Consider the population {1, 2, 5, 6, 10, 12}.

Find (and plot) the sampling distribution of medians for samples of size 3 without replacement.

```
p <- c(1, 2, 5, 6, 10, 12)
c <- combinations(v = p, n = 6, r = 3)
t <- apply(c, 1, median)

ggplot(data.table(value = t), aes(value, fill = ..count..)) +
    geom_histogram(bins = 30) +
    labs(title = "Median Sampling Distribution of p")</pre>
```


Compare the median of the population to the mean of the medians.

Median of p = 5.5. Mean of Medians of p = 5.7

Consider the population {3, 6, 7, 9, 11, 14}.

For samples of size 3 without replacement, find (and plot) the sampling distribution for the minimum.

```
p <- c(3, 6, 7, 9, 11, 14)
c <- combinations(v = p, n = 6, r = 3)
t <- apply(c, 1, min)

ggplot(data.table(value = t), aes(value, fill = ..count..)) +
    geom_histogram(bins = 30) +
    labs(title = "Minimum Sampling Distribution of p")</pre>
```


What is the mean of the sampling distribution? 4.8

The statistic is an estimate of some parameter - what is the value of that parameter?

This is an estimation of the minimum, which is: 3

Let A denote the population {1, 3, 4, 5} and B the population {5, 7, 9}.

```
A \leftarrow c(1, 3, 4, 5)

B \leftarrow c(5, 7, 9)
```

Let *X* be a random value from *A*, and *Y* and random value from *B*.

a.) Find the sampling distribution of X + Y.

```
result = numeric(12)
index <- 1
for(j in 1:length(A))
{
   for(k in 1:length(B))
   {
      result[index] <- A[j] + B[k]
      index <- index + 1
   }
}</pre>
sort(result)
```

```
[1] 6 8 8 9 10 10 10 11 12 12 13 14
```

b.) In this example, does the sampling distribution depend on whether you sample with or without replacement?

No.

Why or why not?

Because 5 in is both sets.

c.) Compute the mean of the values for each of A and B and the values in the sampling distribution of X + Y.

Mean of A: 3.25. Mean of B: 7.

Mean of A + B: 10.25

How are the means related?

mean(A) + mean(B) = mean(A + B).

d.) Suppose you draw a random value from A and a random value from B.

```
prob <- sum(result >= 13) / length(result)
```

What is the probability that the sum is 13 or larger? **16.666667%**

Consider the population {3, 5, 6, 6, 8, 11, 13, 15, 19, 20}.

a.) Compute the mean and standard deviation and create a dot plot of its distribution.

```
p <- c(3, 5, 6, 6, 8, 11, 13, 15, 19, 20)

mu <- mean(p)
sigma <- sd(p)

ggplot(data.table(value = p)) +
    geom_dotplot(aes(value, fill = ..count..), binwidth = 1) +
    labs(title = "Population Dot Plot")</pre>
```



```
\mu = 10.6, \sigma = 5.9851668
```

b.) Simulate the sampling distribution of \bar{X} by taking random samples of size 4 and plot your results.

```
N <- 10e2
results <- numeric(N)

for( i in 1:N)
{
   index <- sample(length(p), size = 4, replace = F)
   results[i] <- mean( p[index] )
}</pre>
```

```
ggplot(data.table(value = results)) +
  geom_histogram(aes(value, fill = ..count..), bins = 30) +
  labs(title = "Sample Means")
```



```
xbar <- mean(results)
se <- sd(results) / sqrt(N)</pre>
```

Compute the mean and standard error, and compare to the population mean and standard deviation.

mean: 10.57325, standard error: 0.0715197

c.) Use the simulation to find $P(\bar{X}<11).$

$$P(\bar{X} < 11) = 55.2\%$$

Consider two populations A = {3, 5, 7, 9, 10, 16}, B = {8, 10, 11, 15, 18, 25, 28}.

```
A <- c(3, 5, 7, 9, 10, 16)
B <- c(8, 10, 11, 15, 18, 25, 28)
```

a.) Using R, draw random samples (without replacement) of size 3 from each population, and simulate the sampling distribution of the sum of their maximums.

```
N <- 10e2
results <- numeric(N)

for(i in 1:N)
{
    samp.a <- sample(A, 3, replace = F)
    samp.b <- sample(B, 3, replace = F)

    results[i] <- max(samp.a) + max(samp.b)
}

ggplot(data.table(value = results)[, index := .I]) +
    geom_histogram(aes(value, fill = ..count..), bins = 30) +
    labs(title = "Sampling Distribution: max(A) + max(B)")</pre>
```


b.) Use your simulation to estimate the probability that the sum of the maximums is less than 20.

```
prob <- mean(results < 20)</pre>
```

Probability: 0%

c.) Draw random samples of size 3 from each population, and find the maximum of the union of these two sets.

Simulate the sampling distribution of the maximums of this union.

```
results <- numeric(N)

for(i in 1:N)
{
    samp.a <- sample(A, 3, replace = F)
    samp.b <- sample(B, 3, replace = F)

    results[i] <- max(union(samp.a, samp.b))
}

ggplot(data.table(value = results)[, index := .I]) +
    geom_histogram(aes(value, fill = ..count..), bins = 30) +
    labs(title = "Sampling Distribution: max(union(A,B))")</pre>
```


d.) Use simulation to find the probability that the maximum of the union is less than 20.

```
prob <- mean(results < 20)</pre>
```

Probability: 26.9%

The data set *Recidivism* contains the poopulation of all lowa offenders convicted of either a felony or misdemeanor who were released in 2010 (case study in Section 1.4).

Of these, 31.6% recidivated and were sent back to prision.

Simulate the sampling distribution of \hat{p} , the sample proportion of offeneders who recidivated, for random samples of size 25.

```
mean(Recidivism$Recid == "Yes")
```

```
[1] 0.3164141
```

```
N <- 10e2
results <- numeric(N)

for(i in 1:N)
{
    samp <- sample(Recidivism$Recid, 25)
    results[i] <- mean(samp == "Yes")
}</pre>
```

a.) Create a histogram and describe the simulated sampling distribution of \hat{p} .

```
ggplot(data.table(value = results)) +
  geom_histogram(aes(value, fill = ..count..), bins = 30) +
  labs(title = "Recidivism Sampling Distribution")
```


Estimate the mean and standard error.

```
mu <- mean(results)
se <- sd(results) / sqrt(25)</pre>
```

```
\mu = 0.31408, \sigma = 0.0184024
```

b.) Compare your estimate of the standard error with the theoretical standard error (Corollary 4.3.2).

```
tse <- mu * ( 1 - mu ) / sqrt(25)
```

Theoretical: 0.0430868

c.) Repeat the above using samples of size 250, and compare with the n=25 case.

```
N <- 10e2
results <- numeric(N)

for(i in 1:N)
{
    samp <- sample(Recidivism$Recid, 250)
    results[i] <- mean(samp == "Yes")
}

ggplot(data.table(value = results)) +
    geom_histogram(aes(value, fill = ..count..), bins = 30) +
    labs(title = "Recidivism Sampling Distribution")</pre>
```



```
mu <- mean(results)
se <- sd(results) / sqrt(250)</pre>
```

```
\mu = 0.317232, \sigma = 0.0018679
```

The data set *FlightDelays* contains the population of all flight departures by United Airlines and American Airlines out of LGA during May and June 2009 (case study in Section 1.1).

a.) Create a histogram of Delay and describe the distribution.

```
ggplot(Flights, aes(Delay)) +
  geom_histogram(aes(fill = ..count..), bins = 30) +
  scale_y_continuous(labels = comma) +
  labs(title = "Flight Delays")
```


Compute the mean and standard deviation.

```
mu <- mean(Flights$Delay)
sigma <- sd(Flights$Delay)</pre>
```

```
\mu = 11.7379002, \sigma = 41.6304951
```

b.) Simulate the sampling distribution of \bar{x} , the sample mean of the length of the flight delays (*Delay*), for sample size 25.

```
N <- 10e2
results <- numeric(N)

for(i in 1:N)
{
    samp <- sample(Flights$Delay, 25, replace = F)
    results[i] <- mean(samp)
}</pre>
```

Create a histogram and describe the simulated sampling distribution of \bar{x} .

```
ggplot(data.table(value = results)) +
  geom_histogram(aes(value, fill = ..count..), bins = 30) +
  labs(title = "Flight Delay Sampling Distribution")
```


Estimate the mean and standard error.

```
mu <- mean(results)
se <- sd(results) / sqrt(25)</pre>
```

```
\mu = 11.64688, \Sigma = 1.6759377
```

c.) Compare your estimate of the standard error with the theoretical standard error (Corollary A.4.1).

```
tse <- var(results) / 25
```

Theoretical: 2.8087672

d.) Repeat with sample size 250.

```
N <- 10e2
results <- numeric(N)

for(i in 1:N)
{
    samp <- sample(Flights$Delay, 250, replace = F)
    results[i] <- mean(samp)
}

ggplot(data.table(value = results)) +
    geom_histogram(aes(value, fill = ..count..), bins = 30) +
    labs(title = "Flight Delay Sampling Distribution")</pre>
```



```
mu <- mean(results)
se <- sd(results) / sqrt(250)
tse <- var(results) / 250</pre>
```

 $\mu = 11.80626, \Sigma = 0.1693495$

Theoretical: 0.0286793

4.8

Let X_1, X_2, \dots, X_{25} be a random sample from some distribution and $W = T(X_1, X_2, \dots, X_n)$ be a statistic. Suppose the *sampling distribution* of W has a pdf given by $f(x) = \frac{2}{x^2}$, for 1 < x < 2.

Find P(w < 1.5)

Solution:

```
f <- function(x) 2 / x^2

x <- seq( from = 1.0001, to = 1.999, by = 0.0001)

y <- f(x)

ggplot(data.table(x, y)) +
    geom_point(aes(x, y), color = "cornflowerblue", size = .6) +
    labs(title = "pdf f(x) = 2/x^2")</pre>
```



```
a <- cumsum(y) / sum(y)
p <- round( a[x == 1.5], 4 ) * 100

d <- data.table(x, y = a)
ggplot(d) +
    geom_point(aes(x, y), color = "cornflowerblue", size = .6) +
    geom_area(aes(x, y), data = d[x < 1.5], fill = "cornflowerblue", alpha = .3) +
    labs(title = paste("cdf f(x) = 2/x^2, A = ", p ))</pre>
```


Numerical solution: 66.7%

Analytical Solution: $\int_1^{1.5} \frac{2}{x^2} = \frac{2}{3}$

0.0

0.5

4.9

Let X_1, X_2, \ldots, X_n be a random sample from some distribution and $Y = T(X_1, X_2, \ldots, X_n)$ be a statistic. Suppose the *sampling distribution* of Y has pdf $f(y) = (3/8)y^2$ for $0 \le y \le 2$. Find $P(0 \le Y \le \frac{1}{5})$

Solution:

```
f <- function(x) (3/8)*x**2

x <- seq( from = 0, to = 2, by = 0.001)

y <- f(x)

ggplot(data.table(x, y)) +
    geom_point(aes(x, y), color = "cornflowerblue", size = .6) +
    labs(title = paste("pdf: ", paste0(deparse(f), collapse = " ")))</pre>
```

pdf: function (x) (3/8) * x^2 1.5 0.5

```
a <- cumsum(y) / sum(y)
p <- round( a[x == 1/5], 4 ) * 100

d <- data.table(x, y = a)</pre>
```

1.0

Х

1.5

2.0

```
ggplot(d) +
  geom_point(aes(x, y), color = "cornflowerblue", size = .6) +
  geom_area(aes(x, y), data = d[x < 1/5], fill = "cornflowerblue", alpha = .3) +
  labs(title = paste("cdf f(x) = 2/x^2, A = ", p))</pre>
```


Numerical Solution: 0.1%

Analytical Solution: $\int_0^{\frac{1}{5}} \frac{x^3}{8} = \frac{.008}{8} = .001 = .1 \%$

4.10

Suppose the heights of boys in a certain large city follow a distribution with mean 48 in. and variance 9^2 .

Use the CLT approximation to estimate the probability that in a random sample of 30 boys, the mean height is more than 51 in.

```
z <- (51 - 48) / (9^2 / sqrt(30))
p <- pnorm(z, lower.tail = F)
```

Probability: 41.96%

4.11

Let $X_1, X_2, \ldots, X_{36} \sim Bern(.55)$ be independent, and let \hat{p} denote the sample proportion.

Use the CLT approximation with continuity correction to find the probability that $\hat{p} \leq 0.5$.

```
z <- ( .5 - .55 ) / sqrt(.55 * (1 - .55) / 36)
p <- pnorm(z, lower.tail = T)</pre>
```

Probability: 27.32%

4.12

A random sample of size n=20 is drawn from a distribution with mean 6 and variance 10.

Use the CLT approximation to estimate $P(\bar{X} \leq 4.6)$.

```
z <- ( 4.6 - 6 ) / ( 10 * sqrt(20) )
p <- pnorm(z, lower.tail = T)</pre>
```

Probability: 48.75%

4.13

A random sample of size n=244 is drawn from a distribution with pdf $f(x)=(3/16)(x-4)^2, 2\leq x\leq 6$. Use the CLT approximation to estimate $P(X\geq 4.2)$.

```
pdf <- function(x) (3/16)*(x - 4)^2
x <- seq(from = 2, to = 6, by = 0.001)
y <- pdf(x)

ggplot(data.table(x,y)) +
   geom_point(aes(x, y), col = "cornflowerblue", lwd = .8) +
   labs(title = paste("PDF: ", pasteO(deparse(f), collapse = " ")))</pre>
```

PDF: function (x) (3/8) * x^2


```
cdf <- function(x) (3/8)*(x - 4)

y <- cumsum(y) / sum(y)

ev <- x[min(which(y > .5))]

ggplot(data.table(x,y)) +
    geom_point(aes(x, y), col = "cornflowerblue", lwd = .8) +
    geom_vline(xintercept = ev) +
    labs(title = paste("CDF: ", pasteO(deparse(f), collapse = " ")))
```

CDF: function (x) (3/8) * x^2


```
z <- ( 4.2 - ev ) / sqrt(244)
pnorm(z, lower.tail = F)</pre>
```

[1] 0.4949177

4.14

According to the 2000 census, 28.6% of the US adult population recieved a high school diploma.

In a random sample of 800 US adults, what is the probability that between 220 and 230 (inclusive) people have a high school deploma?

Use the CLT approximation with continuity correction, and compare with the exact probability.

Solution:

The sampling distribution of \hat{p} is approximately normal with:

```
n <- 800
mu <- .286
```

```
ev <- 800 * mu sigma <- sqrt(n*mu*(1-mu)) \mathbb{E}[X] = 228.8 \text{ and } \sigma = \sqrt{800(.286)(1-.286)} = 12.7814 1 <- \text{pnorm}((\text{ev - 219.5}) / \text{sigma}) h <- \text{pnorm}((\text{ev - 230.5}) / \text{sigma}) p <- 1 - h
```

Probability: 0.3195

4.15

If X_1, \dots, X_n are i.i.d. from Unif[0, 1], how large should n be so that $P(\bar{X} - \frac{1}{2} < 0.05) \ge 0.90$, that is, is there at least a 90% chance that the sample mean is within 0.05 of $\frac{1}{2}$? Use the CLT approximation.

4.16

Maria claims that she has drawn a random sample of size 30 from the exponential distribution with $\lambda=1/10$.

The mean of her sample is 12.

a.) What is the expected value of a sample mean?

$$X \sim Exp(\frac{1}{10}), \mathbb{E}(x) = 10$$

b.) Run a simulation by drawing 1000 random samples, each of size 30, from Exp(1/10), and compute the mean for each sample.

```
N <- 1000
result <- numeric(N)

for( i in 1:N)
{
    samp <- rexp( n = 30, rate = 1/10)
    result[i] <- mean(samp)
}

ggplot(data.table(result), aes(result)) +
    geom_histogram(aes(y = ..density.., fill = ..count..), bins = 30) +
    geom_vline(xintercept = 12, col = "darkorange") +
    stat_density( kernel = "gaussian", fill = "darkorange", alpha = .3) +
    labs(title = "Exp(1/10) Sampling Distribution")</pre>
```


What proportion of the sample means is as large or larger than 12? 14%

c.) Is a mean of 12 unusual for a sample of size 30 from Exp(1/10)?

Yes, only ~13% of the sample means have a value of 12 or higher.

4.17

Let $X \sim N(15, 3^2)$ and $Y \sim N(4, 2^2)$ be independent random variables.

a.) What is the exact sampling distribution of W=X-2Y?

$$W \sim N(7, 5^2)$$

b.) Use R to simulate the sampling distribution of ${\cal W}$ and plot your results.

```
X <- rnorm(10e3, 15, 3)
Y <- rnorm(10e3, 4, 2)

W <- X - 2*Y

ggplot(data.table(x = W)) +
   geom_histogram(aes(x, fill = ..count..), bins = 30) +
   geom_vline(xintercept = 7, col = "darkorange", lwd = 1.5) +
   scale_y_continuous(labels = comma) +
   labs(title = "Sampling Distribution")</pre>
```


Check that the simulated mean and standard error are close to the theoretical mean and standard error.

$$\mu = 7.0152707, \sigma = 5.0203046$$

c.) Use the simulated sampling to estimate $P(W \le 10)$, and then check your estimate with an exact calculation.

```
phat <- mean(W <= 10)

p <- pnorm(10, mean = 7, sd = 5)</pre>
```

$$\begin{split} \hat{p} &= 72.43\% \\ P(W \leq 10) &= 72.57\% \end{split}$$

4.18

Let $X \sim Pois(4)$, $Y \sim Pois(12)$, $U \sim Pois(3)$ be independent random variables.

a.) What is the exact sampling distribution of $\boldsymbol{W} = \boldsymbol{X} + \boldsymbol{Y} + \boldsymbol{U}$?

$$W \sim Pois(19)$$

b.) Use R to simulate the sampling distribution of W and plot your results.

```
W <- rpois(10e3, lambda = 19)

ggplot(data.table(x = W)) +
    geom_histogram(aes(x, fill = ..count..), bins = 30) +
    geom_vline(xintercept = 19, col = "darkorange", lwd = 1.5) +
    scale_y_continuous(labels = comma) +
    labs(title = "Sampling Distribution")</pre>
```


Check that the simulated mean and standard error are close to the theoretical mean and standard error.

```
mu <- mean(W)
sigma <- sd(W)</pre>
```

```
\mu = 19.0288, \sigma = 4.3990119
```

c.) Use the simulated sampling distribution to estimate $P(W \le 14)$ and then check your estimate with an exact calculation.

```
phat <- mean(W <= 14)

p <- ppois(14, lambda = 19)</pre>
```

```
\hat{p} = 14.69\% P(W \le 14) = 14.97\%
```

Let
$$X_1, X_2, \ldots, X_{10} \sim^{i.i.d} N(20, 8^2)$$
 and $Y_1, Y_2, \ldots, Y_{15} \sim^{i.i.d} N(16, 7^2)$. Let $W = \bar{X} + \bar{Y}$

a.) Give the exact sampling distribution of W.

$$W \sim N(36, 3.1^2)$$

b.) Simulate the sampling distribution in R and plot your results.

```
N <- 10e3
result <- numeric(N)

for( i in 1:N)
{
    X <- rnorm(10, 20, 8)
    Y <- rnorm(15, 16, 7)

    result[i] <- mean(X) + mean(Y)
}

ggplot(data.table(x = result)) +
    geom_histogram(aes(x, fill = ..count..), bins = 30) +
    geom_vline(xintercept = 36, col = "darkorange", lwd = 1.5) +
    scale_y_continuous(labels = comma) +
    labs(title = "Sampling Distribution")</pre>
```


Check that the simulated mean and standard error are close to the exact mean and standard error.

```
mu <- mean(result)
sigma <- sd(result)</pre>
```

 $\mu = 36.0265079, \sigma = 3.1146317$

c.) Use your simulation to find P(W < 40). Calculate an exact answer and compare.

```
phat <- mean(result <= 40)

p <- pnorm(40, 36, 3)</pre>
```

$$\hat{p} = 90.07\%$$

$$P(W < 40) = 90.88\%$$