INTELLIGENT MOVIE RECOMMENDATIONS WITH NEURAL NETWORKS AND NLP

Sub-title: Enhancing Personalized Movie Suggestions

PRESENTATION BY :DSF-PT-07:GROUP 12

Problem Statement

The Challenge:

- Overwhelming number of movies leads to choice paralysis.
- Traditional recommendation systems fall short in personalization.

Project Goal:

• Develop a recommendation system that delivers highly personalized movie suggestions using advanced machine learning techniques.

Overview

Objective:

- •Leverage neural networks for collaborative filtering and Natural Language Processing (NLP) for content analysis.
- •Address user dissatisfaction with generic movie recommendations by providing more tailored suggestions.

Value to Stakeholders:

Product: Flick Pickle Engine

 Improved user experience and engagement through personalized recommendations.

Data Understanding

- Dataset Used: MovieLens 20M Dataset
 - $\circ\,$ 25 million ratings, 20 million user-generated tags.
 - Rich movie metadata (title, genre, tags).

Key Data Components

- Ratings: User ratings on movies (1 to 5 scale).
- Movies: Metadata such as title, genre, and tags.
- Users: User profiles based on past ratings.

WORD CLOUD OF MOVIES

Data Preparation

- Data Cleaning: Removing duplicates and handling missing values.
- Feature Engineering:
 - o Clustering user-generated tags using NLP to reduce complexity.
 - Transforming user and movie data into matrices for collaborative filtering.
- Preprocessing:
 - Genres and tags transformed into numerical features for modeling.

Modeling

- Collaborative Filtering:
 - User-based filtering: Recommendations based on similar user preferences.
 - o Item-based filtering: Recommendations based on similar movies.
- Hybrid Model:
 - o Incorporates both collaborative and content-based features.
 - o Tackles the cold-start problem for new users or movies.
- NLP for Tag Clustering:
 - o Clusters related tags to simplify content-based filtering.

Advanced Modeling, Incorporating Neural Networks

Evaluating the autoencoder

Evaluating the NCF Model

Evaluation

• Evaluation Metrics:

- RMSE (Root Mean Square Error): Measures accuracy in predicting user ratings.
- MAE (Mean Absolute Error): Provides another accuracy measure.

• Additional Considerations

o Future inclusion of NDCG and F1-score for ranking quality.

Results & Value

Key Results

- o Successfully personalized recommendations.
- Hybrid model improved performance by integrating user and content-based data.

Value to Stakeholders

- Users spend less time searching and more time enjoying relevant content.
- $\circ\,$ Higher engagement and satisfaction with the platform.

Future Work

- Implement reinforcement learning for adaptive recommendations.
- Introduce user controls for more personalized movie suggestions.
- Explore A/B testing to validate different recommendation strategies.

DSFPT07 Phase 4 Group 12

Branely Ope
Brian Kipngetich
Cynthia Atieno
Geoffrey Mwangi
Linet Maz'susa
Maureen Wanjeri
Mercy Silali

Q&A