Sistemas Complexos

Luiz Renato Fontes

Percolação em \mathbb{Z}^d (Broadbent e Hammersley)

Para $d \geq 1$, seja $\mathcal{L}^d = (\mathbb{Z}^d, \mathcal{E}^d)$ o grafo cujos sítios são os elementos de \mathbb{Z}^d e os elos são dados pelos pares de vizinhos mais próximos de \mathbb{Z}^d : $\mathcal{E}^d = \{\langle x,y \rangle : x,y \in \mathbb{Z}^d \text{ e } \|x-y\|_1 = 1\}$ $(\langle x,y \rangle \text{ e } \langle y,x \rangle \text{ representam o mesmo elo}).$

O modelo de percolação de elos independentes é o grafo aleatório $\mathcal{L}^d(p) = (\mathbb{Z}^d, \mathcal{E}^d(p))$, onde $\mathcal{E}^d(p) = \{e \in \mathcal{E}^d : \omega_e = 1\}$, e $\mathcal{B} = \{\omega_e; e \in \mathcal{E}^d\}$ são va's iid com distr de Bernoulli(p)

Se $\omega_e = 1$: e está aberto ou presente; do contrário, fechado ou ausente.

Simulação em d=2

Conectividade

Um caminho (autoevitante) é qquer cj de $\ell+1$ sítios $\gamma=(x_0,\ldots,x_\ell)$ de \mathbb{Z}^d , $\ell\geq 0$, todos distintos e tq, se $\ell\geq 1$, então $\langle x_{i-1},x_i\rangle\in\mathcal{E}^d$, $i=1,\ldots,\ell$; neste caso, dizemos que γ liga x_0 a x_ℓ , ou que x_0 e x_ℓ são extremidades de γ , e que $|\gamma|=\ell$ é o comprimento de γ . Se x for uma das extremidades de γ , diremos que x começa em γ .

A noção de conectividade no modelo de percolação é a natural (e usual): dois sítios x e y de \mathbb{Z}^d estão conectados se x=y ou se $x \neq y$ e houver um caminho (de elos) aberto(s) ligando x a y; em outras palavras, se houver um caminho γ ligando x a y, e todos os elos de γ estão em $\mathcal{E}^d(p)$. Not: $x \leftrightarrow y$.

Para $x \in \mathbb{Z}^d$, seja \mathcal{C}_x o aglomerado de x: $\mathcal{C}_x = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$.

Dizemos o sítio x percola se $|\mathcal{C}_x| = \infty$, e que percolação ocorre no modelo se x percolar para algum $x \in \mathbb{Z}^d$.

Seja
$$\theta=\theta(p)=\mathbb{P}(|\mathcal{C}|=\infty)$$
, onde $\mathcal{C}=\mathcal{C}_0$ é o aglom da origem.

Obs.

- 1) Claramente $\theta(0) = 0$ e $\theta(1) = 1$.
- 2) Inv p/transl: $\theta = \mathbb{P}(|\mathcal{C}_x| = \infty) \ \forall x$.
- 3) Seja o evento A= o modelo percola $=\cup_{x\in\mathbb{Z}^d}\{|\mathcal{C}_x|=\infty\};$
 - a) se $\theta = 0$, então por subadtvdd $\mathbb{P}(A) = 0$;
 - b) como A é caudal (não depende de $\{\omega_e, e \in \mathcal{F}\}$ p/qquer $\mathcal{F} \subset \mathcal{E}^d$ finito), segue da Lei 0-1 de Kolmogorov que, se $\theta > 0$, então $\mathbb{P}(A) = 1$.

Proposição 1

$$\theta = \theta(p,d) : [0,1] \times \{1,2,\dots\} \rightarrow [0,1]$$
 é não decrescente em p e d .

Dem. Vamos construir modelos de perc *não homogêneos* de forma *acoplada*, usando a famíla de va's iid $\mathcal{U} = \{U_e; e \in \mathcal{E}^d\}$ c/distr Uniforme([0, 1]), em vez de \mathcal{B} .

Dado $\mathbf{P} = \{p_e, e \in \mathcal{E}^d\} \in [0,1]^{\mathcal{E}^d}$, declaramos o elo e **P**-aberto se $U_e < p_e$; do contrário, e será dito **P**-fechado.

 $x,y \in \mathbb{Z}^d$ são **P**-conectados se (x=y ou) houver um caminho de elos **P**-abertos ligando x a y; not: $x \overset{\mathbf{P}}{\leftrightarrow} y$

Seja
$$C_x(\mathbf{P}) = \{ y \in \mathbb{Z}^d : x \stackrel{\mathbf{P}}{\leftrightarrow} y \}$$
. Modelo original: $\mathbf{P} = P_d := \{ p \}^{\mathcal{E}^d}$.

Sejam
$$\mathcal{E}_0^{d+1} = \{\langle x, y \rangle \in \mathcal{E}^{d+1} : x, y \in \mathbb{Z}^d \times \{0\}\}$$
 e

$$P_{d+1}^d := \{p\}^{\mathcal{E}_0^{d+1}} \times \{0\}^{\mathcal{E}^{d+1} \setminus \mathcal{E}_0^{d+1}}.$$

Para $\mathbf{P}, \mathbf{P}' \in [0,1]^{\mathcal{E}^d}$ escreveremos $\mathbf{P} \leq \mathbf{P}'$ se $p_e \leq p_e' \ \forall e \in \mathcal{E}^d$.

Agora note que

1) se
$$\mathbf{P} \leq \mathbf{P}'$$
, então $\mathcal{C}_{x}(\mathbf{P}) \subset \mathcal{C}_{x}(\mathbf{P}')$, $x \in \mathbb{Z}^{d}$;

2)
$$:$$
 $\theta(\mathbf{P}) = \mathbb{P}(|\mathcal{C}_0(\mathbf{P})| < \infty) \le \mathbb{P}(|\mathcal{C}_0(\mathbf{P}')| < \infty) = \theta(\mathbf{P}').$

3)
$$P_d \le P'_d := \{p'\}^{\mathcal{E}^d}$$
, se $p \le p'$; $P^d_{d+1} \le P_{d+1}$;

4) :
$$\theta(p,d) = \theta(P_d) \le \theta(P'_d) = \theta(p',d);$$

$$\theta(p,d) = \theta(P_{d+1}^d) \le \theta(P_{d+1}) = \theta(p,d+1).$$

Parâmetro crítico

Seja
$$p_c = \sup\{\theta(p) = 0\}$$
. Prop $1 \Rightarrow \theta(p) \begin{cases} = 0, & \text{se } p < p_c; \\ > 0, & \text{se } p > p_c. \end{cases}$

Diremos que o modelo exibe *transição de fase não trivial* se $p_c \in (0,1)$; do contrário, diremos que o modelo é *trivial*.

Proposição 2

Em d = 1, o modelo é trivial.

Dem. Sejam $X^+ = \sup\{x \ge 0 : (x, x+1) \text{ está fechado, e}$ $X^- = \inf\{x \le 0 : (x-1, x) \text{ está fechado.}$

$$p < 1$$
: $|X^-|, X^+$ iid $\sim \mathsf{Geom\'etrica}(1-p) \mathrel{{.}\,{.}\,{.}} |X^-|, X^+ < \infty$ qc;

$$\log \theta(p) = \mathbb{P}(\underbrace{|X^-| + X^+ + 1}_{} = \infty) = 0.$$

Teorema 1

Em $d \ge 2$, o modelo exibe transição de fase não trivial.

Dem. O resultado segue combinando-se os seguintes dois lemas com a Prop 1.

- **Lema 1.** Se $p < \frac{1}{2d-1}$, então $\theta(p) = 0$.
- **Lema 2.** Em d = 2, se p > 2/3, então $\theta(p) > 0$.
- **Obs.** Os dois lemas mostram que $\frac{1}{2d-1} \le p_c = p_c(d) \le \frac{2}{3}$.
 - Kesten (1990): $p_c(d) \sim \frac{1}{2d}$.

Dem. Lema 1

Basta mostrar que $\mathbb{E}(|\mathcal{C}|) < \infty$ se $p < \frac{1}{2d-1}$.

Note que

$$\begin{split} |\mathcal{C}| &= \sum_{x \in \mathbb{Z}^d} \mathbb{1}\{0 \leftrightarrow x\} = \sum_{x \in \mathbb{Z}^d} \mathbb{1}\big\{ \cup_{\gamma \in \Lambda_x} \{\gamma \text{ está aberto}\} \big\} \\ &\leq \sum_{x \in \mathbb{Z}^d} \sum_{\gamma \in \Lambda_x} \mathbb{1}\{\gamma \text{ está aberto}\} \\ &= \sum_{n \geq 0} \sum_{\gamma \in \Lambda'_n} \mathbb{1}\{\gamma \text{ está aberto}\}, \end{split} \tag{1}$$

onde $\Lambda_x = \{\text{caminhos ligando 0 a } x\}$ e

 $\Lambda'_n = \{\text{caminhos de compr } n \text{ começando na origem}\}.$

Note agora que $\forall \ \gamma \in \Lambda'_n$

$$\mathbb{P}(\gamma \text{ está aberto}) = p^n$$
, e que $|\Lambda'_n| \leq 2d(2d-1)^{n-1}$, $n \geq 1$.

Disto e de (1) segue que

$$\mathbb{E}(|\mathcal{C}|) \leq 1 + 2dp \sum_{n \geq 0} [(2d-1)p]^n < \infty$$
, se $p < \frac{1}{2d-1}$.

Dem. Lema 2

Vamos explorar a autodualidade de $\mathcal{L}^2 = (\mathbb{Z}^2, \mathcal{E}^2)$.

Seja
$$\mathcal{L}^2_*=(\mathbb{Z}^2_*,\mathcal{E}^2_*)$$
 o grafo dual de $\mathcal{L}^2=(\mathbb{Z}^2,\mathcal{E}^2)$, ie,

$$\mathbb{Z}_*^2 = \mathbb{Z}^2 + \left(\frac{1}{2}, \frac{1}{2}\right) = \left\{ \left(x_1 + \frac{1}{2}, x_2 + \frac{1}{2}\right) : \left(x_1, x_2\right) \in \mathbb{Z}^2 \right\}$$

$$\mathcal{E}^2_* = \{ \langle x, y \rangle : x, y \in \mathbb{Z}^2_* \text{ e } ||x - y||_1 = 1 \}$$

Note que \mathcal{L}^2 e \mathcal{L}^2_* são isomorfos.

Para $e \in \mathcal{E}^2$, seja e_* o (único) elo de \mathcal{E}^2_* secante a e.

A relação e:e* é 1:1.

Dem. Lema 2 (cont) — Fato geométrico sobre \mathcal{L}^2

Seja $C \subset \mathbb{Z}^2$ finito e conexo (ie, para cada par de sítios x,y de C, existe um caminho ligando x a y totalmente contido em C) contendo 0. Seja $\partial_E^+ C$ a fronteira exterior de elos de C, ie

$$\partial_E^+ C = \{\langle x,y \rangle \in \mathcal{E}^2: \, x \in C, \, y \notin C, \exists \text{ um caminho infinito começando em } y \text{ sem intersecção com } C\}.$$

Então $\{e_*: e \in \partial_E^+ C\}$ formam um $\mathit{circuito}^*$ em \mathcal{L}_*^2 em torno de 0.

 $^{^*\{}x_0,\ldots,x_n\}$: $x_0=x_n$ e $\{x_1,\ldots,x_n\}$ e $\{x_0,\ldots,x_{n-1}\}$ são caminhos

Dem. Lema 2 (cont)

Se declararmos $e_* \in \mathcal{E}^2_*$ aberto sse e estiver fechado, temos em \mathcal{L}^2_* um modelo de percolação com par 1 - p.

Do fato geométrico acima, segue

$$\mathbb{P}(|\mathcal{C}|<\infty)=\mathbb{P}(\exists$$
 um circuito aberto em \mathcal{L}^2_* em torno de 0)

$$\leq \sum_{\gamma_* \in \Lambda_*} \mathbb{P}(\gamma_* \text{ está aberto}) \leq \sum_{n \geq 4} \sum_{\gamma_* \in \Lambda_*(n)} \mathbb{P}(\gamma_* \text{ está aberto}),$$
 (2)

onde $\Lambda_* = \{\text{circuitos de } \mathcal{L}^2_* \text{ em torno de } 0\}$ e

$$\Lambda_*(n) = \{ \text{circuitos de } \mathcal{L}^2_* \text{ em torno de 0 de compr } n \}$$

Logo

$$\theta(p) \ge 1 - \sum_{n \ge 4} (1 - p)^n |\Lambda_*(n)| \ge 1 - \frac{1}{2} \sum_{n \ge 4} n \, 3^{n-2} (1 - p)^n$$

= $1 - \frac{1}{18} \sum_{n \ge 4} n \, [3(1 - p)]^n =: 1 - \frac{1}{18} \psi(p).$ (3)

Então ψ é decresc, cont em $(\frac{2}{3},1]$ e $\psi(1)=0$: $\exists \ \frac{2}{3} < p^* < 1$ tq $\psi(p^*)=18$ em $(p^*,1]$; $(3)\Rightarrow \theta(p)>0$ em $(p^*,1]$.

Dem. Lema 2 (cont) — Refinamento

Note que $\psi(p) \to \infty$ qdo $p \downarrow \frac{2}{3}$: ñ há como obter $\theta(p) > 0 \ \forall \ p > \frac{2}{3}$ de (3) apenas. Seja $\mathcal{Q}_N = \{-N, \dots, N\}^2$ e considere os eventos $A_N = \{ \text{todos os elos de } \mathcal{Q}_N \text{ estão abertos} \}$ e $B_N = \{ \text{existe um circuito aberto em } \mathcal{L}_*^2 \text{ em torno de } \mathcal{Q}_N \}.$

Obs. A_N e B_N indep e $|\mathcal{C}| = \infty$ em $A_N \cap B_N^c$.

Logo,
$$\theta(p) \geq \mathbb{P}(A_N \cap B_N^c) = \mathbb{P}(A_N) \mathbb{P}(B_N^c) \ \forall N.$$

Como $\mathbb{P}(A_N) > 0 \ \forall N$, basta mostrar que $\mathbb{P}(B_N) < 1$ para algum N para obter $\theta(p) > 0$.

Refinamento (cont)

Como em (2):

$$\mathbb{P}(B_N) = \mathbb{P}(\exists \text{ um circuito aberto em } \mathcal{L}^2_* \text{ em torno de } \mathcal{Q}_N)$$

 $\leq \sum_{n \geq 8N} \sum_{\gamma_* \in \Lambda_*(n)} \mathbb{P}(\gamma_* \text{ está aberto}),$

Como em (3):

$$\mathbb{P}(B_N) \leq \frac{1}{18} \sum_{n \geq 8N} n [3(1-p)]^n =: \frac{1}{18} \psi_N(p).$$

Dado $p > \frac{2}{3}$, $\psi_1(p)$ é uma série convergente;

logo,
$$\exists N = N(p) \ge 1 \text{ tq } \psi_N(p) < 18.$$

 \Box Lema 2

Obs.

- 1) Note que $\chi(p) = \mathbb{E}(|\mathcal{C}|)$ é \tilde{n} decrescente e $< \infty$ em $\left[0, \frac{1}{2d-1}\right)$. Seja $p_H = \sup\{p \in [0,1] : \chi(p) < \infty\}$; então $p_H \le p_c$.
- 2) Seja $D=\operatorname{diam} \mathcal{C}=\sup\{\|x\|_1: x\in \mathcal{C}\}$ o diâmetro de $\mathcal{C}.$ Dos args da dem do Lema 1, temos que a cauda da distr de D tem dec exp se $p<\frac{1}{2d-1}$, ie, $\exists\ \beta=\beta(p)>0$ tq

$$\mathbb{P}(D > n) \leq e^{-\beta n} \ \forall n \ \mathsf{gde}.$$

A ppdd de a distr de D ter dec exp é decrescente, ie, se vale para p, então vale tb para p' < p. Seja $p_E = \sup\{p \in [0,1] : \text{a cauda de } D \text{ tem dec exp}\};$ então $p_E \leq p_H$. Sabe-se que $p_E = p_H = p_c$ (unicidade do pto crítico †).

- 3) O Teo 1 não diz se $\theta(p_c, d) = 0$ ou > 0 em $d \ge 2$. Acredita-se que $\theta(p_c, d) = 0 \ \forall \ d \ge 2$; sabemos isto em d = 2 e para d gde (por métodos difs).
- 4) $p_c(2) = \frac{1}{2}$; o valor exato de $p_c(d)$, $d \ge 3$, é desconhecido.

 $^{^{\}dagger}$ temos dec exp p/a distr de $|\mathcal{C}|$ $orall p < p_c$

Unicidade do aglomerado infinito

Seja $\eta = \#\{\text{aglomerados infinitos distintos do modelo de perc}\}.$

Então η é inv p/transl, ie, $\forall z \in \mathbb{Z}^d$ e $\omega \in \mathcal{B}$: $\eta(\omega) = \eta(\omega + z)$, onde $\omega + z \in \mathcal{B}$ é tq $(\omega + z)_{\langle x,y \rangle} = \omega_{\langle x+z,y+z \rangle}$.

Lei 0-1 p/va's inv p/transl em espaços produto $\Rightarrow \eta =$ é trivial, ie, \exists cte $\kappa = \kappa_p \in \mathbb{N}$ tq $\mathbb{P}(\eta = \kappa) = 1$; claro: $\kappa =$ 0, se $\theta =$ 0; e $\kappa \geq 1$, se $\theta >$ 0.

Teorema 2. Se $\theta > 0$, então $\kappa = 1$.

Obs. Compare com

- (i) $G_n(p)$, $p=\lambda/n$, $\lambda>1$: unicidade do aglomerado gigante, e
- (ii) perc independente na árvore regular de grau $d \ge 3$: ∞ 's agloms ∞ 's se p > 1/d.

Dem. Resultado segue das duas proposições a seguir.

Proposições

Proposição 2. Se $\theta > 0$, então $\kappa = 1$ ou ∞ .

Proposição 3. Se $\theta > 0$, então $\kappa \le 2$.

Dem Prop 1. Vamos mostrar que se $\mathbb{P}(\eta=k)>0$ para algum $2\leq k<\infty$, então $\mathbb{P}(\eta=1)>0$. O resultado segue disto e da trivialidade de η .

Seja k como acima, e \mathcal{Q}_n como na dem do Lema 2, slide 14, e sejam os eventos

 $A_n = \{ \text{todos os agloms } \infty' \text{s tocam } \mathcal{Q}_n \};$

 $B_n = \{ \text{elos de } \mathcal{Q}_n \text{ todos abertos} \}.$

Note que $A_n \nearrow$ em n, e que $A_n \cap \{\eta = k\} \rightarrow \{\eta = k\}$ qdo $n \rightarrow \infty$.

Disto e da hip de que $\mathbb{P}(\eta = k) > 0$: $\exists n \text{ tq } \mathbb{P}(A_n) > 0$.

Note: $\mathbb{P}(B_n) > 0 \ \forall n$. Logo, como A_n e B_n indep $\forall n$:

$$\mathbb{P}(A_n \cap B_n) = \mathbb{P}(A_n) \, \mathbb{P}(B_n) > 0.$$

Como
$$A_n \cap B_n \subset \{\eta = 1\}$$
, segue que $\mathbb{P}(\eta = 1) > 0$.

Obs. Note que o argumento não funciona p/ $k = \infty$.

Dem Prop 2.

Vamos supor que $\mathbb{P}(\eta \geq 3) > 0$ e obter uma contradição.

Para isto, precisaremos da seguinte noção e resultado sobre grafos.

Pontos triplos

Seja G = (S, E) um grafo conexo.

 $x \in S$ será dito um *ponto triplo* para G se

- i) existirem apenas 3 elos de E tocando x e
- ii) o grafo $G\setminus\{x\}$, em que x é removido de S e os 3 elos tocando em x são removidos de E, tem exatamente 3 componentes conexos, denotados $E_1(x)$, $E_2(x)$, $E_3(x)$, e chamados de ramos.

Exercício sobre pontos triplos

- (a) Suponha que G seja um grafo conexo e que x_1, x_2, \ldots, x_n sejam pontos triplos distintos para G. Mostre que, p/algum i, 2 dos 3 ramos em x_i , digamos $E_2(x_i)$ e $E_3(x_i)$, não contêm nenhum dos outros pontos triplos $(\{x_1, \ldots, x_n\} \setminus \{x_i\})$. Sugestão: indução em n.
- (b) Seja G' o grafo obtido de G e x_1, \ldots, x_n de (a) removendo-se todos os sítios de $E_3(x_i)$ e todos os elos tocando estes sítios. Mostre que $\{x_1, \ldots, x_n\} \setminus \{x_i\}$ são pontos triplos para G'.
- (c) Suponha que G seja um grafo conexo e que x_1, \ldots, x_n sejam pontos triplos distintos de G. Entre os 3n ramos,

$$E_1(x_1), E_2(x_1), E_3(x_1), E_1(x_2), \ldots, E_3(x_n),$$

mostre que podemos achar pelo menos n + 2 ramos disjuntos.

Seja $F_n = \{ \text{pelo menos 3 agloms } \infty' \text{s} \neq' \text{s tocam } \mathcal{Q}_{n-1} \}.$

Como $F_n \uparrow \{\eta \geq 3\}$ qdo $n \uparrow \infty$: $\exists n \text{ tq } \mathbb{P}(F_n) > 0$.

Dados y_1,y_2,y_3 ptos \neq' s no int das faces de $\partial\mathcal{Q}_n$, seja

 $F_n(y_1,y_2,y_3)=\{y_1,y_2,y_3\in \mathsf{aglo}\ \infty'\mathsf{s} \neq '\mathsf{s}\ \mathsf{usando}\ \mathsf{s\'o}\ \mathsf{elos}\ \mathsf{ext}\ \mathsf{a}\ \mathcal{Q}_n\}$

Como $F_n \subset \bigcup_{y_1, y_2, y_3} F_n(y_1, y_2, y_3)$:

$$\mathbb{P}(F_n(y_1, y_2, y_3)) > 0$$
 para alguns y_1, y_2, y_3 .

Dados estes y_1, y_2, y_3 , seja $x = x(y_1, y_2, y_3)$ um pto int de \mathcal{Q}_n tq há 3 caminhos de elos disjs no int \mathcal{Q}_n ligando x a y_1, y_2, y_3 resp.

Seja agora

 $F'_n(y_1, y_2, y_3) = \{ \text{os 3 caminhos mencionados acima estão abertos,} \\ \text{todos os demais elos do interior de } \mathcal{Q}_n \text{ estão fechados} \}.$

Logo,

$$\mathbb{P}(F_{n_0}(y_1, y_2, y_3) \cap F'_n(y_1, y_2, y_3)) \stackrel{\text{ind}}{=} \mathbb{P}(F_{n_0}(y_1, y_2, y_3)) \mathcal{P}(F'_n(y_1, y_2, y_3)) > 0.$$

Um ponto triplo (segundo a definição no exercício acima) será dito um ponto triplo especial (pte) se seus ramos são infinitos.

Note que

$$\{x(y_1,y_2,y_3) \text{ \'e um pte}\}\supset F_{n_0}(y_1,y_2,y_3)\cap F'_n(y_1,y_2,y_3).$$

Segue que, se $\mathbb{P}(\eta \geq 3) > 0$, então $\mathbb{P}(x \text{ \'e um pte}) > 0$.

Inv p/transl: prob acima não depende de x. Vamos denotá-la por ρ .

Segue que

 $\mathbb{E}(\#\{\text{pontos triplos especiais em }\mathcal{Q}_{n-1}\}) = (2n-1)^d \rho,$ e logo $\mathbb{P}(\#(\text{pte's em }\mathcal{Q}_{n-1}) \geq (2n-1)^d \rho) > 0 \ \forall n$ (4)

(pois
$$\forall$$
 va integrável X : $P(X \ge E(X)) > 0$)).

Agora, segue do exercício acima que o número de pte's em \mathcal{Q}_{n-1} é sempre inferior a $2d(2n-1)^{d-1} \ \forall n$, o que contradiz (4) para n gde, concluindo a demonstração da Prop 2.

Falta então apenas justificar a afirmação no começo do parágrafo anterior. Faremos isto a seguir.

Cada ramo de cada ponto triplo especial (pte) toca um (ou mais) sítios em alguma face de ∂Q_n .

Obs. $2d(2n-1)^{d-1}$ é o número total de sítios em ∂Q_n .

Considere os componentes conexos dos pte's usando apenas elos no interior de Q_n .

Digamos que tais componentes contenham $n_1, n_2, ...$ pte's cada (isto é, o *i*-ésimo componente contem n_i pte's).

Logo $n_1 + n_2 + \ldots$ dá o total de pte's em Q_{n-1} .

Da conclusão do ex acima: no componente i podemos achar pelo menos $n_i + 2$ ramos disjuntos dentre as $3n_i$ possibilidades.

Logo, temos $(n_1 + 2) + (n_2 + 2) + \dots$ ramos disjuntos de todos os pontos triplos.

Como cada um toca pelo menos um ponto das faces de Q_n , será necessário que

$$n_1 + n_2 + \ldots \le (n_1 + 2) + (n_2 + 2) + \ldots \le 2d(2n - 1)^{d-1} \cdot \square_{\text{Prop } 2}$$

Ferramenta útil — Desigualdade de FKG

Monotonicidade

Ordem parcial em $\Omega:=\{0,1\}^{\mathcal{E}^d}\colon \, \mathrm{p}/\omega, \omega'\in\Omega, \, \mathrm{diremos} \, \mathrm{que}$ $\omega\leq\omega'\Leftrightarrow\; \omega_\mathrm{e}\leq\omega'_\mathrm{e} \, \, \mathrm{para} \, \, \mathrm{todo} \, \, \mathrm{e}\in\mathcal{E}^d.$

 $X:\Omega \to \mathbb{R}$ é dita crescente se for crescente na ordem parcial acima, ie, $X(\omega) \leq X(\omega')$ sempre que $\omega \leq \omega'$.

 $A \subset \Omega$ é dito crescente se $\mathbb{1}_A$ for crescente.

Em palavras, com o modelo de percolação em mente, um evento A do modelo é crescente sempre que para cada configuração de Ω em que A ocorre, ao abrirmos mais elos nesta configuração, o evento A continua ocorrendo.

Exemplos de eventos crescentes: $\{x \leftrightarrow y\}$, $x, y \in \mathbb{Z}^d$, e $\{|\mathcal{C}| = \infty\}$.

Parênteses

Formulação equivalente/explícita do modelo de percolação

Podemos formular o modelo de percolação definido no início como a tripla $(\Omega, \mathcal{F}, \mathbb{P})$, Ω como acima e

- \triangleright \mathcal{F} é a σ -álgebra produto (gerada pelos cilindros de Ω), e
- $ightharpoonup \mathbb{P} = \mathbb{P}_p$ é a medida produto com marginais $\mathbb{P}(\omega_e = 1) = p$.

Desigualdade de (Harris-)FKG

Proposição 4. Sejam X e Y va's crescentes e limitadas em $(\Omega, \mathcal{F}, \mathbb{P})$. Então

$$\mathbb{E}(XY) \geq \mathbb{E}(X)\,\mathbb{E}(Y).$$

Dem. Vamos tomar inicialmente X e Y cilíndricas, ie, dependem apenas de um conjunto finito de elos $\{e_1, e_2, \ldots, e_n\}$.

Provaremos a prop neste caso por indução em n.

$$n=1$$
: $X=f(\omega_{e_1})$ e $Y=g(\omega_{e_1})$, onde f e g são crescentes.

Seja ω' uma cópia independente de ω_{e_1} (ie, ω' e ω_{e_1} são iid).

Então
$$[f(\omega_{e_1}) - f(\omega')][g(\omega_{e_1}) - g(\omega')] \ge 0$$
, pois f , g crescentes.

Logo
$$\mathbb{E}\big\{[f(\omega_{e_1})-f(\omega')][g(\omega_{e_1})-g(\omega')]\big\}\geq 0.$$

\neq FKG (cont)

Expandindo o termo à esquerda, temos

$$\mathbb{E}[f(\omega_{e_1})g(\omega_{e_1})] + \mathbb{E}[f(\omega')g(\omega')]$$

$$\geq \mathbb{E}[f(\omega_{e_1})g(\omega')] + \mathbb{E}[f(\omega')g(\omega_{e_1})].$$
(5)

 ω_{e_1} , ω' indep: lado dir =

$$\mathbb{E}[f(\omega_{e_1})]\mathbb{E}[g(\omega')] + \mathbb{E}[f(\omega')]\mathbb{E}[g(\omega_{e_1})].$$

 ω_{e_1} , ω' id distr: (5) fica

$$\begin{split} \mathbb{E}[f(\omega_{e_1})g(\omega_{e_1})] + \mathbb{E}[f(\omega_{e_1})g(\omega_{e_1})] \\ &\geq \mathbb{E}[f(\omega_{e_1})]\mathbb{E}[g(\omega_{e_1})] + \mathbb{E}[f(\omega_{e_1})]\mathbb{E}[g(\omega_{e_1})], \end{split}$$

ie,

$$2\mathbb{E}[f(\omega_{e_1})g(\omega_{e_1})] \geq 2\mathbb{E}[f(\omega_{e_1})]\mathbb{E}[g(\omega_{e_1})]$$

e o resultado para n=1 é imediato.

\neq FKG (cont)

Supondo-o válido para n=k, seja n=k+1. Então

$$X=f(\omega_{e_1},\ldots,\omega_{e_k},\omega_{e_{k+1}})$$
 e $Y=g(\omega_{e_1},\ldots,\omega_{e_k},\omega_{e_{k+1}})$, f , g crescentes. Agora,

$$\begin{split} \mathbb{E}(XY) &= \mathbb{E}[f(\omega_{e_1}, \dots, \omega_{e_k}, \omega_{e_{k+1}})g(\omega_{e_1}, \dots, \omega_{e_k}, \omega_{e_{k+1}})] \\ &= \mathbb{E}\big\{\mathbb{E}\big[f(\omega_{e_1}, \dots, \omega_{e_k}, \omega_{e_{k+1}})g(\omega_{e_1}, \dots, \omega_{e_k}, \omega_{e_{k+1}})\big|\omega_{e_{k+1}}\big]\big\}. \end{split}$$

Na esp condicional acima, $\omega_{e_{k+1}}$ fixo: f, g podem ser vistas como fçs de $\omega_{e_1},\ldots,\omega_{e_k}$; pela hip ind, lado dir \geq

$$\mathbb{E}\big\{\mathbb{E}\big[f(\omega_{e_1},\ldots,\omega_{e_k},\omega_{e_{k+1}})\big|\omega_{e_{k+1}}\big]\times\\\times\mathbb{E}\big[g(\omega_{e_1},\ldots,\omega_{e_k},\omega_{e_{k+1}})\big|\omega_{e_{k+1}}\big]\big\}.$$

Agora é claro que as esperanças condicionais acima são funções crescentes de $\omega_{e_{k+1}}$. Novo uso da hipótese de indução produz o resultado para n=k+1, completando o passo de indução.

\neq FKG (cont)

Para o caso geral, sejam X e Y não necess/te cilíndricas, e seja e_1, e_2, \ldots uma enumeração de \mathcal{E}^d .

Pelo Teorema da Convergência de Martingais,

$$X = \lim_{n \to \infty} \mathbb{E}[X | \omega_{e_1}, \dots, \omega_{e_n}],$$

e similarmente para Y.

Pelo passo anterior, \neq FKG vale qdo X e Y são subst por

$$\mathbb{E}\big[X|\omega_{e_1},\ldots,\omega_{e_n}\big] \,\,\mathbf{e}\,\,\mathbb{E}\big[Y|\omega_{e_1},\ldots,\omega_{e_n}\big].$$

Passagem ao lim em n e o Teo Conv Dom dão o caso geral.

⊐≠FKG

Corolário. Se A e B forem eventos crescentes, então

$$\mathbb{P}(A \cap B) \geq \mathbb{P}(A)\,\mathbb{P}(B).$$

Dem. Basta aplicar a Prop 4 a $X = \mathbb{1}_A$ e $Y = \mathbb{1}_B$.

Modelo em \mathbb{Z}^2

Proposição 5. $\theta(\frac{1}{2}, 2) = 0$

Dem. Usaremos o seguinte coro da \neq FKG.

Truque da raiz quadrada

Se A_1,\ldots,A_ℓ crescentes e de probs iguais, então

$$1 - \mathbb{P}(\cup_{i=1}^{\ell} A_i) = \mathbb{P}(\cap_{i=1}^{\ell} A_i^{\mathsf{c}}) \overset{\mathsf{FKG}}{\geq} [1 - \mathbb{P}(A_1)]^{\ell}.$$

Logo
$$\mathbb{P}(A_1) \geq 1 - [1 - \mathbb{P}(\cup_{i=1}^{\ell} A_i)]^{1/\ell}$$
.

Sejam $\mathcal{T}_n = [0, n]^2$ e

 $A_n^e := \{ \text{aglom } \infty \text{ de } \mathcal{L}^2 \text{ toca face esq de } \mathcal{T}_n \text{ sem usar elos de } \mathcal{T}_n \}.$

Similar/e: A_n^d , A_n^c e A_n^b , subst esq por dir, sup e inf, resp.

Suponha que $\theta(\frac{1}{2}) > 0$. Obs 3b, slide 5:

 $\mathbb{P}(\text{existir um aglomerado aberto infinito})=1.$

Segue que $\mathbb{P}(A_n^e \cup A_n^d \cup A_n^c \cup A_n^b) \to 1$ qdo $n \to \infty$.

Truque da $\sqrt{}\colon \mathbb{P}(A_n^u) \to 1$ qdo $n \to \infty$, u = e, d, c, b.

Seja N tq $\mathbb{P}(A_N^u) > 7/8$ e $\mathbb{P}(A_{N-1}^u) > 7/8$, u = e, d, c, b.

Seja agora $T_n^* = [0, n-1] + (1/2, 1/2)$ e

 $A_*^e(n) = \{ \text{aglo } \infty \text{ de } \mathcal{L}_*^2 \text{ toca face esq de } T_n^* \text{ sem usar elos de } T_n^* \}.$

Similar/e: $A_*^d(n)$, $A_*^c(n)$ e $A_*^b(n)$, subst esq p/ dir, sup e inf, resp.

Temos então $\mathbb{P}(A_*^u(N)) = \mathbb{P}(A_{N-1}^u) > 7/8$.

Seja
$$A = A_N^e \cap A_n^d \cap A_*^c(N) \cap A_*^b(N)$$
.

Note que, em A, se houver apenas um aglo ∞ em \mathcal{L}^2 e apenas um aglo ∞ em \mathcal{L}^2_* , então os caminhos abertos infinitos à esquerda e à direita de T_N devem se ligar por elos abertos por dentro de T_N^* pois por fora os caminhos infinitos abertos acima e abaixo de T_N^* bloqueiam a passagem.

Similarmente, os caminhos infinitos abertos em \mathcal{L}^2_* acima e abaixo de T_N^* devem se ligar por elos abertos por dentro de T_N . Mas neste caso, as ligações por dentro de T_N e T_N^* devem se cruzar, o que é impossível.

Logo, em A há 2 aglos ∞ 's disj em \mathcal{L}^2 ou 2 aglos ∞ 's disjuntos em \mathcal{L}^2_* ; Teo 2 (unici// do aglo ∞): $\mathbb{P}(A) = 0$.

Para o próx result, sejam os seguintes conjs de sítios

$$\begin{split} & \Lambda_n = \{ x \in \mathbb{Z}^2 : 0 \le x_1 \le n+1, \ 0 \le x_2 \le n \} \\ & \Lambda_n^* = \{ x + (1/2, 1/2), \ x \in \mathbb{Z}^2 : 0 \le x_1 \le n, \ -1 \le x_2 \le n \}, \end{split}$$

e os subgrafos

$$S_n=\Lambda_n\cup\{ ext{elos de }\mathcal{E}^2 ext{ em }\Lambda_n ext{ exc }\langle x,y
angle ext{ com }x_1=y_1=0 ext{ ou } x_1=y_1=n+1\}$$
 $S_n^*=\Lambda_n^*\cup\{ ext{elos de }\mathcal{E}_*^2 ext{ em }\Lambda_n^* ext{ exc }\langle x,y
angle ext{ com }x_2=y_2=-1 ext{ ou } x_2=y_2=n\}$

Cruzamentos horizontais e verticais

Seja $A_n = \{\exists \text{ caminho aberto em } S_n \text{ ligando faces esq e dir}\}.$

Proposição 6.
$$\mathbb{P}(A_n) = \frac{1}{2} \ \forall n$$

Dem Prop 6

Seja $A_n^* = \{\exists \text{ caminho aberto em } S_n^* \text{ ligando faces sup e inf}\}.$

Temos que
$$A_n \cap A_n^* = \emptyset$$
, (6)

senão haverá cruzamento entre caminho aberto em S_n e caminho aberto de S_n^* , o que é impossível.

Por outro lado
$$A_n \cup A_n^* = \Omega$$
. (7)

De fato, suponha que A_n não ocorra. Seja D o conjunto de sítios de S_n alcançados por caminhos abertos a partir da face esq, junto com os elos ligando tais sítios.

Por um fato geom similar ao do slide 12, existe um caminho em \mathcal{L}^2_* cruzando S_n^* de cima a baixo, secante apenas a elos de S_n contidos na fronteira de D. Logo este caminho será aberto e A_n^* ocorre.

(6) e (7):
$$\mathbb{P}(A_n) + \mathbb{P}(A_n^*) = 1$$
.
Mas $\mathbb{P}(A_n^*) = \mathbb{P}_{1-p}(A_n)$:

$$\mathbb{P}(A_n)=1/2$$

Obs. A Prop $5 \Rightarrow p_c(2) \ge \frac{1}{2}$. O dec exp da cauda da distr d(o diam d)e \mathcal{C} , discutido na 2^a obs do slide 16, junto à Prop 6 $\Rightarrow p_c(2) \le \frac{1}{2}$, e logo $p_c(2) = \frac{1}{2}$.