PLP - 32 TOPIC 32—IMAGES AND PREIMAGES

Demirbaş & Rechnitzer

IMAGES AND PREIMAGES

FUNCTIONS AND SUBSETS

How do functions interact with subsets of the domain and codomain?

DEFINITION:

Let f:A o B be a function and let $C\subseteq A$ and $D\subseteq B$

- ullet The $\overline{\mathsf{image}}$ of C in B is $\overline{f(C)} = \{f(x) \ \mathsf{s.t.} \ \overline{x \in C}\}$
- ullet The preimage of D in A is $f^{-1}(D)=\{x\in A ext{ s.t. } f(x)\in D\}$

WARNING — Be careful with preimages:

- $ullet f^{-1}(x)$ is not $(f(x))^{-1}$ or $rac{1}{f(x)}$
- ullet The preimage f^{-1} is *not* the inverse function.
- When extra conditions satisfied the inverse function exists and we use the same notation When you see f^{-1} think "preimage" when you know inverse exists then "inverse function".

A SKETCH OF IMAGES AND PREIMAGES

AN EXAMPLE — IMAGES

Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=x^2$. Then

- f([0,4]) = [0,16]
- $ullet f([-3,-1] \cup [1,2]) = [1,9]$

- lacksquare If $0 \le x \le 4$ then $0 \le x^2 \le 16$
- If $1 \le x \le 2$ then $1 \le x^2 \le 4$. And if $-3 \le x \le -1$ then $1 \le x^2 \le 9$. So if $x \in [-3,-1] \cup [1,2]$ then $x^2 \in [1,9]$.

AN EXAMPLE — PREIMAGES

Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=x^2$. Then

- $f^{-1}(\{0,1\}) = \{-1,0,1\}$
- $ullet f^{-1}([1,4]) = [-2,-1] \cup [1,2]$

- If $x^2=0$ then x=0. And if $x^2=1$ then $x=\pm 1$ So if $x^2\in\{0,1\}$ then $x\in\{-1,0,1\}$
- If $1 \le x^2$ then $x \le -1$ or $x \ge 1$. If $x^2 \le 4$ then $-2 \le x \le 2$. So if $x^2 \in [1,4]$ then $x \in [-2,-1]$ or $x \in [1,2]$.

IMAGES, PREIMAGES AND SET OPERATIONS

Images and preimages interact (mostly) nicely with subset, intersection and union.

THEOREM:

Let f:A o B and $C\subseteq A$ and $D\subseteq B$. Then

$$C\subseteq f^{-1}(f(C))$$
 and $f(f^{-1}(D))\subseteq D$

Now let $C_1, C_2 \subseteq A$ and $D_1, D_2 \subseteq B$. Then

$$f(C_1\cap C_2)\subseteq f(C_1)\cap f(C_2) \qquad \qquad f(C_1\cup C_2)=f(C_1)\cup f(C_2) \ f^{-1}(D_1\cap D_2)=f^{-1}(D_1)\cap f^{-1}(D_2) \qquad f^{-1}(D_1\cup D_2)=f^{-1}(D_1)\cup f^{-1}(D_2)$$

Make good problems — test lots of skills

PROOF 1

$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$

We use $x \in f^{-1}(D) \iff f(x) \in D$

PROOF.

 $LHS \subseteq RHS$: Let $x \in f^{-1}(D_1 \cup D_2)$, so $f(x) \in D_1 \cup D_2$.

Hence $f(x) \in D_1$ or $f(x) \in D_2$.

- ullet when $f(x)\in D_1$ we know $x\in f^{-1}(D_1)$
- ullet when $f(x)\in D_2$ we know $x\in f^{-1}(D_2)$

In either case we know that $x \in f^{-1}(D_1) \cup f^{-1}(D_2)$.

Other inclusion is similar.

PROOF 2

$$f(C_1\cap C_2)\subseteq f(C_1)\cap f(C_2)$$

We use

$$x \in C \implies f(x) \in f(C)$$
 and $y \in f(C) \implies \exists x \in C ext{ s.t. } y = f(x) \in f(C)$

PROOF.

Let $y \in f(C_1 \cap C_2)$.

This means that there is some $x \in C_1 \cap C_2$ so that f(x) = y. Then

- ullet since $x\in C_1$, we know that $y=f(x)\in f(C_1)$
- ullet since $x\in C_2$, we know that $y=f(x)\in f(C_2)$

Hence $y \in f(C_1) \cap f(C_2)$.

REVERSE INCLUSION IS FALSE

$$f(C_1)\cap f(C_2)
otin f(C_1)\cap C_2)$$

Consider $f:\mathbb{R} o\mathbb{R}$ defined by $f(x)=x^2$.

- ullet Let $C_1=\{-1\}$, so $f(C_1)=\{1\}$
- ullet Let $C_2=\{1\}$, so $f(C_2)=\{1\}$
- ullet Then $f(C_1)\cap f(C_2)=\{1\}$ but $f(C_1\cap C_2)=f(arnothing)=arnothing$

Notice also that this shows $f(x) \in f(C)$ does $extit{not}$ imply $x \in C$

- Set x=-1 and $C=\{1\}$
- Then $f(x)=1\in\{1\}=f(C)$ but $x\not\in C$.

These fail because there are $x_1 \neq x_2$ so that $f(x_1) = f(x_2)$.

PROOF 3

$$C\subseteq f^{-1}(f(C))$$

PROOF.

Let $x \in C$.

- ullet Since $x\in C$, we know that $f(x)\in f(C)$
- ullet To make logic clearer we write D=f(C), so that $f(x)\in D$
- ullet Since $f(x)\in D$, we know that $x\in f^{-1}(D)$
- ullet But since D=f(C) this means that $x\in f^{-1}(f(C))$ as required.

Reverse inclusion is false. Let $f:\mathbb{R} o\mathbb{R}$ with $f(x)=x^2$.

- ullet Let $C=\{2\}$. Then $f(C)=\{4\}$
- ullet But $f^{-1}(\{4\})=\{-2,2\}$ since f(2)=f(-2)=4.
- ullet Thus $f^{-1}(f(\{2\})) = \{-2,2\} \nsubseteq \{2\} = C$