## 582206 Laskennan mallit, syksy 2012

- 7. harjoitusten malliratkaisut Juhana Laurinharju ja Jani Rahkola
  - 1. Esitä pinoautomaatti seuraaville kielille.
    - (a) Kaikki palindromit aakkostosta  $\Sigma = \{a, b, c\}$ .



(b)  $\left\{a^ib^j\mid 0\leq i\leq j\right\}$ missä $\Sigma=\{a,b,c\}$ 



(c)  $\left\{a^ib^jc^k\mid j=i+k\right\}$ missä $\Sigma=\left\{a,b,c\right\}$ 



- (d) Kaikki aakkoston  $\Sigma=\{0,1\}$ merkkijonot joissa nollia on kaksi kertaa niin paljon kuin ykkösiä.
- 2. Tarkastellaan kielioppia

$$S \to S + T \mid T$$
$$T \to T * F \mid F$$
$$F \to (S) \mid a$$

Muodosta merkkijonon s = (a + a) \* a jäsennyspuu tämän kieliopin mukaisesti.

Etsi jäsennyspuusta jokin juuresta lehteen johtava polku, jolla sama muuttuja esiintyy kahdessa solmussa. Muodosta tämän perusteella toistuvuusominaisuuden todistuksen ideaa mukaillen jokin merkkijonon s jako osiin s = uvxyz, joilla merkkijono  $uv^ixy^iz$  kuuluu tarkasteltavaan kieleen kaikilla  $i \in N$ .

1



3. Olkoon A aakkoston  $\{0,1\}$  kieli, joka koostuu niistä merkkijonoista, joissa on sama määrä nollia ja ykkösiä. Tällä kielellä on kontekstiton kielioppi

$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \varepsilon$$

(a) Kielen A eräs toistuvuuspituus on 4. Esitä kieleen A kuuluvalle merkkijonolle s=001101 kaikki eri tavat jakaa se osiin s=uvxyz toistuvuusominaisuuden ehdot toteuttavalla tavalla (lause 2.30; Sipser Theorem 2.34; tässä siis p=4).

| u              | v       | $\boldsymbol{x}$ | y       | z   |
|----------------|---------|------------------|---------|-----|
|                |         |                  | 0011    | 01  |
|                |         | 0                | 01      | 101 |
|                | 0       |                  | 011     | 01  |
|                | 0       | 0                | 1       | 101 |
|                | 0       | 01               | 1       | 01  |
|                | 00      |                  | 11      | 01  |
|                | 001     |                  | 1       | 01  |
|                | 0011    |                  |         | 01  |
| 0              |         |                  | 01      | 101 |
| 0              |         |                  | 0110    | 1   |
| 0              |         | 01               | 10      | 1   |
| 0              | 0       |                  | 1       | 101 |
| 0              | 0       |                  | 110     | 1   |
| 0              | 0       | 1                | 1       | 01  |
| 0              | 01      |                  |         | 101 |
| 0              | 01      |                  | 10      | 1   |
| 0              | 01      | 1                |         | 01  |
| 0              | 01      | 10               |         | 1   |
| 0              | 011     |                  | 0       | 1   |
| 0              | 0110    |                  |         | 1   |
| 00             |         | 1                | 10      | 1   |
| 00             |         | 11               | 01      |     |
| 00             | 1       | 1                | 0       | 1   |
| 001            |         |                  | 10      | 1   |
| 001            |         | 1                | 01      |     |
| 001            | 1       |                  | 0       | 1   |
| 001            | 10      |                  |         | 1   |
| 001            | 10      | 1                |         |     |
| 0011           |         |                  | 01      |     |
| 0011           | 0       |                  | 1       |     |
| 0011           | 01      |                  |         |     |
| <b>371</b> - ↓ | _= 91 _ | 1_ 1_ 4          | 10-110- |     |

Yhteensä 31 ehdot täyttävää jakoa.

- (b) Onko kielellä A pienempiä toistuvuuspituuksia kuin 4? Perustele.
- 4. (a) Koostukoon aakkoston  $\{a,b,c\}$  kieli A merkkijonoista, joissa on yhtä monta a-, b- ja c- merkkiä. Osoita, että A ei ole yhteydetön.
  - (b) Osoita, että kieli $\{0^n1^n0^n1^n\mid n\in\mathbb{N}\}$ ei ole yhteydetön.
- 5. Anna yhteydetön kielioppi, joka tuottaa kielen  $\{a^ib^jc^k \mid i=2j \text{ tai } j=2k\}$ . Muodosta apulauseen 2.21 mukaisesti kieliopistasi pinoautomaatti, joka tunnistaa saman kielen.

$$S \to T_{aab}T_c \mid T_aT_{bbc}$$

$$T_{aab} \to aaT_{aab}b \mid \varepsilon$$

$$T_c \to cT_c \mid \varepsilon$$

$$T_a \to aT_a \mid \varepsilon$$

$$T_{bbc} \to bbT_{bbc}c \mid \varepsilon$$

Jos automaateissa saisi laittaa monta aakkosta pinoon kerralla, näyttäisi automaatti seuraavalta:



Jokainen sääntö, jossa pinoon lisätään monta symbolia kerralla voidaan avata silmukaksi. Esimerkiksi sääntö

$$\varepsilon, T_{aab} \to aaT_{aab}b$$

voidaan toteuttaa tavallisella pinokoneella seuraavasti:



6. Tee alla olevasta pinoautomaatista Apulauseen 2.27 mukaisesti kielioppi.



7. (a) Osoita, että jos A on yhteydetön ja B säännöllinen kieli, niin  $A \cap B$  on yhteydetön.

Vihje: muodosta pinoautomaatin ja äärellisen automaatin leikkausautomaatti samaan tapaan kuin Jyrkin luentojen lauseessa 1.1 (luentomateriaalin sivut 48–50).

Olkoon A yhteydetön kieli ja  $M_A = (Q_A, \Sigma, \Gamma, \delta_A, q_{A0}, F_A)$  automaatti joka tunnistaa kielen A. Olkoon B säännöllinen kieli ja  $M_B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$  deterministinen automaatti joka tunnistaa kielen B.

**Väite.** Kieli  $A \cap B$  on säännöllinen.

Todistus. Leikkauksen tunnistava automaatti luodaan samankaltaisella menetelmällä kuin säännöllisten kielten tapauksessa. Ero säännöllisten kielten tapaukseen on siirtymäfunktion  $\delta_{A\cap B}$  määrrittelyssä.

Muodostetaan siis automaatti

$$M_{A\cap B} = (Q_A \times Q_B, \Sigma, \Gamma, \delta_{A\cap B}, (q_{A0}, q_{B0}), F_A \times F_B)$$

missä siirtymäfunktio  $\delta_{A\cap B}$  on määritelty seuraavasti.

$$\delta_{A \cap B}((q_i, p_i), a, t) = \begin{cases} \{((q_j, p_i), s) \mid \delta_A(q_i, \varepsilon, t) = (q_j, s)\} & \text{kun } a = \varepsilon \\ \{((q_j, p_j), s) \mid \delta_B(q_i, a) = q_j \text{ ja } \delta_A(p_i, a, t) = (p_j, s)\} & \text{muulloin} \end{cases}$$

Kaikki uuden automaatin tilat ovat siis muotoa (q,p) missä  $q \in Q_A$  ja  $p \in Q_B$ . Siirtymät noudattavat parin ensimmäisen alkion kohdalla automaatin  $M_A$  siirtymäfunktiota ja toisen alkion kohdalla automaatin  $M_B$  siirtymäfunktiota. Pinon käsittely noudattaa aina automaatin  $M_A$  siirtymäfunktiota, sillä automaatissa  $M_B$  ei ole pinoa.

$$\begin{array}{ccc}
 & a, t \to s \\
 & & \downarrow \\
 & \downarrow \\$$

Pinoautomaatti  $M_A$  on epädeterministinen, mutta  $M_B$  ei. Pinoautomaatin epädeterminististen siirtymien kohdalla uudessa automaatissa tilaparin jälkimmäinen alkio ei muutu. Ensimmäinen alkio noudattaa pinoautomaatin  $M_A$  siirtymäfunktiota.

$$\overbrace{q_i} \xrightarrow{\varepsilon, t \to s} \overbrace{q_j} \qquad \qquad \underbrace{\qquad \qquad} \underbrace{\qquad$$

Luotu automaatti  $M_{A\cap B}$  hyväksyy merkkijonon w jos ja vain jos  $M_A$  ja  $M_B$  hyväksyvät merkkijonon w. Siis  $M_{A\cap B}$  tunnistaa kielen  $A\cap B$ .

(b) Tiedetään, että kieli L on yhteydetön ja R säännöllinen. Voidaanko tästä päätellä, että L-R on yhteydetön? Entä R-L? Perustele.

**Väite.** Olkoon L yhteydetön ja R säännöllinen kieli. Nyt L-R on yhteydetön.

Todistus. Joukko-opista tiedämme, että  $L-R=L\cap\overline{R}$ . Lisäksi tiedämme, että säännölliset kielet ovat suljettuja komplementin suhteen. Nyt siis edellisen kohdan nojalla  $L\cap\overline{R}$  on yhteydetön, ja siten myös L-R on yhteydetön.

Toinen suunta ei päde yleisesti. Koska yhteydettömät kielet eivät ole suljettuja komplementin suhteen, on olemassa yhteydetön kieli jonka komplementti ei ole yhteydetön. Olkoon L jokin tällainen kieli. Olkoon nyt  $R=\Sigma^*$  joka tunnetusti säännöllinen. Nyt siis L on yhteydetön ja R säännöllinen, mutta  $R-L=\Sigma^*-L=\overline{L}$  joka oletuksen mukaan ei ole yhteydetön.