A. Identifier visuellement des vecteurs colinéaires

Définition. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un nombre réel k tel que $\vec{u} = k\vec{v}$.

Autrement dit s'ils sont alignés, dans le même sens ou de sens opposés

 $ec{v}$ $ec{v}$ $ec{k}$

Exemple. Les vecteurs \vec{u} , \vec{v} et \vec{k} sur l'image ci-contre sont colinéaires entre eux. Le vecteur \vec{w} n'est colinéaire avec aucun des autres vecteurs.

B. Calculer le déterminant de deux vecteurs

Définition. Dans un repère, le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ est $\underline{\mathsf{le}}$

$$\underline{\mathsf{nombre}} \quad \det(\overrightarrow{\boldsymbol{u}}; \overrightarrow{\boldsymbol{v}}) = xy' - yx'$$

Pour éviter la notation $\det \begin{pmatrix} x \\ y \end{pmatrix}; \begin{pmatrix} x' \\ y' \end{pmatrix}$ on utilise la notation $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$

Exemple. Soit $\overline{\vec{u}} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$. Calculer $\det(\vec{u}; \vec{v})$.

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix} =$$

Exercice B1. Soit $\vec{u} = \begin{pmatrix} 2 \\ 9 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} -0.5 \\ -2 \end{pmatrix}$ et $\vec{r} = \begin{pmatrix} -2 \\ 9 \end{pmatrix}$. Calculer:

$$\det(\vec{u}; \vec{v}) =$$

$$\det(\vec{v}; \vec{w}) =$$

$$\det(\vec{w}; \vec{r}) =$$

C. <u>Calculer l'aire d'un parallélogramme délimité par deux vecteurs</u>

Propriété. Dans un repère *orthonormé*, l'aire du parallélogramme formé par \vec{u} et \vec{v} quand on les fait partir d'un même point, vaut $|\det(\vec{u}; \vec{v})|$

Exercice C1. On suppose qu'une unité vaut 1 cm.

Calculer l'aire des parallélogrammes \mathcal{A}_{ABCD} , \mathcal{A}_{EFGH} , \mathcal{A}_{IJKL}

Le parallélogramme \overrightarrow{ABCD} est délimité par les vecteurs \overrightarrow{AB} et \overrightarrow{AD} .

$$\det(\overrightarrow{AB}; \overrightarrow{AD}) = \begin{vmatrix} 3 & 1 \\ 2 & -4 \end{vmatrix} = 3 \times (-4) - 2 \times 1 = -12 - 3 = -15$$

 $\mathcal{A}_{ABCD} = |-15| = 15 \text{ cm}^2$

D. <u>Tester la colinéarité de vecteurs par calcul</u>

Propriété. Deux vecteurs sont colinéaires si et seulement si leur déterminant est zéro. (Dans n'importe quel repère)

Exemple. Les vecteurs $\vec{u} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -15 \\ 6 \end{pmatrix}$ sont-ils colinéaires ?

$$\det(\vec{u}; \vec{v}) =$$

Exercice D1.

Les vecteurs $\vec{a} = {5 \choose 3}$ et $\vec{b} = {10 \choose -6}$ sont-ils colinéaires ?

Les vecteurs $\vec{c}={8\choose -3}$ et $\vec{d}={7\choose 11}$ sont-ils colinéaires ?

Les vecteurs $\vec{e} = \begin{pmatrix} -6 \\ 16 \end{pmatrix}$ et $\vec{f} = \begin{pmatrix} 9 \\ -24 \end{pmatrix}$ sont-ils colinéaires ?

E. <u>Tester si deux droites sont parallèles par calcul</u>

Méthode. Pour tester si deux droites sont parallèles :

- On détermine un vecteur directeur pour chaque droite.
- On teste la colinéarité des vecteurs directeurs, en comparant leur déterminant à zéro.

Exemple. Soit A = (0; 3), B = (2; 2), C = (1; -2), D = (-10; 3, 5).

Les droites (AB) et (CD) sont-elles parallèles ou sécantes ?

$$\overrightarrow{AB} = \overrightarrow{CD} =$$

 $\det(\overrightarrow{AB}; \overrightarrow{CD}) =$

Donc (AB) et (CD) sont

Exercice E1.

1) Soit A = (-2, 1), B = (3, 4), C = (2, 2), D = (5, 4). Les droites (AB) et (CD) sont-elles parallèles ?

2) Soit E = (2; 2), F = (5; 4), G = (1; 4), H = (-2; 2). Les droites (EF) et (GH) sont-elles parallèles ?

3) Soit I = (3; 4), J = (5; 0), K = (0; 5), L = (3; 0). Les droites (IJ) et (KL) sont-elles parallèles?

Colinéarité - 3

F. <u>Tester si trois points sont alignés par calcul</u>

Méthode. Pour tester si trois points sont alignés :

- On détermine deux vecteurs faisant intervenir ces trois points.
- On teste la colinéarité de ces vecteurs, en comparant leur déterminant à zéro.

Exemple. Les points A = (1; 3), B = (2; 6) et C = (3; 9) sont-ils alignés ?

$$\overrightarrow{AB} = \overrightarrow{AC} =$$

$$\det(\overrightarrow{AB}; \overrightarrow{AC}) =$$

Donc

Exercice F1.

- 1) Soit A = (2, 3), B = (2, -1), C = (2, 7). Les points A, B, C sont-ils alignés ?
- 2) Soit D = (1; 4), E = (-5; -4), F = (4; 8). Les points D, E, F sont-ils alignés ?
- 3) Soit G = (-3, 0), H = (2, 3), I = (4, 4). Le point I appartient-il à la droite (GH)?