

27th International Congress on Sound and Vibration

The annual congress of the International Institute of Acoustics and Vibration (IIAV)

Sound transmission through a curved sandwich panel

A solution to the coincidence and ring frequency effect

Zibo Liu, Wuzhou Yu, Qi Li

8/29/2021

- Introduction
- Sandwich panel and coincidence effect
- Curved panel and ring frequency effect
- Curved sandwich and design criteria
- Conclusion

Sound insulation

Noise reduction engineering

Isolation for sound transmission path

Sound insulation/sound transmission loss properties

Introduction to the sound transmission through panels

D'Alessandro, V., Petrone, G., Franco, F., & De Rosa, S. (2013). A review of the vibroacoustics of sandwich panels: Models and experiments. *Journal of Sandwich Structures & Materials*, *15*(5), 541-582.

Coincidence effect

$\lambda_{\text{trace}} = \lambda_{\text{bending}}$

Variation of TL with frequency for a single angle of incidence (Fahy, 1987).

Sandwich panels

Advantage:

- low mass
- high stiffness
- Disadvantage:
- bad acoustic properties (sound insulation)
 - Broad coincidence region
 - often drops to the low frequency range

Early works:

- move coincidence out of frequency range of interest
- metamaterial design

New solution:

Curved sandwich > stiffness to stiffness

Sound transmission through a single-layer panel

- Continuity of Velocity: $\rho_0 \frac{\partial \vec{v}_z}{\partial t} = -\vec{\nabla}_z \hat{p}_1 = -\vec{\nabla}_z \hat{p}_2$
- Newton's second law:

For a limp wall:
$$\hat{p}_1 - \hat{p}_2 = \mathbf{j}\omega m\hat{v}$$

For a thin plate:
$$\hat{p}_1 - \hat{p}_2 = \left(D\nabla^4 - \omega^2 m\right)\hat{v}/j\omega$$

Under the Thin Plate Assumption:

Sound transmission through a single-layer panel

• Transmission coefficient:
$$\tau = \left| \frac{\hat{p}_{\text{trans}}}{\hat{p}_{\text{inc}}} \right|^2 = \left| 1 + \frac{Z \cos \theta}{2 \rho_0 c_0} \right|^{-2}$$
 STL = $10 \log \left(\frac{1}{\tau} \right)$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\hat{v}}$$
 is the corresponding plate impedance.

$$Z_0 = j\omega m \left(1 - k^4 \frac{D}{\omega^2 m} \sin^4 \theta \right) = j\omega m \left(1 - \frac{k^4}{\kappa^4} \sin^4 \theta \right)$$

• Coincidence effect: $\kappa = k \sin \theta$ $f_{co} = \frac{1}{2\pi} \frac{c_0^2}{\sin^2 \theta} \sqrt{\frac{m}{D}}$

$$Z_0 = j\omega m \left(1 - \frac{f^2}{f_{co}^2} \right)$$

When Z = 0, coincidence effect occurs, total transmission is induced.

Equation of inphase motion:

In-phase Mode:

•
$$-2D_{S}D_{f}\frac{\partial^{6}w}{\partial x^{6}} + 2D_{f}I_{S}\frac{\partial^{6}w}{\partial t^{2}\partial x^{4}} - \left(D_{S}m + 2D_{f}m + I_{S}G_{C}t_{C}\right)\frac{\partial^{4}w}{\partial t^{2}\partial x^{2}} + G_{C}t_{C}\left(D_{S}\frac{\partial^{4}w}{\partial x^{4}} + m\frac{\partial^{2}w}{\partial t^{2}}\right) + I_{S}m\frac{\partial^{4}w}{\partial t^{4}} = 0$$

$$D_{\rm f} = \frac{E_{\rm f} t_{\rm f}^{3}}{12(1 - v_{\rm f}^{2})}$$

$$D_{\rm S} = \frac{E_{\rm c} t_{\rm c}^{3}}{12(1 - v_{\rm c}^{2})} + \frac{E_{\rm f}}{(1 - v_{\rm f}^{2})} \left(\frac{t_{\rm c}^{2} t_{\rm f}}{2} + t_{\rm c} t_{\rm f}^{2} + \frac{2}{3} t_{\rm f}^{3}\right)$$

$$G_{\rm c} = \frac{E_{\rm c}}{2(1 + v_{\rm c})}$$

$$I_{\rm S} = \frac{1}{12} \rho_{\rm c} t_{\rm c}^{3} + \rho_{\rm f} \left(\frac{t_{\rm c}^{2} t_{\rm f}}{2} + t_{\rm c} t_{\rm f}^{2} + \frac{2}{3} t_{\rm f}^{3}\right)$$

Anti-phase Mode:

$$2D_{S}D_{f}k_{x}^{6} - 2D_{f}I_{S}\omega^{2}k_{x}^{4} - (D_{S}m + 2D_{f}m + I_{S}G_{C}t_{C})\omega^{2}k_{x}^{2} + G_{C}t_{C}(D_{S}k_{x}^{4} - m\omega^{2}) + I_{S}m\omega^{2} = 0$$

Equation of inphase motion:

In-phase Mode:

•
$$-2D_{S}D_{f}\frac{\partial^{6}w}{\partial x^{6}} + 2D_{f}I_{S}\frac{\partial^{6}w}{\partial t^{2}\partial x^{4}} - \left(D_{S}m + 2D_{f}m + I_{S}G_{C}t_{C}\right)\frac{\partial^{4}w}{\partial t^{2}\partial x^{2}} + G_{C}t_{C}\left(D_{S}\frac{\partial^{4}w}{\partial x^{4}} + m\frac{\partial^{2}w}{\partial t^{2}}\right) + I_{S}m\frac{\partial^{4}w}{\partial t^{4}} = 0$$

Anti-phase Mode:

$$2D_{S}D_{f}k_{x}^{6} - 2D_{f}I_{S}\omega^{2}k_{x}^{4} - (D_{S}m + 2D_{f}m + I_{S}G_{C}t_{C})\omega^{2}k_{x}^{2} + G_{C}t_{C}(D_{S}k_{x}^{4} - m\omega^{2}) + I_{S}m\omega^{2} = 0$$

Thin plate assumption

Bending wavenumber K2

Sandwich plate impedance

$$Z_{\text{Sa}} = j\omega m \left(1 - \frac{k^4}{\kappa_2^4} \sin^4 \theta \right) = j\omega m \left(1 - \frac{f^2}{f_{\text{Sco}}^2} \right)$$

$$f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$$

 $f_{\rm Sco} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$ is a symbolic expression, and is a function of frequency.

Thin plate assumption

Bending wavenumber K₂

Sandwich plate impedance

$$Z_{\text{Sa}} = j\omega m \left(1 - \frac{k^4}{\kappa_2^4} \sin^4 \theta \right) = j\omega m \left(1 - \frac{f^2}{f_{\text{Sco}}^2} \right)$$

$$f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$$

 $f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$ is a symbolic expression, and is a function of frequency.

Thin plate assumption

Bending wavenumber K2

Sandwich plate impedance

$$Z_{\text{Sa}} = j\omega m \left(1 - \frac{k^4}{\kappa_2^4} \sin^4 \theta \right) = j\omega m \left(1 - \frac{f^2}{f_{\text{Sco}}^2} \right)$$

$$f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$$

 $f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa_2^2}{k}$ is a symbolic expression, and is a function of frequency.

$$Z_0 = j\omega m \left(1 - \frac{f^2}{f_{co}^2} \right)$$

$$Z_{\rm Sa} = j\omega m \left(1 - \frac{f^2}{f_{\rm Sco}^2} \right)$$

Intention:

Integrate the ring frequency effect

Curved panels

Curved panel:

Aeronautical/aerospace engineering

Ring frequency effect

 $circumference = \lambda_{longitudinal}$

Ring frequency effect

 $\lambda_{\text{trace}} = \lambda_{\text{bending}}$

 $circumference = \lambda_{longitudinal}$

Hard to overcome

Ring frequency effect

$$Z = j\omega m \left(1 - \frac{f^2}{f_{co}^2} \right)$$

$$Z_{\rm eff} = Z + Z_{\rm eq}^{\rm r}$$

$$Z = j\omega m \left(1 - \frac{f^{2}}{f_{co}^{2}} - \frac{f_{ri}^{2}}{f^{2}} \right)$$

$$Z_{\rm eff} = Z + Z_{\rm eq}^{\rm r}$$

- Unlike for the coincidence effect
- 'Side effects' are observed in the ring frequency region

Impedance of curved panels

Impedance of a slightly curved shell:

$$Z = j\omega m \left(1 - \frac{f^2}{f_{co}^2} - \frac{f_{ri}^2}{f^2}\right) \qquad f_{ri} = \frac{c_l}{2\pi R}$$

Finite Element model of the section of the shell at the frequency where the worst sound transmission loss occurs:

- Mathematically: minimum impedance
- Physically: maximum radiation efficiency

Ring frequency effect

Recall: control region

Mass to stiffness

Stiffness to mass

Overcome the ring frequency effect

Overcome the ring frequency effect

Condition:

The impedance is enforced not equal to zero

$$Z = j\omega m \left(1 - \frac{f^2}{f_{co}^2} - \frac{f_{ri}^2}{f^2} \right) \neq 0$$

Such that

$$f_{\rm ri} > \frac{1}{2} f_{\rm co}$$
 \rightarrow Design criterion

Overcome the ring frequency effect

Impedance of curved sandwich panels

recall

Single-leaf:
$$Z_0 = j\omega m \left(1 - \frac{f^2}{f_{co}^2}\right)$$

Sandwich:
$$Z_{Sa} = j\omega m \left(1 - \frac{f^2}{f_{Sco}^2}\right)$$

$$Z = j\omega m \left(1 - \frac{f^2}{f_{co}^2} - \frac{f_{ri}^2}{f^2} \right)$$

Therefore:

Curved sandwich:
$$Z = j\omega m \left(1 - \frac{f^2}{f_{Sco}^2} - \frac{f_{Sri}^2}{f^2}\right)$$

$$Z = j\omega m \left(1 - \frac{f^2}{f_{\text{Sco}}^2} - \frac{f_{\text{Sri}}^2}{f^2}\right) \qquad f_{\text{Sco}} = \frac{1}{2\pi} \frac{c_0}{\sin^2 \theta} \frac{\kappa^2}{k}$$

$$f_{\text{Sri}} = \frac{1}{2\pi R} \sqrt{\frac{2E_{\text{f}}^* t_{\text{f}} + E_{\text{c}}^* t_{\text{c}}}{m}}$$
able to sandwich $f_{\text{GL}} > \frac{1}{2\pi R} \int_{\text{Sri}}^{2\pi R} \frac{d^2 k}{m} dk$

Curved sandwich panels

Ef	nuf	rhof	Ec	nuc	rhoc	tf	tc	fco
6.9e10	0.3	2700	8e8	0.3	500	2mm	2cm	760 Hz

when $f_{\rm ri} < \frac{1}{2} f_{\rm co}$

Curved sandwich panels

Ef	nuf	rhof	Ec	nuc	rhoc	tf	tc	fco
6.9e10	0.3	2700	8e8	0.3	500	2mm	2cm	760 Hz

when
$$f_{\rm ri} > \frac{1}{2} f_{\rm co}$$

Conclusion

- An impedance approach is developed
- A design criterion is proposed to overcome the coincidence and ring frequency effects
- Physical insights into coincidence and ring frequency effect is illustrated

$$Z = j\omega m \left(1 - \frac{f^2}{f_{\text{Sco}}^2} - \frac{f_{\text{Sri}}^2}{f^2} \right)$$

$$f_{\rm ri} > \frac{1}{2} f_{\rm co}$$

