

Semantic coordination in systems of autonomous agents: the approach and an implementation

Stefano Zanobini

Joint work with: Paolo Bouquet

Luciano Serafini

ITC irst- Trento- Italy

DIT- Dip. Informatica e Telecomunicazioni - University of Trento- Italy

edamok Semantic coordination

Semantic coordination is the problem of enabling agents to exchange meaningful information/knowledge across applications which:

- use autonomously developed conceptualizations of their domain
- need to collaborate to achieve their users' goals

edamok Semantic coordination — cont'd

Two main approaches in literature:

- Global schema (GAV and LAV)
- PeerToPeer

Global schema approaches do not seem suitable! In fact, local representations:

- (i) change frequently
- (ii) are managed in full autonomy

edamok Goal

Defining and implementing an algorithm that discovers semantic relations across different and heterogeneous representations:

- runtime
- automatically

edamok The problem

edamok Our approach

- From matching to reasoning
- From type of structures to use of structures
- Language as coordination tool

Three levels of knowledge

We use **lexical**, **structural** and domain knowledge

edamok The Matching Algorithm

Step 1 (offline)

Semantic explicitation
Linguistic Interpretation
Contextualization
Sense filtering
Sense composition

Step 2 (on line)

Semantic comparison
Axioms extraction
Calculating SAT relationships

edamok Linguistic Interpretation

edamok Contextualization - sense filtering

edamok Contextualization - sense filtering

WORDNET

edamok Contextualization - sense filtering

WORDNET

edamok Contextualization - sense comp

13

edamok Contextualization - sense comp

Semantic comparison – axioms

Semantic comparison – axioms

16

Semantic comparison – encoding

Semantic comparison – encoding

$$B \models \beta \rightarrow \alpha$$
 ? \longrightarrow yes

Where

 $\beta \rightarrow \alpha$ = (art#1 \land humanities#3 \land music#4 \land Italy#1 \land baroque#1) \rightarrow (art#1 \land music#4 \land (Europe#1 \lor Europe#3) \land baroque#1)

Semantic comparison – encoding

edamok Related work

	GRAPH MATCHING	CUPID	MOMIS	GLUE	CTXMATCH
STRUCTRAL KNOWLEDGE	•	•	•		•
LEXICAL KNOWLEDGE		•	•	•	•
DOMAIN KNOWLEDGE				•	•
INST-BASED KNOWLEDGE				•	
TYPE OF RESULT	Pair of nodes	Similarity measure ∈ [0,1] between pair of nodes	Similarity measure ∈ [0,1] between pair of nodes	Similarity measure ∈ [0,1] between pair of nodes	Semantic relation between pair of nodes
irst	•	•		•	20

edamok Future work

- Extending the algorithm beyond classifications (e.g services, automata, data types schemas)
- Going beyond WORDNET
- Distributing domain knowledge

edamok References

- P. Bouquet, L. Serafini and S. Zanobini Semantic coordination: a new approach and an application. In Proceedings of ISWC2003, Florida, USA
- P. Bouquet, B. Magnini, L. Serafini and S. Zanobini A SAT-based algorithm for context matching. In Proceedings of CONTEXT2003, Stanford, California, USA
- webpage: edamok.itc.it

