

### CD4069UBMS

**CMOS Hex Inverter** 

FN3321 Rev 0.00 December 1992

#### **Features**

- High Voltage Types (20V Rating)
- Standardized Symmetrical Output Characteristics
- Medium Speed Operation: tPHL, tPLH = 30ns (typ) at
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1µA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

### **Applications**

- Logic Inversion
- · Pulse Shaping
- Oscillators
- · High-Input-Impedance Amplifiers

### Description

CD4069UBMS types consist of six CMOS inverter circuits. These devices are intended for all general-purpose inverter applications where the medium-power TTL-drive and logiclevel conversion capabilities of circuits such as the CD4009 and CD4049 Hex Inverter/Buffers are not required.

The CD4069UBMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4H Frit Seal DIP H<sub>1</sub>B Ceramic Flatpack H3W

#### **Pinout**

# CD4069UBMS

**TOP VIEW** 



### Functional Diagram

A 
$$\circ$$
  $\longrightarrow$   $\circ$   $G = \overline{A}$ 

$$B \circ \frac{3}{} \longrightarrow \frac{4}{} \circ H = \overline{B}$$

$$C \circ \frac{5}{C} \circ \frac{6}{C} \circ I = \overline{C}$$

D 
$$\frac{9}{}$$
  $J = \overline{D}$ 

$$E \circ \frac{11}{10} \quad K = \overline{E}$$

## Schematic Diagram



FIGURE 1. SCHEMATIC DIAGRAM OF 1 OF 6 IDENTICAL INVERTERS

#### **Absolute Maximum Ratings**

#### DC Supply Voltage Range, (VDD) . . . . . . . -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs . . . . . . . -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) . . . . . -65°C to +150°C Lead Temperature (During Soldering) . . . . . . . +265°C At Distance 1/16 $\pm$ 1/32 Inch (1.59mm $\pm$ 0.79mm) from case for 10s Maximum

### **Reliability Information**

| Thermal Resistance                         | $\theta_{\sf ia}$         | $\theta_{\sf ic}$ |
|--------------------------------------------|---------------------------|-------------------|
| Ceramic DIP and FRIT Package               | 80°C/W                    | 20°C/W            |
| Flatpack Package                           | 70°C/W                    | 20°C/W            |
| Maximum Package Power Dissipation (PD      | )) at +125°C              |                   |
| For TA = -55°C to +100°C (Package Type     | pe D, F, K)               | 500mW             |
| For TA = +100°C to +125°C (Package T       | ype D, F, K)              | Derate            |
| Linear                                     | ity at 12mW/ <sup>0</sup> | °C to 200mW       |
| Device Dissipation per Output Transistor . |                           | 100mW             |
| For TA = Full Package Temperature Rai      | nge (All Pack             | age Types)        |
| Junction Temperature                       |                           | +175°C            |

#### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                               |        |                                   |                             | GROUP A   |                      | LIMITS |       |       |
|-------------------------------|--------|-----------------------------------|-----------------------------|-----------|----------------------|--------|-------|-------|
| PARAMETER                     | SYMBOL | CONDITIONS (                      | NOTE 1)                     | SUBGROUPS | TEMPERATURE          | MIN    | MAX   | UNITS |
| Supply Current                | IDD    | VDD = 20V, VIN = VDD or GND       |                             | 1         | +25°C                | -      | 0.5   | μΑ    |
|                               |        |                                   |                             | 2         | +125°C               | -      | 50    | μΑ    |
|                               |        | VDD = 18V, VIN = VD               | VDD = 18V, VIN = VDD or GND |           | -55°C                | -      | 0.5   | μΑ    |
| Input Leakage Current         | IIL    | VIN = VDD or GND                  | VDD = 20                    | 1         | +25°C                | -100   | -     | nA    |
|                               |        |                                   |                             | 2         | +125°C               | -1000  | -     | nA    |
|                               |        |                                   | VDD = 18V                   | 3         | -55°C                | -100   | -     | nA    |
| Input Leakage Current         | IIH    | VIN = VDD or GND                  | VDD = 20                    | 1         | +25°C                | -      | 100   | nA    |
|                               |        |                                   |                             | 2         | +125°C               | -      | 1000  | nA    |
|                               |        |                                   | VDD = 18V                   | 3         | -55°C                | -      | 100   | nA    |
| Output Voltage                | VOL15  | VDD = 15V, No Load                |                             | 1, 2, 3   | +25°C, +125°C, -55°C | -      | 50    | mV    |
| Output Voltage                | VOH15  | VDD = 15V, No Load                | (Note 3)                    | 1, 2, 3   | +25°C, +125°C, -55°C | 14.95  | -     | V     |
| Output Current (Sink)         | IOL5   | VDD = 5V, VOUT = 0.               | 4V                          | 1         | +25°C                | 0.53   | -     | mA    |
| Output Current (Sink)         | IOL10  | VDD = 10V, VOUT = 0               | ).5V                        | 1         | +25°C                | 1.4    | -     | mA    |
| Output Current (Sink)         | IOL15  | VDD = 15V, VOUT = 1               | 1.5V                        | 1         | +25°C                | 3.5    | -     | mA    |
| Output Current (Source)       | IOH5A  | VDD = 5V, VOUT = 4.6V             |                             | 1         | +25°C                | -      | -0.53 | mA    |
| Output Current (Source)       | IOH5B  | VDD = 5V, VOUT = 2.               | 5V                          | 1         | +25°C                | -      | -1.8  | mA    |
| Output Current (Source)       | IOH10  | VDD = 10V, VOUT = 9               | 9.5V                        | 1         | +25°C                | -      | -1.4  | mA    |
| Output Current (Source)       | IOH15  | VDD = 15V, VOUT = 1               | 13.5V                       | 1         | +25°C                | -      | -3.5  | mA    |
| N Threshold Voltage           | VNTH   | VDD = 10V, ISS = -10              | μΑ                          | 1         | +25°C                | -2.8   | -0.7  | V     |
| P Threshold Voltage           | VPTH   | VSS = 0V, IDD = 10μ/              | A                           | 1         | +25°C                | 0.7    | 2.8   | V     |
| Functional                    | F      | VDD = 2.8V, VIN = VE              | DD or GND                   | 7         | +25°C                | VOH>   | VOL < | V     |
|                               |        | VDD = 20V, VIN = VD               | D or GND                    | 7         | +25°C                | VDD/2  | VDD/2 |       |
|                               |        | VDD = 18V, VIN = VD               | D or GND                    | 8A        | +125°C               | 1      |       |       |
|                               |        | VDD = 3V, VIN = VDD               | or GND                      | 8B        | -55°C                |        |       |       |
| Input Voltage Low<br>(Note 2) | VIL    | VDD = 5V, VOH > 4.5V, VOL < 0.5V  |                             | 1, 2, 3   | +25°C, +125°C, -55°C | -      | 1.0   | V     |
| Input Voltage High (Note 2)   | VIH    | VDD = 5V, VOH > 4.5V, VOL < 0.5V  |                             | 1, 2, 3   | +25°C, +125°C, -55°C | 4.0    | -     | V     |
| Input Voltage Low<br>(Note 2) | VIL    | VDD = 15V, VOH > 13<br>VOL < 1.5V | 3.5V,                       | 1, 2, 3   | +25°C, +125°C, -55°C | -      | 2.5   | V     |
| Input Voltage High (Note 2)   | VIH    | VDD = 15V, VOH > 13<br>VOL < 1.5V | 3.5V,                       | 1, 2, 3   | +25°C, +125°C, -55°C | 12.5   |       | V     |

implemented.

2. Go/No Go test with limits applied to inputs.

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.



TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

|                   |        |                            | GROUP A   |               | LIM |     |       |
|-------------------|--------|----------------------------|-----------|---------------|-----|-----|-------|
| PARAMETER         | SYMBOL | CONDITIONS (NOTES 1, 2)    | SUBGROUPS | TEMPERATURE   | MIN | MAX | UNITS |
| Propagation Delay | TPHL   | VDD = 5V, VIN = VDD or GND | 9         | +25°C         | -   | 110 | ns    |
|                   | TPLH   |                            | 10, 11    | +125°C, -55°C | -   | 149 | ns    |
| Transition Time   | TTHL   | VDD = 5V, VIN = VDD or GND | 9         | +25°C         | -   | 200 | ns    |
| TTL               |        |                            | 10, 11    | +125°C, -55°C | -   | 270 | ns    |

#### NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

|                         |        |                               |         |                         | LIMITS |       |       |
|-------------------------|--------|-------------------------------|---------|-------------------------|--------|-------|-------|
| PARAMETER               | SYMBOL | CONDITIONS                    | NOTES   | TEMPERATURE             | MIN    | MAX   | UNITS |
| Supply Current          | IDD    | VDD = 5V, VIN = VDD or GND    | 1, 2    | -55°C, +25°C            | -      | 0.25  | μΑ    |
|                         |        |                               |         | +125°C                  | -      | 7.5   | μА    |
|                         |        | VDD = 10V, VIN = VDD or GND   | 1, 2    | -55°C, +25°C            | -      | 0.5   | μА    |
|                         |        |                               |         | +125°C                  | -      | 15    | μΑ    |
|                         |        | VDD = 15V, VIN = VDD or GND   | 1, 2    | -55°C, +25°C            | -      | 0.5   | μΑ    |
|                         |        |                               |         | +125°C                  | -      | 30    | μΑ    |
| Output Voltage          | VOL    | VDD = 5V, No Load             | 1, 2    | +25°C, +125°C,<br>-55°C | -      | 50    | mV    |
| Output Voltage          | VOL    | VDD = 10V, No Load            | 1, 2    | +25°C, +125°C,<br>-55°C | -      | 50    | mV    |
| Output Voltage          | VOH    | VDD = 5V, No Load             | 1, 2    | +25°C, +125°C,<br>-55°C | 4.95   | -     | V     |
| Output Voltage          | VOH    | VDD = 10V, No Load            | 1, 2    | +25°C, +125°C,<br>-55°C | 9.95   | -     | V     |
| Output Current (Sink)   | IOL5   | VDD = 5V, VOUT = 0.4V         | 1, 2    | +125°C                  | 0.36   | -     | mA    |
|                         |        |                               |         | -55°C                   | 0.64   | -     | mA    |
| Output Current (Sink)   | IOL10  | VDD = 10V, VOUT = 0.5V        | 1, 2    | +125°C                  | 0.9    | -     | mA    |
|                         |        |                               |         | -55°C                   | 1.6    | -     | mA    |
| Output Current (Sink)   | IOL15  | VDD = 15V, VOUT = 1.5V        | 1, 2    | +125°C                  | 2.4    | -     | mA    |
|                         |        |                               |         | -55°C                   | 4.2    | -     | mA    |
| Output Current (Source) | IOH5A  | VDD = 5V, VOUT = 4.6V         | 1, 2    | +125°C                  | -      | -0.36 | mA    |
|                         |        |                               |         | -55°C                   | -      | -0.64 | mA    |
| Output Current (Source) | IOH5B  | VDD = 5V, VOUT = 2.5V         | 1, 2    | +125°C                  | -      | -1.15 | mA    |
|                         |        |                               |         | -55°C                   | -      | -2.0  | mA    |
| Output Current (Source) | IOH10  | VDD = 10V, VOUT = 9.5V        | 1, 2    | +125°C                  | -      | -0.9  | mA    |
|                         |        |                               |         | -55°C                   | -      | -2.6  | mA    |
| Output Current (Source) | IOH15  | VDD =15V, VOUT = 13.5V        | 1, 2    | +125°C                  | -      | -2.4  | mA    |
|                         |        |                               |         | -55°C                   | -      | -4.2  | mA    |
| Input Voltage Low       | VIL    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2    | +25°C, +125°C,<br>-55°C | -      | 2     | V     |
| Input Voltage High      | VIH    | VDD = 10V, VOH > 9V, VOL < 1V | 1, 2    | +25°C, +125°C,<br>-55°C | 8      | -     | V     |
| Propagation Delay       | TPHL   | VDD = 10V                     | 1, 2, 3 | +25°C                   | -      | 60    | ns    |
|                         | TPLH   | VDD = 15V                     | 1, 2, 3 | +25°C                   | -      | 50    | ns    |
| Transition Time         | TTHL   | VDD = 10V                     | 1, 2, 3 | +25°C                   | -      | 100   | ns    |
|                         | TTLH   | VDD = 15V                     | 1, 2, 3 | +25°C                   | -      | 80    | ns    |

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

|                   |        |            |       |             | LIMITS |     |       |
|-------------------|--------|------------|-------|-------------|--------|-----|-------|
| PARAMETER         | SYMBOL | CONDITIONS | NOTES | TEMPERATURE | MIN    | MAX | UNITS |
| Input Capacitance | CIN    | Any Input  | 1, 2  | +25°C       | -      | 15  | pF    |

#### NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

|                              |              |                             | LIM        |             | LIMITS |                          |       |
|------------------------------|--------------|-----------------------------|------------|-------------|--------|--------------------------|-------|
| PARAMETER                    | SYMBOL       | CONDITIONS                  | NOTES      | TEMPERATURE | MIN    | MAX                      | UNITS |
| Supply Current               | IDD          | VDD = 20V, VIN = VDD or GND | 1, 4       | +25°C       | -      | 2.5                      | μΑ    |
| N Threshold Voltage          | VNTH         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -2.8   | -0.2                     | V     |
| N Threshold Voltage<br>Delta | ΔVTN         | VDD = 10V, ISS = -10μA      | 1, 4       | +25°C       | -      | ±1                       | V     |
| P Threshold Voltage          | VTP          | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | 0.2    | 2.8                      | V     |
| P Threshold Voltage<br>Delta | ΔVΤΡ         | VSS = 0V, IDD = 10μA        | 1, 4       | +25°C       | -      | ±1                       | V     |
| Functional                   | F            | VDD = 18V, VIN = VDD or GND | 1          | +25°C       | VOH >  | VOL <                    | V     |
|                              |              | VDD = 3V, VIN = VDD or GND  |            |             | VDD/2  | VDD/2                    |       |
| Propagation Delay Time       | TPHL<br>TPLH | VDD = 5V                    | 1, 2, 3, 4 | +25°C       | -      | 1.35 x<br>+25°C<br>Limit | ns    |

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

| PARAMETER               | SYMBOL | DELTA LIMIT              |
|-------------------------|--------|--------------------------|
| Supply Current - SSI    | IDD    | ±0.1μA                   |
| Output Current (Sink)   | IOL5   | ± 20% x Pre-Test Reading |
| Output Current (Source) | IOH5A  | ± 20% x Pre-Test Reading |

TABLE 6. APPLICABLE SUBGROUPS

| CONFORMANCE GROUP             |                | MIL-STD-883<br>METHOD | GROUP A SUBGROUPS                     | READ AND RECORD              |
|-------------------------------|----------------|-----------------------|---------------------------------------|------------------------------|
| Initial Test (Pr              | e Burn-In)     | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test 1                | (Post Burn-In) | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| Interim Test 2                | (Post Burn-In) | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note                     | 1)             | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Interim Test 3 (Post Burn-In) |                | 100% 5004             | 1, 7, 9                               | IDD, IOL5, IOH5A             |
| PDA (Note                     | 1)             | 100% 5004             | 1, 7, 9, Deltas                       |                              |
| Final Test                    |                | 100% 5004             | 2, 3, 8A, 8B, 10, 11                  |                              |
| Group A                       |                | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11         |                              |
| Group B                       | Subgroup B-5   | Sample 5005           | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 |
|                               | Subgroup B-6   | Sample 5005           | 1, 7, 9                               |                              |
| Group D                       |                | Sample 5005           | 1, 2, 3, 8A, 8B, 9                    | Subgroups 1, 2 3             |

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

#### **TABLE 7. TOTAL DOSE IRRADIATION**

|                    | MIL-STD-883 | MIL-STD-883 TEST |            | READ AND RECORD |            |  |
|--------------------|-------------|------------------|------------|-----------------|------------|--|
| CONFORMANCE GROUPS | METHOD      | PRE-IRRAD        | POST-IRRAD | PRE-IRRAD       | POST-IRRAD |  |
| Group E Subgroup 2 | 5005        | 1, 7, 9          | Table 4    | 1, 9            | Table 4    |  |

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

|                              |                    |                          |                           |                    | OSCILI             | LATOR |
|------------------------------|--------------------|--------------------------|---------------------------|--------------------|--------------------|-------|
| FUNCTION                     | OPEN               | GROUND                   | VDD                       | 9V $\pm$ -0.5V     | 50kHz              | 25kHz |
| Static Burn-In 1<br>(Note 1) | 2, 4, 6, 8, 10, 12 | 1, 3, 5, 7, 9, 11,<br>13 | 14                        |                    |                    |       |
| Static Burn-In 2<br>(Note 1) | 2, 4, 6, 8, 10, 12 | 7                        | 1, 3, 5, 9, 11, 13,<br>14 |                    |                    |       |
| Dynamic Burn-In<br>(Note 1)  | -                  | 7                        | 14                        | 2, 4, 6, 8, 10, 12 | 1, 3, 5, 9, 11, 13 |       |
| Irradiation<br>(Note 2)      | 2, 4, 6, 8, 10, 12 | 7                        | 1, 3, 5, 9, 11, 13,<br>14 |                    |                    |       |

#### NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K  $\pm$  5%, VDD = 18V  $\pm$  0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K  $\pm$  5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD =  $10V \pm 0.5V$

### Typical Performance Characteristics



FIGURE 2. MINIMUM AND MAXIMUM VOLTAGE TRANSFER CHARACTERISTICS



FIGURE 3. TYPICAL VOLTAGE (VI) (V)
TICS AS A FUNCTION OF TEMPERATURE

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see <a href="www.intersil.com/en/products.html">www.intersil.com/en/products.html</a>

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at <a href="https://www.intersil.com/en/support/qualandreliability.html">www.intersil.com/en/support/qualandreliability.html</a>

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see <a href="https://www.intersil.com">www.intersil.com</a>



### Typical Performance Characteristics (Continued)



FIGURE 4. TYPICAL CURRENT AND VOLTAGE TRANSFER CHARACTERISTICS)



FIGURE 6. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 8. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 5. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS



FIGURE 7. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS



FIGURE 9. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE



### Typical Performance Characteristics (Continued)



FIGURE 10. TYPICAL PROPAGATION DELAY TIME vs SUPPLY VOLTAGE



FIGURE 11. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE



FIGURE 12. TYPICAL DYNAMIC POWER DISSIPATION vs FREQUENCY



FIGURE 13. VARIATION OF NORMALIZED PROPAGATION DELAY TIME (tPHL AND tPLH) WITH SUPPLY VOLTAGE





FIGURE 14. DYNAMIC ELECTRICAL CHARACTERISTICS TEST CIRCUIT AND WAVEFORMS



FIGURE 15. HIGH-INPUT IMPEDANCE AMPLIFIER



FOR TYPICAL COMPONENT VALUES AND CIRCUIT PERFORMANCE, SEE APPLICATION NOTES: AN-6086 AND AN-6539

FIGURE 17. TYPICAL CRYSTAL OSCILLATOR CIRCUIT



VALUES AND CIRCUIT PERFORMANCE, SEE APPLICATION NOTE AN-6466 FIGURE 16. TYPICAL RC OSCILLATOR CIRCUIT



**UPPER SWITCHING POINT** 

$$VP \approx \frac{RS + Rf}{Rf} \frac{VDD}{2}$$

LOWER SWITCHING POINT

$$/N \approx \frac{Rf - RS}{Rf} \frac{VDD}{2}$$

Rf > RS

DIE SIZE: 48 X 48 (45 - 53)

(1.143 - 1.346)

FIGURE 18. INPUT PULSE SHAPING CIRCUIT (SCHMITT TRIGGER)

### Chip Dimensions and Pad Layout



Dimension in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( $10^{-3}$  inch).

**METALLIZATION:** Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

**BOND PADS:** 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

