Homework 3

Problem 1. Suppose we observe a random sample $\{(Y_i, D_i)\}_{i=1}^n$, where Y_i is the dependent variable and D_i is a binary independent variable: for all i=1,2,...,n, $D_i=1$ or $D_i=0$. Suppose we regress Y_i on D_i with an intercept. Show: the LS estimate of the slope is equal to the difference between the sample averages of the dependent variable of the two groups, observations with $D_i=1$ and observations with $D_i=0$. Hint: The sample average of Y of observations with $D_i=1$ can be written as $\frac{\sum_{i=1}^n D_i Y_i}{\sum_{i=1}^n D_i}$. What is the sample average of Y of observations with $D_i=0$? Also note: $D_i=D_i^2$.

Problem 2. Suppose that assumptions of the Classical Linear Regression model hold, i.e.

$$egin{aligned} oldsymbol{Y} &= oldsymbol{X}oldsymbol{eta} + oldsymbol{e}, \ \mathbb{E}(oldsymbol{e}|oldsymbol{X}) &= 0, \ \mathrm{rank}(oldsymbol{X}) &= k, \end{aligned}$$

however,

$$\mathbb{E}(ee'|X) = \Omega,$$

where Ω is an $n \times n$, positive definite and symmetric matrix, but different from $\sigma^2 \mathbf{I}_n$.

- 1. Derive the conditional variance (given X) of the LS estimator $\widehat{\beta} = (X'X)^{-1}X'Y$.
- 2. Derive the conditional variance (given X) of the Generalized LS estimator $\tilde{\beta} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y$.
- 3. Without relying on the Gauss-Markov Theorem, show that

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid \boldsymbol{X}) - \operatorname{Var}(\widetilde{\boldsymbol{\beta}} \mid \boldsymbol{X}) \ge 0$$

(in the positive semidefinite sense). Hint: Show

$$\left(\operatorname{Var}(\widetilde{\boldsymbol{\beta}}\mid\boldsymbol{X})\right)^{-1} - \left(\operatorname{Var}(\widehat{\boldsymbol{\beta}}\mid\boldsymbol{X})\right)^{-1} \geq 0$$

by showing that the expression on the left-hand side depends on a symmetric and idempotent matrix of the form $I_n - H(H'H)^{-1}H'$ for some $n \times k$ matrix H of rank k.

Problem 3. Consider the GLS estimator $\widetilde{\boldsymbol{\beta}}$ defined in the previous question.

- 1. Show that $\widetilde{\beta}$ satisfies $\widetilde{e}'\Omega^{-1}X = 0$, where $\widetilde{e} = Y X\widetilde{\beta}$.
- 2. Using the result in (i), show that the generalized squared distance function $S(\boldsymbol{b}) = (\boldsymbol{Y} \boldsymbol{X}\boldsymbol{b})'\boldsymbol{\Omega}^{-1}(\boldsymbol{Y} \boldsymbol{X}\boldsymbol{b})$ can be written as

$$S(\boldsymbol{b}) = \widetilde{\boldsymbol{e}}' \boldsymbol{\Omega}^{-1} \widetilde{\boldsymbol{e}} + (\widetilde{\boldsymbol{\beta}} - \boldsymbol{b})' \boldsymbol{X}' \boldsymbol{\Omega}^{-1} \boldsymbol{X} (\widetilde{\boldsymbol{\beta}} - \boldsymbol{b}).$$

3. Using the result in (ii), show that $\widetilde{\boldsymbol{\beta}}$ minimizes $S(\boldsymbol{b})$.

Problem 4. Use FWL Theorem to show that in a simple (one-regressor) regression model,

$$Y_i = \beta_0 + \beta_1 X_i + U_i, i = 1, \dots, n,$$

the LS estimate for β_1 is

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \left(X_i - \overline{X} \right) Y_i}{\sum_{i=1}^n \left(X_i - \overline{X} \right)^2}.$$

Then assume (1) (X_i, Y_i) , i = 1, ..., n are independently and identically distributed (i.i.d.). (2) $E(U_i|X_i) = 0$, for i = 1, ..., n. (3) $E(U_i^2|X_i) = \sigma^2$, for i = 1, ..., n, with some $\sigma > 0$. Show that

$$\operatorname{Var}\left(\widehat{\beta}_{1}|X_{1},...,X_{n}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}.$$

Problem 5. Consider again the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + U_i, i = 1, ..., n;$$

with assumptions: (1) (X_i, Y_i) , i = 1, ..., n are independently and identically distributed (i.i.d.). (2) $E(U_i|X_i) = 0$, for i = 1, ..., n. (3) $E(U_i^2|X_i) = \sigma^2$, for i = 1, ..., n, with some $\sigma > 0$. Define the estimator

$$\bar{\beta}_1 = \frac{\frac{\sum_{i=1}^n Y_i 1\{X_i \geq 0\}}{\sum_{i=1}^n 1\{X_i \geq 0\}} - \frac{\sum_{i=1}^n Y_i 1\{X_i < 0\}}{\sum_{i=1}^n 1\{X_i < 0\}}}{\frac{\sum_{i=1}^n X_i 1\{X_i \geq 0\}}{\sum_{i=1}^n 1\{X_i \geq 0\}} - \frac{\sum_{i=1}^n X_i 1\{X_i < 0\}}{\sum_{i=1}^n 1\{X_i < 0\}}}$$

where

$$1\{X_i \ge 0\} = \begin{cases} 1 & \text{if } X_i \ge 0 \\ 0 & \text{if } X_i < 0 \end{cases}$$

and

$$1\{X_i < 0\} = \begin{cases} 1 & \text{if } X_i < 0 \\ 0 & \text{if } X_i \ge 0. \end{cases}$$

In other words, $\bar{\beta}_1$ is the difference between the averaged Y's conditional on X being positive and the averaged Y's conditional on X being negative divided by the difference between the averaged X conditional on X being positive and the averaged X conditional on X being negative. Assume $\frac{\sum_{i=1}^{n} X_i 1\{X_i \geq 0\}}{\sum_{i=1}^{n} 1\{X_i \geq 0\}} \neq \frac{\sum_{i=1}^{n} X_i 1\{X_i < 0\}}{\sum_{i=1}^{n} 1\{X_i < 0\}}.$

- 1. Show that $\bar{\beta}_1$ is unbiased.
- 2. Is the conditional variance $\operatorname{Var}\left(\bar{\beta}_1|X_1,...,X_n\right)$ less than or equal to $\frac{\sigma^2}{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}$ (the variance of the LS estimator)? Explain.

Problem 6. Suppose that a random variable X has a normal distribution with unknown mean μ . To simplify the analysis, we shall assume that σ^2 is known. Given a sample of observations, an estimator of μ is the sample mean, \overline{X} . When performing a (two-sided) test of the null hypothesis $H_0: \mu = \mu_0$ at 5% significance level, it is usual to choose the upper and lower 2.5% tails of the normal distribution as the rejection regions, as shown in the first figure. s.d. is equal to $\sqrt{\sigma^2/n}$, the standard deviation of \overline{X} . The density function of $N\left(\mu_0, \sigma^2/n\right)$ is shown in the first figure. H_0 is rejected when $|\overline{X} - \mu_0| / \text{s.d.} > 1.96$. However, suppose that someone instead chooses the central 5% of the distribution as the rejection region, as in the second figure. Give a technical explanation, using appropriate statistical concepts, of why this is not a good idea.

Figure 1: Conventional rejection regions.

Figure 2: Central 5 per cent chosen as rejection region.

Problem 7. Consider the following model:

$$Y_i = \beta + U_i$$

where U_i are iid N(0,1) random variables, $i=1,\ldots,n$.

- 1. Find the LS estimator of β and its mean, variance, and distribution.
- 2. Suppose that a data set of 100 observation produced OLS estimate $\hat{\beta} = 0.167$.
 - (a) Construct 90% and 95% symmetric two-sided confidence intervals for β .
 - (b) Construct a 95% one-sided confidence interval of the form $[A, +\infty)$ for β . In other words, find a random variable A such that $\Pr(\beta \in [A, +\infty)) = 1 \alpha$, where $\alpha \in (0, 0.5)$ is a known constant chosen by the econometrician.
 - (c) Construct a 95% one-sided confidence interval of the form $(-\infty, A]$ for β .

Problem 8. Consider the following regression model:

$$egin{aligned} oldsymbol{Y} &= oldsymbol{X}_1 oldsymbol{eta}_1 + oldsymbol{X}_2 oldsymbol{eta}_2 + oldsymbol{e}, \ &\mathbb{E}(oldsymbol{e}(oldsymbol{e}'|oldsymbol{X}_1, oldsymbol{X}_2) = 0, \ &\mathbb{E}\left(oldsymbol{e}(oldsymbol{e}'|oldsymbol{X}_1, oldsymbol{X}_2) = \sigma_e^2 oldsymbol{I}_n. \end{aligned}$$

Let $\widetilde{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1'\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1'\boldsymbol{Y}$ be the LS estimator for $\boldsymbol{\beta}_1$ which omits \boldsymbol{X}_2 from the regression.

- 1. Find $\mathbb{E}(\tilde{\boldsymbol{\beta}}_1|\boldsymbol{X}_1)$.
- 2. Define

$$V = X_2 \beta_2 - \mathbb{E} (X_2 \beta_2 | X_1)$$
.

Find $\mathbb{E}\left(eV'|X_1\right)$.

- 3. Find $\mathbb{E}(ee'|X_1)$.
- 4. Assume that

$$\mathbb{E}\left(\boldsymbol{V}\boldsymbol{V}'|\boldsymbol{X}_1\right) = \sigma_v^2 I_n,$$

and find $Var(\tilde{\boldsymbol{\beta}}_1|\boldsymbol{X}_1)$.

5. Let $\hat{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1' \boldsymbol{M}_2 \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \boldsymbol{M}_2 \boldsymbol{Y}$ be the OLS estimator for $\boldsymbol{\beta}_1$ from a regression of \boldsymbol{Y} against \boldsymbol{X}_1 and \boldsymbol{X}_2 , where $\boldsymbol{M}_2 = \boldsymbol{I}_n - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2'$. Compare $\operatorname{Var}(\hat{\boldsymbol{\beta}}_1 | \boldsymbol{X}_1)$ derived in part (iv) with $\operatorname{Var}(\hat{\boldsymbol{\beta}}_1 | \boldsymbol{X}_1, \boldsymbol{X}_2)$. Can you say which of the two variances is bigger (in the positive semi-definite sense)? Explain your answer.