# Chapter 3 Part 2

STAT 5700: Probability

# Prof. Katie Fitzgerald, PhD

## Fall 2025

# Contents

| 3.5 Geometric Distribution                  | 2 |
|---------------------------------------------|---|
| 3.6 Negative Binomial Distribution          | 2 |
| 3.7 Hypergeometric Distribution             | 2 |
| 3.8 Poisson Distribution                    | 2 |
| 3.9 Moments and Moment Generating Functions | 2 |
| 3.11 Tcheysheff's Theorem                   | 2 |
| Special Expectations: Moments               | 2 |
| Special Expectations: Central Moments       | 4 |
| Moment-generating functions                 | Ę |

- 3.5 Geometric Distribution
- 3.6 Negative Binomial Distribution
- 3.7 Hypergeometric Distribution
- 3.8 Poisson Distribution
- 3.9 Moments and Moment Generating Functions
- 3.11 Tcheysheff's Theorem

**Special Expectations: Moments** 

**Definition:** The rth **moment** of a random variable X is the expected value of  $X^r$  and is denoted by  $E(X^r)$ , for each integer r. That is,

$$E(X^r) = \sum_{x \in \mathbb{S}} x^r p(x)$$

The term "moment" comes from physics: if the quantities p(x) are point masses acting perpendicularly to the x-axis at distances y from the origin,  $E(X^1)$  would be the x-coordinate of the center of gravity, and  $E(X^2)$  would be the moment of inertia.



### $First\ Moment = Mean$

Note that the first moment where r=1, we have

$$E(Y^{1}) = \sum_{y \in \mathbb{S}} y^{1} p(y)$$
$$= E(Y) = \sum_{y \in \mathbb{S}} x p(y)$$
$$= \mu$$

Therefore, we usually refer to the first moment as  $\mu$ , the mean of Y.



### **Special Expectations: Central Moments**

**Definition** The rth central moment of a random variable Y is the expected value of  $(Y - \mu)^r$  and is denoted by  $E[(Y - \mu)^r]$ , for each integer r. That is,

$$E[(Y - \mu)^r] = \sum_{y \in \mathbb{S}} (y - \mu)^r p(y)$$

Recall that  $\mu = E(Y)$  is the mean of Y, so the central moments are sometimes referred to as **moments** about the mean.

| Exercise: What is $E(Y - \mu)$ ? |  |  |
|----------------------------------|--|--|
|                                  |  |  |
|                                  |  |  |
|                                  |  |  |
|                                  |  |  |
|                                  |  |  |
|                                  |  |  |

### Moment-generating functions

**Definition 2.3-1** Let Y be a discrete random variable with probability distribution p(y) and support  $\mathbb{S}$ . If there is a positive number h such that

$$E(e^{tY}) = \sum_{y \in \mathbb{S}} e^{tx} p(y)$$

exists and is finite for -h < t < h, then the function defined by  $M_Y(t) = E(e^{tY})$  is called the **moment-generating function** of Y. This function is often abbreviated as mgf.

 $M_Y(t) = E(e^{tY})$  is called the moment-generating function, because by taking derivatives of  $M_Y(t)$  at t = 0 can generate expressions for all the moments of a random variable Y!

### Theorem

$$\frac{d^r}{dt^r}M_Y(t)|_{t=0} = E(Y^r)$$

That is, the rth moment of Y is equal to the rth derivative of  $M_Y(t)$  evaluated at t=0.

### Example:

Let Y be a uniformly distributed random variable. Recall that the probability distribution of the uniform distribution is given by

$$p(y) = \frac{1}{m}, \quad y = 1, 2, ..., m$$

Find an expression for the moment-generating function of the distribution. Then use the mgf to find the mean of Y.



### Moments of the Binomial Distribution

# Exercise: 1. Find the mgf of the Binomial distribution. 2. Use the mgf to find the mean and the variance of the binomial distribution

### Problem 7

Let Y be a random variable with probability distribution  $p(y) = \frac{y}{6}, \quad y = 1, 2, 3$ 

- a) Find an expression for the moment generating function of Y. That is, write  $E(e^{tY})$  as a sum.
- b) Use the mgf to show that E(Y) = 7/3
- c) Use the mgf to show that  $E(Y^2) = 6$
- d) Find V(Y)