Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики"

Московский институт электроники и математики им. А.Н.Тихонова

Направление подготовки/специальности **«01.03.04 Прикладная математика»** Образовательная программа **«Прикладная математика»**

ОТЧЁТ о прохождении производственной практики

Студент Хлебко Никита Игоревич БПМ 174

Руководитель практики студента: МИЭМ НИУ ВШЭ, Старший преподаватель	Бобер С.А.	Старший преподаватель	
МИЭМ НИУ ВШЭ, Доцент	Внуков А.А	к.т.н., PhD, доцент	
Практика	Практика пройдена с оценкой		
Лата			

Содержание

1.	Введение	3
2.	Содержательная часть 2.1. Краткая характеристика организации	
3.	Исполненное индивидуальное задание 3.1. Обзор возможностей GMAT (General Mission Analysis Tool) 3.2. Необходимые критерии 3.3. Обзор библиотек Руthon для баллистического проектирования космических миссий 3.4. Заглушка для расчетов	$\frac{4}{4}$
4.	Заключение	7
5.	Приложение	8

1. Введение

- Сделать обзор возможностей программного продукта GMAT (General Mission Analysis Tool).
- Провести поиск и сделать обзор библиотек Python для баллистического проектирования космических миссий с аналогичным функционалом.
- Выполнение расчетов и сравнение результатов, сделанных в Python и GMAT.

2. Содержательная часть

2.1. Краткая характеристика организации

• Практика проходила в Московском институте электроники и математики имени А. Н. Тихонова Национального исследовательского университета «Высшая школа экономики», дистанционно.

2.2. Описание профессиональных задач, решаемых студентом на практике

• Во время практики были произведены сбор, систематизация и обобщение материалов, подготовлен обзор программных продуктов для проведения дальнейших исследований в рамках выпускной квалификационной работы.

3. Исполненное индивидуальное задание

3.1. Обзор возможностей GMAT (General Mission Analysis Tool)

• General Mission Analysis Tool (GMAT) – программный комплекс, предназначенный для выполнения анализа, оптимизации и моделирования траекторий космических аппаратов в режимах околоземной орбиты и межпланетных траекторий. Система позволяет создавать различные астрономические объекты, спутники и другие тела для космических миссий, редактировать их параметры и добавлять сторонние силы. Также в GMAT имеются механизмы расчета траектории космического аппарата, которые учитывают влияния других астрономический объектов, импульсов и малой тяги. Программный комплекс содержит интерактивные модули для отображения данных и траекторий в пространстве с возможностью масштабирования и анимирования, построения графиков по мере выполнения миссий.

3.2. Необходимые критерии

- Поддержка стандартных эфемеридных моделей для тел Солнечной системы. Данный критерий позволяет работать с данными, которые описывают движение астрономических объектов в Солнечной системе, данные содержат набор небесных координат, вычисленных через равные промежутки времени.
- Процедуры для преобразования между различными системами координат помогают производить переходы к более простым и удобным для последующих вычислений формам моделей.
- Набор интеграторов инструменты, необходимые для поиска решений систем дифференциальных уравнений, которые используются в моделирование космических миссий.
- Набор симплектических интеграторов это интеграторы для поиска численного решения уравнений Гамильтона.
- Функции расчета геометрических событий функции, позволяющие узнать, когда космический аппарат достигнет определенной точки на своей орбите, плоскости, приблизится к какому-то объекту.
- Метод пристрелки метод (или метод аналогичный ему), который позволяет свести краевую задачу к задаче Коши для проведения последующих решений интегратором.
- Методы оптимизации набор методов, который позволяют находить оптимальные коэффициенты для системы.

3.3. Обзор библиотек Python для баллистического проектирования космических миссий

- Plyades библиотека, созданная на базе Poliastro. В Plyades присутствуют функции преобразования систем координат из одной в другую, но отсутствуют модули для работы со временем, интеграторами и эфемеридными моделями. Также, у этой библиотеки отсутствует обширная документация, из-за чего с библиотекой работать с ней трудно.
- Poliastro Python библиотека с открытым программным кодом, работающая на операционных системах Linux, macOS и Windows. Библиотека имеет модуль с интегратором DOPRI (Dormand-Prince method) и модули работы с эфемеридами, временем и методами оптимизации, которые заимствуются у Astropy и SciPy соответственно. В библиотеке есть функции, позволяющие обработать геометрические события, но только для ограниченного количества для небесных тел. Также, в Poliastro присутствуют Newton's method, Levenberg-Marquardt, которые являются аналогами метода Стрельбы. Библиотека имеет обширную документацию с большим количеством примеров и удобный API.
- Astropy инструмент для проведения расчетов в условиях моделирования космических миссий. Библиотека не имеет интеграторов и симплетических интеграторов, но в ней реализованы функции для конвертации времени и работы с ним. Также, есть модули для работы с эфемеридными моделями и координатами, в том числе включает в себя функции для преобразования координат из одной системы в другую и метод Левенберга Марквардта, являющийся альтернативой методу Ньютона. Аналогично Poliasto библиотека имеет большую документацию, работает на операционных системах Linux, macOS и Windows.

- Rebound модуль для расчета траектории объекта. Акцент в модуле сделан на более гибкий инструмент настройки миссий и большое количество интеграторов. В Rebound присутствуют интеграторы: IAS15, MERCURIUS, Wisdom-Holman. Кроме этого, в модуле реализованы симплетические интеграторы Symplectic Epicycle Integrator и JANUS. Также, Rebound может работать с сервисом Horizons и имеет функционал для преобразования координат. Но в этом модуле отсутствует такая же гибкая работа со временем, как в Plyades, Astropy. Кроме того, в Rebound не включены модули с методами оптимизации. Модуль работает на операционных системах Linux и macOS и имеет документацию с примерами.
- Рузоfа и Рузоfа2 модули созданные на базе библиотеки SOFA. Библиотеки имеют функции конвертации времени и преобразования координат. Рузоfа и Рузоfа2 не имеют интеграторов и симплетических интеграторов, отсутствует обработка геометрических событий. Модули различаются между собой набором требований к установке. Рузоfа2 является более автономной версией Рузоfа и не требует установленной библиотеки SOFA, модули имеют документацию с небольшим количеством примеров, работает на macOS, Linux и Windows.
- Orekit JAVA библиотека, имеющая Python-интерфейс. Использует устаревшую версию библиотеки (6.1). В данной версии поддерживаются эфемеридные модели, работает с сервисом Horizons. Имеет большой набор интеграторов: Runge–Kutta method, DOPRI, Adams-Bashfort, Euler, также есть симплетический интегратор midpoint integrator. Orekit не имеет конвертеров времени, отсутствуют функции для преобразования координат, проведения геометрических расчетов и обработки геометрических событий и также отсутствуют различные методы оптимизации. Для Orekit написана только Java документация, но имеются примеры использования на Python в репозитории проекта, также библиотека не работает на Windows.

	Эфемеридные модели для СС	UTC в эфемеридное	Наличие преобразования координат
Plyades	нет	нет	да
Poliastro	да (из Astropy)	да (из Astropy)	да (из Astropy)
Pykep	да	нет	нет
Astropy	да	да	да
Rebound	да (Horizon)	нет	да
Pysofa	нет	да	да
Pysofa2	нет	да	да
Orekit	да	нет	нет

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 1.

Интеграторы	Симплетические интеграторы	Расчет геометрических событий
нет	нет	нет
DOPRI (Dormand–Prince method)	нет	да
RK, Taylor (из scipy)	нет	нет
нет	нет	нет
IAS15, MERCURIUS, Wisdom-Holman	Symplectic Epicycle Integrator, JANUS	нет
нет	нет	нет
нет	нет	нет
RK, DOPRI, Adams-Bashfort, Euler	Midpoint Integrator	нет

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 2.

Пристрелка	Методы оптимизации	Документация	OC
нет	нет	отсутствует	нет информации
Newton's method, Levenberg-Marquardt (из Astropy)	да (из scipy)	да	Linux, OS X, Windows
нет	да (из scipy)	да	Linux, OS X, Windows
Levenberg-Marquardt	да	да	Linux, OS X, Windows
нет	нет	да	Linux, MAC
нет	нет	да	Linux, OS X, Windows
нет	нет	да	Linux, OS X, Windows
нет	нет	да (для java)	Linux, MAC

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 3.

3.4. Заглушка для расчетов

- Заглушка 1
- Заглушка 2

4. Заключение

• Анализируя произведенные вычисления, обзоры возможностей General Mission Analysis Tool и библиотек, модулей Python, которые были выполнены во время производственной практики, выявлены и выбраны для продолжения работы в рамках выпускной квалификационной работы две библиотеки: Poliastro и Astropy. Так как использование двух этих библиотек вместе делает проектирование космических миссий наиболее удобным и похожим на General Mission Analysis Tool, позволяют использовать наиболее похожий набор инструментов в Python и точность вычислений имеют минимальную погрешность. Также, во время практики, были улучшены навыки использования программных продуктов, разработки программного обеспечения в соответствии с существующими стандартами и оформления результатов работы в соответствии с существующими стандартами.

5. Приложение

	Эфемеридные модели для СС	UTC в эфемеридное	Наличие преобразования координат
Plyades	нет	нет	да
Poliastro	да (из Astropy)	да (из Astropy)	да (из Astropy)
Pykep	да	нет	нет
Astropy	да	да	да
Rebound	да (Horizon)	нет	да
Pysofa	нет	да	да
Pysofa2	нет	да	да
Orekit	да	нет	нет

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 1.

Интеграторы	Симплетические интеграторы	Расчет геометрических событий
нет	нет	нет
DOPRI (Dormand–Prince method)	нет	да
RK, Taylor (из scipy)	нет	нет
нет	нет	нет
IAS15, MERCURIUS, Wisdom-Holman	Symplectic Epicycle Integrator, JANUS	нет
нет	нет	нет
нет	нет	нет
RK, DOPRI, Adams-Bashfort, Euler	Midpoint Integrator	нет

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 2.

Пристрелка	Методы оптимизации	Документация	OC
нет	нет	отсутствует	нет информации
Newton's method, Levenberg-Marquardt (из Astropy)	да (из scipy)	да	Linux, OS X, Windows
нет	да (из scipy)	да	Linux, OS X, Windows
Levenberg-Marquardt	да	да	Linux, OS X, Windows
нет	нет	да	Linux, MAC
нет	нет	да	Linux, OS X, Windows
нет	нет	да	Linux, OS X, Windows
нет	нет	да (для java)	Linux, MAC

Таблица 1. Сравнение функционала библиотек и модулей Python. Часть 3.