Systèmes d'exploitation

TP - Ordonnanceur

ING1 Informatique - Mathématique apliquée Année 2022–2023

Ordonnanceur non-préemptif

- Considérons cinq travaux A, B, C, D et E, dont les temps d'exécution et leurs temps d'arrivée respectifs sont donnés dans la table ci-dessous. Faire un schéma qui illustre son exécution et calculer :
 - Le schéma d'exécution des processus
 - le **temps de séjour** de chaque processus : intervalle de temps entre la soumission du travail et son achèvement.
 - le temps moyen de séjour
 - le **temps d'attente** : temps de séjour temps d'exécution du travail
 - le temps moyen d'attente

en utilisant les techniques:

- 1. First Come First Served (FCFS)
- 2. Shortest Job First (SJF)

Processus	Temps d'exécution	Temps d'arrivée
A	3	0
В	6	1
С	4	4
D	2	6
Е	1	7

Ordonnanceur préemptif

Soient deux processus A et B prêts tels que A est arrivé en premier suivi de B, 2 unités de temps après. Les temps nécessaires pour l'exécution des processus A et B sont respectivement 15 et 4 unités de temps. Le temps de commutation est supposé nul sauf si dit autrement. Calculer :

- le schéma d'exécution des processus
- le **temps de séjour** de chaque processus A et B
- le temps moyen de séjour
- le **temps d'attente** : temps de séjour temps d'exécution du travail
- le temps moyen d'attente
- le nombre de **changements de contexte**

en utilisant les techniques:

- 1. SRT (Shortest Remaining Time)
- 2. Round robin (quantum = 10 unités de temps)
- 3. Round robin (quantum = 3 unités de temps)

Processus	Temps d'exécution	Temps d'arrivée
A	15	0
В	4	2

Ordonnanceurs de processus avec de la priorité

- Cinq processus A, B, C, D et E sont soumis à un processeur. Leurs durées, leurs temps d'arrivée et leurs priorités (avec le plus petit chiffre égal à la priorité la plus forte) respectifs sont donnés dans la table ci-dessous. Ces travaux ne font pas d'entrées-sorties. Déterminer pour chaque processus :
 - le schéma d'exécution des processus
 - le **temps de séjour** de chaque processus
 - le temps moyen de séjour
 - le **temps d'attente** : temps de séjour temps d'exécution du travail
 - le temps moyen d'attente
 - le nombre de **changements de contexte**

en considérant tout d'abord que l'ordonnancement est non préemptif, puis qu'il est préemptif (c'est-à-dire, qu'un processus peut être réquisitionné lorsqu'un autre avec une priorité plus forte arrive).

Processus	Temps d'exécution	Temps d'arrivée	Priorité
A	10	2	3
В	6	0	5
С	2	5	2
D	4	5	1
Е	8	3	4

Considérons quatre processus P1, P2, P3 et P4 dont les caractéristiques sont les suivantes :

Processus	Temps d'exécution	Priorité
P1	5	3
P2	8	4
Р3	12	2
P4	4	1

Sachant que les quatre processus sont présents à l'instant $t_0=0$ dans la file des processus prêts et que les processus étaient arrivés dans l'ordre P1, P2, P3, P4. L'ordonnancement est en tourniquet (Round-Robin) avec un quantum Q égal à (5 - priorité du processus) unités. Donnez la séquence d'exécution des processus. Si un processus ne consomme pas l'intégralité de son quantum, le processus suivant reçoit immédiatement un nouveau quantum Q.