You Only Look Once

path to design a detector

Feng Wang

AIRD, Coretronic Co.

Apr 17, 2019

The slides and a list of references can be found from https://github.com/fwcore/object-detection

Outlines

- Concepts in object detection
- > A brief history of object detection
- > YOLO
 - design
 - > loss function
 - training
 - weaknesses

Classification vs detection/recognition

Common tasks on images

Image Classification

Classify an image based on the dominant object inside it.

datasets: MNIST, CIFAR,

ImageNet

Object Localization

Predict the image region that contains the dominant object. Then image classification can be used to recognize object in the region

datasets: ImageNet

Object Recognition

Localize and classify all objects appearing in the image. This task typically includes: proposing regions then classify the object inside them.

datasets: PASCAL, COCO

Semantic Segmentation

Label each pixel of an image by the object class that it belongs to, such as human, sheep, and grass in the example.

datasets: PASCAL, COCO

Instance Segmentation

Label each pixel of an image by the object class and object instance that it belongs to.

datasets: PASCAL, COCO

Keypoint Detection

Detect locations of a set of predefined keypoints of an object, such as keypoints in a human body, or a human face.

datasets: COCO

Bounding box proposal

Region of interest, region proposal, box proposal

Ground truth

Proposed bounding box

5 parameters

- w, h
- > x, y
- confidence score: how likely it contains an object & accuracy of the box

How good: Intersection over Union (IOU)

Outlines

- Concepts in object detection
- > A brief history of object detection
- > YOLO
 - design
 - loss function
 - training
 - weaknesses

A brief history of object detection

A brief history of object detection

- ➤ Before CNN, people use handcrafted features to locate and classify objects. (not too bad)
- > CNN boosts the accuracy of classification

A brief history of object detection

Region proposal -> classification

- e.g. RCNN
- > accurate
- > slow

Single shot:

Region proposal + classification

- > e.g. YOLO, SSD
- > fast
- less accurate

Outlines

- Concepts in object detection
- A brief history of object detection
- > YOLO
 - design
 - > loss function
 - training
 - weaknesses

YOLO: you look only once

Let's use CNN, since it's good.

Why not regress?
They are just numbers.

Let's go to CNN

YOLO v1's CNN: GoogLeNet variant, 24 layers

YOLO v3's CNN: darknet-53

500	Туре	Filters	Size	Output
	Convolutional	32	3 × 3	256 × 256
	Convolutional	64	3×3/2	128 × 128
10	Convolutional	32	1 x 1	
1x	Convolutional	64	3 × 3	
	Residual			128 × 128
	Convolutional	128	3×3/2	64 × 64
	Convolutional	64	1 × 1	
2x	Convolutional	128	3 × 3	
	Residual			64×64
729	Convolutional	256	3×3/2	32×32
	Convolutional	128	1 × 1	
8x	Convolutional	256	3 × 3	
98	Residual			32×32
	Convolutional	512	3×3/2	16 × 16
	Convolutional	256	1 x 1	100
8x	Convolutional	512	3 × 3	
	Residual			16 × 16
	Convolutional	1024	3×3/2	8 × 8
	Convolutional	512	1 × 1	
4x	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected Softmax		1000	

Type	Filters	Size/Stride	Output
Convolutional	32	3×3	224×224
Maxpool		$2 \times 2/2$	112×112
Convolutional	64	3×3	112×112
Maxpool		$2 \times 2/2$	56×56
Convolutional	128	3×3	56×56
Convolutional	64	1×1	56×56
Convolutional	128	3×3	56×56
Maxpool		$2 \times 2/2$	28×28
Convolutional	256	3×3	28×28
Convolutional	128	1×1	28×28
Convolutional	256	3×3	28×28
Maxpool		$2 \times 2/2$	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Convolutional	256	1×1	14×14
Convolutional	512	3×3	14×14
Maxpool		$2 \times 2/2$	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	512	1×1	7×7
Convolutional	1024	3×3	7×7
Convolutional	1000	1×1	7×7
Avgpool Softmax		Global	1000

YOLO v2's CNN: darknet-19, 19 layers

Let's do regression

-- wait, wait, how many bounding boxes? Where are they initially?

Results for one box

- > x, y, w, h
- confidence score: contain an object & box accuracy
- class score:belong to a class
- ➤ Maybe set N as a large number?
- ➤ Maybe initially put them randomly?

Note: N is large, but much smaller than R-CNN's region proposal.

Better solution: using grids

Let's do regression with non-maximal suppression

We can use CNN to extract features, and
finally perform a regression to detect
objects.

- > YOLO v1: fully connected layers
- > v2 & v3: convolutional layers

	Grid 1	Proposed box 1 x, y, w, h confidence score	Proposed box 2 x, y, w, h confidence score	class 1 class 2, class 20
	÷	:	:	:
	Grid SxS	Proposed box 1 x, y, w, h confidence score	Proposed box 2 x, y, w, h confidence score	class 1 class 2, class 20

arXiv: 1506.02640, 1612.08242, 1804.02767

vector size: SxSx(5x2+20)

Loss function

Problems

- One object is partially/fully covered by several boxes.
- Most boxes has no objects.
- ➤ Multi-task training problem: location & class
- > Small objects need more accurate location & box size.

$$\begin{split} & \underline{Solution} \qquad \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ & + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ & + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{S^2} \left(p_i(c) - \hat{p}_i(c) \right)^2 \end{split}$$

Oh, no math please. Let's speak human language

$$\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{I}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{I}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]$$

Problem 1:

One object is partially/fully covered by several boxes.

$$\sum_{j=0}^{S} \mathbb{I}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right) \right]$$

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \sum_{i=0}^{S^2} \mathbb{I}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

- Each true object has one proposed box "responsible" to it.

 Rule: the one with highest overlap with the ground truth boxes.
- > When inference, we use non-maximal suppression to select the best among the proposals.

Human language

$$\frac{\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right]}{\left[\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right]} + \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} + \left(\lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2} + \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} + \sum_{i=0}^{S^{2}} \mathbb{1}_{ij}^{\text{obj}} \sum_{j=0}^{S^{2}} \left(p_{i}(c) - \hat{p}_{i}(c) \right)^{2} + \sum_{i=0}^{S^{2}} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} + \sum_{i=0}^{S^{2}} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} -$$

Problem 2:

Most boxes has no objects.

Human language

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right] \\ + \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \end{split}$$

Problem 3:

Multi-task training problem: location & class.

$$+ \sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

Weighted sum: here the problem is left untouched.

Human language

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \end{split}$$

 $+\sum_{i}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{i} (p_i(c) - \hat{p}_i(c))^2$

Problem 4:

Small objects need more accurate location & box size.

Other problems

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

smaller objects can locate worse than the largers

$$+ \lambda_{\mathsf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\mathsf{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2$$

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

probability can be out of [0, 1]

Fix them in YOLO v2

Pre-defined box: anchor

- Naturally, objects have special aspect ratios and sizes.
 - > This can be a good starting point.
 - > We don't need randomly initialized boxes' shapes.
- Handcrafted box size vs clustering algorithms
- Box can reshape during training.
- > The number of pre-defined boxes is a hyperparameter
 - > v2 uses 5
 - > v3 uses 9

Improvements (in v2)

- > Resizing image sizes randomly during training: {320, 352, ..., 608}
 - > CNN only reduce an image by a constant factor (here 32), hence is robust to input image size
 - resize every 10 epochs.
 - multi-scale training
- Passthrough layer
 - No loss to perform reshaping

> Odd number of grid cells

VS

Feature map

Training

ImageNet: classification dataset

COCO/PASCAL VOC: detection dataset

Step 1:

> train classification backbone

Step 2 (transfer learning):

- > remove head layers
- > add regression as new head
- fine-tune backbone & train head

Training tricks

- decaying learning rate
- batch normalization
- data augmentation

Performance

Generalizability

Picasso & People-Art dataset

But ... no free lunch

YOLO is not as accurate as RCNN-series models

multi-task problem: YOLO wins in less background error, however, loses in localization error.

YOLO

Fast R-CNN

50+ years

- YOLO is poor for detecting small objects
 - > CNN: training on ImageNet may not generalize well for small objects (classification)
 - loss function equalizes location weights for small & large objects (localization)
- YOLO is not good at crowd objects
 - > non-maximal suppression. See an improvement: Adaptive NMS (arXiv:1904.03629)
- YOLO is bad when encountering strange aspect ratio
 - > pre-defined anchors, or anchors learned from data. Go anchor-free (arXiv:1904.01355).

Security

Benign

Daedalus Adversarial Example

Detection Results

Detection Results

CNN (classification) can be fooled, as well as YOLO, and the issues can be even worse.

Non-maximal suppression is fooled.

Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples. arXiv:1902.02067

Is there anything helpful to improve?

Darwin's evolution

