N-Channel JFETs

PRODUCT SUMMARY								
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)				
2N4416	-≤6	-30	4.5	5				
2N4416A	−2.5 to −6	-35	4.5	5				
SST4416	-≤6	-30	4.5	5				

FEATURES

- Excellent High-Frequency Gain: 2N4416/A, Gps 13 dB (typ) @ 400 MHz
- Very Low Noise: 3 dB (typ) @ 400 MHz
- Very Low Distortion
- High AC/DC Switch Off-Isolation

BENEFITS

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

DESCRIPTION

The 2N4416/2N4416A/SST4416 n-channel JFETs are designed to provide high-performance amplification at high frequencies.

The TO-206AF (TO-72) hermetically-sealed package is available with full military processing (see Military Information.) The TO-236 (SOT-23) package provides a low-cost option and is available with tape-and-reel options (see Packaging Information). For similar products in the TO-226AA (TO-92) package, see the J304/305 data sheet.

Top View SST4416 (H1)*

*Marking Code for TO-236

For applications information see AN104.

2N4416/2N4416A/SST4416

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage :		Operating Junction Temperature				
	(2N/SST4416)	Power Dissipation :	(2N Prefix) ^a			
Gate Current	10 mA		(OOT FTERIX)			
Lead Temperature	300 °C	Notes				
Storage Temperature :	(2N Prefix)65 to 200 °C (SST Prefix)65 to 150 °C	a. Derate 2.4 mW/°C al b. Derate 2.8 mW/°C al				

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		Test Conditions		Typ ^a	Limits						
					2N4416		2N4416A		SST4416		1
Parameter	Symbol				Min	Max	Min	Max	Min	Max	Unit
Static				•		•		•	•		•
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$,	/ _{DS} = 0 V	-36	-30		-35		-30		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V, I _D = 1 nA		-3		-6	-2.5	-6		-6	1
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V, \	/ _{GS} = 0 V	10	5	15	5	15	5	15	mA
		$V_{GS} = -20 \text{ V}, V_{D}$	_{OS} = 0 V (2N)	-2		-100		-100			pΑ
Gate Reverse Current			T _A = 150°C	-4		-100		-100			
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS}$	_S = 0 V (SST)	-0.002						-1	nA
			T _A = 125°C	-0.6							
Gate Operating Current	I _G	V _{DG} = 10 V, I	_D = 1 mA	-20							^
Drain Cutoff Current ^c	I _{D(off)}	V _{DS} = 10 V, V _{GS} = -6 V		2							pΑ
Drain-Source On-Resistance ^c	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_D$	= 300 μΑ	150							Ω
Gate-Source Forward Voltage ^c	V _{GS(F)}	I _G = 1 mA , V _{DS} = 0 V		0.7							٧
Dynamic											
Common-Source Forward Transconductance ^b	9fs	$V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V}$ f = 1 kHz		6	4.5	7.5	4.5	7.5	4.5	7.5	mS
Common-Source Output Conductance ^b	9 _{os}			15		50		50		50	μS
Common-Source Input Capacitance	C _{iss}			2.2		4		4			
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		0.7		0.8		0.8			pF
Common-Source Output Capacitance	C _{oss}			1		2		2			
Equivalent Input Noise Voltage ^c	e n	V _{DS} = 10 V, \ f = 1 k		6							nV∕ √Hz

NH

HIGH-FREQUENCY SPECIFICATIONS FOR 2N4416/2N4416A (T _A = 25°C UNLESS NOTED)										
		Limits								
			100 MHz		400 MHz		1			
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Unit			
						-	-			
Common Source Input Conductanced	9 _{iss}			100		1,000				
Common Source Input Susceptanced	b _{iss}			2,500		10,000				
Common Source Output Conductanced	g _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$		75		100	μS			
Common Source Output Susceptanced	b _{oss}			1,000		4,000				
Common Source Forward Transconductanced	9fs				4,000		1			
Common-Source Power Gain ^d	G _{ps}	$V_{DS} = 15 \text{ V}, I_{D} = 5 \text{ mA}$	18		10		dB			
Noise Figure ^d	NF	$R_G = 1 k\Omega$		2		4	uB			

- Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- Pulse test: PW ≤300 μs duty cycle ≤3%.
- This parameter not registered with JEDEC.
- Not a production test.

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

I_D - Drain Current (mA)

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70242.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05