Homework 3 Due 23:59 Sunday May 29, 2022

1. Let X be a random variable with the following probability density function

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\ln 4)^2}{2\sigma^2}} & x \le \ln 4\\ \lambda e^{-\lambda x} & x > \ln 4 \end{cases}$$

where σ and λ are some positive constants and $\mathbf{E}[X] = \ln 4$.

- (a) Determine the value of λ ?
- (b) Determine the value of σ ?
- (c) Determine variance of the random variable X?
- (d) Determine the CDF of the random variable X in terms of elementary functions and the CDF of a standard normal random variable?
- 2. (A Question from Second Midterm Exam of EE230, 2019 Spring) Assume X and Y are jointly continuous random variables whose joint PDF is given in the figure.

- (a) Find $P(X \leq \frac{1}{2})$.
- (b) Find $f_Y(y)$.
- (c) Find $F_{X,Y}(\frac{1}{2}, \frac{1}{2})$.
- (d) Determine the region in xy-plane, where $F_{X,Y}(x,y) = 1$.
- 3. Consider jointly Gaussian zero mean random variables X and Y that have the following joint PDF:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left[-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} - \rho\frac{2xy}{\sigma_x\sigma_y}\right)\right],$$

which is known as bivariate normal distribution with parameters σ_x^2 , σ_y^2 and ρ . Here, $\sigma_x, \sigma_y > 0$, and $\rho \in (-1, 1)$ are all constants.

- (a) Prove that X and Y are zero mean Gaussian random variables with variances σ_x^2 and σ_y^2 respectively by deriving their marginal PDFs $f_X(x)$ and $f_Y(y)$.
- (b) Find $E_{X,Y}[XY]$ in terms of σ_x^2 , σ_y^2 and ρ .
- (c) Prove that the conditional density $f_{X|Y}(x|y)$ corresponds to another Gaussian random variable. Then, find its mean $\mu_{x|y} = E_{X|Y}[X|Y=y]$.
- (d) The minimum mean square error (MMSE) estimate of X (given Y), denoted by \hat{X} , can be obtained by just finding the conditional expectation of X as $\hat{X} = \mu_{x|y}$.
 - (i) The estimator is in the form of $\hat{X} = \alpha Y$. Determine α in terms of σ_x^2 , σ_y^2 and ρ .
 - (ii) Calculate the mean square error (MSE) of this estimate, namely MSE = $E\left[\left(X \hat{X}\right)^2\right]$ in terms of σ_x^2 , σ_y^2 and ρ .

4. (Matlab Question) We validate the analytical result in Q3-(d) via Monte Carlo (MC) Simulation. MC method is a convenient way of approximating an expectation by getting the sample mean of a function of simulated random variables [E. Anderson, Lecture Notes on Monte Carlo Methods and Importance Sampling, Oct. 1999, Available online]. This method method invokes "Weak Laws of Large Numbers (WLLN)" to approximate expectations. Here, we can obtain the MSE = $E\left[\left(X-\hat{X}\right)^2\right]$ in Q3-(d) with the help of MC expectation over the sequence of samples $\{X_k,Y_k\}$, where X_k and Y_k are zero mean jointly Gaussian random variables. That is to say, we can calculate the MSE by getting the time average of the sequence $\left\{\left(X_k-\hat{X}_k\right)^2\right\}$, $k=0,\ldots,N-1$.

For $\sigma_x^2 = \sigma_y^2 = 1$, obtain MSE both analytically and numerically (via MC Simulation) for $\rho = -1$: 0.1:1. Then, plot these MSE vs ρ curves (theoretical and simulation). Compare your results and comment.

PS: You can use the attached Matlab script to generate sample sequence $\{X_k, Y_k\}$, $k = 0, \dots, N-1$.