RIIDADESTI	Müszaki	ÉS	GAZDASÁGTI	IDOMÁNVI	ECVETEM

Elektornikai Technológia és Anyagismeret

ELŐADÁSOK ANYAGÁT ÖSSZEFOGLALÓ JEGYZET

Készítette: Illyés Dávid

Ez a jegyzet nagyon hasonlóan van struktúrálva az előadás jegyzetekhez és fő célja, hogy olyan módon adja át a "A Programozás Alapjai 1" nevű tárgy anyagát, hogy az teljesen kezdők számára is könnyen megérthető és megtanulható legyen.

Tartalomjegyzék

			Oldal
0	0 B	evezetés, fogalmi rendszerezés	2
1	1 El	lektronikus készülékek	3
	1.1	Készülékek fejlesztési fázisai	3
	1.2	Út a műszaki specifikációig	3
		1.2.1 Mit kell létrhozni?	3
		1.2.2 Ki lesz a felhasználó? (jelen és jövő)	3
		1.2.3 Hol használjuk? (jelen és jövő)	
		1.2.4 Mikorra kell elkészíteni? Mennyire szigorú a határidő?	
		1.2.5 Mennyibe fog kerülni a készülék?	4
		1.2.6 További kérdések	4
	1.3	Az áramkör tervezés célja	5
	1.4	Áramkör tervezés - elektromos konstrukció	5
	1.5	Általános munkafolyamat	5
	1.6	Mechanikai tervezés, szerkezeti konstrukció	5
	1.7	Termikus tervezés	6
	1.8	Elektromágneses zavarvédelmi tervezés	6
	1.9	Ergonómiai tervezés	6
	1.10	Üzembiztonságra tervezés	7
	1.11	Érintésvédelmi tervezés	7
	1.12	Protection Protection Protection Protection	7
	1.13	Gyárthatóságra tervezés (DFM)	7
		Gyráthatóságra, tesztelhetőségre tervezés (DFM)	
		Megbízhatósági tervezés	8
	1.16	Szabvényokra épülő megvalósítás	9
	1.17	Szabványokat részben követő megvalósítás	9
2	2 El	lektronikai szerelési- és kötéstechnológiák	10
	2.1		10

0 0 Bevezetés, fogalmi rendszerezés

Mi az Elektronikai Technológia? A technológia az anyag jellemzőinek tervezett, maradandó megváltoztatása. Az elektronikai texhnológia a villamosmérnöki tudományos és Ipari-kereskedelemi ismereteknek azon területe, amely az elektronikus áramköri egységek alkatrészeinek, hordotóinak és összeköttetés rendszereinek tervezésével, megvalósításával és megbízhatóságával foglalkozik.

Az elektronikai technológia hatóereje. A funkciók integrációja a méret, az energiafelhasználás, a költségek és a környezeti terhelés optimalizálása, tervezhető megbízhatóság mellett.

Mi az anyagismeret célja?

- Az ipar különböző területein alkalmazható anyagok (természetes és szintetikus polimerek, fémek és ötvözeteik, egykristályos, kerámikus anyagok és kompozitok) felépítésének, fizikai, technológiai és használati jellemzőinek rendszerezése.
- Az anyagkiválasztás szempontrendszerének és módszertanának összefoglalása.

Mivel foglalkozik a tárgy?

• Elektronikus készülékek konstrukciós alapelvei, megbízhatóság és termikus tervezés.

1 1 Elektronikus készülékek

1.1 Készülékek fejlesztési fázisai

- 1. Műszaki specifikáció meghatározása (50%*):
 - Egyeztetés, marketing, bench-marking, meglévő és várható előírások, hatósági előírások.
- 2. Prototípus kifejlesztése (30%*):
 - Specifikáció, tesztelés, gyárthatósag, ár.
- 3. Gyártástechnológia kidolozása (10%*)
 - Gyártási költségek, gyártáskapacitás, tesztelés.
- 4. Próbagyártás (10%*)
 - Tesztelés (kihozatal/selejt arány).
- 5. Gyártás (0%*)
 - Minőségellenőrzés, SPC.

1.2 Út a műszaki specifikációig

1.2.1 Mit kell létrhozni?

A mérnöki gyakorlatban olyan készülékekkel foglalkozunk, amelyekre
 $\underline{\text{igény}}$ mutatkozik. Az igény lehet:

- valós:
 - item egyedi (pl. atomerőmű),
 - nem egyedi, vagy piaci (pl. autó),
- látens (pl. SMS),
- a kitalálás pillanatában még nem létező (pl. Rubik Kocka)

1.2.2 Ki lesz a felhasználó? (jelen és jövő)

- Gyerek, felnőtt (férfi vagy nő),
- idős/beteg,
- átlagos fogyasztó,
- szakember,
- specialista.
 - − → funkciók, ergonómiai szempontok

1.2.3 Hol használjuk? (jelen és jövő)

- Beltér/kültér, hideg/meleg (konyha, fürdőszoba),
- strandon, víz alatt, 20000 m magasan,
- kemencében, váltóban (forró olajban), kipufogócsőben,
- műholdon.
 - → a működési környezet feltételi (T, RH, p stb.)

^{*:}a termék sikerességében való szerep aránya

1.2.4 Mikorra kell elkészíteni? Mennyire szigorú a határidő?

- A piaci megjelenés időpontjának optimuma van:
 - hosszabb fejlesztési idő alatt a készülék tulajdonságaival lehet megelőzni a konkurenciát,
 - gyor piaci megjelenéssel a készülék újdonságereje nagyobb,
- egyéb szempontokat figylemen kívül hagyva, a piaci megjelenés idejének csökkentésével a kültségek meredeken növekszenek,
- a határidő betartása:
 - az esetek többségében fontos, de csúszás tolerálható
 - egyes esetekben kulcsfontosságú (pl. Spirit Rover)

1.2.5 Mennyibe fog kerülni a készülék?

Pontosabban megfogalmazva: **gazdaságos**-e a készülék kifejlesztése, előállítása, gyártása? Mennyibe fog kerülni a piacra dobásig? Az előzetes költségbecslés a tervet még a megszületése előtt keresztbehúzhatja. Hiába jó (és megvalósítható, eladható, stb.) egy ötlet, ha a gyártó számára nem gazdaságos a megvalósítás.

A költségek fontosabb összetevői:

- fejlesztés,
- gyártástervezés, gyártósor felállítása,
- gyártás,
- utóélet,
 - (üzemeltetés),
 - terméktámogatás (alkatrész utánpótlás),
 - karbantartás.
 - garanciális problémák kezelése,
 - újrahasznosítás.

1.2.6 További kérdések

(sokszor már ezen a szinten pontosan kell választ adni)

- a készülék tervezett és megvalósítható térfogatigénye, tömege,
- a készülék energiaigénye,
- tervezett élettertam,
- megfelelés a szabányoknak és direktíváknak.

Elkerülhette valami a figyelmünket a stratégiai kérdésekben? Komplex fejelsztési projektekben **megvalósíthatósági tanulámnyt** kell készíteni.

IDE JÖN A 8. OLDALON LÉVŐ ÁBRA

1.3 Az áramkör tervezés célja

Az áramkörtervezés fő célja, hogy az áramköri hordozót és a passzív-aktív alkatrészek készletét felhasználva, **mérnöki szemléleti** előállítsunk egy áramkört.

Megfelelő funkcionálítás főbb feltételei:

- Alkatrészek értékei, tűrései, paraméterei;
- Felhasznált anyagok paraméterei, tűrései;

Példák:

- Hőmérséklet, tápfeszültség, villamos analóg és digitális paraméterek;
- Gyártási tolerancia (nem tőlünk függ legfeljebb a gyártó megválasztásával);
- Dokumentáció megfelelő- az alkatrész leírása a munka megkönnyítése érdekében?

Ezek szükségesek ahhoz, hogy összeálljon, tesztelhető legyen és megfelelően működjön a tervből előállított áramkör.

1.4 Áramkör tervezés - elektromos konstrukció

- 1. Kapcsolási rajz készítés,
- 2. részegységekre bontás, csatlakozó kiosztás,
- 3. nyomtatott áramköri tervezés:
 - számítógépes tervezőrendszerek (ORCAD, Pads...),
 - alkatrész elrendezés (placer),
 - összehuzalozás (router),
- 4. készülékhuzalozás.

1.5 Általános munkafolyamat

13 oldal ábra

Iteratív folyat - egyes lépésekról visszatérhetünk korábbi pontokba!

Előre/hátra annotációnak hívják az ilyen megoldásokat.

A terv különböző szintjeit a netlista file köti össze.

Három részre különíthető a teljes EDA/ECAD folyamt a fogalmi rendszer szerint:

- Computer Aided Engineering (CAE)
- Computer Aided Design (CAD)
- Computer Aided Manufacuturing (CAM)

1.6 Mechanikai tervezés, szerkezeti konstrukció

- Készülk mechanikai vázszerkezetének tervezése,
- doboz és burkolat kialakítás formatervezés.
- részegységek belső elrendezése:
 - sínrendszer szerelés,
 - alaplap,
 - tövvkártyás rendszer,
- előlap-, kezelőlap-, hátlaptervezés ergonómia.

1.7 Termikus tervezés

- Különösen fontos nagy elemsűrűségű (laptop) és nagy teljesítményű (tápegység) készülékek esetén
- Szoftver eszközök:
 - termikus szimuláció,
- hardver eszközök:
 - termikus interface,
 - hűtőbordák,
 - ventillátorok,
 - heat pipe.

1.8 Elektromágneses zavarvédelmi tervezés

Esetleg ide is jöhet a kép a 16. oldalról

- EMC (elektromágneses kompatibilitás):
 - a készülék által kibocsátott zavar megfelelően kicsi,
 - a készülék immunitása megfelelően nagy.
- Zavarforrások:
 - természetes:
 - * villámlás, elektromos energia kisülés,
 - * kozmikus sugárzás,
 - * naptevékenységgel kapcsolatos zavarok,
 - * légkörből, ionoszférából érkező zavarok,
 - mesterséges:
 - * műsorszórók: rádió és TV adók,
 - * mobiltelefonok,
 - * rádiótelefonok,
 - * radarok,
 - * teljesítmény kapcsolók, relék,
 - * felvezetős teljesítményszabályzók,
 - * motorok, egyenirányítók.

1.9 Ergonómiai tervezés

- Készülékek kezelés szempontjából történő optimális kialakítása előlap, kezelőlap tervezés. Példa: elektronikus műszerek
 - egyértelmű, esztétikus feliratozás,
 - kijelzők és kezelőszervek működési elv szerinti összerendelése,
 - összetartozó elemek egy csoportban, színnel jelölve, keretbe foglalva,
 - fontos kezelőszervek mellett LED indikátor,
 - nagyteljesítményű nyomógomb és kapcsoló nagyobb méret,
 - halózati főkapcsoló az előlap valamelyik szélén,
 - legfontosabb indikátor az előlap bal felső sarkában.
- Optimális munkakörülmények, munkahelyek kialakítása. Példa: szerelő munkahely

1.10 Üzembiztonságra tervezés

- Üzembiztonság fogalomköre:
 - életvédelem, balesetvédelem, vagyonvédelem,
 - rendeltetésszerű és meghibásodott állapotban sem okozhat kárt, veszélyt,
 - az okozott kárért, balesetért a tervezp és gyártó a felelős!
 - Safety Engineer.
- Üzembiztonsági, környezetállósági témakörök:
 - környezeti hatások elleni védelem:
 - * klimatikus,
 - * kémiai, biológiai,
 - * mechanikai igénybevételek, autóiparban rezgések elleni védelem,
 - túláramvédelem,
 - túlmelegedés elleni (tűz) védelem,
 - káros szgárzások elleni védelem,
 - robbanásvédelem.

1.11 Érintésvédelmi tervezés

- A készülékek fémes részei, amelyek üzemszerűen nincsenek feszültség alatt, meghibásodás esetén se okozhassanak áramütést. A szabványok betratása kötelező!
 - "0." Érintésvédelmi osztály:
 - * Elkerítés, elszigetelés, burkolás nincs érintésvédelemi kapocs.
 - "I." Érintésvédelmi osztály:
 - * Üzemi szigetelés + megérinthető fémrészek összekötve (pl. készülékház + ajtó) és a hálózati védőföldre kötve (védőeres hálózati kábel, színjelzés: zöld-sárga).
 - "II." Érintésvédelmi osztály:
 - * Szigetelőanyag burkolat: az összes fémrészt burkolja (pl. hajszárító). A külső burkolat egyben a védőszigetelés is.
 - "III." Érintésvédelmi osztály:
 - * Érintési feszültség 24 50 V_{eff} AC
 - * Nincs olyan áramköri rész, amely ennél nagyobb feszültségen üzemel.

Ide 19. oldal ábrák és példák jöhetnek.

1.12 IP - Védelem kérdése (Ingression Protection)

20. oldali táblázat ide

1.13 Gyárthatóságra tervezés (DFM)

- Minőségügy, 6 szigma,
- terméktervezés, amley figyelembe veszi a gyártási követelményeket,
- olyan tervezési lépés, amelyben csoportmunkát alkalmazunk a termék kifejlesztésére,
- több eszközt és technikát magába foglaló keret a gyártható termék létrehozására.

Előnyök:

- alacsonyabb fejlesztési költség,
- rövidebb fejlesztési idő,
- rövidebb idő a gyártás megkezdéséig,
- alacsonyabb szerelési és tesztelési költségek,
- jobb minőség.

1.14 Gyráthatóságra, tesztelhetőségre tervezés (DFM)

Irányelvek:

- minimalizáljuk az alkatrészek számát,
- használjuk a szabványos és azonos elemeket,
- minimalizáljuk a szerelési síkok számát (Z-axis),
- használjunk standerd szerszámfejeket, fúrókat, eszközöket,
- kerüljük a szűk furatokat (forgácsok, egyenesség, eltömődés),
- használjuk a közös méretet a szerszámrögzítéshez,
- minimalizáljuk a szerlési irányokat,
- miximalizáljuk a hozzáférhetőséget; szerlésre tervezés,
- minimalizáljuk a kézi műveleteket,
- küszöböljük ki az utólagos állítást,
- használjuk ismételhető, jól ismert folyamatokat,
- tervezzük az alkatelemeket a hatékony tesztelés lehetőségére,
- kerüljük a rejtett részleteket,
- hozzunk létre szimmetriát két irányban,
- kerüljünk az összekuszálás lehetőségét,
- tervezzünk önmegvezető (önpozicionáló) elemeket.

1.15 Megbízhatósági tervezés

- Soros struktúrájú (redundanciamentes) rendszer jellemzői:
 - a rendszer véges számú elemből áll,
 - egy elem meghibásodása a rendszer meghibásodásához vezet,
 - a meghibásodások egymástól függetlenek,
 - a kommersz elektronikai berendezések soros struktúrájúak.
- Melegtartalékolt (párhuzamos) rendszer jellemzői:
 - a rendszer n azonos elemből áll,
 - a rendszer műkökéséhez egy elem működése szükséges,

- hibafelismerő elem, kapcsolóelem esetenként szükséges,
- a tartalék állapota ismert,
- a taralék is fogyaszt energiát, elhasználódik.
- Hidegtartalékolt rendszer jellemzői:
 - a rendszer n azonos elemből áll,
 - a rendszer működéséhez egy elem működése szükséges,
 - a tartalékban lévő elem nincs bekapcsolva, nem fogyaszt energiát,
 - a tartalékban lévő elem nem hibásodhat meg,
 - hibafelismerő és kapcsolóelemre van szükség,
 - a tartalékelem bakapcsolása időt vesz igénybe.

1.16 Szabvényokra épülő megvalósítás

Előnye:

- nem szükséges intuitív tervezés,
- minden paraméter (méret, térfogategységre eső disszipáció, stb.) szabványokból kiválasztható,
- rejtett hibák felbukkanásának esélye kisebb.

Hátránya:

- a tervező keze teljesen kötött,
- egyedi ötletek megvalósítása nem lehetséges,
- a készülék az esetek döntő többségében jelentősen "túltervezett",
- nagyobb tételben a gyártás gazdaságtalanná válhat.

1.17 Szabványokat részben követő megvalósítás

- Ez a gyakoribb eset,
- kötelező szabványok (EMC, érintés védelem, gép direktíva stb.) minden körülmények között betartandóak,
- lehetőseg van az ár/költség/kihozatal/gyrátási kapacitás optimalizálására,
- valamennyi tervezési fázis szükséges,
- lehetőség van minden paraméterben a folyamatos gyrátmány fejlesztésére,
- pélad: notebook konstrukció.

- 2 2 Elektronikai szerelési- és kötéstechnológiák
- 2.1