Package 'ATNr'

January 26, 2022

Type Package
Title Allometric Trophic Networks in R
Version 1.0
Date 2022-01-25
Author Benoit Gauzens, Emilio Berti
Maintainer Benoit Gauzens <pre><benoit.gauzens@idiv.de></benoit.gauzens@idiv.de></pre>
Description The ATNr package implements different version of Allometric Trophic Models to estimate populations dynamics in food webs.
License GPL (>= 2)
Imports Rcpp (>= 1.0.7), methods, stats, utils
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.2
Depends R (>= 2.10)
Suggests rmarkdown, knitr, deSolve, testthat, igraph, R.rsp
VignetteBuilder knitr, R.rsp
Config/testthat/edition 3
R topics documented:
create_Lmatrix
create_matrix_parameter
create_model_Scaled
create_model_Unscaled
create_model_Unscaled_nuts
create_niche_model
initialise_default_Unscaled
initialise_default_Unscaled_nuts
Joacobian
Isoda wranner

2 create_Lmatrix

remove_species									 								11
run_checks									 								12
Scaled									 				 				12
Scaled_loops									 				 				13
schneider									 				 				13
sort_input									 								15
TroLev									 								15
Unscaled																	
Unscaled_loops																	
Unscaled_nuts									 								17
Unscaled_nuts_lo	ops								 								18
Unscaled_nuts_pr	efs								 								18

create_Lmatrix

Make L matrix

Description

Make L matrix

Usage

```
create_Lmatrix(BM, nb_b, Ropt = 100, gamma = 2, th = 0.01)
```

Arguments

ВМ float vector, body mass of species. integer, number of basal species. nb_b Ropt

numeric, consumer/resource optimal body mass ratio.

numeric, the ... of the Ricker function. gamma

th float, the threshold below which attack rates are considered = 0.

Details

The L matrix contains the probability for an attack event to be successful based on allometric rules and a Ricker function defined by Ropt and gamma. If at least one species has not resource or consumer (i.e. it is an isolated species), another food web is generated, until a maximum of 100 iterations.

Value

A numeric matrix with the probability for an attack event between two species to be successful.

```
set.seed(123)
mass <- sort(10 ^ rnorm(50, 1, 2))
L <- create_Lmatrix(mass, nb_b = 10, Ropt = 100)</pre>
image(L)
```

```
create_matrix_parameter
```

Make parameter matrix

Description

Make parameter matrix

Usage

```
create_matrix_parameter(BM, b0, bprey, bpred, E, T.K, T0, k)
```

Arguments

BM	float vector, body mass of species.
b0	const
bprey	const
bpred	const
E	const
Т.К,	Celsius to Kelvin conversion
TO,	Default temperature in Kelvin
k,	Boltzmann constant

Details

Make a parameter matrix that depends on both predators and prey and that is used to define attack rates and handling times based on the general allometric equation:

$$p_{i,j} = b_0 * BM_i^{bprey} * BM_j^{bpred} * exp(-E*(T0-T.K)/(k*T.K*T0))$$

```
create_model_Scaled
```

Initialize an ATN model, following Delmas et al. 2017, Methods in Ecology and Evolution

Description

Initialize an ATN model, following Delmas et al. 2017, Methods in Ecology and Evolution

```
create_model_Scaled(nb_s, nb_b, BM, fw)
```

Arguments

nb_s	integer, number of total species.
nb_b	integer, number of basal species.
BM	float vector, body mass of species.
fw	binary adjacency matrix of the food web.

Details

A model is defined by the total number of species (nb_s) , the number of basal species (nb_b) , the number of nutrients (nb_n) , the body masses (BM) of species, and the adjacency matrix (fw) representing species interactions.

Value

An object of class ATN (Rcpp_parameters_prefs).

References

Delmas, E., Brose, U., Gravel, D., Stouffer, D.B. and Poisot, T. (2017), Simulations of biomass dynamics in community food webs. Methods Ecol Evol, 8: 881-886. https://doi.org/10.1111/2041-210X.12713

Examples

```
library(ATNr)
n_species <- 50
n_basal <- 10
masses <- runif(n_species, 10, 100) #body mass of species
L <- create_Lmatrix(masses, n_basal)
fw <- L
fw[fw > 0] <- 1
mod <- create_model_Scaled(n_species, n_basal, masses, fw)</pre>
```

```
create_model_Unscaled
```

Initialize an ATN model, following Binzer et al. 201, Global Change Biology

Description

Initialize an ATN model, following Binzer et al. 201, Global Change Biology

```
create_model_Unscaled(nb_s, nb_b, BM, fw)
```

Arguments

nb_s	integer, number of total species.
nb_b	integer, number of basal species.
BM	float vector, body mass of species.
fw	binary adjacency matrix of the food web.

Details

A model is defined by the total number of species (nb_s) , the number of basal species (nb_b) , the number of nutrients (nb_n) , the body masses (BM) of species, and the adjacency matrix (fw) representing species interactions.

Value

An object of class ATN (Rcpp_parameters_prefs).

References

Binzer, A., Guill, C., Rall, B.C. and Brose, U. (2016), Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob Change Biol, 22: 220-227. https://doi.org/10.1111/gcb.13086 Gauzens, B., Rall, B.C., Mendonca, V. et al. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Chang. 10, 264-269 (2020). https://doi.org/10.1038/s41558-020-0698-z

Examples

```
library(ATNr)
n_species <- 50
n_basal <- 10
masses <- runif(n_species, 10, 100) #body mass of species
L <- create_Lmatrix(masses, n_basal)
fw <- L
fw[fw > 0] <- 1
mod <- create_model_Unscaled(n_species, n_basal, masses, fw)</pre>
```

```
create_model_Unscaled_nuts
```

Initialize an ATN model, following Schneider et al. 2016, Nature Communication

Description

Initialize an ATN model, following Schneider et al. 2016, Nature Communication

```
create_model_Unscaled_nuts(nb_s, nb_b, nb_n = 2, BM, fw)
```

6 create_niche_model

Arguments

nb_s	integer, number of total species.
nb_b	integer, number of basal species.
nb_n	integer, number of nutrients.
BM	float vector, body mass of species.
fw	binary adjacency matrix of the food web.

Details

A model is defined by the total number of species (nb_s) , the number of basal species (nb_b) , the number of nutrients (nb_n) , the body masses (BM) of species, and the adjacency matrix (fw) representing species interactions. Nutrients are not counted as species.

Value

An object of class ATN (Rcpp_parameters_prefs).

Examples

```
library(ATNr)
n_species <- 50
n_basal <- 10
n_nutrients <- 2
masses <- runif(n_species, 10, 100) #body mass of species
L <- create_Lmatrix(masses, n_basal)
fw <- L
fw[fw > 0] <- 1
mod <- create_model_Unscaled_nuts(n_species, n_basal, n_nutrients, masses, fw)</pre>
```

create_niche_model Create a food web based on the niche model

Description

Function to generate a food web based on the niche model (Williams and Martinez, 2000) based on the number of species and connectance. Corrections from Allesina et al. (2008) are used.

Usage

```
create_niche_model(S, C)
```

Arguments

- S integer, number of species.
- C numeric, connectance i.e. the number of realized links over the all possible links.

Details

If at least one species has not resource or consumer (i.e. it is an isolated species), another food web is generated, until a maximum of 100 iterations.

Value

A (square) matrix with zeros (no interaction) and ones (species j consume species i).

References

Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404(6774), 180-183.

Allesina, S., Alonso, D., & Pascual, M. (2008). A general model for food web structure. science, 320(5876), 658-661.

Examples

```
web_niche <- create_niche_model(50, .4)
image(web_niche)</pre>
```

```
initialise_default_Scaled
```

Default parameters for the scaled version of ATN as in Delmas et al. 2016

Description

Initialise the default parametrisation for the scaled version of the ATN model as in Delmas et al. (2016).

Usage

```
initialise_default_Scaled(model)
```

Arguments

model

an object of class Rcpp_Scaled.

Value

An object of class *Rcpp_Scaled* with default parameters as in Delmas et al. (2017).

References

Delmas, E., Brose, U., Gravel, D., Stouffer, D.B. and Poisot, T. (2017), Simulations of biomass dynamics in community food webs. Methods Ecol Evol, 8: 881-886. https://doi.org/10.1111/2041-210X.12713

```
initialise_default_Unscaled
```

Default parameters for the scaled version of ATN as in Binzer et al. 2016, with updates from Gauzens et al. 2020

Description

Initialise the default parametrisation for the scaled version of the ATN model as in Binzer et al. (2016), with updates from Gauzens et al. 2020

Usage

```
initialise_default_Unscaled(model, temperature = 20)
```

Arguments

```
model an object of class ATN (Rcpp_Unscaled).

temperature numeric, ambient temperature of the ecosystem in Celsius.
```

Value

An object of class ATN (Rcpp_Unscaled) with default parameters as in Delmas et al. (2017).

References

Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220-227 (2016). Gauzens, B., Rall, B.C., Mendonca, V. et al. Biodiversity of intertidal food webs in response to warming across latitudes. Nat. Clim. Chang. 10, 264-269 (2020). https://doi.org/10.1038/s41558-020-0698-z

```
initialise_default_Unscaled_nuts
```

Default model parameters as in Schneider et al. 2016

Description

Initialise the default parametrisation for the model for Schneider et al. (2016).

```
initialise_default_Unscaled_nuts(model, L.mat, temperature = 20)
```

Joacobian 9

Arguments

model an object of class ATN (Rcpp_Unscaled_nuts.

L. mat numeric matrix, probability of a consumer to attack and capture an encountered

resource. See create_Lmatrix.

temperature numeric, ambient temperature of the ecosystem in Celsius.

Value

An object of class ATN (Rcpp_Unscaled_nuts) with default parameters as in Schneider et al. (2016).

References

Schneider, F. D., Brose, U., Rall, B. C., & Guill, C. (2016). Animal diversity and ecosystem functioning in dynamic food webs. Nature Communications, 7(1), 1-8.

Joacobian

Estimate the Jacobian matrix of a ODE system

Description

Estimate the Jacobian matrix of a ODE system

Usage

```
Joacobian (bioms, ODE, eps = 1e-08)
```

Arguments

bioms float vector, biomass of species.

ODE function that computes the ODEs from one of the model available

eps float, scale precision of the numerical approximation.

Details

The function provides a numerical estimation of the Jacobian matrix based on the 5 points stencil method. The precision of the method is in

 $O(h^5)$

, where

h = eps * bioms

. The choice of eps should ensure that

 h^5

is always lower to the extinction threshold.

The dimension of the Jacobian matrix are not always matching the number of species in the system. This is because we considered that a perturbation can not correspond to the recolonisation of an extinct species. Therefore, extinct species are removed from the system to calculate the Jacobian matrix.

10 lsoda_wrapper

Value

A matrix corresponding to the Jacobian of the system estimated at the parameter biomasses

lsoda_wrapper Wrapper for lsoda

Description

This is a wrapper to call lsoda from *deSolve* and solve the ODE. Package deSolve needs to be installed to run this wrapper.

Usage

```
lsoda_wrapper(t, y, model, verbose = FALSE)
```

Arguments

t vector of times.

y vector of biomasses.

model object of class ATN (Rcpp_parameters_prefs).

verbose Boolean, whether a message should be printed when all checks were successful

Value

A matrix for the ODE solution with species as columns and times as rows.

```
library(ATNr)
library(deSolve)
masses <- runif(20, 10, 100) #body mass of species
L <- create\_Lmatrix(masses, 10, Ropt = 10)
L[L > 0] <- 1
mod <- create_model_Unscaled_nuts(20, 10, 3, masses, L)
mod <- initialise_default_Unscaled_nuts(mod, L)
biomasses <- masses ^ -0.75 * 10 ^ 4 #biomasses of species
biomasses <- append(runif(3, 20, 30), biomasses)
times <- seq(0, 100, 1)
sol <- lsoda_wrapper(times, biomasses, mod)
```

plot_odeweb 11

plot_odeweb

Plot food web dynamics

Description

Plot solution of the ODE for the food web. Currently only species and not nutrients are plotted.

Usage

```
plot_odeweb(x, nb_s)
```

Arguments

x matrix with solutions. First row should be the time vector.
nb_s numeric, number of species as in the model (e.g., create_model_Unscaled_nuts).

```
library(ATNr)
library (deSolve)
set.seed(123)
# number of species, nutrients, and body masses
n_species <- 20
n_basal <- 5
n_nutrients <- 3
masses <- sort(10^runif(n_species, 2, 6)) \#body mass of species
# create food web matrix
L <- create_Lmatrix(masses, n_basal)</pre>
L[, 1:n_basal] <- 0
fw <- L
fw[fw > 0] < -1
model <- create_model_Unscaled_nuts(</pre>
  n_species,
  n_basal,
 n_nutrients,
 masses,
  fw
)
# initialize model as default in Schneider et al. (2016)
model <- initialise_default_Unscaled_nuts(model, L)</pre>
model$initialisations()
# defining integration time
times <- seq(0, 500, 5)
biomasses <- runif(n_species + n_nutrients, 2, 3)</pre>
sol <- lsoda_wrapper(times, biomasses, model, verbose = FALSE)</pre>
plot_odeweb(sol, model$nb_s)
```

run_checks

remove_species

Function to remove species from a model class

Description

Function to remove species from a model class

Usage

```
remove_species(species, model, nuts = NULL)
```

Arguments

species integer vector, the indices of species to remove.

model model object

nuts integer vector, the indices of nutrients to remove. Parameter specific to the Un-

scaled_nuts model.

Value

A model object where the data structure has bee updated to remove the species in parameters.

run_checks

Run checks on model parameters

Description

Check if the dimensions of vectors and matrices used in the model are correct. If any dimension is not correct, an error message is returned.

Usage

```
run_checks(model, verbose = TRUE)
```

Arguments

model a model object.

verbose Boolean, whether a message should be printed when all checks were successful

Scaled 13

Scaled	Store parameters and functions associated to the scaled version of ATN

Description

Type the name of the class to see its methods

Fields

- nb_s Total number of species
- nb_b Number of basal species
- c double: inteference competition
- X Vector of metabolic rates (length = number of species)
- max_feed Vector of maximum feeding rates (length = number of consumers)
- e Vector of assimilation efficiencies (length = number of species)
- r Vector of producers maximum growth rates (length = number of basal species)
- BM Vector of body masses (length = number of species)
- dB Vector of local derivatives (length = number of species)
- B0 Vector of half saturation densities (length = number of consumers)
- fw Adjacency matrix of the food-web (dim = number of species * number of species)
- w Matrix of relative consumption rates (dim = number of species * number of consumers)
- F Matrix of per-capita feeding rates (dim = number of species * number of consumers)
- q hill exponent for the type of functional response
- K Carrying capacity of basal species
- ext Extinction threshold for species
- alpha Plant resource competition
- ODE Calculate the derivatives for the scaled version of the ATN model
 - Parameter: bioms Local species biomasses
 - Parameter: t Integration time point
 - Returns a vector of growth rate for each species at time t

Scaled_loops	Store parameters and functions associated to the scaled version of ATN

Description

To not use. For testing purpose only. please use Rcpp_Scaled instead.

14 schneider

schneider

Default parameters as in Schneider et al. (2016)

Description

A dataset containing the default parameters as in the Schneider et al. (2016) and used to parametrize the default models. See also create_model_Unscaled_nuts, create_Lmatrix, initialise_default_Unscaled_nuts.

Usage

schneider

Format

A list with the default parameters:

Temperature ambient temperature in Celsius

T.K default temperature, 20 degree Celsius in Kelvin

k Boltzmann's constant

T0 20 degree Celsius in Kelvin, used to estimate scaling law of metabolic rates

q Hill's exponent of the functional response

Ropt consumer/resource optimal body mass ratio

gamma shape of the Ricker function

mu_c average predator interference

sd_c standard deviation of predator interference

E.c Activation energy for interference

h0 scaling constant of the power-law of handling time with consumer and resource body mass

hpred exponent associated to predator body mass for the allometric scaling of handling time

hprey exponent associated to prey body mass for the allometric scaling of handling time

E.h Activation energy for handling time

b0 normalisation constant for capture coefficient

bprey exponent associated to prey body mass for the allometric scaling of capture coefficient

bpred exponent associated to predator body mass for the allometric scaling of capture coefficient

E.b Activation energy for capture coefficient

e_P Assimilation efficiency associated to the consumption of a plant species

e_A Assimilation efficiency associated to the consumption of an animal species

x P scaling constant of the power-law of metabolic demand per unit of plant biomass

x_A scaling constant of the power-law of metabolic demand per unit of animal biomass

E.x Activation energy for metabolic rates

expX TBD

sort_input 15

D turnover rate of nutrients

nut_up_min Minimum uptake efficiency of plants

nut_up_max Maximum uptake efficiency of plants

mu_nut Average maximum nutrient concentration

sd_nut standard deviation of maximum nutrient concentration

v relative content of nutrient 1 in plant biomass

References

Schneider, F. D., Brose, U., Rall, B. C., & Guill, C. (2016). Animal diversity and ecosystem functioning in dynamic food webs. Nature Communications, 7(1), 1-8.

sort_input

Sort custom input

Description

Sort custom input

Usage

```
sort_input(BM, fw)
```

Arguments

BM numeric vector, body mass of species.

fw adjacency matrix of the food web.

Details

Body masses and food web matrix should be arranged with the first elements/columns being for basal species. This is a requirement for the Cpp class and must be enforced before initializing the Rcpp_Schneider and Rcpp_Delmas objects.

Value

A list with sorted body masses (body.mass) and food web matrix (food.web).

```
bm <- runif(10, 10, 50)
fw <- matrix(as.numeric(runif(100) > .9), 10, 10)
sort_input(bm, fw)
```

16 Unscaled

TroLev

Calculate trophic level of species

Description

Calculate trophic level of species

Usage

```
TroLev(fw)
```

Arguments

fw

numeric matrix, the matrix of the food web.

Value

A numeric vector of species' trophic level.

Examples

```
library(ATNr)
# create a food web from the niche model with 35 species and connectance of 0.1
fw <- create_niche_model(35, 0.1)
TL = TroLev(fw)</pre>
```

Unscaled

Store parameters and functions associated to the unscaled version of ATN

Description

Type the name of the class to see its methods

Fields

```
nb_s Total number of species
```

nb_b Number of basal species

- c double: inteference competition
- X Vector of metabolic rates (length = number of species)
- a Matrix of attack rates (dim = number of species * number of consumers)
- h Matrix of handling times (dim = number of species * number of consumers)
- e Vector of assimilation efficiencies (length = number of species)

Unscaled_loops 17

- r Vector of producers maximum growth rates (length = number of basal species)
- BM Vector of body masses (length = number of species)
- dB Vector of local derivatives (length = number of species)
- fw Adjacency matrix of the food-web (dim = number of species * number of species)
- F Matrix of per-capita feeding rates (dim = number of species * number of consumers)
- q hill exponent for the type of functional response
- K Carrying capacity of basal species
- alpha Plant resource competition
- ext Extinction threshold for species
- ODE Calculate the derivatives for the scaled version of the ATN model
 - Parameter: bioms Local species biomasses
 - Parameter: t Integration time point
 - Returns a vector of growth rate for each species at time t

Unscaled_loops Store parameters and functions associated to the unscaled version of ATN

Description

To not use. For testing purpose only. please use Rcpp_Unscaled instead.

Unscaled_nuts Store parameters and functions associated to the unscaled version of ATN including nutrient dynamics

Description

Type the name of the class to see its methods

Fields

- nb_s Total number of species
- nb_b Number of basal species
- nb_n Number of nutrient pool
- c double: inteference competition
- b Matrix of attack rates (dim = number of species * number of consumers)
- h Matrix of handling times (dim = number of species * number of consumers)
- X vector of metabolic rates (length = number of species)
- K matrix of plant nutrient efficiencies (dim = number of nutrients * number of plants)

18 Unscaled_nuts_prefs

V matrix of plant relative nutrient content (dim = number of nutrients * number of plants)

- S Vector of maximum nutrient concentration (length = number of plants)
- r Vector of maximum growth rate of plant species (length = number of plant species)
- e Vector of assimilation efficiencies (length = number of species)
- BM Vector of body masses (length = number of species)
- dB Vector of local derivatives (length = number of species)
- fw Adjacency matrix of the food-web (dim = number of species * number of species)
- w Matrix of relative consumption rates (dim = number of species * number of consumers)
- F Matrix of per-capita feeding rates (dim = number of species * number of consumers)
- q hill exponent for the type of functional response
- ext Extinction threshold for species
- ODE Calculate the derivatives for the scaled version of the ATN model
 - Parameter: bioms Local species biomasses
 - Parameter: t Integration time point
 - Returns a vector of growth rate for each species at time t

Unscaled_nuts_loops

Store parameters and functions associated to the unscaled version of ATN

Description

To not use. For testing purpose only. please use Rcpp_Unscaled_nuts instead.

Unscaled_nuts_prefs

Store parameters and functions associated to the unscaled version of ATN including nutrient dynamics

Description

Type the name of the class to see its methods

Unscaled_nuts_prefs 19

Fields

- nb_s Total number of species
- nb_b Number of basal species
- nb_n Number of nutrient pool
- X Coltor of metabolic rates (length = number of species)
- K1 Vector of maximum feeding rates (length = number of consumers)
- K2 Vector of producers maximum growth rates (length = number of basal species)
- e Vector of assimilation efficiencies (length = number of species)
- BM Vector of body masses (length = number of species)
- dB Vector of local derivatives (length = number of species)
- B0 Vector of half saturation densities (length = number of consumers)
- fw Adjacency matrix of the food-web (dim = number of species * number of species)
- w Matrix of relative consumption rates (dim = number of species * number of consumers)
- F Matrix of per-capita feeding rates (dim = number of species * number of consumers)
- q parameter for the type of functional response (hill exponent = 1 + q)
- K Carrying capacity of basal species
- ext extinction threshold for species
- ODE Calculate the derivatives for the scaled version of the ATN model
 - Parameter: bioms Local species biomasses
 - Parameter: t Integration time point
 - Returns a Coltor of growth rate for each species at time t