Deures 17/02/2020

Joan Pau Condal Marco

2 de març de 2020

Enunciat:

Siguin F_1 i F_2 subespais de E de dimensió finita amb bases B_1 i B_2 . Demostreu:

$$F_1 \oplus F_2 \iff B_1 \cup B_2$$
 base de $F_1 + F_2$

Demostració:

Sabem que $F_1 \oplus F_2 \iff F_1 \cap F_2 = \{\mathbf{0}\}$ Per aquesta demostració suposarem:

$$B_1 = \{v_1, \dots, v_k\}$$

 $B_2 = \{w_1, \dots, w_m\}$

 \Longrightarrow] Hem de demostrar que $F_1 \oplus F_2 \Longrightarrow B_1 \cup B_2$ base de $F_1 + F_2$; per tant, hem de demostrar que $B_1 \cup B_2$ generen $F_1 + F_2$ i són linealment independents. La nostra hipòtesis és que $F_1 \oplus F_2$. Primer de tot, demostrarem que generen:

1. Generen:

Sigui $u \in F_1 + F_2$, per tant, $\exists v \in F_1$ i $\exists w \in F_2$ tal que:

$$u = v + w$$

Com que $v \in F_1$, existeixen $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ tals que

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$

I com que $w \in F_2$, existeixen $\beta_1, \ldots, \beta_m \in \mathbb{R}$ tals que

$$w = \beta_1 w_1 + \dots + \beta_m w_m$$

Per tant:

$$u = \alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 w_1 + \dots + \beta_m w_m$$

$$\implies u \in \langle B_1 \cup B_2 \rangle$$

$$\implies B_1 \cup B_2 \text{ generen } F_1 + F_2$$

2. Independència lineal:

Per demostrar la independència lineal de $B_1 \cup B_2$ hem de demostrar que l'única solució a l'equació:

$$\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 w_1 + \dots + \beta_m w_m = 0 \tag{1}$$

és la solució amb $\alpha_1 = \cdots = \alpha_k = \beta_1 = \cdots = \beta_m = 0.$

De l'equació (1), veiem que:

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k = -\beta_1 w_1 - \dots - \beta_m w_m \tag{2}$$

d'on observem que

$$v \in \langle B_1 \rangle \text{ i } v \in \langle B_2 \rangle$$

$$\implies v \in F_1 \cap F_2$$
(3)

Sabem per hipòtesis que $F_1 \cap F_2 = \{0\}$; per tant, v = 0. Substituïnt a l'equació (2) obtenim:

$$\mathbf{0} = \alpha_1 v_1 + \dots + \alpha_k v_k = -\beta_1 w_1 - \dots - \beta_m w_m \tag{4}$$

Com que B_1 i B_2 són bases per hipótesis, l'única solució de l'equació (4) és:

$$\alpha_1 = \dots = \alpha_k = -\beta_1 = \dots = -\beta_m = 0 \tag{5}$$

D'on queda demostrada la independència lineal de B_1 i B_2 .

Per tant, com que B_1 i B_2 generen $F_1 + F_2$ i són linealment independents, podem afirmar que són base de $F_1 + F_2$.

 \Leftarrow Hem de demostrar que $B_1 \cup B_2$ base de $F_1 + F_2 \implies F_1 \oplus F_2$

Per hipòtesis sabem que $B_1 \cup B_2$ són base de $F_1 + F_2$, per tant, són linealment independents.

Sigui $v \in F_1 \cap F_2$, existeixen $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m \in \mathbb{R}$ tals que:

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$

$$v = \beta_1 w_1 + \dots + \beta_m w_m$$
(6)

Per tant, sabem que:

$$\alpha_1 v_1 + \dots + \alpha_k v_k = \beta_1 w_1 + \dots + \beta_m w_m$$

$$\alpha_1 v_1 + \dots + \alpha_k v_k - \beta_1 w_1 - \dots - \beta_m w_m = \mathbf{0}$$
(7)

I com que $B_1 \cup B_2$ és base de $F_1 + F_2$, l'única soluci a l'equació (7) és:

$$\alpha_1 = \dots = \alpha_k = -\beta_1 = \dots = -\beta_m = 0 \tag{8}$$

I substituïnt els valors a l'equació (6) obtenim:

$$v = 0 \cdot v_1 + \dots + 0 \cdot v_k = \mathbf{0} \tag{9}$$

Per tant, $F_1 \cap F_2 = \{0\}$; d'on concluïm que $F_1 \oplus F_2$.