Test Plan Document

UI/UX AUTOMATION USING LLM

Project Code:		
Internal Advisor:	Dr. Fahad Maqbo	ool
External Advisor:		
Project Manager:	Dr. Muhammad	llyas
Project Team:	Muhammad Dawo	ood (BSCS51F21S089)
	Ghulam Rasool	(BSCS51F21S080)
	Muhammad Rash	id (BSCS51F21S084)
Submission Date:	May 21, 2025	
	 Project Manage	er's Signature

Document Information

Category	Information	
Customer	UI/UX Designers, Design Teams, Developers, University of Sargodha	
Project	UI/UX AUTOMATION USING LLM	
Document	Test Plan	
Document Version	1.0	
Identifier	PGBH01-2024-TP	
Status	Draft	
Author(s)	Muhammad Dawood, Muhammad Rashid, Ghulam Rasool	
Approver(s)	Dr. Muhammad Ilyas	
Issue Date	MAY 21, 2025	
Document Location		
Distribution	Dr. Fahad Maqbool Dr. Muhammad Ilyas University of Sargodha	

Definition of Terms, Acronyms and Abbreviations

Term	Description
LLM	Large Language Model, used for generating designs and contextual suggestions.
GraphRAG	Graph-based Retrieval-Augmented Generation for contextual responses
OWL	Web Ontology Language for semantic consistency.
Neo4j	Graph database used for storing and querying UI/UX design knowledge.
Figma	Collaborative design tool for exporting high-fidelity designs.

Sept. 15, 2024 10 Page 2 of

Table of Contents

1. Introd	luction	4
1.1 1.2	Purpose of Document Project Overview	4
2. Scope	e of Testing	4
3. Test I	Plan Strategy	4
3.1 3.2 3.3	Unit Testing Integration Testing System Testing	5
4. Test I	Environment	5
5. Sched	dule	5
6. Contr	ol Activities	5
7. Funct	tions to be Tested	5
8. Funct	tions not to be Tested	6
9. Test (Case Design and Description	6
10.Trace	ability Matrix	8
11.Major	r Deliverables	8
12.Risks	and Assumptions	8
13.Exit C	Criteria	9
14.Refer	rences	9
15 Anne	ndices	10

1. Introduction

This Test Plan outlines the strategy to validate the **UI/UX Automation Using LLM** system, which automates design workflows using Al and knowledge graphs. The system generates wireframes from natural language, validates designs against UI/UX principles, and exports them to Figma. Testing ensures these features meet functional, performance, and security requirements for designers, developers, and stakeholders.

1.1 Purpose of Document

 This Test Plan outlines the strategy, scope, and execution of testing activities for the UI/UX Automation Using LLM system. It ensures that all functional and non-functional requirements are validated against the SRS and SDS.

1.2 Project Overview

 The system automates UI/UX workflows using LLMs, Neo4j knowledge graphs, and OWL ontologies. Key features include wireframe generation, design validation, and Figma export. Testing ensures these features meet performance, security, and usability standards.

2. Scope of Testing

In-Scope:

- Functional Testing: Wireframe generation, design validation, Figma export, knowledge graph management.
- Non-functional Testing: Performance (5-second response time), security (AES-256 encryption), scalability (1,000 concurrent users).
- Integration Testing: Interaction between LLM, Neo4j, and Figma API.

Out-of-Scope:

- Domain-specific UI/UX requirements outside the ontology.
- Prototypes with interactive elements.

3. Test Plan Strategy

The testing strategy ensures the **UI/UX Automation Using LLM** system meets all functional and non-functional requirements through three phases:

3.1 Unit Testing

Participants: Developers, Test Team Methodology:

 Test individual components (e.g. UlComponent, InteractiveComponent, LayoutComponent classes).

5/23/2025 Page 4 of 10

Validate Cypher query execution in Neo4j and OWL ontology reasoning.

3.2 Integration Testing

Participants: Test Team, Developers

- Methodology: Validate interaction between subsystems (e.g., Wireframe Generation
 → Validation
 → Figma Export).
- Test REST API communication between LLM and GraphRAG.

3.3 System Testing

Participants: Test Team, Stakeholders

- Methodology: End-to-end workflows (e.g., natural language input → wireframe → Figma export).
- Validate compliance with UI/UX principles (Visibility, Accessibility, Consistency).

4. Test Environment

Hardware:

Standard PC/laptop (8GB RAM, 256GB storage).

Software:

• Neo4j 5.0+, Protégé, OpenAl API, Figma API.

Network:

Stable internet for API calls and cloud infrastructure (Google Cloud Platform).

5. Schedule

Testing Activities	Begin	End
Unit Testing	01-Mar-2025	15-Mar-2025
Integration Testing	16-Mar-2025	30-Mar-2025
System Testing	01-Apr-2025	15-Apr-2025
Final Review	16-Apr-2025	20-Apr-2025

6. Control Activities

- Weekly review meetings with the Project Manager and Test Team.
- Bug-tracking using JIRA.

7. Functions to be Tested

1. Wireframe Generation (SRS 4.1)

5/23/2025 Page 5 of 10

- 2. **Design Validation** (SRS 4.2)
- 3. Export to Figma (SRS 4.4)
- 4. Knowledge Graph Management (SRS 4.5)

8. Functions not to be Tested

- Interactive Prototypes (Out-of-scope per SRS).
- Domain-Specific Requirements (Exceeds ontology scope).

9. Test Case Design and Description

Test Case 1:

```
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#</a>
PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>
PREFIX onto:
<a href="http://www.semanticweb.org/asifcomputer/ontology/2025/ui_ux_automation#">http://www.semanticweb.org/asifcomputer/ontology/2025/ui_ux_automation#</a>
SELECT ?component
WHERE {
?component a onto:DateTimeInputComponent;
}
Result: DateTimePickerJapanese
```

5/23/2025 Page 6 of 10

Test Case 2:

```
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#>
PREFIX onto:
<a href="http://www.semanticweb.org/asifcomputer/ontology/2025/ui_ux_automation#">http://www.semanticweb.org/asifcomputer/ontology/2025/ui_ux_automation#>
SELECT ?method ?accuracy
WHERE {
    ?method onto:investigatesPersona onto:ElderlyLowTechUser;
    onto:hasAccuracyRating ?accuracy.
    FILTER (?accuracy >= 4)
    }

Result:
```

5/23/2025 Page 7 of 10

10. Traceability Matrix

- UI Components → Feedback | Object Property: hasFeedback |
 Example: ButtonComponent1 → TactileFeedback
- Platforms

 Benchmarks | Object Property: hasBenchmark |
 Example: DesktopDevice1

 TimeOnTaskMetric2

11. Major Deliverables

- Test Plan Document
- Test Cases and Reports
- Traceability Matrix

12. Risks and Assumptions

Risks:

- API downtime (OpenAI, Figma).
- Scalability issues with Neo4j.

Assumptions:

5/23/2025 Page 8 of 10

- Stable internet and API access.
- Ontology reflects current UI/UX standards.

13. Exit Criteria

- All high-priority test cases passed.
- Performance benchmarks met (5-second response time).
- Security protocols validated (GDPR compliance).

14. References

Ref. No.	Document Title	Date of Release/ Publication	Document Source
RAG202 3	GraphRAG Explained: Enhancing RAG with Knowledge Graphs	2023	Medium (https://medium.com /@zilliz_learn/graphr ag-explained- enhancing-rag-with- knowledge-graphs- 3312065f99e1
OWL20 0 4	OWL Reference	Feb 10, 2004	W3C (<u>https://www.w3.org</u> /TR/ <u>owl-ref/</u>)
PROTEG E1999	Protégé: A Free, Open- Source Ontology Editor and Framework for Building Intelligent Systems	Nov 11, 1999	wikipedia: http://protege.stanford.e du

5/23/2025 Page 9 of 10

Document Title	Date of Release/ Publication	Document Source
Artificial Intelligence (AI) for User Experience (UX) Design	Aug 2023	Information Technology and People Journal
UI Design Patterns and Ontology Models for Adaptive Mobile Applications	2022	Personal and Ubiquitous Computing Journal
	Artificial Intelligence (AI) for User Experience (UX) Design UI Design Patterns and Ontology Models for Adaptive Mobile	Artificial Aug 2023 Intelligence (AI) for User Experience (UX) Design UI Design Patterns and Ontology Models for Adaptive Mobile

15. Appendices

Appendix:A: Glossary

Appendix B: Workflow Diagrams (from SRS)

5/23/2025 Page 10 of 10