Cryptographie et Sécurité - TD4

guillaume.postic@universite-paris-saclay.fr

Exercice 1 : intégrité des données

- 1. Pour une taille de bloc de 4 bits, calculer la somme de contrôle du message suivant, en appliquant un remplissage par des zéros : 011011110011.
- 2. Le destinataire reçoit ce message avec une somme de contrôle égale à 1010. Effectuer le calcul nécessaire pour conclure quant à l'intégrité du message.

Exercice 2 : fonction de hachage cryptographique

Pour le message 101100001 et pour une taille de bloc de 4 bits, calculer la valeur de hachage produite par une construction de Merkle-Damgård, dont la fonction de compression est un XOR. Vous utiliserez un renforcement de Merkle-Damgård sans encodage de la longueur et le vecteur d'initialisation 0100.

Exercice 3 : signature numérique

Alice veut envoyer un message M à Bob, en l'authentifiant par DSA. La valeur de hachage de M est H(M)=5. La clé privée d'Alice est x=3 et elle utilise un $nonce\ k=4$. Les variables publiques sont les modules p=7 et q=11, ainsi que le générateur g=2.

- 1. Quelle est la clé publique y d'Alice ?
- 2. Quelle est la signature envoyée par Alice ?
- 3. Quel calcul Bob effectue pour valider la signature?

Exercice 4 : code d'authentification de message

Soit un chiffrement par bloc de 3 bits défini dans la table ci-dessous.

- 1. Calculer le CBC-MAC de m = 011011011.
- 2. Calculer le CBC-MAC de m' = 101101101.
- 3. Construisez un message m'', dont le CBC-MAC sera identique à celui de m'.

Entrée	Sortie	Entrée	Sortie
000	001	100	010
001	100	101	110
010	111	110	011
011	000	111	101