

Seminar WS 2020/2021 A Survey on Hierarchical Structure-based Networks for Learning from Point Cloud

Nishan Tamang

n_tamang19@cs.uni-kl.de

Supervisor: Ramy Battrawy

Outline:

- Motivation
- Methods:
 - Kd-networks
 - SO-Net
 - Octree guided network
 - A-CNN
- Results and Comparisons
- Conclusion

LeCun et al., 1998

Krizhevsky et al., 2012

- 3D data can be obtained from,
 - LiDAR, RGB-D cameras and stereo imaging systems.

ModelNet10 dataset [1]

- Problems with Point Clouds:
 - Invariant to point ordering (permutation invariant).
 - Sparse amount of data points.
 - Unknown number of points.
 - Invariant to rotation.

- 3D Convolutional Networks:
 - Rasterize 3D data to voxel grids.
 - Sparsity of the 3D data.
 - Increase in processing time (computational cost).
 - Excessive memory usage.

Construction of Voxel-grids on 3D point clouds [2].

Solution:

 Build a network based on the construction of different hierarchical structures (kd-tree, octree etc.).

Kd-networks:

• Constructs Kd-network based on the Kd-tree structure of the input point clouds.

$$\mathbf{v}_{i} = \begin{cases} \phi(W_{\mathbf{x}}^{l_{i}}[\mathbf{v}_{c_{1}(i)}; \mathbf{v}_{c_{2}(i)}] + \mathbf{b}_{\mathbf{x}}^{l_{i}}), & \text{if } d_{i} = \mathbf{x}, \\ \phi(W_{\mathbf{y}}^{l_{i}}[\mathbf{v}_{c_{1}(i)}; \mathbf{v}_{c_{2}(i)}] + \mathbf{b}_{\mathbf{y}}^{l_{i}}), & \text{if } d_{i} = \mathbf{y}, \\ \phi(W_{\mathbf{z}}^{l_{i}}[\mathbf{v}_{c_{1}(i)}; \mathbf{v}_{c_{2}(i)}] + \mathbf{b}_{\mathbf{z}}^{l_{i}}), & \text{if } d_{i} = \mathbf{z}, \end{cases}$$

or in short form:

$$\mathbf{v}_i = \phi(W_{d_i}^{l_i}[\mathbf{v}_{c_1(i)}; \mathbf{v}_{c_2(i)}] + \mathbf{b}_{d_i}^{l_i}).$$
$$\mathbf{v}_0(\mathcal{T}) = W^0 \mathbf{v}_1(\mathcal{T}) + \mathbf{b}^0$$

Kd-network for classification [3].

Kd-networks:

Extension for Segmentation [3]:

$$\tilde{\mathbf{v}}_{c_1(i)} = \phi([\tilde{W}_{d_{c_1(i)}}^{l_i} \tilde{\mathbf{v}}_i + \tilde{\mathbf{b}}_{d_{c_1(i)}}^{l_i}; S^{l_i} \mathbf{v}_{c_1(i)} + \mathbf{t}^{l_i}]),$$

$$\tilde{\mathbf{v}}_{c_2(i)} = \phi([\tilde{W}_{d_{c_2(i)}}^{l_i} \tilde{\mathbf{v}}_i + \tilde{\mathbf{b}}_{d_{c_2(i)}}^{l_i}; S^{l_i} \mathbf{v}_{c_2(i)} + \mathbf{t}^{l_i}]),$$

Kd-networks:

Properties:

- Layerwise parameter sharing.
- Hierarchical Representation.
- Partial invariance to jitter.
- Low memory footprint for segmentation tasks.

Limitations:

- Non-invariant to rotation.
- Performance depends on the tree construction.

SO-Net:

The SO-Net architecture for classification and segmentation [4].

SO-Net:

Chamfer Loss:

Autoencoder consisting of the decoder network to recover the input point cloud given the global feature vector [4].

Octree guided CNN with Spherical Convolutional Kernels (**Ψ**-CNN):

Octree guided CNN (Ψ-CNN) where the raw input point cloud is processed using octree space partitioning. The spherical convolutional kernel is applied between the layers of the network [5].

Octree guided CNN with Spherical Convolutional Kernels (平-CNN):

Octree space partitioning on point clouds in 3D space. The resulting Ψ -CNN has the same depth as the corresponding partitioned tree and learns spherical convolutional kernels for feature extraction [5].

Octree guided CNN with Spherical Convolutional Kernels (**Ψ**-CNN):

Classification and Segmentation using the root representation and features from the layers of Ψ-CNN [5].

- Uses Annular Convolutions on 3D point clouds
- Captures local neighborhood geometry of each point by specifying the ring-shaped structures and directions in the computation.
- Types of rings: Regular and Dilated rings.

A-CNN on point clouds [6].

Regular and Dilated rings:

Ordering Neighboring Points:

Annular Convolutions on a ring. Projection of points on a tangent plane and ordering of neighboring points in counterclockwise ordering [6].

- Ordering Neighboring Points:
 - Normal estimation of point clouds:

$$\mathbf{C} = \frac{1}{K} \sum_{j=1}^{K} (\mathbf{x}_j - \mathbf{q}_i) \cdot (\mathbf{x}_j - \mathbf{q}_i)^T,$$

$$\mathbf{C} \cdot \mathbf{v}_{\gamma} = \lambda_{\gamma} \cdot \mathbf{v}_{\gamma}, \gamma \in \{0, 1, 2\},$$

Orthogonal Projection:

$$\mathbf{p}_j = \mathbf{x}_j - ((\mathbf{x}_j - \mathbf{q}_i) \cdot \mathbf{n}_i) \cdot \mathbf{n}_i, \quad j \in \{1, ..., K\}.$$

0

Ordering Neighboring Points:

Counter-clockwise ordering

$$cos(\theta_{\mathbf{p}_j}) = \frac{\mathbf{c} \cdot (\mathbf{p}_j - \mathbf{q}_i)}{||\mathbf{c}|| ||\mathbf{p}_j - \mathbf{q}_i||}.$$

$$sign_{\mathbf{p}_{i}} = (\mathbf{c} \times (\mathbf{p}_{j} - \mathbf{q}_{i})) \cdot \mathbf{n}_{i}, \tag{4}$$

where $sign_{\mathbf{p}_j} \geq 0$ is $\theta_{\mathbf{p}_j} \in [0^\circ, 180^\circ]$, and $sign_{\mathbf{p}_j} < 0$ is $\theta_{\mathbf{p}_j} \in (180^\circ, 360^\circ)$.

$$\angle_{\mathbf{p}_j} = \begin{cases} -\cos(\theta_{\mathbf{p}_j}) - 2 & sign_{\mathbf{p}_j} < 0 \\ \cos(\theta_{\mathbf{p}_j}) & sign_{\mathbf{p}_j} \ge 0. \end{cases}$$

• Architecture:

A-CNN for Classification and Segmentation [6].

Results and Comparisons:

	Classification				Segmentation
	ModelNet10		ModelNet40		ShapeNet
Methods	Class Accuracy	Instance Accuary	Class Accuarcy	Instance Accuracy	mloU
Kd-Network [3]	92.8	93.8	86.3	90.6	82.3
SO-Net [4]	93.9	94.1	87.3	90.9	84.9
Ψ-CNN [5]	94.4	94.6	88.7	92.0	86.8
A-CNN [6]	95.3	95.5	90.3	92.6	85.9

- [3] Klokov et al., Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models, ICCV 2017.
- [4] Li et al. SO-Net: Self-organizing network for point cloud analysis, CVPR 2018.
- [5] Lei et al. Octree guided CNN with Spherical Kernels for 3D Point Clouds, CVPR 2019.
- [6] Komarichev et al., A-CNN: Annularly Convolutional Neural Networks on Point Clouds, CVPR 2019

Time and Space Complexity:

- Kd-network (Classification) [3]:
 - For depth-10 model, it can take 16 hours (ModelNet40) for training and for depth-15 model, it took upto 5 days for training using an NVidia Titan Black.
 - For segmentation, the memory footprint of one example during training is less than 120 MB.
- SO-Net (For ModelNet40 classification) [4]:
 - 3 hours on ModelNet40 with GTX1080Ti.
- **Ψ**-CNN (Test-time for classification on 1K randomly selected samples from ModelNets with point clouds of size 10K) [5]:
 - Total: 34.1 ms
- A-CNN [6]:
 - Training time for segmentation: 19 hours using NVIDIA Titan Xp.
 - Size of training model: 22 MB.

^[3] Klokov et al., Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models, ICCV 2017.

^[4] Li et al. SO-Net: Self-organizing network for point cloud analysis, CVPR 2018.

^[5] Lei et al. Octree guided CNN with Spherical Kernels for 3D Point Clouds, CVPR 2019.

Conclusion:

- Network architectures based on hierarchical structures more effective and practical for point clouds.
- Depth (layer) of the network is equal to the depth of the hierarchical structures.
- A-CNN [6] with ring-structures (regular and dilated)
 outperform methods such as Kd-network [3], SO-Net [4]
 and Ψ-CNN [5] on classification.
- For segmentation, Ψ-CNN [5] outperforms other methods with the mIoU of 86.8.

^[3] Klokov et al., Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models, ICCV 2017.

^[4] Li et al. SO-Net: Self-organizing network for point cloud analysis, CVPR 2018.

^[5] Lei et al. Octree guided CNN with Spherical Kernels for 3D Point Clouds, CVPR 2019.

Thank You