Mathematics

Oliver Brady

$March\ 30,\ 2023$

Contents

1	Cal 1.1	culus Differe	entiation	2 2
2	Series			3
3	Mu	Multivariable Calculus		
4	Vector Calculus			
	4.1	Opera	tors	4
		4.1.1	Grad	4
		4.1.2	Div	4
		4.1.3	Curl	4
		4.1.4	Laplacian	4
	4.2	Integr	al Theorems	4
		4.2.1	Divergence Theorem	4
		4.2.2	Stokes's Theorem	4
5	Flui	id Med	chanics	5
	5.1 Kinematics			5
		5.1.1	Coordinates	5
		5.1.2	Velocity	5
		5.1.3	Stagnation Points	5
		5.1.4	Streamlines	5
		5.1.5	Particle Paths	6
		5.1.6	Steady Flow	6
		5.1.7	Convective Derivative	6
		5.1.8	Vorticity	6
	5.2	Pressu	ıre in a Fluid	6
	5.3			
	5.4	v		
	5.5			
	5.6	Free Surface Waves		

- 1 Calculus
- 1.1 Differentiation

- 2 Series
- 3 Multivariable Calculus

4 Vector Calculus

- 4.1 Operators
- 4.1.1 Grad
- 4.1.2 Div
- 4.1.3 Curl
- 4.1.4 Laplacian
- 4.2 Integral Theorems
- 4.2.1 Divergence Theorem
- 4.2.2 Stokes's Theorem

5 Fluid Mechanics

5.1 Kinematics

5.1.1 Coordinates

Lagrangian $\underline{x}(\underline{a}, t)$: The motion of individual particles is studied; the position \underline{x} of a particle at time t is related to its position at a reference point in time \underline{a} (typically at t = 0).

Eulerian (\underline{x},t) : The 'flow field' is considered as a whole and the state of a fluid is described in terms of the values at a fixed location \underline{x} and at fixed time t

5.1.2 Velocity

In Cartesian coordinates the velocity of a fluid particle at position $\underline{x}(x, y, z)$ is given by:

$$\underline{u}(x,y,z) = u(x,y,z)\hat{\underline{i}} + v(x,y,z)\hat{j} + w(x,y,z)\hat{\underline{k}}$$

5.1.3 Stagnation Points

Stagnation points occur when the velocity vector \underline{u} is equal to $\underline{0}$

$$u = 0$$

$$v = 0$$

$$w = 0$$

5.1.4 Streamlines

A streamline is a curve C drawn at one point in time such that the fluid velocity vector \underline{u} is tangent to C at every point along C.

$$\frac{d\underline{x}}{ds} = \underline{u}$$

$$\frac{dx}{ds} = u, \frac{dy}{ds} = v, \frac{dz}{ds} = w$$

$$\boxed{\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} (= ds)}$$

5.1.5 Particle Paths

Particle path is obtained by solving the initial value problem:

$$\frac{d\underline{x}}{dt} = \underline{u}(\underline{x}, t) , \underline{x} = x_0 \text{ at } t = 0$$

$$\frac{dx}{dt} = u , x(0) = x_0$$

$$\frac{dy}{dt} = v, y(0) = y_0$$

$$\frac{dz}{dt} = w, z(0) = z_0$$

5.1.6 Steady Flow

Steady Flow: The flow velocity vector \underline{u} is independent of time t

Unsteady Flow: \underline{u} depends on t; the pattern of streamlines changes with t

5.1.7 Convective Derivative

The convective derivative tells us how a property changes as it moves with a flow.

- 5.1.8 Vorticity
- 5.2 Pressure in a Fluid
- 5.3 Flow Dynamics
- 5.4 Tow-dimensional Flow
- 5.5 Vorticity Dynamics
- 5.6 Free Surface Waves