Tree

Data Structure:

tree

- a collection of nodes connected by edges without a cycle
- by recursive definition:
 - an empty tree or
 - a root r and subtrees $T_1, T_2,..., T_k$ (disjoint sets) each of whose roots are connected to r by an edge

recursive definition of tree

tree

- Each root of $T_1, T_2,..., T_k$ is a child of r, and r is the parent of each root.
- The roots of the subtrees are siblings of one another
- If there is an order among the T_i 's, the tree is an ordered tree.
- The degree of a node is the number of children it has.
- The degree of a tree is the maximum degree of the nodes.
- A leaf is a node of degree 0.

an example of tree

tree

- **path** between two nodes is a sequence of nodes $n_1, n_2, ... n_k$, such that n_i is a parent of n_{i+1}
- length of a path is the number of edges on the path (the path n_1 , n_2 ,... n_k : length k-1)
- depth (level) of a node is the length of the (unique) path from the root to that node (root: level 0)
- height of a node is the length of the longest path from that node to a leaf (leaf: height 0)
- the height of a tree is the height of the root

representation of tree

- \blacksquare for any node x, there exists exactly one path from the root to x?
- tree can be empty with no node?
- how many edges are in a tree with n nodes?

representation of tree

- how can we implement a tree?
 - linked list?
 - can we have pointers for the children nodes?
 - can we have fixed number of pointers to represent a tree?
 - for a tree of fixed number of degree?
 - else?

data	link 1	link 2	 link n
aata	111 11 1		

left child-right sibling representation

every node has at most one leftmost child and at most one closet right sibling

left child-right sibling representation

every node has at most one leftmost child and at most one closet right sibling

left child- right sibling representation


```
Definition: C Next Sibling
First child
```

```
struct TreeNode{
    ElementType Element;
    PtrToNode FirstChild;
    PtrToNode NextSibling;
    };
typedef struct TreeNode *PtrToNode;
```

- a finite set of nodes that is either
 - i) empty or
 - ii) a root node and two disjoint binary trees
- the tree on the left and the tree on the right are different

■ the maximum number of nodes on level i of a binary tree is 2ⁱ, i>=0

the proof by induction

- base: for the root at level $i=0, 2^0 = 1$
- induction hypothesis: assume that the maximum number of nodes on level i-1 > 0, 2^{i-1}
- induction step: on level i, $2 * (the maximum number of nodes on level i-1) = 2 * 2^{i-1} = 2^{i}$
- the maximum number of nodes in a binary tree of depth k is 2^{k+1} -1, $k \ge 0$

■ For any nonempty binary tree T, if n_0 is the number of leaf nodes, and n_2 is the number of nodes of degree 2, then $n_0 = n_2 + 1$

 $n = n_0 + n_1 + n_2$, n_i is the number of nodes with i degree n is the number of nodes in the tree

 $n = B + I = n_1 + 2n_2 + I$, B is the number of branches (edge)

- full binary tree is a binary tree in which every node has 0 or 2 children
- complete binary tree is a binary tree in which every level, except the last, is completely filled and the last level has all its nodes to the left side

- perfect binary tree of height h is a binary tree of height h having 2^{h+1} I nodes, (h >=0)
- the max number of nodes in the complete binary tree (height h) is 2 h+1 -1

$$2^{0} + 2^{1} + ... + 2^{h} = (2^{h+1} - 1)/(2 - 1) = 2^{h+1} - 1$$

binary tree: array representation

[1]	Α
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Н
[9]	- 1

binary tree: array representation

- if a complete binary tree with n nodes (i is the index) is represented sequentially,
 - leftChild(i) is at 2i for 2i <=n
 - rightChild(i) is at 2i + I for 2i + I <= n</pre>
 - parent(i) is at $\lfloor i/2 \rfloor$ for i > 1

[1]	Α
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Н
[9]	1

binary tree: array representation

- if a complete binary tree with n nodes (i is the index) is represented sequentially,
 - leftChild(i) is at 2i

for 2i <=n

- rightChild(i) is at 2i + I for $2i + I \le n$
- parent(i) is at Li/2_ for i > I

[1]	Α
[2]	В
[3]	-
[4]	C
[5]	ı
[6]	-
[7]	-
[8]	D
[9]	-
[16]	Е

binary tree: linked list representation

a tree in which each node has no more than 2 children (left subtree and right subtree)

```
struct TreeNode
{
    ElementType Element;
    Tree Left;
    Tree Right;
};

typedef struct TreeNode* PtrToNode;
typedef struct PtrToNode Tree;
```


Left Ele	nent Right
----------	------------

binary tree: linked list representation

application of binary tree

Expression Tree: intermediate representation for expressions used by the compiler

inorder traversal

```
void inorder(Tree ptr) {
   if(ptr) {
       inorder(ptr->left_child);
       printf("%d", ptr->data);
       inorder(ptr->right_child);
```

cal	l of	value in	action	call of	value in	action
ino	rder	root		inorder	root	
	1	+		11	C	
	2	*		12	NULL	
	3	*		11	C	printf
	4	/		13	NULL	_
	5_	Α		2	*	printf
	6	NULL		14	D	•
	5	Α	printf	15	NULL	
	7	NULL	-	14	D	printf
	4	/	printf	16	NULL	_
	-8	В		1	+	printf
	9	NULL		17	E	_
	8	В	printf	18	NULL	
	10	NULL		17	E	printf
	3	*	printf	19	NULL	-

```
void preorder(Tree ptr) {
   if(ptr) {
       printf("%d", ptr->data);
       preorder(ptr->left child);
       preorder(ptr->right child);
 void postorder(Tree ptr) {
    if(ptr) {
        postorder(ptr->left_child);
        postorder(ptr->right child);
        printf("%d", ptr->data);
```

iterative in-order traversal using stack

```
void iterInorder (Tree node) {
     int top = -1
     Tree stack[MAX_SIZE];
     for (;;) {
          for (; node; node = node -> leftChild)
               push(node);
          node = pop();  // pop parent
          if (!node) break;
          printf("%d", node -> data);
          node = node -> rightChild;
```


level-order traversal

level-order traversal

```
void levelOrder (Tree ptr) {
     int front = rear = 0;
     Tree queue[MAX];
     if (! node) return;
     addq(ptr);
     for (;;) {
                                                          E
           ptr = deleteq();
                                               Н
           if (ptr) {
                printf("%d", ptr->data);
                if (ptr -> leftChild)
                      addq(ptr -> leftChild);
                if (ptr -> rightChild)
                      addq(ptr -> rightChild);
           else break;
```

- there are n+1 null links out of 2n total links
- replace the null links by pointers, called threads to other nodes in the tree
 - if ptr -> leftChild is null, replace the null with a pointer to the node that would be visited before ptr in an in-order traversal
 - if ptr -> rightChild is null, replace the null with a pointer to the node that would be visited after ptr in an in-order traversal

- How to distinguish actual pointers and threads?
 - →add two additional fields to the node structure
 - if ptr->left_thread = true, ptr->left_child contains thread
 - if ptr->left_thread = false, ptr->left_child contains a pointer to the left child

```
typedef struct threaded_tree *threaded_ptr;

typedef struct threaded_tree {
    short int left_thread;
    threaded_ptr left_child;
    char data;
    threaded_ptr right_child;
    short int right_thread;
};
```


- find the in-order successor of ptr without using stack
 - if ptr -> right_thread = TRUE, ptr -> right_child
 - otherwise follow a path of left_child links from the right_child of ptr until we reach a node with left_thread = TRUE

```
threaded ptr insucc(threaded ptr tree) {
    threaded ptr temp;
                                                                root
    temp = tree->right child;
    if (!tree->right thread)
        while (!temp->left thread)
            temp = temp->left child;
    return temp;
                                                          f B f
                                                                               C 4
                                                             t
                                                                E
                                                                         t F t
                                                                                            G
                                                                                    f: FALSE
                                                                                    t: TRUE
```

- find the in-order successor of ptr without using stack
 - if ptr -> right_thread = TRUE, ptr -> right_child
 - otherwise follow a path of left_child links from the right_child of ptr until we reach a node with left_thread = TRUE

```
threaded_ptr insucc(threaded_ptr tree) {
    threaded_ptr temp;
    temp = tree->right_child;
    if (!tree->right_thread)
        while (!temp->left_thread)
        temp = temp->left_child;
    return temp;
}
```


Which node will be returned if blue node is passed into the function insucc?

- find the in-order successor of ptr without using stack
 - if ptr -> right_thread = TRUE, ptr -> right_child
 - otherwise follow a path of left_child links from the right_child of ptr until we reach a node with left_thread = TRUE

```
threaded_ptr insucc(threaded_ptr tree) {
    threaded_ptr temp;
    temp = tree->right_child;
    if (!tree->right_thread)
        while (!temp->left_thread)
        temp = temp->left_child;
    return temp;
}
```


Which node will be returned if root node is passed into the function insucc?

```
void tinorder(threaded ptr tree) {
    threaded ptr temp = tree;
    for (;;) {
          temp = insucc(temp);
          if (temp == tree) break;
          printf("%3c", temp->data);
                                                   root
                                                B\f
                                                   E
                                                             F
                                     D
                                                                           G t
                                                                    f: FALSE
                                H
                                                                    t: TRUE
```