1

Functions

Definition 1

A **function** is a rule that takes certain numbers as inputs and assigns to exactly one output number. The set of all input numbers is called the **domain** of the function and the set of resulting output numbers is called the **range** of the function.

Note: A function can be considered as a set of ordered pairs (x, y).

Notations:

Let f be a function from A to B $(f: A \rightarrow B)$

- D_f represents domain of function f
- R_f represents range of function f
- Image of x is y since f(x) = y

 $f:A \rightarrow B$ is called a function from A onto B if $R_f = B$

Normally, we may present a function via four common ways:

- 1) Description (words)
- 2) Numeric (tables)
- 3) Visual (graphs)
- 4) Algebra (formulas)

Example 1

Consider a set $\{(-3,1),(0,2),(3,-1),(5,4)\}$. Is it a function?

Domain:

Range:

Example 2

Let
$$f = \{(x, y) : x, y \in \mathbb{R} \text{ and } y = x^2 - 2\}.$$

So $D_f = \mathbb{R}$ and $R_f = [-2, +\infty)$. We usually write $f(x) = x^2 - 2$.

The values of f at some points are as follow.

$$f(0) = (0)^{2} - 2 = -2$$

$$f(-1) = (-1)^{2} - 2 = -1$$

$$f(\sqrt{3}) = (\sqrt{3})^{2} - 2 = 1$$

$$f(c) = c^{2} - 2$$

$$f(x+h) = (x+h)^{2} - 2 = x^{2} + 2hx + h^{2} - 2$$

$$f(x+h) - f(x) = (x^{2} + 2hx + h^{2} - 2) - (x^{2} - 2) = 2hx + h^{2}$$
and
$$\frac{f(x+h) - f(x)}{h} = 2x + h, \quad h \neq 0$$

Example 3

Let
$$f = \{(x, y) : x^2 + y^2 = 1^2\}$$
. Is f a function?

Example 4 Find the domain of the following functions.

(1)
$$f(x) = \frac{4}{x-1}$$

(2)
$$f(x) = \frac{x}{x^2 - 9}$$

$$(3) f(x) = \frac{\sqrt{4-x}}{x}$$

(4)
$$f(x) = \sqrt{4 - x^2}$$

Example 5

- 1) $y = \sin x$ has the set of all real numbers as its domain and the interval [-1,1] as its range.
- 2) $y = \sqrt{x^2 + 4}$ has the set of all real numbers as a domain and the interval $[2, +\infty)$ as its range.

Example 6

$$h(x) = \begin{cases} \frac{2x^2 - 9x + 4}{x - 4} & , x \neq 4 \\ 5 & , x = 4 \end{cases} \text{ or } h(x) = \begin{cases} 2x - 1 & , x \neq 4 \\ 5 & , x = 4 \end{cases}$$

$$D_f =$$

$$R_f =$$

Definition 2 The function f equals to the function g if and only if

1.
$$D_f = D_g$$

2.
$$f(x) = g(x)$$
 for all $x \in D_f$.

Example 7 Check if the following functions are equal.

1) Let
$$f(x) = \frac{\sqrt{2+x} - \sqrt{2}}{x}$$
 and $g(x) = \frac{1}{\sqrt{2+x} + \sqrt{2}}$

2) Let
$$f(x) = x + 3$$
 and $g(x) = \begin{cases} \frac{2x^2 + 7x + 3}{2x + 1} & , x \neq -\frac{1}{2} \\ \frac{5}{2} & , x = -\frac{1}{2} \end{cases}$

Definition 3

Let f and g be functions and $R_g \cap D_f \neq \emptyset$.

A composite function of f and g (denoted by $f \circ g$) is a function $(f \circ g)(x) = f(g(x))$ whose domain is $\{x : x \in D_g \text{ and } g(x) \in D_f\}$.

Example 8 Let
$$f(x) = \sqrt{x-3}$$
 and $g(x) = 2x-1$

- a) Let $F = f \circ g$ Find F(x) and domain of F
- b) Let $G = g \circ f$ Find G(x) and domain of G
- c) Let $H = f \circ f$ Find H(x) and domain of H

Solutions

a) The domain of g is $(-\infty, \infty)$ and domain of f is $[3, \infty)$.

To find the domain of $F = f \circ g$, we consider only x where g(x) is in domain of f. That is, $2x-1 \ge 3$.

Thus domain of F is a set of x where $x \ge 2$ i.e. $[2, \infty)$.

Then, the function $F = f \circ g$ can be found by

$$F(x) = f \circ g(x) = f(g(x)) = f(2x-1) = \sqrt{(2x-1)-3} = \sqrt{2x-4}.$$

Symmetry

Definition 4 Let f be a function.

- a. If f(-x) = -f(x), f is called an **odd function** whose graph is symmetric about the origin.
- b. If f(-x) = f(x), f is called an **even function** whose graph is symmetric about the *y*-axis.

Example 9

a) Let
$$f(x) = x^3$$
.

Consider
$$f(-x) = (-x)^3 = -x^3 = -f(x)$$
.

Thus f is an odd function and it graph is shown in figure 1 below.

Figure 1

b) Let
$$f(x) = 3x^2 - 1$$

Consider
$$f(-x) = 3(-x)^2 - 1 = 3x^2 - 1 = f(x)$$
.

Thus f is an even function whose graph shown in Figure 2.

Figure 2

Inverse function

Definition 5 The function f is called a **one-to-one** function if and only if for all x, y, z if (x, y) and $(z, y) \in f$ then x = z.

Definition 6 Let f be a one-to-one function from A onto B. An inverse function of f is defined by $f^{-1} = \{(b,a) | (a,b) \in f\}$ which is also a one-to-one function from B to A.

Remark Graphs of f and f^{-1} are symmetric about the line y = x as shown in Figure 3 below.

Figure 3

Example 10 Find an inverse of f where $f(x) = x^3 - 1$.

Solution From $y = f(x) = x^3 - 1$ (i.e. $x = \sqrt[3]{y+1}$), we have that $f^{-1} = \{(y,x) | y = x^3 - 1\}$ or $f^{-1} = \{(x,y) | y = \sqrt[3]{x+1}\}$

We normally write $f^{-1}(x) = \sqrt[3]{x+1}$ so that we can easily draw graphs of both functions f and f^{-1} as follows

Figure 4

Other Interesting Functions

All functions here will be useful in the next sections.

Algebraic Function

a. Polynomial Functions are functions of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_i is a real number for each i = 0, 1, 2, ..., n and

n is a non-negative integer.

If n is the largest number such that $a_n \neq 0$, we call f a polynomial function of degree n such as $f(x) = 3x^3 - 5x^2 + x + 4$ is a polynomial function of degree 3.

Normally, if there is nothing specific, the domain of a polynomial function is the set of all real numbers.

b. Rational Functions are functions formed by a ratio between two polynomial functions.

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0},$$

Note that, if there is nothing specific, the domain of this rational function is $\left\{x \in \mathbb{R} \mid b_m x^m + b_{m-1} x^{m-1} + ... + b_0 \neq 0\right\}$

Example 11 Let
$$y = f(x) = \frac{x^2 + x}{x}$$

Rewrite function f: f(x) = x+1 where $x \neq 0$

Thus graph of f(x) is the graph of y = x + 1, but undefined at

$$x = 0$$

Figure 5

c. Functions of the form $\sqrt[n]{f(x)}$; $n \in \mathbb{N}$ where the function f(x)is either a polynomial or a rational function.

The domain of this type of functions can be considered as follows

Case 1 n is odd

The domain of $\sqrt[n]{f(x)}$ is exactly the domain D_f of f(x)

 $\underline{\text{Case2}}$ *n* is even

The domain of
$$\sqrt[n]{f(x)}$$
 is $D_f \cap \{x \mid f(x) \ge 0\}$

d. Functions formed by summation, multiplication and division of functions in part a. to c.

Below are some examples of functions in part c. and d.

1)
$$f(x) = x^{\frac{2}{3}}$$
 2) $f(x) = \sqrt[4]{\frac{x}{x+1}}$
3) $f(x) = \frac{\sqrt{x}}{\sqrt{x+1}}$

$$3) \quad f(x) = \frac{\sqrt{x}}{\sqrt{x} + 1}$$

Transcendental Functions

a. Exponential Functions are functions of the form

$$y = a^x$$
, where $a > 0$ and $a \ne 1$

When a > 1, its graph can be shown in Figure 6 below.

Figure 6

When 0 < a < 1, its graph can be shown in figure 7 below

Figure 7

b. Logarithmic Function

Logarithmic function is an inverse of exponential function. Given an exponential function $y = a^x$. Then its inverse function is $x = a^y$ or we can rewrite it as $y = \log_a x$.

If $y = \log_a x$, a > 1, then its graph is shown in Figure 8.

If $y = \log_a x$, 0 < a < 1, then its graph is shown in Figure 9.

Figure 8

Figure 9

Some facts about logarithmic functions

- 1. Domain of a logarithmic function is $\{x: x > 0\}$ and its range is $\{y: y \in \mathbb{R}\}$
- 2. A logarithmic function is a one-to-one function.
- 3. $\log_a 1 = 0$
- 4. Graph of $y = \log_a x$ is a reflection of the graph $y = a^x$ across the line y = x.

Remark: When a = e (where e = 2.71818... = natural number) $y = e^x$ has the inverse $y = \log_e x$ which is normally written as $y = \ln x$ and it is called a natural logarithm.

The properties of $y = e^x$ and $y = \ln x$ are the same as of the following properties of $y = a^x$ and $y = \log_a x$ (a > 0), respectively

Properties of logarithmic and exponential functions

Given positive numbers a,b where $a \neq 1, b \neq 1$ and $x,y \in R$

$$1. \quad a^x \cdot a^y = a^{x+y}$$

$$2. \qquad \frac{a^x}{a^y} = a^{x-y}$$

3.
$$a^x \cdot b^x = (ab)^x$$
 and $\frac{a^x}{b^x} = \left[\frac{a}{b}\right]^x$

$$4. \quad \left(a^{x}\right)^{y} = a^{xy}$$

$$5. \quad a^{-x} = \frac{1}{a^x}$$

6. If
$$x > 0$$
, $y > 0$, then $\log_a(xy) = \log_a x + \log_a y$

$$\log_a(\frac{x}{y}) = \log_a x - \log_a y$$

7.
$$\log_a x^r = r \log_a x$$

$$8. \quad \log_a x = \frac{\log_b x}{\log_b a}$$

9.
$$\log_a a = 1$$

10.
$$\ln e^x = x$$
 and $e^{\ln x} = x$, $x > 0$

11.
$$a^x = y$$
 and $x = \log_a y$, $y > 0$

Example 12 Find the values of x

(a)
$$4 \cdot 3^x = 8 \cdot 6^x$$
 (b) $7^{x+2} = e^{17x}$

c. Trigonometric Function

$$y = \sin x$$
 $y = \cos x$ $y = \tan x = \frac{\sin x}{\cos x}$
 $y = \csc x = \frac{1}{\sin x}$ $y = \sec x = \frac{1}{\cos x}$ $y = \cot x = \frac{\cos x}{\sin x}$

Graph of $y = \sin x$

Graph of $y = \cos x$

Graph of $y = \tan x$

Graph of $y = \cot x$

Graph of $y = \sec x$

Graph of $y = \csc x$

Normally, the inverse of a trigonometric function is not a function since each trigonometric function is not one-to-one. However, if we restrict the domain, we can make a one-to-one trigonometric function and define an inverse function as follows.

1) Restrict the domain of $y = \sin x$ to $\left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$

Its inverse function is $y = \arcsin x$.

$$y = \sin x$$

$$y = \arcsin x$$

2) Restrict domain of $y = \cos x$ to $[0, \pi]$

Its inverse function is $y = \arccos x$.

$$y = \cos x$$

$$y = \arccos x$$

3) Restrict domain of $y = \tan x$ to $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Its inverse function is $y = \arctan x$.

4) Restrict domain of $y = \cot x$ to $(0, \pi)$

Its inverse function is $y = \operatorname{arccot} x$.

5) Restrict domain of $y = \sec x$ to $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$

Its inverse function is $y = \operatorname{arcsec} x$.

6) Restrict domain of $y = \csc x$ to $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$

Its inverse function is $y = \operatorname{arccsc} x$.

Exercises on Functions

1. Determine if the following are functions. Locate domain and range.

(a)
$$\{(1,3),(2,3),(3,4),(4,5)\}$$

(b)
$$\{(x,y): y > 4x-1\}$$

(c)
$$y = x^4 - 1$$

(d) Let

X	У
15	2
2	13
13	13
5	3

2. Determine if each following function is either even or odd or neither.

(a)
$$f(x) = x^3 + 2x$$

(b)
$$g(x) = \frac{8}{x^2 - 2}$$

(c)
$$h(x) = 3x|x|$$

(d)
$$k(x) = x + |x|$$

3. What is the difference of $\sin x^2$, $\sin^2 x$ and $\sin(\sin x)$? Show in terms of composite functions.

Answers to Function Exercises

1. (a) yes
$$D = \{1, 2, 3, 4\}$$
 and $R = \{3, 4, 5\}$

(b) no
$$D = R =$$
all real numbers

(c) yes
$$D = \mathbb{R}$$
 and $R = \{y : y \ge -1\}$

(d) yes
$$D = \{2, 5, 13, 15\}$$
 and $R = \{2, 3, 13\}$

2. (a) odd

(b) even

(c) odd

(d) neither

3. Let
$$f(x) = \sin x$$
 and $g(x) = x^2$

$$\sin x^2 = f(g(x))$$
, $\sin^2 x = g(f(x))$, while

$$\sin(\sin x) = f(f(x))$$