1. Lista Introdução à Álgebra Linear

```
Exercício 1.1 Quais dos seguintes vetores são combinação linear de v_1=(4,2,-3), v_2=(2,1,-2) e v_3=(-2,-1,0)?

a) (1,1,1)

b) (4,2,-6)
```

c) (-2, -1, 1)

d) (-1,2,3)

Exercício 1.2 Quais dos seguintes conjuntos de vetores são linearmente dependentes?

```
a) \{(1,1,2),(1,0,0),(4,6,12)\}
```

b)
$$\{(1,-2,3),(-2,4,-6)\}$$

c)
$$\{(1,1,1),(2,3,1),(3,1,2)\}$$

d)
$$\{(4,2,-1),(6,5,-5),(2,-1,3)\}$$

e) $\{(1,0),(0,1),(1,1)\}$

Exercício 1.3 Para quais valores de λ o conjunto de vetores $\{(3,1,0),(\lambda 2+2,2,0)\}$ é L.D.?

Exercício 1.4 Seja S o subespaço de \mathbb{R}^3 gerado por $\{(1,1,0),(0,0,1)\}$. Determine a distância do vetor v=(10,-1,2) ao plano S.

Exercício 1.5 Seja S o subespaço de \mathbb{R}^3 gerado por $\{(1,0,0)\}$. Determine a distância do vetor v = (10,-1,2) à reta S.

2. Lista Séries de Fourier 1

Exercício 2.1 Seja V o espaço vetorial formado por todas as funções $g:[-\pi,\pi]\to \mathbb{R}$ tais que $\int_{-\pi}^{\pi}|g(t)|^2dt<\infty$, munido do produto interno $\langle f,g\rangle=\int_{-\pi}^{\pi}f(t)g(t)dt$. Considere $f\in V$, tal que f(t)=0, se $0\leq t\leq \pi$, e f(t)=1 se $-\pi\leq t<0$. Determine a projeção ortogonal de f no subespaço gerado por $B = \{1, cos(\pi t), sen(\pi t), \cdots, cos(n\pi t), sen(n\pi t)\}.$

Exercício 2.2 Mostre que:

a
$$\int_{-\pi}^{\pi} |sen(nx)|^2 dx = \pi$$
, para $n = 1, 2, \dots, N$;

Exercício 2.2 Mostre que:
a
$$\int_{-\pi}^{\pi} |sen(nx)|^2 dx = \pi$$
, para $n = 1, 2, \dots, N$;
b $\int_{-\pi}^{\pi} |cos(nx)|^2 dx = \pi$, para $n = 1, 2, \dots, N$;
c $\int_{-\pi}^{\pi} sen(nx)sen(mx)dx = 0$, para $m \neq n$;
d $\int_{-\pi}^{\pi} cos(nx)cos(mx)dx = 0$, para $m \neq n$.

$$\int_{-\pi}^{\pi} sen(nx)sen(mx)dx = 0$$
, para $m \neq n$;

$$\mathbf{d} \int_{-\pi}^{\pi} \cos(nx)\cos(mx)dx = 0, \text{ para } m \neq n$$

Exercício 2.3 Seja $f: [-T/2, T/2] \to \mathbb{R}$. Mostre que: **a** $e^{i2\pi nt/T}$, $n = 1, 2, \dots, N$ forma uma base de um subespaço vetorial;

b
$$\int_{-T/2}^{T/2} f(t)g(t)dt$$
 é um produto interno;

$$\mathbf{c} \ f_N(t) = \sum_{n=-N}^{N} c_n e^{i2\pi nt/T}$$
, onde $c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-i2\pi nt/T} dt$

$$\mathbf{d} \sum_{n=-\infty}^{\infty} |c_n|^2 = \frac{1}{T} \int_{-T/2}^{T/2} |f(t)|^2 dt \text{ (Teorema de Parseval)}$$