EXERCICES — CHAPITRE 9

Exercice 1 $(\star\star)$ – Dans chacun des cas suivants, étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie explicitement.

- 1. $\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n},$
- 2. $\forall n \in \mathbb{N}^*$, $u_n = \frac{n^2 + 1}{n}$,

- 3. $\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n+3},$ 4. $\forall n \in \mathbb{N}^*, \quad u_n = \frac{3^n}{n}.$

Exercice 2 (\star) – Dans chacun des cas suivants, étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence.

1. $u_0 = 1$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2,$$

2. $u_0 = -1$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n + \frac{1}{1 + u_n^2},$$

3. $u_0 = 1$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = u_n + n^2 + 2n + 1,$$

4.
$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$,
$$u_{n+1} = u_n + \sqrt{1 + u_n}.$$

Exercice 3 $(\star\star)$ –

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\forall n\in\mathbb{N}, \quad u_n=-n+4$.
 - a) Établir le tableau de variation de la fonction f définie sur \mathbb{R} par f(x) = -x + 4.
 - b) En déduire le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_0=1$ et $\forall n\in\mathbb{N}$, $v_{n+1}=f(v_n)=-v_n+4$.
 - a) Calculer les six premiers termes de la suite.
 - b) Que peut-on conjecturer quant au sens de variation de la suite $(v_n)_{n\in\mathbb{N}}$?

Exercice 4 $(\star \star \star)$ – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = -2u_n + 3n + 2.$$

On pose pour tout $n \in \mathbb{N}$, $v_n = u_n - n - \frac{1}{2}$.

- 1. Calculer u_1 , u_2 , u_3 , v_1 , v_2 et v_3 .
- 2. Démontrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- 3. Exprimer le terme v_n en fonction de n.
- 4. Exprimer le terme u_n en fonction de n.

Exercice 5 (\star) – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$u_n = \frac{3n+1}{n+1}.$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 3.
- 2. En déduire que la suite est bornée.

Exercice 6 $(\star\star)$ – En factorisant le numérateur par 2^n et le dénominateur par 3^n , étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par

$$u_n = \frac{2^n + 1}{3^n + 1}.$$

Exercice 7 ($\star\star$) – Étudier la convergence et calculer la limite de la suite (u_n) $_{n\in\mathbb{N}^*}$ définie pour tout $n \in \mathbb{N}^*$ par

$$u_n = \frac{(-1)^n}{\sqrt{n}} + 1.$$

Exercice 8 (**) – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = \frac{1}{2}$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n - 1.$$

- 1. On pose $v_n = u_n 1$ pour tout $n \in \mathbb{N}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est géométrique.
- 2. Exprimer v_n puis u_n en fonction de n pour tout $n \in \mathbb{N}$.
- 3. Étudier la convergence des suites $(v_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$.

Exercice 9 $(\star \star)$ – On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{1 + u_n^2}.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer par récurrence que pour tout entier naturel n, u_n est égal à $\sqrt{1+n}$.
- 3. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 10 $(\star \star \star)$ – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = 16$ et

$$\forall n \ge 0, \quad u_{n+1} = 0.75 \times u_n.$$

- 1. a) Quelle est la nature de la suite $(u_n)_{n \in \mathbb{N}}$?
 - b) Exprimer, pour tout entier naturel n, u_n en fonction de n.
 - c) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2. On note S_n la somme des n+1 premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$:

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + u_2 + \dots + u_n.$$

- a) Calculer S_4 .
- b) Montrer que pour tout entier $n \in \mathbb{N}$, $S_n = 64(1 0.75^{n+1})$.
- c) Vers quel réel tend la somme S_n lorsque n tend vers $+\infty$?

Exercice 11 $(\star\star\star)$ – En raison de l'évaporation, une piscine perd chaque semaine 3% de son volume d'eau. On remplit ce bassin avec 90m^3 d'eau et, pour compenser la perte due à l'évaporation, on décide de rajouter chaque semaine 2.4m^3 d'eau dans le bassin. On note u_n le nombre de m^3 d'eau contenus dans ce bassin au bout de n semaines. On a donc $u_0 = 90$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 0.97 \times u_n + 2.4$.

- 1. On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par $v_n=u_n-80$.
 - a) Démontrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Exprimer le terme v_n en fonction de n. En déduire que pour tout entier naturel n, $u_n = 80 + 10 \times 0.97^n$.
- 2. Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
- 3. Déterminer la limite de la suite $(u_n)_{n \in \mathbb{N}}$. Interpréter ce résultat.

Exercice 12 $(\star\star)$ – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}$$
, $u_{n+1} = u_n + 2n + 3$.

- 1. Étudier la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$.
- 2. Démontrer par récurrence que pour tout entier naturel n, $u_n > n^2$.
- 3. En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}}$.

Exercice 13 $(\star \star \star \star)$ – On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = -2$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2}u_n + 3.$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 6.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 3. Que peut-on dire de la suite $(u_n)_{n\in\mathbb{N}}$?
- 4. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=u_n-6$ est géométrique. En déduire l'expression de u_n en fonction de n.
- 5. Déterminer la limite de la suite $(u_n)_{n \in \mathbb{N}}$.

Exercice 14 $(\star \star \star)$ – On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = 0.7$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. Montrer par récurrence que $u_n \in]0,1[$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 15 $(\star \star \star)$ – Soit g la fonction définie sur \mathbb{R} par $g(x) = (1-x)^3 + x$. On définit la suite $(a_n)_{n \in \mathbb{N}}$ en posant $a_{n+1} = g(a_n)$ pour tout $n \in \mathbb{N}$ et $a_0 = 0.4$.

- 1. Démontrer que pour tout entier naturel n, $0 < a_n < 1$.
- 2. Démontrer que la suite $(a_n)_{n\in\mathbb{N}}$ est croissante.
- 3. La suite $(a_n)_{n \in \mathbb{N}}$ converge-t-elle? Si oui, déterminer sa limite.