Discussion 5

1. Suppose we have two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, along with T_1 which is a MST of G_1 and T_2 which is a MST of G_2 . Now consider a new graph G = (V, E) such that $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup E_3$ where E_3 is a new set of edges that all cross the cut (V_1, V_2) .

Consider the following algorithm, which is intended to find a MST of G.

Maybe-MST(
$$T_1$$
, T_2 , E_3)
$$e_{min} = a \text{ minimum weight edge in } E_3$$

$$T = T_1 \cup T_2 \cup \{e_{min}\}$$

$$return T$$

Does this algorithm correctly find a MST of G? Either prove it does or prove it does not.

Solution:

No. Here is a counter example.

The correct solution will have edges AB, DC, and AD in the MST. The above solution will result in an incorrect MST with edges AD, BC, and DC.

- 2. Solve the following recurrences using the Master Method:
 - a. A(n) = 3 A(n/3) + 15

f(n) = 15 = O(1),
$$n^{\log_b a} = n^{\log_3 3} = n^1$$

This falls under case 1 \rightarrow A(n) = θ (n)

b. $B(n) = 4 B(n/2) + n^3$

f(n) = n³,
$$n^{\log_b a} = n^{\log_2 4} = n^2$$

This can fall under case 3. Now we need to check that a f(n/b) ≤ c f(n) for some c < 1:
a f(n/b) = 4 * (n/2)³ = 4 * n³/8 = n³/2 = .5 f(n), so we have found c=.5 such that a f(n/b) ≤ c f(n) and the inequality checks out, and case 3 applies \rightarrow B(n) = θ (n³)

c. $C(n) = 4 C(n/2) + n^2$

f(n) = n²,
$$n^{\log_b a} = n^{\log_2 4} = n^2$$

This falls under case 2 \rightarrow C(n) = θ (n² log n)

d. D(n) = 4 D(n/2) + n

f(n) = n,
$$n^{\log_b a} = n^{\log_2 4} = n^2$$

This falls under case 1 \rightarrow D(n) = θ (n²)

3. There are 2 sorted arrays A and B of size n each. Design a D&C algorithm to find the median of the array obtained after merging the above 2 arrays (i.e. array of length 2n). Discuss its runtime complexity.

Find the median of the two arrays. Say the medians are m_A and m_B . If $m_A=m_B$, then this is our median.

Otherwise, say $m_A < m_B$ then throw away all terms lower than m_A in A, and all terms greater than m_B in B. Solve the resulting subproblem recursively.

Complexity analysis:

- Divide step takes O(1). This includes finding medians in A and B and throwing away half of A and B.
- There is no combine step
- Number of subproblems (a) at each step is 1. The size of the subproblem (n/b) is n/2

So we can apply the Master Method:

f(n) = O(1),
$$n^{\log_b a} = n^{\log_2 1} = n^0 = O(1)$$

This falls under case $2 \rightarrow T(n) = \theta(\log n)$

4. A tromino is a figure composed of three 1x1 squares in the shape of an L. Given a 2ⁿx2ⁿ checkerboard with 1 missing square, tile it with trominoes. Design a D&C algorithm and discuss its runtime complexity.

Solution: Here is a tromino:

The figure below shows a 2ⁿx2ⁿ checkerboard with a hole highlighted in dark blue. Here is a divide and conquer solution:

- Divide the grid into 4 equal grids of size 2ⁿ⁻¹x2ⁿ⁻¹
- Add holes to the three grids that do not have a hole in them. The position of the new holes should be at the center of the grid so that when each region is solved/tiled recursively we can cover the remaining three holes with one tromino.
- Solve all 4 subproblems recursively
- When combining the solutions, place a tile over the three holes in the center to complete the tiling.
- During recursion, when we reach 2x2 grids, we can solve the problem directly by placing a single tromino to tile the grid (that has a single hole).

Complexity analysis:

Divide steps takes O(1) time. So does the combine step.

Number of subproblems (a) = 4, size of each subproblem is half the size of the original problem, so b=2.

$$f(n) = O(1), n^{\log_b a} = n^{\log_2 4} = n^2$$

This falls under case 1 \rightarrow T(n) = $\theta(n^2)$