SEMAINE 3

RÉDUCTION DES ENDOMORPHISMES (PREMIÈRE PARTIE)

EXERCICE 1:

Soit \mathbb{K} un corps infini, soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. Montrer que E n'est pas la réunion d'une famille finie de sous-espaces vectoriels stricts.
- 2. Soit u un endomorphisme de E. Pour tout vecteur x de E, soit $I_x = \{P \in \mathbb{K}[X] \mid P(u)(x) = 0\}$ (idéal annulateur de u en x). Montrer que I_x est un idéal de $\mathbb{K}[X]$; on notera μ_x le générateur normalisé de cet idéal.
- 3. Soit μ le polynôme minimal de u. Montrer qu'il existe un vecteur x de E tel que $\mu = \mu_x$.
- 4. Un endomorphisme u de E est dit cyclique s'il existe un vecteur x de E tel que l'ensemble

$$E_x = \{ P(u)(x) ; P \in \mathbb{K}[X] \}$$

soit égal à E. Montrer que u est cyclique si et seulement si son polynôme minimal est égal (au signe près) à son polynôme caractéristique (noté χ).

5. On suppose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer que l'ensemble des endomorphismes cycliques est un ouvert dense de $\mathcal{L}(E)$.

On pourra, pour tout x de E, considérer l'application δ_x : $\mathcal{L}(E) \to \mathbb{K}$ définie par $\delta_x(u) = \det_{\mathcal{B}}(x, u(x), \dots, u^{n-1}(x))$, où \mathcal{B} est une quelconque base de E, et $n = \dim E$.

Source:

- Jacques CHEVALLET, Algèbre MP/PSI, Éditions Vuibert, ISBN 2-7117-2092-6
- Patrice TAUVEL, Exercices de mathématiques pour l'agrégation, Algèbre 2, Éditions Masson, ISBN 2-225-84441-0

- **1.** Par récurrence sur $n = \dim E$.
 - Pour n = 0 ou n = 1, c'est évident.
 - Soit $n \geq 2$, supposons la propriété démontrée pour tout IK-espace vectoriel de dimension n-1.

Soit E un \mathbb{K} -espace vectoriel de dimension n, supposons $E = F_1 \cup F_2 \cup \ldots \cup F_p$ où les F_i sont des sous-espaces vectoriels stricts de E. Si H est un hyperplan de E, on a alors

$$H = (H \cap F_1) \cup (H \cap F_2) \cup \ldots \cup (H \cap F_p).$$

D'après l'hypothèse de récurrence, on a $H \cap F_i = H$ pour un certain indice $i \in [1, p]$, c'est-à-dire $H \subset F_i$, soit encore $H = F_i$ puisque F_i est un sous-espace strict de E.

Tout hyperplan de E est donc l'un des F_i (c'est absurde, il y a dans E une infinité d'hyperplans distincts).

- 2. Vérifications immédiates, laissées à l'éventuel lecteur. On a $I_x \neq \{0\}$ car $\mu \in I_x$.
- 3. Notons \mathcal{D} l'ensemble des diviseurs stricts normalisés de μ dans $\mathbb{K}[X]$:

$$\mathcal{D} = \{ P \in \mathbb{K}[X] ; P \text{ normalisé}, P \mid \mu, P \neq \mu \}.$$

L'ensemble \mathcal{D} est fini. S'il n'existait pas de vecteur x de E tel que $\mu = \mu_x$, alors tout x de E appartiendrait à un sous-espace $\operatorname{Ker} P(u)$ avec $P \in \mathcal{D}$, on aurait donc

$$E = \bigcup_{P \in \mathcal{D}} \operatorname{Ker} P(u)$$

- et E serait une union finie de sous-espaces stricts (on a bien $\operatorname{Ker} P(u) \neq E$ pour tout $P \in \mathcal{D}$ en raison de la minimalité de μ), ce qui est absurde.
- 3'. Montrons avec des arguments plus classiques l'existence d'un vecteur x tel que $\mu_x = \mu$, même si \mathbb{K} est un corps fini :
 - si x et y sont deux vecteurs quelconques, on a P(u)(x+y) = P(u)(x) + P(u)(y) pour tout polyn" me P, d'où $I_x \cap I_y \subset I_{x+y}$, soit $\mu_{x+y} \mid \mu_x \vee \mu_y$, ce qui entraı̂ne $\mu_{x+y} \mid \mu_x \mu_y$.
 - si les vecteurs x et y sont tels que $\mu_x \wedge \mu_y = 1$, alors $\mu_{x+y} = \mu_x \mu_y$: en effet, on sait déjà que $\mu_{x+y} \mid \mu_x \mu_y$; par ailleurs, x = (x+y) + (-y), donc $\mu_x \mid \mu_{x+y} \mu_y$. Par le théorème de Gauss, on tire $\mu_x \mid \mu_{x+y}$. Par symétrie, $\mu_y \mid \mu_{x+y}$. Donc $\mu_x \mu_y = \mu_x \wedge \mu_y \mid \mu_{x+y}$.
 - Soit $\mu = \prod_{k=1}^p P_k^{r_k}$ la décomposition de μ en produit de facteurs irréductibles dans K[X].

D'après le lemme des noyaux, on a $E = \bigoplus_{k=1}^{p} N_k$ avec $N_k = \operatorname{Ker} P_k^{r_k}(u)$. Pour tout $i \in [1, p]$,

posons
$$Q_i = P_i^{r_i-1} \left(\prod_{j \neq i} P_j^{r_j} \right)$$
, on a ainsi $\mu = P_i Q_i$.

Dans $N_i = \operatorname{Ker} P_i^{r_i}(u)$, il existe au moins un élément x_i tel que $\mu_{x_i} = P_i^{r_i}$: en effet, sinon, on aurait $P_i^{r_i-1}(u)(x) = 0$ pour tout $x \in N_i$, donc $N_i = \operatorname{Ker} P_i^{r_i-1}(u)$ et le polynôme Q_i annulerait alors u, ce qui contredirait la minimalité de μ .

Les $P_i^{r_i}$ étant deux à deux premiers entre eux, le vecteur $x = \sum_{i=1}^p x_i$ vérifie $\mu_x = \prod_{i=1}^p P_i^{r_i} = \mu$.

4. Soit $u \in \mathcal{L}(E)$ quelconque, soit $x \in E$ non nul. L'ensemble $E_x = \{P(u)(x) ; P \in \mathbb{K}[X]\}$ est un sous-espace vectoriel de E (évident, on l'appelle sous-espace u-monogène engendré par le vecteur x). La dimension de E_x est le degré du polynôme μ_x : dim $E_x = \deg \mu_x$.

En effet, soit r le plus petit entier naturel non nul pour lequel la famille de vecteurs $(x, u(x), \ldots, u^r(x))$ est liée. Alors, la famille $(x, u(x), \ldots, u^{r-1}(x))$ est libre, donc l'idéal annulateur I_x ne contient aucun polynôme de degré inférieur ou égal à r-1 (sauf le polynôme nul), mais $u^r(x)$ est combinaison linéaire des vecteurs $x, u(x), \ldots, u^{r-1}(x)$ donc il existe un polynôme normalisé P de degré r tel que P(u)(x) = 0 et ce polynôme est alors μ_x , donc deg $\mu_x = r$.

Par ailleurs, $u^r(x) \in \text{Vect}(x, u(x), \dots, u^{r-1}(x))$ et, par une récurrence immédiate, on a $u^k(x) \in \text{Vect}(x, u(x), \dots, u^{r-1}(x))$ pour tout $k \in \mathbb{N}$, donc $E_x = \text{Vect}(x, u(x), \dots, u^{r-1}(x))$ et cet espace est de dimension r puisque la famille $(x, u(x), \dots, u^{r-1}(x))$ est libre.

- Si u est cyclique, alors il existe x tel que $E_x = E$, donc tel que deg $\mu_x = n$. Comme $\mu_x \mid \mu$ et $\mu \mid \chi$ avec deg $\chi = n$, on a donc $(-1)^n \chi = \mu = \mu_x$.
- Si $\chi = (-1)^n \mu$, on utilise l'existence d'un vecteur x tel que $\mu_x = \mu$; pour un tel x, on a dim $E_x = \deg \mu_x = n$, donc $E_x = E$ et u est cyclique.
- 5. Soit Ω l'ensemble des endomorphismes cycliques de E. Soit $\mathcal B$ une base quelconque de E. Alors

$$u \in \Omega \iff \exists x \in E \quad \det_{\mathcal{B}} (x, u(x), \dots, u^{n-1}(x)) \neq 0$$
.

Pour tout $x \in E$, l'application $\delta_x : \mathcal{L}(E) \to \mathbb{K}$ définie par $\delta_x(u) = \det_{\mathcal{B}}(x, u(x), \dots, u^{n-1}(x))$ est polynomiale (c'est un polynôme en les coefficients de la matrice $M_{\mathcal{B}}(u)$), donc continue, donc $\Omega = \bigcup_{x \in E} \delta_x^{-1}(\mathbb{K}^*)$ est un ouvert de $\mathcal{L}(E)$.

Remarquons que l'application δ_x est $\frac{n(n-1)}{2}$ -homogène (multilinéarité du déterminant) :

$$\forall u \in \mathcal{L}(E) \quad \forall t \in K \qquad \delta_x(tu) = t^{\frac{n(n-1)}{2}} \cdot \delta_x(u) .$$

Donnons-nous un endomorphisme cyclique v_0 fix de E (celui tel que $M_{\mathcal{B}}(v_0) = \operatorname{diag}(1,\ldots,n)$ par exemple : un endomorphisme diagonalisable est cyclique si et seulement si ses valeurs propres sont deux à deux distinctes), soit donc x un vecteur tel que $\delta_x(v_0) \neq 0$. Soit $u \in \mathcal{L}(E)$ quelconque, montrons que l'on peut approcher u par des endomorphismes cycliques. Par continuité, on a $\delta_x(v_0+tu) \neq 0$ pour |t| petit. Mais on a $\delta_x(u+tv_0) = t^{\frac{n(n-1)}{2}} \cdot \delta_x\left(v_0 + \frac{1}{t}u\right)$

pour tout $t \in \mathbb{K}^*$. L'application $\mathbb{K} \to \mathbb{K}$, $t \mapsto \delta_x(u+tv_0)$, est polynomiale non identiquement nulle, soit R l'ensemble (fini, éventuellement vide) de ses racines ; si $0 \notin R$, cela signifie que $u \in \Omega$ et, si $0 \in R$, il existe un réel $\alpha > 0$ tel que 0 soit le seul élément de R de module strictement inférieur à α et alors tous les endomorphismes $u + tv_0$, avec $0 < |t| < \alpha$, sont cycliques.

EXERCICE 2:

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$,

- on note γ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ défini par $\gamma_A(M) = [A, M] = AM MA$;
- on note τ_A la forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ définie par $\tau_A(M) = \operatorname{tr}(AM)$.
- 1. Montrer que l'application $\tau: A \mapsto \tau_A$ définit un isomorphisme de $\mathcal{M}_n(\mathbb{K})$ sur son dual.
- **2.** On suppose A nilpotente. Comparer les sous-espaces $\operatorname{Ker} \gamma_A$ et $\operatorname{Ker} \tau_A$.
- **3.** Montrer que A est nilpotente si et seulement si il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que A = BA AB.
- **4.** On suppose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si les matrices A et 2A sont semblables.

Source: Merci à Jacques CHEVALLET.

- 1. La linéarité de $\tau: \mathcal{M}_n(K) \to (\mathcal{M}_n(K))^*$ est immédiate. On vérifie que $\tau_A(E_{ij}) = a_{ji}$ (avec des notations évidentes) donc $\tau_A = 0$ si et seulement si A = 0. L'application linéaire τ est donc injective, c'est donc un isomorphisme puisque les espaces de départ et d'arrivée sont de même dimension.
- **2.** Si A est nilpotente et si M est une matrice commutant avec A (c'est-à-dire $M \in \text{Ker } \gamma_A$), alors AM est nilpotente (puisque $(AM)^k = A^k M^k$ pour tout $k \in \mathbb{N}$), donc tr(AM) = 0. On a ainsi prouvé l'inclusion

$$\operatorname{Ker} \gamma_A \subset \operatorname{Ker} \tau_A$$
.

3. • Si A est nilpotente, l'inclusion $\operatorname{Ker} \gamma_A \subset \operatorname{Ker} \tau_A$ démontrée ci-dessus permet de factoriser : il existe une forme linéaire λ sur $\mathcal{M}_n(\mathbb{K})$ telle que $\tau_A = \lambda \circ \gamma_A$ (cf. théorème de factorisation, semaine 2, exercice 1, question a.). D'après la question 1., on peut écrire $\lambda = \tau_B$, où B est une certaine matrice de $\mathcal{M}_n(\mathbb{K})$, donc $\tau_A = \tau_B \circ \gamma_A$. Mais si M est une matrice quelconque de $\mathcal{M}_n(\mathbb{K})$, on a

$$(\tau_B \circ \gamma_A)(M) = \operatorname{tr} (B(AM - MA)) = \operatorname{tr}(BAM) - \operatorname{tr}(BMA) = \operatorname{tr}(BAM) - \operatorname{tr}(ABM)$$

$$= \operatorname{tr} ([B, A] M) = \tau_{[B, A]}(M) ,$$

donc $\tau_B \circ \gamma_A = \tau_{[B,A]}$. On a ainsi prouvé l'existence d'une matrice B telle que $\tau_A = \tau_{[B,A]}$. Par l'isomorphisme "canonique" entre $\mathcal{M}_n(\mathbb{K})$ et son dual, on déduit

$$A = [B, A] = BA - AB.$$

- Si BA AB = A, alors $(BA AB)A + A(BA AB) = 2A^2$, soit $BA^2 A^2B = 2A^2$ puis, par récurrence, on a $BA^k A^kB = kA^k$ pour tout entier naturel k. Si la matrice A n'était pas nilpotente, alors l'endomorphisme $\gamma_B : M \mapsto BM MB$ de $\mathcal{M}_n(\mathbb{K})$ admettrait une infinité de valeurs propres (tous les entiers naturels), ce qui est impossible. La matrice A est donc nilpotente.
- 4. Supposons A nilpotente. Il existe une matrice B telle que A = BA AB, ce que l'on peut écrire A(I+B) = BA. Par une récurrence immédiate, on en tire $A(I+B)^k = B^kA$ pour tout entier naturel k puis, plus généralement, $A \cdot P(I+B) = P(B) \cdot A$ pour tout polynôme $P \in \mathbb{K}[X]$. Soit $\lambda \in \mathbb{K}$; en considérant la suite de polynômes (P_N) définie par $P_N(X) = \sum_{k=0}^N \frac{\lambda^k X^k}{k!}$ et en passant à la limite (justifications immédiates), on obtient la relation

$$A e^{\lambda(I+B)} = e^{\lambda B} A$$
, soit encore $e^{\lambda} A = e^{\lambda B} A e^{-\lambda B}$;

les matrices A et $e^{\lambda}A$ sont donc semblables, il suffit alors de prendre $\lambda = \ln 2$.

• Si A et 2A sont semblables, alors 2^kA est semblable à A pour tout $k \in \mathbb{N}$. Si λ est une valeur propre (complexe) de A, alors $2^k\lambda$ est aussi valeur propre de A pour tout n, cela impose $\lambda = 0$ (sinon A admettrait une infinité de valeurs propres). Le polynôme caractéristique de A est donc $(-X)^n$, donc A est nilpotente d'après Cayley-Hamilton.

EXERCICE 3:

Soit E un \mathbb{C} -espace vectoriel de dimension finie n, soient u et v deux endomorphismes de E tels que uv - vu = u.

- 1. Montrer que $u^k v v u^k = k u^k$ pour tout $k \in \mathbb{N}$.
- **2.** En déduire que u est nilpotent.
- **3.** Montrer que u et v sont cotrigonalisables (il existe une base de trigonalisation commune).
- 4. Montrer que le résultat de la question 3. reste vrai si on suppose seulement que

$$uv - vu \in Vect(u, v)$$
.

1. C'est une récurrence immédiate.

En notant [u,v]=uv-vu, on peut remarquer que [uv,w]=[u,w]v+u[v,w]. Si, au rang $k\geq 1$, on a $[u^k,v]=k\,u^k$, alors

$$[u^{k+1}, v] = [uu^k, v] = [u, v]u^k + u[u^k, v] = u^{k+1} + k u^{k+1} = (k+1)u^{k+1}.$$

- 2. Notons γ_v l'endomorphisme de $\mathcal{L}(E)$ défini par $\gamma_v(w) = [w, v] = wv vw$ pour tout $w \in \mathcal{L}(E)$. On a $\gamma_v(u^k) = ku^k$ pour tout $k \in \mathbb{N}$ donc, si u n'était pas nilpotent, l'endomorphisme γ_v de $\mathcal{L}(E)$ aurait une infinité de valeurs propres (tous les entiers naturels), ce qui est impossible car $\mathcal{L}(E)$ est de dimension finie.
- 3. Montrons d'abord que u et v admettent un vecteur propre commun : le sous-espace $\operatorname{Ker} u$ (non réduit à $\{0\}$ car u est nilpotent) est stable par v (vérification immédiate). Le corps de base étant \mathbb{C} , l'endomorphisme de $\operatorname{Ker} u$ induit par v admet au moins un vecteur propre, et le tour est joué.

Raisonnons maintenant par récurrence sur $n = \dim E$:

- pour n = 1, c'est évident ;
- soit $n \geq 2$, supposons l'assertion vraie au rang n-1, soit E de dimension n, soient u et v deux endomorphismes de E tels que [u,v]=u. Soit e_1 un vecteur propre commun à u et v (on vient d'en prouver l'existence) : $u(e_1)=0$ (nécessairement!) et $v(e_1)=\lambda e_1$. Soit E un hyperplan supplémentaire de la droite E et E dans E, notons E le projecteur sur E parallèlement à E is dans une base E et E et E et E et E et E et E in E et E in the projecteur sur E dans E et E endomorphismes E et E

De UV-VU=U, un calcul par blocs donne U'V'-V'U'=U', soit [u',v']=u'. On applique alors l'hypothèse de récurrence aux endomorphismes u' et v' de H: il existe une base $\mathcal{C}'=(\varepsilon_2,\cdots,\varepsilon_n)$ de H dans laquelle u' et v' sont représentés par des matrices triangulaires supérieures T_1 et T_2 . Dans la base $\mathcal{C}=(e_1,\varepsilon_2,\cdots,\varepsilon_n)$ de E, les endomorphismes E0 et E1 es endomorphismes E2 et E3 qui sont encore triangulaires représentés par des matrices de la forme E3 qui sont encore triangulaires

supérieures (X et Y sont des matrices-lignes à n-1 coefficients). La récurrence est achevée.

- **4.** Supposons maintenant $[u, v] = \alpha u + \beta v$.
 - Si $\alpha \neq 0$, en tâtonnant un peu, on se ramène à ce qui a été étudié : posons $w = \frac{1}{\alpha}v$, on vérifie $[u, w] = u + \beta w$; on pose ensuite $t = u + \beta w$ et on a [t, w] = w, donc t et w sont trigonalisables dans une même base, donc aussi $u = t \beta w$ et $v = \alpha w$.
 - Si $\beta \neq 0$, on conclut itou en échangeant les rôles de u et v.
 - Si $(\alpha, \beta) = (0, 0)$, alors u et v commutent, donc ont un vecteur propre commun (tout sous-espace propre de u est stable par v) et on conclut par récurrence sur la dimension de E comme dans la question 3. ci-dessus.

EXERCICE 4 : Décomposition de Jordan

1. Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

Soit ν un endomorphisme nilpotent de E, d'indice de nilpotence r avec 0 < r < n:

$$\nu^{r-1} \neq 0$$
 et $\nu^r = 0$.

Soit a un vecteur de E tel que $\nu^{r-1}(a) \neq 0$, soit H un hyperplan de E ne contenant pas $\nu^{r-1}(a)$.

Montrer que $E = F \oplus G$, avec

$$F = \text{Vect}(a, \nu(a), \dots, \nu^{r-1}(a))$$
 et $G = \bigcap_{k=0}^{r-1} (\nu^k)^{-1}(H)$.

- **2.** Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie. Un sous-espace vectoriel F de E, stable par f, est dit **indécomposable** s'il n'existe pas de décomposition $F = F_1 \oplus F_2$ avec F_1 et F_2 stables par f, $F_1 \neq \{0\}$, $F_2 \neq \{0\}$.
 - Soit F un sous-espace stable indécomposable de dimension n, soit g l'endomorphisme de F induit par f. Montrer qu'il existe une base C de F dans laquelle la matrice de g est de la forme

$$M_{\mathcal{C}}(g) = J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix}, \text{ avec } \lambda \in \mathbb{C}.$$

Source : Denis MONASSE, Mathématiques MP, Cours complet avec CD-ROM, Éditions Vuibert, ISBN 2-7117-8811-3

- **1.** La famille $\mathcal{F} = (a, \nu(a), \dots, \nu^{r-1}(a))$ est libre (question classique), donc dim F = r.
 - Soit φ une forme linéaire sur E, de noyau H, alors $G = \bigcap_{k=0}^{r-1} \operatorname{Ker}(\varphi \circ \nu^k)$. Chaque $\varphi \circ \nu^k$ est une forme linéaire sur E, non nulle car $(\varphi \circ \nu^k)(\nu^{r-1-k}(a)) = \varphi(\nu^{r-1}(a)) \neq 0$ étant donné

une forme linéaire sur E, non nulle car $(\varphi \circ \nu^k)(\nu^{r-1-k}(a)) = \varphi(\nu^{r-1}(a)) \neq 0$ étant donné que $\nu^{r-1}(a) \notin H$. Le sous-espace G est une intersection de r hyperplans, il est donc de codimension au plus égale à r, c'est-à-dire dim $G \geq n-r$.

Montrons $F \cap G = \{0\}$: si $x \in F \cap G$, alors $x = \lambda_0 a + \lambda_1 \nu(a) + \dots + \lambda_{r-1} \nu^{r-1}(a)$, mais $(\varphi \circ \nu^{r-1})(x) = 0$ ce qui donne $\lambda_0 \varphi(\nu^{r-1}(a)) = 0$ d'où $\lambda_0 = 0$.

On applique ensuite $\varphi \circ \nu^{r-2}$ qui donne $\lambda_1 = 0$, et ainsi de suite (*c'est la même idée que pour montrer que la famille* \mathcal{F} *est libre*), donc x = 0.

Enfin, $\dim(F+G) = \dim(F \oplus G) = \dim F + \dim G \ge n$, donc $F \oplus G = E$.

Remarquons que F et G sont deux sous-espaces stables par ν et qu'ils ne sont pas réduits à $\{0\}$, cela servira par la suite.

2. Soit μ le polynôme minimal de g. Il est irréductible : en effet, si on avait $\mu = \mu_1 \mu_2$ avec μ_1 et μ_2 non constants et premiers entre eux, alors le théorème de décomposition des noyaux donnerait $F = F_1 \oplus F_2$ avec $F_1 = \operatorname{Ker} \mu_1(g)$ et $F_2 = \operatorname{Ker} \mu_2(g)$ (sous-espaces stables par g et non réduits à $\{0\}$ en raison de la minimalité de μ), ce qui contredit l'indécomposabilité de F (ce qui a été fait jusqu'à présent est valable sur un corps quelconque ; maintenant, plaçons-nous sur \mathbb{C}).

On a donc $\mu(X) = (X - \lambda)^r$, avec $\lambda \in \mathbb{C}$ et $r \in \mathbb{N}^*$.

Donc l'endomorphisme (de F): $\nu = g - \lambda \operatorname{id}_F$ est nilpotent d'indice r. Si on avait r < n, d'après la question $\mathbf{1}$, on pourrait décomposer F en $F = F' \oplus F''$ avec F' et F'' stables par ν (donc par $g = \nu + \lambda \operatorname{id}_F$) et non réduits à $\{0\}$, ce qui est absurde.

On a donc r = n (ν est un endomorphisme de F nilpotent d'indice maximal) et en choisissant un vecteur a de F tel que $\nu^{n-1}(a) \neq 0$, la matrice de $g = \nu + \lambda \operatorname{id}_F$ dans la base $\mathcal{C} = (\nu^{n-1}(a), \nu^{n-2}(a), \dots, \nu(a), a)$ de F est celle proposé par l'énoncé.

Achevons la décomposition de Jordan : si f est un endomorphisme quelconque d'un \mathbb{C} -espace vectoriel E de dimension finie, il existe une décomposition de E en somme directe de sous-espaces stables indécomposables (faire une récurrence forte sur la dimension de E) :

 $E = \bigoplus_{i=1}^{p} E_i$ avec dim $E_i = n_i$ ($1 \le i \le p$). En concaténant les bases construites dans chaque

 E_i comme à la question précédente, on obtient une base \mathcal{B} de E dans laquelle la matrice de f est diagonale par blocs, chaque bloc étant un "bloc de Jordan":

$$M_{\mathcal{B}}(f) = \operatorname{diag}\left(J_{n_1}(\lambda_1), \cdots, J_{n_n}(\lambda_p)\right).$$

EXERCICE 5:

Soit E un \mathbb{C} -espace vectoriel de dimension finie n. Soient u et v deux endomorphismes de E tels que [u,v]=uv-vu commute avec u et v. Montrer que u et v sont cotrigonalisables (on pourra prouver que l'endomorphisme w=[u,v] est nilpotent).

Source : Cyril GRUNSPAN et Emmanuel LANZMANN, L'oral de mathématiques aux concours, Algèbre, Éditions Vuibert, ISBN 2-7117-8824-5

Notons que l'hypothèse peut s'écrire [[u,v],u] = [[u,v],v] = 0 (ce qui nous fait une belle jambe...).

On commence par prouver que u et v ont un vecteur propre commun, ce qui permet d'amorcer une récurrence.

Soit λ une valeur propre de w = [u, v] (il en existe au moins une car le corps de base est \mathbb{C}), soit $F = E_{\lambda}(w)$ le sous-espace propre associé. Alors F est stable par u et par v, notons u', v', w' les endomorphismes de F induits. On a $[u', v'] = w' = \lambda \operatorname{id}_F$, donc

$$0 = \operatorname{tr}(u'v' - v'u') = \lambda \operatorname{dim}(F) ,$$

d'où $\lambda = 0$. Il en résulte que w est nilpotent puisque sa seule valeur propre est 0 (son polynôme caractéristique est donc $(-X)^n$ et on applique Cayley-Hamilton).

Avec les notations ci-dessus, on a donc [u',v']=0, ce qui signifie que u' et v' commutent, donc admettent un vecteur propre commun (si $G\subset F$ est un sous-espace propre de u', alors il est stable par v' et l'endomorphisme de G induit par v' admet au moins un vecteur propre), donc u et v ont un vecteur propre commun e_1 .

Maintenant, on récurre :

- si $n = \dim E = 1$, c'est évident ;
- soit $n \geq 2$ fixé, si la propriété est vraie pour dim E < n, soit E de dimension n, soit e_1 un vecteur propre commun à u et v, soit H un hyperplan supplémentaire de la droite $D = \mathbb{C}e_1$, soit $\mathcal{B} = (e_1, e_2, \cdots, e_n)$ une base adaptée à la décomposition $E = D \oplus H$; on a $M_{\mathcal{B}}(u) = \begin{pmatrix} \alpha & \cdots \\ 0 & A \end{pmatrix}$ et $M_{\mathcal{B}}(v) = \begin{pmatrix} \beta & \cdots \\ 0 & B \end{pmatrix}$, où A et B sont les matrices dans (e_2, \cdots, e_n) des endomorphismes \overline{u} et \overline{v} de H induits par $p \circ u$ et $p \circ v$ (p étant le projecteur sur H parallèlement à D). De [[u,v],u] = [[u,v],v] = 0, on déduit, par des produits par blocs, que [A,B],A] = [A,B],B] = 0 ou [a,v],v] = [a,v],v] = 0, ce qui permet de "cotrigonaliser" \overline{u} et \overline{v} , dans une base $(\varepsilon_2,\cdots,\varepsilon_n)$ de H; dans la base $(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)$ de E, les matrices de u et de v sont triangulaires.

EXERCICE 6:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice, soit $\tilde{A} = {}^t\mathrm{Com}A$ la transposée de la matrice des cofacteurs.

- 1. Montrer que tout vecteur propre de A est vecteur propre de \tilde{A} .
- 2. On suppose A diagonalisable. Exprimer les valeurs propres de \tilde{A} en fonction de celles de A.

- **1.** Rappelons la relation $A\tilde{A} = \tilde{A}A = (\det A)I_n$.
 - Soit X un vecteur propre de A pour une valeur propre A non nulle. On a $AX = \lambda X$, d'où

$$\tilde{A}AX = \tilde{A}\lambda X = \lambda \tilde{A}X = (\det A) \cdot X$$

et $\tilde{A}X = \frac{\det A}{\lambda}X$, donc X est vecteur propre de \tilde{A} pour la valeur propre $\mu = \frac{\det A}{\lambda}$.

- Si X est vecteur propre de A pour la valeur propre 0 (AX = 0), alors A n'est pas inversible, donc rg A < n;
 - \triangleright si rg $A \le n-2$, alors $\tilde{A}=0$ (tous les mineurs d'ordre n-1 de la matrice A sont nuls), donc $\tilde{A}X=0$;
 - \triangleright si rg A=n-1, alors Ker A est de dimension un, et de AX=0, on tire $A\tilde{A}X=\tilde{A}AX=0$, donc $\tilde{A}X\in \operatorname{Ker} A$ et $\tilde{A}X$ est colinéaire à X, ce qu'il fallait démontrer.
- **2.** Soit (X_1, \dots, X_n) une base (de \mathbb{K}^n) constituée de vecteurs propres de A, associés aux valeurs propres $\lambda_1, \dots, \lambda_n$. On sait (question **1.**) que X_1, \dots, X_n sont des vecteurs propres de \tilde{A} .
 - Si A est inversible (les λ_i tous non nuls), alors $\tilde{A}X_i = \mu_i X_i$ avec

$$\mu_i = \frac{\det A}{\lambda_i} = \prod_{j \neq i} \lambda_j \ .$$

- Si rg $A \leq n-2$, alors au moins deux des λ_i sont nuls et d'autre part $\tilde{A} = 0$, donc $\operatorname{Sp}(\tilde{A}) = \{0\}$.
- Si rg A = n 1, un seul des λ_i (disons λ_n) est nul et, pour tout $i \in [1, n 1]$, on a $\tilde{A}X_i = \frac{\det A}{\lambda_i}X_i = 0$ (cf. question 1.), donc 0 est valeur propre de \tilde{A} de multiplicité au moins n 1 (et même exactement n 1 car \tilde{A} est diagonalisable et $\tilde{A} \neq 0$). La n-ième valeur propre de \tilde{A} est alors égale à sa trace, que nous allons calculer:

si on note A_{ij} le mineur d'indice (i,j) dans la matrice A, on a $\operatorname{tr}(\tilde{A}) = \sum_{i=1}^n A_{ii}$, mais cette somme est aussi l'opposé du coefficient de X dans le développement du polynôme caractéristique de A; en effet, en notant C_j le j-ième vecteur-colonne de la matrice A et $e_j = {}^t(0 \cdots 0 \ 1 \ 0 \cdots 0)$ le j-ième vecteur de la base canonique \mathcal{B}_0 de \mathbb{K}^n , on a

$$\chi_A(X) = \begin{vmatrix} a_{11} - X & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - X & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - X \end{vmatrix} = \det_{\mathcal{B}_0}(C_1 - Xe_1, C_2 - Xe_2, \dots, C_n - Xe_n)$$

et un développement par multilinéarité montre que le coefficient de X est

$$-\sum_{j=1}^{n} \det_{\mathcal{B}_0}(C_1, \dots, C_{j-1}, e_j, C_{j+1}, \dots, C_n) = -\sum_{j=1}^{n} A_{jj}.$$

Mais le coefficient de X dans $\chi_A(X)$ est aussi $-\sigma_{n-1} = -\sum_{i=1}^n \left(\prod_{j\neq i} \lambda_j\right) = -\prod_{i=1}^{n-1} \lambda_i$ puisque

 $\lambda_n = 0$. La *n*-ième valeur propre de \tilde{A} est donc $\mu_n = \prod_{i=1}^{n-1} \lambda_i$.

Conclusion. Si A est diagonalisable, de valeurs propres $\lambda_1, \dots, \lambda_n$ (non nécessairement distinctes), alors \tilde{A} est diagonalisable (dans la même base) avec pour valeurs propres les μ_1, \dots, μ_n , où $\forall i \in [1, n]$ $\mu_i = \prod_{j \neq i} \lambda_j$.