ТАБЛИЦА ОСНОВНЫХ ПРОИЗВОДНЫХ

Простые функции	Сложные функции
1. $(const)' = 0$	
	2. $(u^{\alpha})' = \alpha u^{\alpha-1} \cdot u'$, где $\alpha \in \mathbb{R}$ $(\sqrt{u})' = \frac{1}{2\sqrt{u}} \cdot u'$ степенная ф-я
3. $(a^x)' = a^x \ln a$, где $\begin{cases} a > 0 \\ a \neq 1 \end{cases}$ $(e^x)' = e^x$	$3. \ (a^u)' = a^u \ln a \cdot u', \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
4. $(\log_a x)' = \frac{1}{x \ln a}$, где $\begin{cases} a > 0 \\ a \neq 1 \end{cases}$ $(\ln x)' = \frac{1}{x}$	4. $(\log_a u)' = \frac{1}{u \ln a} \cdot u'$, где $\begin{cases} a > 0 \\ a \neq 1 \end{cases}$ $(\ln u)' = \frac{1}{u} \cdot u'$
$5. (\sin x)' = \cos x$	5. $(\sin u)' = \cos u \cdot u'$
$6. (\cos x)' = -\sin x$	6. $(\cos u)' = -\sin u \cdot u'$
7. $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	7. $(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u'$
8. $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	8. $(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} \cdot u'$
9. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	9. $(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} \cdot u'$
10. $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	10. $(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$
11. $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$	11. $(\operatorname{arctg} u)' = \frac{1}{1+u^2} \cdot u'$
12. $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	12. $(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} \cdot u'$

Здесь x — независимая переменная, а u = u(x) — функция переменной x.

Примеры степенных функций: x^2 , x^{-3} , $\sqrt[5]{x^9} = x^{9/5}$, $\frac{1}{\sqrt[7]{x^5}} = x^{-5/7}$.

Примеры показательных функций: 2^x , 3^x , e^x , 3^{-2x} , e^{3x+5} .

ОСНОВНЫЕ СВОЙСТВА ПРОИЗВОДНЫХ

1. $[C \cdot u(x)]' = C \cdot [u(x)]'$, где $C \equiv \text{const.}$

a)
$$\left(\frac{13u(x)}{v(x)}\right)' = \left(13 \cdot \frac{u(x)}{v(x)}\right)' = 13 \cdot \left(\frac{u(x)}{v(x)}\right)'$$

b)
$$\left(\frac{u(x)}{17v(x)}\right)' = \left(\frac{1}{17} \cdot \frac{u(x)}{v(x)}\right)' = \frac{1}{17} \cdot \left(\frac{u(x)}{v(x)}\right)'$$

2.
$$[u(x) + v(x)]' = u' + v'$$
 производная суммы $[u(x) - v(x)]' = u' - v'$ производная разности

3.
$$[u(x)\cdot v(x)]' = u'v + uv'$$
 производная произведения

4.
$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'v - uv'}{v^2}$$
 производная частного

НЕКОТОРЫЕ ПОЛЕЗНЫЕ СВОЙСТВА ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

$$1. A \cdot a^{-\alpha} = \frac{A}{a^{\alpha}}$$

2.
$$a^{\alpha} \cdot a^{\beta} = a^{\alpha + \beta}$$

$$3. \ \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha - \beta}$$

4.
$$(a^{\alpha})^{\beta} = a^{\alpha\beta} = (a^{\beta})^{\alpha}$$

$$5. \ a^{\alpha} \cdot b^{\alpha} = (ab)^{\alpha}$$

6.
$$\sqrt[n]{a} = a^{1/n}$$
 u $\sqrt[n]{a} = \sqrt[2]{a} = a^{1/2}$

$$(7.)^n \sqrt{a^m} = a^{m/n}$$

$$(8) \frac{A}{\sqrt[n]{a^m}} = A \cdot a^{-m/n}$$

9.
$$\log_a a^c = c$$
, $a > 0$, $a \ne 1$. \Rightarrow $\log_a 1 = 0$, $\log_a a = 1$, $\ln e = 1$.

10.
$$\log_a b + \log_a c = \log_a bc$$
, $a > 0$, $a \ne 1$, $b > 0$, $c > 0$.

11.
$$\log_a b - \log_a c = \log_a \frac{b}{c}$$
, $a > 0$, $a \ne 1$, $b > 0$, $c > 0$.

12.
$$\log_a b^n = n \log_a b$$
, $a > 0$, $a \ne 1$, $b > 0$.