

Building Models

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce simple data structures for building polygonal models
 - Vertex lists
 - Edge lists

Representing a Mesh

- There are 8 nodes and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges
- Each vertex has a location $v_i = (x_i y_i z_i)$

Simple Representation

- Define each polygon by the geometric locations of its vertices
- Leads to WebGL code such as

```
vertex.push(vec3(x1, y1, z1));
vertex.push(vec3(x6, y6, z6));
vertex.push(vec3(x7, y7, z7));
```

- Inefficient and unstructured
 - Consider moving a vertex to a new location
 - Must search for all occurrences

Inward and Outward Facing Polygons

- The order $\{v_1, v_6, v_7\}$ and $\{v_6, v_7, v_1\}$ are equivalent in that the same polygon will be rendered by OpenGL but the order $\{v_1, v_7, v_6\}$ is different
- The first two describe outwardly facing polygons
- Use the right-hand rule = counter-clockwise encirclement of outward-pointing normal
- OpenGL can treat inward and outward facing polygons differently

Geometry vs Topology

- Generally it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: organization of the vertices and edges
 - Example: a polygon is an ordered list of vertices with an edge connecting successive pairs of vertices and the last to the first
 - Topology holds even if geometry changes

Vertex Lists

- Put the geometry in an array
- Use pointers from the vertices into this array

Shared Edges

 Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice

Can store mesh by edge list

Edge List

Note polygons are not represented

Draw cube from faces

```
var colorCube( )
                                            6
    quad(0,3,2,1);
    quad(2,3,7,6);
    quad(0,4,7,3);
    quad(1,2,6,5);
    quad(4,5,6,7);
    quad(0,1,5,4);
```


Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research,
Technology and Science Laboratory
University of New Mexico

The Rotating Square

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Put everything together to display rotating cube
- Two methods of display
 - by arrays
 - by elements
- The first example (by arrays) is in <u>04/cube.html</u> and 04/cube.js
- The second example (by elements) is in 04/cubev.html and 04/cubev.js

Modeling a Cube

Define global array for vertices

```
var vertices = [
    vec3( -0.5, -0.5, 0.5 ),
    vec3( -0.5, 0.5, 0.5 ),
    vec3( 0.5, 0.5, 0.5 ),
    vec3( 0.5, -0.5, 0.5 ),
    vec3( -0.5, -0.5, -0.5 ),
    vec3( -0.5, 0.5, -0.5 ),
    vec3( 0.5, 0.5, -0.5 ),
    vec3( 0.5, -0.5, -0.5 ),
    vec3( 0.5, -0.5, -0.5 )
};
```


Colors

Define global array for colors

Draw cube from faces

```
function colorCube( )
                                            6
    quad(0,3,2,1);
    quad(2,3,7,6);
    quad(0,4,7,3);
    quad(1,2,6,5);
    quad(4,5,6,7);
    quad(0,1,5,4);
```

Note that vertices are ordered so that we obtain correct outward facing normals Each quad generates two triangles

Initialization

```
var canvas, gl;
var numVertices = 36;
var points = [];
var colors = [];
window.onload = function init() {
    canvas = document.getElementById("gl-canvas");
    gl = canvas.getContext('webg12');
    if (!gl) alert("WebGL 2.0 isn't available");
    colorCube();
   gl.viewport( 0, 0, canvas.width, canvas.height );
   gl.clearColor(1.0, 1.0, 1.0, 1.0);
   gl.enable(gl.DEPTH TEST);
// rest of initialization and html file
// same as previous examples
```


The quad Function

Put position and color data for two triangles from a list of indices into the array vertices

```
var quad(a, b, c, d)
   var indices = [ a, b, c, a, c, d ];
   for (var i = 0; i < indices.length; ++i) {
      points.push( vertices[indices[i]]);
      colors.push( vertexColors[indices[i]] );
      // for solid colored faces use
      //colors.push(vertexColors[a]);
```


Render Function

```
function render() {
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    if(flag) theta[axis] += 2.0;
    gl.uniform3fv(thetaLoc, theta);
    gl.drawArrays( gl.TRIANGLES, 0, numVertices );
    requestAnimFrame( render );
}
```


Mapping indices to faces

```
var indices = [
1,0,3,
3,2,1,
2,3,7,
7,6,2,
3,0,4,
4,7,3,
6,5,1,
1,2,6,
4,5,6,
6,7,4,
5,4,0,
0,1,5
```


Rendering by Elements

Send indices to GPU

Render by elements

Even more efficient if we use triangle strips or triangle fans

Adding Buttons for Rotation

```
var xAxis = 0;
var yAxis = 1;
var zAxis = 2;
var axis = 0;
var theta = [ 0, 0, 0 ];
var thetaLoc:
document.getElementById( "xButton" ).onclick =
function () {      axis = xAxis;
document.getElementById( "yButton" ).onclick =
function () {      axis = yAxis; };
document.getElementById( "zButton" ).onclick =
function () {      axis = zAxis; };
```


Render Function

```
function render() {
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    theta[axis] += 2.0;
    gl.uniform3fv(thetaLoc, theta);
    gl.drawArrays( gl.TRIANGLES, 0, numVertices );
    requestAnimFrame( render );
}
```


Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research,
Technology and Science Laboratory
University of New Mexico

Classical Viewing

Ed Angel
Professor Emeritus of Computer
Science
University of New Mexico

Objectives

- Introduce the classical views
- Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
- Learn the benefits and drawbacks of each type of view

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface
- Classical views are based on the relationship among these elements
 - The viewer picks up the object and orients it how she would like to see it
- Each object is assumed to constructed from flat principal faces
 - Buildings, polyhedra, manufactured objects

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
 - converge at a center of projection
 - are parallel
- Such projections preserve lines
 - but not necessarily angles
- Nonplanar projections are needed for applications such as map construction

Classical Projections

Perspective vs Parallel

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Taxonomy of Planar Geometric Projections

Perspective Projection

Parallel Projection

Orthographic Projection

Projectors are orthogonal to projection surface

Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric

top

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same

none: trimetric

two: dimetric

three: isometric

Types of Axonometric Projections

Dimetric

Trimetric

Isometric

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
 - Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side

 In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Perspective Projection

Projectors coverge at center of projection

Vanishing Points

- Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*)
- Drawing simple perspectives by hand uses these vanishing point(s)

vanishing point

Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube

Two-Point Perspective

- On principal direction parallel to projection plane
- Two vanishing points for cube

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)
 - Looks realistic
- Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)

Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research,
Technology and Science Laboratory
University of New Mexico

Computer Viewing Positioning the Camera

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce the mathematics of projection
- Introduce WebGL viewing functions in MVnew.js
- Look at alternate viewing APIs

From the Beginning

In the beginning:

- fixed function pipeline
- Model-View and Projection Transformation
- Predefined frames: model, object, camera, clip, ndc, window

After deprecation

- pipeline with programmable shaders
- no transformations
- clip, ndc window frames

MVnew.js reintroduces original capabilities

Computer Viewing

- There are three aspects of the viewing process, all of which are implemented in the pipeline,
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Clipping
 - Setting the view volume

The WebGL Camera

- In WebGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- WebGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Default Projection

Default projection is orthogonal

Moving the Camera Frame

- If we want to visualize objects with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame
- Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (translate(0.0,0.0,-d);)
 - -d > 0

Moving Camera back from Origin

frames after translation by -d

default frames

Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix C = TR

WebGL code

 Remember that last transformation specified is first to be applied

lookAt

LookAt(eye, at, up)

The lookAt Function

- The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Replaced by lookAt() in MV.js
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```
var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);
var mv = LookAt(eye, at, up);
```


Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles

Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research,
Technology and Science Laboratory
University of New Mexico

Computer Viewing Projection

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce the mathematics of projection
- Add WebGL projection functions in MVnew.js

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

default orthographic projection

$$x_p = x$$

$$y_p = y$$

$$z_p = 0$$

$$w_p = 1$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let M = I and set the z term to zero later

Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0

Perspective Equations

Consider top and side views

$$x_{\rm p} = \frac{x}{z/d}$$

$$y_{\rm p} = \frac{y}{z/d}$$

$$z_{\rm p} = d$$

Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{Mp}$$
 where $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

69

Perspective Division

- However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

the desired perspective equations

 We will consider the corresponding clipping volume with mat.h functions that are equivalent to deprecated OpenGL functions

WebGL Orthogonal Viewing

ortho(left,right,bottom,top,near,far)

near and far measured from camera

WebGL Perspective

frustum(left,right,bottom,top,near,far)

Using Field of View

- With frustum it is often difficult to get the desired view
- •perpective(fovy, aspect, near, far)
 often provides a better interface

Computing Matrices

- Compute in JS file, send to vertex shader with gl.uniformMatrix4fv
- Dynamic: update in render() or shader

perspective2.js

```
var render = function(){
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
  eye = vec3(radius*Math.sin(theta)*Math.cos(phi),
     radius*Math.sin(theta)*Math.sin(phi), radius*Math.cos(theta));
  modelViewMatrix = lookAt(eye, at , up);
  projectionMatrix = perspective(fovy, aspect, near, far);
  gl.uniformMatrix4fv( modelViewMatrixLoc, false,
     flatten(modelViewMatrix));
  gl.uniformMatrix4fv(projectionMatrixLoc, false,
     flatten(projectionMatrix));
  gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
  requestAnimFrame(render);
```


vertex shader

```
#version 300 es
in vec4 aPosition;
in vec4 aColor;
out vec4 vColor;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
void main(){
  gl_Position = uProjectionMatrix*uModelViewMatrix*aPosition;
   vColor = aColor;
```


Introduction to Computer Graphics with WebGL

Ed Angel
Professor Emeritus of Computer Science
Founding Director, Arts, Research,
Technology and Science Laboratory
University of New Mexico

The Virtual Trackball

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- This is an optional lecture that
 - Introduces the use of graphical (virtual) devices that can be created using WebGL
 - Reinforce the benefit of not using direction angles and Euler angles
 - Makes use of transformations
 - Leads to reusable code that will be helpful later

Physical Trackball

• The trackball is an "upside down" mouse

- If there is little friction between the ball and the rollers, we can give the ball a push and it will keep rolling yielding continuous changes
- Two possible modes of operation
 - Continuous pushing or tracking hand motion
 - Spinning

A Trackball from a Mouse

- Problem: we want to get the two behavior modes from a mouse
- We would also like the mouse to emulate a frictionless (ideal) trackball
- Solve in two steps
 - Map trackball position to mouse position
 - Use event listeners to handle the proper modes

Using Quaternions

- Quaternion arithmetic works well for representing rotations around the origin
- Can use directly avoiding rotation matrices in the virtual trackball
- Code was made available long ago (pre shader) by SGI
- Quaternion shaders are simple

Trackball Frame

Projection of Trackball Position

 We can relate position on trackball to position on a normalized mouse pad by projecting orthogonally onto pad

Reversing Projection

- Because both the pad and the upper hemisphere of the ball are twodimensional surfaces, we can reverse the projection
- A point (x,z) on the mouse pad corresponds to the point (x,y,z) on the upper hemisphere where

$$y = \sqrt{r^2 - x^2 - z^2}$$
 if $r \ge |x| \ge 0, r \ge |z| \ge 0$

Computing Rotations

- Suppose that we have two points that were obtained from the mouse.
- We can project them up to the hemisphere to points \mathbf{p}_1 and \mathbf{p}_2
- These points determine a great circle on the sphere
- We can rotate from \mathbf{p}_1 to \mathbf{p}_2 by finding the proper axis of rotation and the angle between the points

Using the cross product

 The axis of rotation is given by the normal to the plane determined by the origin, p₁, and p₂

Obtaining the angle

• The angle between \mathbf{p}_1 and \mathbf{p}_2 is given by

$$|\sin \theta| = \frac{|\mathbf{n}|}{|\mathbf{p}_1||\mathbf{p}_2|}$$

• If we move the mouse slowly or sample its position frequently, then θ will be small and we can use the approximation

$$\sin \theta \approx \theta$$

Implementing with WebGL

- Define actions in terms of three booleans
- trackingMouse: if true update trackball position
- redrawContinue: if true, idle function posts a redisplay
- trackballMove: if true, update rotation matrix

Vertex Shader I

```
in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec4 rquat; // rotation quaternion
// quaternion multiplier
vec4 multq(vec4 a, vec4 b)
 return(vec4(a.x*b.x - dot(a.yzw, b.yzw),
    a.x*b.yzw+b.x*a.yzw+cross(b.yzw, a.yzw)));
```


Vertex Shader II

```
// inverse quaternion
vec4 invq(vec4 a)
{ return(vec4(a.x, -a.yzw)/dot(a,a)); }
 void main() {
 vec3 axis = rquat.yxw;
 float theta = rquat.x;
 vec4 r, p;
 p = vec4(0.0, vPosition.xyz); // input point quaternion
 p = multq(rquat, multq(p, invq(rquat))); // rotated point quaternion
 gl_Position = vec4( p.yzw, 1.0); // back to homogeneous coordinates
 color = vColor;
```