Отчет по лабораторной работе N_{2} 7 Вариант N_{2} 3

Винницкая Дина Сергеевна

Группа: Б9122-02-03-01сцт

Цель работы

- 1. Определить примерный интервал в котором может располагаться необходимый корень
- 2. Численно найти решение тремя известными методами
- 3. Сформировать сравнительную таблицу, отражающую сходимость методов
- 4. Сделать вывод о проделанной работе

Входные данные:

1. Уравнение: $0 = 2^x - 2x^2 - 1$

Определение области рассмотрения

Для функции $2^x - 2x^2 - 1$ необходимо определить область рассмотрения, учитывая особенности экспоненциальной и полиномиальной функций.

Определение области рассмотрения

- Для начала, исследуем корни полинома. Простейший способ найти корень полинома это приравнять его к нулю и решить полученное уравнение. В данном случае, уравнение можно численно решить, и находится, что корень приблизительно равен 1.44.
- Поскольку полином третьей степени быстро возрастает, а экспонента быстро убывает в положительной области, положительный корень уравнения находится не сильно дальше от 1.44.
- Следовательно, пока что возьмем промежуток [0,3, 1,5] для определения области рассмотрения функции.

Отрицательный корень

• Также существует еще один корень уравнения, который находится в отрицательной области. В этой области полином третьей степени стремительно уходит в отрицательную бесконечность. Однако, учитывая свойства показательной функции, можно сделать вывод о том, что где-то существует и отрицательный корень, но в данной ситуации поиск его не представляется необходимым

Реализация методов

Метод Хорд

Это численный метод для приближенного нахождения корня нелинейного уравнения. Он основан на идее использования хорды (отрезка, соединяющего две точки на графике функции), чтобы приблизиться к корню.

Рис. 1: График функции и ее первой и второй производной

```
def chord_method(eps, lst: list):
       table = PrettyTable()
2
       counter = 1
3
       b = lst[1]
       x_{prev} = lst[0]
       x_next = x_prev - (b - x_prev) * function(x_prev)
6
       / (function(b) - function(x_prev))
       table.add_row([counter, x_next])
       while abs(x_next - x_prev) > eps:
10
           x_prev = x_next
11
           x_next = x_prev - (b - x_prev) * function(x_prev)
           / (function(b) - function(x_prev))
13
           counter += 1
14
           table.add_row([counter, x_next])
15
16
       print(table.get_string(border=True, header=False, hrules=1))
17
       return x_next
18
```

Обозначения

• ерз - значение погрешности, используемое для остановки итераций (то есть критерий остановки

метода).

- lst список значений, представляющих начальный отрезок для метода.
- counter переменная, отвечающая за отслеживание количества итераций.
- b второй элемент списка lst.
- х prev первый элемент списка lst.
- x next вычисляемое следующее приближение корня уравнения

Алгоритм

- 1. Вычисляется новое значение x_n next на основе текущего приближения x_p rev и значения функции в точке x_p prev.
- 2. Затем проверяется условие остановки: (|x| next |x| prev|x| prev
- 3. Если условие не выполнено, то происходит обновление x_prev , вычисление нового x_next и увеличение счетчика итераций.
- 4. После завершения итераций выводится таблица с результатами итераций, сгенерированная с помощью метода get_string объекта table.
- 5. Наконец, возвращается последнее найденное значение x_next , которое является приближенным значением корня уравнения.

Таблица значений

TT	n	T.T.	n
Итерация	Значение	Итерация	Значение
1	0.322541193046703	21	0.3991525127269086
2	0.3409645084710158	22	0.39918859088335995
3	0.3555675656565128	23	0.39921452106708516
4	0.36686352496279695	24	0.3992331568543878
5	0.3754373981027205	25	0.3992465498018522
6	0.3818520031969649	26	0.39925617466842017
7	0.3865995358189016	27	0.39926309148370676
8	0.39008519745005094	28	0.39926806212635957
9	0.3926293522424672	29	0.3992716341575618
10	0.3944783323328586	30	0.3992742010951745
11	0.3958178893602863	31	0.3992760457431182
12	0.3967861773641209	32	0.3992773713364518
13	0.39748494883616114	33	0.3992783239267496
14	0.3979886248743356	34	0.39927900847063347
15	0.3983513657463251	35	0.39927950039227667
16	0.398612446298662	36	0.3992798538929168
17	0.39880027425661835	37	0.3992801079224546
18	0.3989353593985572	38	0.3992802904708603
19	0.39903248985084655	39	0.3992804216521015
20	0.3991023181845276	40	0.3992805159203268

Таблица 1: Значения итераций метода Хорд

Рис. 2: График значений

• Как можно заметить из представленного графика - метод сходится к 9 итерации

Метод Ньютона

```
def newton_method(eps, x0):
1
      table = PrettyTable()
2
      count = 1
3
      x_prev = x0
      x_next = x_prev - function(x_prev) / derivative_function(x_prev)
5
      table.add_row([count, x_next])
6
      while abs(x_next - x_prev) > eps:
           count += 1
           x_prev = x_next
10
           x_next = x_prev - function(x_prev) / derivative_function(x_prev)
11
           table.add_row([count, x_next])
      print(table.get_string(border=True, header=False, hrules=1))
13
      return x_next
14
```

Обозначения

- ерз значение погрешности, используемое для остановки итераций (критерий остановки метода).
- х0 начальное приближение для корня.
- count переменная, отслеживающая количество итераций.
- x_prev предыдущее приближение.
- x_next вычисляемое следующее приближение корня уравнения на основе предыдущего значения и значений функции и её производной.

Алгоритм

- 1. Выбирается начальное приближение x_0 .
- 2. Вычисляется следующее приближение по формуле:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

3. Процесс повторяется до тех пор, пока разница между последовательными приближениями не станет меньше заданной точности ϵ .

Значения

Итерация	Значение
1	0.8386350669976804
2	0.5463059242914783
3	0.42988681718031907
4	0.401281869581121
5	0.39929052760214123
6	0.3992807568969161
7	0.3992807566616375

Таблица 2: Значения итераций метода Ньютона

Сходимость

(4, 0.401)

Рис. 3: График сходимости

• Как можно заметить, метод Ньютона сходится к 4 итерации.

Метод Бисекции Метод бисекции (или метод деления пополам) — это численный метод для нахождения корней уравнений вида f(x) = 0. Этот метод требует, чтобы функция f(x) была непрерывной на интервале [a,b] и чтобы значения функции на концах этого интервала имели разные знаки (т.е., f(a) и f(b) должны иметь противоположные знаки).

```
def bisection_method(eps, lst: list):
       1 = lst[0]
2
       r = lst[1]
3
       c = 0
       count = 1
       x_prev = r
6
       x_next = c
       while abs(x_next - x_prev) > eps:
           c = (r + 1) / 2
           if function(c) * function(l) > 0:
10
                1 = c
11
           elif function(c) * function(r) > 0:
13
           x_prev = x_next
14
           x_next = c
15
           print(count, x_next)
16
17
           count += 1
       return x_next
18
```

Обозначения

- ps значение погрешности, используемое для остановки итераций (то есть критерий остановки метода).
- lst список значений, представляющих начальный отрезок для метода.
- 1 левый конец начального отрезка.
- г правый конец начального отрезка.
- с середина отрезка.
- count переменная, отвечающая за отслеживание количества итераций.
- x_prev и x_next переменные для хранения предыдущего и следующего приближенных значений корня.

Алгоритм

- 1. Выбирается начальный интервал [a, b], в котором функция меняет знак.
- 2. Вычисляется середина интервала $c = \frac{a+b}{2}$.
- 3. Проверяется знак функции в точке c:
 - ullet Если f(c) имеет тот же знак, что и f(a), то c становится новой левой границей интервала.
 - ullet Если f(c) имеет тот же знак, что и f(b), то c становится новой правой границей интервала.
- 4. Процесс повторяется до тех пор, пока длина интервала не станет меньше заданной точности ϵ .

Значения

Итерация	Значение	Итерация	Значение
1	1.0	13	1.4998779296875
2	1.25	14	1.49993896484375
3	1.375	15	1.499969482421875
4	1.4375	16	1.4999847412109375
5	1.46875	17	1.4999923706054688
6	1.484375	18	1.4999961853027344
7	1.4921875	19	1.4999980926513672
8	1.49609375	20	1.4999990463256836
9	1.498046875	21	1.4999995231628418
10	1.4990234375	22	1.499999761581421
11	1.49951171875	23	1.4999998807907104
12	1.499755859375	24	1.4999999403953552

Таблица 3: Значения итераций метода Бисекций

Сходимость

Рис. 4: График сходимости

• Исходя из приведенного графика можно сделать вывод о том, что метод бисекции сходится к 7 итерации

Заключение

В результате проделанной работы можно сделать ряд выводов:

- 1. Метод хорд сходится за 9 итераций, метод Ньютона за 4, а метод бисекций за 7.
- 2. Таким образом, в результате проделанной работы и анализу методов можно сделать вывод о том, что в данном случае метод Ньютона сошелся быстрее всех, а именно за 4 итерации.
- 3. В ходе экспериментов использовалась функция $f(x) = 2^x 2x^2 1$ с начальными условиями $x_0 = 1$ для метода Ньютона и интервалом [0.5, 2] для метода бисекций.
- 4. Вычислительная точность была задана как $\epsilon=10^{-6},$ что обеспечило необходимую точность результатов.
- 5. Метод Ньютона показал наивысшую эффективность и быструю сходимость.
- 6. Метод хорд не требует вычисления производной, но может сходиться медленнее в зависимости от выбора начальных точек.
- 7. Метод бисекций является надежным и простым в реализации, но может потребовать больше итераций для достижения требуемой точности.