MRS Fall EQ04 Tutorial: Predicting phonon DoS with e3nn

Nina Andrejevic and Zhantao Chen Quantum Measurement Group, MIT Nov. 29, 2021

Motivation | Phonon DoS and thermal properties

• Phonon density of states (DoS):
$$g(\omega) = \frac{1}{3nN} \sum_{\mathbf{k}\nu} \delta(\omega - \omega_{\mathbf{k}\nu})$$

• Lattice heat capacity:
$$C_V = 3nNk_B \int_0^{\omega_L} \left(\frac{\hbar\omega}{2k_BT}\right)^2 \operatorname{csch}^2\left(\frac{\hbar\omega}{2k_BT}\right) g(\omega) d\omega$$

- Thermal conductivity: $k = \frac{1}{3}nC_V\langle v\rangle\lambda$
- Interfacial thermal transport: $E_{prop} = \int \omega g_{\cap}(\omega) d\omega$

J. Zhang, et al. *Physical Chemistry Chemical Physics* 17.37 (2015): 23704-23710.

Phonon-mediated superconductivity:

$$\lambda = 2 \int_0^\infty d\omega \ \alpha^2(\omega) \ g(\omega)/\omega$$

$$\overline{\omega} = \exp\left(\frac{2}{\lambda} \int_0^\infty d\omega \ln(\omega) \alpha^2(\omega) g(\omega) / \omega\right)$$

$$T_{c} = \frac{\overline{\omega}}{1.2} \exp\left(\frac{-1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right)$$

Motivation | Challenging to obtain phonon DoS

Experimental

Inelastic neutron and X-ray scattering at scientific user facilities

Computational

Ab initio calculations scale with $O(N^4)$, N = number of atoms in the calculated structure High computational cost of disordered or highly complex systems

Data-driven

Limited training data (~10³)

High-dimensional output depending on resolution

Data augmentation to capture arbitrary rotations of crystal structures

Euclidean neural networks (e3nn)

Symmetry-aware --> no data augmentation

Equivariant to 3D translations, rotations, and inversion --> constrain function optimization space

Extend naturally to systems with substitutional disorder

Approach | Predicting phonon DoS with e3nn

- Build graphs from crystal structures:
 - Each atom becomes a node with a feature x_{ai} expressed in the irrep "118x0e"
 - Atomic mass-weighted one-hot encoding: 118 scalars with atomic mass at the *Z*-th scalar (zero otherwise)
 - Edge $\overrightarrow{r_{ab}}$ is formed between pairs of atoms with $r \leq r_{\text{max}}$

- Manipulations of irreps within the neural network:
 - Embedding, convolution, gated block (activation)
- Interpretation and results:
 - Visualization of intermediate learned features
 - Predict partial DoS which NN is not explicitly trained to do
 - Predict phonon DoS of substitutional alloys with N-hot input

Approach | Some considerations

Periodicity

Adding periodicity only changes the graph, not the model Edges can be formed between an atom and its images (if $r \le r_{\text{max}}$)

Normalization

Average number of neighbors z: $f_a' = \frac{1}{\sqrt{z}} \sum_{b \in \partial(a)} f_b \otimes_{|r_{ab}|} Y(r_{ab}/|r_{ab}|)$

Generalizability

Weighting one-hot features by atomic mass allows the model to generalize better to unseen elements (over simple one-hot encoding)

