First look at Udo's files for $n\bar{n}$ sensiticity

Yuri Kamyshkov/University of Tennessee

kamyshkov@utk.edu

Total numbers in simulation files for 14 cm² guide tally

Range 1Å < λ < 10 Å(L) < 20 Å(H)

Configuration		File length	Events in file	Tot weight in file	NoReflEvnts	NoReflWeight
Straight m = 1	L H	69.7 MB 8.368 GB	549827	5.7264E+11	238452	5.5578E+11
Straight m = 4	L H	106.8 MB	841706	9.8089E+11	238112	5.5289E+11
Elliptic $m = 1$	L H	50.4 MB 5.668 GB	397803	5.3057E+11		
Elliptic $m=4$	L H	60.5 MB 6.098 GB	477,255 48,495,250	8.1418E+11 9.3255E+11 •		

File elliptic_m4_2MW

Temperature of moderator seen through beam port (reflections ~ removed)

Wavelength 0 - 10 Å

Neutrons in 14 x 14 cm2 tally at 5.5 m

|Velocity| distribution in interval 0-10,000 m/s

Neutron wavelength distribution in interval 0-20 Å

Proton beam pulse length

No selections!

X, Y distributions at z=15 m (bunker exit)

No selections!

X, Y distributions at z=75 m (detector)

20Å ↔ 200 m/s 75 m for $\Delta t = 0.375 \, s$ $\Delta y = -0.7 m$

* NEQUIVAL = 0.1996E+07

+1.15 m

Detector area 4.5 m $(x) \times 2.7$ m (y)

Task for focusing is to reduce the beam size to dia <1 m? < 0.6 m?

"Maximum" (non-realistic) HIBEAM sensitivity estimate for n-nbar

- BF upper ESS moderator, beam line E5 spectrum at 2 MW
- Use total beam intensity through guide (0.1Å $\leq \lambda \leq 20$ Å)
- Maximum possible beam guide size $14 \times 14 \text{ cm}$ (from z = 2.7 to 5.5 m)
- No reflection decoherence reset for maximum possible flight time of 75 m
- Perfect magnetic screening and vacuum assumed
- ILL unit (tuned to ESS availability time) = 2.0E+9 $n \cdot s$
- Detector efficiency 100%

For Udo's configurations:

Elliptical m=4 guide dia 10 to dia 14 cm, 2 MW

Config at 2 MW	Target m ²	n/s max	$ar{t^2}$ max	ILL max	Tar Ø m	n/s	$\bar{t^2}$, s^2	ILL units
Ellipse m=4 guide	4.5 x 2.7	9.325E+11	0.00511	2.38	2.0	6.302E+11	0.00525	1.68
					1.0	2.330E+11	0.00542	0.63
					0.6	1.031E+11	0.00543	0.28

Magnification factor *F*

Neglecting effect of gravity

if $\emptyset_t = 2 \ m \rightarrow \emptyset_s \cong 10 \ cm$

Small rotation of the mirror element for angle φ efficiently moves the image, but doesn't change the magnification factor.

Reflecting elliptic HIBEAM guide in the monolith

Z-coordinate, m