

Pensando como um *hacker*

Baseado em:

Thinking like a hacker

Por Eric Schultze, Chief Security Architect, Shavlik Technologies

Pensar como um hacker

- Pensar como um hacker não é muito diferente de pensar como um bom analista/programador
- Aplicam paciência e documentam cada passo do seu trabalho
- O objectivo dum hacker é comprometer um determinado sistema alvo ou aplicação
- O hacker começa normalmente com pouca ou nenhuma informação sobre o alvo; quando termina a análise o atacante construiu um mapa detalhado do caminho que lhe permitirá comprometer o alvo
- Só pode atingir os objectivos através da análise cuidadosa e aproximação metódica à futura vítima

Método sistemático em 7 passos

- Efectua uma análise das "pegadas"
- 2. Enumera a informação
- 3. Obtém acesso através da manipulação dos utilizadores
- 4. Escala os privilégios
- 5. Recolhe *passwords* e segredos adicionais
- 6. Instala backdoors
- 7. Tenta controlar outros sistemas a partir do sistema comprometido

Análise das "pegadas"

- Identifica os vários domínios de nomes que interessa investigar
- Recolhe toda a informação através de recursos públicos
- Esta análise permite ter uma indicação da dimensão do alvo, quantos potenciais pontos de entrada podem existir e quais os mecanismos de defesa que poderão existir para retaliar o ataque

Informação útil para o ataque

- Nomes da companhia
- Nomes de domínios
- Parceiros de negócio subsidiárias
- Redes IP
- Números de telefone

Detecção dos pontos fracos

• Em vez de tentar furar através dos *firewalls* principais da empresa, "armados até aos dentes", os *hackers* procuram outros pontos fracos como subsidiárias, filiais, etc. que possam fornecer acesso à rede da empresa, talvez através de VPNs, sem passar as defesas principais

Ferramentas mais usuais

- Os port scanners são utilizados para determinar quais as máquinas que são acessíveis, quais os portos UDP e TCP activos em cada sistema e o sistema operativo existente em cada máquina.
- São efectuados traceroutes para ajudar a identificar a relação de cada máquina com cada uma das outras e identificar potenciais mecanismos de segurança entre o atacante e o alvo

Mapear a rede

- Depois da análise da rede o atacante pode criar o mapa daquela.
- O mapa é utilizado para a próxima fase no ataque:
 - Enumeração da informação

Ferramentas

Exemplos

- nslookup Queries de DNS [Windows]
- tracert Realização de traceroutes [Windows]
- Nmap Scanner de portas [http://insecure.org/nmap/]
- McAfee Free Tools Dezenas de ferramenta relacionadas com segurança [http://www.mcafee.com/us/downloads/free-tools/index.aspx]

NMAP


```
Command Prompt
C:\Documents and Settings\valmeida>nmap
Nmap 4.20 ( http://insecure.org )
Usage: nmap [Scan Type(s)] [Options] {target specification}
TARGET SPECIFICATION:
  Can pass hostnames, IP addresses, networks, etc.
  Ex: scanne.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
  -iL <inputfilename>: Input from list of hosts/networks
  -iR <num hosts>: Choose random targets
  --exclude <host1[,host2][,host3],...>: Exclude hosts/networks
  --excludefile <exclude_file>: Exclude list from file
HOST DISCOUERY:
  -sL: List Scan - simply list targets to scan
  -sP: Ping Scan - go no further than determining if host is online
  -PO: Treat all hosts as online -- skip host discovery
  -PS/PA/PU [portlist]: TCP SYN/ACK or UDP discovery to given ports
  -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes
  -n/-R: Never do DNS resolution/Always resolve [default: sometimes] --dns-servers (serv1[,serv2],...): Specify custom DNS servers
  --system-dns: Use OS's DNS resolver
SCAN TECHNIQUES:
  -sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
  -sU: UDP Scan
  -sN/sF/sX: TCP Null, FIN, and Xmas scans
  --scanflags <flags>: Customize TCP scan flags
  -sI <zombie host[:probeport]>: Idlescan
```

Desenvolvimento não necessário

Desenvolvimento não necessário

Pontos a considerar

- Qual o rasto que a aplicação utilizada deixa no sistema operativo?
- Pode-se confiar na aplicação ou, se estiver comprometida, possibilitará o acesso à sua máquina?
- Qual a informação que a aplicação ou sistema apresenta aos utilizadores não autenticados?
- Que portas abre o software no sistema? Pacotes mal formados ou ataques de flooding pararão o serviço, consumirão memória ou ciclos de CPU?
- Existem firewalls, ou protecções na aplicação que evitem um ataque pela "porta da frente"?

Enumerar informação

 Após os hackers terem efectuado a análise das pegadas e gerarem o mapa que aumenta o seu conhecimento sobre o sistema alvo, tentam obter tantos dados quanto possível do sistema alvo.

Eavesdropping

- Sniffing da rede
 - Fácil de realizar em LAN com broadcast se o atacante conseguir ter acesso a uma ligação física à rede
 - As Wireless LAN usam por vezes métodos de cifra inadequados
 - A segurança nas WAN varia
- Keystroke logging
 - O software para realizar keystroke logging pode ser instalado por vírus ou directamente pelo atacante
 - Alternativamente, pode ser inserido hardware para captura

Ataques de autenticação

- Crack de passwords
 - Tentar todas as possibilidades
 - Sniffing da rede
 - Velho método de "shoulder-surfing" (espreitar por cima do ombro
 - Também, key loggers, virus, etc, como referido

Software malicioso

- Código "móvel"
- Oportunidades para:
 - Virus, worms, cavalos de Tróia (Trojan horses), spyware, ...

Engenharia social

- Pratica para obter informação confidencial através da manipulação de utilizadores legitimos (normalmente através de conversa "fofa")
- Os utilizadores são levados a fornecer passwords ou outros segredos ou a permitir aos atacantes ultrapassar a segurança
- Muto comum (e eficaz)
 - Tipicamente "atacam-se" um grande grupo de utilizadores na esperança de encontrar o "elo mais fraco", se este não for evidente logo ao inicio
 - Na maioria das vezes usado de forma muito subtil

- Engenharia social alguns exemplos
 - Em Março de 2005, nos EUA, mais de um terço dos funcionários, incluindo gestores, das finanças que foram contactados por inspectores do departamento do tesouro do governo, a fazerem-se passar por tecnicos da informática, divulgaram os seus logins e passords.
 - A ameaça designada de virús designada por "Teddy Bear" levou a que muitos utilizadores assustados apagassem o "jdbgmgr.exe" (critico para alguns utilizadores). jdbgmgr.exe tem um icom com um "teddy bear", o qual pareceu suspeito a muita gente.
 - Em Março de 2005 muitos utilizadores receberam um email pressupostamente enviado pelo banco da Irlanda. Esse email possuia um *link* para um *site* falso muito semelhante ao verdadeiro do banco (ataque de *phishing*).
 - Como precaução o banco desligou durante uma manhã o seu *site*. (o ataque funcionou como fraude e DoS, com a "colaboração" do banco)

- Algumas vulnerabilidades não-tecnológicas
 - Doença de pessoal chave
 - Doença em simultaneo de muitos funcionários (por ex. Gripe)
 - Perda de pessoal chave (reforma, mudança de emprego, morte)
 - Perda de ligações telefónicas ou de rede
 - Perda de ligação de água, electricidade ou aquecimento/arrefecimento
 - Raio, inundação, fogo, tremor de terra, etc.
 - Falencia do vendedor ou produtor de computadores/software
 - Bugs de software
 - Greves

(extraido de "Practical UNIX & Internet Security", por Garfinkel & Spafford)

Versão Web, FTP e servidor de email

- Os hackers tentarão descobrir quais as versões das aplicações referidas ligando-se às portas UDP e TCP e enviando dados aleatórios para cada uma.
- Alguns serviços respondem a dados aleatórios com um banner dados que identificam a aplicação que está a correr e, eventualmente, a versão. Consultando bases de dados de vulnerabilidades poderão "afinar" o ataque. [http://www.securityfocus.com]

Informação sensível

- Se os hackers forem capazes de contactar certas portas (por exemplo TCP 139 ou 445) tentarão obter de forma anónima informação sensível do sistema incluindo:
 - Nomes de utilizadores
 - Últimas datas de logon
 - Datas de mudança de passwords
 - Filiação em grupos (group membership)
- Os hackers poderão utilizar os dados obtidos para realizarem ataques por força bruta para ganharem acesso aos sistemas. Por exemplo o hacker pode enumerar membros do grupo de administradores locais, procurando nomes como TEST ou BACKUP

Pontos a considerar

- Qual a informação que pode ser obtida nos portos à escuta? Que nível de permissões é necessário para enumerar esta informação?
- Existe um sistema de "logs" instalado para determinar se alguém tentou aceder a esta informação?
- Existe o potencial para um utilizador autenticado poder ver informação sensível ou informações pessoais que possam comprometer a privacidade?
- Qual a informação de "banner" que a aplicação fornece ao utilizador?
 Pode ser suprimida ou modificada pelo administrador do sistema?

Obter acesso via manipulação dos utilizadores

 Depois dos hackers obterem informações básicas suficientes sobre o seu alvo, tentarão ter acesso ao sistema alvo fazendo-se passar por utilizadores autênticos. Isto significa que necessitam da password para a conta de um utilizador que descobriram através dos passos anteriores. Existem duas formas de obter as passwords: usando engenharia social ou usando um ataque de força bruta.

Engenharia social

- É importante o que um empregado insuspeito fará por alguém que pareça autoritário. Alguns hackers utilizam a informação obtida a partir do registo de domínios ou do site Web da companhia e contactam directamente um empregado por telefone.
- Com alguma "conversa" conseguem convencer o empregado a revelar a sua password sem levantar suspeitas, fazendo-se passar, por exemplo, por alguém do helpdesk.

Ataques de força bruta

- Se a engenharia social não funcionar ou não for uma opção, existe sempre a aproximação pela força bruta. Estes ataques podem ser contra qualquer aplicação ou serviço que aceite autenticação dos utilizadores, incluindo (mas não limitadas a):
 - Network basic input/output system (NetBIOS) over TCP (TCP 139)
 - Direct Host (TCP 445)
 - Lightweight Directory Access Protocol (LDAP), (TCP 389)
 - FTP (TCP 21)
 - Telnet (TCP 23)
 - Simple Network Management Protocol (SNMP), (UDP 161)
 - Point-to-Point Tunneling Protocol (PPTP), (TCP 1723)
 - Terminal Services (TCP 3389)

Ataques de força bruta

- Se um *hacker* conseguir um dos serviços utilizará os nomes obtidos nos passos anteriores para lançar um ataque de força bruta. Para tal utiliza dicionários próprios para o efeito.
- Tipicamente os sistemas baseados em Windows não detectam este tipo de ataque dado a auditoria não estar activa por omissão. Excepto se as passwords forem muito complexas, estes ataques têm algum sucesso.
- Mesmo que os sistemas atacado façam logs destes ataques os atacantes tentam passar despercebidos e evitar a detecção utilizando nomes de servidores com caracteres ASCII não imprimiveis para aparecerem em branco nos logs.

Ferramentas mais usuais

Há muitos sites onde se podem obter ferramentas de teste de redes. Alguns estão desatualizados outros nem por isso.

http://www.sectools.org

Pontos a considerar

- A auditoria dos logins falhados está activa por omissão?
- Existe algum mecanismo do lado do servidor que se possa usar para atrasar ou anular um ataque por força bruta?
- Consegue localizar a origem dum ataque de força bruta? Que informação consegue obter sobre a localização? Nome DNS ou endereço IP? Nome do computador? Endereço do router ou da máquina?
- Os atacantes conseguem alterar os logs do eventos ou de aplicações especificas depois de entrarem no sistema?
- Este protocolo necessita, por omissão, ser activado?

Escalar privilégios

- Após descobrirem uma password de uma conta de um utilizador e privilégios de acesso em modo utilizador os hackers irão tentar escalar as suas permissões. Usualmente começam por rever toda a informação sobre a máquina alvo a que têm acesso:
 - Ficheiros batch contendo nomes de utilizadores e passwords codificados são ouro para os hackers
 - Chaves de registos contendo passwords de utilizadores ou de aplicações também merecem uma espreitadela
 - A leitura de *email* ou outros documentos guardados no sistema pode também fornecer informação adicional aos *hackers* que lhes permita ganhar privilégios para noutros sistemas da rede

Escalar privilégios

- Se os hackers forem incapazes de enumerar informação estática útil do sistema podem prosseguir para a instalação dum "troiano". Isto envolve normalmente a instalação de código malicioso no sistema do utilizador e atribuir-lhe um nome duma aplicação utilizada frequentemente. Por exemplo, um hacker pode substituir o Notepad.exe por uma peça do código do "troiano" que torne alguém chamado Eric administrador do sistema antes de chamar o Notepad. A próxima vez que o utilizador se ligar ao sistema como administrador e chamar o Notpad é adicionada a conta para o Eric no grupo dos administradores de maneira transparente para quem chamou o Notepad.
- Se os *hackers* não puderem esperar que o utilizador utilize o Notepad, por exemplo, pode tentar escalar os privilégios através das aplicações do sistema que sejam executados com privilégios de administrador e substituir esta aplicação por um "troiano" que sirva para tornar Eric administrador. Quando o sistema arrancar de novo, o serviço irá correr e Eric passará a administrador.

Pontos a considerar

- Os utilizadores são capazes de aceder a informação sensível?
- As passwords das aplicações são guardadas de forma segura?
- As passwords são guardadas como texto em claro em ficheiros batch?
- Que chaves de registo ("registry keys") podem os utilizadores comuns escrever? Algumas destas chaves são executadas com privilégios elevados?
- É possível a partir de contas de nível de utilizador modificar o contexto de segurança de serviços de tal forma que possam ser utilizados para lançar "troianos" com privilégios no sistema local?
- Existem alguns ficheiros que o utilizador possa sobrepor que sejam chamados por serviços a correr com privilégios elevados?

Obter passwords e segredos adicionais

- A primeira coisa que os hackers fazem após entrarem num sistema como administradores é obter o ficheiro de passwords. O ficheiro pode ser "tratado" com ferramentas como:
 - Pwdump2, para obter os hashes das passwords, e
 - LC3 ou John the Ripper, para "cracar" as passwords

[http://www.niatec.org , http://www.sectools.org]

- Obtendo passwords de sistemas locais, comparando-as e cruzando-as com utilizadores de outros sistemas o hacker pode chegar a administrador de domínio.
- Com tempo, paciência e sorte o hacker, no pior caso, pode conseguir entrar em todos os computadores do domínio.

Ferramentas mais usuais

Algumas das possíveis ferramentas para obter e "cracar" os ficheiros de *passwords* são:

- Pwdump2
- Lsadump2
- LC3
- John the Ripper

Pontos a considerar

- São gerados logs quando os ficheiros de passwords são acedidos?
- São gerados logs quando o administrador tenta um código errado para acesso aos dados das passwords?
- São guardadas no sistemas passwords para qualquer conta que possam ter maiores níveis de permissões que o administrador local?
- A password para as contas do nível de administração dum sistema são as mesmas que das contas de administrador noutros?
- Os utilizadores são encorajados a utilizar passwords complexas?

Instalação de backdoors

- Para o caso de terem de abandonar os sistemas comprometidos à pressa os hackers costumam criar backdoors. Podem tomar muitas formas mas a mais comum é deixar no sistema uma porta à "escuta" a partir da qual é possível aceder-lhe remotamente.
- Firewalls e filtragem nos routers pode evitar o acesso posterior aos sistemas. Uma filtragem menos eficiente pode deixar passar tráfego para portos como os TCP 20, 53, ou 8.

Backdoors - Reverse trafficking

- Forma complexa de backdoor que consiste num "troiano" que contacta o computador do hacker a intervalos de tempo bem definidos e regulares através do porto 80 do TCP. O computador comprometido pode disponibilizar um comando shell de nível sistema de maneira a permitir ao hacker executar código no computador comprometido.
- O worm Code Red usa esta técnica convencendo, através do porto 80 do TCP, servidores Web comprometidos a criarem ligações Trivial File Transfer Protocol (TFTP) (porto 69) do servidor para um máquina na Internet onde obtém código que interessa ao hacker.

Backdoors - Reverse trafficking

 Um firewall bem configurado pode não deixar criar ligações TFTP a partir de servidores Web ou de email para computadores que não sejam de confiança na Internet.

Ferramentas mais usuais

Netcat

Pontos a considerar

- O sistema ou aplicação têm algum mecanismo para identificar código troiano que possa estar a correr no sistema?
- O sistema pode detectar dispositivos ou serviços que o atacante possa ter criado?
- Existe o conhecimento de portas conhecidas à escuta, serviços e dispositivos de maneira a\que o sistema possa ser monitorizado para ajudar a determinar se existe código pirata que tenha sido executado?
- Os dispositivos de segurança (firewalls, routers) estão configurados para prevenir tráfego de saída indesejado a partir de cada máquina?

Amplificar um sistema comprometido

Port redirectors

 Podem ser criadas num primeiro sistema comprometido e servirem para atacar outros sistemas, redireccionando as comunicações, escondendo a identidade do *hacker*, ultrapassando filtros em routers e firewalls e podendo até utilizar cifra na comunicação.

Amplificar um sistema comprometido

- Comprometer outros sistemas
 - Após comprometer um sistema e ter instalado os seus backdoors e seus port redirectors os hackers tentam comprometer outros sistemas na rede. Como o atacante pode agora trabalhar a partir dum sistema da interno de rede torna-se mais difícil detectar os ataques. Se não for apanhado antes de ganhar privilégios de administrador torna-se difícil expulsá-lo depois.

Ferramentas mais usuais

Fpipe [http://www.mcafee.com/us/downloads/free-tools/index.aspx]

Pontos a considerar

- Existem processos para monitorizar os logs de múltiplos sistemas da rede e correlacionar sequências de ataque para sugerir que um ataque está em curso?
- São revistos a participação em grupos ("group membership") numa base regular de maneira a assegurar que não foram adicionadas contas de *hackers* a grupos administrativos?