Q1:

1: my_data<-read.table("Sediment.csv",header=TRUE,sep=',');

2: my_data_new<-my_data[11:50,];

write.table(my_data_new,file = "my_data_new.txt");

3: Subroutines:

library(moments);

theta<-select(my_data_new,theta)%>% unlist;

high<-length(theta[theta>1.5]);

percentage<-high/length(theta);</pre>

Percentage;

Result:

0.15

Q2:

1: mean:

a<-lapply(my_data,mean);</pre>

title	theta	Theta_ p	nu	uf	Uf_p	WS	d50	cb	bnch
rocult	1.1289	0.6156	11.630	80.143	57.703	36.210	0.4455	0.1025	0.0956
result	44	46	58	62	11	43	914	496	7145

Median:

b<-lapply(my_data,median);</pre>

title	theta	Theta_ p	nu	uf	Uf_p	WS	d50	cb	bnch
result	0.8829	0.4128	10.87	75.47	52.7	32.18	0.436	0.0591	0.0511
resuit	0.0023	0.4120	10.67	/3.4/	32.7	32.10	0.430	8	09

Mode:

z<-lapply(my_data,mfv);

title	theta	Theta_ p	nu	uf	Uf_p	ws	d50	cb	bnch
result	0.5064 /1.121 8	0.2030 /0.244 7/1.17 65	10.405	75.76/ 85.59/ 118.93	32.72	23.78	0.56	0.0001 4/0.00 061/0. 01370	0.0127 43/0.0 18934/ 0.2170 30

2:

Variance:

c<-lapply(my data,var);</pre>

title	theta	Theta_	nu	uf	Uf_p	ws	d50	cb	bnch
result	0.7806	0.2342	8.8062	880.53	610.47	188.78	0.0434	0.0123	0.0090
result	97	974	6	08	76	44	3861	6287	70726

Standard deviation

d<-lapply(my_data,sd);</pre>

title	theta	Theta_	nu	uf	Uf_p	ws	d50	cb	bnch
rosult	0.8835	0.4840	2.9675	29.673	24.707	13.739	0.2084	0.1111	0.0952
result	706	428	34	74	84	88	193	884	4036

Interquartile range:

e<-lapply(my_data,IQR);

	11 / /-								
title	theta	Theta_ p	nu	uf	Uf_p	WS	d50	cb	bnch
result	0.7733	0.7208	1.765	40.77	43.51	18.83	0.228	0.1607	0.1557 36

Skewness:

f<-lapply(my_data,skewness);

title	theta	Theta_ p	nu	uf	Uf_p	WS	d50	cb	bnch
	0.2047	0.7944	3.3581	0.7832	0.4805	0.9790	1.1916	1.2373	0.6757
result	927	172	69	804	202	289	44	14	262

Kurtosis:

g<-lapply(my_data,kurtosis);</pre>

title	theta	Theta_ p	nu	uf	Uf_p	WS	d50	cb	bnch
result	8.8338	2.5154	16.947	3.6360	2.9980	3.5566	3.9878	4.0742	2.0413
resuit	34	2.3134	7	67	6	31	61	17	99

3:

mydata2<-my_data mydata2[c(1,5,15),]<-NA mydata2<-na.omit(mydata2) mean_new<-lapply(mydata2,mean) sd_new<-lapply(mydata2,sd)

Mean

title	theta	Theta_ p	nu	uf	Uf_p	ws	d50	cb	bnch
rocult	1.1215	0.6057	11.643	79.922	57.477	36.124	0.4465	0.1019	0.0957
result	01	941	22	01	05	45	945	711	4594

Standard deviation

title	theta	Theta_ p	nu	uf	Uf_p	ws	d50	cb	bnch
wool+	0.8811	0.4789	2.9818	29.552	24.530	13.678	0.2092	0.1112	0.0944
result	976	021	54	276	78	73	765	059	1528

Q3:

1:

```
data_q3<-read.table('OTCHybrid.csv',header = TRUE,sep = ',')
class(data_q3$X)</pre>
```

```
date<- as.character(data_q3$X)
class(date)
data_q3$X<-strptime(date,format = "%m/%d/%y %H:%M")
plot(data_q3$X,data_q3$Residual,'o',main = "time series of residual",xlab = "time",ylab="residual")</pre>
```

time series of residual

Fig.1

```
2:

library(ggplot2)

g_scatter<-ggplot(data_q3,aes(E.W.M21,N.S.M21,),main='scatter')

g_scatter+geom_point()+ggtitle("scatterplot")
```


Fig.2

3:

g_his_E<-ggplot(data_q3,aes(Ave.E.W),main='histo')</pre>

g_his_E+geom_histogram(bins = 30)+ggtitle('Histogram of Ave.E.W')+ylab('quantity')

g_his_N<-ggplot(data_q3,aes(Ave.N.S),main='histo')</pre>

g_his_N+geom_histogram()+ggtitle('Histogram of Ave.N.S')+ylab('quantity')

g_his_A<-ggplot(data_q3,aes(AveSpeed),main='histo')</pre>

g_his_A+geom_histogram()+ggtitle('Histogram of AveSpeed')+ylab('quantity')

Fig.3

Fig.4

Fig.5

```
4:
	sta_E<-rep('Ave.E.W',length(data_q3$Ave.E.W))
	sta_N<-rep('Ave.N.S',length(data_q3$Ave.N.S))
	sta_A<-rep('AveSpeed',length(data_q3$AveSpeed))
	a <- factor(c(sta_E,sta_N,sta_A))
```

```
b<- c(data_q3$Ave.E.W,data_q3$Ave.N.S,data_q3$AveSpeed)
box<-data.frame(a,b)
ggplot(box,aes(x=a,y=b),main='no')+geom_boxplot() + ggtitle('comparison of 3 variables') +
ylab('value')</pre>
```

comparison of 3 variables

Fig.6

```
5:
```

```
#install.packages('ggthemes')
library('ggthemes')
ggplot(data_q3,aes(x=Ave.E.W,y=Ave.N.S))+geom_point()+geom_rug()+theme_tufte(ticks=F)
+ggtitle('Dot-dash')
#install.packages('ggExtra')
library(ggExtra)
m<-ggplot(data_q3,aes(x=Ave.E.W,y=Ave.N.S))
m+geom_point()+theme_tufte(ticks=F)
ggMarginal(m,type='histogram',fill='transparent')</pre>
```


Fig.9