Algorithmes de tri

Informatique pour tous

Appartenance

Question

Comment savoir si un élément e appartient à une liste L?

Appartenance

Question

Comment savoir si un élément e appartient à une liste L?

```
def contient(L, e):
    for i in range(len(L)):
        if L[i] == e:
            return True
    return False
```

Appartenance

Question

Comment savoir si un élément e appartient à une liste L?

```
def contient(L, e):
    for i in range(len(L)):
        if L[i] == e:
            return True
    return False
```

Complexité dans le pire cas : O(n), où n = len(L).

Si L est $tri\acute{e}$, on peut savoir si e est dans L plus rapidement, en comparant e avec le **milieu** m de L :

- Si e == m, on a trouvé notre élément.
- Si e > m, il faut chercher e dans la partie droite de L
- ullet Si e < m, il faut chercher e dans la partie gauche de L

$$L = \left[\text{-2, 1, 2, 4, 6, 7, 8, 9, 11, 12, 14, 15, 18, 22, 54} \right]$$

$$[-2, 1, 2, 4, 6, 7, 8, \mathbf{9}, 11, 12, 14, 15, 18, 22, 54]$$

 $9 < 14$

$$\left[\text{-2, 1, 2, 4, 6, 7, 8, 9, } \boxed{11, 12, 14, 15, 18, 22, 54} \right]$$

$$9 < 14$$

$$\begin{bmatrix} -2, 1, 2, 4, 6, 7, 8, 9, \\ 11, 12, 14, 15, 18, 22, 54 \end{bmatrix}$$

$$\begin{bmatrix} -2, 1, 2, 4, 6, 7, 8, 9, \boxed{11, \mathbf{12}, 14}, 15, 18, 22, 54 \end{bmatrix}$$

 $12 < 14$

On veut savoir si 14 appartient à la liste :

[-2, 1, 2, 4, 6, 7, 8, 9, 11, 12, 14], 15, 18, 22, 54]

14 trouvé!

Recherche dichotomique : version itérative

```
def contient_dichotomie(L, e):
    debut = 0 # indice de début
    fin = len(L) # indice de fin exclu
    while debut < fin:
        milieu = (debut + fin) // 2
        if L[milieu] == e:
            return True
        elif L[milieu] < e: # il faut chercher à droite
            debut = milieu + 1
        else: # il faut chercher à gauche
            fin = milieu
    return False</pre>
```

Recherche dichotomique : version récursive

Recherche dichotomique : version récursive

```
dicho(L, e, i, j) cherche e dans L entre les indices i et j - 1:
```

Recherche dichotomique : version récursive

dicho(L, e, i, j) cherche e dans L entre les indices i et j - 1:

```
def dicho(L, e, i, j):
    if i >= j: return False
    m = (i + j) // 2 # milieu de i et j
    if L[m] == e: return True
    if e < L[m]: # il faut chercher à gauche de m
        return dicho(L, e, i, m)
    else: # il faut chercher à droite de m
        return dicho(L, e, m + 1, j)</pre>
```

Question

Quel est le nombre d'appels récursifs en fonction de n = len(L)?

Question

Quel est le nombre d'appels récursifs en fonction de n = len(L)?

A chaque exécution, on divise au moins par deux la zone de recherche.

Au bout de deux exécutions, elle sera divisée par 4, puis 8, ... et 2^p au bout de p exécutions.

Question

Quel est le nombre d'appels récursifs en fonction de n = len(L)?

A chaque exécution, on divise au moins par deux la zone de recherche.

Au bout de deux exécutions, elle sera divisée par 4, puis 8, ... et 2^p au bout de p exécutions.

Donc, au bout de p exécutions, le nombre d'éléments de la zone de recherche est au plus :

$$\frac{n}{2^p}$$

Au bout de p appels récursifs, le nombre d'éléments de la zone de recherche est au plus $\frac{n}{2p}$.

Quand $\frac{n}{2^p} \le 1$, i.e $p \ge \log_2(n)$, la fonction s'arrête.

Au bout de p appels récursifs, le nombre d'éléments de la zone de recherche est au plus $\frac{n}{2^p}$.

Quand
$$\frac{n}{2^p} \le 1$$
, i.e $p \ge \log_2(n)$, la fonction s'arrête.

Donc il y a au plus $\lceil \log_2(n) \rceil$ appels récursifs.

Comme chacun de ces appels effectue un nombre constant d'opérations, la complexité de la méthode par dichotomie est :

$$O(\log(n))$$

Trier une liste

On a donc besoin de savoir comment trier une liste, pour pouvoir utiliser dichotomie.

Question

Comment trier une liste?

(Comment faites-vous pour trier votre main dans un jeu de cartes?)

Le **tri par insertion** parcourt les indices i de L en conservant L[:i] triée et en insérant L[i] au bon endroit dans L[:i]

[-8, -4, 1, 2, 5, 7]

Le **tri par insertion** parcourt les indices i de L en conservant L[:i] triée et en insérant L[i] au bon endroit dans L[:i]

[-8, -4, 1, 2, 5, 7]

On va se servir d'une fonction récursive insere(L, i) qui :

- Suppose L[:i] triée.
- Met L[i] à sa bonne place pour que L[:i+1] devienne triée.

On va se servir d'une fonction récursive insere(L, i) qui :

- Suppose L[:i] triée.
- Met L[i] à sa bonne place pour que L[:i+1] devienne triée.

Fonctionnement de insere(L, i):

Si L[i-1] <= L[i] :</pre>

On va se servir d'une fonction récursive insere(L, i) qui :

- Suppose L[:i] triée.
- Met L[i] à sa bonne place pour que L[:i+1] devienne triée.

Fonctionnement de insere(L, i):

- Si L[i-1] <= L[i] : L[i] est à sa bonne position, on ne fait rien.
- Si L[i-1] > L[i] :

On va se servir d'une fonction récursive insere(L, i) qui :

- Suppose L[:i] triée.
- Met L[i] à sa bonne place pour que L[:i+1] devienne triée.

Fonctionnement de insere(L, i):

- Si L[i-1] <= L[i] : L[i] est à sa bonne position, on ne fait rien.
- Si L[i-1] > L[i] : on peut échanger L[i-1] et L[i] puis appeler insere(L, i-1).

Fonctionnement de insere(L, i):

- Si i == 0 : il n'y a rien à faire (cas de base).
- Si L[i-1] <= L[i] : L[i] est à sa bonne position, on ne fait rien.
- Si L[i-1] > L[i] : on peut échanger L[i-1] et L[i] puis appeler insere(L, i - 1).

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Remarque : pas de return, on modifie la liste en argument donc il n'y a pas besoin de renvoyer une nouvelle liste.

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Comment prouver que ce tri est correct?

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Comment prouver que ce tri est correct?

En montrant l'invariant de boucle :

 $H_i =$ « au début de la ième itération de la boucle for, L[0:i] est triée »

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Quelle est sa complexité dans le pire cas?

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Quelle est sa complexité dans le pire cas?

1 insere(L, i) est en

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Quelle est sa complexité dans le pire cas?

- insere(L, i) est en O(i)
- donc tri_insertion(L) est en

```
def insere(L, i):
    if i != 0 and L[i-1] > L[i]:
        L[i], L[i-1] = L[i-1], L[i]
        insere(L, i-1)
```

```
def tri_insertion(L):
    for i in range(len(L)):
        insere(L, i)
```

Quelle est sa complexité dans le pire cas?

- insere(L, i) est en O(i)
- ② donc tri_insertion(L) est en $O(1)+O(2)+...+O(n)=O(n^2)$.

On va voir des algorithmes plus efficaces.

Le tri fusion sur une liste L consiste à :

Séparer L en deux listes L1 et L2 de même taille.

Le tri fusion sur une liste L consiste à :

- Séparer L en deux listes L1 et L2 de même taille.
- Trier récursivement L1 et L2 pour obtenir des listes triées L1' et L2'

Le tri fusion sur une liste L consiste à :

- Séparer L en deux listes L1 et L2 de même taille.
- Trier récursivement L1 et L2 pour obtenir des listes triées L1 ' et L2 '
- Fusionner L1' et L2' pour avoir un tri de L.

[5, **1**, **-4**, 2, **-8**, 7]

Tri fusion: exemple

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

Fonctionnement de fusion(L1, L2):

1 Si len(L1) == 0:

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

- Si len(L1) == 0 : renvoyer L2.
- O Si len(L2) == 0:

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

- Si len(L1) == 0 : renvoyer L2.
- Si len(L2) == 0 : renvoyer L1.
- Sinon :
 - a) Soit m le maximum de L1 et L2.

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

- Si len(L1) == 0 : renvoyer L2.
- ② Si len(L2) == 0 : renvoyer L1.
- Sinon :
 - a) Soit m le maximum de L1 et L2.
 - b) Supprimer m.

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

- Si len(L1) == 0 : renvoyer L2.
- ② Si len(L2) == 0 : renvoyer L1.
- Sinon :
 - a) Soit m le maximum de L1 et L2.
 - b) Supprimer m.
 - c) Fusionner récursivement L1 et L2 (où m a été supprimé).

On va se servir d'une fonction récursive fusion(L1, L2) qui :

- Suppose L1 et L2 triées.
- Renvoie une liste triée contenant les éléments des deux listes.

- Si len(L1) == 0 : renvoyer L2.
- Si len(L2) == 0 : renvoyer L1.
- Sinon :
 - a) Soit m le maximum de L1 et L2.
 - b) Supprimer m.
 - c) Fusionner récursivement L1 et L2 (où m a été supprimé).
 - d) Rajouter m au résultat de la fusion.

```
def fusion(L1, L2):
    if len(L1) == 0: return L2
    if len(L2) == 0: return L1
    if L1[-1] > L2[-1]: m = L1.pop()
    else: m = L2.pop()
    L = fusion(L1, L2)
    L.append(m)
    return L
```

```
def fusion(L1, L2):
    if len(L1) == 0: return L2
    if len(L2) == 0: return L1
    if L1[-1] > L2[-1]: m = L1.pop()
    else: m = L2.pop()
    L = fusion(L1, L2)
    L.append(m)
    return L
```

Complexité:

```
def fusion(L1, L2):
    if len(L1) == 0: return L2
    if len(L2) == 0: return L1
    if L1[-1] > L2[-1]: m = L1.pop()
    else: m = L2.pop()
    L = fusion(L1, L2)
    L.append(m)
    return L
```

Complexité:

Soit n = len(L1) + len(L2).

fusion(L1, L2) effectue O(n) appels récursifs (car à chaque appel on enlève un élément) et chaque appel récursif effectue un nombre constant d'opérations.

Donc la complexité de fusion(L1, L2) est O(n).

Fonctionnement de ${\tt tri_fusion(L)}$:

1 Silen(L) <= 1:

Fonctionnement de tri_fusion(L):

- Si len(L) <= 1 : L est déjà triée.</p>
- Séparer L en deux listes de même taille L1 et L2.
- Trier récursivement L1 et L2.
- 4 Les fusionner.

Fonctionnement de tri_fusion(L):

- Si len(L) <= 1 : L est déjà triée.</p>
- Séparer L en deux listes de même taille L1 et L2.
- 3 Trier récursivement L1 et L2.
- 4 Les fusionner.

```
def tri_fusion(L):
    if len(L) <= 1: return L
    L1, L2 = L[: len(L)//2], L[len(L)//2 :]
    return fusion(tri_fusion(L1), tri_fusion(L2))</pre>
```

```
def tri_fusion(L):
    if len(L) <= 1: return L
    L1, L2 = L[: len(L)//2], L[len(L)//2 :]
    return fusion(tri_fusion(L1), tri_fusion(L2))</pre>
```

Question

Comment prouver que tri_fusion(L) trie L?

```
def tri_fusion(L):
    if len(L) <= 1: return L
    L1, L2 = L[: len(L)//2], L[len(L)//2 :]
    return fusion(tri_fusion(L1), tri_fusion(L2))</pre>
```

Question

```
Comment prouver que tri_fusion(L) trie L?
```

Par récurrence sur la taille de L : par hypothèse de récurrence, les appels tri_fusion(L1) et tri_fusion(L2) trient L1 et L2 et on en déduit que tri_fusion(L) trie L.

Question

Quelle est la complexité dans le pire cas de tri_fusion(L)?

Notons C(n) cette complexité pour n = len(L).

Question

Quelle est la complexité dans le pire cas de tri_fusion(L)?

Notons C(n) cette complexité pour n = len(L).

tri_fusion(L) effectue :

- appels récursifs sur L1 et L2 : complexité $2 \times C(\frac{n}{2})$.
- 2 fusion des deux listes : complexité n.

D'où :
$$C(n) = n + 2C(\frac{n}{2})$$
.

$$C(n) = n + 2C(\frac{n}{2})$$

En appliquant cette inégalité sur $C(\frac{n}{2})$:

$$C(n) = n + 2(\frac{n}{2} + 2C(\frac{n}{4})) = n + n + 4C(\frac{n}{4})$$

$$C(n) = n + 2C(\frac{n}{2})$$

En appliquant cette inégalité sur $C(\frac{n}{2})$:

$$C(n) = n + 2(\frac{n}{2} + 2C(\frac{n}{4})) = n + n + 4C(\frac{n}{4})$$
...

$$C(n) = \underbrace{n+n+\ldots+n}_{k} + 2^{k}C(\frac{n}{2^{k}})$$

$$C(n) = n + 2C(\frac{n}{2})$$

En appliquant cette inégalité sur $C(\frac{n}{2})$:

$$C(n) = n + 2(\frac{n}{2} + 2C(\frac{n}{4})) = n + n + 4C(\frac{n}{4})$$
...

$$C(n) = \underbrace{n+n+\ldots+n}_{k} + 2^{k}C(\frac{n}{2^{k}})$$

Pour $k = \log_2(n)$:

$$C(n) = n \log_2(n) + 2^{\log_2(n)} C(\frac{n}{2^{\log_2(n)}})$$

$$C(n) = n \log_2(n) + nC(1) = O(n \log(n))$$

Donc la complexité du tri fusion est $O(n \log(n))$.

Tri fusion : arbre des appels récursifs

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opération niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

arbre des appels récursifs

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opération niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

Tri rapide (Quicksort)

Le tri rapide, sur une liste L, consiste à :

Séparer L en deux listes L1 et L2 : les éléments plus petits que L[0] et les éléments plus grand que L[0].

Le tri rapide, sur une liste L, consiste à :

- Séparer L en deux listes L1 et L2 : les éléments plus petits que L[0] et les éléments plus grand que L[0].
- 2 Trier récursivement L1 et L2.

Le tri rapide, sur une liste L, consiste à :

- Séparer L en deux listes L1 et L2 : les éléments plus petits que L[0] et les éléments plus grand que L[0].
- 2 Trier récursivement L1 et L2.
- **3** Renvoyer la liste triée L1 + [L[0]] + L2.

Le tri rapide, sur une liste L, consiste à :

- Séparer L en deux listes L1 et L2 : les éléments plus petits que L[0] et les éléments plus grand que L[0].
- Trier récursivement L1 et L2.
- **3** Renvoyer la liste triée L1 + [L[0]] + L2.

```
def tri_rapide(L):
    if len(L) <= 1: return L
    L1, L2 = [], []
    for i in range(1, len(L)):
        if L[i] < L[0]: L1.append(L[i])
        else: L2.append(L[i])
    return tri_rapide(L1) + [L[0]] + tri_rapide(L2)</pre>
```

Remarque : on peut aussi l'écrire en deux lignes avec des « listes par compréhension »...

```
def tri_rapide(L):
    if len(L) <= 1: return L
    return tri_rapide([e for e in L if e < L[0]])
+ [L[0]] + tri_rapide([e for e in L if e > L[0]])
```

Tri rapide

Question

Quelle est la complexité de tri_rapide?

Tri rapide

Question

Quelle est la complexité de tri_rapide?

- Dans le meilleur des cas : L1 et L2 sont de taille $\frac{n}{2}$. La complexité est $O(n \log(n))$, comme pour le tri fusion.
- Dans le pire cas : la taille de L1 (ou L2) est systématiquement égale à n-1. On a alors une complexité (à une constante près) :

$$C(n) = C(n-1) + n = 1 + 2 + ... + n = \Theta(n^2)$$

Récapitulatif

Comparaison des algorithmes de tri sur une liste de taille n:

	Meilleur cas	Pire cas
Tri par insertion	O(n)	$O(n^2)$
Tri fusion	$O(n\log(n))$	$O(n\log(n))$
Tri rapide	$O(n\log(n))$	$O(n^2)$

Question

Comment trouver la **médiane** d'une liste L de nombres, c'est à dire l'élément m de L tel qu'il y ait autant d'éléments supérieurs à m que d'éléments inférieurs?

Exemple : la médiane de [1, 0, 6, 27, 8, -10, 21] est 6. En effet il y a trois éléments inférieurs à 6 et trois éléments supérieurs à 6.

1ère possibilité : tester, pour chaque élément m de L, si m est la médiane.

- 1ère possibilité : tester, pour chaque élément m de L, si m est la médiane. En O(n²).
- 2ème possibilité : trier L puis sélectionner l'élément « du milieu ».

- 1ère possibilité : tester, pour chaque élément m de L, si m est la médiane. En O(n²).
- 2ème possibilité : trier L puis sélectionner l'élément « du milieu ». En $O(n \log(n))$

- 1ère possibilité : tester, pour chaque élément m de L, si m est la médiane. En O(n²).
- 2ème possibilité : trier L puis sélectionner l'élément « du milieu ». En $O(n \log(n))$

```
def mediane(L):
    L1 = tri_fusion(L)
    return L1[len(L1)//2]
```

```
In [54]: mediane([3, 2, 6, 1, 8, 4, 5])
Out[54]: 4
```

Égalité à permutation près

Exercice

Écrire une fonction egal (L1, L2) déterminant si deux listes d'entiers L1 et L2 sont égales à permutation près.

Exemples: egal([1, 2, 3], [2, 1, 3]) doit renvoyer True. egal([1, 2, 4], [2, 1, 3]) doit renvoyer False.

Tris de chaînes de caractères

Nous avons vu des tris sur des listes de nombres.

Ils permettent aussi de trier des chaînes de caractères selon l'ordre du dictionnaire (alphabétique).

Tris de chaînes de caractères

Nous avons vu des tris sur des listes de nombres.

Ils permettent aussi de trier des chaînes de caractères selon l'ordre du dictionnaire (alphabétique).

```
In [58]: L = ["MPSI", "PCSI", "PSI", "PC", "MP"]
In [59]: tri_insertion(L)
In [60]: L
Out[60]: ['MP', 'MPSI', 'PC', 'PCSI', 'PSI']
In [61]: "PSI" > "PC"
Out[61]: True
```