Evolutionary Thinking 2022 TA session week 5 – Basis of Population Genetics

Jilong Ma aujilongm@birc.au.dk

Outline

1. Learning outcome of this week
Terminology (Wed)
Hardy-Weinberg Equilibrium (Wed)
Genetic Drift, Mutation (Wed,Fri)
Coalescence Theory (Fri)
- Process, Tree and Tree length, Site Frequency Spectrum

2. Exercises

 Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)

 Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)

- Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)
- Allele: 1 of the alternative forms of a locus that exist in a population

- Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)
- Allele: 1 of the alternative forms of a locus that exist in a population
- Polymorphism: a locus with 2 or more alleles segregating in a population

- Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)
- Allele: 1 of the alternative forms of a locus that exist in a population
- Polymorphism: a locus with 2 or more alleles segregating in a population
- Genotype: the set of alleles present at a locus in a particular organism (set size = 2 if the organism is diploid)

- Locus: a specific "spot" in the genome (could be a single base-pair or an entire gene or region, depending on context)
- Allele: 1 of the alternative forms of a locus that exist in a population
- Polymorphism: a locus with 2 or more alleles segregating in a population
- Genotype: the set of alleles present at a locus in a particular organism (set size = 2 if the organism is diploid)

Allele frequencies

•
$$f(A) = 6/14$$

•
$$f(a) = 8/14$$

Genotype frequencies

•
$$f(AA) = 2/7$$

•
$$f(Aa) = 2/7$$

•
$$f(aa) = 3/7$$

HW Equilibrium

Assumptions?

Genotype frequencies

HW Equilibrium

Assumptions?

Assuming:

- Infinite population size
- No migration
- No mutation
- No selection
- Random mating
- Non-overlapping generations

Allele frequencies

Genotype frequencies

HW Equilibrium

Assuming:

- Infinite population size
- No migration
- No mutation
- No selection
- Random mating
- Non-overlapping generations

Allele frequencies

Genotype frequencies

20 marbles

20 marbles 20 marbles

 Sample with replacement to fill the next jar

20 marbles 20 marbles

- Sample with replacement to fill the next jar
- The total number of marbles in each jar is the same (N = 20)

20 marbles 20 marbles

Let's say we're interested in predicting the number of blue marbles at time ti

- Let f(t_i) be the frequency of blue marbles at time t_i
- P[# blue marbles = k | f(t_{i-1}), f(t_{i-1}), f(t_{i-1}), ...] = P[# blue marbles = k | f(t_{i-1})]

• P[# blue marbles =
$$\mathbf{k} \mid f(t_{i-1})$$
] = $\binom{N}{k} f(t_{i-1})^k (1 - f(t_{i-1}))^{N-k}$

blue marbles = blue alleles

red marbles = red alleles

N total marbles = population size N

Jar t_i = Generation t_i

Assumptions of the WF Model

- · Constant population size
- Individuals reproduce asexually and randomly
- No migration
- No selection
- No mutation
- Non-overlapping generations

- N if we are studying a population of N haploid organisms.
- 2N if we are studying a population of N diploid organisms (which we treat as if they were equivalent to a haploid population twice its size)

What assumption of the Hardy-Weinberg model are we now relaxing?

- The Wright-Fisher model is a stochastic process
- If you start from the same allele frequency, you might end up at a different frequency purely by chance.
- Genetic drift is the change in allele frequencies over time due to random sampling.
- No allele has any special advantage over the others.

Comments on the figure

The expected allele frequency is the same at each generation, and equal to the starting frequency p.

- When an allele reaches a frequency of 1, we say it has fixed.
- When an allele reaches a frequency of 0, we say it has gone extinct.
- Assuming no recurrent mutation, alleles that fix or go extinct remain so forever
- All alleles must eventually fix or go extinct, given enough time.

Exercises

Chapter 1:

1.1-1.4

Chapter 2:

2.1-2.3

2.7-2.9

Chapter 3:

3.1-3.8

