Thesis

Title

A Thesis for the ...

Technical University of Madrid Departamento de Matemática Aplicada a la Ingeniería Aeroespacial

A	ιU	ιt	h	O	\mathbf{r}	:
А	١U	ιt	n	O	r	•

Advisor:

September 18, 2022

Abstract

The objective of this thesis...

Key words: LPT, bladed-disk, flutter, vibration, bifurcation, dynamical systems, traveling wave.

Contents

A	bstra	stract									
Li	List of Figures										
Li	List of Tables										
N	omei	nclature	xi								
1	Inti	roduction	1								
	1.1	Goals of the Study	1								
	1.2	Outline of the Thesis	1								
2	Cha	apter 2									
	2.1	Elastic problem	3								
	2.2	Aerodynamic Forces	3								
	2.3	Mistuning	3								
	2.4	Friction Forces	3								
3	Cha	apter 3	5								
	3.1	Mass-Spring Model	5								
	3.2	Asymptotic Model	5								
		3.2.1 First Modal Family	5								
		3.2.2 Friction Model: Microslip Regime	5								
		3.2.3 Multiple Scales Asymptotic Technique	5								
	3.3	Numerical Implementation	5								

		3.3.1	Numerical Scheme	5			
		3.3.2	Initial Parameters	5			
		3.3.3	Mistuning	5			
		3.3.4	Friction	5			
		3.3.5	Simulations	5			
4	Cha	pter 4		7			
	4.1	Stabili	ty of the Periodic Solutions	7			
		4.1.1	Stability in TW Basis	7			
		4.1.2	Stability Results of the Periodic Solutions	7			
	4.2	Continuation of Quasi-periodic Solutions					
		4.2.1	Setting the Equations for the Continuation Software	7			
5	Cha	pter 5		9			
	5.1	Summary of the Main Contributions					
	5.2	Sugges	stions for Further Work	9			
A	App	oendix		11			
	A.1	.1 Installation and Setup					
	A.2	Config	guration of the AUTO files	11			
		A.2.1	Modification to the Compiler Files	11			
		A.2.2	Configuration File and .f90 Function	11			
		A.2.3	AUTO Run	11			

List of Figures

List of Tables

Nomenclature

Chapter 2

[M] Mass matrix of the bladed-disk

Chapter 3

Chapter 4

k Wave number

Acronyms

 $\mathbf{CFD}\,$ Computational Fluid Dynamics

 ${f TW}$ Travelling Wave

Introduction

- 1.1 Goals of the Study
- 1.2 Outline of the Thesis

- 2.1 Elastic problem
- 2.2 Aerodynamic Forces
- 2.3 Mistuning
- 2.4 Friction Forces

- 3.1 Mass-Spring Model
- 3.2 Asymptotic Model
- 3.2.1 First Modal Family
- 3.2.2 Friction Model: Microslip Regime
- 3.2.3 Multiple Scales Asymptotic Technique
- 3.3 Numerical Implementation
- 3.3.1 Numerical Scheme
- 3.3.2 Initial Parameters
- 3.3.3 Mistuning
- 3.3.4 Friction
- 3.3.5 Simulations

- 4.1 Stability of the Periodic Solutions
- 4.1.1 Stability in TW Basis
- 4.1.2 Stability Results of the Periodic Solutions
- 4.2 Continuation of Quasi-periodic Solutions
- 4.2.1 Setting the Equations for the Continuation Software

- 5.1 Summary of the Main Contributions
- 5.2 Suggestions for Further Work

Appendix A

Appendix

- A.1 Installation and Setup
- A.2 Configuration of the AUTO files
- A.2.1 Modification to the Compiler Files
- A.2.2 Configuration File and .f90 Function
- A.2.3 AUTO Run

Bibliography

- Jack K Hale and Hüseyin Koçak. *Dynamics and bifurcations*, volume 3. Springer Science & Business Media, 2012.
- Oualid Khemiri, Carlos Martel, and Roque Corral. Forced response of mistuned bladed disks: quantitative validation of the asymptotic description. *Journal of Propulsion and Power*, 30(2):397–406, 2014.
- Carlos Martel and JJ Sánchez-Álvarez. Maximum mistuning amplification of the forced response vibration of turbomachinery rotors in the presence of aerodynamic damping. *Journal of Sound and Vibration*, 397:108–122, 2017.
- Carlos Martel, Roque Corral, and Rahul Ivaturi. Flutter amplitude saturation by nonlinear friction forces: Reduced model verification. *Journal of Turbomachinery*, 137(4), 2015.
- Ulf Olofsson. Cyclic micro-slip under unlubricated conditions. *Tribology International*, 28(4):207–217, 1995.
- George F Simmons. Differential equations with applications and historical notes. CRC Press, 2016.
- Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, 2018.