STA 235 - Binary Outcomes

Spring 2021

McCombs School of Business, UT Austin

Binary Outcomes

• So far, outcome has been a **continuous variable**.

What if the outcome is binary?

What can we do?

How to handle binary outcomes?

Linear Probability Model

Logistic Regression

Linear Probability Models (LPM)

• Just the same as the multiple regression models we've been seeing.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon$$

Linear Probability Models (LPM)

Just the same as the multiple regression models we've been seeing.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon$$

ullet But now $Y \in \{0,1\}$

How to interpret an LPM?

• $\hat{\beta}$'s interpreted as **change in probability**

$$egin{aligned} E[Y|X_1,\ldots,X_P] &= Pr(Y=0|X_1,\ldots,X_p)\cdot 0 + Pr(Y=1|X_1,\ldots,X_p)\cdot 1 \ &= Pr(Y=1|X_1,\ldots,X_p) \end{aligned}$$

How to interpret an LPM?

• $\hat{\beta}$'s interpreted as **change in probability**

$$egin{aligned} E[Y|X_1,\ldots,X_P] &= Pr(Y=0|X_1,\ldots,X_p)\cdot 0 + Pr(Y=1|X_1,\ldots,X_p)\cdot 1 \ &= Pr(Y=1|X_1,\ldots,X_p) \end{aligned}$$

• Example:

$$Pass = eta_0 + eta_1 \cdot Study + arepsilon$$

• $\hat{\beta}_1$ is the estimated change in probability of passing STA 235 if I study one more hour.

Let's look at an example

• Home Mortgage Disclosure Act Data (HMDA) from the AER package

```
lvrat chist mhist phist unemp selfemp insurance condomin
##
     deny pirat hirat
## 1
       no 0.221 0.221 0.8000000
                                      5
                                                 no
                                                      3.9
                                                                no
                                                                          no
                                                                                    no
## 2
       no 0.265 0.265 0.9218750
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 3
       no 0.372 0.248 0.9203980
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 4
       no 0.320 0.250 0.8604651
                                                     4.3
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 5
       no 0.360 0.350 0.6000000
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 6
                                                      3.9
       no 0.240 0.170 0.5105263
                                                 no
                                                                no
                                                                          no
                                                                                    no
     afam single hschool
##
## 1
       no
              no
                      yes
## 2
       no
             yes
                      ves
## 3
       no
                      ves
              no
## 4
       no
              no
                      ves
## 5
       no
              no
                      ves
## 6
              no
                      ves
       no
```

Probability of someone getting a mortgage loan denied?

• Getting mortgage denied (1) based on payments to income ratio (pirat)

```
hmda$denv = as.numeric(hmda$denv) - 1
summary(lm(deny ~ pirat, data = hmda))
##
## Call:
## lm(formula = deny ~ pirat, data = hmda)
##
## Residuals:
      Min
               10 Median 30
## -0.73070 -0.13736 -0.11322 -0.07097 1.05577
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
0.06084 9.920 < 2e-16 ***
## pirat 0.60353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3183 on 2378 degrees of freedom
## Multiple R-squared: 0.03974, Adjusted R-squared: 0.03933
## F-statistic: 98.41 on 1 and 2378 DF, p-value: < 2.2e-16
```

How does this LPM look?

- Non-normality of the error term
- Heteroskedasticity
- Predictions can be outside [0,1]
- LPM imposes linearity assumption

- \circ Non-normality of the error term \rightarrow **Hypothesis testing**
- Heteroskedasticity
- Predictions can be outside [0,1]
- LPM imposes linearity assumption

- Non-normality of the error term → Hypothesis testing
- \circ Heteroskedasticity \rightarrow Validity of SE
- Predictions can be outside [0,1]
- LPM imposes linearity assumption

- Non-normality of the error term → Hypothesis testing
- → Validity of SE
- \circ Predictions can be outside [0,1] \rightarrow **Issues for prediction**
- LPM imposes linearity assumption

- Non-normality of the error term → Hypothesis testing
- → Validity of SE
- \circ Predictions can be outside [0,1] \rightarrow **Issues for prediction**
- LPM imposes linearity assumption → Too strict?

Are there solutions?

- **Don't use small samples**: With the CLT, non-normality shouldn't matter much.
- Saturate your model: In a fully saturated model (i.e. include dummies and interactions), CEF is linear.
- **Use robust standard errors**: Package estimatr in R is great!
- Not appropriate for prediction

Run again with robust standard errors

```
library(estimatr)
model1 <- lm(deny ~ pirat, data = hmda)
model2 <- estimatr::lm_robust(deny ~ pirat, data = hmda)</pre>
```

	Model 1	Model 2		
(Intercept)	-0.080***	-0.080**		
	(0.021)	(0.035)		
pirat	0.604***	0.604***		
	(0.061)	(0.107)		
R2	0.040	0.040		
R2 Adj.	0.039	0.039		
se_type		HC2		
* p < 0.1, ** p < 0.05, *** p < 0.01				

• The default is the Bell-McCaffrey adjustment, a bias-reduced version of "robust" SE.

Let's include more covariates

model3 <- estimatr::lm_robust(deny ~ pirat + factor(afam), data = hmda)</pre>

	Model 1	Model 2	Model 3	
(Intercept)	-0.080***	-0.080**	-0.091***	
	(0.021)	(0.035)	(0.031)	
pirat	0.604***	0.604***	0.559***	
	(0.061)	(0.107)	(0.095)	
factor(afam)yes			0.177***	
			(0.025)	
R2	0.040	0.040	0.076	
R2 Adj.	0.039	0.039	0.075	
se_type		HC2	HC2	
* p < 0.1, ** p < 0.05, *** p < 0.01				

Let's include more covariates

```
model3 <- estimatr::lm_robust(deny ~ pirat + factor(afam), data = hmda)</pre>
```

	Model 1	Model 2	Model 3	
(Intercept)	-0.080***	-0.080**	-0.091***	
	(0.021)	(0.035)	(0.031)	
pirat	0.604***	0.604***	0.559***	
	(0.061)	(0.107)	(0.095)	
factor(afam)yes			0.177***	
			(0.025)	
R2	0.040	0.040	0.076	
R2 Adj.	0.039	0.039	0.075	
se_type		HC2	HC2	
* p < 0.1, ** p < 0.05, *** p < 0.01				

• Can you interpret these parameters? Do they make sense?

Logistic Regression

- Typically used in the context of binary outcomes (Probit is another popular one)
- Nonlinear function to model the conditional probability function of a binary outcome.

$$Pr(Y=1|X_1,\ldots,X_p)=F(eta_0+eta_1X_1+\ldots+eta_pX_p)$$

Where in a **logistic regression**: $F(x) = rac{1}{1 + exp(-x)}$

ullet In the LPM, F(x)=x

How does this look in a plot?

How to interpret the coefficients?

```
summary(glm(deny ~ pirat + factor(afam), family = binomial(link = "logit"),
             data = hmda))
##
## Call:
## glm(formula = deny ~ pirat + factor(afam), family = binomial(link = "logit"),
      data = hmda)
##
##
## Deviance Residuals:
##
      Min
                10 Median
                                 30
                                        Max
## -2.3709 -0.4732 -0.4219 -0.3556 2.8038
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.1256 0.2684 -15.370 < 2e-16 ***
## pirat
          5.3704 0.7283 7.374 1.66e-13 ***
## factor(afam)yes 1.2728
                          0.1462 8.706 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1744.2 on 2379 degrees of freedom
## Residual deviance: 1591.4 on 2377 degrees of freedom
## AIC: 1597.4
##
## Number of Fisher Scoring iterations: 5
```

No easy way!

- \circ An **odd** is the probability of success over probability of failure: $\frac{p}{1-p}$
- \circ An **odds ratio** is the odds for scenario 1 over the odds for scenario 2: $\frac{p_1}{1-p_1} \cdot \frac{1-p_2}{p_2}$

No easy way!

- \circ An **odd** is the probability of success over probability of failure: $\frac{p}{1-p}$
- \circ An **odds ratio** is the odds for scenario 1 over the odds for scenario 2: $\frac{p_1}{1-p_1} \cdot \frac{1-p_2}{p_2}$
- Coefficients in the output are log odds ratio:

$$\log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

• $(\exp(eta_1)-1)\cdot 100\%$ is the expected increase in the odds of Y=1 for a one unit increase of X_1 .

Let's go back to our example:

```
glm(deny ~ pirat + factor(afam), family = binomial(link = "logit"),
          data = hmda)
##
## Call: glm(formula = deny ~ pirat + factor(afam), family = binomial(link = "logit"),
      data = hmda)
##
## Coefficients:
      (Intercept)
                             pirat factor(afam)yes
                             5.370
           -4,126
##
                                              1,273
## Degrees of Freedom: 2379 Total (i.e. Null); 2377 Residual
## Null Deviance:
                         1744
## Residual Deviance: 1591 AIC: 1597
```

• $(\exp(1.27)-1)\cdot 100\%=257\%$ more likely to be denied a mortgage if you are African American, holding payments to income ratio constant.

- Let's look at probabilities
- E.g. Choose coefficient of interest, and fix the other variables to their mean or mode:

```
## 0.08714775 0.25422824
```

Let's look at probabilities

0.1670805

• E.g. Choose coefficient of interest, and fix the other variables to their mean or mode:

ullet Remember that for the LPM model, $\hat{eta}_{afam}=0.177$

Wrapping things up: Which one do we choose?

- Both logit and LPM have pros and cons.
- A lot of the time, depends on what you want to do.

Wrapping things up: Which one did you choose?

	LPM for prediction		
LPM for explanation	no	yes	
no	12	4	
yes	12	5	

Wrapping things up: Which one do we choose? (cont.)

LPM

Pros:

- Simplicity
- Interpretability

Cons:

- Cannot be used for prediction
- Heteroskedasticity

Logit

Pros:

- Bounded probabilities
- Flexibility

Cons:

- Log odds ratio
- Doesn't play well with FE

Main takeaway points

- LPM and Logistic Regression can both be useful depending on the context.
- Be careful with the interpretation!
- Remember to always **plot** your data.

Next week

• We start with:

Causal Inference

- Homework 1 will be posted today.
 - Start early!
- Readings for next week are also posted on the website.

References

- Hanck, C. et al. (2020). "Econometrics with R". Regression with a Binary Dependent Variable
- James, G. et al. (2017). "Introduction to Statistical Learning with Applications in R". Chapter 4.3
- Grace-Martin, K. (2018). "Why logistic regression for binary responses?"
- Bellemare, M. (2013) "A Rant on Estimation with Binary Dependent Variables (Technical)"