

다섯째마당 딥러닝 활용하기

20장 전이 학습을 통해 딥러닝의 성능 극대화하기

- 1 소규모 데이터셋으로 만드는 강력한 학습 모델
- 2 전이 학습으로 모델 성능 극대화하기

전이 학습을 통해 딥러닝의 성능 극대화하기

● 전이 학습을 통해 딥러닝의 성능 극대화하기

전이 학습을 통해 딥러닝의 성능 극대화하기

- 전이 학습을 통해 딥러닝의 성능 극대화하기
 - 딥러닝으로 좋은 성과를 내려면 딥러닝 프로그램을 잘 짜는 것도 중요하지만, 딥러닝에 입력할 데이터를 모으는 것이 더 중요함
 - 기존 머신 러닝과 달리 딥러닝은 스스로 중요한 속성을 뽑아 학습하기 때문에 비교적 많은 양의 데이터가 필요함
 - 데이터가 충분하지 않은 상황도 발생
 - 이 장에서는 나만의 프로젝트를 기획하고 실습하는 과정을 따라해 보며, 딥러닝의 데이터양이 충분하지 않을 때 활용할 수 있는 방법들을 배우겠음
 - 여러 방법 중에서 수만 장에 달하는 기존의 이미지에서 학습한 정보를 가져와 내 프로젝트에 활용하는 것을 전이 학습(transfer learning)이라고 함
 - 방대한 자료를 통해 미리 학습한 가중치(weight) 값을 가져와 내 프로젝트에 사용하는 방법으로 컴퓨터 비전, 자연어 처리 등 다양한 분야에서 전이 학습을 적용해 예측률을 높이고 있음

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 딥러닝을 이용한 프로젝트는 어떤 데이터를 가지고 있는지, 어떤 목적을 가지고 있는지 잘 살펴보는 것부터 시작
 - 내가 가진 데이터에 따라 딥러닝 알고리즘을 결정해야 하는데, 딥러닝 및 머신 러닝 알고리즘은 크게 두 가지 유형으로 나뉨
 - 정답을 알려 주고 시작하는가 아닌가에 따라 지도 학습(supervised learning)
 방식과 비지도 학습(unsupervised learning)
 방식으로 구분
 - 지금까지 이 책에서 살펴본 폐암 수술 환자의 생존율 예측, 피마 인디언의 당뇨병 예측, CNN을 이용한 MNIST 분류 등은 각 데이터 또는 사진마다 '클래스'라는 정답을 주고 시작
 - 모두 '지도 학습'의 예가 됨
 - 반면 19장에서 배운 GAN이나 오토인코더는 정답을 예측하는 것이 아니라 주어진 데이터의 특성을 찾았기 때문에 '비지도 학습'의 예가 됨

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 이번에 진행할 프로젝트는 MRI 뇌 사진을 보고 치매 환자의 뇌인지, 일반인의 뇌인지 예측하는 것
 - 각 사진마다 치매 혹은 일반인으로 클래스가 주어지므로 지도 학습의 예라고 할수 있음
 - 이미지를 분류할 것이므로 이미지 분류의 대표적인 알고리즘인 컨볼루션 신경망(CNN)을 선택해 진행

▼ 그림 20-1 | MRI 뇌 사진 데이터의 구성

● MRI 단면 이미지 습득

❷ 일반인인지 치매인지 유형 감별 ❸ 일반인 혹은 치매 클래스로 분류

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 총 280장으로 이루어진 뇌의 단면 사진
 - 치매 환자의 특성을 보이는 뇌 사진 140장과 일반인의 뇌 사진 140장으로 구성되어 있음
 - 280개의 이미지 중 160개는 train 폴더에, 120개는 test 폴더에 넣어 두었음
 - 각 폴더 밑에는 ad와 normal이라는 두 개의 폴더가 있는데, 치매 환자의 뇌 사진은 ad 폴더에, 일반인의 뇌 사진은 normal 폴더에 저장
 - 데이터의 습득 과정과 구성을 잘 보여 주는 그림이라고 할 수 있음

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 앞서 MNIST 손글씨나 로이터 뉴스, 영화 리뷰의 예제들과는 다르게 케라스에서 제공하는 데이터를 불러오는 것이 아니라, 내 데이터를 읽어 오는 것이므로 새로운 함수가 필요함
 - 데이터의 수를 늘리는 ImageDataGenerator() 함수와 폴더에 저장된 데이터를 불러오는 flow_from_directory() 함수를 사용

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - ImageDataGenerator() 함수는 주어진 데이터를 이용해 변형된 이미지를 만들어 학습셋에 포함시키는 편리한 기능을 제공
 - 이미지 데이터의 수를 확장할 때 효과적으로 사용할 수 있음
 - 다음은 함수를 사용한 예

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 각각 인자에 대한 설명은 다음과 같음(그림 20-2에도 정리되어 있음)
 - rescale: 주어진 이미지의 크기를 바꾸어 줌 예를 들어 원본 영상이 0~255의 RGB값을 가지고 있으므로 255로 나누면 0~1의 값으로

변환되어 학습이 좀 더 빠르고 쉬워짐

- 앞서 배운 정규화 과정과 같음
- horizontal_flip, vertical_flip: 주어진 이미지를 수평 또는 수직으로 뒤집음 zoom_range: 정해진 범위 안에서 축소 또는 확대

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - width_shift_range, height_shift_range: 정해진 범위 안에서 그림을 수평 또는 수직으로
 - _ 랜덤하게 평행 이동시킴
 - rotation_range: 정해진 각도만큼 이미지를 회전시킴
 - shear_range: 좌표 하나를 고정시키고 다른 몇 개의 좌표를 이동시키는 변환 fill_mode: 이미지를 축소 또는 회전하거나 이동할 때 생기는 빈 공간을 어떻게 채울지 결정

nearest 옵션을 선택하면 가장 비슷한 색으로 채워짐

▼ 그림 20-2 | ImageDataGenerator 옵션의 결과

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 단, 이 모든 인자를 다 적용하면 불필요한 데이터를 만들게 되어 오히려 학습 시간이 늘어난다는 것에 주의해야 함
 - 주어진 데이터의 특성을 잘 파악한 후 이에 맞게 사용하는 것이 좋음
 - 우리는 좌우의 차이가 그다지 중요하지 않은 뇌 사진을 이용할 것이므로 수평으로 대칭시키는 horizontal_flip 인자를 사용
 - width_shift, height_shift 인자를 이용해 조금씩 좌우로 수평 이동시킨 이미지도 만들어 사용
 - 참고로 데이터 부풀리기는 학습셋에만 적용하는 것이 좋음
 - 테스트셋은 실제 정보를 그대로 유지하게 하는 편이 과적합의 위험을 줄일 수 있기 때문임

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 테스트셋은 다음과 같이 정규화만 진행해 줌

test_datagen = ImageDataGenerator(rescale=1./255)

- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 이미지 생성 옵션을 정하고 나면 실제 데이터가 있는 곳을 알려 주고 이미지를 불러오는 작업을 해야 함
 - 이를 위해 flow_from_directory() 함수를 사용

```
train_generator = train_datagen.flow_from_directory(
   './data-ch20/train', # 학습셋이 있는 폴더 위치
   target_size=(150,150), # 이미지 크기
   batch_size=5,
   class_mode='binary') # 치매/정상 이진 분류이므로 바이너리 모드로 실행
```


- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 같은 과정을 거쳐서 테스트셋도 생성

```
test_generator = test_datagen.flow_from_directory(
    './data-ch20/test' # 테스트셋이 있는 폴더 위치
    target_size=(150,150),
    batch_size=5,
    class_mode='binary')
```


- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 모델 실행을 위한 옵션을 만들어 줌
 - 옵티마이저로 Adam을 선택하는데, 이번에는 케라스 ①기의 optimizers 클래스를 이용해 학습률을 따로 지정해 보았음
 - 조기 중단을 설정하고 model.fit()을 실행하는데, 이때 학습셋과 검증셋을 조금 전 가들어 준

```
# 모델의 실행 옵션을 설정합니다.

model.compile(loss='binary_crossentropy', optimizer=optimizers.Adam
(learning_rate=0.0002), metrics=['accuracy']) ~~~ ①

# 학습의 조기 중단을 설정합니다.
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=5)

# 모델을 실행합니다.
history = model.fit(train_generator, ~~~ ②
```



```
epochs=100,
validation_data=test_generator, ---- 3
validation_steps=10,
callbacks=[early_stopping_callback])
```


- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 이제 CNN을 이용해 모델을 만들겠음
 - 이 실습에는 사이파이(SciPy) 라이브러리가 필요함
 - 코랩의 경우에는 기본으로 제공하지만, 주피터 노트북을 이용해 실습 중이라면 다음 명령으로 라이브러리를 설치

!pip install Scipy

실습 | 치매 환자의 뇌인지 일반인의 뇌인지 예측하기


```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten,
Conv2D, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import optimizers
```



```
import numpy as np
import matplotlib.pyplot as plt
# 깃허브에 준비된 데이터를 가져옵니다
!git clone https://github.com/taehojo/data-ch20.git
# 학습셋의 변형을 설정하는 부분입니다.
train_datagen = ImageDataGenerator(rescale=1./255, # 주어진 이미지 크기를 설정
   horizontal_flip=True, # 수평 대칭 이미지를 50% 확률로 만들어 추가합니다.
   width_shift_range=0.1, # 전체 크기의 15% 범위에서 좌우로 이동합니다.
   height_shift_range=0.1, # 마찬가지로 위아래로 이동합니다.
```



```
#rotation_range=5, # 정해진 각도만큼 회전시킵니다.
   #shear_range=0.7, # 좌표 하나를 고정시키고 나머지를 이동시킵니다.
   #zoom_range=[0.9, 2.2], # 확대 또는 축소시킵니다.
   #vertical_flip=True, # 수직 대칭 이미지를 만듭니다.
   #fill mode='nearest' # 빈 공간을 채우는 방법입니다.
                      # nearest 옵션은 가장 비슷한 색으로 채우게 됩니다.
train_generator = train_datagen.flow_from_directory(
   './data-ch20/train', # 학습셋이 있는 폴더의 위치입니다.
   target_size=(150,150),
   batch_size=5,
   class mode='binary')
```



```
# 테스트셋은 이미지 부풀리기 과정을 진행하지 않습니다.
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
   './data-ch20/test', # 테스트셋이 있는 폴더의 위치입니다.
   target_size=(150,150),
   batch_size=5,
   class_mode='binary')
# 앞서 배운 CNN 모델을 만들어 적용해 보겠습니다.
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(150,150,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
```



```
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
```



```
# 모델 실행의 옵션을 설정합니다.
model.compile(loss='binary_crossentropy', optimizer=optimizers.Adam
(learning rate=0.0002), metrics=['accuracy'])
# 학습의 조기 중단을 설정합니다.
early stopping callback = EarlyStopping(monitor='val loss', patience=5)
# 모델을 실행합니다.
history = model.fit(
   train_generator,
   epochs=100,
   validation_data=test_generator,
   validation_steps=10,
   callbacks=[early stopping callback])
```



```
# 검증셋과 학습셋의 오차를 저장합니다.
v vloss = history.history['val loss']
v loss = history.history['loss']
# 그래프로 표현해 봅니다
x len = np.arange(len(y loss))
plt.plot(x_len, y_vloss, marker='.', c="red", label='Testset_loss')
plt.plot(x_len, y_loss, marker='.', c="blue", label='Trainset_loss')
# 그래프에 그리드를 주고 레이블을 표시하겠습니다.
plt.legend(loc='upper right')
plt.grid()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
```


● 소규모 데이터셋으로 만드는 강력한 학습 모델

실행 결과

```
Epoch 1/100

32/32 [============] - 3s 68ms/step - loss: 0.7053 - accuracy: 0.5063 - val_loss: 0.6896 - val_accuracy: 0.5000
... (중략) ...

Epoch 32/100

32/32 [=================] - 2s 65ms/step - loss: 0.1099 - accuracy: 0.9563 - val_loss: 0.0388 - val_accuracy: 1.0000
```


- 소규모 데이터셋으로 만드는 강력한 학습 모델
 - 첫 정확도 50%에서 출발해 32번째 에포크에서 100%의 정확도를 보이며 멈추었음
 - 그래프를 통해 완만하게 하강하는 오차 곡선들을 볼 수 있음

▼ 그림 20-4 | 이미지넷 데이터셋에서 추출한 사진들

- 전이 학습으로 모델 성능 극대화하기
 - 사진은 이미지넷(ImageNet) 데이터셋에서 추출한 사진들로 구성된 것
 - 이미지넷은 1,000가지 종류로 나뉜 120만 개가 넘는 이미지를 놓고 어떤 물체인지 맞히는 '이미지넷 이미지 인식 대회(ILSVRC)'에 사용되는 데이터셋
 - MNIST와 더불어 가장 유명한 데이터셋 중 하나
 - 전체 크기가 200GB에 이를 만큼 커다란 이 데이터를 놓고 그동안 수많은 그룹이 경쟁하며 최고의 분류기를 만들기 위해 노력해 왔음

- 전이 학습으로 모델 성능 극대화하기
 - 치매/일반인 뇌 사진 분류 프로젝트를 하고 있는 우리에게도 이 자료가 중요한 이유는 지금부터 이 방대한 양의 데이터셋에서 추출한 정보를 가져와서 우리 예측률을 극대화하는 '전이 학습'을 할 것이기 때문임
 - 전이 학습은 앞서 잠깐 언급한 대로 '기존의 학습 결과를 가져와서 유사한 프로젝트에 사용하는 방법'을 의미
 - 뇌 사진만 다루는 치매 분류기를 만드는데, 뇌 사진과 관련 없는 수백만 장의 이미지넷 학습 정보가 큰 역할을 하는 이유는 '형태'를 구분하는 기본적인 학습이 되어 있기 때문임

- 전이 학습으로 모델 성능 극대화하기
 - 예를 들어 딥러닝은 학습이 시작되면 어떤 픽셀의 조합이 '선'이고 어떤 형태의 그룹이 '면'이 되는지부터 파악해야 함
 - 아무런 정보도 없이 MRI 사진 판별을 시작한다면 이러한 기본적인 정보를 얻어 내는 데도 많은 시간을 쏟아야 함
 - 전이 학습이 해결해 주는 것이 바로 이 부분
 - 대용량의 데이터를 이용해 학습한 가중치 정보를 가져와 내 모델에 적용한 후 프로젝트를 계속해서 진행할 수 있는 것

- 전이 학습으로 모델 성능 극대화하기
 - 전이 학습을 적용하는 방법은 그림 20-5와 같음
 - 먼저 대규모 데이터셋에서 학습된 기존의 네트워크를 불러옴
 - CNN 모델의 앞쪽을 이 네트워크로 채움
 - 뒤쪽 레이어에서 내 프로젝트와 연결
 - 이 두 네트워크가 잘 맞물리게끔 미세 조정(fine tuning)을 하면 됨

▼ 그림 20-5 | 전이 학습의 구조

- 전이 학습으로 모델 성능 극대화하기
 - 이제 앞서 우리가 만든 모델에 이미지넷 데이터셋에서 미리 학습된 모델인 VGGNet을 가지고 오는 예제를 실행해 보자
 - VGGNet은 옥스포드 대학의 연구 팀 VGG에 의해 개발된 모델로, 2014년 이미지넷 이미지 인식 대회에서 2위를 차지한 모델
 - 학습 구조에 따라 VGG16, VGG19 등 이름이 주어졌는데, 우리는 VGG16을 사용

- 전이 학습으로 모델 성능 극대화하기
 - VGG 외에도 ResNet, Inception, MobileNet, DenseNet 등 많은 모델을 불러올 수
 있음
 - 각 네트워크에 대한 상세한 설명은 케라스 공식 사이트를 참조 (https://keras.io/applications/)

- 전이 학습으로 모델 성능 극대화하기
 - 다음은 모델 이름을 transfer_model로 정하고 VGG16을 불러온 모습
 - include_top은 전체 VGG16의 마지막 층, 즉 분류를 담당하는 곳을 불러올지 말지를 정하는 옵션
 - 우리가 만든 로컬 네트워크를 연결할 것이므로 False로 설정
 - 또한, 불러올 부분은 새롭게 학습되는 것이 아니므로 학습되지 않도록 transfer_model.trainable 옵션 역시 False로 설정

```
transfer_model = VGG16(weights='imagenet', include_top=False, input_
shape=(150,150,3))
transfer_model.trainable = False
transfer_model.summary()
```


- 전이 학습으로 모델 성능 극대화하기
 - transfer_model.summary() 함수를 통해 학습 구조를 보면 다음과 같음

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 150, 150, 3)]	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0

block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0

block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808

● 전이 학습으로 모델 성능 극대화하기

block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0

Total params: 14,714,688

Trainable params: 0

Non-trainable params: 14,714,688

- 전이 학습으로 모델 성능 극대화하기
 - 학습 가능한 파라미터(Trainable params)가 없음을 확인
 - 이제 우리의 로컬 네트워크를 다음과 같이 만들어 줌

```
finetune_model = models.Sequential()
finetune_model.add(transfer_model)
finetune_model.add(Flatten())
finetune_model.add(Dense(64))
finetune_model.add(Activation('relu'))
finetune_model.add(Dropout(0.5))
finetune_model.add(Dense(1))
finetune_model.add(Activation('sigmoid'))
finetune_model.summary()
```


- 전이 학습으로 모델 성능 극대화하기
 - finetune_model이라는 이름의 모델을 만들었음
 - 위와 같이 첫 번째 층은 앞서 불러온 transfer_model을 그대로 불러온 후 최종 예측하는 층을 추가하면 됨
 - 다음은 finetune_model.summary() 함수를 통해 학습 구조를 살펴본 결과

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 4, 4, 512)	14714688
flatten (Flatten)	(None, 8192)	0
dense (Dense)	(None, 64)	524352

● 전이 학습으로 모델 성능 극대화하기

tivation (Activation)	(None, 64)	0
opout (Dropout)	(None, 64)	0
nse_1 (Dense)	(None, 1)	65
tivation_1 (Activation)	(None, 1)	0
tivation_1 (Activation)	10.000 (10.00 (1	

Total params: 15,239,105

Trainable params: 524,417

Non-trainable params: 14,714,688

- 전이 학습으로 모델 성능 극대화하기
 - 앞서 넘겨받은 파라미터들(14,714,688)을 그대로 유지한 채 최종 분류를 위해서만 새롭게 학습하는 것을 알 수 있음
 - 코드를 종합하면 다음과 같음

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import Input, models, layers, optimizers, metrics
from tensorflow.keras.layers import Dense, Flatten, Activation, Dropout
from tensorflow.keras.applications import VGG16
from tensorflow.keras.callbacks import EarlyStopping
```

import numpy as np
import matplotlib.pyplot as plt


```
# 깃허브에 준비된 데이터를 가져옵니다.
!git clone https://github.com/taehojo/data-ch20.git
# 학습셋의 변형을 설정하는 부분입니다.
train_datagen = ImageDataGenerator(rescale=1./255,
                                 horizontal_flip=True,
                                 width_shift_range=0.1,
                                 height_shift_range=0.1,
train_generator = train_datagen.flow_from_directory(
   './data-ch20/train',
   target size=(150,150),
   batch_size=5,
   class mode='binary')
```



```
# 테스트셋의 정규화를 설정합니다.
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
   './data-ch20/test',
   target_size=(150,150),
   batch_size=5,
   class mode='binary')
# VGG16 모델을 불러옵니다.
transfer_model = VGG16(weights='imagenet', include_top=False, input_
shape=(150,150,3))
transfer_model.trainable = False
```



```
# 우리의 모델을 설정합니다.

finetune_model = models.Sequential()

finetune_model.add(transfer_model)

finetune_model.add(Flatten())

finetune_model.add(Dense(64))

finetune_model.add(Activation('relu'))

finetune_model.add(Dropout(0.5))

finetune_model.add(Dense(1))

finetune_model.add(Activation('sigmoid'))

finetune_model.summary()
```



```
# 모델의 실행 옵션을 설정합니다.
finetune_model.compile(loss='binary_crossentropy', optimizer=optimizers.
Adam(learning_rate=0.0002), metrics=['accuracy'])
# 학습의 조기 중단을 설정합니다.
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=5)
# 모델을 실행합니다.
history = finetune_model.fit(
      train_generator,
      epochs=20,
      validation_data=test_generator,
      validation_steps=10,
      callbacks=[early_stopping_callback])
```



```
# 검증셋과 학습셋의 오차를 저장합니다.

y_vloss = history.history['val_loss']

y_loss = history.history['loss']

# 그래프로 표현해 봅니다.

x_len = np.arange(len(y_loss))

plt.plot(x_len, y_vloss, marker='.', c="red", label='Testset_loss')

plt.plot(x_len, y_loss, marker='.', c="blue", label='Trainset_loss')
```



```
# 그래프에 그리드를 주고 레이블을 표시하겠습니다.
plt.legend(loc='upper right')
plt.grid()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
```


● 전이 학습으로 모델 성능 극대화하기

실행 결과

```
Epoch 1/20

32/32 [=========] - 7s 217ms/step - loss: 0.7590 - accuracy: 0.5688 - val_loss: 0.5409 - val_accuracy: 0.7800
... (중략) ...

Epoch 15/20

32/32 [=========] - 10s 300ms/step - loss: 0.1693 - accuracy: 0.9563 - val_loss: 0.2223 - val_accuracy: 0.9200
```


- 전이 학습으로 모델 성능 극대화하기
 - ▼ 그림 20-6 | 그림으로 확인하는 학습 결과

- 전이 학습으로 모델 성능 극대화하기
 - 첫 정확도 78%에서 학습이 시작
 - 전이 학습을 사용하지 않았던 이전보다 더 높은 정확도로 출발하는 것을 볼 수 있고, 학습 속도도 빨라진 것이 확인
 - 또 그래프의 변화 추이가 안정적임을 확인할 수 있음