

Índice

- Line Quadtree
- 2. MX Quadtree
- 3. Edge Quadtree
- 4. PM Quadtree
- 5. PMR QuadTree
- 6. Sector Tree

Line Quadtree

MX Quadtree

MX Quadtree

Quadtree Complexity Theorem

El *quadtree* correspondiente a un polígono de perímetro p incrustado en una imagen de $2^q \times 2^q$ tiene un máximo de $24 \cdot q - 19 + 24 \cdot p$ nodos.

Edge Quadtree

Edge Quadtree

PM Quadtree

PM₁ Quadtree

Regla de partición

La partición se produce siempre que un bloque contenga más de un segmento de línea, a menos que los segmentos de línea incidan todos en el mismo vértice, que también se encuentra en el mismo bloque.

PM Quadtree

PM₂ Quadtree

Regla de partición

La partición se produce siempre que un bloque contenga más de un segmento de línea, a menos que los segmentos de línea incidan todos en el mismo vértice, independientemente de su ubicación.

PM Quadtree

PM₃ Quadtree

Regla de partición

La partición se produce cuando un bloque contiene más de un vértice.

PMR Quadtree

Sector Tree

Aproximaciones sucesivas del objeto

Note que aproximamos mediante intervalos $\pi/2$, $\pi/4$, $\pi/8$

Sector Tree

Objeto no convexo

Descomposición

 $[0,2\pi)$ $[\pi,2\pi)$ $[0,\pi)$ (1,2) $[\pi, 3\pi/2)$ $[3\pi/2,2\pi)$ (11,1) $[\pi,5\pi/4)$ $[5\pi/4,3\pi/2)$ (6,7)(5,C)(4,D) $[\pi, 9\pi/8)$ $9\pi/8,5\pi/4$ (9,8)(2,3)(B,6)(10,11)(A,5)(3,4)

Sector Tree

