[딥러닝 4단계] 1. 합성곱 신경망

1. 컴퓨터비전

컴퓨터 비전에서의 딥러닝에 관심이 가는 두가지 이유

- 1. 컴퓨터 비전의 빠른 발전이 많은 새로운 애플리케이션들이 만들어지게 함
- 2. 컴퓨터 비전을 연구하는 사회가 창의적이고 도전적이며 새로운 신경망 구조와 알고리즘 이 서로 많은 영감을 주면서 서로에 영향을 끼침

Computer Vision Problems

1. 이미지 분류

Image Classification

2. 물체 감지

물체가 있는지만 보는게 아니라 물체 주변에 네모 박스를 그리거나 다른 방식으로 물체 식별

Object detection

신경망 스타일 변형
 컨텐츠 이미지를 스타일 이미지로 나오게 하는 것

Deep Learning on large images

- 컴퓨터 비전에서 큰 장애물: 입력이 매우 클 수 있음
 - 。 저해상도 -> 64x64x3=12288의 크기를 가지게 됨
 - 。 고해상도 -> 1000x1000x3
 - 1000x3000000의 크기를 가진
 - 30억개의 매우 큰 변수를 가지게 됨
 - 과적합 방지가 어려움, 계산과 메모리의 요구사항이 적합하지 않을 수 있음
- > 합성곱 사용망에서는 이 고민을 하지 않아도 됨

2. 모서리 감지 예시

Computer Vision Problem

- 1. 신경망의 하위 층이 모서리를 감지
- 2. 이후의 층들이 가능성 있는 물체를 감지

3. 더 이후의 층들은 온전한 물체의 부분을 살핌

- 이미지에서 수직인 모서리 찾기
- 수평의 모서리 감지

Vertical edge detection

- 6x6x1 행렬의 그레이 스케일 이미지
- filter(필터): 수직 모서리를 알기 위해 만든 3x3 행렬
- : 6x6 이미지를 3x3 필터로 합성곱
- 결과: 4x4 이미지
 - 한 칸에 요소들의 곱셈을 더함

• 프로그래밍

python: conv-forward

o tensorflow: tf.nn.conv2d

keras: Conv2D

Vertical edge detection

- 결과 이미지의 가운데 밝은 영역이 이미지 가운데 강한 수직 경계선이 있다는 것을 알려 줌
- 3x3 필터에서 왼쪽 편에는 밝은 픽셀, 가운데는 중요하지 않고, 어둔 픽셀이 오른쪽에 있음

3. 더 많은 모서리 감지 예시

Vertical and Horizonal Edge Detection

• 가로 윤곽선 필터

Horizontal

Learning to detect edges

Sobel filter

• 중간 부분의 픽셀에 더 중점을 두어 선명해 보임

Scharr filter

• 세로 윤곽선 검출을 위한 것이고 90도 회전하면 가로 윤곽선 검출이 됨

스스로 학습

• 최근 딥러닝에서는 9개의 숫자 변수로 두고 역전파로 학습

4. 패딩 (Padding)

Padding

• nxn 이미지를 fxf 필터로 합성곱 한 결과는 (n-f+1)x(n-f+1)

두가지 단점

- 1. 계속 합성곱 연산을 하게 되면, 이미지가 계속 축소됨
- 2. 가장자리 픽셀은 단 한번만 사용하여 이미지 윤곽쪽의 정보를 버리게 됨

해결방안: 합성곱 연산 하기 전에 이미지를 덧대기

- = 1 픽셀만큼 가장자리에 경계를 덧대기
- = p=1
- = (n+2p-f+1)x(n+2p-f+1)
- -> 8x8 이미지

Valid and Same convolutions

유효 합성곱

- 유효 합성곱: 패딩이 없는 것
- nxn 이미지를 fxf 필터와 합성곱 해서 n-f+1xn-f+1의 결과 이미지가 나옴

동일 합성곱

- 패딩을 한 뒤 결과 이미지의 크기가 기존 이미지와 동일
- (n+2p-f+1)x(n+2p-f+1)
- n+2p-f+1=n -> p=(f-1)/2

필터의 크기 f는 홀수

- 1. f가 짝수라면 패딩이 비대칭이 됨
- 2. 중심 위치가 존재

5. 스트라이드 (Stride)

Strided convolution

- stride: 필터의 이동 횟수
 - o stride=2 -> 필터를 두 칸 이동
- nxn * fxf, padding=p, stride=s
- 결과의 크기: (n+2p-f)/s+1 x (n+2p-f)/s+1
 - 。 소수점이면 내림값 사용
 - 보통은 필터에 맞춰서 최대한 크기가 정수가 될수 있도록 패딩과 스트라이드 수치를 맞춤

Technical note on cross-correlation vs convolution

• 일반적으로 수학에서 정의하는 합성곱은 합성곱을 하기 전에 필터를 가로축과 세로축으로 뒤집는 연산(미러링 과정)을 해줘야함

Convolution in math textbook:

3	7 ⁵	4	6	2
6°	94	8	7	4
4	83	3	8	9
8	3	6	6	3
2	1	8	3	4
2	4	1	9	8
	4 ¹ 8 2	4 ¹ 8 ³ 8 3 2 1	6° 9° 8 4° 8³ 3 8 3 6 2 1 8	6° 9° 8 7 4° 8³ 3 8 8 3 6 6 2 1 8 3

• 지금까지 배운 합성곱은 사실 교차상관 이지만 딥러닝에서는 관습적으로 합성곱이라고 함

딥러닝에서는 뒤집는 연산을 생략함

• 뒤집는 과정은 신호처리에서는 유용하지만 심층 신경망 분야에서는 아무런 영향이 없기 때문

6. 입체형 이미지에서의 합성곱

• 3D 입체형의 합성곱

Convolutions on RGB images

• 6x6x3 행렬

o 6: height

- o 6: width
- 3: 3개의 색상 채널
- 3D 필터 사용: 3x3x3
- 이미지와 필터 크기의 마지막 숫자가 일치

Multiple filters

- 여러 개의 필터를 동시에 사용
- 결과: 4x4x2
 - 。 2: 필터의 개수(n_c)
- 입력이미지: nxnxn_c * nxnxn_c -> n-f+1 x n-f+1 x n_c'
- 채널의 수=마지막 크기=3D 입체형의 깊이

7. 합성곱 네트워크의 한 계층 구성하기

합성곱 신경망의 한 계층

- 합성곱 연산 -> 편향 추가 -> 비선형성 추가(활성화 함수 ReLU)
- 6x6x3 -> 4x4x2

Number of parameters in one layer

- 10개의 필터, 3x3x3 크기 -> 이 층은 몇 개의 매개변수?
- 27parameters + 1 bias = 28개의 변수
- 28 x 10 = 280개의 변수

Summary of notation

- I: 합성곱 계층
- f^[l] = filter size
- p^[l] = padding
- s^[l] = stride
- $\quad \quad \boldsymbol{n}_{c}^{[l]} \text{= number of filters} \\$
- Each filter is:
 f^[l] x f^[l] x n_c^[l-1]
- Activations:

$$\begin{split} & \mathbf{a}^{\wedge}\![\mathbf{l}] \to \\ & n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]} \\ & \mathbf{A}^{\wedge}\![\mathbf{l}] \to \mathbf{m} \times \\ & n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]} \end{split}$$

• Input:

$$n_H^{[l-1]} \mathsf{x} \ n_W^{[l-1]} \ \mathsf{x} \ n_c^{[l-1]}$$

• Output:

$$n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$$

$$ullet \ n^{[l]} = |(n^{[l-1]} + 2p^{[l]} - f^{[l]})/s^{[l]} + 1|$$

• Weights: f^[l] x f^[l] x n_c^[l-1] x n_c^[l]

• bias: n c^[l] - (1,1,1,n c^[l])

8. 간단한 합성곱 네트워크 예시

Example ConvNet

- (39+0-3)/1+1 -> 37
- 17x17x20
- 7x7x40 = 1960
- 이것을 펼쳐서 1960개의 하나의 벡터로 만든 뒤 logistic/softmax에 넣으면 최종 예측값 이 됨
- 더 큰 이미지에서 시작해서 높이와 너비가 비슷하게 유지되다가 신경망이 깊어질수록 줄어듬

• 채널의 수: 3 -> 10 -> 20 -> 40

Types of layer in a convolutional network

1. Convolution (CONV): 합성곱층

2. Pooling (POOL): 풀링층

3. Fully connected (FC): 완전 연결층

9. 풀링(Pooling)층

풀링 층을 사용하면 표현의 크기를 줄임으로써 계산속도를 줄이고 특징을 더 잘 검출할수 있음

Pooling layer: Max pooling

- 입력을 여러 구간으로 나눔
- 2x2 영역의 최대값을 취함
 - o f=2짜리 필터를 적용하는 것과 동일
 - 。 2x2 영역과 2만큼의 스트라이드
- Hyperparameters: f=2, s=2
- 최대 연산의 역할: 이미지의 특징이 필터의 한 부분에서 검출 되면 높은 수를 남기고 그렇지 않으면 다른 최대값들에 비해 상대적으로 작아져 특징을 더 잘 남길 수 있음

평균 풀링

- 최대값을 취하는 대신 각 필터의 평균을 취함
- 최대 풀링이 평균 풀링보다 훨씬 더 많이 사용

Summary of pooling

Hyperparameters

- f: filter size
- s: stride
- 일반적인 선택: f=2, s=2
 - 。 높이와 너비를 절반으로 줄여주는 효과가 있음
- 최대 풀링에서는 패딩을 거의 사용하지 않음 -> p=0
- 학습하는 변수가 없음
- n_H x n_w x n_c $-> \lfloor (n_H-f)/s+1 \rfloor$ x $\lfloor (n_w-f)/s+1 \rfloor$ x n_c

10. CNN 예시

Neural network example

• LeNet-5라는 사용한 고전적인 신경망과 유사한 구조

Layer1

- Layer1=CONV1+POOL1
- 。 CONV1: 6개 필터, 편향 적용, ReLU 비선형성
- ∘ 최대풀링: f=2, s=2 -> 높이, 너비의 값 절반
- POOL1: 14x14x6

• Layer2

- CONV2+POOL2
- POOL2: 5x5x16
- POOL2를 400x1 유닛을 이용해 120개의 유닛으로 만들어주기 -> FC3
- 84개의 유닛 -> FC4
- softmax 유닛에 적용

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{Tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	608 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 🥌
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

- 하이퍼 파라미터 선정: 직접 선정하지 말고 다른 사용자들에게 작동했던 하이퍼 파라미 터를 보고 자신의 프로그램에도 잘 작동할 구조 선택
- 높이와 너비는 감소/채널의 수는 증가
- 활성값의 크기도 신경망이 깊어질수록 점점 감소
 - 너무 빠르게 감소한다면 성능이 좋지 않을 수 있음

11. 왜 합성곱을 사용할까요?

- 일반적인 신경망으로는 3,072 x 4,704 + 4,704, 약 1400 만 개의 변수가 필요
- 32 x 32 x 3 이미지를 5 x 5 필터 6개를 통해 28 x 28 x 6 의 이미지로 합성곱 연산을 했을 경우, 필요한 변수의 개수는 26 x 6 = 156
 - -> 합성곱 신경망을 사용하면 변수를 적게 사용할 수 있음

2가지 이유

- 1. 변수 공유
 - 어떤 한 부분에서 이미지의 특성을 검출하는 필터가 이미지의 다른 부분에서도 똑같이 적용됨
- 2. 희소 연결

출력값이 이미지의 일부(작은 입력값)에 영향을 받고, 나머지 픽셀들의 영향을 받지 않기 때문에, 과대적합을 방지할 수 있음

해당글은 부스트코스의 [<u>딥러닝 4단계] 1. 합성곱 신경망</u> 강의를 듣고 작성한 글입니다. <u>velog 링크</u>