Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

SOLUŢII ŞI BAREMURI ORIENTATIVE

CLASA a X-a

CLASA a A-a
Problema 1. Să se rezolve în mulțimea numerelor complexe ecuația $ z- z+1 = z+ z-1 .$
Soluție. Notăm $z = a + bi, a, b \in \mathbb{R}$. Ecuația se scrie $(a - z + 1)^2 + b^2 = (a + z - 1)^2 + b^2$, de unde $a - z + 1 = \pm (a + z - 1)$.
Obţinem $2a = z + 1 - z - 1 $, echivalent cu $2a = \sqrt{(1 + a)^2 + b^2} - \sqrt{(1 - a)^2 + b^2}$.
Se observă că $a=0$ verifică, și orice $z=bi, b\in\mathbb{R}$ este soluție.
Pentru $a \neq 0$, înmulţind cu $\sqrt{(1+a)^2+b^2}+\sqrt{(1-a)^2+b^2}$ deducem că $\sqrt{(1+a)^2+b^2}+\sqrt{(1-a)^2+b^2}=2$, de unde $\sqrt{(1+a)^2+b^2}=1+a$ şi $\sqrt{(1-a)^2+b^2}=1-a$.
Pentru $ a >1$ nu avem soluții. Pentru $a\in[-1,1]$ obținem $b=0$, deci orice $z=a,a\in[-1,1]$ este soluție.
1 punct
Problema 2. Să se rezolve în mulțimea numerelor reale ecuația $x + \log_2\left(1 + \sqrt{\frac{5^x}{3^x + 4^x}}\right) = 4 + \log_{1/2}\left(1 + \sqrt{\frac{25^x}{7^x + 24^x}}\right)$.
Soluție. Să observăm că $x = 2$ este soluție.
Vom arăta că această soluție este unică. Pentru $x>2$ avem $(3/5)^x+(4/5)^x<(3/5)^2+(4/5)^2=1$, de unde $5^x/(3^x+4^x)>1$, deci membrul stâng este mai mare strict decât 3.
Pe de altă parte, $(7/25)^x + (24/25)^x < (7/25)^2 + (24/25)^2 = 1$, de unde $25^x/(7^x+24^x) > 1$ și $\log_{1/2}\left(1+\sqrt{25^x/(7^x+24^x)}\right) < \log_{1/2}2 = -1$. Rezultă az mambrul drant este mai mie strict desât 2 deci equatie nu are solutii în
că membrul drept este mai mic strict decât 3, deci ecuația nu are soluții în mulțimea $(2, \infty)$.
În acelaşi mod se arată că niciun x din mulţimea $(-\infty, 2)$ nu este soluţie.

Problema 3. Fie numerele naturale nenule p şi n , unde $p \geq 2$, şi fie numărul real a astfel încât $1 \leq a < a+n \leq p$. Să se arate că mulţimea $\left\{ [\log_2 x] + [\log_3 x] + \dots + [\log_p x] \mid x \in \mathbb{R}, a \leq x \leq a+n \right\}$ are exact $n+1$ elemente.
Soluţie. Notăm $f(x) = \sum_{k=2}^{p} [\log_k x]$ şi $M = \{f(x) \mid x \in [a, a+n]\}$. Arătăm că $f(x) = f([x]), x \in [1, \infty)$, prin urmare $M = \{f(x) \mid x \in S\}$, unde mulţimea $S = \{[a], [a] + 1, \dots, [a] + n\}$ are exact $n + 1$ elemente.
Într-adevăr, pentru $x \in [1, \infty)$ şi $k \ge 2$ natural, avem echivalenţa $[\log_k x] = r \in \mathbb{N} \iff k^r \le x < k^{r+1}$. Cum k^r este număr natural, avem $k^r \le [x] \le x < k^{r+1}$, deci $[\log_k [x]] = [\log_k x]$. Sumând după $k = 2, 3, \ldots, p$, rezultă că $f(x) = f([x])$, oricare ar fi $x \in [1, \infty)$.
Rămâne de arătat că $f(s) < f(s+1)$, oricare ar fi $s \in S$, $s < [a] + n \le p$. Din monotonia funcției logaritm și a funcției parte întreagă deducem că $[\log_k(s+1)] \ge [\log_k s]$.
Fie $s \in S$, $s < [a] + n \le p$. Avem $s + 1 \in \{2, 3,, p\}$ şi $f(s + 1) - f(s) = \sum_{k=2}^{p} ([\log_k(s+1)] - [\log_k s]) \ge [\log_{s+1}(s+1)] - [\log_{s+1} s] = 1$, de unde $f(s+1) > f(s)$ şi soluţia este completă.
Problema 4. Să se determine funcțiile $f: \mathbb{Q} \to \mathbb{Q}$ cu proprietatea că $f(x+3f(y)) = f(x) + f(y) + 2y$, pentru orice $x, y \in \mathbb{Q}$.
Soluție. Funcțiile $f_k: \mathbb{Q} \to \mathbb{Q}$, $k=1,2$, definite prin $f_1(x)=x$ și $f_2(x)=-2x/3$ verifică cerința. Vom arăta că acestea sunt singurele soluții
Înlocuind y cu $y-3f(y)$ în relația dată, avem $f(x-6y)=f(x)-2y+2(y-3f(y))$, de unde $f(x-6y)=f(x)-6f(y)$, oricare ar fi $x,y\in\mathbb{Q}$
Pentru $x=y=0$ obţinem $f(0)=0$. Pentru $x=6y$ obţinem $f(6y)=6f(y)$, oricare ar fi $y\in\mathbb{Q}$
Atunci $f(x-6y)=f(x)-f(6y)$, de unde, pentru $u=6y$ şi $v=x-6y$, rezultă că $f(u+v)=f(u)+f(v)$, oricare ar fi $u,v\in\mathbb{Q}$.
Deducem că $f(x) = xf(1), x \in \mathbb{Q}$. Relația din enunț impune $3f^2(1) - 2f(1) - 1 = 0$, prin urmare $f(1) = 1$ sau $f(1) = -2/3$, ceea ce încheie soluția