Survival Analysis with Apache Spark and Apache SystemML on Stackexchange

Mateo Álvarez Calvo

August 2, 2017

Contents

1	Intro	oduction & main goals
	1.1	Main technologies
		1.1.1 Survival Analysis
		1.1.2 Apache Spark
		1.1.3 Apache SystemML
	1.2	The Stackexchange data
		1.2.1 Scifi community
		1.2.2 Votes.xml
		1.2.3 Tags.xml
		1.2.4 Users.xml
		1.2.5 PostLinks.xml
		1.2.6 Posts.xml
		1.2.7 PostHistory.xml
		1.2.8 Comments.xml
		1.2.9 Badges.xml
	1.3	Main Objectives
0	m 1	1.
2		nologies 12 Apache Spark
	2.1	1 1
		1 1
		2.1.2 Apache Spark Structure 16 2.1.3 Spark Streaming 18
		2.1.4 Apache Spark workflow
	2.2	Apache SystemML
	2.2	2.2.1 SystemML Structure
	2.3	Reproducible research with Python, Scala and Jupyter
	2.5	2.3.1 Environment setup
		2.6.1 Environment Setup
3		astructure and resources 20
	3.1	Architecture scheme
	3.2	Configuration
	3.3	Workflow
		3.3.1 Data cleaning
4	Resi	ults 21
_	4.1	Survival Analysis
	4.2	Used data
		4.2.1 Data censoring and truncation
		4.2.2 Data structure
		4.2.3 SystemML input format
	4.3	Kaplan-Meier Estimator model
	4.4	Cox Proportional Hazards Model

5	Con	clusions	25
	5.1	Most important results	25
	5.2	Lessons learnt	25

1 1 1	_	- ·
List	O†	Figures
	-	0

List of Tables

1	List of files from the compressed Scifi folder	9
2	Votes table	9
3	Tags table	10
4	Users table	10
5	Post links table	11
6	Posts table	12
7	Post history table	13
8	Comments table	13
9	Comments table	13
10	Technologies and versions used	19

1 Introduction & main goals

Many studies have been done over the Stackexchange community [Mamykina, Manoim et al 2011], one of the biggest Q&A sites in the world. The present is yet another study over the data of the famous site, but in this case, the study has two particularities, the use of Apache Spark with the library of Apache SystemML for the processing in a parallel environment, and the use of Survival Analysis to analyze the impact of the variables in the time an answer is accepted for each question, the "survival of each question" in the community.

1.1 Main technologies

As one of the biggest Q&A communities, Stackexchange has large amount of data of each interaction. Stackexchange is separated in several communities, regarding different topics. These communities can be small, as DevOps and InternetOfThings or really big, as AskUbuntu and Stackoverflow, the main developers community. This particularity makes necessary the use of technologies prepared to process large amounts of data, in the later case.

The purpose of the present study is to analyze a medium size community, so a distributed processing technology has to be used. For this purpose, Apache Spark, the latest distributed open-source processing technology, has been chosen to parallelize the operations on the data.

Spark ML is the machine learning library of spark, which contains the ML algorithms. Although it includes some Survival Analysis algorithms, all of them are parametric models, which require to specify a hazard function shape in order to be used. This rests flexibility to the models, and for this study the hazard function is not known, so it is wise to start exploring the data with a non-parametric model, KM estimates, for example, and then apply some semi-parametric model, in this case Cox Proportional Hazards model. The absence of non or semi parametric models in Spark ML gives an excuse to use SystemML, a machine learning library developed by IBM and recently adopted as an Apache Foundation project, which has non, semi and parametric algorithms for survival analysis, and is compatible with distributed processing frameworks as Spark or Hadoop.

Regarding the development environment, Jupyter Notebook provides a simple and flexible interface for this analysis, and can also be integrated with Spark, allowing the complete development in just one environment.

1.1.1 Survival Analysis

Survival Analysis is a group of ML models used to predict the time passed until the occurrence of an event. Is a method widely used, specially in the medical and pharmaceutical environments, where the prediction of time until an event is frequently used.

In this case, the objective of using these techniques is to understand the behavior of the variables with the time and to predict when will a posted question be answered. This idea has multiple uses, such as optimizations of the questions themselves, hour of the day, tags added, reputation of the user... or using for example StackOverflow as technical support for problems with software instead of paying the provider's technical support service.

1.1.2 Apache Spark

Apache Spark is a distributed processing technology developed in Scala by Databricks that represents the next step of Apache Hadoop. It includes the best parts of it, such as the Hadoop File System, but under a complete new paradigm that allows operations different from the famous map-reduce, using RAM as storage for results rather than writing to disk, lazy and optimized execution of tasks, and special focus on Machine Learning and SQL-like language, to mention some of the main features.

The use of a distributed processing framework is not strictly necessary in this case, as the community to be analyzed is not that big, but is a good starting point to check the use of SystemML and Spark to make later analysis on a bigger network.

1.1.3 Apache SystemML

Recently included in the Apache Foundation Incubating program, Apache SystemML is a machine learning library that works over distributed frameworks, Spark or Hadoop, written in Java.

This library provides many distributed implementations of commonly used algorithms as well as a sintaxis to create new algorithms in a distributed mode. It provides a high-level declarative machine learning language, which comes in two sintaxis, the R-like sintaxis, DML, and the Python-like sintaxis, Py-DML. These self made algorithms pass through a compilation process and are optimized for a distributed environment.

System ML can be executed in a variety of distributed and non distributed modes, with it's standalone mode, and the integration with Hadoop, and Spark via SystemML context, which allows the interaction through Scala, Python and R.

1.2 The Stackexchange data

Stack Exchange is a network of Q&A websites created in 2009 after the great success of Stack Overflow in 2008, a Q&A community website for computer programming.

Every question and answer, an all the contents of the communities are licensed under a *Creative Commons Attribution-ShareAlike 3.0 Unported*, so the knowledge is free to be shared with others.

Each community covers a different topic, from physics to software, and is structured in a reputation award format, each user's question and answer can be voted positively or negatively. This feature allows the self administration of the communities, which makes posible the existence of the network, as it is so big that an administrator or moderator could not manage. Whenever moderation is needed, for example when there is an argument, there is a specific place on each community to solve these problems, the Meta section, where the users post settle the disputes to be solved by administrators of the site. The reputation system works as gamification, giving users privileges and functionalities when they earn experience points.

All these communities generate large amounts of data that Stackexchange facilitates every once in a while for data scientists and people in general to download and analyze. The data is available in a torrent file and each package has about 35 - 40 GB of compressed information.

This compressed file has data from different communities for a certain period of time. In this case, the analysis is done over the Scifi community, which is a median size community for science-fiction Q&A.

1.2.1 Scifi community

Scifi is a community in Stack Exchange that focuses on science fiction and fantasy. This community was selected because it has a medium size which is perfect to test the mentioned technologies in a reasonable period of time. Selecting just the data from Scifi community from the big compressed file, it weights around 110 MB in a 7z compressed format. This allows the computation on a local machine for experimentation and then scale the problem to a bigger community such as *Ask Ubuntu* or *Stack Overflow* when the process is refined and it can be launched remotely in a cluster. The data is divided in 8 files, and has the same structure for every community:

Further details about the relational database structure is explained below, the objective is to show the variables obtained from the dataset so that the later variable selection is understood.

File	Description	Size
Votes.xml	Voting results for each	84,1 MB
	question and answer	
Tags.xml	Relational table for tags	169 KB
	on each question	
Users.xml	Users on the net	16,7 MB
PostLinks.xml	links to posts	1,5 MB
Posts.xml	List of all questions	137,3 MB
PostHistory.xml	All interactions of each	268,6 MB
	post	
Comments.xml	List of all comments of	66,3 MB
	each post	
Badges.xml	All users' badges	16,1 MB

Table 1: List of files from the compressed Scifi folder

1.2.2 Votes.xml

This file contains information about votes of the users to each question. The file has the following structure:

Feature	Data type	Description
Id	Integer	Unique vote identifier
PostId	Integer	Foreign key that indicates
		the post that was voted
VoteTypeId	Integer	Type of vote, 1 for Down-
		vote and 2 for Upvote
CreationDate	Timestamp YYYY-MM-DDTHH:MM:SS.dScSmS	Time of votation

Table 2: Votes table

1.2.3 Tags.xml

This file contains all tags and the posts that contains them. The file has the following structure:

Feature	Data type	Description
Id	Integer	Unique tag identifier
TagName	Text	Name of the tag
Count	Integer	Number of times used
ExcerptPostId	Integer	
WikiPostId	Integer	

Table 3: Tags table

1.2.4 Users.xml

This file contains information about users. The file has the following structure:

Feature	Data type	Description
Id	Integer	Unique user identifier
Reputation	Integer	Reputation level of the user
CreationDate	Timestamp YYYY-MM-	User creation date
	DDTHH:MM:SS.dScSmS	
DisplayName	Text	Alias to display on question
LastAccessDate	Timestamp YYYY-MM-	Last login date
	DDTHH:MM:SS.dScSmS	
WebsiteUrl	Text	Site where the user signed up
		to
Location	Text	Location of the user
AboutMe	Text	Information user provided
Views	Integer	User views count
UpVotes	Integer	User up votes count
DownVotes	Integer	User down votes count
AccountIf	Integer	Unique user identifier

Table 4: Users table

1.2.5 PostLinks.xml

This file contains information about relation between posts. The file has the following structure:

1.2.6 Posts.xml

This file contains all questions posted along with the accepted answers and other info related to the time and user who posted the question. The file has the following structure:

Feature	Data type	Description
Id	Integer	Unique post links identifier
CreationDate	Timestamp YYYY-MM-	Post links creation date
	DDTHH:MM:SS.dScSmS	
PostId	Integer	Post unique identifier
RelatedPostId	Integer	Unique identifier of the post re-
		lated to the PostId
LinkTypeId	Integer	Type of relation between posts

Table 5: Post links table

1.2.7 PostHistory.xml

This file contains information about the interactions with each post. The file has the following structure:

1.2.8 Comments.xml

This file contains the comments posted for every question created. The file has the following structure:

1.2.9 Badges.xml

This file contains information about the badges the user has obtained.

1.3 Main Objectives

The main objective of this study is to test the scalability and integration of the proposed technologies, Spark, SystemML and Jupyter Notebook in the usecase of Stack Exchange communities, so further data analysis can be performed. This main goal is divided in three major objectives:

- Use Spark to make the data cleaning and create a script for further research on the Stackexchange site.
- Verify SystemML integration with Spark for further research and scalability.
- Use SystemML survival analysis algorithms to analyze Stackexchange's data and obtain conclusions on the main variables affecting the time taken by the community to answer each question.

Feature	Data type	Description
Id	Integer	Unique question identifier
PostTypeId	Integer	Type of post codified as integer
CreationDate	Timestamp YYYY-MM-	Time of question creation in
	DDTHH:MM:SS.dScSmS	extended format
Score	Integer	Question's score, calculated
		from the users' votes
ViewCount	Integer	Count of all visualizations of
		the question
Body	Text	The question itself, in utf8 for-
		mat
OwnerUserId	Integer	Id of the user who posted the
		question
LastEditorUserId	Integer	
LastEditDate	Timestamp YYYY-MM-	Last edition date
	DDTHH:MM:SS.dScSmS	
LastActivityDate	Timestamp YYYY-MM-	Last interaction with the ques-
	DDTHH:MM:SS.dScSmS	tion time
Title	Text	Title of the question
Tags	Text	Tags added to the question
AnswerCount	Integer	Number of answers to the ques-
		tion
CommentCount	Integer	Number of comments to the
		question posted
FavoriteCount	Integer	Number of times the question
		has been added to favorite by
		another user
ClosedDate	Timestamp YYYY-MM-	Time the question has been
	DDTHH:MM:SS.dScSmS	closed
CommunityOwnedDate	Timestamp YYYY-MM-	Time
	DDTHH:MM:SS.dScSmS	

Table 6: Posts table

2 Technologies

The downloaded data from Stackexchange for the analysis weights about 40 GB, which is enough amount to consider distributed processing. Going down to the distributed processing frameworks, Apache Spark was chosen.

Feature	Data type	Description
Id	Integer	Unique interaction identifier
PostHistoryTypeId	Integer	Type of interaction with the
		post ()
PostId	Integer	Unique identifier of the post
		this interaction is related to
RevisionGUID	Text	
CreationDate	Timestamp YYYY-MM-	Time of question creation in
	DDTHH:MM:SS.dScSmS	extended format
UserId	Integer	Unique identifier of the user
		that created the interaction
		with the post
Text	Text	Text the user introduced on
		the interaction

Table 7: Post history table

Feature	Data type	Description
Id	Integer	Unique comment identifier
PostId	Integer	Unique identifier of the post
		this comment is related to
Score	Integer	Total score of the comment
Text	Text	Comment text
CreationDate	Timestamp YYYY-MM-	Time of comment creation in
	DDTHH:MM:SS.dScSmS	extended format
UserId	Integer	Unique identifier of the user
		who posted the comment

Table 8: Comments table

Feature	Data type	Description
Id	Integer	Unique Badge identifier
UserId	Integer	Unique identifier of the user
		who obtained the badge
Name	Text	Name of the badge
Date	Timestamp YYYY-MM-	Time the user obtained the
	DDTHH:MM:SS.dScSmS	badge in extended format
Class	Integer	Type of the badge
TagBased	Boolean	Whether the badge is based on
		a tag or not

Table 9: Comments table

2.1 Apache Spark

Apache Spark is a fast and general-purpose cluster computing framework, widely used for data processing. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL, a SQL-like language prepared for both SQL and NoSQL databases, MLlib and SparkML for machine learning and pipelines, GraphX for graph processing, and Spark Streaming.

This distributed data processing framework was initially developed at the University of California, Berkeley's AMPLab, and donated to the Apache Software Foundation in February 2014, the first release was on May 30th 2014.

Apache Hadoop presented some limitations that Apache Spark tried to solve:

- It is difficult to write most of the algorithms in a MapReduce form.
- It is very slow to write each iteration to disk, which, for example makes difficult to use Hadoop to process streaming.
- Apache Hadoop's support for iterative jobs and Machine Learning restricts it's use for this task.
- Apache Hadoop's SQL tools doesn't work well on complex queries, sometimes it doesn't work at all and other times it is quite slow as it writes on HDD each iteration.
- Streaming functionality is not supported

Some solutions Apache Spark provides to these problems are:

- Lazy computation, Spark only executes a set of tasks when a result is required. This gives the opportunity to optimize jobs before executing them, even at physical level the queries to the data are optimized.
- In-memory data caching, Spark scans HDD only once to read the input data and then uses RAM as much as it can, which is faster than scanning disk on every step.
- Specific Machine Learning libraries, Spark ML and Spark MLlib, including numerous algorithms prepared to run in a distributed mode.
- Spark SQL provides structured (SQL-like) query language for structured and not structured data in SQL or Dataframe API. One of the advantages of this library is the unified access to datastores with the same language, it even provides SQL functionality with streaming data. Other interesting advantages are at an optimization level, using Dataframe API, Spark can optimize operations and queries to the database, using the *Catalyst* optimizer.
- Spark Streaming library allows users to process streaming data using microbatches

2.1.1 Apache Spark Data Structure

RDDs

Apache Spark started with just one data structure, the RDDs. The RDD responds to Resilient Distributed Dataset, and have the following properties:

- Resilient: an RDD can be computed again in case of failure
- Distributed: the RDD can be partitioned and distributed over nodes, to parallelize the works
- Immutable: an RDD can not be modified, instead, a transformation is applied and other RDD is generated
- Lazy: RDDs represent a result of a series of operations and transformations over data, but it does not trigger any operation
- Statically typed: the values in the RDD are typed

Dataframes

Dataframes are distributed collections structured in named columns, the idea is similar to the R dataframes. Dataframes are part of the Spark SQL API and are built up from RDDs, it is a higher level of data structure, which means that can take advantage of Catalyst to optimize the queries.

Datasets

Datasets are similar to dataframes, but also taking the static typing of the RDDs, combining the best of the two data structures.

This static typing allows datasets to use Tungsten, Spark's optimized memory engine. Tungsten has direct access to off heap memory, to provide even better optimization, and uses data types to minimize the encoding and decoding of the data.

Graphframes

Graphframes are structures used for graph storage and operations. Graphframes are composed by two dataframes, the first one contains all the vertices and the second one contains all the edges. This is useful as dataframes can be optimized by Catalyst.

Catalyst and Tungsten

As mentioned before, Spark has some specific tools to optimize the workflow when using dataframes and datasets.

On one hand, Catalyst is the query optimizer, included in the Spark SQL API. As the execution is not done until an action is called, for example a calculation of a result, Spark can analyze the code and choose the order of operations, which means that, for example, when querying to a database to apply filters, those filters can sometimes, if the database is relational, be applied natively in the database, moreover the sequence of subsequent filters is analyzed in order to reduce the I/O on the database, which can lead to a significant reduction of time and resources, as usually the data available is abundant, but the data used for a process is significantly less. Catalyst works in four phases:

- The *analysis phase* returns a logical plan where all the metadata from the data involved in the operation is known
- The *logical optimization phase* consists on the optimization of the operations performed over the data using ruled-based optimizations
- The *physical planning phase* uses cost-based models to select the best execution plan from the ones available after the logical optimization phase
- The *code generation phase* is the final phase, where Spark compiles parts of the query code to Java bytecode, this speeds up the process as there is no need to use the Scala compiler at runtime to generate bytecode.

On the other hand, Spark has Tungsten

2.1.2 Apache Spark Structure

Spark has a master-slave architecture and supports various resource managers: standalone, Mesos and YARN. The resource manager will only be in charge of identify the resources. Independently of the resource manager chosen, the Apache Spark architecture doesn't change.

All Spark processes share the same architecture, the driver process takes care of calculating the job's parallelism and calculates every job's stage. Each stage is divided on a series of tasks, which will be sent to the executors to be executed. The communication between the Spark application and the resource manager is done through a SparkContext.

Apache Spark is formed by the Spark Core API, available in R, SQL, Python, Scala and Java languages, and built up on it four main libraries: Spark SQL + DataFrames, Spark Streaming, Spark MLlib, Spark ML and GraphX, that complements functionality for Spark, specially on the parts Hadoop failed, Machine Learning, SQL and Streaming.

These libraries can be imported independently and combined to be used at the same time, for example, Spark SQL can be used in a Streaming environment with Spark Streaming library and this way SQL queries can be launched in

Spark Core API

The core API represents the basic structure of Spark, it can be addressed from any of the supported languages, scala, python, R and java. This API has the main functionality of Spark, which includes a set of operations, that includes Map-Reduce, but is not limited to them, as Hadoop is. Regarding the data management, This API contains the RDDs, explained above and the basic operations. [[][]

${\sf Spark} \; {\sf SQL} \; + \; {\sf DataFrames}$

The SQL layer over data is known as Spark SQL. It allows users to use a SQL-like language in Spark programs, to query both structured and not structured databases (SQL & NoSQL), such as Postgres or MongoDB.

The Spark SQL library also provides a main functionality in Spark that is gaining more importance over the time, the Dataframes.

A Dataframe is a data structure introduced in the R programming language that has extended to the Data Science world as one of the most easy to use data structures. Dataframes in Spark are the same concept that in a non-distributed processing framework, but the implementation, as it is for a distributed environment is different, it is built from RDDs with a specific structure.

Spark MLlib + Spark ML

Spark has two main Machine Learning libraries, the first one, Spark MLlib, which is the basic library, that includes the main algorithms and is addressed with RDDs, the second one, Spark ML, which uses Spark MLlib but through DataFrames, and includes further functionality, such as Pipelines, a set of operations performed over data, that allows the user to build sequences of actions over Data Frames.

2.1.3 Spark Streaming

The streaming processing library of Spark

Spark GraphX

GraphX is Spark's graph library

2.1.4 Apache Spark workflow

2.2 Apache SystemML

Developed by IBM, Apache SystemML is the [precursor] of Spark ML (MLLib), the machine learning libraries of Spark. SystemML is coded in a self-made programming language, Distributed Machine Learning (DML) and it can be used from Spark or Hadoop in a [submit-like execution or in a interactive execution, the one it has been used in this study].

SystemML has a high level API which can be addressed from Python-like or R-like sintaxis, and then transformed to the low level DML (Distributed Machine Learning) language.

2.2.1 SystemML Structure

2.3 Reproducible research with Python, Scala and Jupyter

Regarding the selection of the development environment, it was important to use a standardized one so that the analysis could be reproduced by anyone. Jupyter notebook is one of the most commonly used, specially in the education and investigation institutions. Jupyter Notebook is easy to use and configure and it can be easily integrated with Spark. It has interactive interpreters for many languages, including python, ruby, scala, R, etc

To configure the same environment as the one used in this study, some steps have to be followed:

Technology	Version
Jupyter Notebook	4.3.1
Python	3.5
Scala	2.11
Toree kernel	$0.2.0. ext{dev1}$
Spark	2.1
SystemML	0.12.0

Table 10: Technologies and versions used

2.3.1 Environment setup

The versions of the software used for this study are listed below:

The first step is to setup Jupyter Notebook, either running it in a Docker container or installing it directly on the machine. The docker image can be obtained entering the following command in a shell: docker pull jupyter/notebook. Regarding the other option, installing it, the instructions can be found in the following link: http://jupyter.readthedocs.io/en/latest/install

Once Jupyter Notebook is running, the kernels have to be configured. In this study, Scala and Python were used for the data processing, so both kernels were configured. The python kernel is usually configured, as it comes with the IPython kernel installation, if not, follow the guide[[][][][]. To install the scala kernel, several options can be considered, as there are several implementations of the scala kernel. The chosen one was Scala Toree.

Apart from the kernels, some dependencies must be installed to do the data processing in python, those dependencies are:

- apprope==0.1.0
- bokeh==0.12.4
- botocore==1.5.43
- findspark==1.1.0
- ipykernel = 4.5.2
- ipython==5.3.0
- ipython-genutils==0.1.0
- matplotlib==2.0.0
- notebook==4.3.1
- numpy==1.12.0
- pandas==0.19.2

- py4j == 0.10.4
- pyparsing==2.2.0
- python-dateutil==2.6.0
- scipy==0.18.1
- systemml==0.14.0
- toree==0.2.0.dev1
- traitlets==4.3.2

For the python kernel, the SystemML library has to be installed, instructions for the installation can be found in the Apache SystemML's get started documentation: https://systemml.apache.org/systemml.html

3 Infrastructure and resources

As commented before, selecting an environment to be used is the first step, and it is a essential part.

3.1 Architecture scheme

The whole study has been executed in a standalone model, with a MacBookPro Retina 2015. The data was stored in an HDFS

3.2 Configuration

3.3 Workflow

The first step is to clean the data and make the feature selection. One the data is clean, it is used as the input for the models training, both Kaplan-Meier Estimator model and Cox Proportional Hazards Model.

3.3.1 Data cleaning

The data provided by StackOverflow comes in a reasonably clean xml set of files, which were previously described, on section 1.2. From these files, the Scyfy Community directory has been chosen for the analysis. This is divided on the files described above.

As the input format for the survival analysis methods are quite specific, there is some formatting to do joining and combining the tables from the files:

4 Results

4.1 Survival Analysis

Survival analysis is a set of different techniques and algorithms used to estimate the time passed until the occurrence of an event. All of these methods are based on the conditional probability of an event occurring in a certain period of time, usually called *Hazard Rate*. This basic idea can be applied to numerous environments, such as time of failure of a component in the industry, time of occurrence of an event in economics, and others, but the main field of application of these methodologies is the medical, where the time until some event is usually the main point of interest.

The survival analysis techniques provide with important features other regression methods does not. The main difference between other regression models and survival analysis is the importance of the time in which the events take place, which adds information not only on whether the event has occurred or not, but also the moment it happened. This crucial feature makes possible to take into account the data censoring, that will be explained below, on section 4.2.1, and the comparison of survival between different groups, also analyzing the relationship between the covariates and the survival time.

As in every statistic methodology, there are dependent and independent variables, usually called covariates. In this case, the dependent variable is, as mentioned before, the hazard rate, the conditional probability of an event occurring in a certain period of time giving survival up to this point, but the analysis is not only restricted to assess the effect of the covariates in the time to an event, but also the impact of these variables on the hazard rate.

Among the collection of methods included under Survival Analysis, three groups have to be taken into account: non-, semi- and parametric models. This classification responds to the assumption about the shape of the *hazard function*.

The non-parametric models are simple and fast models used for the initial estimate of the hazard rate, usually applied for initial analysis on groups thanks to their simplicity, although they do not accept the inclusion of covariates and only provide the hazard rate as function of the time via probabilistic estimation on the training subjects.

The semi-parametric methods are more flexible and complex, but have an important advantage over the parametric models, which is that they do no require a specified baseline hazard function before application.

Finally there are parametric models, which make an assumption over the form the hazard rate takes, making them less flexible, as the function form is already defined. Among all the survival analysis methods two have special interest:

The first one is the Kaplan-Meier model, which is a simple, Non-parametric model used for simple and fast analysis, and the representation of the survivor curve. This method

in particular, along with the *Life Table* are classic methods useful for a fast but imprecise analysis of the data. Kaplan-Meier's use is more extended although it is more suitable for small samples.

On the other hand, Cox Proportional-hazards regression is a more complex model, introduced in 1972 by Sir David Cox, in the paper *Regression Models and Life Tables*, which is nowadays one of the 100 most important papers in all of science, as it introduces key innovations in the field.

4.2 Used data

The data used for the analysis has already been presented on section 1.2, so the point of view of this section is to present the input data format necessary for the *Survival Analysis* methods and how has the study's data transformed for it.

4.2.1 Data censoring and truncation

Data censoring refers to a situation where some data of the instance is known but some event times are not known, for example when the event occurs after the end of the observation period. Data truncation refers to the lack of information of some variables outside of the time period considered in the study.

There are different situations of data censoring, right, left and interval censoring. Right censoring refers to the situation when the event doesn't occur during the observation period and occurs time after the end of the observation time interval. On the other hand, left censoring occurs when the subjects of the study have already experienced the event when the study starts, but it is not clear exactly when. Interval censoring refers to the case when the event has occurred during the interval but the information about the time it happened is not available.

Truncation is when there is a period of time when there is no information, inside the observation period. There are also three different types of truncations, right and left truncation, and interval truncation, being the most usual left or interval truncation, and the rarest right truncation.

4.2.2 Data structure

As commented before, there is a specific format for the data input in the survival analysis models, this format is briefly explained below.

There are three main structures of data input: single-episode or subject-based, multi-episode based and person or subject-period files, also called discrete-time data files.

Figure 1: Censored and uncensored data

Single-episode data

In single-episode structured files, each row corresponds to a different subject, and the columns represent the variables and the events occurred.

Multi-episode data

Multi-episode file represents a subjects that experiment the event more than one time, and the data from each subject is separated in different rows for each subject, depending on the number of events the subject experiments.

4.2.3 SystemML input format

زنزنزززز The input format for the SystemML library is quite different, it has some particularities such

4.3 Kaplan-Meier Estimator model

Most survival analysis studies start with a non-parametric method as they are simple and fast, and provide with an intuitive graphical form of understanding the data. The two main non-parametric methods, as mentioned before are the Life Tables and the Kaplan-Meier Estimator model. The first is more adequated for large datasets and when the time is not measured with precision. On the other hand, the KM Estimates method is great for when the time is precisely measured, and is widely used, more than the life tables.

The main idea of the KM method is to estimate the survival function at a time 't' $\hat{S}(t)$, which is the probability of a subject surviving until this time 't'. It can be calculated by obtaining the conditional probability of not experiencing the event on time 't', not having experienced it in previous failure times:

$$\hat{S}(t_{(i)}) = \hat{S}(t_{(i-1)}) \times Pr(T > t_{(i)}|T \ge t_{(i)}) \tag{1}$$

The previous equation can also be written as follows, in terms of conditional probability for a specific time:

$$\hat{S}(t_{(j)}) = \prod_{i=1}^{j-1} Pr(T > t_{(i)} | T \ge t_{(i)})$$
(2)

Some advantages of this method are that it takes account for the right censored data, giving more precise and realistic survival times, it is also quite simple and easy to calculate, and gives useful graphs for interpreting the general behavior of the population

4.4 Cox Proportional Hazards Model

Cox Proportional Hazards Model is one of the most relevant regarding time series in general and survival analysis in particular. The model was introduced in 1972 by Sir David Cox in the paper *Regression models and life tables*, and introduced two key features, in first place, the proportional hazards model, in second place the method of partial likelihood estimation.

The

- 5 Conclusions
- 5.1 Most important results
- 5.2 Lessons learnt

References

- [1] Mohammed Guller. *Big Data Analytics with Spark*. Springer Science+Business Media New York, 2015. ISBN: 978-1-4842-0964-6.
- [2] by Reynold Xin and Josh Rosen. "Project Tungsten: Bringing Apache Spark Closer to Bare Metal. (English)". In: *Databricks Blog* (Apr. 2015). DOI: https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-baremetal.html.