PCT/CA2004/000907

1/6 IAP6 Rec'd PCT/PTO 16 DEC 2005

SEQUENCE LISTING

<110> Gestion Univalor
 BRISSON, Normand
 DESVEAUX, Darrell
 SUBRAMANIAM, Raiagopal
 SYGUSCH, Jurgen

<120> PLANT TRANSCRIPTIONAL ACTIVATOR AND USES
THEREOF

<130> 10662-121PCT

<150> US 60/479,871

<151> 2003-06-20

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 274

<212> PRT

<213> Artificial Sequence

<220>

<223> potato StWhyl protein sequence

<400> 1

Met Ser Asn Phe Ser Leu Ser Pro Ser Pro Thr Ser Gly Phe Ser Leu

5 . 10 . 15

Asn Leu Gln Asn Pro Thr Lys Thr Ser Tyr Leu Ser Phe Ser Ser Ser 20 25 30

Ile Asn Thr Ile Phe Ala Pro Leu Ser Ser Asn Thr Thr Lys Ser Phe
35 40 45

Ser Gly Leu Thr His Lys Ala Ala Leu Pro Arg Asn Leu Ser Leu Thr 50 55 60

Cys Arg His Ser Asp Tyr Phe Glu Pro Gln Gln Gln Gln Gln Gln

65					70					75					80
Gln	Gln	Gln	Pro	Gln	Gly	Ala	Ser	Thr	Pro	Lys	Val	Phe	Val	Gly	Tyr
				85					90					95	
Ser	Ile	Tyr	Lys	Gly	Lys	Ala	Ala	Leu	Thr	Val	Glu	Pro	Arg	Ser	Pro
			100					105					.110	•	
Glu	Phe	Ser	Pro	Leu	Asp	Ser	Gly	Ala	Phe	Lys	Leu	Ser	Arg	Glu	Gly
		115					120					125			
Met	Val	Met	Leu	Gln	Phe	Ala	Pro	Ala	Ala	Gly	Val	Arg	Gln	Tyr	Asp
	1:30					135		•			140				
Trp	Ser	Arg	Lys	Gln	Val	Phe	Ser	Leu	Ser	Val	Thr	Glu	Ile	Gly	Ser
145					150				•	155					160
Ile	Ile	Ser	Leu	Gly	Ala	Lys	Asp	Ser	Cys	Glu	Phe	Phe	His	Asp	Pro
				165					170	-				175	
Asn	Lys	Gly	Arg	Ser	Asp	Glu	Gly	Arg	Val	Arg	Lys	Val	Leu	Lys	Val
			180					185					190		
Glu	Pro	Leu	Pro	Asp	Gly	Ser	Gly	His	Phe	Phe	Asn	Leu	Ser	Val	Gln
		195					200					205			
Asn	Lys	Leu	Ile	Asn	Leu	Asp	Glu	Asn	Ile	Tyr	Ile	Pro	Val	Thr	Lys
-	210					215					220				
Ala	Glu	Phe	Ala	Val	Leu	Val	Ser	Ala	Phe	Asn	Phe	Val	Met	Pro	Tyr
225		•			230	•				235					240
Leu	Leu	Gly	Trp	His	Thr	Ala	Val	Asn	Ser	Phe	Lys	Pro	Glu	Asp	Ala
				245					250					255	
Ser	Arg	Ser	Asn	Asn	Ala	Àsn	Pro	Arg	Ser	Gly	Ala	Glu	Leu	Glu	Trp
)		260					265					270		_
Asn	Arg														

<210> 2

<211> 263

<212> PRT

<213> Artificial Sequence

<220>

<223> Arabidopsis Whirly proteins AtWhyl

<400> 2

Met Ser Gln Leu Leu Ser Thr Pro Leu Met Ala Val Asn Ser Asn Pro

1				5					10					15	
Arg	Phe	Leu	Ser	Ser	Ser	Ser	Val	Leu	Val	Thr	Gly	Gly	Phe	Ala	Val
			20					25					30		
Lys	Arg	His	Gly	Phe	Ala	Leu	Lys	Pro	Thr	Thr	Lys	Thr	Val	Lys	Leu
		35					40					45			
Phe	Ser	Val	Lys	Ser	Arg	Gln	Thr	Asp	Tyr	Phe	Glu	Lys	Gln	Arg	Phe
	50					55					60				
Gly	Asp	Ser	Ser	Ser	Ser	Pro	Ser	Pro	Ala	Glu	Gly	Leu	Pro	Ala	Arg
65					70			•		75		•	•		80
Phe	Tyr	Val	Gly	His	Ser	Ile	Tyr	Lys	Gly	Lys	Ala	Ala	Leu	Thr	Val
				85					90					95	
Asp	Pro	Arg	Ala	Pro	Glu	Phe	Val	Ala	Leu	Asp	Ser	Gly	Ala	Phe	Lys
			100					105					110		
Leu	Ser	Lys	Asp	Gly	Phe	Leu	Leu	Leu	Gln	Phe	Ala	Pro	Ser	Ala	Gly
,		115					120					125			
Val	Arg	Gln	Tyr	Asp	Trp	Ser	Lys	Lys	Gln	Val	Phe	Ser	Leu	Ser	Val
•	130				;	135					140	*			
Thr	Glu	Ile	Gly	Thr	Leu	Val	Ser	Leu	Gly	Pro	Arg	Glu	Ser	Cys	Glu
145					150					155					160
Phe	Phe	His	Asp	Pro	Phe	Lys	Gly	Lys	Ser	Asp	Ġlu	Gly.	Lys	Val	Arg
				165					170		-			175	
Lys	Val	Leu	Lys	Val	Glu	Pro	Leu	Pro	Asp	Gly	Ser	Gly	His	Phe	Phe
			180					185					190		
Asn	Leu		Val	Gln	Asn	Lys	Leu	Val	Asn	Val	Asp	Glu	Ser	Ile	Tyr
_	-	195			•		200		,			205			
Ile		Ile	Thr	Arg	Ala	Glu	Phe	Ala	Val	Leu	Ile	Ser	Ala	Phe	Asn
	210					215					220			•	
	Val	Leu _.	Pro	Tyr	Leu	Ile	Gly	Trp	His	Ala	Phe	Ala	Asn	Ser	Ile
225 -	_				230					235		,			240
Lys	Pro	Glu	Glu		Ser	Arg	Val	Asn	Asn	Ala	Ser	Pro	Asn	Tyr	Gly
~7	_			245					250					255	
θŢΆ	Asp	Tyr		Trp	Asn	Arg									
			260												

<210> 3

<211> 237

<212'> PRT

<213> Artificial Sequence

<220>

<223> Arabidopsis Whirly proteins AtWhy2

<400> 3

Met Lys Gln Ala Arg Ser Leu Leu Ser Arg Ser Leu Cys Asp Gln Ser 1 5 10 15

Lys Ser Leu Phe Glu Ala Ser Thr Leu Arg Gly Phe Ala Ser Trp Ser

20 25 30

Asn Ser Ser Thr Pro Gly Arg Gly Phe Pro Gly Lys Asp Ala Ala Lys
35 40 45

Pro Ser Gly Arg Leu Phe Ala Pro Tyr Ser Ile Phe Lys Gly Lys Ala 50 55 60

Ala Leu Ser Val Glu Pro Val Leu Pro Ser Phe Thr Glu Ile Asp Ser 65 70 75 80

Gly Asn Leu Arg Ile Asp Arg Arg Gly Ser Leu Met Met Thr Phe Met
85 90 95

Pro Ala Ile Gly Glu Arg Lys Tyr Asp Trp Glu Lys Lys Gln Lys Phe 100 105 110

Ala Leu Ser Pro Thr Glu Val Gly Ser Leu Ile Ser Met Gly Ser Lys 115 120 125

Asp Ser Ser Glu Phe Phe His Asp Pro Ser Met Lys Ser Ser Asn Ala 130 135 140

Gly Gln Val Arg Lys Ser Leu Ser Val Lys Pro His Ala Asp Gly Ser 145 150 155 160

Gly Tyr Phe Ile Ser Leu Ser Val Asn Asn Ser Ile Leu Lys Thr Asn 165 170 175

Asp Tyr Phe Val Val Pro Val Thr Lys Ala Glu Phe Ala Val Met Lys
180 185 190

Thr Ala Phe Ser Phe Ala Leu Pro His Ile Met Gly Trp Asn Arg Leu
195 200 205

Thr Gly His Val Asn Thr Glu Ala Leu Pro Ser Arg Asn Val Ser His
210 215 220

Leu Lys Thr Glu Pro Gln Leu Glu Leu Glu Trp Asp Lys
225 230 235

<210> 4

<211> 267

<212> PRT

<213> Artificial Sequence

<220>

<223> Arabidopsis Whirly proteins AtWhy3

<400> 4 Met Ser Gln Leu Leu Ser Ser Pro Pro Met Ala Val Phe Ser Lys Thr 5 10 Phe Ile Asn His Lys Phe Ser Asp Ala Arg Phe Leu Ser Ser His Ser . 20 Ile Leu Thr Ser Gly Gly Phe Ala Gly Lys Ile Ile Pro Leu Lys Pro Thr Ala Arg Leu Lys Leu Thr Val Lys Ser Arg Gln Ser Asp Tyr Phe 50 60 Glu Lys Gln Arg Phe Gly Asp Ser Ser Ser Ser Gln Asn Ala Glu Val 70 75 . Ser Ser Pro Arg Phe Tyr Val Gly His Ser Ile Tyr Lys Gly Lys Ala 90 Ala Leu Thr Ile Glu Pro Arg Ala Pro Glu Phe Val Ala Leu Glu Ser 105 Gly Ala Phe Lys Leu Thr Lys Glu Gly Phe Leu Leu Gln Phe Ala 120 125 Pro Ala Ala Gly Val Arg Gln Tyr Asp Trp Ser Arg Lys Gln Val Phe Ser Leu Ser Val Thr Glu Ile Gly Asn Leu Val Ser Leu Gly Pro Arg 150 155 Glu Ser Cys Glu Phe Phe His Asp Pro Phe Lys Gly Lys Gly Asp Glu 165 170 175 Gly Lys Val Arg Lys Val Leu Lys Val Glu Pro Leu Pro Asp Gly Ser 180 185 190 . Gly Arg Phe Phe Asn Leu Ser Val Gln Asn Lys Leu Leu Asn Val Asp 200

Ser Ala Phe Asn Phe Val Leu Pro His Leu Ile Gly Trp Ser Ala Phe 225 230 235 240 Ala Asn Ser Ile Lys Pro Glu Asp Ser Asn Arg Leu Asn Asn Ala Ser

Glu Ser Val Tyr Ile Pro Ile Thr Lys Ala Glu Phe Ala Val Leu Ile

220

215

245

250

255

Pro Lys Tyr Gly Gly Asp Tyr Glu Trp Ser Arg

260

265