Execution Offloading and Cyber Foraging

- Motivation: mobile devices have limited resources (CPU, memory, battery) and may not be able to execute all applications locally;
 - How should we **partition** the application across mobile devices and fixed infrastructure?
- Static partitioning: fails to adapt to dynamic changes in the environment, like network and connectivity, cloud availability, and device capabilities;
- Cyber foraging: partition, migration and replication of application components across mobile devices and fixed infrastructure based on context (application state and environment);
 - Users are given the illusion that the application is running locally.

Benefits of Partitioning

- Better **performance** there is a considerable **gap** between mobile and infrastructure processing power;
 - Compute-intensive tasks can be offloaded to the cloud;
 - Other factors like memory, storage, ability to parallelize computation, and network bandwidth should also be considered.
- Less **battery** used;
- Data fidelity a mobile device operating alone may choose to reduce application fidelity to achieve better performance and battery life.

Costs of using Remote Infrastructure

• Offloading may decrease **performance** if the network is slow or unreliable;

- Unless the computation is asynchronous and not on the critical path, performance is only improved if the time saved by offloading exceeds the time spent on communication and computation;
- When the latency is high, bandwidth is low, or the amount of data shipped is large, offloading may not be beneficial.

Candidate Partitions

- The number of possible partitions is very large, since partitioning can be done at different **granularities** and **levels of abstraction**;
- Very fine-grained partitions may lead to **high communication over-head**;
- Cyber foraging systems enumerate a small number of possible partitions candidate partitions and choose the best one based on the current context.
- How to enumerate candidate partitions:
 - Programmer effort: ask a programmer the ways of partitioning the app;
 - * Number of candidate partitions is **small** and the **granularity** is large;
 - * E.g., Chroma, Spectra;
 - No Programmer effort: automatically generate candidate partitions taking advantage of modern language runtimes static analysis, profiling, and dynamic analysis;
 - * E.g., CloneCloud.
 - Method granularity: hybrid of the two above;
 - * MAUI considers candidate partitions specified at method granularity, specified by the programmer this requires that the developer performs some of the checks that would be done automatically in CloneCloud;
 - Component granularity: if the app has already been divided into components, the system can consider these components as candidate partitions;

* Odessa targets apps that have already been modified to use the Sprout distributed stream processing system.

Partitioning Metrics

- The goal os partitioning is to maximize one or more metrics;
- Policies for relating metrics without user help:
 - Focus on one metric that must respect some constraints;
 - Execute only if all metrics indicate that it is a good idea;
 - Define conversion factors between metrics to allow them to be compared;
- We can also define policies with user help: ask the user to choose the
 best partition ask for a target battery lifetime, or a target performance
 level, etc;
 - Spectra;
 - Aura Off-line profiling: it allows the user to express thresholds for satisfaction of metrics;
- There is a **trade-off** in soliciting user help: it can **improve quality of partition** but it can also **distract the user**.

Resource Measurement and Estimation

 The resources that cyber foraging systems most often use for supplyand-demand estimation are CPU, memory, network bandwidth, and battery;

CPU

- Spectra and Chroma measure the demand usage of CPU;
- First challenge is to measure the CPU usage on both the mobile device and the remote server(s);

- Second challenge: the distributed nature of the system;
- Spectra uses slightly stale estimates of remote state;
 - It runs resource monitors on the mobile device and the remote server;
 - The remote server periodically and asynchronously sends resource usage to the mobile device;
 - To avoid round-trip latency, the mobile device uses slightly stale estimates of remote stat - it uses the most recent estimate it has received;

Network

- Cyber foraging systems measure **network supply** (bandwidth, latency) using a variety of techniques:
 - Active measurements inject traffic into the network to measure its properties provides more recent measurements;
 - Passive measurements observe the network traffic, not inject traffic - may become stale;
 - Hybrid approaches;

- **Spectra** uses **passive** its network monitor predicts bandwidth and latency;
 - Small RPCs are used to predict latency and large RPCs are used to predict throughput;
- MAUI uses both active and passive measurements;
 - Active measurements are used to calibrate the passive measurements:
 - Sends 10 KB of data to the remote server and measuring the throughput - 10KB is chosen because it is the size of the average RPC in MAUI.
 - Uses passive to refine the active measurements active measurements are only employed if no transfers have provided recent passive estimates.

Battery

- The **supply of battery** energy of the **simplest** resource values to measure and estimate most devices have **simple APIs** to query the amount of charge remaining;
- The **demand for battery** energy is **harder** to measure and estimate the amount of battery energy consumed by a particular computation;
 - Systems use one of two methods:
 - * **Direct measurement** (e.g., Spectra, Chroma) measure the battery before and after a computation, and calculate the difference;
 - · Drawbacks:
 - · if **more than one activity** is running Spectra discards all measurements in which operations are running in parallel:
 - · many mobile computers do not provide fine-grained battery measurements 1% granularity is common, but it is not fine-grained enough for many applications;
 - * Model-based approach executes a series of micro benchmarks on the mobile device in a lab, while an external power measurement device measures;
 - · Models specific to particular brand and model of device;