THE DREAMS PROJECT: THE RELATIVE IMPACT OF ASTROPHYSICS AND HALO-TO HALO VARIATION ON THE DARK MATTER DENSITY PROFILES

ALEX GARCIA, PAUL TORREY

& THE DREAMS COLLABORATION

BACKGROUND

- NEW SUITE OF 1024
 MILKY WAY-MASS
 HALOS USING
 ILLUSTRISTNG
 PHYSICS
- ► SIMULTANEOUS
 VARIATIONS IN 2
 SUPERNOVA, 1 BLACK
 HOLE, AND 2
 COSMOLOGY
 PARAMETERS

RESULTS

- ▶ WE FIND THAT THE DOMINANT DRIVER OF SCATTER IS INTRINSIC HALO-TO-HALO VARIATION FOR MILKY WAY-MASS HALOS (ABOVE)
- > Supernova Wind Energy ($A_{\rm SN1}$) and Wind Speed ($A_{\rm SN2}$) can play a sub-dominant role in the inner regions ($\lesssim 0.02 R_{\rm vir}$)

DISCUSSION

- ► USE NEURAL NETWORK
 EMULATOR TO LEARN
 SINGLE PARAMETER
 DEPENDENCIES
- MOST EXTREME SUPERNOVA
 PHYSICS VARIATIONS
 PREVENT STELLAR MASS
 GROWTH
- ► SIMULATIONS WITH
 HIGHEST FEEDBACK ARE
 EFFECTIVELY DARK MATTER
 ONLY (DMO; RIGHT)

DESPITE THIS STRONG FEEDBACK, MODELS
WITH BURSTY (STRONG AND TIME-VARIABLE)
FEEDBACK DISAGREE MORE WITH SIMPLE
ANALYTICAL MODELS (BELOW)

CONCLUSIONS

- NEW SIMULATION SUITE OF MILKY WAY-MASS GALAXIES WELL-SUITED TO MACHINE

 LEARNING ANALYSES!
- ► HALOS ILLUSTRISTNG MODEL ROBUST TO CHANGES IN FEEDBACK IMPLEMENTATION
- ► SIGNIFICANT DISAGREEMENT WITH BURSTY FEEDBACK MODELS

