"Model soups"

Или почему смешивать модели - круто.

Докладчик: Сидоренко Иван Алексеевич БПМИ2110

Стандартный пайплайн обучения

- 1. Выбор "архитектуры"
- 2. Пока !надоело Выбор гиперпараметров Обучение
- 3. Выбор лучшей модели

Очевидный минус

Слишком много работы, результаты которой не используются.

Как можно использовать несколько моделей вместе?

- 1. Детерминированная комбинация ответов.
- 2. Бэггинг.
- 3. Бустинг.
- 4. Стекинг.

Минус этих подходов - весомые затраты на "инференс" ансамбля.

Комбинация моделей без потери производительности

Виды супов

- 1. Равномерный суп (uniform soup).
- 2. Жадный суп (greedy soup).
- 3. Эрудированный суп (learned soup).

Суть равномерного супа в усреднении весов всех имеющихся моделей.

Жадный суп

Добавляем ингредиенты жадно, пока качество супа не начнёт ухудшаться.

Recipe 1 GreedySoup

```
Input: Potential soup ingredients \{\theta_1, ..., \theta_k\} (sorted in decreasing order of ValAcc(\theta_i)). ingredients \leftarrow \{\} for i=1 to k do

if ValAcc(average(ingredients \cup \{\theta_i\})) \geq

ValAcc(average(ingredients)) then ingredients \leftarrow ingredients \cup \{\theta_i\} return average(ingredients)
```

Эрудированный суп

Коэффициенты для весов ингредиентов обучаются.

$$\sum_{j=1}^n L\left(eta f\left(x_j,\sum_{i=1}^k lpha_i heta_i
ight),y_j
ight)
ightarrow \min_{lpha,eta}$$

https://paperswithcode.com/

https://paperswithcode.com/

Эксперименты

- 1. CLIP ViT-B/32
- 2. ImageNet-A, -R, -Sketch, -V2, а также ObjectNet.
- 3. Случайным образом выбирались lr, wd, количество эпох, аугментации.

Эксперименты

- ALIGN
- 2. ImageNet-A, -R, -Sketch, -V2, а также ObjectNet.
- 3. Ir и количество эпох выбирались по "сетке".
- 4. Міхир аугментация.

Эксперименты

- 1. Bert и T5.
- 2. GLUE бенчмарк.
- 3. 32 модели.
- 4. avg acc и F1 для MRPC, acc для RTE и SST-2, корреляция Метьюса для CoLA.

Model	Method	MRPC	RTE	CoLA	SST-2
BERT (Devlin et al., 2019b)	Best individual model	88.3	61.0	59.1	92.5
	Greedy soup	88.3 (+0.0)	61.7 (+ 0.7)	59.1 (+0.0)	93.0 (+ 0.5)
T5 (Raffel et al., 2020b)	Best individual model	91.8	78.3	58.8	94.6
	Greedy soup	92.4 (+ 0. 6)	79.1 (+ 0.8)	60.2 (+0.4)	94.7 (+ 0.1)

Почему супы работают?

Предельная полезность добавления ингредиента в суп

$$\varphi(\theta_1,\theta_2) = \angle(\theta_1-\theta_0,\theta_2-\theta_0)$$

Pruned soup

Убираем из равномерного супа ингредиенты по одному, пока качество не падает.

```
Input: weights of Potential soup ingredients \theta_1, ..., \theta_k
(optionally sorted in decreasing order of ValAcc(\theta_i))
Parameter: numbers of passes (N)
 1: soup = \frac{1}{k} \sum_{i=1}^{k} \theta_i
 2: baseline = ValAcc(averaged weights).
 3: for pass=1 to N do
       for i=1 to k do
          new soup \leftarrow Remove a model \theta_i from the soup.
 5:
          if ValAcc(new soup) >= baseline then
             baseline = ValAcc(new soup)
             soup \leftarrow new soup
         end if
       end for
11: end for
12: return weights of the final soup \theta_{soup}
```

Pruned soup

- 1. CIFAR-100
- 2. ViT
- 3. SGD(momentum=0.9)
- 4. Разные Ir и wd

Method	Acc. (%)	Ingredients (avg)	
Best individual model	50.3	<u>~</u>	
Uniform soup	32.22	22	
Greedy soup (random)	51.06	5.1	
Greedy soup (sorted)	51.76	5	
Pruned soup (random)	52.04	3.2	
Pruned soup (Sorted)	52.1	3	

Вредный совет

- 1. Учим ингредиенты с нуля.
- 2. Смешиваем их в суп.
- 3. Негодуем, что суп испорчен (не сильно лучше рандомного классификатора).

Method (ResNets)	Acc. (%)	Ingredients (avg)
Best individual model	65.78	-
Uniform soup	1.08	33
Greedy soup (random)	65.78	1
Greedy soup (sorted)	65.78	1
Pruned soup (random)	1.19	6.2
Pruned soup (Sorted)	1.19	6.2
Method (EfficientNets)	Acc. (%)	Ingredients (avg)
Best individual model	40.12	-
Uniform soup	0.98	36
Greedy soup (random)	40.12	1
Greedy soup (sorted)	40.12	1
Pruned soup (random)	1.12	5.1
Pruned soup (Sorted)	1.12	5.1

Заключение

- 1. Предобучение модели (инициализация).
- 2. Дообучение множества экземпляров с различными гиперпараметрами, аугментациями.
- 3. Выбор подмножества моделей для усреднения весов.

