Representation Theory and its Applications in Physics

June 5, 2024

CPTitlePage169

Presented by

Max Varverakis (mvarvera@calpoly.edu)

Outline:

- 1. Introduction to Representation Theory
- 2. Examples in Physics
- 3. The Braid Group
- 4. Physical Applications of the Braid Group

Definition of a Representation

Definition

Let G be a group. A *representation* of G is a homomorphism from G to a group of operators on a linear vector space V. The dimension of V is the *dimension* or *degree* of the representation.

Definition of a Representation

Definition

Let G be a group. A *representation* of G is a homomorphism from G to a group of operators on a linear vector space V. The dimension of V is the *dimension* or *degree* of the representation.

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Definition of a Representation

Definition

Let G be a group. A *representation* of G is a homomorphism from G to a group of operators on a linear vector space V. The dimension of V is the *dimension* or *degree* of the representation.

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Remark

If V is finite-dimensional with basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, then X can be realized as an $n \times n$ matrix.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \ \forall g \in G$.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \ \forall g \in G$.

Consequences:

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

1. X(e) = I, where e is the identity element of the group and I is the identity operator.

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \forall g, h \in G.$$

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

- 1. X(e) = I, where e is the identity element of the group and I is the identity operator.
- **2.** In the matrix presentation of X, X(g) is invertible for all $g \in G$.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

▶ The trivial representation is always one-dimensional.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

- ► The trivial representation is always one-dimensional.
- For groups with more than one element, the trivial representation is not injective, so we call it a *degenerate representation*.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

- ► The trivial representation is always one-dimensional.
- ► For groups with more than one element, the trivial representation is not injective, so we call it a *degenerate representation*.
- ▶ If a representation is injective, then it is a *faithful representation*.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

E.g., in S_3 :

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

► The defining representation of S_n is n-dimensional.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- ▶ The defining representation of S_n is n-dimensional.
- This representation is faithful.

Representations also work for continuous groups!

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation:
$$R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$$
.

Identity Element: R(0) = I.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation:
$$R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$$
.

Identity Element: R(0) = I.

Inverses:
$$R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$$
.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation:
$$R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$$
.

Identity Element: R(0) = I.

Inverses:
$$R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$$
.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of R on V_2 with¹

$$X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi$$

$$X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi$$

 $^{^{1}}$ **e**₁ and **e**₂ are orthonormal basis vectors of V_{2} .

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the *xy*-plane (V_2) about the origin.

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of R on V_2 with¹

 $^{^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

► Can you think of other ways to represent 2D rotations?

- ► Can you think of other ways to represent 2D rotations?
- ▶ What about $e^{i\phi}$ parameterization?

- ► Can you think of other ways to represent 2D rotations?
- ▶ What about $e^{i\phi}$ parameterization?
- ▶ How many ways can we represent 2D rotations?

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- ▶ How many ways can we represent 2D rotations?
- ► Are certain representations equivalent?

- ▶ Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- ▶ How many ways can we represent 2D rotations?
- ► Are certain representations equivalent?
- ▶ What does it mean for representations to be equivalent? Unique?

Thoughts

- Can you think of other ways to represent 2D rotations?
- What about e^{iφ} parameterization?
- How many ways can we represent 2D rotations?
- ► Are certain representations equivalent?
- ▶ What does it mean for representations to be equivalent? Unique?

Question

How do we classify representations of a group?

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

▶ If two representations are equivalent, then their matrix forms have the same *trace*.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

- ▶ If two representations are equivalent, then their matrix forms have the same *trace*.
- ► Equivalent representations form an equivalence class.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

- ▶ If two representations are equivalent, then their matrix forms have the same *trace*.
- ► Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

- ▶ If two representations are equivalent, then their matrix forms have the same *trace*.
- Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

- ▶ If two representations are equivalent, then their matrix forms have the same *trace*.
- ► Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

If two representations have the same character for all $g \in G$, then they are equivalent.

Definition

Two representations are *equivalent* if they are related by a similarity transformation.

- ▶ If two representations are equivalent, then their matrix forms have the same *trace*.
- ► Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

- ▶ If two representations have the same character for all $g \in G$, then they are equivalent.
- We can use characters to classify representations.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Comments:

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Comments:

▶ Irreducible representations are the building blocks of all representations.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Comments:

- ▶ Irreducible representations are the building blocks of all representations.
- ► A reducible representation can be decomposed into a direct sum of irreducible representations.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Comments:

- ▶ Irreducible representations are the building blocks of all representations.
- ► A reducible representation can be decomposed into a direct sum of irreducible representations.
- ► The decomposition of a representation into irreducibles is unique up to equivalence.

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Invariance of e_{\pm}

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}(\mp\mathbf{e}_1+i\mathbf{e}_2)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Invariance of e_{\pm}

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}(\mp\mathbf{e}_1+i\mathbf{e}_2)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Decomposition of X

The span of each \mathbf{e}_{\pm} is an *X*-invariant subspace of V_2 . In this basis, we rewrite *X* as a direct sum of the 1D irreducible representations³:

$$X(\phi) = egin{bmatrix} e^{i\phi} & 0 \ 0 & e^{-i\phi} \end{bmatrix}.$$

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Proof (sketch)

1. The kernel of T is invariant under X(G).

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}$.

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}$.
- 4. By the rank-nullity theorem, conclude that T is either the zero map or invertible.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Proof (sketch)

1. Consider λ to be an eigenvalue of T.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.
- **4.** By previous lemma, $T \lambda I = 0 \implies T = \lambda I$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Proof (sketch)

1. Fix $h \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since G is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element h was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.
- 6. One-dimensional representation are irreducible.

▶ Irreducible representations are the building blocks of all representations.

•	Irreducible	representations ar	e the	building	blocks	of	all	representation	s
---	-------------	--------------------	-------	----------	--------	----	-----	----------------	---

\blacktriangleright	Irreducible representations can be combined/modified to create new representations, se	uch
	as:	

- ▶ Irreducible representations are the building blocks of all representations.
- ► Irreducible representations can be combined/modified to create new representations, such as:
 - Direct sums

- ▶ Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:
 - Direct sums
 - Tensor products

- ▶ Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:
 - Direct sums
 - Tensor products
 - Complex conjugation⁴

⁴If the representation matrices have entries in \mathbb{C} .

- ▶ Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:
 - Direct sums
 - Tensor products
 - Complex conjugation⁴
 - Similarity transforms

⁴If the representation matrices have entries in \mathbb{C} .

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:
 - Direct sums
 - Tensor products
 - Complex conjugation⁴
 - Similarity transforms

How does this help in physics?

Irreducible representations can describe symmetries of physical systems with remarkably fundamental implications.

⁴If the representation matrices have entries in \mathbb{C} .

Preliminaries

Skip preliminaries?

1. The quantum state of a system is described by a vector in a complex Hilbert space.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- **2.** The corresponding vectors are often called *state vectors*.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

4. The *Hermitian conjugate* or *adjoint* of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- **4.** The *Hermitian conjugate* or *adjoint* of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.
- **5.** Operators that are self-adjoint are called *Hermitian*.

▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

▶ Inner product: $\langle \phi | \psi \rangle$

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle\,\langle\psi|$

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle \langle \psi|$
- ▶ The action of an operator A on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle \langle \psi|$
- ▶ The action of an operator A on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.
- Equivalent ways to write the same thing:

$$\langle \mathbf{A}^{\dagger} \phi | \psi \rangle = \langle \phi | \mathbf{A} | \psi \rangle = \langle \phi | \mathbf{A} \psi \rangle.$$

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1},\ket{2},\ket{3},\dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1},\ket{2},\ket{3},\dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{|1\rangle, |2\rangle, |3\rangle, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $|\psi\rangle$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Definition

For a continuous basis labelled by $|x\rangle$ where x is a continuous parameter, the *wavefunction* $\psi(x)$ is the projection: $\langle x|\psi\rangle=\psi(x)$.

Preliminaries: Basic Quantum Mechanics

► Talk about probabilities and whatnot? Eigenvalues = observables? Or just mention when connecting later stuff to physics?

Let *R* denote the familiar rotation matrix representation from before.

Let *R* denote the familiar rotation matrix representation from before.

Definition

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

This special property is summarized by noting det $R(\phi) = 1$ for all $\phi \in [0, 2\pi)$.

The SO(2) Group

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

⁵For all intents and purposes, SO(2) is *R* from before.

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

Properties of SO(2):

⁵For all intents and purposes, SO(2) is *R* from before.

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

Properties of SO(2):

▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

Properties of SO(2):

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

Properties of SO(2):

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

⁵For all intents and purposes. SO(2) is *R* from before.

Definition

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

Properties of SO(2):

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.
- ▶ SO(2) is *reducible* (earlier example with \mathbf{e}_{\pm}).

▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.

- \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i d\phi J$$

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ▶ This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i d\phi J$$

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ▶ This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i d\phi J$$

► There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$
 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

▶ Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.

- \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ▶ This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i d\phi J$$

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$
 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- ▶ Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- With R(0) = I boundary condition: $R(\phi) = e^{-i\phi J}$.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

- \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ▶ This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $R(\phi) = e^{-i\phi J}$.
- \blacktriangleright We call *J* the *generator* of SO(2) rotations.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$
$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

$$= \begin{bmatrix}\cos\phi - \sin\phi\\\sin\phi & \cos\phi\end{bmatrix}.$$

Process to obtaining irreducibles:

1. Let U be any representation of SO(2).

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of J:

$$J\left|m\right>=m\left|m\right>, \ U(\phi)\left|m\right>=e^{-iJ\phi}\left|m\right>=e^{-im\phi}\left|m\right>.$$

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of J:

$$J\ket{m} = m\ket{m}, \ U(\phi)\ket{m} = e^{-iJ\phi}\ket{m} = e^{-im\phi}\ket{m}.$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Process to obtaining irreducibles:

- 1. Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of J:

$$J\left|m
ight
angle = m\left|m
ight
angle \, , \ U(\phi)\left|m
ight
angle = e^{-iJ\phi}\left|m
ight
angle = e^{-im\phi}\left|m
ight
angle \, .$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Theorem

The single-valued irreducible representations of SO(2) are defined as

$$U^m(\phi) = e^{-im\phi}, \ \forall \ m \in \mathbb{Z}.$$

Generalization to 3 Spatial Dimensions

- ▶ Show but don't derive $R_n(\theta)$ decomposition into **J** components.
- ▶ We have basis from the components of **J**.
- ▶ Ladies and gentlemen, we got SO(3)...
- ▶ J component differential forms?
- ▶ Commutation relations, in some form talk about J_{\pm} , J^2 and final eigenvalue results.

Conservation of Angular Momentum

I think it makes most sense to do this after generalizing to 3D... Let V be the vector space that U^m acts on.

lacktriangle The Hermiticity of J allows us to obtain an eigenbasis of V

Connection to Quantum Mechanics

- ▶ Discuss connection between generators and quantum operators, eigenvalues and classical observables, discretization (!), etc.
- ► This is the kicker. I will get very excited here probably.

Multi-valued Irreducible Representations and Spinors

Not sure where to put this...

- ▶ Let's come back to SO(2) for a second...
- ▶ Show m = 1/2 irreps.
- ► Discuss implications, spinors, etc...

Basic Definitions

- ► Formal definitions.
- ▶ Physical/intuitive visualization and interpretation.
- Standard generators.
- ▶ Automorphisms of $\pi_1(\mathbb{D}_n)$.
- ▶ Braid relations in this picture.
- ▶ 1D Reps.
- Burau representation.
- ▶ Note on faithfulness.
- ► Unitary representation from reduced Burau.

Rotations of Quantum Hilbert Space

- ▶ 1D action on Hilbert space, permuting particles, compare/contrast to bosons/fermions.
- ► Talk about nontrivial braiding effects.
- ► Example of unitary braid rep acting on Hilbert space.

Anyons: A Consequence of Braiding

- ► Introduce anyons.
- ▶ Discuss how anyons are described by the braid group.
- ► Fusion rules, abelian vs nonabelian anyons.
- Non-interacting anyons.
- Non-interacting anyons in harmonic potential.
- Nontrivial braiding effects anyone?
- ► Applications of anyons! (quantum computing, topological quantum field theory, FQHE, etc.)

Summary/Conclusion

Acknowledgements, questions, references (?)