Ordonnancement (les plus longs chemins)

Ordonnancement

Beaucoup de réalisations techniques incluent l'exécution de multiples tâches $\mathbf{t_i}$, soumises à des contraintes de successions :

- chaque tâche t; a une durée d; ,
- elle doit être achevée pour qu'un certain nombre de tâches $\mathbf{t_{j_i}}, \mathbf{t_{k_i}}, \dots$ puissent commencer.

La planification de l'exécution de ces tâches dans le temps constitue le problème d'ordonnancement.

On représente un tel projet par un **graphe orienté** dont les **sommets** représentent les tâches (graphe potentiel-tâches de B. Roy, 1960)

Exemple (construction d'une maison)

Code tâche	Libellé	Durée (semaines) d _i	Prédécesseurs
1	Maçonnerie	7	aucun
2	Charpente de la toiture	3	1
3	Toiture	1	2
4	Plomberie et électricité	8	1
5	Façade	2	3,4
6	Fenêtre	1	3,4
7	Aménagement du jardin	1	3,4
8	Plafonds	3	6
9	Peintures	2	8
10	Emménagement	1	5,7,9

On définit un arc de coût \mathbf{d}_i entre tâches \mathbf{t}_i et \mathbf{t}_j , si la tâche \mathbf{t}_i doit immédiatement précéder la tâche \mathbf{t}_i et qu'elle dure \mathbf{d}_i .

Le graphe obtenu est sans circuit et admet des sommets sans prédécesseur et des sommets sans successeur.

On ajoute au graphe deux sommets α et ω correspondant à des tâches fictives telles que α est la tâche de début de projet, de durée nulle, qui doit être antérieure à toutes les autres tâches (on relie α aux sommets sans prédécesseur par des arcs de coût nul) et ω est la tâche de fin de projet (on relie les sommets sans successeur à ω par des arcs de coûts correspondants à leurs durées respectives).

Le projet commence à la date 0 et on cherche une exécution des tâches qui minimise la durée totale du projet.

Exemple (construction d'une maison)

Code tâche	Libellé	Durée (semaines) d _i	Prédécesseurs
1	Maçonnerie	7	aucun
2	Charpente de la toiture	3	1
3	Toiture	1	2
4	Plomberie et électricité	8	1
5	Façade	2	3,4
6	Fenêtre	1	3,4
7	Aménagement du jardin	1	3,4
8	Plafonds	3	6
9	Peintures	2	8
10	Emménagement	1	5,7,9

Exemple (construction d'une maison)

Principe

- •Pour qu'une tâche puisse commencer, il est nécessaire que toutes les tâches dont elle dépend directement et indirectement, soient réalisées ; on note τ_i la date au plus tôt à laquelle la tâche t_i peut commencer.
- •La durée du projet ne peut être inférieure à la somme des durées des tâches composant le chemin le plus long de α à ω : chemin critique.
- •Il est possible de retarder l'exécution de certaines tâches sans modifier la durée du projet ; on note T_i la date au plus tard à laquelle la tâche t_i peut commencer.

ALGORITHME D'ORDONNANCEMENT

1. Dates au plus tôt

•Poser
$$\tau_{\alpha} = 0$$

•Prendre les sommets j par ordre de rang croissant et faire :

$$\tau_{j} = \max(\tau_{i} + d_{i})$$
$$i \in \Gamma^{-1}(j)$$

Pour chaque tâche, on connait déjà les temps au plus tôt de ses prédécesseurs, et on choisit le chemin le plus long menant de α à la tâche en question

2. Dates au plus tard

Pour trouver les dates au plus tard, il faut avoir trouvé la date <u>au plus tôt</u> de la fin du projet

•Poser
$$T_{\omega} = \tau_{\omega}$$

•Prendre les sommets j par ordre de rang décroissant et faire :

$$T_{j} = \min(T_{i}) - d_{j}$$
$$i \in \Gamma(j)$$

Pour chaque tâche, on connait déjà les temps au plus tard de ses successeurs, et on choisit le chemin le plus long reliant la tâche à ω

LES MARGES

A chaque tâche i on peut associer des intervalles de flottement :

marge totale m_{T i} = T_i - τ_i

C'est le délai dont on peut retarder la tâche sans affecter la date d'achèvement du projet.

• marge libre $m_{L_i} = \min_{j \in \Gamma(i)} (\tau_j) - (\tau_i + d_i)$

C'est le délai dont on peut retarder la tâche sans affecter les dates au plus tôt des tâches postérieures

•Les tâches dont m_{Ti} = 0 sont appelées tâches critiques

Exemple (construction d'une maison) Les rangs

On commence par l'attribution des rangs à chaque sommet. Ici, il est facile de le faire sans les calculer sur papier (sinon, on utilise l'algorithme qu'on a vu):

rang	0	1	2	2	3	4	4	4	5	6	7	8
Tâche et sa Iongueur	α(0)	1(7)	2(3)	4(8)	3(1)	6(1)	5(2)	7(1)	8(3)	9(2)	10(1)	ω

Exemple (construction d'une maison) Les prédécesseurs

On liste les prédécesseurs à chaque tâche :

rang	0	1	2	2	3	4	4	4	5	6	7	8
Tâche et sa longueur	α(0)	1(7)	2(3)	4(8)	3(1)	6(1)	5(2)	7(1)	8(3)	9(2)	10(1)	ω
Prédécesse urs	-1-	α	1	1	2	3, 4	3, 4	3, 4	6	8	5, 7, 9	10

Exemple (construction d'une maison) Dates au plus tôt

On calcule les dates en passant par chaque prédécesseur et on en choisit le maximum, qu'on utilisera pour calculer les dates des tâches aux rangs supérieurs :

rang	0	1	2	2	3	4	4	4	5	6	7	8
Tâche et sa longueur	α(0)	1(7)	2(3)	4(8)	3(1)	6(1)	5(2)	7(1)	8(3)	9(2)	10(1)	ω
Prédécesseurs		α	1	1	2	3, 4	3, 4	3, 4	6	8	5, 7,9	10
Dates par prédécesseur	0	0 _α	7 ₁	7 ₁	102	11 ₃ ,15 ₄	11 ₃ ,15 ₄	11 ₃ ,15 ₄	16 ₆	19 ₈	17 _{5,,} 16 _{7,} 21 ₉	22 ₁₀
Date au plus tôt	0	0 _α	7 ₁	7 ₁	102	15 ₄	15 ₄	15 ₄	16 ₆	19 ₈	21 ₉	22 ₁₀

Exemple (construction d'une maison) Dates au plus tard

On calcule les dates de la droite vers la gauche en passant par chaque successeur et on en choisit le minimum, qu'on utilisera pour calculer les dates des tâches aux

range	intárialir	•
rangs	intérieurs	Ι.

<u> </u>												
rang	0	1	2	2	3	4	4	4	5	6	7	8
Tâche et sa longueur	α(0)	1(7)	2(3)	4(8)	3(1)	6(1)	5(2)	7(1)	8(3)	9(2)	10(1)	ω
Successeurs	1	2,4	3	5,6,7	5,6,7	8	10	10	9	10	ω	
Dates par successeur	01	4 _{2,} 0 ₄	11 ₃	11 ₅ ,7 ₆ ,12 ₇	18 ₅ ,14 ₆ ,19 ₇	15 ₈	19 ₁₀	20 ₁₀	16 ₉	19 ₁₀	21 _ω	22
Date au plus tard	01	04	11 ₃	7 ₆	14 ₆	15 ₈	19 ₁₀	20 ₁₀	16 ₉	19 ₁₀	21 _ω	22

Exemple (construction d'une maison) Marge totale

On calcule les dates de la droite vers la gauche en passant par chaque successeur et on en choisit le minimum, qu'on utilisera pour calculer les dates des tâches aux

range	INTATIALITE	•
ranys	interieurs	•

rang	0	1	2	2	3	4	4	4	5	6	7	8
Tâche et sa longueur	α(0)	1(7)	2(3)	4(8)	3(1)	6(1)	5(2)	7(1)	8(3)	9(2)	10(1)	ω
Date au plus tôt	0	0 _α	7 ₁	7,	102	15 ₄	154	154	16 ₆	19 ₈	21 ₉	22 ₁₀
Date au plus tard	01	0 ₄	11 ₃	7 ₆	14 ₆	15 ₈	19 ₁₀	18 ₁₀	16 ₉	19 ₁₀	21 _ω	22
Marge totale	0	0	4	0	4	0	4	3	0	0	0	0

En rouge: chemin critique.

Simplification possible

On peut souvent effectuer une simplification. Si dans le graphe d'ordonnancement on a des configuration triangulaires comme celle-ci:

alors |AC| ≤ |AB| + |BC| (où |AC| est la longueur de l'arc AC etc.)

(car a est la durée de la tâche A et donc |AB| = |AC|, or $b \ge 0$ car c'est la durée d'une tâche).

Vu qu'on ne cherche que des chemins les plus longs, on peut supprimer l'arc AC sans affecter les calculs de l'ordonnancement :

