EE/CSE 371 Design of Digital Circuits and Systems

Lecture 6: ASM with Datapath I

Relevant Course Information

- 1. Homework 3 due Wednesday (10/18)
- 2. Lab 3 due Friday (10/27)

Review: ASM Chart

Review Question: 3-way Switch

 Create an ASM chart for a 3-way switch system using *Mealy*-type output

 LTog and RTog pulse 1 when switch is flipped/toggled, output called light

ASMD Charts

- An Algorithmic State Machine with a Datapath chart is created by adding RTL operations to an ASM chart
 - Timing of operations can be confusing *NOT* a flowchart
- School of Thought #1:
 - RTL operations are triggered by control signals, so they can appear anywhere an output signal can:

nissing that controls werested

ASMD Charts

- An Algorithmic State Machine with a Datapath chart is created by adding RTL operations to an ASM chart
 - Timing of operations can be confusing *NOT* a flowchart
- School of Thought #2:
 - It's clearer to separate control signals (Control) from RTL operations (Datapath)
- There isn't a set standard
 - You may see both or variants
 - I will use School of Thought #2

ASMD Hardware

 State transitions and RTL operations are both controlled by the clock

It's often helpful to remember the underlying hardware —

ASMD Hardware

Control

- State transitions and RTL operations are both
- controlled by the clock
- It's often helpful to remember the underlying hardware registers!
- The behavior of both state and data registers depend on the current control state
 - Can conceptually think of as a MUX to the registers' inputs that uses the current state as its selector bits

next slide

Control

Datapath.

Hardware Example #1

 State transitions and RTL operations are both controlled by the clock

It's often helpful to remember the underlying hardware —

Hardware Example #2

 State transitions and RTL operations are both controlled by the clock

It's often helpful to remember the underlying hardware —

ASMD Timing

- Everything (registers!) within an ASM block occurs simultaneously at the <u>next</u> clock trigger
 - Differs from a flowchart changes occur at state <u>exit</u> rather than <u>entrance</u>

ASMD Timing

- Everything (registers!) within an ASM block occurs simultaneously at the <u>next</u> clock trigger
 - Differs from a flowchart changes occur at state <u>exit</u> rather than <u>entrance</u>

ASMD Timing Question

* What value will be stored in r when we transition from state s1 to the next state? -1, 0, 1

ASMD Timing

- When a registered output (e.g., r) is used in a decision box, its effect may appear to be delayed by one clock
 - Can define a next-state value (e.g., r_next) to use instead

(a) Use old value of r

(b) Use new value of r

Short Tech

Break

ASMD Design Procedure

- From problem description or algorithm pseudocode:
 - 1) Identify necessary datapath components and operations
 - 2) Identify states and signals that cause state transitions (external inputs and status signals), based on the necessary sequencing of operations
 - 3) Name the control signals that are generated by the controller that cause the indicated operations in the datapath unit
 - 4) Form an ASM chart for your controller, using states, decision boxes, and signals determined above
 - 5) Add the datapath RTL operations associated with each control signal

data

Datapath

Output

Control

Status signals

Design Example #1

- System specification:
- data path Flip-flops \underline{E} and \underline{F}

• Start = 1 initiates the system's operation by clearing A and F. At each subsequent clock pulse, the counter is incremented by 1 until the operations stop.

Input signals (external)

Control unit

(FSM)

indicators

• Bits (A_2) and (A_3) determine the sequence of operations:

• If $A_2 = 0$, set E to 0 and the count continues

• If $A_2 = 1$, set E to 1; additionally, if $A_3 = 0$, the count continues, otherwise, wait one clock pulse to set E to 1 and stop counting (i.e., back to E to E to E.

Design Example #1

The system can be represented by the following block diagram:

Design Example #1 (ASM → ASMD Chart)

Synchronous or asynchronous reset?

