(1) Common Initials.

- (a) How many people need to be members of a group before we can be certain that two people have the same first and last initials in English?
 - Product rule gives us the number of pigeonholes, which is 26², and the pigeonhole principle gives us $26^2 + 1$ people.
- (b) What if we require that they have the same first, middle and last initials? Some people may have no middle name, in which case we count "Blank" as a permitted middle initial.

Product rule again gives us the number of pigeonholes, which is $26^2 \times 27$, and the pigeonhole principle gives us $26^2 \times 27 + 1$ people.

- (2) **Types of Fruit.** Suppose a bag contains unlimited numbers of 1) apples, 2) bananas, 3) oranges, and 4) strawberries.
 - (a) How many fruit must you draw at random from the bag before you know that you have 4 fruit of the same type?
 - Let the 4 types of fruit be pigeonholes, and the N selections be pigeons. The Generalized Pigeonhole Principle says that we can only guarantee $\lceil N/4 \rceil$ in a given pigeonhole. So for $\lceil N/4 \rceil \geq 4$, we need $N \geq 13$.
 - (b) Suppose you drew 5 apples, 2 bananas, 4 oranges, and 2 strawberries. In how many different orders could you have picked those fruit?
 - Use the formula for permutations with repeated letters. There are $13!/(5! \cdot 2! \cdot 4! \cdot 2!)$.
 - (c) Suppose I want 4 of the same type OR 4 of all different types (i.e. at least one of each type) How many fruit do I need to pick?
 - Since having one of each type achieves the goal, we assume that only 3 pigeonholes are used. By the generalized Pigeonhole Principle we need $N \geq 10$ to have $\lceil N/3 \rceil \geq 4$. So the answer is 10.
- (3) Euler's phi function. Recall that $\varphi(n) =$ the number of integers m such that $1 \le m \le n$ and the greatest common divisor of m and n is 1. The strategy here is to use inclusion and exclusion. If p_1, \ldots, p_k are the prime factors of n, then $\varphi(n) = |(A_{p_1} \cap \cdots \cap A_{p_k})^C|$, where A_p is defined as the set of multiples of p less than or equal to n.
 - (a) $\varphi(120) | (A_2 \cap A_3 \cap A_5)^C | = 120 \frac{120}{2} \frac{120}{3} \frac{120}{5} + \frac{120}{6} + \frac{120}{10} + \frac{120}{15} \frac{120}{30} = 32.$ (b) $\varphi(p)$ for p prime. Every number k < p has $\gcd(k, p) = 1$ so $\varphi(p) = p 1$.

 - (c) $\varphi(2^n)$ for n an integer. p=2 is the only prime factor, so we have $\varphi(2^n)=2^n-\frac{2^n}{2}=2^{n-1}$.
 - (d) $\varphi(10^n)$ for n an integer. $|(A_2 \cap A_5)^C| = 10^n \frac{10^n}{2} \frac{10^n}{5} + \frac{10^n}{10} = 10^{n-1}(10 2 5 + 1) = 4 \cdot 10^n$.