### Dynamic Factor Models

Francis J. DiTraglia

University of Pennsylvania

Econ 722

# Survey Articles on Dynamic Factor Models

### Stock & Watson (2010)

Best general overview of dynamic factor models and applications.

### Bai & Ng (2008)

Comprehensive review of large-sample results for high-dimensional factor models estimated via PCA.

### Stock & Watson (2006)

Handbook chapter on forecasting with many predictors. One section is devoted to dynamic factor models.

### Breitung & Eickmeyer (2006)

Brief overview with an application to Euro-area business cycles.

#### The Basic Idea

We're interested in settings with a large number of time series N and a comparable number of time periods T.

### Example: Stock and Watson Dataset



Monthly Macroeconomic Indicators: N > 200, T > 400

## Why Factor Models?

- 1. Factors could be intrinsically interesting if they arise from a theoretical model (e.g. Financial Economics)
- 2. Many variables without running out of degrees of freedom
  - More information could improve forecasts/macro analysis
  - Mimic central banks "looking at everything"
- Eliminate measurement error and idiosyncratic shocks to provide more reliable information for policy
- 4. "Remain Agnostic about the Structure of the Economy"
  - Advantages over SVARs: don't have to choose variables to control degrees of freedom, and can allow fewer underlying shocks than variables.

## Last Time: Classical Factor Analysis Model

I've eliminated the mean  $\mu$  and renamed the factor  $F_t$ 

$$X_{t} = \Lambda F_{t} + \epsilon_{t}$$

$$(N \times 1) = (r \times 1) + \epsilon_{t}$$

$$\left[\begin{array}{c}F_t\\\epsilon_t\end{array}\right] \stackrel{iid}{\sim} \mathcal{N}\left(\left[\begin{array}{c}0\\0\end{array}\right], \left[\begin{array}{c}I_r&0\\0&\Psi\end{array}\right]\right)$$

 $\Lambda = matrix$  of factor loadings

 $\Psi = \text{diagonal matrix of idiosyncratic variances}.$ 

### Adding Time-Dependence

$$X_{t} = \Lambda F_{t} + \epsilon_{t}$$

$$(N \times 1) = A_{1}F_{t-1} + \dots + A_{p}F_{t-p} + u_{t}$$

$$\begin{bmatrix} u_{t} \\ \epsilon_{t} \end{bmatrix} \stackrel{iid}{\sim} \mathcal{N} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} I_{r} & 0 \\ 0 & \Psi \end{bmatrix} \end{pmatrix}$$

# Some (Confusing) Terminology

Caution: different authors use different conventions!

```
Static X_t depends only on F_t

Dynamic X_t depends on lags of F_t as well

Exact \Psi is diagonal and \epsilon_t independent over time

Approximate Some cross-sectional & temporal dependence in \epsilon_t
```

The model I wrote down on the previous slide is sometimes called an "exact, static factor model" even though it has dynamics! I'll still call it a dynamic factor model...

### Editorial: This is all a bit confused...

- 1. The difference between "static" and "dynamic" is unclear
  - ▶ Can write dynamic model as a static one with more factors
  - ► Static representation involves "different" factors, but we may not care: are the factors "real" or just a data summary?
- 2. Not really possible to allow cross-sectional dependence in  $\epsilon_t$ 
  - Unless the off-diagonal elements of  $\Psi$  are close to zero we can't tell them apart from the common factors
  - ightharpoonup "Approximate" factor models basically assume conditions under which the off-diagonal elements of  $\Psi$  are negligible
  - Similarly, time series dependence in  $\epsilon_t$  can't be very strong (stationary ARMA is ok)

## Methods of Estimation for Dynamic Factor Models

- 1. Bayesian Estimation
- 2. Maximum Likelihood: EM-Algorithm + Kalman Filter
  - Watson & Engle (1983)
  - Ghahramani & Hinton (1996)
  - Jungbacker & Koopman (2008)
  - Doz, Giannone & Reichlin (2012)
- 3. "Nonparametric" Estimation
  - ▶ Just carry out PCA on X and ignore the time-series element
  - ▶ The first r PCs are our estimates  $\hat{F}_t$
  - Essentially treats F<sub>t</sub> as an r-dimensional parameter to be estimated from an N-dimensional observation X<sub>t</sub>

## Estimation by PCA

#### **PCA Normalization**

- $F'F/T = I_r$  where  $F = (F_1, ..., F_T)'$
- $\land$   $\Lambda'\Lambda = diag(\mu_1, \dots, \mu_r)$  where  $\mu_1 \ge \mu_2 \ge \dots \ge \mu_r$

#### Assumption I

Factors are *pervasive*:  $\Lambda'\Lambda/N \to D_{\Lambda}$  an  $(r \times r)$  full rank matrix.

### Assumption II

max e-value  $E[\epsilon_t \epsilon_t'] \leq c \leq \infty$  for all N.

### Upshot of the Assumptions

If we average over the cross-section, the contribution from the factors persists and the contribution from the idiosyncratic terms disappears as  $N \to \infty$ .

## Key Result for PCA Estimation

Under the assumptions on the previous slide and some other technical conditions, the first r PCs of X consistently estimate the space spanned by the factors as  $N, T \to \infty$ .

# Doz, Giannone & Reichlin (2012)

### Typical Justifications for PCA Approach

- Consistent estimation of factors under very weak assumptions
- ▶ MLE is computationally infeasible for large N

#### But Neither is True!

- EM-algorithm + Kalman Filter is very efficient complexity depends on number of factors, not number of series
- Treat exact, static factor model (the one I wrote out) as a mis-specified approximating model (Quasi-MLE)
- Identical large-sample results as PC under similar assumptions, but better finite-sample properties and temporal smoothing

## Choosing the Number of Factors

If we use Likelihood-based or Bayesian estimation, we could try to resort to the familiar tools from earlier in the semester. There are a lot of parameters in factor models, however, so the asymptotic approximations (I'm looking at you, AIC) could be poor.

## Choosing the Number of Factors - Scree Plot

If we use PC estimation, we can look a something called a "scree plot" to help us decide how many PCs to include:



This figure depicts the eigenvalues for an N = 1148, T = 252 dataset of excess stock returns

# Choosing the Number of Factors – Bai & Ng (2002)

Choose r to minimize an information criterion:

$$IC(r) = \log V_r(\widehat{\Lambda}, \widehat{F}) + r \cdot g(N, T)$$

where

$$V_r(\Lambda, F) = \frac{1}{NT} \sum_{t=1}^{T} (X_t - \Lambda F_t)'(X_t - \Lambda F_t)$$

and g is a penalty function. The paper provides conditions on the penalty function that guarantee consistent estimation of the true number of factors.

# Onatski (2013)

Nobody volunteered to present this paper! Unlike Bai & Ng (2002), the idea here is *not* to consistently estimate the number of factors. Instead, and in the spirit of AIC and  $C_p$ , we try to reconstruct the factors with minimum quadratic loss. The results in the paper apply both to "strong" and "weak" factor asymptotics.

### What Can We Do with Factors?

#### Among other possibilities:

- 1. Use them as Instrumental Variables
- 2. Use them to construct Forecasts
- 3. Use them to "Augment" a VAR

# Factors as Instruments – Bai & Ng (2010)

Endogenous Regressors  $x_t$ 

$$y_t = x_t' \beta + \epsilon_t$$
  $E[x_t \epsilon_t] \neq 0$ 

Unobserved Variables  $F_t$  are Strong IVs

$$x_t = \Psi' F_t + u_t$$
  $E[F_t \epsilon_t] = 0$ 

Observe Large Panel  $(z_{1t}, \ldots, z_{Nt})$ 

$$z_{it} = \lambda_i' F_t + e_{it}$$

# Factors as Instruments – Bai & Ng (2010)

$$y_t = x_t' \beta + \epsilon_t, \qquad x_t = \Psi' F_t + u_t, \qquad z_{it} = \lambda_i' F_t + e_{it}$$

#### Procedure

- 1. Calculate the PCs of Z
- 2. Calculate  $\widetilde{F}_t$  using the first r PCs of Z
- 3. Use  $\widetilde{F}_t$  in place of  $F_t$  for IV estimation

#### Main Result

Under certain assumptions, as  $(N,T) \to \infty$  "estimation and inference can proceed as though  $F_t$  were known." The resulting estimator is consistent and asymptotically normal.

# Factors as Instruments – Bai & Ng (2010)

### Why Might This be Helpful?

- 1. Avoid many instruments bias
- 2. Avoid bias from irrelevant instruments
- 3. Allow more observed instruments  $z_{it}$  than sample size T
- 4. Provided that  $\sqrt{T}/N \to 0$ , all of the observed instruments  $z_{it}$  can be *endogenous* as long as  $F_t$  is exogenous

## Forecasting with Dynamic Factors

- Similar to Principal Components Regression (PCR)
- ▶ Estimate factors  $\hat{F}_t$  from a large number of regressors  $X_t$
- ▶ Run a regression to forecast  $y_t$  using  $\hat{F}_t$  rather than  $X_t$

We'll talk about this more next time and compare to other high-dimensional forecasting procedures.

# FAVARs – Bernanke, Boivin & Eliasz (2005)

#### Two Problems with Structural VARs

- 1. Number of parameters is *quadratic* in the number of variables. Unrestricted VAR infeasible unless T is large relative to N.
  - You've studied one solution to this problem already this semester: Bayesian Estimation with informative priors
- To keep estimation tractable we typically use a small number of variables, but then the VAR innovations "might not span the space of structural shocks."

# FAVARs - Bernanke, Boivin & Eliasz (2005)

#### Factor-Augmented VAR Model

$$\begin{bmatrix} Y_t \\ F_t \end{bmatrix} = \Phi(L) \begin{bmatrix} F_{t-1} \\ Y_{t-1} \end{bmatrix} + v_t$$

$$X_t = \Lambda^f F_t + \Lambda^y Y_t + e_t$$

 $Y_{t}=$  observable variables that "drive dynamics of the economy"  $_{(M imes 1)}^{(M imes 1)}$ 

 $F_t = \text{Small } \# \text{ of unobserved factors: "additional information"} _{(\mathcal{K} imes 1)}$ 

 $X_t = \mathsf{Large} \ \# \ \mathsf{of} \ \mathsf{observed} \ \text{``informational time series''}$   $({\scriptscriptstyle N} imes 1)$ 

# FAVARs – Bernanke, Boivin & Eliasz (2005)

#### Consider Two Estimation Procedures

- 1. Two-step Procedure:
  - ▶ Estimate space spanned by factors using first K + M PCs of X
  - Estimate VAR with  $\hat{F}_t$  in place of  $F_t$
- 2. Full Bayes (Gibbs Sampler)

### **Empirical Application**

Additional information contained in FVAR is "important to properly identify the monetary transmission mechanism."