Question 1

1 pts

Let $f \in \mathbb{R}^n \to \mathbb{R}^m$, $f \in D(a)$. Then

$$A) \quad f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

B)
$$\lim_{h\to 0} \left(\frac{f(a+h) - f(a)}{\|h\|} - f'(a) \right) = 0$$

$$C)\quad \lim_{h\to 0}\frac{f(a+h)-f(a)-f'(a)h}{||\,h||}=0$$

$$D)\quad \lim_{h\to 0}\frac{f(a+h)-f(a)+f'(a)h}{||\,h||}=0$$

- O B)
- O D)
- O A)
- O C)

Question 4

Let $I \subseteq \mathbb{R}$ be an open interval, $f,g:I \to \mathbb{R}, \, f,g \in D, \, f',g' \in C.$ Then:

- A) $\int g' \cdot f = f \cdot g \int f' \cdot g$
- B) $\forall \ a,b \in I, \ a < b$: $\int g' \cdot f = \left[f \cdot g \right]_a^b \int f' \cdot g$
- C) $\int g' \cdot f = f \cdot g + \int f' \cdot g$
- D) $\int g' \cdot f' = f \cdot g \int f \cdot g$
- O D)
- O B)
- O A)
- O C)

be an open interval

1 pts

Question 3	1 pts
Let $g:\mathbb{R}^n o \mathbb{R}^m$, $f:\mathbb{R}^m o \mathbb{R}^p$, $g\in D\left(a\right)$, $f\in D\left(g\left(a\right)\right)$. Then the size of the derivative matrix $\left(f\circ g\right)'\left(a\right)$ is $p\times n$.	
• True	
○ False	

Question 5	1 pts
6. Using the usual notations, the polar transformation for all $f(x,y) = \int_R f(x,y) dR = \int_T f(\cos \varphi, \sin \varphi) \cdot r dT$ B) $\int_R f(x,y) dR = \int_T f(r\cos \varphi, r\sin \varphi) \cdot r dT$ C) $\int_R f(x,y) dR = \int_T f(\cos \varphi, \sin \varphi) dT$ D) $\int_R f(x,y) dR = \int_T f(r\cos \varphi, r\sin \varphi) \cdot r^2 \sin \varphi$	
(A)	
○ D)	
○ C)	
○ B)	

Using the usual notations

Question 6 1 ptsGive an example for function } $f: \mathbb{R} \to \mathbb{R}$, for which $f \in D(a)$, f'(a) = 0 hold, however f has no local extreme value at a.

Or $f(x) = x^2$ at the point a = 0.

Or $f(x) = x^3$ at the point a = 0.

Or f(x) = |x| at the point a = 0.

Give an example for function

The derivative of arcsinx

Question 7	1 pts
The derivative of $\arcsin x$ is: $-\frac{1}{\sqrt{1-x^2}}$	
○ True	
• False	

The polar transformation

Question 8	1 pts
The polar transformation in double integral transforms the norm region.	al region into a rectangular
○ True	
• False	

be continuous

Question 9	1 pts
5. Let $f \in \mathbb{R} \to \mathbb{R}$ be continuous, D_f is an open interval, $F: D_f \to \mathbb{R}$, $F' = f$. The any $[a,b] \subseteq D_f$ holds: A) $\int_a^b f(x) dx = \int_a^b F(x) dx$ B) $\int_a^b f(x) dx = f(b) - f(a)$ C) $\int_a^b f(x) dx = F(b) + F(a)$ D) $\int_a^b f(x) dx = F(b) - F(a)$	nen for
○ B)	
○ C)	
O D)	
○ A)	

Question 10	1 pts

If you compute a double integral over a normal region, then the boundaries of the integration are fixed.

- True
- False

be continuous

Question 9 1 pts

- 5. Let $f \in \mathbb{R} \to \mathbb{R}$ be continuous, D_f is an open interval, $F: D_f \to \mathbb{R}$, F' = f. Then for any $[a, b] \subseteq D_f$ holds:
- A) $\int_{a}^{b} f(x) dx = \int_{a}^{b} F(x) dx$ B) $\int_{a}^{b} f(x) dx = f(b) f(a)$ C) $\int_{a}^{b} f(x) dx = F(b) + F(a)$ D) $\int_{a}^{b} f(x) dx = F(b) F(a)$

- O B)
- O C)
- O D)
- A)

What is given by the integral Question 14 1 pts

What is given by the integral $\int_0^1 \pi^3 x^2 dx$?

- \bigcirc The arc length of $y=\pi^3x^2 \quad (x\in[0;\,1])$
- The volume of the solid by revolution $y = \pi x \quad (x \in [0; 1])$

about the x-axis

- \bigcirc The area of the surface by revolution $y = \pi^2 x^2 \quad (x \in [0; 1])$ about the x-axis
- \bigcirc The volume of the solid by revolution $y=\pi^2x^2 \quad (x\in [0;\ 1])$ about the x-axis

The n-th Taylor-polynomial

(Question 15	1 pts
	The <i>n</i> -th Taylor-polynomial of a function $\mathbb{R} \to \mathbb{R}$ may be $(n+1)$ -th degree in cereases.	tain
	○ True	
	• False	
	Chanco the correct theorem	

Choose the correct theorem

Question 2 1 pts

Choose the correct theorem about the differentiability and the derivative of the composition (Chain Rule).

$$\bigcirc \text{ Let } f,g:\mathbb{R}\to\mathbb{R}\,.\ g\in D\left(a\right),\ f\in D\left(g\left(a\right)\right). \text{ Then } f\circ g\ \in D\left(a\right) \text{ and } \\ \left(f\circ g\right)'\left(a\right)=f'\left(g\left(a\right)\right)\cdot g'\left(a\right)$$

- \bigcirc Let $f,g:\mathbb{R}\to\mathbb{R}$, $f,g\in D\left(a\right)$. Then $f\circ g\in D\left(a\right)$ and $\left(f\circ g\right)'\left(a\right)=f'\left(a\right)g\left(a\right)+f\left(a\right)\cdot g'\left(a\right)$
- \bigcirc Let $f,g:\mathbb{R}\to\mathbb{R}$, $f,\ g\in D\left(a\right)$. Then $f\circ g\in D\left(a\right)$ and $\left(f\circ g\right)'\ (a)\ =f'\left(a\right)\cdot g'\left(a\right)$
- \bigcirc Let $f,g:\mathbb{R}\to\mathbb{R}$, $g\in D\left(a\right)$, furthermore $g\left(a\right)\in D_{f}$. Then $f\circ g\in D\left(a\right)$ and $(f\circ g)'\left(a\right)=f\left(g(a)\right)\cdot g'\left(a\right)$.

Question 1 1 pts

Give an example for a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous at a=0 but it is not differentiable at this point.

$$\bigcirc f(x) = \begin{cases}
0 & \text{if } x < 0 \\
x & \text{if } x \ge 0
\end{cases}$$

$$\bigcirc f(x) = \begin{cases}
0 & \text{if } x < 0 \\
x^2 & \text{if } x > 0
\end{cases}$$

There is no such an example.

$$f(x) = \text{sign } x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Question 3 then 1 pts

A)
$$\partial_2 f(x,y) = \frac{2xy}{\frac{1}{x}}$$

If
$$f \in \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \frac{xy^2}{\ln x}$, then
$$A) \quad \partial_2 f(x,y) = \frac{2xy}{\frac{1}{x}}$$

$$C) \quad \partial_2 f(x,y) = \frac{2xy \ln x - xy^2 \cdot \frac{1}{x}}{\ln^2 x}$$

$$D) \quad \partial_2 f(x,y) = \frac{y^2}{\frac{1}{x}}$$

O C)

() A)

() D)

O B)

6. Using the usual notations, the polar transformation formula of double integral is

$$A) \quad \iint\limits_{\Sigma} f(x,y) \ dR = \iint\limits_{\Sigma} f(\cos\varphi,\sin\varphi) \cdot r \ dT$$

B)
$$\iint\limits_{R} f(x,y) \ dR = \iint\limits_{T} f(r\cos\varphi, r\sin\varphi) \cdot r \ dT$$

C)
$$\iint_{R} f(x,y) \ dR = \iint_{T} f(\cos \varphi, \sin \varphi) \ dT$$

$$D) \quad \iint\limits_{R} f(x,y) \ dR = \iint\limits_{T} f(r\cos\varphi, r\sin\varphi) \cdot r^{2}\sin\varphi \ dT$$

() A)

O B)

() D)

O C)

Question 5

Then

3. Let $f:(\alpha,\beta)\to\mathbb{R},\ f\in C,\ f\in D^2, a\in(\alpha,\beta).$ Then

A)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2}(x - a)^2$$

B)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) + f'(a)(x - a) + f''(\xi)(x - a)^2$$

C)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) - f'(a)(x - a) - \frac{f''(\xi)}{2}(x - a)^2$$

D)
$$\forall x \in (a, \beta) \ \exists \xi \in (a, x) : \ f(x) = f(a) - f'(a)(x - a) - f''(\xi)(x - a)^2$$

(B)

(D)

(A)

() C)

Using the usual notations

Using the usual notations:

$$\int f(g(x)) dx = F(g(x)), where F = \int f$$

O True

○ False

Define the antiderivative.
\bigcirc Let $I\subseteq\mathbb{R}$ be an open interval, $f,F:I o\mathbb{R}$.
We say that F is an antiderivative of f if
$F\in D$, and $orall x\in I$: $F'(x)=f(x)$.
\bigcirc Let $I\subseteq\mathbb{R}$ be an open interval, $f,F:I o\mathbb{R}$.
We say that F is an antiderivative of f if $\forallx\in I:$ $F(x)=f(x)+C$, where $C\in\mathbb{R}$ is a constant.
\bigcirc Let $f,F\in\mathbb{R} ightarrow\mathbb{R}$.
We say that F is an antiderivative of f , if $D_F=D_f,F\in D$, and $\forallx\in D_F:F'(x)=f(x).$
\bigcirc Let $f,F:[a,b] ightarrow\mathbb{R}$. We say that F is an antiderivative of f if
$\int_{a}^{b} f(x) dx = F(b) - F(a)$
then the double integral of f
If $f(x,y) = g(x) \cdot h(y)$, then the double integral of f over the unit circle equals the product of the integrals of f and g .
○ True
A continuous real function
A continuous real function defined on an open interval has infinitely many antiderivatives.
○ True
O False If you compute a double integral
If you compute a double integral over a normal region, then the boundaries of the integration are fixed.
○ False
○ True

The n-th Taylor-polynomial of

○ True ○ False Then the j-th entry in the i-th Let $f \in \mathbb{R}^n \to \mathbb{R}^m$, $f \in D(a)$. Then the j-th entry in the i-th row of $f'(a)$ equals $\partial_i f_j(a)$
Then the j-th entry in the i-th
Let $f \in \mathbb{R}^n \to \mathbb{R}^m$, $f \in D(a)$. Then the j-th entry in the i-th row of $f'(a)$ equals $\partial_i f_i(a)$
○ True
○ False
If $f, g \in D(a)$, then
A) (fg)'(a) = f'(a)g'(a)
B) $(fg)'(a) = f'(a)g(a) + f(a)g'(a)$
C) $(fg)'(a) = f'(a)g(a) - f(a)g'(a)$
D) $(fg)'(a) = f'(a)g'(a) + f(a)g(a)$
○ B)
○ C)
○ D)
O A) Then the size of the derivative
Let $g: \mathbb{R}^n \to \mathbb{R}^m$, $f: \mathbb{R}^m \to \mathbb{R}^p$, $g \in D(a)$, $f \in D(g(a))$. Then the size of the derivative matrix $(f \circ g)'(a)$ is $p \times n$.
○ True
○ False

Question 8 The polar transformation in 1 pts The polar transformation in double integral transforms the normal region into a rectangular region. True • False

The n-th Taylor-polynomial

Let $n \in \mathbb{N}_0$, $f \in D^n(a)$. The n-th Taylor-polynomial of f centered at the

A)
$$\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} \cdot (x-a)^k$$

B)
$$\sum_{k=0}^{n} \frac{f^{(k)}(x)}{(k+1)!} \cdot (x-a)^k$$

C)
$$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k$$

$$D) \quad \sum_{k=0}^{n} \frac{f^{(k)}(a)}{(k+1)!} \cdot (x-a)^{k}$$