Controlled rectifiers (Single-phase)

Dr. Suneel Kommuri

Email: Suneel.Kommuri@xjtlu.edu.cn

Dept. Electrical & Electronic Engineering

Outline

- Power Electronic Devices
 - Thyristors
 - SCR (Silicon Controlled Rectifier)
 - Triac
 - GTO (Gate Turn-Off)
 - Static and dynamic characteristics
- Single phase-controlled rectifiers
 - Half-wave circuit (R & RL loading)
 - Full-bridge rectifier (R, RL, & RLE)
 - Continuous load current (RLE)
 - Discontinuous load current (RLE)
 - Summary

1.1 Power Electronic Devices

- Power electronic devices
 - are the electronic devices that can be directly used in the power processing circuits to convert or control electric power.
- In broad sense

Power electronic devices

Vacuum devices

Semiconductor devices (focus in this module)

Very often:

Power electronic devices = Power semiconductor devices

1.1.2 Power semiconductor devices

Power Diode – uncontrollable

- Important feature
- Thyristor (THYRatron tube & transISTOR) Controllability
 - SCR (Silicon Controlled Rectifier) ON controllable
 - TRIAC (Triode ac switch) ON controllable
 - GTO (Gate turn-off thyristor) ON/OFF controllable
- Power Transistors ON/OFF controllable
 - Power BJT
 - Power MOSFET
 - IGBT

1.1.2 Power semiconductor devices

Terminals of a controllable power electronic device

1.1.3 Silicon Controlled Rectifier (可控硅)

• SCR acts as bi-stable switches, *conducting* when their gate receives a current pulse, and continue to conduct for as long as they are forward biased (that is, as long as the voltage across the device has not reversed).

 Three-terminals: anode, cathode, gate **Symbol** Anode Cathode Cathode Cathode Gate (N type (cathode)

SCR in a rectification circuit

- SCR/Thyristor: Acts like a diode where you can select when conduction will start, but not when it stops.
 - Semi-controlled: we control the turn on point, but only turns off when circuit conditions force it to.

SCR Turn-On Analysis

- Two conditions must be met before the SCR can conduct:
- 1. The SCR must be forward biased ($v_{AK} > 0$).
- 2. A current must be applied to the gate of SCR.
- A SCR is turned ON by increasing the anode current. This can be accomplished in one of the following ways:
- 1. Forward voltage triggering
- 2. Gate triggering
- 3. The dv/dt triggering
- 4. Temperature triggering
- 5. Light triggering

Induction problem – how this device evolved?

- Find a 3 terminal device (or design a circuit) to put in the box to realize the following functions:
 - Give a control signal to gate G to make the circuit conduct;

It is not a 3-terminal device &

cannot be controlled

Remove the control signal, the circuit keeps conduction.

But, it cannot hold the conduction without control signal

Combined structure – Two transistors

- A PNP and NPN transistors connected back-to-back as shown below.
- They form a four-layer, 3 junction structure.

- When $V_{AK} > 0$, J1 & J3 are forward biased, J3 is reverse biased, so SCR cannot conduct.
- When V_{AK} < 0, J2 is forward biased, J1 & J3 are reverse biased, still SCR cannot conduct.
 - Therefore, without trigger, this device won't conduct at all!!

Two transistors forming a SCR

- Recall the knowledge of transistors
 - When the transistors are conducting:

Turn-ON and turn-OFF procedures

- 1. Turn-on stage:
 - Forward biased $V_A > V_K$
 - Trigger current I_G :

- 2. Stable stage
 - Forward biased
 - No I_G :

- 3. Turn-off stage:
 - When I_A drops small enough

Static characteristics (I-V curve)

Turn-on:

- When $i_G = 0$, no trigger current, forward biased but not conducting;
 - When v_{AK} increases to V_{BRF} , it conducts;
- With $i_G \neq 0$, thyristor can be turned on with smaller v_{AK} ;
 - Larger i_G , smaller v_{AK} ;
 - Larger v_{AK} , smaller i_G .

Notice:

- Voltage drop on the thyristor is V_{TH} , a constant value;
- Forward conduction loss is the slope of the I-V line;
- Latching current is the lowest value of i_A to support the conduction.

Static characteristics (I-V curve)

Turn-off:

- Not controllable via i_G ;
- Turns off when i_A has fallen small enough, below the holding current I_H
 - $I_H < I_L$;
 - Reducing v_{AK} helps, but not crucial.

Reverse biases (blocked):

- Not conducting, regardless of i_G ;
- Reverse saturation current I_{RS} ;
 - Larger i_G , larger I_{RS} ;
- When v_{AK} reaches reverse breakdown voltage $-V_{BR}$, thyristor breaks down.

2.1 Basic thyristor circuits I (R loading)

1. Half-wave controlled rectifier

- In the positive half
 - $[0, \alpha]$: i_R is zero, v_o is zero;
 - $[\alpha, \pi]$: $v_o = v_s = V_m \sin \omega t$;

$$i_A = i_R = \frac{V_m}{R} \sin \omega t$$
.

- In the negative half
 - $[\pi, 2\pi]$: i_R drops to zero, v_o is zero.
 - Firing angle: α
 - Conduction angle: $\gamma = \pi \alpha$

Phase Control

- In this circuit, the control of the output DC voltage is realized by modifying the triggering pulse phase or firing angle, this is called *Phase Control*.
- Change the firing angle α from 0 to π :

Parameter evaluation (I)

1. Average output voltage V_0 :

$$V_0 = \frac{1}{2\pi} \int_0^{2\pi} v_o \, d\omega t = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_m \sin \omega t \, d\omega t$$
$$= \frac{V_m}{2\pi} \left(-\cos \omega t \Big|_{\alpha}^{\pi} \right) = \frac{V_m}{2\pi} (\cos \alpha + 1)$$

- When $\alpha=0$, $V_0=\frac{V_m}{\pi}=0.318V_m$ This is the maximum possible V_o ; The same as simple diode rectifier; $V_0>0$
- When $\alpha=\pi/2$, $V_0=\frac{V_m}{2\pi}=0.159V_m$ Half of the maximum possible V_0 ;
- When $\alpha = \pi$, $V_0 = 0$ No trigger current in the positive half, so *no conduction* at all.

Parameter evaluation (II)

2. RMS output voltage V_{RMS}

$$\begin{split} V_{RMS} &= \sqrt{\frac{1}{2\pi}} \int_0^{2\pi} v_o^2 d\omega t = \sqrt{\frac{1}{2\pi}} \int_\alpha^\pi V_m^2 (\sin \omega t)^2 d\omega t \\ &= \sqrt{\frac{V_m^2}{2\pi}} \int_\alpha^\pi \frac{1 - \cos 2\omega t}{2} d\omega t = \frac{V_m}{2} \sqrt{\frac{1}{\pi}} \int_\alpha^\pi (1 - \cos 2\omega t) d\omega t \\ &= \frac{V_m}{2} \sqrt{\frac{1}{\pi}} \left(\omega t \Big|_\alpha^\pi - \frac{1}{2} \sin \delta \Big|_{2\alpha}^{2\pi} \right) = \frac{V_m}{2} \sqrt{\frac{1}{\pi}} \left[(\pi - \alpha) - \frac{1}{2} (0 - \sin 2\alpha) \right] \\ &= \frac{V_m}{2} \sqrt{\frac{2(\pi - \alpha) + \sin 2\alpha}{2\pi}} \end{split}$$

Parameter evaluation (III)

3. Rectification efficiency

$$\eta = \frac{P_0}{P_{RMS}} = \frac{V_0^2}{V_{RMS}^2}$$

4. Transformer utilisation factor

$$f_T = \frac{P_0}{P_S} = \frac{V_0 I_0}{V_S I_S} = \frac{V_0^2}{V_S V_{RMS}}$$

5. Form factor and ripple factor

$$f_F = \frac{V_{RMS}}{V_0} \qquad f_R = \sqrt{f_F^2 - 1}$$

2.2 Basic thyristor circuits II (RL loading)

2. Inductive load (RL)

 $[\mathbf{0}, \boldsymbol{\alpha}]$: i_o is zero, v_o is zero;

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}]$$
: $v_o = v_s = V_m \sin \omega t$

Inductance L forces the load current i_o to rise gradually, after sometime, it reaches maximum value and then begins to decrease. At $\omega t = \pi$, $v_o = 0$, but $i_o \neq 0$ due to inductance. After $\omega t = \pi$, SCR is subjected to reverse anode voltage, but it will not be turned OFF.

 $[\beta, 2\pi]$: At angle $\beta \rightarrow i_o$ is zero, turns OFF.

- Firing angle: α
- Termination/extinction angle: β Conduction angle: $\gamma = \beta \alpha$

Notice that $\beta > \pi$.

Key Parameters

Average output voltage

$$V_0 = \frac{1}{2\pi} \int_{\alpha}^{\beta} V_m \sin \omega t \, d\omega t = \frac{V_m}{2\pi} (\cos \alpha - \cos \beta)$$

RMS output voltage

$$V_{RMS} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\beta} V_m^2 (\sin \omega t)^2 d\omega t} = \frac{V_m}{2} \sqrt{\frac{2(\beta - \alpha) + \sin 2\alpha - \sin 2\beta}{2\pi}}$$

2.2 Basic thyristor circuits II (RL loading)

The voltage equation when SCR is conducting: (xion)

$$L\frac{di_o}{dt} + Ri_o = V_m \sin \omega t$$

with the initial state conditions $\omega t = \alpha$ and $i_o = 0$, get:

$$i_o = i_{steady}(t) + i_{transient}(t) = \frac{V_m}{Z}\sin(\omega t - \varphi) - \frac{V_m}{Z}\sin(\alpha - \varphi)e^{-\frac{R}{\omega L}(\omega t - \alpha)}$$
where $Z = \sqrt{R^2 + (\omega L)^2}$ and $\varphi = \arctan(\omega L/R)$

• Substitute $\omega t = \beta$ and $i_0 = 0$ in the equation, get:

$$\sin(\alpha - \varphi)e^{-\frac{\beta - \alpha}{\tan \varphi}} = \sin(\beta - \varphi)$$

with the knowledge of angles α and φ , the termination angle β can be calculated.

2.2 RL load with freewheeling diode

- Load current i_o (earlier) can be improved by connecting freewheeling diode across load.
- 1) At $\omega t = \alpha$, v_s appears across load as v_o .
- 2) At $\omega t = \pi$, $v_s = 0$. After $\omega t = \pi$, diode FD is forward-biased through conducting SCR. As a result, i_o is immediately transferred from SCR to FD as v_s tends to reverse. At the same time, SCR is turned OFF due to reverse voltage.
- 3) It is assumed that the inductor L is quite large, energy stored in L is enough to support the conduction in the freewheeling path until next period starts, i.e, $2\pi + \alpha$.

Summary – Half-wave Circuit

- Triggering delay angle α of SCR could vary from 0 to π ;
- V₀ and V_{RMS} are smaller than the corresponding circuits using diode;
- The circuit is simple, but form factor and ripple factor are quite large;
- These circuits are hardly used in practice;
- For SCR: Maximum forward voltage and maximum reverse voltage are two parameters for device selection;
- Disadvantage:
 - Only single pulse in one line cycle

3.1 Full-bridge rectifier (R)

Resistive load (R)

- T_1 and T_2 is a pair of bridge arm: In the positive half of v_s , they start to conduct when triggered by a pulse, and will be closed when v_s passes 0 to negative.
 - → Blue current path
- T_3 and T_4 is another pair of bridge arm: In the negative half of v_s , they start to conduct when triggered by a pulse, and will be closed when v_s passes 0 to positive.
 - → Red current path

3.1 Full-bridge rectifier (R)

 V_o is still positive, why?

Parameter evaluation (I)

Average output (rectified) voltage

$$V_0 = \frac{1}{\pi} \int_{\alpha}^{\pi} V_m \sin \omega t \, d\omega t = \frac{V_m}{\pi} (\cos \alpha + 1)$$

RMS output voltage

$$V_{RMS} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} V_m^2(\sin \omega t)^2 d\omega t} = \frac{V_m}{2} \sqrt{\frac{2(\pi - \alpha) + \sin 2\alpha}{\pi}}$$

Rectification efficiency

$$\eta = \frac{V_0^2}{V_{RMS}^2} = \frac{4(\cos \alpha + 1)^2}{\pi (2(\pi - \alpha) + \sin 2\alpha)}$$

Parameter evaluation (II)

Average output current

$$I_0 = \frac{V_0}{R} = \frac{V_m}{\pi R} (\cos \alpha + 1)$$

RMS output current

$$I_{RMS} = \frac{V_{RMS}}{R} = \frac{V_m}{2R} \sqrt{\frac{2(\pi - \alpha) + \sin 2\alpha}{\pi}}$$

Average current of each SCR

Effective current of each SCR

3.2 Full-bridge rectifier (RL)

 V_S

Inductive load (L is very large)

3.4 Full-bridge rectifier (RLE)

With inductive load, the thyristor can still conduct when $V_s < E$ (even when V_s is negative);

- If L is large enough, then the current is continuous;
- Otherwise, discontinuous.

Continuous Load Current

3.4 Full-bridge rectifier (RLE)

With inductive load, the thyristor can still conduct when $V_S < E$ (even when $v_S < E$);

- If L is large enough, then the current is continuous;
- Otherwise, discontinuous.

Discontinuous Load Current

Summary of some important points

- When analysing a thyristor circuit, start from a diode circuit with the same topology. The behaviour of the diode circuit is exactly the same as the thyristor circuit when firing angle is 0.
- A power electronic circuit can be considered as different simple circuits when the power semiconductor devices are in different states.
- Take different principles when dealing with different kinds of load.
 - For resistive load: current waveform of a resistor is the same as the voltage waveform.
 - For inductive load with a large inductor: the inductor current can be considered constant.

Exercise – Try to solve!

- A single-phase half-wave controlled rectifier with R load is supplied from a 230 V, 50 Hz AC source. When average dc output voltage is 50% of maximum possible average dc output voltage, determine
 - 1) Firing angle of SCR.
 - 2) Average dc output voltage.
 - 3) RMS output voltage.
 - 4) Average and RMS output currents.
 - 5) Average and RMS currents of SCR.

[Assume $R = 20 \Omega$]

Summary

- Narrow sense: Thyristor = SCR (Silicon Controlled Rectifier)
- Acts as controlled diode:
 - Stay off until a gate pulse i_G is applied while $v_{AK} > 0$;
 - Once on, behaves like a diode & does not turn off until $i_A \rightarrow 0$.
- Ideally:
 - Instantaneous switching from one state to the other.
 - Zero voltage drop in on-state.
 - Infinite voltage and current handling capabilities.

See you in the next class (March 17th)

