Enzyme kinetics

BIOS 10016

24 June 2025

Objectives

- Describe the principles behind enzyme kinetics.
- Describe the criteria and assumptions required to analyze a system using Michaelis-Menten kinetics, and the parameters that are yielded.
 - Assumptions: [ES] remains relatively constant
 - First order at low concentrations, zero order at high concentrations
- Prepare Michaelis-Menten and Lineweaver-Burk plots from raw data.
 - Michaelis-Menten: asymptote at V_{max} , K_{m} is the x-value at 1/2 of V_{max}
 - Lineweaver-Burk: x-intercept at $-1/K_m$, y-intercept at $1/V_{max}$
- Calculate elements of the Michaelis-Menten equation when provided sufficient information. (See 2)
- Calculate the turnover number and specificity constant. (k_{cat}/K_m)
- Extract kinetic data from the Lineweaver-Burk plot.
- Describe the limits at which the turnover number and the specificity constant drive the reaction.

Enzymes

General properties of enzymes

- \bullet Have high reaction rates (10⁶ to 10¹² times faster than uncatalyzed reactions)
- Mild reaction conditions

$$2N_{2(g)} + 6H_2(g) \rightarrow 2NH_3(g)$$

- Regulated activity
- Reaction specificity
 - Absolute specificity: only one substrate (urease \rightarrow urea)
 - Relative specificity: few related substrates (e.g. hexokinase \rightarrow glucose and fructose)
 - Stereospecific specificity: only one isomer (D or L form)

Active sites

Substrates bind using noncovalent interactions to **active sites**. Active sites are a unique microenvironment that binds the substrate and catalyzes the reaction.

Induced fit = changing the shape of the enzyme to fit the substrate.

Initial binding of the substrate to the active site depends on IMFs.

Structural complementarity

Geometric: substrate and enzyme structures match structurally

Electronic: substrate and enzyme structures match electronically (opposite charges)

Stereospecificity: chiralities match

Binding energy and transition states

or ΔG_B

The energy associated with substrate binding to the active site that pays for the entropy associated with binding.

Energy comes from:

- 1. Enthalpy from IMFs
- 2. Entropy of H₂O
- 3. Entropy of the substrate

Transition states may block spontaneous processes. The transition state is short-lived, high-energy, and determines reaction rate.

To speed up: lower activation energy or increase ΔG of S.

Transition state analogs are excellent enzyme inhibitors. The molecules mimic a transition state and bind to the active site, preventing substrate binding.

Dissociation constant - how tightly a substrate binds to a protein or enzyme. A smaller K_D means stronger binding. (K_i is K_D for an inhibitor.)

Arrhenius equation

$$k = Ae^{-\frac{E_a}{RT}} \tag{1}$$

where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy, R is the gas constant, and T is the temperature in Kelvin.

Kinetics

Enzyme kinetics

Consider a first-order reaction: an enzyme E converts one substrate S into one product P.

$$S \rightleftharpoons P$$

$$rate = \frac{d[P]}{dt} = \frac{-d[S]}{dt}$$

An enzyme is like a factory assembly line - rate of product formation depends on the time it takes to make a product (V_{max}, k_{cat}) and the time it takes for materials to arrive

$$E + S \rightleftharpoons ES \rightleftharpoons EP \rightarrow E + P$$

$$E+S\to ES=k_1$$

$$ES \rightarrow E + S = k_1$$

$$ES \to EP = k_2$$

$$EP \rightarrow ES = k_2$$

Dependence of reaction rate on [S]

The more substrate, the greater the chance for collisions

$$rate = velocity = V \propto [S]$$

To study enzyme kinetics, study it far away from equilibrium

 v_0 = initial rate of reaction (initial velocities)

Reaction order

The number of molecules that react in the rate determining step (slowest step)

 $\textbf{first-order reaction} \ \ rate = k[S], \ rate \propto [S]$

zero-order reaction reaction rate is not proportional to [S], observed when [S] >>> [E] on the flat line

$$rate = k_{cat}$$

second-order reaction reaction rate $\propto [S]_1$ and $[S]_2$

pyruvate +
$$HCO_3^- \rightarrow oxaloacetate$$

$$rate = k[S]_1[S]_2$$

pseudo first-order reaction reaction rate $\propto [S]_1$ only (the independent substrate is present in excess amounts)

pyruvate +
$$HCO_3^-$$
 (excess) \rightarrow oxaloacetate

$$rate = k[S]_1$$

Michaelis-Menten kinetics

- Simplest, but very useful model
- Requires collection of initial velocity data
- Can be applied to study enzyme kinetics providing..
 - 1st or pseudo 1st order
 - hyperbolic
- Based upon the reaction $E + S \rightleftharpoons ES \rightarrow E + P$ or binding \rightleftharpoons processing
- Michaelis-Menten complex = K_m = enzyme-substrate complex (ES)
- Looking only at initial velocities (no k₋2)
- Assumptions:
 - Minimal amount of enzyme [E] <<< [S]
 - No product (<10%) and the forward reaction predominates, $\mathrm{V}=\mathrm{V}_0$
 - $k_{-1} >> k_2 \; (ES \rightarrow E + S \; is much faster than <math display="inline">ES \rightarrow E + P)$
 - Steady state condition ([ES] will not change)

The Michaelis-Menten equation

$$v_0 = \frac{V_{max}[S]}{[S] + K_m} \tag{2}$$

where:

- v_0 = initial velocity
- \bullet V_{max} = maximum velocity, line approaches this value asymptotically
- [S] = substrate concentration
- K_m = Michaelis constant (the substrate concentration at which the reaction rate is half of V_{max})

Extracting K_m and V_{max} values

Linear plots:

- The Lineweaver-Burke Double Reciprocal Plot
- Woolf-Hofstee Plot
- Hanes-Woolf Plot
- Eadie-Scatchrd Plot

Deriving the Lineweaver-Burk relationship:

$$v_0 = \frac{V_{max}[S]}{[S] + K_m}$$

$$\frac{1}{v_0} = \frac{[S] + K_m}{V_{max}[S]}$$

$$\frac{1}{v_0} = \frac{K_m}{V_{max}} \left(\frac{1}{[S]}\right) + \frac{1}{V_{max}}$$

Slope: K_m/V_{max}

x-int: $\frac{-1}{K_m}$

The Michaelis constant, K_m

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

 \mathbf{k}_2 is negligible. Cancel and rearrange to get:

$$K_m = \frac{k_{-1}}{k_1} = \frac{[E][S]}{[ES]}$$

Units: M

Small value = tighter binding (high affinity)

Large value = weaker binding (low affinity)

The constant value depends on

- enzyme type
- substrate
- reaction conditions (pH, temperature, ionic strength)

 \mathbf{K}_m is an approximation of substrate affinity, provided $\mathbf{k}_2 <<< \mathbf{k}_{-1}.$

\mathbf{V}_{max}

A value that depends on enzyme properties

Has units: amount/time

Turnover number, k_{cat} , k_2

$$k_{cat} = \frac{V_{max}}{[E]_T}$$

units: s^{-1}

The specificity constant

A useful term to describe enzyme-substrate systems

Quantitative term to assess **catalytic efficiency** (how efficiently an enzyme econverts substrate to product

 ${\rm Specificity\ constant} = \frac{k_{cat}}{K_m}\ ({\rm rate\ of\ processing/binding\ of\ S})$

Units: $M^{-1}s^{-1}$

$$\frac{k_{cat}}{K_m} = \frac{\text{higher rate}}{\text{higher affinity}} = \frac{k_{cat} \text{ is bigger}}{K_m \text{ is smaller}}$$

Dual nature of the Michaelis-Menten equation

Combination of 0-order and 1st-order kinetics

The Michaelis Menten equation describes a hyperbolic dependence on [S]

Low-substrate concentration: $v = \frac{k_{cat}}{K_m}$

High-substrate concentration: $v = k_{cat}$