Problem Set 3

- 1. Let \mathcal{F} and \mathcal{G} be two sets of formulae. We say $\mathcal{F} \equiv \mathcal{G}$ iff for any assignment α , $\alpha \models \mathcal{F}$ iff $\alpha \models \mathcal{G}$ ($\alpha \models \mathcal{F}$ iff $\alpha \models F_i$ for every $F_i \in \mathcal{F}$). Prove or disprove: For any \mathcal{F} and \mathcal{G} , $\mathcal{F} \equiv \mathcal{G}$ iff
 - (1) For each $G \in \mathcal{G}$, there exists $F \in \mathcal{F}$ such that $G \models F$, and
 - (2) For each $F \in \mathcal{F}$, there exists $G \in \mathcal{G}$ such that $F \models G$,
- 2. A set of sentences \mathcal{F} is said to be closed under conjunction if for any F and G in \mathcal{F} , $F \wedge G$ is also in \mathcal{F} . Suppose \mathcal{F} is closed under conjunction and is inconsistent. Prove that for any $G \in \mathcal{F}$, there exists $F \in \mathcal{F}$ such that $\{F\} \vdash \neg G$.
- 3. Suppose $\models (F \to G)$ and F is not a contradiction and G is not a tautology. Show that there exists a formula H such that the atomic propositions in H are in both F and G and $\models F \to H$ and $\models H \to G$.
- 4. Call a set of formulae minimal unsatisfiable iff it is unsatisfiable, but every proper subset is satisfiable. Show that there exist minimal unsatisfiable sets of formulae of size n for each $n \ge 1$.
- 5. Let $\psi = (a \vee \neg b) \wedge (b \vee \neg c) \wedge (c \vee \neg a) \wedge (\neg a \vee \neg b \vee \neg c) \wedge (a \vee b \vee c)$. Check if ψ is satisfiable using
 - (a) Resolution as discussed in class, that is, maintain all clauses with you, and check if \emptyset is reached. Why is this correct?
 - (b) Can we optimize resolution? Instead of propagating all clauses (resolvents, and the parent clauses) obtained so far to the next step, can we only keep the new clauses obtained as a result of resolution in each step, and drop the parent clauses? Will this result in a correct resolution?