Группа Р3110 К работе допущен

Студент: Романов Артём. Работа выполнена

Преподаватель: Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

Исследование распределения случайной величины

- 1. Цель работы.
 - 1) Провести многократные измерения определенного интервала времени.
 - 2) Построить гистограмму распределения результатов измерения.
 - 3) Вычислить среднее значение и дисперсию полученной выборки.
 - 4) Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Получение выборки для дискретной случайной величины.
 - 2) Исследование закона распределения случайной величины.
 - 3) Построение гистограммы отображающей зависимость $\frac{\Delta N}{N\Delta t}$ от t.
- 3. Объект исследования.

Случайная величина

- 4. Метод экспериментального исследования.
 - 1) Многократные прямые измерения.
 - 2) Косвенные измерения.
- 5. Рабочие формулы и исходные данные.

t = 5 c, - выбранный промежуток времени N = 50, - полное количество измерений

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

$$t \in \left[\langle t \rangle - \sigma, \langle t \rangle + \sigma\right], \quad P_{\sigma} \approx 0,683$$

$$t \in \left[\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma\right], \quad P_{2\sigma} \approx 0,954$$

$$t \in \left[\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma\right], \quad P_{3\sigma} \approx 0,997$$

$$\rho\left(t\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

$$\langle t \rangle_N = \frac{1}{N} \left(t_1 + t_2 + \dots + t_N\right) = \frac{1}{N} \sum_{i=1}^N t_i,$$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N \left(t_i - \langle t \rangle_N\right)^2}.$$

$$\rho_{\max} = \frac{1}{\sigma\sqrt{2\pi}}.$$
5)
$$\sigma_{(t)} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle},$$
7)
$$\alpha = P\left(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]\right).$$
8)

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	секундомер		До 99.99	±0.1секунды
2	Часы с секундной стрелкой			От +40 до -20 с. В сутки

7. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

No	t_i, c	$t_i - \langle t angle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
2	4,07	-0,9674	0,93586276
3	4,13	-0,9074	0,82337476
1	4,27	-0,7674	0,58890276
4	4,34	-0,6974	0,48636676
5	4,53	-0,5074	0,25745476
6	4,6	-0,4374	0,19131876
7	4,76	-0,2774	0,07695076
8	4,81	-0,2274	0,05171076
9	4,81	-0,2274	0,05171076
10	4,87	-0,1674	0,02802276
11	4,87	-0,1674	0,02802276
12	4,87	-0,1674	0,02802276
13	4,88	-0,1574	0,02477476
14	4,94	-0,0974	0,00948676
15	4,94	-0,0974	0,00948676
16	4,94	-0,0974	0,00948676

17	4,95	-0,0874	0,00763876
18	4,95	-0,0874	0,00763876
19	5	-0,0374	0,00139876
20	5,01	-0,0274	0,00075076
21	5,01	-0,0274	0,00075076
22	5,02	-0,0174	0,00030276
23	5,02	-0,0174	0,00030276
24	5,06	0,0226	0,00051076
25	5,07	0,0326	0,00106276
26	5,08	0,0426	0,00181476
27	5,08	0,0426	0,00181476
28	5,14	0,1026	0,01052676
29	5,14	0,1026	0,01052676
30	5,14	0,1026	0,01052676
31	5,14	0,1026	0,01052676
32	5,15	0,1126	0,01267876
33	5,19	0,1526	0,02328676
34	5,2	0,1626	0,02643876
35	5,2	0,1626	0,02643876
36	5,21	0,1726	0,02979076
37	5,26	0,2226	0,04955076
38	5,28	0,2426	0,05885476
39	5,28	0,2426	0,05885476
40	5,32	0,2826	0,07986276
41	5,32	0,2826	0,07986276
42	5,35	0,3126	0,09771876
43	5,35	0,3126	0,09771876
44	5,4	0,3626	0,13147876
45	5,4	0,3626	0,13147876
46	5,41	0,3726	0,13883076
47	5,41	0,3726	0,13883076
48	5,49	0,4526	0,20484676
49	5,53	0,4926	0,24265476
50	5,68	0,6426	0,41293476
		$\sum_{i=1}^{N} (i + i + i + i + i + i + i + i + i + i $	
	$\langle t \rangle_N = 5.0374c$	$\sum (t_i - \langle t \rangle_N) = 0,1948c$	$\sigma = 0.2412c$
	$(\iota)_N = 5.05/40$	i=1	$\sigma_N = 0.3413c$
			$ \rho_{max} = 1,168c^{-1} $

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Данные для построения гистограммы

Границы	ΔN	$rac{\Delta N}{N\Delta t}, c^{-1}$	t, c	ρ , c^{-1}
интервалов				
4,07				
4,3	3	0,26	4,13	0,47415694
4,3				
4,53	2	0,17	4,34	1,16616993
4,53				
4,76	3	0,26	4,6	0,42952649
4,76				
4,99	12	1,04	4,87	1,16616993
4,99				
5,22	18	1,56	5,08	0,37734979
5,22				
5,45	11	0,95	5,35	1,16616993
5,45				
5,68	3	0,26	5,53	0,32712555

Таблица 1; столбец t_i:

- Наименьший промежуток из результатов измерение t_{min} = 4,07
- Наибольший промежуток из результатов измерений t_{max} = 5,68

Следовательно, у нас есть промежуток [4,07 ; 5,68]. Разбиваем данный промежуток на m = 8 равных частей.

Вычислим
$$\Delta t = \frac{tmax - tmin}{m} = \frac{5,68 - 4,07}{8} = 0.2$$

Посчитаем количество результатов измерений, попавших в каждый промежуток, и занесём полученные значения в Таблицу.

Вычислим опытное значение плотности вероятности:

$$\frac{\Delta N_1}{N\Delta t} = \frac{2}{50*0.2} = 0.2 \ c^{-1}$$

Вычислим выборочное значение среднего:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^{N} t_i = \frac{251,87}{50} = 5,0374$$

Вычислим выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0.3413 \text{ c. c}$$

Вычислим максимальное значение плотности распределения:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}} = 1.1688 \text{ c}^{-1}$$

Вычисляем значения плотности распределения $\rho(t)$ для значений t из таблицы 2, столбец 4. Используя параметры $\langle t \rangle_N$ и σ_N в качестве $\langle t \rangle$ и σ .

$$\rho(t_1) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(t_1 - \langle t \rangle\right)^2}{2\sigma^2}\right) = 1,1688 * \exp\left(-\frac{(4,13 - 5,0374)^2}{0,06}\right) = 0,4741$$

Из значений плотности вероятности строим гистограмму, а также строим график по расчётным точкам плотности распределения

Стандартные доверительные интервалы

	Интервал, с		ΔN	$\frac{\Delta N}{N}$	P
	От	До		1 V	
$\langle t \rangle_N \pm \sigma_N$	4,6961	5,3787	37	0,74	0.6798
$\langle t \rangle_N \pm 2\sigma_N$	4,3548	5,72	46	0,92	0.9524
$\langle t \rangle_N \pm 3\sigma_N$	4,0135	6,0613	50	1	0.9936

- 9. Расчет погрешностей измерений (*для прямых и косвенных измерений*). Для прямых:
 - 1. Абсолютная

$$\Delta_x = \bar{x} - x_{\text{hct}} = 5,68-5 = 0,68$$

 $\Delta_x = \bar{x} - x_{\text{hct}} = 4,07-5 = (-0,97)$

2. Относительная

$$\varepsilon_{x} = \frac{\Delta_{x}}{x_{\text{HCT}}} = \frac{0.68}{5} = 0.136$$

$$\varepsilon_x = \frac{\Delta_x}{x_{MCT}} = \frac{-0.97}{5} = -0.194$$

10. Графики (перечень графиков, которые составляют Приложение 2).

11. Вывод и анализ результатов работы:

В данной лабораторной работе мне было необходимо получить выборочную совокупность для дискретной случайной величины и исследовать закон распределения этой случайной величины.

В качестве исследуемой случайной величины был выбран результат измерения заданного промежутка времени $t=5\ c.$

Я построил гистограмму распределения результатов измерения, затем вычислил среднее значение и дисперсию полученной выборки. Сравнил гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией. Проанализировав все сделанные мною вычисления, можно выделить такие пункты:

- Соотношения между вероятностями и долями $\frac{\Delta N_{\sigma}}{N}$, $\frac{\Delta N_{2\sigma}}{N}$, ... достаточно точны
- Количество ΔN измерений и отношение $\frac{\Delta N}{N}$ соответствуют нормальному распределению значениями P вероятности.
- Среднеквадратичное отклонение среднего значения незначительно.
- 12. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).