

CSE3018 CONTENT BASED IMAGE AND VIDEO RETRIEVAL LAB EXERCISE - 5

DATE: 01.09.2021

Implement a CBIR system that uses features derived from Color Auto Correlogram Descriptors.

Database – Minimum 10 images and 2 categories

- I. Image Color Auto Correlogram in RGB Color Space
- 1. Read every image in RGB Color Space
- 2. Convert the image to Grayscale
- 3. Generate color auto correlogram for the distance vector D = [1 3] in Horizontal and Vertical directions.
- 4. Use the count as the feature and you will have 2 (No. of directions) * 2 (No. of D values) * 256 (No. of unique colors) = 1024 features for every image. Export these values to an Excel File. (There will be 20 records in the Excel File, one record corresponding to each image)

Image	H-1-0,0	H-1-1,1	H-	•••	H-1-	V-1-0,0	•••	V-1-	H-2-	H-2-	•••	V-2,255,255
Name			1-		255,255			255,255	0,0	1,1		
			2,2									
Imaga 1												
Image 1												
Image 20												
image 20												

- 5. Read a Query Image.
- 6. Extract similar set of features for the Query Image
- 7. Compare Query Image Features with features of every image in your datasets, using Chi-Square Distance.
- 8. Sort the images according to the Ascending Order of the distance.
- 9. Display the matching images of this format. (Display the color images. Use your answer as an index for the database)

QUERY IMAGE						
Most Similar Image 1	Most Similar Image 2	Most Similar Image 3				
Most Similar Image 4	Most Similar Image 5	Most Similar Image 6				

CSE3018 CONTENT BASED IMAGE AND VIDEO RETRIEVAL LAB EXERCISE - 5

DATE: 01.09.2021

- II. Repeat the same procedure, for the same images with the following alternate options
 - a. Quantize the image (Use *imquantize* command)
 - i. 8 Gray Levels
 - ii. 16 Gray Levels
 - iii. 32 Gray Levels
 - iv. 64 Gray Levels

Show the time taken to complete the program execution in each of the above cases. Provide the Feature Vector Length in each case.

Challenging Task:

1. Do the same exercise on the original color image in RGB plane. (Optional Exercise. Logic is similar to histogram features based CBIR System)

Sl.No.	Method	Feature Vector Length	Time Taken
1	Gray Scale Image with 256 gray levels		
2	Gray Scale Image with 8 gray levels		
3	Gray Scale Image with 16 gray levels		
4	Gray Scale Image with 32 gray levels		
5	Gray Scale Image with 64 gray levels		
6	Color Image with R,G,B, each 256 levels		