TRIGONOMETRY TOMO 1 y 2

ADVISORY

Juan adquiere como herencia un terreno en forma de triángulo rectángulo; se sabe que el perímetro de dicho terreno es 160m y la cosecante de uno de sus ángulos agudos es 2,125. Calcule el área de dicho terreno.

Resolución:

Del dato:

$$cscA = 2,125$$
 $cscA = \frac{17}{8}$

Teorema de Pitágoras:

$$CA^2 + 8^2 = 17^2$$

$$CA^2 + 64 = 289$$

$$CA^2 = 225$$

$$CA = 15$$

Perímetro = 160

$$\rightarrow$$
 17k + 15k + 8k = 160

$$40k = 160$$
 $k = 4$

Área:
$$S = \frac{(15k)(8k)}{2}$$

Reemplazando k:

$$S = \frac{(60)(32)}{2}$$

$$\therefore$$
 S = 960 m²

Si:

$$sen(2x - 8^{\circ})csc(24^{\circ} + x) = 1$$

$$tan(2y + 25^\circ) = cot(y + 26^\circ)$$

Calcule Q = tan(x+y)

Resolución:

Dato 1:
$$sen(2x - 8^{\circ}).csc(24^{\circ} + x) = 1$$

RT recíprocas:

$$2x - 8^{\circ} = 24^{\circ} + x$$
$$x = 32^{\circ}$$

Dato 2:
$$tan(2y + 25^\circ) = cot(y + 26^\circ)$$

RT de ángulos complementarios:

$$2y + 25^{\circ} + y + 26^{\circ} = 90^{\circ}$$

$$3y = 39^{\circ}$$

$$y = 13^{\circ}$$

1) R.T. RECÍPROCAS

$$sen\alpha.csc\alpha = 1$$

$$\cos\alpha.\sec\alpha=1$$

$$\tan \alpha . \cot \alpha = 1$$

Iguales

2) R.T. DE ÁNGULOS COMPLEMENTARIOS

senα=cosβ

tanα=cotβ

 $\frac{1}{2}$ $\frac{1}$

En el gráfico mostrado, halle AB en términos de θ .

Resolución:

$$RT(\alpha) = \frac{LO \ QUE \ QUIERO}{LO \ QUE \ TENGO}$$

$$\triangle$$
 OTA: $\frac{AO}{2} = \csc\theta$ \Rightarrow AO= $2\csc\theta$

Se observa:
$$x = AO + OB$$
 \Rightarrow AB = $2csc\theta + 2$

$$AB = 2csc\theta + 2$$

$$\therefore AB = 2(csc\theta + 1)$$

Sabiendo que ABCD es un paralelogramo, calcule la suma de coordenadas del punto P. (S es área).

Sabemos:

$$x = \frac{2k(8) + 3k(-2)}{2k + 3k}$$
 $x = 2$

$$y = \frac{2k(7)+3k(-3)}{2k+3k}$$
 $y=1$

$$x + y = 3$$

Halle la ecuación de la recta que pasa por el punto P(1;3) y es paralela a la recta \mathcal{L} : 2x + 5y - 4 = 0.

Como

$$\mathcal{L}_1 /\!\!/ \mathcal{L} \mid$$

no
$$\mathcal{L}_1 /\!/ \mathcal{L}$$

$$\stackrel{m}{\longrightarrow} m \mathcal{L}_1 = -\frac{2}{5}$$

Calculando la ecuación de \mathscr{L}_1

$$y - y_1 = m_{\mathcal{L}_1}(x - x_1)$$

$$y - 3 = -\frac{2}{5}(x - 1)$$

$$2x + 5y - 17 = 0$$

Si $sen^2\alpha = \frac{225}{289}$ y $\alpha \in IIC$, efectúe $Q = sec\alpha + tan\alpha$

Resolución:

Del dato:

$$sen^2\alpha = \frac{225}{289}$$

$$\operatorname{sen}\alpha = \frac{15}{17}$$

$$sen\alpha = \frac{15}{17} = \frac{y}{r}$$

Sabemos:

$$r = \sqrt{x^2 + y^2}$$

$$17 = \sqrt{x^2 + 15^2}$$

$$289 = x^2 + 225$$

$$64 = x^2$$

$$\pm 8 = x$$

Como
$$\alpha \in IIC \Rightarrow x = -8$$

Calculamos:

$$Q = \sec \alpha + \tan \alpha$$

$$Q = \frac{r}{x} + \frac{y}{x}$$

$$Q = \frac{17}{-8} + \frac{15}{-8}$$

$$Q = \frac{32}{-8}$$

$$Q = -4$$

Del gráfico, calcule x en términos de n, α y θ

Resolución:

Recordando:

$$RT(\alpha) = \frac{LO \ QUE \ QUIERO}{LO \ QUE \ TENGO}$$

⊿BCD:

$$\frac{BC}{n} = \cot \alpha$$
 \Rightarrow $BC = n\cot \alpha$

⊿ABC:

$$\frac{AB}{BC}$$
 = tan θ \mathbf{x} = (BC)tan θ

$$x = n.\cot\alpha.\tan\theta$$

Del gráfico, calcule el valor de x

$$a = \frac{-2+0}{2}$$

$$b = \frac{6+12}{2}$$
 $b = \frac{6+32}{2}$

Calculamos las coordenadas del punto N:

$$c = \frac{2+2}{2}$$

$$c = 2$$

$$d = \frac{8+2}{2}$$

$$d = 5$$

Resolución:

$$m = tan37^0$$

$$m=\frac{3}{4}$$

Calculamos la ecuación de la recta \mathscr{L}

$$y - y_1 = m \left(x - x_1 \right)$$

$$y - 1 = \frac{3}{4}(x - 4)$$

$$3x - 4y - 8 = 0$$

grafico mostrado, Del calcule cotθ

Resolución:

$$cot\theta = \frac{x}{y} = \frac{-7}{4}$$

$$\cot \theta = -\frac{7}{4}$$

