 是完备的,如果对每个闭语句 σ ,或者 $\sigma \in T$ 或者 $\neg \sigma \in T$ 。

引理

设 T 是一个一致的理论。则下列命题等价:

- T 是完备的理论;
- **2** *T* 的任何中扩张 *T'* 都不一致;
- **3** 对任何 T 的模型 \mathfrak{U} , 都有 $T = Th(\mathfrak{U})$;
- 4 对任何 T 的模型 \mathfrak{U} 和 \mathfrak{B} , 都有 $\mathfrak{U} \equiv \mathfrak{B}$;
- 5 对任何闭语句 σ , τ , 如果 $T \vdash \sigma \lor \tau$, 则或者 $T \vdash \sigma$, 或者 $T \vdash \tau$

可公理化

定义

我们称理论 T 是可公理化的,如果存在一个可判定的闭语句集 Σ 使得

$$T = {\sigma | \Sigma \models \sigma}.$$

如果 Σ 是有穷的,则称 T 是有穷公理化的。

- 域的语言是 {+,×,0,1};
- 2 域的理论是有穷公理化的,但不是完备的;
- 3 代数闭域的理论是有可理化的,但不是有穷公理化的,也不 是完备的;
- 4 特征为 0 的代数闭域是完备的,可公理化的,但不是有穷公 理化的;
- **5** 特征为 p(>0) 的代数闭域是完备的,可公理化的,但不是有穷公理化的;

可判定的理论

定义

我们称理论 T 是可判定的,如果存在一个算法,使得对任何闭语句 σ ,该算法都能告诉我们 σ 是否在 T 中。

注

我们称理论 T 是可判定的当且仅当其编码的集合

$$\#T = \{\#\sigma | \sigma \in T\}$$

是递归集。

引理

完备的可公理化的理论是可判定的。

证明思路

- **1** 设 Σ 是 T 的公理集;
- 2 Σ 可判定;
- 3 存在一个算法生成 T;
- 4 即存在递归函数 $f: \mathbb{N} \to \#T$
- 5 对于一个闭语句 τ ,同时检查 $\#\tau$ 和 $\#\neg\tau$ 是否在 $f(\mathbb{N})$ 中。

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

λ -范畴理论

定义

设 λ 是一个基数。我们称理论 T 是 λ -范畴的,如果对 T 的模型 \mathfrak{U} 和 \mathfrak{D} , $|\mathfrak{U}| = |\mathfrak{D}|$ 蕴涵 $\mathfrak{U} \cong \mathfrak{D}$ 。即 T 的基数为 λ 的模型都是同构的。

注

- **1** 莫雷定理: 令 T 是可数语言上的一致的理论, λ , κ 是不可数 基数, 如果 T 是 λ -范畴的,则 T 是 κ -范畴的。
- 2 根据紧致性定理(或 L-S-T),一个一阶理论不能决定其模型," λ -范畴"是最好的可能的结果;

一阶逻辑 └_{─ **-范畴理论}

例

如果 $L = \emptyset$, T 是普遍有效的闭语句, 则 T 是 λ -范畴的。

定理

(康托尔) 任何无端点的可数的稠密线序都同构于 $(\mathbb{Q},<)$ 。故 DLO 是 \aleph_0 -范畴的。

证明Ⅰ

- 1 设 $\mathbb{A} = (A, <)$, $\mathfrak{B} = (B, <)$ 是两个无端点的可数的稠密线序;
- **2** 设 $A = \{a_0, a_1, a_2, ...\}$, $B = \{b_0, b_1, b_2, ...\}$;
- **3** 构造一个保序的双射函数 $f \subseteq A \times B$;
- 4 $\diamondsuit f_0 = \{(a_0, b_0)\};$
- 5 设一构造了 $f_0 \subseteq f_1 \subseteq ... \subseteq f_n \subseteq A \times B$ 使得每个 f_i 是保序单射,且
- 6 对每个 *i* ≤ *n*,都有

$$\{a_0,...,a_i\}\subseteq \operatorname{dom} f_i, \ \{b_0,...,b_i\}\subseteq \operatorname{ran} f_i.$$

7 若 $a_{n+1} \in \text{dom } f_n$, 则 $f_n^* = f_n$,

证明Ⅱ

8 若 $a_{n+1} \notin \text{dom } f_n$,取 $b_i \in B$ 使得

$$f_n \cup \{(a_{n+1},b_j)\}$$

是保序单射。令 $f_n^* = f_n \cup \{(a_{n+1}, b_j)\};$

- 9 若 $b_{n+1} \in \operatorname{ran} f_n^*$,则 $f_{n+1} = f_n^*$,
- 10 若 $b_{n+1} \notin \operatorname{ran} f_n^*$, 取 $a_k \in A$ 使得

$$f_n^* \cup \{(a_k, b_{n+1})\}$$

是保序单射。令 $f_{n+1} = f_n^* \cup \{(a_k, b_{n+1})\};$

11 最后,令 $f = \bigcup_n f_n$ 。

注

对任意不可数的 κ , DLO 不是 κ -范畴的。

$$\mathbb{R} + \mathbb{Q}$$

$$\mathbb{Q} + \mathbb{R}$$

例

特征为 p 的代数闭域的理论 ACF_p 是 κ -范畴的,其中 κ -不可数。 ACF_p 不是 \aleph_0 -范畴的。

一阶逻辑 └ _{λ-范畴理论}

例

有理数域 \mathbb{Q} 上的向量空间的理论 κ -范畴的,其中 κ -不可数。(它也不是 \aleph_0 -范畴的。)

定理

(乌什-沃特判别法)设 T 是可数语言上的理论并且满足:

- **1** 对某个无穷基数 λ , T 是 λ -范畴的;
- 2 T 的所有模型都是无穷的,即 T 没有有穷模型;

则 T 是完备的。

证明

- 反设则 T 不是完备的,则存在句子 σ 使得 $T \cup \{\sigma\}$ 与 $T \cup \{\neg\sigma\}$ 都是一致的;
- 令 $\mathfrak{M}_1 \models T \cup \{\sigma\}$, $\mathfrak{M}_2 \models T \cup \{\neg\sigma\}$, 则 \mathfrak{M}_1 与 \mathfrak{M}_2 都是无穷模型;
- 根据 L-S-T,存在基数为 λ 的结构 \mathfrak{M}_1' 与 \mathfrak{M}_2' 使得 $\mathfrak{M}_1' \models T \cup \{\sigma\}, \ \mathfrak{M}_2' \models T \cup \{\neg\sigma\};$
- 根据 T 的 λ -范畴性, $\mathfrak{M}_1' \cong \mathfrak{M}_2'$,这是一个矛盾。

一阶逻辑 └ _{λ-范畴理论}

推论

理论 $\operatorname{Th}(\mathbb{Q},<)$ 与 ACF_p 都是可判定的。

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

定义(回忆)

设 $\mathfrak{M} = (M, ...)$ 与 $\mathfrak{N} = (N, ...)$ 均是 L 结构且 $M \subseteq N$ 。

■ 如果对任意不带量词的公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathfrak{N} \models \phi(\mathbf{a}_1,...,\mathbf{a}_n)$$

则称 \mathfrak{M} 是 \mathfrak{N} 的子结构,记作 $\mathfrak{M} \subseteq \mathfrak{N}$;

■ 如果对任意公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathfrak{N} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n)$$

则称 \mathfrak{M} 是 \mathfrak{N} 的初等子结构,记作 $\mathfrak{M} \prec \mathfrak{N}$;

定义

设 $\mathfrak{M} = (M,...)$ 与 $\mathfrak{N} = (N,...)$ 均是 L 结构。如果映射 $i: M \to N$ 满足:

■ 如果对任意不带量词的公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathfrak{N} \models \phi(\mathbf{i}(\mathbf{a}_1), ..., \mathbf{i}(\mathbf{a}_n))$$

则称 $i \in \mathfrak{M}$ 到 \mathfrak{N} 的嵌入;

■ 如果对任意的公式 $\phi(x_1,...,x_n)$ 以及 $a_1,...,a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathfrak{N} \models \phi(\mathbf{i}(\mathbf{a}_1), ..., \mathbf{i}(\mathbf{a}_n))$$

则称 $i \in \mathfrak{M}$ 到 \mathfrak{N} 的初等嵌入;

一嵌入、初等嵌入、生成子结构、量词消去

引理

设 $\mathfrak{M}=(M,...)$ 与 $\mathfrak{N}=(N,...)$ 均是 L 结构。如果 i 是 \mathfrak{M} 到 \mathfrak{N} 的初等嵌入,则存在 L 结构 $\mathfrak{M}'=(M',...)$ 与 $\mathfrak{N}'=(N',...)$ 使得

- \blacksquare $\mathfrak{M} \cong \mathfrak{M}'$, $\mathfrak{N} \cong \mathfrak{N}'$;
- *i* 是 ∭ 到 m' 的同构;
- 同构 $j: \mathfrak{N}' \to \mathfrak{N}$ 是 i 的扩张;
- $\mathfrak{M} \prec \mathfrak{N}' \perp \mathfrak{M} \mathfrak{M}' \prec \mathfrak{N}_{\circ}$

证明

练习。

语言和结构的扩张

- 11 将 L-结构 $\mathfrak{M} = (M, ...)$ 中的元素作为常元 / 参数引入语言 L;
- ② 得到扩张后语言 $L \cup M$,记作 L_M ;
- 3 构造 L_M-结构 m' 如下:
- 4 𝔐′ 的论域是 M;
- **5** L 中的符号在 \mathfrak{M}' 中的解释与在 \mathfrak{M} 中相同;
- 6 新的常元 $a \in M$ 在 \mathfrak{M}' 中解释为 a,即 $a^{\mathfrak{M}'} = a$;
- **7** 对任意的 *L*-公式 $\phi(x_1,...x_n)$, $a_1,...,a_n \in M$ 有

$$\mathfrak{M} \models \phi(a_1,...,a_n) \iff \mathfrak{M}' \models \phi(a_1,...,a_n)$$
 作为 L 结构

8 m' 作为 L_M-结构

$$\mathfrak{M}' \models \phi(\underbrace{a_1,...,a_n}) \iff \mathfrak{M}' \models \phi(\underbrace{a_1,...,a_n})$$
作为常元

初等膨胀的构造丨

- 1 将 M 中的元素作为常元 / 参数引入语言 L,得到 $L_M = L \cup M$;
- 2
- 3 令 $Diag_{el}(\mathfrak{M})$ 为 L_M -句子集 $Th(\mathfrak{M}')$

$$\mathsf{Diag}_{\mathsf{el}}(\mathfrak{M}) = \{\sigma | \ \mathfrak{M}' \models \sigma, \ \sigma \not\in \mathsf{L}_\mathsf{M}$$
句子)}

4 显然

$$\mathsf{Diag}_{\mathsf{el}}(\mathfrak{M}) = \{\phi(\bar{\mathbf{a}})|\ \mathfrak{M} \models \phi(\bar{\mathbf{a}}), \phi \in \mathit{L}, \bar{\mathbf{a}} \in \mathit{M}^n, n \in \mathbb{N}\},$$

5 设 $\mathbb{A} = (A, ...)$ 是一个 L_M -结构,且 $\mathbb{A} \models \mathsf{Diag}_{\mathsf{el}}(\mathfrak{M})$ 。则对任意的 L-公式 $\phi(x_1, ..., x_n)$ 以及 $a_1, ..., a_n \in M$,有

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathbb{A} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n)$$

初等膨胀的构造 ||

6 令 \mathbb{A}_0 是 \mathbb{A} 在 L 上的约化 $\mathbb{A}|L$ 。则对任意的 L-公式 $\phi(x_1,...,x_n)$ 以及 $b_1,...,b_n\in A$,有

$$\mathbb{A} \models \phi(\mathbf{b}_1, ..., \mathbf{b}_n) \iff \mathbb{A}_0 \models \phi(\mathbf{b}_1, ..., \mathbf{b}_n)$$

7 特别地,取 $a_1,...,a_n \in M$,令 $b_i = a_i^{\mathbb{A}}$

$$\mathbb{A} \models \phi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathbb{A} \models \phi(\mathbf{b}_1,...,\mathbf{b}_n) \iff \mathbb{A}_0 \models \phi(\mathbf{b}_1,...,\mathbf{b}_n)$$

8 即

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathbb{A}_0 \models \phi(\mathbf{a}_1^{\mathbb{A}}, ..., \mathbf{a}_n^{\mathbb{A}})$$

9 即 $a \mapsto a^{\mathbb{A}}$ 是 \mathfrak{M} 到 \mathbb{A}_0 的初等嵌入。

性质

如果 L_M 结构 $\mathbb{A} \models \mathsf{Diag}_{\mathsf{el}}(\mathfrak{M})$,令 $\mathbb{A}_0 \not \in \mathbb{A}$ 在 L 上的约化,则存在存在 L-结构 \mathfrak{B} 使得 $\mathfrak{B} \cong \mathbb{A}_0$ 且 $\mathfrak{M} \prec \mathfrak{B}$ 。

注

在同构的意义下:

L-结构 $\mathfrak{B}=(B,...)$ 是 \mathfrak{M} 的初等膨胀当且仅当 \mathfrak{B} 可以扩张为 L_M -结构

$$\mathfrak{B}'=(B,...,a^{\mathfrak{B}'},...)_{a\in M}$$

使得 $\mathfrak{B}' \models \mathsf{Diag}_{\mathsf{el}}(\mathfrak{M})$ 。

引理

设 $\mathfrak{M} = (M,...)$ 与 $\mathfrak{N} = (N,...)$ 均是 L 结构。如果 i 是 \mathfrak{M} 到 \mathfrak{N} 的嵌入,则存在 L 结构 $\mathfrak{M}' = (M',...)$ 与 $\mathfrak{N}' = (N',...)$ 使得

- \blacksquare $\mathfrak{M} \cong \mathfrak{M}'$, $\mathfrak{N} \cong \mathfrak{N}'$;
- *i* 是 ∭ 到 m' 的同构;
- 同构 $j: \mathfrak{N}' \to \mathfrak{N}$ 是 i 的扩张;
- $\mathfrak{M} \subseteq \mathfrak{N}' \coprod \mathfrak{M}' \subseteq \mathfrak{N}$.

证明

练习。

膨胀的构造丨

- 1 将 M 中的元素作为常元 / 参数引入语言 L , 得到 $L_M = L \cup M$;
- 2
- 3 令 $Diag(\mathfrak{M})$ 为 L_M -句子集 $Th(\mathfrak{M}')$

$$\mathsf{Diag}(\mathfrak{M}) = \{\sigma | \ \mathfrak{M}' \models \sigma, \ \sigma$$
是无量词的 L_{M} 句子)}

4 令 L^{qf} 表示不含量词的 L-公式,显然

$$\mathsf{Diag}(\mathfrak{M}) = \{\phi(\bar{\mathbf{a}})|\ \mathfrak{M} \models \phi(\bar{\mathbf{a}}), \psi \in \mathit{L}^{\mathsf{qf}}, \bar{\mathbf{a}} \in \mathit{M}^{\mathit{n}}, \mathit{n} \in \mathbb{N}\},$$

5 设 $\mathfrak{B} = (B, ...)$ 是一个 L_M -结构,且 $\mathfrak{B} \models \mathsf{Diag}(\mathfrak{M})$ 。则对任意无量词的 L-公式 $\psi(x_1, ..., x_n)$ 以及 $a_1, ..., a_n \in M$,有

$$\mathfrak{M} \models \psi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathfrak{B} \models \psi(\mathbf{a}_1,...,\mathbf{a}_n)$$

膨胀的构造 ||

6 令 \mathfrak{B}_0 是 \mathfrak{B} 在 L 上的约化 $\mathfrak{B}|L$ 。则对任意 (无量词) 的 L-公式 $\psi(x_1,...,x_n)$ 以及 $b_1,...,b_n \in B$,有

$$\mathfrak{B} \models \phi(b_1,...,b_n) \iff \mathfrak{B}_0 \models \phi(b_1,...,b_n)$$

7 特别地,取
$$a_1,...,a_n \in M$$
,令 $b_i = a_i^{\mathfrak{B}}$

$$\mathfrak{B} \models \phi(a_1,...,a_n) \iff \mathfrak{B} \models \phi(b_1,...,b_n) \iff \mathfrak{B}_0 \models \phi(b_1,...,b_n)$$

8 即
$$\mathfrak{M} \models \phi(a_1,...,a_n) \iff \mathfrak{B}_0 \models \phi(a_1^{\mathfrak{B}},...,a_n^{\mathfrak{B}})$$

9 即 $a \mapsto a^{\mathfrak{B}}$ 是 \mathfrak{M} 到 \mathfrak{B}_0 的嵌入。

性质

如果 L_M 结构 $\mathfrak{B} \models \mathsf{Diag}(\mathfrak{M})$,令 \mathfrak{B}_0 是 \mathfrak{B} 在 L 上的约化,则存在存在 L-结构 \mathfrak{B}' 使得 $\mathfrak{B}' \cong \mathfrak{B}_0$ 且 $\mathfrak{M} \subseteq \mathfrak{B}'$ 。

注

在同构的意义下:

L-结构 $\mathfrak{B}=(B,...)$ 是 \mathfrak{M} 的膨胀当且仅当 \mathfrak{B} 可以扩张为 L_M -结构

$$\mathfrak{B}'=(B,...,a^{\mathfrak{B}'},...)_{a\in M}$$

使得 $\mathfrak{B}' \models \mathsf{Diag}(\mathfrak{M})$ 。

生成子结构丨

回忆:

设 $\mathfrak{M}=(M,...)$ 是 L 结构, $A\subseteq M$,称 A 是子结构是指 A 包含了所有的常元且对函数运算封闭。

此时 $\mathbb{A} = (A, Z^{\mathfrak{M}}|A)_{Z \in L}$ 是 \mathfrak{M} 的子结构。

生成子结构

- 任取 A₀ ⊆ M;
- 令 $A_1 = A_0 \cup \{c^{\mathfrak{M}} | c$ 是常元};
- **...**
- $\diamondsuit A_{n+1} = A_n \cup \bigcup_{f \in \mathbb{R}_n \text{ \mathfrak{A}} \cap \mathbb{R}_+} f^{\mathfrak{M}}(A_n);$
- 令 $A = \bigcup_{n \in \mathbb{N}} A_n$,则 $\mathbb{A} = (A, ...)$ 是包含 A_0 的最小的子结构 (? 练习),称之为 A_0 生成的子结构;

生成子结构 ||

- 令 $A = \{t^{\mathfrak{M}}(\bar{a}) | t$ 是一个项, $n \in \mathbb{N}, \bar{a} \in A_0^n\}$ (? 练习)
- $lacksymbol{\blacksquare}$ 若 $A_0=\{a_1,...,a_n\}$,则 L_A -句子集 $Diag(\mathbb{A})$ 与 L_{A_0} 句子集

$$\Sigma = \{\phi(\mathbf{a}_1, ..., \mathbf{a}_n) | \phi \in \mathcal{L}^{qf}, \mathbb{A} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n)\}$$

逻辑等价,即 $\Sigma \models \mathsf{Diag}(\mathbb{A})$ 且 $\mathsf{Diag}(\mathbb{A}) \models \Sigma$ 。

一附逻辑 └─嵌入、初等嵌入、生成子结构、量词消去

定义

称一个理论 T 接受量词消去。如果对任何公式 ϕ ,都存在一个不含量词的公式 ψ 使得

$$T \models \phi \leftrightarrow \psi$$

引理

理论 T 接受量词消去当且仅当对每个具有下列形式的公式 ϕ :

$$\exists x(\alpha_0 \wedge ... \wedge \alpha_n),$$

都接受其中每个 α_i 或者是原子公式,或者是原子公式的否定式,都存在一个不含量词的 ψ 使得

$$T \models \phi \leftrightarrow \psi$$

证明

- 对量词个数归纳证明;
- 设 ϕ 形如 $\exists x\theta$;
- 由归纳假设, θ 可以量词消去;
- 即 θ mod T 等价于一个无量词公式 β ;
- β 逻辑等价于原子公式的析取范式;
- $\mathbb{P} \vdash \beta \leftrightarrow \beta_1 \lor ... \lor \beta_k$;
- 其中每个 *βi* 均是原子和其否定的合取
- 显然 $\vdash \exists x(\beta_1 \lor ... \lor \beta_k) \leftrightarrow (\exists x \beta_1) \lor ... \lor (\exists x \beta_k)$
- 由条件,每个 $\exists x \beta_i$ 都接受量词消去;
- 故 $\exists x \beta$ 接受量词消去。

引理

设 T 是一个理论, $\phi(x_1,...,x_n)$ 是一个公式。则存在无量词的 $\psi(x_1,...,x_n)$ 使得

$$T \models \forall \bar{\mathbf{x}}(\phi(\mathbf{x}_1,...,\mathbf{x}_n) \leftrightarrow \psi(\mathbf{x}_1,...,\mathbf{x}_n))$$

当且仅当对 T 的任意的 \mathfrak{M}_1 和 \mathfrak{M}_2 , \mathfrak{M}_1 和 \mathfrak{M}_2 任意的公共子结构 A , 以及任意的 $a_1,...,a_n\in A$ 都有

$$\mathfrak{M}_1 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathfrak{M}_2 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n)$$

证明Ⅰ

 \Rightarrow :

- 1 设 $\phi(x_1,...,x_n)$ 是一个公式, $\psi(x_1,...,x_n)$ 是一个无量词的公式;
- ② 设 $T \models \forall \bar{\mathbf{x}}(\phi(\mathbf{x}_1,...,\mathbf{x}_n) \leftrightarrow \psi(\mathbf{x}_1,...,\mathbf{x}_n));$
- ③ 设 $\mathfrak{M}_1,\mathfrak{M}_2 \models T$, $\mathbb{A} = (A,...)$ 是 \mathfrak{M}_1 和 \mathfrak{M}_2 的公共子结构, $a_1,...,a_n \in A$;
- **4** 则 $\mathfrak{M}_1, \mathfrak{M}_2 \models \forall \bar{\mathbf{x}}(\phi(\mathbf{x}_1,...,\mathbf{x}_n) \leftrightarrow \psi(\mathbf{x}_1,...,\mathbf{x}_n))$
- **5** 设 $\mathfrak{M}_1 \models \phi(a_1, ..., a_n)$;
- 6 则 $\mathfrak{M}_1 \models \psi(a_1, ..., a_n)$;
- **7** 故 $\mathbb{A} \models \psi(a_1, ..., a_n)$,从而 $\mathfrak{M}_2 \models \psi(a_1, ..., a_n)$;
- 8 故 $\mathfrak{M}_2 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n)$ 。

证明Ⅱ

 \Leftarrow :

- **1** 设 $\phi(x_1,...,x_n)$ 是一个公式;
- 2 我们找到与 ϕ (mod T) 等价的无量词的公式 ψ ;
- 3 令

$$\Sigma(\bar{\mathbf{x}}) = \big\{ \theta(\bar{\mathbf{x}}) | \; \theta$$
无量词,且 $T \models \forall \bar{\mathbf{x}}(\phi(\bar{\mathbf{x}}) \to \theta(\bar{\mathbf{x}})) \big\};$

- 4 根据紧致性,只需证明 $T \cup \Sigma(\bar{x}) \models \phi(\bar{x})$;
- 5 反设【4】不成立,则 $T \cup \Sigma(\bar{x}) \cup \{\neg \phi(\bar{x})\}$ 一致;
- 6 **♦** $\mathfrak{M} \models T \cup \Sigma(\bar{x}) \cup \{\neg \phi(\bar{x})\};$
- **7** 取 $\bar{a} \in M^n$ 使得 $\mathfrak{M} \models \Sigma(\bar{a}), \mathfrak{M} \models \neg \phi(\bar{a});$
- 8 令 $A \subseteq M$ 是 $\{a_1, ..., a_n\}$ 生成的子结构 (A = (A, ...));
- 9 我们断言: $T \cup \phi(\bar{a}) \cup Diag(\mathbb{A})$ 一致;

证明Ⅲ

10 否则,存在 $\theta(\bar{a}) \in Diag(\mathbb{A})$ (即 $\mathfrak{M} \models \theta(\bar{a})$) 使得

$$T \cup \phi(\bar{\mathbf{a}}) \models \neg \theta(\bar{\mathbf{a}});$$

- 11 根据【3】, $\neg \theta(\bar{x}) \in \Sigma$;
- 12 根据【7】, $\mathfrak{M}\models\neg\theta(\bar{a})$, $\neg\theta(\bar{a})\in\mathsf{Diag}(\mathbb{A})$ 吗,与【10】矛盾;
- 13 根据断言,存在 L_A 结构 \mathfrak{M}_2 满足 $T \cup \phi(\bar{a}) \cup \mathsf{Diag}(\mathbb{A})$
- 15 $\mathbb{A} \in \mathfrak{M} = \mathfrak{M}_2$ 的公共子结构,且 $\mathfrak{M} \models \neg \phi(\bar{a})$, $\mathfrak{M}_2 \models \phi(\bar{a})$, $\mathcal{F}_{\bar{a}}$;
- 16【4】成立,由紧致性,存在 Σ 的有限子集 Σ_0 使得 $T \cup \Sigma_0(\bar{x}) \models \phi(\bar{x})$;

引理

理论 T 接受量词消去当且仅当对每个具有下列形式的公式 ϕ :

$$\exists \mathbf{x}(\alpha_0 \wedge ... \wedge \alpha_n),$$

其中每个 α_i 或者是原子公式,或者是原子公式的否定式,都存在一个不含量词的 ψ 使得 $T \models \phi \leftrightarrow \psi$

推论

理论 T 接受量词消去当且仅当对任意的 $\mathfrak{M},\mathfrak{N}\models T$,如果 A 同时是 \mathfrak{M} 和 \mathfrak{N} 的子结构,则对任意多个原子公式以及否定式合取而得到的公式 $\phi(x_1,...,x_n,y)$,以及 $a_1,...,a_n\in A$ 都有

$$\mathfrak{M} \models \exists y \phi(a_1, ..., a_n, y) \iff \mathfrak{N} \models \exists y \phi(a_1, ..., a_n, y)$$

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

只含后继的自然数的模型

只含后继的自然数的模型

结构 $\mathfrak{N}_S = (\mathbb{N}, 0, S)$, 语言是 $L_S = \{0, S\}$ 。 公理集为:

- 1 $0 \neq Sx$;
- 2 $Sx = Sy \rightarrow x = y$;
- $\mathbf{S} \quad \mathbf{X} \neq \mathbf{0} \rightarrow \exists \mathbf{y} (\mathbf{X} = \mathbf{S}(\mathbf{y}));$
- 令 T_S 为以上公式的全称概括的逻辑后承的集合。

T_s 的模型

设
$$\mathfrak{M} \models T_s$$
, 则

- 1 $0^{\mathfrak{M}} \in M$;
- $S(0)^{\mathfrak{M}} \in M;$
- $S(n)^{\mathfrak{M}} \in M;$
- **4** 如果 a ∈ M 且

$$\mathbf{a} \notin \{0^{\mathfrak{M}}, \mathcal{S}(0)^{\mathfrak{M}}, \mathcal{S}(1)^{\mathfrak{M}}, \mathcal{S}(2)^{\mathfrak{M}}, ...\},$$

则 a 的前驱和后继均不属于

$$\{0^{\mathfrak{M}}, S(0)^{\mathfrak{M}}, S(1)^{\mathfrak{M}}, S(2)^{\mathfrak{M}}, ...\};$$

T_s 的模型

设
$$\mathfrak{M} \models T_s$$
, 在 M 上定义一个关系 \sim :

$$a \sim b \iff$$
 存在自然数 n 使得 $S^{\mathfrak{M}^n}(a) = b$ 或者 $S^{\mathfrak{M}^n}(b) = a$

- $[0^{\mathfrak{M}}] = \{0^{\mathfrak{M}}, \mathcal{S}(0)^{\mathfrak{M}}, \mathcal{S}(1)^{\mathfrak{M}}, \mathcal{S}(2)^{\mathfrak{M}}, ...\};$
- 2 如果 a ∈ M 且

$$a \notin \{0^{\mathfrak{M}}, \mathcal{S}(0)^{\mathfrak{M}}, \mathcal{S}(1)^{\mathfrak{M}}, \mathcal{S}(2)^{\mathfrak{M}}, ...\},\$$

则 ([a], S) 同构于 (\mathbb{Z}, S) .

3 如果 $a, b \in M$ 非标准,且 $[a] \neq [b]$,则 a + b 中间没有 "大小关系";

引理

 T_S 是不可数范畴的理论,从而是完备的。

证明

- 1 设 $\mathfrak{M}_1=(\pmb{M}_1,0^{\mathfrak{M}_1},\pmb{S}^{\mathfrak{M}_1})$ 与 $\mathfrak{M}_2=(\pmb{M}_2,0^{\mathfrak{M}_2},\pmb{S}^{\mathfrak{M}_2})$ 与均是 T_S 的模型且 $|\pmb{M}_1|=|\pmb{M}_2|=\lambda>\aleph_0;$
- 2 则

$$ar{\textit{M}}_1 = \textit{M}_1/\sim_1 = \big\{[\textit{a}]_1| \; \textit{a} \in \textit{M}_1\big\}, \; ar{\textit{M}}_2 = \textit{M}_2/\sim_2 = \big\{[\textit{b}]_2| \; \textit{b} \in \textit{M}_2\big\};$$

- **3** 且有 $|M_1| \leq |\bar{M}_1| \times \aleph_0, |M_2| \leq |\bar{M}_2| \times \aleph_0;$
- 4 故 $|\bar{M}_1| = |\bar{M}_2| = \lambda$;
- 5 令

$$ar{\textit{M}}_1 = \big\{ [\textit{a}_i]_1 | \ \textit{i} < \lambda \big\}, \ ar{\textit{M}}_2 = \big\{ [\textit{b}_i]_2 | \ \textit{i} < \lambda \big\}, \big\}$$

其中 $a_0 = 0^{\mathfrak{M}_1}$, $a_i \nsim_1 a_j$, $b_0 = 0^{\mathfrak{M}_2}$, $b_i \nsim_2 b_i (i \neq j)$;

 $oldsymbol{6}$ 则 $oldsymbol{a_i}\mapsto oldsymbol{b_i}$ 可以唯一地扩张为 \mathfrak{M}_1 到 \mathfrak{M}_2 的同构。

推论

 T_S 可判定的。

推论

 $\operatorname{Th}(\mathfrak{N}_{\mathcal{S}}) = T_{\mathcal{S}}$ 是可判定的。

定理

 $\operatorname{Th}(\mathfrak{N}_S)$ 接受量词消去。

证明丨

- **1** 每个原子公式形如 $S^m x = S^n v$,其中 x 与 v 或者是变元;
- ② 设 $\phi(x_1,...,x_n,y)$ 是一个不含量词的公式,则 ϕ 的形如

$$\bigwedge_{i \in E} (S^{m_i} x_i = S^{n_i} y) \ \land \ \bigwedge_{j \in D} (S^{m_j} x_j \neq S^{n_j} y)$$

其中 E, D 是有限集;

- ③ 设 $\mathfrak{M}_1,\mathfrak{M}_2 \models T$, $A \subseteq M_1,M_2$ 是公共子结构, $a_1,...,a_n \in A$;
- 4 假设

$$\mathfrak{M}_1 \models \exists y \phi(a_1,...,a_n,y);$$

5 设 *b*₁ ∈ *M*₁ 使得

$$\mathfrak{M}_1 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{b}_1);$$

证明Ⅱ

- 6 令 $[b_1]_{\mathfrak{M}_1} = \{d | S^m d = S^n b_1, m, n \in \mathbb{N} \}$, 记作 $b_1 + \mathbb{Z}$;
- **7** 如果 $[b_1]_{\mathfrak{M}_1} \cap A = \emptyset$,则

$$\mathfrak{M}_1 \models \bigwedge_{i \in E} (S^{m_i} a_i = S^{n_i} b_1) \ \land \ \bigwedge_{j \in D} (S^{m_j} a_j \neq S^{n_j} b_1)$$

蕴含着 $E = \emptyset$;

图 至多有一个 b ∈ M₂ 使得

$$\mathfrak{M}_2 \models \bigwedge_{i \in D} (S^{m_j} a_j = S^{n_j} b);$$

故存在 $b_2 \in M_2$ 使得

$$\mathfrak{M}_2 \models \bigwedge_{i \in D} (S^{m_j} a_j \neq S^{n_j} b_2);$$

证明Ⅲ

9 如果 b₁ ∈ A, 则

$$\mathfrak{M}_1 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{b}_1) \Leftrightarrow \mathbf{A} \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{b}_1)$$

$$A \models \phi(a_1, ..., a_n, b_1) \Leftrightarrow \mathfrak{M}_2 \models \phi(a_1, ..., a_n, b_1)$$

- 10 如果 $[b_1]_{\mathfrak{m}_1} \cap A \neq \emptyset$,则存在自然数 n 使得
 - $S^{\mathfrak{M}_1}{}^n(b_1)=a\in A$
- $extbf{11} \ [a]_{\mathfrak{M}_2} = a + \mathbb{Z} \subseteq M_2$,存在 $b_2 \in M_2$ 使得 $S^{\mathfrak{M}_2}{}^n(b_2) = a$
- 12 在 \mathfrak{M}_1 中, $a = b_1 + n$,在 \mathfrak{M}_2 中, $a = b_2 + n$,故

$$\mathfrak{M}_2 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{b}_2)$$

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

包含后继和序的自然数的模型

包含后继和序的自然数的模型

结构
$$\mathfrak{N}_{<}=(\mathbb{N},\;0,\;\textbf{\textit{S}},\;<)$$
, 语言是 $\textbf{\textit{L}}_{<}=\{0,\textbf{\textit{S}},<\}$ 。

设
$$\mathfrak{M} \models \mathrm{Th}(\mathfrak{N}_{<})$$
,在 M 上定义一个关系 \sim :

$$a \sim b \iff$$
 存在自然数 n 使得 $S^{\mathfrak{M}^n}(a) = b$ 或者 $S^{\mathfrak{M}^n}(b) = a$

- $[0^{\mathfrak{M}}] = \{0^{\mathfrak{M}}, 1^{\mathfrak{M}}, 2^{\mathfrak{M}}, 3^{\mathfrak{M}}, ...\};$
- 2 如果 a ∈ M 且

$$a \notin \{0^{\mathfrak{M}}, 1^{\mathfrak{M}}, 2^{\mathfrak{M}}, 3^{\mathfrak{M}}, ...\},\$$

则
$$([a], S, <)$$
 同构于 $(\mathbb{Z}, S, <)$.

性质

若结构 $\mathfrak{M} = (M, 0, S, <)$ 满足:

- 1 $\mathfrak{M} \models \forall x (0 \leq x);$
- 2 ∭ ⊨< 是线序;
- $\mathfrak{M} \models \forall y (y \neq 0 \rightarrow \exists x (y = \mathcal{S}(x)));$
- $\mathfrak{M} \models \forall y (y < S(y));$
- 6 $\forall x \forall y (x < y \rightarrow S(x) \leq y)$ (以上理论记作 $T_{<}$);

则:

- **1** $([0^{\mathfrak{M}}], 0, S, <) \cong (\mathbb{N}, 0, S, <);$
- 2 $([0^{\mathfrak{M}}], 0, S, <) \prec \mathfrak{M}$,即 $f: n \mapsto S^{\mathfrak{M}^n} 0$ 是 $\mathfrak{N}_{<}$ 到 \mathfrak{M} 的初等嵌入。

证明Ⅰ

- **1** $f: n \mapsto S^{\mathfrak{M}^n}$ 0 显然是满射;
- **2** 对 $k \in \mathbb{N}$ 归纳证明 $f(k+1) = S^{\mathfrak{M}}(f(k));$
- 3 对 $k, n \in \mathbb{N}$ 归纳证明 k < n 当且仅当 f(k) < f(n);
- 4 从而证明了 $([0^m], 0, S, <) \cong (\mathbb{N}, 0, S, <)$ 。 (练习)

接下来证明: $\mathbb{A} = ([0^{\mathfrak{M}}], 0, S, <) \prec \mathfrak{M}$

- T_< 接受量词消去 (稍后证明):
- ② 设 $\phi(x)$ 是一个公式,则存在一个无量词公式 $\psi(x)$ 使得

$$T_{<} \models \forall x_1, ..., x_n(\phi(x) \leftrightarrow \psi(x));$$

证明Ⅱ

3 设
$$a_1,...,a_n \in [0^{\mathfrak{M}}]$$
,则

$$\mathfrak{M} \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n) \iff \mathfrak{M} \models \psi(\mathbf{a}_1, ..., \mathbf{a}_n)$$

$$\mathfrak{M} \models \psi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathbb{A} \models \psi(\mathbf{a}_1,...,\mathbf{a}_n)$$

- **4** 显然 A ⊨ *T*<;
- 5

$$\mathbb{A} \models \psi(\mathbf{a}_1,...,\mathbf{a}_n) \iff \mathbb{A} \models \phi(\mathbf{a}_1,...,\mathbf{a}_n).$$

故 $\mathbb{A} \prec \mathfrak{M}$ 。

练习

练习

设理论 T 接受量词消去, $\mathbb{A},\mathfrak{B} \models T$,且 \mathbb{A} 是 \mathfrak{B} 子结构,则 $\mathbb{A} \prec \mathfrak{B}$ 。

一阶逻辑 ^し 包含后继和序的自然数的模型

范畴性

定理

 $\operatorname{Th}(\mathfrak{N}_{<})$ 不是范畴的。

证明丨

 $\operatorname{Th}(\mathfrak{N}_{<})$ 不是可数范畴

- **1** Th($\mathfrak{N}_{<}$) ∪ { $c > n | n \in \mathbb{N}$ } 是一致的;
- **2** Th($\mathfrak{N}_{<}$) ∪ { $c > n \mid n \in \mathbb{N}$ } 有可数模型 \mathfrak{M} ;
- 3 3 5 3 显然不同构。

 $\operatorname{Th}(\mathfrak{N}_{<})$ 不是不可数范畴

- **1** 稠密线序 $(\mathbb{R},<)+(\mathbb{Q},<)$ 与 $(\mathbb{Q},<)+(\mathbb{R},<)$ 不同构;
- 2 令

$$\mathfrak{M}_1 = [0]_1 \cup \bigcup_{i \in \mathbb{R}} [a_i]_1 \cup \bigcup_{i \in \mathbb{Q}} [b_i]_1,$$

满足:

$$([0]_1, <, S, 0) \cong (\mathbb{N}, <, S, 0)$$

证明Ⅱ

- 5 $a_i < a_{i'}$ 当且仅当 i < i', $b_j < b_{j'}$ 当且仅当 j < j';
- **6** 对任意的 $i \in \mathbb{R}$ 与 $j \in \mathbb{Q}$ 总有 $a_i < b_j$;
- 7 令

$$\mathfrak{M}_2 = [0]_2 \cup \bigcup_{i \in \mathbb{Q}} [\alpha_i]_2 \cup \bigcup_{i \in \mathbb{R}} [\beta_i]_2;$$

满足条件【3】-【5】;

- 8 对任意的 $i \in \mathbb{R}$ 与 $j \in \mathbb{Q}$ 总有 $b_i < a_i$;
- 9 $\mathfrak{M}_1 \cong \mathfrak{M}_2$ 蕴含 $(\mathbb{R},<)+(\mathbb{Q},<)\cong (\mathbb{Q},<)+(\mathbb{R},<);$
- 10 ℝ 和可以替换为其他基数的稠密线序。

量词消去

定理

 $T_{<}$ 接受量词消去。

注

 $T_<$ 接受量词消去可推出 $\operatorname{Th}(\mathfrak{N}_<)=T_<$,即 $\operatorname{Th}(\mathfrak{N}_<)$ 接受量词消去。

证明丨

- **1** 每个原子公式形如 $S^m x = S^n v$ 和 $S^m x < S^n v$,其中 x 与 v 或者是变元;
- ② 设 $\phi(x_1,...,x_n,y)$ 是一个不含量词的公式,则 ϕ 的形如

$$\bigwedge_{i \in E} (S^{m_i} x_i = S^{n_i} y) \ \land \ \bigwedge_{j \in D} (S^{m_j} x_j \neq S^{n_j} y)$$

$$\wedge \bigwedge_{i \in O} (S^{m_i} x_i < S^{n_i} y) \wedge \bigwedge_{i \in G} \neg (S^{m_j} x_j < S^{n_j} y)$$

$$\mathfrak{M}_1, \mathfrak{M}_2 \models T_{<}, A \subseteq M_1, M_2$$
 是公共子结构, $a_1, ..., a_n \in A$;

证明Ⅱ

3 假设

$$\mathfrak{M}_1 \models \exists y \phi(a_1, ..., a_n, y)$$

设 $b_1 \in M_1$ 使得

$$\mathfrak{M}_1 \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n, \mathbf{b}_1)$$

4 如果 $[b_1] \cap A \neq \emptyset$,则存在自然数 n 使得 $b_1 +_1 n = a \in A$ 。 显然存在 $b_2 \in M_2$ 使得 $b_2 +_2 n = a$,显然

$$\mathfrak{M}_2 \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n, \mathbf{b}_2)$$

证明Ⅲ

5 如果 $[b_1] \cap A = \emptyset$,则 $E = \emptyset$,且 b_1 给出 A 上的一个切割

$$A_{< b_1} = \{a \in A | a < b_1\}, \ A_{> b_1} = \{a \in A | a > b_1\}$$

引入新常元 y,令 $\chi(y)$ 为公式集合

$$\chi(y) = \{ y > a | \ a \in A_{< b_1} \} \cup \{ y < a | \ a \in A_{< b_1} \}$$

即
$$\chi(y): A_{< b_1} < y < A_{> b_1};$$

- Diag(A) $\cup \chi(y) \models \phi(a_1, ..., a_n, y);$
- **7** 存在有穷子集 $\chi_0(y) \subseteq \chi(y)$ 使得 Diag(A) $\cup \chi_0(y) \models \phi(a_1, ..., a_n, y)$
- 8 $\chi(y)$ 的有穷子集在 \mathfrak{M}_2 中可满足 (?) ;
- 9 从而存在 $b_2 \in M_2$ 使得 $\mathfrak{M}_2 \models \chi_0(b_2)$
- to 故 $\mathfrak{M}_2 \models \phi(\bar{a}, b_2)$,从而 $\mathfrak{M}_2 \models \exists y \phi(\bar{a}, y)$.

可判定性

推论

 $\operatorname{Th}(\mathfrak{N}_<)$ 是可判定。

证明

- **1** 存在一个有穷的子集 $T_{<} \subseteq Th(\mathfrak{N}_{<})$ 接受量词消去;
- 2 如果 $\mathfrak{M} \models T_{<}$,则 $\mathfrak{N}_{<} \subseteq \mathfrak{M}$ 是子结构;
- 3 对任意的公式 $\phi(x)$, 都存在一个公式 $\psi(x)$ 使得 $T_{<} \models \forall x (\phi(x) \leftrightarrow \psi(x));$
- **4** 对任意的 $n \in \mathbb{N}$,有

$$\mathfrak{M} \models \phi(\mathbf{n}) \Leftrightarrow \mathfrak{M} \models \psi(\mathbf{n}) \Leftrightarrow \mathfrak{N}_{<} \models \psi(\mathbf{n}) \Leftrightarrow \mathfrak{N}_{<} \models \phi(\mathbf{n}) \Leftrightarrow$$

故 $\mathfrak{N}_{<}$ 是 \mathfrak{M} 的初等子结构;

- 5 $\mathfrak{M} \models T_{<} \Longrightarrow \mathfrak{M} \equiv \mathfrak{N}_{<};$
- 6 $T_{<} = \operatorname{Th}(\mathfrak{N}_{<})$ 是完备的。

一阶逻辑 ^{___} 包含后继和序的自然数的模型

可判定性

推论

(练习) $\mathbb N$ 的子集 X 是 $\mathfrak N_<$ 的可定义子集当且仅当 X 有限或者 $\mathbb N\setminus X$ 有限。

目录

- 1 一阶算术公理系统
 - 勒文海姆-司寇伦定理
 - 集合论的公理系统 ZFC
 - 司寇伦佯谬
- 2 可判定理论
- 3 λ -范畴理论
- 4 嵌入、初等嵌入、生成子结构、量词消去
- 5 只含后继的自然数的模型
- 6 包含后继和序的自然数的模型
- 7 普莱斯伯格算术模型

普莱斯伯格算术模型

普莱斯伯格算术

结构 $\mathfrak{N}_+=(\mathbb{N},\ 0,\ \mathcal{S},\ <,\ +)$, 语言是 $\mathcal{L}_+=\{0,\mathcal{S},<,+\}$ 。称 $\mathrm{Th}(\mathfrak{N}_+)$ 为普莱斯伯格算术。

注

设
$$\mathfrak{M} \models \mathrm{Th}(\mathfrak{N}_+)$$
, 在 M 上定义一个关系 \sim :

$$a \sim b \iff$$
 存在自然数 n 使得 $a + n = b$ 或者 $b + n = a$

- **1** 颁 以标准部分 [0^m] 起头;
- 2 标准部分以后跟着若干 ℤ-链;

注

设
$$\mathfrak{M}\models\operatorname{Th}(\mathfrak{N}_+)$$
, 且 $\mathfrak{M}\neq\mathfrak{N}_+$, 则 \mathbb{Z} 链排成无端点的稠密线序: $\forall a,b([a]<[b])\rightarrow\exists c([a]<[c]<[b]))$;

证明

- **1** 显然 $(M/\sim,<)$ 是线序;
- ② 设 $\mathbb{N} < [a] = a + \mathbb{Z} < [b] = b + \mathbb{Z}$, 则

$$a+\mathbb{Z}<\frac{a+b+n}{2}+\mathbb{Z}< b+\mathbb{Z}$$

─阶逻辑 └─普莱斯伯格算术模型

普莱斯伯格算术模型 |

引理

 $\operatorname{Th}(\mathfrak{N}_+)$ 不接受量词消去。

证明丨

- 2 则

$$X = \{ a \in \mathbb{N} | \mathfrak{N}_+ \models \phi(a) \}$$

是偶数集;

- **③** 原子公式形如 $f_1(x) = f_2(x)$ 和 $f_1(x) < f_2(x)$;
- 4 其中 $f_i(x)$ 形如

$$\underbrace{x + \dots + x}_{n \uparrow x} + \underbrace{1 + \dots + 1}_{m \uparrow 1}$$

 $m, n \in \mathbb{N}$ (记作 nx + m, 解释?);

- 5 $\{x \in \mathbb{N} | f_1(x) = f_2(x)\}$ 的基数 ≤ 1 ;
- 6 $\{x \in \mathbb{N} | f_1(x) < f_2(x)\}$ 是有限或余有限集(补集有限);

证明Ⅱ

7 如果 $\psi(x)$ 不含量词,则

$$Y = \{ \mathbf{a} \in \mathbb{N} | \mathfrak{N}_+ \models \psi(\mathbf{a}) \}$$

是有限集与余有限集的布尔组合 (∩,∪,¬)。

- 8 Y 只能是有限集或余有限集,故 $X \neq Y$;
- 9 $\mathfrak{N}_+ \not\models \forall x (\phi(x) \leftrightarrow \psi(x)).$

普莱斯伯格算术模型

扩张语言

$$\begin{split} \mathcal{L}_{\equiv} &= \mathcal{L}_{+} \cup \{ \equiv_{2}, \equiv_{3}, \equiv_{4}, \ldots \}, \\ \mathfrak{N}_{\equiv} &= (\mathbb{N}, \ 0, \ \mathcal{S}, \ <, \ +, \ \equiv_{2}, \equiv_{3}, \equiv_{4}, \ldots) \\ a &\equiv_{n} b \iff \exists c \Big((\textit{nc} + \textit{a} = \textit{b}) \lor (\textit{nc} + \textit{b} = \textit{a}) \Big). \end{split}$$

114/130

注

- 1 $T_{=} \models T_{S}$;
- **3** T_{\equiv} |= 其他 \mathfrak{N}_{+} 中的常见的 "定理";
- I_{\pm} | $I_$
- 5 $T_{\equiv} \models \forall x(\bigvee_{k=0}^{n-1} (x \equiv_n k)) \ (\equiv_n 有 n 个等价类);$
- 6 $T_{\equiv} \models \forall x, y(\neg(x < y) \leftrightarrow (y < x) \lor (x = y))$ (¬ 消去);
- 7 $T_{\equiv} \models \forall x, y(\neg(x \equiv_n y) \leftrightarrow \bigvee_{0 < i < n} (x \equiv_n y + i)) (\neg 消去);$

则:

定理

T₌ 接受量词消去。

量词消去

定理(量词消去)

设 T 是一个理论, $\phi(\bar{x})$ 是一个公式。则 $\phi(\bar{x})$ mod T 等价于一个无量词公式 $\psi(\bar{x})$ 当且仅当对任意的模型论 $\mathfrak{M}_1,\mathfrak{M}_2\models T$,对任意的子结构 $\mathbb{A}_1\subseteq \mathfrak{M}_1$ 和 $\mathbb{A}_2\subseteq \mathfrak{M}_2$,如果 $f:\mathbb{A}_1\to \mathbb{A}_2$ 是一个同构,则对任意 $\bar{a}\in A_1^n$,有

$$\mathbb{A}_1 \models \phi(\bar{\mathbf{a}}) \iff \mathbb{A}_2 \models \phi(f(\bar{\mathbf{a}}))$$

子结构的闭包

可定义闭包

设 $\mathfrak{M} \models T_{\equiv}$, $A \subseteq M$ 是一个子结构。定义

- \diamondsuit $A/n = \{c \in M | \exists n \in \mathbb{N} \exists a \in A(nc = a)\};$
- \diamondsuit $A A = \{d \in M | \exists a, b \in A(a + d = b)\};$
- **...**
- $\blacksquare A_{k+1} = \bigcup_{n \in \mathbb{N}} A_k / n \cup (A_k A_k);$
- $\blacksquare \operatorname{dcl}(A) = \bigcup_{k \in \mathbb{N}} A_k;$
- 则 dcl(A) 是包含 A 的对" 整除" 和减法封闭的最小的集合 (子结构)。
- dcl(*A*) 被 *A* 唯一确定。

扩张引理丨

扩张引理

设 $\mathfrak{M}_1,\mathfrak{M}_2\models T_\equiv$, $A\subseteq M_1$ 和 $B\subseteq M_2$ 是两个子结构。如果 $j:A\to B$ 是一个同构,则存在唯一的同构 $\bar{j}:\operatorname{dcl}(A)\to\operatorname{dcl}(B)$ 时 j 的扩张。

证明:

- 设 $a \in A$, 如果 $A \models a \equiv_n 0$, 则 $B \models j(a) \equiv_n 0$
- 则 $\mathfrak{M}_1 \models a \equiv_n 0$ 且 $\mathfrak{M}_2 \models j(a) \equiv_n 0$;
- $\blacksquare \exists c \in M_1, \exists d \in M_2,$ 使得

$$\mathfrak{M}_1 \models nc = a, \ \mathfrak{M}_2 \models nd = j(a);$$

扩张引理Ⅱ

■ 对任意的 $a_1,...,a_n \in A_1$ 以及无量词的公式 $\phi(x_1,...,x_n,y)$,

$$\mathfrak{M}_1 \models \phi(\mathbf{a}_1, ..., \mathbf{a}_n, \mathbf{c}) \iff \mathfrak{M}_2 \models \phi(\mathbf{j}(\mathbf{a}_1), ..., \mathbf{j}(\mathbf{a}_n), \mathbf{d})$$

- 设 \mathfrak{C} 由 $A \cup \{c\}$ 在 \mathfrak{M}_1 中生成的子结构;
- 设 \mathfrak{D} 由 $B \cup \{d\}$ 在 \mathfrak{M}_2 中生成的子结构;
- 则 \mathfrak{C} 与 \mathfrak{D} 有自然的同构: $a \mapsto j(a), c \mapsto d$;
- 如果 $a_1 < a$, $\exists c' \in M_1$, $\exists d' \in M_2$, 使得

$$\mathfrak{M}_1 \models \mathbf{c}' + \mathbf{a}_1 = \mathbf{a}, \ \mathfrak{M}_2 \models \mathbf{d}' + \mathbf{j}(\mathbf{a}_1) = \mathbf{j}(\mathbf{a});$$

- 同理, $A \cup \{c'\}$ 和 $B \cup \{d'\}$ 生成的子结构相互同构;
- 故 j 可以扩张为 A_1 到 B_1 的同构。
- 对 *k* 归纳证明 *j* 可以扩张为 *A_k* 到 *B_k* 的同构;
- 故 j 可以扩张为 dcl(A) 到 dcl(B) 的同构。

T₌ 的量词消去的证明 |

定理

T₌ 接受量词消去。

证明:

- **1** 每个原子公式形如 $f(\bar{x}) \equiv_n g(\bar{x}), \ f(\bar{x}) = g(\bar{x}), \ f(\bar{x}) < g(\bar{x});$
- ② 其中 f(x) 与 g(x) 是整系数线性函数 $(\sum_k n_k x_k + m)$;
- 3 设 $\phi(x_1,...,x_n,y)$ 是一个原子公式及其否定式的合取式;
- 4 则 T_≡ 可以证明其等价于以下形式(证明?):

$$\bigwedge_{i \in E} (k_i y \equiv_n f_i(\bar{x})) \wedge \bigwedge_{i \in D} (k_j y + g_j(\bar{x})) = f_j(\bar{x})) \wedge$$

$$\textstyle \bigwedge_{l \in O_1} (k_l y + g_l(\bar{x}) < f_l(\bar{x})) \land \bigwedge_{m \in O_2} (k_m y + g_m(\bar{x}) > f_m(\bar{x}));$$

T₌ 的量词消去的证明 Ⅱ

- **5** 设 $\mathfrak{M}_1, \mathfrak{M}_2 \models T_{\equiv}, A \subseteq M_1, M_2$ 是公共子结构,满足:
 - **1** 如果 $A \models a \equiv_n 0$,则 $\frac{a}{n} \in A$ (解释?);
 - 2 如果 $A \models a' < a$, 则 $a' a' \in A$ (解释?)。
- 6 即 A 上的线性方程 $n_k x + a_k = b_k$ 的解 $\in A$ 。
- **7** 假设 $\phi(a_1,...,a_n,y)$ 形如

$$\bigwedge_{i \in E} (k_i y + m_i \equiv_{n_i} 0) \wedge \bigwedge_{j \in D} (k_j y + a_j = b_j) \wedge \bigwedge_{l \in O} (k_l y + a_l < b_l)$$

其中 $k_i, k_i, k_l, n_i, m_i \in \mathbb{N}$, $a_i, a_l, b_i, b_l \in A$.

8 假设

$$\mathfrak{M}_1 \models \exists y \phi(a_1, ..., a_n, y) \Rightarrow \exists d_1 \in M_1 \text{ s.t. } \mathfrak{M}_1 \models \phi(a_1, ..., a_n, d_1)$$

T≡ 的量词消去的证明 Ⅲ

9 如果 D 非空,则 $d_1 \in A$,从而

$$\mathfrak{M}_2 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{d}_1);$$

To 下面假设 $d_1 \notin A$,从而 $\phi(a_1,...,a_n,y)$ 形如,

$$\bigwedge_{i \in E} (k_i y + m_i \equiv_{n_i} 0) \wedge \bigwedge_{l \in O} (k_l y + a_l < b_l)$$

- **11** d_1 在 (A, <) 上有个切割;
- 12 并且同余方程组 $\bigwedge_{i \in F} (k_i y + m_i \equiv_{n_i} 0)$ 有解 $u \in \mathbb{N}$;
- 13 令 $N = \prod_{i \in E} n_i$,则 u + N, u + 2N, u + 3N, ...,均是解;
- 14 $d_2 \in M_2$ 对应于 d_1 在 A 上的切割;
- 15 则 $d_2 + \mathbb{Z}$ 都确定了同样的切割;

T_≡ 的量词消去的证明 IV

16 并且存在 $k < \prod_{i \in E} n_i$ 使得 $d_2 + k$ 是同余方程组

$$\bigwedge_{i\in E}(k_iy+m_i\equiv_{n_i}0)$$
的解

则 $\mathfrak{M}_2 \models \phi(\mathbf{a}_1,...,\mathbf{a}_n,\mathbf{d}_2+\mathbf{k})$ 。

利用量词消去,有

性质

若结构 $\mathfrak{M} = (M, 0, S, +, <)$ 满足 T_{\equiv} ,则:

- **1** $([0^{\mathfrak{M}}], 0, S, +, <) \cong (\mathbb{N}, 0, S, +, <);$
- [0,0] [0,
- 初等嵌入。

推论

 T_{\equiv} 是完备的。

证明

- $1 \mathfrak{M} \models T_{\equiv} \Longrightarrow \mathfrak{M} \equiv \mathfrak{N}_{\equiv} ;$
- ② T_{\equiv} 完备,否在存在 $\mathfrak{M}_1, \mathfrak{M}_2 \models T_{\equiv}$ 且 $\mathfrak{M}_1 \not\equiv \mathfrak{M}_2$.

推论

 T_{\equiv} 是可判定的,且 $T_{\equiv} = \operatorname{Th}(\mathfrak{N}_{+})$ 。

证明

- **1** $x \equiv_n y$ 表示公式 $\exists z (nz + x = y \lor nz + y = x)$,则 T_{\equiv} 是一个语言 { 0, S, +, <} 上的可公理化的理论;
- 2 T_{\equiv} 完备表明 T_{\equiv} 可判定且 $T_{\equiv} = \mathrm{Th}(\mathfrak{N}_{+})$ 。

总结

- 1 \mathfrak{N}_S , $\mathfrak{N}_<$, \mathfrak{N}_+ 的理论都是完备的可公理化的(T_S , $T_<$, T_\equiv)的理论,从而是来判定的;
- $2 \mathfrak{N}_S, \mathfrak{N}_{<},$ 的理论都是接受量词消去的;
- 3 乳+ 不接受量词消去,但是 乳 接受量词消去;
- 4 \mathfrak{N}_S , $\mathfrak{N}_<$, \mathfrak{N}_+ 分别可以初等嵌入到 T_S , $T_<$, T_\equiv 的任意模型中。

总结

定义

设 T 是一个一阶理论,如果模型 $\mathbb{A} = (A, ...) \models T$ 满足:对任意的与 $\mathfrak{M} \models T$ 都存在初等嵌入 $f : \mathbb{A} \longrightarrow \mathfrak{M}$,则称 \mathbb{A} 是 \mathfrak{M} 的素模型。

命题

如果T有素模型且接受量词消去,则T是完备的。(练习)

一阶逻辑 └─ 普莱斯伯格算术模型

问题

问题

 $(\mathbb{N},0,\mathcal{S},+, imes,<)$ 的理论是否可判定?

一所逻辑 上 普莱斯伯格算术模型

Thanks!