Supplementary Material for NeurIPS Rebuttal

Supplementary Material for NeurIPS Rebuttal

Correpondance between the quantized activation and the quantized objective function

Correpondance between the quantized activation and the quantized objective function

For the answer of the question 1 and 2, we insist the quantization of an objective function and the activation function is almost equivalent.

First, we consider the following quantization for an objective function $f: \mathbf{R}^d \to \mathbf{R}$ with respect to an activation function as follows:

$$f = \sum_{k=0}^{\infty} f_k b^{n-k} = \sum_{k=0}^{m-1} f_k b^{n-k} + \sum_{k=m}^{\infty} f_k b^{n-k} = f^Q + O(b^m), \quad \therefore f^Q = \sum_{k=0}^{m} f_k b^{n-k}, \tag{1}$$

where $b \in \mathbf{Z}^+$ denotes the base of the number system for quantization, and $f_k \in \mathbf{Z}^+[0,b)$ denotes a coefficient for b^{n-k} . Hence considering a binary number system such that b=2, we note that $f_i \in \{0,1\} \forall i \in \mathbf{Z}^+$.

Assume that there exist a neural network contains l layers which contain the map $\boldsymbol{h}^l:\mathbf{R}^m\to\mathbf{R}^d$ consisted with the activation function $h_i^l:\mathbf{R}\to\mathbf{R}^d$ at the i-th node in the l-th Layer such that $h_i^l(y)\triangleq h_i^l(\boldsymbol{w}_i\boldsymbol{h}^{l-1}),\;\boldsymbol{h}=[h_i^l]_{i=1}^d$ where $\boldsymbol{w}_i\in\mathbf{R}^m,\;[w_i^j]\in\mathbf{R}^{d\times m}$ denotes the weight vector for the i th node.

Additionally, we let a quantized activation function $\boldsymbol{h}^{lQ}_{s_q}$ with the quantization step defined as the reciprocal of the quantization parameter $\boldsymbol{Q}_p^{-1} \in \mathbf{Q}^d$ such that $\boldsymbol{h}^{lQ}_{s_q} = \boldsymbol{h}^{lQ}_0 + s_q \boldsymbol{Q}_p^{-1}, \ s_q \in \mathbf{Z}$, where each component of \boldsymbol{Q}_p^{-1} , i.e. $Q_{p,i}^{-1}$ represents one of the elements to the set $\{-Q_p^{-1},0,Q_p^{-1}\}$.

Consider the second-order Taylor series for the objective function f. Particularly, we set $s_q=1$ for convenience, then

$$f(\mathbf{h}_{1}^{Q}) = f(\mathbf{h}_{0}^{Q}) + \nabla_{\mathbf{h}} f(\mathbf{h}_{0}^{Q}) \cdot \mathbf{Q}_{p}^{-1} + \frac{1}{2} \mathbf{Q}_{p}^{-1} \cdot \nabla_{\mathbf{h}}^{2} f(\mathbf{h}_{0}^{Q}) \cdot \mathbf{Q}_{p}^{-1} + O(\|\mathbf{Q}_{p}^{-1}\|^{3})$$

$$\approx \bar{f}(\mathbf{h}_{1}^{Q}) + O(\mathbf{Q}_{p}^{-3}),$$
(3)

where
$$ar{f}(m{h}_{\ 1}^{l\,Q}) riangleq f(m{h}_{\ 0}^{l\,Q}) +
abla_{m{h}} f(m{h}_{\ 0}^{l\,Q}) \cdot m{Q}_p^{-1} + rac{1}{2} m{Q}_p^{-1} \cdot
abla_h^2 f(m{h}_{\ 0}^{l\,Q}) \cdot m{Q}_p^{-1}.$$

Assume that the quantization step Q_p^{-1} is sufficiently small such that $[O(\|Q_p^{-1}\|^3)]^Q=0$. Then, we calculate the Taylor expansion of the quantization of f such that

$$\begin{split} f^{Q}(\boldsymbol{h}_{1}^{lQ}) &= f^{Q}(\boldsymbol{h}_{0}^{lQ}) + \left[\nabla_{\boldsymbol{h}} f(\boldsymbol{h}_{0}^{lQ})\right]^{Q} \cdot \boldsymbol{Q}_{p}^{-1} + \frac{1}{2} \boldsymbol{Q}_{p}^{-1} \cdot \left[\nabla_{h}^{2} f(\boldsymbol{h}_{0}^{lQ})\right]^{Q} \cdot \boldsymbol{Q}_{p}^{-1} + [O(\|\boldsymbol{Q}_{p}^{-1}\|^{3})]^{Q} \\ &= f(\boldsymbol{h}_{0}^{lQ}) + \varepsilon_{q} Q_{p}^{-1} + \left(\nabla_{h} f(\boldsymbol{h}_{0}^{lQ}) + \varepsilon_{q} Q_{p}^{-1}\right) \cdot \boldsymbol{Q}_{p}^{-1} + \frac{1}{2} \boldsymbol{Q}_{p}^{-1} \cdot \left(\nabla_{h}^{2} f(\boldsymbol{h}_{0}^{lQ}) + \varepsilon_{q} Q_{p}^{-1}\right)^{Q} \cdot \boldsymbol{Q}_{p}^{-1} + [O(\|\boldsymbol{Q}_{p}^{-1}\|^{3})]^{Q} \\ &= f(\boldsymbol{h}_{0}^{lQ}) + \nabla_{h} f(\boldsymbol{h}_{0}^{lQ}) \cdot \boldsymbol{Q}_{p}^{-1} + \frac{1}{2} \boldsymbol{Q}_{p}^{-1} \cdot \nabla_{h}^{2} f(\boldsymbol{h}_{0}^{lQ}) \cdot \boldsymbol{Q}_{p}^{-1} + \varepsilon_{q} Q_{p}^{-1} + O(|\varepsilon_{q} \cdot \boldsymbol{Q}_{p}^{-1}|^{2}) \\ &= \bar{f}(\boldsymbol{h}_{1}^{lQ}) + \varepsilon_{q} Q_{p}^{-1} + O(|\varepsilon_{q} \cdot \boldsymbol{Q}_{p}^{-1}|^{2}) \\ &\approx \bar{f}^{Q}(\boldsymbol{h}_{1}^{lQ}) + O(Q_{p}^{-2}). \end{split}$$

As shown in (3) and (4), we get

$$|f(\boldsymbol{h}_{1}^{lQ}) - \bar{f}(\boldsymbol{h}_{1}^{lQ})| \approx |f^{Q}(\boldsymbol{h}_{1}^{lQ}) - \bar{f}^{Q}(\boldsymbol{h}_{1}^{lQ})| + O(Q_{p}^{-2}).$$
 (2)

Consequently, if Q_p^{-1} is sufficiently small, the objective function calculated from the quantized activation is almost equivalent to the quantization of the objective function.

This result demonstrates that we can develop a learning equation based on the quantized objective function that is equivalent to the learning equation based on the quantized activation.