Homework 11

Early problem due on Gradescope at 11:59 pm on Wednesday, April 26th. Due on Gradescope at 11:59 pm on Friday, April 28th.

- (1) (Early problem) Let τ and τ' be two topologies on a set X; suppose that τ' is finer than τ . What does compactness of X under one of these topologies imply about compactness under the other?
- (2) (a) Show that in the finite complement topology on R, every subspace is compact(b) If R has the topology consisting of all sets A such that R − A is countable or all of R, is [0, 1] a compact subspace?
- (3) Show that if X is compact Hausdorff under both the topology τ and the topology τ' , then either τ and τ' are equal or they are not comparable.
- (4) Show that if Y is compact, then the projection $\pi_1: X \times Y \to X$ is a closed map, i.e., if Z is a closed subset of $X \times Y$, then $\pi_1(Z)$ is a closed subset of X. (Hint: for each $x_0 \in X \pi(Z)$, use the tube lemma to find an open neighborhood around x_0 contained in $X \pi(Z)$.)