Лабораторная работа №4.

Модель гармонического осциллятора

Латыпова Диана. НФИбд-02-21 2024

Российский университет дружбы народов имени Париса Лумумбы, Москва, Россия

Информация

Докладчик

- Латыпова Диана
- студент группы НФИбд-02-21
- Российский университет дружбы народов имени патриса Лумумбы
- 1032215005@rudn.ru
- https://github.com/dlatypova

Вводная часть

Цели и задачи

- Изучить понятие гармонического осциллятора;
- Построить фазовый портрет гармонического осциллятора;
- Решить уравнение гармонического осциллятора для трех случаев.

Задание

Вариант 46.

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+8.8x=0$;
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+7.7\dot{x}+3.3x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+4.4\dot{x}+5.5x=2.2sin(4t)$

На интервале $t \in [0; 55]$ (шаг 0.05) с начальными условиями $x_0 = 1.1, y_0 = 0.$

Теоретическая часть

Гармоническиц осциллятор

Гармонический осциллятор - это система, которая обладает возвращающей силой, пропорциональной смещению от положения равновесия, и инерционной массой.

Математически гармонический осциллятор описывается дифференциальным уравнением второго порядка:

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

m - масса, c - коэффициент затухания(если присутствует), k - коэффициент упругости, F(t) - внешняя сила (если присутствует).

Гармоническиц осциллятор

В случае отсутствия внешних сил и затухания уравнение принимает простой вид:

$$m\ddot{x} + kx = 0$$

Решение уравнений гармонического осциллятора позволяет предсказать поведение системы во времени, а фазовые портреты дают графическое представление этого поведения в фазовом пространстве.

Фазовый портрет

Фазовый портрет - это графическое представление решения дифференциального уравнения в плоскости (x,\dot{x}) , где x - смещение, а \dot{x} -скорость изменения смещения

Рассмотрим каждый случай

1 случай

1 случай

Колебания гармонического осциллятора без затуханий и без действий внешней силы:

Уравнение данного случая: $\ddot{x} + 8.8x = 0$;

В данном уравнении коэффициент перед x соответствует жесткости k гармонического осциллятора, а так как отсутствуют члены с \dot{x} и F(t), это означает, что отсутствуют как затухающие силы, так и внешние воздействия.

График (рис. (**fig:001?**)):

Рис. 1: julia. 1 случай

Фазовый портрет (рис. (fig:002?)):

Рис. 2: julia. 1 случай. ФП

1 случай на ПО OpenModelica

1 случай на ПО OpenModelica

График (рис. (**fig:003?**)):

Рис. 3: OpenModelica. 1 случай

1 случай на языке OpenModelica

1 случай на языке OpenModelica

Фазовый портрет (рис. (fig:004?)):

Рис. 4: OpenModelica. 1 случай. ФП

2 случай

2 случай

Колебания гармонического осциллятора с затуханием и без действий внешней силы:

$$\ddot{x} + 7.7\dot{x} + 3.3x = 0$$

В этом уравнении, помимо члена с x, есть члены с \dot{x} и без него. Член с \dot{x} соответствует силе затухания, которая пропорциональна скорости изменения смещения. Внешняя сила отсутствует (F(t)=0).

График (рис. (**fig:005?**)):

Рис. 5: julia. 2 случай

Фазовый портрет (рис. (fig:006?)):

Рис. 6: julia. 2 случай. ФП

2 случай на ПО OpenModelica

2 случай на ПО OpenModelica

График (рис. (**fig:007?**)):

Рис. 7: OpenModelica. 2 случай

2 случай на языке OpenModelica

2 случай на языке OpenModelica

Фазовый портрет (рис. (fig:008?)):

Рис. 8: OpenModelica. 2 случай. ФП

3 случай

3 случай

Колебания гармонического осциллятора с затуханием и под действием внешней силы:

$$\ddot{x} + 4.4\dot{x} + 5.5x = 2.2sin(4t)$$

В этом уравнении, помимо члена с x и члена с \dot{x} , есть член, соответствующий внешней силе F(t), которая является синусоидальной функцией.

График (рис. (**fig:009?**)):

3 случай на ПО OpenModelica

3 случай на ПО OpenModelica

График (рис. (**fig:011?**)):

Рис. 10: OpenModelica. 3 случай

3 случай на языке OpenModelica

3 случай на языке OpenModelica

Фазовый портрет (рис. (fig:012?)):

Рис. 11: OpenModelica. 3 случай. ФП

Обший анализ

Обший анализ

Построив графики и фазовые портреты 3 случаев, можем заметить, что код для ПО OpenModelica значительно меньше. И, кстати, говоря у меня фазовые портреты получились отзеркаленными.

Выводы

Выводы

Выводы

Я изучула понятие гармонического осциллятора и фазовых портретов. Реализовала графики и фазовые портреты гармонического осциллятора для 3 случаев на языке программирования Julia и на ПО OpenModelica. А также решила уравнение гармонического осциллятора для трех случаев.