최상위 문제 Lv.1

중2 수학

5.사각형의 성질(01)

1. 다음 그림과 같은 평행사변형 ABCD에서 \overline{DE} 는 $\angle D$ 의 이등분선이고, $\overline{AF} \perp \overline{DE}$ 일 때, \overline{EF} 의 길이를 구하면?

- ① $\frac{23}{5}$ cm
- ③ 5 cm
- $4 \frac{26}{5}$ cm

2. 다음 그림과 같이 $\overline{AB} = 6 \text{ cm}$, $\overline{AD} = 8 \text{ cm}$ 인 평행 사변형 ABCD에서 \overline{CE} 와 \overline{DF} 는 각각 $\angle C$ 와 $\angle D$ 의 이등분선이다. \overline{CE} 와 \overline{DF} 의 교점을 G라 할 때, $\triangle GFC$ 와 $\Box ABCD$ 의 넓이의 비는?

- ① 1:4
- 2 1:5
- ③ 2:11
- ④ 3:16
- (5) 3:20

3. 평행사변형 ABCD에서 $\angle ADH = 16^\circ$, $\angle CDH = 42^\circ$ 이고 점 M은 \overline{AB} 의 중점이다. 점 C에서 \overline{DM} 에 내린 수선의 발을 H라고 할 때, $\angle HBC$ 의 크기는?

- ① $24\,^{\circ}$
- ② 26°
- 328°
- 4) 32 °
- ⑤ 34°

4. 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, 점 D에서 선분 EC에서 내린 수선의 발을 F라고 하자. $\angle FDC = 12\degree$, $\angle B = 79\degree$ 일 때, $\angle AFE$ 의 크기는?

- ① 22 °
- \bigcirc 23 $^{\circ}$
- 327°
- 4) 28°
- ⑤ 29°

5. 평행사변형 ABCD에서 점 A, 점 B, 점 C, 점 D는 각각 \overline{HD} , \overline{AE} , \overline{BF} , \overline{CG} 위의 점이다.

 $\frac{y}{x} \times \frac{w}{z}$ 의 값은?

- ① $\frac{49}{9}$
- ② $\frac{9}{49}$

3 1

- **6.** 그림과 같이 평행사변형 ABCD의 두 꼭짓점 B, D에서 대각선 AC에 내린 수선의 발을 각각 P, Q 라고 하자. $\angle DPC = 55\,^{\circ}$ 일 때, 설명이 옳은 것을 모두 고르면? (정답 2개)

- ① $\angle x = 35^{\circ}$
- $\bigcirc \overline{PD}//\overline{BQ}$

- ⑤ 사각형 PBQD는 마름모이다.

7. 그림에서 $\triangle PBA$, $\triangle QBC$, $\triangle RAC$ 는 $\triangle ABC$ 의 세 변을 각각 한 변으로 하는 정삼각형이다. $\triangle ACB=60^\circ$, $\triangle BAC=85^\circ$ 일 때, $\triangle APQ$ 의 크기는?

- ① $35\degree$
- ② 30°
- 325°
- ④ 20°
- ⑤ 15°

8. 다음 그림과 같이 직사각형 ABCD의 꼭짓점 A에서 대각선 BD에 내린 수선의 발을 H라 하고, $\angle ABD$ 의 이등분선이 \overline{AD} , \overline{AH} 와 만나는 점을 각각 E, F라고 하자. 이때 \overline{AF} 와 길이가 같은 선분은?

- ① \overline{BF}
- $\bigcirc \overline{AE}$
- $\overline{3}$ \overline{BH}
- $\overline{4}$ \overline{EF}
- \bigcirc \overline{FH}

9. $\overline{AB}=5\,\mathrm{cm}$, $\overline{AD}=4\,\mathrm{cm}$ 인 직사각형 ABCD에서 점 M, N은 각각 \overline{AD} , \overline{BC} 의 중점이다. \overline{AM} , \overline{NC} , \overline{BD} 의 교점을 각각 E, F라고 할 때, $\triangle ABE+\triangle NFD$ 의 넓이는?

- ① 3
- 2 4

3 5

4 6

- ⑤ 7
- **10.** 다음 그림과 같은 마름모 ABCD에서 점 O가 두 대각선의 교점, \overline{BC} =15, \overline{BE} = \overline{BF} =9일 때, \overline{OF} 의 길이는?

- ① 1.5
- ② 2
- 3 2.5
- (4) 3
- (5) 3.5
- **11.** 그림과 같은 정사각형 ABCD에서 대각선 BD 위의 한 점을 E라 하고, 두 점 C, E를 이은 연장선이 \overline{AB} 와 만나는 점을 F라 하자. $\angle BCE = 36 \degree$ 일때, $\angle AEF$ 의 크기는?

- ① 16 $^{\circ}$
- ② 18°
- ③ 20°
- 4) 22 °
- \bigcirc 24 $^{\circ}$

12. 그림에서 $\Box ABCD$ 는 정사각형이고, \overline{CD} 위의 점 E에 대하여 \overline{AE} 와 \overline{BD} 가 만나는 점을 F라 하자. $\angle EFC = 34$ 일 때, $\angle FCB$ 의 크기는?

- ① $62\degree$
- ② $63\degree$
- 364°
- 4) 65 °
- ⑤ 66°
- **13.** 한 변의 길이가 $6 \, \mathrm{cm}$ 인 정사각형 ABCD의 두 대각선의 교점을 O라고 하자. 정사각형 OEFG와 정사각형 ABCD가 합동일 때, 두 정사각형이 겹쳐진부분인 $\Box OPCQ$ 의 넓이는?

- $\bigcirc 6 \text{ cm}^2$
- 29 cm^2
- 312 cm^2
- $418 \, \text{cm}^2$
- ⑤ 21 cm²
- **14.** 정사각형 ABCD의 대각선 BD 위의 한 점 E에 대하여 \overline{BC} 의 연장선과 \overline{AE} 의 연장선의 교점을 F라 하자. $\angle AFC = 37\,^\circ$ 일 때, $\angle BEC$ 의 크기는?

- ① 65°
- ② 70°
- 373°
- (4) 80°

15. 정사각형 ABCD에서 점 O는 두 대각선의 교점 이고, $\angle EOF = 90$ 이다. 이 때, $\triangle OBE$ 의 넓이는?

① 6

② 7

3 8

- **4** 9
- ⑤ 12
- **16.** 그림의 등변사다리꼴 ABCD에서 세 점 M, N, P는 각각 \overline{AD} , \overline{BC} , \overline{BD} 의 중점이다. $\angle ABD = 30^\circ$, $\angle BDC = 80^\circ$ 일 때, $\angle PNM$ 의 크기는?

- ① 25°
- ② 30°
- 35°
- 4) 36°
- (5) 38°
- **17.** 직사각형 ABCD에서 $\overline{FB}//\overline{EG}$, $\overline{EH}//\overline{IC}$ 이고 $\square ABCD$ 의 넓이가 $100\,\mathrm{cm}^2$ 일 때, 오각형 EFGHI의 넓이는?

- ① $50 \, \text{cm}^2$
- ② $55 \, \text{cm}^2$
- $360\,\mathrm{cm}^2$
- (4) 65 cm²
- $5 70 \, \text{cm}^2$

18. 다음 그림에서 $\Box ABCD$ 는 평행사변형이고, $\overline{AP}:\overline{PD}=3:2$, $\overline{DQ}:\overline{QC}=2:1$ 이다. $\Box PBQD$ 의 넓이가 $80\,\mathrm{cm}^2$ 일 때, $\triangle ABP$ 의 넓이를 구하면?

- ① 41
- ② 43
- 3 45
- 47
- (5) 49
- 19. 그림과 같이 평행사변형 ABCD에서 \overline{CD} 위의점 E에 대하여 \overline{AE} 와 \overline{BD} 가 만나는 점을 F라고하자. $\triangle ABF$ 의 넓이는 $40\,\mathrm{cm}^2$ 이고, $\triangle BCE$ 의 넓이는 $32\,\mathrm{cm}^2$ 일 때, $\triangle DFE$ 의 넓이는?

- $(1) 8 \text{cm}^2$
- ② 10 cm²
- ③ 12 cm²
- (4) 14 cm²
- $(5) 16 \, \text{cm}^2$
- **20.** 직사각형 ABCD의 한 변 DC 위에 $\overline{DF}=2\overline{FC}$ 가 되도록 점 F를 잡고 \overline{AF} 의 연장선과 \overline{BC} 의 연장선의 교점을 E라 할 때, $\triangle DFE$ 의 넓이는 $\Box ABCD$ 의 넓이의 몇 배인가?

- ① $\frac{1}{8}$ 배
- ② $\frac{1}{6}$ 바
- ③ 5배
- $4 \frac{1}{4}$

정답 및 해설

1) 정답 ③

1등급 공략 Tip

평행사변형의 이웃한 두 각의 합은 $180\degree$ 이라는 점을 활용한다.

문제 분석

다음 그림과 같은 평행사변형 \overline{ABCD} 에서 \overline{DE} 는 $\angle D$ 의 이동분선이고, $\overline{AF} \perp \overline{DE}$ 일 때, \overline{EF} 의 길이를 구하면?

 $\overline{AD}/|\overline{BC}$ 이므로 $\angle ADE=\angle CED$ (엇각)이다. 그러므로 $\triangle CDE$ 는 $\overline{CD}=\overline{CE}$ 인 이동변삼각형이다.

THE 깊은 해설

 $\overline{AD}//\overline{BC}$ 이므로 $\angle ADE = \angle CED$

즉, $\angle CDE = \angle CED$ 이므로 $\overline{CD} = \overline{CE} = 7 \text{ cm}$

∠ BAD+ ∠ ADC = 180° 인데

↳ 평행사변형은 두 쌍의 대변이 서로 평행하므로 이웃하는 두 내각의 합은 180°이다.

 $\angle DAF + \angle ADE = 90$ ° 이므로

 $\angle BAF = \angle DAF$

 $\angle DAF = \angle BFA()$ 억각)이므로

 $\angle BAF = \angle BFA$

 $\stackrel{\triangle}{=}$, $\overline{BA} = \overline{BF} = 7 \text{ cm}$

 $\therefore \overline{EF} = 7 + 7 - 9 = 5 \text{ (cm)}$

 $\downarrow,\quad \overline{\mathit{EF}} = \overline{\mathit{BF}} + \overline{\mathit{CE}} - \overline{\mathit{BC}}$

2) 정답 ④

1등급 공략 Tip

높이가 같은 삼각형의 넓이 비는 밑변 길이의 비와 같다는 점을 활용한다.

그림 분석

나 $\angle C+ \angle D=180$ 이므로 $\angle CGD+ \angle CGD=90$ 이다. 그러므로 $\overline{CF}\perp\overline{DF}$ 이다.

THE 깊은 해설

 $\angle ADC+ \angle BCD=180\,^{\circ}$ 이므로 $\bullet+ imes=90\,^{\circ}$

 $\overline{AD}//\overline{BC}$ 이므로 $\angle EDF = \angle CFG = \bullet$

즉. $\angle CFG = \angle CDG = \bullet$ 이므로 $\overline{CF} = \overline{CD} = 6$ cm

 $\therefore \triangle GFC \equiv \triangle GDC (SAS$ 합동)

나 $\overline{CF} = \overline{CD}$, \overline{CG} 는 공통, $\angle FCG = \angle DCG$

한편, $\square ABCD$ 의 높이를 h라 하면

$$\square ABCD = 8h$$
, $\triangle CDF = \frac{1}{2} \times 6 \times h = 3h$

→ 평행사변형 넓이는 '밑변 × 높이'이다.

$$\Delta \mathit{GFC} = \frac{1}{2} \, \Delta \mathit{CDF} = \frac{1}{2} \times 3h = \frac{3}{2}h$$

따라서 $\triangle \mathit{GFC}$ 와 $\square \mathit{ABCD}$ 의 넓이의 비는

$$\frac{3}{2}h:8h = 3:16$$

3) 정답 ④

1등급 공략 Tip

 \overline{MD} 와 \overline{BC} 의 연장선을 그리고 합동인 삼각형을 찾는다.

전략 분석

 \overline{MD} 연장선과 \overline{BC} 연장선의 교점을 K라 하자. $\triangle AMD = \triangle BMK$ (ASA 합동)이다.

THE 깊은 해설

 \overline{DM} 의 연장선과 \overline{BC} 의 연장선이 만나는 점을 K라고 하자. $\overline{AM} = \overline{BM}$, $\angle DMA = \angle KMB$,

↳ 맞꼭지각

ightarrow $\overline{AD}//\overline{CK}$ 이므로 $\angle MAD = \angle MBK$ (엇각)

 $\angle MAD = \angle MBK$ 이므로 $\triangle AMD \equiv \triangle BMK$ (ASA 합 동)이다. 그러므로 $\overline{BK} = \overline{BC}$ 이다.

 Δ CHK는 \angle CHK = 90 $^{\circ}$ 인 직각삼각형이므로

 $\overline{BH} = \overline{BK} = \overline{BC}$ 이다.

직각삼각형의 외심은 빗변의 중점이다. 점 $B \leftarrow \overline{CK}$ 의 중점이므로 점 $B \leftarrow \Delta CHK$ 의 외심이다. 그러므로 $\overline{BH} = \overline{BK} = \overline{BC}$ 이다.

그러므로 $\triangle BCH$ 는 $\overline{BC}=\overline{BH}$ 인 이등변삼각형이다. $\angle D=58\,^\circ$, $\angle C=122\,^\circ$, $\angle DCH=48\,^\circ$ 이므로 $\angle BCH=\angle BHC=74\,^\circ$ 이다. 그러므로 $\angle HBC=32\,^\circ$ 이다.

4) 정답 ②

1등급 공략 Tip

 \overline{EC} 와 \overline{AD} 의 연장선을 그리고 합동인 삼각형을 찾는다.

전략 분석

니, \overline{EC} 연장선과 \overline{AD} 연장선의 교점을 P라 하자. $\triangle PAE \equiv \triangle CBE$ (ASA 합동)이다.

풀이과정

 \overline{AD} 와 \overline{CE} 의 연장선의 교점을 P라 하자.

 $\triangle APE$ 와 $\triangle BCE$ 에서

 $\overline{AE} = \overline{BE}$, $\angle AEP = \angle BEC$ (맞꼭지각),

 $\angle PAE = \angle CBE$ (엇각)이므로

 $\triangle APE \equiv \triangle BCE(ASA$ 합동)

 $\therefore \overline{AP} = \overline{BC}$

 \overline{AP} = \overline{AD} , $\angle DFP$ = 90 ° 이므로

점 A는 ΔDPF 의 외심이다.

 $\angle ADC = \angle ABC = 79^{\circ}$.

 $\angle ADF = 79^{\circ} - 12^{\circ} = 67^{\circ}$

 $\triangle AEF$ 에서 AD=AF이므로

 $\angle AFD = \angle ADF = 67^{\circ}$

 $\therefore \angle AFE = 90^{\circ} - 67^{\circ} = 23^{\circ}$

1등급 공략 Tip

평행사변형의 특징을 고려해 동위각과 엇각의 크기를 구한

문제 분석

단서 \overline{AB} $//\overline{CD}$, \overline{BC} $//\overline{AD}$

평행사변형 ABCD에서 점 A, 점 B, 점 C, 점 D는 각각 \overline{HD} , \overline{AE} , \overline{BF} , \overline{CG} 위의 점이다. $\frac{y}{x} \times \frac{w}{z}$ 의 값은?

풀이과정

 $\overline{AB}//\overline{DC}$ 이므로

∠ y = ∠ ADC = 126 ° (동위각)

∠ z = 180° - 126° = 54°(엇각)

 $\overline{AD}//\overline{BC}$ 이므로

 $\angle x = \angle DAB = 54^{\circ}$ (동위각)

 $\angle w = \angle ADC = 126$ ° (엇각)

$$\therefore \frac{y}{x} \times \frac{w}{z} = \frac{126}{54} \times \frac{126}{54} = \frac{49}{9}$$

6) 정답 ①, ②

1등급 공략 Tip

평행사변형의 성질을 고려해 합동인 삼각형을 찾는다.

 $\overline{AB}/\overline{CD}$, $\overline{BC}/\overline{AD}$, $\overline{AB}=\overline{CD}$, $\overline{BC}=\overline{AD}$

그림과 같이 평행사변형 ABCD의 두 꼭짓점 B, D에서 대각선 AC에 내린 수선의 발을 각각 P, Q라고 하자. $\angle\,DPC\!=\!55\,^{\circ}$ 일 때, 설명이 옳은 것을 모두 고르면? (정 답 2개)

풀이과정

 $\triangle ABP$ 와 $\triangle CDQ$ 에서

 $\overline{AB} = \overline{CD}$

 $\angle BAP = \angle DCQ$ (엇각)

 $\angle APB = \angle CQD = 90$ ° 이므로

 $\triangle ABP \equiv \triangle CDQ(RHA$ 합동)

 $\therefore \overline{BP} = \overline{DQ} \cdots \bigcirc$

 $\triangle ADP$ 와 $\triangle CBQ$ 에서

 $\overline{AP} = \overline{CQ}, \ \overline{AD} = \overline{CB},$

 $\angle DAP = \angle BCQ$ (엇각)이므로

 $\triangle ADP \equiv \triangle CBQ(SAS$ 합동)

 $\therefore \overline{PD} = \overline{QB} \quad \cdots \bigcirc$

 \bigcirc , \bigcirc 에 의해 $\square PBQD$ 는 평행사변형이다.

① $\angle BPQ = 90^{\circ}$,

 $\angle BQP = \angle DPQ = 55$ ° (엇각)이므로

 $\angle x = 180^{\circ} - (90^{\circ} + 55^{\circ}) = 35^{\circ}$

② $\square PBQD$ 는 평행사변형이므로 PD//BQ

7) 정답 ③

1등급 공략 Tip

정삼각형은 세 변의 길이가 같다는 것을 고려해 합동인 삼 각형을 찾는다.

전략 분석

그림에서 $\triangle PBA$, $\triangle QBC$, $\triangle RAC$ 는 $\triangle ABC$ 의 세 변을 각각 한 변으로 하는 정삼각형이다. $\angle ACB=60\,^\circ$, $\angle BAC=85\,^\circ$ 일 때, $\angle APQ$ 의 크기는?

 \hookrightarrow 정삼각형의 성질을 고려해 $\triangle ABC$ 와 합동인 삼각형을 찾는다.

풀이과정

 $\triangle PBQ$ 와 $\triangle ABC$ 에서

 $\overline{PB} = \overline{AB} \quad \cdots \bigcirc$

 $\overline{BQ} = \overline{BC} \quad \cdots \bigcirc$

 $\angle PBQ + \angle QBA = 60^{\circ}$,

 $\angle QBA + \angle ABC = 60$ 이므로

 $\angle PBQ = \angle ABC \cdots \boxdot$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle PBQ \equiv \triangle ABC (SAS$ 합동)

 $\stackrel{\triangle}{=}$, ∠BPQ=∠BAC=85°

∠ *BPA* = 60 ° 이므로

 $\angle APQ = 85^{\circ} - 60^{\circ} = 25^{\circ}$

8) 정답 ②

1등급 공략 Tip

직각삼각형에서 직각을 제외한 두 각의 합이 $90\,^\circ$ 인 점을 고려한다.

그림 분석

니, $\angle BAE = \angle BHF = 90$ °, $\angle ABE = \angle HBF$ 이므로 $\angle BEA = \angle BFH$ 이다.

풀이과정

 $\angle AFE = \angle BFH$ (맞꼭지각) · · · · ①

 $\triangle HBF + \angle BFH = 90^{\circ}$, $\angle ABE + \angle AEB = 90^{\circ}$,

 $\angle ABE = \angle HBF$ 이므로

 $\angle BFH = \angle AEB \cdots \bigcirc$

 \bigcirc , ⓒ에 의해 $\angle AFE = \angle AEB$

 $\therefore \overline{AF} = \overline{AE}$

9) 정답 ③

1등급 공략 Tip

 $\triangle ABE$, $\triangle DNF$ 와 합동인 삼각형을 찾는다.

문제 분석

 $\overline{AB} = 5 \, \mathrm{cm}$, $\overline{AD} = 4 \, \mathrm{cm}$ 인 직사각형 ABCD에서 점 M, N은 각각 \overline{AD} , \overline{BC} 의 중점이다. \overline{AM} , \overline{NC} , \overline{BD} 의 교점 $\overline{AD} = \overline{BC}$ 이므로 $\overline{AN} = \overline{DN} = \overline{BM} = \overline{CM}$ 이다.

을 각각 E, F라고 할 때, $\triangle ABE + \triangle NFD$ 의 넓이는?

단계별 풀이 전략

$oldsymbol{0}$ $\triangle NFD$ 과 합동인 삼각형 찾기

 ΔDFN 과 ΔBEM 에서

 $\overline{BM} = \overline{DN} \quad \cdots \bigcirc$

 $\angle EBM = \angle FDN()$ (엇각) ··· ①

 $\angle DNF = \angle MCF$ (엇각),

 $\angle MCF = \angle BME$ (동위각)이므로

 $\angle DNF = \angle BME \cdots \bigcirc$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle DFN \equiv \triangle BEM(ASA$ 합동)

② △ABE+△NFD 구하기

즉, $\triangle DFN = \triangle BEM$

 $\therefore \triangle ABE + \triangle NFD$

 $= \triangle ABE + \triangle BEM = \triangle ABM$

$$=\frac{1}{2}\times2\times5=5$$

10) 정답 ④

1등급 공략 Tip

대각선이 내각을 이등분하고, 두 쌍의 대변이 평행하다는 마름모의 성질을 고려한다.

그림 분석

↓ \overline{AB} $//\overline{CD}$, $\angle BEF = \angle DCF$ 이다. 마름모는 대각선이 내각을 이등분하므로 $\angle EBF = \angle CDF$ 이다.

THE 깊은 해설

 $\overline{BE} = \overline{BF}$ 이므로 $\angle BEF = \angle BFE$

 $\overline{AB}//\overline{CD}$ 이므로

 $\angle BEF = \angle DCF$ (엇각)

 $\angle BFE = \angle DFC$ (맞꼭지각)

따라서 $\angle DCF = \angle DFC$

즉, $\triangle CDF$ 는 $\overline{DF} = \overline{DC} = 15$ cm 인 이등변삼각형이다.

 \overline{BD} = 9+15 = 24 (cm)이므로

$$\overline{BO} = \frac{1}{2} \times 24 = 12 \text{ (cm)}$$

근거 마름모의 두 대각선은 서로 수직이등분한다.

 $\therefore \overline{OF} = 12 - 9 = 3 \text{ (cm)}$

11) 정답 ②

1등급 공략 Tip

정사각형의 성질을 고려해 합동인 삼각형을 찾는다.

그림 분석

 $\label{eq:bc} \bot \quad \overline{BC} = \overline{BA} \,, \quad \angle \, CBE = \angle \, ABE = 45 \,^{\circ} \,\,, \quad \overline{BE} \, \frac{\sqsubseteq}{\sqsubseteq} \,$ 공통이므로 $\triangle BEC = \triangle BEA$ (SAS 합동)이다.

단계별 풀이 전략

♠ △ CBE와 합동인 삼각형 찾기

 $\triangle ABE$ 와 $\triangle CBE$ 에서

AB = CB, $\angle ABE = \angle CBE = 45^{\circ}$,

 \overline{BE} 는 공통이므로 $\triangle ABE \equiv \triangle CBE(SAS$ 합동)

② ∠*BAE*, ∠*BFC* 구하기

 $\angle BAE = \angle BCE = 36^{\circ}$

 $\triangle FBC$ 이라 $\angle BFC = 180^{\circ} - (90^{\circ} + 36^{\circ}) = 54^{\circ}$

❸ ∠ *AEF* 구하기

 $\triangle AEF$ 에서 $\angle AFE = 180\,^{\circ} - 54\,^{\circ} = 126\,^{\circ}$

 $\therefore \angle AEF = 180^{\circ} - (126^{\circ} + 36^{\circ}) = 18^{\circ}$

12) 정답 ①

1등급 공략 Tip

정사각형의 성질을 고려해 합동인 삼각형을 찾는다.

그림 분석

 $\downarrow \overline{BC} = \overline{BA}, \ \angle CBF = \angle ABF = 45^{\circ}, \ \overline{BF} = \overline{\Box}$ 공통이므로 $\triangle BFC = \triangle BFA$ (SAS 합동)이다.

THE 깊은 해설

 $\angle BAF = a$, $\angle BFA = b$ 라 하면

 $a+b=180^{\circ}-45^{\circ}=135^{\circ}$...

↳ 정사각형의 대각선은 내각을 이동분한다. 그러므로 $\angle ABD = \angle CBD = 45$ ° 이다. $\triangle BAF$ 에서 a+b+45 ° = 180 ° 이다.

 $\triangle ABF$ 와 $\triangle CBF$ 에서

 $\overline{AB} = \overline{BC}$

 $\angle ABF = \angle CBF = 45^{\circ}$

BF는 공통이므로

 $\triangle ABF \equiv \triangle CBF(SAS$ 합동)

 $\angle BFC = \angle BFA = b$, $\angle DEF = \angle BAF = a$ (엇각)

 $ightharpoonup \overline{AB}//\overline{CD}$ 이므로 엇각의 크기는 같다.

 ΔDEF 에서 $\angle BFE$ 는 외각이므로

 $34^{\circ} + b = 45^{\circ} + a$ $\therefore a = b - 11$ \cdots

 \odot , \bigcirc 을 연립하면 $a=62\,^{\circ}$, $b=73\,^{\circ}$

 $\therefore \angle BCF = \angle BAF = a = 62^{\circ}$

13) 정답 ②

1등급 공략 Tip

정사각형의 내각과 두 대각선으로 생기는 각이 $90\,^{\circ}$ 라는 것을 고려한다.

그림 분석

나 $\angle POQ = \angle POC + \angle COQ = 90$ °, $\angle COD = \angle COQ + \angle QOD = 90$ °이므로 $\angle POC = \angle QOD$ 이다.

풀이과정

 ΔDOQ 와 ΔCOP 에서

 $\overline{DO} = \overline{CO} \quad \cdots \bigcirc$

 $\angle ODQ = \angle OCP = 45^{\circ} \cdots \bigcirc$

 $\angle DOQ = 90^{\circ} - \angle QOC$,

∠ *COP* = 90 ° - ∠ *QOC*이므로

 $\angle DOQ = \angle COP \cdots \bigcirc$

 \bigcirc , \bigcirc , \bigcirc 에 의해 $\triangle DOQ \equiv \triangle COP(ASA$ 합동)

 $\therefore \Box OPCQ = \triangle QOC + \triangle COP = \triangle QOC + \triangle DOQ$

 $= \triangle COD = \frac{1}{4} \times 6^2 = 9 \text{ (cm}^2)$

14) 정답 (5)

1등급 공략 Tip

정사각형의 성질을 고려해 합동인 삼각형을 찾는다.

그림 분석

나, $\overline{BC}=\overline{BA}$, $\angle CBE=\angle ABE=45\,^\circ$, \overline{BE} 는 공통이므로 $\triangle BEC=\triangle BEA$ (SAS 합동)이다.

풀이과정

 ΔABE 와 ΔCBE 에서

 $\overline{AB} = \overline{CB}$, $\angle ABE = \angle CBE = 45^{\circ}$,

 \overline{BE} 는 공통이므로 $\triangle ABE \equiv \triangle CBE(SAS$ 합동)

 $\therefore \angle BEA = \angle BEC$

 $\triangle ABF$ 이라 $\angle BAF = 180^{\circ} - (90^{\circ} + 37^{\circ}) = 53^{\circ}$ $\angle BCE = \angle BAF = 53^{\circ}$

 $\therefore \angle BEC = 180^{\circ} - (45^{\circ} + 53^{\circ}) = 82^{\circ}$

1등급 공략 Tip

정사각형의 두 대각선으로 생기는 각이 $90\,^{\circ}$ 라는 것을 고려

그림 분석

 \bot $\angle EOF = \angle EOC + \angle COF = 90$ $\angle COD = \angle COF + \angle FOD = 90$ 이므로 ∠EOC = ∠FOD이다.

풀이과정

 $\triangle OBE$ 와 $\triangle OCF$ 에서

 $\overline{OB} = \overline{OC}$, $\angle OBE = \angle OCF = 45^{\circ}$

 $\angle BOE = 90$ ° $- \angle COE = \angle COF$ 이므로

 $\triangle OBE \equiv \triangle OCF (ASA$ 합동)

 $\overline{BE} = \overline{CF} = 4$, $\overline{BC} = 4 + 2 = 6$

 $\triangle \mathit{OBE}$ 의 밑변을 $\overline{\mathit{BE}}$, 높이를 h라 하면

 $h = \frac{1}{2} \times \overline{DC} = \frac{1}{2} \times \overline{BC} = \frac{1}{2} \times 6 = 3$

 $\therefore \triangle OBE = \frac{1}{2} \times 4 \times 3 = 6$

16) 정답 ①

1등급 공략 Tip

한 쌍의 대변이 평행하고, 평행이 아닌 한 쌍의 대변 길이 가 같다는 등변사다리꼴 성질을 고려한다.

문제 분석

단서 $\overline{AB} = \overline{CD}$, $\overline{AD}//\overline{BC}$

그림의 등변사다리꼴 ABCD에서 세 점 M, N, P는 각각 \overline{AD} , \overline{BC} , \overline{BD} 의 중점이다. $\angle ABD = 30^{\circ}$,

단서 \overline{AB} $//\overline{MP}$, \overline{CD} $//\overline{NP}$

 $\angle BDC = 80$ °일 때, $\angle PNM$ 의 크기는?

단계별 풀이 전략

① ∠*DCB* 구하기

등변사다리꼴 ABCD에서

 $\overline{AD}//\overline{BC}$ 이므로 $\angle ADB = \angle DBC$

 $\angle A + \angle B = \angle ADC + \angle ABC = 180^{\circ}$

 $\angle ADB + 80^{\circ} + 30^{\circ} + \angle DBC = 180^{\circ}$

 $\therefore \angle ADB = \angle DBC = 35^{\circ}, \angle ABC = 65^{\circ}$

 $\angle DCB = \angle ABC = 65$ 이고

② ∠*PNM* 구하기

 ΔBCD 에서

 $\overline{BP} = \overline{PD}$, $\overline{BN} = \overline{NC}$ 이므로

 $\overline{PN}//\overline{CD}$ 이고 $\angle BNP = \angle BCD = 65^{\circ}$

 $\angle \mathit{MNB} = 90\,^{\circ}$ 이므로

 $\angle PNM = 90\degree - 65\degree = 25\degree$

1등급 공략 Tip

평행선 사이 사이에 있는 두 삼각형은 높이가 같다는 점을 활용한다.

전략 분석

직사각형 ABCD에서 $\overline{FB}//\overline{EG}$, $\overline{EH}//\overline{IC}$ 이고

 $\square ABCD$ 의 넓이가 $100\,\mathrm{cm}^2$ 일 때, 오각형 $E\!FG\!H\!I$ 의 넓이 는?

 $ightharpoonup \Delta FGE$, ΔEHI 와 넓이가 같은 삼각형을 찾는다.

THE 깊은 해설

 $\triangle EGF$ 와 $\triangle EGB$ 의 높이가 같다.

 $\overline{BF}//\overline{EG}$ 이므로 $\triangle EGF = \triangle EGB$

근거 $\triangle EHI$ 와 $\triangle EHC$ 의 높이가 같다.

 $\overline{EH}//\overline{IC}$ 이므로 $\triangle EHI = \triangle EHC$

따라서 오각형 *EFGHI*의 넓이는

 $\Delta EGF + \Delta EGH + \Delta EHI$ $= \Delta EGB + \Delta EGH + \Delta EHC$

 $= \triangle EBC = \frac{1}{2} \square ABCD$

 $=\frac{1}{2}\times100=50\,(\text{cm}^2)$

18) 정답 ③

1등급 공략 Tip

높이가 같은 삼각형의 넓이 비는 밑변 길이 비와 같다는 점을 고려해 삼각형의 넓이를 문자 a, b로 나타낸다.

전략 분석

단계별 풀이 전략

 $oldsymbol{lack} \Delta ABP$, ΔBDP 넓이를 a로 나타내기

 $\overline{AP}:\overline{PD}=3:2$ 이므로

 $\triangle ABP = 3a$, $\triangle BDP = 2a$ 라 하고,

② $\triangle BDQ$, $\triangle BCQ$ 넓이를 b로 나타내기

 $\overline{DQ}:\overline{QC}=2:1$ 이므로

 $\triangle BDQ = 2b$, $\triangle BCQ = b$ 라 하자.

8 a, b 구하기

 $\triangle ABD = \triangle BCD$ 이므로 5a = 3b

 $\therefore 5a - 3b = 0 \quad \cdots \bigcirc$

 $\Box PBQD = \triangle BDP + \triangle BCQ$

=2a+2b=80 ... (1)

 \bigcirc , \bigcirc 을 연립하여 풀면 a=15, b=25

◆ △ABP 넓이 구하기

 $\therefore \triangle ABP = 3 \times 15 = 45$

 $\triangle ABP = 3a, \ a = 15$

1등급 공략 Tip

평행선 사이 사이에 있는 두 삼각형은 높이가 같다는 점을 활용한다. 평행사변형을 대각선으로 나눴을 때 생기는 두 삼각형의 넓이는 같다는 점을 고려한다.

문제 분석

그림과 같이 평행사변형 ABCD에서 \overline{CD} 위의 점 E에 대하여 \overline{AE} 와 \overline{BD} 가 만나는 점을 F라고 하자. $\triangle ABF$ 의 넓이는 $40~{\rm cm}^2$ 이고, $\triangle BCE$ 의 넓이는 $32~{\rm cm}^2$ 일 때, $\triangle DFE$ 의 넓이는?

풀이과정

 $\overline{AB}//\overline{CD}$ 이므로 $\triangle AED = \triangle BED$

 $\therefore \triangle AFD = \triangle BFE$

 $\triangle ABD = \triangle ABF + \triangle AFD = \frac{1}{2} \Box ABCD$

 $rac{1}{2}$, $40 + \triangle AFD = \frac{1}{2} \Box ABCD \cdots \bigcirc$

 $\Delta BCD = \Delta BCE + \Delta BED$ $= \Delta BCE + (\Delta BEF + \Delta DFE)$

 $rac{1}{2}$, $32 + \triangle BEF + \triangle DFE = \frac{1}{2} \square ABCD \cdots \square$

①, ⓒ에서

 $40 + \triangle AFD = 32 + \triangle BEF + \triangle DFE$

 $\therefore \triangle DFE = 40 - 32 = 8 \text{ cm}^2$

20) 정답 ②

1등급 공략 Tip

높이가 같은 삼각형의 넓이 비는 밑변 길이 비와 같다는 점을 고려한다.

문제 분석

직사각형 ABCD의 한 변 DC 위에 \overline{DF} = $2\overline{FC}$ 가 되도록 점 F를 잡고 \overline{AF} 의 연장선과 \overline{BC} 의 연장선의 교점을 E라 할 때, $\triangle DFE$ 의 넓이는 $\Box ABCD$ 의 넓이의 몇 배인가?

풀이과정

 $\overline{DF}: \overline{CF} = 2:1$

 $\Delta DFE = 2k$, $\Delta CEF = k$ 라 하면

 $\overline{AD}//\overline{BE}$ 이므로 $\triangle ADE = \triangle ADC$

 $\triangle ADE = \triangle ADF + \triangle DEF$

 $\triangle ADC = \triangle ADF + \triangle ACF$ 이므로

 $\triangle ACF = \triangle DEF = 2k$

한편, $\triangle ACD$ 에서 CF:DF=1:2이므로

 $\triangle AFD: \triangle ACF = 2:1$ $\therefore \triangle AFD = 4k$

 $\triangle ACD = 6k$ 이므로 $\Box ABCD = 2\triangle ACD = 12k$

따라서 ΔDFE 의 넓이는

 $\square ABCD$ 의 넓이의 $\frac{2k}{12k} = \frac{1}{6}$ 배이다.

