

Advanced Windows Exploitation

Matteo Memelli Alexandru Uifalvi Morten Schenk

All rights reserved to Offensive Security, 2018. No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to its copyright owner, including photocopying and all other copying, any transfer or transmission using any network or other means of communication, any broadcast for distant learning, in any form or by any means such as any information storage, transmission or retrieval system, without prior written permission from the author.

Table of Contents

	Module 0x00 Introduction			
2	Module 0x01 DEP/ASLR Bypass and Sandbox Escape via Flash Heap Overflow	9		
	2.1 Lab Objectives	9		
	2.1.1 Overview	9		
	2.2 DEP and ASLR	10		
	2.2.1 Ret2Lib Attacks and Their Evolution	11		
	2.2.2 Return Oriented Programming Exploitation	12		
	2.2.3 Address Space Layout Randomization	15		
	2.2.4 Debugger automation: Pykd and findrop.py	16		
	2.2.5 Exercises	22		
	2.3 Flash Player Heap Internals Key Points	23		
	2.4 Heap Spray: The Technique	27		
	2.4.1 Exercises	32		
	2.5 Heap Overflow Case Study: CVE-2015-3104 Proof of Concept	33		
	2.5.1 Exercises	35		
	2.6 Heap Overflow Case Study: A Deeper Look at the Bug	36		
	2.6.1 Exercises	40		
	2.7 Heap Overflow Case Study: Allocation Control	41		
	2.7.1 Exercises	48		
	2.8 Heap Overflow Case Study: Gaining Read/Write Access to the Memory Space	48		
	2.8.1 Exercises	53		
	2.9 Heap Overflow Case Study: Defeating ASLR	53		
	2.9.1 Finding our object in memory	55		
	2.9.2 Exercises	57		
	2.9.3 Obtaining NPSWF32 base address	57		
	2.9.4 Exercises	58		
	2.10 Heap Overflow Case Study: Gaining code execution	59		
	2.10.1 Exercises	64		
	2.11 Heap Overflow Case Study: Stack Pivoting	64		
	2.11.1 Exercises	65		
	2.12 Heap Overflow Case Study: Defeating DEP	66		

3

2.12	2.1	GetModuleHandle ROP Chain	66
2.12	2.2	Exercises	68
2.12	2.3	GetProcAddress ROP Chain	69
2.12	2.4	Exercises	70
2.12	2.5	WriteProcessMemory ROP Chain	71
2.12	2.6	Exercises	74
2.13	Exe	cuting Shellcode and Restoring the execution flowflow	74
2.13	3.1	Exercises	76
2.14	Sar	dbox Escape	76
2.14	1.1	Exercises	90
2.15	Win	dows Defender Exploit Guard	90
2.16	Tes	ting WDEG Protections on CVE-2015-3104	92
2.17	Disa	arm vs Bypass	95
2.17	7 .1	Disarming WDEG: Theory	95
2.17	7.2	Disarming WDEG: Practice (CVE-2015-3104)	98
2.17	7.3	Exercises	99
2.17	7 .4	Defeating EAF	99
2.17	7.5	Exercises	100
2.18	Wra	apping Up	100
Мос	dule C	x02 CFG/ACG Bypass and Sandbox Escape via Microsoft Edge Type Co	onfusion 101
3.1	Lab	Objectives	101
3.1.	1 C	Overview	101
3.2	64-l	pit Windows	102
3.2.	1 N	Main 64-bit Enhancements	104
3.2.2	2 J	avaScript on 64-bit	107
3.2.3	3 N	Nicrosoft Edge and WinDbg	108
3.3	Тур	e Confusion Case Study: CVE-2017-8601 POC	109
3.3.	1 E	xercises	114
3.4	Тур	e Confusion Case Study: Read and Write Primitive	114
3.4.	1 E	xercises	126
3.5	Cor	itrol Flow Guard Theory	126
3.5.	1 C	FG Implementation	127

3.5.2	CFG History and Limitations	129
3.5.3	Exercises	129
3.5.4	CFG Bypass Techniques	130
3.6 7	ype Confusion Case Study: Leaking the stack	131
3.6.1	Exercises	134
3.7 T	ype Confusion Case Study: RIP Control and Stack Pivot	134
3.7.1	Stack pivoting	138
3.7.2	Confuse me again	139
3.7.3	Exercises	141
3.7.4	ROP preps	141
3.7.5	Exercises	143
3.8 A	Arbitary Code Guard Theory	143
3.9 A	ACG Bypass Case Study: CVE-2017-8637	147
3.9.1	ACG Bypass Mechanics	147
3.9.2	Locating the JIT Process Handle	148
3.9.3	Duplicating the JIT Process handle	150
3.9.4	ACG ROP Chain	152
3.9.5	Step 1: DuplicateHandle Call	153
3.9.6	Exercise	156
3.9.7	Step 2: VirtualAllocEx Call	156
3.9.8	Exercise	160
3.9.9	Step 3: WriteProcessMemory Call	160
3.9.10	Exercise	163
3.9.11	Step 4: CreateRemoteThread Call	163
3.9.12	Exercise	168
3.9.13	Step 5: Thread leak	169
3.9.14	Exercise	173
3.9.15	Step 6: Stack manipulation	174
3.9.16	Exercise	177
3.9.17	,	
3.9.18	Exercises	182
3.9.19	Extramile	182

	3.10	Type Confusion Case Study: Process Continuation	182			
	3.10	3.10.1 Exercises				
	3.11	AppContainer Sandbox and Code Integrity Guard				
	3.11	1 AppContainer Protections Overview	188			
	3.11	2 Appcontainer in the Creators Update	190			
	3.12	Sandbox Escape Case Study: CVE-2016-0165	190			
	3.13	Sandbox Escape Case Study: Shellcode				
	3.13	1 Exercises	193			
	3.14	Wrapping up	194			
1	Mod	ule 0x03 64-bit Kernel Driver Exploitation	195			
	4.1	Lab Objectives				
	4.2	Overview	195			
	4.3	Windows I/O System and Device Drivers	195			
	4.4	Communicating with Drivers	196			
	4.5	I/O Control Codes	197			
	4.6	Privilege Levels and Ring0 Payloads	197			
	4.7 Token Stealing Payload		199			
4.8		CVE-2015-5736 : Vulnerability Overview	204			
	4.9	CVE-2015-5736 : Overwriting the callback function				
	4.9.1	4.9.1 Exercises				
	4.10	CVE-2015-5736: Triggering the Vulnerable Code	212			
	4.10	.1 Exercises	214			
	4.11	1 CVE-2015-5736 : SMEP Says Hello				
	4.11	-11.1 Exercise				
	4.12	CVE-2015-5736: Introduction to Memory Paging and Structures	217			
	4.12	1 Exercise	224			
	4.13	CVE-2015-5736: The PML4 Self-reference Entry	224			
	4.14	CVE-2015-5736 : ROP Based Attack	228			
	4.14	4.14.1 Restricted Callers				
	4.14	2 PML4 self-reference entry randomization	232			
	4.15	CVE-2015-4077 : Memory Leak Vulnerability				
	4.15	.1 Bypassing Driver Checks	233			

	4.15.	2	Exercises	245
	4.15.	3	Leak an Arbitrary Address	246
	4.15.	4	Exercises	253
	4.15.	5	Leaking The Kernel Base Address	253
	4.15.	6	Exercises	260
	4.15.	7	Leaking Additional DLLs Mapped In Kernel Space	261
	4.15.	8	Exercises	263
4.	16	CVE-	-2015-5736 : Stack Pivoting	263
	4.16.	1	Exercises	270
4.	17	CVE-	-2015-5736 : Bypassing SMEP	270
	4.17.	1	Exercises	274
4.	18	CVE-	-2015-5736 : Restoring the Execution Flow	275
	4.18.	1	Exercises	283
4.	19	Wrap	oping Up	283