Supplement 3

Binomial test analysis: Does the distribution of ratings differ from a theoretical 'NULL' distribution?

Peter Kamerman and Tory Madden 06 Dec 2018

Contents

Question	1
SPARS A	2
Import and inspect data	2
Binomial test	3
Plot	4
SPARS B	6
Import and inspect data	6
Binomial test	8
Plot	9
NRS (zero: 0)	1
	11
•	13
	14
NRS (zero: 0 to 15)	L 6
	16
•	16
	16
SRS (zero: 0)	8
	18
•	20
	21
SRS (zero: -15 to 0)	22
	22
	 22
	23
Session information	25

Question

For each participant, and at each stimulus intensity, does the distribution of SPARS, NRS, or SRS ratings differ significantly from a theoretical 'NULL' distribution?

To answer the question, we used the binomial test. The binomial test is an exact test of the statistical significance of deviations from a theoretically expected distribution of observations into two categories. As such, using the test required that we dichotomize the continuous rating data we collected (generally not a good thing, but here it is appropriate).

The SPARS ranges from -50 ('no sensation') to +50 ('most intense pain you can imagine'), and therefore ratings can span 0 (pain threshold, 'the exact point at which you feel transitions to pain'). We therefore coded SPARS ratings < 0 as being 'negative', and ratings > 0 as being 'positive'. In the first SPARS experiment (SPARS A), participants were not allowed to record a stimulus as 0, but in the second SPARS experiment (SPARS B), they could record stimuli as 0 on the scale. We felt that the 0 ratings in the SPARS B experiment were uninformative, and so we excluded ratings of 0 from the analysis (we describe the number of zero ratings per participant below). The NRS ranges from 0 ('no pain') to 100 ('most intense pain you can imagine'), and therefore ratings immediately to the right of the 0-point of the scale mark the transition from non-painful to painful sensation. We therefore coded NRS ratings = 0 as being 'negative', and ratings > 0 as being 'positive'. In addition, it has been reported that individuals use the first 15 points of a 0 to 100 NRS to record non-painful stimuli (NEEDS A REFERENCE), and so we also analysed the NRS data with NRS ratings ≤ 15 as being 'negative', and ratings > 15 as being 'positive'.

The SRS ranges from -100 ('no sensation') to 0 ('just painful/pain threshold'), and therefore ratings immediately to the left of the 0-point of the scale mark the transition from non-painful to painful sensation. We therefore coded SRS ratings = 0 as being 'positive', and ratings < 0 as being 'negative'.

In all cases, we modelled the data using the binomial test with a 50% probability of 'success' (positive rating arbitrarily chosen as success). This is a conservative approach as one would expect that for the SPARS and the NRS, as stimulus intensity increases above pain threshold, the probability of recording a 'positive' rating increases. Similarly, in the case of the SPARS (which allows the rating of intensity of noxious and non-noxious stimuli), one would expect that the probability of recording a 'negative' rating would increase as stimulus intensity decreased. However, since we did not know the approximate intensity of a theshold stimulus, and there was high inter-individual variation in sensitivity, we were unable to gage at which stimulus intensities we should start shifting the probability of 'success' away from 50% (see Supplement 1 and Supplement 2).

Because ratings on the SPARS can range from -50 to +50, we analysed the data using a two-tailed p-value. That is, the distribution may shift to the left or right of the theoretical distribution. However, because the NRS has a floor rating of 0 ('no pain') and the SRS has a ceiling rating of 0 ('pain threshold'), the change in rating from 0 is unidirectional (> 0), so we performed the binomial test with a one-tailed p-value. For all test, significance was assessed at the $\alpha = 0.05$ level. And, because this was an exploratory analysis, we did not make any family-wide corrections for multiple comparisons.

SPARS A

```
## $ trial_number <dbl> 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 9...
## $ intensity
                 <dbl> 3.00, 2.25, 4.00, 3.25, 2.75, 2.25, 2.75, 4.00, 2...
## $ rating
                 <dbl> -40, -25, 10, 2, -10, -25, -20, 10, -25, -50, -25...
data_sparsA %>%
   select(intensity, rating) %>%
   skim()
## Skim summary statistics
## n obs: 1927
## n variables: 2
##
## -- Variable type:numeric -----
                                                   p25 p50
                                                            p75 p100
                                          sd p0
##
   variable missing complete
                              n mean
                                              1 1.75 2.5 3.25
##
   intensity
                   0
                        1927 1927 2.47 0.93
##
      rating
                   0
                        1927 1927 -4.45 22.31 -50 -20
                                                        2 10
##
       hist
##
##
Binomial test
```

```
# Select columns
data_sparsA %<>%
    select(PID, intensity, rating)
# Nest data by PID and stimulus intensity
sparsA_nest <- data_sparsA %>%
    group_by(PID, intensity) %>%
   nest()
# Generate data
sparsA_nest %<>%
    # Add probability of success column
   mutate(prob = 0.5) \%%
    # Extract rating data from dataframe
   mutate(data_vec = map(.x = data,
                          ~ .$rating)) %>%
    # Recode rating data as categories according to sign
   mutate(data_cat = map(.x = data_vec,
                          \sim ifelse(.x < 0,
                                   yes = 'negative',
                                   no = 'positive'))) %>%
    # Count the number of positive and negative ratings
   ## positive numbers arbitrarily listed first == 'success'
   mutate(success_count = map(.x = data_cat,
                           ~ c(length(.x[.x == 'positive']),
                               length(.x[.x == 'negative'])))) %>%
    # Conduct binomial test (two-sided)
   mutate(binomial_test = map2(.x = success_count,
                                 y = prob,
                                ~ binom.test(x = .x,
                                             p = .y,
                                             alternative = 'two.sided'))) %>%
```

For each paticipant, we plotted raw SPARS ratings at each stimulus intensity and colour-coded the data according to whether the p-value returned by the binomial test was significant (distribution of data points deviates significantly from the theoretical expected distribution).

```
sparsA_nest %>%
    # Select data columns
    select(PID, intensity, significant_p.value) %>%
    # Unnest data
   unnest() %>%
    # Join with original data
   right_join(data_sparsA) %>%
    # Reclass intensity as an ordered factor
   mutate(intensity = factor(intensity,
                              ordered = TRUE)) %>%
    # Plot
    ggplot(data = .) +
    aes(x = intensity,
        y = rating,
       fill = significant_p.value,
        colour = significant p.value) +
    geom_hline(yintercept = 0,
               size = 1) +
    geom_hline(yintercept = 25,
               linetype = 2) +
    geom_hline(yintercept = -25,
               linetype = 2) +
    geom_hline(yintercept = 50,
               linetype = 2) +
    geom_hline(yintercept = -50,
               linetype = 2) +
    geom_point(shape = 21,
               size = 4,
               stroke = 0.3) +
   labs(title = "SPARS A: Binomial test of positive/negative rating distribution",
         subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
         caption = "* 'success' arbitrarily chosen as a positive SPARS ratings",
         x = 'Stimulus intensity (J)',
         y = 'SPARS rating (-50, 50)') +
```

```
scale_x_discrete(breaks = seq(from = 1,
                              to = 4,
                              by = 0.5),
                 labels = sprintf('%.2f', seq(from = 1,
                                              to = 4,
                                              by = 0.5))) +
scale_y_continuous(limits = c(-50, 50),
                   breaks = c(-50, 0, 50),
                   labels = c(-50, 0, 50)) +
scale_fill_manual(values = c('#000000', '#CCCCCC')) +
scale_colour_manual(values = c('#CCCCCC', '#000000')) +
facet_wrap(~ PID, ncol = 4) +
theme(legend.position = 'none',
      panel.grid = element_blank(),
     panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                b = 0.1,
                                                r = 1,
                                                1 = 1,
                                                'lines')),
      axis.text.x = element_text(angle = -90,
                                 vjust = 0.5)
```

SPARS A: Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value Filled circles: Distribution does not deviate significantly from expected distribution

SPARS B

```
# Import
data_sparsB <- read_rds('data-cleaned/SPARS_B.rds') %>%
```

```
# Extract trials rated using the SPARS
   filter(scale == 'SPARS') %>%
   # Remove <NA>
   filter(!is.na(rating))
# Rank stimulus intensity
data sparsB %<>%
   group_by(PID, scale) %>%
   arrange(intensity) %>%
   mutate(intensity_rank = dense_rank(intensity)) %>%
   select(-intensity) %>%
   rename(intensity = intensity_rank) %>%
   ungroup()
# Inspect
glimpse(data_sparsB)
## Observations: 752
## Variables: 6
## $ PID
                <chr> "ID06", "ID06", "ID06", "ID06", "ID06", "ID06", "...
## $ block_number <int> 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2...
## $ trial_number <dbl> 4, 6, 27, 9, 13, 20, 20, 24, 27, 4, 18, 22, 5, 16...
                <chr> "SPARS", "SPARS", "SPARS", "SPARS", "SPARS", "SPA...
## $ scale
                <dbl> -49, 2, -6, 3, -20, -2, -31, 2, -5, -8, -23, 14, ...
## $ rating
## $ intensity
                data_sparsB %>%
   select(intensity, rating) %>%
   skim()
## Skim summary statistics
## n obs: 752
## n variables: 2
##
## -- Variable type:integer -------
##
   variable missing complete n mean sd p0 p25 p50 p75 p100
## intensity
                  0
                        752 752
                                5 2.58 1 3 5 7 9
##
## -- Variable type:numeric -------
  variable missing complete n mean
                                      sd p0 p25 p50 p75 p100
                                                                hist
                     752 752 -8.83 23.46 -50 -26 -4 5 50
     rating
# Number of O ratings
data sparsB %>%
   # Retain ratings of O
   filter(rating == 0) \%>%
   # Select columns
   select(PID, intensity, rating) %>%
   # Group by individual and intensity
   group_by(PID, intensity) %>%
   # Summarise
   summarise(zero_count = n()) %>%
   ftable(.)
                zero count 1 2 3 4
## PID intensity
```

```
0 0 0 0
## ID01 1
##
        2
                               0 0 0 0
        3
                               0 0 0 0
##
##
        5
                               0 0 0 1
        6
##
                               1 0 0 0
        7
                               0 0 1 0
##
##
        8
                               0 0 0 0
                               0 0 0 0
##
        9
                               1 0 0 0
## ID02 1
                               0 0 0 0
##
        2
        3
                               0 0 0 0
##
        5
##
                               0 0 0 0
        6
##
                               1 0 0 0
##
        7
                               0 0 0 0
##
        8
                               0 0 0 0
        9
                               0 0 0 0
##
## ID03 1
                               0 0 0 0
        2
                               1 0 0 0
##
##
        3
                               0 0 0 0
        5
                               0 0 0 0
##
##
        6
                               0 0 0 0
                               0 1 0 0
##
        7
##
        8
                               0 0 0 0
        9
                               0 0 0 0
##
                               0 0 0 0
## ID04 1
                               0 0 0 0
##
        2
                               0 0 0 0
##
        3
##
        5
                               0 0 0 0
##
        6
                               0 1 0 0
        7
                               0 0 0 0
##
        8
                               0 0 0 0
##
##
        9
                               0 0 0 0
## ID06 1
                               0 0 0 0
##
        2
                               1 0 0 0
        3
                               1 0 0 0
##
##
        5
                               0 1 0 0
        6
                               0 1 0 0
##
##
        7
                               1 0 0 0
##
        8
                               1 0 0 0
##
        9
                               0 0 0 0
## ID07 1
                               0 0 0 0
##
        2
                               1 0 0 0
                               1 0 0 0
##
        3
##
        5
                               1 0 0 0
        6
                               0 1 0 0
##
        7
                               0 0 1 0
##
                               0 1 0 0
##
        8
##
        9
                               1 0 0 0
```

Binomial test

Select data
data_sparsB %<>%

```
# Remove ratings of O
   filter(rating != 0) %>%
    # Select columns
    select(PID, intensity, rating)
# Nest data by PID and stimulus intensity
sparsB nest <- data sparsB %>%
    group_by(PID, intensity) %>%
   nest()
# Generate data
sparsB_nest %<>%
    # Add probability of success column
   mutate(prob = 0.5) \%%
    # Extract rating data from dataframe
   mutate(data_vec = map(.x = data,
                          ~ .$rating)) %>%
    # Recode rating data as categories according to sign
   mutate(data_cat = map(.x = data_vec,
                          \sim ifelse(.x < 0,
                                   yes = 'negative',
                                   no = 'positive'))) %>%
    # Count the number of positive and negative ratings
    ## positive numbers arbitrarily listed first == 'success'
   mutate(success_count = map(.x = data_cat,
                           ~ c(length(.x[.x == 'positive']),
                               length(.x[.x == 'negative'])))) %>%
    # Conduct binomial test (two-sided)
   mutate(binomial_test = map2(.x = success_count,
                                .y = prob,
                                ~ binom.test(x = .x,
                                             p = .y,
                                             alternative = 'two.sided'))) %>%
    # Extract p-value from binomial_test
    mutate(binomial_p.value = map(.x = binomial_test,
                                  ~ .x$p.value %>%
                                     round(., 3))) %>%
    # Categorise p-value using a p < 0.05 threshold
   ## Significant: distribution deviates significantly
   ## from the theoretical distribution
   ## No correction for multiple comparisons
   ## (too conservative for explorartory analysis)
   mutate(significant_p.value = map(.x = binomial_p.value,
                                     \sim ifelse(.x < 0.05,
                                              yes = 'yes',
                                              no = 'no')))
Plot
sparsB_nest %>%
    # Select data columns
    select(PID, intensity, significant_p.value) %>%
    # Unnest data
```

```
unnest() %>%
# Join with original data
right_join(data_sparsB) %>%
# Reclass intensity as an ordered factor
mutate(intensity = factor(intensity,
                          ordered = TRUE)) %>%
# Plot
ggplot(data = .) +
aes(x = intensity,
   y = rating,
   fill = significant_p.value,
    colour = significant_p.value) +
geom_hline(yintercept = 0,
           size = 1) +
geom_hline(yintercept = 25,
           linetype = 2) +
geom_hline(yintercept = -25,
           linetype = 2) +
geom_hline(yintercept = 50,
           linetype = 2) +
geom_hline(yintercept = -50,
           linetype = 2) +
geom_point(shape = 21,
           size = 4,
           stroke = 0.3) +
labs(title = "SPARS B: Binomial test of positive/negative rating distribution",
     subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
     caption = "* 'success' arbitrarily chosen as a positive SPARS ratings",
     x = 'Rank stimulus intensity (0.25J increments)',
     y = 'SPARS rating (-50, 50)') +
scale_x_discrete(breaks = seq(from = 1,
                              to = 9,
                              by = 1),
                 labels = sprintf('%.0f', seq(from = 1,
                                               to = 9.
                                              bv = 1))) +
scale_y_continuous(limits = c(-50, 50),
                   breaks = c(-50, -25, 0, 25, 50),
                   labels = c(-50, -25, 0, 25, 50)) +
scale_fill_manual(values = c('#000000', '#CCCCCC')) +
scale colour manual(values = c('#CCCCCC', '#000000')) +
facet_wrap(~ PID, ncol = 4) +
theme(legend.position = 'none',
      panel.grid = element_blank(),
      panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                b = 0.1
                                                r = 1,
                                                1 = 1,
                                                 'lines')))
```

SPARS B: Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value Filled circles: Distribution does not deviate significantly from expected distribution

* 'success' arbitrarily chosen as a positive SPARS ratings

NRS (zero: 0)

```
# Import
data_nrs <- read_rds('data-cleaned/SPARS_B.rds') %>%
    # Extract trials rated using the SPARS
   filter(scale == 'NRS') %>%
    # Remove <NA>
   filter(!is.na(rating))
# Rank stimulus intensity
data_nrs %<>%
   group_by(PID, scale) %>%
   arrange(intensity) %>%
   mutate(intensity_rank = dense_rank(intensity)) %>%
    select(-intensity) %>%
   rename(intensity = intensity_rank) %>%
   ungroup()
# Inspect
glimpse(data_nrs)
## Observations: 753
## Variables: 6
                  <chr> "ID06", "ID06", "ID06", "ID06", "ID06", "ID06", "...
## $ PID
```

```
## $ block_number <int> 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 9, 9...
## $ trial_number <dbl> 7, 9, 26, 4, 9, 27, 2, 4, 12, 4, 7, 10, 5, 6, 27,...
               <chr> "NRS", "NRS", "NRS", "NRS", "NRS", "NRS", "NRS", ...
## $ scale
               <dbl> 5, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 48, 1, 0, 53, 0,...
## $ rating
## $ intensity
               data nrs %>%
   select(intensity, rating) %>%
   skim()
## Skim summary statistics
## n obs: 753
## n variables: 2
## -- Variable type:integer ------
   variable missing complete n mean sd p0 p25 p50 p75 p100
                      753 753
##
   intensity
                 0
                              5 2.59 1 3 5 7 9
##
## -- Variable type:numeric ------
  variable missing complete n mean sd p0 p25 p50 p75 p100
                                                           hist
            0 753 753 19.63 26.82 0 1 5 28 98
# Number of O ratings
data_nrs %>%
   # Retain ratings of O
   filter(rating == 0) %>%
   # Select columns
   select(PID, intensity, rating) %>%
   # Group by individual and intensity
   group_by(PID, intensity) %>%
   # Summarise
   summarise(zero_count = n()) %>%
   ftable(.)
##
               zero_count 1 2 3 4 5 6 7 8 10 12
## PID intensity
## ID01 1
                        0 0 0 0 0 0 0 0
##
                        0 0 0 0 0 0 0
      2
##
      3
                        0 0 0 0 0 0 0
##
      4
                        0001000000
##
      5
                        0 0 0 1 0 0 0 0
##
                        0000000000
      6
##
      7
                        0 1 0 0 0 0 0 0 0
## ID02 1
                        0000000010
      2
                        0 0 0 0 0 0 1 0 0
##
##
      3
                        0 0 1 0 0 0 0 0 0
##
                        0 0 0 0 0 0 0 0
##
      5
                        0 0 0 0 0 0 0 0
##
      6
                        0 0 0 0 0 0 0 0
##
      7
                        0 0 0 0 0 0 0 0 0
## ID03 1
                        0 0 0 0 1 0 0 0 0
      2
                        0 0 0 1 0 0 0 0 0
##
##
      3
                        0 0 1 0 0 0 0 0 0
      4
                        0 0 0 0 0 0 0 0 0
##
##
      5
                        0100000000
##
      6
                        1000000000
```

```
10000000000
##
                        0 0 0 0 0 1 0 0 0
## ID04 1
                        0 0 0 0 0 1 0 0
##
      2
      3
##
                        0001000000
##
      4
                        0 0 1 0 0 0 0 0
##
      5
                        1 0 0 0 0 0 0 0 0
##
      6
                        1 0 0 0 0 0 0 0
##
      7
                        1 0 0 0 0 0 0 0 0
## ID05 1
                        0 0 0 1 0 0 0 0
##
                        0001000000
      2
##
      3
                        0 0 0 0 0 0 1 0
                        0 1 0 0 0 0 0 0 0
##
      4
      5
                        0 1 0 0 0 0 0 0 0
##
##
      6
                        0 0 0 0 0 0 0 0 0
##
      7
                        0 0 0 0 0 0 0 0
## ID06 1
                        0 0 0 0 0 0 0 1
##
      2
                        0 0 0 0 0 0 0 1 0
                        0 0 0 0 0 0 0 1 0 0
##
      3
##
      4
                        000001000
                        0000010000
##
      5
##
      6
                        0100000000
##
      7
                        0 0 0 0 0 0 0 0 0
```

Binomial test

```
# Select data
data_nrs %<>%
    # Select columns
    select(PID, intensity, rating)
# Nest data by PID and stimulus intensity
nrs_nest <- data_nrs %>%
    group_by(PID, intensity) %>%
   nest()
# Generate data
nrs0 nest <- nrs nest %>%
    # Add probability of success column
   mutate(prob = 0.5) \%
    # Extract rating data from dataframe
   mutate(data vec = map(.x = data,
                          ~ .$rating)) %>%
    # Recode rating data as categories according to whether
    # the value is greater than 0 (minimum rating on NRS)
   mutate(data_cat = map(.x = data_vec,
                          ~ ifelse(.x == 0,
                                   yes = 'negative',
                                   no = 'positive'))) %>%
    # Count the number of positive and negative ratings
    ## positive numbers arbitrarily listed first == 'success'
   mutate(success_count = map(.x = data_cat,
                           ~ c(length(.x[.x == 'positive']),
                               length(.x[.x == 'negative'])))) %>%
```

```
# Conduct binomial test (two-sided)
mutate(binomial_test = map2(.x = success_count,
                            .y = prob,
                            ~ binom.test(x = .x,
                                          p = .y,
                                          alternative = 'greater'))) %>%
# Extract p-value from binomial test
mutate(binomial_p.value = map(.x = binomial_test,
                             ~ .x$p.value %>%
                                 round(., 3))) %>%
# Categorise p-value using a p < 0.05 threshold
## Significant: distribution deviates significantly
## from the theoretical distribution
## No correction for multiple comparisons
## (too conservative for explorartory analysis)
mutate(significant_p.value = map(.x = binomial_p.value,
                                 \sim ifelse(.x < 0.05,
                                           yes = 'yes',
                                           no = 'no')))
```

```
nrs0_nest %>%
    # Select data columns
    select(PID, intensity, significant_p.value) %>%
    # Unnest data
   unnest() %>%
    # Join with original data
   right_join(data_nrs) %>%
    # Reclass intensity as an ordered factor
   mutate(intensity = factor(intensity,
                              ordered = TRUE)) %>%
    # Plot
   ggplot(data = .) +
    aes(x = intensity,
        y = rating,
       fill = significant_p.value,
        colour = significant_p.value) +
    geom_hline(yintercept = 0,
               size = 1) +
   geom_hline(yintercept = 25,
               linetype = 2) +
    geom_hline(yintercept = 50,
               linetype = 2) +
    geom_hline(yintercept = 75,
               linetype = 2) +
    geom_hline(yintercept = 100,
               linetype = 2) +
    geom_point(shape = 21,
               size = 4,
               stroke = 0.3) +
   labs(title = "NRS (0): Binomial test of positive/negative rating distribution",
         subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
```

```
caption = "* 'success' arbitrarily chosen as NRS rating > 0",
     x = 'Rank stimulus intensity (0.25J increments)',
     y = 'NRS rating (0, 100)') +
scale_x_discrete(breaks = seq(from = 1,
                              to = 9,
                              by = 1),
                 labels = sprintf('%.0f', seq(from = 1,
                                               by = 1))) +
scale_y_continuous(limits = c(0, 100),
                   breaks = c(0, 50, 100),
                   labels = c(0, 50, 100)) +
scale_fill_manual(values = c('#000000', '#CCCCCC')) +
scale_colour_manual(values = c('#CCCCCC', '#000000')) +
facet_wrap(\sim PID, ncol = 4) +
theme(legend.position = 'none',
      panel.grid = element_blank(),
      panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                 b = 0.1,
                                                 r = 1,
                                                 1 = 1,
                                                 'lines')))
```

NRS (0): Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value Filled circles: Distribution does not deviate significantly from expected distribution

* 'success' arbitrarily chosen as NRS rating > 0

NRS (zero: 0 to 15)

Import and inspect data

Data already imported, inspected, and nested (data_nrs, nrs_nest).

Binomial test

```
# Generate data
nrs15_nest <- nrs_nest %>%
    # Add probability of success column
   mutate(prob = 0.5) \%
    # Extract rating data from dataframe
   mutate(data_vec = map(.x = data,
                          ~ .$rating)) %>%
    # Recode rating data as categories according to whether
    # the value is greater than 0 (minimum rating on NRS)
   mutate(data_cat = map(.x = data_vec,
                          ~ ifelse(.x <= 15,
                                   yes = 'negative',
                                   no = 'positive'))) %>%
    # Count the number of positive and negative ratings
    ## positive numbers arbitrarily listed first == 'success'
   mutate(success_count = map(.x = data_cat,
                           ~ c(length(.x[.x == 'positive']),
                               length(.x[.x == 'negative'])))) %>%
    # Conduct binomial test (two-sided)
   mutate(binomial test = map2(.x = success count,
                                .y = prob,
                                ~ binom.test(x = .x,
                                             p = .y,
                                             alternative = 'greater'))) %>%
    # Extract p-value from binomial_test
   mutate(binomial p.value = map(.x = binomial test,
                                 ~ .x$p.value %>%
                                     round(., 3))) %>%
    # Categorise p-value using a p < 0.05 threshold
   ## Significant: distribution deviates significantly
   ## from the theoretical distribution
   ## No correction for multiple comparisons
   ## (too conservative for explorartory analysis)
   mutate(significant_p.value = map(.x = binomial_p.value,
                                     \sim ifelse(.x < 0.05,
                                              yes = 'yes',
                                              no = 'no')))
```

```
nrs15_nest %>%
    # Select data columns
    select(PID, intensity, significant_p.value) %>%
    # Unnest data
```

```
unnest() %>%
# Join with original data
right_join(data_nrs) %>%
# Reclass intensity as an ordered factor
mutate(intensity = factor(intensity,
                          ordered = TRUE)) %>%
# Plot
ggplot(data = .) +
aes(x = intensity,
   y = rating,
   fill = significant_p.value,
    colour = significant_p.value) +
geom_rect(aes(ymin = 0, ymax = 15,
              xmin = -1, xmax = 10),
          fill = '#666666',
          colour = '#666666') +
geom_hline(yintercept = 0,
           size = 1) +
geom_hline(yintercept = 25,
           linetype = 2) +
geom_hline(yintercept = 50,
           linetype = 2) +
geom_hline(yintercept = 75,
           linetype = 2) +
geom_hline(yintercept = 100,
           linetype = 2) +
geom_point(shape = 21,
           size = 4,
           stroke = 0.3) +
labs(title = "NRS (0-15): Binomial test of positive/negative rating distribution",
     subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
     caption = "* 'success' arbitrarily chosen as NRS rating > 15",
     x = 'Rank stimulus intensity (0.25J increments)',
     y = 'NRS rating (0, 100)') +
scale_x_discrete(breaks = seq(from = 1,
                              to = 9,
                              by = 1),
                 labels = sprintf('%.0f', seq(from = 1,
                                               to = 9,
                                              by = 1))) +
scale_y_continuous(limits = c(0, 100),
                   breaks = c(0, 50, 100),
                   labels = c(0, 50, 100)) +
scale_fill_manual(values = c('#000000', '#CCCCCC')) +
scale_colour_manual(values = c('#CCCCCC', '#000000')) +
facet_wrap(~ PID, ncol = 4) +
theme(legend.position = 'none',
      panel.grid = element_blank(),
      panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                 b = 0.1,
                                                 r = 1,
                                                 1 = 1,
                                                 'lines')))
```

NRS (0-15): Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5^* | alpha = 0.05 | two-tailed p-value Filled circles: Distribution does not deviate significantly from expected distribution

* 'success' arbitrarily chosen as NRS rating > 15

SRS (zero: 0)

```
# Import
data_srs <- read_rds('data-cleaned/SPARS_B.rds') %>%
    # Extract trials rated using the SRS
   filter(scale == 'SRS') %>%
    # Remove <NA>
   filter(!is.na(rating))
# Rank stimulus intensity
data_srs %<>%
   group_by(PID, scale) %>%
   arrange(intensity) %>%
   mutate(intensity_rank = dense_rank(intensity)) %>%
   select(-intensity) %>%
   rename(intensity = intensity_rank) %>%
   ungroup()
# Inspect
glimpse(data_srs)
## Observations: 644
## Variables: 6
```

```
<chr> "ID06", "ID06", "ID06", "ID06", "ID06", "ID06", "...
## $ PID
## $ block_number <int> 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 5, 5, 5, 6, 6...
## $ trial_number <dbl> 2, 16, 26, 13, 19, 21, 1, 17, 27, 2, 4, 5, 6, 24,...
## $ scale
                <chr> "SRS", "SRS", "SRS", "SRS", "SRS", "SRS", "SRS", ...
                <dbl> -34, -99, -89, -99, -100, -99, -59, -96, -70, -92...
## $ rating
## $ intensity
                <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2...
data_srs %>%
   select(intensity, rating) %>%
   skim()
## Skim summary statistics
## n obs: 644
## n variables: 2
##
## -- Variable type:integer -----
   variable missing complete n mean sd p0 p25 p50 p75 p100
                        644 644 5 2.58 1 3 5 7 9
## intensity
                 Ω
##
## -- Variable type:numeric ------
## variable missing complete n mean sd p0 p25 p50 p75 p100
##
     rating
                      644 644 -54.46 35.19 -100 -88 -63 -21 0
# Number of O ratings
data srs %>%
   # Retain ratings of O
   filter(rating == 0) %>%
   # Select columns
   select(PID, intensity, rating) %>%
   # Group by individual and intensity
   group_by(PID, intensity) %>%
   # Summarise
   summarise(zero_count = n()) %>%
   ftable(.)
##
                zero_count 1 2 3 5 9 12
## PID intensity
## ID02 5
                          0 1 0 0 0 0
##
       6
                          000100
##
       7
                          0 0 0 0 1 0
##
       8
                          000001
##
                          000001
       9
## ID04 5
                          0 0 0 0 0
                          0 0 0 0 0 0
##
       6
       7
                          000000
##
##
       8
                          100000
##
       9
                          100000
## ID05 5
                          000000
       6
                          000000
##
##
       7
                          0 0 0 0 0
##
       8
                          000000
       9
                          100000
##
## ID06 5
                          000000
##
                          0 0 0 0 0
       6
##
       7
                          100000
                          100000
##
       8
```

0 0 1 0 0 0

Binomial test

##

```
# Select data
data_srs %<>%
    # Select columns
    select(PID, intensity, rating)
# Nest data by PID and stimulus intensity
srs_nest <- data_srs %>%
   group_by(PID, intensity) %>%
   nest()
# Generate data
srs_nest <- srs_nest %>%
    # Add probability of success column
   mutate(prob = 0.5) \%
    # Extract rating data from dataframe
   mutate(data vec = map(.x = data,
                          ~ .$rating)) %>%
    # Recode rating data as categories according to whether
    # the value is less than 0 (maximum rating on srs)
    mutate(data cat = map(.x = data vec,
                          \sim ifelse(.x == 0,
                                   yes = 'positive',
                                   no = 'negative'))) %>%
    # Count the number of positive and negative ratings
    ## positive numbers arbitrarily listed first == 'success'
   mutate(success_count = map(.x = data_cat,
                           ~ c(length(.x[.x == 'positive']),
                               length(.x[.x == 'negative'])))) %>%
    # Conduct binomial test (two-sided)
   mutate(binomial_test = map2(.x = success_count,
                                .y = prob,
                                ~ binom.test(x = .x,
                                             p = .y,
                                             alternative = 'greater'))) %>%
    # Extract p-value from binomial_test
   mutate(binomial_p.value = map(.x = binomial_test,
                                 ~ .x$p.value %>%
                                     round(., 3))) %>%
    # Categorise p-value using a p < 0.05 threshold
   ## Significant: distribution deviates significantly
   ## from the theoretical distribution
   ## No correction for multiple comparisons
   ## (too conservative for explorartory analysis)
   mutate(significant_p.value = map(.x = binomial_p.value,
                                     \sim ifelse(.x < 0.05,
                                              yes = 'yes'
                                              no = 'no')))
```

```
srs_nest %>%
    # Select data columns
    select(PID, intensity, significant_p.value) %>%
    # Unnest data
   unnest() %>%
    # Join with original data
   right_join(data_srs) %>%
    # Reclass intensity as an ordered factor
   mutate(intensity = factor(intensity,
                              ordered = TRUE)) %>%
    # Plot
   ggplot(data = .) +
    aes(x = intensity,
        y = rating,
       fill = significant_p.value,
        colour = significant_p.value) +
    geom_hline(yintercept = 0,
               size = 1) +
    geom_hline(yintercept = -25,
               linetype = 2) +
    geom_hline(yintercept = -50,
               linetype = 2) +
    geom_hline(yintercept = -75,
               linetype = 2) +
    geom_hline(yintercept = -100,
               linetype = 2) +
    geom point(shape = 21,
               size = 4,
               stroke = 0.3) +
    scale_fill_manual(values = c('#CCCCCC', '#000000')) +
    scale_colour_manual(values = c('#000000', '#CCCCCC')) +
   labs(title = "SRS: Binomial test of positive/negative rating distribution",
         subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
         caption = "* 'success' arbitrarily chosen as SRS rating = 0",
         x = 'Rank stimulus intensity (0.25J increments)',
         y = 'SRS rating (-100, 0)') +
    scale_x_discrete(breaks = seq(from = 1,
                                  to = 9,
                                  bv = 1),
                     labels = sprintf('%.0f', seq(from = 1,
                                                  to = 9,
                                                  by = 1))) +
    scale_y_continuous(limits = c(-100, 0),
                       breaks = c(-100, -50, 0),
                       labels = c(-100, -50, 0)) +
   facet_wrap(~ PID, ncol = 4) +
    theme(legend.position = 'none',
          panel.grid = element_blank(),
          panel.spacing = unit(0.1, 'lines'),
          strip.text = element text(margin = margin(t = 0.1,
                                                    b = 0.1,
                                                    r = 1,
```

```
l = 1,
'lines')))
```

SRS: Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value

Filled circles: Distribution does not deviate significantly from expected distribution

* 'success' arbitrarily chosen as SRS rating = 0

SRS (zero: -15 to 0)

There is no evidential basis to repeat the SRS analysis using a -15 to 0 range as being 'positive', but for comparative purposes to the analyses done for the NRS, we performed the analysis of the SRS using the expanded definition of pain threshold.

Import and inspect data

Data already imported, inspected, and nested (data_srs, srs_nest).

Binomial test

```
mutate(data_cat = map(.x = data_vec,
                      ~ ifelse(.x \geq= -15,
                               yes = 'positive',
                               no = 'negative'))) %>%
# Count the number of positive and negative ratings
## positive numbers arbitrarily listed first == 'success'
mutate(success count = map(.x = data cat,
                       ~ c(length(.x[.x == 'positive']),
                           length(.x[.x == 'negative'])))) %>%
# Conduct binomial test (two-sided)
mutate(binomial_test = map2(.x = success_count,
                             y = prob,
                             \sim binom.test(x = .x,
                                          p = .y,
                                          alternative = 'greater'))) %>%
# Extract p-value from binomial_test
mutate(binomial_p.value = map(.x = binomial_test,
                              ~ .x$p.value %>%
                                 round(., 3))) %>%
# Categorise p-value using a p < 0.05 threshold
## Significant: distribution deviates significantly
## from the theoretical distribution
## No correction for multiple comparisons
## (too conservative for explorartory analysis)
mutate(significant_p.value = map(.x = binomial_p.value,
                                  \sim ifelse(.x < 0.05,
                                           yes = 'yes'
                                           no = 'no')))
```

```
srs15_nest %>%
    # Select data columns
   select(PID, intensity, significant_p.value) %>%
    # Unnest data
   unnest() %>%
    # Join with original data
   right_join(data_srs) %>%
    # Reclass intensity as an ordered factor
   mutate(intensity = factor(intensity,
                              ordered = TRUE)) %>%
    # Plot
    ggplot(data = .) +
     aes(x = intensity,
        y = rating,
       fill = significant_p.value,
        colour = significant_p.value) +
    geom_rect(aes(ymin = 0, ymax = -15,
                  xmin = -1, xmax = 10),
              fill = '#666666',
              colour = '#666666') +
    geom_hline(yintercept = 0,
               size = 1) +
```

```
geom_hline(yintercept = -25,
           linetype = 2) +
geom_hline(yintercept = -50,
           linetype = 2) +
geom_hline(yintercept = -75,
           linetype = 2) +
geom_hline(yintercept = -100,
           linetype = 2) +
geom_point(shape = 21,
           size = 4,
           stroke = 0.3) +
scale_fill_manual(values = c('#CCCCCC', '#000000')) +
scale_colour_manual(values = c('#000000', '#CCCCCC')) +
labs(title = "SRS (0-15): Binomial test of positive/negative rating distribution",
     subtitle = "Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value\nFilled circle
     caption = "* 'success' arbitrarily chosen as SRS rating > -16",
     x = 'Rank stimulus intensity (0.25J increments)',
    y = 'SRS rating (-100, 0)') +
scale_x_discrete(breaks = seq(from = 1,
                              to = 9,
                              by = 1),
                 labels = sprintf('%.0f', seq(from = 1,
                                              to = 9,
                                              by = 1))) +
scale_y_continuous(limits = c(-100, 0),
                   breaks = c(-100, -50, 0),
                   labels = c(-100, -50, 0)) +
facet_wrap(~ PID, ncol = 4) +
theme(legend.position = 'none',
      panel.grid = element_blank(),
      panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                b = 0.1,
                                                r = 1,
                                                1 = 1,
                                                 'lines')))
```

SRS (0–15): Binomial test of positive/negative rating distribution

Probability of 'success' = 0.5* | alpha = 0.05 | two-tailed p-value

Filled circles: Distribution does not deviate significantly from expected distribution

* 'success' arbitrarily chosen as SRS rating > -16

Session information

```
sessionInfo()
```

```
## R version 3.5.1 (2018-07-02)
## Platform: x86 64-apple-darwin15.6.0 (64-bit)
## Running under: macOS 10.14.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
##
  [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
##
## attached base packages:
##
   [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
##
  other attached packages:
    [1] bindrcpp_0.2.2 skimr_1.0.3
                                         magrittr_1.5
                                                         forcats_0.3.0
##
    [5] stringr_1.3.1
                        dplyr 0.7.8
                                         purrr_0.2.5
                                                         readr 1.2.1
##
    [9] tidyr_0.8.2
                        tibble 1.4.2
                                         ggplot2_3.1.0
                                                         tidyverse 1.2.1
##
##
  loaded via a namespace (and not attached):
##
##
    [1] Rcpp_1.0.0
                         cellranger_1.1.0 pillar_1.3.0
                                                            compiler_3.5.1
   [5] plyr_1.8.4
                         bindr_0.1.1
                                           tools_3.5.1
                                                            digest_0.6.18
##
```

```
## [9] lubridate_1.7.4 jsonlite_1.5
                                         evaluate_0.12
                                                          nlme_3.1-137
## [13] gtable_0.2.0
                        lattice_0.20-38
                                         pkgconfig_2.0.2 rlang_0.3.0.1
## [17] cli_1.0.1
                        rstudioapi_0.8
                                         yaml_2.2.0
                                                          haven_2.0.0
## [21] withr_2.1.2.9000 xml2_1.2.0
                                         httr_1.3.1
                                                          knitr_1.20
## [25] hms_0.4.2
                        rprojroot_1.3-2
                                                          tidyselect_0.2.5
                                         grid_3.5.1
## [29] glue_1.3.0
                        R6_2.3.0
                                         readxl_1.1.0
                                                          rmarkdown_1.10
## [33] modelr_0.1.2
                        backports_1.1.2 scales_1.0.0
                                                          htmltools_0.3.6
                        assertthat_0.2.0 colorspace_1.3-2 stringi_1.2.4
## [37] rvest_0.3.2
## [41] lazyeval_0.2.1
                        munsell_0.5.0
                                         broom_0.5.0
                                                          crayon_1.3.4
```