التحويلات الاعتيادية

التماثل المركزى

لتكن I نقطة معلومة و M و M نقطتين من المستوى.

نقول إن النقطة M هي مماثلة النقطة M بالنسبة للنقطة M إذا و فقط تحقق ما يلي :

- M'=I اِذَا كَانُ M=I فَإِنْ ا
- [MM'] فإن I منتصف $M \neq I$ إذا كان
- العلاقة التي تربط كل نقطة M من المستوى M بمماثلتها M بالنسبة للنقطة I تسمى التماثل المركزي الذي مركزه $S_{I}(M)=M$ نرمز له بالرمز $S_{I}(M)=M$
 - $\overrightarrow{IM}' = -\overrightarrow{IM}$ تکافی $S_I(M) = M'$ •
 - $S_I(I) = I$ نقول إن النقطة I صامدة بالتماثل المركزي S_I
 - $S_I(M') = M'$ تكافئ $S_I(M) = M'$ •

التماثل المحورى

ليكن (D) مستقيما و M و M نقطتين من المستوى.

: نقول إن النقطة M هي مماثلة النقطة M بالنسبة للمستقيم M إذا و فقط تحقق ما يلي \mathcal{F}

- M'=M : فإن $M\in (D)$
- [MM'] واسط للقطعة و $M \not\in (D)$ واسط القطعة ا

المحوري الذي (D) المحوري الذي (D) المحاثلة المستقيم (D) المحوري الذي محوره (D) المحوري الذي محوره (D) المحرد (D) المحرد المحاثلة المحوري الذي محوره (D) المحرد المحاثلة المحرد المحرد

- واسط القطعة (D) يكافئ $S_{(D)}(M)=M$ ' [MM']
- $S_{(D)}(N)\!=\!N:(D)$ من N نقطة N نقول إن جميع نقط المستقيم D صامدة بالتماثل المحوري D
 - $S_{(D)}ig(Mig)\!=\!M$ ' تكافئ $S_{(D)}ig(Mig)\!=\!M$ ' •

-3/2017

الإزاحة

لتكن \vec{u} متجهة و M و ' M نقطتين من المستوى.

- $\overline{MM}'=\vec{u}$: النقطة \vec{u} إذا وفقط إذا \vec{u} النقطة M بالإزاحة التي متجهتها \vec{u} إذا وفقط إذا \vec{u}
- العلاقة التي تربط كل نقطة M من المستوى (P) بصورتها M بالإزاحة ذات المتجهة \vec{u} تسمى الإزاحة ذات المتجهة $t_{\vec{u}}(M)=M$ و نرمز لها ب $t_{\vec{u}}:$

- $\overrightarrow{MM}' = \overrightarrow{u}$ یکافی $t_{\overline{u}}(M) = M'$
- $t_{ec{u}}\left(M
 ight.
 ight)\!=\!M$ فإن $ec{u}=ec{0}$ إذا كانت \bullet
- $t_{_{-ar{u}}}\left(M^{\,\,\prime}
 ight)\!=\!M^{\,\,\prime}$ تكافئ $t_{_{ar{u}}}\left(M^{\,\,\prime}
 ight)\!=\!M^{\,\,\prime}$
- $t_{\overline{u}}(N)=N$ و ' $N=t_{\overline{u}}(M)=M$ و ' N فان : M و ' N فان : M

الاستقامية و التحويلات

المسافة و التحويلات

صور أشكال اعتيادية بتحويل

ليكن T أحد التحويلات التالية : الإزاحة - التماثل المركزي - التماثل المحوري إذا كان T(AB) = (AB) =

صورة مستقيم

: صورة مستقيم (D) بتماثل محوري $S_{(\Delta)}$ هو مستقيم (D) بحيث \succ

I النقطة المن (Δ) يقطع (Δ) النقطة المن (D') يقطع (Δ) النقطة المن (Δ)

 $(D')/\!/(\Delta)$ فإن $(D)/\!/(\Delta)$ ونا كان $(D)/\!/(\Delta)$

(D) = (D') فإن $(D) \perp (\Delta)$ و إذا كان $(D) \perp (\Delta)$

ح صورة مستقيم بتماثل مركزي أو بإزاحة هو مستقيم يوازيه

صورة منتصف قطعة

صورة دائرة

ليكن T أحد التحويلات التالية : الإزاحة - التماثل المركزي - التماثل المحوري صورة دائرة مركزها O حيث O بالتحويل D هي دائرة لها نفس الشعاع D و مركزها D حيث D و شعاعها D و شعاعها

صورة زاوية

-3/2017

صورة مثلث

ليكن
$$T$$
 أحد التحويلات التالية : الإزاحة $-$ التماثل المركزي $-$ التماثل المحوري إذا كان T و T T و T

التحويلات و التوازي و التعامد

الإزاحة – التماثل المركزي – التماثل المحوري تحويلات تحافظ على التوازي و التعامد

التحاكي

لتكن I نقطة معلومة من المستوى (\mathscr{D}) و k عدد حقيقي غير منعدم العلاقة التي تربط كل نقطة M من المستوى (\mathscr{D}) بالنقطة M حيث M حيث M تسمى التحاكي الذي مركزه M و نسبته M و نرمز له بالرمز M أو M الذي مركزه M و نسبته M و نكتب M صورة M بالتحاكي M الذي مركزه M و نسبته M و نكتب M صورة M بالتحاكي M الذي مركزه M و نسبته M و نكتب M

أمثلة:

 $k\in\mathbb{R}^*\setminus\{1\}$ ليكن h تحاكي مركزه I و نسبته k حيث $\{1\}$ k حيث $\{1\}$ $\{1\}$ و $\{1\}$ و $\{1\}$ و $\{1\}$ $\{1\}$ و $\{$

 $k\in\mathbb{R}^*$ ليكن h تحاكي مركزه I و نسبته k حيث h فإن h(N')=N' و 'h(M')=M' فإن 'h(M')=M'

التحاكى يحافظ على معامل الإستقامية

A و B و C و C نقط من المستوى C و C و C و C و C و C و C و C و C و C و C فإن : C فإن : C و

ليكن h تحاكي $h\left([AB]\right) = [A'B']$ فإن $h\left([AB]\right) = (A'B')$ و $h\left([AB]\right) = [A'B']$ و $h\left([AB]\right) = [A'B']$

ليكن h تحاكي اليكن h تحاكي اليكن h و h(I)=I و كان h(A)=A' و كان h(A)=A' و h(A)=A' الله فإن h(A)=A' فإن h(A)=A'

صورة مستقيم (D) بتحاك هو مستقيم عوازيه

لیکن h تحاکی $B\widehat{A}C=B'\widehat{A}C'$ و لدينا $h(B)=B'\widehat{A}C'$ و الدينا $h(B)=B'\widehat{A}C'$ و الدينا h(B)=B'التحاكى يحافظ على ياس الزوايا

- صورة مستقيمان متعامدان بتحاكي هما مستقيمان متعامدان
 صورة مستقيمان متوازيان بتحاكي هما مستقيمان متوازيان

صورة دائرة مركزها O و شعاعها r بتحاك h نسبته k هي دئرة مركزها O صورة O بالتحاكي h و شعاعها rr' = |k|r

 $k \in \mathbb{R}^*$ ليكن h تحاكي نسبته kA'B'C' فإن صورة المثلث ABC' هو المثلث h(C)=C' و h(B)=B' هو المثلث h(A)=A'