Corrigé - Colle 9 (Sujet 3)

MPSI2 Année 2021-2022

30 novembre 2021

Question de cours . Montrer que \mathbb{R} est archimédien.

Exercice 1. Soient E et F deux ensembles et soit $f: E \to F$. Soient également A et B deux parties de E.

- 1. Démontrer que $A \subset B \Rightarrow f(A) \cup f(B)$. La réciproque est-elle vraie?
- 2. Démontrer que $f(A \cap B) \subset f(A) \cap f(B)$. L'inclusion réciproque est-elle vraie?
- 3. Démontrer que $f(A \cup B) = f(A) \cup f(B)$.
- Solution de l'exercice 1. 1. Prenons $y \in f(A)$. Alors il existe $x \in A$ tel que y = f(x). Mais alors, $x \in B$ et donc $y \in f(B)$. Ceci prouve l'inclusion $f(A) \subset f(B)$. La réciproque n'est pas toujours vraie. Prenons $E = \{1,2\}$, $F = \{1\}$, $f : E \to F$ définie par f(1) = 1, f(2) = 1, $A = \{1\}$ et $B = \{2\}$. Alors $f(A) = f(B) = \{1\}$ alors que pourtant A n'est pas inclus dans B.
 - 2. On a $A \cap B \subset A$, et donc $f(A \cap B) \subset f(A)$. De même, $f(A \cap B) \subset f(B)$, et donc $f(A \cap B) \subset f(A) \cap f(B)$. L'inclusion réciproque est fausse, ce que l'on constate en prenant exactement le même exemple.
 - 3. On a $A \subset A \cup B$ et donc $f(A) \subset f(A \cup B)$. De même, $f(B) \subset f(A \cup B)$ et donc $f(A) \cup f(B) \subset f(A \cup B)$.

Réciproquement, si $y \in f(A \cup B)$, alors il existe $x \in A \cup B$ tel que y = f(x). Mais si $x \in A$, on a $y \in f(A) \subset f(A) \cup f(B)$ et de même, si $x \in B$, on a $y \in f(B) \subset f(A) \cup f(B)$. Dans tous les cas, on a prouvé que $y \in f(A) \cup f(B)$ et donc l'inclusion $f(A \cup B) \subset f(A) \cup f(B)$.

Exercice 2. Soit A une partie non-vide et bornée de \mathbb{R} . On note $B = \{|x - y|, (x, y) \in A^2\}$.

- 1. Justifier que B est majorée.
- 2. On note $\delta(A)$ la borne supérieure de cet ensemble. Prouver que $\delta(A) = \sup(A) \inf(A)$.

Solution de l'exercice 2. 1. Soient $(x,y) \in A^2$ et soit $M \in \mathbb{R}$ tel que $x \in A$ implique $|x| \leq M$. Alors on a

$$|x - y| \le |x| + |y| \le 2M,$$

ce qui prouve que B est majoré.

2. Posons $m = \inf(A)$ et $M = \sup(A)$. Soient $(x, y) \in \mathbb{R}^2$. Alors on a

$$m \leqslant x \leqslant M$$
 et $-M \leqslant -y \leqslant -m$ \Rightarrow $-(M-m) \leqslant x - y \leqslant M - m$

d'où on tire $|x-y| \leq M-m$. On en déduit donc que M-m est un majorant de B et que $\delta(A) \leq M-m$. Pour prouver l'autre inégalité, on fixe $\varepsilon > 0$, et on construit un élément $b \in B$ tel que $b > M-m-\varepsilon$. Pour cela, on sait qu'il existe $(x,y) \in A^2$ tels que

$$x \leqslant M - \frac{\varepsilon}{2}$$
 et $y \leqslant m + \frac{\varepsilon}{2}$.

Alors $x - y \ge M - m - \varepsilon$, ce qui est le résultat voulu. On a donc bien $\delta(A) = \sup(A) - \inf(A)$.

Exercice 3. On considère la fonction $h: x \mapsto \frac{2x+1}{x+2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_h de h.
- 2. Déterminer $\text{Im}(h) = h(\mathcal{D}_h)$ et montrer que h est bijective de \mathcal{D}_h dans Im(h).
- 3. Donner son application réciproque.

Solution de l'exercice 3. 1. $\mathcal{D}_h = \mathbb{R} \setminus \{-2\}$ car c'est le seul endroit où le dénominateur s'annule (et le numérateur ne s'y annule pas).

2. Si $y \in \text{Im}(h)$, alors il existe $x \in \mathbb{R} \setminus \{-2\}$ tel que h(x) = y. Or,

$$h(x) = y \quad \Leftrightarrow \quad \frac{2x+1}{x+2} = y \quad \Leftrightarrow \quad 2x+1 = y(x+2) \quad \Leftrightarrow \quad (2-y)x = 2y-1.$$

Ainsi, si $y \neq 2$, $x = \frac{2y-1}{2-y}$ est un antécédent de y. Ceci montre que $\mathbb{R} \setminus \{2\} \subset \text{Im}(h)$. Afin de montrer que c'est une égalité, montrons à présent que 2 n'a pas d'antécédent par f. Supposons par l'absurde qu'il existe x tel que h(x) = 2. Alors,

$$h(x) = 2$$
 \Leftrightarrow $\frac{2x+1}{x+2} = 2$ \Leftrightarrow $2x+1 = 2(x+2)$ \Leftrightarrow $1 = 4$

ce qui est absurde. On a ainsi montré que $Im(h) = \mathbb{R} \setminus \{2\}$.

Montrons à présent que h est bijective de \mathcal{D}_h dans $\mathrm{Im}(h)$. Cela revient à montré que h est injective. Soit $(x,y)\in (\mathbb{R}\setminus\{-2\})^2$ tel que h(x)=h(y). Alors,

$$h(x) = h(y) \Leftrightarrow \frac{2x+1}{x+2} = \frac{2y+1}{y+2} \Leftrightarrow (2x+1)(y+2) = (2y+1)(x+2).$$

Ainsi,

$$h(x) = h(y) \Leftrightarrow 2xy + 4x + y + 2 = 2xy + 4y + x + 2 \Leftrightarrow 3(x - y) = 0.$$

On en déduit que h(x) = h(y) si et seulement si x = y. h est donc bijective de \mathcal{D}_h dans $\mathrm{Im}(h)$.

3. Nous avons déjà montré que pour tout $y \neq 2$,

$$h(x) = y \quad \Leftrightarrow \quad x = \frac{2y-1}{2-y}.$$

L'application réciproque de h est donc donnée par

$$\begin{array}{cccc} h^{-1} & : & \mathbb{R} \setminus \{2\} & \to & \mathbb{R} \setminus \{-2\} \\ & x & \mapsto & \frac{2x-1}{2-x} \end{array}.$$

Exercice 4. Soit $f: E \to F$ et $A \subset F$. Montrer que $A \subset f^{-1}(f(A))$. Trouver un contre-exemple pour l'autre inclusion. Que peut-on dire si f est de plus injective?

Solution de l'exercice 4. 1. Soit $x \in A$. Alors, $x \in f^{-1}(f(A))$ équivaut à $f(x) \in f(A)$. Or $f(x) \in f(A)$ puisque $x \in A$ donc on a bien $A \subset f^{-1}(f(A))$.

- 2. Donnons un contre-exemple lorsque f n'est pas injective. On peut choisir $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x)$. Pour $A = [0, 2\pi]$ on a f(A) = [-1, 1] et $f^{-1}f(A) = \mathbb{R}$. Donc $f^{-1}(f(A))$ n'est pas inclu dans A.
- 3. Supposons que f est injective. Soit $x \in f^{-1}(f(A))$. Alors, $f(x) \in f(A)$. Donc il existe $x' \in A$ tel que f(x) = f(x'). Par injectivité de f, on a donc x = x'. D'où $x \in A$ et $f^{-1}(f(A)) \subset A$. Ainsi, lorsque f est injective on a $f^{-1}(f(A)) = A$.

Exercice 5. Soient E un ensemble, $\mathcal{P}(E)$ l'ensemble de ses parties, et A et B deux parties de E. On définit $f: \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B)$ par $f(X) = (X \cap A, X \cap B)$.

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Donner une condition nécessaire et suffisante sur A et B pour que f soit bijective. Donner dans ce cas la bijection réciproque.

Solution de l'exercice 5. 1. Pour démontrer le sens direct, on raisonne par contraposée : si $A \cup B \neq E$, on prend $x \in E \setminus (A \cup B)$ et $X = \{x\}$. Alors $f(X) = (X \cap A, X \cap B) = (\emptyset, \emptyset)$ car x n'appartient ni à A ni à B. D'autre part, $f(\emptyset) = (\emptyset, \emptyset)$. Donc $f(X) = f(\emptyset)$ alors que $X \neq \emptyset$: f n'est pas injective.

Pour le sens réciproque, remarquons que pour tout $X \subset E$, puisque $A \cup B = E$, on a

$$X = X \cap E = X \cap (A \cup B) = (X \cap A) \cup (X \cap B).$$

Ainsi, si $X, X' \subset E$ sont tels que f(X) = f(X'), c'est-à-dire $X \cap A = X' \cap A$ et $X \cap B = X' \cap B$, on a

$$X = (X \cap A) \cup (X \cap B) = (X' \cap A) \cup (X' \cap B) = X'.$$

Ainsi, f est injective.

2. Supposons d'abord que f est surjective et prenons $x \in A$. Alors il existe $X \subset E$ tel que $f(X) = (\{x\}, \emptyset)$. Alors, on a $X \cap B = \emptyset$ et $x \in X \cap A$. Ainsi, $x \in X$ et donc $x \notin B$. Ainsi, on a $A \cap B = \emptyset$.

Réciproquement, si $A \cap B = \emptyset$, et prenons $A' \subset A$ et $B' \subset B$. Alors, posons $X = A' \cup B'$. Puisque $A \cap B = \emptyset$, on a $X \cap A = A'$ et $X \cap B = B'$ et donc f(X) = (A', B'): f est surjective.

3. D'après les questions précédentes, on a f bijective si et seulement si $A \cup B = E$ et $A \cap B = \emptyset$, i.e. si (A, B) est une partition de E. La bijection réciproque a été établie à la question précédente et est donnée par $(A', B') \mapsto A' \cup B'$.