

Backdrop – New Cybersecurity Normal

- All organisations that have a cyber footprint can be breached
- Not a matter of IF but WHEN incidents would happen?
- Either you KNOW you are breached or you don't?
- How can we better prepare ourselves against the INEVITABLE?

Backyard - DevOps and Cloud

Benefits

- Deliver applications and services at high velocity
- Evolve and Improve products at a faster pace
- Improve trust between development and operations teams

Cloud Adoption

- For ability and flexibility, cloud integration allows resources to be de-focused
- Rely on Infrastructure as Service (laaS) or Platform as a Service (PaaS)
- More common for public or virtual private cloud to be used.

"Infrastructure as Code"

- Configuration of servers can be run as code
- Can be versioned and tested
- Assure repeated configurations
- Eliminates issue of code that works fine in staging failing in production
- Continuous Integration / Continuous Delivery or Deployment: Jenkin, Dockers
- Configuration Management: Chef, Puppet, Saltstack, Ansible, Terraform, etc.
- Containerisation and Microservices: Kubernetes, etc

Key Security Concerns

Docker Hub Distributing Cryptomining Malware?

by Mike Vizard

A pair of cybersecurity reports published this week suggests the level of cryptomining malware lurking in the Docker Hub repository is potentially greater than most IT teams realize.

- Automation is means to repeat human errors with rigor in a consistent manner.
- Cloud reduces control and visibility at hardware and network
- Faulty spin-ups may leave a virtual machine in unstable state
- Lack segregation of duties between DEVeloper and OPerator
- How do we know developers adhered to secure development standards?
- Multiple images of varying security may be running?
- How quickly will patches be released when a security flaw is found?

What is your Cyber Security and Risk Culture?

THE BUSINESS IMPACTS OF A CYBERSECURITY

CULTURE

Fewer than half of organizations say their security culture is ver yet most recognize the numerous benefits a culture of cybersec including a stronger reputation, deeper customer trust, and ever Global technology association ISACA and the CMMI Institute cor survey on security culture, and key findings are below. For full r www.isaca.org/cybersecurity-culture-study.

SAY THERE IS A GAP

between the organization's desired and actual culture of cybersecurity

SAY ESTABLISHING A STRONGER CULTURE

of cybersecurity would increase their organization's profitability or viability

FEWER THAN HALF

conduct hands-on testing to train employees on security awareness or best practices

DevSecOps & Security Responsibility

"The simple premise of DevSecOps is that everyone in the software development life cycle is responsible for security, in essence bringing operations and development together with security functions. DevSecOps aims to embed security in every part of the development process. It is about trying to automate core security tasks by embedding security controls and processes early in the DevOps workflow (rather than being bolted on at the end). For example, this could be the case when migrating to microservices, building out a CI/CD pipeline, compliance automation or simply testing cloud infrastructure."

- CSO Online

DevSecOps & Security Responsibility

"DevOps is accomplished through automation and technology, but culturally it depends on creating the **three Cs—collaboration, communication and cohesiveness**—between development and operations."

- ISACA

Governance underscores the Ability to Future-proof against Threats

Adopt IT Risk Management Framework

Doing the right things

Doing the things right

Adopt IT Risk Management Framework

Key points

- Business-operation-IT risk alignment
- Risk optimization is key to risk management

A CISO IS

SIMPLY AN

ADVISER AND

MAY ALSO

LEAD THE

SECURITY

TEAMS.

Risk owner is accountable

Risk of Adoption vs Risk of Non-adoption

Risk of non-adoption

- Risk of decreased competitive advantage
- Practitioner opportunity cost
- Shadow adoption

http://www.isaca.org/Knowledge-Center/Research/Documents/DevOps-Practitioner-Considerations_whp_Eng_0815.pdf

Perform Threat Modelling

MITRE Enterprise ATT&CK™ Framework

Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Execution	Collection	Exfiltration	Command and Control
Image File Execution Options Injection			Forced Authentication	Network Share Discovery	AppleScript		Man in the Browser	Exfiltration Over Physical	Multi-hop Proxy
Plist Modification			Hooking	System Time Discovery	Third-party Software		Browser Extensions	Medium	Domain Fronting
Valid Accounts			Password Filter DLL	Peripheral Device Discovery	Windows Remote Management		Video Capture	Exfiltration Over Command	Data Encoding
DLL Search Order Hijacking		LLMNR/NBT-NS Poisoning	Account Discovery	SSH Hijacking	LSASS Driver	Audio Capture	and Control Channel	Remote File Copy	
App	Cert DLLs	Process Doppelgänging	Securityd Memory	File and Directory Discovery	Distributed Component	Dynamic Data Exchange	Automated Collection	Scheduled Transfer	Multi-Stage Channels
H	ooking	Mshta	Private Keys	System Information	Object Model	Mshta	Clipboard Data	Data Encrypted	Web Service
Start	tup Items	Hidden Files and Directories	Keychain	Discovery	Pass the Ticket	Local Job Scheduling	Email Collection	Automated Exfiltration	Standard Non-Application
Launc	h Daemon	Launchetl	Input Prompt	Security Software	Replication Through	Trap	Screen Capture	Exfiltration Over Other	Layer Protocol
Dylib	Hijacking	Space after Filename	Bash History	Discovery	Removable Media	Source	Data Staged	Network Medium	Communication Through
Applicati	on Shimming	LC_MAIN Hijacking	Two-Factor Authentication	System Network Connections	Windows Admin Shares	Launchetl	Input Capture	Exfiltration Over	Removable Media
App	Init DLLs	HISTCONTROL	Interception	Discovery	Remote Desktop Protocol	Space after Filename	Data from Network	Alternative Protocol	Multilayer Encryption
W	eb Shell	Hidden Users	Account Manipulation	System Owner/User	Pass the Hash	Execution through Module	Shared Drive	Data Transfer Size Limits	Standard Application
Service Registry F	ermissions Weakness	Clear Command History	Replication Through	Discovery	Exploitation of Vulnerability	Load	Data from Local System	Data Compressed	Layer Protocol
Sched	fuled Task	Gatekeeper Bypass	Removable Media	System Network Configuration	Shared Webroot	Regsvcs/Regasm	Data from Removable Media		Commonly Used Port
Nev	New Service		Input Capture	Discovery	Logon Scripts	InstallUtil			Standard Cryptographic
File System Permissions Weakness		Deobfuscate/Decode Files	Network Sniffing	Application Window	Remote Services	Regsvr32			Protocol
Path Ir	Path Interception		Credential Dumping	Discovery	Application Deployment	Execution through API			Custom Cryptographic
Accessib	Accessibility Features		Brute Force	Network Service Scanning	Software	PowerShell			Protocol
Port Monitors		Regsvcs/Regasm	Credentials in Files	Query Registry	Remote File Copy	Rundli32			Data Obfuscation
Screensaver	Screensaver Exploitation of Vulnerability			Remote System Discovery	Taint Shared Content	Scripting			Custom Command and
LSASS Driver	Extra Window Memory Injection			Permission Groups		Graphical User Interface			Control Protocol
Browser Extensions	ons Access Token Manipulation			Discovery		Command-Line Interface			Connection Proxy
Local Job Scheduling	I Job Scheduling Bypass User Account Control			Process Discovery		Scheduled Task			Uncommonly Used Port
Re-opened Applications Process Injection			System Service Discovery		Windows Management			Multiband Communication	
Rc.common	SID-History Injection	Component Object Model				Instrumentation			Fallback Channels
Login Item	Sudo	Hijacking				Trusted Developer Utilities			
C_LOAD_DYLIB Addition	Setuid and Setgid	InstallUtil				Service Execution			
Launch Agent		Regsyr32							

attack.mitre.org

Adopt Key Principles – "Security as Code"

SD³ + Communications

Secure by Design

Secure by Default

Secure in Deployment

Communications

- 1. Tender Specs (Firewall, VPN, Common Criteria, etc)
- 2. Product allows Vulnerability to be Managed
- 3. Layered Defense Architecture
- 4. Architecture Security Review
- 1. Security Standards
- 2. Server Hardening i.e. Disable Unnecessary Services
- 3. Network-based Firewall
- 4. Pre-deployment Vulnerability Assessment & Penetration Testing

- 1. Regular Vulnerability Scan
- 2. Regular Vulnerability alert Monitoring
- 3. Timely Vulnerability Remediation/Patching
- 4. Continuous Audit and Monitoring

- 1. Security Training and Awareness
- 2. Security Advisories to Custodians
- 3. Phishing Simulation Exercise
- 4. Extension to Supply Chain

Phase	Activities				
Requirements and design	Perform a risk assessment. Establish security requirements. Develop auditing plans.				
Manufacture (development)	Monitor processes and product flows. Inspect, test, verify and validate final products				
Distribution	Monitor processes and product flows.				
Warehousing	Monitor processes and product flows. Check that the product has not been removed substituted or added.				
Deployment	Monitor processes and product flows. Check that delivered products and systems are correct and authentic. Provide user guidance to ensure that products and systems are not adulterated or otherwise compromised.				
Operation	Monitor operation for unusual behavior and damaging events. Review operational readiness on a continuing basis. Develop and implement a plan for responding to security incidents.				
Maintenance and support	 Monitor suppliers of products and components for any adverse reports relating to the viability of supplier companies or any security or safety issues with products. Develop contingency plans for potential disruptions in supply of parts or patches, for example, and support. 				
Disposal	 Monitor disposal of intellectual property and sensitive data, such as personal information and health data, and destruction of media containing such information. 				

ISACA

Microsoft

Singapore Chapter

Privacy-by-Design (integrated with Security-by-Design)

- Data as the new oil
- Adopt a data-centric approach

Singapore Unapter

Adopt Cyber Security Framework (1)

COBIT

NIST Cybersecurity Framework **IDENTIFY PROTECT** DETECT RESPOND **RECOVER** Awareness control Asset management Response Planning Anomolies and Recover planning Awareness and training Business environment Data security Governance Analysis Improvements Risk assessmen Mitigation Maintenance Protective

ISACA

5 Separating governance from management

Adopt Cyber Security Framework (2)

DevOps Maturity Model

"Enterprises that use CMMI or COBIT 5 can align their DevOps approach to gain value and apply adaptive approaches to address challenges. By adapting robust governance and maturity practices from frameworks like CMMI and COBIT while maintaining a flexible approach to interpreting requirements from those frameworks, enterprises can realize the benefits of DevOps and still maintain a robust and mature approach."

-- ISACA

Adopt Cyber Security Framework (3)

Third-party Attestations

- Multi-Tiered Cloud Services
- 2. Cyber Security Alliance Cloud
- 3. Control Matrix CSA STAR
- 4. Common Criteria
- 5. CREST
- 6. MITRE Pre-ATT&CK Framework
- 7. ABS Guidelines
- OSPA (Outsource Service Provider Assessment)
- PTG (Penetration Testing Guideline)
- RTAASEG (Red Team Adversarial Attack Simulation Exercises Guidelines)

Key Cloud Security Considerations

- Asset Criticality and Sensitivity Identification.
- Roles and Responsibilities for each Key Control.
- Architecture Security Review and Approval Process.

Off-premise should NOT be worse off than on-premise unless the increased risk is deemed acceptable

Pre-deployment Key Controls: Some Examples

Threat	Controls		
Lack of adoption of complying standards	IT security standards compliance		
External (Internet) Threats	Vulnerability remediation process		
	2-layer Firewall		
	Network-based Intrusion Detection System		
	24x7 Monitoring		
	System hardening		
	Vulnerability scanning		
	Penetration testing		
	Vulnerability advisory tracking		
	Component management		
	Intranet and Secure remote access		
Insider Threats	<u> </u>		
	Security review portal		
	Account management		
Lack of independent audit assessment	Audit management		
Account Breach	2FA deployment		
	Admin portal access		
Distributed Denial-of-Service (unavailability)	Anti-DDoS protection		
Web Defacement (reputation loss)	Web defacement monitoring/recovery		
Data Leakage (reputation loss, customer loss)	Data encryption		
Delayed Incident Containment and Remediation	Incident management process and drills		

Cloud Security Key Considerations

Maintenance phase key controls: Some Examples

Threat	Controls			
Lapse in	Change management controls are put in place.			
controls and	Regular checkpoint meetings to obtain evidence of monthly reviews.			
oversight	Obtaining regular independent audit and penetration testing reports.			
	Obtaining evidence of regular review of accesses.			
	Obtaining evidence of regular review of security checklists and setups.			

Determine Key Security Controls

Vulnerability Management

PATCHING is NOT the only means to FIX a VULNERABILITY

Different ways of fixing a vulnerability

- Disable unnecessary services
- Network-based firewall
- Host-based firewall
- Hardening the configuration
- Virtual Patching
- Patching

Vuln Remediation Timeline

- Risk-based
 Exploit Public Availability
- Attack Surface Exposure
 Peace Time vs Heightened

Systems / Services	Vulnerability Severity	Exploitable remotely from Internet / Building	Exploitabl e remotely from Gateway / Clients	Exploitable only locally on host
Internal / Future at	Critical / High			
Internet / Extranet- facing	Medium			
idenig	Low			
	Critical / High			
Intranet-facing	Medium			
	Low			підарого опарсег

Determine Key Security Controls (5)

Incident Management

Security leadership has no direct view or awareness of activities being performed, or they are heavily decentralized. Enterprises have an awareness that cyber incidents are taking place, but enterprise preparedness for cyber incidents dosen't exist. IT security teams attempt to mitigate cyber incidents in an unstructured fashion, primarily focused on "crisis-level" response. At this stage, the escalation thresholds from alert to event to incident to crisis are not well defined.

Enterprises invest in and develop minimum resources, policies and processes for ongoing detection and response. Response teams enabled to make decisions regarding mitigation vs. remediation.

Represents an optimized, repeatable IR program. Enterprise matures to incorporate automated resoonse activites. IR program contributes to security strategy and feeds crisis management and continuous operations programs/plans.

program matures to take proactive actions based on threat landscape. The business is a key partner of the security IM process; integrates business risk and can evidence contribution to the

corporate strategy and/or bottom line.

Vuln Mgmt Account Mgmt Key Areas of

Network Security

Baselining

Incident Mgmt

Black Swans

Consideration

- Business continuity
- Recovery Order
- Alternate Comms

Active Cyber Defense Strategy

Determine Architecture

An architect needs to optimize the solution architecture based upon business needs, operational risk, security and regulatory requirements.

Residual risks (operational, regulatory or security) needs to be approved by risk owner.

Baking Security into DevOps

- Continuous integration with automation allows better integration with security tools such as secure code review tools
- Configuration management allow secure configuration (e.g. via SCAP Security Control Automation Protocol) to be enforced, including standards on logging, alerting and security metrics.
- Containers allow isolation of applications, particularly in multi-tenant environments. Tools available to scan Docker images.
- CIS Benchmarks available for deploying pre-hardened cloud images such as Docker security benchmark https://github.com/docker/docker-bench-security
- Cloud provider portals and APIs provide independent verification of automated inventory
- Asset tracking and scanning via security providers e.g. Qualys
- Updates to "infrastructure as code" security configuration should trigger automated application scans or SCAP checks.

Baking Security into DevOps

Baking Security into DevOps

IBM Reference Architecture for DevOps

- Deployment strategies
- Blue-Green deployments or A-B testing allows gradual rollout and immediate feedback e.g. scans are part of deployment provide verification.
- Variant of this deployment is to roll out newly patched image files in new VMs by scaling the system up with them and then removing the older, un-patched systems when scaling down.

What it really means to the DevOps Practitioner

- Not always guaranteed that development, operations or QA personnel will be focused on ensuring compliance with these requirements.
- SAST / DAST require application code to be extant to operate so deployment need to be modified to fit DevOps approach.
- DevOps can mean a fully automated runway to production, results need to be properly are captured and fedback into development processes.
- Segregation of duties and change control can adopt a mostly "detection" form i.e.
 Developer's access may be severely restricted and tightly controlled and perhaps change control logs are created and tied to that change so that every adjustment is auditable.

Conclusion – Internalise DevSecOps

Security—Security-relevant configuration changes can be made quicker with use of automated configuration management. the configuration change required to support closing that service could utilize automation features to remediate the issue in the same manner as those made to support new application code.

Assurance—Automated configuration systems often retain a record of when configuration changes are made, by whom and for what purpose. This information might be challenging to gather in an environment that is primarily driven by manual processes. Automated systems can be used to gather evidence about configuration to help streamline the audit process in a way that has reliability advantages over a manual approach. •

Governance—Collecting reliable metrics about processes is often facilitated by using automated approaches. These metrics can support the performance management aspects of governance activities. Likewise, policy enforcement goals can be advanced through the use of technical means to enforce those policies.

Where can I find more on DevOps Security and Governance?

- DevOps Process Maturity By Example
 http://www.isaca.org/Knowledge-Center/Research/Documents/Devops-Process-Maturity-By-Example res eng 1117.pdf
- DevOps Practitioner Considerations
 http://www.isaca.org/Knowledge-Center/Research/Documents/DevOps-Practitioner-Considerations whp Eng 0815.pdf
- Continuous Security Implementing the Critical Controls in a Dev Ops Environment https://www.sans.org/reading-room/whitepapers/critical/paper/36552

ISACA

Global Presence

Certifications

140,000+

members in 188 countries in 2019

97

student groups

ISACA has certified:

146,000+ CISA Professionals

43,000+

25,000+
CRISC Professionals

8,000+

ISACA's core certifications consistently maintain a retention rate of 94–96%.

ISACA SINGAPORE

Local Context

Certifications

~2,500 Members

1,400+ CISA Professionals

~650
CISM Professionals

~400
CRISC Professionals

100+
CGEIT Professionals

Transition to Fully Virtual 28 August 2020

Cyber Resilience to Confidence

SCAN HERE TO RESISTER

Guest of Honour Gauray Keerthi Assistant Chief Executive Cyber Security Agency of Singapore

ISACA Member / Supporting Organisations/ Group pricing

Non-Member

\$48

\$28

Morning Keynotes (0900hr - 1250hr)

0900hr - 0905hr Opening Address

Phoram Mehta, President, ISACA Singapore Chapter

0905hr - 0915hr **GOH Address**

Gauray Keerthi, Assistant Chief Executive, Cyber Security Agency of Singapore

0915hr - 0930hr ISACA HQ Address

The Route to Data Protection by Design Koh Suat Hong, Personal Data Protection Commission

1005hr - 1030hr Keynote 2

1045hr - 1120hr

Panel: From Cyber Resilience to Confidence

Moderator: Phoram Mehta

Panelists: Koh Suat Hong (PDPC), Lim Thian Chin (CSA), Joe Weiss (ISA99), John Yong (SATA)

1125hr - 1150hr

What can we look for to secure our cyber Future?

Joe Weiss, ISA99

1155hr - 1220hr

Topic Title: TBC

Lim Thian Chin, Cyber Security Agency of Singapore

The Singapore Cyber Security Landscape: Learnings from ISACA-Frost & Sullivan Survey 2020 Kenny Yeo, Frost & Sullivan

Governance & Risk

Security Covernance in Healthcare. John Yong, SATA Commheath

Key Cybersecurity and Risk Trends

Issas Gondrom, United Overseas:

Governance & Risk Case Study

Mhole-of-Organisation Approach

Noman Kok, OCBC Burk

Panel: Governing for Cyber Resilieno Moderator: Gauray Thorat. Panelists: Got Moh Heng, Thomas

Kok, Tobias Gondrom

Afternoon Tracks (1400hr - 1730hr) Compliance & Audit

Track Manager: Jenny Tan, CapitaLand

1400hr - 1430hr

How to effectively audit your Active Directory against APTs

Paige Sundoust, FedEx, Memphis Chapter

1435hr - 1505hr

Digitalisation vs Transformation: Why you need to take your time for it Jenny Tan, Capital and

1510hr - 1540hr

Compliance & Audit Case Study

1545hr - 1615hr

Effective Auditing for ICS/SCADA

Systems

Daniel Ehrenreich, 5th ICS Cybersec

2020, Israel

1620hr - 1650hr

Ensuring Compliance for Automation

Security Ulrich Seldeslachts, EU LSEC Leaders In Security

1855hr - 1730hr

Panel: Audling for Cyber Resilience Moderator: Jenny Tan

Panelists: TBC

Design & Architecture

Track Manager: Steven Sim. Singapore

1400hr - 1430hr

Securing Official Infrastructure in the

New Normal Lim Shih Histen, SP Group

1435hr - 1505hr

Understanding Cybersecurity Risk in

the age of servertess tan Loe, NTUC Enterprise

1510hr - 1540hr

Design & Architecture Case Study

1545hr + 1615hr

Effectively applying MITRE ATTACK

Framework on ICS

Freddy Dezeure, EU MITRE ATTACK

User Group

1620hr - 1650hr

Designing an effective OT Cyber

Incident Plan

Oren Ellmelech, Cyber 360, Israel

1655hr - 1730hr

Panel: Architecting for Cyber Resilience Moderator: Steven Sim

Panelists: Freddy Dezeure, Ian Loe, Lim Shin Halen, Oren Elimelech

Debunking myth about red teaming - A tale spoken by a red-teamer Chong Rong Hwa, Government

Security Planning & Program

Track Manager: Yap Lip Keong, Avalog

Technology Agency 1435hr - 1505hr

1400hr - 1430hr

Planning a successful Bug Bounty

Ang Leong Boon, National University of Singapore

1510hr - 1540hr

Security Planning & Program Case

1545hr - 1615hr Planning a secure migration to Cloud Zhuang Hao Jie, Cloud Security

Alliance

1620ty - 1650ty Planning for GDPR in Cloud Security Egide Nitabonimana, SOCRAI, Belgium

Chapter

1855Nr - 1730Nr

Panel: Planning for Cyber Resilience. Moderator: Yap Lip Keong

Panelists: Ang Leong Boon, Chong Rong Hwa. Egide Nzabonimana. Zhuang Hao Jie

Only way to keep up with rising threats is to keep finding weaknesses in our own ideas

