MESURES PRODUITS

Exercice 1. Mesure de comptage.

- 1. Montrer que $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N}^2)$.
- 2. Soit μ la mesure de comptage sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Montrer que $\mu_2 := \mu \otimes \mu$ est la mesure de comptage de \mathbb{N}^2 .
- 3. Soit $(x_{n,m})_{n,m\in\mathbb{N}}$ une suite doublement réelle positive étendue (i.e. $x_{n,m}\in[0,+\infty]$). Montrer que

$$\int_{\mathbb{N}^2} x_{n,m} d\mu_2(n,m) = \sum_{(n,m) \in \mathbb{N}^2} x_{n,m}.$$

4. Montrer avec le théorème de Tonnelli que

$$\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} = \sum_{n\geq 0} \sum_{m\geq 0} x_{n,m} = \sum_{m\geq 0} \sum_{n\geq 0} x_{n,m}.$$

Exercice 2. Contre-exemple à la sommabilité. Soit μ la mesure de comptage sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. On définit f sur \mathbb{N}^2 par

$$f(m,n) = \begin{cases} 1 & \text{si } m = n \\ -1 & \text{si } m = n+1 \\ 0 & \text{sinon} \end{cases}$$

- 1. f est-elle $\mu \otimes \mu$ -intégrable?
- 2. Comparer deux intégrales $\int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(m,n) d\mu(m) \right) d\mu(n)$ et $\int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(m,n) d\mu(n) \right) d\mu(m)$.
- 3. Expliquer.

Exercice 3. Soit f la fonction définie sur $[-1,1]^2$ par

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}.$$

- 1. Montrer que f est mesurable pour la tribu borélienne de \mathbb{R}^2 . On pourra utiliser le fait que la limite simple d'une suite de fonctions mesurables est mesurable.
- 2. Calculer

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) dx \right) dy \text{ et } \int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) dy \right) dx.$$

3. La fonction f est-elle intégrable sur $[-1,1]^2$.

Exercice 4. Soit λ la mesure de Lebesgue de [0,1] sur la tribu borélienne $\mathcal{B} = \mathcal{B}([0,1])$ et μ la mesure de comptage de [0,1] sur $\mathcal{P} = \mathcal{P}([0,1])$. Notons $D := \{(x,x), x \in [0,1]\}$ la diagonale de $[0,1]^2$.

- 1. Montrer que D est un borélien de $[0,1]^2$. En déduire que $D \in \mathcal{B} \otimes \mathcal{P}$.
- 2. Calculer les intégrales itérées de la fonction indicatrice de D,

$$\int \left(\int \mathbb{1}_D(x,y) d\lambda(x)\right) d\mu(y) \text{ et } \int \left(\int \mathbb{1}_D(x,y) d\mu(y)\right) d\lambda(x).$$

3. Expliquer.

Exercice 5. Soit 0 < a < b. On considère l'espace $A = (0, +\infty) \times (a, b)$ muni de sa tribu borélienne et de la mesure λ produit des mesures de Lebegue.

- 1. Montrer que $f(x,y) = e^{-xy}$ est intégrable sur A.
- 2. En déduire la valeur de $\int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} dx$.

Exercice 7. Convolution de deux fonctions intégrables. Soit f et g deux fonctions intégrables sur $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda)$ où λ est la mesure de Lebesgue sur \mathbb{R}^n . On définit h: $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \bar{\mathbb{R}}$ par h(x,y) = f(x-y)g(y).

- 1. Montrer que h est intégrable sur $\mathbb{R}^n \times \mathbb{R}^n$.
- 2. En déduire que, pour presque tout $x \in \mathbb{R}^n$, la quantité $\int_{\mathbb{R}^n} h(x,y) d\lambda(y)$ est bien définie.

On appelle la convolution $f \star g$ de f et g l'application définie sur \mathbb{R}^n par

$$f \star g(x) = \int_{\mathbb{R}^n} h(x, y) d\lambda(y) = \int_{\mathbb{R}^n} f(x - y) g(y) d\lambda(y).$$

1. Montrer que $f \star g$ est intégrable sur \mathbb{R}^n et

$$||f \star g||_{L^1(\mathbb{R}^n)} \le ||f||_{L^1(\mathbb{R}^n)} \cdot ||g||_{L^1(\mathbb{R}^n)}.$$

2. À l'aide d'un changement de variable, montrer que $g \star f = f \star g$ presque partout sur \mathbb{R}^n .

Exercice 8. Soit $n \in \mathbb{N}^*$, R > 0 et $B_n(R)$ la boule de centre 0 et de rayon R dans \mathbb{R}^n

$$B_n(R) = \{(x_1, \dots, x_n) \in \mathbb{R}^n | x_1^2 + \dots + x_n^2 \le R^2 \}.$$

On note λ_n la mesure de Lebesgue sur \mathbb{R}^n et

$$b_n(R) = \int_{\mathbb{R}^n} \mathbb{1}_{B_n(R)}(x_1, \dots, x_n) d\lambda_n(x_1, \dots, x_n)$$

le volume de la boule $B_n(R)$.

- 1. Montrer que $b_n(R) = R^n b_n(1)$ où $b_n(1)$ est le volume de la boule unité. On raccourcit $b_n(1)$ en b_n .
- 2. Calculer b_1, b_2, b_3 . On pourra s'aider de changements de variables.
- 3. Pour $n \geq 3$, établir une relation de récurrence entre b_n et b_{n-2} . En déduire la valeur de b_n puis celle de $b_n(R)$ en fonction de n et R.

Exercice 9. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique définie positive i.e., il existe une constante m > 0 t.q. $\langle Ax, x \rangle \ge m \|x\|^2$ pour tout $x \in \mathbb{R}^n$. Calculer

$$I := \int_{\mathbb{R}^n} e^{-\langle Ax, x \rangle} dx.$$