Лекция №2: Компактни оператори

1.2 Компактни оператори

1.2.1 Оператори

Навсякъде в курса под onepamop ще разбираме тотално изображение, което преработва функции във функции. Операторите ще означаваме с главни гръцки букви — $\Gamma, \Delta, ...$, евентуално с индекси. Първо ще разгледаме случая, когато тези оператори имат един аргумент. Тогава те ще са изображения от вида:

$$\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$$

за някои естествени $k\geq 1$ и $m\geq 1$. Константите k и m определят \underline{muna} на $\underline{nepamopa}$ Γ , който ще означаваме с $\underline{(k\rightarrow m)}$.

Пример 1.4.1) Операторът <u>идентитет</u>: $\Gamma_{id}(f) = f$.

Този оператор е от тип $(k \rightarrow k)$.

- 2) <u>Константният оператор</u> $\Gamma_c(f) = f_0$, където f_0 е фиксирана функция. Този оператор може да е от произволен тип $(k \to m)$.
- 3) Операторът за диагонализация $\Gamma_d(f)(x) \simeq f(x,x)$, който е от тип $(2 \to 1)$. (Ако се чудите откъде идва името на този оператор, представете си стойностите на f, разположени в безкрайна таблица, в която (i,j)-тият елемент е f(i,j).)
- 4) Операторът за сумиране $\Gamma_{sum}(f)(x) \simeq \sum_{z=0}^{x} f(z)$ от тип $(1 \to 1)$.
- 5) $\Gamma(f)(x) \simeq \text{if } x = 0 \text{ then } 1 \text{ else } x.f(x-1).$

Този оператор е тясно свързан с рекурсивната дефиниция на функцията $\phi a \kappa mopue n$. Очевидно е от тип $(1 \rightarrow 1)$.

1.2.2 Монотонни оператори

Монотонните изображения са типични за структури с частична наредба — това са тези изображения, които запазват тази наредба.

Определение 1.5. Нека $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$. Казваме, че Γ е монотонен оператор, ако за всяка двойка функции $f,g \in \mathcal{F}_k$ е изпълнено условието:

$$f \subseteq g \implies \Gamma(f) \subseteq \Gamma(g)$$
.

Монотонни са всички оператори, които дадохме като примери по-горе. Да проверим монотонността на един от тях: Задача 1.1. Докажете, че е монотонен операторът за диагонализация

$$\Gamma(f)(x) \stackrel{\text{деф}}{\simeq} f(x,x).$$

Решение. Да вземем две функции f и g от \mathcal{F}_2 , такива че $f \subseteq g$. За да видим, че и $\Gamma(f) \subseteq \Gamma(g)$, прилагаме определението на релацията \subseteq :

$$\Gamma(f) \subseteq \Gamma(g) \stackrel{\text{ped}}{\Longleftrightarrow} \forall x \forall y \ (\Gamma(f)(x) \simeq y \implies \Gamma(g)(x) \simeq y).$$

Наистина, да вземем произволни естествени x и y и да приемем, че $\Gamma(f)(x) \simeq y$. Трябва да покажем, че и $\Gamma(g)(x) \simeq y$.

От $\Gamma(f)(x)\simeq y$ и определението на Γ получаваме, че $f(x,x)\simeq y$. Но $f\subseteq g$, следователно и $g(x,x)\simeq y$, т.е. $\Gamma(g)(x)\simeq y$. Понеже x и y бяха произволни, значи импликацията

$$\Gamma(f)(x) \simeq y \implies \Gamma(g)(x) \simeq y$$

ще е в сила за всички естествени x и y, с други думи, $\Gamma(f)\subseteq\Gamma(g)$. \square

Разбира се, не всички оператори са монотонни, обаче всички примери за немонотонни оператори са в някакъв смисъл неестествени. Сега ще дадем пример за един такъв оператор, а по-надолу ще обясним защо са неестествени операторите от този тип.

<u>Пример 1.5.</u> Да вземем отново константните функции $f_0 = \lambda x.0$ и $f_1 = \lambda x.1$ и да дефинираме оператор $\Gamma \colon \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ по следния начин:

$$\Gamma(f) = \begin{cases} f_0, & \text{ako } f = \emptyset^{(1)} \\ f_1, & \text{иначе.} \end{cases}$$

Този оператор не е монотонен, защото ако вземем коя да е едноместна функция $f \neq \emptyset^{(1)}$, ще имаме $\emptyset^{(1)} \subseteq f$, докато

$$\Gamma(\emptyset^{(1)}) \stackrel{\text{деф}}{=} f_0 \not\subseteq f_1 \stackrel{\text{деф}}{=} \Gamma(f).$$

1.2.3 Компактни оператори

За дефиницията на компактност ще ни трябва понятието <u>крайна функция</u>. Една функция е *крайна*, ако е дефинирана в краен брой точки. Всяка крайна функция носи само *крайна информация* — информация за стойностите си в точките от дефиниционното си множество. За сравнение: една *тотална* едноместна функция f се характеризира с безкрайната редица от стойностите си $f(0), f(1), \ldots$.

Навсякъде в този курс с θ , евентуално с индекси, ще означаваме крайни функции. Да отбележим, че никъде недефинираната функция $\emptyset^{(1)}$ е крайна.

Нека f е произволна n-местна функция, а A е подмножество на \mathbb{N}^n . <u>Рестрикция на f до множеството A</u> ще наричаме функцията $g \in \mathcal{F}_n$, за която:

$$Dom(g) \ = \ Dom(f) \cap A \quad \& \quad g(\bar{x}) \simeq f(\bar{x})$$
 за всяко $\bar{x} \in Dom(g).$

Рестрикцията на f до множеството A ще означаваме с $f \upharpoonright A$.

Определение 1.6. Операторът $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$ наричаме компактен, ако за всяка функция $f \in \mathcal{F}_k$, всяко $\bar{x} \in \mathbb{N}^m$ и всяко $y \in \mathbb{N}$ е в сила еквивалентността:

$$\Gamma(f)(\bar{x}) \simeq y \iff \exists \theta \ (\theta \subseteq f \& \theta \text{ е крайна } \& \Gamma(\theta)(\bar{x}) \simeq y).$$
 (1.2)

Интуитивно, за един компактен оператор Γ е вярно, че $a\kappa o$ $\Gamma(f)(\bar{x})$ има стойност, то тази стойност се получава като се използва само крайна информация от аргумента f — това е точно крайната функция θ от горното определение. Разбира се, точките, в които тази крайна θ е дефинирана, могат да зависят както от f, така и от \bar{x} .

Например, при оператора за диагонализация Γ_d имаме, че ако

$$\Gamma_d(f)(x) \stackrel{\text{деф}}{\simeq} f(x,x) \simeq y,$$

то резултатът y зависи от стойността на f само в една точка — точката (x,x). Следователно най-малката функция $\theta \subseteq f$, от която се определя резултатът $\Gamma_d(f)(x)$ е с дефиниционна област $\{(x,x)\}$, т.е.

$$\theta = f \upharpoonright \{(x, x)\}.$$

За оператора

$$\Gamma_{sum}(f)(x) \simeq f(0) + \cdots + f(x)$$

имаме, че ако $\Gamma_{sum}(f)(x) \simeq y$, то y се определя от стойностите на f в точките $0,1,\ldots,x$, и следователно $Dom(\theta)$ трябва ∂a включва точките $0,1,\ldots,x$, а най-малката θ с това свойство е тази, за която $Dom(\theta) = \{0,1,\ldots,x\}$.

При оператора Γ , който се дефинира с условието $\Gamma(f)(x) \simeq f(f(x))$ е ясно, че ако $\Gamma(f)(x) \simeq y$, то $Dom(\theta)$ трябва да включва точките x и f(x), като втората точка вече зависи и от f.

Следващото НДУ за компактност ще използваме както в теорията, така и в задачите.

Твърдение 1.3. Операторът $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е компактен тогава и само тогава, когато са изпълнени условията:

- 1) Γ е монотонен;
- 2) За всички $f \in \mathcal{F}_k$, $\bar{x} \in \mathbb{N}^m$ и $y \in \mathbb{N}$ е в сила импликацията:

$$\Gamma(f)(\bar{x}) \simeq y \implies \exists \theta (\theta \subseteq f \& \theta \text{ е крайна } \& \Gamma(\theta)(\bar{x}) \simeq y).$$

Забележка. Условието 2) всъщност е правата посока на условието за компактност (1.2). Операторите с това свойство понякога се наричат $\kappa pa \check{u} h u$.

Доказателство. Нека Γ е компактен. Поради горната забележка остава да видим само, че Γ е монотонен. За целта да вземем две функции f и g, такива че $f \subseteq g$, и да приемем, че за някои \bar{x}, y :

$$\Gamma(f)(\bar{x}) \simeq y.$$

Тогава от правата посока на (1.2) ще съществува крайна функция $\theta \subseteq f$, за която $\Gamma(\theta)(\bar{x}) \simeq y$. Имаме $\theta \subseteq f$ и $f \subseteq g$, и от транзитивността на релацията $\subseteq (Tespdenue\ 1.2)$ получаваме $\theta \subseteq g$. Сега отново от условието за компактност на Γ , но прочетено наобратно, достигаме до $\Gamma(g)(\bar{x}) \simeq y$. Получихме общо, че

$$\Gamma(f)(\bar{x}) \simeq y \implies \Gamma(g)(\bar{x}) \simeq y,$$

и понеже \bar{x} и y бяха произволни, то наистина $\Gamma(f) \subseteq \Gamma(g)$.

Нека сега са в сила условията 1) и 2). Трябва да проверим само обратната посока на условието за компактност. Ако се вгледаме в него, виждаме, че то е някаква специална монотонност на Γ , отнасяща се само за случаите, когато функцията вляво на \subseteq е крайна.

Наистина, нека дясната част на (1.2) е в сила, т.е. за някоя крайна $\theta \subseteq f$ е вярно, че

$$\Gamma(\theta)(\bar{x}) \simeq y.$$

Но операторът Γ е монотонен, и щом $\theta \subseteq f$, то и $\Gamma(\theta) \subseteq \Gamma(f)$. Оттук, имайки предвид, че $\Gamma(\theta)(\bar{x}) \simeq y$, веднага получаваме, че и $\Gamma(f)(\bar{x}) \simeq y$, което и трябваше да покажем.

Следствие 1.1. Всеки компактен оператор е монотонен.

Както не е трудно да се предположи, горното следствие не може да се обърне. Ето един контрапример:

Пример 1.6. Следният оператор Γ е монотонен, но не е компактен:

$$\Gamma(f) = egin{cases} \emptyset^{(1)}, & ext{ako } f \text{ е крайна} \\ f, & ext{иначе.} \end{cases}$$

Доказателство. Монотонността на Γ се проверява непосредствено като се разгледат двете възможности за f:

1 сл. f е крайна. Тогава $\Gamma(f) \stackrel{\text{деф}}{=} \emptyset^{(1)} \subseteq \Gamma(g)$.

2 сл. f не е крайна. Понеже $f\subseteq g$, то тогава и g не е крайна и значи $\Gamma(f)\stackrel{\text{def}}{=} f\subseteq g\stackrel{\text{def}}{=} \Gamma(g)$.

За да се убедим, че Γ не е компактен, е достатъчно да вземем коя да е тотална функция f. За произволно естествено x имаме $\Gamma(f)(x) \stackrel{\text{деф}}{\simeq} f(x)$ и следователно $\Gamma(f)(x)$ има стойност. От друга страна, за всяка крайна θ , $\Gamma(\theta) \stackrel{\text{деф}}{=} \emptyset^{(1)}$ и следователно $\Gamma(\theta)(x)$ няма стойност, т.е. условието за компактност (1.2) няма как да е в сила.

Да обърнем внимание, че горният оператор е доста неестествен от изчислителна гледна точка в следния смисъл. Да предположим, че разполагаме с програма за f. За да пресметнем $\Gamma(f)(x)$, трябва да проверим дали функцията f е крайна (т.е. дали е дефинирана в краен брой точки) — нещо, което интуитивно е ясно, че няма как да стане алгоритмично за краен брой стъпки. Съвсем друго е положението с оператора за диагонализация, например. За да пресметне $\Gamma_d(f)(x)$, на Γ_d му е нужна само една стойност на f — тази в точката (x,x).

Въобще, всички оператори, които дадохме като примери в началото на този раздел, са компактни. Да поверим компактността на някои от тях:

Задача 1.2. Докажете, че следващите оператори са компактни:

- 1) операторът за диагонализация $\Gamma_d(f)(x) \simeq f(x,x)$;
- 2) операторът композиция $\Gamma_{comp}(f) = f \circ f$;
- 3) операторът за сумиране $\Gamma_{sum}(f)(x) \simeq \sum_{z=0}^{x} f(z)$.

Решение. 1) Видяхме по-горе, че Γ_d е монотонен, и значи съгласно Teopdenue~1.3 е достатъчно да покажем само правата посока на условието за компактност. Наистина, нека $\Gamma_d(f)(x) \simeq y$, т.е. $f(x,x) \simeq y$. Очевидно резултатът y зависи само от стойността на f в точката (x,x) и тогава е ясно коя ще е крайната подфункция θ на f, за която $\Gamma(\theta)(x) \simeq y$ просто полагаме θ да е рестрикцията на f до множеството $\{(x,x)\}$, т.е.

 $\theta := f \upharpoonright \{(x,x)\}$. Тогава от избора на θ ще имаме, че $\theta(x,x) \simeq f(x,x) \simeq y$ и следователно $\Gamma_d(\theta)(x) \overset{\text{деф}}{\simeq} \theta(x,x) \simeq y$.

Ще пропуснем проверката на монотонността на другите два оператора и ще се насочим директно към второто условие на Texpdenue 1.3:

2) Нека $\Gamma_{comp}(f)(x)\simeq (f\circ f)(x)\simeq f(f(x))\simeq y$. Очевидно резултатът y зависи от стойностите на f в двете точки x и f(x) (обърнете внимание, че f(x) трябва да има стойност, съгласно нашата дефиниция за суперпозиция). Ясно е, че можем да вземем крайната подфункция θ на f да бъде

$$\theta = f \upharpoonright \{x, f(x)\}.$$

Тогава $\Gamma_{comp}(\theta)(x) \stackrel{\text{деф}}{\simeq} \theta(\theta(x)) \simeq \theta(f(x)) \simeq f(f(x)) \simeq y.$

3) Нека $\Gamma_{sum}(f)(x) \simeq \sum_{z=0}^x f(z) \simeq y$, т.е. $f(0)+\ldots+f(x) \simeq y$. В частност, $!f(0),\ldots,!f(x)$ и лесно се вижда, че ако положим

$$\theta = f \upharpoonright \{0, \dots, x\},\$$

TO
$$\Gamma_{sum}(\theta)(x) \simeq y$$
.

Твърдението, с което ще завършим този раздел показва, че компактните оператори притежават свойство, аналогично на едно свойство на непрекъснатите функции в реалните числа: ако две непрекъснати функции съвпадат върху всички рационални числа, то те съвпадат върху всички (реални) числа. (Това ако приемем, че аналогът на рационално число е крайна функция, а на реално — произволна функция). Този факт идва да ни подскаже, че компактните оператори се държат в някакъв смисъл като непрекъснати. В следващия раздел ще видим, че това наистина е така — разбира се, след като дадем точната дефиниция за непрекъснатост на оператор.

Твърдение 1.4. Нека Γ_1 и Γ_2 са компактни оператори от един и същи тип $(k \to m)$, такива че за всяка крайна $\theta \in \mathcal{F}_k$ е изпълнено $\Gamma_1(\theta) = \Gamma_2(\theta)$. Тогава за всяка функция $f \in \mathcal{F}_k$ е вярно, че $\Gamma_1(f) = \Gamma_2(f)$.

Доказателство. За произволни $f \in \mathcal{F}_k$, $\bar{x} \in \mathbb{N}^m$ и $y \in \mathbb{N}$ имаме от определението за компактност:

$$\Gamma_1(f)(\bar{x}) \simeq y \iff \exists \theta (\theta \subseteq f \& \Gamma_1(\theta)(\bar{x}) \simeq y)$$

$$\iff \exists \theta (\theta \subseteq f \& \Gamma_2(\theta)(\bar{x}) \simeq y)$$

$$\iff \Gamma_2(f)(\bar{x}) \simeq y.$$