Bargaining over Marriage Payments: Theory, Evidence, and Policy Implications

Liqun Zhuge*

Department of Economics, Boston University

[Click Here for the Most Recent Version]

This version: December 26, 2022

Abstract

One unique aspect of the marriage tradition in Chinese society is the presence of both a bride price, paid by the groom's family to the bride's, and a dowry, paid by the bride's family to the couple. This article develops a model in which the bride's family sets the bride price and then transfers the dowry to the new couple, who then divide their resources. Critically, the groom's family receives services from the bride since the couple typically relocates near his family, and both sets of parents are altruistic towards their children. I derive the equilibrium of the marriage payment prices. Empirically, using both a structural collective model and reduced-form evidence, I show that a larger dowry increases the wife's bargaining power within a new conjugal household. Then using regression discontinuity, I examine the effects of a new law protecting the wife's property rights in the event of divorce. By increasing dowry value, this law encourages larger dowries and financially benefits both the husband and wife, as demonstrated by the positive effect on the bride price as well as the dowry.

Key words

Marriage Payments, Gender Inequality, Intrahousehold Bargaining, Divorce

JEL Classification codes

J12, D13, J16, D15

^{*270} Bay State Rd. B11, Boston, MA 02215. Phone: 1-(747) 334-9677. Email: zhuge@bu.edu

1. Introduction

In Chinese society, bidirectional payments of both a bride price and a dowry are widely observed as a marriage custom. Traditional theories of marriage payments provide insights into the existence of either a bride price or a dowry but not their coexistence. This limits the discussion of the implications of the unique institution observed in China. I propose a novel three-agent marriage market model to describe this unique institution and discuss the broad implication of a pro-woman marriage law amendment introduced in 2001 aimed at solving the issue of property division in divorce.

I answer three questions in this paper. First, how are the equilibrium bride price (the transfer of wealth from the groom's family to the bride's) and dowry (the transfer of wealth from the bride's family to the couple) decided? Second, how do dowries shift the bargaining power in the new conjugal household? Last, based on the framework built from the first two questions, how does the marriage law amendment—a positive shock to the value of dowries, as it helps wives to secure property rights in divorce—affect the willingness to pay for the two marriage payment prices and, consequently, the welfare of the families on both sides in a society with high gender inequality?

The marriage payment custom is performed as follows: After the betrothal and before the wedding, the bride's family signals to the groom's family how much they want as the bride price. A bride price is traditionally regarded as compensation for the bride's family owing to the common patrilocal tradition. This is typically a "take-it-or-leave-it" offer and the groom's family usually does not negotiate the price with the bride's family. If the groom's family chooses to pay the bride price to the bride's parents, the bride's parents will transfer part of their wealth to their daughter and let her bring it to the new family as her dowry. The role of dowries is usually interpreted as parents' altruism toward their daughters; higher dowries signify a wish for better post-wedding life for the daughters. The flowchart below shows the process:

[Insert Figure 1 here]

The first distinctive feature of this article is the modeling of the unique institution, which involves payments of both a bride price and a dowry. Bride prices and dowries have been prevalent in many societies throughout history, especially where the social status of women is lower (Anderson, 2003). Currently, these traditions remain popular in many developing countries, notably those in East and South Asia and Sub-Saharan Africa (Anderson, 2007). Typically, a society only sees a single direction

of the payments (i.e., either the bride price from the groom's side to the bride's side or the dowry from the bride's side to the groom's side); the direction heavily depends on the historical female role in agricultural activity (Botticini & Siow, 2003; Corno et al., 2020). Nevertheless, Greater China appears to be the only large society that sees both the bride price and dowry in marriages (Anderson, 2007; Brown, 2009).\(^1\) Existing literature explains the occurrence and roles of marriage payments from different perspectives. Becker (1991) attributes them to the inflexibility in the division of joint products within a marriage. An upfront payment would arise to compensate for the loss of efficiency in the production of one side due to marriage. Anthropological explanations claim that these payments function as a kind of property relations within a society (e.g., Goody (1973) and Schlegel & Eloul (1988)), where bride prices develop in societies with a lack of social stratification, and dowries are connected with social stratification.\(^2\) However, the presumptions of both theories constrain wealth transfers as unidirectional and zero-sum. Thus, there have been limitations in discussing the scenario of bidirectional transfers.

In order to understand the cohesion, I propose a three-agent model that involves the bride's and the groom's families and the new conjugal household. The model takes two main factors into account: patrilocality and parents' altruism. Botticini & Siow (2003) attributes the occurrence of dowries to the same two factors and refers to dowries as "pre-mortem inheritance" but does not consider their coexistence with bride prices. I complement their theory by allowing the possibility of bride prices to coexist with dowries. Unlike the cases discussed in Botticini & Siow (2003), China sees a high labor force participation rate among women.³ This leads to a necessity of compensation for the loss of services born by the bride's family.

The parents' utility is altruistic and consists of three parts: the utility of their own consumption, the weighted utility of their children's consumption, and the loss or gain of value due to their children's marriage. Considering the prevalence of patrilocality in marriages in China, the departure of their daughter induces a loss of utility for the bride's family, while the groom's family sees a positive gain. The marriage payment prices are based on a maximization problem for the bride's family. Because

¹Muslim communities in the Indian Subcontinent traditionally require a payment from the groom to the bride called a *mahr*. However, under the rule of the British Raj, dowries also became very popular. Nevertheless, a *mahr* serves a different religious purpose and should not be treated the same as a bride price.

²The social stratification defined in their work is mainly associated with the economic status of women, where strong social stratification restricts women from economic activities outside of domestic work.

³This was also true in ancient China due to women having advantages over men in some main agricultural activities such as tea picking, silk farming, and textile production.

a dowry is given after the bride price is received, the bride's family has to decide the amount of the dowry given any bride price and the consequent bride price amount to maximize their utility. In addition, the maximization process has constraints from both sides in terms of marriage decisions: the two marital transfers should satisfy the condition that their children getting married is better than any outside option for both sets of parents.

I prove that, under reasonable parameter values, bride prices and dowries can coexist in equilibrium. Moreover, a negative or zero "bride price" (a wealth transfer from the bride's to the groom's family) can never happen, as in that case, marriage is not sufficiently attractive to the bride's family. On the other hand, a positive bride price but no dowry can occur if the bride's family is relatively poor. This pattern is factually observed in the data, even if less common. The economic explanation lies in the two key assumptions of the model—patrilocality and altruism—derived from the historical background, even though modern marital transfers mostly do not rely on gender roles in agricultural activities.

The second part of this paper delves into how dowries shift the bargaining power within house-holds in a society that traditionally sees high disparities in social and economic statuses between men and women. This discussion serves two purposes. First, it provides an understanding of the scale of intrahousehold inequality in China. Second, it reflects on which kind of scale the dowry helps to alleviate inequality. Both a structural model and reduced-form estimation are adopted to investigate these two issues.

To empirically test dowries' impacts, I utilize the 2018 China Labor-force Dynamics Surveys (CLDS)—the only available data that includes the marriage payments information. It also contains comprehensive demographic, work, and consumption information. Dowries have been proven significant in raising a wife's bargaining power (e.g., J. Zhang & Chan (1999); Brown (2009); Anderson & Bidner (2015)). Using a similar strategy to J. Zhang & Chan (1999), I reproduce the results with a more novel dataset. Proxying the bargaining power with participation in chores, I found a higher dowry is associated with fewer chores for the wife and a more fair share between the spouses.

In the structural estimation, I propose a collective form household model to estimate the bargaining power of the spouses. A household's utility comprises the weighted utilities of the husband and the wife, with the sum of the weights being one. The heterogeneity of the bargaining power is introduced by incorporating the dowry payment into the Pareto weights on individuals. The estimation assumes

that a household's consumption structures and time allocation lean towards the preference of the one with higher bargaining power; I also assume different genders have different preferences on the allocations. The estimation indicates that, on average, a woman enjoys a much lower Pareto weight (~ 0.2) within the household. Meanwhile, a higher dowry or dowry-to-bride price ratio significantly raises the wife's bargaining power.

In the last part, I assess the policy implication of a pro-woman marriage law amendment by examining how an external shock on the value of dowries changes the willingness to pay for the two families. I take advantage of a marriage law amendment introduced in the year 2001. The amendment is generally considered pro-woman in the wake of the opening-up of society and rising divorce rates. The amendment clarifies the ownership of premarital property and allows the spouses more flexibility to claim their right to post-wedding property. Since dowries will become part of the couple's budget and are usually in the form of physical assets, this amendment provides a wife the advantage should a divorce happen. This could lead to two incentives for the bride's family. On the one hand, the external shock increases the value of the dowry, which lessens the need for the dowry to achieve the same level of bargaining power for the bride. On the other hand, the increasing marginal benefit of a dowry provides the bride's family a higher incentive to transfer more wealth. A more interesting outcome occurs when the second effect dominates since it leads to increases in both the bride price and dowry and the consequential Pareto improvement in society with a high level of inequality. Therefore, I employ this amendment as the cutoff point in the regression discontinuity design (RDD) estimation to test if there are discontinuities of the two marriage payment prices and the direction of the change. As a result, I find that the amendment caused 24.1% and 24.9% leaps in the bride price and dowry, respectively—benefiting both the bride's family and the couple. This result indicates that even if a policy is initially established to benefit one side, in a society with excessive inequality, a Pareto improvement can possibly be achieved.

2. Institutional Background

2.1. Marital Transactions in Chinese Society

The marriage payment tradition has long existed in China.⁴ In a Chinese marriage, the pre-wedding rituals include the multiple transfers between the two families. The bride price (*Caili* or *Pinli*) is a wealth transfer from the groom's family to the bride's family (either as a single payment or multiple payments). A dowry (*Jiazhuang*) is the subsequent transfer from the bride's family to the new couple. The original idea of the bride price was to compensate the bride's family for their daughter's leave (Zang & Zhao, 2017). Ancient society was predominantly patrilocal, and the brides had few chances to visit their parents after the wedding(McCreery, 1976). Hence, a high bride price was regarded as necessary to compensate for the loss of productivity suffered by the bride's family. Dowries originated from the wish of the bride's parents for better treatment of their daughter in the new family(Parish & Whyte, 1980; Zang & Zhao, 2017). Due to women being at a disadvantage in agricultural production, a wife tended to have a lower economic status(Wolf & Huang, 1980). A higher dowry could help to improve this situation and balance the bargaining power within a marriage.

The amount of the bride price is usually signaled by the bride's family after the betrothal and before the wedding. During ancient times, arranged marriages were common and matchmakers worked as intermediaries who also helped negotiate bride prices(Ebrey, 1991). However, with the increasing pervasiveness of love marriages and the forbiddance of marriage arrangement as well as more information exchange between the two families before the wedding, it has become easier for the bride's family to know more about the groom's family and make a rational and reasonable offer regarding the bride price. Even though "marriage by purchase" has been strongly and consistently discouraged by the government of the People's Republic of China, there are no laws prohibiting all betrothal exchange, only laws forbidding "the exaction of money in connection with marriage" (Ocko, 1991). The groom's side usually does not haggle over the bride price to avoid leaving a bad impression(Zang

⁴Thatcher (1991) finds that the tradition can be dated back to the periods of the Spring and Autumn and the Warring States (770–256 BC). The *Classic of Poetry* (also *Shijing*, 11th to 7th centuries BC), which is the oldest existing collection of Chinese poetry, already documented the prevalence of the tradition.

⁵For information on self-arrangement of marriages, see Zang & Zhao (2017). For information on bans on arranged marriages, see Article 1042 of the Civil Law of the People's Republic of China which states arrangement, selling, and intervention of marriages are illegal in China.

& Zhao, 2017). Thus, the groom's family would either accept the offer or give up on the marriage. The bride price is usually paid in the form of cash; however, the process can go through one or several installments over the course of the engagement(Ocko, 1991; Brown, 2009).

After receiving the bride price, the bride's family has to decide how much they want to retain and how much wealth to give their daughter as the dowry. A dowry does not need to be negotiated with the groom or groom's parents and is fully treated as an internal decision of the bride's family(Ocko, 1991; Brown, 2009; Zang & Zhao, 2017). Different from bride prices, dowries are usually in the form of physical assets such as furniture, electronics, bedding, vehicles, and clothing.⁶ A bride is expected to have authority over the property she brings into the new conjugal household. However, in reality, the dowry could become a part of the common property in the marriage. In addition, before 2001, the law in China did not protect the wife's right to the dowry that she brought into the household because the marriage payments are regarded as a tradition of feudalism (*Fenjian*)(Ocko, 1991; Brown, 2009).⁷ Due to the nature of the forms of dowries, many types of premarital property have no official certifications of ownership. Hence, in practice, a dowry is treated as a shared resource in usage despite its actual ownership. However, because the wife has the right to the dowry, she may have more say in the property usage.

2.2. The 2001 Marriage Law Amendment

One of the main revisions reflected in the 2001 amendment to the 1980 PRC marriage law was the clarification of the property rights of individuals.⁸ The amendment has critical implications regarding the division of property in divorces. The 1980 version of the marriage law did not specify the division rules primarily due to the extremely low divorce rate and relatively less wealth that people owned(Honig & Hershatter, 1988; Yi & Deqing, 2000). The rising divorce rate in the 1980s and 1990s saw the urgency of clarification. ⁹

There were two major revisions with respect to the property division in divorces. First, an indi-

⁶Ocko (1991) documents the change in the forms of dowry during the People's Republic of China era.

⁷Ocko (1991) documents numerous disputes regarding the division of property owned before marriage prior to the amendment.

⁸The amendment was officially passed in the Standing Committee of the National People's Congress of the People's Republic of China in April 2001.

 $^{^9}$ The demographic data analysis provided by Yi & Deqing (2000) shows that the divorce rate increased by 42% from 2.01% to 2.86% between 1982 and 1990.

vidual would retain the ownership of the property that belonged to them prior to marriage (Chapter 3, Article 18). Second, the amended law gave spouses more flexibility to declare ownership of certain property obtained either before the marriage or during the marriage (Chapter 3, Article 19). In addition to property rights, the amendment clarified the process of dividing property in a divorce. If a divorce happens and an agreement cannot be reached in the negotiations for the division of property, a court has the ultimate power to decide the division based on the rule that children and the wife should be the priority of concern (Chapter 4, Article 39). This amendment provided further protection of a wife in a marriage since the relaxation of the legal restrictions on granting divorce in the 1980 marriage law.

3. Theoretical Model and Predictions

3.1. A Three-Agent Marriage Market Model

In this part, I propose a three-agent marriage market model involving the bride's family, the groom's family, and the new conjugal household if the couple gets married. The model follows the same procedure as the institutional background and is set as a single-period problem. Both the bride's and groom's families face two choices: whether to marry off their children or not. The order starts with a non-negotiable offer from the bride's side. Only if both families find that getting married is more beneficial than the outside options (e.g., rejecting the marriage and continuing to search) can the marriage happen. Otherwise, both children's consumptions equal their outside options. If the couple gets married, a new household is formed, and the whole household's utility consists of both the husband's and the wife's utility.

3.1.1. Setup

This article focuses on payments instead of the problem of matching and mating. Consequently, the marriage market can simply be treated as the bargaining between families with a daughter and a families with a son.

For the bride's and groom's families, their utilities both consist of three parts: the utility from their own consumption, weighted utility from their children, and a constant gain or loss due to their children's marriage. The bride's and groom's parents' consumption comes entirely from their wealth. The initial wealth for the bride's family is W^F . If the daughter gets married, their wealth increases by the retained portion of the bride price; otherwise, their wealth stays the same. The daughter's utility derives from her consumption as well. Following Corno et al. (2020), Corno & Voena (2021), L. Han et al. (2015), and considering the dominance of patrilocality in marriage in China, I assume if their children get married, the groom's family experiences a constant utility gain, while the bride's family has to bear a constant loss.

Specifically, if their daughter gets married, the bride's family's utility U_m^F is: 10

$$U_m^F = \xi^F \cdot [u_1^F(c_m^{F,P})]^{\delta_1} \cdot [u_2^F(c_m^F)]^{1-\delta_1}$$

= $\xi^F \cdot [u_1^F(W^F + B - D)]^{\delta_1} \cdot [u_2^F(c_m^F)]^{1-\delta_1}$ (1)

where B and D are the notation for the bride price and dowry. $0 < \delta_1 < 1$ is the weight on the utility from their own consumption, and $0 < 1 - \delta_1 < 1$ is the weight on the utility from their daughter's consumption. ξ^F represents the loss of utility because of the daughter's leave. $0 < \xi^F < 1$ is a multiplier of a constant value. This is compared to an exogenous outside option, including rejecting the marriage and continuing to search. The idea is similar to the reservation utilities in Anderson (2003). The outside option utility for the bride's family is a constant value \bar{U}_s^F .

$$\bar{U}_s^F = [\bar{u}_1^F]^{\delta_1} \cdot [\bar{u}_2^F]^{1-\delta_1} \tag{2}$$

 \bar{u}_1^F and \bar{u}_2^F are the reservation utilities for the parents' consumption and the bride's, respectively, and there is no marriage-induced utility gain or loss. A similar problem faces the groom's family. If their son gets married, his family's utility U_m^M is:

$$U_m^M = \xi^M \cdot [u_1^M(c_m^{M,P})]^{\delta_2} \cdot [u_2^M(c_m^M)]^{1-\delta_2}$$

= $\xi^M \cdot [u_1^M(W^M - B)]^{\delta_2} \cdot [u_2^M(c_m^M)]^{1-\delta_2}$ (3)

 $^{^{10}}$ In this article, a capital letter U defines a compound utility function. A lowercase u stands for an explicit form of the utility function. The subscript and superscript are used only to distinguish which individual the utility function reflects.

where $0 < \delta_2 < 1$ is the weight on the utility from their own consumption and $0 < 1 - \delta_2 < 1$ is the weight on the utility of their son. ξ^M reflects the gain of utility due to the addition of the daughter-in-law to their family. ξ^M is also a constant-value multiplier but larger than one. The groom's family's utility with regard to the outside option is \bar{U}_s^M :

$$\bar{U}_s^M = [\bar{u}_1^M]^{\delta_2} \cdot [\bar{u}_2^M]^{1-\delta_2} \tag{4}$$

 \bar{u}_1^M and \bar{u}_2^M are the reservation utilities for the parents' consumption and the groom's, respectively. The new conjugal household's part exists if the first part of the marriage payments (bride price) occurs, which requires the condition that getting married is the better option for both sides:

$$U_m^M \ge \bar{U}_s^M, \qquad U_m^F \ge \bar{U}_s^F \tag{5}$$

When the two conditions are satisfied, the second payment (dowry) enters into the new conjugal household's budget constraint. The household utility of the married couple is the combination of the weighted utility of the husband and wife:

$$U^{H} = \max_{c_{m}^{M}, c_{m}^{F}} [u_{2}^{M}(c_{m}^{M})]^{\delta_{3}(D)} \cdot [u_{2}^{F}(c_{m}^{F})]^{1-\delta_{3}(D)}$$

$$(6)$$

s.t.

$$c_m = c_m^M + c_m^F = w^M + w^F + D (7)$$

where w^M and w^F are the respective incomes of the husband and wife. The incomes are set to be exogenous. Thus, individual income is not affected by the decision to get married. The Pareto weight of the husband as a function of the dowry D satisfies the conditions that $\delta_3'(D) < 0$ and $\delta_3''(D) > 0$. This follows the same fashion in Chiappori & Mazzocco (2017), Lise & Seitz (2011), and Lise & Yamada (2019); additionally, I further incorporate the diminishing marginal returns of dowries.

3.1.2. Equilibrium under a basic utility function

To search for the equilibrium prices of the bride price and the dowry and conduct the comparative static analysis, I adopt a basic risk-averse utility function:

$$u = c^{\gamma} \tag{8}$$

where the degree of relative risk aversion is set as $0 < \gamma < 1$.¹¹

The actual marriage rituals follow the order of the bride's family's decision, the groom's family's decision, and the consequent effects on the new conjugal household if an agreement on marriage payments is reached. However, to solve the equilibrium, we need to look at the problem backwards.

3.1.2.1. Intrahousehold Allocations within the New Conjugal Household

In the first step, the new conjugal household maximizes the utility based on the dowry given:

$$log(U^{H}) = \max_{c_{m}^{F}, c_{m}^{M}} \gamma \{\delta_{3}(D)log(c_{m}^{M}) + [1 - \delta_{3}(D)]log(c_{m}^{F})\}$$
(9)

s.t.

$$c_m = c_m^F + c_m^M = w^M + w^F + D (10)$$

There is also an underlying constraint from the both the bride's and groom's sides that getting married is better for both of them, and the decision of resource allocations is reached ahead of the marriage. Different from constraints for the parents' side, this assumption is logically easier to meet. First, the spouses will share the endowed dowry. Second, the analysis is based on the fact that the match has happened, which means the couple has found that the marriage benefits them. As a result, the first-order conditions lead to the solutions for both c_m^M and c_m^F :

$$c_m^M = \delta_3(D) \cdot (w^M + w^F + D) \tag{11}$$

$$c_m^F = [1 - \delta_3(D)] \cdot (w^M + w^F + D) \tag{12}$$

¹¹This assumption implies moderate risk aversion of individuals. Previous literature suggests an elasticity in a range of [1, 2] is reasonable for CRRA utility function (e.g., Chetty (2006), Morten (2019), and Corno et al. (2020)) The solution of the subsequent model will not largely depend on this assumption.

3.1.2.2. Maximization Problem of the Bride's Family

The consumption of a spouse is the household budget discounted by their Pareto weight. Considering the wages of the wife and husband are exogenous in the model, once the dowry is decided, the consumptions of both the wife and husband are decided. Thus, we can take the solutions back to the utility maximization problem of the bride's family. The problem for the bride's family transforms into the maximization of utility with regard to the dowry given any bride price.

Theoretically, the value of dowry D is not bounded by any restriction in this tradition since borrowing is also allowed. However, it is straightforward to conclude that the optimum is strictly less than the bride's family's wealth plus the bride price under the values of the parameters.

After knowing dowry D is a function of bride price B, the control variable in the bride's family's maximization problem becomes B:

$$log(U_m^F) = \max_{B} log(\xi^F) + \gamma \{\delta_1 \cdot log(W^F + B - D(B)) + (1 - \delta_1) \cdot log(c_m^F)\}$$
 (13)

Hence, the bride's family wants to set the bride price as high as possible. The derivative of the utility function of the bride's family with respect to the bride price is always a positive value (see the proof in Appendix A.1). This means the bride's family will want the bride price to be as high as possible as long as the groom's family accepts.

3.1.2.3. Marriage Payments under Equilibrium

The Upper Limit of the Bride Price for the Groom's Family: The result of maximization problem shows that the bride's family's utility is monotonically positively correlated with the bride price received. However, they cannot ask for an unlimited bride price due to the constraint that the groom's family would not find the marriage attractive if the bride price required is too high. Thus, the utility of getting married for the groom's family must satisfy being no smaller than the outside option (e.g., rejecting the marriage and continuing to search):

$$\xi^{M} \cdot [u_{1}^{M}(W^{M} - B)]^{\delta_{2}} \cdot [u_{2}^{M}(c_{m}^{M})]^{1 - \delta_{2}} \ge \bar{U}_{s}^{M}$$
(14)

The upper limit of the bride price is achieved when the left-hand side (LHS) equals the right-hand

side (RHS). Due to the fact that the bride price offered is non-negotiable, equality should be achieved.

The Reservation Bride Price for the Bride's Family: Once the bride's family knows the upper limit of the bride price and the distribution of the resources for the couple given any value of D, they also need to consider their own constraint that their daughter getting married is better than the outside option:

$$\xi^{F} \cdot [u_{1}^{F}(W^{F} + B - D)]^{\delta_{1}} \cdot [u_{2}^{F}(c_{m}^{F})]^{1 - \delta_{1}} \ge \bar{U}_{s}^{F}$$
(15)

When the equality is achieved, the bride price is the minimum value for the bride's family to agree on the marriage. Meanwhile, if the inequality holds, the difference between the LHS and RHS ($U_m^F - \bar{U}_s^F$) is the surplus the bride's family will gain from their daughter's marriage.

In other words, we can treat the rule deciding the bride price as a bargaining process where the weight on the groom's side is zero. This leaves no surplus for the groom's family, and the upper limit underpins the exact bride price the bride's family will ask for if the reservation price condition is met.

A comparative static analysis of how family characteristics influence the equilibrium of the two marriage payment prices is also provided in Appendix A.3.

3.1.3. Implications of Model under Equilibrium

After I derive the equilibrium prices between bride prices and dowries, I further investigate their directions and scales. There are two transfers between the two families and the parents and children. Under the assumption of patrilocality and altruism in the model, this part provides some logical evidence that in general cases, marital transfers occur in the direction from groom's family to the bride's family in a positive amount, and then from the bride's family to the couple. In other words, it is rare for the bride's family to pay the groom's family or for the bride's family to not transfer wealth to the couple.

LEMMA: In the dowry rule A7, any exogenous increase in the bride price increases the dowry: $\partial D/\partial B > 0$.

Proof: see Appendix A.2

Given a fixed set of family characteristics, both the bride price and the dowry will be decided. Additionally, when all other exogenous factors are also decided, every single value of the bride price corresponds to a single value of the dowry. In other words, any exogenous factor (e.g., a change in the parameters) that increases the bride price and does not directly affect the bride price raises the dowry, even though the relationship might not be linear.

PROPOSITION 1: The bride price is always positive (in a direction from the groom's family to the bride's family).

A negative "bride price" is sufficient for $\bar{c}_2^M > c_m^M$ and a large value of w^F . Not only does the first condition contradict the presumption, but the two conditions also contradict each other.

Proof: see Appendix A.2.1.1

A transfer from the groom's family to the bride's family occurs easily because of the positive gain of utility for the groom's family. Since the transfer from the bride's family to the groom's side does not bring direct utility gain to the former, the marriage would not be attractive to the bride's family unless the gain of their daughter's utility is large enough to compensate for the loss of utility from the daughter's leave and the payment of the bride price. Additionally, this means the groom brings much more income to the household than the bride, which makes his consumption less than before the marriage and contradicts the presumption. Thus, intuitively, this combination is impossible to achieve unless the groom's family essentially "sells" their son for their benefit.

In addition, given a non-negative boundary constraint for the bride price $(B \ge 0)$, a zero payment of the bride price (B = 0) is still unusual if we also impose a non-negative constraint for the dowry amount $(D \ge 0)$. Given the presumption $\bar{c}_2^M < c_m^M$ and $\bar{c}_1^M < W^M$, there cannot exist a solution satisfying B = 0 and $D \ge 0$ at the same time.

Proof: see Appendix A.2.1.2

In this case, the groom's family does not pay the bride price because their son is much wealthier than the bride, so the bride benefits much more from the marriage. The same situation applies for a negative "bride price." Meanwhile, after receiving no bride price, the only reason the bride's family would want to transfer wealth to the couple is that the spouses are relatively poor and the bride's family is wealthy enough. Thus, the two conditions contradict each other.

In conclusion, since the situation leads to a worse-off situation for the groom because of the marriage, intuitively, the matching of the two spouses would rarely occur in the first place.

PROPOSITION 2: A zero transfer of dowry (D=0 and B>0) may occur when W^F is small and w^M and w^F are large.

When D=0, B is not correlated with W^F . When W^F is smaller than $\frac{\delta_1}{\frac{1-\delta_1}{w^M+w^F}+\frac{(1-\delta_1)\alpha_1}{\alpha_0(1+\alpha_0)}}-B$, the bride's family will choose not to transfer any wealth to their daughter. Meanwhile, when w^M and w^F are large, the condition is easier to be met.

Proof: see Appendix A.2.1.3

Being compensated with a bride price and having no need to transfer wealth makes a marriage attractive to the bride's family. The only reason the bride's family will not want to transfer wealth to the couple is that the bride's family is relatively poor, so they cannot afford to give away any money to their daughter (high marginal cost); meanwhile, their daughter earns enough. This situation appears to be less common considering the combination.

PROPOSITION 3: Dowry exceeds the bride price (D > B) when W^F is large and w^M and w^F are small.

When the bride's family's wealth satisfies $W^F>\frac{\delta_1}{\frac{(1-\delta_1)\alpha_1}{(\alpha_0+\alpha_1B)(1+\alpha_0+\alpha_1B)}+\frac{1-\delta_1}{w^M+w^F+B}}$, they will transfer more wealth to their daughter than the bride price they receive. Meanwhile, when w^M and w^F are small, the condition is easier to be met.

Proof: see Appendix A.2.1.4

When the groom's family is not as wealthy as the bride's family, a lower bride price will be paid. This leads to relatively higher payment of dowry from the bride's family. Intuitively, the bride's family can take advantage of this situation to harvest more bargaining power for their daughter. It should be noted that Proposition 3 and Lemma 1 reflect two different aspects and do not contradict each other. Given any family characteristics, a higher bride price is always linked to a higher dowry. However, when the bride price is low, it is possible that the dowry can exceed the bride price.

PROPOSITION 4: A higher patrilocal gain for the groom's family increases their willingness to pay.

In addition to family characteristics, patrilocality is an exogenous factor in shifting the bride price. The higher the patrilocality gain (ξ^M) for the groom's family, the more they will pay for the bride price given the fixed family and individual wealth.

Proof: see Appendix A.2.2

This is a general rule that applies to all cases regardless of family characteristics. At the same time, even though the patrilocality gain means a loss to the bride's family, the loss does not directly affect the dowry rule. However, the increase in the bride price would naturally increase the dowry amount. On the other hand, the intuitive explanation for the increase in dowry attributes to the fact that the more the bride contributes to the groom's family, the less connection she may keep with her natal family. In this case, her parents would want to give her more protection by transferring more wealth to her.

3.2. Dowry and Intrahousehold Bargaining Power

In this part, I delve into another question: what are the impacts of the marriage payments on the new conjugal household? In analyzing the factors affecting the bargaining of the two marriage payment prices, the primary focus is on the parent's side. Nevertheless, it is established that the dowry transfer to the couple originates from the incentives of the bride's parents wishing for more bargaining power for their daughter. Therefore, it is necessary to look further at how marriage payments can affect the bargaining power of individuals. Due to the cultural background that only dowry will enter into the couple's budget constraint as a part of the endowment, but the bride price works as a role to compensate for the loss of a daughter for the bride's family, only the role of a dowry in shifting bargaining power needs to be considered.

In the previous setting, a person's bargaining power is reflected in the individual's Pareto weight in the whole household's utility. This is achieved by introducing the heterogeneity of the bargaining power across different households where the Pareto weight is a function of a dowry. In addition, I also revisit the form of the utility function by incorporating home production and leisure time. The purpose of doing so is to inspect the allocations of different resources between the spouses, which reflect the weights of each individual in the household.

The framework of the following model is built upon the literature of collective models with a process of intrahousehold allocations such as Chiappori et al. (2002), Chiappori & Mazzocco (2017) and Lise & Yamada (2019). Within the newly formed household, an individual's utility consists of their consumption of final goods c_m^G and home production q_m^G , and leisure ℓ^G (G = M or F):

$$U^{H} = \max_{c_{m}^{M}, c_{m}^{F}, q_{m}^{M}, q_{m}^{F}, \ell^{M}, \ell^{F}} [u_{2}^{M}(c_{m}^{M}, q_{m}^{M}, \ell^{M})]^{\delta_{3}(D)} [u_{2}^{F}(c_{m}^{F}, q_{m}^{F}, \ell^{F})]^{1-\delta_{3}(D)}$$

$$(16)$$

Both the wife's and husband's time are divided into three parts: work, home production, and leisure. The final goods do not require a home production process. However, to consume home-produced goods, an individual has to spend time on home production. Home production involves individuals' time spent on home production h^G and an input of the intermediate goods g:

$$q_m^G = q_m^G(g, h^G) \tag{17}$$

Thus, the control variables in the maximization problem are each individual's consumption of final goods, their time spent on home production and leisure, and expenditure on intermediate goods. The household budget constraint is subject to

$$c_m^M + c_m^F + g = \omega^M \cdot t^M + \omega^F \cdot t^F + D \tag{18}$$

where ω^M and ω^F are the husband's and wife's total incomes divided by their annual working hours: t^M and t^F , respectively. For the convenience of analysis, I normalize the total time as 1 for each individual:

$$t^{M} + h^{M} + \ell^{M} = 1, t^{F} + h^{F} + \ell^{F} = 1$$
 (19)

3.3. External Shock on the Value of Dowries

With the 2001 marriage law amendment, dowries become more valuable in shifting power to the wife's side. This can be achieved by a constant gain in the Pareto weight (because the bride's family now has the belief that their property will be better protected by law after getting into the marriage) or a higher marginal benefit from dowries (the impact of every single *yuan* becomes larger). These two channels result in similar results in terms of the changing direction of the marriage payments.

The impacts of the amendment on dowries are in two different directions since dowries factor into both the consumption and the bargaining power of the spouses. First, regarding the dowry rule, given the same amount of the bride price, the bride's family can now transfer less wealth to maintain the same level of bargaining power for their daughter. This is directly reflected as the income effect. With the new dowry rule, the bride price will also be adjusted. However, because a dowry has become more valuable (higher marginal benefits), the bride's family will find it more attractive to transfer a little more to their daughter. This is reflected as the substitution effect. Hence, with the positive shock on dowry, theoretically, the change of the amounts of the two wealth transfers is uncertain.

Depending on the parameters, the change of the two marriage payment prices could only occur in the two main directions presented below:¹²

		Bride price	
		Increase	Decrease
Dowry	Increase	✓	Χ [†]
	Decrease	X	✓

[†]May be true under a less common condition.

Suppose the income effect leads to the dowry dropping from D^* to D, and the shift due to the substitution effect is $D^{**} - D^*$. Both marriage payments will increase when $D^{**} - D^*$ is larger than $D - D^*$, and vice versa. Hence, $D^{**} = D$ presents the turning point for the change of direction, measured in terms of the spouses' bargaining power. When the inequality within the household is high, the income effect tends to be small, and the substitution effect will dominate, and vice versa.

Proof: see Appendix A.2.3

When both marriage payment prices increase (when inequality is high and the substitution effect dominates), it results in a more interesting case since it will be a Pareto improvement. Both families are more willing to transfer more wealth to their children since they both can get more utility from the altruistic part; thus, both spouses' consumption will increase. For the bride's family, not only will they enjoy higher utility from their altruism, but they also gain it through higher consumption. Since the groom's family always gets the utility the same as the outside option, they are not hurt by the amendment. However, when both of the marriage payment prices decrease after the amendment, it shows the increased marginal benefits from the altruism of the bride's family are comparatively small.

¹²The less common condition is based on a zero payment of dowry before the amendment, the amendment incentivizing the bride's family to transfer a small amount of wealth, and the effect being led by increasing marginal value of dowries. See Appendix A. for the proof.

In the case of both prices decreasing, even though the groom will have less consumption, the change for the bride is uncertain.

4. Empirical Analysis

This part presents empirical evidence to test the models presented in the previous section with survey data. The analysis comprises two parts: The first part examines intrahousehold inequality and the relationships between dowries and the wife's bargaining power with empirical evidence and a structural model; the second part tests the effects of the marriage law amendment.

4.1. Data and Summary Statistics

Estimation requires information on marriage payments from both sides, characteristics of both families, and the allocation of resources and time for the married couple. A unique dataset that meets these requirements is the 2018 China Labor-force Dynamics Surveys (CLDS).¹³

4.1.1. Description of CLDS data

The surveys cover 29 provinces (or equivalents) in total, and the data include three parts: community, household, and individual surveys. ¹⁴ As the name suggests, the surveys involve only the eligible labor force aged between 15 and 64 (regardless of whether they actually work or not). The household and individual datasets can be linked by the household ID. Due to the purpose of my research, I select only the households of married (or engaged) couples in which one of the spouses is regarded as the household head.

For the individual-level data, the surveys ask for the individuals' information as well as their parents'. For the main variables of interest, the marriage payment questions are as follows:

¹³CLDS data are panel datasets that were conducted in 2011, 2012, 2014, 2016, and 2018. However, only the 2018 dataset provides complete information on marriage payments. Previous surveys asked only about the total expenditures from the groom's parents (bride prices). The 2018 survey asked not only both the groom and bride about their betrothal payments from their parents (bride price and dowry, respectively) but also their spouse's parents' marriage payments (dowry and bride price, respectively), which helps to verify whether the reported payments are consistent between the spouses.

¹⁴The community part mainly surveys the development of the villages or neighborhoods, so I will not focus on this part.

• Marriage Payments

- How much did your family spend for your first marriage (such as betrothal gifts and bride price or dowry) ____yuan?
- How much did your spouse's family spend ____yuan?

I access the answers from both sides and drop the observations with inconsistent payment amounts. ¹⁵ Other information at the individual level includes demographic information, *hukou* status, wedding years, education levels, occupations, incomes, allocations of time on working and chores, and migration history. ¹⁶ For parental information, individuals are asked about their demographic information, *hukou* statuses, education levels, and occupations if they are still in the labor force. However, one disadvantage is that the surveys do not ask about the parents' wealth or income.

The household part mainly surveys the household member structures, living conditions, income, and expenditures. Every household has one member registered as the household head in *hukou*. This helps to select the sample for the analysis. The main variables I am interested in are those related to expenditure or consumption, which reflect the allocations of resources. The surveys ask not only about the total consumption but also the subcategories. Combined with individual time allocation information, this helps to construct home production information.

4.1.2. Summary Statistics

After dropping single-member families, there are 1, 196 observations of two-spouse households with complete individual-level data, among which 651 have complete household-level information. Table 1 presents the summary statistics of the main variables at the individual level (Panel A) and household level (Panel B).

[Insert Table 1 here]

The average ages for female and male samples are 46.16 and 47.77 years old, respectively. Among these married couples, the percentages of couples married in the 1980s, 1990s and after 2000s are

¹⁵I allow a tolerance of a 10% difference.

¹⁶Hukou or the household registration system is a national classification policy in China. This system categorizes Chinese citizens as either "rural" or "urban" hukou. Hukou is associated with the welfare, benefits, and opportunities provided by the government. Local governments decide what benefits residents with local hukou and migrants can enjoy. The public service and welfare are attached to a person's hukou status instead of their physical location. Typically, residents without local hukou can enjoy no or very limited resources provided by the local government.

31.4%, 37.6% and 31.0%, respectively. Due to the relaxation of *hukou* obtention laws in the 1990s—people can choose to switch to their spouses' *hukou*—and the age range of the sample after selection, over 95% of the couples hold the same types of *hukou*. The surveys cover both rural and urban areas. Among the sample, around 17% of the households hold urban *hukou*.

Both men and women in the sample see high labor force participation rates, consistent with the continuing trend of comparatively high labor force participation rates among Chinese women (Maurer-Fazio et al., 2011). At the same time, only 3.5% of men are out of the labor force, while the rate is approximately 18% for women. On average, a man works twice as long as a woman in the labor market. However, for chore participation, a much lower rate can be observed among husbands. Only 2.2% women do not do any chores, but the rate reaches 32% among men. In addition, a woman spends 15 hours weekly on chores on average, while the number of hours totals just 4 among husbands.

For the household level, the average bride price and dowry for the sample are 9,867 and 5,234 *yuan*, respectively. It should be noted that the majority of the sample got married 30 or 40 years before the surveys when China was in the beginning of its economic reform and transitioning from a planned economy to a market economy. These two values should be treated as considerable at that time.

The empirical evidence on testing the comparative static analysis on how family characteristics influence the equilibrium of the two prices is provided in Appendix B.1 and B.2.

4.2. Dowries and Intrahousehold Bargaining Power

This section provides empirical evidence to answer the question: what are the outcomes of higher dowries, and how are they related to inequality at the household level?

4.2.1. Reduced-Form Evidence on the Impacts of Dowries

In order to find an indicator to reflect the bargaining power of an individual within the family, following the strategy in J. Zhang & Chan (1999), I look into individual participation in chores at home. As mentioned in the data summary, the disparity between chore participation and time investment

 $^{^{17}}$ The rules of hukou obtention through marriage vary from place to place. Larger and wealthier cities see tighter rules on the obtention. For instance, megacities such as Beijing and Shanghai require at least 10 years of marriage and applicants to be over 40 years old. Smaller cities, towns, or villages may approve right after the marriage is registered.

¹⁸All prices involved in this paper are CPI adjusted to the 2000 values in each province.

between the two genders is substantial. Considering that almost all of the women in the sample participate in chores regardless of their income or education levels, but a third of men do not engage in any housework, I test whether there is a positive relationship between the dowry amount and an individual's chore participation. The specification is below:

$$Chores_{i,k} = \mathbf{X}_{i,k}\boldsymbol{\beta}_1 + \kappa_k + \varepsilon_{i,k} \tag{20}$$

To measure chore participation, I construct three indicators: a wife's time spent on chores, the ratio of time spent on chores and working time for working women, and the time difference between the husband and the wife on chores. The primary explanatory variable is the value of dowries. Different from J. Zhang & Chan (1999), I do not incorporate the bride price because the data from their surveys show that dowries are significantly higher than bride prices in Taiwanese society, which is a different situation from the surveys that I use to some extent. Table 2 presents the estimation results.

[Insert Table 2 here]

The table shows that dowries have significant impacts on all three indicators, and the results indicate less time spent on chores for women and more participation of husbands. First, a 1% increase in a dowry leads to a 9-10% reduction in the wife's time spent on chores. The conclusions still hold when individuals' *hukou* and education levels are taken into account, and provincial fixed effects are controlled. Second, for those working women, dowries also play a significant role in shifting their time scheduling. A 1% increase in a dowry is associated with an 8-10 percentage points decrease in the weekly chore-to-work ratio for working women when the provincial fixed effects are not controlled. Furthermore, when husbands are taken into account, a higher dowry helps to reduce the deficit of time on chores of husbands and wives, where a nearly 9% decrease is associated with a 1% increase in a dowry. However, the deduction of the deficit is mainly from the power gained by the wives, presumably because of the already low participation rate of the husbands.

4.2.2. Structural Estimation on Pareto Weights and Inequality

This part follows the second section in the theoretical model to estimate a dowry's impacts on an individual's bargaining power. The theoretical model introduces the heterogeneity in Pareto weights

¹⁹In addition, their research finds only dowries have impacts on husbands' participation in chores while bride prices see minor and insignificant coefficients.

by assuming that a higher dowry raises the wife's weight. Thus, if the actual allocation of resources within a household is known, the maximization problem focuses on the adoption of the weights on spouses to maximize the whole utility of the family.

The collective bargaining process is based on the assumption that the household's consumption structures and time allocation leans towards the one with higher bargaining power. In addition, a husband and wife have different preferences on the types of consumption and time allocation. Thus, by inspecting a household's actual consumption structures and the spouse's time allocation, I can estimate the Pareto weights of the husband and the wife. The previous model presents the utility function as an egoistic form, where an individual only cares about their own consumption and leisure. However, in reality, it is difficult to observe a division of consumption among household members. The surveys that I adopt in the analysis provide only the total expenditures on consumption and its subcategories. Nevertheless, it is more practical to obtain individuals' information on their time spent on work, home production, and leisure, which is accessible from the surveys. Thus, in order to tackle this issue, I revisit the original household utility maximization problem in the form below:

$$V^{H} = \max_{c_{m}^{H}, q_{m}^{H}, \ell^{M}, \ell^{F}} \left[u_{2}^{M}(c_{m}^{H}, q_{m}^{H}, \ell^{M}) \right]^{\sigma_{3}(D)} \left[u_{2}^{F}(c_{m}^{H}, q_{m}^{H}, \ell^{F}) \right]^{1 - \sigma_{3}(D)}$$
(21)

where V^H is the revised household utility. The individual utility is expressed as follows:

$$u^{G} = (c_{m}^{H})^{\tau_{1}^{G}} (q_{m}^{H})^{\tau_{2}^{G}} (\ell^{G})^{\tau_{3}^{G}}, \qquad \tau_{1}^{G} + \tau_{2}^{G} + \tau_{3}^{G} = 1, G = M \text{ or } F$$
(22)

I replace the consumption of final goods and home production of individuals with the total consumptions: c_m^H and q_m^H . Home production involves the input of both the husband's and wife's time on chores and intermediate goods. The production function is as follows:

$$q_m^H = (h^M)^{\rho_1} \cdot (h^F)^{\rho_2} \cdot (g)^{(1-\rho_1-\rho_2)}$$
(23)

The budget constraint becomes

$$c_m^H + g = \omega^M \cdot t^M + \omega^F \cdot t^F + D \tag{24}$$

To reflect the role of dowries in influencing a wife's bargaining power, I parametrize the hetero-

geneity in Pareto weights σ_3 and $1 - \sigma_3$ in terms of the dowry value D. For the convenience of structural estimation, I adopt the exponential form of the Pareto weights, considering the nature of the data. The weight on the husband's utility is expressed as follows:

$$\sigma_3(D) = \frac{exp(\nu_0 + \nu_1 D)}{1 + exp(\nu_0 + \nu_1 D)}$$
(25)

The specification normalizes the sum of the weights of the husband and wife to 1. I adopt two indicators for the dowry payment variable: the actual value of the dowry and the dowry-to-bride price ratio. Although the bargaining of marriage payments between the two families shows the uncertainty of the directions of the dowry-to-bride price ratio, it should not affect our analysis of its role in impacting intrahousehold bargaining between the married couple. In addition to its role as an endowment in the couple's budget constraint, the dowry amount also shows the bride's parents' support for her bargaining power in the new conjugal household. Table 3 below presents the estimation results.

[Insert Table 3 here]

The estimation of Pareto weight is based on the sample average. Overall, the husbands see much higher bargaining power than the wives, with a weight of 0.73. In addition, for a woman who brings the mean value of dowry, a 1,000 *yuan* increase in a dowry results in a 0.37 percentage point increase in her bargaining power. When measured with the dowry-to-bride price ratio, a woman whose family retains the mean value of the ratio sees a 0.4 percentage point higher bargaining power if the ratio increases by 1 percentage point.

4.3. The Impacts of the Marriage Law Amendment on Marriage Payments

4.3.1. RDD estimation

In this part, I test whether the marriage law amendment leads to a discontinuity of the marriage payment with empirical data. The theoretical part suggests two directions of change may occur under different situations. Thus, if the theory is valid, in a case of a less equal family, the law amendment should induce higher incentives for the bride's family to transfer wealth to the couple and for the groom's family to pay a higher bride price. Hence, positive discontinuities of the two marriage payments should be observed in the 2001, the year the marriage law amendment was introduced. First,

I examine the graphic evidence of discontinuity by looking into the time trends of the two marriage payment prices. I also calculate the ratios of the dowry to the bride's income and to the bride price to reflect the marginal value of dowries. The two scatterplots in Figure 2 and Figure 3 present the average bride price and dowry, respectively, through the sample years.

[Insert Figure 2 here]

[Insert Figure 3 here]

There is an upward trend for both marriage payments because society is becoming wealthier. However, there is a clear discontinuity in 2001, where an upsurge can be observed in both prices.

In addition, to reflect the increased marginal value of dowries, I further calculate two ratios: the dowry to the bride's income and to the bride price. The two scatterplots in Figure 4 and Figure 5 present the average dowry-to-bride income and dowry-to-bride price ratios, respectively, through the sample years.

[Insert Figure 4 here]

[Insert Figure 5 here]

The interesting phenomenon about the dowry-to-bride income ratios is that before the introduction of the amendment, the flat regression line is consistent with the dowry being relative to the income per capita. However, after 2001, not only is there a jump in the ratio but also a continuously increasing trend afterward. For the dowry-to-bride price ratios, there is a downward trend. If the gender equality issue has been improving over time, the marginal benefit of dowries in improving wives' bargaining power would diminish. However, the sudden jump in the ratio in 2001 may indicate an abrupt increase in the value of dowries. In addition, evidence of the direct impacts of the amendment on property values is provided in Appendix B.

In order to test the magnitude of the discontinuity due to the law amendment, I adopt a regression discontinuity design (RDD) strategy to analyze the scale of the effect. The basic specification is below:

$$Price_{i,t} = \beta_2 + \beta_3 D_i + \beta_4 T_{i,t} + \beta_5 D_i \cdot T_{i,t} + \varepsilon_{i,t}$$
(26)

 $Price_{i,t}$ is either the bride price, dowry, or ratio indicators. D_i is a dummy variable that indicates

if the year when the couple got married was after the amendment (1 if after 2001 and 0 if before 2001). $T_{i,t}$ stands for the wedding year measured relative to 2001, which captures the time trend. The specification also includes the interaction term of the dummy variable, the time trend term, and the error term. Hence, the estimand β_3 reflects the discontinuity: $\beta_3 = \lim_{T \uparrow A^*} E[Price_{i,t}|T_{i,t} = Amendment] - \lim_{T \downarrow A^*} E[Price_{i,t}|T_{i,t} = Amendment]$. In addition, considering that the bride's income used in calculating the dowry-to-bride income ratios is her current income, I further include the control variable of the bride's age at which she got married. Table 4 presents the estimation results:

[Insert Table 4 here]

The first four columns test the effect on the bride price and dowry, where both the actual currency values and values after IHS conversion are presented. The last two columns present the dowry-to-income and dowry-to-bride price ratios results. The estimation shows that the increase of dowries and the dowry-to-income ratio at the timing cutoff is consistently significant at the 10% level or higher. The increase of the exact bride price and dowry values amount to 2, 243 and 1, 214 yuan, respectively. The average bride price and dowry before the law amendment were 9299.72 and 5277.67 yuan, respectively; thus, this amendment amounts to 24.12% and 22.94% increases for the two marriage payment prices. The average dowry-to-income ratio prior to the amendment was 0.93; thus, the amendment helped to raise the ratio considerably to 2.0. The amendment raised the average dowry-to-bride price ratio by 7.5 percentage points from 0.61.

The following part proves that 2001 was a clear timing threshold when the two marriage payments started to be affected simultaneously. The correlation between the two marriage payments and the running variable should be the strongest in the year 2001. This should be reflected as the R-squared values peaking at the year 2001 in the regressions. Hence, if we set different cutoff points around the year 2001, the distributions of the R-squared values of the two prices should display similar concave shapes. I graph the R-squared values in a sequence of cutoff points (-5 to 5 relative to the year 2001) in Figure 6.

[Insert Figure 6 here]

Both R-squared distributions show a similar concave pattern along the sequence. We can clearly observe that the two distributions jointly peak at the zero cutoff point, where both the bride price and dowry reach R-squared values that are close to the highest. There are inconsistencies between

the two distributions at some points. These may be due to some factors affecting only one of them. However, since the test is about if the year 2001 best explains simultaneous positive discontinuities, it is reasonable to conclude that 2001 is the best cutoff point based on the joint peak.

4.3.2. Robustness Tests on the Impacts of the Marriage Law Amendment

Manipulation of the Wedding Years around the Year of Implementation: This part examines the general concern of testing the implementation of any policies that a manipulation may occur around the year when a policy is introduced. The concern regarding this specific amendment is reflected in two parts both before and after the year of implementation. Since the hearing of the amendment was held one year ahead of the implementation in October 2000 and the release of the information could have been even earlier, some people would have expected the future implementation of the amendment. Thus, if these people got married one or two years ahead of the amendment, they may have chosen to set the bride price and dowry according the new information. In contrast, for those who are less sensitive to political news, it might take some time for them to adjust to the new law. Thus, they may still set the marriage payment prices according to the old law. In addition to the marriage price aspect, the timing in which couples got married may have been affected. Because this amendment is pro-woman, a couple, especially the bride's side, would want to wait to see how the policy would be implemented if they were initially planning to register around those years. Though I cannot directly test the first case, it is possible to conduct a McCrary density test to examine whether there was an abnormality around the year of implementation. Following Cattaneo et al. (2020, 2021), I conduct a hypothesis test about whether the density near the cutoff point to is discontinuous. Table 5 below presents the result.

[Insert Table 5 here]

The test clearly indicates there is a manipulation around the year of the implementation of the amendment. It indicates some couples adopted a "wait to see" strategy. Thus, in order to avoid the interference of the lag and lead effects, I employ the donut RDD method. Table 6 below shows the results with one (top) and two (bottom) years excluded on each side.

[Insert Table 6 here]

Table 6 shows that the magnitudes of all six indicators of both new samples are larger than the

original test. In addition, higher significant levels can also be observed in the new estimation. The difference is especially noticeable in the sample with two years on each side excluded where the discontinuity of the bride price is almost doubled and the dowry estimation sees a nearly 50% increase. The donut RDD regression results further strengthen our findings in respect to the impacts of external shocks on the marriage payments.

4.3.2. Robustness Tests on the Impacts of China's Entry to the WTO

This part addresses the concern regarding the effects of other events that happened in 2001. If another nationwide shock increases the wife's bargaining power, we might observe a similar pattern of discontinuities. In this robustness test, I mainly consider China's entry into the World Trade Organization on December 11, 2001. The entry provided many job opportunities in the manufacturing industry. If women with disadvantageous economic status benefit more from the entry, the increased bargaining power may lead to a higher incentive for her family to transfer more wealth. There are two possible channels: first, the entry leads to more labor force participation among married women (Dai et al., 2021); second, the textile and clothing industries benefit most from the accession to the WTO (Yeung & Mok, 2004). The entry to the WTO, however, affected some areas more than others due to different degrees of exposure to trade (J. Han et al., 2012). Thus, if this theory holds true, we should expect a more considerable increase in marriage payments in the regions more exposed to entry to the WTO. I classify the regions into two groups—more exposed and less exposed—according to the same measurement adopted in J. Han et al. (2012). The RDD estimation for the two groups is presented in Table 7.

[Insert Table 7 here]

Contrary to the hypothesis, the estimation shows an opposite direction. The less exposed areas observe significant increases in both the bride price and dowry on a much larger scale. However, none of the four differences between the coefficients from the two groups are significant at the 5% level (note the bride price test is in the opposite direction). Hence, I can reject the hypothesis that entry to the WTO explains the discontinuities. There are two main reasons. First, the entry raises the spouses' individual consumption mainly by increasing the budget. However, the marriage law amendment increases dowries' value and indirectly increases both the bargaining power and the budget. Thus, the entry would not result in a higher incentive for the parents on the two sides to transfer more wealth.

Second, the areas more exposed to entry are also the more developed regions. Thus, the difference in the scales of the discontinuities is not from the exposure to the entry but the equality level within a household. The average bride price and dowry in the more exposed areas before 2001 were 10183.23 and 6301.68 *yuan*, compared to 8491.66 and 4396.50 *yuan* for the counterpart. Instead, the result is consistent with the previous theoretical implication that families with high inequality would expect a larger increase in both prices.

5. Conclusions

I have constructed a simple model of the marriage market to explore the bargaining process of the families on both sides regarding a bidirectional marriage payment tradition in Chinese society: the bride price and the dowry. I also investigate the consequential impacts of the marriage payments on spouses' intrahousehold bargaining power by adopting a collective model. By taking advantage of a pro-woman marriage law amendment, I examine how the amendment increases both families' willingness to transfer more wealth. The result leads to a Pareto improvement for all sides in a society with high gender inequality. My research helps to understand the importance of gender roles in a traditionally conservative society with reference to one of the most important events in a person's life: marriage.

In the discussion of the bargaining process regarding marriage payments, I complement the existing literature by allowing bidirectional and non–zero-sum wealth transfer between the families on the two sides. The non-negotiable bride price offer and the subsequent dowry are based on a maximization problem of the bride's family, where the parents' utility comprises both their own and their daughter's consumption as well as the utility loss from the daughter's marriage due to the patrilocal tradition. To examine the role of dowries and intrahousehold inequality, I build a collective model that involves intrahousehold bargaining between spouses. I introduce the heterogeneity into the Pareto weights of individuals by incorporating the dowry payment. By observing the allocation of resources and time in each family, I find dowries increase a wife's bargaining power even though her Pareto weight is relatively weaker (~ 0.2). Last, I discuss how a positive external shock that increases the value of dowries can lead to a Pareto improvement for all sides by increasing both payments.

This article provides empirical evidence to test the predictions of the theoretical models with both

structural model estimation and reduced-form methods. A unique dataset that includes marriage payment information and family characteristics is adopted. The RDD estimation regarding the impacts of the marriage law amendment indicates positive increments in both marriage payments. The marriage law amendment resulted in positive changes in both bride prices and dowries, where a 24.12% increase in the bride price, a 22.94% increase in the dowry, and a 7.5 percentage points jump in the dowry-to-bride price ratio is observed.

References

- Anderson, S. (2003). Why dowry payments declined with modernization in europe but are rising in india. *Journal of Political Economy*, *111*(2), 269–310.
- Anderson, S. (2007). The economics of dowry and brideprice. *Journal of Economic Perspectives*, 21(4), 151–174.
- Anderson, S., & Bidner, C. (2015). Property rights over marital transfers. *The Quarterly Journal of Economics*, 130(3), 1421–1484.
- Becker, G. S. (1991). A treatise on the family. Harvard university press.
- Botticini, M., & Siow, A. (2003). Why dowries? American Economic Review, 93(4), 1385–1398.
- Brown, P. H. (2009). Dowry and intrahousehold bargaining evidence from china. *Journal of Human Resources*, 44(1), 25–46.
- Cattaneo, M. D., Jansson, M., & Ma, X. (2020). Simple local polynomial density estimators. *Journal of the American Statistical Association*, 115(531), 1449–1455.
- Cattaneo, M. D., Jansson, M., & Ma, X. (2021). Local regression distribution estimators. *Journal of econometrics*.
- Chetty, R. (2006). A new method of estimating risk aversion. *American Economic Review*, 96(5), 1821–1834.
- Chiappori, P.-A., Fortin, B., & Lacroix, G. (2002). Marriage market, divorce legislation, and household labor supply. *Journal of political Economy*, *110*(1), 37–72.
- Chiappori, P.-A., & Mazzocco, M. (2017). Static and intertemporal household decisions. *Journal of Economic Literature*, 55(3), 985–1045.
- Corno, L., Hildebrandt, N., & Voena, A. (2020). Age of marriage, weather shocks, and the direction of marriage payments. *Econometrica*, 88(3), 879–915.

- Corno, L., & Voena, A. (2021). Selling daughters: Child marriage, income shocks and the bride price tradition. *Working paper*.
- Dai, M., Huang, W., & Zhang, Y. (2021). How do households adjust to tariff liberalization? evidence from china's wto accession. *Journal of Development Economics*, *150*, 102628. doi: https://doi.org/10.1016/j.jdeveco.2021.102628
- Ebrey, P. (1991). Shifts in marriage finance from the sixth to the thirteenth century. In *Marriage and inequality in chinese society*. University of California Press Berkeley.
- Goody, J. (1973). Bridewealth and dowry in africa and eurasia. *Bridewealth and dowry*, 1–58.
- Han, J., Liu, R., & Zhang, J. (2012). Globalization and wage inequality: Evidence from urban china. *Journal of international Economics*, 87(2), 288–297.
- Han, L., Li, T., & Zhao, Y. (2015). How status inheritance rules affect marital sorting: Theory and evidence from urban china. *The Economic Journal*, *125*(589), 1850–1887.
- Honig, E., & Hershatter, G. (1988). *Personal voices: Chinese women in the 1980s*. Stanford University Press.
- Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. *The Review of economic studies*, 79(3), 933–959.
- Lise, J., & Seitz, S. (2011). Consumption inequality and intra-household allocations. *The Review of Economic Studies*, 78(1), 328–355.
- Lise, J., & Yamada, K. (2019). Household sharing and commitment: Evidence from panel data on individual expenditures and time use. *The Review of Economic Studies*, 86(5), 2184–2219.
- Maurer-Fazio, M., Connelly, R., Chen, L., & Tang, L. (2011). Childcare, eldercare, and labor force participation of married women in urban china, 1982–2000. *Journal of human resources*, 46(2), 261–294.
- McCreery, J. L. (1976). Women's property rights and dowry in china and south asia. *Ethnology*, 15(2), 163–174.

- Morten, M. (2019). Temporary migration and endogenous risk sharing in village india. *Journal of Political Economy*, 127(1), 1–46.
- Ocko, J. K. (1991). Women, property, and law in the people's republic of china. *Marriage and inequality in Chinese society*, 313–346.
- Parish, W. L., & Whyte, M. K. (1980). *Village and family in contemporary china*. University of Chicago Press.
- Schlegel, A., & Eloul, R. (1988). Marriage transactions: Labor, property, status. *American Anthropologist*, 90(2), 291–309.
- Thatcher, M. P. (1991). Marriages of the ruling elite in the. *Marriage and Inequality in Chinese Society*, 12, 25.
- Wolf, A. P., & Huang, C.-s. (1980). *Marriage and adoption in china, 1845-1945*. Stanford University Press.
- Yeung, G., & Mok, V. (2004). Does wto accession matter for the chinese textile and clothing industry? *Cambridge Journal of Economics*, 28(6), 937–954.
- Yi, Z., & Deqing, W. (2000). A regional analysis of divorce in china since 1980. *Demography*, 37(2), 215–219.
- Zang, X., & Zhao, L. X. (2017). State of the field: the family and marriage in china. In *Handbook on the family and marriage in china*. Edward Elgar Publishing.
- Zhang, C., Jia, S., & Yang, R. (2016). Housing affordability and housing vacancy in china: The role of income inequality. *Journal of housing Economics*, *33*, 4–14.
- Zhang, J., & Chan, W. (1999). Dowry and wife's welfare: A theotrical and empirical analysis. *Journal of Political Economy*, 107(4), 786–808.

Figures

Figure 1: The Process of Payments in A Marriage

Note: This flowchart demonstrates the process of the two marriage payments: bride prices and dowries; the numbers indicate the order. Bride prices (\mathbf{B}) are usually in the form of cash, and dowries (\mathbf{D}) are in the form of physical assets. The bride price is signaled by the bride's family to the groom's family and is usually non-negotiable. There is no restriction on the relationship between the values of a bride price and a dowry.

Figure 2: Relationship between Wedding Years and Bride Prices

Note: This figure demonstrates the time trend of bride prices from 1980 to 2018. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The sample size is 1,461. The vertical axis is the bride price (*yuan*). Each dot stands for the yearly average bride price. The horizontal axis stands for the years when the couples got married. The cutoff line is the year 2001, when the marriage law amendment was implemented. The data is winsorized at the 0.5% level at both the top and bottom.

Figure 3: Relationship between Wedding years and Dowries

Note: This figure demonstrates the time trend of dowries from 1980 to 2018. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The sample size is 1,207. The vertical axe is the dowry(yuan). Each dot stands for the yearly average. The horizontal axe stands for the years when the couples got married. The cutoff line is the year 2001, when the marriage law amendment was implemented. The data of dowries is winsorized at the 0.5% level at both the top and bottom.

Figure 4: Relationship between Wedding Years and Dowry-to-bride income Ratios

Note: This figure demonstrates the time trend of dowry-to-income ratios from 1980 to 2018. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The sample size is 804. The vertical axe is dowry-to-income ratios. Each dot stands for the yearly average. The horizontal axe stands for the years when the couples got married. The cutoff line is the year 2001, when the marriage law amendment was implemented.

Figure 5: Relationship between Wedding Year and Dowry-to-bride price Ratios

Note: This figure demonstrates the time trend of dowry-to-bride price ratios from 1980 to 2018. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The sample size is 1,032. The vertical axe is dowry-to-bride price ratios. Each dot stands for the yearly average. The horizontal axe stands for the years when the couples got married. The cutoff line is the year 2001, when the marriage law amendment was implemented.

Note: This figure demonstrates R-squared values given different threshold assumptions on when the marriage law amendment started to affect the two marriage payments. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The left vertical axe shows the scale of R-squared values for bride price RDD estimation. The right vertical axe shows the scale of R-squared values for dowry RDD estimation. The cutoff point values are relative to the year 2001, when the marriage law amendment was implemented. The Bandwidth type is chosen based on the method proposed by Imbens & Kalyanaraman (2012). The kernels are set as normal to ensure the bandwidths are within the range of data with the change of the cutoff points.

Tables

Table 1: Summary Statistics

Panel A: Individual Data		
	Bride	Groom
Age (years)	46.16	47.77
Age at Marriage (years)	22.36	24.04
Income (yuan)	1,9445	3,4416
Labor Force Participation Rate	82.14%	96.46%
High School Education Percentage	22.00%	30.60%
Average Working Hours (weekly)	18.08	32.01
Chore Participation Rate	97.80%	68.00%
Average Hours on Chores (weekly)	15.10	4.14
Urban Hukou Percentage	16.70%	17.50%
Father Urban Hukou Percentage	13.80%	17.00%
At Least One Parent Finished High School	12.19%	11.60%
Panel B: Household Data		
	Hou	sehold
Bride Price	9,	.867
Dowry	5,	234
Dowry-to-bride price Ratio	8	0%
Total Consumption (annually)	26	5,635
Food Consumption (annually)	6,	,728
Number of Observations	1,	,196

Notes: The results use the sample from the 2018 China Labor force Dynamics Surveys (CLDS). All prices are in 2000 value in each province (or equivalents). The variables of age, age at marriage, income, working hours, and hours on chores at the individual level and variables of bride prices, dowries, total consumption, and food consumption at the household level are the sample averages.

Table 2: Reduced-form Evidence: Relationship between Dowry and Chore Participation

				D	Dependent variable:	iable:			
	Wife'	Wife's time on chores	ores	Time on ch	ores / Time o	Time on chores / Time on work (Wife)	Husband's	- Wife's tin	Husband's - Wife's time on chores
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)
Dowry	***960.0-	96*** -0.101*** -0.095***	-0.095***	-0.082*** -0.082***	-0.082***	-0.046*	0.101*** 0.103***	0.103***	0.091**
	(0.021)	(0.021)	(0.023)	(0.024)	(0.024)	(0.028)	(0.038)	(0.038)	(0.041)
Dependent Variable Mean	4.258	4.286	4.419	1.343	1.339	0.958	-2.545	-2.563	-2.213
Spouses' Hukou Statuses		×	×		×	×		×	×
Spouses' Eduaction		×	×		×	×		×	×
Province Fixed Effects			×			X			×
Observations	1,187	1,183	1,183	729	725	725	1,182	1,179	1,179
R^2	0.049	0.051	0.082	0.034	0.036	0.087	0.019	0.022	0.084

with the Inverse Hyperbolic Sine (IHS) function. Both spouses' education and hukou variables are dummy variables. For education, the variable Note: Standard errors in brackets and errors are clustered at the household level. * significant at the 10% level; ** significant at the 5% level; ** significant at the 1% level. The dependent variable of time on chores and the explanatory variable of the values of dowry are all transformed is 1 if the individual has finished high school and 0 if they never have. For hukou, the variable is 1 if they hold an urban hukou and 0 if they do

Table 3: Structural estimation: Dowry, Preferences and Bargaining Power

	(1)	((2)
Pareto Weight Parameters				
σ_3 (husband)	0.76	4***	0.8	20**
(sample average)	(0.2	269)	(0.	405)
Dowry	-1.24	19***		
	(0.3	320)		
Dowry Ratio			-1.1	51**
			(0.	484)
Individual Preference Parameters				
	Groom	Bride	Groom	Bride
Final Goods	0.254***	0.301***	0.296***	0.338***
	(0.061)	(0.052)	(0.051)	(0.045)
Home Production	0.397***	0.417***	0.452***	0.443***
	(0.085)	(0.065)	(0.050)	(0.043)
Home Production Parameters				
ρ_1 (husband)	0.16	4***	0.17	74***
	(0.0)	002)	(0.	002)
ρ_2 (wife)	0.20	4***	0.20)4***
	(0.0)	002)	(0.	002)
Observations	4	71	4	71

Note: * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. Dowry, and final and intermediate goods values are transformed with the Inverse Hyperbolic Sine (IHS) function. The estimation is based on the Generalized Method of Moments. The Pareto weight parameter estimation is based on the sample average values of the dowry values and the dowry-to-bride price ratio.

Table 4: Reduced-form Evidence: Effect of The Marriage Law Amendment on Marriage Payments

			Depe	Dependent variable:		
	Bride price (log)	Bride price	Dowry (log)	Dowry	Dowry-to-income	Dowry-to-bride price
	(1)	(2)	(3)	(4)	(5)	(9)
RDD estimand	0.203*	2,242.983**	0.232*	1,213.899**	1.074***	0.075*
	(0.122)	(971.448)	(0.138)	(583.456)	(0.393)	(0.045)
Observations	1,461	1,461	1,207	1,207	804	1,032
R^2	0.335	0.343	0.292	0.299	0.031	0.009

in columns 1 and 3 are the bride price and dowry transformed with the Inverse Hyperbolic Sine (IHS) function. The dependent variables in columns 2 and 4 are the actual amounts of the bride price and dowry. The dependent variable in column 5 is the ratio of the dowry to the income of the bride (CPI adjusted). The dependent variable in column 6 is the ratio of the dowry to the bride price. The cutoff point is the year 2001 when the marriage Note: Standard errors in brackets. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. The dependent variables law amendment was implemented. All six columns utilize local linear regression and triangular kernel. The Bandwidth type is chosen based on the method proposed by Imbens & Kalyanaraman (2012).

Table 5: Policy Manipulation Test

Variables:	Year of the	he wedding
Number of observations	1,	,461
Cutoff = 0	Left of Cutoff	Right of Cutoff
Number of observations	1,076	385
Order est. (p)	2	2
Order bias (q)	3	3
Method: robust	Т	P > T
	3.8378	1e-04

Note: The cutoff point is the year 2001 when the marriage law amendment was implemented. The test is based on the local polynomial density estimator proposed in Cattaneo et al. (2020, 2021). The kernel used in the test is triangular. The VCE method is jackknife.

Table 6: Robustness Test on the Effect of the Marriage Law Amendment on Marriage Payments: Donut RDD

			<i>Deper</i>	Dependent variable:	·	
	Bride price (log)	Bride price	Dowry (log)	Dowry	Dowry-to-income	Dowry-to-bride price
	(1)	(2)	(3)	(4)	(5)	(9)
		Sc	Sample: One year on each side excludeded	r on each side	excludeded	
RDD estimand	0.251*	3,048.888**	0.273*	1,291.790**	1.153***	0.098*
	(0.137)	(1,070.960)	(0.156)	(653.684)	(0.447)	(0.051)
Observations	1,395	1,395	1,148	1,148	759	086
R^2	0.339	0.353	0.296	0.305	0.033	0.011
		Sa	Sample: Two years on each side excludeded	s on each side	excludeded	
RDD estimand	0.365**	4,237.120***	0.323*	1,760.606**	1.226**	*660.0
	(0.153)	(1,182.938)	(0.175)	(728.923)	(0.512)	(0.057)
Observations	1,339	1,339	1,097	1,097	722	938
R^2	0.346	0.367	0.302	0.315	0.033	0.010

variable in column 5 is the ratio of the dowry to the income of the bride (CPI adjusted). The dependent variable in column 6 is Note: Standard errors in brackets. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. The dependent variables in columns 1 and 3 are the bride price and dowry transformed with the Inverse Hyperbolic Sine (IHS) function. The dependent variables in columns 2 and 4 are the actual amounts of the bride price and dowry. The dependent the ratio of the dowry to the bride price. All six columns utilize local linear regression and triangular kernel. The Bandwidth type is chosen based on the method proposed by Imbens & Kalyanaraman (2012).

Table 7: Robustness Test on the Effect of Exposure to the WTO

		Dep	pendent variable:	
	Bride price	Dowry	Dowry-to-income	Dowry-to-bride price
	(1)	(2)	(3)	(4)
		Sample: M	fore exposed to the W	VTO
RDD estimand	384.924	412.788	0.882*	0.117*
	(1,397.258)	(824.888)	(0.507)	(0.062)
Observations	722	579	370	496
R^2	0.361	0.309	0.035	0.030
		Sample: L	ess exposed to the W	TO TO
RDD estimand	3,920.046***	1,836.995**	0.732	0.030
	(1,319.087)	(799.010)	(0.588)	(0.066)
Observations	739	628	434	536
R^2	0.339	0.292	0.028	0.002
p-value (coefficient diff.)	0.066	0.215	0.847	0.334

Note: Standard errors in brackets. * significant at the 10% level; *** significant at the 5% level; *** significant at the 1% level. The top four columns use the sample from provinces that are more exposed to China's entry into the WTO (on December 11th, 2001). The bottom four columns use the sample from provinces that are less exposed to China's entry into the WTO. The classification is according to J. Han et al. (2012), in which they treat coastal provinces with ports as the more exposed group. The dependent variables in column 1 are the actual amounts of the bride price. The dependent variables in column 2 are the actual amounts of the dowry. The dependent variables in column 3 are the ratios of the dowry to the income of the bride (CPI adjusted). The dependent variables in column 4 are the ratios of the dowry to the bide price. The cutoff point is the year 2001, when the marriage law amendment was implemented. All four columns utilize local linear regression and triangular kernel. The Bandwidth type is chosen based on the method proposed by Imbens & Kalyanaraman (2012). The bottom row presents the p-values from the Wald test between the coefficients from the two groups.

Appendix

Appendix A: Theoretical Appendix

A.1. The Relationship between Bride Price and Bride's Family's Utility

$$\begin{split} \frac{\partial log(U_m^F)}{\partial B} &= \gamma \bigg\{ \delta_1 \frac{1}{W^F + B - D} \Big(1 - \frac{\partial D}{\partial B} \Big) + (1 - \delta_1) \frac{1}{c_m^F} \Big[- \delta_3' \frac{\partial D}{\partial B} (w^M + w^F + D) + (1 - \delta_3) \frac{\partial D}{\partial B} \Big] \bigg\} \end{split}$$

$$\text{(A1)}$$

$$\text{Since } -\delta_1 \frac{1}{W^F + B - D} + (1 - \delta_1) \frac{1}{c_m^F} \Big[- \delta_3' (w^M + w^F + D) + (1 - \delta_3) \Big] = 0$$

$$\text{and } \frac{\partial log(U_m^F)}{\partial B} = \gamma \delta_1 \frac{1}{W^F + B - D} > 0,$$

$$\frac{\partial log(U_m^F)}{\partial B} > 0$$

A.2. Implication of the Three-agent Model under Equilibirum

This part provides detailed solutions to the discussions of the implications of the equilibrium of the three-agent models.

The rule deciding the dowry amount given any bride price can also be written as:

$$-\frac{\delta_1}{W^F + B - D} - \frac{(1 - \delta_1)\delta_3'}{1 - \delta_3} + \frac{1 - \delta_1}{w^M + w^F + D} = 0$$
 (A2)

Take partial differential with respect to the bride price (D is a function of B):

$$\frac{\delta_1}{(W^F + B - D)^2} = \left\{ \frac{\delta_1}{(W^F + B - D)^2} + (1 - \delta_1) \left[\frac{\delta_3''(1 - \delta_3) + (\delta_3')^2}{(1 - \delta_3)^2} \right] + \frac{1 - \delta_1}{(w^M + w^F + D)^2} \right\} \frac{\partial D}{\partial B}$$
(A3)

 $\frac{\partial D}{\partial B} > 0$. This indicates that given the exogenous variables set, a higher bride price also means a high dowry payment.

I assign a detailed function form to the bargaining weight δ_3 . Notice that the specification does not deliver an explicit function form of dowry but helps to simplify the analysis. The function form also meets the first and second-order:

$$\delta_3 = \frac{1}{1 + \alpha_0 + \alpha_1 D} \qquad \alpha_0, \alpha_1 > 0 \tag{A4}$$

$$\delta_3' = -\frac{\alpha_1}{(1 + \alpha_0 + \alpha_1 D)^2} < 0 \tag{A5}$$

$$\delta_3'' = \frac{2\alpha_1^2}{(1 + \alpha_0 + \alpha_1 D)^3} > 0 \tag{A6}$$

This results in a detailed dowry rule as below.

$$-\frac{\delta_1}{W^F + B - D} + \frac{(1 - \delta_1)\alpha_1}{(\alpha_0 + \alpha_1 D)(1 + \alpha_0 + \alpha_1 D)} + \frac{1 - \delta_1}{w^M + w^F + D} = 0$$
 (A7)

We can notice the LHS's value is monotonically increasing with the increase of B. This indicates that given the exogenous variables W^F , w^M , and w^M , a D corresponds to a single B value.

The following subsections correspond to the proofs of the four propositions. In addition, I define the following consumption values as the outside options:

$$u_1^F(\bar{c}_1^F) = \bar{u}_1^F, \quad , u_2^F(\bar{c}_2^F) = \bar{u}_2^F, \quad , u_1^M(\bar{c}_1^M) = \bar{u}_1^M, \quad , u_1^M(\bar{c}_2^M) = \bar{u}_2^M$$
 (A8) and $\bar{c}_1^M < W^M$.

A.2.1.1. A negative bride price B < 0

Intuitively, patrilocality means the groom's family gains from getting a daughter-in-law. Thus, a negative value of "bride price" could further make the marriage more attractive to them. However, for the bride's family, a negative value of "bride price" means they will further lose wealth after the leave of their daughter. This will make the condition difficult to hold.

From the view of the bride's family's utility, transferring wealth (negative "bride price") does not benefit either their own or their daughter's consumption. The spouses' consumption is not influenced by the bride price but only the dowry. Thus we have no change in the bride's consumption regardless of the bride price amount. The inequation below holds when the "bride price" is negative:

$$log(\xi^F) + \gamma[\delta_1 log(W^F - D) + (1 - \delta_1) log(c_m^F)] \ge log(\xi^F) + \gamma[\delta_1 log(W^F + B - D) + (1 - \delta_1) log(c_m^F)]$$
 when $B < 0$ (A9)

Hence, the only reason why the bride's family could possibly pay the groom's family is that the outside option for the groom's family is larger than marrying off their son.

$$log(\xi^{M}) + \gamma \{\delta_{2}log(W^{M} - B) + (1 - \delta_{2})log[\delta_{3}(w^{M} + w^{F} + D)]\} < \gamma [\delta_{2}log(\bar{c}_{1}^{M}) + (1 - \delta_{2})log(\bar{c}_{2}^{M})]$$
(A10)

In this case, the equation above can be rewritten as:

$$\gamma(1 - \delta_2)log\left[\frac{\bar{c}_2^M}{\delta_3(w^M + w^F + D)}\right] > \gamma\delta_2log\left(\frac{W^M - B}{\bar{c}_1^M}\right) + log(\xi^M) \tag{A11}$$

Since the RHS is positive, the inequation holds only if the groom's consumption is worse off due to the marriage. This already contradicts the presumption that the marriage benefits both spouses. In the case of a negative "bride price", the reservation bride price needs to be larger than the outside option.

$$log(\xi^{F}) + \gamma[\delta_{1}log(W^{F} + B - D) + (1 - \delta_{1})log(c_{m}^{F})] \ge \gamma[\delta_{1}log(\bar{c}_{1}^{F}) + (1 - \delta_{1})log(\bar{c}_{2}^{F})]$$
(A12)

Suppose B < 0, $D \ge 0$, and $W^F + B - D > 0$, a negative bride price means that the gain for the bride has to justify both the loss of wealth and the leave of the daughter.

$$log(c_m^F) - log(\bar{c}_2^F) \ge \frac{\delta_1}{1 - \delta_1} [log(\bar{c}_1^F) - log(W^F + B - D)] - \frac{1}{\gamma(1 - \delta_1)} log(\xi^F) \tag{A13}$$

This can be rewritten as:

$$\frac{\frac{\alpha_0 + \alpha_1 D}{1 + \alpha_0 + \alpha_1 D} \frac{w^M + w^F + D}{\bar{c}_2^F}}{\left[\frac{1 - \delta_1}{\delta_1} \bar{c}_1^F \left(\frac{\alpha_1}{(\alpha_0 + \alpha_1 D)(1 + \alpha_0 + \alpha_1 D)} + \frac{1}{w^M + w^F + D}\right)\right]^{\frac{\delta_1}{1 - \delta_1}}} \ge exp\left[-\frac{1}{\gamma(1 - \delta_1)}log(\xi^F)\right] \tag{A14}$$

The RHS is a constant between 0 and 1. Inequality is more easily achieved when the spouses—especially

the bride—have high incomes, and the dowry is high. The LHS is monotonically increasing with w^F . When w^F is close to infinite, the LHS is also approaching infinite. Thus, there exists a \bar{w}^F that

$$\frac{\frac{\alpha_0 + \alpha_1 D}{1 + \alpha_0 + \alpha_1 D} \frac{w^M + \bar{w}^F + D}{\bar{c}_2^F}}{\left[\frac{1 - \delta_1}{\delta_1} \bar{c}_1^F \left(\frac{\alpha_1}{(\alpha_0 + \alpha_1 D)(1 + \alpha_0 + \alpha_1 D)} + \frac{1}{w^M + \bar{w}^F + D}\right)\right]^{\frac{\delta_1}{1 - \delta_1}}} = exp\left[-\frac{1}{\gamma(1 - \delta_1)}log(\xi^F)\right]$$
(A15)

The bride's income needs to be at least as high as \bar{w}^F . Considering that these two conditions contradict the condition on the groom's side, achieving the situation of a negative "bride price" is impossible.

A.2.1.2. No transfers between the two families on the two sides B=0 and $D\geq 0$

If B = 0:

$$log(\xi^M) + \gamma(1 - \delta_2)log\left[\frac{\delta_3(w^M + w^F + D)}{\bar{c}_2^M}\right] = \gamma \delta_2 log\left(\frac{\bar{c}_1^M}{W^M}\right)$$
(A16)

Since LHS > 0 and RHS < 0, the equality will not hold.

Let $g(D) = -\frac{\delta_1}{W^F + B - D} + \frac{(1 - \delta_1)\alpha_1}{(\alpha_0 + \alpha_1 D)(1 + \alpha_0 + \alpha_1 D)} + \frac{1 - \delta_1}{w^M + w^F + D}$. g'(D) < 0. Thus, when B is zero, there exists a positive value of dowry only if $-\frac{\delta_1}{W^F} + \frac{(1 - \delta_1)\alpha_1}{\alpha_0(1 + \alpha_0)} + \frac{1 - \delta_1}{w^M + w^F} > 0$. In other words, we will see a positive value of dowry given a zero bride price only if the bride's family is relatively wealthy and both spouses have low incomes. With the two conditions above, it is impossible to achieve them simultaneously.

A.2.1.3. A positive value of the bride price but no dowry D = 0 and B > 0

If D = 0:

Similar to the analysis above, the function of the dowry rule A7 will satisfy:

$$-\frac{\delta_1}{W^F + B} + \frac{(1 - \delta_1)\alpha_1}{\alpha_0(1 + \alpha_0)} + \frac{1 - \delta_1}{w^M + w^F} \le 0$$
(A17)

The inequality is more easily achieved when $W^F + B$ is small and $w^M + w^F$ is large. This means a relatively poor bride's family—even after the reception of a bride price—but a high-income couple. This can be rewritten as:

$$W^{F} \le \frac{\delta_{1}}{\frac{1-\delta_{1}}{w^{M}+w^{F}} + \frac{(1-\delta_{1})\alpha_{1}}{\alpha_{0}(1+\alpha_{0})}} - B \tag{A18}$$

Since when D=0, the bride price B is not correlated with the wealth of the bride's family anymore, the

RHS is a constant given a set of w^M , w^F , and W^M . Thus, if the bride's family's wealth is below the RHS value, they will not transfer any to their daughter. In addition, to ensure a positive bride price, the following condition has to be met:

$$log(\xi^{M}) + \gamma(1 - \delta_{2})log(\frac{\delta_{3}(w^{M} + w^{F})}{\bar{c}_{2}^{M}}) > 0$$
 (A19)

Since $log(\xi^M) > 0$, the condition is not impossible to achieve even if the bride's income is low.

A.2.1.4. A higher value of the dowry than the bride price D > B

When D > B, we can easily get the inequation below from the dowry rule A7:

$$\frac{(1-\delta_1)\alpha_1}{(\alpha_0 + \alpha_1 D)(1 + \alpha_0 + \alpha_1 D)} + \frac{1-\delta_1}{w^M + w^F + D} = \frac{\delta_1}{W^F + B - D} > \frac{\delta_1}{W^F}$$
(A20)

The inequation holds when the bride's family is wealthy and the couple's income is comparatively low. This leads to the condition:

$$W^{F} > \frac{\delta_{1}}{\frac{(1-\delta_{1})\alpha_{1}}{(\alpha_{0}+\alpha_{1}B)(1+\alpha_{0}+\alpha_{1}B)} + \frac{1-\delta_{1}}{w^{M}+w^{F}+B}}$$
(A21)

In addition, the groom's family's side derives the inequation as below:

$$log(\xi^{M}) + \gamma \{\delta_{2}log(W^{M} - B) + (1 - \delta_{2})log[\delta_{3}(w^{M} + w^{F} + B)]\} < \gamma [\delta_{2}log(\bar{c}_{1}^{M}) + (1 - \delta_{2})log(\bar{c}_{2}^{M})]$$
(A22)

When the LHS equals RHS, the value of B is the solutin to the RHS of A21. The inequation can also be rewritten as:

$$log(\xi^M) + \gamma \delta_2 log\left(\frac{W^M - B}{\bar{c}_1^M}\right) < \gamma (1 - \delta_2) log\left[\frac{\bar{c}_2^M}{\delta_3 (w^M + w^F + B)}\right]$$
(A23)

Combined with the previous results, we know that D > B also happens because of a less wealthy groom's family and a low bride price.

A.2.2. Patrilocality and bride price

The bride price rule with the explicit function form of the Pareto weights is written as:

$$log(\xi^{M}) + \gamma \{\delta_{2}log(W^{M} - B) + (1 - \delta_{2})log[\delta_{3}(w^{M} + w^{F} + D)]\} = \gamma [\delta_{2}log(\bar{c}_{1}^{M}) + (1 - \delta_{2})log(\bar{c}_{2}^{M})] \text{ (A24)}$$

or:

$$log(\xi^M) + \gamma \delta_2 log\left(\frac{W^M - B}{\bar{c}_1^M}\right) = \gamma (1 - \delta_2) log\left[\frac{\bar{c}_2^M}{\delta_3 (w^M + w^F + D(B))}\right]$$
(A25)

The LHS is a function monotonically decreasing with the increase in bride price. Under the assumption, the RHS normally decreases with the amount of dowry. When either side is wealthy enough, the RHS starts to increase after reaching the turning point. However, regardless of the shape of the RHS, higher patrilocality (a larger value of the constant $log(\xi^M)$) would always result in a higher value of bride price.

A.2.3. Positive shock to the value of dowries

This part presents theoretical evidence of how the bride price and dowry change with an exogenous shock that brings extra value to the dowry. Considering the form of the Pareto weight, we can interpret the exogenous shock at a constant gain (higher α_0) or a higher marginal gain from the dowry (higher α_1). However, either of the changes would lead to the same result on the dowry rule: for a fixed amount of bride price, the dowry will decrease. This is because the bride's family only needs a smaller amount of wealth transfer to maintain the same level of bargaining power for their daughter.

Next, we can again look at the bride price rule under the updated dowry rule. For the groom's side, the final rule for the groom's family is that they always get the utility the same as the outside option (\bar{U}_s^M) . However, we can not directly tell the changing direction of the bride price. Consider the bride price rule:

$$log(\xi^{M}) + \gamma \left\{ \underbrace{\delta_{2}log(W^{M} - B)}_{\text{Part A}} + \underbrace{(1 - \delta_{2})log[\delta_{3}(w^{M} + w^{F} + D)]}_{\text{Part B}} \right\} = \underbrace{log(\bar{U}_{s}^{M})}_{\text{Outside option (constant)}}$$
(A26)

When the bride price increases, Part A will decrease. However, the amount of dowry and the consequent bargaining power is uncertain, depending on the parameters' values. Hence, Part B may increase. In other words, the consumption of the groom: $[\delta_3(w^M+w^F+D)=\frac{w^M+w^F+D}{1+\alpha_0+\alpha_1D}]$ should increase. In this case, the only outcome would be that the dowry D also increases. If D instead decreases, $1+\alpha_0+\alpha_1D$ should also decrease. However, this would contradict the dowry rule. Thus, the only possible case is that the dowry amount also increases.

If the bride price goes down, Part A will increase. Depending on the effect of the amendment, dowries could change in different directions. When the effect is reflected as a constant gain (an increase in α_0), the only possible direction is a decrease in dowries. However, if the effect increases the marginal value of dowries (higher α_1), there can be two directions. Generally, this would result in a decrease in dowries as well. An increase in dowries can be seen if the original dowry value is very low and the effect on the marginal value of dowries is large. In the actual situation, this can only mean a zero payment of dowry before the amendment and an incentive for the bride's family to transfer a small amount of dowry. Thus, this aligns with the previous discussion about the zero payment of dowry and is not a typical case. Under these two conditions, the bargaining power will also decrease, and Part B will drop. To conclude, only two main conditions can make the equation above hold that the two prices must change in the same direction.

Even theoretically, the two price rules hold in both cases; the parameters decide which direction is more likely to occur in what circumstance. The dowry rule decides that a household with high inequality where a bride has lower bargaining power (compared with other brides) tends to see the dowry goes up and vice versa. To simplify the proof, I assume the positive shock is on α_0 . In this case, a higher α_0 reflects higher bargaining power for the bride, and the value further increases after the shock. For the dowry rule, the first term $\frac{(1-\delta_1)\alpha_1}{(\alpha_0+\alpha_1D)(1+\alpha_0+\alpha_1D)} + \frac{1-\delta_1}{w^M+w^F+D}$ reflects the marginal benefit of wealth transfer to the bride and the second term $\frac{\delta_1}{W^F+B-D}$ reflects the marginal benefit to the parents of saving wealth for their own consumption. The income effect is reflected in a decrease in D; the decrease is larger when the inequality is high (α_0 is small). The substitution effect is reflected in an increase in D.

Suppose α_0^* is the value after the shock, D^* is the solution for the income effect:

$$\frac{(1-\delta_1)\alpha_1}{(\alpha_0^* + \alpha_1 D^*)(1+\alpha_0^* + \alpha_1 D^*)} + \frac{1-\delta_1}{w^M + w^F + D^*} = \frac{\delta_1}{W^F + B - D^*}$$
(A27)

where $D^* < D$, and $D - D^*$ is the reduction resulting from the income effect. The change of D will also lead to a change of B. B^* is the solution to the new indifference condition for the groom's family. $D^{**} = D$ presents the values of α_0^* and α_0 that result in no change of the dowry.

$$log(\xi^{M}) + \gamma \{\delta_{2}log(W^{M} - B^{*}) + (1 - \delta_{2})log[\delta_{3}^{*}(w^{M} + w^{F} + D^{*})]\} = \gamma [\delta_{2}log(\bar{c}_{1}^{M}) + (1 - \delta_{2})log(\bar{c}_{2}^{M})] \ \ (A28)$$

Since the change of the value of δ_3^* is uncertain, B^* can be either larger or smaller than B. When the household is unequal, α_0 is small and $D-D^*$ will be large resulting from the increased α_0^* . This leads to a large increase in δ_3 , which results in a higher $\delta_3^*(w^M+w^F+D^*)$. Thus, B^* is larger than B. When the bride's

bargaining power is high, $\delta_3^*(w^M + w^F + D^*)$ will decrease and B^* is smaller than B.

 D^{**} is an increase from D^* due to the substitution effect. Suppose B^{**} is the solution for the substitution effect:

$$\frac{(1-\delta_1)\alpha_1}{(\alpha_0^* + \alpha_1 D^{**})(1+\alpha_0^* + \alpha_1 D^{**})} + \frac{1-\delta_1}{w^M + w^F + D^{**}} = \frac{\delta_1}{W^F + B^{**} - D^{**}}$$
(A29)

Because of the consistency of changes of directions between B and D, B^{**} is large than B if $D^{**} - D^*$ is larger than $D - D^*$, and smaller than B if $D^{**} - D^*$ is smaller than $D - D^*$. When

To conclude, when the household is unequal, the inequation $\delta_3^*(\alpha_0^*) \cdot (w^M + w^F + D^*) > \delta_3(\alpha_0) \cdot (w^M + w^F + D)$ will hold true (D^* is the solution from A27), and both the bride price and dowry will increase, and vice versa.

A.3. Comparative Statics of the Marriage Payments

The framework of the marriage payment model allows us to conduct a comparative static analysis of how exogenous variables impact the amounts of marriage payments. Four exogenous variables mainly interest us: the wealth of the two families and the spouses' income. This section delves into how the equilibrium of the two prices changes with the change of the four variables.

The equilibrium involves four exogenous variables: w^M , w^F , W^M , and W^F and four endogenous variables: c_m^M , c_m^F , B, and D. The intrahousehold allocation rules present two equations regarding the consumption of the spouses. In addition, the utility maximization problem of the bride's family and the indifference condition of the groom's family provides another two equations.

$$\begin{cases} c_m^M - \delta_3(w^M + w^F + D) &= 0\\ c_m^F - (1 - \delta_3)(w^M + w^F + D) &= 0\\ \gamma \left\{ -\delta_1 \frac{1}{W^F + B - D} + (1 - \delta_1) \frac{1}{c_m^F} [-\delta_3'(w^M + w^F + D) + (1 - \delta_3)] \right\} &= 0\\ log(\xi^M) + \gamma [\delta_2 log(W^M - B) + (1 - \delta_2) log(c_m^M)] - \gamma [\delta_2 log(\bar{c}_1^M) + (1 - \delta_2) log(\bar{c}_2^M)] &= 0 \end{cases}$$
(A30)

In order to conduct a comparative static analysis, we need to take derivatives regarding all endogenous and exogenous variables. The four differential equations can be written as a matrix form:

$$\begin{bmatrix} 1 & 0 & 0 & K_{1} \\ 0 & 1 & 0 & -1 - K_{1} \\ 0 & K_{2} & K_{3} & K_{4} \\ K_{5} & 0 & K_{6} & 0 \end{bmatrix} \begin{bmatrix} dc_{m}^{M} \\ dc_{m}^{F} \\ dB \\ dD \end{bmatrix} = \begin{bmatrix} \delta_{3} & \delta_{3} & 0 & 0 \\ (1 - \delta_{3}) & (1 - \delta_{3}) & 0 & 0 \\ K_{7} & K_{7} & 0 & -K_{3} \\ 0 & 0 & K_{8} & 0 \end{bmatrix} \begin{bmatrix} dw^{M} \\ dw^{F} \\ dW^{M} \\ dW^{F} \end{bmatrix}$$
(A31)

where

$$\begin{cases} K_{1} = -\left[\delta_{3}'(w^{M} + w^{F} + D) + \delta_{3}\right] \\ K_{2} = -\frac{(1 - \delta_{1})\left[-\delta_{3}'(w^{M} + w^{F} + D) + (1 - \delta_{3})\right]}{(c_{m}^{F})^{2}} \\ K_{3} = \frac{\delta_{1}}{(W^{F} + B - D)^{2}} \\ K_{4} = -\frac{\delta_{1}}{(W^{F} + B - D)^{2}} + \frac{1 - \delta_{1}}{c_{m}^{F}}\left[-\delta_{3}''(w^{M} + w^{F} + D) - 2\delta_{3}'\right] \\ K_{5} = \frac{1 - \delta_{2}}{c_{m}^{M}} \\ K_{6} = -\frac{\delta_{2}}{W^{M} - B} \\ K_{7} = \frac{1 - \delta_{1}}{c_{m}^{F}}\delta_{3}' \\ K_{8} = -\frac{\delta_{2}}{W^{M} - B} \end{cases}$$
(A32)

Three assumptions:

Assumption 1: Generally, $\partial c_m^M/\partial D>0$. However, when w^M or w^F is large, $\partial c_m^M/\partial D<0$

$$\begin{cases} \delta_3'(w^M + w^F + D) + \delta_3 > 0, & \text{when } w^M \text{ and } w^F \text{ are not too large} \\ \delta_3'(w^M + w^F + D) + \delta_3 < 0, & \text{when } w^M \text{ or } w^F \text{ is very large} \end{cases}$$
(A33)

This also indicates that δ_3' is comparatively small: $|\delta_3'| << \delta_3$. The discussion of the sign of $\delta_3'(w^M + w^F + D) + \delta_3$ is only limited to the comparative statics of w^M and w^F . In the general cases where both w^M and w^F are not too large, we always have $\delta_3'(w^M + w^F + D) + \delta_3$ as positive because dowry benefits both spouses.

Assumption 2: $\partial^2 U_m^F/\partial D^2 < 0$

$$-\frac{\delta_1}{(W^F + B - D)^2} + \frac{1 - \delta_1}{c_m^F} \left[-\delta_3''(w^M + w^F + D) - 2\delta_3' \right] < 0 \tag{A34}$$

Assumption 3: $\frac{\partial c_m^M}{\partial W^M} > 0$, $\frac{\partial c_m^M}{\partial W^F} > 0$, $\frac{\partial c_m^F}{\partial W^M} > 0$, and $\frac{\partial c_m^F}{\partial W^F} > 0$.

$$\begin{vmatrix} 1 & 0 & 0 & K_{1} \\ 0 & 1 & 0 & -1 - K_{1} \\ 0 & K_{2} & K_{3} & K_{4} \\ K_{5} & 0 & K_{6} & 0 \end{vmatrix}$$

$$= -K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}$$

$$= \frac{\delta_{1}(1 - \delta_{2})[\delta'_{3}(w^{M} + w^{F} + D) + \delta_{3}]}{c_{m}^{M}(W^{F} + B - D)^{2}} - \frac{(1 - \delta_{1})\delta_{2}[-\delta'_{3}(w^{M} + w^{F} + D) + (1 - \delta_{3})]^{2}}{(c_{m}^{F})^{2}(W^{M} - B)}$$

$$+ \frac{\delta_{2}}{W^{M} - B} \left\{ -\frac{\delta_{1}}{(W^{F} + B - D)^{2}} + \frac{1 - \delta_{1}}{c_{m}^{F}}[-\delta''_{3}(w^{M} + w^{F} + D) - 2\delta'_{3}] \right\}$$
(A35)

The expression of $-K_1K_3K_5 - K_2K_6 - K_1K_2K_6 - K_4K_6$ indicates that under the situation of a large value of either w^M or w^F , $-K_1K_3K_5 - K_2K_6 - K_1K_2K_6 - K_4K_6$ is certainly negative. However, when both w^M and w^F are not too large, $-K_1K_3K_5 - K_2K_6 - K_1K_2K_6 - K_4K_6$ can be positive or negative.

Groom's consumption

$$\frac{\partial c_m^M}{\partial W^M} = \frac{\begin{vmatrix} 0 & 0 & 0 & K_1 \\ 0 & 1 & 0 & -1 - K_1 \\ 0 & K_2 & K_3 & K_4 \\ K_8 & 0 & K_6 & 0 \end{vmatrix}}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$

$$= \frac{-K_1 K_3 K_9}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$
(A36)

Since $-K_1K_3K_8 = -\frac{\delta_1\delta_2[\delta_3'(w^M+w^F+D)+\delta_3]}{(W^F+B-D)^2(W^M-B)} < 0$, we must have $-K_1K_3K_5 - K_2K_6 - K_1K_2K_6 - K_4K_6 < 0$

$$\frac{\partial c_m^M}{\partial W^F} = \frac{\begin{vmatrix} 0 & 0 & 0 & K_1 \\ 0 & 1 & 0 & -1 - K_1 \\ -K_3 & K_2 & K_3 & K_4 \\ 0 & 0 & K_6 & 0 \end{vmatrix}}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$

$$= \frac{-K_1 K_3 K_6}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$
(A37)

$$-K_1K_3K_6 = -\frac{\delta_1\delta_2[\delta_3'(w^M + w^F + D) + \delta_3]}{(W^F + B - D)^2(W^M - B)} < 0$$

Bride's consumption

$$\frac{\partial c_m^F}{\partial W^M} = \frac{\begin{vmatrix} 1 & 0 & 0 & K_1 \\ 0 & 0 & 0 & -1 - K_1 \\ 0 & 0 & K_3 & K_4 \\ K_5 & K_8 & K_6 & 0 \end{vmatrix}}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$

$$= \frac{K_3 K_8 + K_1 K_3 K_8}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$
(A38)

$$K_3K_8 + K_1K_3K_8 = -\frac{\delta_1\delta_2[-\delta_3'(w^M + w^F + D) + (1 - \delta_3)]}{(W^F + B - D)^2(W^M - B)} < 0$$

$$\frac{\partial c_m^F}{\partial W^F} = \frac{\begin{vmatrix} 1 & 0 & 0 & K_1 \\ 0 & 0 & 0 & -1 - K_1 \\ 0 & -K_3 & K_3 & K_4 \\ K_5 & 0 & K_6 & 0 \end{vmatrix}}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$

$$= \frac{K_3 K_6 + K_1 K_3 K_6}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$
(A39)

$$K_3K_6 + K_1K_3K_6 = -\frac{\delta_1\delta_2[-\delta_3'(w^M + w^F + D) + (1 - \delta_3)]}{(W^F + B - D)^2(W^M - B)} < 0$$

Bride price

$$\frac{\partial B}{\partial w^{M}} = \frac{\begin{vmatrix} 1 & 0 & \delta_{3} & K_{1} \\ 0 & 1 & 1 - \delta_{3} & -1 - K_{1} \\ 0 & K_{2} & K_{7} & K_{4} \\ K_{5} & 0 & 0 & 0 \end{vmatrix}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$

$$= \frac{\delta_{3}K_{2}K_{5} + K_{1}K_{2}K_{5} + \delta_{3}K_{4}K_{5} - K_{1}K_{5}K_{7}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$
(A40)

$$\begin{split} &\delta_3 K_2 K_5 + K_1 K_2 K_5 + \delta_3 K_4 K_5 - K_1 K_5 K_7 \\ &= \frac{1}{c_m^M} (1 - \delta_2) \Big\{ \frac{(1 - \delta_1)[-\delta_3'(w^M + w^F + D) + (1 - \delta_3)]\delta_3'(w^M + w^F + D)}{(c^F)^2} + \frac{(1 - \delta_1)\delta_3'[\delta_3'(w^M + w^F + D) + \delta_3]}{c^F} + \delta_3 \Big[-\frac{\delta_1}{(W^F + B - D)^2} + \frac{1 - \delta_1}{c_m^F} \big[-\delta_3''(w^M + w^F + D) - 2\delta_3'] \Big] \Big\} < 0. \text{ Thus } \frac{\partial B}{\partial w^M} > 0. \\ &\frac{\partial B}{\partial w^F} \text{ has the same function form as } \frac{\partial B}{\partial w^M}. \text{ Thus, } \frac{\partial B}{\partial w^F} > 0. \end{split}$$

$$\frac{\partial B}{\partial W^{M}} = \frac{\begin{vmatrix} 1 & 0 & 0 & K_{1} \\ 0 & 1 & 0 & -1 - K_{1} \\ 0 & K_{2} & 0 & K_{4} \\ K_{5} & 0 & K_{8} & 0 \end{vmatrix} - K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}$$

$$= \frac{-K_{2}K_{8} - K_{1}K_{2}K_{8} - K_{4}K_{8}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$
(A41)

Since $-K_2K_8 - K_1K_2K_8 - K_4K_8 = \frac{\delta_2}{W^M - B} \left\{ -\frac{\delta_1}{(W^F + B - D)^2} + \frac{1 - \delta_1}{c_m^F} \left[-\delta_3''(w^M + w^F + D) - 2\delta_3' \right] - \frac{(1 - \delta_1)[-\delta_3'(w^M + w^F + D) + (1 - \delta_3)]^2}{(c_m^F)^2} \right\} < 0, \frac{\partial B}{\partial W^M} > 0.$

$$\frac{\partial B}{\partial W^F} = \frac{\begin{vmatrix} 1 & 0 & 0 & K_1 \\ 0 & 1 & 0 & -1 - K_1 \\ 0 & K_2 & -K_3 & K_4 \\ K_5 & 0 & 0 & 0 \end{vmatrix}}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$

$$= \frac{K_1 K_3 K_5}{-K_1 K_3 K_5 - K_2 K_6 - K_1 K_2 K_6 - K_4 K_6}$$
(A42)

Since
$$K_1K_3K_5 = -\frac{\delta_1(1-\delta_2)[\delta_3'(w^M+w^F+D)+\delta_3]}{c_m^M(W^F+B-D)^2} < 0, \frac{\partial B}{\partial W^F} > 0.$$
Dowry

$$\frac{\partial D}{\partial w^{M}} = \frac{\begin{vmatrix} 1 & 0 & 0 & \delta_{3} \\ 0 & 1 & 0 & 1 - \delta_{3} \\ 0 & K_{2} & K_{3} & K_{7} \\ K_{5} & 0 & K_{6} & 0 \end{vmatrix}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$

$$= \frac{-\delta_{3}K_{3}K_{5} + K_{2}K_{6} - \delta_{3}K_{2}K_{6} - K_{4}K_{6}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$
(A43)

where
$$-\delta_3 K_3 K_5 + K_2 K_6 - \delta_3 K_2 K_6 - K_6 K_7 = -\frac{\delta_1 \delta_3 (1 - \delta_2)}{c_m^M (W^F + B - D)^2} + \frac{(1 - \delta_1) \delta_2 (1 - \delta_3)^2}{(c_m^F)^2 (W^M - B)}$$
.

The value is positive when the groom's income is low and negative when his income is high. Thus, the derivative is initially negative at the low-income level and turns positive when the groom's income increases.

 $\frac{\partial D}{\partial w^F}$ has the same function form as $\frac{\partial D}{\partial w^M}$. Thus, the same trend can be seen regarding the bride's income.

$$\frac{\partial D}{\partial W^{M}} = \frac{\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & K_{2} & K_{3} & 0 \\ K_{5} & 0 & K_{6} & K_{9} \end{vmatrix}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$

$$= \frac{K_{3}K_{9}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$
(A44)

Since
$$K_3K_8 = -\frac{\delta_1\delta_2}{(w^M + w^F + D)^2(W^M - B)} < 0, \frac{\partial D}{\partial W^M} > 0.$$

$$\frac{\partial D}{\partial W^{F}} = \frac{\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & K_{2} & K_{3} & -K_{3} \\ K_{5} & 0 & K_{6} & 0 \end{vmatrix}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$

$$= \frac{K_{3}K_{6}}{-K_{1}K_{3}K_{5} - K_{2}K_{6} - K_{1}K_{2}K_{6} - K_{4}K_{6}}$$
(A45)

Since
$$K_3K_6 = -\frac{\delta_1\delta_2}{(w^M + w^F + D)^2(W^M - B)} < 0, \frac{\partial D}{\partial W^F} > 0.$$

A.3.1. Bride Price and Spouses' Income

The results from the theoretical model indicate that bride prices are positively correlated with both spouses' incomes; the derivatives with respect to the two incomes show the same results. In other words, the two incomes of the spouses show no difference in impacting bride prices. The dowry's role is the primary source leading to a positive derivative value: to the spouses, dowries increase their consumption as well as the wife's bargaining power, and to the bride's family, the effect of dowries on utility follows diminishing marginal returns. Intuitively, a bride price will be partially or fully transferred to the couple as their endowment as a shared resource. Both families have incentives to transfer wealth to their children due to altruism.

A.3.2. Dowry and Spouses' Income

The impacts of both spouses' incomes on dowry show the same quadratic form from the theoretical model. With the initial downturns, the two prices change to increase with the growth of incomes. In the model, the derivative implies that both groom's and bride's consumption enter into the decision-making of the dowry amount. This is because dowry is from the bride price and the decision-making of bride price involves the consumption of the groom. When either spouse's income is low, the marginal utility from the effect of improving the bargaining power of the bride through dowry payment is low. In this situation, the bride's family chooses to retain a large portion of the bride price, and the groom's family will pay a low price. After the turning point, the spouse's consumption plays a more prominent role in determining the bargaining power. As a result, the groom's family has higher incentives to pay a higher bride price, which also leads to a higher dowry payment.

A.3.3. Marriage Payments and Families' Wealth

The theoretical model presents simple derivatives between marriage payments and families' wealth. Both bride price and dowry positively correlate with both sides of the family. Firstly, the derivative of dowry with respect to the wealth of the bride's family in the theoretical model indicates a negative relationship. The interpretation of the theory is straightforward: when the bride's family is wealthy, they are willing to transfer more to the couple, increasing their daughter's consumption. Similar to the bride's family's wealth, a wealthier groom's family is also associated with a higher dowry payment. The derivative of dowry with respect to the groom's family's wealth is positive and positively correlated with the bride price.

The derivative of the bride price with respect to the wealth of the bride's family is positive regardless of the income levels of the couple. The explanation is straightforward: a wealthier bride's family has a higher potential to transfer greater dowry to the couple. The positive relationship between the bride price and the groom's family's wealth is due to a negative second-order derivative of the bride's family's utility with respect to dowry and a positive effect from dowries to the bride's utility. As explained from the economic intuition, the wealthier the groom's family is, the higher the upper limit of the bride price. Considering the bride's family seeks a bride price as high as possible, the bride price in equilibrium should be positively correlated with the groom's family's wealth.

Appendix B: Empirical Appendix

I test the relationships between marriage payments and family characteristics of both spouses and their parents. Even though causality is not the primary goal of the analysis, it is equally important to test whether the patterns are consistent with the theoretical claims. Due to the limitation of data on the parents' wealth on both sides, I adopt two proxies for the two variables: the *hukou* statuses and education levels. An urban *hukou* and higher education levels are typically associated with higher wealth. A person's father's *hukou* status is chosen as the measurement considering that 98% of the parents have the same types of *hukou*. For the bride's side, 13.80% of their parents hold urban *hukou*.

B.1. Bride Price

As suggested in the model, the bride price under equilibrium B is correlated with all four factors: the couple's incomes and their parents' wealth. Specifically, the bride price value positively correlates with both spouses' incomes. Figure B1 shows that the trends from the data are consistent with the model prediction. However, we can notice that the higher percentage of women out of the labor force dwindles the scale of the relationship. However, in deciding the bride price and dowry, the parents consider the children's potential incomes; those potential high-income earners may choose not to work. This issue will be further inspected in the following analysis. [Insert Figure B1 here]

The reduced-form specification for the relationship is below:

Bride
$$Price_{i,k,t} = X_{i,k,t_{2018}} \beta_{B1} + Y_{i,k,t_{2018}} \beta_{B2} + \kappa_k + \tau_t + \varepsilon_{i,k,t}$$
 (B1)

where $Bride\ Price_{i,t,k}$ stands for the bride price for the couple in household i in province k and getting married in time range t. X is the vector that includes the linear forms of both spouses' incomes. Considering that it is implausible to survey the income in the wedding years, I use the incomes in the 2018 surveys (i.e., the annual incomes in 2017)—reasonable proxies for the expected incomes at that time. Y is the vector that reflects the parents' characteristics. I adopt the hukou statuses and education levels of the parents on both sides as proxies for their wealth. This includes whether at least one of the parents finished high school and the fathers' hukou types. Table B1 presents the estimation results:

[Insert Table B1 here]

In Columns (1)-(4), I use the actual incomes of brides, and in Columns (5)-(8), the brides' education levels are adopted as the proxy for their potential incomes. We notice that both incomes show positive coefficients, but

significance levels are not consistent across columns. This could come from two facts: a bride's and groom's incomes can be positively correlated, and a larger percentage of women do not work even though their potential income is high. To tackle these issues, I replace the actual income of the brides with their education levels (whether they finished high school)—the alternate results in positive and significant estimation.

B.2. Dowry

To test the empirical evidence on the dynamics of dowries, I inspect two parts: the relationship between the values of bride price and dowry and the relationship between all family characteristics and dowry. Figure B2 shows the distribution of the bride prices and dowries in each family. It is noticeable that the majority of the sample falls below the line with a slope of one. The lower end tail shows the ratio of dowry to bride price is larger than one. However, the number of observations is low.

[Insert Figure B2 here]

To test the relationship between the two prices, I simply include the explanatory variable and other fixed effects as specified below:

$$Dowry_{i,k,t} = \beta_{B3}Bride\ Price_{i,k,t} + \kappa_k + \tau_t + \varepsilon_{i,k,t}$$
(B2)

For other fixed effects, I adopt either the provincial or city level. Considering the surveys select only a limited number of cities in each province, we would not expect a substantial difference between the outcomes. Table B2 below presents the estimation results:

[Insert Table B2 here]

The coefficient estimation without any fixed effects controlled is 0.73, which is close to the average of the dowry-to-bride price ratio (80% and a logarithmic form is adopted). The control of fixed effects slightly reduces the magnitude.

Different from the specification of the bride price regressions, the discussion of dowry tests if there exist quadratic relationships between dowries and the spouses' incomes. Figure B3 below experiments curve fitting with the specified forms of the spouses' incomes:

[Insert Figure B3 here]

The dowry regression specification is in quadratic forms of both spouses' incomes:

$$Dowry_{i,k,t} = X_{i,k,t_{2018}} \beta_{B4} + Y_{i,k,t_{2018}} \beta_{B5} + \kappa_k + \tau_t + \varepsilon_{i,k,t}$$
(B3)

Table B3 below presents the results

[Insert Table B3 here]

Columns (1)-(4) show the results where I directly use the brides' actual income, and I replace the brides' income with their education levels in Columns (5)-(8). Significance can be observed for both linear and quadratic terms for both spouses. The turning points for the groom's and bride's incomes are around 200 and 60 *yuan*, respectively. The turning point for the bride's income is smaller, even though they are supposed to have the same effects on dowries. In light of the cause of both turning points being very low, this can be interpreted as: dowries are generally positively correlated with income except for the situation where the spouse does not work or earns minimal income.

B.3. Patrilocality and Bride Price

This part examines the relationship between the levels of patrilocality and the bride price. Since patrilocality is a major factor resulting in the payment of the bride price and a higher degree of patrilocality (in terms of the gain of utility for the groom's family) is positively correlated with the bride price asked by the bride's family, the critical part of the discussion is the find proxies for the levels of patrilocality.

To proxy the levels of patrilocality, I use the distance between the wife's original and current places and the frequency of the wife's visits to her maiden family each year. A longer physical distance between the wife's natal and current families reflects the patrilocality on both families' sides. If a wife lives far from her natal family, her family will experience a larger loss as it is hard for her to contribute to the production. Meanwhile, this forces her to integrate into her husband's family and the local society, which results in a higher chance that she could contribute more to the production. Similar to the distance but more straightforward, the frequency of visiting her natal family indicates whether she contributes more to her natal or her husband's family.

For the distance measurement, I adopt the direct geographic distance between the city the wife currently lives in and the city where she was born or the city where she was fourteen years old. The survey also selected a portion of the sample for an extended version that asked about their routines. These included the frequency of visiting their parents if the individual lives in a different location than their parents. In the following regressions, I use the number of days the wife usually visits in a year and the times she visited last year. The basic specification is below:

$$Bride\ Price_{i,t} = \beta_{B6} + \beta_{B7} Patri_{i,t} + \beta_{B8} X_{i,t} + \varepsilon_{i,t}$$
(B4)

 $Patri_{i,t}$ is one of the four proxies for the levels of patrilocality, and $X_{i,t}$ is the control variable that varies

for the two proxies where I either control the income levels or the provincial and wedding year fixed effects. Table B4 below presents the results.

[Insert Table B4 here]

The first four columns present the regression results proxied with the geographic distances. The second and fourth columns further control the income of the two spouses. The last two columns show the results where the visiting frequencies are the indicator for patrilocality. The results estimated with the distance proxy at different ages do not display a large difference. Considering the low mobility in the society, especially due to the *hukou* policy, a minor difference is expected. A 10% increase in the physical distance is associated with one percent higher bride price. Additionally, it is more common to have a marriage between two people from the same location (a zero physical distance under the specification). A groom marrying a bride from another town sees 1.5 times higher bride price on average. Consistent conclusions can be found when patrilocality is proxied by the frequency of the wife visiting her natal family. The more she visits her parents, the stronger connection she maintains with her maiden family, and less contribution to her spouse's. A 10% increase in her frequency of visiting her maiden family is reflected in a 4% less bride price.

B.4. Structural Estimation on Bargaining power

This part provides the first-order conditions used to construct the moments in the GMM estimation in the structural model part.

The maximation problem:

$$\mathcal{L} = \gamma \left\{ \sigma_3 \left\{ \tau_1^M log(c_m^M) + \tau_2^M [\rho_1 log(h^M) + \rho_2 log(h^F) + (1 - \rho_1 - \rho_2) log(g)] + \tau_3^M log(\ell^M) \right\} \right.$$

$$\left. + (1 - \sigma_3) \left\{ \tau_1^F log(c_m^F) + \tau_2^F [\rho_1 log(h^M) + \rho_2 log(h^F) + (1 - \rho_1 - \rho_2) log(g)] + \tau_3^F log(\ell^F) \right\} \right\}$$

$$\left. + \lambda [c_m^H + g - \omega^M (1 - h^M - \ell^M) - \omega^F (1 - h^F - \ell^F) - D] \right\}$$
(B5)

First-order conditions:

 c_m^H :

$$\gamma \left\{ \sigma_3 \tau_1^M \frac{1}{c_m^H} + (1 - \sigma_3) \tau_1^F \frac{1}{c_m^H} \right\} + \lambda = 0$$
 (B6)

g:

$$\gamma \left\{ \sigma_3 \tau_2^M (1 - \rho_1 - \rho_2) \frac{1}{g} + (1 - \sigma_3) \tau_2^F (1 - \rho_1 - \rho_2) \frac{1}{g} \right\} + \lambda = 0$$
 (B7)

 h^M :

$$\gamma \left\{ \sigma_3 \tau_2^M \rho_1 \frac{1}{h^M} + (1 - \sigma_3) \tau_2^F \rho_1 \frac{1}{h^M} \right\} + \lambda \omega^M = 0$$
 (B8)

 h^F :

$$\gamma \left\{ \sigma_3 \tau_2^M \rho_2 \frac{1}{h^F} + (1 - \sigma_3) \tau_2^F \rho_2 \frac{1}{h^F} \right\} + \lambda \omega^F = 0$$
 (B9)

 ℓ^M :

$$\gamma \sigma_3 \tau_3^M \frac{1}{\ell^M} + \lambda \omega^M = 0 \tag{B10}$$

 ℓ^F :

$$\gamma \sigma_3 \tau_3^F \frac{1}{\rho F} + \lambda \omega^F = 0 \tag{B11}$$

B.5. The Direct Effect of the Marriage Law Amendment

The primary test indicates a result of increasing marriage payments. The first concern could come from the baseline assumption if there is an increased value of dowry. Since the value is not possible to measure directly, I adopt the house purchasing behavior of the couple as the proxy to reflect the direct effect of the amendment. Purchasing a house is an essential goal for Chinese people, and ownership of houses has led to many disputes in divorce cases. Thus, if the hypothesis is correct that the amendment helps to clarify the ownership of property, this will ease the concern of the couple in house purchasing. Thus, I look into the waiting time between wedding the house purchasing. With the clarification of the property ownership, we can expect the waiting time shortens after the amendment. Figure B4 below shows the trend of the waiting time between the year of purchasing houses and the wedding year.²⁰

[Insert Figure B4 here]

²⁰I utilize the data since 1982. House ownership was a part of the planned economy before 1980. *Outline of the Report of the National Conference on Capital Construction* in 1980 proposed commercialization of the housing market. Between 1980 and 1982, commercialization was conducted in part of China. The experiment stopped in 1982, and the mortgage loan was formerly introduced in that year as well.

The gradual relaxation of the housing market and the growth of wealth in society result in a downward trend of waiting time. However, Not only can we observe a discontinuity but also an accelerated downward trend. Table 6 below presents the RDD estimation results.

[Insert Table B5 here]

The RDD estimation indicates a significant negative discontinuity in 2001, led by the marriage law amendment. The average waiting time between purchasing a house and wedding was shortened by 3.7 years, which is a 25% reduction.²¹ Even though the market has continuously seen the worsening housing affordability(C. Zhang et al., 2016), this reflects a relief of the concern regarding the ownership of houses for people. In comparison, prior to the amendment, couples may need more time to establish trust or find methods to solve disputes regarding ownership should divorces happen.

 $^{^{21}}$ Another around 6% households in the sample purchased their houses before the marriage and are not taken into account in the analysis.

Appendix Figures

Figure B1: Relationships between bride price and groom's (left) and bride's (right) incomes

Note: This figure shows the relationship between the bride price and the spouses' income: the groom (left) and the bride (right). Bride prices, bride's and groom's income are all transformed with the Inverse Hyperbolic Sine (IHS) function. The dashed line on the left indicates the turning point. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS)

Figure B2: Relationships between dowry and bride price

Note: This figure shows the relationship between dowries and bride prices. Both prices are all transformed with the Inverse Hyperbolic Sine (IHS) function. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS)

Figure B3: Relationships between dowry and groom's (left) and bride's (right) incomes

Note: This figure shows the relationship between the dowry and the spouses' income: the groom (left) and the bride (right). Dowries, bride's and groom's income are all transformed with the Inverse Hyperbolic Sine (IHS) function. The dashed line on the right indicates the turning point. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS).

Figure B4: Relationship between wedding year and the waiting time of purchaing houses

Note: This figure demonstrates the time trend of the waiting time between purchasing a house and the wedding from 1982 to 2018. The sample is from the 2018 China Labor force Dynamics Surveys (CLDS). The sample size is 301. The vertical axis is the waiting time between purchasing the house and the wedding year (year). The horizontal axis stands for the years when the couples got married. The cutoff line is the year 2001. The data is winsorized at the 0.5% level at both the top and bottom.

Appendix Tables

Table B1: Reduced-form Evidence I: Relatiobship between Bride Price and Family Characteristics

				Depend	ent variable:	Dependent variable: Bride price		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
Groom's Income	0.046***	0.028	0.029**	0.027	0.040**	0.028*	0.026*	0.028*
	(0.014)	(0.017)	(0.015)	(0.017)	(0.013)	(0.016)	(0.014)	(0.016)
Bride's Income	0.027**	0.016	0.021**	0.018				
	(0.008)	(0.012)	(0.009)	(0.012)				
Bride's High School					0.630***	0.484***	0.428***	0.396***
					(0.080)	(0.112)	(0.098)	(0.120)
Natal Families' Education		×		×		×		×
Natal Families' Hukou			×	×			×	×
Province Fixed Effects	×	×	×	×	×	×	×	×
Wedding Year Fixed Effects	X	X	X	X	X	X	X	X
Observations	1,128	<i>L</i> 99	206	999	1,380	811	1,119	608
R^2	0.384	0.401	0.408	0.406	0.416	0.410	0.408	0.414

Note: Standard errors in brackets and errors are clustered at the household level. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. The dependent variable of the bride price and the explanatory variables of the bride's and groom's income are all transformed with the Inverse Hyperbolic Sine (IHS) function. The variable of a bride's education is a dummy variable For education, the variable is 1 if at least one of the parents has finished high school and 0 if neither has. For hukou, the variable is 1 if their father holds an urban hukou and 0 if he does not. Wedding year fixed effects indicate the year ranges in which the couple got which equals 1 if she has finished high school and 0 if she never has. Both parents' education and hukou variables are dummy variables. married. They are the 1970s, 1980s, 1990s, and 2000s.

Table B2: Reduced-form Evidence II: Relatiobship between Dowry and Bride Price

		Depend	lent variable	: Dowry	
	(1)	(2)	(3)	(4)	(5)
Bride price	0.730***	0.680***	0.607***	0.607***	0.539***
	(0.020)	(0.020)	(0.024)	(0.024)	(0.028)
Province Fixed Effects		X	X		
City Fixed Effects				X	X
Wedding Year Fixed Effects			X		X
Observations	1,207	1,207	1,207	1,207	1,207
R^2	0.532	0.599	0.610	0.692	0.700

Note: Standard errors in brackets and errors are clustered at the household level. * significant at the 10% level; *** significant at the 5% level; *** significant at the 1% level. The dependent variable of dowry and the explanatory variables of the bride price are both transformed with the Inverse Hyperbolic Sine (IHS) function. Wedding year fixed effects indicate the year ranges in which the couple got married. They are the 1970s, 1980s, 1990s, and 2000s.

Table B3: Reduced-form Evidence III: Relatiobship between Dowry and Family Characteristics

				Dependent v	Dependent variable: Dowry	ry		
	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
Groom's Income	-0.259***	-0.167**	-0.201***	-0.149**	-0.295***	-0.186**	-0.243***	-0.179***
	(0.060)	(0.073)	(0.065)	(0.074)	(0.051)	(0.062)	(0.055)	(0.062)
$Groom's Income)^2$	0.022***	0.015**	0.017***	0.014**	0.026***	0.017***	0.021***	0.016***
	(0.005)	(0.006)	(0.005)	(0.006)	(0.004)	(0.005)	(0.004)	(0.005)
Bride's Income	-0.170***	-0.173**	-0.166***	-0.167**				
	(0.052)	(0.067)	(0.058)	(0.067)				
$(Bride's Income)^2$	0.018***	0.018***	0.017***	0.018***				
	(0.005)	(0.006)	(0.005)	(0.006)				
Bride's High School					0.482***	0.497***	0.360**	0.402***
					(0.087)	(0.117)	(0.107)	(0.125)
Natal Families' Education		×		×		×		×
Natal Families' Hukou			×	×			×	×
Province Fixed Effects	×	×	×	×	×	×	×	×
Wedding Year Fixed Effects	X	X	X	X	X	X	X	X
Observations	935	557	747	556	1,139	672	918	029
R^2	0.454	0.492	0.455	0.496	0.447	0.489	0.442	0.492

Note: Standard errors in brackets and errors are clustered at the household level. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. The dependent variable of dowry and the explanatory variables of the bride's and groom's income are all transformed with the Inverse Hyperbolic Sine (IHS) function. The variable of a bride's education is a dummy variable which equals 1 if she has finished high school and 0 if she never has. Both parents' education and hukou variables are dummy variables. For education, the variable is 1 if at least one of the parents has finished high school and 0 if neither has. For hukou, the variable is 1 if their father holds an urban hukou and 0 if he does not. Wedding year fixed effects indicate the year ranges in which the couple got married. They are the 1970s, 1980s, 1990s, and 2000s.

Table B4: Reduced-form Evidence I: Relatiobship between Bride Price and Patrilocality

		Del	Dependent variable: Bride price	ble: Bride p	rice	
	(1)	(2)	(3)	(4)	(5)	(9)
City distance	0.101***	0.078***				
	(0.022)	(0.024)				
City Distance at 14			0.112***	0.090***		
			(0.023)	(0.025)		
Times visit					-0.404**	
					(0.187)	
Times visited last year						-0.423**
						(0.173)
Groom's Income		×		×		
Bride's Income		×		×		
Province Fixed Effects					×	×
Wedding Year Fixed Effects					×	×
Observations	1,390	1,073	1,391	1,075	108	107
R^2	0.015	0.068	0.017	0.070	0.511	0.510

transformed with the Inverse Hyperbolic Sine (IHS) function. Explanatory variable CIty distance measures the level; ** significant at the 5% level; *** significant at the 1% level. The dependent variable bride prices are distance between the wife's current home and her birthplace. Explanatory variable CIty distance at 14 measures the distance between the wife's living place at 14 years old and her birthplace. The explanatory variable Times visit is the average number of the wife visiting her marital family. Explanatory variable Times visit last year is the number that the wife visited her marital family last year. Wedding year fixed effects indicate the year Note: Standard errors in brackets and errors are clustered at the household level. * significant at the 10% ranges in which the couple got married. They are the 1970s, 1980s, 1990s, and 2000s.

Table B5: Robustness Test on the Efficiency of the Marriage Law Amendment

_	Dependent variable:	Waiting time (year)
	(1)	(2)
RDD estimand	-3.842*	-3.734*
	(2.164)	(2.166)
Bride marriage age		X
Observations	301	301
R^2	0.175	0.178

Note: Standard errors in brackets. * significant at the 10% level. The dependent variable is the gap between the year of purchasing the house and the wedding year. Both columns utilize local linear regression and triangular kernel. The Bandwidth type is chosen based on the method proposed by Imbens & Kalyanaraman (2012).