

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 5-Minimizare -2021-

Sinteza functiilor logice

- □ Hărți Karnaugh
- Quine McCluskey
- Maparea în tehnologie a funcțiilor logice folosind:
 - ŞI-NU
 - SAU_NU
 - XOR
 - PLA

Minimizarea funcțiilor logice

- se înțelege simplificarea/rescrierea ecuațiilor logice booleene în vederea:
 - ■Unui cost mai mic și/sau;
 - Performanță mai ridicată;
- ☐ Cheia simplificării este: $y(x+\overline{x})=y$

$$y\left(x+\overline{x}\right)=y$$

- distributivitatea x(y+z)=xy+xz _
- Proprietatea complementului x + x = 1

Minimizarea funcțiilor logice

- Găsirea a doi termeni (produs SOP) pentru care:
 - funcția ia valoare 1
 - numai o variabilă își modifică valoarea

B are aceși valoare → B este păstrat

A are valori diferite → A este eliminat

$$F = \overline{A} \overline{B} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

Metoda de minimizare Karnaugh

- □ Diagramele Karnaugh:
 - Metodă alternativă tabelelor de adevăr și ecuațiilor logice de a vizualiza o funcție
 - se aplică atât pentru ecuaţiile logice descrise sub formă canonică de sumă de produse (SOP), cât şi pentru ecuaţiile logice descrise sub formă canonică de produs de sume (POS)

- constituie o matrice de pătrate cu proprietatea ca două celule vecine corespund unor mintermi adiacenţi.
- doi vectori sunt adiacenţi dacă diferă valoric printr-un singur bit
- în diagramă se marchează acei mintermi care au valoarea logică 1 în tabelul de adevăr

- □ Numerele adiacente numărului 0100 sunt: 0101; 0110; 0000; 1100.
- Numerele adiacente numărului 000 sunt: 001; 010; 100.
- □ Vectorii adiacenţi mintermului *abc* sunt: ¬abc, abc, abc

Construcție diagrame Karnaugh

Diagrame Karnaugh pentru funcții logice cu 2 variabile a, b

Construcție diagrame Karnaugh

Diagrame Karnaugh pentru funcții logice cu 3 variabile a, b, c

Construcție diagrame Karnaugh

construcţia diagramelor Karnaugh pentru o funcţie logică cu 4 variabile de intrare

d

□ Ex. completare diagramă:

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1. Introducerea mintermilor în diagramă conform tabelului de adevăr.

□ Ex. completare diagramă:

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. se încearcă formarea unor grupe de mintermi bazate pe reguli de adiacență

□ Ex. completare diagramă:

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. O grupare are forma unor dreptunghiuri/pătrate și conţine 2ⁿ mintermi!

□ Ex. completare diagramă:

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. O grupare are forma unor dreptunghiuri/pătrate și conţine 2ⁿ mintermi!

□ Ex. completare diagramă:

a	b	c	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Din totalul de *m* variabile booleene a funcţiei, termenul asociat grupării formate va conţine *m-n* variabile

□ Ex. completare diagramă:

2. Din totalul de *m* variabile booleene a funcţiei, termenul asociat grupării formate va conţine *m-n* variabile

Minimizarea folosind diagrame Karnaugh

- Dacă la o astfel de grupare nu mai pot fi adăugaţi mintermi înseamnă că s-a obţinut un implicant prim.
- Dacă un anumit implicant prim conţine cel puţin un minterm care nu poate apare în alt implicanţi primi atunci acesta este un implicant prim esenţial

□ Ex. completare diagramă:

3. Ecuația minimizată va conține toți implicanții primi esențiali, si uneori si implicanți primi neesențiali, astfel încât toate celule marcate cu 1 logic să fie acoperite.

								$x_1x_0 = 00$	01 11	10	
ı	<i>x</i> ₁	x_0	<i>y</i> ₁	<i>y</i> ₀	Greater Than	Equal	Less Than	00	1 3	2	
	0	0	0	0	0	1	0	01 1	5 7	6	
	0	0	0	1	0	0	1	01 1			C = = = 12 = = 5 12 = =
	0	0	1	0	0	0	1		13 15		$G = x_1 y_1' + x_0 y_1' y_0' + x_1$
	0	0	1	1	0	0	1	11 1	1	1	
	0	1	0	0	1	0	0	70 7	2 11	10	
	0	1	0	1	0	1	0	10 1	Ţ.		
	0	1	1	0	0	0	1	Greate	er-than Functio	n	
	0	1	1	1	0	0	1				
	1	0	0	0	1	0	0	$x_1 x_2$ $y_1 y_0$ 00	01 11	10	
	1	0	0	1	1	0	0	• -		2	
	1	0	1	0	0	1	0	00		1	
	1	0	1	1	0	0	1	4	5 7	6	
	1	1	0	0	1	0	0	01	1	1	
	1	1	0	1	1	0	0	12	13 15	14	$L = x_1' y_1 + x_1' x_0' y_0 + x_0'$
	1	1	1	0	1	0	0	11			
	1	î	î	1	0	1	0			10	
			_		Truth Table			10	111		
								Less	than Function	L)	

Copyright @ 2004-2005 by Daniel D. Gajski

Slides by Philip Pham, University of California, Irvine

Diagrame Karnaugh – don't care

- Nu toate funcţiile logice sunt definite complet.
- Pentru unele valori ale variabile de intrare funcţia este nu specificată (funcţia are "valoarea" don't care - d)
- Pt."d" în diagrama Karnaugh se va lua în considerare valoarea care ne convine pentru d (0 sau 1) a.î. să permită o acoperire mai largă a minternilor.

a	b	c	p	q
0	0	0	0	1
0	0	1	1	0
0	1	0	1	đ
0	1	1	d	1
1	0	0	0	d
1	0	1	0	0
1	1	0	d	0
1	1	1	1	1
	Tab	elul	5.3	

Funcțiile p și q pot fi scrise și altfel:

$$p = f(a,b,c) = \sum (1;2;7) + \sum d(3;6)$$
$$q = f(a,b,c) = \sum (0;3;7) + \sum d(2;4)$$

$$p = b + \overline{a}c$$
$$q = \overline{b}\overline{c} + bc$$

Minimizare: metoda Quine McCluskey

- este o metodă tabelară;
- mai laborioasă pentru un număr mic de variabile de intrare;
- elimină în bună măsură dezavantajele metodei Karnaugh:
 - Poate fi inclusă în programe specializate de sinteză;
 - Permite o abordare sistematică pentru funcții cu mai multe variabile de intrare;

Metoda Quine McCluskey

Studiu de caz

Să se minimizeze următoarea funcţie logică prin metoda Quine-McCluskey:

$$f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$$

- mintermi sunt grupaţi într-un tabel funcţie de numărul de variabile nenegate conţinute.
- aranjarea se va face în ordine crescatoare.
- o funcție cu patru variabile de intrare poate avea cinci grupe de minterm:
- □ grupa 0: numai minterm-ul 0,
- □ grupa 1 : mintermi 1, 2, 4 și 8,
- □ grupa 2 : mintermi 3, 5, 6, 9, 10, 12,
- □ grupa 3 va conţine mintermi 7, 11, 13 şi 14,
- ☐ grupa 4 va conţine minterm-ul 15.

Quine McCluskey

$$f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$$

Pasul 1:

- În tabel se trec doar minterm-ii a căror valoare în tabelul de adevăr este 1
- Ex. considerat: 1, 3, 4, 5, 6, 9, 11, 12, 13
- □ grupa 0: numai minterm-ul 0,
- □ grupa 1 : mintermi 1, 2, 4 şi 8,
- □ grupa 2 : mintermi 3, 5, 6, 9, 10, 12,
- □ grupa 3 va conţine mintermi 7, 11, 13 şi 14,
- ☐ grupa 4 va conţine minterm-ul 15.

Quine McCluskey

 $f1(a,b,c,d) = \sum (1,3,4,5,6,9,11,12,13)$

Pasul 1:

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	
1	4	0	1	0	0	
	3	0	0	1	1	
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
	13	1	1	0	1	

- ☐ fiecare minterm din grupă i se se compară cu fiecare minterm din grupa i+1
- Se verifică condiţia de adiacenţă (să difere doar printr-o singură variabilă logică)
- Dacă doi mintermi verifică condiţia de adiacenţă atunci:
 - se înlocuieşte variabila care diferă cu o liniuţă
 - grupul de doi mintermi va fi trecut în grupa i.
 - în tabelul precedent se bifează toţi mintermii care au fost grupaţi. Această observaţie este importantă în vederea ultimului pas.

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	
1	4	0	1	0	0	
	3	0	0	1	1	
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	••
	5	0	1	0	1	
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	-	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	-	1	0	0	
	3,11	-	0	1	1	
	5,13	-	1	0	1	
2	9,11	1	0	-	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	••
	5	0	1	0	1	0 0
2	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
1	1,3	0	0	-	1	
	1,5	0	-	0	1	
	1,9	-	0	0	1	
	4,5	0	1	0	•	
	4,6	0	1	ı	0	
	4,12	-	1	0	0	
2	3,11	-	0	1	1	
	5,13	-	1	0	1	
	9,11	1	0	-	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
	4	0	1	0	0	
2	3	0	0	1	1	••
	5	0	1	0	1	• •
	6	0	1	1	0	
	9	1	0	0	1	
	12	1	1	0	0	
3	11	1	0	1	1	
	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
	4	0	1	0	0	
2	3	0	0	1	1	•••
	5	0	1	0	1	0 0
	6	0	1	1	0	
	9	1	0	0	1	0 0
	12	1	1	0	0	
3	11	1	0	1	1	
	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
1	1,3	0	0	-	1	
	1,5	0	ı	0	1	
	1,9	-	0	0	1	
	4,5	0	1	0	1	
	4,6	0	1	ı	0	
	4,12	•	1	0	0	
2	3,11	-	0	1	1	
	5,13	•	1	0	1	
	9,11	1	0	-	1	
	9,13	1	•	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1		0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	0 0
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	
	3	0	0	1	1	••
	5	0	1	0	1	• •
2	6	0	1	1	0	
	9	1	0	0	1	0 0
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	0 0
	3	0	0	1	1	•••
	5	0	1	0	1	0 0
2	6	0	1	1	0	
	9	1	0	0	1	0 0
	12	1	1	0	0	
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	С	d	Bifare
	1,3	0	0	-	1	
	1,5	0	•	0	1	
1	1,9	-	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	•	1	0	0	
	3,11	1	0	1	1	
	5,13	-	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	0 0
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	
_	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	•	1	
	1,5	0	ı	0	1	
1	1,9	ı	0	0	1	
1	4,5	0	1	0	-	
	4,6	0	1	-	0	
	4,12	ı	1	0	0	
	3,11	ı	0	1	1	
	5,13	ı	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	•	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	•••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	
3	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	000
1	4	0	1	0	0	• •
	3	0	0	1	1	• •
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	• •
	12	1	1	0	0	0 0
2	11	1	0	1	1	
3	13	1	1	0	1	

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	-	1	
	1,5	0	ı	0	1	
1	1,9	ı	0	0	1	
1	4,5	0	1	0	•	
	4,6	0	1	ı	0	
	4,12	١	1	0	0	
	3,11	ı	0	1	1	
	5,13	1	1	0	1	
2	9,11	1	0	ı	1	
	9,13	1	-	0	1	
	12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	000
1	4	0	1	0	0	• •
	3	0	0	1	1	••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	0 0
	12	1	1	0	0	0 0
2	11)	1	0	1	1	000
3	13	1	1	0	1	

Grupa	i l	Mintermi	a	b	c	d	Bifare
		1,3	0	0	ı	1	
		1,5	0	ı	0	1	
1		1,9	ı	0	0	1	
1		4,5	0	1	0	ı	
		4,6	0	1	ı	0	
		4,12	ı	1	0	0	
		3,11	-	0	1	1	
		5,13	1	1	0	1	
2		9,11	1	0	ı	1	
		9,13	1	-	0	1	
		12,13	1	1	0	-	

Grupă	Mintermi	a	b	c	d	Bifare
1	1	0	0	0	1	• •
1	4	0	1	0	0	• •
	3	0	0	1	1	••
	5	0	1	0	1	• •
2	6	0	1	1	0	• •
	9	1	0	0	1	••
	12	1	1	0	0	0 0
	11)	1	0	1	1	00
3	13	1	1	0	1	• •

Pasul 2 se repetă recursiv până NU se mai pot forma grupări pe baza adicenţei!

Quine McCluskey

Important:

Toţi termenii nebifaţi din tabelele construite până acum sunt implicanţi primi!

□ nou tabel:

- prima coloană: grupările obţinute care sunt implicanţii primi
- Celelalte coloane toți mintermii conținuți de implicanții primi
- în dreptul fiecărui implicant prim se bifează minterm-ii care îi conţine

Implicanți primi		Mintermi									
	acoperiți	1	3	4	5	6	9	11	12	13	
ābd	4,6			X		X					

- □ Dacă un minterm este conţinut de un singur implicant prim→ implicant prim esenţial;
- Expresia minimizată a funcției conține:
 - implicanții primi esențiali,
 - implicanţi primi selectaţi astfel încât acoperirea de mintermi cu fiecare implicant adăugat să fie maximă.

Grupă	Mintermi	a	b	c	d	Bifare
	1,3	0	0	ı	1	X
	1,5	0	ı	0	1	X
1	1,9	•	0	0	1	X
	4,5	0	1	0	ı	X
	4,6	0	1	ı	0	
	4,12	-	1	0	0	X
2	3,11	•	0	1	1	X
	5,13	•	1	0	1	X
	9,11	1	0	ı	1	X
	9,13	1	-	0	1	X
	12,13	1	1	0	-	X

Grupă	Mintermi	a	b	c	d	Bifare
1	1,3,9,11	-	0	-	1	
	1,5,9,13	-	-	0	1	
	4,5,12,13	-	1	0	-	

$$f1(a,b,c,d) = \overline{a}b\overline{d} + \overline{b}d + b\overline{c}$$

Implicanți primi	Mintermi acoperiți	Mintermi								
		1	3	4	5	6	9	11	12	13
ābd	4,6			X		X				
<u></u> bd ⋅	1,3,9,11	X	X				X	X		
cd	1,5,9,13	X	1		X		X			X
<i>b</i> c	4,5,12,13			X	X				X	X

Implicant prim esențial (singur pe coloană)

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

