Logiques et représentations des connaissances

Charles Vin

S1-2022

1 Introduction à la logique des propositions et des prédicats du premier ordre

Définition 1.1. Quelques définitions

- Expression : une description logique. Elle est vrais ou fausse
- Meaning : le sens qui relis l'expression vers sa référence
- Référence : représente le sens

Le langage des propositions :

- Atome
- Connecteur :
 - Binary : \vee = "ou", \wedge = "et" \neg = négation
 - DIAPO

Table de vérité:

— Un ligne = une "interprétation"

Une formule est

- Satisfiable : si vrais dans une interprétation
- Valide : si vrais dans toute les interprétation
- Unsatisfiable : faux sur toutes les interprétations

On peut avoir des fonctions qui représente une expression logique.

- Un terme représente une fonction qui renvoie un paramètre ou le tuple de paramètre d'une fonction.
- Un atome est une fonction qui renvoie un booléen.

En d'autre mot ça semble être en fonction de ce que la fonction renvoie un booléen ou un paramètre.

Variable est:

- Liée (muette) : Si elle est liée à un quantificateur, on peut donc changé librement son nom tant qu'on le change partout dans la formule
- Libre : C'est l'inverse, pas liée à un quantificateur donc libre dans la formule. Par exemple dans la formule $\exists y, x < y$, la variable x est libre et y est liée. Cette formule représente le fait que "Il existe un nombre plus grand que x". Au final ici x est en lien avec l'énoncé, il est fixe.

Diapo interpretation: rien compris

A formula is "valid" if it is true in all the interpretation of all domains.

Exemple 1.1. — Valide

— DIAPO

Un modèle est un couple $\mathcal{M}=<\mathcal{D},i>$. Une valuation est une fonction $v:\mathcal{V}\to\mathcal{D}.$ $I_m(F)$ is the truth value. Y'a des propriétés de la truth value dans le DIAPO.

A est une conséquence sémantique de B si A est vrais pour toutes les interpretations où B est vrais i.e. for all models if $I_{m\mathcal{V}}(B)$ then $I_{m\mathcal{V}}(A)$. Exemple $A\to B$ est une conséquence sémantique. Je crois que le symbole c'est $B\models A$ == A conséquence logique de B.

Définition 1.2. Un système formel est composé d'un langage formel, un ensemble d'axiom et de règle d'inférence.

Exemple 1.2. Exemple dans le fiapo avec le système formel de Hilbert.

⊢ représente une dérivation. On peut prouver A à partir de B.

Définition 1.3 (Théorème). Any formula which is derived from the axoms by iteratively applying inference rules is a **theorem**.

Notation : $\vdash A$ means A is a theorem

Exemple 1.3. Exemple : $\vdash (A \rightarrow A)$

Preuve: Voir diapo c'est drôle

Définition 1.4 (Démonstration). A **proof** of a theorem A is a finite sequence of formulae $F_0, ..., F_n$ such that DIAPO mais osef un peu

 \Box

Définition 1.5 (Symbolic system). — Consistency : Each description of the symbolic system corresponds to an object in the reality i.e. DIAPO

— Completeness : each object of the reality can be described in the symbolic system $\forall A \text{ if } \models A \text{ then } \vdash A$

1.1 Automatic theorem proving

1.1.1 Tableau method

- 1. Normalisation: Transformation into NNF Negative Normal Form: The negations occurs only before atomic propositions. i.e il faut développer les négations au max.
- 2. Build a tableau:
 - Root: The formula under NNF.
 - Build successors of T using two rules R_{\wedge} et R_{\vee} VOIR LE DIAPO POUR LEUR DEFINITIONS
 - On arrête lorsque l'on ne peux plus appliquer les règles.

Définition 1.6. Un tableau peut être

- Contradictory
- ... DIAPO

Exemple 1.4 (de la methode). DIAPO MDR OU YOUTUBE PLUTOT

L'avantage de cette méthode par rapport au tableau de vérité c'est qu'on a pas besoin de faire tous les cas possibles.

Généralisation Si je comprend bien on peut prendre des raccourcis avec des nouvelles règles. Pour la règles α on met dans le même tableau. Pour les règles β on met dans deux tableaux différents. **Apprendre les tableau de règles**

1.1.2 Resolution in propositional logic

Définition 1.7 (Une clause). Ca tombe à l'exam d'après le prof

- Un literal is either an atom or its negation
- Une clause is a disjunction of literals

Remarque. A clause is a logical entailment (implication) because $(\neg A \lor B)$ is equivalent to $(A \supset B)$

Exemple 1.5. $even(X) \supset odd(successor(X))$

Théorème 1.1. Any claused formula (sans variable libre) F can be transformed into a logically equivalent conjunction of clauses

Exemple 1.6.

Définition 1.8 (Règle de résolution). S'applique uniquement sur les clauses. Pour prouver que $S \models A$ il suffit de montrer que $S \cup [negA]$ est vide. Voir les exemples du DIAPO

1.1.3 Unification

Définition 1.9 (Substitution). A **substitution** is characterized by a infinite set of " On peut **composer** plusieurs substitution

Définition 1.10 (term instance).

Définition 1.11 (Pattern Matching). The term t_1 match with the term t_2 if and only if there exist a substitution σ such that $t_1\sigma=t_2$

Définition 1.12 (Unification). The terms t_1 and t_2 unify if and only if there exists a substitution σ such that $t_1\sigma=t_2\sigma$

Pattern matching \rightarrow Unification

1.1.4 Resolution in First Oder Logic

Nouveau cours du 21/09

Nouveau cours du 28/09

Pas de diapo au moment du cours

Nouveau cours du 12/10

NOUVEAU PROF Modèle Lr : diamond et carré ⇔ il existe et pour tout

Modèle de Kripke = ensemble de monde (interprétation?) . Puis on peut faire un graph sur comment relier les mondes.

- $M, w_0 \models p \rightarrow q$ c'est faux car dans le monde w_0 p est vrais mais q est faux
- $-M, w_0 \models \Box p$ est vrais, on regarde si tous les mondes qui parte de w_0 on p de vrais.
- $M, w_1 \models (p \lor r) \to \Box p$ ici on regarde dans w_1 , la prémice de la fleche est vrais car p est vrais dans w_1 , donc $\Box p$ doit être vrais. On regarde dans w_3 , p est faux donc l'implication est fausse. En revanche en partant de w_0

```
\begin{array}{l} -\ M, w_2 \models \Box \Box p \\ -\ w_2 \Box p \\ -\ w_2 p \ {\sf Faux} \\ -\ w_1 p \ {\sf Vrais} \\ -\ w_1 \Box p \ {\sf Faux} \\ -\ M, w_2 \models \Box \Box q \ {\sf Vrais} \\ -\ M, w_2 \models \Diamond (r \land \Box q) \\ -\ M, w_2 \models (r \land \Box Q) \ {\sf Vrais} \\ -\ M, w_1 \models (r \land \Box Q) \ {\sf Faux} \\ \rightarrow {\sf VRAIS} \\ {\sf Diapo} \ 9 \ : \end{array}
```

 $M, w \models \phi$ = La formule est statisfaire dans le monde w du model M.

Si pas d'autre monde accessible? alors $M, w_1 \models \Box \phi$ est vrais

Diapo 10:

Loupé bruh

Diapo 12:

Démonstration par l'absurde

Système normal K (diapo 13) : on veut avoir un système de preuve simple, comme celui de Hilbert. On a un axiome sous la forme d'une implication comme pour Hilbert. Mais on simplifie un peu par rapport à Hilbert niveau démonstration, je crois pas l'axiome K.

Déduction (diapo 14) : On a prouvé $p \to p \vdash \Box p \to \Box q$ (dans un univers ou tous les mondes vérifie $p \to q$ alors $\Box p \to \Box q$). Attention ça n'est pas équivalent a $\vdash p \to p \vdash \Box p \to \Box q$, dans celle là on ne vérifie pas l'HP que tous les mondes on $p \to q$.

Correction et complétude :

- ⊢ == démonstration dans un monde
- ⊨ == démonstration dans tous les mondes
- Correction :
- Complétude :
- \rightarrow Le système k est correct et complet vis à vis de l'ensemble des modèle de Kripke.

CCL:

Une formule est satisfiable DIAPO

- Non validité : on montre un contre exemple
- Insatisfiabilité :
- Validité :
 - par raisonnement sémantique
 - Avec la méthode des tableau et $\neg \phi$ UNSAT
 - Un dernier truc pas compris

Exemple 1.7. Montrer que $\Box \phi \rightarrow \Box \Box \phi$ n'est pas valide.

⇒ Contre exemple : voir diapo 18

Théorie de la correspondance :

- C'est une série d'axiome
- Preuve de la réflexivité dans le DIAPO
- Sérialité : globalement on kick out les monde sans fleche
- Transitivité : "Si quelque chose est vrais à un pas de distance, alors il est vrais à deux pas de distance également"
- Euclidienne : "Si je crois possible que phi, je sais que je crois possible de phi"
- Symétrie:

Nouveau cours du 19/10

On peut booster les modèle de Kripte en rajoutant des labels au flèche. Dans cette logique on écrit \square comme "sait". On peut l'écrire vite avec $K_2p \Leftrightarrow K_2\square p$.

Diapo 2

- **—** .
- .
- $M, w_1 \models K_2K_1p$ assez space, je crois que ça se traduit bien avec "l'agent 2 sait que l'agent un sait p.
- $-M, w_1 \models K_2K_1 \neg p$
- $M,w_1\models K_2\neg K_1$ Est-ce que l'agent 2 sait que l'agent 1 ne sait pas p. On regarde les mondes accessible par l'agent 2 : w_1,w_2 . Dans w_1 l'agent 1 ne sais pas p (on regarde w_1,w_0). Dans w_2 l'agent 1 sait p. donc on a un faux et un vrais ce qui donne faux
- $-M, w_1 \models K_1 \neg K_2 p$ ça va
- $-M \models K_2 p$ ça va

Diapo après : Exemple d'application

Diapo 7:3 axiomes important qui forme le système S5

Diapo 12 : différence "je sais que" je sais la chose VS "je sais si" = je sais la chose ou je ne sais pas la chose. le K_p^{si} c'est comme un où

Diapo 13:

- $M, w_1 \models K_1 K_2^{si} p$
- $M, w_1 \models K_2K_1^{si}p$ faux, mais si on prend $B_2K_1^{si}p$ fonctionne, B_2K_1p fonctionne, $B_2K_1\neg p$ ne fonctionne pas

Diapo 14-15:

Exemple 1.8. On a 6 mondes possible. On suppose les boucles sur eux même chaque monde (réflexivité)

- $-\stackrel{\cdot}{M}, w_2 \models (2B \lor 2C) \ w_2 \rightarrow w_2, w_1 \ \text{puis on regarde} \ 2B \lor 2C$
- .
- $M \models \neg K_2 1A$ est-ce que dans tous les monde l'agent 2 ne sait pas que j'agent 1 à reçu A. L'agent 2 ne sais jamais la carte du joueur 1.
- $-M \models B_2 1A$ contre exemple : w_0, w_5
- $-M \models K_2 2A \lor B_2 1A$ On peut utiliser le cas précédant. Vrais
- $M \models 1A \rightarrow K_1(2B \lor 2C)$ Rapide à vérifier avec l'implication, on regarde les mondes 1A et c'est vrais, on l'a vérifié 2 et 3.

Diapo 16 : Le problème de l'omniscience logique, paragraphe du millier, en faite c'est un hypothèse très forte, parce que $K_i\phi$ alors K_i connaît toute les conséquence logique de ϕ . C'est assez fort de savoir toute les implications de ce qu'on sait.

Diapo 17 : Complexité : assez forte si je comprend bien

Diapo 19-20-21 : on peut avoir une équivalence entre deux modèles de Kripte. Y'a une définition formel appelé bi-simulation. Exemple dans le diapo 21

Nouveau cours du 26/10

- $E_G \phi$ = tout le groupe G sait que ϕ
- Diapo 5 : def G-atteignable
- Diapo 6 : Connaissance distribuée : On peut déduire ϕ en combinant les connaissances des agents du groupe G. On regarde l'intersection de toutes les connaissances pour tous les agents. exemple : l'agent 1 sait que la solution est 1 ou 2, l'agent 2 sait que la solution c'est 2 ou 3 \rightarrow La solution est 2. Voir figure 1.
- Diapo 7 : propriété assez instinctive : on ajoute ou retire des gens du groupe

Figure 1 - c'est réflexif

Diapo 8 : exemple

- 1. On regarde tous les mondes atteignable depuis w_2 par un des membres du groupe $G=\{1,2\}$. C'est à dire tous les mondes de la structure. Et on a toujours $1A \vee 1B \vee 1C$ donc c'est vrais
- 2. Vrais
- 3. On regarde les flèches avec 1 et 2 partant de w_2 , ici il n'y a que w_2 par réflexivité. et la formule ici est vrais.
- 4. On doit vérifier si tous les membres du groupe savent que 1B Vrais
- 5. Faux

Diapo 9: Notion d'annonce publique

— Ca a pour effet d'éliminer tous les mondes ou ϕ est faux

Diapo 10-11 : Retour sur coffee logic

- On vas regarder ce qui se passe avec les annonces publique avec 3 agents
- La réponse de la première personne vas faire disparaître la moitié des mondes. Ceux qui commence ou ne commence pas par un 1.ect ect

Diapo 13-14: exemple enfant sale

- 1. On regarde tous les monde avec la coordonnée 2 à 1. Puis p_2 est vrais dans tous les monde accessible par l'agent 1.
- 2. On regarde tous les monde accessible à partir de 101 que je peux atteindre en un arc. Et dans chacun de ces mondes, il y a au moins un enfant sale. Donc tout le monde sait qu'il y a au moins un enfant qui est sale.
- 3. Non à cause du monde 000
- 4. Faux dans plein de monde de ma structure
- 5. On veux que ça soit vrais dans toute la structure
- 6. Il est bien vrais à chaque fois que j'ai soit p_1 soit p_1

Diapo 15: avec annonce publique

- On prend le monde 101 comme le vrais monde
- Le père annonce l'un de vous est sale. \rightarrow Le monde 000 devient impossible.

- Ainsi si mes deux camarades sont propre, je sais que je suis sale. \rightarrow on peut éliminer tous ces mondes si les 3 enfants ne réponde pas.
- Nouvelle annonce publique : Est-ce que l'un de vous sait si il est sale?
- Si je vois que les deux autres enfants sont sale, je ne peux toujours pas répondre à la question.
 L'enfant 1 et l'enfant 3 réponde oui →élimine les monde 111, 110, 011
- Il ne reste plus que le monde 101

Diapo 16 : Sujet d'exam d'il y a quelques années

- L'épicier est capable de distinguer le poids des sphères et le magicien la magique.
- On a 6 mondes possibles
- Sur le graph, on peut voir que le magicien hésite entre tous les mondes ou il a la sphère magique et tous les mondes où il n'a pas la sphère. Same pour l'épicier.

On a des annonces publique, quel monde éliminer.

- 1. "Epicier : Je ne sais pas que j'ai la sphère magique" On n'élimine aucun monde, l'épicier hésite toujours entre deux monde où il a ou pas la sphère magique.
- 2. "Epicier : Je sais que j'ai obtenu la sphère de 130 numéros 3" $\to w_3, w_4, w_0$ et w_1 aussi car l'épicier hésite quand même avec le monde w_3
- 3. "Magicien : Je sais que je n'ai pas la sphère magique"
- 4. Pour la question d'opti pour le roi :
 - Commencer par le magicien est une mauvaise idée, ça élimine 3 mondes en haut ou en bas puis l'épicier n'hésite entre plus aucun des mondes (car il hésitait entre ceux du haut et du bas) et hop ils peuvent conclure
 - Si on fait d'abord parler l'épicier :
 - Avec un packet de 250g : w_2, w_5 donc il sait qu'il a la sphère de 130,
 - Avec un packet de 230 : l'épicier est sur qu'il a la sphère de 110g (1)
 - Avec un packet de 240g : l'épicier ne sais pas si il a la sphère de 110, et ne sais pas si il a la sphère de 130g : w_1 ou w_3 mais il sont indistinguable par l'épicier. Et il reste encore 4 mondes possibles : w_0, w_1, w_3, w_4 . Et là le magicien ne peux pas distinguer.

Diapo 19:

- Remarque que, si il y a coopération, il y a une information plus informative
- Mais c'est au delà de ce que la modèlisation nous permet de faire.

Diapo 20 : Nouvelle Énigmes

Correction en TME

Diapo 22-25: Autre énigme: EXAM 2018-2019

- Initialement avec 140 mondes
- Avec l'annonce de A, on tombe à 20

Diapo 23: Les cartes russes

_

Nouveau cours8 du 23/11

2 Représentation du temps

— c'est assez utile de représenter le temps, sinon on peut aboutir à des boucles et des incohérence