Lagrange

Se aplica para intervalos uniformes y no uniformes.

$$g(x) = \sum y_{i} \prod_{j=x} \frac{x - x_{i}}{x_{i} - x_{j}}$$

$$j=x \qquad x_{i} - x_{j}$$

$$j\neq x$$

$$g(x) = y_{1} (x - x_{2}) (x - x_{3}) (x - x_{4})$$

$$(x_{1} - x_{2}) (x_{1} - x_{3}) (x_{1} - x_{4})$$

$$+ y_{2} (x - x_{1}) (x - x_{3}) (x - x_{4})$$

$$(x_{2} - x_{1}) (x_{2} - x_{3}) (x_{2} - x_{4})$$

$$+ y_{3} (x - x_{1}) (x - x_{2}) (x - x_{4})$$

$$(x_{3} - x_{1}) (x_{3} - x_{2}) (x_{3} - x_{4})$$

$$+ y_{4} (x - x_{1}) (x - x_{2}) (x - x_{3})$$

$$(x_{4} - x_{1}) (x_{4} - x_{2}) (x_{4} - x_{3})$$

$$+ y_{n}$$

Esta ecuación es equivalente a la serie de potencias que se determinan resolviendo la ecuación lineal.

Desventajas:

- 1) La cantidad de cálculos necesarios para la interpolación es grande.
- 2) La interpolación para otro valor "x" requiere la misma cantidad de cálculos adicionales, ya que no se puede utilizar partes de la aplicación previa.
- 3) Cuando el número de datos tiene que incrementarse o decrementarse, no se pueden utilizar los resultados en los cálculos previos.
- 4) La evaluación de error no es fácil.

Lagrange

Ejemplo. - Obtener g(x) para x = 2.4

Xi	y i
2.2	2.54
2.5	2.82
2.8	3.21
3.1	3.32
3.4	3.41

	Xi		y i
\mathbf{X}_{1}	2.2	y 1	2.54
X_2	2.5	y ₂	2.82
X_3	2.8	y 3	3.21
X 4	3.1	y 4	3.32
X 5	3.4	y 5	3.41