Exercices de préparation aux oraux À préparer à la maison

I. Algèbre

Exercice 1 ($\bigstar \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$)

Soient $P \in \mathbb{R}[X]$ un polynôme de degré n et (a_0, \ldots, a_n) un (n+1)-uplet de réels tous distincts.

Montrer que $(P(X+a_0), P(X+a_1), \dots, P(X+a_n))$ est une base de $\mathbb{R}_n[X]$.

Exercice 2 ($\star \star \star$)

– Règle de Descartes –

Si $P \in \mathbb{R}[X]$, on note Z(P) le nombre de racines de P dans \mathbb{R}_+^* , comptées avec leur ordre de multiplicité

- 1) Soit $P \in \mathbb{R}[X]$. On suppose que les racines réelles de P sont simples. Montrer que $Z(P') \geqslant Z(P) 1$.
- 2) Soit $P = a_1 X^{n_1} + a_2 X^{n_2} + \cdots + a_p X^{n_p}$ où les a_i sont non nuls et la suite (n_i) est une suite strictement croissante d'entiers. On note V(P) le nombre de changements de signe de (a_1, \ldots, a_n) . Montrer que $V(P) \geq Z(P)$. Montrer que V(P) Z(P) est un entier pair.

Exercice 3 ($\bigstar \bigstar \circlearrowleft$ **)** Soit P un polynôme de $\mathbb{R}[X]$ tel que $P(x) \geq 0$ pour tout $x \in \mathbb{R}$.

Montrer qu'il existe $S, T \in \mathbb{R}[X]$ tels que $P = S^2 + T^2$. Indications :

- 1) Montrer que les racines réelles de P sont de multiplicité paire.
- 2) Pour $\alpha \in \mathbb{C} \setminus \mathbb{R}$, écrire $(X \alpha)(X \bar{\alpha})$ comme somme de deux carrés de polynômes.

Exercice 4 ($\star\star$

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et G un sous-espace vectoriel de E. On pose $A=\{u\in \mathscr{L}(E,F),\ G\subset \operatorname{Ker} u\}$. Montrer que A est un sous-espace vectoriel de $\mathscr{L}(E,F)$ dont on donnera la dimension.

Exercice 5 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que A est semblable à -A si et seulement si $\operatorname{tr}(A) = 0$.

Exercice 6 ($\bigstar \bigstar \circlearrowleft$ Soient $n \in \mathbb{N}^*$, $x \in \mathbb{R}$ et $P \in \mathbb{R}_{n-2}[X]$. Montrer que la matrice $A \in \mathcal{M}_n(\mathbb{R})$ définie par : $A_{i,j} = P(x+i+j-2)$ n'est pas inversible.

Exercice 7 ($\bigstar \bigstar \thickapprox$) Soient a_1, \ldots, a_n des nombres complexes distincts. Soit $A \in \mathcal{M}_n(\mathbb{C})$ la matrice de terme général $a_{i,j} = \begin{cases} 0 \text{ si } i = j \\ a_j \text{ si } i \neq j \end{cases}$. Soit $P: x \mapsto \det(A + xI_n)$.

- 1) Montrer que P est un polynôme unitaire de degré n.
- **2)** Calculer $P(a_i)$.
- 3) Trouver l'expression de P.
- 4) Décomposer $\frac{P(X)}{(X-a_1)\cdots(X-a_n)}$ en éléments simples.
- 5) Calculer $\det (A + I_n)$.

Exercice 8 ($\bigstar \stackrel{\wedge}{\bowtie} \stackrel{\wedge}{\bowtie}$) Soit $a \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on définit $A_n = \begin{pmatrix} 1 & a/n \\ -a/n & 1 \end{pmatrix}$.

- 1) Soient $a \in \mathbb{R}$ et, pour tout $n \in \mathbb{N}^*, z_n = (1 + i\frac{a}{n})^n$. Montrer que $z_n \to e^{ia}$.
- **2)** Diagonaliser A_n dans \mathbb{C} .
- 3) Déterminer $\lim A_n^n$.

Exercice 9 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Soit $E = \mathbb{R}_3[X]$, $A = X^4 - 1$ et $B = X^4 - X$. Pour $P \in E$, on note f(P) le reste de la division euclidienne de AP par B.

- 1) Montrer que f est un endomorphisme.
- 2) Déterminer Ker f et calculer le rang de f.
- 3) Étudier la diagonalisabilité de f.

Exercice 10 ($\bigstar \bigstar \mathring{\Sigma}$) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe des complexes deux à deux distincts $\lambda_0, \ldots, \lambda_n$ tels que $A + \lambda_i B$ est nilpotente pour tout i.

- 1) Montrer que l'indice de nilpotence d'une matrice nilpotente de taille n est inférieur ou égal à n.
- **2)** Montrer que : $\forall \lambda \in \mathbb{C}, (A + \lambda B)^n = 0.$
- 3) Montrer que A et B sont nilpotentes.

Exercice 11 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

- 1) Soit $n \in \mathbb{N}$. Montrer qu'il existe un polynôme P_n de degré $\leq n$ tel que $X+1-P_n^2(X)$ soit divisible par X^{n+1} . Indication : Penser aux développements limités.
- 2) Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente. Montrer qu'il existe une matrice $B \in GL_n(\mathbb{C})$ tel que $B^2 = I_n + N$.

Exercice 12 (
$$\bigstar \bigstar \circlearrowleft$$
) Soient $a, b, c \in \mathbb{R}$ et $A = \begin{pmatrix} 0 & -a & b \\ a & 0 & -c \\ -b & c & 0 \end{pmatrix}$.

- 1) Montrer qu'il existe d tel que $A^3 + dA = 0$.
- 2) Déterminer d. Soit $n \in \mathbb{N}^*$, déterminer A^{2n} en fonction de d, n et A^2 .
- 3) Déterminer α et β tels que $\sum_{k=0}^{+\infty} \frac{A^k}{k!} = I_3 + \alpha A + \beta A^2$.

Exercice 13 ($\bigstar \stackrel{\hookrightarrow}{\bowtie} \stackrel{\hookrightarrow}{\bowtie}$) Soit $E = \mathbb{R}_3[X]$. pour $P, Q \in E$, on note $\Phi(P,Q) = \sum_{k=0}^{3} (P(k) + P(1))(Q(k) + Q(1))$. Pour tout $i \in [0,3]$, on note $L_i(t) = \prod_{\substack{0 \leq k \leq 3 \\ k \neq i}} \frac{t-k}{i-k}$.

- 1) Calculer $L_i(j)$ pour tous $i, j \in [0, 3]$. En déduire que (L_0, L_1, L_2, L_3) est une base de E.
- 2) Montrer que Φ est un produit scalaire sur E.
- 3) Trouver une base orthonormée de E.

Exercice 14 ($\bigstar \bigstar \bigstar$) Soit $A \in \mathcal{S}_n(\mathbb{R})$. On dit que $A \in \mathcal{S}_n^{++}(\mathbb{R})$ lorsque, pour toute matrice $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nulle, $X^T A X > 0$.

- 1) Déterminer une condition nécessaire et suffisante pour que $A \in \mathcal{S}_n^{++}(\mathbb{R})$.
- **2)** Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$: $A = \begin{pmatrix} B & C \\ C^T & D \end{pmatrix}$. Montrer que $\det(B) > 0$, puis montrer que $\det(A) \leqslant \det(B) \det(D)$.

Exercice 15 ($\star \star \dot{\approx}$ $\dot{\approx}$)

- Matrice de Gram -

Soit $E = \{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}), \ \int_{\mathbb{R}} f^2 \text{ existe} \}$. Si $(f, g) \in E^2$, on pose $\langle f, g \rangle = \int_{-\infty}^{+\infty} f(t)g(t) dt$.

- 1) Montrer que $\langle \ , \ \rangle$ est un produit scalaire. Soient $(\varphi_n)_{n\in\mathbb{N}^*}\in E^{\mathbb{N}^*}$ et, pour tout $n\in\mathbb{N}^*$, $Q_n=(\langle \varphi_i,\varphi_j\rangle)_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $r\in\mathbb{N}^*$ tel que Q_r soit inversible.
- 2) Montrer que la plus petite valeur propre de Q_r est strictement positive.
- 3) Montrer que $\varphi_{r+1} \in \text{Vect}(\varphi_1, \dots, \varphi_r)$ si et seulement si Q_{r+1} est non inversible.
- **4)** On suppose que, pour tout $(i, j, k) \in (\mathbb{N}^*)^3$, $\langle \varphi_{i+k}, \varphi_{j+k} \rangle = \langle \varphi_i, \varphi_j \rangle$ et que Q_{r+1} est non inversible. Montrer que, pour tout $n \in \mathbb{N}^*$, $\varphi_n \in \text{Vect}(\varphi_1, \dots, \varphi_r)$.

Exercice 16 ($\bigstar \stackrel{\land}{\Rightarrow} \stackrel{\land}{\Rightarrow}$)

Caractériser les matrices M de projecteurs telles que $M^{\top}M = MM^{\top}$.

Exercice 17 ($\star \star \dot{\approx}$)

Soient F et G deux sous-espaces vectoriels d'un espace euclidien $(E, \| \ \|)$. Montrer que F et G sont supplémentaires orthogonaux si et seulement si, pour tout $x \in E$, $\|x\|^2 = d^2(x, F) + d^2(x, G)$.

Exercice 18 ($\star \star \updownarrow$)

Soient (E, \langle , \rangle) un espace euclidien et a dans E de norme 1. Si $\alpha \in \mathbb{R}$, on pose $f_{\alpha} \colon x \in E \mapsto x + \alpha \langle a, x \rangle a$.

- 1) Soient $\alpha, \beta \in \mathbb{R}$. Calculer $f_{\alpha} \circ f_{\beta}$. Pour quels α l'endomorphisme f_{α} est-il bijectif ?
- 2) Soit $\alpha \in \mathbb{R}$. Déterminer les éléments propres de f_{α} .
- 3) Pour quels α l'endomorphisme f_{α} est-il un automorphisme orthogonal de E ?
- 4) Pour quels α l'endomorphisme f_α est-il un endomorphisme symétrique de E ?

Exercice 19 ($\bigstar \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$)

On pose, pour $n \in \mathbb{N}$, $A_n = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} t^n e^{-t^2} dt$.

- 1) Calculer A_n en distinguant deux cas selon la parité de n. Donnée : $A_0 = 1$.
- 2) Pour tous $P, Q \in \mathbb{R}[X]$, on pose $\varphi(P, Q) = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} P(t)Q(t)e^{-t^2} dt$. Vérifier que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 3) Calculer $d(X^3, \mathbb{R}_2[X])$.

Exercice 20 ($\star \star \updownarrow$ \updownarrow)

Soient U et V dans $O_n(\mathbb{R})$. Donner une condition nécessaire et suffisante sur (U, V) pour que $\frac{1}{6}U + \frac{5}{6}V$ soit dans $O_n(\mathbb{R})$. Généraliser.

Exercice 21 ($\star \star \dot{\uparrow}$)

Quel est le cardinal de $O_n(\mathbb{R}) \cap \mathcal{M}_n(\mathbb{Z})$?

Exercice 22 ($\bigstar \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$)

- Transformation de Cayley -

On munit $E=\mathbb{R}^{2n+1}$ du produit scalaire canonique $\langle \ , \ \rangle$. Soient $f\in \mathcal{L}(E)$ et $A\in \mathcal{M}_{2n+1}(\mathbb{R})$ la matrice canoniquement associée à f. On suppose que A est antisymétrique.

- 1) Montrer que $\forall (x,y) \in E^2$, $\langle f(x), y \rangle = -\langle x, f(y) \rangle$.
- 2) Montrer que l'unique valeur propre de f est zéro.
- 3) Montrer que $A I_{2n+1}$ et $A + I_{2n+1}$ sont inversibles.
- **4)** On pose $B = (I_{2n+1} A)(I_{2n+1} + A)^{-1}$. Montrer que $B \in \mathcal{O}_{2n+1}(\mathbb{R})$ et det B = 1.

Exercice 23 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Soit E un espace euclidien. Si $f \in \mathcal{L}(E)$, on pose $\alpha(f) = \operatorname{tr}(f^* \circ f)$.

- 1) Calculer $\alpha(p)$ lorsque p est un projecteur orthogonal.
- 2) Soit p un projecteur que lconque de rang r. Montrer que $\alpha(p) \geqslant r$ et étudier le cas d'égalité.

Exercice 24 ($\bigstar \stackrel{\land}{\Rightarrow} \stackrel{\land}{\Rightarrow}$)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $(A + A^{\top})^p = 0$. Montrer que A est antisymétrique.

Exercice 25 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

Soit $M \in \mathscr{S}_n(\mathbb{R})$. On suppose qu'il existe $k \in \mathbb{N}^*$ tel que $M^k = I_n$. Montrer que $M^2 = I_n$.

Exercice 26 ($\star \star \updownarrow$)

Soient A et B dans $\mathscr{S}_2(\mathbb{R})$ ayant le même spectre. Montrer l'existence de $t \in \mathbb{R}$ tel que $A = RBR^{-1}$ où

$$R = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

Exercice 27 ($\star \star \updownarrow$)

On munit \mathbb{R}^n de son produit scalaire canonique noté \langle , \rangle . Soient $A \in \mathscr{S}_n(\mathbb{R})$ et $\lambda_1, \ldots, \lambda_n$ avec $\lambda_1 \leqslant \ldots \leqslant \lambda_n$ le spectre ordonné de A.

- 1) Montrer que $\lambda_1 = \inf\{\langle Ax, x \rangle, \ x \in \mathbb{R}^n \text{ et } ||x|| = 1\}.$
- **2)** Soit $x \in \mathbb{R}^n$ tel que ||x|| = 1 et $\langle Ax, x \rangle = \lambda_1$. Montrer que $Ax = \lambda_1 x$.
- 3) Soit $x = (x_1, \ldots, x_n)^{\top}$ un vecteur propre associé à la valeur propre λ_1 . On note x^+ le vecteur de coordonnées $\max\{x_i, 0\}$ et x^- le vecteur de coordonnées $\max\{0, -x_i\}$. On a donc $x = x^+ x^-$. Montrer que $\langle Ax^+, x^- \rangle \geqslant 0$.

Exercice 28 (★★★)

- Théorème de Courant-Fisher et théorème d'entrelacement de Cauchy -

Soient $A \in \mathscr{S}_n(\mathbb{R})$ et $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A avec $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1) Si $k \in \{1, ..., n\}$, montrer que : $\lambda_k = \min\{\max\{\langle Ax, x \rangle, x \in F \text{ et } ||x|| = 1\}$, F sous-espace de \mathbb{R}^n de dimension $k\}$.
- 2) Soient B la matrice obtenue en supprimant la dernière ligne et la dernière colonne de A, et μ_1, \ldots, μ_{n-1} les valeurs propres de B avec $\mu_1 \leqslant \cdots \leqslant \mu_{n-1}$. Montrer que $\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{n-1} \leqslant \mu_{n-1} \leqslant \lambda_n$.

Exercice 29 ($\star\star\star$

- Produit de Hadamard de deux matrices symétriques positives -

On note $\mathscr{S}_n^+(\mathbb{R})$ l'ensemble des matrices $M \in \mathscr{M}_n(\mathbb{R})$ telles que : $\forall u \in \mathbb{R}^n, \ u^\top M u \geqslant 0.$

- 1) Montrer que l'ensemble $\mathscr{S}_n^+(\mathbb{R})$ est stable par addition et par produit par un réel positif.
- **2)** Montrer que pour tout $u \in \mathbb{R}^n$, on a $S = uu^\top \in \mathscr{S}_n^+(\mathbb{R})$.
- 3) Soit M une matrice de $\mathscr{S}_n(\mathbb{R})$. Montrer que $M \in \mathscr{S}_n^+(\mathbb{R})$ si et seulement si toutes les valeurs propres de M sont positives.
- 4) On définit le produit de Hadamard de deux matrices comme le produit coefficient par coefficient : si $A = (a_{i,j})$ et $B = (b_{i,j})$ sont deux matrices de $\mathscr{S}_n^+(\mathbb{R})$, on pose $A \odot B = (a_{i,j}.b_{i,j})$. Montrer que $\mathscr{S}_n^+(\mathbb{R})$ est stable par le produit de Hadamard.
- **5)** Soit (u_1, \ldots, u_n) une famille de vecteurs de \mathbb{R}^n , $k \in \mathbb{N}$ et $c \in [0, +\infty[$. Soit $S = (s_{i,j})$ la matrice telle que $s_{i,j} = (u_i^\top u_j + c)^k$. Montrer que S est une matrice de $\mathscr{S}_n^+(\mathbb{R})$.

Exercice 30 ($\star \star \star$)

Soit $X \in \mathscr{A}_n(\mathbb{R})$, montrer que $I_n - X$ est inversible.

Exercice 31 ($\bigstar \bigstar \Leftrightarrow$) Soient p et q deux projecteurs orthogonaux d'un espace euclidien.

- 1) Montrer que u = p q est diagonalisable et que $Sp(u) \subset [-1, 1]$.
- 2) Déterminer Ker(u + id) et Ker(u id).

II. Analyse

Exercice 32 ($\bigstar \stackrel{\land}{\Rightarrow} \stackrel{\land}{\Rightarrow}$)

Soit (u_n) une suite réelle décroissante telle que $u_n + u_{n+1} \sim \frac{1}{n}$. Montrer que u_n tend vers zéro. Trouver un équivalent de u_n .

Exercice 33 (★☆☆)

Soit $u \in \mathbb{R}^{\mathbb{N}}$. Montrer qu'il existe des suites v et w respectivement croissante et décroissante telles que u = v + w.

Exercice 34 ($\star\star\star$)

Si u est une suite de nombres complexes, on note V(u) l'ensemble des valeurs d'adhérence de u. On rappelle que $a \in \mathbb{C}$ est une valeur d'adhérence de u si et seulement s'il existe une sous-suite de u convergeant vers a.

- 1) Montrer que $a \in V(u)$ si et seulement si toute boule ouverte centrée en a contient une infinité d'éléments de u.
- 2) Montrer que V(u) est un fermé. Dans ce qui suit, on suppose que u est une suite réelle.
- 3) Montrer que l'on peut extraire de u une sous-suite monotone.
- 4) On suppose que u est bornée. Montrer que V(u) est non vide, puis montrer que V(u) est réduit à un singleton si et seulement si u est convergente.
- **5)** Soient a, b deux réels tels que $a < b, f : [a, b] \to [a, b]$ continue et (u_n) la suite définie par $u_0 \in [a, b]$ et, pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Montrer que (u_n) converge si et seulement si $u_{n+1} u_n \to 0$.

Exercice 35 (★★☆)

Soit $(u_n)_{n\geqslant 0}$ la suite définie par $u_0>0$ et, pour $n\in\mathbb{N},\ u_{n+1}=u_ne^{-u_n}$.

- 1) Déterminer un équivalent de u_n .
- 2) Déterminer la nature, suivant $\alpha > 0$, de la suite de terme général u_n^{α}

Exercice 36 ($\star \star \dot{\approx}$ $\dot{\approx}$)

On définit une suite (u_n) par $u_0 > 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{u_n}$.

- 1) Montrer que u_n diverge vers $+\infty$.
- 2) Montrer que $\frac{1}{u_n^2} \leqslant \frac{1}{u_n}$, en déduire que $2 \leqslant u_{n+1}^2 u_n^2 \leqslant 2 + u_{n+1} u_n$.
- **3)** Montrer que $u_n \sim \sqrt{2n}$.

Exercice 37 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) On définit la suite $(u_n)_{n \in \mathbb{N}}$ par : $u_{3n} = \frac{2}{\ln(n+3)}$ et $u_{3n+1} = u_{3n+2} = \frac{-1}{\ln(n+3)}$.

- 1) Montrer que la série $\sum u_n$ est convergente et calculer sa somme.
- 2) Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que la série $\sum a_n$ converge. A-t-on nécessairement la convergence de la série $\sum a_n^2$?
- 3) Montrer, pour tout entier $p \ge 2$, la divergence de la série $\sum u_n^p$

Exercice 38 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Soit $(u_n)_{n\geqslant 1}$ une suite définie par $u_1 > 0$ et, pour tout $n \in \mathbb{N}^*, u_{n+1} = \frac{u_n}{n} + \frac{1}{n^2}$.

- 1) Étudier la convergence de la suite $(u_n)_{n\geqslant 1}$.
- 2) Étudier la convergence de la série $\sum u_n$.

Exercice 39 ($\bigstar \stackrel{\wedge}{\approx} \stackrel{\wedge}{\approx}$) Soit $f: \mathbb{R}^{+*} \to \mathbb{R}^{+*}$.

- 1) À quelle condition nécessaire la série $\sum \frac{(-1)^k}{f(k)}$ est-elle convergente? Cette condition est-elle suffisante? On suppose par la suite que cette condition est vérifiée.
- 2) On suppose de plus que f est croissante à partir d'un certain rang. On pose $u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{f(k)}$. Déterminer le signe de u_n et la limite de la suite (u_n) .
- 3) On suppose également que, pour tout k assez grand, $\frac{1}{f(k)} + \frac{1}{f(k+2)} \geqslant \frac{2}{f(k+1)}$. Déterminer la nature de la série $\sum u_n$.

Exercice 40 (★★☆)

Soient $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}_+)$ bijective et $g = f^{-1}$. Montrer que la série de terme général $\frac{1}{f(n)}$ converge si et seulement si la série de terme général $\frac{g(n)}{n^2}$ converge.

Exercice 41 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

Soient (u_n) une suite à termes positifs et (v_n) définie par $v_0 = 1$ et $\forall n \in \mathbb{N}, v_{n+1} = \frac{1}{2}(v_n + \sqrt{v_n^2 + u_n})$. Montrer que la suite (v_n) converge si et seulement si la série de terme général u_n converge.

Exercice 42 ($\star \star \updownarrow$)

Montrer que $\sum_{k=1}^{n} \frac{\ln(k)}{k}$ est équivalent à $\frac{\ln(n)^2}{2}$.

Exercice 43 ($\star \star \Rightarrow \Rightarrow$)

Soit $f: t \in \mathbb{R}_+ \mapsto \frac{t}{\sqrt{t+1}}$. Étudier la limite de la suite de terme général $u_n = \sum_{k=1}^n f(\frac{k}{n^2})$.

Exercice 44 (★★☆)

- Inegalité de Hardy harmonique -

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite à termes strictement positifs. On pose, pour tout $n\in\mathbb{N}^*$, $\alpha_n=\frac{1}{n^2}\sum_{k=1}^n\frac{k^2}{u_k}$.

- 1) Prouver l'inégalité : $\frac{n(n+1)}{2} \leqslant \sqrt{n^2 \alpha_n \sum_{k=1}^n u_k}$.
- **2)** Montrer que $\frac{n}{\sum_{k=1}^{n} u_k} \leq 2(\alpha_n \alpha_{n+1} + \frac{1}{u_{n+1}})$.
- 3) En déduire que la convergence de la série de terme général $\frac{1}{u_n}$ entraı̂ne la convergence de la série de terme général $\frac{n}{\sum_{k=1}^{n} u_k}$.

Exercice 45 (★★☆)

Pour $n \ge 2$, soit $a_n = \sum_{k=2}^n (\ln k)^2$. Nature de la série de terme général $\frac{1}{a_n}$?

Exercice 46 ($\star\star$

Soit & l'ensemble des $f \in \mathscr{C}^1(\mathbb{R}_+^*, \mathbb{R}_+^*)$ telles que $\forall (x,y) \in (\mathbb{R}_+^*)^2$, $f(\frac{2xy}{x+y}) = \frac{f(x)}{2} + \frac{f(y)}{2}$.

- 1) Soit $f \in \mathscr{E}$. Montrer que $\forall (x,y) \in (\mathbb{R}_+^*)^2$, $\frac{2x^2}{(x+y)^2} f'(\frac{2xy}{x+y}) = \frac{f'(y)}{2}$.
- 2) Soit $A \in \mathbb{R}_+^*$. Montrer que $\forall t \in]0, A[, \exists ! x \in]0, A[, \frac{2xA}{x+A} = t.$
- 3) Soit $f \in \mathscr{E}$. Montrer que $t \mapsto t^2 f'(t)$ est constante sur \mathbb{R}_+^* . Déterminer \mathscr{E} .
- **4)** Déterminer l'ensemble \mathscr{F} des $g \in \mathscr{C}^1(\mathbb{R}_+^*, \mathbb{R}_+^*)$ telles que $\forall (x, y) \in (\mathbb{R}_+^*)^2$, $g(\frac{x+y}{2}) = \frac{1}{2}(g(x) + g(y))$. Retrouver \mathscr{E} .

Exercice 47 ($\star \star \dot{\approx}$)

Soit $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ telle que l'image de tout intervalle ouvert est un intervalle ouvert. Montrer que f est monotone.

Exercice 48 ($\star \star \stackrel{\land}{\star}$ $\stackrel{\land}{\Rightarrow}$)

Soit $f: x \in [e, +\infty[\mapsto \frac{x}{\ln x}]$.

- 1) Montrer que f réalise une bijection de $[e, +\infty[$ sur lui-même.
- 2) Montrer que $f^{-1}(x) \sim x \ln x$ quand $x \to +\infty$.

Exercice 49 (★★☆)

Pour $n \in \mathbb{N}$ avec $n \ge 2$, soit $u_n : x \mapsto \frac{xe^{-nx}}{\ln n}$.

- 1) Déterminer le domaine de définition D de la série de fonctions de terme général u_n . Pour $x \in D$, on pose $S(x) = \sum_{n=2}^{+\infty} u_n(x)$.
- 2) Montrer qu'il n'y a pas convergence normale de la série de fonctions sur D.
- **3)** Si $n \ge 2$, soit $R_n : x \in D \mapsto \sum_{k=n+1}^{+\infty} u_k(x)$. Montrer que $\forall x \in D, |R_n(x)| \le \frac{1}{\ln n}$.
- 4) La fonction S est-elle continue sur D? Est-elle intégrable sur D?

Exercice 50 ($\bigstar \stackrel{\leftrightarrow}{\propto} \stackrel{\leftrightarrow}{\propto}$)

Soit (f_n) une suite de fonctions dérivables de \mathbb{R} dans \mathbb{R} . On suppose que (f_n) converge simplement vers une fonction $f: \mathbb{R} \to \mathbb{R}$ et que $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |f'_n(x)| \leq 1$. Montrer que f est continue.

Exercice 51 ($\bigstar \bigstar \diamondsuit$)

Soient $(u_n)_{n\geqslant 0}$ une suite bornée et, pour $n\in\mathbb{N}$, $s_n=\sum_{k=0}^n u_k$

- 1) Déterminer les rayons de convergence de $U(x) = \sum_{k=0}^{+\infty} \frac{u_k}{k!} x^k$ et $S(x) = \sum_{k=0}^{+\infty} \frac{s_k}{k!} x^k$.
- 2) Trouver une relation entre U', S et S'.
- 3) On suppose que s_n tend vers une limite ℓ quand n tend vers l'infini. Montrer qu'alors $e^{-x}S(x)$ tend vers une limite, à préciser, quand x tend vers l'infini.

Application au cas où $u_n = (-1)^n$ pour tout $n \in \mathbb{N}$

Exercice 52 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Pour $n \ge 2$, on note $f_n: x \mapsto \frac{xe^{-nx}}{\ln n}$ et $S: x \mapsto \sum_{n=2}^{+\infty} f_n(x)$.

- 1) Déterminer le domaine de définition de S.
- 2) La série converge-t-elle normalement ? Uniformément ?
- 3) Montrer que S est de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 4) Montrer que S n'est pas dérivable en 0.

Exercice 53 ($\bigstar \stackrel{\wedge}{\sim} \stackrel{\wedge}{\sim}$)

On pose $f_n(x) = \frac{x^n}{1+x^n}$ pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$.

- 1) Étudier la convergence simple de $\sum_{n\geqslant 0} f_n$.
- 2) Sur quels intervalles y a-t-il convergence normale?

Exercice 54 ($\star \star \dot{\approx}$)

Soit E l'ensemble des $f \in \mathscr{C}^0([0,1],\mathbb{R})$, de classe \mathscr{C}^1 sur]0,1[et telles que $\int_0^1 f'^2 = 1$.

- 1) Si f appartient à E, montrer que f est $\frac{1}{2}$ -höldérienne de rapport 1, c'est-à-dire que $\forall (x,y) \in [0,1], |f(x)-f(y)| \leq \sqrt{|x-y|}$.
- 2) Soit $(f_n)_{n\geq 0}$ une suite de fonctions de E convergeant simplement vers g. Montrer que la convergence est uniforme.

Exercice 55 ($\bigstar \stackrel{\land}{\sim} \stackrel{\land}{\sim}$)

Soit
$$\forall n \geqslant 1$$
, $S_n = \sum_{\ell=1}^n \ell^n$.

1) À l'aide d'une minoration, montrer que $S_n \xrightarrow[n \to +\infty]{} +\infty$.

On pose
$$\forall k \in \mathbb{N}^*$$
, $f_k(x) = \begin{cases} e^{-k} & \text{si } x = 0 \\ (1 - kx)^{1/x} & \text{si } 0 < x < 1/k \\ 0 & \text{si } x \ge 1/k \end{cases}$

On note F la somme de $\sum f_k$ sur son domaine de définition.

- 2) Montrer que f_k est continue sur \mathbb{R}^+ .
- 3) a) Montrer que $\sup_{x \in \mathbb{R}^+} |f_k(x)| = e^{-k}$.
 - b) En déduire la continuité de F sur \mathbb{R}^+ .
- **4)** Soit $n \in \mathbb{N}^*$. Montrer que $F(\frac{1}{n}) = \frac{S_n}{n^n} 1$.
- **5)** Conclure qu'il existe C > 0 tel que $S_n \underset{n \to +\infty}{\sim} Cn^n$.

Exercice 56 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Trouver les fonctions $f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ telles que $\forall x \in \mathbb{R}, f(x) + \int_0^x (x-t)f(t)\mathrm{d}t = 1.$

Exercice 57 ($\star \star \Leftrightarrow$ \Leftrightarrow)

Soient E l'ensemble des fonctions polynomiales réelles de degré $\leq n$ et, pour $k \in \{0, \dots, n\}, \ \mu_k \colon t \mapsto t^k$.

- 1) Soient $x \in \mathbb{R}$ et $P \in E$. Montrer que $\int_{-\infty}^{x} P(t)e^{t} dt$ converge. Si $P \in E$, on pose $L(P) : P \mapsto e^{-x} \int_{-\infty}^{x} P(t)e^{t} dt$.
- 2) Si $k \in \{0, ..., n-1\}$, montrer que $L(\mu_{k+1}) = \mu_{k+1} (k+1)L(\mu_k)$. En déduire $L(\mu_k) = (-1)^k k! \sum_{j=0}^k (-1)^j \frac{\mu_j}{j!}$.
- 3) Déterminer les valeurs propres de L. L'endomorphisme L est-il diagonalisable ?

Exercice 58 (★★☆)

- Produit de convolution -
- 1) Soient $f, g \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. On suppose g bornée et f intégrable. Montrer que l'application $x \mapsto \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ est définie sur \mathbb{R} et bornée.
- 2) Soient $f, g \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$. On suppose f^2 et g^2 sont intégrables. Montrer que l'application $x \mapsto \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ est définie sur \mathbb{R} et bornée.

Exercice 59 ($\star \star \updownarrow$)

Soient $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ bornée et $g \colon x \mapsto \int_{-\infty}^{+\infty} e^{-|t|} f(x-t) dt$.

- 1) Montrer que g est définie sur \mathbb{R} et de classe \mathscr{C}^2 .
- 2) Exprimer g'' en fonction de g et de f.

Exercice 60 ($\star\star\star$

Soient $f: x \mapsto \int_{-\infty}^{+\infty} \frac{e^{itx}}{(1+t^2)^2} dt$ et $g: x \mapsto \int_{-\infty}^{+\infty} \frac{e^{itx}}{1+t^2} dt$.

- 1) Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R} .
- **2)** Montrer que q est de classe \mathscr{C}^1 sur \mathbb{R}^* .
- 3) Trouver une équation différentielle vérifiée par g. En déduire g puis f.

Exercice 61 ($\bigstar \stackrel{\land}{\propto} \stackrel{\land}{\propto}$)

Soient a > -1, $n \in \mathbb{N}^*$ et $I_n = \int_0^{+\infty} x^a e^{-nx} dx$. Existence de I_n et limite de la suite $(I_n)_{n \ge 1}$.

Exercice 62 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Existence et calcul de $F(t) = \int_0^{+\infty} \exp(-(x^2 + \frac{t^2}{x^2})) dx$.

Exercice 63 ($\star \star \Rightarrow \Leftrightarrow$)

- 1) Montrer que la fonction $g: x \mapsto \frac{1-\cos x}{x^2}$ est intégrable sur $]0, +\infty[$.
- 2) Soit $f: x \mapsto \int_0^{+\infty} \frac{1-\cos(tx)}{t^2(1+t^2)} dt$. Montrer que f est de classe \mathscr{C}^2 sur \mathbb{R} et vérifie $f(x) \leq x^2$ sur \mathbb{R} . Calculer f'(0).
- 3) Montrer que f est solution de l'équation différentielle sur \mathbb{R}_+^* , $y'' y = \frac{\pi}{2} x \int_0^{+\infty} g(t) dt$.
- 4) En déduire que $f(x) = \frac{\pi}{2}(e^{-x} + x 1)$ sur \mathbb{R}_+ .

Exercice 64 ($\bigstar \stackrel{\ \ }{\Rightarrow} \stackrel{\ \ }{\Rightarrow}$) On cherche à résoudre l'équation différentielle :

$$x^{2}(1-x)y'' - x(1+x)y' + y = 0$$

On cherche les solutions développables en séries entières sous la forme $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et on note r le rayon de convergence.

- 1) Montrer que f est de classe \mathscr{C}^2 et donner f' et f''.
- 2) Déterminer $(b_n)_n$ telle que :

$$x^{2}(1-x)f''(x) - x(1+x)f'(x) + f(x) = a_{0} + \sum_{n=2}^{+\infty} b_{n} (a_{n} - a_{n-1}) x^{n}$$

- 3) Déterminer une relation de récurrence satisfaite par $(a_n)_n$.
- 4) Expliciter les solutions de (H) qui sont développables en série entière et préciser le rayon de convergence.
- 5) Résoudre (H) par la méthode de Lagrange (méthode de variation de la constante).

Exercice 65 (★★☆)

Soit $f \colon x \mapsto \sum_{n=2}^{+\infty} \frac{(-1)^n}{x+n}$.

- 1) Montrer que f est de classe \mathscr{C}^{∞} sur $]-1,+\infty[$.
- 2) Montrer que f est développable en série entière au voisinage de zéro.

Exercice 66 (★★☆)

- Nombres de Catalan -

Pour $n \in \mathbb{N}$, soit $c_n = \frac{1}{n+1} \sum_{k=0}^n {n \choose k}^2$.

- 1) Montrer que, pour $n \in \mathbb{N}$, $c_n = \frac{1}{n+1} {2n \choose n}$
- 2) Montrer que $\sum c_n x^n$ a un rayon de convergence R > 0.
- 3) On pose $f: x \mapsto \sum_{n=0}^{+\infty} c_n x^n$. Montrer que $f(x) = \frac{1}{2x} (1 \sqrt{1 4x})$ pour $x \in]-R, R[$. Que dire de R?

Exercice 67 ($\star \star \Rightarrow \Rightarrow$)

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \frac{t^n}{1+t^2} dt$. Déterminer le rayon de convergence de la série entière de terme général $a_n x^n$ et calculer sa somme.

Exercice 68 (★★☆)

Pour tout $n \in \mathbb{N}$, on pose $a_n = \int_0^1 (\frac{1+t^2}{2})^n dt$.

- 1) Calculer a_0 et a_1 . Déterminer la limite de (a_n) .
- 2) a) Étudier la monotonie de la suite (a_n) . En déduire la nature de la série de terme général $(-1)^n a_n$.
 - b) Montrer que $\sum_{n=0}^{+\infty} (-1)^n a_n = 2 \int_0^1 \frac{\mathrm{d}t}{3+t^2}$. En déduire la valeur de cette somme.
- 3) Soit $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$.
 - a) Montrer que $\forall n \in \mathbb{N}, \ a_n \geqslant \frac{1}{2n+1}$. En déduire le rayon de convergence R de la série entière $\sum a_n x^n$.
 - **b)** Montrer que f est solution d'une équation différentielle que l'on déterminera.

Exercice 69 ($\star \star \updownarrow$ \updownarrow)

Soit $\varphi \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}_+^*)$ croissante et $(E): x''(t) + \varphi(t)x(t) = 0$. Montrer que toute solution x de (E) est bornée.

Ind. On multipliera par $\frac{x'}{\varphi}$.

Exercice 70 ($\star \star \updownarrow$)

Résoudre le système

$$\begin{cases} x' = x + 2y + te^t \\ y' = 8x + y + e^{-t}. \end{cases}$$

Exercice 71 ($\star \star \updownarrow$)

Soient $D = \{(x,y) \in \mathbb{R}^2, -1 < x < y < 1\}, D' = \{(x,y) \in \mathbb{R}^2, -1 \le x \le y \le 1\}$ et $f: (x,y) \mapsto (y-x)^3 + 6xy$. Étudier les extrema de f sur D et sur D'.

Exercice 72 ($\star \star \updownarrow$ \updownarrow)

Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = x^2 + x^2y + y^3$.

- 1) Monter que f admet un point critique mais n'y atteint pas d'extremum local.
- 2) Soit $D = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 \leq 1\}$. Montrer que f admet un minimum m et un maximum M sur D. Déterminer les points de D en lesquels ils sont atteints puis trouver les valeurs de m et M.

III. Topologie

Exercice 73 ($\bigstar \bigstar \Leftrightarrow$) Soit E l'ensemble des applications lipschitzienne de [0,1] dans \mathbb{R} . Pour $f \in E$, on note $K(f) = \inf \{k \in \mathbb{R}^+, f \text{ est } k \text{ - lipshitzienne } \}$.

- 1) Montrer que E est un espace vectoriel.
- 2) Montrer que, pour tout $f \in E$, f est K(f)-lipschitzienne.
- 3) Montrer que toute fonction polynomiale P appartient à E et déterminer K(P).
- 4) L'application $f \mapsto K(f)$ est-elle une norme sur E?
- 5) Prouver que $\forall f \in E, ||f||_{\infty} \leq \inf_{x \in [0,1]} |f(x)| + K(f)$.
- **6)** L'application $f \mapsto \frac{K(f)}{\|f\|_{\infty}}$ est-elle bornée sur $E \setminus \{0\}$?

Exercice 74 (★★☆)

Si $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{C})$, on pose $||A|| = \sup_{i,j} |a_{i,j}|$ et on note E_A l'ensemble des matrices semblables à A. Soit $A \in \mathscr{M}_n(\mathbb{C})$.

Montrer que E_A est borné pour la norme $\|\ \|$ si et seulement si A est une matrice d'homothétie.

Exercice 75 ($\star \star \updownarrow$)

Déterminer les $A\in \mathscr{GL}_2(\mathbb{C})$ telles que les suites (A^n) et (A^{-n}) soient bornées.

Exercice 76 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) On donne $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (xy, x+y)$, $U = \{(x,y) \in \mathbb{R}^2, x > y\}$ et $V = \varphi(U)$.

- 1) Montrer que $V = \{(p, s) \in \mathbb{R}^2, \ s^2 > 4p\}$.
- 2) Montrer que V est un ouvert.
- 3) Montrer que φ est de classe \mathscr{C}^1 .

Exercice 77 ($\star\star\star$)

Soit $(x_n)_{n\geqslant 0}\in \mathbb{R}^{\mathbb{N}}$. On dit que (x_n) est de carré sommable si la série de terme général x_n^2 converge. On note E l'ensemble des suites réelles de carré sommable.

- 1) Montrer que E est un espace vectoriel.
- 2) Si x et y sont dans E, on pose $\langle x, y \rangle = \sum_{n=0}^{+\infty} x_n y_n$. Montrer que cette application définit un produit scalaire sur E.
- **3)** Soit, pour $k \in \mathbb{N}$, $x^k \in E$. On suppose que $x^k \to x$ c'est-à-dire que $\|x^k x\| \to 0$. Soit $y \in E$. Montrer que $\langle y, x^k \rangle \to \langle y, x \rangle$ lorsque $k \to +\infty$.
- **4)** Soit, pour $k \in \mathbb{N}$, $x^k \in E$. On suppose que $(x^k)_{k \in \mathbb{N}}$ est bornée et que, pour tout $n \in \mathbb{N}$, $x_n^k \to x_n$. Soit $y \in E$. Montrer que $\langle y, x^k \rangle \to \langle y, x \rangle$ lorsque $k \to +\infty$.

Exercice 78 ($\star \star \dot{\approx}$)

On munit $E = \mathscr{C}^0([0,1],\mathbb{R})$ de la norme infinie $\forall f \in E, \|f\|_{\infty} = \max_{[0,1]} |f|$. Soit $T \in \mathscr{L}(E,\mathbb{R})$. On suppose que $\forall f \in E, f \geqslant 0 \Rightarrow T(f) \geqslant 0$. Montrer que T est lipschitzien.

Exercice 79 ($\star\star\star$

Soit $p, q \in \mathbb{R}$ tels que p > 1, q > 1 et $\frac{1}{p} + \frac{1}{q} = 1$.

- 1) Montrer que $\forall a, b \in \mathbb{R}_+, ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$.
- 2) On définit la norme p de $\mathscr{C}(\mathbb{R}_+, \mathbb{R}_+)$ par $||f||_p = (\int_0^{+\infty} (f(x))^p dx)^{1/p}$. Montrer que $||fg||_1 \leq ||f||_p ||g||_q$.
- 3) Soient $f \in \mathscr{C}(\mathbb{R}_+, \mathbb{R}_+)$ et

$$F \colon x \mapsto \begin{cases} \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t & \text{si } x > 0 \\ f(0) & \text{si } x = 0. \end{cases}$$

Montrer que F est continue et vérifie $||F||_p \leqslant \frac{p}{p-1}||f||_p$.

Exercice 80 ($\star \star \updownarrow$)

Soit $n \ge 2$. Montrer qu'il n'existe pas de norme sur $\mathcal{M}_n(\mathbb{R})$ invariante par similitude.

Exercice 81 ($\bigstar \bigstar \circlearrowleft$) Soit (E, \langle, \rangle) , un espace euclidien et F une partie fermée, non vide et convexe de E. Pour $x \in E$ on pose $d(x) = \inf_{f \in F} ||x - f||$ et $\Gamma(x) = \{f \in F, ||x - f|| = d(x)\}$.

- 1) Caractériser l'ensemble des x tels que d(x) = 0.
- 2) Montrer que $\Gamma(x)$ est non vide.
- 3) Montrer que d est 1-lipschitzienne.
- 4) En utilisant une identité relative à la norme, montrer que :

$$\forall (f, f') \in \Gamma(x)^2, f \neq f' \Rightarrow \left\| \frac{1}{2} (f + f') - x \right\|^2 < d(x)^2$$

- 5) Montrer que $\Gamma(x)$ est réduit à un seul élément, que l'on notera p(x).
- **6)** Montrer que p(x) est caractérisé par $: \forall y \in F, \langle x-p(x), y-p(x) \rangle \leq 0.$

IV. Probabilités

Exercice 82 ($\bigstar \stackrel{\hookrightarrow}{\bowtie}$) On dispose de n coffres. Soit p la probabilité qu'un trésor se trouve dans un des coffres.

Si le trésor est placé dans un coffre, alors il se trouve dans l'un des coffres équiprobablement.

On ouvre n-1 coffres sans trouver le trésor.

Quelle est la proba qu'il se trouve dans le dernier coffre ?

Exercice 83 ($\bigstar \stackrel{\hookrightarrow}{\bowtie} \stackrel{\hookrightarrow}{\bowtie}$) Soit $(X_i)_{1 \leqslant i \leqslant n}$ des v.a. telles que $X_i \hookrightarrow \mathscr{B}(p)$ et indépendantes entre elles. On pose $S_n = \sum_{i=1}^n X_i$.

- 1) Donner $E\left(\frac{S_n}{n}\right)$ et $V\left(\frac{S_n}{n}\right)$.
- **2)** Montrer que $P\left(\left|\frac{S_n}{n}-p\right|\geqslant \varepsilon\right)\leqslant \frac{p(1-p)}{n\varepsilon^2}$.
- 3) On pose $u_n = \frac{1}{\ln^2 n} P\left(\left|\frac{S_n}{n} p\right| \geqslant \varepsilon\right)$. Donner la nature de $\sum u_n$.

Exercice 84 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) On lance simultanément n boules identiques qui viennent se loger dans trois urnes. On note X la v.a. du nombre d'urnes restées vides après le lancer.

- 1) Quelles sont les valeurs prises par X?
- **2)** Que vaut P(X=2) ?
- 3) Déterminer la loi de X.
- 4) Calculer E(X).
- 5) Limite de l'espérance lorsque $n \to +\infty$ et interprétation.

Exercice 85 ($\star \star \updownarrow$)

Soient X,Y deux variables aléatoires strictement positives indépendantes et de même loi. Montrer que $E(\frac{X}{V}) \geqslant 1$.

Exercice 86 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) On considère un espace probabilisé (Ω, \mathscr{A}, P) . Soit $p \in]0, 1[$.

1) Soit X une variable aléatoire suivant une loi géométrique de paramètre p.

Expliciter la loi de X. Montrer que $E\left(\frac{1}{X}\right) = \frac{-p\ln(p)}{1-p}$

On rappelle que, pour |x| < 1, $\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$.

- 2) Soit X une variable aléatoire réelle à valeurs dans $[1, +\infty[$. On suppose que $X(\Omega) = \{x_k \; ; \; k \in \mathbb{N}\}$ où les x_k sont deux à deux distincts. Pour tout $k \in \mathbb{N}$, on note $p_k = P(X = x_k)$ et on considère $f_k : t \mapsto p_k \mathrm{e}^{-tx_k}$. Soit F_X la fonction $t \mapsto E(\mathrm{e}^{-tX})$.
 - a) Montrer que F_X est définie sur \mathbb{R}_+ et trouver le lien entre F_X et la série de fonctions $\sum f_k$.
 - b) Montrer que la série $\sum f_k$ converge normalement sur \mathbb{R}_+ .
- 3) a) Montrer que f_k est intégrable sur \mathbb{R}_+ et calculer $\int_0^{+\infty} f_k(t) dt$.
 - **b)** Montrer que F_X est intégrable sur \mathbb{R}_+ . Calculer $\int_0^{+\infty} F_X(t) dt$. Quel est le lien avec $E\left(\frac{1}{X}\right)$?
- 4) On suppose que X suit une loi géométrique de paramètre p. Calculer F_X et retrouver le résultat de la question 1).

Exercice 87 (\bigstar $\overleftrightarrow{\bowtie}$ $\overleftrightarrow{\bowtie}$) On a une pièce qu'on lance plusieurs fois. On note X la v.a. associée au rang pour lequel on a la séquence « pile, face » pour la première fois. On note Y la v.a. associée au rang du premier « pile ».

- 1) Trouver la loi conjointe de (X, Y).
- **2)** Donner la loi de X.
- 3) Calculer E(X).

Exercice 88 ($\bigstar \stackrel{\ \ }{\swarrow} \stackrel{\ \ }{\swarrow}$) Soit (X_n) une suite de variables aléatoires mutuellement indépendantes suivant toutes la même loi

uniforme sur $\{1,...,N\}$. On pose $S_n = \max_{1 \le k \le n} (X_k)$ et $T_n = \min_{1 \le k \le n} (X_k)$.

- 1) S_n et T_n sont-elles indépendantes?
- 2) Exprimer $E(T_n)$ à l'aide d'une somme que l'on ne calculera pas.
- 3) En déduire sa limite quand $n \to +\infty$.

Exercice 89 ($\bigstar \stackrel{\sim}{\bowtie} \stackrel{\sim}{\bowtie}$) Soient n et N des entiers tels que $1 \leqslant n \leqslant N$. Soit une urne contenant N boules numérotées de $1 \stackrel{\sim}{a} N$.

On tire de manière simultanée et uniforme n boules.

On note X la variable aléatoire donnant le plus grand numéro de boule obtenu.

- 1) Déterminer la loi de X.
- **2)** Montrer que $\sum_{k=n}^{N} \binom{k}{n} = \binom{N+1}{n+1}$.
- 3) En déduire E(X).

Exercice 90 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Une urne contient n boules blanches et n boules noires. On tire les boules de l'urne deux par deux. Quelle est la probabilité d'avoir à chaque tirage une boule blanche et une boule noire ?

Exercice 91 ($\star \star \dot{\approx}$)

Soient $(m,n) \in \mathbb{N}^2$ avec $1 \leq m \leq n, X_1, \dots, X_n$ des variables aléatoires indépendantes, identiquement distribuées, à valeurs dans \mathbb{R}_+^* . Calculer $E(\frac{X_1+\dots+X_m}{X_1+\dots+X_n})$.

Exercice 92 ($\star \star \dot{\approx}$ $\dot{\approx}$)

Soit $(A_k)_{1 \leqslant k \leqslant n}$ une famille finie d'événements d'un espace probabilisé (Ω, T, P) . Montrer que $P(A_1 \cup \cdots \cup A_n) \leqslant P(A_1) + \cdots + P(A_n) \leqslant P(A_1 \cap \cdots \cap A_n) + n - 1$.

Exercice 93 ($\star \star \updownarrow$)

- Ruine du joueur -

Les joueurs A et B possèdent N billes. Au départ, le joueur A possède $n \in \{0, \ldots, N\}$ billes et le joueur B les N-n billes restantes. À chaque partie, le perdant donne une bille à l'autre. Le joueur A gagne chaque partie avec la probabilité $p \in]0,1[$. La partie s'arrête lorsque l'un des joueurs a toutes les billes. Déterminer la probabilité a_n que A l'emporte.

Exercice 94 ($\star \star \dot{\approx}$)

Soit X une variable aléatoire. On dit que X est décomposable s'il existe deux variables aléatoires indépendantes Y et Z telles que Y+Z ait la même loi que X.

- 1) Si X est décomposable, donner une relation entre G_X , G_Y , G_Z .
- 2) Soient $n \ge 2$ et $p \in]0,1[$. Si $X \hookrightarrow \mathscr{B}(n,p),$ montrer que X est décomposable.
- 3) Soit $n \ge 2$ non premier. On suppose que X suit une loi uniforme sur $\{0,\ldots,n-1\}$. Montrer qu'il existe $r,s\in\mathbb{N}\setminus\{0,1\}$ tels que $\forall t\in\mathbb{R},\ G_X(t)=(\frac{1}{r}\sum_{i=0}^{r-1}t^i)(\frac{1}{s}\sum_{j=0}^{s-1}t^{rj})$. En déduire que X est décomposable.

Exercice 95 ($\bigstar \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$)

Soit X une variable telle que $X(\Omega) = \mathbb{Z}$. On pose $X^+ = \max(X, 0)$ et $X^- = \min(X, 0)$.

- 1) Montrer que X^+ et X^- sont des variables aléatoires.
- 2) Expliciter la loi conjointe de (X^+, X^-) . Ces deux variables sont-elles indépendantes ?

Exercice 96 (★★★)

Soit X une variable aléatoire à valeurs dans $\mathbb N$ telle que sa fonction génératrice G vérifie

- le rayon de convergence R est strictement supérieur à 1,
- pour tous $x,y \in \mathbb{R}$ tels que $\sqrt{x^2+y^2} < R$, $G(x)G(y) = \frac{1}{2}G(\sqrt{x^2+y^2})$.
- 1) Déterminer G(0).
- 2) Montrer que, pour tout $k \ge 1$, P(X = 2k + 1) = 0.
- 3) Trouver une équation différentielle satisfaite par G dont les coefficients seront exprimés grâce à x et G'(1).
- 4) Déterminer G puis en déduire l'espérance et la variance de X.

Exercice 97 ($\star\star\star$)

Soit T une variable aléatoire à valeurs dans \mathbb{N} . On suppose que, pour tout $n \in \mathbb{N}$, $P(T \ge n) > 0$. On pose, pour $n \in \mathbb{N}$, $\theta_n = P(T = n \mid T \ge n)$.

- 1) Montrer que les θ_n sont dans [0,1[.
- 2) Exprimer $P(T \ge n)$ en fonction des θ_k . Montrer que la série $\sum \theta_n$ diverge.
- 3) Réciproquement, si (θ_n) est une suite d'éléments de [0,1[telle que la série $\sum \theta_n$ diverge, montrer qu'il existe une variable aléatoire T à valeurs dans $\mathbb N$ telle que $P(T \ge n) > 0$ et $P(T = n \mid T \ge n) = \theta_n$ pour tout $n \in \mathbb N$.

Exercice 98 ($\bigstar \stackrel{\leftrightarrow}{\propto} \stackrel{\leftrightarrow}{\propto}$)

Soient X_n et Y_n deux variables aléatoires suivant des lois uniformes sur $\{1,\ldots,n\}$ et indépendantes. On pose $Z_n=|X_n-Y_n|$ et $T_n=\min\{X_n,Y_n\}$. Calculer $E(Z_n)$ et $E(T_n)$. Déterminer des équivalents de $E(Z_n)$ et $E(T_n)$ lorsque $n\to +\infty$.

Exercice 99 (★★☆)

Pour $n \in \mathbb{N}^*$, soit \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. On choisit suivant une loi uniforme un élément de \mathbb{U}_n . Soit θ la variable aléatoire indiquant l'argument appartenant à $[0, 2\pi[$ du nombre choisi, X celle indiquant sa partie réelle et Y celle indiquant sa partie imaginaire.

- 1) Calculer $E(\theta)$, E(X) et E(Y).
- **2)** Calculer Cov(X, Y).
- 3) Les variables aléatoires X et Y sont elles indépendantes ?

Exercice 100 ($\star\star$

Soit X une variable aléatoire aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. On définit Y de la façon suivante : si la valeur prise par X est paire, $Y = \frac{X}{2}$, si la valeur prise par X est impaire, Y = 0. Donner la loi de Y, son espérance et sa variance.

Exercice 101 ($\bigstar \stackrel{\land}{\Rightarrow} \stackrel{\land}{\Rightarrow}$)

Soit X une variable aléatoire telle que $\forall k \in \mathbb{N}^*, \ P(X=k) = \frac{k-1}{2^k}$.

- 1) Vérifier par le calcul que $\sum_{k=1}^{+\infty} P(X=k) = 1$.
- 2) Donner la fonction génératrice de X. Quel est son rayon de convergence ?
- 3) La variable X admet-elle une espérance finie ? Si oui, que vaut-elle ?

Exercice 102 ($\bigstar \stackrel{\wedge}{\propto} \stackrel{\wedge}{\propto}$)

Les variables aléatoires X_1 et X_2 suivent des lois de Poisson de paramètres respectifs λ_1 et λ_2 , la variable aléatoire Y prend ses valeurs dans $\{-1,1\}$. On suppose que les variables aléatoires X_1 , X_2 et Y sont indépendantes. On pose p = P(Y = -1). On considère

$$M = \begin{pmatrix} X_1^2 & X_2^2 \\ Y X_2^2 & X_1^2 \end{pmatrix}.$$

- 1) Déterminer la probabilité pour que M soit diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.
- 2) Déterminer la probabilité pour que les valeurs propres de M soient réelles.