Engineering Studies

FORMULAE SHEET

Force, Moments

$$F = ma; \quad M = Fd$$

If a body is in equilibrium, then
$$\sum F_x = 0$$
; $\sum F_y = 0$; $\sum M = 0$

Friction

$$F = \mu N; \quad \mu = \tan \phi$$

Energy, Work, Power

$$KE = \frac{1}{2}mv^2$$
; $PE = mgh$; $W = Fs = \Delta PE + \Delta KE$; $P = \frac{W}{t}$; $P = \frac{Fs}{t}$; $P = Fv$

Pressure

$$P = \frac{F}{A}; \quad P = P_o + \rho g h$$

Stress and Strain

$$\sigma = \frac{F}{A}; \quad \mathcal{E} = \frac{e}{L}; \quad E = \frac{\sigma}{\varepsilon}; \quad \sigma = \frac{My}{I}$$

$$\sigma_{\text{allowable}} = \frac{\sigma_{\text{yield}}}{F \text{ of } S} \text{ (Ductile)}; \qquad \sigma_{\text{allowable}} = \frac{\sigma_{UTS}}{F \text{ of } S} \text{ (Brittle)}$$

Machines

$$MA = \frac{L}{E}; \quad VR = \frac{d_E}{d_I}; \quad \eta = \frac{MA}{VR}$$

Digital Electronics

AND NAND OR NOR
$$A \longrightarrow B \longrightarrow B \longrightarrow B \longrightarrow B$$

Electricity, Electronics

$$E = IR$$
 $P = I^2R$

Series
$$R_t = R_1 + R_2 + R_3 + R_4 + \dots + R_n$$

Parallel
$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \dots + \frac{1}{R_n}$$