Nhat Huy Le

April 11, 2025

1 Methodology

1.1 Data Collection and Processing

For each federated aggregation method (e.g., FedAvg, FedProx, FedDyn, SCAFFOLD, MOON, FedGen, FedNTD), we run experiments over 13 rounds. In each round we record:

- RMSE (Root Mean Squared Error)
- MAE (Mean Absolute Error)
- R^2 (Coefficient of Determination)

This data is recorded per method as:

MethodName

Version, RMSE, MAE, R2, Timestamp
... (13 rounds)

1.2 Normalization and Adjustment of Metrics

RMSE and MAE: For each method, RMSE and MAE are normalized using min–max normalization:

$$\text{NormRMSE}_i = \frac{\text{RMSE}_i - \min_j \text{RMSE}_j}{\max_j \text{RMSE}_j - \min_j \text{RMSE}_j}, \quad \text{NormMAE}_i = \frac{\text{MAE}_i - \min_j \text{MAE}_j}{\max_j \text{MAE}_j - \min_j \text{MAE}_j}.$$

 R^2 Adjustment: Since our R^2 values are negative, we first shift them so that the minimum R^2 for a method becomes zero:

$$R_{\text{shifted},i}^2 = R_i^2 - \min_j R_j^2.$$

Then we normalize the shifted values:

$$Norm R_i^2 = \frac{R_{\text{shifted},i}^2}{\max_j R_{\text{shifted},j}^2}.$$

To integrate \mathbb{R}^2 into our composite metric (since higher \mathbb{R}^2 is better, but errors should be minimized), we define:

$$R2Loss_i = 1 - NormR_i^2$$
.

1.3 Composite Metric Calculation

The composite metric is defined as a weighted sum of the normalized metrics:

$$Composite_i = w_1 \cdot NormRMSE_i + w_2 \cdot NormMAE_i + w_3 \cdot R2Loss_i,$$

where w_1 , w_2 , and w_3 are weights chosen based on the importance assigned to RMSE, MAE, and R^2 respectively (e.g., $w_1 = w_2 = w_3 = \frac{1}{3}$). This composite score is computed for each of the 13 rounds per method.