What learning algorithm is incontext learning? Investigations with linear models

ICLR 2023

Ekin Akyürek, Dale Shuurmans, Jacob Andreas, Tengyu Ma, Denny Zhuo

Stanford CS/MS&E 331

Discussions: No laptops, tablets, phones

- Strict rule I feel very passionately about
- No PSETs; active discussion essential for learning
- Demoralizing when student presenters face inattentive class
 - You'll thank me when you're presenting!
- Rule applies to auditors and non-auditors
- Printouts of the paper will be provided during my preview
 - Recycled (and recyclable) paper; main body only
- Please bring printout to the next class for paper discussion

Motivation

- In-context learning (ICL): transformer trained to produce map
 - Input: sequences $[(x_1, f(x_1)), (x_2, f(x_2)), ..., x_n]$
 - Output: prediction of $f(x_n)$
- This paper: algorithmic reasoning as a lens to understand ICL
- Algorithmic task: regression
 - $\mathbf{x} \in \mathbb{R}^d$, $f(\mathbf{x}) \in \mathbb{R}$
- ICL isn't learning a regressor; rather a regression algorithm
 - ICL doesn't explicitly specify inner learning procedure
 - Procedure exists only implicitly through transformer's parameters

Motivation

Goal: move toward algorithmic understanding of ICL

Motivating questions:

- What algorithms are implementable by transformers?
- Can we understand what algorithm it's using?

Contributions

Theory: Transformers can implement

- Gradient descent updates
- Closed-form ridge regression updates

Behavior: ICL matches:

- OLS on noiseless data
- Ridge regression under noisy data
 - Minimum Bayes risk predictor

Mechanism: Hidden states encode meaningful quantities

Encoding is non-linear, revealed by probe models

ICL training objective

Learning setup (linear regression):

- $\mathcal{F} = \{ f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} \mid \mathbf{w} \in \mathbb{R}^d \}$
- Loss function $\mathcal{L}(y, y') = (y y')^2$
- Distribution p(f) over \mathcal{F}
- Distribution p(x) over \mathbb{R}^d

Transformer $T_{\boldsymbol{\theta}}$ with trainable parameters $\boldsymbol{\theta}$

• Train T_{θ} to be an **in-context learner**:

$$\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\substack{x_1, \dots, x_n \sim p(x) \\ f \sim p(f)}} \left[\sum_{i=1}^n \mathcal{L}(f(x_i), T_{\theta}([x_1, f(x_1), x_2, f(x_2), \dots, x_i])) \right]$$

Linear regression: Refresher

Inputs
$$X = [x_1, x_2, ..., x_n]$$
 and $y = [y_1, ..., y_n]$

Regularized linear regression objective:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{\infty} \mathcal{L}(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_i, y_i) + \lambda \|\boldsymbol{w}\|_2^2$$

 $\lambda = 0$: Ordinary least-squares regression (OLS)

 $\lambda > 0$: Ridge regression

Outline

- 1. Theory
- 2. Empirics

Implementation primitives

- Need simple building blocks for algorithm implementation
- Four primitives: mov, mul, div, aff
 - mov: copy values between hidden state positions
 - mul: matrix multiplication from hidden state entries
 - div: entry-wise division of hidden state entries
 - aff: affine transform combining hidden state subsets

• Lemma: each primitive implementable by a transformer layer

Gradient descent in a transformer

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \mathcal{L}(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_{i}, y_{i}) + \lambda \|\boldsymbol{w}\|_{2}^{2}$$

One-step of gradient descent:

$$\mathbf{w}' = \mathbf{w} - 2\alpha(\mathbf{x}_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i \mathbf{x}_i + \lambda \mathbf{w})$$

Theorem: transformer can implement this with

- Constant number of layers
- O(d) hidden space (where $x, w \in \mathbb{R}^d$)

Closed-form regression by a transformer

- OLS solution $\mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y}$; for simplicity, set $\lambda = 0$
- Iterative algorithm (suitable for a layer of a transformer):
 - 1. Define $P_0 = \mathbf{0} \in \mathbb{R}^{d \times d}$; $\mathbf{q}_0 = \mathbf{0} \in \mathbb{R}^d$
 - 2. For i = 1, ..., n:
 - i. Compute $P_i = P_{i-1} + x_i x_i^{\mathsf{T}}$ and its inverse

$$P_i^{-1} = \left(P_{i-1} + \boldsymbol{x}_i \boldsymbol{x}_i^{\mathsf{T}}\right)^{-1} = P_{i-1}^{-1} - \frac{1}{1 + \boldsymbol{x}_i P_{i-1}^{-1} \boldsymbol{x}_i} \left(P_{i-1}^{-1} \boldsymbol{x}_i\right) \left(P_{i-1}^{-1} \boldsymbol{x}_i\right)^{\mathsf{T}}$$

Main point: storing P_{i-1}^{-1} in the hidden state, update can be calculated with primitives mov, mul, div, aff

- ii. Compute $q_i = q_{i-1} + y_i x_i$
- Return $\boldsymbol{w}^* = P_n^{-1} \boldsymbol{q}_n$

Closed-form regression by a transformer

Theorem: transformer can compute P_i , P_i^{-1} , q_i with

- Constant number of layers
- $O(d^2)$ hidden space (where $x, w \in \mathbb{R}^d$)

Outline

- 1. Theory
- 2. Empirics

What computation does ICL perform?

Behavioral metrics to quantify the extent two algorithms agree:

- Given learning algorithm A:
 - Input dataset $D = [x_1, y_1, ..., x_n, y_n]$, output prediction $\mathcal{A}(D)(x) \in \mathbb{R}$
- Squared prediction difference:

$$SPD(\mathcal{A}_1, \mathcal{A}_2) = \mathbb{E}_{D} \left[\left(\mathcal{A}_1(D)(\mathbf{x}') - \mathcal{A}_2(D)(\mathbf{x}') \right)^2 \right]$$

$$\mathbf{x}' \sim p(\mathbf{x})$$

What computation does ICL perform?

Behavioral metrics to quantify the extent two algorithms agree:

- Given learning algorithm A:
 - Input dataset $D = [x_1, y_1, ..., x_n, y_n]$, output prediction $\mathcal{A}(D)(x) \in \mathbb{R}$
- If T_{θ} learning a linear function, what are the function's weights?
- Sample a set $D' = \{x'_1, ..., x'_m\} \sim p(x)$ of test points
- "Implicit weights" of \mathcal{A} : $\hat{\boldsymbol{w}}_{\mathcal{A}} = \underset{\hat{\boldsymbol{w}}}{\operatorname{argmin}} \sum_{i=1}^{m} (\hat{\boldsymbol{w}}^{\mathsf{T}} \boldsymbol{x}_{i}' \mathcal{A}(S)(\boldsymbol{x}_{i}'))^{2}$
- ImplicitLinearWeightsDifference $(\mathcal{A}_1, \mathcal{A}_2) = \mathbb{E}\left[\left\|\widehat{\boldsymbol{w}}_{\mathcal{A}_1} \widehat{\boldsymbol{w}}_{\mathcal{A}_2}\right\|_2^2\right]$

Experimental setup: Noiseless setting

- Each in-context training dataset consists of 40 (x, y) pairs
- $p(x) = \mathcal{N}(\mathbf{0}, I), p(w) = \mathcal{N}(\mathbf{0}, I)$ over \mathbb{R}^8

ICL matches OLS on noiseless data

\mathcal{A}_1	\mathcal{A}_2	
Ordinary least squares (OLS)	Transformer	
Ridge regression with regularization parameter $\lambda = 0.1$	Transformer	
Ridge regression with $\lambda = 0.5$	Transformer	
1 step of GD with learning rate $\alpha = 0.01$	Transformer	
1 pass of SGD with $\alpha = 0.01$	Transformer	
1 step of GD with $\alpha = 0.02$	Transformer	
1 pass of SGD with $\alpha = 0.03$	Transformer	
3-nearest neighbors (weighted)	Transformer	
3-nearest neighbors (unweighted)	Transformer	
 OLS	у	
 Ridge regression with $\lambda = 0.1$	у	
 Transformer	у	

ICL matches OLS on noiseless data

	$\overline{\mathcal{A}_1}$	\mathcal{A}_2	
	Ordinary least squares (OLS)	Transformer	
_	Ridge regression with regularization parameter $\lambda = 0.1$	Transformer	
	1 step of GD with learning rate α = 0.01	Transformer	
	1 pass of SGD with $\alpha = 0.01$	Transformer	
	1 step of GD with $\alpha = 0.02$	Transformer	
	1 pass of SGD with $\alpha = 0.03$	Transformer	

Experimental setup: Noisy setting

- Each in-context training dataset consists of 40 pairs $[(x_1, \mathbf{w}^\mathsf{T} x_1 + \epsilon_1), (x_2, \mathbf{w}^\mathsf{T} x_2 + \epsilon_2), \dots]$
- $p(x) = \mathcal{N}(\mathbf{0}, I)$ over \mathbb{R}^8
- $p(\epsilon) = \mathcal{N}(\mathbf{0}, \sigma^2 I)$
- $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \tau^2 I)$

Ridge regression with $\lambda = \frac{\sigma^2}{\tau^2}$ returns min Bayes risk predictor

Squared prediction difference

σ^2/τ^2	0	1/16	1/9	1/4	4/9
(OLS , Transformer)	1.25E-05	1.34E-04	3.96E-04	1.51E-03	4.13E-03
(Ridge(1/16) , Transformer)	1.1E-04	3.29E-05	1.12E-04	8.24E-04	2.92E-03
(Ridge(1/9) , Transformer)	3.49E-04	9.65E-05	3.86E-05	4.5E-04	2.15E-03
(Ridge(1/4) , Transformer)	1.69E-03	8.64E-04	4.39E-04	3.3E-05	6.81E-04
(Ridge(4/9) , Transformer)	4.83E-03	3.09E-03	2.21E-03	7.52E-04	6.1E-05

Noisy setting: ICL matches minimum Bayes risk predictor

Does T_{θ} encode meaningful quantities?

- What are quantities we'd expect a regression alg to compute?
 - Examples: $\mathbf{w}_{OLS}, X^{\mathsf{T}}\mathbf{y}$, where

$$X = \begin{pmatrix} \mathbf{I} & & \mathbf{I} \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{I} & & \mathbf{I} \end{pmatrix} \text{ and } y = \begin{pmatrix} \mathbf{w}^\mathsf{T} \mathbf{x}_1 \\ \vdots \\ \mathbf{w}^\mathsf{T} \mathbf{x}_n \end{pmatrix}$$

- We'll call these "probes" $\boldsymbol{v} \in \mathbb{R}^k$ [Alain, Bengio, '17]
- Let $H^{(\ell)}$ be the transformer's hidden states at layer ℓ
- Question: is \boldsymbol{v} "encoded" in $H^{(\ell)}$?
 - i.e., is it some simple function of $H^{(\ell)}$?

Does T_{θ} encode meaningful quantities?

Probing model: $\hat{\boldsymbol{v}} = f(\boldsymbol{s}^{\mathsf{T}}H^{(\ell)})$ where:

- s is a learned weight vector
- f is a learned function. Two experiments:
 - f is linear
 - f is a 2-layer MLP
- Train to minimize loss $\|oldsymbol{v}-\widehat{oldsymbol{v}}\|_2^2$
- ullet Train a different $oldsymbol{s}$ and f for each sequence length and layer

Probing results

Phase transitions: around layers 7 and 12

Probes encoded non-linearly

Contributions

- Goal: move toward an algorithmic understanding of ICL
- Theory: Transformers can implement
 - Gradient descent updates
 - Closed-form ridge regression updates
- Behavior: ICL matches:
 - OLS on noiseless data
 - Minimum Bayes risk predictor under noisy data
- Mechanism: Hidden states encode meaningful quantities
 - Encoding is non-linear, revealed by probe models