PHYS 325 Lecture 1

- · V: Finite dimensional vector space reals

 dual space V*: set of all linear functions from V

 to IR.
- · V* is a vector space dim V*=dim V
- $\alpha \in V^* \qquad \alpha : co vector. \qquad v_1, \ v_2 \in V \qquad c_1, \ c_2 \in \mathbb{R}$ $\alpha \left(c_1 v_1 + c_2 v_2\right) = c_1 \alpha \left(v_1\right) + c_2 \alpha \left(v_2\right)$
- J'How do they form a vector space?":

 $(c\alpha)(v) = c\alpha(v)$ (Multiplication)

 $(\alpha+\beta)(v) = \alpha(v) + \beta(v)$ (Addition)

Let's work with bases: Notice: subscript for basis el. of V, superscript for " " " v*

A basis { eig for V* is called dual to {eig if:

Since placement of the script tells which space we're in, will drop the tilde from now on.

(V*) *= V for finite dimensional vector spaces.

Def: $V(\alpha) := \alpha(v)$ Linear:

• $V(c\alpha) = (c\alpha)(v) = c\alpha(v) = cV(x)$

Also: $v(\alpha+\beta)=(\alpha+\beta)(v)=\alpha(v)+\beta(v)=v(\alpha)+v(\beta)$

"They are called Dual because they are linear

Ja, BEV* Q1 V->R linear B: V -> R linear OB: VXV -> R (u,v) H) a(u) B(v) words : In other $(\alpha \otimes \beta)(u,v) = \alpha(u)\beta(v)$ & d@B is bilinear (linear for both first and second entry. check: (X Q B) (C, U, + C, U) = X (Guy + GUZ) BCV) = 4 d (u1) (B (v) + c2 d (u2) (B (v) = c1(d&B)(u,v)+cz(dQB)(u2,v) Similarly, (exocise): (doß) (yc1v,+ (zv2) = c1 (a@B)(y,v1)+ (2(d@B) Now, Let's Define:

 \Rightarrow $V^* \otimes V^*$: The space of all bilinear functions from $\forall x \lor \rightarrow \mathbb{R}$ $\Rightarrow \omega^{(2)}(u,v): \text{ linear in both entries.}$ $if \quad \alpha,\beta \in V^* \text{ then } \quad \alpha \otimes \beta \in V^* \otimes V^*$

Owhat is V* & V* & V*? - ore tensors of rook 3 400000 The space of all tritinear functions from VXVXV to 1R. n-factors - V* & V*& ... & V*: the space of all n-linear furtions from UXV: XV to R. n-factors -> Exercise: Check these form vector Epaces. Mixed Tensors (->) V* & V? The space of all bilinear functions n: covariant ronk from VXV* to PR
n-factors m: contravoriant rank T,seV*0....v* o Vo...ov: the set of all (n+m) - linear functions from

> VX...VXV*x...V* to R n-factors m-factors

Adding Two Tensors:

(cT) (νη, ι..., νη, αι, ... αm)= c T (νη, ..., νη, αη, ... αm)

 $(T+S)(V_1, ...V_n)d_1...d_m) = T(V_1, ...V_n, a_1...d_m)$ + $S(V_1, ...V_n, a_1, ...d_m)$

wev* &v" {ei3 basis for V. u=uie; = Zuie; (u'EIR) (einstein summation) v = viej · w (u, v) = w (u'ei, v'ei) = u'w(ei, viej) = u'vi w (ei. ej) = wij u'v]=wij (e'@ej)(u,v. · Let {ek} be a basis in V* dual to {ei} ek (e;) = S;k $e^{k}(u) = e^{k}(u^{i}e_{i}) = u^{i}e^{k}(e_{i}) = u^{i}S_{i}^{k} = u^{k}$ $u^{i} = e^{i}(u)$ $v^{j} = e^{i}(v)$ $v^{j} = e^{i}(v)$ (Tensor product of two covectors) Thus ... w= wij ei @ ei Exercise: Show that (eiox e)) ore linearly independent. Hint: Show at Gire es = 0 How? -> (4)

(6; e'@ei) (e1,e1) = 6ij e'(e1) e'(e1) = 0:; Si Si = 0 1 = 0 Therefore {ei@eij is a basis for V"OV" You can generalize this . {eiøejøek} (eiøejøek)(u,v,w):= Basis for V*QV* e'(u)ejcv)et(w) The most general case: {eilo... ein o eji o ... o ejm? is a basis V*&··· &V* &V&··· &V n-factors m-facters. Let's figure out dimensions: dim V = dim V*= N; therefore dim (V*&V*)=N2 · Similarly, dim V* @ V* = N3 for the most general

(5)