

Sec 2.4 Reading

Def 2.4.1: Invertible Functions

A function T from X to Y is called invertible if the equation T(x) = y has a unique solution x in X for each y in Y.

In this case, the inverse T-1 from K to X is defined by

 $T^{-1}(y) = (the unique x in X s.t T(x) = y)$

To put it differently, the equation

 $x = T^{-1}(y)$ means that y = T(x)

Note that

 $T^{-1}(T(x)) = x$ and $T(T^{-1}(y)) = y$

for all x in X and for all y in Y.

Conversely, if L is a function from Y to X s.t.

L(T(x)) = x and T(L(y)) = y

for all x in X and for all y in Y, then T is invertible and T = L.

If a function T is invertible, then so is T^{-1} and $(T^{-1})^{-1} = T$.

Def 2.4.2 Invertible Matrices

A square matrix A is said to be invertible if the L.T. $\vec{y} = T(\vec{x})$ = $A\vec{x}$ is invertible. In this case, the matrix of T^{-1} is denoted by A^{-1} . If the L.T. $\vec{y} = T(\vec{x}) = A\vec{x}$ is invertible, then its inverse is $\vec{x} = T^{-1}(\vec{y}) = A^{-1}\vec{y}$.

Theorem 2.4.3: Invertibility

An nxn matrix A is invertible iff

rref(A)= In OR rank(A)= n

Theorem 2.4.4: Invertibility and Linear systems

Let A be an nxn matrix.

- (a) Consider a vector \vec{b} in \mathbb{R}^n . If A is invertible, then the system $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$. If A is noninvertible, then the system $A\vec{x} = \vec{b}$ has intinitely many solutions or none.
- (b) Consider the special case when $\vec{b} = \vec{0}$. The system $A\vec{x} = \vec{0}$ has $\vec{x} = \vec{0}$ as a solution. If A is invertible, then this is the only solution. If A is noninvertible, then the system $A\vec{x} = \vec{0}$ has infinitely many solutions.

Theorem 2.4.5: Finding the inverse of a matrix

To find the inverse of an nxn matrix A, form the nx(2n) matrix [A!In] and compute ref[A!In].

- invertible, and A-1 = B.
- half fails to be In), then A is not invertible. Note that the left half of rref[A:In] is rref(A).

Theorem 2.4.6: Multiplying with the Inverse

For an invertible nxn matrix A,

 $A^{-1}A = I_n$ and $AA^{-1} = I_n$

Theorem 2.4.7: The Inverse of a product of matrices

If A and B are invertible nxn matrices, then BA is invertible as well, and

$$(BA)^{-1} = A^{-1} B^{-1}$$

Justification:

Verification

$$A^{-1}B^{-1}\dot{g} = A^{-1}A\dot{x}$$

= $I_n\dot{x}$
= \dot{x}

Theorem 24.8 A criterion for invertibility

Let A and B be two nxn matrices s.t.

Then

- (a) A and B are both invertible,
- (b) A-1 = B and B-1 = A, and
- (c) AB = In

Proof:

To demonstrate that A is invertible, it suffices to show that $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$.

$$A\vec{x} = \vec{0} \Rightarrow BA\vec{x} = B\vec{0} = \vec{0} \Rightarrow \vec{x} = I_n\vec{x} = BA\vec{x} = \vec{0}$$
 Therefore A is invertible $BA = I_n \Rightarrow BAA^{-1} = I_nA^{-1} \Rightarrow B = A^{-1} \Rightarrow B^{-1} = (A^{-1})^{-1} = A$

Ex 2

Suppose A, B, C are three nxn matrices s.t. ABC = In. Show that B is invertible, and express B-1 in terms of A and C.

By thm 2.4.8, B is invertible.

E_x 3

For an arbitrary 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, compute the product $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

When is A invertible? What is A-1?

$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix} = (ad-bc) I_2$$

If ad-bc +0, we can write:

$$\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = I_2$$

By thm 2.4.8, A is invertible.

Then:

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Theorem 2.4.9: Inverse and determinant of a 2×2 matrix

(a) The 2x2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible iff ad-bc to

(b) If A is invertible, then

$$\begin{bmatrix} a & b \\ c & a \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Theorem 2.4.10: Greometrical Interpretation of the determinant of a 2x2 matrix If $A = [\vec{v} \ \vec{w}]$ is a 2x2 matrix with nonzero columns \vec{v} and \vec{w} , then

det A = det[さぬ] = ||さ|| sinの || 立||,

where θ is the oriented angle from \vec{v} to \vec{w} , with $-\pi < \theta \le \pi$. It follows that

- by \vec{v} and \vec{w} .
- \rightarrow det A = 0 if \vec{v} and \vec{w} are parallel, meaning that $\theta = 0$ or $\theta = \pi$
- \rightarrow det A > 0 if $D < O < \pi$, and
- → det A < 0 if -π < 0 < 0

