

219482.SEQUENCE Apr 2004.ST25
SEQUENCE LISTING

<110> Nelson, Edward L.
Nelson, Peter J.

<120> A VECTOR FOR POLYNUCLEOTIDE VACCINES

<130> 219482

<140> 09/242,202
<141> 1999-11-01

<150> PCT/US97/14306
<151> 1997-08-14

<150> 60/023,931
<151> 1996-08-14

<160> 37

<170> PatentIn version 3.1

<210> 1
<211> 453
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 1
ggccgcgttg ctggcgaaaa tccataggct ccggccccct gacgagcatc acaaaaatcg 60
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttcccccc 120
tggaaagctcc ctcgtgcgct ctcctgttcc gaccctgccc cttaccggat acctctccgc 180
ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgttaggt atctcagttc 240
ggtgttaggta gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 300
ctgcgcctta tccggtaact atcgctttga gtccaaacccg gtaagacacg acttatcgcc 360
actggcagca gccactggta acaggattag cagagcgagg tatgttaggca gtgctacaga 420
gttcttgaag tggtggccta actacggcta cac 453

<210> 2
<211> 453
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 2
gtgttagccgt agttaggccca ccacttcaag aactctgttag caccgcctac atacctcgct 60
ctgctaattcc tggtagccgt ggctgctgcc agtggcgata agtcgtgtct taccgggttg 120
gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc 180

219482.SEQUENCE Apr 2004.ST25

acacagccca	gcttggagcg	aacgacctac	accgaactga	gatacctaca	ccgtgagcat	240
ttagaaagcg	ccacgcttcc	cgaaggaga	aaggcggaca	ggtatccggt	aagcggcagg	300
gtcggAACAG	gagagcgcac	gagggagctt	ccagggggaa	acgcctggta	tctttatagt	360
cctgtcggtt	ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgctc	gtcagggggg	420
cggagcctat	ggaaaaacgc	cagcaacgcg	gcc			453
<210>	3					
<211>	209					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Synthetic					
<400>	3					
gaattcttc	ggactttga	aagtgatggt	ggtggccgaa	ggattcgaac	cttcgaagtc	60
gatgacggca	gatttagagt	ctgctccctt	tggccgctcg	ggaaccccac	cacggtaat	120
gctttactg	gcctgctccc	ttatcggaa	gcggggcgca	tcatatcaa	tgacgcgccc	180
ctgtaaagtg	ttacgtttag	aaagaattc				209
<210>	4					
<211>	209					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Synthetic					
<400>	4					
gaattcttc	tcaacgtaac	actttacagc	ggcgcgtcat	ttgatatgat	gcgcggcgct	60
tcccgataag	ggagcaggcc	agtaaaagca	ttacccgtgg	tgggttccc	gagcggccaa	120
agggagcaga	ctctaaatct	gccgtcatcg	acttcgaagg	ttcgaatcct	tcccccacca	180
ccatcactt	caaaaagtccg	aaagaattc				209
<210>	5					
<211>	6					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Synthetic					
<400>	5					
aataaa						6
<210>	6					
<211>	6					
<212>	DNA					
<213>	Artificial					

219482.SEQUENCE Apr 2004.ST25

<220>
<223> Synthetic

<400> 6
attaaa 6

<210> 7
<211> 6
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 7
agtaaa 6

<210> 8
<211> 6
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 8
aagaac 6

<210> 9
<211> 6
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 9
aataca 6

<210> 10
<211> 227
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 10
gccttaaggg ccatatggtg agtggatccc ttgaccagg gcggggatgg ggagacctgt 60
agtca gagcc cccgggcagc acaggccaat gcccgtcctt cccctgcagg atgagtagtg
agtgcctctc ctggccctgg aagttgccac tccagtgcc accagccttg tcctaataaa 120
attaaggttgc atcattttgt ctgacttaggt gtcctctata atattat 180
227

<210> 11

219482.SEQUENCE Apr 2004.ST25

<211> 227
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 11
ataatattat agaggacacc tagtcagaac aaatgatgca acttaattt attaggacaa 60
ggctgggtgg cactggagtg gcaacttcca gggccaggag aggcaactcac tactcatcct 120
gcaggggaag gacgggcatt ggcctgtgct gcccgggggc tctgactaca ggtctcccc 180
atccccgcct ggggtcaagg catccactca ccatatggcc cttaagg 227

<210> 12
<211> 252
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 12
cctcggtacc tgccatggcg cggtttttt atcaactgata agttggtgga catattatgt 60
ttatcagtga taaagtgtca agcatgacaa agttgcagcc gaatacagtg atccgtgccg 120
gccctggact gttgaacgag gtcggcgttag acggtctgac gacacgcaaa ctggcggAAC 180
ggttgggggt gcagcagccg gcgctttact ggcacttcag gaacaagcgg gcgccttaag 240
ggccatatatgc cg 252

<210> 13
<211> 35
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 13
cctcggtacc tgccaccatg ggcgggattc tttat 35

<210> 14
<211> 38
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 14
cgccatatgg ccttaaggcg cccgcttgtt cctgaagt 38

<210> 15
<211> 228

219482.SEQUENCE Apr 2004.ST25

<212> DNA
 <213> Artificial
 <220>
 <223> Synthetic
 <400> 15
 gccttaaggg ccatatggtg agtggatgcc ttgacccca gccccggatgg gggagacctg 60
 tagtcagagc ccccgcccag cacaggccaa tgcccggtc tccctgcag gatgagtagt
 gagtgccctc cctggccctg gaagttgcc a cccagggtc caccagcctt gtcctaataa 120
 aattaagttg catcattttg tctgactagg tgtcctctat aatattat 180
 228

<210> 16
 <211> 1425
 <212> DNA
 <213> Artificial
 <220>
 <223> Synthetic
 <400> 16
 tgccatggcg cgattttt atcaactgata agttggtgga catattatgt ttatcagtga 60
 taaaatgtca agcatgacaa agttgcagcc gaatacagtg atccgtgccg gccctggact
 gttgaacgag gtcggcgttag acggctgtac gacacgcaaa ctggcggAAC ggTTGGGGT 120
 gcagcagccg ggcctttact ggcacttcag gaacaagcgg ggccttaag ggccatatgg 180
 tgagtggatg ctttgcaccc aggccggat gggggagacc tgtagtcaga gccccccggc 240
 agcacaggcc aatgcccgtc cttccctgc agttagttagt gactgcccgg gtggatccc 300
 tgtgacccct ccccaagtgc ttcctggcc ctggaaatgg ccactccagt gcccaccagc 360
 cttgtcctaa taaaatggat ttgcatcatt ttgtctgact aggtgtcctc tataatatta 420
 taagctttagt atcgaattct ttctcaacgt aacactttac agcggcgcgt cattttagat 480
 gatgcgcggcc gcttcccgat aaggagcag gccagtaaaa gcattacccg tgggggggtt 540
 cccgagccgc caaaggggagc agactctaaa tctggcgtca tcgacttcga aggttcgaat 600
 cttcccccac ccaccatcac tttcaaaagt ccgaaagaat tcctgcagcc cgttagccg 660
 tagttaggcc accacttcaa gaactctgtc gcaccgccta catacctcgc tctgctaatc 720
 ctgttaccag tggctgctgc cagtgccgt aagtcgtgtc ttaccgggtt ggactcaaga 780
 cgatagttac cggataaggc gcagcggcgtc ggctgaacgg ggggttcgtc cacacagccc 840
 agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagca ttgagaaagc 900
 ggcacgcgttc ccgaaggggag aaaggcggac aggtatccgg taagcggcag ggtcggaaaca 960
 ggagagcgcgca cgagggagct tccagggggaa aacgcctggat atctttatag tcctgtcggg 1020
 ttccgcacc tctgacttgc gcgtcgattt ttgtgatgct cgtcagggggg gcggagccta 1080
 1140

219482.SEQUENCE Apr 2004.ST25

tggaaaaacg	ccagcaacgc	ggccggggga	tccggagagc	tcactctaga	tgagagagca	1200
gtgagggaga	gacagagact	cgaattccg	gagctatttc	agtttcttt	tccgtttgt	1260
gcaatttcac	ttatgatacc	ggccaatgct	tggtgctat	tttggaaact	ccccttaggg	1320
gatgccctc	aactggccct	ataaagggcc	agcctgagct	gcagaggatt	cctgcagagg	1380
atcaagacag	cacgtggacc	tcgcacagcc	tctcccacag	gtacc		1425

<210> 17
<211> 719
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 17

atgagcaagg	gcgaggaact	gttcactggc	tggtcccaa	ttctcgtgga	actggatggc	60
gatgtgaatg	ggcacaaatt	ttctgtcagc	ggagagggtg	aaggtgatgc	cacatacgg	120
aagctcaccc	tgaaattcat	ctgcaccact	ggaaagctcc	ctgtgccatg	gccaacactg	180
gtcactacct	tcacccatgg	cgtgcagtgc	ttttccagat	acccagacca	tatgaacgag	240
catgactttt	tcaagagcgc	catgcccggag	ggctatgtgc	aggagagaac	catcttttc	300
aaagatgacg	ggaactacaa	gacccgcgct	gaagtcaagt	tcgaaggta	caccctggtg	360
aatagaatcg	agttgaaggg	cattgacttt	aaggaagatg	gaaacattct	cggccacaag	420
ctggaataca	actataactc	ccacaatgtg	tacatcatgg	ccgacaagca	aaagaatggc	480
atcaaggta	acttcaagat	cagacacaac	attgaggatg	gatccgtgca	gctggccgac	540
cattatcaac	agaacactcc	aatcggcgac	cgccctgtgc	tcctcccaga	caacaattac	600
ctgtccaccc	agtctgccc	gtctaaagat	cccaacgaaa	agagagacca	catggtcctg	660
ctggagttt	tgaccgctgc	tgggatcaca	catggcatgg	acgagctgta	caagtgagc	719

<210> 18
<211> 1911
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 18

tatgagcaag	ggcgaggaac	tgttcactgg	cgtggtccca	attctcgtgg	aactggatgg	60
cgtatgtaat	gggcacaaat	tttctgtcag	cggagagggt	gaaggtgatg	ccacatacgg	120
aaagctcacc	ctgaaattca	tctgcaccac	tggaaagctc	cctgtgccat	ggccaacact	180
ggtcactacc	ttcacccatg	gcgtgcagtg	ctttccaga	tacccagacc	atatgaagca	240
gcatgacttt	ttcaagagcg	ccatgcccga	gggctatgtg	caggagagaa	ccatctttt	300

219482.SEQUENCE Apr 2004.ST25

caaagatgac	gggaactaca	agaccgcgc	tgaagtcaag	ttcgaagggt	acaccctgg	360
gaatagaatc	gagttgaagg	gcattgactt	taaggaagat	ggaaacattc	tcggccacaa	420
gctggaatac	aactataact	cccacaatgt	gtacatcatg	gccgacaagc	aaaagaatgg	480
catcaaggtc	aacttcaaga	tcagacacaa	cattgaggat	ggatccgtgc	agctggccga	540
ccattatcaa	cagaacactc	caatcggcga	cggccctgtg	ctcctccca	acaaccatta	600
cctgtccacc	cagtctgccc	gtctaaagat	cccaacgaaa	agagagacca	catggtcctg	660
ctggagtttgc	tgaccgctgc	tgggatcaca	catggcatgg	acgagctgta	caagtgagcc	720
atatggtgag	tggatgcctt	gaccccaggc	ggggatgggg	gagacctgta	gtcagagccc	780
ccgggcagca	caggccaatg	cccgcccttc	ccctgcagtg	agtagtgact	gcccgggtgg	840
gatccctgtg	accctcccc	agtgcctctc	ctggccctgg	aagttgccac	tccagtgc	900
accagcccttgc	tcctaataaaa	attaagttgc	atcattttgt	ctgacttaggt	gtcctctata	960
atattataag	cttgatatcg	aattcttct	caacgtaaaca	ctttacagcg	gcgcgtcatt	1020
tgatatgtatgc	cgcggcgctt	cccgataagg	gaggcggcca	gtaaaagcat	tacccgtgg	1080
ggggttcccg	agcggccaaa	gggagcagac	tctaaatctg	ccgtcatcga	cttcgaaggt	1140
tcgaatcctt	cccccaccac	catcacttcc	aaaagtccga	aagaattcct	gcagccgtg	1200
tagccgttgt	taggcccacca	cttcaagaac	tctgttagcac	cgcctacata	cctcgctctg	1260
ctaattccgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgtttac	cgggttggac	1320
tcaagacgtat	agttaccggaa	taaggcgcag	cggtcgggct	gaacgggggg	ttcgtgcaca	1380
cagcccgact	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagcattga	1440
gaaagcgcca	cgcggccgg	agggagaaag	gcggacaggt	atccggtaag	cggcagggtc	1500
ggaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	cctggtatct	ttatagtcct	1560
gtcgggtttc	gccacctctg	acttgagcgt	cgattttgt	gatgctcgtc	agggggggcgg	1620
agcctatggaa	aaaacgcccag	caacgcggcc	gggggatccg	gagagctcac	tctagatgag	1680
agagcagtga	gggagagaca	gagactcgaa	tttccggagc	tatttcagtt	ttctttccg	1740
ttttgtgcaa	tttcacttat	gataccggcc	aatgcttgg	tgctatgg	gaaactcccc	1800
tttagggatg	ccctcaact	ggccctataa	agggccagcc	tgagctgcag	aggattcctg	1860
cagaggatca	agacagcacg	tggacctcgc	acagcctctc	ccacaggtac	c	1911

<210> 19
 <211> 69
 <212> PRT
 <213> Artificial
 .
 <220>
 <223> Synthetic

219482.SEQUENCE Apr 2004.ST25

<400> 19

Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly
1 5 10 15

Ala Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu
20 25 30

Asp Asp Lys Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser
35 40 45

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val
50 55 60

Val Phe Gly Ile Leu
65

<210> 20

<211> 287

<212> PRT

<213> Artificial

<220>

<223> Synthetic

<400> 20

Pro Ala Pro Gly Ala Gly Gly Met Val His His Arg His Arg Ser Ser
1 5 10 15

Ser Thr Arg Ser Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser
20 25 30

Glu Glu Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly
35 40 45

Ser Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu
50 55 60

Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp
65 70 75 80

Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu
85 90 95

Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro
100 105 110

Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly
115 120 125

219482.SEQUENCE Apr 2004.ST25

Ala Thr Leu Glu Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val
130 135 140

Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr
145 150 155 160

Leu Thr Pro Gln Gly Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln
165 170 175

Pro Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro
180 185 190

Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro Lys Leu Ser Pro
195 200 205

Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val
210 215 220

Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala Ala Pro Gln Pro
225 230 235 240

His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp Asn Leu Tyr Tyr Trp
245 250 255

Asp Asp Pro Pro Glu Arg Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr
260 265 270

Pro Thr Ala Glu Asn Pro Glu Tyr Leu Gly Leu Asp Val Pro Val
275 280 285

<210> 21

<211> 22

<212> PRT

<213> Artificial

<220>

<223> Synthetic

<400> 21

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val
1 5 10 15

Val Phe Gly Ile Leu Ile
20

<210> 22

<211> 2125

<212> DNA

219482.SEQUENCE Apr 2004.ST25

<213> Artificial

<220>

<223> Synthetic

<400> 22

gccaccatgg	cccctgacct	ctcctacatg	cccatctgga	agtttccaga	tgaggagggc	60
gcatgccagc	cttgc(cc)cat	caactgcacc	cactcctgtg	tggacctgga	tgacaaggc	120
tgccccgccc	agcagagagc	cagccctctg	acgtccatca	tctctgcgg	ggttggcatt	180
ctgctggtcg	tggtcttggg	ggtggcttt	gggatcctca	tcaagcgacg	gcagcagaag	240
atcacatgtc	cagaccctgc	cccgggcgct	gggggcattgg	tccaccacag	gcaccgcagc	300
tcatctacca	ggagtggcgg	tggggacctg	acactagggc	tggagccctc	tgaagaggag	360
gcccccaggt	ctccactggc	accctccgaa	ggggctggct	ccgatgtatt	tgtatggtgac	420
ctggaatgg	gggcagccaa	ggggctgcaa	agcctcccc	cacatgaccc	cagccctcta	480
cagcggtaca	gtgaggaccc	cacagtaccc	ctgcccctcg	agactgatgg	ctacgttgcc	540
ccccctgaccc	gcagccccca	gcctgaatat	gtgaaccagc	cagatgttcg	gccccagccc	600
ccttcgcccc	gagagggccc	tctgcctgct	gcccgcac	ctggtgccac	tctggaaagg	660
cccaagactc	tctccccagg	gaagaatggg	gtcgtcaaag	acgaaaaatgc	ctttgggggt	720
gccgtggaga	accccggagac	ttgacacccc	agggaggagc	tgcccctcag	ccccaccctc	780
ctcctgcctt	cagcccagcc	ttcgacaacc	tctattactg	ggaccaggac	ccaccagagc	840
ggggggctcc	acccagcacc	ttcaaaggga	cacctacggc	agagaaccca	gagtacctgg	900
gtctggacgt	gccagtgtga	agccttaagg	gccatatgg	gagtggatgc	cttgacccca	960
ggcggggatg	ggggagaccc	gtagtcagag	ccccggca	gcacaggcca	atgcccgtcc	1020
ttccccctgca	gtgagtagtg	actgcccggg	tggatccct	gtgacccctc	cccagtgct	1080
ctcctggccc	tggaagttgc	cactccagtg	cccaccagcc	ttgtccta	aaaattaagt	1140
tgcatacatt	tgtctgacta	ggtgtcctct	ataatattat	aagcttgcata	tcgaattctt	1200
tctcaacgta	acactttaca	gcggcggtc	atttgatatg	atgcgc(cc)	cttcccgata	1260
agggagcagg	ccagtaaaag	cattaccgt	ggtggggttc	ccgagcggcc	aaaggagca	1320
gactctaaat	ctgccgtcat	cgacttcgaa	ggttcgaatc	cttccccac	caccatcact	1380
ttcaaaagtc	cgaaaagaatt	cctgcagccc	gtgtagccgt	agttaggcca	ccacttcaag	1440
aactctgtag	caccgcctac	atacctcgct	ctgcta	tgttaccagt	ggctgctgcc	1500
agtggcgata	agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	1560
cagcggtcgg	gctgaacggg	gggttcgtgc	acacagccca	gcttggagcg	aacgacccac	1620
accgaactga	gatacctaca	gcgtgagcat	tgagaaagcg	ccacgcttcc	cgaagggaga	1680
aaggcggaca	ggtatccggt	aagcggcagg	gtcggaaacag	gagagcgcac	gagggagctt	1740

219482.SEQUENCE Apr 2004.ST25

ccagggggaa acgcctggta tctttatagt cctgtcggtt ttcgccacct ctgacttgag	1800
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg	1860
gccggggat ccggagagct cactctagat gagagagcag tgagggagag acagagactc	1920
gaatttccgg agctatttca gttttctttt ccgtttgtg caatttcaact tatgataaccg	1980
gccaatgctt ggttgcattt ttggaaaactc cccttagggg atgcccctca actggcccta	2040
taaagggcca gcctgagctg cagaggattc ctgcagagga tcaagacagc acgtggacct	2100
cgcacagcct ctccccacagg tacct	2125

<210> 23
 <211> 27
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic

<400> 23
 gtctgccacc atggcctact cccctgc

27

<210> 24
 <211> 36
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic

<400> 24
 ttctttggtg acctacctct tcggattgc cgagtc

36

<210> 25
 <211> 1242
 <212> DNA
 <213> Artificial

<220>
 <223> Synthetic

<400> 25 atggaggagc cgcagtcaga tcctagcgtc gagccccctc tgagtcaagga aacatttca	60
gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgcgtc ccaagcaatg	120
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca	180
gatgaagctc ccagaatgcc agaggctgct ccccgctgg cccctgcacc agcagctcct	240
acaccggcgg cccctgcacc agccccctcc tggccccctgt catcttctgt cccttcccag	300
aaaacctacc agggcagcta cggttccgt ctgggcttct tgcattctgg gacagccaag	360
tctgccacca tggcctactc ccctgcgtct gtgacttgca cgtactcccc tgccctcaac	420

219482.SEQUENCE Apr 2004.ST25

aagatgtttt	480
gccaactggc	
caagacctgc	
cctgtgcagc	
tgtgggttga	
ttcccacaccc	
ccgccccggca	540
cccgcgtccg	
cgccatggcc	
atctacaagc	
agtacacagca	
catgacggag	
gttgtgaggc	600
gctgccccca	
ccatgagcgc	
tgctcagata	
gcgatggtct	
ggcccccct	
cagcgtctta	660
tccgagtgga	
aggaaatttgcgtgtggagt	
atttggatga	
cagaaacact	
tttcgacata	720
gtgtggtggt	
gccctatgag	
ccgcctgagg	
ttggctctga	
ctgtaccacc	
atccactaca	780
actacatgtg	
taacagttcc	
tgcattggcg	
gcatgaaccg	
gaggcccattc	
ctcaccatca	840
tcacactgga	
agactccagt	
gttaatctac	
tgggacggaa	
cagcttttag	
gtgcgtgttt	900
gtgcctgtcc	
tgggagagac	
cgcgccacag	
aggaagagaa	
tctccgcaag	
aaaggggagc	960
ctcaccacga	
gctgccccca	
gggagcacta	
agcgagcact	
gccccaaac	
accagctcct	1020
ctccccagcc	
aaagaagaaa	
ccactggatg	
gagaatattt	
cacccttcag	
atccgtggc	1080
gtgagcgctt	
cgagatgttc	
tttggtgacc	
tacctcttcg	
gaattgccga	
gtcttccgag	1140
agctgaatga	
ggccttgaa	
ctcaaggatg	
cccaggctgg	
gaaggagcca	
ggggggagca	1200
gggctcaactc	
cagccacctg	
aagtccaaaa	
agggtcagtc	
tacctccgc	
cataaaaaaac	1242
tcatgttcaa	
gacagaaggg	
cctgactcag	
ac	

<210> 26
<211> 608
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 26

ctcgccgc	60
gttgctggcg	
ttttccata	
ggctccgccc	
ccctgacgag	
catcacaaaa	
atcgacgctc	120
aagtcaagg	
tggcgaaacc	
cgacaggact	
ataaagatac	
caggcggttc	
cccccttggaaag	180
ctccctcg	
cgctctcctg	
ttccgaccct	
gccgcttacc	
ggataacctgt	
ccgcctttct	240
cccttcggga	
agcgtggcgc	
tttctcaatg	
ctcacgctgt	
aggtatctca	
gttcgggtta	300
ggtcgttcgc	
tccaaagctgg	
gctgtgtgca	
cgaacccccc	
gttcagcccg	
accgctgcgc	360
cttatccgg	
aactatcg	
ttgagtccaa	
cccggtaaga	
cacgacttat	
cgccactggc	420
agcagccact	
ggtAACAGGA	
ttagcagagc	
gaggtatgta	
ggcggtgcta	
cagagttctt	480
gaagtgggtgg	
cctaactacg	
gctacactag	
aaggacagta	
tttggtatct	
gCGCTCTGCT	540
gaagccagtt	
accttcggaa	
aaagagtgg	
tagcttttga	
tccggcaaac	
aaaccaccgc	600
tggtagcggt	
ggttttttgg	
tttgcaagca	
gcagattacg	
cgcagaaaaa	
aaggatct	608

<210> 27
<211> 1547

219482.SEQUENCE Apr 2004.ST25

<212> DNA
<213> Artificial<220>
<223> Synthetic

<400> 27	
ggtacctgcc accatggcgc ggattctta tcactgataa gttgggtggac atattatgtt	60
tatcgatgat aaagtgtcaa gcatgacaaa gttgcagccg aatacagtga tccgtgccgg	120
ccctggactg ttgaacgagg tcggcgtaga cggctgacg acacgcaaac tggcggAACG	180
gttgggggtg cagcagccgg cgcttactg gcacttcagg aacaagcggg cgccttaagg	240
gccatatggt gagtggatgc cttgacccc ggcggggatg ggggagacct gtagtcagag	300
cccccgggca gcacaggcca atgcccgtcc ttccccctgca ggatgagtag tgagtgcctc	360
tcctggccct ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaagtt	420
gcatcattt gtctgactag gtgtcctcta taatattata agcttgcata cgaattcttt	480
cggacttttg aaagtgtatgg tggggggga aggattcgaa ccttcgaagt cgatgacggc	540
agattttagag tctgctccct ttggccgctc gggacccc aacccggtaa tgctttact	600
ggcctgctcc ctatcggga agcggggcgc atcatatcaa atgacgcgcc gctgtaaagt	660
gttacgttga gaaagaattc ctgcagcccg ccgcgttgct ggcgttttc cataggctcc	720
ccccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag	780
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgtct cctgttccga	840
ccctgcccgt taccggatac ctgtccgcct ttctcccttc gggaaagcgtg gcgctttctc	900
aatgctcacg ctgttaggtat ctcagttcg ttaggtcgt tcgctccaag ctggcgttg	960
tgcacgaacc ccccgttcag cccgaccgct gcgccttatac cgtaactat cgtcttgagt	1020
ccaaacccgt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca	1080
gagcggagta tggggcggt gctacagagt tcttgaagt gtggcctaac tacggctaca	1140
ctagaaggac agtatttggt atctgcgtc tgctgaagcc agttaccttc ggaaaaagag	1200
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggttt tttgtttgca	1260
agcagcagat tacgcgcaga aaaaaaggat ctgggggatc cgagagagctc actctagatg	1320
agagagcagt gagggagaga cagagactcg aatttccgga gctatttcag ttttctttc	1380
cgttttgtc aatttcaatt atgataccgg ccaatgcttgc ttgttatggaaactcc	1440
ccttagggga tgccccctcaa ctggccctat aaaggggccag cctgagctgc agaggattcc	1500
tgcagaggat caagacagca cgtggacctc gcacagcctc tcccaca	1547

<210> 28
<211> 1807
<212> DNA

219482.SEQUENCE Apr 2004.ST25

<213> Artificial

<220>

<223> Synthetic

<400> 28

ggtacctgcc	accatggcgc	ggattctta	tcactgataa	gttgtggac	atattatgtt	60
tatcagtgtat	aaagtgtcaa	gcatgacaaa	gttcagccg	aatacagtga	tccgtgccgg	120
ccctggactg	ttgaacgagg	tcggcgtaga	cggctcgacg	acacgcaaac	tggcggAACG	180
gttgggggtg	cagcagccgg	cgcttactg	gcacttcagg	aacaagcggg	cgccttaagg	240
gccatatgg	gagtggatgc	cttgacccc	ggcggggatg	ggggagacct	gtagtcagag	300
cccccgggca	gcacaggcca	atgcccgtcc	ttccctgca	ggatgagtag	tgagtgcctc	360
tcctggccct	ggaagttgcc	actccagtgc	ccaccagcct	tgtcctaata	aaattaagtt	420
gcatcattt	gtctgactag	gtgtcctcta	taatattata	agcttgcata	cgaattcttt	480
cggactttt	aaagtgtatgg	tgggggggaa	aggattcgaa	ccttcgaagt	cgatgacggc	540
agatttagag	tctgctccct	ttggccgctc	gggaacccc	ccacggtaa	tgctttact	600
ggcctgctcc	cttatcggga	agcggggcgc	atcatatcaa	atgacgcgcc	gctgtaaagt	660
gttacgttga	gaaagaattc	ctgcagcccc	ccgcgttgct	ggcgaaaa	cataggctcc	720
ccccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	780
gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgtct	cctgttccga	840
ccctgcccgt	taccggatac	ctgtccgcct	ttctcccttc	ggaaagcgtg	gcgccttctc	900
aatgctcag	ctgttaggtat	ctcagttcgg	tgttaggtcgt	tcgcctcaag	ctgggctgtg	960
tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatac	cggtaactat	cgtcttgagt	1020
ccaaacccgt	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	1080
gagcgaggt	tgttaggcgt	gctacagagt	tcttgaagt	gtggcctaac	tacggctaca	1140
ctagaaggac	agtatttgg	atctgcgtc	tgctgaagcc	agttaccttc	ggaaaaaagag	1200
ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	cgggttttt	tttggttgca	1260
agcagcagat	tacgcgcaga	aaaaaaggat	ctgggggatc	cggagagctc	ccaacgcgtt	1320
ggatgcattgg	atgagggaaa	ggaggttaga	tctgtatga	ataagcagga	actttgaaga	1380
ctcagtgtact	cagtgtat	taaagactca	gtgacttctg	atcctgtcct	aactgccact	1440
ccttgttgc	ccaagaaagc	ggcttcgtc	tctctgagga	ggaccccttc	cctggaaaggt	1500
aaaactaagg	atgtcagcag	agaaattttt	ccaccattgg	tgcttggtca	aagagggaaac	1560
tgtatgagctc	actctagat	agagagcagt	gagggagaga	cagagactcg	aatttccgga	1620
gctatttcag	ttttcttttc	cgttttgtgc	aatttactt	atgataccgg	ccaatgcttg	1680
gttgctat	tggaaactcc	ccttaggggaa	tgccctcaa	ctggccctat	aaagggccag	1740

219482.SEQUENCE Apr 2004.ST25

cctgagctgc	agaggattcc	tgcagaggat	caagacagca	cgtggacctc	gcacagcctc	1800
tccccaca						1807
<210>	29					
<211>	2308					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Synthetic					
<400>	29					
ggtagctgcc	accatggcga	agggcgagga	actgttca	ggcgtggtcc	caattctcg	60
ggaactggat	ggcgatgtga	atgggcacaa	attttctgtc	agcggagagg	gtgaagggtga	120
tgccacatac	ggaaagctca	ccctgaaatt	catctgcacc	actggaaagc	tccctgtgcc	180
atggccaaca	ctggtcacta	ccttcaccta	tggcgtgcag	tgctttcca	gatacccaga	240
ccatatgaag	cagcatgact	tttcaagag	cgccatgccc	gagggctatg	tgcaggagag	300
aaccatctt	ttcaaagatg	acgggaacta	caagacccgc	gctgaagtca	agttcgaagg	360
tgacaccctg	gtgaatagaa	tcgagttgaa	gggcattgac	tttaaggaag	atggaaacat	420
tctcggccac	aagctggaat	acaactataa	ctcccacaat	gtgtacatca	tggccgacaa	480
gcaaaagaat	ggcatcaagg	tcaacttcaa	gatcagacac	aacattgagg	atggatccgt	540
gcagctggcc	gaccattatc	aacagaacac	tccaatcggc	gacggccctg	tgctcctccc	600
agacaaccat	tacctgtcca	cccagtctgc	cctgtctaaa	gatcccaacg	aaaagagaga	660
ccacatggtc	ctgctggagt	ttgtgaccgc	tgctgggatc	acacatggca	tggacgagct	720
gtacaagtga	gcgccttaag	ggccatatgg	tgagtggatg	ccttgacccc	aggcggggat	780
gggggagacc	tgtagtcaga	gccccgggc	agcacaggcc	aatgcccgtc	cttcccctgc	840
aggatgagta	gtgagtgcc	ctcctggccc	tggaagttgc	cactccagtg	cccaccagcc	900
ttgtccta	aaaattaagt	tgcacatcattt	tgtctgacta	ggtgcctct	ataatattat	960
aagcttgata	tcgaattctt	tcggactttt	gaaagtgtatg	gtgggggggg	aaggattcga	1020
accttcgaag	tcgatgacgg	cagattaga	gtctgctccc	tttggccgct	cggaaacccc	1080
accacgggta	atgctttac	tggcctgctc	ccttatcggg	aagcggggcg	catcatatca	1140
aatgacgcgc	cgtgtaaag	tgttacgttg	agaaagaatt	cctgcagccc	gccgcgttgc	1200
tggcgaaaa	ccataggctc	cgccccctg	acgagcatca	aaaaaatcga	cgtcaagtc	1260
agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	1320
tcgtgcgtc	tcctgttccg	accctgcccgc	ttaccggata	cctgtccgcc	tttctccctt	1380
cggaaagcgt	ggcgcttct	caatgctcac	gctgttaggta	tctcagttcg	gtgtagtcg	1440

219482.SEQUENCE Apr 2004.ST25

ttcgctccaa	gctgggctgt	gtgcacgaac	cccccggtca	gcccgaccgc	tgcgccttat	1500
ccggtaacta	tcgtcttgag	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	1560
ccactggtaa	caggattagc	agagcgaggt	atgttaggcgg	tgctacagag	ttcttgaagt	1620
ggtggcctaa	ctacggctac	actagaagga	cagtatttg	tatctgcgct	ctgctgaagc	1680
cagttacctt	cgaaaaaaga	gttggtagct	cttgcgtccgg	caaacaacc	accgctggta	1740
gcggtggttt	ttttgttgc	aagcagcaga	ttacgcgcag	aaaaaaagga	tctggggat	1800
ccggagagct	cccaacgcgt	tggatgcgt	gatgaggaa	aggaggtaag	atctgtatg	1860
aataagcagg	aactttgaag	actcagtgcac	tcagttagta	ataaaagactc	agtgacttct	1920
gatcctgtcc	taactgccac	tccttgttgc	cccaagaaag	cggcttcctg	ctctctgagg	1980
aggaccctt	ccctggaagg	taaaactaag	gatgtcagca	gagaaattt	tccaccattg	2040
gtgcttggtc	aaagagggaaa	ctgatgagct	cactctagat	gagagagcag	tgagggagag	2100
acagagactc	gaatttccgg	agctatttca	gttttcttt	ccgtttgtg	caatttcact	2160
tatgataccg	gccaatgctt	ggttgctatt	ttggaaactc	cccttagggg	atgcccctca	2220
actggcccta	taaagggccca	gcctgagctg	cagaggattc	ctgcagagga	tcaagacagc	2280
acgtggacct	cgcacagcct	ctcccaca				2308

<210> 30
<211> 12
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 30
gccaccatgg cc

12

<210> 31
<211> 11
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 31
gccttaaggg c

11

<210> 32
<211> 14
<212> DNA/RNA
<213> Artificial

<220>
<223> Synthetic

<400> 32

ggccgccc augg

<210> 33
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 33
gccaccatgg cccgggtggta ccg

23

<210> 34
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Synthetic

<400> 34
gccttaaggg ccgaaattcc cg

22

<210> 35
<211> 1210
<212> PRT
<213> Homo sapiens

<400> 35

Met Arg Pro Ser Gly Thr Ala Gly Ala Ala Leu Leu Ala Leu Leu Ala
1 5 10 15

Ala Leu Cys Pro Ala Ser Arg Ala Leu Glu Glu Lys Lys Val Cys Gln
20 25 30

Gly Thr Ser Asn Lys Leu Thr Gln Leu Gly Thr Phe Glu Asp His Phe
35 40 45

Leu Ser Leu Gln Arg Met Phe Asn Asn Cys Glu Val Val Leu Gly Asn
50 55 60

Leu Glu Ile Thr Tyr Val Gln Arg Asn Tyr Asp Leu Ser Phe Leu Lys
65 70 75 80

Thr Ile Gln Glu Val Ala Gly Tyr Val Leu Ile Ala Leu Asn Thr Val
85 90 95

Glu Arg Ile Pro Leu Glu Asn Leu Gln Ile Ile Arg Gly Asn Met Tyr
100 105 110

Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn
Page 17

219482.SEQUENCE Apr 2004.ST25

115

120

125

Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Gln Glu Ile Leu
130 135 140

His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu
145 150 155 160

Ser Ile Gln Trp Arg Asp Ile Val Ser Ser Asp Phe Leu Ser Asn Met
165 170 175

Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro
180 185 190

Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gln
195 200 205

Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg
210 215 220

Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys Ala Ala Gly Cys
225 230 235 240

Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg Lys Phe Arg Asp
245 250 255

Glu Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met Leu Tyr Asn Pro
260 265 270

Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys Tyr Ser Phe Gly
275 280 285

Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val Val Thr Asp His
290 295 300

Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu
305 310 315 320

Asp Gly Val Arg Lys Cys Lys Cys Glu Gly Pro Cys Arg Lys Val
325 330 335

Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn
340 345 350

Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp
355 360 365

219482.SEQUENCE Apr 2004.ST25

Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr
 370 375 380

 Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu
 385 390 395 400

 Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn Arg Thr Asp
 405 410 415

 Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg Thr Lys Gln
 420 425 430

 His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr Ser Leu
 435 440 445

 Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile Ile Ser
 450 455 460

 Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys Lys Leu
 465 470 475 480

 Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg Gly Glu
 485 490 495

 Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu Cys Ser Pro
 500 505 510

 Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser Cys Arg Asn
 515 520 525

 Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Asn Leu Leu Glu Gly
 530 535 540

 Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln Cys His Pro
 545 550 555 560

 Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly Arg Gly Pro
 565 570 575

 Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro His Cys Val
 580 585 590

 Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr Leu Val Trp
 595 600 605

 Lys Tyr Ala Asp Ala Gly His Val Cys His Leu Cys His Pro Asn Cys
 610 615 620

219482.SEQUENCE Apr 2004.ST25

Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu Gly Cys Pro Thr Asn Gly
625 630 635 640

Pro Lys Ile Pro Ser Ile Ala Thr Gly Met Val Gly Ala Leu Leu Leu
645 650 655

Leu Leu Val Val Ala Leu Gly Ile Gly Leu Phe Met Arg Arg Arg His
660 665 670

Ile Val Arg Lys Arg Thr Leu Arg Arg Leu Leu Gln Glu Arg Glu Leu
675 680 685

Val Glu Pro Leu Thr Pro Ser Gly Glu Ala Pro Asn Gln Ala Leu Leu
690 695 700

Arg Ile Leu Lys Glu Thr Glu Phe Lys Lys Ile Lys Val Leu Gly Ser
705 710 715 720

Gly Ala Phe Gly Thr Val Tyr Lys Gly Leu Trp Ile Pro Glu Gly Glu
725 730 735

Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu Arg Glu Ala Thr Ser
740 745 750

Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Ser
755 760 765

Val Asp Asn Pro His Val Cys Arg Leu Leu Gly Ile Cys Leu Thr Ser
770 775 780

Thr Val Gln Leu Ile Thr Gln Leu Met Pro Phe Gly Cys Leu Leu Asp
785 790 795 800

Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser Gln Tyr Leu Leu Asn
805 810 815

Trp Cys Val Gln Ile Ala Lys Gly Met Asn Tyr Leu Glu Asp Arg Arg
820 825 830

Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Thr Pro
835 840 845

Gln His Val Lys Ile Thr Asp Phe Gly Leu Ala Lys Leu Leu Gly Ala
850 855 860

Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys Val Pro Ile Lys Trp
865 870 875 880

219482.SEQUENCE Apr 2004.ST25

Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr Thr His Gln Ser Asp
885 890 895

Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ser
900 905 910

Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile Ser Ser Ile Leu Glu
915 920 925

Lys Gly Glu Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr
930 935 940

Met Ile Met Val Lys Cys Trp Met Ile Asp Ala Asp Ser Arg Pro Lys
945 950 955 960

Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met Ala Arg Asp Pro Gln
965 970 975

Arg Tyr Leu Val Ile Gln Gly Asp Glu Arg Met His Leu Pro Ser Pro
980 985 990

Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp Glu Glu Asp Met Asp
995 1000 1005

Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro Gln Gln Gly Phe
1010 1015 1020

Phe Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu Ser Ser Leu
1025 1030 1035

Ser Ala Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp Arg Asn
1040 1045 1050

Gly Leu Gln Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Gln Arg
1055 1060 1065

Tyr Ser Ser Asp Pro Thr Gly Ala Leu Thr Glu Asp Ser Ile Asp
1070 1075 1080

Asp Thr Phe Leu Pro Val Pro Glu Tyr Ile Asn Gln Ser Val Pro
1085 1090 1095

Lys Arg Pro Ala Gly Ser Val Gln Asn Pro Val Tyr His Asn Gln
1100 1105 1110

Pro Leu Asn Pro Ala Pro Ser Arg Asp Pro His Tyr Gln Asp Pro
Page 21

219482.SEQUENCE Apr 2004.ST25
1115 1120 1125

His Ser Thr Ala Val Gly Asn Pro Glu Tyr Leu Asn Thr Val Gln
1130 1135 1140

Pro Thr Cys Val Asn Ser Thr Phe Asp Ser Pro Ala His Trp Ala
1145 1150 1155

Gln Lys Gly Ser His Gln Ile Ser Leu Asp Asn Pro Asp Tyr Gln
1160 1165 1170

Gln Asp Phe Phe Pro Lys Glu Ala Lys Pro Asn Gly Ile Phe Lys
1175 1180 1185

Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val Ala Pro Gln
1190 1195 1200

Ser Ser Glu Phe Ile Gly Ala
1205 1210

<210> 36

<211> 1255

<212> PRT

<213> Homo sapiens

<400> 36

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu
1 5 10 15

Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val
65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu
85 90 95

Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr
100 105 110

Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro
Page 22

219482.SEQUENCE Apr 2004.ST25
115 120 125

Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser
130 135 140

Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln
145 150 155 160

Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn
165 170 175

Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys
180 185 190

His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser
195 200 205

Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys
210 215 220

Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys
225 230 235 240

Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu
245 250 255

His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val
260 265 270

Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg
275 280 285

Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu
290 295 300

Ser Thr Asp Val Gly Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln
305 310 315 320

Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys
325 330 335

Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu
340 345 350

Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys
355 360 365

219482.SEQUENCE Apr 2004.ST25

Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp
370 375 380

Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe
385 390 395 400

Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro
405 410 415

Asp Ser Leu Pro Asp Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg
420 425 430

Gly Arg Ile Leu His Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu
435 440 445

Gly Ile Ser Trp Leu Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly
450 455 460

Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val
465 470 475 480

Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr
485 490 495

Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His
500 505 510

Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys
515 520 525

Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys
530 535 540

Arg Val Leu Gln Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys
545 550 555 560

Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys
565 570 575

Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp
580 585 590

Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu
595 600 605

Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln
610 615 620

219482.SEQUENCE Apr 2004.ST25

Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys
625 630 635 640

Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser
645 650 655

Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val Val Phe Gly
660 665 670

Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg
675 680 685

Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly
690 695 700

Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu
705 710 715 720

Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys
725 730 735

Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile
740 745 750

Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu
755 760 765

Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg
770 775 780

Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu
785 790 795 800

Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg
805 810 815

Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly
820 825 830

Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala
835 840 845

Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe
850 855 860

Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp
865 870 875 880

219482.SEQUENCE Apr 2004.ST25

Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg
885 890 895

Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val
900 905 910

Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala
915 920 925

Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro
930 935 940

Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met
945 950 955 960

Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe
965 970 975

Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu
980 985 990

Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu
995 1000 1005

Leu Glu Asp Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr
1010 1015 1020

Leu Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly
1025 1030 1035

Ala Gly Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg
1040 1045 1050

Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu
1055 1060 1065

Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser
1070 1075 1080

Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu
1085 1090 1095

Gln Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser
1100 1105 1110

Glu Asp Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val
Page 26

219482.SEQUENCE Apr 2004.ST25
1115 1120 1125

Ala Pro Leu Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro
1130 1135 1140

Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro
1145 1150 1155

Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Ala Lys Thr Leu
1160 1165 1170

Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly
1175 1180 1185

Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala
1190 1195 1200

Ala Pro Gln Pro His Pro Pro Ala Phe Ser Pro Ala Phe Asp
1205 1210 1215

Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala Pro
1220 1225 1230

Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
1235 1240 1245

Leu Gly Leu Asp Val Pro Val
1250 1255

<210> 37

<211> 1260

<212> PRT

<213> Rattus norvegicus

<400> 37

Met Ile Ile Met Glu Leu Ala Ala Trp Cys Arg Trp Gly Phe Leu Leu
1 5 10 15

Ala Leu Leu Pro Pro Gly Ile Ala Gly Thr Gln Val Cys Thr Gly Thr
20 25 30

Asp Met Lys Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met
35 40 45

Leu Arg His Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu
50 55 60

Leu Thr Tyr Val Pro Ala Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile
Page 27

65

70

219482.SEQUENCE Apr 2004.ST25

75

80

Gln Glu Val Gln Gly Tyr Met Leu Ile Ala His Asn Gln Val Lys Arg
85 90 95

Val Pro Leu Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu
100 105 110

Asp Lys Tyr Ala Leu Ala Val Leu Asp Asn Arg Asp Pro Gln Asp Asn
115 120 125

Val Ala Ala Ser Thr Pro Gly Arg Thr Pro Glu Gly Leu Arg Glu Leu
130 135 140

Gln Leu Arg Ser Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Arg
145 150 155 160

Gly Asn Pro Gln Leu Cys Tyr Gln Asp Met Val Leu Trp Lys Asp Val
165 170 175

Phe Arg Lys Asn Asn Gln Leu Ala Pro Val Asp Ile Asp Thr Asn Arg
180 185 190

Ser Arg Ala Cys Pro Pro Cys Ala Pro Ala Cys Lys Asp Asn His Cys
195 200 205

Trp Gly Glu Ser Pro Glu Asp Cys Gln Ile Leu Thr Gly Thr Ile Cys
210 215 220

Thr Ser Gly Cys Ala Arg Cys Lys Gly Arg Leu Pro Thr Asp Cys Cys
225 230 235 240

His Glu Gln Cys Ala Ala Gly Cys Thr Gly Pro Lys His Ser Asp Cys
245 250 255

Leu Ala Cys Leu His Phe Asn His Ser Gly Ile Cys Glu Leu His Cys
260 265 270

Pro Ala Leu Val Thr Tyr Asn Thr Asp Thr Phe Glu Ser Met His Asn
275 280 285

Pro Glu Gly Arg Tyr Thr Phe Gly Ala Ser Cys Val Thr Thr Cys Pro
290 295 300

Tyr Asn Tyr Leu Ser Thr Glu Val Gly Ser Cys Thr Leu Val Cys Pro
305 310 315 320

219482.SEQUENCE Apr 2004.ST25
Pro Asn Asn Gln Glu Val Thr Ala Glu Asp Gly Thr Gln Arg Cys Glu
325 330 335

Lys Cys Ser Lys Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu
340 345 350

His Leu Arg Gly Ala Arg Ala Ile Thr Ser Asp Asn Val Gln Glu Phe
355 360 365

Asp Gly Cys Lys Lys Ile Phe Gly Ser Leu Ala Phe Leu Pro Glu Ser
370 375 380

Phe Asp Gly Asp Pro Ser Ser Gly Ile Ala Pro Leu Arg Pro Glu Gln
385 390 395 400

Leu Gln Val Phe Glu Thr Leu Glu Glu Ile Thr Gly Tyr Leu Tyr Ile
405 410 415

Ser Ala Trp Pro Asp Ser Leu Arg Asp Leu Ser Val Phe Gln Asn Leu
420 425 430

Arg Ile Ile Arg Gly Arg Ile Leu His Asp Gly Ala Tyr Ser Leu Thr
435 440 445

Leu Gln Gly Leu Gly Ile His Ser Leu Gly Leu Arg Ser Leu Arg Glu
450 455 460

Leu Gly Ser Gly Leu Ala Leu Ile His Arg Asn Ala His Leu Cys Phe
465 470 475 480

Val His Thr Val Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala
485 490 495

Leu Leu His Ser Gly Asn Arg Pro Glu Glu Asp Leu Cys Val Ser Ser
500 505 510

Gly Leu Val Cys Asn Ser Leu Cys Ala His Gly His Cys Trp Gly Pro
515 520 525

Gly Pro Thr Gln Cys Val Asn Cys Ser His Phe Leu Arg Gly Gln Glu
530 535 540

Cys Val Glu Glu Cys Arg Val Trp Lys Gly Leu Pro Arg Glu Tyr Val
545 550 555 560

Ser Asp Lys Arg Cys Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn
565 570 575

219482.SEQUENCE Apr 2004.ST25

Ser Ser Glu Thr Cys Phe Gly Ser Glu Ala Asp Gln Cys Ala Ala Cys
580 585 590

Ala His Tyr Lys Asp Ser Ser Cys Val Ala Arg Cys Pro Ser Gly
595 600 605

Val Lys Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys Tyr Pro Asp Glu
610 615 620

Glu Gly Ile Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val
625 630 635 640

Asp Leu Asp Glu Arg Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Val
645 650 655

Thr Phe Ile Ile Ala Thr Val Glu Gly Val Leu Leu Phe Leu Ile Leu
660 665 670

Val Val Val Val Gly Ile Leu Ile Lys Arg Arg Arg Gln Lys Ile Arg
675 680 685

Lys Tyr Thr Met Arg Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro
690 695 700

Leu Thr Pro Ser Gly Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu
705 710 715 720

Lys Glu Thr Glu Leu Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe
725 730 735

Gly Thr Val Tyr Lys Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys
740 745 750

Ile Pro Val Ala Ile Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala
755 760 765

Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser
770 775 780

Pro Tyr Val Ser Arg Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln
785 790 795 800

Leu Val Thr Gln Leu Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg
805 810 815

Glu His Arg Gly Arg Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Val
820 825 830

219482.SEQUENCE Apr 2004.ST25

Gln Ile Ala Lys Gly Met Ser Tyr Leu Glu Asp Val Arg Leu Val His
835 840 845

Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Ser Pro Asn His Val
850 855 860

Lys Ile Thr Asp Phe Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr
865 870 875 880

Glu Tyr His Ala Asp Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu
885 890 895

Glu Ser Ile Leu Arg Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser
900 905 910

Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr
915 920 925

Asp Gly Ile Pro Ala Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu
930 935 940

Arg Leu Pro Gln Pro Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met
945 950 955 960

Val Lys Cys Trp Met Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu
965 970 975

Leu Val Ser Glu Phe Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val
980 985 990

Val Ile Gln Asn Glu Asp Leu Gly Pro Ser Ser Pro Met Asp Ser Thr
995 1000 1005

Phe Tyr Arg Ser Leu Leu Glu Asp Asp Asp Met Gly Asp Leu Val
1010 1015 1020

Asp Ala Glu Glu Tyr Leu Val Pro Gln Gln Gly Phe Phe Ser Pro
1025 1030 1035

Asp Pro Thr Pro Gly Thr Gly Ser Thr Ala His Arg Arg His Arg
1040 1045 1050

Ser Ser Ser Thr Arg Ser Gly Gly Gly Glu Leu Thr Leu Gly Leu
1055 1060 1065

Glu Pro Ser Glu Glu Gly Pro Pro Arg Ser Pro Leu Ala Pro Ser
Page 31

219482.SEQUENCE Apr 2004.ST25
1070 1075 1080

Glu Gly Ala Gly Ser Asp Val Phe Asp Gly Asp Leu Ala Met Gly
1085 1090 1095

Val Thr Lys Gly Leu Gln Ser Leu Ser Pro His Asp Leu Ser Pro
1100 1105 1110

Leu Gln Arg Tyr Ser Glu Asp Pro Thr Leu Pro Leu Pro Pro Glu
1115 1120 1125

Thr Asp Gly Tyr Val Ala Pro Leu Ala Cys Ser Pro Gln Pro Glu
1130 1135 1140

Tyr Val Asn Gln Ser Glu Val Gln Pro Gln Pro Pro Leu Thr Pro
1145 1150 1155

Glu Gly Pro Leu Pro Pro Val Arg Pro Ala Gly Ala Thr Leu Glu
1160 1165 1170

Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp
1175 1180 1185

Val Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Val
1190 1195 1200

Pro Arg Glu Gly Thr Ala Ser Pro Pro His Pro Ser Pro Ala Phe
1205 1210 1215

Ser Pro Ala Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asn Ser Ser
1220 1225 1230

Glu Gln Gly Pro Pro Pro Ser Asn Phe Glu Gly Thr Pro Thr Ala
1235 1240 1245

Glu Asn Pro Glu Tyr Leu Gly Leu Asp Val Pro Val
1250 1255 1260