Latex Assignment 8

APARNA ANAND

6, september 2023

Example:-1-30 (12.10)

- 1. Represent graphically a displacement of 40 km, 30° west of south.
- 2. Classify the following measures as scalars and vectors.
 - (a) 5 Seconds.
 - (b) $1000cm^3$.
 - (c) 10 Newton
 - (d) 30km/hr.
 - (e) $10g/cm^3$
 - (f) 20m/s towards north.
- 3. In Fig. 1, which of the vectors are:
 - (a) Collinear
 - (b) Equal
 - (c) Coinitial.
- 4. Find the values of x, y and z so that the vectors $\overrightarrow{a} = x\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + y\hat{j} + \hat{k}$ are equal.
- 5. Let $\overrightarrow{a} = \hat{i} + 2\hat{j}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j}$. Is $|\overrightarrow{a}| = |\overrightarrow{b}|$? Are the vectors \overrightarrow{a} and \overrightarrow{b} equal?
- 6. Find unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{K}$.
- 7. Find a vector in the direction of vector $\vec{a} = \hat{i} 2\hat{j}$ that has magnitude 7 units.
- 8. Find the unit vector in the direction of the sum of the vectors, $\vec{d} = 2\hat{i} + 2\hat{j} 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$.
- 9. Write the direction ratios of the vector $\vec{a} = \hat{i} + \hat{j} \hat{k}$ and hence calculate its direction cosines.

Figure 1: 10.5

- 10. Find the vector joining the points P(2,3,0) and Q(-1,-2,-4) directed from P to Q.
- 11. Consider two points P and Q with position vectors $\overrightarrow{OP} = 3\overrightarrow{a} 2\overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1,
 - (i) internally, and
 - (ii) externally.
- 12. Show that the points $A(2\hat{i} \hat{j} + \hat{k})$, $B(\hat{i} 3\hat{j} 5\hat{k})$, $C(3\hat{i} 4\hat{j} 4\hat{k})$ are the vertices of a right angled triangle.
- 13. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and when $\overrightarrow{a} \cdot \overrightarrow{b} = 1$.
- 14. Find angle θ between the vectors $\overrightarrow{d} = \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{b} = \hat{i} \hat{j} + \hat{k}$.

- 15. If $\overrightarrow{d} = 5\hat{i} \hat{j} 3k$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that the vectors $\overrightarrow{d} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$ are perpendicular.
- 16. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.
- 17. Find $|\overrightarrow{a} \overrightarrow{b}|$, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \cdot \overrightarrow{b}| = 4$.
- 18. If \overrightarrow{a} is a unit vector and $(\overrightarrow{x} \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 8$, then find $|\overrightarrow{x}|$.
- 19. For any two vectors \overrightarrow{a} and \overrightarrow{b} , we always have $|\overrightarrow{a} \cdot \overrightarrow{b}| \le |\overrightarrow{a}| |\overrightarrow{b}|$ (Cauchy Schwartz inequality).
- 20. For any two vectors \overrightarrow{a} and \overrightarrow{b} , we always have $|\overrightarrow{a} + \overrightarrow{b}| \le |\overrightarrow{a}| + |\overrightarrow{b}|$ (triangle inequality).
- 21. Show that the points $A(-2\hat{i}+3\hat{j}+5\hat{k})$, $B(\hat{i}+2\hat{j}+3\hat{k})$ and $C(7i-\hat{k})$ are collinear.
- 22. Find $|\overrightarrow{a} \times \overrightarrow{b}|$, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$.
- 23. Find a unit vector perpendicular to each of the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- 24. Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1) as its vertices.
- 25. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$.
- 26. Write all the unit vectors in XY-plane.
- 27. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3\hat{k}$ and $\hat{i} 6\hat{j} \hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.
- 28. Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ and each one of them being perpudicular to the sum of the other to, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$.
- 29. Three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. Evaluate the quantity $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$, if $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 2$.
- 30. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} and \hat{k} , $\overrightarrow{\alpha} = 3\hat{i} \hat{j}$, $\overrightarrow{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, then express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta_1} + \overrightarrow{\beta_2}$ where $\overrightarrow{\beta_1}$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta_2}$ is perpendicular to $\overrightarrow{\alpha}$.