Butterfly as Linear Algebra

Danny Hermes

February 4, 2015

Table of contents

Introduction

Converting Coefficients
Operation Count
Error Analysis

Extract Source of PDF

NOTE: To extract the source from this PDF, execute: pdftk butterfly_slides.pdf unpack_files output .

Motivation

We want to compute

$$\widehat{f}_k = \sum_{j=0}^{N-1} e^{t_k s_j} f_j$$

for $0 \le k < N$ and $t_k, s_j \in \mathbf{R}$.

Kernel Approximation

For
$$z \in \mathbf{C}$$
:

$$e^z = \sum_{\alpha=0}^m \frac{z^\alpha}{\alpha!} + E_m$$

with error $|E_m| \leq \left(\frac{|z|e}{m}\right)^m$.

Basic Trick

We can show that

$$ts = \tau \sigma + \tau (s - \sigma) + \sigma (t - \tau) + (t - \tau)(s - \sigma)$$

for any σ, τ .

Basic Trick in Use

We can use it to say

$$e^{ts}f = e^{\tau\sigma}e^{\tau(s-\sigma)}e^{\sigma(t-\tau)}e^{(t-\tau)(s-\sigma)}f$$

$$= e^{\tau\sigma}e^{\tau(s-\sigma)}e^{\sigma(t-\tau)}\sum_{\alpha\geq 0}\frac{1}{\alpha!}(t-\tau)^{\alpha}(s-\sigma)^{\alpha}f$$

$$= \sum_{\alpha\geq 0}\left\{\left[\frac{1}{\alpha!}e^{\tau\sigma}e^{\tau(s-\sigma)}(s-\sigma)^{\alpha}\right]e^{\sigma(t-\tau)}(t-\tau)^{\alpha}f\right\}$$

$$= \sum_{\alpha\geq 0}K(s;\alpha,\tau,\sigma)e^{\sigma(t-\tau)}(t-\tau)^{\alpha}f.$$

Basic Trick Emphasis

We emphasize the definition:

$$K(s; \alpha, \tau, \sigma) = \frac{1}{\alpha!} e^{\tau \sigma} e^{\tau(s-\sigma)} (s-\sigma)^{\alpha}$$

Partitioning the Inputs

For a given level ℓ , assume we have partitioned the target space T into 2^ℓ evenly spaced intervals and have partitioned S into $2^{L-\ell}$ where $L=\mathcal{O}\left(\log_2 N\right)$ is some maximum depth which we determine later.

For example if $\mathcal{T} \subset [0,1]$ then

$$\begin{split} \mathcal{T}\left\{1\right\} &= \left[0,\frac{1}{2}\right] & \cup \left[\frac{1}{2},1\right] \\ \mathcal{T}\left\{2\right\} &= \left[0,\frac{1}{4}\right] \cup \left[\frac{1}{4},\frac{1}{2}\right] & \cup \left[\frac{1}{2},\frac{3}{4}\right] \cup \left[\frac{3}{4},1\right]. \end{split}$$

Partitioning the Inputs

In general

$$T\left\{\ell\right\} = \bigcup_{i=0}^{2^{\ell}-1} T\left(i;\ell\right)$$

and

$$S\{L-\ell\} = \bigcup_{j=0}^{2^{L-\ell}-1} S(j; L-\ell).$$

Define the centers of these boxes (intervals here, but feel free to get more generic) as

$$\tau(i;\ell)$$
 and $\sigma(m;L-\ell)$.

Return to Motivation

Recall

$$\widehat{f}_k = \sum_{j=0}^{N-1} e^{t_k s_j} f_j$$

and notice that for a fixed k and fixed ℓ , there is a unique i such that $t_k \in T(i;\ell)$, then invoking $K(s; \alpha, \tau(i;\ell), \sigma)$ as σ varies over

$$\sigma(0; L-\ell), \ldots, \sigma\left(2^{L-\ell}-1; L-\ell\right)$$

will turn our sum into $2^{L-\ell}$ sums (each with another sum over α).

Return to Motivation

Thus, letting $\tau = \tau(i; \ell)$:

$$egin{aligned} \widehat{f}_k &= \sum_{j=0}^{N-1} e^{t_k s_j} f_j \ &= \sum_m \sum_{s \in S(m; L-\ell)} e^{t_k s} f(s) \ &= \sum_m \sum_{s \in S(m)} \sum_{lpha \geq 0} K\left(s; lpha, au, \sigma(m)\right) e^{\sigma(m)(t_k - au)} (t_k - au)^{lpha} f(s). \end{aligned}$$

Above we write $\sigma(m)$ instead of $\sigma(m; L - \ell)$ since the refinement level is clear from context.

NOTE: We write f(s) to denote f_i in the case that $s = s_i$.

Rearrangement

Rearranging

$$\begin{split} \widehat{f}_k &= \sum_{m} \sum_{s \in S(m)} \sum_{\alpha \geq 0} K\left(s; \alpha, \tau, \sigma(m)\right) e^{\sigma(m)(t_k - \tau)} (t_k - \tau)^{\alpha} f(s) \\ &= \sum_{m} \sum_{\alpha \geq 0} e^{\sigma(m)(t_k - \tau)} (t_k - \tau)^{\alpha} \sum_{s \in S(m)} K\left(s; \alpha, \tau, \sigma(m)\right) f(s) \\ &= \sum_{m} \sum_{\alpha \geq 0} C\left(\alpha, \ell, i, m\right) e^{\sigma(m)(t_k - \tau)} (t_k - \tau)^{\alpha}. \end{split}$$

Rearrangement

We emphasize the definition:

$$C(\alpha, \ell, i, m) = \sum_{s \in S(m)} K(s; \alpha, \tau(i), \sigma(m)) f(s)$$

or more explicitly

$$C(\alpha,\ell,i,m) = \frac{1}{\alpha!} \sum_{s \in S(m)} e^{\tau(i)\sigma(m)} e^{\tau(i)(s-\sigma(m))} (s-\sigma(m))^{\alpha} f(s).$$

Approximation

For any level ℓ with $t_k \in T(i; \ell)$ we can approximate the exact value

$$\widehat{f}_k = \sum_{m} \sum_{\alpha \geq 0} C(\alpha, \ell, i, m) e^{\sigma(m)(t_k - \tau(i))} (t_k - \tau(i))^{\alpha}.$$

by

$$\widehat{f}_k pprox \sum_{m=0}^{M-1} C(\alpha, \ell, i, m) e^{\sigma(m)(t_k - \tau(i))} (t_k - \tau(i))^{\alpha}$$

for some \max number of terms M.

Approximation

Notice that $C(\alpha, \ell, i, m)$ does not depend on k, so we only need to compute this for M choices of α , 2^{ℓ} choices of i and $2^{L-\ell}$ choices of m. In total

$$M \cdot 2^{L} = \mathcal{O}(M \cdot N) = \mathcal{O}(N)$$

independent of ℓ .

We start with $\ell=0$ and consider what it might take to compute.

We start with $\ell = 0$ and consider what it might take to compute.

In this case we have exactly one target box T(0;0) and $2^L = \mathcal{O}(N)$ source boxes S(m;L).

We start with $\ell = 0$ and consider what it might take to compute.

- In this case we have exactly one target box T(0;0) and $2^L = \mathcal{O}(N)$ source boxes S(m; L).
- ▶ Since at level L, we know $|S(m; L)| = \mathcal{O}(1)$ hence computing each coefficient is $\mathcal{O}(1)$.

We start with $\ell = 0$ and consider what it might take to compute.

- In this case we have exactly one target box T(0; 0) and $2^L = \mathcal{O}(N)$ source boxes S(m; L).
- ▶ Since at level L, we know $|S(m; L)| = \mathcal{O}(1)$ hence computing each coefficient is $\mathcal{O}(1)$.
- ▶ However, for each of these boxes, we need to compute $\exp \{\sigma(m; L)(t_k \tau(0; 0))\}$ which is $\mathcal{O}(N^2)$ since we have $2^L = \mathcal{O}(N)$ choices for m and $N = \mathcal{O}(N)$ choices for t_k .

Instead we consider the **end** where $\ell = L$.

Instead we consider the **end** where $\ell = L$.

In this case we have exactly one source box S(0;0) and $2^L = \mathcal{O}(N)$ target boxes T(i;L).

Instead we consider the **end** where $\ell = L$.

- In this case we have exactly one source box S(0;0) and $2^L = \mathcal{O}(N)$ target boxes T(i;L).
- ▶ Since at level 0, we know $|S(0;0)| = N = \mathcal{O}(N)$ hence computing each coefficient (for fixed i) is $\mathcal{O}(N)$.

Instead we consider the **end** where $\ell = L$.

- In this case we have exactly one source box S(0;0) and $2^L = \mathcal{O}(N)$ target boxes T(i;L).
- ▶ Since at level 0, we know $|S(0;0)| = N = \mathcal{O}(N)$ hence computing each coefficient (for fixed i) is $\mathcal{O}(N)$.
- ▶ Since we have $\mathcal{O}(N)$ choices for i, there are $\mathcal{O}(N^2)$ coefficients to compute.

Here's the Catch

The the $\ell=L$ approach sinks us immediately by asking us to compute $\mathcal{O}\left(N^2\right)$ coefficients, we have a **positive takeaway**.

Since there is only one value $\sigma = \sigma(0; 0)$, we can compute each value as

$$\widehat{f}_k \approx \sum_{\alpha=0}^{M-1} C(\alpha, L, i, m=0) e^{\sigma(t_k-\tau(i;L))} (t_k-\tau(i;L))^{\alpha}.$$

This is happily $\mathcal{O}(M) = \mathcal{O}(1)$ to compute.

▶ We've seen that no matter what ℓ is, we have $M \cdot 2^L = \mathcal{O}(N)$ coefficients $C(\alpha, \ell, i, m)$ to compute.

- We've seen that no matter what ℓ is, we have $M \cdot 2^L = \mathcal{O}(N)$ coefficients $C(\alpha, \ell, i, m)$ to compute.
- ▶ When $\ell = 0$ we can compute all the coefficients in $\mathcal{O}(1)$ since the refinement $L \ell = L$ in the source space gives $|S(m; L)| = \mathcal{O}(1)$.

- We've seen that no matter what ℓ is, we have $M \cdot 2^L = \mathcal{O}(N)$ coefficients $C(\alpha, \ell, i, m)$ to compute.
- ▶ When $\ell = 0$ we can compute all the coefficients in $\mathcal{O}(1)$ since the refinement $L \ell = L$ in the source space gives $|S(m; L)| = \mathcal{O}(1)$.
- When $\ell = L$ we can compute all the values \widehat{f}_k in $\mathcal{O}(1)$ provided we already have the $C(\alpha, \ell, i, m)$.

- We've seen that no matter what ℓ is, we have $M \cdot 2^L = \mathcal{O}(N)$ coefficients $C(\alpha, \ell, i, m)$ to compute.
- ▶ When $\ell = 0$ we can compute all the coefficients in $\mathcal{O}(1)$ since the refinement $L \ell = L$ in the source space gives $|S(m; L)| = \mathcal{O}(1)$.
- When $\ell = L$ we can compute all the values \widehat{f}_k in $\mathcal{O}(1)$ provided we already have the $C(\alpha, \ell, i, m)$.
- ▶ This means that the computation of $\{\widehat{f}_k\}_k$ is $\mathcal{O}(N)$.

▶ To summarize, we know we can compute the $\mathcal{O}(N)$ values $C(\alpha, 0, i = 0, m)$ in $\mathcal{O}(N)$ and we know we can use the $\mathcal{O}(N)$ values $C(\alpha, L, i, m = 0)$ to compute $\left\{\widehat{f}_k\right\}_{L}$ in $\mathcal{O}(N)$.

- ▶ To summarize, we know we can compute the $\mathcal{O}(N)$ values $C(\alpha, 0, i = 0, m)$ in $\mathcal{O}(N)$ and we know we can use the $\mathcal{O}(N)$ values $C(\alpha, L, i, m = 0)$ to compute $\left\{\widehat{f}_k\right\}_k$ in $\mathcal{O}(N)$.
- ► (Let's assume that) Butterfly gives a process to convert

$$\{\textit{C}(\alpha, 0, i, m)\} \rightarrow \{\textit{C}(\alpha, 1, i, m)\} \rightarrow \cdots \rightarrow \{\textit{C}(\alpha, L, i, m)\}$$

using $\mathcal{O}(N \log N)$ operations.

- ▶ To summarize, we know we can compute the $\mathcal{O}(N)$ values $C(\alpha, 0, i = 0, m)$ in $\mathcal{O}(N)$ and we know we can use the $\mathcal{O}(N)$ values $C(\alpha, L, i, m = 0)$ to compute $\left\{\widehat{f}_k\right\}_k$ in $\mathcal{O}(N)$.
- ▶ (Let's assume that) Butterfly gives a process to convert

$$\{C(\alpha,0,i,m)\} \rightarrow \{C(\alpha,1,i,m)\} \rightarrow \cdots \rightarrow \{C(\alpha,L,i,m)\}$$

using $\mathcal{O}(N \log N)$ operations.

▶ Thus, we can compute $\{\widehat{f}_k\}_k$ in

$$\mathcal{O}(N) + \mathcal{O}(N \log N) + \mathcal{O}(N) = \mathcal{O}(N \log N).$$

- ▶ To summarize, we know we can compute the $\mathcal{O}(N)$ values $C(\alpha, 0, i = 0, m)$ in $\mathcal{O}(N)$ and we know we can use the $\mathcal{O}(N)$ values $C(\alpha, L, i, m = 0)$ to compute $\left\{\widehat{f}_k\right\}_k$ in $\mathcal{O}(N)$.
- ▶ (Let's assume that) Butterfly gives a process to convert

$$\{C(\alpha,0,i,m)\} \rightarrow \{C(\alpha,1,i,m)\} \rightarrow \cdots \rightarrow \{C(\alpha,L,i,m)\}$$

using $\mathcal{O}(N \log N)$ operations.

▶ Thus, we can compute $\left\{\widehat{f}_k\right\}_k$ in

$$\mathcal{O}(N) + \mathcal{O}(N \log N) + \mathcal{O}(N) = \mathcal{O}(N \log N).$$

► In other words, the process of converting the coefficients will dominate.

High Level Approach

In order to facilitate the process

$$\{C(\alpha,\ell,i,m)\}_{\alpha,i,m} \to \{C(\alpha,\ell+1,i,m)\}_{\alpha,i,m}$$

we split into two parts:

- ▶ Refine T and compute interaction coefficients for T $\{\ell+1\}$ and S $\{L-\ell\}$.
- ▶ This first step will use the existing interaction coefficients for $T\{\ell\}$ and $S\{L-\ell\}$. These are exactly $\{C(\alpha,\ell,i,m)\}_{\alpha,i,m}$.
- ▶ Coarsen S and compute interaction coefficients for T $\{\ell+1\}$ and S $\{L-\ell-1\}$ using the intermediate coefficients computed in the first step. This will produce $\{C(\alpha,\ell+1,i,m)\}_{\alpha,i,m}$.

Memories...

Before we get started, recall for $\tau = \tau(i; \ell)$ and $\sigma = \sigma(m; L - \ell)$:

$$C(\alpha, \ell, i, m) = \frac{1}{\alpha!} \sum_{s \in S(m:L-\ell)} e^{\tau \sigma} e^{\tau(s-\sigma)} (s-\sigma)^{\alpha} f(s).$$

Refining T

When refining $T(i; \ell)$, we get two new intervals. Assuming they are ordered by their indices, we have

$$T(i;\ell) = T(2i;\ell+1) \cup T(2i+1;\ell+1).$$

For shorthand, we'll use the notation

$$au(i) = au(i;\ell)$$
 and $au^+(i') = au(i';\ell+1)$

when the value of ℓ is clear from context.

In addition, we define the intermediate interaction coefficients:

$$C^+(\alpha,\ell,i',m) = \frac{1}{\alpha!} \sum_{s \in S(m)} e^{\tau^+(i')\sigma(m)} e^{\tau^+(i')(s-\sigma(m))} (s-\sigma(m))^{\alpha} f(s).$$

Refining T

One can show

$$C^{+}(\alpha, \ell, i', m) \approx e^{(\tau^{+} - \tau)\sigma} \sum_{\beta=0}^{M-1} (\tau^{+} - \tau)^{\beta} {\alpha + \beta \choose \beta} C(\alpha + \beta, \ell, i, m)$$

by truncating the sum

$$e^{(\tau^+ - \tau)(s - \sigma)} = \sum_{\beta > 0} \frac{1}{\beta!} (\tau^+ - \tau)^\beta (s - \sigma)^\beta$$

and rewriting

$$e^{\tau^+\sigma}e^{\tau^+(s-\sigma)}=e^{(\tau^+-\tau)\sigma}e^{\tau\sigma}e^{\tau(s-\sigma)}e^{(\tau^+-\tau)(s-\sigma)}.$$

Refining T

In reality, $C(\alpha + \beta, \ell, i, m)$ isn't defined for all values of β since we only consider inputs to $C(\cdot, \ell, i, m)$ from [0, M).

Thus

$$C^{+}(\alpha,\ell,i',m) \approx e^{(\tau^{+}-\tau)\sigma} \sum_{\gamma=\alpha}^{M-1} (\tau^{+}-\tau)^{\gamma-\alpha} {\gamma \choose \alpha} C(\gamma,\ell,i,m)$$

is the actual approximation we use.

Coarsening S

Now we have written the $C^+(\cdot, \ell, i', m)$ values in terms of the $C(\cdot, \ell, i, m)$ values.

From here, we want to use the $C^+(\cdot, \ell, i', m)$ values to express the $C(\cdot, \ell+1, i', m')$ values in the same fashion, but here by coarsening S:

$$S(m'; L-\ell-1) = S(2m'; L-\ell) \cup S(2m'+1; L-\ell).$$

The definition m' here requires that $m \in \{2m', 2m'+1\}$. In either case $m' = \lfloor \frac{m}{2} \rfloor$.

Similarly, for shorthand, we'll use the notation

$$\sigma(m) = \sigma(m; L - \ell)$$
 and $\sigma^{-}(m') = \sigma(m'; L - \ell - 1)$.

Coarsening S

When computing

$$C(\alpha, \ell+1, i', m') = \frac{1}{\alpha!} \sum_{s \in S(m'; L-\ell-1)} e^{\tau^+ \sigma^-} e^{\tau^+ (s-\sigma^-)} (s-\sigma^-)^{\alpha} f(s)$$

we need to split our sum into

$$\sum_{s \in S(m';L-\ell-1)} = \sum_{s \in S(2m';L-\ell)} + \sum_{s \in S(2m'+1;L-\ell)}.$$

Coarsening S

After splitting the into two sums, we can show

$$C(\alpha, \ell+1, i', m') = \sum_{\beta=0}^{\alpha} \frac{(\sigma(2m') - \sigma^{-})^{\alpha-\beta}}{(\alpha-\beta)!} C^{+}(\beta, \ell, i', 2m')$$

$$+ \sum_{\beta=0}^{\alpha} \frac{(\sigma(2m'+1) - \sigma^{-})^{\alpha-\beta}}{(\alpha-\beta)!} C^{+}(\beta, \ell, i', 2m'+1).$$

by using binomial expansion

$$(s-\sigma^-)^{\alpha} = \sum_{\beta=0}^{\alpha} {\alpha \choose \beta} (s-\sigma)^{\beta} (\sigma-\sigma^-)^{\alpha-\beta}.$$

Combining Transformations

For each fixed ℓ, i, m , the coefficient vector $C(\cdot, \ell, i, m) \in \mathbf{R}^M$ and the system we've described by refining and coarsening gives a block linear transformation:

$$A: \left[\begin{array}{c} C(\cdot,\ell,i,2m') \\ C(\cdot,\ell,i,2m'+1) \end{array} \right] \mapsto \left[\begin{array}{c} C(\cdot,\ell+1,2i,m') \\ C(\cdot,\ell+1,2i+1,m') \end{array} \right].$$

In the case of higher dimensions or for inputs in \mathbf{C} the transformation goes from operating on vectors of size 2^M to size $2^d M$ where d is the dimension (over \mathbf{R}) of the space containing the t_k, s_j .

Determine Matrix A

To determine each element A_{pq} we need to find the coefficient of the q^{th} element of the input vector in the p^{th} element of the output vector.

This splits into four distinct cases, depending on whether each of p,q correspond to the top or bottom half. Thus we can split A into a block 2×2 matrix

$$A = \left[\begin{array}{cc} E & F \\ G & H \end{array} \right].$$

Determine Matrix A

For
$$0 \le p, q < M$$
.

$$C(p, \ell + 1, 2i, m') = \dots + E_{pq}C(q, \ell, i, 2m') + \dots$$

$$C(p, \ell + 1, 2i, m') = \dots + F_{pq}C(q, \ell, i, 2m' + 1) + \dots$$

$$C(p, \ell + 1, 2i + 1, m') = \dots + G_{pq}C(q, \ell, i, 2m') + \dots$$

$$C(p, \ell + 1, 2i + 1, m') = \dots + H_{pq}C(q, \ell, i, 2m' + 1) + \dots$$

Determine General Block Submatrix X

With
$$i'\in\{2i,2i+1\}$$
 and $m\in\{2m',2m'+1\}$
$$C(p,\ell+1,i',m')=\cdots+X_{pq}C(q,\ell,i,m)+\cdots$$

we use $\sigma = \sigma(m)$, $\sigma^- = \sigma(m')$,

$$C(p,\ell+1,i',m') = \cdots + \sum_{\beta=0}^{p} \frac{(\sigma-\sigma^{-})^{p-\beta}}{(p-\beta)!} C^{+}(\beta,\ell,i',m) + \cdots$$

and recall with $\tau = \tau(i)$, $\tau^+ = \tau(i')$,

$$C^{+}\left(\beta,\ell,i',m\right) = e^{(\tau^{+}-\tau)\sigma} \sum_{\gamma=\beta}^{M-1} (\tau^{+}-\tau)^{\gamma-\beta} {\gamma \choose \beta} C(\gamma,\ell,i,m).$$

Determine General Block Submatrix X

Since

$$\sum_{\beta=0}^{p}\sum_{\gamma=\beta}^{M-1}=\sum_{\gamma=0}^{M-1}\sum_{\beta=0}^{\min(p,\gamma)},$$

the coefficient of $C(\gamma, \cdots)$ when $\gamma = q$ is

$$X_{pq} = e^{(au^+ - au)\sigma} \sum_{eta=0}^{\min(p,q)} rac{(\sigma - \sigma^-)^{p-eta}}{(p-eta)!} (au^+ - au)^{q-eta} inom{q}{eta}.$$

Explicit Blocks: m = 2m'

- ▶ In both cases $\sigma = \sigma(2m'), \sigma^- = \sigma(m')$ and $\tau = \tau(i)$.
- When $\tau^+ = \tau(2i)$,

$$E_{pq} = e^{(\tau^+ - \tau)\sigma} \sum_{\beta=0}^{\min(p,q)} \frac{(\sigma - \sigma^-)^{p-\beta}}{(p-\beta)!} (\tau^+ - \tau)^{q-\beta} \binom{q}{\beta}.$$

• When $\tau^+ = \tau(2i + 1)$,

$$G_{pq} = e^{(au^+ - au)\sigma} \sum_{eta=0}^{\min(p,q)} rac{(\sigma - \sigma^-)^{p-eta}}{(p-eta)!} (au^+ - au)^{q-eta} inom{q}{eta}.$$

Explicit Blocks: m = 2m' + 1

- ▶ In both cases $\sigma = \sigma(2m'+1), \sigma^- = \sigma(m')$ and $\tau = \tau(i)$.
- When $\tau^+ = \tau(2i)$,

$$F_{pq} = e^{(\tau^+ - \tau)\sigma} \sum_{\beta=0}^{\min(p,q)} \frac{(\sigma - \sigma^-)^{p-\beta}}{(p-\beta)!} (\tau^+ - \tau)^{q-\beta} \binom{q}{\beta}.$$

• When $\tau^+ = \tau(2i + 1)$,

$$H_{pq} = \mathrm{e}^{(\tau^+ - au)\sigma} \sum_{eta = 0}^{\min(p,q)} rac{(\sigma - \sigma^-)^{p-eta}}{(p-eta)!} (au^+ - au)^{q-eta} inom{q}{eta}.$$

Potential Optimization

We encounter

$$\frac{(\sigma-\sigma^-)^{p-\beta}}{(p-\beta)!}(\tau^+-\tau)^{q-\beta} \binom{q}{\beta}$$

for various values of $\sigma, \sigma^-, \tau, \tau^+$ but for a fixed set of choices of p, q (throughout the life of the code).

We can write this instead as

$$\frac{q!}{\beta!}\frac{(\sigma-\sigma^-)^{p-\beta}}{(p-\beta)!}\frac{(\tau^+-\tau)^{q-\beta}}{(q-\beta)!}.$$

▶ Constructing each matrix A at the $\ell \to \ell + 1$ step (for fixed i, m') requires creating $(2M)^2$ matrix entries.

- ▶ Constructing each matrix A at the $\ell \to \ell + 1$ step (for fixed i, m') requires creating $(2M)^2$ matrix entries.
- ▶ Each p, q entry in each of the 2 × 2 block submatrices can be constructed in min(p, q) hence can be computed in $\mathcal{O}(M)$.

- ▶ Constructing each matrix A at the $\ell \to \ell + 1$ step (for fixed i, m') requires creating $(2M)^2$ matrix entries.
- ▶ Each p, q entry in each of the 2 × 2 block submatrices can be constructed in min(p, q) hence can be computed in $\mathcal{O}(M)$.
- ▶ Each A is applied to 2 of the 2^L coefficient sets and this applicated requires $\mathcal{O}\left((2M)^3\right)$ operations.

- ▶ Constructing each matrix A at the $\ell \to \ell + 1$ step (for fixed i, m') requires creating $(2M)^2$ matrix entries.
- ▶ Each p, q entry in each of the 2 × 2 block submatrices can be constructed in min(p, q) hence can be computed in $\mathcal{O}(M)$.
- ▶ Each A is applied to 2 of the 2^L coefficient sets and this applicated requires $\mathcal{O}\left((2M)^3\right)$ operations.
- ▶ Thus the total work to convert two of the coefficient sets is $(2M)^2 \mathcal{O}(M) + \mathcal{O}((2M)^3) = \mathcal{O}(M^3)$.

▶ Since we have $2^L/2 = 2^{L-1} = \mathcal{O}(N/2)$ such pairs of coefficient sets, the total work is $\mathcal{O}(M^3 \cdot N)$.

- Since we have $2^L/2 = 2^{L-1} = \mathcal{O}(N/2)$ such pairs of coefficient sets, the total work is $\mathcal{O}(M^3 \cdot N)$.
- When M the max number of terms in the Taylor approximation of the kernel e^z — is reasonable, the work in

$$\{\mathit{C}(\alpha,\ell,i,\mathit{m})\}_{\alpha,i,\mathit{m}} \to \{\mathit{C}(\alpha,\ell+1,i,\mathit{m})\}_{\alpha,i,\mathit{m}}$$
 is $\mathcal{O}(\mathit{N})$.

- ▶ Since we have $2^L/2 = 2^{L-1} = \mathcal{O}(N/2)$ such pairs of coefficient sets, the total work is $\mathcal{O}(M^3 \cdot N)$.
- When M the max number of terms in the Taylor approximation of the kernel e^z — is reasonable, the work in

$$\{C(\alpha,\ell,i,m)\}_{\alpha,i,m} \to \{C(\alpha,\ell+1,i,m)\}_{\alpha,i,m}$$

is $\mathcal{O}(N)$.

Since we only have L steps

$$\ell = 0 \rightarrow \ell = 1 \rightarrow \cdots \rightarrow \ell = L - 1 \rightarrow \ell = L$$

the total work is $\mathcal{O}(L \cdot N)$. As we already mentioned $L = \mathcal{O}(\log_2 N)$ hence the total work is $\boxed{\mathcal{O}(N \log N)}$.

Error Analysis

We have truncated the Taylor series for the kernel in two primary places:

$$\widehat{f}_k \approx \sum_{m} \sum_{\alpha=0}^{M-1} C(\alpha, \ell, i, m) e^{\sigma(m)(t_k - \tau(i))} (t_k - \tau(i))^{\alpha}$$

and

$$C^{+}(\alpha, \ell, i', m) \approx e^{(\tau^{+} - \tau)\sigma} \sum_{\gamma = \alpha}^{M-1} (\tau^{+} - \tau)^{\gamma - \alpha} {\gamma \choose \alpha} C(\gamma, \ell, i, m).$$

We need to understand how these errors propagate through our solution.