JC20 Rec'd PCT/PTO 0 5 JUL 2005

DOCKET NO.: 273721US2PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Oleksiy VYSHNEVSKYY, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP03/14077 INTERNATIONAL FILING DATE: December 11, 2003

FOR: METHOD FOR OPERATING A PIEZOELECTRIC MOTOR, AND A PIEZOELECTRIC MOTOR HAVING A STATOR IN THE FORM OF A HOLLOW-CYLINDRICAL OSCILLATOR

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY	APPLICATION NO	DAY/MONTH/YEAR	
Germany	103 00 266.9	08 January 2003	
Germany	103 14 810.8	01 April 2003	

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP03/14077.

> Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number

22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03)

Marvin J. Spivak

Attorney of Record Registration No. 24,91

Surinder Sachar

James D. Hamilton Registration No. 34,423 Registration No. 28,421

PCTIEP 03/14 077 BUNDESREPUBLIK DEUTSCHLAND 16.02.04

RECEIVED 27 FEB 2004

WIPO

PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 00 266.9

Anmeldetag:

08. Januar 2003

Anmelder/Inhaber:

Physik Instrumente (PI) GmbH & Co KG,

76228 Karlsruhe/DE

Bezeichnung:

Verfahren zum Betreiben eines piezoelektrischen Motors sowie piezoelektrischer Motor mit einem

Stator in Form eines hohlzylindrischen Oszillators

IPC:

H 02 N 2/12

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 29. Januar 2004 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

Hintermeiet

MEISSNER, BOLTE & PARTNER

Anwaltssozietät GbR Postfach 860624 81633 München

Physik Instrumente (PI) GmbH & Co. KG Auf der Römerstraße 1 76228 Karlsruhe

5

15

20

7. Januar 2003 M/PHY-036-DE MB/KR/kh

Verfahren zum Betreiben eines piezoelektrischen Motors sowie piezoelektrischer Motor mit einem Stator in Form eines hohlzylindrischen Oszillators

Beschreibung

Die Erfindung betrifft ein Verfahren zum Betreiben eines piezoelektrischen Motors mit einem Stator in Form eines hohlzylindrischen Oszillators, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht sowie Stehwellengeneratoren gemäß Oberbegriff des Patentanspruchs 1, einen piezoelektrischen Motor mit einem Stator in Form eines hohlzylindrischen Oszillators, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht und welcher Stehwellengeneratoren gemäß Oberbegriff des Patentanspruchs 4 aufweist.

Aus der US-PS 5,654,604 sind piezoelektrische Ultraschallmotoren bekannt, deren Funktionsweise auf der Anregung dünner metallischer Resonatoren beruht, in denen Biegewellen erzeugt werden.

Zur Anregung von Biegewellen wird bei derartigen Motoren an einen metallischen Resonator eine dünne piezoelektrische Scheibe, bevorzugt durch Kleben befestigt. Ein wesentlicher Nachteil dieser Motoren besteht darin, daß aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten der piezoelektrischen Scheibe einerseits und des metallischen Resonators andererseits es quasi unmöglich ist, eine starre Verbindung zu erreichen. Aufgrund dessen wird eine solche Verbindung mittels eine gewisse Restelastizität aufweisender Epoxidklebstoffe durchgeführt, um die Unterschiede in den Ausdehnungskoeffizienten zu kompensieren. Eine solche Verbindung verschlechtert jedoch die akustische Kopplung zwischen dem metallischen Resonator und der piezoelektrischen Scheibe, wodurch die Oszillatorleistung begrenzt ist und

10

15

20

30

35

die mechanischen Verluste des Motors steigen. Aufgrund des Einflusses der Ultraschallenergie auf den Klebstoff besteht die Gefahr, daß dieser sich in seiner Viskosität verändert, mit der Folge, daß sich die Schwingungseigenschaften des Motors verschlechtern. Aus den vorstehend genannten Gründen haben derartig ausgebildete Motoren nur eine begrenzte mechanische Leistung, eine geringe Betriebsdauer und damit insgesamt unbefriedigende praktische Eigenschaften.

Bekannt sind auch piezoelektrische Ultraschallmotoren, deren Funktionsweise auf der Anregung in einem monolithischen, zylinderförmigen piezoelektrischen Resonator laufender Dehnungswellen beruht. Verwiesen sei hier beispielsweise auf die US-PS 5,872,418.

Da bei solchen Motoren der gesamte Resonator aus einem piezoelektrischen Material ausgeführt ist, treten Probleme aufgrund unterschiedlicher Ausdehnungskoeffizienten nicht auf. Nachteilig bei den Dehnungswellen nutzenden Ultraschallmotoren ist jedoch die Tatsache, daß alle Punkte des Oszillators annähernd die gleiche Schwinggeschwindigkeit besitzen. Dies bedeutet eine gleichmäßige Verteilung der im Oszillator gespeicherten Energie über das gesamte Volumen, wodurch es zu unnötigen Verlusten aufgrund innerer Reibung der Punkte kommt, die nicht in unmittelbarer Nähe der Oszillator-Friktionsflächen liegen. Außerdem existieren auf der Oszillatoroberfläche derartiger Motoren keine Bereiche, auf denen die Schwinggeschwindigkeit Nullwerte annimmt. Dies bedeutet, daß es nahezu unmöglich ist, den Oszillator eines solchen Motors gegenüber einem Gehäuse starr zu befestigen. Deshalb wird eine Befestigung über gummiartige, elastische Materialien vorgenommen, die sich aber aufgrund des Ultraschalleinflusses erwärmen. Selbiges führt zu Energieverlusten und zur Erwärmung des gesamten Motors.

Die Berührung der elastischen Fixierung mit dem schwingenden Oszillator verringert außerdem die mechanische Güte, wodurch eine höhere Anregungsspannung notwendig wird. Die erforderliche elastische Nachgiebigkeit der Befestigungsanordnung verhindert die absolut starre Fixierung des Stators gegenüber einem Gehäuse und verkompliziert die Phasencharakteristiken solcher Motoren, wodurch ihr Einsatz in Systemen zum Zweck der Fein- und Mikropositionierung schwieriger und kostenintensiver wird.

10

15

20

30

35

Aus dem Vorstehenden ist es daher Aufgabe der Erfindung, ein weiterentwickeltes Verfahren zum Betreiben eines piezoelektrischen Motors mit einem Stator in Form eines hohlzylindrischen Oszillators anzugeben, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht, und wobei Stehwellengeneratoren Anwendung finden. Weiterhin ist es Aufgabe der Erfindung, einen piezoelektrischen Motor mit einem Stator in Form eines hohlzylindrischen Oszillators zu schaffen, wobei die Energieverluste sowohl im Oszillator als auch in der Befestigungsvorrichtung des Oszillators bzw. des Motors gering gehalten werden sollen. Aufgabengemäß ist die Erregerspannung für derartige Motoren zu senken und für eine verbesserte Phasencharakteristik Sorge zu tragen.

Die Lösung der Aufgabe der Erfindung erfolgt verfahrensseitig mit der Lehre nach Patentanspruch 1 sowie bezogen auf den piezoelektrischen Motor mit der Merkmalskombination nach Patentanspruch 4, wobei die Unteransprüche mindestens zweckmäßige Ausgestaltungen und Weiterbildungen umfassen.

Demnach liegt der Grundgedanke der Erfindung darin, den hohlzylindrischen Oszillator mit einem neuen Typ einer akustischen Welle anzuregen, welche gekoppelte, tangential-axiale Schwingungsmode umfaßt. Die Oszillatorabmessungen sind so gewählt und die Anregungsvorrichtung ist derartig ausgestaltet, daß eine solche Verteilung der Schwinggeschwindigkeiten der akustischen Welle auf dem Umfang des Oszillators und entlang seiner Höhe erreicht wird, bei der die im Oszillator zirkulierende Schwingungsenergie sich an den im Friktionskontakt mit dem Rotor stehenden Stirnflächen des Oszillators konzentriert und in der Mitte der Oszillatorlänge bzw. Oszillatorhöhe eine Knotenlinie minimaler Schwinggeschwindigkeiten verläuft. An dieser Knotenlinie mit minimalen Schwinggeschwindigkeiten kann dann eine starre Befestigung, z.B. zu einem Motorgehäuse vorgenommen werden.

Es besteht also der zu schaffende piezoelektrische Ultraschallmotor aus einem hohlzylindrischen Oszillator mit mindestens einer in Friktionskontakt mit einem Rotor stehenden Stirnseite. Außerdem enthält der Oszillator Generatoren akustischer Stehwellen, wobei jeder von diesen Generatoren ein

10

15

20

30

35

Generator solcher akustischer Stehwellen ist, die eine gekoppelte, tangentialaxiale Schwingung des Oszillatorkörpers darstellen, wobei die tangentiale
und die axiale Schwingkomponente jeweils gleiche Phasenlage besitzen, die
tangentialen Schwinggeschwindigkeits-Maxima sich an den Oszillatorstirnseiten befinden und die axialen Schwinggeschwindigkeits-Maxima etwas
unterhalb dieser Oszillatorstirnseiten verlaufen. Mit zunehmender Entfernung
von den Oszillatorstirnseiten in axialer Richtung werden die beiden Schwinggeschwindigkeiten immer kleiner, wobei in der Mitte der Höhe des hohlzylindrischen Oszillatorkörpers und parallel zu den Oszillatorstirnseiten eine
Knotenlinie verläuft, auf der die axialen Schwinggeschwindigkeiten den Wert
Null annehmen und die tangentialen Schwinggeschwindigkeiten ein Minimum
erreichen.

Weiterhin wird der Oszillatorkörper abwechselnd durch axial verlaufende Knotenlinien geteilt, in denen jeweils die tangentialen oder die axialen Schwinggeschwindigkeitswerte Null erreichen.

Mit anderen Worten wird der Hohlzylinder des piezoelektrischen Motors in eine gekoppelte tangential-axiale Schwingungsmode versetzt, wobei der Zylinder überwiegend tangentiale und axiale Schwingungskomponenten gleicher Phase aufweist. Die Anregung des Oszillators erfolgt derart, daß sich die Schwinggeschwindigkeits-Maxima der tangentialen Komponenten an den Stirnseiten des Hohlzylinders und diejenigen der axialen Komponenten darunter ausbilden, wobei, wie vorerwähnt, zur Mitte der Zylinderhöhe die Komponenten abnehmen und in der Mitte der Zylinderhöhe im wesentlichen parallel zu den Stirnseiten eine Knotenlinie entsteht, auf der die axiale. Schwingungskomponente den Wert Null sowie die tangentialen Komponenten ein Minimum annehmen.

Die Anregung erfolgt mit einer Frequenz, die der Oszillatorresonanzfrequenz entspricht und bei der sich eine stehende Welle der gekoppelten tangentialaxialen Schwingungsmode ausbildet.

Da im Oszillator des erfindungsgemäßen Motors eine solche akustische Welle angeregt wird, deren Schwinggeschwindigkeits-Maxima sich an den mit dem Rotor in Friktionskontakt stehenden Oszillatorstirnseiten befinden und die Schwinggeschwindigkeits-Minima im mittleren Oszillatorteil verlaufen, konzentriert sich die kinetische Energie des Oszillators in der Nähe der Oszillatorstirnseiten, also dort, wo sie zum Antreiben des Rotors benötigt wird.

5

Durch die vorstehend beschriebenen Maßnahmen werden die Verluste auf ein vertretbares Maß der inneren Reibung verringert. Hierdurch reduziert sich auch die unerwünschte Erwärmung des hohlzylindrischen Oszillatorkörpers.

15

10

Weiterhin wird es möglich, wie bereits angedeutet, im mittleren Teil des Oszillators eine Befestigungsvorrichtung anzuordnen, die den Oszillator, d.h. den hohlzylindrischen Körper nicht belastet. Ein zu höheren Energieverlusten führender mechanischer Widerstand durch diese Befestigungsvorrichtung liegt nicht vor. Dadurch kann die zur Anregung des Oszillators notwendige elektrische Spannung reduziert werden.

Der piezoelektrische Motor nach der Erfindung kann in verschiedenen Ausführungsformen realisiert werden.

20 B

Bei einer ersten Ausführungsform ist der Oszillator, d.h. der hohlzylindrische Körper als monolithischer piezoelektrischer Körper ausgebildet, auf dessen Mantelfläche sich eine oder mehre Elektroden befinden.

Zusammen mit der, z.B. auf der Mantelinnenfläche liegenden gemeinsamen Bezugselektrode und der dazwischen befindlichen Piezokeramik wird ein Generator akustischer Stehwellen gebildet.

Eine solche erste Ausführungsform des erfindungsgemäßen Motors ermöglicht minimale Abmessungen.

30

Bei einer zweiten Ausführungsform kann der Oszillator als ein monolithischer, nicht piezoelektrischer Körper ausgebildet werden. Die Generatoren akustischer Stehwellen sind bei dieser Ausführungsform als starre mit dem Oszillator verbundene Piezoelemente ausgestaltet.

Bei einer derartigen Variante können Motoren größerer Abmessungen und größerer Leistungen realisiert werden.

Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Motors beseht darin, daß der Oszillator zwei, räumlich um ein Viertel der Wellenlänge verschobene Stehwellengeneratoren enthält.

Die elektrische Anregung der Generatoren erfolgt dann zweiphasig mit einer Phasenverschiebung von 90°. Bei dieser Anregungsform wird im Oszillator eine laufende Welle erzeugt und der Rotor bekommt eine, der laufenden Welle entgegengesetzte Bewegungsrichtung. Bei einer solchen Konstruktion

besteht die Möglichkeit, zweiphasige Wanderweilenmotoren zu schaffen.

Ebenso ist es möglich, den erfindungsgemäßen Piezomotor so aufzubauen, daß der Oszillator drei, räumlich um ein Drittel der Wellenlänge verschobene Stehwellengeneratoren enthält.

Die elektrische Anregung der Generatoren wird dann dreiphasig mit einer Phasenverschiebung von 120° gewählt. Auch auf diesem Wege wird im Oszillator eine laufende Welle erzeugt und es bekommt der Rotor eine, der laufenden Welle entgegengesetzte Bewegungs- bzw. Drehrichtung. Diese Variante schafft die Möglichkeit der Realisierung von dreiphasigen Wander-

wellenmotoren.

Letztendlich besteht die Möglichkeit, den erfindungsgemäßen Motor so zu gestalten, daß der Oszillator mindestens eine Gruppe gleichnamiger Generatoren akustischer Stehwellen enthält. Die Generatoren sind gegeneinander räumlich um eine Häfte der Wellenlänge verschoben und an die elektrische Erregerquelle angeschlossen.

Die Oszillatorhöhe ist bei dieser Ausführungsform so gewählt, daß gleichzeitig mit der tangential-axialen Oszillatorschwingung auch longitudinale Schwingungen des Oszillators auftreten. Die Überlagerung beider Schwingungsformen veranlaßt die Punkte, die an den Stirnseiten des Oszillators liegen, zum Ausführen elliptischer Bewegungen. Hierdurch kann in einfacher Weise ein piezoelektrischer Stehwellenmotor geschaffen werden.

30

Die Erfindung soll nachstehend anhand von Ausführungsbeispielen sowie unter Zuhilfenahme von Figuren näher erläutert werden.

Hierbei zeigen:

5

- Fig. 1 eine Explosivdarstellung einer Ausführungsform eines erfindungsgemäßen Piezomotors mit hohlzylindrischem Oszillator;
- Fig. 2 eine Oszillatoranordnung zur Anregung einer ersten Schwingungs-10 mode;

15

Fig. 3 Darstellungen der ersten Schwingungsmode;

Fig. 4 eine Oszillatoranordnung zur Anregung der zweiten Schwingungsmode;

Fig. 5 Darstellungen des Verlaufs der zweiten Schwingungsmode;

Fig. 6 eine Oszillatoranordnung zur Anregung der dritten Schwingungs-20 mode;

Fig. 7 Darstellungen der Ausbildung der dritten Schwingungsmode;

- Fig. 8 eine Detaildarstellung des Oszillators aus einem nicht piezoelektrischen Körper mit darauf angeordneten Piezoaktoren;
- Fig. 9 einen Verlauf der Bewegungsbahnen von an den Oszillatorstirnseiten liegenden Punkten bei Anregung einer Stehwelle;
- 30 Fig. 10 eine Oszillatorausbildung für einen Zweiphasenmotor;
 - Fig. 11 eine beispielhafte elektrische Beschaltung für einen Zweiphasenmotor;
- 35 Fig. 12 eine Ausführungsform eines Oszillators für einen Dreiphasenmotor;

- Fig. 13 eine beispielhafte elektrische Beschaltung für einen Dreiphasenmotor;
- 5 Fig. 14 Bewegungsbahnen der an den Oszillatorstirnseiten befindlichen Punkte bei Anregung einer Wanderwelle;
 - Fig. 15 Bewegungsbahnen der an den Oszillatorstirnseiten liegenden Punkte bei gleichzeitiger Anregung tangential-axialer Schwingungen und longitudinaler Schwingungen;
 - Fig. 16 eine Ausführungsform eines Oszillators für einen Einphasenmotor sowie
- 15 Fig. 17 eine beispielhafte elektrische Beschaltung für einen Einphasen- motor.
- Der in der Fig. 1 gezeigte piezoelektrische Ultraschallmotor umfaßt einen mit mindestens einer seiner Friktionsseite 3 in Friktionskontakt mit dem Rotor 4 stehenden Stator 1.
 - Der Oszillator 2 umfaßt Stehwellengeneratoren 5 sowie die auf die Oszillatorstirnseiten 7 aufgebrachten jeweiligen Friktionsschichten 6.
 - Die Befestigung des Oszillators 2 gegenüber einem nicht gezeigten Motorgehäuse wird mit Hilfe einer Halterung 8 realisiert.
- Der Rotor 4 enthält Friktionsscheiben 9, die mit Hilfe elastischer Elemente 10 an den Oszillator 2 angepreßt werden. Diese elastischen Elemente 10 können beispielsweise metallische Federelemente oder Kunststoff-Federn, die nach Art einer Tellerfeder ausgebildet sind, sein.
 - Der Rotor 4 enthält außerdem die an der Welle 12 angeordneten Zentrierbuchsen 11 sowie Lager 13.

Fig. 2 zeigt einen als monolithischen, piezoelektrischen, radial polarisierten Hohlzylinderkörper 14 ausgeführten Oszillator 2 des erfindungsgemäßen Motors, bei dem der Durchmesser D seiner Umfangsmittellinie L ungefähr gleich der Höhe H und die Umfangsmittellinie L gleich der auf dem Oszillatorumfang angeregten Wellenlänge λ ist.

Aus Verständlichkeitsgründen und zum leichteren Illustrieren der Anregungsweise sowie der Wellenform ist dieser Oszillator nur mit einem Generator 5 ausgestattet. Der Generator 5 wird durch die Anregungselektrode 15, die auf der äußeren Mantelfläche liegt, die gemeinsame Bezugselektrode 16, die auf der inneren Mantelfläche liegt, sowie dem Bereich der dazwischen liegenden polarisierten Piezokeramik gebildet. Die Länge der Anregungselektrode 15 ist gewöhnlich gleich oder kleiner als die halbe Wellenlänge λ .

Mit Hilfe der Fig. 3, Position 17, sei das Verformungsbild des Oszillators beim Anregen nur einer Stehwelle der gekoppelten tangential-axialen Schwingungen mit Hilfe nur eines Generators 5 illustriert.

Die Umfangsmittellinie L entspricht der Wellenlänge λ der im Oszillator
20 angeregten Welle, d.h. im Oszillator wird die erste gekoppelte tangentialaxiale Schwingungsmode angeregt.

75

30

5

10

Die Positionen 18 und 19 zeigen die Verteilung der tangentialen und axialen Schwinggeschwindigkeiten für diesen in Position 17 gezeigten Fall.

Beim Anregen des Oszillators 2 der ersten gekoppelten tangential-axialen Schwingungsmode bilden sich an den Oszillatorstirnseiten 7 abwechselnd die Maxima 20 und die Minima 21 der tangentialen Schwinggeschwindigkeiten aus. Außerdem entsteht an den Mantelflächen des Oszillators eine Knotenlinie 22, die sich annähernd in der Mitte der Oszillatorhöhe befindet und parallel zu den Stirnoberflächen verläuft. Auf dieser Knotenlinie nehmen die tangentialen Schwinggeschwindigkeiten ihren minimalen und die axialen Schwinggeschwindigkeiten den Nullwert an.

Die Mantelflächen des Oszillators 2 werden außerdem abwechselnd durch vier axial verlaufende Knotenlinien 23, 24 geteilt, auf denen die tangentialen und axialen Schwinggeschwindigkeiten ihren Nullwert annehmen.

- Die Fig. 4 stellt einen Oszillator 2 des vorgeschlagenen Motors dar, bei dem der Durchmesser D seiner Umfangsmittellinie L ungefähr gleich 2H ist und wobei die Umfangsmittellinie L den Wert 2λ einnimmt. Dieser Oszillator ist mit zwei Stehwellengeneratoren 5 ausgestattet.
- 10 Fig. 5, Position 25 zeigt nun das Verformungsbild des Oszillators 2 gemäß
 Fig. 4 beim Anregen nur einer Stehwelle der gekoppelten tangential-axialen
 Schwingungen mit Hilfe von zwei Generatoren 5.
- Die Umfangsmittellinie L ist hier gleich 2λ, d.h. im Oszillator wird die zweite gekoppelte tangential-axiale Schwingungsmode angeregt. Die Positionen 26 und 27 zeigen die Verteilung der tangentialen und axialen Schwinggeschwindigkeiten für diesen Fall.
- Fig. 6 betrifft einen Oszillator 2 des erfindungsgemäßen Motors, bei dem der Durchmesser D seiner Umfangsmittellinie L ungefähr gleich 3H ist und wobei die Umfangsmittellinie L den Wert 3λ einnimmt. Dieser Oszillator weist drei Stehwellengeneratoren 5 auf.
- Fig. 7, Position 28 demonstriert nun das Verformungsbild des Oszillators nach Fig. 6 beim Anregen mit nur einer Stehwelle der gekoppelten tangential-axialen Schwingungen mit Hilfe von drei Generatoren 5. Die Umfangsmittellinie L ist hier gleich 3λ, d.h. im Oszillator wird die dritte gekoppelte tangential-axiale Schwingungsmode angeregt.
- 30 Die Positionen 29 und 30 zeigen die Verteilung der tangentialen und axialen Schwinggeschwindigkeiten für diesen Fall. Nach dem gleichen Prinzip können mittels der Oszillatoren auch höhere Moden angeregt werden.
 - Gemäß der Darstellung nach Fig. 8 ist der Oszillator 2 als ein nicht piezoelektrischer Körper 31 ausgeführt, der z.B. aus Metall, Keramik, Glas oder

einem ähnlichen Werkstoff besteht. Dieser Körper 31 weist mit ihm starr verbundene Piezoelemente 32 auf. Die Piezoelemente 32 können in Form piezoelektrischer Platten 33 mit Elektroden 34 ausgeführt werden oder eine andere Form aufweisen.

5

Fig. 9 dient der Erläuterung der Bewegungsbahnen von Punkten an den Oszillatorstirnseiten 7, bei Anregung der gekoppelten tangential-axialen Schwingungsmode. Das Maß S bestimmt dabei den Anordnungsbereich des Generators 5.

10

Fig. 10 offenbart eine Variante des Oszillators 2 eines zweiphasigen Wanderwellenmotors unter Ausnutzung der gekoppelten tangential-axialen Schwingungsmode. Dieser Oszillator weist mindestens zwei Generatoren 5 auf, die gegeneinander räumlich um $\lambda/4$ der angeregten Wellenlänge versetzt sind.

15

20

Zum Betreiben eines solchen Motors erfolgt die elektrische Anregung der Generatoren 5 mit einer Phasenverschiebung von 90°, wodurch im Oszillator 2 eine laufende Welle der gekoppelten tangential-axialen Schwingungen erzeugt wird. Bei entsprechend geänderten konstruktiven Varianten des Motors kann der Oszillator 2 mit mehreren Generatorpaaren 5 ausgestattet werden, die gegeneinander um $\lambda/4$ versetzt und parallel verschalten sind. Hierbei ist die Länge der Umfangsmittellinie L ein ganzes Vielfaches von λ , d.h. $L=k\lambda$ mit k=20 mit k=30 mit

25

30

35

Die Beschaltung eines zweiphasigen Oszillators 2 mit einer zweiphasigen Anregungsquelle 35 zeigt die Fig. 11. Die Quelle 35 weist zwei Ausgänge 36 und 37 auf, die mit der anzuregenden Elektrode 15 des Generators 5 verbunden sind. Weiterhin besitzt die Quelle 35 einen gemeinsamen Ausgang 38, der mit der gemeinsamen Bezugselektrode 16 verbunden ist. Die Quelle 35 stellt zwei um 90° phasenverschobene elektrische Spannungen bereit.

Fig. 12 stellt eine Variante eines Oszillators 2 eines dreiphasigen Wanderwellenmotors unter Ausnutzung der gekoppelten tangential-axialen Schwingungsmode dar. Spannungen bereit.

Dieser Oszillator ist mit mindestens drei Generatoren 5 ausgestattet, die gegeneinander räumlich um $\lambda/3$ der angeregten Wellenlänge versetzt sind. Die elektrische Anregung der Generatoren 5 weist eine Phasenverschiebung von 120° auf, wodurch im Oszillator 2 eine laufende Welle erzeugt wird. Bei unterschiedlichen Konstruktionsvarianten des Motors kann der Oszillator 2 mit mehreren Generatorpaaren 5 ausgestattet werden, die jeweils gegeneinander um $\lambda/3$ versetzt und parallel geschaltet sind.

Die Schaltungsanordnung nach Fig. 13 dient der Ansteuerung eines dreiphasigen Oszillators 2 mit einer dreiphasigen Anregungsquelle 39.

Die Quelle 39 weist drei Ausgänge 40, 41 und 42 auf, die mit der Anregungselektrode 15 des Generators 5 verbunden sind, und besitzt außerdem einen
gemeinsamen Ausgang 43, der mit der Bezugselektrode 16 in Kontakt steht.

Die Erregerquelle stellt drei um 120° phasenverschobene elektrische

Elliptische Bewegungsbahnen der Oszillatoroberfläche 7 bei der Anregung einer laufenden Welle der gekoppelten tangential-axialen Schwingungen zeigt Fig. 14.

20

5

Fig. 15 stellt elliptische Bewegungsbahnen der Oszillatoroberfläche 7 bei gleichzeitiger Anregung einer stehenden Welle der gekoppelten tangential-axialen Schwingungen und der longitudinalen Schwingungen des Oszillators dar.

Bei dieser Ausführungsvariante des Oszillators 2 sind an den Oszillatoroberflächen 7 Bereiche 44 und 45 vorhanden, deren elliptische Bewegungsbahnen parallel oder nahezu parallel zur Oberfläche 7 ausgerichtet sind.

Fig. 16 zeigt einen Oszillator 2 einer einphasigen Ausführungsvariante des erfindungsgemäßen Motors unter Ausnutzung von stehenden Wellen der gekoppelten tangential-axialen Schwingungen mit fünf aktiven Generatoren 5 und fünf an seinen Oberflächen 7 in den Bereichen 44 oder 45 angeordneten Friktionselementen 46.

25

30

Eine entsprechende elektrische Beschaltung eines solchen einphasigen Motors nach, Fig. 16 ist in Fig. 17 gezeigt. Die Anregungsquelle 47 hat einen Ausgang 48, der auf die Bezugselektrode 16 führt. Der Ausgang 49 ist über einen Umschalter 50 mit den Elektroden 15 der aktiven Generatoren verbunden. Die Quelle 47 stellt am Ausgang 49 eine einphasige elektrische Spannung bereit.

Der in der Fig. 1 gezeigte piezoelektrische Motor besitzt folgende Funktionsweise.

Beim Einschalten des Motors erzeugen die Erregerquellen 35, 39 oder 47 eine elektrische Spannung mit der Frequenz, die der Resonanzfrequenz F₀ des Oszillators 2 entspricht und bei der im Oszillator eine stehende Welle der gekoppelten tangential-axialen Schwingungsmode angeregt werden kann.

Die Resonanzfrequenz F₀ dieser Schwingungsmode des Oszillators kann annähernd nach der Beziehung F₀ = N/H bestimmt werden, wobei N eine material- und wandstärkeabhängige Frequenzkonstante ist. Für einen Oszillator 2 mit dem Außendurchmesser von 20mm, einem Innendurchmesser von 15mm und einer Höhe von 20mm, bestehend aus einer Piezokeramik PIC 181 der Firma PI Keramik GmbH, beträgt N = 188.000 Hz • cm.

Beim Beaufschlagen der Elektroden 15, 16 des Generators 5 mit einer elektrischen Spannung wird im Oszillator 2 eine stehende Welle der gekoppelten tangential-axialen Schwingungsmode angeregt. Dadurch können, abhängig von der jeweils gewählten Frequenz, eine erste, zweite, dritte und so weiter Schwingungsmode angeregt werden, so daß auf dem Umfang des Oszillators 2 (siehe Fig. 2, 4 oder 6) sich eine, zwei, drei und so weiter Wellenlängen befinden.

Verformungsbilder eines solchen Oszillators bei der Anregung der ersten, zweiten und dritten gekoppelten tangential-axialen Schwingungsmoden zeigen die Fig. 3, 5 und 7.

Die gekoppelte tangential-axiale Schwingungsmode eines Hohlzylinders ist dadurch gekennzeichnet, daß das Schwingen des Zylinders hauptsächlich tangentiale und axiale Schwingungskomponenten aufweist, die dabei außerdem die gleiche Phase haben. Schwinggeschwindigkeits-Maxima tangentialer Schwingkomponenten befinden sich an der Oszillatorstirnseite 7 und die der axialen Komponente etwas unterhalb dieser.

Mit zunehmender Entfernung von den Oszillatorstirnseiten 7 in axialer Richtung werden beide Komponenten in ihren Werten geringer. In der Mitte der Zylinderhöhe H verläuft parallel zu den Oszillatorstirnseiten 7 eine Knotenlinie 22, auf der die axiale Schwinggeschwindigkeits-Komponente den Nullwert annimmt und die tangentiale Schwinggeschwindigkeit ein Minimum erreicht. Der Oszillatorkörper 2 wird abwechselnd durch axial verlaufende Knotenlinien 23 und 24 geteilt, in denen jeweils die tangentiale oder die axiale Schwinggeschwindigkeit den Nullwert erreicht.

15

20

30

35

10

Die Fig. 9 zeigt Bewegungsbahnen der auf dem Umfang des Oszillators an den Stirnoberflächen 7 liegenden Punkte bei der Anregung der gekoppelten tangential-axial Schwingungsmode im Oszillator 2. Im Oszillator 2 ist es möglich, gleichzeitig und unabhängig voneinander zwei, drei oder mehrere stehende Wellen anzuregen. Durch deren Überlagerung kann dann eine laufende Welle erzeugt werden. Zur Erzeugung einer laufenden Welle mit Hilfe von zwei stehenden Wellen ist der Oszillator 2 des vorgeschlagenen Motors mit mindestens zwei um ein Viertel der Wellenlänge räumlich verschobene Generatoren 5 (siehe Fig. 10) ausgestattet. Die Generatoren werden dann mit zwei Erregerspannungen beaufschlagt, deren Phasenverschiebung 90° beträgt.

Zur Erzeugung einer laufenden Welle mit Hilfe von drei stehenden Wellen wird der Oszillator 2 des erfindungsgemäßen Motors mit mindestens drei, um ein Drittel der Wellenlänge räumlich verschebene Generatoren 5 (siehe Fig. 12) ausgestattet. Die Generatoren werden hier mit zwei Erregerspannungen beaufschlagt, deren Phasenverschiebung 120° beträgt.

Bei beiden Fällen durchlaufen die an den Stirnseiten des Oszillators 2 liegenden Punkte die in Fig. 14 dargestellten gleichen elliptischen Bahnen. Aufgrund der elliptischen Bewegung der Stirnoberflächen-Punkte des Oszillators 2 wird dem Rotor 4 ein Drehmoment verliehen.

Bei einer weiteren vorteilhaften Variante des Motors ist der Oszillator 2 mit mindestens einer gleichnamigen Generatorgruppe 5 ausgestattet. Unter gleichnamigen Generatoren 5 wird verstanden, daß bei deren Beaufschlagung mit phasengleicher elektrischer Spannung die gleiche Oszillatorverformung hervorgerufen wird. Bei einer solchen Ausführungsvariante des Motors wird die Höhe H des Oszillators 2 so gewählt, daß im Oszillator gleichzeitig mit der gekoppelten tangential-axialen Schwingungsmode auch eine longitudinale Schwingungsmode angeregt wird. Eine gleichzeitige Anregung beider Moden ist nur dann möglich, wenn die geometrischen Abmessungen des Oszillators so gewählt werden, daß die Resonanzfrequenzen der beiden Schwingungsmoden nahe beieinander liegen.

15

20

30

35

10

5

Die Überlagerung der beiden Schwingungsmoden führt dazu, daß die an den Stirnoberflächen 7 des Oszillators 2 liegenden Punkte die in Fig. 15 dargestellten Bahnen durchlaufen.

Aus der Fig. 15 ist zu erkennen, daß an den Rändern der Generatoren 5
Bereiche 44 und 45 existieren, in denen die elliptischen Bewegungsbahnen
der Punkte parallel zur Oberfläche 7 ausgerichtet sind. Das heißt, die Punkte
besitzen eine große tangentiale und eine kleine axiale Schwingungskomponente. Die Bewegungsbahnen der in beiden Bereichen liegenden Punkte
haben dabei den entgegengesetzten Richtungssinn.

Der Richtungssinn der Bewegungen oder der Ellipsen wird durch die Wahl der Anregung bestimmt. Wird z.B. der links vom Bereich 44 liegende Generator 5 angesteuert, bekommen die Punkte dem Uhrzeigersinn entgegengesetzte Richtungen der Bewegung. Bei dieser Konstruktionsvariante des Motors werden die Friktionselemente 46 an der Oberfläche 7 nur in den Bereichen 44 oder nur in den Bereichen 45 (siehe Fig. 16) angeordnet.

Die in der Fig. 17 dargestellte Schaltungsanordnung zeigt die elektrische Verbindung der betrachteten Motorvariante. Die Schaltung ist mit dem Umschalter 50 ausgestattet, der den Ausgang 49 der Quelle 47 mit den links oder rechts von den Friktionselementen liegenden Generatoren 5 wahlweise verbindet. Hierdurch kann die Bewegungsrichtung des Rotors umgeschaltet werden.

Der zylindrische Oszillator des beschriebenen piezoelektrischen Ultraschallmotors gemäß der Erfindung hat die Maxima der tangentialen Schwinggeschwindigkeiten an seiner Stirnoberfläche und die Maxima der axialen Schwinggeschwindigkeiten etwas unterhalb dieser, also dort, wo auch der Rotor angepreßt wird.

Gleichzeitig verschwinden beide Schwinggeschwindigkeiten bzw. deren Komponenten in der Mitte der Oszillatorhöhe. Dies bedeutet, daß ein derartiger Motor im Vergleich zu Dehnungswellen nutzenden Einrichtungen um den Faktor 2 geringere Verluste bezogen auf die innere Reibung aufweist. Das Entstehen eines Bereichs minimaler Schwingamplituden in der Mitte der Oszillatorhöhe ermöglicht die Anordnung einer Befestigungsvorrichtung, ohne daß dabei zusätzliche Verluste entstehen. Durch diese verlustfreie Halterung des Oszillators verbessert sich die mechanische Güte, wodurch die Erregerspannung des Motors verringert werden kann. Durch eine solche Halterung können auch ansonsten notwendig werdende elastische Einrichtungen entfallen, so daß sich die Phasencharakteristik des Motors verbessert.

Bezugszeichenliste

25 1 Stator

- 2 Oszillator
- 3 Oszillatorstirnseiten
- 4 Rotor
- 5 Generatoren
- 30 6 Friktionsschicht
 - 7 Stirnflächen des Oszillators
 - 8 Halterung
 - 9 Friktionsscheiben
 - 10 elastische Elemente
- 35 11 Zentrierbuchsen

	12	Welle
	13	Lager
	14	monolithischer piezoelektrischer Oszillator
	15	Anregungselektrode
5	16	Bezugselektrode
	17	Verformungsbild des Oszillators
	18	Verteilungsdarstellung tangentialer Schwinggeschwindigkeiter
	19	Verteilungsdarstellung axialer Schwinggeschwindigkeiten
	20	Maximum tangentialer Schwinggeschwindigkeiten
10	21	Minimum tangentialer Schwinggeschwindigkeiten
	22	Knotenlinie
	23	Null-Linien tangentialer Schwinggeschwindigkeiten
	24	Null-Linien axialer Schwinggeschwindigkeiten
	25	Verformungsbild des Oszillators
15 -	26	Verteilungsdarstellung tangentialer Schwinggeschwindigkeiter
	27	Verteilungsdarstellung axialer Schwinggeschwindigkeiten
	28	Verformungsbild des Oszillators
	29	Verteilungsdarstellung tangentialer Schwinggeschwindigkeiter
	30	Verteilungsdarstellung axialer Schwinggeschwindigkeiten
20	31	nicht piezoelektrischer Körper des Oszillators
	32	Piezoelement
	33	piezoelektrische Platten
	34	Elektrode am Piezoelement
	35	zweiphasige Erregerquelle des Oszillators
25	36	
	bis	
	38	Ausgänge der Quelle 35
	39	dreiphasige Erregerquelle des Oszillators
	40	
30	bis	
	43	Ausgänge der Quelle 39
	44	
	bis	
	45	Bereiche der Oberfläche 7
35	46	Friktionselemente

- 47 einphasige Erregerquelle des Oszillators
- 48

bis

- 49 Ausgänge der Quelle 47
- 5 50 Umschalter

Zusammenfassung

Die Erfindung betrifft ein Verfahren zum Betreiben eines piezoelektrischen Motors mit einem Stator in Form eines hohlzylindrischen Oszillators, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht, sowie Stehwellengeneratoren umfaßt. Erfindungsgemäß wird der Hohlzylinder in eine gekoppelte tangential-axiale Schwingungsmode versetzt, wobei der Zylinder überwiegend tangentiale und axiale Schwingungskomponenten gleicher Phase aufweist. Die Schwinggeschwindigkeits-Maxima der tangentialen Komponenten bilden sich an den Stirnseiten des Hohlzylinders und diejenigen der axialen Komponenten unmittelbar darunter aus, wobei zur Mitte der Zylinderhöhe die Komponenten abnehmen und in der Mitte der Zylinderhöhe im wesentlichen parallel zu den Stirnseiten eine Knotenlinie vorhanden ist, auf der die axiale Schwingungskomponente den Wert Null sowie die tangentialen Komponenten ein Minima annehmen. Bei einem derart · betriebenen Motor konzentriert sich die kinetische Antriebsenergie für den Rotor in der Nähe der Hohlzylinder-Stirnseiten, wobei im mittleren Teil auf der Null-Linie der Schwinggeschwindigkeits-Komponenten eine mechanische Befestigung für den Motor anordenbar ist.

5

10

Patentansprüche

1. Verfahren zum Betreiben eines piezoelektrischen Motors mit einem Stator in Form eines hohlzylindrischen Oszillators, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht sowie Stehwellengeneratoren umfassend,

dadurch gekennzeichnet, daß

der Hohlzylinder in eine gekoppelte tangential-axiale Schwingungsmode versetzt wird, wobei der Zylinder überwiegend tangentiale und axiale Schwingungskomponenten gleicher Phase aufweist,

sich die Schwinggeschwindigkeits-Maxima der tangentialen Komponenten an den Stirnseiten des Hohlzylinders und diejenigen der axialen Komponenten darunter ausbilden, wobei zur Mitte der Zylinderhöhe die Komponenten abnehmen und in der Mitte der Zylinderhöhe, im wesentlichen parallel zu den Stirnseiten des Zylinders, eine Knotenlinie vorhanden ist, auf der die axiale Schwingungskomponente den Wert Null sowie die tangentiale Komponente ein Minimum annimmt.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Hohlzylinderkörper je nach der Anzahl der Stehwellengeneratoren axial verlaufende Knotenlinien resultieren, auf denen die axialen oder tangentialen Schwingungskomponenten Nullwerte annehmen.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Stehwellengeneratoren mit einer Frequenz angeregt werden, die der Oszillator-Resonanzfrequenz entspricht und bei der sich eine stehende Welle der gekopppelten tangential-axialen Schwingungsmode ausbildet.
- 4. Piezoelektrischer Motor mit einem Stator in Form eines hohlzylindrischen Oszillators, dessen mindestens eine Stirnseite mit einem Rotor in Friktionskontakt steht und welcher Stehwellengeneratoren aufweist, dadurch gekennzeichnet, daß

die Generatoren gekoppelte tangential-axiale Schwingungen im hohlzylindrischen Oszillator erzeugen, wobei beide Komponenten dieselbe Phasenlage aufweisen, die tangentialen Schwinggeschwindigkeits-Maxima auf den
Stirnseiten und die axialen Schwinggeschwindigkeits-Maxima unterhalb dieser
liegen sowie selbige zur halben Höhe des Hohlzylinders abnehmen, so daß
die kinetische Antriebsenergie für den Rotor in der Nähe der HohlzylinderStirnseiten konzentriert ist, sowie weiterhin im mittleren Teil auf der NullLinie der Werte der Komponenten eine mechanische Befestigung für den
Motor angeordnet oder vorgesehen ist.

- 5. Piezoelektrischer Motor nach Anspruch 4, dadurch gekennzeichnet, daß der hohlzylindrische Oszillator ein monolithischer piezoelektrischer Körper ist, auf dessen einer Mantelfläche sich eine oder mehrere Generator-Elektroden und dessen anderer Mantelfläche eine gemeinsame Bezugs-elektrode befindet.
- 6. Piezoelektrischer Motor nach Anspruch 4,
 dadurch gekennzeichnet, daß
 der hohlzylindrische Oszillator ein monolithischer, nicht piezoelektrischer
 Körper ist, wobei die Generatoren als starr mit dem Hohlzylinder verbundene
 Piezoelemente mit entsprechenden Elektroden ausgeführt sind.
- 7. Piezoelektrischer Motor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Oszillator zwei, räumlich um ein Viertel der Wellenlänge verschobene Stehwellengeneratoren aufweist, deren elektrische Anregung eine Phasenverschiebung von 90° beträgt, wodurch im Oszillator eine laufende Welle erzeugt wird und der Rotor eine der laufenden Welle entgegengesetzte Bewegungsrichtung aufweist.

8. Piezoelektrischer Motor nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Oszillator drei, räumlich um ein Drittel der Wellenlänge verschobene Stehwellengeneratoren enthält, deren elektrische Anregung eine Phasenverschiebung von 120° beträgt, wodurch im Oszillator eine laufende Welle erzeugt wird und der Rotor eine der laufenden Welle entgegengesetzte Bewegungsrichtung aufweist.

9. Piezoelektrischer Motor nach einem der Ansprüche 4 bis 6,

- dadurch gekennzeichnet, daß
 der Oszillator mindestens eine Gruppe gleichnamiger Generatoren akustischer
 Stehwellen enthält, die gegeneinander um eine halbe Wellenlänge verschoben und mit einer elektrischen Erregerquelle verbunden sind, wobei die
 Oszillatorhöhe so gewählt ist, daß gleichzeitig mit den tangential-axialen
 Oszillatorschwingungen longitudinale Schwingungen entstehen, wobei die
 Überlagerung beider Schwingungen die an den Stirnseiten des Hohlzylinders
 liegenden Punkte zur Ausführung elliptischer Bewegungen veranlaßt.
- 10. Piezoelektrischer Motor nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß der hohlzylindrische Oszillatorkörper an seinen Stirninnenseiten eine Konusform zur selbstzentrierenden Führung und Lagerung des Rotors aufweist, welcher an seinen jeweiligen Enden einen gegenkonusförmigen Abschnitt umfaßt.

Fig.1

Fig. 13

Fig. 14

Fig. 15

Fig.17