Mouvement T - ★

C2-05

Question 1 Quel est le mouvement de 1 par rapport à 0.

B2-13

1 est en translation de direction $\overrightarrow{i_0}$ par rapport à **0**.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à **1** par rapport à **0**.

On a
$$\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = \lambda(t) \\ y_B(t) = 0 \\ z_B(t) = 0 \end{cases}$$
 dans

le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Mouvement T - ★

B2-13

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

$$\left\{ \mathcal{V}\left(1/0\right)\right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} \end{array} \right\}_{\forall P}.$$

$$\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_0}.$$

Question 2 Déterminer
$$\overrightarrow{\Gamma(B, 1/0)}$$
.

$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,1/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{i_0}.$$

Mouvement R ★

C2-05

Question 1 Quel est le mouvement de **1** par rapport à **0**. **1** est en rotation de centre A et d'axe $\overrightarrow{k_0}$ par rapport à **0**.

B2-13

Question 2 Quelle est la trajectoire du point B appartenant à **1** par rapport à **0**. B est est en rotation par rapport à **0** (cercle de centre A et de rayon B).

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à **1** par rapport à **0**.

On a
$$\overrightarrow{AB} = R\overrightarrow{i_1} = R\cos\theta\overrightarrow{i_0} + R\sin\theta\overrightarrow{j_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = R\cos\theta(t) \\ y_B(t) = R\sin\theta(t) & \text{dans le repère } \left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0}\right). \\ z_B(t) = 0 \end{cases}$$

Mouvement R ★

B2-13

Question 1 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle. $\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{Ri_1}\right]_{\mathcal{R}_0}. \text{ Or } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1}\right]_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{0} + \overrightarrow{\theta}\overrightarrow{k_0} \wedge \overrightarrow{i_1} = \overrightarrow{\theta}\overrightarrow{j_1}.$

D'où
$$\overrightarrow{V(B, 1/0)} = R \dot{\theta} \overrightarrow{j_1}$$
.

Question 2 Déterminer $\overline{V(B, 1/0)}$ par une autre méthode.

$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} - R\overrightarrow{i_1} \wedge \overrightarrow{\theta} \overrightarrow{k_0} = R\overrightarrow{\theta} \overrightarrow{j_1}.$$

Question 3 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

On a directement
$$\{\mathcal{V}(1/0)\} = \left\{\begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{array}\right\}_B$$
.

Question 4 Déterminer
$$\overrightarrow{\Gamma(B,1/0)}$$
.
$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,1/0)} \right]_{\Re_0} = R \overrightarrow{\partial} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1}. \text{ (En effet, } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\Re_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\Re_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \overrightarrow{0} + \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \overrightarrow{i_1}.)$$

Mouvement TT - ★

Question 1 Quel est le mouvement de **2** par rapport à **0**. Le point C a un mouvement quelconque dans le plan $(A, \overrightarrow{i_0}, \overrightarrow{j_0})$.

Question 2 Donner l'équation du mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

On a
$$\overrightarrow{AC} = \lambda(t)\overrightarrow{i_0} + \mu(t)\overrightarrow{j_0}$$
 et donc, on a directement
$$\begin{cases} x_C(t) = \lambda(t) \\ y_C(t) = \mu(t) \\ z_C(t) = 0 \end{cases}$$
 dans le repère
$$(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}).$$

On souhaite que le point C réalise un cercle de centre A et de rayon $R=10\,\mathrm{cm}$ à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}$. On a $v = R \dot{\theta}(t)$. Par intégration, $\theta(t) = \frac{v}{R}t$ (avec $\theta(t) = 0$ rad pour t = 0 s).

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Exprimons la trajectoire du point $C: \overrightarrow{AC} = R\overrightarrow{e_r} = R\cos\theta(t)\overrightarrow{i_0} + R\sin\theta(t)\overrightarrow{j_0}$. Par identification $\lambda(t) = R\cos\theta(t)$ et $\mu(t) = R\sin\theta(t)$.

Au final,
$$\begin{cases} \lambda(t) = R \cos\left(\frac{v}{R}t\right) \\ \mu(t) = R \sin\left(\frac{v}{R}t\right) \end{cases}.$$

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

```
import numpy as np
import matplotlib.pyplot as plt
import math as m
R = 0.1 # m
v = 0.01 # m.s-1

# Temps pour faire un tour
T = 2*m.pi*R/v

les_t = np.linspace(0,T,200)
les_lambda = R*np.cos(v/R*les_t)
les_mu = R*np.sin(v/R*les_t)
plt.grid()
```

C2-05 B2-13

```
14 plt.plot(les_t,les_lambda,label="$\\lambda(t)$")
plt.plot(les_t,les_mu,label="$\\mu(t)$")
16 plt.xlabel("Temps ($s$)")
17 plt.ylabel("Position ($m$)")
18 plt.legend()
19 #plt.show()
  plt.savefig("03_TT_01_c.pdf")
20
  plt.cla()
22
23
   plt.grid()
  plt.axis("equal")
24
  plt.plot(les_lambda,les_mu,label="Trajectoire de $C$")
  plt.legend()
  #plt.show()
28 plt.savefig("03_TT_02_c.pdf")
```


Mouvement TT - ★

B2-13

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Par dérivation vectorielle, on a : $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC} \right]_{\Re_0} = \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0}$.

Par composition du torseur cinématique, on a : $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$ = $\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{BC} \right]_{\Re_1} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC} \right]_{\Re_0} = \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0}$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \end{array} \right\}_{\vee p}.$$

Question 3 Déterminer $\Gamma(C, 2/0)$. $\overrightarrow{\Gamma(C, 2/0)} = \frac{d}{dt} \left[\overrightarrow{V(C, 2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + \ddot{\mu}(t) \overrightarrow{j_0}.$

Mouvement RR ★

C2-05

Question 1 Donner l'ensemble des positions accessibles par le point *C*.

B2-13

Le point *C* peut atteindre tous les points situés compris entre deux cercles de rayon 5 mm et de rayon 25 mm.

Pas de corrigé pour cet exercice.

Question 2 Donner l'équation du mouvement du point *C* dans son mouvement de **2** par rapport à **0**.

On a $\overrightarrow{AC} = R\overrightarrow{i_1} + L\overrightarrow{i_2}$. On projetant ce vecteur dans le repère $\Re_A i_0 j_0 k_0$ on a

La Martinière

$$\overrightarrow{AC} = R\left(\cos\theta \overrightarrow{i_0} + \sin\theta \overrightarrow{j_0}\right) + L\left(\cos\left(\theta + \varphi\right) \overrightarrow{i_0} + \sin\left(\theta + \varphi\right) \overrightarrow{j_0}\right).$$

On a donc :
$$\begin{cases} x_C(t) = R\cos\theta + L\cos(\theta + \varphi) \\ y_C(t) = R\sin\theta + L\sin(\theta + \varphi) \\ z_C(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

Question 3 Donner la durée du mouvement si *C* se déplace à vitesse quelconque. Distance à parcourir : 0,05 m. Durée du parcours : $T = \frac{\hat{0},05}{\hat{7}}$.

Question 4 Donner l'équation paramétrique que doit suivre le point *C*.

Question 4 Donner l'équation paramétrique que doit suivre le point
$$C$$
. $\forall t \in \left[0, \frac{0,05}{v}\right], \ y_C(t) = 0,025$. Pour $t = 0, \ x_C(0) = -0,025$. On a alors $x_C(t) = -0,025 + vt$.

Au final,
$$\forall t \in \left[0, \frac{0,05}{v}\right], \left\{ \begin{array}{l} x_C(t) = -0,025 + vt \\ y_C(t) = 0,025 \\ z_C(t) = 0 \end{array} \right. \text{ dans le repère } \left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right).$$

Question 5 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m \, s^{-1}}$.

Afin que le point *C* suive un segment, il faut donc que $\begin{cases} -0.025 + vt = R\cos\theta + L\cos(\theta + \varphi) \\ 0.025 = R\sin\theta + L\sin(\theta + \varphi) \end{cases}$

$$\Leftrightarrow \begin{cases} -0.025 + vt - R\cos\theta = L\cos(\theta + \varphi) \\ 0.025 - R\sin\theta = L\sin(\theta + \varphi) \end{cases}$$

$$\Rightarrow \begin{cases} (-0,025 + vt - R\cos\theta)^2 = L^2\cos^2(\theta + \varphi) \\ (0,025 - R\sin\theta)^2 = L^2\sin^2(\theta + \varphi) \end{cases}$$

$$\Rightarrow (-0.025 + vt - R\cos\theta)^2 + (0.025 - R\sin\theta)^2 = L^2$$

$$\Rightarrow 0,025^2 + v^2t^2 + R^2\cos^2\theta - 2 \times 0,025vt + 2R\cos\theta - vtR\cos\theta + 0,025^2 + R^2\sin^2\theta - 2 \times 0,025R\sin\theta = L^2$$

$$\Rightarrow (2 - vt)\cos\theta - 2 \times 0,025\sin\theta = \frac{L^2}{R} - \frac{2 \times 0,025^2}{R} - \frac{v^2t^2}{R} - R + 2 \times 0,025\frac{vt}{R}$$

Équation trigonométrique de la forme $a \cos x + b \sin x = c$.

Il y a donc une solution analytique. On peut aussi résoudre l'équation numériquement.

Une fois
$$\theta(t)$$
 déterminée, on a 0, 025– $R\sin\theta = L\sin(\theta + \varphi) \Rightarrow \arcsin\left(\frac{0,025 - R\sin\theta(t)}{L}\right)$ – $\theta(t) = \varphi(t)$

Question 6 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Mouvement RR ★

Question 1 Déterminer
$$\overrightarrow{V(C,2/0)}$$
 par dérivation vectorielle.
 $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathfrak{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathfrak{R}_0} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{BC}\right]_{\mathfrak{R}_0} = R \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1}\right]_{\mathfrak{R}_0} + L \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2}\right]_{\mathfrak{R}_0} = R \dot{\overrightarrow{i_1}} + L \left(\dot{\theta} + \dot{\varphi}\right) \overrightarrow{j_2}.$

$$(\operatorname{Avec}\,\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_2} + \overline{\Omega\left(2/0\right)}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{k_0}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{j_2}).$$

B2-13

Question 2 Déterminer $\overline{V(C,2/0)}$ par composition.

On a
$$\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$$
.

$$\overrightarrow{V\left(C,2/1\right)} = \overrightarrow{V\left(B,2/1\right)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega\left(2/1\right)} = -L\overrightarrow{i_2} \wedge \overrightarrow{\phi} \overrightarrow{k_0} = L\overrightarrow{\phi} \overrightarrow{j_2}$$

$$\overrightarrow{V\left(C,1/0\right)} = \overrightarrow{V\left(A,1/0\right)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega\left(1/0\right)} = \left(-L\overrightarrow{i_2} - R\overrightarrow{i_1}\right) \wedge \dot{\theta}\overrightarrow{k_0} = \dot{\theta}\left(L\overrightarrow{j_2} + R\overrightarrow{j_1}\right).$$

Au final,
$$\overrightarrow{V(C,2/0)} = L\dot{\varphi}\overrightarrow{j_2} + \dot{\theta}\left(L\overrightarrow{j_2} + R\overrightarrow{j_1}\right)$$
.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C. $\{\mathcal{V}(2/0)\} = \{\mathcal{V}(2/1)\} + \{\mathcal{V}(1/0)\}$. Pour sommer les torseurs, il faut écrire les vecteurs vitesses au même point, ici en C.

$$\left\{ \mathcal{V}\left(2/0\right) \right\} = \left\{ \begin{array}{l} \left(\dot{\theta} + \dot{\varphi}\right) \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} + L \left(\dot{\theta} + \dot{\varphi}\right) \overrightarrow{j_2} \end{array} \right\}_{C}$$

Question 4 Déterminer $\overrightarrow{\Gamma(C, 2/0)}$.

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\Re_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R \dot{\theta} \overrightarrow{j_1} + L \left(\dot{\theta} + \dot{\phi} \right) \overrightarrow{j_2} \right]_{\Re_0}$$

De plus,
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \overrightarrow{i_1} \text{ et } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_2} + \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\dot{\theta} + \dot{\varphi} \right) \overrightarrow{k_0} \wedge \overrightarrow{j_2} = - \left(\dot{\theta} + \dot{\varphi} \right) \overrightarrow{i_2}.$$

On a donc
$$\overrightarrow{\Gamma(C,2/0)} = R \overrightarrow{\theta} \overrightarrow{j_1} - R \overrightarrow{\theta}^2 \overrightarrow{i_1} + L (\overrightarrow{\theta} + \overrightarrow{\varphi}) \overrightarrow{j_2} - L (\overrightarrow{\theta} + \overrightarrow{\varphi})^2 \overrightarrow{i_2}$$
.

Mouvement RT ★

Question 1 Donner l'ensemble des positions accessibles par le point B. En considérant que $\lambda(t)$ peut varier de 0 à R et $\theta(t)$ peut varier de 0 à 2π , toutes les positions du disque de centre A et de rayon R sont accessibles.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par rapport à $\mathbf{0}$. $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1} = \lambda(t)\cos\theta\overrightarrow{i_0} + \lambda(t)\sin\theta\overrightarrow{j_0}$.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$. On pose $\overrightarrow{AB}=x(t)\overrightarrow{i_0}+y(t)\overrightarrow{j_0}$. On a donc $\begin{cases} x(t)=\lambda(t)\cos\theta(t) \\ y(t)=\lambda(t)\sin\theta(t) \end{cases}$ On note $\ell=25$.

Si le segment est parcouru à vitesse constante, on a une durée de parcours de $T=2\ell/v$. Par conséquent la trajectoire souhaitée est donnée par $\forall t \in [0,T]$. $\begin{cases} x(t)=-\ell+vt \\ y(t)=\ell \end{cases}$

Par suite,
$$\begin{cases} -\ell + vt = \lambda(t)\cos\theta(t) \\ \ell = \lambda(t)\sin\theta(t) \end{cases} \Rightarrow \begin{cases} (-\ell + vt)^2 + \ell^2 = \lambda(t)^2 \\ \frac{\ell}{vt + \ell} = \tan\theta(t) \end{cases} \Rightarrow \begin{cases} \lambda(t) = \sqrt{(-\ell + vt)^2 + \ell^2} \\ \theta(t) = \arctan\left(\frac{\ell}{vt + \ell}\right) \end{cases}$$

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

C2-05

B2-13

Pas de corrigé pour cet exercice.

B2-13

Mouvement RT ★

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle. $\overline{V(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\Re_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\lambda(t)\overrightarrow{i_1}\right]_{\Re_0} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$

Question 2 Déterminer $\overrightarrow{V(B,2/0)}$ par composition. $\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}$.

$$\forall P, \overrightarrow{V(P,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}.$$

Par ailleurs $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\lambda(t)\overrightarrow{i_1} \wedge \dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$.

Au final,
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t) \overrightarrow{k_0} \\ \dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \end{array} \right\}_B.$$

Question 4 Déterminer $\overrightarrow{\Gamma(B,2/0)}$.

$$\frac{\mathbf{d}}{\Gamma(B,2/0)} = \frac{\mathbf{d}}{\mathbf{d}t} \left[\overline{V(B,2/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} - \lambda(t) \dot{\theta}(t)^2 \overrightarrow{i_1} = \left(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}(t)^2 \right) \overrightarrow{i_1} + \left(\dot{\lambda}(t) \dot{\theta}(t) + \dot{\lambda}(t) \dot{\theta}(t) \right) \overrightarrow{j_1}.$$

C2-05

B2-13

B2-13

Mouvement RT ★

Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point *B*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point *B* dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Mouvement RT ★

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Méthode 1 - Dérivation vectorielle

$$\overrightarrow{V\left(C,2/0\right)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{BC}\right]_{\mathcal{R}_0} = \dot{\lambda}(t)\overrightarrow{i_0} + R\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \dot{\lambda}(t)\overrightarrow{i_0} + R\frac{\mathrm{d}}{\mathrm{d}t}$$

Méthode 2 - Composition du torseur cinématique

$$\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$$

Pour tout point P, $\overrightarrow{V(P,1/0)} = \overrightarrow{\lambda} \overrightarrow{i_0}$.

$$\overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = -R\overrightarrow{i_2} \wedge \overrightarrow{\theta} \overrightarrow{k_0} = R\overrightarrow{\theta} \overrightarrow{j_2}.$$

On a donc $\overrightarrow{V(C,2/0)} = \overrightarrow{\lambda} \overrightarrow{i_0} + R \overrightarrow{\theta} \overrightarrow{j_2}$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\left\{ \mathcal{V}\left(2/0\right) \right\} = \left\{ \begin{array}{l} \overrightarrow{\Omega\left(2/0\right)} = \dot{\theta}\overrightarrow{k_0} \\ \overrightarrow{V\left(C,2/0\right)} = \dot{\lambda}\overrightarrow{i_0} + R\dot{\theta}\overrightarrow{j_2} \end{array} \right\}_C.$$

Question 3 Déterminer $\Gamma(C, 2/0)$.

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\theta} \overrightarrow{j_2} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right).$$

Mouvement RR 3D ★★

C2-05

Question 1 Donner l'ensemble des positions accessibles par le point C. Ça ressemble à un tore, mais c'est pas vraiment un tore :) (aussi bien l'intérieur que l'extérieur...)...

B2-13

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On a
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{Ri_1} + \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$$
. Soit $\overrightarrow{AC} = (R + \ell) \left(\cos \theta \overrightarrow{i_0} + \sin \theta \overrightarrow{j_0} \right) + r \left(\cos \varphi \overrightarrow{j_1} + \sin \varphi \overrightarrow{k_1} \right) = (R + \ell) \left(\cos \theta \overrightarrow{i_0} + \sin \theta \overrightarrow{j_0} \right) + r \left(\cos \varphi \left(\cos \theta \overrightarrow{j_0} - \sin \theta \overrightarrow{i_0} \right) + \sin \varphi \overrightarrow{k_0} \right)$.

On a donc:
$$\begin{cases} x_C(t) = (R + \ell)\cos\theta - r\cos\varphi\sin\theta \\ y_C(t) = (R + \ell)\sin\theta + r\cos\varphi\cos\theta & \text{dans le repère } (A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}). \end{cases}$$

Mouvement RR 3D ★

B2-13

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_0} = \frac{d}{dt} \left[\overrightarrow{Ri_1} + \ell \overrightarrow{i_2} + r \overrightarrow{j_2} \right]_{\Re_0}.$$

Calculons:

$$\blacktriangleright \ \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \overrightarrow{\Omega\left(1/0\right)} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}.$$

$$\bullet \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} = \dot{\theta} \overrightarrow{j_1} \left(\overrightarrow{i_1} = \overrightarrow{i_2} \right).$$

$$\bullet \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \Omega(2/0) \wedge \overrightarrow{j_2} = \left(\dot{\theta} \overrightarrow{k_0} + \dot{\phi} \overrightarrow{i_1} \right) \wedge \overrightarrow{j_2} = \dot{\theta} \overrightarrow{k_1} \wedge \overrightarrow{j_2} + \dot{\phi} \overrightarrow{i_1} \wedge \overrightarrow{j_2} = -\dot{\theta} \cos \varphi \overrightarrow{i_1} + \dot{\varphi} \overrightarrow{k_2}.$$

On a donc, $\overrightarrow{V(C,2/0)} = (R+\ell) \dot{\theta} \overrightarrow{j_1} - r \dot{\theta} \cos \varphi \overrightarrow{i_1} + r \dot{\varphi} \overrightarrow{k_2}$.

Question 2 Déterminer $\overrightarrow{V(C,2/0)}$ par composition. On a $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$.

On a
$$\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$$
.

▶
$$\overrightarrow{V(C,2/1)}$$
: on passe par B car B est le centre de la pivot entre 2 et 1 et que $\overrightarrow{V(B,2/1)} = \overrightarrow{0}$. $\overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = \left(-\ell \overrightarrow{i_2} - r \overrightarrow{j_2}\right) \wedge \dot{\varphi} \overrightarrow{i_1}$

$$= -\ell \overrightarrow{i_2} \wedge \dot{\varphi} \overrightarrow{i_1} - r \overrightarrow{j_2} \wedge \dot{\varphi} \overrightarrow{i_1}.$$

$$= r \dot{\varphi} \overrightarrow{k_2}.$$

►
$$\overrightarrow{V(C,1/0)}$$
: on passe par A car A est le centre de la pivot entre 1 et 0 et que $\overrightarrow{V(A,1/0)} = \overrightarrow{0}$ est nul. $\overrightarrow{V(C,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega(1/0)}$ $= (-r\overrightarrow{j_2} - \ell\overrightarrow{i_2} - R\overrightarrow{i_1}) \wedge \overrightarrow{\theta}\overrightarrow{k_1}$ $= -r\overrightarrow{\theta}\cos\varphi\overrightarrow{i_1} + \ell\overrightarrow{\theta}\overrightarrow{j_1} + R\overrightarrow{\theta}\overrightarrow{j_1}$

Au final, $\overrightarrow{V(C,2/0)} = r\dot{\varphi}\overrightarrow{k_2} - r\dot{\theta}\cos\varphi\overrightarrow{i_1} + \ell\dot{\theta}\overrightarrow{j_1} + R\dot{\theta}\overrightarrow{j_1}$

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \overrightarrow{k_1} + \dot{\varphi} \overrightarrow{i_1} \\ (R+\ell) \dot{\theta} \overrightarrow{j_1} - r \dot{\theta} \cos \varphi \overrightarrow{i_1} + r \dot{\varphi} \overrightarrow{k_2} \end{array} \right\}_C$$

Question 4 Déterminer $\overrightarrow{\Gamma(C,2/0)}$

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left[(R+\ell) \, \dot{\theta} \, \overrightarrow{j_1} - r \dot{\theta} \cos \varphi \, \overrightarrow{i_1} + r \dot{\varphi} \, \overrightarrow{k_2} \right]_{\mathcal{R}_0}$$

Calculons:

$$\blacktriangleright \ \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}.$$

$$\stackrel{\text{d}}{\bullet} \left[\overrightarrow{j_1} \right]_{\Re_0} = \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \overrightarrow{\theta} \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\overrightarrow{\theta} \overrightarrow{i_1}.$$

$$\frac{d}{dt} \begin{bmatrix} \overrightarrow{k_2} \end{bmatrix}_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{k_2} = (\overrightarrow{\theta} \overrightarrow{k_0} + \overrightarrow{\phi} \overrightarrow{i_1}) \wedge \overrightarrow{k_2} = \overrightarrow{\theta} \overrightarrow{k_1} \wedge \overrightarrow{k_2} + \overrightarrow{\phi} \overrightarrow{i_2} \wedge \overrightarrow{k_2} = \overrightarrow{\theta} \sin \varphi \overrightarrow{i_1} - \overrightarrow{\phi} \overrightarrow{j_2}.$$

$$\overrightarrow{\Gamma(C,2/0)} = (R+\ell) \, \overrightarrow{\theta} \, \overrightarrow{j_1} - (R+\ell) \, \dot{\theta}^2 \, \overrightarrow{i_1} - r \ddot{\theta} \cos \varphi \, \overrightarrow{i_1} + r \dot{\theta} \dot{\varphi} \sin \varphi \, \overrightarrow{i_1} - r \dot{\theta}^2 \cos \varphi \, \overrightarrow{j_1} + r \ddot{\varphi} \overrightarrow{k_2} + r \dot{\varphi} \left(\dot{\theta} \sin \varphi \, \overrightarrow{i_1} - \dot{\varphi} \, \overrightarrow{j_2} \right).$$

Mouvement RR 3D ★★

Question 1 Donner l'ensemble des positions accessibles par le point C. Le point C peut décrire un tore de grand rayon R et de petit rayon L (surface torique uniquement, pas l'intérieur du tore).

Question 2 Donner l'équation de mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

On a
$$\overrightarrow{AC} = H\overrightarrow{j_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2} = H\overrightarrow{j_0} + R\cos\theta\overrightarrow{i_0} - R\sin\theta\overrightarrow{k_0} + L\cos\varphi\overrightarrow{i_1} + L\sin\varphi\overrightarrow{j_1}$$

= $H\overrightarrow{j_0} + R\cos\theta\overrightarrow{i_0} - R\sin\theta\overrightarrow{k_0} + L\cos\varphi\left(\cos\theta\overrightarrow{i_0} - \sin\theta\overrightarrow{k_0}\right) + L\sin\varphi\overrightarrow{j_0}$.

On a donc :
$$\begin{cases} x_C(t) = R\cos\theta + L\cos\varphi\cos\theta \\ y_C(t) = H + L\sin\varphi \\ z_C(t) = -R\sin\theta - L\cos\varphi\sin\theta \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

Mouvement RR 3D ★

Question 1 Déterminer V(C, 2/0) par dérivation vectorielle. $V(C, 2/0) = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_0}$ = $\frac{d}{dt} \left[\overrightarrow{Hj_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2} \right]_{\Re_0}$.

Calculons:

C2-05

B2-13

B2-13

$$\bullet \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \overrightarrow{i_1} \end{bmatrix}_{\mathcal{R}_0} = \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_1} = -\overrightarrow{\theta} \overrightarrow{k_1};$$

$$\bullet \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \overrightarrow{i_2} \end{bmatrix}_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{i_2} = (\overrightarrow{\theta} \overrightarrow{j_1} + \overrightarrow{\phi} \overrightarrow{k_2}) \wedge \overrightarrow{i_2} = \overrightarrow{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_2} + \overrightarrow{\phi} \overrightarrow{k_2} \wedge \overrightarrow{i_2} = -\overrightarrow{\theta} \cos \overrightarrow{\phi} \overrightarrow{k_1} + \overrightarrow{\phi} \overrightarrow{j_2}.$$

On a donc $\overrightarrow{V(C,2/0)} = -R\dot{\theta}\overrightarrow{k_1} + L\left(-\dot{\theta}\cos\varphi\overrightarrow{k_1} + \dot{\varphi}\overrightarrow{j_2}\right)$.

Question 2 Déterminer $\overline{V(C,2/0)}$ par composition du vecteur vitesse. $\overline{V(C,2/0)}$ = $\overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$.

Pour calculer
$$\overrightarrow{V(C,2/1)}$$
, passons par \overrightarrow{B} car $\overrightarrow{V(B,2/1)} = \overrightarrow{0} : \overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = -L\overrightarrow{i_2} \wedge \overrightarrow{\phi}\overrightarrow{k_2} = L\overrightarrow{\phi}\overrightarrow{j_2}$.

Pour calculer
$$\overrightarrow{V}(C, 1/0)$$
, passons par A car $\overrightarrow{V}(A, 1/0) = \overrightarrow{0} : \overrightarrow{V}(C, 1/0) = \overrightarrow{V}(A, 1/0) + \overrightarrow{CA} \wedge \overrightarrow{\Omega}(1/0) = \overrightarrow{CA} \wedge \overrightarrow{\Omega}(1/0) = -(H\overrightarrow{j_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2}) \wedge \overrightarrow{\theta}\overrightarrow{j_1} = -\overrightarrow{\theta}(R\overrightarrow{i_1} \wedge \overrightarrow{j_1} + L\overrightarrow{i_2} \wedge \overrightarrow{j_1}) = -\overrightarrow{\theta}(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}).$

Au final, $\overrightarrow{V(C,2/0)} = L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right)$.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\varphi}\overrightarrow{k_2} + \dot{\theta}\overrightarrow{j_0} \\ L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) \end{array} \right\}.$$

Question 4 Déterminer $\Gamma(C, 2/0)$.

$$\frac{d}{\Gamma(C,2/0)} = \frac{d}{dt} \left[V(C,2/0) \right]_{\Re 0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left[L \dot{\varphi} \overrightarrow{j_2} - \dot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right) \right]_{\Re \Omega}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\Re_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\overrightarrow{\theta} \overrightarrow{j_1} + \overrightarrow{\theta} \overrightarrow{k_1} \right) \wedge \overrightarrow{j_2} = \overrightarrow{\theta} \overrightarrow{j_1} \wedge \overrightarrow{j_2} + \overrightarrow{\theta} \overrightarrow{k_1} \wedge \overrightarrow{j_2} = \overrightarrow{\theta} \sin \varphi \overrightarrow{k_1} - \overrightarrow{k_1} + \overrightarrow{k_1} \wedge \overrightarrow{k_2} = \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} = \overrightarrow{k_1} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} = \overrightarrow{k_1} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} = \overrightarrow{k_1} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_1} \wedge \overrightarrow{k_2} \wedge \overrightarrow{k_2}$$

$$\overrightarrow{\Gamma(C,2/0)} = L \overrightarrow{\phi} \overrightarrow{j_2} + L \dot{\phi} \left(\dot{\theta} \sin \varphi \overrightarrow{k_1} - \dot{\theta} \overrightarrow{i_2} \right) - \ddot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right) - \dot{\theta} \left(R \dot{\theta} \overrightarrow{i_1} + L \cos \varphi \dot{\theta} \overrightarrow{i_1} - L \dot{\phi} \sin \varphi \overrightarrow{k_1} \right).$$

Mouvement RT - RSG ★★

B2-13

Question 1 Déterminer V(B, 2/0) $\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}$

D'une part,
$$\overrightarrow{V(B,2/1)} = \overrightarrow{\lambda} \overrightarrow{i_1}$$
.

D'autre part, en utilisant le roulement sans glissement en I, $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \land \overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{V($ $\overrightarrow{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \dot{\theta}\overrightarrow{k_0} = -\dot{\theta}\left(\lambda(t)\overrightarrow{i_1} \wedge \overrightarrow{k_0} + R\overrightarrow{j_0} \wedge \overrightarrow{k_0}\right) = \dot{\theta}\left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right).$

Au final,
$$\overrightarrow{V(B,2/0)} = \overrightarrow{\lambda} \overrightarrow{i_1} + \overrightarrow{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$$
.

B2-13

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \end{array} \right\}_{B}.$$

Question 3 Déterminer
$$\overrightarrow{\Gamma(B,2/0)}$$
.

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right)$$

Mouvement RR - RSG ★★

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$. En utilisant la décomposition du vecteur vitesse : $\overrightarrow{V}(B,2/0) = \overrightarrow{V}(B,2/1) + \overrightarrow{V}(B,1/0).$

- ► Calcul de $\overrightarrow{V(B,2/1)}$: $\overrightarrow{V(B,2/1)}$ = $\overrightarrow{V(A,2/1)}$ + $\overrightarrow{BA} \land \overrightarrow{\Omega(2/1)}$. 2 et 1 étant en pivot d'axe $(A, \overrightarrow{k_0})$, on a $\overrightarrow{V(B,2/1)}$ = $\overrightarrow{0}$ $\overrightarrow{Li_2} \land \dot{\varphi}(t) \overrightarrow{k_0}$ = $\overrightarrow{L\dot{\varphi}(t)} \overrightarrow{j_2}$.
- ► Calcul de $\overrightarrow{V(B,1/0)}$: $\overrightarrow{V(B,1/0)} = \overrightarrow{V(I,1/0)} + \overrightarrow{BI} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} L\overrightarrow{i_2} \wedge \dot{\varphi}(t)\overrightarrow{k_0}$. En utilisant l'hypothèse de roulement sans glissement : $\overrightarrow{V}(B, 1/0) = \left(-L\overrightarrow{i_2} - R\overrightarrow{j_0}\right) \wedge$ $\dot{\theta}(t)\overrightarrow{k_0} = \dot{\theta}(t)\left(L\overrightarrow{j_2} - R\overrightarrow{i_0}\right)$

Au final, $\overrightarrow{V(B,2/0)} = L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\left(L\overrightarrow{j_2} - R\overrightarrow{i_0}\right)$

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B. $\{\mathcal{V}(2/0)\}$ = $\left\{ \begin{array}{l} \overrightarrow{\Omega\left(2/0\right)} = \left(\dot{\varphi}(t) + \dot{\theta}(t)\right)\overrightarrow{k_0} \\ L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\left(L\overrightarrow{j_2} - R\overrightarrow{i_0}\right) \end{array} \right\}_{R} .$

Question 3 Déterminer $\Gamma(B, 2/0)$.

$$\begin{split} &\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \left[L \dot{\varphi}(t) \overrightarrow{j_2} \right]_{\mathcal{R}_0} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\theta}(t) \left(L \overrightarrow{j_2} - R \overrightarrow{i_0} \right) \right]_{\mathcal{R}_0} \\ &= L \ddot{\varphi}(t) \overrightarrow{j_2} - L \dot{\varphi}(t) \left(\dot{\varphi}(t) + \dot{\theta}(t) \right) \overrightarrow{i_2} + \ddot{\theta}(t) \left(L \overrightarrow{j_2} - R \overrightarrow{i_0} \right) - L \dot{\theta}(t) \left(\dot{\varphi}(t) + \dot{\theta}(t) \right) \overrightarrow{i_2}. \end{split}$$