Scilab Textbook Companion for Machine Design by T. H. Wentzell, P. E¹

Created by
Prabhakar Gund
B.Tech
Mechanical Engineering
VNIT Nagpur
College Teacher
None
Cross-Checked by
Bhavani Jalkrish

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Machine Design

Author: T. H. Wentzell, P. E

Publisher: Cengage Learning, New Delhi

Edition: 1

Year: 2007

ISBN: 978-81-315-0878-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	What Is Mechanical Design	5	
2	Force Work and Power	7	
3	Stress and Deformation	10	
4	Combined Stress and Failure Theories	18	
5	Repeated Loading	23	
6	Fasteners and Fastening Methods	31	
7	Impact and Energy Analysis	35	
8	Spring Design	40	
10	Pneumatic and Hydraulic Drives	45	
11	Gear Design	48	
12	Spur Gear Design and Selection	55	
13	Helical Bevel and Worm Gears	64	
14	Belt and Chain Drives	72	
15	Keys and Counlings	78	

16 Clutches and Brakes	81
17 Shaft Design	86
18 Power Screws and Ball Screws	91
19 Plain Surface Bearings	95
20 Ball and Roller Bearings	97

List of Scilab Codes

Exa 1.2	Sample Engineering Calculation	5
Exa 2.1	Torque	7
Exa 2.2	Work and Power	7
Exa 2.3	Force Pressure Relationship	9
Exa 3.1	Stress and Deflection under Compressive Axial Load .	10
Exa 3.2	Stress and Deflection due to Bending	11
Exa 3.3	Shear Stress	13
Exa 3.4	Torsional Shear Stress	13
Exa 3.5	Critical Load in Pinned End Column	15
Exa 3.6	Critical Load in Fixed End Column	16
Exa 4.1	Design of Short Column with Eccentric Load	18
Exa 4.2	Coplanar Shear	19
Exa 4.3	Combined Torsion and Shear	19
Exa 4.4	Combined Normal and Shear Stress	20
Exa 5.1	Design of a Shaft using the Soderberg Method	23
Exa 5.2	Design of a Cantilever Beam using the Soderberg Method	24
Exa 5.3	Design of a Cantilever Beam using the Modified Good-	
	man Method	26
Exa 5.4	Design of Water Pump Connecting Rod	27
Exa 5.5	Factor of Safety for Design with Stress Concentration	
	Factor	28
Exa 5.6	Factor of Safety for Design when Desired Life is known	29
Exa 6.1	Torquing Method	31
Exa 6.2	Turn of Nut Method	32
Exa 6.3	Elastic Analysis of Bolted Connections	32
Exa 6.4	Elastic Analysis of Bolted Connections	33
Exa 7.1	Impact Energy	35
Exa 7.2	Velocity and Impact	36

Exa 7.3	Impact on Beam
Exa 7.4	Designing for Impact
Exa 8.1	Design of Helical Compression Spring 40
Exa 8.2	Determination of number of coils 41
Exa 8.3	Stability of Spring
Exa 8.4	Deflection of Spring
Exa 8.5	Flat Springs
Exa 8.6	Energy from Deflection
Exa 10.1	Calculation of Hydraulic Cylinder Diameter and Stan-
	dard Rod Size
Exa 10.2	Pneumatic Pop Rivet Gun
Exa 11.1	Double Reduction Spur Gear Set
Exa 11.2	Double Reduction Spur Gear Set with Idler 49
Exa 11.3	Calculation of Pitch Diameter Circular Pitch and Shaft
	Centre to Centre Distance
Exa 11.4	Bevel Gear
Exa 11.5	Calculation of Gear Train Value Input and Output Torque
	and Speed
Exa 11.6	Precision Spur Gears
Exa 12.1	Forces on Spur Gear Teeth
Exa 12.2	Surface Speed
Exa 12.3	Strength of Gear Teeth
Exa 12.4	Dynamic Load
Exa 12.5	Calculation of Factor of Safety Used in Catalog 58
Exa 12.6	Spur Gear Design
Exa 12.7	Buckingham Method of Gear Design 60
Exa 12.8	Wear of Gears
Exa 13.1	Helical Gears
Exa 13.2	Helical Gear Stresses
Exa 13.3	Bevel Gear Forces
Exa 13.4	Worm Gear Forces
Exa 13.5	Calculation of Normal Circular Pitch Dynamic Load
	Force Allowable
Exa 13.6	Efficiency of Worm Gear Drive
Exa 13.7	Heat Generated
Exa 14.1	Calculation of Front Force Net Driving Force Force on
	Shaft etc

Exa 14.2	Calculation of Angle of Contact Length of Belt Ratio
	and Surface Speed etc
Exa 14.3	V Belts
Exa 14.4	Chain Drive
Exa 15.1	Design of Keys
Exa 15.2	Splines
Exa 16.1	Calculation of Torque and Power 81
Exa 16.2	Determination of Breaking Torque 82
Exa 16.3	Torque Transmitting Capacity
Exa 16.4	Calculation of Stopping Force Torque per Brake Normal
	Brake Force etc
Exa 16.5	Rotational Inertia and Brake Power
Exa 17.1	Design Stresses in Shaft
Exa 17.2	Combined Stresses in Shaft
Exa 17.3	Combined Stress Using Maximum Normal Stress Theory 88
Exa 17.4	Comparison of Stresses to Allowable Values and En-
	durance Limit
Exa 17.5	Critical Speed
Exa 18.1	Torque and Power in Power Screw 91
Exa 18.2	Efficiency of a Power Screw 91
Exa 18.3	Acme Threads
Exa 18.4	Torque and Ball Screws
Exa 19.1	Shaft Considerations
Exa 19.2	Wear
Exa 20.1	Life Expectancy of Ball Bearing
Exa 20.2	Selection of Bearing to Meet Given Criteria 97
Exa 20.3	Selection of Bearing to Meet Given Criteria 98
Exa 20.4	Life of 6200 Series Bearing

What Is Mechanical Design

Scilab code Exa 1.2 Sample Engineering Calculation

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-1.2
                         Page 13 ')
                                        //Example 1.2
                                //[psi] Tensile strength
5 \text{ Sy} = 61000
      of AISI 1020 cold drawn steel from Appendix 4
      Page no 470
6 \text{ SF}=2;
                                //[] safety factor
                                //[lb] Weight of the ball
7 F = 300;
                                //[in] Length of round
8 L=36;
      bar
9 Sy=61000;
                                //[psi] Tensile strength
      from Appendix 4
                                //[in*lb] Bending moment
10 M=F*L;
      Appendix 2
11
12 Sall=Sy/SF;
                                //[psi] Allowable stress
13 Z=M/Sall;
                                //[in^3] Section modulus
      for bending Sall=M/Z
14 D=(32*Z/\%pi)^(1/3);
                                //[in] Diameter of bar
```

```
15
16 //Use 13/8 in bar
17 D1=1.625;
18
19 mprintf('\n\n Diameter of Bar is \%f in',D1);
20
21 // Checking Deflection
22 I = \%pi * D1^4/64;
                                 //[in^4] Moment of
      inertia Appendix 3
23 E=30*10^6;
                                 //[lb/in^2] Modulus of
      elasticity
24 Delta=F*L^3/(3*E*I);
                                 //[in] Deflection
25
26 //Note- In the book I=0.342 in 4 is used instead of
      I = 0.3422814 \text{ in }^4
27
28 mprintf('\n The deflection of bar is %f in', Delta);
29
30
31 // Note: The deviation of answer from the answer
      given in the book is due to round off error.(In
      the book values are rounded while in scilab
      actual values are taken)
```

Force Work and Power

Scilab code Exa 2.1 Torque

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
                       Page 26 ')
      n EXAMPLE-2.1
                                     //Example 2.1
4
5 T=1080*12;
                               //[in*lb] Torque in axle
6 d=30;
                               //[in] Diameter of tire
7 F=T/(d/2);
                               //[lb] Force exerted on
     the road surface
9 mprintf('\n\n The tire exerts %f lb force on the
     road surface',F);
```

Scilab code Exa 2.2 Work and Power

```
4
5 G=3.6;
                                       // Differial ratio
6 N = 3500/G;
                                       //[rpm] Axle
      rotational speed
7 d=30;
                                       //[in] Diameter of
      tire
  dist=N/(60)*(\%pi*d)
                                       //[in] Distance
      traveled in 1 sec
9 dist=dist/12;
                                       //[ft] Distance
      traveled in 1 sec
10 t=1;
                                       //[sec] Time period
                                       //[lb] Force
11 F=864;
      exerted by tire on road surface
12
                                       //[ft*lb] Workdone
13 W=F*dist;
      in 1 sec
14 P=F*dist/t;
                                       //[ft*lb/sec] Power
15 hp=P/550;
                                       //[hp] Power in
      horse power 1hp=550 ft*lb/sec
16
17 mprintf('\n\n Power to do work %f hp',hp);
18
19 //Comparing it to motor output:
20
                                        //[in*lb] Engine
21 \text{ Tm} = 300 * 12;
      torque
22 \text{ Nm} = 3500;
                                        //[rpm] Engine
      speed
23 Pm = Tm * Nm / 63000;
24
25 mprintf('\n Motor output \%f hp',Pm);
26 mprintf('\n The power output equaled the power at
      tire/road surface.');
27
28 // Note: The deviation of answer from the answer
      given in the book is due to round off error. (In
      the book values are rounded while in scilab
      actual values are taken)
```

Scilab code Exa 2.3 Force Pressure Relationship

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
                        Page 29 ') //Example 2.3
      n EXAMPLE-2.3
                            //[in*lb] Engine torque
5 T=300*12;
                            //[in] Crankshaft effective
6 d=8;
     diameter
8 F=T/(d/2);
                            //[lb] Force exerted by
     piston
10 A = \%pi*(2^2)/4;
                           //[in^2] Area of cross
     section of piston
11 P=F/A;
                            //[lb/in^2] Pressure in
     cylinder
12
13 mprintf('\n\n Pressure inside cylinder \%f lb/in^2',P
     );
```

Stress and Deformation

Scilab code Exa 3.1 Stress and Deflection under Compressive Axial Load

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-3.1 Page No-41 \n');
4
5 F = 20000;
                          //[lb] Load applied to steel
     bar
6 L=6;
                          //[in] Length of steel bar
7 d=1;
                          //[in] Diameter of steel bar
                          //[in^2] Area of cross
8 A = \%pi*(d^2)/4;
     section of steel bar
9 E=30*10^6;
                           //[lb/in^2] Modulus of
     elasticity for AISI 1020 hot-rolled steel
10 Sy=30000;
                          //[lb/in^2] Yield limit
11
12 S=F/A;
                          //[lb/in^2] Stress in bar
13 mprintf('\na. Stress in bar=\%f lb/in^2.',S);
14
                         //[in] Change in length of
15 delta=F*L/(A*E);
16 mprintf('\nb. bar shorten by %f in.',delta);
```

```
17
18 if Sy>S then
       mprintf('\nc. The stress of %f psi is less than
19
          Sy of %f psi, so it will\n return to its
          original size because the yield limit was not
           exceeded.',S,Sy);
20 else
       mprintf('The bar will not return to its original
21
           length')
22 end
23
24 // Note: The deviation of answer from the answer
      given in the book is due to round off error. (In
      the book values are rounded while in scilab
      actual values are taken)
```

Scilab code Exa 3.2 Stress and Deflection due to Bending

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-3.2 Page No.43\n');
4
                               //[in] Width of beam
5 b=2;
                               //[in] Height of beam
6 h=2;
                               //[in^4] Moment of inertia
7 I = (b*h^3)/12;
8 F = 3000;
                               //[lb] Load applied to
     beam
9 L=36;
                               //[in] Length of beam
                               //[in] Distance of outer
10 c = 1;
      most fiber from neutral axis
11 E=30*10^6;
                              //[lb/in^2] Modulus of
      elasticity
12 Sy=30000;
                               //[lb/in^2] Yield strength
13 Su = 55000;
                               //[lb/in^2] Ultimate
```

```
strength
14 SF=2;
                              //[] Safety factor based
     on ultimate stress
15
16 M = F * L/4;
                              //[lb*in] Bending moment
                              //[lb/in^2] Bending stress
17 S = (M/I) *c;
18
  //Note-In the book I=1.33 in 4 is used instead of I
      =1.3333333 in ^2
20
21 mprintf('\na. The maximum stress in beam is %f lb/in
      ^2',S);
22
23 delta=-F*L^3/(48*E*I); //[in] Maximum deflection
       in this beam
24
25 mprintf('\nb. The maximum deflection in this beam is
       %f in.',delta);
26
27 if Sy>S then
       mprintf('\nc. Yes, the stress of %f lb/in^2 is
28
          less than the yield of Sy=\%f lb/in^2.',S,Sy);
29
  else
       mprintf('\nc. No, the stress of \%f lb/in^2 is
30
          greater than the yield of Sy=\%f lb/in^2',S,Sy
          );
31
  end
32
                               //[lb/in^2] Allowable
33 Sall=Su/SF;
      stress
34
35 if Sall>S then
       mprintf('\nd. It is acceptable because allowable
36
           stress is greater than the acttual stress of
           %f lb/in^2.',S);
37 else
       mprintf('\nd. Design is not acceptable because
          allowable stress is less than the actual
```

```
stress of %f lb/in^2.',S)

39 end

40

41 //Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)
```

Scilab code Exa 3.3 Shear Stress

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-3.3 Page No.45\n');
4
5 \text{ Su} = 80 * 10^3;
                          //[lb/in^2] Ultimate strength
6 d=0.5;
                          //[in] Diameter of pin
7 As = \%pi * d^2/4;
                          //[in^2] Area of cross section
      of pin
  F = 20 * 10^3;
                          //[lb] Load acting
                          //[lb/in^2] Shear stress
10 Ss=F/(2*As);
11
12 if 0.5*Su >= Ss & 0.6*Su >= Ss then
       mprintf('Pin would not fail');
14 else
15
       mprintf('\n Actual stress is too high and the
          pin would fail.');
16 end
```

Scilab code Exa 3.4 Torsional Shear Stress

```
1 clc;
```

```
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-3.4 Page No.46\n');
4
                        //[hp] Power transmitted
5 \text{ hp} = 10;
6 \text{ rpm} = 1750;
                        //[rpm] Turning speed
                        //[in] Diameter of shaft
7 d=0.5;
                        //[in] Length of shaft
8 L=12;
                        //[lb/in^2] shear modulus of
9 G=11.5*10^6
      elasticity
                        //[lb/in^2]
10 Su = 62000;
11
12 T=63000*hp/rpm;
                       //[in*lb] Torque transmitted
                       //[in^3] Polar section modulus
13 Z=\%pi*d^3/16;
14 Ss=T/Z;
                        //[lb/in^2] Torsional shear
      stress
15
  //Note- In the book Z=0.025 in 3 is used instead of
      Z = 0.0245437 in 3
17
18 mprintf('\na. Stress in the shaft is %f lb/in^2.', Ss
19
                        //[in^4] Polar moment of inertia
20 J = \%pi * d^4/32;
                       //[radians]
21 theta=T*L/(J*G);
22
23 //Note- In the book J=0.0061 in 4 is used instead of
       J = 0.0061359 \text{ in }^4
24
25 mprintf('\nb. The angular deflection of shaft would
      be %f radians', theta);
26
27 \text{ SF} = 3;
                         //[] Safety factor based on
      ultimate strength
28
29 \text{ Zd=T/(0.5*Su/SF)};
                         //[in^3] Polar section modulus
      required for SF=3
30 Dd = (16*Zd/\%pi)^(1/3); //[in] Diameter of shaft
```

```
required Z=%pi*d^3/16  
31  
32    mprintf('\nc. Diameter of shaft required is %f in.', Dd);
```

Scilab code Exa 3.5 Critical Load in Pinned End Column

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-3.5 Page No.53\n');
4
5 L=30;
                                //[in] Length of link
6 d=5/8;
                                //[in] Diameter of link
7 I = \%pi*d^4/64;
                                //[in^4] Moment of
      inertia
                                //[in^2] Area of cross
8 A = \%pi*d^2/4;
      section
9 E=30*10^6;
                                //[lb/in^2] Modulus of
      elasticity
10
11 r = sqrt(I/A);
                                //[in] Radius of gyration
12
13 mprintf('\n The radius of gyration %f in.',r);
14
                                //[] End support
15 K = 1;
      condition factor
16
                                //[in] Effective length
17 Le=K*L;
18
19 mprintf('\n Effective length is %f in',Le);
20
                                //[] Slenderness ratio
21 SR=Le/r;
22
23 mprintf('\n Slenderness ratio is %f.',SR)
```

```
24
25 \text{ Sy} = 42000;
                              //[lb/in^2] Yield strength
26
27 Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant
28
29 mprintf('The column constant is %f.',Cc);
30
31 if SR>Cc then
       mprintf('\n Slenderness ratio is greater than
32
          column constant, so use the euler formula')
33 end
34
35 I = \%pi*d^4/64;
                              //[in^4] Moment of inertia
36
37 mprintf('\n The moment of inertia is %f in 4',I);
39 Pc=%pi^2*E*I/Le^2;
                              //[lb] Critical force
40
  //Note- In the book I=0.0075 in 4 is used instead of
41
       I = 0.0074901 \text{ in }^4
42
43 mprintf('\n The critical force is %f lb.',Pc);
```

Scilab code Exa 3.6 Critical Load in Fixed End Column

```
9
10 A = 2.26;
                              //[in^2] Area of cross
      section (Appendix 5.4)
                              //[in^4] Moment of inertia
11 I = 0.764;
      (Appendix 5.4)
12
                              //[in] Radius of gyration
13 r = sqrt(I/A);
14
                              //[] End support condition
15 \text{ K=0.65};
      factor from Figure 3.8
                              //[in] Effective length
16 Le=K*L;
17
18 mprintf('\n The effective length is %f in.',Le);
19
                              //[] Slenderness ratio
20 \text{ SR=Le/r};
21
22 mprintf('\n The slenderness ratio is %f.', SR);
23
24 Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant
25
26 mprintf('\n The column constant is \%f.',Cc);
27
28 if Cc>SR then
       mprintf('\n The column constant is greater than
29
          slenderness ratio, so use the Johnson formula
          . ');
30
  end
31
32 F = (A*Sy/SF)*(1-Sy*SR^2/(4*\%pi^2*E));
33
34 mprintf('\n The acceptable load for a safty factor
      of 2 is %f lb.',F);
```

Combined Stress and Failure Theories

Scilab code Exa 4.1 Design of Short Column with Eccentric Load

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
                         Page 66 ')
       n EXAMPLE-4.1
5 D=2;
                       //[in] Dia. of short column
6 F = 10000;
                      //[lb] Load applied
                       //[in] Length of column
7 L=15;
                       //[in] Offset of load
8 e=2;
9
10 A = (\%pi*D^2)/4;
                      //[in^2] Area of cross section
     of column
11 SA=F/A;
                        //[lb/in^2] Axial Stress
12
                        //[in^4] Section modulus for
13 Z=(\%pi*D^3)/32;
     bending
                        //[lb*in] Bending moment
14 \text{ M=F*e};
                        //[lb/in^2] Bemding stress
15 SB=M/Z;
16
```

Scilab code Exa 4.2 Coplanar Shear

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-4.2
                        Page 67 ')
4
5 F1=800;
                        //[lb] Vertical force
6 F2 = 600;
                       //[lb] Horizontal force
7 D = 0.5;
                       //[in] Pin diameter
                      //[in^2] Area of cross section of
8 A = (\%pi*D^2)/4;
      pin
10 F=sqrt(F1^2+F2^2); //[lb] Resultant force on pin
11 S=F/A;
                        //[lb/in^2] Shear stress in pin
12
13 //If forces were not perpendicular, they would be
     added vectorially.
14 mprintf('\n Shear stress in pin is \%f lb/in^2.',S)
```

Scilab code Exa 4.3 Combined Torsion and Shear

```
1 clc;
2 clear;
```

```
3 mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\
     n Example 4.3
                      Page no 68');
4
5 P = 50;
                     //[hp] Power transmitted
6 N = 300;
                     //[rpm] Speed
7 D = 10;
                     //[in] Effective pitch diameter of
     sprocket
8 d=1;
                     //[in] Diameter of shaft from
      figure 4.3
  Z = (\%pi*d^3)/16;
                   //[in^3] Section modulus of shaft
10 A=(\%pi*d^2)/4; //[in^2] Area of cross section
11
12 T=(63000/N)*P; //[lb*in] Torque required to
      transmit power
13 F=T/(D/2);
                    //[lb] Driving force in chain
14
                    //[lb/in^2] Shear stress in shaft
15 Ss=F/A;
16
                     //[lb/in^2] Torsional stress in
17 St=T/Z;
      shaft
18
                    //[lb/in^2] Resultant stress
19 S=Ss+St;
20
21 //Note-There is mistake in addition of Ss and St.
22
23 //This value would be compared to shear stress
      allowable for shaft material
24
25
  mprintf('\n\n The combined stress in 1 inch diameter
       shaft is %f lb/in^2.',S);
```

Scilab code Exa 4.4 Combined Normal and Shear Stress

```
1 clc;
2 clear;
```

```
3 mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\
      n Example 4.4
                      Page no 71')
5 P = 20;
                       //[hp] Power transmitted by chain
      drive
6 n = 500;
                       //[rpm] speed
7 d=8;
                       //[in] Pitch diameter of sprocket
8 \text{ fos=2};
                       //[in] Diameter of shaft
9 D=1.25;
                       //[in] Distance between two
10 L=12;
      supporting bearings
11 Z1 = \%pi * D^3 / 16;
                       //[in^3] Section modulus for
      torsion
12 \quad Z2 = \%pi * D^3/32;
                       //[in^3] Section modulus for
      bending
13
                       //[in*lb] Torque on shaft
14 T = 63000 * P/n;
15
                       //[lb] Force in chain
16 F=T/(d/2);
17
18 M = F * L / 4;
                       //[in*lb] Bending moment in shaft
19
20 \text{ Ss=T/Z1};
                       //[lb/in^2] Torsional shear stress
21
                       //[lb/in^2] Bending normal stress
22 \text{ Sb=M/Z2};
23
24 / Note- In the book Sb=9860 lb/in^2 is used instead
      of Sb = 9856.7075 \, lb/in^2
25
26 S=(Sb/2)+sqrt(Ss^2+(Sb/2)^2); //[lb/in^2] Combined
      max. stress
27
                       //[lb/in^2]From APPENDIX 4 Page no
28 \text{ Sy} = 30000;
      -470 for AISI 1020 and Hot-rolled steel
29 FOS = (Sy/2)/S;
                       //[] Actual factor of safty
30
31 if S < Sy/2 then //Strength is greater than
      combined stress so design is safe
```

Repeated Loading

Scilab code Exa 5.1 Design of a Shaft using the Soderberg Method

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-5.1 Page No.93\n');
5 \text{ SF=2};
                                //[] Safety factor
6 F = 500;
                                //[lb] Load
                                //[in] Length of shaft
7 L=40;
8 \text{ Su} = 95000;
                                //[lb/in^2] Ultimate
      strength (Appendix 4)
                                //[lb/in^2] Yield strength
9 Sy=60000;
       (Appendix 4)
10
11 Mmax=F*L/4;
                                //[lb*in] Maximum bending
      moment
                                //[lb/in^2] Minimum
12 Mmin = -F * L/4;
      bending moment
13
                                //[] As surface is
14 Csurface=1;
      polished
15 Csize = 0.85;
                                //[] Assuming 0.5 < D < 2
```

```
//[] Bending stress
16 Ctype=1;
17
18 Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2]
      Endurance limit
19
20
  if Mmax == abs (Mmin) then
                              //[lb/in^2] Mean stress
21
       Sm = 0;
22 end
23
                              //[1b/in^2] As (1/SF) = (Sm/s)
24 Sa=Sn/SF;
      Sy)+(Sa/Sn) from soderberg equation
25
26
  Sa_Z = (Mmax - Mmin)/2;
                              //[lb*in^2] Product of
      altenating stress and section modulus
27
                              //[in^4] Section modulus
28 Z=Sa_Z/Sa;
29
                             //[in] Diameter of shaft
30 D=(32*Z/\%pi)^(1/3);
31
32 D1 = 1.375;
                              //[in] Next higher
      available is 1.375 in. so use D1
33
34 mprintf('\n The required diameter of rotating shaft
      is %f in.', D1);
```

Scilab code Exa 5.2 Design of a Cantilever Beam using the Soderberg Method

```
//[lb/in^2] Yield
6 Sy=37000;
      strength (Appendix 8)
7 Sni=34000;
                                //[lb/in^2] Endurance
     limit (Appendix 8)
8 \text{ SF} = 1.6;
                                //[] Safety factor
10 F = 1000;
                                //[lb] Load
                                //[in] Length of
11 L=12;
      cantilever beam
12
13 Mmax=F*L;
                                //[lb*in] Maximum bending
      moment
14 Mmin=0;
                                //[lb*in] Minimum bending
       moment
15
                                //[] Assuming 0.5 < D < 2 in
16 \text{ Csize} = 0.85
17 Ctype=1;
                                //[] Bending stress
18 Csurface=1;
                                //[] As surface is
      polished
19
20 Malt = (Mmax - Mmin)/2;
                                //[lb*in] Alternating
      bending moment
21
22 Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending
     moment
23
24 Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified
      endurance limit
25
26 Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section
      modulus
27
28 D=(32*(Z)/\%pi)^(1/3); //[in] Diameter of bar
29
30 mprintf('\n The required diameter of bar using the
      soderberg method is %f in.',D);
```

Scilab code Exa ${\bf 5.3}\,$ Design of a Cantilever Beam using the Modified Goodman Method

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-5.3 Page No.97\n');
4
                                 //[lb/in^2] Ultimate
5 \text{ Su} = 90000;
      strength (Appendix 8)
                                 //[lb/in^2] Yield
6 Sy=37000;
      strength (Appendix 8)
                                 //[lb/in^2] Endurance
  Sni=34000;
      limit (Appendix 8)
                                 //[] Safety factor
8 \text{ SF} = 1.6;
9
                                 //[lb] Load
10 F = 1000;
11 L=12;
                                 //[in] Length of
      cantilever beam
12
                                 //[lb*in] Maximum bending
13 Mmax=F*L;
       moment
                                 //[lb*in] Minimum bending
14 Mmin=0;
       moment
15
16 Csize=0.85
                                 //[] Assuming 0.5 < D < 2 in
17 Ctype=1;
                                 //[] Bending stress
18 Csurface=1;
                                 //[] As surface is
      polished
19
                                 //[lb*in] Alternating
20 Malt = (Mmax - Mmin)/2;
      bending moment
21
                                 //[lb*in] Mean bending
22 Mmean = (Mmax + Mmin)/2;
```

moment

```
23
24 Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified
     endurance limit
25
26 Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section
     modulus
27
28 D=(32*(Z)/\%pi)^(1/3);
                         //[in] Diameter of bar
29
30 mprintf('\n The required diameter of bar using the
     soderberg method is %f in.',D);
31
32 //Note that the modified Goodman results in a less
     conservative size as would be expected from
     figure 5.10
```

Scilab code Exa 5.4 Design of Water Pump Connecting Rod

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-5.4 Page No.98 n');
5 \text{ Su} = 95000;
                            //[lb/in^2] Ultimate strength
                            //[lb/in^2] Yield strength
6 Sy=60000;
7 \text{ SF} = 1.5;
                            //[] Safety factor
                           //[lb] Maximum load
9 \text{ Fmax} = 1000;
                           //[lb] Minimum load
10 Fmin = -6000;
11
12 Fmean=(Fmax+Fmin)/2;
                          //[lb] Mean load
13 Fmean=abs(Fmean);
                           //[lb] Considering absolute
      value
14 Falt=(Fmax-Fmin)/2;
                           //[lb] Alternating load
```

```
15
16 Csize=1
                           //[] Assuming b<0.5 in
                           //[] Axial stress
17 Ctype=0.8
                           //[] Machined surface Figure
18 Csurface=0.86
      5.7b
19
20 Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2]
      Modified endurance limit
21
                                      //[in^2] Area of
22 A = ((Fmean/Sy) + (Falt/Sn)) * SF;
      cross section of rod
23
24 b=sqrt(A);
                                      //[in] Side of
      square cross section
25
26 mprintf('\n The required square size in the center
      section is %f in.',b);
```

Scilab code Exa 5.5 Factor of Safety for Design with Stress Concentration Factor

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-5.5 Page No.100\n');
4
                               //[lb/in^2] Ultimate
5 \text{ Su} = 80000;
      strength
6 Sy=71000;
                               //[lb/in^2] Yield strength
8 D=0.6;
                               //[in] Diameter of shaft
                               //[in] Diameter of shaft
9 d=0.5;
      at notch
10 r = 0.05;
                               //[in] Radius of notch
                               //[in^3] Polar section
11 Z=\%pi*d^3/16;
```

```
modulus
12 Tmax = 200;
                                //[lb*in] Maximum load
13 Tmin=0;
                                //[lb*in] Minimum load
14
15 Smax = Tmax/Z;
                                //[lb/in^2] Maximum stress
16 Smin=Tmin/Z;
                                //[lb/in^2] Minimum stress
17
18 Smean = (Smax + Smin)/2;
                                //[lb/in^2] Mean stress
                                //[lb/in^2] Alternating
19 Salt = (Smax - Smin)/2;
      stress
20
                                //[] Assume 0.5 < D < 2 in
21 \text{ Csize} = 0.85;
22 Csurface=0.88;
                                //[] Machined surface
      Figure 5.7b
23 Ctype=0.6;
                                //[] Torsional stress
24
  Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2]
      Modified endurance limit
26
                                //[] (D/d)=1.2, (r/d)=0.1
27 \text{ Kt} = 1.32;
      from Appendix 6c
28
29 N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety
      factor
30
31 mprintf('\n The factor of safety for this design is
      %f',N);
```

Scilab code Exa 5.6 Factor of Safety for Design when Desired Life is known

```
5 //From Example Problem 5.5
6 Sy=71000;
                               //[lb/in^2] Yield strength
                               //[lb/in^2] Maximum stress
7 \text{ Smax} = 8148.7331 ;
                               //[lb/in^2] Minimum stress
8 \text{ Smin=0};
                               //[lb/in^2] Mean stress
9 Smean=(Smax+Smin)/2;
                               //[lb/in^2] Alternating
10 Salt=(Smax-Smin)/2;
      stress
                               //[lb/in^2] Modified
11 Sn=18000;
      endurance strength
12 Kt=1.32
                               //[] Stress concentration
      factor
13
                               //[cycles] Desired life
14 \text{ Nd} = 100000;
15
                                      //[lb/in^2]
16 Snn=Sn*(10^6/Nd)^0.09;
17
18 N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of
      safety
19
20 mprintf('\n The new factor of safety for this
      condition is %f.',N);
```

Fasteners and Fastening Methods

Scilab code Exa 6.1 Torquing Method

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-6.1 Page No.120\n');
5 As=0.334;
                           //[in^2] Tensile stress area
     (Table 6.1)
                           //[lb/in^2] Proof strength (
6 Sp=85000;
     Table 6.3)
7 D=3/4;
                           //[in] Nominal diameter of
     thread
9 Fi=0.85*As*Sp;
                          //[lb] Desired intial preload
10 C=0.2;
                          //[] Torque coefficient
11
12 T=C*D*Fi;
                          //[in*lb] Torque
13
14 mprintf('\n The required torque is %f lb*in.',T);
```

Scilab code Exa 6.2 Turn of Nut Method

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-6.2 Page No.121\n');
                           //[in] Length of engagement
5 L=5;
                           //[lb/in^2] Modulus of
6 E=30*10^6;
      elasticity
  As = 0.334;
                           //[in^2] Tensile stress area
      (Table 6.1)
  Sp = 85000;
                           //[lb/in^2] Proof strength (
     Table 6.3)
9 Fi=0.85*As*Sp;
                           //[lb] Desired intial preload
10
                           //[in] Elongation
11 Delta=Fi*L/(As*E)
12
                           //[in] Pitch for 3/4 UNC
13 pitch=0.1;
14 TA=Delta*360/pitch;
                           //[Degree] Torque angle
15
16 mprintf('\n The angle of rotation needed is %f
      degree.', TA);
```

Scilab code Exa 6.3 Elastic Analysis of Bolted Connections

Scilab code Exa 6.4 Elastic Analysis of Bolted Connections

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-6.4 Page No.124\n');
5 Dp = 20;
                           //[in] Pressure vessel head
      diameter
6 Ds=1.25;
                           //[in] Stud diameter
                           //[in] Stud length
7 Ls=6;
                           //[in^2] Clamped area of
8 \text{ Af} = 50;
      flanges
10 E=30*10^6;
                           //[lb/in^2] Modulus of
      elasticity
                           //[] Torque coefficient
11 C=0.15;
                           //[lb/in^2] Proof strength (
12 Si=120000;
      Table 6.3)
13 A=1.073;
                            //[in^2] Tensile stress area
      (Table 6.1)
```

```
14
15 Fi=0.9*Si*A;
                            //[lb] Desired intial load
16
                            //[lb*in] Torque
17 T=C*Ds*Fi;
18
19 mprintf('\n1. The required torque is %f lb*in.',T);
20
                             //[lb/in^2] Pressure inside
21 \text{ Pp} = 500;
      the pressure vessel
  Ap = \%pi * Dp^2/4;
                             //[in^2] Pressure vessel
      head cross section area
23
24 Kb = A * E/Ls;
                             //[lb/in] Stiffness per stud
25 Kf = Af *E/Ls;
                             //[lb/in] Stiffness per
      flange
  Fe=Pp*Ap;
                             //[lb] Force on pressure
      vessel head
27
  Ft=10*Fi+(10*Kb/(10*Kb+Kf))*Fe; //[lb] Total load
28
      on the bolt
29
30 mprintf('\n2. The total load on the bolt is %f lb.',
      Ft);
```

Impact and Energy Analysis

Scilab code Exa 7.1 Impact Energy

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-7.1 Page No.137\n');
4
5 D=2;
                          //[in] Diameter of bar
6 W = 500;
                          //[lb] Weight
7 h = 1;
                          //[in] Height from which the
      weight falls
                          //[in^2] Area of cross section
8 A = \%pi * D^2/4;
       of bar
9 L=10;
                          //[in] Length of bar
                          //[lb/in^2] Modulus of
10 E=30*10^6;
      elasticity
11
12 S=(W/A)+(W/A)*(1+(2*h*E*A/(L*W)))^(0.5); //[lb/in
      ^2] Stress in the bar
13
14 mprintf('\n Stress in the bar is %f lb/in^2.',S);
15
                          //[in] Deflection
16 Delta=S*L/E;
```

Scilab code Exa 7.2 Velocity and Impact

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-7.2 Page No.139 n');
4
                        //[lb]
5 W = 2000;
                                Weight of automobile
                        //[in]
6 L = 36;
                                Length of stop
                        //[in] Diameter of steel bar
7 D=2;
8 V = 5*5280*12/3600;
                        //[in/s] Velocity of automobile
10 A = \%pi * D^2/4;
                        //[in^2] Area of cross section
      of bar
11 E=30*10^6;
                        //[lb/in^2] Modulus of
      elasticity
12
13 k=A*E/L;
                        //[lb/in] Stiffness of the bar
14 g = 386;
                        //[in/s^2] Acceleration due to
      gravity
15
16 Delta=\operatorname{sqrt}(2/k*W*(V^2/(2*g)+0)); //[in] Deflection
17
18 mprintf('\n The deflection in the bar is %f in.',
      Delta);
19
                        //[in] Stress in the bar
20 S=Delta*E/L;
21
22 //Note-In the book Delta=0.124 is used instead of
      Delta = 0.123800
23
24 mprintf('\n The stress in the bar is \%f lb/in^2.',S)
```

;

Scilab code Exa 7.3 Impact on Beam

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-7.3 Page No.141\n');
5 W = 3000;
                            //[lb] Weight of automobile
6 L=40*12;
                            //[in] Length of the beam
                            //[in^4] Moment of inertia of
7 I = 64.2;
       the beam
8 \text{ Sy} = 48000;
                            //[lb/in^2] Yield strength of
       the beam
9 c = 8/2;
                            //[in] Distance from the
      outermost fiber to neutral axis
                            //[lb/in^2] Modulus of
10 E=30*10^6;
      elasticity
                            //[ft/s^2] Acceleration due
11 g=32.2;
      to gravity
12
13 M=I*Sy/c;
                            //[lb*in] Moment at which
     beam will yield
14 F = 4 * M/L;
                            //[lb] Force at which beam
      will yield
15
16 Delta=F*L^3/(48*E*I);
                            //[in] Deflection
17 KE=F*Delta/2;
                            //[lb*in] Kinetic energy
18
19 V = sqrt(2*g*KE/W);
                            //[in/s] Velocity
                            //[miles/hr] Velocity
20 V = V / 5280 * 3600;
21
22 mprintf('\n At %f miles/hr velocity the beam will
      yield.',V);
```

Scilab code Exa 7.4 Designing for Impact

```
1 clc;
2 clear;
3 mprintf ('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-7.4 Page No.143\n');
4
5 D=3/4;
                           //[in] Diameter of the bolt
                           //[in^2] Area of thread
6 \text{ At} = 0.334;
7 As = \%pi * D^2/4;
                           //[in^2] Area of shank
9 //Note-In the book As=0.442 in 2 is used instead of
      As = 0.4417865 in.
10
                           //[lb/in^2] Modulus of
11 E=30*10^6;
      elasticity
12 Lt=2;
                           //[in] Length of the thread
                           //[in] Length of the shank
13 Ls=6;
                           //[in] Height from which the
14 h=0.03;
      weight falls
15 \text{ W} = 500;
                           //[lb] Falling load
16
                           //[lb/in] Stiffness of
17
  Kt = At * E / Lt;
      threaded portion
                           //[lb/in] Stiffness of shank
18 Ks=As*E/Ls;
19
20 K=Kt*Ks/(Kt+Ks);
                           //[lb/in] Overall stiffness
21
22 Delta=(W/K)+(W/K)*sqrt(1+2*h*K/W); //[in] Deflection
23
24 A = [Ls/E, Lt/E; 0.442, -0.334];
25 b=[Delta; 0];
26 S=A \setminus b;
27
```

```
//[lb/in^2] Maximum stress in
28 S=max(S);
      the bolt
29
30 \ // Note-In the book Delta=0.0048 in is used instead
      of Delta = 0.0047619 in.
31
32 mprintf('\n The maximum stress in this bolt is %f lb
      /in^2.',S);
33
                        //[in] Length when shank has
34 Ln=8;
      same area as threads
35 \text{ Kn}=At*E/Ln;
                         //[lb/in] Stiffness
36 Deltan = (W/Kn) + (W/Kn) * sqrt (1+2*h*Kn/W);
                                              //[in]
      Deflection
                        //[ln/in^2] Stress
37 S=Deltan*E/Ln;
38
39 mprintf('\n If shank has the same area as threads
      then stress is %f lb/in^2 and deflection is %f in
      .',S,Deltan);
```

Spring Design

Scilab code Exa 8.1 Design of Helical Compression Spring

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-8.1 Page No.160\n');
4
                         //[in] Mean diameter of spring
5 \text{ Dm} = 0.625;
                       //[lb] Load
6 F = 35;
7
                      //[] Wahl factor for Dm/Dw=6.25 (
9 K=1.25;
      figure 8.8)
10 Q = 190000;
                      //[lb/in^2] Expected ultimate
      strength
11
                      //[] Loading factor
12 LF=0.263;
13
14 Dw = (K*8*F*Dm/(LF*\%pi*Q))^(1/2.846); //[in] Wire
      diameter
15
16 mprintf('\n The wire diameter of spring is %f in.',
      Dw);
```

Scilab code Exa 8.2 Determination of number of coils

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-8.2 Page No.163\n');
4
5 \text{ Dw} = 0.105;
                       //[in] Wire diameter
6 \text{ Dm} = 0.620;
                       //[in] Mean diameter of spring
7 F = 35;
                       //[lb] Load
8 G=11.85*10^6;
                       //[lb/in^2] Shear modulus of
      elasticity
                      //[in] Deflection
  Delta=0.5;
10
11 Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active
      coils
12
13 Nat=Na+2;
                       //[] Total number of coils
14
                       //[in] Free length of spring
15 Lf = 2;
16
                      //[in] Pitch (Table 8.1)
17 P=(Lf-2*Dw)/Nat;
18
19 mprintf('\n Pitch is %f in.',P);
20
21 k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate
22
23 mprintf('\n Spring rate is %f lb/in.',k);
24
25 mprintf('\n The total number of coils necessary to
      meet design criteria are %f.', Nat);
26
```

Scilab code Exa 8.3 Stability of Spring

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
      \n EXAMPLE-8.3 Page No.165\n');
4 Lf = 2;
                     //[in] Free length of spring
5 \text{ Dm} = 0.620;
                     //[in] Mean diameter of spring
6
7 R = Lf/Dm;
                     //[] Free lengtth to mean diameter
      ratio
9 mprintf('\n The ratio of the free length of spring
      to mean diameter of spring is %f.',R);
10 mprintf(' From Figure 8.9 for squared and ground
      ends, this is a stable spring.');
```

Scilab code Exa 8.4 Deflection of Spring

Scilab code Exa 8.5 Flat Springs

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-8.5 Page No.166\n');
4
                           //[in] Width of plate
5 b=12;
                           //[in] Thickness of plate
6 h = 1;
                           //[in] Length of plate
7 L=72;
8 I=b*h^3/12;
                           //[in^4] Moment of inertia
9
10 Delta=4;
                           //[in] Deflection
                           //[lb/in^2] Modulus of
11 E=10*10^6;
      elasticity
12
                          //[lb] Force
13 F=3*Delta*E*I/L^3;
14
15 mprintf('\n The force at this point is %f lb.',F);
16
                           //[lb/in] Stiffness
17 k=F/Delta;
18
19 mprintf('\n stiffness is %f lb/in.',k);
20
21 // Note: The deviation of answer from the answer
      given in the book is due to round off error.(In
```

```
the book values are rounded while in scilab actual values are taken)

22
23 //Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)
```

Scilab code Exa 8.6 Energy from Deflection

Pneumatic and Hydraulic Drives

Scilab code Exa 10.1 Calculation of Hydraulic Cylinder Diameter and Standard Rod Size

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-10.1 Page No.195\n');
4
5 P = 100;
                          //[lb/in^2] Hydraulic pressure
6 F = 450;
                          //[lb] Extension force
7 Fr = 400;
                          //[lb] Retraction force
9 A=F/P;
                          //[in^2] Cross section area
10 D=sqrt(4*A/%pi); //[in] Bore of cylinder
11
12 mprintf('\n The bore of cylinder is \%f in.',D);
13
14 //Use 2.5 in bore cylinder
                          //[in] Bore of cylinder
16 Dm = 2.5;
17 Dr = 1;
                          //[in] Diameter of rod
```

```
18 A2=\%pi*Dm^2/4-\%pi*Dr^2/4; //[in^2]
                          //[lb] Force
19 F2=P*A2;
20
21 if F2 >= Fr then
22
       mprintf('\n The diameter of rod is %f in.',Dr);
23 else
       mprintf('\n This would not meet requirement');
24
25 end
26
27 //This would meet requirement
28
29 Ab = \%pi * Dm^2/4;
                         //[in^2] Cross section area
30 //Note-In the book V=180.7 is used instead of V
      =180.64158
                         //[in] stroke
31 d=20;
32 V = Ab*d + A2*d;
                         //[in^3] Volume per cycle
                         //[s] Cycle time
33 t=2;
34 \text{ FR=V/t};
                         //[in^3/s] Flowrate
35
36 FR=FR*7.48*60/1728; //[gal/min] Flowrate
37
38 mprintf('\n Flow rate required is %f gal/min.',FR);
```

Scilab code Exa 10.2 Pneumatic Pop Rivet Gun

```
10 Do=1;
                            //[in]
                            //[in]
11 Ao = \%pi * Do^2/4;
                           //[lb/in^2]
12 Po=F1/Ao;
13
14 mprintf('\n The oil pressure is \%f lb/in^2.',Po);
15
                            //[in]
16 D2o=3;
                           //[in^2]
17 A2o = \%pi * D2o^2/4;
18 F2=Po*A2o;
19
20 mprintf('\n Force F on piston rod is %f lb.',F2);
21
22 D = 1;
                            //[in]
                            //[in]
23 d=4;
                            //[in^2]
24 A = \%pi * D^2/4;
25
                            //[in^3]
26 \ V = A * d;
27
28 mprintf('\n The volume in 1-inch cylinder for the 4-
      inch travel is %f in 3.',V);
29
                           //[in^2]
//[in]
30 \quad A3 = \%pi * 3^2/4;
31 \ 13 = V/A3;
32
33 mprintf('\n Travel for 3-inch cylinder is %f in.',13
      );
```

Gear Design

Scilab code Exa 11.1 Double Reduction Spur Gear Set

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-11.1 Page No.217 n');
4
5 N2 = 60;
6 \text{ N1=20};
7 N3 = 20;
8 N4 = 60;
10 Vr = (N2/N1) * (N4/N3);
11
12 //Output speed
13 \text{ n1} = 3600;
14 n4=n1/Vr;
15
16 mprintf('\n The output speed is %f rpm.',n4);
17
18 //Output torque
19 T1 = 200;
20 \text{ T4=T1*Vr};
```

```
21
22 mprintf('\n The output torque is %f lb*in.',T4);
23
24 //Input horsepower
25 hpi=T1*n1/63000;
26
27 mprintf('\n The input horsepower is %f hp.',hpi);
28
29 //Output horsepower
30 hpo=T4*n4/63000;
31
32 mprintf('\n The output horsepower is %f hp.',hpo);
```

Scilab code Exa 11.2 Double Reduction Spur Gear Set with Idler

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-11.2 Page No.219 n');
4
5 \text{ Na=20};
6 Nb=65;
7 \text{ Nc} = 20;
8 \text{ Nd} = 22;
9 \text{ Ne=60};
10
11 //train value
12 Vr=(Nb/Na)*(Nd/Nc)*(Ne/Nd);
13
14 mprintf('\n Train value = \%f ', Vr);
15
16 //Output speed
17 na=3000;
18 ne=na/Vr;
19
```

```
20 mprintf('\n \Output speed = \%f rpm.',ne);
21
22 //Output torque
23 \text{ Ta} = 10;
24 Te=Ta*Vr;
25
26 mprintf('\n Output torque = \%f lb*in.',Te);
27
28 // Direction
29
30 mprintf('\n Direction\n If Gear A is clockwise,\n
        Gear B is counterclockwise.\n
                                         Gear C is
      counterclockwise.\n
                             Gear D is clockwise. \n
     Gear E is counterclockwise.');
31
32 //Output power
33 P=Te*ne;
34 P=P*\%pi/60;
  mprintf('\n Output power = %f W.',P);
35
```

Scilab code Exa 11.3 Calculation of Pitch Diameter Circular Pitch and Shaft Centre to Centre Distance

```
mprintf('\n Pinion pitch diameter is %f in.',Dp);

13
14 Dg=Ng/Pd;
15
16 mprintf('\n Gear pitch diameter is %f in.',Dg);
17
18 //Circular pitch
19 Pc=%pi*Dp/Np;
20
21 mprintf('\n Circular pitch is %f in.',Pc);
22
23 //Centerline distance
24 CC=(Dp+Dg)/2;
25
26 mprintf('\n Centerline distance is %f in.',CC);
```

Scilab code Exa 11.4 Bevel Gear

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-11.4 Page No.236\n');
4
5 //Torque in input shaft
6 \text{ hp} = 1.5;
7 n=3450;
8 T=63000*hp/n;
10 mprintf('\n Torque in input shaft is %f lb*in.',T);
11
12 //Note-In the book T=27.4 in-lb is used instead of T
      =27.391304
13
14 //Output torque
15 Ng=24;
```

```
16 Np=10;
17 Tout=(Ng/Np)*T;
18
19 mprintf('\n Output torque is %f lb*in.',Tout);
20
21 //Output speed
22 nout=(Np/Ng)*n;
23
24 mprintf('\n Output speed is %f rpm.',nout);
```

Scilab code Exa 11.5 Calculation of Gear Train Value Input and Output Torque and Speed

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
        n EXAMPLE-11.5 Page No.241 n');
5 //Gear train value
6 \text{ Na} = 12;
7 \text{ Nb} = 36;
8 \text{ Nc} = 16;
9 \text{ Nd} = 64;
10 Vr = (Nb/Na) * (Nd/Nc);
11
12 mprintf('\n Gear train value is %f', Vr);
13
14 //Motor torque
15 \text{ hp=1.5};
16 \quad n = 1750;
17 T=63000*hp/n;
18
19 mprintf('\n Motor torque is %f in-lb.',T);
20
21 //Output torque
```

```
22 Tout=T*Vr;
23
24 mprintf('\n Output torque is %f in-lb.', Tout);
25
26 //Output speed
27 nout=n/Vr;
28
29 mprintf('\n Output speed is %f rpm.',nout);
30
31 // Directions
32 mprintf('\n Directions\n Gear A is clockwise.\n
     Gear B is counterclockwise.\n Gear C is
      counterclockwise.\n Gear D is clockwise.');
33
34 //Output power
35 \text{ hp=T*n/63000};
36
37 mprintf('\n Output power is %f hp.',hp);
```

Scilab code Exa 11.6 Precision Spur Gears

and $100 \; {\rm tooth \, \backslash n}$ $-20 \; {\rm tooth}$ and $120 \; {\rm tooth \, . \, ')};$

Spur Gear Design and Selection

Scilab code Exa 12.1 Forces on Spur Gear Teeth

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-12.1 Page No.254\n');
4
5 P = 5;
6 n=1725;
7 T=63000*P/n;
9 // Pitch circle diameter
10 Np=20;
11 Pd=8;
12 Dp=Np/Pd;
13
14 mprintf('\n Pitch circle diameter = \%f in.', Dp);
15
16 //Transmitted force
17 Ft=2*T/Dp;
18
19 mprintf('\n Transmitted force = %f lb.',Ft);
20
```

```
//Separating force
theta=20*%pi/180;
fn=Ft*tan(theta);

mprintf('\n Separating force = %f lb.',Fn);

//Maximum force
Fr=Ft/cos(theta);

mprintf('\n Maximum force = %f lb.',Fr);
```

Scilab code Exa 12.2 Surface Speed

Scilab code Exa 12.3 Strength of Gear Teeth

```
6 Sn=0.5*Su;
7 Y = 0.320;
8 b=1;
9 \text{ Pd=8};
10
11 Fsp=Sn*b*Y/Pd;
12
13 mprintf('\n Force allowable for pinion = \%f lb.', Fsp
      );
14
15 // Gear
16 Sn=0.5*88*10^3;
17 Y = 0.421;
18 Fsg=Sn*b*Y/Pd;
19
20 mprintf('\n Force allowable for gear = %f lb.',Fsg);
```

Scilab code Exa 12.4 Dynamic Load

```
16
17 if (Fs/Nsf)>Fd then
18     mprintf('\n This is an acceptable design.');
19 end
```

Scilab code Exa 12.5 Calculation of Factor of Safety Used in Catalog

```
1 clc;
2 clear;
 3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
        \n EXAMPLE-12.5 Page No.263\n');
 4
 5 \text{ Su} = 55 * 10^3;
6 Sn=0.5*Su;
8 \text{ Np} = 24;
 9 \text{ Pd} = 12;
10 Dp=Np/Pd;
11
12 mprintf('\n Pitch circle diameter = %f in.',Dp);
13
14 n=1800;
15 Vm=%pi*Dp*n/12;
16
17 mprintf('\n Surface speed = %f ft/min.', Vm);
18
19 b=3/4;
20 \quad Y = 0.302;
21 Fs=Sn*b*Y/Pd;
22
23 mprintf('\n Allowable stress = \%f lb.',Fs);
24
25 \text{ Fd=Fs};
26 \text{ Ft} = 600 * \text{Fd} / (600 + \text{Vm});
27
```

```
28 mprintf('\n Force transmitted = %f lb.',Ft);
29
30 T=Ft*Dp/2;
31
32 P=T*n/63000;
33
34 mprintf('\n Power transmitted = %f hp.',P);
35
//Compared to catalog
37 hp_catalog=4.14;
38
39 Nsf=P/hp_catalog;
40
41 mprintf('\n Safety factor = %f .',Nsf);
```

Scilab code Exa 12.6 Spur Gear Design

```
1 clc;
 2 clear;
 3 mprintf ('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
        \n EXAMPLE-12.6 Page No.266\n');
4
 5 // Miscellaneous properties
6 Np=48;
7 \text{ Pd} = 12;
8 Dp=Np/Pd;
9 \text{ Vr} = 3;
10 Ng=Np*Vr;
11
12 //Surface speed
13 n = 900;
14 \text{ Vm} = \text{%pi} * \text{Dp} * \text{n} / 12;
15
16 mprintf('\n Surface speed = %f ft/min.', Vm);
17
```

```
18 //Force on teeth
19 hp=2;
20 \text{ Ft} = 33000 * \text{hp/Vm};
21
22 mprintf('\n Force on teeth = \%f lb.', Ft);
23
24 //Dynamic force
25 \text{ Fd} = (600 + \text{Vm}) * \text{Ft} / 600;
26
27 mprintf('\n Dynamic force = \%f lb.', Fd);
28
29 //Width
30 \text{ Su} = 30 * 10^3;
31 Sn = 0.4 * Su;
32 \quad Y = 0.344;
33 \text{ Nsf} = 2;
34 b=Fd*Nsf*Pd/(Sn*Y);
35 b = round(b);
36
37 mprintf('\n Width = \%f in.',b);
38
39 if (8/Pd) < b \& b < (12.5/Pd) then
         mprintf('\n This is an acceptable design.');
40
41 end
```

Scilab code Exa 12.7 Buckingham Method of Gear Design

```
8 \text{ Pd} = 16;
9 Dp=Np/Pd;
10
11 //Torque
12 n=3450;
13 P=3;
14 T=P*63000/n;
15
16 mprintf('\n Torque = \%f in-lb.',T);
17
18 // Force transmitted
19 Ft=2*T/Dp;
20
21 mprintf('\n Force transmitted = \%f lb.', Ft);
22
23 //Surface speed
24 \text{ Vm} = \text{%pi} * \text{Dp} * \text{n} / 12;
25
26 mprintf('\n Surface speed = \%f ft/min.', Vm);
27
28 //Force allowable
29 \quad Y = 0.337;
30 b=1;
31 Fs=Sn*b*Y/Pd;
32
33 mprintf('\n Force allowable = \%f lb.',Fs);
34
35 //Dynamic load using Buckingham's equation
36 C = 830;
37 \text{ Fd} = \text{Ft} + 0.05 * \text{Vm} * (b * C + \text{Ft}) / (0.05 * \text{Vm} + (b * C + \text{Ft})^0.5);
38
39 \text{ Nsf} = 1.4;
40 if (Fs/Nsf)>Fd then
         mprintf('\n This is a suitable design');
41
42 end
```

Scilab code Exa 12.8 Wear of Gears

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-12.8 Page No.272\n');
5 \text{ Ng} = 42;
6 Np=24;
7 Q=2*Ng/(Ng+Np);
9 Kg = 270;
10 Dp=1.5;
11 b=1;
12
13 Fw = Dp *b *Q *Kg;
14 Fd=699;
15 Nsf=1.2;
16
17 if (Fw/Nsf) < Fd then
       mprintf('\n (Fw/Nsf)<Fd So this would not be
18
           suitable design');
19 end
20
21
  //If the surfaces each had a BHN = 450
22
23 \text{ Kg} = 470;
24 \quad Fw = Dp * b * Q * Kg;
25
26 if (Fw/Nsf) > Fd then
       mprintf('\n\n If the surfaces each had a BHN =
27
           450');
28
       mprintf('\n (Fw/Nsf)>Fd So this would be
           suitable design.');
```

Helical Bevel and Worm Gears

Scilab code Exa 13.1 Helical Gears

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-13.1 Page No.280 n');
5 // Pitch-line velocity
6 \text{ Nt} = 24;
7 \text{ Pd} = 12;
8 Dp=Nt/Pd;
9 n=1750;
10 Vm = \%pi * Dp * n / 12;
11
12 mprintf('\n Pitch-line velocity = \%f ft/min.', Vm);
13
14 //Transmitted force
15 hp=5;
16 Ft = 33000*hp/Vm;
17
18 mprintf('\n Transmitted force = %f lb.',Ft);
19
20 // Axial force
```

```
21  psi=15*%pi/180;
22  Fa=Ft*tan(psi);
23
24  mprintf('\n Axial force = %f lb.',Fa);
25
26  //Separating force
27  theta=20*%pi/180;
28  psit=atan(tan(theta)/cos(psi));
29  Fn=Ft*tan(psit);
30
31  mprintf('\n Separating force = %f lb.',Fn);
```

Scilab code Exa 13.2 Helical Gear Stresses

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-13.2 Page No.282\n');
4
5 //Normal plane pitch
6 \text{ Pd} = 16;
7 psi=45*\%pi/180;
8 Pdn=Pd/cos(psi);
10 mprintf('\n Normal plane pitch = \%f in.', Pdn);
11
12 N = 24;
13 S = 30000;
14 b=0.5;
15 Ne=N/cos(psi)^3;
16 \quad Y = 0.427;
17 Fs=S*b*Y/Pdn;
18
19 mprintf('\n Allowable force = \%f lb.',Fs);
20
```

```
21 \text{ Dp} = 24/16;
22 n = 600;
23 Vm = \%pi * Dp * n / 12;
24
25 mprintf('\n Surface speed = \%f ft/min.', Vm);
26
27 Ft=Fs/((600+Vm)/600);
28
29 mprintf('\n Force transmitted = \%f lb.', Ft);
30
31 P=Ft*Vm/33000;
32
33 mprintf('\n Power rating = \%f hp.',P);
34
35 //Note-There is an error in the answer given in
      textbook
```

Scilab code Exa 13.3 Bevel Gear Forces

```
16
17 //Transmitted force
18 \quad n = 2200;
19 P=8;
20 T = 63000 * P/n;
21
22 \text{ Ft}=2*T/Dp;
23
24 mprintf('\n Transmitted force = \%f lb.', Ft);
25
26 // Separating force - Pinion
27 Fnp=Ft*tan(theta)*cos(Yp);
28
29 mprintf('\n Separating force-Pinion = \%f lb.', Fnp);
30
31 // Separating force-Gear
32 Fng=Ft*tan(theta)*cos(Yg);
34 mprintf('\n Separating force = \%f lb.',Fng);
35
36 // Axial force-Pinion
37 Fap=Ft*tan(theta)*sin(Yp);
38
39 mprintf('\n Axial force-Pinion= \%f lb.', Fap);
40
41 // Axial force—Gear
42 Fag=Ft*tan(theta)*sin(Yg);
43
44 mprintf('\n Axial force-Gear = \%f lb.', Fag);
```

Scilab code Exa 13.4 Worm Gear Forces

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
```

```
\n EXAMPLE-13.4 Page No.288\n');
5 // Pitch diameter
6 Ng=60;
7 Pd=6;
8 Dp=Ng/Pd;
10 mprintf('\n Pitch diameter = \%f in.', Dp);
11
12 // Circular pitch
13 Pc=%pi*Dp/Ng;
14
15 mprintf('\n Circular pitch = \%f in.', Pc);
16
17 L=Pc;
18
19 //Lead angle
20 D=2;
21 LA = atan(L/(\%pi*D));
22 LA = LA * 180 / \%pi;
23
24 mprintf('\n Lead angle = \%f deg.', LA);
25
26 // Centerline distance
27 CC = (D+Dp)/2;
28
29 mprintf('\n Centerline distance = \%f in.',CC);
30
31 // Velocity ratio
32 Ntgear = 60;
33 Nstarts_worm=1;
34 Vr=Ntgear/Nstarts_worm;
35
36 mprintf('\n Velocity ratio = \%f', Vr);
37
38 //Output speed
39 \text{ nin} = 1750;
40 \text{ nout=nin/Vr};
```

Scilab code Exa 13.5 Calculation of Normal Circular Pitch Dynamic Load Force Allowable

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-13.5 Page No.292\n');
5 //Normal circular pitch
6 \text{ Pc=0.524};
7 LA=4.77*\%pi/180;
8 \text{ Pcn=Pc*cos}(LA);
10 mprintf('\n Normal circular pitch = \%f in.', Pcn);
11
12 //Force transmitted
13 hp=5;
14 n = 29.2;
15 T=63000*hp/n;
16 Dp = 10;
17 Ft=2*T/Dp;
18
19 mprintf('\n Force transmitted = \%f lb.', Ft);
20
21 \ Vm = \%pi * Dp * n / 12;
22
23 //Dynamic load
24 Fd = (1200 + Vm) * Ft / 1200;
25
26 mprintf('\n Dynamic load = \%f lb.', Fd);
27
28 // Force allowable
```

```
29  Su=95*10^3;
30  Y=0.392;
31  b=1;
32  Sn=0.5*Su;
33  Fs=Sn*Y*b*Pcn/%pi;
34
35  mprintf('\n Force allowable = %f lb.',Fs);
36
37  //Safty factor
38  Nsf=Fs/Fd;
39
40  mprintf('\n Safty factor = %f .',Nsf);
41
42  //Note-There is an error in the answer given in textbook
```

Scilab code Exa 13.6 Efficiency of Worm Gear Drive

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-13.6 Page No.294 n');
4
5 // Efficiency
6 LA=4.77*\%pi/180;
7 f = 0.03;
8 e=tan(LA)*(1-f*tan(LA))/(f+tan(LA));
10 mprintf('\n Efficiency = \%f .',e);
11
12 //Torque input
13 hp=5;
14 n=1750;
15 T=63000*hp/n;
16
```

```
17 mprintf('\n Torque input = %f in-lb.',T);
18
19 Vr=60;
20 Tout=0.73*Vr*T;
21
22 mprintf('\n Output torque = %f in-lb.',Tout);
```

Scilab code Exa 13.7 Heat Generated

Belt and Chain Drives

Scilab code Exa 14.1 Calculation of Front Force Net Driving Force Force on Shaft etc

```
1 clc;
2 clear;
3 mprintf ('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-14.1 Page No.306\n');
4
5 //Torque on small pulley
6 \text{ hp=2};
7 n = 2450;
8 T=63000*hp/n;
10 mprintf('\n Torque on small pulley = \%f in-lb.',T);
11 r=6/2;
12 Fd=T/r;
13
14 //Front force
15 Fb=10;
16 Ff = Fd + Fb;
17
18 mprintf('\n Front force = %f lb.', Ff);
19
```

```
20 //Force pulling the shafts
21 Ft=Ff+Fb
22
23 mprintf('\n Force pulling the shafts = \%f lb.', Ft);
24
25 //Surface speed
26 D = 2 * r;
27 \text{ Vm} = \% \text{pi} * \text{D} * \text{n} / 12;
28
29 mprintf('\n Surface speed = \%f ft/min.', Vm);
30
31 //Ratio
32 D2 = 10;
33 \text{ Mw} = D2/D;
34
35 mprintf('\n Ratio = \%f .', Mw);
36
37 //Output speed
38 \text{ no=n/Mw};
39
40 mprintf('\n Output speed = %f rpm.',no);
41
42 //Note-There is an error in the answer given in
      textbook
```

Scilab code Exa 14.2 Calculation of Angle of Contact Length of Belt Ratio and Surface Speed etc

```
7 D1 = 4;
8 D2=6;
10 L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);
11
12 //Assuming a 54-inch belt is available
13 L=54;
14
15 mprintf('\n Length of belt = \%f in.',L);
16
17 // Centerline distance
18 B=4*L-6.28*(D2+D1);
19
20 C=(B+sqrt(B^2-32*(D2-D1)^2))/16;
21
22 mprintf('\n Centerline distance = \%f in.',C);
23
24 // Ratio
25 \text{ Mw}=D2/D1;
26
27 mprintf('\n Ratio = \%f.', Mw);
28
29 //Surface speed
30 n = 1800;
31 Vm = \%pi * D1 * n / 12;
32
33 mprintf('\n Surface speed = \%f ft/min.', Vm);
34
35 //Angle of contact
36
37 theta=180-2*(180/\%pi)*asin((D2-D1)/(2*C));
38
39 mprintf('\n Angle of contact = \%f deg.', theta);
```

Scilab code Exa 14.3 V Belts

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-14.3 Page No.315\n');
5 //Power rating of belt
6 P1 = 27 + 2.98;
7 \text{ SF} = 1.5;
8 P=P1/SF;
9 P=round(P);
10
11 mprintf('\n Power rating = \%f hp.',P);
12
13 //Length of belt
14 C = 20;
15 D1=8;
16 D2 = 16;
17 L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);
18
19 //Use an 80-inch belt
20 L=80;
21
22 mprintf('\n Length of belt = \%f in.',L);
```

Scilab code Exa 14.4 Chain Drive

```
9 \text{ Nti} = 12;
10 N1=1800;
11 N2 = 900;
12
13 //Output sprocket
14 Nto=(N1/N2)*Nti;
15
16 mprintf('\n Number of tooth on output sprocket = \%f.
       ', Nto);
17
18 //Surface speed
19 Pc=0.5;
20 D1=Pc*Nti/\%pi;
21 n = 1800;
22 \text{ Vm} = \text{%pi} * D1 * n / 12;
23
24 mprintf('\n Surface speed = \%f ft/min.', Vm);
25
26 mprintf('\n Type of lubrication - Bath or disc
       lubrication');
27
28 //Length of chain
29 C = 10;
30 D2=Pc*Nto/%pi;
31
32 L1 = 2 * C + 1.57 * (D1 + D2) + (D2 - D1)^2/(4 * C);
33
34 //Use 29 or 30 inch chain
35
36 L=30;
37
38 mprintf('\n Length of chain = \%f in.', L);
39
40 \text{ hp=5.31};
41
42 T=63000*hp/n;
43
44 F = 2 * T/D1;
```

```
45
46 mprintf('\n Force in chain = %f lb.',F);
47
48 //Comparism with ultimate strength 3700 lb - not a valid comparison because of speed etc.
```

Keys and Couplings

Scilab code Exa 15.1 Design of Keys

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-15.1 Page No.332 n');
4
5 //Torque
6 P=5;
7 n=1750;
8 T=63000*P/n;
10 mprintf('\n Torque = \%f in-lb.',T);
11
12 //Length of key for shear
13 Su = 61000;
14 Ss=0.5*Su;
15 b=0.125;
16 D = 0.5;
17 Ls1=2*T/(Ss*b*D);
18 SF = 2.5;
19
20 Ls=SF*Ls1;
```

```
21
22 mprintf('\n Length of key for shear = %f in.',Ls);
23
24 //Length of key for compression
25 Sc=51000;
26 t=0.125;
27 Lc1=4*T/(Sc*t*D);
28
29 Lc=SF*Lc1;
30
31 mprintf('\n Length of key for compression = %f in.', Lc);
```

Scilab code Exa 15.2 Splines

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-15.2 Page No.335 n');
4
5 //Torque capacity
6 Ss = 30500;
7 D=1;
8 L=2;
9 T1=Ss*%pi*D^2*L/16;
10
11 SF=2;
12
13 T=T1/SF;
14
15 mprintf('\n Torque capacity 1 = \%f in-lb.',T);
16 n=6;
17 d=0.81;
18 A = (D-d)*L*n/2;
19
```

```
20 S=1000;
21 rm=(1+0.810)/4;
22
23 T2=S*A*rm;
24
25 mprintf('\n Torque capacity 2 = %f in-lb.',T2);
```

Clutches and Brakes

Scilab code Exa 16.1 Calculation of Torque and Power

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-16.1 Page No.358\n');
5 //Torque capacity
6 \text{ f=0.3};
7 N = 120;
8 \text{ ro=} 12;
9 \text{ ri} = 9;
10 Tf = f * N * (ro + ri) / 2;
11
12 mprintf('\n Torque capacity = \%f in-lb.',Tf);
13 n = 2000;
14 //Power
15
16 Pf=Tf*n/63000;
17
18 mprintf('\n Power = \%f hp.', Pf);
```

Scilab code Exa 16.2 Determination of Breaking Torque

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-16.2 Page No.359 n');
5 //Normal force
6 W = 100;
7 L=20;
8 a=4;
9 N=(W*L)/a;
10
11 mprintf('\n Normal force = \%f lb.', N);
12
13 //Torque friction
14 \text{ f=0.4};
15 D=12;
16 Tf = f * N * D / 2;
17
18 mprintf('\n Torque friction = \%f in-lb.', Tf);
```

Scilab code Exa 16.3 Torque Transmitting Capacity

```
8 rm=12/2;
9 Fa=75;
10 Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));
11
12 mprintf('\n Torque capacity (alpha=20 deg.) = %f in-lb.',Tf);
13
14 //For alpha=10 deg.
15 alpha=10*(%pi/180);
16 Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));
17
18 mprintf('\n Torque capacity (alpha=10 deg.) = %f in-lb.',Tf);
```

Scilab code Exa 16.4 Calculation of Stopping Force Torque per Brake Normal Brake Force etc

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-16.4 Page No.361\n');
4
5 //Stopping rate
6 V = 60*5280/3600;
7 Va=0.5*V;
8 D=400;
9 t=D/Va;
10 a=V/t;
11
12 mprintf('\n Stopping rate = \%f ft/sec^2.',a);
13
14 //Stopping force
15 \quad W = 40000;
16 \text{ g=} 32.2;
17 F=W*a/g;
```

```
18
19 //Torque
20 r = 36/2;
21 T=F*r;
22
23 mprintf('\n Torque = \%f in-lb.',T);
24
25 //For each wheel
26 T=T/10;
27
28 //Braking normal force
29 \text{ rm} = 10;
30 \text{ f=0.4};
31 N=T/(f*rm);
32
33 mprintf('\n Braking normal force = %f lb.',N);
34
35 //Note-There is an error in the answer given in
      textbook
```

Scilab code Exa 16.5 Rotational Inertia and Brake Power

```
13 mprintf('\n Kinetic energy to be absorbed = \%f ft-lb
      .', KE);
14
15 //Temperature rise
16 Uf = KE;
17 Wb = 40;
18 c = 93;
19 deltaT=Uf/(Wb*c);
20
21 mprintf('\n Temperature rise = \%f deg.',deltaT);
22
23 //Stopping time
24 a = 20;
25 \text{ t=V/a};
26
27 mprintf('\n Stopping time = \%f sec.',t);
28
29 // Frictional power
30 t = round(t*10)/10;
31 fhp=Uf/(550*t);
32
33 mprintf('\n Frictional power = \%f hp.',fhp)
```

Shaft Design

Scilab code Exa 17.1 Design Stresses in Shaft

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-17.1 Page No.379\n');
4
5 \text{ hp=5};
6 n=1750;
7 T=63000*hp/n;
9 // Torsional stress in the shaft
10 D=0.75;
11 Z1 = \%pi * D^3 / 16;
12
13 Ss=T/Z1;
14
15 mprintf('\n Torsional stress in the shaft = \%f lb/in
      ^{\hat{}}2. ',Ss);
16
17 //Load at the gear pitch circle
18 Nt=40;
19 Pd=10;
```

```
20 \text{ Dp=Nt/Pd};
21
22 Ft=2*T/Dp;
23
24 mprintf('\n Load at gear pitch circle = \%f lb.', Ft);
25
26 //Resultant force on the shaft
27 \text{ theta=}20*\%pi/180;
28 Fr=Ft/cos(theta);
29
30 mprintf('\n Resultant force = \%f lb.',Fr);
31
32 //Maximum moment
33 L=15;
34 \text{ Mm} = \text{Fr} * \text{L}/4;
35
36 mprintf('\n Maximum moment = \%f in-lb.', Mm);
37
38 / Stress
39 D2 = 0.75;
40 Z2=\%pi*D2^3/32;
41 Z2 = round(Z2 * 1000) * 10^{-3};
42
43 S=Mm/Z2;
44
45 mprintf('\n Stress = \%f lb/in^2.',S);
46
47 //Note-There is an error in the answer given in
      textbook
```

Scilab code Exa 17.2 Combined Stresses in Shaft

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
```

```
\n EXAMPLE-17.2 Page No.383\n');

4
5 //Combined stress using the maximum shear stress theorem
6
7 Ss=2170;
8 S=8780;
9 Sr=sqrt(Ss^2+(S/2)^2);
10
11 mprintf('\n Combined stress = %f lb/in^2.',Sr);
```

Scilab code Exa 17.3 Combined Stress Using Maximum Normal Stress Theory

Scilab code Exa 17.4 Comparison of Stresses to Allowable Values and Endurance Limit

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-17.4 Page No.385 n');
5 // Modifying factors for Sn
6 Su = 88000;
7 Csize=0.85;
8 Csurface=0.88;
9 Ctype=1;
10
11 Sn=Csize*Csurface*Ctype*(0.5*Su);
12 Kt = 2.3;
13 S = 9300;
14
15 N=Sn/(Kt*S);
16
17
  if N>2 then
       mprintf('\n It would be an acceptable design.');
18
19 else
20
       mprintf('\n N<2,So this is not a suitable design
           for long term use.');
21
  end
```

Scilab code Exa 17.5 Critical Speed

```
9 F=96;
10 I=%pi*D^4/64;
11
12 delta=F*L^4/(48*E*I);
13 delta=floor(100*delta)*10^-2;
14 Nc=188/sqrt(delta);
15
16 mprintf('\n Critical speed = %f rpm.',Nc);
```

Power Screws and Ball Screws

Scilab code Exa 18.1 Torque and Power in Power Screw

Scilab code Exa 18.2 Efficiency of a Power Screw

```
1 clc;
```

```
2 clear;
3 mprintf ('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-18.2 Page No.400 n');
4
5 //Lead angle
6 L=1/3;
7 Dp=1.354;
8 LA = atan(L/(%pi*Dp));
10 mprintf('\n Lead angle = \%f deg.', LA*180/\%pi);
11
12 // Efficiency
13 f=0.15;
14 e=tan(LA)*(1-f*tan(LA))/(tan(LA)+f);
15
16 mprintf('\n Efficiency = \%f',e*100);
17
18 //Power
19 n=175;
20 T = 454;
21 P=T*n/63000;
22 \text{ Pt=P*2};
23
24 mprintf('\n Power = \%f hp per lead screw.',P);
25
26 if f>tan(LA) then
27
       mprintf('\n It is self-locking');
28 end
```

Scilab code Exa 18.3 Acme Threads

```
4 L=1/4;
5
6 Dp=1.375;
7 LA=atan(L/(%pi*Dp));
9 mprintf('\n Lead angle = \%f deg.',LA*180/\%pi);
10
11 //Torque
12 phi=14.5*%pi/180;
13 f=0.15;
14 F = 5800;
15 Tup=(F*Dp/4)*(cos(phi)*tan(LA)+f)/(cos(phi)-f*tan(LA)
16
17 mprintf('\n Torque = \%f in-lb.', Tup);
18
19 //Power
20 n = 175 * 4/3;
21 P=Tup*n/63000;
22
23 mprintf('\n Power = %f hp per lead screw.',P)
```

Scilab code Exa 18.4 Torque and Ball Screws

```
11

12 //Power

13 n=175*2/3;

14 P=T*n/63000;

15

16 mprintf('\n Power = %f hp.',P);
```

Plain Surface Bearings

Scilab code Exa 19.1 Shaft Considerations

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       n EXAMPLE-19.1 Page No.417 n');
5 //Length
6 F = 20;
7 n=500;
8 \text{ PV} = 3000;
9 L1=%pi*F*n/(12*PV);
10
11 //Use 7/8-inch or longer bearing
12
13 L=7/8;
14
15 mprintf('\n Length of bearing = \%f in.',L);
16
17 //Maximum pressure
18 A = (3/4) * (7/8);
19 P=F/A;
20
```

```
21 mprintf('\n Maximum pressure = %f lb/in^2.',P);
22
23 //Maximum velocity
24 D=3/4;
25 V=%pi*D*n/12;
26
27 mprintf('\n Maximum velocity = %f ft/min.',V);
```

Scilab code Exa 19.2 Wear

Ball and Roller Bearings

Scilab code Exa 20.1 Life Expectancy of Ball Bearing

Scilab code Exa 20.2 Selection of Bearing to Meet Given Criteria

```
1 clc;
2 clear;
```

```
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
       \n EXAMPLE-20.2 Page No.432\n');
5 //Dynamic load capacity
6 T = 200;
7 n=1750;
8 L=T*n*60/10^6;
9 \text{ Pd} = 2400;
10 Ld=21;
11 Lc=1;
12 k=1/3;
13
14 Cd=Pd*(Ld/Lc)^k
15
16 mprintf('\n Dynamic load capacity required = \%f lb.'
      ,Cd);
17
18 mprintf('\n Bearing 6211 meets this criterion.');
```

Scilab code Exa 20.3 Selection of Bearing to Meet Given Criteria

```
14 Pd=0.56*R+Y*Ft;
15
16 Ld=n*L10*60/10^6;
17 Lc=1;
18 \text{ k=3};
19 Cd=Pd*(Ld/Lc)^(1/k);
20
21 //For bearing number 6215
22
23 Cd1=11400;
24 \text{ Cs1} = 9700;
25
26 // Verify the assumption for Y
27 Ft_Cs1=Ft/Cs1;
28
29 Y = (0.056 - Ft_Cs1) * (1.99 - 1.71) / (0.056 - 0.028) + 1.71;
30
31 Pd=0.56*R+Y*Ft;
32
33 Cd=Pd*(Ld/Lc)^(1/k);
34
35 if Cd>Cd1 then
        mprintf('\n Since Cd of bearing < Cd required,
36
           So bearing number 6215 is not acceptable.');
37 \text{ end}
38
39 //For bearing number 6216
40 \text{ Cd2} = 12600;
41 Cs2=10500;
42
43 Ft_Cs2=Ft/Cs2;
44 Y = (0.056 - Ft_Cs2) * (1.99 - 1.71) / (0.056 - 0.028) + 1.71;
45
46 \text{ Pd=0.56*R+Y*Ft};
48 Cd=Pd*(Ld/Lc)^(1/k);
49
50 if Cd < Cd2 then
```

```
51 mprintf('\n Since Cd of bearing > Cd required,
So bearing number 6215 meets the design
criteria.');
52 end
```

Scilab code Exa 20.4 Life of 6200 Series Bearing

```
1 clc;
2 clear;
3 mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E.
        \n EXAMPLE-20.4 Page No.436\n');
4
5 //Thrust factor
6 \text{ Ft} = 300;
7 Cs = 2320;
8 Ft_Cs=Ft/Cs;
10 Y = (0.17 - Ft_Cs) * (1.45 - 1.31) / (0.17 - 0.11) + 1.31;
12 mprintf('\n Thrust factor = \%f ',Y);
13
14 V = 1.2;
15 \quad X = 0.56;
16 R = 1000;
17
18 P = V * X * R + Y * Ft;
19
20 \text{ Cd} = 3350;
21 Pd=1095;
22 k=3;
23
24 \text{ Ld} = (\text{Cd/Pd})^k * 10^6;
25
26 mprintf('\n Life = \%f revolutions.',Ld);
```