Polish (POL)

A. Teoria strun

Nazwa zadania	Teoria strun
Limit czasu	2 sekundy
Limit pamięci	1 gigabajt

Lara uwielbia chodzić na pchle targi. W zeszłą sobotę w Bonn odwiedziła Rheinaue-Flohmarkt, jeden z największych pchlich targów w Niemczech. Oczywiście Lara spędziła tam cały dzień, przechadzając się po targu i targując się o różne ciekawe rzeczy. Najciekawszą rzeczą, jaką przyniosła do domu, była mała harfa o idealnie okrągłym kształcie. Kiedy chciała zacząć na niej grać zauważyła, że struny są rozmieszczone w różnych kierunkach, zamiast być ułożone równolegle do siebie.

Dokładniej, na obwodzie okrągłej harfy są równomiernie rozmieszczone $2\cdot N$ pinów. Każda z N strun jest przymocowana za pomocą dwóch pinów, a do każdego pinu przymocowana jest dokładnie jedna struna.

Lara niewiele wie o harfach ale jest przekonana, że struny powinny być ułożone, tak aby były przymocowane równolegle do siebie. Aby rozwiązać ten problem postanowiła poprzepinać struny w harfie. W jednym ruchu może odłączyć jeden koniec struny od pinu i przymocować go do innego pinu. W trakcie tego procesu dopuszczalne jest, aby końce wielu strun były przymocowane do tego samego pinu. Ostatecznie do każdego pinu powinna być przymocowana dokładnie jedna struna, a N strun powinno być do siebie równoległych.

Poniżej znajdują się dwa przykłady harf z równoległymi strunami.

Ponieważ każde zakładanie struny wymaga dużo pracy, Lara chce wykonać tę czynność jak najmniej razy. Pomóż jej znaleźć sekwencję przepinania strun, która wymaga minimalnej liczby

Wejście

Pierwszy wiersz danych wejściowych zawiera jedną liczbę całkowitą N oznaczającą liczbę strun. Struny są ponumerowane od 0 do N-1.

Następnie wczytaj N wierszy, gdzie i-ty wiersz ($0 \le i \le N-1$) zawiera dwie liczby całkowite a_i i b_i oznaczające dwa piny, które trzymają i-tą strunę. Piny są ponumerowane zgodnie z ruchem wskazówek zegara od 0 do $2 \cdot N-1$. Do każdego pinu jest przymocowana dokładnie jedna struna.

Wyjście

Wypisz liczbę całkowitą K, minimalną liczbę kroków potrzebną do sprawienia aby wszystkie struny były równoległe do siebie.

Następnie wypisz K wierszy, każdy zawierający trzy liczby całkowite p, s i e, oznaczające, że w danym kroku jeden koniec p-tej struny powinien zostać odczepiony od pinu s i ponownie przymocowany do pinu e ($0 \le p \le N-1, 0 \le s, e \le 2 \cdot N-1$).

Należy pamiętać, że jeśli w danym momencie p-ta struna nie jest przymocowana do pinu s, sekwencję ruchów uznaje się za niepoprawną.

Jeśli istnieje kilka odpowiedzi, możesz wypisać dowolną z nich. Pamiętaj, że częściowo poprawne odpowiedzi mogą nadal dawać punkty, co wyjaśniono w kolejnej sekcji.

Ograniczenia i punktacja

- 4 < N < 100000.
- $0 \le a_i, b_i \le 2 \cdot N 1$.
- Wszystkie a_i i b_i są różne.

Twoje rozwiązanie zostanie przetestowane na kilku grupach testowych, z których każda jest warta określoną liczbę punktów. Każda grupa zawiera zestaw testów. Dla każdej grupy punkty są ustalane w następujący sposób:

- Jeśli Twój program rozwiąże wszystkie testy w grupie, otrzymasz 100% punktów.
- Jeśli Twój program nie rozwiąże w całości grupy testowej, ale **poprawnie wypisze minimalną liczbę kroków dla każdego testu**, otrzymasz 50% punktów.

Przy określaniu, czy Twoje rozwiązanie zdobędzie 50% punktów w grupie, brana pod uwagę jest tylko wartość K, którą wypiszesz. Rozwiązanie może po prostu wygenerować wartość K i zakończyć działanie lub może nawet wygenerować nieprawidłową sekwencję ruchów. Pamiętaj, że Twoje rozwiązanie nadal musi zakończyć się poprawnie i zmieścić w limicie czasu.

Grupa	Punkty	Ograniczenia
1	14	Struna i jest przymocowana do pinów $2 \cdot i$ i $2 \cdot i + 1$ dla każdego i
2	16	Trzeba wykonać maksymalnie 2 kroki
3	12	Istnieje rozwiązanie, w którym jedna ze struna jest przymocowana do pinów $0\mathrm{i}1$
4	28	$N \leq 1000$
5	30	Brak dodatkowych ograniczeń

Przykłady

W pierwszym przykładzie mamy harfę z pięcioma strunami. W pierwszym kroku struna 4 zostaje odłączona od pinu 8 i ponownie przymocowana do pinu 9. W następnym kroku struna 0 zostaje odłączona od pinu 5 i ponownie podłączona do pinu 8. W ostatnim kroku struna 1 zostaje odłączona od pinu 9 i ponownie przymocowana do pinu 5. Teraz do każdego pinu przymocowana jest dokładnie jedna struna i wszystkie struny są do siebie równoległe. Sekwencję tę pokazano na poniższym rysunku.

Poniższy rysunek przedstawia stan początkowy harfy dla testów 2, 3 i 4.

- Pierwszy test przykładowy spełnia ograniczenia grup testowych 4 i 5.
- Drugi test przykładowy spełnia ograniczenia grup testowych 1, 3, 4 i 5.
- Trzeci test przykładowy spełnia ograniczenia grup testowych 2, 4 i 5.
- Czwarty test przykładowy spełnia ograniczenia grup testowych 3, 4 i 5.

Wejście	Wyjście
5 1 5 4 9 6 3 2 7 0 8	3 4 8 9 0 5 8 1 9 5
5 0 1 3 2 4 5 6 7 9 8	4 1 3 9 4 9 3 2 5 7 3 7 5
4 1 4 6 3 5 2 7 0	2 0 4 6 1 6 4
6 3 9 7 5 10 2 0 6 1 11 8 4	6 3 6 1 4 1 2 2 2 3 0 3 4 5 4 5 1 5 6