Course name: Growth and Characterization of Nanoelectronic Materials (EE728)

Instructor: Apurba Laha

Department of Electrical Engineering, IIT Bombay

Contact: Tel: 022-2576 9408, email: laha@ee.iitb.ac.in

Atomic Layer Deposition

EE669 VLSI Technology

Definition of ALD

- ALD is a method of applying thin films to various substrates with atomic scale precision.
- Similar in chemistry to chemical vapor deposition (CVD),
 except that the ALD reaction breaks the CVD reaction into two
 half-reactions, keeping the precursor materials separate
 during the reaction.
- ALD film growth is self-limited and based on surface reactions, which makes achieving atomic scale deposition control possible.
- By keeping the precursors separate throughout the coating process, atomic layer thickness control of film grown can be obtained as fine as atomic/molecular scale per monolayer.

CVD vs ALD

Chemical vapor deposition (CVD):

One or more gases or vapors react to form a solid product

Solid product can be a

- > film
- particle
- nanowire
- > nanotube

Reaction started by

- > heat
- mixing 2 vapors
- plasma

CVD vs ALD

Atomic Layer Deposition (ALD)

Sequential, self-limiting surface reactions make alternating layers:

Benefits of ALD:

- Atomic level of control over film composition
 ⇒nanolaminates and multi-component materials
- Uniform thickness over large areas and inside narrow holes
- Very smooth surfaces (for amorphous films)
- High density and few defects or pinholes
- Low deposition temperatures (for very reactive precursors)
- Pure films (for suitably reactive precursors)

ALD Process and Equipment

^{1 &}quot;Technology Backgrounder: Atomic Layer Deposition," IC Knowledge LLC, 24 April 06. www.icknowledge.com/misc-technology/Atomic%20Layer%20Deposition%20Briefing.pdf.

Criteria for Both CVD & ALD Precursors

- ➤ Sufficient volatility (> 0.1 Torr at T < 200 oC)
- > No thermal decomposition during vaporization
- Liquid at vaporization temperature
- > Preferably liquid at room temperature
- > or soluble in an inert solvent
- > Precursors and byproducts don't etch films

Criteria for CVD Precursors

- Reactivity with substrate
- Reactivity with surface of growing film
- Thermal decomposition allowed or even needed

Criteria for ALD Precursors

- Self-limited reactivity with substrate
- •Self-limited reactivity with the surface made by reaction of the film with the other precursor
- Thermal decomposition not allowed

ALD cycle: ideal scenario

(i) Reaction of Precursor #1

(iii) Reaction of Precursor #2

(ii) Purge #1

(iv) Purge #2

Jill Becker, Ph. D. thesis, MIT, 2002

ALD cycle: Al₂O₃ example

ALD cycle: ideal scenario (2)

- The reactions could be activated thermally (thermal ALD) or by plasma or by both (PE-ALD)
- Reactions A and C are surface limited and saturating, and hence self limiting
 - Excellent control over thickness (monolayer by monolayer)
 - Film uniformity
 - Excellent conformality
 - Sharp interfaces
 - Processing of nanolaminates
 - Easy to scale up

ALD System: Schematic

ALD: Non Idealities (1)

- > Deposition does not proceed mono layer by mono layer
 - ➤ Not enough surface sites are available. For example, some of the surface sites in the Al₂O₃ example could be Si₃ΞSi-O-SiΞSi₃
 - > Steric hindrance: the precursor molecules could be larger compared to the spacing between adjacent surface sites
 - > These could lead to island growth in the initial stages

ALD: Non Idealities (2)

ALD: Properties of Precursors

- Should not decompose under the process conditions
- ➤ The surface obtained after the first reaction should be reactive to the second precursor
- Molecule size appropriate for desirable film properties
 - > Small molecular size for ultra thin closed films
 - Large molecular size for discontinuous films
- > No etching of the substrate and the deposited film
- Unreactive volatile products

Single wafer ALD: Designs

Single wafer ALD: Designs (2)

Batch ALD: Designs

Batch ALD designs (2)

Poodt et al., Advanced Materials, vol. 22, p. 3564, 2010

Plasma Enhanced ALD

Chang-Wook Jeong, et al; Materials Science and Engineering © 16(2001)59–64

ALD: Applications

Micromagazine.com, 2007

- DRAM trench capacitor
 - high aspect ratio trenches and hence conformal deposition is critical
 - Low temperature process is important for transistor scaling

ALD: Applications (2)

K. Mistry et al., IEDM 2007

- High-k/metal gate integration in CMOS Technology
 - High-k => low levels of contamination, low temperature process
 - Metal gate => conformal deposition, low temperature process

ALD: Applications (3)

Passivation of crystalline Si solar cells fabricated on n-type substrates using Al₂O₃ is an emerging field of application for ALD

• Electrons diffusing to the top of the p-type region would be repelled by the negative charges in the Al₂O₃

References

CVD:

- Hugh O. Pierson, Handbook of chemical vapor deposition (CVD): principles, technology and applications, Noyes Pub., 1992.
- Langmuir,"The vapor pressure of metallic Tungsten", Physical Review, November 1913.
- S. Sivaram, "Chemical Vapor Deposition: thermal and plasma deposition of electronic materials", Van Nostrand Reinhold, 1995.
- Ohshita et al., Thin Solid Films, 1 March 2002, pp. 215.
- Sears and Salinger, "Thermodynamics, Kinetic Theory and Statistical Thermodynamics", Third Ed. Narosa Pub. House, : 1975.
- http://encyclopedia.airliquide.com
- J. D. Plummer, M. D. Deal, and P. B. Griffin, "Silicon VLSI technology: fundamentals, practice and modeling", Prentice-Hall, 2000.

References

CVD:

- D. G. Coronell and K. F. Jensen, J. Computer-Aided Materials Design, 1993, pp. 3-26.
- Hitchman and Jensen (ed.), "Chemical Vapor Deposition Principles and Applications", Academic Press, 1993.
- Koenig and Maissel, IBM J. R & D, 1970.
- Angus Rockett, "Material Science of Semiconductors", Springer Verlag, 2008

ALD:

- Collection of Ph. D. thesis on ALD available at http://www.cambridgenanotech.com/klc/theses.php
- Jill Becker, Ph. D. thesis, MIT, 2002.
- R. L. Puurunen, Journal of Applied Physics 2005.
- R. L. Puurunen, Journal of Applied Physics 2004.
- R. L. Puurunen, Ph. D. thesis, University of Helsinki, available at http://lib.tkk.fi/Diss/2002/isbn9512261421/isbn9512261421.pdf