EE236: Experiment 5

Sheel F. Shah, 19D070052 March 9, 2022

Overview of the experiment

0.1 Aim of the experiment

The aim of this experiment was to understand the workings and characteristics of MOSFETs along with non-idealities.

0.2 Report Pattern

Instead of following the template, I have split the report into sections based on the questions/simulations. Each section is based on one question/simulation, and all associated details are in that section only.

Figure 1: Circuit used. The same circuit has been used for all parts and the values of the voltages have changed, as can be seen in the code

1 $I_d - V_{ds}$ characteristics

Netlist used: 19D070052 Sheel Shah I_d vs V_ds .include pmos.txt ** 1 2 3 4: drain gate source body m1 1 2 0 4 ALD1107 $v_dd 4 0 2$ v_id 10 1 0 v_ds 10 0 v_gs 2 0 .dc $v_ds -5 0 0.1 v_gs -4 -2.5 0.5$ * start control .control set color0 = rgb:f/f/e set color1 = rgb:1/1/1run plot i(v_id) vs v(10) ** rds by seeing dx/dy near origin: ** -2.5: 3.8k, -3: 2.9k, -3.5: 2.3k, -4: 1.8k ** r_0 by seeing dx/dy in saturation: ** -2.5: 168302, -3: 92307, -3.5: 59446, -4: 40978 ** early voltage: ** sat dy/dx = 1.70246e-05, x0 = -4.68615, y0 = -0.000619565

 $** v_a = -c/m = 3.170618e+01$

** c = y-mx = -0.000619565 - 1.70246e-05*(-4.68615) = -5.39785e-04

 $.\,\mathtt{endc}$

 $.\, {\tt end}$

Figure 2: IV Characteristics

Calculation and values of R_{ds}, R_0, V_A have been mentioned in code

2 V_t and gm measurement

2.1 Linear Region

```
19D070052 Sheel Shah I_d vs V_ds
.include pmos.txt
** 1 2 3 4: drain gate source body
m1 1 2 0 4 ALD1107
v_dd 4 0 0
v_id 10 1 0
v_ds 10 0 -0.2
v_gs 2 0
.dc v_gs -5 0 0.1
* start control
.control
set color0 = rgb:f/f/e
set color1 = rgb:1/1/1
run
plot i(v_id) vs v(2)
** v_t by extrapolating linear region: -0.91
** gm = 4.03441e-05
.endc
.end
```

All measured values are mentioned in the code

Figure 3: I vs V plot in linear region

2.2 Saturation Region

```
19D070052 Sheel Shah I_d vs V_ds
.include pmos.txt
** 1 2 3 4: drain gate source body
m1 1 2 0 4 ALD1107
v_dd 4 0 2
v_id 10 1 0
v_ds 10 0 -5
v_gs 2 0
.dc v_gs -5 0 0.1
* start control
.control
set color0 = rgb:f/f/e
set color1 = rgb:1/1/1
run
plot (i(v_id)) vs v(2)
** v_t by linear region's intercept: -1.18
** gm = 2Id/(vds - vt) = 6e-4
** K = 2 * slope * slope = 2.321322e-04 A/V^2
.endc
.end
```

All measured values are mentioned in the code

Figure 4: I vs V plot, $\sqrt{|I|}$ vs V plot in saturation region

3 Effect of body bias

```
19D070052 Sheel Shah I_d vs V_ds
.include pmos.txt
** 1 2 3 4: drain gate source body
m1 1 2 0 4 ALD1107
v_dd 4 0
v_id 10 1 0
v_ds 10 0 -0.2
v_gs 2 0
.dc v_gs -5 0 0.1 v_dd 0 4 1
* start control
.control
set color0 = rgb:f/f/e
set color1 = rgb:1/1/1
run
plot i(v_id) vs v(2)
** v_t by extrapolating linear region:
** 0: -0.9,-1: -1.13, -2: -1.26, -3: -1.36, -4: -1.48
** v_t increases in magnitude as v_sb increases in magnitude
** -0.9 = v_to
** -1.48 = -0.9 + gamma(sqrt(4.8) - sqrt(0.8))
** gamma = -0.447
.endc
.end
```


Figure 5: I vs V_{gs} plot as V_{sb} changes Measurements and calculations are mentioned in the code

4 Experiment completion status

I was able to complete all parts of the experiment.