

Design and Simulation of a High Intensity Heavy Ion RFQ accelerator Injector

Wei Ma, Liang Lu, Xianbo Xu, Liepeng Sun, Zhouli Zhang, Chenxing Li, Longbo Shi, Yuan He, Hongwei Zhao Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China

(1) LEAF-RFQ introduction

1.1 LEAF project

Sketch map of LEAF project

1.2 LEAF-RFQ design considerations

- > Accelerating heavy ion: Frequency is low
- >CW mode: Four vane for stability
- Frequency separation: π stabilizer loop
- > Field flatness: undercut
- > Frequency and field tuning: tuners
- > Full length model simulations with modulations

1.3 Design procedure

- > Electromagnetic design
 - **≻Tool: CST MWS**
 - Design: π stabilizer loop, undercut,
 - tuners
 - Full length model: frequency, Q factor,
- >Error analysis:
 - > Tool: CST MWS
 - > Simulations: error vs frequency shit

(2) Parameters and structure

LEAF-RFQ main parameters

parameters	value	
Particle charge state	$U^{34+}(q/A=1/7)$	
Operation	CW/pulsed	
Structure type	Four vane	
Frequency (MHz)	uency (MHz) 81.25	
Input energy (keV/u)	14	
Output energy (MeV/u)	0.5	
Inter-vane voltage (kV)	70	
Kp. factor	1.55	
Paek current (emA)	2	
Transmission (%)	97.2	
Length of vane (mm)	5946.912	
Average radius of aperture (mm)	5.805	

<u> </u>				
parameters	value			
R0	5.805 mm			
Rv	4.354 mm			
θ1	80°			
Lv	17 mm			
θ2	10°			
$\mathbf{W}\mathbf{s}$	20 mm			
θ3	5°			
Rc	50 mm			
H	360.5 mm			

Parameters of cross section

(3) 3D EM design and simulations

π stabilizer loop

Sketch map of PISL Frequency separation comparison

Without PISL	With PISL
81.233	81.173
78.765	86.739
-2.468	5.566
	81.233 78.765

The effect of dipole mode to the quadrupole

mode: $\alpha = 1/\sqrt{1 + (Q * 2\Delta f/f_0)^2}$

(b)

To give α smaller than 0.1%, the frequency separation is greater than 3.22 MHz. 5.566 MHz is enough.

Tuners

Tuning sensitivity for all tuners
Tuning sensitivity for all
tuners is 15.21 kHz/mm.

Undercut D_in D_out O

Sketch map of undercut

1.0
(pax o .6 o ...

E field without undercut ...

E field with undercut ...

E field with undercut ...

2000 2000 3000 4000 5000 6000

z (mm)

Field distribution with undercut and

139 mm without undercut

(4) Error analysis

—— Linear fitting

Full model simulations

5946.92 mm

Sketch map of complete RFQ model

Final RF parameters

Parameters	Value	
Frequency (MHz)	81.261	
Dipole mode frequency (MHz)	86.827	
Q factor	17963	
Power loss (kW)	53.196	

Power losses for separate parts of LEAF-RFQ

Part	Percent %	Power loss	Unit loss
Vane	54.0%	28.73 kW	4.81 kW/m
Tuners	3.85%	2.04 kW	42.7 W
PISL	6.48%	3.45 kW	144 W
Wall	35.7%	18.99 kW	3.18 kW/m

b:
$$\Delta f/\Delta d = 0.92 \, (\text{kHz/}\mu\text{m})$$

c:
$$\Delta f(MHz) = -0.244\Delta s(mm)^2$$

d:
$$\Delta f(MHz) = -2.56\theta(degree)^2$$

Main causes of error

—— Linear fitting

Effect of errors to frequency shift

(a)

Corresponding author: Wei Ma Telephone: +86-0931-4969622

Work supported by the NSFC and CAS

Address: 509#, Nan Chang Road, Lan Zhou, Gansu Province, China E-mail: w_ma@impcas.ac.cn

