Dependently Typed Languages in Statix

Jonathan Brouwer Jesper Cockx Aron Zwaan

Delft University of Technology, The Netherlands

March 15, 2023

Background: What are Dependent Types?

Types may depend on values!

Example

```
concat : (A: Set) \rightarrow (n : Nat) \rightarrow Vec A n \rightarrow Vec A n \rightarrow Vec A (n + n)
```

Curry-Howard correspondence

Research Question

How well Statix is fit for the task of defining a dependently-typed language.

Why is this important?

From the perspective of Spoofax research

Developing a language with a complex type system tests the boundaries of what Spoofax can do.

From the perspective of Dependent Types research

A rapid prototyping platform.

Calculus of Constructions

A lambda calculus with dependent types.

```
Example 1
(\v: Type. v) T
```

Example 2

```
let f = \T: Type. \x: T. x;
f (T: Type -> Type) (\y: Type. y)
```

Type Checking

Type checking relation

```
typeOfExpr : scope * Expr -> Expr
```

How do we use scopes?

One relation name → NameEntry, NameEntry is either:

- NType: Stores a type
- NSubst: Stores a substitution

Type Checking: Requires Evaluation

betaReduce : scope * Expr -> Expr

exectBetaEq : (scope * Expr) * (scope * Expr)

```
Example 1
let T = Bool;
let b: T = true;

Evaluation relation
betaHeadReduce : scope * Expr -> scope * Expr
```

Type Checking: Rules

Beta head-reduction rules

 $\langle s_1 | e_1 \rangle \overline{p} \Rightarrow_{g_b} \langle s_2 | e_2 \rangle$

 $\overline{\langle s \mid \mathsf{Type}() \rangle} [] \underset{\beta h}{\Rightarrow} \langle s \mid \mathsf{Type}() \rangle$

 $\langle \mathsf{sPutSubst}(s, x, (s, e)) \mid b \rangle \ \overline{p} \Rightarrow \langle s' \mid b' \rangle$ $\langle s \mid \text{Let}(x, e, b) \rangle \overline{p} \Rightarrow_{\sigma L} \langle s' \mid b' \rangle$

 $\mathsf{sGetName}(s,x) = \mathsf{NSubst}(s_e,e) \qquad \langle s_e \mid e \rangle \, \overline{p} \underset{sh}{\Rightarrow} \langle s_{e'} \mid e' \rangle$ $\langle s \mid Var(x) \rangle \overline{p} \Rightarrow \langle s_{e'} \mid e' \rangle$

sGetName(s, x) = NType(t) $\langle s \mid \mathsf{Var}(x) \rangle \overline{p} \underset{\beta k}{\Rightarrow} \mathsf{rebuild}(s, \mathsf{Var}(x), \overline{p})$

 $\langle s \mid \mathsf{FnType}(x, a, b) \rangle \parallel \underset{sk}{\Rightarrow} \langle s \mid \mathsf{FnType}(x, a, b) \rangle$

 $\langle s \mid \mathsf{FnConstruct}(x,a,b) \rangle \ [] \Rightarrow \langle s \mid \mathsf{FnConstruct}(x,a,b) \rangle$

 $\langle \mathsf{sPutSubst}(s,x,p) \mid b \rangle \; \overline{p} \underset{\overrightarrow{ab}}{\Rightarrow} \langle s' \mid e' \rangle \qquad \qquad \langle s \mid f \rangle \; (a :: \overline{p}) \underset{\overrightarrow{ab}}{\Rightarrow} \langle s' \mid e' \rangle$

 $\overline{\langle s \mid \mathsf{FnConstruct}(x, _, b) \rangle} \ (p :: \overline{p}) \underset{ab}{\Rightarrow} \langle s' \mid e' \rangle$ $\overline{\langle s \mid \mathsf{FnDestruct}(f, a) \rangle} \ \overline{p} \underset{ab}{\Rightarrow} \langle s' \mid e' \rangle$

Figure 4.2: Rules for beta head reducing the Calculus of Constructions

Type checking rules

 $(s \mid \mathsf{Type}()) : \mathsf{Type}()$ sGetName(s, x) = NType(t)

 $\langle s \mid e \rangle : t_e \quad \langle \mathsf{sPutSubst}(s, x, (s, e)) \mid b \rangle : t_b$ $\langle s \mid \text{Let}(x, e, b) \rangle : t_b$ $sGetName(s, x) = NSubst(s_e, e)$ $(s_e \mid e) : t$ $\langle s \mid Var(x) \rangle : t$

 $\langle s | Var(x) \rangle : t$

 $\langle s \mid a \rangle : t_a \qquad t_a = \mathsf{Type}() \qquad \langle s \mid a \rangle \underset{\beta}{\Rightarrow} a'$ $\langle \mathsf{sPutType}(s, x, a') | b \rangle : t_b \qquad t_b = \mathsf{Type}()$

 $\langle s \mid a \rangle : t_a$ $t_a = \text{Type}()$ $\langle s \mid a \rangle \Rightarrow a'$

 $\langle s \mid \mathsf{FnType}(x, a, b) \rangle : \mathsf{Type}()$

 $\langle \mathsf{sPutType}(s, x, a') | b \rangle : t_b$ $(s \mid FnConstruct(x, a, b)) : FnType(x, a', t_b)$

 $\langle s \mid f \rangle : t_f \qquad \langle s \mid t_f \rangle \ [] \underset{\partial}{\Rightarrow} \langle s_f \mid \mathsf{FnType}(x, t_{da}, t_b) \rangle$ $\langle s \mid a \rangle : t_a = t_a = \langle s_f \mid t_{da} \rangle$ $\langle sPutSubst(s_f, x, (s, a)) \mid t_b \rangle \Rightarrow t_b'$

 $\langle s \mid \mathsf{FnDestruct}(f, a) \rangle : t_b'$

Extra contributions

- Implemented Inference
- 2 Implemented Inductive Data Types
- 3 Implemented Universes
- 4 Interpreter
- 5 Compiler to Clojure
- 6 Comparison with implementation in Haskell
- Comparison with implementation in LambdaPi
- 8 Evaluation of Spoofax

Conclusions

Spoofax is a great tool for developing dependently typed languages!¹

¹But there is still room for improvement