

Surrogate policies with generalization guarantees for combinatorial optimization problems

Pierre Cyril Aubin Frankowski, Yohann de Castro, Axel Parmentier, Alessandro Rudi

Cermics

École des Ponts

July 24th 2024

ISMP

Stochastic Vehicle Scheduling Problem

$$egin{aligned} c_{
ho} &= \mathsf{vehicle} \; \mathsf{cost} + \mathbb{E} ig(\mathsf{propagated} \; \mathsf{delay} \; \mathsf{cost} ig) \ &= c^{\mathrm{veh}} + rac{1}{|\Omega|} \sum_{\omega \in \Omega} \sum_{v \in P} \xi_v^P(\omega) \end{aligned}$$

Reduce costs dues to delay propagation along rotations

$$\min \sum_{P \in \mathcal{P}} c_P z_y$$

$$\sum_{P \ni v} y_P = 1 \quad \forall v$$
 $y_P \in \{0,1\}$

Challenge: no more than a single deterministic resolution on industrial instances

Decision aware learning for Stochastic VSP

$$\theta_{a} = \langle w | \phi(a, x) \rangle$$

Excellent performance on large scale instances¹

¹A. P. "Learning to Approximate Industrial Problems by Operations Research Classic Problems". In: *Operations Research* (Apr. 2021), Guillaume Dalle et al. *Learning with Combinatorial Optimization Layers: A Probabilistic Approach*. July 2022, eprint: 2207.13513.

Axel Parmentier

Surrogate policies for combinatorial optimization

Given an instance \mathbf{x} in \mathcal{X}

$$\min_{\boldsymbol{y}\in\mathcal{Y}(\boldsymbol{x})}f^0(\boldsymbol{y},\boldsymbol{x})$$

 $\mathcal{Y}(x)$ finite but combinatorially large

Policy $h: \mathbf{x} \in \mathcal{X} \mapsto \mathbf{y} \in \mathcal{Y}(\mathbf{x})$ in \mathcal{H}

Risk with respect to distribution on X

$$\min_{h\in\mathcal{H}}R(h)=\mathbb{E}\Big(f^0\big(h(\boldsymbol{x}),x)\Big)$$

Distribution \mathbb{P}_X unknown.

Training set x_1, \ldots, x_n

Surrogate policies for combinatorial optimization

Given an instance \mathbf{x} in \mathcal{X}

$$\min_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}f^{0}(\mathbf{y},\mathbf{x})$$

 $\mathcal{Y}(x)$ finite but combinatorially large

Policy $h: \mathbf{x} \in \mathcal{X} \mapsto \mathbf{y} \in \mathcal{Y}(\mathbf{x})$ in \mathcal{H} Risk with respect to distribution on X

$$\min_{h\in\mathcal{H}}R(h)=\mathbb{E}\Big(f^0\big(h(\boldsymbol{x}),x)\Big)$$

Distribution \mathbb{P}_X unknown.

Training set x_1, \ldots, x_n

Parametric hypothesis class
$${\cal H}$$

$$\{h_{\mathbf{w}}: \mathbf{x} \in \mathcal{X} \mapsto \hat{\mathbf{y}}(\psi_{\mathbf{w}}(\mathbf{x})) \in \mathcal{Y}(\mathbf{x}), \ \mathbf{w} \in \mathcal{W}\}$$

which embeds linear optimization

$$\hat{\pmb{y}}(\pmb{ heta}) \in rg \max_{\pmb{v} \in \mathcal{Y}(\pmb{x})} \langle \pmb{y}, \pmb{ heta}
angle$$

Learning problem: minimize empirical risk

$$\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_n(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n f^0(h_{\mathbf{w}}(X_i), X_i)$$

$$h_{\mathbf{w}}: \frac{\mathbf{x} \in \mathcal{X}}{\text{Instance data}} \xrightarrow{\text{Statistical model}} \psi_{\mathbf{w}}$$

$$\theta \in \mathbb{R}^{d(x)}$$
 $\hat{\mathbf{v}}(\theta)$

CO algorithm
$$(1) \in \arg\max_{\boldsymbol{y} \in \mathcal{Y}(\boldsymbol{x})} \langle \boldsymbol{y}, \boldsymbol{\theta} \rangle$$

 $\frac{\theta \in \mathbb{R}^{d(x)}}{\text{Cost vector}} \hat{\mathbf{y}}(\theta) \in \arg\max_{\mathbf{y}} \langle \mathbf{y}, \theta \rangle \qquad y \in \mathcal{Y}(x)$ Solution Surrogate policies with generalization guarantees for combinatorial optimization problems

4/21

Stochastic VSP [7]

Machine Scheduling [8]

Multiflow network design [4]

Network Design [3]

Districting [1]

AMoD Fleet [6]

Dynamic Vehicle Routing (*) [2]

Dynamic inventory routing [5]

(*) Winner https://euro-neurips-vrp-2022.challenges.ortec.com/

Contextual Stochastic optimization²

Unknown distribution \mathbb{P} over (X, ξ)

 $ilde{ ilde{ extbf{x}}} \in \mathcal{X}$ observed context

 ξ unobserved noise

$$\min_{h \in \mathcal{H}} \mathbb{E} \Big[f^{\mathrm{c}} \big(h(\tilde{X}), \tilde{X}, \xi \big) \Big]$$

Training set $\tilde{x}_1, \xi_1, \dots, \tilde{x}_n, \xi_n$

Optimal policy

$$h^{\star}: \tilde{\mathbf{x}} \longmapsto \operatorname*{arg\,min}_{\mathbf{y} \in \mathcal{Y}(\tilde{\mathbf{x}})} \mathbb{E}\Big[cig(h(\tilde{X}), \tilde{X}, \xiig)\Big| \tilde{X} = \tilde{\mathbf{x}}\Big]$$

Requires conditional $\mathbb{P}(\xi|X=x)$ SAA computationally intractable

²Utsav Sadana et al. "A survey of contextual optimization methods for decision-making under uncertainty". In: *European Journal of Operational Research* (2024).

Contextual Stochastic optimization²

Unknown distribution \mathbb{P} over (X, ξ)

 $\tilde{\mathbf{x}} \in \mathcal{X}$ observed context

 ξ unobserved noise

$$\min_{h \in \mathcal{H}} \mathbb{E} \Big[f^{\mathrm{c}} ig(h(ilde{X}), ilde{X}, ig) \Big]$$

Training set $\tilde{\mathbf{x}}_1, \boldsymbol{\xi}_1, \dots, \tilde{\mathbf{x}}_n, \boldsymbol{\xi}_n$

Optimal policy

$$h^{\star}: \tilde{\mathbf{x}} \longmapsto \operatorname*{arg\,min}_{\mathbf{y} \in \mathcal{Y}(\tilde{\mathbf{x}})} \mathbb{E}\Big[c\big(h(\tilde{X}), \tilde{X}, \xi\big)\Big| \tilde{X} = \tilde{\mathbf{x}}\Big]$$

Requires conditional $\mathbb{P}(\xi|X=x)$ SAA computationally intractable

Reduction to our setting: $\mathbf{x} = (\tilde{\mathbf{x}}, \boldsymbol{\xi})$ and $f^0(\mathbf{y}, \mathbf{x}) = f^c(\mathbf{y}, \tilde{\mathbf{x}}, \boldsymbol{\xi})$ Statistical model $\psi_{\mathbf{w}}$ relies only on context $\tilde{\mathbf{x}}$

²Utsav Sadana et al. "A survey of contextual optimization methods for decision-making under uncertainty". In: *European Journal of Operational Research* (2024).

How to train such policies?

Challenge

$$\begin{array}{c|c} \boldsymbol{\theta} \in \mathbb{R}^{d(x)} & \mathsf{CO} \text{ oracle} \\ \hline \mathsf{Cost} \text{ vector} & \hat{\boldsymbol{y}}(\boldsymbol{\theta}) \in \operatorname*{arg\ max}_{\boldsymbol{y} \in \mathcal{Y}(\boldsymbol{x})} & \mathsf{Solution} \end{array}$$

Learning problem

$$\min_{\mathbf{w}\in\mathcal{W}}\mathcal{R}_n(h_{\mathbf{w}})$$

with

$$\mathcal{R}_n(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n f^0(h_{\mathbf{w}}(X_i), X_i)$$

CO oracle $\hat{\mathbf{y}}$ is piecewise constant on the normal fan

 $\nabla_{\theta} f = 0$ almost everywhere

Perturb linear optimization in empirical risk minimization

Perturb θ in linear optimization $\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \theta^{\top} \mathbf{y}$ to get a smoother regret

$$egin{aligned} & p_0(oldsymbol{y}|oldsymbol{ heta}) = \mathbb{1}\Big(oldsymbol{y} = rg \max oldsymbol{ heta}^ op y\Big) \ & p_\lambda(oldsymbol{y}|oldsymbol{ heta}) = \mathbb{E}_Z[p_0(oldsymbol{y}|oldsymbol{ heta} + \lambda Z(oldsymbol{x}))] \end{aligned}$$

$$\hat{\mathbf{y}}(\boldsymbol{\theta}) = \sum_{\mathbf{y} \in \mathcal{Y}} p_0(\mathbf{y}|\boldsymbol{\theta}) \delta_{\mathbf{y}}$$
$$f(\hat{\mathbf{y}}(\boldsymbol{\theta})) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p_0(\mathbf{y}|\boldsymbol{\theta}) f(\mathbf{y})$$

 $Z(x) \sim RU$ where U uniform on the sphere, R random scalar indep. of U

Perturb linear optimization in empirical risk minimization

Perturb θ in linear optimization $\max_{y \in \mathcal{Y}(x)} \theta^{\top} y$ to get a smoother regret

$$egin{aligned}
ho_0(oldsymbol{y}|oldsymbol{ heta}) &= \mathbb{1}\Big(oldsymbol{y} = rg \max oldsymbol{ heta}^ op y\Big) \
ho_\lambda(oldsymbol{y}|oldsymbol{ heta}) &= \mathbb{E}_Z[
ho_0(oldsymbol{y}|oldsymbol{ heta} + \lambda Z(oldsymbol{x}))] \end{aligned}$$

$$\hat{\mathbf{y}}(\boldsymbol{\theta}) = \sum_{\mathbf{y} \in \mathcal{Y}} p_0(\mathbf{y}|\boldsymbol{\theta}) \delta_{\mathbf{y}}$$
$$f(\hat{\mathbf{y}}(\boldsymbol{\theta})) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p_0(\mathbf{y}|\boldsymbol{\theta}) f(\mathbf{y})$$

 $Z(x) \sim RU$ where U uniform on the sphere, R random scalar indep. of U

Replace
$$\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_n(h_{\mathbf{w}})$$

$$\mathcal{R}_n(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n f^0 \Big(\hat{\mathbf{y}} \big(\psi_{\mathbf{w}}(X_i) \big), X_i \Big)$$
 by $\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n\lambda}(h_{\mathbf{w}})$
$$\mathcal{R}_{n,\lambda}(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_Z \Big\{ \big[f^0 \big(\hat{\mathbf{y}} \big(\psi_{\mathbf{w}}(X_i) + \lambda Z(X_i) \big), X_i \big) \big] \Big\}$$

Which guarantees can we obtain for the policy returned by our learning algorithm ?

$$\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n\lambda}(h_{\mathbf{w}}) \quad \text{with} \quad \mathcal{R}_{n,\lambda}(h_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z} \Big\{ \big[f^{0}(\hat{\mathbf{y}}(\psi_{\mathbf{w}}(X_{i}) + \lambda Z(X_{i})), X_{i}) \big] \Big\}$$

$$\bar{\mathcal{R}} = \mathbb{E}\Big[\min_{oldsymbol{y} \in \mathcal{Y}(x)} f^0(oldsymbol{y}, X)\Big]$$

$$\mathcal{R}_t(h_{\boldsymbol{w}}) = \mathbb{E}_{X,Z}[f^0(\hat{\boldsymbol{y}}(\psi_{\boldsymbol{w}}(X) + tZ(X)), X)]$$

$$\mathcal{R}_{n,t}(h_{\boldsymbol{w}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z} \Big[f^{0}(\hat{\boldsymbol{y}}(\psi_{\boldsymbol{w}}(X_{i}) + tZ(X_{i})), X_{i}) \Big]$$

$$0 < \mathcal{R}_0(h_{\text{odd}}) - \bar{\mathcal{R}} = \mathcal{R}_0(h_{\text{odd}}) - \mathcal{R}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_0(h_{\mathbf{w}})$$
 opt. pol

 $\mathbf{w}_{n,\lambda} = \arg\min \mathcal{R}_{n\lambda}(h_{\mathbf{w}})$ learn, opt. $w_{a\lambda}^{\mathrm{alg}}$: learning algorithm result

$$0 \leq \mathcal{R}_0(h_{\boldsymbol{w}_{n,\lambda}^{\mathrm{alg}}}) - \bar{\mathcal{R}} = \underbrace{\mathcal{R}_0(h_{\boldsymbol{w}_{M,n,\lambda}}) - \mathcal{R}_\lambda(h_{\boldsymbol{w}_{M,n,\lambda}})}_{} + \underbrace{\mathcal{R}_\lambda(h_{\boldsymbol{w}_{M,n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\boldsymbol{w}_{M,n,\lambda}})}_{}$$

Pert. bias Theorem Emp. process Theorem
$$+ \mathcal{R}_{n,\lambda}(h_{\boldsymbol{w}_{M,n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\boldsymbol{w}_{n,\lambda}}) + \mathcal{R}_{n,\lambda}(h_{\boldsymbol{w}_{n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{\boldsymbol{w}^{\star}})$$

$$+\underbrace{\mathcal{R}_{n,\lambda}(h_{\mathbf{w}^{\star}}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}^{\star}})}_{\text{Emp. process Theorem}} + \underbrace{\mathcal{R}_{\lambda}(h_{\mathbf{w}^{\star}}) - \mathcal{R}_{0}(h_{\mathbf{w}^{\star}})}_{\text{Pert. bias Theorem}}$$

$$+\mathcal{R}_0(h_{\boldsymbol{w}^*})-\bar{\mathcal{R}}$$

Model bias

July 24th 2024. ISMP

Theorem Aubin-Frankowski, De Castro, P., and Rudi, 2024+

Let $0 \ge 0$ and $\lambda > 0$ be such that $\lambda \ge 0$. Let $\tau \in (0,1)$. Under conditions detailed later, there exists a constant C>0 that depends only on ε , τ and f^0 such that for any $\mathbf{w} \in \mathcal{W}$ and n > 1, one has

$$|\mathcal{R}_0(h_{\mathbf{w}}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}})| = C\lambda^{\tau} \operatorname{polylog}(\lambda) \quad \text{(Perturbation bias Theorem)}$$
$$|\mathcal{R}_{\lambda}(h_{\mathbf{w}}) - \mathcal{R}_{n,\lambda}(h_{\mathbf{w}})| = \mathcal{O}_{\mathbb{P}}\left(\frac{1}{\lambda\sqrt{n}}\right) \quad \text{(Empirical process Theorem)}$$

and, for $h_{\mathbf{w}_{n,\lambda}}$ given by the kernel Sum-of-Squares estimate solution to $\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n,\lambda}$,

$$|\mathcal{R}_{n,\lambda}(h_{w_{M,n,\lambda}}) - \mathcal{R}_{n,\lambda}(h_{w_{n,\lambda}})| = \mathcal{O}_{\mathbb{P}}\left(\frac{1}{\sqrt{s-\frac{d}{2}}}\right)$$
 (K-SoS Theorem)

where $\operatorname{polylog}(\lambda)$ is a polynomial logarithm term and s > d/2 is some tuning parameter on the order of regularity of the admissible functions.

12/21

Large data regime

The theorem yields the following bound

$$0 \leq \mathcal{R}_0(h_{\boldsymbol{w}_{n,\lambda}^{\mathrm{alg}}}) - \bar{\mathcal{R}} \leq C\lambda^{\tau} \mathrm{polylog}(\lambda) + \mathcal{O}_{\mathbb{P}}\Big(\frac{1}{\lambda\sqrt{n}}\Big) + \mathcal{O}_{\mathbb{P}}\Big(\frac{1}{\lambda^{s-\frac{d}{2}}}\Big) + \mathcal{R}_0(h_{\boldsymbol{w}^{\star}}) - \bar{\mathcal{R}}$$

Optimizing over λ , we get

$$\mathcal{R}_0(h_{\mathbf{w}_{n,\lambda}}^{\mathrm{alg}}) - \bar{\mathcal{R}} \underset{n \to \infty}{\longrightarrow} \mathcal{R}_0(h_{\mathbf{w}^*}) - \bar{\mathcal{R}}$$

Contextual stochastic optimization

Contextual stochastic optimization

$$\min_{h \in \mathcal{H}} \mathbb{E}_{X,\xi} \Big[f^{\mathrm{c}} \big(h(\tilde{X}), \tilde{X}, \xi \big) \Big]$$

SAA learning of our policy

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \mathbb{E}_{Z} \Big[f^{c} \big(h_{\boldsymbol{w}}(\tilde{\boldsymbol{x}}_{i}), \tilde{\boldsymbol{x}}_{i}, \boldsymbol{\xi}_{i} \big) \Big]$$

Theorem applies: Convergence to optimal policy (with model bias) in large data regime

SAA in learning (across context) instead of SAA in policy (conditional to context)

- No model needed on (X, ξ)
- CSO equivalent of a discriminative approach (by opposition to generative)

Assumption on problem

Assumption on instances and f^0 Partition

- There is a finite partition \mathcal{G} of \mathcal{X} into $(\mathcal{X}_G)_{G \in \mathcal{G}}$ such that $\mathcal{Y}(\mathbf{x})$ are constant and finite for all $\mathbf{x} \in \mathcal{X}_G$;
- The absolute value of the target function $|f^0|$ is uniformly bounded on \mathcal{X}_G for each $G \in \mathcal{G}$ and, hence, its oscillation is finite, $\operatorname{osc}(f^0) < \infty$, with

$$\operatorname{osc}(f^0) := \sup f^0 - \inf f^0.$$

Instance: Labelled graph

Feasible solutions : depend only on graph

Assumptions on statistical model and perturbation

Assumption on statistical model Lipschitz

For all $\mathbf{x} \in \mathcal{X}$, the function $\mathbf{w} \in \mathcal{W} \mapsto \psi_{\mathbf{w}}(\mathbf{x}) \in \mathbb{R}^{d(\mathbf{x})}$ is $L_{\mathcal{W}}$ -Lipschitz continuous with a constant $L_{\mathcal{W}}$ which does not depend on \mathbf{x} .

Assumption on perturbation Gaussian

$$\forall \mathbf{x} \in \mathcal{X}_G$$
, $\sqrt{d(G)}Z(\mathbf{x}) \sim \mathcal{N}(0, \mathrm{Id}_{d(G)})$.

Under these assumptions, there exists an optimal $\mathbf{w}^* \in \mathcal{W}$ and $\min_{\mathbf{w} \in \mathcal{W}} \mathcal{R}_{n,0}(h_{\mathbf{w}})$ has a minimizer.

Perturbation bias

Proposition Uniform Weak Moment Property

Under the previous assumptions, for all $\tau \in (0,1)$, it exists a positive constant $C_{0,\tau} > 0$ such that

$$\forall \mathbf{w} \in \mathcal{W}, \ \mathbb{E}_{X,Z} \left[\left(\frac{\rho(\psi_{\mathbf{w}}(X) + 0Z(X))}{\sqrt{d(X)}} \right)^{-\tau} \right] \leq C_{0,\tau}.$$

Key property to bound perturbation bias

$$|\mathcal{R}_0(h_{\mathbf{w}}) - \mathcal{R}_{\lambda}(h_{\mathbf{w}})|$$

Empirical process

To control the random variable

$$\Delta_n = \sup_{\boldsymbol{w} \in \mathcal{W}} \left| \mathcal{R}_{n,\lambda}(\boldsymbol{w}) - \mathcal{R}_{\lambda}(\boldsymbol{w}) \right|.$$

We use

- Bernstein inequality
- Dudley's entropy the partition assumption on

Partition assumption on oscillation function

$$\operatorname{osc}(f^0) := \sup f^0 - \inf f^0.$$

And Lipschitz and Gauss assumption

to obtain: For all $\delta \in (0,1)$, it holds that

$$\Delta_n = \sup_{\boldsymbol{w} \in \mathcal{W}} \left| \mathcal{R}_{n,\lambda}(\boldsymbol{w}) - \mathcal{R}_{\lambda}(\boldsymbol{w}) \right| \leq \frac{\mathsf{osc}(f^0)}{\lambda \sqrt{n}} \left((\ln 2)^{\frac{-3}{4}} \, L_{\mathcal{W}} \, \mathcal{I}_{\mathcal{W}} \, \sqrt{d(\mathcal{X})} + 4 \sqrt{\ln \frac{8}{\delta}} \right),$$

with probability higher than $1 - \delta$.

Kernel Sum-of-Squares

Kernel Sum-of-Squares³ (K-SoS) algorithm to solve

$$\min_{\boldsymbol{w}} \mathcal{R}_{n,\lambda}(\boldsymbol{w})$$

Exploit the smoothness to prove polynomial convergence

Practical performance

- comparable to a simple black box heuristic
- works when dimension of \boldsymbol{w} is not too large (≤ 50)

Working with more specific problems enable deep learning compatible algorithms

³Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. "Finding global minima via kernel approximations". In: *Mathematical Programming* (2024), pp. 1–82.

Soon on arxiv

Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems

Pierre Cyril Aubin-Frankowski¹, Yohann De Castro^{2,3}, Axel Parmentier⁴, and Alessandro Rudi⁵

¹TU Wien, Vienna, Austria.

²Institut Camille Jordan, École Centrale Lyon, CNRS UMR 5208, France.

³Institut Universitaire de France (IUF)

⁴CERMICS, École des Ponts, France.

⁵SIERRA, INRIA Paris, France.

July 24, 2024

Abstract

A recent stream of structured learning approaches has improved the practical state of the art for a range of combinatorial optimization problems with complex objectives encountered in operations research. Such approaches train policies that chain a statistical model with a surrogate combinatorial optimization oracle to map any instance of the problem to a feasible solution. The key idea is to exploit the statistical

Policies embedding a CO layer in a NN

- improved practical state of the art on several data driven problems
- when trained using decision aware learning

This study: theoretical guarantees on the policy obtained

Results apply to contextual stochastic optimization

Smoothing them by perturbation trained using decision aware learning

- makes optimization easier (polynomial convergence guarantee)
- improves generalization (empirical process control)

Perspective: deep learning compatible risk minimization algorithms

References I

- [1] Cheikh Ahmed et al. DistrictNet: Decision aware learning for geographical districting. Feb. 2024.
- [2] Léo Baty et al. "Combinatorial optimization enriched machine learning to solve the dynamic vehicle routing problem with time windows". In: *Transportation Science, in press* (2024).
- [3] Guillaume Dalle et al. Learning with Combinatorial Optimization Layers: A Probabilistic Approach. July 2022. eprint: 2207.13513.
- [4] Francesco Demelas et al. Predicting Accurate Lagrangian Multipliers for Mixed Integer Linear Programs. Oct. 2023.
- [5] Tony Grefi et al. Combinatorial Optimization and Machine Learning for Dynamic Inventory Routing. Feb. 2024.
- [6] Kai Jungel et al. Learning-Based Online Optimization for Autonomous Mobility-on-Demand Fleet Control. Feb. 2023.

ISMP

References II

- [7] A. P. "Learning to Approximate Industrial Problems by Operations Research Classic Problems". In: Operations Research (Apr. 2021).
- [8] A. P. and Vincent T'Kindt. "Structured Learning Based Heuristics to Solve the Single Machine Scheduling Problem with Release Times and Sum of Completion Times". In: European Journal of Operational Research (June 2022). ISSN: 0377-2217.
- [9] Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. "Finding global minima via kernel approximations". In: *Mathematical Programming* (2024), pp. 1–82.
- [10] Utsav Sadana et al. "A survey of contextual optimization methods for decision-making under uncertainty". In: European Journal of Operational Research (2024).