Deep Learning for Computer Vision Homework 1

R10522606 曾柏翔

Problem 1

1. Print the network architecture of your model.

Layer (type)	Output Shape	 Param #
Conv2d-1	[-1, 64, 512, 512]	1,792
BatchNorm2d-2	[-1, 64, 512, 512]	128
ReLU-3	[-1, 64, 512, 512]	Θ
Conv2d-4	[-1, 64, 512, 512]	36,928
BatchNorm2d-5	[-1, 64, 512, 512]	128
ReLU-6	[-1, 64, 512, 512]	Θ
MaxPool2d-7	[-1, 64, 256, 256]	Θ
Conv2d-8	[-1, 128, 256, 256]	73,856
BatchNorm2d-9	[-1, 128, 256, 256]	256
ReLU-10	[-1, 128, 256, 256]	0
Conv2d-11	[-1, 128, 256, 256]	147,584
BatchNorm2d-12	[-1, 128, 256, 256]	256
ReLU-13	[-1, 128, 256, 256]	0
MaxPool2d-14	[-1, 128, 128, 128]	0
Conv2d-15	[-1, 256, 128, 128]	295,168
BatchNorm2d-16	[-1, 256, 128, 128]	512
ReLU-17	[-1, 256, 128, 128]	0
Conv2d-18	[-1, 256, 128, 128]	590,080
BatchNorm2d-19	[-1, 256, 128, 128]	512
ReLU-20	[-1, 256, 128, 128]	0
Conv2d-21	[-1, 256, 128, 128]	590,080
BatchNorm2d-22	[-1, 256, 128, 128]	512
ReLU-23	[-1, 256, 128, 128]	0
MaxPool2d-24 Conv2d-25	[-1, 256, 64, 64]	0
BatchNorm2d-26	[-1, 512, 64, 64] [-1, 512, 64, 64]	1,180,160
ReLU-27	[-1, 512, 64, 64]	1,024 0
Conv2d-28	[-1, 512, 64, 64]	2,359,808
BatchNorm2d-29	[-1, 512, 64, 64]	1,024
ReLU-30	[-1, 512, 64, 64]	0
Conv2d-31	[-1, 512, 64, 64]	2,359,808
BatchNorm2d-32	[-1, 512, 64, 64]	1,024
ReLU-33	[-1, 512, 64, 64]	Θ
MaxPool2d-34	[-1, 512, 32, 32]	0
Conv2d-35	[-1, 512, 32, 32]	2,359,808
BatchNorm2d-36	[-1, 512, 32, 32]	1,024
ReLU-37	[-1, 512, 32, 32]	0
Conv2d-38	[-1, 512, 32, 32]	2,359,808
BatchNorm2d-39	[-1, 512, 32, 32]	1,024
ReLU-40	[-1, 512, 32, 32]	0
Conv2d-41	[-1, 512, 32, 32]	2,359,808
BatchNorm2d-42	[-1, 512, 32, 32]	1,024
ReLU-43	[-1, 512, 32, 32]	0
MaxPool2d-44	[-1, 512, 16, 16]	0
AdaptiveAvgPool2d-45	[-1, 512, 7, 7]	0
Linear-46	[-1, 4096]	102,764,544
ReLU-47	[-1, 4096]	0
Dropout-48	[-1, 4096]	0
Linear-49	[-1, 4096]	16,781,312
ReLU-50	[-1, 4096]	0
Dropout-51	[-1, 4096]	0
Linear-52	[-1, 50]	204,850
VGG-53	[-1, 50]	0
====================================	=======================================	

- 2. Report accuracy of model on the validation set.
 - → Accuracy: 0.8268
- 3. Visualize the classification result on validation set by implementing t-SNE on output features of the second last layer. Briefly explain your result of the t-SNE visualization.

從 t-SNE 可以看出各個 class 的特性,可以注意到有些 claas 是自成一區,而有些則會與其他 calss 重疊。這可以簡單想成 model 對於各個 class 的辨識能力,若是自成一區,代表 class 對於有著鮮明的特徵,使得 model 能夠輕易地辨識出來;而若是與其他的重疊,代表重疊的 class 之間可能存在著某些相似的特徵,造成 model 混淆。

舉例來說,可以很明顯的注意到 t-SNE 圖最上方, class 0 就自成一區, 其對應到的圖片-腳踏車,在訓練中,並沒有與其相似的 data,因此 model 能 夠輕易地辨識腳踏車的特徵;而可以看到 class 32 與 class 46 幾乎都混在一 起,兩者所對應到的皆為車輛相關的圖片,因此對於 model 來說就很容易辨 識錯誤。(32 與 46 甚至我用肉眼都沒辦法分辨)

Problem 2

1. Print the network architecture of your VGG16-FCN32s model.

Print the network architect	ure of your VGG16-FCN32s mo	dei.
Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 512, 512]	1,792
ReLU-2	[-1, 64, 512, 512]	0
Conv2d-3	[-1, 64, 512, 512]	36,928
ReLU-4	[-1, 64, 512, 512]	0
MaxPool2d-5	[-1, 64, 256, 256]	0
Conv2d-6	[-1, 128, 256, 256]	73,856
ReLU-7	[-1, 128, 256, 256]	0
Conv2d-8	[-1, 128, 256, 256]	147,584
ReLU-9	[-1, 128, 256, 256]	0
MaxPool2d-10	[-1, 128, 128, 128]	0
Conv2d-11	[-1, 256, 128, 128]	295,168
ReLU-12	[-1, 256, 128, 128]	0
Conv2d-13	[-1, 256, 128, 128]	590,080
ReLU-14	[-1, 256, 128, 128]	0
Conv2d-15	[-1, 256, 128, 128]	590,080
ReLU-16	[-1, 256, 128, 128]	0
MaxPool2d-17	[-1, 256, 64, 64]	0
Conv2d-18	[-1, 512, 64, 64]	1,180,160
ReLU-19	[-1, 512, 64, 64]	0
Conv2d-20	[-1, 512, 64, 64]	2,359,808
ReLU-21	[-1, 512, 64, 64]	0
Conv2d-22	[-1, 512, 64, 64]	2,359,808
ReLU-23	[-1, 512, 64, 64]	0
MaxPool2d-24	[-1, 512, 32, 32]	0
Conv2d-25	[-1, 512, 32, 32]	2,359,808
ReLU-26	[-1, 512, 32, 32]	0
Conv2d-27	[-1, 512, 32, 32]	2,359,808
ReLU-28	[-1, 512, 32, 32]	0
Conv2d-29	[-1, 512, 32, 32]	2,359,808
ReLU-30	[-1, 512, 32, 32]	0
MaxPool2d-31	[-1, 512, 16, 16]	0
Conv2d-32	[-1, 4096, 15, 15]	8,392,704
ReLU-33	[-1, 4096, 15, 15]	9
Dropout2d-34	[-1, 4096, 15, 15]	0
Conv2d-35	[-1, 4096, 15, 15]	16,781,312
ReLU-36	[-1, 4096, 15, 15]	0
Dropout2d-37	[-1, 4096, 15, 15]	0
Conv2d-38	[-1, 7, 15, 15]	28,679
ConvTranspose2d-39	[-1, 7, 512, 512] ====================================	

2. Implement an improved model which performs better than your baseline model. Print the network architecture of this model.

Layer (type)	Output Shape	Param #
=======================================		
Conv2d-1	[-1, 64, 512, 512]	1,792
ReLU-2	[-1, 64, 512, 512]	0
Conv2d-3	[-1, 64, 512, 512]	36,928
ReLU-4	[-1, 64, 512, 512]	0
MaxPool2d-5	[-1, 64, 256, 256]	0
Conv2d-6	[-1, 128, 256, 256]	73,856
ReLU-7	[-1, 128, 256, 256]	0
Conv2d-8	[-1, 128, 256, 256]	147,584
ReLU-9	[-1, 128, 256, 256]	0
MaxPool2d-10	[-1, 128, 128, 128]	0
Conv2d-11	[-1, 256, 128, 128]	295,168
ReLU-12	[-1, 256, 128, 128]	0
Conv2d-13	[-1, 256, 128, 128]	590,080
ReLU-14	[-1, 256, 128, 128]	0
Conv2d-15	[-1, 256, 128, 128]	590,080
ReLU-16	[-1, 256, 128, 128]	0
Conv2d-17	[-1, 256, 128, 128]	590,080
ReLU-18	[-1, 256, 128, 128]	0
MaxPool2d-19	[-1, 256, 64, 64]	0
Conv2d-20	[-1, 512, 64, 64]	1,180,160
ReLU-21	[-1, 512, 64, 64]	0
Conv2d-22	[-1, 512, 64, 64]	2,359,808
ReLU-23	[-1, 512, 64, 64]	0
Conv2d-24	[-1, 512, 64, 64]	2,359,808
ReLU-25	[-1, 512, 64, 64]	0
Conv2d-26	[-1, 512, 64, 64]	2,359,808
ReLU-27	[-1, 512, 64, 64]	0
MaxPool2d-28	[-1, 512, 32, 32]	0
Conv2d-29	[-1, 512, 32, 32]	2,359,808
ReLU-30	[-1, 512, 32, 32]	0
Conv2d-31	[-1, 512, 32, 32]	2,359,808 0
ReLU-32 Conv2d-33	[-1, 512, 32, 32] [-1, 512, 32, 32]	2,359,808
ReLU-34	[-1, 512, 32, 32]	2,337,808
Conv2d-35	[-1, 512, 32, 32] [-1, 512, 32, 32]	2,359,808
ReLU-36	[-1, 512, 32, 32]	2,337,888
MaxPool2d-37	[-1, 512, 32, 32]	9
Conv2d-38	[-1, 4096, 15, 15]	8,392,704
ReLU-39	[-1, 4096, 15, 15]	0,372,734
Dropout2d-40	[-1, 4096, 15, 15]	0
Conv2d-41	[-1, 4096, 15, 15]	16,781,312
ReLU-42	[-1, 4096, 15, 15]	0
Dropout2d-43	[-1, 4096, 15, 15]	9
Conv2d-44	[-1, 7, 15, 15]	28,679
ConvTranspose2d-45	[-1, 7, 512, 512]	200,704

- 3. Report mIoU of the improved model on the validation set.
 - \rightarrow mIoU: 0.688
- 4. Show the predicted segmentation mask of "0010_sat.jpg", "0097_sat.jpg", "0107_sat.jpg" during the early, middle, and the final stage during the training process of this improved model.

Reference

- [1] Vgg16&FCN32 https://blog.csdn.net/gbz3300255/article/details/105582572
- [2] t-SNE https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
- [3] Print the network architecture of model. https://stackoverflow.com/questions/42480111/model-summary-in-pytorch
- [4] How to use "register_forward_hook". https://zhuanlan.zhihu.com/p/87853615