Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

17 de abril de 2018

Plano de Aula

Decidibilidade

Sumário

Decidibilidade

Introdução

Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

Introdução

Propósitos da Teoria da Computação

- Conhecer o poder dos algoritmos;
- Explorar os limites da solubilidade algorítmica;
- Identificar algoritmos insolúveis.

Por que devemos estudar insolubilidade?

- Relaxamento dos requisitos;
- Conhecimento das limitações dos modelos computacionais.

Linguagens Decidíveis

Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

Linguagens Decidíveis

Exemplos de Linguagens Decidíveis

São úteis porque

- Algumas linguagens decidíveis estão associadas a aplicações;
- Algumas linguagens aparentemente triviais não são decidíveis.

Problema da aceitação

Dado um modelo computacional MC e uma cadeia de entrada ω , identificar se MC aceita ω .

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$

Problema da aceitação para AFDs

Dado um AFD B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFD} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFD que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Resolver o problema da aceitação para AFDs é decidir se $\omega \in A_{AFD}$.

Teorema 4.1

A_{AFD} é uma linguagem decidível.

Teorema 4.1

A_{AFD} é uma linguagem decidível.

Ideia da Prova

M= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFD, e ω , uma cadeia:

- Simule B sobre a entrada ω ;
- Se a simulação termina em um estado de aceitação, aceite. Senão, rejeite."

Detalhes de implementação

- A entrada $\langle B, \omega \rangle$ representa um AFD e uma cadeia;
 - Uma representação razoável de B seria uma lista de seus cinco componentes: Q, Σ, δ, q₀ e F;
 - *M* simula *B* de forma que *M* aceita se *B* estiver em um estado final, e rejeita, caso contrário.

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFN} = \{\langle B, \omega \rangle \mid B \text{ \'e um AFN que aceita a cadeia de entrada } \omega \}$

Problema da aceitação para AFNs

Dado um AFN B e uma cadeia de entrada ω , identificar se B aceita ω .

Problema

 $A_{AFN} = \{ \langle B, \omega \rangle \mid B \text{ \'e um AFN que aceita a cadeia de entrada } \omega \}$

Estratégia de Resolução

Decidir se $\langle B, \omega \rangle \in A_{AFN}$.

Teorema 4.2

A_{AFN} é uma linguagem decidível.

Teorema 4.2

A_{AFN} é uma linguagem decidível.

Prova

N= "Sobre a entrada $\langle B,\omega\rangle$, em que B é um AFN, e ω , uma cadeia:

- Converta AFN B para um AFD equivalente C, usando o procedimento para essa conversão dado no Teorema 1.39;
- ② Rode a MT M do Teorema 4.1 sobre a cadeia $\langle C, \omega \rangle$;
- Se M aceita, aceite. Caso contrário, rejeite."

Problema da Vacuidade de uma Linguagem

Descrição

Dada uma linguagem L, identificar se $L = \emptyset$.

Problema aplicado a AFDs

$$V_{AFD} = \{ \langle A \rangle \mid A \text{ \'e um AFD e } L(A) = \emptyset \}$$

Estratégia de Resolução

Decidir se $\langle A \rangle \in V_{AFD}$.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Problema da Vacuidade de uma Linguagem

Teorema 4.4

 V_{AFD} é uma linguagem decidível.

Prova

A seguinte MT T decide V_{AFD} .

 $T = \text{``Sobre a entrada'} \langle A \rangle$, em que A é uma AFD:

- Marque o estado inicial de A;
- Repita até que nenhum estado novo venha a ser marcado;
 - Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
- Se nenhum estado final estiver marcado, aceite. Caso contrário, rejeite."

Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

17 de abril de 2018

