සියලු හිමිකම් ඇවිරිණි / All Rights reserved වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තු Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department විසි අත්වාස්ත අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම් පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම් පළාත් අධ්නාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education NWP වන සඳහන් අධ්යාපත වේ විස්තම්න වන සඳහන් වන වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP දෙවන වාර පරීකුණය - 12 ශේණීය - 2020 Second Term Test - Grade 12 - 2020 රසායන විදහාව I කාලය පැය දෙකයි විභාග අංකය සැලකිය යුතුයි • මෙම පුශ්න පතුය සමඟ ආවර්තිතා වගුවක් සපයා ඇත. ● ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. • සියලුම පුශ්නවලට පිළිතුරු සපයන්න. • උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. 🔹 1 සිට 50 තෙක් වූ එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැලපෙන හෝ තෝරාගෙන , එය උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් යොදා දක්වන්න. සාර්වනු වායු නියතය $R=8.314~J~mol^{-1}K^{-1}$ / ඇවගාඩ්රෝ නියතය $N_A=6.022~x~10^{23}~mol^{-1}$ /ප්ලාන්ක් නියතය $h=6.626~x~10^{-34}~JS$ / ආලෝකයේ පුවේගය $C = 3 \times 10^8 \; \text{mS}^{-1}$ 1. පහත දැක්වෙන I හා II පුකාශ සලකන්න. පිරිහුණු කාක්ෂිකවල ශක්තිය අවම වන්නේ සමාන භුමණයකින් යුත් ඉලෙක්ටෝන සංඛාාව උපරිම වන විටය. II - යම් පරමාණුවක ඇති ඉලෙක්ටුෝන දෙකටම එකම ක්වොන්ටම් අංක කුලකයක් පැවතිය නොහැක. මෙම I සහ II පුකාශ වලින් දෙනු ලබන නීති ඉදිරිපත් කළ විදාහඥයන් දෙදෙනා පිළිවෙලින්, 1. අර්නස්ට් රදර්ෆර්ඩ් සහ හෙන්රි බෙකරල් 2. අර්නස්ට් රදර්ෆර්ඩ් සහ හුන්ඩ් 3. නීලස් බෝර් හා වොල්ෆ්ගැංග් පව්ලි 4. හුන්ඩ් සහ වොල්ෆ්ගැංග් පව්ලි 5. නූන්ඩ් හා ඩී බෝග්ලි 2. පරමාණුවක පුධාන ක්වොන්ටම් අංකය n=4 හා ආශිුත උපරිම කාක්ෂික සංඛාාව වනුයේ, 3. 12 නයිට්රෝනියම් අයනය $[N^+O_2\ /\ (O-N-O)^+]$ ට ඇඳිය හැකි සම්පුයුක්ත වාූහ ගණන වනුයේ, 2. 3 3. 4 4. 5 1. 2 පහත දී ඇති සංයෝගයේ IUPAC නාමය කුමක්ද? FeC_2O_4 1. iron(II) carbonate 2. iron carbonate 3. iron(II) dicarbontetroxide 4. iron(III) oxalate 5. iron(II) oxalate විදාුත් සෘණතාවේ වැඩිම වෙනසක් ඇති මූලදුවා යුගලය හඳුනාගන්න. 1. C හා P 2. C හා N 3. Si හා N 4. C හා Si 5. B හා Si

 $(NH_2)_2 \ CO$ අණුවේ (සැකිල්ල: $H-N^1-C^2-N-H$) නයිටුජන් සහ කාබන් යන පරමාණු දෙක අවට 6.

(N^1 හා \mathcal{C}^2 ලෙස ලේබල් කර ඇත.) ඉලෙක්ටෝන යුගල් ජාාමිතිය හා හැඩය පිළිවෙලින් වනුයේ,

	N	71	С	.2
(1)	චතුස්තලීය	පිරමීඩාකාර	තලීය තිුකෝණාකාර	තලීය තිුකෝණාකාර
(2)	චතුස්තලීය	පිරමීඩාකාර	තලීය තිුකෝණාකාර	කෝණික
(3)	පිරමීඩාකාර	පිරමීඩාකාර තලීය තුිකෝණාකාර		කෝණික
(4)	තලීය තිුකෝණාකාර	පිරමීඩාකාර	තලීය තිුකෝණාකාර	තලීය තිුකෝණාකාර
(5)	චතුස්තලීය	පිරමීඩාකාර	කෝණික	තලීය තිුකෝණාකාර

- පහත දැක්වෙන පුකාශ අතරින් ඕසෝන් පිළිබඳව වැරදි පුකාශය කුමක්ද? 7.
 - 1. ඕසෝන්හි මධා පරමාණුව sp^2 මුහුම්කරණය වී ඇත.
 - 2. ඕසෝන්හි ඕනෑම ඔක්සිජන් පරමාණු දෙකක් අතර බන්ධන දිග එකම අගයක් ගනී.
 - 3. ඕසෝන්හි 0-0-0 බන්ධන කෝණය 120^{0} ට වඩා කුඩාය.
 - 4. ඕසෝන්හි සම්පුයුක්ත මුහුම පහත දී ඇති ආකාරයට පෙන්වනු ලැබේ.

$$\ddot{\mathbf{O}} = \ddot{\mathbf{O}} \overset{\oplus}{-} \ddot{\mathbf{O}} \overset{\odot}{\vdots} \quad \longleftrightarrow \quad \ddot{\ddot{\mathbf{O}}} \overset{\ominus}{-} \ddot{\mathbf{O}} \overset{\oplus}{-} = \ddot{\mathbf{O}}$$

- 5. ඕසෝන්හි ඔක්සිජන් පරමාණු සියල්ලම එකම තලයක පිහිටයි.
- MnO_2 , සාන්දු HCl සමඟ පුතිකියාවෙන් $MnCl_2$, Cl_2 හා H_2O ලබා දේ. සංශුද්ධ MnO_2 43.5~g හා 8. $HCl \,\, 1.2 \, mol \,$ අඩංගු දුාවණයක් පුතිකියා කිරීමට සැලසු විට, සම්පූර්ණයෙන් වැයවන පුතිකියකය (මෙය සීමාකාරී පුතිකියකය ලෙස සාමානායෙන් හැඳින්වේ.) හා ${\it Cl}_2(g)$ සෑදෙන පුමාණ පිළිවෙලින් වනුයේ, (මවුලික ස්කන්ධ, $Mn = 55 \ g \ mol^{-1}$, $O = 16 \ g \ mol^{-1}$, $H = 1 \ g \ mol^{-1}$, Cl = 35.5)
 - MnO_2 සහ $21.3~\mathrm{g}$
- 2. *HCl* සහ 21.3 g
- 3. *MnO*₂ සහ 35.5 g

- *HCl* සහ 35.5 g 4.
- 5. *HCl* සහ 85.2 g
- පරිපූර්ණ වායු සමීකරණය, P=CRT ආකාරයෙන් දැක්විය හැක. මෙහි C යනු සාන්දුණය ද, P යනු පීඩනය (Pa) හා T යනු උෂ්ණත්වය (K) ද වේ. R හි ඒකක $I\ mol^{-1}K^{-1}$ නම්, සමීකරණයේ C හි ඒකක විය යුත්තේ, 1. $mol \ cm^{-3}$ 2. $mmol \ dm^{-3}$ 3. $mmol \ m^{-3}$ 4. $mol \ dm^{-3}$ 5. $mol \ m^{-3}$
- හයිඩුයිඩවල දුවාංකය අඩුවන පිළිවෙල වනුයේ,
 - 1. $HF > H_2O > NH_3 > CH_4$
- 2. $H_2O > HF > NH_3 > CH_4$
- 3. $H_2O > NH_3 > HF > CH_4$
- 4. $CH_4 > NH_3 > HF > H_2O$
- 5. $HF > H_2O > CH_4 > NH_3$
- $11.\quad NH_2^-$, NH_3 , NH_4^+ සහ NCl_3 යන රසායනික විශේෂ නයිටුජන් පරමාණුවේ (N) විදාුුත් ඍණතාව වැඩිවන පිළිවෙලට සැකසු විට නිවැරදි පිළිතුර වනුයේ,
 - 1. $NH_2^- < NH_3 < NH_4^+ < NCl_3$ 2. $NH_2^- < NCl_3 < NH_3 < NH_4^+$
- - 3. $NH_2^- < NH_3 < NCl_3 < NH_4^+$ 4. $NH_4^+ < NH_3 < NCl_3 < NH_2^-$
 - 5. $NH_4^+ < NCl_3, NH_3, < NH_2^-$

12.	පහත සඳහන් කුමන පිළිතුර $25^0 C$ හි ඇ ලබා දෙයි ද? $(H=1,O=16)$	ති H_2 හා ${\it O}_2$ යන ව	ායුත්ගේ වර්ග මධානා 🤅	ථූල වේග අතර අනුපාතය
	1. $\frac{1}{4}$ 2. 16	3. $\frac{1}{16}$	4. 4	5. 2
13.	පහත දක්වා ඇති පුතිකුියාවේ ඵල වනුන $Mg(s)+$ සාන්දු $HNO_3\left(aq ight) ightarrow $ ඵල $1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		2. $Mg(NO_3)_2(aq) +$	$NO(g) + H_2O(l)$
	3. $Mg(NO_2)_2(aq) + NO_2(g) + H$ 5. $Mg(NO_3)_2(aq) + HNO_2(aq)$	2 ()	$4. Mg(NO_3)_2(aq) +$	$H_2(g) + H_2O(l)$
14.	පහත දක්වන ඒවායින් නිවැරදි පුකාශය H_2S හි බන්ධන කෝණය H_2O හි බන්ධන කෝණය H_2O හි බන්ධන කෝණය සියලු මූල දුවා වි 3. දෙවන කාණ්ඩයේ සියලු මූල දුවා වි 4. වැඩිපුර O_2 වායුව හමුවේ Li , Li_2O	ාත්ධන කෝණයට ϵ සෑදිය හැකි උපරිම වායුගෝලයේ දී $N_2($	σ බන්ධන සංඛාාව 5 කි	
	5. Al සාදන අසම්පූර්ණ අෂ්ඨක සහිත	-)ණෙයේ දී ද්වි අවයවික සා	දයි.
15.	298~K දී පහත දී ඇති දක්ත සළකන්න.	$90.25 kJ mol^{-1}$		
	ඉහත දත්ත අනුව, -			
	$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$ යන ජු			
	 1. −57.07 kJ mol⁻¹ 4. −123.43 kJ mol⁻¹ 	 57.07 kJ n 23.89 kJ n 		23.43 kJ mol ⁻¹
16.	A නමැති දවා වාෂ්පිකරණයේ දී පහත $A(l) \rightleftharpoons A(g)$ මෙම දවයේ වාෂ්පීකරණයේ එන්තැර $44.76\ kJ\ mol^{-1}$ හා $120.0\ J\ K^{-1}\ mol^{-1}$ 1. $493\ ^{0}C$ 2. $275.6\ ^{0}C$	ල්පි වෙනස හා l^{-1} වේ. දුවයෙහි ත	වාෂ්පීකරණයේ එන්ටෙු තපාංකය වනුයේ,	ාපි වෙනස පිළිවෙලින් 5. 100 <i>°C</i>
17.	කාබන් (C) වල බහුරූපී ආකාර පිළිබඳව 1. දියමන්ති, මිනිරන් සම පරමාණුක දැ 2. මිනිරන් හොඳ විදාපුත් සන්නායකයක 3. මිනිරන් තිුමාන දැලිසක් වන අතර, 4. මිනිරන්වල C - C බන්ධන දිග දියම 5. ෆුලරීන්වල C පරමාණු ගෝලාකාරව	ට වැරදි පුකාශය කුණ ැලිස් ව හුහ වලින් ස ග් මෙන්ම තාප සන්: මිනිරන් හි <i>C sp</i> 2 වන්තිවල C - C බුළු	වක්ද? මන්විත වේ. නායකයක් ද වේ. මුහුම්කරණයේ පවතී. ත්ධන දිගට වඩා අඩුය.	
18.	කිසියම් උෂ්ණත්වයක දී $SO_2(g)$, $O_2(g)$ පීඩනයක දී හා අදාළ උෂ්ණත්වයේ දී අවසාන පරිමාව වනුයේ,			
	1. $18 dm^3$ 2. $10 dm^3$	3. $20 dm^3$	4. $14 dm^3$	5. $13 dm^3$

19.	රේචනය කරන ලද දෘඨ බඳුනක් මෙම උෂ්ණත්වයේ දී $A(g)$ හා D $2A(g) o B(g) + 3C(g)$ $D(g) o B(g) + 2C(g)$ බඳුනෙහි ආරම්භක පීඩනය P , පුවෙම උෂ්ණත්වයේ දී $A(g)$ හා D	(g) යන දෙකම පහත දී ඇති ද තිකිුයක දෙක සම්පූර්ණයෙන් වි (g) හි ආරම්භක ආංශික පීඩන	පුතිකිුයා අනුව වියෝ වියෝජනය වූ පසු 2.1 අතර අනුපතය වනු	ජනය වේ. 7 <i>P</i> දක්වා වෙනස් විය. යේ,
	1. 2/1 2. 10	/3 3. 1/27	4. 3/10	5. 3/7
20.	පහන්සිළු පරිකෂාවේ දී නිල්දම් පැ 1. <i>LiCl</i> 2. <i>NaCl</i>	හැයක් ගෙන දෙන්නේ, 3. CaCl_2	4. CsCl	5. KCl
21.	ආම්ලික මාධායේ දී $H_2 O_2$ දුර $20\ cm^3$ ක් අවශා වේ. $H_2 O_2$ හි		•	
	 0.08 mol dm⁻³ 0.125 mol dm⁻³ 	2. $0.2 \text{ mol } dm^{-3}$ 5. $0.4 \text{ mol } dm^{-3}$	3	3. $0.016 mol dm^{-3}$
22.	පහත අණු සලකන්න. NF_3 , CF_2Cl_2 , OCl_2 ඉහත සෑම අණුවකම මධා පරමාණුවේ ඔක්සික 1 . වැඩිවේ, වෙනස් නොවේ, අඩු 3 . අඩුවේ, වැඩිවේ, වෙනස් නොරේ 5. අඩුවේ, අඩුවේ, දැඩිවේ	 රණ අංකය පිළිවෙලින්, වේ	තුවට H පරමාණු ආෙ නොවේ, වෙනස් නො අඩුවේ, වෙනස් නොමේ	වේ, වෙනස් නොවේ.
23.	පහත වගන්ති වලින් වැරදි වගන්ති 1. NaOH වල භාස්මිකතාවය M 2. පළමු කාණ්ඩයේ පහළට යත්ම 3. NaCl ට වඩා NaI හි ජල ද 4. Al හි හයිඩොක්සයිඩය භස්ම 5. Al හි හයිඩොක්සයිඩය අම්ල	$g(OH)_2$ වල භාස්මිකතාවයට හයිඩොක්සයිඩවල සහසංයුජ දාවාතාවය වැඩි ය. සමඟ පුතිකිුයා කරයි.		
24.	එක්තරා $NaCl$ දුාවණයක සාන්දු $(Na=23\ ,Cl=35.5)(1\ ppm$ $1.\ 58.5\ x\ 10^{-3}$ $2.\ 0.5$			ින් වනුයේ, 5. 585
25.	KIO_3 අඩංගු නියැදියකින් $1g$ දියා කරන ලදී. මුක්ත වූ අයඩීන් 0.0 $Na_2S_2O_3$ පරිමාව $25\ cm^3$ විය. $($ මෙහිදී H^+ $/$ $IO_3^ \rightarrow$ I_2 සහ	$003\ mol\ dm^{-3}\ Na_2S_2O_3$ දාව හියැදියේ වූ KIO_3 හි සක්න්ධ පු	ණයක් හා පුතිකිුයා : අතිශතය වනුයේ, (<i>KI</i>	කරවන ලදී. අවශා වූ

1. 1.605×10^{-2} 2. 1.605 3. 3.21 4. 2.675×10^{-3} 5. 2.675×10^{-1}

- 26. $MgO\left(s
 ight)$ උත්පාදනයට අදාළ බෝන්- හේබර් චකුයෙහි අඩංගු නොවන්නේ පහත ස,හන් කුමන පුතිකිුයා පියවරද?
- 1. $Mg(s) \to Mg(g)$ 2. $\frac{1}{2} O_2(g) \to O(g)$ 3. $Mg^{2+}(aq) + O^{2-}(aq) \to MgO(s)$
- 4. $O(g) + e \rightarrow O^{-}(g)$ 5. $Mg(s) + \frac{1}{2} O_{2}(g) \rightarrow MgO(s)$
- CO_2 හි කලාප සටහන පහත දැක්වේ.

 ${\it CO}_2$ හි අවධි උෂ්ණත්වය වනුයේ,

- 1. 30.98° C
- 2. 25.0° *C*
- 3. $0^{\circ} C$ 4. $-56.4^{\circ} C$ 5. $-78.5^{\circ} C$
- 28. 300K දී වායු හතරක් සඳහා මැක්ස්වෙල් බෝල්ට්ස්මාන් වේග වාාප්තිය පහත දැක්වේ.

මෙම A,B,\mathcal{C},D වායු හතර පිළිවෙලින් වනුයේ,

- 1. $H_2(g)$, $N_2(g)$, $O_2(g)$, $Cl_2(g)$
- 2. $Cl_2(g)$, $O_2(g)$, $N_2(g)$, $H_2(g)$
- 3. $H_2(g)$, $N_2(g)$, $Cl_2(g)$, $O_2(g)$
- 4. $H_2(g)$, $Cl_2(g)$, $N_2(g)$, $O_2(g)$
- 5. $O_2(g)$, $Cl_2(g)$, $N_2(g)$, $H_2(g)$
- 29. දෙවන හා තුන්වන ආවර්තවල මූලදුවාවල ඉලෙක්ටෝන කරණ එන්තැල්පිය සම්බන්ධයෙන් නිවැරදි වන්නේ කුමක්ද?
 - 1. සම්මත අවස්ථාවේ ඇති වායුමය අණු මවුලයක් ඉලෙක්ටෝන මවුලයක් පුතිගුහණය කර සම්මත අවස්ථාවේ ඇති ඒක ඍණ අයන මවුලයක් සෑදීමේ දී සිදුවන එන්තැල්පි වෙනසයි.
 - $2. \ F$ වඩාත් විදාුත් සෘණ බැවින් එයට ඉහළම ඉලෙක්ටෝන කරණ එන්තැල්පිය ඇත.
 - 3. ඉහළම ඉලෙක්ටෝකරණ එන්තැල්පිය ඇත්තේ ${\it Cl}$ ටය.
 - 4. මෙය ඉලෙක්ටෝන බන්ධුතාවය ලෙස ද හැඳින්වේ.
 - $5. \ Mg$ වැනි පරමාණුවකට අර්ධ පූර්ණ ස්ථායි ඉලෙක්ටුෝන විනාාසයක් ඇති බැවින් ඉලෙක්ටුෝනකරණ එන්තැල්පිය ඍණ අගයක් වේ.

- 30. පහත සම්මුතීන් අතරින් නිවැරදි වන්නේ,
 - 1. සමස්ථ තාප රසායනික සමීකරණයක් කිසියම් සංඛ්‍යාවකින් ගුණ කරන ලද්දේ නම්, එන්තැල්පි වෙනස ද එම සංඛ්‍යාවෙන් ගුණ කළ යුතුය.
 - 2. පුතිකිුයාවක එන්තැල්පි විපර්යාසයේ ඒකකය පුතිකිුයාවට සහභාගි වන මවුල ගණන අනුව වෙනස් වේ.
 - 3. පුතිකියාවක් පුතිවර්තනය කළ විට ΔH හි සළකුණ හා විශාලත්වය යන දෙකම මාරු වේ.
 - $4.~\Delta H$ හි අගය පුතිකියකවල හා ඵලවල භෞතික අවස්ථාව අනුව වෙනස් නොවේ.
 - 5. $\Delta H^{\; heta}$ හි සළකුණ ඍණ වේ නම්, පුතිකියාව තාප අවශෝෂක වේ.
- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන පුතිචාර හතර අතුරෙන් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදිය. <u>නිවැරදි පුතිචාරය / පුතිචාර</u> කවරේ දැයි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (a) සහ (d) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

1	2	3	4	5
(a) සහ (b) පමණක් නිවැරදියි	(b) සහ (c) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(d) සහ (a) පමණක් නිවැරදියි	වෙනත් පුතිචාර සංඛෳාවක් හෝ සංයෝජනයක් හෝ නිවැරදියි

- 31. s ගොනුවේ මූලදුවා සාදන සංයෝග පිළිබඳව පහත සඳහන් කුමන පුකාශය / පුකාශ නිවැරදි වේද?
 - (a) දෙවන කාණ්ඩයේ සියලු බයිකාබනේට (හයිඩුජන් කාබනේට) ඝන තත්වයෙන් ගත හැක.
 - (b) $LiHCO_3$ ඝන තත්වයෙන් ලබා ගත නොහැක.
 - (c) දෙවන කාණ්ඩයේ සියලු කාබනේට තාපයට අස්ථායි වේ.
 - (d) $NaNO_3$ තාපය හමුවේ වියෝජනයෙන් $NO_2(g)$ ලබා ගත හැක.
- 32. පහත කුමන වගන්තිය සතා වේද?
 - a) එන්තැල්පිය අවස්ථා ශුිතයක් වන අතර විත්ති ගුණයකි.
 - b) තාපන අවස්ථා ශිුතයක් නොවන අතර සටනා ගුණයකි.
 - c) ඝනත්වය විත්ති ගුණයක් වේ.
 - d) මවුලික එන්තැල්පිය අවස්ථා ශිූතයක් වන අතර සටන ගුණයකි.
- 33. අදාළ එන්තැල්පි විපර්යාසය හා නිවැරදි සමීකරණය දැක්වෙන්නේ,
 - (a) සම්මත පරමාණුක එන්තැල්පිය $Cl_2(g) o 2Cl_2(g)$
 - (b) සම්මත දාවණ එන්තැල්පිය $NaCl\left(aq\right) \rightarrow NaCl(s) + water$
 - (c) සම්මත උදාසීනිකරණ එන්තැල්පිය $H^+(aq)+OH^-(aq) o H_2O\left(l
 ight)$
 - (d) සම්මත විලයන එන්තැල්පිය Al(s) o Al(l)

35.	දෙවන කාණ්ඩයේ ලවණවල දුාවාතාවය සම්බන්ධයෙන් නිවැරදි වන්නේ, (a) $BeCO_3$ හැර සියලු කාබනේට අදුාවා වේ. (b) සියළු සල්ෆේට අදුාවා වේ. (c) කාණ්ඩයේ පහළට යත්ම සල්ෆේට වල දුාවාතාව අඩුවේ. (d) සියලු නයිටේට දුාවා වේ.
36.	විත්ති ගුණයක් වන්නේ, (a) පරිමාව (b) මවුල පුමාණය (c) උෂ්ණත්වය (d) මවුලික පරිමාව
37.	විදාුත් වුම්භක තරංග සම්බන්ධයෙන් පහත කුමන පුකාශය නිවැරදි වේද? (a) රික්තය තුළ ආලෝකය වේගයෙන් පුචාරණය වේ. (b) මේවායේ විදාුත් හා චුම්භක ක්ෂේතු දෙකෙහි දෝලන තරංග පුචාරණය වන දිශාවට සමාන්තර වේ. (c) විවිධ විදාුත් චුම්භක විකිරණ එකිනෙකින් වෙනස් වන්නේ ඒවායේ වේග එකිනෙකට වෙනස් නිසාය. (d) මෙම තරංග ආවර්තිත වේ.
38.	සහසංයුජ, අයනික හා දායක සහසංයුජ යන බන්ධන සියල්ල අඩංගු අණුවක් $/$ අණු වන්නේ, (a) $NaNO_2$ (b) $NaNO_3$ (c) $(NH_4)_2CO_3$ (d) NH_3BF_3
39.	$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$; $\Delta H^{\theta} = -483.7 kJ mol^{-1}$ ඉහත තාප රසායනික සමීකරණයෙන් අර්ථකථනය කළ හැක්කේ, (a) පුතිකිුයා මවුලයකට $483.7 kJ$ ක් නිදහස් වේ. (b) වැයවන $H_2(g)$, මවුල 2 කට $483.7 kJ$ නිදහස් වේ. (c) වැයවන $H_2(g)$, මවුල 1 කට $483.7 kJ$ නිදහස් වේ. (d) සෑදෙන ජල වාෂ්ප මවුල 1 කට $483.7 kJ$ නිදහස් වේ.
40.	ලෝහක බන්ධන සම්බන්ධයෙන් නිවැරදි වන්නේ, (a) ධන අයන විශාලවත්ම ලෝහක බන්ධනයේ ඉලෙක්ටෝන ඝනත්වය වැඩිවේ. (b) දැලිස ස්ථායිවන පරිදි සවල ඉලෙක්ටෝන වලාව සමස්ථ දැලිස පුරා අනවරතව වලනය වේ. (c) පරමණුවකින් සපයන ඉලෙක්ටෝන ගණන වැඩිවත්ම ලෝහක බන්ධනයේ පුබලතාව වැඩිවේ. (d) කෂාරීය ලෝහ හා කෂාර පාංශු ලෝහවල දී පරමාණුවේ අයනික ස්වභාවය ලෝහක බන්ධනය සඳහා පුබල බලපෑමක් කරයි.

34. පහත පුතිකිුයා අතරින් නිවැරදි වන්නේ කුමක්ද? කුමන ඒවාද?

(c) $4 NaNO_3(s) \rightarrow 2 Na_2O(s) + 4NO_2(g) + O_2(g)$

(a) $2 Na(s) + H_2(g) \rightarrow 2 NaH(s)$ (b) $6 Na(s) + N_2(g) \rightarrow 2 Na_3 N(s)$

(d) $2 LiNO_3(s) \rightarrow 2 LiNO_2(s) + O_2(g)$

• අංක 41 සිට 50 තෙක් එක් පුශ්නයක් සඳහා පුකාශ දෙකක් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලම හොඳින්ම ගැලපෙනුයේ පහත දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාර වලින් කවර පුතිචාරය දැයි තෝරා උත්තර පතුයේ උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
1	සතාය	සතා වන අතර පළමු පුකාශය නිවැරදිව පහදා දෙයි
2	සතාය	සතා වන අතර පළමු පුකාශය නිවැරදිව පහදා නොදේ
3	සතාය	අසතාය
4	අසතාය	සතාය
5	අසතාය	අසතාය

	පළමු පුකාශය	දෙවැනි පුකාශය
41.	$\mathit{Br}_{\scriptscriptstyle 2}$ ට වඩා ICl හි තාපාංකය වැඩිය.	Br_2 නිර්ධුැවීය අණුවකි. ICl ධුැවීය අණුවකි. එහි
		ද්විධුැව ද්විධුැව ආකර්ෂණ පවතී.
42.	කැතෝඩ කි්රණ චුම්භක ක්ෂේතුයේ දී චුම්භක	කැතෝඩ කි්රණ ඍණ ආරෝපිතයි.
	ධැව වෙතට උත්කුමණය වේ.	
43.	බාමර් ශේණියේ පළමු රේඛාවේ තරංග ආයාමය	බාමර් සහ ලයිමාන් ශුේණි සැලකීමේ දී ඉහළ තරංග
	ලයිමාන් ශේණීයේ පළමු රේඛාවේ තරංග	ආයාම පරාසයක පිහිටා ඇත්තේ ලයිමාන් ශේණීය
	ආයාමයට වඩා අඩුය.	ය.
44.	එකම ආවර්තයේ වමේ සිට දකුණට යත්ම	එකම ආවර්තයේ වමේ සිට දකුණට යත්ම
	ඉලෙක්ටුෝන ගණන වැඩි වන නිසා නිවාරක	පරමාණුවල අරය අඩුවන නිසා සඵල නාාෂ්ටික
	ආචරණය වැඩිවේ.	ආරෝපණය අඩුවේ.
45.	රසායනික බන්ධන සෑදීම සඳහා සංයුජතා කවච	ඉලෙක්ටුෝන හවුලේ තබා ගැනීමෙන් සහසංයුජ
	ඉලෙක්ටුෝන සහභාගි වේ.	බන්ධන ඇතිවේ.
46.	තුලිත රසායනික සමීකරණයක දෙපස පිහිටි අණු	තුලිත රසායනික සමීකරණයක දෙපස ස්කන්ධ
	සංඛ්‍යාව හා ආරෝපණය සමාන විය යුතුය.	සමානය.
47.	දුවයක් එය අඩංගු බඳුනේ හැඩය ගනී. නමුත්	දුවයක හැඩය කෙරෙහි ගුරුත්වජ බලය බලපායි.
	බඳුන පුරා පැතිරීමක් නොවේ.	
48.	සාන්දුණය දන්නා දුාවණ පිළියෙල කිරීමට	අම්ලයක් තනුක කිරීමේ දී දන්නා අම්ල පරිමාවකට
	පරිමාමිතික ප්ලාස්කුව භාවිතා වේ.	ජලය එකතු කිරීම සිදුවේ.
49.	පුබල අම්ල - පුබල භස්ම උදාසීනිකරණ	දුබල අම්ල හා දුබල භස්ම වල උදාසීනිකරණ
	එන්තැල්පිය නියතයකි.	එන්තැල්පිය පුබල අම්ල හා භස්ම වලට වඩා තරමක්
		වෙනස් වේ.
50.	S ගොනුවේ මූලදුවා ඔක්සිහාරක ලෙස කිුයා	
	කරයි.	ලෝහ ඉලෙක්ටුෝන ලබාගෙන ඔක්සිහරණය වේ.

	1	ආවර්තිතා වගුව								2								
1	н																	He
_	3	4	l		ஆ	யுத்	5 61	M -	டவ	कळा			5	6	7	8	9	10
2	Li	Be				Per	iodi	ic T	abl	e			В	С	N	0	F	Ne
_	11	12											13	14	15	16	17	18
3	Na	Mg											Λì	Si	Р	s	CI	Ar
-	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Tī	v	Cr.	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	Λs	Se	Br	Kr
•	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	v	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Xe
J	55	56	La-	72	73	74	75	76	27	78	79	80	81	82	83	84	85	86
6	Cs	1		Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	m	13	Bi	Po	At	Rn
О	-	Ba	Lu				\blacksquare	_	_		_		113	1.0				
	87	88	Ac-	104	105	106	107	108	109	110	111	112		}				
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
			Ac	Th	Pa	ย	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr	

සියලු හිමිකම් ඇවිරිණි / All Rights reserved

Due were the control of the control

වයම පළාත් අධ්නාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයම පළාත් අධ්නාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education NWP වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP

දෙවන වාර පරීකෂණය - 12 ලේණිය - 2020

Second Term Test - Grade 12 - 2020

විභාග අංකය

රසායන විදාහව II

කාලය පැය තුනයි

- ආවර්තිතා වගුවක් අවසාන පිටුවෙහි සපයා ඇත.
- ගුණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- සාර්වකු වායු නියකය, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- * ඇවගාඩ්රෝ නියනය, $N_A = 6.022 imes 10^{23} \; ext{mol}^{-1}$
 - A කොටස චපුහගත රවනා
- * කියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- 🗱 මබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.
 - B කොටස සහ C කොටස රවනා
- 🗱 එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- st සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු $f A, \, f B$ සහ f C කොටස්වලට පිළිතුරු, f A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිව භාර දෙන්න.
- පුශ්න පතුලයහි B සහ C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටකට ගෙන යා හැකි ය.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	උශ්න අංකග	ලැබූ ලකුණු
	1	
A	2	
	3	
	4	
	5	
В	6	
	7.	
	8	
C	9	
	10	
එකතුව		: •
දතිගතය		

_	
උච්සාන	ලකන

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උක්කර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

[දෙවැනි පිටුව බලන්න.

A කොටස - වාූහගත රචනා

(01) a. I. පහත සඳහන් පුශ්න ආවර්තිතා වගුවේ තුන්වන ආවතර්යේ මූලදුවා හා සම්බන්ධ වේ. කොටස් (i) සිට (v) දක්වා පිළිතුරු ලබා දීමේ දී ලබා දී ඇති අවකාශයේ මූලදුවායේ සංකේතය ලියන්න.

i. අඩුම විදයුත් සෘණතාව ඇති මූලදුවා හඳුනාගන්න. (උච්ඡ වායුව නොසළකා හරින්න.)

.....

ii. පුමාණයෙන් කුඩාම ඒක පරමාණුක අයනය සාදන මූලදුවා හඳුනාගන්න. (මෙම අයනය ස්ථායි විය යුතුය.)

iii. p ඉලෙක්ටුෝන නොමැති නමුත් ස්ථායි විනාාසයක් ඇති මූලදුවා හඳුනාගන්න.

iv. දෙවැනියට වැඩිම පළමු අයනීකරණ ශක්තිය ඇති මූලදුවා හඳුනාගන්න.

.....

v. වායුමය අවස්ථාවේ දී ද්වි අවයවික වශයෙන් පවතින ඉලෙක්ටුෝන ඌන සංයෝග සාදන මූලදුවා හඳුනා ගන්න.

.....

- (b) $CH_2NO_2^-$ අයනය සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් තිත් ඉරි වාූහය අඳින්න.
 - I. එහි සැකිල්ල පහත දක්වා ඇත.

II. H_3CN_2O අණුව සඳහා වඩාත්ම ස්ථායි ලුවිස් තිත් - ඉරි වහුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් තිත් - ඉරි වහුහ (සම්පුයුක්ත වහුහ) දෙකක් අඳින්න. ඔබ විසින් අඳින ලද වඩාත් අස්ථායි වහුහය යටින් 'අස්ථායි' ලෙස ලියන්න.

 ${
m III.}$ පහත සඳහන් ලුවිස් තිත් - ඉරි වූහය පදනම් කරගෙන වගුවේ ඇති ${\cal C}$, ${\cal N}$ හා ${\cal O}$ පරමාණුවල,

- i. පරමාණුව වටා VSEPR යුගල්
- ii. පරමාණුව වට ඉලෙක්ටෝන යුගල් ජනාමිතිය
- iii. පරමාණුව වටා හැඩය
- iv. පරමාණුවේ මුහුම්කරණය සඳහන් කරන්න.
- v. පරමාණුවේ ඔක්සිකරණ අංකය සඳහන් කරන්න.

:O:
H -
$$\ddot{O}$$
 - C = C - \ddot{O} - \ddot{N} - \ddot{C} I:
:CI:

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$H - O^{1} - C^{2} - C^{3} - C^{4} - N^{5} - CI$$

	O^1	C^2	C^3	N ⁵
VSEPR යුගල්				
ඉලෙක්ටුෝන යුගල්				
ජාාමිතිය				
හැඩය				
මුහුම්කරණය				
ඔක්සිකරණ අංකය				

 ${
m IV.}$ ඉහත (${
m III}$) කොටසෙහි ලුවිස් තිත් - ඉරි වාූහයෙහි පහත සඳහන් σ බන්ධන සෑදීමට සහභෘගි වන පරමාණුක / මුහුම් කාක්ෂික හඳුනාගන්න. (පරමාණුවල අංකනය (III) කොටසෙහි ආකාරයටම වේ.)

		~ 1
i	ш	/11
1	п —	"

ii.
$$O^1 - C^2$$

$$O^1$$

$$C^2$$

iii.
$$C^2 - C^3$$

$$C^2 - C^3$$
 $C^2 \dots \dots \dots \dots \dots$

$$C^3$$

iv.
$$C^3 - C^4$$

$$C^3$$

$$V = C^4 - N^5$$

vi.
$$C^4 - O$$

$$C^4$$

	වසෙහි දෙන ලද ලුවිස් මාණුක කාක්ෂික හඳුනාං			
I. $C^2 - C^3$	C^2		$C^3 \dots \dots \dots$	
II. $C^4 - O^6$	C^4		C ⁶	
VI. i. ඉහත (III) සෙ දිශානත වී අ	තාටසෙහි දෙන ලද ලුවි ැත්තේ කෙසේද?	ස් තිත් - ඉරි වාුුහලා	හි තිුත්ව බන්ධනයේ	π බන්ධන දෙක
) වෙනස් පරමාණු 2 ක් 3ක් දෙන්න.	අතර තිුත්ව බන්ධන	යක් සහිත අණුවක් /	අයනයක් සඳහා
	රණයෙහි පරමාණු 3 කර දාහරණයේ ඇති මූලදුව		<u> </u>	ආවර්තවලට සීමා
(c) i. පරමාණුක කාක්ෂිකය අංක සහ පරමාණුක	ක් විස්තර කරනුයේ n ු ා කාක්ෂිකයේ නම පහස	•		අදාල ක්වොන්ටම්
1.	-1 4 <i>P</i>			
2. 4	2 0			
3.] 3s		
${ m ii.}$ වරහන් තුළ දක්වා අ ${ m I.}$ ${ m BeCO}_3$,	ඇති ගුණය වැඩිවන පිළි ${\sf MgCO}_3$, ${\sf CaCO}_3$ (අවශා නොවේ.)
	<	<		
	NO_2 , $NO_2^ (O\widehat{N}O$ බව			
	<			
III. C_2H_6 , C_2	$_{2}H_{4}$, $C_{2}H_{2}$ ($C-C$ බ	ත්ධන දිග)		
	<	<		

(02) a.	පිළිග <i>X</i> ප පුති:	නු ආවර්තිතා වගුවේ s — ගොණුවේ මූලදුවායකි. X හි පළමු දෙවැනි හා තුන්වැනි අයනීකරණ ශක්තීන් වෙලින් kJ mol^{-1} වලින්, 519 , 7300 , 11800 . $H_2(g)$ මුදා හරිමින් හා එහි හයිඩොක්සයිඩය සාදමින් රලය සමඟ පුබල නොවන පුතිකියාවක් සිදු කරයි. හයිඩොක්සයිඩය භාස්මික වේ. X තනුක අම්ල සමඟ කියාවේ දී $H_2(g)$ මුදා හැරේ. X වාතයේ දහනය වී ඝන සංයෝග දෙකක මිශුණයක් ලබා දේ. එම අයෝග දෙක ජලයට එක් කළ විට Y නැමැති භාස්මික වායුවක් පිටවේ.
	i.	X හඳුනාගන්න.
	ii.	X හි භූමි අවස්ථාවේ ඉලෙක්ටොනික විනාහසය ලියන්න.
	iii.	X වාතයේ දහනයේ දී සෑදෙන සංයෝග දෙකෙහි රසායනික සූතු ලියන්න. හා
	iv.	s ගොණුවේ X අයත්වන කාණ්ඩය හැරුණු විට අනෙක් කාණ්ඩයෙහි මූලදවායන්හි දී ඇති සංයෝග සළකන්න. කාණ්ඩයේ පහළට යාමේ දී දක්වා ඇති ගුණය වැඩිවේ ද අඩුවේ ද යන්න දී ඇති කොටු තුළ සඳහන් කරන්න.
		1. සල්ෆයිටවල ජලයේ දුාවානාවය 2. හයිඩුොක්සයිඩවල ජලයේ දුාවානාවය 3. ලෝහ නයිටේටවල තාප ස්ථායිතාවය
		3 හි ඔබගේ පිළිතුරට හේතුව දක්වන්න.
	v.	$H_2(g), O_2\left(g ight)$ හා $N_2\left(g ight)$ සමඟ X ට බොහෝ දුරට සමාන ලෙස පුතිකිුයා කරන නමුත් X අඩංගු කාණ්ඩයට අයත් නොවන ආවර්තිතා වගුවේ s — ගොනුවේ මූලදුවා හඳුනාගන්න.
	vi.	ඉහත Y නමැති භාස්මික වායුව කුමක්ද?
	vi.	Υ හඳුනා ගැනීම සඳහා පරීකෳණයක් දෙන්න.
	vii.	එම පරීකෂණයේ නිරීකෂණය කුමක්ද?

(b) A සිට E දක්වා නම් කර ඇති පරීකෂණ නල වල Na_2SO_4 , Na_2SO_3 , NaOH , K_2CrO_4 හා $Ca(NO_3)_2$ හි (පිළිවෙලින් නොවේ) ජලීය දාවණ අඩංගු වේ. A සිට E දක්වා ඇති එක් එක් පරීකෂා නළයට අදාළ පරීකෂණය හා අදාල නිරීකෂණ පහත දී ඇත.

පරිකුෂා නලය	පරීකෂණය	නිරීක මෙගය
A	$BaCl_2$ දුාවණ දුාවණ $1\ cm^3$ එකතු කරන්න. ඉන්පසු තනුක HCl එකතු කරන්න.	සුදු පැහැති අවක්ෂේපයක් ලැබී පසුව එය දියවේ.
В	$Mg(NO_3)_2$ දාවණය එකතු කරන්න.	සුදු පැහැති අවක්ෂේපයක් ලැබේ.
С	$BaCl_2$ දුාවණ $1\ cm^3$ පමණ එකතු කරන්න. ඉන්පසු ත. HCl එකතු කරන්න.	සුදු පැහැති අවක්ෂේපයක් සැදේ. එය දිය නොවේ.
D	$Na_2CO_3 \ 1 \ cm^3$ ක් පමණ එකතු කරන්න.	සුදු පැහැති අවක්ෂේපයක් ලැබේ.
Е	$BaCl_2$ දුාවණ $1\ cm^3$ එකතු කරන්න.	කහ පැහැති අවක්ෂේපයක් ලැබේ.

		2 5	-	
	Е	$BaCl_2$ දාවණ $1~cm^3$	එකතු කරන්න.	කහ පැහැති අවක්ෂේපයක් ලැබේ.
(-	i) <i>A</i> සිට <i>E</i> දක්වා	ා පරීකුෂා නල වල දුාවණ	5. 20¢201/02/20	
(-				
	A		<i>B</i>	
	C		<i>D</i>	
	E			
(:	ii) <i>A,B,C, D</i> ද ලියන්න.	oo E පරීකෳණ නළ වල t	සිදුවන පුතිකියා සඳහා තු	ලිත රසායනික / අයනික සමීකරණය
(03) (a) I.	ඇත. ($Na=2$)	1 moldm ^{–3} Na ₂ CO ₃ 3 , C = 12 , O = 16 , H Na ₂ CO ₃ mol ගණන ම	' = 1)	සඳහා ඝන Na_2CO_3 . $5H_2O$ සපයා
	ii කිරාගත යුතු	$Na_2CO_3.5H_2O$ ස්කන	්ධය කොපමණද?	

ii	i. පුාමාණික දුාවණයක් යනු කුමක්ද?
IV.	7. පුාථමික සම්මත දුාවණයක් යනු කුමක්ද?
V	. පුාථමික සම්මත සඳහා උදාහරණ 02 ක් දෙන්න.
vi.	NaOH හි නිවැරදි සාන්දුණයෙන් යුත් සම්මත දාවණයක් පිළියෙල කර ගත නොහැක්කේ මන්ද?
⁄ii.	ඉහත සාදන ලද $1\ mol\ dm^{-3}\ Na_2CO_3$ දාවණයේ සාන්දුණය කුඩා පුමාණයකින් චෙනස් විය හැක. එයට හේතු $2\ ක් දෙන්න.$
⁄iii.	දන්නා සාන්දුණයෙන් යුත් දාවණයක් පිළියෙල කිරීමට භාවිතා කරන වීදුරු උපකරණය කුමක්ද?
X.	ඉහත $1\ mol\ dm^{-3}\ Na_2CO_3$ දාවණය භාවිතා කර $0.25\ mol\ dm^{-3}\ Na_2CO_3\ 100\ cm^3$ ක් සාදා ගැනීම සඳහා එම දාවණයෙන් ලබා ගත යුතු පරිමාව ගණනය කරන්න.

(04)	කිසියම් සංයෝගයක ස්කන්ධය අනුව 30.46% ක් නයිටුජන් ද, 69.54% ඔක්සිජන් ද වේ. සංයෝගයෙ සාපේඎ අණුක ස්කන්ධය 90 - 95 අතර වේ.
	i. සංයෝගයේ ආනුභවික සූතුය සොයන්න. ($N=14$, $O=16$)
	ii. සංයෝගයේ අණුක සූතුය සොයන්න.
	iii. සංයෝගයේ නිවැරදි මවුලික ස්කන්ධය කොපමණද?
(b) 1	I. KMnO ₄ වර්ණවත් සංයෝගයකි.
	i. KMnO ₄ හි <i>IUPAC</i> නාමය ලියන්න,
	ii. KMnO4 තුළ <i>Mn</i> හි ඔක්සිකරණ අංකයෙන් ව ුත්පන්න වන ඔක්සයිඩයේ රසායනික සූතුය ලියන්න .

iv.	ආම්ලික මාධාලය් දී $K_2Cr_2O_7$ අයන $K_2C_2O_4$ සමඟ පුතිකිුයා කරයි.
	$(Cr_2O_7^{2-} \rightarrow Cr^{3+})$
	$(\mathcal{C}_2 \mathcal{O}_4^{2-} o \mathcal{C} \mathcal{O}_2)$ බවට පත් වේ.
	1. ඔක්සිකරණ අර්ධ පුතිකිුයාව ලියන්න.
	2. ඔක්සිහරණ අර්ධ පුතිකිුයාව ලියන්න.
	3. තුලිත අයනික සමීකරණය ලියන්න.
	4. ආම්ලික මාධා ලෙස තනුක H_2SO_4 භාවිතා කළේ නම්, තුලිත රසායනික සමීකරණය ලියන්න
	$298~K$ දී $2NH_3(g) ightarrow N_2(g) + 3~H_2(g)$ යන පුතිකියාව සඳහා සම්මත මවුලික එන
	විපර්යාසය $90~kJ~mol^{-1}$ වේ. $298~K$ දී සම්මත එන්ටොපි විපර්යාසය $250~J~mol^{-1}~K^{-1}$ වේ.
i	පුතිකිුයාව සඳහා $\Delta G^ heta$ ගණනය කරන්න.
1.	පුත්කුයාට සඳහා 🚾 ගිණිනය ක්රන්න.

11.	298 K දී පුතිකියාවේ ස්වයංසිද්ධතාව පැහැදිලි කරන්න.
iii.	මෙම පුතිකිුයාව ස්වයංසිද්ධව සිදුවීම සඳහා අවශා කරන අවම උෂ්ණත්වය ගණනය කරන්න.

රසායන විදාුව - 2020 - 12 ශුේණිය (දෙවන වාර පරික්ෂණය) B - කොටස - රචනා

• මෙම කොටසින් පුශ්න දෙකකට පිළිතුරු සපයන්න.

(05) (a) පරිමාව $8.314~{
m dm^3}$ වන සංවෘත දෘඩ බඳුනක $2.4~{
m x}~10^5~{
m Pa}$ පීඩනයක් යටතේ ${
m Cl_2}$ වායුව ද පරිමාව $4.157~{
m dm^3}$ වන සංවෘත දෘඩ භාජනයක $1.6~{
m x}~10^5~{
m pa}$ පීඩනයක් යටතේ ${
m NH_3}$ වායුව ද අන්තර්ගතව පවතී, මෙම භාජන දෙකම 127^{0} C උෂ්ණත්වයේ පවතින අතර ඒවා සිහින් වීදුරු නලයක් මඟින් රුප සටහනේ පරිදි එකිනෙක සම්බන්ධ කර ඇත.

- (i) කරාමය විවෘත කිරීමට පෙර එක් එක් භාජනයේ අඩංගු වායු මවුල සංඛාා වෙන වෙනම ගණනය කරන්න.
- $({
 m ii})$ ඉහත භාජන දෙක සම්බන්ධිත කරාමය විවෘත කර වායු මිශු වීමට ඉඩ හරින ලදී, එහිදී NH_3 හා ${\it Cl}_2$ පහත සමීකරණයට අනුව එකිනෙක සමඟ පුතිකිුයා කරන ලදී.

 $NH_3(g) + 3Cl_2(g) \rightarrow NCl_3(g) + 3HCl(g)$

- 1. පුතිකිුයාව සම්පූර්ණ වීමෙන් පසු බඳුන් තුළ වූ මුළු මවුල සංඛාාව ගණනය කරන්න.
- 2. පුතිකිුයාව සම්පූර්ණ වීමෙන් පසු පද්ධතිය තුළ මුළු පීඩනය ගණනය කරන්න.
- 3. ඇතුළත වායු පිටතට නොයන පරිදි පද්ධතිය තුළට තවත් $NH_3(g) \ 0.4 \ mol$ ක් එක් කළ විට පද්ධතිය තුළ පීඩනයට කුමක්වේදැයි හේතු දක්වමින් පහදන්න.
- 4. පද්ධතිය තුළ අවසාන පීඩනය ගණනය කරන්න.
- (b) විදාාගාරයේ දී H_2 වල මවුලික පරිමාව යොදා ගනිමින් Mg වල සාපේæ පරමාණුක ස්කන්ධය පරිකෂණාත්මකව නිර්ණය කිරීම සඳහා ශිාලයකු විසින් පරිකෂණයක් සැළසුම් කරන ලදී.
 - (i) Mg හා ත.HCl යොදාගෙන සිදු කළ මෙම පරීක්ෂණය සඳහා භාවිතා කළ හැකි පරීක්ෂණාත්මක ඇටවුමක දළ රූප සටහනක් ඇඳ නම් කරන්න.
 - (ii) ශිෂායා විසින් සිදු කරන ලද පරීකෳණයේ දී ලැබූ පුතිඵල පහත දැක්වේ.

 $= 27^{\circ}C$ කාමර උෂ්ණත්වය

 $= 1.013 \times 10^5 Pa$ වායුගෝල පීඩනය ජලයේ වාෂ්ප පීඩනය $= 0.036 \times 10^5 Pa$

 $= 50 cm^3$ නිපද වූ H_2 වායු පරිමාව Mg වල ස්කන්ධය = 0.05g

- (i) Mg හා ත. HCl අතර පුතිකියාවේ තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ඉහත දත්ත භාවිතයෙන් Mg වල සා.ප.ස්. ගණනය කරන්න.
- (iii) මෙම ගණනයේ දී ඔබ විසින් කරනු ලබන උපකල්පන සඳහන් කරන්න.
- (i) චාලක අණුක වාදයේ උපකල්පන සඳහන් කරන්න.
 - (ii) චාලක අණුක වාදයේ සමීකරණය ලියා එහි පද හඳුන්වන්න.
- (06)(a)(i)පහත සඳහන් එන්තැල්පි විපර්යාස වලට අදාල තුළිත සමීකරණය ලියන්න.
 - (ii) $\mathcal{C}(s)$ හි සම්මත දහන එන්තැල්පිය. ($\Delta H_c^{ heta}$)
 - (iii) Na(s) හි සම්මත ඌර්ධවපාතන එන්තැල්පිය. $(\Delta H_s^{ heta})$
 - $(ext{iii})$ $O_2\left(g
 ight)$ හි සම්මත බන්ධන විඝටන එන්තැල්පිය. $(\Delta H_D^ heta)$
 - $({
 m iv})$ ක්ලෝරීන් හි සම්මත පරමාණුකරන එන්තැල්පිය $(\Delta H_{atm}^{ heta})$
 - $({
 m v})$ $MgCl_2(s)$ හි සම්මත දැලිස් විඝටන එන්තැල්පිය. $(\Delta H_L^{ heta})$

- (b) පහත සඳහන් දත්ත භාවිතා කර, $25^0 C$ දී $2H_2(g) + O_2(g) → 2 H_2O(g)$ යන පුතිකිුියාවේ,
 - (i) සම්මත එන්තැල්පි විපර්යාසය ගණනය කරන්න.
 - (ii) සම්මත එන්ටොපි විපර්යාසය ගණනය කරන්න.
 - (iii) ඉහත පුතිකියාව ස්වයංසිද්ධව සිදුවේද? නොවේද? යන්න පුරෝකථනය කරන්න.
 - m H m H හි සම්මත බන්ධන විඝටන එන්තැල්පිය $= +432~k Jmol^{-1}$
 - ${
 m O}={
 m O}$ හි සම්මත බන්ධන විඝටන එන්තැල්පිය $=~+~494~kImol^{-1}$
 - m O m H හි සම්මත බන්ධන විඝටන එන්තැල්පිය $\ = \ +460\ kJmol^{-1}$

සංයෝගය	$s^{\theta}/J k^{-1} mol^{-1}$
$H_2O(g)$	+ 188.8
$H_{2}\left(g\right)$	+ 130.7
$O_2\left(g\right)$	+ 205.1

(c) පහත දැක්වෙන තාපරසායනික දත්ත භාවිතා කර $MgCl_2(s)$ හි සම්මත දැලිස් විඝටන එන්තැල්පිය, සුදුසු බෝන් - හේබර් චකුයක් ආධාරයෙන් ගණනය කරන්න.

Mg(s) හි සම්මත ඌර්ධවපාතන එන්තැල්පිය $= +148 \, k I \, mol^{-1}$

 $= +738 \, k I \, mol^{-1}$ Mg(g) හි සම්මත පුථම අයනීකරණ එන්තැල්පිය

 $= +1451 \, kImol^{-1}$ Mg(g) හි සම්මත දෙවන අයනීකරණ එන්තැල්පිය

 ${\it Cl}_2\left(g
ight)$ හි සම්මත බන්ධන විඝටන එන්තැල්පිය

 $= + 244 \, kJmol^{-1}$ $= - 641 \, kJmol^{-1}$ $MgCl_2(s)$ හි සම්මත උත්පාදන එන්තැල්පිය

 $= -349 \, k \, Imol^{-1}$ ${\it Cl}(g)$ හි සම්මත පළමු ඉලෙක්ටුෝන ලබා ගැනීමේ එන්තැල්පිය

(07) (a) ශිෂායන් පිරිසක් විසින් සිදුකරන ලද එක්තරා පරීක්ෂණයක දී ලබා ගත් තොරතුරු පහත දැක්වේ.

සාන්දුණය $2\ mol\ dm^{-3}$ වන තනුක HNO_3 දාවණ $125\ cm^3$ ක් සාන්දුණය $2\ mol\ dm^{-3}\ KOH$ දාවණ $125\ cm^3$ ක් සමඟ ප්ලාස්ටික් කෝප්පයක් තුළ මිශු කර පද්ධතිය එළඹෙන උපරිම උෂ්ණත්වය $40^0\ C$ ක් බව තිරීකෳණය කරන ලදී. සියලුම දුාවණ මිශු කිරීමට පෙර ආරම්භක උෂ්ණත්වය $27^{0}\ C$ හි පැවතුණි නම්, (ජලයේ විශිෂ්ඨ තාප ධාරිතාව $=4.2\,J\,g^{-1}K^{-1}$ ජලයේ ඝනත්වය $=1\,gcm^{-3}$)

- (i) තනුක HNO_3 හා KOH අතර තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) තනුක HNO_3 හා KOH අතර පුතිකිුයාවේ තාප විපර්යාසය (Q) ගණනය කරන්න.
- (iii) තනුක HNO_3 හා KOH අතර පුතිකියාව සඳහා සම්මත උදාසීනිකරණ එන්තැල්පිය ගණනය කරන්න.
- (iv) ඉහත පරීකෂණයේ දී සිදුකරන උපකල්පන 2ක් ලියන්න.
- (v) සම්මත උදාසීනිකරණ එන්තැල්පි අගය, ඉහත ශිෂායන් විසින් සිදු කරන ලද පරීකෘණය ආධාරයෙන් සිදු කිරීමේ දී සම්මත අගයෙන් වෙනස් වීමට හේතු කවරේද?
- (vi) $CH_3COOH\ (aq)$ හා $NaOH\ (aq)$ අතර පුතිකියාවේත් $Ba(OH)_2(aq)$ සහ $H_2SO_4(aq)$ අතර පුතිකිුයාවේදීත් සම්මත එන්තැල්පි අගයයන්, සම්මත උදාසීනිකරණ එන්තැල්පි අගයෙන් කෙසේ වෙනස් වේද?
- (b) $KNO_3(s)$ 1.55g ක් අසම්පූර්ණ තාප වියෝජනයෙන් පසු ඉතිරි වූ ඝණ ශේෂය ජලයේ දියකර මුළු පරිමාව $250\ cm^3$ ක් වූ දුාවණයක් සාදා ගන්නා ලදී, මෙයින් $25\ cm^3$ ක් $0.015\ moldm^{-3}$ ආම්ලික $KMnO_4$ දුාවණයක් සමඟ අනුමාපනය කරන ලදී. එහිදී වැය වූ $KMnO_4$ පරිමාව $30\ cm^3$ කි.

$$\begin{array}{ccc} H^+ \, / \, MnO_4^- & \rightarrow & Mn^{2+} \\ NO_2^- & \rightarrow & NO_3^- \end{array}$$

- (i) අදාල සියලු පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) තාප වියෝජනයෙන් පසු ඉතිරිව පවතින KNO_3 ස්කන්ධය ගණනය කරන්න. (K = 39, Mn = 55, O = 16, N = 14)

- (C) (i) ආම්ලික මාධායේ දී $\mathcal{C}r_2\mathcal{O}_7^{2-}$ අයනය $\mathcal{C}r^{3+}$ බවට ඔක්සිහරණයට අදාල තුලිත අර්ධ අයනික පුතිකියාව ලියන්න.
 - (ii) භාස්මික මාධායේ දී MnO_4^- අයනය MnO_2 බවට ඔක්සිහරණයට අදාළ තුලිත අර්ධ අයනික පුතිකිුයාව ලියන්න.
 - $(ext{iii})$ I_2 සහ $Na_2S_2O_3$ අතර තුලිත රසායනික පුතිකිුයාව ලියන්න.

$$I_2 \rightarrow I^-$$

$$S_2 O_3^{2-} \rightarrow S_4 O_6^{2-}$$

C - කොටස

• මෙම කොටසින් පුශ්න දෙකකට පිළිතුරු සපයන්න.

- (08) (a) පහත දී ඇති සංයෝග වල වියෝජනයට අදාල තුලිත රසායනික සමීකරණ ලියන්න.
 - (i) $Mg(NO_3)_2(s) \rightarrow \bigwedge$
 - (ii) $NaNO_3(s) \rightarrow \Lambda$
 - (iii) $NaHCO_3(s) \rightarrow \bigwedge$
 - (iv) $LiNO_3(s) \rightarrow$
 - (v) $CaCO_3(s) \rightarrow \Delta$
 - (b) Q නැමැති ලවණය සමඟ සිදු කරන ලද පරීකෂණ සහ ඊට අදාළ නිරීකෂණ පහත දක්වා ඇත.

පරීකෂාව	නිරීක ණය
(i) Q හි ජලීය දාවණයකට Na_2SO_4 දාවණයක් එක්කරන ලදී.	සුදු පැහැ අවක්ෂේපයක් ලැබෙන අතර, එම අවක්ෂේපය තනුක HNO_3 තුල දිය නොවේ.
(ii) Q ලවණය රත්කරන ලදී,	දුඹුරු පැහැ වායුවක් පිට විය.
(iii) Q ලවණය පහත්සිළු පරීකෂාවට භාජනය කරන ලදී.	කහ කොළ පැහැති දැල්ලක් ලැබේ.

- (i) ඉහත එක් එක් පරීඤාවෙන් ලද නිගමන සඳහන් කරන්න.
- (ii) Q, ලවණය හඳුනාගන්න.
- (iii) ඉහත (i) සහ (ii) පරීකෂාවන්ට අදාළව තුලිත රසායනික සමීකරණ ලියන්න.
- (c) (i) KNO_3 හා $Ca(NO_3)_2$ පමණක් අඩංගු මිශුණයකින් 2.84~g ක් සම්පූර්ණ තාප වියෝජනයෙන් ලැබුණු ඝන ශේෂයේ ස්කන්ධය 1.98~g ක් විය. මිශුණයේ තිබූ KNO_3 හා $Ca(NO_3)_2$ වල ස්කන්ධ පුතිශත ගණනය කරන්න.

$$(Ca = 40, K = 39, N = 14, O = 16)$$

- (ii) මෙම මිශුණය රත් කිරීමේ දී ඔබ දකින නිරීකෳණයක් සඳහන් කරන්න.
- (09) (a) පහත දී ඇති ගුණයන් ආරෝහණය වන පිළිවෙලට සකසා, එසේ වීමට හේතුව පහදන්න.
 - i. $Be(NO_3)_2$, $Mg(NO_3)_2$, $Ca(NO_3)_2$ වල තාප ස්ථායිතාව.
 - ii. NaOH, KOH , $Mg(OH)_2$ වල භාස්මිකතාව
 - iii. PF_3 , PCl_3 , PI_3 වල දී P වල විදාුත් සෘණතාව
 - ${
 m iv.}$ H_2O , H_2S , H_2Se වල තාපාංකය

(b) ඉදිරියෙන් දී ඇති කුමය පමණක් උපයෝගී කරගෙන, දී ඇති සංයෝග එකිනෙකින් වෙන්කර හඳුනාගන්න.

i. $\left. egin{array}{l} Na_2CO_3 \ (aq) \\ Na_2SO_4 \ (aq) \\ BaCl_2 \ (aq) \\ NaNO_3 \ (aq) \end{array}
ight.
ight.$ දාවණ යුගල වශයෙන් මිශු කිරීම සහ අවශා නම් තනුක HNO_3 භාවිතය.

ii. $egin{array}{c} Na_2CrO_4\left(aq
ight) \ MgCl_2\left(aq
ight) \ Ba(NO_3)_2\left(aq
ight) \ Na_2CO_3\left(aq
ight) \end{array}
ight\}$ දාවණ යුගල වශයෙන් මිශු කිරීමෙන්

 $Mg(NO_3)_2~(aq)$ $NaNO_3~(aq)$ $Na_2CO_3~(aq)$ $Na_2CO_3~(aq)$ $Na_2CO_3~(aq)$

(c) පහත සංයෝගවල IUPAC නාමයන් ලියා දක්වන්න.

- (i) $NaHCO_3$
- (ii) *CuSO*₄

(iii) CuCl

- (iv) $Fe_2(SO_4)_3$
- (v) $KMnO_4$

(10) (a) පහත අණු / අයන වල හැඩ VSEPR වාදය භාවිතයෙන් අපෝහනය කරන්න.

(i) XeF_4

(ii) PF_5

(iii) NCl₃

(iv) ClO_4^-

(v) NO_3^-

(b) X නම් වූ අකාබනික ලවණයක් පූර්ණ ලෙස තාප වියෝජනයෙන් Cr_2O_3 1.52g ක් H_2O 0.72 g ක් සහ N_2 0.28g ක් යන ඵල පමණක් සෑදුණි.

i. X හි ආනුභාවික සූතුය අපෝහනය කරන්න. ($\mathcal{C}r=52$, N=14 , O=16 , H=1)

ii. X මවුලයක $\mathcal{C}r$ මවුල 2 ක් අන්තර්ගතව පවතින අතර එහි H_2O අණු අන්තර්ගත වී නොමැතිනම්, X හි අණුක සූතුය සොයන්න.

(c) සංශුද්ධ නොවන $KMnO_4$ සාම්පලයකින් 200mg ක් ජලය $100~cm^3$ ක දිය කර දාවණයක් පිළියෙල කර ගන්නා ලදී. එම දාවණයෙන් $25~cm^3$ ක් අනුමාපනයට $0.02~mol~dm^{-3}$ ආම්ලික ඔක්සලේට් $[C_2O_4^{2-}]$ දාවණයකින් $15~cm^3$ ක් වැය විය. $KMnO_4$ සාම්පලයේ $KMnO_4$ ස්කන්ධ පුතිශතය ගණනය කරන්න. (K=39,Mn=55,O=16,C=12)

$$MnO_4^- \rightarrow Mn^{2+}$$
 $C_2O_4^{2-} \rightarrow CO_2$

ආවර්තිතා වගුව ஆவர்த்தன அட்டவணை Periodic Table

