平成 29 年度 秋 定期末試験問題·解答

試験実施日 平成 29 年 7月 31 日 4 時限

出題者記入欄

試 験 科 目 名 微分方程式		出題者名_佐藤弘康			
試 験 時 間 <u>60</u> 分	平常授業	美日<u>月</u>曜日<u>4</u>時限			
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	31.7.1.1 11.0.2. 11.13
採点欄	評価

1 微分方程式

 $(x^2 + 3xy) dx + (3x^2 - xy) dy = 0$

について、次に間に答えなさい.

(1) 完全微分方程式でないことを示しなさい.

(2) $\lambda = \frac{1}{x}$ が積分因子であることを示しなさい.

(3) 一般解を求めなさい.

(4) 初期条件 x=2, y=1 に対する特殊解を求めなさい.

2微分方程式

 $y\,dx - x\,dy = 0$ (1)

について次の間に答えなさい.

(1) 完全微分方程式でないことを示しなさい.

(2) 積分因子を求めなさい.

(3) 完全微分方程式の解法に従って, 一般解を求めなさい.

(4) 変数分離形微分方程式の解法に従って, 一般解を求め なさい.

3 定数係数線形微分方程式

$$y'' - 4y' + 4y = 25\sin x$$

について次の問に答えなさい.

(1) $y = 3\sin x + 4\cos x$ が、この微分方程式の特殊解であることを示しなさい.

(2) 一般解を求めなさい.

4 定数係数線形微分方程式

$$y'' - 2y' + 2y = 2x^2 - 2$$

について以下の間に答えなさい.

(1) この方程式の特殊解の 1 つは, $y = ax^2 + bx + c$ と書けることがわかっている. 定数 a, b, c を求めなさい.

(2) 一般解を求めなさい.

5 定数係数線形微分方程式

$$y'' - 2y' - 3y = e^{3x}$$

の一般解を求めなさい.

6 2 階定数係数線形微分方程式

$$f(D)y = e^{2x} + e^{-x}$$

の一般解が

$$y = c_1 e^x \cos 3x + c_2 e^x \sin 3x + g(x)$$

であるとき、多項式 f(t) と関数 g(x) を求めなさい. ただし, c_1, c_2 は任意定数とする.