Grid Computing

THANKS TO ALL THE SOURCES FROM WHICH THESE SLIDES ARE PREPARED.

THANK YOU VERY MUCH!

2100

S

Administrative Barriers

- Individual
- •Group
- Department
- Campus
- State
- National
- Globe

DEVICES/SYSTEMS

Personal Device

SMPs or SuperComputers Local Cluster Enterprise Cluster/Grid

Global Grid

Grid Computing

- The term Grid comes from an analogy to the Electric Grid
- Grid Computing Is a form of distributed computing
- Execution of large-scale resource intensive applications
- On geographically distributed systems (computing resources).

Formal Definition of Grids

- A grid is a system that:
 - Coordinates resource sharing in a de-centralized manner (i.e., different VOs).
 - Uses standard, open, general purpose protocols and interfaces.
 - Delivers non-trivial qualities of service.
 - Guaranteed bandwidth for application.
 - Guaranteed CPU cycles.
 - Guaranteed latency.

Grid Computing

- Motivation: high performance, improving resources utilization
- Aims to create illusion of a simple, yet powerful computer out of a large number of heterogeneous systems
- Tasks are submitted and distributed on nodes in the grid

Elements of Grid Computing

- Resource sharing
 - Computers, data, storage, sensors, networks, ...
 - Sharing always conditional: issues of trust, policy, negotiation, payment,
 ...
- Coordinated problem solving
 - Beyond client-server: distributed data analysis, computation, collaboration, ...
- Dynamic, multi-institutional virtual organizations
 - Community overlays on classic org structures
 - Large or small, static or dynamic

Grid Components and Services

- Communications
- Authentication and Authorization
- Naming Services and local transparency
- Distributed File System
- Resource Management
- Fault Tolerance
- Graphical User Interface

Grid working

- User submits a job requiring high computation from a low end Work Station
- A server collects requests from similar users and schedules them based on
 - Existing types of resources
 - Their capabilities
 - Current work load
- Submitted jobs are run on the selected computer nodes and results combined later

Grid Architecture

Basic Grid Protocol Architecture

Grid Middleware

- Grids are typically managed by grid ware a special type of middleware that enable sharing and manage grid components based on user requirements and resource attributes (e.g., capacity, performance)
- Software that connects other software components or applications to provide the following functions:
 - Run applications on suitable available resources
 - Brokering, Scheduling
 - Provide uniform, high-level access to resources
 - Semantic interfaces
 - Web Services, Service Oriented Architectures
 - Address inter-domain issues of security, policy, etc.
 - Federated Identities
 - Provide application-level status monitoring and control

Grid Middleware

- Major functions are:
 - Optimizing use of widely dispersed resources
 - Organizing efficient access to scientific data
 - Authenticating users accessing the resources
 - Arranging interfaces to local site authorization

Grid Systems

Data Grid vs. Computing Grid

- Data Grid:
 - distributed data storage
 - controlled sharing and management of large amounts of distributed data.
- Computing Grid:
 - Parallel execution
 - divide pieces of a program among several computers

• Data Grid + Computing Grid

Grid Computing

Data Grid

- A data grid is a grid computing system that deals with data—
 the controlled sharing and management of large amounts of
 distributed data.
- Large datasets can be stored in repositories
- Data grid provide services to distributed data-intensive applications
 - Data replication
 - Data invalidation
 - Data backup
 - Distributed transactions
 - Data affinity/partitioning

Example:

Biomedical informatics Research Network (BIRN), the Southern California earthquake Center (SCEC).

Computational Grid

- "A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities."
- Example: Science Grid (US Department of Energy)
- Characteristics:
 - Made up of clusters of clusters
 - Enable CPU scavenging for better resource utilization
 - provide computational power for compute-intensive jobs
 - Provide instant access on demand

Benefits of Grid Computing

- Exploit Underutilized resources
- Resource load Balancing
- Virtualize resources across an enterprise
 - Data Grids, Compute Grids
- Enable collaboration for virtual organizations

Grid Computing Applications

- Distributed computing
- High Throughput
- On-demand
- Data-intensive
- Collaborative

Variety of grid computing applications

Examples

Science Today is a Team Sport!!

I. Foster

TeraGrid is an Important Project developed by the National Science Foundation (NSF).

TeraGrid

UK e-Science Grid

Online Access to Scientific Instruments

Advanced Photon Source

wide-area dissemination

> desktop & VR clients archival with shared controls storage

real-time collection

tomographic reconstruction

DOE X-ray grand challenge: ANL, USC/ISI, NIST, U.Chicago

NSF Network for Earthquake Engineering Simulation (NEES)

Transform our ability to carry out research vital to reducing vulnerability to catastrophic earthquakes

DOE Earth System Grid

Goal: address technical obstacles to the sharing & analysis of high-volume data from advanced earth system models

Simulation tools

- GridSim job scheduling
- SimGrid single client multiserver scheduling
- Bricks scheduling
- GangSim- Ganglia VO
- OptoSim Data Grid Simulations
- G3S Grid Security services Simulator security services

Middlewares

- Globus –chicago Univ
- Condor Wisconsin Univ High throughput computing
- Legion Virginia Univ virtual workspacescollaborative computing
- IBP Internet back pane Tennesse Univ logistical networking
- NetSolve solving scientific problems in heterogeneous env – high throughput & data intensive

Standards Bodies

The primary standards-setting body is 1:

- Global Grid Forum (GGF)
 - Started in 1998
 - Meets three times a year, GGF1, GGF2, GGF3
 - More than 40 organizations involved and growing ...

Others:

- W3C consortium (Worlds Wide Web Consortium)
 - Working on standardization of web-related technologies such as XML
 - See http://www.w3.org
- OASIS (Organization for the Advancement of Structured Information Standards)
- IETF, DMTF

¹ "The Grid Core Technologies" by M. Li and M. Baker, 2005, page 4.

Standards in the Web Services World

- XML introduced (ratified) in 1998
- SOAP ratified in 2000
- Web services developed
- Subsequently, standards have been are continuing to be developed:
 - WSDL
 - WS-* where * refers to names of one of many standards

Standards in the grid computing world

- Open Grid Services Architecture (OGSA)
- First announced at GGF4 in Feb 2002
- OGSA does not give details of implementation.