8.2

1) La fonction
$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$
 n'est pas définie si $\sin(x) = 0$, c'est-à-dire si $x = k \pi$ avec $k \in \mathbb{Z}$.

C'est pourquoi $D_{\cot} = \mathbb{R} - \{k \pi : k \in \mathbb{Z}\}$.

2)
$$\cot(-x) = \frac{\cos(-x)}{\sin(-x)} = \frac{\cos(x)}{-\sin(x)} = -\frac{\cos(x)}{\sin(x)} = -\cot(x)$$

La fonction cotangente est ainsi impaire.

3)
$$\cot(x+\pi) = \frac{\cos(x+\pi)}{\sin(x+\pi)} = \frac{-\cos(x)}{-\sin(x)} = \frac{\cos(x)}{\sin(x)} = \cot(x)$$

La fonction cotangente est donc périodique de période π .

4) Vu la périodicité de la fonction cotangente, il suffit de calculer $\lim_{x\to 0}\cot(x)$.

$$\lim_{x \to 0} \cot(x) = \lim_{x \to 0} \frac{\cos(x)}{\sin(x)} = \frac{1}{0} = \infty$$

On en tire que la fonction tangente a pour asymptotes verticales : $x=k\,\pi$ où $k\in\mathbb{Z}.$

