# Álgebra Linear (ALI0001 – CCI-192-02U)

Método da Inversa para resolução de sistemas

Introdução a Conjuntos Fechados

Professor: Marnei Luis Mandler

Aula do dia 20 de março de 2023.



#### Revisão: Método da inversa para resolver sistemas lineares

Teorema: Se A é invertível, então o sistema de n equações e n variáveis AX = B é sempre possível e determinado (SPD) e sua única solução é dada por  $X = A^{-1}B$ .

Justificativa: Se A é invertível, então existe  $A^{-1}$  tal que  $AA^{-1}=A^{-1}A=I$  e com isso, a matriz  $X=A^{-1}B$  é tal que

$$AX = A(A^{-1}B) = (AA^{-1})B = I.B = B,$$

ou seja,  $X = A^{-1}B$  é solução do sistema linear AX = B. Portanto, o sistema é possível.

Além disso, se Y for qualquer outra solução desse sistema, temos que AY = B.

Como AX = B, obtemos que

$$AY = B = AX \Rightarrow A^{-1}AY = A^{-1}AX \Rightarrow IY = IX \Rightarrow Y = X.$$

Portanto, existe uma única solução para o sistema, e ele é possível e determinado (SPD).

Observação: O método da inversa é útil para resolver vários sistemas cuja matriz dos coeficientes A é sempre a mesma, e em que apenas a matriz B é diferente em cada caso.

Exemplo 1: Resolva os sistemas abaixo, pelo método da inversa:

a) 
$$\begin{cases} 2x + 3y + z = -1 \\ 3x + 3y + z = 1 \\ 2x + 4y + z = -2 \end{cases}$$
 b) 
$$\begin{cases} 2x + 3y + z = 4 \\ 3x + 3y + z = 8 \\ 2x + 4y + z = 5 \end{cases}$$
 c) 
$$\begin{cases} 2x + 3y + z = 0 \\ 3x + 3y + z = 0 \\ 2x + 4y + z = 0 \end{cases}$$

### Método da inversa para resolver sistemas lineares

Solução: Veja que os três sistemas dados possuem os mesmos coeficientes, com variações apenas nos seus termos independentes. Com isso, vamos aplicar o método da inversa para

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix}.$$

 $\longrightarrow$  Para obter  $A^{-1}$ , escalonamos a matriz A ao lado da matriz identidade  $3 \times 3$ :

$$[A \mid I] = \begin{bmatrix} 2 & 3 & 1 \mid 1 & 0 & 0 \\ 3 & 3 & 1 \mid 0 & 1 & 0 \\ 2 & 4 & 1 \mid 0 & 0 & 1 \end{bmatrix} L_2 \to L_2 - L_1 \sim \begin{bmatrix} 2 & 3 & 1 \mid 1 & 0 & 0 \\ 1 & 0 & 0 \mid -1 & 1 & 0 \\ 2 & 4 & 1 \mid 0 & 0 & 1 \end{bmatrix} L_1 \leftrightarrow L_2$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 0 \\ 2 & 3 & 1 & | & 1 & 0 & 0 \\ 2 & 4 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 \to L_2 - L_3} \sim \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 0 \\ 0 & -1 & 0 & | & 1 & 0 & -1 \\ 0 & 4 & 1 & | & 2 & -2 & 1 \end{bmatrix} \xrightarrow{L_2 \to -L_2} \xrightarrow{L_3 \to L_3 + 4L_2}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 \mid -1 & 1 & 0 \\ 0 & 1 & 0 \mid -1 & 0 & 1 \\ 0 & 0 & 1 \mid 6 & -2 & -3 \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}.$$

### Método da inversa para resolver sistemas lineares

Portanto, obtemos que 
$$A^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$$
 e com isso, todos os sistemas são SPD.

Agora, vamos obter as soluções dos sistemas:

a) No primeiro sistema, temos que a matriz dos termos independentes é  $B = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}$  e pelo método da inversa, a sua solução é

$$X = A^{-1}B = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} (-1) \cdot (-1) + 1 \cdot 1 + 0 \cdot 2 \\ (-1) \cdot (-1) + 0 \cdot 1 + 1 \cdot 2 \\ 6 \cdot (-1) - 2 \cdot 1 - 3 \cdot (-2) \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}.$$

b) No segundo sistema, temos que a matriz dos termos independentes é  $B = \begin{bmatrix} 4 \\ 8 \\ 5 \end{bmatrix}$  e pelo

método da inversa, a sua solução é

$$X = A^{-1}B = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 8 \\ 5 \end{bmatrix} = \begin{bmatrix} (-1).4 + 1.8 + 0.5 \\ (-1).4 + 0.8 + 1.5 \\ 6.4 - 2.8 - 3.5 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ -7 \end{bmatrix}.$$

#### Propriedades da Inversa

 $\overline{\phantom{a}}$  c) O terceiro sistema é homogêneo, pois B=0. Com isso, sua solução é a trivial, pois

$$X = A^{-1}$$
,  $0 = 0$ .

Exemplo 2: Determine a inversa da matriz  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , supondo que  $a \neq 0$  e  $ad - bc \neq 0$ .

Solução: Escalonando a matriz  $[A \mid I]$  obtemos que

$$[A \mid I] = \begin{bmatrix} a & b \mid 1 & 0 \\ c & d \mid 0 & 1 \end{bmatrix} \ L_1 \to \frac{1}{a} L_1 \ \sim \begin{bmatrix} 1 & \frac{b}{a} & | \frac{1}{a} & 0 \\ c & d \mid 0 & 1 \end{bmatrix} \ L_2 \to L_2 - cL_1$$

$$\sim \begin{bmatrix} 1 & \frac{b}{a} & |\frac{1}{a} & 0 \\ 0 & \frac{ad - bc}{a} & |\frac{-c}{a} & 1 \end{bmatrix} L_{2} \to \frac{a}{ad - bc} L_{2} 
\sim \begin{bmatrix} 1 & \frac{b}{a} & |\frac{1}{a} & 0 \\ 1 & \frac{a}{a} & |\frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix} L_{1} \to L_{1} - \frac{b}{a} L_{2}$$

$$\sim \begin{bmatrix} 1 & 0 & \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ 0 & 1 & \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix} = \begin{bmatrix} I | A^{-1} \end{bmatrix}.$$
 Portanto,  $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$ 

## **Conjuntos Fechados**

- **Definição:** Seja H um conjunto qualquer não vazio, no qual estejam definidas as operações de adição e de multiplicação por escalar. Define-se que:
  - H é fechado para adição se, e somente se, dados quaisquer dois elementos u e v que pertencem a H, a soma u+v também é um elemento que pertence a H.

 $\subseteq$  Simbolicamente:  $\forall u, v \in H, u + v \in H$ .

- H é fechado para a multiplicação por escalar se, e somente se, dado qualquer elemento u que pertence a H e qualquer escalar  $k \in \mathbb{R}$ , a multiplicação escalar ku também é um elemento que pertence a H.
- $\longrightarrow$  Simbolicamente:  $\forall u \in H, \forall k \in \mathbb{R}, ku \in H$ .
  - Quando H é simultaneamente fechado para as operações de adição e de multiplicação por escalar, H é dito simplesmente um conjunto fechado.
- OBSERVAÇÕES: A definição de conjunto fechado também pode ser aplicada quando H é um subconjunto (não vazio) de outro conjunto.
- A nomenclatura "fechado" é relativamente intuitiva: indica que, ao operarmos (pela adição ou multiplicação por escalar) com elementos de um conjunto fechado, o resultado sempre permanece "dentro" do conjunto, ou seja, nunca resulta em um elemento "fora" desse conjunto.

## Exemplos

Exemplo 1) Verifique se os conjuntos abaixo são ou não fechados para as operações usuais de adição e/ou de multiplicação por escalar:

a) 
$$H = \{(x, y) \in \mathbb{R}^2; y = -2x\}.$$

b) 
$$H = \{(x, y) \in \mathbb{R}^2; y = 2x + 1\}.$$

Solução: a) Se  $u=(x,y)\in H$  e  $v=(a,b)\in H$ , temos que y=-2x e b=-2a.

**L**ogo

$$u + v = (x + a, y + b)$$

📥 é tal que

$$y + b = -2x - 2a = -2(x + a)$$

- $\longrightarrow$  e  $u + v \in H$ , ou seja, H é fechado para a adição.
- Além disso, para todo k real, ku = (kx, ky) é tal que ky = k(-2x) = -2(kx)
- $\blacksquare$  e  $ku \in H$ , ou seja, H é fechado para a multiplicação por escalar.

Note que, geometricamente, H consiste em uma reta que passa pela origem.



## **Exemplos**

Solução b) Sejam  $u=(x,y)\in H$  e  $v=(a,b)\in H$ . Logo, pela condição algébrica de H, temos que

$$y = 2x + 1$$
 e  $b = 2a + 1$ .

Como 
$$u + v = (x, y) + (a, b) = (x + a, y + b)$$
 é tal que

$$y + b = (2x + 1) + (2a + 1) = 2(x + a) + 2 \neq 2(x + a) + 1$$

- $\square$  concluímos que  $u+v \notin H$  , pois a condição algébrica do conjunto não está satisfeita.
- Portanto, H NÃO é fechado para a adição.
- Além disso, se  $k \in \mathbb{R}$  é um escalar qualquer, temos que ku = k(x,y) = (kx,ky) é tal que

$$ky = k.(2x + 1) = k(2x) + k = 2(kx) + k \neq 2.(kx) + 1$$

- para  $k \neq 1$ . Como k deve ser qualquer real, concluímos que  $ku \notin H$ , pois a condição algébrica do conjunto não está satisfeita.
- Portanto, *H* NÃO é fechado para a multiplicação por escalar.
- Note que, do ponto de vista geométrico, H consiste em uma reta crescente que passa pelo ponto (0,1).

## Exemplos

- A Figura ao lado apresenta uma interpretação geométrica para o não fechamento da
- $\longrightarrow$  adição em H.
- Note que H consiste na reta em vermelho e que os elementos

$$u = (-1, -1) \in H$$
 e  $v = (1, 3) \in H$ ,

pois satisfazem a condição algébrica do conjunto, visto que

$$-1 = 2.(-1) + 1$$
 e  $3 = 2.1 + 1$ .

- Do ponto de vista geométrico, isso significa que as extremida-
- des dos elementos u e v consistem em pontos que pertencem
- 📥 à *H* .
- Para a soma desses elementos, têm-se que

$$u + v = (-1,1) + (1,3) = (0,2) \notin H$$

pois pois

$$2 \neq 2.0 + 1 = 1$$
.

- Note que a extremidade do elemento soma u+v é um ponto
- $\longrightarrow$  que não pertence à H.



# Opcional: Interpretação geométrica em $\mathbb{R}^2$

Seja H um subconjunto de  $\mathbb{R}^2$ , denotado por  $H \subseteq \mathbb{R}^2$ .

Dizemos que um elemento  $\overrightarrow{v} \in H$  se e somente se

$$\overrightarrow{v} = \overrightarrow{OP}$$
 para algum  $P \in H$ .



No esquema ao lado, temos que:

$$\overrightarrow{v} = \overrightarrow{OP} \in H$$

pois  $P \in H$ ,

 $\overrightarrow{u} = \overrightarrow{OQ} \notin H$ 

pois  $Q \notin H$ ,

 $\overrightarrow{w} = \overrightarrow{OR} \in H$ 

pois  $R \in H$ .

Veja que é necessário analisar o vetor equipolente que tem origem em O = (0,0).

# Opcional: Interpretação geométrica em $\mathbb{R}^2$

 $ightharpoonup^2$  Seja  $H \subseteq \mathbb{R}^2$  um conjunto de vetores.

Dados  $\overrightarrow{v}$  e  $\overrightarrow{w} \in H$ , será que  $\overrightarrow{v} + \overrightarrow{w} \in H$ ?



No esquema ao lado, temos que

$$\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{OS}$$
,

 $com S \notin H$ .

**Portanto** 

$$\overrightarrow{v} + \overrightarrow{w} \notin H$$
,