Reuben Abraham T. Georgi

rgeorgi@purdue.edu • (650) 505-6322 Personal Page: https://rageorgi.github.io/

Objective: Graduate student majoring in Autonomy and Control seeking a position where I can apply and develop my technical skills and make significant contributions in the process.

EDUCATION

Purdue University

West Lafayette, Indiana

Master of Science in Aeronautics and Astronautics (MSAA)

May 2021

GPA, Scale of 4 - 3.54

Punjab Engineering College

Chandigarh, India

Bachelor of Technology (B.Tech) in Aerospace Engineering

CGPA, Scale of 10 - 7.70

October 2019

WORK EXPERIENCE/INTERNSHIPS

AbbVie Inc. (Contractor through HireGenics)

Remote Assignment July-September 2020

Research Analyst/ Summer Intern

- Conducted CFD simulations in M-Star CFD and Ansys for the hydrodynamics characterization of drug dissolution
- Performed post-processing and analysis of results obtained from simulations using Paraview

Helicopter Division, Hindustan Aeronautics Limited

Bangalore, India

Intern

January-May 2018

- Utilized mathematical modeling to predict the response of an isolated blade and the performance of an isolated rotor
- Engaged with industry professionals to gain insight into the helicopter design process

SPACE lab, Khalifa University

Abu Dhabi, U.A.E

Intern

May-July 2017

- Investigated autonomous control of a Tetrix ranger using MATLAB and Arduino
- Operated a Pumpkin CubeSat kit using MPLAB

SELECTED PROJECTS

Reachability Analysis for Pursuer-Evader Dynamic Games (Group project)

- Computed backward reachable sets for dynamic games involving a superior evader using the Level Set Toolbox on MATLAB
- Investigated the impact of the number of pursuers and their speed ratio on the backwards reachable set

Selection of Quadcopter components using a Genetic Algorithm

- Formulated a multi-objective problem to minimize cost and weight of a quadcopter
- Generated Pareto frontier and identified best combination of components from available options

Experimental means to measure flow parameters and thrust of a propeller (Group project)

- Designed and fabricated the setup using Aluminum sheets
- Obtained values of thrust and velocity variation for different RC propellers

Development of Porkchop plots for interplanetary mission planning

- Considered mission from Earth to Ceres for different combinations of launch and arrival dates
- Obtained contours of characteristic energy (C3) and Delta-v (Δν) using MATLAB

Genetic Algorithm Based Approach for Path Planning in a Static Environment

- Utilized a point-based approach to generate the shortest collision free path for an agent
- Examined the effects of varying the type of crossover operation on the solution

TECHNICAL SKILLS

• MATLAB: (Utilized during) Coursework, Projects

• **Python**: Coursework, Projects

• C++: Coursework

• CSS, HTML & JavaScript: Personal web page

• **ANSYS**: Coursework, Internship

• Simulink: Coursework

• **ROS**: Project

• **Arduino**: Projects, Internship

RELEVANT COURSEWORK

University: Lumped System Theory

Multi-Agent Systems and Control

Hybrid Systems: Theory and Applications

Engineering Analysis and Design Applied Optimal Control and Estimation Numerical Methods in Mechanical Engineering

Online: "Introduction to Programming with MATLAB" by Vanderbilt University on Coursera

"A Hands-on Introduction to Engineering Simulations" by Cornell University on EdX

"Control of Mobile Robots", by Georgia Institute of Technology on Coursera

"Machine Learning" by Stanford University on Coursera

ACTIVITIES & ACHIEVEMENTS

• AAS CanSat Competition: Descent Control Subsystem Design

2017: Team Rank: 41, Score: 90.16% (Preliminary Design Phase)

Mission simulated a solar powered science glider sampling atmospheric composition during flight Task: Design of glider required to descend in a circular pattern of no more than 1000 meters

2018: Team Rank: 57, Score 92.17% (Preliminary Design Phase)

Mission simulated a space probe entering a planetary atmosphere

Task: Design and stabilization of an aerobraking heatshield

2019: Team Rank: 20, Score 95.93% (Critical Design Phase)

Mission simulated auto-gyro descent of a science payload after release from the launch vehicle Task: Design of the auto-gyro descent mechanism

- 2nd place in the Flytron poster competition organized by the Aeronautical Society of India in association with Punjab Engineering College
- Member of the Autonomous Robotics Club of Purdue
 - Involved in the Rocket League project which aims at using RC cars to play soccer autonomously
 - Currently working on implementing deep reinforcement learning methods for the design of a High-Level Planner
- Selected as Secretary of the Astronomy and Space Physics Society for the academic session 2018-19
 - Responsibilities included organization of events, supervision of projects and management of resources
- Member of the Purdue Chapter of Sigma Gamma Tau, honor society for Aerospace Engineering
- Member of the English Editorial Board of Punjab Engineering College