(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 27 January 2005 (27.01.2005)

PCT

(10) International Publication Number WO 2005/007624 A2

(51) International Patent Classification⁷:

C07D

(21) International Application Number:

PCT/US2004/021813

(22) International Filing Date: 7 July 2004 (07.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/485,451 7 July 2003 (07.07.2003) US 60/513,109 20 October 2003 (20.10.2003)

- (71) Applicant (for all designated States except US): THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10550 North Torrey Pines Road, La Jolla, CA 92037 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ANDERSON, Christopher, J. [US/US]; 124 Mason St., Apt.401, San Francisco, CA 94102 (US). SCHULTZ, Peter, G. [US/US]; 1650 La Jolla Ranch Road, La Jolla, CA 92037 (US). SANTORO, Stephen [US/US]; 10 Shady Hill Square, Cambridge, MA 02138 (US).
- (74) Agents: QUINE, Jonathan, Alan et al.; Quine Intellectual Property Law Group, P.C., P.O. Box 458, Alameda, CA 94501 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

54) Title: COMPOSITIONS OF ORTHOGONAL GLUTAMYL-TRNA AND AMINOACYL TRNA SYNTHETASE PAIRS AND USES THEREOF

(57) Abstract: Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.

COMPOSITIONS OF ORTHOGONAL GLUTAMYL-tRNA AND AMINOACYL tRNA SYNTHETASE PAIRS AND USES THEREOF

5

10

15

20

25

30

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and benefit of Provisional Patent Application USSN 60/485,451, filed July 7, 2003; and to Provisional Patent Application USSN 60/513,109, filed October 20, 2003, the disclosures of which are incorporated herein by reference in their entirety for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] This invention was made with government support under Grant No. GM 62159 from the National Institutes of Health. The government may have certain rights to this invention.

FIELD OF THE INVENTION

[0003] The invention is in the field of translation biochemistry. The invention relates to methods for producing and compositions of orthogonal glutamyl-tRNAs, orthogonal glutamyl aminoacyl-tRNA synthetases and pairs thereof. The invention also relates to methods of producing proteins in cells using such pairs and related compositions.

BACKGROUND OF THE INVENTION

[0004] The genetic code of every known organism, from bacteria to humans, encodes the same twenty common amino acids. Different combinations of the same twenty natural amino acids form proteins that carry out virtually all the complex processes of life, from photosynthesis to signal transduction and the immune response. In order to study and modify protein structure and function, scientists have attempted to manipulate both the genetic code and the amino acid sequence of proteins. However, it has been difficult to remove the constraints imposed by the genetic code that limit proteins to twenty genetically encoded standard building blocks (with the rare exception of selenocysteine (see, e.g., A.

Bock et al., (1991), <u>Molecular Microbiology</u> 5:515-20) and pyrrolysine (*see*, *e.g.*, G. Srinivasan, et al., (2002), <u>Science</u> 296:1459-62).

5

10

15

20

25

30

[0005] Some progress has been made to remove these constraints, although this progress has been limited, and the ability to rationally control protein structure and function is still in its infancy. For example, chemists have developed methods and strategies to synthesize and manipulate the structures of small molecules (*see*, *e.g.*, E. J. Corey, & X.-M. Cheng, The Logic of Chemical Synthesis (Wiley-Interscience, New York, 1995)). Total synthesis (*see*, *e.g.*, B. Merrifield, (1986), Science 232:341-7 (1986)), and semi-synthetic methodologies (*see*, *e.g.*, D. Y. Jackson et al., (1994) Science 266:243-7; and, P. E. Dawson, & S. B. Kent, (2000). Annual Review of Biochemistry 69:923-60), have made it

Dawson, & S. B. Kent, (2000), <u>Annual Review of Biochemistry</u> 69:923-60), have made it possible to synthesize peptides and small proteins, but these methodologies have limited utility with proteins over 10 kilo Daltons (kDa). Mutagenesis methods, though powerful, are restricted to a limited number of structural changes. In a number of cases, it has been possible to competitively incorporate close structural analogues of common amino acids throughout proteins. *See, e.g.*, R. Furter, (1998), <u>Protein Science</u> 7:419-26; K. Kirshenbaum, et al., (2002), <u>ChemBioChem</u> 3:235-7; and, V. Doring et al., (2001), <u>Science</u> 292:501-4.

[0006] Early work demonstrated that the translational machinery of *E. coli* would accommodate amino acids similar in structure to the common twenty. *See* Hortin, G., and Boime, I. (1983) Methods Enzymol. 96:777-784. This work was further extended by relaxing the specificity of endogenous *E. coli* synthetases so that they activate unnatural amino acids as well as their cognate natural amino acid. Moreover, it was shown that mutations in editing domains could also be used to extend the substrate scope of the endogenous synthetase. *See* Doring, V., et al., (2001) Science 292:501-504. However, these strategies are limited to *recoding* the genetic code rather than *expanding* the genetic code and lead to varying degrees of substitution of one of the common twenty amino acids with an unnatural amino acid.

[0007] Later it was shown that unnatural amino acids could be site-specifically incorporated into proteins *in vitro* by the addition of chemically aminoacylated orthogonal amber suppressor tRNAs to an *in vitro* transcription/translation reaction. *See, e.g.*, Noren, C. J., et al. (1989) <u>Science</u> 244:182-188; Bain, J. D., et al., (1989) <u>J. Am. Chem. Soc.</u> 111:8013-8014; Dougherty, D. A. (2000) <u>Curr. Opin. Chem. Biol.</u> 4, 645-652; Cornish, V.

W., et al. (1995) Angew. Chem., Int. Ed. 34:621-633; J. A. Ellman, et al., (1992), Science 255:197-200; and, D. Mendel, et al., (1995), Annual Review of Biophysics and Biomolecular Structure 24:435-462. These studies show that the ribosome and translation factors are compatible with a large number of unnatural amino acids, even those with unusual structures. Unfortunately, the chemical aminoacylation of tRNAs is difficult, and the stoichiometric nature of this process severely limited the amount of protein that could be generated.

5

[0008] Unnatural amino acid tRNA complexes have been microinjected into cells. For example, unnatural amino acids were introduced into the nicotinic acetylcholine

10 receptor in Xenopus oocytes (e.g., M.W. Nowak, et al. (1998), In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system, Method

Enzymol. 293:504-529) by microinjection of a chemically misacylated Tetrahymena thermophila tRNA (e.g., M.E. Saks, et al. (1996), An engineered Tetrahymena tRNAGIn for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression, I.

Biol. Chem. 271:23169-23175), and the relevant mRNA. See also D.A. Dougherty (2000), Unnatural amino acids as probes of protein structure and function, Curr. Opin. Chem. Biol. 4:645-652. Unfortunately, this methodology is limited to proteins in cells that can be microinjected, and because the relevant tRNA is chemically acylated in vitro, and cannot be re-acylated, the yields of protein are very low.

20 [0009] To overcome these limitations, new components, e.g., orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases and pairs thereof, were added to the protein biosynthetic machinery of the prokaryote Escherichia coli (E. coli) (see, e.g., L. Wang, et al., (2001), Science 292:498-500), which allowed genetic encoding of unnatural amino acids in vivo. A number of new amino acids with novel chemical, physical or biological 25 properties, including photoaffinity labels and photoisomerizable amino acids, photocrosslinking amino acids (see, e.g., Chin, J. W., et al. (2002) Proc. Natl. Acad. Sci. U. S. A. 99:11020-11024; and, Chin, J. W., et al., (2002) J. Am. Chem. Soc. 124:9026-9027), keto amino acids (see, e.g., Wang, L., et al., (2003) Proc. Natl. Acad. Sci. U. S. A. 100:56-61), heavy atom containing amino acids, and glycosylated amino acids have been 30 incorporated efficiently and with high fidelity into proteins in E. coli in response to, e.g., the amber codon (TAG), using this methodology.

[0010] Several other orthogonal pairs have been reported. Glutaminyl (see, e.g., Liu, D. R., and Schultz, P. G. (1999) Proc. Natl. Acad. Sci. U. S. A. 96:4780-4785), aspartyl (see, e.g., Pastrnak, M., et al., (2000) Hely. Chim. Acta 83:2277-2286), and tyrosyl (see, e.g., Ohno, S., et al., (1998) J. Biochem. (Tokyo, Jpn.) 124:1065-1068; and, Kowal, A. K., 5 et al., (2001) Proc. Natl. Acad. Sci. U. S. A. 98:2268-2273) systems derived from S. cerevisiae tRNAs and synthetases have been described for the potential incorporation of unnatural amino acids in E. coli. In addition, a leucine system, which includes an archaeal derived tRNA and a synthetase derived from, e.g., Methanobacterium thermoautotrophicum, has also been described. See Anderson and Schultz, (2003), 10 Biochemistry, 42(32):9598-608. Systems derived from the E. coli glutaminyl (see, e.g., Kowal, A. K., et al., (2001) Proc. Natl. Acad. Sci. U. S. A. 98:2268-2273) and tyrosyl (see, e.g., Edwards, H., and Schimmel, P. (1990) Mol. Cell. Biol. 10:1633-1641) synthetase have been described for use in S. cerevisiae. The E. coli tyrosyl system has been used for the

incorporation of 3-iodo-L-tyrosine in vivo, in mammalian cells. See Sakamoto, K., et al.,

15 (2002) Nucleic Acids Res. 30:4692-4699.

[0011]Unnatural amino acids that have been incorporated into proteins, e.g., using variants of the tyrosyl-tRNA synthetase, are aryl derivatives, including p-azido- (see, e.g., Chin et al., (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli, J. Am. Chem. Soc., 124:9026-9027), p-benzoyl- (see, e.g., Chin et al., (2002) Addition 20 of a photocrosslinking amino acid to the genetic code of Escherchia coli, PNAS, USA, 99:11020-11024), p-amino- (see, e.g., Santoro et al., (2002), An efficient system for the evolution of aminoacyl-tRNA synthetase specificity, Nat. Biotechnology, 20:1044-1048), pisopropyl- (see, e.g., Santoro et al., (2002), An efficient system for the evolution of aminoacyl-tRNA synthetase specificity, Nat. Biotechnology, 20:1044-1048), m-acetyl-(see, 25 e.g., Wang et al., (2003), Addition of the keto functional group to the genetic code of Escherichia coli, PNAS, USA, 100:56-61), and p-acetyl-phenylalanine (Wang et al., (2003), Addition of the keto functional group to the genetic code of Escherichia coli, PNAS, USA, 100:56-61); O-methyl- (see, e.g., Wang et al., (2001), Expanding the genetic cod of Escherichia coli, Science 292:498-500) and O-allyl-tyrosine (see, e.g., Santoro et al., 30 (2002), An efficient system for the evolution of aminoacyl-tRNA synthetase specificity, Nat. Biotechnology, 20:1044-1048; and Zhang et al., (2002) The selective incorporation of alkenes into proteins in Escherichia coli, Angew Chem. Int. Ed. Engl., 41:2840-2842); 3-(2-

naphthyl)alanine (see, e.g., Wang et al., (2002) Adding L-3-(2-Naphthyl)alanine to the genetic code of E. coli, J. Am. Chem. Soc., 124:1836-1837); and a p-propargyloxy phenylalanine (see, e.g., Deiters et al., (2003) Adding Amino Acids with Novel Reactivity to the Genetic Code of Saccharomyces Cerevisiae, in press). To further expand the genetic code and increase the diversity of unnatural amino acid structures that can be incorporated into proteins in a cell, there is a need to develop improved and/or additional components of the biosynthetic machinery, e.g., orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases and/or unique codons. This invention fulfills these and other needs, as will be apparent upon review of the following disclosure.

5

10

15

20

25

30

SUMMARY OF THE INVENTION

[0012] The invention provides compositions and methods of producing orthogonal components for incorporating a selected amino acid into a growing polypeptide chain in response to a selector codon, e.g., a stop codon, a nonsense codon, a four or more base codon, etc., e.g., in vivo. For example, the invention provides orthogonal glutamyl-tRNAs (glutamyl O-tRNAs), orthogonal glutamyl aminoacyl-tRNA synthetases (glutamyl O-RSs) and pairs thereof. These pairs can be used to incorporate selected amino acids into growing polypeptide chains.

[0013] Typically, a glutamyl O-tRNA of the invention includes at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a selector codon, as compared to the glutamyl O-tRNA corresponding to a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA). A composition that includes a glutamyl O-tRNA can optionally further include an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS), where the glutamyl O-RS preferentially aminoacylates the glutamyl O-tRNA with a selected amino acid. In one embodiment, the suppression efficiency of the glutamyl O-RS and the glutamyl O-tRNA together is, e.g., 5 fold, 10 fold, 15 fold, 20 fold, 25 fold or more greater than the suppression efficiency of the glutamyl O-tRNA lacking the glutamyl O-RS.

[0014] A composition that includes a glutamyl O-tRNA can optionally include a cell (e.g., a non-eukaryotic cell, such as an *E. coli* cell and the like, or a eukaryotic cell), and/or a translation system.

[0015] A cell (e.g., a non-eukaryotic cell, or a eukaryotic cell) comprising a translation system is also provided by the invention, where the translation system includes an orthogonal glutamyl-tRNA (glutamyl O-tRNA); an orthogonal aminoacyl-glutamyltRNA synthetase (glutamyl O-RS); and, a first selected amino acid. Typically, the glutamyl O-tRNA comprises at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a first selector codon as compared to a glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA). The glutamyl OtRNA recognizes the first selector codon, and the glutamyl O-RS preferentially aminoacylates the glutamyl O-tRNA with the first selected amino acid in response to the selector codon. In one embodiment, the glutamyl O-tRNA comprises or is encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC)), or a complementary polynucleotide sequence thereof. In one aspect, the glutamyl O-tRNA comprises a G:C base pair at position 10:28. In one embodiment, the glutamyl O-RS comprises an amino acid sequence as set forth in any one of SEQ ID NO.: 69 (Af), 73 (Mm), 75 (Mt), or 77 (Ph), or a conservative variation thereof.

5

10

15

20

25

30

[0016] A cell of the invention can optionally further comprise an additional different O-tRNA/O-RS pair and a second selected amino acid, e.g., where this O-tRNA recognizes a second selector codon and this O-RS preferentially aminoacylates the O-tRNA with the second selected amino acid. Optionally, a cell of the invention includes a nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, where the polynucleotide comprises a selector codon that is recognized by the glutamyl O-tRNA.

In certain embodiments, a cell of the invention includes an *E. coli* cell that includes an orthogonal glutamyl tRNA (glutamyl O-tRNA), an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS), a selected amino acid, and a nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, where the polynucleotide comprises the selector codon that is recognized by the glutamyl O-tRNA. Typically, the glutamyl O-tRNA comprises at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA), and the glutamyl

O-RS preferentially aminoacylates the glutamyl O-tRNA with a selected amino acid in response to the selector codon.

5

10

15

20

25

30

[0018] In certain embodiments of the invention, a glutamyl O-tRNA of the invention comprises or is encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67, or a complementary polynucleotide sequence thereof. In one embodiment, the glutamyl O-tRNA comprises a G:C base pair at position 10:28. In certain embodiments of the invention, a glutamyl O-RS comprises an amino acid sequence comprising any one of SEQ ID NO.: 69, 73, 75 and/or 77, or a conservative variation thereof. In one embodiment, the glutamyl O-RS or a portion thereof is encoded by a polynucleotide sequence comprising any one of SEQ ID NO.: 68, 72, 74, or 76, or a complementary polynucleotide sequence thereof.

[0019] The glutamyl O-tRNA and/or the glutamyl O-RS of the invention can be derived from any of a variety of organisms (e.g., eukaryotic and/or non-eukaryotic organisms). For example, the glutamyl O-tRNA can be derived from one or more archaeal tRNAs and/or the glutamyl O-RS can be derived from, e.g., a non-eukaryotic organism (e.g., an Archaeoglobus fulgidus (Af), a Methanosarcina mazei (Mm), a Methanobacterium thermoautotrophicum (Mt), a Pyrococcus horikoshii (Ph), etc.).

Polynucleotides are also a feature of the invention. A polynucleotide of the invention includes an artificial (e.g., man-made, and not naturally occurring) polynucleotide comprising a nucleotide sequence as set forth in SEQ ID NO.: 67, and/or is complementary to or that encodes a polynucleotide sequence of the above. A polynucleotide of the invention also includes a nucleic acid that hybridizes to a polynucleotide described above, under highly stringent conditions over substantially the entire length of the nucleic acid. A polynucleotide of the invention also includes a polynucleotide that is, e.g., at least 75%, at least 80%, at least 90%, at least 95%, at least 98% or more identical to that of a naturally occurring glutamyl tRNA (but is other than a naturally occurring glutamyl tRNA) and comprises a G:C base pair at position 10:28. Artificial polynucleotides that are, e.g., at least 80%, at least 90%, at least 95%, at least 98% or more identical to any of the above and/or a polynucleotide comprising a conservative variation of any the above, are also included in polynucleotides of the invention.

[0021] Vectors comprising a polynucleotide of the invention are also a feature of the invention. For example, a vector of the invention can include a plasmid, a cosmid, a phage, a virus, an expression vector, and/or the like. A cell comprising a vector of the invention is also a feature of the invention.

- 5 [0022] Methods of producing components of a glutamyl O-tRNA/O-RS pair are also features of the invention. Components produced by these methods are also a feature of the invention. For example, methods of producing at least one glutamyl tRNA that are orthogonal to a cell (glutamyl O-tRNA) include aligning a plurality of glutamyl tRNA sequences (e.g., derived from a species other than the host cell, derived from an archaeal 10 species, etc.); and, determining a consensus sequence (e.g., by using an alignment program, such as BLAST or pileup). A library of mutant glutamyl tRNAs is generated using the consensus sequence; and an anticodon loop of each member of the library of mutant glutamyl tRNAs is mutated to allow recognition of a selector codon, thereby providing a library of potential O-tRNAs. A first population of cells of a first species, where the cells 15 comprise a member of the library of potential O-tRNAs, is subjected to negative selection. The negative selection eliminates cells that comprise a member of the library of potential OtRNAs that is aminoacylated by an aminoacyl-tRNA synthetase (RS) that is endogenous to the cell. This provides a pool of tRNAs that are orthogonal to the cell of the first species, thereby providing at least one glutamyl O-tRNA. An O-tRNA produced by the methods of 20 the invention is also provided.
 - [0023] In certain embodiments, the methods further comprise mutating G10:U28 base pair to a G10:C28 base pair. In certain embodiments, the methods further comprise subjecting to positive selection a second population of cells of the first species, where the cells comprise a member of the pool of tRNAs that are orthogonal to the cell of the first species, a cognate aminoacyl-tRNA synthetase, and a positive selection marker. Using the positive selection, cells are selected or screened for those cells that comprise a member of the pool of tRNAs that is aminoacylated by the cognate aminoacyl-tRNA synthetase and that shows a desired response in the presence of the positive selection marker, thereby providing an O-tRNA. In certain embodiments, the second population of cells comprises cells that were not eliminated by the negative selection.

25

30

[0024] Methods for identifying an orthogonal glutamyl-aminoacyl-tRNA synthetase for use with a glutamyl O-tRNA are also provided. For example, methods include

subjecting to selection a population of cells of a first species, where the cells each comprise: 1) a member of a plurality of aminoacyl-tRNA synthetases (RSs), (e.g., the plurality of RSs can include mutant RSs, RSs derived from a species other than a first species or both mutant RSs and RSs derived from a species other than a first species); 2) the orthogonal glutamyl tRNA (O-tRNA) (e.g., from one or more species); and 3) a polynucleotide that encodes a positive selection marker and comprises at least one selector codon. In certain embodiments, the glutamyl O-tRNA displays at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA).

5

10

15

20

25

30

[0025] Cells (e.g., a host cell) are selected or screened for those that show an enhancement in suppression efficiency compared to cells lacking or having a reduced amount of the member of the plurality of RSs. These selected/screened cells comprise an active RS that aminoacylates the O-tRNA. The level of aminoacylation (in vitro or in vivo) by the active RS of a first set of tRNAs from the first species is compared to the level of aminoacylation (in vitro or in vivo) by the active RS of a second set of tRNAs from a second species (e.g., where the second species is other than the first species); where the level of aminoacylation is determined by a detectable substance (e.g., a labeled amino acid). The active RS that more efficiently aminoacylates the second set of tRNAs compared to the first set of tRNAs is selected, thereby providing the glutamyl orthogonal aminoacyl-tRNA synthetase, e.g., glutamyl O-RS, for use with the glutamyl O-tRNA. An orthogonal aminoacyl-tRNA synthetase identified by the method is also a feature of the invention.

[0026] Methods of producing a protein in a cell (e.g., a non-eukaryotic cell, such as an *E. coli* cell or the like, or a eukaryotic cell) with a selected amino acid at a specified position are also a feature of the invention. For example, a method includes growing, in an appropriate medium, a cell, where the cell comprises a nucleic acid that comprises at least one selector codon and encodes a protein, providing the selected amino acid, incorporating the selected amino acid into the specified position in the protein during translation of the nucleic acid with the at least one selector codon, thereby producing the protein. The cell further comprises: a glutamyl-tRNA (glutamyl O-tRNA) that functions in the cell and recognizes the selector codon; and, an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS) that preferentially aminoacylates the glutamyl-O-tRNA with the selected

amino acid. Typically, the glutamyl O-tRNA comprises at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to the selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA). A protein produced by this method is also a feature of the invention.

DEFINITIONS

5

10

15

20

25

30

Before describing the invention in detail, it is to be understood that this invention is not limited to particular biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a cell" includes a combination of two or more cells; reference to "bacteria" includes mixtures of bacteria, and the like.

[0028] Unless defined herein and below in the reminder of the specification, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains.

Orthogonal glutamyl-tRNA: As used herein, an orthogonal glutamyl-tRNA (glutamyl-O-tRNA) is a tRNA that is orthogonal to a translation system of interest, where the tRNA is: (1) identical or substantially similar to a naturally occurring glutamyl tRNA, (2) derived from a naturally occurring glutamyl tRNA by natural or artificial mutagenesis, (3) derived by any process that takes a sequence of a wild-type or mutant glutamyl tRNA sequence of (1) or (2) into account, (4) homologous to a wild-type or mutant glutamyl tRNA; (5) homologous to any example tRNA that is designated as a substrate for a glutamyl tRNA synthetase in TABLE 3, or (6) a conservative variant of any example tRNA that is designated as a substrate for a glutamyl tRNA synthetase in TABLE 3. The glutamyl tRNA can exist charged with aramino acid, or in an uncharged state. It is also to be understood that a "glutamyl-O-tRNA" optionally is charged (aminoacylated) by a cognate synthetase with an amino acid other than glutamic acid. Indeed, it will be appreciated that a glutamyl-O-tRNA of the invention is advantageously used to insert essentially any amino acid,

whether natural or artificial, into a growing polypeptide, during translation, in response to a selector codon.

[0030] Orthogonal glutamyl amino acid synthetase: As used herein, an orthogonal glutamyl amino acid synthetase (glutamyl-O-RS) is an enzyme that preferentially aminoacylates the glutamyl-O-tRNA with an amino acid in a translation system of interest. The amino acid that the glutamyl-O-RS loads onto the glutamyl-O-tRNA can be any amino acid, whether natural or artificial, and is not limited herein. The synthetase is optionally the same as or homologous to a naturally occurring glutamyl amino acid synthetase, or the same as or homologous to a synthetase designated as a glutamyl-O-RS in TABLE 3. For example, the glutamyl-O-RS can be a conservative variant of a glutamyl-O-RS of TABLE 3, and/or can be at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% or more identical in sequence to a glutamyl-O-RS of TABLE 3.

5

10

15

20

25

30

[0031] Orthogonal: As used herein, the term "orthogonal" refers to a molecule (e.g., an orthogonal tRNA (O-tRNA) and/or an orthogonal aminoacyl tRNA synthetase (O-RS)) that functions with endogenous components of a cell with reduced efficiency as compared to a corresponding molecule that is endogenous to the cell or translation system, or that fails to function with endogenous components of the cell. In the context of tRNAs and aminoacyl-tRNA synthetases, orthogonal refers to an inability or reduced efficiency, e.g., less than 20 % efficiency, less than 10 % efficiency, less than 5 % efficiency, or less than 1% efficiency, of an orthogonal tRNA to function with an endogenous tRNA synthetase compared to an endogenous tRNA to function with the endogenous tRNA synthetase, or of an orthogonal aminoacyl-tRNA synthetase to function with an endogenous tRNA compared to an endogenous tRNA synthetase to function with the endogenous tRNA. The orthogonal molecule lacks a functionally normal endogenous complementary molecule in the cell. For example, an orthogonal tRNA in a cell is aminoacylated by any endogenous RS of the cell with reduced or even zero efficiency, when compared to aminoacylation of an endogenous tRNA by the endogenous RS. In another example, an orthogonal RS aminoacylates any endogenous tRNA a cell of interest with reduced or even zero efficiency, as compared to aminoacylation of the endogenous tRNA by an endogenous RS. A second orthogonal molecule can be introduced into the cell that function with the first orthogonal molecule. For example, an orthogonal tRNA/RS pair includes introduced complementary components that function together in the cell with an efficiency (e.g., 45 % efficiency, 50% efficiency,

60% efficiency, 70% efficiency, 75% efficiency, 80% efficiency, 90% efficiency, 95% efficiency, or 99% or more efficiency) as compared to that of a control, e.g., a corresponding tRNA/RS endogenous pair, or an active orthogonal pair (e.g., a tyrosyl orthogonal tRNA/RS pair).

5 [0032] <u>Cognate</u>: The term "cognate" refers to components that function together, e.g., a glutamyl tRNA and a glutamyl aminoacyl-tRNA synthetase. The components can also be referred to as being complementary.

10

25

30

- Preferentially aminoacylates: The term "preferentially aminoacylates" refers to an efficiency, e.g., 70 % efficiency, 75 % efficiency, 85% efficiency, 90% efficiency, 95 % efficiency, or 99% or more efficiency, at which an O-RS aminoacylates an O-tRNA with a selected amino acid, e.g., an unnatural amino acid, as compared to the O-RS aminoacylating a naturally occurring tRNA or a starting material used to generate the O-tRNA.
- [0034] Selector codon: The term "selector codon" refers to codons recognized by the O-tRNA in the translation process and typically not recognized by an endogenous tRNA. The O-tRNA anticodon loop recognizes the selector codon on the mRNA and incorporates its amino acid, e.g., a selected amino acid, such as an unnatural amino acid, at this site in the polypeptide. Selector codons can include, e.g., nonsense codons, such as, stop codons, e.g., amber, ochre, and opal codons; four or more base codons; rare codons; codons derived from natural or unnatural base pairs and/or the like.
 - [0035] Suppressor tRNA: A suppressor tRNA is a tRNA that alters the reading of a messenger RNA (mRNA) in a given translation system, e.g., by providing a mechanism for incorporating an amino acid into a polypeptide chain in response to a selector codon. For example, a suppressor tRNA can read through, e.g., a stop codon, a four base codon, a rare codon, etc.
 - [0036] <u>Suppression activity</u>: As used herein, the term "suppression activity" refers, in general, to the ability of a tRNA (e.g., a suppressor tRNA) to allow translational read-through of a codon (e.g. a selector codon that is an amber codon or a 4-or-more base codon) that would otherwise result in the termination of translation or mistranslation (e.g., frame-shifting). Suppression activity of a suppressor tRNA can be expressed as a percentage of

5

10

15

20

25

30

translational read-through observed compared to a second suppressor tRNA, or as compared to a control system, e.g., a control system lacking an O-RS.

[0037] The present invention provides various means by which suppression activity can be quantitated. Percent suppression of a particular O-tRNA and O-RS against a selector codon (e.g., an amber codon) of interest refers to the percentage of activity of a given expressed test marker (e.g., LacZ), that includes a selector codon, in a nucleic acid encoding the expressed test marker, in a translation system of interest, where the translation system of interest includes an O-RS and an O-tRNA, as compared to a positive control construct, where the positive control lacks the O-tRNA, the O-RS and the selector codon. Thus, for example, if an active positive control marker construct that lacks a selector codon has an observed activity of X in a given translation system, in units relevant to the marker assay at issue, then percent suppression of a test construct comprising the selector codon is the percentage of X that the test marker construct displays under essentially the same environmental conditions as the positive control marker was expressed under, except that the test marker construct is expressed in a translation system that also includes the O-tRNA and the O-RS. Typically, the translation system expressing the test marker also includes an amino acid that is recognized by the O-RS and O-tRNA. Optionally, the percent suppression measurement can be refined by comparison of the test marker to a "background" or "negative" control marker construct, which includes the same selector codon as the test marker, but in a system that does not include the O-tRNA, O-RS and/or relevant amino acid recognized by the O-tRNA and/or O-RS. This negative control is useful in normalizing percent suppression measurements to account for background signal effects from the marker in the translation system of interest.

Suppression efficiency can be determined by any of a number of assays known in the art. For example, a β -galactosidase reporter assay can be used, e.g., a derivatized lacZ plasmid (where the construct has a selector codon in the lacZ nucleic acid sequence) is introduced into cells from an appropriate organism (e.g., an organism where the orthogonal components can be used) along with plasmid comprising an O-tRNA of the invention. A cognate synthetase can also be introduced (either as a polypeptide or a polynucleotide that encodes the cognate synthetase when expressed). The cells are grown in media to a desired density, e.g., to an OD₆₀₀ of about 0.5, and β -galactosidase assays are performed, e.g., using the BetaFluorTM β -Galactosidase Assay Kit (Novagen). Percent

suppression can be calculated as the percentage of activity for a sample relative to a comparable control, e.g., the value observed from the derivatived lacZ construct, where the construct has a corresponding sense codon at desired position rather than a selector codon.

[0039] Translation system: The term "translation system" refers to the components that incorporate an amino acid into a growing polypeptide chain (protein). Components of a translation system can include, e.g., ribosomes, tRNAs, synthetases, mRNA and the like. The O-tRNA and/or the O-RSs of the invention can be added to or be part of an *in vitro* or *in vivo* translation system, e.g., in a non-eukaryotic cell, e.g., a bacterium (such as *E. coli*), or in a eukaryotic cell, e.g., a yeast cell, a mammalian cell, a plant cell, an algae cell, a fungus cell, an insect cell, and/or the like.

5

10

15

20

25

30

[0040] Selected amino acid: The term "selected amino acid" refers to any desired naturally occurring amino acid or unnatural amino acid. As used herein, the term "unnatural amino acid" refers to any amino acid, modified amino acid, and/or amino acid analogue that is not one of the 20 common naturally occurring amino acids or seleno cysteine or pyrrolysine.

[0041] Derived from: As used herein, the term "derived from" refers to a component that is isolated from or made using a specified molecule or organism, or information from the specified molecule or organism.

[0042] <u>Positive selection or screening marker</u>: As used herein, the term "positive selection or screening marker" refers to a marker that, when present, e.g., expressed, activated, or the like, results in identification of a cell, which comprise the trait, e.g., cells with the positive selection marker, from those without the trait.

[0043] Negative selection or screening marker: As used herein, the term "negative selection or screening marker" refers to a marker that when present, e.g., expressed, activated, or the like, allows identification of a cell that does not comprise a specified property or trait (e.g., as compared to a cell that does possess the property or trait).

Reporter: As used herein, the term "reporter" refers to a component that can be used to identify and/or select target components of a system of interest. For example, a reporter can include a protein, e.g., an enzyme, that confers antibiotic resistance or sensitivity (e.g., β-lactamase, chloramphenicol acetyltransferase (CAT), and the like), a fluorescent screening marker (e.g., green fluorescent protein (e.g., (GFP), YFP, EGFP, RFP,

etc.), a luminescent marker (e.g., a firefly luciferase protein), an affinity based screening marker, or positive or negative selectable marker genes such as lacZ, β -gal/lacZ (β -galactosidase), Adh (alcohol dehydrogenase), his3, ura3, leu2, lys2, or the like.

- [0045] <u>Eukaryote</u>: As used herein, the term "eukaryote" refers to organisms belonging to the phylogenetic domain Eucarya, such as animals (e.g., mammals, insects, reptiles, birds, etc.), ciliates, plants (e.g., monocots, dicots, algae, etc.), fungi, yeasts, flagellates, microsporidia, protists, etc.
- [0046] Non-eukaryote: As used herein, the term "non-eukaryote" refers to non-eukaryotic organisms. For example, a non-eukaryotic organism can belong to the

 Eubacteria (e.g., Escherichia coli, Thermus thermophilus, Bacillus stearothermophilus, etc.)

 phylogenetic domain, or the Archaea (e.g., Methanococcus jannaschii (Mj),

 Methanosarcina mazei (Mm), Methanobacterium thermoautotrophicum (Mt),

 Methanococcus maripaludis, Methanopyrus kandleri, Halobacterium such as Haloferax

 volcanii and Halobacterium species NRC-1, Archaeoglobus fulgidus (Af), Pyrococcus

 furiosus (Pf), Pyrococcus horikoshii (Ph), Pyrobaculum aerophilum, Pyrococcus abyssi,

 Sulfolobus solfataricus (Ss), Sulfolobus tokodaii, Aeuropyrum pernix (Ap), Thermoplasma

 acidophilum, Thermoplasma volcanium, etc.) phylogenetic domains.
 - Conservative variant: As used herein, the term "conservative variant" refers to a translation component, e.g., a conservative variant O-tRNA or a conservative variant O-RS, that functionally performs similar to a base component from which the conservative variant is based, e.g., an O-tRNA or O-RS, but having variations in the sequence. For example, an O-RS will aminoacylate a complementary O-tRNA or a conservative variant O-tRNA with a selected amino acid, e.g., an unnatural amino acid, although the O-tRNA and the conservative variant O-tRNA do not have the same sequence. The conservative variant can have, e.g., one variation, two variations, three variations, four variations, or five or more variations in sequence, as long as the conservative variant is complementary to the corresponding O-tRNA or O-RS.

20

25

30

Selection or screening agent: As used herein, the term "selection or screening agent" refers to an agent that, when present, allows for a selection/screening of certain components from a population. For example, a selection or screening agent includes, but is not limited to, e.g., a nutrient, an antibiotic, a wavelength of light, an

antibody, an expressed polynucleotide, or the like. The selection agent can be varied, e.g., by concentration, intensity, etc.

[0049] <u>In response to</u>: As used herein, in the context of translation with O-tRNA and O-RS components, the term "in response to" refers to the process in which a tRNA of the invention recognizes a selector codon and incorporates the selected amino acid, which is bound to tRNA, into the growing polypeptide chain.

5

10

15

20

25

30

[0050] Exogenous or heterologous: As used herein, the terms "exogenous" or "heterologous" as applied to polynucleotides or polypeptides refers to molecules that have been artificially supplied to a biological system (e.g., a cell) and are not native to that particular biological system. The terms indicate that the relevant material originated from a source other than the naturally occurring source, or refers to molecules having a non-natural configuration, genetic location or arrangement of parts. The terms "exogenous" and "heterologous" are sometimes used interchangeably with "recombinant."

[0051] In contrast, for example, a "native" or "endogenous" gene is a gene that does not contain nucleic acid elements encoded by sources other than the chromosome or other genetic element on which it is normally found in nature. An endogenous gene, transcript or polypeptide is encoded by its natural chromosomal locus, and not artificially supplied to the cell.

Encode: As used herein, the term "encode" refers to any process whereby the information in a polymeric macromolecule or sequence string is used to direct the production of a second molecule or sequence string that is different from the first molecule or sequence string. As used herein, the term is used broadly, and can have a variety of applications. In one aspect, the term "encode" describes the process of semi-conservative DNA replication, where one strand of a double-stranded DNA molecule is used as a template to encode a newly synthesized complementary sister strand by a DNA-dependent DNA polymerase.

[0053] In another aspect, the term "encode" refers to any process whereby the information in one molecule is used to direct the production of a second molecule that has a different chemical nature from the first molecule. For example, a DNA molecule can encode an RNA molecule (e.g., by the process of transcription incorporating a DNA-dependent RNA polymerase enzyme). Also, an RNA molecule can encode a polypeptide,

as in the process of translation. When used to describe the process of translation, the term "encode" also extends to the triplet codon that encodes an amino acid. In some aspects, an RNA molecule can encode a DNA molecule, e.g., by the process of reverse transcription incorporating an RNA-dependent DNA polymerase. In another aspect, a DNA molecule can encode a polypeptide, where it is understood that "encode" as used in that case incorporates both the processes of transcription and translation.

5

10

15

20

25

30

BRIEF DESCRIPTION OF THE FIGURES

[0054] Figure 1, Panels A and B schematically illustrate design of orthogonal tRNAs. Panel A schematically illustrates consensus archaeal tRNA^{Glu} and tRNA^{Glu} sequences. Non-canonical base pairs are circled; tRNA anticodons are boxed. Highlighted bases correspond to positions at which two different bases predominate approximately equally. K corresponds to bases G or U; Y corresponds to bases C or U; R corresponds to bases A or G; S corresponds to bases C or G. Panel B schematically illustrates initial candidate orthogonal tRNAs. Underlined bases correspond to positions that vary from the consensus sequence.

[0055] Figure 2 provides a histogram demonstrating the orthogonality of candidate tRNAs in $E.\ coli$, e.g., using a β -lactamase amber suppression assay to measure the ampicillin IC₅₀ values for $E.\ coli$ expressing the indicated tRNA.

[0056] Figure 3 provides a histogram demonstrating aminoacylation of the AE(GU) tRNA by orthogonal synthetase candidates in E. coli, e.g., using a β -lactamase amber suppression assay to measure the ampicillin IC₅₀s of E. coli expressing the indicated glutamyl-tRNA synthetase together with the AE(GU) tRNA. Ampicillin IC₅₀ values reflect amber suppression efficiency in E. coli.

[0057] Figure 4, Panels A, B and C illustrate optimization of the AE(GU) tRNA by selection. Panel A schematically illustrates sequence and secondary structure of the AE(NN) tRNA library, which differs from the AE(GU) tRNA only at positions 10 and 28, which are randomized. Underlined bases correspond to positions that vary from the consensus sequence; tRNA anticodons are boxed. Panel B schematically illustrates sequence and secondary structure of the AE(GC) tRNA, which is identified as the most active tRNA within the AE(NN) library. Panel C provides a histogram demonstrating aminoacylation of the AE(GC) tRNA in E. coli, e.g., using a β-lactamase assay to measure

the ampicillin IC₅₀ values for E. coli expressing the indicated glutamyl-tRNA synthetases together with the AE(GC) tRNA or the AE(GC) tRNA with no synthetase.

Figure 5 provides a histogram demonstrating orthogonality of archaeal synthetases *in vitro*. For example, aminoacylation of whole tRNA from either *E. coli* (Ec) or *Halobacterium sp. NRC-1* (halo) with [³H]-glutamic acid is assayed *in vitro*.

5

10

15

DETAILED DESCRIPTION

[0059] In order to add additional unnatural amino acids to the genetic code *in vivo*, "orthogonal pairs" of an aminoacyl-tRNA synthetase and a tRNA are needed that can function efficiently in the translational machinery. These pairs are orthogonal to a given translation system's other elements, e.g., the endogenous RS and tRNA of the system.

Desired characteristics of the orthogonal pairs include tRNA that decode or recognize only a specific new codon, e.g., a selector codon, that is not decoded by any endogenous tRNA, and aminoacyl-tRNA synthetases that preferentially aminoacylate (or charge) its cognate tRNA with only a specific selected amino acid, e.g., an unnatural amino acid. The O-tRNA is also not typically aminoacylated by endogenous synthetases. For example, in *E. coli*, an orthogonal pair will include an aminoacyl-tRNA synthetase that does not significantly cross-react with any of the endogenous tRNA, which there are 40 in *E. coli*, and an orthogonal tRNA that is not significantly aminoacylated by any of the endogenous synthetases, e.g., of which there are 21 in *E. coli*.

[0060] This invention provides compositions of and methods for identifying and producing additional orthogonal tRNA-aminoacyl-tRNA synthetase pairs, e.g., glutamyl O-tRNA/ glutamyl O-RS pairs. A glutamyl O-tRNA of the invention is capable of mediating incorporation of a selected amino acid into a protein that is encoded by a polynucleotide, which comprises a selector codon that is recognized by the glutamyl O-tRNA, e.g., in vivo.
The anticodon loop of the glutamyl O-tRNA recognizes the selector codon on an mRNA and incorporates its amino acid, e.g., a selected amino acid, such as an unnatural amino acid, at this site in the polypeptide. An orthogonal glutamyl aminoacyl-tRNA synthetase of the invention preferentially aminoacylates (or "charges") its glutamyl O-tRNA with only a specific selected amino acid.

ORTHOGONAL GLUTAMYL tRNA/ ORTHOGONAL GLUTAMYL AMINOACYLtrna synthetases and pairs thereof

[0061] Other features of translation systems that are suitable for making proteins that include one or more selected amino acids, e.g., an unnatural amino acid, are described in Published International Applications WO 2002/086075, entitled "METHODS AND COMPOSITION FOR THE PRODUCTION OF ORTHOGONAL tRNA-AMINOACYL-tRNA SYNTHETASE PAIRS" and WO 2002/085923, entitled "IN VIVO INCORPORATION OF UNNATURAL AMINO ACIDS." In addition, see International Application Number PCT/US2004/011786, filed April 16, 2004. Each of these applications is incorporated herein by reference in its entirety. These translation systems can be adopted to the present invention by the inclusion of an O-RS/O-tRNA of the invention.

5

10

15

20

25

30

[0062] Translation systems on the invention generally comprise cells (e.g., non-eukaryotic cells, or eukaryotic cells) that include an orthogonal glutamyl tRNA (glutamyl O-tRNA), an orthogonal glutamyl aminoacyl tRNA synthetase (glutamyl O-RS), and a selected amino acid, where the glutamyl O-RS aminoacylates the glutamyl O-tRNA with the selected amino acid. An orthogonal pair of the invention includes of a glutamyl O-tRNA, e.g., a suppressor tRNA, a frameshift tRNA, or the like, and a glutamyl O-RS. Individual components are also provided in the invention.

least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA) in the presence of a cognate O-RS. The cognate glutamyl O-RS aminoacylates the O-tRNA with a selected amino acid. The cell or other translation system uses the components to incorporate the selected amino acid into a growing polypeptide chain, e.g., via a nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, where the polynucleotide comprises a selector codon that is recognized by the glutamyl O-tRNA. In certain embodiments of the invention, a cell includes an *E. coli* cell that includes an orthogonal glutamyl tRNA (glutamyl O-tRNA), an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS), a selected amino acid; and, a nucleic acid that comprises a polypeptide of interest.

where the polynucleotide comprises the selector codon that is recognized by the glutamyl O-tRNA. The translation system can also be an in vitro system.

[0064] In one embodiment, the suppression efficiency of the glutamyl O-RS and the glutamyl O-tRNA together is about, e.g., 5 fold, 10 fold, 15 fold, 20 fold, or 25 fold or more greater than the suppression efficiency of the glutamyl O-tRNA lacking the glutamyl O-RS. In one aspect, the suppression efficiency of the glutamyl O-RS and the glutamyl O-tRNA together is at least about, e.g., 35%, 40%, 45%, 50%, 60%, 75%, 80%, or 90% or more of the suppression efficiency of an orthogonal tyrosyl-tRNA synthetase pair derived from *Methanococcus jannaschii*.

5

20

25

30

10 [0065] The invention also features multiple O-tRNA/O-RS pairs in a cell, which allows incorporation of more than one selected amino acid. For example, the cell can further include an additional different O-tRNA/O-RS pair and a second selected amino acid, where this additional O-tRNA recognizes a second selector codon and this additional O-RS preferentially aminoacylates the O-tRNA with the second selected amino acid. For example, a cell, which includes a glutamyl O-tRNA/O-RS pair (where the glutamyl O-tRNA recognizes, e.g., an amber selector codon), can further comprise a second orthogonal pair, e.g., leucyl, lysyl, tyrosyl, etc., (where the second O-tRNA recognizes a different selector codon, e.g., an opal, four-base, or the like).

The glutamyl O-tRNA and/or the glutamyl O-RS can be naturally occurring or can be derived by mutation of a naturally occurring or consensus or hypothetical tRNA and/or RS, e.g., by generating libraries of tRNAs and/or libraries of RSs, from a variety of organisms. For example, one strategy of producing an orthogonal glutamyl tRNA/ glutamyl aminoacyl-tRNA synthetase pair involves importing a heterologous (to the host cell) tRNA/synthetase pair from, e.g., a source other than the host cell, or multiple sources, into the host cell. The properties of the heterologous synthetase candidate include, e.g., that it does not significantly charge any host cell tRNA, and the properties of the heterologous tRNA candidate include, e.g., that it is not aminoacylated by any host cell synthetase. In addition, the heterologous tRNA is orthogonal to all host cell synthetases.

[0067] A second strategy for generating an orthogonal pair involves generating mutant libraries from which to screen and/or select a glutamyl O-tRNA or glutamyl O-RS. These strategies can also be combined.

[8006]Archaea is a good source of orthogonal pairs for, e.g., E. coli. Previous studies revealed that several archaeal tRNAs are not recognized by E. coli aminoacyl-tRNA synthetases (see, e.g., Kwok and Wong, (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes, Can. J. Biochem., 58:213-218). Two such synthetasetRNA pairs derived from archaea, for tyrosine (see, e.g., Wang et al., (2000) A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins, J. Am. Chem. Soc., 122:5010-5011) and leucine (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19; 42(32):9598-9608), were developed for use, e.g., in E. coli. Both exhibited high levels of orthogonality and amber suppression efficiency. Moreover, these archaeal synthetases and tRNAs are efficiently produced and processed in E. coli. Finally, the recent proliferation of genomic sequence data for archaeal species and the commercial availability of their genomic DNA have facilitated the cloning of synthetases from these organisms, as well as the design of compatible tRNAs.

5

10

15

20

25

30

[0069] In addition, archaeal glutamyl-tRNA synthetases and tRNAs are good sources for the production of additional orthogonal pairs for several reasons. Archaeal glutamyl-tRNA synthetases are expected to tolerate changes in the anticodon loop of their substrate tRNAs since the enzyme naturally accommodates four different tRNA anticodons: UUC, CUC, UUG, and CUG. This is due to the fact that in archaeal species, glutamyltRNA synthetases must recognize and acylate both tRNA Glu and tRNA (see, e.g., Tumbula et al., (2000) Domain-specific recruitment of amide amino acids for protein synthesis, Nature 407:106-110). An archaeal glutamyl-tRNA synthetase can tolerate variance within at least two positions of the anticodon of its tRNA substrate, which can permit efficient aminoacylation of a tRNA bearing, e.g., an amber-suppressing CUA anticodon. In addition, in vitro aminoacylation data (see, e.g., Kwok and Wong (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes, Can. J. Biochem., 58:213-218) predict that archaeal glutamic acid and glutamine tRNAs should be orthogonal in E. coli. Finally, the three dimensional structure of the glutamyl-tRNA synthetase from Thermus thermophilus is known (see, e.g., Nureki et al., (1995) Architectures of class-

defining and specific domains of glutamyl-tRNA synthetase, Science 31: 1958-1965), which can facilitate the design of libraries of synthetase variants for use in directed evolution experiments. See the section entitled "Sources and Hosts," herein, for additional information.

Orthogonal tRNA (O-tRNA)

5

10

15

20

25

30

An orthogonal glutamyl tRNA (glutamyl O-tRNA) mediates incorporation of a selected amino acid into a protein that is encoded by a polynucleotide that comprises a selector codon that is recognized by the glutamyl O-tRNA, e.g., in vivo or in vitro. Typically, a glutamyl O-tRNA of the invention includes at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA) in the presence of a cognate RS.

Suppression efficiency can be determined by any of a number of assays known in the art. For example, a β -galactosidase reporter assay can be used, e.g., a derivatized lacZ plasmid (where the construct has a selector codon n the lacZ nucleic acid sequence) is introduced into cells from an appropriate organism (e.g., an organism where the orthogonal components can be used) along with plasmid comprising a O-tRNA of the invention. A cognate synthetase can also be introduced (either as a polypeptide or a polynucleotide that encodes the cognate synthetase when expressed). The cells are grown in media to a desired density, e.g., to an OD₆₀₀ of about 0.5, and β -galactosidase assays are performed, e.g., using the BetaFluorTM β -Galactosidase Assay Kit (Novagen). Percent suppression can be calculated as the percentage of activity for a sample relative to a comparable control, e.g., the value observed from the derivatived lacZ construct, where the construct has a corresponding sense codon at desired position rather than a selector codon.

[0072] An example of a glutamyl O-tRNA of the invention is a polynucleotide sequence comprising SEQ ID NO.: 67. See Table 3 and Example 2, herein, for sequences of exemplary O-tRNA and O-RS molecules. See also, the section entitled "Nucleic Acid and Polypeptide Sequence and Variants" herein. In the tRNA molecule, Thymine (T) is replaced with Uracil (U). The glutamyl O-tRNA of the invention also optionally includes a G:C base pair at position 10:28. Additional modifications to the bases can also be present. The invention also includes conservative variations of glutamyl O-tRNA. For example,

conservative variations of glutamyl O-tRNA include those molecules that function like the glutamyl O-tRNA of SEQ ID NO.: 67 and maintain the tRNA L-shaped structure, but do not have the same sequence (and are other than wild type glutamyl tRNA molecules). *See also*, the section herein entitled "Nucleic acids and Polypeptides Sequence and Variants."

The composition comprising a glutamyl O-tRNA can further include an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS), where the glutamyl O-RS preferentially aminoacylates the glutamyl O-tRNA with a selected amino acid. In certain embodiments, a composition including a glutamyl O-tRNA can further include a translation system (e.g., in vitro or in vivo). A nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, where the polynucleotide comprises a selector codon that is recognized by the glutamyl O-tRNA, or a combination of one or more of these can also be present in the cell. *See also* the section herein entitled "Orthogonal aminoacyl-tRNA synthetases."

[0074] Methods of producing an orthogonal glutamyl tRNA (glutamyl O-tRNA) are also a feature of the invention. A glutamyl O-tRNA produced by the method is also a feature of the invention. In certain embodiments of the invention, the glutamyl O-tRNAs can be produced by a consensus strategy. For example, potential orthogonal glutamyl tRNAs can be produced by aligning a plurality of glutamyl tRNA sequences (e.g., derived from a species other than a host cell's species, derived from an archaeal species, etc.); determining a consensus sequence; and, generating a library of mutant glutamyl tRNAs using the consensus sequence.

15

20

25

30

[0075] For example, a consensus sequence can be compiled with a computer program, e.g., the GCG program *pileup* or BLAST. Optionally, degenerate positions determined by the program are changed to the most frequent base at those positions. The library of mutant tRNAs can be generated using various mutagenesis techniques known in the art. For example, the mutant tRNAs can be generated by site-specific mutations, random point mutations, homologous recombination, DNA shuffling or other recursive mutagenesis methods, chimeric construction or any combination thereof. In one embodiment of the invention, overlap extension of oligonucleotides in which each site of the tRNA gene can be synthesized as a doped mixture of 90% the consensus sequence and 10% a mixture of the other 3 bases can be used to provide the library based on the consensus sequence. Other mixtures can also be used, e.g., 75% the consensus sequence

and 25% a mixture of the other 3 bases, 80% the consensus sequence and 20% a mixture of the other 3 bases, 95% the consensus sequence and 5% a mixture of the other 3 bases, etc.

[0076] Additional mutations can be introduced at specific position(s), e.g., at nonconservative position(s), or at conservative position(s), at randomized position(s), or a combination of each in a desired loop or region of a tRNA, e.g., an anticodon loop, the acceptor stem, D arm or loop, variable loop, TψC arm or loop, other regions of the tRNA molecule, or a combination thereof. Typically, mutations in a glutamyl tRNA include mutating the anticodon loop of each member of the library of mutant glutamyl tRNAs to allow recognition of a selector codon. In one embodiment, mutations include a G10:C28 base pair. The method can further include adding an additional sequence (CCA) to a 3' terminus of the O-tRNA.

5

10

15

20

25

30

[0077] Optionally, the secondary structure of a member of the library of potential glutamyl O-tRNAs can be analyzed to identify non-canonical base pairs in the secondary structure, and optionally methods of the invention include mutating the non-canonical base pairs (e.g., the non-canonical base pairs are mutated to canonical base pairs). Typically, a glutamyl O-tRNA possesses an improvement of orthogonality for a desired organism compared to the starting material, e.g., the plurality of tRNA sequences, while preserving its affinity towards a desired RS.

[0078] The methods optionally include analyzing the homology of sequences of tRNAs and/or aminoacyl-tRNA synthetases to determine potential candidates for an O-tRNA, O-RS, and/or pairs thereof, that appear to be orthogonal for a specific organism. Computer programs known in the art and described herein can be used for the analysis. In one example, to choose potential orthogonal translational components for use in *E. coli*, a prokaryotic organism, a synthetase and/or a tRNA is chosen that does not display unusual homology to prokaryotic organisms.

[0079] Typically, a glutamyl O-tRNA is obtained by subjecting to, e.g., negative selection, a population of cells of a first species, where the cells comprise a member of the plurality of potential glutamyl O-tRNAs. The negative selection eliminates cells that comprise a member of the library of potential glutamyl O-tRNAs that is aminoacylated by an aminoacyl-tRNA synthetase (RS) that is endogenous to the cell. This provides a pool of glutamyl tRNAs that are orthogonal to the cell of the first species.

[0080] In certain embodiments, in the negative selection, a selector codon(s) is introduced into polynucleotide that encodes a negative selection marker, e.g., an enzyme that confers antibiotic resistance, e.g., β -lactamase, an enzyme that confers a detectable product, e.g., β -galactosidase, chloramphenicol acetyltransferase (CAT), e.g., a toxic product, such as barnase, at a nonessential position (e.g., still producing a functional barnase), etc. Screening/selection is optionally done by growing the population of cells in the presence of a selective agent (e.g., an antibiotic, such as ampicillin). In one embodiment, the concentration of the selection agent is varied.

5

10

15

20

25

30

[0081] For example, to measure the activity of suppressor glutamyl tRNAs, a selection system is used that is based on the *in vivo* suppression of selector codon, e.g., nonsense or frameshift mutations introduced into a polynucleotide that encodes a negative selection marker, e.g., a gene for β -lactamase (bla). For example, polynucleotide variants, e.g., bla variants, with a selector codon at a certain position (e.g., A184), are constructed. Cells, e.g., bacteria, are transformed with these polynucleotides. In the case of an orthogonal glutamyl tRNA, which cannot be efficiently charged by endogenous E. coli synthetases, antibiotic resistance, e.g., ampicillin resistance, should be about or less than that for a bacteria transformed with no plasmid. If the glutamyl tRNA is not orthogonal, or if a heterologous synthetase capable of charging the tRNA is co-expressed in the system, a higher level of antibiotic, e.g., ampicillin, resistance is be observed. Cells, e.g., bacteria, are chosen that are unable to grow on LB agar plates with antibiotic concentrations about equal to cells transformed with no plasmids.

[0082] In the case of a toxic product (e.g., ribonuclease or barnase), when a member of the plurality of potential glutamyl tRNAs is aminoacylated by endogenous host, e.g., *Escherichia coli* synthetases (i.e., it is not orthogonal to the host, e.g., *Escherichia coli* synthetases), the selector codon is suppressed and the toxic polynucleotide product produced leads to cell death. Cells harboring orthogonal glutamyl tRNAs or non-functional tRNAs survive.

[0083] In one embodiment, the pool of glutamyl tRNAs that are orthogonal to a desired organism are then subjected to a positive selection in which a selector codon is placed in a positive selection marker, e.g., encoded by a drug resistance gene, such a β -lactamase gene. The positive selection is performed on a cell comprising a polynucleotide

5

10

15

20

25

30

encoding or comprising a member of the pool of tRNAs that are orthogonal to the cell, a polynucleotide encoding a positive selection marker, and a polynucleotide encoding a cognate RS. In certain embodiments, the second population of cells comprises cells that were not eliminated by the negative selection. The polynucleotides are expressed in the cell and the cell is grown in the presence of a selection agent, e.g., ampicillin. Glutamyl tRNAs are then selected for their ability to be aminoacylated by the coexpressed cognate synthetase and to insert an amino acid in response to this selector codon. Typically, these cells show an enhancement in suppression efficiency compared to cells harboring non-functional tRNA(s), or tRNAs that cannot efficiently be recognized by the synthetase of interest. The cell harboring the non-functional tRNA(s) or tRNAs that are not efficiently recognized by the synthetase of interest, are sensitive to the antibiotic. Therefore, glutamyl tRNAs that: (i) are not substrates for endogenous host, e.g., *Escherichia coli*, synthetases; (ii) can be aminoacylated by the synthetase of interest; and (iii) are functional in translation, survive both selections.

In stringency of the selection, e.g., the positive selection, the negative selection or both the positive and negative selection, in the above described-methods, optionally includes varying the selection stringency. For example, because barnase is an extremely toxic protein, the stringency of the negative selection can be controlled by introducing different numbers of selector codons into the barnase gene and/or by using an inducible promoter. In another example, the concentration of the selection or screening agent is varied (e.g., ampicillin concentration). In one aspect of the invention, the stringency is varied because the desired activity can be low during early rounds. Thus, less stringent selection criteria are applied in early rounds and more stringent criteria are applied in later rounds of selection. In certain embodiments, the negative selection, the positive selection or both the negative and positive selection, can be repeated multiple times.

Multiple different negative selection markers, positive selection markers or both negative and positive selection markers or both negative and positive selection markers can be the same.

[0085] Other types of selections/screening can be used in the invention for producing orthogonal translational components, e.g., a glutamyl O-tRNA, a glutamyl O-RS, and a glutamyl O-tRNA/O-RS pair. For example, the negative selection marker, the positive selection marker or both the positive and negative selection markers can include a

marker that fluoresces or catalyzes a luminescent reaction in the presence of a suitable reactant. In another embodiment, a product of the marker is detected by fluorescence-activated cell sorting (FACS) or by luminescence. Optionally, the marker includes an affinity based screening marker. See Francisco, J. A., et al., (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A. 90:10444-8.

5

10

30

[0086] Additional general methods for producing a recombinant orthogonal tRNA can be found, e.g., in International patent application WO 2002/086075, *supra*; and patent applications USSN 60/496,548, USSN 60/479,931, and USSN 60/463,869, *supra*. See also Forster et al., (2003) *Programming peptidomimetic synthetases by translating genetic codes designed de novo* PNAS 100(11):6353-6357; and, Feng et al., (2003), *Expanding tRNA recognition of a tRNA synthetase by a single amino acid change*, PNAS 100(10): 5676-5681.

Orthogonal aminoacyl-tRNA synthetase (O-RS)

O-tRNA with a selected amino acid *in vitro* or *in vivo*. A glutamyl O-RS of the invention can be provided to the translation system, e.g., a cell, by a polypeptide that includes a glutamyl O-RS and/or by a polynucleotide that encodes a glutamyl O-RS or a portion thereof. For example, a glutamyl O-RS, or a portion thereof, is encoded by a polynucleotide sequence as set forth in any one of SEQ ID NO.: 68, 72, 74, or 76, or a complementary polynucleotide sequence thereof. In another example, a glutamyl O-RS comprises an amino acid sequence as set forth in any one of SEQ ID NO.: SEQ ID NO.: 69, 73, 75 and/or 77, or a conservative variation thereof. *See, e.g.*, Table 3 and Example 2, herein, for sequences of exemplary glutamyl O-RS molecules. *See also*, the section entitled "Nucleic Acid and Polypeptide Sequence and Variants" herein.

[0088] Methods for identifying an orthogonal glutamyl aminoacyl-tRNA synthetase (O-RS), e.g., a glutamyl O-RS, for use with a glutamyl O-tRNA, are also a feature of the invention. For example, a method includes subjecting to selection, e.g., positive selection, a population of cells of a first species, where the cells individually comprise: 1) a member of a plurality of aminoacyl-tRNA synthetases (RSs), (e.g., the plurality of RSs can include mutant RSs, RSs derived from a species other than the first species or both mutant RSs and RSs derived from a species other than the first species); 2) the orthogonal tRNA (O-tRNA)

5

10

15

20

25

30

(e.g., from one or more species); and 3) a polynucleotide that encodes a (e.g., positive) selection marker and comprises at least one selector codon. Cells are selected or screened for those that show an enhancement in suppression efficiency compared to cells lacking or with a reduced amount of the member of the plurality of glutamyl RSs. Suppression efficiency can be measured by techniques known in the art and as described herein. Cells having an enhancement in suppression efficiency comprise an active glutamyl RS that aminoacylates the glutamyl O-tRNA. A level of aminoacylation (in vitro or in vivo) by the active RS of a first set of tRNAs from the first species is compared to the level of aminoacylation (in vitro or in vivo) by the active RS of a second set of tRNAs from the second species. The level of aminoacylation can be determined by a detectable substance (e.g., a labeled amino acid or unnatural amino acid). The active RS that more efficiently aminoacylates the second set of tRNAs compared to the first set of tRNAs is typically selected, thereby providing an efficient (optimized) orthogonal glutamyl aminoacyl-tRNA synthetase for use with the glutamyl O-tRNA. A glutamyl O-RS, identified by the method is also a feature of the invention.

[0089] Any of a number of assays can be used to determine aminoacylation. These assays can be performed *in vitro* or *in vivo*. For example, *in vitro* aminoacylation assays are described in, e.g., Hoben and Soll (1985) Methods Enzymol. 113:55-59. Aminoacylation can also be determined by using a reporter along with orthogonal translation components and detecting the reporter in a cell expressing a polynucleotide comprising at least one selector codon that encodes a protein. *See also*, International Publication No. WO 2002/085923, and, International Application Number PCT/US2004/011786.

[0090] Identified glutamyl O-RS can be further manipulated to alter the substrate specificity of the synthetase, so that only a desired unnatural amino acid, but not any of the common 20 amino acids are charged to the glutamyl O-tRNA. Methods to generate an orthogonal glutamyl aminoacyl tRNA synthetase with a substrate specificity for an unnatural amino acid include mutating the synthetase, e.g., at the active site in the synthetase, at the editing mechanism site in the synthetase, at different sites by combining different domains of synthetases, or the like, and applying a selection process. A strategy is used, which is based on the combination of a positive selection followed by a negative selection. In the positive selection, suppression of the selector codon introduced at a nonessential position(s) of a positive marker allows cells to survive under positive selection

pressure. In the presence of both natural and unnatural amino acids, survivors thus encode active synthetases charging the orthogonal suppressor tRNA with either a natural or unnatural amino acid. In the negative selection, suppression of a selector codon introduced at a nonessential position(s) of a negative marker removes synthetases with natural amino acid specificities. Survivors of the negative and positive selection encode synthetases that aminoacylate (charge) the orthogonal suppressor tRNA with unnatural amino acids only. These synthetases can then be subjected to further mutagenesis, e.g., DNA shuffling or other recursive mutagenesis methods.

5

10

15

20

25

30

[0091] A library of mutant glutamyl O-RSs can be generated using various mutagenesis techniques known in the art. For example, the mutant RSs can be generated by site-specific mutations, random point mutations, homologous recombination, DNA shuffling or other recursive mutagenesis methods, chimeric construction or any combination thereof. For example, a library of mutant glutamyl RSs can be produced from two or more other, e.g., smaller, less diverse "sub-libraries." Chimeric libraries of RSs are also included in the invention. It should be noted that libraries of tRNA synthetases from various organism (e.g., microorganisms such as eubacteria or archaebacteria) such as libraries that comprise natural diversity (see, e.g., U.S. Patent No. 6,238,884 to Short et al; U.S. Patent No. 5,756,316 to Schallenberger et al; U.S. Patent No. 5,783,431 to Petersen et al; U.S. Patent No. 5,824,485 to Thompson et al; U.S. Patent No. 5,958,672 to Short et al), are optionally constructed and screened for orthogonal pairs.

[0092] Once the synthetases are subject to the positive and negative selection/screening strategy, these synthetases can then be subjected to further mutagenesis. For example, a nucleic acid that encodes the glutamyl O-RS can be isolated; a set of polynucleotides that encode mutated glutamyl O-RSs (e.g., by random mutagenesis, site-specific mutagenesis, recombination or any combination thereof) can be generated from the nucleic acid; and, these individual steps or a combination of these steps can be repeated until a mutated glutamyl O-RS is obtained that preferentially aminoacylates the glutamyl O-tRNA with the unnatural amino acid. In one aspect of the invention, the steps are performed multiple times, e.g., at least two times.

[0093] Additional levels of selection/screening stringency can also be used in the methods of the invention, for producing glutamyl O-tRNA, glutamyl O-RS, or pairs thereof. The selection or screening stringency can be varied on one or both steps of the method to

produce an O-RS. This could include, e.g., varying the amount of selection/screening agent that is used, etc. Additional rounds of positive and/or negative selections can also be performed. Selecting or screening can also comprise one or more of a change in amino acid permeability, a change in translation efficiency, a change in translational fidelity, etc.

Typically, the one or more change is based upon a mutation in one or more gene in an organism in which an orthogonal tRNA-tRNA synthetase pair is used to produce protein.

[0094] Additional general information regarding generating O-RS, and altering the substrate specificity of the synthetase can be found in International Publication Number WO 2002/086075, and, International Application Number PCT/US2004/011786.

10 SOURCE AND HOST ORGANISMS

15

20

25

30

[0095] The translational components of the invention can be derived from noneukaryotic organisms. For example, the glutamyl O-tRNA can be derived from a noneukaryotic organism (or a combination of organisms), e.g., an archaebacterium, such as Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Halobacterium such as Haloferax volcanii and Halobacterium species NRC-1, Archaeoglobus fulgidus, Pyrococcus furiosus, Pyrococcus horikoshii, Aeuropyrum pernix, Methanococcus maripaludis, Methanopyrus kandleri, Methanosarcina mazei (Mm), Pyrobaculum aerophilum, Pyrococcus abyssi, Sulfolobus solfataricus (Ss), Sulfolobus tokodaii, Thermoplasma acidophilum, Thermoplasma volcanium, or the like, or a eubacterium, such as Escherichia coli, Thermus thermophilus, Bacillus stearothermophilus, or the like, while the glutamyl O-RS can be derived from a non-eukaryotic organism (or a combination of organisms), e.g., an archaebacterium, such as Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Halobacterium such as Haloferax volcanii and Halobacterium species NRC-1, Archaeoglobus fulgidus, Pyrococcus furiosus, Pyrococcus horikoshii, Aeuropyrum pernix, Methanococcus maripaludis, Methanopyrus kandleri, Methanosarcina mazei, Pyrobaculum aerophilum, Pyrococcus abyssi, Sulfolobus solfataricus, Sulfolobus tokodaii, Thermoplasma acidophilum, Thermoplasma volcanium, or the like, or a eubacterium, such as Escherichia coli, Thermus thermophilus, Bacillus stearothermophilus, or the like. In one embodiment, eukaryotic sources, e.g., plants, algae, protists, fungi, yeasts, animals (e.g., mammals, insects, arthropods, etc.), or the like, can

also be used as sources of glutamyl O-tRNAs and glutamyl O-RSs.

[0096] The individual components of a glutamyl O-tRNA/O-RS pair can be derived from the same organism or different organisms. In one embodiment, the glutamyl O-tRNA/O-RS pair is from the same organism. Alternatively, the glutamyl O-tRNA and the glutamyl O-RS of the glutamyl O-tRNA/O-RS pair are from different organisms. For example, the glutamyl O-tRNA can be derived from, e.g., from a collection of archaeal organisms, and glutamyl O-RS can be derived from, e.g., an *Archaeoglobus fulgidus* (Af), a *Methanosarcina mazei* (Mm), a *Methanobacterium thermoautotrophicum* (Mt), a *Pyrococcus horikoshii* (Ph), etc.), a *Methanosarcina mazei* or the like.

[0097] The glutamyl O-tRNA, glutamyl O-RS or glutamyl O-tRNA/O-RS pair can be selected or screened in vivo or in vitro and/or used in a cell, e.g., a non-eukaryotic cells, or eukaryotic cells, to produce a polypeptide with a selected amino acid. A non-eukaryotic cell can be from a variety of sources, e.g., a eubacterium, such as Escherichia coli, Thermus thermophilus, Bacillus stearothermophilus, or the like, or an archaebacterium, such as Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Halobacterium such as Haloferax volcanii and Halobacterium species NRC-1, Archaeoglobus fulgidus, Pyrococcus furiosus, Pyrococcus horikoshii, Aeuropyrum pernix, Methanococcus maripaludis, Methanopyrus kandleri, Methanosarcina mazei (Mm), Pyrobaculum aerophilum, Pyrococcus abyssi, Sulfolobus solfataricus (Ss), Sulfolobus tokodaii, Thermoplasma acidophilum, Thermoplasma volcanium, or the like. A eukaryotic cell can be from any of a variety of sources, e.g., a plant (e.g., complex plant such as monocots, or dicots), an algae, a protist, a fungus, a yeast (e.g., Saccharomyces cerevisiae), an animal (e.g., a mammal, an insect, an arthropod, etc.), or the like. Compositions of cells with translational components of the invention are also a feature of the invention.

[0098] See also, International Application Number PCT/US2004/011786 for screening O-tRNA and/or O-RS in one species for use in another species.

SELECTOR CODONS

5

10

15

20

25

30

[0099] Selector codons of the invention expand the genetic codon framework of protein biosynthetic machinery. For example, a selector codon includes, e.g., a unique three base codon, a nonsense codon, such as a stop codon, e.g., an amber codon (UAG), or an opal codon (UGA), an unnatural codon, at least a four base codon, a rare codon, or the like. A number of selector codons can be introduced into a desired gene, e.g., one or more, two

or more, more than three, etc. By using different selector codons, multiple orthogonal tRNA/synthetase pairs can be used that allow the simultaneous incorporation of multiple selected amino acids, e.g., unnatural amino acids, using these different selector codons.

[0100]In one embodiment, the methods involve the use of a selector codon that is a 5 stop codon for the incorporation of a selected amino acid in vivo in a cell. For example, a glutamyl O-tRNA is produced that recognizes the stop codon and is aminoacylated by a glutamyl O-RS with a selected amino acid. This glutamyl O-tRNA is not recognized by the naturally occurring host's aminoacyl-tRNA synthetases. Conventional site-directed mutagenesis can be used to introduce the stop codon at the site of interest in a 10 polynucleotide encoding a polypeptide of interest. See, e.g., Sayers, J.R., et al. (1988), 5',3' Exonuclease in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res, 791-802. When the glutamyl O-RS, glutamyl O-tRNA and the nucleic acid that encodes a polypeptide of interest are combined, e.g., in vivo, the selected amino acid is incorporated in response to the stop codon to give a polypeptide containing the selected 15 amino acid at the specified position. In one embodiment of the invention, a stop codon used as a selector codon is an amber codon, UAG, and/or an opal codon, UGA. In one example, a genetic code in which UAG and UGA are both used as a selector codon can encode 22 amino acids while preserving the ochre nonsense codon, UAA, which is the most abundant termination signal.

[0101] The incorporation of selected amino acids, *in vivo*, can be done without significant perturbation of the host cell. For example, in non-eukaryotic cells, such as *Escherichia coli*, because the suppression efficiency for the UAG codon depends upon the competition between the O-tRNA, e.g., the amber suppressor tRNA, and the release factor 1 (RF1) (which binds to the UAG codon and initiates release of the growing peptide from the ribosome), the suppression efficiency can be modulated by, e.g., either increasing the expression level of O-tRNA, e.g., the suppressor tRNA, or using an RF1 deficient strain. In eukaryotic cells, because the suppression efficiency for the UAG codon depends upon the competition between the O-tRNA, e.g., the amber suppressor tRNA, and a eukaryotic release factor (e.g., eRF) (which binds to a stop codon and initiates release of the growing peptide from the ribosome), the suppression efficiency can be modulated by, e.g., increasing the expression level of O-tRNA, e.g., the suppressor tRNA.

20

25

30

[0102] Selected amino acids can also be encoded with rare codons. For example, when the arginine concentration in an in vitro protein synthesis reaction is reduced, the rare arginine codon, AGG, has proven to be efficient for insertion of Ala by a synthetic tRNA acylated with alanine. *See, e.g.*, Ma et al., <u>Biochemistry</u>, 32:7939 (1993). In this case, the synthetic tRNA competes with the naturally occurring tRNAArg, which exists as a minor species in *Escherichia coli*. In addition, some organisms do not use all triplet codons. An unassigned codon AGA in *Micrococcus luteus* has been utilized for insertion of amino acids in an in vitro transcription/translation extract. *See, e.g.*, Kowal and Oliver, <u>Nucl. Acid.</u> Res., 25:4685 (1997). Components of the invention can be generated to use these rare codons in vivo.

5

10

15

20

[0103] Selector codons can also comprise extended codons, e.g., four or more base codons, such as, four, five, six or more base codons. Examples of four base codons include, e.g., AGGA, CUAG, UAGA, CCCU, and the like. Examples of five base codons include, e.g., AGGAC, CCCCU, CCCUC, CUAGA, CUACU, UAGGC, and the like. Methods of the invention include using extended codons based on frameshift suppression. Four or more base codons can insert, e.g., one or multiple selected amino acids, e.g., unnatural amino acids, into the same protein. In other embodiments, the anticodon loops can decode, e.g., at least a four-base codon, at least a five-base codon, or at least a six-base codon or more. Since there are 256 possible four-base codons, multiple unnatural amino acids can be encoded in the same cell using a four or more base codon. *See also*, Anderson et al., (2002) *Exploring the Limits of Codon and Anticodon Size*, Chemistry and Biology, 9:237-244; and, Magliery, (2001) *Expanding the Genetic Code: Selection of Efficient Suppressors of Fourbase Codons and Identification of "Shifty" Four-base Codons with a Library Approach in Escherichia coli*, J. Mol. Biol. 307: 755-769.

25 [0104] For example, four-base codons have been used to incorporate unnatural amino acids into proteins using in vitro biosynthetic methods. *See, e.g.*, Ma et al., (1993) Biochemistry, 32:7939; and Hohsaka et al., (1999) J. Am. Chem. Soc., 121:34. CGGG and AGGU were used to simultaneously incorporate 2-naphthylalanine and an NBD derivative of lysine into streptavidin in vitro with two chemically acylated frameshift suppressor tRNAs. *See, e.g.*, Hohsaka et al., (1999) J. Am. Chem. Soc., 121:12194. In an in vivo study, Moore et al. examined the ability of tRNA^{Leu} derivatives with NCUA anticodons to suppress UAGN codons (N can be U, A, G, or C), and found that the quadruplet UAGA can

be decoded by a tRNA^{Leu} with a UCUA anticodon with an efficiency of 13 to 26% with little decoding in the 0 or -1 frame. *See* Moore et al., (2000) <u>J. Mol. Biol.</u>, 298:195. In one embodiment, extended codons based on rare codons or nonsense codons can be used in invention, which can reduce missense readthrough and frameshift suppression at other unwanted sites.

5

[0105] For a given system, a selector codon can also include one of the natural three base codons, where the endogenous system does not use (or rarely uses) the natural base codon. For example, this includes a system that is lacking a tRNA that recognizes the natural three base codon, and/or a system where the three base codon is a rare codon.

10 [0106] Selector codons optionally include unnatural base pairs. These unnatural base pairs further expand the existing genetic alphabet. One extra base pair increases the number of triplet codons from 64 to 125. Properties of third base pairs include stable and selective base pairing, efficient enzymatic incorporation into DNA with high fidelity by a polymerase, and the efficient continued primer extension after synthesis of the nascent unnatural base pair. Descriptions of unnatural base pairs which can be adapted for methods and compositions include, e.g., Hirao, et al., (2002) An unnatural base pair for incorporating amino acid analogues into protein, Nature Biotechnology, 20:177-182. See also Wu, Y., et al., (2002) J. Am. Chem. Soc. 124:14626-14630. Other relevant publications are listed below.

[0107] 20 For in vivo usage, the unnatural nucleoside is membrane permeable and is phosphorylated to form the corresponding triphosphate. In addition, the increased genetic information is stable and not destroyed by cellular enzymes. Previous efforts by Benner and others took advantage of hydrogen bonding patterns that are different from those in canonical Watson-Crick pairs, the most noteworthy example of which is the iso-C:iso-G 25 pair. See, e.g., Switzer et al., (1989) J. Am. Chem. Soc., 111:8322; and Piccirilli et al., (1990) Nature, 343:33; Kool, (2000) Curr. Opin. Chem. Biol., 4:602. These bases in general mispair to some degree with natural bases and cannot be enzymatically replicated. Kool and co-workers demonstrated that hydrophobic packing interactions between bases can replace hydrogen bonding to drive the formation of base pair. See Kool, (2000) Curr. Opin. Chem. Biol., 4:602; and Guckian and Kool, (1998) Angew. Chem. Int. Ed. Engl., 36, 30 2825. In an effort to develop an unnatural base pair satisfying all the above requirements, Schultz, Romesberg and co-workers have systematically synthesized and studied a series of

unnatural hydrophobic bases. A PICS:PICS self-pair is found to be more stable than natural base pairs, and can be efficiently incorporated into DNA by Klenow fragment of Escherichia coli DNA polymerase I (KF). *See*, *e.g.*, McMinn et al., (1999) J. Am. Chem. Soc., 121:11586; and Ogawa et al., (2000) J. Am. Chem. Soc., 122:3274. A 3MN:3MN self-pair can be synthesized by KF with efficiency and selectivity sufficient for biological function. *See*, *e.g.*, Ogawa et al., (2000) J. Am. Chem. Soc., 122:8803. However, both bases act as a chain terminator for further replication. A mutant DNA polymerase has been recently evolved that can be used to replicate the PICS self pair. In addition, a 7AI self pair can be replicated. *See*, *e.g.*, Tae et al., (2001) J. Am. Chem. Soc., 123:7439. A novel metallobase pair, Dipic:Py, has also been developed, which forms a stable pair upon binding Cu(II). *See* Meggers et al., (2000) J. Am. Chem. Soc., 122:10714. Because extended codons and unnatural codons are intrinsically orthogonal to natural codons, the methods of the invention can take advantage of this property to generate orthogonal tRNAs for them.

[0108] A translational bypassing system can also be used to incorporate a selected amino acid in a desired polypeptide. In a translational bypassing system, a large sequence is inserted into a gene but is not translated into protein. The sequence contains a structure that serves as a cue to induce the ribosome to hop over the sequence and resume translation downstream of the insertion.

SELECTED AMINO ACIDS

5

10

15

30

j

20 [0109] As used herein, a selected amino acid refers to any desired naturally occurring amino acid or unnatural amino acid. A naturally occurring amino acid includes any one of the twenty genetically encoded alpha-amino acids: alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine.

25 In one embodiment, the selected amino acid is incorporated into a growing polypeptide chain with high fidelity, e.g., at greater than 75% efficiency for a given selector codon, at greater than about 80% efficiency for a given selector codon, at greater than about 90% efficiency for a given selector codon, or at greater than about 95% efficiency for a given selector codon.

[0110] As used herein, an unnatural amino acid refers to any amino acid, modified amino acid, or amino acid analogue other than selenocysteine and/or pyrrolysine and the

following twenty genetically encoded alpha-amino acids: alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine. The generic structure of an alpha-amino acid is illustrated by Formula I:

5

10

15

20

25

(

[0111] An unnatural amino acid is typically any structure having Formula I wherein the R group is any substituent other than one used in the twenty natural amino acids. *See* e.g., <u>Biochemistry</u> by L. Stryer, 3rd ed. 1988, Freeman and Company, New York, for structures of the twenty natural amino acids. Note that, the unnatural amino acids of the invention can be naturally occurring compounds other than the twenty alpha-amino acids above.

[0112]Because the unnatural amino acids of the invention typically differ from the natural amino acids in side chain, the unnatural amino acids form amide bonds with other amino acids, e.g., natural or unnatural, in the same manner in which they are formed in naturally occurring proteins. However, the unnatural amino acids have side chain groups that distinguish them from the natural amino acids. For example, R in Formula I optionally comprises an alkyl-, aryl-, acyl-, keto-, azido-, hydroxyl-, hydrazine, cyano-, halo-, hydrazide, alkenyl, alkynyl, ether, thiol, seleno-, sulfonyl-, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, ester, thioacid, hydroxylamine, amine, and the like, or any combination thereof. Other unnatural amino acids of interest include, but are not limited to, amino acids comprising a photoactivatable cross-linker, spin-labeled amino acids, fluorescent amino acids, metal binding amino acids, metal-containing amino acids, radioactive amino acids, amino acids with novel functional groups, amino acids that covalently or noncovalently interact with other molecules, photocaged and/or photoisomerizable amino acids, biotin or biotin-analogue containing amino acids, keto containing amino acids, amino acids comprising polyethylene glycol or polyether, heavy atom substituted amino acids, chemically cleavable or photocleavable amino acids, amino acids with an elongated side chain as compared to natural amino acids

(e.g., polyethers or long chain hydrocarbons, e.g., greater than about 5, greater than about 10 carbons, etc.), carbon-linked sugar-containing amino acids, amino thioacid containing amino acids, and amino acids containing one or more toxic moiety. In some embodiments, the unnatural amino acids have a photoactivatable cross-linker that is used, e.g., to link a protein to a solid support. In one embodiment, the unnatural amino acids have a saccharide moiety attached to the amino acid side chain (e.g., glycosylated amino acids) and/or other carbohydrate modification.

[0113] In addition to unnatural amino acids that contain novel side chains, unnatural amino acids also optionally comprise modified backbone structures, e.g., as illustrated by the structures of Formula II and III:

$$\prod_{Z \xrightarrow{\mathsf{C}} \mathsf{C} \to \mathsf{YH}}$$

5

10

15

20

wherein Z typically comprises OH, NH₂, SH, NH-R', or S-R'; X and Y, which can be the same or different, typically comprise S or O, and R and R', which are optionally the same or different, are typically selected from the same list of constituents for the R group described above for the unnatural amino acids having Formula I as well as hydrogen. For example, unnatural amino acids of the invention optionally comprise substitutions in the amino or carboxyl group as illustrated by Formulas II and III. Unnatural amino acids of this type include, but are not limited to, α -hydroxy acids, α -thioacids α -aminothiocarboxylates, e.g., with side chains corresponding to the common twenty natural amino acids or unnatural side chains. In addition, substitutions at the α -carbon optionally include L, D, or α - α -

disubstituted amino acids such as D-glutamate, D-alanine, D-methyl-O-tyrosine, aminobutyric acid, and the like. Other structural alternatives include cyclic amino acids, such as proline analogues as well as 3,4,6,7,8, and 9 membered ring proline analogues, β and γ amino acids such as substituted β -alanine and γ -amino butyric acid. Additional unnatural amino acid structures of the invention include homo-beta-type structures, e.g., where there is, e.g., a methylene or amino group sandwiched adjacent to the alpha carbon, e.g., isomers of homo-beta-tyrosine, alpha-hydrazino-tyrosine. *See, e.g.*,

$$H_2N$$
 N
 CO_2H
 H_2N
 CO_2H
 OH
 CO_2H
 OH
 CO_2H
 OH
 CO_2H

10

15

20

25

5

Many unnatural amino acids are based on natural amino acids, such as [0114] glutamine, tyrosine, phenylalanine, and the like. For example, glutamine analogs of the invention include, but are not limited to, α -hydroxy derivatives, γ -substituted derivatives, cyclic derivatives, and amide substituted glutamine derivatives. Tyrosine analogs include para-substituted tyrosines, ortho-substituted tyrosines, and meta substituted tyrosines, wherein the substituted tyrosine comprises an acetyl group, a benzoyl group, an amino group, a hydrazine, an hydroxyamine, a thiol group, a carboxy group, an isopropyl group, a methyl group, a C₆ - C₂₀ straight chain or branched hydrocarbon, a saturated or unsaturated hydrocarbon, an O-methyl group, a polyether group, a nitro group, or the like. In addition, multiply substituted aryl rings are also contemplated. Example phenylalanine analogs include, but are not limited to, para-substituted phenylalanines, ortho-substituted phenyalanines, and meta-substituted phenylalanines, wherein the substituent comprises a hydroxy group, a methoxy group, a methyl group, an allyl group, an aldehyde or keto group, or the like. Specific examples of unnatural amino acids include, but are not limited to, a pacetyl-L- phenylalanine, a p-propargyloxyphenylalanine, O-methyl-L-tyrosine, an L-3-(2naphthyl)alanine, a 3-methyl-phenylalanine, an O-4-allyl-L-tyrosine, a 4-propyl-L-tyrosine, a tri-O-acetyl-GlcNAcβ-serine, an L-Dopa, a fluorinated phenylalanine, an isopropyl-Lphenylalanine, a p-azido-L-phenylalanine, a p-acyl-L-phenylalanine, a p-benzoyl-L-

phenylalanine, an L-phosphoserine, a phosphonoserine, a phosphonotyrosine, a p-iodophenylalanine, a p-bromophenylalanine, a p-amino-L-phenylalanine, and an isopropyl-L-phenylalanine, and the like. The structures of a variety of unnatural amino acids are provided in, for example, Figures 16, 17, 18, 19, 26, and 29 of WO 2002/085923, *supra*.

5

10

15

30

Chemical Synthesis of Unnatural Amino Acids
[0115] Many of the unnatural amino acids provided above are commercially available, e.g., from Sigma (USA) or Aldrich (Milwaukee, WI, USA). Those that are not commercially available are optionally synthesized as provided in various publications or using standard methods known to those of skill in the art. For organic synthesis techniques, see, e.g., Organic Chemistry by Fessendon and Fessendon, (1982, Second Edition, Willard Grant Press, Boston Mass.); Advanced Organic Chemistry by March (Third Edition, 1985, Wiley and Sons, New York); and Advanced Organic Chemistry by Carey and Sundberg (Third Edition, Parts A and B, 1990, Plenum Press, New York). Additional publications describing the synthesis of unnatural amino acids include, e.g., WO 2002/085923, supra; Matsoukas et al., (1995) J. Med. Chem., 38, 4660-4669; King, F.E. & Kidd, D.A.A. (1949) A New Synthesis of Glutamine and of γ-Dipeptides of Glutamic Acid from Phthylated Intermediates. J. Chem. Soc., 3315-3319; Friedman, O.M. & Chatterrji, R. (1959) Synthesis

81, 3750-3752; Craig, J.C. et al. (1988) Absolute Configuration of the Enantiomers of 720 Chloro-4 [[4-(diethylamino)-1-methylbutyl]amino]quinoline (Chloroquine). J. Org. Chem.
53, 1167-1170; Azoulay, M., Vilmont, M. & Frappier, F. (1991) Glutamine analogues as
Potential Antimalarials,. Eur. J. Med. Chem. 26, 201-5; Koskinen, A.M.P. & Rapoport, H.
(1989) Synthesis of 4-Substituted Prolines as Conformationally Constrained Amino Acid
Analogues. J. Org. Chem. 54, 1859-1866; Christie, B.D. & Rapoport, H. (1985) Synthesis of
25 Optically Pure Pipecolates from L-Asparagine. Application to the Total Synthesis of (+)-

of Derivatives of Glutamine as Model Substrates for Anti-Tumor Agents. J. Am. Chem. Soc.

Apovincamine through Amino Acid Decarbonylation and Iminium Ion Cyclization. J. Org. Chem. 1989:1859-1866; Barton et al., (1987) Synthesis of Novel a-Amino-Acids and Derivatives Using Radical Chemistry: Synthesis of L- and D-a-Amino-Adipic Acids, L-a-aminopimelic Acid and Appropriate Unsaturated Derivatives. Tetrahedron Lett. 43:4297-4308; and, Subasinghe et al., (1992) Quisqualic acid analogues: synthesis of beta-heterocyclic 2-aminopropanoic acid derivatives and their activity at a novel quisqualate-

sensitized site. <u>J. Med. Chem.</u> 35:4602-7. See also, International Application Number PCT/US03/41346, entitled "Protein Arrays," filed on December 22, 2003.

Cellular uptake of unnatural amino acids

5

10

15

20

25

30

[0116] Unnatural amino acid uptake by a cell is one issue that is typically considered when designing and selecting unnatural amino acids, e.g., for incorporation into a protein. For example, the high charge density of α-amino acids suggests that these compounds are unlikely to be cell permeable. Natural amino acids are taken up into the cell via a collection of protein-based transport systems often displaying varying degrees of amino acid specificity. A rapid screen can be done which assesses which unnatural amino acids, if any, are taken up by cells. *See*, e.g., International Application Number PCT/US03/41346, entitled "Protein Arrays," filed on December 22, 2003; and Liu, D.R. & Schultz, P.G. (1999) *Progress toward the evolution of an organism with an expanded genetic code*. PNAS United States 96:4780-4785. Although uptake is easily analyzed with various assays, an alternative to designing unnatural amino acids that are amenable to cellular uptake pathways is to provide biosynthetic pathways to create amino acids *in vivo*.

Biosynthesis of Unnatural Amino Acids

[0117]Many biosynthetic pathways already exist in cells for the production of amino acids and other compounds. While a biosynthetic method for a particular unnatural amino acid may not exist in nature, e.g., in a cell, the invention provides such methods. For example, biosynthetic pathways for unnatural amino acids are optionally generated in a host cell by adding new enzymes or modifying existing host cell pathways. Additional new enzymes are optionally naturally occurring enzymes or artificially evolved enzymes. For example, the biosynthesis of p-aminophenylalanine (as presented in an example in WO 2002/085923, supra) relies on the addition of a combination of known enzymes from other organisms. The genes for these enzymes can be introduced into a cell by transforming the cell with a plasmid comprising the genes. The genes, when expressed in the cell, provide an enzymatic pathway to synthesize the desired compound. Examples of the types of enzymes that are optionally added are provided in the examples below. Additional enzyme sequences are found, e.g., in Genbank. Artificially evolved enzymes are also optionally added into a cell in the same manner. In this manner, the cellular machinery and resources of a cell are manipulated to produce unnatural amino acids.

5

10

15

20

25

30

Indeed, any of a variety of methods can be used for producing novel [0118]enzymes for use in biosynthetic pathways, or for evolution of existing pathways, for the production of unnatural amino acids, in vitro or in vivo. Many available methods of evolving enzymes and other biosynthetic pathway components can be applied to the present invention to produce unnatural amino acids (or, indeed, to evolve synthetases to have new substrate specificities or other activities of interest). For example, DNA shuffling is optionally used to develop novel enzymes and/or pathways of such enzymes for the production of unnatural amino acids (or production of new synthetases), in vitro or in vivo. See, e.g., Stemmer (1994), Rapid evolution of a protein in vitro by DNA shuffling, Nature 370(4):389-391; and, Stemmer, (1994), DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution, Proc. Natl. Acad. Sci. USA., 91:10747-10751. A related approach shuffles families of related (e.g., homologous) genes to quickly evolve enzymes with desired characteristics. An example of such "family gene shuffling" methods is found in Crameri et al. (1998) "DNA shuffling of a family of genes from diverse species accelerates directed evolution" Nature, 391(6664): 288-291. New enzymes (whether biosynthetic pathway components or synthetases) can also be generated using a DNA recombination procedure known as "incremental truncation for the creation of hybrid enzymes" ("ITCHY"), e.g., as described in Ostermeier et al. (1999) "A combinatorial approach to hybrid enzymes independent of DNA homology" Nature Biotech 17:1205. This approach can also be used to generate a library of enzyme or other pathway variants which can serve as substrates for one or more in vitro or in vivo recombination methods. See also, Ostermeier et al. (1999) "Combinatorial Protein Engineering by Incremental Truncation," Proc. Natl. Acad. Sci. USA, 96: 3562-67, and Ostermeier et al. (1999), "Incremental Truncation as a Strategy in the Engineering of Novel Biocatalysts," Biological and Medicinal Chemistry, 7: 2139-44. Another approach uses exponential ensemble mutagenesis to produce libraries of enzyme or other pathway variants that are, e.g., selected for an ability to catalyze a biosynthetic reaction relevant to producing an unnatural amino acid (or a new synthetase). In this approach, small groups of residues in a sequence of interest are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. Examples of such procedures, which can be adapted to the present invention to produce new enzymes for the production of unnatural amino acids (or new synthetases) are found in Delegrave & Youvan (1993) Biotechnology Research 11:1548-1552. In yet another approach, random or semi-random mutagenesis

using doped or degenerate oligonucleotides for enzyme and/or pathway component engineering can be used, e.g., by using the general mutagenesis methods of e.g., Arkin and Youvan (1992) "Optimizing nucleotide mixtures to encode specific subsets of amino acids for semi-random mutagenesis" <u>Biotechnology</u> 10:297-300; or Reidhaar-Olson et al. (1991) "Random mutagenesis of protein sequences using oligonucleotide cassettes" <u>Methods</u> <u>Enzymol</u>. 208:564-86. Yet another approach, often termed a "non-stochastic" mutagenesis, which uses polynucleotide reassembly and site-saturation mutagenesis can be used to produce enzymes and/or pathway components, which can then be screened for an ability to perform one or more synthetase or biosynthetic pathway function (e.g., for the production of unnatural amino acids in vivo). *See, e.g.*, Short "Non-Stochastic Generation of Genetic Vaccines and Enzymes" WO 00/46344.

5

10

15

20

25

30

[0119] An alternative to such mutational methods involves recombining entire genomes of organisms and selecting resulting progeny for particular pathway functions (often referred to as "whole genome shuffling"). This approach can be applied to the present invention, e.g., by genomic recombination and selection of an organism (e.g., an *E. coli* or other cell) for an ability to produce an unnatural amino acid (or intermediate thereof). For example, methods taught in the following publications can be applied to pathway design for the evolution of existing and/or new pathways in cells to produce unnatural amino acids in vivo: Patnaik et al. (2002) "Genome shuffling of lactobacillus for improved acid tolerance" Nature Biotechnology, 20(7): 707-712; and Zhang et al. (2002) "Genome shuffling leads to rapid phenotypic improvement in bacteria" Nature, February 7, 415(6872): 644-646.

[0120] Other techniques for organism and metabolic pathway engineering, e.g., for the production of desired compounds are also available and can also be applied to the production of unnatural amino acids. Examples of publications teaching useful pathway engineering approaches include: Nakamura and White (2003) "Metabolic engineering for the microbial production of 1,3 propanediol" Curr. Opin. Biotechnol. 14(5):454-9; Berry et al. (2002) "Application of Metabolic Engineering to improve both the production and use of Biotech Indigo" J. Industrial Microbiology and Biotechnology 28:127-133; Banta et al. (2002) "Optimizing an artificial metabolic pathway: Engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis"

<u>Biochemistry</u>, 41(20), 6226-36; Selivonova et al. (2001) "Rapid Evolution of Novel Traits in Microorganisms" <u>Applied and Environmental Microbiology</u>, 67:3645, and many others.

Regardless of the method used, typically, the unnatural amino acid produced with an engineered biosynthetic pathway of the invention is produced in a concentration sufficient for efficient protein biosynthesis, e.g., a natural cellular amount, but not to such a degree as to significantly affect the concentration of other cellular amino acids or to exhaust cellular resources. Typical concentrations produced *in vivo* in this manner are about 10 mM to about 0.05 mM. Once a cell is engineered to produce enzymes desired for a specific pathway and an unnatural amino acid is generated, *in vivo* selections are optionally used to further optimize the production of the unnatural amino acid for both ribosomal protein synthesis and cell growth.

NUCLEIC ACID AND POLYPEPTIDE SEQUENCE AND VARIANTS

5

10

15

20

25

30

[0122] As described above and below, the invention provides for nucleic acid polynucleotide sequences, e.g., glutamyl O-tRNAs and glutamyl O-RSs, and polypeptide amino acid sequences, e.g., glutamyl O-RSs, and, e.g., compositions, systems and methods comprising said sequences. Examples of said sequences, e.g., glutamyl O-tRNAs and glutamyl O-RSs are disclosed herein (*see*, e.g., SEQ ID NO. 67, 68, 72, 74, 76, 69, 73, 75 and/or 77, along with others listed in Table 3 herein). However, one of skill in the art will appreciate that the invention is not limited to those sequences disclosed herein, e.g., as in the Examples. One of skill will appreciate that the invention also provides many related and even unrelated sequences with the functions described herein, e.g., encoding a glutamyl O-tRNA or a glutamyl O-RS.

[0123] The invention provides polypeptides (glutamyl O-RSs) and polynucleotides, e.g., glutamyl O-tRNA, polynucleotides that encode glutamyl O-RSs or portions thereof, oligonucleotides used to isolate aminoacyl-tRNA synthetase clones, etc. Polynucleotides of the invention include those that encode proteins or polypeptides of interest of the invention with one or more selector codon. In addition, polynucleotides of the invention include, e.g., a polynucleotide comprising a nucleotide sequence comprising SEQ ID NO.: 67; a polynucleotide that is complementary to or that encodes a polynucleotide sequence thereof. A polynucleotide of the invention also includes a polynucleotide that encodes a polypeptide of the invention. Similarly, an artificial nucleic acid that hybridizes to a polynucleotide

indicated above under highly stringent conditions over substantially the entire length of the nucleic acid (and is other than a naturally polynucleotide) is a polynucleotide of the invention. In one embodiment, a composition includes a polypeptide of the invention and an excipient (e.g., buffer, water, pharmaceutically acceptable excipient, etc.).

5 [0124] The invention also provides an antibody or antisera specifically immunoreactive with a polypeptide of the invention. A polynucleotide of the invention also includes an artificial polynucleotide that is, e.g., at least 75%, at least 80%, at least 90%, at least 95%, at least 98% or more identical to that of a naturally occurring glutamyl tRNA, (but is other than a naturally occurring glutamyl tRNA. An artificial polynucleotide or polypeptide is a polynucleotide or a polypeptide that is man made (e.g., via recombinant expression or chemical synthesis) and is not naturally occurring.

[0125] In certain embodiments, a vector (e.g., a plasmid, a cosmid, a phage, a virus, etc.) comprises a polynucleotide of the invention. In one embodiment, the vector is an expression vector. In another embodiment, the expression vector includes a promoter operably linked to one or more of the polynucleotides of the invention. In another embodiment, a cell comprises a vector that includes a polynucleotide of the invention.

[0126] One of skill will also appreciate that many variants of the disclosed sequences are included in the invention. For example, conservative variations of the disclosed sequences that yield a functionally identical sequence are included in the invention. Variants of the nucleic acid polynucleotide sequences, wherein the variants hybridize to at least one disclosed sequence, are considered to be included in the invention. Unique subsequences of the sequences disclosed herein, as determined by, e.g., standard sequence comparison techniques, are also included in the invention.

Conservative variations

15

20

25

30

[0127] Owing to the degeneracy of the genetic code, "silent substitutions" (*i.e.*, substitutions in a nucleic acid sequence which do not result in an alteration in an encoded polypeptide) are an implied feature of *every* nucleic acid sequence which encodes an amino acid. Similarly, "conservative amino acid substitutions," in one or a few amino acids in an amino acid sequence are substituted with different amino acids with highly similar properties, are also readily identified as being highly similar to a disclosed construct. Such conservative variations of each disclosed sequence are a feature of the present invention.

those nucleic acids which encode identical or essentially identical amino acid sequences, or, where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. One of skill will recognize that individual substitutions, deletions or additions which alter, add or delete a single amino acid or a small percentage of amino acids (typically less than 5%, more typically less than 4%, 2% or 1%) in an encoded sequence are "conservatively modified variations" where the alterations result in the deletion of an amino acid, addition of an amino acid, or substitution of an amino acid with a chemically similar amino acid. Thus, "conservative variations" of a listed polypeptide sequence of the present invention include substitutions of a small percentage, typically less than 5%, more typically less than 2% or 1%, of the amino acids of the polypeptide sequence, with a conservatively selected amino acid of the same conservative substitution group. Finally, the addition of sequences which do not alter the encoded activity of a nucleic acid molecule, such as the addition of a non-functional sequence, is a conservative variation of the basic nucleic acid.

[0129] Conservative substitution tables providing functionally similar amino acids are well known in the art. The following sets forth example groups which contain natural amino acids that include "conservative substitutions" for one another.

Conservative Substitution Groups

Nonpolar and/or Aliphatic Side Chains	Polar, Uncharged Side Chains	Aromatic Side Chains	Positively Charged Side Chains	Negatively Charged Side Chains
Glycine	Serine			
Alanine	Threonine	Dhanylalanina	Tugino	
Valine	Cysteine Phenylalanine	Lysine	Aspartate	
Leucine	Methionine		Arginine Histidine	Glutamate
Isoleucine	Asparagine	Tryptophan		
Proline	Glutamine			

Nucleic Acid Hybridization

5

10

15

20

25

[0130] Comparative hybridization can be used to identify nucleic acids of the invention, such as SEQ ID NO.: 67, including conservative variations of nucleic acids of the invention, and this comparative hybridization method is a preferred method of distinguishing nucleic acids of the invention. In addition, target nucleic acids which hybridize to a nucleic acid represented by SEQ ID NO: 67 under high, ultra-high and ultra-

ultra high stringency conditions are a feature of the invention. Examples of such nucleic acids include those with one or a few silent or conservative nucleic acid substitutions as compared to a given nucleic acid sequence.

5

25

30

[0131] A test nucleic acid is said to specifically hybridize to a probe nucleic acid when it hybridizes at least ½ as well to the probe as to the perfectly matched complementary target, i.e., with a signal to noise ratio at least ½ as high as hybridization of the probe to the target under conditions in which the perfectly matched probe binds to the perfectly matched complementary target with a signal to noise ratio that is at least about 5x-10x as high as that observed for hybridization to any of the unmatched target nucleic acids.

[0132] Nucleic acids "hybridize" when they associate, typically in solution.
 Nucleic acids hybridize due to a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes part I

 chapter 2, "Overview of principles of hybridization and the strategy of nucleic acid probe assays," (Elsevier, New York), as well as in Ausubel, supra. Hames and Higgins (1995)
 Gene Probes 1 IRL Press at Oxford University Press, Oxford, England, (Hames and Higgins 1) and Hames and Higgins (1995) Gene Probes 2 IRL Press at Oxford University Press, Oxford, England (Hames and Higgins 2) provide details on the synthesis, labeling, detection and quantification of DNA and RNA, including oligonucleotides.

[0133] An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formalin with 1 mg of heparin at 42°C, with the hybridization being carried out overnight. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (*see*, Sambrook, *supra* for a description of SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove background probe signal. An example low stringency wash is 2x SSC at 40°C for 15 minutes. In general, a signal to noise ratio of 5x (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

5

10

25

30

[0134] "Stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments such as Southern and northern hybridizations are sequence dependent, and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993), *supra*. and in Hames and Higgins, 1 and 2. Stringent hybridization and wash conditions can easily be determined empirically for any test nucleic acid. For example, in determining stringent hybridization and wash conditions, the hybridization and wash conditions are gradually increased (e.g., by increasing temperature, decreasing salt concentration, increasing detergent concentration and/or increasing the concentration of organic solvents such as formalin in the hybridization or wash), until a selected set of criteria are met. For example, in highly stringent hybridization and wash conditions, the hybridization and wash conditions are gradually increased until a probe binds to a perfectly matched complementary target with a signal to noise ratio that is at least 5x as high as that observed for hybridization of the probe to an unmatched target.

15 [0135] "Very stringent" conditions are selected to be equal to the thermal melting point (T_m) for a particular probe. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the test sequence hybridizes to a perfectly matched probe. For the purposes of the present invention, generally, "highly stringent" hybridization and wash conditions are selected to be about 5° C lower than the T_m for the specific sequence at a defined ionic strength and pH.

"Ultra high-stringency" hybridization and wash conditions are those in which the stringency of hybridization and wash conditions are increased until the signal to noise ratio for binding of the probe to the perfectly matched complementary target nucleic acid is at least 10x as high as that observed for hybridization to any of the unmatched target nucleic acids. A target nucleic acid which hybridizes to a probe under such conditions, with a signal to noise ratio of at least ½ that of the perfectly matched complementary target nucleic acid is said to bind to the probe under ultra-high stringency conditions.

[0137] Similarly, even higher levels of stringency can be determined by gradually increasing the hybridization and/or wash conditions of the relevant hybridization assay. For example, those in which the stringency of hybridization and wash conditions are increased until the signal to noise ratio for binding of the probe to the perfectly matched complementary target nucleic acid is at least 10x, 20X, 50X, 100X, or 500X or more as high

as that observed for hybridization to any of the unmatched target nucleic acids. A target nucleic acid which hybridizes to a probe under such conditions, with a signal to noise ratio of at least ½ that of the perfectly matched complementary target nucleic acid is said to bind to the probe under ultra-ultra-high stringency conditions.

Nucleic acids which do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, *e.g.*, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.

Unique subsequences

- In one aspect, the invention provides a nucleic acid that comprises a unique subsequence in a nucleic acid selected from the sequences of glutamyl O-tRNAs and glutamyl O-RSs disclosed herein. The unique subsequence is unique as compared to a nucleic acid corresponding to any known glutamyl O-tRNA or glutamyl O-RS nucleic acid sequence. Alignment can be performed using, e.g., BLAST set to default parameters. Any unique subsequence is useful, e.g., as a probe to identify the nucleic acids of the invention.
 - [0140] Similarly, the invention includes a polypeptide which comprises a unique subsequence in a polypeptide selected from the sequences of glutamyl O-RSs disclosed herein. Here, the unique subsequence is unique as compared to a polypeptide corresponding to any of known polypeptide sequence.
- 20 [0141] The invention also provides for target nucleic acids which hybridizes under stringent conditions to a unique coding oligonucleotide which encodes a unique subsequence in a polypeptide selected from the sequences of glutamyl O-RSs wherein the unique subsequence is unique as compared to a polypeptide corresponding to any of the control polypeptides (e.g., parental sequences from which synthetases of the invention were derived, e.g., by mutation). Unique sequences are determined as noted above.

Sequence comparison, identity, and homology

30

[0142] The terms "identical" or percent "identity," in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using

5

10

15

20

25

30

one of the sequence comparison algorithms described below (or other algorithms available to persons of skill) or by visual inspection.

The phrase "substantially identical," in the context of two nucleic acids or polypeptides (e.g., DNAs encoding an glutamyl O-tRNA or glutamyl O-RS, or the amino acid sequence of an O-RS) refers to two or more sequences or subsequences that have at least about 60%, about 80%, about 90-95%, about 98%, about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically considered to be "homologous," without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substantially identical over at least about 150 residues, or over the full length of the two sequences to be compared.

[0144] Proteins and/or protein sequences are "homologous" when they are derived, naturally or artificially, from a common ancestral protein or protein sequence. Similarly, nucleic acids and/or nucleic acid sequences are homologous when they are derived, naturally or artificially, from a common ancestral nucleic acid or nucleic acid sequence. For example, any naturally occurring nucleic acid can be modified by any available mutagenesis method to include one or more selector codon. When expressed, this mutagenized nucleic acid encodes a polypeptide comprising one or more selected amino acid, e.g. unnatural amino acid. The mutation process can, of course, additionally alter one or more standard codon, thereby changing one or more standard amino acid in the resulting mutant protein as well. Homology is generally inferred from sequence similarity between two or more nucleic acids or proteins (or sequences thereof). The precise percentage of similarity between sequences that is useful in establishing homology varies with the nucleic acid and protein at issue, but as little as 25% sequence similarity is routinely used to establish homology. Higher levels of sequence similarity, e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99% or more, can also be used to establish homology. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available.

[0145] For sequence comparison and homology determination, typically one sequence acts as a reference sequence to which test sequences are compared. When using a

sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

5

10

15

20

25

30

[0146] Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual inspection (see generally Ausubel et al., infra).

[0147] One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the

5

10

15

20

25

30

alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (*see* Henikoff & Henikoff (1989) <u>Proc. Natl. Acad. Sci. USA</u> 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (*see*, *e.g.*, Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

Mutagenesis and Other Molecular Biology Techniques

[0149] Polynucleotide and polypeptides of the invention and used in the invention can be manipulated using molecular biological techniques. General texts which describe molecular biological techniques include Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA (Berger); Sambrook et al., Molecular Cloning - A Laboratory Manual (3rd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2001 ("Sambrook") and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2003) ("Ausubel")). These texts describe mutagenesis, the use of vectors, promoters and many other relevant topics related to, e.g., the generation of genes that include selector codons for production of proteins that include selected amino acids (e.g., unnatural amino acids), glutamyl orthogonal tRNAs, glutamyl orthogonal synthetases, and pairs thereof.

[0150] Various types of mutagenesis are used in the invention, e.g., to mutate glutamyl tRNA molecules, to produce libraries of glutamyl tRNAs, to produce libraries of glutamyl synthetases, to insert selector codons that encode a selected amino acid in a protein or polypeptide of interest. They include but are not limited to site-directed, random point

mutagenesis, homologous recombination, DNA shuffling or other recursive mutagenesis methods, chimeric construction, mutagenesis using uracil containing templates, oligonucleotide-directed mutagenesis, phosphorothioate-modified DNA mutagenesis, mutagenesis using gapped duplex DNA or the like, or any combination thereof. Additional suitable methods include point mismatch repair, mutagenesis using repair-deficient host strains, restriction-selection and restriction-purification, deletion mutagenesis, mutagenesis by total gene synthesis, double-strand break repair, and the like. Mutagenesis, e.g., involving chimeric constructs, is also included in the invention. In one embodiment, mutagenesis can be guided by known information of the naturally occurring molecule or altered or mutated naturally occurring molecule, e.g., sequence, sequence comparisons, physical properties, crystal structure or the like.

5

10

15

20

25

30

[0151]Host cells are genetically engineered (e.g., transformed, transduced or transfected) with the polynucleotides of the invention or constructs which include a polynucleotide of the invention, e.g., a vector of the invention, which can be, for example, a cloning vector or an expression vector. For example, the coding regions for the orthogonal tRNA, the orthogonal tRNA synthetase, and the protein to be derivatized are operably linked to gene expression control elements that are functional in the desired host cell. Typical vectors contain transcription and translation terminators, transcription and translation initiation sequences, and promoters useful for regulation of the expression of the particular target nucleic acid. The vectors optionally comprise generic expression cassettes containing at least one independent terminator sequence, sequences permitting replication of the cassette in eukaryotes, or prokaryotes, or both (e.g., shuttle vectors) and selection markers for both prokaryotic and eukaryotic systems. Vectors are suitable for replication and/or integration in prokaryotes, eukaryotes, or preferably both. See Giliman & Smith, Gene 8:81 (1979); Roberts, et al., Nature, 328:731 (1987); Schneider, B., et al., Protein Expr. Purif. 6435:10 (1995); Ausubel, Sambrook, Berger (all supra). The vector can be, for example, in the form of a plasmid, a bacterium, a virus, a naked polynucleotide, or a conjugated polynucleotide. The vectors are introduced into cells and/or microorganisms by standard methods including electroporation (From et al., Proc. Natl. Acad. Sci. USA 82, 5824 (1985), infection by viral vectors, high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., Nature 327, 70-73 (1987)), and/or the like.

[0152] A catalogue of Bacteria and Bacteriophages useful for cloning is provided, e.g., by the ATCC, e.g., The ATCC Catalogue of Bacteria and Bacteriophage (1996)

Gherna et al. (eds) published by the ATCC. Additional basic procedures for sequencing, cloning and other aspects of molecular biology and underlying theoretical considerations are also found in Sambrook (supra), Ausubel (supra), and in Watson et al. (1992) Recombinant DNA Second Edition Scientific American Books, NY. In addition, essentially any nucleic acid (and virtually any labeled nucleic acid, whether standard or non-standard) can be custom or standard ordered from any of a variety of commercial sources, such as the Midland Certified Reagent Company (Midland, TX mcrc.com), The Great American Gene Company (Ramona, CA available on the World Wide Web at genco.com), ExpressGen Inc. (Chicago, IL available on the World Wide Web at expressgen.com), Operon Technologies Inc. (Alameda, CA) and many others.

[0153] The engineered host cells can be cultured in conventional nutrient media modified as appropriate for such activities as, for example, screening steps, activating promoters or selecting transformants. These cells can optionally be cultured into transgenic organisms. Other useful references, e.g. for cell isolation and culture (e.g., for subsequent nucleic acid isolation) include Freshney (1994) Culture of Animal Cells, a Manual of Basic Technique, third edition, Wiley- Liss, New York and the references cited therein; Payne et al. (1992) Plant Cell and Tissue Culture in Liquid Systems John Wiley & Sons, Inc. New York, NY; Gamborg and Phillips (eds) (1995) Plant Cell, Tissue and Organ Culture; Fundamental Methods Springer Lab Manual, Springer-Verlag (Berlin Heidelberg New York) and Atlas and Parks (eds) The Handbook of Microbiological Media (1993) CRC Press, Boca Raton, FL.

PROTEINS AND POLYPEPTIDES OF INTEREST

5

10

15

20

25 [0154] Methods of producing a protein in a cell with a selected amino acid at a specified position are also a feature of the invention. For example, a method includes growing, in an appropriate medium, the cell, where the cell comprises a nucleic acid that comprises at least one selector codon and encodes a protein; and, providing the selected amino acid, and incorporating the selected amino acid into the specified position in the protein during translation of the nucleic acid with the at least one selector codon, thereby producing the protein. The cell further comprises: an orthogonal glutamyl-tRNA (glutamyl-tRNA (glutamyl-tRNA)

O-tRNA) that functions in the cell and recognizes the selector codon; and, an orthogonal aminoacyl-tRNA synthetase (O-RS) that preferentially aminoacylates the glutamyl-O-tRNA with the selected amino acid. Typically, the glutamyl O-tRNA comprises at least about, e.g., a 45%, a 50%, a 60%, a 75%, a 80%, or a 90% or more suppression efficiency in the presence of a cognate synthetase in response to the selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA). A protein produced by this method is also a feature of the invention.

5

10

15

20

25

30

The compositions of the invention and compositions made by the methods of the invention optionally are in a cell. The glutamyl O-tRNA/O-RS pairs or individual components of the invention can then be used in a host system's translation machinery, which results in a selected amino acid, e.g., unnatural amino acid, being incorporated into a protein. The International Application Number PCT/US2004/011786; and published Internation Application Number WO 2002/085923, *supra*, describe similar processes (e.g., with other orthogonal O-tRNA/O-RS pairs) and are incorporated herein by reference. For example, when an glutamyl O-tRNA/O-RS pair is introduced into a host, e.g., *Escherichia coli*, the pair leads to the in vivo incorporation of selected amino acid, such as an unnatural amino acid, e.g., a synthetic amino acid, such as derivative of a glutamate or glutamic acid amino acid, which can be exogenously added to the growth medium, into a protein, in response to a selector codon. Optionally, the compositions of the invention can be in an in vitro translation system, or in an in vivo system(s).

[0156] Essentially any protein (or portion thereof) that includes a selected amino acid, e.g., an unnatural amino acid, (and any corresponding coding nucleic acid, e.g., which includes one or more selector codons) can be produced using the compositions and methods herein. No attempt is made to identify the hundreds of thousands of known proteins, any of which can be modified to include one or more unnatural amino acid, e.g., by tailoring any available mutation methods to include one or more appropriate selector codon in a relevant translation system. Common sequence repositories for known proteins include GenBank EMBL, DDBJ and the NCBI. Other repositories can easily be identified by searching the internet.

[0157] Typically, the proteins are, e.g., at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, or at least 99% or more identical to any available

protein (e.g., a therapeutic protein, a diagnostic protein, an industrial enzyme, or portion thereof, and the like), and they comprise one or more selected amino acid. Examples of therapeutic, diagnostic, and other proteins that can be modified to comprise one or more selected amino acid, e.g., an unnatural amino acid, can be found, but not limited to, those in USSN 60/496,548, USSN 60/479,931, and USSN 60/463,869, *supra*; and, WO 2002/085923, *supra*.

5

10

15

20

25

30

[0158] In certain embodiments, the protein or polypeptide of interest (or portion thereof) in the methods and/or compositions of the invention is encoded by a nucleic acid. Typically, the nucleic acid comprises at least one selector codon, at least two selector codons, at least three selector codons, at least four selector codons, at least five selector codons, at least six selector codons, at least seven selector codons, at least eight selector codons, at least nine selector codons, ten or more selector codons.

[0159] Genes coding for proteins or polypeptides of interest can be mutagenized using methods well-known to one of skill in the art and described herein under "Mutagenesis and Other Molecular Biology Techniques" to include, e.g., one or more selector codon for the incorporation of a selected amino acid, e.g., an unnatural amino acid. For example, a nucleic acid for a protein of interest is mutagenized to include one or more selector codon, providing for the insertion of the one or more selected amino acids, e.g., unnatural amino acid. The invention includes any such variant, e.g., mutant, versions of any protein, e.g., including at least one selected amino acid. Similarly, the invention also includes corresponding nucleic acids, i.e., any nucleic acid with one or more selector codon that encodes one or more selected amino acid.

[0160] To make a protein that includes a selected amino acid, one can use host cells and organisms that are adapted for the in vivo incorporation of the selected amino acid via orthogonal glutamyl tRNA/RS pairs. Host cells are genetically engineered (e.g., transformed, transduced or transfected) with one or more vectors that express the orthogonal glutamyl tRNA, the orthogonal glutamyl tRNA synthetase, and a vector that encodes the protein to be derivatized. Each of these components can be on the same vector, or each can be on a separate vector, or two components can be on one vector and the third component on a second vector. The vector can be, for example, in the form of a plasmid, a bacterium, a virus, a naked polynucleotide, or a conjugated polynucleotide.

<u>Defining Polypeptides by Immunoreactivity</u>

5

10

15

20

25

30

[0161]Because the polypeptides of the invention provide a variety of new polypeptide sequences (e.g., comprising selected amino acids (e.g., unnatural amino acids) in the case of proteins synthesized in the translation systems herein, or, e.g., in the case of the novel synthetases, novel sequences of standard amino acids), the polypeptides also provide new structural features which can be recognized, e.g., in immunological assays. The generation of antisera, which specifically bind the polypeptides of the invention, as well as the polypeptides which are bound by such antisera, are a feature of the invention. The term "antibody," as used herein, includes, but is not limited to a polypeptide substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof which specifically bind and recognize an analyte (antigen). Examples include polyclonal, monoclonal, chimeric, and single chain antibodies, and the like. Fragments of immunoglobulins, including Fab fragments and fragments produced by an expression library, including phage display, are also included in the term "antibody" as used herein. See, e.g., Paul, Fundamental Immunology, 4th Ed., 1999, Raven Press, New York, for antibody structure and terminology.

[0162] In order to produce antisera for use in an immunoassay, one or more of the immunogenic polypeptides is produced and purified as described herein. For example, recombinant protein can be produced in a recombinant cell. An inbred strain of mice (used in this assay because results are more reproducible due to the virtual genetic identity of the mice) is immunized with the immunogenic protein(s) in combination with a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (*see*, e.g., Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a standard description of antibody generation, immunoassay formats and conditions that can be used to determine specific immunoreactivity.

[0163] Additional details on proteins, antibodies, antisera, etc. can be found in USSN 60/496,548, USSN 60/479,931, and USSN 60/463,869, *supra*; WO 2002/085923, *supra*; patent application entitled "Glycoprotein synthesis" filed October 15, 2003, attorney docket number 54-000610US; and patent application entitled "Protein Arrays," attorney docket number P1001US00 filed on December 22, 2002.

<u>USE OF GLUTAMYL O-tRNA AND GLUTAMYL O-RS AND GLUTAMYL O-tRNA/O-RS PAIRS</u>

[0164] The compositions of the invention and compositions made by the methods of the invention optionally are in a cell. The glutamyl O-tRNA/O-RS pairs or individual components of the invention can then be used in a host system's translation machinery, which results in a selected amino acid being incorporated into a protein. WO 2002/085923 by Schultz, et al., *supra*, describes related processes in general, and is incorporated herein by reference. For example, when an O-tRNA/O-RS pair is introduced into a host, e.g., *Escherichia coli*, the pair leads to the in vivo incorporation of a selected amino acid, which can be exogenously added to the growth medium, into a protein in response to a selector codon, e.g., an amber nonsense codon. Optionally, the compositions of the present invention can be in an in vitro translation system, or in an in vivo system(s). Proteins with the selected amino acid can be used as therapeutic proteins and can be used to facilitate studies on protein structure, interactions with other protein, and the like.

15 <u>KITS</u>

20

30

5

10

[0165] Kits are also a feature of the invention. For example, a kit for producing a protein that comprises at least one selected amino acid, e.g., an unnatural amino acid, in a cell is provided, where the kit includes a container containing a polynucleotide sequence encoding an glutamyl O-tRNA, and/or an glutamyl O-tRNA, and/or a polynucleotide sequence encoding an glutamyl O-RS, and/or an glutamyl O-RS. In one embodiment, the kit further includes a selected amino acid. In another embodiment, the kit further comprises instructional materials for producing the protein.

EXAMPLES

[0166] The following examples are offered to illustrate, but not to limit the claimed invention. One of skill will recognize a variety of non-critical parameters that may be altered without departing from the scope of the claimed invention.

EXAMPLE 1: AN ARCHAEBACTERIA-DERIVED GLUTAMYL-tRNA SYNTHETASE AND tRNA PAIR FOR UNNATURAL AMINO ACID MUTAGENESIS

[0167] In this embodiment of the invention, the development of an orthogonal glutamic acid synthetase and tRNA pair is described. The tRNA is derived from the consensus sequence obtained from a multiple sequence alignment of, e.g., archaeal tRNA Glu

sequences. The glutamyl-tRNA synthetase is from, e.g., the achaebacterium *Pyrococcus horikoshii*. The new orthogonal pair suppresses, e.g., amber, nonsense codons with an efficiency roughly comparable to that of the orthogonal tyrosine pair derived from *Methanococcus jannaschii*, which has been used to selectively incorporate a variety of unnatural amino acids into proteins in *E. coli*. Development of the glutamic acid orthogonal pair increases the potential diversity of unnatural amino acid structures that can be incorporated into proteins in *E. coli*, and can permit the *in vivo* incorporation of multiple distinct unnatural amino acids into the same protein.

5

[0168] The ability to genetically incorporate unnatural amino acids into proteins 10 offers new opportunities to investigate protein structure and function in vitro and in vivo, as well as produce large quantities of proteins with novel properties. This approach involves the directed evolution of the amino acid specificity of an aminoacyl-tRNA synthetase and tRNA pair that is orthogonal in, e.g., E. coli. See, e.g., 1. Liu, D.R. and Schultz, P.G. (1999) Progress toward the evolution of an organism with an expanded genetic code. Proc. Natl. 15 Acad. Sci. USA, 96:4780-4785; Wang, L., Brock, A., Herberich, B. and Schultz, P.G. (2001) Expanding the genetic code of Escherichia coli. Science, 292:498-500; and, Santoro, S.W., Wang, L., Herberich, B., King, D.S. and Schultz, P.G. (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20:1044-1048. Such orthogonal pairs satisfy several criteria: the tRNA is not a substrate for any of the 20 endogenous E. coli synthetases but functions efficiently in protein translation; the orthogonal synthetase efficiently aminoacylates the orthogonal tRNA, the anticodon of which has been modified to recognize a selector codon, e.g., an amber (UAG) or opal (UGA) stop codon, a four-base codon, etc.; and the synthetase does not aminoacylate any of the endogenous E. coli tRNAs. To date, several orthogonal pairs have been developed for 25 use in E. coli, including glutamine (see, e.g., Liu, D.R. and Schultz, P.G. (1999) Progress toward the evolution of an organism with an expanded genetic code, Proc. Natl. Acad. Sci. USA, 96:4780-4785), aspartic acid (see, e.g., Pastrnak, M., Magliery, T.J. and Schultz, P.G. (2000) A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code. Helvetica Chimica Acta, 83:2277-2286) and 30 tyrosine (see, e.g., Ohno, S., Yokogawa, T., Fujii, I., Asahara, H., Inokuchi, H. and Nishikawa,K. (1998) Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code. J. Biochem. (Tokyo),

124:1065-1068; and, Kowal, A.K., Kohrer, C. and Raj Bhandary, U.L. (2001) Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc. Natl. Acad. Sci. USA, 98:2268-2273) pairs from Saccharomyces cerevisiae, a tyrosine pair from Methanococcus jannaschii (see, e.g., Wang, L., Magliery, T.J., Liu, D.R. and 5 Schultz, P.G. (2000) A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. J. Am. Chem. Soc., 122:5010-5011), and a leucine pair from Methanobacterium thermoautotrophicum (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyltRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 10 19; 42(32):9598-9608). In addition, glutamine (see, e.g., Kowal, A.K., Kohrer, C. and RajBhandary, U.L. (2001) Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc. Natl. Acad. Sci. USA, 98:2268-2273) and tyrosine (see, 15 e.g., Edwards and Schimmel (1990) A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol. Cell. Biol., 10:1633-1641) synthetase-tRNA pairs from E. coli have been developed for use as orthogonal pairs in S. cerevisiae.

[0169] The orthogonal tyrosine pair from M. jannaschii has been successfully used to incorporate unnatural amino acids into proteins in E. coli. Many if not all of the unnatural 20 amino acids that have been incorporated thus far using variants of the tyrosyl-tRNA synthetase are aryl derivatives, including p-azido- (see, e.g., Chin, J.W., Santoro, S.W., Martin, A.B., King, D.S., Wang, L. and Schultz, P.G. (2002) Addition of p-azido-Lphenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc., 124:9026-9027), 25 p-benzoyl- (see, e.g., Chin, J.W., Martin, A.B., King, D.S., Wang, L. and Schultz, P.G. (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA, 99:11020-11024), p-amino- (see, e.g., Santoro, S.W., Wang, L., Herberich, B., King, D.S. and Schultz, P.G. (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20:1044-1048), p-isopropyl- (see, e.g., Santoro, S.W., Wang, L., Herberich, B., King, D.S. and Schultz, P.G. (2002) An efficient 30 system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20:1044-1048), m-acetyl-(see, e.g., Wang, L., Zhang, Z., Brock, A. and Schultz, P.G. (2003)

Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA, 100:56-61), and p-acetyl-phenylalanine (see, e.g., Wang, L., Zhang, Z., Brock, A. and Schultz, P.G. (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA, 100:56-61); O-methyl- (see, e.g., Wang, L., 5 Brock, A., Herberich, B. and Schultz, P.G. (2001) Expanding the genetic code of Escherichia coli. Science, 292:498-500) and O-allyl-tyrosine (Santoro, S.W., Wang, L., Herberich, B., King, D.S. and Schultz, P.G. (2002) An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20:1044-1048; and, Zhang, Z., Wang, L., Brock, A. and Schultz, P.G. (2002) The selective incorporation of alkenes into proteins in Escherichia 10 coli. Angew. Chem. Int. Ed. Engl., 41:2840-2842); 3-(2-naphthyl)alanine (see, e.g., Wang, L., Brock, A. and Schultz, P.G. (2002) Adding L-3-(2-Naphthyl) alanine to the genetic code of E. coli. J. Am. Chem. Soc., 124:1836-1837), etc. In order to increase the structural and chemical diversity of unnatural amino acids that can be incorporated into proteins expressed by, e.g., E. coli, additional active orthogonal pairs would be useful.

15 [0170] Archaea appear to be an especially good source of orthogonal pairs for E. coli. Previous studies revealed that several archaeal tRNAs are not recognized by E. coli aminoacyl-tRNA synthetases (see, e.g., Kwok, Y. and Wong, J.T. (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can. J. Biochem., 58:213-218). Two 20 such synthetase-tRNA pairs derived from archaea, for tyrosine (see e.g., Wang,L., Magliery, T.J., Liu, D.R. and Schultz, P.G. (2000) A new functional suppressor tRNA/aminoacyl-tRNA synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. J. Am. Chem. Soc., 122:5010-5011) and leucine (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase 25 pair for four-base, amber, and opal suppression, Biochemistry, Aug 19; 42(32):9598-9608), were developed for use in E. coli. Both exhibited high levels of orthogonality and amber suppression efficiency. Moreover, these archaeal synthetases and tRNAs are efficiently produced and processed in E. coli. Finally, the recent proliferation of genomic sequence data for archaeal species and the commercial availability of their genomic DNA 30 have facilitated the cloning of synthetases from these organisms as well as the design of compatible tRNAs.

[0171] Archaeal glutamyl-tRNA synthetases and tRNAs are attractive starting points for the generation of additional orthogonal pairs for several reasons. Archaeal glutamyl-tRNA synthetases are expected to tolerate changes in the anticodon loop of their substrate tRNAs since the enzyme naturally accommodates four different tRNA anticodons: 5 UUC, CUC, UUG, and CUG. This is due to the fact that in archaeal species, glutamyltRNA synthetases must recognize and acylate both tRNA Glu and tRNA (see, e.g., Tumbula, D.L., Becker, H.D., Chang, W.Z. and Soll, D. (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature, 407:106-110). It follows that an archaeal glutamyl-tRNA synthetase should tolerate variance within at least two positions of 10 the anticodon of its tRNA substrate, which should permit efficient aminoacylation of a tRNA bearing an amber-suppressing CUA anticodon. In addition, in vitro aminoacylation data (see, e.g., Kwok, Y. and Wong, J.T. (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can. J. Biochem., 58:213-218) predict that archaeal 15 glutamic acid and glutamine tRNAs should be orthogonal in E. coli. Finally, the three dimensional structure of the glutamyl-tRNA synthetase from Thermus thermophilus is known (see, e.g., Nureki,O., Vassylyev,D.G., Katayanagi,K., Shimizu,T., Sekine,S., Kigawa, T., Miyazawa, T., Yokoyama, S. and Morikawa, K. (1995) Architectures of classdefining and specific domains of glutamyl-tRNA synthetase. Science, 31:1958-1965; and, Sekine, S., Nureki, O., Shimada, A., Vassylyev, D.G. and Yokoyama, S. (2001) Structural 20 basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat. Struct. Biol., 8:203-206), which should facilitate the design of libraries of synthetase variants for use in directed evolution experiments.

Materials and Methods

[0172] Bacterial strains, plasmids, and reagents: E. coli strains DH5α and DH10B were purchased from Stratagene (La Jolla, CA) and Invitrogen Life Sciences (Carlsbad, CA), respectively. Archaeoglobus fulgidus (Af), Aeropyrum pernix (Ap), Methanococcus jannaschii (Mj), Methanosarcina mazei Goe1 (Mm), Methanobacterium thermoautotrophicum (Mt), Pyrococcus horikoshii (Ph), and Sulfolobus solfataricus (Ss)
genomic DNA was obtained from ATCC (Manassas, VA). E. coli genomic DNA was prepared from strain DH5α. Plasmid pKQ, which contains a ColE1 origin of replication, a kanamycin resistance marker, and cloning sites for an aminoacyl-tRNA synthetase gene, has

been described previously (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19; 42(32):9598-9608). Plasmid pACKO-A184TAG, which contains a p15A origin of replication, a chloramphenicol resistance marker, a β-

lactamase ampicillin resistance gene containing an amber stop codon at position Ala184, and tRNA cloning sites, has been described previously (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19; 42(32):9598-9608). Plasmid pArgU218, which contains a p15A origin of replication and encodes a kanamycin

5

- resistance marker and the isoacceptor of tRNA^{Arg} corresponding to the codons AGA and AGG, has been described previously (see, e.g., Bullard,J.M., Cai,Y.C. and Spremulli,L.L. (2000) Expression and characterization of the human mitochondrial leucyl-tRNA synthetase. Biochim. Biophys. Acta, 1490:245-258). Plasmid pBAD-Myc/HisA was purchased from Invitrogen. PCR reactions were carried out using the Expand Kit (Roche,
- Indianapolis, IN). Whole *E. coli* tRNA was purchased from Roche. Whole halobacterial tRNA was isolated from cultures of *Halobacterium sp. NRC-1* using the RNA/DNA Extraction Kit (Qiagen). Overlap extensions were carried out using Taq polymerase (Stratagene). Restriction enzymes were purchased from New England Biolabs (Beverly, MA). DNA was purified using miniprep, gel purification, or PCR purification kits (Qiagen).
- Oligonucleotides were prepared by Qiagen Operon (Alameda, CA). Sequences of oligodeoxyribonucleotides used in this example:
 - pKQ-AfERS.N: d(GGAGAGAAGACTACATGAAAGAAGTCATAATGAAATAC)
 - pKQ/pBAD-AfERS.C: d(CGTTAGAAGACTGAATTCGGATTTTGGTCACGGGTGCG)
 - pKQ-ApERS.N: d(GCTATCACACCATGGCGATGCTCCTAGGGGACCATC)
- 25 pKQ-ApERS.C: d(GATCAGTCAGAATTCTTACTTGTGTGTGTATATCACCCTG)
 - pKQ-MjERS.N: d(GGAGACGTCTCACATGGAAGAGAAGATATTGCC)
 - pKQ-MjERS.C: d(CGTTACGTCTCGAATTTTATCTATGTGCATAGCAAC)
 - pKQ-MmERS.N: d(GGAGACGTCTCACATGACCTTAAGTCCTGAAGA)
 - pKQ/pBAD-MmERS.C: d(CGTTACGTCTCGAATTTTATTTATGAGCAAAGTACGCCACGAC)
- 30 pKQ-MtERS.N: d(GGAGACGTCTCTCATGGTGCCAGTGGAGGACCT)
 - pKQ/pBAD-MtERS.C: d(CGTTACGTCTCTAATTTTATTTGTGGGCATAGTAGAAG)

pKQ-PhERS.N: d(GGAAAGGTCTCTCATGGATGTGGAAAAGATAGC)

pKQ/pBAD-PhERS.C: d(GAGTAGGTCTCTAATTTTACTTGTGAGCATATATTG)

pKQ-SsERS.N: d(GCTACTGCACCATGGAATTAAATGAATTACGAGAAC)

pKQ-SsERS.C: d(GACTCAGTAGAATTCATTAGTCGTGTGAGAATACAACA)

- 5 AEGU-tRNA.F: d(CGGAATTCGCCCCGGTGGTGTAGCCCGGCCAAGCATGCGGGCCTCTAA)
 - AEGU-RNA.R: d(AAACTGCAGTGGTGCCCCGGCCGGGATTTGAACCCGGGTCGCGGGCTTTAG
 AGGCCCGCATGCTTGG)
 - AQGU-RNA.F: d(CGGAATTCAGCCCCGTGGTGTAGCGGCCAAGCATGCGGGGCTCTAAACCCC GCGACCG)
- 10 AQGU-RNA.R: d(AAACTGCAGTGGTAGCCCCGCGGGGATTCGAACCCCGGTCGCGGGGTTTAG AGCC)
 - AQGC-RNA.F: d(CGGAATTCAGCCCCGTGGTGTAGCGGCCAAGCACGCGGGGCTCTAAACCCC GCGACCG)
- AQGC-RNA.R: d(AAACTGCAGTGGTAGCCCCGCGGGGATTCGAACCCCGGTCGCGGGGTTTAG

 AGCC)

AENN-RNA.F: d(CGGAATTCGCCCCGGTGNTGTAGCCCGGCCAAGCANGCGGGCCTCTAA)

pAC-tRNA.F: d(GGACAGCGGTGCGGACTG)

pAC-tRNA.R: d(GTGCTCAACGGCCTCAAC)

pBAD-EcERS.N: d(AGGCTTTTAACCATGGCAAAAATCAAAACTCGCTTCGC)

- 20 pBAD-EcERS.C: d(ACGTGAGAGGAATTCTGCTGATTTTCGCGTTCA)
 - pBAD-AfERS.C: d(CGTTAGAAGACTGAATTGGGGTGAGTGTACACCGCGACCAGTTCCTCG)
 - pBAD-MmERS.C: d(CGTTACGTCTCGAATTCTTATGAGCAAAGTACGCCACGAC)
 - pBAD-MtERS.C: d(CGTTACGTCTCTAATTTTTGTGGGCATAGTAGAAGACC)
 - pBAD-PhERS.C: d(GAGTAGGTCTCTAATTCTTGTGAGCATATATTGCGATAA)
- 25 [0173] Cloning of aminoacyl-tRNA synthetase genes: The open reading frames of glutamyl-tRNA synthetase from A. fulgidus (AfERS), A. pernix (ApERS), M. jannaschii (MjERS), M. mazei (MmERS), M. thermoautotrophicum (MtERS), P. horikoshii (PhERS), and S. solfataricus (SsERS) were amplified by PCR using genomic DNA as template and the appropriate oligonucleotide primers (see above) to yield products of ~1.7 kilo-base pairs (kbp). In these experiments, the amplification of the MjERS gene was unsuccessful. The

AfERS PCR product was digested with BbsI, the ApERS and SsERS products with EcoRI and NcoI, the MmERS and MtERS products with BsmBI, and the PhERS product with BsaI to generate EcoRI / NcoI compatible cohesive ends for all products. Construction of plasmids pKQ-AfERS, pKQ-ApERS, pKQ-MjERS, pKQ-MmERS, pKQ-MtERS, pKQ-Mt

PhERS, and pKQ-SsERS was accomplished by insertion of restriction-digested, gel-purified glutamyl-tRNA synthetase gene PCR fragments into plasmid pKQ. Plasmid constructs were confirmed by restriction mapping and sequencing of individual clones.

[0174] Design and cloning of tRNAs: Consensus archaeal tRNA genes were identified by alignment using the program pileup from Genetics Computer Group, Inc. (GCG). Genes for tRNAs were constructed by overlap extension of the appropriate forward and reverse primers (see above). EcoRI/PstI-digested extension fragments were inserted into a 4.2 kbp fragment of plasmid pACKO-A184TAG to construct plasmids pAC-AE(GU), pAC-AQ(GU), and pAC-AQ(GC). The AE(NN) tRNA library was constructed by PCR amplification using primers AE(NN)-RNA.F and pAC-tRNA.R with plasmid pAC-AE(GU) as template. The pAC-AE(NN) plasmid library was constructed by insertion of the EcoRI/PstI-digested AE(NN) tRNA library PCR fragment into the tRNA cloning site of pACKO-A184TAG. Plasmid constructs were confirmed by sequence analysis.

Nomenclature of tRNAs:

5

10

15

20

25

30

AQ(GU): A-archaeal; Q-glutaminyl; GU-base pair at postion 10-26 AQ(GC): A-archaeal; Q-glutaminyl; GC-base pair at postion 10-26 AE(GU): A-archaeal; E-glutamyl; GU-base pair at postion 10-28 AE(GC): A-archaeal; E-glutamyl; GC-base pair at postion 10-28 AE(NN): A-archaeal; E-glutamyl; NN-base pair at postion 10-28

[0175] Ampicillin IC₅₀ value measurements: To examine the orthogonality of tRNAs, 10 μL of E. coli DH10B cells (1 cfu/μL) carrying a tRNA-expressing plasmid were plated on a series of LB agar plates containing chloramphenicol and varying concentrations of ampicillin. To measure the IC₅₀ values for cells carrying both tRNA- and synthetase-expressing plasmids, cells were plated on LB agar plates containing chloramphenicol, kanamycin, and varying concentrations of ampicillin. In the initial series, cells were plated on five ampicillin concentrations varying from 0 to 1000 μg/mL and incubated overnight at 37°C. In subsequent series, cells were plated on a narrower ampicillin concentration range

surrounding the value initial ampicillin IC_{50} value estimate. Typically, 10 ampicillin concentrations spanning a range \pm 45% of the initial IC_{50} estimate were tested in 10% increments. Measurements were made in duplicate or triplicate for each cell strain.

5

10

15

20

25

30

[0176] Optimization of the AEGU tRNA: E. coli DH10B cells carrying plasmid pKQ-MmERS were transformed with the pAC-AE(NN) plasmid library to yield ~10⁶ independent transformants. Cells were plated (~1000 cfu/plate) on a series of ten LB agar plates containing chloramphenicol, kanamycin, and 0–1000 μg/mL ampicillin. Ten individual colonies from the plate containing 500 μg/mL ampicillin were picked and their pAC-AE(NN) plasmids amplified, miniprepped, and sequenced.

Synthetase overexpression: Aminoacyl-tRNA synthetase genes were PCR-[0177] amplified using the appropriate N- and C-terminal pBAD construct primers (see Bacterial strains, plasmids and reagents) and the appropriate synthetase pKQ construct templates. The AfERS PCR product was digested with BbsI, the EcERS product with EcoRI and NcoI, the MmERS and MtERS products with BsmBI, and the PhERS product with BsaI to generate EcoRI / NcoI compatible cohesive ends for all products. Construction of the synthetase pBAD plasmids was accomplished by insertion of restriction-digested, gel-purified PCR fragments into the EcoRI and NcoI cloning sites of plasmid pKQ. Plasmid constructs were confirmed by restriction mapping and sequencing of individual clones. The synthetase pBAD plasmids were transferred to DH10B cells carrying plasmid pArgU218. Individual colonies were used to inoculate 500-mL cultures of 2YT containing ampicillin and kanamycin. Protein was isolated according to the QIAexpressionist (Qiagen) protocol under native conditions and dialyzed overnight against 20 mM Tris-HCl (pH 8), 200 mM NaCl, and 1 mM DTT. Glycerol was added to protein samples to a final concentration of 50%. Glycerol-containing samples were stored at -20°C. Protein concentrations were determined using sodium-dodecyl sulfate polyacrylamide gel electrophoresis by comparison to a BSA standard.

[0178] In vitro aminoacylation assays: Reactions were carried out as described previously (see, e.g., Hoben,P. and Soll,D. (1985) Glutaminyl-tRNA synthetase of Escherichia coli. Methods Enzymol., 113:55-59). Each 20-μL reaction contained 50 mM Tris-HCl (pH 7.5), 30 mM KCl, 20 mM MgCl₂, 0.1 mg/mL BSA, 5 mM glutathione, 2.5 mM ATP, 100 nM 1-[G-³H]Glutamic acid (Amersham), 750 nM aminoacyl-tRNA

synthetase, and 40 μ M whole halobacterial tRNA. Reactions were allowed to proceed for 15 minutes at 37°C.

Results and Discussion

20

25

30

[0179] Development of an orthogonal tRNA: An orthogonal tRNA derived from the 5 consensus sequence of archaeal leucine tRNAs can serve as an efficient substrate for archaeal leucyl-tRNA synthetases. See, e.g., the generation of an orthogonal tRNA leu (see e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyltRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19;42(32):9598-9608). The design of an orthogonal tRNA using this strategy involves: 10 alignment of a group of related tRNA sequences to determine the consensus sequence; analysis of the secondary structure of the consensus-derived tRNA to identify and correct potentially deleterious non-canonical base pairs; and conversion of the anticodon of the consensus tRNA to CUA to allow recognition and suppression of an amber stop codon within the target mRNA. The same strategy was applied to construct a cognate orthogonal 15 tRNA for archaeal glutamyl-tRNA synthetases.

[0180] In archaebacteria, a single enzyme, glutamyl-tRNA synthetase, aminoacylates both tRNA^{Glu} and tRNA^{Gln}. The product of the latter reaction, glu-tRNA^{Gln}, is subsequently converted to gln-tRNA^{Gln} by transamidation (see, e.g., Tumbula,D.L., Becker, H.D., Chang, W.Z. and Soll, D. (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature, 407:106-110). Previous reports suggest that both archaeal tRNA Glu and archaeal tRNA are not substrates for endogenous E. coli synthetases (see, e.g., Kwok, Y. and Wong, J.T. (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can. J. Biochem., 58:213-218). Thus, both tRNAs were viewed as attractive starting points for the development of an orthogonal tRNA using the consensus sequence design strategy. The available archaeal tRNA Glu and tRNA Gln sequences were separately aligned, revealing a high degree of homology within each family (Tables 1 and 2). The consensus sequence of each family was derived by identification of the consensus base at each position within the primary sequence. The consensus tRNA Glu sequence contains three positions outside of the anticodon (positions 3, 25, and 72) at which two bases predominate with approximately equal frequency (Table 1). The consensus tRNA^{Gln} sequence contains five positions outside the anticodon (positions 16, 32, 40, 51 and

63) at which two bases predominate with approximately equal frequency and two positions (positions 6 and 67) at which one base predominates but does not represent a majority at its position (Table 2).

The secondary structures of the consensus archaeal tRNA Glu and tRNA Gln [0181] sequences (Figure 1, Panel A) were used to design three candidate orthogonal tRNAs 5 (Figure 1, Panel B). The anticodon loops contained the sequence CUA for suppression of an amber stop codon (UAG). The nucleotide to the 3' side of each anticodon was converted to A to improve suppression efficiency in E. coli (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for fourbase, amber, and opal suppression, Biochemistry, Aug 19;42(32):9598-9608). Consensus 10 tRNA Glu and tRNA Gln structures contain a conserved non-canonical G-U base pair at positions 10-28 and 10-26, respectively (Figure 1, Panel A). Although it has been demonstrated that alteration of non-canonical base pairs within orthogonal tRNAs can improve amber stop codon suppression efficiency in E. coli (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair 15 for four-base, amber, and opal suppression, Biochemistry, Aug 19;42(32):9598-9608), the conserved nature of this pair suggested that it might constitute an important identity element for recognition by archaeal glutamyl-tRNA synthetases. Therefore, in designing the tRNA Glu orthogonal tRNA, AE(GU), the 10-28 G-U base pair was preserved (Figure 1, Panel B). In designing the tRNA^{Gln} orthogonal tRNAs, AQ(GU) and AQ(GC), the 10-26 20 pair was either preserved or changed to a G-C pair, respectively.

TABLE 1. ARCHAEAL GLUTAMIC ACID AND CONSENSUS tRNAs

tRNA (anticodon)	Sequence ¹
Aeropyrum pernix (CUC)	GCCGCGGUAGUAUAGCCCGGCCCAGUAUGCGGGCCUCUCGAGCCCGU
	GACCCGGGUUCAAAUCCCGGCCGCGGGCACCA
Aeropyrum pernix (UUC)	GCCGCGUAGUAUAGCCCGGCCCAGUAUGCGGGCCUUUCGAGCCCGU
	GACCCGGGUUCAAAUCCCGGCCGCGGGCACCA
Archaeoglobus fulgidus (CUC)	GCUCCGGUGGUGUAGCCCGGCCAAUCAUACGGGACUCUCGAUCCCGU
	GACCCGGGUUCAAAUCCCGGCCGGAGCACCA
Archaeoglobus fulgidus (UUC)	GCUCCGGUGGUGUAGCCCGGCCAAUCAUUCCGGCCUUUCGAGCCGGC
	GACCCGGGUUCAAAUCCCGGCCGGAGCACCA
Halobacterium sp. (CUC)	GCUCCGUUGGUGUAGUCCGGCCAAUCAUCUUGCCCUCUCACGGCAAG
	GAC <u>UA</u> GGGUUCAAAUCCC <u>U</u> G <u>A</u> CGG <mark>A</mark> GCACCA
Halobacterium sp. (UUC)	GCUCGGUUGGUGUAGUCCGGCCAAUCAUGUUGGCCUUUCGAGCCGA
	CGACC <u>A</u> GGGUUCAAAUCCC <u>U</u> G <u>A</u> C <u>C</u> G <mark>A</mark> GCACCA
Methanobacterium	GCUCCGGUAGUGUAGUCCGGCCAAUCAUUUCGGCCUUUCGAGCCGAA
thermautotrophicus (UUC)	GAC <u>U</u> CGGGUUCAAAUCCCGGCCGG <mark>A</mark> GCACCA

tRNA (anticodon)	Sequence ¹
Methanococcus jannaschii	GCUCCGGUGGUGUAGUCCGGCCAAUCAUGCGGGCCUUUCGAGCCCGC
_(UUC)	GACCCGGGUUCAAAUCCCGGCCGGAGCACCA
Methanococcus maripaludis	GCUCCAGUGGUGUAGUCCGGCCAAUCAUCCGGCCCUUUCGAGGCCGG
(UUC)	GACUCGGGUUCAAAUCCCGGCUGGAGCACCA
Methanosarcina mazei (CUC)	GCUCCGAUAGUGUAGCUCGGCCAAUCAUUCAGGACUCUCACUCCUGC
	GAC <u>UGG</u> GGUUCAAAUCCC <u>CAU</u> CGG <mark>A</mark> GCACCA
Methanosarcina mazei (UUC)	GCUCCGGUAGUGUAGUCCGGCCAAUCAUUCCGGCCUUUCGAGCCGAA
	GAC <u>U</u> CGGGUUC <u>G</u> AAUCCCGGCCGG <mark>A</mark> GCACCA
Pyrobaculum aerophilum	CAGCCGGUAGUCUAGCCCGGACAAGGAUGCGGGCCUCUCGAGCCCGU
(CUC)	GACCCGGGUUCAAAUCCCGGCCGG
Pyrococcus abyssi (CUC)	GCCCCGGUGGUGUAGCCCGG <u>U</u> CAA <mark>U</mark> CAUGCGGG <u>A</u> CU <mark>C</mark> UCGA <u>U</u> CCCGC
	GACCCGGGUUCAAAUCCCGGCCGGGGGCACCA
Pyrococcus abyssi (UUC)	GCCCGGUGGUGUAGCCCGG <u>U</u> CAA <u>A</u> CAUGCGGGCCU <mark>UUC</mark> GAGCCCGC
	GCCCGGGUUCAAAUCCCGGCCGGGGGCACCA
Pyrococcus furiosus (CUC)	GCCCGGUGGUGUAGCCCGG <u>U</u> CAA <mark>U</mark> CAUGCGGG <u>A</u> CU <mark>CUC</mark> GA <u>U</u> CCCGC
	GACCCGGGUUCAAAUCCCGGCCGG <mark>G</mark> GCACCA
Pyrococcus furiosus (UUC)	GCCCGGUGGUGUAGCCCGG <u>U</u> CAA <u>A</u> CAUGCGGGCCU <mark>UUC</mark> GAGCCCGC
	GCCCCGGGUUCAAAUCCCGGCCGGCGGGGCACCA
Pyrococcus horikoshii (CUC)	GCCCGGUGGUGUAGCCCGG <u>U</u> CAA <mark>U</mark> CAUGCGGG <u>A</u> CU <mark>CUC</mark> GA <u>U</u> CCCGC
	GACCCGGGUUCAAAUCCCGGCCGG
Pyrococcus horikoshii (UUC)	GCCCGGUGGUGUAGCCCGGCCAAACAUGCGGGCCUUUCGAGCCCGC
	GCCCCGGGUUCAAAUCCCGGCCGGGGGCACCA
Sulfolobus solfataricus (CUC)	GCCGCGGUGUUUAGCCCGGUC-
	AGAAUGCGGGCCUCUCGAGCCCGUGACCCGGGUUCAAAUCCCGGCC
Sulfalahara alfatanian (IIIIC)	GCGCACCA GCCGCGGUGGUUUAGCCCGGUC-
Sulfolobus solfataricus (UUC)	AGAUGCGGGCCUUUCGAGCCCGUGACCCGGGUUCAAAUCCCGGCCG
	CGCACCA
Sulfolobus tokodaii (CUC)	GCCGCGUAGUAUAGCCCGGUC-
Buijoioous iokouuii (COC)	AGUAUGCGGGCCUCUCAAGCCCGUGGCCCGGUUCAAAUCCCGGCCG
	CGCACCA
Sulfolobus tokodaii (UUC)	GCCGCGGUAGUAUAGCCCGGUCAAGCACGCGGGCCUUUCGAGCCCGU
	GACCCGGGUUCAAAUCCCGGCCGCGGGCACCA
Thermoplasma acidophilum	GCUCCGGUGGUGUAGUCCGGCCAAGCAUUAGGGACUCUCAAUCCCCC
(CUC)	GAC <u>U</u> CGGGUCCAAAUCCCG <u>A</u> CCGG <mark>A</mark> GCACCA
Thermoplasma acidophilum	GCUCCGGUGGUGUAGUCCGGACAAGCAUAUCGGCCUUUCGAGCCGA
(UUC)	CGACC <u>U</u> GGGUCCAAAUCCCGGCCGG <mark>A</mark> GCACCA
Thermoplasma volcanium	GCUCCGGUGGUGUAGUCCGGCCAAGCAUUAGGGACUCUCAAUCCCCC
(CUC)	GAC <u>U</u> CGGGUCCAAAUCCCG <u>A</u> CCGG <mark>A</mark> GCACCA
Thermoplasma volcanium	GCUCCGGUGGUGUAGUCCGGACAAGCAUAUCGGCCUUUCGAGCCGA
(UUC)	CGACCUGGGUCCAAAUCCCGGCCGAGCACCA
Consensus (YUC) ²	GCYCCGGUGGUGUAGCCCGGCCAAKCAUGCGGGCCUYUCGAGCCCG
	CGACCCGGGUUCAAAUCCCGGCCGGRGCACCA
AE(GU) (CUA) ³	GCcCCGGUGGUGUAGCCCGGCCAAgCAUGCGGGCCUcUalaAGCCCGCGA
AL(GO) (COA)	CCCGGGUUCAAAUCCCGGCCGgGCACCA
	CCCGGGGGCAAAGCCCGGCCGGGCACCA

¹ Bases indicated by underlining deviate from the identity of their consensus bases. Bases highlighted in black correspond to positions at which two different bases predominate with approximately equal frequency. Anticodon positions are boxed.

²Bases that are in boldface correspond to positions involved in non-canonical base pairs (Figure 1, Panel A). Y corresponds to bases C or U; R corresponds to bases A or G; S corresponds to bases C or G.

³ Bases in lowercase correspond to positions that were varied from the consensus sequence in the design of a prospective orthogonal tRNA (Figure 1, Panel B).

TABLE 2. ARCHAEAL GLUTAMINE AND CONSENSUS tRNAs

tRNA (anticodon)	Sequence ¹
Aeropyrum pernix (CUG)	AGCC <u>GG</u> GU <u>C</u> GUCUAG <mark>C</mark> GGCC <u>C</u> AGGAUGCGGG <mark>G</mark> CU <mark>C</mark> UGG <u>C</u> CC
	CGUGACCGCGGUUCGAAUCCCCCGCCCGGCUACCA
Aeropyrum pernix (UUG)	AGCC <u>GG</u> GUCGUCUAGCGGCCCAGGAUGCGGGCUUUUGGCCCC
	CGUGACCCGGGUUCGAAUCCCGGCCCGGCUACCA
Archaeoglobus fulgidus (CUG)	AGCCCCGUGGGGUAGCGGUCAAUCCUGCCGGACUCUGGAUCC
	GGCGACGC GGUUCGAAUCC GCCGGGGCUACCA
Archaeoglobus fulgidus (UUG)	AGCCCCGUGGUGUAG <mark>C</mark> GG <u>U</u> CAA <u>U</u> CAUGCGGG <u>C</u> CU <mark>UUG</mark> GA <u>G</u> CC
	CGCGACCGGGGUUCGAAUCCCCGCGGGGCUACCA
Halobacterium sp. (CUG)	AGUCCCGUAGGGUAGUGGCCAAUCCUGAAGCCUUCUGGGGGC
	<u>UU</u> CGACGG <u>AA</u> GUUCGAAUC <u>UU</u> CCCGGG <u>A</u> CUACCA
Halobacterium sp. (UUG)	AG <u>U</u> CCCGUGGUGUAG <mark>U</mark> GGCCAA <u>U</u> CAU <u>AU</u> GGG <u>C</u> CU <mark>U</mark> UGGA <u>G</u> CC
	CACGACGGCGGUUCGAAUCCGCCCGGGACUACCA
Methanobacterium	AG <u>U</u> CCCGUGG <u>G</u> GUA <u>A</u> UGGC <u>A-</u>
thermautotrophicus (CUG)	A <u>U</u> CCUG <u>AU</u> GG <mark>A</mark> CU <mark>CUG</mark> GA <mark>U</mark> CC <u>AU</u> CGA <u>UA</u> G <mark>C</mark> GGUUCGA <u>C</u> UCC <mark>G</mark>
	C <u>U</u> CGGG <u>A</u> CUACCA
Methanobacterium	AG <u>U</u> CCCGUGG <u>G</u> GU <u>AG</u> UGG <u>UA-</u>
thermautotrophicus (UUG)	A <u>U</u> CCUGC <u>U</u> GG <mark>G</mark> CU <mark>UUG</mark> GA C CC <u>G</u> GCGAC <u>A</u> G C GGUUCGA <u>C</u> UCC G
	C <u>U</u> CGGG <u>A</u> CUACCA
Methanococcus jannaschii (UUG)	AGCCCGGUGGUGUAGUGGCCUAUCAUCCGGGGCCUUUGGACCC
	CGGGACCGCGGUUCGAAUCCCCCGGGCUACCA
Methanococcus maripaludis (UUG)	AGCCC <u>A</u> GU <u>A</u> GUGUAG <mark>U</mark> GGCCA <u>AU</u> CAU <u>C</u> CG <u>U</u> G <u>C</u> CU <mark>U</mark> UGGA <u>G</u> C <u>A</u>
	<u>UGG</u> GACCG <mark>C</mark> GGUUCGAAUCC <mark>G</mark> CGC <u>U</u> GGGCUACCA
Methanopyrus kandleri (UUG)	AGGCCGUGGGGUAGCGGUCUAUCCUGCGGGCCUUUGGACCC
	CGCGACC <u>C</u> GGUUC <u>A</u> AAUCC <mark>G</mark> GCGG <u>CC</u> CUACCA
Methanosarcina mazei (CUG)	AGCCC <u>G</u> GU <u>A</u> GUGUAG <mark>U</mark> GG <u>U</u> CAA <u>U</u> CAUGCGGG <mark>A</mark> CU <mark>C</mark> UGGA C CC
	<u>UGCAACCU</u> CGGUUCGAAUCCGUGCCGGGCUACCA
Methanosarcina mazei (UUG)	AGUCCUGUAGGGUAGUGGUCAAUCCUUCGGGCCUUUGGAGCC
	CGGGACAGCGGUUCGAAUCCGCUCAGGACUACCA
Pyrobaculum aerophilum (CUG)	AGCCCGGUCGUCUAGCGGCC-
	AGGAUGCGGGCUCUGGACCCCGUGGCCCGGGGUUCGAAUCCC
	<u>G</u> GC <u>C</u> GGGCUACCA
Pyrobaculum aerophilum (UUG)	AGCCCGGUCUAGCGGCCAAGGAUGCGGGCCUUUGGACCC
	CGUGGCCCGGGUUCGAAUCCCGGCCGGGCUACCA
Pyrococcus abyssi (CUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCC
	CGCGACCGGGGUUCGAAUCCCCGCGGGGCUACCA
Pyrococcus abyssi (UUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACU <mark>UUG</mark> GAUCC
	CGCGACCCGGGUUCGAAUCCCGGCGGGCUACCA
Pyrococcus furiosus (CUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCC
	CGCGACCGGGGUUCGAAUCCCCGCGGGGCUACCA
Pyrococcus furiosus (UUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACU <mark>UUG</mark> GAUCC
	CGCGACCCGGGUUCGAAUCCCGGCGGGCUACCA
Pyrococcus horikoshii (CUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCC
	CGCGACCGGGGUUCGAAUCCCCGCGGGGCUACCA
Pyrococcus horikoshii (UUG)	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUUUGGAUCC
	CGCGACCCGGGUUCGAAUCCCGGCGGGCUACCA
Sulfolobus solfataricus (CUG)	AGCC <u>GG</u> GU <u>A</u> GU <u>C</u> UAG <mark>U</mark> GG <u>U</u> CAAG <u>G</u> AU <u>C</u> C <u>A</u> GG <mark>G</mark> CU <mark>CUG</mark> GCCCC
	<u>UGG</u> GACCAGGUUCGAAUCCCUGCCCGGCUACCA
Sulfolobus solfataricus (UUG)	AGCC <u>GG</u> GU <u>A</u> GU <u>C</u> UAG <mark>U</mark> GG <u>U</u> CAAG <u>G</u> AU <u>C</u> C <u>A</u> GG <mark>G</mark> CU <mark>UUG</mark> G <u>C</u> CC
	<u>UGG</u> GACCAGGUUCGAAUCCCUGCCCGGCUACCA
Sulfolobus tokodaii (CUG)	AGCC <u>GG</u> GU <u>C</u> UAG <mark>U</mark> GG <u>U</u> CAAG <u>G</u> AU <u>CGA</u> GG <mark>C</mark> CU <mark>CUG</mark> GCCC
0.10.1.1	<u>UCG</u> GACC <u>U</u> GGUUC <u>A</u> AAUCC <u>C</u> AGC <u>CC</u> GGCUACCA
Sulfolobus tokodaii (UUG)	AGCC <u>GG</u> GU <u>C</u> UAG <mark>U</mark> GG <u>U</u> CAAG <u>G</u> AU <u>CGA</u> GG <mark>C</mark> CU <mark>UUG</mark> G <u>C</u> CC
	<u>UCG</u> GACC <u>U</u> GGUUC <u>A</u> AAUCC <u>C</u> AGC <u>CC</u> GGCUACCA
Thermoplasma acidophilum (CUG)	AGCCC <u>U</u> GUGGUGUAG <mark>U</mark> GGCCAAGCAU <u>UAU</u> GG <mark>C</mark> CU <mark>CUG</mark> GACCC
	<u>AU</u> CGACGG <mark>C</mark> AGUUCGAAUC <u>U</u> GC <u>CCA</u> GGGCUACCA
Thermoplasma acidophilum (UUG)	AGCCC <u>U</u> GUGGUGUAG <mark>U</mark> GG <u>A</u> CAAGCAU <u>UUU</u> GG <mark>A</mark> CU <mark>UUG</mark> GA <mark>UU</mark> C
	CAAAGACGGCAGUUCGAAUCUCCCAGGGCUACCA

tRNA (anticodon)	Sequence ¹
Thermoplasma volcanium (CUG)	AGCCC <u>U</u> GUGGUGUAG <mark>C</mark> GGCCAAGCAU <u>UAU</u> GG <mark>C</mark> CU <mark>C</mark> UGGACCC <u>AU</u> CGAC <u>G</u> G <mark>C</mark> AGUUCGAAUC <u>U</u> GC <u>CCA</u> GGGCUACCA
Thermoplasma volcanium (UUG)	AGCCC <u>U</u> GUGGUGUAG <mark>U</mark> GG <u>A</u> CAAGCAU <u>UUU</u> GG <mark>A</mark> CU <mark>U</mark> UGGA <mark>U</mark> CC <u>AA</u> CGAC <u>G</u> G <mark>C</mark> AGUUCGAAUC <u>U</u> GC <u>CCA</u> GGGCUACCA
Consensus (YUG) ²	AGCCCCGUGGUGUAGYGGCCAAGCAUGCGGGRCUYUGGAYCC CGCGACCGSGGUUCGAAUCCSCGCGGGGCUACCA
AQ(GU) (CUA) ³	AGCCCGUGGUGUAGcGGCCAAGCAUGCGGGgCUcUalaAcCCCGCGACCGgGGUUCGAAUCCcCGCGGGGCUACCA
AQ(GC) (CUA) ³	AGCCCGUGGUGUAGcGGCCAAGCAcGCGGGGCUcUalaAcCCCGCGACCGgGGUUCGAAUCCcCGCGGGGCUACCA

¹ Bases indicated by underlining deviate from the identity of their consensus bases. Bases highlighted in black correspond to positions at which two different bases predominate with approximately equal frequency. Anticodon positions are boxed.

5

10

15

20

[0182] Orthogonality of tRNAs: To test the activity and cross-reactivity of the AE(GU), AQ(GU), and AQ(GC) tRNAs, their genes were inserted into plasmid pACKO-A184TAG. E. coli cells were transformed with the resulting plasmids, pAC-AE(GU), pAC-AQ(GU), and pAC-AQ(GC), and the ampicillin IC₅₀ values for the cells were assayed. The tRNA-expressing pAC-based plasmids carry a β-lactamase reporter gene containing an amber mutation at the permissive site Ala184, which serves as a useful reporter for amber codon suppression. Acylation of an amber suppressor tRNA causes the incorporation of the activated amino acid at position 184 of β-lactamase, resulting in suppression of the amber stop codon, production of active full-length β-lactamase and resistance to ampicillin. Because an orthogonal tRNA should not cross-react with endogenous aminoacyl-tRNA synthetases, strains transformed with an orthogonal suppressor tRNA alone should survive only on low concentrations of ampicillin. To assess the orthogonality of designed tRNAs, E. coli transformants were plated on LB agar plates containing varying concentrations of ampicillin (Figure 2). Cells expressing the AQ(GU) and AQ(GC) tRNAs exhibited ampicillin IC₅₀ values of 60 ± 12 and 20 ± 4 µg/mL, respectively. Cells expressing the AE(GU) tRNA exhibited a relatively lower ampicillin IC₅₀ value of $5 \pm 1 \mu g/mL$, suggesting that this tRNA is the least cross-reactive of the three.

[0183] Cloning and assaying archaeal glutamyl-tRNA synthetases in E. coli: Based on previous experiments (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal

²Bases that are in boldface correspond to positions involved in non-canonical base pairs (Figure 1, Panel A). Y corresponds to bases C or U; R corresponds to bases A or G; S corresponds to bases C or G.

³ Bases in lowercase correspond to positions that were varied from the consensus sequence in the design of a prospective orthogonal tRNA (Figure 1, Panel B).

5

10

15

20

25

30

suppression, Biochemistry, Aug 19;42(32):9598-9608), it was anticipated that the AE(GU), AQ(GU) and AQ(GC) tRNAs might serve as substrates for archaeal glutamyl-tRNA synthetases. Suppression efficiencies corresponding to various synthetases-tRNA pair combinations were assessed using the ampicillin IC₅₀ assay. If the designed tRNAs are recognized by the archaeal synthetases, then E. coli cells co-expressing the synthetasetRNA pairs should exhibit ampicillin IC₅₀ values greater than those displayed by cells expressing tRNAs alone. The AfERS, ApERS, MmERS, MtERS, PhERS, and SsERS genes were each inserted into the vector pKQ, which can be co-maintained in E. coli in combination with the tRNA-expressing plasmids. Following co-transformation of E. coli with all pair-wise combinations of synthetase- and tRNA-expressing plasmids, cells were grown on LB agar plates containing varying concentrations of ampicillin. Cells expressing synthetase-AQ(GU) or synthetase-AQ(GC) combinations exhibited IC₅₀ values equivalent to those of cells expressing AQ(GU) alone or AQ(GC) alone, respectively, suggesting that neither of these tRNAs is recognized by any of the archaeal glutamyl-tRNA synthetases when co-expressed in E. coli. In contrast, cells expressing combinations of synthetase and AE(GU) tRNA exhibited ampicillin IC₅₀ values 2–20-fold higher than those displayed by cells expressing AE(GU) alone (Figure 3). The greatest IC₅₀ value differences were exhibited by cells co-expressing the AE(GU) tRNA together with MtERS (6 fold), AfERS (7 fold), PhERS (12 fold), and MmERS (20 fold). Cells co-expressing the best pair, MmERS and AE(GU), exhibited an IC₅₀ value of 100 μg/mL, a value still 4.5-fold lower than that displayed by the M. jannaschii-derived tyrosine pair (see, e.g., Wang, L., Brock, A., Herberich, B. and Schultz, P.G. (2001) Expanding the genetic code of Escherichia coli. Science, 292:498-500) and 10-fold lower than that displayed by the M. thermoautotrophicum-derived leucine pair (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19;42(32):9598-9608). These results indicate that the AE(GU) tRNA combined with MtERS, AfERS, PhERS or MmERS constitute active but inefficient orthogonal pairs in E. coli.

[0184] Selection and characterization of an optimized consensus tRNA^{Glu:} In order to increase the efficiency of the archaeal glutamic acid orthogonal pairs, improved variants of the AE(GU) tRNA were sought. The presence of the non-canonical G10-U28 base pair was regarded as a possible explanation for the low amber-suppression efficiency exhibited

by synthetase-AE(GU) pairs. An attempt to investigate the importance of this G-U base pair had already been made with the construction of the two tRNA^{Gln}-based consensus tRNAs, AQ(GU) and AQ(GC), which differed only with respect to this base pair. However, because both AQ(GU) and AQ(GC) lacked the ability to be aminoacylated by archaeal glutamyl-5 tRNA synthetases in E. coli, the importance of the G-U base pair was still unknown. To further address this issue, a small library of variants of the consensus tRNA^{Glu}, AE(GU), was constructed in which nucleotides in the 10 and 28 positions were randomized (Figure 4, Panel A). This "AE(NN)" tRNA library was constructed by PCR using a degenerate oligonucleotide primer (see Materials and Methods), and inserted into the tRNA cloning site 10 of plasmid pACKO-A184TAG, to afford the pAC-AE(NN) plasmid library. E. coli cells cotransformed with plasmid pKQ-MmERS and plasmid library pAC-AE(NN) were then plated on a series of LB agar plates containing varying concentrations of ampicillin. Bacterial colonies were observed on plates containing ampicillin concentrations as high as 500 μg/mL, indicating that at least one variant of the AE(GU) tRNA exhibited enhanced 15 amber-suppression efficiency compared to the parent when co-expressed with MmERS in E. coli. Ten bacterial colonies were picked from the 500-μg/mL ampicillin plate, and the pAC-AE(NN) plasmids were sequenced. All ten of the clones contained a G10-C28 base pair (Figure 4, Panel B), indicating that this "AE(GC)" tRNA is the most active variant within the AE(NN) library.

20 To measure the amber suppression efficiency of the selected AE(GC) tRNA, [0185]E. coli cells carrying either pAC-AE(GC) alone or in combination with plasmid pKQ-AfERS, pKO-MmERS, pKO-MtERS, or pKO-PhERS were plated on a series of LB agar plates containing varying concentrations of ampicillin. In all cases, E. coli cells coexpressing the AE(GC) tRNA were found to exhibit ampicillin IC₅₀ values 4–5-fold greater 25 than those of cells co-expressing the AE(GU) tRNA (Figure 4, Panel C). Cells coexpressing the MmERS and AE(GC) pair exhibited an ampicillin IC₅₀ value of 450 μ g/mL, 4.5-fold greater than that displayed by cells co-expressing the MmERS and AE(GU) combination. Similarly, cells coexpressing the PhERS and AE(GC) pair exhibited an IC₅₀ value of 212 μ g/mL, ~3.5-fold greater than those co-expressing PhERS and AE(GU). The 30 ampicillin IC₅₀ value for cells expressing the AE(GC) tRNA alone also increased 4-fold relative to cells expressing the AE(GU) tRNA alone (20 μ g/mL versus 5 μ g/mL ampicillin), suggesting that the U28 to G replacement enhanced the overall amber suppression

efficiency of the tRNA. Without being limited to one theory, such an enhancement may have resulted from improved *E. coli* processing of the AE(GC) tRNA compared to AE(GU) (see, e.g., Anderson JC, & Schultz PG, (2003), Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression, Biochemistry, Aug 19;42(32):9598-9608). Alternatively, the increased IC₅₀ value could be due to an increased rate of background aminoacylation of the AE(GC) tRNA compared to AE(GU).

5

10

15

20

25

30

[0186]Orthogonality of archaeal glutamyl-tRNA synthetases in E. coli: The ampicillin IC₅₀ measurements described above provide insights into the orthogonality of consensus-designed tRNAs, but provide no information about the orthogonality of archaeal glutamyl-tRNA synthetases in E. coli. To investigate synthetase orthogonality, the AfERS, MmERS, MtERS, and PhERS genes were inserted into a protein overexpression vector. E. coli glutamyl-tRNA synthetase (EcERS) was inserted into the same vector for use as a control. Synthetases were overexpressed in E. coli, purified to homogeneity, and used in an in vitro aminoacylation assay with whole tRNA prepared from either E. coli or the halophilic archaebacterium Halobacterium sp. NRC-1. As expected, EcERS robustly aminoacylated whole E. coli tRNA (14,000 pmol/L) and exhibited virtually no activity toward whole archaeal tRNA (1.7 pmol/L; Figure 5). In contrast, none of the four archaeal synthetases exhibited measurable aminoacylation activity with whole E. coli tRNA (≤ 2.8 pmol/L), while two of the four synthetases actively aminoacylated whole archaeal tRNA (530 and 1100 pmol/L for MtERS and PhERS, respectively). In these experiments, it is unclear why AfERS and MmERS could not aminoacylate whole halobacterial tRNA in vitro $(\leq 5 \text{ pmol/L})$. Without being limited to one theory, it is possible that the enzyme purification and/or assay conditions employed were deleterious to the aminoacylation activity of AfERS and MmERS. Another possibility is that subtle differences in tRNA identity elements might preclude recognition of a given archaeal tRNA Glu by all archaeal glutamyl-tRNA synthetases. To test the latter, the activity of MmERS was investigated using the in vitro aminoacylation assay with whole tRNA derived from E. coli expressing the AE(GC) tRNA. Again, no activity was observed, suggesting that the C-terminally His-tagged AfERS and MmERS enzymes are not active following purification. The above data demonstrate the orthogonality of MtERS and PhERS, and the likely orthogonality of AfERS and MmERS.

[0187] The consensus sequence strategy for the design of orthogonal tRNAs was successfully applied to the development of an orthogonal tRNA based on the family of

tRNA^{Glu} sequences from archaea. The initial candidate tRNA^{Glu}-based tRNA, AE(GU), was found to be highly orthogonal in *E. coli*, with cells expressing the tRNA alone displaying an ampicillin IC₅₀ value of just 5 μg/mL. However, the AE(GU) tRNA inefficiently suppressed amber codons when expressed in combination with archaeal glutamyl-tRNA synthetases in *E. coli*. Cells containing this synthetase-tRNA pair displayed an ampicillin IC₅₀ value of only 60 and 100 μg/mL for the two best synthetases, PhERS and MmERS, respectively. In order to improve the amber suppression efficiency of the AE(GU) tRNA, a small library of variants, randomized at the 10 and 28 positions, was constructed. Library members were selected for the ability to efficiently suppress an amber stop codon in *E. coli* when expressed in combination with MmERS. The resulting AE(GC) tRNA, when paired with PhERS and MmERS, suppress amber codons with high efficiency. Cells co-expressing this tRNA with PhERS and MmERS display ampicillin IC₅₀ values of 212 and 450 μg/mL, respectively.

5

10

15

20

25

30

An orthogonal tRNA based on the tRNA family of sequences from the [0188]same organisms was not developed with the consensus sequence strategy. Without being limited to one theory, members of the family of archaeal tRNA^{Gln} sequences, in general, deviate more from their consensus tRNA than do tRNA Glu sequences from theirs (Tables 1 and 2). This deviation suggests that individuals within the family of tRNA^{Gln} may cluster less tightly in their evolutionary relatedness compared to tRNAs within the archaeal tRNA^{Glu} family. Moreover, the degree of deviation within the tRNA^{Gln} family may prevent individual synthetases from productively recognizing the consensus tRNA. A second possible explanation for the failure of the tRNA Gln-based consensus design is that the AQ(GU) and AQ(GC) tRNAs may lack unknown elements that permit efficient processing in E. coli. E. coli cells expressing the AQ(GU) and AQ(GC) tRNAs without co-expressed archaeal glutamyl-tRNA synthetases exhibit relatively relatively high ampicillin IC₅₀ values compared to cells expressing the AE(GU) tRNA or no exogenous tRNA (Figure 2). Without being limited to one theory, these data suggest that the AQ(GU) and AQ(GC) tRNAs are processed to at least some extent in E. coli and that their inability to be charged by archaeal glutamyl-tRNA synthetases in E. coli is due to the fact that they are not recognized as substrates.

[0189] The glutamyl-tRNA synthetase from *P. horikoshii* functions as part of an orthogonal tRNA synthetase and amber suppressor tRNA pair in *E. coli*. The development

of this pair is a significant step in the process of incorporating unnatural amino acids into proteins *in vivo*. Synthetase variants can be evolved to selectively recognize unnatural amino acids and catalyze their condensation with the orthogonal AE(GC) tRNA. The evolved synthetases can then be used in unnatural amino acid mutagenesis of target proteins in *E. coli*.

5

10

15

20

25

30

efficiency of the orthogonal synthetase and tRNA pair in *E. coli* is an important determinant of synthetase evolvability. Amber suppression efficiency, in turn, is determined by several kinetic parameters, including the rate of synthetase and tRNA production and processing in *E. coli* and the catalytic efficiency of tRNA aminoacylation. Altering the amino acid substrate specificity of a synthetase through the variation of active site residues likely reduces amber suppression efficiency by affecting either the *k*_{cat} or *K*_M of the variant enzyme (*see*, *e.g.*, Wang,L., Brock,A., Herberich,B. and Schultz,P.G. (2001) *Expanding the genetic code of Escherichia coli*. Science, 292:498-500; and, Agou,F., Quevillon,S., Kerjan,P. and Mirande,M. (1998) *Switching the amino acid specificity of an aminoacyl-tRNA synthetase*. Biochemistry, 11:11309-11314). Thus, the suppression efficiency of the parent synthetase-tRNA pair should be high enough to withstand a reduction in catalytic efficiency that can accompany protein evolution and allow the selection criteria to be met.

[0191] Amber suppression efficiencies can be determined by measurement of ampicillin IC₅₀ values for *E. coli* bearing a synthetase-tRNA pair. The only orthogonal synthetase that has been evolved to accept unnatural amino acids in *E. coli*, the tyrosyltRNA synthetase from *M. jannaschii*, exhibits an ampicillin IC₅₀ value of 440 μg/mL (see, e.g., Wang,L., Brock,A., Herberich,B. and Schultz,P.G. (2001) Expanding the genetic code of Escherichia coli. Science, 292:498-500). In contrast, the glutamine pair derived from *S. cerevisiae*, for which variants capable of accepting unnatural amino acids have not yet been found, displays an ampicillin IC₅₀ value of only 140 μg/mL (see, e.g., Pastrnak,M., Magliery,T.J. and Schultz,P.G. (2000) A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code. Helvetica Chimica Acta, 83:2277-2286). The difference in suppression efficiency between these two pairs may explain the apparent difference in the evolvability of their synthetases. On the basis of these data, PhERS, which, together with the AE(GC) tRNA, exhibits an amber suppression efficiency in *E. coli* ~2-fold less than that of the tyrosyl-tRNA synthetase, can be amenable

to selection experiments to alter amino acid specificity. MmERS, which has an ampicillin IC_{50} value roughly comparable to that of the tyrosyl-tRNA synthetase, can also be amenable to selection. Besides catalytic efficiency, however, other factors are likely to play a role in synthetase evolvability. The extensive hydrogen bonding network within the active site of the glutamine synthetase, for example, may affect the enzyme's evolvability. Our understanding of the relative importance of activity versus other, perhaps more subtle, features will improve our ability to generate and evolve additional orthogonal pairs.

5

10

15

20

25

30

[0192] The M. jannaschii-derived tyrosine orthogonal pair has been evolved to recognize a variety of unnatural amino acids containing aryl side chains. Efforts to develop variants of this synthetase that accept more diverse chemical structures are in progress. The availability of additional orthogonal pairs opens the possibility of expanding the diversity of unnatural amino acids that can be incorporated in, e.g., E. coli. The glutamic acid orthogonal pair described here, for example, can facilitate the development of synthetase variants that recognize negatively charged amino acids. This involves the generation of a large library of synthetase variants containing random amino acids substitutions at specific residues involved in binding the natural amino acid. Therefore, the availability of highresolution structural information about the amino acid substrate-binding site is helpful for the directed evolution of a synthetase. Although the x-ray crystal structure of the glutamyltRNA synthetase from M. mazei has not yet been solved, the structure of the homologous enzyme from Thermus thermophilus is available (see, e.g., Nureki,O., Vassylyev,D.G., Katayanagi et al., (1995) Architectures of class-defining and specific domains of glutamyltRNA synthetase. Science, 31:1958-1965; and, Sekine et al., (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat. Struct. Biol., 8:203-206). This information is supplemented by co-crystal structural data of the glutaminyl-tRNA synthetase from E. coli with a glutaminyl-adenylate analog (see, e.g., Rath et al., (1998) How glutaminyl-tRNA synthetase selects glutamine. Structure, 6:439-449). Although they recognize somewhat different amino acid structures, the amino acid binding pockets of these enzymes are superimposable.

[0193] For many applications, the ability to incorporate multiple distinct unnatural amino acids into a protein *in vivo* is highly desirable. For example, the incorporation of two different fluorescent amino acids into a protein molecule would enable the use of fluorescence resonance energy transfer (FRET) for studying the conformational dynamics

of proteins *in vivo*. The incorporation of two distinct unnatural amino acids into a protein requires the use of two mutually orthogonal synthetases that have been evolved to accept different unnatural amino acids. The development of an orthogonal glutamyl-tRNA synthetase and tRNA pair further advances the potential that multiple distinct unnatural amino acids can be incorporated into a single protein chain in living cells. Moreover, the archaeal species represent a rich source of orthogonal pairs for use in unnatural amino acid mutagenesis in, e.g., *E. coli*. These results provide insight into the rational design of efficiently-charged orthogonal tRNAs.

EXAMPLE 2: EXEMPLARY GLUTAMYL O-RSs AND GLUTAMYL O-tRNAs.

10 [0194] An exemplary O-tRNA comprises, e.g., SEQ ID NO.: 67 (and others herein) (See Table 3). Exemplary O-RSs include, e.g., SEQ ID NOs.: 69, 73, 75 and 77 (and others herein) (See Table 3). Exemplary polynucleotides that encode O-RSs or portions thereof include, e.g., SEQ ID NOs.: 68, 72, 74 and 76 (and others herein).

[0195] Further details of the invention, and in particular experimental details, can be found in Anderson, John Christopher, "Pathway Engineering of the Expanding Genetic Code," Ph.D. Dissertation, The Scripps Research Institute [2003].

[0196] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

[0197] While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. For example, all the techniques and apparatus described above can be used in various combinations. All publications, patents, patent applications, and/or other documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, and/or other document were individually indicated to be incorporated by reference for all purposes.

20

25

5

TABLE 3: SEQUENCES

SEQ ID:	Label	SEQUENCE
SEQ ID: 1	Aeropyrum pernix (CUC) Glutamic acid tRNA	GCCGCGGUAGUAUAGCCCGGCCCAGUAUGCGGGCCUCUCGAGCCC GUGACCCGGGUUCAAAUCCCGGCCGCGCACCA
SEQ ID: 2	Aeropyrum pernix (UUC) Glutamic acid tRNA	GCCGCGGUAGUAUAGCCCGGCCCAGUAUGCGGGCCUUUCGAGCCC GUGACCCGGGUUCAAAUCCCGGCCGCGCACCA
SEQ ID: 3	Archaeogl obus fulgidus (CUC) Glutamic acid tRNA	GCUCCGGUGGUGAGCCCGGCCAAUCAUACGGGACUCUCGAUCCC GUGACCCGGGUUCAAAUCCCGGCCGGAGCACCA
SEQ ID: 4	Archaeogl obus fulgidus (UUC) Glutamic acid tRNA	GCUCCGGUGUAGCCCGGCCAAUCAUUCCGGCCUUUCGAGCCG GCGACCCGGGUUCAAAUCCCGGCCGGAGCACCA
SEQ ID: 5	Halobacte rium sp. (CUC) Glutamic acid tRNA	GCUCCGUUGGUGUAGUCCGGCCAAUCAUCUUGCCCUCUCACGGCA AGGACUAGGGUUCAAAUCCCUGACGGAGCACCA
SEQ ID: 6	Halobacte rium sp. (UUC) Glutamic acid tRNA	GCUCGGUUGGUGUAGUCCGGCCAAUCAUGUUGGCCUUUCGAGCCG ACGACCAGGGUUCAAAUCCCUGACCGAGCACCA
SEQ ID: 7	Methanoba cterium thermauto trophicus (UUC) Glutamic acid tRNA	GCUCCGGUAGUGUAGUCCGGCCAAUCAUUUCGGCCUUUCGAGCCG AAGACUCGGGUUCAAAUCCCGGCCGGAGCACCA
SEQ ID: 8	Methanoco ccus jannaschi i (UUC) Glutamic acid tRNA	GCUCCGGUGUAGUCCGGCCAAUCAUGCGGGCCUUUCGAGCCC GCGACCCGGGUUCAAAUCCCGGCCGGAGCACCA
SEQ ID: 9	Methanoco ccus maripalud is (UUC) Glutamic acid tRNA	GCUCCAGUGGUGUAGUCCGGCCAAUCAUCCGGCCCUUUCGAGGCC GGGACUCGGGUUCAAAUCCCGGCUGGAGCACCA
SEQ ID: 10	Methanosa rcina mazei (CUC)	GCUCCGAUAGUGUAGCUCGGCCAAUCAUUCAGGACUCUCACUCCU GCGACUGGGGUUCAAAUCCCCAUCGGAGCACCA

	Glutamic acid tRNA	
SEQ ID: 11	Methanosa	GCUCCGGUAGUGUAGUCCGGCCAAUCAUUCCGGCCUUUCGAGCCG
SEQ ID: 11	rcina	\
į į	mazei	AAGACUCGGGUUCGAAUCCCGGCCGGAGCACCA
	(UUC)	·
1	Glutamic	
	acid tRNA	
SEQ ID: 12	Pyrobacul	CAGCCGGUAGUCUAGCCCGGACAAGGAUGCGGGCCUCUCGAGCCC
	um	GUGACCCGGGUUCAAAUCCCGGCCGGGCACCA
}	aerophilu	GOGACCCGGGCCAAAOCCCGGCCGGGCCACCA
	m (CUC)	
	Glutamic	
	acid tRNA	
SEQ ID: 13	Pyrococcu	GCCCGGUGGUGUAGCCCGGUCAAUCAUGCGGGACUCUCGAUCCC
	s abyssi	GCGACCCGGGUUCAAAUCCCGGCCGGGCACCA
1	(CUC)	
	Glutamic	
CEC II	acid tRNA	
SEQ ID: 14	Pyrococcu s abyssi	GCCCGGUGGUGUAGCCCGGUCAAACAUGCGGGCCUUUCGAGCCC
	S ADYSSI (UUC)	GCGCCCGGGUUCAAAUCCCGGCCGGGCACCA
	Glutamic	
	acid tRNA	
SEQ ID: 15	Pyrococcu	GCCCGGUGGUGUAGCCCGGUCAAUCAUGCGGGACUCUCGAUCCC
Ì	S	GCGACCCGGGUUCAAAUCCCGGCCGGGCACCA
	furiosus	
	(CUC)	
	Glutamic	
GEO TO 16	acid tRNA	
SEQ ID: 16	Pyrococcu	GCCCCGGUGGUGAGCCCGGUCAAACAUGCGGGCCUUUCGAGCCC
, ,	s furiosus	GCGCCCGGGUUCAAAUCCCGGCCGGGCACCA
	(UUC)	
	Glutamic	
	acid tRNA	
SEQ ID: 17	Pyrococcu	GCCCGGUGGUGUAGCCCGGUCAAUCAUGCGGGACUCUCGAUCCC
	s	GCGACCCGGGUUCAAAUCCCGGCCGGGGCACCA
	horikoshi	COULTE COURT TO COURT COURT TO
	i (CUC)	
	Glutamic	
	acid tRNA	
SEQ ID: 18	Pyrococcu	GCCCCGGUGGUGUAGCCCGGCCAAACAUGCGGGCCUUUCGAGCCC
1	S	GCGCCCGGGUUCAAAUCCCGGCCGGGCACCA
	horikoshi	
	i (UUC)	
	Glutamic acid tRNA	
SEO ID: 19	Sulfolobu	GCCGCGGUGGUUUAGCCCGGUC-
	s	
(solfatari	AGAAUGCGGGCCUCUCGAGCCCGUGACCCGGGUUCAAAUCCCGGC
] .	cus (CUC)	CGCGGCACCA
[Glutamic	
	acid tRNA	
SEQ ID: 20	Sulfolobu	GCCGCGGUGGUUUAGCCCGGUC-
]	S	AGAAUGCGGGCCUUUCGAGCCCGUGACCCGGGUUCAAAUCCCGGC
	solfatari	CGCGGCACCA
	cus (UUC)	
I	Glutamic	

CEO ID: 21	acid tRNA	COCCCCCTT CTTTTT COCCTTTTT
SEQ ID: 21	Sulfolobu s	GCCGCGGUAGUAUAGCCCGGUC-
	tokodaii	AGUAUGCGGGCCUCUCAAGCCCGUGGCCCGGGUUCAAAUCCCGGC
	(CUC)	CGCGGCACCA
	Glutamic	
	acid tRNA	
SEQ ID: 22	Sulfolobu	GCCGCGGUAGUAUAGCCCGGUCAAGCACGCGGGCCUUUCGAGCCC
	S to all and d	GUGACCCGGGUUCAAAUCCCGGCCGCGCACCA
ļ	tokođaii (UUC)	
	Glutamic	·
	acid tRNA	
SEQ ID: 23	Thermopla	GCUCCGGUGGUGUAGUCCGGCCAAGCAUUAGGGACUCUCAAUCCC
	sma	CCGACUCGGGUCCAAAUCCCGACCGGAGCACCA
	acidophil	
	um (CUC) Glutamic	
	acid tRNA	
SEQ ID: 24	Thermopla	GCUCCGGUGGUGUAGUCCGGACAAGCAUAUCGGCCUUUCGAGCCG
	sma -	ACGACCUGGGUCCAAAUCCCGGCCGGAGCACCA
	acidophil	
	um (UUC)	
	Glutamic acid tRNA	
SEO ID: 25	Thermopla	GCUCCGGUGGUGUAGUCCGGCCAAGCAUUAGGGACUCUCAAUCCC
DEQ 12. 23	sma	
	volcanium	CCGACUCGGGUCCAAAUCCCGACCGGAGCACCA
	(CUC)	
	Glutamic	
SEO ID: 26	acid tRNA Thermopla	
SEQ 1D: 20	sma	GCUCCGGUGGUGUAGUCCGGACAAGCAUAUCGGCCUUUCGAGCCG
	volcanium	ACGACCUGGGUCCAAAUCCCGGCCGGAGCACCA
	(UUC)	
	Glutamic	
CEC ID OF	acid tRNA	
SEQ ID: 27	Consensus	GCYCCGGUGGUAGCCCGGCCAAKCAUGCGGGCCUYUCGAGCCC
	(YUC) Glutamic	GCGACCCGGGUUCAAAUCCCGGCCGGRGCACCA
	acid tRNA	
SEQ ID: 28		GCCCGGUGGUGUAGCCCGGCCAAGCAUGCGGGCCUCUAAAGCCC
	(CUA)	GCGACCCGGGUUCAAAUCCCGGCCGGGCACCA
	Glutamic	,
SEQ ID: 29	acid tRNA	ACCCCCCIICCIIA COCCCCCA COATICCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3EQ ID: 29	Aeropyrum pernix	AGCCGGGUCGUCUAGCGGCCCAGGAUGCGGGGCUCUGGCCCCGU
	(CUG)	GACCGGGGUUCGAAUCCCCGCCCGGCUACCA
	Glutamine	
	tRNA	
SEQ ID: 30		AGCCGGGUCGUCUAGCGGCCCAGGAUGCGGGGUUUUUGGCCCCCGU
	pernix (UUG)	GACCCGGGUUCGAAUCCCGGCCCGGCUACCA
	Glutamine	
	tRNA	
SEQ ID: 31	Archaeogl	AGCCCCGUGGGGUAGCGGUCAAUCCUGCCGGACUCUGGAUCCGGC
	obus	GACGCCGGUUCGAAUCCGGCCGGGGCUACCA
	fulgidus	
L	(CUG)	

	Glutamine tRNA	
SEQ ID: 32	Archaeogl obus fulgidus (UUG) Glutamine tRNA	AGCCCCGUGGUGUAGCGGUCAAUCAUGCGGGCCUUUGGAGCCCGC GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 33	Halobacte rium sp. (CUG) Glutamine tRNA	AGUCCCGUAGGGUAGUGGCCAAUCCUGAAGCCUUCUGGGGGCUUC GACGGAAGUUCGAAUCUUCCCGGGACUACCA
	Halobacter sp. (UUG) Glutamine tRNA	AGUCCCGUGĠUGUAGUGGCCAAUCAUAUGGGCCUUUGGAGCCCAC GACGGCGGUUCGAAUCCGCCCGGGACUACCA
SEQ ID: 35	Methanoba cterium thermauto trophicus (CUG) Glutamine tRNA	AGUCCCGUGGGGUAAUGGCA- AUCCUGAUGGACUCUGGAUCCAUCGAUAGCGGUUCGACUCCGCUC GGGACUACCA
SEQ ID: 36	Methanoba cterium thermauto trophicus (UUG) Glutamine tRNA	AGUCCCGUGGGGUAGUGGUA- AUCCUGCUGGGCUUUGGACCCGGCGACAGCGGUUCGACUCCGCUC GGGACUACCA
SEQ ID: 37	Methanoco ccus jannaschi i (UUG) Glutamine tRNA	AGCCCGGUGGUGUAGUGGCCUAUCAUCCGGGGCUUUGGACCCCGG GACCGCGGUUCGAAUCCGCGCCGGGCUACCA
SEQ ID: 38	Methanoco ccus maripalud is (UUG) Glutamine tRNA	AGCCCAGUAGUGUAGUGGCCAAUCAUCCGUGCCUUUGGAGCAUGG GACCGCGGUUCGAAUCCGCGCUGGGCUACCA
SEQ ID: 39	Methanopy rus kandleri (UUG) Glutamine tRNA	AGGGCCGUGGGGUAGCGGUCUAUCCUGCGGGGCUUUGGACCCCGC GACCCCGGUUCAAAUCCGGGCGGCCCUACCA
SEQ ID: 40	Methanosa rcina mazei (CUG) Glutamine tRNA	AGCCCGGUAGUGUAGUGGUCAAUCAUGCGGGACUCUGGAUCCUGC AACCUCGGUUCGAAUCCGUGCCGGGCUACCA
SEQ ID: 41	Methanosa rcina mazei (UUG)	AGUCCUGUAGGGUAGUGGUCAAUCCUUCGGGCCUUUGGAGCCCGG GACAGCGGUUCGAAUCCGCUCAGGACUACCA

	Glutamine	
	tRNA	
SEQ ID: 42	Pyrobacul	AGCCCGGUCGUCUAGCGGCC-
	um aerophilu m (CUG) Glutamine	AGGAUGCGGGCUCUGGACCCCGUGGCCCGGGUUCGAAUCCCGGC CGGGCUACCA
	trna	
SEQ ID: 43	Pyrobacul um aerophilu m (UUG) Glutamine tRNA	AGCCCGGUCGUCUAGCGGCCAAGGAUGCGGGGCUUUGGACCCCGU GGCCCGGGUUCGAAUCCCGGCCGGCUACCA
SEQ ID: 44	Pyrococcu	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCCCGC
	s abyssi (CUG) Glutamine tRNA	GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 45	Pyrococcu s abyssi (UUG) Glutamine tRNA	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUUUGGAUCCCGC GACCCGGGUUCGAAUCCCGGCGGGGCUACCA
SEQ ID: 46	Pyrococcu	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCCCGC
-	s furiosus (CUG) Glutamine tRNA	GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 47	Pyrococcu	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUUUGGAUCCCGC
	s furiosus (UUG) Glutamine tRNA	GACCCGGGUUCGAAUCCCGGCGGGCUACCA
SEQ ID: 48	Pyrococcu	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCCCGC
	s horikoshi i (CUG) Glutamine tRNA	GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 49	Pyrococcu	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUUUGGAUCCCGC
	s horikoshi i (UUG) Glutamine tRNA	GACCCGGGUUCGAAUCCCGGCGGGCUACCA
SEQ ID: 50	Sulfolobu	AGCCGGGUAGUCUAGUGGUCAAGGAUCCAGGGCUCUGGCCCCUGG
	s solfatari cus (CUG) Glutamine tRNA	GACCAGGGUUCGAAUCCCUGCCCGGCUACCA
SEQ ID: 51	Sulfolobu	AGCCGGGUAGUCUAGUGGUCAAGGAUCCAGGGCUUUGGCCCCUGG
	s solfatari cus (UUG) Glutamine	GACCAGGGUUCGAAUCCCUGCCCGGCUACCA

	+ DATA	
SEQ ID: 52	tRNA Sulfolobu	A GGGGGGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTTGG
SEQ ID: 32	stillolobu s tokodaii (CUG) Glutamine tRNA	AGCCGGGUCGUCUAGUGGUCAAGGAUCGAGGGCUCUGGCCCCUCG GACCUGGGUUCAAAUCCCAGCCCGGCUACCA
SEQ ID: 53	Sulfolobu s tokođaii (UUG)	AGCCGGGUCGUCUAGUGGUCAAGGAUCGAGGGCUUUGGCCCCUCG GACCUGGGUUCAAAUCCCAGCCCGGCUACCA
	Glutamine tRNA	
SEQ ID: 54	Thermopla sma acidophil um (CUG) Glutamine tRNA	AGCCCUGUGGUGUAGUGGCCAAGCAUUAUGGGCUCUGGACCCAUC GACGGCAGUUCGAAUCUGCCCAGGGCUACCA
SEQ ID: 55	Thermopla sma acidophil um (UUG) Glutamine tRNA	AGCCCUGUGGUGUAGUGGACAAGCAUUUUGGACUUUGGAUCCAAA GACGGCAGUUCGAAUCUGCCCAGGGCUACCA
SEQ ID: 56	Thermopla sma volcanium (CUG)	AGCCCUGUGGUGUAGCGCCAAGCAUUAUGGGCUCUGGACCCAUC GACGGCAGUUCGAAUCUGCCCAGGGCUACCA
SEQ ID: 57	Thermopla sma volcanium (UUG) Glutamine tRNA	AGCCCUGUGGUGUAGUGGACAAGCAUUUUGGACUUUGGAUCCAAC GACGGCAGUUCGAAUCUGCCCAGGGCUACCA
SEQ ID: 58	Consensus (YUG) Glutamine tRNA	AGCCCCGUGGUGUAGYGGCCAAGCAUGCGGGRCUYUGGAYCCCGC GACCGSGGUUCGAAUCCSCGCGGGGCUACCA
SEQ ID: 59	AQ(GU) (CUA) Glutamine tRNA	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGGCUCUAAACCCCGC GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 60	AQ(GC) (CUA) Glutamine tRNA	AGCCCCGUGGUGUAGCGCCCAAGCACGCGGGGCUCUAAACCCCGC GACCGGGGUUCGAAUCCCCGCGGGGCUACCA
SEQ ID: 61	Glu consensus tRNA	GCYCCGGUGUUAGCCCGGCCAAKCAUGCGGGCCUYUCGAGCCC GCGACCCGGGUUCAAAUCCCGGCCGGRGCACCA
SEQ ID: 62	Gln consensu tRNA	AGCCCCGUGGUGUAGYGGCCAAGCAUGCGGGRCUYUGGAYCCCGC GACCGSGGUUCGAAUCCSCGCGGGGCUACCA
	AE(GU) tRNA	GCCCCGGUGGUGUAGCCCGGCCAAGCAUGCGGGCCUCUAAAGCCC GCGACCCGGGUUCAAAUCCCGGCCGGGCACCA
SEQ ID: 64	AQ(GU) tRNA	AGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGGCUCUAAACCCCGC GACCGGGGUUCGAAUCCCCGCGGGGCUACCA

SEQ ID: 65	AQ(GC) tRNA	AGCCCCGUGGUGUAGCGGCCAAGCACGCGGGGCUCUAAACCCCGC GACCGGGGUUCGAAUCCCCGCGGGGCUACCA					
SEQ ID: 66	tRNA library		GCCCCGGUGNUGUAGCCCGGCCAAGCANGCGGGCCUCUAAAGCCC GCGACCCGGGUUCAAAUCCCGGCCGGGGCACCA				
SEQ ID: 67	tRNA	GCCCGGUGUAGCCCGGCCAAGCACGCGGCCUCUAAAGCCC GCGACCCGGGUUCAAAUCCCGGCCGGGCACCA					
SEQ ID: 68		gtgaaagaag to aaaagcattga aa tacagcattga aa tacagagaca tacaagaaga ag aatcaagaaga at tacaagaaga at tacaagaaga at tacaagaaga at tacaagaaga at tacaagagaga at tacaagagaga at tacaagagaga at tacaagagaga at tacaagagaga at tacaagagaa aacgaagta ag aaaaggaaa ag aaaaggaa ag aaaaggaagta ag aaaaggaagta ag aaaaggaag aaaaggaagta ag aaaaggaagta ag aaaaggaaga ag aaaaggaagta ag aaaaggaagta ag aaaaggaagta ag aaaaggaagta ag aaaaggaagta ag aaaaggaagta ag aaaaggagaa ag aaaaggagaaga	aaaaggctg aaaaggctg aaagctaaa agcgctttc atagcgaag ggggctgag tccacctac agaaccaag tgaaccatg agaagagaa attcaggat tctacca agagagagaa attaacgcac gagatacat gagaaggat agaacctt agagcttct agagaaggat gcaacctt agagatact agagatgctg agagatgcg agagatgcg agagatgcg agagatgcg	taatggggaa gaggtccttg tgaagaagta ctaaaaggga aaagggaaag actcggttct acgaagggaa agaccgatga actacgatta ttctgcagtc cccacacaga tgcttgaagg gatatggcc aataaggaa cactcgattt attatcaggg ctacgagtat ttaaaatctt attgaaagg gaggccttc tctttcgct ctttactgctg tttcatttgg aagaggtcga aagggcaggtt aggcagggtt aggcagggta aggaaggcgt ccgaaagggaa ggaaagtcgt	ggtgatggca aactcgtaaa aggaaggagc gttggagacg ttgtgatgag gctaggggga gctaggggga gtacattatc ttgaggccta cctgacgagg tgcaagaaag aggaggagtt aacatcagcg agactatgag acaatgacc tcacatcctc tgaatctgct gtaaggactt tttggctgga cgaattcggg gtaagtatga aggaggagag ggagttggc agaacaggaa gggcccgtga gctcccgctg gaactatata gtaaggctga catgggtttt ggctcctga gcagaagggc gcagttcgag	gaaaatccag ggagtgcatt taatcaaaaa aagaagcttc attcgctcct taatcgtcaa aggtttgacg cgagtggtac ttattacgc cttatagaaa caagaagttc tcgaggatac gaaggagaag ggcaataagg tcgttggga atagaggatc aattgattct tttaccccat aagctatcga gggctgggat gatttgagcc gagaacgacg aatcatcgat agattgacga atcatcgat agattgaaat aatccgcaca tgttacaaaa aggacttctg gagcgaggct ttgtgagag agatttgt	
SEQ ID: 69	AfERS.pep	VKEVIMKYVV QN TEFEALSEEV RK NPNGPPTLGS AF	KELIKKYSM	DSEAKRELET	KKLPELEGAE	KGKVVMRFAP	
		LEDIEWLGYK PI RDSGEECPHR NI DWVAFRIIKE SE ERRQRYIYEY FG DPRLPTLRAF RE RKANRYFFIW GE DDFERLKGQV VR IKGKVIGERE AE P*	DEVIYASRR ISVEDTLEV HPLVGDKYV SWIYPITKH RRGFEPEAI PVKIEIVNL RLKDFCNVL	IPIYYDYARK WERMLEGDYE VYPTLDFESA WGRVKIFEFG KSFFLSLGVG PEKKEVELPL LDEKAEFMGF RDVGKVVQFE	LIEMGKAYTC EGEVVLRIKT IEDHLLGITH KLSTSSIKKD ENDVSVSLKN NPHTGEKRRL ELEGVKKGKN RFAFCKVESA	FCSQEEFKKF DMRHKDPAIR IIRGKDLIDS IERGKYEGWD LYAENRKIID KGERTIYVTK IIHWLPESEA DEELVAVYTH	
SEQ ID: 70	ApERS	atgtcaatgc to gatagcctcc ct					

ctggcgagca gaagaggctc ctctcagaaa ggctacqgag gccgttggaa ggcagggtaaa ggcgataaa ggcctaccc cqtgcccgg gccgttggaa ggcagggtaa agctgaggtt cgccccaac agattgtata agggaggtag ggtgttggg ttegaagaac agatacgc agattgtata agggaggtag ggtgttggg ttegaagaac agatacgc agattgtata agggaggtag ggtgttggg ttegaagaac agatacgc agtgttgtg cgtttctgg agggaggtaaaacaggg ggtgccta agtgtgttg cagattataga agggaggt atagagggg ggtgccta attgtccgac caggagaaa aggataagga gttgtctcg agtggagat attgtccgac aggagagtt ttacagaggg ggtgcctta agattgttg agggaggtt ttacagaggg gaggtgtttaagagaagag							
ggcqttggaa ggcaggtca agctagacaca cgagtctgg agatytata agggaggta ggcqtcgg ggtttcctgg gacasagact cocctacagg agcgtcacg ctagtagaca cgagaccta agatytata agggaggta ggggtcacg coctacgga gacggtacac cagacctag agtggcttgg cgtttcctgg gaggtcttct acagcgtagc cagaagggct acatccagag cctcaggatg gaggtcttct acagcgtagc cagaagggct atagagggggggggagggaggaggaggaggaggaggagga	1		ctggcgagca	gaagaggctc	ctctcagaac	agtatccgga	gctagcgagg
bgatacacat gggcagacc tagtgaacc cagatacctar gacaaagact coctacgg agagtgtag gtcttcgg tetcaagaca cagacctag gacaaagact coctacgg agagtgtag catcaccaga coctcatacgg gagtcttct acacgtgac cagaaggact atagaaggag gagtgacac catcacaga cetcagagat gagagtcttct acacgtgaac cagaaggact atagaaggag gagtgacaccacacacacacacacacacacacacacacac			tttgaagagc	agcgcgagaa	aggcgataaa	ggcctacccc	cgctgcccgg
bgatacacat gggcagacc tagtgaacc cagatacctar gacaaagact coctacgg agagtgtag gtcttcgg tetcaagaca cagacctag gacaaagact coctacgg agagtgtag catcaccaga coctcatacgg gagtcttct acacgtgac cagaaggact atagaaggag gagtgacac catcacaga cetcagagat gagagtcttct acacgtgaac cagaaggact atagaaggag gagtgacaccacacacacacacacacacacacacacacac			ggccgtggaa	ggcagggtca	agctgaggtt	cgccccaac	ccagactttg
aggatytata agggagagt ggtgctgcgg tbcgaagaca cagacctaa agtagactta gacaaagact cocctacggg agggatacga actacacaga cctaaggact agtgagattata gaggatetta aagacgac attgtgagaga attgtgcacta cagacgacta attgtgagaga attgtgcacta cagagactata ggtgcacacaga cttgtggagaga attgtgagacacag ggatatataga acggagagacacag cagacacaca acccaagact gaggatytt ggagatataga cagactataa cttgagagagagagagagagagagagagagagagagagag	1	1					
gecaeaagect coctaeggg agggtacga cotcatecgg caggactus agggtatte acgtegacaac tgtggagag cagaagggct ataagaggag ggggtagga cagaagggct taggagaga tattgtcaga aagatgetty aaggagactt tggccccaagag gagetctteg ggctcteg ggattataga caggagactt ttacgaggag gagetgttg tgaggagat ctgtgtgaga daggagagatt ttacgaggag gagetgttg tgaggagat ctgtgtgag aggattataga caggagagaa cacgaccaa caccacac coctgtggg gagetagaga aggagtatagag aggatatataga caggagataga cacgtgctaa dagaagatgt gagagataac cacgtgataa cacgtagaa gacacactga ggagataac cacttagga ggataagag gacacaatgat aggagatac cacgtagaga gagagagaga gacattaaga ggagagaga ggagagaga gagagagaga gagagagaga gagagagaa agaaga							
agtogetete acagegagat acatecaaga ceteaggagagagagagagagagagagagagagagagagag							
gagtetteta acagegtage cagaaggget atagagegg gytgegeeta egtgegagaa ettgteege cagagagat ettgteege gegeeteta aggegettg aggegettg gytgegeeta aggegettg aggegettg aggegettg gytgegeeta eecegeet gaggetettg gytgegetgag gytgettgag gytgettgag gytgettgag gytgettgag gytgettgag gytgettgag gytgettgag gytgettgag gytgetagg gytgaggagg getataggg gytgaggagg getataggg gytgataggag gytatagggt gytgetaggag gytgetaggag gytataggat atactgagg gytaaggag gytataggat atactgagag gytaaggagg gytataggaggagggggggggg							
cgtcgacaca tgtgggagag aggtaagga gctgctctcg cgtggagagt atattgtgga cgtgttttga aagatgcttg aagatgcttg aagatgcttg gagcgcacagag ataatctgga gagctgtttg tgaggagtatg gagctgttataga cacgagagaaca ctggtgtgga cgagctataaaga acccacaca cctcgtgtgg gagcagtaaca ctggtataga cacgagtaaca cacgagaaaca cacgagtaaca cacgagtaaca cacgagtaaca cacgagtaaca cacgagtaaca agcagttga gggtaagag gaacaagta aagaagacta cattcgaagaga cactactaaaga ggataaaga gacacaacta aagaagacta ctgaagaga gtatataggg gacagagaga gacaagacagaga gacataagac ggcataaaga gacaagaca gacaacagaga gacaagaga gacaagaga gacaagaga gacaagaga gacacagaga gagaggagta gaggaggagagagagagagagag							
agatgetty aaggagatt tacagaggg getgettyaggatgaa gagatgatga gaggatgagaggatgaggagatgaggagaggagatgaggag							
aagatgcttg aaggagagtt ttacqagggg gagctgttg tgaggtaga gaggagaggaggagagathataga cacqacqccac accaqcct gaggaactag gtggccatga gagathataga cacqagagaactacaccac ccctctgtggg gagcaggtac cttgtgttggg cgacctataaa cttcgccgtc aggtagaagagagagagagagagagagagagagagagag							
gagatataga caggagaaa acaccagact gagggactgg gagacaggtac caggagtata acaggagaaa caccacacac cactoctggg gagacaggtac caggactata cttcgccgtc agggtcgacg gagacaggatac ctggttgcca ggctaaagg gaccaggat acacactgac aacaccatgat gagagaggt caggagaggt gacattatac gagaaggac cactatggca ggctaaaggc ggagaggtt atactgagaa aacacagga gacattaga gacatgaga gacatgaga gacatgaga gacatagac caggatagac caggatagac gagatatact gagagagggtt tatactgagaa aatacagcag gacataaagaa gataatact cagagtagga gtcaatgaca cagagagac ctggacagaaga atacactta gagaagacgaga gagagagata tacacacaa aataagctg gagatatatac gagagagaga atacactta ctgaaagaa gagagagata taacattga gagagagaga acacgaca cagagagac cagaagaata aacacagaga gagacagaaga atacactta agtacaaga cagacagaaga tacacatta agtacaatta gagagaaga acagagaaga tacacatta agtacaatta gagagaaga gagagaaga gagagaaga gagagaaga			attgtccgac	cagggatctt	ggccccgagg	ataatctgga	gctgtttgag
gagatataga caggagaaa acaccagact gagggactgg gagacaggtac caggagtata acaggagaaa caccacacac cactoctggg gagacaggtac caggactata cttcgccgtc agggtcgacg gagacaggatac ctggttgcca ggctaaagg gaccaggat acacactgac aacaccatgat gagagaggt caggagaggt gacattatac gagaaggac cactatggca ggctaaaggc ggagaggtt atactgagaa aacacagga gacattaga gacatgaga gacatgaga gacatgaga gacatagac caggatagac caggatagac gagatatact gagagagggtt tatactgagaa aatacagcag gacataaagaa gataatact cagagtagga gtcaatgaca cagagagac ctggacagaaga atacactta gagaagacgaga gagagagata tacacacaa aataagctg gagatatatac gagagagaga atacactta ctgaaagaa gagagagata taacattga gagagagaga acacgaca cagagagac cagaagaata aacacagaga gagacagaaga atacactta agtacaaga cagacagaaga tacacatta agtacaatta gagagaaga acagagaaga tacacatta agtacaatta gagagaaga gagagaaga gagagaaga gagagaaga		Į.	aagatgcttg	aaggagagtt	ttacgagggg	gaggctgttg	tgaggatgaa
ggattataga cacggagaaa caccccacc ccctgggg gaaggtac ctggtgtgc cgactataa cttcgccgtc agcgtcgacg acacattgat ggagataacc cacgtgctca ggggtaagga agcacgttgc cgtctacagg tgtatgggct gaaggccgc gtattatact cacttragca gyctaaagct ggaggggtt tatactgagc cccgcttcgc acgataagca ggccagaga gtcattgat ggcataagac ctggagagag ggcaggaggggt gaagaggagt cccccatagac agataatact cgaggtggg gtcaagccc cggacgaca aataagctg gcaaacctg cggccgtaa taggaagctg ctggccagag gataattatt gtcgaagacc ccttggacgag ccccagagg agaaggagg acacctgg cggccgtaa taggaagctg ctggccagag gataattatt gtcgaagacc ccttgagat gagggtggc ccccagagg gagaggagga aaccggtca ccccagagg agaggaggag aaccgtgag ccccagagg agaaggagag accggcggag ccccagagg agaggaggag ccgccagag agaggaggag ccgccagag agaggaggag ccgccagag agaggaggag ccgccagag agaggaggag ccgccagag agaggaggag ccgccagag agaggagga ccgccagag agaggagag accgggagaag ccgccagag agaggagag accgggagaag gcagagaag ggagaagag ggagaagag ggagaagag agcgcggag aacggtcag aaggacacagg gcagagaagag agcacagag ggagaagag agcacagag agagtagag aaccgggac ccgcagagaagaga							
ctggtgtggc cgacctataa cttcgcotc agogtcgacg accactgat ggagataacc cacgtgctca gggtaagga gcaccagctg aacaccgaga agcaqcttgc cgtctacagg tgtatagga gcaccagctg aagcaagct ctogaagaag ggagggttt atactgagca aagaaagct ctogaagaag ggcacgagag gttataggt gccataagac agataatact cagagtgggg gtcaagcca cccgcttcgg cacqatagcc gggctgagaa ggagggtgt gccataagac agataatact cagagtgggg gtcaagcca cggacgcac aataagctgg ggaaacctgg gggcgctaa taggaagctg ctggacgag ggaggacag gataatgtat gtcgaagac ccttgagac ctggccagag ggagtgcag agccgcggag ataccgttcc ccccagagg aagagagaga taaccttat caccagaga cccccagagag aagagagata agccactat aggagaggg gcggagaagc aggagaaga aggagatatt gaggaggtgg ccgcataagag ggagaatga agctaccta agtacaatgg gcggagaagc aggagaaga gataccgttcc caaacttca ccgtcagca aggaatattg aggaggtgg atccagct cagactagg ggagaatga agctacctat agtacaatgg gcggagaag aggagaatga agctactat aggagagag aggagaagag aggagatatt agggggtgg ggagaccagg aggaccaag ggtacgctga ggacgtatt agggggtgg ggggagacagggagcaggagcaggagacaggggaagcaggagagacaggagacaggagagaaga							
ggagataacc cacttcaca gggtaagga gcaccagctg aacacgagaa agcacttcatc cacttcggca ggctacaaggt tgatgggec gtacttcatc aagaaagctc ctcgacagaag ggcagagag gagaggatt aacacgagaa gcactacagaca ccccctctgg cacgataaccc ggggtagaga ggcagagat gtggggggg gcacaagaccc cccgctctgg cacgataaccc ggggtgggg gtcaagccc aataagcacggg ggcagctaca aataagctgg ggacacctgg ggcgcgtaacccc gggggggggg							
agcagcttgc cgtctacagg tgaagggttt atactgagca gagagacgcc gtacttcagca ggcaagaga ggaaggagagagagagagagagag	1						
cacttcggca ggctaaagct ggagggttt atactgagca agagcaagat aagaaaagctc cccgcttcgg cacgatagca ggccatagag gtcatgggc ggccataagac agataatact ggagcagtagg ggccataagac agataatact ggagcggcaca aagagcagag ggagggggggggg							
aagaaagctc ctcgaagaga ggccagagag gttcatgggc gctgggggggggg							
cccgcttcgg cacgatagcc gggctgagga ggagggtgt gctgggagg gcataagac agataatact cgaggtgggg gtcaagccac cggacgtac aataagctgg gcaaacctgg cggccgctaa taggaagctg ctggacggag gggcggacag ggataatgtat gtcgaagacc cccttgagagg ggggggaggaggaggaggaggaggaggaggagg	1						
gccataagac agataatact cgagttggg gtcaagcca cggacgctac aataagctgg gcaaacctgg cggacactag gggcgcataa taggaagctg ctggacgagg ggagaccag gataatgtat gtcgaagacc ccgttgagat ggaggtcgag ctggcccagg tggagtgcag accgcggag ataacgttc acccagagcg cccccagagg agaggaggag acacgaggag acccccagagg agaggaggag acccccagagg agaggaggag acctgaggac acggtattca ccgatatgcg agaggaggag agctacttat agagagagt ggcggagaagc ccgcacaag gcacgctagag gtacccgag agagcactat aggggctag ggcgcacaag gccccacaag tttgtaaagg gacacctat agtacaatgg ggggtaga acgggtcta caggggtcta caggggtaga acggggtaga acgggggagagagggggggggg	1						
aataagctgg gcaaacctgg cggcgctaa taggaagctg ctggacgag gggggaag gataatgtat gtcgaagac ccgttgagat ggaggtcgag ctggccaag gtagagtgag agccgcggag ataccgttc acccgagagcg cccccaagaga agagagaga taaccttgtg cacggggag aaggttctcc tcacaaggag gacacgaga agagagaga cacgaggag cactgaggct catgggccta tcaaacttca ccgtcagcca aggcatattg aggagagtgg atccagct cagagtatgc aggcacaag gcgagaagc tagcgtagag gactactat agtacaatgg gtgaagaagag aggcacaag ggaagctatt aggagctatg ggggtgaag accgggtcta caggggtgata accggttttgt gagggtgag agcggctat aggggtgag accgggtgaa accgggtcta caggggtgata tacacacaca agtag SEQ ID: 71 ApERS.pc p			cccgcttcgg	cacgatagcc	gggctgagga	ggaggggtgt	gctggcggag
aataagctgg gcaaacctgg cggcgctaa taggaagctg ctggacgag gggggaag gataatgtat gtcgaagac ccgttgagat ggaggtcgag ctggccaag gtagagtgag agccgcggag ataccgttc acccgagagcg cccccaagaga agagagaga taaccttgtg cacggggag aaggttctcc tcacaaggag gacacgaga agagagaga cacgaggag cactgaggct catgggccta tcaaacttca ccgtcagcca aggcatattg aggagagtgg atccagct cagagtatgc aggcacaag gcgagaagc tagcgtagag gactactat agtacaatgg gtgaagaagag aggcacaag ggaagctatt aggagctatg ggggtgaag accgggtcta caggggtgata accggttttgt gagggtgag agcggctat aggggtgag accgggtgaa accgggtcta caggggtgata tacacacaca agtag SEQ ID: 71 ApERS.pc p]		gccataagac	agataatact	cgaggtgggg	gtcaagccca	cggacgctac
gggcgacag gataatgtat gtcgaagacc ccgttgagat ggagtcgag ctggccagg tggagtcag agcgcggag atacceptcc acccgagcg cccccaagag aagaggagaga taaccttgtg cacggggag aagttctc tcaaacttca ccgtcagcca aggagatagc aactgaggcd tcaaacttca ccgtcagcca aggagatagc aactgaggcd catgggagag aggaagaga ggagacaatt aggagagaga ggagacaagg ggagacaagg ggtacctagt aggagataga ggagacaagg ggagacaagg gatacctat agtacaatag gtgaagaagg ccgccacag aggacacaag gtatccaga aggagatatt aggagataga ggatagaga acggttatt aggagataga ggatagaga acggttatt aggagataga acggttaga acggttatt acacacaca agtag ggatgacaagg acgggtgata tacacacaca agtag SEQ ID: 71 Apers.pe p MSMLLGDHPE Lrsrareias Larrveqvn SMPAGeQkrl LseQypelar FEEQREKGDK GLPPLPGAVE GRVKLRFAPN PDFV:Hm6R RPAIVMHEYA EVFYSVARRA IERGCAYUDN CGREGKELLS RGEYCPTRDL GPEDNLELFE KMLEGEFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LWPPTYNFAV SVDDHMEIT HVLRGKEHQL NTEKQLAVVR CMGWRPPYFI HGRLKLEGF ILSKSKIRKL LEERPGEFMG VDDPRFGTTL GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELER RHQCYBAGAL RRGYGVBSRLQ FVRYGFVRVW SVEDGVYRV YTHK* SEQ ID: 72 Mmers Mmers Mmers Mmers Mmers Mmers Mmers Mmers Mmers Magaccttaa gtctgaaga tattaaaata attgaaaaat accctttaa aaatgctgta aaatacggaa aagccccaca gaccaaagc gttataggga ctggacccaag gttatagaga acccttaga agagcccaaa gttataaaga accgttataa gtcgaaagc ctggagaca ctggagacaa accggtaaag ctggagaca ctggagacaa accggtaaaga accggtaaaga accgcaaag ctggagacaa accggtaaaga accggtaaaga accggtaaaga accgcaaaa aaagccccaa aaaagcccaaa gttataaagaa accgttataa aaaggacaa accggaaaa accggaaaa accggaaaa accggaaaaaa accggtaaagaa accggaaacaa aaaagacaaa accggaaaaa accggaaaaa accggaaaaaa accggaaaaaa accggaaaaaa accggaaaaaa accggaaacaa aaaagacaaa aaaaaaaa							
ctggccagg tggagtgcag agcgcggag ataccgttcc acccgagcgg cccccagggg agagaggaggagaggaggagaggaggaggagaggag							
CCCCCagagg tagaggaga taaccttgtg cacggggac aaggtctcc taaaacttca cogtcagca aggcatattg aggagagtg agccagta aggcacattg aggagagtg aggcagag aggagagag taactgaggc aggagagtg aggagagag aggagagag taagcactat aggagagatg aggagagag taagcagag aggagagag aggagagag aggagagag aggagagag aggagagag aggagagag aggagagagag aggagagagagagagagagagagagagagagagagagaga							
tcacaaggga ggacgagta ggaggtaggc aactgaggct catgggccta caggcatatta cagacttaca ccgtcagcca aggcatatta aggaaggtgg acccagct cgagtagag aggaagtga agccacatt aggaagagg ggaggaggaggaggaggaggaggaggagg							
tcaaacttca cgdtagca aggcatattg aggagatgg atccagct cgagtatga ggagaatga agctacttat agtacaatgg gtgaagaagg tagcgagaagg aggcaccagg caggagaatga gtactcgagc cgtcgagag aggcaccagg gctaccgta aggagctatt aggagagtga agggttata aggaggttat aggagatga aggaggtatat aggaggttat aggaggttat aggaggtga agggtgag agggtgag agggtgag agggtgag agggtgac agggtgagag agggtgac aggggtgac agggggtgac agggggggggac agggggggggg							
SEQ ID: 71 Apers.pe p MSMLLGDHPE Lrsrareias Larveyon Smpageyringagagagagagagagagagagagagagagagagagaga							
geggagaagc tagegtagg gtactegage cegtegaget ggageteagg gedaegetag ggageteat aggggetat gagggetag ggattagaag cegeceaag gedaegetag gagacetat aggggetatg gggttgacag cegeceaag tttgtaaggt aeggttttg gagggttgac agcgtgaag aegggtttt tacacacaca agtag SEQ ID: 71 Apers.pe p MSMLLGDHPE Lrsrareias Laarvveqvn SMPAGeQKRL LSeQypelar Federore Gryklefapn pDfvihmgna Rpalvnheya Rmykgrmur Febtdprtkt Plreavdlir Qdlkwlegvsw Deetiqslim Evyfysvarra Iergcayvdn Cgregkells Rgeycptrdl Gpednlelfe Kmlegefyeg Eavvrmktdpr Rhynpslirbw Vamriidtek Hphplivgsry Lvwptynpav Svddhmmeit Hvlrgkehql NtekQlavyr Cmgwrppyfi Hfgrlklegf Ilskskirkl Leerfeefmg yddprhfftia Glrrrgvlae Airgliley Vxphafisw Allaanrkl Ldderadrimy Vedpvemeve LaQvecraae Ipfhpsrpqr Rrmklpivgw Vxkggeasve Vlepvelelr RhQgyaedal Rgygvdsrly Rrmklpivgw Vxkggeasve Vlepvelelr RhQgyaedal Rgygvdsrly Fvrygfvrvd Svedgvrvi Ythk* SEQ ID: 72 Mmers atgacettaa gteetgaaga tattaaaata attgaaaaat acgetette aagttatggg ggaatetee ggggatatet teagaagat teagagaage cegetgegg aaategetee ggggtatet ggtgaeceaag ggaagegaa accggaage cegetgegg aaategetee gaggettaa accetgage cegetgegg aaategetee ggagettaa accetgage cegetgeggaage ttgaaceaag ggaagecgaa accggaage ttgaacgaag ttgaaggaage ttgaaggaage ttgaagggae ttacaagggaa ttgaaggaa accetgaage tegaeceaage ggagecgaa accggaage cetgaeceage ggagecgaa accggaage ttgaacgaag ttgaaggaage ttgaaggaage ttgaacgae ttgaatagg cetagaece tgaataaag gagacetaa tacaaggaaa accetgaece cegagettat tacaaggaa accetgaece tegaagecaa ttgaaggaa ttgaaggaa ttgaaggaage ttgaacgae ttacaaggaa ttgaagaaga ttgaaggaage ttgaacgae ttcaagget ttacaaggat ttcaaaggaa ttgaaggaaage ttgaaggaaage ctatgaece aaaggetg aaaaggaaaga cetagaece aaaaggetg ttacaaggaaaga ttgaaaagaa cetatgaece aaaaggetg ttacaaaggaaa accetaaaggaaaga ttgaaaagaa cetatgaece aaaaggetg cetagaagaaaaa cetacaaaggaaaage cetagaaagaa cetagaagaaaaa cetatagaaaaaa cetatatgaaaaaagaaaaaagaaaaaagaaaaaaaagaaaaaa							
aggcaccagg cctaccata tttgtaaggt acggttttgt agggctatg gggttgacag acggtgata tttgtaaggt acggttttgt agggttgacag acggtgata tacacacaca aggtag SEQ ID: 71 Apers.pe p MSMLLGDHPE LRSRAREIAS LAARVVEQVN SMPAGEQKRL LSEQYPELAR FEEQREKGDK GLPPLPGAVE GRVKLRFAPN PDFVIHMGNA RPAIVNHEYA EVFYSVARRA IERGCAYVDN CGREGKELLS RGEYCPTRDL GPEDNLELFE KMLEGGFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LVWPTYNFAV SVDDHMMEIT HVLRGKEHQL VTTEKQLAVYR CMGWRPPYFI HFGRLKLEGF ILSKSKIRKL LEERPGEFMG YDDPRFGTIA GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV EGRQLRMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEFVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 Mmers Atgaccttaa gacatagata tataaaata aattgaaaa aggctctga aaattgtgg ggaatptccc gctgcccttg aaaatatatagt ttcagaagat ctggggaagc cggggttata acccggtaagg ctgggaag ctgtgtagaaga gttgtaaagga acccttgaag caategctcc gtggaagt tcaagggaa acccttgaag caategctcc gctgccatg tcaagggaa ttgtaatgg caategctc cggggttata acccttgaag cctgggaagt tcaagggaa acccttgaag cggggttgtg cctggaagca ttgtaatgg cgtttgaatg accttgtag gggacgcaa accggcaac ttgtacag accttgaag cctggggttgtg cctgaagacat ttgtacgga ttgtaagga ttatcctg cgctttgatg cctgaagacat ttgaaggaa accttgaag ttatacagt ttgtaaggta acctgacca ttgaagacat ttacagatta tgcaagaaaa ttgactgta acctgacca ttgaagacat ttacagatta ttccgagtat ttcagagata ttccaagggtaa ttatcagat ttgaagagact ttgaaagact ctggaagactt ttcagagata ttcctgaagga ttatcctg cgctttgatg acctgacca ttgaagacat ttcaaatta acctgacca ttataaagt ttcaagagaa tttacctg cgctttgatg acctgacca ttcaaaggtat ttcaagagat ttccaaaggtat acaaggctca acctgacca caaaggctt ttcaaaaggtat accctaaagg gacacagacct ctgaagacat ctctatgacac aaaaggcttg cctaaaaggat ttcaaaaggat cctgaaagact ctaaaaggat cctaaaaggat ttcaaaaggat ttcaaaaggat cctaaaaggat cctaaaaggacct caaaaggat cctaaaaggacct caaaaggatct cctaaaaggacct cctaaaaggacct cctaaaaggacct cctaaaaggacct cctaaaaggacct cctaaaaggacct cct							
SEQ ID: 71 Apers.pe p MSMLLGDHPE Lrsrareias Laarvveqvn speed of Gipplegave growth feeqressed for the feeqress of Corner for the feedral acceptance and the feetral speed of Corner for the feedral acceptance acceptance acceptance of Corner for the feedral acceptance acceptance acceptance of Corner for the feedral acceptance							
SEQ ID: 71 Apers.pe p MSMLLGDHPE ERSRAREIAS ERGYKLRFAPN P Apers.pe RMYKGRMVLR EVFYSVARRA EVFYSVARRA LIERGCAYVDN CGREKELLS RGEYCPTRDL HFGRLKLEGF LLWFTYNFAV SVDDHMMEIT HHJRKEHQL LAQVECRAAE LAARVVEQVN SMPAGEQKRL LSEQYPELAR GRVKLRFAPN PDFV1HMGNA RPAIVNHEYA PDFV1HMGNA RPAIVNHEYA PDFV1HMGNA RPAIVNHEYA PDFV2HMGNA REYJOSLRM RGYGVDRH HFRAYDLIR ALRQUARRYLD HFPHPSLRPA ARRALLARANRLL LDERADRIMY VEDPVEMEVE LAQVECRAAE TPFHPSRPQR KRRITLCTGD KVLLTREDAV EGRQLRLMGL SNFTVSQGIL REVDFSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS Atgaccttaa gattatggg gattataggg aatagcccaca gcccaaagct gttatgggta aagacctca aagttatggg cctggaggaaga accctgtagaga accctgtagaga accgttata gggattcta aaggcctga cctgggaagt tcaagggaa acccttgaag ccttgacaga accctgaagc cctggaagat tcaagggaa accctttgatg ggadccgaa ccttgacgac cgggtttgt cgggagttgt ccgaggttgt ccgaggttgt ccgaggagaa attaccacag gacacagac ttgacggac ttgacgacag ttgtaca ttcggata ttcgagaaa accctttag ggaaccgaa acccttaaag gacccgaa ctttgacg cgttgtaaag cgtttgtaa attacagatt attacagatt attacagatt ttgacgtgc cdgacgdaa accctttgatg acactgacc tggttgtaa attacagata ttgacagaaa ccttttgatg acactgacc tggttgtaa atgacctca cggttgtgt cdgacgaaa accttttgatg acactgacc tggttgtaa atgacgac tttgacggc tttgacagac ttgacagac ttgacagac ttgacagac ttgacagac ttgacagac ttgacagac ttgacagac ttccggaag ttgacagac ttgacagac ttgacagac ttgacagac ttccgaatt ttcagaaaa ttccgaacag ttgacagac ttgacagac ttgacagac ttccgaacag ttgacaaag cctttgatg ttcagaaaa cctttgac ggaacctgac ttgacagac ttgacagac ttcagacc ttgacagac ttcagacc ttgacagac ttcagacc ttgacagac ttcagac ttgacagac ttcagac ttgacagac ttcagac ttgacagac ttcagac ttgacagac ttcagac ttgacagac ttcagac ttca							
SEQ ID: 71 Apers.pe p MSMLLGDHPE Lrsraretas Laarvveqvn Smpageqkrl Lseqyfelar Grvklffapn Pdfvihmgna Rpaivnheya Pleeraydlir Qdlkwlgvsw DeeyiQslrm Cgregkells Rmykgrmvir Fedtdprikth Evfysvarra Iergcayvdn Cgregkells Rgeycptrdl Gpednlelfe Kmlegefyeg Eavvrmktdp Rmykgrefyer Lvwptynfav Svddhmeit HvlrgkehQl NtekQlavyr Cmgwrpyfi HvlrgkehQl NtekQlavyr Cmgwrpyfi Lvwptynfav Svddhmeit HvlrgkehQl NtekQlavyr Cmgwrpyfi Lvwptynfav Svddhmeit Leergeffmg Yddfrafisw Anlaaanrkl Lderadrimy Vedpvemeve Laqvecraae Ipfhpsrpqr Rrwhlpivqw Vkkggeasve Vlepvemeve SnftvsQgtl RhQgyaedal Rgygvdsrl Fvrygfvrvd Svedgyrrvi Ythk* SEQ ID: 72 MmErs Mmers atgacetaa aatacggaa aatacggaa aaggeetgac gtgaaagaa gtgaaaaga gttatacgg ggaatgee cgccetgeg gtgtaaagaa accetgaage aaatacgta aaggeetaa aaggeetaa aaggeetga aataaggaa gttatacgga gtgaagee cgcetgeggat tcaaggggaa tcaaggggaa ttgaaggea tggtgtaa aacetetgaage ggaacegaa tggtgtaa aacetetgaage ggaacegaa tggtgtaa aacetegaage ttgaaggaa accetgaage ttgaaggaa ttgaaggeta ttaaaggaa accetgaage ttgaaggaa ttgaagget taaaaggaa gttaaceg cggetttgatg acactgacec tggagettat tccgagata ttgaagget ttgaagaaa ccettagaage ttgaagget ttgaagget ttgaagget ttgaagagaa ccettagaage ctgaagagaa ccettagaage ttgaagget ttgaagget ttgaagget ttgaagget ttgaagaaga ccettagaage ctgaagaaaa ccettagaage ttgaagget ttgaagget ttgaagaaga ctgaagaaga ccettagaage ctgaagaagaa ccettagaage ttgaagget ttgaagaagaa ccettagaage ttgaagaagaa ccettagaage ttgaaggaaaa ccettagaage ttgaagaagaa ccettagaage ttgaagaagaa ccettagaage ttgaagaagaa ccettagaagaa aaggeetgaa aaggeetga]		ccgcctacag	tttgtaaggt	acggttttgt	gagggtggac	agcgtggaag
P RMYKGRMVLR FEDTDPRTKT PLREAYDLIR QDLKWLGVSW DEEYIQSLRM EVFYSVARRA IERGCAYVDN CGREGELLS RGEYCPTRDL GPEDNLELFE KMLEGEFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LVWPTYNFAV SVDDIHMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFT HFGRLKLEGF ILSKSKIRKL LERPREFFMG YDDPRFGTIA GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV GERQLKLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS Atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca gaagttatggg ggaatgtccc cagttgaggg ctgacccaa gcccaaagct gttatgggta acaccggaagc ctgggaagc caggctgac aaatcgctca acccttga ggggtatct accggtaagg ttgtaatggg cttttgccca aatccttga gggagctgaa accctggaagc cttggaagc ttgtatacct accggtaagg ttgtaatgcg cttttgccca accctttga gggagctgaa accctggaagc ctggggtatct accgggagt tcaagggaa tggttgtca acccttag ggagccgaa cctggaggta tcaagggaa tggttgtca accctaacg gacccgcaac cttggagagt tcaagggaa tggttgtca accctaacg gacccgcaac cttggagagt tcaagggaa tggttgtcaa acccttag gaggctctga accctgaagc ttgatccta acccttag gaggctctga accctgaacc ttgataaagc cttaatgct ttccggagttg acccgaacc ttgataaagc ttaaacggt ttgatagga tggtaaaagc ctatgtctg attacctg gagaagact caaaaggtta aaagacctca aaaagcctg ttcctgacgt ttcctgtaaag ccctcaaag gagaagact caaaaggtta aaaagaccca aaaaggcctg ttcctcaacag gagaaagact ctaaaaggta ttgatagaaa cccttatgca ctatgtctgt ttcctgtaaag gagaagact ctaaaaggtta aaaagacctca aaaaggcctg ttcctcaacag gagaagact ctaaaaggta ttgatagaaa cccttatgca ctatgtctgt ttcctgtaaag gagaagact ctaaaaggtta aaaagacctca aaaaggcctg ttgacagaaa cccttatgcac ttcctgacagt ttcctgtaaag aaaagacctca aaaaggcctg aaaaagacctca aaaaggcctg aaaaagacctca aaaaggcctg ctaaaaaggcctg ccctcaacag gaaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga ccctaacag gaaaagac ccctaacag gaaaagac cttatgccc aaaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaag			acggggtcta	cagggtgata	tacacacaca	agtag	
P RMYKGRMVLR FEDTDPRTKT PLREAYDLIR QDLKWLGVSW DEEYIQSLRM EVFYSVARRA IERGCAYVDN CGREGELLS RGEYCPTRDL GPEDNLELFE KMLEGEFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LVWPTYNFAV SVDDIHMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFT HFGRLKLEGF ILSKSKIRKL LERPREFFMG YDDPRFGTIA GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV GERQLKLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS Atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca gaagttatggg ggaatgtccc cagttgaggg ctgacccaa gcccaaagct gttatgggta acaccggaagc ctgggaagc caggctgac aaatcgctca acccttga ggggtatct accggtaagg ttgtaatggg cttttgccca aatccttga gggagctgaa accctggaagc cttggaagc ttgtatacct accggtaagg ttgtaatgcg cttttgccca accctttga gggagctgaa accctggaagc ctggggtatct accgggagt tcaagggaa tggttgtca acccttag ggagccgaa cctggaggta tcaagggaa tggttgtca accctaacg gacccgcaac cttggagagt tcaagggaa tggttgtca accctaacg gacccgcaac cttggagagt tcaagggaa tggttgtcaa acccttag gaggctctga accctgaagc ttgatccta acccttag gaggctctga accctgaacc ttgataaagc cttaatgct ttccggagttg acccgaacc ttgataaagc ttaaacggt ttgatagga tggtaaaagc ctatgtctg attacctg gagaagact caaaaggtta aaagacctca aaaagcctg ttcctgacgt ttcctgtaaag ccctcaaag gagaagact caaaaggtta aaaagaccca aaaaggcctg ttcctcaacag gagaaagact ctaaaaggta ttgatagaaa cccttatgca ctatgtctgt ttcctgtaaag gagaagact ctaaaaggtta aaaagacctca aaaaggcctg ttcctcaacag gagaagact ctaaaaggta ttgatagaaa cccttatgca ctatgtctgt ttcctgtaaag gagaagact ctaaaaggtta aaaagacctca aaaaggcctg ttgacagaaa cccttatgcac ttcctgacagt ttcctgtaaag aaaagacctca aaaaggcctg aaaaagacctca aaaaggcctg aaaaagacctca aaaaggcctg ctaaaaaggcctg ccctcaacag gaaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga ccctaacag gaaaagac ccctaacag gaaaagac cttatgccc aaaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaaggcctga aaaagacctca aaaag							
P RMYKGRMVLR FEDTDPRTKT PLREAYDLIR QDLKWLGVSW DEEYIQSLRM EVFYSVARRA IERGCAYVDN CGREGELLS RGEYCPTRDL GPEDNLELFE KMLEGEFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LVWPTYNFAV SVDDIHMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFT HFGRLKLEGF ILSKSKIRKL LERPREFFMG YDDPRFGTIA GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV GERQLKLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS Atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca gaagttatggg ggaatgtccc cagttgaggg ctgacccaa gcccaaagct gttatgggta acaccggaagc ctgggaagc caggctgac aaatcgctca acccttga ggggtatct accggtaagg ttgtaatggg cttttgccca aatccttga gggagctgaa accctggaagc cttggaagc ttgtatacct accggtaagg ttgtaatgcg cttttgccca accctttga gggagctgaa accctggaagc ctggggtatct accgggagt tcaagggaa tggttgtca acccttag ggagccgaa cctggaggta tcaagggaa tggttgtca accctaacg gacccgcaac cttggagagt tcaagggaa tggttgtca atccaacg gacccgcaac cttggagagt tcaagggaa tggttgtca atccaacg gacccgcaac cttggagagt tcaagggaa tggttgtca atccaacg ttaaaaggtt accctaacg ctttgacgt ttaaaaggt ttaacggt ttgacggac ttgacgct ttaaatggt ttctgtaaa acccttaaaaggcctg ctttgacga ttgacgact ttaaatggt ttctgtaaag gagaagact caaaaggtta aaagacctca aaaaggcctg ttctctgacgt ttccaacag gaaaagacttg ccctcacagg gacacagac cttatgcct ttccaaaaggcctg ctaaaaggct aaaaggcttg ccctcacaag gaaagactt caaaaggtta aaaagacctca aaaagcctg ttcctgacag ttcctctgacag ttcctcgacag ctatgtctgt ttcctgtaaag gaaagact caaaaggtta aaaagacctca aaaaggcctg ctaaaaggcctg ctgaaaaag ccttatgcct ttcctgacag ttcctctaaaaggaaa ccctcaacag gaaaagactca aaaaggcctg aaaaaggcctg aaaaagacctca aaaaggcctg ctaaaaaggcctg ccctcacaag gaaaagact ctaaaaaggcctg aaaaaggcctg aaaaaggcctgaaaaagaaccccacaacg ccctcaacag gaaaagacctca aaaaggcctaaaaaccccacacg ccctcacacacg ccctcacacg gaccccacacacacacacacacacacacacaca	SEQ ID: 71	ApERS.pe					
EVFYSVARRA EVFYSVARRA ENDERSY IERGCAYVDN CGREGKELLS RGEYCPTRDL GPEDNLELFE EAVVRMKTDP RHPNPSLRDW VAMRIDTEK HPHPLVGSRY LVWPTYNFAV SVDDHMMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFI HFGRLKLEGF ILSKSKIRKL LEERPGEFMG YDDPRFGTIA GLRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHFSRPQR KRRITLCTGD KVLLTREDAV EGRQLRLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa aaatacggaa aatacggaa tattaaaata attgaaaaat acggtatgg ctgacccag gccaaagct gttatgggta caaatacggt caggtatct acggtaaga ttcaaggaat tcaaggaa accetttga ggagctcta accetttga ggagctcga aaatcgctc cgagcttata gagcctgac accettggaagt tcaagggaa tcaagggtata tcaagggaa tcaagggata tcaagggaa tcaagggata accetttga ggagccgaa cctggaagt tcaagggaa tcaagggtata tcaagggaa tcaagggata tcaagggaa tcaagggaa tcaagggaa tcaagggaa tcaagggaa tcaagggaa tcaagaggaa ccttgaaga tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagaggaa tcaagagaa ccttaagaa tcccaacg gcccaaac tcaaaaggaa ccttaagaa tcccaacg caagagctta accetgaccc tcaaaaggtt tcaagagaaa ccttaagaa tcccaacg ccttaaaaga caacagact tcaagagaaa ccttaagaa tcccaacacg ccttaaaaga caacagaca ccttaaaaga ccccaacacg ccttaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg cccccaacacg ccccaacacg ccccaacacg ccccaacacg cccccaacacg cccccaacacg cccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaacacg ccccaaca			FEEQREKGDK	GLPPLPGAVE	GRVKLRFAPN	PDFVIHMGNA	RPAIVNHEYA
KMLEGEFYEG EAVVRMKTDP RHPNPSLRDW VAMRIIDTEK HPHPLVGSRY LVWPTYNFAV SVDDHMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFI HFGRLKLEGF ILSKSKIRKL LEERPGEFMG YDDPRFGTIA GLRRRGVLAE AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV EGRQLRLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS Atgaccttaa gtcctgaaga tattaaaata acgcccaca gcgcgcccttg ggaatytcc cagttgaggg ctgacccaca gctgcccttg gtgtaaagaa agagctgac aaaggcttaa accctgaagg ctggaagac cgcctgtcgg gaattcc cggttgaaga accctgaagg cctgggaagt tcaagggaa ttgtaccg cagttgtgac aaacctcttga gggagccgaa accctgaagg cctggagaag ttgtaatcgg ctttgccca acccttgaggag ttgtaacgac ttgactgac accctgagat tattacagata accctgaagc cctgggaagt tcaagggaa tggttgtca accctttga gggagccgaa accctttgatg gacccgaac ttccgagtat ttccgattaaag accttgatggc cttgaccagg ttgacgac ttctgacgc ttccgattt ttccgattt ttccgattt ttccgattt ttccgattt ttcctgtaag ccctcacagg cccccacagg cccccacagg cccccacagg ccccccacagg cccccacagg cccccacagg cccccacagg cccccacagg cccccaca accctcttgatg acccccaca ttcccacacg cccccacacacacacacacacacacacacac		P	RMYKGRMVLR	FEDTDPRTKT	PLEEAVDLTE	ODLKWLGVSW	DEEYIOSLRM
LVWPTYNFAV SVDDHMMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFI HFGRLKLEGF ILSKSKIRKL AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE 1PFHPSRPQR KRRITLCTGD VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa gtcctgaaga aaatacggaa aagttatggg ggaatgtccc ggttgaagac ctggaagt tcaagaact ttcagaaatt gctgacccag gtgtaaagaa accctgaagc ctgggaagt tcaaggggaa ttgtaacgc cagttgagg gaaggcttaa accggtaagc ctggggaagt tcaaggggaa ttgtaatgcg ctttgccaa aaaccettga ggaggctctga aaccggaagt tcaaggggaa ttgtaccaag ctttgccaa aaccettgaag ggaggccgaa accggaagt tcaaggggaa ttgtatcct ggttgtcaa accggaagt tcaaggggaa ttgtaccaag ctttgccca accggagttata ggagacctgac ctggggatta accggaagt tcaaggggaa ttgtatcct ggttgtcaa ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ttgcccaac ttgcccaac gaacccgaac ttgataaag ccgtccaac ttgatgac acctgaacc ttgataaag ccgcccaac ttgatgac accctgaacc ttgataaag ttgatacaac ttgatacgac ttcccgagtt ttcccgattt ttcctgtaaag ccctcacacg gagacacct ttccaacacg cctcttcaaccg ccgggtttg ccgaccaca ttgatcgac ttcccgact ttcccgattt ttcctgtaaag ccctcacacg gagacacccaca accctctaaccac ccgaggtttg cctgaaccacac ccgaggtttaa accctgaccc ttgatacacac cctccaacc ccgaggtttaa accctgaccc ttccaacac cctccaacc ccgaggtttg cctgaaccacac ccgaggttaa accctgaccc ttccaaccac cctccaacc ccaccaccaccaccaccaccaccaccaccacca						~	
LVWPTYNFAV SVDDHMMEIT HVLRGKEHQL NTEKQLAVYR CMGWRPPYFI HFGRLKLEGF ILSKSKIRKL AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE 1PFHPSRPQR KRRITLCTGD VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa gtcctgaaga aaatacggaa aagttatggg ggaatgtccc ggttgaagac ctggaagt tcaagaact ttcagaaatt gctgacccag gtgtaaagaa accctgaagc ctgggaagt tcaaggggaa ttgtaacgc cagttgagg gaaggcttaa accggtaagc ctggggaagt tcaaggggaa ttgtaatgcg ctttgccaa aaaccettga ggaggctctga aaccggaagt tcaaggggaa ttgtaccaag ctttgccaa aaccettgaag ggaggccgaa accggaagt tcaaggggaa ttgtatcct ggttgtcaa accggaagt tcaaggggaa ttgtaccaag ctttgccca accggagttata ggagacctgac ctggggatta accggaagt tcaaggggaa ttgtatcct ggttgtcaa ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ggagctcaac ttgcccaac ttgcccaac ttgcccaac gaacccgaac ttgataaag ccgtccaac ttgatgac acctgaacc ttgataaag ccgcccaac ttgatgac accctgaacc ttgataaag ttgatacaac ttgatacgac ttcccgagtt ttcccgattt ttcctgtaaag ccctcacacg gagacacct ttccaacacg cctcttcaaccg ccgggtttg ccgaccaca ttgatcgac ttcccgact ttcccgattt ttcctgtaaag ccctcacacg gagacacccaca accctctaaccac ccgaggtttg cctgaaccacac ccgaggtttaa accctgaccc ttgatacacac cctccaacc ccgaggtttaa accctgaccc ttccaacac cctccaacc ccgaggtttg cctgaaccacac ccgaggttaa accctgaccc ttccaaccac cctccaacc ccaccaccaccaccaccaccaccaccaccacca	1						
HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI SEQ ID: 72 MmERS #### Attalog and a continuous and acceptage and acceptage accep			EVFYSVARRA	IERGCAYVDN	CGREGKELLS	${\tt RGEYCPTRDL}$	GPEDNLELFE
AIRQIILEVG VKPTDATISW ANLAAANRKL LDERADRIMY VEDPVEMEVE LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV EGRQLRLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca aaatgctgta aaatacggaa aagcccaca gcccaaagct gttatgggta ctggcgccttg gctgcccttg aaaatatagt ttcagaaatt gctgaaggc ctggggaagc cgcctgtcgg aaatcgtcc cgagcttata ggggatgtct gtgtaaagga accctgaagc cttgggaagc cctggggaag ttgtaatggg ctttgccca aaccctctga ggggacctgaa aacggttaa aacctcttga gggagccgaa cctgggaagt tcaaggggaa ttgtaatgcg ctttgccca aacccacg gacccgcaac cctgggaagt tcaaggggaa tggttgtca atccaacg gacccgcaac tccggggttgt ccgaagccta tgactgtac atccaacg gacccgcaac cctggggttgt ccgaagccta tgactgtac atggacgact ttaaaaggt tcgaagcaa acctgacc tgatataaag ccgccaacg ttgtacgtg ctgaagcaa acctgaccc tgatataaag ccgcccaagc tcgaagccta tgactgtac atgggaaaagc ttaaatggct ccggggttgt cctgaagaaaa ctgattgaga tgggaaaagc ctatgtctgt tcccacagg gagaagactt caaaaggtta aaagactca aaaagcctg cccccacagg gagaagact caaaaggtta aaagactcca aaaaggcctg cccccacagg gagaagact ccaaaaggta ccccacagg cccccacagg cccccacagg cccccacag ccccacagg cccccacag cccccacagg cccccacacacg cccccacacacg cccccacacacg cccccacacacg cccccacacacg cccccacacacg cccccacacacg ccccccacacaccacacaccacacaccacacaccacacac			EVFYSVARRA KMLEGEFYEG	IERGCAYVDN EAVVRMKTDP	CGREGKELLS RHPNPSLRDW	RGEYCPTRDL VAMRIIDTEK	GPEDNLELFE HPHPLVGSRY
LAQVECRAAE IPFHPSRPQR KRRITLCTGD KVLLTREDAV EGRQLRLMGL SNFTVSQGIL REVDPSLEYA RRMKLPIVQW VKKGGEASVE VLEPVELELR RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctctca aaatacggaa aagtatatggg ggaatgtcc cagttgaggg ctgacccaag ggtatatggg ctggaagcc cgcctgtcgg aaaatcgctac aaatcgctga aaatcgctac ggggtatct gtgaaagaa accggaaggctgac acggtaagg cttgacgcaa accggaagct tcaaggggaa tcttgccca aaaccctcttga gggagcctgac accggaagct tcaaggggaa tcttgccca aatcccaacg gacccgaac cctgggaagt tcaaggggaa tggttgtcaa atcccaacg gacccgaac cctgggaagc tcaagggaa ttgtaatcg cgctttgatg acactcatgacc tcaagggaa ttgtactcg cgggttgtc cggggttgtc ccgaagccta tgactggtac atgaccac tgataaagg ttgaaagcat tgactggtac atgaccac ttaaaaggata tgaccagg ttgtacggc ctctgacgct ttaaaaggct tcaagggtta ataaaggata tgcaagaaa ctgattgac ctctgacggt ttcccgattt tcccgattt tcctgtaaag gagaagact caaaaggtta aaagactcca aaaaggctg ctatgccgt ttcccgattt tcccgattt tcccgattt tcccgattt tcccgattt tcccgattt tcccaagg gacacagac ctgaagaaaa ccttatgcac tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT	CGREGKELLS RHPNPSLRDW HVLRGKEHQL	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI
SEQ ID: 72 MmERS atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca aaatgctgta aaatacggaa aagcccaca gcccaaagct gttatgggta aagtatggg ggaatgtcc cagttgaggg ctgacccag cggggtatct gctgaagac cgcctgtcgg aaatcgctc cgagcttata ggggaagcc cgcctgtcga aaatacgcta aaggcctaa aaggcctaa accctgaagc ctgggaagc ctggacgca aaggcctaa aaggcttaa accctgaagc ctggggaagc ctggacgaa accctgaagc ctgggaagc ctggaagct tcaaggggaa tcttgccca aatcccaacg gggagccgaa accggaagt tcaagggaa tggttgcaa acctgaagc ctggggaagt tcaagggaa tggttgcaa ttccgagtat gtaaaagt accggaagc cggctttgatg acactgaccc tgaaagcta tatacgata tgactggta accctgaagc cttgacgaac cctggggatgt ccaagggaa tggttgcaa acctgaccc tgaaaagtt ataaaaggaaa gtttatcctg cgctttgatg acactgaccc tgaaaagtt ccaggggttgtg cctgaagaaaa ctgattgaga tgggaaaagc ctatagctc ttccgattt atacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt aaaaggctg ccctcacagg gacacagacc ctgaagaaa ccttatgcac tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE
RHQGYAEDAI RGYGVDSRLQ FVRYGFVRVD SVEDGVYRVI YTHK* SEQ ID: 72 MmERS atgaccttaa gtcctgaaga tattaaaata atgaaaaat acgctcttca aaatgctgta aaatacggaa aagccccaca gcccaaagct gttatgggta ctggcccttg ggaatgtccc cagttgaggg ctgaccccag cggggtatct gctgggaagcc cgcctgtcgg aaatcgctcc cgagcttata gaggctctga gtgtaaagaa acggtaagg ttgtaatgcg ctttgccca aaccctttga gggagccgaa accggtaagg ttgtaatgcg ctttgccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgca acctgaccc tgataaaggt ataaaaggaaa gtttatcctg cgctttgatg acactgaccc tgataaagg taaaaggata tcaaggggaa tggttgaca acctgaccc tgataaaag cggggttgtg cctgaccagg ttgtacgtg acactgaccc tgataaaag ttccaagggttgt cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt ataccgatta tgcaagaaaa cctgattgaga tgggaaaagc ctatggcact ttcccgattt tctctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga ccttatgcac tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE
SEQ ID: 72 MmERS atgaccttaa gtcctgaaga tattaaaata attgaaaaat acgctcttca aaatgctgta aaatacggaa aagcccaca gccaaagct gttatgggta aagttatggg ggaatgtcc cagttgaggg ctgacccag cggggtatct gctggcagcc cgcctgtcgg aaatcgctcc cgagcttata gaggctctga gtgtaaagaa accggtaagg ttgtaatgcg ctttgccca aaccctcttga gggagccgaa accggtaagg tcaagggaa tcatggcac aacccgaagc cctgggaagt tcaaggggaa tggttgcaa acctgacc gaccgcaac cctgggaagt tcaaggggaa tggttgcaa acctgaccc tgataaagg cgtcccatgc cgagctta acctgaccc tgataaagg cgtcccatgc cctgaccagg ttgtactga acctgaccc tgataaagg cgtcccatgc cctgaccagg ttgtacgta tgctgacgac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaa tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL
aaatgetgta aaatacggaa aageeecaca geecaaaget gttatgggta aagttatggg ggaatgteee cagttgaggg etgaceecag eggggtatet getgeeettg aaaatatagt teagaaatt getaaaggaa accetgaage etgggaagee egeetgtegg aaategetee egagettata gaggetetga gtgtaaagaa agageetgae aaaggettaa aacetettga gggageegaa aceggtaagg tegtaatgeg etttgeeea aateecaaeg gaceegeaae eetgggaagt teaaggggaa tggttgteaa tteegagtat gtaaaagtgt ataaaggaaa gtttateetg egetttgatg acaetgaeee tgatataaag egteecatge tegaageeta tgaetggtae atggaegaet ttaaatgget eggggttgtg eetgaeeagg ttgtaegtge etetgaeeg tteeegatt attaegatta tgeaagaaaa etgattgaga tgggaaaage etatgtetgt teetgtaaag gagaagaett eaaaaggtta aaagaeteea aaaaggeetg eeeteaagg gacaeagaee etgaagaaaa eettatgeee tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR
aaatgetgta aaatacggaa aageeecaca geecaaaget gttatgggta aagttatggg ggaatgteee cagttgaggg etgaceecag eggggtatet getgeeettg aaaatatagt teagaaatt getaaaggaa accetgaage etgggaagee egeetgtegg aaategetee egagettata gaggetetga gtgtaaagaa agageetgae aaaggettaa aacetettga gggageegaa aceggtaagg tegtaatgeg etttgeeea aateecaaeg gaceegeaae eetgggaagt teaaggggaa tggttgteaa tteegagtat gtaaaagtgt ataaaggaaa gtttateetg egetttgatg acaetgaeee tgatataaag egteecatge tegaageeta tgaetggtae atggaegaet ttaaatgget eggggttgtg eetgaeeagg ttgtaegtge etetgaeeg tteeegatt attaegatta tgeaagaaaa etgattgaga tgggaaaage etatgtetgt teetgtaaag gagaagaett eaaaaggtta aaagaeteea aaaaggeetg eeeteaagg gacaeagaee etgaagaaaa eettatgeee tgggaaaaga			EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR
aagttatggg ggaatgtcc cagttgaggg ctgaccccag cggggtatct gctgcccttg aaaatatagt ttcagaaatt gctaaaggaa accctgaagc ctggggaagcc cgcctgtcgg aaatcgctcc cgagcttata gaggctctga gtgtaaagaa agagcctgac aaaggcttaa aacctcttga gggagccgaa accggtaagg ttgtaatgcg ctttgccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgtaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagac ctgaagaaaa ccttatgcac tgggaaaaga	SEO ID. 72	M. EDG	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK*
gctgcccttg aaaatatagt ttcagaaatt gctaaaggaa accctgaagc ctgggaagcc cgcctgtcgg aaatcgctcc cgagcttata gaggctctga gtgtaaagaa agagcctgac aaaggcttaa aacctcttga gggagccgaa accggtaagg ttgtaatgcg ctttgccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgtcaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK*
ctgggaagcc cgcctgtcgg aaatcgctcc cgagcttata gaggctctga gtgtaaagaa agagcctgac aaaggcttaa aacctcttga gggagccgaa accggtaagg ttgtaatgcg ctttgccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgtcaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagccccaca	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta
gtgtaaagaa agageetgae aaaggettaa aacetettga gggageegaa aceggtaagg ttgtaatgeg etttgeecea aateecaaeg gaceegeaae eetgggaagt teaaggggaa tggttgteaa tteegagtat gtaaaagtgt ataaaggaaa gtttateetg egetttgatg acaetgaeee tgatataaag egteecatge tegaageeta tgaetggtae atggaegaet ttaaatgget eggggttgtg eetgaeeagg ttgtaegtge etetgaeegt tteeegattt attaegatta tgeaagaaaa etgattgaga tgggaaaage etatgtetgt ttetgtaaag gagaagaett eaaaaggtta aaagaeteea aaaaggeetg eeeteaeagg gaeaeagaee etgaagaaaa eettatgeae tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgaccccag	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct
accggtaagg ttgtaatgcg ctttgcccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgtcaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagccccaca cagttgaggg ttcagaaatt	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgaccccag gctaaaggaa	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc
accggtaagg ttgtaatgcg ctttgcccca aatcccaacg gacccgcaac cctgggaagt tcaaggggaa tggttgtcaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagccccaca cagttgaggg ttcagaaatt	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgaccccag gctaaaggaa	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc
cctgggaagt tcaaggggaa tggttgtcaa ttccgagtat gtaaaagtgt ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgaccccag gctaaaggaa cgagcttata	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga
ataaaggaaa gtttatcctg cgctttgatg acactgaccc tgatataaag cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccaag gctaaaggaa cgagcttata aacctcttga	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa
cgtcccatgc tcgaagccta tgactggtac atggacgact ttaaatggct cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgaccccag gctaaaggaa cgagcttata aacctcttga aatcccaacg	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa gacccgcaac
cggggttgtg cctgaccagg ttgtacgtgc ctctgaccgt ttcccgattt attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa agaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa gacccgcaac gtaaaagtgt
attacgatta tgcaagaaaa ctgattgaga tgggaaaagc ctatgtctgt ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa gacccgcaac gtaaaagtgt tgatataaag
ttctgtaaag gagaagactt caaaaggtta aaagactcca aaaaggcctg ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa cgtcccatgc	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg tcgaagccta	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg tgactggtac	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc atggacgact	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa ggcccgcaac gtaaaagtgt tgatataaag ttaaatggct
ccctcacagg gacacagacc ctgaagaaaa ccttatgcac tgggaaaaga	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa cgtcccatgc cggggttgtg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg tcgaagccta cctgaccagg	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg tgactggtac ttgtacgtgc	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc atggacgact ctctgaccgt	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga gggagccgaa gacccgcaac gtaaaagtgt tgatataaag ttaaatggct ttcccgattt
	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa cgtcccatgc cggggttgtg attacgatta	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg tcgaagccta cctgaccagg tgcaagaaaa	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg tgactggtac ttgtacgtgc ctgattgaga	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gcccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc atggacgact ctctgaccgt tgggaaaagc	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga ggagccgaa gacccgcaac gtaaaagtgt tgatataaag ttaaatggct ttcccgattt ctatgtctgt
tgcttgccgg agaatatgaa gaccagcagg ctgttctgcg cataaagacc	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa cgtcccatgc cggggttgtg attacgatta	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg tcgaagccta cctgaccagg tgcaagaaaa gagaagactt	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg tgactgtag tgactgtac ttgtacgtgc ctgattgaga caaaaggtta	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc atgacgact cttgaccgt tgggaaaagc aagactcca	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatgggta cggggtatct accctgaagc gaggctctga ggagccgaa gacccgcaac gtaaaagtgt tgatataaag ttaaatggct ttcccgattt ctatgtctgt aaaaggcctg
	SEQ ID: 72	MmERS	EVFYSVARRA KMLEGEFYEG LVWPTYNFAV HFGRLKLEGF AIRQIILEVG LAQVECRAAE SNFTVSQGIL RHQGYAEDAI atgaccttaa aaatgctgta aagttatggg gctgcccttg ctgggaagcc gtgtaaagaa accggtaagg cctgggaagt ataaaggaaa cgtcccatgc cggggttgtg attacgatta ttctgtaaag ccctcacagg	IERGCAYVDN EAVVRMKTDP SVDDHMMEIT ILSKSKIRKL VKPTDATISW IPFHPSRPQR REVDPSLEYA RGYGVDSRLQ gtcctgaaga aaatacggaa ggaatgtccc aaaatatagt cgcctgtcgg agagcctgac ttgtaatgcg tcaaggggaa gtttatcctg tcgaagccta cctgaccagg tgcaagaaaa gagaagactt gacacagacc	CGREGKELLS RHPNPSLRDW HVLRGKEHQL LEERPGEFMG ANLAAANRKL KRRITLCTGD RRMKLPIVQW FVRYGFVRVD tattaaaata aagcccaca cagttgaggg ttcagaaatt aaatcgctcc aaaggcttaa ctttgccca tggttgtcaa cgctttgatg tgactgtag tgactgtac ttgtacgtgc ctgattgaga caaaaggtta caaaaggtta	RGEYCPTRDL VAMRIIDTEK NTEKQLAVYR YDDPRFGTIA LDERADRIMY KVLLTREDAV VKKGGEASVE SVEDGVYRVI attgaaaaat gccaaagct ctgacccag gctaaaggaa cgagcttata aacctcttga aatcccaacg ttccgagtat acactgaccc atgacgact ctctgaccgt tgggaaaagc aagactcca ccttatgcac	GPEDNLELFE HPHPLVGSRY CMGWRPPYFI GLRRRGVLAE VEDPVEMEVE EGRQLRLMGL VLEPVELELR YTHK* acgctcttca gttatggta cggggtatct accctgaagc gaggctctga ggagccgaa gacccgcaac gtaaaagtgt tgatataaag ttaaatggct ttcccgattt ctatgtctgt aaaaggcctg tgggaaaaga

		gatatagagc	acaaagaccc	tgcacttcgg	gactggggag	cattcaggat
				gccctgagat		
				ggtgctatcg		
				agaccttatc		
]				gctggacata		
		1				
1		1		ttcggaaagt		
				atacagcggc		
				gccgtggaat		
		agttcatgat	agaaatggga	gtcgggatga	ccgatgtgag	catcagcatg
		gaatctcttt	atgccgagaa	ccgcaaaatc	gtggacccgg	ttgcaaaccg
				ctgtggagct		
				cgtcacccaa		
		I .		taaggttctt		
1						
				tcctccgctt		
				ctgcgggtta		
				aggaaaaatc		
		tggaattcct	gtgaaagtct	gcgggccaga	gggcgatatc	gaagggacag
		gagaacgcgg	gatcgagacc	gagcttgata	atattgtcca	gtttgaacgc
[cgccgtagac		
[ctttgctcac		5 550		5.55 5
SEO ID: 73	MmERS.pe			KYGKAPQPKA	MCKIMCECD	OT.RADDSG1/G
	viniers.pe			RLSEIAPELI		-
l l	p					
1		1		SRGMVVNSEY		
				PDQVVRASDR		
		FCKGEDFKRL	KDSKKACPHR	DTDPEENLMH	WEKMLAGEYE	DQQAVLRIKT
[[DIEHKDPALR	DWGAFRIRKM	SHPRPEIGNK	YIVWPLLDFA	GAIEDHELGM
		THIIRGKDLI	DSEKRQTYIY	KYFGWTYPKT	THWGRVKIHE	FGKFSTSTLR
ì	'	S		AIRRRGIRAE		
		1		VWNPVELEIE		
				VGSVLRLKDL		
				VKVCGPEGDI	EG.I.GEKGTEI.	ELDMIAĞEEK
j		FGECKIDAVD	GENVVAYFAH	K^		
SEO ID. 74	MEDG		<u> </u>	111	<u> </u>	1
SEQ ID: 74	MILERS			tgtctacagg		
				acccgggggc		
				aagatggcgc		
ì		gaggccgctg	ttgagagggt	taacagttta	agccccgagg	agcagcagca
				ttgagatcac		
				gccggggtga		
				acccttccac		
				caaggaaata		
\			carguatary	Jauggaaaca	cgacggcagg	Cicacocca
			Cacacacaca	cacaaaatt~	SUUCUUSAUC	ataggatata
				cgcagggttg		
		attccagccg	accttgagtg	gctgggcgtt	gaatgggatg	agacagttat
		attccagccg ccagagcgac	accttgagtg cgcatggaaa	gctgggcgtt cctactatga	gaatgggatg gtacacagag	agacagttat aaactcatag
		attccagccg ccagagcgac agaggggtgg	accttgagtg cgcatggaaa tgcgtatgta	gctgggcgtt cctactatga tgcacatgca	gaatgggatg gtacacagag ggccggagga	agacagttat aaactcatag gttcagggaa
	***************************************	attccagccg ccagagcgac agaggggtgg ctcaagaaca	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc	gaatgggatg gtacacagag ggccggagga aggtcccttg	agacagttat aaactcatag gttcagggaa gtttcaggga
		attccagccg ccagagcgac agaggggtgg ctcaagaaca	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc	gaatgggatg gtacacagag ggccggagga aggtcccttg	agacagttat aaactcatag gttcagggaa gtttcaggga
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaacctgc	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg cataagagac
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaacctgc cacccacgca	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg cataagagac ccggtacacg
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaacctgc cacccacgca agtggcggtt	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaacctgc cacccacgca agtggcggtt aggaccacct	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt	gaatgggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaacctgc cacccacgca agtggcggtt aggaccacct ggctgggagc	agacagttat aaactcatag gttcagggaa gtttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc cacccacgca agtggcggtt aggaccacct ggctgggagc cgttgcactc	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc cacccacgca agtggcggtt aggaccacct ggctgggagc cgttgcactc	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac gggcccgtga	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga gggcatcctc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc cacccacgca agtggcggtt aggaccacct ggctgggagc cgttgcactc attctggatg	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg ggacgacca
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac gggcccgtga cgcctcggaa	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga gggcatcctc ccctgagggc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga aggggtgagt cattgcaagg	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc caccacgca agtggcggtt aggaccacct ggctgggagc cgttgcactc attctggatg aggggtatac	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg ggacgacca gacggaggc
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac gggcccgtga cgcctcggaa cataagaaag	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga gggcatcctc ccctgagggc ttaatggttg	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga aggggtgagt cattgcaagg aaatcggcgt	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc caccacgca agtggcggtt aggaccacct ggctgggagc cgttgcactc attctggatg aggggtatac aaagatagca	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg ggacgacca gacggaggc gattccaca
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac gggcccgtga cgcctcggaa cataagaaag tgagctggaa	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga gggcatcctc ccctgagggc ttaatggttg gaagatctac	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga aggggtgagt cattgcaagg aaatcggcgt ggcctcaaca	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc cacccacgca agtggcggtt aggaccacct ggctggagc cgttgcactc attctggatg aggggtatac aaagatagca ggagcatcct	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg ggacgaccca gacggaggc gattccacaa cgaagaggag
		attccagccg ccagagcgac agaggggtgg ctcaagaaca gaacctccag ttgtgagggt tgggtctcaa ctacagggtc tccttggcgt gagaagcagg catacactac gggcccgtga cgcctcggaa cataagaaag tgagctggaa gccaggaggt	accttgagtg cgcatggaaa tgcgtatgta ggggagaggc cgatggaggg taaaacggac tgaggatcgt taccccatga gacacacgtc agtacctcta gggcgcctga gggcatcctc ccctgagggc ttaatggttg gaagatctac acttctttgc	gctgggcgtt cctactatga tgcacatgca ctgtcactgc aaatgttcga ctgaaccacc tgaggcagag tgaacttctc ctgaggggta caggcacctt agatggacga aggggtgagt cattgcaagg aaatcggcgt	gaatggatg gtacacagag ggccggagga aggtcccttg gatgaaggag caaaccctgc caccacgca agtggcggtt aggaccacct ggctggagc cgttgcactc attctggatg aggggtatac aagatagca ggagcatcct gttaaacttg	agacagttat aaactcatag gttcagggaa gttcaggga ggctcagccg cataagagac ccggtacacg gatgaccacc ggcaaacaga cccccgaatt agcacctcgg ggacgaccca gacggaggc gattccacaa cgaagaggag aagtggtggg

SEQ ID: 75 Mt.	gatgacettg ctactctggg gtgaactcgg gaggccgagg ggctgacgca tcggcttcgc gccacaaat ERS.pep VVPVEDLVYR EAAVERVNSL FAPNPSGPLH IPADLEWLGV LKNRGEACHO WVSMRIVEAE EKQEYLYRHL RLGTLRAIAR ARRYFFAADP DDLGEGPLRL	cagggtactt gggaaggacc ggtgaactga cgcttcaatg tcatcatgcc tcagaactgg ccgcctggat ga YALLNAVKHR SPEEQQQEME IGHARAAILN EWDETVIQSD RSLGFRENLQ HPRTGTRYRV GWEPPEFIHY RGIRPEAIRK VKLEVVGLPG IDAVNVIYSG RVRGVIEADA	gctgcgcctc ggtaccacag atacactggg ggacgcctcc aggttgatga tctgcaggcc GRANPGAVMG RLGLEITERK HEYARKYDGR RMETYYEYTE RWREMFEMKE YPMMNFSVAV GRLKMDDVAL LMVEIGVKIA PVRVERPLHP GELRYHSEGI	atagacgcgg tgagggcatc tccctgcaga agggtgaggg tgttgtgcag caggaatggt AVMSNEPELR QKKRKGLREL LILRIEDTDP KLIERGGAYV GSAVVRVKTD DDHLLGVTHV STSGAREGIL DSTMSWKKIY DHPEIGNRVL EEARELGASM	ttaacgtgat gaggaggccc gtccgcctt gagtcatcga cttgagaggt cttctactat KMAPQVKEAV AGVKGEVVLR RRVDPEAYDM CTCRPEEFRE LNHPNPAIRD LRGKDHLANR RGEYSGWDDP GLNRSILEEE ELRGEVYLPG IHWVPAESAL
SEQ ID: 76 Phi	gcatggaggtagaacctgaaaaacctggagaaaacttgagagaacttagagagaccaaaattcagagagag	aaaagatagc aaggctaatc gcttaggccc aagaggtcaa atatatccag actacctctt ctccaaatcc cttagttatg tgatgatacc tgataattga tacgctagtg aaaatgggt agcttagaga gttcagctcg agaagctgtt ttagggattg accggaaata tgatgatcac ccgagaacga tatcccgtca aagcaaatcc gggatgatcc cttcctgaag tgatcacacgcacg ttgatcaat gaagtcgacg tcacctgaag ccatcctgaa tcacgtcaa ggatgatcac cttcctgaag ccatcctgaag ccatcctgaa ccatcctgaa ccatcctgaa gcaagtcac ggaagatggt cctgaaggag ccatacctaa ggatagacg tcacaca aggatagacag tcaaagtcaa ggatagacag taa	ttaaggccgt agggccaagg ctcactagca agtactttga cttcctaaag agatggtgct aatacgccaa gatccaaaag agatctagag atagactcga aaagcatatg taagggtaat agcegcactt agtacaggat agcttggag gactagacga cgatccatca aagacataga cgatccatca aagacaagga cgatccatca aagacaagga cgatccatca atagcttgga gactagacag cgatccatca atagcttgga ccataaaga atcagttggg tgccaataga gggctcctga aggggcgtta gaaagacgat atctcttcaa ttctacagct tcactgggtt gttaacgaaa aattgagggg	catcggtaaa agataattcc agggatgagc aaagaaggaa cagagaaagg tttcacctgg gatgtacggt tcaagaggcc tggcttggaa aatttactac tctgcacttg ccatgtcctg gaagatgtta agactgactt agaataattg atggcctctatat cgggaggcatt aaggataatct caggaaggctt aaggaataga attgatcata acgataataga attgatcata agaatcttgc ttttttg atttatagca gaaggcttaa ttgaatatc tgttgaaata tgatgaatat tgatgaatat tgatgaatat tgatgaatat tgatgaatat tgatgatat tgatgaatat tgatgaatat tgatgaaggta agtgaggaag tagtccagtt gataaagtta	gtgctcggcg cataattaat agctggaaaa gagaagaagg caaggtcgtt gtaatgcaag gggaagttta tgaacccata taaagccaga aagtacgctg tcctccagag atagagtga aacggcgaat aaacccaaa tacaccca ataacccaaa tacactttg cttcgtgga acgagtactt agcatagagg cttgaggag cttgaggag gaagttggat agcgataacc gagataccc gagataccca taaaaccagg cttgaagttg aattgcaaag gaccctgtga ggattgctcg tgaacgtttc tcgcaatata
SEQ ID: 77 Phl	EKS.pep MDVEKTALKH	ALINALENGG	VAMPIVAVIGK	ATGENEETKE	VWVCTTLTIN

		INTERPRETATOR A	DDEOL ERT KD	TADDATERNE	PREPREZECT DI	T DEA FECTION
			RDEQLEKLKD			
			FHLGNARAAI			
1			WLGIKPDEIV			
			PCPHRDEPVE			
			RIIDNPNHPR			
			RYIYEYFGWE			
			TIRALRRRGI			
1			YFFVADPIPM		,	
			LNLLKPGNFV			
			TEGRPCEVII		GLLEKDAKVQ	VNEIVQFERF
[]		GFVRIDRIEG	DKVIAIYAHK	*		
SEQ ID: 78	SsERS		taaatgaatt			
			aagcataatg			
			ggagaggccg			
			aggagatcat			
			gaaattaaag			
		agcatgaaga	aaaaagaaaa	gtgttgccac	ctcttcctaa	tgttaaagga
		caagtagtaa	ctagatttgc	ccctaatccg	gatggtcctc	ttcatttagg
			tctgcgattc			
		· ·	actgaggttt			
		attctagatg	catatgattg	gattaaggag	gatctaaaat	ggctgggaat
		taaatgggaa	caagaacttt	acgcttcgga	aaggctcgag	ttatactata
		agtacgctcg	gtatttgata	gaaaaaggat	atgcgtatgt	tgatacatgt
		gatagtagta	ttttcaggaa	gtttagggat	agtagaggta	aaatgaaaga
		gccagaatgt	ttacatagga	gctcttcacc	agagagtaat	ctggagctgt
		ttgaaaaaat	gctaggagga	aagtttaaag	aaggagaagc	tgtggttagg
		ttaaagaccg	atctatcgga	tccagatcca	tctcaaatag	attgggtaat
		gcttagaata	attgatactg	ctaaaaatcc	tcatccacga	gtagggagca
		agtattgggt	atggcctacc	tataactttg	cttctataat	agatgatcat
		gaacttggaa	ttactcatgt	actgagagct	aaggagcata	tgtcaaatac
			agatacattt			
			tggaagacta			
			gaatgttaga			
			gctggactca			
			aattgatgtc			
			ttgccgcaat			
			tttgtaaaag	_		
			tgctaaaata			
			ttgtcaatcc			
			aatagtatac			
			taatcgtaag			
			tcaatgcaaa			
			atggtagaga			
			tgaaaaaata			
			gatttggatt			
, l			gtattctcac		5acaggaaag	Loguguacac
			500000000			
SEO ID: 79	SsERS.pep	LMELNELRET	IYKYALQNAV	KHNGKAETGP	VMSKIIAERP	ELRSNAREIV
	agrico.heh		NSLTLEOOLT			
		~	DGPLHLGNAR			
1			DLKWLGIKWE			
			SRGKMKEPEC			
			SOIDWVMLRI			
	1		KEHMSNTEKQ			
			NRDDPRLPTL			
			KLDPVAKRIM			
			ILIESNDAED			
			WVKSNEKVPV			
		AUVANAVT A Č	AA A TYDINTY A BA	TANTANDADET	MITMOTHENT	<u> ひひいいむすいむ ↑ ∧ </u>

		QFYRFGFVRV	DRKDENMLRV	VFSHD*		
SEO ID: 90	- A CIKO	annat acces	+~~~~	+	220224	2+222222
SEQ ID: 80					aagaatgtga	
	A184TAG				tctttaaaaa	
					tgagcaactg	
					tatatcaacg	
					tagctcctga	
	•				atttcattat	
					ttttcgccaa	
					gatttattta	
					caaagtgcgt	
					gtttttgagg	
					tcagctactg	
					gcgctagcgg	-
					cagtgaagtg	
	:				gcagaatatg	
					tacgctcggt	
1					ggagatttcc	
					gccgcggcaa	
]					cgaaatctga	
[_		gataccaggc	_
				-	gcctttcggt	
					ttccacgcct	
}					tgtatgcacg	
1		-			ctatcgtctt	
					cagccactgg	
1		_	-	-	ttaaggctaa	
					agttacctcg	
					ccctgcaagg	
,					aaaacgatct	
-					tttcagtgca	
1				-	cgatataagt	-
					aatgcggtag	
					atgaaatcta	
ļ					tgctgtaggc	
					atatcGGTTT	
					aacccctatt	
					tgagacaata atgagtattc	
					ttgccttcct	
					ctgaagatca	
				_	agcggtaaga	
ļ					gagcactttt	
					ccgggcaaga	
					gttgagtact	
					aagagaatta	
1					acttacttct	
					cacaacatgg	
				_	gaatgaagcc	
į l					tggcaacaac	
					tcccggcaac	
[acttctgcgc	
					gagccggtga	
[ggtaagccct	
					tatggatgaa	
					agcattggca	_
					ATATACttta	
					gtgaagatcc	
					accattcctt	
						<u> </u>

			ctactGGGCT		
į			GAAAGGGGGA		
			CCCAGTCACG		
	GTGCCAAGCT	TAAAAAaaat	ccttagcttt	cgctaaggat	CTGCAGTTAT
	AATCTCTTTC	TAATTGGCTC	TAAAATCTTT	ATAAGTTCTT	CAGCTACAGC
	AAATTTTTAAA	TCCATTGGAT	GCAATTCCTT	ATTTTTAAAT	AAACTCTCTA
)	ACTCCTCATA	GCTATTAACT	GTCAAATCTC	CACCAAATTT	TTCTGGCCTT
	TTTATGGTTA	AAGGATATTC	AAGGAAGTAT	TTAGCTATCT	CCATTATTGG
	ATTTCCTTCA	ACAACTCCAG	CTGGGCAGTA	TGCTTTCTTT	ATCTTAGCCC
	TAATCTCTTC	TGGAGAGTCA	TCAACAGCTA	TAAAATTCCC	TTTTGAAGAA
]			CAAACCCGTT		
1			GCTCCCTTGC		_
	1		ACATCAACGC		
Į į			AACTTCAGCA		
			TCCTTCTTGC		
			AGTGTATAAT		
			agtttttat		
	1 0000	_	tcgttcgctc	_	
			GACGGGCAAC		
	1		acagtccgca		-
\			ctatcgtcgc		
	ttatcatgca	actcgtagga	caggtgccgg	cagcgcccaa	cagtcccccg
	gccacggggc	ctgccaccat	acccacgccg	aaacaagcgc	cctgcaccat
	tatgttccgg	atctgcatcg	caggatgctg	ctggctaccc	tgtggaacac
	ctacatctgt	attaacgaag	cgctaaccgt	ttttatcagg	ctctgggagg
	cagaataaat	gatcatatcg	tcaattatta	cctccacggg	gagagcctga
	gcaaactggc	ctcaggcatt	tgagaagcac	acggtcacac	tgcttccggt
	agtcaataaa	ccggtaaacc	agcaatagac	ataagcggct	atttaacgac
			gggtcgaatt		
			attcaggcgt		
			aattacgccc		
	1	_	cattctgccg	_	
			ccagcggcat		
			aaaacggggg		
			ggtgaaactc		
			accetttagg		
	l .		gaatatatgt		
	1	_	cgatgaaaac		
			cactatccca		
			Cactatttta	Lattattagt	ccaccycctt
	tcattgccat	acg			
STO ID 01 + STY 0	3	<u> </u>			
SEQ ID: 81 pACKO-			tcaggcgggc		
Bla	"		ttctttacgg		
			ataggtacat		
			gccattggga		
			ttagcttcct		
			tagtgatctt		
	ggaacctctt	acgtgccgat	caacgtctca	ttttcgccaa	aagttggccc
	agggcttccc	ggtatcaaca	gggacaccag	gatttattta	ttctgcgaag
	tgatcttccg	tcacaggtat	ttattcggcg	caaagtgcgt	cgggtgatgc
	tgccaactta	ctgatttagt	gtatgatggt	gtttttgagg	tgctccagtg
			tccctcctgt		
			ccggacatca		
[atgagggtgt		
			cggtgcgtca		
			actgactcgc		
			cgaacggggc		
			aagtgagagg		
			acaagcatca		
	, coacaggeee			- gaaaccega	-3000000

agtggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc tcgtgcgctc tcctgttcct gcctttcggt ttaccggtgt catteegetg ttatggeege gtttgtetea tteeaegeet gacacteagt tccgggtagg cagttcgctc caagctggac tgtatgcacg aaccccccgt tcagtccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt agaggagtta gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagttttgg tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt cgaaaaaccg ccctgcaagg cggtttttc gttttcagag caagagatta cgcgcagacc aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgca atttatctct tcaaatgtag cacctgaagt cagccccata cgatataagt tgtaattctc atgtttgaca gcttatcatc gataagcttt aatgcggtag tttatcacag ttaaattgct aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct catcgtcatc ctcggcaccg tcaccctgga tgctgtaggc ataggcttgg ttatgccggt actgccgggc ctcttgcggg atatcGGTTT CTTAGACGTC AGGTGGCact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttCCT GTTTTTGCTC ACCCAGAAAC ACTAGtgcag caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggeggata aagttgeagg accaettetg egeteggeee tteeggetgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt gcctCACTGA TTAAGCATTG GTAACCCGGG ACCAAGTTTA CTCATATATA Ctttagattg atttaaaact tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatCTCA TGACCAAAAT CCCTTAACGg catgcaccat tccttgcggc ggcggtgctc aacggcctca acctactact GGGCTGCTTC CTAATGCAGG AGTCGCATAA GGGAGAGCGT CTGGCGAAAG GGGGATGTGC TGCAAGGCGA TTAAGTTGGG TAACGCCAGG GTTTTCCCAG TCACGACGTT GTAAAACGAC GGCCAGTGCC AAGCTTAAAA Aaaatcctta gctttcgcta aggatCTGCA GTTATAATCT CTTTCTAATT GGCTCTAAAA TCTTTATAAG TTCTTCAGCT ACAGCATTTT TTAAATCCAT TGGATGCAAT TCCTTATTTT TAAATAAACT CTCTAACTCC TCATAGCTAT TAACTGTCAA ATCTCCACCA AATTTTTCTG GCCTTTTTAT GGTTAAAGGA TATTCAAGGA AGTATTTAGC TATCTCCATT ATTGGATTTC CTTCAACAAC TCCAGCTGGG CAGTATGCTT TCTTTATCTT AGCCCTAATC TCTTCTGGAG AGTCATCAAC AGCTATAAAA TTCCCTTTTG AAGAACTCAT CTTTCCTTCT CCATCCAAAC CCGTTAAGAC AGGGTTGTGA ATACAAACAA CCTTTTTTGG TAAAAGCTCC CTTGCTAACA TGTGTATTTT TCTCTGCTCC ATCCCTCCAA CTGCAACATC AACGCCTAAA TAATGAATAT CATTAACCTG CATTATTGGA TAGATAACTT CAGCAACCTT TGGATTTTCA TCCTCTCTTG CTATAAGTTC CATACTCCTT CTTGCTCTTT TTAAGGTAGT TTTTAAAGCC AATCTATAGA CATTCAGTGT ATAATCCTTA TCAAGCTGGA ATTCagcgtt acaagtatta cacaaagttt tttatgttga gaatattttt ttgatggggc gccacttatt tttgatcgtt cgctcaaagA AGCGGCGCCA GGGNTGTTTT TCTTTTCACC AGTNAGACGG GCAACAGAAC GCCATGAgeg geeteattte ttattetgag ttacaacagt ccgcaccgct gtccggtagc tccttccggt gggcgcgggg catgactatc gtcgccgcac ttatgactgt cttctttatc atgcaactcg taggacaggt gccggcagcg cccaacagtc ccccggccac ggggcctgcc accataccca cgccgaaaca agcgcctgc accattatgt tccggatctg catcgcagga tgctgctggc taccctgtgg aacacctaca tctgtattaa cgaagcgcta accgttttta tcaggctctg ggaggcagaa taaatgatca tatcgtcaat tattacctcc acggggagag cctgagcaaa ctggcctcag gcatttgaga agcacacggt cacactgctt ccggtagtca ataaaccggt aaaccagcaa tagacataag cggctattta acgaccctgc cctgaaccga cgaccgggtc gaatttgctt tcgaatttct gccattcatc cgcttattat cacttattca

ggogtagoac caggagttta aggagaccaa taactgoct taacaacatta cgocagcact tycacatacta cgoagtact tytatatata ttaagcattc tycacatacta tacgagacat gagagacata gagagacata gagagacata gagagacata gagagacata tatagacaa gattytocca tattygcaa actagacaa cattytyca tattygcaa actagaga actagagaa acatacaca tatagytaga actagagaa actagatya gaacagagat taacagaga gagagatta tatagytaga acatagaga actagaga gagagagat gagacaga gagagatta tatagytaga acatagaga actagaga gagagaga gagacata tatagytaga acatagaga actagaga gagagaga gagagaga gagagaga gagagagaga gagagaga gagagagaga gagagaga gagagaga gagagaga gagagaga gagagaga gagagagaga ga	r ,						
tgcqcacatg gaagceatca agagcgata gatgaacctg attgqaaaca gggacacactgtgcc ttqcqctataa tattgcca tgqtqaaaca gggagcagaa aagttgtca tattgqcaa tgqtqaaaac gggagcagaa aagttgtca ttaagcacac gtttaaatca aaactggtga aaatgctgtga gaaacagttgtaaaatgttca tataaaccat ttaaggaaat aggccaggtt ttcaccgtaa cacgccacac ctttgcgaata tatqtqaaga aastgccgga aatgcgcagg ggaacacta tcccatatac caggtcacac gttttcatt gcatacag ggaacacta tcccatatac caggtcacac gttttcatt gcatacac ggaacacta tcccatacac caggtcacac gttttcatt gcatacac gttgacacac gttgacacac gttgacacac gttgacacac gacacacac accccacacacacacacacaca			ggcgtagcac	caggcgttta	agggcaccaa	taactgcctt	aaaaaatta
gogateagea cettgtegee tteggtataa tattgcea gygggeggaa aactgtget aactacacca gygattgget gagacgaaaa actattete aataaactggtga aactacacca gygattgget teaacgaa actattete aataaactgtte ttagggaata gycaggt tteaacgaa actattete cataaacgatte teatgtgaaaa agcaggtt teaacgaag gygacgata tattgtgaaa aactgcegga aactgtegtg gattcacacg gygaacacta ccagatcacc gagattgaacacg gytacacaca cagacgatg aaaacgttte agtttgacac gygattcatt aggaaacgg gygaacacta teccatacac cagatcaccac gagattcatta gyaaacgata taccacatacac cagatcaccac gagattacacacg gytacacacgg gygaacacta cagacgacgaa aactgatgg gyaacacta taccacatacac cagatcaccac gagattacacacgacacg			cgccccgccc'	tgccactcat	cgcagtactg	ttgtaattca	ttaagcattc
gggggcgag aagttgtcca tattggcaac gtttaaatoa aaactggtog aaccacac gggattgtg ggagaaa actattctc aataaaccct ttagggaaat aggttgga aattggagaa tetagggga attgatgtg ggaacacta cttggagadg aaaacgtttc ggtttgata tattgtgaga aattgggg gaaacggg gggaaccta cttggagadg aaaacgttc caggttgcac gttttaatt gcagacgatg gaaacgtt tcccatatca caggtcacc gttttaatt gcagacgatg gaaaacgt tcccatacg cttggagaacgt gtaacaagg gggaacacta ctccatacga caggtcacca cttggagaga tattgaacagg gggaacacta ctccatacga caggtcacac gttttaatt gcagacgatg gaaaacgt tattgagagag tattgaacgag gaaacacta ctcgagaga tccacaaga gaagacatt tagatacga gaagatttt gagacaacta aaggtctgc gaagattttg gggaacacc gaagacgata aagagttgt gaacactag gaagagat ttggagaga gaatactga gaagacgta gaagagatt tagatacga gaagacagta aagagacaga gaagacagta aagagacaga gaagacagta aagagacaga gaagacagta tagaaggg gttggaacaccag gaagagaaga			tgccgacatg	gaagccatca	cagacggcat	gatgaacctg	aatcgccagc
gggggcgag aagttgtcca tattggcaac gtttaaatoa aaactggtog aaccacac gggattgtg ggagaaa actattctc aataaaccct ttagggaaat aggttgga aattggagaa tetagggga attgatgtg ggaacacta cttggagadg aaaacgtttc ggtttgata tattgtgaga aattgggg gaaacggg gggaaccta cttggagadg aaaacgttc caggttgcac gttttaatt gcagacgatg gaaacgtt tcccatatca caggtcacc gttttaatt gcagacgatg gaaaacgt tcccatacg cttggagaacgt gtaacaagg gggaacacta ctccatacga caggtcacca cttggagaga tattgaacagg gggaacacta ctccatacga caggtcacac gttttaatt gcagacgatg gaaaacgt tattgagagag tattgaacgag gaaacacta ctcgagaga tccacaaga gaagacatt tagatacga gaagatttt gagacaacta aaggtctgc gaagattttg gggaacacc gaagacgata aagagttgt gaacactag gaagagat ttggagaga gaatactga gaagacgta gaagagatt tagatacga gaagacagta aagagacaga gaagacagta aagagacaga gaagacagta aagagacaga gaagacagta tagaaggg gttggaacaccag gaagagaaga			ggcatcagca	ccttgtcgcc	ttgcgtataa	tatttgccca	tggtgaaaac
aactcacca gggattggct ttagoggaa acatattctc aataaacctt ttagggaaa aggteggaggt tatggaaa acggcacat cttgggaata tatgtggga aaacggtta attgtgtaga aactgccgga tatggaaaagg tgtatcactc cagagggagg agaacacta tcccatatca ccagctcacc gtctttcatt gccatacg gtgaacacta tcccatatca ccagctcacc gtctttcatt gccatacg gtgaacacta tccactatca ccagctcacc gtctttcatt gccatacg gtgaacacta tccactacac acagctacacta tccactacac cagctacacc gtctttcatt gccatacg gtgaacacta tccactacaccaccaccaccaccaccaccaccaccaccac							
thagggaat aggccaggt theacques acagcacat cttgcgaata tatgtgtga aaacqttc gtttgctca tggaaacgg tgtatcact cagagcgagg aaaacgttc cccataca cccagctcacc gtcttcatt gccatacg gtgaacacta tcccataca ccagctcacc gtcttcatt gccatacg gtgaacacta tcccataca ccagctcacc gtcttcatt gccatacg gtgaacacta tcccataca ccagctcacc gtcttcatt gccatacg gtgaacacta tcccatacac acagcactacac gtcttcatt gccatacg gtgaacacta tccatacacacacacacacacacacacacaca							
SEQ ID: 82 PKQ ATGGATCCGA GCTCGAGATC TGCAGCTGT ACCATATGG AATTCGAAGC TGGCCGTACATCA TCACTACTAC ATGAGTTTAA AGGGTCTGA TGCGCGGGT GAGAAAGACTC ATCTCAGAAG AGGATCTGAA TAGCGCGGTGG TTTTGGGGGT CAGAAGAGGT TGCACATACA TAGAAAGACTG AAATTTGC TAGAAGT ATGAGCCGTGGTTTTTTGGGGGT CAGAAGGGT CGATAAAGA AGAATTTGC TAGAGTTGAA AGGGTCTGAA AGGGGGTGG TGCACATAGA GGGTCTCCACATG TGCGAGAAGAGAT TTTCAGCCTG TAGAGAGAAGAGA							
SEQ ID: 82 PKQ ATGGATCCGA GCTCGAGATC TGCAGCTGGT ACCATATGGG AATTCGAAGC TTGGGCCCGA ACAAAAACC ATCATCATCA TTGAGCTGT ACCATATGGG AATTCGAAGC GACCATCATC ATCATCATCA TTGAGTTTAA AGGGTCTTCA GCTCGGCTGT TTTTGGCGGGT GAGAAGAGT TTGAGCTTGA TAACAGATTA AATCAGAACG TCCAACCTGA CCCCATCGGA ACCATATGGC TAGCGGCGTG TCCAACCTGA CCCCATCGGA ACCATATGGC TAGCAGGTGG TCCAACCTGA CCCCATCGGA ACCATAGAGT TAACAGATTA AATCAGAACG GGTAGTTGG GGTCTCCCCA TCCCAGAGTA GGGAACTGCC AGGCATCAAA TAAAACAAA GGTCACTCC AAACCTGGA CCCTTTCGTTT TTCTGTTTGT TTGTCGGTGA ACGATTCG AAACCTGGC CCTTTCGTTT TTCTTTTTTTTTT							
SEQ ID: 82 PKQ ATGGATCCGA GCTCGAGATC TGCAGCTGGT ACCATATGGG AATTCGAACC TTGGGCCGCA ACAAAAACTC ATCTCAGAAG AGGATCTGAA TAGCGCGTC TTTGGGCGAT GAGAGAAGAGT TTTCAGCCTG ATCAGATT AACGACCGTC CAGAAGCGGT TGCATAAAAA AGGATTTGC TGGCGGCATA ACCGACCATC ACCATACCG ACAATCAGATT ATTCAGCTG ATACAGATT AACGACGT TCCCACCTGA CCCCATGCCG AACATCAGAAG TGGAAACGCC TAGCGCGCAT TTAGAGCGAAA GGATTTGC TGGCGGCAAT ACCGCCGTG TCCCACACGCA ACACAAGAAG TGAAACGCC TAGCGCCGAT GGAGAAGGAA GGATCTGAA ACCGCTGTG TTGCAGTGGA ACGATTGCT CTTTCTTG GGGAACAGC AGCCCATAGAAG GGAACACCA AGCACTCAAA TAAAACGAAA GGCTCAGTCG AACACACGA GGAATTGAC AGCCATCAAA TAAAACGAAA GGCTCAGTCG AAGACTGGG CCTTTCGTTT TATCTGTTGT TTTCTCGGTGA ACGATATCC CTTTTCTTC GGAACACC AGCCACAAAAACGAAA GGCTCAGACGA AGAACTGGG CCTTTCGTTT TATCTGTTGT TTTCTCGGTGA ACGATATCC CTTTCTTCTG CGAAATTAC ACGCCGAT ACACACTGAGAAG AGGACTGAC AGCCACACAAAAACGAAA GGCTCAGACGA AGAACCCCC TAGCCGA ACAAAACCCCC TAGCCGAACAAA ACGATTGGA CACACACAAAAACGAAA GGCTCAGACGAAAAACCCCC TAGCCCGA ACAAAACCCCC TAGCCCGA ACAAAACCCCC TACCCAACACAAAAACCCCC TACCCAACACAAAAACCCCC TACCCAACACAAAAACCCCC TACCCAACACAAAAACCCCC TACCCAACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAAACCCCC TACCACACAAAAACCCCC TACCACACAAAAACCCCC TACCACACACA							
SEQ ID: 82 PKQ ATGGATCCGA GCTCGAGATC TGCAGCTGGT ACCATATGGA ATTCGAAGC TTGGGCCGA ACAAAAACTC ATCTCATCATC TGAGCTGTTAA ACGGTCTCCA GCTGGCTGT TTTGGGCGGT GAGAAGAGAT TTTCAGCCGG ATCAGCACCGAGAGAGAGAT TTTCAGCGGGTGT CCAGCTCAG CCCCATGCCC AACATCAGAGA GGAACTGATA AATCAGAAAC GGTAGTGTGG GGTCCCCCA TGCGAGAGTA GGAACTGGCGCGTG TTGTGGGTGA ACAATATCTG CTTTTCTTCTGTTGT TTTTGTTTGTTGTTGTTGTTGTTGTTGTTGTTG							gtgaacacta
GACCATCATC ATCACATCA TEGASTITAA ACGGTTCCA GCTTGGCTGT TTTGGCGGAT GAGAGAGAT TTTCAGCCTG ATACAGATTA AATCAGAACG CAGAAGCGGT CTGATAAAAA AGAATTTGCC TGGCGGCAGT AGCGCGGTGG TCCCACCTGA CCCCATGCCG AACTCAGAAG TGAAAGCCGG TAGCGCGAT GGTAGTGTGG GGTCTCCCCA TCCGAGAGTA GGAACTGCC AGCGCAGTA ATAAAACGAAAA GGCTAGACTA GGGAACTGCC AGCGCAGTA ACATCTGAGAAA GGAACTGCC CTTTCTTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTGACA AGCATCAGAA ACATCTGAGAA GGCAACTACC CATCTCTCAGAACTA GGGAACTGCC AGCATCAAA ACATCTGAGG ACATCAGAAA GGCAACTGCC CTTTCTTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT ACATCTGAGAGA GGCAACTGCC AGCATCAAA ACATCTGAGG ACATCTGAGA GGAACTGCC CCCCCCCC CCCGCGGGGC ACCGGCCGC CCGGCGGGCC CCGGCGGGGCC CCGGCTGAGGAC AGGGCGGC CCGGCTACAGA GGCACTGAGAC CCGGCTAGAGAC CCGGCTAGAGAC AGCACTGG GGACCGG GGACCGG GGACCGGG CCGCCCCC CCGGAGGAC AGGGCGCGC CCGGCTAGAGAC AGGGCGGC CCGGCTAGAGAC AGGGCGGC CCGGCTACAAAAACACTGG GCACTGAGACAACACGGC GGACCAGGACAGACACGCC GGACCAGGACAGACA			LCCCatatca	ccaycccacc	gicticati	gecatacg	
GACCATCATC ATCACATCA TEGASTITAA ACGGTTCCA GCTTGGCTGT TTTGGCGGAT GAGAGAGAT TTTCAGCCTG ATACAGATTA AATCAGAACG CAGAAGCGGT CTGATAAAAA AGAATTTGCC TGGCGGCAGT AGCGCGGTGG TCCCACCTGA CCCCATGCCG AACTCAGAAG TGAAAGCCGG TAGCGCGAT GGTAGTGTGG GGTCTCCCCA TCCGAGAGTA GGAACTGCC AGCGCAGTA ATAAAACGAAAA GGCTAGACTA GGGAACTGCC AGCGCAGTA ACATCTGAGAAA GGAACTGCC CTTTCTTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTGACA AGCATCAGAA ACATCTGAGAA GGCAACTACC CATCTCTCAGAACTA GGGAACTGCC AGCATCAAA ACATCTGAGG ACATCAGAAA GGCAACTGCC CTTTCTTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG GGAACTACAT ACATCTGAGAGA GGCAACTGCC AGCATCAAA ACATCTGAGG ACATCTGAGA GGAACTGCC CCCCCCCC CCCGCGGGGC ACCGGCCGC CCGGCGGGCC CCGGCGGGGCC CCGGCTGAGGAC AGGGCGGC CCGGCTACAGA GGCACTGAGAC CCGGCTAGAGAC CCGGCTAGAGAC AGCACTGG GGACCGG GGACCGG GGACCGGG CCGCCCCC CCGGAGGAC AGGGCGCGC CCGGCTAGAGAC AGGGCGGC CCGGCTAGAGAC AGGGCGGC CCGGCTACAAAAACACTGG GCACTGAGACAACACGGC GGACCAGGACAGACACGCC GGACCAGGACAGACA	GTO TO GO						
GACCATCATC ATCATCATCA TYGAGTTAA ACGOTTCCA GCTTGGCTGT TTTGGCGGAT GAGAGAGAT TYTCAGCCTG ATACAGATTA AATCAGAACC CAGAAGCGGT CTGATAAAAC AGAATTTGCC TGGCGGCAGT AGGGCGGTGG TCCCACTGA CCCCATGCCG AACTCAGAAG TGAAACGCCG TAGCGCCGAT GGTAGTGTGG GGTCTCCCA TGCGAGAGTA GGGAACTGCC AGCCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGC CGAATTCATTTTTTTTGGTGTT TTGTCGGTGA ACGATATCTG CTTTTTCTTCG CGAATTACAT ACATGTGAG aaaaggccag caaaaggcca ggaaccgtaa aaaggccgg ttgctggcgt ttttccatag gctccgccc cctgacgagc atcacaaaaa tcgacgctca gatcacatgt gcccctcatgc gctctcctgt tccgaccctg ccgcttaccg gatacctgt ggataccacg ccaagagca tcacacaaaa tcgacgtggg ctgtgtgca ggataccacg ccaagagca gcgtggcgct tttccatagc tcacgctgta ggataccacg ttcaccagga gcgtgcgcc ttatccaggt actactgtc tcctcgtg ccttcctgt tccgaccctg ccaagctggg ctgtgtgca ggataccacg ttcaccacga gcgtgcgcc ttatccagta actactgctc tggtctcac ccggtaagac acgcttagc ccaagctgga gagacacta tggataccaca gacaccacg ttagcagaa aggacatat ttggtatctg ccgctctgctg gcactgga agagtcttg agaccacac gaaataaca caccacgct ggtagcggaa aggacagtat ttggtatctg ccgccgaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcaa cagattacac gacagaaaa aggactcaa gaagatcctt tgatctttc tacggggtc gacgcaaaaa ccaccgct ggaagcacaa agaatacaa gagattaga ggaagtacaa taagataaaaa tatatacaaa ggacgaaaaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa acctctgac ttacataaaa cgtattacaa ggggtgttat gagccatatt acacgggaaa cgtcttgctc gagccgcga ttaaattcaa aactgcttgc ttacataaaa ggaccgca ttaaattcaa acacacgca ggaacgaaaa cgtcttgctc gagccgcga ttaaattcaa aactgctgc gcacaatat taagacagaaaaaaa aggatccaa cgattgtcc tgcgcagtt ttacatcaa aactggtaaacaa cacaccgc ggacacacacaaaaaaaaaa	SEQ ID: 82	pKQ					
TTTGCCGCAT GAGAGAGAT TTTCACCTS ATACAGATTA AATCAGAACG CAGAGCGTG CTGATAAAAC AGAATTTGCC TGCGGCAGTA AGCGCGTGTG TCCCACCTGA CCCCATCCCA ACACTCAGAAG TGAAACGCCG TAGCGCCGAT GGTAGTGTGG GGTCTCCCCA TGCGAGAGTA GGGAACTGCA AGCCATCAAA TAAAACAAA GGCTCAGTCG AAAGACTGGG CCTTTTCTTTT							
CAGAAGCGGT CTGATAAAAA AGAATTTGCC TGGCGGCAGT AGCGCGGTGG TCCCACTGA CCCCATGCCG AACTCAGAAG TGAAACGCCGAT GGTAGTGTGG GGTCTCCCCA TGCGAGAGTA GGGAACTGCC AGCGATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TTGTCGGTGA ACGATATCTG CGAATATGT GGAACTGCG ACATGTGGG ACGATATCTG CGAATATGT GGAACTGCG ACATGTGGG ACGATATCTG CGAATATGT GCAATATCTGTTTGT TTGTCGGTGA ACGATATCTG CGAATATGT GCAATATGT GGAACTGCG ACATGTGGG aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc ggaacgacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc ccttcctgt tccgacctg ccgcttaccg gatacctgtc cgcctttctc tcctggta gctgtgcgct ttctcatagc tcacgctgta ggtatctcag ttcaggaag gctggggcgc ttatccggta actatcgtct tgagtccaac gcactggca gagcacatg gtaacaggac ttcaggaaga gctggcgc ttatccaggta actatcgtct tgagtccaac gcactggca gagcacatg gtaacaggac taggaagaca aggatattag gcgtgctac agagttcttg aggtgtagaga cacactaac aggacagtat ttggtatctg ccgcttctgtg gttttttgt ttgcaagcag cagattacgg gtagtgggg gtttttttgt ttgcaagcag cagattacga gagatcctt tgatctttc tcggcgaaca aaccaccgct ggtagacgaa aggatcctt tgatcttttc tagggggcg ttacattgaa aggattttgg TCATGAgttg tgctcaaaa tctctgatgt ttacattgca aagataaaaa tatatcataa tgacaaaaa acctcttgatg ttacattgca aggattgggcg ttaaattcaa aactgcttgc ttacataaac agtatatacaa ggggtgttat gagccatatt caacgggaaa cgtctttgctc gagcccgga ttaaattcaa aactgcttgc ttacataaaa tggcacgaga tatatgcaga gttgttctg gcagtataaa tggcacgaga tatatgcaga gacaatatca aggtatgata tggtaccac caactgaga gacaatatca aggtatgata tggtaccac caactgaga gacaatatca aggtatgata tggtaccac caactgaga gacaatatca aggtattaa aggaccac aacgacata aacaacggca ctgacggaat tatagcctt tccgacatc aaacatggac aggatttcc tgcgcagt gattttgat ggcacatat tcaacaggaa acagtttag tgataccaga gatttcaata tcgttttgat gcagtgttcc tgcgcagt gattttgat ggcacatat caacaggaa acaggtatcct tgcgacaga gatttcaata tcgtttgcat ttaacaacaga tcctctgaga gattttaata tggtaacaaa tccttttgaacaa acggtttggt tgatccaca caactggaa acagcattcc agggaatta tataggttt attgattg gacaatcac aggataccaga aacgactttt ttaacaaaat tgctttgcat ttcatcacaga a	ĺ						
TCCCACCTGA CCCCATGCCG AACTCACAG TGAAACGCCG TAGCGCGAT GGTAGTGTGG GGTCTCCCCA TGCGAGAGTA GGGAACTGCC AGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGTTGA ACGATATCTG CTTTTTTTCG CGAATtaatt ccgcttcgca ACATGTagac aaaaggcca gaaaaggca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctcccccc cctgacgac atcacaaaaa tcgacgctca agtcagagt gccgcatctgc ccttcctgt tccgacctg ccgcttaccg gatacctgtc cgcctttctc ccttccggaa gcgtgcgct ttctcatagc tcacctgca ggatactcag ttcagtggag ccaagtggg ctgtgtgcac gaaccccccg ttcagcgac acgattcatc gccactggac actatcgtct tggtccaac ccggtaagac acgacttatc gccactggac acgaccatcg gaaccccccg ttcagcagac acgattatc gccactggac acgaccatcg gaaccccccg ttcagcagac acgattatc gccactggac acgaccatcg gaaccccccg ttcagcagac acgattatc gccactggac acgaccatcg gaacagat tcgcggatagtac gcggtgtac agagttcttg aagtggtgc ctaactacgg ctacactaga aggattgtg acgtcttgat ccgccaaaca accaccgct ggtagcggt gttttttgt ttgcaagcag cagattacgc gcagaaaaa aggatccta gaagatcctt tgatctttc tacggggtc gcagaaaaa aggatctcaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa acgtgttgtg tacattgaca aagataaaaa tatatcaca ggagttat caacagggaaa cgtcttgctc gaggccgcga ttaaattcca gaggtattat gaggatataa cgtcttgctc gaggccgcga ttaaattcca acatgggaac aggatataat gggacccga atgcgccagag ttgttttctg aaggatataat gggacccga atgcgccaga gttgttctg caacactatca tcgacgaaat tacgcacaga gtgcccatatt caacgggaaa cgtcttgctc gaggcccga ttaaattcca acatggatc tgcacaatcta tcgattgtat gggaagcccg atgcgccaga gttgttctg aaacattca tcgacgaaat tacgcacaatgat gttacaaatga acatatcaa cgtcttgctc gaggaccctg atgcgccaaa gtttttctg aaacattca tcgacggaat tacgcaatgat gattcaaac acacggtttt tacacacacac gcactttataacacacacacacacacacacacacacacac	1		TTTGGCGGAT	GAGAGAAGAT	TTTCAGCCTG	ATACAGATTA	AATCAGAACG
GCTACTOTEG GCTCTCCCCA TCCGAGAGTA GCGAACTGC AGCCATAAA TAAAACGAAA GCCTCAGTCG AAAGACTGG CCTTTTGTTT TATCTGTTGTTTTTCTCGCTGA ACCATATCTG CTTTTCTTCC CGAATTaatt cegettegea ACATGTgagc aaaaggccag caaaaggcca ggaaccgtaa aaaggccgg ttgettggcgt ttttecatag gctcegecc cetgagagc atcacaaaaa tcgacgtec agtcagaggt ggagaaaccc gacaggacta taaagatacc aggcgtttec cectggaagc tecetegtg gctetectgt tecgaccetg cegettaccg gatacctgtc agcaggtagc tecetegtge gctetectgt tecgacctg ccaagtggg ctgttgtgac gaaccccccg ttccggaag cegttgcgc ttccaagctgg ctgtgtgac gaaccccccg ttcagcaga acquettatc gccactggca gcagcactg gtaacaggat tagcaggac acquettatc gccactggca gcagcactg gtaacaggat tagcaggag aggacagtat ttggtatctg gatgtgtgag gcggtgctac acquettate gccactggca gcagcactg gtaacaggat cacactaga aggacagtat ttggtatctg aggacgatta ccttcggaaa aagactgtg gtttttttt ttgaagaag cagatacac gcagcagtag gtttttttt ttgcaagaag cagatacac gcagaaaaa accaccgct ggtaaggat gtttttttt ttgcaagaag cagatacac gcagaaaaaa accaccgct ggtaagagtg gtttttttt ttgcaagaag cagatacac gaagaacaa cctcacgttaa gggattttg tacattgca aggattttg TCATGAgttg tgtctcaaa aaggatcgaa cgtcttgctg gaggccagaa cgtcttgctg gaggccagaa cgtcttgctg gaggccagaa cgtcttgctg gaggaccgaa acgtctgag gagaaccag aggataaaa gggccgga taaattcca gagcacatat caacgggaaa cgtcttgat gggaagccag atagcgcaga gagaacagaa cgtcttgat gggaagccag atagcgcaga gagacaatta tacattaaa gagatacaa aggaccgaaaaa cgtcttgat gggaagccag taaattcca gagcaatata caacgggaa aaggacgagaa aggaaccgagaa acgaattta gggaagccg ttaaattcca gagcaattat caacgggaa aaggaccgagaa atagcagaa aaggatgcagaa aaggatgcagaa aaggatgaca taaggagaa aaggatgaa aggaattaaa gggatgaca tatgacaga gaaggaaattaaa ggagttgct taggcagaat tatgccaataa aactggaa acagaattcc tgatgatgaa aggaattacc gaattagaa gaattacca gaattataa acaggtttgc tgacgagaa attacaagga acataaagga acagaattcc tgacaggaa tatgccaataa acaggtttgc tgacgcagaa tataacatgg ctgacatcaa acaggttgaa tgacgaataa acaggttgaa tgacgaataaa acaggttgaa tgacgaataaa acaggttgaa tgacgaataaa acaggttgaa tgacgaataaa acaggttgaa tgacgaataaa acaggattgaa ggaatataaa acaggttgaa tagacgaataaa acaggattgaaaa acagaattcc acag			CAGAAGCGGT	CTGATAAAAC	AGAATTTGCC	TGGCGGCAGT	AGCGCGGTGG
TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG CGAATtaatt ccgcttcgca ACATGTgagc aaaaggccag caaaaggccag gaaaccgtaa aaaggcgcgg ttgctggggt ttttccatag gctccgccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gcagacta taaagatacc aggcgtttcc ccctggaagg tccctctgt ccgccttctc ccgcttaccg gatacctgtc cgcctttctc ccttcggga gcgtgcgct ttctctatagc tcacgctgta ggtatctcag ttcggtgtag gtgtgtcgct ccaagctggg ctgtgtgcac gaacccccg ttcagccaga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac acgactaatc gccacttgca gcagccactg gtaacaggat tagacagacg aggtatgtag gcggtgctac agagttcttg agatcgaca ccggtaagac aggactatatc gcacttgga actatcgtct gatacaggat tagacaagacg aggtatgtag gcggtgctac agagttcttg agatcgaca cagactaatc gcacttgga agcccttgat ccgccaaaa aaccaccgct gttagcggt gtttttttgt ttgcaagcag cagattacgc gcagaaaaa aggatcctt tacattgcac aggattattg TCATGAgttg tgtctcaaa actactggt ttacataaac agtaatacaa ggggtttat gagccatatt caacgggaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaa acttctggt ttacataaac agtaatacaa ggggtttat gagccatatt caacgggaaa cgtcttyctc gagcccgca ttaaattcca acatggagc tgacatctt tcgattgat gggaagcccg atacgtcagg caacactat tcgattgat gggaagcccg atacgtcggg caacactat tcgattgat gggaagccg atacgtcgga agatttatat gggatataaat gggctcgca taatgtcggc caacacgat ggacatctt tcgattgat gggaagcccg atacgtcgag gttttttct gaacactca aggtattgat ttgccaatggt gttacagatg agatttttt tagacggaat ctgacggaat ttatgccctt tccgacaca acatttat ccacggcat aaggtagca tggtactca ccactgcgat cccgggaaa acaacatcgg ctgacggaat tatgcgcat gattcagat gagattttt tgatgcgctt gcagtttcc tcgaccggt gcattcgat cccgggaaa acaacatcg gcagtttct tcgaccggt gcattcgat cccgggaaa acaacactgg ctgacacaag acaacacac acactgcga acaacacgg ttgaacaag tctggaaag aattcaca gacattacacacacacacacacacacacacacacacacac			TCCCACCTGA	CCCCATGCCG	AACTCAGAAG	TGAAACGCCG	TAGCGCCGAT
TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGGTGA ACGATATCTG CTTTTCTTCG CGAATtaatt ccgcttcgca ACATGTgagc aaaaggccag caaaaggccag gaaaccgtaa aaaggcgcgg ttgctggggt ttttccatag gctccgccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gcagacta taaagatacc aggcgtttcc ccctggaagg tccctctgt ccgccttctc ccgcttaccg gatacctgtc cgcctttctc ccttcggga gcgtgcgct ttctctatagc tcacgctgta ggtatctcag ttcggtgtag gtgtgtcgct ccaagctggg ctgtgtgcac gaacccccg ttcagccaga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac acgactaatc gccacttgca gcagccactg gtaacaggat tagacagacg aggtatgtag gcggtgctac agagttcttg agatcgaca ccggtaagac aggactatatc gcacttgga actatcgtct gatacaggat tagacaagacg aggtatgtag gcggtgctac agagttcttg agatcgaca cagactaatc gcacttgga agcccttgat ccgccaaaa aaccaccgct gttagcggt gtttttttgt ttgcaagcag cagattacgc gcagaaaaa aggatcctt tacattgcac aggattattg TCATGAgttg tgtctcaaa actactggt ttacataaac agtaatacaa ggggtttat gagccatatt caacgggaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaa acttctggt ttacataaac agtaatacaa ggggtttat gagccatatt caacgggaaa cgtcttyctc gagcccgca ttaaattcca acatggagc tgacatctt tcgattgat gggaagcccg atacgtcagg caacactat tcgattgat gggaagcccg atacgtcggg caacactat tcgattgat gggaagccg atacgtcgga agatttatat gggatataaat gggctcgca taatgtcggc caacacgat ggacatctt tcgattgat gggaagcccg atacgtcgag gttttttct gaacactca aggtattgat ttgccaatggt gttacagatg agatttttt tagacggaat ctgacggaat ttatgccctt tccgacaca acatttat ccacggcat aaggtagca tggtactca ccactgcgat cccgggaaa acaacatcgg ctgacggaat tatgcgcat gattcagat gagattttt tgatgcgctt gcagtttcc tcgaccggt gcattcgat cccgggaaa acaacatcg gcagtttct tcgaccggt gcattcgat cccgggaaa acaacactgg ctgacacaag acaacacac acactgcga acaacacgg ttgaacaag tctggaaag aattcaca gacattacacacacacacacacacacacacacacacacac	:		GGTAGTGTGG	GGTCTCCCCA	TGCGAGAGTA	GGGAACTGCC	AGGCATCAAA
TTGTCGTGA ACGATATCTG CTTTTCTTCG CGAATtaatt ccgcttcgca ACATTGTgagc aaaaggccag caaaaggccag gaaccgtaa aaaggccgg tttgctcgagt ttttccatag gctcgccc cctgagagac tcgacggct ttttccatag gctcagaagc gcaggaatca taaagatacc aggcgttcc ccctggaagc tcctctgtg gctctcctgt tccgacctg ccgcttaccg gatacctgtc cgcctttcc ccttcgggaa gcgtggcgct ttctcatatagc tcaagctgta ggtatctcag ttcagccga cggtggcgct tcaccggga ctgtgtgcac gaaccccccg ttcagcgca cggtggcac taaccacgag gcggtgctac agactctgta gtagtcaac cggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagca gggtgctac gaggacatt ttggtatct aaagtggtggc ctaacctaga aggacagtat ttggtatct aggacagta tagcagagca ggtatgtag gcggtgctac agagtcttgat ccgctctgct aagccagta accaccgg tttttttg gttttttgt ttggaagac gagatatagc gcagaaaaa aggatctt tgatctttc tacggggtct gcaacaaaaa aggatctcaa cctcacgttaa ggagattttgg TCATGAgttg tgtctcaaaa tctctagatg tagataaaa aggatctaaa aggatatacac ggggtgttaa gggtataaaa cgtcttgcc gaggccagga taaaatcaca ggggtataaaa cgtcttgcc gaggccagaa taatgccgag gagcaatat caacagggaa aggataaaa aggatctaaa aggatataaa gggatcaaaa taatgtcga aaagtagag gagaagacaa accaccgg ttaaattcaa aggatataaa gggatcaaaa taatgtcga aaagtagacg ttaaattcaa gggataaaa taatgtcga aaagatacta tagatgatag gagcaatat gggataaaa taggatagag gagcaatat caacaggaaa acgtcttgat gggaaagccg ataatgcgaa gattttata tagatgatag gggataaaa taggcaagaa aacaacagg ttgcaatgat ggcaaatca aacaggata taatgcagaa ataggcaaaa aacaacggt tgcaatgat ggcaaatca aaggtattaa gggataacaa ggatttaaa gggttgtact ccaatgaga gttgtttctg aaaactgg ctgacgaaatca tatagcagaa aagaatacca gggtttgt tcaacaaa ggattttaa taggagaaaaa acgacattca aggtatagaa agaaatacca gaatatcaa aggtattaa agaatatcca gacaataaa acgacattca aggtatagaa agaatacct gattagagta gaaaaaaa tattagaga gagagaaaaaa tatagagaa aacaacagg ttaaaaaa gagaacaaaa ccaacaggaa acgaacataaaa ggagaataaaa gagaatacct taaacagaga taaaaaa gagaacaaaa tatagagaaaaaaaa tatagaaaaa aacaacaga cagaatacaa gagaacacaa aacaacaga aagaacaaaaa tatagaaaaa aacaacaa gagatacaa aagaatacca aacaacaa gagatacaaa aacaacaa gagatacaaaa aacaacaa gagatacaaa aacaacaa gagatacaaa aacaacaacaa aacaacaacaa							
ACATGTagac aaaagaccag caaaagacca ggaaccgtaa aaagaccgcg ttgetsgetty titticeatag geteegeece cetgaagac taaaagacag tegacgacat ageagagate ageagagate ageagagate cectetgte geteteetgt cegettacacg gatacetgte cectgaagac tecetegtge geteteetgt tecgaccetg cegettacacg gatacetgte cectegtge geteteetgt tecgaccetg cegettacacg gatacetgte gatactacacgac cegetgaga gegtgeget teatecaggt ageageacac taaagagat teategate teagetgaa cegetgagac taaacaggat ageagagaa geggtgetac agagtetgt gatacaggat taggaagaga aggacagtat tiggatacta cegettagg ceatacacgg gatacacaga aggatettg agagtetgt cegetagaa aagagtigg gegtgetac agagtietg cegetagaac aaccaccege gttitititititititititititititititititit							
ttgctgcgt ttttccatag gctccgccc cctgacgage atcacaaaaa tcgacgctca agtcagagt ggcgaaaccc gacaggcta taaagatacc aggcgtttc ccctgagg gctctctctc ccttgtgc gctctctcgt tccgacctg gatacctgtc gcctttctc ccttcgtgg gtatctcag ttcctcatage tcacagctgta ggatacctag ttcgtgag gcgtggcgct ttctcatage tcacagctgta ggatacctag ttcggtgag gcgtggcgct ttctcatage ccaagctgta ggataccacccg ttaagccaga ccgctggcgc ttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagcactg gtaacaggat taggcaggtagagagagagagagagagagagagagagaga							
tcgacgctca agtcagagt ggcgaaacc gacaggata taaagatacc aggcgtttcc ccttgagagt tccctcgtg gctctcctgt tccgacctg ccgcttaccg gatacctgc ccctgagaagc tccctcgtg gctctcctgt tccgacctg ccgcttaccg gatacctgc cctatcgaga ggtgggggct tcctcaggga gatacctgg ggtatcctag ttcggtgag gcgtgggcgc ttatcaggtga acatatcgtc tgagtccac ccggtaagac acgacttatc gccactggca gcagcactg gtaacaggat tagcagagc aggattatc gcagtggtac agagttcttg aagtggtgc ctaactagag aggacagta ttggatact gagttcttg aagtctgtg aggacagta ttggatact gagttttttg aggtctgctac gagatactacg gcagcaaca aggatttttt tgatcttg ccttggta aaggatctt tgatctttt tagcaggg ggagaaaaa aggatctcaa ggagtttttt tgatctttc taggggtcta gaggatcata gagatcttt tgatcttttc taggggtct gacgcaaaaa aggatctcaa ggagttttgg TCATGAgttg tgtctaaaa tctctgatgt tacattagaa aggatcataaa aggatataaa gggtgttat gagccatat caacggaaa cgctttgct gaggcggaaaaaa aggatctaa aggatataaaa gggtgttat gagccatatt caacgggaaa cgcttggcga taaattcaa aggataaaaa tatatcatca tagaacaaaa acgtcttgc gaggccgga taaattcaa acatggatgc ggaaaaatca tcaatgaagg cgagaaacca aggatataaa gggatagaa aggatagcag aggatggtata ggaacgagaa tcaatggaa aaggtagcag aggatgaa ggaagaaatca cgcttgctc gaggccgaa taatgtcgag gatgtttatat gggaacca aggatattaa aaggtagcag aggatatcaa cactgcgat caacaagga cgacaatca tcgaacgaa ttatgccctt tccgaccatc aagaattta tccgtactcc tgatgatgac aggatattca gagatatca cactgcgat caccgggaaa acgaattca acggtttgt tgatgcggt gatttagat gacaggtttg gagatgttc tgatgcgat gatttcgat ccggggaatt cagaggaattc tgatgcaga gattttgat acgggaata tgatgcga gattttgat acgggaata tcaacgggt gattttgat acgggaata tgatgcgcg gatttgat gagaagatcc cgaaaaaa acgagtttg gattcaaca cactgcgat cccggggaa acgagtagaa acgattac cgaaaaaaa acgagtttg tgatgaaaaa ttctagaaa acgagttt tctaacaaaa acggggaaat tctaaaaaa tcaacaggaa acgagaaaaa aagagataccaaga acgagaaaaa aagagataccaaga acgagaaaaa aagagataccaaga acgagaaaaaaaaaa	į l						
aggogtttcc ccctggaagc tccctcgtgc gctctctgt tccgacctg ccgcttaccg gatacctgt cgcctttctc ccttegggaa gcgtggcgct ttctctatagc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcc gaacccccg ttcagccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacagggt tagcagagca gagattgtag gcggtgctac agagtcttg aagtggtggc ctaactacgg cacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagtcttf ttggtatctg cggcaaaca aaccaccgct ggtagcggg gtttttttgt ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcttt tacactgag cagattacgc gcagaaaaaa aggatctcaa gagatcttg ttgcactgg gagatttgg tacactgaa aggatactt tgatctttc tacggggtct gacgctcagt ggaacgaaaa cctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcatca tgaacaaataa aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cgtcttgctc gaggccgga ttaaattcca acatgagag caatcaggtg cgacactata tgggtaaaaa tatgccgga taatgcgga aacgagagac tgaattaata tcgattgat gggaagcccg attacaggtg cgacaactaa aacatggca aaggtagtgc tgcaatgatg ttatgcctct tccgaccatc aagcatttt tccgtactcc tgatgatgca ttatgcctct tccgaccatc aagcatttt tccgtactcc aggtattaga agaatacct gattcagtg gaatattgg gcagtgtcc tgcgcggt tgattgat gacgacataca caacaggga acaggtgtgg gcagtttggt gaatacaa gatttcagatg gaatttcgg gaatttcgg gcagtttc tgcgccggt gatttcgat cccacggaaa acagcattcc aggtattaga agaatacct gattcagtg aaaatattgt tgatgcgctg gcagtttggt gaattaga acaggatttc tgcgccggt gatttcgatc accacggaaa acagcattcc aggcgatttggt gattgaacaa tgctcgcaa accacgga attcacgga tgcgcaata acgattgaata acggtttggt gattgaacaa tgctcgcaa attcacgga aggagaata acgatttcgaaca tctgaaacaa ttctacacga ttcagtgaa actacaaga attcacaaga attcacaaga attcacaaga attcacaaga attcacaaga attcacaaga accacaaga accacaaga accacaaga accacacaaga accacacaca							
ccgcttaccg gatacctgtc cgcctttctc ccttcggaa gcgtggcgct tctctcatagc tcacgctgta ggtatctcag ttcagtgtag gtcgttcgct ccaagctgg cttgtgcac gaacccccg tctacgccga ccgctggccc ttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagcactg gtaacaaggat tagcagagcg aggtatgtag agggacagtat ttggtatctg aagtggtggc ctaacctacgg cacactaga aggacagtat ttggtatctg aggtggtgg ctaaccacagg cccactaga aggacagtat ttggtatctg cgctctgctg aagccagtta cctcggaaa aagagttggt agctcttgat ccgcaaaca aaccaccgct ggtagcggtg gttttttgt ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatctttc tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacatagaac aggatatacaa ggggtgttat gagccatatt caacgggaaa cgtttgcc gaggcacaaa cgtcttgctc gaggccgcga ttaaattcca acatggatgc tgatttatt gggtataaat gggccgcga ttaaattcca acatggatgc tgatttatat gggtataaat gggccgcga taaattcca acatggatgc tgatttatat gggtataaat gggccgcga taatgtcggg caatcagtg cgacaatca tcgatggatg ttatgccctc tccgaccata aggatgtca acataggca aaggtagcgt tgatttatat gggattaga gtgcccaaga gttgtttctg aaacaatgga ctgacgagaat ttatgcctct tccgaccata agatgttca acataactgg ctgacgagaat ttatgcctct tccgaccata agatttta tccgtactcc aggtattaga agaatatcct gattcaggtg aaaatattct tcgatcgctg gcagtattca gagtattca gacgtattcc gacgtattc gaccactacaaccacgattcaacggt tgattcagat gattcaggtg aaaatattct tcgatcgctg gcagtttcat tcgaccatc aaggtattca accggtattc gattcagatg gattttgaa attccgata ttatgcctct tccgaccata accacggtta attcctctt tcaaccacga tcccgggaaa tctgacacag gattttgat gacgacgtaa tcgacgact gatttagaaaa gcgtttgt gattccaacag gattttcaacaga aattccaacag attctcaacacag attctcaacacag attctcaacacag attctcaacacag attctcacacacag attctcacacacag attctcacacacag attctcacacacag accacacacaga aacacacacaga aacacacac							
ttctcatagc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg ttcagcccae ccgctgcgcc tttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtgc ctaactacgg ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gttttttgt ttgcaagcag cagattacgc gcagaaaaa aggatccaa gaagatctt tgatcttt tacggggtc gcagaaaaa aggatccaa gaagattcttg TCATGAgtgt gtgtctcaaaa tcctcgagaa cagattacac ggaggtgtaacaat taacatcac ggaagcaaaa cgtcttgcc gaggcggaa taatacaa ggggtgttat ggggtaaaaa ccgcttgcc gaggccggaa taataccaa acatggatgc caacatcaa cgtcttgctc gaggccggaa taatatcca acatggatgc gacaaatca aggatctgcat gggataaaat ggggtgtaaa tgggcagaa taatgcagag caacaactgg cgacaaatca aggatgtgaa gggatgtgaa gggatgaaaa cggcagaa ttatgccatagat ggaacgcaga gttgtttctg aaacatggaa aggatgaggaa tggatgagaa gaatgagaga gaatgagaa acagacttcc tgatgatgaa agaatatcct tcagacatc aagcatttta tccgtactcc tgatgatgaa agaatatcct gatcagatg gaacaatca aggattttg ggaggtgaataaa ttatgcctt tccgaccata aggatttta tccgtactcc tgatgatgaa agaatatcct gatcagatg gaacaaatatgt tgatcgctg gaagtgttgg gaagttttgg gaatttggt gaatttggat cctggtgaataa cgagagaaat actggaaaga aataccac gaatgaata aggggaaatt actggaaaga aataccac gaatgaata tctggaaaga atttgcaat ttcagaacag attttgcaat ttcaacaga aattgcaaa ttcaacaga aattgcaacat tgatgatgt gaattttccat tgataacatt atttttgacg aggggaaata taggatgtg aattgatgt gacgagtgg aattgcagac cgaacacaaga acttgcaacaga ttctaacaa aacaggattt ttcaaaaaat tggatgtga aatcgaaacaga acgagttcat ttgaagaacat tctaacagaa acgagttta ttaaaaaat tggatgtaa accgagac cgaacacaaga cgaggttaat ttgaagaacacaaga atctgcaa ctaaaacacaaga accgaacacaaga acgagttta ttaaaaaaa tggatttctc ctaatagaa acgagttta caacagaga accgagaacaaaacagaa acgagtttaa ttgaagattg acgagatcaacac							
ccaagctggg ctgtgtgcac gaaccccccg ttcagccga ccgctgcgcc ttatccggta actatcgtct tgagtcaac cggtaagac acgacttatc gcactggca gcagccactg gtaacaggat tagcaggatggcgacgggtgtgcac agagttcttg aagtgttggc ctaactacgg ctacactaga aggacgttgt ttggtatctg aggtgtggc ctacactaga aagacttgtg agctcttgat ccggcaaaca aaccaccgcg gttagcggtg gttttttgt ttgcaagcag cagattacgc gcagaaaaa aggactccaa gaagatcctt tgatctttc caggggatc gcgagaaaaa aggaccata cctcacgtaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatacaca ggagtttta gagccatat caacgggaaa cggcttggtc gaggcggaaaaa aggatctcaa ggggtgttat gagccataat caacgggaaa cgtctggtc gaggcggaaaaa aggatctgg tacacataaa actgtctgc tacactaaaa ggggtgttat gagccatat caacgggaaa cgtcttgctc gaggccgga ttaaatcca ggggtgttat gagccatat caacgggaaa cgtcttgat gggaagccga ttaaatcca gttgttctg aacacataa acctgtctgc tacgatgat gggaagccga ttaaatcca gttgttctg aaacatgga caatcaggcg cgacaatcta tcgattgtat gggaagccg atggcgcaga gttgttcttg aacaatgga gttgttctg aaggtattag ggaagccga ttaaagtgg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atggcgcaat accgggaa actaaactgg ctgacggaat tatgccctt tccgaccac aagcattta tccgtactcc aggtattgaa gaattgcaa ggtttata ggcagtttc tgcgccggt gcattcgatt cctgtttga attgcctt taaacaggat cggctgttc tgcgccggt gcattcgatt cctgtttga attgcctt taaacaggat ctggcagaaga actaaggatg gatttgat acgaggaaata tcctacgga atttgatg gagggaatta aattgccgt gatttaata acggtttgt tgatgcgag gatttgat ggcgcaatac cgaatgaata acggtttgt tgatgcaga aattgcataa ccgaggaaatac cgaatgaata acggtttgt tgatgcagg gatttgat gacgagacaa tgctgcgct gattcacac gaatgaata acggttgaa accacggc attttcccac tgatacacag accaggacaa atttccacacacacacacacacacacacacacaca							
ttatcoggta actatogtot tgagtocaac coggtaagac acgaettato gocactggea goagcacatg gtaacaaggat tagcaagaga aggatatgtag goggtoctac agagttottg aagtgtgge ctaacatagg ctacactaga aggacagtat ttggtatctg cgctotgetg aagccagtta cottoggaaa aagagttggt agctottgat coggcaaaca aaccaccgot ggtagoggtg gttttttgt ttgcaagcag cagattacgg gcagaaaaa aggatoctaa gaagatoctt tgatottto tacggggtc gaagcacaatg ggaacgaaaa aggatoctaa gaagatoctt tgatottto tacggggtc gaagcacaatg ggaacgaaaa ctacaccgt aggagaaaaa aggatoctaa gagatataga gaggtttag tacattgaca aagataaaaa tatatcatca tgaacaataa aactgotgg ttacattgate gaggcogga ttaaattcaa gaggtttat gagccatatt caacgggaaa cggctctgtc gaggcoggaa taattcaa acatggatgc tgattatat tcgattgtat gggaacccg atggccagaa gttgttotg aacacatgga aaggtagggt tgcaacaatga gttacagagg gttgttotg aacacatgga aaggtaggat tatagccca cactgoga aaggatttat tccgatcga tgatggcagaat tcggcagaat tcggcagaat gttacagatg agatggtoag actaaactgg ctgacggaat taatgccag aggatttat tccgaccac aggatataga ggatttag ggcagttta tcggacgaga gttgatcgag actaactgg gcagtyttoc tgcgcoggt gcattogat ccccgggaaa acagacattoc aggatataga agaatatoct gattcagatg gacgattta tcggtaccc gattagaaga gattggtag aacaatgat cccaggga acaacactgg gcagtyttgt gagtogagt gatttgat cctgtttga attggcctg gattcgat cctgtttga attgcctt tcaacagg attcgcag attcacag gagggaaata aatgattgt gatcgagt gattcaca ccataggac ccaatcagga attcacag aattccaa tgcagacgaa ttctacacagaa ttctgaaaga attcacacag atttcacac tgataacact tattttgacg aggggaaatt aataggttgt attgatgtg gacgagtcgg aattcccacacacacacacacacacacacacacacacac							_
gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtgc ctaactacgg ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagcagttgt ggttttttgt tgcaagcag cagattacgc gcagaaaaa aaccaccgct ggtagcggtg gtttttttgt tgcaagcag cagattacgc gcagaaaaaa aggatctcaa ggagatcctt tgatctttc tacggggtc gacgcaaaaa accaccgct ggtagcggtg taacattacaa ggagttttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattagaa aggatactaa aggatatacaa ggggtgttat gagccaatat caacgggaaa cgtcttgctc gaggccgcga ttaaattcaa acatggatgc tgattatat gggstataaaa gggctcgcga taaattcaa acatggatgc tgattatat gggstataaaa gggagcgcga taaatgcgg caatcaggg caacacta tcgattgtat gggsagccgaa gtggccaaa acatggaag ctgattgat gggagcgcaa ggtgttct ggatacaatga gttaccaa aaggtagcgt tgccaatgat gttacagatg agatggcag acaactggca aaggtagtca tatgccacta tccgaccata aacatggca acagattccaaggtg cgacaatcta tcgatgatgca tggtaccaatgat gttacagatg agatggcag acaaccagggaaa acagcattccaaggtattaaga agaatatcct gatcaggtg aaaatattgt tccgtactcc aggtattaaga agaatatcct gatcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcagt cgcgtatttc gtctcgcta ggcgcaatca cgaatgaata acggtttggt tgatgcgag gattttgatg acgagcgtaa tggctggcct gttgaacaag cttttggcat tctcaccgga attcatgag agatggaaaga attcctaca cctatggtg atttctcact tgataacctt atttttgacg aggggaaata aaaggttgt attgatgtg gacgagtcg aattctcaccagaa accaccagga attctcaccagaa accaccagaa accaccagaa accaccaggaa accaccaca ccacaggaa attctcaccagaa accacacaca ccacaggaa attccacagaa attctgccat tctcaccagaa accaccacacacacacacacacacacacaca							
gcggtgctac agagttcttg aagtggtgc ctaactacgg agagacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt gtttttttyt ttgcaagcag cagattacgc gcagaaaaaa aggatccta gaagatcctt tgatctttc ctaccgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgca aagataaaaa tatacatca tgaacaataa aactggtctgc ttacataaac aggatacaaa ggggtgtat gagccatatt caacgggaaa cgtttggt tacataaaaa cgtcttgct gaggccggaa ttaaatcaa ggggtgtat gagccatatt caacgggaaa cgtttggt tacataaaa cgtcttgct gaggccgga ttaaattcaa aactggatgc tgattatat gggtataaaa gggctcgcga ttaaattcaa aacatggatgc tgattatat gggtataaaa tataccaa aacatggatgc tgattatat gggtataaaa taggccgga ttaaattcaa aacatggatgc aaggtagcaa actaactgg ctgacggaaa ttatgcccta tccgacaata aacatggca aaggtagcga ttaacagat gttacagata gttgtttctg aaacatggca actaactgg ctgacggaaa ttatgcccta tccgacaat aagaattta tccgaccatc aggatttaa ggaatatcc tgcgcggtt gcattcgat gcagtattca tgcgccggt gcattcgat ggcgcaatca cgattcc tgcgcggtt gcattcgat ggcgcaatca cgattctt taacagcgat cgcgtattc tgcgccggt gattcgat ggcgcaatca cgaatgata acggtttgt gattcgat gattctgat ggcgcaatca cgaatgata acggtttgt gattcgat gcgcaatca cgaatgata acggcttt tgatgacaa aacggcttt ttgatg acgagcgga attttttgacg acgagcggaa attttttgacg acgagcggaa attttttgacg acgagcggaa attttttgacg acgagcggaa attttttgacg acgagcggaa attttttgacg accataggac cttatgaac ttgataccat attttttgacg acgataccaga atttctcact ttgataccat ttgataccat attttttgacg acgagcggac atcgaacaa ttggttacat ttgatgaca ttggtataca ttggtattat ttgatgaca ttggtatgat aatcgcagac cttatggaa cttgatgata attggtattat ttgatgaca attacctgata attggtattat ttgataccat attttttgacg acgagcggcggcggcggcggcggcggcggcggcggacggcgg							
aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt ggttttttgt ttgcaagcag cagattacgc ggagaaaaa aggatctcaa gaagatcctt tgatctttc tagtctttc tagtcgaaaaa tagggtgt gacgctaagt ggaacgaaaa ccaacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcata tgaacaataa aactgtctgc gaggctctgcga ttaaatcca aggatgttat gagccatatt caacgggaaa cggtgttat gggtataaaa gggtgttat gaggcatatt caacgggaaa cggtgtaaaaa gggtggtaaaat ggggtggtaaaat ggggtggtaaaat tcgaatgga gggaagccga aaggatgcca tataggcagaa tatagcaagag gttaacaagggaagagagagagagagagagagagagagag	1		gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag
aagagttggt gttttttgt tgcaaagag cagattacgc gcagaaaaa aggatctcaa gaagatcett tgatctttte tacgggggtg gcagaaaaaa aggatctcaa gaagatcett tgatctttte tacgggggtgt gaagacgcaaaa ctcacggta ggaagttaggg TCATGAgttg tgtctcaaaa tctctggatgt tacattgca aagataaaaa tatatcatca tgaacaataa aactgtctgc gaggatttggt gaggcaggaaaa cgtcttgctc gaggccgga ttaaattcaa aggggtgttat gagccatatt caacgggaaa cggtttgat gggtataaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagccg ataggccaaa gttgtttctg aaacatgga gttgacaaatga gttacagatg ctgacggaat ttatgcctct tccgaccatc aagcatttat tccgtactcc tgatgatgca tggttactac cactgcgat cccgggaaa acagaattcc aaggtattaga agaatatcc gattcaggtg gaattatga agaatatcct gattcaggtg gaatttta tccgtactcc tgatgatgca tgcgcagggggggggg			gcggtgctac	agagttcttg	aagtggtggc	ctaactacgg	ctacactaga
gttttttgt ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatctttc tacggggtct gcagaaaaaa ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tataatcat tgaacaataa aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cgtcttgctc gaggccgcga ttaaattcaa acatggatgc tgatttatat gggtataaaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgegccaga gttgtttctg aaacatgga cgctgacggaat taatgccga aggatggaaa acaggtagcg ctgacggaat taatgcccc tccgaccaac aagcattta tccgtactcc tgatgatgac tggttactca ccactgcgat cccgggaaa acagcattcc aggtattaga agaatacct gattcaggt gcagtgtcc tgcgcggtt gcattcgatt cccggggaaa acagcattcc aggtattaga agaatacct gattcaggt gcagtttgt tgatgcgctg gcagtttgt gcattcgatt cctgtttgta attgtcctt taacagcgat cccgggaag aatgcgcaatca cgaatgaata acaggtttggt tgatgcaggt gatttttgat ggcgcaatca cgaatgaata acaggtttggt tgatgcaggt gattttgat ggcgcaatca cgaatgaata acaggtttggt tgatgcaggt gattttcaca cttttgccat tctcaccgga atcagtcgac actcatggtg attcatcac tgataacctt atttttgacg aggggaaatt attgtcctt tttatacag accgatttt ttcaaaaata tggtattgat actcatggaa attcagcaga ttcagtcaa accgatttt ttcaaaaata tggtattgat aatccgaaa ttggttaatt ggatgataa ttggtattgat accgagac ctttatacaga accgaggttt ttcaaaaata tggtattgat aatccgaaa ttggttaatt ggatgataa ttggtattgat aatccgaaa ttggttaatt ggatgataa ttggtattgat aatccgaaa accgcggttt ttcaaaaata tggtattgat aatccgaaa atcgcagaa ccggcggcttt gttgaaaaa tcgaacctt ttcaacagaa atcgcagaa ccgcgggcttt gttgaaaaa tcgaacctt gctaaccgg cttaaccggaa ccggcggcttt gttgaaaaa tcgaaccttt gctaacctt attaccagaa accgcgggttt gttgaaaaaa tcgaaccttt gctaaccgaa atcgcagaa accgcagaccggaaccggaaccggaaccggaaccggaaccggaaccggaacccgaaccagaacacagaacacagaccagaaccagaa			aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa
gaagatcctt tgatcttttc tacggggtct gacgctcagt ggaacgaaaa ctcacgtttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcatca tgaacaataa aactgtctgc ttacataaac gaggcgga ttaaattcaa gaggcatatt caacgggaaa cgtcttgctc gaggccgcga taaattcaa acatggatgc tgatttatat gggtataaat gggctcgcga taatgccggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgcgccaga gttgtttctg aaacatggca aaggtaggcgt tgccaatgat gttacagatg agatggtca acataggtg ctgacggaat tatgcctct tccgaccatc aagcatttta tccgattgtat gggtatcaca caacgcagat caacgagttcc tggatgatga agaatatcct gattcaggt aaaatattgt tgatgcgctg gcagtgttcc tgcgcggtt gcattcgatt cccggggaaa acagcattcc aggtattaga agaatatcct gattcaggt aaaatattgt tgatgcgctg gcagtttgt tgatgcgggt gattttgat actgatgatgat acggcttgt gcattcgatt ctcgaccac cgaatgaata acggtttggt tgatgcagag gattttgat gcagagggaaat acggcggaaat acggagggaaat actcacggaggggaaat actcacgga attccact tgataacctt atttttgacg aggggaaata acacggttg aattcactt tgataacctt atttttgacg aggggaaata acacggcttt ttcaaaaata tggtattgat accacgga actcacagga accacagg atttcacac aaacggctt ttcaaaaata tggtattgat aatccacgaa ttggtaaaat tggatgaaca cctatggaac tgcctcggtg agttttccc ttaatacaga atcgcaaca cctatggaac tgcctcggtg agttttccc ttgataacctt attttttgacg agaacacacag ttggtaaaat ttgaatgctca accacggac accacggac accacggac accacggac cctatggaac ttgcctcggt agttttcccc ttcattaacaa aacggcttt ttcaaaaaata tggaatttat ccaacacaga ttggtaaaat ttggataaca ctggcagac ctgaacgac cttgacggga accgcggctat gtgtaataa tcgaacttt gctgagttga aggatcCTCG GGagttgtca gcctgtccc cttataagat catacgccgt tatacGTTGT			aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	ggtagcggtg
ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcatca tgaacaataa aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cggtgtaaaat ggggtataaat ggggtataaat ggggtagga taatgtcggg caatcaggtg cgacaatcta tcgattgtat ggggaagccg atatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagccg atgggcagaa ggtgtttctg aaacatggca aaggtagget tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat tatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat cccegggaaa acagcattcc aggtattaga agaatatcct gattcagtg aaaaatattgt tgatgcgctg gcagtgttcc tgcgccggt gcattcgat cctgtttgta attgtcctt taacagcgat ggttgaacaa tctggaagag aatgcataaa acggtttggt tgatgcgag gattttgatg acgacgtaa tggctggcct gttgaacaag tctggaagaa aatgcataag cttttgccat tctcaccgga attccactggaat attgatgtg aatgcataag cttttgccat tctcaccgga attccactggaat attgatgtg aatggggaaat aatgcataag cctattggac cctatggac cctatggac cctatggac cctatggac actcatggtg attctcact tgataacctt atttttgacg aggggaaatt aaacggttt ttcaataaaat tggtattgga agttttctcc ttcattacaa aacggcttt ttcaataaaat tggtattgga agttttctcc ttcattacaa aacggcttt ttcaataaaat tggtattgga agttttctcc ttcattacaa acggcttt ttcaataaaat tggtattgga agttttctcc ctaatggaac cggcggcttt gttgaataaa tcggaagca attacgcgg attaccgga attaccgaa ccgacggctt gttgaataaa tcggaagca attaccgcg ttaatacGTTGT			gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa
ctcacgttaa gggattttgg TCATGAgttg tgtctcaaaa tctctgatgt tacattgcac aagataaaaa tatatcatca tgaacaataa aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cggtgtaaaat ggggtataaat ggggtataaat ggggtagga taatgtcggg caatcaggtg cgacaatcta tcgattgtat ggggaagccg atatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagccg atgggcagaa ggtgtttctg aaacatggca aaggtagget tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat tatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat cccegggaaa acagcattcc aggtattaga agaatatcct gattcagtg aaaaatattgt tgatgcgctg gcagtgttcc tgcgccggt gcattcgat cctgtttgta attgtcctt taacagcgat ggttgaacaa tctggaagag aatgcataaa acggtttggt tgatgcgag gattttgatg acgacgtaa tggctggcct gttgaacaag tctggaagaa aatgcataag cttttgccat tctcaccgga attccactggaat attgatgtg aatgcataag cttttgccat tctcaccgga attccactggaat attgatgtg aatggggaaat aatgcataag cctattggac cctatggac cctatggac cctatggac cctatggac actcatggtg attctcact tgataacctt atttttgacg aggggaaatt aaacggttt ttcaataaaat tggtattgga agttttctcc ttcattacaa aacggcttt ttcaataaaat tggtattgga agttttctcc ttcattacaa aacggcttt ttcaataaaat tggtattgga agttttctcc ttcattacaa acggcttt ttcaataaaat tggtattgga agttttctcc ctaatggaac cggcggcttt gttgaataaa tcggaagca attacgcgg attaccgga attaccgaa ccgacggctt gttgaataaa tcggaagca attaccgcg ttaatacGTTGT			gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa
tacattgcac aagataaaaa tatatcatca tgaacaataa aactgtctgc ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cgtcttgctc gaggccgcga ttaaattcca acatggatgc tgatttatat gggtataaaat ggggtcgcga ttaatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgcgccaga gttgttctg aacatggca aaggtagcgt tgccaatgat gtacagatg gtgttctg aacatggca aaggtagcgg ttatatecc tcgaccatc aagcattta tccgtactcc tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgtg gcagtgttcc tgcgccggt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtattc gccgtattc gcgcagtc ggcgaatca cgaatgaata acggtttggt tgatgcgag gattttgatg acgagcgtaa tgctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga tccagtgcgc accatggtg attccact tgataacctt atttttgacg aggggaaatt acgatggcat cctatggtg gattccact tgataacctt atttttgacg aggggaaatt acgatgccat cctatggaac tgcctcggtg actcatggac cgataccagg atcttgcat cctatggaac tgcctcggtg agttttccc ttcatacag aacggcttt ttcaaaaata tggtattga aatcctgata tcgatacaga ccgatacaag ctttgacac cctatggaac tgcctcggtg agttttctcc ttcattacag aacggcttt ttcaaaaaata tggtattga aatcctgata ttggtaaca tggctgata ctggtaaca cggcggcttt gtgaacaa tcgaacgag attaccgga atcatcagaa ttggtaaca ctggcagaga attaccgcagac ctgatgaccggcttt gtgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataaagat catacgcgt tatacGTTGT							
ttacataaac agtaatacaa ggggtgttat gagccatatt caacgggaaa cgtcttgctc gaggccgca ttaaattcaa acatggatgc tgatttatat gggtataaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgcgccaga gttgtttctg aaacatggca aaggtaggcat tatgcctct tcgaccatc aagcatttat tccgatctcc tgatgatgca tggtacca tggtaccac cactgcgat ccccgggaaa acagcattcc aggtataga agaatacct gattcaggtg aaaatatctt tgatgatgca tgccgggtt gcattcgat cctggtgtataca acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgat cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcaggt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgct accatggtg attctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgtg gacgagtcgg aatccgagac cgataccagg atcttgccat tctaacagaac tgcagaac ttcatgaac ttcaatacag aacggctt ttcaatacag aacggctt ttgatgccg attggttgt attggtgtcg attggttga cctatggaac tggtgtaaca ttggttgataa ttggttgtcc ttcattacagaa ttggttgaaca ttggtattgat gattggtct gattgattg gacgagtttt ctaatcagaa ttggttaaca ctggcagagc attacgctga cttgacggga cggcgcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtccc cttataagat catacgccgt tatacGTTGT							
cgtcttgctc gaggccgcga ttaaattcca acatggatgc tgatttatat gggtataaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgcgccaga gttgtttctg aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgatg agaatatcct gattcaggtg acaatatatg tgatgcgt aggatgttcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggt gcattcgat cctggttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga attcagtcgc accatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccag acctatgcaa tccataggaac tccataggaac tcataggaac tcatagaac tttgataata tggatttctcc tcattacag aacaggctt tcaaaaata tggatttta tcaaaata tggatttta tcaatcagaa ttggttaaat gcagtttca ctgacagac attagctga attagtgta attgatgtt attgatgtt attgatgat attgatgtt ctaatcagaa ttggttaaat tggatgcag attaccaga acggcgttt gtgaataaa tcgaacttt gctgagttga aggatcCTCG GGagttgtca gcctgtccc cttataaagat cataccgcgt tatacGTTGT	l						
gggtataaat gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgattgtat gggaagcccg atgcgcaga gttgtttctg aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgaat tccaccgga ttcagtcgtc actcatggg aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tggctggcg ttcattacag aacggcttt ttcaaaaaata tggtattgat aatcctgata ttgataaatt gcagtttcat ttgatgctcg attaccgga attcgtgata ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacgga cggcggcttt gttgaataaa tcgaactttt gctgactgga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
tcgattgtat gggaagcccg atgcgccaga gttgtttctg aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgtg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga ccttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT							
aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg attctcact tgataacctt attttgacg aggggaaatt agggggaaatt actggtggt attgatgtg gacgagtcgg aatcgcagac cgataccagg atcttgcat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tggataaaat tgggttaaat tggatgtca ttggatgac actcagga ccgaggcggtaa tgggtgtaaca ctggcagagc attacgcga actcggaa ccgaggcttt ttcaaaaata tggtattgat aatcctgata tggataaaat tggttaaat tggtataaa ttggtataat cctaacgga ctggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt attttgacg aggggaaatt aataggttgt attgatgtg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg attacgctga cttggttaat tggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
tgatgatgca tggttactca ccactgcgat ccccgggaaa acagcattcc aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgtg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT							
aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt attttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tggataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT							
gcagtgttcc tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT	[
taacagcgat cgcgtatttc gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tggataaaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT							
acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgcat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tggataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT					-		-
gttgaacaag tctggaaaga aatgcataag cttttgccat tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT	1						
ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagtttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgcgt tatacGTTGT			acggtttggt	tgatgcgagt	gattttgatg	acgagcgtaa	tggctggcct
aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT			gttgaacaag	tctggaaaga	aatgcataag	cttttgccat	tctcaccgga
aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT			ttcagtcgtc	actcatggtg	atttctcact	tgataacctt	atttttgacg
cgataccagg atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT]						
ttcattacag aaacggcttt ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT	ļ			_			-
tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT	l l						_
cggcggcttt gttgaataaa tcgaactttt gctgagttga aggatcCTCG GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
GGagttgtca gcctgtcccg cttataagat catacgccgt tatacGTTGT							
TIACGCIIIG AGGAAIIAAC C	\					cacacyccyt	cacacGTTGT
			TIACGCTTTG	AGGAATTAAC	C		
	L						

CLAIMS

WHAT IS CLAIMED IS:

5

25

- 1. A composition comprising an orthogonal glutamyl-tRNA (glutamyl O-tRNA), wherein the glutamyl O-tRNA comprises at least about a 50% suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA corresponding to a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA).
 - 2. The composition of claim 1, wherein the glutamyl O-tRNA comprises a G:C base pair at position 10:28.
- 10 3. The composition of claim 1, wherein the selector codon is an amber codon.
 - 4. The composition of claim 1, wherein the glutamyl O-tRNA comprises or is encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA), or a complementary polynucleotide sequence thereof.
- 5. The composition of claim 1, further comprising an orthogonal glutamyl aminoacyltRNA synthetase (glutamyl O-RS), wherein the glutamyl O-RS preferentially aminoacylates
 the glutamyl O-tRNA with a selected amino acid in response to the selector codon.
 - 6. The composition of claim 5, wherein the suppression efficiency of the glutamyl O-RS and the glutamyl O-tRNA together is 10 fold greater than the suppression efficiency of the glutamyl O-tRNA in the absence of the glutamyl O-RS.
- 7. The composition of claim 5, wherein the glutamyl O-RS, or a portion thereof, is encoded by a polynucleotide sequence comprising in any one of SEQ ID NO.: 68 (Af), 72 (Mm), 74 (Mt) or 76 (Ph), or a complementary polynucleotide sequence thereof.
 - 8. The composition of claim 5, wherein the glutamyl O-RS comprises an amino acid sequence comprising any one of SEQ ID NO.: 69 (Af), 73 (Mm), 75 (Mt), or 77 (Ph), or a conservative variation thereof.
 - 9. The composition of claim 5, wherein the glutamyl O-RS is derived from an organism selected from the group consisting of: an Archaeoglobus fulgidus (Af), a Methanosarcina mazei (Mm), a Methanobacterium thermoautotrophicum (Mt), and a Pyrococcus horikoshii (Ph).

10. The composition of claim 1, wherein the glutamyl O-tRNA is derived from one or more archaeal tRNAs.

- 11. The composition of claim 10, wherein the one or more archaeal tRNAs comprise archaeal glutamyl-tRNA, or derivative thereof.
- 5 12. The composition of claim 1, comprising a cell.

15

- 13. The composition of claim 12, wherein the cell is an *E. coli* cell.
- 14. The composition of claim 1, comprising a translation system.
- 15. A cell comprising a translation system, wherein the translation system comprises: an orthogonal glutamyl-tRNA (glutamyl O-tRNA), wherein the glutamyl O-tRNA
- comprises at least about a 50% suppression efficiency in the presence of a cognate synthetase in response to a first selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA);

an orthogonal aminoacyl-glutamyl-tRNA synthetase (glutamyl O-RS); and, a first selected amino acid;

wherein the glutamyl O-tRNA recognizes the first selector codon, and the glutamyl O-RS preferentially aminoacylates the glutamyl O-tRNA with the first selected amino acid.

- 16. The cell of claim 15, wherein the glutamyl O-tRNA comprises a G:C base pair at position 10:28.
- 20 17. The cell of claim 15, wherein the glutamyl O-tRNA comprises or is encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC)), or a complementary polynucleotide sequence thereof, and wherein the glutamyl O-RS comprises an amino acid sequence as set forth in any one of SEQ ID NO.: 69 (Af), 73 (Mm), 75 (Mt), or 77 (Ph), or a conservative variation thereof.
- 18. The cell of claim 15, wherein the cell further comprises an additional different O-tRNA/O-RS pair and a second selected amino acid, wherein the O-tRNA recognizes a second selector codon and the O-RS preferentially aminoacylates the O-tRNA with the second selected amino acid.
- 19. The cell of claim 15, wherein the glutamyl O-tRNA is derived from one or more archaeal tRNAs and the glutamyl O-RS is derived from an organism selected from the

group consisting of: an Archaeoglobus fulgidus (Af), a Methanosarcina mazei (Mm), a Methanobacterium thermoautotrophicum (Mt), and a Pyrococcus horikoshii (Ph).

- 20. The cell of claim 15, wherein the cell is a non-eukaryotic cell.
- 21. The cell of claim 20, wherein the non-eukaryotic cell is an *E. coli* cell.
- 5 22. The cell of claim 15, further comprising a nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, wherein the polynucleotide comprises a selector codon that is recognized by the glutamyl O-tRNA.
 - 23. An *E. coli* cell, comprising:

an orthogonal glutamyl tRNA (glutamyl O-tRNA), wherein the glutamyl O-tRNA comprises at least about a 50% suppression efficiency in the presence of a cognate synthetase in response to a selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA);

an orthogonal glutamyl aminoacyl- tRNA synthetase (glutamyl O-RS), wherein the glutamyl O-RS preferentially aminoacylates the glutamyl O-tRNA with a selected amino acid;

the selected amino acid; and,

a nucleic acid that comprises a polynucleotide that encodes a polypeptide of interest, wherein the polynucleotide comprises the selector codon that is recognized by the glutamyl O-tRNA, and wherein the glutamyl O-tRNA is derived from one or more archaeal tRNAs and the glutamyl O-RS is derived from an organism selected from the group consisting of: an Archaeoglobus fulgidus (Af), a Methanosarcina mazei (Mm), a Methanobacterium thermoautotrophicum (Mt), and a Pyrococcus horikoshii (Ph).

- 24. An artificial polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising a nucleotide sequence as set forth in SEQ ID NO.:
- 25 67;

30

10

15

20

- (b) a polynucleotide that is complementary to or that encodes a polynucleotide sequence of (a);
- (c) a nucleic acid that hybridizes to a polynucleotide of (a), or (b), under highly stringent conditions over substantially the entire length of the nucleic acid;
- (d), a polynucleotide that is at least 90% identical to that of a naturally occurring glutamyl tRNA and comprises a G:C base pair at position 10:28;

(e) a polynucleotide that is at least 98% identical to a polynucleotide of (a), (b), (c), or (d); and,

- (f) a polynucleotide comprising a conservative variation of (a), (b), (c), (d), or (e).
- 25. A vector comprising or encoding a polynucleotide of claim 24.
- 5 26. The vector of claim 25, wherein the vector comprises a plasmid, a cosmid, a phage, or a virus.
 - 27. The vector of claim 25, wherein the vector is an expression vector.
 - 28. A cell comprising the vector of claim 25.

10

15

20

29. A method of producing a pool of tRNAs that are orthogonal to a selected cell (OtRNAs), the method comprising:

aligning a plurality of glutamyl tRNA sequences;

determining a consensus sequence;

generating a library of mutant glutamyl tRNAs using the consensus sequence;

mutating an anticodon loop of members of the library of mutant glutamyl tRNAs to allow recognition of a selector codon, thereby providing a library of potential O-tRNAs; and,

subjecting to negative selection a first population of cells of a first species, wherein the cells comprise a member of the library of potential O-tRNAs, to eliminate cells that comprise a member of the library of potential O-tRNAs that is aminoacylated by an aminoacyl-tRNA synthetase (RS) that is endogenous to the cell, thereby providing a pool of tRNAs that are orthogonal to the cell of the first species.

- 30. The method of claim 29, wherein the plurality of glutamyl tRNA sequences are derived from an archaeal species.
- 31. The method of claim 29, wherein the plurality of glutamyl tRNA sequences are derived from a species other than the first species.
 - 32. The method of claim 29, further comprising mutating a G10:U28 base pair to a G10:C28 base pair.

The method of claim 29, wherein the consensus sequences is determining by an alignment program.

- 34. The method of claim 29, further comprising subjecting to positive selection a second population of cells of the first species, wherein the cells comprise a member of the pool of tRNAs that are orthogonal to the cell of the first species, a cognate aminoacyl-tRNA synthetase, and a positive selection marker, to select or screen for cells that comprise a member of the pool of tRNAs that is aminoacylated by the cognate aminoacyl-tRNA synthetase and that shows a desired response in the presence of the positive selection marker, thereby providing an O-tRNA.
- 10 35. The method of claim 34, wherein the second population of cells comprise cells that were not eliminated by the negative selection.
 - 36. An O-tRNA produced by the method of claim 29.
 - 37. A method for identifying an orthogonal glutamyl-aminoacyl-tRNA synthetase for use with a glutamyl O-tRNA, the method comprising:
 - subjecting to selection a population of cells of a first species, wherein the cells each comprise:
 - 1) a member of a plurality of glutamyl aminoacyl-tRNA synthetases (glutamyl-RSs);
 - 2) the orthogonal glutamyl tRNA (glutamyl O-tRNA) derived from one or more species, wherein the glutamyl O-tRNA comprises at least about a 50% suppression efficiency in the presence of a cognate synthetase in response to a selector codon, as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA); and,
 - 3) a polynucleotide that encodes a selection marker and comprises at least one selector codon;

wherein cells that show enhanced suppression efficiency as compared to cells lacking or comprising a reduced amount of the member of the plurality of glutamyl-RSs that comprises an active glutamyl-RS that aminoacylates the O-tRNA;

25

15

20

5

30

comparing a level of aminoacylation by the active glutamyl-RS of a first set of tRNAs from the first species to the level of aminoacylation by the active glutamyl-RS of a second set of tRNAs from a species other than the first species; wherein the level of aminoacylation is determined by a detectable substance; and,

- selecting the active glutamyl-RS that more efficiently aminoacylates the second set of tRNAs compared to the first set of tRNAs, thereby providing the orthogonal glutamylaminoacyl-tRNA synthetase for use with the glutamyl O-tRNA.
 - 38. The method of claim 37, wherein the selection comprises a position selection and the selection marker comprises a positive selection marker.
- 10 39. The method of claim 37, wherein the plurality of glutamyl RSs comprise mutant glutamyl RSs, glutamyl RSs derived from one or more species other than the first species or both mutant glutamyl RSs and glutamyl RSs derived from a species other than the first species.
 - 40. The method of claim 37, wherein the aminoacylation is in vitro.
- 15 41. The method of claim 37, wherein the aminoacylation is in vivo.
 - 42. The method of claim 37, wherein the detectable substance is a labeled amino acid.
 - 43. An orthogonal aminoacyl-tRNA synthetase identified by the method of claim 37.
 - 44. A method of producing a protein in a cell with a selected amino acid at a specified position, the method comprising:
- growing, in an appropriate medium, the cell, where the cell comprises a nucleic acid that comprises at least one selector codon and encodes a protein;

providing the selected amino acid;

wherein the cell further comprises:

25

30

an orthogonal glutamyl-tRNA (glutamyl O-tRNA) that functions in the cell and recognizes the selector codon; wherein the glutamyl O-tRNA comprises at least about a 50% suppression efficiency in the presence of a cognate synthetase in response to the selector codon as compared to the glutamyl O-tRNA comprising or encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC) tRNA); and,

an orthogonal glutamyl aminoacyl-tRNA synthetase (glutamyl O-RS) that preferentially aminoacylates the glutamyl-O-tRNA with the selected amino acid; and,

incorporating the selected amino acid into the specified position in the protein during translation of the nucleic acid with the at least one selector codon, thereby producing the protein.

- 45. The method of claim 44, wherein the glutamyl O-tRNA is derived from one or more archaeal tRNAs and the glutamyl O-RS is derived from an organism selected from the group consisting of: an Archaeoglobus fulgidus (Af), a Methanosarcina mazei (Mm), a Methanobacterium thermoautotrophicum (Mt), and a Pyrococcus horikoshii (Ph).
 - 46. The method of claim 44, wherein the glutamyl O-tRNA comprises a G:C base pair at position 10:28.
- 10 47. The method of claim 44, wherein the glutamyl O-tRNA comprises or is encoded by a polynucleotide sequence as set forth in SEQ ID NO.: 67 (AE(GC)).
 - 48. The method of claim 44, wherein the cell is a non-eukaryotic cell.
 - 49. The method of claim 48, wherein the non-eukaryotic cell is an *E. coli* cell.

Glu consensus tRNA

Glu consensus tRNA

Fig. 1A

2/6

Fig. 1B

3/6

Fig. 2

Fig. 3

5/6

Fig. 4C

Fig. 5