Fx(x1A) = P(X \(x \) x \(x \) And the PDF is fx(x) = The variance is VAR(X) = The variance of the variance, In case of the variance,]fa≤X≤b}) (A)			
If $x < a$, then $Fx (x A) = 0$. If $a \le x \le b$, $Fx (x A) = \frac{P(x)}{Fx (x A)} = \frac{P(x)}{Fx (x A)} = \frac{Fx (x)}{Fx (x A)} = \frac{Fx (x)}{Fx (x A)} = \frac{Fx (x A)}{Fx (x A)} = F$	(04×4b)					
If a s x \(\) b, $F_{x}(x A) = \frac{P(x)}{x}$ If x>b, $F_{x}(x A) = 1$ Therefore, $F_{x}(x A) = \frac{F_{x}(x)}{F_{x}(b)}$ Assume we partition the $F_{x}(x) = P(x \le x) = \frac{R}{12}$ And the PDF is $f_{x}(x) = \frac{R}{12}$ Pected value and variance For a continuous RV, E The variance is $VAR(x)$ And we still have linearity $E(x) = \frac{R}{12}$ $E(x) = \frac{R}{12}$	PIR) = Fx(x	<u>1) - Fx(a)</u> 5) - Fx(a)				
If $x>b$, $Fx(x A) = 1$ Therefore, $Fx(x A) = \begin{cases} Fx(x) \\ Fx(b) \\ 0 \end{cases}$ tal Probability Theorem Assume we partition the $Fx(x) = P(x \le x) = \sum_{i=1}^{n} A_i + \sum_{i=1}^{n} A_$		<u>1) - Fx(A)</u> 5) - Fx(A)				
If $x>b$, $Fx(x A) = 1$ Therefore, $Fx(x A) = \begin{cases} Fx(x) \\ Fx(b) \\ 0 \end{cases}$ Hal Probability Theorem Assume we partition the $Fx(x) = P(x \le x) = \sum_{i=1}^{n} A_i + \sum_{i=1}^{n} A_$		5)- X (G)				
Therefore, $Fx(x A) = \begin{cases} Fx(x) \\ Fx(b) \\ 0 \end{cases}$ tal Probability Theorem Assume we partition the $Fx(x) = P(x \le x) = \frac{n}{1-x}$ And the PDF is $fx(x) = \frac{n}{1-x}$ pected value and variance For a continuous RV, E The variance is $VAR[X]$ And we still have linearity $E[aX+b] = \int_{\infty}^{\infty} (ax+b)$	х > b					
Assume we partition the $F_{X}(x) = P(X \le x) = \sum_{i=1}^{n} A_{i} = A_{i}$ And the PDF is $f_{X}(x) = A_{i}$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearity $F_{X}(x) = A_{X}(x) = A_{X}(x)$						
Assume we partition the $F_{X}(x) = P(X \le x) = \sum_{i=1}^{n} A_i x_i = 0$ And the PDF is $f_{X}(x) = 0$ pected value and variance For a continuous RV, E The variance is $VAR[X]$ And we still have linearity $E[aX+b] = \int_{-\infty}^{\infty} (ax+b)$	N-Fx(A)					
Assume we partition the $F_{X}(x) = P(X \le x) = \sum_{i=1}^{n} A_{i} = A_{i}$ And the PDF is $f_{X}(x) = A_{i}$ pected value and variance For a continuous RV, E The variance is $VAR[X]$ And we still have linearity $E[aX+b] = \int_{-\infty}^{\infty} (ax+b)^{n} dx$	b) - Fx(a)	130				
Assume we partition the $F_X(x) = P(X \le x) = \frac{R}{i = 1}$ And the PDF is $f_X(x) = \frac{R}{i = 1}$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearity $E[aX+b] = \int_{-\infty}^{\infty} (ax+b)$	otheru	Nise				
Assume we partition the $Fx(x) = P(x \le x) = \frac{x}{i=1}$ And the PDF is $fx(x) = \frac{x}{i=1}$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearit $E[ax+b] = \int_{-\infty}^{\infty} (ax+b)$						
Fx (x) = $P(X \le x) = \sum_{i=1}^{n}$ And the PDF is $f_X(x) = i$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearity $E[aX+b] = \int_{-\infty}^{\infty} (ax+b)$						
And the PDF is $f_{x(x)} = \frac{1}{2}$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearity $E[ax+b] = \int_{-\infty}^{\infty} (ax+b)$	sample spa	ace S into	disjoint sets	B1, B2,, Bn.		
And the PDF is $f_{x(x)} = \frac{1}{2}$ pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearity $E[ax+b] = \int_{-\infty}^{\infty} (ax+b)$	PexalBaPe	$B_{i}) = \sum_{i=1}^{n} F_{i}(x_{i})$	1B:)P(B:)			
pected value and variance For a continuous RV, E The variance is VARCX1 And we still have linearit $E[ax+b] = \int_{-\infty}^{\infty} (ax+b)$						
For a continuous RV, E The variance is VAR[X] And we still have linearit $E[a \times +b] = \int_{-\infty}^{\infty} (a_{x}+b)$	$\overrightarrow{Ox} F_{x}(x) = \sum_{i=1}^{2}$	fx(x Bi)P(Bi)			
For a continuous RV, E The variance is VAR[X] And we still have linearit $E[a \times +b] = \int_{-\infty}^{\infty} (a_{x}+b)$						
The variance is VARCX] And we still have linearit $E[aX+b] = \int_{-\infty}^{\infty} (ax+b)$					œ l	
And we still have linearit E[a X+b] = \int_{-\infty}^{\infty} (ax+b)	EX] =] xfx (x	odx and fi	or some func	tion g(X). Elgix	()]=[gin)fx(n)dn	
And we still have linearit E[aX+b] = \int_{-\infty}^{\infty} (ax+b)	= 6x = E[(X-	E[X])*] = \((x-	ELX1) fx x dx	= E[X,] - (E[X].) 70	
Е[ах+b] = - (ах+b)						
	ty of the ex	pectation.Let	a and b be	arbitary constan	nts.	
	$)f_{x(\pi)}d_{x}=\alpha$	o Lafx(x)da+t	$\int_{0}^{\infty} f_{x}(x) dx = 0$	aE[x]+b		
In case of the variance,						
	, var[ax+b]	=EClaX+6-	= [ax+61)*] =	E[(ax-aE[x])	.]=E[v.(x-E[x)	113=atvare