Сингулярное разложение и главные компоненты

Обобщение диагонализации

Краткий план:

• Жорданова нормальная форма.

Краткий план:

- Жорданова нормальная форма.
- Сингулярное разложение.

Краткий план:

- Жорданова нормальная форма.
- Сингулярное разложение.
- Доказательство существования.

Не все матрицы диагонализуемы

Утверждение

Квадратная матрица A размера $n \times n$ диагонализуема, если у неё найдётся n линейно независимых собственных векторов.

В этом случае A представима в виде $A = PDP^{-1}$, где P — матрица из собственных векторов, D — диагональная матрица из собственных значений.

Не все матрицы диагонализуемы

Утверждение

Квадратная матрица A размера $n \times n$ диагонализуема, если у неё найдётся n линейно независимых собственных векторов.

В этом случае A представима в виде $A = PDP^{-1}$, где P — матрица из собственных векторов, D — диагональная матрица из собственных значений.

Утверждение

У симметричной матрицы A размера $n \times n$ найдётся n ортогональных собственных векторов единичной длины.

 C их помощью матрица A представима в виде

$$A = PDP^{T}$$
.

А если не везёт?

Что делать, если у матрицы A размера $n \times n$ меньше, чем n независимых собственных векторов?

А если не везёт?

Что делать, если у матрицы A размера $n \times n$ меньше, чем n независимых собственных векторов?

Утверждение

Любая квадратная матрица A представима в виде

$$A = PJP^{-1},$$

где жорданова нормальная форма J содержит на диагонали жордановы клетки J_i :

$$J = \begin{pmatrix} J_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & J_2 & \dots & \mathbf{0} \\ \dots & \dots & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & J_k \end{pmatrix}, \quad J_i = \begin{pmatrix} \lambda_i & 1 & \dots & 0 \\ 0 & \lambda_i & \dots & 0 \\ 0 & \dots & \dots & 1 \\ 0 & 0 & \dots & \lambda_i \end{pmatrix}$$

Утверждение

Утверждение

Любой линейный оператор из \mathbb{R}^k в \mathbb{R}^n представляет собой последовательность действий:

1. Ортогональное преобразование из \mathbb{R}^k в \mathbb{R}^k . Сохраняет длины векторов и углы между ними.

Утверждение

- 1. Ортогональное преобразование из \mathbb{R}^k в \mathbb{R}^k . Сохраняет длины векторов и углы между ними.
- 2. Растягивание компонент вектора в \mathbb{R}^k .

Утверждение

- 1. Ортогональное преобразование из \mathbb{R}^k в \mathbb{R}^k . Сохраняет длины векторов и углы между ними.
- 2. Растягивание компонент вектора в \mathbb{R}^k .
- 3. Переход из \mathbb{R}^k в \mathbb{R}^n путём дописывания нулей в вектор, или зачёркивания части координат.

Утверждение

- 1. Ортогональное преобразование из \mathbb{R}^k в \mathbb{R}^k . Сохраняет длины векторов и углы между ними.
- 2. Растягивание компонент вектора в \mathbb{R}^k .
- 3. Переход из \mathbb{R}^k в \mathbb{R}^n путём дописывания нулей в вектор, или зачёркивания части координат.
- 4. Ортогональное преобразование из \mathbb{R}^n в \mathbb{R}^n . Сохраняет длины векторов и углы между ними.

Утверждение

Любой линейный оператор из \mathbb{R}^k в \mathbb{R}^n представляет собой последовательность действий:

- 1. Ортогональное преобразование из \mathbb{R}^k в \mathbb{R}^k . Сохраняет длины векторов и углы между ними.
- 2. Растягивание компонент вектора в \mathbb{R}^k .
- 3. Переход из \mathbb{R}^k в \mathbb{R}^n путём дописывания нулей в вектор, или зачёркивания части координат.
- 4. Ортогональное преобразование из \mathbb{R}^n в \mathbb{R}^n . Сохраняет длины векторов и углы между ними.

Все эти действия мы рассмотрели на первой лекции!

Оператор $\mathsf{H}:\mathbb{R}^n \to \mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

Дополним его до ортогонального базиса в \mathbb{R}^n векторами $\mathbf{v}_{k+1},...,\mathbf{v}_n.$

1. Повернём-отразим пространство, чтобы $\mathbf{v}_1, ..., \mathbf{v}_n$ перешли в $\mathbf{e}_1, ..., \mathbf{e}_n$.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

- 1. Повернём-отразим пространство, чтобы $\mathbf{v}_1, ..., \mathbf{v}_n$ перешли в $\mathbf{e}_1, ..., \mathbf{e}_n$.
- 2. Домножим первые k компонент вектора на 1, а остальные на 0.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

- 1. Повернём-отразим пространство, чтобы $\mathbf{v}_1, ..., \mathbf{v}_n$ перешли в $\mathbf{e}_1, ..., \mathbf{e}_n$.
- 2. Домножим первые k компонент вектора на 1, а остальные на 0.
- 3. Смены размерности нет.

Оператор $\mathsf{H}:\mathbb{R}^n\to\mathbb{R}^n$ проецирует векторы на линейную оболочку M.

Выберем ортогональный базис ${\bf v}_1, {\bf v}_2, ..., {\bf v}_k$ в M.

- 1. Повернём-отразим пространство, чтобы $\mathbf{v}_1, ..., \mathbf{v}_n$ перешли в $\mathbf{e}_1, ..., \mathbf{e}_n$.
- 2. Домножим первые k компонент вектора на 1, а остальные на 0.
- 3. Смены размерности нет.
- 4. Повернём-отразим пространство, чтобы $\mathbf{e}_1, ..., \mathbf{e}_n$ перешли в $\mathbf{v}_1, ..., \mathbf{v}_n$.

Утверждение

Любую матрицу A размера $n \times k$ можно представить в виде

$$A = U\Sigma V^T$$

где матрица U размера $n \times n$ — ортогональная, $U^TU=$ I, матрица V размера $k \times k$ — ортогональная, $V^TV=$ I, матрица Σ размера $n \times k$ — диагональная.

Утверждение

Любую матрицу A размера $n \times k$ можно представить в виде

$$A = U\Sigma V^T,$$

где матрица U размера $n \times n$ — ортогональная, $U^TU=$ I, матрица V размера $k \times k$ — ортогональная, $V^TV=$ I, матрица Σ размера $n \times k$ — диагональная.

Данное разложение также называется SVD-разложением, singular value decomposition.

Присмотримся к матрицам

Если $n \geq k$, то SVD-разложение примет вид

$$A = \begin{pmatrix} | & | \\ \mathbf{u}_1 \dots \mathbf{u}_n \\ | & | \end{pmatrix} \cdot \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_k \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} -\mathbf{v}_1^T - \\ \vdots \\ -\mathbf{v}_k^T - \end{pmatrix}$$

Зачем нужно SVD-разложение?

Сильно упрощает многие вычисления.

Зачем нужно SVD-разложение?

Сильно упрощает многие вычисления.

Показывает внутренний мир матрицы.

Зачем нужно SVD-разложение?

Сильно упрощает многие вычисления.

Показывает внутренний мир матрицы.

Существует быстрая и устойчивая итеративная процедура нахождения SVD-разложения.

Раскладываем все матрицы!

Сингулярное разложение для A^T :

$$A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$$

Раскладываем все матрицы!

Сингулярное разложение для A^T :

$$A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$$

Сингулярное разложение для $A^T A$:

$$A^TA = V\Sigma^TU^T \cdot U\Sigma V^T = V\Sigma^T\Sigma V^T$$

Раскладываем все матрицы!

Сингулярное разложение для A^T :

$$A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$$

Сингулярное разложение для A^TA :

$$A^TA = V\Sigma^TU^T \cdot U\Sigma V^T = V\Sigma^T\Sigma V^T$$

Сингулярное разложение для AA^T :

$$AA^T = U\Sigma V^T \cdot V\Sigma^T U^T = U\Sigma \Sigma^T U^T$$

Наша задача предъявить разложение $A = U \Sigma V^T$.

Для удобства будем считать, что $n \geq k$.

Наша задача предъявить разложение $A = U \Sigma V^T$.

Для удобства будем считать, что $n \geq k$.

Доказательство

1. Матрица A^TA является матрицей Грама. Она положительно определена и симметрична. А потому представима в виде $A^TA = VDV^T$.

Наша задача предъявить разложение $A = U \Sigma V^T$.

Для удобства будем считать, что $n \geq k$.

Доказательство

- 1. Матрица A^TA является матрицей Грама. Она положительно определена и симметрична. А потому представима в виде $A^TA = VDV^T$.
- 2. Диагональные элементы D неотрицательны. Поэтому D представима в виде $\Sigma^T\Sigma$.

Наша задача предъявить разложение $A = U \Sigma V^T$.

Для удобства будем считать, что $n \geq k$.

Доказательство

- 1. Матрица A^TA является матрицей Грама. Она положительно определена и симметрична. А потому представима в виде $A^TA = VDV^T$.
- 2. Диагональные элементы D неотрицательны. Поэтому D представима в виде $\Sigma^T\Sigma$.
- 3. Осталось найти U из целевого разложения:

$$A = U\Sigma V^T$$

Наша задача предъявить разложение $A = U \Sigma V^T$.

Для удобства будем считать, что $n \geq k$.

Доказательство

- 1. Матрица A^TA является матрицей Грама. Она положительно определена и симметрична. А потому представима в виде $A^TA = VDV^T$.
- 2. Диагональные элементы D неотрицательны. Поэтому D представима в виде $\Sigma^T\Sigma$.
- 3. Осталось найти U из целевого разложения:

$$A = U \Sigma V^T$$
 или $AV = U \Sigma$

Уже нашли Σ и V. Осталось найти U из $AV=U\Sigma$.

Уже нашли Σ и V. Осталось найти U из $AV=U\Sigma$.

Окончание доказательства

4. Находим вектора \mathbf{u}_i по очереди:

$$\mathbf{u}_1 = A\mathbf{v}_1/\sigma_1,$$

Уже нашли Σ и V. Осталось найти U из $AV=U\Sigma$.

Окончание доказательства

4. Находим вектора \mathbf{u}_i по очереди:

$$\mathbf{u}_1 = A\mathbf{v}_1/\sigma_1, \ \mathbf{u}_2 = A\mathbf{v}_2/\sigma_2, \dots$$

Уже нашли Σ и V. Осталось найти U из $AV=U\Sigma$.

Окончание доказательства

4. Находим вектора \mathbf{u}_i по очереди:

$$\mathbf{u}_1 = A\mathbf{v}_1/\sigma_1, \ \mathbf{u}_2 = A\mathbf{v}_2/\sigma_2, \dots$$

5. Вектора \mathbf{v}_i кончатся раньше \mathbf{u}_i .

Уже нашли Σ и V. Осталось найти U из $AV=U\Sigma$.

Окончание доказательства

4. Находим вектора \mathbf{u}_i по очереди:

$$\mathbf{u}_1 = A\mathbf{v}_1/\sigma_1, \ \mathbf{u}_2 = A\mathbf{v}_2/\sigma_2, \dots$$

5. Вектора ${\bf v}_i$ кончатся раньше ${\bf u}_i$. Оставшиеся ${\bf u}_{k+1},...,{\bf u}_n$ выберем произвольными, чтобы U была ортогональной матрицей.

Поиск SVD разложения

Нахождение проекции при известном **SVD**

Скринкаст: SVD для снижения размерности

Бонус: геометрическая алгебра