Chương 4:

- 1. Xét điểm $P(\rho=2, \phi=400, z=3)$ trong không gian có vector cường độ điện trường $E=100a_{\rho}-200a_{\phi}+300a_{z}$. Tính vi phân công dịch chuyển một điện tích Q=20C đi một quãng đường $6\mu m$:
- a. Theo hướng **a**_p
- D/S: dW = -12nJ
- b. Theo hướng \mathbf{a}_{ϕ}
- D/S: dW = 24nJ
- c. Theo hướng **a**z
- D/S: dW = -36nJ
- d. Theo hướng vector cường độ điện trường E
- D/S: dW = -44,91nJ
- e. Theo hướng vector $G = 2\mathbf{a}_x 3\mathbf{a}_v + 4\mathbf{a}_z$
- D/S: dW = -41,8nJ
- 2. Xét không gian có cường độ điện trường $E = 120a_{\rm p}$ V/m. Tính vi phân công dịch chuyển một điện tích 50C di chuyển một quãng đường 2mm từ:
- Điểm P(1, 2, 3) về phía điểm Q(2, 1, 4)
- D/S: dW = 3,1 J
- 3. Trong chân không xét một mặt cầu mang điện bán kính r = 0.6cm, biết $\rho_s = 20nC/m^2$
- a. Tính điện thế tuyệt đối của điểm P(r = 1cm, θ = 25°, ϕ = 50°).
- $D/S: V_P = 8,14V$
- b. Tính hiệu điện thế giữa hai điểm A(r = 2cm, θ = 30°, φ = 60°) và B(r = 3cm, θ = 45°, φ = 90°)
- $D/S: V_{AB} = 1,36V$
- 4. Xét mặt phẳng tích điện rộng vô hạn có ρ_S = 5nC/m² đặt tại z = 0, một điện tích đường dài vô hạn có ρ_L = 8nC/m đặt tại x = 0 và z = 4, và một điện tích Q = 2C đặt tại P(2, 0, 0).
- Coi M(0, 0, 5) là điểm tham chiếu của hệ. Tính điện thế của điểm N(1, 2, 3).

$$D/S: V_N = 1,98kV$$

- 5. Trong chân không, xét hai điện tích đường có $\rho L = 8nC/m$ đặt lần lượt tại x = 1, z = 2 và x = 1
- -1, y = 2. Tìm điện thế của điểm P(4, 1, 3) nếu biết điện thế của điểm gốc tọa độ là 100V.

D/S: VP = -68,4V

6. Trong chân không, xét hai mặt trụ tích điện có điện tích mặt ρ_{Sa} = 6nC/m² và ρ_{Sb} = 2nC/m² lần lượt đặt tại ρ_1 = 2cm và ρ_2 = 6cm. Giả thiết mặt cong ρ = 4cm có điện thế bằng 0. Hãy tính điện thế các mặt cong có:

a. $\rho = 5$ cm

 $D/S: V_5 = -3,026V$

b. $\rho = 7cm$

 $D/S: V_7 = -9,678V$

7. Xét một hình vành khăn kích thước 1cm < ρ < 3cm, z = 0 có mật độ điện tích mặt ρ_S = 5 ρ nC/m². Tính điện thế của điểm P(0, 0, 2cm) nếu điểm tham chiếu của hệ thống ở ρ = ∞ .

 $D/S: V_P = 0.081V \text{ ffcgc}$ 0020zxx

- 8. Trong chân không, biết hàm điện thế phân bố theo dạng V = $80r^{0,6}$ (V).
- a. Tính vector cường độ điện trường E

 $D/S: E = -48r^{-0.4} (V/m)$

b. Tính hàm mật độ điện tích khối ρ_{V} tại r= 0,5m

 $D/S: \rho_V = -673 pC/m^3$

- 9. Trong chân không, xét hình trụ tròn kích thước $\rho=2$, 0 < z < 1, điện thế $V=100+50\rho+150\rho\sin\varphi$ (V).
- a. Tính V, E, D và ρV tại điểm P(1; 600; 0,5).

 $D/S: V_P = 279,9V$

 $E = -179a_0 - 75a_{\phi}$

 $D_{\rho} = -1,59a_{\rho} - 0,664a_{\phi}$

 $\rho_{V} = -443 \text{pC/m}^{3}$

b. Tính tổng điện tích Q của trụ tròn.

D/S: Q = -5,56 nC

10. Trong chân không xét hai điện tích điểm: 1nC đặt tại A(0; 0; 0,1), và -1nC đặt tại B(0; 0; -0,1).

a. Tính điện thế của điểm P(0,3; 0; 0,4).

 $D/S: V_P = 5,784V$

b. Tính độ lớn vector cường độ điện trường E tại điểm P.

Đ/S: E = 25,185 V/m

c. Coi hai điện tích điểm đóng vai trò như lưỡng cực điện đặt tại gốc tọa độ. Tính điện thế tại điểm P.

 $D/S: V_P = 5,76 V$

11. Trong chân không, xét trường thế V = 20/(xyz) V

Tính tổng năng lượng của hình hộp kích thước 1 < x, y, z < 2.

 $D/S: W_E = 386pJ$

12. Trong chân không, xét quả cầu bằng đồng có bán kính 4cm, có tổng điện tích Q = 5C, phân bố đều trên bề mặt của quả cầu.

a. Hãy dùng luật Gauss để xác định vector dịch chuyển điện D ở bên ngoài quả cầu.

b. Tính tổng năng lượng của trường tĩnh điện gây ra bởi quả cầu.

 $D/S: W_E = 2,81J$