

Page 1 (54)

RADIO TEST REPORT

No. 1707651STO-002 Ed. 2

RF performance

EQUIPMENT UNDER TEST

Equipment:

DAS Remote

Type / model:

DDR-AWS3

Manufacturer:

Deltanode AB

Tested by request of:

Deltanode AB

SUMMARY

Referring to the emission limits and the operating mode during the tests specified in this report the equipment complies with the requirements according to

47 CFR Part 2, subpart J, 47 CFR Part 27 Subpart C

RSS-131 Issue 3, RSS-139 Issue 3,

Date of issue: 2017-07-03

Tested by: Matti Virkki

Approved by:

Stefan Andersson

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2005). This report may not be reproduced other than in full, except with the prior written approval by Intertek Semko.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any lose, sexpense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Revision History

Edition	Date	Description	
1	2017-04-20	First release	
2	2017-07-03	Change of model name	

CONTENTS

			Page
1	CL	IENT INFORMATION	5
2	EQ	QUIPMENT UNDER TEST (EUT)	5
	2.1	IDENTIFICATION OF THE EUT ACCORDING TO THE MANUFACTURER/CLIENT DECLARATION	N 5
	2.2	ADDITIONAL HARDWARE INFORMATION ABOUT THE EUT	
	2.3	PERIPHERAL EQUIPMENT	
	2.4	TEST SIGNALS	
	2.5	MODIFICATION DURING THE TESTS	
3	TE	ST SPECIFICATIONS	7
	3.1	STANDARDS	
	3.2	ADDITIONS, DEVIATIONS AND EXCLUSIONS FROM STANDARDS AND ACCREDITATION	
	3.3	TEST SITE	
	3.4	TEST CONDITIONS	
4		ST SUMMARY	
5	AG	C TRESHOLD, RF OUTPUT POWER AND LINEARITY	9
	5.1	REQUIREMENT	
	5.2	TEST SET-UP	
	5.3	TEST DATA	9
6	OC	CCUPIED BANDWIDTH INPUT VS OUTPUT COMPARISON	13
	6.1	REQUIREMENT	13
	6.2	REQUIREMENT	
	6.3	TEST SET-UP	
	6.4	TEST DATA	
	6.5	TEST EQUIPMENT	
7	PA	SSBAND GAIN AND BANDWIDTH	
	7.1	REQUIREMENT	
	7.2	TEST SET-UP	
	7.3	TEST DATA	
8	BA	ND EDGE EMISSION AND INTERMODULATION	20
	8.1	REQUIREMENT	
	8.2	TEST SET-UP	
	8.3	TEST DATA	
	8.4	TEST EQUIPMENT	29
9	CO	ONDUCTED SPURIOUS EMISSION FROM ANTENNA PORT	30
	9.1	REQUIREMENT	
	9.2	TEST SET-UP	
	9.3	TEST DATA	30
1	0 F	RADIATED SPURIOUS EMISSION	47
	10.1	TEST SET-UP	47
	10.2	TEST CONDITIONS	47
	10.3	REQUIREMENT	
	10.4	TEST FOURDMENT	49
	1116	LECTEMBRIENT	£'1

11 F	FREQUENCY STABILITY	53
11.1	REQUIREMENT	53
11.2	TEST SET-UP AND TEST PROCEDURE	53
11.3	TEST RESULTS	53
11.4	TEST EQUIPMENT	53
12 ľ	MEASUREMENT UNCERTAINTY	54

1 CL	JENT	INFO	RMAT	ION
------	------	------	------	-----

1 CLIENT INFORMATION				
The EUT has been tested by re				
Company:	Deltanode AB Hammarby fabriksväg 61 6tr 120 33 Stockholm Sweden			
Name of contact:	Daniel Kerek			
2 EQUIPMENT UNDER TES	ST (EUT)			
2.1 Identification of the EU	T according to the manufacture	er/client declaration		
Equipment:	Remote head			
Tested Model:	DDR-AWS3			
Brand name:	Deltanode			
Serial number:	99991			
Manufacturer:	Deltanode AB			
Transmitter frequency range:	2110 – 2180MHz			
Receiver frequency range:	1710 – 1780 MHz			
Frequency agile or hopping:	Yes	⊠ No		
Antenna:	☐ Internal antenna			
Antenna connector:	☐ None, internal antenna			
Rating RF output power:	+33 dBm rms			
Rated gain	+60 dB			
Type of modulation:	Tested with GMSK, QPSK			
Temperature range:	☐ Category I (General): -20°C ☐ Category II (Portable equip ☐ Category III (Equipment for ☑ Other: -30°C to +55°C			
Power rating:	120 V 60 Hz			
Transmitter standby mode supported:	⊠ Yes	□ No		

2.2 Additional hardware information about the EUT

The EUT consists of the following units:

Remote unit type

DDR 191/1-C:w ver 0.0.1 Ser:99991 Week:2017W08

FOR type

FOR 101 Rev:1.2.1 Week:2016w20 Ser:3946

RF Lineup 1

Item	Information
PA Type	02:36 CDMA 2000/IS-95 Downlink PA(Ga) AWS 2100/1700 band ver. 0.1 prod. 2015W52 SN:0002-00815
PA HW- version	KS27.2 R1E 2015W52 DH00815
VGA Type	82:36 CDMA 2000/IS-95 VGA2 AWS 2100/1700 band ver. 0.0 prod. 2016W36 SN:0004-00132
VGA HW- version	KS55.5 P1C 2016W36 BH00132

2.3 Peripheral equipment

Peripheral equipment is defined as equipment needed for correct operation of the EUT during the tests, but not included as a part of the testing and evaluation of the EUT.

Equipment Manufacturer / Type

Fiber optical interface Deltanode AB / DOI 302 Rev:1.3.1 Week:2017w09 Ser:10471

Laptop PC Dell

Ethernet hub Deltanode AB

2.4 Test signals

Continuous transmission on full power As requested in KDB 935210 D05 V01r01

Narrow band signal: GSM with GMSK modulation Wide band signals : AWGN 4.11 MHz 99% OBW

2.5 Modification during the tests

No modifications were made during the testing.

3 TEST SPECIFICATIONS

3.1 Standards

47 CFR Part 2, , Part 27 subpart C RSS-131 Issue 3, RSS-199 Issue 3

Test methods in:

KDB 935210 D05 Industrial booster Basic measurement

ANSI C63.26-2015 American National Standard for Compliance Testing of Transmitters Used in License Radio Services

3.2 Additions, deviations and exclusions from standards and accreditation

3.3 Test site

Measurements were performed at:

Intertek Semko AB. Torshamnsgatan 43, P.O. Box 1103 SE-164 22 Kista

Intertek Semko AB is a FCC listed test site with site registration number 90913 Intertek Semko AB is a Industry Canada listed test facility with IC assigned code 2042G

3.4 Test conditions

If not additionally specified, the tests were performed under the following environmental conditions:

Parameter	Normal	Extreme
Supplying voltage, V	120	-
Air temperature, °C	20 24	-30 - +50

TEST SUMMARY

The results in this report apply only to the tested sample:

Requirement	Description	Result	Section in report	Note
§2.1046 §27.50	RF output power, AGC threshold, linearity and amplifier gain			
RSS-GEN 6.12 RSS-131 5.2.3 RSS-139		Pass	5	
§2.1047 RSS-131 5.2.2 RSS-139 6.2	Modulation characteristics input versus output signal comparison	Pass	6	
§2.1049	Occupied bandwidth			
RSS-GEN 6.6 RSS-131 5.2.1		Pass	7	
§2.1051 §27.53	Spurious emissions, Intermodulation and band edge measurements at antenna terminals	Pass	8 - 9	
RSS-GEN 6.13 RSS-139 6.6				
§2.1053 §27.53	Field strength of spurious radiation	Pass	10	
RSS-GEN 6.13 RSS-139 6.6		1 833	10	
§2.1055 §27.54	Frequency stability	_		
RSS-GEN 6.11 RSS-131 5.2.4 RSS-139 6.4		Pass	11	

NT = Not Tested, by request of the Client

NA = Not Applicable

5 AGC TRESHOLD, RF OUTPUT POWER AND LINEARITY

Date of test: 2017-03-17		Test location:	EMC Center
EUT Serial:	99991	Ambient temp. °C	21 °C
Tested by:	MTV	Relative humidity	36 %
Test result:	Pass	Margin:	29 dB

5.1 Requirement

Reference: CFR 47 §2.1049, §27.50(d), KDB 935210 D05 clauses 3.2 and 3.5

RSS-131 Clauses 5.2.3 and 6.2, RSS-139 clause 6.5

5.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to signal analyser via rf cables and 30 dB attenuator. A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

The output power was measured with EUT amplification set to 60 dB and input signal was increased until Automatic Gain Control threshold was reached but did not affect the gain. The EUT output response was monitored when input signal level was increased and the response is linear until AGC threshold is reached.

The test was then repeated with 3 dB higher input signal level so that AGC limited the gain.

The peak power was measured using signal analyser's CCDF measurement function. The value that is exceeded less than 0.1% time is reported.

5.3 Test data

AWS GSM

7.00 COM					
Frequency	Average power	Automatic level control	Limit EIRP	Peak to avg ratio	Peak to avg ratio limit
MHz	dBm		dBm	dB	dB
2117.87	33.07	Off	62.15	0.15	13
2117.87	33.44	On	62.15	0.15	13

AWS WCDMA

7.WO WODINIA					
Frequency	Average power	Automatic level control	Limit EIRP	Peak to avg ratio	Peak to avg ratio limit
MHz	dBm		dBm		
2117.87	32.22	Off	62.15	7.97	13
2117.87	32.30	On	62.15	7.97	13

Date: 17 MAR 2017 10:57:05

GSM AGC off

Date: 17 MAR 2017 10:58:03

GSM AGC on

Date: 17 M AR 2017 10:38:51

AWGN AGC off

Date: 17 MAR 2017 10:39:51

AWGN AGC on

Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2017
Rf-attenuator	Narda	776B-10	8337	7/2017
Rf-attenuator	Huber Suhner	5920_N-50- 010/199 N	32697	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2017
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2017
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2017

6 OCCUPIED BANDWIDTH INPUT VS OUTPUT COMPARISON

Date of test:	2017-03-17	Test location:	EMC Center
EUT Serial:	99991	Ambient temp. °C	21 °C
Tested by:	MTV	Relative humidity	36 %
Test result:	Pass	Margin:	

6.1 Requirement

6.2 Requirement

KDB 935219 D05:

The spectral shape of the rf-output shall look similar to input for all modulations.

RSS-131 5.2.2:

The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.

6.3 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to spectrum analyser via rf cables and 30 dB attenuator. A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

The 99% occupied bandwidth was measured using spectrum analyser's occupied bandwidth function.

The EUT was set to use 75 dB gain and input signal was adjusted so that Automatic Gain Control did not yet limit the output power.

The test was then repeated with higher input signal level so that AGC limited the output power.

Finally occupied bandwidth of signal generator was measured and input signal output was compared to EUT outputs.

6.4 Test data

Frequency MHz	Signal type	26 dB Occupied band width Input (kHz)	26 dB Occupied band width output (kHz)	26 dB Occupied band width output with AGC (kHz)	Difference %
2117.87	GSM	314.69	312.89	313.49	-0.05%
2117.87	AWGN	4835	4865	4825	+0.07%

Date: 17 M AR .2017 11:08:47

AWS Occupied bandwidth GSM input

Date: 17 M AR 2017 11:01:58

AWS Occupied bandwidth GSM agc off

Date: 17 M AR 2017 11:03:40

AWS Occupied bandwidth GSM agc on

Registered in Sweden: No: SE556024059901, Registered office: As address

Date: 17 M AR 2017 10:34:21

AWS Occupied bandwidth WCDMA input

Date:17 M AR 2017 10:25:40

AWS Occupied bandwidth WCDMA agc off

Date: 17 M AR 2017 10:26:48

AWS Occupied bandwidth WCDMA agc on

6.5 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2017
Rf-attenuator	Narda	776B-10	8337	7/2017
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2017
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2017
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2017

7 PASSBAND GAIN AND BANDWIDTH

Date of test:	2017-03-17	Test location:	EMC Center
EUT Serial:	99991	Ambient temp. °C	21 °C
Tested by:	MTV	Relative humidity	36 %
Test result:	Pass	Margin:	-

7.1 Requirement

RSS-131 clause 6.1

The passband gain shall not exceed the nominal gain by more than 1.0 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point.

7.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to spectrum analyser via rf cables and 30 dB attenuator. A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

7.3 Test data

Frequency MHz	Signal type	Occupied 20 dB band width (MHz)
2100	CW	91.75

The pass band maximum gain is measured from FOI unit's rf input to EUT output. This is not same as EUT's amplifier gain.

Frequency MHz	Gen. out (dBm)	Pathloss (dB)	Measured output (dBm)	Gain dB
2117.87	-46.0	0.6	33.07	+79.7

Date: 17 M AR 2017 10:17:33

AWS band passband bandwidth

8 BAND EDGE EMISSION AND INTERMODULATION

Date of test:	2017-04-05	Test location:	Wireless centre
EUT Serial:	99991	Ambient temp.	21 °C
Tested by:	MTV	Relative humidity	36 %
Test result:	Pass	Margin:	3.4 dB

8.1 Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

8.2 Test set-up

2 Signal generators were connected to power combiner who was then connected to the FOI unit. Signals were placed on two lowest adjacent channels of the band. The test was repeated on 2 highest channels.

8.3 Test data

2 AWGN signals lower band edge AGC off

Date: 5 APR 2017 14:04:13

2 AWGN signals lower band edge AGC on

Date: 5 APR 2017 14:05:29

2 AWGN signals lower band edge AGC off in band

Date: 5.APR.2017 14:04:46

2 AWGN signals lower band edge AGC on in band

Date: 5 APR 2017 14:07:10

2 AWGN signals upper band edge AGC off

Date: 5 APR 2017 14:07:36

2 AWGN signals upper band edge AGC on

Date: 5.APR.2017 14:05:29

2 AWGN signals upper band edge AGC off in band

Date: 5 APR 2017 15:43:17

2 AWGN signals upper band edge AGC off in band

Date: 5.APR 2017 14:04:46

2 AWGN signals upper band edge AGC on in band

Date: 5 APR 2017 14:47:21

2 GSM signal on lower band edge AGC off

Date: 5 APR 2017 14:00:09

2 GSM signal on lower band edge AGC on

Date: 5 APR 2017 14:01:42

2 GSM signal on lower band edge AGC off in band

Date: 5 APR 2017 14:00:57

2 GSM signal on lower band edge AGC on in band

Date: 5 APR 2017 14:43:35

2 GSM signal on upper band edge AGC off

Date: 5.APR 2017 15:39:01

2 GSM signal on upper band edge AGC on

Date: 5 APR 2017 14:44:59

2 GSM signal on upper band edge AGC off in band

Date: 5.APR.2017 14:44:16

2 GSM signal on upper band edge AGC on in band

8.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2017
Rf-attenuator	Narda	776B-10	8337	7/2017
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2017
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2017
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2017
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2017

9 CONDUCTED SPURIOUS EMISSION FROM ANTENNA PORT

Date of test:	2017-03-17	Test location:	Wireless centre
EUT Serial:	99991	Ambient temp.	24
Tested by:	MTV	Relative humidity	36
Test result:	Pass	Margin:	0.3 dB

9.1 Requirement

§ 27.53(h) RSS-139 clause 6.6

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

9.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to spectrum analyser via rf cables and 30 dB attenuator. A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

9.3 Test data

Date: 17 M AR 2017 12:27:51

GSM low ch

Date:17 M AR 2017 12:29:30

GSM low ch

Date: 13 APR 2017 10:32:06

Date: 17 M AR 2017 12:32:28

GSM low ch

Date: 17 M AR 2017 12:35:13

GSM low ch

Date: 17 M AR 2017 12:48:13

GSM low ch

Date: 17 M AR 2017 12:37:39

GSM mid ch

Date: 17 M AR 2017 12:46:12

GSM mid ch

Date: 17 M AR 2017 12:35:13

GSM mid ch

Date: 17 M AR 2017 12:36:03

GSM mid ch

Date: 17 M AR 2017 12:50:00

GSM high ch

Date:13.APR.2017 10:32:38

GSM high ch

Date: 17 M AR 2017 12:54:17

GSM high ch

Date: 17 M AR 2017 12:55:32

GSM high ch

Date: 17 M AR 2017 12:56:38

GSM high ch

Date: 17 M AR 2017 13:13:34

AWGN low channel

Date:13APR 2017 10:30:20

AWGN low channel

Date: 17 M AR 2017 13:14:19

AWGN low channel

Date: 17 M AR 2017 13:11:11

AWGN low channel

Date: 17 M AR 2017 13:10:13

AWGN low channel

Date: 17 M AR 2017 13:04:08

AWGN low channel

Date:17 M AR 2017 13:16:10

Date: 17 M AR 2017 13:20:23

AWGN mid channel

Date: 17 M AR 2017 13:21:19

Date: 17 M AR 2017 13:22:04

AWGN mid channel

Date: 17 M AR 2017 13:29:19

AWGN high channel

Date:13.APR.2017 10:33:38

AWGN high channel

Date: 17 M AR 2017 13:25:36

AWGN high channel

Date: 17 M AR 2017 13:24:35

AWGN high channel

Date:17 M AR 2017 13:23:48

AWGN high channel

Date: 17 M AR 2017 13:22:58

AWGN high channel

10 RADIATED SPURIOUS EMISSION

Date of test:	2017-03-07	Test location:	Björkhallen
EUT Serial:	99992	Ambient temp.	21°C
Tested by:	MTV	Relative humidity	32 %
Test result:	Pass	Margin:	> 20 dB

10.1 Test set-up

The test method is in accordance with ANSI C63.26 and ANSI-TIA-603-D-2010.

Both receiver and transmitter are active during the tests.

The EUT was placed on an insulating support above the turntable which is part of the reference ground plane.

Overview sweeps were performed with the measurement receiver in max-hold mode and the peak detector activated. Above 1 GHz both peak and average detector is activated.

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was terminated to the 50 Ω terminator.

A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

10.2 Test conditions

Test set-up:

30 MHz to 1000 MHz

Test receiver set-up:

Preview test:

Peak, RBW 120 kHz, VBW 1 MHz

Final test:

Quasi-Peak, RBW 120 kHz, VBW 1 MHz

Measuring distance: 3 m

EUT height above ground plane: 0.8 m

Measuring angle: 0 – 359□

Antenna

Height above ground plane: 1 – 4 m Polarisation: Vertical and Horizontal

Type: Bilog

Test set-up:

1 GHz - 22 GHz

Test receiver set-up:

Preview test:

Final test:

Peak, RBW 1 MHz, VBW 3 MHz

Average, RBW 1 MHz, VBW 3 MHz Average, RBW 1 MHz, VBW 3 MHz

Peak, RBW 1 MHz, VBW 3 MHz

Measuring distance: 3 m

EUT height above ground plane: 1.5 m

Measuring angle: 0 – 359□

Antenna

Height above ground plane: 1-4 m Polarisation: Vertical and Horizontal

Type: Horn

Antenna tilt: Activated

10.3 Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated

below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

This gives a limit -13 dBm.

The frequency range to be inspected is up to the tenth harmonics of the highest fundamental frequency according to 47 CFR 2.1057 and RSS-Gen Section 6.13. The field strength limit is calculated using the plane wave relation. $GP/4\pi R^2 = E^2/120\pi$

G: antenna gain P: power (W)

R: measurement distance (m)

-13 dBm EIRP gives a field strength limit of 82.2 dB μ V/m at a 3 m measurement distance in an anechoic chamber.

Because all measured field strength results had more than 20 dB margins to the limit substitution measurements were not performed.

10.4 Test results

30 MHz - 1000 MHz

Full Spectrum

1-18 GHz low channel

1-18 GHz middle channel

Full Spectrum

1-18 GHz high channel

18-22 GHz low channel

Full Spectrum

18-22 GHz mid channel

18-22 GHz high channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol
31.723	40.0	-	82.2	42.2	V
42.365	48.4	-	82.2	33.8	V
47.376	46.6	-	82.2	35.6	V
56.674	52.4	-	82.2	29.8	V
60.922	41.3	-	82.2	40.9	V
69.039	37.2	-	82.2	45.0	V

10.5 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Measurement receiver	Rohde & Schwarz	ESI 26	32291	7/2017
Measurement receiver	Rohde & Schwarz	ESU 40	13178	7/2017
UltraLog antenna	Rohde & Schwarz	HL562	30711	12/2017
Horn antenna	Rohde & Schwarz	HF907	32307	7/2018
Pre amplifier	Rohde & Schwarz	TS-pre1	32306	7/2017
Horn antenna + preamp	Bonn	BLMA 1826-5A	31247	1/2020
Rf cable	Megaphase	GC12-K1K1-315	39127	7/2017

11 FREQUENCY STABILITY

Date of test:	2017-03-29	Test location:	EMC center
EUT Serial:	99991	Ambient temp.	20 °C
Tested by:	MTV	Relative humidity	33 %
Test result:	Pass	Margin:	NA

11.1 Requirement

CFR 47 §27.54 and RSS-139 clause 6.4 The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

11.2 Test set-up and test procedure

The frequency stability shall be measured with variation of ambient temperature as follows:(1) From -30° to $+50^{\circ}$ centigrade at intervals of not more than 10° centigrade through the range.

The frequency stability shall be measured with variation of primary supply voltage as follows: Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment

Signal generator generating a CW signal was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to frequency counter via rf cables and 30 dB attenuator.

11.3 Test results

Temperature	Voltage	Test signal	Output signal	Deviation	Result
(°C)	B	frequency (Hz)	frequency (Hz)	(Hz)	
+50	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
+40	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
+30	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
+10	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
0	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
-10	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
-20	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass
-30	120V / 60 Hz	2150 000 000	2150 000 000	0	Pass

Temperature	Voltage	Test signal	Output signal	Deviation	Result
(°C)	_	frequency (Hz)	frequency (Hz)	(Hz)	
+20	120V / 60 Hz	2150 000 000	2150 000 000	0	
+20	100V / 60 Hz	2150 000 000	2150 000 000	0	Pass
+20	276V / 60 Hz	2150 000 000	2150 000 000	0	Pass

11.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Signal generator	Rohde & Schwarz	SMIQ 03	12792	7/2017
Frequency counter	Phillips	PM6685R/07	5616	4/2017
Climate chamber	Vötsch	VC4100	8848	4/2017

12 MEASUREMENT UNCERTAINTY

Uncertainties summary

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997.

The measurement uncertainty is given with a confidence of 95% (k=2).

Radiated disturbance, field strength, 30 MHz - 1000 MHz 30 to 300 MHz at 3 m 200 to 1000 MHz at 3 m	± 4,7 dB ± 4,8 dB
Radiated disturbance, field strength, 1 to 40 GHz in Semi Anechoic Chambers "Stora Hallen" and "Björkhallen" 1 to 18 GHz with filter or attenuator 1 to 18 GHz without filter or attenuator 18 to 26 GHz without filter or attenuator	± 5,4 dB ± 5,2 dB ± 5,5 dB
Conducted disturbances at the antenna port on radio equipment Frequency range 9 kHz – 1 GHz Frequency range 1 GHz – 7 GHz Frequency range 7 GHz -18GHz Frequency range 18 GHz -26,5GHz	± 0,9 dB ± 1,4 dB ± 2,4 dB ± 3,0 dB
Output power Digital signals, conducted	± 0,6 dB
Peak power density Conducted: Spectrum analyser	± 2,5 dB