Appendix D

Polynomial Fits in WPtools

D.1 Polynomial Regression

In this technical Appendix we sketch the formalism used in the polynomial regression method for fitting data. This is a generalization of the method of linear regression.

We start with a set of data (x_j, y_j) , j = 1, ...m, and we wish to fit these data to the nth-order polynomial

$$y(x) = \sum_{i=0}^{n} a_i x^i. \tag{D.1}$$

In general each measurement y_j has a corresponding uncertainty σ_j . That is, if the measurements were repeated many times at coordinate x_j the values of y_j would follow a gaussian distribution of standard deviation σ_j . We indicate in sec. D.2 how the program WPtools proceeds in the absence of input data as to the σ_j .

Because of the uncertainties in the measurements y_j we cannot expect to find the ideal values of the coefficients a_i , but only a set of best estimates we will call \hat{a}_i . However, we will also obtain estimates of the uncertainties in these best-fit parameters which we will label as $\sigma_{\hat{a}_i}$.

The best-fit polynomial is then

$$\hat{y}(x) = \sum_{i=0}^{n} \hat{a}_i x^i. \tag{D.2}$$

The method to find the \hat{a}_i is called least-squares fitting as well as polynomial regression because we minimize the square of the deviations. We introduce the famous chi square:

$$\chi^2 = \sum_{j=1}^m \frac{[y_j - \hat{y}(x_j)]^2}{\sigma_j^2} = \sum_{j=1}^m \frac{(y_j - \sum_{i=0}^n \hat{a}_i x_j^i)^2}{\sigma_j^2}.$$
 (D.3)

Fact: $\exp(-\chi^2/2)$ is the (un-normalized) probability distribution for observing a set of variables $\{y_j(x_j)\}$ supposing the true relation of y to x is given by eq. (D.2).

A great insight is that $\exp(-\chi^2/2)$ can be thought of another way. It is also the (unnormalized) probability distribution that the polynomial coefficients have values a_i when their best-fit values are \hat{a}_i with uncertainties due to the measurements $\{y_j\}$. Expressing this in symbols,

$$\exp(-\chi^2/2) = \text{const} \times \exp\left(-\sum_{k=0}^n \sum_{l=0}^n \frac{(a_k - \hat{a}_k)(a_l - \hat{a}_l)}{2\sigma_{kl}^2}\right),\tag{D.4}$$

or equivalently

$$\chi^2/2 = \text{const} + \sum_{k=0}^n \sum_{l=0}^n \frac{(a_k - \hat{a}_k)(a_l - \hat{a}_l)}{2\sigma_{kl}^2}.$$
 (D.5)

The uncertainty on \hat{a}_k is σ_{kk} in this notation. In eqs. (D.4) and (D.5) we have introduced the important concept that the uncertainties in the coefficients \hat{a}_k are correlated. That is, the quantity σ_{kl}^2 is a measure of the probability that the values of a_k and a_l both have positive fluctuations at the same time. In fact, σ_{kl}^2 can be negative indicating that when a_k has a positive fluctuation then a_l has a correlated negative one.

One way to see the merit of minimizing the χ^2 is as follows. According to eq. (D.5) the derivative of χ^2 with respect to a_k is

$$\frac{\partial \chi^2/2}{\partial a_k} = \sum_{l=0}^n \frac{a_l - \hat{a}_l}{\sigma_{kl}^2},\tag{D.6}$$

so that all first derivatives of χ^2 vanish when all $a_l = \hat{a}_l$. That is, χ^2 is a minimum when the coefficients take on their best-fit values \hat{a}_i . A further benefit is obtained from the second derivatives:

$$\frac{\partial^2 \chi^2 / 2}{\partial a_k \partial a_l} = \frac{1}{\sigma_{kl}^2}.$$
 (D.7)

In practice we evaluate the χ^2 according to eq. (D.3) based on the measured data. Taking derivatives we find

$$\frac{\partial \chi^2/2}{\partial \hat{a}_k} = \sum_{j=1}^m \frac{\left(y_j - \sum_{i=0}^n \hat{a}_i x_j^i\right) \left(-x_j^k\right)}{\sigma_j^2} = \sum_{i=0}^n \sum_{j=1}^m \frac{\hat{a}_i x_j^i x_j^k}{\sigma_j^2} - \sum_{j=1}^m \frac{y_j x_j^k}{\sigma_j^2},\tag{D.8}$$

and

$$\frac{\partial^2 \chi^2 / 2}{\partial \hat{a}_k \partial \hat{a}_l} = \sum_{j=1}^m \frac{x_j^k x_j^l}{\sigma_j^2} \equiv M_{kl}. \tag{D.9}$$

To find the minimum χ^2 we set all derivatives (D.8) to zero, leading to

$$\sum_{i=0}^{n} \sum_{j=1}^{m} \frac{x_j^i x_j^k}{\sigma_j^2} \hat{a}_i = \sum_{j=1}^{m} \frac{y_j x_j^i}{\sigma_j^2} \equiv V_k.$$
 (D.10)

Using the matrix M_{kl} introduced in eq. (D.9) this can be written as

$$\sum_{i=0}^{n} M_{ik} \hat{a}_i = V_k. \tag{D.11}$$

We then calculate the inverse matrix M^{-1} and apply it to find the desired coefficients:

$$\hat{a}_k = \sum_{l=0}^n M_{kl}^{-1} V_l. \tag{D.12}$$

Comparing eqs. (D.7) and (D.9) we have

$$\frac{1}{\sigma_{kl}^2} = M_{kl}.\tag{D.13}$$

The uncertainty in best-fit coefficient \hat{a}_i is then reported as

$$\sigma_{\hat{a}_i} = \sigma_{ii} = \frac{1}{\sqrt{M_{ii}}}. (D.14)$$

D.2 Procedure When the σ_i Are Not Known

This method can still be used even if the uncertainties σ_j on the measurements y_j are not known. When the functional form (D.1) correctly describes the data we claim that on average the minimum χ^2 has value m-n-1. To take advantage of this remarkable result we suppose that all uncertainties σ_j have a common value, σ . Then

$$\chi^2 = \sum_{j=1}^m \frac{[y_j - \hat{y}(x_j)]^2}{\sigma^2} \approx m - n - 1,$$
(D.15)

so that

$$\sigma_j = \sigma = \sqrt{\frac{\sum_{j=1}^m [y_j - \sum_{i=0}^n \hat{a}_i x_j^i]^2}{m - n - 1}}.$$
 (D.16)

In practice it appears that the error estimates from this procedure are more realistic if a fit is made using a polynomial with one order higher than needed for a 'good' fit to the data.

Using eq. (D.16) as the estimate of the uncertainty σ on each of the measurements y_j , the matrix M_{kl} of eq. (D.9) becomes

$$M_{kl} = \frac{m - n - 1}{\sum_{j'=1}^{m} [y_{j'} - \sum_{i'=0}^{n} \hat{a}_{i'} x_{j'}^{i'}]^2} \sum_{j=1}^{m} x_j^k x_j^l.$$
(D.17)

The estimate (D.14) of the uncertainty on the fit coefficient \hat{a}_i is now given by

$$\sigma_{\hat{a}_i} = \frac{1}{\sqrt{M_{ii}}} = \sqrt{\frac{\sum_{j'=1}^{m} [y_{j'} - \sum_{i'=0}^{n} \hat{a}_{i'} x_{j'}^{i'}]^2}{(m-n-1)\sum_{j=1}^{m} x_j^{2i}}}$$
(D.18)

When WPtools performs a polynomial regression it generates a plot of the data points and the best-fit curve, along with numerical values of various parameters associated with the fit. Figure D.1 gives an example of a fit to a set of 8 data points of the form $y=x^2$. The fit is to the form $y=a_0+a_1x+a_2x^2$. The fit coefficients are $a_0=-0.4107$, $a_1=-0.3274$ and $a_2=1.1964$. The uncertainties (standard errors) on the fit coefficients are reported as $SE(a_0)=4.0070$, $SE(a_1)=2.0429$ and $SE(a_2)=0.2216$, as calculated according to eq. (D.18). Note that the uncertainties on coefficients a_1 and a_1 are larger than the coefficients themselves, which tells us that these coefficients are indistinguishable from zero.

Also indicated on the plot are the values $\mathsf{R}^2=0.9915$ and $\sigma=2.8721$. The latter is the uncertainty in the data points $\{y_j\}$, calculated according to eq. (D.16) with m=8 and n=2. The quantity R^2 is defined by

$$R^{2} = \frac{\sum_{j=1}^{m} [\hat{y}(x_{j}) - \overline{y}]^{2}}{\sum_{j=1}^{m} [y(x_{j}) - \overline{y}]^{2}},$$
 (D.19)

where the average $\overline{y} = \sum_{j=1}^m y(x_j)/m$. This is a measure of the "goodness of fit". If the fit is perfect then $\hat{y}_j = y_j$ for all j and $R^2 = 1$. It is not obvious, but $R^2 \le 1$ always. The extreme case of $R^2 = 0$ occurs when the fit has the trivial form $\hat{y}(x) = \overline{y}$ for all x, which in general is a bad fit. The qualitative conclusion is that if R^2 is not close to 1, the fit results are to be regarded with suspicion.

¹The whole fitting procedure does not make sense unless there are more data points (m) than parameters (n+1) being fitted.

Figure D.1: Sample plot from WPtools Polynomial Fitting.