Sparse Pairwise Re-ranking with Pre-trained Transformers

ICTIR 2022

Lukas Gienapp¹

Maik Fröbe²

Matthias Hagen²

Martin Potthast¹

Problem Description

Pairwise ranking models are slow.

Problem Description

Pairwise ranking models are slow.

Can we make them faster?

Background

Evolution of feature-based learning to rank models

□ Pointwise LTR ⇒ Pairwise LTR ⇒ Listwise LTR

From pointwise to pairwise transformers [Nogueira et. al 2020, Pradeep et. al 2021]:

Pointwise retrieval with monoT5:

Input: Query q, Document d

Output: Probability that d is relevant to q

Pairwise retrieval with duoT5:

Input: Query q, Document d_a , Document d_b

Output: Pairwise preference (probability that d_a is more relevant to q than d_b)

MS MARCO (Passage; DL 19/20).

Ranker	No. Inferences	nDCG@10
monoT5 (k=1000)	1000	0.50
+ duoT5 (k=50)	1000 + 2450	0.67

For k documents, duoT5 makes $k^2 - k$ pairwise comparisons.

Pipeline Overview

Ranking of D with respect to q

Query q

Four steps:

1. BM25 ranking (whole corpus)

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)
- 3. Pairwise re-ranking (top 50)
 - assemble document pairs

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)
- 3. Pairwise re-ranking (top 50)
 - assemble document pairs
 - pairwise inference

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)
- 3. Pairwise re-ranking (top 50)
 - assemble document pairs
 - pairwise inference
 - score aggregation

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)
- 3. Pairwise re-ranking (top 50)
 - assemble document pairs
 - pairwise inference
 - score aggregation
- 4. Rank by aggregated score

Pipeline Overview

- 1. BM25 ranking (whole corpus)
- 2. Pointwise re-ranking (top 1000)
- 3. Pairwise re-ranking (top 50)
 - assemble document pairs
 - pairwise inference
 - score aggregation
- 4. Rank by aggregated score

Contributions

Key improvements in the pairwise step:

1. Efficiency

- quadratic comparison amount when doing all doc-doc pairs is problematic
- □ sparse comparison set for efficiency
- □ But: requires good sampling approach

Contributions

Key improvements in the pairwise step:

1. Efficiency

- quadratic comparison amount when doing all doc-doc pairs is problematic
- sparse comparison set for efficiency
- □ But: requires good sampling approach

Effectiveness

- choice of aggregation method has direct impact on effectiveness
- □ little attention in previous work
- we investigate several aggregation methods with an without sampling

Sorting as Aggregation

Sorting: The most efficient solution we can hope for

- □ Kwiksort: "Quicksort" for pairwise preferences
- $lue{}$ Complexity: $\mathcal{O}(n \log n)$ instead of $\mathcal{O}(n^2)$

Sorting as Aggregation

Sorting: The most efficient solution we can hope for

- Kwiksort: "Quicksort" for pairwise preferences
- $lue{}$ Complexity: $\mathcal{O}(n \log n)$ instead of $\mathcal{O}(n^2)$

But: requires total order between predictions

- **consistency**: score of document pair (d_a, d_b) should be the inverse of (d_b, d_a)
- transitivity: predictions for three documents should be transitive

duoT5 on MS MARCO

Property	Average Rate	
Consistency	0.498	
Transitivity	0.693	

Average over all document pairs of 50 topics at depth 50.

Sorting as Aggregation

Sorting: The most efficient solution we can hope for

- Kwiksort: "Quicksort" for pairwise preferences
- $lue{}$ Complexity: $\mathcal{O}(n \log n)$ instead of $\mathcal{O}(n^2)$

duoT5 on MS MARCO

Property	Average Rate	
Consistency	0.498	
Transitivity	0.693	

Average over all document pairs of 50 topics at depth 50.

But: requires total order between predictions

- floor **consistency**: score of document pair (d_a,d_b) should be the inverse of (d_b,d_a)
- transitivity: predictions for three documents should be transitive

MS MARCO (Passage; DL 19/20; k=50 documents).

Pipeline	No. Comp.	nDCG@10
monoT5	0	0.50
+ duoT5	2450	0.67
+ duoT5 with Kwiksort	85	0.42

Pairwise model output contains too many individual errors to sort!

Sampling Methods

Random Sampling

- Motivation: baseline method
- Method:
 - randomly sample a fraction f of possible comparisons
 - sampling is separate per doc.
- Upside: parameter-free
- Downside: not deterministic, pointwise ranking is not used

Sampling Methods

Exhaustive Window Sampling

- Motivation: deterministic method
- Method:
 - based on pointwise reranking
 - compares a doc. to its m successors
 - wraps around to compare last to first
- Upside: parameter-free, incorporates pointwise ranking context locally
- Downside: global context lost, cannot stray far from pointwise ranking

Sampling Methods

Skip Window Sampling

- Motivation: deterministic + global method
- Method:
 - like exhaustive window sampling
 - skips with steps size λ
- Upside: incorporates pointwise ranking context globally
- $lue{}$ **Downside**: parametric, λ has to be tuned

Four different aggregation methods, each from a different aggregation paradigm.

Additive Aggregation

- □ baseline [Pradeep et. al 2021]
- symmetric sum of preference scores

Four different aggregation methods, each from a different aggregation paradigm.

Additive Aggregation

- □ baseline [Pradeep et. al 2021]
- symmetric sum of preference scores

Bradley-Terry Aggregation

- maximum-likelihood logistic regression
- optimizes to fit pairwise preferences

Four different aggregation methods, each from a different aggregation paradigm.

Additive Aggregation

- □ baseline [Pradeep et. al 2021]
- symmetric sum of preference scores

Greedy Aggregation

- similar to additive
- identify best doc., then recursively apply to remaining

Bradley-Terry Aggregation

- maximum-likelihood logistic regression
- optimizes to fit pairwise preferences

Four different aggregation methods, each from a different aggregation paradigm.

Additive Aggregation

- □ baseline [Pradeep et. al 2021]
- symmetric sum of preference scores

Greedy Aggregation

- similar to additive
- identify best doc., then recursively apply to remaining

Bradley-Terry Aggregation

- maximum-likelihood logistic regression
- optimizes to fit pairwise preferences

PageRank Aggregation

- graph-based aggregation
- docs. are nodes, comparisons are weighted edges

Experimental Setup

- Collection: MS MARCO
- Ranking Pipeline:
 - 1. BM25 with default parameters
 - 2. Top 1000 reranking with monoT5
 - 3. Top 50 reranking with duoT5
- Measure: nDCG@10 with qrels from TREC-DL passage ranking
- **Parameters**: grid search was carried out to find optimal λ -value for S-Window sampling

Greedy aggregation is best under no sampling.

Greedy aggregation is best across all sampling methods.

Global sampling context seems more important than local sampling context.

S-Window sampling is best across all aggregation methods.

Best setup matches effectiveness down to 30% of the comparisons.

Best setup is competitive down to 10% of the comparisons. ($\Delta = 0.04$)

Conclusion

Findings:

- Sparse comparison sets are highly effective at increasing the efficiency of pairwise retrieval
- Effectiveness can be increased with better aggregation approaches
- □ Up to 90% cost savings are possible

Conclusion

Findings:

- Sparse comparison sets are highly effective at increasing the efficiency of pairwise retrieval
- Effectiveness can be increased with better aggregation approaches
- □ Up to 90% cost savings are possible

Whats more in the paper?

- Replication of evaluation on CW09 and CW12, corroborating results
- More in-depth evaluation of comparison properties
- Statistical testing

Conclusion

Findings:

- Sparse comparison sets are highly effective at increasing the efficiency of pairwise retrieval
- Effectiveness can be increased with better aggregation approaches
- □ Up to 90% cost savings are possible

Whats more in the paper?

- Replication of evaluation on CW09 and CW12, corroborating results
- More in-depth evaluation of comparison properties
- Statistical testing

Whats more in the future?

- Instead of lower budget at same depth, increase depth at same budget
- Promising for high-recall search applications
- Model adaptions for more consistent predictions, dynamic sampling approaches