Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

Chemical Equilibrium

DPP: 2

- **Q1** At 250° C and 1 atmospheric pressure, the vapour density of PCl_5 is 57.9 . What will be the dissociation of PCl_5
 - (A) 1.00
- (B) 0.90
- (C) 0.80
- (D) 0.65
- **Q2** N_2O_4 dissociates as $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$ at 273 K and 2 atm pressure. The equilibrium mixture has a density of 41. What will be the degree of dissociation
 - (A) 14.2%
- (B) 16.2%
- (C) 12.2%
- (D) None
- **Q3** An unknown compound A dissociates at $500^{\circ}\mathrm{C}$ to give products as follows

$$A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)} + D_{(g)}$$

Vapour density of the equilibrium mixture is 50 when it dissociates to the extent to 10%. What will be the molecular weight of compound A

- (A) 120
- (B) 130
- (C) 134
- (D) 140
- **Q4** The active mass of $64 \mathrm{gm}$ of HI in a two litre flask would be
 - (A)2

(B)1

(C)5

- (D) 0.25
- **Q5** 15 moles of H_2 and 5.2 moles of I_2 are mixed and then allowed to attain equilibrium at $500^{\circ}\mathrm{C}$. At equilibrium, the concentration of HI is found to be 10 moles. The equilibrium constant for the formation of HI is
 - (A)50
- (B) 15
- (C) 100
- (D) 25
- Q6 $NH_4 COONH_2(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$. If equilibrium pressure of gaseous mixture is 3 atm then K_p will be:

(A) 4

- (B) 27
- (C) $\frac{4}{27}$
- (D) $\frac{1}{27}$
- $\mbox{\bf Q7}\ \ \mbox{2 moles of}\ N_2$ is mixed with 6 moles of H_2 in a closed vessel of 1 litre capacity. If $50\%~N_2$ is converted into NH_3 at equilibrium, the value of K_c for the reaction is

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- (B) $\frac{27}{4}$
- (C) $\frac{1}{27}$
- (D) 27
- **Q8** For the reaction $A + B \rightleftharpoons 2C$, at the equilibrium concentration of A and B each is 0.20 mole/litre concentration C is observed as $0.60 \,\mathrm{mol/litre}$. Equilibrium constant $(\mathrm{K_c})$ will be
 - (A)9

(B) 18

(C)6

- (D) 24
- The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is
 - (A) 0.5
- (B)2
- (C) 10
- (D) 200
- **Q10** Eight mole of a gas AB_3 attain equilibrium in a closed container of volume $1 \mathrm{dm}^3$ $2AB_{3(\ g)}
 ightleftharpoons A_{2(\ g)} + 3\ B_{2(\ g)}.$ If at equilibrium 2 mole of A_2 are present, then equilibrium constant is
 - (A) $72 \text{ mol}^2 \text{ L}^{-2}$
 - (B) $36 \text{ mol}^2 \text{ L}^{-2}$
 - (C) $3 \text{ mol}^2 \text{ L}^{-2}$
 - (D) $27 \text{ mol}^2 \text{ L}^{-2}$

- $\mathbf{Q11}$ If one third of HI decomposes at a particular temperature, K_c for $2HI_{(g)} \rightleftharpoons H_{2(|g)} + I_{2(|g)}$ is
 - (A) 1/16
- (B) 1/4
- (C) 1/6
- (D) 1/2
- **Q12** In chemical reaction $A \rightleftharpoons B$, the system will be known in equilibrium when
 - (A) A completely changes to ${f B}$
 - (B) 50% of A changes to B
 - (C) The rate of change of A to B and B to A on both the sides are same
 - (D) Only 10% of A changes to B
- **Q13** $A + B \rightleftharpoons C + D$. If initially the concentration of A and B are both equal but at equilibrium, concentration of D will be twice of that of A then what will be the equilibrium constant of reaction?
 - (A) 4/9
- (B) 9/4
- (C) 1/9
- (D)4
- Q14 $2 \bmod of N_2$ is mixed with $6 \bmod of H_2$ in a closed vessel of one litre capacity. If 50% of N_2 is converted into NH_3 at equilibrium, the value K_c for the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is
 - (A) 4/27
- (B) 27/4
- (C) 1/27
- (D) 24
- **Q15** The partial pressure of $CH_3OH_{(g)}$, $CO_{(g)}$ and $H_{2(\,\mathrm{g})}$ in equilibrium mixture for the reaction, $CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{g)}$ are 2.0, 1.0and $0.1~\mathrm{atm}$ respectively at $427^{\circ}\mathrm{C}$. The value of $K_{\rm p}$ for the decomposition of CH_3OH to COand ${
 m H}_2$ is
 - (A) 10^2 atm
 - (B) $2 \times 10^2 \ {
 m atm}^{-1}$
 - (C) 50 atm^2
 - (D) $5\times 10^{-3}~atm^2$

Answer	Key
---------------	-----

Q1	(C)	Q9	(A)
Q2	(C)	Q10	(D)
Q3	(A)	Q11	(A)
Q4	(D)	Q12	(C)
Q5	(A)	Q13	(D)
Q6	(A)	Q14	(A)
Q7	(A)	Q15	(D)
Q8	(A)		
	l de la companya de	ı	

Android App | iOS App | PW Website