[19] 中华人民共和国国家知识产权局

「12〕 发明专利申请公布说明书

[21] 申请号 200810033294.2

[51] Int. Cl.

CO7D 209/48 (2006.01)

CO7D 401/04 (2006.01)

A61K 31/4035 (2006.01)

A61K 31/437 (2006.01)

A61P 35/00 (2006.01)

[43] 公开日 2008年7月23日

[11] 公开号 CN 101225070A

[22] 申请日 2008.1.31

[21] 申请号 200810033294.2

[71] 申请人 上海交通大学

地址 200240 上海市闵行区东川路 800 号

[72] 发明人 毛振民 刘增路 范柏林 唐 玫

[74] 专利代理机构 上海交达专利事务所 代理人 王锡麟 王桂忠

权利要求书3页 说明书35页

[54] 发明名称

用于抗肿瘤的药物

[57] 摘要

本发明公开了一类医药化工技术领域的用于抗肿瘤的药物,即2-取代-3-羟基-2,3-二氢-异吲哚-1-酮(I),6-取代-5-羟基-5,6-二氢吡咯并[3,4-b]吡啶-7-酮(II),6-取代-5,6-二氢吡咯并[3,4-d]嘧啶-7-酮(IV),结构通式分别如上。本发明是一种具有较高蛋白质激酶抑制活性的化合物,制备方法容易,原料来源方便,易于实现工业化,能够满足临床癌症治疗药物制备的需要。

1、一种用于抗肿瘤的药物,其特征在于,包括四类化合物,即 2-取代-3-羟基-2,3-二氢-异吲哚-1-酮(I),6-取代-5-羟基-5,6-二氢吡咯并[3,4-b]吡啶-7-酮(II),6-取代-5,6-二氢吡咯并[3,4-b]吡啶-7-酮(III),6-取代-5,6-二氢-吡咯并[3,4-d]嘧啶-7-酮(IV),其结构通式分别如下:

化合物(I)中, R_1 、 R_2 、 R_3 和 R_4 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ', NR_2 ' R_3 ', F,C1,Br 中的一种; $N-R_5$ 表示 N-H,N-烃基,N-芳基,N-苄基,N-杂环化合物,氨基酸及其氨基酸酯中的一种;

化合物(II)中: R_1 、 R_2 、 R_3 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ', NR_2 ' R_3 ', F,C1,Br 中的一种; $N-R_4$ 表示 N-H,N-烃基,N-芳基,N-苄基,N-杂环化合物,氨基酸及其氨基酸酯中的一种;

化合物(III)中, R_1 、 R_2 、 R_3 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ', NR_2 ' R_3 ', F,C1,Br 中的一种; $N-R_4$ 表示 N-H,N-烃基,N-芳基,N-苄基,N-杂环化合物,氨基酸及其氨基酸酯中的一种;

化合物 (IV) 中, R_1 、 R_2 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基, 苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ', NR_2 ' R_3 ', F,C1,Br 中的一种; $N-R_4$ 表示 N-H,N-烃基,N-芳基,N-苄基,N-杂环化合物,氨基酸及其氨基酸酯 中的一种。

2、根据权利要求 1 所述的用于抗肿瘤的药物,其特征是,所述化合物(I)中, R_1 、 R_2 、 R_3 和 R_4 ,表示 H 时, R_5 分别如下:

- (1) CH₂COOC₂H₅
- (2) CH₃CHCOOCH₃
- (3) CH₃OOCCHCH₂COOCH₃
- (4) C₂H₅OOCCH (CH₂) ₂COOCH₃
- (5) CH₃OOCCHCH₂C₆H₆
- (6) CH₃OOCCHCH (CH₃)₂.
- 3、根据权利要求 1 所述的用于抗肿瘤的药物,其特征是,所述化合物(II)中, R_1 、 R_2 、 R_3 为 H 时, R_4 分别如下:
 - (1) CH₂CH₂CH₃

(6) CH (CH₂)₅

(2) CH₂ (CH₂) ₂CH₃

(7) CH₂COOCH₃

(3) CH₂ (CH₂) (CH₃

(8) CH₃CHCOOCH₃

(4) CH₂ (CH₂) 2OCH₃

(9) (CH₃)₂CHCHCOOCH₃

(5) CH (CH₂)₄

(10) C₆H₆CH₂CHCOOCH₃

$$(11) \qquad \begin{matrix} O & R_7 \\ & \searrow & \\ & \searrow & \\ \end{matrix}$$

(12)
$$R_5$$

R₇= CH₃, C₂H₅, C₃H₇, CH(CH₃)₂, C₄H₉, s-C₄H₉, CH₂C₆H₆ R₅=F, Cl, Br R₆=Me, CH₃O.

- 4、根据权利要求 3 所述的用于抗肿瘤的药物,其特征是,所述化合物(12), 具体为:
 - (1) R₅=F 时, R₆=Me 或 CH₃O
 - (2) R₅=C1 时, R₅= Me 或 CH₃O
 - (3) R₅=Br 时, R₆= Me 或 CH₃O。
- 5、根据权利要求 1 所述的用于抗肿瘤的药物,其特征是,所述化合物(III)中, R_1 、 R_2 、 R_3 为 H 时, R_4 分别如下:

(1) CH₂CH₃

(2) CH₂CH₂CH₃

(3) CH₃CHCH₃

(4) CH₂ (CH₂) ₂CH₃

(5) CH₂ (CH₂) (CH₃

(6) CH₂ (CH₂) 2OCH₃

(7) CH (CH₂)₄

(8) CH (CH₂)₅

(9) CH₂COOCH₃

(10) CH₃CHCOOCH₃

(11) (CH₃)₂CHCHCOOCH₃

(12) C₆H₆CH₂CHCOOCH₃

(13) HOCH₂CHCOOCH₃

 $(14) \qquad \begin{matrix} O & R_7 \\ \hline & N & \end{matrix} = O$

 $R_7 = H, CH_3, C_2H_5, C_3H_7$

CH(CH₃)₂, C₄H₉, s-C₄H₉, CH₂C₆H₆

 $(15) \quad \xi \longrightarrow \begin{array}{c} R_5 \\ R_6 \end{array}$

R₅=F, Cl, Br

 R_6 =Me, CH₃O_o

6、根据权利要求5所述的用于抗肿瘤的药物,其特征是,所述化合物(15),

具体为:

(1) R₅=F 时, R₅=Me 或 CH₃O

(2) R₅=C1 时, R₅= Me 或 CH₃O

(3) R₅=Br 时, R₅= Me 或 CH₃O。

- 7、根据权利要求 1 所述的用于抗肿瘤的药物,其特征是,所述化合物(IV)中, R_1 、 R_2 为 H 时, R_3 分别如下:
 - (1) H

(2) CH₂CH₂CH₃

(6) CH₂ (CH₂) 2OCH₃

(3) CH₃CHCH₃

(7) $CH(CH_2)_4$

(4) CH₂ (CH₂)₂CH₃

(8) CH (CH₂)₃

(5) CH₂ (CH₂) (CH₃

(9) CH₂COOCH₃.

用于抗肿瘤的药物

技术领域

本发明涉及一种医药化学工程技术领域的化合物,具体是一种用于抗肿瘤的 药物。

背景技术

沙利度胺(thalidomide)是一种谷氨酸衍生物,有如下六个生物活性:(1)抗恶病质效应。(2)抗肿瘤的启动效应。(3)抗血管生成的效应即抑制血管内皮生长效应。(4)抗细胞侵蚀效应。(5)抗病毒效应。(6)低血糖效应。沙利度胺是一种多靶向的药物,它可以作用于雄性激素受体(AR)、脱氧胸腺嘧啶苷磷酸化霉(TP)/血小板导出的内皮细胞增长因子(PD-ECGF)、二肽肽霉 IV(DPP-IV)、嘌呤霉素氨基肽霉(PSA)及α-葡萄糖苷霉。沙利度胺于 2003 年 12 月被澳大利亚批准用于治疗多发性骨髓瘤。但沙利度胺有便秘、皮疹、周围神经病变、致畸等副作用。许多国家大公司正在研制沙利度胺类似物,以增强其抗肿瘤活性,降低其毒副作用。

经对现有技术的文献检索发现,Bull. Chem. Soc. Jpn. 1989, 62, 1205 上刊登的 "Magnesium Ion Assisted Highly Regio- and Chemoselective Reduction of 5H-Pyrrolo[3, 4-b]pyridine-5, 7(6H)-diones with Sodium Borohydride. A Convenient Synthesis of 6, 7-Dihydro-7-hydroxy-5H-pyrrolo[3, 4-b]pyridine-5-ones. "(以镁离子协助硼氢化钠位置和化学选择性还原 5H-吡咯并[3, 4-b]吡啶-5, 7(6H)-二酮:一种简便合成 6, 7-二氢-7 羟基-5H-吡咯并[3, 4-b]吡啶-5-酮),该文中提到以硼氢化钠和高氯酸镁选择性还原邻二甲酰亚胺得到 7-位羟基内酰亚胺化合物,文中并未给出本发明提到的化合物 5-羟基-6-乙基-5, 6-二氢-吡咯并[3, 4-b]吡啶-7-酮、5-羟基-6-异丙基-5, 6-二氢-吡咯并[3, 4-b]吡啶-7-酮的谱图数据。

Synth. Commun. 2006, 36, 435 上刊登的"Efficient Synthesis of Ary Hydroxylactams by Reducing Imides with Activated Zinc Dust." (通过活

化锌粉还原二酰亚胺有效合成芳香羟基内酰亚胺),该文中提到以活化锌粉选择性还原邻二甲酰亚胺得到 7-位羟基内酰亚胺化合物,文中并未给出本发明提到的化合物 3-(5-羟基-7-酮-5,7-二氢-吡咯并[3,4-b]吡啶)-哌啶-2,6-二酮的谱图数据。由于沙利度胺有严重的毒副作用,及该药的溶解度差,使其应用受到限制。因此开发出高效、低毒副作用的抗肿瘤药物具有重要的现实意义。

发明内容

本发明的目的在于针对现有技术的不足,提供一类用于抗肿瘤的药物,使其 解决现有技术中抗癌药物有较强毒性、及耐药性的技术问题。

本发明是通过以下技术方案实现的:

本发明所涉及的用于抗肿瘤的药物包括三个系列四大类化合物即: (1) 2-取代-3-羟基-2, 3-二氢-异吲哚-1-酮 I, (2) 6-取代-5-羟基-5, 6-二氢吡咯并 [3, 4-b]吡啶-7-酮 II, (3) 6-取代-5, 6-二氢吡咯并[3, 4-b]吡啶-7-酮II, (4) 6-取代-5, 6-二氢吡咯并[3, 4-d]嘧啶-7-酮IV, 其结构通式分别如下:

化合物 I 结构通式:

化合物Ⅱ结构通式如下:

$$R_{2}$$
 $N-R_{4}$ (II)

其中: R_1 、 R_2 、 R_3 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 , CN, $NHCOR_1'$, NR_2' R_3' , F, C1, Br 中的一种; $N-R_4$ 表示 N-H, N-烃基, N-芳基, N-芳基, N-苄基, N-杂环化合物,氨基酸及其氨基酸酯中的

一种,优选的化合物见表-2。

化合物III结构通式如下:

$$R_{2}$$
 N
 N
 N
 N
 N
 N
 N

其中: R_1 、 R_2 、 R_3 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 ,OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ′, NR_2 ′ R_3 ′, F,C1,Br 中的一种; $N-R_4$ 表示 N-H,N-烃基,<math>N-芳基,N-苄基,N-杂环化合物,氨基酸及其氨基酸酯中的一种,优选的化合物见表-3。

化含物IV结构通式如下:

$$R_{2}$$
 N
 $N-R_{3}$ (IV)

其中: R_1 、 R_2 基,表示 H,烃基,烷氧基,酯基,芳基,芳氧基,苄基, CF_3 , OH, N_3 , NH_2 , NO_2 ,CN, $NHCOR_1$ ′, NR_2 ′ R_3 ′, F,C1,Br 中的一种; $N-R_4$ 表示 N-H,N-烃基,<math>N- 芳基,N- 苄基,N- 杂环化合物,氨基酸及其氨基酸酯中的一种,优选的化合物见表-4。

结构通式为 I 的化合物的制备方法是以邻苯二甲醛为原料,与有机胺反应得到 2-取代-2,3-二氢-异吲哚-1-酮。然后将中间体 2-取代-2,3-二氢-异吲哚-1-酮与 N-溴代丁二酰亚胺(NBS)/过氧化苯甲酰(BPO)在苯中回流,分离、提纯便得到目标化合物 I。

结构通式为 II、III的化合物的制备方法是以 2-氰基-3-甲基-吡啶原料在氢氧化钠的水溶液中水解,以盐酸调 ph=2-3,得到中间体 3-甲基-2-吡啶甲酸。然后,以浓硫酸催化,与甲醇反应得到 3-甲基-2-吡啶甲酸甲酯。再将 3-甲基-2-吡啶甲酸甲酯与 N-溴代丁二酰亚胺(NBS)/偶氮异丁氰(AIBN)反应得到中间体 3-溴甲基-2-吡啶甲酸甲酯。然后再将 3-溴甲基-2-吡啶甲酸甲酯与相应有机 胺反应得到化合物 III。再将化合物 III与 N-溴代丁二酰亚胺(NBS)/偶氮异丁氰

(AIBN) 反应得到化合物 II。

结构通式为IV的化合物的制备方法是以 4-氯-乙酰乙酸乙酯为原料,与原甲酸三乙酯及醋酐反应得到化合物 4-氯-2-乙氧基乙烯基-3-羰基-丁酸乙酯,随后与醋酸甲脒反应得 4-氯甲基-5-嘧啶甲酸乙酯。再将 4-氯甲基-5-嘧啶甲酸乙酯与相应的有机胺反应得到相应的化合物IV。

本发明还提供了上述这类化合物在抗肿瘤药物中的应用,即按照现有药物筛选的方法将化合物 I、II、III、IV对血管内皮细胞(ECV-304)、人肺癌细胞(A549)、人 T 细胞白血病细胞(CEM)、人原髓细胞白血病细胞(HL-60)等细胞株进行生物活性筛选,其药理结果分别见表-5,表-6,表-7,表-8。

本发明提供的化合物 II 的制备方法与上述文献所提到的方法相比,上述文献所提到的方法难以得到 5-羟基- 6-取代-5,6-二氢-吡咯并[3,4-b]吡啶-7-酮这类化合物。本发明所提到的化合物在抑制血管内皮细胞(ECV-304)及抗肺癌(A549)、抗白血病细胞(CEM, HL-60)方面与沙利度胺相比显著增强。

具体实施方式

下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例 1

2-丙酸甲酯基-3-羟基-2,3-二氢-异吲哚-1-酮 I-2

将 438mg (2mmo1) 2-丙酸甲酯基-2,3-二氢-异吲哚-1-酮 V-2 和 442mg (2mmo1) 三氟乙酸银溶于 10ml CHCl₃,于-20℃滴加 320mg (2mmo1) Br₂ (溶于 10ml CHCl₃),1 小时左右滴加完毕。然后于室温下搅拌 3h,过滤,滤液减压蒸馏至干,提纯得无色油状液体 360mg,收率 76.6%。其分析测试数据见表-1。

实施例 2

2-丁二酸二甲酯基-3-羟基-2, 3-二氢-异吲哚-1-酮 I -3

将 277mg(1mmo1) 2-丁二酸二甲酯基-2,3-二氢-异吲哚-1-酮V-3 和 48mg (0.2mmo1) 过氧苯甲酰溶于 15ml 的乙腈,于室温下慢慢加入 358mg (2mmo1) NBS。然后 0℃下 5h,冷却,过滤,滤液减压蒸馏至干,提纯得无色油状液体 206mg,收率 88.74%。其分析测试数据见表-1。

实施例3

5-羟基- 6-乙基-5, 6-二氢吡咯并[3, 4-b]吡啶-7-酮 II-1

6-乙基-5,6-二氢吡咯并[3,4-b]吡啶-7-酮III-1 (0.243g,1.5mmol), N-溴代丁二酰亚胺 (NBS) (0.333g,1.875mmol), 偶氮二异丁氰 (AIBN) (0.031g,0.1875mmol), 无水乙腈 20ml 于 50ml 的二口瓶中,搅拌,回流 2-4h,反应结束后,按常规方法处理提纯,得无色固体 0.112 克,收率 42%。其分析测试数据见表-2

实施例4

5-羟基- 6- (3-溴-4-甲氧基) 苯基-5,6-二氢吡咯并[3,4-b]吡啶-7-酮 II-15

6- (4- 甲氧基) 苯基 - 5,6- 二氢 - 吡咯并 [3,4-b] 吡啶 -7- 酮 III -15 (0.36g,1.5mmol), N-溴代丁二酰亚胺 (NBS) (1.068g,6.0mmol), 偶氮二异丁氰 (AIBN) (0.098g,0.60mmol), 无水乙腈 50ml 于 100ml 的反应瓶中,搅拌、回流,以薄层分析板 (TLC) 跟踪反应进程,原料基本反应结束即可终止反应,然后减压旋蒸除去乙腈,柱层析提纯,以二氯甲烷:甲醇=80:1 洗脱,无色固体 II-15,0.165g,收率 33%,无色固体III-16,0.306g 收率 64%。其分析测试数据见表-2。

实施例 5

3-(5-羟基-7-酮-5,7-二氢吡咯并[3,4-b]吡啶)-哌啶-2,6-二酮 II-16

3-(7-羰基-5,7-二氢-吡咯并[3,4-b] 吡啶-) 哌啶-2,6-二酮 III-19 (0.245g,1.0mmo1), N-溴代丁二酰亚胺 (NBS) (0.534g,3.0mmo1), 偶氮二异丁氰 (AIBN) (0.050g,0.3mmo1),无水乙腈 60ml 于 100ml 的反应瓶中,搅拌,回流,以薄层分析板 (TLC) 跟踪反应进程,原料基本反应结束即可终止反应,然后减压旋蒸除去乙腈,柱层析提纯。以二氯甲烷:甲醇=80:1 和二氯甲烷:甲醇=50:1 梯度洗脱。得无色固体 3-(5-羟基-7-酮-5,7-二氢吡咯并[3,4-b]吡啶)-哌啶-2,6-二酮 II-16,0.029g 收率 11%,无色固体 3-[5-(2,5-二羰基-吡咯烷)-5-羟基-7-酮-5,7-二氢吡咯并[3,4-b]吡啶)]-哌啶-2,6-二酮 II-20,0.266g 收率 74.3%。其分析测试数据见表-2。

表-1 I 类衍生物的物性数据

		51. 97,
		50.40, 34.46,29.48. HRMS: calcd for C ₁₄ H ₁₅ NO ₆ ,
		293.0899, found 293.0896, 淡黄色的液体, 88.7%.
I -4	0 /	¹ H NMR (300MHz, CDC1 ₃): δ 7. 78 (d, 1H, <i>J</i> =7. 7Hz), 7. 68
	_______________\\	(d, 2H, \mathcal{F} -7.7Hz), 7.5 (m, 1H), 6.00 (d, 1H,
	\ \ _	J=8. 4Hz), 4. 82 (m, 1H), 4. 22 (m, 2H), 3. 98 (m, 2H),
		2. 50 (4H, m), 1. 28 (t, 3H), 1. 19 (t, 3H). ¹³ C NMR
		(CDCl ₃ , 100MHz): 173.10, 171.02, 167.94, 144.46,
		132. 26, 130. 32, 129. 36, 123. 43, 123. 01, 82. 24,
		61. 44, 60. 34, 53. 54, 30. 85, 24. 96, 23. 73, 13. 73.
T 5	0 /	HRMS: calcd for C ₁₇ H ₂₁ NO ₆ , 335. 1369, found 335. 1402
I-5	_________	'H NMR (300MHz, CDCl ₃): δ 7.77(t, 1H), 7.54(m, 1H),
		7. 48 (m, 2H), 7. 21 (m, 5H) 5. 46 (s, 1H), 5. 00 (m, 1H),
		3. 77 (s, 3H), 3. 52 (m, 2H). ¹³ C NMR (CDCl ₃ , 100MHz):
		172. 66, 167. 636, 144. 17, 137. 63, 132. 49, 130. 67,
		129. 71, 128. 65, 128. 48, 126. 86, 126. 64, 123. 47,
		12.411, 123.214, 83.01, 56.07, 52.79, 35.29.HRMS:
		calcd for C ₁₈ H ₁₇ NO ₄ , 311.1158, found 311.1109. 白
		色固体, 52.7%, mp 130~131℃.
I-6))—o'	¹ H NMR (CDCl₃, 300MHz) δ 7.81 (d, 1H, <i>J</i> =10.2Hz),
	}	7.61(m, 2H), 7.48 (m, 1H), 6.10 (s, 1H), 4.67 (d,
	/	1H, J=9.9Hz), 3.76 (d, 3H), 2.56(m,1H), 1.07(m,
		3H), 0.98(m, 3H). ¹³ C NMR (CDCl ₃ , 100MHz) : 173.37,
		167. 73, 144. 40, 132. 41, 130. 77, 129. 60, 123. 31,
		123. 18, 82. 00, 52. 55, 49. 83, 48. 94, 15. 85, 14. 53,
		HRMS: calcd for: $C_{14}H_{17}NO_4$: 263.1158, found:
		263.1119. 淡黄色液体,83.9%.

表-2 II类衍生物的物性数据

	R_{2} N R_{4} (II) R_{1} R_{2} R_{3} R_{4}		
	R ₃		
编号	R4	谱图及物性数据	
		1 HNMR (400MHz, DMSO-d ₆): δ 8.69-8.71 (1H, d d, J=	
		4.8, 1.2Hz, Py-2), 8.00-8.02 (1H, d d, J= 7.6,	
		1. 2Hz, Py-4), 7. 54-7. 57 (1H, d d, J= 7. 6, 4. 8Hz,	
		Py-3), 6.67 (1H, d, J=8.8Hz, OH). 5.87 (1H, d,	
II -1		J=8.8Hz, PyCH), 3.60-3.63 (1H, m, J=7.2Hz, NCH ₂),	
	Zooos /	3.32-3.37(1H, m, J= 7.2Hz, NCH ₂), 1.16 (3H, t,	
		J=7. 2Hz, CH_3). $^{13}CNMR$ ($75MHz$, $DMSO-d_6$):	
		δ 164. 9 (C=0), 151. 8 (Py-2), 150. 9 (Py-6),	
		139. 7 (Py-5), 132. 6 (Py-4), 126. 5 (Py-3),	
		79. 1 (CHOH), 34. 5 (NCH ₂), 14. 1 (CH ₃). HRMS (EI ⁺):	
		C ₉ H ₁₀ N ₂ O ₂ , Calc 178.0742, Found 178.0735. found:	
		235.0821. 无色固体, mp:104-105°C	
		1 HNMR (400MHz, DMSO- d_{6}): δ 8. 70-8. 71 (1H, d d, J=	
		4.8, 1.6Hz, Py-2), 8.00-8.02 (1H, d d, J= 7.2,	
		1.6Hz, Py-4), 7.54-7.58(1H, d d, J= 7.2, 4.8Hz,	
		Py-3), 6.68 (1H, d, J = 8.8Hz, OH), 5.84 (1H, d,	
II -2	yoooo	J=8.8Hz , PyCH), 3.53 (1H, m , NCH ₂),	
		3.24-3.26 (1H, m, NCH ₂), $1.55-1.62$ (2H, m, CH ₂), 0.86	
		(3H, t, CH ₃). 13 CNMR (75MHz, DMSO-d ₆): δ 165.1(C=0),	
		152. 0 (Py-2), 150. 7 (Py-6), 139. 9 (Py-5),	
		132.7 (Py-4), 126.5 (Py-3), 79.3 (CHOH),	
		41.3 (NCH2), 21.7 (CH2), 11.9 (CH3). HRMS (EI+):	
		C10H12N2O2, Calc 192.0899, Found 192.0898. 无色固体,	

		mp:75-77°C。
		'HNMR(400MHz, DMSO-d ₆): δ8.68-8.69 (1H, d d, J=
		4. 8, 1. 6Hz, Py-2), 7. 97-7. 99 (1H, d d, J= 7. 2,
		1. 6Hz, Py-4), 7. 53-7. 56 (1H, d d, J= 7. 2, 4. 8Hz,
II -3	No.	Py-3), 6.57 (1H, d, J = 9.6Hz, OH), 5.84 (1H, d,
11-3	3	J=9.6Hz , PyCH), 4.15-4.22 (1H, m , NCH),
		1. 35-1. 37 (3H, d, J=6. 8Hz, CH ₃), 1. 30-1. 31 (3H, d,
		J=6. 8Hz, CH ₃). 13 CNMR (75MHz, DMSO-d ₆): δ 164. 8
		(C=0), 151.8 (Py-2), 150.8 (Py-6), 140.0 (Py-5),
		132. 4 (Py-4), 126. 6 (Py-3), 78. 9 (CHOH),
		$44.2 \text{ (NCH)}, 22.0 \text{ (CH}_3), 20.4 \text{ (CH}_3). HRMS (EI^+):$
		C ₁₀ H ₁₂ N ₂ O ₂ , Calc 192.0899, Found 192.0898. 无色固
		体, mp:113-115℃.
		1 HNMR (300MHz, DMSO- d_{6}): δ 8. 69-8. 71 (1H , d d, J=
		4.8, 1.2Hz, Py-2), 8.00-8.03 (1H, d d , J= 7.2,
		1. 2Hz, Py-4), 7. 54-7. 58 (1H, d d, J= 7. 2, 4. 8Hz,
		Py-3), 6.68 (1H, d, J =10.4Hz, OH), 5.84 (1H, d,
II-4	Novo Novo Novo Novo Novo Novo Novo Novo	J=10.4Hz, PyCH), 3.55 (1H, m, NCH ₂), 3.25-3.30
	5	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
		1.21-1.33 (2H, m, CH ₂), $0.87-0.92$ (3H, t, CH ₃). ¹³ CNMR
		(75MHz, DMSO-d ₆): δ 165.1(C=0), 151.8(Py-2),
		150. 7 (Py-6), 139. 6 (Py-5), 132. 5 (Py-4),
		126. 5 (Py-3), 79. 3 (CHOH), 41. 3 (NCH ₂), 30. 4 (CH ₂),
		20.8 (CH ₂), 14.3(CH ₃). 油状物。
		¹ HNMR (300MHz, DMSO-d ₆): δ 8. 69-8. 71 (1H, d d, J=
		4. 8, 1. 2Hz, Py-2), 8. 00-8. 03 (1H, d d, J= 7. 2,
		1. 2Hz, Py-4), 7. 54-7. 58 (1H, d d, J= 7. 2, 4. 8Hz,
	Tener	1. 2112, 1 y +/, 1. 0+ 1. 00 (111, u u, J- 1. 2, 4. 0fiz,

11 6	3	Py-3), 6.68 (1H, d, J = 8.7Hz, OH), 5.83 (1H, d,
II -5	Noor Noor Noor Noor Noor Noor Noor Noor	J=8. 7Hz, PyCH), 3. 55 (1H, m, NCH ₂), 3. 24-3. 32 (1H,
		m, NCH_2), 1.54-1.62 (2H, m, CH_2), 1.21-1.27
		(6H, s, CH ₂), 0.82-0.86 (3H, t, CH ₃). ¹³ CNMR (75MHz,
		DMSO- d_6): δ 165. 1 (C=0), 151. 8 (Py-2),
		150. 3 (Py-6), 139. 7 (Py-5), 132. 5 (Py-4),
		126.5 (Py-3), 79.3 (CHOH), 41.9 (NCH ₂), 31.60 (CH ₂),
		28.3 (CH ₂), 26.8 (CH ₂), 22.6 (CH ₂), 14.5 (CH ₃). 油
		状物。
		1 HNMR (300MHz, DMSO-d ₆): δ 8. 69-8. 71 (1H, d d, J=
		4.8, 1.2Hz, Py-2), 8.01-8.03 (1H, d d, J= 7.2,
		1. 2Hz, Py-4), 7. 54-7. 58 (1H, d d, J= 7. 2, 4. 8Hz,
	`o	Py-3), 6.68 (1H, d, J=9.0Hz, OH), 5.84 (1H, d,
II -6	You you	J=9. OHz, PyCH), 3. 57 (1H, m, NCH ₂), 3. 32-3. 37 (1H,
	5	m, NCH ₂), 3. 20(3H, s, CH ₃ O)1. 74-1. 91(2H, m, CH ₂),
		1. 21–1. 27 (2H, m, CH_2). ¹³ CNMR (75MHz, DMSO–d ₆):
		δ 165. 2 (C=0), 151. 8 (Py-2), 150. 7 (Py-6),
		139.8(Py-5), 132.6(Py-4), 126.6(Py-3),
		79. 5 (CH0H), 70. 4 (CH ₃ 0), 58. 5 (CH ₂ 0), 37. 2 (NCH ₂),
		28.6 (CH₂). 油状物。
		1 HNMR (300MHz, CD ₃ COCD ₃): δ 8. 68–8. 70 (1H, d d, J=
		4.8, 1.2Hz, Py-2), 7.97-8.00 (1H, d d, J= 7.2,
		1. 2Hz, Py-4), 7. 53-7. 57 (1H, d d, J= 7. 2, 4. 8Hz,
		Py-3), 6.55 (1H, d, J =10.2Hz, OH), 5.92 (1H, d,
II -7	Novo Novo Novo Novo Novo Novo Novo Novo	J=10.2Hz, PyCH), 4.21 (1H, m, NCH), 1.21-2.47 (8H,
		m, CH_2). ¹³ CNMR (75MHz, CD_3COCD_3): δ 165.1 (C=0),
		151.5(Py-2), 151.2(Py-6), 139.3(Py-5),
		131.4(Py-4), 125.7(Py-3), 79.7(CHOH), 54.0(NCH),
		30.4(CH₂), 30.4(CH₂), 24.0 (CH₂), 24.0 (CH₂). 无色
	L	

		固体, mp:153-154℃。
		1 HNMR (300MHz, DMSO-d ₆): δ 8. 68-8. 69 (1H, d d, J= 4.8,
		1. 2Hz, Py-2), 7. 97-7. 99 (1H, d d, J= 7. 2, 1. 2Hz,
		Py-4), 7.53-7.56(1H, d d, J= 7.2, 4.8Hz, Py-3), 6.54
		(1H, d, J=10.2Hz, OH), 5.92 (1H, d, J=10.2Hz, PyCH),
II -8	Novos	3.71 (1H, m, NCH), $1.21-1.82$ (10H, m, CH_2). ¹³ CNMR
		(75MHz, DMSO-d ₆): δ 164.6(C=0), 151.5(Py-2),
		150.6 (Py-6), 139.6 (Py-5), 132.1 (Py-4), 126.2 (Py-3),
		79.0 (CHOH), 52.1 (NCH), 31.7 (CH ₂), 30.1 (CH ₂), 26.0
		(CH ₂) , 26.0 (CH ₂) , 25.6 (CH ₂). HRMS (ESI ⁺): $C_{13}H_{17}N_2O_2$,
		Calc 233.1290, Found 233.1289. 无色固体, mp:151-152
		℃.
		¹ HNMR (400MHz, DMSO-d6): δ8.75-8.76 (1H, dd, J= 4.8,
		1.6Hz, Py-2), 8.06-8.08 (1H, d, J= 7.2, 1.6Hz, Py-4),
		7.61-7.64(1H, d d, J= 7.2, 4.8Hz, Py-3), 6.86-6.89
		(1H, d, J = 8.8Hz, OH), 5.86-5.88(1H, d, J=8.8Hz,
II -9	70 O	PyCH), 4.40-4.45(1H, d, J=18Hz, NCH ₂), 4.11-4.15(1H,
	, 0	d, J=18Hz, NCH ₂), 3.66(3H, s, CH ₃ O). ¹³ CNMR(75MHz,
		DMSO-d6): δ 169.9 (COOCH ₃), 165.4 (C=0), 152.2
		(Py-2), 150.0 (Py-6), 139.8 (Py-5), 133.0 (Py-4),
		127.1 (Py-3), 79.8 (CHOH), 52.8 (CH₃0), 41.2 (CH₂).
		HRMS (EI ⁺) : C₁₀H₁₀N₂O₄, Ca1c 222.0641, Found 222.0643.
	_	无色固体, mp:156-157℃。
		¹ HNMR (400MHz, DMS0-d6): δ 8.73-8.74 (1H, d, J=
		4.8Hz, Py-2), 8.02-8.05 (1H, d, J= 4.8, 7.6Hz, Py-4),
		7.59-7.63(1H, d d, J= 4.8, 7.6Hz, Py-3), 6.76-6.78
		(1H, d, J =8.8Hz, OH), 5.89-5.91(1H, d, J=8.8Hz,

II -10	, <u> </u>	PyCH), 4.65-4.67(1H, q, J=7.6Hz, CH), 3.57 (3H,
	Soons O	s, CH_3O), 1. 52 (3H, d, $J=7.6Hz$, CH_3). $^{13}CNMR$ (75MHz,
		DMSO-d6): δ 172. 3 (COOCH ₃), 165. 5 (C=0), 152. 3 (Py-2),
		150. 3 (Py-6),
		140. 3 (Py-5), 132. 9 (Py-4), 127. 1 (Py-3), 79. 6 (CHOH),
		52. 9 (CH ₃ 0), 49. 9 (CH), 15. 9 (CH ₃). HRMS (EI ⁺): $C_{11}H_{12}N_2O_4$,
		Calc 236.0797, Found 236.0797. 无色固体, mp:157-159
		℃。
		¹ HNMR (400MHz, CDCl ₃): δ 8.81-8.83 (1H, d, J=1.2,
		4.8Hz, Py-2), 7.96-8.00 (1H, d, J= 1.2, 7.6Hz, Py-4),
		7.48-7.52(1H, d d, J= 4.8, 7.6Hz, Py-3), 6.25(1H,
		s, PyCH), 4.70-4.73(1H, d, J=10.0Hz, NCH), 3.76 (3H,
II -11	70	s, CH ₃ O), 2.45-2.57(1H, m, CH), 0.94-1.09(6H, d,
	, 0	$J=6.8Hz$, CH_3). $^{13}CNMR$ (75MHz,
		CDC1 ₃): δ 175. 0 (COOCH ₃), 166. 5 (C=0), 152. 6 (Py-2),
		149. 9 (Py-6), 138. 7 (Py-5), 132. 0 (Py-4), 126. 6 (Py-3),
		80.9 (CHOH), 61.6 (CH ₃ 0), 53.1 (NCH), 31.0 (CH),
		19.8 (CH ₃), 19.8 (CH ₃). HRMS (EI ⁺): $C_{13}H_{16}N_2O_4$, Calc
		264.1110, Found 264.1111. 无色固体, mp:61-63℃。
		¹ HNMR (300MHz, DMSO-d6): δ 8.69-8.72 (1H, d, J=1.2,
		4.8Hz, Py-2), 7.96-8.00 (1H, d, J= 1.2, 7.2Hz, Py-4),
		7.54-7.58(1H, d d, J= 4.8, 7.2Hz, Py-3),
	Ph	7.11-7.25(5H, m, Ph), 6.78-6.80(1H, d, J=6.6Hz, OH),
II -12	70 O	5.89-5.91(1H, d, J=6.6Hz, PyCH), 4.76-4.80 (1H, d,
	" 0	$J=3.9Hz$, NCH), 3.65 (3H, s, CH_3O), 3.34-3.47(1H, m,
		PhCH ₂), 3. 24-3. 28(1H,
		d, PhCH ₂). 13 CNMR (75MHz, DMSO-d6): δ 171. 4 (COOCH ₃),
		165. 2 (C=0), 152. 2 (Py-2), 149. 8 (Py-6), 139. 7 (Py-5),
		138.5(Ph), 132.9(Py-4), 129.4(Ph), 129.4(Ph)

		128.9(Ph), 128.9(Ph), 127.2(Py-3), 127.0(Ph),
		80.7(CHOH), 56.0(CH₃O), 53.9(NCH), 35.3(CH₂). 无色
		固体, mp:180-182℃。
		1 HNMR (400MHz, DMS0-d ₆): δ 8.79-8.81 (1H, dd, J= 4.8,
		1. 2Hz, Py-2), 8. 12-8. 14 (1H, d d, J= 7. 6, 1. 2Hz,
		Py-4), 7.75-7.78(2H, m, ph-2, ph-6), 7.65-7.69 (1H,
		d d, J= 7.6, 4.8Hz, Py-3), 7.63-7.66(2H, m, ph-3,
II-13	Br	ph-5), 6.99-7.02 (1H, d, J=10Hz, OH, D ₂ O Exchange),
	72	6.55-6.57 (1H, d, J=10Hz, PyCH). ¹³ CNMR (75MHz,
	² C ₆	DMSO- d_6): δ 164.5 (C=0), 152.6 (Py-2), 149.6 (Py-6),
		139. 3 (Py-5), 137. 1 (Ph-1), 132. 9 (Py-4), 132. 2 (Ph-3),
		132.2(Ph-5), 127.6(Py-3), 124.6(Ph-2), 124.6(Ph-6),
		117.9(Ph-4), 80.6(CHOH). 无色固体, mp:207-209℃。
		1 HNMR (300MHz, DMSO- d_{e}): δ 9. 02-9. 03 (1H, d, J= 4.8Hz,
		Py-2), 8.34-8.37 (1H, d, J= 7.8Hz, Py-4), 7.81-7.98
		(4H, m, Ph-2, Ph-5, Ph-6, Py-3), 7.22-7.25 (1H, d,
	Br	J=10.0Hz, OH), 6.76-6.80(1H, d, J= 10.0Hz, PyCH),
II-14	78	2.60 (3H, s, CH_3). ¹³ CNMR (75MHz, DMSO-d ₆): δ 164.4
	8 89	(C=0), 152.6 (Py-2), 149.7 (Py-6), 139.3 (Py-5),
		138.2 (Ph-3), 137.3 (Ph-1), 132.9 (Ph-5),
		132.8(Py-4), 127.5 (Py-3), 125.1 (Ph-2), 122.2
		(Ph-6), 120.5(Ph-4), 80.6 (CHOH), 23.3(CH₃) 无色固
		体, mp: 219-220°C.
		1 HNMR (400MHz, DMSO-d ₆): δ 8. 79-8. 80 (1H, d d, J= 4. 8,
		1. 2Hz, Py-2), 8. 10-8. 13 (1H, d d, J=7. 6, 1. 2Hz,
		Py-4), 7.96(1H, d, J= 2.8Hz, ph-2), 7.65-7.70(2H,
	Br	m, Py-3, ph-6), 7.20-7.22(1H, d, J= 9.2Hz, ph-5),
II -15		6.95-6.98 (1H, d, J =10Hz, 0H, D_2 0 Exchange),
	NON	6.46-6.49(1H, d, J=10Hz, PyCH). ¹³ CNMR (75MHz,

		DMSO-d ₆):
		δ 164. 4 (C=0), 153. 7 (Ph-4), 152. 4 (Py-2), 149. 7 (Py-6),
		139. 3 (Py-5), 132. 8 (Py-4), 131. 2 (Ph-1), 128. 1 (Ph-2),
		127. 4 (Py-3), 124. 4 (Ph-6), 113. 2 (Ph-5), 110. 7 (Ph-3),
		80. 9
		(CHOH), 57.0 (CH ₃ O). HRMS (EI ⁺): $C_{14}H_{11}N_2O_3Br$ (79) Calc
		333.9953, Found333.9944. 无色固体 mp:251-252℃。
		1 HNMR (300MHz, DMSO- d_{6}): δ 11.0 (1H, s, NH, D_{2} O
		Exchange), 8.76-8.78(1H, d, J=4.5Hz, Py-2),
		8.05-8.08 (1H, d, J=7.8Hz, Py-4), 7.619-7.661(1H, d,
	0 H O	d, J=4.5, 7.8Hz, Py-3), 6.78-6.83(1H, d, J=9.0Hz, 0H,
II-16	72	D_2O Exchange), 5.86-5.97(1H, d, J=9.0Hz, PyCH),
	NON NO	4.67-5.02(1H, m, NCHCO), 2.78-2.84(1H, m, COCH ₂),
		2.49-2.65(2H, m, COCH ₂ , CH ₂ CH ₂ CO), 2.03-2.07(1H, m,
		CH ₂ CH ₂ CO). 13 CNMR (75MHz, DMSO-d ₆): δ 173.6 (C=0),
		171.4(C=0), 165.9(C=0), 152.2(Py-2), 149.5(Py-6),
		139.8 (Py-5), 132.9 (Py-4), 127.1 (Py-3),
		79. 5 (CHOH), 52. 1 (NCHCO), 31. 7 (COCH ₂), 23. 1 (COCH ₂ CH ₂).
		LC- MS: (ESI) (M+1) * 262.1, (M+Na*) * 283.9. 无色固体,
		mp: 252-255°C
		HNMR(300MHz, CD ₃ OD): δ 8.76-8.78 (1H , d,
		J=4.8Hz, Py-2) , 8.12-8.15 (1H, d, d, J=1.2,
		7.8Hz, Py-4), 7.66-7.70(1H, d, d, J=4.8, 7.8Hz, Py-3),
		6.01-6.08(1H, s, PyCH), 4.75-5.14(1H, m, NCHCO),
II -17	O N V O	$3.16(3H, s, CH_3), 2.60-2.92(3H, m, COCH_2, CH_2CH_2CO),$
	3	2.16-2.24(1H, m, CH ₂ CH ₂ CO). ¹³ CNMR (75MHz, CD ₃ OD):
	Nonnon	δ 172. 5 (C=0),
		170.6(C=0), 165.9(C=0), 151.5(Py-2), 149.5(Py-6),
		139.7 (Py-5), 132.5 (Py-4), 126.8 (Py-3), 80.0

		(CHOH), 52.8 (NCHCO), 31.4(COCH ₂), 26.1(NCH ₃),
		22.1(COCH₂CH₂). 无色固体, mp: 113-115 ℃.
		¹ HNMR (300MHz, CD ₃ C1): δ 8.76-8.80 (1H, d, d, J=1.2,
		4.5Hz, Py-2), 7.96-8.00 (1H, (1H, d, d, J=1.2, 7.8Hz,
		Py-4) , 7.46-7.52(1H, d, d, J=4.5, 7.8Hz, Py-3) ,
	\	5. 95-6. 00
II -18	0 1 0	(1H, d, J=12.9Hz, PyCH), 4.88-4.96(2H, m, NCHCO,
	70000s	NCH), 2.66-2.95(3H, m, COCH ₂ , CH ₂ CH ₂ CO),
2	5	2.17-2.18(1H, m, CH ₂ CH ₂ CO), 1.33-1.37(6H, d,
		$J=5.4Hz$, CH_3). ¹³ CNMR (75MHz, CD_3OD): δ 171.2(C=0),
		171.1(C=0), 152.5(Py-2), 149.7(Py-6), 138.9(Py-5),
		132.1(Py-4), 126.6(Py-3), 80.7(CHOH), 52.7(NCHCO),
		46.1 (NCH), 33.0 (COCH ₂), 22.1 (COCH ₂ CH ₂), 19.6 (CH ₃).
		无色固体, mp: 214-215 ℃。
		¹ HNMR (300MHz, CDCl ₃): δ 8.74-8.78(1H, d, J=4.8Hz,
		Py-2), 7.96-7.98(1H, d, J=7.8Hz, Py-4),
		7.46-7.50(1H, d, d, J=4.8, 7.8Hz, Py-3),
		5.95-5.98(1H, d, J=8.7Hz, PyCH), 4.67-5.02(2H, m,
II-19	0 _{>} N _{>} 0	NCHCO, NCHCH ₃), 2.63-3.01(3H, m, COCH ₂ , CH ₂ CH ₂ CO),
		2.09-2.19(H, m, CH ₂ CH ₂ CO), 1.87-1.91(1H, m, CH ₂ CH ₃),
	yoooo y	$1.67-1.70$ (1H, m, CH_2CH_3), $1.25-1.35$ (3H, t, CH_2CH_3),
		0.78-0.86(3H, q, CHCH ₃).
		13 CNMR (75MHz, DMSO-d ₆): δ 172.2(C=0), 172.0(C=0),
		165.8(C=0), 152.4(Py-2), 149.5(Py-6), 138.5(Py-5),
		131.9(Py-4), 126.5(Py-3), 80.3(CHOH), 52.7(NCHCO),
		52. 0 (NCH), 33. 0 (COCH ₂), 26. 2 (CH ₂ CH ₃), 22. 8 (COCH ₂ CH ₂),
		17.8(CH₃CH), 11.5(CH₃CH₂). 无色固体, mp: 163-165℃。

表-2 II类衍生物的物性数据(续)

 1 HNMR(300MHz, DMSO-d₆): δ 11.1(1H, s, OH), 11.0 (1H, br, NH), 9.02-9.04 (1H, d, d, J=1.5, 5.1Hz, Py-2), 8.36-8.39(1H, d, d, J=1.5, 7.8Hz, Py-4), 7.82-7.871(1H, d, d, J=5.1, 7.8Hz, Py-3), 5.19-5.28(1H, d, d, J=5.7, 7. 5Hz, NCHCO), 2. 85-2. 94 (2H, m, COCH₂), 2. 48-2. 63 (5H, m, COCH₂CH₂CO, $CH_2CH_2CO)$, 2. 04-2. 10 (1H, m, CH_2CH_2CO). ¹³CNMR (75MHz, DMSO-d₆): δ 180.0(CO), 180.0(CO), 173.4(C=0), 170.3 (C=0), 166.1(C=0), 156. 0(Py-2), 151. 7(Py-6), 132. 4(Py-5), 129. 0(Py-4), 127. 6(Py-3), 88.1 (NCHOH), 49.7 (NCHCO), $31.4(COCH_2)$, 30. 1 (COCH₂CH₂CO), 30.1 (COCH₂CH₂CO), 22.5 (COCH₂CH₂). LC-MS: (ESI) (M+2)⁺ 360.2. 收率 74.3%, 无色固体,mp: 119-121℃。

表-3 III类衍生物的物性数据

7.54(1H, dd, J= 8.0, 4.4Hz, Py-3), 4.47(2H, s,

 $PyCH_2$), 3.55(2H, q, J=7.2Hz, NCH_2), 1.17(3H, t,

III		J=7.2 Hz, CH_3). $^{13}CNMR$ (75MHz, DMSO- d_6):
	7000	δ 166. 1 (C=0), 151. 2 (Py-6), 150. 7 (Py-2),
	2	136.8(Py-5), 132.6(Py-4), 125.8(Py-3),
		47.2(PyCH ₂), 37.5(NCH ₂), 13.9(CH ₃). 黄色固体, Mp:
		96-98°C.
		¹ HNMR (400MHz, DMSO-d ₆): δ 8.68 (1H, d d, J= 4.4,
		1. 2 Hz, Py-2), 8. 04 (1H, d d, J= 7.6, 1. 2Hz, Py-4),
		7.54(1H, d d, J= 7.6, 4.4Hz, Py-3), 4.46 (2H, s,
		PyCH ₂). 3.47 (2H, t, J=7.2Hz, NCH ₂), 1.62 (2H, m,
III	7000	$J=7.2 \text{ Hz}$, NCH_2CH_2). 0.837 (3H, t, CH_3). $^{13}CNMR$ (75MHz,
	,	DMSO- d_6): δ 166.4(C=0), 151.1(Py-6), 150.7(Py-2),
		136. 9 (Py-5), 132. 5 (Py-4), 125. 8 (Py-3),
		47.7 (PyCH ₂), 44.4 (NCH ₂), 21.6 (NCH ₂ CH ₂), 11.9 (CH ₃).
		$LC-MS$ (ESI^+): $C_{10}H_{12}N_2O$ ($M+1$) 177. 1, ($M+Na^+$) 199. 0. 油
		状物。
		¹ HNMR (400MHz, DCCl ₃): δ8.76 (1H, d, J= 4.8 Hz,
		Py-2), 7.83 (1H, d, J= 7.6 Hz, Py-4), 7.41(1H, d
		d, J= 7.6, 4.8Hz, Py-3), 4.78 (1H, m, NCH),
	, _	4.34(2H, s, PyCH ₂), 1.30 (6H, d, J= 6.8Hz, CH ₃).
III	Accord /	¹³ CNMR (75MHz, DCCl ₃): δ 166.0(C=0), 151.4(Py-6),
		150.9(Py-2), 135.1(Py-5), 131.3(Py-4),
		125.0(Py-3), 43.2(NCH), 42.9(PyCH ₂), 20.9(CH ₃),
		20.9 (CH ₃). LC-MS (ESI ⁺): $C_{10}H_{12}N_2O(M+1)$ 177.0, $(M+Na^+)$
		199.0。无色固体,Mp:65-66℃.
		¹ HNMR (400MHz, DCCl ₃): δ8.76-8.78 (1H, d, J= 4.8 Hz,
		Py-2), 7.80-7.82 (1H, d, J= 7.6 Hz, Py-4),
		7.41-7.42(1H, d d, J= 7.6, 4.8Hz, Py-3), 4.39 (2H,
		s, PyCH ₂), 3.65-3.70(2H, t, NCH ₂), 1.65-1.68 (2H, m,
III-4	Zooooooooooooooooooooooooooooooooooooo	NCH ₂ CH ₂) 1.36-1.41 (2H, m, NCH ₂ CH ₂ CH ₂),

		0. 93-0. 97 (3H, t, CH_3). ¹³ CNMR (75MHz, DCCl ₃): δ
		166. 3 (C=0), 151. 1 (Py-6), 150. 7 (Py-2),
}		134. $8 (Py-5)$, 130. $9 (Py-4)$, 124. $8 (Py-3)$, 47. $5 (PyCH_2)$,
		42. 6 (NCH ₂), 30. 3 (NCH ₂ CH ₂), 20. 0
		$(NCH_2CH_2CH_2)$, 13.7 (CH_3) . LC-MS (ESI^+) : $C_{11}H_{14}N_2O$
		(M+1)191.1, (M+Na ⁺)213.1 无色固体,Mp: 63-65℃.
		¹ HNMR (400MHz, DCCl ₃): δ 8. 76-8. 78 (1H, d, J= 4. 8 Hz,
		Py-2), 7.80-7.82 (1H, d, J= 7.6 Hz, Py-4),
		7.41-7.42(1H, d d, J= 7.6, 4.8Hz, Py-3), 4.39 (2H,
		s, PyCH ₂), 3.65-3.70(2H, t, NCH ₂), 1.64-1.71
III-5	Nove Nove Nove Nove Nove Nove Nove Nove	(2H, m, NCH ₂ CH ₂), 1.24-1.37
		(8H, m, $(CH_2)_4$) , 0.85-0.89 (3H, t, CH_3).
		¹³ CNMR (75MHz, DCCl ₃): δ 166.2 (C=0), 151.1 (Py-6),
		150.7 (Py-2), 134.8 (Py-5), 130.9 (Py-4),
		124.8 (Py-3), 47.5 (PyCH ₂), 42.9 (NCH ₂),
		31. 4 (NCH ₂ CH ₂), 28. 2 (NCH ₂ CH ₂ CH ₂), 26. 4 (NCH ₂ CH ₂ CH ₂ CH ₂),
		22. 4 (NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂), 13. 9 (CH ₃). LC-MS (ESI ⁺):
		C ₁₄ H ₂₂ N ₂ O (M+1) 219.0, (M+Na ⁺) 241.1. 黄色固体,
		Mp:74-76℃.
		¹ HNMR (400MHz, DCCl ₃): δ 8. 76-8. 77 (1H, d, J= 4. 8 Hz,
	`0	Py-2), 7.80-7.82 (1H, d, J= 7.6 Hz, Py-4),
:		7. 39-7. 43 (1H, d d, J= 7. 6, 4. 8Hz, Py-3), 4. 41 (2H,
		s, PyCH ₂), 3.74-3.77(2H, t, CH ₂ 0), 3.42-3.45 (2H, t,
III-6	7000	NCH ₂), 3.31(3H, s, CH ₃ 0), 1.95-1.98(2H, m, CH ₂).
	,	¹³ CNMR (75MHz, DCCl ₃): δ 166.7(C=0), 151.3(Py-6),
		150.9(Py-2), 135.2(Py-5), 131.2(Py-4),
		125.1(Py-3), 70.2 (CH ₃ 0), 58.9 (CH ₂ 0), 48.2(PyCH ₂),
		$40.6 \text{ (NCH}_2), 28.7 \text{ (CH}_2). \text{ LC-MS (ESI}^+): C_{11}H_{14}N_2O_2 \text{ (M+1)}$
		207.1, (M+Na [†]) 229.1. 淡黄色固体, Mp:75-77℃.

		¹ HNMR (400MHz, DCC1 ₃): δ 8. 76-8. 77 (1H, d, J= 4. 8 Hz,
		Py-2), 7.80-7.82 (1H, d, J= 7.6 Hz, Py-4),
		7. 39-7. 42 (1H, d d, J= 7. 6, 4. 8Hz, Py-3), 4. 84-4. 89
		(1H, m, NCH(CH ₂) ₄), 4.37(2H, s, PyCH ₂),
III-7	AND Y	1. 63-2. 04 (8H, m, $(CH_2)_4$). ¹³ CNMR (75MHz, DCCl ₃):
		δ 166.6 (C=0), 151.4 (Py-6), 151.0 (Py-2),
		135.3(Py-5), 131.2(Py-4), 125.0(Py-3), 53.0(NCH),
		43. 9 (PyCH ₂), 30. 2 (NCH (CH ₂) ₂), 30. 2 (NCH (CH ₂) ₂), 24. 2
		$((CH_2)_2)$, 24.2 $((CH_2)_2)$. LC-MS (ESI^+) : $C_{12}H_{14}N_2O$ $(M+1)$
		203. 1,
		(M+Na ⁺) 225.1. 黄色固体,Mp:75-77℃.
		¹ HNMR (400MHz, DCC1 ₃): δ8.76-8.78 (1H, d, J= 4.8
		Hz, Py-2), 7.80-7.82 (1H, d, J= 7.6 Hz, Py-4),
		7. 39-7. 42 (1H, d d, J= 7.6, 4.8Hz, Py-3), 4. 36 (2H,
III-8	zoooo o	s, PyCH ₂), 1.41-1.90(11H, m, CH(CH ₂) ₅).
		¹³ CNMR(75MHz, DCCl ₃): δ 165.9 (C=0), 151.6 (Py-6),
		150.9 (Py-2), 135.1 (Py-5), 131.2(Py-4),
		125.0 (Py-3), 51.0 (NCH), 43.9 (PyCH ₂),
		31.5(NCH(CH2)2), 31.5(NCH(CH2)2), 25.7 ((CH2)2),
		25. 7 ((CH ₂) ₂), 25. 6 (CH ₂). LC-MS (ESI ⁺): $C_{15}H_{16}N_2O$ (M+1)
	0.000	217.0, (M+Na ⁺) 239.0. 无色固体,Mp:125-128℃.
		'HNMR(400MHz, DMSO-d ₆): δ8.71-8.72 (1H , d , J=
		4.8Hz, Py-2), 8.07-8.09 (1H, d, J= 7.6Hz, Py-4),
III-9		7. 57-7. 60 (1H, dd, J= 7.6, 4.8Hz, Py-3), 4. 53 (2H,
		s, COCH ₂), 4.42 (2H, s, PyCH ₂), 3.67 (3H, s, CH ₃ 0).
	70 O	13 CNMR(75MHz, DMSO-d ₆): δ 170.0(COOCH ₃),
	, Ö	166.7(CON), 151.0(Py-2), 150.0(Py-6),
		137. 2 (Py-5), 132. 9 (Py-4), 126. 3 (Py-3),
		52. 7 (CH ₃ 0), 48. 7 (CH ₂ C0), 44. 4 (PyCH ₂). LC-MS (ESI ⁺):

		C ₁₀ H ₁₀ N ₂ O ₃ (M+1) 207.0, (M+Na ⁺) 229.0. 无色固体,
		Mp:119-120℃.
		¹ HNMR (400MHz, DMSO-d ₆): δ8.71-8.72 (1H, d, J=
		4.8Hz, Py-2), 8.06-8.08 (1H, d, J= 7.6Hz, Py-4),
		7. 57-7. 60 (1H, dd, J= 7. 6, 4. 8Hz, Py-3), 4. 95-4. 97
į	, , , , ,	(1H, q, J = 7.2Hz, COCHN). 4.46-4.58 (2H, q,
III-10	Nove D	J=17. 2Hz, PyCH₂), 3.64 (3H, s, CH₃0), 1.50-1.52 (3H,
		d, J=7.2 Hz, CH ₃). 13 CNMR (75MHz, DMSO-d ₆):
į		δ 172. 2 (COOCH ₃), 166. 4 (CON), 151. 1 (Py-2),
		150. 1 (Py-6), 137. 2 (Py-5), 132. 9 (Py-4),
		126.3 (Py-3), 52.9 (CH₃0), 50.2 (CH₂CO), 45.5 (PyCH₂),
	5	15. 6 (CH ₃). LC-MS (ESI ⁺): $C_{11}H_{12}N_2O_3$ (M+1) 221. 0, (M+Na ⁺)
		243.1. 无色固体,Mp:105-106℃.
	Novovo O	$^{\text{l}}$ HNMR(400MHz, DMSO-d ₆): δ 8.80-8.81 (1H , d , J=
		4.8Hz, Py-2), 7.84-7.86 (1H, d, J= 7.6Hz, Py-4),
III-11		7. 44-7. 47 (1H, d d, J= 7. 6, 4. 8Hz, Py-3), 4. 91-4. 94
		(1H, d, J = 10.8Hz, COCHN). 4.79-4.82 (1H, d,
		J=17. 2Hz , PyCH ₂), 4. 42-4. 46 (1H, d, J=17. 2Hz,
		PyCH ₂), 3.72 (3H, s, CH ₃ 0), 2.31-2.37(1H, m, CH(CH ₃) ₂)
		1.05-1.06(3H, d, J=6.4 Hz, CH ₃), 0.924-0.941(3H, d,
		J=6.4 Hz, CH ₃). 13 CNMR (75MHz, DMSO-d ₆): δ 171.8
		(COOCH ₃), 167.2(CON), 151.1(Py-2), 150.1(Py-6),
		135.7 (Py-5), 131.4 (Py-4), 125.5 (Py-3),
ļ		60.0(CH ₃ O), 52.0(NCHCO), 45.3(PyCH ₂),
		29.3(CH), 19.5(CH $_3$), 19.3 (CH $_3$). LC-MS(ESI $^+$):
		C ₁₃ H ₁₆ N ₂ O ₃ (M+1)249.1, (M+Na ⁺) 271.1. 油状物。
		¹ HNMR (400MHz, DMSO- d_6): δ 8.67-8.68 (1H, d, J=
		4. 0Hz, Py-2), 8. 00-8. 02 (1H, d, J= 7. 2Hz, Py-4),
		7.52-7.56 (1H, d d, J= 7.2, 4.0Hz,

	Ph	Py-3), 7. 13-7. 24(5H, m, Ph), 5. 22-5. 26 (1H, q, J	
III-12	Nova O	=4.8Hz, COCHN), 4.33-4.52 (2H, q, J=17.2Hz, PyCH ₂),	
		3.65 (3H, s, CH ₃ O), $3.20-3.40$ (2H, m, PhCH ₂). ¹³ CNMR	
		(75MHz, DMSO- d_6): δ 171.1 (COOCH ₃), 166.7 (CON),	
		151.1(Py-2), 149.8 (Py-6), 137.6(Ph-1), 136.9	
		(Py-5), 132.9 (Py-4), 130.9 (Ph-3), 130.9 (Ph-5),	
		129.0 (Ph-2), 129.0 (Ph-4), 127.3 (Ph-4), 126.4	
		(Py-3), 55.9 (CH₃0), 53.1 (COCHN), 46.1 (PyCH₂),	
		35.1 (PhCH₂). 黄色固体,Mp:84-86℃.	
		¹ HNMR (400MHz, CDC1 ₃): δ 8.75–8.76 (1H , d , J=	
		4.8Hz, Py-2), 7.81-7.83 (1H, d, J= 7.6Hz, Py-4),	
		7. 40-7. 45 (1H, dd, J= 7.6, 4.8Hz, Py-3), 5. 14-5. 17	
		(1H, q, J = 3.6Hz, COCHN). 4.68 (2H, s, PyCH ₂),	
III-13	OH	4.13-4.29 (2H, m, CH ₂ OH), 2.58 (1H, br, OH). ¹³ CNMR	
	70	(75MHz, CDCl ₃): δ 169.8(COOCH ₃), 167.6(CON),	
:	³ Ö	150.7(Py-2), 149.7(Py-6), 136.4(Py-5),	
		131.6(Py-4), 125.7(Py-3), 61.6	
		(CH₂OH), 57.3 (CH₃O), 52.8 (COCHN), 47.2 (PyCH₂).	
		LC-MS(ESI ⁺): C ₁₁ H ₁₂ N ₂ O ₄ (M+1)236.1, (M+Na ⁺)259.1. 无	
		色固体,Mp:113-114℃。	
		¹ HNMR (400MHz, DMSO-d ₆): δ8.75-8.76 (1H, d, d, J=	
		4.8,1.2Hz, Py-2), 8.00-8.02 (1H,d, J= 7.2Hz,	
		Py-4), 7.90-7.93(2H, m, Ph-2,6),7.61-7.64 (1H,dd,	
		J= 7.2, 4.8Hz, Py-3),	
III-14	NON	7. 43-7. 47 (2H, m, Ph-3, 5), 7. 18-7. 24 (1H, m, Ph-4),	
	,	5.03(2H, s, PyCH ₂). ¹³ CNMR(75MHz,	
		DMSO- d_6): δ 165.5(CO), 151.3(Py-2), 150.4(Py-6),	
		139.9(Ph-1), 136.3(Py-5), 132.6(Py-4),	
		129.6(Ph-3), 129.6(Ph-5), 126.8(Py-3),	

	T	
		125. 2 (Ph-4), 120. 1 (Ph-2), 120. 1 (Ph-4),
		48.8 (PyCH ₂). LC-MS (ESI ⁺): $C_{13}H_{10}N_2O$ (M+1) 211.0,
		(M+Na ⁺) 233.0. 灰色固体,Mp:192-194℃。
		$^{1}\mbox{HNMR}(400\mbox{MHz},\mbox{DMSO-d}_{6}):$ δ 8.73-8.74 (1H , d , d, J=
		4. 8, 1. 2Hz, Py-2), 8. 08-8. 11 (1H, d, J= 7. 6Hz,
		Py-4), 7.78-7.80(2H, m, Ph-2, 6), 7.59-7.62 (1H, d d,
	0.	J= 7. 2, 4.8Hz, Py-3), 7.00-7.02(2H, m, Ph-3, 5), 4.97
III-15	72/	(2H, s, PyCH ₂) 3. 76 (3H, s, CH ₃ O). ¹³ CNMR (75MHz,
	83	DMSO-d ₆): δ 165.2(CO), 157.1(Ph-4), 151.1(Py-2), 150
		.6(Py-6), 136.1(Ph-1), 133.0(Py-5), 132.5(Py-4),
		126.5(Py-3), 122.0(Ph-2),
		122.0(Ph-4), 114.8(Ph-3), 114.8(Ph-5),
		55. 9 (CH ₃ O), 49. 1 (PyCH ₂). LC-MS (ESI ⁺): C ₁₄ H ₁₂ N ₂ O ₂
		(M+1)241.1, (M+Na ⁺) 263.1. 红棕色, Mp:202-204℃。
	Br	1 HNMR (400MHz, DMSO-d ₆): δ 8.74-8.75 (1H , d , d, J=
1 		4. 8, 1. 6Hz, Py-2), 8. 21 (1H, s, Ph-2), 8. 09-8. 11
i		(1H , d , J= 8.0Hz, Py-4), 7.78-7.81(1H, d,
		Ph-6), 7.59-7.62 (1H, d d, J= 8.0, 4.8Hz,
III-16		Ру-3),7.19-7.21(1H,m,Ph-5),4.99 (2H, s, РуСН ₂),
		3.85(3H, s, CH ₃ O). ¹³ CNMR(75MHz,
		DMSO- d_6): δ 165.3(CO), 153.3(Ph-4), 151.2 (Py-2),
		150.4 (Py-6), 136.4(Ph-1), 134.1(Py-5),
		132.6(Py-4), 126.7(Py-3), 124.9(Ph-2), 120.8
		(Ph-6), 113.4(Ph-5), 111.2(Ph-3), 57.1(CH₃0),
		49.0(PyCH ₂). LC-MS (ESI ⁺): C ₁₄ H ₁₁ BrN ₂ O ₂ (M+1)319.2,
		(M+Na ⁺)341.0. 灰色固体,Mp:186-188℃。
		¹ HNMR (400MHz, CDC1 ₃): δ8.78-8.79 (1H, d, J=
		4. OHz, Py-2), 7. 73-7. 75 (1H, d, J= 7. 6Hz, Py-4),
		7.25-7.42(6H, m, Ph, Py-3), 4.86(2H, s,

		D CH) 4 9C (CH DI CH) 13chre (TSHI CH		
177 45	7000 10	PyCH ₂), 4. 26 (2H, s, PhCH ₂). ¹³ CNMR (75MHz, CDCl ₃):		
III−17		δ 166.5(C0), 151.3(Py-2), 151.0 (Py-6),		
		136.4(Ph-1), 135.2(Py-5), 131.3(Py-4),		
		129.1(Ph-3), 129.1(Ph-5), 128.5(Ph-2),		
		128.5(Ph-5), 128.1 (Ph-4), 125.3(Py-3),		
		47. 3 (PhCH ₂), 47. 0 (PyCH ₂). LC-MS (ESI ⁺): $C_{14}H_{12}N_2O$		
		(M+1)225.1, (M+Na ⁺) 247.1. 黄色固体,		
		Mp:158-160°C。		
		¹ HNMR (300MHz, DMSO _{d-6}): δ 8.74-8.76(1H, d, J=		
		4.8Hz, Py-2), 8.105-8.130(1H, d, J= 7.5Hz, Py-4),		
		7.714-7.742(2H, d, Ph-2, Ph-6), 7.609-7.650 (1H,		
		d d, J= 4.8, 7.5Hz, Py-3), 7.305-7.356(1H, t,		
III-18	3	J=7.5Hz, Ph-5), 7.014-7.038 (1H, d, J=7.5Hz,		
	yoooo y	Ph-4), 5.01(2H, s, PyCH ₂), 2.349 (3H, s,		
		CH ₃). 13 CNMR(75MHz, DMSO-d ₆): δ 165. 4(CO),		
		151.3(Py-2), 150.5(Py-6), 139.9 (Ph-1),		
		138.9(Ph-3), 136.2 (Py-5), 132.6 (Py-4), 129.5		
		(Py-3), 126.7 (Ph-5), 125.9 (Ph-4), 120.6 (Ph-2),		
		117.3 (Ph-6), 48.9(PyCH₂),21.9(CH₃) 无色固体,		
		Mp:214-215℃。		
-		¹HNMR (300MHz, DMSO-d6): δ11.0(1H, s, CONHCO),		
		8.72-8.74(1H, dd, J=1.2,4.8Hz,py-2),		
		8.05-8.08(1H, dd, J=1.2, 7.8Hz, py-4),		
	O. N. O.	7.57-7.61(1H, dd, J=7.8, 4.8Hz, py-3),		
III-19		5. 12-5. 18 (1H, d, J=4. 8 Hz, COCHN), 4. 32-4. 51		
	NO N	(2H, d, J=17. 4Hz, PyCH ₂), 2.84-2.96(1H, m, COCH ₂),		
		2. 56-2. 62 (1H, m, COCHCH ₂), 2. 33-2. 47 (1H, m, COCH ₂),		
		1. 97-2. 05 (1H, m, COCHCH ₂). ¹³ CNMR (75MHz, DMSO-d6):		
		δ 173. 4 (CONHCO), 171. 4 (CONHCO), 166. 9 (CON),		

	<u> </u>		
		151.0(py-2), 150.1(py-6), 137.1(py-4),	
		132.9(py-5), 126.3(py-3), 52.7(NCHCO),	
		45.8(PyCH ₂), 31.8(COCH ₂), 22.9(COCHCH ₂).	
		LC-MS(ESI ⁺): C ₁₂ H ₁₁ N ₃ O ₃ (M+Na ⁺)268.0. 无色固体	
		mp:259-262°C。	
		'HNMR (300MHz, DMSO-d6): δ8.80-8.82(1H, dd,	
		J=1.2, 4.5Hz, py-2), 7.83-7.86 (1H, dd, J=1.2,	
		7.8Hz, py-4), 7.45-7.49(1H, dd, J=7.8, 4.8Hz,	
	:	py-3), 5.28-5.34(1H, d, J=5.4Hz, COCHN),	
	0, N, O	4. 33-4. 55 (2H, d, J=16. 5Hz, PyCH ₂), 2. 96-2. 99 (1H,	
į		m, COCH ₂), 2.86-2.92(1H, m, COCHCH ₂), 2.30-2.36(1H,	
III-20	Novo Novo	m, COCH ₂), 2.20-2.23(1H, m, COCHCH ₂). ¹³ CNMR (75MHz,	
		DMS0-d6): δ 171.1	
		(CONCO), 169. 9 (CONCO), 167. 4 (CON), 151. 3 (py-2), 150	
		.0(py-6),135.6(py-4), 131.5(py-5), 125.7(py-3),	
		52. 9 (NCHCO), 45. 2 (PyCH ₂), 32. 2 (COCH ₂), 27. 4 (CH ₃),	
		22.9 (COCHCH ₂). LC- MS: (ESI) (M+1) 260.1,	
		(M+Na ⁺)282.1. 无色固体, mp:168-173℃	
	,	¹ HNMR (300MHz, DMSO-d6): δ8.73-8.75(1H, dd,	
		J=1.2, 4.8Hz, py-2), 8.06-8.09(1H, dd, J=1.2,	
		7.8Hz, py-4), 7.57-7.62(1H, dd, J=7.8, 4.8Hz,	
		py-3), 5.18-5.24(1H, d, J=5.1Hz, COCHN),	
		4.31-4.52(2H, d, J=17.4Hz, PyCH ₂), 3.61-3.70(2H,	
	0~1/0	m, NCH ₂), 2.93-3.03(1H, m, COCH ₂), 2.70-2.78(1H, m,	
III-21	Zooodo,	COCHCH ₂), 2.33-2.49(1H, m, COCH ₂),	
		2. 00-2. 06 (1H, m, COCHCH ₂), 0. 978-1. 036 (3H, t, NCH ₂ CH ₃)	
		. ¹³ CNMR (75MHz, DMSO-d6): δ 172.0(CONCO), 170.6	
		(CONCO), 167.0(CON), 151.0(py-2), 150.1(py-6),	
		137. 2 (py-4), 132. 9 (py-5), 126. 3 (py-3),	
		A CONTRACTOR OF THE CONTRACTOR	

		E0 0 (NONO) 45 0 (D 0V) 07 0 (1-1-1)			
		53. 2 (NCHCO), 45. 9 (PyCH ₂), 35. 3 (NCH ₂), 32. 0 (COCH ₂),			
		22. 2 (COCHCH₂), 13. 6 (CH₃). LC− MS : (ESI) (M+1) ⁺			
		274.0, (M+Na ⁺) 296.1. 无色固体 mp:179-180°C.			
		¹ HNMR (300MHz, DMS0-d6): δ8.74-8.76(1H, dd,			
		J=1.5, 4.5Hz, py-2), 8.08-8.10(1H, dd, J=1.5,			
		7.5Hz, py-4), 7.59-7.63(1H, dd, J=7.5, 4.5Hz,			
	0 N 0	py-3), 5.21-5.27(1H, d, J=5.1Hz, COCHN),			
		4.31-4.54(2H, d, J=17.4Hz, PyCH ₂), 3.57-3.62(2H, m,			
III-22	Novo Novo Novo Novo Novo Novo Novo Novo	NCH_2), 2.99-3.05(1H, m, $COCH_2$), 2.74-2.79(1H, m,			
		COCHCH ₂), 2.39-2.49(1H, m, COCH ₂), 2.00-2.06(1H, m,			
	*	COCHCH ₂), 1. 421-1. 494 (2H, q, J= 7. 2			
		Hz, CH ₂ CH ₃), 0. 797-0. 847 (3H, t, J=7. 2Hz, CH ₃). ¹³ CNMR			
		(75MHz, DMSO-d6): δ172.3(CONCO), 170.9 (CONCO),			
		167.0(CON), 151.0(py-2), 150.1(py-6),			
		137.1(py-4), 132.9(py-5), 126.3(py-3),			
		53. 3 (NCHCO),			
1		45.9(PyCH ₂), 41.0(NCH ₂), 32.0(COCH ₂), 22.2			
į		(COCHCH₂), 21.3(CH₂CH₃), 11.8(CH₃). LC- MS: (ESI)			
;		(M+1) 288.2, (M+Na ⁺) 310.2. 无色固体 mp: 164-166			
		℃。			
		'HNMR (300MHz, CDCl ₃): δ8.80-8.81 (1H, d, d, J=1.2,			
		4.5Hz, py-2), 7.82-7.85(1H, d, J=7.8Hz, py-4),			
		7.44-7.48 (1H, dd, J=7.8,4.8Hz, py-3), 5.23-5.29			
		(1H, dd, J=3.3Hz, COCHN), 4.90-4.94 (1H, m,			
		J=6.6Hz, NCH), 4.33-4.55 (2H, d, J=16.2Hz,			
	\checkmark	PyCH ₂), 3.75-3.82(2H, m, NCH ₂),			
III-23	0 N Y O	2.92-2.93(1H, m, COCH ₂), 2.82-2.86(1H, m, COCHCH ₂),			
	Novon	$2.25-2.31(1H, m, COCH_2), 2.17-2.18(1H, m, COCHCH_2),$			
	χ,	1. 34-1. 39 (6H, d, J=2. 1Hz, CH ₃). ¹³ CNMR (75MHz,			
		, , , , , , , , , , , , , , , , , , ,			

		(0001) (0.454.0.(0.454.0.)
		CDC1 ₃): δ 171. 2 (CONCO), 169. 8 (CONCO), 167. 4 (CON),
		151. 3 (py-2), 150. 0 (py-6), 135. 6 (py-4),
		131.4(py-5), 125.7 (py-3), 53.3(NCHCO),
		46.0 (NCH), 45.2 (PyCH ₂), 32.9 (COCH ₂),
		22.9(COCHCH ₂), 20.0(CH ₃), 19.5(CH ₃). LC- MS:(ESI)
		(M+1) ⁺ 288.1, (M+Na ⁺) 310.0. 浅黄色固体 mp: 160-166
		·C
-		¹ HNMR (300MHz, CDC1 ₃): δ8.83-8.84(1H, d, J=4.8Hz,
		py-2), 7.84-7.87(1H, d, J=7.8Hz, py-4),
		7. 46-7. 50 (1H, dd, J=7. 8, 4. 8Hz, py-3), 5. 28-5. 35
		(1H, dd, J=5.4Hz, COCHN), 4.34-4.56(2H, d,
		J=16.5Hz, PyCH₂), 3.75-3.82 (2H, m,
		NCH ₂), 2. 96-2. 98(1H, m, COCH ₂), 2. 86-2. 92(1H, m,
III-24		COCHCH ₂), 2.28-2.34(1H, m, COCH ₂), 2.22-2.23(1H, m,
	Nove of the second	COCHCH ₂), 1.46-1.63(2H, m, CH ₂ CH ₃), 1.25-1.35 (2H,
		m, CH ₂), 0.90-0.94(3H, t, J=7.2Hz, CH ₃). ¹³ CNMR
		(75MHz, CDCl ₃): δ170.9(CO), 169.7(CO),
		167.4(CON), 151.2(Py-2), 149.9(Py-6),
		135.7(py-4), 131.5(Py-5), 125.8 (py-3),
		53.0 (NCH), 45.2 (PyCH ₂), 40.6 (NCH ₂), 32.3 (CO CH ₂),
		30. 2 (NCH ₂ CH ₂), 22. 9 (NCHCH ₂), 20. 3 (CH ₂ CH ₃),
		13.9(CH₃). LC- MS:(ESI) (M+1) * 302.1.浅黄色粘稠物
		¹ HNMR (300MHz, CDC1 ₃): δ8.82-8.84(1H, dd, J=1.2,
	•	4.8Hz, py-2), 7.84-7.87(1H, dd, J=1.2, 8.4Hz,
		py-4), 7.46-7.50(1H, dd, J=8.4, 4.8Hz, py-3),
		5. 25-5. 32(1H, m, J=5. 4Hz, COCHN), 4. 67-4. 75(1H, q,
	0 N O	J=8.7Hz, NCHCH ₃), 4.34-4.56(2H, d, J=18.0Hz,
		PyCH ₂), 2.93-2.96(1H, m, COCH ₂), 2.85-2.91(1H, m,
III-25	2000 A	COCHCH ₂), 2. 20-2. 23 (1H, m, COCH ₂), 2. 17-2. 19 (1H, m,

	1	
		COCHCH ₂), 1.89-1.92(1H, m, CHCH ₂), 1.63-1.76(1H,
		m, CHCH ₂), 1.33-1.38(3H, t, J=7.2Hz, CH ₃ CH),
		0.81-0.86 (3H, t, J=9.0Hz, CH ₂ CH ₃). ¹³ CNMR (75MHz,
		CDCl ₃): δ 171.5 (CO), 170.1(CO), 167.4(CON),
		151. 2 (Py-2), 149. 9 (Py-6), 135. 7 (py-4), 131. 5
		(Py-5), 125.8(py-3), 53.3(NCH), 51.8(NCH),
		45. 2 (PyCH ₂), 32. 8 (COCH ₂), 26. 7 (CH ₂ CH ₃), 23. 0
		(NCHCH ₂), 18.3 (CHCH ₃), 11.6 (CH ₃). LC- MS: (ESI)
	$\overline{}$	(M+1) ⁺ 302.1, (M+Na ⁺) 324.2. 无色粘稠固体 mp: 42-43
		℃.
		¹ HNMR (300MHz, CDCl ₃): δ8.82-8.83(1H, d,
		J=4.5Hz, Py-2), 7.83-7.86(1H, d, J=7.5Hz, Py-4),
		7.46-7.50(1H, d, J=4.5Hz, Py-3), 7.27-7.38 (5H, m,
	O N O	ph), 5.30-5.36(1H, d d, J=6.6, 5.4Hz, NCHCO),
		4.97(2H, s, phCH₂), 4.319- 4.537(2H, J=16.5Hz,
III-26		pyCH ₂), 2.99-3.01(1H, m, COCH ₂), 2.88-2.95(1H, m,
		NCHCH ₂), 2.30-2.36(1H, m, NCHCH ₂), 2.09-2.23(1H, m,
		COCH ₂). ¹³ CNMR (75MHz, CDCl ₃): δ170.8(CO),
		169.7(CO), 167.4(CON), 151.3(Py-2), 149.9(Py-6),
		136.8(py-4),135.6(Ph-1), 131.5 (ph-5),
		129.1(ph-3), 129.1(ph-5),128.7(ph-2), 128.7 (ph-
		6),127.9(ph-4), 125.8(py-4), 53.0(NCH),
		45. 2 (PyCH ₂), 44. 0 (PhCH ₂), 32. 3 (COCH ₂),
	,	22.8(NCHCH ₂).LC- MS: (ESI) (M+1) 336.1,
	į	(M+Na ⁺)358.0. 无色固体 mp:52 -55℃

表-4 IV 类衍生物的物性数据:

	R ₁ C	$N-R_3$ (IV) $R_1=R_2=H$
编号	R_3	谱 图 及 物 性 数 据
IV-1		¹ HNMR (300MHz, CDCl ₃): δ 9. 388 (1H, s, Pym-2), 9. 200 (1H, s, Pym-6), 7. 204 (1H, br, NH), 4. 575 (2H, s, C1CH ₂).
	Н	13CNMR(75MHz, CDC1 ₃): δ 172.7 (CO), 167.8(Pym-2), 160.9(Pym-4), 153.5(Pym-6), 124.2(Pym-5), 47.5(PymCH ₂). LC-MS (ESI ⁺): (M+1)136. 浅黄色固体, 62%, mp>200℃.
IV-2	www.	¹ HNMR(300MHz,CDC1 ₃):δ 9. 337(1H, s,Pym-2),9. 143 (1H, s,Pym-6),4. 466(2H, s,CH ₂),3. 598-3. 647(2H, t, J=7. 5Hz,NCH ₂),1. 713-1. 738(2H, m,J= 7. 5Hz,CH ₂ CH ₃), 0. 962-1. 012(3H, s,J= 7. 5Hz,CH ₃). ¹³ CNMR(75MHz,CDC1 ₃): δ 170. 6(CO), 164. 9(Pym-2), 160. 3(Pym-4), 152. 9(Pym-6),125. 1(Pym-5),51. 5(PymCH ₂),44. 2(NCH ₂), 21. 7(CH ₂),11. 4(CH ₃).LC-MS(ESI ⁺):(M+1) 178. 红棕色油 状物,71%.
IV-3		「HNMR(300MHz,CDC1 ₃): δ 9. 326(1H, s,Pym-2),9. 129(1H, s,Pym-6),4. 457(2H, s,PymCH ₂),3. 624-3. 672(2H, t,J=7. 2Hz,NCH ₂),1. 618-1. 718(2H, m,CH ₂),1. 353-1. 428(2H, m,CH ₂ CH ₃),0. 942-0. 991(3H, t,CH ₃). ¹³ CNMR(75MHz,CDC1 ₃): δ 170. 7(CO),164. 9(Pym-2),160. 3(Pym-4),152. 9(Pym-6),125. 1(Pym-5),51. 4(PymCH ₂),42. 9(NCH ₂),30. 4(CH ₂),20. 8(CH ₂),13. 8(CH ₃). LC-MS(ESI ⁺):(M+1)192. 红棕色油状物,87%.

TV		INNUIT (2001)				
IV-4	§ 0	1 HNMR (300MHz, CDC1 ₃): δ 9. 310 (1H, s, Pym-2),				
		9. 143 (1H, s, Pym-6), 4. 478 (2H, s, PymCH ₂), 3. 699-3. 745				
		(2H, t, J= 6.9Hz, OCH ₂), 3.411-3.450(2H, t, J= 6.0Hz,				
		NCH_2), 3.299(3H, s, OCH_3), 1.919-1.966(2H, m, CH_2).				
	į	¹³ CNMR (75MHz, CDC1 ₃): δ 170.7 (CO), 164.9 (Pym-2),				
		160.3(Pym-4), 152.8(Pym-6), 125.0(Pym-5), 70.3(OCH ₃),				
		58.9 (OCH ₂), 51.9 (PymCH ₂), 40.2 (NCH ₂), 28.6 (CH ₂). LC-MS				
		(ESI ⁺): (M+1)208. 亮黄色油状物, 64%.				
IV-5	₹ ∕∕∕	¹ HNMR (300MHz, CDCl ₃): δ 9. 329 (1H, s, Pym-2), 9. 133 (1H,				
		s, Pym-6), 4.458(2H, s, PymCH ₂), 3.616-3.665(2H, t,				
		J=7. 2Hz, NCH ₂), 1.655-1.679(2H, m, CH ₂), 1.328(8H, m,				
		CH ₂), 0.884-0.906(3H, t, CH ₃). ¹³ CNMR (75MHz, CDCl ₃):				
		δ 170.6 (CO), 164.8 (Pym-2), 160.3 (Pym-4),				
		152.9 (Pym-6), 125.1 (Pym-5), 51.4 (PymCH ₂), 42.6 (NCH ₂),				
		31.6 (CH ₂), 28.4 (CH ₂), 26.6 (CH ₂), 22.7 (CH ₂), 14.1 (CH ₃).				
		LC-MS (ESI ⁺): (M+1)220. 红棕色油状物, 82 %.				
IV-6	3	¹ HNMR (300MHz, CDCl ₃): δ 9. 322 (1H, s, Pym-2), 9. 125 (1H,				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	s, Pym-6), 4.660-4.750(1H, m, CH), 4.410(2H, s, PymCH ₂),				
		1.308-1.330(6H, d, CH_2). ¹³ CNMR (75MHz, $CDC1_3$):				
		δ 170.7(CO), 164.2(Pym-2), 160.2(Pym-4),				
		152.9(Pym-6), 125.4(Pym-5), 46.8(PymCH₂), 43.0(NCH),				
		20.8(CH₃) , 20.8(CH₃). LC-MS (ESI⁺): (M+1)178. 浅黄色				
		固体,76%,mp:146-148℃.				
IV-7	—	¹HNMR (300MHz, CDCl₃): δ 9. 322 (1H, s, Pym-2), 9. 123 (1H, s,				
		Pym-6), 4.757-4.810(1H, m, CH), 4.437(2H, s, PymCH ₂),				
		1. 994-2. 053 (2H, m, CH ₂), 1. 615-1. 847 (6H, m, CH ₂). ¹³ CNMR				
	ļ	(75MHz, CDCl ₃): δ 170.8(CO), 164.8(Pym-2), 160.2(Pym-4),				
		152.8(Pym-6), 125.3(Pym-5),				
		52. 9 (PymCH ₂), 47. 9 (NCH), 30. 3 (CH ₂), 30. 3 (CH ₂), 24. 2 (CH ₂),				

	24.2(CH ₂). LC-MS (ESI ⁺): (M+1)204. 红棕色固体, 62%, mp:130-132°C.
IV-8 \{ \(\)	¹ HNMR (300MHz, CDCl ₃): δ 9. 328 (1H, s, Pym-2), 9. 141 (1H, s, Pym-6), 4. 428 (2H, s, PymCH ₂), 4. 279 (1H, br, CH), 1. 166-1. 903 (10H, m, CH ₂). ¹³ CNMR (75MHz, CDCl ₃): δ 170. 8 (CO), 164. 2 (Pym-2), 160. 2 (Pym-4),
	152.9(Pym-6), 125.4(Pym-5), 50.9(PymCH ₂), 47.8(NCH), 31.5(CH ₂), 31.5(CH ₂), 25.6(CH ₂), 25.6(CH ₂), 25.5(CH ₂). LC-MS (ESI ⁺): (M+1) 218. 浅黄色固体, 60 %, mp:144-145 °C.
IA-8 \$ 0	¹ HNMR (300MHz, CDC1 ₃): δ 9. 363 (1H, s, Pym-2), 9. 169 (1H, s, Pym-6), 4. 624 (2H, s, NCH ₂), 4. 436 (2H, s, PymCH ₂), 3. 782 (3H, s, CH ₃). ¹³ CNMR (75MHz, CDC1 ₃): δ 170. 8 (CO), 168. 9 (COOCH ₃), 165. 3 (Pym-2),
	160.8(Pym-4), 153.4(Pym-6), 124.1(Pym-5), 52.7(NCH₂), 52.1(PymCH₂), 43.5(CH₃). 浅黄色固体, 69%, mp:152 -154 ℃.

表-5 [类衍生物的药理实验结果:

	ECV304	A549	СЕМ	HL-60
样品号	IC50	IC50	IC50	IC50
	(µg/ml)	(μg/ml)	(µg/ml)	(µg/ml)
I-1	830. 19	1001.38	300. 44	547. 17
I-2	804. 71	700.87	303. 22	444. 18
I-3	>1000	916.68	584. 96	>1000
I-4	198. 26	681.90	135. 28	499. 95
I-5	444. 69	741.84	187. 28	378. 15
I-6	303. 53	381.16	160. 84	289. 75

表-6 II 类衍生物的药理实验结果:

	ECV204	A.T.40	CDV	111 00
172 17 17 17 17 17 17 17 17 17 17 17 17 17	ECV304	A549	CEM	HL-60
样品号	IC50	IC50 IC50		IC50
	(µg/ml)	(µg/ml)	(µg/ml)	(µg/ml)
II-1	>1000	>1000	>1000	>1000
II-2	894. 17	>1000	784. 86	762. 50
11-3	>1000	>1000	734. 46	976. 65
II-4	234. 99	323. 71	248. 90	290. 99
II-5	176. 53	243. 67	156. 69	152. 45
II-6	206. 83	244. 70	415. 68	329.06
II-7	375. 19	494.14	492. 34	513. 91
II-8	356. 73	275. 11	473. 69	388. 95
11-9	>1000	>1000	>1000	>1000
II-10	>1000	>1000	>1000	954. 44
II-11	590. 41	984. 01	710. 98	595. 12
II-12	755. 11	758. 26	835. 46	840. 59
II-13	129. 83	89. 02	297. 54	499. 63
II-14	334. 08	291. 87	176. 74	323. 41
II-15	44. 15	>1000	>1000	>1000
II-16	884. 05	>1000	693. 27	905. 78
II-17	148. 62	119. 31 219. 52 19		194. 16
II-18	861.35	652. 50	573. 24 676. 56	
II-19	>196	>196	>196	>196
11-20	>1000	>1000	>1000	987. 31

表-7 III 类衍生物的药理实验结果:

样品号	ECV304	A549	CEM	HL-60
-----	--------	------	-----	-------

	IC50	IC50	IC50	IC50
	(μg/ml)	(µg/ml)	(μg/ml)	$(\mu g/m1)$
III-1	755. 77	832. 05	588. 87	766. 89
III-2	796. 60	704. 44	533. 20	713. 17
III-3	813. 86	833. 64	901. 22	>1000
III-4	346. 52	378. 39	317. 76	390. 24
III-5	71. 49	78. 14	73. 77	58. 20
111-6	986. 89	989. 94	555. 84	591. 29
III-7	240. 75	231. 49	222. 73	169. 48
III-8	198. 34	178. 45	249. 64	273. 39
III-9	959. 97	958. 84	>1000	913. 82
III-10	333. 33	442. 61	97. 96	170. 29
III-11	>200	>200	>200	>200
III-12	282. 86	396. 20	262. 50	281.91
III-13	338. 32	433. 95	210. 96	205. 74.
III-14	172. 03	698. 82	616. 34	293. 66
III-15	551.78	1000	781. 74	547. 68
III-16	140. 01	933. 40	498. 10	473. 92
III-17	224. 53	288. 40	281. 45	211. 23
III-18	739. 65	438. 22	271. 17	347. 51
III-19	>1000	>1000	>1000	>1000
111-20	>1000	992. 98	>1000	>1000
III-21	431.01	144. 26	346. 54	499. 15

III-22	1006. 08	523. 99	315. 28	550. 20
III-23	1041.12	837. 00	561. 30	821. 19
III-24	347. 24	348. 88	341. 32	398. 94
III-25	274. 96	448. 50	337.86	417. 34
III-26	950. 54	652. 86	614. 89	577. 46

表-8 IV 类衍生物的药理实验结果:

	T	I	I	T
	ECV304	A549	CEM	HL-60
样品号	IC50	IC50	IC50	IC50
	$(\mu g/ml)$	(μg/ml)	(µg/ml)	$(\mu g/m1)$
IV-1	>766	>766	>766	>766
IV-2	558. 66	869. 82	246. 65	122. 62
IV-3	535. 26	451.62	246. 71	159. 30
IV-4	>1000	>1000	288. 61	408. 39
IV-5	99. 75	71. 62	32. 16	33. 44
IV-6	>1000	>1000	892. 17	956. 75
IV-7	772. 84	711. 35	621.15	320. 21
IV-8	>1000	718.83	656. 11	479. 66
IV-9	>1000	>1000	696. 44	901.07
thalidomide	779. 82	969. 19	>1000	>1000

药理实验结果总结:

以 thalidomide 为对照物,对 I、II、III、IV类化合物进行了体外人脐静脉血管内皮细胞(ECV-304)、人肺癌细胞(A549)、人 T 细胞白血病细胞(CEM)、人原髓细胞白血病细胞(HL-60) 四组细胞的筛选,结果见表-5、表-6、表-7 和表-8。

I 类化合物中个别化合物的活性与 thalidomide 相当,但大部分化合物的活性均要好于 thalidomide。

II 类化合物中个别化合物的活性(如 II -9、10)与 thalidomide 相当,但大部分化合物表现出很强的抑制肿瘤和抑制血管内皮细胞的活性。从 6 位链接的基团来看,发现芳香环、脂肪链比氨基酸酯类的活性要显著增强,其中 II -4、5、6、13、14、15 有很强的抑制上述细胞的作用,随着碳链的增加,其活性显著增强 (C>4)。在 II 类所有化合物中,II -15 的抑制人脐静脉血管内皮细胞 (ECV-304)的活性最强,该化合物对其它三组细胞的抑制均比较弱。这说明该化合物具有选择性的抑制血管内皮细胞(ECV-304)的增殖活性。这也说明在苯环上适当引入卤原子可增加其生物活性。

III类化合物中个别化合物的活性与 thalidomide 相当,但大部分化合物的活性要显著强于 thalidomide。其规律与II类化合物相似,6 位链接的基团中芳香环、脂肪链比氨基酸酯类的活性要显著增强。在脂肪链中,也是随着碳链的增加,其抑制人脐静脉血管内皮细胞(ECV-304)的活性和抑制肿瘤的活性均显著增强。在芳香环中,卤原子也是明显增强了化合物的生物活性。在III类所有化合物中,III-5、16 有很强的抑制人脐静脉血管内皮细胞(ECV-304)的活性和抑制肿瘤的活性。

IV类化合物中大部分化合物的活性与 thalidomide 相当,但化合物IV-5 是这一类所有化合物中抑制血管内皮细胞(ECV-304)和人肺癌细胞(A549)、人T细胞白血病细胞(CEM)、人原髓细胞白血病细胞(HL-60)最强的化合物。再一次证明了长碳链的脂肪链能显著增强化合物的活性。