Algorithmic Human-Robot Interaction

Task Planning III and Project Pitches

CSCI 7000

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

Papers for Thursday: Need 1 PRO (10m) and 1 CON (5m) speaker each

Designing Robot Learners that Ask Good Questions

Maya Cakmak and Andrea Thomaz

PRO presenter: Lakhan Kamireddy

CON presenter: Dhanendra Soni

Anticipating human actions for collaboration in the presence of task and sensor uncertainty

Kelsey Hawkins et al.

PRO presenter: Ian Loegfren

CON presenter: Nishank Sharma

Last Time...

Keyframe and Trajectory Demonstrations

Trajectories and Keyframes for Kinesthetic Teaching: A Human-Robot Interaction Perspective

Sample demonstrations of the letter P in 2D

Trajectory Conversion

Trajectory Conversion: Forward-Inverse Relaxation Model

Figure 3: An algorithm for extracting via-points.

- Fifth order splines used between positions to minimize jerk, using position, velocity, and acceleration per keyframe to compute the spline unknowns.
- Keyframes assume zero velocity/acceleration per point
- Trajectory demonstrations use the means from cluster centers.

Aligning Multiple Demonstrations

Planning human-aware motions using a sampling-based costmap planner

Extending this work with human motion models

STRIPS: Language for Classical Planning

- A **problem** in Strips is a tuple $P = \langle F, O, I, G \rangle$:
 - \triangleright F stands for set of all **atoms** (boolean vars)
 - O stands for set of all operators (actions)
 - $ightharpoonup I \subseteq F$ stands for **initial situation**
 - $ightharpoonup G \subseteq F$ stands for **goal situation**
- Operators $o \in O$ represented by
 - ightharpoonup the **Add** list $Add(o) \subseteq F$
 - ightharpoonup the **Delete** list $Del(o) \subseteq F$
 - ▶ the **Precondition** list $Pre(o) \subseteq F$
 - Pickup(X)
 - P: grip(∅) \wedge clear(X) \wedge ontable(X)
 - -A: grip(X)
 - D: onTable(X) ∧ grip(\varnothing)

Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

- ullet a state space S
- initial state $s_0 \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a, s) > 0

- Solutions are functions (policies) mapping states into actions
- Optimal solutions minimize expected cost to goal

Partially Observable MDPs (POMDPs)

Traditional MDPs are defined with:

• States - S = {(0,0), (0,1), ...}

• Actions — A = {move_north, ...}

RewardsR(s,a,s') -> Reward

Transition Probabilities – T(s,a,s') -> P(s' | s, a)

Now we have to add:

• Observation set - $O = \{o_1, o_2, ...\}$

• Observation prob. $- \Omega = P(o_1, ..., o_i \mid S)$

• Also have to augment:

• Current State (now belief) - B = [0.1, 0.6, 0.2, 0.1, ...]

• Policy (no longer $S \to A$) $- \pi: B \to A$

POMDPs in Action

POMDPs in Action

S0
"tiger-left"
Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1 "tiger-right" Pr(o=TL | S0, listen)=0.15 Pr(o=TR | S1, listen)=0.85

Reward Function

- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1

Observations

- to hear the tiger on the left (TL)
- to hear the tiger on the right(TR)

Prob. (LISTEN)	Tiger: left	Tiger: right
Tiger: left	1.0	0.0
Tiger: right	0.0	1.0

Prob. (LEFT)	Tiger: left	Tiger: right
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Prob. (RIGHT)	Tiger: left	Tiger: right
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Prob. (LISTEN)	O: TL	O: TR
Tiger: left	0.85	0.15
Tiger: right	0.15	0.85

Prob. (LEFT)	O: TL	O: TR
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Prob. (LEFT)	O: TL	O: TR
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Still not feasible to exhaustively check all of our hypotheses!

- But we can still make progress!
- Need a mechanism to enable us to mostly pursue reasonably likely hypotheses.
- Example domain: Localization!

Localization Domain

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (with some error)
- Known information: Airspeed (with some error), Map
- Goal: Use repeated observations to find true horizontal position

Particle Filter

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Initial Hypotheses

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Likelihood Evaluation

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Weighting Particles

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Exhausting Particles

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Resampling Particles

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Resampling Particles

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Advance 1 Timestep

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Update Weights

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Exhaust/Resample

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Exhaust/Resample

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Advance 1 Timestep

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

Particle Filter: Future Iterations...

- Latent variable: Horizontal aircraft position
- Observable variable: Vertical aircraft position (altitude)
- Known information: Airspeed, Map
- Goal: Use repeated observations to find true horizontal position

Main Idea:

More Particle Filtering in Action!

Real-Time Particle Filter Localization Demo

Stata Basement Loop
Instructor Solution by Corey Walsh
6.141 Spring 2017
Lab 5

Markov Chains

- Finite number of discrete states
- Probabilistic transitions between states
- Next state determined only by the current state
 - This is the Markov property

Rewards: S1 = 10, S2 = 0

Hidden Markov Model

- Finite number of discrete states
- Probabilistic transitions between states
- Next state determined only by the current state
- We're unsure which state we're in
 - The current states emits an observation

Rewards: S1 = 10, S2 = 0

Do not know state: S1 emits O1 with prob 0.75 S2 emits O2 with prob 0.75

Markov Decision Process

- Finite number of discrete states
- Probabilistic transitions between states and controllable actions in each state
- Next state
 determined only by
 the current state
 and current action
 - This is still the Markov property

Rewards: S1 = 10, S2 = 0

Partially Observable Markov Decision Process

- Finite number of discrete states
- Probabilistic transitions between states and controllable actions
- Next state determined only by the current state and current action
- We're unsure which state we're in
 - The current state emits observations

Rewards: S1 = 10, S2 = 0

Do not know state: S1 emits O1 with prob 0.75 S2 emits O2 with prob 0.75

Markov Model Chart

Do we have control over the state transitions? (Are we picking which actions are executed)

Are the states completely observable?

	NO	YES
YES	Markov Chain	MDP
NO	НММ	POMDP

Final Project Pitches

In two minutes or less:

What new capability are you introducing / phenomenon are you exploring?

What's hard about this now?

How will you evaluate whether your approach works or not?