Question Number	Scheme	Marks
9(a)	$y = \frac{2+4x-x^2}{2x+1} \implies x^2 - 4x - 2 + 2yx + y \ (=0)$	
	$x^{2} + (2y - 4)x + (y - 2) = 0$	M1A1A1 (3)
a)	$x^{2} + (2y - 4)x + (y - 2) = 0$ $(2y - 4)^{2} \ge 4(y - 2)$ $4y^{2} - 16y + 16 = 4y - 8 \Rightarrow 4y^{2} - 20y + 24 = 0$ $y \le 2 \text{ or } y \ge 3$	MI
(b)	$(2y-4) \ge 4(y-2)$ $4y^2 - 16y + 16 - 4y - 8 \Rightarrow 4y^2 - 20y + 24 - 0$	M1 M1A1
	y < 2 or y > 3	Alcso (4)
(c)	$y = \frac{2+4x-x^2}{2x+1}$ $\frac{dy}{dx} = \frac{(4-2x)(2x+1)-2(2+4x-x^2)}{(2x+1)^2}$ See notes for product rule method	
	$dy = (4-2x)(2x+1)-2(2+4x-x^2)$ See notes for product rule method	N#1 A 1 A 1
		M1A1A1
	$\frac{dy}{dx} = 0 \Rightarrow (4-2x)(2x+1)-2(2+4x-x^2) = 0$	
	$2x(x+1) = 0 \Rightarrow x = 0, -1$	M1 A1
	stationary points are $(0,2)(-1,3)$	A1 (6)
ALT	$x^{2} + (2y-4)x + (y-2) = 0 \Rightarrow 2x + (2y-4) + 2\frac{dy}{dx}x + \frac{dy}{dx} = 0$	M1A1A1
	$\frac{dy}{dx} = 0 \Rightarrow x + y = 2$	M1
	(using (b)) stationary points are $(0,2)(-1,3)$	A1A1
(d)	(-1,3)	B1 curve (i) M1A1 (M1 finding coords, A1 correct (oe or min 2dp) and on diagram
	$ \begin{array}{c cccc} 2 - \sqrt{6} & O \\ \text{or } -0.45 & \text{or } 4.45 \end{array} $ $ x = -\frac{1}{2} $	(ii) B1 (iii) B1ft (5) [18]

(a)M1	Re-write the equation of <i>C</i> without fractions and rearrange to the required form.	
A1	orrect value for a and either b or c . These values need not be stated explicitly.	
A1	Fully correct equation. Values of a, b and c need not be stated explicitly. Condone missing	
	brackets round " $y - 2$ ". Award this mark when the equation is reached – isw any listing of	
	values with incorrect signs.	
(b)		
M1	Use " $b^2 \geqslant 4ac$ " for their equation	
M1	e-arrange their inequality to a 3TQ in y. Allow an equation here. orrect 3TQ, as shown or any equivalent	
A1 A1cso	Deduce the CVs (need not be shown explicitly) and state the (given) inequalities. There	
AICSU	must be no errors in the working but the equation, if correct, can be solved easily so no	
	working need be shown. Condone use of "and" instead of "or".	
(c)		
M1	Differentiate the equation of C using the quotient rule. The denominator must be correct and	
	the numerator must consist of the difference of 2 terms of the type shown. The product rule	
A 1	can be used. Either numerator term correct	
A1 A1	Fully correct numerator	
ALT:	Product Rule $y = (2+4x-x^2)(2x+1)^{-1}$	
M1A1	$\frac{dy}{dx} = (4-2x)(2x+1)^{-1} - 2(2+4x-x^2)(2x+1)^{-2}$	
A1	άλ	
	M1: rewrite without denominator and attempt product rule. Difference of 2 terms of the form shown needed (Difference because of the negative power)	
	A1 Either term correct A1 Second term correct	
M 1	Equate the numerator of their derivative to 0 and solve to $x =$ (any valid method of solving	
	a quadratic with 2 or 3 terms) If product rule used must multiply through by $(2x+1)^2$	
A1 A1	Both x values correct Poth stationary points correct	
AI ALT	Both stationary points correct	
M1	Use implicit differentiation on the re-arranged equation	
A1	Correct derivative of $(2y-4)x$ (inc use of product rule)	
A1	Fully correct derivative	
	• _	
M1	Set $\frac{dy}{dx} = 0$ and use the result from (b) to obtain solutions	
A1	One correct stationary point	
A1	Both correct stationary points	
(d)		
B1	Shape: Two parts, one above $y = 3$ and the other below $y = 2$	
(i)M1	Attempt to find the x coordinates of the crossing points Correct coordinates shown on their sketch, 2 crossing points only. $y = 0$ need not be seen.	
A1	There must be a curve through these points. $y = 0$ need not be seen.	
(ii)B1	The asymptote must be drawn and labelled (by its equation or by showing the <i>x</i> coordinate	
(-1)-1	of the point where it crosses the x-axis). There must be at least one part of the curve which is	
	asymptotic to the line $x = -\frac{1}{2}$. No part of the curve should touch/cross the asymptote or	
(111) Th 4 0.	curve dramatically away from the line.	
(iii)B1ft	Label the stationary points with their coords. Follow through provided the result is sensible.	