

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

5014492689

CHEMISTRY 9701/31

Paper 31 Advanced Practical Skills

October/November 2009

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	
Laboratory	

For Examiner's Use		
1		
2		
Total		

This document consists of 11 printed pages and 1 blank page.

SJF4880/SJF 17555/2 © UCLES 2009

[Turn over

2

BLANK PAGE

1 You are provided with the following reagents.

- two weighing bottles labelled FA 1, each containing between 2.90 g and 3.00 g of zinc powder
- FA 2, 0.80 mol dm⁻³ copper sulfate, CuSO₄

You are to determine the enthalpy change, ΔH , for the following reaction.

$$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$$

You will carry out the experimental procedure twice.

Read through the instructions below before starting the experiment.

(a) You will weigh each bottle and later in the experiment weigh it again after the zinc powder has been tipped into copper sulfate solution. In the space below prepare a table to record the weighings and the mass of zinc powder used in each experiment.

Weigh accurately, to at least one decimal place, one of the weighing bottles labelled **FA 1**.

Record this mass in the table you have prepared.

[1]

(b) Procedure

- Support the plastic cup in the 250 cm³ beaker and, using a pipette, place 25.0 cm³ of **FA 2** into the plastic cup.
- Stir gently, taking a temperature reading every ½ minute until a steady temperature
 has been obtained for a period of at least 2 minutes. You may need to tilt the beaker
 in order to cover the bulb of the thermometer with solution.
- On a precise minute reading tip the zinc powder from the weighing bottle into the plastic cup.

Do not read the temperature at this time or at the following ½ minute.

- Continue to stir the mixture thoroughly. Starting 1 minute after the addition of the zinc powder, record the temperature every ½ minute until the temperature has reached a maximum value and then decreased steadily for at least 5 minutes.
- Reweigh the empty weighing bottle. Record the mass of the bottle + any residual zinc powder and the mass of zinc powder used in the experiment in the table you prepared in (a).
- Record your results in an appropriate form in the space on the following page.

Repeat the experiment using the contents of the second weighing bottle and 25.0 cm³ copper sulfate solution pipetted into a clean plastic cup.

(b) continued

Results Make certain your readings of temperature display the precision of the apparatus used.

For Examiner's Use

[11]

(c) Plot your temperature and time readings separately for each experiment on the grids on the next page. Your temperature axis should extend 10°C **above** the highest temperature you recorded.

Draw lines as instructed below.

On each graph draw a horizontal straight line through the steady initial temperature.

Extrapolate the cooling section of each graph back to the time when you added the zinc powder.

Draw construction lines on the graphs to deduce the "theoretical" **temperature rise** at the moment of mixing the reagents.

experiment 2 experiment 1 For Examiner's

[/]

(d)	The "theoretical" temperature rises an	re°C and°C.	For
	The mean "theoretical" temperature ri	se is°C.	[1] Examiner's
	Calculations		
	Show working and appropriate signification	ant figures in all of your calculations.	[2]
(e)	Calculate how many moles of coppe cup.	r sulfate, CuSO ₄ , were pipetted into the pla	astic
		mol of CuSO ₄ were pipetted into the	cup
	For each experiment calculate how replastic cup. $[A_r: Zn, 65.4]$	many moles of zinc powder were added to	the
1 st	experiment	2 nd experiment	
	In the 1 st experiment mo	ol of zinc powder were added to the plastic cu	ıp.
	In the 2 nd experiment mo	ol of zinc powder were added to the plastic co	up. [1]
(f)	Use your answers to (e) and the equawas in excess and which was the limiting	ation for the reaction to determine which rea	gent
	Zn(s) + CuSO ₄ (aq) -	→ Cu(s) + ZnSO ₄ (aq)	
			[1]

(g)	From your mean "theoretical" temperature rise at the time of mixing, calculate the heat energy released in the plastic cup by the reaction of zinc powder with copper sulfate solution. [You may assume that 4.3 J are required to raise the temperature of 1 cm ³ of any solution by 1 °C and that the mass of any solid may be ignored.]	For Examiner's Use
(h)	of heat energy are released. [1] Calculate, correct to 3 significant figures, the enthalpy change in kJmol ⁻¹ for the following reaction.	
	$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$	
	$\Delta H = \dots kJ \text{mol}^{-1}$ [2]	
(i)	Identify and explain one source of error in the experiment you have carried out.	
(j)	Suggest a way in which the experimental method you used could be improved in a school or college laboratory in order to minimise this error.	
	[1] [Total: 26]	

The three boiling-tubes, labelled **FA 3**, **FA 4**, and **FA 5**, each contain a solid with one cation and one anion from those listed on pages 11 and 12.

For Examiner's Use

You will carry out specified tests to deduce the cations and anions present in **FA 3**, **FA 4** and **FA 5**.

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate** place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted. If any solution is warmed a boiling-tube MUST be used.

(a) Heat the boiling-tube containing **FA 5** gently at first then more strongly. Record your observations in the space below.

[2]

[1]

(b) In their boiling-tubes, dissolve FA 3, FA 4 and the cold residue after heating FA 5 in a minimum of dilute nitric acid and then add distilled water so that each boiling-tube is approximately ⅔ full. Warm to dissolve if necessary. Record your observations in the space below.
Use these solutions for tests (d), (e) and (f).

(c)	Which anion can be identified from your observations in (a) and (b)? Explain your answer.	For Examiner's Use	
(d)	The cations present in FA 3 , FA 4 and FA 5 can be identified by reaction of each solution with aqueous sodium hydroxide and with aqueous ammonia. React 1 cm depth of each of the solutions prepared in (b) with each of these two reagents. Record, in an appropriate form in the space below, your observations for these reactions.		
		i ii iii iv v vi	

Conclusions

Using your observations you should be able to identify the cation present in two of the solutions. For the remaining solution you should be able to identify two possible cations.

FA 3 contains the cation(s)	
FA 4 contains the cation(s)	
FA 5 contains the cation(s)	

[6]

[Turn over

For Examiner's Use

			-	
(e)			2 to select a reagent to nt in one of the solutions	distinguish between the s in (d) .
	Carry out the te	est with the selected rea	gent.	
	reagent			
	observation			
	conclusion			
(f)	Carry out the fo	llowing tests.		[2]
	40.04		observations	
	test	FA 3	FA 4	FA 5
solution tube, a	n depth of n in a test- dd 1 cm depth eous barium			
	cm depth of nitric acid.			
solution tube, a	n depth of n in a test- dd 1 cm depth eous silver			
allow a formed pour of and ad	iny precipitate I to settle, If the solution Id aqueous hia to the tate.			
	What conclusio	ns can be made from th	e observations above?	

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reaction with	
	NaOH(aq)	NH ₃ (aq)
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ (aq)	${ m NH_3}$ liberated on heating with ${ m OH^-(aq)}$ and ${ m A}l$ foil, ${ m NO}$ liberated by dilute acids (colourless ${ m NO} ightarrow { m (pale)}$ brown ${ m NO_2}$ in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) (aq) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

