A Deeper Look at Data Modeling

Shan-Hung Wu & DataLab CS, NTHU

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoiding redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoiding redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

users

id	name	karma
729	Bob	35
730	John	0

- Street, city, etc.
- Each user may have multiple addresses
 - Home, office, etc.

posts

id	text	ts	authorld
33981	'Hello DB!'	1493897351	729
33982	'Show me code'	1493904323	812

- How to reflect:
 - Home and office addresses?
 - Address exists only when it owner (user) exists?

users

<u>id</u>	name	karma
729	Bob	35
730	John	0

addresses

<u>id</u>	userId	street	city
4356	729	'X Rd.'	'New York'
4357	729	'Y Rd.'	'LA'

posts

<u>id</u>	text	ts	authorld
33981	'Hello DB!'	1493897351	729
33982	'Show me code'	1493904323	812

- How to reflect:
 - Home and office addresses?
 - Address exists only when it owner (user) exists?

users

<u>id</u>	name	karma
729	Bob	35
730	John	0

addresses

<u>userId</u>	<u>type</u>	street	city
729	'home'	'X Rd.'	'New York'
729	'office'	'Y Rd.'	'LA'

- How to reflect:
 - Home and office addresses?
 - Address exists only when it owner (user) exists?

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoiding redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

Modeling Inheritance

- Suppose you have employees in your model
- How to model special types of employees?
 - Contracted: contractId
 - Hourly: wage, workHours

Modeling Inheritance (1/2)

employees

<u>id</u>	name	department	type	wage	workHours	contractId
729	Bob	'R&D'	Hourly	\$10	4	NULL
730	John	'Sales'	Hourly	\$20	16	NULL
834	Steven	'R&D'	Contract	NULL	NULL	3004
878	Chris	'Sales'	Contract	NULL	NULL	2045

- Union columns
- Cons:
 - Null values
 - Schema changes when defining new emp. types

employees

<u>id</u>	name	department
729	Bob	'R&D'
730	John	'Sales'

Modeling Inheritance (2/2)

contractEmployees

<u>eld</u>	contractId	
834	\$10	
878	\$20	

hourlyEmployees

<u>eld</u>	wage	workHours
729	\$10	4
730	\$20	16

- No nulls; less schema changes
- Cons:
 - Join queries
 - If a superclass tuple is deleted, needs cascade deleting subclass tuple

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoiding redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

How Good Are Your Data?

- Let's say, if you want to track the topics of a blog page
- Is this a good table?

blog_pages

blogId	url	created	authorld	topic	topicAdmin
33981	ms.com/	2012/10/31	729	programming	5638
33981	ms.com/	2012/10/31	729	db	5649
33982	apache.org/	2012/11/15	4412	programming	5638
33982	apache.org/	2012/11/15	4412	os	7423

Insertion Anomaly

blog_pages

blogId	url	created	authorld	topic	topicAdmin
33981	ms.com/	2012/10/31	729	programming	5638
33981	ms.com/	2012/10/31	729	db	5649
33982	apache.org/	2012/11/15	4412	programming	5638
33982	apache.org/	2012/11/15	4412	os	7423

33983	apache.org/	2013/02/15	7412	

Update Anomaly

blog_pages

			topicAdmin
2012/10/31	729	win prog.	5638
2012/10/31	729	db	5649
2012/11/15	4412	programming	5638
2012/11/15	4412	os	7423
	2012/10/31	2012/10/31 729 2012/11/15 4412	2012/10/31 729 db 2012/11/15 4412 programming

 If you forget to update all duplicated cells, you get inconsistent data

Deletion Anomaly

blog_pages

blogId	url	created	authorId	topic	topicAdmin
33981	ms.com/	2012/10/31	729	programming	5638
33981	ms.com/	2012/10/31	729	db	5649
33982	apache.org/	2012/11/15	4412	programming	5638
33982	apache.org/	2012/11/15	4412	os	7423

 Deleting topics force you to delete the blog fields too

16

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoid redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

Functional Dependency (FD)

- FD: X □ Y
 - If two tuples agree in X, then they agree in Y
- What are the FDs for blog_pages?
 - blogId □ ... (key-based)
 - topic □ topicAdmin (non key-based)

blog_pages

blogId	url	created	authorld	topic	topicAdmin
33981	ms.com/a	2012/10/31	729	programming	5638
33982	ms.com/b	2012/11/31	732	db	5649
33983	apache.org/	2012/12/15	1312	programming	5638
33984	wiki.org/	2013/1/15	4345	os	7423

Non Key-based FDs

- The root cause of anomalies
- Data redundancy
- Inconsistency

blog_pages

blogId	url	created	authorld	topic	topicAdmin
33981	ms.com/a	2012/10/31	729	win prog.	5638
33982	ms.com/b	2012/11/31	732	os	5649
33983	apache.org/	2012/12/15	1312	programming	5638
33984	wiki.org/	2013/1/15	4345	os	7423

- More about ER & Relational Models
 - Weak Entities
 - Inheritance
- Avoid redundancy & inconsistency
 - Functional Dependencies
 - Normal Forms

Keys

- Super key: an attribute or set of attributes that uniquely identifies a tuple within a relation
- Candidate key: a super key such that no proper subset is a super key within the relation
 - An attribute that does not occur in any candidate key is called a *non-prime attribute*
- **Primary key**: the candidate key that is selected to identify tuples uniquely within the relation
 - Candidate keys which are not selected as PK are called alternate keys

Example

Candidate keys

blog_n	agos				1	
<u>blogld</u>	url		created	authorld	topic	topicAdmin
33981	ms.com/a.		2012/10/31	729	programming	5638
33982	ms.com/b.		2012/11/31	732	db	5649
33983	apache.org	<u>;</u> /	2012/12/15	1312	programming	5638
33984	wiki.org/	•	2013/1/15	4345	os	7423

Normal Forms

- 1st normal form:
 - Single-valued columns
- 2nd normal form:
 - All fields depends on the primary key
- BCNF normal form:
 - For every FD X □ Y, X is a super key
- 3rd normal form:
 - For every FD X
 \[
 \bigcup Y, X is a super key or Y is a prime attribute
 \]
 - Weaker than BCNF

3rd Normal Form?

blog n	2000				
blogId	url	created	authorId	topic	topicAdmin
33981	ms.com/a	2012/10/31	729	programming	5638
33982	ms.com/b	2012/11/31	732	db	5649
33983	apache.org/	2012/12/15	1312	programming	5638
33984	wiki.org/	2013/1/15	4345	os	7423

- FD: topic □ topicAdmin
 - Topic is not a superkey
 - TopicAdmin is not a prime attribute
- No!

Solution

blog_pages

blogId	url	created	authorld	topicId
33981	ms.com/a	2012/10/31	729	123
33982	ms.com/b	2012/11/31	732	456
33983	apache.org/	2012/12/15	1312	123
33984	wiki.org/	2013/1/15	4345	456

topics

topicId	name	admin
123	programming	5638
234	os	7423
456	db	5649
789	alg	7324

- Move non key-based
 FDs to new tables
- Avoids redundancy & inconsistency

BCNF Normal Form

Recall student DB:

Let's modify "sections" relation like this:

C	C	tı	0	n	C
J	U	LI	V		

<u>courseld</u>	<u>profld</u>	profEmail	
13	271	shwu@cs	
13	283	jerry@cs	

 Suppose each course needs to be taught by different professors in different years

BCNF Normal Form (2/2)

Candidate keys:

- "sections" is in 3rd normal form
 - FDs:
 - profId □ profEmail, and profEmail is a prime attribute
 - profEmail □ profId, and profId is a prime attribute
- But not in BCNF normal form!
 - profld/proEmail is not a super key

Solution

sections

<u>courseld</u>	<u>profld</u>	
13	271	
13	283	

professors

<u>profld</u>	profEmail	
271	shwu@cs	•••
283	jerry@cs	

 BCNF normal form makes the 1-1 mapping between profId and profEmail explicit

Normalized ≠ Well-Designed

- Norm forms help reducing redundancy & avoiding inconsistency
- Costs
 - Slower query speed due to Joins
 - Hard-to-partition data on multiple machines
- In practice, it's common to to deliberately denormalize a schema
 - Will be covered in NoSQL lecture

Assigned Reading

- Chaps 2 and 3 on ER & relational models
- Chap 19 on FDs and normal forms

