

FACULTY OF ARTS DEPARTMENT OF PHILOSOPHY

PHIL 379 — "Logic II" Winter Term 2016

Course Outline

Lectures: TuTh 12:30–13:45, Professional Faculties 118

Instructor: Richard Zach

Office: Social Sciences 1248A
Email: rzach@ucalgary.ca
Phone: (403) 220-3170

Office Hours: Tu 2–3, Th 11–12, or by appointment

Course Description

Formal logic has many applications both within philosophy and outside (especially in mathematics, computer science, and linguistics). This second course will introduce you to the concepts, results, and methods of formal logic necessary to understand and appreciate these applications as well as the limitations of formal logic. It will be mathematical in that you will be required to master abstract formal concepts and to prove theorems *about* logic (not just *in* logic the way you did in Phil 279); but it does not presuppose any (advanced) knowledge of mathematics. We will start from the basics.

We will begin by studying some basic formal concepts: sets, relations, and functions, and the sizes of infinite sets. We will then consider the language, semantics, and proof theory of first-order logic (FOL), and ways in which we can use first-order logic to formalize facts and reasoning abouts some domains of interest to philosophers, computer scientists, and logicians.

In the second part of the course, we will begin to investigate the meta-theory of first-order logic. We will concentrate on a few central results: the completeness theorem, which relates the proof theory and semantics of first-order logic, and the compactness theorem and Löwenheim-Skolem theorems, which concern the existence and size of first-order structures.

In the third part of the course, we will discuss a particular way of making precise what it means for a function to be computable. To this end, we will discuss a "model of computation": Turing machines. We will show that there are problems which are *undecidable* in the sense that there is no Turing machine which, in a finite amount of time, provides a definite yes-or-no answer. The first example of an undecidable problem is the *halting problem*, i.e., the problem

of deciding, given the description of a Turing machine, whether it halts on a given input. We will also show that the *decision problem*—i.e., the problem of deciding, given a sentence of first-order logic, whether it is valid—is undecidable.

If there is time, we will cover some advanced topics at the end of the semester, such as second-order logic or solvable cases of the decision problem.

WARNING: This is a course in *metalogic*. It builds upon the material in Logic I (Phil 279/377), but is very different in character. Doing well in Phil 279 is no guarantee that this will come easy to you.

Some of the material we will be covering is discussed in your 279/377 text—if you used *The Logic Book*, review chapters 8 and 11; in Chellas' *Elementary Formal Logic*, review chapters 7 and 9 and the appendices; in *Language*, *Proof and Logic*, review chapters 15, 16, 18.1–18.3; in *Formal Logic: Its Scope and Limits*, sections 2.7–2.10, 3.13–3.15, 4.13–4.15.

Prerequisites and Preparation

Logic I (PHIL 279) or Elementary Formal Logic (PHIL 377) is a prerequisite for this course.

Required Text

The Open Logic Project, Sets, Logic, Computation.

Peer Assisted Study Sessions

This course is supported by the PASS (Peer Assisted Study Sessions) program. PASS provides students with free, organized study groups facilitated by a student who has been successful in the course before. Attending PASS can help you build your understanding of course content as well as learn valuable study skills which will help you to succeed in the course. You will meet your PASS leader and receive more information in the first weeks of classes.

Evaluation

Six problem sets (60%, 10% each), three in-class quizzes (30%, 10% each), and participation (10%). The first two quizzes are 30 minutes each; the last one is 75 minutes and will be cumulative. Quizzes are closed-book. There will not be a registrar-scheduled final exam.

You must submit all six problem sets, complete all three quizzes, and receive a D or better on the final quiz to receive a D or better in the course.

For each answer to a question in a problem set or quiz you will receive a letter grade (possibly with +'s or -'s) reflecting the level of mastery of the material shown by the work you submit. The grading rubric is given below:

- A Excellent—superior performance, showing comprehensive understanding of subject matter. (Your solution to an assigned problem shows that you understand the problem and how to solve it; the solution is complete and rigorously correct, it is reasonably direct and elegant, and you have presented it clearly with all necessary information given.)
- **B** Good—clearly above average performance with knowledge of subject matter generally complete. (Your solution shows that you understand the problem, but your solution is

- not perfect. There may be gaps in your proof, the solution is correct but circuitous, your presentation of the solution is not perfectly clear, or you left out pertinent definitions.)
- C Satisfactory—basic understanding of the subject matter. (Your answer shows that you understand what the question is asking but does not provide a correct solution; your proof contains significant errors or gaps.)
- **D** Minimal pass—marginal performance. (You show some knowledge of what is asked, but your answer shows significant gaps in understanding; your answer does not come close to a solution; your expossition is unclear.)
- **F** Fail—Unsatisfactory performance. (It is not clear that you understand what the question is asking, your proposed solution is fundamentally mistaken, or you've only reformulated the question without giving an answer.)

In computing your final grade, your marks will be converted to grade points (A = 4, B = 3, C = 2, D = 1, F = 0, with +/- adding/subtracting 0.3), and averaged according to the weights given above. The final mark is the letter grade corresponding to this average plus a margin of 0.1 (i.e., an average of 3.9 earns an A, an average of 3.6 an A-, etc.).

Participation will be evaluated based on your contribution to in-class and on-line discussions and in-class group work. Five substantive, serious posts over the course of the term on the online discussion board will earn you an A for participation.

Assignments and Policies

Submitting assignments. Problem sets are due Thursdays at 12:30 (i.e., at the beginning of class). You may submit problem sets electronically in D2L, in class, or in the Phil 379 dropbox in the corridor outside SS 1253 in the Philosophy Department.

Late work. Late submissions of problem sets will be penalized by the equivalent of one grade point per calendar day.

There will be no extensions and no make-up quizzes under normal circumstances (i.e., unless you can document an illness or other emergency which prevents you from taking the quiz or submitting the assignment).

Collaboration. Collaboration on problem sets is encouraged. However, you must write up your own solutions, and obviously you must not simply copy someone else's solutions. You are also required to list the names of the students with whom you've collaborated on the problem set. If you collaborate without following these instructions, it constitutes cheating.

Plagiarism. You might think that it's only plagiarism if you copy a term paper off the internet. However, you can also plagiarize in a logic course, e.g., by copying a proof verbatim from the textbook (and only making the necessary changes to apply it to the assigned problem.)

The point of logic problems which are similar to the proofs in the text is to make you work through those proofs, understand them, and then prove a similar result on the problem sets. Hence, all solutions must be in your own words; copying or paraphrasing closely from the text will be treated as plagiarism and results in a failing grade in the course, and a report to the Dean's office.

Checking your grades and reappraisals of work. University policies for reappraisal of term work and final grades apply (see the Calendar section "Reappraisal of Grades and Academic Appeals"). In particular, term work (homework assignments, midterms) will only be reappraised within 15 days of the date you are advised of your marks. Please keep track of your assignments (make sure to pick them up in lecture or in office hours) and your marks (check them on D2L) and compare them with the graded work returned to you.

Course Website

A course website on U of C's D₂L server has been set up. You will be automatically registered if you're registered in the class. To access the D₂L, you can either go directly to d₂l.ucalgary.ca and log in with your UCIT account name and password, or you can access it through the myUofC portal at my.ucalgary.ca.

Tentative Schedule of Topics and Due Dates

- Week 1 (Jan 12, 14). Introduction. Sets and Relations.
- **Week 2** (Jan 19, 21). Functions. Enumerability. Problem set #1 due Jan 21.
- Week 3 (Jan 26, 28). Sizes of sets. Syntax of first-order logic.
- Week 4 (Feb 2, 4). Semantics of first-order logic. Structures. Theories. Problem set #2 due Feb 4.
- Week 5 (Feb 9, 11). Natural deduction.

 Quiz #1 on Feb 11.
- Week 6 (Feb 23, 25). Proofs. The soundness theorem. Problem set #3 due Feb 25.
- Week 7 (Mar 1, 3). The completeness theorem.
- **Week 8** (Mar 8, 10). Compactness and Löwenheim-Skolem theorems. Problem set #4 due March 10.
- Week 9 (Mar 15, 17). Turing machines.

 Quiz #2 on Mar 17.
- Week 10 (Mar 22, 24). Computable functions. The halting problem. Problem set #5 due March 24.
- Week 11 (Mar 29, 31). The decision problem.
- **Week 12** (Apr 5, 7). Applications. Further topics. Problem set #6 due April 7.
- Week 13 (Apr 12). Quiz #3.

Academic Honesty

Cheating or plagiarism on any assignment or examination is regarded as an extremely serious academic office, the penalty for which may be an F on the assignment, an F in the course, academic probation, or requirement to withdraw from the University. See the relevant sections on 'Academic Misconduct' in the current University Calendar. Intellectual honesty requires that your work include adequate referencing to sources. Plagiarism occurs when you do not acknowledge or correctly reference your sources. If you have questions about correct referencing, consult your instructor.

Academic Accommodation

Students seeking an accommodation based on disability or medical concerns should contact Student Accessibility Services; SAS will process the request and issue letters of accommodation to instructors. For additional information on support services and accommodations for students with disabilities, visit ucalgary.ca/access.

Students who require an accommodation in relation to their coursework based on a protected ground other than disability should communicate this need in writing to their instructor. The full policy on student accommodations is available at ucalgary.ca/access/accommodations/policy.

D₂L Help

Desire2Learn is the University of Calgary's online learning management system. For help, go to ucalgary.ca/it/services/d2l.

Student Advising and Information Resources

- General Academic Concerns and Program Planning—Have a question but not sure where to start? The Arts Students' Centre is your information resource for everything in Arts. Drop in at SS 102, call 403-220-3580, or email artsads@ucalgary.ca. You can also visit the Faculty of Arts website for detailed information on common academic concerns.
- Advice on Philosophy Courses—You may find answers to your more specific questions about a philosophy degree on the Department of Philosophy's website or contact one of Philosophy's current Undergraduate Advisors (see below).
- Registration Overload/Prereq Waivers—If you are seeking to register in a Philosophy course that is full or to get permission to waive the prereqs for a course, email the instructor of the course.

Protection of Privacy

The University of Calgary is under the jurisdiction of the provincial Freedom of Information and Protection of Privacy (FOIP) Act. The Department of Philosophy ensures the student's right to privacy by requiring all graded assignments be returned to the student directly from the instructor or teaching assistant.

Safewalk

Call 403-220-5333 (24/7/365) for a Safewalk volunteer to accompany you safely to your destination on campus including parking lots, housing, and the LRT station or use a Campus Help Phone.

Philosophy Department

The Department of Philosophy is located on the 12th floor of the Social Sciences Building and on the web at phil.ucalgary.ca. Philosophy Undergraduate Program Advisors for Fall 2013:

Jeremy Fantl (Undergraduate Director), jfantl@ucalgary.ca

Chris Framarin, chris.framarin@ucalgary.ca

Mark Migotti (Honours Program Advisor), migotti@ucalgary.ca

For assistance with registration issues in Philosophy courses, contact Merlette Schnell (schnell@ucalgary.ca).