VERWENDUNG VON PEPTIDEN, DIE AUS DER A ALPHA ODER DER B BETA KETTE DES HUMANEN FIBRINOGENS ABGELEITET WURDEN, ZUR BEHANDLUNG VON SCHOCK

Hintergrund der Erfindung

Die vorliegende Erfindung ist auf eine pharmazeutische Zubereitung zur Behandlung von Schock gerichtet.

Ein Schock ist eine akute Komplikation vieler verschiedener pathologischer Zustände, die durch die Unfähigkeit des Herz-Kreislauf-Systems, einen ausreichenden Durchblutungsdruck aufrechtzuerhalten, gekennzeichnet ist. Infektionserreger können direkt oder indirekt ein Versagen des Herz-Kreislauf-Systems bewirken. Bakterien, Bakteriengiste, Viren und nicht zuletzt eine unzureichende zelluläre oder humorale Wirtsreaktion, einhergehend mit einer Entzündung und Gerinnung, können zu einem Verlust an Gefäßtonus, einem Verlust an Gefäßbarrierenfunktion, einem Verlust an myokardialer Kontraktionskraft und einem Verlust an Organfunktion führen, was alleine oder in Kombination zu einem Schock und schließlich zum Tod des Patienten führt. Die Behandlung einer bakteriellen Infektion beruht auf einer antibiotischen Behandlung, welche die Bakterien abtötet, jedoch die Toxinämie nicht behandelt und die unzureichende zelluläre oder humorale Reaktion nicht korrigiert. Bei gramnegativen Bakterien ist Lipopolysaccharid (LPS oder Endotoxin) für das Auslösen eines gramnegativen Schocks verantwortlich. Grampositive Bakterien können ein multiples Organversagen und einen septischen Schock ohne Endotoxämie verursachen, die Zellwand von grampositiven Bakterien enthält jedoch ebenfalls Toxine wie Lipoteichonsäure (LTA) und Peptidoglykan (PepG). LTA und PepG wirken in Synergie, um Cytokine, wie z.B. den Tumornekrosefaktor (TNF) α und Interferon (IFN) γ, freizusetzen, und zwar um iNOS zu induzieren und schließlich Schock und Organversagen zu verursachen.

Endotoxämie, Sepsis und septischer Schock stehen mit der Erzeugung großer Mengen von Stickstoffoxid (NO) in Zusammenhang. Die übermäßige Gefäßerweiterung und vaskuläre Hyporeaktivität gegenüber blutdruckerhöhenden Mitteln, welche mit einem Kreislaufschock einhergehen, können mit Inhibitoren der induzierbaren Isoform der NO-Synthase (iNOS) rückgängig gemacht werden (Southan und Szabo, Biochem Pharmacol. 1996;5 1:383-94, Thiemermann Gen Pharmacol 1997; 29:159-66), iNOS-Inhibitoren reduzieren jedoch nicht die von Toxinen verursachte Organschädigung (Wray et al. Shock 1998;9:329-335).

Die Behandlung eines durch Virusinfektionen verursachten Schocks ist eine sogar noch größere Herausforderung, da für die meisten Infektionen keine Antivirusmittel verfügbar sind. Behandlungen, die allein auf die Beseitigung des Infektionserregers abzielen, sind bei Patienten mit einem Schock aufgrund eines Infektionserregers nicht ausreichend, da vom Infektionserreger ausgelöste sekundäre Vorgänge, welche mit einer Entzündungs-reaktion und Veränderungen des Gerinnungssystems einhergehen, möglicherweise unabhängig wurden

und zum Tod des Patienten führen, ungeachtet der Frage, ob der ursächliche Infektionserreger neutralisiert wurde oder nicht. Eine spezifische Behandlung ist nicht verfügbar, und somit zielen derzeitige Verfahren darauf ab, die Symptome zu lindern, was eine mechanische Ventilation, den Ersatz von Flüssigkeit, die Anwendung herzwirksamer Arzneimittel, die strenge Kontrolle der Sauerstoffsättigung, des Hämoglobins, der Glucose und der Nierenfunktion einschließt. Die alleinige Kontrolle der Entzündungsreaktion, z.B. mittels hoch dosierter Steroide, oder die Hemmung der Gerinnung mit Antithrombin bringt keine Verbesserung der Überlebensrate. Das einzige Molekül, bei dem sich bisher erwies, dass es hinsichtlich der Verringerung der Mortalität eine bemerkenswerte Wirksamkeit besitzt, ist das "aktivierte Protein C , welches mit Koagulation/Fibrinolyse und den Entzündungsprozessen wechselwirkt.

Ein Schock während des Verlaufs einer Infektion hängt zumeist mit offensichtlichen oder nicht offensichtlichen Veränderungen des Plasmafibrinogens zusammen, begleitet von einer Fibrinbildung und einem Anstieg der Fibrinfragmente. Diese Aktivierung von Gerinnung und fibrinolytischen Pfaden kann zu einer offensichtlichen oder nicht offen sichtlichen disseminierten intravaskulären Koagulation (DIC) führen, welche einen Gefäßverschluss und Endorganschaden zur Folge hat, und zu einem Verbrauch an Gerinnungsfaktoren, der Blutungen zur Folge hat. Eine Sepsis ist die häufigste Ursache einer DIC. Wichtig ist, dass Fibrinogen, Fibrin und Fibrinfragmente nicht nur bei der Blutgerinnung eine Rolle spielen, sondern mehrere Bindungsstellen für Zell- und Matrixproteine aufweisen, welche ihnen das Wechselwirken mit weißen Blutkörperchen, Blutplättchen, Endothelzellen und Matrixstrukturen ermöglichen. Dies führt zur Zellaktivierung, Zellwanderung, einem Freisetzen von Cytokinen und letztendlich zu einer Entzündungsreaktion. Die Rolle, die Fibrinogen oder Fibrin bei der Entzündung spielt, ist umfassend dokumentiert (besprochen von Altieri Thromb Haemost 82:781-786; Herrick et al. Int J Biochem Cell Biol 31:741-46). Der D-Bereich des Moleküls enthält zahlreiche Bindungs stellen für Matrixmoleküle, Endothelzellen, Blutplättchen und Entzündungszellen. Der E-Bereich des Fibrins bindet an CDl Ic (Loike et al. Proc Natl Acad Sei USA 88:1044-48).

Vor kurzem beschrieben wir eine neue Rolle für die Bbeta 15.42-Sequenz des Fibrins bei der Entzündung (WO 02/48180). Diese Sequenz ist ebenfalls im E-Bereich des Fibrins lokalisiert und ist nur dann aktiv, wenn Fibrinopeptid gespalten wird. Fibrinfragmente, welche diese Sequenz an ihrem freien N-Terminus der beta-Kette enthalten, binden an das Endothelium und verursachen eine Entzündung, und ein Peptid, das mit den Aminosäuren 15-42 der Bbeta-Kette des Fibrins zusammenpasst, blockiert die Bindung von Fibrin-fragmenten an die Endotheloberflächen und blockiert in vitro die Entzündung (WO 02/481 80). In vivo verhindert dieses Peptid eine myokardiale Entzündung und verringert die Ausmaße eines Myocardinfarkts in Situationen der Ischämie / Reperfusion (WO 02/48180).

Fibrinfragmente treten in jedweder Situation mit beeinträchtiger Fibrinbildung und beeinträchtiger Fibrinolyse auf. Besonders in Situationen des Schocks aufgrund eines Infektionserregers stellen diese veränderte Fibrinbildung und diese veränderte Fibrinolyse ein großes Problem dar. Bei zahlreichen Erkrankungen wurde eine direkte Wechsel-beziehung zwischen dem Resultat und der Beeinträchtigung der Fibrinbildung / Fibrinolyse dokumentiert. Z.B. Dengue (van Gorp et al. J Med Virol 2002, 67:549-54, Mairuhu et al. Lancet Inf Dis 2003; 3:33-41). Das Atemnotsyndrom beim Erwachsenen (ARDS) ist eine Form einer akuten Lungenschädigung, die durch eine rötliche extravaskuläre Fibrin ablagerung gekennzeichnet ist (Idell Am J Respir Med. 2002; 1:383-91). Eine Thrombose in den pulmonalen Gefäßen und eine disseminierte intravaskuläre Koagulation wurden im Zusammenhang mit ARDS ebenfalls beobachtet.

Die Gründe für das Fortbestehen/weltweite Auftreten von Dengue-Fieber (DF) und hämorrhagischem Dengue-Fieber (DHF) als großem Problem der Volksgesundheit sind komplex, Vektorkontrollmaßnahmen waren nicht erfolgreich, um DF/DHF auszumerzen. Derzeit liegt der Hauptschwerpunkt der Finanzierungsmittel am öffentlichen Sektor für die Dengue-Forschung (im Jahr 2001 auf 15 Millionen US\$ geschätzt) bei der Molekulargepidemiologie, der Immunpathophysiologie, der Forschung zur Entdeckung von Impfstoffen der zweiten Generation und bei neuen oder verbesserten Ansätzen zur Vektorkontrolle.

Mehrere Impfstoffkandidaten befinden sich in den USA und in Thailand im klinischen Versuchsstadium, am Markt gibt es jedoch noch immer kein Arzneimittel zur Behandlung infizierter Patienten und, was noch schlimmer ist, scheinen derzeit keinerlei kommerziellen Aktivitäten zur Erforschung und Entwicklung einer Chemotherapie im Gange zu sein. Die Weltgesundheitsorganisation veröffentlichte strategische Richtlinien zur Bekämpfung von DF/DHF, welche - als Ziele von hoher Priorität - die Entwicklung von Antivirusmitteln, die auf Protease oder andere kaum untersuchte Enzyme gerichtet sind; die Entwicklung von Antivermittlern, die auf die Ursachen einer erhöhten Gefäßdurchlässigkeit oder geänderten Hämostase gerichtet sind, umfassen.

Kurzfassung der Erfindung

Die Erfindung betrifft die Verwendung eines Peptids mit der allgemeinen Formel I

worin

Ri und R₂ gleich oder unterschiedlich, Wasserstoff, einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 10, insbesondere 1 bis 3 Kohlenstoffatomen bedeuten, Zi einen Histidin- oder Prolinrest bedeutet,

Z₂ einen Argininrest, einen Peptidrest oder einen Proteinrest mit anfangständigem Argininrest, insbesondere mit 2 bis 30 Aminosäuren, bedeutet, welches Peptid die biologische Eigenschaft besitzt, mit dem induzierbaren VE-Cadherin-Bindungsmotiv an der Bβ-Kette (d.h. Bβi ₅₋4₂) des menschlichen Fibrins zusammenzupassen, für die Herstellung einer pharmazeutischen Zubereitung zur Behandlung von Schock.

Bevorzugt verwendet wird ein Peptid der allgemeinen Formel II

$$R_1$$
 N CH_2 CH_2 CH_3 CH_4 CH_5 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_9 R

worin

Zi einen Histidin- oder Prolinrest bedeutet,

Arg einen Argininrest bedeutet,

Z₃ einen Prolin- oder Valinrest bedeutet,

Z₄ einen Leucin- oder Valinrest bedeutet,

Z₅ einen Peptidrest oder einen Proteinrest mit insbesondere mit 2 bis 30 Aminosäuren oder einen Alkoholrest mit 1 bis 10, insbesondere 1 bis 3 Kohlenstoffatomen oder einen organischen oder anorganischen Basenrest bedeutet.

Ferner bevorzugt verwendet wird ein Peptid, in welchem Z_5 ein von der Aalpha-Kette oder der Bbeta-Kette des Fibrins abgeleiteter Peptidrest ist.

Überdies wird bevorzugt verwendet ein Peptid, in welchem Z₅ ein Peptidrest mit der Aminosäuresequenz

Asp Lys Lys Arg Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro He Ser Gly Gly Gly Tyr Arg

Zi ein Histidinrest, Arg ein Argininrest, Z3 ein Prolinrest, und

Z₄ ein Leucinrest ist.

Weiters wird bevorzugt verwendet ein Peptid, in welchem Z_5 ein Peptidrest mit der Aminosäuresequenz

Glu Arg His Gln Ser Ala Cys Lys Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu Asp Trp Asn Tyr Lys

Zi ein Prolinrest, Arg ein Argininrest, Z3 ein Valinrest, und Z4 ein Valinrest ist

Die Erfindung betrifft ferner die Verwendung eines Peptids, welches die N-terminale Sequenz

Gly-His-Arg-Pro-Leu-Asp-Lys-Lys-Arg-Glu-Glu-Ala-Pro-Ser-Leu- Arg-Pro-Ala-Pro-Pro-Pro-Ile-Ser-Gly-Gly-Gly-Tyr-Arg

aufweist und welches die biologische Eigenschaft besitzt, mit dem induzierbaren VE-Cadherin-Bindungsmotiv an der Bß-Kette (d.h. Bß₁₅₋4₂) des menschlichen Fibrins zusammenzupassen, für die Herstellung einer pharmazeutischen Zubereitung zur Behandlung von Schock.

Eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Verwendung ist dadurch gekennzeichnet, dass das Peptid

Gly-His-Arg-Pro-Leu-Asp-Lys-Lys-Arg-Glu-Glu-Ala-Pro-Ser-Leu-Arg-Pro-Ala-Pro-Pro-Ile-Ser-Gly-Gly-Gly-Tyr-Arg

ist.

Es hat sich gezeigt, daß mit den oben genannten Peptiden inbesondere Schockzustände behandelt werden können, wobei der Schock mit einem oder mehreren aus der Gruppe, umfassend Bakteriengifte, disseminierte intravaskuläre Koagulopathie, nektrotisierende Fasciitis, hämorrhagischen Schock infolge einer Virusinfektion, insbesondere verursacht durch Filovirus, Arenaviridae, Bunyaviridae, Flavivirus, Dengue, akutes hämorrhagisches Atmungsversagen, verursacht durch Infektions-erreger oder Autoimmunerkrankungen,

Organversagen nach einer Organschädigung, insbesondere durch einen Myocardinfarkt, eine Gefäßoperation, ein Abklemmen von Organen, einen hämorrhagischen Schock, Lungeninfarkt, Leberinfarkt, Darminfarkt, operative Eingriffe und Schlaganfall, und die Organfehlfunktion bei transplantierten Organen, in Zusammenhang steht.

Detaillierte Beschreibung der Erfindung

Peptide und Proteine

Peptide wurden durch eine Festphasen-Peptidsynthese hergestellt und mittels einer Umkehrphasen-HPLC gereinigt, wobei Nucleosil 100-1 oc 18-Säulen (PiChem, Graz, Österreich) verwendet wurden. Es sollte angemerkt werden, dass der beta 15-42-Bereich unter Spezien 100% gleichartig ist, wenn konservative Aminosäure-Substitutionen ermöglicht werden. Der aus den Aminosäuren Aαl-51, Bßl-1 18 und γl-78 zusammen-gesetzte Nterminale Disulfidknoten von Fibrinogen (NDSK) wurde wie zuvor beschrieben hergestellt (WO 02/48180). Der aus den Aminosäuren Aal 7-51, Bßl5-1 18 und γl-78 zusammengesetzte Nterminale Disulfidknoten von Fibrin (NDSK-II, dem die Fibrino-peptide A und B fehlen) wurde hergestellt, indem NDSK bei 37 °C 3 Stunden lang mit Thrombin (20 U / lmg NDSK) behandelt wurde. Das restliche Thrombin wurde bei 37 °C 2 Stunden lang mit 10 mM Diisopropylfluorophosphat (Fluka, Milwaukee, WI) neutralisiert. Alle Produkte wurden daraufhin in eine phosphatgepufferte Salzlösung (PBS) dialysiert.

ELISA

Peptid Bß₁₅₋₄₂ bindet an VE-Cadherin

Die Wechselwirkung der Bbeta-Kette (Bbetai 5.42) von Fibrin mit Endothelzellen verursacht morphologische Veränderungen (Bunce et al. J Clin Invest 89:842-50; Bach et al. Exp Cell Res 238:324-34; Chalupowicz et al. J Cell Biol 130:207-15; Hamaguchi et al. Blood 81:2348-56; Francis et al. Blood cells 19:291-306), eine Proliferation (Sporn et al. Blood 86:1802-10), das Freisetzen von von-Willebrand-Faktor (Ribes et al. J Clin Invest 79:1 17-23, Ribes et al. J Clin Invest 84: 435-42; Erban und Wagner, J Biol Chem 267, 2451-58) und möglicherweise IL-8 (Qi et al. Blood 90:3593-3602) und eine Membranexpression von CD54 (Harley et al. Art Thromb Vase Biol 20:652-658). VE-Cadherin wurde als Bindungsligand der Sequenz Bbeta 15-42 identizifiert und ELISAs wurden entwickelt, um diese Wechselwirkung von Endothelzellen und/oder VE-Cadherin mit Fibrin oder Fibrin-fragmenten nachzuweisen. Martinez et al. verwendeten anti-Pan-Cadherin-Antikörper zum Einfangen von Cadherinen aus Endothelzellen, gefolgt von einer Inkubation mit Fibrin (Martinez et al. Ann NY Acad Sei 936:386-405), HUVEC-Monoschichten (welche VE-Cadherin exprimieren) wurden mit radiomarkierten Fibrinfragmenten oder Peptid Bbetai5-42 überschichtet (Bach et al. J Biol

Chem 273:30719-28; Harley et al. Art Thromb Vase Biol 20:652-658), und von Gorlatov und Medved wurde rekombinantes VE-Cadherin verwendet (Biochemistry 4 1:4 107-16). Andere setzten zum Nachweisen von Fibrinfragmenten im Blut einen ELISA ein, wobei sie hauptsächlich Antikörper gegen verschiedene Sequenzen innerhalb des Fibrinogenmoleküls verwendeten, einschließlich Antikörpern gegen das Bbetat₅₋₄₂-MoUv (besprochen bei Fareed et al. Clin Chem 8:1845-53).

Wir entwickelten einen modifizierten ELISA, der mit denselben, von anderen beschriebenen Prinzipien arbeitet, der Zweck des hier beschriebenen ELISA besteht jedoch nicht darin, Fibrin-Abbauprodukte quantitativ zu bestimmen, sondern nach Proteinen, Peptiden oder Verbindungen zu suchen, welche die Bindung der Bbeta^-Sequenz und des VE-Cadherins stören. Das Prinzip besteht darin, dass das VE-Cadherin entweder als verkürztes Protein, als Vollprotein oder gekoppelt mit anderen Proteinen, welche die Bbeta 15-42-Bindungsstelle nicht stören, mit der Bbeta 15-42-Sequenz von Fibrin Wechselwirken darf. Man kann jegliche andere zusätzliche Substanz in dieses System einbringen und messen, ob diese Substanz die VE-Cadherin/Bbeta 15-42-Bindung hemmt.

Im Einzelnen wurden 96-Mulden-Proteinimmobilisierungsplatten (Exiqon, Vedbaek, DK) mit rekombinantem menschlichem VE-Cadherin-FC-Fusionsprotein (8 nM; R&D Systems, Minneapolis) in PBS beschichtet und über Nacht bei 4 °C stehengelassen. Die Platten wurden danach gewaschen und mit Peptid Bβ₁₅₋₄₂ (GHRPLDKKREEAPSL RPAPPISGGGYR), das am C-Terminus des Peptids mit einer FLAG-Sequenz (DYKDDDDK) markiert war, oder mit einem FLAG-markierten Zufallspeptid (DRGAPAHRPPRGPISGRSTPEKEKLLPG) inkubiert, und zwar in einer Konzentration von 0-80 μMol. Nach dem Waschen wurde durch Inkubation mit einem Peroxidase-markierten anti-FLAG-Antikörper (Sigma, St. Louis, USA) und einem chromogenen Substrat gebundenes FLAG-markiertes Peptid nachgewiesen. Die optische Dichte wurde durch einen auf eine Wellenlänge von 450 nm eingestellten ELISA-Plattenleser bestimmt. Die Daten stellen den Mittelwert aus drei unabhängigen Versuchen dar, wobei jeder dreifach durchgeführt wurde. Die untenstehende Tabelle zeigt, dass das Peptid Bßi 5'42 in konzentrationsabhängiger Weise an VE-Cadherin band. Im Gegensatz dazu zeigte das Zufallspeptid nur eine unwesentliche Bindung.

Dosisabhängige Bindung von Peptid Bbetai 5-42 an VE-Cadherin

μМ		0	0,23	0,7	2,3	7	14	21	35	46	70
15-42						}	Ì				
FLAG	Mittelwert	0	0,01	0,02	0,08	0,33	0,92	1,3	1,5	1,93	2,1
	Standard-										
	abweichung	0	0,01	0,01	0,03	0,17	0,19	0,2	0	0	0
Zufalls-									-		
FLAG	Mittelwert	0	0,01	0	0,01	0,03	0,12	0,2		0,35	0,5
	Standard-										
	abweichung	0	0,01	0	0,01	0,02	0,04	0,1		0	0

Das Peptid B β I₅₋₄₂ und Fibrinfragmente konkurrieren hinsichtlich der Bindung an VE-Cadherin.

In einem nächsten Schritt analysierten wir, ob dieser ELISA zum Screenen nach anderen Peptiden/Verbindungen angewandt werden kann, damit diese mit der Bindung der Bßi ₅₋₄₂-Sequenz an VE-Cadherin konkurrieren. Erwartungsgemäß hemmte das Peptid Bβ_{1S-42} vollständig die Bindung des flag-markierten Peptids Bßi ₅₋₄₂ und wurde als positive Kontrolle verwendet, und Zufallspeptide oder ein Lösungsmittel hatten keinerlei Wirkung und wurden als negative Kontrollen verwendet. Kürzere Peptide hemmten teilweise die Bindung von Bßis. 42 an VE-Cadherin. NDSK-II hemmte die Bß₁₅₋₄₂-Bindung in konzentrationsabhängiger Weise. Ein Gleichgewicht zwischen Bß 15-42 und NDSK-II (50%ige Hemmung) war bei einem Molverhältnis von 24:1 erreicht. NDSK hatte wenig oder keine Wirkung.

Die Kunststoffoberfläche wurde mit VE-Cadherin in einer Konzentration von 8 nM beschichtet. Danach wurden die angegebenen Peptide in Konzentrationen von 200 μM hinzugefügt, NDSK oder NDSK-II wurde in den angegebenen Konzentrationen hinzugefügt. Der Nachweis der Bindung des FLAG-markierten Bbetais ₋₄₂ (12 μM) wurde wie obenstehend beschrieben durchgeführt.

8

Blockierendes Reagens	% Hemmung der 15-42FLAG-Bindung an VE-Cadherin
	Mittelwert ± Standardabweichung
Peptid 15-42 (28mer)	100 ± 10
Peptid zufällig (4mer)	3 ± 3
Peptid zufällig (28mer)	10 ± 3
Lösungsmittel	0 + 0
Peptid 15-18 (4mer) 200 μM	65 ± 12
Peptid 15-26 (12mer) 200 μM	64 ± 10
Peptid 15-30 (16mer) 200 μM	61 ± 13
Peptid 15-34 (20mer) 200 μM	67 ± 17
Peptid 15-37 (24mer) 200 µM	17 ± 19
Peptid 16-42 (27mer) 200 μM	55 ± 13
Peptid 15-18 (4mer) 12 μM	7 ± 2
Peptid 15-26 (12mer) 12 μM	6 ± 1
Peptid 15-30 (16mer) 12 µM	6 ± 3
Peptid 15-34 (20mer) 12 μM	7 ± 1
Peptid 15-37 (24mer) 12 μM	7 ± 2
Peptid 16-42 (27mer) 12 μM	5 ± 2
NDSK-II 0,06 μM	1 + 0
NDSK-II 0,12 μM	39 + 18
NDSK-II 0,20 μM	42 + 14
NDSK-II 0,60 μM	52 + 16
NDSK-II 1,2 µM	63 + 13
NDSK-II 2,4 µM	79 + 9
NDSK-II 4,0 μM	82 + 12
NDSK 0,06 μM	0+0
NDSK 0,12 μM	2 + 1
NDSK 0,20 μM	1 + 1
NDSK 0,60 μM	7 + 6
NDSK 1,2 μM	15 + 13
NDSK 2,4 µM	16 + 9
NDSK 4,0 µM	20 + 10
anti-VE-Cadherin Ab (TEA 1/31, 11	mg/ml) $2+1$

WO 2006/000007 PCT/AT2005/000228 -

Wirksamkeit des Peptids bbetai ₅₋₄₂ bei der Behandlung von Denguevirus-infizierten Mäusen. Materialien und Methoden.

Virus. Das Denguevirus des Typs 2 (DEN-2), Stamm P23085, wurde von der Staatlichen Virensammlung, Moskau, Russland, in Form einer gefriergetrockneten Suspension von infiziertem ICR-Mäusegehirn erhalten. Das erhaltene Denguevirus wurde im Gehirn der ICR-Mäusejungtieren Passagen unterzogen, so wie zuvor beschrieben (Atrasheuskaya et al. FEMS Immunology and Medical Microbiology. 35, 33-423). Eine 10%ige Gehirnsuspension diente als Virusstamm und wurde bei -40° C gelagert. Der Virustiter wurde durch die serienmäßigen Verdünnungen der Gehirnsuspension bestimmt. Die Gehirnsuspension wurde in Gruppen von jeweils 10 Mäusen (4 Wochen alte BALB/c) i.p. geimpft, und die Mortalität wurde aufgezeichnet. Der Virustiter wurde berechnet und betrug 7,4 Ig LD50/ml.

Jegliche Arbeit mit dem infektiösen Virus wurde im Sicherheitsraum der höchsten Biosicherheitsstufe 3 (BSL-3) im Labor des SRC VB «Vector» (Russland) durchgeführt. Tiere.

Vier Wochen alte, durch Inzucht erzeugte männliche BALB/c-Mäuse (Haplotyp H-2d) wurden vom Vivarium des Staatlichen Forschungszentrums für Virologie und Biotechnologie «Vector» erhalten. Die Tiere wurden mit Futter und Wasser, das ad libitum verfügbar war, in einzelne Käfige gegeben.

Analysen.

Den Mäusen wurde vor der Infektion und nach der Exposition an DEN-2 unter Methoxyfluran- Anästhesie aus dem orbitalen Sinus Blut entnommen. Für jeden Zeitpunkt wurden drei Mäuse zur Blutgewinnung herangezogen.

Die zirkulierenden Blutplättchen (PLT), roten Blutkörperchen (RBC), weißen Blut-körperchen (WBC), Hämoglobin (HGB) und Hämatokrit (HCT) wurden unter Verwendung eines Cell -Dyn 900-Hämatologie-Analysators (Sequoia-Turner corporation, USA, CA) bestimmt.

Ein Teil des gewonnenen Blutes wurde zentrifugiert, um Serum zu erhalten, das bis zum Ende des Versuchs bei -80 °C gelagert wurde. Die Serumspiegel von Cytokinen wurden gemessen, wobei von R&D Systems (Minneapolis,USA) hergestellte Enzym-Immunoassay-Kits gemäß den Instruktionen des Herstellers verwendet wurden. Die Nachweisgrenzen waren wie folgt: TNF-α, weniger 5,1 pg/ml; Interleukin (IL)-I ß, 3,0 pg/ml; IL-6, 3,1 pg/ml; IFNγ- weniger 20 pg/ml.

Das Denguevirus im Blut der Tiere wurde mittels RT-PCR identifiziert, so wie zuvor beschrieben (Harris et al. J. Clin. Microbiol. 36, 2634-2639). Die Gesamt-RNA aus dem Blut wurde unter Verwendung eines Kits von Quiagen (Deutschland) isoliert. Die Primer waren

wie folgt: oberer 5'AATATGCTGAAACGCGAGAGAAACCG (Position 136-161), unterer 5'AAGGAACGCCACCAAGGCCATG (Position 237-258), wobei sie ein 119 bp-Produkt amplifizierten. Um die Virusbelastung quantitativ zu bestimmen, wurde DEN-2 wie zuvor beschrieben auf Vero E6-Zellkulturen titriert (Harris et al. J. Clin. Microbiol. 36, 2634-2639). Am 0. und 22. Tag nach der Exposition wurde das Blut der überlebenden Mäuse mittels ELISA in Hinblick auf anti-DEN-2-Antikörper (IgG) analysiert, so wie zuvor beschrieben (Ignatyev et al. J. Biotechnology. 44, 111-118).

Versuchsaufbau.

Durch Inzucht erzeugte, vier Wochen alte männliche BALB/c-Mäuse wurden in 6 Hauptgruppen aufgeteilt. Jede Gruppe enthielt 50 Mäuse. Alle Tiere wurden intraperitoneal (i.p.) mit dem an Mäuse angepassten DEN-2-Stamm P23085 (wie obenstehend beschrieben) in einer Dosierung von 1 LD₅₀ infiziert und täglich auf Anzeichen einer Krankhaftigkeit untersucht. Mäuse aus den ersten Untergruppen aller Hauptgruppen (Al-Fl) wurden zur Mortalitätskontrolle herangezogen. Jede Untergruppe enthielt 20 Mäuse. Tiere der zweiten Untergruppen (A2 - F2) wurden zum Erhalten von Serumproben verwendet. Jede Untergruppe enthielt 30 Mäuse.

Gruppenbeschreibung. n= 50 in jeder Gruppe

Die Kontrollgruppe erhielt nur das Virus.

Die Behandlung mit Peptid B β_{15-42} wurde zweimal täglich mit jeweils 4800 µg/kg durch eine intraperitoneale Injektion durchgeführt, und zwar ab dem 3. Tag nach der Infektion bis zum 8. Tag nach der Infektion.

Blut- und Serumproben wurden an den ausgewählten Zeitpunkten beschafft: am 1., 3., 5., 7., 11., 22. Tag nach der Exposition.

Eine statistische Analyse wurde unter Anwendung des Student's t- or Chi-Quadrat-Tests durchgeführt. P-Werte <0,05 wurden als signifikant betrachtet.

Tabelle 1. Mortalität und IgG-Titer. p<0,05 zwischen Gruppen

Gruppe	Mortalität	Überleben	mittlere Zeitdauer	IgG-	
	(%)	(%)	bis zum Tod.	Titer	
unbehandelt	40	60	6,800±0,245	1:160	
Ββ ₁₅₋₄₂	0	100	Alle Mäuse überlebten	1:20	

Tabelle 2

	Kontrollen			Ββ ₁₅₋₄₂ -	Bβ ₁₅₋₄₂ -behandelt		
	Tag 3	5	7	Tag 3	5	7	
Hämoglobin g/ml	14	10	10	15	10	15	

Hämatokrit %	15	22	35	15	33	43
TNF pg/ml	33	71	65	32	65	45
IL-6 pg/ml	210	210	150	140	110	100
IL-1 pg/ml	32	55	59	32	29	28

Virämie Ig PFU/ml

	Kontrollen	Bb ₁₅₋₄₂
Tag 0	0	0
2	1,2±0,1	1,2±0,2
3 ^b	2,4±0,3	2,2±0,2
4	4,4±0,2	4,2±0,2
5	6,0±0,4	5,6±0,4
6	6,2±0,4	6,0±0,4
7	6,3±0,3	5,9±0,4
28	0 -	0

Gramnegativer Schock

Männliche Wistar-Ratten mit einem Gewicht von 230-280 g waren in der Tierversuchsanlage (Universität Düsseldorf) untergebracht und wurden mit Standardkost und Wasser ad libitum gefüttert. Alle Vorgänge wurden gemäß den AAALAC-Richtlinien und dem Handbuchfür die Pflege und Verwendung von Labortieren (Amt für Gesundheit und Soziales, Nationale Gesundheitsinstitute, Veröffentlichung Nr. 86-23) ausgeführt. Außerdem waren alle Versuche von einer Behörde für Ethik und Forschung der Universität Düsseldorf und des Landes bewilligt. Wie zuvor beschrieben (Zacharowski et al. Crit Care Med 2000, Zacharowski et al. Crit Care Med 2001; 29:1599-1608), wurden die Ratten mitNatriumthiopenton (120 mg/kg i.p.) anästhesiert, und die Anästhesie wurde je nach Bedarf mit ergänzenden Dosierungen von Natriumthiopenton aufrechterhalten.

In die Luftröhre wurde eine Kanüle eingeführt, um die Atmung zu ermöglichen, und die rektale Temperatur wurde mit einer homööthermen Decke bei 37 °C gehalten. Die rechte Halsschlagader wurde katheterisiert und mit einem Druckfühler verbunden, um den phasischen und mittleren Arterienblutdruck (MAP) und die Pulszahl (HR) zu messen, welche auf einem Datenerfassungsystem (MacLab 8e, ADI Instruments, Deutschland) angezeigt wurden, das auf einem IBM-Computer installiert war. In die rechte Drosselvene wurde zur Verabreichung von Arzneimitteln eine Kanüle eingeführt. In die Blase wurde ebenfalls eine Kanüle eingeführt, um den Urinfluss zu ermöglichen und um die Möglichkeit der

Entwicklung eines später auftretenden Nierenversagens zu verhindern. Alle Tiere erhielten während des gesamten Versuchs einen vollständigen Flüssigkeitsersatz von 1,0 ml/kg/h (0,9 % Natriumchlorid, Kochsalzlösung, als i.v.-Infusion in die Drosselvene). Nach Beendigung des chirurgischen Eingriffs wurde ermöglicht, dass sich die kardiovaskulären Parameter 15 Minuten lang stabilisierten, und sie wurden 6 Stunden lang ständig aufge-zeichnet. Bei diesem Modell eines LPS-induzierten multiplen Organversagens ist ein Zeitraum von 6 Stunden wesentlich, um einen erheblichen Anstieg der Serumspiegel von AST und ALT zu erzielen, während ein erheblicher Anstieg der Serumspiegel von Harnstoff und Kreatinin bereits nach 2 Stunden beobachtet werden kann.

Drei Gruppen wurden untersucht:

Die Ratten wurden einer Scheinoperation unterzogen: (Simulation).

Die Ratten wurden einem gramnegativen Schock ausgesetzt. Lipopolysaccharid von E. coli, Serotyp 0,127:B8 (6 mg/kg i.V.), wurde 5 Minuten lang i.v. verabreicht, 1 Stunde später erhielten die Tiere eine Kochsalzlösung (2,4 ml/kg): (LPS + Kochsalzlösung).

Die Ratten wurden einem gramnegativen Schock ausgesetzt. Lipopolysaccharid von E. coli, Serotyp 0,127:B8 (6 mg/kg i.v.), wurde 5 Minuten lang i.v. verabreicht, die Tiere erhielten $B\beta_{15-42}$ (2,4 mg/kg): (LPS + $B\beta_{15-42}$).

Überleben n=20 in jeder Gruppe, p<0,05

Simulation	LPS plus Kochsalzlösung	LPS plus Bβ ₁₅₋₄₂
100 %	25 %	88 %

Sechs Stunden nach dem Auslösen eines gramnegativen Schocks wurde aus dem in der rechten Halsschlagader platzierten Katheter Blut entnommen. Die Blutprobe wurde zentrifugiert (1610 x g für 3 Minuten bei Raumtemperatur), um Plasma abzutrennen. Die folgenden Markerenzyme wurden im Plasma als biochemische Indikatoren für eine multiple Organschädigung/Fehlfunktion gemessen:

Eine Leberschädigung wurde bewertet, indem der Anstieg der Plasmaspiegel von Alaninaminotransferase (ALT, ein spezifischer Marker für eine Leberparenchymschädigung) and Aspartataminotransferase (AST, ein nicht spezifischer Marker für eine Leber-schädigung) gemessen wurde.

Eine Nierenfehlfunktion wurde abgeschätzt, indem die Anstiege der Plasmaspiegel von Harnstoff (ein Indikator für eine beeinträchtigte Ausscheidungsfunktion der Niere und/oder einen erhöhten Katabolismus) und Kreatinin (ein Indikator für eine reduzierte Glomerulusfiltrationsrate und folglich eine Nierenfehlfunktion) gemessen wurden. Die Plasmaspiegel von Glucose und Amylase wurden als indirekte Marker der Pankreasfunktion und -Schädigung gemessen.

Außerdem wurde das arterielle p θ_2 als indirekter Marker der Lungenfunktion Aschädigung gemessen. Laborwerte

	Simulation	Kontrolle	Ββ ₁₅₋₄₂
ALT	39,8	542,3	261,9
SEM	5,2	117,2	42,7
AST	194,1	908,8	529,0
SEM	30,8	140,9	75,7
Kreatinin	0,5	0,9	0,6
SEM	0,0	0,1	0,1
Harnstoff	49,1	123,2	107,8
SEM	5,8	4,6	5,9
Glucose	131,5	75,3	45,8
SEM	7,5	5,4	9,1
Amylase	1713,3	1837,4	1945,1
SEM	131,5	122,7	176,8
pO2	90,0	67,0	98,7
SEM	1,8	3,7	8,2

Mittlerer Arteriendruck

Zeit	Simulation		LPS		LPS+	
					Ββ ₁₅₋₄₂	
(h)	Mittelwert	SEM	Mittelwert	SEM	Mittelwert	SEM
0	120,9	5,5	118,9	5,4	128,9	5.2
1	111,5	10,6	90,7	5,5	83,7	4.6
2	113,2	7,3	100,2	5,1	102,3	4
3	116,4	5,4	90	7,4	103,2	4
4	108,7	8,9	81,1_	7,9	101,2	3

5	104,1	9,6	60, 1	10,8	97,1	5,4
6	104,1	9,	34, 1	7,7	107,7	9,6

Pulszahl

Zeit	Simulation	В	LPS		LPS	
					Ββ ₁₅₋₄₂	
(h)	Mittelwert	SEM	Mittelwert	SEM	Mittelwert	SEM
0	482,2	17	457	18,1	436,9	6,4
1	461,7	12,1	511,2	27,4	484,8	18,6
2	488,1	13,6	523,3	27,3	484,1	10,3
3	506,6	26,6	518,5	24,9	509,8	12
4	488,9	17,4	516,7	32,1	516,7	13,4
5	470,4	13,9	515,5	26,1	533,7	30,7
6	443,7	0,7	530,1	27,7	541,6	24,4

Am Ende des Versuchs wurden von allen untersuchten Gruppen Organ (Lunge, Leber, Herz und Niere)-Biopsien entnommen. Die Biopsien wurden bei Raumtemperatur in einer gepufferten Formaldehydlösung (4% in phosphatgepufferter Kochsalzlösung) fixiert und nach Wien versandt. Mit Standard-H&E gefärbte Abschnitte zeigten keinerlei Unterschiede. Bei Kontrollen, die nur LPS erhielten, fanden wir jedoch in Abschnitten, die unter Verwendung von saurem Fuchsin-Orange G hinsichtlich Fibrinablagerungen gefärbt wurden, Zahlen von Fibrinthrombi, die im Vergleich zu Tieren, welche mit LPS plus Bß 15-42 (p<0,05) behandelt wurden, signifikant erhöht waren. In scheinbehandelten Tieren waren keine Fibrinthrombi vorhanden.

durchschnittliche Zahl von Fibrinthrombi in Gefäßen

	LPS plus Kochsalzlösung	LPS plus Bbeta ₁₅₋₄₂
Herz	28 + 13	5+2
Niere	17 + 8	2+9
Leber	47 + 41	78 + 37
Lunge	1,7 + 1	1+0

PATENTANSPRÜCHE:

1. Verwendung eines Peptids mit der allgemeinen Formel I

worin

Ri und R₂ gleich oder unterschiedlich, Wasserstoff, einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 10, insbesondere 1 bis 3 Kohlenstoffatomen bedeuten, Z₁ einen Histidin- oder Prolinrest bedeutet, Z₂ einen Argininrest, einen Peptidrest oder einen Proteinrest mit anfangständigem Argininrest, insbesondere mit 2 bis 30 Aminosäuren, bedeutet,

welches Peptid die biologische Eigenschaft besitzt, mit dem induzierbaren VE-Cadherin-Bindungsmotiv an der Bß-Kette (d.h. B β_{15-42}) des menschlichen Fibrins zusammenzupassen, für die Herstellung einer pharmazeutischen Zubereitung zur Behandlung von Schock.

2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das Peptid die allgemeine Formel II

$$R_1$$
 N-CH₂—C—Z₁—Arg—Z₃—Z₄—Z₅ (H)

aufweist, worin

Zi einen Histidin- oder Prolinrest bedeutet,

Arg einen Argininrest bedeutet,

Z₃ einen Prolin- oder Valinrest bedeutet,

Z₄ einen Leucin- oder Valinrest bedeutet,

Z₅ einen Peptidrest oder einen Proteinrest mit insbesondere mit 2 bis 30 Aminosäuren oder einen Alkoholrest mit 1 bis 10, insbesondere 1 bis 3 Kohlenstoffatomen oder einen organischen oder anorganischen Basenrest bedeutet.

3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß Z_5 ein von der Aalpha-Kette des Fibrins abgeleiteter Peptidrest ist.

- 4. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß Z_5 ein von der Bbeta-Kette des Fibrins abgeleiteter Peptidrest ist.
- 5. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß

Z₅ ein Peptidrest mit der Aminosäuresequenz

Asp Lys Lys Arg Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro He Ser Gly Gly Gly Tyr Arg

Zi ein Histidinrest, Arg ein Argininrest, Z3 ein Prolinrest, und Z₄ ein Leucinrest ist.

6. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß

Z₅ ein Peptidrest mit der Aminosäuresequenz

Glu Arg His Gln Ser Ala Cys Lys Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu Asp Trp Asn Tyr Lys

Zi ein Prolinrest,
Arg ein Argininrest,
Z3 ein Valinrest, und
Z₄ ein Valinrest ist

7. Verwendung eines Peptids, welches die N-terminale Sequenz

Gly-His-Arg-Pro-Leu-Asp-Lys-Lys-Arg-Glu-Glu-Ala-Pro-Ser-Leu-Arg-Pro-Ala-Pro-Pro-Pro-Ile-Ser-Gly-Gly-Gly-Tyr-Arg

aufweist, welches Peptid die biologische Eigenschaft besitzt, mit dem induzierbaren VE-Cadherin-Bindungsmotiv an der Bβ-Kette (d.h. Bβ i_{5,42}) des menschlichen Fibrins zusammenzupassen, für die Herstellung einer pharmazeutischen Zubereitung zur Behandlung von Schock.

8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, dass das Peptid

Gly-His-Arg-Pro-Leu-Asp-Lys-Lys-Arg-Glu-Glu-Ala-Pro-Ser-Leu-Arg-Pro-Ala-Pro-Pro-Pro-Ile-Ser-Gly-Gly-Gly-Tyr-Arg

ist.

9. Verwendung gemäß einem der Ansprüche 1 bis 8, wobei der Schock mit einem oder mehreren aus der Gruppe, umfassend Bakteriengifte, disseminierte intravaskuläre Koagulopathie, nektrotisierende Fasciitis, hämorrhagischen Schock infolge einer Virusinfektion, insbesondere verursacht durch Filovirus, Arenaviridae, Bunyaviridae, Flavivirus, Dengue, akutes hämorrhagisches Atmungsversagen, verursacht durch Infektionserreger oder Autoimmunerkrankungen, Organversagen nach einer Organschädigung, insbesondere durch einen Myocardinfarkt, eine Gefäßoperation, ein Abklemmen von Organen, einen hämorrhagischen Schock, Lungeninfarkt, Leberinfarkt, Darminfarkt, operative Eingriffe und Schlaganfall, und die Organfehlfunktion bei transplantierten Organen, in Zusammenhang steht.

INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER A61K38/36 A61P7/00 A61P9/00 IPC 7 According to International Patent Classification (IPC) orto both national Classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (Classification System followed by Classification Symbols) A61P IPC 7 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted duπng the international search (name of data base and where practical search terms used) EPO-Internal, WPI Data, PAJ, Sequence Search, BIOSIS, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate of the relevant passages Category o Relevant to Claim No X WO 99/02565 A (THERASORB MEDIZINISCHE 1-4,9SYSTEME GMBH) 21 January 1999 (1999-01-21) Α the whole document 5-8 siehe insbesondere: page 4, line 14 - page 6, line 8 page 7, line 1 - line 24 A WO 02/48180 A (FIBREX MEDICAL RESEARCH & 1-9 DEVELOPMENT GMBH) 20 June 2002 (2002-06-20) cited in the application the whole document siehe insbesondere: page 2, line 1 - page 3, line 29 page 5, line 17 - page 6, line 14 page 17 - page 19; examples 13,14 Further documents are listed in the continuation of box C Patent family members are listed in annex $^{\circ}$ Special catego π es of cited documents ¹T" later document published after the international filing date or profity date and not in conflict with the application but "A" document defining the gen 0 ral State of the arl which is not cited to understand the p π neiple or theory underlymg the considered to be of particular relevance invention "E" earlier document but published on or afterthe international "X" document of particular relevance, the claimed invention filing date cannot be considered novel or cannot be considered to ¹L' document which may throw doubts on pπonty clatm(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance, the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the *O' document refer π ng to an oral disclosure, use, exhibition or document is combined with one or more other such document other means ments, such combination being obvious to a person skilled in the art document published pror to the international filing date but later than the proority date claimed *& document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 21 October 2005 07/11/2005 Name and mailing address of the ISA Autho nzed officer European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV RIJSWIJK Tel (+31-70) 340-2040 Tx 31 651 epo nl Fuchs, U Fax (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

PCT/AT2005/000228

	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 2003, ZACHAROWSKI, K. ET AL.: "A small molecule derived from fibrinogen, Bbetal5-42,	Relevant to Claim No 1-9
	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 2003, ZACHAROWSKI, K. ET AL.: "A small molecule derived from fibrinogen, Bbetal5-42,	
	BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 2003, ZACHAROWSKI, K. ET AL.: "A small molecule derived from fibrinogen, Bbetal5-42,	1-9
	reduces myocardial inflammation and injury via inhibition of the adhesion molecule VE-cadherin" XP002350542 Database accession no. 2004:19507 the whole document	
A	KNÖBL, P.: "Pathophysiologie und Therapie von Sepsis-assoziierten Gerinnungs Störungen" WIENER MEDIZINISCHE WOCHENSCHRIFT, vol. 152, no. 21-22, 2002, pages 559-563, XP002350540 the whole document	1-9
	•	

INTERNATIONAL SEARCH REPORT

PCT/AT2005/000228

Patent document cited in search report		Publication date	Patent family member(s)			Publication date
WO 9902565	A	21-01-1999	AU	732424	B2	26-042001
			AU	8854998	A	08-02-1999
			CA	2295688	Al	21-01-1999
			DE	19729591	Al	11-02-1999
			EP	1003787	A2	31-052000
			JР	2001509517	T	24-07-2001
			NZ	502749	A	31-082001
			TR	200000954	12	21-072000
WO 0248180	А	20-06-2002	AU	2131602	<u> </u>	24-062002
			ВG	107891	A	31-082004
			BR	0116122	A	14-102003
			CA	2430972	Al	20-06-2002
			CN	1518558	A	04-08-2004
			CZ	20031630	A 3	15-102003
			EA	5576	Bl	28-042005
			EE	200300283	A	15-102003
			ЕP	1341819	A2	10-092003
			HR	20030564	A2	30-062005
			HU	0401536	A2	29-112004
			JP	2004527469	T	09-092004
			NO	20032656	A	12-062003
			PL	362924	Al	02-112004
			SK	7062003	A3	04-112003
			US	2004192596	Al	30-092004
			ZA	200304545	A	13-092004

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES A61P9/00 IPK 7 A61K38/36 A61P7/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mrndestprutstoft (Klassifikationssystem und Klassifikationssymbole) IPK 7 A61K A61P Recherchierte aber nicht zum Mindestprusstoff gehörende Veröffentlichungen soweit diese unter die recherchierten Gebiete fallen Wahrend der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl verwendete Suchbegriffe) , WPI Data, PAJ, Sequence Search, BIOSIS, EMBASE EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr Anspruch Nr Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie" 1-4,9 wo 99/02565 A (THERASORB MEDIZINISCHE SYSTEME GMBH) 21. Januar 1999 (1999-01-21 5-8 das ganze Dokument siehe insbesondere: Seite 4, Zei le 14 - Seite 6, Zei le 8 Seite 7, Zei le 1 - Zei le 24 1-9 wo 02/48180 A (FIBREX MEDICAL RESEARCH & Α **DEVELOPMENT GMBH)** 20. Juni 2002 (2002-06-20) in der Anmel dung erwähnt das ganze Dokument siehe insbesondere 2, Zei le 1 - Seite 3, Zei le 29 Seite 5, Zei le 17 - Seite 6, Zei le 14 Seite 17 - Sei t e 19; Bei spiele 13,14 Seite -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen *T* Spatere Veröffentlichung, die nach dem internationalen Anmeldedatum ^o Besondere Kategonen von angegebenen Veröffentlichungen oder dem Pnoritatsdatum veröffentlicht worden ist und mit der ¹A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, Anmeldung nicht kollidiert, sondern nur zum Verständnis des der aber nicht als besonders bedeutsam anzusehen Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden älteres Dokument das jedoch erst am oder nach dem internationalen Theorie angegeben ist Anmeldedatum veröffentlicht worden ist *X¹ Veröffentlichung von besonderer Bedeutung die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf "L" Veröffentlichung die geeignet ist, einen P nontatsanspruch zweifelhaft er erfinderischer Tätigkeit beruhend betrachtet werden scheinen zu lassen, oder durch die das Veroffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden eve Veröffentlichung von besonderer Bedeutung die beanspruchte soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet ausgeführt) werden, wenn die Veröffentlichung mit einer oder mehreren anderen O" Veröffentlichung, die sich auf eine mundliche Offenbarung, Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend ist Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach *8 Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten P no matsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 21. Oktober 2005 07/11/2005 Name und Postanschrift der Internationalen Bevollmächtigter Bediensteter Recherchenbehorde Europaisches Patentamt P B 5818 Patentlaan 2 NL - 2280 HV R(jSWIJk Tel (+31-70) 340-2040, Tx 31651 epo nl, Fuchs, U Fax (+31-70) 340-3016

INTERNATIONALER RECHERCHENBERICHT

Internales Aktenzeichen
PCT/AT2005/000228

		101/11/20	05/000228
C.(Fortsetzi	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie"	Bezeichnung der Veröffentlichung soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr Anspruch Nr
A	DATABASE BIOSIS Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 2003, ZACHAROWSKI, K. ET AL.: "A smali molecule derived from fibrinogen, Bbetal5-42, reduces myocardial inflammation and injury via inhibition of the adhesion molecule VE-cadherin" XP002350542 Database accession no. 2004:19507 das ganze Dokument		1-9
	KNÖBL, P.: "Pathophysiologie und Therapie von Sepsis-assoziierten Gerinnungsstörungen" WIENER MEDIZINISCHE WOCHENSCHRIFT, Bd. 152, Nr. 21-22, 2002, Seiten 559-563, XP002350540 das ganze Dokument		1-9

INTERNATIONALER RECHERCHENBERICHT

PCT/AT2005/000228

Im Recherchenbericht Datum der angeführtes Patentdokument Veröffentlichung		Magned(er) der Patentfamihe			Datum der Veröffentlichung	
wo 9902565	A	21-01-1999	AU	732424	B2	26-042001
			AU	8854998	A	08-021999
			CA	2295688	Al	21-011999
			DE	19729591	Al	11-021999
			EР	1003787	A2	31-052000
			JР	2001509517	T	24-072001
			NZ	502749	A	31-082001
			TR	200000954	T2	21-072000
wo 0248180	 A	20-06-2002	AU	2131602	A	24-062002
			BG	107891	A	31-082004
			BR	0116122	A	14-10- -2003
			CA	2430972	Al	20-062002
			CN	1518558	A	04-082004
			CZ	20031630	A3	1 5- 1 0- -2003
			EA	5576	ві	28-04- 2005
			EE	200300283	A	15-102003
			EP	1341819	A2	10-092003
			HR	20030564	A2	30-062005
			HU	0401536	A2	29-112004
			JР	2004527469	T	09-092004
			NO	20032656	Α	12-062003
			PL	362924	Al	02-112004
			SK	7062003	A3	04-11- -2003
			US	2004192596	Al	30-092004
			ZA	200304545	A	13-092004