

ALGORITMOS EM GRAFOS

Bacharelado em Sistemas da Informação Prof. Marco André Abud Kappel

Aula 1 – Introdução a Grafos

Listas lineares

- Dentre as estruturas de dados não primitivas, as listas lineares são as de manipulação mais simples.
- As propriedades estruturais decorrem apenas da posição relativa entre os nós dentro de uma sequência linear.
- Uma lista agrupa informações sobre um conjunto de elementos que se relacionam sequencialmente entre si.
- Cada nó possui apenas um antecessor e um sucessor.
- Ex: lista de alunos, funcionários de uma empresa, listas de compras, itens em estoque, etc...

- Listas lineares
 - Classificação quanto à posição relativa na memória:
 - Listas Sequenciais: Ocupam posições contínuas de memória.

Listas encadeadas: Elementos dispersos na memória.

Listas lineares

 Casos particulares: Decorrem de restrições na inserção e remoção.

- Listas lineares
 - Implementação

```
typedef struct NODE{
   int x;
   struct NODE *next;
} NODE;

typedef NODE* LISTNODEPTR;
```

```
LISTNODEPTR criaNo(int x) {
   LISTNODEPTR n = (LISTNODEPTR) malloc(sizeof(NODE));
   if (n == NULL) {
        printf("Erro no malloc");
        exit(1);
   }
   n->x = x;
   n->next = NULL;
   return n;
}

void freeNODE(LISTNODEPTR 1) {
        free(1);
   }
```

Listas não-lineares

Cada nó poderá ter vários sucessores.

Motivação

- Muitas aplicações em computação precisam considerar um conjunto de conexões entre pares de objetos.
- Provavelmente são as estruturas matemáticas mais utilizadas na ciência.

Motivação

- Nestes casos, diversas perguntas podem ser feitas:
 - Existe um caminho para ir de um objeto a outro, seguindo as conexões?
 - Qual é a menor distância entre um objeto e outro?
 - Quantos outros objetos podem ser alcançados a partir de um determinado objeto?
- Grafos são utilizados para modelar tais problemas.

Motivação

- Alguns problemas que podem ser resolvidos através de uma modelagem em grafos:
 - Ajudar máquinas de busca a localizar informação relevante na Web.
 - Descobrir qual é o roteiro mais curto para visitar as principais cidades de uma região turística.
 - Calcular como transmitir o fluxo máximo de informações por uma rede.

Motivação

– Exemplos:

Grafo	Vértices	Arestas
Cronograma	Tarefas	Restrições de preferência
Malha viária	Interseções de ruas	Ruas
Rede de água	Edificações	Canos
Rede telefônica	Telefones	Cabos
Redes de computadores	Computadores	Linhas
Software	Funções	Chamadas de função
Web	Páginas web	Links
Redes sociais	Pessoas	Relacionamentos

Definições e conceitos

Definições

- Um grafo G = (V, E) é um conjunto não vazio de vértices V e arestas E.
- ➤ G(V,E):
 - V
 - Vértices (ou nós)
 - Conjunto finito n\u00e3o vazio
 - E
 - Arestas
 - Conjunto de pares de elementos de V
- Dois nós são vizinhos (ou adjacentes) se estão conectados por uma aresta.

Definições

– Exemplos:

- **Vértices**: $V = \{0, 1, 2, 3\}$

- Arestas: $E = \{\{0,1\}, \{0,2\}, \{0,3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$

Definições

– Exemplos:

- **Vértices**: $V = \{0, 1, 2, 3, 4\}$

- Arestas: $E = \{\{0,1\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}\}$

- Definições
 - Exemplos:

Definições

– Exemplos:

- Vértices: $V = \{0, 1, 2, 3, 4\}$

- Arestas: $E = \{\{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}\}$

- Definições
 - Exemplos:

Definições

– Exemplos:

- **Vértices**: $V = \{0, 1, 2, 3, 4, 5, 6\}$

- Arestas: $E = \{\{0,1\}, \{0,2\}, \{1,3\}, \{1,4\}, \{2,5\}, \{2,6\}\}$

Definições

– Exemplos:

Paris

São Paulo

Definições

 Um grafo é trivial se o conjunto de vértices V possui apenas 1 elemento.

 Um grafo que possui mais nós não adjacentes do que nós adjacentes, ele é chamado de grafo esparso.

Definições

Um laço é um arco que liga um nó a ele mesmo.

Duas arestas são paralelas quando ligam os mesmos dois nós.
 Neste caso, o grafo também é chamado de multigrafo.

Um grafo sem laços e arestas paralelas é chamado grafo simples.

Definições

- Um grafo é direcionado se suas arestas possuem direções definidas.
- Nesse caso, os pares de vértices que compõem o conjunto de arestas são pares ordenados.
- Também é conhecido como digrafo.

– Vértices: V = {0, 1}

- Arestas: $E = \{(0,1)\}$

 Um grafo é não-direcionado se suas arestas não possuem direções definidas.

Definições

– Exemplos:

$$- V = \{0, 1, 2, 3, 4\}$$

$$- E = \{\{0,1\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}\}$$

- Grafo simples
- 1 não é adjacente a 3

Definições

– Exemplos:

- $V = \{0, 1, 2, 3, 4\}$ $E = \{(0,4), (4,1), (1,1), (1,2), (1,3), (3,2)\}$
- Grafo direcionado
- Possui um laço

Definições

- Uma aresta incide em um vértice se o vértice é uma das ligações da aresta.
- O grau (ou valência) de um nó i, denotado por deg(i) é o número de arestas incidentes nesse nó.
- O grau de entrada de um nó é o número de arestas que têm o nó como destino.
- O grau de saída de um nó é o número de arestas que têm o nó como origem.

- Definições
 - Exemplos: Qual é o grau de cada um dos nós deste grafo?

Definições

Definições

Definições

- Nó 0: grau 1
- Nó 1: grau 3
- Nó 2:
- Nó 3:
- Nó 4:
- Nó 5:

Definições

- Nó 0: grau 1
- Nó 1: grau 3
- Nó 2: grau 2
- Nó 3:
- Nó 4:
- Nó 5:

Definições

- Nó 0: grau 1
- Nó 1: grau 3
- Nó 2: grau 2
- Nó 3: grau 2
- Nó 4:
- Nó 5:

Definições

- Nó 0: grau 1
- Nó 1: grau 3
- Nó 2: grau 2
- Nó 3: grau 2
- Nó 4: grau 2
- Nó 5:

Definições

- Nó 0: grau 1
- Nó 1: grau 3
- Nó 2: grau 2
- Nó 3: grau 2
- Nó 4: grau 2
- Nó 5: grau 0 (nó isolado)

- Definições
 - Exemplos: Qual é o grau do nó 0?

Definições

– Exemplos: Qual é o grau do nó 0?

- Grau do nó 0:
- Grau de entrada do nó 0:
- Grau de saída do nó 0:

Definições

– Exemplos: Qual é o grau do nó 0?

- Grau do nó 0: 3
- Grau de entrada do nó 0: 2
- Grau de saída do nó 0: 1

- Definições
 - Exemplos: Qual é o grau do nó 1?

Definições

– Exemplos: Qual é o grau do nó 1?

- Grau do nó 1:
- Grau de entrada do nó 1:
- Grau de saída do nó 1:

Definições

– Exemplos: Qual é o grau do nó 1?

- Grau do nó 1: 5
- Grau de entrada do nó 1: 2
- Grau de saída do nó 1: 3
- Laços somam 2 graus!

Definições

- O grau médio de um grafo é dado por: $\deg(G) = \frac{1}{V} \sum_{i=1}^{V} \deg(v_i)$
- Em um **grafo** com m arestas, vale a seguinte **relação**: $\sum_{v \in G} \deg(v) = 2m$

– Em um grafo direcionado com m arestas, temos:

$$\sum_{v \in G} indeg(v) = \sum_{v \in G} outdeg(v) = m$$

Definições

– Exemplos:

- Grau médio:

$$\deg(G) = \frac{1}{V} \sum_{i=1}^{V} \deg(v_i)$$

Definições

– Exemplos:

- Grau médio:

$$\deg(G) = \frac{1}{V} \sum_{i=1}^{V} \deg(v_i) =$$

$$\frac{1}{5} (1+2+5+2+2) = 2,4$$

Definições

– Exemplos:

- Verificando número de arestas:

$$\sum_{v \in G} \deg(v) = 2m$$

Definições

– Exemplos:

Verificando número de arestas:

$$m = 6$$

$$\sum_{v \in G} \deg(v) = 2m$$

$$(1+2+5+2+2) = 12 = 2 \times 6$$

Definições

– Exemplos:

Verificando graus de entrada e saída:

$$\sum_{v \in G} \operatorname{indeg}(v) = \sum_{v \in G} \operatorname{outdeg}(v) = m$$

Definições

– Exemplos:

Verificando graus de entrada e saída:

$$\sum_{v \in G} \operatorname{indeg}(v) = \sum_{v \in G} \operatorname{outdeg}(v) = m$$

Entrada: (0+1+2+2+1)=6

Saída: (1+1+3+0+1)=6

Definições

- Um grafo é regular quando seus nós possuem o mesmo grau.

Definições

- O complemento de um grafo G, representado por \overline{G} , é o grafo com o mesmo conjunto de vértices de G e tal que se dois vértices são adjacentes em G, não são em \overline{G} .

G

Definições

 Se todos os vértices de G são mutuamente adjacentes, o grafo é dito completo.

Definições

Quantas arestas há em um grafo completo de n vértices?

n = 1

0 arestas

Definições

Definições

Definições

Definições

Definições

Vértices	Arestas
1	0
2	1
3	3
4	6
5	10

Definições

Vértices	Arestas
1	0
2	1
3	3
4	6
5	10

$$C_{n,2} = \frac{n!}{2! \cdot (n-2)!} = \frac{n(n-1)(n-2)!}{2(n-2)!} = \frac{n(n-1)}{2}$$

Definições

 Um subgrafo H de um grafo G é tal que podemos dizer que G contém H.

Grafo G

Subgrafo de G

Subgrafo de G

Definições

 H é um subgrafo induzido de um grafo G se ele tem todas as arestas que aparecem em G sobre o mesmo conjunto de vértices.

Grafo G

Subgrafo induzido de G

Subgrafo induzido de G

Definições

Exemplos

Alguns subgrafos:

Definições

- Um grafo é ponderado quando um número (peso) está associado a cada aresta.
- O peso de cada aresta (i, j) é representado por w(i,j)

$$w(0,1) = 3$$

$$w(2,3) = 1$$

$$w(3,5) = 4$$

Definições

- Um caminho em um grafo é uma sequência de vértices, começando em um vértice e terminando em um vértice.
- Um caminho do nó n₀ até o nó n_k é uma lista:

$$(n_0, n_1, n_2, ..., n_k)$$

Onde: n_0 é o vértice inicial do caminho n_1 é um vértice interno do caminho

...

n_k é o vértice final do caminho

Obs: n_k pode ser igual a n₀

Definições

 Dois ou mais caminhos são independentes se nenhum deles contém ao menos um vértice do outro, exceto o primeiro e o último.

 Existem dois caminhos independentes do nó 4 até o nó 2?

Definições

 Dois ou mais caminhos são independentes se nenhum deles contém ao menos um vértice do outro, exceto o primeiro e o último.

 Existem dois caminhos independentes do nó 4 até o nó 2?

- Sim! (4, 1, 2) e (4, 3, 2)

Definições

 O comprimento de um caminho é o número de arestas no caminho, ou seja:

comp
$$(n_0, n_1, n_2, ..., n_k) = k$$

- Um nó n_0 é alcançável por um nó n_k se existe pelo menos um caminho que liga os dois nós.
- Neste caso, pode-se dizer que os nós estão conectados.
- Em um grafo direcionado, um caminho pode apenas seguir nos sentidos direcionados pelas arestas.

Definições

Exemplos

– Os nós 0 e 3 estão conectados?

Definições

- Os nós 0 e 3 estão conectados? Sim!
- Um caminho é:
- Comprimento:

Definições

- Os nós 0 e 3 estão conectados? Sim!
- Um caminho é: (0, 4, 3)
- Comprimento:

Definições

- Os nós 0 e 3 estão conectados? Sim!
- Um caminho é: (0, 4, 3)
- Comprimento: 2

Definições

- Os nós 0 e 3 estão conectados? Sim!
- Outro caminho é: (0, 4, 1, 3)
- Comprimento:

Definições

- Os nós 0 e 3 estão conectados? Sim!
- Outro caminho é: (0, 4, 1, 3)
- Comprimento: 3

Definições

Exemplos

- Os nós 0 e 3 estão conectados? Sim!
- Outro caminho é: (0, 4, 1, 1, 1, 1, 3)
- Comprimento:

Definições

Exemplos

- Os nós 0 e 3 estão conectados? Sim!
- Outro caminho é: (0, 4, 1, 1, 1, 1, 3)
- Comprimento: 6

Definições

Exemplos

– O nó 1 é alcançável pelo nó 3?

Definições

Exemplos

- O nó 1 é alcançável pelo nó 3? Não!
- Não existem caminhos que partam do nó 3 e cheguem no nó 1.

Definições

- Um ciclo é um caminho onde $n_0 = n_k$, ou seja, é um caminho que começa em um nó e termina nele mesmo.
- Um grafo que não possui ciclos é chamado acíclico.
- Um grafo que possui ciclos é chamado cíclico.

Obs: Se cada nó no ciclo é distinto, o ciclo é simples.

Cíclico Acíclico

Definições

 Obs: Em um grafo não direcionado, um ciclo é simplesmente um caminho fechado sem repetição de arestas ou vértices (além do início e do fim).

Definições

 Um grafo G é dito conexo se existe um caminho para qualquer par de nós (i, j) pertencente à G.

Conexo

Desconexo

Definições

- Componente conexa é um subgrafo induzido máximo (ou seja, o maior possível) no qual qualquer par de vértices está conectado por algum caminho.
- Uma componente conexa é sempre não vazia.
- Todo vértice estará em alguma componente conexa.

Definições

- Componente conexa é um subgrafo induzido máximo (ou seja, o maior possível) no qual qualquer par de vértices está conectado por algum caminho.
- Uma componente conexa é sempre não vazia.
- Todo vértice estará em alguma componente conexa.

Três componentes conexas!

Definições

 Componentes fortemente conexos de um grafo direcionado são conjuntos de vértices sob a relação de "mutuamente alcançáveis".

Componentes fortemente conexos:

Obs: Todos os nós pertencem a alguma componente fortemente conexa.

Definições

 Componentes fortemente conexos de um grafo direcionado são conjuntos de vértices sob a relação de "mutuamente alcançáveis".

Componentes fortemente conexos:

{0, 1, 2, 3} {4} {5}

Obs: Todos os nós pertencem a alguma componente fortemente conexa.

Definições

– Exemplo:

Componentes fortemente conexos:

Ciclos simples:

Definições

– Exemplo:

Componentes fortemente conexos:

```
{0, 1, 6, 3, 2}
{4}
{5}
```

Ciclos simples:

Definições

– Exemplo:

Componentes fortemente conexos:

 $\{0, 1, 6, 3, 2\}$

{4}

{5}

Ciclos simples:

(6, 6)

Definições

– Exemplo:

Componentes fortemente conexos:

 $\{0, 1, 6, 3, 2\}$

{4}

{5}

Ciclos simples:

(6, 6)

(6, 0, 1, 6)

Definições

– Exemplo:

Componentes fortemente conexos:

 $\{0, 1, 6, 3, 2\}$

{4}

{5}

Ciclos simples:

(6, 6)

(6, 0, 1, 6)

(6, 0, 3, 2, 1, 6)

Definições

– Exemplo:

Componentes fortemente conexos:

 $\{0, 1, 6, 3, 2\}$

{4}

{5}

Ciclos simples:

(6, 6)

(6, 0, 1, 6)

(6, 0, 3, 2, 1, 6)

(3, 2, 3)

FIM