Chapter 2.5 Practice Problems

EXPECTED SKILLS:

- Know the derivatives of the 6 elementary trigonometric functions.
- Be able to use these derivatives in the context of word problems.

PRACTICE PROBLEMS:

1. Fill in the given table:

f(x)	$\int f'(x)$
$\sin x$	
$\cos x$	
$\tan x$	
$\cot x$	
$\sec x$	
$\csc x$	

f(x)	f'(x)
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\cot x$	$-\csc^2 x$
$\sec x$	$\sec x \tan x$
$-\csc x$	$-\csc x \cot x$
$\csc x$	$-\csc x \cot x$

2. Use the definition of the derivative to show that $\frac{d}{dx}(\cos x) = -\sin x$ Hint: $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

$$\frac{d}{dx}(\cos x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \left(\frac{\cos x \cos h - \cos x}{h} - \frac{\sin x \sin h}{h}\right)$$

$$= \lim_{h \to 0} \left(\cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h}\right)$$

$$= (\cos x)(0) - (\sin x)(1)$$

$$= -\sin x$$

3. Use the quotient rule to show that $\frac{d}{dx}(\cot x) = -\csc^2 x$.

$$\frac{d}{dx}(\cot x) = \frac{d}{dx} \left(\frac{\cos x}{\sin x}\right)$$

$$= \frac{(\sin x)(-\sin x) - (\cos x)(\cos x)}{\sin^2 x}$$

$$= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x}$$

$$= -\frac{1}{\sin^2 x}$$

$$= -\csc^2 x$$

4. Use the quotient rule to show that $\frac{d}{dx}(\csc x) = -\csc x \cot x$.

$$\frac{d}{dx}(\csc x) = \frac{d}{dx} \left(\frac{1}{\sin x}\right)$$

$$= \frac{(\sin x)(0) - (1)(\cos x)}{\sin^2 x}$$

$$= -\frac{\cos x}{\sin^2 x}$$

$$= -\frac{1}{\sin x} \frac{\cos x}{\sin x}$$

$$= -\csc x \cot x$$

5. Evaluate $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{3}+h\right)-\tan\left(\frac{\pi}{3}\right)}{h}$ by interpreting the limit as the derivative of a function at a particular point.

$$\left| \lim_{h \to 0} \frac{\tan\left(\frac{\pi}{3} + h\right) - \tan\left(\frac{\pi}{3}\right)}{h} = \frac{d}{dx} (\tan x) \right|_{x = \frac{\pi}{3}} = \sec^2\left(\frac{\pi}{3}\right) = 4$$

For problems 6-14, differentiate

6.
$$f(x) = 2\cos x + 4\sin x$$
$$-2\sin x + 4\cos x$$

7.
$$f(x) = 5\cos x + \cot x$$
$$-5\sin x - \csc^2 x$$

$$8. \ g(x) = 4\csc x + 2\sec x$$

$$-4\csc(x)\cot(x) + 2\sec(x)\tan(x)$$

9.
$$f(x) = \sin x \cos x$$

$$\cos^2 x - \sin^2 x$$

$$10. \ f(x) = \frac{\sin^2 x}{\cos x}$$

$$2\sin x + \sin x \tan^2 x$$

11.
$$f(x) = x^3 \sin x$$

$$3x^2\sin x + x^3\cos x$$

12.
$$f(x) = \sec^2 x + \tan^2 x$$

$$4\sec^2(x)\tan(x)$$

13.
$$f(x) = \frac{x + \sec x}{1 + \cos x}$$

$$\frac{1+2\tan x + \cos x + \sec(x)\tan(x) + x\sin x}{(1+\cos x)^2}$$

For problems 14-17, compute $\frac{d^2y}{dx^2}$

14.
$$f(x) = \tan x$$

$$2\sec^2 x \tan x$$

15.
$$f(x) = \sin x$$

$$-\sin x$$

$$16. \ f(x) = \cos^2 x$$

$$2\sin^2 x - 2\cos^2 x$$

17.
$$f(x) = \sin^2 x + \cos^2 x$$

For problems 18-19, find all values of x in the interval $[0, 2\pi]$ where the graph of the given function has horizontal tangent lines.

 $18. \ f(x) = \sin x \cos x$

$$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

 $19. \ g(x) = \csc x$

$$\frac{\pi}{2}, \frac{3\pi}{2}$$

20. Compute an equation of the line which is tangent to the graph of $f(x) = \frac{\cos x}{x}$ at the point where $x = \pi$.

$$y = \frac{1}{\pi^2}x - \frac{2}{\pi}$$

21. Consider the graphs of $f(x) = \sqrt{2}\cos(x)$ and $g(x) = \sqrt{2}\sin(x)$ shown below on the interval $\left[0, \frac{\pi}{2}\right]$.

Show that the graphs of f(x) and g(x) intersect at a right angle when $x = \frac{\pi}{4}$. (Hint: Show that the tangent lines to f and g at $x = \frac{\pi}{4}$ are perpendicular to each other.)

 $f'\left(\frac{\pi}{4}\right) = -1$ and $g'\left(\frac{\pi}{4}\right) = 1$. So, the tangent lines to f and g at $x = \frac{\pi}{4}$ are perpendicular to one another since the product of their slopes is -1.

22. A 15 foot ladder leans against a vertical wall at an angle of θ with the horizontal, as shown in the figure below. The top of the ladder is h feet above the ground. If the ladder is pushed towards the wall, find the rate at which h changes with respect to θ at the instant when $\theta = 30^{\circ}$. Express your answer in **feet/degree**.

$$\frac{dh}{d\theta} = \frac{15\sqrt{3}}{2} \text{ ft/radian} = \frac{\pi\sqrt{3}}{24} \text{ ft/degree}$$

23. Use the Intermediate Value Theorem to show that there is at least one point in the interval (0,1) where the graph of $f(x) = \sin x - \frac{1}{3}x^3$ will have a horizontal tangent line.

 $f'(x) = \cos x - x^2$. Firstly, notice that f'(x) is continuous for all x; therefore, it is continuous for all x in [0,1]. Secondly, notice that f'(0) = 1 > 0 and $f'(1) = \cos(1) - 1 < 0$. Thus, the Intermediate Value Theorem states there is at least one x_0 in the interval (0,1) with $f'(x_0) = 0$. In other words, there is at least one x_0 in (0,1) where f(x) will have a horizontal tangent line.

- 24. **Multiple Choice:** At how many points on the interval $[-\pi, \pi]$ is the tangent line to the graph of $y = 2x + \sin x$ parallel to the secant line which passes through the graph endpoints of the interval?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) None of these

С