

Programming Microcontroller Serial Peripheral Interface (SPI) reduced Version

Aumn term 2016

www.sdcard.org RM0008 Rev 16

Serial Peripheral Interface (SPI)

- ★ SPI is always used in a master-slave mode
 Master is responsible for the clock generation

- # SPI may work in full duplex mode
- # Hardware CRC may be used

SPI

_uC / fue1, dnd1 / V15

3

SPI Hardware architecture: Synchronous shift register

SPI features (1/2) Ref. RM0008 Reference manual, 25.2.1

- # Full-duplex synchronous transfers on 3 lines
- # 8- or 16-bit transfer format selection
- **#** Master & Slave operation
- Multi master mode capability
- \aleph 8-bit master mode baud rate pre scaler ($f_{PCLK}/2$ max.)
- \Re Slave mode frequency ($f_{PCLK}/2$ max.)
- # Faster communication for both master and slave
- **XXIII** NSS management by hardware or software
- # Programmable clock polarity

SPI features (2/2)

Ref. RM0008 Reference manual, page 25.2.1

- Programmable data order with MSB-first or LSB-first shifting
- # Dedicated transmission and reception flags with interrupt capability
- # SPI bus busy status flag
- # Hardware CRC feature for reliable communication
 - CRC value can be transmitted as last byte in Tx mode
 - Automatic CRC error checking for last received byte
- Master mode fault, overrun and CRC error flags with interrupt capability
- # 1-byte transmission and reception buffer with DMA capability:

6

_uC / fue1, dnd1 / V15

SPI Block diagram

Ref. RM0008 Reference manual, 25.3.1

SPI pin description

Ref. RM0008 Reference manual, 25.3.1

X Single master / single slave application

Communication is always initiated by the master

Slave select (NSS) pin management

- NSS pin management can be realized either by hardware or by software
 - ☑ SSM (Slave Select Management) bit of the SPI_CR1 register
- ★ Software NSS pin management (ssm = 1)
 - □ssi (Internal Slave Select) bit in the spi_cr1 register
- \mathbb{H} Hardware NSS pin management (ssm = 0)
 - \triangle NSS output enable (ssoe = 1) (SS Output Enable)

 - ■NSS is drive low when the master starts the communication
 - \triangle NSS output disable (ssoe = 0)
 - ☑ Master mode: NSS is used for multi master capability
 - Slave mode: NSS selects the slave

SPI

_uC / fue1, dnd1 / V15

Clock phase & polarity

Ref. RM0008 Reference manual, figure 239

SPI __uC / fue1, dnd1 / V15 10

SPI register map (Offset)

Ref. RM0008 Reference manual, 25.5.10

Offset	Register	31 30	29	28	27	26	25	24	23	22	77	2	20	19	18	2 !	17	2	15	14	13	12	7	10	6	8	7	g	2	4	ဗ	0	-	0
0x00	SPI_CR1						ı	Res	erve	ed									BIDIMODE	BIDIOE	CRCEN	CRCNEXT	DFF	RXONLY	SSM	SSI	LSBFIRST	SPE	В	R [2:0]	MSTR	CPOL	CPHA
	Reset value	•																T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	SPI_CR2											F	Rese	erv	ed												TXEIE	RXNEIE	ERRIE		Reserved	SSOE	TXDMAEN	RXDMAEN
†	Reset value	1							0	0	0	1	_	0	0	0																		
0x08	SPI_SR											F	Rese	erv	ed												BSY	OVR	MODF	CRCERR	UDB	CHSIDE	TXE	RXNE
	Reset value																										0	0	0			0	1	0
0x0C	SPI_DR		Reserved						DR[15:0	15:0]																							
0,000	Reset value	i leserveu			Ī	0	0	0	0	0	0	0	1	- 1		- 1	0	0	0	0	0													
0x10	SPI_CRCPR	Reserved										(DLY[_																	
OXIO	Reset value	110001704				0	0	0	0	0	0	0		- 1	- 1	- 1	0	0	1	1	1													
0x14	SPI_RXCRCR	Reserved												C[15:0]																				
	Reset value									0	0	0	0	0	0	0		0	0	- 1	0	0	0	0	0									
0x18	SPI_TXCRCR	Reserved				-	_	_							C[1																			
	Reset value																		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	SPI_I2SCFGR								ı	Res	ser	ve	d										12SMOD	I2SE	L	SSCFG	PCMSYNC	Reserved	H	ISSSID	CKPOL	i	DAILEN	CHLEN
	Reset value																						0	0	0	0	0	_	0	0	0	0	0	0
0x20	SPI_I2SPR										Re	ese	erve	ed											O MCKOE	ODD		-		129	SDI\	/	-	1
	Reset value																								0	0	0	0	0	0	0	0	1	0

0x4000 4000 - 0x4000 43FF

SPI register hase addresses (1/2)

APB1

	f. RM0008 Reference i		` /			
Boundary address	Peripheral	Bus	Register map			
0x4000 7800 - 0x4000 FFFF	Reserved					
0x4000 7400 - 0x4000 77FF	DAC		Section 12.5.14 on page 264			
0x4000 7000 - 0x4000 73FF	Power control PWR		Section 5.4.3 on page 78			
0x4000 6C00 - 0x4000 6FFF	Backup registers (BKP)		Section 6.4.5 on page 83			
0x4000 6800 - 0x4000 6BFF	Reserved					
0x4000 6400 - 0x4000 67FF	bxCAN1		Section 24.9.5 on page 669			
0x4000 6800 - 0x4000 6BFF	bxCAN2		Section 24.9.5 on page 669			
0x4000 6000 ⁽¹⁾ - 0x4000 63FF	Shared USB/CAN SRAM 512 bytes					
0x4000 5C00 - 0x4000 5FFF	USB device FS registers		Section 23.5.4 on page 626			
0x4000 5800 - 0x4000 5BFF	I2C2		Section 26.6.10 on page 756			
0x4000 5400 - 0x4000 57FF	I2C1		Section 26.6.10 on page 756			
0x4000 5000 - 0x4000 53FF	UART5		Section 27.6.8 on page 799			
0x4000 4C00 - 0x4000 4FFF	UART4		Section 27.6.8 on page 799			
0x4000 4800 - 0x4000 4BFF	USART3		Section 27.6.8 on page 799			
0x4000 4400 - 0x4000 47FF	USART2		Section 27.6.8 on page 799			

Reserved

SPI register base addresses (2/2) LuC/fue1, dnd1/V15 12 Ref. RM0008 Reference manual, page 50								
Boundary address	Peripheral	Bus	Register map					
0x4001 5800 - 0x4001 7FFF	Reserved							
0x4001 5400 - 0x4001 57FF	TIM11 timer		Section 16.6.11 on page 449					
0x4001 5000 - 0x4001 53FF	TIM10 timer		Section 16.6.11 on page 449					
0x4001 4C00 - 0x4001 4FFF	TIM9 timer		Section 16.5.13 on page 440					
0x4001 4000 - 0x4001 4BFF	Reserved							
0x4001 3C00 - 0x4001 3FFF	ADC3		Section 11.12.15 on page 243					
0x4001 3800 - 0x4001 3BFF	USART1		Section 27.6.8 on page 799					
0x4001 3400 - 0x4001 37FF	TIM8 timer		Section 14.4.21 on page 348					
0x4001 3000 - 0x4001 33FF	SPI1		Section 25.5 on page 714					
0x4001 2C00 - 0x4001 2FFF	TIM1 timer		Section 14.4.21 on page 348					
0x4001 2800 - 0x4001 2BFF	ADC2	APB2	Section 11.12.15 on page 243					
0x4001 2400 - 0x4001 27FF	ADC1		Section 11.12.15 on page 243					

0x4001 5000 - 0x4001 53FF	TIM10 timer		Section 16.6.11 on page 4
0x4001 4C00 - 0x4001 4FFF	TIM9 timer		Section 16.5.13 on page 4
0x4001 4000 - 0x4001 4BFF	Reserved		
0x4001 3C00 - 0x4001 3FFF	ADC3		Section 11.12.15 on page
0x4001 3800 - 0x4001 3BFF	USART1		Section 27.6.8 on page 79
0x4001 3400 - 0x4001 37FF	TIM8 timer		Section 14.4.21 on page 3
0x4001 3000 - 0x4001 33FF	SPI1		Section 25.5 on page 714
0x4001 2C00 - 0x4001 2FFF	TIM1 timer		Section 14.4.21 on page 3
0x4001 2800 - 0x4001 2BFF	ADC2	APB2	Section 11.12.15 on page
0x4001 2400 - 0x4001 27FF	ADC1		Section 11.12.15 on page
0x4001 2000 - 0x4001 23FF	GPIO Port G		Section 9.5 on page 188

GPIO Port F

GPIO Port E

GPIO Port D

0x4001 1C00 - 0x4001 1FFF

0x4001 1800 - 0x4001 1BFF

0x4001 1400 - 0x4001 17FF

13

Section 9.5 on page 188

Section 9.5 on page 188

Section 9.5 on page 188

SPI Configuration in slave mode *Ref. RM0008 Reference manual, page 678*

- # Select the clock polarity and phase
 - CPOL and CPHA pins SPI_CR1 Register
- # Select the data frame format
 - □ DFF (Data Frame Format) bit of SPI_CR1 Register
- # Define the frame format
 - LSBFIRST bit of SPI_CR1 Register
- # Set the SPI in slave mode
 - Clear the MSTR (Master Selection) and set SPE (SPI Enable) bits in the SPI_CR1 Register
- ₩ NSS Pin

 - - **Set ssm** bit and clear ssi bit in the spi_cr1 Register

SPI Configuration in master mode *Ref. RM0008 Reference manual, page 680*

- ★ Define the transmission baud rate
 │ BR[2:0] bits of SPI_CR1 Register
- ★ Select the clock polarity and phase
 △ CPOL and CPHA pins SPI_CR1 Register
- ★ Define the frame format
 △ LSBFIRST bit of SPI_CR1 Register
- ★ Set the SPI in master mode
 △ Set the MSTR and SPE bits in the SPI_CR1 Register
- ₩ NSS Pin
 - Hardware mode: connect the NSS pin to high level signal
 - Software mode: set the ssm and ssI bits in the spI_cr1 Register

SPI Transmission & reception sequences Ref. RM0008 Reference manual, page 680

Transmit sequence

- ✓ Write a byte in to the transmission buffer
 ⋉ѕърі_¬рк register
- - ☑An interrupt is generated if the TXEIE bit of the SPI_CR2 is set.

****** Receive sequence

- □ Received byte is transferred in to the reception buffer
 □ SPI_DR register
- **EXAMPLE 1** REPRESE AND SET IS SET
 - ☑An interrupt is generated if the TXEIE bit of the SPI_CR2 is set.

Flag behaviour on transmit and receive

Example in Master mode with CPOL=1, CPHA=1

Code example: SPI configuration in master mode

***** Keil library function

```
SPI InitStructure.SPI_Direction = \
                   SPI_Direction_2Lines_FullDuplex;
  SPI InitStructure.SPI Mode = SPI Mode Master;
  SPI InitStructure.SPI_DataSize = SPI_DataSize_8b;
  SPI InitStructure.SPI CPOL = SPI CPOL High; // CPOL = 1
  SPI InitStructure.SPI CPHA = SPI CPHA 2Edge; // CPHA = 1
  SPI InitStructure.SPI NSS = SPI NSS Soft;
  SPI InitStructure.SPI BaudRatePrescaler = \
                                                 // 4.5MHz
                   SPI BaudRatePrescaler 8;
  SPI InitStructure.SPI FirstBit = SPI FirstBit MSB;
  SPI InitStructure.SPI CRCPolynomial = 7;
  SPI Init(SPI1, &SPI InitStructure);
```

_uC / fue1, dnd1 / V15 18

Code example: SPI transmission sequence


```
/*!< Loop while DR register in not empty */
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, (uint16_t) c);
/* Wait until byte has been written */
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY) != RESET);</pre>
```

!! Used like this, the uC has to wait until everything was written to the SPI bus. This is called "blocking access" and eats up 100% of CPU !!

SPI alternate function remapping *Ref. RM0008 Reference manual, page 176*

★ SPI remapping table

□ Ref. AF remap and debug I/O configuration register (AFIO_MAPR)

Alternate function	SPI1_REMAP = 0	SPI1_REMAP = 1
SPI1_NSS	PA4	PA15
SPI1_SCK	PA5	PB3
SPI1_MISO	PA6	PB4
SPI1_MOSI	PA7	PB5

SD connection of the STM32F107xx board

 \triangle SPI_REMAP = 0

 \boxtimes SCK \Rightarrow PA5

 \boxtimes MISO \Rightarrow PA6

 \boxtimes MOSI \Rightarrow PA7