# Datenbanken

# **Normalformentheorie**

## Anomalien

# • Einfüge-Anomalie

Es soll ein neuer Kurs eingetragen werden : KNR = 24, Kurs = DBV, Kurspreis = 5.000

=> Dies geht jedoch erst, wenn er auch einen Teilnehmer hat.

# • Änderungs-Anomalie

Der Teilnehmer Müller (TNR = 2100) zieht nach Bochum um.

=> Alle Datensätze, die die TNR

2100 enthalten, müssen geändert werden.

## • Lösch-Anomalie

Der C-Kurs (KNR = 17) fällt aus.

=> Wenn Krüger an keinem weiteren Kurs teilnimmt, verschwinden seine Teilnehmerinformationen.

# Funktionale Abhängigkeiten

Gegeben sei eine Relation R(A1, A2, ..., An) und die Menge der Attribute A:= {A1, A2, ..., An}.

# Funktionale Abhängigkeit (FD: Functional Dependency)

Eine Attributkombination C ( $C \subseteq A$ ) heißt <u>funktional abhängig</u> von einer Attributkombination B ( $B \subseteq A$ ), wenn in jedem möglichen Tupel von R die Ausprägung von C durch die Ausprägung von B eindeutig bestimmt ist :  $B \to C$ .

Man sagt auch : B bestimmt C funktional (=eindeutig). oder: B ist **Determinante** von C.  $B \nrightarrow C$  : C ist nicht funktional abhängig von B

Beispiel: TNR  $\rightarrow$  Name / TNR  $\rightarrow$  Adresse / TNR  $\rightarrow$  Name,Adresse / Name,Adresse  $\rightarrow$  TNR TNR,KNR  $\rightarrow$  Preis / TNR,KNR  $\rightarrow$  Name,Adresse,Kurs,Preis / TNR  $\not\rightarrow$  Kurs



## Superschlüssel (Superkey, Identifikator)

Eine Attributkombination D (  $D \subseteq A$  ) ist ein Superschlüssel von R, wenn die Menge aller Attribute A funktional abhängig von D ist :  $\underline{D \to A}$ .

Beispiel: TNR,KNR  $\rightarrow$  Name,Adresse,Kurs,Kurspreis,Preis

TNR,KNR,Name → Adresse,Kurs,Kurspreis,Preis

# Volle funktionale Abhängigkeit

Eine Attributkombination C ( $C \subseteq A$ ) heißt <u>voll funktional abhängig</u> von einer Attributkombination B ( $B \subseteq A$ ), wenn C funktional abhängig ist von B und es keine Teilmenge von B gibt, von der C funktional abhängig ist :  $\underline{B} \stackrel{\bullet}{\longrightarrow} \underline{C}$ .

#### Kurse

| i i i i i i i i i i i i i i i i i i i                            |                                                                                    |                                                                                          |                                                  |                           |                                                                                   |                                                                          |
|------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| TNR                                                              | Name                                                                               | Adresse                                                                                  | KNR                                              | Kurs                      | Kurspreis                                                                         | Preis                                                                    |
| 2100<br>2100<br>2101<br>2103<br>2103<br>2544<br>2544<br>2378<br> | Müller<br>Müller<br>Müller<br>Hansen<br>Hansen<br>Schmidt<br>Schmidt<br>Krüger<br> | Essen<br>Essen<br>München<br>Hamburg<br>Hamburg<br>Frankfurt<br>Frankfurt<br>München<br> | 17<br>18<br>23<br>18<br>23<br>23<br>24<br>17<br> | C C++ DB C++ DB DB Java C | 3.000<br>3.500<br>5.000<br>3.500<br>5.000<br>5.000<br>3.500<br>3.500<br>3.000<br> | 2.700<br>3.150<br>4.500<br>2.800<br>4.000<br>5.000<br>3.500<br>3.000<br> |
|                                                                  |                                                                                    |                                                                                          |                                                  |                           |                                                                                   |                                                                          |

Beispiel: TNR,KNR  $\rightarrow$  Name,Adresse => TNR  $\stackrel{\bullet}{\rightarrow}$  Name,Adresse

TNR,KNR  $\rightarrow$  Kurs,Kurspreis => KNR  $\stackrel{\bullet}{\rightarrow}$  Kurs,Kurspreis TNR,KNR  $\rightarrow$  Preis => TNR,KNR  $\stackrel{\bullet}{\rightarrow}$  Preis

#### Schlüsselkandidat

Ein Schlüsselkandidat ist ein Superschlüssel D (  $D \subseteq A$  ) von R, von dem die Menge aller Attribute A voll funktional abhängig ist :  $\underline{D} \xrightarrow{\bullet} \underline{A}$ .

Für die Relation R wird ein Schlüsselkandidat zum Primärschlüssel gewählt.

Beispiel: TNR,KNR → Name,Adresse,Kurs,Kurspreis,Preis

## Herleitungsregeln (Inferenzregeln)

• Armstrong-Axiome

<u>Reflexivität</u> :  $C \subseteq B \Rightarrow D \cap C$  (triviale funktionale Abhängigkeit)

Bsp. Name, Adresse  $\rightarrow$  Name

- Verstärkung :  $B \rightarrow C \Rightarrow B, D \rightarrow C, D$ 

Bsp. TNR  $\rightarrow$  Name => TNR,Kurs  $\rightarrow$  Name,Kurs

- <u>Transitivität</u> :  $B \to C \land C \to D \Rightarrow B \to D$ 

Bsp.  $KNR \rightarrow Kurs \wedge Kurs \rightarrow Kurspreis => KNR \rightarrow Kurspreis$ 

• weitere Herleitungsregeln

- Vereinigungsregel :  $B \rightarrow C \land B \rightarrow D \Rightarrow B \rightarrow C,D$ 

Bsp. TNR $\rightarrow$ Name  $\land$  TNR $\rightarrow$ Adresse=>TNR $\rightarrow$ Name,Adresse

 $- \underline{Dekompositionsregel} : B \rightarrow C, D \Rightarrow B \rightarrow C \land B \rightarrow D$ 

Bsp. TNR $\rightarrow$ Name,Adresse=>TNR $\rightarrow$ Name  $\land$  TNR $\rightarrow$ Adresse

- Pseudotransitivitätsregel :  $B \rightarrow C \land C, D \rightarrow E \Rightarrow B, D \rightarrow E$ 

Bsp. Kurs $\rightarrow$ KNR  $\land$  KNR,TNR $\rightarrow$ Preis => Kurs,TNR $\rightarrow$ Preis

## **Normalisierung**

#### **Normalisierung**

Unter der Normalisierung versteht man die Zerlegung von Relationen in normalisierte Relationen, mit der Bedingung, dass alle enthaltenen Informationen (Verlustlosigkeit) alle funktionalen Abhängigkeiten erhalten bleiben (Abhängigkeitserhaltung).

## **Projektion**

Eine Projektion P einer Relation R ist eine Relation, deren Attribute eine Teilmenge der Attribute von R darstellen. (Eine Projektion ist eine Relation.)

Beispiel: Kursteilnehmer (TNR,Name,Adresse), Kurspreise (TNR,KNR,Kurspreis,Preis)

## **Zerlegung**

Eine Relation R ist in die Projektionen R1, R2, ..., Rn zerlegt, wenn die Menge der Attribute aller Projektionen der Menge der Attribute von R entspricht.

Beispiel: Teilnehmer (TNR,Name,Adresse) und Kurse (KNR,Kurs,Kurspreis,Preis)

# Verlustlosigkeit (verlustfreie Zerlegung)

Eine Zerlegung einer Relation R in die Projektionen R1, R2,...,Rn ist verlustfrei, wenn R einem Verbund der Projektionen entspricht.

Beispiel: Kursteilnehmer (TNR,Name,Adresse)

Kurse (KNR,Kurs,Kurspreis) Kurspreise (KNR,TNR,Preis)

select kt.TNR, kt.Name, kt.Adresse, k.KNR, k.Kurs, k.Kurspreis, kp.Preis

from Kursteilnehmer kt, Kurse k, Kurspreis kp where kt.tnr = kp.tnr and kp.knr = k.knr;

## **Heath-Theorem**

Eine Relation R(A,B,C) (A, B, C repräsentieren Attributmengen von R) kann in die Projektionen R1(A,B) und R2(A,C) verlustfrei zerlegt werden, wenn  $A \rightarrow B$  gilt.

Beispiel: Kursteilnehmer (TNR, Name, Adresse)

Kurse (TNR,KNR,Kurs,Kurspreis,Preis)

select kt. TNR,kt.Name,kt.Adresse,k.KNR,Kurs,k.Kurspreis,k.Preis

from Kursteilnehmer kt, Kurs k

where kt.TNR = k.TNR;

# Abhängigkeitserhaltung

Eine Zerlegung einer Relation R in die Projektionen R1, R2,...,Rn ist abhängigkeitserhaltend, wenn alle funktionalen Abhängigkeiten in R in den Projektionen überprüft werden können.

(D.h., dass eine Projektion unabhängig von den anderen Projektionen verändert werden kann)

Beispiel: Bsp. zu Zerlegung ist nicht abhängigkeitserhaltend: TNR,KNR → Preis

## **Rissanen-Thoerem**

2 Projektionen R1 und R2 von R sind unabhängig dann und nur dann, wenn gilt:

- Jede funktionale Abhängigkeit in R kann aus R1 und R2 abgeleitet werden.
- Die gemeinsamen Attribute von R1 und R2 bilden einen Schlüssel für mindestens eine der beiden Relationen.

Beispiel: Name und Adresse können nicht aufgeteilt werden: Name,Adresse → TNR

# Übung Lieferung

| SNR       | Status | Ort       | PNR | Menge |
|-----------|--------|-----------|-----|-------|
| S1        | 20     | München   | P1  | 300   |
| <b>S1</b> | 20     | München   | P2  | 200   |
| <b>S1</b> | 20     | München   | P3  | 400   |
| <b>S1</b> | 20     | München   | P4  | 200   |
| <b>S1</b> | 20     | München   | P5  | 100   |
| S1        | 20     | München   | P6  | 100   |
| <b>S2</b> | 10     | Hamburg   | P1  | 300   |
| S2        | 10     | Hamburg   | P2  | 400   |
| <b>S3</b> | 10     | Hamburg   | P2  | 200   |
| S4        | 20     | Frankfurt | P2  | 200   |
| S4        | 20     | Frankfurt | P4  | 300   |
| S4        | 20     | Frankfurt | P5  | 400   |

## Normalformen

## 1.Normalform (1NF)

Eine Relation R ist in 1NF, wenn alle ihre Domänen nur einfache (elementare, atomare) Werte enthalten.

#### Kurse

| TNR  | Name    | Adresse   | Preis |
|------|---------|-----------|-------|
| 2100 | Müller  | Essen     | , ,   |
| 2101 | Müller  | München   |       |
| 2103 | Hansen  | Hamburg   |       |
| 2544 | Schmidt | Frankfurt |       |
| 2378 | Krüger  | München   |       |

# **NF**<sup>2</sup>: non-first normal form

In NF<sup>2</sup>-Modellen gibt es mengen- und relationenwertige Attribute. Ein NF<sup>2</sup>-Modell wird auch geschachteltes relationales Modell (nested relational model) genannt.

## 2.Normalform (2NF)

Eine Relation R ist in 2NF genau dann, wenn sie in 1NF ist und jedes nicht-Schlüssel-Attribut voll funktional abhängig von einem Schlüsselkandidaten ist.

| Kursteiln                            | ehmer                                           |                                                     | Kurse                |                        |                                  | Kurspreis                                                    | se                                           |                                                                      |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------------|----------------------|------------------------|----------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| TNR                                  | Name                                            | Adresse                                             | KNR                  | Kurs                   | Kurspreis                        | TNR                                                          | KNR                                          | Preis                                                                |
| 2100<br>2101<br>2103<br>2544<br>2378 | Müller<br>Müller<br>Hansen<br>Schmidt<br>Krüger | Essen<br>Hamburg<br>München<br>Frankfurt<br>München | 17<br>18<br>23<br>24 | C<br>C++<br>DB<br>Java | 3.000<br>3.500<br>5.000<br>3.500 | 2100<br>2100<br>2100<br>2103<br>2103<br>2544<br>2544<br>2378 | 17<br>18<br>23<br>18<br>23<br>23<br>24<br>17 | 2.700<br>3.150<br>4.500<br>2.800<br>4.000<br>5.000<br>3.500<br>3.000 |
|                                      |                                                 | Jame dresse                                         | TN KN                | 二二.                    | Kurs                             | Preis                                                        |                                              |                                                                      |

## 3.Normalform (3NF)

Eine Relation ist dann und nur dann in 3NF, wenn sie in 2NF ist und jedes nicht-Schlüssel-Attribut nicht transitiv abhängig ist von einem Schlüsselkandidaten. Sie ist auch dann in 3NF, wenn sich eine transitive Abhängigkeit nur über Schlüsselkandidaten herleitet.









# **Boyce-Codd-Normalform (BCNF)**

Eine Relation R ist in BNCF, wenn jede Determinante von R auch Schlüsselkandidat von R ist.

- BCNF fordert mehr als 3NF
- BNCF basiert nicht auf 1NF und 2NF
- Ist eine Relation in der 3NF und ist der Schlüsselkandidat die einzige Determinante, so ist die Relation in BCNF.

| Teilnehn                             | ner                                             |                                                     | Kurse                                                        |                                              |                                                |                                                                      |                |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|----------------|
| TNR                                  | Name                                            | Adresse                                             | TNR                                                          | KNR                                          | Kurs                                           | Preis                                                                |                |
| 2100<br>2101<br>2103<br>2544<br>2378 | Müller<br>Müller<br>Hansen<br>Schmidt<br>Krüger | Essen<br>München<br>Hamburg<br>Frankfurt<br>München | 2100<br>2100<br>2101<br>2103<br>2103<br>2544<br>2544<br>2378 | 17<br>18<br>23<br>18<br>23<br>23<br>24<br>17 | C<br>C++<br>DB<br>C++<br>DB<br>DB<br>Java<br>C | 2.700<br>3.150<br>4.500<br>2.800<br>4.000<br>5.000<br>3.500<br>3.000 |                |
| Name                                 | ⇉∷⇉                                             | TNR KNR                                             | ••[                                                          | Kurs  • • • • Preis                          | Ku<br>We                                       | IR ® Kur<br>rs ® KNI<br>der KNR<br>Schlüsselk                        | R<br>noch Kurs |

Teilnehmer

| TNR  | Name    | Adresse   |
|------|---------|-----------|
| 2100 | Müller  | Essen     |
| 2101 | Müller  | München   |
| 2103 | Hansen  | Hamburg   |
| 2544 | Schmidt | Frankfurt |
| 2378 | Krüger  | München   |

Kurse

| Kursc                |                        |  |  |  |
|----------------------|------------------------|--|--|--|
| KNR                  | Kurs                   |  |  |  |
| 17<br>18<br>23<br>24 | C<br>C++<br>DB<br>Java |  |  |  |

Kurspreise

| TNR                                                  | Kurs                                      | Preis                                                       |
|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| 2100<br>2100<br>2101<br>2103<br>2103<br>2544<br>2544 | C<br>C++<br>DB<br>C++<br>DB<br>DB<br>Java | 2.700<br>3.150<br>4.500<br>2.800<br>4.000<br>5.000<br>3.500 |
| 2378                                                 | С                                         | 3.000                                                       |



Übung: Lieferung

Lieferung

| SNR | Lieferant | Ort       | PNR | Menge |
|-----|-----------|-----------|-----|-------|
| S1  | Schmitz   | München   | P1  | 300   |
| S1  | Schmitz   | München   | P2  | 200   |
| S1  | Schmitz   | München   | P3  | 400   |
| S1  | Schmitz   | München   | P4  | 200   |
| S1  | Schmitz   | München   | P5  | 100   |
| S1  | Schmitz   | München   | P6  | 100   |
| S2  | Koller    | Hamburg   | P1  | 300   |
| S2  | Koller    | Hamburg   | P2  | 400   |
| S3  | Huber     | Hamburg   | P2  | 200   |
| S4  | Krumm     | Frankfurt | P2  | 200   |
| S4  | Krumm     | Frankfurt | P4  | 300   |
| S4  | Krumm     | Frankfurt | P5  | 400   |

# Mehrwertige Abhängigkeit (MVD : Multivalued Dependency)

Seien B,C,D disjunkte Teilmengen von A deren Vereinigung A ist : A:= B  $\cup$  C  $\cup$  D. C heißt mehrwertig abhängig von B

$$B \rightarrow \rightarrow C$$

wenn die Menge der möglichen Werte für Attribute aus C nur von B und nicht von D abhängig ist. Eine mehrwertige Abhängigkeit heißt  $\underline{trivial}$ , wenn  $C := \emptyset$  oder  $C := A \setminus B$ .

=>

Die Menge der möglichen Werte für Attr. aus D sind nur von B und nicht von C abh. :  $B \rightarrow \rightarrow D$ 



B R C

Die Menge der möglichen Werte für Attribute aus  $\boldsymbol{C}$  ist nur von B und nicht von D abhängig ist.

 $\mathbf{B} \otimes \mathbf{D}$ 

Die Menge der möglichen Werte für Attribute aus D ist nur von B und nicht von C abhängig ist.

| <b>BC</b> ( <b>B,C</b> ) | <b>BD</b> ( <b>B</b> , <b>D</b> ) | <b>R</b> ( <b>B</b> , <b>C</b> , <b>D</b> ) |                                   | <b>R</b> ( <b>B</b> , <b>C</b> | ,D) und B $\mathbb{R}$ $\mathbb{R}$ C |
|--------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|--------------------------------|---------------------------------------|
| b1 – c1                  | b1 – d1                           | b1 – c1 – d1                                | <b>b2</b> – <b>c1</b> – <b>d1</b> | Aus                            | a 1 11) 1 a 2 12)                     |
| b1 – c2                  | b1 – d3                           | b1 - c1 - d3                                | b2 - c1 - d3                      | folgt                          | (b,c1,d1) und (b,c2,d2)               |
| b2 - c1 $b2 - c3$        | b2 - d1 $b2 - d2$                 | b1 - c2 - d1<br>b1 - c2 - d3                | b2 - c3 - d1 $b2 - c3 - d3$       | J                              | (b,c1,d2) und (b,c2,d1)               |

# **Fagin-Theorem**

Gegeben sei die Relation R (B,C,D) mit den Attributkombinationen B, C und D. Dann kann R verlustlos in die Projektionen R1 (B,C) und R2 (B,D) zerlegt werden genau dann wenn  $B \rightarrow C$ .

| Fach                                                  | Dozent                                                                       | Lehrinhalt                                                                          |
|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Physik Physik Physik Physik Physik Physik Mathe Mathe | Müller<br>Müller<br>Hansen<br>Hansen<br>Kroll<br>Kroll<br>Schmidt<br>Schmidt | Mechanik<br>Optik<br>Mechanik<br>Optik<br>Mechanik<br>Optik<br>Algebra<br>Geometrie |

#### Dozent

| Dozent                              |                                      |  |  |  |  |  |  |
|-------------------------------------|--------------------------------------|--|--|--|--|--|--|
| Fach                                | Dozent                               |  |  |  |  |  |  |
| Physik<br>Physik<br>Physik<br>Mathe | Müller<br>Hansen<br>Kroll<br>Schmidt |  |  |  |  |  |  |

#### Lehrinhal

| Fach                               | Lehrinhalt                                |
|------------------------------------|-------------------------------------------|
| Physik<br>Physik<br>Mathe<br>Mathe | Mechanik<br>Optik<br>Algebra<br>Geometrie |

Jedes Fach hat mehrere Dozenten.

Jedes Fach hat mehrere Lehrinhalte.

select from where

d.Fach, d.Dozent, l.Lehrinhalt
Dozent d, Lehrinhalt l
d.Fach = l.Fach;

## 4.Normalform (4NF)

Seien B,C  $\subset$  A und B  $\subset$  C :=  $\emptyset$ .

R ist dann und nur dann in 4NF, wenn gilt : Gibt es in R eine mehrwertige Abhängigkeit, z.B.  $B \to C$ , dann handelt es sich um eine funktionale Abhängigkeit und alle Attribute von R sind von B funktional abhängig (d.h.  $B \to X$  für alle Attribute X von R).

- Die einzige funktionale/mehrwertige Abhängigkeit in einer Relation hat einen Schlüsselkandidat als Determinante.
- 4NF ist eine strengere Forderung als BCNF: Jede 4NF-Relation ist auch BCNF-Relation.
- Jede Relation kann ohne Informationsverlust in einen äquivalenten Satz von 4NF-Relationen zerlegt werden.
- Das Rissanen-Theorem gilt auch für mehrwertige Abhängigkeit.

#### Lernnachweise

| Studien-<br>gruppe | IM     | Name   | Vorname | Fach | Praktikum | Klausur |
|--------------------|--------|--------|---------|------|-----------|---------|
| <b>I</b> 4         | 126793 | Kramm  | Irene   | PM   | x         |         |
| <b>I</b> 4         | 347899 | Bonsen | Alois   | DB   | x         | x       |
| <b>I4</b>          | 347899 | Bonsen | Alois   | PM   | x         | -       |
| WI4                | 216565 | Meier  | Hans    | DB   | x         | x       |
| WI4                | 216565 | Meier  | Hans    | PM   | x         | -       |
| WI4                | 216565 | Meier  | Hans    | PA   | -         | -       |
| WI4                | 126793 | Kramm  | Irene   | DB   | x         | x       |
| WI4                | 126793 | Kramm  | Irene   | PM   | x         | -       |
| WI4                | 789789 | Heller | Andrea  | PA   | -         | -       |
| WI4                | 126793 | Kramm  | Irene   | PA   | -         | -       |
| WI4                | 789789 | Heller | Andrea  | DB   | x         | x       |
| <b>I</b> 4         | 126793 | Kramm  | Irene   | DB   | x         | x       |
| WI4                | 789789 | Heller | Andrea  | PM   | X         | -       |

#### Studiengruppe

#### Student

Fach

| Studien-<br>gruppe | IM     | Fach | IM     | Name   | Vorname | Fach | Praktikum | Klausur |
|--------------------|--------|------|--------|--------|---------|------|-----------|---------|
| <b>I4</b>          | 126793 | DB   | 126793 | Kramm  | Irene   | DB   | x         | X       |
| I4                 | 126793 | PM   | 347899 | Bonsen | Alois   | PM   | x         | -       |
| I4                 | 347899 | DB   | 216565 | Meier  | Hans    | PA   | -         | -       |
| I4                 | 347899 | PM   | 789789 | Heller | Andrea  |      |           |         |
| WI4                | 216565 | DB   |        |        |         |      |           |         |
| WI4                | 216565 | PM   |        |        |         |      |           |         |
| WI4                | 216565 | PA   |        |        |         |      |           |         |
| WI4                | 126793 | DB   |        |        |         |      |           |         |
| WI4                | 126793 | PM   |        |        |         |      |           |         |
| WI4                | 126793 | PA   |        |        |         |      |           |         |
| WI4                | 789789 | DB   |        |        |         |      |           |         |
| WI4                | 789789 | PM   |        |        |         |      |           |         |
| WI4                | 789789 | PA   |        |        |         |      |           |         |

| Studienr           | ichtung          | Stud         | lienfacl       | h        | Studen           | ;               |                |    | Fach   |               |         |                   |     |                |         |            |             |        |
|--------------------|------------------|--------------|----------------|----------|------------------|-----------------|----------------|----|--------|---------------|---------|-------------------|-----|----------------|---------|------------|-------------|--------|
| Studien-<br>gruppe | IM               | Stud<br>gruj |                | `ach     | IM               | Name            | Vorname        |    | Fach   | Praktikum     | Klausur |                   |     |                |         |            |             |        |
| <b>I</b> 4         | 126793           | I4           |                | DB       | 126793           | Kramm           | Irene          |    | DB     | x             | X       | 1                 |     |                |         |            |             |        |
| I4                 | 347899           | I4           |                | PM       | 347899           | Bonsen          | Alois          |    | PM     | x             | -       |                   |     |                |         |            |             |        |
| WI4<br>WI4         | 216565<br>126793 | W            |                | DB<br>PM | 216565<br>789789 | Meier<br>Heller | Hans<br>Andrea |    | PA     | -             | -       |                   |     |                |         |            |             |        |
| WI4                | 789789           | W            |                | PA       | 109/09           | Heller          | Andrea         |    |        |               |         |                   |     |                |         |            |             |        |
| select             |                  | _            |                |          | .Name,s.V        | orname,s        | sf.Fach,       | l  |        |               |         | J<br>——           |     |                |         |            |             |        |
|                    | f.Prakti         | ,            |                |          |                  | <b>G</b> . • .  |                |    |        |               |         |                   |     | _              |         |            |             |        |
| from               |                  |              |                |          | ienfach sf       |                 | s, Fach f      |    |        |               | /       | IM                |     |                |         |            |             |        |
| where              | sr.Studi<br>and  | engru        | ippe =         | si.Sti   | udiengruu        | uuuuppe         |                |    |        |               | / L     | 11/1              |     |                |         |            |             |        |
|                    | sr.IM =          | s.IM         |                |          |                  |                 |                |    |        |               | 1       |                   |     |                | ~ \     | 1:         | ın 🗆        |        |
|                    | and              | 5.1111       |                |          |                  |                 |                |    |        |               |         | $\langle \rangle$ |     | S SI           | NN>     | Nai        | Name        |        |
|                    | sf.Fach          | = f.Fa       | ach            |          |                  |                 |                | ,  |        | $\overline{}$ | _       | <u> </u>          | 1:1 | 5              | _       | 1          |             | _      |
| ;                  |                  |              |                |          |                  |                 |                | (  | ~      | ıdien-        | 1:n S1  | tudent            |     | SS             | vn>     | <u> </u>   | n<br>Vornam | ام     |
|                    |                  |              |                |          |                  | Studier         | ī-] /          | S  | ric    | htung         | dent    | tuucnt            | 1:1 |                |         | Vornai     |             |        |
|                    |                  |              |                |          |                  | grupp           | K              | SC | $\sim$ | $\dot{\sim}$  |         |                   |     |                | <u></u> |            |             | _      |
|                    |                  |              |                |          |                  | 0 11            |                | Ÿ  | Sti    | ıdien-        | /1:n    | Fach              | 1:1 | -/1            | TP >    | \ 1:       | Duglettler  | m      |
|                    |                  |              |                |          |                  |                 |                | /  |        | ach           | Fach L  | 1 44411           |     | F              | P       | raktik     | uni         |        |
|                    |                  |              |                |          |                  |                 |                |    | \      | <u> </u>      |         |                   | 1:1 | F/             | ^       | / 1:       | ın 🗆        | $\neg$ |
|                    |                  |              |                |          |                  |                 |                |    |        | \             |         | $\Diamond$        |     | $\checkmark$ F | K >     | /<br>Klaus | Klausur     |        |
|                    |                  |              |                |          |                  |                 |                |    |        | 1             | \       |                   | 1   | `              | ~ /     | Kiaus      | ur <b>L</b> | _      |
| Übung              | : Produ          | ıktpa        | lette          |          |                  |                 |                |    |        |               | \ I     | ezeich-           |     |                |         |            |             |        |
| _                  | ktpalette        | •            |                |          |                  |                 |                |    |        |               |         | nung              | ر ا | /              |         |            |             |        |
|                    | Ť                |              |                | 1        |                  |                 |                |    |        |               |         |                   |     |                |         |            | 0           | sto    |
| Autoty             | p Farb           | e            | Reifenl        | Id .     | Jahreszeit       | Geschw.         |                |    |        |               |         |                   |     |                |         |            |             |        |
| Audi               |                  |              | M34-I          |          | Winter           | 180             |                |    |        |               |         |                   |     |                |         |            |             |        |
| Toyota             |                  | S            | A99-A          |          | Allwetter        | 180             |                |    |        |               |         |                   |     |                |         |            |             |        |
| BMW<br>Audi        |                  | .            | M34-I<br>C32-S |          | Winter<br>Sommer | 180<br>250      |                |    |        |               |         |                   |     |                |         |            |             |        |
| BMW                |                  | F            | A99-9          |          | Allwetter        | 180             |                |    |        |               |         |                   |     |                |         |            |             |        |
| BMW                |                  | rz           | M34-I          |          | Winter           | 180             |                |    |        |               |         |                   |     |                |         |            |             |        |
| Audi               | schwa            | rz           | C32-S          |          | Sommer           | 250             |                |    |        |               |         |                   |     |                |         |            |             |        |
| BMW                | schwa            | rz           | C32-S          | 3        | Sommer           | 250             |                |    |        |               |         |                   |     |                |         |            |             |        |
|                    |                  |              |                |          |                  |                 |                |    |        |               |         |                   |     |                |         |            |             |        |
|                    |                  | 1            |                |          |                  |                 |                |    |        |               |         |                   |     |                |         |            |             |        |
|                    |                  |              |                |          |                  |                 |                |    |        |               |         |                   |     |                |         |            |             |        |
|                    |                  |              |                |          |                  |                 |                |    |        |               |         |                   |     |                |         |            |             |        |

## Verbundabhängigkeit (JD : Join Dependency)

Seien B,C,D disjunkte Teilmengen von A deren Vereinigung A ist : A:= B  $\cup$  C  $\cup$  D. In R (B,C,D) existiert Verbundabhängigkeit, wenn R dem Verbund der Projektionen R1 (B,C), R2 (C,D) und R3 (D,B) entspricht. Äquivalent : Wenn (bi,cj)  $\in$  BC und (cj,dk)  $\in$  CD und (dk,bi)  $\in$  DB dann muss (bi,cj,dk)  $\in$  BCD.

| BC (B,C)              | CD (C,D) | <b>DB</b> ( <b>D</b> , <b>B</b> ) | R(B,C,D)                                  |                               |
|-----------------------|----------|-----------------------------------|-------------------------------------------|-------------------------------|
|                       | . , ,    | . , ,                             | . , , ,                                   | select bc.b, cd.c, db.d       |
| <b>b1</b> – <b>c1</b> | c1 - d1  | d1 - b1                           | b1-c1-d1                                  | from bc, cd, db               |
| b1 - c2               | c1 - d3  | d3 - b1                           | b1-c1-d3                                  | where bc.c=cd.c and cd.d=db.d |
| b2 - c3               | c2-d1    | d2 - b2                           | b1-c2-d1                                  | and db.b=bc.b                 |
|                       | c3 - d2  |                                   | $\mathbf{b2} - \mathbf{c3} - \mathbf{d2}$ | :                             |

## 5.Normalform (5NF)

Eine Relation ist in 5NF, wenn sie in 4NF ist und keine Verbundabhängigkeit existiert.

Vorsicht bei Beseitigung der Verbundabhängigkeiten : Es muss stets der vollständige Satz der Projektion betrachtet werden.

## **Normalisierungsprozess**

- 1. Führe die unnormalisierten Relationen in normalisierte Relationen über.
- 2. Bilde Projektionen auf diese Relationen, so dass alle funktionalen Abhängigkeiten eliminiert werden, in denen die Determinante nicht Schlüssel ist. => BCNF
- 3. Bilde Projektionen dieser BCNF-Relationen, um alle mehrwertigen Abhängigkeiten zu eliminieren, die nicht gleichzeitig funktionale Abhängigkeiten sind. => 4NF
- 4. Bilde Projektionen dieser 4NF-Relationen, um alle Verbundabhängigkeiten zu eliminieren. => 5NF