#flo #disorganized #incomplete #inclass

1 | Proof... presentations?

in room, 317.

1.1 | up first, karen.

- 2B, 4
- · proof by example?
 - uses the contraints given by the problem? then just, plug and chug?
 - * plug in knowns for free variables and solve the next?
- actully, not a proof! doesnt ask for one.
- · free variables! that's the concept here.

```
if it's a set, use set notation! not words
```

• #review how to take notes on proof presentations.

1.2 | Anisha

- 2B, 5 going in order?
- · ooh, we solved this already?
 - our solution:
 - * represent every x^2 as $x^2 + x^3$, then whenever you need x^2 , just subtract x^3
- · seems similar up till here
- proves linear independence
 - just rearange the constants and algebra it
- proves it spans
 - just proves you can reach x^2 from every $x^2 + x^3$
- · didn't explicitly say things...
 - proved linear dependence, proved span,
 - but didn't say that these are the things need for a basis

```
precise. mathematical. notation! -jana
```

1.3 | **Malaika**

- 2.B, 7
- on the quiz!
- uhoh, she says it's false.
- wait a second.. we need at least 3 vectors.. 2 vecs can't possibly fit it...
- · frick, messed that up.

1.4 | Sophie

- · with the same problem!
 - $V = R^4$
 - v_1 through v_4 as the standard basis. or not??
- dammit. should seen that. thought that they were elements in the vectors.

1.5 | **Joshua**

- 2.B problem 8
- direct sum means intersection is zero,
- so when u add them together, u can just show it is linearly independent
- 0 is in the set of any span of vecs.
 - there is always a linear combo to 0! you need to show it's the *only* one.

1.6 | **Davis**

- 2.C 1
- · does the strat of just going back and looking for stuff work?
 - jana, says, yeah! pretty solid.
- use the appropriate results and goute them clearly.
- · how to include the actual relevant info:
 - not in parentheticals?
- how to make stuff not italic!

\DeclareMathOperator{\span}{span}

1.7 | Caroline

- 2.C 3
- prove:
 - R³ is a subspace of R³!
 - * reverse double containment
- planes that pass through origin in R^3 are not = R^2 ,
 - they are isomorphic!

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same typ

- this doesnt make them the same thing, but u can do the property mapping thing
- to take props from R² to R³, we need to know more about isomorphic
- to show a subspace:
 - additive iden
 - SCAMUL
 - addition
 - closed
 - and, also, it needs to live in the parent space.

1.8 | Carissa

- 2.C 4
- · like karen's but with polynomials

fin. until thursday.