## 2008-EE-18-34

## AI24BTECH11011 - Himani Gourishetty

- 1) A 3-phase Voltage source Inverter is operated in 180° conduction mode. Which one of the following statements is true?
  - a) Both pole-voltage and line-voltage will have  $3^{rd}$  harmonic components
  - b) Pole-voltage will have 3<sup>rd</sup> harmonic components but line-voltage will be free from 3<sup>rd</sup> harmonic
  - c) Line-voltage will have  $3^{rd}$  harmonic components but pole-voltage will be free from  $3^{rd}$  harmonic
  - d) Both pole-voltage and line-voltage will be free from 3<sup>rd</sup> harmonic components
- 2) The impulse response of a causal linear time-invariant system is given as h(t). Now consider the following two statements:

Statement (I): Principle of superposition holds

Statement (II): h(t) = 0 for t < 0

Which one of the following statements is correct?

- (A) Statement (I) is correct and Statement (II) is wrong
- (B) Statement (II) is correct and Statement (I) is wrong
- (C) Both Statement (I) and Statement (II) are wrong
- (D) Both Statement (I) and Statement (II) are correct
- 3) It is desired to measure parameters of 230v/115v,2kVA, single-phase transformer. The following wattmeters are available in a laboratory.

 $W_1$ : 250V, 10A, Low Power Factor

 $W_2$ : 250v,5A,Low Power Factor

 $W_3$ : 150V, 10A, High Power Factor

 $W_4$ : 150V, 5A, High Power Factor

The wattmeters used in open circuit test and short circuit test of the transformer will respectively be

- a)  $W_1$  and  $W_2$
- b)  $W_2$  and  $W_4$
- c)  $W_1$  and  $W_4$
- d)  $W_2$  and  $W_3$
- 4) The time constant for the given circuit will be



- a)  $\frac{1}{9}$ s
- b)  $\frac{1}{4}$ s
- c) 4s
- d) 9s
- 5) The resonant frequency for the given circuit will be
  - a)  $1 \frac{rad}{s}$



- b)  $2 \frac{rad}{s}$
- c)  $3 \frac{rad}{s}$
- d) 4  $\frac{rad}{s}$
- 6) Assuming ideal elements in a circuit shown below, the voltage  $V_{ab}$  will be



- a) -3V
- b) 0V
- c) 3V
- d) 5V
- 7) A capacitor consists of 2 metal plates each  $500 \times 500 mm^2$  and spaced 6 mm apart. The space between the metal plates is filled with glass plate of 4mm thickness and a layer of paper of 2mm thickness. The relative permittivities of the glass and paper are 8 and 2 respectively. Neglecting the fringing effect, the capacitance will be (Given that  $\epsilon_0 = 8.85 \times 10^{-12} \frac{F}{m}$ )
  - a) 983.33pF
  - b) 1475 pF
  - c) 6637.5 pF
  - d) 9956.25 pF
- 8) A coil of 300 turns is wound on a non-magnetic core having a mean circumference of 300mm and a cross-sectional area of  $300mm^2$ . The inductance of the coil corresponding to a magnetizing current of 3A will be (Given that  $\mu_0 = 4\pi \times 10^{-7}$ )
  - a)  $37.68 \mu H$
  - b)  $113.04\mu H$
  - c) 37.68 mH
  - d) 113.04 mH
- 9) In the circuit shown in the figure, the value of the current i will be given by
  - a) 0.31A
  - b) 1.25A
  - c) 1.75A
  - d) 2.5A



- 10) Two point charges  $Q_1 = 10\mu C$  and  $Q_2 = 20\mu C$  are placed at coordinates (1, 1, 0) and (-1, -1, 0)respectively. The total electric flux passing through a plane z = 20 will be
  - a)  $7.5\mu C$
  - b)  $135\mu C$
  - c)  $15.0\mu C$
  - d)  $22.5\mu C$
- 11) Given a sequence x[n], to generate the sequence y[n] = x[3-4n], which one of the following procedures would be correct?
  - a) First delay x[n] by 3 samples to generate  $z_1[n]$ , then pick every  $4^{th}$  sample of  $z_1[n]$  to generate  $z_2[n]$ , and then finally time reverse  $z_2[n]$  to obtain y[n]
  - b) First advance x[n] by 3 samples to generate  $z_1[n]$ , then pick every  $4^{th}$  sample of  $z_1[n]$  to generate  $z_2[n]$ , and then finally time reverse  $z_2[n]$  to obtain y[n]
  - c) First pick every fourth sample of x[n] to generate  $V_1[n]$ , time-reverse  $v_1[n]$  to obtain  $v_2[n]$ , and finally advance  $v_2[n]$  by 3 samples to obtain y[n]
  - d) First pick every fourth sample of x[n] to generate  $V_1[n]$ , time-reverse  $v_1[n]$  to obtain  $v_2[n]$ , and finally delay  $v_2[n]$  by 3 samples to obtain y[n]
- 12) A system with input x(t) and output y(t) is defined by the input-output relation:

$$y(t) = \int_{-\infty}^{-2t} x(\tau) d\tau \tag{1}$$

The system will be

- a) casual,time-invariant and unstable
- b) casual, time-invariant and stable
- c) non-casual,time-invariant and unstable
- d) non-casual, time-invariant and unstable
- 13) A signal  $x(t) = \sin c(\alpha t)$  where  $\alpha$  is a real constant  $\left(\sin c(x) = \frac{\sin(\pi x)}{\pi x}\right)$  is the input to a Linear Time invariant system whose impulse response  $h(t) = \sin c(\beta t)$  where  $\beta$  is a real constant. If  $\min(\alpha, \beta)$ denotes the minimum of  $\alpha$  and  $\beta$ , and similarly  $max(\alpha,\beta)$  denotes the maximum of  $\alpha$  and  $\beta$ , and K is a constant, which one of the following statements is true about the **output of the system**?
  - a) It will be of the form  $K \sin c (\gamma t)$  where  $\gamma = \min (\alpha, \beta)$
  - b) It will be of the form  $K \sin c (\gamma t)$  where  $\gamma = max(\alpha, \beta)$
  - c) It will be of the form  $K \sin c (\alpha t)$
  - d) It cannot be a sin c type of signal
- 14) Let x(t) be a periodic signal with time period T. let  $y(t) = x(t-t_0) + x(t+t_0)$  for some  $t_0$ . The Fourier Series coefficients of y(t) are denoted by  $b_k$ . If  $b_k = 0$  for all odd k, then  $t_0$  can be equal to

  - a)  $\frac{T}{8}$ b)  $\frac{T}{4}$ c)  $\frac{T}{2}$

  - d)  $\bar{2}T$

- 15) H(z) is a transfer function of a real system. When a signal  $x[n] = (1+j)^n$  is the input to such a system, the output is zero. Further, the Region of Convergence (ROC) of  $\left(1 \frac{1}{2}z^{-1}\right)H(z)$  is the entire Z-plane (except z = 0). It can then be inferred that H(z) can have a minimum of
  - a) one pole and one zero
  - b) one pole and two zeros
  - c) two poles and one zero
  - d) two poles and two zeros
- 16) Given  $X(z) = \frac{z}{(z-a)^2}$  with |z| > a, the residue of  $X(z)z^{n-1}$  at z = a for  $n \ge 0$  will be
  - a)  $a^{n-1}$
  - b)  $a^n$
  - c)  $na^n$
  - d)  $na^{n-1}$
- 17) Consider function  $f(x) = (x^2 4)^2$  where x is a real number. Then the function has
  - a) only one minimum
  - b) only two minima
  - c) three minima
  - d) three maxima