Index Tracking in Finance via MM

Prof. Daniel P. Palomar and Konstantinos Benidis
The Hong Kong University of Science and Technology (HKUST)

ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong

Outline

- Introduction
- Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- Mumerical Experiments
- Conclusions

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Investment Strategies

Fund managers follow two basic investment strategies:

Active

- Assumption: markets are not perfectly efficient.
- Through expertise add value by choosing high performing assets.

Passive

- Assumption: market cannot be beaten in the long run.
- Conform to a defined set of criteria (e.g. achieve same return as an index).

Passive Investment

The stock markets have historically risen, e.g. S&P 500:

- Partly misleading: e.g. inflation.
- Still, reasonable returns can be obtained without the active management's risk.
- Makes passive investment more attractive.

Index Tracking

- Index tracking is a popular passive portfolio management strategy.
- **Goal**: construct a portfolio that replicates the performance of a financial index.

Index Tracking

- Index tracking or benchmark replication is a strategy investment aimed at mimicking the risk/return profile of a financial instrument.
- For practical reasons, the strategy focuses on a reduced basket of representative assets.
- The problem is also regarded as portfolio compression and it is intimately related to compressed sensing and ℓ_1 -norm minimization techniques. 1,2
- One example is the replication of an index, e.g., Hang Seng Index, based on a reduced basket of assets.

D. Palomar (HKUST) Index Tracking 7/83

¹K. Benidis, Y. Feng, and D. P. Palomar, "Sparse portfolios for high-dimensional financial index tracking," *IEEE Trans. Signal Process.*, vol. 66, no. 1, pp. 155–170, 2018.

²K. Benidis, Y. Feng, and D. P. Palomar, *Optimization Methods for Financial Index Tracking: From Theory to Practice*. Foundations and Trends in Optimization, Now Publishers, 2018.

Definitions

- Price and return of an asset or an index: p_t and $r_t = \frac{p_t p_{t-1}}{p_{t-1}}$ Returns of an index in T days: $\mathbf{r}^b = [r_1^b, \dots, r_T^b]^{\top} \in \mathbb{R}^T$
- Returns of N assets in T days: $\mathbf{X} = [\mathbf{r}_1, \dots, \mathbf{r}_T]^{\top} \in \mathbb{R}^{T \times N}$ with $\mathbf{r}_t \in \mathbb{R}^N$
- \bullet Assume that an index is composed by a weighted collection of Nassets with normalized index weights **b** satisfying
 - b > 0
 - $b^{T}1 = 1$
 - $Xb = r^b$
- We want to design a (sparse) tracking portfolio w satisfying
 - w > 0
 - $\mathbf{w}^{\top} \mathbf{1} = 1$
 - Xw $\approx r^b$

Full Replication

- How should we select w?
- Straightforward solution: full replication $\mathbf{w} = \mathbf{b}$
 - Buy appropriate quantities of all the assets
 - Perfect tracking
- But it has drawbacks:
 - We may be trying to hedge some given portfolio with just a few names (to simplify the operations)
 - We may want to deal properly with illiquid assets in the universe
 - We may want to control the transaction costs for small portfolios (AUM)

Full Replication

- How should we select w?
- Straightforward solution: full replication $\mathbf{w} = \mathbf{b}$
 - Buy appropriate quantities of all the assets
 - Perfect tracking
- But it has drawbacks:
 - We may be trying to hedge some given portfolio with just a few names (to simplify the operations)
 - We may want to deal properly with illiquid assets in the universe
 - We may want to control the transaction costs for small portfolios (AUM)

Full Replication

- How should we select w?
- Straightforward solution: full replication $\mathbf{w} = \mathbf{b}$
 - Buy appropriate quantities of all the assets
 - Perfect tracking
- But it has drawbacks:
 - We may be trying to hedge some given portfolio with just a few names (to simplify the operations)
 - We may want to deal properly with illiquid assets in the universe
 - We may want to control the transaction costs for small portfolios (AUM)

Sparse Index Tracking

- How can we overcome these drawbacks?
 - \Longrightarrow Sparse index tracking.
- Use a small number of assets: $card(\mathbf{w}) < N$
 - can allow hedging with just a few names
 - can avoid illiquid assets
 - can reduce transaction costs for small portfolios
- Challenges:
 - Which assets should we select?
 - What should their relative weight be?

Sparse Index Tracking

- How can we overcome these drawbacks?
 - \implies Sparse index tracking.
- Use a small number of assets: $card(\mathbf{w}) < N$
 - can allow hedging with just a few names
 - can avoid illiquid assets
 - can reduce transaction costs for small portfolios
- Challenges:
 - Which assets should we select?
 - What should their relative weight be?

Sparse Index Tracking

- How can we overcome these drawbacks?
 - \Longrightarrow Sparse index tracking.
- Use a small number of assets: $card(\mathbf{w}) < N$
 - can allow hedging with just a few names
 - can avoid illiquid assets
 - can reduce transaction costs for small portfolios
- Challenges:
 - Which assets should we select?
 - What should their relative weight be?

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Outline

- Introduction
- Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Sparse Regression

• Sparse regression:

$$\underset{\mathbf{w}}{\operatorname{minimize}} \quad \left\| \mathbf{r} - \mathbf{X} \mathbf{w} \right\|_2 + \lambda \left\| \mathbf{w} \right\|_0$$

tries to fit the observations by minimizing the error with a sparse solution:

Tracking error

- Recall that $\mathbf{b} \in \mathbb{R}^N$ represents the actual benchmark weight vector and $\mathbf{w} \in \mathbb{R}^N$ denotes the replicating portfolio.
- Investment managers seek to minimize the following tracking error (TE) performance measure:

$$TE(\mathbf{w}) = (\mathbf{w} - \mathbf{b})^T \mathbf{\Sigma} (\mathbf{w} - \mathbf{b})$$

where Σ is the covariance matrix of the index returns.

- In practice, however, the benchmark weight vector **b** may be unknown and the error measure is defined in terms of market observations.
- A common tracking measure is the empirical tracking error (ETE):

$$\mathsf{ETE}(\mathbf{w}) = \frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2$$

Formulation for Sparse Index Tracking

Problem formulation for sparse index tracking:³

minimize
$$\frac{1}{7} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \| \mathbf{w} \|_0$$

subject to $\mathbf{w} \in \mathcal{W}$ (1)

- $\|\mathbf{w}\|_0$ is the ℓ_0 -"norm" and denotes card (\mathbf{w})
- W is a set of convex constraints (e.g., $W = \{ \mathbf{w} | \mathbf{w} \geq \mathbf{0}, \mathbf{w}^{\top} \mathbf{1} = 1 \}$)
- we will treat any nonconvex constraint separately
- Problem (1) is too difficult to deal with directly:
 - Discontinuous, non-differentiable, non-convex objective function.

D. Palomar (HKUST) Index Tracking 15 / 83

³D. Maringer and O. Oyewumi, "Index tracking with constrained portfolios," *Intelligent Systems in Accounting, Finance and Management*, vol. 15, no. 1-2, pp. 57–71, 2007.

Existing Methods

- Two step approach:
 - stock selection:
 - largest market capital
 - most correlated to the index
 - a combination cointegrated well with the index
 - 2 capital allocation:
 - naive allocation: proportional to the original weights
 - optimized allocation: usually a convex problem
- Mixed Integer Programming (MIP)
 - practical only for small dimensions, e.g. $\binom{100}{20} > 10^{20}$.
- Genetic algorithms
 - solve the MIP problems in reasonable time
 - worse performance, cannot prove optimality.

Existing Methods

• Two-step approach is much worse than joint optimization:

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Interlude: Majorization-Minimization (MM)

• Consider the following presumably difficult optimization problem:

minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{X}$,

with \mathcal{X} being the feasible set and $f(\mathbf{x})$ being continuous.

• Idea: successively minimize a more managable surrogate function $u(\mathbf{x}, \mathbf{x}^{(k)})$:

$$\mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathcal{X}} u\left(\mathbf{x}, \mathbf{x}^{(k)}\right),$$

hoping the sequence of minimizers $\left\{\mathbf{x}^{(k)}\right\}$ will converge to optimal \mathbf{x}^{\star} .

- Question: how to construct $u(\mathbf{x}, \mathbf{x}^{(k)})$?
- Answer: that's more like an art.⁴

⁴Y. Sun, P. Babu, and D. P. Palomar, "Majorization-minimization algorithms in signal processing, communications, and machine learning," *IEEE Trans. Signal Process.*, vol. 65, no. 3, pp. 794–816, 2017.

Interlude on MM: Surrogate/Majorizer

Construction rule:

$$\begin{array}{ll} u(\mathbf{y},\mathbf{y}) & = f(\mathbf{y})\,, \ \forall \mathbf{y} \in \mathcal{X} \\ u(\mathbf{x},\mathbf{y}) & \geq f(\mathbf{x})\,, \ \forall \mathbf{x},\mathbf{y} \in \mathcal{X} \\ u'(\mathbf{x},\mathbf{y};\mathbf{d})|_{\mathbf{x}=\mathbf{y}} & = f'(\mathbf{y};\mathbf{d})\,, \ \forall \mathbf{d} \ \text{with} \ \mathbf{y} + \mathbf{d} \in \mathcal{X} \\ u(\mathbf{x},\mathbf{y}) & \text{is continuous in } \mathbf{x} \ \text{and} \ \mathbf{y} \end{array}$$

Interlude on MM: Algorithm

Algorithm MM:

Find a feasible point $\mathbf{x}^0 \in \mathcal{X}$ and set k = 0.

$$\mathbf{x}^{(k+1)} = \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{X}} u\left(\mathbf{x}, \mathbf{x}^{(k)}\right)$$

 $k \leftarrow k + 1$

until some convergence criterion is met

Interlude on MM: Convergence

- Under some technical assumptions, every limit point of the sequence $\{\mathbf{x}^k\}$ is a stationary point of the original problem.
- If further assume that the level set $\mathcal{X}^0 = \{\mathbf{x} | f(\mathbf{x}) \leq f(\mathbf{x}^0)\}$ is compact, then

$$\lim_{k\to\infty}d\left(\mathbf{x}^{(k)},\mathcal{X}^{\star}\right)=0,$$

where \mathcal{X}^{\star} is the set of stationary points.

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- 3 Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Sparse Index Tracking via MM

• Approximation of the ℓ_0 -norm (indicator function):

$$\rho_{p,\gamma}(w) = \frac{\log(1+|w|/p)}{\log(1+\gamma/p)}.$$

- Good approximation in the interval $[-\gamma, \gamma]$.
- Concave for $w \ge 0$.
- So-called folded-concave for $w \in \mathbb{R}$.
- For our problem we set $\gamma = u$, where $u \le 1$ is an upperbound of the weights (we can always choose u = 1).

Approximate Formulation

• Continuous and differentiable approximate formulation:

minimize
$$\frac{1}{7} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{1}^\top \boldsymbol{\rho}_{p,u}(\mathbf{w})$$
subject to $\mathbf{w} \in \mathcal{W}$ (2)

- $\rho_{p,u}(\mathbf{w}) = [\rho_{p,u}(w_1), \dots, \rho_{p,u}(w_N)]^{\top}.$
- Problem (2) is still non-convex: $ho_{p,u}(\mathbf{w})$ is concave for $\mathbf{w} \geq \mathbf{0}$.
- We will use MM to deal with the non-convex part.

Majorization of $ho_{p,\gamma}$

Lemma 1

The function $\rho_{p,\gamma}(w)$, with $w \ge 0$, is upperbounded at $w^{(k)}$ by the surrogate function

$$h_{p,\gamma}(w,w^{(k)}) = d_{p,\gamma}(w^{(k)})w + c_{p,\gamma}(w^{(k)}),$$

where

$$d_{p,\gamma}(w^{(k)}) = \frac{1}{\log(1+\gamma/p)(p+w^{(k)})},$$

$$c_{p,\gamma}(w^{(k)}) = \frac{\log(1 + w^{(k)}/p)}{\log(1 + \gamma/p)} - \frac{w^{(k)}}{\log(1 + \gamma/p)(p + w^{(k)})}$$

are constants.

Frame Proof of Lemma 1

- The function $\rho_{p,\gamma}(w)$ is concave for $w \ge 0$.
- An upper bound is its first-order Taylor approximation at any point $w_0 \in \mathbb{R}_+$.

$$\rho_{p,\gamma}(w) = \frac{\log(1 + w/p)}{\log(1 + \gamma/p)} \\
\leq \frac{1}{\log(1 + \gamma/p)} \left[\log(1 + w_0/p) + \frac{1}{p + w_0} (w - w_0) \right] \\
= \frac{1}{\frac{\log(1 + \gamma/p)(p + w_0)}{\log(1 + \gamma/p)}} w \\
+ \underbrace{\frac{\log(1 + w_0/p)}{\log(1 + \gamma/p)} - \frac{w_0}{\log(1 + \gamma/p)(p + w_0)}}_{b_{p,\gamma}}$$

Majorization of $ho_{p,\gamma}$

Iterative Formulation via MM

• Now in every iteration we need to solve the following problem:

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{d}_{p,u}^{(k)} \mathbf{w}$$
 subject to $\mathbf{w} \in \mathcal{W}$ (3)

- $\mathbf{d}_{p,u}^{(k)} = \left[d_{p,u}(w_1^{(k)}), \dots, d_{p,u}(w_N^{(k)})\right]^{\top}.$
- Problem (3) is convex (QP).
- Requires a solver in each iteration.

Algorithm LAIT

Algorithm 1: Linear Approximation for the Index Tracking problem (LAIT)

```
Set k = 0, choose \mathbf{w}^{(0)} \in \mathcal{W} repeat
```

Compute $\mathbf{d}_{p,u}^{(k)}$

Solve (3) with a solver and set the optimal solution as $\mathbf{w}^{(k+1)}$

$$k \leftarrow k + 1$$

until convergence

return $\mathbf{w}^{(k)}$

The Big Picture

Should we stop here?

- Advantages:
 - √ The problem is convex.
 - ✓ Can be solved efficiently by an off-the-shelf solver.
- Disadvantages:
 - × Needs to be solved many times (one for each iteration).
 - × Calling a solver many times increases significantly the running time.
- Can we do something better?
 - \checkmark For specific constraint sets we can derive closed-form update algorithms!

Let's rewrite the objective function

• Expand the objective:

$$\frac{1}{T} \|\mathbf{X}\mathbf{w} - \mathbf{r}^b\|_2^2 + \lambda \mathbf{d}_{p,u}^{(k)}^{\top} \mathbf{w} = \frac{1}{T} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} + \left(\lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^{\top} \mathbf{r}^b\right)^{\top} \mathbf{w} + const.$$

• Further upper-bound it:

Lemma 2

Let L and M be real symmetric matrices such that $M \succeq L$. Then, for any point $\mathbf{w}^{(k)} \in \mathbb{R}^N$ the following inequality holds:

$$\mathbf{w}^{\mathsf{T}}\mathbf{L}\mathbf{w} \leq \mathbf{w}^{\mathsf{T}}\mathbf{M}\mathbf{w} + 2\mathbf{w}^{(k)\mathsf{T}}(\mathbf{L} - \mathbf{M})\mathbf{w} - \mathbf{w}^{(k)\mathsf{T}}(\mathbf{L} - \mathbf{M})\mathbf{w}^{(k)}.$$

Equality is achieved when $\mathbf{w} = \mathbf{w}^{(k)}$.

33 / 83

Let's majorize the objective function

- Based on Lemma 2:
 - Majorize the quadratic term $\frac{1}{T}\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w}$.
 - In our case $\mathbf{L}_1 = \frac{1}{T} \mathbf{X}^{\top} \mathbf{X}$.
 - We set $\mathbf{M}_1 = \lambda_{\mathsf{max}}^{(\mathbf{L}_1)} \mathbf{I}$ so that $\mathbf{M}_1 \succeq \mathbf{L}_1 \mathit{holds}$.
- The objective becomes:

$$\begin{split} \mathbf{w}^{\top} \mathbf{L}_{1} \mathbf{w} &+ \left(\lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^{\top} \mathbf{r}^{b} \right)^{\top} \mathbf{w} \\ &\leq \mathbf{w}^{\top} \mathbf{M}_{1} \mathbf{w} + 2 \mathbf{w}^{(k)^{\top}} (\mathbf{L}_{1} - \mathbf{M}_{1}) \, \mathbf{w} - \mathbf{w}^{(k)^{\top}} (\mathbf{L}_{1} - \mathbf{M}_{1}) \, \mathbf{w}^{(k)} \\ &+ \left(\lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^{\top} \mathbf{r}^{b} \right)^{\top} \mathbf{w} \\ &= \lambda_{\text{max}}^{(\mathbf{L}_{1})} \mathbf{w}^{\top} \mathbf{w} + \left(2 \left(\mathbf{L}_{1} - \lambda_{\text{max}}^{(\mathbf{L}_{1})} \mathbf{I} \right) \mathbf{w}^{(k)} + \lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^{\top} \mathbf{r}^{b} \right)^{\top} \mathbf{w} + const. \end{split}$$

Specialized Iterative Formulation

The new optimization problem at the (k+1)-th iteration becomes:

minimize
$$\mathbf{w}^{\top}\mathbf{w} + \mathbf{q}_{1}^{(k)^{\top}}\mathbf{w}$$
subject to $\mathbf{w}^{\top}\mathbf{1} = 1,$
 $\mathbf{0} \le \mathbf{w} \le \mathbf{1},$
 \mathbf{W}

$$(4)$$

where

$$\mathbf{q}_1^{(k)} = \frac{1}{\lambda_{\mathsf{max}}^{(\mathbf{L}_1)}} \left(2 \left(\mathbf{L}_1 - \lambda_{\mathsf{max}}^{(\mathbf{L}_1)} \mathbf{I} \right) \mathbf{w}^{(k)} + \lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^\top \mathbf{r}^b \right).$$

• Problem (4) can be solved with a closed-form update algorithm.

Solution

Proposition 1

The optimal solution of the optimization problem (4) with u = 1 is:

$$w_i^{\star} = \begin{cases} -\frac{\mu + q_i}{2}, & i \in \mathcal{A}, \\ 0, & i \notin \mathcal{A}, \end{cases}$$

with

$$\mu = -\frac{\sum_{i \in A} q_i + 2}{\operatorname{card}(A)},$$

and

$$\mathcal{A}=\{i|\mu+q_i<0\},$$

where A can be determined in $O(\log(N))$ steps.

Algorithm SLAIT

Algorithm 2: Specialized Linear Approximation for the Index Tracking problem (SLAIT)

```
Set k=0, choose \mathbf{w}^{(0)} \in \mathcal{W} repeat  \text{Compute } \mathbf{q}_1^{(k)}  Solve (4) with Proposition 1 and set the optimal solution as \mathbf{w}^{(k+1)} k \leftarrow k+1  \text{until convergence}
```

return w^(k)

The Big Picture

The Big Picture

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3 Holding Constraints and Extensions**
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3 Holding Constraints and Extensions**
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- Mumerical Experiments
- Conclusions

Holding Constraints

- In practice, the constraints that are usually considered in the index tracking problem can be written in a convex form.
- Exception: holding constraints to avoid extreme positions or brokerage fees for very small orders

$$I\odot\mathcal{I}_{\{w>0\}}\leq w\leq u\odot\mathcal{I}_{\{w>0\}}$$

- Active constraints only for the selected assets $(w_i > 0)$.
- $\bullet \ \, \text{Upper bound is easy:} \ \, \textbf{w} \leq \textbf{u} \odot \mathcal{I}_{\{\textbf{w}>\textbf{0}\}} \Longleftrightarrow \textbf{w} \leq \textbf{u} \ \, \text{(convex and can}$ be included in \mathcal{W}).
- Lower bound is nasty.

Problem Formulation

The problem formulation with holding constraints becomes (after the ℓ_0 -"norm" approximation):

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{1}^\top \boldsymbol{\rho}_{p,u}(\mathbf{w})$$
 subject to
$$\mathbf{w} \in \mathcal{W}, \qquad \qquad \mathbf{I} \odot \mathcal{I}_{\{\mathbf{w} > \mathbf{0}\}} \leq \mathbf{w}.$$
 (5)

• How should we deal with the non-convex constraint?

Penalization of Violations

- Hard constraint ⇒ Soft constraint.
- Penalize violations in the objective.
- A suitable penalty function for a general entry w is (since the constraints are separable):

$$f_I(w) = \left(\mathcal{I}_{\{0 < w < I\}} \cdot I - w\right)^+.$$

• Approximate the indicator function with $\rho_{p,\gamma}(w)$. Since we are interested in the interval [0, I] we select $\gamma = I$:

$$\tilde{f}_{p,l}(w) = (\rho_{p,l}(w) \cdot l - w)^{+}.$$

Penalization of Violations

• Penalty functions $f_l(w)$ and $\tilde{f}_{p,l}(w)$ for $l=0.01, p=10^{-4}$:

Problem Formulation with Penalty

The penalized optimization problem becomes:

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{1}^\top \boldsymbol{\rho}_{p,u}(\mathbf{w}) + \boldsymbol{\nu}^\top \tilde{\mathbf{f}}_{p,l}(\mathbf{w})$$
 subject to $\mathbf{w} \in \mathcal{W}$ (6)

- ullet u is a parameter vector that controls the penalization.
- $\tilde{\mathbf{f}}_{p,l}(\mathbf{w}) = [\tilde{f}_{p,l}(w_1), \dots, \tilde{f}_{p,l}(w_N)]^{\top}.$
- Problem (6) is not convex:
 - $ho_{p,u}(w)$ is concave \Longrightarrow Linear upperbound with Lemma 1.
 - $\tilde{f}_{p,l}(w)$ is neither convex nor concave. \bigotimes

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3** Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Majorization of $\tilde{f}_{p,l}(w)$

Lemma 3

The function $\tilde{f}_{p,l}(w) = (\rho_{p,l}(w) \cdot l - w)^+$ is majorized at $w^{(k)} \in [0, u]$ by the convex function

$$h_{p,l}(w,w^{(k)}) = \left(\left(d_{p,l}(w^{(k)}) \cdot l - 1\right)w + c_{p,l}(w^{(k)}) \cdot l\right)^+,$$

where $d_{p,l}(w^{(k)})$ and $c_{p,l}(w^{(k)})$ are given in Lemma 1.

Proof:
$$\rho_{p,l}(w) \le d_{p,l}(w^{(k)})w + c_{p,l}(w^{(k)})$$
 for $w \ge 0$ [Lemma 1].

$$\begin{split} \tilde{f}_{p,l}(w) &= \max \left(\rho_{p,l}(w) \cdot l - w, 0 \right) \\ &\leq \max \left(\left(d_{p,l}(w^{(k)}) w + c_{p,l}(w^{(k)}) \right) \cdot l - w, 0 \right) \\ &= \max \left(\left(d_{p,l}(w^{(k)}) \cdot l - 1 \right) w + c_{p,l}(w^{(k)}) \cdot l, 0 \right). \end{split}$$

 $h_{p,l}(w,w^{(k)})$ is convex as the maximum of two convex functions.

Majorization of $\tilde{f}_{p,l}(w)$

• Observe $\tilde{f}_{p,l}(w)$ and its piecewise linear majorizer $h_{p,l}(w, w^{(k)})$:

Convex Formulation of the Majorization

Recall our problem:

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{1}^\top \boldsymbol{\rho}_{p,u}(\mathbf{w}) + \boldsymbol{\nu}^\top \tilde{\mathbf{f}}_{p,l}(\mathbf{w})$$
subject to $\mathbf{w} \in \mathcal{W}$.

- From Lemma 1: $\rho_{p,u}(\mathbf{w}) \leq \mathbf{d}_{p,u}^{(k)^{\top}} \mathbf{w} + const.$
- From Lemma 3:

$$\begin{split} \tilde{\mathbf{f}}_{p,l}\!(\mathbf{w}) \! = \! \left(\boldsymbol{\rho}_{p,l}\!(\mathbf{w}) \cdot \mathbf{I} - \mathbf{w}\right)^+ \! &\leq \! \left(\mathsf{Diag}\left(\mathbf{d}_{p,l}^{(k)} \odot \mathbf{I} \! - \! \mathbf{1}\right) \mathbf{w} + \mathbf{c}_{p,l}^{(k)} \odot \mathbf{I}\right)^{\!+} \\ &= \mathbf{h}_{p,l}\!(\mathbf{w},\mathbf{w}^{(k)}) \end{split}$$

• The majorized problem at the (k+1)-th iteration becomes:

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{d}_{p,u}^{(k)}^{\top} \mathbf{w} + \boldsymbol{\nu}^{\top} \mathbf{h}_{p,l}(\mathbf{w}, \mathbf{w}^{(k)})$$
 subject to $\mathbf{w} \in \mathcal{W}$ (7)

• Problem (7) is convex.

Algorithm LAITH

Algorithm 3: Linear Approximation for the Index Tracking problem with Holding constraints (LAITH)

```
Set k=0, choose \mathbf{w}^{(0)} \in \mathcal{W} repeat

Compute \mathbf{d}_{p,l}^{(k)}, \mathbf{d}_{p,u}^{(k)}

Compute \mathbf{c}_{p,l}^{(k)}

Solve (7) with a solver and set the optimal solution as \mathbf{w}^{(k+1)}

k \leftarrow k+1

until convergence
return \mathbf{w}^{(k)}
```

The Big Picture

$$\begin{aligned} & \min_{\mathbf{w}} \quad \frac{1}{T} \left\| \mathbf{X} \mathbf{w} - \mathbf{r}^b \right\|_2^2 + \lambda \| \mathbf{w} \|_0 \\ & \text{s.t.} \quad \mathbf{w} \in \mathcal{W}, \\ & \mathbf{I} \odot \mathcal{I}_{\{\mathbf{w} > \mathbf{0}\}} \leq \mathbf{w}. \end{aligned}$$

$$\begin{matrix} & \\ & \\ & \\ \\ &$$

Should we stop here?

 \checkmark Again, for specific constraint sets we can derive closed-form update algorithms!

Smooth Approximation of the $(\cdot)^+$ Operator

- To get a closed-form update algorithm we need to majorize again the objective.
- Let us begin with the majorization of the third term, i.e.,

$$\mathbf{h}_{\rho,\mathit{I}}(\mathbf{w},\mathbf{w}^{(k)}) = \left(\mathsf{Diag}\left(\mathbf{d}_{\rho,\mathit{I}}^{(k)}\odot\mathbf{I} - \mathbf{1}\right)\mathbf{w} + \mathbf{c}_{\rho,\mathit{I}}^{(k)}\odot\mathbf{I}\right)^{+}.$$

- ✓ Separable: focus only in the univariate case, i.e., $h_{p,l}(w, w^{(k)})$.
- × Not smooth: cannot define majorization function at the non-differentiable point.

Smooth Approximation of the $(\cdot)^+$ Operator

• Use a smooth approximation of the $(\cdot)^+$ operator:

$$(x)^+ pprox rac{x + \sqrt{x^2 + \epsilon^2}}{2},$$

where $0 < \epsilon \ll 1$ controls the approximation.

• Apply this to $h_{p,l}(w, w^{(k)}) = \left(\left(d_{p,l}(w^{(k)}) \cdot l - 1 \right) w + c_{p,l}(w^{(k)}) \cdot l \right)^+$:

$$\tilde{h}_{p,\epsilon,l}(w,w^{(k)}) = \frac{\alpha^{(k)}w + \beta^{(k)} + \sqrt{(\alpha^{(k)}w + \beta^{(k)})^2 + \epsilon^2}}{2},$$

where $\alpha^{(k)} = d_{p,l}(w^{(k)}) \cdot l - 1$, and $\beta^{(k)} = c_{p,l}(w^{(k)}) \cdot l$.

Smooth Majorization of $\tilde{f}_{p,l}(w)$

• Penalty function $\tilde{f}_{p,l}(w)$, its piecewise linear majorizer $h_{p,l}(w,w^{(k)})$, and its smooth approximation $\tilde{h}_{p,\epsilon,l}(w,w^{(k)})$:

Quadratic Majorization of $\tilde{h}_{p,\epsilon,l}(w,w^{(k)})$

Lemma 4

The function $\tilde{h}_{p,\epsilon,l}(w,w^{(k)})$ is majorized at $w^{(k)}$ by the quadratic convex function

$$q_{p,\epsilon,l}(w,w^{(k)}) = a_{p,\epsilon,l}(w^{(k)})w^2 + b_{p,\epsilon,l}(w^{(k)})w + c_{p,\epsilon,l}(w^{(k)}),$$

where
$$a_{p,\epsilon,l}(w^{(k)}) = \frac{(\alpha^{(k)})^2}{2\kappa}$$
, $b_{p,\epsilon,l}(w^{(k)}) = \frac{\alpha^{(k)}\beta^{(k)}}{\kappa} + \frac{\alpha^{(k)}}{2}$, and $c_{p,\epsilon,l}(w^{(k)}) = \frac{(\alpha^{(k)}w^{(k)})(\alpha^{(k)}w^{(k)}+2\beta^{(k)})+2(\beta^{(k)^2}+\epsilon^2)}{2\kappa} + \frac{\beta^{(k)}}{2}$ is an optimization irrelevant constant, with $\kappa = 2\sqrt{(\alpha^{(k)}w^{(k)}+\beta^{(k)})^2+\epsilon^2}$.

Proof: Majorize the square root term of $\tilde{h}_{p,\epsilon,l}(w,w^{(k)})$ (concave) with its first-order Taylor approximation.

D. Palomar (HKUST) Index Tracking 56 / 83

Quadratic Majorization of $\tilde{f}_{p,l}(w)$

• Penalty function $\tilde{f}_{p,l}(w)$, its piecewise linear majorizer $h_{p,l}(w,w^{(k)})$, its smooth majorizer $\tilde{h}_{p,\epsilon,l}(w,w^{(k)})$, and its quadratic majorizer $q_{p,\epsilon,l}(w,w^{(k)})$:

Quadratic Formulation of the Majorization

• Recall our problem:

minimize
$$\frac{1}{T} \| \mathbf{X} \mathbf{w} - \mathbf{r}^b \|_2^2 + \lambda \mathbf{d}_{\rho,u}^{(k)} \mathbf{w} + \boldsymbol{\nu}^\top \tilde{\mathbf{h}}_{\rho,\epsilon,l}(\mathbf{w}, \mathbf{w}^{(k)})$$
 subject to $\mathbf{w} \in \mathcal{W}$.

• From Lemma 4:

$$\tilde{\mathbf{h}}_{p,\epsilon,l}\!\!\left(\mathbf{w},\mathbf{w}^{(k)}\right)\!\leq\!\mathbf{w}^{\top}\mathsf{Diag}\left(\mathbf{a}_{p,\epsilon,l}^{(k)}\odot\boldsymbol{\nu}\right)\mathbf{w}+\mathbf{b}_{p,\epsilon,l}^{(k)}\odot\boldsymbol{\nu}^{\top}\mathbf{w}+const.$$

• The majorized problem at the (k+1)-th iteration becomes:

minimize
$$\mathbf{w}^{\top} \left(\frac{1}{T} \mathbf{X}^{\top} \mathbf{X} + \operatorname{Diag} \left(\mathbf{a}_{p,\epsilon,l}^{(k)} \odot \boldsymbol{\nu} \right) \right) \mathbf{w} + \left(\lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^{\top} \mathbf{r}^{b} + \mathbf{b}_{p,\epsilon,l}^{(k)} \odot \boldsymbol{\nu} \right)^{\top} \mathbf{w}$$
 (8) subject to $\mathbf{w} \in \mathcal{W}$

Quadratic Formulation of the Majorization

- Problem (8) is a QP that can be solved with a solver, but we can do better.
- Use Lemma 2 to majorize the quadratic part:

$$\bullet \ \mathbf{L}_2 = \tfrac{1}{T} \mathbf{X}^{\top} \mathbf{X} + \mathsf{Diag} \left(\mathbf{a}_{p,\epsilon,l}^{(k)} \odot \boldsymbol{\nu} \right)$$

- $\mathbf{M}_2 = \lambda_{\mathsf{max}}^{(\mathbf{L}_2)} \mathbf{I}$.
- And the final optimization problem at the (k + 1)-th iteration becomes:

minimize
$$\mathbf{w}^{\top}\mathbf{w} + \mathbf{q}_{2}^{(k)^{\top}}\mathbf{w}$$
 subject to $\mathbf{w} \in \mathcal{W}$, (9)

59 / 83

where

$$\mathbf{q}_2^{(k)} = \frac{1}{\lambda_{\max}^{(\mathbf{L}_2)}} \left(2 \left(\mathbf{L}_2 - \lambda_{\max}^{(\mathbf{L}_2)} \mathbf{I} \right) \mathbf{w}^{(k)} + \lambda \mathbf{d}_{p,u}^{(k)} - \frac{2}{T} \mathbf{X}^\top \mathbf{r}^b + \mathbf{b}_{p,\epsilon,l}^{(k)} \odot \boldsymbol{\nu} \right).$$

• Problem (9) can be solved in closed form!

Algorithm SLAITH

Algorithm 4: Specialized Linear Approximation for the Index Tracking problem with Holding constraints (SLAITH)

```
Set k=0, choose \mathbf{w}^{(0)}\in\mathcal{W} repeat  \text{Compute } \mathbf{q}_2^{(k)}  Solve (9) with Proposition 1 and set the optimal solution as \mathbf{w}^{(k+1)} k\leftarrow k+1
```

until convergence return w^(k)

The Big Picture

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3 Holding Constraints and Extensions**
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- 4 Numerical Experiments
- Conclusions

Extension to Other Tracking Error Measures

In all the previous formulations we used the empirical tracking error (ETE):

$$\mathsf{ETE}(\mathbf{w}) = \frac{1}{T} \| \mathbf{r}^b - \mathbf{X} \mathbf{w} \|_2^2.$$

However, we can use other tracking error measures such as:⁵

Downside risk:

$$\mathsf{DR}(\mathbf{w}) = rac{1}{T} \| (\mathbf{r}^b - \mathbf{X} \mathbf{w})^+ \|_2^2,$$

where $(x)^{+} = \max(0, x)$.

- Value-at-Risk (VaR) relative to an index.
- Conditional VaR (CVaR) relative to an index.

⁵K. Benidis, Y. Feng, and D. P. Palomar, *Optimization Methods for Financial Index Tracking: From Theory to Practice*. Foundations and Trends in Optimization, Now Publishers. 2018.

Extension to Downside Risk

- DR(w) is convex: can be used directly without any manipulation.
- Interestingly, specialized algorithms can be derived for DR too by properly majorizing it.

Lemma 5

The function $DR(\mathbf{w}) = \frac{1}{T} \| (\mathbf{r}^b - \mathbf{X} \mathbf{w})^+ \|_2^2$ is majorized at $\mathbf{w}^{(k)}$ by the quadratic convex function $\frac{1}{T} \| \mathbf{r}^b - \mathbf{X} \mathbf{w} - \mathbf{y}^{(k)} \|_2^2$, where

$$\mathbf{y}^{(k)} = -\left(\mathbf{X}\mathbf{w}^{(k)} - \mathbf{r}^b\right)^+$$
.

Proof of Lemma 5 (1/4)

For convenience set $\mathbf{z} = \mathbf{r}^b - \mathbf{X}\mathbf{w}$. Then:

$$\mathsf{DR}(\mathbf{w}) = \frac{1}{T} \big\| (\mathbf{z})^+ \big\|_2^2 = \frac{1}{T} \sum_{i=1}^T \tilde{\mathbf{z}}_i^2,$$

where

$$\tilde{z}_i = \begin{cases} z_i, & \text{if } z_i > 0, \\ 0, & \text{if } z_i \leq 0. \end{cases}$$

- Majorize each \tilde{z}_i^2 . Two cases:
 - For a point $z_i^{(k)} > 0$, $f_1(z_i|z_i^{(k)}) = z_i^2$ is an upper bound of \tilde{z}_i^2 , with $f_1(z_i^{(k)}|z_i^{(k)}) = \left(z_i^{(k)}\right)^2 = \left(\tilde{z}_i^{(k)}\right)^2$.
 - For a point $z_i^{(k)} \le 0$, $f_2(z_i|z_i^{(k)}) = (z_i z_i^{(k)})^2$ is an upper bound of \tilde{z}_i^2 , with $f_2(z_i^{(k)}|z_i^{(k)}) = (z_i^{(k)} z_i^{(k)})^2 = 0 = (\tilde{z}_i^{(k)})^2$.

Proof of Lemma 5 (2/4)

For both cases the proofs are straightforward and they are easily shown pictorially:

Proof of Lemma 5 (3/4)

Combining the two cases:

$$\begin{split} \widetilde{z}_{i}^{2} &\leq \begin{cases} f_{1}(z_{i}|z_{i}^{(k)}), & \text{if } z_{i}^{(k)} > 0, \\ f_{2}(z_{i}|z_{i}^{(k)}), & \text{if } z_{i}^{(k)} \leq 0, \end{cases} \\ &= \begin{cases} (z_{i} - 0)^{2}, & \text{if } z_{i}^{(k)} > 0, \\ (z_{i} - z_{i}^{(k)})^{2}, & \text{if } z_{i}^{(k)} \leq 0, \end{cases} \\ &= (z_{i} - y_{i}^{(k)})^{2}, \end{split}$$

where

$$y_i^{(k)} = \begin{cases} 0, & \text{if } z_i^{(k)} > 0, \\ z_i^{(k)}, & \text{if } z_i^{(k)} \le 0, \end{cases}$$
$$= -(-z_i^{(k)})^+.$$

Proof of Lemma 5 (4/4)

Thus, DR(z) is majorized as follows:

$$\mathsf{DR}(\mathbf{w}) = \frac{1}{T} \sum_{i=1}^{T} \tilde{z}_i^2 \leq \frac{1}{T} \sum_{i=1}^{T} (z_i - y_i^{(k)})^2 = \frac{1}{T} \|\mathbf{z} - \mathbf{y}^{(k)}\|_2^2.$$

Substituting back $\mathbf{z} = \mathbf{r}^b - \mathbf{X}\mathbf{w}$, we get

$$\mathsf{DR}(\mathbf{w}) \leq \frac{1}{T} \|\mathbf{r}^b - \mathbf{X}\mathbf{w} - \mathbf{y}^{(k)}\|_2^2,$$

where $\mathbf{y}^{(k)} = -(-\mathbf{z}^{(k)})^+ = -(\mathbf{X}\mathbf{w} - \mathbf{r}^b)^+$.

Extension to Other Penalty Functions

- Apart from the various performance measures, we can select a different penalty function.
- We have used only the ℓ_2 -norm to penalize the differences between the portfolio and the index.
- We can use the Huber penalty function for robustness against outliers:⁶

$$\phi(x) = \begin{cases} x^2, & |x| \le M, \\ M(2|x| - M), & |x| > M. \end{cases}$$

- The ℓ_1 -norm.
- Many more...

D. Palomar (HKUST) Index Tracking 69/83

⁶K. Benidis, Y. Feng, and D. P. Palomar, *Optimization Methods for Financial Index Tracking: From Theory to Practice*. Foundations and Trends in Optimization, Now Publishers, 2018.

Extension to Huber Penalty Function

Lemma 6

The function $\phi(x)$ is majorized at $x^{(k)}$ by the quadratic convex function $f(x|x^{(k)}) = a^{(k)}x^2 + b^{(k)}$, where

$$a^{(k)} = \begin{cases} 1, & |x^{(k)}| \le M, \\ \frac{M}{|x^{(k)}|}, & |x^{(k)}| > M, \end{cases}$$

and

$$b^{(k)} = \begin{cases} 0, & |x^{(k)}| \le M, \\ M(|x^{(k)}| - M), & |x^{(k)}| > M. \end{cases}$$

Extension to Huber Penalty Function

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3** Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- **4** Numerical Experiments
- Conclusions

Set Up

For the numerical experiments we use historical data of two indices.

Table 1: Index Information

Index	Data Period	\$T_{trn}\$	Ttst
S&P 500	01/01/10 - 31/12/15	252	252
Russell 2000	01/06/06 - 31/12/15	1000	252

- We use a rolling window approach.
- Performance measure: magnitude of daily tracking error (MDTE)

$$\mathsf{MDTE} = \frac{1}{T - T_{\mathsf{tr}}} \big\| \mathsf{diag}(\mathbf{XW}) - \mathbf{r}^b \big\|_2,$$

where $\mathbf{X} \in \mathbb{R}^{(T-T_{\mathrm{tr}}) \times N}$ and $\mathbf{r}^b \in \mathbb{R}^{T-T_{\mathrm{tr}}}$.

Benchmarks

- MIP solution by Gurobi solver (MIP_{Gur}).
- Diversity Method⁷ where the $\ell_{1/2}$ -"norm" approximation is used $(\mathsf{DM}_{1/2})$.
- Hybrid Half Thresholding (HHT) algorithm⁸.

D. Palomar (HKUST) Index Tracking 74 / 83

⁷R. Jansen and R. Van Dijk, "Optimal benchmark tracking with small portfolios," *The Journal of Portfolio Management*, vol. 28, no. 2, pp. 33–39, 2002.

 $^{^8}$ F. Xu, Z. Xu, and H. Xue, "Sparse index tracking based on $L_{1/2}$ model and algorithm," $arXiv\ preprint$, 2015.

S&P 500 - w/o Holding Constraints

Russell 2000 - w/o Holding Constraints

S&P 500 - w/ Holding Constraints

Russell 2000 - w/ Holding Constraints

Tracking the S&P 500 index

⁹K. Benidis, Y. Feng, and D. P. Palomar, "Sparse portfolios for high-dimensional financial index tracking," *IEEE Trans. Signal Process.*, vol. 66, no. 1, pp. 155–170, 2018.

D. Palomar (HKUST) Index Tracking 79/83

Average Running Time of Proposed Methods

• Comparison of AS₁ and AS_u. ¹⁰

 $^{^{10}\}mbox{The algorithms }\mbox{MOSEK}_1$ and \mbox{MOSEK}_u correspond to the solution using the MOSEK solver.

D. Palomar (HKUST) Index Tracking 80 / 83

Outline

- Introduction
- 2 Sparse Index Tracking
 - Problem Formulation
 - Interlude: Majorization-Minimization (MM) Algorithm
 - Resolution via MM
- **3** Holding Constraints and Extensions
 - Problem Formulation
 - Holding Constraints via MM
 - Extensions
- Numerical Experiments
- Conclusions

Conclusions

- We have developed efficient algorithms that promote sparsity for the index tracking problem.
- The algorithms are derived based on the MM framework:
 - Derivation of surrogate functions
 - Majorization of convex problems for closed-form solutions.
- Many possible extensions.
- Same techniques can be used for active portfolio management.
- More generally: if you know how to solve a problem, then inducing sparsity should be a piece of cake!

Thanks

For more information visit:

https://www.danielppalomar.com

