Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

27

28

This manuscript was compiled on June 9, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

Hodges–Lehmann inequality and γ -U-orderliness

- The Hodges–Lehmann estimator stands out as a unique robust location estimator due to its definition being substantially dissimilar from conventional L-estimators, R-estimators, and M-estimators. In their landmark paper, Estimates of location based on rank tests, Hodges and Lehmann (1) proposed two methods for computing the H-L estimator: the Wilcoxon score R-estimator and the median of pairwise means. The Wilcoxon score R-estimator is a location estimator based on signed-rank test, or R-estimator, (1) and was later independently discovered by Sen (1963) (2, 3). However, the median of pairwise means is a generalized L-statistic and a trimmed U-statistic, as classified by Serfling in his novel conceptualized study in 1984 (4). Serfling further advanced the understanding by generalizing the H-L kernel as $hl_k(x_1,\ldots,x_k)=\frac{1}{k}\sum_{i=1}^k x_i$, where $k\in\mathbb{N}$ (4). Here, the weighted H-L kernel is defined as $whl_k(x_1,\ldots,x_k)=\frac{\sum_{i=1}^k x_i\mathbf{w}_i}{\sum_{i=1}^k \mathbf{w}_i}$, where \mathbf{w}_i s are the weights
 - applied to each element.

 By using the weighted H-L kernel and the *L*-estimator, it is now clear that the Hodges-Lehmann estimator is an *LL*-statistic, the definition of which is provided as follows:

$$LL_{k,\epsilon,\gamma,n} := L_{\epsilon_0,\gamma,n} \left(\operatorname{sort} \left(\left(whl_k \left(X_{N_1}, \cdots, X_{N_k} \right) \right)_{N=1}^{\binom{n}{k}} \right) \right),$$

- where $L_{\epsilon_0,\gamma,n}\left(Y\right)$ represents the L-estimator that uses the sorted sequence, sort $\left(whl_k\left(X_{N_1},\cdots,X_{N_k}\right)\right)_{N=1}^{n}$, as input, the upper asymptotic breakdown point of the L-estimator is ϵ_0 , the lower asymptotic breakdown point is $\gamma\epsilon_0$. The upper asymptotic breakdown point of $LL_{k,\epsilon,\gamma}$ is $\epsilon=1-\left(1-\epsilon_0\right)^{\frac{1}{k}}$, as proven in another relevant paper.
- Data Availability. Data for Figure ?? are given in SI Dataset
 S1. All codes have been deposited in GitHub.
- **ACKNOWLEDGMENTS.** I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.
- J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 34, 598–611 (1963).
- PK Sen, On the estimation of relative potency in dilution (-direct) assays by distribution-free methods. *Biometrics* pp. 532–552 (1963).
- M Ghosh, MJ Schell, PK Sen, A conversation with pranab kumar sen. Stat. Sci. pp. 548–564
 (2008).
- 4. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76–86 (1984).