Differential Expression using RNA-Seq

Victoria Offord

Principal Informatician

Experimental Cancer Genetics

Overview

- RNA-seq background
- Mapping to the genome (HISAT2 and IGV)
- Mapping to the transcriptome and counting reads (Kallisto)
- Read count normalisation
- Differential expression and QC (Sleuth)
- What to do with a gene list
- The exercise

What is the transcriptome?

"The complete set of transcripts in a cell and their quantity

for a specific developmental stage or condition"

Central dogma

RNA Sequencing

Wang *et al.* (2009) Nature Reviews Genetics (PubMed: 19015660)

Experimental design

- Successful RNA-Seq studies start with a good study design
- Considerations for generating data to answer your biological question include:
 - library type
 - sequencing depth
 - number of replicates
 - avoiding biases

Experimental design - library preparation

- Total RNA = mRNA + rRNA + tRNA + regulatory RNAs...
- Ribosomal RNA can represent > 90% total RNA
- Can enrich for the 1-2% mRNA or deplete rRNA
 - o enrichment typically needs good RIN and high RNA proportion
 - o some samples (e.g. tissue biopsies) may not be suitable
 - bacterial mRNA not polyadenylated -> ribosomal depletion
- Be aware of protocol being used (e.g. some will remove small RNAs)

Experimental design - library type

Stranded vs unstranded

 strand-specific protocols better for detangling antisense or overlapping transcripts

Single or paired end

- paired end better for *de novo* transcript discovery or isoform expression analysis
- < 55% reads will span 2 or more exons</p>

Experimental design - replicates

Biological replicates

- biologically distinct samples
- same type of organism treated or grown in the same condition
- understand biological variation (e.g. variation between individuals)
- relevant biological replicates are required

Technical replicates

- repeated measurements of the same sample
- understand the variation in equipment or protocols
- technical replicates are not generally required, but try to arrange samples on plates to minimise potential problems

Experimental design - sequencing depth / replicates

BIOINFORMATICS DISCOVERY NOTE

Vol. 30 no. 3 2014, pages 301-304 doi:10.1093/bioinformatics/btt688

Gene expression

Advance Access publication December 6, 2013

RNA-seq differential expression studies: more sequence or more replication?

Yuwen Liu^{1,2}, Jie Zhou^{1,3} and Kevin P. White^{1,2,3,*}

Associate Editor: Janet Kelso

¹Institute of Genomics and Systems Biology, ²Committee on Development, Regeneration, and Stem Cell Biology and

³Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA

What do we need to know?

- 1. Which genes/transcripts do our reads belong to? mapping / assembly
- 2. How many reads align to a specific gene/transcript? quantification
- Do different sample groups express genes/transcripts differently? DGE analysis

No universal pipeline to cover every analysis!!!

Mapping RNA-seq reads to the genome (HISAT2)

- Mapping to the genome is great for determining whether your RNA-seq data is of high quality and exploring the structure of genes of interest
- Eukaryotic genes have introns, which are not present in mature mRNA so special mapping algorithms are required (splice-aware)
- **HISAT2** is only one such algorithm, but is accurate, fast and easy to use

Splice aware alignment

Visualisation: Integrative Genomics Viewer (IGV)

Mapping to the transcriptome and counting reads (Kallisto)

- Multiple splice forms per gene introduce ambiguity into the mapping
- Mapping to the spliced transcript sequences allows this ambiguity to be taken into account and allows transcript-specific read counts
- It is also faster because there is less target sequence
- Recent improvements in algorithms (pseudoalignment) make this even faster
 - o doesn't care where in each transcript reads map to, just which of the transcripts they map to
- Counting comes for free

Mapping to the transcriptome and counting reads (Kallisto)

Kallisto has two steps:

- 1. Building an index from the spliced transcript sequences
- 2. Quantify reads against the index

Kallisto cannot be used to identify novel transcripts

Mapping to the transcriptome and counting reads (Kallisto)

Bray *et al.* (2016) Nature Biotechnology (PubMed: 27043002)

Sailfish

Stage
Alignment

Quantification

Kallisto

Normalisation

- Runs with more depth will have more reads mapping to each gene (sequencing depth bias)
- Longer genes will have more reads mapping to them (gene length bias)
- Most methods will normalise for sequencing depth and gene length

Normalisation methods

- **RPKM** reads per kilobase per million
- **FPKM** fragments per kilobase per million
- **TPM** transcripts per million

Some of these methods have problems with highly expressed genes, so it's better to use more complicated normalisation procedures (**DESeq2 rlog**, **Sleuth**)

RPKM

BEFORE

Gene	Replicate 1 Counts	Replicate 2 Counts	Replicate 3 Counts
A (2,000 bases)	10	12	30
B (4,000 bases)	20	25	60
C (1,000 bases)	5	8	15
D (10,000 bases)	0	0	1

A F T E R

Gene (bases)	Replicate 1 RPKM	Replicate 2 RPKM	Replicate 3 RPKM
A (2,000 bases)	1.43	1.33	1.42
B (4,000 bases)	1.43	1.39	1.42
C (1,000 bases)	1.43	1.78	1.42
D (10,000 bases)	0	0	0.009

FPKM (fragments per kilobase million)

- RPKM for paired reads
- takes into account that two reads can map to one fragment (and so it doesn't count this fragment twice)

RPKM vs TPM

RPKM

Gene	R1	R2	R3
A	1.43	1.33	1.42
В	1.43	1.39	1.42
С	1.43	1.78	1.42
D	0	0	0.009
Total	4.29	4.5	4.25

TPM

Gene	R1	R2	R3
A	3.33	2.96	3.326
В	3.33	3.09	3.326
С	3.33	3.95	3.326
D	0	0	0.02
Total	10	10	10

Easier to see the proportion of each gene within a sample as sum of TPMs same across samples

Determining differential expression (Sleuth)

- We don't normally have enough replicates to do traditional tests of significance for RNA-seq data
- Most methods look for outliers in the relationship between average abundance and fold change
- Assume most genes are not differentially expressed

QC with Sleuth

Principal component analysis (PCA)

- Use to look at variation and strong patterns within data
- Identifies uncorrelated variables or principal components (PC)
- Tries to explain the maximum amount of variance with the smallest number of principal components

Why QC our data?

What to do next with your gene list

When you have a list of differentially expressed genes, things start to get difficult.

What to do:

- 1. Have a hypothesis already? Test it.
- 2. GO term/pathway/gene-set enrichment analysis (GSEA, TopGO, InnateDB, Ingenuity Pathway Analysis etc.)
- 3. Work through list, Google, read papers
- 4. Overlay datasets on essentiality, populations, mutations, Pfam domains, chromosomal location, expression, proteome...

Then make a hypothesis about what genes are interesting and why. Can you test/explore this further bioinformatically? Design the next wet lab experiment

The exercise

- Plasmodium chabaudi
- rodent malaria parasite
 - exhibits many characteristics associated with the pathogenesis of human infection
- serial blood passage (SBP)
 - direct injection from mouse to mouse
 - results in severe disease
- infection with parasites via mosquitoes (MT)
 - develop lower parasitaemia (presence of parasites in the blood)
 - o mild, chronic disease

IS THE TRANSCRIPTOME OF MOSQUITO TRANSMITTED PARASITE DIFFERENT FROM ONE WHICH HAS NOT PASSED THROUGH A MOSQUITO?