AMCS 394C Contemporary Topics in Applied Math Mathematical Introduction to Deep Learning

Course Information

Jinchao Xu

KAUST

jinchao.xu@kaust.edu.sa

Spring 2023

Course Information

Mathematical Introduction to Deep Learning

AMCS 394C, Spring 2023

Monday & Thursday: 9:30am-10:55am Time: January 22 - May 17, 2023 Lecture Videos and Notes Available in KAUST Blackboard System

Office Hours

Monday & Thursday: 11:00am-12:00pm (B1, L0, 0102)

or by Appointment

Course Instructor and Assistants

- Instructor: Professor Jinchao Xu
- Email: jinchao.xu@kaust.edu.sa
- Teaching Assistants:
 - Dr. Juncai He (juncai.he@kaust.edu.sa)
 - Dr. Boqian Shen (boqian.shen.kaust.edu.sa)
 - Dr. Xinliang Liu (xinliang.liu@kaust.edu.sa)

Course Description

- Lecture and Programming:
 - lectures providing motivations, description and mathematical analysis of deep learning algorithms
 - hands-on programming exercises for deep learning algorithms
- Course materials:
 - typed lecture notes
 - slides
 - recorded video lectures
 - related research papers
 - programming subroutines
- For interested and qualified students
 - research opportunities

Course Description and Syllabus

Main topics include:

- Basics of machine learning and probability
- Logistic regression and support vector machine
- Gradient descent method and training algorithms
- Polynomial approximation and Weierstrass theorem
- Linear finite element spaces
- Deep neural networks and mathematical properties
- Convolutional neural networks
- Multigrid methods and MgNet
- Transformer and other architecture
- PyTorch and deep learning for image classification
- Other applications

Policies

Grading policies:

- Homework and programing assignments (collecting every one week) (40%)
- Projects and exams:
 - midterm exam (20%)
 - ▶ final exam (20%)
 - final project (20%)

Course policies:

- Attendance is mandatory.
- No late homework will be accepted.
- Please pay attention to the due date of the assignments.
- Students should notify the instructor in advance of missing any class or as soon as possible thereafter.

Prerequisites, References and Resources

Prerequisites

- Multi-variable calculus;
- Linear algebra;
- Basic knowledge of numerical analysis;
- Some programming experiences with Python.

References and resources:

- Xu J. Deep Learning and Analysis, Lecture Notes (to be published by Springer), 2023.
- Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press, 2016.