Devoir maison 5 - Espaces préhilbertiens

On se place dans un espace euclidien $(E, (\cdot | \cdot))$ de dimension n.

On se donne un vecteur e unitaire, et pour tout réel α non nul, on pose :

$$\forall x \in E, f_{\alpha}(x) = x + \alpha(x|e)e$$

- 1. Montrer que $f_{\alpha} \in \mathcal{L}(E)$.
- **2.** Montrer que $\forall x \in E, \forall y \in E \text{ on a} : (x|f_{\alpha}(y)) = (f_{\alpha}(x)|y).$
- 3. Montrer que si F est stable par f_{α} , alors F^{\perp} est également stable par f_{α} .
- 4. Montrer que 1 est une valeur propre de f_{α} , et donner l'espace propre associé.
- 5. Montrer que e est un vecteur propre de f_{α} , et déterminer la dimension du sous-espace propre associé.
- **6.** f_{α} est-il diagonalisable?
- 7. Montrer que f_{α} est une isométrie (c'est-à-dire, $\forall x \in E, ||f_{\alpha}(x)|| = ||x||$) si et seulement si $\alpha = -2$, et que dans ce cas c'est une symétrie.