Lei de Ohm e curva característica do diodo

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

28 de Março de 2017

Conteúdo

1	Resumo		
2	Objetivo		
3	Metodologia 3.1 Material Utilizado 3.2 Especificações do Multímetro digital MD-6680 3.3 Procedimento 3.3.1 Medição das Resistências	4 4 4 5 5	
	$3.3.2$ Curva Característica do Resistor (100Ω)	5 5 5	
4	Resultados 4.1 Resistor	7 7 8	
5	Análise	9	
6	Discussão	9	
7	' Conclusão		
8	Referencias	9	

Lista de Figuras

1	Circuito para medição de resistências pequenas	ţ
2	Circuito para medição de resistências grandes	(
3	Circuito de montagem do diodo na polarização direta	(
4	Circuito de montagem do diodo na polarização reversa	-

1 Resumo

2 Objetivo

O experimento "Condutividade de dispositivos" tem como principal objetivo estudar o comportamento de componentes resistivos analisando a condutividade (corrente) quando uma tensão é aplicada em seus terminais, a fim de determinar se esse dispositivo é, ou não, Ôhmico.

3 Metodologia

3.1 Material Utilizado

- 1 Resistor de 100Ω
- 1 Resistor de 10Ω
- 1 Resistor de 220Ω
- 2 multímetros
- 1 Protoboard
- 1 Diodo de silício
- 1 Fonte de tensão contínua
- Cabos de plug "banana"

3.2 Especificações do Multímetro digital MD-6680

Para a medição das **tensões**, coloca-se a chave seletora para a posição ' $V \simeq$ ' e pressiona-se o botão \mathbf{DC} conectando duas das pontas de prova nos terminais \mathbf{V} e \mathbf{COM} e as outras em paralelo com o dispositivo a ser medido.

Obs:Resistência interna do voltímetro: $R_{Vint} = 10^6 \Omega$

Resolução da escala utilizada: $\Delta V = 10^{-2} V$

Para a medição das **correntes**, coloca-se a chave seletora para a posição ' $mA \simeq$ ' e pressiona-se o botão **DC** conectando duas das pontas de prova nos terminais μ **A**, **mA** e **COM** e as outras em série com o dispositivo a ser medido. **Obs:**Resistência interna do amperímetro: $R_{Iint} = 10\Omega$

DS. resistencia interna do amperimetro. It_{Int}

Resolução da escala utilizada: $\Delta I = 10^{-4} V$

Para a medição das **resistências**, coloca-se a chave seletora para a posição ' Ω ' e pressiona-se o botão **SELECT** conectando duas das pontas de prova nos terminais $\mathbf{Hz}\ \Omega\ \mathbf{mV}$ e \mathbf{COM} e as outras em paralelo com o dispositivo a ser medido.

Obs: Resolução da escala utilizada: $\Delta\Omega = 10^{-1}\Omega$

3.3 Procedimento

3.3.1 Medição das Resistências

Com o uso do Multímetro, mediu-se as resistências nominais de $10\Omega, 100\Omega, 220\Omega$ a fim de comparar os valores obtidos e suas incertezas com o nominal.

3.3.2 Curva Característica do Resistor (100Ω)

Para levantar a curva característica (V x I) do resistor, montou-se o circuito 01 utilizando $R_p=10\Omega$ e tomou-se 21 medidas de V e I variando a tensão com o uso da Fonte entre $V_{min}=0V$ e $V_{max}=10V$ aumentando-a gradativamente em 0,5V a fim de verificar a característica ôhmica do resistor respeitando a lei de Ohm $(V=R\times I)$

3.3.3 Curva Característica do Diodo

Para a curva característica (V x I) do diodo de silício montou-se, inicialmente, o circuito 02 utilizando $R_p=10\Omega$ e tomou-se 5 medidas de V e I variando a tensão entre $V_{min}=-10V$ e $V_{max}=0V$ (polarização reversa) e 3 medidas variando a tensão entre $V_{min}=0,2V$ e $V_{max}=0,5V$ (polarização direta).

Montou-se o circuito 03 utilizando $R_p=220\Omega$ e tomou-se 8 medidas de V e I variando a tensão entre $V_{min}=0,5V$ e $V_{max}=0,75V$.

Obs:Para tensões acima de 0V foi realizada uma redução do intervalo de medição bem como a troca do circuito para tensões acima de 0,5V pois sabe-se que o intervalo de disparo do diodo encontra-se entre 0V e 1V, no qual ocorre um crescimento exponencial da corrente elétrica.

3.4 Circuitos Utilizados

Figura 1: Circuito para medição de resistências pequenas

Figura 2: Circuito para medição de resistências grandes

Figura 3: Circuito de montagem do diodo na polarização direta

Figura 4: Circuito de montagem do diodo na polarização reversa

4 Resultados

4.1 Resistor

U(V)	i(A)
0.001	0.001
0.506	0.00489
1.014	0.01004
1.503	0.01497
1.944	0.01957
2.533	0.02549
3.004	0.03002
3.528	0.03551
3.951	0.03978
4.517	0.04541
4.929	0.04940
5.415	0.05450
5.916	0.05916
6.460	0.06490
6.98	0.07001
7.55	0.07580
7.99	0.08020
8.48	0.08520
9.06	0.09090
9.45	0.09490
10.10	0.10140

4.2 Diodo

U(V)	i(A)
0	-0.5
0.27	0.02
0.47	0.12
0.55	0.16
0.59	1.13
0.65	6.73
0.67	8.47
0.70	17.18
0.71	25.24
0.72	26.24
0.73	43.15
0.74	43.15

5 Análise

6 Discussão

7 Conclusão

8 Referencias

- \bullet ICEL. Manual de Instruções do Multímetro Manual de Bancada Modelo MD-6880
- $\bullet\,$ Minipa. Fonte de Alimentação Regulada MLP-1303M