Dynamic programming

1. Fibonacci Sequence

 Find the nth Fibonacci number using dynamic programming (with memoization or tabulation).

2. **0/1 Knapsack Problem**

 Given weights and values of items and a knapsack with a weight limit, find the maximum value you can put in the knapsack.

3. Longest Increasing Subsequence (LIS)

 Given an array of integers, find the length of the longest strictly increasing subsequence.

4. Coin Change Problem

 Given a set of coin denominations and an amount, find the minimum number of coins required to make the amount.

5. Longest Common Subsequence (LCS)

 Given two strings, find the length of the longest subsequence common to both strings.

6. Edit Distance (Levenshtein Distance)

 Given two strings, find the minimum number of operations (insertions, deletions, substitutions) required to convert one string into the other.

7. Partition Problem

 Given a set of integers, determine if it's possible to partition the set into two subsets with equal sum.

8. Subset Sum Problem

 Given a set of numbers, find whether there is a subset whose sum is equal to a given target value.

9. Matrix Chain Multiplication

 Given a sequence of matrices, find the most efficient way to multiply them (minimizing the number of scalar multiplications).

10. Rod Cutting Problem

 Given a rod of length n and a set of prices for different lengths of the rod, find the maximum profit obtainable by cutting the rod into smaller lengths.

11. House Robber Problem

 Given a list of non-negative integers representing the amount of money in each house, determine the maximum amount of money you can rob tonight without robbing two adjacent houses.

12. Minimum Path Sum in a Grid

 Given a 2D grid of non-negative integers, find a path from the top-left corner to the bottom-right corner, where you can only move down or right, and the sum of the numbers along the path is minimized.

13. Word Break Problem

• Given a string and a dictionary of words, determine if the string can be segmented into a space-separated sequence of dictionary words.

14. Maximum Subarray Sum (Kadane's Algorithm)

• Given an integer array, find the contiguous subarray (containing at least one number) which has the largest sum and return that sum.

15. Unique Paths

• Given a grid with dimensions m × n, find the number of unique paths from the top-left corner to the bottom-right corner, moving only down or right.

Graph

1. Find the Shortest Path in an Unweighted Graph

 Problem: Given an unweighted graph (either directed or undirected) and a source node, find the shortest path to all other nodes using BFS.

2. Connected Components in an Undirected Graph

 Problem: Given an undirected graph, find all the connected components using BFS.

3. Level of Each Node in a Graph

 Problem: Given a graph, find the level (or distance) of each node from a given source node using BFS.

4. Word Ladder Problem

 Problem: Given two words (start and end), and a dictionary, find the shortest transformation sequence from start to end such that each transformed word must exist in the dictionary. Each transformation can only change one letter at a time.

5. Number of Islands

Problem: Given a 2D grid representing a map where '1' represents land and '0' represents water, find the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically.

Depth-First Search (DFS) Problems:

6. Cycle Detection in an Undirected Graph

 Problem: Given an undirected graph, detect if there is a cycle using DFS. If a cycle is detected, return True; otherwise, return False.

7. Topological Sort of a Directed Acyclic Graph (DAG)

 Problem: Given a directed acyclic graph (DAG), return a topological ordering of the vertices.

8. Path Between Two Nodes in a Graph

Problem: Given a directed or undirected graph and two nodes, determine if there
is a path from the source node to the destination node using DFS.

9. Count All Paths Between Two Nodes

• **Problem:** Given a directed graph and two nodes, count the number of distinct paths between them using DFS.

10. Detect Cycle in a Directed Graph

 Problem: Given a directed graph, detect if there is a cycle using DFS. Mark nodes as visited and backtrack to check for cycles.

Topological Sort Problems:

11. Course Schedule (Topological Sort)

 Problem: You are given a list of courses and their prerequisites. Each course is a node, and each prerequisite is a directed edge. Determine if it's possible to finish all courses (i.e., check if a valid topological order exists).

12. Alien Dictionary (Topological Sort)

 Problem: Given a list of words in an alien dictionary, find the order of characters in the alien language. Assume that the words are sorted lexicographically according to the unknown order.

Bellman-Ford Algorithm Problems:

13. Single Source Shortest Path with Negative Weights (Bellman-Ford)

 Problem: Given a graph with possible negative edge weights and a source node, find the shortest path from the source to all other nodes using the Bellman-Ford algorithm.

14. Detect Negative Weight Cycles (Bellman-Ford)

 Problem: Given a graph with edge weights, use the Bellman-Ford algorithm to detect if there is a negative weight cycle in the graph.

15. Find the Longest Path in a Directed Acyclic Graph (DAG)

 Problem: Given a weighted directed acyclic graph (DAG), find the longest path starting from a source node using dynamic programming combined with topological sorting.