ETC3250 Business Analytics Project Presentation

ggplotters2

Ensemble model

Model formulation

Linear regression/LPM

- 1. Best Subset Selection
- Choose model with maximum Adjusted R² and minimum Cp

Logit and probit

- Mixed stepwise variable selection (start at full model then add or drop variables)
- 2. Choose model with minimum AIC

Random forest

- 1. Automatic variable selection
- 2. Choose parameters (number of trees, number of node predictors) use validation set approach (20/80 split) with log loss function

Figure 1: Plot of RSS, Adjusted R^2 , C_p and BIC against number of regressors

Figure 2: Plot of validation set log losses against number of trees, with number of node predictors.

Results and discussion

1) Improvement of log loss using ensemble modelling

Figure 3: Validation log loss for different models

Results and discussion

2) Effects of variables on different models

Using **t-test** on LPM and Logit & Probit Model

Linear Regression Model

Important variables:

- Employment Status
- Date of last contact
- Number of contact during campaign
- Credit in default

♦ Logit and Probit Model

<u>Important variables:</u>

- Employment Status
- Date of last contact
- Number of contact during campaign
- Number of day from previous campaign
- Out come from previous marketing campaign

Results and discussion

2) Effects of variables on different models

♦ Random Forest

Gini Index:
$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

<u>Important variables:</u>

- Age
- Employment status
- Date of the last contact
- Number of contact during campaign
- Education level

Table 1: Variable importance in random forest

MeanDecreaseGin	
age	740.26862
job	374.64890
marital	159.65267
default	81.74803
housing	156.38224
loan	117.60036
contact	39.34858
month	326.24650
day_of_week	306.45773
campaign	376.89208
pdays	17.82658
previous	27.70053
poutcome	29.67767
edu	309.75355

Limitations/next steps

- Limited computing power prevented the use of k-fold cross-validation with high values of k when selecting random forest parameters.
- Using different weights when ensemble averaging to reduce/offset the high error from random forest.
- Exploring boosting instead of random forest
- Exploring the use of shrinkage methods such as ridge/lasso regression

Thank you!

Any questions?