- 一、已知甲、乙两箱中装有同种产品,其中甲箱中装有4件合格品和3件次品,乙箱中 仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后, 求:
 - (1) 乙箱中的次品件数 X 的数学期望;
 - (2) 从乙箱中任取一件产品是次品的概率.
- 二、设 X_i 表示邮局收到的第i件邮件的重量(单位:克), $X_i \sim E(\frac{1}{20})$,每件邮件的重 量相互独立,某天该邮局收到100件邮件.试用中心极限定理估计这100件邮件的总重 量小于 2100 克的概率. (答案用 $\Phi(x)$ 表示)
- 三、机器自动包装某食品,设定每袋食品的净重为500(克),假设机器包装出来每袋重量 服从正态分布 $N(\mu, \sigma^2)$. 某天开工后为检查机器是否正常工作,从包装好的食品中 随机抽取9袋检查,测得净重分别为: 497, 507, 510, 475, 488, 524, 491, 515, 512. 经计算得 \overline{X} = 502.1111, S_{r-1}^2 = 239.1111.
 - (1) 在显著性水平 $\alpha = 0.05$ 下,判断包装机的工作是否正常;
 - (2) 求每袋食品平均重量 *u* 的置信水平为 95%的置信区间.
- 四、若 D 是以点 (1, 0), (-1, 0), (0, 1), (0, -1) 为顶点的矩形内部区域,二维随 机变量 (X,Y) 在区域 D 内服从均匀分布.
 - (1) 求(X,Y)的联合概率密度 p(x,y)及 X 的边际密度函数 $p_x(x)$;
 - (2) 判断 X,Y 是否独立,并说明理由;
 - (3) $\vec{x} \cos(X, Y)$ (4) $\vec{x} P\{Y > \frac{1}{3}X\}$

 - (5) 求 $P\{Y \le 0.2 \mid X = 0.5\}$ (6) 求 Z = X + Y 的概率密度函数

五、设总体 X 的概率密度为 p(x) = $\begin{cases} \theta, & 0 < x < 1, \\ 1 - \theta, & 1 \le x < 2, , \\ 0, & \text{其他.} \end{cases}$

 X_1, X_2, L, X_n 为来自总体 X 的简单随机样本.

- 1) 求参数 θ 的矩估计量,并判断这个估计是否为无偏的.
- 2) 求当样本观测值为 1/2, 1/3, 1/5, 3/2 时, 参数 θ 的极大似然估计值.

六、选择题:

1、随机变量 X,Y 独立同分布于 U(0,2) ,则 P(X ≠ Y) =

	(A) 1	$(B) \frac{1}{2}$	(C) $\frac{1}{4}$	(D) 0		
2、	设随机变量 X	$\sim N(0,1), Y \sim N$	(1,4)且相关系数 $ ho_{_{XY}}$	=-1,则	(`
	$(A) P\{Y = -2X$	$+1$ } = 1	(B) $P\{Y$	$=2X-1\big\}=1$		
	(C) $P\{Y=-2X\}$	$\{-1\}=1$	(D) $P\{Y$	$=2X+1\big\}=1$		
3、	设 X_1, X_2, X_3, X	₄ 是来自总体 <i>N</i> (μ,1)的样本,则统计量	$\frac{X_1 - X_2}{ X_3 - X_4 }$ 的分布为	()
	(A) N(0,1)	(B) t(1)	(C) $t(2)$	F(1,1)		
4、	设 X_1, X_2, \cdots, X_n	来自总体 X 的样	羊本, \bar{x} 为样本均值, S_{i}^{j}	$a_{i}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}, \mathbb{M}$	()
(4	A) $\overline{X} = EX$;		(B) $ES_n^2 = EX^2$	$-E(\overline{X})^2$;		
(0	C) $D\overline{X} = DX$;		(D) $\lim_{n\to\infty} \overline{X} = EX$.			
5、	设随机变量 X_1 ,	X_2, \cdots, X_n 独立同	司分布,方差均为σ²,<		(>
	$(A) D(X_1 + Y)$		(B) $D(X_1 -$	$Y) = \frac{n-1}{n}\sigma^2$		
	(C) $\operatorname{cov}(X_1, Y)$	$=\frac{1}{n}\sigma^2$	(D) $cov(X_1,$	$(Y) = \sigma^2$		
6、柞	艮据 18 组的观测	数据已算出某-	一元线性回归问题的	判定系数 R ² 为 0.81,总	為差平	艺方
利	『SST=100,则该 (A) 0.19		方和 SSE 为 (C) 0.225	(D) 19	()
	.空题: t人的一串钥匙」	上有 10 把钥匙,	其中只有一把钥匙的	能打开办公室的门. 他	2随意地	归用
				第三次打开门的概率		
				, <i>B</i> 与 <i>C</i> 互不相容	,若已	」知
P(A)	$=\frac{1}{2}$, $P(A-B)=\frac{1}{2}$	$\frac{1}{3}$, $P(AC \mid AB \cup C)$	$(C) = \frac{1}{4}, \text{M} P(C) = $	·		
3、□	2知随机变量 X	~ <i>U</i> (-1,1),则 <i>Y</i> :	$=e^{x}$ 的概率密度为:_	·		
4、设	δ 随机变量 X_1,X_2	, X ₃ , X ₄ 相互独立	,均服从 <i>B</i> (5,0.4),1	$Y = \frac{1}{4} \sum_{i=1}^{4} X_i$, $\iiint DY =$.•

5、设随机变量 X 的概率密度为 $p_X(x) = \begin{cases} \frac{3}{2}x^2, & x \in (-1,1) \\ 0, & 其他 \end{cases}$, 令 Y = -X,二维随机变量

(X,Y)的联合分布函数为F(x,y),则 $F\left(\frac{1}{2},-\frac{1}{4}\right)=$ ______.

- 6、设随机变量 X 与 Y 相互独立,且均服从 N(1,4) ,则 $P\{\max(X,Y) \ge 1\} = ____.$
- 7、已知随机变量 $X \sim N(1,1), Y \sim E(1), Z \sim P(4),$ 且 Cov(X,Y) = 0.5,试用切比雪夫不等式估计 $P\{|X-Y| \geq E(Z)\} \leq$ ______.