Коллоквиум по Дискретной математике, 2 курс

Залялов Александр, @bcategorytheory, Солодовников Никита, @applied_memes Шморгунов Александр, @Owlus

10 Определение машин Тьюринга и вычислимых на машинах Тьюринга функций. Тезис Чёрча-Тьюринга. Неразрешимость проблемы остановки машины Тьюринга.

Машина Тьюринга задаётся¹

- непустым конечным алфавитом Σ , среди которого выделен пробельный символ ω и не содержащее пробела подмножество Γ входной алфавит;
- непустым конечным множеством состояний Q, среди которых выделено начальное состояние s_0 и множество терминальных состояний F;
- функцией переходов $\delta:(Q\setminus F)\times\Sigma\to Q\times\Sigma\times\{-1,0,+1\}.$

Машина Тьюринга состоит из бесконечной ленты, разбитой на ячейки, головки, в любой момент времени указывающей на одну ячейку и одной ячейки памяти, в которой хранится текущее состояние. В начальный момент времени на ленте записано некоторое слово, составленное из букв входного алфавита, головка смотрит на первый символ этого слова, во всех остальных ячейках пробелы. Затем в каждый момент времени вычисляется $\delta(q,c)=(q',c',\Delta)$, где q — текущее состояние, c — символ записанный в ячейке, на которую сейчас смотрит головка. Состояние меняется на q', символ в текущей ячейке на c', головка остаётся на месте или передвигается на один влево или вправо в соответствии со значением Δ . Если q' оказалось терминальным, на этом работа машины заканчивается, иначе этот процесс продолжается.

Машины Тьюринга естественным образом отождествляются с частичными функциями $f: \Gamma^* \to \Gamma^*$ — аргументом функции является входное слово, а возвращает функция слово, записанное на ленте после завершения работы машины (то есть всё, что написано на ленте, кроме бесконечного числа пробелов слева и справа). Функции будут частичными, поскольку машина Тьюринга может продолжать работать бесконечно или в данной конструкции может оказаться, что на выходе есть символ, не содержащийся в Γ . Функции, которые можно таким образом получить по некоторой машине Тьюринга, называются вычислимыми на машине Тьюринга.

Тезис Чёрча-Тьюринга. Любая вычислимая функция вычислима на машине Тьюринга.

Здесь понятие "вычислимая функция" используется в неформальном смысле, под ним понимается функция, вычислимая в любой разумной модели, которая может прийти вам в голову. Тезис не является формальным утверждением, он никак не доказывается и принимается нами на веру.

Теорема. Не существует вычислимой функции, определяющей по машине Тьюринга и входному слову, остановится ли эта машина.

Теперь, когда мы отождествили вычислимые и вычислимые на машине Тьюринга функции, эта теорема непосредственно следует из доказательства теоремы о существовании полного перечислимого множества из 7 билета.

¹Здесь машина Тьюринга определяется в соответсвии с лекцией. Следует понимать, что это определение не является общепринятым. Вариаций масса: кто-то запрещает головке оставаться на месте, кто-то выделяет выходной алфавит, отличный от входного и т. д.

11 Неразрешимость проблемы достижимости в односторонних ассоциативных исчислениях. Полугруппы, заданные порождающими и соотношениями. Теорема Маркова—Поста: неразрешимость проблемы равенства слов в некоторой конечно определенной полугруппе (без доказательства).

Определение. Односторонним ассоциативным исчислением называется множество из всех слов над некоторым конечным алфавитом и конечный набор подстановок. Каждая подстановка представляет собой пару слов (s,t) и позволяет в любом слове содержащем s как подстроку заменить её на t (но не наоборот).

Теорема. Существует одностороннее ассоциатвиное исчисление, в котором не разрешима задача проверить по паре слов, можно ли некоторой последовательностью подстановок перейти от первого ко второму.

Доказательство. Возьмём некоторую машину Тьюринга M, для которой неразрешима проблема остановки, при чём если такую, что если она останавливается, то на ленте записано пустое слово. Построим по ней одностороннее ассоциативное исчисление, в котором из [X] можно получить Y, если и только если M преобразует X в Y. В качестве алфавита для исчисления возьмём объединение алфавита M и её множества состояний (а также квадратные скобки и символы \triangleleft , \triangleright). Будем сопоставлять конфигурациям машины слова исчисления. Если машина находится в состоянии s, на ленте записано слово PQ(конкатенация слов P и Q) и головка указывает на первый символ слова Q, сопоставим такой конфигурации слово [PsQ] в нашем исчислении. Тут важно, что мы считаем, что у машины не пересекаются алфавит и множество состояний. Построим по переходам машины подстановки для исчисления.

Переход МТ	Подстановка одностороннего ассоциативного исчисления
$(s,c)\mapsto (s',c',0)$	sc o s'c'
$(s,c)\mapsto (s',c',+1)$	sc o c's'
$(s,c)\mapsto (s',c',-1)$	$xsc o s'xc'$ — для каждого символа x из алфавита машины, а также $[sc o [s' \lrcorner c']$
$(s, \square) \mapsto (s', c', 0)$	s] o s'c']
$(s, \square) \mapsto (s', c', +1)$	s] o c's']
$(s, \square) \mapsto (s', c', -1)$	xs] o s'xc'

Дополнительно к этому введём подстановки, позволяющие получить пустое слово, если машина остановится.

- $f \rightarrow \triangleleft$, f терминальное состояние;
- $c \triangleleft \rightarrow \triangleleft, c \neq [;$
- $[\triangleleft \rightarrow \triangleright;$
- $\triangleright c \rightarrow \triangleright, c \neq];$
- \triangleright] $\rightarrow \varepsilon$ (пустое слово).

Это можно было бы реализовать проще без двух дополнительных символов, но так мы получаем, что всегда существует ровно одна последовательностей подстановок, моделирующих работу машины Тьюринга. Осталась одна деталь — мы пообщеали, что мы начнём с [X], а не с $[s_0X]$. Она решается просто — добавлением подстановки $[x \to [s_0x]$ для всех символом x из алфавита машины.

Итак, мы свели задачу остановки машины Тьюринга (про которую было известно, что она неразрешима) к задаче достижимости в одностороннем ассоциативном исчислении и показали этим, что эта задача тоже неразрешима.

Оказывается, если потребовать, чтобы все подстановки были двухсторонними, то задача останется неразрешимой, но доказывать этот факт от нас не требуют. При чём такую задачу можно сформулировать на языке алгебры:

Пусть про некоторую полугруппу известно, что она содержит элементы a_1, \ldots, a_n и в ней выполняются некоторые (конечное количество) равенства вида $a_{i_1}a_{i_2}\ldots a_{i_k}=a_{j_1}a_{j_2}\ldots a_{j_m}$. Обязательно ли в ней выполняется заданное равенство такого же вида?