EDGE DETECTOR

Positive edge detector:

```
Verilog code:
module posedge_detector(
  input wire clk,
  input wire signal_in,
  output reg pos_edge_out
);
  reg signal_d;
  always @(posedge clk) begin
    signal_d <= signal_in;
    pos_edge_out <= signal_in & ~signal_d;
  end
endmodule</pre>
```

Waveform:

RTL analysis:

Synthesis schematic:

Look Up Table:

Cell Properties						
pos_edge_out_i_1						
11	10	O=I0 & !I1				
0	0	0				
0	1	1				
1	0	0				
1	1	0				

Both edge detector:

```
Verilog code:
module both_edgedetector (
  input wire clk,
  input wire signal_in,
  output reg pos_edge_out,
  output reg neg_edge_out
);
  reg signal_d;
  always @(posedge clk) begin
    signal_d <= signal_in;
    pos_edge_out <= signal_in & ~signal_d;
    neg_edge_out <= ~signal_in & signal_d;
  end</pre>
```

Waveform:

endmodule

RTL schematic:

Synthesis schematic:

Look Up Table:

Cel	Pro	perties	
r	neg_e	edge_out_i_1	
11	10	O=I0 & !I1	
0	0	0	
0	1	1	
1	0	0	
1	1	0	