1001011101111000001

第四章介质访问控制子层

以太网概述

101001101000102c 1011110001110

110001110

OSI Layers

LAN Specification

以太网的发展史

- 1973 Robert Metcalfe及其同事设计了以太网雏形(施乐公司)
- 1980 DIX发布最早的以太网标准,开放标准
- 1985 IEEE802.3对以太网作了小的修改,基本一致,兼容
- 1995 IEEE宣布了100Mbps以太网标准
- 1998 吉比特以太网标准(1000M)
- 2002 IEEE通过了10Gbps以太网标准

Ethernet Standard	Date	Description
Experimental Ethernet	1973[1]	2.94 Mbit/s (367 kB/s) over coaxial cable (coax) bus
Ethernet II (DIX v2.0)	1982	10 Mbit/s (1.25 MB/s) over thick coax. Frames have a Type field. This frame format is us protocol suite.
IEEE 802.3 standard	1983	10BASE5 10 Mbit/s (1.25 MB/s) over thick coax. Same as Ethernet II (above) except Type follows the 802.3 header. Based on the CSMA/CD Process.
802.3a	1985	10BASE2 10 Mbit/s (1.25 MB/s) over thin Coax (a.k.a. thinnet or cheapernet)
802. 3Ъ	1985	10BROAD36
802.3c	1985	10 Mbit/s (1.25 MB/s) repeater specs
802.3d	1987	Fiber-optic inter-repeater link
802.3e	1987	1BASE5 or StarLAN
802.3i	1990	10BASE-T 10 Mbit/s (1.25 MB/s) over twisted pair
802.3j	1993	10BASE-F 10 Mbit/s (1.25 MB/s) over Fiber-Optic

802.3j	1993	10BASE-F 10 Mbit/s (1.25 MB/s) over Fiber-Optic			
802.3u	1995	100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet at 100 Mbit/s (12.5 MB/s) w/au			
802.3x	1997	Full Duplex and flow control; also incorporates DIX framing, so there's no long			
802.3 _v	1998	100BASE-T2 100 Mbit/s (12.5 MB/s) over low quality twisted pair			
802.3z	1998	1000BASE-X Gbit/s Ethernet over Fiber-Optic at 1 Gbit/s (125 MB/s)			
802.3-1998	1998	A revision of base standard incorporating the above amendments and errata			
802.3ab	1999	1000BASE-T Gbit/s Ethernet over twisted pair at 1 Gbit/s (125 MB/s)			
802.3ac	1998	Max frame size extended to 1522 bytes (to allow "Q-tag") The Q-tag includes 802			
802.3ad	2000	Link aggregation for parallel links, since moved to IEEE 802.1AX			
802.3-2002	2002	A revision of base standard incorporating the three prior amendments and errate			
802. 3ae	2002	10 Gigabit Ethernet over fiber: 10GBASE-SR, 10GBASE-LR, 10GBASE-ER, 10GBASE-SW,			

802.3bw		100BASE-T1 - 100 Mbit/s Ethernet over a single twisted pair for automotive applications			
802.3-2015	2015	802.3bx - a new consolidated revision of the 802.3 standard including amendments 802.2bk/bj/bm			
802.3by	~Sep 2016	25 Gbit/s Ethernet ^[3]			
802.3bz	~Aug 2017 ^[4]	2.5 Gigabit and 5 Gigabit Ethernet over Cat-5/Cat-6 twisted pair - 2.5GBASE-T and 5GBASE-T			

Robert Metcalfe梅特卡夫(专栏作家、投资家)

1969 > MIT本科毕业,双学位

1970 〉哈佛大学硕士学位

1973 PhD,哈佛大学 (第二次通过答辩,以ALOHA为基础)

Xerox 工作

May 22, 1973,以太网诞生日 November 11, 1973 (David Boggs)

1979 > 离开施乐,创建3COM

1990 〉被迫离开3COM

2种以太网

- □ 经典以太网
 - ≥3M~10Mbps
 - ▶不再使用
- □ 交换式以太网
 - ≥10M, 100M, 1G
 - ▶广泛使用

IEEE以太网命名规则

- □ 10Base2 (IEEE 802.3a)
 - ▶-10: 传输带宽(单位Mbps)
 - ▶—Base: 基带传输
 - ▶-2(或5):支持的分段长度(100米为单位,四舍五入)
- **□** 10Base-TX (IEEE 802.3X)
 - ▶-T: 铜制非屏蔽双绞线
 - **▶**_**F**: 表示光缆

以太网线缆

名称	电缆	最大区间 长度	节点数/段	优点	接口
10Base5	粗缆	500m	100	用于主干	AUI
10Base2	细缆	200m(185)	30	廉价	BNC
10Base-T	双绞线	100m	1024	易于维护	RJ-45
10Base-F	光纤	2km	1024	用于楼间	ST

以太网连接方式的比较图示

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

10Base-T的拓扑结构

- □ 物理连接是星型/扩展星型结构
- □ 逻辑上是总线结构(站点争用总线)

10BaseT的特点

- □ 与同轴电缆相比的优点
 - > 安装成本大大降低
 - >即插即用,组网灵活
 - >星型结构,故障隔离
 - ▶适于大批量制造
 - >具有开放式标准的互操作能力
- □问题
 - ▶多用户共享一条10M速率信道

以太网编码

- □ 以太网采用曼彻斯特编码
 - ▶1: 高电压到低电压
 - ▶0: 低电压到高电压
 - ▶电压值
 - +0.85 volt: high signal
 - -0.85 volt: low signal
 - 0 volt: DC value
- □ 差分曼彻斯特编码(802.5采用)

曼彻斯特编码

悬赏!

- □ 比特率b = 10 Mbps
- □ 波特率B = 20 MHz(信号的变化频率)

IEEE 802.3/以太网MAC子层协议

- □ IEEE802.3协议描述了运行在各种介质上1 Mb/s~10 Mb/s的1-持续CSMA/CD协议的局域网标准。
- □ 很多人对以太网和IEEE**802.3**不加区分,但二者确有差别(如 帧格式)。

以太网工作站接收数据流程

以太网介质访问控制技术(CSMA/CD)

- 1. Host wants to transmit
- 2. Is carrier sensed?
- 3. Assemble frame
- 4. Start transmitting
- 5. Is a collision detected?
- 6. Keep transmitting
- 7. Is the transmission done?
- 8. Transmission completed
- 9. Broadcast jam signal
- 10. attempts = attempts + 1
- 11. attempts > too many?
- 12. Too many collisions; abort transmission
- 13. Algorithm calculates backoff
- 14. Wait for t seconds

二进制指数后退算法

- □ 发送方在检测到冲突后,双方(或多方)都将延时一段时间, 那么这段时间到底是多长?
- □ 冲突检测到后,时间被分成离散的时隙
- □ 时隙的长度等于信号在介质上来回传输时间(51.2µs)
- □ 一般地, i 次冲突后, 等待的时隙数将从($0\sim2^i-1$)×51.2 μ s中随机选择。

随机等待的时间

Retry	Random Time Range	Retry	Random Time Range
1	$2^{1}-1 = 01 \times 51.2_{\mu sec}$	9	2^9 -1 = 0511 x 51.2 _{µsec}
2	$2^{2}-1 = 03 \times 51.2$ _{µsec}	10	2^{10} -1 = 01023 x 51.2 _{µsec}
3	$2^{3}-1 = 07 \times 51.2$ _{µsec}	11	2^{11} -1 = 01023 x 51.2 _{µsec}
4	2^{4} -1 = 015 x 51.2 _{µsec}	12	2^{12} -1 = 01023 x 51.2 _{µsec}
5	2^{5} -1 = 031 x 51.2 _{µsec}	13	2^{13} -1 = 01023 x 51.2 _{µsec}
6	2^{6} -1 = 063 x 51.2 _{µsec}	14	2^{14} -1 = 01023 x 51.2 _{µsec}
7	2^{7} -1= 0127 x 51.2 _{µsec}	15	2^{15} -1 = 01023 x 51.2 _{µsec}
8	2^{8} -1= 0255 x 51.2 _{µsec}	16	2^{16} -1 = 01023 x 51.2 _{µsec}

注意

- □ i次冲突后时间片为:
 - $> 0 < i \le 10$ 时,取 $(0 \sim 2^{i} 1) \times 2\tau$
 - ▶10 < i < 16 时,取(0~1023) ×2τ
 - ▶i > 16 时, 放弃发送

二进制指数后退算法的优化

- □ 以上讨论的都是发送方怎样避免冲突,或冲突后怎样再次成功地发送。
- □ 但是,一旦成功发送后,接收方如需发确认帧,其中又有争用信道的问题。如把一次成功发送后的第一个时隙留给接收方,则可及时收到确认帧。

经典以太网

- □ 10base2
- □ 10base5
- □ 10base-T
- □ 提高负载的方法
 - ➤提速到100M
 - ▶全双工
 - ▶交换式网络, hub swicth

交换式以太网

______100Mbps以太网——802.3u

- □ 改进10Mbps以太网
 - ▶要求:兼容性、成本、标准化
 - ▶基本思想:保留原有的帧格式、接口和过程规则,将位时间降为10ns(原100ns),电缆最大长度降到10分之一(原2500米)。

_____100Mbps以太网——802.3u

- □ 改变编码方式、提高传输速率
 - ≥100Base-T4 (25MHz)
 - ≥100Base-TX (125MHz)

名称	传输介质	最大距离	
100Base-T4	3 类双绞线 100 米		
100Base-TX	5 类双绞线	100 米	
100Base-FX	光纤	2000 米	

4B/5B Encoding

- □ 既没有使用 NRZ, 也没有使用 Manchester
- □ 4 bits数据被编码成 5 bits信号

效率高、 易于实现、 电压平衡

4B/5B编码表

十进制	4位二进制数	4B/5B 码	十进制	4位二进制数	4B/5B 码
0	0000	11110	8	1000	10010
1	0001	01001	9	1001	10011
2	0010	10100	10	1010	10110
3	0011	10101	11	1011	10111
4	0100	01010	12	1100	11010
5	0101	01011	13	1101	11011
6	0110	01110	14	1110	11100
7	0111	01111	15	1111	11101

FDDI—无可奈何花落去

- □ 1986年,高速LAN技术,100M
- □ 优点:可靠、抗干扰
- □ 缺点:
 - ▶太复杂, 很难到桌面
 - >部署复杂,成本高昂,交换机端口少
 - ▶受快速以太网的冲击
 - ▶80年代后,90年代初美国还采用,但 理论上已经不见踪影

一千兆位以太网(吉比特以太网, GE)——802.3z

□ 园区网的技术发展

►FDDI 100M

>ATM 155M/622M/2.4G

 \triangleright GE 1000M(1G)

- □ 与现有10M/100M以太网技术的兼容性P241
 - ▶FDDI和ATM不兼容,需要改变帧格式
 - ▶千兆位以太网兼容
- □ 速率提高带来的冲突检测问题以及解决办法
 - ▶只在半双工的模式下才会遇到

以太网回顾

- □ 强大的生命力
 - ▶简单性和灵活性
 - ▶易于维护
 - ▶支持TCP/IP, 互联容易
 - ▶善于借鉴: 4B/5B, 8B/10B......
- □ KISS: Keep It Simple, Stupid (大智若愚)
 - ▶乔布斯: stay hungry, stay foolish

小结

- □ 以太网是多路访问协议的实现: CSMA/CD
- □ 二进制指数回退算法,降低了再次冲突的可能
- □以太网类型
 - 经典以太网
 - 交换式以太网
- □ 以太网具有强大的生命力

思考题

- □ 二进制指数回退算法是怎样做的?
- □ 经典以太网的特点是什么?
- □ 交换式以太网的特点是什么?
- □ 以太网为什么具有强大的生命力?
- □ 以太网采用的编码方法是什么?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!