Završni ispit iz Matematike 3R 27.01.2014.

- 1. (5 bodova) Dana su dva konačna skupa A i B, |A| = m i |B| = n, $m, n \in \mathbb{N}$. Iskažite nužne i dovoljne uvjete na parametre m i n za postojanje injektivne funkcije $f: A \to B$, te nužne i dovoljne uvjete za postojanje surjektivne funkcije $f: A \to B$. Uz tako postavljene uvjete, odredite kardinalne brojeve skupa svih injekcija sa skupa A u skup B, odnosno skupa svih surjekcija sa skupa A na skup B (nije potrebno dokazivati).
- 2. (5 bodova) U jednoj vrlo perspektivnoj firmi zaposleno je 5 direktora i 10 radnika. Na koliko načina ih je moguće podijeliti na jednog suca i dvije rukometne momčadi (u svakoj momčadi po 7 igrača), ako:
 - (a) nema dodatnih uvjeta na momčadi,
 - (b) sudac mora biti radnik,
 - (c) svi direktori moraju biti u istoj momčadi (sudac mora biti radnik),
 - (d) u jednoj od momčadi treba biti više direktora nego radnika?
- 3. (**5 bodova**) Nađite broj cjelobrojnih rješenja nejednadžbe

$$x_1 + x_2 + x_3 + x_4 < 8$$
,

uz uvjete $x_i \ge 0$, i = 1, 2, 3, 4, te $x_2, x_3, x_4 \le 4$.

- 4. (**5 bodova**) Konačan niz znamenaka iz skupa $\{1,2,3,4\}$ smatra se valjanom šifrom ako sadrži paran broj jedinica. Neka je a_n broj valjanih šifri duljine n, $n \ge 1$.
 - (a) Odredite rekurzivnu relaciju za a_n .
 - (b) Odredite $a_n, n \in \mathbb{N}$.
- 5. (**5 bodova**) Neka je G graf s2n vrhova i $n^2 3n$ bridova, $n \ge 4$. Pokažite da u njegovoj matrici susjedstva postoji redak čija je suma elemenata strogo veća od n-4.
- 6. (**5 bodova**)
 - (a) Definirajte izomorfizam grafova.
 - (b) Odredite (i obrazložite) koliko postoji neizomorfnih jednostavnih povezanih grafova s nizom stupnjeva (1, 1, 1, 2, 2, 2, 2, 3).

OKRENITE!

- 7. (**5 bodova**) Na kongresu su sva poznanstva sudionika uzajamna. Ako se neka dva sudionika ne poznaju, tada od preostalih sudionika barem dvojica poznaju obojicu, a ostali barem jednoga.
 - (a) Dokažite da se svi sudionici mogu smjestiti za okrugli stol tako da jedan do drugoga sjede sudionici koji se poznaju.
 - (b) Dokažite teorem koji ste iskoristili u prvom dijelu zadatka.
- 8. (5 bodova) Zadan je težinski graf sa slike. Neka je $Z = \{I, J, K, L\}$. Izračunajte d(A, Z). Algoritam obavezno treba provesti.

Ispit se piše 2 sata. Dozvoljena je upotreba službenog podsjetnika. Nije dozvoljena upotreba kalkulatora.

Završni ispit iz Matematike 3R, rješenja 27.01.2014.

- 1. postojanje injekcije $\leftrightarrow m \le n$, $|Inj(A,B)| = n(n-1)(n-2)\cdots(n-m+1)$, postojanje surjekcije $\leftrightarrow m \ge n$, $|Surj(A,B)| = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m$.
- 2. **(a)** $\frac{15 \cdot \binom{14}{7}}{2}$,
 - (b) $\frac{10 \cdot \binom{14}{7}}{2}$, (c) $10 \cdot \binom{9}{2}$,

 - (d) $5 \cdot {10 \choose 3} + 10 \cdot \left({9 \choose 2} + {5 \choose 4} {9 \choose 3} \right)$.
- 3. (5 bodova) Preko fja izvodnica. $[x^7](x^8-1)^2(x^5-1)^3(x-1)^{-5}=\ldots=285.$
- 4. (a) $a_n = 4^{n-1} + 2a_{n-1}$, $a_1 = 3$, (b) $a_n = 2^{n-1} + 2^{2n-1}$, $n \in \mathbb{N}$.
- 5. Treba pokazati da postoji barem jedan vrh stupnja strogo većeg od n-4. Pretpostavimo suprotno, tj. da su svi vrhovi stupnja $\leq n-4$. Tada je $\sum deg(v_i) \leq$ 2n(n-4), što je u kontradikciji s Lemom o rukovanju, $\sum deg(v_i) = 2 \cdot (n^2 - 3n)$.
- 6. (a) Knjiga, (b) Po lemi o rukovanju, grafovi su stabla. Postoje 4 neizomorfne konfiguracije (središnji vrh stupnja 3, konfiguracije se razlikuju po broju vrhova u pojedinim *granama*):

- 7. (a) Ako ima n sudionika, problem modeliramo grafom s n vrhova, a bridovima označavamo poznanstva. Treba pokazati da je graf hamiltonovski, što jest po Oreovom teoremu (suma stupnjeva nesusjednih vrhova je barem n). (b) Oreov teorem o hamiltonovskim grafovima.
- 8. d(A, Z) = 7. Dijkstrin algoritam provodimo iz vrha A, dovoljno do prvog ulaska u skup Z.