Теоретическая информатика. Лекции

1 Информатика как наука

Определение 1. Информатика - наука, изучающая аспекты:

- получаения информации;
- хранения информации;
- использования информации;
- передачи информации.

Определение 2. Информатика - это наука о формализации любых задач, разработки алгоритмов для их решения и решение этих задач с использованием компьютеров и компьютерных сетей.

Задачи информатики

- Исследование информационных процессов любой природы;
- Создание новых технологий переработки информации;
- Решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники во всех сферах жизни.

1.1 Информация

Определение 3. Информация - множество фактов о различных объектах, событиях и процессах природы и общества, которое воспринимается в виде образов различной физической природы.

Определение 4. Информация - это мера уменьшения неопределённости нашего знания о состоянии какого-либо объекта.

Обработка информации

Внешние сигналы \to Данные \to Неформальный смысл, выраженный в ощущениях \to Полуформальный смысл, выраженный в словах \to Формальный смысл, выраженный в терминах логики

1.1.1 Свойства информации

- 1. Достоверность отражает истинное состояние объекта;
- 2. **Ясность** информация должна быть понятной тому, для кого она предназначена;

- 3. **Полезность** (ценность) возможность использовать полученную информацию для достижения заданной цели;
- 4. Полнота (достаточность) информация содержит минимальный, но достаточный для принятия правильного решения набор сведений;
- Устойчивость информация должна реагировать на изменение входных данных.
- 6. **Устойчивость** способность реагировать на изменения исходных данных без нарушения необходимой точности.
- 7. Способность информации к накоплению и размножению.
- 8. Информация порождает новую информацию.
- 9. Информация товар, т.е. подлежит купле-продаже.

1.1.2 Количественная мера информации

Система X может принимать N состояний x_1, x_2, \ldots, x_n с вероятностями p_1, p_2, \ldots, p_n .

Определение 5. Энтропия - мера неопределённости системы - вычисляется по следующей формуле:

$$H(X) = -\sum_{i=1}^{n} p_i \log_a p_i$$

Если система имеет 2 равновероятных состояния, то энтропия измеряется в "двоичных единицах битах.

2 Системы исчисления

2.1 Виды систем исчисления

Определение 6. Система исчисления - совокупность приёмов и правил для записи чисел цифровыми знаками.

Определение 7. Символы, используемые в любой системе исчисления, называются **цифрами**.

Определение 8. Совокупность цифр для записи чисел называется **ал-**фавитом.

2.1.1 Непозиционные системы исчисления

Определение 9. Если в системе счисления каждой цифре в любом месте числа соответствует одно и то же значение, то такая система

нахвается непозиционной.

Пример. Римская система - с некоторыми докущениями

Римские числа

Значение цифры не зависит от её местоположения.

- Если цифра с меньшим значение стоит слева от цифры с большим значением, то её знак "минус".
- Если цифра с меньшиими значением стоит справа от цифры с большиим значением, то её знак "плюс"
- Вычитать из 10^n можно только один раз, не перепрыгивая через разряды.

Недостатки непозиционных систем исчисления:

- Трудность записи больших чисел
- Трудность выполнения арифметических операций

2.1.2 Позиционные системы исчисления

Определение 10. Система исчисления называется **позиционной**, если одна и та же цифра имеет различное значение, которое определяется её позицией в последовательности цифр, обозначающей запись числа.

$$\overline{x_n x_{n-1} \dots x_0} = x_n q_n + x_{n-1} q_{n-1} + \dots + x_0 q_0$$
, где

$$x_n, x_{n-1}, \dots, x_0$$
 - символы, обозначающие целые числа; q_n, q_{n-1}, \dots, q_0 - веса.

Определение 11. Номер позиции, котрой определяет вес цифры, расположенной на этой позиции, называется **разярдом**.

Особый интерес представляют системы исчисления, в которых веса цифры - геометрическая прогрессия со знаменателем q. Тогда число имеет вид:

$$x_q = \sum_{i=-m}^{i=m} x_i q^i$$

Определение 12. Основание q **базис** позиционной системы исчисления - количество знаков или символов, используемых для отображения числа в данной системе.

2.2 Перевод чисел из одной системы счисления в другую

Алгоритм перевода состоит из двух этапов:

- 1. Последовательное деление целой части и образующихся целыъ частных на основание новой системы счисления.
- 2. Последовательное умножение дробной части и дробных частей, получающихся произведений на то же основание новой системы счисления, записанное цифрами исходной системы счисления.

Таблица 1: Значения чисел в различных системах счисления

bin	oct/hex	bin	hex
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

2.3 Коды Грея

Определение 13. Коды, у которых переход к соседнему чисоу сопровождается изменением только в одном разряде.

Преимущества:

- Упрощение кодирующей логики
- Эффективность защиты от нежелательных сбоев

Недостатки:

• Выполнение арифмитических операций

$$g_n = b_n$$
$$g_i = b_i b_{i+1}, i = \overline{1, n-1}$$

Пример.

$$b = 100101_2$$
$$g = 110111_{q2}$$

Таблица 2: Коды Грея

0	00	000	0000
1	01	001	0001
	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

2.3.1 Вычисление двоичного кода по коду Грея

$$b_n = g_n$$

$$b_i = \begin{cases} g_i, \text{ кол-во предшествующих единиц нечётно} \\ \overline{g_i}, \text{ если нет} \end{cases}$$

Таблица 3: Перевод кода Грея в двоичную

 $\begin{array}{c} 11101_{g2} \\ 01110_{g2} \\ 00111_{g2} \\ 00011_{g2} \\ 00001_{g2} \\ \end{array}$

2.4 Трочиная система

В 1959 в МГУ разработана ЭВМ "Сетунь"
на основе троичной системы счисления.

Троичные системы счисления:

- Несимметричные: алфавит $\{0,1,2\}$
- Симметричные: алфавит $\{-1,0,1\}$ или $\{-,0,+\}$

2.4.1 Перевод чисел в симметричную троичную систему счисления

Для перевода из десятичной системы счисления в троичную симметричную систему:

- 1. Делим исходное число на 3
- 2. Если остаток от деления равен 0 или 1, то продолжаем процесс деления; если остаток равен 2, то записываем остаток как -, а к частному добавляем 1
- 3. Если результат равен 2, то записываем +-

Чтобы число поменяло знак, необходимо все + поменять на - и наоборот (инверсия).

Пример.
$$8 = '+0-'_{3ccc} \rightarrow '-8 = -0+'_{3ccc}$$

Пример.
$$261_{10} = '+0+-00'_{3ccc}$$

$$1*3^5+0*3^4+1*3^3-1*3^2+0*3^1+0*3^0=261$$

2.4.2 Арифметика в троичной симметричной системе счисления

Таблица 4: Сложение в 3ссс

Вычитание осуществляется путём сложения уменьшаемого с инверсией вычитаемого.

Таблица 5: Умножение в 3ссс

2.5 Типы информации

- 1. Числа:
 - (а) Целые:
 - і. Беззнаковые
 - іі. Знаковые
 - (b) Вещественные:
 - і. С фиксированной запятой
 - іі. С плавающей запятой
- 2. Символьная
- 3. Графическая

2.5.1 Представление целых чисел

Целые числа:

- 1. Беззнаковые
- 2. Знаковые

Память имеет байтовую структуру. Адресуемая ячейка составляет несколько байтов.

Определение 14. Комбинация связанных байтов, обрабатываемая совместно, называется **машинным словом**.

2.5.2 Беззнаковые целые числа

При двоичной машине и k-разрядной сеткке наибольшее целое число:

$$z_{max} = z^k - 1$$

2.5.3 Знаковые целые числа

Два варианта:

- 1. Старший разряд считается знаковым
- 2. В дополнительном коде

Будем считать числа:

- от 0 до 32737 положительными
- от 32768 до 65535 отрицательными

Таким образом, судить о величине знака числа можно будет по его величине.

Определение 15. Дополнением k-разрядного целого числа z в системе счисления p называется $D(z_p,k)=p^k-z.$

$$D(z_p, k) = (p^k - 1) - z + 1$$

Дополнительный код целого числа со знаком

Дополнительный код фоормируется в 2 этапа:

- 1. Строится инвертированное представление исходного числа
- 2. К полученной инверсии числа прибавляется 1

Т.е. дополнительный код:

- Для положительных чисел совпадает с самим числом,
- Для отрицательных чисел совпадает с дополнением модуля исходного числа.

Машинная арифметика целых чисел. Пример

$$27_{10} = 00011011_2$$
$$-3_{10} = D(3_{10}, 8)$$
$$3_{10} = 00000011_2$$
$$(-3_{10}) = 11111101$$

Тогда:

Машинная арифметика целых чисел. Пример 2

$$\begin{aligned} 3_{10} &= 00000011_2 \\ -21_{10} &= D(21_{10}, 8) \\ 21_{10} &= 00011011_2 \\ (-3_{10}) &= 11100101 \end{aligned}$$

Тогда:

2.5.4 Представление вещественных чисел

В ЭВМ для записи чисел отводится конечное число разрядов.

На числовой оси вещественных числа образуют непрерывное множество.

Таким образом, строгое отношение между числами превращается в нестрогое для их представлений.

$$x_1 < x_2 \Rightarrow x_1' \le x_2'$$

Замечание. Арифметика над вещественными числами в компьютере всегда ведётся с погрешностью!

Определение 16. Машинный ноль – некое малое число, все числа, меньше которого принимаются равными нулю.

2.5.5 Формы представления вещественныъ чисел

- С фиксированной запятой
- С плавающей запятой
 - Нормальная форма
 - Нормализованная форма

Представление числа с плавающей запятой

$$X = + -M \cdot P^{+-r}$$

M - мантисса числа (в пределах от 0 до 1) P - основание системы счисления r - порядок числа