Managing Processing Tomatoes for Greenhouse Gas Reduction

Taryn Kennedy, Emma Suddick, and Johan Six UC Davis Dept. of Plant Sciences

Recent research at UC Davis in collaboration with Yolo County processing tomato growers shows that switching to subsurface drip irrigation can reduce greenhouse gas emissions from tomato fields while bringing a number of other benefits to farmers.

This study suggests that:

- ♦ N₂O can be reduced without a yield penalty by adopting the integrated system.
- ♦ Improved use of fertilizer and water through subsurface drip irrigation with N fertigation can result in better matching of N availability & crop demand and can reduce N loss via N₂O emissions.

Nitrous Oxide (N₂O)—Why is it Important?

- ♦ N₂O destroys the ozone layer
- ♦ 300X more potent greenhouse gas than carbon dioxide (CO₂)

Factors that influence N₂O Production:

- ◆ Mineral Nitrogen (N)—FERTILIZATION
- ♦ Soil Moisture—IRRIGATION
- ♦ Soil Organic Carbon—TILLAGE

Composition of GHGs from Agriculture:

Drip irrigation yields multiple benefits to farmers:

Increased Fertilizer Use Efficiency • Increased Water Use Efficiency • Improved Crop Yields • Reduced N₂O and CO₂ emissions

In general, management practices that improve use of fertilizer are permanent—N that is taken up by the plant cannot be converted to N₂O, regardless of subsequent management.

Case Study: Tomato Management and N₂O Emissions

In an on-farm study, greenhouse gas emissions were monitored for one year, from two fields managed by two different growers.

	CONVENTIONAL	INTEGRATED
Tillage method	Conventional Tillage	Reduced Tillage
Irrigation Method	Furrow Irrigation	Subsurface Drip Irrigation
Winter treatment	Winter Fallow	Cover Crop: Triticale trios
Fertilizer schedule	Starter, Planting, Sidedress N, & 3 H ₂ O runs	Starter & 6 Fertigations
Fertilizer type	8-24-6; 3-18-18; 28-0-0; CAN-17	8-24-6; UN-32
Tomato cultivar	AB2	AB2
kg N ha ⁻¹ / lb N acre ⁻¹ applied	237 / 211	205 / 182
# of N Fertilizations X Rate (kg N ha ⁻¹ / lb N acre ⁻¹)	1 X (146 / 130); 5 X (5 to 25 / 3 to 22)	1 X (75 / 67); 6 X (6 to 30 / 5 to 26)
Yield (ton ha ⁻¹ / ton acre ⁻¹)	86 / 35	131/53
Nitrogen use efficiency	37%	58%

Additional case study results

In the conventional system, N_2O fluxes were highest following fertilizations and the first rain. High emissions at harvest in the integrated system were likely due to the use of a vine shredder at harvest (right).

Drip Irrigation (Integrated) significantly reduced N_2O emissions (Below, left) and CO_2 emissions (below, right) in comparison to furrow irrigation (Conventional) (Kennedy et al., *in prep*).

Management Effects on N₂O

- N₂O emissions increase as fertilizer rates increase, however the response is not always linear.
- When N availability exceeds plant demand, N₂O emissions increase dramatically.
- ♦ It is not fertilizer rate alone that determines the production of N₂O – other factors also play a role:
 - crop N uptake
 - fertilizer management (rate & timing)
 - irrigation strategy (furrow vs. drip)

N₂O Emissions are Event Related

- Agricultural management events play a critical role in N₂O emission patterns.
- Management events that increase soil moisture, N, and C levels cause a pulse of N₂O.
- N₂O fluxes are often highest after fertilizations, harvest, and the first rain.

"We were very excited to see the results of two years of cooperation with UC Davis on a greenhouse gas emissions study in our dripirrigated tomatoes. We saw a 60% reduction in N₂O releases to the atmosphere as a result of drip irrigation vs. furrow."

"Subsurface drip systems require increased energy use and a high level of maintenance, but result in higher processing tomato yields, reduced greenhouse gas emissions, water conservation, and reduced tractor and diesel costs."

— Tony Turkovich, Button & Turkovich Farm

Research partially funded by:

University of California, Davis

Agroecology Lab
One Shields Avenue
Davis, CA 95616

E-mail: tlkennedy@ucdavis.edu Website: www.plantsciences.ucdavis.edu/ Agroecology/outreach.html