

Mathematik

Weihnachtsaufgabe

ANR

Fakultätsfunktion

Wir betrachten die sogenannte Fakultätsfunktion $fac: \mathbb{N} \to \mathbb{N}, fac(n) = \begin{cases} 1 & \text{, falls } n = 0 \\ n \cdot fac(n-1) & \text{, sonst} \end{cases}$. Wir schreiben zur Abkürzung manchmal auch n! statt fac(n).

- (a) Berechnen Sie 0!, 1!, 3! und 10!.
- (b) Geben Sie mithilfe des Produktzeichens Π eine alternative Definition von fac an, die ohne Rekursion (Selbstaufruf) auskommt.
- (c) Bestimmen Sie die letzten drei Ziffern der Zahl 1000!.
- (d) Zeigen Sie, dass die Funktion $f(n) = 2^{n^2}$ schneller wächst als die Funktion fac. Weisen Sie dazu nach, dass für alle $n \in \mathbb{N}$ $f(n) \ge fac(n)$ gilt. Hinweis: Potenzierung ist rechtsassoziativ, also $2^{3^2} = 2^9 = 512$.
- (e) Konstruieren Sie eine weitere Funktion g(n), die schneller als die Funktion fac, aber langsamer als die Funktion f wächst. Begründen Sie jeweils, dass die beiden geforderten Eigenschaften von Ihrer Funktion g(n) erfüllt werden.
- (f) Für alle $n \ge 1$ definieren wir den Ausdruck $s(n) = \frac{(n+1)!}{2 \cdot (n-1)!}$. Beschreiben Sie möglichst kurz und präzise was der Ausdruck s(n) angibt.
- (g) Die Summe der ersten n Quadratzahlen wird beschrieben durch $qs(n) = \frac{1}{6}n(n+1)(2n+1)$. Zeigen Sie, dass $qs(n) = s(n) \cdot \frac{(2n+1)!}{3 \cdot (2n)!}$ gilt.
- (h) Bestimmen Sie den kleinstmöglichen Wert $m \in \mathbb{N}$ so, dass m! durch alle Zahlen von 1 bis einschließlich 10 ohne Rest teilbar ist. Begründen Sie Ihre Antwort. (Bonus: geben Sie eine formale Definition des gesuchten Wertes m an.)
- (i) Definieren Sie eine Funktion pfac, die jeder natürlichen Zahl n das Produkt aller Primzahlen kleiner gleich n zuordnet. Begründen Sie dann, dass $pfac(n) \leq fac(n)$ für alle $n \in \mathbb{N}$ gilt.
- (j) Sei $k(n) = \sum_{i=0}^{n} \frac{1}{i!}$ die Kehrwertsumme der Fakultätswerte bis n. Ermitteln Sie näherungsweise den Grenzwert $\lim_{n \to +\infty} k(n)$.

Mathematik

Weihnachtsaufgabe

ANR

Lösungen

- (a) 0! = 1, 1! = 1, 3! = 6, 10! = 3628800.
- (b) Die Fakultät von n ist das Produkt aller natürlichen Zahlen kleiner gleich n. Also z.B. $n! = \prod_{i=1}^{n} i$.
- (c) Die Zahl 1000! enthält unter anderem die Faktoren $2^3 \cdot 5^3 = 1000$. Das heißt 1000! ist ein Vielfaches von 1000 und daher müssen die letzten drei Ziffern alle Nullen sein.
- (d) Es gilt folgende Abschätzung $n! = \prod_{i=1}^n i \le \prod_{i=1}^n n = n^n \le (2^n)^n = 2^{n^2}$.
- (e) Setze z.B. $g(n) = n^n$. Mit der Abschätzung aus der vorherigen Teilaufgabe folgt sofort $fac(n) \le g(n) \le f(n)$. Für den Fall $n \ge 4$ liefert z.B. $a(n) = 2^{\frac{1}{8}n(n+10)}$ eine noch genauere Abschätzung von fac.
- (f) Vereinfachen (kürzen) liefert $s(n) = \frac{(n+1)!}{2 \cdot (n-1)!} = \frac{n \cdot (n+1)}{2} = \sum_{i=0}^{n} i$. Also gibt s(n) die Summe der ersten n natürlichen Zahlen an.
- (g) Einsetzen und kürzen liefert $qs(n) = \frac{n \cdot (n+1)}{2} \cdot \frac{2n+1}{3} = \frac{1}{6}n(n+1)(2n+1)$.
- (h) Damit m! durch alle Zahlen von 1 bis 10 teilbar ist, muss m! die Primfaktorzerlegung aller dieser Zahlen enthalten. Klar ist $m \le 10$, da 10! alle geforderten Zahlen als ganze Faktoren enthält. Die Primfaktoren von $10 = 2 \cdot 5, 9 = 3 \cdot 3$ und $8 = 2 \cdot 2 \cdot 2$ sind aber bereits in 7! enthalten. Klarerweise kann aber 7 frühenstens in 7! enthalten sein, da 7 eine Primzahl ist. Somit ist 7! = 5040 die gesuchte Zahl, also m = 7. Bonus: $m = min\{n \in \mathbb{N} \mid \forall i \in [1; 10] : fac(n) \equiv 0 \pmod{i} \}$.
- (i) $pfac(n) = \prod_{i \in \mathbb{P}_n} i$, wobei \mathbb{P}_n die Menge aller Primzahlen kleiner gleich n ist. Formaler definiert gilt $\mathbb{P}_n = \{k \in \mathbb{N} | k \leq n \wedge k \text{ prim}\}$. Sei analog \mathbb{N}_n die Menge aller natürlichen Zahlen kleiner gleich n. Offenbar gilt $\mathbb{P}_n \subseteq \mathbb{N}_n$ für alle $n \in \mathbb{N}$. Also $pfac(n) = \prod_{i \in \mathbb{P}_n} i \leq \prod_{i \in \mathbb{N}_n} i = fac(n)$.
- (j) Evaluation mit CAS. Auswerten (numerisch) von $Sum(1/(i!), i, 0, Infinity in Geogebra liefert <math>\approx 2.718281828459$. Der Grenzwert der Summe ist also die Eulersche Zahl e.