

CLAIMS

What is claimed is:

1. A phyllosilicate-polymer composition comprising:
 2. (a) a phyllosilicate; and
 3. (b) a polymer layer adsorbed onto the basal surface of the phyllosilicate
4. providing a phyllosilicate-polymer composition, wherein the phyllosilicate-polymer
5. composition is present as a single phyllosilicate-polymer phase and the phyllosilicate-polymer
6. composition exhibits an anomalous basal spacing.
2. The phyllosilicate-polymer composition of claim 1 wherein the polymer has at least one hydroxyl group.
3. The phyllosilicate-polymer composition of claim 1 further comprising a second polymer layer adsorbed onto the basal surface of the phyllosilicate.
4. The phyllosilicate-polymer composition of claim 2 wherein the polymer is selected from the group consisting of polyethylene glycol, polypropylene glycol and monoalkyl ether derivatives thereof. ✓ *not*
1. 5. The phyllosilicate-polymer composition of claim 2 wherein the polymer
2. comprises greater than 27 weight percent of the phyllosilicate-polymer composition.
1. 6. The phyllosilicate-polymer composition of claim 2 wherein the exchange
2. sites on the basal surface of the phyllosilicate is bound substantially with hydrogen ions.
1. 7. The phyllosilicate-polymer composition of claim 2 wherein the basal
2. spacing of the phyllosilicate-polymer composition increases as the molecular weight of the
3. polymer increases. *intervent*

1 8. An anisotropic liquid crystalline composite, comprising:
2 (a) a phyllosilicate-polymer composite, comprising;
3 (1) a phyllosilicate; and
4 (2) a polymer adsorbed onto the phyllosilicate,
5 wherein the phyllosilicate-polymer composite is birefringent.

1 9. The anisotropic liquid crystalline composite of claim 8 wherein the
2 phyllosilicate is nematically oriented in the phyllosilicate-polymer composition.

1 10. The anisotropic liquid crystalline composite of claim 8 wherein the
2 phyllosilicate comprises more than 10 percent of the phyllosilicate-polymer composite.

1 11. The anisotropic liquid crystalline composite of claim 8 wherein the
2 phyllosilicate is selected from the group consisting of kaolins, talcs and montmorillonites.

1 12. The anisotropic liquid crystalline composite of claim 8 wherein the
2 polymer is water soluble.

1 13. The anisotropic liquid crystalline composite of claim 8 further
2 comprising a material selected from the group consisting of polyethylene glycol based
surfactants and polypropylene glycol based surfactants.

1 14. The anisotropic liquid crystalline composite of claim 13 further
2 comprising an antioxidant.

1 15. The anisotropic liquid crystalline composite of claim 13 wherein the
2 liquid crystalline composite is extrudable.

1 16. The anisotropic liquid crystalline composite of claim 8 wherein the
2 phyllosilicate-polymer composition comprises a barrier layer, the barrier layer providing a gas
3 permeability below a gas permeability of the polymer alone.

1 17. A method for producing an anisotropic liquid crystalline composite from
2 a phyllosilicate and a polymer comprising:

3 (a) suspending a phyllosilicate in a compatible solvent;
4 (b) dissolving a polymer that is soluble in the compatible solvent in the
5 compatible solvent; and

6 (c) removing a sufficient amount of the compatible solvent to produce an
7 anisotropic liquid crystalline composite.

1 18. The method of claim 17 wherein the compatible solvent is water.

1 19. The method of claim 18 wherein the polymer is polyethylene glycol.

1 20. The method of claim 18 wherein the anisotropic liquid crystalline
2 composite comprises less than about two percent water by weight.

1 21. The method of claim 18 further comprising purifying the phyllosilicate
2 prior to suspending the phyllosilicate in the compatible solvent.

1 22. The method of claim 18 wherein the anisotropic liquid crystalline
2 composition comprises between about 30 and 70 percent phyllosilicate.

1 23. The method of claim 18 further comprising adding a polypropylene
2 glycol or polyethylene glycol based surfactant to the compatible solvent.

1 24. The method of claim 23 further comprising extruding the anisotropic
2 liquid crystalline composite to produce a barrier layer of the anisotropic liquid crystalline
3 composite.

1 25. A barrier film for use in packaging and coating applications having
2 reduced gas permeability comprising an anisotropic liquid crystalline composite layer having a
3 gas permeability below the gas permeability of a polymer in the liquid crystalline composite.

1 26. The barrier film of claim 25 wherein the film is transparent.

1 27. The barrier film of claim 25 wherein the liquid crystal composite
2 comprises a phyllosilicate and a polymer.

1 28. The barrier film of claim 27 wherein the phyllosilicate comprises greater
2 than ten percent by weight of the liquid crystalline composite layer.

1 29. The barrier film of claim 28 wherein the phyllosilicate comprises
2 between about 30 and about 70 percent by weight of the liquid crystalline composite layer.

1 30. The barrier film of claim 25 wherein the liquid crystalline composite
2 layer comprises an inner layer of a multilayer film.

31. The barrier film of claim 25 wherein the liquid crystalline composite
layer further comprises a polyethylene glycol based surfactant.