Diabetes Study

Exploratory Analysis & Statistical Inference

What is Diabetes?

348,500

New Zealanders have diabetes

100,000

are predicted to have prediabetes or are at risk

67

people per day are developing diabetes in Aotearoa New Zealand

70-90%

is how much type 2 diabetes in Aotearoa New Zealand is projected to increase within the next 20 years

\$3.5bn

is how much diabetes
will cost us every
year if we don't turn
the tide

Dataset source and description

- 'diabetes_prediction_dataset.csv' dataset
- Obtained from Kaggle by author Mohammed Mustafa
- Containing 100,000 unique patient records
- Collection of medical and demographic patient data
- Comprising of a mixture of categorical, binary, and continuous variables

Dataset source and description

Features:

- Age
- BMI
- Hypertension
- Heart Disease
- Smoking History
- HbA1c Level
- Blood Glucose Level
- Diabetes (dependant variable)

Dataset source and description

- Tidiness?
- Statistical Measures?
- Authenticity?

Research Intent

Purpose

- To explore the relationships between demographic, lifestyle, and health-related factors associated with diabetes, and heart disease
- Identify patterns and correlations between these factors

Data Exploration, Analysis and Testing

- Statistical inference
- Hypothesis testing and p-values
- R Studio
 - Packages:
 - "here"
 - "ggplot2"
 - "dplyr"

- Missing Values
- Data Validation

```
{r}
MissingValuesCheck <- function(columnData) {

# Count actual missing values
missingValues <- sum(is.na(columnData))

# Count common placeholder strings
placeholderMissingValues <- sum(columnData %in% c("N/A", "NA", "null", "missing",
"Unknown", "unknown", ""))

# Return total sum
return(missingValues + placeholderMissingValues)
}</pre>
```

Gender

- "Other" values observed
- 0.02% of dataset population

```
[1] "Female" "Male" "Other"

Female Male Other 58552 41430 18

Female Male Other 58.55 41.43 0.02

Female Male 58552 41430 [1] 0
```

Age

- Plausibility check required
- No values lower than 0
- No values greater than 120

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.08 24.00 43.00 41.89 60.00 80.00
[1] 0
```

Hypertension, Heart Disease and Diabetes.

Check for non-binary values

[1] 0 1 [1] 0

Smoking History

- "No Info" category identified
- 35% of population
- Potentially overlapping features

```
[1] "never"
                  "No Info"
                                "current"
                                              "former"
                                                             "ever"
                                                                           "not
current"
[1] 0
                                                    No Info not current
                             former
    current
                   ever
                                          never
                               9352
                                                       35810
       9286
                   4003
                                          35092
                                                                    6439
```

BMI

Plausibility validation

BMI Category	BMI Range
Underweight	Below 18.5
Healthy	18.5 – 24.9
Overweight	25.0 – 29.9
Obesity	30.0 or above

BMI

Plausibility validation

```
# Check bmi col for biologically impossible or inplausible values (less than 0 or greater than 120)

# BMI standard deviatio ncheck

sd(diabetesDF$bmi)

# Check for missing values

missingvaluesCheck(diabetesDF$bmi)

# No missing values, but some extremities, so need to see counts of implausible values

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.01 23.63 27.32 27.32 29.58 95.69

[1] 6.636853
[1] 0
```

BMI

Plausibility validation

```
[1] 6.636853
[1] 8492
underweightObservations
 [9.5,10.5) [10.5,11.5) [11.5,12.5) [12.5,13.5) [13.5,14.5) [14.5,15.5) [15.5,16.5) [16.5,17.5) [17.5,18.5)
                                           205
                                                                 1389
                                                                            2011
                                                      571
                                                                                        2070
                                                                                                    2119
                                                                                                 # Count of obese observations
sum(diabetesDF$bmi > 40)
                                                                                                 A < X</p>
[1] 4593
```

HbA1c Level

Blood Glucose Level

Plausibility check

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 100.0 140.0 138.1 159.0 300.0

[1] 0

**

# Count observations with blood_glucose_level > 240 sum(diabetesDF$blood_glucose_level > 240)

[1] 2038
```


Descriptive Exploration

Inter-feature relationships

Analysis Summary

Inferential Analysis

- Utilising hypothesis testing methods
- 5% significance level
- p-values below this considered statistically significant
- Consistent with common health-related research practices

Hypotheses:

- BMI differs between diabetic and non diabetic individuals
- Heart disease presence differs between gender
- Heart disease presence differs between smoking status
- Heart disease and diabetes occur independently

- Ho: The BMI mean is the same for diabetics and non-diabetics
- H₁: The BMI mean differs between diabetics and non-diabetics

- Ho: The BMI mean is the same for diabetics and non-diabetics
- H₁: The BMI mean differs between diabetics and non-diabetics

diabetes <int></int>	n <int></int>	mean_bmi <dbl></dbl>	sd_bmi <dbl></dbl>	
0	91482	26.88707	6.373428	
1	8500	31.98838	7.558371	

- H₀: The BMI mean is the same for diabetics and non-diabetics
- H₁: The BMI mean differs between diabetics and non-diabetics

```
data: bmi by diabetes
t = -60.266, df = 9655.2, p-value < 2.2e-16
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
    -5.267241 -4.935390
sample estimates:
mean in group 0 mean in group 1
    26.88707    31.98838</pre>
```

- H₀: The BMI mean is the same for diabetics and non-diabetics
- H₁: The BMI mean differs between diabetics and non-diabetics

Hypothesis 2: Proportion of heart disease cases differs between genders.

- H_o: The proportion of heart disease cases is the same across genders
- H₁: The proportion of heart disease cases differs between genders.

Hypothesis 2: Proportion of heart disease cases differs between genders.

- H₀: The proportion of heart disease cases is the same across genders
- H₁: The proportion of heart disease cases differs between genders.

```
0 1
Female 56990 1562
Male 39050 2380

0 1
Female 97.332286 2.667714
Male 94.255371 5.744629
```

Hypothesis 2: Proportion of heart disease cases differs between genders.

- H₀: The proportion of heart disease cases is the same across genders
- H₁: The proportion of heart disease cases differs between genders.

Pearson's Chi-squared test with Yates' continuity correction

data: genderVHeartDiseaseCrossTab
X-squared = 605.7, df = 1, p-value < 2.2e-16</pre>

Hypothesis 2: Proportion of heart disease cases differs between genders.

- H₀: The proportion of heart disease cases is the same across genders
- H₁: The proportion of heart disease cases differs between genders.

Pearson's Chi-squared test with Yates' continuity correction

data: genderVHeartDiseaseCrossTab
X-squared = 605.7, df = 1, p-value < 2.2e-16</pre>

Hypothesis 3: Proportion of heart disease cases differs between smoking histories.

- H₀: The proportion of heart disease cases is the same across smoking histories
- H₁: The proportion of heart disease cases differs between smoking histories.

Hypothesis 3: Proportion of heart disease cases differs between smoking histories.

- H₀: The proportion of heart disease cases is the same across smoking histories
- H₁: The proportion of heart disease cases differs between smoking histories.

	0	1	1
current	8877	409	9
ever	3690	31	3
former	8444	908	8
never	33995	1097	7
No Info	34887	92	3
not current	6147	292	2
		0	1
current	95.595	520	4.404480
ever	92.180	864	7.819136
former	90.290	847	9.709153
never	96.873	931	3.126069
No Info	97.422	508	2.577492
not current	95.465	134	4.534866

Hypothesis 3: Proportion of heart disease cases differs between smoking histories.

- H₀: The proportion of heart disease cases is the same across smoking histories
- H₁: The proportion of heart disease cases differs between smoking histories.

Pearson's Chi-squared test

data: smokingVHeartDiseaseCrossTab
X-squared = 1229.1, df = 5, p-value < 2.2e-16</pre>

Hypothesis 3: Proportion of heart disease cases differs between smoking histories.

- H₀: The proportion of heart disease cases is the same across smoking histories
- H₁: The proportion of heart disease cases differs between smoking histories.

Pearson's Chi-squared test

data: smokingVHeartDiseaseCrossTab
X-squared = 1229.1, df = 5, p-value < 2.2e-16</pre>

Hypothesis 4: Heart disease and diabetes are independent conditions

- Ho: Heart disease and diabetes are independent conditions
- H1: Heart disease and diabetes are not independent

Hypothesis 4: Heart disease and diabetes are independent conditions

- Ho: Heart disease and diabetes are independent conditions
- H1: Heart disease and diabetes are not independent

```
0 1
0 88807 7233
1 2675 1267

0 1
0 92.468763 7.531237
1 67.858955 32.141045
```

Hypothesis 4: Heart disease and diabetes are independent conditions

- Ho: Heart disease and diabetes are independent conditions
- H₁: Heart disease and diabetes are not independent

Pearson's Chi-squared test with Yates' continuity correction

data: diabetesVHeartDiseaseCrossTab
X-squared = 2945, df = 1, p-value < 2.2e-16</pre>

Hypothesis 4: Heart disease and diabetes are independent conditions

- Ho: Heart disease and diabetes are independent conditions
- H₁: Heart disease and diabetes are not independent

Pearson's Chi-squared test with Yates' continuity correction

data: diabetesVHeartDiseaseCrossTab
X-squared = 2945, df = 1, p-value < 2.2e-16</pre>

Conclusion(s)

- Diabetic individuals exhibited a substantially higher BMI mean than non-diabetics (p < 0.05)
- Heart disease prevalence was significantly higher among males (p < 0.05)
- Heart disease prevalence was moderately higher among individuals who reported any smoking history (p < 0.05)
- Diabetes and heart disease were found to be strongly related (p < 0.05)

Future Analysis

- Dataset authenticity
- Dataset features
- Predictive modelling
- Logistic Regression

References

- https://www.diabetes.org.nz/
- https://www.nhlbi.nih.gov/calculate-your-bmi
- https://pmc.ncbi.nlm.nih.gov/articles/PMC1890993/
- https://diabetes.org/about-diabetes/a1c
- https://www.cdc.gov/diabetes/treatment/treatment-low-blood-sugarhypoglycemia.html#:~:text=If%20your%20blood%20sugar%20drops,treat%20severely%20low%20blood%20sugar
- https://www.mayoclinic.org/diseases-conditions/diabetes/diagnosis-treatment/drc-20371451
- https://diabetes.org/living-with-diabetes/treatment-care/hyperglycemia