Ostfalia Hochschule für angewandte Wissenschaften

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. B. Lichte Institut für Fahrzeugsystem- und Servicetechnologien Modulprüfung Regelungstechnik BPO 2011

> SS 2015 16.06.2015

Name:
Vorname
Matr.Nr.:
Untorophrift

Zugelassene Hilfsmittel: Kurzfragen: Keine

Aufgaben: Eigene Formelsammlung DIN A4 doppelseitig

Nichtprogrammierbarer Taschenrechner

Zeit: Kurzfragen: 30 Min.

Aufgaben: 60 Min.

Punkte:

K 1	K2	К3	A 1	A2	А3	A4	Summe (max. 100)	Prozente	Note

Prozente Klausur (70%)	Prozente Labor (30%)	Gesamtnote

Bearbeitungshinweise:

- Verwenden Sie nur das ausgeteilte Papier für Ihre Rechnungen und Nebenrechnungen. Zusätzliches Papier erhalten Sie von den Aufsichtsführenden. Beschriften Sie die Deckblätter mit Namen, Matrikel-Nr. und Unterschrift.
- Existiert für eine Teilaufgabe mehr als ein Lösungsvorschlag, so wird diese Teilaufgabe mit 0 Punkten bewertet. Verworfene Lösungsansätze sind durch deutliches Durchstreichen kenntlich zu machen. Schreiben Sie keine Lösungen in roter Farbe.
- Ihre Lösung muss Schritt für Schritt nachvollziehbar sein. Geben Sie zu allen Lösungen, wenn möglich auch das zugehörige **Formelergebnis** ohne Zahlenwerte an (Punkte). Die schlichte Angabe des Zahlenergebnisses reicht i. allg. für die volle Punktzahl nicht aus.
- Lösen Sie die Heftklammern nicht.

Fakultät Fahrzeugtechnik Prof. DrIng. B. Lichte	Modulprüfung Regelungstechnik	Name:
Institut für Fahrzeugsystem- und Servicetechnologien	Kurzfragenteil	Vorname
Hilfsmittel: Keine Zeit: 30 Min.	SS 2014	Matr.Nr.:

Kurzfrage 1 – (13 Punkte) Blockschaltbild-Umformung

Bestimmen Sie für das u.a. Blockschaltbild durch Umformungen die Übertragungsfunktion $G(s) = \frac{x}{w}$.

Kurzfrage 2 – (10 Punkte) Dynamische Systeme

Ordnen Sie die in den Diagrammen dargestellten Sprungantworten folgenden Systemen zu (kurze Begründung!) und nennen Sie die Bezeichnung des Übertragungsglieds:

- (1) $\frac{1}{4s^2+5s+1}$
- (2) $\frac{s}{1+3s}$
- (3) $\frac{2}{1+2s}$
- (4) $\frac{1}{s(1+3s)}$
- (5) $\frac{1}{4s^2+s+1}$

Kurzfrage 3 – (14 Punkte) Verständnisfragen

Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind. **Falsche** Antworten führen zu einem **Punktabzug**.

Aussage	richtig	falsch			
Welches Kriterium kann zur Beurteilung der Stabilität eines Systems genutzt werden, wenn das System eine Totzeit enthält?					
Das Routh-Kriterium.					
2. Amplituden- und Phasenreserve.					
Das vereinfachte Nyquist-Kriterium.					
4. Das allgemeine Nyquist-Kriterium.					
Das vereinfachte Nyquist-Kriterium darf angewendet werden, auch wenn d Regelkreis	ler offene				
5. einen instabilen Pol besitzt.					
6. eine Totzeit aufweist.					
7. einen Pol im Ursprung, also bei <i>s=0</i> besitzt.					
Für ein Verzögerungsglied 2. Ordnung (P-T ₂ -Glied) mit der Dämpfung D gi	lt:				
8. Für <i>D</i> < 1 ist das System nicht schwingungsfähig.					
9. Für <i>D</i> > 1 besitzt das System zwei verschiedene reelle Pole.					
10. Für $D = 1$ entspricht das System der Reihenschaltung zweier P-T1-Glieder					
Ein System besitzt die Übertragungsfunktion $G(s) = \frac{1}{1+s}$ und wird durch ein Sinus-förmiges Signal angeregt. Wie verhalten sich Amplitude und Phase des Ausgangssignals?					
11. Für Kreisfrequenzen $\omega \ll 1$ wird die Amplitude abgeschwächt.					
12. Für Kreisfrequenzen $\omega\gg 1$ wird die Amplitude abgeschwächt.					
13. Für Kreisfrequenzen $\omega\gg 1$ wird die Phase verschoben.					
 Dieses System wird als Verzögerungsglied 1. Ordnung oder P-T₁-Glied bezeichnet. 					

Fakultät Fahrzeugtechnik	Modulprüfung	
Prof. DrIng. B. Lichte	Regelungstechnik	Name:
Institut für Fahrzeugsystem- und		
Servicetechnologien	Aufgabenteil	Vorname
Hilfsmittel: Schriftl. Unterlagen		
Taschenrechner (n. program.)	SS 2015	Matr.Nr.:
kein PC/Mobiltelefon	16.06.2015	
Zeit: 60 Min.		

Aufgabe 1 - (26 Punkte) Bode-Diagramm

a) (24 P) Gegeben ist die Übertragungsfunktion des offenen Regelkreises:

$$G_O(s) = \frac{(1+10s) \cdot \left(1 + \frac{1}{2}s\right) \cdot \left(1 + \frac{1}{100}s\right)}{s \cdot \left(1 + \frac{1}{10}s\right)^2 \cdot \left(1 + \frac{1}{300}s\right)^2}$$

Zeichnen Sie die asymptotischen Amplitudengänge in das unten abgebildete Diagramm. Kennzeichnen sie die Eckfrequenzen und geben Sie die Asymptoten-Steigungen an.

b) (2 P) Warum wird der Amplitudenverlauf im Bode-Diagramm doppelt logarithmisch aufgetragen? Nennen Sie mindestens 2 Gründe.

Aufgabe 2 - (14 Punkte) Laplace-Transformation

Gegeben ist die Übertragungsfunktion G(s) eines dynamischen Systems:

$$G(s) = \frac{5(s+2)}{(s-4)^2}$$

- a) (10 P) Berechnen Sie die Sprungantwort (Einheitssprung) h(t) des Systems durch Rücktransformation von H(s) mittels Partialbruchzerlegung und Verwendung der Korrespondenztabelle.
- b) (2 P) Berechnen Sie den Endwert der Sprungantwort $h(t \to \infty)$ sowohl mit Hilfe des Endwertsatzes der Laplace-Transformation aus H(s) als auch direkt aus der Lösung h(t) im Zeitbereich.
- c) (2 P) In Teilaufgabe b) erhalten Sie mit den beiden Methoden unterschiedliche Ergebnisse. Was ist der Grund dafür? Welche Lösung ist richtig?

Nr.	Zeitfunktion $f(t), t \ge 0$	Bildfunktion $F(s)$, $(s = \sigma + j\omega)$	Anmerkung
1	δ (t)	1	Dirac-Impuls
2	σ (t)	$\frac{1}{s}$	Einheitssprung- funktion
3	r(t) = t	$\frac{1}{s^2}$	Einheitsanstiegs- funktion
4	$p(t) = \frac{1}{2}t^2$	$\frac{1}{s^3}$	Einheitsparabel- funktion
5	$\frac{1}{k!}t^k$	$\frac{1}{s^{k+1}}$	k > 0, ganzzahlig
6	e at	$\frac{1}{s-a}$	a konstant
7	te ^{at}	$\frac{1}{(s-a)^2}$	a konstant
8	$\frac{1}{k!}t^k e^{at}$	$\frac{1}{(s-a)^{k+1}}$	a konstant
9	$\sin(bt)$	$\frac{b}{s^2+b^2}$	b > 0, konstant
10	$\cos(bt)$	$\frac{s}{s^2+b^2}$	b > 0, konstant
11	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	b > 0, konstant a konstant
12	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	b > 0, konstant a konstant

Aufgabe 3 - (14 Punkte) Wurzelortskurve

Gegeben ist ein Standard-Regelkreis, bestehend aus einem Regler $G_R(s)$ und einer Regelstrecke $G_S(s)$:

$$G_R(s) = K_R$$
 und $G_S(s) = \frac{s+1}{s \cdot (s-1)}$.

Die Verstärkung des Reglers ist immer positiv.

- a) (1 P) Muss für die Konstruktion der Wurzelortskurve der offene, oder der geschlossene Regelkreis verwendet werden?
- b) (8 P) Skizzieren Sie mit Hilfe der Konstruktionsregeln die Wurzelortskurve im nachstehenden Diagramm. Markieren Sie die Richtung der Äste eindeutig.
- c) (1 P) Was stellen die Äste der Wurzelortskurve dar?
- d) (2 P) Begründen Sie kurz anhand der Wurzelortskurve, ob der geschlossene Regelkreis schwingungsfähig ist (**keine Berechnung!**).
- e) (2 P) Begründen Sie kurz anhand der Wurzelortskurve, ob der geschlossene Regelkreis stabil ist. Eine ausführliche Berechnung ist nicht notwendig.

Aufgabe 4 – (19 Punkte)

Gegeben ist ein Standardregelkreis mit:

$$G_R(s) = K_R(1 + s T_V)$$
 und $G_S(s) = \frac{1}{(s-2)(s^2 + 4s + 8)}$.

- a) (2 P) Prüfen Sie die Regelstrecke $G_S(s)$ auf Stabilität.
- b) (6 P) Berechnen Sie die Übertragungsfunktion des offenen Kreises $G_O(s)$ und die Führungsübertragungsfunktion $G_W(s)$.
- c) (11 P) Bestimmen Sie mit dem Routh-Kriterium die Stabilitätsgrenzen.