Self Descriptive Number

A positive integer m is called "self-descriptive" in base b, where $b \ge 2$ and b is an integer, if:

i) The representation of m in base b is of the form $(a_0a_1...a_{b-1})_b$

```
(that is m=a_0b^{b-1}+a_1b^{b-2}+...+a_{b-2}b+a_{b-1}, where 0 \le a_i \le b-1 are integer)
```

ii) a_i is equal to the number of occurences of number i in the sequence $(a_0a_1...a_{b-1})$.

For example, $(21200)_5$ is "self-descriptive" in base 5, because it has five digits and contains two 0s, one 1s, two 2s, and no (3s and 4s).

 $(21200)_5 = (1425)_{10}$ so 1425 is "self-descriptive" number.

Given $\mathbf{n}(1 \le \mathbf{n} \le 10^{18})$ and $\mathbf{m} (1 \le \mathbf{m} \le 10^{9})$, your task is to find the \mathbf{n} -th smallest "self-descriptive" number.

Input

The first line there is an integer **T** $(1 \le T \le 10^5)$.

For each test case there are two integers **n** and **m** written in one line, separated by a space.

Output

For each test case, output the \mathbf{n} -th smallest "self-descriptive" number, (output the number in base 10) modulo \mathbf{m} .

Example

Input:

2

1 1000

2 1000

Output:

100

136

Explanation

100 is "self descriptive" number in base 4: (1210)₄

136 is "self descriptive" number in base 4: (2020)₄

Time limit ~230x My program speed: <u>Click here to see my submission history and time record for this problem</u>

See also: Another problem added by Tjandra Satria Gunawan