Projeto 1 - Dinâmica Populacional

Vieiras, Arrais e Tubarões

Como o aumento da caça de vieiras influencia a relação entre arraias e tubarões?

Vitor Liu

2017

Modelo

Parâmetros e equações à diferenças

Nv: Taxa de crescimento vegetativo de vieiras	Nv = 0,45
Na: Taxa de crescimento vegetativo de arraias	Na = 0,2
Nt: Taxa de crescimento vegetativo de tubarões	Nt = 0,14
a: Coeficiente de influência de vieiras na população de arraias	α = 0,009
β: Coeficiente de influência de tubarões na população de arraias	β = 0,05
γ: Coeficiente de influência de arraias na população de vieiras	γ = 0,0045
δ: Coeficiente de influência de arraias na população de tubarões	δ = 0,018
ε: Taxa de caça de vieiras	ε = 0,35
ζ: Taxa de caça de tubarões	ζ = 0,12
η: Taxa de caça de arraias	η = 0,05
θ: Coeficiente de limitação do meio para vieiras	θ = 205
ι: Coeficiente de limitação do meio para arraias	ι = 145
κ: Coeficiente de limitação do meio para tubarões	κ = 3
Lv: Quantidade limite de vieiras no meio	Lv: 2000
La: Quantidade limite de arraias no meio	La: 800
Lt: Quantidade limite de tubarões no meio	Lt: 300

$$V(t+1) = V(t) + V(t) * Nv - \gamma * \left(\frac{A(t)}{La} - 1\right) * V(t) - \varepsilon * V(t) - \theta * \frac{V(t)}{Lv}$$

$$A(t+1) = A(t) + A(t) * Nv + \alpha * \left(\frac{V(t)}{Lv} - 1\right) * A(t) - \beta * \left(\frac{V(t)}{Lv} - 1\right) * A(t) - \eta * A(t) - \iota * \frac{V(t)}{Lv}$$

$$T(t+1) = T(t) + T(t) * Nt + \delta * \left(\frac{A(t)}{La} - 1\right) * T(t) - \zeta * T(t) - \kappa * \frac{T(t)}{Lt}$$

Sistema se a caça de vieiras aumentar ($\epsilon = 0.35 \rightarrow 0.40$)

Sistema se a caça de vieiras aumentar ($\varepsilon = 0.35 \rightarrow 0.40$)

Fontes

Basin-scale coherence of population dynamics of an exploited marine invertebrate, the bay scallop: implications of recruitment limitation

http://www.int-res.com/articles/meps/90/m090p257.pdf

Characteristics of a manta ray Manta alfredi population off Maui, Hawaii, and implications for management

http://www.int-res.com/articles/meps2011/429/m429p245.pdf

Critical assessment and ramifications of a purported marine trophic cascade http://www.nature.com/articles/srep20970

Ongoing Collapse of Coral-Reef Shark Populations

http://www.cell.com/current-biology/pdf/S0960-9822(06)02276-7.pdf