Automata and Formal Languages

Matteo Alberici May 2020

Contents

1	Introduction	3		
2	Mathematical Notions and Terminology 2.1 Sets	3 3 4 4 4 5		
	2.6 Definitions, Theorems, and Proofs	5 5 6		
3	Boolean Logic	7		
4	Regular Languages 4.1 Finite Automata 4.2 Nondeterminism 4.2.1 From NFA to FA 4.3 Regular Expressions	8 8 9 9 10		
5	Nonregular Languages 11			
6	Context-Free Languages 15			
7	Pushdown Automata 14			

1 Introduction

The theory of computation can be divided into three areas:

• Complexity Theory

What makes problems computationally hard or easy?

• Computability Theory

What problems can(not) computers solve?

• Automata Theory

Deals with defining mathematical models of computation

2 Mathematical Notions and Terminology

2.1 Sets

A set is a group of unordered unique elements seen as a unit:

$$S = \{1, ciao, 3\}$$

The **cardinality** of a set is the number of its elements:

$$|S| = 3$$

The **empty set** \emptyset is the set with no members.

A set A is a **subset** of set B if every element of A is member of B:

$$A \subseteq B$$

Moreover, A is a **proper subset** of B if A is not equal to B:

$$A \subset B$$

The **union** of two sets A and B is the set containing all the elements in A and all those in B:

$$A \cup B$$

The **intersection** of two sets A and B is the set containing the elements that are in both A and B:

$$A \cap B$$

The **complement** of set A is the set of all elements not in A:

 \bar{A}

The **power set** of set A is the set of all the subsets of A:

 2^A

The **Cartesian product** of sets A and B is the set of all ordered pairs wherein the first element is a member of A and the second element is a member of B:

$$A \times B$$

2.2 Sequences and Tuples

A **sequence** is an ordered list of objects:

(1, 2, 3)

A finite sequence is a **tuple**: a k-tuple contains k elements.

A 2-tuple is called an **ordered pair**.

2.3 Functions and Relations

A function is an object that sets up an input-output relationship. A function f whose input and output values are a and b is represented as follows:

$$f(a) = b$$

A function is also called a **mapping**, thus: "f maps a to b".

Given a function f, the set of its possible inputs is called the **domain**, while the set of its possible outputs is called the **range**:

$$f: D \rightarrow R$$

A function that uses all the elements of the range is **onto** the range.

If the domain of a function f is $A_1 \times ... \times A_k$, then the input is a k-tuple $(a_1,...,a_k)$ where a_i is an **argument** to f. A function f with k arguments is a **k-ary function**, where k is the **arity** of f. An **unary function** has one argument, while a **binary function** has two arguments.

A **predicate** is a function whose range is {true, false}.

A predicate whose domain is a set of k-tuples $A \times ... \times A$ is a **k-ary relation** on A. A 2—ary relation is called a **binary relation**.

An equivalence relation R captures the notion of two objects being equal in some feature and must satisfy the following conditions:

- 1. R is **reflexive**: xRx for every x
- 2. R is **symmetric**: xRy implies yRx for every x, y
- 3. R is **transitive**: xRy and yRz imply xRz, for every x, y, z.

2.4 Graphs

A graph is a set of **nodes** connected with **edges**. We can label nodes and edges obtaining a **labeled graph**.

In a directed graph, edges have directions.

A graph G is a **subgraph** of a graph H if the nodes and the edges of G are subsets of the ones of H. A **simple cycle** contains at least three nodes and repeats the first and last ones.

A graph is **connected** if every node has a path to the others.

A graph is a **tree** if it is connected and has no simple cycles. Trees have a node designated as **root**, while the other nodes of degree 1 are called the **leaves**.

A path is a sequence of nodes connected by edges. A **simple path** is a path with no **cycles**, meaning paths that start and end in the same node. A path wherein all the arrows point in the same direction as its steps is a **directed path**: a directed graph is **strongly connected** if a directed path connects every two nodes.

2.5 Strings and Languages

An alphabet Σ is a nonempty finite set of symbols:

$$\Sigma = \{a, b, c, ..., z\}$$

A string over an alphabet is a sequence of symbols from Σ :

abracadabra is a string over Σ

Given a string w, then the **length** |w| is the number of its symbols. The **empty** string ϵ is the string with length 0.

Given two strings x and y, then the **concatenation** xy is obtained by appending y to the end of x:

$$aa \circ bb = aabb$$
,

where aa is the **prefix** and bb is the suffix.

A language L is a set of strings.

2.6 Definitions, Theorems, and Proofs

Definitions describe objects and notions we make **mathematical statements** about, expressing some property.

A **proof** is a convincing logical argument that a statement is true, while a **theorem** is a mathematical statement proved true. Statements useful only because they assist in the proof of another are called **lemmas**. Theorems determining that related statements are true are called **corollaries**.

2.6.1 Finding Proofs

Truth or falsity of statements is determined trough a mathematical proof. Given the multipart statement "P iff Q", we have the following definitions:

- Forward direction: if P is true, then Q is true $P \Rightarrow Q$
- Reverse direction: if Q is true, then P is true $Q \Leftarrow P$
- Finally, $P \iff Q$

If a statement states that all objects of a certain type have a particular property, we must find a **counterexample** in order to prove it wrong.

2.6.2 Types of Proofs

Proof by Construction

A **proof by construction** shows that a particular type of object exists. For example, we build a **k-regular graph** if every node in the graph has degree k.

Proof by Contradiction

In a **proof by contradiction**, we assume that a theorem is false and then show that it leads to a false consequence. For example, proving that the square root of 2 is an irrational number.

Proof by Induction

A **proof by induction** shows that all elements of an infinite set have a specified property. For example, we show that an arithmetic expression computes a desired quantity for every assignment to its variables.

Given a property P, then the **basis** proves that P(1) is true, while the **induction step** proves that if P(1) is true, then so is P(i+1). The assumption that P(i) is true is the **induction hypothesis**.

3 Boolean Logic

Boolean logic is a mathematical system built around the Boolean values true and false, manipulated through Boolean operations:

- **Negation**: returns the opposite value $(NOT \neg)$
- Conjunction: returns 1 if both values are 1 $(AND \land)$
- **Disjunction**: returns 1 if either of the values is 1 $(OR \lor)$
- Exclusive or: returns 1 if only one value is $1(XOR \oplus)$
- Equality: returns 1 if both values have the same value (\iff)
- Implication: returns 0 iff the first operand is 1 and the second one is 0
 (⇒)

$0 \wedge 0 = 0$	$0 \lor 0 = 0$	$\neg 0 = 1$
$0 \wedge 1 = 0$	$0 \lor 1 = 1$	$\neg 1 = 0$
$1 \wedge 0 = 0$	$1 \lor 0 = 1$	
$1 \wedge 1 = 1$	$1 \lor 1 = 1$	
$0 \oplus 0 = 0$	$0 \leftrightarrow 0 = 1$	$0 \rightarrow 0 = 1$
$0 \oplus 1 = 1$	$0 \leftrightarrow 1 = 0$	$0 \rightarrow 1 = 1$
$1 \oplus 0 = 1$	$1 \leftrightarrow 0 = 0$	$1 \rightarrow 0 = 0$
$1 \oplus 1 = 0$	$1 \leftrightarrow 1 = 1$	$1 \rightarrow 1 = 1$

Figure 1: Boolean operations results

The **distributive law** for AND and OR states that:

- $P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)$
- $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$

4 Regular Languages

Theory of computation uses an idealized computer called a **computational** model.

4.1 Finite Automata

The simplest computational model is the **finite automaton** (**FA**). It receives a string in input and, by processing it, either **accepts** or **rejects** it. An FA is defined by the following **5-tuple**:

$$A = (Q, \Sigma, \delta, q_0, F)$$
, where

- Q is the finite set of states
- Σ is the finite input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the accepting state

Let's analyze the following example reading string 1101 in the machine M:

- 1. Start in the initial state q_1
- 2. Read 1, follow transition from q_1 to q_2
- 3. Read 1, follow transition from q_2 to q_2
- 4. Read 0, follow transition from q_2 to q_3
- 5. Read 1, follow transition from q_3 to q_2
- 6. Accept because M is in the accepting state q_2

A language is **regular** if an FA recognises it. Given the set A of all strings accepted by a machine M, then A is the **language of machine** M:

$$L(M) = A$$

There are three **regular operations** used to study properties of regular languages:

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• Concatenation: $AB = \{xy \mid x \in A \text{ and } y \in B\}$

• Star: $A* = \{x_1, x_2, ..., x_k \mid k \ge 0 \text{ and } x_i \in A\}$

4.2 Nondeterminism

In a **nondeterministic finite automaton** (**NFA**), several choices may exist for the next state:

- Multiple ways to proceed, thus the machine splits in copies
- No ways to proceed, thus the copy dies
- A copy is in an accepting state, thus the string is accepted
- An ε transition exists, thus the machine splits immediately

An NFA is defined by the following **5-tuple**:

$$FA = (Q, \Sigma, \delta, q_0, F)$$
, where

- Q is the set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the **transition function**
- $q_0 \in Q$ is the initial state
- $F \subset Q$ is the accepting state

4.2.1 From NFA to FA

There exist an NFA for each FA:

- 1. Draw q_0 and the states reached from it along an ε transition
- 2. Draw at least one accepting state
- 3. Draw all transitions
 - No label: the transition leads to the **dead state** \emptyset
 - \bullet $\,\varepsilon$ transition: the transition leads to the subset of states reached along it

4.3 Regular Expressions

Regular expressions describe languages and are built up using regular operations:

$$\begin{split} &(0 \cup 1) \to (\{0\} \cup \{1\}) \to \{0,1\} = \Sigma \\ &\Sigma 0 \to \{00,10\} \\ &0* \to \{0*\} \to \{\varepsilon,0,00,\ldots\} \end{split}$$

R is a regular expression over an alphabet Σ if it is at least one of:

- 1. a, for some a in Σ
- $2. \ \varepsilon$
- 3. ∅
- 4. $R_1 \cup R_2$, where R_1 and R_2 are regular expressions
- 5. R_1R_2 , where R_1 and R_2 are regular expressions
- 6. R_1* , where R_1 is a regular expression

5 Nonregular Languages

To prove if a language is regular or not, we use the following procedure. **pump-**

ing lemma, which states that if L is a regular language, then there is a pumping length p such that, if w is a string in L of at least length p, then w may be divided into three pieces, x, y, and z, satisfying the following conditions:

- 1. $xy^iz \in L$ for each $i \geq 0$
- 2. |y| > 0
- $3. |xy| \leq p$

We must choose a string $s \in L$ of at least length p, then show that no possible division satisfies all conditions.

Let's analyze an example with the following language:

$$L = \{w | w = 0^n 1^n \text{ for } n \ge 0\}$$

- 1. Let's assume L is regular
- 2. A pumping length p must exist such that all strings in L of at least length p can be pumped
- 3. Choose a string w that cannot be pumped:

$$w = 0^p 1^p \to 00...011...1$$

- 4. Show that no division into xyz that satisfies all conditions exists:
 - (a) 3^{rd} condition: y must contain only 0s
 - (b) 2^{nd} condition: y must contain at least one 0
 - (c) 1^{st} condition: repeating 0s results in a string $\notin L$

6 Context-Free Languages

A context-free grammar (CFG) is a collection of substitution rules which are composed of a variable, a symbol, and a string, which again is composed of variables or terminals, built as follows:

- 1. Write the **start variable**:
- 2. Find a rule starting with a known variable
- 3. Replace the variable with the correspondent string

$$A \rightarrow 0A1$$
 $A \rightarrow 0A1 \rightarrow 00A11 \rightarrow 00B11 \rightarrow 00Z11$ $A \rightarrow B$ $A \rightarrow B \rightarrow Z$ $A \rightarrow B \rightarrow Z$

A language generated by a CFG is a **context-free language** and it defined by the following **4-tuple**:

$$L = (V, \Sigma, R, S)$$
, where

- \bullet V is the set of variables
- Σ is the set of terminals
- R is the set of rules
- $S \in V$ is the start variable

The following are some properties of CGFs:

- 1. Break a language into simpler languages:
 - Union:

$$S_1 \to 0S_11 \mid \varepsilon$$

$$S_2 \to 0S_21 \mid 01$$

$$S \to S_1 \mid S_2$$

• Concatenation:

$$S_1 \to 0S_11 \mid \varepsilon$$

$$S_2 \to 0S_21 \mid 01$$

$$S \to S_1S_2$$

2. Draw an FA and convert it to its CFG:

- (a) Design a variable R_i for every state Q_i
- (b) Add a rule $R_i \to a R_j$ for the a-transition from Q_i to Q_j
- (c) Add a rule $R_i \to \varepsilon$ if Q_i is a final state
- (d) Set the variable R_0 for the initial state Q_0

A sequence of substitutions is called a **derivation**. A string is **derived ambiguously** if it has many derivations, thus a grammar is **ambiguous** if it generates at least one ambiguous string.

7 Pushdown Automata

A **pushdown automaton** (**PDA**) is an NFA equipped with a **stack** giving it an unbounded memory needed for some non-regular languages. A PDA is defined by the following **6-tuple**:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
, where

- Q is the set of states
- Σ is the alphabet
- Γ is the stack alphabet
- $\delta: Q_i \times \Sigma_\varepsilon \times \Gamma_\varepsilon \to P(Q_j \times \Gamma_\varepsilon)$ is the transition function, where:
 - $-Q_i$ is a state
 - Σ_{ε} is an input symbol
 - $-\Gamma$ is a stack symbol read
 - $-Q_i$ the state reached
 - Γ_{ε} is the new symbol on the stack
- q_0 is the initial state
- $F \subseteq Q$ is the set of accepting states

The **transition labels** are written as follows:

$$A, B \rightarrow C$$

meaning that if A is read from the input string and B is on top of the stack, then pop B and write C.