2.3.1а Современные средства получения и измерения вакуума

Анна Назарчук Б02-109

1 Аннотация

Изучаются принципы получения и измерения вакуума в экспериментальном стенде на основе компактного безмасляного высоковакуумного откачного поста, вакууметров. Оборудование: турбомолекулярный насос HiPace 80, форвакуумный насос MVP 015, комбинированный вакуумметр MPT 100 (В2) типов Пирани (терморезисторный) и холодный катод (инвертированный магнетрон)ю

2 Теоретические сведения

$$S = \frac{dV}{dt} \tag{1}$$

S - быстрота откачивающего действия вакуумной системы Быстродействие насоса:

$$S_H = \frac{dV_H}{dt} \tag{2}$$

Эффективная скорость откачки камеры:

$$S_0 = \frac{dV_0}{dt} \tag{3}$$

Пропускная способность (проводимость):

$$U = \frac{Q}{P_1 - P_2} \tag{4}$$

Q - поток газа через вакуумпровод Основное уравнение вакуумной техники:

$$\frac{1}{S_0} = \frac{1}{S_H} + \frac{1}{U} \tag{5}$$

Таблица 1: Объемы частей системы

Часть	Объем, мл	σ_V , мл	$\epsilon_V,\%$
Камера	1060	50	5
Турмолекулярный насос	570	15	3
Вакуумная магистраль	70	5	7

Натекание - количественная характеристика течи:

$$Q_H = V \frac{P_K - P_H}{\Delta t} \tag{6}$$

Число Кнудсена - степень разреженности газового потока:

$$Kn = \lambda/d \tag{7}$$

Для проводимости отверстия в стенке в кнудсеновском режиме:

$$U_{\text{\tiny OTB}} \sim R^2 \sqrt{\frac{T}{m}}$$
 (8)

Постоянная времени откачки:

$$\tau = \frac{S_0}{V_0} \tag{9}$$

3 Экспериментальная установка

Схема установки представлена на рис. 2 и 1

4 Обработка данных и измерения

4.1 Измерение объемов установки

Откачаем установку до вакуума, подсоединим к ней сильфон (объемом 265 мл), измерим установившееся давление, проделаем эти же действия еще раз и получим значения для объемов частей установки исходя из постоянства температуры (табл. 1)

4.2 Измерение пропускной способности форвакуумного насоса

Рассмотрим две откачки установки форвакуумным насосом. Построим график зависимости давления от времени (рис. 3, табл. 2)

Рис. 1: Схема экспериментальной установки

Таблица 2: Характеристики откачки форвакуумным насосом

τ , c	S_0 , мл/с	S_H , мл/с	U, мл/с
15.5 ± 0.8	70 ± 5	140	130 ± 10

Характеристики откачки можно получить по основному уравнению вакуумной техники:

$$\frac{1}{S_0} = \frac{1}{S_H} + \frac{1}{U} \tag{10}$$

4.3 Измерение пропускной способности турбомолекулярного насоса

Рассмотрим две откачки установки турбомолекулярным насосом. Построим график зависимости давления от времени (рис. 4, табл. 3)

Характеристики откачки можно получить по основному уравнению

Рис. 2: Модель экспериментальной установки

Рис. 3: Зависимость давления от времени для откачки форвакуумным насосом

вакуумной техники:

$$\frac{1}{S_0} = \frac{1}{S_H} + \frac{1}{U} \tag{11}$$

4.4 Измерения характеристик откачки турбомолекулярным насосом с разными диафрагмами

Рассмотрим две откачки с диафрагмами с разными диаметрами отверстий (10 мм и 3 мм) (рис. 5 и табл. 4)

Рис. 4: Зависимость давления от времени для откачки турбомолекулярным насосом

Для проводимости отверстия справделиво:

$$U_{\text{otb}} \sim R^2 \sqrt{\frac{T}{m}}$$
 (12)

Проверим, справедлива ли данная формула для полученных данных:

$$\frac{U_1}{U_2} \cdot \frac{R_1^2}{R_2^2} = 1.038 \approx 1 \tag{13}$$

Отсюда получается, что формулы справедливы для полученных данных.

Таблица 3: Характеристики откачки турбомолекулярным насосом

τ , c	S_0 , мл/с	S_H , мл/с	U, мл/с
26.3 ± 1.8	40 ± 3	60000	40 ± 3

Рис. 5: Зависимость давления от времени для откачки турбомолекулярным насосом с диафрагмой

Таблица 4: Характеристики откачки турбомолекулярным насосом через диафрагму

Диаметр отверстия, мм	τ , c	S_0 , мл/с	S_H , мл/с	U, мл/с
10	83 ± 4	13 ± 1	60000	13 ± 1
3	720 ± 30	1.5 ± 0.1	60000	1.5 ± 0.1

4.5 Оценка уровней течей

Найдем натекание при закрытии насоса шлюзом, используя значения давления в эти моменты (рис. 6)

$$Q_H = V \frac{P_K - P_H}{\Delta t} = (31 \pm 3) \cdot 10^{-7} \text{Дж/c}$$
 (14)

Рис. 6: Зависимость давления от времени после перекрытия откачки шибером

Проверим допустимость натекания:

$$(31 \pm 3) \cdot 10^{-7}$$
Дж/с = $Q_H \ll Q = P_1 S_0 = 0.006$ Дж/с (15)

Таблица 5: Число Кнудсена для предельных давлений

Часть установки	Р, мбар	Kn
Форвакуумная магистарль	3.6	$7.5 \cdot 10^{-3}$
Форвакуумная магистраль	$9.1 \cdot 10^{-6}$	2900

Вследствие этого неравенства натекание в системе можно считать допустимым.

4.6 Оценка числа Кнудсена для предельных давлений

Рассчитаем число Кнудсена для предельных давлений по формуле:

$$Kn = \frac{\lambda}{d} = \frac{1}{\sqrt{2}nd\sigma} = \frac{kT}{\sqrt{2}d\sigma p} \tag{16}$$

где $\sigma=1.06\cdot 10^{-19} {\rm M}^2$ Тогда получим следующие значения для числа Кнудсена (считая диаметр магисрали порядка 1 см): (табл. 5)

Откуда получаем, что после откачки турбомолекулярным насосом число Кнудсена $Kn\gg 1$, что свидетельствует о молекулярном (кнудсеновском) режиме течения газа.

5 Вывод

Получен вакуум с помощью разных насосов и проведены измерения с помощью вакууметров.

- 1. Для форвакуумного насоса получены значения откачки: $S_0=70\pm5$ мс/с, $U=130\pm10$ мл/с; для турбомолекулярного насоса значения откачки: $S_0=40\pm3$ мс/с, $U=40\pm3$ мл/с
- 2. Для откачки турбомолекулярным насосом с разными диафрагмами проверена справедливость соотношения: $Q_H \sim R^2$
- 3. При перекрытии шлюзом проверена допустимость течей: $Q_H \ll Q = P_1 S_0$
- 4. Проверено, что после откачки турбомолекулярным насосом движение газа переходит в кнудсеновский режим $(Kn=2900\gg 1)$