Finite Automata

Formal Languages and Abstract Machines
Week 02
Baris E. Suzek, PhD

Outline

- Last week
- Introduction Finite Automata, Types
- Finite Acceptors Deterministic
- Regular Language
- Finite Acceptors Nondeterministic

Alphabet and String

- Alphabet: Set of letters e.g. (sigma) $\Sigma = \{a,b\}$
- String: Sequence of letters

$$\boldsymbol{a}$$

baba

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

Language and String

- A language is a set of strings
 - Language of zoo: "cat", "dog", "zebra", ...
 - Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Empty String (lambda) λ

• A string with no letters:

$$|\lambda| = 0$$

• Observations:

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Language Example

$$L = \{a^n b^n : n \ge 0\}$$

An infinite language

$$\left. egin{array}{lll} \lambda & & & & \\ ab & & & \\ aabb & & & \\ aaaaabbbbb & & & \\ \end{array}
ight.$$

Language Operations

The usual set operations

$$\{a,ab,aaaa\} \cup \{bb,ab\} = \{a,ab,bb,aaaa\}$$

$$\{a,ab,aaaa\} \cap \{bb,ab\} = \{ab\}$$

$$\{a,ab,aaaa\} - \{bb,ab\} = \{a,aaaa\}$$

$$\overline{L} = \sum *-L$$

Complement:

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Outline

- Last week
- Introduction Finite Automata, Types
- Finite Acceptors Deterministic
- Regular Language
- Finite Acceptors Nondeterministic

Computation – An Abstraction

Finite Automaton

No temporary memory

Finite amount of information is retained through the state machine is in

Finite Automata Type: Finite Acceptor

Finite Accepter - Transition Graph

Deterministic FA: produces a unique run of the automaton for each input string

Initia Configuration

Input String

a b b a

Reading the Input

a b b a

•

Output: "accept"

Rejection

a b a

•

Another Rejection

 λ

•

 λ

Output: "reject"

Another Example

a a b

Rejection

b a b

Output: "reject"

Formalities

• Deterministic Finite Accepter (DFA) $M = (Q, \Sigma, \delta, q_0, F)$

O: set of states

 \sum : input alphabet

 δ : transition function

 q_0 : initial state

F: set of final states

Input Alphabet Σ

$$\Sigma = \{a, b\}$$

Set of States Q

•
$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

•

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

 $\delta: Q \times \Sigma \to Q$

$$\delta(q_0,a)=q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

а	Ь
q_1	q ₅
<i>q</i> ₅	92
q_5	<i>q</i> ₃
<i>q</i> ₄	<i>q</i> ₅
q ₅	<i>q</i> ₅
<i>q</i> ₅	<i>q</i> ₅
	 q₁ q₅ q₄ q₅

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

Note that the second argument of function is a string

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q to q' with label w

$$\delta * (q, w) = q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$$

$$\delta^*(q, w\sigma) = q'$$

$$\delta^*(q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta^*(q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta^*(q, w\sigma) = \delta(\delta^*(q, w\sigma)) = \delta(\delta^*(q, w\sigma))$$

$$\delta^*(q, w\sigma) = q_1$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

JFLAP

Download and install

https://www.jflap.org/

Run

Outline

- Last week
- Introduction Finite Automata, Types
- Finite Acceptors Deterministic
- Regular Language
- Finite Acceptors Nondeterministic

Languages Accepted by DFAs

ullet Take DFA $\,M\,$

- Definition:
 - ${\bf \cdot}$ The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

•

Another Example $L(M) = \{\lambda, ab, abba\}$

Ma,b a,ba accept accept accept

Formally

- For a DFA $M=(Q,\Sigma,\delta,q_0,F)$
- ullet Language accepted by M :

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Observation

• Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

More Examples

More Examples

 $L(M) = \{ all strings without substring 001 \}$

Regular Languages

ullet A language L is regular if there is a DFA M such that L=L(M)

All regular languages form a language family

Regular Language Examples

```
 \{abba\} \qquad \{\lambda, ab, abba\} \qquad \{a^nb: n \geq 0\}   \{\text{all strings with prefix } ab\}   \{\text{all strings without substring } \mathbf{001}\}
```

There exist automata that accept these Languages (see previous slides).

Regular Language Example

• The language $L = \{awa: w \in \{a,b\}^*\}_{\mathbf{b}}$ is regular: b a **q**₃

Outline

- Last week
- Introduction Finite Automata, Types
- Finite Acceptors Deterministic
- Regular Language
- Finite Acceptors Nondeterministic

Nondeterministic Finite Accepter (NFA)

Alphabet = $\{a\}$

All input is consumed

Input cannot be consumed

An NFA accepts a string when:

 there is at least one computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

Example

accepts

 $\mathcal{A}\mathcal{A}$ is accepted by the NFA:

Rejection example

"reject"

An NFA rejects a string when:

 All the input is consumed and the automaton is in a nonfinal state

OR

• The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Another Rejection Example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted:

$$L = \{aa\}$$

Lambda Transitions

(read head does not move)

all input is consumed

"accept" q_0 a q_1 λ q_2 a q_3

String $\mathcal{A}\mathcal{A}$ is accepted

Rejection Example

(read head doesn't move)

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

No transition: the automaton hangs

Input cannot be consumed

String **QQQ** is rejected

Language accepted: $L = \{aa\}$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

 $a \mid b \mid a \mid b$

Language accepted $L = \{ab, \ abab, \ ababab, \ ...\}$ $= \{ab\}^+$

Another NFA Example

Language accepted $L(M) = \{\lambda, \ 10, \ 1010, \ 101010, \ \ldots \}$ $= \{10\} *$

Remarks:

- •The λ symbol never appears on the input tape
- •Simple automata:

•NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Set of states, i.e.

Input alphabet, i.e.

Initial state

Final states

 $\{q_0, q_1, q_2\}$

 $\{a,b\}$

 δ : Transition function $\delta: Q imes \{\Sigma \cup \{\lambda\}\}$

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\mathcal{S}(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \mathcal{S}^*(q_i, w)$: there is a walk w from q_i to q_j with label

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

The Language of an NFA

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\delta^*(q_0,aba) = \{q_1\} \qquad aba \notin L(M)$$

$$L(M) = \{(ab)*(aa)^n : n = \{0,1\}\}$$

Formally

• The language accepted by NFA M is: $L(M) = \{w_1, w_2, w_3, \ldots\}$

• where

$$\delta^*(q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$

• and there is some

$$q_k \in F$$
 (final state)

$$w \in L(M) \qquad \mathcal{S}^*(q_0, w)$$

$$q_i \qquad \qquad q_k \in F$$

NFA vs. DFA

- Transition functions range is Q vs. 2^Q (powersets of Q)
- $\cdot \lambda$ can be an argument of transition function; transition without consuming a symbol
- ${ullet} \delta(q_k,a)$ can be empty (not a total function)

δ	а	Ь
q_0	q_1	
$\overline{q_1}$		<i>q</i> ₂

Equivalence of Machines

- NFAs accept the Regular Languages
- ullet Machine M_1 is equivalent to machine $\ M_2$

• if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

• $L(M_1) = \{10\} *$

