Analyzing cancer genomes

Claudia Arnedo - PhD student at BBGLab

Cancer is a group of diseases characterized by **uncontrolled proliferation** of abnormal cells having the ability to spread throughout the body (**metastasis**)

Tumorigenesis follows a Darwinian evolutionary process

The formation of a tumour involves the action of two mechanisms: **variation** and **selection**.

Variation

Introduces genetic differences between somatic cells

Driver mutations

 Genomic alterations that confer cells with the selective advantage to proliferate

Higher capacity to proliferate, survive, invade or hide from immune system

Selection

Cells which have higher fitness are positively selected

Identifying driver mutations is like looking for a needle in a haystack

Cancer cells accumulate thousands of somatic mutations, most of these are **passenger mutations** (not involved in oncogenesis). Thus, finding drivers and distinguishing them from passenger mutations is very challenging.

Identification of **somatic mutations** in the tumour by
comparing the sequences from a
tumour biopsy and blood sample

Drivers can be detected by searching for signals of positive selection using bioinformatical tools

Tools developed by BBGLab

BBGLab is a computational genomics laboratory led by Dr. Núria López-Bigas. BBGLab focuses on the study of cancer from a genomics perspective.

Intogen

A pipeline that analyses somatic mutations to identify cancer driver genes. It integrates seven different mutation-calling methods that detect signals of positive selection.

Cancer Genome Interpreter

A platform that interprets tumour variants. Identifies those mutations of a tumour that are more likely to be drivers and informs about the anticancer therapies that can target these genomic alterations.

BoostDM

A method to score all possible point mutations in cancer genes for their potential to be involved in tumorigenesis

References

Martínez-Jiménez, F., Muiños, F., Sentís, I., Deu-Pons, J., Reyes-Salazar, I., Arnedo-Pac, C., Mularoni, L., Pich, O., Bonet, J., Kranas, H., Gonzalez-Perez, A., & Lopez-Bigas, N. (2020). A compendium of mutational cancer driver genes. In Nature Reviews Cancer (Vol. 20, Issue 10, pp. 555–572). Nature Research. https://doi.org/10.1038/s41568-020-0290-x