Постановка задачи:

Обучиться структуре байесовской сети, которая должна уметь прогнозировать G1, G2, G3, оценить параметры каждой полученной структуры, оценить ошибку прогноза каждой из получившихся сетей; каждую получившуюся сеть изобразить в виде направленного графа с подписанными вершинами. Сравнить все полученные результаты с какой-либо моделью машинного обучения.

1. Данные

Данные представляют собой описание студентов математического курса (student-mat.csv) и курса португальского языка (student-por.csv).

2. Предварительная обработка

Исходные данные student-mat.csv:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	• • •	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher		4	3	4	1	1	3	6	5	6	6
1	GP	F	17	U	GT3	Т	1	1	at_home	other		5	3	3	1	1	3	4	5	5	6
2	GP	F	15	U	LE3	Т	1	1	at_home	other		4	3	2	2	3	3	10	7	8	10
3	GP	F	15	U	GT3	Т	4	2	health	services		3	2	2	1	1	5	2	15	14	15
4	GP	F	16	U	GT3	Т	3	3	other	other		4	3	2	1	2	5	4	6	10	10
5 ro	5 rows × 33 columns																				

Данные проверены на наличие пропущенных значений, которые не были обнаружены.

Также для уменьшения количества категорий в некоторых категориальных признаках проведено объединение схожих значений. Числовые признаки сделаны категориальными путем дискретизации и заданы метки. Преобразования выполнены для признаков "failures", "studytime", "absences", "G1", "G2", "G3".

Результат:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	1	1	3	Low-absence	Fail	Fail	Fail
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	Low-absence	Fail	Fail	Fail
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	High-absence	Fail	Fail	Pass
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	Low-absence	Pass	Pass	Pass
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	Low-absence	Fail	Pass	Pass
390	MS	М	20	U	LE3	Α	2	2	services	services	 5	5	4	4	5	4	High-absence	Fail	Fail	Fail
391	MS	M	17	U	LE3	Т	3	1	services	services	 2	4	5	3	4	2	Low-absence	Pass	Pass	Pass
392	MS	M	21	R	GT3	Т	1	1	other	other	 5	5	3	3	3	3	Low-absence	Pass	Fail	Fail
393	MS	M	18	R	LE3	Т	3	2	services	other	 4	4	1	3	4	5	No-absence	Pass	Pass	Pass
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 3	2	3	3	3	5	Low-absence	Fail	Fail	Fail

Затем все переменные переведены в числовые.

Для прогнозируемых признаков "G1", "G2", "G3" значение 0 соответствует Fail (при условии, что балл ниже 10), значение 1 - Pass (при условии, что балл > или = 10).

В анализ не включались чувствительные переменные, такие как 'age', 'school', 'sex', 'Mjob', 'Fjob', 'reason', 'guardian'.

Данные, которые использованы для анализа:

	address	famsize	Pstatus	Medu	Fedu	traveltime	studytime	failures	schoolsup	famsup	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	1	0	0	4	4	2	1	1	1	0	 4	3	4	1	1	3	1	0	0	0
1	1	0	1	1	1	1	1	1	0	1	 5	3	3	1	1	3	1	0	0	0
2	1	1	1	1	1	1	1	0	1	0	 4	3	2	2	3	3	0	0	0	1
3	1	0	1	4	2	1	0	1	0	1	 3	2	2	1	1	5	1	1	1	1
4	1	0	1	3	3	1	1	1	0	1	 4	3	2	1	2	5	1	0	1	1
390	1	1	0	2	2	1	1	0	0	1	 5	5	4	4	5	4	0	0	0	0
391	1	1	1	3	1	2	1	1	0	0	 2	4	5	3	4	2	1	1	1	1
392	0	0	1	1	1	1	1	0	0	0	 5	5	3	3	3	3	1	1	0	0
393	0	1	1	3	2	3	1	1	0	0	 4	4	1	3	4	5	2	1	1	1
394	1	1	1	1	1	1	1	1	0	0	 3	2	3	3	3	5	1	0	0	0
395 m	ows x 26 co	lumns																		

3. Ход работы:

Для структурного обучения байесовской сети использована библиотека bnlearn. Настройкой по умолчанию в bnlearn для структурного обучения является метод поиска холма (hillclimbsearch) и оценка ВІС. Применение такого метода не показало связей между вершинами графа. Также изучение структуры с более чем 15 узлами вычислительно невозможно при исчерпывающем поиске (exhaustivesearch).

Поэтому в ходе работы рассмотрены Chow-liu и Tree-augmented Naive Bayes (TAN).

Данные поделены на обучающую выборку (train, 0.9) и тестовую (test, 0.1). Используя обучающую выборку, производится структурное обучение байесовской сети.

Chow-liu

B качестве root_node взят 'absences'. Вычислены оценки структуры ['k2', 'bds', 'bic', 'bdeu'] для сравнения моделей (чем выше, тем лучше). В результате для scoretype взят 'k2', т.к.:

```
'structure_scores': {'k2': -11728.583628973223, 'bds': -12692.001852486801, 'bic': -17315.99000937574, 'bdeu': -12449.40033929082}}
```

Полученный граф:

Далее проведен parameter learning и построены CPD. *Таблицы условной вероятности (CPD)* описывают статистические отношения между каждым узлом и его родителями. В данном задании использована Байесовская оценка.

Пример полученного результата (другие CPD представлены в приложении):

Для оценки качества построенной модели прогноза G1 построена матрица ошибок и отчет с указанием accuracy, precision, recall и F-меры:

[[7 2] [2 29]]		11	54	
	precision	recall	f1-score	support
0	0.78	0.78	0.78	9
1	0.94	0.94	0.94	31
accuracy			0.90	40
,				
macro avg	0.86	0.86	0.86	40
weighted avg	0.90	0.90	0.90	40

Посмотрев на полученные значения, например, на f1, можно заметить, что модель хорошо предсказывает и тех, кто сдал, и тех, кто не сдал.

Аналогично построен прогноз и оценено качество для G2:

[[7 2] [0 31]]				
	precision	recall	f1-score	support
0	1.00	0.78	0.88	9
1	0.94	1.00	0.97	31
accuracy			0.95	40
macro avg	0.97	0.89	0.92	40
weighted avg	0.95	0.95	0.95	40

И G3:

	precision	recall	T1-Score	Support
0	1.00	0.60	0.75	10
1	0.88	1.00	0.94	30
			0.00	40
accuracy			0.90	40
macro avg	0.94	0.80	0.84	40
weighted avg	0.91	0.90	0.89	40

Следовательно, можно сделать вывод, что с помощью построенной модели можно делать прогноз G1, G2, G3.

Tree-augmented Naive Bayes (TAN):

Аналогично для TAN.

B качестве class_node взят 'absences'. Вычислены оценки структуры ['k2', 'bds', 'bic', 'bdeu'] для сравнения моделей (чем выше, тем лучше). В pe3yльтате для scoretype B3ЯТ 'k2', T.K.:
 'structure_scores': {'k2': -13082.169609157416,
 'bds': -50533.69073791135,

Полученный граф:

^{&#}x27;bic': -150483.7283041072, 'bdeu': -18545.96041896461}}

Пример CPD:

absences	absences(0)	absences(1)	absences(2)
G2(0)	0.497557003257329	,	0.49085365853658536
G2(1)	•	0.5698360655737705	·

Оценка качества модели:

[[7 2] [2 29]]

[2 29]]	precision	recall	f1-score	support
0 1	0.78 0.94	0.78 0.94	0.78 0.94	9 31
accuracy macro avg weighted avg	0.86 0.90	0.86 0.90	0.90 0.86 0.90	40 40 40

Для G2:

[0 31]]		precision	recall	f1-score	support
	0	1.00	0.89	0.94	9
	1	0.97	1.00	0.98	31
accur	acy			0.97	40
macro	avg	0.98	0.94	0.96	40
weighted	avg	0.98	0.97	0.97	40

Для G3:

Аналогично, можно сделать вывод, что с помощью построенной модели можно делать прогноз G1, G2, G3.

4. Исследование на данных student-por.csv.

Аналогично.

Исходные данные:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	1	1	3	4	0	11	11
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	2	9	11	11
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	6	12	13	12
3	GP	F	15	U	GT3	T	4	2	health	services	 3	2	2	1	1	5	0	14	14	14
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	0	11	13	13
											 •••									
644	MS	F	19	R	GT3	Т	2	3	services	other	 5	4	2	1	2	5	4	10	11	10
645	MS	F	18	U	LE3	Т	3	1	teacher	services	 4	3	4	1	1	1	4	15	15	16
646	MS	F	18	U	GT3	Т	1	1	other	other	 1	1	1	1	1	5	6	11	12	9
647	MS	M	17	U	LE3	T	3	1	services	services	 2	4	5	3	4	2	6	10	10	10
648	MS	М	18	R	LE3	Т	3	2	services	other	 4	4	1	3	4	5	4	10	11	11

Предобработанные данные:

	address	famsize	Pstatus	Medu	Fedu	traveltime	studytime	failures	schoolsup	famsup	•••	famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	1	0	0	4	4	2	1	1	1	0		4	3	4	1	1	3	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1		5	3	3	1	1	3	1	0	1	1
2	1	1	1	1	1	1	1	1	1	0		4	3	2	2	3	3	1	1	1	1
3	1	0	1	4	2	1	0	1	0	1		3	2	2	1	1	5	2	1	1	1
4	1	0	1	3	3	1	1	1	0	1		4	3	2	1	2	5	2	1	1	1
644	0	0	1	2	3	1	0	0	0	0		5	4	2	1	2	5	1	1	1	1
645	1	1	1	3	1	1	1	1	0	1		4	3	4	1	1	1	1	1	1	1
646	1	0	1	1	1	2	1	1	0	0		1	1	1	1	1	5	1	1	1	0
647	1	1	1	3	1	2	1	1	0	0		2	4	5	3	4	2	1	1	1	1
648	0	1	1	3	2	3	1	1	0	0		4	4	1	3	4	5	1	1	1	1
649 ro	ws × 26 co	lumns																			

Chow-liu

```
B качестве root_node B3ЯТ 'absences'. ДЛЯ scoretype B3ЯТ 'k2', Т.К.: 'structure_scores': {'k2': -11688.757355927399, 'bds': -11965.378046580681, 'bic': -11959.818775040096, 'bdeu': -11722.7765333847}}
```


CPD of absences:

+	-++
absences(0)	
+	-++
absences(1)	0.400463
+	-++
absences(2)	0.348064
+	-++

CPD of G1:

+	+	++
failures	failures(0)	failures(1)
G1(0)	0.531986531986532	0.3323232323232323
G1(1)	0.468013468013468	0.6676767676767676
[[5 7] [0 53]]	+	++

	precision	recall	f1-score	support
0 1	1.00 0.88	0.42 1.00	0.59 0.94	12 53
accuracy macro avg weighted avg	0.94 0.90	0.71 0.89	0.89 0.76 0.87	65 65

G2:

G3:

[[7 2] [7 49]] recall f1-score support precision 0 0.50 0.78 0.61 0.96 0.88 0.92 56 0.86 65 0.73 0.83 0.76 0.86 0.87

В данном случае метрики показывают, что прогноз для тех, кто не сдал хуже, но все еще можно использовать.

Tree-augmented Naive Bayes (TAN):

B качестве class_node взят 'absences'. Для scoretype взят 'k2', т.к.:

```
'structure_scores': {'k2': -13275.492263414886,
```

Граф:

^{&#}x27;bds': -13846.776052160521,

^{&#}x27;bic': -14389.69963936256,

^{&#}x27;bdeu': -13564.225302429795}}

CPD:
CPD of G1:

	PD OI G1:						+	
	absences	absenc	es(0)	i	absences	(1)	absences(2)	İ
		•	2970711	29707	0.395165528113505		0.374848851269649	
	, ,		7029288	70292	0.604834	171886495	0.625151148730350	
[[[6 6] [0 53]]	precision						
	0 1	1.00 0.90	0.50 1.00	0.67 0.95				
V	accuracy macro avg weighted avg	0.95 0.92	0.75 0.91	0.91 0.81 0.89	65 65 65			

G2:

[[7 7] [2 49]] precision recall f1-score support 0.78 0.88 0.50 0.96 0.61 14 0.92 51 0.86 0.76 0.85 accuracy macro avg weighted avg 0.83 0.85 0.73 0.86 65

G3:

[[7 2] [1 55]] precision recall f1-score support 0.78 0.88 0.82 0.96 0.98 56 0.97 65 0.95 accuracy macro avg 0.92 0.88 0.90 65 weighted avg 0.95 0.95 0.95

Как можно видеть из полученных результатов, построенные модели можно использовать для прогноза G1, G2, G3.

5. Линейная регрессия Исходные данные student-mat.csv: G1:

[[4 10] [4 22]]	precision	recall	f1-score	support
0	0.50	0.29	0.36	14
1	0.69	0.85	0.76	26
accuracy			0.65	40
macro avg	0.59	0.57	0.56	40
weighted avg	0.62	0.65	0.62	40
G2:				
[[6 7] [3 24]]				
[3 24]]	precision	recall	f1-score	support
0	0.67	0.46	0.55	13
1	0.77	0.89	0.83	27
accuracy			0.75	40
macro avg	0.72	0.68		40
weighted avg	0.74	0.75	0.74	40

G3:

[[3 9] [3 25]]					
		precision	recall	f1-score	support
	0	0.50	0.25	0.33	12
	1	0.74	0.89	0.81	28
accur	acy			0.70	40
macro	avg	0.62	0.57	0.57	40
weighted	avg	0.66	0.70	0.66	40

Как можно видеть, в случае линейной регрессии модель чаще ошибается при определении людей, которые не сдали. Для тех, кто сдал, модель работает хорошо.

Исходные данные student-por.csv:

G1:

[[6 6] [2 51]]				
	precision	recal	l f1-scor	re support
0 1	0.75 0.89	0.5 0.9		
accuracy macro avg weighted avg	0.82 0.87	0.7 0.8		76 65
G2:				
[[7 7] [1 50]]	precision	recall	f1-score	support
0 1	0.88 0.88	0.50 0.98	0.64 0.93	14 51
accuracy macro avg weighted avg	0.88 0.88	0.74 0.88	0.88 0.78 0.86	65 65
G3:				
[[0 9] [2 54]]	precision	recall	f1-score	support
0 1	0.00 0.86	0.00 0.96	0.00 0.91	9 56
accuracy macro avg weighted avg	0.43 0.74	0.48 0.83	0.83 0.45 0.78	65 65 65

Здесь аналогично, модель часто ошибается при определении людей, которые не сдали.

В целом, можно сделать вывод, что Байесовская сеть для исходных данных работает лучше, чем модель линейной регрессии.

Приложение 1. Код

```
# import libraries
! pip install causalnex
!pip install pgmpy
import numpy as np
import pandas as pd
from time import time
from sklearn.metrics import f1 score
import pgmpy.estimators as ests
import os
import random
import warnings
import numpy as np
import pandas as pd
import networkx as nx
import statsmodels
from scipy.io import arff
from scipy.signal. signaltools import centered
import matplotlib.pyplot as plt
import pgmpy.estimators as ests
from pgmpy.models import BayesianNetwork
from pgmpy.metrics import structure score
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean squared error
# warnings.simplefilter("ignore")
!pip install bnlearn
import bnlearn as bn
from sklearn.preprocessing import LabelEncoder
# Learn the DAG using Chow-liu
         = bn.structure learning.fit(struct data, methodtype='cl', ro
ot node='absences', scoretype= 'k2')
# Plot detected DAG
G = bn.plot(model cl)
# Learn the DAG using Tree-augmented Naive Bayes
model tan = bn.structure learning.fit(struct data, methodtype='tan', class
node='absences', scoretype= 'k2')
# Plot detected DAG
G = bn.plot(model tan)
# Read data
# student mat data = pd.read csv("student-mat.csv")
```

```
# data = student mat data
student por data = pd.read csv("student-por.csv")
data = student por data
# data preprocessing
data.notnull()
struct data = data
discretised_data = struct_data.copy()
data vals = {col: struct data[col].unique() for col in struct data.columns
failures map = {v: 'no-failure' if v == [0]
               else 'have-failure' for v in data_vals['failures']}
studytime map = {v: 'short-studytime' if v in [1,2]
                 else 'long-studytime' for v in data_vals['studytime']}
discretised_data["failures"] = discretised_data["failures"].map(failures_m
discretised data["studytime"] = discretised data["studytime"].map(studytim
e_map)
from causalnex.discretiser import Discretiser
discretised data["absences"] = Discretiser(method="fixed",
                          numeric split points=[1, 10]).transform(discreti
sed data["absences"].values)
discretised_data["G1"] = Discretiser(method="fixed",
                          numeric split points=[10]).transform(discretised
data["G1"].values)
discretised_data["G2"] = Discretiser(method="fixed",
                          numeric split points=[10]).transform(discretised
data["G2"].values)
discretised_data["G3"] = Discretiser(method="fixed",
                         numeric split points=[10]).transform(discretised
data["G3"].values)
absences_map = {0: "No-absence", 1: "Low-absence", 2: "High-absence"}
G1 map = {0: "Fail", 1: "Pass"}
G2 map = {0: "Fail", 1: "Pass"}
G3 map = {0: "Fail", 1: "Pass"}
discretised data["absences"] = discretised data["absences"].map(absences m
ap)
discretised data["G1"] = discretised data["G1"].map(G1 map)
discretised_data["G2"] = discretised_data["G2"].map(G2_map)
```

```
discretised data["G3"] = discretised data["G3"].map(G3 map)
G = "G1"
struct data = discretised data.copy()
non numeric columns = list(struct data.select dtypes(exclude=[np.number]).
columns)
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for col in non numeric columns:
    struct data[col] = le.fit transform(struct data[col])
drop col = ['school','sex','age','Mjob', 'Fjob','reason','guardian']
struct_data = struct_data.drop(columns=drop_col)
from sklearn.model selection import train test split
train, test = train test split(struct data, train size=0.9, test size=0.1,
random state=7)
# Learn the DAG using Chow-liu
model cl = bn.structure learning.fit(train, methodtype='cl', root node='ab
sences', scoretype= 'k2')
# Plot detected DAG
G = bn.plot(model cl)
# Parameter learning
model = bn.parameter learning.fit(model cl, train, verbose=3);
# Learn the DAG using Tree-augmented Naive Bayes
# model tan = bn.structure learning.fit(struct data, methodtype='tan', cla
ss node='absences', scoretype= 'k2')
# # Plot detected DAG
# G = bn.plot(model tan)
# # Parameter learning
# model = bn.parameter learning.fit(model tan, train, verbose=3);
Pout = bn.predict(model, test, variables=[G])
# print(Pout)
from sklearn.metrics import classification report, confusion matrix, accur
acy score
predictions = bn.predict(model, test, variables=[G ])[G ]
print("")
print(confusion matrix(test[G], predictions))
print(classification_report(test[G_], predictions))
# Linear Regression
from sklearn import linear_model
```

```
from sklearn.linear model import LinearRegression
# Extract feature columns
feature cols = list(struct data.columns[:-3])
#feature cols
# Extract target column 'passed'
#target col = student data.columns[-3:]
target col G1 = struct data.columns[-3]
target col G2 = struct data.columns[-2]
target col G3 = struct data.columns[-1]
target_col = target_col_G3
#target col
# Separate the data into feature data and target data (X all and y all, re
spectively)
X all = struct data[feature cols]
y_all = struct_data[target_col]
# split the dataset
X train, X test, y train, y test = train test split(X all, y all, test siz
e=0.1, random state=0)
model = LinearRegression().fit(X train, y train)
y pred = model.predict(X test)
print("")
print(confusion_matrix(np.array(y_test), np.rint(y_pred)))
print(classification report(np.array(y test), np.rint(y pred)))
```

Приложение 2. CPD.

```
--+
[bnlearn] >CPD of G2:
+----+
   | G3(0)
               | G3(1)
I G3
+----+
| G2(0) | 0.5854838709677419 | 0.3727891156462585 |
+----+
| G2(1) | 0.41451612903225804 | 0.6272108843537415 |
+----+
[bnlearn] >CPD of failures:
+----+
               | G3(1)
      | G3(0)
I G3
+----+
| failures(0) | 0.482258064516129 | 0.3795918367346939 |
+----+
| failures(1) | 0.5177419354838709 | 0.6204081632653061 |
+----+
[bnlearn] >CPD of G1:
+----+
   | G2(0)
               | G2(1)
| G1(0) | 0.5667189952904239 | 0.3788300835654596 |
+----+
| G1(1) | 0.43328100470957615 | 0.6211699164345403 |
-----+-----
[bnlearn] >CPD of Medu:
+----+
| failures | failures(0) | failures(1)
| Medu(0) | 0.17474048442906576 | 0.13127413127413126 |
| Medu(1) | 0.21107266435986158 | 0.16859716859716858 |
| Medu(2) | 0.21107266435986158 | 0.22651222651222652 |
+----+
| Medu(3) | 0.21453287197231835 | 0.21492921492921493 |
+----+
| Medu(4) | 0.18858131487889274 | 0.25868725868725867 |
+----+
[bnlearn] >CPD of higher:
+----+
| failures | failures(0) | failures(1)
+----+
| higher(0) | 0.45501730103806226 | 0.32947232947232946 |
+----+
| higher(1) | 0.5449826989619377 | 0.6705276705276705 |
+----+
[bnlearn] >CPD of Fedu:
+----+
| Medu | Medu(0)
             | ... | Medu(4)
+----+
| Fedu(0) | 0.19704433497536947 | ... | 0.13225806451612904 |
+----+
| Fedu(1) | 0.2019704433497537 | ... | 0.13225806451612904 |
+----+
| Fedu(2) | 0.20689655172413793 | ... | 0.1774193548387097 |
+----+
| Fedu(3) | 0.19704433497536947 | ... | 0.23870967741935484 |
+----+
| Fedu(4) | 0.19704433497536947 | ... | 0.3193548387096774 |
+----+
[bnlearn] >CPD of internet:
```

+----+

Medu	Medu(0)	Medu(4)
internet(0)	!	79 0.34838709677419355
internet(1)	'	22 0.6516129032258065
[bnlearn] >CPD	'	
Medu	Medu(0)	·
nursery(0)	0.5024630541871922	2 0.36129032258064514
nursery(1)	0.4975369458128079	9 0.6387096774193548
[bnlearn] >CPD	of Pstatus:	
Medu	Medu(0)	Medu(4)
Pstatus(0)		55 0.3548387096774194
Pstatus(1)	0.5073891625615764	0.6451612903225806
[bnlearn] >CPD	of activities:	
Medu	Medu(4)	i
) 0.4709677	
activities(1) 0.5290322	2580645161
[bnlearn] >CPD	of paid:	+
	gher(0)	
1	5163776493256262	0.5047846889952153
	4836223506743738	0.49521531100478466
	of traveltime:	
Fedu	Fedu(4)	i
traveltime(1) 0.3807829	0181494662
traveltime(2) 0.2455516 +	50142348753
traveltime(3) 0.1886120	9964412812
traveltime(4) 0.1850533 +	88078291814
[bnlearn] >CPD	of famsup:	
paid	oaid(0)	
famsup(0)	0.5057971014492754	0.4345864661654135
famsup(1)	0.49420289855072463	3 0.5654135338345865
[bnlearn] >CPD	of address:	
		traveltime(4)
address(0)	0.3242677824267782	23 0.5038759689922481

```
| address(1) | 0.6757322175732218 | ... | 0.49612403100775193 |
+----+
[bnlearn] >CPD of Walc:
+----+
| traveltime | traveltime(1)
                | ... | traveltime(4)
                               +----+
| Walc(1) | 0.28870292887029286 | ... | 0.19767441860465115 |
+----+
| Walc(2) | 0.20711297071129708 | ... | 0.19767441860465115 |
+----+
| Walc(3) | 0.20711297071129708 | ... | 0.1937984496124031 |
+----+
| Walc(4) | 0.1589958158995816 | ... | 0.1937984496124031 |
+----+
      | 0.13807531380753138 | ... | 0.21705426356589147 |
+----+
[bnlearn] >CPD of Dalc:
+----+
    | Walc(1)
                | ... | Walc(5)
+----+
| Dalc(1) | 0.5194029850746269 | ... | 0.1894273127753304 |
| Dalc(2) | 0.12238805970149254 | ... | 0.19823788546255505 |
| Dalc(3) | 0.11940298507462686 | ... | 0.2026431718061674 |
| Dalc(4) | 0.11940298507462686 | ... | 0.19383259911894274 |
| Dalc(5) | 0.11940298507462686 | ... | 0.21585903083700442 |
 [bnlearn] >CPD of goout:
| Walc | Walc(1)
             | ... | Walc(5)
+----+
| goout(1) | 0.16417910447761194 | ... | 0.1762114537444934 |
| goout(2) | 0.25970149253731345 | ... | 0.18502202643171806 |
| goout(3) | 0.24776119402985075 | ... | 0.19383259911894274 |
| goout(4) | 0.191044776119403 | ... | 0.2026431718061674 |
+----+
| goout(5) | 0.1373134328358209 | ... | 0.2422907488986784 |
+----+
[bnlearn] >CPD of studytime:
+----+
    | ... | Walc(5)
| Walc
+-----
| studytime(0) | ... | 0.45374449339207046 |
+----+
| studytime(1) | ... | 0.5462555066079295 |
+----+
[bnlearn] >CPD of schoolsup:
+----+
| Walc | ... | Walc(5)
+----
| schoolsup(0) | ... | 0.5462555066079295 |
+----+
| schoolsup(1) | ... | 0.45374449339207046 |
+----+
[bnlearn] >CPD of health:
+----+
| Dalc | Dalc(1) | ... | Dalc(5) |
```

health(1)	0.1547085201793722		0.19617224880382775
health(2)	0.15022421524663676		0.19138755980861244
health(3)	0.24439461883408073		0.19617224880382775
health(4)	0.18385650224215247		0.21052631578947367
health(5)	0.26681614349775784		0.20574162679425836
[bnlearn] >CI	PD of famsize:		
Dalc	Dalc(1)		Dalc(5)
famsize(0)	0.6524663677130045		0.5167464114832536
famsize(1)	0.3475336322869955		0.48325358851674644
[bnlearn] >Cl	PD of freetime:	+	,
goout	goout(1)		. goout(5)
freetime(1)	0.1981981981981982		. 0.1659919028340081
freetime(2)	0.2027027027027027	1	. 0.17408906882591094
freetime(3)	0.2027027027027027	1	. 0.21862348178137653
freetime(4)	0.2027027027027027	1	. 0.21862348178137653
freetime(5)	0.1936936936936936	9	. 0.22267206477732793
[bnlearn] >CI	PD of famrel:		
health	health(1)		health(5)
famrel(1)	0.17842323651452283		0.13069908814589665
famrel(2)	0.17427385892116182		0.1337386018237082
famrel(3)	0.1908713692946058		0.1762917933130699
famrel(4)	0.23651452282157676		0.3252279635258359
famrel(5)	0.21991701244813278	+	0.23404255319148937

+----+