Statistical Machine Learning Multiple Testing

Horacio Gómez-Acevedo Department of Biomedical Informatics University of Arkansas for Medical Sciences

March 17, 2022

UAMS

Hypothesis test

- ▶ A *statistical hypothesis H* ia a conjecture about the probability distribution of a population.
- ▶ A hypothesis *H* is said to be *simple* if the distribution of the population is completely specified by *H*. If not, then *H* is called a *composite* hypothesis.
- ► H₀ is called the *null hypothesis* and H₁ the *alternative* hypothesis.
- We say that we commit a type I error if we decide to accept H₁, whereas in reality H₀ is true.
- The probability of committing a type I error will be denoted by α .
- Acceptance of H_0 whereas H_1 is true is called a *type II error*.
- ▶ The probability of committing a type II error will be denoted by β .

Example

A factory has packets of coffee with and adjusted weight of 500 grams. We assume that the weight of the packages is N(500,50)-distributed. A container with coffee packages contains packages wrongly processed with weight N(490,50)-distributed. To determine the container that has incorrectly weight the packages, we draw a sample (package) of each of two containers X_1 , X_2 . Based on the outcome of the 2-vector (X_1,X_2) we will make a conjecture about the distribution of the population. Namely

 H_0 : the population is N(500, 50) — distributed H_1 : the population is N(490, 50) — distributed

Let's suppose our decision as If both X_1 and $X_2 \leq$ 496 then we accept H_1 , otherwise we accept H_0 .

Let's define our critical region G as

$$G = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \le 496\}$$

Then, we can formulate our decision as

$$= \begin{cases} \text{if } (X_1,X_2) \in G & \text{then we choose } H_1 \text{ as our conjecture.} \\ \text{if } (X_1,X_2) \notin G & \text{then we choose } H_0 \text{ as our conjecture.} \end{cases}$$

We can calculate α and β as follows

$$\begin{split} \alpha &= P(\text{acceptance of } H_1|H_0 \text{ is true}) \\ &= P((X_1, X_2) \in G|\mu = 500, \sigma^2 = 50) \\ &= P(X_1 \leq 496|\mu = 500, \sigma^2 = 50) \cdot P(X_2 \leq 496|\mu = 500, \sigma^2 = 50) \\ &= 0.081 \end{split}$$

$$\beta = P(\text{acceptance of } H_0|H_1 \text{ is true})$$

$$= P((X_1, X_2) \notin G|\mu = 490, \sigma^2 = 50)$$

$$= 1 - P((X_1, X_2) \in G|\mu = 490, \sigma^2 = 50)$$

$$= 1 - P(X_1 \le 496|\mu = 490, \sigma^2 = 50) \cdot P(X_2 \le 496|\mu = 490, \sigma^2 = 50)$$

$$= 0.356$$

Hypothesis test

A *Hypothesis test* is a collection

$$(X_1,\ldots,X_n;H_0;H_1:G)$$

where X_1, \ldots, X_n is a sample, H_0 and H_1 hypotheses concerning the probability distribution of the population and $G \subset \mathbb{R}^n$ a Borel set (meaning a collection of open sets)

If H_0 is a simple statistical hypothesis. The *level of significance* of the hypothesis test $(X_1, \ldots, X_n; H_0; H_1; G)$ is understood to be the number

$$\alpha = P_{X_1,\dots,X_n}^{H_0}(G)$$

Thus, we say that α represents the probability of committing a type I error.

The power function

With our previous setup the β could not be used for composite hypothesis. Thus, we have to define something more general.

- ▶ Let $f(\cdot, \theta))_{\theta \in \Theta}$ be a family of probability densities
- Let's assume that the population X_1, \ldots, X_n has a probability density $f(\cdot, \theta)$ where $\theta \in \Theta$.
- \blacktriangleright Let's assume that H_0 and H_1 are statements of the type

$$H_0: \theta \in \Theta_0$$
 and $H_1: \theta \in \Theta_1$

where $\Theta_0 \cup \Theta_1 = \Theta$ and $\Theta_1 \cap \Theta_1 = \emptyset$.

For a fixed $\theta \in \Theta$, the probability distribution of the population is completely specified. Then, we define for every $\theta \in \Theta_1$

$$\beta(\theta) = P_{X_1,\dots,X_n}^{\theta}(G^c)$$

The expression $1 - \beta(\theta)$ is called the *power function* for $\theta \in \Theta_1$.

From our previous example, given is a $N(\mu, 50)$ -distributed population, where $\mu \leq 500$. The family of probability densities $f(:, \mu)$ where $\mu \leq 500$ and

$$f(x,\mu) = \frac{1}{\sqrt{100\pi}} \exp(\frac{-(x-\mu)^2}{100})$$

The parameter space is defined by $\Theta=(-\infty,500]$. If we draw a sample X_1 , X_2 of size 2 from this population. We can define $\Theta_0=\{500\}$ and $\Theta_1=(-\infty,500)$. This corresponds to the following hypotheses

$$H_0$$
: $\mu = 500$ against H_1 : $\mu < 500$

If we choose the following critical region

$$G = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \le 494.63\}$$

Then, our 5-tuple $(X_1, X_2; H_0; H_1; G)$ constitutes a hypothesis test. The size α of the critical region G is $\alpha = 0.05$, and the power function

$$\begin{aligned} 1 - \beta(\mu) &= 1 - P_{X_1, X_2}^{\mu}(G^c) = P_{X_1, X_2}^{\mu}(G) = P((X_1, X_2) \in G) \\ &= P(X_1 \le 494.63 \text{ and } X_2 \le 494.63 | \mu = \mu, \sigma^2 = 50) \\ &= P(X_1 \le 494.63 | \mu = \mu, \sigma^2 = 50) \\ &\cdot P(X_2 \le 494.63 | \mu = \mu, \sigma^2 = 50) \end{aligned}$$

References

Materials and some of the pictures are from (Calin, 2019).

Calin, O. (2019). Deep Learning Architectures. Springer Series in the Data Sciences. Springer. ISBN: 978-3-030-36723-7.

I have used some of the graphs by hacking TiKz code from StakExchange, Inkscape for more aesthetic plots and other old tricks of TFX