مدار های الکتریکی ۱

نيم سال اول ۰۰–۹۹

مهلت ارسال: پنج شنبه ۱۳ آذر ۱۳۹۹

مدار های مرتبه اول، پاسخ پله و ضربه

تمرین سری ششم

به موارد زیر توجه کنید :

- پاسخ تمرین را حتما در قالب یک فایل PDF و با عنوان (subject) ECI_HW_06 (subject به ایمیل r3zaAdinep0ur@gmail.com
- نام فایل باید شامل اسم خودتان، شماره دانشجویی و شماره تمرین باشد. مثلا :

 Hesam Lashkari 9812345 HW01

 Hesam Lashkari 9812345 HW01
- مهلت ارسال پاسخ تمرین ها تا ساعت ۲۳:۵۹ روز اعلام شده است. توصیه می شود نوشتن تمرین را به روز های نهایی موکول نکنید. ارسال های با تاخیر همه نمره آن تمرین را کسب نخواهند کرد.
- سعی کنید حتما تمرین ها را خودتان حل کنید. طبیعی است که برای پاسخ های مشابه نمره ای در نظر گرفته نمی شود.
 - تمرینات اختیاری دارای نمره اضاف هستند.

۱. ولتاژ خازن را برای t>0 به دست آورید.

 $V_{\mathcal{C}}(\mathbf{0}) = 3 V$

۲. در مدار شکل زیر: الف) جریان $i_R(0)$ را به دست آورید. ب) $i_R(t)$ را برای $t_R(0)$ یه دست آورید.

 $V_{\mathcal{C}}(\mathbf{0}) = \mathbf{1} V$

را به اضای t>0 به دست آورید. $V_{\mathcal{C}}(t)$

t=0 و در است و در کلید برای مدت طولانی بسته بوده است و در $t\geq 0$ به دست آورید. (کلید برای مدت طولانی بسته بوده است و در باز می شود)

۵. پاسخ پله و پاسخ ضربه I_R را به دست آورید.

باسخ پله و پاسخ ضربه $I_{
m R}$ را به دست آورید.

 $V_1(0^-)=1$ ولتاژ اولیه خازن های مدار شکل زیر، قبل از بسته شدن کلید ها به صورت $V_1(0^-)=1$ کلید ها به $V_1(0^-)=4$ است. در لحظه $V_2(0^-)=2$ کلید ها به طور هم زمان بسته می شوند. ظرفیت خازن معادل دیده شده در سرهای $V_1(0^-)=1$ و ولتاژ اولیه آن را به دست آورید؟

را برای تمام t=0 حساب کنید. ولتاژ اولیه خازن صفر است. S_1 بسته می شوند. جریان گذرنده از خازن t=0 مدار شکل زیر، کلید t=0 در t=0 در ابرای تمام t=0 حساب کنید. ولتاژ اولیه خازن صفر است.

۹. در مدار شکل زیر، جریان گذرنده از سلف را برای $t \geq 0$ به دست آورید و شکل موج آن را رسم کنید.

۱۰. اختیاری:

The switch in the circuit of below Fig, often called a *make-before-break* switch (since during switching it briefly makes contact to both parts of the circuit to ensure a smooth electrical transition), moves to position b at t = 0 only after being in position a long enough to ensure all initial transients arising from turning on the sources have long since decayed. (a) Determine the power dissipated by the 5 resistor at $t = 0^{-}$. (b) Determine the power dissipated in the 3 resistor at t = 2 ms.

