Si l'espace prévue pour une réponse ne suffit pas, veuillez continuer au verso ou annexer une feuille supplémentaire.

Nom & prénom :			
Classe:	Atelier:	Traitement & Transmission de Signal	

Enseignant: A. Mhamdi

Ne rien écrire dans ce tableau.

Question	1	2	3	4	5	6	Total
Barème	2	1	1	1	3	2	10
Note							

On se propose d'écrire le code **Python** qui, pour tout $-0.5 \le t \le 7$, permet de générer le signal z du graphique suivant :

1. (2 points) Chargez les modules necessaires à l'execution du code.	

2.	(1 point)	Écrivez le code qui permet d'implémenter la fonction $\Gamma_{\tau}(t)$, qu'on dénote par ' $G_{tau}(t, tau)$ '.	
3.	(1 point)	Écrivez le code qui permet d'implémenter la fonction $r_{\tau}(t)$, qu'on dénote par ' $r_{tau}(t, tau)$ '.	
4.	(1 point)	Générez le vecteur t. (On choisit un nombre de points de 1000.)	
5.	(3 points)	Déterminez, à partir du graphe, l'expression du signal z.	
6.	(2 points	Écrivez le code qui correspond à z .	
		$z(t) = 0.5r(t) - r_1(t) + 0.75\Gamma_2(t) + \Gamma_5(t)$	(1)