COL100: Introduction to Computer Science

11: Floating-point arithmetic

Computing with real numbers

In general, we cannot represent arbitrary real numbers exactly using a finite amount of space

 $e^{\pi} = 23.1406926327792690057290863...$

(Arithmetic would also take an infinite amount of time!)

Scientific notation:

 $e^{\pi} \approx 2.31407 \times 10^{1}$

Floating-point numbers

n-digit floating-point number in base β :

$$X = \pm (d_0.d_1d_2d_3...d_{n-1})_{\beta} \times \beta^e$$

with digits $0 \le d_i < \beta$, and integer **exponent** e.

The rational $(d_0.d_1d_2d_3...d_{n-1})_{\beta} = \sum d_k \beta^{-k}$ is the **mantissa**.

- In decimal ($\beta = 10$), n = 6: $e^{\pi} \approx 23.1407_{10} = +2.31407_{10} \times 10^{1}$
- In binary ($\beta = 2$), n = 6: $e^{\pi} \approx 10111.0_2 = +1.01110_2 \times 2^4$

The number is **normalized** when either $d_0 \neq 0$, or all $d_i = 0$.

Floating-point numbers

$$X = \pm (d_0.d_1d_2d_3...d_{n-1})_{\beta} \times \beta^e$$

All positive floats for $\beta = 2$, n = 3, $-1 \le e \le 2$:

All modern machines have built-in support for $\beta = 2$, n = 53, $-1022 \le e \le 1023$: IEEE 754 **double-precision** floating-point format

Rounding

An arbitrary real number $x \in \mathbb{R}$ can only be *approximated* by a floating-point number $fl(x) \in \mathbb{F}$ (e.g. by rounding to nearest)

(Note: fl: $\mathbb{R} \to \mathbb{F}$ is a theoretical function, not something we can implement!)

e.g. For decimal floating-point with n = 3,

- $fl(\frac{2}{3}) = 6.67 \times 10^{-1}$
- $fl(2021) = 2.02 \times 10^2$

Machine epsilon

Absolute error fl(x) - x varies a lot. But **relative error** (fl(x) - x)/x is bounded! For rounding to nearest,

$$|(f|(x) - x)/x| \le 1/2 \beta^{-(n-1)}$$

This upper bound is called machine epsilon or unit roundoff and denoted u.

Conveniently, for any real x (with $\beta^{\text{emin}} \leq |x| \leq \beta^{\text{emax}}$) we can write

$$fl(x) = x(1 + \delta)$$
 for some δ with $|\delta| \le u$.

Floating-point operations

Even if our input numbers are exactly representable as floating-point numbers, the results of arithmetic might not be!

$$X, y \in \mathbb{F} \implies X + y, X - y, X \times y, X / y \in \mathbb{F}$$

Computer arithmetic is designed to give the closest float result:

$$x \circledast y = \text{fl}(x * y)$$

= $(x * y)(1 + \delta)$...for some δ with $|\delta| \le u$.

So result of any floating-point arithmetic has some (bounded) relative error!

Error analysis example

Given $x, y \in \mathbb{F}$, compute $f(x, y) = x^2 - y^2$.

$$p = x \otimes x = x^{2} (1 + \delta_{1})$$
 with $|\delta_{1}| \leq u$
 $q = y \otimes y = y^{2} (1 + \delta_{2})$ with $|\delta_{2}| \leq u$
 $r = p \ominus q$
 $= (p - q) (1 + \delta_{3})$ with $|\delta_{3}| \leq u$
 $= (x^{2} (1 + \delta_{1}) - y^{2} (1 + \delta_{2})) (1 + \delta_{3})$
 $= x^{2} (1 + \delta_{1}) (1 + \delta_{3}) - y^{2} (1 + \delta_{2}) (1 + \delta_{3})$

This is exactly $f(\tilde{x}, \tilde{y}) = \tilde{x}^2 - \tilde{y}^2$ for some perturbed input $\tilde{x} = x \sqrt{((1+\delta_1)(1+\delta_3))}$, $\tilde{y} = y \sqrt{((1+\delta_2)(1+\delta_3))}$!

Relative **backward errors** $(\tilde{x} - x)/x$, $(\tilde{y} - y)/y$ can be shown to be O(u) as $u \to 0$.

Loss of significance

Accumulation of error can have catastrophic results!

Example ($\beta = 10, n = 6$):

$$\tilde{x} = 1.23456 \times 10^{2}$$
 $\tilde{y} = 1.23321 \times 10^{2}$
 $\tilde{x} \ominus \tilde{y} = 0.00135 \times 10^{2}$
 $= 1.35000 \times 10^{-1}$

No rounding error in the subtraction! But result has only three significant digits If relative error of \tilde{x} , \tilde{y} is ~10⁻⁵ then *relative* error of $\tilde{x} - \tilde{y}$ is ~10⁻²

Example: Polynomial evaluation

$$p(x) = (x - 10)^6$$

= $x^6 - 60x^5 + 1500x^4 - 20,000x^3 + 150,000x^2 - 600,000x + 1,000,000$

Conditioning

Given inaccurate inputs and inaccurate calculations, how accurate of an answer can we expect?

Consider $f: \mathbb{R} \to \mathbb{R}$ and $x \in \mathbb{R}$. How sensitive is f(x) to errors in x?

- Relative error in input = $(\tilde{x} x)/x$
- Relative error in output = $(f(\tilde{x}) f(x))/f(x)$
- Condition number = maximum ratio over all "nearby" \tilde{x}

$$\lim_{\delta \to 0} \sup_{|\tilde{x} - x| \le \delta} \left(\frac{|(f(\tilde{x}) - f(x))/f(x)|}{|(\tilde{x} - x)/x|} \right)$$

Conditioning

$$\lim_{\delta \to 0} \sup_{|\tilde{x} - x| \le \delta} \left(\frac{\left| (f(\tilde{x}) - f(x)) / f(x) \right|}{\left| (\tilde{x} - x) / x \right|} \right)$$
$$= \left| x f'(x) / f(x) \right|$$

If large: small errors in input produce large errors in output!

Example: Let r(c) = largest root of $x^2 - 2x + c$.

$$c = 1 \Rightarrow r(c) = 1$$
$$c = 0.9999 \Rightarrow r(c) = 1.01$$

Rel. output error = $100 \times \text{ rel. input error. At } c = 1, \text{ condition number } = \infty$

Afterwards

Read the lecture notes on numerical computing by Prof. Suban