

SD Card Interface

User's Manual

Multimedia Processor for Mobile Applications EMMA Mobile TM EV2

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com).

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the EMMA Mobile EV2. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
Data Sheet	Hardware overview and electrical characteristics	EMMA Mobile EV2 Datasheet	R19DS0010EJxxxx
User's manual (1chip)	Hardware whole specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description	EMMA Mobile EV2 User's manual 1chip	R19UH0036EJxxxx
User's manual (module)	Hardware each macro specifications and operation description.	EMMA Mobile EV2 User's manual each module	See below

Document Name	Document No.	Document Name	Document No.
1chip	R19UH0036EJxxxx	DMA Controller	R19UH0043EJxxxx
System Management Unit	R19UH0037EJxxxx	LP-DDR/DDR2 Controller	R19UH0039EJxxxx
Timer	R19UH0054EJxxxx	SD Memory Card Interface	R19UH0061EJxxxx
		(This manual)	
System Timer	R19UH0055EJxxxx	SDIO Interface	R19UH0042EJxxxx
HD Video Decoder	R19UH0056EJxxxx	CF Card Interface	R19UH0062EJxxxx
Rotator	R19UH0057EJxxxx	Unified Serial Interface	R19UH0047EJxxxx
Resizer	R19UH0058EJxxxx	UART interface	R19UH0040EJxxxx
Image Composer	R19UH0038EJxxxx	USB 2.0 Host Controller	R19UH0045EJxxxx
LCD Interface	R19UH0044EJxxxx	USB 2.0 Function Controller	R19UH0034EJxxxx
ITU-R BT.656 Interface	R19UH0059EJxxxx	IIC Interface	R19UH0052EJxxxx
Digital Terrestrial TV Interface	R19UH0048EJxxxx	General Purpose I/O Interface	R19UH0041EJxxxx
Camera Interface	R19UH0060EJxxxx	Pulse Width Modulation Interface	R19UH0063EJxxxx

⁴ digits of end shows the version.

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1) Register Names, Bit Names, and Pin Names

Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories.

Examples the PM03 bit in the PM0 register

P3_5 pin, VCC pin

(2) Notation of Numbers

The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format.

Examples Binary: 11b or 11

Hexadecimal: EFA0h

Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

x.x.x XXX register

This register (XXXXXXX: xxxx_xxxxh)

7	6	5	4	3	2	11	0
Rese	ved	CHG_P1_LA	LATCH_P1_	Reser	ved	CHG_P0_LAT	CHG_P0_LAT_
		Т	SEL				SEL

Name	R/W	Bit No.	After Reset	Description				
LATCH_P2_SEL	R/W	8	0	0: Use the P2_LAT bit of the P2_POWERSW register in the				
				SMU to latch data.				
				1: Use the CHG_P2_LAT bit to latch data.				
Reserved	R	7:6	=	Reserved. If these bits are read, 0 is returned for each bit.				
CHG_P1_LAT	R/W	5	1	0: Output data as is. 1: Output latched data.				
LATCH_P1_SEL	\R/W	4	0	0: Use the P1_LAT bit of the P1_POWERSW register in the				
				SMU to latch data.				
				1: Use the CHG_P1_LAT bit to latch data.				
Reserved	R	3:2	-	Reserved. If these bits are read, 0 is returned for each bit.				
CHG_P0_LAT	R/W	1	1	0: Output data as is. 1: Output latched data.				
CHG_P0_LAT_SEL	R/W	0	0	0: Use the P0_LAT bit of the P2_POWERSW register in the				
		\setminus		SMU to latch data.				
				1: Use the CHG_P0_LAT bit to latch data.				
		*1		*3				

*1

R/W: Read and Write.

R: Read only.

W: Write only.

-: Nothing is assigned.

*2

Reserved bit.

Reserved bit. Set to specified value.

*3

· Nothing is assigned.

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

· Do not set to a value.

Operation is not guaranteed when a value is set.

· Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connect
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Register
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

Abbreviation	Full Form			
AHB	Advanced High-performance Bus			
CHG	Alternate Pin Function Switching Module			
CPRM	Content Protection for Recordable Media			
eMMC	Embedded Multi Media Card			
GPIO	General Purpose I/O			
IRQ	Interrupt Request			
MMC	Multi Media Card			
MP3	MPEG Audio Layer-3			

All trademarks and registered trademarks are the property of their respective owners.

EMMA Mobile is registered trademark of Renesas Electronics Corporation in Japan, USA and other countries. SD Memory Card is trademarks of Panasonic Corporation, SanDisk, and Toshiba.

Table of Contents

1. Ove	erview	1
1.1	Features	1
2 Dia	Functions	2
2. Pin	runctions	
3. Reg	risters	3
3.1	Register List	3
3.2	Register Details	5
3.2.	SD card command register	5
3.2.2	2 SD card port select register	6
3.2.3	3 SD card command parameter register 0	7
3.2.4	4 SD card command parameter register 1	7
3.2.5	5 SD card stop register	8
3.2.6	6 SD card transfer sector count register	8
3.2.7	7 SD card response register 0	9
3.2.8	8 SD card response register 1	9
3.2.9	9 SD card response register 2	10
3.2.	10 SD card response register 3	10
3.2.	SD card response register 4	11
3.2.	12 SD card response register 5	11
3.2.	13 SD card response register 6	12
3.2.	14 SD card response register 7	12
3.2.	15 SD card information register 1	
3.2.	16 SD card information register 2	14
3.2.	17 SD card information mask register 1	16
3.2.	SD card information mask register 2	17
3.2.	•	
3.2.2	20 SD card transfer data size register	19
3.2.2	<u> </u>	
3.2.2		
3.2.2	23 SD card error interrupt status register 2	23
3.2.2	•	
3.2.2	~	
3.2.2	26 SDIO information register	26
3.2.2	27 SDIO information mask register	27
3.2.2	•	
3.2.2	29 SDC user register	29
3.2.3	30 SDC user register 2	30
3.2.3		
3.2.3	32 AHB bus interface control register	32
3.2.3	_	
3.2.3		
3.2.3	35 SD read transfer data storage address	34
3.2.3	_	
3.2.3	37 SD block length setting register	34
3.2.3	38 DMA startup register	35
3.2.3		
3.2.4	·	
3.2.4		
3.2.4	•	

3.	2.43	SD write transfer data storage address	39
3.	2.44	SD read transfer data storage address	40
3.	2.45	DMA mode SD buffer register	40
4. De	escrip	otion of Functions	41
4.1	SDC	Card Data Format	41
4.2	SDI	O Interrupts	42

SD Card Interface

EMMA Mobile EV2

R19UH0061EJ0500 Rev.5.00 Dec 21, 2011

1. Overview

This module (SDC) is an SD card interface that complies with SD card interface Physical Layer Version 2.00 and SD card interface Security Version 2.00. In addition to performing I/O with a card, this module can perform hardware-based CPRM authentication, and encrypt or decrypt data. The module can also be used as an SDIO card or MMC/eMMC (4.0 or equivalent) host controller.

(CPRM is the option function.)

1.1 Features

The main features of the SDC module are as follows:

- O Serial interface for SD cards and SDIO cards
- O Supports a line width of 1 bit or 4 bits for transferring data to and from SD cards or SDIO cards.
- O Supports data transfers in frame units.
- O Supports CRC7 error checks on the command line and CRC16 checks (hardware) on each data bit line.
- O Provides one SD card and SDIO card port.
- O The data transfer buffer for SD cards is configured of two blocks of 16 bits \times 256 words.
- O Supports data transfers from 1 to 512 bytes.
- O Two 256 word × 16 bit encryption circuit data transfer buffers, one for input and one for output
- O Supports normal SD cards (transfer frequency: 25 MHz) and high-speed SD cards (transfer frequency: 50 MHz)
- O The SD card transfer clock signal can be derived from the source clock signal in the SDC module (by selecting to divide the source clock frequency by 2, 4, 8, 16, ..., or 512).
- O A source clock is internal system clock of a SDC (SDC_CLK: A normal mode operate by 133MHz.) . The maximum clock frequency which can be used as SD transfer clock by a normal mode of EMEV is 33.25MHz.

When SDCCLK is 133MHz (the CPU:532MHz system): up to 33.25MHz.

When SDCCLK is 100MHz (the CPU:400MHz system): up to 50.00MHz.

At most 50 MHz is covered as a SDC module.

- O Supports hardware-based mutual authentication and provides a hardware implementation of an encryption algorithm using a C2 core.
- O Provides a master key for performing device key encryption and decryption.
- O Turns off the clock in the standby mode (when no SD card is inserted).
- O Provides hardware-based CPRM.
- O Supports SD Binding and SDSD (secure digital separate delivery).
- O Performs hardware-based analysis of sound format headers such as MP3.
- O Supports SDIP version 2.8.

SD Card Interface 2. Pin Functions

2. Pin Functions

Pin Name	I/O	Function	Alternate Pin Function
SD_CKO	Output	SD card clock output	=
SD_CKI	Input	SD card clock input	GPIO_048
SD_CMD	I/O	SD card command	-
SD_DATA3	I/O	SD card data bit 3	-
SD_DATA2	I/O	SD card data bit 2	-
SD_DATA1	I/O	SD card data bit 1	-
SD_DATA0	I/O	SD card data bit 0	_

3. Registers

3.1 Register List

The SDC registers can only be accessed by way of the AHB slave devices, and only in 32-bit units. If register access in 16-bit or 8-bit units is attempted, it is handled as 32-bit access.

Base address: E210_0000H

(1/2)

Address	Register Name	Register Symbol	R/W	Reset
0000H	SD card command register	SDC_CMD	R/W	0000_0000H
000011 0004H	SD card port select register	SDC_PORT	R/W	0000_000011 0000_0100H
000411 0008H	SD card command parameter register 0	SDC_ARG0	R/W	0000_010011
000CH	SD card command parameter register 1	SDC_ARG1	R/W	0000_0000H
0010H	SD card stop register	SDC_STOP	R/W	0000_0000H
0010H	SD card transfer sector count register	SDC_SECCNT	R/W	0000_0000H
001411 0018H	SD card response register 0	SDC_RSP0	R	0000_0000H
001CH	SD card response register 1	SDC_RSP1	R	0000_0000H
001CH	SD card response register 1	SDC_RSP2	R	0000_0000H
	<u> </u>			
0024H	SD card response register 3	SDC_RSP3	R	0000_0000H
0028H	SD card response register 4	SDC_RSP4	R	0000_0000H
002CH	SD card response register 5	SDC_RSP5	R	0000_0000H
0030H	SD card response register 6	SDC_RSP6	R	0000_000H
0034H	SD card response register 7	SDC_RSP7	R	0000_000H
0038H	SD card information register 1	SDC_INFO1	R/W, R	Undefined
				(0000_068DH)
003CH	SD card information register 2	SDC_INFO2	R/W, R	Undefined
004011	CD could information model register 4	SDC INFO4 MASK	DAM	(0000_2080H)
0040H	SD card information mask register 1	SDC_INFO1_MASK	R/W	0000_031DH
0044H	SD card information mask register 2	SDC_INFO2_MASK	R/W	0000_8B7FH
0048H	SD card transfer clock control register	SDC_CLK_CTRL	R/W	0000_0020H
004CH	SD card transfer data size register	SDC_SIZE	R/W	0000_0200H
0050H	SD card option setting register	SDC_OPTION	R/W	0000_00EEH
0054H	Reserved	-	_	-
0058H	SD card error interrupt status register 1	SDC_ERR_STS1	R	0000_2000H
005CH	SD card error interrupt status register 2	SDC_ERR_STS2	R	0000_000H
0060H	SD card data buffer 0 register	SDC_BUF0	R/W	Undefined
0064H	Reserved	_	_	_
0068H	SDIO mode setting register	SDC_SDIO_MODE	R/W	0000_000H
006CH	SDIO information register	SDC_SDIO_INFO1	R/W	0000_000H
0070H	SDIO information mask register	SDC_SDIO_INFO1_MASK	R/W	0000_C007H
0074H to	Reserved	-	_	-
01BCH				

Registers SD Card Interface 3.

(2/2)

Address	Register Name	Register Symbol	R/W	Reset
01C0H	SDC software reset control register	SDC_SOFT_RST	R/W	0000_0000H
01C4H to	Reserved	-	_	-
01E0H				
0200H	SDC user register	SDC_USER	R/W, R	0000_0004H
0204H	SDC user register 2	SDC_USER2	R/W	0000_0000H
0208H to	Reserved	-	_	_
020CH				
0210H	Module reset control register	SDC_RST_CTRL	R/W	0000_0000H
0214H	AHB bus interface control register	SDC_BUSIF_CTRL	R/W, R	0000_0000H
0218H	Reserved	_	-	_
021CH	DMA mask setting register	SDC_DMAMSK_CTRL	R/W	0000_000FH
0220H	SD write transfer data storage address	SDC_TXMEM_ADDR0L	R/W	0000_0000H
0224H	Reserved	_	_	_
0228H	SD read transfer data storage address	SDC_RXMEM_ADDR0L	R/W	0000_000H
022CH	Reserved	_	_	-
0230H	SD sector length setting register	SDC_SECTOR_LENGTH0	R/W	0000_0000H
0234H to	Reserved	_	_	_
023CH	22.11.11.11.11.11	000 01001/151105110	5.047	
0240H	SD block length setting register	SDC_BLOCK_LENGTH0	R/W	0000_0000H
0244H to 025CH	Reserved	_	_	_
025CH 0260H	DMA startup register	SDC_TRANS_START	R/W	0000_0000H
0264H to	Reserved		_	_
026CH				
0270H	Interrupt mask register	SDC_INT_MSK	R/W	0000_000FH
0274H	Interrupt factor RAW register	SDC_INT_RAW	R/W	0000_000FH
0278H	Interrupt factor register	SDC_INT_ORG	R/W	0000_000FH
027CH	Interrupt factor clear register	SDC_INT_CLR	R/W	0000_000FH
0274H to	Reserved		_	
028CH				
0290H	SD write transfer data storage address	SDC_TXMEM_ADDR0H	R/W	0000_0000H
0294H	Reserved	_	_	-
0298H	SD read transfer data storage address	SDC_RXMEM_ADDR0H	R/W	0000_0000H
0300H	DMA mode SD buffer register	SDC_DMASD	R/W	0000_0000H

3.2 Register Details

3.2.1 SD card command register

This register (SDC_CMD: 0000H) controls the SD card commands and responses.

15	14	13	12	11	10	9	8
MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
7	6	5	4	3	2	1	0
C1	C0	CF45	CF44	CF43	CF42	CF41	CF40

(1/2)

Name	R/W	Bit No.	After Reset	Description
MD[7:6]	R/W	15:14	00b	Specify the CMD12 mode.
				00: Automatic CMD12 transfer
				01: Non-automatic CMD12 transfer (SDIO command) (transfer
				between host and SD card)
				10: Reserved
				11: Reserved
				Remark Automatic CMD12 transfer means that CMD12 is
				automatically transferred according to the sector
				count, after which data transfer stops.
MD5	R/W	13	0	Select the transfer type.
				0: Single-block transfer
				1: Multiple-block transfer
MD4	R/W	12	0	Specify the write or read mode.
				0: Write
				1: Read
MD3	R/W	11	0	Specify the data mode.
				0: No data
				1: Data is present
MD[2:0]	R/W	10:8	000b	Specify an expansion command and the response type.
				Command mode Response type
				000: Normal mode SD cards and multimedia cards
				decoding command
				001: Expansion command Reserved
				010: Expansion command Reserved
				011: Expansion command No response
				100: Expansion command R1, R6, R5
				101: Expansion command R1b, R5b
				110: Expansion command R2
				111: Expansion command R3, R4

(2/2)

Name	R/W	Bit No.	After Reset	Description
C[1:0]	R/W	7:6	00b	Specify the command mode.
				00: SD card or multimedia card command
				01: ACMD following CMD55 of an SD card
				10: Mutual recognition command
				11: Reserved
CF[45:40]	R/W	5:0	00H	Specify the command index specified for bits 45 to 40 in the SD
				card command format.
				0: CF40
				1: CF41
				2: CF42
				3: CF43
				4: CF44
				5: CF45

Remark For details about setup commands and responses, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.2 SD card port select register

This register (SDC_PORT: 0004H) specifies the port used when multiple SD card ports are mounted.

15	14	13	12	11	10	9	8	
		Reserved			NP2	NP1	NP0	
							_	
7	6	5	4	3	2	1	0	
	Reserved P1 P0							

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:11	_	Reserved. If these bits are read, 0 is returned for each bit.
NP[2:0]	R	10:8	001b	Specify the number of supported SD cards.
				000: Setting prohibited
				001: 1 port (default)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
Reserved	R	7:2	_	Reserved. If these bits are read, 0 is returned for each bit.
P[1:0]	R/W	1:0	00b	Select the port number of the selected SD card.
				00: Port 0
				01: Setting prohibited ^{Note}
				10: Setting prohibited ^{Note}
				11: Setting prohibited ^{Note}

Note Operation is not guaranteed if a value other than 0 is specified for bits P1 and P0.

3.2.3 SD card command parameter register 0

This register (SDC_ARG0: 0008H) stores the SD card command parameters.

15	14	13	12	11	10	9	8
CF23	CF22	CF21	CF20	CF19	CF18	CF17	CF16
7	6	5	4	3	2	1	0
CF15	CF14	CF13	CF12	CF11	CF10	CF9	CF8

Name	R/W	Bit No.	After Reset	Description
CF[23:8]	R/W	15:0	0000H	Specify the parameters for the command to be transferred to the
				SD card. The settings of these bits correspond to bits 23 to 8 of
				the command format.

Remark For details about setup commands and responses, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.4 SD card command parameter register 1

This register (SDC_ARG1: 000CH) stores the SD card command parameters.

	15	14	13	12	11	10	9	8
	CF39	CF38	CF37	CF36	CF35	CF34	CF33	CF32
-								
	7	6	5	4	3	2	1	0
	CF31	CF30	CF29	CF28	CF27	CF26	CF25	CF24

Name	R/W	Bit No.	After Reset	Description
CF[39:24]	R/W	15:0	0000H	Specify the parameters for the command to be transferred to the
				SD card. The settings of these bits correspond to bits 39 to 24
				of the command format.

Remark For details about setup commands and responses, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.5 SD card stop register

This register (SDC_STOP: 0010H) specifies stopping SD transfers.

15	14	13	12	11	10	9	8
			Reserved				SEC
7	6	5	4	3	2	1	0
			Reserved				STP

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:9	00H	Reserved. If these bits are read, 0 is returned for each bit.
SEC	R/W	8	0	Specify whether to enable or disable the SDC_SECCNT register.
				0: Disable
				1: Enable
Reserved	R	7:1	00H	Reserved. If these bits are read, 0 is returned for each bit.
STP	R/W	0	0	Transfer stop bit
				0: Do not stop transfer.
				Clear this bit to 0 before CMD17, CMD18, CMD24, CMD27,
				CMD30, CMD42, CMD56, CMD43 to CMD48, ACMD18, or
				ACMD25 is set.
				1: Stop transfer.

3.2.6 SD card transfer sector count register

This register (SDC_SECCNT: 0014H) counts the number of transfer sectors.

	15	14	13	12	11	10	9	8
	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
_								
	7	6	5	4	3	2	1	0
	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0

Name	R/W	Bit No.	After Reset	Description
CNT[15:0]	R/W	15:0	0000H	16-bit counter that counts the number of transfer sectors

Remark If the SDC_SECCNT register is 0001H, the number of transfer sectors is 1.

If the SDC_SECCNT register is FFFFH, the number of transfer sectors is 65,535.

If the SDC_SECCNT register is 0000H, the number of transfer sectors is 65,536.

3.2.7 SD card response register 0

This register (SDC_RSP0: 0018H) stores the responses returned from the SD card.

15	14	13	12	11	10	9	8
R23	R22	R21	R20	R19	R18	R17	R16
7	6	5	4	3	2	1	0
R15	R14	R13	R12	R11	R10	R9	R8

Name	R/W	Bit No.	After Reset	Description	
R[23:8]	R	15:0	0000H	Store the responses returned from the SD card.	The settings of
				these bits correspond to bits 23 to 8 of the respor	nse format.

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.8 SD card response register 1

This register (SDC_RSP1: 001CH) stores the responses returned from the SD card.

_	15	14	13	12	11	10	9	8
	R39	R38	R37	R36	R35	R34	R33	R32
	7	6	5	4	3	2	1	0
	R31	R30	R29	R28	R27	R26	R25	R24

Name	R/W	Bit No.	After Reset	Description	
R[39:24]	R	15:0	0000H	Store the responses returned from the SD card. The settings	s of
				these bits correspond to bits 39 to 24 of the response format.	

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.9 SD card response register 2

This register (SDC_RSP2: 0020H) stores the responses returned from the SD card.

_	15	14	13	12	11	10	9	8
	R55	R54	R53	R52	R51	R50	R49	R48
	7	6	5	4	3	2	1	0
	R47	R46	R45	R44	R43	R42	R41	R40

Name	R/W	Bit No.	After Reset	Description	
R[55:40]	R	15:0	0000H	Store the responses returned from the SD card.	The settings of
				these bits correspond to bits 55 to 40 of the respondence	onse format.

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.10 SD card response register 3

This register (SDC_RSP3: 0024H) stores the responses returned from the SD card.

15	14	13	12	11	10	9	8
R71	R70	R69	R68	R67	R66	R65	R64
7	6	5	4	3	2	1	0
R63	R62	R61	R60	R59	R58	R57	R56

Name	R/W	Bit No.	After Reset	Description	
R[71:56]	R	15:0	0000H	Store the responses returned from the SD card. The settings	of
				these bits correspond to bits 71 to 56 of the response format.	

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.11 SD card response register 4

This register (SDC_RSP4: 0028H) stores the responses returned from the SD card.

_	15	14	13	12	11	10	9	8
	R87	R86	R85	R84	R83	R82	R81	R80
_	7	6	5	4	3	2	1	0
	R79	R78	R77	R76	R75	R74	R73	R72

Name	R/W	Bit No.	After Reset	Description	
R[87:72]	R	15:0	0000H	Store the responses returned from the SD card. The s	ettings of
				these bits correspond to bits 87 to 72 of the response for	ormat.

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.12 SD card response register 5

This register (SDC_RSP5: 002CH) stores the responses returned from the SD card.

15	14	13	12	11	10	9	8
R103	R102	R101	R100	R99	R98	R97	R96
7	6	5	4	3	2	1	0
R95	R94	R93	R92	R91	R90	R89	R88

Name	R/W	Bit No.	After Reset	Description
R[103:88]	R	15:0	0000H	Store the responses returned from the SD card. The settings o
				these bits correspond to bits 103 to 88 of the response format.

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.13 SD card response register 6

This register (SDC_RSP6: 0030H) stores the responses returned from the SD card.

_	15	14	13	12	11	10	9	8
	R119	R118	R117	R116	R115	R114	R113	R112
_	7	6	5	4	3	2	1	0
I	R111	R110	R109	R108	R107	R106	R105	R104

Name	R/W	Bit No.	After Reset	Description				
R[119:104]	19:104] R 15:0 0000H		0000H	Store the responses returned from the SD card. The settings of				
				these bits correspond to bits 119 to 104 of the response format.				

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.14 SD card response register 7

This register (SDC_RSP7: 0034H) stores the responses returned from the SD card.

15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
R127	R126	R125	R124	R123	R122	R121	R120

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:8	0	Reserved. If these bits are read, 0 is returned for each bit.
R[127:120]	R	7:0	0000H	Store the responses returned from the SD card. The settings of
				these bits correspond to bits 127 to 120 of the response format.

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

3.2.15 SD card information register 1

This register (SDC_INFO1: 0038H) indicates the status of the SDC interrupt sources.

	15	14	13	12	11	10	9	8
Reserved								
	7	6	5	4	3	2	1	0
	Reserved						Reserved	INFO0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:3	000H	Reserved. If these bits are read, 0 is returned for each bit.
INFO2	R/W	2	0	Indicates whether the read/write access has finished. 0: Not finished
				1: Finished
Reserved	R	1	0	Reserved. If this bit is read, 0 is returned.
INFO0	R/W	0	0	Indicates whether the response has finished.
				0: Not finished
				1: Finished

3.2.16 SD card information register 2

This register (SDC_INFO2: 003CH) indicates the error and buffer status interrupt sources of the SDC module.

	15	14	13	12	11	10	9	8
	ILA	CBSY	SCLKDIVEN		Reserved		BWE	BRE
	7	6	5	4	3	2	1	0
I	DAT0	ERR6	ERR5	ERR4	ERR3	ERR2	ERR1	ERR0

(1/2)

Name	R/W	Bit No.	After Reset	Description
ILA	R/W	15	0	Illegal access error ^{Note 1}
				0: Normal access
				1: Illegal access error
CBSY	R	14	0	Command register busy
				0: Transfer is complete.
				1: Transfer is in progress.
SCLKDIVEN	R	13	0	Indicates whether the SD bus is busy transmitting commands
				and data.
				0: Busy
				1: Not busy
Reserved	R	12:10	0H	Reserved. If these bits are read, 0 is returned for each bit.
BWE	R/W	9	0	Specify whether to enable writing to the SD card.
				0: Disable
				1: Enable (The SDC data buffer is empty.)
BRE	R/W	8	0	Specify whether to enable reading from the SD card.
				0: Disable
				1: Enable (The SDC data buffer is full.)
DAT0	R	7	Undefined	Indicates the status of SD data line 0.
				0: SD_DATA0 = 0
				1: SD_DATA0 = 1
ERR6	R/W	6	0	Response timeout
				0: No response timeout error occurred.
				1: A response timeout error occurred (because no command
				response or SD_STOP response was issued for 64 SD clock
				cycles or more).
ERR5	R/W	5	0	Invalid data buffer read error bit
				0: No invalid data buffer read error occurred.
				1: An invalid data buffer read error occurred (because an attempt
				was made to read data from the data buffer even though the
				data buffer was empty).

(2/2)

Name	R/W	Bit No.	After Reset	Description
ERR4	R/W	4	0	Invalid data buffer write error bit
				0: No invalid data buffer write error occurred.
				1: An invalid data buffer write error occurred Note 2.
ERR3	R/W	3	0	Timeout (other than a response) error
				0: No timeout error occurred.
				1: A timeout error occurred ^{Note 3} .
ERR2	R/W	2	0	End error status bit
				0: No end error occurred.
				1: An end error occurred ^{Note 4} .
ERR1	R/W	1	0	CRC error status bit
				0: No CRC error occurred.
				1: A CRC error occurred ^{Note 5} .
ERR0	R/W	0	0	Command error status bit
				0: No command error occurred.
				1: A command error occurred ^{Note 6} .

Remark For details about the response formats, see *SD Specifications Part 1 Physical Layer Simplified Specification Ver. 2.0.*

Note 1. This error occurs in any of the following cases:

- If the command register is rewritten during a transfer.
- If no response (MD[2:0] = 011) and data is present (MD3 = 1) is specified for the SDC_CMD register.
- If CMD12 for which data is present is specified for the SDC_CMD register.
- 2. This error occurs in any of the following cases:
 - If data is written to data buffer SDC_BUF0 when the data read or data write command status is not asserted.
 - If data is written before SDC_BUF0 becomes empty during a single block write.
 - If data is written to bank 1 of the data buffer before the bank becomes empty during a multiple block write.
- **3.** This error occurs in any of the following five cases:
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDC_OPTION register after an R1b response is received.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDC_OPTION register after the CRC status is written.
 - If the CRC status is not written for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDC_OPTION register after a write access.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDC_OPTION register after a read command is issued.
 - If SDDAT0 is 0 (busy) for a longer period of time than the number of cycles specified by bits 7 to 4 of the SDC_OPTION register after an SD_STOP response is issued.
- **4.** *End error* refers to an END bit error in a command response (response length), in the data read (data length), when the CRC status is written (CRC status length), or in an SD_STOP response.
- **5.** *CRC error* refers to a CRC status write error, a CRC16 error in the data read, a CRC7 error in a stop response, or a CRC7 error in a response.
- **6.** Command error refers to a command index error in a command response or in an SD_STOP response.

3.2.17 SD card information mask register 1

This register (SDC_INFO1_MASK: 0040H) disables the SDC interrupt sources shown in the SDC_INFO1 register.

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:3	000H	Reserved. If these bits are read, 0 is returned for each bit.
IMASK2	R/W	2	1	Specify whether to disable the interrupt issued when the end of a read/write access is detected. 0: Enable 1: Disable
Reserved	R	1	0	Reserved. If this bit is read, 0 is returned.
IMASK0	R/W	0	1	Specify whether to disable the interrupt issued when the end of a response is detected. 0: Enable 1: Disable

3.2.18 SD card information mask register 2

This register (SDC_INFO2_MASK: 0044H) disables the SDC interrupt sources shown in the SDC_INFO2 register.

	15	14	13	12	11	10	9	8
	IMASK Reserved					BMSK1	BMSK0	
_	7 6 5 4 3 2					1	0	
	Reserved	EMASK6	EMASK5	EMASK4	EMASK3	EMASK2	EMASK1	EMASK0

Name	R/W	Bit No.	After Reset	Description
IMASK	R/W	15	1	Specify whether to disable the illegal access interrupt.
				0: Enable
				1: Disable
Reserved	R	14:10	00H	Reserved. If these bits are read, 0 is returned for each bit.
BMASK1	R/W	9	1	Specify whether to disable the write enable interrupt.
				0: Enable
				1: Disable
BMASK0	R/W	8	1	Specify whether to disable the read enable interrupt.
				0: Enable
				1: Disable
Reserved	R	7	0	Reserved. If this bit is read, 0 is returned.
EMASK6	R/W	6	1	Specify whether to disable the response timeout interrupt.
				0: Enable
				1: Disable
EMASK5	R/W	5	1	Specify whether to disable the illegal data buffer read access interrupt.
				0: Enable
				1: Disable
EMASK4	R/W	4	1	Specify whether to disable the illegal data buffer write access interrupt.
				0: Enable
				1: Disable
EMASK3	R/W	3	1	Specify whether to disable the timeout (other than response) interrupt.
				0: Enable
				1: Disable
EMASK2	R/W	2	1	Specify whether to disable the end error interrupt.
				0: Enable
				1: Disable
EMASK1	R/W	1	1	Specify whether to disable the CRC error interrupt.
				0: Enable
				1: Disable
EMASK0	R/W	0	1	Specify whether to disable the command error interrupt.
				0: Enable
				1: Disable

SD Card Interface Registers 3.

3.2.19 SD card transfer clock control register

This register (SDC_CLK_CTRL: 0048H) specifies the ratio for dividing the SD card transfer clock frequency.

15	14	13	12	11	10	9	8
		Reserved	SDCLKSEL	SDCLKOFFEN	SCLKEN		
7	6	5	4	3	2	1	0
DIV7	DIV6	DIV5	DIV4	DIV3	DIV2	DIV1	DIV0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:11	00H	Reserved. If these bits are read, 0 is returned for each bit.
SDCLKSEL	R/W	10	0	Select the type of SD card according to the transfer clock speed.
				0: Normal SD card
				1: High-speed SD card
SDCLKOFFEN	R/W	9	0	Specify whether to enable turning on and off the SD card transfer
				clock signal (SDCLK).
				0: Disable
				1: Enable (The clock signal can be turned off when no transfers
				are being executed).
SCLKEN	R/W	8	0	Specify whether to enable the SDCLK signal.
				0: Disable (low output)
				1: Enable
DIV[7:0]	R/W	7:0	20H	Specify the ratio for dividing the frequency of the SDCLK signal
				created from SDC_CLK.
				0: Division by 2
				1: Division by 4
				2: Division by 8
				4: Division by 16
				8: Division by 32
				16: Division by 64
				32: Division by 128
				64: Division by 256
				128: Division by 512
				Caution The SDCLK signal stops if a value other the above
				is specified.

3.2.20 SD card transfer data size register

This register (SDC_SIZE: 004CH) specifies the transfer data size.

15	14	13	12	11	10	9	8
		Rese	erved			LEN9	LEN8
 7	6	5	4	3	2	1	0
LEN7	LEN6	LEN5	LEN4	LEN3	LEN2	LEN1	LEN0

Name	R/W	Bit No.	After Reset	Description			
Reserved	R	15:10	000H	Reserved. If these bits are read, 0 is returned for each bit.			
LEN[9:0]	R/W	9:0	200H	Specify the size of the SD data to be transferred.			
				1 to 512 bytes can be specified in byte units. Do not set this field			
				to 0. Do not specify 513 or more bytes.			

3.2.21 SD card option setting register

This register (SDC_OPTION: 0050H) specifies various options.

	15	14	13	12	11	10	9	8
	WIDTH				Reserved			
-								
	7	6	5	4	3	2	1	0
	TOP27	TOP26	TOP25	TOP24	CTOP24	CTOP23	CTOP22	CTOP21

Name	R/W	Bit No.	After Reset	Description		
WIDTH	R/W	15	0	Specify the SD data transfer bit width.		
				0: 4 bits		
				1: 1 bit		
Reserved	R	14:8	00H	Reserved. If these bits are read, 0 is returned for each bit.		
TOP[27:24]	R/W	7:4	EH	Response timeout counter		
CTOP[24:21]	R/W	3:0	EH	Card detection stabilization time counter		

TOP[27:24] Response timeout counter

TOP27	TOP26	TOP25	TOP24	Description
1	1	1	1	Timeout testing mode
1	1	1	0	SD transfer clock × 2 ²⁷
1	1	0	1	SD transfer clock × 2 ²⁶
1	1	0	0	SD transfer clock × 2 ²⁵
1	0	1	1	SD transfer clock \times 2 ²⁴
1	0	1	0	SD transfer clock × 2 ²³
1	0	0	1	SD transfer clock × 2 ²²
1	0	0	0	SD transfer clock × 2 ²¹
0	1	1	1	SD transfer clock × 2 ²⁰
0	1	1	0	SD transfer clock × 2 ¹⁹
0	1	0	1	SD transfer clock × 2 ¹⁸
0	1	0	0	SD transfer clock × 2 ¹⁷
0	0	1	1	SD transfer clock × 2 ¹⁶
0	0	1	0	SD transfer clock × 2 ¹⁵
0	0	0	1	SD transfer clock × 2 ¹⁴
0	0	0	0	SD transfer clock × 2 ¹³

CTOP[24:21] Card detection stabilization time counter

CTOP24	CTOP23	CTOP22	CTOP21	Description
1	1	1	1	Timeout testing mode
1	1	1	0	SD transfer clock × 2 ²⁷
1	1	0	1	SD transfer clock × 2 ²⁶
1	1	0	0	SD transfer clock × 2 ²⁵
1	0	1	1	SD transfer clock × 2 ²⁴
1	0	1	0	SD transfer clock × 2 ²³
1	0	0	1	SD transfer clock × 2 ²²
1	0	0	0	SD transfer clock × 2 ²¹
0	1	1	1	SD transfer clock × 2 ²⁰
0	1	1	0	SD transfer clock × 2 ¹⁹
0	1	0	1	SD transfer clock × 2 ¹⁸
0	1	0	0	SD transfer clock × 2 ¹⁷
0	0	1	1	SD transfer clock × 2 ¹⁶
0	0	1	0	SD transfer clock × 2 ¹⁵
0	0	0	1	SD transfer clock × 2 ¹⁴
0	0	0	0	SD transfer clock × 2 ¹³

3.2.22 SD card error interrupt status register 1

This register (SDC_ERR_STS1: 0058H) indicates the status of the interrupts that are generated by an SDC error.

15	14	13	12	11	10	9	8
Reserved	E14	E13	E12	E11	E10	E9	E8
7	6	5	4	3	2	1	0
Rese	erved	E5	E4	E3	E2	E1	E0

(1/2)

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15	0	Reserved. If this bit is read, 0 is returned.
E[14:12]	R	14:12	010b	Stores the CRC status in data sent from the SD card.
E11	R	11	0	Indicates whether a CRC write error occurred.
				0: Did not occur
				1: Occurred
E10	R	10	0	Indicates whether a CRC error occurred in read data.
				0: Did not occur
				1: Occurred
E9	R	9	0	Indicates whether a CRC error occurred in an SD_STOP
				response.
				0: Did not occur
				1: Occurred
E8	R	8	0	Indicates whether a CRC error occurred in a command response.
				0: Did not occur
				1: Occurred
Reserved	R	7:6	0H	Reserved. If these bits are read, 0 is returned for each bit.
E5	R	5	0	Indicates whether an end bit error occurred during CRC status
				writing.
				0: Did not occur
				1: Occurred
E4	R	4	0	Indicates whether an end bit error occurred in read data.
				0: Did not occur
				1: Occurred
E3	R	3	0	Indicates whether an end bit error occurred in an SD_STOP
				response.
				0: Did not occur
				1: Occurred
E2	R	2	0	Indicates whether an end bit error occurred in a command
				response.
				0: Did not occur
				1: Occurred

(2/2)

Name	R/W	Bit No.	After Reset	Description
E1	R	1	0	Indicates whether a command index error occurred in an
				SD_STOP response.
				0: Did not occur
				1: Occurred
E0	R	0	0	Indicates whether a command index error occurred in a command
				response.
				0: Did not occur
				1: Occurred

3.2.23 SD card error interrupt status register 2

This register (SDC_ERR_STS2: 005CH) indicates the status of the interrupts that are generated by an SDC error.

15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	E6	E5	E4	E3	E2	E1	E0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:7	00H	Reserved. If these bits are read, 0 is returned for each bit.
E6	R	6	0	0: No error has occurred.
				1: An error has occurred (because the busy status continued for
				a period of time longer than the number of cycles specified for
				SDC_OPTION[7:4], after the CRC status was written).
E5	R	5	0	0: No error has occurred.
				1: An error has occurred (because the CRC write status was not
				returned for a period of time longer than the number of cycles
				specified for SDC_OPTION[7:4] after a write access).
E4	R	4	0	0: No error has occurred.
				1: An error has occurred (because the read data was not
				returned for a period of time longer than the number of cycles
				specified for SDC_OPTION[7:4] after the read command was
				issued).
E3	R	3	0	0: No error has occurred.
				1: An error has occurred (because the status continued for a
				period of time longer than the number of cycles specified for
				SDC_OPTION[7:4] after a SD_STOP response was returned).
E2	R	2	0	0: No error has occurred.
				1: An error has occurred (because the busy status continued for
				a period of time longer than the number of cycles specified for
				SDC_OPTION[7:4], after an R1b response was returned).
E1	R	1	0	0: No error has occurred.
				1: An error has occurred (because no SD_STOP response was
				returned for 640 SD transfer clock cycles or more).
E0	R	0	0	0: No error has occurred.
				1: An error has occurred (because no command response was
				returned for 640 SD transfer clock cycles or more).

3.2.24 SD card data buffer 0 register

This buffer register (SDC_BUF0: 0060H) stores the data read from and written to the SD card in the SDC module.

15	14	13	12	11	10	9	8
BUF15	BUF14	BUF13	BUF12	BUF11	BUF10	BUF9	BUF8
7	6	5	4	3	2	1	0
BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0

Name	R/W	Bit No.	After Reset	Description
BUF[15:0]	R/W	15:0	Undefined	Register for inputting and outputting data to and from the 512-
				byte × 2-bank data buffer

3.2.25 SDIO mode setting register

This register (SDC_SDIO_MODE: 0068H) controls selection of the SDIO mode.

 15	14	13	12	11	10	9	8
		Rese	erved			C52PUB	IOABT
 7	6	E	4	2	2	4	0
7	0	5	4	3	2	ı	0
		Reserved	RWREQ	Reserved	IOMOD		

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:10	00H	Reserved. If these bits are read, 0 is returned for each bit.
C52PUB	R/W	9	0	SD IO abortion (Data being transferred is guaranteed.)
				0: Default
				1: CMD52 is sent and the SD host holds IP transmission
				pending. The value before setting this bit is used as the
				CMD52 parameter. This bit is cleared after a CMD52
				response is issued.
IOABT	R/W	8	0	SD IO abortion (Data being transferred is lost.)
				This bit must be specified only during multiple IO transactions.
				0: Default
				1: CMD52 is sent and the SD host stops IP transmission. The
				value before setting this bit is used as the CMD52 parameter.
Reserved	R	7:3	0H	Reserved. If these bits are read, 0 is returned for each bit.
RWREQ	R/W	2	0	Read wait request signal used during a multiple block read
Reserved	R/W	1	0	Reserved. If this bit is read, 0 is returned.
IOMOD	R/W	0	0	Specify whether to enable acknowledgment of interrupts from the
				SDIO card
				0: Disable
				1: Enable

3.2.26 SDIO information register

This register (SDC_SDIO_INFO1: 006CH) indicates the status of interrupt sources when the SDC module is used in SDIO mode.

Name	R/W	Bit No.	After Reset	Description
EXWT	R/W	15	0	Software read/write request
				0: No request was issued.
				1: A request was issued.
EXPUB52	R/W	14	0	Software read/write source
				0: Data was written
				1: C52PUB was set to 1 other than when a read or write transfer
				was performed
Reserved	R	13:3	000H	Reserved. If these bits are read, 0 is returned for each bit.
RWRDY	R/W	2	0	Indicates the read wait mode ready status.
				0: Not ready
				1: Ready
C52RDY	R/W	1	0	Indicates the CMD52 ready status.
				0: Not ready to be issued.
				1: Ready to be issued.
IOIRQ	R/W	0	0	Indicates the SDIO interrupt status.
				0: No interrupt was issued from the SDIO card.
				1: An interrupt was issued from the SDIO card.

3.2.27 SDIO information mask register

This register (SDC_SDIO_INFO1_MASK: 0070H) disables the interrupt sources assigned to the corresponding bits in SDIO mode.

Name	R/W	Bit No.	After Reset	Description
EXWT_MASK	R/W	15	1	Specify whether to disable the software read/write request.
				0: Enable
				1: Disable
EXPUB52_MASK	R/W	14	1	Specify whether to disable the software read/write request.
				0: Enable
				1: Disable
Reserved	R	13:3	000H	Reserved. If these bits are read, 0 is returned for each bit.
RWRDY_MASK	R/W	2	1	Specify whether to disable the read wait mode ready source.
				0: Enable
				1: Disable
C52RDY_MASK	R/W	1	1	Specify whether to disable the CMD52 ready source.
				0: Enable
				1: Disable
IOIRQ_MASK	R/W	0	1	Specify whether to disable the SDIO interrupt status source.
				0: Enable
				1: Disable

3.2.28 SDC software reset control register

This register (SDC_SOFT_RST: 01C0H) is used to execute a software reset for the SDC blocks.

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:3	0000H	Reserved. If these bits are read, 0 is returned for each bit.
Reserved	R	2:1	01b	Reserved. If these bits are read, 1 is returned for each bit.
SDRST	R/W	0	1	Control resetting the SD card interface block.
				0: Reset the SDC module.
				1: Cancel the reset state.

Caution Be sure to set bits 2 and 1 to 1.

3.2.29 SDC user register

This register (SDC_USER: 0200H) controls the SDC wrapper block.

15	14	13	12	11	10	9	8
SYNC	DMASDI	DMASDO		Rese	erved		SDCLKSTP
7	6	5	4	3	2	1	0
CLKSTP	Rese	erved	DMARQSEL2	DMARQSEL1	DMARQSEL0	Reserved	CD

(1/2)

Name	R/W	Bit No.	After Reset	Description
SYNC	R/W	15	0	Specify AB1 synchronous or asynchronous mode.
				0: AB1 synchronous mode
				1: AB1 asynchronous mode
DMASDI	R	14	0	Indicates whether there are DMA requests for reading the SD
				read buffer.
				0: No request was issued.
				1: A request was issued.
DMASDO	R	13	0	Indicates whether there are DMA requests for reading the SD
				write buffer.
				0: No request was issued.
				1: A request was issued.
Reserved	R	12:9	0H	Reserved. If these bits are read, 0 is returned for each bit.
SDCLKSTP	R/W	8	0	Select the SDCLK loop path.
				0: External loop (SD_CKO → SD_CKI) Note
				1: Setting prohibited
CLKSTP	R/W	7	0	Specify whether to oscillate or stop the SDC main module clock
				signal IMCLK.
				0: Oscillate IMCLK.
				1: Stop IMCLK.
Reserved	R	6:5	0H	Reserved. If these bits are read, 0 is returned for each bit.
DMARQSEL[2:0]	R/W	4:2	1H	Select the DMA request signal trigger.
				100: SDC_RXDMARQ: Not assigned
				SDC_TXDMARQ: Writing SD data
				011: SDC_RXDMARQ: Reading SD data
				SDC_TXDMARQ: Not assigned
				010: SDC_RXDMARQ: Not assigned
				SDC_TXDMARQ: Not assigned
				001: SDC_RXDMARQ: Reading SD data
				SDC_TXDMARQ Writing SD data
				000: SDC_RXDMARQ: Reading SD data
				SDC_TXDMARQ: Writing SD data
Reserved	R	1	0	Reserved. If this bit is read, 0 is returned.

(2/2)

Name	R/W	Bit No.	After Reset	Description
CD	R/W	0	0	Resets the SDC bus wrapper and DMA interrupt control blocks
				by using software.
				0: Cancel the reset state.
				1: Reset the blocks.
				Caution SDC_SOFT_RST has inverted logic.

Note Using of external loop

Output of SD_CKO is wired from EMEV to a SD card and it's connected to a SD card.

A loop back to EMEV, and input that to SD_CKI.

When SD_CKO and SD_CKI are connected simply, an AC specification can't sometimes be satisfied..

3.2.30 SDC user register 2

This register (SDC_USER2: 0204H) specifies the internal SD clock group delay and the synchronization mode.

15	14	13	12	11	10	9	8
		Reserved	IntParam2	IntParam1	IntParam0		
7	6	5	4	3	2	1	0
				SYNCMODE			

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:11	00H	Reserved. If these bits are read, 0 is returned for each bit.
IntParam[2:0]	R/W	10:8	0H	Internal adjustment bit
				Do not specify a value other than 000b.
Reserved	R	7:1	00H	Reserved. If these bits are read, 0 is returned for each bit.
SYNCMODE	R/W	0	0	Specify the synchronization mode.
				0: Asynchronous mode
				1: Synchronous mode

The signal that results from logically combining (ORing) bit 15 of the SDC use register (SDC_USER) and bit 0 of SDC use register 2 (SDC_USER2) is the synchronization signal to be used to control the circuits.

	Bit 15 of	Bit 0 of	Mode Control Signal	Mode
	SDC_USER	SDC_USER2	Level	
Pattern 1	0	0	0	Asynchronous mode
Pattern 2	0	1	1	Synchronous mode
Pattern 3	1	0	1	Synchronous mode
Pattern 4	1	1	1	Synchronous mode

3.2.31 Module reset control register

This register (SDC_RST_CTRL_CTRL: 0210H)

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:6	000H	Reserved. If these bits are read, 0 is returned for each bit.
Reserved	R	5	0	Reserved. If this bit is read, 0 is returned.
				Writing in of "1" is prohibited.
Reserved	R	4	0	Reserved. If this bit is read, 0 is returned.
				Writing in of "1" is prohibited.
Reserved	R	3	0	Reserved. If this bit is read, 0 is returned.
				Writing in of "1" is prohibited.
F0RST	R/W	2	0	FIFO0 (SD R/W) control module reset
				0 : Reset release
				1 : Reset
MHRST	R/W	1	0	HOST control module reset
				0 : Reset release
				1 : Reset
AMRST	R/W	0	0	AHB master control module reset
				0 : Reset release
				1 : Reset

3.2.32 AHB bus interface control register

This register (SDC_BUSIF_CTRL: 0214H)

15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Rese	Reserved ACCTYPE		ERR_M	ERR_MASTER		BURSTMODE	

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:6	000H	Reserved. If these bits are read, 0 is returned for each bit.
ACCTYPE	R/W	5	0	Select the core access address type (This function not used)
				0: Register setting
				1: Value fixed (0x7F)
ERR_MASTER	R	4:3	00b	AHB error occurrence master ID
				00b: SD R/W transfer
				01b: C2 input transfer
				10b: C2 output transfer
BURSTMODE	R/W	2:1	00b	Select the AHB master/burst transfer mode
				00b: Single
				01b: INCR4
				10b: INCR8
				11b: INCR16
AMCEN	R/W	0	0	Specify the AHB master transfer.
				0: Invalid
				1: Valid

3.2.33 DMA mask setting register

This register (SDC_DMAMSK_CTRL: 021CH)

_	15	14	13	12	11	10	9	8
				Rese	erved			
-								
_	7	6	5	4	3	2	1	0
		Rese	erved		DMAMSK_CC	DMAMSK_CC	DMAMSK_SD	DMAMSK_SD
					W	R	W	R

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:4	000H	Reserved. If these bits are read, 0 is returned for each bit.
DMAMSK_CCW	R/W	3	1	Specify the mask control of C2 write transfer DMA.
				0: Valid
				1: Mask
DMAMSK_CCR	R/W	2	1	Specify the mask control of C2 read transfer DMA.
				0: Valid
				1: Mask
DMAMSK_SDW	R/W	1	1	Specify the mask control of SD write transfer DMA.
				0: Valid
				1: Mask
DMAMSK_SDR	R/W	0	1	Specify the mask control of SD read transfer DMA.
				0: Valid
				1: Mask

3.2.34 SD write transfer data storage address

This register (SDC_TXMEM_ADDR0L: 0220H)

15	14	13	12	11	10	9	8
			TXMEM_A	DDR0[15:8]			
7	6	5	4	3	2	1	0
	TXMEM_ADDR0[7:0]						

Name	R/W	Bit No.	After Reset	Description
TXMEM_ADDR0	R/W	15:0	0000H	The start address (lower 16bit) when reading data from a
				memory, is established at the time of writing in on a SD card.

3.2.35 SD read transfer data storage address

This register (SDC_RXMEM_ADDR0L: 0228H)

15	14	13	12	11	10	9	8
			RXMEM_A	DDR0[15:8]			
7	6	5	4	3	2	1	0
			RXMEM_A	ADDR0[7:0]			

Name	R/W	Bit No.	After Reset	Description
RXMEM_ADDR0	R/W	15:0	0000H	The start address (lower 16bit) when writing data from a memory,
				is established at the time of reading in on a SD card.

3.2.36 SD sector length setting register

This register (SDC_SECTOR_LENGTH0: 0230H)

15	14	13	12	11	10	9	8
		Rese	erved			LENGT	H0[9:8]
7	6	5	4	3	2	1	0
			LENGT	H0[7:0]			

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:10	00H	Reserved. If these bits are read, 0 is returned for each bit.
LENGTH0	R/W	9:0	000H	The sector length which is at the time of DMA transmission is set.

3.2.37 SD block length setting register

This register (SDC_BLOCK_LENGTH0: 0240H)

15	14	13	12	11	10	9	8
		Rese	erved			LENGT	H0[9:8]
7	6	5	4	3	2	1	0
	LENGTH0[7:0]						

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:10	00H	Reserved. If these bits are read, 0 is returned for each bit.
LENGTH0	R/W	9:0	000H	The block length which is at the time of DMA transmission is set.

3.2.38 DMA startup register

This register (SDC_TRANS_START: 0260H)

15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
		Reserved		START2	START1	START0	

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:3	0000H	Reserved. If these bits are read, 0 is returned for each bit.
START2	R/W	2	0	Specify the C2 write DMA startup.
				0: Stop
				1: Start
START1	R/W	1	0	Specify the C2 Read DMA startup.
				0: Stop
				1: Start
START0	R/W	0	0	Specify the SD R/W DMA startup.
				0: Stop
				1: Start

RENESAS

3.2.39 Interrupt mask register

This register (SDC_INT_MSK: 0270H)

15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	Rese	erved		INTMSK3	INTMSK2	INTMSK1	INTMSK0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:4	000H	Reserved. If these bits are read, 0 is returned for each bit.
INTMSK3	R/W	3	1	Specify the error occurrence interrupt mask.
				0: No mask
				1: Mask
INTMSK2	R/W	2	1	Specify the C2 writing in completion interrupt mask.
				0: No mask
				1: Mask
INTMSK1	R/W	1	1	Specify the C2 reading in completion interrupt mask.
				0: No mask
				1: Mask
INTMSK0	R/W	0	1	Specify the SD R/W in completion interrupt mask.
				0: No mask
				1: Mask

3.2.40 Interrupt factor RAW register

This register (SDC_INT_RAW: 0274H)

15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
	Rese	erved		INTRAW3	INTRAW2	INTRAW1	INTRAW0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:4	000H	Reserved. If these bits are read, 0 is returned for each bit.
INTRAW3	R/W	3	1	Specify the error occurrence interrupt RAW factor.
				0: No mask
				1: Mask
INTRAW2	R/W	2	1	Specify the C2 writing in completion interrupt RAW factor.
				0: No mask
				1: Mask
INTRAW1	R/W	1	1	Specify the C2 reading in completion interrupt RAW factor.
				0: No mask
				1: Mask
INTRAW0	R/W	0	1	Specify the SD R/W in completion interrupt RAW factor.
				0: No mask
				1: Mask

3.2.41 Interrupt factor register

This register (SDC_INT_ORG: 0278H)

15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Rese	erved		INTORG3	INTORG2	INTORG1	INTORG0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:4	000H	Reserved. If these bits are read, 0 is returned for each bit.
INTORG3	R/W	3	1	Specify the error occurrence interrupt factor.
				0: No mask
				1: Mask
INTORG2	R/W	2	1	Specify the C2 writing in completion interrupt factor.
				0: No mask
				1: Mask
INTORG1	R/W	1	1	Specify the C2 reading in completion interrupt factor.
				0: No mask
				1: Mask
INTORG0	R/W	0	1	Specify the SD R/W in completion interrupt factor.
				0: No mask
				1: Mask

3.2.42 Interrupt factor clear register

This register (SDC_INT_CLR: 027CH)

15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Rese	erved		INTCLR3	INTCLR2	INTCLR1	INTCLR0

Name	R/W	Bit No.	After Reset	Description
Reserved	R	15:4	000H	Reserved. If these bits are read, 0 is returned for each bit.
INTCLR3	R/W	3	1	Specify the error occurrence interrupt factor clear.
				0: No mask
				1: Mask
INTCLR2	R/W	2	1	Specify the C2 writing in completion interrupt factor clear.
				0: No mask
				1: Mask
INTCLR1	R/W	1	1	Specify the C2 reading in completion interrupt factor clear.
				0: No mask
				1: Mask
INTCLR0	R/W	0	1	Specify the SD R/W in completion interrupt factor clear.
				0: No mask
				1: Mask

3.2.43 SD write transfer data storage address

This register (SDC_TXMEM_ADDR0H: 0290H)

15	14	13	12	11	10	9	8	
			TXMEM_AI	DDR0[31:24]				
7	6	F	4	2	2	4	0	
	0	5	4	ა	2	ļ	0	
	TXMEM_ADDR0[23:16]							

Name	R/W	Bit No.	After Reset	Description
TXMEM_ADDR0	R/W	15:0	0000H	The start address (upper 16bit) when reading data from a
				memory, is established at the time of writing in on a SD card.

3.2.44 SD read transfer data storage address

This register (SDC_RXMEM_ADDR0H: 0298H)

15	14	13	12	11	10	9	8
			RXMEM_AD	DDR0[31:24]			
7	6	5	4	3	2	1	0
			RXMEM_AD	DDR0[23:16]			

Name	R/W	Bit No.	After Reset	Description
RXMEM_ADDR0	R/W	15:0	0000H	The start address (upper 16bit) when writing data from a memory,
				is established at the time of reading in on a SD card.

3.2.45 DMA mode SD buffer register

This buffer register (SDC_DMASD: 0300H) is used to read or write the SD registers when the SDC module runs in DMA mode.

Remark If the DMA controller accesses the SDC SD read/write buffer: SDC_DMASD If the CPU accesses the SDC SD read/write buffer: SDC_BUF0

15	14	13	12	11	10	9	8
SDC_	SDC_	SDC_	SDC_	SDC_	SDC_	SDC_	SDC_
DMASD15	DMASD14	DMASD13	DMASD12	DMASD11	DMASD10	DMASD9	DMASD8
7	6	5	4	3	2	1	0
SDC_	SDC_	SDC_	SDC_	SDC_	SDC_	SDC_	SDC_
DMASD7	DMASD6	DMASD5	DMASD4	DMASD3	DMASD2	DMASD1	DMASD0

Name	R/W	Bit No.	After Reset	Description
SDC_DMASD[15:0]	R/W	15:0	0000H	SD buffer used during a DMA transfer

4. Description of Functions

4.1 SD Card Data Format

Figures 4-1 and 4-2 show the timing for transferring data in 1-bit transfer mode and in 4-bit transfer mode, respectively. In 1-bit transfer mode, SDC_DATA0 is used as the data line.

Figure 4-1. SD Card Data Format (in 1-bit Transfer Mode)

Figure 4-2. SD Card Data Format (in 4-bit Transfer Mode)

4.2 SDIO Interrupts

The SDC module supports SDIO interrupts that conform to SDIO Card Specification Ver. 1.0. According to this specification, interrupts from an SDIO card are generated using bit 1 of the SD data line, but an SDIO card can only be detected in either of the following periods:

- <1> In an asynchronous interrupt period: The SD data line is used as an interrupt line when data transfer that uses bit 1 of the SD data line is not taking place.
- <2> In a synchronous interrupt period: Interrupts are output only at a certain timing when multiple blocks are transferred if the SD data line is in 4-bit mode.

The following figures show the interrupt periods when the SDC module is used with the SD data line in 1-bit mode and in 4-bit mode (for single block transfers and multiple block transfers).

The SDC module is allocated to the L1 domain. Because the power is not necessarily supplied to the L1 domain when the SDC module starts, SD_DATA1 is connected to CHG, which is allocated to the L0 domain (where the power is always on), interrupts are disabled in CHG, and a register that stores interrupt sources is implemented in CHG. Startup interrupts from the SDIO device are handled by CHG using an SDC startup interrupt feature. To enable this operation, after the SDC module starts, disable the SDC startup interrupt by using a CHG register, and then enable the SDC asynchronous interrupts to perform normal operations.

Figure 4-3 shows the overview of the SDC startup sequence when an SDIO card is detected.

Start Device startup To enable interrupts, use the EM/EV startup routine to clear the SDC startup interrupt mask register implemented in CHG to 0. Interrupt Interrupt from an SDIO card from an SDIO card Use the interrupt vector to check the SDC startup interrupt source register implemented in CHG, and then execute the L1 power startup routine. To disable interrupts, set the SDC startup interrupt mask register implemented in CHG to 1. Go to the SDC routine, specify the initial value, and then issue a response command to the SDIO card. The normal SDIO routine starts Issue a response command to the SDIO card. Perform normal SDIO operations. The normal SDIO routine finishes SDC module termination processing (including disabling interrupts for the SDC module) To disable interrupts, set the SDC startup interrupt mask register implemented in CHG to 1, and then turn off the L1 power according to the operating status of other modules.

Figure 4-3. SDC Startup Sequence Triggered by SDIO Card Detection

Figure 4-4 shows the status transitions.

In this figure, INIT_IRQ shows the asynchronous interrupt period, MR_IRQ, MW_IRQ, MR_NOSTP_IRQ, and MW_NOSTP_IRQ show the synchronous interrupt period, and other items show the interrupt-disabled period.

Figure 4-4. SDC SDIO Interrupt Status Transitions

Remark SR_DATA: Single-block data read transaction SW_DATA: Single-block data write transaction

MR_DATA: Multi-block data read transaction (not affected by a stop command)
MW_DATA: Multi-block data write transaction (not affected by a stop command)

MR_NOSTP_DATA: Multi-block data read transaction MW_NOSTP_DATA: Multi-block data write transaction

MR_IRQ: Multi-block read interrupt timing (not affected by a stop command)
MW_IRQ: Multi-block write interrupt timing (not affected by a stop command)

MR_NOSTP_IRQ: Multi-block read interrupt timing
MW_NOSTP_IRQ: Multi-block write interrupt timing

REVISION HISTORY	EMMA Mobile EV2 User's Manual: SD Card Interface
------------------	--

Rev.	Date	Description		
		Page	Summary	
1.00	Mar 31, 2010	_	1 st revision release	
2.00	Jun 7, 2010	_	Incremental update from comments to the 1.0.	
3.00	Apr 15, 2011	_	3.2.31 - 3.2.43 register added.	
			Incremental update from comments to the 2.0.	
			(A change part from the old revision is "★" marked in the page left end.)	
4.00	May 31, 2011	_	Incremental update from comments to the 3.0.	
5.00	Dec 21, 2011	31	Chapter 3.2.31 added.	

EMMA Mobile EV2 User's Manual: SD Card Interface

Publication Date: Rev.1.00 Mar 31, 2010

Rev.5.00 Dec 21, 2011

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

SD Card Interface

EMMA Mobile EV2

