STATISTICAL STRUCTURED PREDICTION

José Miguel Benedí e-mail: jmbenedi@prhlt.upv.es

Joan Andreu Sánchez e-mail: jandreu@prhlt.upv.es

Statistical Structured Prediction

VIRTUAL TEACHING

Purpose:
Provision of the higher education public service (art. 1 LOU)
Responsible:
Universitat Politècnica de València.

Rights of access, rectification, deletion, portability, limitation or opposition to the treatment in accordance with privacy policies:

http://www.upv.es/contenidos/DPD/ Intellectual property: Exclusive use in the virtual classroom

Dissemination, distribution or disclosure of recorded classes, particularly on social networks or services dedicated to sharing notes, is

> Violation of this prohibition may generate disciplinary, administrative or civil liability.

-

POLITÈCNICA DE VALÈNCIA Prestación del servicio Público de educación superior (art. 1 LOU

Responsable

Derechos de acceso, rectificación, supresión portabilidad, limitación u oposición a tratamiento conforme a políticas de privacidad

http://www.upv.es/contenidos/DPD/ Propiedad intelectual:

ersitat Politècnica de València

Uso exclusivo en el entorno de aula virtual.

Queda prohibida la difusión, distribución o
particularmente su compartición en redes sociales
o servicios dedicados a compartir apuntes.
La infracción de esta prohibición puede generar
responsabilidad disciplinaria, administrativa o civil

J.M. Benedí (2023-2024)

Statistical Structured Prediction 1

STATISTICAL STRUCTURED PREDICTION

Técnicas Fundamentales	R.F. y Aprendizaje Computacional Lingüística Computacional
Reconocimiento de Formas	Predicción Estructurada Estadística Redes Neuronales Artificiales Aplicaciones de Reconocimiento de Formas
Tecnologías del Lenguaje	Traducción Automática Reconocimiento Automático del Habla Aplicaciones de la Lingüística Computacional
Técnicas Complementarias	Aprendizaje Automático Avanzado Reconocimiento de Escritura Biometría Visión por Computador

STATISTICAL STRUCTURED PREDICTION

Focus of Course

- Give students an overview of the different topics that allow them to understand the basic concepts:
 - > What is structured prediction?
 - > What problems will we try to address?
 - > How to make predictions and learn the models in structured output spaces?
 - > What are the different computational challenges for structured prediction?
- > We will deal with the rigorous design of algorithms and make intensive use of mathematics, but nothing too hard.

"There is nothing more practical than a good theory".

Kurt Lewin

J.M. Benedí (2023-2024) Statistical Structured Prediction 2 J.M. Benedí (2023-2024) Statistical Structured Prediction 3

STATISTICAL STRUCTURED PREDICTION

Syllabus

- 1. Introduction
- 2. Models for Statistical Structured Prediction
- 3. Making Prediction: Decoding and Inference
- 4. Model Parameter Estimation

J.M. Benedí (2023-2024)

Statistical Structured Prediction 4

STATISTICAL STRUCTURED PREDICTION

Pattern Recognition and Machine Learning

- > Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer.
- > Kevin P. Murphy: Machine Learning: A Probabilistic Perpective. The MIT Press.
- ➤ Daphne Koller and Nir Friedman: Probabilistic Graphical Models: Principles and Techniques. MIT Press.
- Richard O. Duda, Peter E. Hart and David G. Stork: Pattern Classification (2nd ed.). Wiley Interscience.

Statistical Models for Natural Language Processing

- Christopher D. Manning and Hinrich Schütze: Foundations of Statistical Natural Language Processing. The MIT Press.
- Noah A. Smith: Linguistic Structure Prediction. Morgan & Claypool.
- ➤ Daniel Jurafsky and James H. Martin: Speech and Language Processing. Prentice Hall (2^a ed).

J.M. Benedí (2023-2024) Statistical Structured Prediction 5

STATISTICAL STRUCTURED PREDICTION

Lectures

Monday 18:00 - 21:00 (10 sessions of 3 hours)

J.M. Benedí November 06, first session

J.A. Sánchez December 11, first session

Assessment

- 2 Collections of selected exercises (theoretical and practical)
- 1 Multiple-choice test 12-02-2024
- 1 Recovery exam 19-02-2024 [Multiple-choice test and theoretical/practical exercises]

	delivery	deadline
Q1	04 - 12 - 2023	22 - 12 - 2023

Tutoring

Tutoring available by previous appointment

José Miguel Benedí <jmbenedi@prhlt.upv.es> (office: 1D13)

STATISTICAL STRUCTURED PREDICTION

1. Introduction

- 1.1. Structured Prediction
- 1.2. Predicting Sequences
 - > Weighted Finite-State Transducers and Automata
- 1.3. Syntactic Parsing
 - ➤ Context-Free Grammars

J.M. Benedi (2023-2024) Statistical Structured Prediction 6 J.M. Benedi (2023-2024) Statistical Structured Prediction / Introduction 1

NON-STRUCTURED PREDICTION

- ightharpoonup Input observation; $x \in \mathcal{X}$ can be any kind of object.
- \triangleright Output hypothesis; $y \in \mathcal{Y}$ is a real number: $\mathcal{Y} = \{1, \dots, K\}$ or $y \in \mathbb{R}$.
- ightharpoonup (Non-structured) prediction function; $f:\mathcal{X} \to \mathbb{R}$ assigns a hypothesis y = f(x) to each entry x.
 - > Binary classification: $y \in \{-1, 1\}.$
 - ightharpoonup Multiclass classification: $y \in \{1, \dots, K\}$.
 - Regression: $y \in \mathbb{R}$.

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 2

NON-STRUCTURED PREDICTION

Algorithms for predicting non-structured output data

Naive Bayes classifier Regression

Logistic Regression Fisher's linear discriminant

Perceptron algorithm K-Nearest Neighbor

Support Vector Machines Random Forests

Neural Networks

What if the space of outputs is much larger and more structured? Say trees, or in general, graphs.

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 3

STRUCTURED PREDICTION: APPLICATIONS

Machine Translation

Text sequences Input: Output: Text sequences

STRUCTURED PREDICTION: APPLICATIONS

Syntactic Parsing

Text sequences Input:

Output: Parse trees

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 5

STRUCTURED PREDICTION: APPLICATIONS

Automatic Speech Recognition

Speech signals Input:

Output: Transcribed text sequences

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 6

STRUCTURED PREDICTION: APPLICATIONS

Handwriting Text Recognition

Input: **Images**

Output: Transcribed text sequences

resussentando lo que en los prosperos tiempos nos de las virtudos y de la laborioxicad de aquas

blokewow y en otres paisas pueblo bajo, esuseman tobania su caracter religioso, sufrido y valicute; pero de su pasada importancia social, de su perdida

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 7

STRUCTURED PREDICTION: APPLICATIONS

Scene Analysis

Images Input:

Output: Scene layout graphs

STRUCTURED PREDICTION: APPLICATIONS

Mathematical Expressions Recognit

Input: **Images**

Output: Hypergrphs

$$\frac{x_2}{x_3} + \vec{x}$$

⇒ Mathematical Expression Recognition

STRUCTURED PREDICTION: APPLICATIONS

➤ Natural Language Processing:

➤ Part-of-Speech tagging

> Parsing

➤ Machine Translation

➤ Information Extraction

> Image Processing:

➤ Visual Scene Analysis

➤ Handwritten Text Recognition

> Speech Processing:

> Automatic transcription

> Text-to-Speech

➤ Bioinformatics:

> Protein Structure Prediction

> Robotics:

> Planning

Statistical Structured Prediction / Introduction 10

J.M. Benedí (2023-2024)

Outputs

(sentences)

(parse trees)

(sentences or hypergraphs)

(sentences)

(sentences or relationship graphs) (sentences or word graphs)

> (sentences or word graphs) (audio signal)

> > (graphs)

(sequence of actions)

STRUCTURED PREDICTION

- ightharpoonup Input observation; $x \in \mathcal{X}$ can be any kind of objects
- \triangleright Output hypothesis; $y \in \mathcal{Y}$ is a complex structured object.
- \triangleright (Structured) prediction function; $f: \mathcal{X} \to \mathcal{Y}$ which assigns a hypothesis y = f(x) to each entry x.
 - $\succ y$ can be a sequence,
 - \boldsymbol{y} can be a parse tree.
 - > y can be a graph.

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 11

STRUCTURED PREDICTION: SEARCH SPACE

- \triangleright Typically, \mathcal{Y} is potentially infinite $\implies f(x) = y \in \mathcal{Y}$ will often be intractable.
- \triangleright (Structural) Solution: We assume a specific structure in \mathcal{Y} , and we define a (finite) model M that allows us to characterize this structure: $Y(M) \subseteq \mathcal{Y}$

$$f(\boldsymbol{x}) = \boldsymbol{y} \ \in Y(M)$$

Depending on M, we can find polynomial solutions.

PREDICTING SEQUENCES

Sequences

- Text is a sequence of words or even letters,
- A spoken utterance is a sequence of parameter vectors,
- A video is a sequence of frames, ...

Models and motivation

Finite-State Acceptors: Compact representations of regular sets that are efficient to search, e.g. pattern matching, tokenization, compression.

Finite-State Transducers: Compact representations of rational binary relations that are efficient to search and combine, e.g. dictionaries, context-dependent rules.

Weighted Automata: Weights typically encode uncertainty (probabilities), e.g. n-gram language models, Hidden Markov Models.

PRELIMINARIES

WFSA and WFST-based operations are underpinned by algebraic objects called **semirings**.

Definition. A semiring is an algebraic system $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ such that,

- \rightarrow ($\mathbb{K}, \oplus, \overline{0}$) is a **commutative monoid**^a with $\overline{0}$ as the identity element for \oplus ,
- \rightarrow (\mathbb{K} , \otimes , $\overline{1}$) is a **monoid** with $\overline{1}$ as the identity element for \otimes ,
- $\triangleright \otimes$ distributes over \oplus : for all $a, b, c \in \mathbb{K}$,

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

$$c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$$

 $\succ \overline{0}$ is an annihilator for \otimes : for all $a \in \mathbb{K}$,

$$a \otimes \overline{0} = \overline{0} \otimes a = \overline{0}$$

This has implications for optimization, search, and combination algorithms such as determinization, shortest-path, and composition.

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 14

PRELIMINARIES

- ➤ Product ⊗: to compute the weight of a path (product of the weights of constituent transitions).
- ➤ **Sum** ⊕: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).

Semiring	Set	\oplus	\otimes	$\overline{0}$	1
Boolean	{ 0, 1 }	V	\wedge	0	1
Probability	$\mathbb{R}_+ \cup \{ +\infty \}$	+	×	0	1
Log	$\mathbb{R} \cup \{ -\infty, +\infty \}$	\oplus_{log}	+	$+\infty$	0
Tropical	$\mathbb{R}_+ \cup \{\ +\infty\ \}$	min	+	$+\infty$	0

- ightharpoonup The \log semiring is isomorphic to the probability semiring and
 - \oplus_{log} is defined by: $x \oplus_{log} y = -\log(e^{-x} + e^{-y})$
- ➤ The **tropical semiring** is derived from the **log semiring** using the *Viterbi* approximation
- [M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. 2002], for more details.

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 15

Preliminaries

Tropical Semiring example

Definitions	Examples	
$a \oplus b \stackrel{def}{=} \min(a, b)$	$7 \oplus 4 = 4$	
$a \otimes b \stackrel{def}{=} a + b$	$1 \otimes 7 = 8$	
$\overline{0} \stackrel{def}{=} +\infty$	$7 \oplus \overline{0} = 7$	
$\overline{1} \stackrel{def}{=} 0$	$3 \otimes \overline{1} = 3$	
	$(4 \otimes 3) \oplus (2 \otimes 3) = 5$	
	$4 \oplus \overline{1} = 0$	

WEIGHTED FINITE-STATE TRANSDUCER

Definition. A weighted transducer T over a semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$ is a tuple $T = (\Sigma, \Delta, Q, I, F, \delta, \lambda, \rho)$, where

- ightharpoonup Finite input alphabet $\, \Sigma \,$ and finite output alphabet $\, \Delta .$
- ightharpoonup States Q, initial states $I\subseteq Q$, and final states $F\subseteq Q$.
- ightharpoonup Transiticon function $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times \mathbb{K} \times Q$.
- ightharpoonup Initial weight function $\lambda:I\to\mathbb{K}$ and final weight function $\rho:F\to\mathbb{K}$.

Probability semiring
$$(\mathbb{K}, +, \times, 0, 1)$$
 | Tropical semiring $(\mathbb{K}, \min, +, \infty, 0)$ | $[[T]](ab, r) = 16$ | $[[T]](ab, r) = 5$

[Obtained from the OpenFst tool documentation]

^a A monoid is an algebraic structure that supports a single associative binary operation and an identity element.

WEIGHTED FINITE-STATE AUTOMATON

Definition. A weighted automaton A over a semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$

is a tuple $A = (\Sigma, Q, I, F, \delta, \lambda, \rho)$, where

- \succ Finite input alphabet Σ .
- \triangleright States Q, initial states $I \subseteq Q$, and final states $F \subseteq Q$.
- ightharpoonup Transiticon function $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \mathbb{K} \times Q$.
- ightharpoonup Initial weight function $\lambda:I\to\mathbb{K}$ and final weight function $\rho:F\to\mathbb{K}$.

Probability semiring $(\mathbb{K}, +, \times, 0, 1)$ | **Tropical semiring** $(\mathbb{K}, \min, +, \infty, 0)$

$$[[T]](ab) = 14$$

$$[[T]](ab) = 4$$

[Obtained from the OpenFst tool documentation]

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 18

DEFINITIONS

Path π

 $p[\pi]$ Path origen state

 $n[\pi]$ Path destination state

 $w[\pi]$ Path weight

Sets of paths

P(I, x, F) Set of all paths from I to F with input label $x \in \Sigma^*$

P(I, x, y, F) Set of all paths from I to F with input label $x \in \Sigma^*$ and output label $y \in \Delta^*$

Automata and transducers

Given an **automaton** $A = (\Sigma, Q, I, F, \delta, \lambda, \rho)$, for all $x \in \Sigma^*$

$$[[A]] (x) = \bigoplus_{\pi \in P(I, x, F)} \lambda(p(\pi)) \otimes w(\pi) \otimes \rho(n(\pi))$$

Given a transducer $T = (\Sigma, \Delta, Q, I, F, \delta, \lambda, \rho)$, for all $x \in \Sigma^*, y \in \Delta^*$

$$[[T]] (x,y) = \bigoplus_{\pi \in P(I,x,y,F)} \lambda(p(\pi)) \otimes w(\pi) \otimes \rho(n(\pi))$$

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 19

OPERATIONS

Rational operations

Sum (union) $[[T_1 \oplus T_2]](x,y) = [[T_1]](x,y) \oplus [[T_2]](x,y)$

 $[[T_1 \otimes T_2]](x,y) = \bigoplus_{\substack{x=x_1x_2 \ y=y_1y_2}} [[T_1]](x_1,y_2) \otimes [[T_2]](x_2,y_2)$ Product (Concat.)

 $[[T^*]](x,y) = igoplus_{x=n}^{\infty} [[T^n]](x,y)$ Closure

Unary operations

Reversal $[[T^R]](x, y) = [[T]](x^R, y^R)$

Inversion $[[T^{-1}]](x,y) = [[T]](y,x)$

Projection $[[\downarrow T]](x) = \bigoplus [[T]](x,y)$

OPERATIONS

Binary Operations

Composition $[[T_1 \circ T_2]](x,y) = \bigoplus [[T_1]](x,z) \oplus [[T_2]](z,y)$

 $[[A_1 \cap A_2]](x) = [[A_1]](x) \oplus [[A_2]](x)$ Intersection

 $[[A_1 - A_2]](x) = [[A_1 \cap \overline{A_2}]](x)$ Difference

Optimization algorithms

 ϵ -**Removal**: Creates an equivalent ϵ -free transducer.

Determinization: Creates an equivalent deterministic transducer.

Pushing: Pushes arc weights forward or backward, accumulating and/or distributing them according to the semiring

Minimization: Creates an equivalent minimal deterministic transducer.

Shortest-distance algorithms: Shortest path, and N-Shortest paths.

[M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. 2002], for more details.

COMPOSITION

 $[[T_i \circ T_2]](x,y) = \bigoplus [[T_1]](x,z) \otimes [[T_2]](z,y)$ Definition:

Example: Weighted automaton over the tropical semiring

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 22

DETERMINIZATION

Definition: Creates an equivalent deterministic weighted automaton/transducer

Example: Weighted automaton over the tropical semiring

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 23

MINIMIZATION

Definition: Computes a minimal equivalent deterministic machine while preserving the input language and and weight/path properties of the original

Example: Weighted automaton over the tropical semiring

REFERENCES

General Background

- > J.E.Hopcroft, J.D.Ullman: Introduction to Automata Theory, Languages, and Computation. Addison Wesley, 1979.
- > T.H. Cormen, C.E.Leiserson, R.L.Rivest: Introduction to Algorithms. The MIT Press, 1992.

WFST and WFSA applications

- > M.Mohri, F.Pereira, M.Riley: Speech Recognition with Weighted Finite-State Transducers. In Springer Handbook of Speech Processing. Springer, 2008.
- > M.Mohri: Weighted Automata Algorithms. In Handbook of Weighted Automata. Monographs in Theoretical Computer Science. Springer, 2009.
- > A.Argueta, D.Chiang: Composing Finite State Transducers on GPUs. Proc. of the ACL, p.pages 2697-2705. Melbourne, Australia, 2018.

Software

OpenFst is a open-source C++ library for weighted finite state transducers developed at Google. More information available at http://www.openfst.org

> C.Allauzen, M.Riley, J.Schalkwyk, W.Skut, M.Mohri: OpenFst: A General and Efficient Weighted Finite-State Transducer Library. Proc. of the CIAA. Prague, CZ, 2007.

SYNTACTIC PARSING

Example: "Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29." [Marcus et al., 1993]

((S (NP-SBJ (NP (NNP Pierre) (NNP Vinken)) (,,) (ADJP (NP (CD 61) (NNS years)) (JJ old)) (,,)) (VP (MD will) (VP (VB join) (NP (DT the) (NN board)) (PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director))) (NP-TMP (NNP Nov.) (CD 29)))) (..)))

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 26

SYNTACTIC PARSING

> Parsing as a search problem

> Grammatical models: reasons for use

- > Grammatical models are the simplest and most natural model for tree structures
- > Formal (mathematical) framework is well known
- > Compact models (small number of free parameters)
- Good behavior against the problem of ambiguity
- Context-free grammatical models represent well long-term dependencies of syntactic and semantic constraints of Natural Language

J.M. Benedí (2023-2024)

Statistical Structured Prediction / Introduction 27

CONTEXT-FREE GRAMMARS

- ightharpoonup Context-Free Grammars $G = (\Sigma, N, S, \mathcal{P})$
 - Σ a set of **terminal symbols**
 - N a set of **non-terminals symbols** (or variables): $N \cap \Sigma = \emptyset$
 - S a distinguished **start symbol**: $S \in N$
 - \mathcal{P} a set of rules (or productions): $(A \to \alpha) \in \mathcal{P}$; $A \in \mathbb{N}$; $\alpha \in (\mathbb{N} \cup \Sigma)^*$
- ightharpoonup Direct derivation: $\delta A \gamma$ directly derives $\delta \alpha \gamma$ or

 $\delta A \gamma \Rightarrow \delta \alpha \gamma \quad \text{iff} \quad \exists (A \to \alpha) \in \mathcal{P}; \quad \delta, \gamma \in (N \cup \Sigma)^*$

ightharpoonup Derivation: α derives β or

 $\alpha \stackrel{*}{\Rightarrow} \beta$ iff $\exists \alpha_0, \dots \alpha_m \in (N \cup \Sigma)^*$: $\alpha = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \dots \alpha_{m-1} \Rightarrow \alpha_m = \beta$

- ightharpoonup Language generated by a grammar: $L(G) = \{x \mid x \in \Sigma^*: S \stackrel{+}{\Rightarrow} x\}$
- Theorem $x \in L(G)$ iff $S \stackrel{+}{\Rightarrow} x$ iff $\exists t \in \mathcal{T}$: yield(t) = x

CONTEXT-FREE GRAMMARS: EXAMPLE

Example: A simple Context-Free Grammars

[Manning and Schütze, 2002]

$S \rightarrow NP VP$	$VP \rightarrow V NP$	$V \; o \mathtt{saw}$	$NP o \mathtt{saw}$
$NP \to NP \ PP$	$VP \to VP \ PP$	$NP o \mathtt{astronomers}$	NP o stars
$PP \rightarrow P NP$	$P \ \to \mathtt{with}$	$NP \to \mathtt{ears}$	$NP \to \mathtt{telescopes}$

 $S\Rightarrow \mathsf{NP}\ \mathsf{VP}\Rightarrow \mathsf{astronomers}\ \mathsf{VP}\Rightarrow \mathsf{astronomers}\ \mathsf{VP}\Rightarrow \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{NP}\Rightarrow\\ \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{NP}\Rightarrow \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{stars}\ \mathsf{PP}\Rightarrow \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{stars}\ \mathsf{P}\ \mathsf{NP}\\ \Rightarrow \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{stars}\ \mathsf{with}\ \mathsf{NP}\Rightarrow \mathsf{astronomers}\ \mathsf{saw}\ \mathsf{stars}\ \mathsf{with}\ \mathsf{telescopes}$

J.M. Benedí (2023-2024) Statistical Structured Prediction / Introduction 28

CKY PARSING

Algorithm 1: Cocke-Kasami-Younger

J.M. Benedí (2023-2024) Statistical Structured Prediction / Introduction 30

CKY PARSING: EXAMPLE

