Computational Geometry

Curve Shortening

Midpoint Transformation

On a Closed Curve

Curve Evolution

- Let C(s) = (x(s), y(s)) be a smooth closed curve parameterized by arc length s.
- Add a time variable t, defining a curve C(s, t). The curve evolves with t according to the differential equation:

$$\partial C/\partial t = \partial^2 C/\partial s^2 = K\eta$$

• Each point *p* of the curve move along the normal at p with speed proportional to the curvature

Curve Shortening Theorem

- Every smooth, simple closed curve C evolves under the flow defined by the equation so that it remains simple for all time and converges to a round point.
- · Convexifies without self-intersection
- twisted curve
- spiral
- flower

Discrete Flow

- Replace n-sided polygon P with its midpoint transformation
- Approximate normal at v_i as

$$n_i = (v_{i+1} - v_i) + (v_{i-1} - v_i)$$

• Move vertex v_i to $v_i' = v_i + \delta n_i$

Discrete Curve Shortening

 Every simple polygon evolves under the flow so that it converges to a point whose shape is asymptotically an affine transformation of a regular polygon.

