

COPIE INTERNE 25/08/2025

Dr CLOSSET PHILIPPE CHIREC DELTA SERVICE DE GASTROLOGIE Boulevard du Triomphe, 201 1160 BRUXELLES

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale Dr Nicolas de Saint Aubain

Pr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical

T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elvassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25cu001892 EXAMEN : **25EM00214**

Prélevé le 13/01/2025 à 13/01/2025 13:50 Prescripteur : Dr CLOSSET PHILIPPE

Reçu le 20/01/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 168 GENES IMPLIQUÉS DANS LES TUMEURS SOLIDES ET HÉMATOLOGIQUES

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I: Renseignement anatomopathologiques:

N° du prélèvement : 25CU001892 2

Date du prélèvement : 13/01/25

Origine du prélèvement : CurePath

Type de prélèvement : Métastase gastrique d'un adénocarcinome mammaire

Pourcentage de cellules tumorales : 20%

Commentaires:/

II: Méthode:

La partie technique, hormis l'extraction de l'ADN, est effectuée par le laboratoire BrightCore de la VUB. L'extraction d'ADN est réalisée à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.

Analyse par le laboratoire BrightCore : validée et accréditée selon la norme NBN EN ISO15189 (141-MED) effectuée à l'aide du kit Kappa Hyper Prep pour la préparation des librairies et de la technologie SeqCap pour la capture. Le Séquençage est réalisé sur le séquenceur NovaSeq 6000 (Illumina).

L'ensemble des exons pour les 168 gènes suivants sont analysés :

ABL1, ACVR1, AKT1, ALK, APC, AR, ARAF, ARID1A, ASXL1, ATM, ATR, ATRX, AXIN1, BAP1, BARD1, BCL2, BCL6, BCOR, BRAF, BRCA1, BRCA2, BRIP1, BTK, CALR, CARD11, CBL, CCND1, CD79B, CDH1, CDK12, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK1, CHEK2, CIC, CRBN, CREBBP, CSF3R, CTNNB1, CUL4B, CXCR4, CYLD, DAXX, DDR2, DICER1, DIS3, DNMT3A, EGFR, EGR1, EIF1AX, EP300, EPCAM, ERBB2, ERBB3, ERBB4, ESR1, ETV6, EZH2, FAM175A, FAM46C, FANCA, FANCL, FAU, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, FOXL2, FOXO1, FUBP1, GNA11, GNAQ, GNAS, H3F3A, H3F3B, HIST1H1E, HIST1H3B, HIST1H3C, HRAS, IDH1, IDH2, IKZF1, IRF4, JAK2, JAK3, KIT, KMT2A, KMT2D, KRAS, LTB, MAP2K1, MAP2K2, MEF2B, MEN1, MET, MLH1, MPL, MRE11, MSH2, MSH6, MTOR, MUTYH, MYD88, MYOD1, NBN, NF1, NF2, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NTRK1, NTRK2, NTRK3, NUTM1, PALB2, PAX8, PDGFRA, PDGFRB, PIK3CA, PIK3R1, PMS2, POLD1, POLE, PPM1D, PRKAR1A, PTEN, PTPN11, RAD50, RAD51B, RAD51C, RAD51D, RAD54L, RASAL1, RB1, RET, RHOA, RICTOR, ROS1, RUNX1, SETBP1, SF3B1, SMAD4, SMARCA4, SMARCB1, SMO, SRSF2, STAG2, STAT3, STK11, TERT(+promoteur), TET2, TNFAIP3, TNFRSF14, TP53, TRAF3, TSC1, TSC2, U2AF1, VAV1, VHL, WT1, XRCC2 et ZRSR2.

<u>Interprétation:</u>

Ce test permet de détecter des mutations ponctuelles et des courtes insertions/délétions lorsque la fréquence allélique est d'au moins 5% et la profondeur moyenne de séquençage est supérieure à 1500X. Le statut mutationnel des cellules tumorales étant parfois hétérogène, un test négatif ne peut pas exclure avec certitude la présence d'une mutation. Quand la quantité d'ADN amplifié n'est pas suffisante ou la qualité est suboptimale, certaines mutations peuvent ne pas être détectées. La présence ou l'absence d'une mutation est rapportée uniquement si l'analyse est contributive suivant les critères d'acceptation. Ce test n'est pas adapté pour la mise en évidence de mutation germinale. La classification des variants est basée sur les connaissances actuelles de la littérature et sur les recommandations belges en vigueur. Cette classification serait susceptible de changer au cours du temps. La technique utilisée ne permet pas de mettre en évidence les grands réarrangements et les « copy number variations» (CNV).

III : Résultats :

Couverture moyenne: 3010X

Qualité du séquençage : Optimale

Variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Nomenclature HGVS ADN	Nomenclature HGVS Protéine	Fréquence allélique	Couverture	
Impact clinique potentiel					
PIK3CA	NM_006218.2:c.3140A>G	p.His1047Arg (H1047R)	32%	1998X	
PIK3CA	NM_006218.2:c.1034A>G	p.Asn345Ser (N345S)	30%	1586X	
Impact clinique indéterminé					
CDH1	NM_004360.3:c.1677dupC	p.Thr560HisfsTer28 (T560Hfs*28)	28%	1238X	

Variants de significations biologique et clinique indéterminées :

Gène	Nomenclature HGVS ADN	Nomenclature HGVS Protéine	Fréquence allélique	Couverture
NOTCH2	NM_024408.3:c.3916G>A	p.Asp1306Asn (D1306N)	61%	1201X
MSH6	NM_000179.2:c.1822A>G	p.lle608Val (I608V)	52%	2058X

IV: Discussion:

Les mutations du gène PIK3CA sont fréquentes dans les cancers du sein (25 à 35%). La FDA a approuvé l'utilisation de l'alpelisib (inhibiteur alpha-selective PI3-kinase) en combinaison avec le fulvestrant (Estrogen Receptor (ER)-antagonist) pour le traitement des patients avec un cancer du sein ER+/HER2- avec certaines mutations du gène PIK3CA (C420R, E542K, E545A, E545D, E545G, E545K, Q546E, Q546R, H1047L, H1047R, H1047Y) et a approuvé l'utilisation du capivasertib (pan-AKT kinase inhibiteur) en combinaison avec le fulvestrant (Estrogen Receptor (ER)-antagonist) pour le traitement des patients avec un cancer du sein métastatique ER+/HER2- et avec certaines mutations du gène PIK3CA (C420R, E542K, E545A, E545D, E545G, E545K, Q546E, Q546R, H1047L, H1047R, H1047Y, R88Q, N345K, E545Q, Q546K, Q546P, M1043V, M1043I et G1049R) et a approuvé l'utilisation du inavolisib (alpha-isoform selective PI(3)-kinase inhibitor) en combinaison avec le palbociclib et le fulvestrant pour le traitement des patients avec un cancer du sein métastatique ER+/HER2- avec une mutation oncogénique du gène PIK3CA. *oncokb.org*

mycancergenome.org cbioportal.org

Les mutations du gène CDH1 (e-cadhérine) sont décrites dans différents types de cancers, plus fréquemment dans les cancers du sein (carcinomes lobulaires) et oesogastriques. Leur impact clinique est indéterminé. oncokb.org

V: CONCLUSION: (NADN le 04/02/2025)

Absence de variant détecté dans les gènes BRCA1, BRCA2 et ESR1.

Présence du variant pathogénique H1047R du gène PIK3CA.

Présence du variant présumé pathogénique N345S du gène PIK3CA.

Présence du variant présumé pathogénique T560Hfs*28 du gène CDH1.

Présence de variants de signification biologique et clinique indéterminée dans les gènes NOTCH2 et MSH6.

Aucun autre variant n'a été détecté, en accord avec les recommandations du ComPerMed.

VI: Annexe:

Le tableau suivant décrit les exons considérés comme non-contributifs, c'est à dire dont moins de 90% des nucléotides sont couverts au moins 500X.

	Exons non	1	Exons non	1	Exons non
Gène - NM de référence	contributifs	Gène - NM de référence	contributifs	Gène - NM de référence	contributifs
ABL1-NM_007313		ERBB4-NM_005235		NRAS-NM_002524	
ABRAXAS1-NM_139076		ESR1-NM_000125		NTRK1-NM_002529	
ACVR1-NM_001111067		ETV6-NM_001987		NTRK2-NM_006180	
AKT1-NM_005163		EZH2-NM_004456		NTRK3-NM_001012338	
ALK-NM_004304		FANCA-NM_000135		NUTM1-NM_001284292	
APC-NM_000038		FANCL-NM_018062		PALB2-NM_024675	
ARAF-NM_001654		FAU-NM_001997		PAX8-NM_003466	
ARID1A-NM_006015		FBXW7-NM_033632		PDGFRA-NM_006206	
AR-NM_000044		FGFR1-NM_023110		PDGFRB-NM_002609	
ASXL1-NM_015338		FGFR2-NM_022970		PIK3CA-NM_006218	
ATM-NM_000051		FGFR3-NM_001163213		PIK3R1-NM_181523	
ATR-NM_001184		FLT3-NM_004119		PMS2-NM_000535	
ATRX-NM_000489		FOXL2-NM_023067		POLD1-NM_002691	
AXIN1-NM_003502		FOXO1-NM_002015		POLE-NM_006231	
BAP1-NM_004656		FUBP1-NM_003902		PPM1D-NM_003620	
BARD1-NM_000465		GNA11-NM_002067		PRKAR1A-NM_002734	
BCL2-NM_000633		GNAQ-NM_002072		PTEN-NM_000314	
BCL6-NM_001706		GNAS-NM_080425		PTPN11-NM_002834	
BCOR-NM_001123385		H3F3A-NM_002107		RAD50-NM_005732	
BRAF-NM_004333		H3F3B-NM_005324		RAD51B-NM_133510	
BRCA1-NM_007294		HIST1H1E-NM_005321		RAD51C-NM_058216	
BRCA2-NM_000059		HIST1H3B-NM_003537		RAD51D-NM_002878	5
BRIP1-NM_032043		HIST1H3C-NM_003531		RAD54L-NM_003579	
BTK-NM_000061		HRAS-NM_005343		RASAL1-NM_001301202	
CALR-NM_004343		IDH1-NM_005896		RB1-NM_000321	
CARD11-NM_032415		IDH2-NM_002168		RET-NM_020975	
CBL-NM_005188		IKZF1-NM_006060		RHOA-NM_001664	
CCND1-NM_053056		IRF4-NM_002460		RICTOR-NM_152756	
CD79B-NM_000626		JAK2-NM_004972		ROS1-NM_002944	
CDH1-NM_004360		JAK3-NM_000215		RUNX1-NM_001754	
CDK12-NM_016507		KIT-INTRON		SETBP1-NM_015559	
CDKN2A-NM_000077		KIT-NM_000222		SF3B1-NM_012433	
CDKN2B-NM 004936		KMT2A-NM 001197104		SMAD4-NM 005359	
CDKN2C-NM 078626		KMT2D-NM 003482		SMARCA4-NM 003072	
CEBPA-NM 004364		KRAS-NM 004985		SMARCB1-NM 003073	
CHEK1-NM 001114122		LTB-NM 002341		SMO-NM 005631	
CHEK2-NM_007194		MAP2K1-NM_002755		SRSF2-NM_003016	
CIC-NM_001304815		MAP2K2-NM 030662		STAG2-NM_001042750	
CRBN-NM_016302		MEF2B-NM_001145785		STAT3-NM_139276	
CREBBP-NM 004380		MEN1-NM 000244		STK11-NM 000455	
CSF3R-NM_156039		MET-NM_001127500		TENT5C-NM 017709	
CTNNB1-NM 001904		MLH1-NM 000249		TERT-INTRON	
C11414B1-14141_001504		WILITI-TNIVI_000249		TERT-INTRON	1

Suite de l'examen N° 25EM00214 concernant le patient

CUL4B-NM_001079872	MPL-NM_005373	TERT-NM_198253
CXCR4-NM_003467	MRE11-NM_005591	TET2-NM_001127208
CYLD-NM_015247 7	MSH2-NM_000251	TNFAIP3-NM_001270508
DAXX-NM_001141969	MSH6-NM_000179	TNFRSF14-NM_003820
DDR2-NM_006182	MTOR-NM_004958	TP53-NM_000546
DICER1-NM_177438	MUTYH-NM_001048174	TRAF3-NM_145725
DIS3-NM_014953	MYD88-NM_001172567	TSC1-NM_000368
DNMT3A-NM_175629	MYOD1-NM_002478	TSC2-NM_000548
EGFR-NM_005228	NBN-NM_002485	U2AF1-NM_006758
EGR1-NM_001964	NF1-NM_001042492	VAV1-NM_005428
EIF1AX-NM_001412	NF2-NM_000268	VHL-NM_000551
EP300-NM_001429	NOTCH1-NM_017617	WT1-NM_024426
EPCAM-NM_002354	NOTCH2-NM_024408	XRCC2-NM_005431
ERBB2-NM_004448	NOTCH3-NM_000435 1	ZRSR2-NM_005089
ERBB3-NM_001982	NPM1-NM_002520	

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUR.

 $\frac{\text{https://www.hubruxelles.be/sites/default/files/2024-03-04_demande\%20analyse\%20anapath\%20cytologie\%20v3.pdf}{\text{https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11\%20Demande\%20de\%20biologie\%20mol\%C3\%A9culaire-IPD\%20v1.doc}$

Dr N D'HAENE

Dr LEDOYEN.A