

# **ECG Classification**

Yudong Yu



- Background
- Methodology
- Analysis



### **Background**

• The electrocardiogram (ECG) is a diagnostic tool that is routinely used to assess the electrical and muscular functions of the heart.



# Methodology

VGG16 + SVM Fine-tuning VGG16



#### Feature Extractor

#### VGG16

a. VGG16(include\_top=False) + Fully-connected layer(128)



### Feature Extractor

- a. VGG16(include\_top=False) + Fully-connected layer(128)
- Transform time series signal to image (<u>RP + GASF + MTF</u>)



#### 1. Feature Extractor

- a. VGG16(include\_top=False) + Fully-connected layer(128)
- b. **Transform** time series signal to **image** (<u>RP + GASF + MTF</u>)



### 2. Dimensionality Reduction







- PCA:
- n components: 20
- t-SNE: 2

### 3. Train SVM







- Grid search
- C: 3, Gamma: 0.01
- Best acc: 0.84
- Training ...
- Test acc: 0.80

### Fine-tuning VGG16



VGG16(include\_top=False)+<u>Dense(128)+Dense(2)</u>

L2 regularization, 0.01
BatchNormalization()
Dropout(0.5) for dense 1

Learning Rate Scheduler()  $0.0002 \rightarrow 0.5*LR \rightarrow 0.2*LR$ 

Freeze parameters in first three blocks

**Training set**(Augmented): 800(100\*2<sup>3</sup>)

**Test set**: 100

# Analysis(1)



<sup>\*</sup> these numbers are the indexes of samples in test set (100 samples)

# Analysis(1)

| Predictions    | model 1     | model 2               | model 3     | model 4 | model 5 | model 6 |
|----------------|-------------|-----------------------|-------------|---------|---------|---------|
| FN             | [0, 15, 54] | [54]                  | []          |         | []      | []      |
| FP             | [9, 41]     | [4, 9, 19,<br>22, 37] | [9, 19, 57] | [9]     | [9, 19] | [9, 19] |
| False in total | 5           | 6                     | 3           | 1       | 2       | 2       |
| Test Acc.      | 0.92        | 0.91                  | 0.93        | 0.95    | 0.93    | 0.94    |

<sup>\*</sup> these number are the indexes of samples in test set(60 samples)

# Analysis(1)

| Predictions    | model 1     | model 2                          | model 3     | model 4 | model 5 | model 6 |
|----------------|-------------|----------------------------------|-------------|---------|---------|---------|
| FN             | [0, 15, 54] | [54]                             | []          | []      | []      | []      |
| FP             | [9, 41]     | [4, <mark>9</mark> , 19, 22, 37] | [9, 19, 57] | [9]     | [9, 19] | [9, 19] |
| False in total | 5           | 6                                | 3           | 1       | 2       | 2       |
| Test Acc.      | 0.92        | 0.91                             | 0.93        | 0.95    | 0.93    | 0.94    |

# Analysis(2)

Table 1. Accuracy comparison with traditional classification algorithm (The method/s with the highest accuracy in each database are shown in bold)

| (a)      |       |         |       |        |       |        |  |  |
|----------|-------|---------|-------|--------|-------|--------|--|--|
| Data     | C4.5  | C4.5(S) | 1NN   | 1NN(S) | NaB   | NaB(S) |  |  |
| Adiac    | 53.19 | 49.36   | 59.34 | 56.27  | 56.52 | 57.54  |  |  |
| Beef     | 56.67 | 40      | 60    | 53.33  | 50    | 60     |  |  |
| Chlorine | 64.3  | 56.82   | 68.52 | 58.59  | 34.61 | 45.52  |  |  |
| Coffee   | 57.14 | 92.86   | 75    | 100    | 67.86 | 92.86  |  |  |
| Diatom   | 71.24 | 67.65   | 93.46 | 94.44  | 87.91 | 78.76  |  |  |
| ECG200   | 72    | 79      | 89    | 78     | 77    | 80     |  |  |
|          |       | 2016    | 3     |        |       |        |  |  |

Table 2 Error rates of the methods for a subset of UCR dataset

| Dataset     | DTW   | ST    | TSBF  | HOGID | CovNN | CovSVM |
|-------------|-------|-------|-------|-------|-------|--------|
| 50 Words    | 0.242 | 0.281 | 0.209 | 0.402 | 0.222 | 0.200  |
| Adiac       | 0.391 | 0.435 | 0.245 | 0.320 | 0.217 | 0.164  |
| Beef        | 0.467 | 0.167 | 0.287 | 0.367 | 0.100 | 0.067  |
| CBF         | 0.004 | 0.003 | 0.009 | 0.000 | 0.000 | 0.000  |
| ChlorineCon | 0.350 | 0.300 | 0.336 | 0.307 | 0.294 | 0.255  |
| CinCECGT    | 0.070 | 0.154 | 0.262 | 0.249 | 0.003 | 0.000  |
| Coffee      | 0.179 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000  |
| CricketX    | 0.236 | 0.218 | 0.278 | 0.195 | 0.244 | 0.236  |
| CricketY    | 0.197 | 0.236 | 0.259 | 0.205 | 0.210 | 0.251  |
| CricketZ    | 0.180 | 0.228 | 0.263 | 0.185 | 0.239 | 0.215  |
| DiatomSizeR | 0.065 | 0.124 | 0.126 | 0.016 | 0.052 | 0.043  |
| ECG200      | 0.310 |       | 0.145 | 0.060 | 0.080 | 0.070  |

Table 5. Overall classification accuracies of k-NN alignment with six scenarios: NONE, DTW, CDTW, SAGA, PTW and CTW.

| Dataset                    | NONE | DTW   | CDTW | SAGA | PTW  | CTW   |
|----------------------------|------|-------|------|------|------|-------|
| Synthetic Control          | 88.0 | 99.3  | 98.7 | 90.3 | 94.3 | 98.7  |
| Trace                      | 76.0 | 100.0 | 99.0 | 99.0 | 99.0 | 100.0 |
| Sony AIBO Robot Surface II | 85.9 | 83.1  | 85.9 | 86.5 | 85.0 | 84.3  |
| Sony AIBO Robot Surface    | 69.6 | 72.5  | 69.6 | 73.5 | 74.7 | 73.0  |
| Symbols                    | 89.9 | 95.0  | 93.8 | 94.9 | 95.3 | 90.1  |
| Two Lead ECG               | 74.7 | 90.4  | 86.8 | 86.7 | 98.4 | 90.3  |
| Olive Oil                  | 86.7 | 86.7  | 83.3 | 83.3 | 86.7 | 80.0  |
| Mote Strain                | 87.9 | 83.5  | 87.9 | 89.9 | 86.6 | 84.0  |
| Lighting 7                 | 57.5 | 72.6  | 71.2 | 79.5 | 64.4 | 68.5  |
| Lighting 2                 | 75.4 | 86.9  | 86.9 | 85.2 | 80.3 | 85.2  |
| Italy Power Demand         | 95.5 | 95.0  | 95.5 | 96.4 | 94.5 | 95.0  |
| Gun Point                  | 91.3 | 90.7  | 91.3 | 98.7 | 98.7 | 88.0  |
| Face Four                  | 78.4 | 83.0  | 88.6 | 77.3 | 87.5 | 85.2  |
| ECG Five Days              | 79.7 | 76.8  | 79.7 | 96.9 | 90.5 | 75.3  |
| ECG 200                    | 88.0 | 77.0  | 88.0 | 87.0 | 85.0 | 79.0  |

2015

# Analysis(3)



Processing
1D time series signal with **transformation methods** or not

With a simple NN dense(50)+dense(2)

### **ECG5000**



# **Question?**



