WU Xiaokun 吴晓堃

xkun.wu [at] gmail

Course Information

Short Intro

The objective of this course is to provide a complete introduction to algorithm design and complexity analysis techniques.

Description

The course aims at providing fundamental knowledge and existing techniques of algorithm design-related topics. It also aims at a laborating rigorous complexity and lysis for a better understanding of the design principles. The course should follow a programming-focused introductory computer science sequence.

The course will touch on the following topics:

- Basic concepts recap: tractability, asymptotic order, graphs.
- Major algorithm design techniques: gree dy algorithms, divide and conquer, dynamic programming network flow.
- Computational intractability: NP, NP-Complete, PSPACE.
- Dealing with intractable problems: identification of structured special cases, approximation algorithms, local search heuristics.
- Random ized algorithms.

Keywords: algorithm design, complexity analysis.

Prer eq uisites

Required:

- Sufficient programming experience.
- Comfortable with mathematical proofs.

Recommended:

- Knowledge in computer science fundamentals: data structure, operating system, computer architecture, etc.
- As much knowledge of mathematics as possible.
- Insights in your own specific area of study.

Teaching p lan

The course is organized into severalin ajor parts and each contains different topics.

htroduction & basic concepts recap:

- · Computational Tractability
- · Asymptotic Order of Growth
- · Graphs

Major algorithm design techniques:

- Greedy algorithms,
- · Divide and conquer,
- · Dynamic programming.
- · Network flow.

NP and PSPACE:

Reducibility

Computer Science - UG3/G		
Course	Algorifun II	
Term	2021H	
Final	Toa	
Credits	2	
Staff	WU Xiaokm 吴晓堃	
Lecture	32 hours	

- P ≠ NP?
- · NP-Complete
- P ≠ PSPACE?
- PSPACE complete

Dealing with intractability:

- Identification of structured special cases,
- Approximation algorithms,
 Local search leanistics,
- Randon ized algorithms.

Schedule

Friday S6-S9, Library 916.

Week:	Date	Lecture	Handouts
1	2021/10/15	htroduction	Stable Matching
2	2021/	Algorithm Analysis & Graphs	Tractability & Asymptotic Order, Graphs
3	2021/	Greedy Algorithm I	Coin Charging, IntervalS chechiling/Partitioning, Minimize Lateness, OptimalCache
4	2021/	Greedy Algorithm II	Dijkstra's Algorithm, Minimum Spanning Tree, Prim/Kruskal/Boruwka, Clustering, Min-cost Arbore scence, Huffman Codes
5	2021/	Divide and Corepter I	Mergesort, Recurrence Relations, Counting Inversions, Randomized quicksort, Closest Pair of Points
б	2021/	Divide and Conquer II	Master Theorem, Integer/Matrix Multiplication, Convolutions & FFT
7	2021/	Dynamic Programming I	Weighted Interval Scheduling, Segn erted Least Squares, Subset Sums and Krapsacks
S	2021/	Dynamic Programming II	Se quence Alignment, Hirschberg/Bellman-Ford- Moore, Negative Cycle Detection
9	2021/	Network Flow I	Max-Flow Min-Cut, Ford-Fulkerson, Augmenting Paths, Capacity-scaling/Shortest-augmenting/Dinutz, Simple unit-capacity Networks
10	2021/	Network Flow II	Bipartite Matching, Disjoint Paths, Circulations with Demands, Survey Design, Airline Scheduling, In age Segmentation, Project Selection, Tournament Elimination
11	2021/	Intractability I	Polynomial-Time Reductions, Packing & Covering problem, Satisfiability Problem (raster & AT), Traveling Salesman, Partitioning Problems, Graph Coloring, Numerical Problems
12	2021/	htractability II	P vs. NP , NP -complete, co- NP , NP -hard
13	2021/	Extending Tractability	Special cases (tree, planarity), Approximation (vertex cover, knapsack), Exponential Algorithms (3-SAT, TSP)
14	2021/	PSPACE	Quantified 3-SAT (QSAT), Planning Problems, PS PACE complete
15	2021/	Approximation Algorithms	Load Balancing, Center Selection, Weighted Vertex Cover, Knapsack Problem
16	2021/	Local Search	Gradient Descent, Metropolis & Simulated Algoriflum, Hopfield Neural Networks, Maximum - Cut, Nash Equilibria
S1	2021/	Randomized Algorithms	Contention Resolution, Global Min-Cut, Mac 3- Satisfiability, Universal Hashing, Chemoff Bounds

Note: slides content are largely consistent with the official accompanying slides of Algorithm Design.

Evaluation

 Attendance & participation: 10% Understanding of the topic: 50%

- Presenting skill: 20%.
- Final project: 20%
 Honorable bonus: 10%

Textbook

Not mandatory but recommended:

- Kle inberg & Tardos, Algorithm Design.
 Sedgewick & Wayne, Algorithms.
 Connen et al., Introduction to Algorithms.

Resources

- It's possible to find PDF files from the web for all textbooks listed above.
- [Lecture Slides for Algorithm Design]¹
- [Course site]²
- 1. https://www.cs.princeton.edu/~wayne/kleinberg-tardos/+>
- 2. https://clauwru.github.io/teach/Algorithu /2021Hhtml↔