Introduction to Quantum Error Correction

- Pradeep

Why Quantum Error-Correction?

- State Preparation errors
- Gate errors
- Errors due to environment (Open Systems)

QISKI7
2025 2025

Error: |0> becomes |1> with some probability due to the effect of environment

QISKI7
2025 2025

- Lets find a way to correct it

- A general state in this encoding would be

Possible single qubit bit-flip errors

0ISKI7 2025 2025

To correct the errors we need to identify where the error has occurred -Syndrome diagnosis

We cannot measure in the computational basis since that will destroy our state.

Think about these operators,

$$oxed{S_1=Z_1Z_2, \qquad S_2=Z_2Z_3.}$$

The general state a | 000> + b | 111> is an Eigenstate with +1 eigenvalue of the above operators

QISKI7
2025
2025

But the error affected states are not +1 eigenstates of all the stabilizers.

$$S_1\ket{\psi^{(1)}}=Z_1Z_2(lpha\ket{100}+eta\ket{011})=(-lpha)\ket{100}+(-eta)\ket{011}=-\ket{\psi^{(1)}}, \ S_2\ket{\psi^{(1)}}=Z_2Z_3(lpha\ket{100}+eta\ket{011})=(+lpha)\ket{100}+(+eta)\ket{011}=+\ket{\psi^{(1)}}.$$

• Error on qubit 2: $|\psi^{(2)}
angle=lpha\,|010
angle+eta\,|101
angle.$

$$S_1\ket{\psi^{(2)}}=Z_1Z_2(lpha\ket{010}+eta\ket{101})=(-lpha)\ket{010}+(-eta)\ket{101}=-\ket{\psi^{(2)}}, \ S_2\ket{\psi^{(2)}}=Z_2Z_3(lpha\ket{010}+eta\ket{101})=(-lpha)\ket{010}+(-eta)\ket{101}=-\ket{\psi^{(2)}}.$$

Error on qubit 3: $|\psi^{(3)}\rangle=lpha\,|001\rangle+eta\,|110\rangle$.

qubit 3:
$$|\psi^{(3)}
angle = lpha \ket{001} + eta \ket{110}$$
.
$$S_1 \ket{\psi^{(3)}} = Z_1 Z_2 (lpha \ket{001} + eta \ket{110}) = (+lpha) \ket{001} + (+eta) \ket{110} = + \ket{\psi^{(3)}},$$

$$S_2 \ket{\psi^{(3)}} = Z_2 Z_3 (lpha \ket{001} + eta \ket{110}) = (-lpha) \ket{001} + (-eta) \ket{110} = - \ket{\psi^{(3)}}.$$

The errors are taking our codespace vectors from +1 eigenspace to -1 eigenspace.

- The error correction can be done by applying an X on the location

QISKI7
2025 2025

 Right now we have found a way to correct bit-flip errors on a single qubit out of our three qubit encoding.

- Lets try to do something more powerful next time

QISKIT 2025 2025 ALL FEST

 Right now we have found a way to correct bit-flip errors on a single qubit out of our three qubit encoding.

- Lets try to do something more powerful next time

Our encoding in this qubit is given by,

$$egin{aligned} igg|0_L
angle &=rac{1}{2\sqrt{2}}ig(ig|000
angle +ig|111
angleig)\otimesig(ig|000
angle +ig|111
angleig)\otimesig(ig|000
angle +ig|111
angleig),\ ig|1_L
angle &=rac{1}{2\sqrt{2}}ig(ig|000
angle -ig|111
angleig)\otimesig(ig|000
angle -ig|111
angleig). \end{aligned}$$

2025 2025

- Our errors in this code are
- 1. Bit-Flip Error on any qubit
- 2. Phase-Flip Error
- 3. Both Bit-flip and Phase flip error

QISKI7
2025 2025

- The useful operators/stabilizers in this code are

Name	Operator
g_1	ZZIIIIIII
g_2	IZZIIIIII
g_3	IIIZZIIII
g_4	IIIIZZIII
g_5	IIIIIIZZI
g_6	IIIIIIIZZ
g_7	XXXXXXIII
g_8	IIIXXXXXX
\bar{Z}	XXXXXXXXX
\bar{X}	ZZZZZZZZZZ

QISKI7
2025 2025

- The code-space is as expected a positive eigenspace of all stabilizers

Name	Operator
g_1	ZZIIIIII
g_2	IZZIIIIII
g_3	IIIZZIIII
g_4	IIIIZZIII
g_5	IIIIIIZZI
g_6	IIIIIIIZZ
g_7	XXXXXXIII
g_8	IIIXXXXXXX
\bar{Z}	XXXXXXXXX
\bar{X}	ZZZZZZZZZZ

 The errors again as expected will take the codespace to the -1 eigenspace of some stabilizers

Error X_2 (in first block):				
Stabilizer	Effect	Eigenvalue		
Z_1Z_2	touches qubit 2 → anticommutes	-1		
Z_2Z_3	touches qubit 2 → anticommutes	-1		
others (Z_4Z_5,\ldots)	commute	+1		
$X_1 \dots X_6, X_4 \dots X_9$	commute	+1		
So the two Z -type stabilizers in that block give $m{-1}$, uniquely identifying the flipped qubit.				

Error: X_7	
Stabilizer	Eigenvalue
Z_1Z_2	+1
Z_2Z_3	+1
Z_4Z_5	+1
Z_5Z_6	+1
Z_7Z_8	-1
Z_8Z_9	+1
$X_1 X_2 X_3 X_4 X_5 X_6$	+1
$X_4X_5X_6X_7X_8X_9$	+1

Block with Z error	$X_1 \dots X_6$	$X_4 \dots X_9$
(1,2,3)	-1	+1
(4,5,6)	-1	-1
(7,8,9)	+1	-1

- Once detected we can again correct X errors by applying X_i on the correct location and Z errors by applying Z_i Z_i+1 Z_i+2.
- Both Bit-flip and phase flip errors (XZ) error can be corrected doing it step-wise

- Any Unitary U can be written as,

$$E = I/2 + aX + bY + cZ$$

- E1 $|\psi\rangle$ can thus be written as a superposition of four terms, $|\psi\rangle$, X1 $|\psi\rangle$, Z1 $|\psi\rangle$, X1 Z1 $|\psi\rangle$.

Every error U is broken down to either X error or Z error or XZ errors

 Once we correct these three we can correct any arbitrary unitary error.