Pruebas de simulación

Gabriel Vergara Schifferli

18 Enero 2022

Modelos para considerar en umbrales sostenibles para la gestión de riesgo en portafolios de crypto activos.

Agenda

- 1. Sistema dinámico
- 2. Simulación y umbrales
- 3. Resultados

Sistema dinámico

Sistema dinámico

- Activos riesgosos : i, i = 1, ... n, con peso del activo i en el portafolio: $x^{(i)}$
- Activo libre de riesgo: y con peso en el portafolio : y
- Capital total : P
- Horizonte de tiempo : $t \in [0, T]$

$$\begin{cases} y_{t+1} = \frac{y_t - u_t T \mathbf{1}}{H(x_t, y_t, u_t, r_t)} \\ x_{t+1}^{(i)} = \frac{x_t^{(i)} + u_t^{(i)}}{H(x_t, y_t, u_t, r_t)} e^{r_t^{(i)}} \\ P_{t+1} = H(x_t, y_t, u_t, r_t) P_t \\ (x_0^T, y_0, P_0)^T = (x_0^T, y_0, P_0)^T \\ 0 \le y_t - u_t^T \mathbf{1} \le 1 \\ 0 \le u_t + x_t \le 1 \text{ (por componente)} \\ \frac{1 - x_t}{x_t} \ge \theta \ \forall t \in [0, T] \end{cases}$$

donde

$$H(x_t, y_t, u_t, r_t) = (x_t + u_t)^T e^{r_t} + y_t - u_t^T \mathbf{1}$$

Se tiene que $u_t^{(i)} \in [-1,1]$ por lo que el espacio de controles es $[-1,1]^n$.

Considerando las condiciones del portafolio:

- 1. No se admiten cantidades negativas de fiat: $0 \le y_t u_t^T \mathbf{1} \le 1$
- 2. No se admiten posiciones cortas en $x^{(i)}$: $0 \le u_t^{(i)} + x_t^{(i)} \le 1$

Se define el conjunto de los controles como :

$$\mathbf{U}(t) := \{u_t \in [-1, 1]^n : 0 \le y_t - u_t^T \mathbf{1} \le 1 \ \text{y} \ 0 \le u_t^{(i)} + x_t^{(i)} \le 1 \ \forall i = 1, \dots, n\}$$

- Condición 1: No se admite apalancamiento,
- Condición 2: No se admiten posiciones cortas, solo largas.

Costo de transacción

Considerando un costo de transacción proporciocional sin costo fijo

se tiene que el costo asociado a la transacción u_t^i es $c(u_t) = c \cdot |u_t^i|$

- aumentar $10\% x_t^1$
- disminuir 15% x_t^2
- aumentar 20% x_t^3

el control asociado a la transacción sería $u_t=(0.1,-0.15,0.20)$ luego, el costo de la transacción : $c\sum |u_t^i|=c\cdot 0.45$.

Si consideramos un costo del 0.1% entonces $c = 0.001 \Rightarrow c \cdot 0.45 = 0.00045$.

Definiendo la función de costo:

$$c(u_t) = c \sum |u_t^i|$$

entonces, el costo en dinero asociado a la transacción u_t sería $c(u_t)P_t$.

Haciendo un ejemplo con 2 activos, capital inicial de 1000, con $R_t = (0.1, 0.05)$ y $w_t = (x_t^T, y_t) = (0.3, 0.5, 0.2)$ un costo c = 0.001 y $u_t = (0.15, -0.10)$:

se traspasa una cantidad de dinero u_t^i al activo x_t^i pero por costo solo llega $(1-c)u_t^i$, por lo que se debe considerar el signo,

$$au_y(u_t;c)^{(i)} = \left\{ egin{array}{ll} u_t^{(i)} & ext{si } u_t^{(i)} \geq 0 \\ (1-c)u_t^{(i)} & ext{si } u_t^{(i)} < 0 \end{array}
ight.$$

$$\tau_{x}(u_{t};c)^{(i)} = \begin{cases} (1-c)u_{t}^{(i)} & \text{si } u_{t}^{(i)} > 0 \\ u_{t}^{(i)} & \text{si } u_{t}^{(i)} \leq 0 \end{cases}$$

definidas componente a componente.

Se busca que la cantidad de capital libre de riesgo siempre sea capaz de cubrir el capital en riesgo.

x: activo riesgoso

• y: activo libre de riesgo

■ VaR : del activo x = 8%

Considerando un umbral θ tal que:

$$y = \theta VaR(x), \quad x + y = 1 \Rightarrow x = \frac{1}{1 + \theta VaR}$$

У	×	VaR	θVaR	θ
200	800	64		
100	900	72		
74	926	74	74	1
138	862	69	138	2
194	806	65	194	3

Si

$$y \ge \theta VaR(x) \Rightarrow \frac{y}{VaR(x)} \ge \theta \Rightarrow \frac{1-x}{VaR(x)} \ge \theta$$

considerando $VaR(x) = VaR \cdot x$, e.g. 8% · x.

$$\frac{1-x}{0.08x} \ge \theta$$

o considerando en cantidad de capital: total = 1000

$$\frac{1000 - x}{0.08x} \ge \theta$$

Llamémosle cobertura a : $g(x) = \frac{1-x}{VaR(x)} \ge \theta$

Caso de simulación

Figure 1: BTC/USDT frecuencia horaria.

 $\textbf{Figure 2:} \ \ \mathsf{BTC/USDT} \ \ \mathsf{log} \ \ \mathsf{retornos} \ \ \mathsf{frecuencia} \ \ \mathsf{horaria}.$

Con la serie de log-retornos, es estimó un modelo MS-GARCH-GJRGARCH-sged-std para simular los retornos.

MS-GARCH-GJRGARCH-sged-std

$$\begin{array}{ll} r_t = & \sigma_{t,s} \epsilon_{t,s_t} \\ \sigma_{t,1}^2 = & \alpha_{0,1} + \alpha_{1,1} \epsilon_{t-1}^2 + \beta_{0,1} \sigma_{t-1}^2 \\ \sigma_{t,2}^2 = & \alpha_{0,2} + (\alpha_{1,2} + \alpha_{2,1} \mathbb{1}_{\epsilon_{t-1} > 0}) \epsilon_{t-1}^2 + \beta_{0,2} \sigma_{t-1}^2 \end{array}$$

donde

$$\epsilon_{t,1} \sim \mathsf{sged}(\nu_1, \chi)$$

 $\epsilon_{t,2} \sim t(\nu_2)$

con $s \in \{1,2\}$ una cadena de markov ergódica, con probabilidad de transición $P(s_t=1|s_{t-1}=1)=\pi_{11}, \ P(s_t=1|s_{t-1}=2)=\pi_{21}, \ P(s_t=2|s_{t-1}=1)=\pi_{12}, \ P(s_t=2|s_{t-1}=2)=\pi_{22}.$

Luego, la serie de precios se obtiene:

$$S_t = S_{t-1}e^{r_t}$$

Simulaciones

• Horizonte de simulación : 367

• Cantidad de simulaciones : 5000

Resumen métricas

Т	VaR 1%	VaR 5%	ES 1%	ES 5%
1	95.72	97.59	93.96	96.34
5	91.33	94.43	88.45	92.27
20	82.68	89.16	78.34	85.06
50	74.95	83.85	67.67	77.95
100	64.55	77.28	57.03	69.59
200	55.94	68.54	44.77	59.48
367	41.58	59.43	32.48	48.75

 $\label{thm:table 1: Valores referenciados a porcentaje del capital inicial \it{e.g.}~VaR~1\%~,~T=1,~la~p\'erdida~m\'axima~esperada~con~prob.~1\%~es~100~-95,72=4.28\%.$

Estrategias

Se consideraron 3 estrategias con el siguiente esquema general de umbrales:

- Strong Sale → Vender cantidad SS
- Sale \rightarrow Vender cantidad S
- Buy \rightarrow Comprar cantidad B
- Strong Buy \rightarrow Comprar cantidad SB

Para esto, se estimó un modelo AR(1) - gjrGARCH(1,1) - std para determinar los umbrales en términos de los cuantiles proyectados del modelo.

- Se estimó con el 90% de los datos de ejemplo (Solana) y el 10% restante (367)
- Los parámetros se mantienen fijos durante todo el periodo sin reestimación
- Se tienen 8 parámetros: 4 umbrales y 4 proporciones de venta/compra

Estrategia 1

- SS: q(85) → Vender 100%
- S: q(65) → Vender 70%
- B: q(20) → Comprar 65%
- SB: $q(10) \rightarrow Comprar 95\%$

• Estrategia 2

- SS: q(90) → Vender 90%
- S: q(70) → Vender 50%
- B: q(30) → Comprar 50%
- SB: $q(10) \rightarrow Comprar 90\%$

• Estrategia 3

- SS: $q(90) \rightarrow Vender 90\%$, tiempo siguiente revertir operación
- S: $q(70) \rightarrow Vender 50\%$, tiempo siguiente revertir operación
- B: q(30) → Comprar 50%, tiempo siguiente revertir operación
- SB: $q(10) \rightarrow$ Comprar 90%, tiempo siguiente revertir operación

Resumen métricas

Т	Sim	1	2	4
1	95.72	95.72	95.73	95.73
5	91.33	91.80	91.73	92.23
20	82.68	86.57	85.55	86.84
50	74.95	80.23	79.54	80.23
100	64.55	73.97	72.45	72.60
200	55.94	65.38	62.67	62.90
367	41.58	56.77	51.46	53.04

Agregando la métrica heta

estrategia	q(1)	q(5)	q(10)
# 1	0.003%	0.040%	0.160%
# 2	0.004%	0.033%	0.116%
# 4	0.000%	0.000%	0.0438%
		•	

Viabilidad y Umbrales sostenibles

- Horizonte de tiempo : [0, *T*]
- Estado inicial: $\xi \in X$
- Secuencia de controles: $\mathbf{u} = (u_t)_{t=0}^T$
- Escenario: $\mathbf{w} = (w_t)_{t=0}^T$

Se tiene el sistema de control estocástico:

$$(D_{\xi}^{\mathbf{u}}(\mathbf{w}))$$
 $x_{t+1} = F_t(x_t, u_t, w_t), \quad t \in [0, T], \quad x_0 = \xi$

con espacio de estados X, espacio de controles U y escenarios W.

$$\mathbb{U} = \{\mathbf{u} | u_0, \dots, u_{T-1} \in \mathbf{U}\} \cong \mathbf{U}^{T+1}$$

$$\mathbb{W} = \{\mathbf{w} | w_t \in \Omega_t, \quad \forall t \in [0, T]\} \cong \prod_{t=0}^T \Omega_t$$

$$\mathbb{X} = \{\mathbf{x} | x_0, \dots, x_{T+1} \in \mathbf{X}\} \cong \mathbf{X}^{T+2}$$

donde $\Omega_t \subset \mathbf{W}$ para el cual $w_t \in \Omega_t$

Kernel de viabildad y umbrales sostenibles estocásticos

$$\mathbb{S}^{\beta}(\xi) = \left\{ c \in \mathbb{R}^{m} \; \middle| \; \exists \mathbf{u} \in \mathbb{U}, \; P\left(\mathbf{w} \in \mathbb{W} \middle| \; g^{t}(x_{t}, u_{t}) \geq c \quad , \forall t \in [0, T] \; \right) \geq \beta \right\}$$

$$\mathbb{V}^{\beta}(c) = \left\{ \xi \in \mathbb{R}^{n} \; \middle| \; \exists \mathbf{u} \in \mathbb{U}, \; P\left(\mathbf{w} \in \mathbb{W} \middle| \; g^{t}(\mathbf{x}_{t}, u_{t}) \geq c \quad , \forall t \in [0, T] \; \right) \geq \beta \right\}$$

tomando
$$g(x_t, u_t) = g_t$$
,
$$P\left(g_t \leq \theta, \forall t \in [0, T]\right)$$

$$P\left(g_0 \leq \theta, \dots, g_T \leq \theta\right) = P(\max_t \{g_t\} \leq \theta)$$

o bien,

$$P(g_0 \ge \theta, \dots, g_T \ge \theta) = P(\min_t \{g_t\} \ge \theta)$$

Donde hay que considerar que existe una fuerte dependencia entre los g_i .

Pruebas de simulación

Gabriel Vergara Schifferli

18 Enero 2022

Modelos para considerar en umbrales sostenibles para la gestión de riesgo en portafolios de crypto activos.