Appln No. 10/680,818 Amdt date October 9, 2007

Amendments to the Specification:

On page 3, lines 2-19, please amend the paragraph to read as follows:

"The present invention provides methods for labeling structures, including beta-amyloid plaques and neurofibrillary tangles, *in vivo* and *in vitro*, and comprises contacting a compound of formula (I):

$$R_{2} - N$$

$$R_{3}$$

$$(I)$$

with mammalian tissue. In formula (I), R_1 is selected from the group consisting of -C(O)-alkyl, -C(O)-alkylenyl- R_4 , -C(O)O-alkylenyl R_4 , -C=C(CN)₂-alkyl, -C=C(CN)₂-alkylenyl- R_4 , -C=C(CN)₂-alkylenyl- R_4 ,

$$R_6$$
 R_6
 R_6
 R_7
 R_8
 R_7
 R_8
 R_7
 R_8
 R_8
 R_8
 R_8
 R_7

 R_4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R_5 is a radical selected from the group consisting of -NH2, -OH, -SH, -NH-alkyl, -NHR₄, -NH-alkylenyl-R₄, -O-alkyl, -O-alkylenyl-R₄, -S-alkyl, and -S-alkylenyl-R₄; R_6 is a radical selected from the group consisting of -CN, -COOH, -C(O)O-alkyl, -C(O)O-alkylenyl-R₄, -C(O)-alkyl, -C(O)-alkylenyl-R₄, -C(O)-halogen, -C(O)NH-alkyl, -C(O)NH-alkylenyl-R₄; R_7 is a radical selected from the group consisting of O, NH, and S; and R_8 is N[[, O or S]].

On page 4, line 18 to page 5, line 12, please amend the paragraph to read as follows:

"In still another embodiment, the invention is directed to a composition comprising a compound of formula (I):

-2-

Appln No. 10/680,818 Amdt date October 9, 2007

$$R_2 - N$$

$$R_3$$

$$(I)$$

where R_1 is selected from the group consisting of -C(O)-alkyl, -C(O)-alkylenyl- R_4 , -C(O)O-alkylenyl- R_4 , -C =C(CN)₂-alkyl, -C=C(CN)₂-alkylenyl- R_4 ,

$$R_6$$
 R_6 R_6 R_6 R_7 R_7 R_7 R_8 R_8

R₄ is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R₅ is a radical selected from the group consisting of -NH₂, -OH, -SH, -NH-alkyl, -NHR₄, NH-alkylenyl-R₄, -O-alkyl, -O-alkylenyl-R₄, -S-alkyl, and -S-alkylenyl-R₄; R₆ is a radical selected from the group consisting of -CN, -COOH, -C(O)O-alkyl, -C(O)O-alkylenyl-R₄, -C(O)-alkyl, -C(O)-alkylenyl-R₄, -C(O)-halogen, -C(O)NH₂, -C(O)NH-alkyl, -C(O)NH-alkylenyl-R₄; R₇ is a radical selected from the group consisting of O, NH, and S; R₈ is N[[, O or S]]; R₂ is selected from the group consisting of alkyl and alkylenyl-R₅; and R₃ is alkylenyl-R₅[,]; and R₅-is selected from the group consisting of OH, OTs, halogen, spiperone, spiperone ketal, and spiperone 3-yl, or R₂ and R₃ together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R₅ carbonyl, spiperone, spiperone ketal and spiperone-3-yl. One or more of the hydrogen, halogen or carbon atoms can optionally be replaced with a radiolabel.

On page 7, line 19 through page 8, line 10, please amend the paragraph to read as follows:

Appln No. 10/680,818 Amdt date October 9, 2007

"The present invention is directed to methods for labeling structures such as β -amyloid plaques and neurofibrillary tangles *in vivo* and *in vitro*. The methods all involve contacting a compound of formula (I):

$$R_{2} - N$$

$$R_{3}$$

$$(I)$$

with mammalian tissue. In formula (I), R_1 is selected from the group consisting of -C(O)-alkyl, -C(O)-alkylenyl- R_4 -C=C(CN)₂-alkyl, -C=C(CN)₂-alkylenyl- R_4 ,

$$R_6$$
 R_6 R_6 R_7 and R_6 R_8 R_7 R_7

 R_4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl. R_5 is a radical selected from the group consisting of -NH₂, -OH, -SH, -NH-alkyl, -NHR₄, -NH-alkylenyl-R₄, -O-alkylenyl-R₄, -S-alkyl, and -S-alkylenyl-R₄. R_6 is a radical selected from the group consisting of -CN, -COOH, -C(O)O-alkyl, -C(O)O-alkylenyl-R₄, -C(O)-alkyl, -C(O)-alkylenyl-R₄, -C(O)-halogen, -C(O)NH-alkyl, -C(O)NH-alkylenyl-R₄. R_7 is a radical selected from the group consisting of O, NH, and S[[.]]; and R_8 is N[[, O-or-S]].

-4-