# Q-Mathematics-Entry

#### 概要

各問題に対する答えを各選択肢から選んで解答してください。

### 問 1

球面  $x^2 + y^2 + z^2 = 1$  と平面 x + 2y + 2z = 1 の交点のうち、x の最小値を求めてください。

### 選択肢

| 1. $\frac{1}{3}$ | 6. $-\frac{1}{3}$ |
|------------------|-------------------|
| 2. $\frac{5}{9}$ | 7. $-\frac{5}{9}$ |
| 3. $\frac{7}{9}$ | 8. $-\frac{7}{9}$ |
| 4. 1             | 9. $-1$           |
| 5. 2             | 10. $-2$          |

## 問 2

状態 0 と状態 1 の 2 つの状態があり、1 ステップ毎に状態間を確率的に遷移するモデルを考えます。各確率は下の図のように与えられます。つまり、状態 0 から状態 0 に遷移する確率は 1/4、状態 0 から状態 1 に遷移する確率は 3/4、状態 1 から状態 0 に遷移する確率は 1/2、状態 1 から状態 1 に遷移する確率は 1/2です。



0 ステップ目に状態 0 にあるとし、n ステップ目に状態 1 にある確率を  $p_n^{(1)}$  とします。このとき、 $\sum_{n=0}^{\infty} p_n^{(1)}/2^n$  を求めてください。

#### 選択肢

| 1. | $\frac{1}{2}$               | 7.                    |   |
|----|-----------------------------|-----------------------|---|
| 2. | $\frac{1}{3}$               | 7.<br>8.<br>9.<br>10. |   |
| 3. | $\frac{1}{3}$ $\frac{2}{3}$ | 9.                    | - |
| 4. | $\frac{1}{4}$ $\frac{3}{4}$ | 10.                   | • |
| 5. | $\frac{3}{4}$               | 11.                   |   |
| 6. | 1 -                         |                       |   |

## 問3

a,b,R を正の実数とします。曲線  $C = \left\{ (x,y) \mid (x/a)^2 + (y/b)^2 = R^2 \right\}$  に沿ったベクトル場  ${\bf A} =$  $\left(-y^{3},x^{3}\right)$  の線積分の値を求めて下さい。ただし積分路は反時計回りに取るとします。

### 選択肢

1.  $\frac{3}{2}\pi R^4 ab \left(a^2 + b^2\right)$ 

2.  $\frac{1}{2}\pi R^4 ab \left(a^2 + b^2\right)$ 

3.  $\frac{3}{4}\pi R^4 ab \left(a^2 + b^2\right)$ 

4.  $\frac{1}{4}\pi R^4 ab \left(a^2 + b^2\right)$ 

5.  $\frac{3}{2}\pi R^4 a^2 b^2$ 

6.  $\frac{1}{2}\pi R^4 a^2 b^2$ 

7.  $\frac{3}{4}\pi R^4 a^2 b^2$ 

8.  $\frac{1}{4}\pi R^4 a^2 b^2$ 

9.  $\frac{3}{2}\pi R^4 \left(a^4 + b^4\right)$ 

10.  $\frac{1}{2}\pi R^4 \left(a^4 + b^4\right)$ 

11.  $\frac{3}{4}\pi R^4 \left(a^4 + b^4\right)$ 

12.  $\frac{1}{4}\pi R^4 (a^4 + b^4)$ 

### 問 4

以下の式の値を求めて下さい。 ただし、 $\lg$  を底が 2 の対数関数、 $\lfloor x \rfloor$  を x 以下の最大の整数とします。

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \sum_{k=2}^{2^n-1} \frac{1}{2^{\lfloor \lg k \rfloor} 4^{\lfloor \lg \lg k \rfloor}}$$

### 選択肢

- 1.  $\frac{3}{2}$
- 3.  $\frac{4}{3}$

- 4.  $\frac{5}{3}$ 5.  $\frac{6}{5}$ 6.  $\frac{7}{5}$

- 7.  $\frac{2}{3}$ 8.  $\frac{2}{5}$ 9.  $\frac{3}{4}$
- 10.  $\frac{3}{5}$
- 11.  $\frac{5}{6}$
- 12.  $\frac{5}{7}$