MIT 6.875

Foundations of Cryptography Lecture 18

TODAY (and next few lectures): Lattice-based Cryptography

Why Lattice-based Crypto?

☐ Exponentially Hard

(so far)

☐ Quantum-Resistant

(so far)

csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

Post-Quantum Cryptography PQC

Post-Quantum Cryptography Standardization

The <u>Round 3 candidates</u> were announced July 22, 2020. <u>NISTIR 8309</u>, Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process is now available. NIST has developed <u>Guidelines for Submitting Tweaks</u> for Third Round Finalists and Candidates.

Call for Proposals Announcement (information retained for historical purposes-call closed 11/30/2017)

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186-4, Digital Signature Standard, as well as special publications SP 800-56A Revision 2, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, and SP 800-56B Revision 1, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer Factorization Cryptography. However, these algorithms are vulnerable to attacks from large-scale quantum computers (see NISTIR 8105, Report on Post Quantum Cryptography).

It is intended that the new public-key cryptography standards will specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are available worldwide, and are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers.

As a first step in this process, NIST <u>solicited public comment</u> on draft minimum acceptability requirements, submission requirements, and evaluation criteria for candidate algorithms. The <u>comments received</u> are posted, along with a summary of the changes made as a result of these comments.

% PROJECT LINKS

Overview

FAQs

News & Updates

Events

Publications

Presentations

ADDITIONAL PAGES

Post-Quantum Cryptography Standardization

Call for Proposals

Example Files

Round 1 Submissions

Round 2 Submissions

Round 3 Submissions

Workshops and Timeline

Round 3 Seminars

External Workshops

Why Lattice-based Crypto?

☐ Exponentially Hard	(so far)
☐ Quantum-Resistant	(so far)
☐ Worst-case hardness	
(unique feature of lattice-based crypto)	
☐ Simple and Efficient	
☐ Enabler of Surprising Capabilities	
(Fully Homomorphic Encryption)	

$$5s_{1} + 11s_{2} = 2$$

$$2s_{1} + s_{2} = 6$$

$$7s_{1} + s_{2} = 26$$

where all equations are over \mathbb{Z} , the integers

GOAL: Find s.

More generally, n variables and $m \gg n$ equations.

GOAL: Find s.

EASY! For example, by Gaussian Elimination

GOAL: Find s.

How to make it hard: Chop the head?

That is, work modulo some q. $(1121 \mod 100 = 21)$

Still EASY! Gaussian Elimination mod q

GOAL: Find s.

How to make it hard: Chop the tail?

Add a small error to each equation.

Still EASY! Linear regression.

GOAL: Find s.

How to make it hard: Chop the head and the tail?

Add a small error to each equation and work mod q.

Turns out to be very HARD!

Solveraming with a Errons (d. Matte) ns

GOAL: Find s.

<u>Parameters</u>: dimensions n and m, modulus q, error distribution χ = uniform in some interval [-B, ..., B].

A is chosen at random from $\mathbb{Z}_q^{m \times n}$, **s** from \mathbb{Z}_q^n and **e** from χ^m .

Learning with Errors (LWE)

◆ Decoding Random Linear Codes (over F_q with L₁ errors)

Learning Noisy Linear Functions

Worst-case hard Lattice Problems

[Regev'05, Peikert'09]

Given A, As + e, find s.

Idea (a) Each noisy linear equation is an exact polynomial eqn.

Consider
$$b = \langle a, s \rangle + e = \sum_{i=1}^{n} a_i s_i + e$$
.

Imagine for now that the error bound B = 1. So, $e \in \{-1,0,1\}$. In other words, $b - \sum_{i=1}^{n} a_i s_i \in \{-1,0,1\}$.

So, here is a noiseless polynomial equation on s_i :

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

Given A, As + e, find s.

BUT: Solving (even degree 2) polynomial equations is NP-hard.

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

$$(b - \sum_{i=1}^{n} a_i s_i - 1) (b - \sum_{i=1}^{n} a_i s_i) (b - \sum_{i=1}^{n} a_i s_i + 1) = 0$$

Idea (b) Easy to solve given sufficiently many equations.

(using a technique called '

$$\sum a_{ijk} s_i s_j s_k + \sum a_{ij} s_i s_j + \sum a_{i$$

Treat each "monomial", e.g. $s_i s$ variable, e.g. t_{ijk} .

Now, you have a noiseless linear equation in tilk!!!

$$\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_{i}t_{i} + (b-1)b(b+1) = 0$$

$$\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_{i}t_{i} + (b-1)b(b+1) = 0$$

$$\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_{i}t_{i} + (b-1)b(b+1) = 0$$

$$\sum a_{ijk}t_{ijk} + \sum a_{ij}t_{ij} + \sum a_{i}t_{i} + (b-1)b(b+1) = 0$$

$$\sum_{i,j} a_{ijk} t_{ijk} + \sum_{i,j} a_{ij} t_{ij} + \sum_{i} a_{i} t_{i} + (b-1)b(b+1) = 0$$

When $\# eqns = \# vars \approx O(n^s)$ the only surviving solution to the linear system is the real solution.

Given A, As + e, find s.

Can solve/break as long as

$$m\gg n^{2B+1}$$

We will set $B = n^{\Omega(1)}$, in other words polynomial in n so as to blunt this attack.

The famed Lenstra-Lenstra-Lovasz algorithm decodes in polynomial time when $q/B>2^n$

Setting Parameters

Put together, we are safe with:

 $n = \text{security parameter} \ (\approx 1 - 10 \text{K})$

m = arbitrary poly in n

 $B = \text{small poly in } n, \text{say } \sqrt{n}$

 $q=\operatorname{poly}\operatorname{in} n$, larger than B, and could be as large as sub-exponential, say $2^{n^{0.99}}$

even from quantum computers, AFAWK!

Decisional LWE

Can you distinguish between:

Theorem: "Decisional LWE is as hard as LWE".

OWF and PRG

$$g_A(s,e) = As+e$$

```
(\mathbf{A} \in \mathbb{Z}_q^{nXm}

\mathbf{s} \in \mathbb{Z}_q^n random "small" secret vector

\mathbf{e} \in \mathbb{Z}_q^n: random "small" error vector)
```

- g_A is a one-way function (assuming LWE)
- g_A is a pseudo-random generator (decisional LWE)
- g_A is also a trapdoor function...
- also a homomorphic commitment...

Basic (Secret-key) Encryption

[Regev05]

n = security parameter, q = "small" modulus

- Secret key sk = Uniformly random vector $\mathbf{s} \in Z_q^n$
- Encryption $\operatorname{Enc}_{\mathbf{s}}(\mu)$: $// \mu \in \{0,1\}$
 - Sample uniformly random $\mathbf{a} \in \mathbb{Z}_q^n$, "small" noise $\mathbf{e} \in \mathbb{Z}$
 - The ciphertext $\mathbf{c} = (\mathbf{a}, \mathbf{b} = \langle \mathbf{a}, \mathbf{s} \rangle + \mathbf{e} + \mu$

Decryption Dec_{sk}(c): Output (b - ⟨a, s⟩ mod q)

// correctness as long as |e| < q/4

Basic (Secret-key) Encryption [Regev05]

This scheme is additively homomorphic.

$$c = (a, b = \langle a, s \rangle + e + \mu |q/2|)$$
 \leftarrow Enc_s(m)

$$c' = (a', b' = \langle a', s \rangle + e' + \mu' | q/2 |) \leftarrow \text{Enc}_s(m')$$

$$c + c' = (a+a', b+b') = \langle a+a', s \rangle + (e+e') + (\mu + \mu') [q/2] \rangle$$

In words: c + c' is an encryption of $\mu + \mu'$ (mod 2)

Basic (Secret-key) Encryption [Regev05]

You can also negate the encrypted bit easily.

We will see how to make this scheme into a fully homomorphic scheme (in the next few lectures)

For now, note that the error increases when you add two ciphertexts. That is, $|e_{add}| \approx |e_1| + |e_2| \leq 2B$.

Setting $q = n^{\log n}$ and $B = \sqrt{n}$ (for example) lets us support any polynomial number of additions.

Next Lecture: Fully Homomorphic Encryption