

Empirical rule in Excel: demo notes

Download the exercise file: empirical-rule.xlsx

Also known as the 68-95-99.7 rule, the empirical rule is a statistical principle which states that, for a normal distribution:

- 68% of all datapoints lie within one standard deviation of the mean
- 95% of all datapoints lie within two standard deviations of the mean
- 99.7% of all datapoints lie within three standard deviations of the mean

Let's visualize this in Excel.

- 1. Our starting point lists a mean of 50, standard deviation of 10 and the numbers 1-100 ranging down rows 8-107.
 - a. We want to find how likely it is for a datapoint to take on each value in that that range. This is called a *probability mass function* (pmf).

B1	2 🔻 🗎	× < j	fx =NORM	I.DIST(A12,\$B\$	1,\$B\$2,FALSE)	
	Α	В	С	D	E	F
1	Mean	50				
2	Std. dev	10				
3						
4			1	2	3	
5		lower				
6		upper				
7	Х	pmf	1 s.d.	2 s.d.	3 s.d.	
8	1	0.00002%				
9	2	0.00004%				
10	3	0.00006%				
11	4	0.00010%				
12	5	0.00016%				
13	6	0.00025%				
14	7	0.00039%				
15	8	0.00059%				
16	9	0.00089%				
17	10	0.00134%				
18	11	0.00199%				

- a. For example, we see that we'd expect a value from a normal distribution with a mean of 50 and standard deviation of 10 to be 5 0.00016% of the time.
- b. Sum the values in column B. Approximately what number do you get?
- 2. Now we want to calculate 1, 2 and 3 standard deviations from the mean so that we can visualize what percentage of values fall within those ranges due to the empirical rule.
 - a. Take the upper and lower bounds of these ranges in cells C5:E6.

								_
E6		-	× ✓	j	fx =\$B\$1+	(E\$4*\$B\$2)		
			D			D	Г	_
	A		В		С	D	E	F
1	Mean			50				
2	Std. dev			10				
3								
4					1	2	3	
5			lower		40	30	20	
6			upper		60	70	80	
7	Х		pmf		1 s.d.	2 s.d.	3 s.d.	
8		1	0.0000	2%				
9		2	0.0000	4%				

3. Now we will use conditional logic to pick up the parts of the pdf that fall within 1, 2 or 3 standard deviations of the mean. The formula for cell C8 will be =IF(AND(\$A8>C\$5,\$A8<C\$6),\$B8, ""). With these mixed references applied, you can fill out the rest of the range through column E.

C36						
4	Α	В	С	D	Е	F
1	Mean	50				
2	Std. dev	10				
3						
4			1	2	3	
5		lower	40	30	20	
6		upper	60	70	80	
7	Х	pmf	1 s.d.	2 s.d.	3 s.d.	
32	25	0.17528%			0.17528%	
33	26	0.22395%			0.22395%	
34	27	0.28327%			0.28327%	
35	28	0.35475%			0.35475%	
36	29	0.43984%			0.43984%	
37	30	0.53991%			0.53991%	
38	31	0.65616%		0.65616%	0.65616%	
39	32	0.78950%		0.78950%	0.78950%	
40	33	0.94049%		0.94049%	0.94049%	
41	34	1.10921%		1.10921%	1.10921%	
42	35	1.29518%		1.29518%	1.29518%	
43	36	1.49727%		1.49727%	1.49727%	
44	37	1.71369%		1.71369%	1.71369%	
45	38	1.94186%		1.94186%	1.94186%	
46	39	2.17852%		2.17852%	2.17852%	
47	40	2.41971%		2.41971%	2.41971%	
48	41	2.66085%	2.66085%	2.66085%	2.66085%	
49	42	2.89692%	2.89692%	2.89692%	2.89692%	
50	43	3.12254%	3.12254%	3.12254%	3.12254%	
51	44	3.33225%	3.33225%	3.33225%	3.33225%	
52	45	3 52065%	3 52065%	3 52065%	3 52065%	

- a. Also sum the probabilities in columns C:E. What values do you get?
- b. What happens when you increase/decrease the standard deviation and mean?
- 4. The charts to the right of the table show you what data falls within one, two and three standard deviations of the mean. We are using an area chart.

- 5. We can now see the results of the empirical rule on the normal distribution.
 - a. So much of our data lies within three standard deviations of the mean that it's nearly impossible to detect any outliers.

