The consistency strength of blunt Jónsson cardinals

DAN SAATTRUP NIELSEN

ABSTRACT. We introduce the concept of a *blunt* Jónsson cardinal, being a regular Jónsson cardinal with a subset having no sharp, and show that the existence of a blunt Jónsson cardinal implies the existence of an inner model with a Woodin cardinal. This improves a result of Welch (1998).

DEFINITION 0.1. A cardinal κ is a **blunt Jónsson cardinal** if it's a regular Jónsson cardinal such that A^{\sharp} doesn't exist for some $A \subseteq \kappa$.

THEOREM 0.2 (Welch (1998)). If there is a blunt Jónsson cardinal then 0^{\P} exists.

THEOREM 0.3 (N.). If there is a blunt Jónsson cardinal then there exists an inner model with a Woodin cardinal.

PROOF. Let κ be blunt Jónsson. If κ is a successor cardinal then it's already known that we get an inner model with a Woodin cardinal, so we may assume that κ is weakly inaccessible and that there is no inner model with a Woodin cardinal. Let $A \subseteq \kappa$ witness the bluntness of κ and assume without loss of generality that $K|\kappa \subseteq L[A]$, using the weak inaccessibility of κ . Let $\theta \gg \kappa$ be regular and let $i:M\to H_\theta$ be a Jónsson embedding with $A\in \operatorname{ran} i$. Restrict i to $L_\kappa[\bar{A}]$ to get an embedding $j:L_\kappa[\bar{A}]\to L_\kappa[A]$. Using the regularity of κ we can lift j to $j^+:L[\bar{A}]\to L[A]$. Now \bar{A}^\sharp doesn't exist either, as otherwise we would be able to transfer the indiscernibles of $L[\bar{A}]$ to L[A] via j^+ .

As there's no inner model with a Woodin we can form K as well as internal variants $K^{L[\bar{A}]}$ and $K^{L[A]}$. Let $\pi:=j^+\upharpoonright (K^{L[\bar{A}]}|\lambda^+)$, where $\lambda:=\operatorname{crit} j$, so that $\pi:K^{L[\bar{A}]}|\lambda^+\to K^{L[A]}|j(\lambda^+)=K|j(\lambda^+)$, where we used that $j(\lambda^+)<\kappa$ and $K|\kappa\subseteq L[A]$. Now compare $K|\lambda^+$ with $K^{L[\bar{A}]}|\lambda^+$, noting that $K|\lambda^+$ is universal for premice of height $\leqslant \lambda^+$ by Schimmerling and Steel (1999) since λ^+ is a V-cardinal. This means that we get iteration trees $\mathcal T$ and $\mathcal U$ with last models $\mathcal P$ and $\mathcal Q$ on $K|\lambda^+$ and $K^{L[\bar{A}]}|\lambda^+$, respectively, and that $\mathcal Q\unlhd \mathcal P$.

Claim 0.3.1. Both \mathcal{T} and \mathcal{U} have no drops.

PROOF OF CLAIM. First note that both K and $K^{L[\bar{A}]}$ are universal weasels, as they both compute the successors of stationarily many ordinals correctly (this is where we use that \bar{A}^{\sharp} doesn't exist). This means that the trees in the comparison between K and $K^{L[\bar{A}]}$ can't drop, and as \mathcal{T} and \mathcal{U} are subtrees of these trees, they can't drop either.

Let α be the least disagreement between K and $K^{L[\bar{A}]}$.

Claim 0.3.2.
$$\alpha \in (\lambda, \lambda^{+K})$$
.

PROOF OF CLAIM. Firstly $\alpha > \lambda$ simply since it's the least disagreement and λ being the critical point of j. Assume that $\alpha \geqslant \lambda^{+K}$, so that π gives rise to an embedding $\pi \upharpoonright (K^{L[\bar{A}]}|\lambda^{+K}): K||\lambda^{+K} \to K||j(\lambda^{+K})$. We can form the (λ, λ^{+K}) -preextender E over K and form the ultrapower embedding $i_E: K \to \mathrm{Ult}(K, E)$. We claim that the ultrapower is wellfounded. To see this, first note μ^+ can't be Jónsson for any regular cardinal $\mu > \lambda$, so $j(\mu^+) > \mu^+$ and thus $j(\xi) > \xi$ for any $\xi < \kappa$ with $\mathrm{cof}^V \xi = \mu^+$. We could therefore have picked λ to be one of these ξ instead, ensuring that $\mathrm{cof}^V \lambda > \aleph_0$, making the ultrapower wellfounded. But then $i_E: K \to K, \notices$

Now perform the copy construction to π to get a non-dropping tree $\pi \mathcal{U}$ on $K|j(\lambda^+)$ with a last model \mathcal{R} , and with an elementary embedding $\tilde{\pi}:\mathcal{Q}\to\mathcal{R}$ such that $\tilde{\pi}\circ i^{\mathcal{U}}=i^{\pi\mathcal{U}}\circ\pi$. By definition of the copy construction all extenders used in $\pi\mathcal{U}$ are indexed $\geqslant j(\alpha)>j(\lambda)\geqslant \lambda^+$, where the last inequality is because $j(\lambda)=i(\lambda)\geqslant \lambda^+$ since $i:M\to H_\theta$.

$$\begin{array}{c|ccc}
\mathcal{N} & \stackrel{i_E}{\longleftarrow} & \mathcal{P} & \trianglerighteq & \mathcal{Q} & \stackrel{\tilde{\pi}}{\longrightarrow} & \mathcal{R} \\
\uparrow & & & \downarrow u & & \uparrow \pi u \\
K|\lambda^+ & & K^{L[\bar{A}]}|\lambda^+ & \stackrel{\pi}{\longrightarrow} & K|\pi(\lambda^+)
\end{array}$$

By agreement of extenders in iteration trees we then get that \mathcal{R} agrees with K below $j(\alpha)$. But if we then let E be the $(\lambda, j(\alpha))$ -extender over $L_{j(\alpha)}(\mathcal{P})$ derived from $\tilde{\pi}$, we get an ultrapower embedding $i_E: L_{j(\alpha)}(\mathcal{P}) \to \mathrm{Ult}(L_{j(\alpha)}(\mathcal{P}), E)$, which we can restrict to $i_E \upharpoonright \mathcal{P} : \mathcal{P} \to \mathcal{N}$. Since the ultrapower agrees with K below $j(\alpha)$, \mathcal{N} agrees with K below $j(\alpha)$ as well. But now we get the composite map $i_E \circ i^{\mathcal{T}} : K|\lambda^+ \to \mathcal{N}$.

Claim 0.3.3. \mathcal{T} is trivial.

PROOF OF CLAIM. Assume not and let F be the first extender used in \mathcal{T} . By coherence and normality, no extenders on the \mathcal{P} -sequence are indexed at index F. But after applying i_E we get that very same F back, as \mathcal{N} agrees with K below $j(\alpha)$. This means that there is some extender G on the \mathcal{P} -sequence with index $G < \operatorname{crit} F$ and $i_E(\operatorname{index} G) = \operatorname{index} F$ and $j(\operatorname{crit} G) = i_E(\operatorname{crit} G) = \operatorname{crit} F$. Thus $\lambda = \operatorname{crit} i_E \leqslant \operatorname{crit} G$. But then index $F > j(\lambda) \geqslant \lambda^+$ and F is on the $(K|\lambda^+)$ -sequence, f.

Claim 0.3.4. \mathcal{U} is trivial.

PROOF OF CLAIM. Assume not and let F be the first extender used in \mathcal{U} . Then F is necessarily indexed at α since \mathcal{T} is trivial, making α a cardinal in \mathcal{Q} by properties of iteration trees. This implies that α is also a cardinal in $\mathcal{P} = K|\lambda^+$, using that $\mathscr{P}^K(\alpha) \subseteq K|\alpha^+ \subseteq K|\lambda^+$. But $\alpha \in (\lambda, \lambda^{+K}), \frac{1}{2}$.

But now $\pi: K|\lambda^+ \to K|j(\lambda^+)$, which we can then lift to an embedding $K \to K$ using the V-regularity of λ^+ , ξ . Hence there is an inner model with a Woodin cardinal.

References

Schimmerling, E. and Steel, J. (1999). The maximality of the core model. *Transactions of the American Mathematical Society*, 351(8):3119–3141.

Welch, P. D. (1998). Some remarks on the maximality of inner models. *Logical Colloquium '98*.