EE 330 Lecture 3

- Selected profiles with ISU ties
- Integrated Circuit Design Flow
- Basic Concepts

Feature Sizes

Manufacturing Costs

Yield

Key Historical Developments

Browse Semiconductor Services -

Browse IP Vendors -

Get 3 Price Quotes From -

Tool

Top 10 Semiconductor Sales Leaders 2016-2019

March 11, 2019, anysilicon

Top 10 Worldwide Semiconductor Sales Leaders

2016			2017			2018			2019F		
Rank		Sales (\$B)	Company	Sales (\$B)	Change	Company		Change	Company	Sales (\$B)	Change
1	Intel	\$57.0	Samsung	\$65.9	48.8%	Samsung	\$78.5	19.2%	Intel	\$70.6	1.0%
2	Samsung	\$44.3	Intel	\$61.7	8.2%	Intel	\$69.9	13.2%	Samsung	\$63.1	-19.7%
3	TSMC (2)	\$29.5	TSMC (2)	\$32.2	9.1%	SK Hynix	\$36.8	37.6%			
4	Qualcomm (1)	\$15.4	SK Hynix	\$26.7	79.5%	TSMC (2)	\$34.2	6.4%			
5	Broadcom (1)	\$15.2	Micron	\$23.9	76.7%	Micron	\$31.0	29.6%			
6	SK Hynix	\$14.9	Broadcom (1)	\$17.8	16.9%	Broadcom (1)	\$18.5	3.7%			
7	Micron	\$13.5	Qualcomm (1)	\$17.0	10.5%	Qualcomm (1)	\$16.4	-3.8%			
8	TI	\$12.5	ті	\$13.9	11.3%	Toshiba*	\$14.9	12.1%			
9	Toshiba	\$10.9	Toshiba	\$13.3	21.9%	ті	\$14.9	6.8%			
10	NXP	\$9.5	Nvidia (1)	\$9.4	36.1%	Nvidia (1)	\$12.0	27.1%			
Top 1	l0 Total (\$B)	\$222.8	-	\$281.9	26.5%	_	\$327.0	16.0%			
Semi	Market (\$B)	\$364.0	-	\$445.2	22.3%	_	\$504.1	13.2%	-	\$468.9	-7.0%

Source: IC Insights (1) Fabless (2) Pure-Play foundry

*Includes Toshiba Memory

Why did Samsung's position change so much?

Top 10 Semiconductor Sales Leaders 2016-2019

March 11, 2019, anysilicon

v₀

IC Insights is currently updating its 2019-2023 semiconductor market forecasts that will be presented later this month in the March Update, the first monthly Update to the 500-page, 2019 edition of The McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry (released in January 2019).

For 2019, a steep 24% drop in the memory market is forecast to pull the total semiconductor market down by 7%. With 83% of Samsung's semiconductor sales being memory devices last year, the memory market downturn is expected to drag the company's total semiconductor sales down by 20% this year. Although Intel's semiconductor sales are forecast to be relatively flat in 2019, the company is poised to regain the number 1 semiconductor supplier ranking this year (Figure 1), a position it held from 1993 through 2016.

(with lowa ties)

Texas Instruments:

- World's largest producer of analog semiconductors at \$8.2B, over 100% larger than closest competitor
- Ranks 1st in DSP
- Ranks 9th in World in semiconductor sales

Number of employees: 30,000

2018 sales: \$15.80B

2018 income: \$5.6B

(after taxes)

Average annual sales/employee: \$474K

Average annual earnings/employee: \$187K

Jerry Junkins

Past CEO of TI ISU EE Class of '59

(data from TI quarterly reports)

(with lowa ties)

Intel:

World's largest producer of semiconductors

Cofounders: Robert Noyce and Gordon Moore

Number of employees (2019): 110,000

2018 sales: \$71B

2018 income: \$21B

Average annual sales/employee: \$645K

Average annual earnings/employee: \$190K

Robert Noyce BA Grinnell 1949

Noyce is also the co-inventor of the integrated circuit!

(with lowa ties)

Marvell:

Cofounders: Sehat Sutardja (CEO), Welli Dai and Pantas Sutardja

Number of employees: 5200

2018 sales: \$2.9B

2018 income: \$520M

Average annual sales/employee: \$513K

Average annual earnings/employee: \$100K

Fabless Semiconductor Company

Sehat Sutardja

BSEE ISU (approx 1985)

(with lowa ties)

Maxim: Founded in April 1983, profitable every year since 1987

Tunc Doluca joined Maxim in October 1984, appointed President and CEO in 2007

Number of employees: 7150

2018 sales: \$2.5B

2018 income: \$467M

Average annual sales/employee: \$350K

Average annual earnings/employee: \$65K

Tunc Doluca
BSEE IASTATE
(1979)

Considerable Cash Flow Inherent in the Semiconductor Industry

Essentially All Activities Driven by Economic Considerations

- Many Designs Cost Tens of Millions of Dollars
- Mask Set and Production of New Circuit Approaching \$2 Million
- New Foundries Costs Approaching \$10 Billion (few players in World can compete)
- Many Companies Now Contract Fabrication (Fabless Semiconductor Companies)
- Time to Market is Usually Critical
- Single Design Error Often Causes Months of Delay and Requires New Mask Set
- Potential Rewards in Semiconductor Industry are Very High

Will emphasize economic considerations throughout this course

Understanding of the Big Picture is Critical

Solving Design Problems can be Challenging

Be sure to solve the right problem!

How can complex circuits with a very large number of transistors be efficiently designed with low probability of error?

Many designers often work on a single design

Single error in reasoning, in circuit design, or in implementing circuit on silicon generally results in failure

- Design costs and fabrication costs for test circuits are very high
 - Design costs for even rather routine circuits often a few million dollars and some much more
 - Masks and processing for state of the art processes often between \$1M and \$2M
- Although much re-use is common on many designs, considerable new circuits that have never been designed or tested are often required
- Time to market critical missing a deadline by even a week or two may kill the market potential

Single Errors Usually Cause Circuit Failure

- How may components were typical of lab experiments in EE 201 and EE 230?
- Has anyone ever made an error in the laboratory of these courses? (wrong circuit, incomplete understanding, wrong wiring, wrong component values, imprecise communication, frustration)
- How many errors are made in a typical laboratory experiment in these courses?
- How many errors per hour might have occurred?

Single Errors Usually Cause Circuit Failure

Consider an extremely complicated circuit

- with requirements to do things that have never been done before
- with devices that are not completely understood
- that requires several billion transistors
- that requires 200 or more engineers working on a project full-time for 3 years
- with a company investment of many million dollars
- with an expectation that nobody makes a single error

Is this a challenging problem for all involved?

How can complex circuits with a very large number of transistors be efficiently designed with low probability of error?

- CAD tools and CAD-tool environment critical for success today
- Small number of VLSI CAD toolset vendors
- CAD toolset helps the engineer and it is highly unlikely the CAD tools will replace the design engineer
- An emphasis in this course is placed on using toolset to support the design process

CAD Environment for Integrated Circuit Design

CAD Tools

- Typical Tool Flow
 - (See Chapter 14 of Text)

Laboratory Experiments in Course

VLSI Design Flow Summary Mixed Signal Flow (Digital Part)

Mixed-Signal Flow (Analog Part)

Mixed-Signal Flow (Analog-Digital Merger)

Comments

- The Analog Design Flow is often used for small digital blocks or when particular structure or logic styles are used in digital systems
- Variants of these flows are widely used and often personalized by a given company or for specific classes of circuits

Wafer

die

- 6 inches to 18 inches in diameter
- All complete cells ideally identical
- flat edge
- very large number of die if die size is small

Why are wafers round?

- Ingot spins (rotates) as crystal is being made (dominant reason)
- Edge loss would be larger with rectangular wafers
- · Heat is more uniformly distributed during processing
- Size of furnace is smaller for round wafers
- Wafers are spun during application of photoresist and even coatings is critical
- Optics for projection are better near center of image

Feature Size

Feature size is the minimum lateral feature size that can be **reliably** manufactured

Reliability Problems

Actual features show some variability (dramatically exaggerated here !!!!)

End of Lecture 3