

CS-323 Artificial Intelligence

Fall 2020

Lecture 14

Shahab Tahzeeb

Assistant Professor

Department of Computer & Information Systems Engineering NED University of Engineering & Technology

Probabilistic Reasoning

Chapter 13

(Continued - - -)

Total Probability Theorem

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)$$

The result is extendable to any number of events.

$$P(B) = \sum_{k} P(B|A_k)P(A_k)$$

Joint Probability Distribution

- Captures probabilities of all possible combinations of a set of random variables.
- Also known as *probabilistic model*.
- E.g. **P**(*MyGradeInAI*, *MyGradeInCA*)

MyGradeInAI	MyGradeInCA	P(MyGradeInAI, MyGradeInCA)
a	а	0.10
a	b	0.05
:	:	:
d	d	0.00

Example

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Toothache	Cavity	Catch	P(Toothache, Cavity, Catch)
yes	yes	yes	0.108
yes	yes	no	0.012
yes	no	yes	0.016
yes	no	no	0.064
no	yes	yes	0.072
no	yes	no	0.008
no	no	yes	0.144
no	no	no	0.576

Example

		toothache			$\neg toothache$		
	$catch$ $\neg catch$			catch	$\neg catch$		
cavity		0.108	0.012		0.072	0.008	
$\neg cavity$		0.016	0.064		0.144	0.576	

 $P(toothache \ \ \ \ catch) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.144 = 0.416$

 $P(toothache \land cavity) = 0.108 + 0.012 = 0.120$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.200

Marginalization

$$P(Y) = \sum_{z \in Z} P(Y,z)$$

Conditioning

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z}} \mathbf{P}(\mathbf{Y} \,|\, \mathbf{z}) P(\mathbf{z})$$

Example

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

$$P(cavity \mid toothache) = \frac{P(cavity, toothache)}{P(toothache)} = \frac{0.108 + 0.012}{0.200} = 0.60$$

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity, toothache)}{P(toothache)} = \frac{0.016 + 0.064}{0.200} = 0.40$$

$$P(Cavity \mid toothache) = <0.60, 0.40>$$

$$P(Cavity \mid toothache) = \frac{1}{P(toothache)} < 0.120, 0.080 > = < 0.60, 0.40 >$$

α: Normalization Constant

General Inference Procedure

- Let,
 - ☐ X: query variable
 - ☐ E: set of evidence variables
 - **u** e: observed values for E
 - ☐ Y: set of unobserved variables (also known as hidden variables)
 - \square query: $\mathbf{P}(X \mid e)$

$$P(X|e) = \alpha P(X,e) = \alpha \sum_{y} P(X,e,y)$$

Table size for a full joint probability distribution of n variables each having k values? k^n

Reducing the Size of Domain Representation

- Let's add another random variable Weather to our dentistry example.
- Suppose *Weather's* domain is {*sunny*, *rainy*, *fog*, *cloudy*}.
- Size of full joint probability distribution table?
 - $\sqrt{2*2*2*4} = 32$
- $\mathbf{P}(Weather \mid Toothache, Cavity, Catch) = \mathbf{P}(Weather)$
- P(Weather, Toothache, Cavity, Catch)
 - $= \mathbf{P}(Weather \mid Toothache, Cavity, Catch) \mathbf{P}(Toothache, Cavity, Catch)$
 - $= \mathbf{P}(Weather) \ \mathbf{P}(Toothache, Cavity, Catch)$

Reducing the Size of Domain Representation

