

VIGILADA MINEDUCACIÓN - SNIES 1732

Diferenciación e integración numéricas

Consulta: buscar un ejemplo de cada uno

- Integrales múltiples
- Derivación numérica método Euler
- Derivación numérica método Runge Kutta

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{1} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{2} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$= \int_{-1}^{1} \left(\frac{8}{3} - 4y^{2} + 2y^{3} \right) dy$$

$$= \int \frac{2^{3}}{3} - 2y^{2}(2) + (2)^{2}y^{3} dy$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{1} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$= \int_{-1}^{1} \left(\frac{8}{3} - 4y^{2} + 2y^{3} \right) dy = \left[\frac{8}{3}y - 4\frac{y^{3}}{3} + 2\frac{y^{4}}{4} \right]_{-1}^{1}$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{2} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$= \int_{-1}^{1} \left(\frac{8}{3} - 4y^{2} + 2y^{3} \right) dy = \left(\frac{8}{3}y - 4\frac{y^{3}}{3} + 2\frac{y^{4}}{4} \right) \int_{-1}^{1} dy$$

$$= \frac{8}{3} - \frac{4}{3} + \frac{1}{2} - \left(-\frac{8}{3} + \frac{4}{3} + \frac{1}{2}\right)$$

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{1} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$= \int_{-1}^{1} \left(\frac{8}{3} - 4y^{2} + 2y^{3} \right) dy = \left[\frac{8}{3}y - 4\frac{y^{3}}{3} + 2\frac{y^{4}}{4} \right]_{-1}^{1}$$

$$=\frac{8-4+\frac{1}{2}-(\frac{8}{3}+\frac{4}{3}+\frac{1}{2})}{3}=\frac{4}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{2}=\frac{8}{3}$$

iSiempre hacia lo álto!

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

$$\int_{-1}^{1} \left[\frac{x^{3}}{3} - 2y^{2}x + \frac{x^{2}}{2}y^{3} \right]_{0}^{2} dy = \int_{-1}^{2} \frac{2}{3} - 2y^{2}(2) + \frac{(2)^{2}}{2}y^{3} dy$$

$$= \int_{-1}^{1} \left(\frac{8}{3} - 4y^{2} + 2y^{3} \right) dy = \left(\frac{8}{3}y - 4\frac{y^{3}}{3} + 2\frac{y^{4}}{4} \right) \int_{-1}^{1}$$

$$=\frac{8-4+\frac{1}{3}-\frac{(8+\frac{1}{3}+\frac{1}{2})}{3}=\frac{4}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{2}=\frac{8}{3}=2,66$$

iSiempre hacia lo álto!

El método de Euler consiste en encontrar iterativamente la solución de una ecuación diferencial de primer orden y valores iniciales conocidos para un rango de valores. Partiendo de un valor inicial x0 y avanzando con un paso h, se pueden obtener los valores de la solución de la siguiente manera:

$$Y_{m+1} = Y_m + h * f(X_m, Y_m)$$
 $X_{m+1} = X_m + h$

Donde Y es solución de la ecuación diferencial y f es la ecuación diferencial en función de las variables independientes.

xf = Última iteración de la condición a encontrar y(xf) = ?

$$h = \frac{x_f - x_n}{n}$$

En la gráfica, la curva desconocida está en azul, y su aproximación en rojo.

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) para la solución de $y' = \frac{\sqrt{y}}{2x+1}$ donde y(0) = 4

Use el método de Euler con h=0,25 para obtener una aproximación de para la solución de $y' = \frac{\sqrt{y}}{2x+1}$ donde y(0) = 4

$$Xf = 2$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) para la solución de $y' = \frac{\sqrt{y}}{2x+1}$ donde y(0) = 4

$$Xf = 2$$

$$Xn = 0$$

$$Yn = 4$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0) = 4}$ para la solución de

n	xn	yn	yn+1
0	0	4	

Xn = 0

Xf = 2

Yn = 4

H = 0.25

$$h = \frac{x_f - x_n}{n}$$

$$X_{n+1} = Y_n + h * f(X_n, Y_n)$$

$$X_{n+1} = X_n + h$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0) = 4}$ para la solución de

VL		1
XΤ	=	/
<i>,</i>		_

n	xn	yn	yn+1
0	0	4	4,5

$$Xn = 0$$

$$Yn = 4$$

$$H = 0.25$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0) = 4}$ para la solución de

		Xf = 2

		I .	_
n	xn	yn	yn+1
0	0	4	4,5
1			
2			
3			
4			
5			
6			
7			
8			
9			

$$Xn = 0$$

 $Yn = 4$

$$H = 0.25$$

$$X_{n+1} = X_n + \mathbf{h}_{1}^{\mathsf{P}}$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0)} = 4$ para la solución de

n	xn	yn	yn+1
0	0	4	4,5
1	0,25		
2	0,5		
3	0,75		
4	1		
5	1,25		
6	1,5		
7	1,75		
8	2		
9	2,25		

$$Xn = 0$$

Xf = 2

$$Yn = 4$$

$$H = 0.25$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0) = 4}$ para la solución de

n	xn	yn	yn+1
0	0	4	4,5
1	0,25	4,5	4,85355339
2	0,5		
3	0,75		
4	1		
5	1,25		
6	1,5		
7	1,75		
8	2		
9	2,25		

Xn = 0

Xf = 2

Yn = 4

H = 0.25

$$X_{n+1} = X_n + \mathbf{h}^{\mathsf{E}}$$

$$h = \frac{x_f - x}{n}$$

Use el método de Euler con h=0,25 para obtener una aproximación de y(2) $y' = \frac{\sqrt{y}}{2x+1} \quad \text{donde y(0) = 4}$ para la solución de

n	xn	yn	yn+1
0	0	4	4,5
1	0,25	4,5	4,85355339
2	0,5	4,85355339	5,12893816
3	0,75	5,12893816	5,35540975
4	1	5,35540975	5,54825774
5	1,25	5,54825774	5,71650588
6	1,5	5,71650588	5,86593848
7	1,75	5,86593848	6,00049236
8	2	6,00049236	6,12297188
9	2,25	6,12297188	6,23544751

Xn = 0

Xf = 2

Yn = 4

H = 0.25

$$h = \frac{x_f - x_n}{1 + h}$$

$$Y_{n+1} = Y_n + h * f(X_n, Y_n)$$

Referencias

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

http://ing.unne.edu.ar/computacion/pub/informatica/IN.pdf

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

USTATUNJA.EDU.CO

@santotomastunja