Data Mining Classification: Alternative Techniques

Bayesian Classifiers

Assignment Project Exam Help

Introduction to Data Mining

Add WeChat powcoder

Tan, Steinbach, Karpatne, Kumar

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability: $P(X|X) = \frac{P(X,Y)}{\text{Assignment Project Exam Help}} \frac{P(X,Y)}{P(X)}$

https://powcoder.com
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
Add WeChat powcoder

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Example of Bayes Theorem

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior prohability referry pretient that in the propertient of the pr
- Prior probability of any patient having stiff neck is 1/20 https://powcoder.com
- If a patient has stiff eleber, powards the probability he/she has meningitis?
 - Let us formulate this question as a math formula.
 - Let the event of having a stiff neck be S. Let the event of having meningitis be M, what formula can describe this question?

Example of Bayes Theorem

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior prohability referry pretient that in the propertient of the pr
- Prior probability of any patient having stiff neck is 1/20 https://powcoder.com
- If a patient has stiff cebat, powatos the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- ☐ Given a recordismment Projects Exam XIelp, X_d)
 - Goal is to phetopict/playsover.com
 - Specifically Awd Wanthto find the value of Y that maximizes P(Y| X₁, X₂,..., X_d)

Can we estimate P(Y| X₁, X₂,..., X_d) directly from data?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Using Bayes Theorem for Classification

- Approach:
 - compute posterior probability P(Y | X₁, X₂, ..., X_d) using the Bayes theorem

Assignment Project Exam, Help,
$$|Y|P(Y)$$

 $P(Y|X_1X_2...X_n) = P(X_1X_2...X_d)$
https://powcoder.com

- Maximum a-posteriori: Choose Y that maximizes P(Y | X₁, X₂, ..., X_d) (e.g. Y=yes or Y=no)
- Equivalent to choosing value of Y that maximizes
 P(X₁, X₂, ..., X_d|Y) P(Y)
- I How to estimate $P(X_1, X_2, ..., X_d | Y)$?

Using Bayes Theorem for Classification

$$P(Y | X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d | Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

- Maximum as posteriori Project Example Imaximizes P(Y | X₁, X₂, ..., X_d)
 https://powcoder.com
- E.g. P(Y=iris Versicolor petal length=2, petal width=1.5, sepal width=1.4, sepal tength=3) =?
- P(Y=iris Setosa| petal length=2, petal width=1.5, sepal width=1.4, sepal length=3) =?
- P(Y=iris Virginica| petal length=2, petal width=1.5, sepal width=1.4, sepal length=3) =?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

How to compute $P(X_1, X_2, ..., X_d \mid Y)$?

$$P(X_1X_2|Y) = \frac{P(X_1X_2Y)}{P(Y)} = \frac{P(X_1|X_2Y)P(X_2Y)}{P(Y)}$$

$$= P(X_1|X_2Y) P(X_2|Y)$$

$$= P(X_1|X_2Y) P(X_2|Y)$$

$$Assignment Projective Active Projective Project$$

A and **B** are conditionally independent given **C** if P(A|BC) = P(A|C)

Assumption: all attributes (X₁ to X₃) are independent

How to compute $P(X_1, X_2, ..., X_d \mid Y)$?

```
Chain rule:
P(X1, X2, ..., Xd, Y)
= P(X1| X2, ..., Xd, Y) P(X2, X3, ..., Xd, Y)
= P(X1| X2, ..., Xd, Y) P(X2 | X3, ..., Xd, Y) P(X3, ..., Xd, Y)
= P(X1| X2, ..., Xd, Y) P(X2 | X3, ..., Xd, Y) P(X3 | X4, ..., Xd, Y) P(X4, ..., Xd,
                  Assignment Project Exam Help
Y)
= P(X1| X2, ..., Xd, Y) P(X2 | X3, ..., Xd, Y) P(X3 | X4, ..., Xd, Y) P(X4 | X5, ...,
Xd, Y) P(X5, ...Y)
                        https://powcoder.com
= P(X1|X2, ..., Xd, Y) P(X2|PX3, P, CX2, P) P(X3, P, CX2, P) P(X3, P, CX2, P) P(X4, P) ... P(Xd|Y)
P(Y)
Thus
P(X1, X2, ..., Xd | Y) = P(X2, X2, ..., Xd, Y) / P(Y)
If X1, X2, ..., Xd are all conditionally independent of each other
P(X1, X2, ..., Xd | Y) = P(X1|Y) P(X2|Y) ... P(Xd|Y)
```

Conditional independence

- □ E.g. one might observe that people with longer arms tend to have better reading skills. So, the two attributes: arm length and reading skill are dependent signment Project Exam Help
- If add the agence pew attribute adults → longer arms, adults → better reading skill. The dependence between arm length and reading skill disappears.
- Thus Pr(reading skill|age, arm length)= Pr(reading skill |age).

Naïve Bayes Classifier

Assume independence among attributes X_i when class is given:

$$P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) ...$$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) P(X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_2 | ..., X_d, Y_j) P(X_d, Y_j) ...$
 $P(X_3 | ..., X_d, Y_j) = P(X_1 | X_2, ..., X_d, Y_j) P(X_d, Y_j$

Now we candestiment that Power all X_i and Y_j combinations from the training data

- New point is classified to Y_j if $P(Y_j) \prod P(X_i | Y_i)$ is maximal.

Naïve Bayes on Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	ssignn	nent P
3	No	Single	70K	No
4	Yes	Married	120kttp	sid/pc
5	No	Divorced	95K	Yes
6	No	Married	60KAda	I _N We(
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$\square$$
 Class: $P(Y) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

Projected Project Proj

$$\frac{P(X_i|Y_k) = |X_{ik}|/N_c}{\text{wcoder.com}}$$

hat powere |X_{ik}| is number of powered |X_{ik}| is number of powered |X_{ik}| is number of power |X_{ik}| is number of power |X_{ik}| and power |X_{ik}| and belonging to class Y_{ik}

– Examples:

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value

 Assignment Project Exam Help

 Attribute changed from continuous to ordinal

https://powcoder.com

- Probability density estimation:
 Add WeChat powcoder
 Assume attribute follows a normal distribution

 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability $P(X_i|Y)$

Estimate Probabilities from Data

Tid	Refund	tefund Marital Status		Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K SS1gnn	No	
4	Yes	Married	120K	No	
5	No	Divorced	95Khttp	Yes/n	
6	No	Married	60K	No P	
7	Yes	Divorced	²²⁰ Ado	NW _e	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$
Project Exam Help
— One for each (X_i,Y_i) pair

wcoder.com

For (Income, Class=No):

Chat poweoders=No

- sample mean = 110
- sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Naïve Bayes Classifier:

sample variance = 25

```
P(Refund = Yes | No) = 3/Assignment Project Frame-Help)
                                                             × P(Divorced | No)
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = \frac{\text{https://powcodef.(Income} = 120\text{K} | No)}{\text{2/7}}
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/71d Welcharten (Proposition | Yes) P(Marital Status = Single | Yes) = 2/3
                                                                         × P(Divorced | Yes)
P(Marital Status = Divorced | Yes) = 1/3
                                                                         × P(Income=120K | Yes)
P(Marital Status = Married | Yes) = 0
                                                                       = 1 \times 1/3 \times 1.2 \times 10^{-9} = 4 \times 10^{-10}
For Taxable Income:
If class = No: sample mean = 110
                                             Since P(X|No)P(No) > P(X|Yes)P(Yes)
             sample variance = 2975
                                             Therefore P(No|X) > P(Yes|X)
If class = Yes: sample mean = 90
```

=> Class = No

```
Naïve Bayes Classifier:
                                                                                                                                                                                                        P(Yes) = 3/10
                                                                                                                                                                                                           P(No) = 7/10
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = Assignment Project Exam Help
P(Refund = No | Yes) = 1
P(Yes | Married) = 0 x 3/10 / P(Married)
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) | 170s://port | November | Novem
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 0 WeChat powcoder
P(Marital Status = Married | Yes) = 0
For Taxable Income:
 If class = No: sample mean = 110
                                                       sample variance = 2975
If class = Yes: sample mean = 90
                                                      sample variance = 25
```

Consider the table with Tid = 7 deleted

Refund Marital Taxable Evade Status Income 125K No Yes Single 100K No No Married Assignmen 3 No Single Yes Married 120K No 4 Divorced No 5 95K Married 60K 6 No No Single 85K 8 Married 75K No No 10 90K Yes No Single

Naïve Bayes Classifier:

Given X = (Refund = Yes, Divorced, 120K)

$$P(X | No) = 2/6 \times 0 \times 0.0083 = 0$$

 $P(X | Yes) = 0 \times 1/3 \times 1.2 \times 10^{-9} = 0$

Naïve Bayes will not be able to classify X as Yes or No!

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple Aractionsent Project Exam Help c: number of different values for
- Probability estimation: attribute A (e.g. c=2 for Refund, nttps://powcoder.cam attribute A (e.g. c=2 for Refund, nttps://

Original:
$$P(A_i | C) = A_c^{ic}$$
 We Chat powered bility of different an attribute value

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

m - estimate :
$$P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$$

m: parameter

 N_c : number of instances in the class

 N_{ic} : number of instances having attribute value A_i in class c

Consider the table with Tid = 7 deleted

Given X = (Refund = Yes, Divorced, 120K)

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

 $P(X \mid Yes) = 0 \times 1/3 \times 1.2 \times 10^{-9} = 0$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes 🔥 😋	rignm	APPORT DI	mammals+ 📘
pigeon	no	yes A	mbg IIIII	yes IL I	non mámmals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no , ,	non-mammals
turtle	no	no	so neti nes	yes/100V	WERRINGS
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes 11	m y /	non-mammals
salamander	no	no	sometimes	yes C	he in hyar rmars
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

Example 16
$$\times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$(N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$VPQd(M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

In-class exercise (submit your equations)

Suppose there are two full bowls of cookies. Bowl #1 has 10 chocolate chip and 30 plain cookies, while bowl #2 has 20 of each. Our friend Fred picks a bowl at random Andother picks a cookie at random and there is no reason to believe Fred treats one bowl differently from whother, the wise for the cookies. The cookie turns out to be a plain one. How probable is it that Fred picked it out of bowl #1?

Write your equations and compute the probability. It should be 0.6.

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Naïve Bayes can construct oblique decision boundaries

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated

Naïve Bayes classifier summary: a different view

Bayesian inference derives the posterior probability as a consequence of two antecedents: a prior probability and a "likelihood function" derived from a statistical model for the observed data. Bayesian inference computes the posterior probability according to Bayes' theorem:

$$P(H \mid E) = rac{P(E \mid H) \cdot P(H)}{P(E)}$$

where

- Assignment Project Exam Help
 H stands for any hypothesis whose probability may be affected by data (called evidence below). Often there are competing hypotheses, and the task is to determine which is the most probable.
- P(H), the prior probability, is the estimate the probability of t observed.
- E, the *evidence*, corresponds to new data that were not used in computing the prior probability.
 $P(H \mid E)$, the *posterior probability*, is the probability of H given E, E is observed. This is what we want to know: the probability of a hypothesis given the observed evidence.
- $P(E \mid H)$ is the probability of observing E given H, and is called the *likelihood*. As a function of E with H fixed, it indicates the compatibility of the evidence with the given hypothesis. The likelihood function is a function of the evidence, E, while the posterior probability is a function of the hypothesis, H.
- \bullet P(E) is sometimes termed the marginal likelihood or "model evidence". This factor is the same for all possible hypotheses being considered (as is evident from the fact that the hypothesis H does not appear anywhere in the symbol, unlike for all the other factors), so this factor does not enter into determining the relative probabilities of different hypotheses.

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate to accurations

https://powcoder.com

- Robust to irrelevant attributes
 Add WeChat powcoder
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)