COMP 6721 Applied Artificial Intelligence (Winter 2021)

Worksheet #4: Decision Trees & k-means Clustering

Decision Tree. Given the following training data:

	Features (X)			Output f(X)	
Student	'A' last year?	Black hair?	Works hard?	Drinks?	'A' this year?
X1: Richard	Yes	Yes	No	Yes	No
X2: Alan	Yes	Yes	Yes	No	Yes
X3: Alison	No	No	Yes	No	No
X4: Jeff	No	Yes	No	Yes	No
X5: <i>G</i> ail	Yes	No	Yes	Yes	Yes
X6: Simon	No	Yes	Yes	Yes	No

Create a decision tree that decides if a student will get an 'A' this year, based on an input feature vector X. (Note: check that your tree would return the correct answer for all of the training data above.)

Your Decision Tree

Information Content. The information content of an event x with P(x) > 0 is defined as:

$$-P(x) \cdot \log_2(P(x))$$

An impossible event (P(x) = 0) is defined as having an information content of 0. What's the information content of a certain event (P(x) = 1)?

Entropy. Using the definition of Entropy for a discrete random variable X with possible outcomes x_1, x_2, \ldots, x_n :

$$H(X) = -\sum_{i=1}^{n} p(x_i) \cdot \log_2 p(x_i)$$

compute the entropy for the outcome of the color in Roulette, where you have the numbers 1-36 (half red, half black) and the 0 with the color green: H(X) =

Note: make sure you use $\log_2(x)$; if you have a calculator with \log_{10} only, you can compute it using the formula $\log_2(x) = \log_{10}(x) / \log_{10}(2).$

Information Gain. Compute the *Information Gain* (IG) for the following training data when splitting using the "Size" attribute:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Size	Color	Shape	Output		. (0.1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Big	Red	Circle	+	Size	$\mathrm{gain}(S,A)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Small	Red	Circle	+	Big: 1+ 1- Small: 1+ 1-	() () (
Big Blue Circle - Note: by definition,	Small	Red	Square	-		$-H(S) - \sum \frac{ S_v }{ S_v }$
H(S) = $-\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1$ Log 0 = -\infty Olog0 is 0	Big	Blue	Circle	-	Note: by definition,	$= \Pi(S)$ $\sum_{\text{cycludg}(A)} S $
	H(S) =-	$\frac{2}{4}\log_2\frac{2}{4}$	$+\frac{2}{4}\log_2\frac{2}{4}$	=1	3	$v \in varues(A)$

$$H(S|Size) =$$

$$gain(Size) = H(S) - H(S|Size) =$$

F-Measure. Compute the F-Measure, which combines precision and recall into a single number, using $\beta = 1$ (called F_1 -measure):

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

For the systems from the previous lecture worksheet:

- 1. $s_2: P = 100\%, R = 60\% \Rightarrow F_1 =$ ______
- 2. $s_3: P = 71\%, R = 100\% \Rightarrow F_1 =$ ______

k-Means Clustering. Here is a dataset with two attributes, to be grouped into two clusters. Compute the distance $d(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$ of each data point to the two initial centroids and assign each point to its closest cluster:

	Cent	roid
	a1	a2
Cluster 1	1.0	1.0
Cluster 2	5.0	7.0

	a1	a2	Distance to C1	Distance to C2	Cluster
Data1	1.5	2.0			
Data2	3.0	4.0			
Data3	4.5	5.0			
Data4	3.5	4.5			