Stat 6021: Homework Set 11 Solutions

- 2. (a) $\hat{\beta}_3 = 0.43397$. A few interpretations:
 - The estimated difference in log odds between males and females is 0.43397, for given value of age and awareness.
 - The estimated odds ratio of getting a flu shot between males and females is $\exp(0.43397) = 1.543373$, for given value of age and awareness.
 - The estimated odds of getting a flu shot for males is 1.543373 times the estimated odds of getting a flu shot for females, for given value of age and awareness.
 - (b) The Wald test for β_3 is

$$H_0 : \beta_3 = 0.$$

 $H_a : \beta_3 \neq 0.$

The test statistic is

$$Z = \frac{\hat{\beta}_3}{s\{\hat{\beta}_3\}}$$

$$= \frac{0.43397}{0.52179}$$

$$= 0.832.$$

The corresponding p-value is $2 \times P(Z > 0.832) = 0.4054089$ using 2*(1-pnorm(0.832)). We fail to reject the null hypothesis. Gender is not a significant predictor of the probability of getting a flu shot, given age and awareness.

(c) The 95% CI is $\hat{\beta}_j \pm Z_{1-\alpha/2} se(\hat{\beta}_j)$:

$$0.43397 \pm 1.96 \times 0.52179 = (-0.5887, 1.4567).$$

 $Z_{1-\alpha/2}$ found by qnorm(1-0.05/2) which gives 1.96.

We have 95% confidence the odds of getting a flu shot for males is between $(\exp -0.5887, \exp 1.4567) = (0.5550, 4.2917)$ times the odds of getting a flu shot for females, for given value of age and awareness.

- (d) The conclusions are consistent since we failed to reject the null hypothesis that $\beta_3 = 0$ and 0 lies in the 95% CI.
- (e) The hypotheses are

$$H_0$$
: $\beta_1 = \beta_3 = 0$.

 H_a : at least one β_k above is not zero.

The test statistic is

$$\Delta G^2$$
 = Residual deviance of full model – Residual deviance of reduced model = $113.20 - 105.09$ = 8.11 .

The corresponding p-value is $P(8.11 > \chi_2^2) = 0.01733548$ using 1-pchisq(8.11,2). We cannot drop both age and gender from the model.

(f) The estimated log odds are

$$\log\left(\frac{\pi}{1-\pi}\right) = -1.1772 + 0.0728 \times 70 - 0.0990 \times 65 + 0.4340$$
$$= -2.0822$$

Therefore, the estimated odds are $\exp(-2.0822) = 0.1247$. The estimated probability is $\frac{0.1247}{1+0.1247} = 0.1108$.