Ex1

Sur le cercle trigonométrique ci-dessous représenter $\cos x$ et $\sin x$ et $\cos(x + \pi/2)$ et $\sin(x + \pi/2)$. En déduire l'expression $\cos(x + \pi/2)$ et $\sin(x + \pi/2)$ en fonction de $\cos x$ et $\sin x$

Réponse

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

Ex2

Compléter le tableau en attribuant les courbes aux fonctions qu'elles représentent.

fonction	$x \mapsto \sin x$	$x \mapsto \cos x$	$x \mapsto \cos^2 x$	$x \mapsto -\cos x$	$x \mapsto 1 + \sin x$
courbe					

Réponse

fonction	$x \mapsto \sin x$	$x \mapsto \cos x$	$x \mapsto \cos^2 x$	$x \mapsto -\cos x$	$x \mapsto 1 + \sin x$
courbe	3	5	1	2	4

Ex3

La tension $u_1(t)$ a une période de 300 μ s la tension $u_2(t)$ a une fréquence de 8 kHz. Attribuer chacun des deux graphes.

Réponse :

 $u_1(t)$ a une période de $T_1=300~\mu s=3.10^{-4}~s$

 $u_2(t)$ a une fréquence de 8 kHz correspond à une période $T_2=1/8.10^3=1,25.10^{-4}~{\rm s} < T_1$

On voit que le graphe 2 a une plus petite période donc graphe $2 = u_2(t)$ et graphe $1 = u_1(t)$.

Ex4

 $u_1(t) = U_m \cos(\omega t) \text{ et } u_2(t) = U_m \cos(\omega t + \varphi).$

 $u_2(t)$ est-elle en avance ou en retard sur $u_1(t)$? en déduire le signe de φ .

Réponse : $u_2(t)$ passe par son maximum avant $u_1(t)$, elle est donc en avance sur $u_1(t)$ donc $\varphi > 0$.

Ex5

Dans l'exercice précédent $\omega=1$ rad. s⁻¹.

A l'aide du graphique déterminer φ .

Réponse :

Ex6

Course de signaux :

Soient $s_1(t) = 4\cos(t)$ et $s_2(t) = 2\sin(3t)$ avec t > 0. Quel est le signal qui passe le plus tôt par la valeur s = 0?

 $s_1(t)$ passe la première fois en 0 pour $t_1 = \pi/2$

 $s_2(t)$ passe la première fois en 0 pour $3t_2=\pi \Longrightarrow t_2=\pi/3 < t_1$ donc avant s_1 .

Ex7

(rien d'original, à faire sûrement précéder de dérivées de fonction numériques $\cos 2x$, $\sin(3x+1)$, $2\cos(5x-2)$...

La position de l'extrémité d'un ressort est repérée par son abscisse $x(t) = X_m \cos{(\omega t)}$, déterminer l'expression de l'évolution temporelle de sa vitesse v = dx/dt.

Réponse :

$$v = \frac{dx}{dt} = -\omega X_m \sin(\omega t)$$