1 Эксперименты на infinite cluttered MNIST

1.1 Сравнение для Adam

Рис. 1: Глубокая сеть (10 HL $\times 100$)

Рис. 2: $\epsilon=10^{-8}$ вне корня (3 HL $\times 100$)

Рис. 3: $\epsilon = 10^{-4}$ вне корня (3 HL ×100)

Рис. 4: $\epsilon = 10^{-6}$ под корнем, как сделано в других методах (3 HL $\times 100$)

Делаем выводы, что

- 1. батч-нормализация может сильно прыгать при дефолтных параметрах метода;
- 2. батч-нормализация перестает прыгать, если увеличить эпсилон;
- 3. на неглубокой сети (3 скрытых слоя) Адам не успевает обучиться из-за сложной выборки и малого количества параметров;
- 4. на сети с 10 скрытыми слоями батч-нормализация слабо улучшает Адам.

1.2 Остальные методы

Рис. 5: Adagrad, 3 HL $\times 100$

Рис. 7: SGD, 3 HL ×100

Рис. 6: Adadelta, 3 HL $\times 100$

Рис. 8: Momentum, 3 HL $\times 100$

Рис. 9: RMSProp, 3 HL $\times 100$

Выводы:

- 1. рейт здесь особо не подбирался, поэтому нужно дополнительное исследование;
- 2. моментум сильно скачет, хотя рейт у них с SGD выставлен одинаковый;
- 3. моментум единственный метод, для которого батч-нормализация на тренировочной и валидационной выборках почти не различается;

2 Эксперименты на MNIST

2.1 Сравнение для Adam

Рис. 10: Различные эпсилон-стратегии

Рис. 12: Адам, 3 HL ×100

Рис. 11: Адам, 3 HL $\times 100$

Рис. 13: Адам, 3 HL ×100

Рис. 14: Адам на глубокой сети, 10 HL $\times 100$

Рис. 15: Адам на глубокой сети, 10 HL $\times 100$

2.2 Остальне методы

Рис. 16: SGD на глубокой сети, 10 HL $\times 100$

Рис. 18: Моментум на глубокой сети, 10 HL $\times 100$

Рис. 17: SGD на глубокой сети, 10 HL $\times 100$

Рис. 19: Моментум на глубокой сети, 10 HL $\times 100$

Рис. 20: SGD на неглубокой сети, 3 HL $\times 100$

Рис. 21: SGD на неглубокой сети, 3 HL $\times 100$

Рис. 22: Моментум на неглубокой сети, $3~{\rm HL}~{\times}100$

Рис. 23: Моментум на неглубокой сети, 3 HL ×100

Выводы:

- 1. батч-нормализация для Адам ведет себя более плавно при увеличении эпсилон;
- 2. батч-нормализация слабо улучшает Адам для обеих архитектур сети;
- 3. на глубокой сети SGD плохо обучается либо из-за плохо подобранного рейта, либо так и должно быть;
- 4. батч-нормализация так же слабо улучшает Моментум для обеих архитектур;