Gabarito da AP 3 de Fundamentos de Algoritmos para Computação

Questões:

1. (1.0) Justifique a seguinte igualdade usando as propriedades de conjuntos tais como distributivas, leis de Morgan:

$$B - (A - D) = (B - A) \cup (B \cap D)$$

Resposta:

$$B - (A - D) = \\ \text{(propriedade da diferença)} = B - (A \cap \overline{D}) = \\ \text{(propriedade da diferença)} = B \cap (\overline{A} \cap \overline{\overline{D}}) = \\ \text{(lei de Morgan)} = B \cap (\overline{A} \cup (\overline{D})) = \\ \text{(propriedade } (\overline{\overline{D}}) = D) = B \cap (\overline{A} \cup D) = \\ \text{(propriedade distributiva)} = (B \cap \overline{A}) \cup (B \cap D) = \\ \text{(propriedade da diferença)} = (B - A) \cup (B \cap D)$$

2. (1.5) Mostre usando indução matemática:

$$2\sum_{i=1}^{n}(3i-1) = n(1+3n) \ \forall \ n \in N.$$

Resposta:

Seja
$$P(n): 2\sum_{i=1}^{n} (3i-1) = n(1+3n), \forall n \in N$$

Prova por indução:

Base da indução: Para n = 1 temos $P(1) : 2\sum_{i=1}^{1} (3i - 1) = 2(3 - 1) = 2.2 = 4 = 1(1 + 3) = 1(1 + 1.3)$ é verdadeira.

Hipótese indutiva:

Suponha verdadeira para n = k, isto é:

$$P(k): 2\sum_{i=1}^{k} (3i-1) = k(1+3k)$$
 é verdadeira

Vamos mostrar que se é verdadeira para k então é verdadeira para k+1.

Devemos provar que:

$$P(k+1): 2\sum_{i=1}^{k+1}(3i-1) = (k+1)(1+3(k+1))$$
 é verdadeira

Desenvoyendo para n = k + 1 e usando a hipótese indutiva, temos que:

$$2\sum_{i=1}^{k+1} (3i-1) = 2\sum_{i=1}^{k} (3i-1) + 2(3(k+1)-1)$$
(Hipótese Indutiva) = $k(1+3k) + 2(3k+3-1)$ = $k+3k^2+6k+6-2$ = $3k^2+7k+4$ (1)

Por outro lado, temos que:

$$(k+1)(1+3(k+1)) = k(1+3(k+1)) + (1+3(k+1)) = k+3k(k+1)+1+3k+3 = k+3k^2+3k+1+3k+3 = 3k^2+7k+4$$
(2)

Portanto, de (1) e (2) e aplicando a propriedade transitiva da igualdade, resultamos que $2\sum_{i=1}^{k+1}(3i-1)=(k+1)(1+3(k+1))$.

Logo, a expressão é verdadeira, $\forall n \in N$

3. (1.5) De quantas maneiras 7 pessoas podem sentar-se em torno de uma mesa circular sendo que 2 determinadas pessoas devem estar juntas? Justifique a resposta.

Resposta: Para resolvermos esta questão iremos usar permutação circular, logo podemos formar $(PC)_5 = 4!$ rodas com as 5 outras pessoas.

Temos agora 5 maneiras diferentes de colocar as pessoas 6 e 7, nesta mesma ordem.

E temos 5 modos de colocar as pessoas 7 e 6, nesta mesma ordem.

Logo, a resposta é $4! \times 5 \times 2 = 240$.

4. (1.0) Considere um alfabeto de 23 letras. Quantos anagramas de 3 letras podem ser formados permitindo repetições? Justifique a resposta.

Resposta: Podem ser formados $(AR)_{23}^3 = (23)^3$ anagramas de 3 letras com repetição.

5. (1.0) Dada a linha 7 do triângulo de Pascal:

1 7 21 35 35 21 7 1

calcule a linha 8 usando as condições de fronteira e as relações de Stifel. Justifique.

Resposta: $n = 6 \Rightarrow 1$ 7 21 35 35 21 7 1

Pela relação de Stifel $(C_n^r=C_{n-1}^{r-1}+C_{n-1}^r)$ e pela condição de fronteira $(C_n^0=C_n^n=1)$ temos que:

 $n = 7 \Rightarrow 1$ 8 28 56 70 56 28 8 1

- 6. (4.0) Justifique se cada uma das afirmações abaixo é falsa ou verdadeira. Se for verdadeira prove. Se for falsa dê um contra-exemplo.
 - (a) Todo grafo bipartido é uma árvore.

Resposta: Falso

Contra-exemplo:

O grafo G é bipartido e G não é árvore, já que G é um ciclo com 4 vértices.

(b) Se dois grafos possuem a mesma seqüência de graus então eles são isomorfos.

Resposta: Falso

Contra-exemplo:

Temos que $|V(G_1)| = |V(G_2)| = 8$ e $|E(G_1)| = |E(G_2)| = 10$

A sequência de vértices de G_1 : (2, 2, 2, 2, 3, 3, 3, 3)A sequência de vértices de G_2 : (2, 2, 2, 2, 3, 3, 3, 3)

Em G_1 , temos o vértice 1 de grau 3 adjacente a dois vértices de grau 2 e um de grau 3.

Em G_2 , nenhum dos quatro vértices de grau 3 (a, b, g, h) tem adjacência semelhante.

Logo, G_1 e G_2 não são isomorfos.

(c) Toda árvore satisfaz a fórmula de Euler, n-m+f=2, sendo n

o número de vértices, m o número de arestas e f o número de faces.

Resposta: Verdadeiro.

Para a árvore T o número de arestas é igual ao número de vértices menos 1, isto é, $|E| = |V| - 1 \Rightarrow m = n - 1$, e o número de faces de T é um, já que T é acíclico, logo:

$$n-m+f = n-(n-1)+1 =$$
 $= n-m+1+1 =$
 $= 1+1 =$
 $= 2 =$

Então, n - m + f = 2.

(d) Se G é hamiltoniano então todos os vértices de G têm grau maior ou igual a n/2 onde $\mid V(G) \mid = n$.

Resposta: Falso.

Contra-exemplo:

O grafo G é hamiltoniano (ciclo hamiltoniano: abcdea).

Temos que $\forall v \in G, \ d(v)=2$ então $d(v)=2<\frac{n}{2}=\frac{5}{2},$ contradizendo a afirmação.