Логические элементы, их комбинации, логические операторы и выражения

На уроке мы узнаем

- Что такое логические элементы (AND, OR, NOT) и как они работают.
- Как логические элементы используются в реальной жизни.
- Как создавать комбинации логических элементов для решения сложных задач.
- Что такое логические операторы и выражения в программировании.
- Как применять знания для анализа и моделирования логических ситуаций.

Логические элементы вокруг нас

Задумайтесь:

- Как автоматически открываются двери в супермаркетах?
- Почему работает сигнализация?

Ответ: Логические операции управляют этими процессами!

Пример из жизни

Автоматические двери открываются, если:

- Датчик движения активирован (1)
- Датчик приближения активирован (1)

Логический элемент: AND

Зачем это нужно знать?

- Логические элементы основа работы компьютеров и гаджетов.
- Используются в программировании, схемотехнике и автоматизации.

• Вопрос классу:

Как еще можно использовать подобные логические процессы в жизни?

NOT (HE)

Логическое отрицание или инверсия

- Отрицание: инвертирует входное значение.
- Если вход = 1, результат = 0, и наоборот.

INPUT	OUTPUT	
0	1	
1	0	

Обозначение: ¬ ~!

AND (N)

Логическое умножение или конъюнкция

Результат = 1, только если оба входа = 1

Обозначение: ∧ • &

INPUT		OUTPUT	
A B		A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR (ИЛИ)

Логическое сложение или дизъюнкция

• Результат = 1, если хотя бы один вход = 1

Обозначение: V + ||

TIESOS LENTELĖ

INPUT		OUTPUT	
A	В	A OR B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

LOGINIAI VARTAI

SIMBOLIS

NE (NOT) NE vartų išvedinys (OUTPUT)

yra priešingas įvediniui (INPUT). Jei įvedinys yra 0, išvedinys – 1. O jei jvedinys yra 1, išvedinys – 0.

INPUT	OUTPUT	
0	1	
1	0	

TIESOS LENTELĖ

IR (AND)

IR vartų išvedinys yra 1 tik tada, kai abu įvediniai yra 1.

INPUT		OUTPUT	
A	В	A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

ARBA (OR)

ARBA vartų išvedinys yra 1, jei vienas iš įvedinių yra 1.

INPUT		OUTPUT	
A	В	A OR B	
0	0	0	
0 1		1	
1	0	1	
1	1	1	

Вопрос к классу

Какой логический элемент вы бы использовали для управления светом, если он должен включаться при любом из двух условий?

Булева логика для логических операций

Булева логика — основа для понимания, как работают компьютеры и цифровые устройства.

Булева логика — это раздел математики и информатики, который изучает логические операции над булевыми переменными. Каждая переменная может принимать только два значения: 1 (истина) или о (ложь). Булева логика лежит в основе работы цифровых устройств и программного обеспечения

Логический запрос

Пример задачи

Условие:

- Два датчика:
 - А (Движение)
 - В (Свет)
- Сигнал включается, если:
 - Есть движение и свет (A AND B).
 - Либо света нет, но движение есть (A AND NOT B).

Решение через комбинацию

• Составим логическое выражение:

(A AND B) OR (A AND NOT B)

• Таблица истинности:

А (Движение)	В (Свет)	NOT B	A AND B	A AND NOT B	(A AND B) OR (A AND NOT B)
O	o	1	0	0	0
O	1	O	0	0	0
1	0	1	O	1	1
1	1	0	1	O	1

Код для решения на Python

```
# Логическое выражение: (A AND B) OR (A AND NOT B)
 3
    # Входные данные: А - движение, В - свет
    A = int(input("Движение (1 - есть, 0 - нет): "))
    B = int(input("Свет (1 - есть, 0 - нет): "))
    # Расчёт результата
    result = (A and B) or (A and not B)
 9
10
    # Вывод результата
   ∃if result:
12
        print("Сигнал включён")
13
   ⊟else:
14
       print("Сигнал выключен")
```

Код для решения на С++

```
#include <iostream>
 2
    using namespace std;
 4
   □int main() {
         // Входные данные: А - движение, В - свет
 6
         int A, B;
         cout << "Введите движение (1 - есть, 0 - нет): ";
 8
         cin >> A;
 9
         cout << "Введите свет (1 - есть, 0 - нет): ";
10
         cin \gg B;
11
12
         // Расчёт результата
13
         bool result = (A & B) \mid | (A & !B);
14
15
         // Вывод результата
16
         if (result) {
             cout << "Сигнал включён" << endl;
17
18
         } else {
19
             cout << "Сигнал выключен" << endl;
20
21
22
         return 0;
```

Что мы сегодня выучили

1. Основы логических элементов:

- NOT (HE), AND (И), OR (ИЛИ).
- Их символы и таблицы истинности.

2. Комбинации логических элементов:

- Как объединять логические элементы для решения сложных задач.
- Пример с движением и светом: логическое выражение и его реализация.

3. Практическое применение:

- Таблица истинности и схема для сложной логики.
- Программирование комбинаций на Python и C++.

Рефлексия

- Почему логические элементы важны для компьютеров?
- Где вы можете применить эти знания в повседневной жизни?

Конец