

Netzwerke und Schaltungen II, D-ITET Bodeplots — Musterlösung

Hinweise

- Phasenverläufe können aus ästhetischen Gründen um 360° verschoben sein; eine Verschiebung um 360° ändert die Aussage nicht.
- Magnitudenplots sind auf der y-Achse standardmäßig in 20-dB-Schritten beschriftet; falls es sich ästhetisch anbietet, sind auch 10-dB-Schritte zulässig.
- Mit dem MATLAB-Skript kann man selbst experimentieren, die Plots exakt berechnen und alle Ergebnisse nachprüfen.
- Die Teilaufgaben a, b, g, h und p sind ausführlicher erklärt als die übrigen.

Version: October 26, 2025

Einleitung: s und $j\omega$

Warum sind manche Übertragungsfunktionen manchmal abhängig von s
 und manchmal von j ω ?

Für sinusförmige stationäre Signale ist die Laplace- mit der Fourier-Transformierten auf der imaginären Achse äquivalent; eine Abklinghülle ist nicht nötig, daher setzt man $\sigma=0$ und damit

$$s=j\omega$$
.

Der Frequenzgang wird zwar als $H(j\omega)$ ausgewertet, aber die Schreibweise in s ist kompakter und, wie wir gesehen haben, äquivalent: Standardformen wie $1+sT,\ 1/(1+sT),\ sL,\ 1/(sC)$ sind sofort lesbar und einfacher zu faktorisieren. Es bietet sich an in s zu modellieren und faktorisieren und um Magnituden/Phasen explitizit auszurechnen, am Ende $s\to j\omega$ einsetzen und mit den Gesetzen der komplexen Zahlen zu arbeiten.

Beispiele

$$H(s) = \frac{1}{1+sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1}{1+j\omega T}$$

$$H(s) = \frac{sT}{1+sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{j\omega T}{1+j\omega T}$$

$$H(s) = \frac{1}{sT} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1}{j\omega T}$$

$$H(s) = sT \qquad \Leftrightarrow \qquad H(j\omega) = j\omega T$$

$$H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{\omega_0^2}{-\omega^2 + j \, 2\zeta\omega_0 \omega + \omega_0^2}$$
$$H(s) = \frac{1 + sT_z}{1 + sT_p} \qquad \Leftrightarrow \qquad H(j\omega) = \frac{1 + j\omega T_z}{1 + j\omega T_p}$$

Aufgabe A)

$$H(s) = \frac{1}{s+1} \,.$$

A.1 Bode-Diagramm

A.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = \frac{1}{1 + sT_p} \quad \text{mit} \quad T_p = 1.$$

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 + sT_p}$$
 und $K_0 = 1$ und $r = 0$.

Klassifizikation des ersten Teilglieds \underline{F}_1 : reelles Polglied erster Ordnung.

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Zeitkonstante:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Es existiert nur diese Eckfrequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \ldots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_p = 1 \text{ rad/s}$. Verwende die Skript-Regel

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\rm min}^r \right) = 20 \log_{10}(1) = 0 \, {\rm dB}$$

Hier gilt $K_0=1,\ r=0$ und $F_{ges}^*(0)=1\Rightarrow F_{\rm dB}(\omega_{\rm min})=0\,{\rm dB}.$ Dieser Punkt nützt uns als Anker für die Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ bleibt die Amplituden-Asymptote waagrecht, denn die Anfangssteigung beträgt $r \cdot 20\,\mathrm{dB/dec} = 0$. Trage also eine horizontale Linie bei $0\,\mathrm{dB}$ ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfaches Polglied $1/(1+sT_p)$ reduziert die Steigung ab ω_p um $20\,\mathrm{dB/dec}$. Da bist jetzt die Steigung $0\,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $-20\,\mathrm{dB/dec}$. Zeichne rechts von ω_p die Gerade mit Steigung $-20\,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{\mathrm{dB}} \approx -20 \log_{10} \omega \quad (\omega \ge 1).$$

Mehrfachpole würden die Änderung mehrfach zählen; hier nicht nötig.

6. Eckabrundung korrekt berücksichtigen. Bei einfachen reellen Polen ergibt sich am Knickpunkt $\omega = \omega_p$ eine Abweichung von -3 dB gegenüber der Gerade. Setze dort einen Stützpunkt:

$$|H(j\omega_p)|_{dB} = -10\log_{10}(1+1^2) = -10\log_{10}2 \approx -3.01 \,dB.$$

Runde die Ecke entsprechend ab. Hätten wir einen Mehrfachpol bei ω_p (Beispielsweise $\left(\frac{1}{1+sT_n}\right)^t$), müsste man die Ecke um $t \cdot 3.01\,\mathrm{dB}$ abrunden.

7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = 0^{\circ}$$
.

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied erster Ordnung erzeugt insgesamt eine Phasenänderung von -90°. Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1 \,\omega_{p}, \\ \text{linear mit Steigung } -45^{\circ}/\text{Dec}, & 0.1 \,\omega_{p} < \omega < 10 \,\omega_{p}, \\ -90^{\circ}, & \omega \geq 10 \,\omega_{p}. \end{cases}$$

Das lineare Zwischenstück kann Formelkonform als $\varphi(\omega) \approx -45^{\circ} - 45^{\circ} \log_{10} \omega$ dargestellt werden (hier mit $\omega_p = 1$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 1/\omega \Rightarrow -20 \log_{10} \omega \, dB$). Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 0, Nennergra $n = 1 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^{\circ} = -90^{\circ}$.

Stückweise Näherungen (für die Skizze)

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 1, \\ -10\log_{10} 2, & \omega = 1, \\ -20\log_{10} \omega, & \omega \gg 1, \end{cases} \qquad \varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ -45^{\circ} - 45^{\circ}\log_{10} \omega, & 0.1 < \omega < 10, \\ -90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe B)

$$H(s) = \frac{10}{s+10} \,.$$

B.1 Bode-Diagramm

B.2 Erklärung

Schritt 1 DC-Faktor 1: $H(s) = \frac{10}{s+10} = \frac{1}{1+s/10}$, daher für $\omega \ll 10$ gilt $|H(j\omega)| \approx 1$; Betrag liegt bei 0 dB ohne Anfangssteigung, Phase $\approx 0^{\circ}$.

Schritt 2 Einfacher Pol bei $\omega_p = 10 \, \mathrm{rad/s}$: ab $\omega = 10 \, \mathrm{wechselt}$ die Magnituden-Steigung um $-20 \, \mathrm{dB/dec}$; die exakte Dämpfung am Eckpunkt beträgt $-10 \log_{10} 2 \approx -3.01 \, \mathrm{dB}$. Die Phasenübergangsdekade liegt zwischen $\omega_l = 1 \, \mathrm{und} \, \omega_h = 100 \, \mathrm{rad/s}$.

Schritt 3 Grenzverhalten: für $\omega \gg 10$ folgt $|H(j\omega)|_{\mathrm{dB}} \approx -20 \log_{10}(\omega/10)$; die Phase fällt in der Übergangsdekade linearisiert von 0° nach -90° (Näherung: $-45^{\circ} - 45 \log_{10}(\omega/10)$), mit $\angle H(j\omega) = -45^{\circ}$ bei $\omega = 10$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 10, \\ -10 \log_{10} 2, & \omega = 10, \\ -20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe C)

$$H(s) = \frac{s+1}{s+10} \,.$$

C.1 Bode-Diagramm

C.2 Erklärung (ausführlich)

1. Zuerst Normalform herstellen.

$$H(s) = \frac{s+1}{s+10} = \frac{1+sT_z}{10(1+sT_p)}$$

Die Teilglieder und Variablen gemäß Skript sind:

$$\underline{F}_1(s) = \frac{1}{1 + s\frac{1}{10}}, \ \underline{F}_2(s) = 1 + s, \quad T_z = 1, \ T_p = \frac{1}{10}, \ K_0 = \frac{1}{10} \text{ und } r = 0.$$

reelle Nullstelle erster Ordnung bei $\omega_z = 1/T_z = 1 \,\mathrm{rad/s}$; reeller Pol erster Ordnung bei $\omega_p = 1/T_p = 10 \,\mathrm{rad/s}$.

2. Danach Eckfrequenzen bestimmen und sortieren.

$$\omega_z = 1 \, \text{rad/s}, \qquad \omega_p = 10 \, \text{rad/s}, \qquad \omega_z < \omega_p.$$

3. Startpunkt des Amplitudengangs (Geradennäherung). Setze $\omega_{\min}=\omega_z=1.$

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10}(|K_0 F_{ges}^*(0)| \omega_{\rm min}^r) = 20 \log_{10}(\frac{1}{10}) = -20 \,\mathrm{dB}.$$

Anfangssteigung $r \cdot 20 \, \text{dB/dec} = 0$.

- 4. Verlauf links vom Startpunkt. Für $\omega < 1$ bleibt die Magnitude-Asymptote horizontal bei $-20\,\mathrm{dB},\,\mathrm{da}\;r=0.$
- 5. Steigungswechsel an den Ecken. Die Nullstelle bei $\omega_z = 1$ erhöht die Steigung um $+20\,\mathrm{dB/dec}$. Der Pol bei $\omega_p = 10$ senkt sie wieder um $-20\,\mathrm{dB/dec}$. Damit:

$$\begin{cases} \omega < 1 : & 0 \, \text{dB/dec,} \\ 1 \le \omega < 10 : & +20 \, \text{dB/dec,} \\ \omega \ge 10 : & 0 \, \text{dB/dec.} \end{cases}$$

6. Eckabrundung (exakte Stützpunkte).

$$|H(j\omega)| = \frac{\sqrt{1+\omega^2}}{\sqrt{100+\omega^2}}, \qquad |H(j\cdot 1)|_{\mathrm{dB}} = 10\log_{10}\left(\frac{2}{101}\right) \approx -17.03\,\mathrm{dB},$$

$$|H(j \cdot 10)|_{\text{dB}} = 10 \log_{10} \left(\frac{101}{200}\right) \approx -2.97 \,\text{dB}.$$

Bei $\omega=1$ liegt die Kurve $\approx 3\,\mathrm{dB}$ über der Geradennäherung, bei $\omega=10$ $\approx 3\,\mathrm{dB}$ darunter. Auch hier gilt: Mehrfachpole/-nullstellen sorgen für eine Rundung um $t\cdot 3\,\mathrm{dB}$

8

7. Phasenstartwert. Da $K_0 F_{qes}(0) > 0$ gilt:

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch Nullstelle und Pol. Reelle Nullstelle 1. Ordnung: 0° → +90° über [0.1, 10]. Reeller Pol 1. Ordnung: 0° → −90° über [1, 100]. Die Phasensteigungs und -senkungseffekte überschneiden sich in [10, 100] und addieren sich dort. In diesem Interval bleibt also die Phase gleich Die Geradennäherung lautet also:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ +45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 1, \\ +45^{\circ}, & 1 \leq \omega \leq 10, \\ +45^{\circ} - 45^{\circ} \log_{10} (\omega/10), & 10 < \omega < 100, \\ 0^{\circ}, & \omega \geq 100. \end{cases}$$

9. Exakte Stützstellen (Kontrolle).

$$\varphi(\omega) = \arctan(\omega) - \arctan\left(\frac{\omega}{10}\right) [^{\circ}].$$

Praktische Punkte:

$$\begin{split} \omega &= 0.1: & |H|_{\rm dB} \approx -19.96, \ \, \varphi \approx +5.14^{\circ}, \\ \omega &= 1: & |H|_{\rm dB} \approx -17.03, \ \, \varphi \approx +39.29^{\circ}, \\ \omega &= 10: & |H|_{\rm dB} \approx -2.97, \ \, \varphi \approx +39.29^{\circ}, \\ \omega &= 100: & |H|_{\rm dB} \approx -0.04, \ \, \varphi \approx +5.14^{\circ}. \end{split}$$

10. Grenzwerte und Konsistenz. DC: $|H(0)| = \frac{1}{10} \Rightarrow -20 \,\mathrm{dB}, \ \varphi(0) = 0^\circ$. Für $\omega \to \infty$: $|H(j\omega)| \to 1 \Rightarrow 0 \,\mathrm{dB}$. Pol-/Nullzählung: $m = n = 1 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^\circ = 0^\circ$.

9

Aufgabe D)

$$H(s) = \frac{10(1-s)}{s+10}.$$

D.1 Bode-Diagramm

D.2 Erklärung

Schritt 1 DC-Faktor 1: $H(0) = 1 \Rightarrow |H|_{DC} = 0$ dB ohne Anfangssteigung; Phase $\approx 0^{\circ}$.

Schritt 2 Nullstelle bei $\omega_z=1\,\mathrm{rad/s}$ in der rechten Halbebene \Rightarrow ab $\omega=1\,\mathrm{Anstieg}$ um $+20\,\mathrm{dB/dec}$. Übergang $0^\circ\to-90^\circ$ über $\omega\in[0.1,10]$; Geradennäherung $-45^\circ-45\log_{10}\omega$ liefert $\angle H(1)\approx-45^\circ$. Exakt liegt die Magnitude bei $\omega=1\,\mathrm{bei}\ 20+10\log_{10}2-10\log_{10}101\approx+3\,\mathrm{dB}$.

Schritt 3 Pol bei $\omega_p = 10 \, \mathrm{rad/s}$: ab $\omega = 10 \, \mathrm{Steigungswechsel} \, \mathrm{um} - 20 \, \mathrm{dB/dec}$; für $\omega \gg 10 \, \mathrm{ergibt}$ sich konstanter Betrag $\approx +20 \, \mathrm{dB}$. Phasenabfall des Pols um weitere 90° über $\omega \in [1, 100]$; Geradennäherung $-45^\circ - 45 \, \mathrm{log}_{10}(\omega/10)$. Zusammengesetzt: Phase $\approx 0^\circ$ für $\omega \ll 0.1$, $\approx -45^\circ$ um $\omega \approx 1$, $\approx -135^\circ$ um $\omega \approx 10 \, \mathrm{und} \approx -180^\circ$ für $\omega \gg 100$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20, & \omega \gg 10, \end{cases}$$

Aufgabe E)

$$H(s) = \frac{-1 + j}{\sqrt{2}(s+1)^2}$$
.

E.1 Bode-Diagramm

E.2 Erklärung

Schritt 1 Konstanter Faktor $(-1+j)/\sqrt{2}=e^{j135^{\circ}}$: Betrag $1\Rightarrow$ Start bei 0 dB ohne Anfangssteigung; die Phase "fängt" bei +135° an (reiner Phasor, kein Einfluss auf die Magnitude).

Schritt 2 Doppelpol bei $\omega_p = 1 \, \mathrm{rad/s}$: ab $\omega = 1 \, \mathrm{sinkt}$ die Magnitude mit $-40 \, \mathrm{dB/dec}$; am Eckpunkt beträgt die exakte Dämpfung $-20 \, \mathrm{log_{10}} (1+1) = -20 \, \mathrm{log_{10}} \, 2 \approx -6 \, \mathrm{dB}$ (Summe aus zwei $-3.01 \, \mathrm{dB}$). Die Phase der beiden gleichliegenden Pole fällt zusammen in der Übergangsdekade $\omega \in [0.1, 10]$ insgesamt um 180° ; lineare Geradennäherung: $135^\circ \to -45^\circ$ mit $\varphi_{\mathrm{approx}}(\omega) = 45^\circ - 90^\circ \, \mathrm{log_{10}} \, \omega$ für $\omega \in [0.1, 10]$.

Schritt 3 Grenzverhalten: für $\omega \ll 1$ gilt $|H(j\omega)|_{dB} \approx 0$ dB und $\angle H \approx +135^{\circ}$ für $\omega \ll 0.1$; für $\omega \gg 1$ folgt $|H(j\omega)|_{dB} \approx -40 \log_{10} \omega$ und die Phase nähert sich $+135^{\circ} - 2 \cdot 90^{\circ} = -45^{\circ}$ an.

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ -20\log_{10} 2, & \omega = 1, \\ -40\log_{10} \omega, & \omega \gg 1, \end{cases}$$

Aufgabe F)

$$H(s) = \frac{-1000}{(s+1)(s+100)}.$$

F.1 Bode-Diagramm

Bode-Magnitude

Bode-Phase (um $+360^{\circ}$ verschoben)

F.2 Erklärung

- Schritt 1 Konstante und Normierung: $H(s) = ... = -10 \frac{1}{(1+s)(1+s/100)}$. DC-Wert $H(0) = -10 \Rightarrow |H|_{DC} = 20 \, \text{dB}$. Das negative Vorzeichen bewirkt eine konstante Zusatzphase; hier wird die Phase, aus Darstellungsgründen, um +360° angehoben, sodass sie von 180° (für $\omega \ll 1$) nach 0° (für $\omega \gg 100$) verläuft.
- Schritt 2 Pol bei $\omega_{p1} = 1 \, \text{rad/s}$: ab $\omega = 1 \, \text{sinkt}$ die Magnitude mit $-20 \, \text{dB/dec}$. Exakt: Zusatzdämpfung $-10 \log_{10} 2 \approx -3 \, \text{dB}$. Phasenanteil (verschoben): Geradennäherung $135^{\circ} - 45^{\circ} \log_{10} \omega$ über $[0.1, 10] \, \text{zu} \, 90^{\circ}$.
- Schritt 3 Pol bei $\omega_{p2} = 100 \,\mathrm{rad/s}$: ab $\omega = 100 \,\mathrm{weitere}$ Steigungsänderung $-20 \,\mathrm{dB/dec} \Rightarrow \mathrm{Gesamtslope} -40 \,\mathrm{dB/dec}$ für $\omega \gg 100$. Phasenanteil (verschoben): $45^{\circ} 45^{\circ} \log_{10}(\omega/100)$ über $[10, 10^{5}]$. Grenzwerte: $|H(\mathrm{j}\omega)|_{\mathrm{dB}} \sim -40 \log_{10}(\omega/100) + 20$; $\angle H(\mathrm{j}\omega) \to 0^{\circ}$ für $\omega \to 10^{5}$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 20, & \omega \ll 1, \\ 20 - 10 \log_{10} 2, & \omega = 1, \\ 20 - 20 \log_{10} \omega, & 1 \ll \omega \ll 100, \\ -20 - 10 \log_{10} 2, & \omega = 100, \\ -20 - 40 \log_{10} (\omega/100), & \omega \gg 100, \end{cases}$$

Aufgabe G)

$$H(s) = \frac{100 \, s}{s+1} \,.$$

G.1 Bode-Diagramm

G.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = \frac{100s}{s+1} = 100 \cdot s \cdot \frac{1}{(1+sT_p)}$$

Die Teilglieder und Variablen gemäß Skript sind:

$$\underline{F}_1(s) = \frac{1}{1 + sT_p}, \ T_p = 1, \ K_0 = 100 \text{ und } r = 1.$$

2. Eckfrequenz bestimmen und sortieren. Unsere einzige Eckfrequenz ist:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Da diese die einzige Eckfrequenz ist, ist eine Sortierung der Eckfrequenzen hier hinfällig.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze $\omega_{\min}=\omega_p=1$. Gemäß Skript:

$$F_{\text{dB}}(\omega_{\min}) = 20 \log_{10}(|K_0 F_{qes}^*(0)| \omega_{\min}^r) = 20 \log_{10}(100 \cdot 1 \cdot 1) = 40 \,\text{dB}.$$

Anfangssteigung $r \cdot 20 \, \mathrm{dB/dec} = +20 \, \mathrm{dB/dec}$, da r=1

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min} = 1$ gilt die Geradennäherung mit Steigung $+20\,\mathrm{dB/dec}$. Einzeichnen als Gerade mit Steigung $+20\,\mathrm{dB/dec}$ durch den Punkt (ω_{\min} , $40\,\mathrm{dB}$).
- 5. Steigungswechsel an der Eckfrequenz eintragen. \underline{F}_1 reduziert ab ω_p die Steigung um 20 dB/dec:

$$\omega < 1$$
: $+20 \, \mathrm{dB/dec}$, $\omega \ge 1$: $0 \, \mathrm{dB/dec}$.

6. Eckabrundung korrekt berücksichtigen.

$$|H(j\omega)| = \frac{100 \,\omega}{\sqrt{1+\omega^2}}, \qquad |H(j\cdot 1)|_{\mathrm{dB}} = 40 - 10 \log_{10} 2 \approx 36.99 \,\mathrm{dB}.$$

Bei $\omega = 1$ liegt die Kurve etwa 3.01 dB unter der rechten Asymptote.

17

7. Phasenstartwert festlegen. Da $K_0F_{\text{ges}}(0) > 0$ und r = 1 gilt

$$\varphi(0) = \arg(K_0 F_{\text{ges}}(0)) + r \cdot 90^\circ = 0^\circ + 1 \cdot 90^\circ = +90^\circ.$$

8. Phasenänderung durch die Teilglieder eintragen. für $\omega \ll 0.1$: konstante $+90^{\circ}$. Durch \underline{F}_1 (Pol 1. Ordnung) sinkt die Phase von $90^{\circ} \rightarrow 0^{\circ}$ über [0.1, 10] ab. Geradennäherung gesamt:

$$\varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \le 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 0^{\circ}, & \omega \ge 10. \end{cases}$$

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 = -\infty$ dB, $\varphi(0) = 90^{\circ}$. HF: $|H(j\omega)| \to 100 \Rightarrow 40$ dB.

Pol-/Nullzählung: Zählergrad
$$m=1$$
, Nennergrad $n=1\Rightarrow \varphi(\infty)=(m-n)\cdot 90^\circ=0^\circ.$

Stückweise Näherungen (für die Skizze)

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 40 + 20 \log_{10} \omega, & \omega \ll 1, \\ 40 - 10 \log_{10} 2, & \omega = 1, \\ 40, & \omega \gg 1, \end{cases} \qquad \varphi(\omega) \approx \begin{cases} +90^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} - 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 0^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe H)

$$H(s) = \frac{10\sqrt{2}\,s^2}{s-1} \,.$$

H.1 Bode-Diagramm

H.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = K_0 \cdot s^r \frac{1}{1 - sT_p}$$
 mit $K_0 = -10\sqrt{2}$, $r = 2$, $T_p = 1$.

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 - sT_p}$$
 und $K_0 = -10\sqrt{2}$ und $r = 2$.

Klassifizikation des ersten Teilglieds \underline{F}_1 : reelles Polglied erster Ordnung (RHP).

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Zeitkonstante:

$$\omega_p = \frac{1}{T_p} = 1 \, \text{rad/s}.$$

Es existiert nur diese Eckfrequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \ldots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_p = 1 \text{ rad/s}$. Verwende die Skript-Regel

$$F_{\rm dB}(\omega_{\rm min}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\rm min}^r \right) = 20 + 10 \log_{10} 2 \approx 23 \,\mathrm{dB}.$$

Dieser Punkt nützt uns als Anker für die Geradennäherung.

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ verläuft die Amplituden-Asymptote mit Steigung $r \cdot 20 \, \mathrm{dB/dec} = 40 \, \mathrm{dB/dec}$. Trage also eine Gerade mit $+40 \, \mathrm{dB/dec}$ durch den Anker ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein einfaches Polglied $1/(1-sT_p)$ reduziert die Steigung ab ω_p um $20\,\mathrm{dB/dec}$. Da bis jetzt die Steigung $+40\,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $+20\,\mathrm{dB/dec}$. Zeichne rechts von ω_p die Gerade mit Steigung $+20\,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{dB} \approx 20 + 10 \log_{10} 2 + 20 \log_{10} \omega \quad (\omega \ge 1).$$

Mehrfachpole würden die Änderung mehrfach zählen; hier nicht nötig.

6. Eckabrundung korrekt berücksichtigen. Bei einfachen reellen Polen ergibt sich am Knickpunkt $\omega = \omega_p$ eine Abweichung von $-3\,\mathrm{dB}$ gegenüber der Gerade. Setze dort einen Stützpunkt:

$$|H(j\omega_p)|_{dB} = 23 \, dB - 3 \, dB = 20 \, dB.$$

Runde die Ecke entsprechend ab. Hätten wir einen Mehrfachpol bei ω_p (Beispielsweise $\left(\frac{1}{1\mp sT_p}\right)^t$), müsste man die Ecke um $t\cdot 3$. dB abrunden.

7. Phasenstartwert festlegen. Nutze die Regel für $\omega \to 0$: Da $K_0 F_{ges}(0) < 0$ und r = 2 (gerade), ist der Startwert der Phase

$$\varphi(0) = -180^{\circ} + r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch das Polglied eintragen. Ein reelles Polglied erster Ordnung (RHP) erzeugt insgesamt eine Phasenänderung von +90°. Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1 \,\omega_{p}, \\ \text{linear mit Steigung } + 45^{\circ}/\text{Dec}, & 0.1 \,\omega_{p} < \omega < 10 \,\omega_{p}, \\ +90^{\circ}, & \omega \geq 10 \,\omega_{p}. \end{cases}$$

Das lineare Zwischenstück kann Formelkonform als $\varphi(\omega) \approx 45^{\circ} + 45^{\circ} \log_{10} \omega$ dargestellt werden (hier mit $\omega_p = 1$).

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 0 \Rightarrow -\infty \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 10\sqrt{2}\,\omega \Rightarrow 20 + 10\log_{10}2 + 20\log_{10}\omega \, dB$. Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 2, Nennergra $n = 1 \Rightarrow \varphi(\infty) = (m - n) \cdot 90^{\circ} = +90^{\circ}$.

Stückweise Näherungen (für die Skizze)

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 20 + 10 \log_{10} 2 + 40 \log_{10} \omega, & \omega \ll 1, \\ 20, & \omega = 1, \\ 20 + 10 \log_{10} 2 + 20 \log_{10} \omega, & \omega \gg 1, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 0.1, \\ 45^{\circ} + 45^{\circ} \log_{10} \omega, & 0.1 < \omega < 10, \\ 90^{\circ}, & \omega \geq 10. \end{cases}$$

Aufgabe I)

$$H(s) = \frac{s+1}{(s+10)^2} \,.$$

I.1 Bode-Diagramm

I.2 Erklärung

Schritt 1 DC-Faktor $\frac{1}{100}$: $H(s) = \frac{s+1}{(s+10)^2}$ liefert $H(0) = \frac{1}{100}$, daher Startniveau $-40\,\mathrm{dB}$ ohne Anfangssteigung; Startphase $\angle H(\mathrm{j}\omega) \approx 0^\circ$ für $\omega \ll 1$.

Schritt 2 Nullstelle bei $\omega_z = 1 \, \mathrm{rad/s}$: ab $\omega = 1 \, \mathrm{steigt}$ die Magnitude mit $+20 \, \mathrm{dB/dec}$; bei $\omega = 1 \, \mathrm{liegt}$ der exakte Betrag um $+10 \, \mathrm{log_{10}} \, 2 \approx +3 \, \mathrm{dB}$ über der Geradennäherung ($|H(\mathrm{j1})|_{\mathrm{dB}} \approx -37.0 \, \mathrm{dB}$). Phasenbeitrag der LHP-Nullstelle: Übergang $0^\circ \to +90^\circ$ über $\omega \in [0.1, 10]$; Geradennäherung $+45^\circ +45^\circ \, \mathrm{log_{10}} \, \omega$ in [0.1, 1].

Schritt 3 Doppelpol bei $\omega_p = 10 \, \mathrm{rad/s}$: ab $\omega = 10 \, \mathrm{zus\"{a}tzliche}$ Steigungs\"{a}nderung um $-40 \, \mathrm{dB/dec}$; Netto-Slope damit $-20 \, \mathrm{dB/dec}$ für $\omega \gg 10$ (asymptotisch $|H| \sim \omega/\omega^2 = 1/\omega$). Exakt bei $\omega = 10$: $|H(\mathrm{j}10)|_{\mathrm{dB}} = -20 - 20 \, \mathrm{log_{10}} \, 2 \approx -26 \, \mathrm{dB}$ (d. h. $-6 \, \mathrm{dB}$ unter der Geradennäherung). Phasenbeitrag der beiden Pole: gemeinsamer Abfall um 180° über $\omega \in [1, 100]$; lineare Summe zweier Beiträge $(-45^\circ - 45^\circ \, \mathrm{log_{10}}(\omega/10))$ ergibt die roten Segmente $45^\circ - 45^\circ \, \mathrm{log_{10}} \, \omega$ für $\omega \in [1, 10]$ und $-90^\circ \, \mathrm{log_{10}}(\omega/10)$ für $\omega \in [10, 100]$. Grenzwerte: $\angle H \to 0^\circ$ für $\omega \ll 0.1$ und $\angle H \to -90^\circ$ für $\omega \gg 100$.

$$|H(j\omega)|_{dB} \approx \begin{cases} -40, & \omega \ll 1, \\ -40 + 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ -20 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe J)

$$H(s) = \frac{s+1}{s^2+2s+1} = \frac{1}{s+1}$$
.

J.1 Bode-Diagramm

J.2 Erklärung

Schritt 1 Kürzung: $s^2 + 2s + 1 = (s+1)^2 \Rightarrow H(s) = \frac{s+1}{(s+1)^2} = \frac{1}{s+1}$. DC-Faktor 1: für $\omega \ll 1$ gilt $|H(j\omega)| \approx 1$; Betrag 0 dB ohne Anfangssteigung, Phase $\approx 0^\circ$.

Schritt 2 Einfacher Pol bei $\omega_p = 1 \, \mathrm{rad/s}$: ab $\omega = 1 \, \mathrm{wechselt}$ die Magnituden-Steigung um $-20 \, \mathrm{dB/dec}$. Am Eckpunkt beträgt die exakte Dämpfung $-10 \log_{10} 2 \approx -3 \, \mathrm{dB}$ relativ zur Geraden. Phasenübergang über $\omega \in [0.1, 10]$ von 0° nach -90° ; Geradennäherung: $-45^\circ - 45 \log_{10} \omega$.

Schritt 3 Grenzverhalten: für $\omega \gg 1$ folgt $|H(j\omega)|_{dB} \approx -20 \log_{10} \omega$; die Phase nähert sich -90° . Für $\omega \ll 1$ bleibt $|H| \approx 1$ und $\angle H \approx 0^{\circ}$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ -10\log_{10} 2, & \omega = 1, \\ -20\log_{10} \omega, & \omega \gg 1, \end{cases}$$

Aufgabe K)

$$H(s) = \frac{100(s+1)}{s^2 + 20s + 100} = \frac{100(s+1)}{(s+10)^2}.$$

K.1 Bode-Diagramm

K.2 Erklärung

Schritt 1 Faktorisierung: $s^2+20s+100=(s+10)^2\Rightarrow H(s)=100\frac{s+1}{(s+10)^2}$. DC-Wert $H(0)=1\Rightarrow |H|_{DC}=0\,\mathrm{dB}$; Anfangssteigung $0\,\mathrm{dB/dec}$, Startphase $\approx 0^\circ$.

Schritt 2 Nullstelle bei $\omega_z = 1 \, \mathrm{rad/s}$: ab $\omega = 1 \, \mathrm{steigt}$ die Magnitude mit $+20 \, \mathrm{dB/dec}$ (rote Gerade $20 \, \mathrm{log_{10}} \, \omega$). Exakt bei $\omega = 1$: $|H(\mathrm{j1})| \approx \frac{100\sqrt{2}}{101} \Rightarrow |H|_{\mathrm{dB}} \approx +3 \, \mathrm{dB}$ über der Geraden. Phasenbeitrag der LHP-Nullstelle: Übergang $0^{\circ} \to +90^{\circ}$ über $\omega \in [0.1, 10]$ (Geradennäherung: $45^{\circ} + 45 \, \mathrm{log_{10}} \, \omega$).

Schritt 3 Doppelpol bei $\omega_p = 10 \,\mathrm{rad/s}$: ab $\omega = 10 \,\mathrm{zus\"{a}tzliche}$ Steigungs\"{a}nderung um $-40 \,\mathrm{dB/dec}$; Netto-Slope für $\omega \gg 10$ ist $-20 \,\mathrm{dB/dec}$ (asymptotisch $|H| \sim 100 \,\omega/\omega^2 = 100/\omega$). Am Eckpunkt $\omega = 10$ liegt die exakte Magnitude bei $\approx 14.0 \,\mathrm{dB}$, d. h. etwa $-6 \,\mathrm{dB}$ unter der Mittellinie. Phasenabfall der beiden Pole gesamt 180° über $\omega \in [1,100]$; Geradennäherung: zun\"{a}chst $45^\circ - 45 \log_{10} \omega$ für $\omega \in [1,10]$ (netto zur\"{u}ck Richtung 0°), danach $-90 \log_{10}(\omega/10)$ für $\omega \in [10,100]$ (netto bis -90°).

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ 20 \log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe L)

$$H(s) = \frac{s^2 - 100}{s+1} = \frac{(s-10)(s+10)}{s+1}$$
.

L.1 Bode-Diagramm

L.2 Erklärung

Schritt 1 Struktur: $H(s) = \frac{(s-10)(s+10)}{s+1}$. Für $\omega \ll 1$ ist $|H(j\omega)| \approx \frac{100}{1} = 100 \Rightarrow 40\,\mathrm{dB}$ ohne Startsteigung. $H(0) = -100 = 100e^{+j180^{\circ}} \Rightarrow \text{konstante Phasenlage} + 180^{\circ}$.

Schritt 2 Pol bei $\omega_p = 1 \, \text{rad/s}$: ab $\omega = 1 \, \text{Steigungswechsel um} -20 \, \text{dB/dec}$; am Eckpunkt exakte Dämpfung $-10 \log_{10} 2 \approx -3 \, \text{dB}$ gegenüber der linken Geraden. Phasenabnahme des Pols um 90° über $\omega \in [0.1, 10]$; Geradennäherung $135^{\circ} - 45^{\circ} \log_{10} \omega$ (von 180° auf 90°).

Schritt 3 Nullstellen bei $\omega_z = 10 \,\mathrm{rad/s}$ (eine LHP, eine RHP): Magnitudenbeitrag von zwei Nullstellen \Rightarrow zusätzliche $+40 \,\mathrm{dB/dec}$ ab $\omega = 10$; Netto-Gesamtslope wird $+20 \,\mathrm{dB/dec}$ für $\omega \gg 10$. Am Eckpunkt $\omega = 10$ liegt $|H(j10)|_{\mathrm{dB}} \approx 20 + 6 = 26.0 \,\mathrm{dB}$. Die Phasenänderungen der LHP-und RHP-Nullstelle heben sich gegenseitig auf; Netto entsteht an $\omega = 10$ keine zusätzliche Phasenänderung (die konstanten $+180^{\circ}$ sind bereits berücksichtigt).

$$|H(j\omega)|_{dB} \approx \begin{cases} 40, & \omega \ll 1, \\ 40 - 10\log_{10} 2, & \omega = 1, \\ 40 - 20\log_{10} \omega, & 1 \ll \omega \ll 10, \\ 20 + 20\log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe M)

$$H(s) = \frac{10\sqrt{202} \, s}{(s+1)(s+10)} \, .$$

M.1 Bode-Diagramm

M.2 Erklärung

Schritt 1 Nullstelle im Ursprung: $H(s) = 10\sqrt{202} \frac{s}{(s+1)(s+10)}$. Für $\omega \ll 1$ gilt $|H(j\omega)| \approx \sqrt{202} \omega$; Startsteigung $+20 \, \mathrm{dB/dec}$ mit Fixniveau $^110 \log_{10} 202 \, \mathrm{dB} = 23 \, \mathrm{dB}$ bei $\omega = 5$. Startphase $\approx +90^\circ$.

Schritt 2 Pol bei $\omega_{p1} = 1 \, \text{rad/s}$: ab $\omega = 1 \, \text{Steigungswechsel um} -20 \, \text{dB/dec}$; Zwischenbereich [1, 10] ist betragsflach. Exakt $|H(j1)| = \frac{10\sqrt{202}}{\sqrt{2}\sqrt{101}} = 10 \Rightarrow 20 \, \text{dB}$ (symmetrische Ecklage). Phasenabfall um 90° über $\omega \in [0.1, 10]$; Geradennäherung $45^{\circ} - 45^{\circ} \log_{10} \omega$.

Schritt 3 Pol bei $\omega_{p2}=10\,\mathrm{rad/s}$: ab $\omega=10$ weiterer Steigungswechsel um $-20\,\mathrm{dB/dec}$; Gesamtslope $-20\,\mathrm{dB/dec}$ für $\omega\gg10$. Auch hier $|H(\mathrm{j}10)|=\frac{100\sqrt{202}}{\sqrt{101}\sqrt{200}}=10\Rightarrow20\,\mathrm{dB}$. Der zweite Pol senkt die Phase um weitere 90° in $\omega\in[1,100]$; Geradennäherung $-45^\circ\log_{10}(\omega/10)$, Grenzwert $\angle H\to-90^\circ$.

$$|H(\mathrm{j}\omega)|_{\mathrm{dB}} \approx \begin{cases} 10 \log_{10} 202 + 20 \log_{10} \omega, & \omega \ll 1, \\ 20, & \omega = 1, \\ 10 \log_{10} 202, & 1 \ll \omega \ll 10, \\ 20, & \omega = 10, \\ 10 \log_{10} 202 - 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

 $^{^1}$ Die Festlegung der ersten Geradennäherung gestaltet sich hier schwierig. Alternativ kann man die Verstärkung bei der Eckfrequenz $\omega=1$ ansetzen; dabei ist zu beachten, dass man den exakten Wert der blauen Kurve berechnet und dieser etwa 3 dB unter der Geradennäherung liegt, welche man dann einzeichnen muss.

Aufgabe N)

$$H(s) = \frac{s(0.1 - s)(s + 10)}{(s + 1)^2}.$$

N.1 Bode-Diagramm

N.2 Erklärung

Schritt 1 Struktur und Startverhalten: $H(s) = \frac{s(0.1-s)(s+10)}{(s+1)^2}$. Für $\omega \ll 0.1$ gilt $|H(j\omega)| \approx \omega \cdot 0.1 \cdot 10/1 = \omega \Rightarrow \text{Startsteigung} + 20 \, \text{dB/dec}$; Startphase aus j ω ist $\approx +90^{\circ}$ (keine Übergänge aktiv).

Schritt 2 RHP-Nullstelle bei $\omega_z = 0.1 \,\mathrm{rad/s}$: Magnitude-Beitrag wie LHP-Nullstelle \Rightarrow zusätzlicher Anstieg $+20 \,\mathrm{dB/dec}$ ab $\omega = 0.1$; Nettoslope ist $+40 \,\mathrm{dB/dec}$ Phase hingegen fällt um 90° über $\omega \in [0.01,1]$ (Geradennäherung: $45^\circ - 45^\circ \log_{10}(\omega/0.1)$ bis $45^\circ - 135^\circ \log_{10}(\omega/0.1)$).

Schritt 3 Doppelpol bei $\omega_p = 1 \, \mathrm{rad/s}$ und LHP-Nullstelle bei $\omega_z = 10 \, \mathrm{rad/s}$: Der Doppelpol reduziert die Slope um $-40 \, \mathrm{dB/dec} \Rightarrow \mathrm{Netto} \, 0 \, \mathrm{dB/dec}$ in [1,10] (Betrag $\approx 20 \, \mathrm{dB}$ als Geraden-Niveau); die LHP-Nullstelle hebt ab $\omega = 10$ die Slope wieder auf $+20 \, \mathrm{dB/dec}$. Phasenbild: der Doppelpol liefert insgesamt -180° über $\omega \in [0.1,10]$; die LHP-Nullstelle addiert $+90^\circ$ über $\omega \in [1,100]$. Daraus resultieren die roten Segmente: $+90^\circ \rightarrow +45^\circ$ ([0.01,0.1]), weiter bis $\approx -90^\circ$ ([0.1,1]), in [1,10] Abfall bis $\approx -135^\circ$, anschließend Anstieg zurück gegen $\approx -90^\circ$ für $\omega \gg 100$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 20 \log_{10} \omega, & \omega \ll 0.1, \\ 40 \log_{10} \omega + 20, & 0.1 \ll \omega \ll 1, \\ 20, & 1 \ll \omega \ll 10, \\ 20 + 20 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe O)

$$H(s) = \frac{1}{s}.$$

O.1 Bode-Diagramm

O.2 Erklärung

Schritt 1 Pol im Ursprung: H(s)=1/s liefert für alle $\omega>0$ die Betragsasymptote $|H(\mathrm{j}\omega)|_{\mathrm{dB}}=-20\log_{10}\omega$ mit konstanter Steigung $-20\,\mathrm{dB/dec}$; keine endliche Eckfrequenz. Wir benötigen ein Fixpunkt und wählen diesen beliebig bei $\omega=1\to |H(1)|_{dB}=20log_{10}(1)\,\mathrm{dB}=0\,\mathrm{dB}$

Schritt 2 Phase: $\angle(1/j\omega) = -90^{\circ}$ für alle Frequenzen; keine Übergangsdekaden, daher rote Geradennäherung deckungsgleich mit dem exakten Verlauf.

Schritt 3 Grenzfälle: $\omega \to 0^+ \Rightarrow |H| \to \infty$ (Integrator), $\omega \to \infty \Rightarrow |H| \to 0$; Phase bleibt stets -90° .

$$|H(j\omega)|_{dB} \approx \begin{cases} -20 \log_{10} \omega, & \omega \ll 1, \\ 0, & \omega = 1, \\ -20 \log_{10} \omega, & \omega \gg 1, \end{cases}$$

Aufgabe P)

$$H(s) = \frac{100}{s^2 + s + 100} \,.$$

P.1 Bode-Diagramm

P.2 Erklärung (ausführlich)

1. Normalform herstellen. Bringe die Übertragungsfunktion exakt in die im Skript definierte Standardform für reelle Pol-/Nullstellen.

$$H(s) = K_0 \cdot s^r \cdot \frac{1}{1 + 2d_n T_p \cdot s + T_p^2 \cdot s^2}$$

Hier haben wir:

$$\underline{F}_1(s) = \frac{1}{1 + 2d_n T_p \cdot s + T_p^2 \cdot s^2}, \quad K_0 = \frac{100}{100} = 1,$$

$$T_p = \frac{1}{10}, \quad d_n = \frac{1}{20} \quad \text{und} \quad r = 0.$$

Klassifizikation des ersten Teilglieds \underline{F}_1 : konjugiertes komplexes Polpaar zweiter Ordnung.

2. Eckfrequenz bestimmen und sortieren. Bestimme die Eckfrequenz aus der Normform:

$$\omega_n = \frac{1}{T_p} = 10 \,\text{rad/s}$$

Es existiert nur diese charakteristische Frequenz; die aufsteigende Sortierung $\omega_1 < \omega_2 < \dots$ ist damit trivial.

3. Startpunkt des Amplitudengangs festlegen (Geradennäherung). Setze die Startfrequenz gleich der kleinsten Eckfrequenz $\omega_{\min} = \omega_n = 10 \,\mathrm{rad/s}$. Verwende die Regel im Skript

$$F_{\text{dB}}(\omega_{\text{min}}) = 20 \log_{10} \left(|K_0 F_{ges}^*(0)| \cdot \omega_{\text{min}}^r \right) = 20 \log_{10}(1) = 0 \,\text{dB}.$$

Dieser Punkt dient als Anker für die Geradennäherung (ohne Resonanzüberhöhung).

- 4. Verlauf links vom Startpunkt zeichnen. Für $\omega < \omega_{\min}$ bleibt die Amplituden-Asymptote waagrecht, denn die Anfangssteigung beträgt $r \cdot 20\,\mathrm{dB/dec} = 0$. Trage also eine horizontale Linie bei $0\,\mathrm{dB}$ ein.
- 5. Steigungswechsel an der Eckfrequenz eintragen. Ein konjugiertes Polpaar zweiter Ordnung reduziert die Steigung ab ω_n um $40 \,\mathrm{dB/dec}$. Da bis jetzt die Steigung $0 \,\mathrm{dB/dec}$ betrug, ist diese ab jetzt $-40 \,\mathrm{dB/dec}$. Zeichne rechts von ω_n die Gerade mit Steigung $-40 \,\mathrm{dB/dec}$. Die Formel für die Geradennäherung lautet:

$$|H(j\omega)|_{\mathrm{dB}} \approx -40 \log_{10} \left(\frac{\omega}{\omega_n}\right) \quad (\omega \ge \omega_n = 10).$$

6. Eckabrundung korrekt berücksichtigen. Da $d_n \ll \frac{1}{2}$ müssen wir beim Abrunden eine Resonanzüberhöhung mit einbeziehen. Laut Skript erreicht der Magnitudengang bei $\omega = \omega_n$ eine Überhöhung von

$$-20\log_{10}(2d_n) = -20\log_{10}(\frac{1}{10}) = 20 \,\mathrm{dB}$$

über der asymptotischen 0 dB-Gerade. Trage dort einen Stützpunkt und runde die Ecke mit Resonanz entsprechend aus.

7. Phasenstartwert festlegen. Da $K_0F_{ges}(0) > 0$ und r = 0, ist der Startwert der Phase

$$\varphi(0) = r \cdot 90^{\circ} = 0^{\circ}.$$

8. Phasenänderung durch das Polpaar eintragen. Ein komplexes Polpaar zweiter Ordnung erzeugt insgesamt eine Phasenänderung von -180° . Trage die Näherung ein:

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 10^{-1}\omega_n \ (=1), \\ \text{linear } -90^{\circ}/\text{Dec}, & 10^{-1}\omega_n < \omega < \omega_n, \\ \text{linear } -90^{\circ}/\text{Dec}, & \omega_n < \omega < 10 \omega_n, \\ -180^{\circ}, & \omega \geq 10 \omega_n \ (=100). \end{cases}$$

Das lineare Zwischenstück kann formelkonform als $\varphi(\omega) \approx -90^{\circ} \log_{10} \omega$ in [1, 10] und $\varphi(\omega) \approx -90^{\circ} - 90^{\circ} \log_{10}(\omega/10)$ in [10, 100] dargestellt werden.

9. Grenzwerte und Konsistenz prüfen. DC: $|H(0)| = 1 \Rightarrow 0 \, dB$, $\varphi(0) = 0^{\circ}$. HF: $|H(j\omega)| \sim 100/\omega^{2} \Rightarrow -40 \log_{10}(\omega/10) \, dB$. Pol-/Nullzählung bestätigt die Endphase: Zählergrad m = 0, Nennergrad $n = 2 \Rightarrow \varphi(\infty) = (m-n) \cdot 90^{\circ} = -180^{\circ}$.

Stückweise Näherungen (für die Skizze)

$$|H(j\omega)|_{\mathrm{dB}} \approx \begin{cases} 0, & \omega \ll 10, \\ +20, & \omega = 10, \\ -40 \log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

$$\varphi(\omega) \approx \begin{cases} 0^{\circ}, & \omega \leq 1, \\ -90^{\circ} \log_{10} \omega, & 1 < \omega < 10, \\ -90^{\circ} - 90^{\circ} \log_{10}(\omega/10), & 10 < \omega < 100, \\ -180^{\circ}, & \omega \geq 100. \end{cases}$$

Aufgabe Q)

$$H(s) = \frac{s^2 + 4}{s(s^2 + 10s + 100)}.$$

Q.1 Bode-Diagramm

Q.2 Erklärung

- Schritt 1 Struktur: Integrator 1/s, konjugiertes Polpaar mit $\omega_n = 10$, $\zeta = 0.5$, und Doppelnullen auf der imaginären Achse bei $\omega_z = 2$. Für $\omega \ll 2$: $|H(j\omega)| \approx \frac{4}{100\,\omega} = 0.04/\omega \Rightarrow \text{Slope} -20\,\text{dB/dec}$ um Niveau $20\log_{10}0.04 \approx -20\,\text{dB}$ bei $\omega = 0.4$; Phase $\approx -90^\circ$.
- Schritt 2 Doppelnullen bei $\omega_z = 2$: Betrag hat dort ein exaktes Null (|H(j2)| = 0). Asymptotisch steigt die Slope vor $\omega = 2$ bei $-20 \,\mathrm{dB/dec}$ (Nach $\omega = 2$ netto bei $-20 + 40 \to +20 \,\mathrm{dB/dec}$). Phasenbeitrag der Zählerdoppelnull ist exakt ein Sprung um $+180^\circ$ (von 0° auf 180°); in der Geradennäherung als $+180^\circ$ über zwei Dekaden [0.2, 20] modelliert.
- Schritt 3 Polpaar bei $\omega_n = 10$, $\zeta = 0.5$: ab $\omega = 10$ Slope-Änderung $-40 \,\mathrm{dB/dec}$ (Netto $+20 \to -20 \,\mathrm{dB/dec}$). Exakt bei $\omega = 10$: $|H(j10)| = \frac{|4-100|}{10\cdot 100} = \frac{96}{1000} \approx -20 \,\mathrm{dB}$. Phasenbeitrag des Polpaares -180° über [1,100], wodurch die Gesamtsumme nach dem temporären Anheben durch die Zählernullen wieder zurück auf -90° fällt².
- Schritt 4 Resonanz korrekt: Das Zählerpolynom s^2+4 liefert reelle zwei Nullstellen auf der imaginären Achse bei $\omega_z=2$. Folge: |H(j2)|=0; in Dezibel $-\infty$ dB. Das Polpaar $s^2+10s+100$ hat $\omega_n=10$ und $\zeta=0.5$ (Q=1). ζ ist recht groß und Q unterdrückt Resonanz; konkret $|H(j10)|=\frac{|4-100|}{10\cdot100}=0.096 \Rightarrow \approx -20$ dB.

$$|H(j\omega)|_{dB} \approx \begin{cases} 20 \log_{10}(0.04) - 20 \log_{10}\omega, & \omega \ll 2, \\ -\infty, & \omega = 2, \\ -40 + 20 \log_{10}\omega, & 2 \ll \omega \ll 10, \\ -20 - 20 \log_{10}(\omega/10), & \omega \gg 10, \end{cases}$$

 $^{^2}$ Aufgrund der sehr kleinen Dämpfung ζ wirkt der Phasenverlauf "chaotisch". Tatsächlich überlagern sich zwei 180°-Übergänge: zuerst der abrupte Sprung des Nullstellenpaares, direkt danach der vergleichsweise sanfte Abfall des Polpaares.

Aufgabe R)

$$H(s) = \frac{s^2 + 2s + 10}{s^2 + 2s + 10} = 1$$
.

R.1 Bode-Diagramm

R.2 Erklärung

Schritt 1 Kürzung: Zähler und Nenner sind identisch, daher $H(s) \equiv 1$. DC-Faktor $1 \Rightarrow |H|_{DC} = 0$ dB; Anfangssteigung 0 dB/dec; Phase 0° .

Schritt 2 Keine Ecken: keine endlichen Pole/Nullstellen nach Kürzung, daher keine Eckfrequenzen und keine Phasen- und Magnitudenänderungen. Die Geradennäherungen decken sich exakt mit dem exakten Verlauf.

Schritt 3 Grenzverhalten: für $\omega \to 0$ und $\omega \to \infty$ bleibt $|H(j\omega)| = 1$ und $\angle H(j\omega) = 0^{\circ}$; das gesamte Bode-Diagramm ist konstant.

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 1, \\ 0, & \omega = 1, \\ 0, & \omega \gg 1, \end{cases}$$

Aufgabe S)

$$H(s) = \frac{4}{s^2 - 4} = \frac{4}{(s - 2)(s + 2)}$$
.

S.1 Bode-Diagramm

S.2 Erklärung

Schritt 1 Faktorisierung: $H(s) = \frac{4}{(s-2)(s+2)}$. DC-Wert $H(0) = -1 \Rightarrow |H|_{DC} = 0 \, dB$; das negative Vorzeichen liefert eine konstante Phase von -180° . Anfangssteigung $0 \, dB/dec$.

Schritt 2 Pole bei $\omega_p = 2 \, \mathrm{rad/s}$ (einer RHP, einer LHP): Magnitudenbeitrag entspricht einem Doppelpol bei $\omega = 2 \Rightarrow$ ab $\omega = 2 \, \mathrm{Slope} \, -40 \, \mathrm{dB/dec}$. Am Eckpunkt exakte Dämpfung $-20 \, \mathrm{log_{10}} \, 2 \approx -6 \, \mathrm{dB}$. Phasenverlauf: die entgegengesetzen Beiträge der LHP- und RHP-Polphase heben sich auf; netto bleibt die Phase für alle ω konstant -180° .

Schritt 3 Grenzverhalten: für $\omega \ll 2$ bleibt $|H(j\omega)| \approx 1$; für $\omega \gg 2$ folgt $|H(j\omega)|_{\rm dB} \approx -40 \log_{10}(\omega/2)$; die Phase bleibt über das gesamte Spektrum bei -180° .

$$|H(j\omega)|_{dB} \approx \begin{cases} 0, & \omega \ll 2, \\ -20\log_{10} 2, & \omega = 2, \\ -40\log_{10}(\omega/2), & \omega \gg 2, \end{cases}$$

Aufgabe T)

$$H(s) = \frac{-1000 (s+2)^2}{4 (s+1)^3 (s+10)} = -250 \frac{(s+2)^2}{(s+1)^3 (s+10)}.$$

T.1 Bode-Diagramm

Bode-Magnitude

Bode-Phase (um $+360^{\circ}$ verschoben)

T.2 Erklärung

- Schritt 1 Konstante & Vorzeichen: $H(0) = -100 \Rightarrow |H|_{DC} = 40 \,\mathrm{dB}$, Anfangssteigung $0 \,\mathrm{dB/dec}$. Die Darstellung ist um $+360^\circ$ verschoben: Startphase 180° (das negative Vorzeichen).
- Schritt 2 Dreifachpol bei $\omega = 1 \, \text{rad/s}$: ab $\omega = 1 \, \text{Steigungsänderung um} -60 \, \text{dB/dec}$; Exakte Abweichung ggü. Geradennäherung $-3 \cdot 10 \log_{10} 2 \approx -9 \, \text{dB}$. Phasenabfall dieses Poltripels über $\omega \in [0.1, 10] \, \text{um} \, 270^{\circ}$.
- Schritt 3 Doppelnullstelle bei $\omega = 2 \, \mathrm{rad/s}$ und Pol bei $\omega = 10 \, \mathrm{rad/s}$: die Doppelnull hebt die Slope ab $\omega = 2 \, \mathrm{um} + 40 \, \mathrm{dB/dec}$ (Netto $-20 \, \mathrm{dB/dec}$ in (2,10)), der Pol bei $\omega = 10 \, \mathrm{senkt}$ sie um weitere $-20 \, \mathrm{dB/dec}$ (Netto $-40 \, \mathrm{dB/dec}$ für $\omega \gg 10$). Phasenbeiträge: $+180^\circ$ der Doppelnullstelle über [0.2,20], -90° des Pols bei $10 \, \mathrm{über} \, [1,100]$; Die Phase verläuft von 180° ($\omega \ll 0.1$) gegen 0° ($100 \ll \omega$).

$$|H(j\omega)|_{dB} \approx \begin{cases} 40, & \omega \ll 1, \\ 40 - 60 \log_{10} \omega, & 1 \ll \omega \ll 2, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} (\omega/2), & 2 \ll \omega \ll 10, \\ 40 - 60 \log_{10} 2 - 20 \log_{10} 5 - 40 \log_{10} (\omega/10), & \omega \gg 10, \end{cases}$$

Aufgabe U)

$$H(s) = \frac{2s}{s^2 + 2s + 1} = \frac{2s}{(s+1)^2}.$$

U.1 Bode-Diagramm

U.2 Erklärung

Schritt 1 Nullstelle im Ursprung und Faktor 2: für $\omega \ll 1$ gilt $|H(j\omega)| \approx 2 \omega$ \Rightarrow Startsteigung $+20 \, \mathrm{dB/dec}$, Fixpunkt bei $|H(1j)|_{dB} = 20 \log_{10} 1 \approx 0 \, \mathrm{dB}$; Fixpunkt für Geradennäherung liegt ca. 6 dB über exakten Fixpunkt 0 dB. Startphase $\approx +90^{\circ}$.

Schritt 2 Doppelter Pol bei $\omega = 1 \, \mathrm{rad/s}$: ab $\omega = 1 \, \mathrm{zus\"{a}tzliche}$ Steigungs\"{a}nderung um $-40 \, \mathrm{dB/dec}$; Netto-Slope für $\omega \gg 1 \, \mathrm{ist} \, -20 \, \mathrm{dB/dec}$ ($|H| \sim 2/\omega$). Phasenabfall der beiden Pole zusammen 180° über $\omega \in [0.1, 10]$; Näherung: $45^\circ - 90^\circ \log_{10} \omega$.

Schritt 3 Grenzverhalten: $\omega \ll 1 \Rightarrow |H|_{\rm dB} \approx 20 \log_{10} 2 + 20 \log_{10} \omega$, $\angle H \approx +90^{\circ}$; $\omega \gg 1 \Rightarrow |H|_{\rm dB} \approx 20 \log_{10} 2 - 20 \log_{10} \omega$, $\angle H \rightarrow -90^{\circ}$.

$$|H(j\omega)|_{dB} \approx \begin{cases} 20 \log_{10} 2 + 20 \log_{10} \omega, & \omega \ll 1, \\ \\ 20 \log_{10} 2 - 20 \log_{10} 2 = 0, & \omega = 1, \\ \\ 20 \log_{10} 2 - 20 \log_{10} \omega, & \omega \gg 1, \end{cases}$$