Arquitecturas Computacionales

Estructura de un microcontrolador

Facultad de Ingeniería / Escuela de Informática Universidad Andrés Bello, Viña del Mar.

Elementos de un sistema electrónico

Controlador

- El controlador toma decisiones a partir de:
 - Información de los sensores
 - El estado del sistema
 - Notificaciones de otros sistemas
- A partir de ello:
 - Genera resultados visuales
 - Activa algún actuador
 - Notifica a otro sistema

Controlador

Están enfocados a sistemas de propósito específico:

- Cajas registradoras
- horno microondas
- videojuegos
- cámaras
- •

Microcontrolador

Actualmente, todos los elementos del controlador se han incluido en un circuito integrado, denominado **microcontrolador**

SBC (Single board Computer)

Microcontrolador

Es un circuito integrado con tecnología VLSI (Very large scale integration), y contiene:

- Unidad de procesamiento central
- Memoria para código
- Memoria para datos
- Temporizadores, ADC, puertos E/S,...

Microprocesador y Microcontrolador

Tienen similitudes, pero con diferencias importantes:

- Microprocesador
 - Unidad central de procesamiento en un circuito integrado
- Microcontrolador
 - Además de la CPU, contiene RAM, ROM, interfaz serial, manejo de temporizadores, interrupciones

Microprocesador y Microcontrolador

	MCU (típico)	μP
Velocidad de procesamiento	$20\mathrm{MHz}$	$\sim \mathrm{GHz}$
Capacidad de direccionamiento	8 kB (instrucciones) 1 kB (datos)	~Terabytes
Tamaño de los datos	8 bits Manejo directo de 1 bit	Palabras de 32 o 64 bits

Microcontrolador y FPGA

FPGA

- Bloques e interconexiones configurables
- El programa define al hardware
- Los diferentes módulos pueden operar de forma concurrente
- Microcontrolador
 - El programa determina el comportamiento del hardware
 - El programa se ejecuta de forma secuencial (aunque exista concurrencia en los recursos, su atención por la CPU es secuencial)

Microcontrolador

Organización de un microcontrolador

Unidad central de procesamiento

- Administra todas las actividades del sistema, mediante la configuración y manejo de recursos
- Se encarga de interpretar y ejecutar las instrucciones del programa
- Cada instrucción contiene un código de operación, y uno o más operandos sobre los que se realizará la operación.
 Usualmente se organizan por grupos:
 - Aritméticas: suma, resta, multiplicación, división
 - Lógicas: and, or, not
 - Transferencia de datos
 - Bifurcaciones o saltos

CPU

- Tipos de CPU
 - CISC: Complex instruction set computers
 - RISC: Reduced instruction set computers
- visión simplificada

CPU

Elementos importantes:

- PC: contiene dirección de la instrucción bajo ejecución
- IR: contiene a la instrucción (opcode y operandos) mientras se ejecuta
- SP: contiene la dirección del tope de la Pila

CPU

Arquitecturas

 Existen 2 modelos, de acuerdo con la organización de la memoria

Lenguaje

Los sistemas también pueden clasificarse por la forma en que la CPU tiene acceso a los datos y ejecuta cada instrucción.

- Pila
- Acumulador
- Registro-memoria
- Registro-registro

Operación: C = A - B

A, B y C son variables, se encuentran en memoria de datos.

<u>Pila:</u>	
push push	A B
Sub	
pop	С

Acumulador:	
Mov Sub Mov	Acc, A Acc, B C, Acc

Registro-Memoria		
Load	Rx, A	
Sub	Dv D	

Store C. Rx

Load	Rx. A
Load	Ry, B
Sub	Rx, Ry
Store	C, Rx

Registro-Registro:

Conjunto de instrucciones

Actividad:

- Implemente un programa en C, que calcule A = B C, donde B y C son números inicializados por código.
- Al momento de compilar, ejecute gcc programa.c -S y visualice el código en assembler resultante
- Modifique el programa anterior para que el usuario ingrese por teclado los valores de B y C.
- Compare el código en assembler generado en las 2 versiones del programa.

Procesador MIPS

En el curso se revisarán las instrucciones asociadas con este tipo de procesador

Registros en MIPS

Algunos de los registros (son 32):

Nombre Registro	Número	Uso
zero	0	Constante 0
at	1	Reservado para el assembler
v0	2	Para evaluación de expresiones y
v1	3	retorno de resultados de una función
a0	4	Argumento 1
a1	5	Argumento 2
a2	6	Argumento 3
a3	7	Argumento 4
t0	8	Temporal (no se preserva a través de los llamados)
t1	9	Temporal (no se preserva a través de los llamados)
t2	10	Temporal (no se preserva a través de los llamados)
t3	11	Temporal (no se preserva a través de los llamados)
t4	12	Temporal (no se preserva a través de los llamados)
t5	13	Temporal (no se preserva a través de los llamados)
t6	14	Temporal (no se preserva a través de los llamados)
t7	15	Temporal (no se preserva a través de los llamados)
s0	16	Temporal que debe preservarse entre llamados a funciones
s1	17	Temporal que debe preservarse entre llamados a funciones
s2	18	Temporal que debe preservarse entre llamados a funciones
s3	19	Temporal que debe preservarse entre llamados a funciones
s4	20	Temporal que debe preservarse entre llamados a funciones
s5	21	Temporal que debe preservarse entre llamados a funciones
s6	22	Temporal que debe preservarse entre llamados a funciones
s7	23	Temporal que debe preservarse entre llamados a funciones