Deterministic Algorithm

• Stack $S_1^{(1)}, \ldots, S_t^{(1)}$ to get a matrix $Q^{(1)}$

$$r^{(1)} = \frac{\alpha}{\sqrt{n}} \qquad Q^{(1)} \qquad u \otimes v \qquad + \qquad Q^{(1)} \qquad \text{vec}(G)$$

• Based on $r^{(1)}$ pick $Q^{(2)}[r^{(1)}]$

Bayes Risk Lower Bounds

- Is $r^{(1)}$ enough to pick good $Q^{(2)}$?
- Bayes risk lower bounds:
 - Framework used by Simchowitz, El Aloui, Recht '18 to obtain matrixvector lower bounds for a related problem
- Θ be a parameter space and $\{\mathscr{P}_{\theta}:\theta\in\Theta\}$ be a set of distributions
- Suppose $\theta \sim w$ and $x \sim \mathcal{P}_{\theta}$ and x is given to us
 - Bayes risk lower bounds show how much we can say about θ