#### Today's class:

Absorption Spectroscopy part 2

This lecture follows the materials from the following books

- Physical Chemistry for Life Sciences, by PW Atkins and JD Paula, Oxford, 2006
- Koolman, Color Atlas of Biochemistry, 2nd Ed, 2005

### Biochemical applications of absorption spectroscopy and Beer-Lambert law

Analysis of protein mixtures

Measuring blood oxygen level

Estimation of enzymatic activity

Enzymatic determination of a colorless biomolecule

#### Analyzing mixtures of absorbing species



A + B

Total absorbance at a given  $\lambda$ 

$$A = A_{A} + A_{B}$$

$$= \varepsilon_{A}[A]l + \varepsilon_{B}[B]l$$

$$= (\varepsilon_{A}[A] + \varepsilon_{B}[B])l$$

#### Analyzing mixtures of absorbing species ...contd

For two wavelengths

$$A_1 = \left(\epsilon_A^1[A] + \epsilon_B^1[B]\right)l \qquad A_2 = \left(\epsilon_A^2[A] + \epsilon_B^2[B]\right)l$$

Two equations, two unknowns [A] and [B]

#### Lets solve!

$$[A] = \frac{\epsilon_B^2 A_1 - \epsilon_B^1 A_2}{\left(\epsilon_A^1 \epsilon_B^2 - \epsilon_A^2 \epsilon_B^1\right) l} \qquad [B] = \frac{\epsilon_A^2 A_1 - \epsilon_A^1 A_2}{\left(\epsilon_B^1 \epsilon_A^2 - \epsilon_B^2 \epsilon_A^1\right) l}$$

# Absorbance, A —→

## Isosbestic point

Wavelength,  $\lambda \longrightarrow$ 

#### Isobestic point

There may be a wavelength,  $\lambda^{\circ}$  where both species in a mixture has same molar extinction coefficient  $\epsilon^{\circ}$ 

Then we can write, total absorbance of the mixture

$$A^{\circ} = \epsilon^{\circ}([A] + [B])l$$

If A and B are related by interconversion

$$A \rightleftharpoons B$$
 then [A]+[B] = constant

 $A^{\circ}$  becomes an invariant quantity

This idea is employed in pulse oximetry to determine the oxygen saturation in arterial blood

#### Application of isobestic point in determination of oxyhemoglobin



The switching of trends around the isobestic point is leveraged by pulse oximetry for measurement of blood oxygen saturation

#### Basic principle of pulse oximetry



Courtesy: PHYSiC54FRCA

Here the LEDs follow this order repeatedly

- Send 660 nm
- Send 940 nm
- Turn off

Only the arterial pulse of blood flow - Venus blood flow subtracted and background corrected

#### A glimpse in to the math behind pulse oximetry

The reaction 
$$Hb \rightleftharpoons HbO_2$$

$$\left.\begin{array}{c} A_{660} \propto [Hb] \\ \\ A_{940} \propto [HbO_2] \end{array}\right\}$$

$$A_{660} \propto [Hb]$$

$$A_{660} \sim [HbO_2]$$

$$A_{660} \sim \frac{\epsilon_{Hb}(660)[Hb]}{\epsilon_{HbO_2}(940)[HbO_2]}$$

We can get  $\frac{[Hb]}{[HbO_2]}$  from this ratio

From the isobestic point we get

$$A_{805} = \epsilon^{\circ}([Hb] + [HbO_2])l$$

$$\implies [Hb] + [HbO_2] = \frac{A_{805}}{\epsilon^{\circ} l}$$

This info is stored along with  $\epsilon$  values as a look-up table in memory

All of these is utilized by the processor of oximeter to compute the  $O_2$  saturation as:

$$SpO_2 = \frac{[HbO_2]}{[Hb] + [HbO_2]}$$

#### Estimation of enzymatic activity

- Lactate ↔ pyruvate is catalyzed by lactate dehydrogenase (LDH)
- Important process involved in anaerobic glycolysis
- NAD+ and NADH shows very different absorption behaviors

This large difference in absorption behavior of NADH and NAD+ can be utilized to monitor catalytic activity of LDH



#### LDH activity using Beer-Lambert law



Addition of LDH 2 nkat

Lactate; NAD 1 nkat

Addition of LDH 1 nkat

Time

Uncatalyzed lactate+NAD reaction is very slow: almost no NADH produced

From Beer-Lambert law

$$A = \epsilon c l$$

$$\implies \frac{dA}{dt} = \epsilon l \frac{dc}{dt}$$

Enzymatic activity is defined as

$$\frac{dc}{dt} = v$$

So, we have

$$v = \frac{1}{\epsilon l} \frac{dA}{dt}$$

#### Unit of enzyme activity: kat



Here, 1 nkat = 1 nmol/s — unit of catalytic activity in intl. system of units

katal is not rate of reaction, it is a property of the catalyst.

E.g. one katal of trypsin = amount of trypsin which breaks 1 mole of peptide bonds per second under specified conditions

#### Enzymatic determination of a colorless biomolecule



Production of the dye fully depends on the amount of the target compound present

This principle is used to monitor blood glucose levels

#### Enzymatic determination of blood glucose



#### Green dye production depends on glucose conc



Therefore, using Beer-Lambert law

Dye conc at saturation

$$[Dye]_{\infty} = \frac{\Delta A}{\epsilon l}$$

Since dye is produced only through  $H_2O_2$  obtained from glucose

$$[glucose]_0 = [Dye]_\infty$$