PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Griffiths et al. Examiner: Jehanne Souaya Sitton

Serial No.: 10/571,879 Group Art Unit: 1634

Filed: January 29, 2007 Docket No.: FISHR24.001APC

Confirmation No.: 2661

Title: HORMONE RECEPTOR GENES AND MIGRAINE SUSCEPTIBILITY

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

DECLARATION OF LYNETTE ROBYN GRIFFITHS UNDER 37 CFR §1.132

- I, LYNETTE ROBYN GRIFFITHS of, 14 Ewart Street, Burleigh Heads, Queensland, 4220, Australia, am a co-inventor with respect to the abovementioned United States patent application. I am currently Director, Genomics Research Centre and the Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia and I attach herewith a copy of my Curriculum Vitae as Exhibit A.
- 2. I am aware of the Examiner's reasons for rejecting claims 1, 3-9, 11, 13, 14, 16-18, 20, 24, and 25 under 35 USC §112, first paragraph, for alleged lack of enablement in the Office Action mailed December 9, 2010. In raising this rejection, the Examiner has stated that "applicants own replication study failed to provide statistically significant correlations. Further, a number of studies have been undertaken to confirm the findings taught in the specification with little success. With regard to the ESR1 G2014A (rs2228480) polymorphism: Corominas (Corominas et al; European Journal of Neurology, vol 16, 413-415; 2009);

Kaunisto (Kaunisto et al; Cephalagia; vol 26, pages 1462-1472, 2006), and Oterino (Oterino et al; Neuroreport, vol 17, pages 61-64, 2006) teach that **no association was found for the ESR1 rs2228480 polymorphism**" (see, Office Action mailed December 9, 2010 at page 6; emphasis added).

- 3. As stated in the present application, the ESR1 G2014A (rs2228480) polymorphism was found to be positively associated with migraine in two independent case-control populations; population 1 genotypic P=0.008 and allelic P=0.003, population 2 genotypic P=4x10⁻⁵ and allelic P=8x10⁻⁶ (see, page 20, lines 10-26). The Examiner's insistence that there is no statistically significant correlation between these two populations ignores these genotype frequencies, and instead appears to focus on the fact that an association did not occur in males nor in the migraine without aura (MO) subgroup in the second population (see, page 20, lines 29-32 of the present application). This lack of association in these subgroups does not indicate that a statistically significant correlation between the two independent case-control populations does not exist. Rather, the lack of association in these subgroups reflects the small numbers of males (n=36) and MO sufferers (n=39) in the second population. Accordingly, sufficient power to make an association with these subgroups did not exist. However, when viewing the two independent case-control populations overall, the ESR1 G2014A (rs2228480) polymorphism was found to be positively associated with migraine, as seen in genotype frequencies of P=0.008 and P=4x10⁻⁵, respectively and also the allele frequencies of P=0.003 and P=8x10⁻⁶, respectively.
- 4. Similarly, a separate study of the PGR PROGINS polymorphism in the same two independent case-control populations also showed association with migraine "in the **total** group analysis": population 1 genotypic P=0.04, allelic P=0.017, population 2 genotypic P=0.019 and allelic P=0.003 (see, page 21, line 25 to page 22, line 7 of the present application; emphasis

added). Furthermore, analysis of both hormonal genes together showed that the interaction of the PGR PROGINS polymorphism combined with the ESR1 G2014A (rs2228480) polymorphism increased migraine risk by 3.2 (see, page 25, lines 13-16 of the present application).

- 5. The results of a systematic review and **meta-**analysis on the association between sex hormone receptor polymorphisms and migraine by Schürks et al. (Cephalalgia 30:1306-28, 2010), presented herewith as **Exhibit B**, independently support the conclusion that the estrogen receptor 1 gene (ESR1) G2014A (rs2228480) polymorphism is associated with migraine.
- 6. As stated on page 1312 of Schürks *et al.*, "[t]he pooled effect estimates among all **studies** suggest that the A allele is associated with an increased risk for any migraine (additive mode: pooled OR 1.37; 95% CI 1.02-1.83; Table 4)."
- 7. I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated: 6 th June 2011	6-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	Lynette Robyn Griffiths

EXHIBIT A

CURRICULUM VITÆ Lyn Robyn Griffiths

PERSONAL DETAILS

Marital Status:

Name: Lyn Robyn Griffiths Work Genomics Research Centre

Married, 2 children

Address: Griffith Health Institute

Nationality: Australian Griffith University

PMB 50 GCMC Parklands Drive Southport

Email: I.griffiths@griffith.edu.au QLD 4125

Tel no's: Home +61 7 5535 0138 **Home** 14 Ewart St

Work +61 7 5552 8664 Address: Burleigh Heads Mobile+61(0)417 702 256 QLD 4220

Fax no: Work +61 7 5552 9081

HIGHER EDUCATION/QUALIFICATIONS

QualificationInstitutionYearHigh School CertificateFort Street Girls High, Sydney
Dux (English, History, Science)
School Captain1969-1974

BSc (Hons.) Biochemistry University of New South Wales 1980

PhD Medicine University of Sydney 1990

CURRENT POSITIONS

Position Institution

Professor Molecular Genetics, Griffith University

Director Griffith Health Institute

Dean Research (Health), Griffith University

Director Genomics Research Centre, Griffith University

Chair Griffith Health Research Committee

President Human Genetics Society of Australasia, QLD branch
Council Member Queensland Institute Medical Research (QIMR)
Member Scientific Program Committee for 2011 International

Congress of Human Genetics (ICHG)

Chair Local Organising Committee (LOC) for the 2011 HGSA

Annual Scientific Meeting, Queensland

Member NHMRC Postdoctoral Fellowships Panel

Deputy Chair ARC Futures Fellowship Panel

Chair Fulbright Commission Awards Panel (QLD)

AWARDS AND DISTINCTIONS

1005	NOW Best of the all. Best and at a Och death
1985	NSW Dept of Health Postgraduate Scholarship.
1986 1987	Award Best Presentation, Human Genetics Society of Australia. Invited speaker 2 nd Intl Conference on CMT Disorders, New York.
1987	Sponsored presenter, 9 th Intl Human Gene Mapping Conference, Paris.
1996	Organised Human Genome Disorders symposium at Aust Society Medical
1990	Research.
1995-1998	Awards for a number of PhD Students at National and International
	conferences eg (S Rutherford; J Cook; L Haupt; S Selvey, the last two at a
	Gordon Cancer Conference in Rhode Island in 1998).
1995-present	Invited speaker at various conferences including recent Linkage Analysis
	Boden Conference, Neurogenetics Society and Australian Assoc of
	Neurologists meetings, Biotechnology Development Meeting, Norway and
	Intl Society Hypertension Satellite meeting in Amsterdam.
	Member of ASMR, High Blood Pressure Research Council, ASBMB,
	Human Genetics Society of Australia and American Human Genetics Society.
	Reviewer for NHMRC, ARC, QCF, NHF, Neurology and Human Genetics.
	Neviewer for the living, AINO, QOF, Nett , Neurology and Fluitian Genetics.
2000	Award, Best presentation International Headache Congress, Barcelona
2001	Most downloaded article for 2001Year in Molecular Cellular Probes
2001	Convenor, 40 th ASMR National Scientific Conference, Gold Coast,
	November 2001
	Convenor, 2 nd Australasian Gene Mapping Meeting, Cairns QLD, July
4000 0004	2001
1999-2001 2003-2006	Director of Australian Society for Medical Research.
2003-2006	Chair, Scientific Program Committee, Intl Congress Human Genetics, Brisbane, 2006
2002-present	Member, Qld Institute Medical Research Council
2005-present	Chair, Griffith Health Research Committee
2003	Griffith University Commendation for Excellence in Teaching
2004	Centenary Medal Award for Distinguished Service to Education and
	Medical Research
2004	Gold Coast Honours Award (Education and Medical Research Category)
2005	Australian of the Year, Queensland Finalist
2006	Suncorp Queenslander of the Year Nominee
2006	Member of Board of Directors of CNN Future Summit
2006	Smart State – Smart Women Finalist (Research Scientist Category)
2009	Honorary Member for Golden Key Griffith University Chapter
2010	Research Excellence Award for Senior Researcher Griffith University

CAREER HISTORY

1975-1978	BSc, Double Major in biochemistry and microbiology	UNSW
1979	Honours Student and Tutor BSc(Hons) Thesis: "Leigh's Disease: Biochemical Studies"	Department of Biochemistry, UNSW
1980-1983	Research Assistant	Department of Medicine, University of Sydney.
1983-1984	Research Assistant	Department of Medicine, Duke University, NC, USA.
1984-1987	NH&MRC Biomedical Postgraduate Scholar (enrolled for PhD)	Department of Medicine, University of Sydney
1988	NSW Dept of Health Postgraduate Scholar and Tutor (part-time) PhD Thesis submitted- Title: "Chromosome 1 Gene Mapping with reference to Charcot-Marie-Tooth Disease". (PhD conferred March, 1990.)	Department of Medicine, University of Sydney
1989-1991	Chief Investigator and Sen Research Assist, NH&MRC Project Grant: "Molecular Genetic Abnormalities in Human Hypertension".	Department of Physiology, The University of Sydney.
1990	Lecturer in Genetics and Associate Director Biology 1	School of Biological Sciences, University of Sydney
1991	Lecturer in Genetics and Biochemistry	School of Biological Sciences, University of Sydney
1992-1994	Lecturer in Molecular Genetics, Cell Biology and Biochemistry	Applied Science, Griffith University
1995-1998	Senior Lecturer in Molecular Genetics and Cell Biology	School of Health Science, Griffith University
1998-2001	Associate Professor in Molecular Genetics and Cell Biology	School of Health Science, Griffith University
1997-present	Director, Genomics Research Centre	School of Health Science, Griffith University
2002-present	Professor in Molecular Genetics	School of Health Science, Griffith University
2004-2007	Head of School	School of Medical Science,
2005-present	Chair, Griffith Health Research Committee	Griffith University Griffith Health, Griffith Uni
2007-present	Dean, Research (Faculty of Health)	Griffith Health, Griffith Uni
2007-present	Director, Griffith Health Institute	Griffith University

RESEARCH EXPERIENCE

BSc Hons project, Department of Biochemistry, U.N.S.W. 1979

> Development of a radiochemical test to determine pyruvate dehydrogenase levels in patients with Leigh's Disease.

1980-1983 Department of Medicine, University of Sydney.

> The use of radioimmunoassay and bioluminescent tests to measure creatine kinase levels in Duchenne Muscular Dystrophy patients. Characterization of mouse platelet creatine kinase isoenzymes using electrophoresis. Stability studies of various enzymes and antibodies in the dried and liquid state. Development of a radioimmunoassay to

diagnose patients with myasthenia gravis.

1983 - 1984 Department of Medicine, Duke University, NC, U.S.A.

> Preparation of a human liver cDNA library. Blood collection and preparation of DNA for myotonic dystrophy linkage studies. Genomic

library screening and probe preparation.

1984 - 1988 PhD project, Department of Medicine, University of Sydney.

> Isolation. localization and identification of RFLP probes from a chromosome 1 library. Preparation of lymphoblast cell lines from patients with neurogenetic disorders. Genomic blotting and linkage studies on families with Charcot- Marie-Tooth disease using chromosome 1 RFLP probes. Linkage analysis using the LIPED computer programme

and heterogeneity testing using the HOMOG programme.

1989 - 1991 Department of Physiology, University of Sydney.

> Development of probes and RFLPs for molecular genetic studies on human hypertension. Blood collection and preparation of DNA from normotensives, hypertensives and families with multiple affected members. Association and linkage studies using candidate gene probes

and data computer analysis.

1992-Present Medical and Applied Science, Griffith University Gold Coast.

> Molecular genetic studies on the basis of common human disorders including migraine and CVD genetic risk factors. Blood has been collected and DNA has been prepared from individuals, families with multiple affected members and also from isolated founder effect communities including Norfolk Island. DNA association and linkage studies, using microsatellite and SNP markers and candidate gene probes, are being performed on these populations. In addition gene studies on lymphoma, breast cancer and non-melanoma skin cancer and gene expression studies of multiple sclerosis are being undertaken. Development of NATA accredited DNA testing laboratory for

neurogenetic disorders, as well as clinical trial studies

TEACHING EXPERIENCE

1979	Biochemistry II, Tutor and Demonstrator, Univ. of NSW.
1988	Biology I, Tutor and Demonstrator, Univ. of Sydney.
1989	Biology I, Tutor and Demonstrator, Cumberland College of Health Sciences.
1990	Admin Responsibilities as Associate Director of Biology I (1800 students)
	and Lecturer, Genetics and Biochemistry for Medicine, Dentistry and
	Science, School of Biological Sciences, Univ. of Sydney.
1991	Lecturer, Genetics and Biochemistry for Medicine, Dentistry and Science,
	School of Biological Sciences, Univ. of Sydney.
1992 - 1998	Lecturer, then Senior Lecturer in Molecular Genetics, Cell Biology and
	Biochemistry. Health and Applied Science, Griffith University
1998 - 2001	Associate Professor in Molecular Genetics and Cell Biology. Health
	Science, Griffith University.
2002 – present	Professor in Molecular Genetics. Medical Science, Griffith University.

POSTGRADUATE SUPERVISION - (27 completed, 14 current primary supervision RHD)

Primary Supervision

2009-present	Aya Bonilla, C.	PhD	Medical Science, Griffith University
2009-present	McKenzie, J	PhD	Medical Science, Griffith University
2010-present	Benton, M	PhD	Medical Science, Griffith University
2010-present	McCartan, C	PhD	Medical Science, Griffith University
2010-present	Okpokam, N.	MPhil	Medical Science, Griffith University

Associate Supervision

1998-2001	Alfredson, D.	PhD	Health Science, Griffith University
1999-2001	Vaughan, T.	PhD	Health Science, Griffith University
2002-2006	Doecke, J.	PhD	Medical Science, Griffith University
2003-2006	Vanderlelie, J.	PhD	Medical Science, Griffith University
2003-2007	Stephens, A.	PhD	Medical Science, Griffith University
2004-2008	Shah, J.	PhD	Medical Science, Griffith University
2009-present	Cao, F.	PhD	MED/Med Science, Griffith University

POSTGRADUATE RESEARCH PROJECTS

Postgraduate Students

1990	Ying, L-H.	MSc (Ougl)	The Role of Insulin Receptor in Human Hypertension
1990-1993 1995-1999 1996-2000 1995-2001	Zee, R.Y.L. Nyholt, D. Cook, J. Haupt, L.	(Qual.) PhD PhD PhD PhD	Molecular Genetics of Human Hypertension Migraine Linkage and Allelic Association Studies Patellar Tendinopathy: Clinical and Imaging Studies IS-RT PCR Localisation of Matrix Metalloproteinase Gene Expression in Human Breast Cancer
1995-2002	Rutherford, S.	PhD	The Use of Microsatellite Markers to Study Essential Hypertension Genes
1995-2002	Selvey, S.	PhD	Matrix Metalloproteinase Induction and Invasive Breast Cancer
1997-2003	Rogers, K.	PhD	Natural Products Affecting the Human Serotonergic System
1998-2003	Curran, J.	PhD	Novel Genotypes Associated with Sporadic Breast Cancer Development,
1996-2003	Ashton, K.	PhD	Molecular Abberations of Non-Melanoma Skin Cancer and Precursors
1997-2003	Lea, R.A.	PhD	The Role of Ion Channel and Related Genes in the Aetiology of Typical Migraine
2001-2003 1999-2004	Sundholm, J. Mellick, A.	MPhil PhD	Mutation Analysis of Two Migraine Candidate Genes Matrix Metalloproteinases: The Molecular Basis of Malignancy in Breast Carcinomas
2000-2004	Carless, M.	PhD	Molecular Abberations Associated with Non- Melanoma Skin Cancer
1999-2004	Tajouri, L.	PhD	Differential Display of Gene Expression in Multiple Sclerosis
2000-2005	Johnson, M.P.	PhD	Genetic Study of the Human Serotonergic System in Migraine using a pooling method
2001-2005	Simcock, W.	PhD	Parallel Analysis of Gene Expression: Bone Cells as a Model System
2003-2006 2002-2005	Curtain, R. Smith, RA.	PhD PhD	Gene Expression Analysis of Migraine Role of Nuclear Receptor Genes in Sporadic Breast Cancer
2003-2007	Colson, N.J.	PhD	The Role of Hormones and Hormone Related Genes in Migraine
2001-2008	Bellis, C.	PhD	An Investigation of Cardiovascular Disease Genes in

			the Norfolk Island Population
2003-present	Quinlan, S.	MPhil	Analysis of the Effects of Migraine on Male Disability
2005-2009	Szvetko, A.L.	PhD	Determination of gene expression profiles in MS
	,		affected brain tissue (MS Society PhD Fellowship)
2005-2009	Hiesh, K.	PhD	Breast cancer genetic analyses
2006-2008	Green, M.	PhD	Lymphoma genome and expression studies
2006-2007	Chikhani, S.	MPhil	The role of GATA 4 in migraine and stroke
2007-present	Gabrovska, P.	PhD	Breast Cancer expression studies
2007-present	Cox, H	PhD	Migraine gene mapping in the Norfolk population
2007-present	Matovinovic, E	PhD	CVD risk trait gene mapping in NI isolate
2008-present	Fowder, J	PhD	Identification of hypertension genes post GWAS
2008-present	Greely, R	PhD	Identifying susceptibility genes for SCC post GWAS
2008-present	Maher, B	PhD	Identification of an X-linked gene involved in migraine
·			and investigation into epilpesy gene that may cause
			co-mobidity of these disorders
2008-present	Genesan, S	PhD	Interaction of genotype, vitamin status and
			homocysteine level on migraine severity
2009-present	Bonilla, C	PhD	Gene expression and genomic variation signatures as
			prognostic indicators to therapeutic response in
			Diffuse Large B-Cell Lymphoma patients
2009-present	Camilleri, E.	PhD	Defining the Immuno-regulatory role of FOXP Family
			Members in Non-Hodgkin's Lymphoma
2009-present	McKenzie, J	PhD	Gene expression in multiple sclerosis brain and blood
			samples
2009-2009	Roy, B	MM	?
2010-present	Benton, M.	PhD	Envirogenomic signatures & risk prediction of
			Metabolic Syndrome in Norfolk Island population
2010-present	McCarton, C.	PhD	The genetics of coronary artery disease
2010-present	Okpokam, N.	MPh	A GWAS for risk factors assoc w/ bone mineral
			density & osteoporosis in Norfolk Island isolate.

Honours Students (34 Hons; 21 Hons I, 8 Hons IIA, 2 Hons IIB, 3 current)

1994	Nyholt, D.	Migraine Association Studies Using Chromosome 19 Microsatellite DNA Markers	Hons I
1994	Mitchell, C.	The Analysis of Medicinal Plants Using High Performance Liquid Chromatography (HPLC)	Hons I
1995	Zancola, B.	Genetic Diversity in the Feral and Domestic Cat	Hons I
1995	Van Hofwegen, H.	Detection and Estimation of the Levels of Specific Environmental Contaminants in Medicinal Plants	Hons I
1995	Tran, C.	Laboratory and Field Evaluation of Neem Seed Extracts for the Control of Biting Midges	Hons I
1996	Salzmann, M.	Screening Medicinal Plants for the Presence of Ochratoxins and Organochlorine Pesticides	Hons IIA
1996	Lea, R.A.	A Multiplex Genome Scanning Approach to Mapping Migraine Gene Loci	Hons I
1997	Curran, J.	Molecular Analysis of Breast Cancer Susceptibility Genes	Hons I
1997	Defteros, N.	Mutation Analysis of the Ca ²⁺ Channel α _{1A} Subunit Gene CACNL1A4 in Migraine	Hons I
1998	Hutchins, C.	A Hypertension Genome Scan Using Microsatellite Markers in EST Rich Regions	Hons I
1999	Carless, M.	Comparative Genomic Hybridisation of Keratoacanthoma	Hons I
1999	Walker, S.	The Clonality of Non-Melanoma Skin Cancers	Hons I
1999	Jordan, K.	The Role of Human Dopamine Receptor Genes in	Hons IIB

		the Aetiology of Migraine	
1999	Dohy, A.	The Role of LDLR Receptor Genotypes and the Development of Obesity	Hons IIB
2000	Bellis, C.	Development of a Molecular Genetic Technique for	Hons I
		Animal Species Identification Validated for use in	
		Forensic Science Casework	
2000	Lintell, N.	Analysis of Vitamin D and Glucocorticoid Receptor Gene Polymorphisms in Solar Keratosis	Hons IIA
2000	Tatham, N.	A Population Association Study of Calcium Channel Genes and Migraine	Hons I
2000	Wright, K.	DOP-PCR Amplification of Small and Degraded DNA Samples for STR Profiling	Hons IIA
2001	Smith, R.A.	Expression Analysis of Breast Cancer Candidate Genes	Hons I
2001	Gillespie, S.	Molecular Analysis of Solar Keratosis Susceptibility	Hons I
	- ··· /- ·, - ·	Genes	
2002	Colson, N.	Investigation of X Chromosomal Migraine Genetic Component	Hons I
2002	Moses, D.	Genetics of Focal and Segmental Glomerulosclerosis and Heart Block	Hons IIA
2004	Kerr, M.	Gabra 3 and migraine associated linkage studies	Hons IIA
2004	Kollar, K.	Association of MMP's in Skin Cancer	Hons IIA
2004	Szvetko, A.L.	Gene Expression in MS	Hons I
2004	Lindley, E.	Colon cancer diagnostics using microsatellite markers	Hons IIA
2005	Kraska, T.	Molecular genetic studies of non-melonoma skin cancer	Hons I
2005	Liu, A.	Pharmacogenetics of candidate migraine susceptibility	Hons IIA
		genes: Dopmaine beta-hydroxylase (DBH),	
		methylenetetrahydofolate reductase (MTHFR) and	
		Angiotensin converting enzyme (ACE)	
2005	Cox, H.	Use of the Norfolk population for migraine gene	Hons I
0000		mapping	
2006	Gale, J.	Development of new diagnostic tests for familial	Hons1
2007	Cranks D	hemiplegic migriane	l lana l
2007	Grealy, R	Molecular genetics studies of SCC	Hons I
2006-7	Fowder, J.	Hypertension Gene Studies in the NI Population	Hons I
2007 2007	Mationg, E		Hons I
	Kuwahata, M	Cons expression in human breast conser	Hons I
2006-7 2008	Gabrovska, P	Gene expression in human breast cancer	Hons I
2008	McKenzie, J	Variation of receptors for estrogen, progesterone, and vitamin D, and CRYAB in MS.	Hons I
2008	Plummer, P	Gene expression of GABA A & B Rec genes in	Hons IIA
2000	Fiditifiet, F	migraine population	110113 117
2008	Camilleri, E	DNA MTHFR and Histone deacetylase inhibitors for	Hons I
2000	oanillon, L	the treatment of diffuse large B-cell lymphoma	1101131
2010	Chen, T.	Potential co-morbidity effects of the SCN1A and	Current
2010	011011, 11.	GABRG2 on FHM and SMEI	Carroni
2010	Buteri, J.	Association study of CGRP, CGRP receptor and	Current
	,	opioid receptor with migraine	
2010	Donges, B.	Genetics of Memory: Role of the APOE, COMT and	Current
	- .	CPEB genes in Prospective and Retrospective	
		Memory in Non-pathological Adults	

INVITED SEMINARS

National

Department of Biochemistry, Univ. of N.S.W.
Department of Medicine, Concord Repatriation Hospital.

Department of Medicine, University of Sydney.

Genetics and Epidemiology Unit, University of Melbourne.

Sydney Molecular Biology Group.

Public Health and Tropical Medicine, University of Sydney.

School of Biological Science, Macquarie University.

Medical Genetics Unit, Royal Alexandra Hospital for Children.

School of Biological Sciences, University of Sydney.

Experimental Science Group, Griffith University Gold Coast.

Department of Medicine, Prince Charles Hospital, Brisbane.

Department of Medicine, University of Queensland, Brisbane.

Department of Physiology, University of Queensland, Brisbane.

Department of Medicine, Royal Brisbane Hospital, Brisbane.

Garvan Institute, Sydney.

Neurogenetics Society, Concord Hospital, Sydney.

Australian Society of Neurologists Annual Meeting, Brisbane.

Gold Coast Hospital Centenary Research Conference, Gold Coast.

Flinders Medical Research Institute, Adelaide.

Department of Biochemistry, University of Queensland, Brisbane.

Department of Physiology and Pharmacology, University of Queensland, Brisbane.

Life Sciences, Queensland University of Technology, Brisbane.

Queensland Institute of Medical Research, Brisbane

BioSpecimen Network Meeting, Baker Institute, Melbourne

Neurology Department, Royal Brisbane Hospital, Brisbane

AGRF Scientific Success Forum, University of QLD, Brisbane

Science Writers Association Annual Meeting, Queensland

Murdoch Children's Research Institute. Melbourne

QIMR Seminar Series, Brisbane

Mater Medical Research Institute (MMRI) External Seminars.

HGSA Seminar Serious, various

Princess Alexandra Research Meeting, Brisbane

Janssen-Cilag. Genetics and Management of Migraine. 28/03/06, Incholm Hotel, Brisbane Discovery Science & Biotechnology, Gene identification and characterisation - diagnostic and

therapeutic applications, Stamford Plaze Hotel, Brisbane, 30 May-1 June 2007

AFA Conference for MS Research Australia 15th October 2007, Royal Pines Resort.

Heart Foundation, Use of Norfolk Island population to identify CVD risk genes, Watermark Hotel Gold Coast, 28th November 2007

Gold Coast Health and Medical Research Conference, The Norfolk Island Genetic Isolate: A tool for complex disease gene mapping, Sanctuary Cove, Gold Coast, 2-7 December 2007

Australian Health & Medical Research Congress, Brisbane Convention Centre16-21st Nov 2008 3rd Blackmores Research Symposium, Sydney 29th April – 2nd May 2010

Integria, Nutraceuticals & Functional Foods Symposium, Brisbane 18th June 2010

Translational Research Excellence (TRX) conference, Brisbane 11-13th Oct 2010

International

Biotechnology Development Meeting, Oslo, Norway

Department of Medicine, Duke University, N.C.

Department of Medicine, Kumomoto University, Japan.

Genomics Research Department, GlaxoWellcome, Stevenage, UK

International Headache Congress, Rome, Italy

University of Hawaii, John A Burns School of Medicine, Hawaii

Southwest Foundation for Biomedical Research, October 2005, San Antonio, Texas USA

Pharmacogenomics Conference, Manipal, India, 17-19 March 2007

BIO conference, San Diego, June 2008

The 2nd World Congress on Controversies in Neurology (CONy) Athens, Greece, Oct 2008 The 3rd World Congress on Controversies in Neurology (CONy) Prague, Czech Republic, Oct 2009

Invited by University of Vienna to give seminar presentation "Molecular Genetics of Migraine" 7th Oct 2009, Vienna, Austria.

Invited to Malaysian Medical Research Colloquium to give seminar presentation 28-29th May 2010, Kuala Lumpur, Malaysia

COLLABORATIONS

1986-1989	Dept of Human Genetics, Australian National University (P.G.Board)
1986-1988	Division of Medical Genetics, UCLA Medical Centre (T.Mohandas)
1986-1989	Dept of Histopathology, The Adelaide Childrens Hospital (D.F.Callen)
1983-1989	Genetics Division, Childrens Hospital, Boston (S.Latt)
1987-1989	MRC Clinical and Population Cytogenetics Unit, Edinburgh (V.van Heyningen)
1987	Dept of Human Genetics, Yale University (K.K.Kidd)
1987-1989	Dechema Institute, Frankfurt-am-Main (A.J.Driesel)
1988-1998	Dept of Physiology, University of Sydney (B.J.Morris)
1994-1998	School of Mathematical Sciences, ANU (S.Wilson; J. Wicks)
1993-1998	Dept of Medicine, University of Queensland (M. Eadie, R.Gordon; M. West)
1998-2004 1993-2005	Dept of Statistics, Rockefeller University, New York (J. Ott, D. Nyholt) Instit Neurological Sciences, Prince of Wales Hospital (P.Brimage, P.
1993-2005	Goadsby)
1993-present	QLD Institute of Medical Research (A.Green; D. Nyholt, P. Visscher, S.
roce procent	MacGregor, M. Ghandi)
1997-2005	Molecular Medicine, Dept Medicine, Sydney University (G. Nicholson; J.
	Dawkins)
1995-present	Gold Coast Hospital (S. Weinstein; T. Kay; N. Grey; A. Parnham)
1993-present	Medical Science, Griffith Uni (J. Headrick; N. Morrison; D. Grice; S Ralph, D
	Maguire)
1999-present	Clinical Genetics, Royal Childrens' Hospital and University of QLD (J.
1007 0004	Macmillan)
1997-2001	Gemini Genomics Inc. Cambridge, UK
1999-2007 2002-2007	GlaxoSmithKline, Stevenage, UK and Melbourne, Australia
2002-2007	Sequenom, San Diego, USA Corbett Research, Queensland
2005-2008 2005-present	Southwest Foundation for Biomedical Research, USA (J. Blangero, J. Curran,
2000-present	M.P. Johnson, S. Rutherford & M. Carless)
2005-present	ESR Institidute, Wellington, NZ (R.A. Lea)
2005-present	Migco Pharmaceuticals Pty Ltd (Larry Stenswick)
2006-present	Italian National Research Council (F. Gianfrancesco & T. Esposito)
2006-present	Migraine Trust, London (A. MacGregor, A. Frith)
2006-present	Emerillon Ltd, Canada
2006-present	CBio Ltd, Queensland

RESEARCH FUNDING

Total	fundina:	~\$13.6	million
lulai	Turiuniu.	~ w 1 J . U	HIIIII

Total external funding: \$11.15 million

1985-1988	Nicholson, G.A., Griffiths, L.R. and McLeod, J.G. Muscular Dystrophy Association, U.S.A.	US \$79,461
	Gene Mapping of Chromosome 1	
1987-1988	Nicholson, G.A., Ross, D.A. and Griffiths, L.R.	US \$39,904
	Muscular Dystrophy Association, U.S.A.	
	Construction of neuronal-chromosome specific libraries	
1989-1991	Griffiths, L.R. and Morris, B.J.	\$153,385
	NH&MRC	

1994	Molecular genetic abnormalities in human hypertension Griffiths, L.R., Gaffney, P. T. and Irving, M.G. National Competitive Grant Support Scheme	\$8,000
1994	Molecular genetic basis of essential hypertension. Griffiths,L.R. Staff Research Initative Scheme	\$5,000
1994	Molecular genetic basis of human high blood pressure Griffiths, L.R. Staff Research Initative Scheme	\$7,604
1995-1997	Molecular genetics of migraine headaches Morris,B.J., Griffiths, L.R. and West, M.J. NHMRC	\$405,872
1995	Molecular genetics of essential hypertension Griffiths, L.R., Gaffney, P.T. and Goadsby P.J. National Competitive Grant Support Scheme	\$12,000
1995	Molecular genetics of migraine Griffith, L.R., Irving, M.G., Gray, B. and Gaffney, P.T. Major Research Facilities Fund	\$37,500
1995	GS-2000 DNA Fragment Analyser Morris,B.J.and Griffiths, L. R. Ramaciotti Foundation.	\$20,000
1995-1996	Automated Facility for Genome Scanning Irving MG and Griffiths, LR Staff Research Initiative Scheme	\$6,750
1996	Stromal regulation of invasion and metastasis in human breast cancer Griffiths, L.R., and Wilson, S.R. National Competitive Grant Support Scheme	\$14,800
1996	Molecular genetics of migraine Griffiths, L.R., Irving, M.G., Gray, A.B., and Gaffney, P.T. Major Research Facilities Fund	\$21,200
1997-1999	Molecular Equipment Griffiths, L.R., Haupt, L, Irving, M.G, Thomspon, E.W. Kathleen Cunningham Foundation (Aust. Cancer Fund)	\$126,000
1997	Matrix metalloproteinase expression in human breast cancer. Griffiths, L.R Government Employees Medical Research Fund	\$37,870
1997-2000	The role of serotonin related genes in migraine aetiology Griffiths, L.R. Gemini Research Ltd	\$2,037,330
1998-2000	Molecular genetic analysis of human hypertension Griffiths, L.R. NHMRC	\$217,971
1998	The role of serotonin related genes in migraine aetiology Griffiths, L.R. Griffith University Research Grant	\$12,000
1998	Molecular aberrations associated with solar keratoses development Griffiths, L.R. Griffith University Research Infrastructure Scheme	\$49,500
1998	ABI Prism Genetic Analyser Griffiths, L.R. & A. Lewis ARC Research Infrastructure Equipment and Facilities Grant (RIEFP)	\$260,000
1998-2001	Qld High Performance Computing Meta-Centre Pilot Project. Griffiths, L.R. GlaxoWellcome Ltd	\$1,497,925
2000-2001	Molecular genetics of migraine headaches Griffiths , L.R.	\$66,454

	GlaxoWellcome Ltd	
	Molecular genetics of migraine - additional work	
2001-2003	Griffiths, L.R.	\$390,000
	NHMRC	
2001	High resolution mapping of genomic regions implicated in migraine Griffiths, L.R.	\$26,353
2001	GlaxoSmithKline	φ20,333
	Migraine SNP Typing	
2001-2002	Griffiths, L.R.	\$613,260
	GlaxoSmithKline	
	Molecular genetics of migraine - Extension Studies	
2001	Griffiths, L.R. and Plumas, J.	\$13,000
	Australian French Embassy Research Exchange	
2001	Molecular and Immunological Studies of MS and Lymphoma Griffiths, L.R., Headrick, J., Morrison, N.A., Beacham, I.R., Korolik, V.	\$93 900
2001	Griffith University Research Infrastructure Program	ψ30,300
	Microarray Gene Scanner	
2001	Morrison, N.A., Beacham, I.R., Korolik, V., Griffiths, L.R., Headrick,	\$100,000
	J. and Perkins, A.	
	Griffith University Research Infrastructure Program Facility for	
	analysis of gene expression using real time quantitative DNA	
2001-2002	amplification	\$72,000
2001-2002	Headrick, J.P. and Griffiths, L.R. National Heart Foundation	\$72,000
	Regulation of Myocardial Gene Expression by Adenosine Receptors	
2001-2002	Griffiths, L.R.	\$16,000
	Rebecca L. Cooper Medical Research Foundation Limited	
	Gene Expression Analysis of Multiple Sclerosis	
2001-2002	Griffiths, L.R.	\$22,310
	Griffith University Research Development Grant Scheme	
2001-2002	Gene Expression Analysis of Multiple Sclerosis Griffiths, L.R	\$270,000
2001-2002	Griffith University Research Infrastructure Program	Ψ210,000
	Microarray Facility	
2002	Rose'Meyer, R., and Griffiths, L.R.	\$24,000
	Griffith University Research Grant Scheme	
	A study into the mechanisms causing age-related reductions in	
	vascular adensosine receptor function	
2002-2003	Griffiths, L.R., Gough, I., Wetzig, N and Pyke, C.	\$143,880
	The Wesley Research Institute Foundation Characterisation of Genes Associated with Sporadic Breast Cancer	
2003-2004	Griffths, L.R.	\$43,000
2000 200 1	Sequenom, Inc	Ψ10,000
	Mapping genes in hypertension	
2003-2004	Griffths, L.R.	\$20,000
	Gene DT Ltd.	
0000 0004	Cancer Diagnostics	040.000
2003-2004	Griffiths, L.R., Lea, R.A. and MacMillan, J. Brain Foundation	\$10,000
	Migraine and Stroke: Are There Common Risk Factors?	
2004-2005	Griffiths, L. R.	\$32,049
	NHMRC Equipment Grant	, , o r o
	Sanyo VIP Series Ultra low temp upright freezer & freezer storage	
	system (12 x URO 462 FB systems and 12 x URO 452 FB systems)	
2004-2005	Griffiths, L.R., Lea, R.A. & MacMillan, J.	\$15,000
	Brain Foundation	

2004-2005	The Role of the Estrogen Receptor Gene in Migraine Griffiths, L.R. & Fernandez, F. Griffith University Encouragement Grant Analysis of gene expression patterns in MS	\$15,000
2004-2005	Analysis of gene expression patterns in MS Griffiths, L.R. & Lea, R.A. Griffith University Research Grant Use of the Norfolk Island isolate to identify genetic risk factors involved in CVD	\$16,000
2004-2005	Crane, D.I., Clarke, F.M., Burns, D, Hughes, J, & Griffiths, L GURIP Capillary Analyser for the GU DNA Sequencing Facility	\$125,000
2005	Griffiths, L.R. CBio Ltd MS Clinical Trial Laboratory Analysis	\$33,000
2004-2007	Griffiths, L.R., Lea, R.A. & Lewis, A ARC Linkage Development of improved technologies for high throughput screening	\$258,150
2005-2007	of potential disease susceptibility genes. Griffiths, L.R. CBio Ltd+3300+	\$335,844
2007	Gene Expression Studies on Multiple Sclerosis Griffiths, L.R. Emerillon Ltd	\$50,000
2006-2007	Migraine channel gene studies Griffiths L.R. , Blangero, J. & Lea, R.A. National Heart Foundation Use of the Norfolk Island isolate to identify genetic risk factors for	\$110,000
2006-2007	cardiovascular disease Griffiths, L.R & Nyholt, D. QIMR-GU Seed Funding Migraine EST & PGR Gene Analysis	\$30,000
2006	L.R. Griffths MediGard Evaluation of retractable syringe prototype	\$2,000
2006	Griffiths, L.R., Lea, R.A. & MacMillan, J. Brain Foundation The interaction of genotype, vitamin status and homocysteine level on migraine severity	\$18,000
2006-2007	Griffiths, L.R. and Colson, N.J. GlaxoSmithKline Postgraduate Support Grant (Natalie Colson) The role of hormonal and vascular genes in migraine susceptibility	\$30,000+
2007	Prof JS Mattick; Prof MA Ragan; Prof BM Degnan; Prof V Brusic; Dr MJ Pheasant; Dr CA Wells; Prof LR Griffiths ; Dr JM Hogan; A/Prof P Roe; Prof P Timms; Dr BP Dalrymple ARC LIEF (LE0775726)	\$306,270
2007	Australian Mirror of the UCSC Genome Database and Browser Visscher, P.M. & Griffiths, L.R. GMRC Research Collaborative Scheme New methods to map disease genes in an admixture founder population	\$34,822
2007	Fernandez, F. and Griffiths, L.R . Griffith University New Researchers Grant (NRG) Scheme Investigation of the role of GABA related genes in migraine	\$10,000

2007	Griffiths LR, Lam A, Crane D, Broadley S, Wells C, Stadlin A, Morrison N, Tajouri L, Fernandez F, Lewohl J & Smith R. GURIP internal grant for 3130 Applied Biosystems 3130 Genetic Analyzer and PCR clean chambers	\$100,000
2006-2008	Griffiths, L.R., Blangero, J. & Lea, R.A NHMRC Medical Bioinformatics, Genomics & Proteomics Project Use of the Norfolk Island Genetic Isolate for Disease Gene Mapping.	\$978,500
2006-2008	Griffiths L.R. & Green M. Scholarship stipend from Anthony Herbert for Michael Green's PhD candidature (\$25Kpa for 3yrs)	\$75,000
2008	Griffiths, L.R. & Gandhi, M. QIMR-GMRC Research Collaboration Scheme The Griffith/QIMR Diffuse Large B Cell Lymphoma Project	\$20,000
2008	Griffiths LR, Neuzil J, Headrick J, Lewohl J, Ashton K, Lam A, Broadley S, Smith R. GURIP internal grant for Nucleic Acid Preparation and Visualisation Workstation	\$60,000
2008	Griffiths LR. GU encouragement grant Identification of genes influencing CVD risk and migraine via expression profiling in the Norfolk Island pedigree	\$15,000
2008 2009	Bequest for Cancer Research (unspecified) Mellick A.S. & Griffiths L.R. ARC Discovery Project The role of small non coding RNAs in bone marrow mediated tumour angiogenesis.	\$340,000 \$127,000
2009	Griffith L.R. QLD International Fellowhip An international strategy to identify the genes involved in migraine	\$30,000
2007-2010	Kilpatrick, T., Perreau, V., Foote, S.J., Griffiths, L.R., Moscato, P.A., Scott, R.J., Stankovich, J.M., Rubio, J.P., Bahlo, M., Booth, D.R., Butzkueven, H., Heard, R., Lechner-Scott, J., Wiley, J.S. ARC Linkage Project Identifying genes that influence clinical course and susceptibility in multiple sclerosis.	\$400,000
2008-2010	MacGregor, A & Griffiths, L.R . Migraine Trust UK. Menstrual Migraine Studies	£ 38,767
2008-2010	Griffiths L.R. Clinical Trial for Migraine (MigCo Pharmaceuticals) Project Consultancy Protocol Development	\$15,950
2009-2010	Griffiths L.R. & Lea R.A. Nutricia Research Foundation Grant Interaction of genotype, homocysteine and vitamin levels on migraine frequency and severity	\$89,314
2009-2010	Gandhi M (QIMR) & Griffiths L.R. Cancer Coucil Queensland Project Grant 2 years Biomolecular profiling in PET/CT directed diffuse large B cell lymphoma	\$164,000
2010	L.R.Griffiths, Lea R.A., Morrison N., Broadley S. et al. GURIP internal grant for Illumina Bead Array Reader	\$100,00
	Current Funding	
2009-2011	Griffiths L.R., Lea R.A., Goring H., Curran J. & Blangero J. NHMRC Project Grant 3 years Use of expression profiling to identify genes influencing carsdiovascular risk in the NI population isolate.	\$671,500

2009-2011	Griffiths L.R. Intl Science Linkages, from Dept Innovation, Sci & Research An intl strategy to identfy the genes involved in migraine	\$341,543 AUD
2009-11	A. Macgregor & L.R.Griffiths Merck, Sharp & Dohme (MSD)	£ 79,275
2010-2011	A case-control study of the molecular genetics of menstrual migraine Griffiths L.R. Corbett Philanthropic support "Molecular Genetic Research" incl postdoctoral salary (2 yrs) and PhD stipend (3 years) Griffiths L.R. , Neuzil J. Haupt L .	\$200,000
2011-2015	Philanthropic donation from Clem Jones Estate in support of "Mesenchymal Stem Cell Research"	\$2M
2011	Griffiths L.R. (Gold Coast Node) ARC EIF Super Science Initiative – Translating Health Discovery Grant: A QLD node of Translating Health Australia (\$700K for GHI/GRC)	\$12.5M
2011-2014	Griffiths L.R., Lea R.A., Chambers S., Youl P. ASI Biobank Project: GU Strategic Investment Funds A genetic approach to investigate clinical & psychosocial outcomes for women with breast cancer.	\$389,700
Scholarship	o/Fellowship Funding	
2009-2011	Multiple Sclerosis Research Australia – Postgraduate scholarship to Jason Mackenzie (supervised by Lyn R. Griffiths) "Investigation of	\$78,000
2010-2012	NHMRC Postgraduate Scholarship to Emily Camilleri (supervised by Lyn R. Griffiths) Defining the immuno-regulation role of FOXP family members in Non-Hodgkins lymphoma	\$56,188
2006-2008	Use of the Norfolk Island Genetic Isolate for Migraine Disease Gene Mapping NHMRC "Dora Lush" Postgraduate Scholarship to Hannah Cox	\$73,833
2005-2007	Use of the NI genetic isolate for migraine disease gene mapping. MS Society PhD Fellowship (Attila Szvetko) Determination of gene expression profiles in MS affected brain tissue	\$58,000
2005-2007	GU Postdoctoral Fellowship (Dr Lotti Tajouri) Molecular Genetic Studies of Multiple Sclerosis	\$55,000pa

Grants Pending:

NHMRC APP1024735 Project Grant "Use of epigenetic profiling to identify genes influencing cardiovascular risk in the Norfolk Island population isolate." 3 years \$ CIA

NHMRC APP1024737 Project Grant "Variation in the mitochondrial genome and risk of metabolic disease traits in the isolated population of Norfolk Island" 3 years CIA \$

NHMRC APP1024738 Project Grant "Identifying the genetic cause of FSGS and complete heart block in an affected Australian family" 2 years \$ CIA

NIH Grant "Genetic basis for nutraceutical therapy of migraine with aura". PA-10-006, "Mechanisms, Models, Measurement, & Management in Pain Research (R01)". 2011- 2015 \$1,277,540AUD

ARC – Discovery Grant with David Shum NIH Grant with Sue Rutherfor Seigel

PATENTS

1997 **Griffiths**, L.R.

United States Patent No: 5,688,647

Detection of dinucleotide repeat polymorphism in exon 18 of LDL receptor gene for

determining predisposition to obesity.

2000 Griffiths, L.R., Rutherford, S. and Morris, B.

United States Patent No: 6,156,510

Polymorphisms in a microsatellite region of a glucocorticoid receptor gene.

(Gemini Genomics Ltd Licensed)

2001 Griffiths, L.R.

Patent Application: PCT/GB99/01450

Polymorphism in a Nitric Oxide Synthase Gene

(Gemini Genomics Ltd Licensed)

2004 Griffiths, L.R., Lea, R.A., Colson, N.J.

Provisional Patent Filed: September 2004 PCT/AU2004/001248

Patent Application: PCT for Hormone Receptor Genes & Migraine Susceptibilty

(MigCo Ltd Licensed) (GU Ref: 12536PC2-MLE)

2008 Griffiths, L.R. Lea, R., Fernandez, F.

Provisional Patent Filed: December 2008 PCT/AU2008/000877

Patent Application: Dopamine-Beta-Hydroxylase Genetic Polymorphism And Migraine

(GU Ref:18829PC1-MLE)

2010 Griffiths, L.R., Lea, R, Cox, H.C.

Provisional Patent Filed: Semtember 2010 PCT/AU2010/903979 Prioritised genetic polymorphisms and migraine susceptibility

(Patent Attorney Ref No: 22476AU1-DEC/EAL)

In Prep Identification of disease signatures using a new bioinformatic approach.

2011

PROFESSIONAL SOCIETIES

Member Australian Society for Medical Research
Member American Society Human Genetics

Member Australian Society for Biochemistry and Molecular Biology
Member High Blood Pressure Research Council of Australia

Member Australian Headache Society

Member Human Genetics Society of Australasia

President HGSA Queensland Branch

Member International Congress for Human Genetics SPC 2011

PROFESSIONAL APPOINTMENTS

Director	Australian Society for Medical Research	2000-2001
Convenor	Australasia Gene Mapping Conference, Cairns	July 2001
Convenor	ASMR National Conference, Gold Coast	Nov 2001
Member	Planning Committee Australasian GeneMapping Conference, Hobart	2002
Member	Curriculum Planning Group, School of Medicine, Yr 1 & 2	2004-2005
Member	Council of the Queensland Institute of Medical Research	2002-present
Chair	Scientific Program Committee, 11 th ICHG, Brisbane Aug 2006	2003-2006

Member	Griffith University Innocence Project Advisory Board	2003-present
Member	Griffith University Pharmacy Advisory Board	2004-present
Chair	Griffith Health Research Committee	2004-present
Member	Ministerial Health & Medical Research Committee	2004-2006
Member	Gold Coast Hospital Foundation Board	2006-present
Member	CNN Future Summit Board of Directors	2006-present
Member	E-Health Research Centre Advisory Committee (CSIRO & QLD Govt.)	2006-present
Member	NHMRC Biomedical Training Fellowships Assessment Panel	2006
Member	Australian-US Fulbright Commisson Fellowships Assessment Panel	2006-present

SERVICE

RESEARCH OVERVIEW

Grants

71 Successful (25 NCG, 7 Industry)

Students

Postgraduate: 27 completed, 24 PhD, 3 MPhil - 14 Current Honours: 38 completed, 27 Hons I, 9 Hons IIA, 2 Hons IIB - 0 Current

Publications

196 (refereed and published or in press)3 refereered book chapters14 (submitted, under review)

THESES

BSc Honours Thesis: Leigh's Disease: Biochemical Studies.

PhD Thesis: Chromosome 1 Gene Mapping with reference to Charcot-Marie-Tooth Disease.

PUBLICATIONS - Refereed

H index: (2003-2008) 15 [25 for 1996-2008] As at 31^{st} Jan 2011 H = 31, Citations Total = 2487 No. citations (2003-2008) 2139

189 papers published in international journals, after regular submission and review. (Plus 361 abstracts: 225 Australian scientific meetings, 104 International scientific meetings.)

1980

1. Schofield, P.J., **Griffiths,L.R.**, Rogers,S.H. and Wise,G.(1980) An improved method for the assay of platelet pyruvate dehydrogenase. *Clin.Chim. Acta* 108: 219-227.

1982

2. Nicholson, G.A. and **Griffiths, L.R.** (1982) Acetylcholine receptor antibody in the diagnosis and management of myasthenia gravis. *Clin.Exp.Neurol.*.18: 61-69.

1983

- 3. Nicholson, G.A. and **Griffiths, L.R.** (1983) A sensitive assay for creatine kinase in serum samples dried on paper: enhanced thermal stability of the dried enzyme. *Pathology* 15: 21-25.
- 4. Nicholson, G.A. and **Griffiths, L.R.** (1983) Comparison of diagnostic tests in myasthenia gravis. *Clin. Exp. Neurol.* 19: 45-49.
- 5. Nicholson, G.A., McLeod, J.G. and **Griffiths, L.R.** (1983) The acetylcholine receptor antibody in the diagnosis of myasthenia gravis. *Med. J. Aust.* 2: 334-337.

1987

6. **Griffiths, L.R.,** Nicholson, G.A., Ross, D.A., Zwi, M.B., McLeod, J.G., Mohandas, T., and Morris, B.J. (1987) Regional chromosomal assignment of human renin gene to 1q12->qter and use in linkage studies in Charcot-Marie-Tooth disease. *Cytogenet. Cell Genet.* 45: 231-233.

1988

7. **Griffiths, L.R.**, Zwi, M.B., McLeod, J.G. and Nicholson, G.A. (1988) Chromosome 1 linkage studies in Charcot-Marie-Tooth neuropathy Type 1. *Am. J. Hum. Genet*. (IF 12.340) 42: 756-771. **(4 Citations)**

- 8. Morris, B. J. and **Griffiths, L. R.** (1988) Frequency in hypertensives of alleles for a RFLP associated with the renin gene. *Biochem. Biophys. Res. Comm.* 150: 219-224.
- 9. **Griffiths, L.R.**, Ross, D.A., Mesterovic, N., McLeod, J.G. and Nicholson, G.A. (1988) A chromosome 1 *Bgl*l RFLP for the LR67 anonymous DNA segment (DIS26). *Nuc. Acids Res.* (IF 7.260) 16: 7752.

- Griffiths, L.R., Zwi, M.B., McLeod, J.G., Ross, D.A. and Nicholson, G.A. (1989) Heterogeneity evidence and linkage studies on Charcot-Marie-Tooth disease. *Neurolog y* (IF 5.973) 39: 280-281.
- 11. **Griffiths, L.R.**, Board, P.G., Zwi, M.B., Morris, B.J., McLeod, J.G. and Nicholson, G.A. (1989) The B subunit of coagulation factor XIII is linked to renin and the Duffy blood group to alphaspectrin on human chromosome 1. *Hum. Heredl.* (IF 3.176) 39: 107-109.

1990

- 12. **Griffiths, L.R.**, Zwi, M.B., McLeod, J.G. and Nicholson, G.A. (1990)Linkage studies on hypertrophic motor and sensory neuropathy type 1. In: *Neurology & Neurobiology vol. 53. Charcot-Marie-Tooth Disorders: Pathophysiology, Molecular Genetics and Therapy*, Eds Lovelace, R.E. and Shapiro, H.K., Alan R. Liss, Inc., New York, pp 269-277.
- 13. **Griffiths, L.R.**, Zwi, M.B., Mesterovic, N., Ross, D.A., Board, P.G., Callen, D.F., Mohandas, T., Buckland, R., Fletcher, J. M., McLeod, J.G. and Nicholson, G.A. (1990) Isolation and use of chromosome 1 probes for linkage studies on Charcot-Marie-Tooth disease. *Ann. Hum. Genet.* (IF 2.680) 54: 31-37.

1991

- 14. **Griffiths, L.R.**, Zee, R.Y.L., Ying, L-H. and Morris, B.J. (1991) A locus on the long arm of chromosome 1 as a possible cause of essential hypertension. *Clin. Exp. Pharmacol. Physiol.* (IF 1.672) 18: 363-366.
- 15. Zee, R.Y.L., Ying, L-H., Morris, B.J. and **Griffiths, L.R.** (1991) Association and linkage analyses of restriction fragment length polymorphisms for the human renin and antithrombin III genes in essential hypertension. *J. Hypertens* (IF4.871) 9: 825-830.
- 16. Ying, L-H., Zee, R.Y.L., **Griffiths, L.R.** and Morris, B.J. (1991). Association of an RFLP for the insulin receptor gene, but not insulin, with essential hypertension. *Biochem. Biophys. Res. Comm.* 181: 486-492.

1992

- 17. Zee, R.Y.L., Lou, Y.K., **Griffiths, L.R.** and Morris, B.J. (1992). Association of an insertion/deletion polymorphism of the angiotensin I-converting gene with essential hypertension. *Biochem. Biophys. Res. Comm.* 184: 9-15.
- 18. Zee, R.Y.L., Morris, B.J. and **Griffiths, L.R.** (1992). Association analyses of RFLPs for the □2 and β₁-adrenoceptor genes in essential hypertension. *Hypertens. Res.* (IF 1.731) 15:57-60.
- 19. Zee, R.Y.L., **Griffiths, L.R.** and Morris, B.J. (1992). Marked association of a RFLP for the low-density lipoprotein receptor gene with obesity in essential hypertension. *Biophys. Res. Comm.* 189: 965-971.

1993

20. Ying, L-H., Zee, R.Y.L., **Griffiths, L.R.** and Morris, B.J. (1993). Non-linkage of insulin receptor locus with essential hypertension in an affected pedigree. *Hypertens. Res.* (IF 1.731) 16:25-28.

- 21. Morris, B.J., Zee, R.Y.L., Ying, L-H.and **Griffiths, L.R.** (1993). Independent, marked associations of alleles of the insulin receptor and dipeptidyl carboxylase 1 genes with essential hypertension. *Clin. Sci.* (IF 2.168) 85: 189-195.
- 22. Zee, R.Y.L., Lou, Y.K., **Griffiths, L.R.** and Morris, B.J. (1993). Molecular genetic analyses of RFLPs for PCR-amplified growth hormone gene, renal kallikrein gene and atrial natriuretic factor gene in essential hypertension. *Hypertens. Res.* (IF 1.731) 16:113-120.

- 23. Zee, R.Y.L., Schrader, A.P., Robinson, B.G., **Griffiths, L.R.** and Morris, B.J. (1995). Association of *HincII* RFLP of low density lipoprotein receptor gene with obesity in essential hypertensives. *Clin.Genet.* (IF 2.367) 47:118-121.
- 24. **Griffiths, L.R.**, Nyholt, D.R., Curtain R.P., Gaffney, P.T. and Morris B.J. (1995) Cross-sectional study of a microsatellite marker in the low density lipoprotein receptor gene in obese normotensives. *Clin. Exp. Pharmacol & Physiol* (IF 1.672) 22:496-498.

1996

- 25. Friend, L.R., Morris, B.J., Gaffney, P.T., and **Griffiths, L.R.**, (1996) Examination of the role of nitric oxide synthase and renal kallikrein as candidate genes for essential hypertension. *Clin Exp. Pharmacol and Physiol* (IF 1.672) 23: 564-566
- 26. Haupt, L.M., Thompson, E.W., **Griffiths, L.R.** and Irving, M.G., (1996). *IS*-RT-PCR Assay detection of MT-MMP in a human breast cancer cell line. *Biochem Mol Biol Intl* 39:553-561
- 27. Nyholt, D.R., Curtain, R.P., Gaffney, P.T., Brimage, P, Goadsby P.J. and **Griffiths L.R.** (1996) Migraine association and linkage analyses of the human 5-hydroxytryptamine (5HT_{2A}) receptor gene. *Cephalagia* (IF 3.133) 16: 463-467.

1997

- 28. **Griffiths, L.R.,** Nyholt, D.R., Curtain, R. P., Goadsby, P.J. and Brimage, P.J. Migraine association and linkage studies of an endothelial nitric oxide synthase (NOS₃) gene polymorphism. *Neurology* (IF 5.973) (1997) 49: 614-617.
- 29. Rutherford, S, Nyholt, D.R., Curtain, R.P., Quinlan, S.R., Gaffney, P.T., Morris, B.J. and **Griffiths, L.R.** Association of a low density lipoprotein receptor microsatellite variant with obesity. *Int J Obesity* (IF 3.459) (1997) 21: 1032-1037.
- 30. Morris, B.J., Jeyasingam, C.L., Zhang, W., Curtain, R.P., and **Griffiths, L.R**,. Influence of family history on frequency of glucagon receptor Gly40Ser mutation in hypertensive subjects. *Hypertension* (IF 5.342) (1997) 30:1640-1641.

- 31. Lea., R.A., Selvey, S., Ashton, K.J., Curran, J.E., Gaffney, P.T., Green, A.C., and L.R. Griffiths. 1998 The role of gluathione S-transferase (GSTM1) genotypes in susceptibility to solar keratoses. *Journal of the American Academy of Dermatology.* (IF 2.358) 38: 631-633. (8 citations)
- 32. Nyholt, D.R., Dawkins, J.L., Brimage, P.J., Goadsby, P.J., Nicholson, G..A. and **Griffiths L.R.** 1998 Evidence for an X-linked genetic component in familial typical migraine. *Human Molecular Genetics* (IF 7.801) 7: 459-463. (53 Citations)
- 33. Cook, J.L, Khan, K., Harcourt, P.R., Kiss, Z.S., Fehrmann, M.W., Wark, J.D. and **Griffiths, L.R.** Patellar tendon ultrasonography in asymptomatic active sports medicine people reveals hypoexhoic regions: a study of 320 tendons. *Clin J Sports Med* 8: 73-77.
- 34. Rogers, K.L., Grice, I.D., Mitchell, C.J. and **Griffiths, L.R.** HPLC determined alkamide levels in Australian grown *Echinacea* spp. *Australian Journal of Experimental Agriculture* 38(4) 403-408.

- 35. Nyholt, D.R., Lea, R.A., Goadsby, P.J., Brimage, P.J. and **Griffiths, L.R.** Familial typical migraine: linkage to chromosome 19p13 and evidence for genetic heterogeneity. *Neurology* (IF 5.973) 50(5): 1428-1432.
- 36. Morris, B.J. and **Griffiths, L.R.** Scanning the genome for essential hypertension loci. (Invited review; Fetschrift for John P. Loghlan) *Clin Exp Pharmacol and Physiol* (IF 1.672) 24 S72-S78.
- 37. Morris, B.J. and **Griffiths, L.R.**. Genes for essential hypertension: the first decade of research. In: Progress in Hypertension, volume 4: Molecular, Genetic & Immune Predispostion to Hypertension. Eds. Frossar PM, Parvez SH, VSP Int Press, Zeist, The Netherlands.
- 38. Rutherford, S., Boatwright, SD., Samwell, G., Morris, B.J. and **Griffiths L.R.** A linkage and cross-sectional study of hypertension and obesity using a poly (A) Alu repeat polymorphism at the glucagon receptor gene locus (17q25). *Clinical and Exp. Pharmacol and Physiol.* (IF 1.672) 25, 627-629.
- 39. Benjafield, A.V., Jeyasingam, C.L., Nyholt, D.R., **Griffiths, L.R.** and Morris, B.J. G-Protein B3 Subunit Gene (GNB3) Variant in Causation of Essential Hypertension. *Hypertension*. (IF 5.342) 32, 1094-1097.

- 40. Grice, I.D., Salzmann, M., Stiff, I. and Griffiths, L.R. Simultaneous determination of Aldrin, Dieldrin, Endrin Heptachlor, and p, p⁹- DDT in plant extracts using a novel high performance liquid chromatography method. *Journal of Liquid Chromatography and Rel. Technol.* (IF 0.836) 22(15): 2337-2344.
- 41. Curran, J.E., Vaughan, T., Lea, R.A., Weinstein, S.R., Morrision, N.A. and **Griffiths, L.R.** 1999 Association of a vitamin D receptor polymorphism with sporadic breast cancer development. *International Journal of Cancer* (IF 4.416) 83: 723-726. (70 Citations)

2000

- 42. Rogers, K.L., Grice, I.D. and **Griffiths, L.R.** Inhibition of platelet aggregation and 5-HT release by extracts of Australian plants used traditionally as headache treatments. *European Journal of Pharmaceutical Sciences* (IF 1.949) 9:(4) 355-363.
- 43. Curran, J.E., Weinstein, S.R. and **Griffiths, L.R.** Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and breast cancer susceptibility. *Cancer Letters ERA A* (IF 2.938) 153; 113 120
- 44. Cook, J.L., Khan, K.M., Kiss, Z.S., Purdam, C.R., **Griffiths, L.R.** Prospective imaging study of asymptomatic patellar tendinopathy in elite junior basketball players. *J Ultrasound Med.* 19(7):473-9.
- 45. Cook, J.L., Khan, K.M., Kiss, Z.S., **Griffiths L.R.** Patellar tendinopathy in junior basketball players: a controlled clinical and ultrasonographic study of 268 patellar tendons in players aged 14-18 years. *Scand J Med Sci Sports* 10(4):216-20.
- 46. Nyholt, D.R., Curtain, R.P. and **Griffiths, L.R**. Familial typical migraine: Significant linkage and localisation of a gene to Xq24-28. *Human Genetics* (IF 4.328) 107:18 23.
- 47. Lea, R.A., Dohy, A., Jordan, K., Quinlan, S., Brimage, P.J. and **Griffiths, L.R.** Evidence for allelic association of the Dopamine B-Hydroxylase Gene (DBH) with susceptibility to typical migraine. *Neurogenetics ERA B* (IF 3.11) 3:35 40.
- 48. Grigg, R.F., Lea, R.A., Sullivan, A.A., Curtain, R.P., MacMillan, J. and **Griffiths, L.R.**. Identification of a Novel C144F Mutation in the *Notch3* Gene in an Australian CADASIL pedigree. *Human Mutation* (IF 6.845) 16(5): 449 50.

2001

49. Lea, R.A., Curtain, R.P., Shepherd, A.G., Brimage, P.J. and **Griffiths, L.R.** 2001. No evidence for involvement of the human inducible nitric oxide synthase (*i*NOS) gene in susceptibility for typical migraine. *Am. J. Med. Genet.* (IF 3.659) 105: 110 - 113.

- 50. Cook, J.L., Khan, K.M., Kiss, Z.S., Purdam, C.R. and **Griffiths, L.R.** 2001. Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. *Br. J. Sports Med*.35: 65 69.
- 51. Box, N.F., Duffy, D.L., Irving, R., Russell, A., Chen, W., **Griffiths, L.R.**, Parsons, P.G., Green, A.C., Sturm, R.A. 2001. Melanocortin 1 receptor genotype is a risk factor for basal and squamous cell carcinoma. *Journal of Investigative Dermatology* (IF 4.238) 116(2): 224 229.
- 52. Carless, M.A., Curran, J.E., Gaffney, P., Weinstein, S.R. and **Griffiths, L.R.** 2001. Association analysis of somatostatin receptor (SSTR1 and SSTR2) in susceptibility to breast cancer and solar keratosis. *Cancer Letters ERA A* (IF 2.938) 166: 193-197.
- 53. Curran, J.E., Lea, R.A., Rutherford, S., Weinstein, S.R. and **Griffiths, L.R.** 2001. Association of Estrogen Receptor and Glucocorticoid Receptor Gene Poymorphisms with Sporadic Breast Cancer. *International Journal of Cancer* (IF 4.416) 95(4):271-5. (27 Citations)
- 54. Grice, I.D., Ferreira, L.A. and **Griffiths, L.R.** 2001. Identification and simultaneous analysis of harmane, harmine, harmol, isovitexin and vitexin in *Passiflora incarnta* extracts using a novel HPLC method. *J. Lig. Chromato. Rel. Tech.* 24(16): 2513-2523.
- 55. Ashton, K.J., Williams, B.F., Weinstein, S.R., Maguire, D.J. and **Griffiths, L.R.** 2001. Molecular cytogenetic analysis of basal cell carcinoma representative DNA using comparative genomic hybridisation. *Journal of Investigative Dermatology* (IF 4.238) 117(3): 683-686. (14 Citations)
- 56. Rogers, K.L., Grice, I.D. and **Griffiths, L.R.** 2001. Modulation of In-Vitro Platelet 5-HT Release by Species of Erythrina and Cymbopogon. *Life Sciences* (IF 2.158) 69: 1817-1829.
- 57. Rutherford, S., Johnson, M.P., Curtain, R.P. and **Griffiths, L.R.** 2001. Chromosome 17 and the inducible nitric oxide synthase gene in human essential hypertension. *Hum. Genet.* (IF 4.328) 109: 408-415.
- 58. Selvey, S., Thompson, E.W., Matthaei, K., Irving, M.G. and **Griffiths, L.R.** 2001. β-actin An unsuitable internal control for RT-PCR. *Mol. Cell. Probes* (IF 2.019) 15(5); 307-311
- 59. Lea, R.A., Curtain, R.P., Hutchins, C., Brimage, P.J. and **Griffiths, L.R.** 2001. An investigation of the *CACNA1A* gene as a candidate for typical migraine susceptibility. *Am. J. Med. Genet.* (IF 3.659) 105(8): 707-712.
- 60. McCarthy, L.C., Hosford, D.A., Riley, J.H., Bird, M.I., White, N.J., Hewtt, D.R., Peroutka, S., Griffiths, L.R., Boyd, P.R., Lea, R.A., Bhatti, S.M., Hosking, L.K., Hood, C.M., Jones, K.W., Handley, A.R., Rallan, R., Lewis, K.F., Yeo, A.J.M., Williams, P.M., Priest, R.C., Khan, P., Donnelly, C., Lumsden, S.M., O'Sullivan, J., See, C.G., Smart, D.H., Shaw-Hawkins, S., Patel, J., Lnagrish, T.C., Feniuk, W., Knowles, R.G., Thomas, M., Libir, V., Montgomery, D.S., Manasco, P.K., Xu, C., Dykes, C., Humphrey, P.P.A., Roses, A.D., and Purvis, I.J. 2001. Single nucleotide polymorphism (SNP) alleles in the INSR gene are associated with typical migraine. Genomics (IF 3.840) 78(3): 135-149.
- 61. Smith, R.A., Curran, J.E., Weinstein, S.R. and **Griffiths, L.R.** 2001. Investigation of glutathione S-transferase zeta and the development of sporadic breast cancer. *Breast Cancer Research* (IF 2.975) 3: 409-411
- 62. Cook, J.L., Khan, K.M. Kiss, Z.S., Coleman, B.D. and **Griffiths, L.R.** 2001. Asymptomatic hypoechoic regions on patellar tendon ultrasound: A 4-year clinical and ultrasound followup of 46 tendons. *Scand J Med Sci Sports* (IF 1.717) 11: 321-327.

- 63. **Griffiths L.R.**, Authors response to: Critique of "Chromosome 17 and inducible nitric oxide synthase gene in human essential hypertension" by Rutheford et. al *Human Genetics* (IF 4.328) 2002 110(1):100-3
- 64. Shepherd, A.G., Lea, R.A., Hutchins, C., Jordan, K., Brimage, P.J. and **Griffiths, L.R.** 2002. Dopamine receptor genes and migraine with or without aura: an association study. *Headache ERA B* (IF 2.307) 42(5):346-351.
- 65. Lea, R.A., Shepherd, A.G., Curtain, R.P., Nyholt, D.R., Quinlan, S., Brimage, P.J. and **Griffiths, L.R.** 2002. A typical migraine susceptibility region localises to chromosome 1q31. *Neurogenet* (IF 3.115) 4:17-22.

- 66. Rogers, K.L., Fong, W. F, Redburn, J., **Griffiths, L.R.** 2002. Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca ²⁺ channels. *Eur J Pharm Sc* (IF 1.949) 15: 321-330
- 67. Mellick, A.S., Day, C.J., Weinstein, S.R., **Griffiths, L.R.** and Morrison, N.A. 2002. Differential gene expression in breast cancer cell lines and stroma tumour differences in microdissected breast cancer biopsies revealed by display array analysis. *Int Journal of Cancer* (IF 4.416) 100: 172-180 (22 Citations)
- 68. Curran, J.E., Weinstein, S.R. and **Griffiths, L.R.** 2002. Polymorphic variants of NFKB1 and its inhibitory protein NFKBIA and their involvement in sporadic breast cancer. *Cancer Letters ERA A* (IF 2.938) 188: 103-107.
- 69. Carless, M.A., Lea, R.A., Curran, J.E., Appleyard, B., Gaffney, P., Green, A. and **Griffiths, L.R**. 2002. The GSTM1 null genotype confers an increased risk for solar keratosis development in an Australian caucasian population. *Journal of Investigative Dermatology*. (IF 4.238) 119:1373-8. (9 citations)

- 70. Smith RA, Curran JE, Weinstein ST, **Griffiths LR**, 2003. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast tumour tissue. *Breast Cancer Research* 5:9-12 (IF 2.975)
- 71. Johnson, M.P., Lea, R.A., Curtain, R.P., MacMillan, J.C., and **Griffiths, L.R.** 2003. An investigation of the 5- HT_{2c} receptor gene as a migraine candidate gene. $Am\ J$ of Medical Genetics $B\ 117:86-9\ (IF\ 2.0)\ (17\ citations)$
- 72. Grice, I.D., Garhnam, B., Pierens, G., Rogers, K., Tindal, D., & **Griffiths, L.R.** 2003. Isolation of two phenylethanoid glycosides from eremophila gilesii. *J. of Ethnopharmacology*86:123-5.
- 73. Rose'Meyer, R.B., Mellick, A.S., Garnham, B.G., Massa, H.M. and **Griffiths, L.R.** 2003. The measurement of adenosine and estrogen receptor expression in rat brains following ovariectomy using quantitative PCR analysis. *Brain Research Protoc.* 11:9-18. (IF 1.818) (27 citations)
- 74. Bellis, C., Ashton, K.J., Freney, B., Blair, B., and **Griffiths, L.R**. 2003. A molecular genetic approach for forensic animal species identification. *Forensic Science International* 134: 99-108 (IF 2.015) (27 citations)
- 75. Ashton, K.J., Weinstein, S.R., Maguire, D.J., **Griffiths, L.R.** 2003. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. *Archives of Dermatology*. 139:876-82. (IF 3.187) (20 citations)
- 76. Rogers, K.L., Lea, R.A., and **Griffiths, L.R.**, 2003. Molecular mechanisms of migraine: prospects for pharmacogenomics. *American Journal of Pharmacogenomics* 3:329-43
- 77. Lea, R.A., Hilton, D.A., MacMillan, J.C. and **Griffiths, L.R.** 2003. An analysis of clinical characteristics in migraine affected pedigrees. *Cephalalgia* 23:808-813 (IF 3.133)
- 78. Mellick, A.S., Blackmore, D., Weinstein, S.R., and **Griffiths, L.R.** 2003 An assessment of MMP and TIMP gene expression in cell lines and stroma-tumor differences in microdissected breast cancer biopsies. *Tumour Biology* 7 24:258-270 (IF 2.34)
- 79. Tajouri, L., Mellick, A.S., Ashton, K., Tannenberg, A.E., Tourtellotte, W., and **Griffiths, L. R**. 2003. Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. *Molecular Brain Research* 119:170-183 (IF 1.997) (38 citations)
- 80. Hyun, C., Filippich, L., Lea, R.A., Shepherd, G., Hughes, I., and **Griffiths, L.R.** 2003. Prospects for whole genome linkage disequilibrium mapping in domestic dog breeds. *Mammalian Genome* 14:640-9 (IF 2.658) (17 citations)
- 81. Maguire, D.J., Lintell, N.J., McCabe, M., Griffiths, L.R., and Ashton, K. 2003. Genomic and phenomic correlations in respiration of basal cell carcinomas. *Adv. Exp. Med. Biol.* 540:251-6
- 82. Purdam C.R., Crichton K., Fehrmann M., Grant M., **Griffiths L.**, Harcourt P., Kellaway D., Kiss Z., Tress B., Cook J.L., Visentini P., Wark J., Young D., Hopper D.M., Khan K.M., Barlett J., Bass S., Bonar F., Coleman B. (2003) Discriminative ability of functional loading tests for adolescent jumper's knee, *Physical Therapy in Sport* 4 (1) 3-9 (13 citations)

- 83. Rutherford, S., Johnson, M.P. and **Griffiths, L.R.**, 2004. Sibpair studies implicate Chromosome 18 in essential hypertension. *American Journal of Medical Genetics A* 126(3): 241-7. (IF 2.0) (5 citations)
- 84. Tajouri, L. Ferreira, L., Ovcaric, M., Curtain, R., Lea, R.A., Csurhes, P., Pender, M., and **Griffiths, L.R**. 2004. Investigation of a neuronal nitric oxide synthase gene (NOS1) polymorphism in a multiple sclerosis population. *Journal of the Neurological Sciences ERA B* 218;(1-2) 25-8 (IF 2.366) (4 citations)
- 85. Jenner, T.L., Mellick, A.S., Harrison, G.J., **Griffiths, L.R**. and Rose'Meyer, R.B. 2004. Age related changes in adenosine receptor expression. *Mechanisms of Ageing and Development*. 125(3); 211-7. (IF 2.866) (7 citations)
- 86. Johnson, M.P., Haupt, L.M., and **Griffiths, L.R**. 2004 Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. *Nucleic Acids Research* 32(6) e55: 1-9 (IF 7.260) (31 citations)
- 87. Lea, R.A., Ovcaric, M., Sundholm, J., MacMillan, J. and **Griffiths, L.R.** 2004. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. *BMC Medicine* 2(1):3:1-8 (IF 3.21) (31 citations)
- 88. Colson, N., Lea R.A., Quinlan S., Brimage P., MacMillan J., and Griffiths, L.R. 2004. The estrogen receptor (Erα) G594A polymorphism is associated with migraine susceptibility in two independent caucasian populations. *Neurogenetics ERA B* 5(2):129-33 Epub 2004 (IF 3.115) (33 citations)
- 89. Wright, K., Tajouri, L., Lea, R.A., Ovcaric, M., Heux, S., Headrick, J., and **Griffiths, L.R.** 2004. The role of adenosine-related genes variants in susceptibility to essential hypertension. *Journal of Hypertension* 22(8): 1519-22 (IF 4.871)
- 90. Tajouri, L., Martin, V., Ovcaric, M., Curtain, R., Lea, R.A., Csurhes, P., Pender, M., and **Griffiths**, **L.R**. 2004 Investigation of an inducible nitric oxide synthase gene (NOS2A) polymorphism in a multiple sclerosis population. *Brain Research Bulletin ERA B* 64(1):9-13 (IF 2.429) (7 citations)
- 91. Selvey, S. Haupt, L.M., Thompson, E.W., Matthaei, K.I., Irving, M.G. and **Griffiths, L.R**. 2004. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines. *BMC Cancer ERA B* 4(1):40-9 (IF 2.290) (9 citations)
- 92. Curtain, R., Lea, R.A., Quinlan, S., Bellis., Tajouri, L., Hughes, R., MacMillan, J., and **Griffiths, L.R.** 2004. Investigation of the Low Density Lipoprotein Receptor Gene and Cholesterol as a Risk Factor for Migraine. *Journal of the Neurological Sciences ERA B* 227(1):95-100 (IF 2.366) (5 citations)
- 93. Heux, S., Morin, F., Lea, R.A., Ovcaric, M., Tajouri, L., and **Griffiths, L.R.** 2004. The methylentetrahydrofolate reductase (MTHFR) gene variant (C677T) as a risk factor for essential hypertension. *Hypertension Research* 27(9):663-7 (IF 1.731) (11 citations)
- 94. Kammerer, S., Roth, R.B, Reneland, R., Marnellos, G., Hoyal, C.R., Markward, N.J., Ebner, F., Kiechle, M., Schwarz-Boeger, U., **Griffith, L.R.,** Ulbrich, C., Chrobok, K., Forster, G., Praetorius, G.M., Meyer, P., Rehbock, J., Cantor, C.R., Nelson, M.R., Braun, A. (2004) Large-scale association study identifies *ICAM* gene region as breast and prostate cancer susceptibility locus. *Cancer Research* 64(24) 8906-10 (IF 7.690) (38 citations)
- 95. Carless, M., Ashton, K., **Griffiths, L.R**. 2004. Cytogenetic Analysis of Basal Cell Carcinoma and Squamous Cell Carcinoma. Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas. Jörg Reichrath (Publication date 2004-10-01 ISBN 1-58706-198-8)

- 96. Ashton, K.J., Carless, M.A. & **Griffiths, L.R.** 2005. Cytogenetic Alterations in Non-Melanoma Skin Cancer: A Review. *Genes, Chromosomes and Cancer* 43:239-248 (IF 4.276) (5 citations)
- 97. Colson, N.J, Lea, R.A., Quinlan, S., MacMillian, J., **Griffiths, L.R.** 2005. Investigation of Hormone Receptor Genes in Migraine. *Neurogenetics ERA B* 6(1):17-23 (IF 3.115) (23 citations)

- 98. **Griffiths, L.R.**, (2005) Authors' response to: Critique of "Sibpair Studies Implicate Chromosome 18 in essential Hypertension". *American Journal of Medical Genetics A*132:458-460 (IF 2.440)
- 99. Kammerer, S., Roth, R.B., Hoyal, C.R., Reneland, R., Marnellos, G., Kiechle, M., Schwarz-Boeger, U., **Griffiths, L.R.,** Ebner, F., Rehbock, J., Cantor, C.R., Nelson, M.R. & Braun, A. 2005. Association of the *NuMA* region on chromosome 11q13 with breast cancer susceptibility. *PNAS* 102(6):2004-2009 (IF 10.452) (22 citations)
- 100. Lea, R.A., Nyholt, D.R., Curtain R., Ovcaric, M, Sciascia R., Bellis, C., MacMillan J., Quinlan S., Gibson, R.A., McCarthy L.C., Riley, J.H., Smithies Y.J., Kinade S., and **Griffiths, L.R.** 2005. A genome-wide Scan provides evidence for loci influencing a severe heritable form of common migraine. *Neurogenetics ERA B* 6(2): 67-72 (IF 3.115) (23 citations)
- 101. Lea, R.A., Ovcaric, M., Sundholm, J., Solyom, L., MacMillan, J. and **Griffiths, L.R.** 2005. Genetic Varients of Angiotensin Converting Enzyme and Methylene Tetrahydrofolate Reductase may act in combination to increase migraine susceptibility. *Molecular Brain Research* 136:112-117. (IF 1.711) (20 citations)
- 102. Hoyal, C.R., Kammerer, S., Roth, R.B., Reneland, R., Marnelloa, G., Kiechle, M., Schwarz-Boeger, U., **Griffiths, L.R.**, Ebner, F., Rehbock, J., Nelson, M.R., Braun, A. 2005. Genetic polymorphisms in *DPF3* associated with risk of breast cancer and lymph node metastases. *Journal of Carcinogenesis* 4:13 (IF 5.406)
- 103. Curtain R., Sundholm J., Lea R., Ovcaric M., MacMillan J., **Griffiths L.R.** 2005 Association analysis of a highly polymorphic CAG repeat in the human potassium channel gene KCNN3 and migraine susceptibility. *BMC Medical Genetics ERA B* 6:32 (IF 2.86)
- 104. Johnson, M.P., Lea, R.A., Colson, N.J., MacMillan, J.C and **Griffiths, L.R**. 2005. A Population Genomics Overview of the Neuronal Nitric Oxide Synthase (nNOS) Gene and it's Relationship to Migraine Susceptibility. *Cellular and Molecular Biology* 51: 285-292 (IF 1.333) (5 citations)
- 105. Tajouri, L., Ovcaric, M., Curtain, R., Lea, R., Johnson, M., Csurhes, P., Pender, M.P., and **Griffiths, L.R.** 2005. Variation in the Vitamin D Receptor Gene is Associated with Multiple Sclerosis in an Australian Population. *Journal of Neurogenetics* 19(1):25-38 (IF 1.583) (18 citations)
- 106. Tajouri, L., Mellick, A.S., Tourtellotte, W.W., Nagra, R.M., **Griffiths, L.R.** 2005. An examination of MS candidate genes identified as differentially regulated in MS plaque tissue, using absolute and comparative real time Q-PCR analysis. *Brain Research Protocols* 15(2):79-91 (IF 1.818) (5 citations)
- 107. Curtain, R., Lea, R.A., Tajouri, L., Haupt, L., Ovcaric, M., MacMillan, J., and **Griffiths, L.R.** 2005. Analysis of chromosome 1 microsatellite markers and the FHM-2 (ATP1A2) gene mutations in Migraine pedigrees. *Neurological Research ERA B* 27(6):647-652 (IF 1.634) (12 citations)
- 108. Smith, R.A., Lea, R.A., Weinstein, S.R., **Griffiths, L.R.** 2005. Detection of mRNA Levels for the Estrogen Alpha, Estrogen Beta and Androgen Nuclear Receptor Genes Archival Breast Cancer Tissue. *Cancer Letters ERA A* 237(2):248-55 (IF 2.938)
- 109. Johnson, M.P. & **Griffiths, L.R**. 2005. A genetic analysis of serotonergic biosynthetic and metabolic enzymes in migraine using a DNA pooling approach. *Journal of Human Genetics* 50(12):607-610 (IF 2.316) (10 citations)
- 110. Maguire, D.J., Lintell, N.A., McCabe, M. and **Griffiths, L.R.** 2005. Focusing on genomic and phenomic correlations in respiration of non-melanotic skin cancers. *Adv Exp Med Biol* 566:375-80

- 111. Curtain, R., Tajouri, L., Lea, R., MacMillan, J., and **Griffiths, L.R.** (2006) No mutations detected in the INSR gene in a chromosome 19p13 linked migraine pedigree. *European Journal of Medical Genetics ERA B* 49:57-62 (IF 1.614) (6 citations)
- 112. Colson, N.J., Lea, R.A., Quinlan, S. and **Griffiths, L.R**. 2006. No role for the Estrogen Reception 1 Gene Intron 1 Pvu II and Exon 4 C325G Polymorphisms in Migraine Susceptibility. *BMC Medical Genetics ERA B* 7:12 (IF 2.86) (13 citations)

- 113. Colson N.J., Lea R.A., Quinlan S. & **Griffiths L.R**. 2006. The role of vascular and hormonal genes in migraine susceptibility. *Molecular Genetics and Metabolism ERA B* 88:107-113 (IF 2.502) (8 citations)
- 114. Curtain R. P., Smith R., Ovcaric M., **Griffiths L.R.** 2006. Minor head trauma induced Sporadic Hemiplegic Migraine (SHM) coma: A case report. *Pediatric Neurology ERA B* 34(4):329-32 (20 citations) (IF 1.668)
- 115. Haupt, L.M., Thompson, E.W., Trezise, A.E.O., Irving, R., Irving, M.G. and **Griffiths, L.R.** (2006) *In vitro* and *in vivo* MMP gene expression localisation by *In Situ*-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts. *BMC Cancer ERA B* 6:18 (IF 2.290) (11 citations)
- 116. Tajouri, L., Martin, V., Gasparini, C., Ovcaric, M., Curtain, R., Lea, R., Csurhes, P., Pender, M.P. and **Griffiths, L.R**. 2006 Genetic investigation of methylenetetrahydroxyfolate reductase (MTHFR) and catechol-o-methyl transferase (COMT) in multiple sclerosis. *Brain Research Bulletin ERA B* 69:327-331 (IF 2.429) (3 citations)
- 117. Lintell, N.A., Maguire, D.J., **Griffiths, L.R.** & McCabe, M. 2006. Focusing on genomic and phenomic aberrations in non-melanotic skin cancers. *Adv. Exp. Med. Biol.* 578:381-6
- 118. Fernandez, F., Lea, R.A., Colson, N.J., Bellis, C., Quinlan, S. & **Griffiths, L.R**. 2006. Association between a 19bp deletion polymorphism at the Dopamine-β-hydroxylase (DβH) locus and migraine with aura. *J Neurol Sci* 251(1-2):118-23 (IF 2.412) (16 citations)
- 119. Smith R.A., Lea R.A., Weinstein S.R., **Griffiths L.R.** (2006) Detection of mRNA levels for the estrogen alpha, estrogen beta and androgen nuclear receptor genes in archival breast cancer tissue. *Cancer Letters ERA A* 237 (2): 248-255 (IF 3.398) (3 citations)
- 120. Bellis C., Hughes R.M., Begley K.N., Quinlan S., Lea R.A., Heath S.C., Blangero J., Griffiths L.R. (2006) Phenotypical characterisation of the isolated Norfolk Island population focusing on epidemiological indicators of cardiovascular disease, *Human Heredity ERA B* 60 (4) 211-219 (IF 2.155)

- 121. Szvetko, A.L., Fowder, J., Nelson, J., Colson, N.J., Tajouri, L. Csurhes, P., Pender, M.P. & **Griffiths, L.R.** 2007. No association between MTHFR A1298C and MTRR A66G polymorphisms, and MS in an Australian Cohort. *J Neurol Sci* 252:49-52 (IF 2.412) (1 citation)
- 122. Tajouri, L., Fernandez, F., Tajouri, S., Detrich, G., Szvetko, A., Colson, N., Csurhes, P., & **Griffiths,L.R.** 2007 Allelic variation investigation of the estrogen receptor within an Australian multiple sclerosis population. *J Neurol Sci* 252(1):9-12 (IF 2.412 (1 citations)
- 123. Colson, N.J., Lea, R.A. and **Griffiths, L.R**. (2007) The search for migraine genes: an overview of current knowledge. *Cell. Mol. Life Sciences ERA B* 64(3):331-44 (IF 4.582) (18 citations)
- 124. McCallum, L.K., Fernandez, F., Quinlan, S., Lea, R.A., **Griffiths, L.R**. 2007. Association study of a functional variant in Intron 8 of the dopamine transporter gene and migraine susceptibility. *European Journal of Neurology ERA B* 14:706-707 (IF 2.437) (10 citations)
- 125. Carless M.A. and **Griffiths L.R.** Cytogenetics of melanoma and non-melanoma skin cancer in: Sunlight, vitamin D and skin cancer, Springer publishers, Editor Jörg Reichrath ISBN-10: 0387775730 http://eurekah.com/chapter/3447
- 126. Tajouri L., Fernandez F. and **Griffiths L.R.** (2007) Gene expression studies in Multiple Sclerosis. *Current Genomics ERA C* 8(3):181-189 (IF 0.613) (6 citations)
- 127. Smith R., Lea R.A., Weinstein S.R. & **Griffiths L.R.** (2007) Progesterone, glucocorticoid, but not estrogen receptor mRNA is altered in breast cancer stroma. *Cancer Letters ERA A.* 255(1):77-84 (IF 3.277) (4 citations)
- 128. Fernandez F., Colson N and **Griffiths L.R.** 2007 Pharmacogenetics of migraine: genetic variants and their role in migraine therapy. *Pharmacogenomics ERA A* 8(6):609-22 (IF 3.957) (3 citations)
- 129. Kirk, E.P., Sunde, M., Costa, M.W., Rankin, S.A., Castro, L., Butler, T.L., Hyun, Changbaig, Guo, G., Otway, R., Mackay, J.P., Waddell, L.B., Cole, A.D., Hayward, C., Keogh, A., Macdonald, P., Griffiths, L.R., et al 2007. Mutations in cardiac factor gene are associated with diverse cardiac pathologies including defects of septation and valvulogenesis, and cardiomyopathy. Am J Human Genetics ERA A* 81 (2):280-91 (IF 12.629) (16 Citations)

- 130. Johnson, M.P., Fernandez, F., Colson, N. and **Griffiths. L.R.** 2007 A pharmacogenomic evaluation of migraine therapy. *Expert Opinion on Pharmacotherapy ERA C* 8(12):1821-35. (IF 1.733) (7 citations)
- 131. Colson N., Lea R., Fernandez F. and **Griffiths L.R**. 2007 Expert Commentary A & Chapter 1: The Genetics of Migraine. Migraine Disorders Research Trends. Nova Science Publishers, Editor Laura B. Clarke ISBN 978-1-60021-553-7
- 132. Lintell N.A., Maguire D.J., **Griffiths L.R.** & McCabe M. 2007 Analysis of SDHD and MMP12 in an affected solar keratosis and control cohort. *Adv Exp Med Biol* 599:79-85 (1 citation)
- 133. Hsieh S.M., Maguire D.J., Lintell N.A., McCabe M. & **Griffiths L.R.** 2007 PTEN and NDUFB8 aberrations in cervical cancer tissue. *Adv Exp Med Biol* 599:31-36
- 134. F.Fernandez, R.P. Curtain, M. Colson, N.J., Ovcaric, J. MacMillan and L.R. Griffiths (2007) Association analysis of chromosome 1 migraine candidate genes *BMC Medical Genetics ERA B* 8(1):57-64 (IF 2.86) (1 citation)
- 135. Hsieh SM, Maguire DJ, Lintell NA, McCabe M, Griffiths LR. 2007 PTEN and NDUFB8 aberrations in cervical cancer tissue. *Adv Exp Med Biol*. 599:31-6

- 136. Hume, G.E., Fowler, El.V., Doecke, J., Simms, L.A., Huang, N., Palmieri, O., **Griffiths, L.R.,** Florin, T.H.J., Annese, A. ad Radford-Smith, G.L. 2008. A novel NOD2 haplotype strengthens the association between TLR4 Asp299Gly and Crohn's disease in an Australian cohort. *Inflammatory Bowel Disease ERA A* (5):585-90 (IF 3.912) (10 citations)
- 137. Haupt, L., Irving, R.E., Weinstein, S.R. Irving, M.G. and **Griffiths, L.R.** 2008 Matrix metalloproteinase localisation by In Situ-RT-PCR in archival human breast biopsy material. *Molecular and Cellular Probes ERA C* (22): 83-89 (IF 2.016) (4 citations)
- 138. Colson, N.J., Fernandez, F. and **Griffiths, L.R.** 2008. Migraine Genetics and Prospects for Pharmacotherapy. *Drug Development Research ERA B.* 68: 282-293
- 139. Bellis, C. Lea, R.A., Burgner, D., Ovcaric, M., Heath, S., Blangero, J. & **Griffiths, L.R**. 2008. LD Analysis in the genetically isolated Norfolk Island population. *Heredity ERA A* (4): 366-73 (IF 2.872) (7 citations)
- 140. Carless, M.A., Kraska, T., Neale, R.E., Green A.C. and **Griffiths, L.R.** (2008) Polymorphisms of the *VDR* gene are associated with presence of solar keratoses on the skin. *British Journal of Dermatology ERA A* 159(4):804-10 (IF 3.662) (1 citation)
- 141. Carless, M.A., **Griffiths, L.R.** (2008) Cytogenetics of melanoma and nonmelanoma skin cancer. *Advances in experimental medicine and biology*, 624: 227-240 (1 citation)
- 142. Tran H., Nourse J., Hall S., Green M., **Griffiths L.R.** & Gandhi M. (2008) Immunodeficiency-related lymphomas. *Blood Reviews ERA A**. 22(5): 261-81 (IF 5.756)
- 143. Smith, R.A., Curtain, R., Ovcaric, M., Tajouri, L., MacMillan, J. & **Griffiths, L.R.** 2008 Investigation of the NOTCH3 and TNFSF7 Genes on C19p13 as Candidates for Migraine. *The Open Neurol J* 2:1-7
- 144. Chikhani, S., Fernandez, F., Poetter, K., Toohey, B., Harvey, R., **Griffiths, L.R**. 2008. Investigation Between the S377G3 GATA-4 Polymorphism and Migraine. *The Open Neurology Journal* 2:35-38.
- 145. Lymbury R, Tinggi U, **Griffiths L**, Rosenfeldt F and Perkins AV. 2008 Selenium status of the Australian population: effect of age, gender and cardiovascular disease. *Biol Trace Elem Res.*: 126 Suppl 1:S1-10
- 146. Bellis C., Cox H.C., Dyer T.D., Charlesworth J.C., Begley K.N., Quinlan S., Lea R.A., Heath S.C., Blangero J. & **Griffiths L.R.** 2008. Linkage mapping of CVD risk traits in the isolated Norfolk Island population. *Human Genetics ERA A* 124 (5): 543-552 (IF 3.974) (4 citations)
- 147. Fernandez F., Esposito T., Lea R., Colson., Ciccodicola A., Gianfrancesco F. and **Griffiths L. R.** 2008. Investigation of GABA A Receptor Genes and Migraine Susceptibility. *BMC Medical Genetics ERA B* 9:109 (IF 2.419) (3 citations)

2009

148 Green M.R., Gandhi M.K., Camilleri E., Marlton P., Lea R.A. & Griffiths L.R. (2009) High levels of BACH2 associated with lower levels of BCL2 transcript abundance in

- t(14;18)(q21;q34) translocation positive Non-Hodgkin's Lymphoma. Leukemia Research ERA B, 33(5):731-4 (IF 2.48)
- 149. Broadley S.A., Vanags D., Williams B., Johnson B., Feeney D., **Griffiths L.R.**, Shakib S., Brown G, Coulthardt A., Mullins P and Kneebone C. 2009. Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. *Multiple Sclerosis ERA A* (IF 3.260) 15(3):329-336
- 150. Day G., Szvetko A., **Griffiths L.R.**, McPhee I., Tuffley J., Labrom R., Askin G., Woodland P., McClosky E., Ian T., Tomlinson F. (2009) Shox gene is expressed in vertebral body growth plates in idiopathic and congenital scoliosis: Implications for the aetiology of scoliosis in Turner Syndrome. *J Orthop Res ERA A**27(6):807-13 (IF 2.437)
- 151. Cox H., Bellis C., Quinlan S., Dyer T., Lea R.A. Blangero J. & **Griffiths L.R**. 2009 Principal component and linkage analysis of cardiovascular risk traits in Norfolk Islanders. *Human Heredity ERA B*. (IF 2.155) 68(1):55-64 (1 citation)
- 152. Szvetko A., Jones A., Mackenzie J., Tajouri L., Csurhes P., Greer J., Pender M. And **Griffiths L.R.** 2009 An investigation of the C77G and C772T variations within the human Protein tyrosine phosphatase receptor type C gene for association with Multiple Sclerosis in an Australian population. *Brain Research ERA B* (IF 2.494) 1255:148-52 (3 citations)
- 153. Fernandez, F. Colson N., Quinlan S., MacMillan J., Lea R.A., **Griffiths L.R.** 2009. Association between a functional polymorphism at the dopamine β-hydroxylase (DBH) locus and migraine. *Neurogenetics* (IF 4.281) 10(3):199-208 2 citations)
- 154. Mackenzie J., Tajouri L., Szvetko A., Weth V., Moreau J., Greer J.M., Csurhes P.A., Pender M.P. and Griffiths L.R. 2009 Study of leukemia inhibitory factor polymorphism within an Australian Multiple Sclerosis population. *Journal of the Neurological Sciences ERA B* 280. (IF 2.315) (1-2):62-4
- 155. Green M, Camilleri E, Gandhi M, **Griffiths L.** (2009) Genetic susceptibility to complex traits: moving towards informed analysis of whole-genome screens. In F. Columbus (Ed) The *Human Genome: Features, Variations and Genetic Disorders* (In Press) Hauppage, NY: Nova Science Publishers 167-180.
- 156. Grealy R. & **Griffiths L.R**. 2009 Current status of pharmacogenomics testing for anti-tumour drug therapies: approaches to non-melanoma skin cancer: *Molecular Diagnosis and Therapy ERA C* (IF 2.139) 13(2):65-72
- 157. Lea, R.A., Colson, N., Quinlan, S., Macmillan, J and **Griffiths, L.R.** 2009. The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. *Pharmacogenetics and Genomics ERA A* (IF 5.775) 19(6):422-8.
- 158. Green M., Gandhi M., Courtney M.J, Marlton P. and **Griffiths L.R.** 2009 Relative abundance of full-length and truncated FOXP1 isoforms is associated with differential NFkB activity in follicular lymphoma. *Leukemia Research ERA B* (IF 2.39) 33(12):1699-1702.
- 159. Haupt L.M. and **Griffith L.R.** 2008 Heparan sulfate proteoglycans, tumour progression and the cancer stem cell niche. *Current Cancer Therapy Reviews ERA C* 5(4):256-260.
- 160. Macgregor S., Bellis C., Lea R.A., Cox H.C., Dyer T., Blangero J., Visscher P., **Griffiths L.R.** 2009 Legacy of mutiny on the bounty: Founder effect and admixture on Norfolk Island. *European Journal of Human Genetics ERA B* (IF 3.925) 18(1):67-72 (1 citation)
- 161. Hsieh S., Smith R.A., Lintell N.A., Hunter K.W. and **Griffith L.R.** 2009 Polymorphisms of the SIPA1 gene and sporadic breast cancer susceptibility. *BMC Cancer ERA B* (IF 3.01) 9(1):331-337
- 162. McEvoy B.P., Zhao Z.Z., Macgregor S., Bellis C., Lea R.A., Cox H., Montgomery G.W., **Griffiths L.R.** & Visscher P.M. 2009 European and Polynesian admixture in the Norfolk Island population. *Heredity ERA A* (IF 4.22) 105(2):229-34.

163. Szvetko A., Jones A., Mackenzie J., Tajouri L., Csurhes P., Greer J., Pender M. and **Griffiths L.R**. 2010 Investigation of the [-/A]8 and C1236T genetic variations within the human toll-like receptor 3 gene for association with multiple sclerosis. *Neurological Research ERA B* (IF 1.634) 32(4):438-441

- 164. Grice L. D., Rogers K.L. and **Griffiths L.R.** 2010 Isolation of bioactive compounds that relate to the anti-platelet activity of *Cymbopogon ambiguous*. *Evidence-based Complementary and Alternative Medicine*. Epub 4th Jan 2010
- 165. Carless M.A. & **Griffiths L.R. 2009**. Book Chapter in "*Molecular Diagnosis of Skin Diseases*: Cytogenetics of Primary Skin Tumours". Editor Dr Michael Murphy. (Accepted 1.12.2009)
- 166. Gabrovska P.N., Smith R.A., Haupt L.M. and **Griffiths L.R.** 2010 Review: Gene expression profiling in human breast cancer. *Open Breast Cancer Journal*, 2:46-59.
- 167. Ren, H., Collins, R.H., Fernandez, F., Quinlan, S., **Griffiths, L.R**. and Choo, K.H.A. 2010 Shorter telomere length in peripheral blood cells associated with migraine in women. *Headache ERA B* (IF 2.9) 50(6):965-72
- 168. Green, M., Lea, R.A., Wood, P., Jardine, P. and **Griffiths, L.R**. 2009 A new method to detect loss of heterozygosity using cohort heterozygosity comparisons. *BMC Cancer ERA B* (IF 3.01) 10:195
- 169. Bissessor N., Wee Y.S., Jayasinghe R., Scalia G.S., Durstow D.J., **Griffiths L.R.**, Aroney C.N. and Walters D.L. 2010 Percutaneous Patent Foramen Ovale Closure: Outcomes with Premere and Amplatzer devices. *Cardiovascular Revascularization Medicine* (Accepted 3.06.2010)
- 170. Menon, S., Quinlan, S., Cox, H., Kuwahata, M., MacMillan, J., Lea, R., Haupt, L. and **Griffiths, L.R.** 2010 Association of a Notch 3 gene polymorphisms with migraine susceptibility. *Cephalalgia* (IF 4.69) (Published on line 2nd Sept 2010)
- 171. D Formicola, A Aloia, S Sampaolo, O Farina, D Diodato, LR Griffiths, F Gianfrancesco, G Di Iorio and T Esposito. 2010 Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. *BMC Medical Genetics ERA B* (IF 2.84) 11:103-114
- 172. Liu, A., Menon S., Colson, N., Quinlan, S., Peterson, M., Tiang, T., Lea, R., Haupt L and **Griffiths, L.R.** 2010 Analysis of the MTHFR C677T variant with migraine phenotypes. *BMC Research Notes ERA B* (IF) 28;3:213
- 173. R.A. Smith, P. Gabrovska, R.A. Lea, S.R. Weinstein and L.R. Griffiths 2010 Detection of mRNA for nuclear receptor co-activators 1 and 3 in archival breast cancer tissue and surrounding stroma: A tissue expression study. *Open Breast Cancer Journal*. 2: 60-65.
- 174. RG. Lafrenière, M. Z Cader, J-F Poulin, I Andres-Enguix, M Simoneau, N Gupta, K Boisvert, F Lafrenière, S McLaughlan, M-PDubé, M M. Marcinkiewicz, S Ramagopalan O Ansorge, B Brais, J Sequeiros, J M Pereira-Monteiro, L R. Griffiths, S J. Tucker, G Ebers & G A. Rouleau 2010 A dominant-negative mutation in the TRESK potassium channel (KCNK18) causes familial migraine with aura. *Nature Medicine ERA A** (IF 27.99) 16(10):1157-60
- 175 Colson N., Fernandez F and **Griffith L.R.** 2010 Genetics of Menstrual Migraine: The Molecular Evidence. *Current Pain and Headache Reports ERA C* 14(5):389-95.
- 176. Mackey D.A., Sherwin J.C., Kearns L.S., Ma Y., Kelly J., Chu B., MacMillan R., Barbour J.M., Wilkinson C.H., Matovinovic E., Cox H.C., Bellis C., Lea R.A., Quinlan S., **Griffiths L.R.** & Hewitt A.W. 2010 The Norfolk Island Eye Study (NIES): Rationale, Methodology and distribution of ocular biometry (Ocular biometry of the Bounty). *Twin Research and Human Genetics ERA B* 14(1):42-52 (IF 2.16) (Accepted 20.10.10)
- 177. Cox H., Lea R.A., Bellis C., Carless M., Dyer T., Blangero J and **Griffiths L.R.** 2010 Variants in the human potassium channel gene (KCNN3) are associated with migraine in a high risk genetic isolate. *Journal of Headache and Pain* (IF 2.14) (Accepted 15.11.10)

- 178. Green M.R., Aya-Bonilla C., Gandhi M., Lea R.A., Wellwood J., Wood P., Marlton P., **Griffiths** L.R. 2010 Intergrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of Non-Hodgkins Lymphoma. *Genes Chromosomes Cancer* 50:313-326 (IF 3.86) (Accepted 03.01.2011) Published on line 8.03.11
- 179. Menon S., Buteri J., Roy B., Murrell M., Quinlan S., MacMillan J.C., Lea R.A., Haupt L.M. and **Griffiths L.R.** 2010 Association study of calcitonin gene-related polypeptide-alpha (CALCA) gene polymorphism with migraine. *Brain Research ERA B* (IF 2.55) (Accepted 23.12.10) 2010 Feb 18. [Epub ahead of print]

- 180. Gabrovska, P. N., Smith, R. A., O'Leary, G., Haupt, L. M., & **Griffiths, L. R.** Investigation of the 1758G>C and 2880A>G variants within the NCOA3 gene in a breast cancer affected Australian population. *Gene*, (Accepted February 10, 2011) Online 18.05.11.
- 181. Sherwin J.C., Hewitt A.W., Kearns L.S., Coroneo M.T., **Griffiths L.R.** and Mackey D.A. 2011 Distribution of conjunctival ultraviolet autoflourescence in a population-based study: The Norfolk Island Eye Study. *Eye* (Accepted 02.03.10) 1-8
- 182. Sherwin J.C., Kearns L.S., Hewitt A.W., Ma Y., Kelly J., **Griffiths L.R.** and Mackey D.A. 2010 Prevalence of chronic ocular diseases in a genetic isolate: The Norfolk Island Eye Study (NIES). *Ophthalmic Epidemiology* (IF 1.93) 18(2), 61–71.
- 183. Chasman D.I., Schurks M., de Vries B., Schminke U., Launer L.J., Terwindt G.M., van den Maagdenberg A., Fendrich K., Volzke H., Volker U., Griffiths L.R., Buring J.E., Ridker P.M., Ferrari M.D., Hoffmann W., Zee R.Y.L. & Kurth T. (2010) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. *Nature Genetics ERA A** (Accepted 16.05.11)
- 184. Smith M., Harbach M., Mertins S., Lewis A., **Griffiths L.R.** (2011) Towards a Translational Medical Research Ecosystem. Paper accepted for publication at the IEEE DEST conference Daejeon, Korea. 31^{st} May -3^{rd} June 2011.
- 185. Sherwin J.C., Kelly J., Hewitt A.W., Kearns L.S., **Griffiths L.R.** and Mackey D.A. 2011 Prevalence and associations of refractive error on Norfolk Island: Norfolk Island Eye Study. *Clinical and Experimental Ophthalmology* (Accepted with minor revisions)
- 186. Moradi M., Kirk E., Feneley M., Winlaw D., Posch M.G., Marinson J., Blue G., Fatkin D., **Griffiths L.R.** and Butler T. (2011) Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4. *PLoS ONE* (Accepted 9th May 2011).

ANZgene Consortium publications:

- 187. Bahlo, M., Booth, D.R., Simon A Broadley, Brown, M.A., Foote, S.J., **Griffiths, L.R.**, Kilpatrick, T.J., Lechner-Scott, J., Moscato, P., Perreau, V.M., Rubio, J.P., Scott, R.J., Stankovich, J., Stewart, G.J., Taylor, B.V., Wiley, J., Clarke, G., Cox, M.B., Csurhes, P.A., Danoy, P., Drysdale, K., Field, J., Greer, J.M., Guru, P., Hadler, J., McMorran, B.J., Jensen, C.J., Johnson, L.J., McCallum, R., Merriman, M., Merriman, T., Pryce, K., Tajouri, L., Wilkins, E.J., Browning, B.L., Browning, S.R., Perera, D., Broadley, S., Butzkueven, H., Carroll, W.M., Chapman, C., Kermode, A.G., Marriott, M., Mason, D., Heard, R.N., Pender, M.P., Slee, M., Tubridy, N., Willoughby, E. 2009 Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. *Nature Genetics ERA A** (IF 25.556) 41(7): 824-828. (53 citations)
- 188. J. Stankovich, H. Butzkueven, M. Marriott, C. Chapman, N. Tubridy, B. D. Tait, M. D. Varney, B. V. Taylor, S. J. Foote, The ANZGene Consortium (incl L. R. Griffiths), T. J. Kilpatrick and J. P. Rubio. 2009. HLA-DRB1 associations with disease susceptibility and clinical course in Australians with multiple sclerosis. *Tissue Antigens* (IF2.076) 74(1):17-21
- 189. Cox M.B., Cairns M.J., Gandhi K.S., Carroll A.P., Stewart G.J., Broadley S., Scott R.J., Booth D.R., Lechner-Scott J., ANZgene Multiple Sclerosis Genetics Consortium including **Griffiths L.R.** 2010 MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are underexpressed in MS whole blood. *PLoS One* (IF 4.38) 5(8):e12132
- 190. K.S. Gandhi, F.C. McKay, M. Cox, C. Rivero, R.N. Heard, S. Vucic, D.W. Williams, J. Stankovich, M. Brown, P. Danoy, G.J. Stewart, S. Broadley, P. Moscato, J. Lechner-Scott, R.J. Scott, D.R. Booth, ANZgene Multiple Sclerosis Genetics Consortium (Incl L.R. Griffiths). 2010 The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. *Human Molecular Genetics* (IF 7.73) 19(11):2134-2143
- 191. Jensen C.J., Stankovich J., Van der Walt A., Bahlo M., Taylor B.V., Van der Mei I.A.F., Foote S.J., Kilpatrick T.J., Johnson L.J., Wilkins E., Field J., Danoy P., Brown M.A., (ANZgene incl **Griffiths L.R**.)*, Rubio J.P. and Butzkueven H. 2010 Multiple sclerosis susceptibility-associated SNPs do not influence disease severity measures in a cohort of Australian MS patients. *PLoS One* (IF 4.38) (Published 2nd April) 5(4):e10003

- 192. Melanie Bahlo, Jim Stankovich, Patrick Danoy, Peter F Hickey, Sharon R Browning, (ANZgene MS Consortium incl Lyn R. Griffiths)*, Matthew A Brown, Justin P Rubio. 2010 Saliva-derived DNA performs well in large-scale, high-density SNP microarray studies. *Cancer Epidemiology, Biomarkers & Prevention* (IF 4.9) 19(3):794-798
- 193. Riveros C., Mellor D., Kaushal S. Gandhi, McKay F.C., Cox M.B., Berretta R., Yahya Vaezpour S., Inostroza-Ponta M, Broadley S., Heard R.N., Vucic S., Stewart G.J., Williams D.W., Scott R.J., Lechner-Scott J., Booth D.R., Moscato P., ANZgene Multiple Sclerosis Genetics Consortium incl **Griffiths L.R.** 2010 A Transcription Factor Map as revealed by a genome-wide Gene Expression Analysis of whole-blood mRNA Transcriptome in Multiple Sclerosis. *PLoS One* (IF 4.38) 2010 Dec 1;5(12):e14176.
- 194. Field J., Browning S.R., Johnson L.J., Danoy P., Varney M.D., Tait B.D., Gandhi K.S., Charlesworth J.C., Heard R.N., ANZgene Multiple Sclerosis Genetics Consortium (incl **Griffiths L.R.**) et al. 2010 A polymorphism in the *HLA-DPB1* gene is associated with susceptibility to multiple sclerosis, *PLoS* One (IF 4.38) 2010 Oct 26;5(10);e13454.
- 195. Patsopoulos N. A., Esposito F., Ottoboni L., Reishl J., Bauer D. et al. Incl the ANZgene Consortium with **Griffiths L.R.** 2010 Genomewide meta-analysis identifies *EOMES* and other novel MS susceptibility loci. *Annals of Neurology* (IF 9.6) (Accepted August 10 2010)
- 196. O'Gorman C., Freeman S., Taylor B.V., Butzkueven H., ANZgene Consortium., Broadley S.A. (**Griffiths L.R.** in acknowledgements) (2011) Familial recurrence risks for multiple sclerosis in Australia. *JNNP* (Published online May 7 2011).

Publication Highlights

- Association of a Notch 3 gene polymorphism with migraine susceptibility, Cephalalgia, 2010 Sep 2
 was selected for Faculty of 1000 Medicine (www.f1000medicine.com) and evaluated by Joost
 Haan see http://www.f1000medicine.com/article/d9mgvj5x55s5429/id/5115959
- Australasian Science Magazine March 2010 "Migraine relief from vitamin supplement".
- Australasian Life Scientist Magazine July 2009 "Genetic Headache".

CONFERENCE PAPERS – 376 abstracts, 113 International and 263 National

SELECTED MEDIA COVERAGE

Newspaper Articles

7-8 May 1994 Feb 1995 Oct 1995 3 Feb 1996 Mar 1996 12 May 1997 3 July 1998 28 Nov 1998 9 Mar 1999 6 May 2000 15-16 Apr 2000 Sept/Oct 2003 6 April 2002 11 July 2003	The Weekend Australian Reader's Digest Campus Review The Sydney Morning Herald Courier Mail Sydney Morning Herald Innovations Magazine Good Weekend The Courier Mail New Scientist Weekender Today's Life Science The Australian The Melbourne Age	"Gene researchers put heads together on migraine" Migraine Research "Unis share \$290m in largest NHMRC round" Hypertension Genetics Migraine Research Migraine Research Migraine Research Migraine Research "\$1.5m to track migraine gene" "Genetic Bounty" "Genetic Bounty" "Migraine Gene Quest" "Third gene found, but migraines still a mystery" "Research offers hope for Migraine sufferers"
4 August 2009	Australasian Science	(Editor - Guy Nolch) "Migraine relief from vitamin supplement"

Television - Special Programs

2002	National Geographic Discovery Channel	"Gene Hunters" 13 part series, featuring my Norfolk Island Genetic Studies as Episode 1
18 April 2006	CNN International By CNN's Michael Bayand & Matt Ford	The code of life - A CNN Future Summit technology profile "Genes are the basic building blocks of life, and in studying them genetic science is giving us the ability to adapt and alter ourselves fundamentally, providing unprecedented opportunities to improve on nature."
June 2006	Channel 9	"What's Good for You?" series, featuring my Migraine Research in Episode 9

Television - Interviews

May 1994	Ch 9 News Brisbane	Migraine Research
Nov 1996	Cha 9 News	Migraine Gene Localised
Jan 1997	Ch 7 & Ch 9 News	Gemini Research Project
Feb 1997	A Current Affair, Ch 9	Migraine Project
May 1997	National 10 Network	Migraine Research
May 1997	Sydney TCN 9 News	Migraine Research
Mar 1998	Today Tonight	Migraine Research
Feb 2009	Seven Sunrise	Migraine Research – Vitamin B/folate clinical trial

Radio

Media releases such as the ones below have resulted in many radio interviews, and have been aired live on ABC national stations, 4QR (Brisbane), 2NC (Newcastle), 6RN (Perth), 5AN (Adelaide) and local radio stations.

May 2006	Media Release	"Clinical trial of vitamins for migraine relief"
Jun 2004	Media Release	"Genetic link found between hormones and migraine"
Aug 1999	Media Release	"Volunteers to help Hypertension Research"
May 1994	ABC Perth	Migraine Research
May 1994	ABC Sydney	Migraine Research
Jan 1995	2UE Haydn Sargent	Migraine Genetics
Jan 1995	ABC Brisbane Haydn Sargent	Migraine Genetics
Mar 1996	ABC National	Migraine Research
Jan 1997	ABC Radio News	Migraine Project
May 1997	ABC Radio (Aus wide)	Migraine Research
Dec 1997	ABC Radio National	Gene Research Obesity
May 1998	ABC News	Migraine Research
Mar 1999	91.7 Gold FM	\$1.5m funding Glaxo-Wellcome
Mar 1999	2RN (National)	Migraine Research

Media Coverage 2010

Statistical	Ded the resent	School	Made Orthon	Media	Posts	
Migraine research	Lyn Griffiths	GHI	Weekend Australian	gress	6-Feb	12
Children suffering from	- Sp Griffithe	Ī	ABC News	oriluo	17. Eoh	
Children suffering from	Cillinia Cillinia	= 5		2	2	
migraines	Lyn Griffiths	품	ABC Sunshine and Cooloola Coasts	online	15-Feb	
Children suffering from	Lim Griffithe	<u>-</u>	ABO Cold and Two About	Gailac	77 10 10 10	
Children suffering from	Lyll Gillings	5	מופסט השליו ווא היים סים כים ביים היים היים היים היים היים היים הי	2	5	
migraines	Lyn Griffiths	H	Gold Coast Bulletin	press	23-Feb	9
Migraine Relief from a						
Vitamin Supplement	Lyn Griffiths	GHI	Australasian Science	magazine	1-Mar	29
Children suffering from migraines	Lyn Griffiths	BHB	ABC 891 Adelaide	radio	11-Mar	
Team Tackles Cancer	Lyn Griffiths	HB	Gold Coast Sun	press	7-Apr	19
Lyn Griffith Wins Award	Lyn Griffiths	품	Weekend Gold Coast Bulletin	gress	17-Apr	2
Indigenous migrane treatment	Lyn Griffiths	GHI	Australasian Science	magazine	1-Maÿ	თ
Genetic links and						
hormonal changes in	((:	:	
relation to Alzheimers	Lyn Griffiths	EE	SDU Dubbo	radio	/-Maý	
Migraine research	Lyn Griffiths	MBOD - GRC	Channel 7 - Today Toni ht programme		10-Sep	
		MBOD				
Migraine research	Lyn Griffiths	- GRC	Also covered on 32 other stations		10-Sep	
Clive Palmer Breakfast	Lyn Griffiths	EH	ABC Gold Coast & Tweed News - 06:30	radio	20-Sep	
Clive Palmer Breakfast	Lyn Griffiths	핑	ABC Gold Coast & Tweed News - 07:30	radio	20-Sep	
Clive Palmer Breakfast	Lyn Griffiths	涺	ABC Gold Coast & Tweed News - 13:00	radio	20-Sep	
Migraine research	Lyn Griffiths	MBOD - GRC	ABC 702 Sydneÿ	radio	21-Sep	
Migraine recearch	- Sp. Criffithe	MBOD	Also covered in 43 estres regions	ci C	200 10	
200000000000000000000000000000000000000	Callers	MBOD		orija orija	900	
Migraine research	Lyn Griffiths	- GRC	Nature Medicine ERA A*	publication	26-Sep	
		M	Channel 9 - National Nine News - Perth, Brisbane Sydney, Darwin, Adelaide			
Migraine research	Lyn Griffiths	- GRC	Gold Coast, Melbourne	TV	28-Sep	
Migraine research	Lyn Griffiths	MBOD	Also covered on 8 offier stations	17	28-Sep	

******************************	hs
	SHIFE
	S.
-	or Lyr
-	ofesso
-	Ā

		- GRC				
		MBOD				
Migraine research	Lyn Griffiths	- GRC	ONE, Wellington - Breakfast 07:30		29-Sep	
			NBN Gold Coast, Coffs Harbour,			
		MBOD	Tamworth, Lismore, Central Coast &			
Migraine research	Lyn Griffiths	- GRC	Newscastle		28-Sep	
		MBOD				
Migraine research	Lyn Griffiths	- GRC	GNN - News	online	28-Sep	
		MBOD				
Migraine research	Lyn Griffiths	- GRC	Gold Coast Bulletin	gress	29-Sep	6
Faulty gene causing		MBOD				
migraines	Lyn Griffiths	- GRC	Getliving.com	online	5-0ct	
		MBOD				
Clem Jones funding	Lyn Griffiths	- GRC	GNN - News	online	21-0ct	
		MBOD				
Migraine research	Lyn Griffiths	- GRC	Sunday Canberra Times	press	7-Nov	12
GCHMR conference	Lyn Griffiths	GHI	GNN - News	online	26-Nov	
GCHMR conference	Lyn Griffiths	EE	Albert & Logan News	gress	1-Dec	15
				radio - See		
GCHMR conference	Lyn Griffiths	H	ABC Gold coast & Tweed	Nov	2-Dec	

Media Coverage 2011	Griffith atent	Research Prystam	Media Dutter	Media Tyre	Date Page
Migraine research Lyn Griffiths		MBoD	Sydney Morning Herald press	press	12-Mar 23
Volunteers			612 ABC Brisbane	radio	
Volunteers	Lyn Griffiths	EHI	ABC National - Life Matters	radio	28-Mar

6/06/2011

EXHIBIT B

Sex hormone receptor gene polymorphisms and migraine: A systematic review and meta-analysis

Markus Schürks, Pamela M Rist and Tobias Kurth Cephalalgia 2010 30: 1306 originally published online 4 May 2010 DOI: 10.1177/0333102410364155

The online version of this article can be found at: http://cep.sagepub.com/content/30/11/1306

Published by:

(\$)SAGE

http://www.sagepublications.com

On behalf of:

International Headache Society

International Headache Society

Additional services and information for Cephalalgia can be found at:

Email Alerts: http://cep.sagepub.com/cgi/alerts

Subscriptions: http://cep.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Sex hormone receptor gene polymorphisms and migraine: A systematic review and meta-analysis

Cephalalgia 30(11) 1306–1328 © International Headache Society 2010 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0333102410364155 cep.sagepub.com

Markus Schürks^{1,5}, Pamela M Rist^{1,2} and Tobias Kurth^{1,2,3,4}

Abstract

Background: Data on the association between sex hormone receptor polymorphisms and migraine are conflicting. Methods: We performed a systematic review and meta-analysis on this topic searching for studies published until August 2009. For each study, we calculated odds ratios (ORs) and 95% confidence intervals (Cls) assuming additive, dominant, and recessive genetic models. We then calculated pooled ORs and 95% Cls.

Results and Conclusion: Among the seven genes targeted, four variants were investigated in multiple studies. Effect estimates from an additive model suggest that the ESR-I $594\,G > A$ (pooled OR I.37; 95% CI I.02–I.83) and ESR-I $325\,C > G$ (pooled OR I.16; 95% CI I.03–I.32) variants are associated with any migraine. This pattern does not differ between migraine with and without aura. In contrast, the ESR-I Pvu II C > T and PGR PROGINS insert polymorphism do not appear to be associated with migraine. Results were driven by studies among Caucasians and may differ in other ethnic groups.

Keywords

Migraine, sex hormone receptors, polymorphisms, meta-analysis

Date received: 8 October 2009; accepted: 30 January 2010

Introduction

Migraine is a common, chronic disorder characterised by recurrent headache attacks and combinations of gastrointestinal and autonomic nervous system symptoms (1), affecting 10–20% of the population. Up to one-third of migraine patients experience an aura prior to or during the migraine headache.

Population-based, clinical, and physiological studies support an important role for sex hormones in the pathogenesis of migraine. For example, migraine prevalence is 3–4-fold higher among women than men, a subgroup of women suffer from menstrual migraine or menstruation-related migraine, migraine prevalence often changes during pregnancy or after menopause, and both oestrogen withdrawal and changes in oestrogen levels can trigger migraine attacks (2–4). These findings have prompted studies investigating the association of variants in genes coding for proteins in sex hormone receptor pathways and metabolism with migraine.

Gene variants located in the oestrogen receptor 1 gene (ESR-1) (5-11), oestrogen receptor 2 gene (ESR-2) (11), progesterone receptor gene (PGR)

(7,8,12), androgen receptor gene (AR) (12), follicle stimulating hormone receptor gene (FSHR) (11), nuclear receptor interacting protein 1 (NRIPI) (11), and cytochrome P450, family 19, subfamily A, polypeptide 1 gene (CYP19AI) (11) have been targeted. However, many results were either contradictory, which may be due to differences in ethnicity, sample sizes, and the proportion of migraine with aura (MA) and migraine without aura (MO) among the study populations, or have not been replicated in independent populations.

We sought to summarise the current evidence on the association between variants in genes coding for

Corresponding author:

Markus Schürks, Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue East, 3rd Floor, Boston, MA 02215-1204, USA

Email: mschuerks@rics.bwh.harvard.edu

¹Brigham and Women's Hospital, Harvard Medical School, USA.

²Harvard School of Public Health, USA.

³INSERM Unit 708 – Neuroepidemiology, Paris, France.

⁴University Pierre et Marie Curie, France.

⁵University Hospital Essen, Germany.

proteins in sex hormone receptor pathways and metabolism and migraine including MA and MO by systematically reviewing the literature and performing a meta-analysis.

Methods

Selection of studies

We followed the guidelines for systematic reviews of genetic association studies (13). Two investigators (MS and PMR) independently searched MEDLINE, EMBASE, and Science Citation Index from inception to August 2009 combining text words and MESH terms, were appropriate, for sex hormones ('hormones' or 'sex hormones' or 'estrogen' or 'progesterone') with terms for genetic variations ('gene' or 'polymorphism' or 'genetic variation') and terms for headache and migraine ('headache' or 'headache disorders' or 'migraine' or 'migraine disorders'). The search terms were combined with the 'explode' feature where applicable. We did not use any language restrictions. In addition, we manually searched the reference lists of all primary articles and review articles.

A priori, we defined the following criteria for inclusion:

- Studies must have a cross-sectional, case-control or cohort design.
- Authors must investigate patients with migraine and healthy control subjects.
- Authors must provide information on genotype frequencies of the investigated polymorphisms or sufficient data to calculate these.
- 4. In studies with overlapping cases and/or controls, the largest study with extractable data was included.
- 5. Studies must be published as full articles.

In a first step, two investigators (MS and TK) by consensus identified all studies not meeting any of the prespecified criteria by screening the title and abstracts. These studies were excluded. In a second step, the same investigators evaluated the remaining studies in their entirety. Studies were excluded if they did not meet all criteria.

Data extraction

Two investigators (MS and PMR) independently extracted data from the published studies and entered them in a customised database. Disagreements were resolved by consensus. The extracted data included authors and title of study, year of publication, country of origin, ethnicity of population investigated, setting (clinic vs population), study design, genotyping

method, migraine status (any migraine, MA, MO), age and gender of study individuals, study size, allele and genotype frequencies, and information on additional genetic variants as well as gene-gene and gene-environment interactions, if investigated. If not given, genotype frequencies were calculated where possible. We did not contact the authors to collect further information.

Statistical analysis

We first used logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between sex hormone receptor polymorphisms and migraine assuming additive, dominant, and recessive genetic models. We calculated these for polymorphisms which were investigated in at least two independent study populations. The additive model assumes that the risk for migraine among carriers of the heterozygous genotype is half way between carriers of the homozygous genotypes. While the dominant model assumes that carriers of the heterozygous and homozygous variant genotypes have the same risk of developing migraine compared with carriers of the homozygous wild-type genotype, a recessive model assumes that carrying the homozygous variant genotype is necessary to alter the risk for migraine compared with carriers of the heterozygous and homozygous wild-type genotype. We also determined Hardy-Weinberg Equilibrium (HWE) for the control group in each study. We investigated any migraine, MA, and MO.

We then pooled results from all studies and subsequently stratified analyses by ethnicity and gender where applicable.

We weighted the log of the ORs by the inverse of their variance to obtain pooled relative risk estimates. We ran random-effects models which include assumptions on potential variability across studies. We performed the DerSimonian and Laird Q test for heterogeneity and also calculated the I^2 statistic for each analysis (14). This statistic describes the percentage of total variation across studies that is due to heterogeneity rather than chance (25%, low; 50%, medium; 75%, high heterogeneity). We used Galbraith plots to examine visually the impact of individual studies on the overall homogeneity test statistic. We evaluated potential publication bias visually by examining for possible skewness in funnel plots (15) and statistically with the methods described by Begg and Mazumdar (15) and Egger (16). The latter method uses a weighted regression approach to investigate the association between outcome effects (log odds ratio) and its standard error in each study.

We considered a P-value < 0.05 as statistically significant.

All analyses were performed using SAS v.9.1 (SAS Institute Inc, Cary, NC, USA) and STATA v.10.1 (Stata, College Station, TX, USA).

Since we only utilised previously published data, we did not obtain approval of an ethics committee or written informed consent.

Results

Figure 1 summarises the process of identifying eligible studies. After title and abstract evaluation, we had identified nine studies (5–12,17). We excluded one more study (17) after evaluating the remaining articles in its entirety and were left with eight studies for this analysis.

Study characteristics

Seven genes involved in sex hormone receptor pathways and metabolism have been investigated in the identified studies: *ESR-1* (5–11), *ESR-2* (11), *PGR* (7,8,12), *AR* (12), *FSHR* (11), *NRIP1* (11), and *CYP19A1* (11). One study further investigated the methylenetetrahydrofolate reductase gene (*MTHFR*) (9). This gene will not be considered for the present analysis.

Table 1A summarises the characteristics of the eight studies included according to the polymorphisms investigated. Four studies (5 study populations: 2

populations from 1 study (6)) have investigated the ESR-I 594 G > A (rs2228480) (6,7,9,10), six the ESR-I 325 C > G (rs1801132) (5,7–11), two the ESR-I Pvu II C > T (rs2234693) (5,8), two the ESR-I 30 T > C (rs2077647) (7,9), and three (4 study populations: 2 populations from 1 study (12)) the PGR PROGINS insert (Alu insert) polymorphism (7,8,12).

Additional polymorphisms have only been looked at in single studies (Table 1B): various *ESR-1* polymorphisms (7,9), *AR* CAG repeat (12), *FSHR* rs6166 (11), *ESR-2* rs4986938 (11), *CYP19A1* rs10046 (11), and *NR1P1* rs2229741 (11).

For the meta-analysis we have only considered polymorphisms that have been investigated in at least two independent study populations. The data given in 1 (9) of the 2 (7, 9) studies investigating the *ESR-1* 30 T > C polymorphism did not allow calculating genotype frequencies. Hence, we could not determine pooled relative risk estimates and we did not include this polymorphism in our meta-analysis.

Almost all studies were performed in Caucasian populations. One study was in an Indian population (8). Further, most (5,6,8,10–12), but not all (7,9), studies presented results stratified by gender in addition to results for the overall study population.

The allele and genotype frequencies for the investigated polymorphisms for migraineurs and controls in each of the studies are summarised in Table 2.

Figure 1. Process of study selection.

Table 1A. Characteristics of the included studies according to the polymorphisms investigated – polymorphisms that have been investigated in at least two papers with extractable data

					Study size	Study size with genotypic information	pic inform	mation	
Reference	Country	Ethnicity	Setting	Gender	Controls	Any migraine	Α A	Θ	Comment
			41	ESR-1 594 G > A polymorphism (rs2228480)	ymorphism	(rs2228480)			
Colson (2004) (6)	Australia	Caucasian	Population	Women + men	224	224	139	85	Study population 1 from Colson (6)
				Women	167	167	103	64	
				Men	57	57	36	21	
Colson (2004) (6)	Australia	Caucasian	Population	Women + men	260	260	221	39	Study population 2 from Colson (6)
				Women	224	224	161	33	
				Men	36	36	30	9	
Oterino (2006) (10) Spain	Spain	Caucasian	Clinic	Women + men	232	367	197	170	Other polymorphisms investigated: rs 80 32 (ESR-/ 325 C > G)
				Women	142	286	155	131	
				Men	06	18	42	39	
Kaunisto (2006) (9)	Finland	Caucasian	Population and clinic	Women ⊹ men	006	1	868	1	Other polymorphisms investigated: 6 MTHFR and 26 ESR-1 polymorphisms
Corominas (2009) (7)	Spain	Caucasian	S Z	Women + men	210	210	98	102	'Any migraine' also contains 22 patients with hemiplegic migraine. Other polymorphisms investigated: rs1801132 (ESR-1 325 C > G), rs2077647 (ESR-1), and PGR PROGINS insert
Total number of subjects	yects				1826	1901	1541	396	
			- Li	ESR- l 325 C > G polymorphism (rs 1801132)	olymorphism	(rs1801132)			
Colson (2006) (5)	Australia	Caucasian	clinic	Women + men	249	231	-	75	'Any migraine' also contains 15 patients with 'MA + MO'. Other polymorphisms investigated: rs2234693 (ESR-1 Pvu II C > T)
				Women	189	167	l	[
				Men	09	64	1	1	
Oterino (2006) (10)	Spain	Caucasian	Clinic	Women + men	232	367	197	170	Compared to dbSNP and other studies the allele and genotype frequencies in the paper appear flipped because the minus strand instead of the plus strand appears to be used to determine the mutation. Other polymorphisms investigated: rs2228480 (ESR-I 594 G > A)
				Women	142	286	155	131	
				Men	06	18	42	39	
									(continued)

Table IA. Continued

Federence Country Eshnicity Setting Gender Controls migration 172 356 198 158 Commant 172 2008) (3008) (1) Spalin Caucasian Chinic Women + men 372 356 198 158 Commant of the paper 26 ESM polymorphisms investigated to display and other studies the allege and genospe frequencies in the paper 2008) (1) Women + men 172 248 152 117 Commant 172 172 174 1						Study size	Study size with genotypic information	pic inforr	nation	
Finland Caucasian Population and Women + men 888	Reference	Country	Ethnicity	Setting	Gender	Controls	Any migraine	Α A	Θ	Comment
Spain Caucasian Clinic Women + men 372 356 198 158 C Women + men 263 263 263 117 46 41 Men 109 87 46 41 46 41 Momen + men 210 210 86 102 74 Spain Caucasian NS Women + men 217 217 84 133 O Subjects Australia Caucasian Clinic Women + men 207 21 46 73 74 Men 62 64 - - - - - Men Clinic Women + men 207 217 84 133 O Women Hodian Clinic Women + men 207 217 84 133 O Women Hodian Clinic Women + men 217 217 84 133 O Women Hodian	Kaunisto (2006) (9)	Finland	Caucasian	Population and clinic	Women + men	888	1	968	1	Other polymorphisms investigated: 6 MTHFR and 26 ESR-1 polymorphisms
Spain Caucasian NS Women 263 269 152 117 Hodia Caucasian NS Women + men 210 210 86 102 'A India Indian Clinic Women + men 150 150 63 87 /A /A </td <td>Oterino (2008) (11)</td> <td>Spain</td> <td>Caucasian</td> <td>Clinic</td> <td>Women + men</td> <td>372</td> <td>356</td> <td>86</td> <td>158</td> <td>Compared to dbSNP and other studies the allele and genotype frequencies in the paper appear flipped because the minus strand instead of the plus strand appears o be used to determine the mutation. Other polymorphisms investigated: rs6166 (FSHR), rs4986938 (ESR-2), rs10046 (CYP19A1), and rs2229741 (NRIPI)</td>	Oterino (2008) (11)	Spain	Caucasian	Clinic	Women + men	372	356	86	158	Compared to dbSNP and other studies the allele and genotype frequencies in the paper appear flipped because the minus strand instead of the plus strand appears o be used to determine the mutation. Other polymorphisms investigated: rs6166 (FSHR), rs4986938 (ESR-2), rs10046 (CYP19A1), and rs2229741 (NRIPI)
Spain Caucasian NS Women + men 109 87 46 41					Women	263	269	152	117	
Spain Caucasian NS Women + men 210 210 86 102 'A India India Clinic Women + men 217 217 84 133 Or Ywomen 150 150 63 87 Men 67 67 21 46 181 160 638 87 5 Australia Caucasian Clinic Women + men 202 231 145 73 'A India Indian Clinic Women + men 217 217 84 133 Or Women + men 62 64 - - - - - Indian Clinic Women + men 150 150 63 87 Women + men 67 67 67 67 67 64 - - Women + men 150 67 67 21 46 - - Women + me					Men	601	87	46	4	
India	Corominas (2009) (7)	Spain	Caucasian	SZ	Women + men	210	210	98	102	'Any migraine' also contains 22 patients with hemiplegic migraine. Other polymorphisms investigated: rs2228480 (ESR-I 594.G > A), rs2077647 (ESR-I), and PGR PROGINS insert
Subjects Women 150 150 63 87 Subjects Australia ESR-1 Pvu II C > T polymorphism (rs2234693) 146 638 Shattalia Caucasian Clinic Women + men 202 231 145 73 *A Men 62 64 - - - - - - India Indian Clinic Women + men 217 217 84 133 Or Women 150 150 67 67 67 21 46 Men 67 67 67 210 46 Men 67 67 44 209 206	Joshi (2009) (8)	India	Indian	Clinic	Women + men	217	217	84	133	Other polymorphisms investigated: rs2234693 (ESR-1 Pvu II C > T) and PGR PROGINS insert
Men 67 67 21 46 subjects 2168 1381 1602 638 5) Australia ESR-I Pvu II C > T polymorphism (rs2234693) 5) Australia Clinic Women + men 202 231 145 73 'A Men 62 64 - - - - - - India India Clinic Women + men 217 217 84 133 Or Women 67 67 67 67 21 46 Men 67 67 67 229 206					Women	150	150	63	87	
SR-1 Pvu C C C C C C C C C					Men	29	29	21	46	
ESR-1 Pvu II C > T polymorphism (rs2234693) Australia Caucasian Clinic Women + men 202 231 145 73 'A Women 140 167 - Men 62 644 - Men 62 644 - Men 62 644 - - Men 62 644 133 Or Momen + men 217 217 84 133 Or Momen + men 217 217 84 133 Or Men 67 67 21 46 Men 67 67 219 46 Men 67 67 67 67 67 67 67 6	Total number of su	bjects				2168	1381	1602	638	
5) Australia Caucasian Clinic Women + men 202 231 145 73 'A Women Women 140 167 -				ES	R-1 Pvu II C > T po	olymorphisn	n (rs223469)	3)		
Women 140 167 – – Men 62 64 – – India Undian Clinic Women+men 217 217 84 133 Or Women 150 150 63 87 Men 67 67 51 46 Men 419 448 229 206	Colson (2006) (5)	Australia	Caucasian	Clinic	Women + men	202	231	145	73	'Any migraine' also contains 13 patients with 'MA + MO'. Other polymorphisms investigated: rs1801132 (ESR-1 325 C > G)
Men 62 64 - - - Indian Clinic Women+men 217 217 84 133 Or Women 150 150 150 63 87 Men 67 67 21 46 Subjects 419 448 229 206					Women	140	167	1	1	
India Indian Clinic Women+men 217 217 84 133 O1 Women Women 150 150 63 87 Men 67 67 21 46 Subjects 419 448 229 206					Men	62	64	ı	ı	
Women 150 150 63 Men 67 67 21 419 448 229	Joshi (2009) (8)	India	Indian	Clinic	Women + men	217	217	84	133	Other polymorphisms investigated: rs1801132 (ESR-1 325 C > G) and PGR PROGINS insert
Men 67 67 21 419 448 229					Women	150	150	63	87	
419 448 229					Men	29	29	21	46	
	Total number of su	bjects				419	448	229	206	

Table IA. Continued

			***************************************		5tudy size	Study size with genotypic information	pic infor-	mation	
Reference	Country	Ethnicity	Setting	Gender	Controls	Any migraine	MA	ω	Comment
				PGR PR	PGR PROGIN5 insert	£			
Colson (2005) (12) Australia	Australia	Caucasian	Clinic	Women + men	216	232	4 4	88	Study population I from Colson (12). Other polymorphisms investigated: CAG repeat in exon I of the AR
				Women	151	165	I	ı	
				Men	65	29	ı	ı	
Colson (2005) (12) Australia	Australia	Caucasian	Clinic	Women + men	263	277	227	20	Study population 2 from Colson (12). Other polymorphisms investigated: CAG repeat in exon of the AR
				Women	222	238	I	ı	
				Men	4	39	I	ı	
Corominas (2009) (7)	Spain	Caucasian	SZ	Women + men	210	210	98	102	'Any migraine' also contains 22 patients with hemiplegic migraine. Other polymorphisms investigated: rs2228480 (ESR-I 594 G > A), rs2077647 (ESR-I), and rs 80 32 (ESR-I 325 C > G)
Joshi (2009) (8)	India	Indian	Clinic	Women + men	217	217	8	133	Other polymorphisms investigated: rs1801132 (ESR-1 325 C > G) and rs2234693 (ESR-1 Pvu II C > T)
				Women	150	150	63	87	
				Men	29	29	21	46	
Total number of subjects	jects				906	936	541	373	
4 7 4					1	-			

MA: migraine with aura; MO: migraine without aura; NS: not specified. ESR-1: oestrogen receptor I gene: MTHFR: methylenetetrahydrofolate reductase gene; PGR: progesterone receptor gene.

0 0					
Polymorphism(s)	Reference	Country	Ethnicity	Setting	Association
AR CAG repeat in exon	Colson (2005) (12)	Australia	Caucasian	Clinic	No
26 ESR-1 polymorphisms (including rs 80 132 and rs2228480)	Kaunisto (2006) (9)	Finland	Caucasian	Population and clinic	rs6557170, rs2347867, rs6557171, rs4870062, rs1801132 were nominally associated with MA, but did not remain significant after correction for multiple testing
FSHR rs6166	Oterino (2008) (11)	Spain	Caucasian	Clinic	Yes
ESR-2 rs4986938	Oterino (2008) (11)	Spain	Caucasian	Clinic	Yes
CYP19A1 rs10046	Oterino (2008) (11)	Spain	Caucasian	Clinic	Yes

Table 1B. Characteristics of the included studies according to the polymorphisms investigated – polymorphisms that have been investigated in single studies

AR: androgen receptor gene; ESR-1: oestrogen receptor 1 gene; FSHR: follide stimulating hormone receptor gene; ESR-2: oestrogen receptor 2 gene; CYP19A1: cytochrome P450, family 19, subfamily A, polypeptide 1 gene; NRIP1: nuclear receptor interacting protein 1; MA: migraine with aura; N5: not specified.

Caucasian

Caucasian

Clinic

NS

Spain

Spain

Table 3 summarises for each of the studies the *P*-value for the HWE in the controls as well as ORs (95% CI) for the association between the polymorphisms and migraine assuming additive, dominant, and recessive genetic models.

Oterino (2008) (11)

Corominas (2009) (7)

Table 4 summarises the pooled effect estimates, measures for heterogeneity, and tests for publication bias for each of the polymorphisms.

Association between the ESR-1 594 G > A polymorphism and migraine

NRIP1 rs2229741

ESR-1 rs2077647

Among the five study populations from four studies investigating the association between the ESR-I 594 G > A polymorphism and migraine, there was a statistically significant positive association in two study populations (6) suggesting an increased risk for migraine among carriers of the A allele, which did not appear in the other studies (Table 3) (7,9,10).

The pooled effect estimates among all studies suggest that the A allele is associated with an increased risk for any migraine (additive mode: pooled OR 1.37; 95% CI 1.02-1.83; Table 4). The association appeared most pronounced for carriers of the GA/AA genotype (dominant mode: pooled OR 1.50; 95% CI 1.10-2.06). However, there was medium heterogeneity across all studies (dominant mode: $I^2 = 64.5\%$). Further, the increased risk for the GA/AA genotype appeared to be slightly higher among men (dominant mode: pooled OR 1.80; 95% CI 1.16-2.80) than among women (dominant mode: pooled OR 1.56; 95% CI 0.98-2.48), where it did not reach statistical significance. In addition, heterogeneity was medium among studies investigating women (dominant mode: $I^2 = 73.5\%$) and absent among studies

investigating men. The results for MA and MO were very similar. Neither Begg's test nor Egger's test indicated publication bias for the dominant model.

Yes

No

Association between the ESR-1 325 C > G polymorphism and migraine

Among the six studies investigating the *ESR-1* 325 C > G polymorphism, two suggested an increased risk for migraine among carriers of the GG genotype (recessive mode), which appeared to be strongest among women (10,11), while the others did not find an altered risk (Table 3) (5,7–9).

The pooled effect estimates suggest that the G allele is associated with a slightly increased risk for having any migraine (additive mode: pooled OR 1.16; 95% CI 1.03– 1.32; Table 4). The association was most pronounced for carriers of the GG genotype (recessive mode: pooled OR 1.40; 95% CI 0.93-2.11); however, this result did not reach statistical significance. Further, the effect estimates among studies in Caucasian populations were very similar to the overall result, which included a study in the Indian population. The association between the GG genotype and any migraine was stronger among women than men. Heterogencity among the studies was low (recessive mode: $I^2 = 38.9\%$). The overall association was the same for MA (recessive mode: pooled OR 1.60; 95% CI 1.19-2.17) and MO (recessive mode: pooled OR 1.44; 95% CI 0.97-2.13). In addition, the pattern of a stronger association among women than men also occurred for MA and MO. Neither Begg's test nor Egger's test indicated publication bias when assuming a recessive model.

Table 2. Allele and genotype frequencies of the included studies according to the investigated polymorphisms

		ESR-1 594 G	> A poly	morphism (rs22	228480)			
				Allele freque	encies, n (%)	Genoty	oe frequencie	s, n (%)
Reference	Population	Disease status	Study size	G	А	GG	GA	AA
*Colson (2004) (6)	Women + men	Controls	224	323 (72.0)	125 (28.0)	112 (50.0)	99 (44.0)	13 (6.0)
		Any migraine	224	282 (63.0)	166 (37.0)	81 (36.0)	120 (54.0)	23 (10.0
		MA	139	176 (63.0)	102 (37.0)	55 (40.0)	66 (47.0)	18 (13.0
		MO	85	106 (62.0)	64 (38.0)	26 (31.0)	54 (64.0)	5 (6.0)
	Women	Controls	167	239 (72.0)	95 (28.0)	84 (50.0)	71 (43.0)	12 (7.0)
		Any migraine	167	213 (64.0)	121 (36.0)	63 (38.0)	87 (52.0)	17 (10.0
		MA	103	135 (66.0)	71 (34.0)	44 (43.0)	47 (46.0)	12 (11.0
		MO	64	78 (61.0)	50 (39.0)	19 (30.0)	40 (62.0)	5 (8.0)
	Men	Controls	57	84 (74.0)	30 (26.0)	28 (49.0)	28 (49.0)	(2.0)
		Any migraine	57	69 (61.0)	45 (39.0)	18 (32.0)	33 (58.0)	6 (10.0
		MA	36	41 (57.0)	31 (43.0)	11 (31.0)	19 (53.0)	6 (16.0
		MO	21	28 (68.0)	14 (32.0)	7 (33.0)	14 (67.0)	0 (0.0)
*Colson (2004) (6)	Women + men	Controls	260	397 (76.0)	123 (24.0)	152 (58.0)	93 (36.0)	15 (6.0)
		Any migraine	260	331 (64.0)	189 (36.0)	103 (40.0)	125 (48.0)	32 (12.0
		MA	221	274 (62.0)	168 (38.0)	82 (37.0)	110 (50.0)	29 (13.0
		MO	39	57 (73.0)	21 (27.0)	21 (54.0)	15 (38.0)	3 (8.0)
	Women	Controls	224	346 (77.0)	102 (23.0)	132 (59.0)	82 (37.0)	10 (4.0)
		Any migraine	224	282 (63.0)	166 (37.0)	88 (39.0)	106 (47.0)	30 (14.0
		MA	191	235 (62.0)	147 (38.0)	71 (37.0)	93 (49.0)	27 (14.0
		MO	33	47 (71.0)	19 (29.0)	17 (52.0)	13 (39.0)	3 (9.0)
	Men	Controls	36	51 (71.0)	21 (29.0)	20 (55.0)	11 (31.0)	5 (14.0
		Any migraine	36	49 (68.0)	23 (320)	15 (42.0)	19 (53.0)	2 (5.0)
		MA	30	39 (65.0)	21 (35.0)	11 (37.0)	17 (56.0)	2 (7.0)
		MO	6	10 (83.0)	2 (17.0)	4 (67.0)	2 (33.0)	0 (0.0)
Oterino (2006) (10)	Women + men	Controls	232	380 (81.9)	84 (18.1)	161 (69.4)	58 (25.0)	13 (5.6)
		Any migraine	367	591 (80.5)	143 (19.5)	240 (65.4)	111 (30.2)	16 (4.4)
		MA	197	317 (80.5)	77 (19.5)	128 (64.9)	61 (31.0)	8 (4.1)
		MO	170	274 (80.6)	66 (19.4)	112 (65.9)	50 (29.4)	8 (4.7)
	Women	Controls	142	232 (81.8)	52 (18.2)	93 (65.5)	38 (26.8)	11 (7.7)
		Any migraine	286	461 (80.6)	111 (19.4)	187 (65.5)	87 (30.3)	12 (4.2)
		MA	155	248 (80.0)	62 (20.0)	99 (63.8)	50 (32.3)	6 (3.9)
		MO	131	213 (81.3)	49 (18.7)	88 (67.2)	37 (28.2)	6 (4.6)
	Men	Controls	90	156 (86.7)	24 (13.3)	68 (75.6)	20 (20.2)	2 (2.2)
		Any migraine	81	130 (80.2)	32 (19.8)	53 (65.4)	24 (29.7)	4 (4.9)
		MA	42	69 (82.1)	15 (17.9)	29 (69.0)	11 (26.2)	2 (4.8)
		MO	39	61 (78.2)	17 (21.8)	24 (61.5)	13 (33.4)	2 (5.1)
Kaunisto (2006) (9)	Women + men	Controls	900	1458 (81.0)	342 (19.0)	594 (66.0)	270 (30.0)	36 (4.0)
		MA	898	1428 (80.0)	368 (20.0)	566 (63.0)	296 (33.0)	36 (4.0)
Corominas (2009) (7)	Women + men	Controls	210	361 (86.0)	59 (14.0)	157 (74.8)	47 (22.4)	6 (2.9)
		Any migraine	210	360 (85.7)	60 (14.3)	154 (73.3)	52 (24.8)	4 (1.9)
		MA	86	150 (87.2)	22 (12.8)	65 (75.6)	20 (23.3)	1 (1.2)
		MO	102	171 (83.8)	33 (16.2)	72 (70.6)	27 (26.5)	3 (2.9)

Table 2. Continued

				Allele freque	encies, n (%)	Genoty	e frequencie	s, n (%)
Reference	Population	Disease status	Study size	С	G	СС	CG	GG
Colson (2006) (5)	Women + men	Controls	249	396 (79.0)	102 (21.0)	160 (64.0)	76 (31.0)	13 (5.0
		Any migraine	231	356 (77.0)	106 (23.0)	133 (58.0)	90 (39.0)	8 (3.0
		MA	141	213 (76.0)	69 (24.0)	77 (55.0)	59 (42.0)	5 (3.0
		MO	7 5	120 (80.0)	30 (20.0)	47 (62.0)	26 (35.0)	2 (3.0
	Women	Controls	189	302 (80.0)	76 (20.0)	122 (64.0)	58 (31.0)	9 (5.0
		Any migraine	167	254 (76.0)	80 (24.0)	94 (56.0)	66 (40.0)	7 (4.0
	Men	Controls	60	94 (78.0)	26 (22.0)	38 (63.0)	18 (30.0)	4 (7.0
		Any migraine	64	102 (80.0)	26 (20.0)	39 (61.0)	24 (37.0)	1 (2.0
Oterino (2006) (10)	Women + men	Controls	232	377 (81.3)	87 (18.8)	159 (68.5)	59 (25.5)	14 (6.0
		Any migraine	367	568 (77.4)	166 (22.6)	238 (64.9)	92 (25.0)	37 (10.1
		MA	197	304 (77.2)	90 (22.8)	127 (64.5)	50 (25.4)	20 (10.1
		MO	170	264 (77.6)	76 (22.4)	111 (65.3)	42 (24.7)	17 (10.0
	Women	Controls	142	237 (83.5)	47 (16.5)	101 (71.1)	35 (24.7)	6 (4.2
		Any migraine	286	432 (75.5)	140 (24.5)	179 (62.6)	74 (25.9)	33 (11.5
		MA	155	233 (75.2)	77 (24.8)	96 (61.9)	41 (26.5)	18 (11.6
		MO	131	199 (76.0)	63 (24.0)	83 (63.4)	33 (25.2)	15 (11.4
	Men	Controls	90	140 (77.8)	40 (22.2)	58 (64.4)	24 (26.7)	8 (8.9
		Any migraine	81	136 (84.0)	26 (16.0)	59 (72.9)	18 (22.2)	4 (4.9
		MA	42	71 (84.5)	13 (15.5)	31 (73.8)	9 (21.4)	2 (4.8
		МО	39	65 (83.3)	13 (16.7)	28 (71.8)	9 (23.1)	2 (5.1
Kaunisto (2006) (9)	Women + men	Controls	888	1363 (77.0)	413 (23.0)	513 (58.0)	337 (38.0)	38 (4.0
(====, (-,		MA	896	1328 (74.0)	464 (26.0)	499 (57.0)	330 (37.0)	67 (7.0
Oterino (2008) (11)	Women + men	Controls	372	615 (82.7)	129 (17.3)	257 (69.1)	101 (27.2)	14 (3.8
()()		Any migraine	356	557 (78.2)	155 (21.8)	230 (64.6)	97 (27.2)	29 (8.1
		MA	198	308 (77.8)	88 (22.2)	126 (63.6)	56 (28.3)	16 (8.1
		МО	158	249 (78.8)	67 (21.2)	104 (65.8)	41 (25.9)	13 (8.2
	Women	Controls	263	438 (83.3)	88 (16.7)	185 (70.3)	68 (25.9)	10 (3.8
		Any migraine	269	411 (76.4)	127 (23.6)	167 (62.1)	77 (28.6)	25 (9.3
		MA	152	230 (75.7)	74 (24.3)	92 (60.5)	46 (30.3)	14 (9.2
		МО	117	181 (77.4)	53 (22.6)	75 (64.1)	31 (26.5)	11 (9.4
	Men	Controls	109	177 (81.2)	41 (18.8)	72 (66.0)	33 (30.3)	4 (3.7
		Any migraine	87	146 (83.9)	28 (16.1)	63 (72.4)	20 (23.0)	4 (4.6
		MA	46	78 (84.8)	14 (15.2)	34 (73.9)	10 (21.7)	2 (4.3
		МО	41	68 (82.9)	14 (17.1)	29 (70.7)	10 (24.4)	2 (4.9
Corominas (2009) (7)	Women + men	Controls	210	339 (80.7)	81 (19.3)	136 (64.8)	67 (31.9)	7 (3.3
207011111112 (2007) (1)	, , , , , , , , , , , , , , , , , , , ,	Any migraine	210	338 (80.5)	82 (19.5)	140 (66.7)	58 (27.6)	12 (5.7
		MA	86	135 (78.5)	37 (21.5)	55 (64.0)	25 (29.1)	6 (7.0
		MO	102	169 (82.8)	35 (17.2)	72 (70.6)	25 (24.5)	5 (4.9
loshi (2009) (8)	Women + men	Controls	217	272 (62.7)	162 (37.3)	81 (37.3)	110 (50.7)	26 (12.0
(=, (-)	. romen ; men	Any migraine	217	265 (61.1)	169 (38.9)	75 (34.6)	115 (53.0)	27 (12.4
		MA	84	106 (63.1)	62 (36.9)	32 (38.1)	42 (50.0)	10 (11.9
		MO	133	159 (59.8)	107 (40.8)	43 (32.3)	73 (54.9)	17 (12.8
	Women	Controls	150	185 (61.7)	115 (38.3)	53 (35.3)	79 (52.7)	18 (12.0
	YYUHEH	COLLUIS	130	100 (01.7)	110 (30.3)	33 (33.3)	11 (32.1)	10 (12.0

Table 2. Continued

		ESR-1 325 C	> G polymo	rphism (rs180	1132)			
				Allele freque	encies, n (%)	Genotyp	e frequencie	s, n (%)
Reference	Population	Disease status	Study size	С	G	СС	CG	GG
		MA	63	82 (65.1)	44 (34.9)	26 (41.3)	30 (47.6)	7 (11.6)
		MO	87	103 (59.2)	71 (40.8)	29 (33.3)	45 (51.7)	13 (14.9)
	Men	Controls	67	87 (64.9)	47 (35.1)	28 (41.8)	31 (46.3)	8 (11.9)
		Any migraine	67	80 (59.7)	54 (40.3)	20 (29.9)	40 (59.7)	7 (10.4)
		MA	21	24 (57.1)	18 (42.9)	6 (28.6)	12 (57.1)	3 (14.3)
		MO	46	56 (60.9)	36 (39.1)	14 (30.4)	28 (60.9)	4 (8.7)
		ESR-1	Pvu II C > T	(rs2234693)				
				Allele freque	ncies, n (%)	Genotyp	e frequencie	s, n (%)
Reference	Population	Disease status	Study size	С	Т	CC	CT	TT
Colson (2006) (5)	Women + men	Controls	202	189 (47.0)	215 (53.0)	46 (23.0)	97 (48.0)	59 (29.0)
		Any migraine	231	232 (50.0)	230 (50.0)	55 (24.0)	122 (53.0)	54 (23.0)
		MA	145	142 (49.0)	148 (51.0)	29 (20.0)	84 (58.0)	32 (22.0)
		MO	73	77 (53.0)	69 (47.0)	22 (30.0)	33 (45.0)	18 (25.0)
	Women	Controls	140	138 (49.0)	142 (51.0)	34 (24.0)	70 (50.0)	36 (26.0)
		Any migraine	167	167 (50.0)	167 (50.0)	38 (23.0)	91 (54.0)	38 (23.0)
	Men	Controls	62	51 (41.0)	73 (59.0)	12 (19.0)	27 (44.0)	23 (37.0)
		Any migraine	64	65 (51.0)	63 (49.0)	17 (27.0)	31 (48.0)	16 (25.0)
Joshi (2009) (8)	Women + men	Controls	217	287 (66.1)	147 (33.9)	88 (40.6)	111 (51.2)	18 (8.3)
		Any migraine	217	230 (53.0)	204 (47.0)	47 (21.7)	136 (62.7)	34 (15.7)
		MA	84	86 (51.2)	82 (48.8)	14 (16.7)	58 (69.0)	12 (14.3)
		МО	133	144 (54.1)	122 (45.9)	33 (24.8)	78 (58.6)	22 (16.5)
	Women	Controls	150	201 (67.0)	99 (33.0)	61 (40.7)	79 (52.7)	10 (6.7)
		Any migraine	150	161 (53.7)	139 (46.3)	34 (36.7)	93 (50.0)	23 (13.3)
		MA	63	65 (51.6)	61 (58.4)	10 (15.9)	45 (71.4)	8 (12.7)
	M	MO	87	96 (55.2)	78 (44.8)	24 (27.6)	48 (55.2)	15 (17.2)
	Men	Controls	67 67	86 (64.2)	48 (35.8)	27 (40.3)	32 (47.8)	8 (11.9)
		Any migraine MA	21	69 (51.5)	65 (48.5)	13 (19.4)	43 (64.2) 13 (61.9)	11 (16.4) 4 (19.0)
		MO	46	21 (50.0) 48 (52.2)	21 (50.0) 44 (47.8)	4 (19.0) 9 (19.6)	30 (65.2)	7 (15.2)
			PGR PROGIN		(17.0)	7 (17.0)	30 (03.2)	7 (13.2)
			07(7)(00)	Allele freque	ncies, n (%)	Genotyp	e frequencie	s, n (%)
Reference	Population	Disease status	Study size	1	2	11	12	22
[†] Colson (2005) (12)	Women + men	Controls	216	395 (91.0)	37 (9.0)	182 (84.0)	31 (15.0)	3 (1.0)
(-200) (12)	,	Any migraine	232	401 (86.0)	63 (14.0)	173 (75.0)	55 (23.0)	4 (2.0)
		MA	144	253 (88.0)	35 (12.0)	113 (78.0)	27 (19.0)	4 (3.0)
		MO	88	148 (84.0)	28 (16.0)	60 (68.0)	28 (32.0)	0 (0.0)
	Women	Controls	151	287 (95.0)	15 (5.0)	138 (91.0)	11 (7.0)	2 (2.0)
		Any migraine	165	293 (89.0)	37 (11.0)	130 (79.0)	33 (20.0)	2 (1.0)
	Men	Controls	65	108 (83.0)	22 (17.0)	44 (68.0)	20 (31.0)	1 (1.0)

Table 2. Continued

		P	GR PROGINS	insert :				
				Allele freque	encies, n (%)	Genotype	e frequencie	s, n (%)
Reference	Population	Disease status	Study size	ı	2		12	22
†Colson (2005) (12)	Women + men	Controls	263	488 (93.0)	38 (7.0)	228 (87.0)	32 (12.0)	3 (1.0
		Any migraine	277	484 (87.0)	70 (13.0)	215(78.0)	54 (19.0)	8 (3.0
		MA	227	397 (87.0)	57 (13.0)	176 (77.0)	45 (20.0)	6 (3.6
		MO	50	87 (87.0)	13 (13.0)	39 (78.0)	9 (18.0)	2 (4.0
	Women	Controls	222	412 (93.0)	32 (7.0)	193 (87.0)	26 (12.0)	3 (1.0
		Any migraine	238	422 (89.0)	54 (11.0)	188 (79.0)	46 (19.0)	4 (2.0
	Men	Controls	41	76 (93.0)	6 (7.0)	35 (85.0)	6 (15.0)	0 (0.0
		Any migraine	39	62 (79.0)	16 (21.0)	27 (69.0)	8 (20.0)	4 (11.
Corominas (2009) (7)	Women + men	Controls	210	344 (81.9)	76 (18.1)	142 (67.6)	60 (28.6)	8 (3.
		Any migraine	210	346 (82.4)	74 (17.6)	142 (67.6)	62 (29.5)	6 (2.
		MA	86	139 (80.8)	33 (19.2)	56 (65.1)	27 (31.4)	3 (3
		MO	102	172 (84.3)	32 (15.7)	72 (70.6)	28 (27.5)	2 (2.
oshi (2009) (8)	Women + men	Controls	217	392 (90.3)	42 (9.7)	175 (80.6)	42 (19.4)	0 (0.
		Any migraine	217	418 (96.3)	16 (3.7)	201 (92.6)	16 (7.4)	0 (0.
		MA	84	161 (95.8)	7 (4.2)	77 (91.8)	7 (8.2)	0 (0.
		MO	133	257 (96.6)	9 (3.4)	124 (93.2)	9 (6.8)	0 (0.
	Women	Controls	150	267 (89.0)	33 (11.0)	117 (78.0)	33 (22.0)	0 (0.
		Any migraine	150	285 (95.0)	15 (5.0)	135 (90.0)	15 (10.0)	0 (0.
		MA	63	119 (94.4)	7 (5.6)	56 (88.9)	7 (11.1)	0 (0.
		MO	87	166 (95.4)	8 (4.6)	79 (90.8)	8 (9.2)	0 (0.
	Men	Controls	67	125 (93.3)	9 (6.7)	58 (86.6)	9 (13.4)	0 (0.
		Any migraine	67	133 (99.3)	1 (0.7)	66 (98.5)	1 (1.5)	0 (0.
		MA	21	42 (100.0)	0 (0.0)	21 (100.0)	0 (0.0)	0 (0.
		MO	46	91 (98.9)	1 (1.1)	45 (97.8)	1 (2.2)	0 (0.0

^{*}Two study populations from Colson et al. (2004) (6).

Association between the ESR-1 Pvu II C > T polymorphism and migraine

Among the two studies investigating the *ESR-1* Pvu II C > T polymorphism, one found an increased risk for migraine among carriers of the T allele (8), while the other did not (Table 3) (5).

The pooled effect estimates of the two studies neither suggest an association for any of the genotypes with any migraine, MA or MO nor a difference between women and men when looking at any migraine. One study provided gender specific effect estimates for MA and MO, which suggested a higher risk among women than men (8). Heterogeneity between the two studies was high. This is most likely due to the low number of studies and remaining uncertainties which may include genotypic ethnic differences.

Formal investigation using Begg's test did not indicate publication bias.

Association between the PGR PROGINS insert polymorphism and migraine

Among the four study populations investigating the *PGR* PROGINS insert polymorphism, two found an increased risk among carriers of the '2' allele (*Alu* insert) (12), one found a protective association (8), and one did not find an association (Table 3) (7).

The pooled effect estimates among all studies do not suggest an association between any of the genotypes and any migraine (additive mode: pooled OR 1.02; 95% CI 0.55–1.87; Table 4). This finding did not differ between MA (additive mode: pooled OR 1.11; 95% CI 0.68–1.81) and MO (additive mode: pooled OR 1.01; 95% CI 0.48–2.13). However, further analyses

[†]Two study populations from Colson et al. (2005) (12).

MA, migraine with aura; MO, migraine without aura; ESR-1, oestrogen receptor I gene; PGR, progesterone receptor gene.

Table 3. Hardy-Weinberg Equilibrium and odds ratios (95% Cl) for additive, dominant, and recessive genetic models according to the investigated polymorphisms

Reference Population *Colson Women + men (2004) (6) Women								2	200000	
(9)	ion	Disease status	Study size	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
(9)					ESR-1 594 G > A (rs2228480)	2228480)				
	men	Controls	224	0.18	Referent		Referent		Referent	
Wome		Any migraine	224	I	1.62 (1.19–2.19)	0.002	1.77 (1.21–2.58)	0.003	1.86 (0.92–3.77)	98'0
Wome		МА	139	I	1.54 (1.10–2.16)	0.01	1.53 (0.99–2.35)	0.05	2.41 (1.14–5.10)	0.02
Wome		Ω	82	I	1.73 (1.13–2.63)	0.01	2.27 (1.34–3.86)	0.003	1.01 (0.35–2.94)	0.98
Men	u,	Controls	167	0.71	Referent		Referent		Referent	
Men		Any migraine	167	ı	1.48 (1.05–2.09)	0.03	1.67 (1.08–2.58)	0.02	1.46 (0.68–3.17)	0.33
Men		MA	103	I	1.34 (0.91–1.95)	0.14	1.36 (0.83–2.23)	0.23	1.70 (0.74-3.95)	0.2
Men		Θ	64	ı	1.74 (1.09–2.77)	0.02	2.40 (1.29-4.44)	0.005	1.10 (0.37–3.24)	0.87
		Controls	57	0.08	Referent		Referent		Referent	
		Any migraine	57	I	2.20 (1.14-4.25)	0.02	2.09 (0.98-4.49)	90.0	6.59 (0.77–56.55)	0.09
		МА	36	I	2.52 (1.22–5.24)	0.01	2.19 (0.91–5.28)	0.08	11.20 (1.29–97.37)	0.03
		Ω	21	ı	1.69 (0.64-4.48)	0.29	1.93 (0.68–5.49)	0.22	ı	ŧ
*Colson Women + men	men	Controls	260	0.87	Referent		Referent		Referent	
(2004) (6)		Any migraine	260	I	1.86 (1.41–2.46)	<0.0001	2.15 (1.51–3.05)	< 0.0001	2.29 (1.21–4.34)	0.0
		МА	221	ı	2.01 (1.51–2.69)	< 0.0001	2.39 (1.65-3.45)	< 0.0001	2.47 (1.29–4.73)	0.007
		ω	39	ı	1.19 (0.69–2.03)	0.53	1.21 (0.61–2.37)	0.59	1.36 (0.38-4.94)	0.64
Women	u.	Controls	224	0.70	Referent		Referent		Referent	
		Any migraine	224	I	2.03 (1.50-2.75)	< 0.0001	2.22 (1.52–3.24)	< 0.0001	3.31 (1.58–6.95)	0.002
		МА	161	ı	2.18 (1.59–2.99)	< 0.0001	2.43 (1.63-3.60)	< 0.0001	3.52 (1.66–7.49)	00:0
		МО	33	1	1.39 (0.77–2.49)	0.28	1.35 (0.65-2.81)	0.42	2.14 (0.56–8.22)	0.27
Men		Controls	36	0.12	Referent		Referent		Referent	
		Any migraine	36	I	1.14 (0.56-2.30)	0.72	1.75 (0.69-4.45)	0.24	0.37 (0.07-2.02)	0.25
		MA	30	l	1.30 (0.63-2.70)	0.48	2.16 (0.80-5.82)	0.13	0.44 (0.08–2.47)	0.35
		МО	9	I	0.55 (0.12-2.42)	0.43	0.63 (0.10-3.86)	19.0	I	1
Oterino Women + men	- men	Controls	232	0.03	Referent		Referent		Referent	
(2006) (10)		Any migraine	367	I	1.09 (0.82-1.45)	0.57	1.20 (0.84–1.71)	0.31	0.77 (0.36-1.63)	0.49
		МА	161	I	1.09 (0.79-1.52)	19.0	1.22 (0.82–1.83)	0.33	0.71 (0.29–1.76)	0.46

Table 3. Continued

					Additive		Dominant	ıt	Recessive	
Reference	Population	Disease status	Study	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
		МО	170	ı	1.08 (0.77–1.52)	99.0	1.17 (0.77–1.79)	0.46	0.83 (0.34–2.05)	69'0
	Women	Controls	142	0.02	Referent		Referent		Referent	
		Any migraine	286	I	0.91 (0.65–1.27)	0.57	1.01 (0.66–1.53)	0.98	0.52 (0.22-1.21)	0.13
		Ψ	155	ı	0.94 (0.64–1.37)	0.75	1.07 (0.67–1.73)	0.77	0.48 (0.17-1.33)	91.0
		МО	131	I	0.88 (0.59-1.30)	0.51	0.93 (0.56-1.53)	0.77	0.57 (0.21-1.59)	0.28
	Men	Controls	06	0.64	Referent		Referent		Referent	
		Any migraine	8	I	1.56 (0.89–2.76)	0.12	1.63 (0.84–3.17)	0.15	2.29 (0.41-12.82)	0.35
		Ψ	42	ı	1.38 (0.70-2.74)	0.35	1.39 (0.62–3.12)	0.43	2.20 (0.30–16.18)	0.44
		МО	39	I	1.78 (0.90-3.53)	0.10	1.93 (0.86-4.32)	0.11	2.38 (0.32-17.52)	0.40
Kaunisto	Women + men	Controls	006	0.45	Referent		Referent		Referent	
(4) (9007)		Σ	868	I	1.10 (0.93–1.30)	0.26	1.14 (0.94–1.29)	0.19	1.00 (0.63-1.61)	0.99
Corominas	Women + men	Controls	210	0.26	Referent		Referent		Referent	
(2009) (7)		Any migraino	010	I	1 02 /0 701 49)	690	(77) 108 (1 67)	0.74	0.66 (0.18_0.37)	0.50
		ΔΜ.δ	2 4	ı	0.90 (0.54-1.51)	0,00	0.96 (0.54-1.71)	280	0.40 (0.05-3.37)	20:0 45:0
			3 5		(15.1-15.0) 04.0	5.6	(17.1-15.0) 07.0	9 6	(16.5-20.0) OF:0	0 0
		МО	102		1.17 (0.75–1.84)	0.49	1.23 (0.73–2.09)	0.43	1.03 (0.25–4.21)	0.97
					ESR-1 325 C > G (rs1801132)	1801132)				
Colson	Women + men	Controls	249	0.34	Referent	***************************************	Referent		Referent	
(2006) (5)		Any migraine	231	ı	1.16 (0.85–1.58)	0.35	1.33 (0.92–1.91)	0.13	0.65 (0.27-1.60)	0.35
		Ψ	4	I	1.26 (0.89–1.79)	0.19	1.49 (0.98-2.28)	90.0	0.67 (0.23-1.91)	0.45
		МО	7.5	j	0.97 (0.62-1.52)	0.90	1.07 (0.63-1.83)	08'0	0.50 (0.11–2.26)	0.37
	Women	Controls	681	0.50	Referent		Referent		Referent	
		Any migraine	167	I	1.26 (0.88-1.80)	0.21	1.41 (0.92–2.17)	0.11	0.88 (0.32-2.41)	0.80
	Men	Controls	09	0.45	Referent		Referent		Referent	
		Any migraine	64	1	0.92 (0.50-1.71)	0.79	1.11 (0.54–2.29)	0.78	0.22 (0.02–2.05)	0.18
Oterino	Women + men	Controls	232	0.02	Referent		Referent		Referent	
(2006) (10)		Any migraine	367	ı	1.21 (0.93–1.57)	0.15	1.18 (0.83–1.68)	0.35	1.75 (0.92–3.30)	60.0
		МА	197	ı	1.23 (0.91–1.66)	0.18	1.20 (0.80-1.80)	0.37	1.76 (0.86–3.58)	0.12
		МО	170	ı	1.20 (0.88-1.64)	0.26	1.16 (0.76–1.76)	0.49	1.73 (0.83–3.62)	0.14
										(continued)

Table 3. Continued

Study OR P-value OR (95% CJ)						Additive		Dominant	ţ	Recessive	
Women Controls 142 0.22 Referent Referent Referent Ay migraline 286 - 149 (107-207) 0.02 147 (095-228) 0.08 2.96 (1.21-72.) Ay migraline 131 - 152 (105-2.01) 0.03 151 (093-2.46) 0.09 2.96 (1.21-72.) Ay migraline 81 - 149 (100-2.16) 0.03 151 (093-2.46) 0.09 2.96 (1.21-72.) Ay migraline 81 - 0.72 (042-1.18) 0.19 0.68 (023-1.30) 0.24 0.53 (0.11-2.73) Axio Aym migraline 81 - 0.72 (042-1.18) 0.19 0.68 (023-1.30) 0.20 0.51 (0.10-2.53) Axio Aym migraline 81 - 0.72 (042-1.13) 0.35 0.64 (0.29-1.45) 0.29 0.51 (0.10-2.53) Axio Aym migraline 81 - 0.72 (042-1.13) 0.35 0.64 (0.29-1.45) 0.29 0.51 (0.12-7.23) Aym migraline 81 - 0.74 (040-1.40) 0.35 0.64 (0.29-1.45)	Reference	Population	Disease	Study size	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
Any migraine 286 - 149 (107-207) 0.02 147 (095-228) 0.08 2.96 (1.12-7.13) Men Controls 90 0.04 Referent Referent Any migraine 81 - 152 (105-21) 0.03 1.51 (095-2.46) 0.09 2.99 (1.15-773) Men Controls 90 0.04 Referent Referent Any migraine 81 - 0.72 (042-1.18) 0.19 0.68 (0.35-1.30) 0.17 2.93 (1.10-780) Momen + men Controls 888 0.07 Referent Referent Momen + men Controls 372 0.27 Referent Referent My migraine 386 - 1.18 (1.09-1.35) 0.07 1.09 (0.90-1.81) 0.38 1.81 (1.20-2.72) Momen + men Controls 188 0.07 Referent Referent My migraine 285 - 1.28 (1.01-1.64) 0.05 1.22 (0.90-1.87) 0.19 (2.90-1.87) My migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent Any migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent Any migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent Any migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent Any migraine 285 0.27 Referent Referent My migraine 285 0.27 Referent Referent Any migraine 285 0.27 Referent Referent Any migraine 87 - 1.28 (1.09-1.94) 0.05 1.28 (0.90-1.64) 0.19 2.25 (1.13-5.90) My 4 152 0. 1.25 (1.09-1.77) 0.16 1.14 (1.01-2.08) 0.04 2.57 (1.15-5.90) My 5 1 Referent Referent Referent Any migraine 87 - 1.28 (0.09-1.47) 0.05 1.33 (0.84-2.11) 0.23 (0.34-7.65) My 6 1.29 (0.90-1.64) 0.30 0.34 (0.90-1.37) 0.34 1.19 (0.31-6.51) My 7 Referent Refe		Women	Controls	142	0.22	Referent		Referent		Referent	
Main			Any migraine	286	ı	1.49 (1.07–2.07)	0.02	1.47 (0.95–2.28)	0.08	2.96 (1.21–7.23)	0.02
Mone			ΑM	155	ı	1.52 (1.05–2.21)	0.03	1.51 (0.93–2.46)	60.0	2.98 (1.15–7.73)	0.02
Men Controls 90 0.04 Referent Referent Referent Referent			МО	131	1	1.47 (1.00–2.16)	0.05	1.43 (0.86-2.37)	0.17	2.93 (1.10–7.80)	0.03
Any migraine 81 – 0.72 (0.43–1.18) 0.19 0.68 (0.35–1.30) 0.24 0.53 (0.15–1.84) MA 42 – 0.69 (0.37–1.30) 0.25 0.64 (0.29–1.45) 0.29 0.51 (0.10–2.33) MO Momen + men Controls 88 0.07 Referent Referent Referent Ontrols 37 0.27 Referent Referent Any migraine 289 0.07 Referent Referent Referent Referent Referent Any migraine 289 0.07 Referent Ref		Men	Controls	06	0.04	Referent		Referent		Referent	
MA			Any migraine	8	ı	0.72 (0.43-1.18)	0.19	0.68 (0.35-1.30)	0.24	0.53 (0.15-1.84)	0.32
Stool WOmen + men Controls 888 0.07 Referent Referent Referent Referent 505 (9) MA 888 0.07 Referent Referent Referent 505 (9) MA 886 - 1.16 (0.99-1.35) 0.07 1.09 (0.90-1.31) 0.38 1.81 (1.20-2.72) 500 Women + men Controls 372 0.27 Referent Referent Referent 500 (11) Myomen + men Controls 3.26 - 1.25 (0.90-1.37) 0.06 1.20 (0.90-1.47) 0.06 2.27 (0.90-1.67) 0.27 (1.18-4.37) Momen + men Controls 2.63 0.27 Referent Referent Referent Referent Momen + men Controls 2.63 0.27 Referent Referent Referent Men Controls 1.17 - 1.25 (0.90-1.40) 0.01 1.45 (1.01-2.08) 0.04 2.25 (1.02-2.51) Men Controls 2.63 0.27 Referent Referent			ΜA	42	ı	0.69 (0.37–1.30)	0.25	0.64 (0.29-1.45)	0.29	0.51 (0.10–2.53)	0.4
sto Women + men Controls 888 0.07 Referent Referent b6) (9) MA 896 - 1.16 (0.99-1.35) 0.07 1.09 (0.90-1.31) 0.38 1.81 (1.20-2.72) no Women + men Controls 372 0.27 Referent Referent Referent 09) (11) Any migraine 356 - 1.28 (0.99-1.77) 0.06 1.28 (0.99-1.72) 0.20 2.71 (1.16-4.37) Momen Controls 263 0.27 Referent Referent Referent Momen Controls 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.22-5.51) Momen + men Controls 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.02-5.51) Momen + men Controls 109 1 Referent Referent Referent Momen + men Controls 109 1 Referent Referent 0.78 (0.61-1.39) 0.31 1.19 (0.0			МО	39	I	0.74 (0.40-1.40)	0.36	0.71 (0.31–1.62)	0.42	0.55 (0.11–2.74)	0.47
96) (9) MAA 896 - 1.16 (0.99-1.35) 0.07 1.09 (0.90-1.31) 0.38 1.81 (1.20-2.72) 100 Women + men Controls 372 0.27 Referent Referent Referent 28) (11) Any migraine 356 - 1.28 (101-164) 0.05 1.28 (0.90-1.87) 0.20 227 (1.18-4.37) MO 158 - 1.23 (0.90-1.77) 0.06 1.28 (0.89-1.84) 0.19 2.25 (1.07-471) MO 158 - 1.23 (0.90-1.77) 0.06 1.28 (0.79-1.72) 0.46 2.29 (1.05-2.73) Momen Controls 263 0.27 Referent Referent Referent Momen + Men Controls 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Momen + Men Controls 109 1 Referent Referent Referent Any migraine 87 - 0.78 (0.41-1.50) 0.74 (0.40-1.37) 0.39 1.19 (0.21-6.75)	Kaunisto	Women + men	Controls	888	0.07	Referent		Referent		Referent	
Nomen + men Controls 372 0.27 Referent Referent	(5000)		MA	968		1.16 (0.99–1.35)	0.07	1.09 (0.90-1.31)	0.38	1.81 (1.20–2.72)	0.005
MA 198 - 1.28 (1.01-1.64) 0.05 1.22 (0.90-1.67) 0.20 2.27 (1.18-4.37) MA 198 - 1.25 (0.99-1.77) 0.06 1.28 (0.99-1.84) 0.19 2.25 (1.07-4.71) MOmen Controls 263 0.27 Referent Referent Referent Referent Any migraine 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.29 (1.05-5.00) MA 152 - 1.52 (1.09-2.12) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.25-5.1) MA 152 - 1.52 (1.09-2.12) 0.01 1.55 (1.02-2.35) 0.04 2.57 (1.11-5.93) MA 152 - 1.52 (1.09-2.12) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Man Controls 87 - 0.84 (0.50-1.40) 0.50 0.74 (0.40-1.37) 0.34 1.19 (0.21-6.75) Momen+men Controls 87 - 0.84 (0.50-1.40) 0.74 0.74 (0.40-1.37) 0.34 1.19 (0.21-6.75) Momen+men Controls 2.10 0.83 Referent Referent Referent Momen+men Controls 2.10 0.83 Referent Referent Referent Momen+men Controls 2.10 0.83 Referent Referent Referent Referent Momen+men Controls 2.10 0.83 Referent Referent Referent Referent Referent Referent Any migraine 2.10 0.25 Referent	Oterino	Women + men	Controls	372	0.27	Referent		Referent		Referent	
MA 198 – 1.32 (0.99–1.77) 0.06 1.28 (0.89–1.84) 0.19 2.25 (1.07–4.71) MO 158 – 1.25 (0.92–1.71) 0.16 1.16 (0.78–1.72) 0.46 2.29 (1.05–5.00) Women Controls 263 0.27 Referent Referent Referent Any migraine 269 – 1.46 (1.09–1.94) 0.01 1.45 (1.01–2.08) 0.04 2.59 (1.22–5.51) MA 152 – 1.52 (1.09–2.12) 0.01 1.45 (1.01–2.08) 0.04 2.57 (1.11–5.93) MO 117 – 1.39 (0.97–2.00) 0.07 1.33 (0.84–2.11) 0.23 2.62 (1.08–6.35) Men Controls 109 1 Referent Referent Referent Referent Any migraine 87 – 0.84 (0.50–1.40) 0.50 0.74 (0.40–1.37) 0.34 1.19 (0.21–6.75) MO 41 – 0.89 (0.46–1.72) 0.73 0.81 (0.37–1.76) 0.59 1.35 (0.64–7.55) MA 86	(11) (2008)		Any migraine	356	ı	1.28 (1.01-1.64)	0.05	1.22 (0.90–1.67)	0.20	2.27 (1.18-4.37)	0.0
Women Controls 158 - 1.15 (0.92-1.71) 0.16 1.16 (0.78-1.72) 0.46 2.29 (1.05-5.00) Women Controls 263 0.27 Referent Referent Referent Any migraine 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.22-5.51) Mo 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.35) Mo 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.35) Mo 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.35) Mo 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.35) Mo 46 - 0.78 (0.41-1.50) 0.46 0.59 (0.32-1.48) 0.34 1.19 (0.21-6.75) MO 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.32-1.48) 0.74 (0.40-1.37) 0.74 (0.40-1.34) 0.74			ΜA	198	ı	1.32 (0.99-1.77)	90.0	1.28 (0.89-1.84)	61.0	2.25 (1.07-4.71)	0.03
Women Controls 263 0.27 Referent Referent Referent Any migraine 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.22-5.51) MA 152 - 1.52 (1.09-2.12) 0.01 1.55 (1.02-2.35) 0.04 2.57 (1.11-5.93) MO 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) MO LORTOLOS 109 1 Referent Referent Referent Referent MA 46 - 0.78 (0.41-1.50) 0.74 (0.40-1.37) 0.34 1.19 (0.21-6.55) MO 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.37-1.48) 0.59 1.35 (0.24-7.65) MO Any migraine 2.10 0.83 Referent Referent Referent MO 102 - 1.14 (0.74-1.76) 0.54 0.07 (0.61-1.38) 0.68 1.76 (0.68-4.56) MO 102 - 0.07 (0.74-1.76) 0.73			МО	158	ı	1.25 (0.92-1.71)	91.0	1.16 (0.78–1.72)	0.46	2.29 (1.05–5.00)	0.04
Any migraine 269 - 1.46 (1.09-1.94) 0.01 1.45 (1.01-2.08) 0.04 2.59 (1.22-5.51) MA 152 - 1.52 (1.09-2.12) 0.01 1.55 (1.02-2.35) 0.04 2.57 (1.11-5.93) MO 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Mo 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Mo Any migraine 87 - 0.84 (0.50-1.40) 0.50 0.74 (0.40-1.37) 0.34 1.27 (0.31-5.1) Mo 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.37-1.76) 0.59 1.35 (0.24-7.65) Mo Any migraine 2.10 0.83 Referent Referent Referent MO 102 - 1.14 (0.74-1.76) 0.54 1.04 (0.61-1.75) 0.89 2.18 (0.71-6.67) MO 102 - 1.14 (0.74-1.76) 0.54 1.04 (0.61-1.75) 0.89 2.18 (0.71-6.67)		Women	Controls	263	0.27	Referent		Referent		Referent	
MA 152 - 1.52 (1.09-2.12) 0.01 1.55 (1.02-2.35) 0.04 2.57 (1.11-5.93) MO 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Mon 117 - 1.39 (0.97-2.00) 0.07 1.33 (0.84-2.11) 0.23 2.62 (1.08-6.36) Mon Any migraine 87 - 0.84 (0.50-1.40) 0.50 0.74 (0.40-1.37) 0.34 1.27 (0.31-5.21) MO 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.37-1.76) 0.59 1.35 (0.24-7.65) MO 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.37-1.76) 0.59 1.35 (0.24-7.65) MO 41 - 0.89 (0.46-1.72) 0.73 0.81 (0.51-1.38) 0.68 1.76 (0.68-4.56) MO Any migraine 2.10 0.83 Referent Referent Referent Referent MO 102 - 1.14 (0.74-1.76) 0.54 1.04 (0.61-1.38) 0.31 1.50 (0.46-4.83)			Any migraine	269	ı	1.46 (1.09–1.94)	0.01	1.45 (1.01–2.08)	0.04	2.59 (1.22–5.51)	0.0
Mon II7 - I.39 (0.97–2.00) 0.07 I.33 (0.84–2.11) 0.23 2.62 (1.08–6.36) Men Controls 109 1 Referent Referent Referent Any migraine 87 - 0.84 (0.50–1.40) 0.50 0.74 (0.40–1.37) 0.34 1.27 (0.31–5.21) MO 41 - 0.78 (0.41–1.50) 0.46 0.69 (0.32–1.48) 0.34 1.19 (0.21–6.75) MO 41 - 0.78 (0.44–1.72) 0.73 0.81 (0.37–1.76) 0.59 1.35 (0.24–7.65) Monen+men Controls 2.10 0.83 Referent Referent Referent MO 102 - 1.14 (0.74–1.76) 0.54 1.04 (0.61–1.75) 0.89 2.18 (0.71–6.67) Women+men Controls 2.17 0.25 Referent Referent Referent Women+men Controls 2.17 0.25 Referent Referent Referent Women+men Controls 2.17 0.25 Referent R			MA	152	ı	1.52 (1.09-2.12)	0.01	1.55 (1.02-2.35)	0.04	2.57 (1.11–5.93)	0.03
Men Controls 109 1 Referent Referent Any migraine 87 - 0.84 (0.50-1.40) 0.50 0.74 (0.40-1.37) 0.34 1.27 (0.31-5.21) MA 46 - 0.78 (0.41-1.50) 0.46 0.69 (0.32-1.48) 0.34 1.19 (0.21-6.75) minas Momen+men Controls 210 0.83 Referent Referent Referent 09) (7) Any migraine 210 - 1.02 (0.73-1.42) 0.93 0.92 (0.61-1.38) 0.68 1.76 (0.68-4.56) MA 86 - 1.14 (0.74-1.76) 0.54 1.04 (0.61-1.75) 0.89 2.18 (0.71-6.77) MO 102 - 0.87 (0.56-1.34) 0.53 0.77 (0.46-1.28) 0.31 1.50 (0.46-4.83) Women+men Controls 217 0.25 Referent Referent Referent Women+men Controls 217 - 1.08 (0.81-1.44) 0.61 1.13 (0.76-1.57) 0.55 1.04 (0.59-1.86)			МО	117	ı	1.39 (0.97-2.00)	0.07	1.33 (0.84–2.11)	0.23	2.62 (1.08-6.36)	0.03
Any migraine 87 – 0.84 (0.50–1.40) 0.50 0.74 (0.40–1.37) 0.34 1.27 (0.31–5.21) MA 46 – 0.78 (0.41–1.50) 0.46 0.69 (0.32–1.48) 0.34 1.19 (0.21–6.75) MO 41 – 0.89 (0.46–1.72) 0.73 0.81 (0.37–1.76) 0.59 1.35 (0.24–7.65) Referent O9) (7) MA 86 – 1.14 (0.74–1.76) 0.54 1.04 (0.61–1.75) 0.89 2.18 (0.71–6.67) MO 102 – 0.87 (0.56–1.34) 0.53 0.77 (0.46–1.28) 0.31 1.50 (0.46–4.83) Women + men Controls 2.17 0.25 Referent Referent Nomen + men Controls 2.17 0.25 Referent Referent Referent		Men	Controls	601	-	Referent		Referent		Referent	
MA 46 - 0.78 (0.41–1.50) 0.46 0.69 (0.32–1.48) 0.34 1.19 (0.21–6.75) MO 41 - 0.89 (0.46–1.72) 0.73 0.81 (0.37–1.76) 0.59 1.35 (0.24–7.65) Momen+men Controls 210 0.83 Referent MA 86 - 1.14 (0.74–1.76) 0.54 1.04 (0.61–1.75) 0.89 2.18 (0.71–6.67) MO 102 - 0.87 (0.56–1.34) 0.53 0.77 (0.46–1.28) 0.31 1.50 (0.46–4.83) Women+men Controls 217 0.25 Referent Momen+men Control			Any migraine	87	1	0.84 (0.50-1.40)	0.50	0.74 (0.40-1.37)	0.34	1.27 (0.31–5.21)	0.74
minas Women + men Controls 210 0.89 (0.46-1.72) 0.73 0.81 (0.37-1.76) 0.59 1.35 (0.24-7.65) 9) (7) Any migraine 210 0.83 Referent Referent Referent PMA 86 - 1.02 (0.73-1.42) 0.54 1.04 (0.61-1.38) 0.68 1.76 (0.68-4.56) MO 102 - 0.87 (0.56-1.34) 0.53 0.77 (0.46-1.28) 0.31 1.50 (0.46-4.83) Women + men Controls 217 0.25 Referent Referent Referent NO9) (8) Any migraine 217 - 1.08 (0.81-1.44) 0.61 1.13 (0.76-1.67) 0.55 1.04 (0.59-1.86)			MA	46	ı	0.78 (0.41-1.50)	0.46	0.69 (0.32-1.48)	0.34	1.19 (0.21–6.75)	0.84
ninas Women + men Controls 210 0.83 Referent Referent Referent 09) (7) Any migraine 210 - 1.02 (0.73-1.42) 0.93 0.92 (0.61-1.38) 0.68 1.76 (0.68-4.56) MA 86 - 1.14 (0.74-1.76) 0.54 1.04 (0.61-1.75) 0.89 2.18 (0.71-6.67) MO 102 - 0.87 (0.56-1.34) 0.53 0.77 (0.46-1.28) 0.31 1.50 (0.46-4.83) Women + men Controls 217 0.25 Referent Referent Referent No9) (8) Any migraine 217 - 1.08 (0.81-1.44) 0.61 1.13 (0.76-1.67) 0.55 1.04 (0.59-1.86)			МО	4	ı	0.89 (0.46–1.72)	0.73	0.81 (0.37–1.76)	0.59	1.35 (0.24–7.65)	0.74
09) (7) Any migraine 210 – 1.02 (0.73–1.42) 0.93 0.92 (0.61–1.38) 0.68 1.76 (0.68–4.56) MA 86 – 1.14 (0.74–1.76) 0.54 1.04 (0.61–1.75) 0.89 2.18 (0.71–6.67) MO 102 – 0.87 (0.56–1.34) 0.53 0.77 (0.46–1.28) 0.31 1.50 (0.46–4.83) Women + men Controls 217 0.25 Referent Referent Referent Nomen + men Controls 217 - 1.08 (0.81–1.44) 0.61 1.13 (0.76–1.67) 0.55 1.04 (0.59–1.86)	Corominas	Women + men	Controls	210	0.83	Referent		Referent		Referent	
MA 86 – I.14 (0.74–I.76) 0.54 I.04 (0.61–I.75) 0.89 2.18 (0.71–6.67) MO 102 – 0.87 (0.56–I.34) 0.53 0.77 (0.46–I.28) 0.31 I.50 (0.46–4.83) Women + men Controls 2.17 0.25 Referent Referent Referent Any migraine 2.17 – I.08 (0.81–I.44) 0.61 I.13 (0.76–I.67) 0.55 I.04 (0.59–I.86)	(2009) (7)		Any migraine	210	ı	1.02 (0.73-1.42)	0.93	0.92 (0.61–1.38)	89.0	1.76 (0.68–4.56)	0.25
MO 102 – 0.87 (0.56–1.34) 0.53 0.77 (0.46–1.28) 0.31 1.50 (0.46–4.83) Women + men Controls 217 0.25 Referent Referent Referent Referent Nomen + men Controls 217 - 1.08 (0.81–1.44) 0.61 1.13 (0.76–1.67) 0.55 1.04 (0.59–1.86)			MA	98	ı	1.14 (0.74–1.76)	0.54	1.04 (0.61–1.75)	0.89	2.18 (0.71-6.67)	0.17
Women + men Controls 217 0.25 Referent Referent Referent Referent Referent Referent (0.59-1.86) (8) Any migraine 217 - 1.08 (0.81-1.44) 0.61 1.13 (0.76-1.67) 0.55 1.04 (0.59-1.86)			МО	102	ı	0.87 (0.56-1.34)	0.53	0.77 (0.46–1.28)	0.31	1.50 (0.46-4.83)	0.50
Any migraine 217 - 1.08 (0.81-1.44) 0.61 1.13 (0.76-1.67) 0.55 1.04 (0.59-1.86)	Joshi	Women + men	Controls	217	0.25	Referent		Referent		Referent	
	(2009) (8)		Any migraine	217	ı	1.08 (0.81-1.44)	19.0	1.13 (0.76–1.67)	0.55	1.04 (0.59–1.86)	0.88

Table 3. Continued

					Additive	d)	Dominant	ī	Recessive	
Reference	Population	Disease status	Study size	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
A PROPERTY AND A PROP		MA	84	I	0.98 (0.67–1.44)	0.92	0.97 (0.58-1.63)	0.90	0.99 (0.46–2.16)	66.0
		МО	133	I	1.15 (0.82–1.60)	0.42	1.25 (0.79–1.97)	0.34	1.08 (0.56-2.07)	0.82
	Women	Controls	150	0.23	Referent		Referent		Referent	
		Any migraine	150	ı	1.00 (0.71–1.41)	_	0.94 (0.59–1.51)	0.8	1.13 (0.57–2.23)	0.73
		A	63	I	0.85 (0.54-1.34)	0.49	0.78 (0.43-1.42)	0.4	0.92 (0.36–2.32)	0.85
		МО	87	I	1.12 (0.75–1.68)	0.58	1.09 (0.63–1.91)	0.76	1.29 (0.60–2.78)	0.52
	Men	Controls	29	-	Referent		Referent		Referent	
		Any migraine	29	ı	1.29 (0.76–2.20)	0.35	1.69 (0.83-3.45)	0.15	0.86 (0.29–2.52)	0.78
		A	21	I	1.42 (0.68–2.94)	0.35	1.80 (0.62-5.20)	0.28	1.23 (0.30–5.13)	0.78
		МО	46	I	1.22 (0.68–2.20)	0.51	1.64 (0.74–3.63)	0.22	0.70 (0.20–2.49)	0.58
					ESR-1 Pvu II C > T (rs2234693)	·s2234693)				
Colson	Women + men	Controls	202	0.67	Referent	ve de constante de	Referent		Referent	
(2006) (5)		Any migraine	231	ı	0.87 (0.66-1.14)	0.31	0.94 (0.60-1.48)	08'0	0.74 (0.48-1.14)	0.17
		MA	145	ı	0.91 (0.67–1.24)	0.56	1.18 (0.70–1.99)	0.54	0.69 (0.42-1.13)	9.14
		MO	73		0.80 (0.55-1.16)	0.23	0.68 (0.38-1.24)	0.2	0.79 (0.43-1.46)	0.46
	Women	Controls	140	-	Referent		Referent		Referent	
		Any migraine	167	ı	0.97 (0.70-1.34)	98.0	1.09 (0.64–1.85)	0.75	0.85 (0.50-1.44)	0.55
	Men	Controls	62	0.44	Referent		Referent		Referent	
		Any migraine	64	ı	0.69 (0.43-1.13)	0.14	0.66 (0.29-1.54)	0.34	0.57 (0.26-1.22)	0.14
Joshi	Women + men	Controls	217	0.049	Referent		Referent		Referent	
(2009) (8)		Any migraine	217	ı	2.00 (1.45-2.74)	<0.0001	2.47 (1.62–3.76)	< 0.000 >	2.05 (1.12–3.76)	0.02
		Ψ	84	1	2.23 (1.45-3.43)	0.0002	3.41 (1.81–6.43)	0.0002	1.84 (0.85–4.02)	0.12
		MO	133	ı	1.82 (1.29–2.59)	0.0008	2.07 (1.28–3.33)	0.003	2.19 (1.13–4.26)	0.02
	Women	Controls	150	0.03	Referent		Referent		Referent	
		Any migraine	150	I	2.06 (1.40-3.03)	0.0003	2.34 (1.42–3.86)	600000	2.53 (1.16–5.53)	0.02
		MA	63	I	2.47 (1.45–4.19)	0.0009	3.63 (1.72–7.69)	0.0008	2.04 (0.76–5.43)	0.16
		МО	87	I	1.82 (1.19–2.80)	900.0	1.80 (1.02–3.19)	0.04	2.92 (1.25–6.82)	10.0
	Men	Controls	29	_	Referent		Referent		Referent	
		Any migraine	29	I	1.88 (1.08–3.26)	0.03	2.80 (1.29-6.10)	600'0	1.45 (0.54–3.87)	0.46
Para de la compansa d										(continued)

Table 3. Continued

					Additive		Dominant	Į.	Recessive	
Reference	Population	Disease	Study size	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
		MA	21	ı	1.90 (0.90-4.03)	60.0	2.87 (0.879.46)	0.08	1.74 (0.47–6.47)	0.4
		МО	46	I	1.80 (0.99-3.29)	90.0	2.78 (1.16-6.67)	0.02	1.32 (0.44–3.95)	19.0
					PGR PROGINS insert	nsert				
†Colson	Women + men	Controls	216	0.2	Referent		Referent		Referent	
(2005) (12)		Any migraine	232	ł	1.66 (1.08–2.54)	0.02	1.83 (1.14–2.92)	0.0	1.25 (0.28–5.63)	0.78
		M	144	1	1.42 (0.89-2.27)	0.14	1.47 (0.86–2.52)	91.0	2.03 (0.45-9.20)	0.36
		МО	88	1	2.06 (1.20-3.54)	0.009	2.50 (1.40-4.46)	0.002	ı	i
	Women	Controls	151	0.04	Referent		Referent		Referent	
		Any migraine	165	ı	2.30 (1.25–4.26)	0.008	2.86 (1.45-5.64)	0.003	0.91 (0.13-6.57)	0.93
	Men	Controls	65	0.67	Referent		Referent		Referent	
		Any migraine	29	8	1.20 (0.62-2.30)	0.59	1.17 (0.57–2.40)	0.67	1.97 (0.17–22.26)	0.58
[†] Colson	Women + men	Controls	263	0.14	Referent		Referent		Referent	
(2005) (12)		Any migraine	277	ı	1.75 (1.18–2.62)	900.0	1.88 (1.19–2.96)	0.007	2.58 (0.68–9.81)	0.17
		MA	227	1	1.75 (1.15–2.66)	0.008	1.89 (1.18–3.03)	600'0	2.35 (0.58-9.52)	0.23
		МО	20	1	1.78 (0.95–3.34)	0.07	1.84 (0.86-3.92)	0.12	3.61 (0.59–22.19)	0.17
	Women	Controls	222	60'0	Referent		Referent		Referent	
		Any migraine	238	ŧ	1.60 (1.02–2.49)	0.04	1.77 (1.07–2.92)	0.03	1.25 (0.28–5.64)	0.77
	Men	Controls	4	-	Referent		Referent		Referent	
		Any migraine	39		2.66 (1.04-6.82)	0.04	2.59 (0.86–7.80)	60.0	I	ı
Corominas	Women + men	Controls	210	0.64	Referent		Referent		Referent	
(2009)		Any migraine	210	I	0.97 (0.68-1.38)	98.0	1.00 (0.66–1.51)	-	0.74 (0.25–2.18)	0.59
		MA	98	1	1.07 (0.69–1.68)	0.76	1.12 (0.66–1.90)	89.0	0.91 (0.24–3.53)	0.89
		МО	102	ı	0.84 (0.54-1.32)	0.46	0.87 (0.52-1.46)	09.0	0.51 (0.11–2.42)	0.39
Joshi (2009) (8)	Women + men	Controls	217	0.23	Referent		Referent		Referent	
		Any migraine	217	ı	0.33 (0.18-0.61)	0.0004	0.33 (0.18-0.61)	0.0004	I	•
		МА	84	ı	0.38 (0.16-0.88)	0.02	0.38 (0.16-0.88)	0.02	I	ı
		МО	133	ı	0.30 (0.14-0.64)	0.002	0.30 (0.14-0.64)	0.002	i	I
	Women	Controls	150	0.22	Referent		Referent		Referent	

Table 3. Continued

					Additive		Dominant		Recessive	
Reference	Population	Disease status	Study	HWE	OR (95% CI)	P-value	OR (95% CI)	P-value	OR (95% CI)	P-value
		Any migraine	150	ı	0.39 (0.20–0.76)	900.0	0.39 (0.20-0.76)	900.0	I	MARKET STATE OF THE STATE OF TH
		MA	63	ı	0.44 (0.19–1.06)	0.07	0.44 (0.19–1.06)	0.07	1	sages
		ω	87	I	0.36 (0.16-0.82)	0.01	0.36 (0.16-0.82)	0.01	i	ī
	Men	Controls	67	_	Referent		Referent		Referent	
		Any migraine	29	I	0.10 (0.01-0.79)	0.03	0.10 (0.01-0.79)	0.03	ı	
		MA	21	I	I	I	ı	i	I	ı
		OΜ	46		0.14 (0.02-1.17)	0.07	0.14 (0.02–1.17)	0.07	ş	uses .
		***************************************	***************************************	***************************************		***************************************				

P-value from exact test for the Hardy-Weinberg Equilibrium; MA, migraine with aura; MO, migraine without aura; ESR-1, oestrogen receptor 1 gene; PGR, progesterone receptor 3 Two study populations from Colson et al. (2005) (12). *Two study populations from Colson et al. (2004) (6).

suggested that there may be a moderately increased association for having any migraine Caucasians, which appeared strongest in a dominant model (pooled OR 1.49; 95% CI 0.98-2.26). While the direction and association of the effect estimates among Caucasians were similar for both migraine subgroups, they only reached statistical significance in MA (dominant mode: pooled OR 1.49; 95% CI 1.10–2.01), but not MO (dominant mode: pooled OR 1.56; 95% CI 0.79-3.09). Heterogeneity across all studies was medium to high for any migraine, MA, and MO; it was low among the studies investigating MA among Caucasians (dominant mode: $I^2 = 4.3\%$). This may support the significant results for Caucasians among MA.

Sensitivity analyses

For some of our analyses, Galbraith plots identified individual studies as important sources of heterogeneity. We performed sensitivity analyses by excluding studies that fell outside the margin set by the z score ± 2 SD.

For the association between the ESR-1 594 G > A polymorphism and migraine Galbraith plots did not identify individual studies as significant sources of heterogeneity for any migraine and MO (dominant model). One study (6) was excluded when looking at MA, which lowered the effect estimates; however, the association remained statistically significant (dominant mode: pooled OR 1.18; 95% CI 1.01–1.38).

For the association between *ESR-1* 325 C > G polymorphism and any migraine, MA, and MO, Galbraith plots did not identify individual studies as important sources of heterogeneity in any of the models.

For the association between the ESR-1 Pvu II C > T polymorphism and migraine, we did not perform a formal sensitivity analysis, because: (i) only two studies were pooled; and (ii) the heterogeneity index was high, suggesting that pooled results need to interpreted with caution.

Effect estimates from the sensitivity analysis did not change the association between the *PGR* PROGINS insert polymorphism and migraine. They were all slightly higher for any migraine, MA, and MO assuming additive or dominant models. For example, after excluding two studies (8,12), the pooled OR for the association with any migraine assuming a dominant model was 1.34 (95% CI 0.74–2.41).

Discussion

The results of this meta-analysis suggest an association between the ESR-1 594 G > A and 325 C > G polymorphisms and migraine. The risk for MA and MO appears to increase by 40–60% for each of the variants and follows a dominant model in case of the ESR-1

Table 4. Association between sex hormone receptor polymorphisms and migraine, heterogeneity, and publication bias

					Н	eterogene	eity	Publica	tion bias
Genetic model	Population	Studies, n	Relative risk (95% CI)	Q	df	P-value	l ² (in %)	P-value Begg	P-value Egge
			ESR-1 594 G > A (rs22	28480))				
Any migraine									
Additive	All (6,7,10)	4*	1.37 (1.02–1.83)	10.6		0.01	71.6	0.50	0.44
	Women (6,10)	3*	1.40 (0.88–2.24)	12.2	2	0.002	83.6	0.60	0.48
	Men (6,10)	3*	1.59 (1.10-2.30)	1.8	2	0.41	0	0.60	0.85
Dominant	All (6,7,10)	4*	1.50 (1.10-2.06)	8.4	3	0.04	64.5	0.17	0.47
	Women (6,10)	3*	1.56 (0.98-2.48)	7.5	2	0.02	73.5	0.60	0.53
	Men (6,10)	3*	1.80 (1.16-2.80)	0.2	2	0.89	0	0.60	0.82
Recessive	All (6,7,10)	4*	1.34 (0.74–2.43)	6.6	3	0.08	54.8	0.17	0.33
	Women (6,10)	3*	1.38 (0.49-3.89)	10.4	2	0.006	80.7	0.12	0.11
	Men (6,10)	3*	1.62 (0.32-8.28)	4.7	2	0.10	57.2	0.12	0.46
Migraine with a									
Additive	All (6,7,9,10)	5*	1.30 (0.99–1.70)	16.5		0.002	75.8	I	0.72
	Women (6,10)	3*	1.41 (0.86–2.32)	11.5	2	0.003	82.6	0.12	0.24
	Men (6,10)	3*	1.64 (1.09-2.48)	2.0	2	0.38	0	0.60	0.71
Dominant	All (6,7,9,10)	5*	1.39 (1.02–1.89)	13.9	4	0.01	71.3	I	0.61
	Women (6,10)	3*	1.55 (0.94–2.56)	7.3	2	0.03	72.7	0.60	0.26
	Men (6,10)	3*	1.82 (1.09-3.04)	0.7	2	0.70	0	0.60	0.43
Recessive	All (6,7,9,10)	5*	1.35 (0.76-2.38)	10.3	4	0.04	61.2	1	0.77
	Women (6,10)	3*	1.49 (0.50-4.42)	9.5	2	0.01	78.9	0.12	0.03
	Men (6,10)	3*	2.02 (0.32-12.75)	5.3	2	0.07	62.5	0.12	0.09
Migraine witho									
Additive	All (6,7,10)	4*	1.25 (1.01–1.55)	3.1	3	0.38	3.2	0.50	0.75
	Women (6,10)	3*	1.26 (0.81-1.95)	5.1	2	0.08	60.6	0.60	0.57
	Men (6,10)	3*	1.50 (0.88–2.57)	2.1	2	0.36	3.4	0.12	0.28
Dominant	All (6,7,10)	4*	1.41 (1.03-1.92)	4.3	3	0.24	29.5	0.17	0.83
	Women (6,10)	3*	1.42 (0.79–2.54)	5.5	2	0.06	63.5	0.60	0.64
	Men (6,10)	3*	1.71 (0.94–3.12)	1.3	2	0.52	0	0.12	0.23
Recessive	All (6,7,10)	4*	1.00 (0.57-1.74)	0.4	3	0.94	0	0.17	0.23
	Women (6,10)	3*	1.00 (0.49-2.05)	2.4	2	0.3	16.5	0.12	0.24
	Men (10)	8	2.38 (0.32-17.52)	-	-	-	-	-	-
*Two studies fr	rom Colson et al. (2004)	(6).							
			ESR-1 325 C > G (rs18	01132	2)				
Any migraine									
Additive	All (5,7,8,10,11)	5	1.16 (1.03–1.32)		4	0.81	0	0.05	0.04
	Caucasians (5,7,10,11)	4	1.19 (1.03–1.36)	1.3	3	0.73	0	0.04	0.06
	Women (5,8,10,11)	4	1.30 (1.09–1.55)		3	0.32	14.3	0.17	0.43
	Men (5,8,10,11)	4	0.91 (0.70–1.19)	2.6	3	0.45	0	0.17	0.70
Dominant	All (5,7,8,10,11)	5	1.16 (0.99–1.37)	1.9	4	0.75	0	0.14	0.30
	Caucasians (5,7,10,11)	4	1.17 (0.98–1.40)	1.9	3	0.59	0	0.50	0.40
	Women (5,8,10,11)	4	1.33 (1.08–1.64)	2.5	3	0.47	0	0.17	0.33
	Men (5,8,10,11)	4	0.96 (0.64-1.44)	4.3	3	0.23	30.7	0.50	0.20
Recessive	All (5,7,8,10,11)	5	1.40 (0.93–2.11)	6.5	4	0.16	38.9		0.80
	Caucasians (5,7,10,11)	4	1.54 (0.94–2.54)	5.0	3	0.17	40.4	0.50	0.39
	Women (5,8,10,11)	4	1.68 (0.95-2.96)	5.7	3	0.13	47.5	0.50	1.00
	Men (5,8,10,11)	4	0.72 (0.37-1.41)	2.0	3	0.57	0	0.50	0.39

Table 4. Continued

					Н	leterogene	ity	Publica	tion bias
Genetic model	Population	Studies, n	Relative risk (95% CI)	Q	df	P-value	1 ² (in %)	P-value Begg	P-value Egge
Migraine with a									
Additive	All (5, 7 –11)	6	1.18 (1.06–1.32)	1.8	5	0.88	0	0.57	0.95
	Caucasians (5,7,9-11)	5	1.20 (1.07–1.34)	0.8	4	0.94	0	1	0.35
	Women (8,10,11)	3	1.29 (0.91–1.82)	4.9	2	0.09	58.8	0.12	0.24
	Men (8,10,11)	3	0.89 (0.59-1.34)	2.3	2	0.32	13.0	0.12	0.01
Dominant	All (5, 7 –11)	6	1.15 (1.00–1.31)	2.8	5	0.74	0	0.85	0.62
	Caucasians (5,7,9-11)	5	1.16 (1.01-1.34)	2.3	4	0.68	0	0.62	0.35
	Women (8,10,11)	3	1.28 (0.86-1.90)	3.8	2	0.15	47.4	0.12	0.25
	Men (8,10,11)	3	0.84 (0.48-1.50)	2.6	2	0.27	24.0	0.60	0.15
Recessive	All (5, 7 -11)	6	1.60 (1.19-2.17)	5.6	5	0.35	10.6	0.35	0.43
	Caucasians (5,7,9-11)	5	1.75 (1.30-2.34)	3.8	4	0.43	0	J	0.58
	Women (8,10,11)	3	1.93 (0.95-3.92)	3.7	2	0.16	46.1	0.60	0.85
	Men (8,10,11)	3	0.92 (0.37-2.28)	0.8	2	0.68	0	0.60	0.88
Migraine withou	ut aura		,						
Additive	All (5,7,8,10,11)	5	1.12 (0.96-1.31)	2.4	4	0.67	0	0.05	0.02
	Caucasians (5,7,10,11)	4	1.11 (0.93-1.33)	2.3	3	0.50	0	0.17	0.06
	Women (8,10,11)	3	1.33 (1.07-1.66)	1.0	2	0.60	0	0.60	0.54
	Men (8,10,11)	3	0.95 (0.66-1.36)	1.3	2	0.52	0	0.60	0.42
Dominant	All (5,7,8,10,11)	5	1.09 (0.89-1.34)	2.3	4	0.67	0	0.33	0.30
	Caucasians (5,7,10,11)	4	1.05 (0.84–1.32)	1.9	3	0.59	0	0.17	0.33
	Women (8,10,11)	3	1.29 (0.96–1.72)	0.5	2	0.78	0	0.60	0.53
	Men (8,10,11)	3	0.98 (0.59–1.64)	2.4	2	0.29	18.3	0.60	0.81
Recessive	All (5,7,8,10,11)	5	1.44 (0.97–2.13)	4.3	4	0.37	6.5	0.62	0.51
Recessive	Caucasians (5,7,10,11)	4	1.65 (1.02–2.66)	3.2		0.37	4.9	0.17	0.14
	Women (8,10,11)	3	2.01 (1.19–3.41)	2.2		0.37	9.5	0.17	0.20
	Men (8,10,11)	3	0.77 (0.33–1.82)	0.6		0.75	0	0.60	0.68
			ESR-1 Pvu II C > T (rs2	23469	3)				
Any migraine									
Additive	All (5,8)	2	1.31 (0.58-2.96)	15.3	I	< 0.0001	93.5	0.32	-
	Women (5,8)	2	1.40 (0.67-2.93)	8.5	ı	0.004	88.2	0.32	-
	Men (5,8)	2	1.13 (0.43-3.00)	7.1		0.01	85.8	0.32	_
Dominant	All (5,8)	2	1.53 (0.60-3.92)	9.4		0.002	89.4	0.32	_
	Women (5,8)	2	1.60 (0.76-3.39)	4.2	1	0.04	76.3	0.32	_
	Men (5,8)	2	1.38 (0.34-5.65)	6.1		0.01	83.6	0.32	_
Recessive	All (5,8)	2	1.20 (0.44-3.28)	7.3		0.01	86.3	0.32	_
	Women (5,8)	2	1.41 (0.49–4.10)	5.2	I	0.02	80.7	0.32	_
	Men (5,8)	2	0.86 (0.34–2.15)	2.2		0.14	54.6	0.32	_
Migraine with a	` '		,						
Additive	All (5,8)	2	1.41 (0.59-3.39)	11.0	I	0.001	90.9	0.32	_
	Women (8)	8	2.47 (1.45-4.19)	_	_	_	_	_	_
	Men (8)	ı	1.90 (0.90–4.03)	_	_	_	_	_	_
	All (5,8)	2	1.97 (0.70–5.59)	6.4	ı	0.01	84.4	0.32	_
Dominant		1	3.63 (1.72–7.69)	_	_	-	_	-	_
Dominant	Women (8)								
Dominant	Women (8) Men (8)			_	_	_	_	_	_
	Men (8)	I	2.87 (0.87–9.46)	- 4 4	-	- 0.04	- 7 7 3	- 0.32	_
Dominant Recessive				- 4.4 -	-	- 0.04 -	77.3 -	- 0.32 -	- -

Table 4. Continued

					H	leterogene	ity	Publica	tion bias
Genetic model	Population	Studies, n	Relative risk (95% CI)	Q	df	P-value	l ² (in %)	P-value Begg	P-value Egger
Migraine without									
Additive	All (5,8)	2	1.21 (0.54–2.72)	10.1	ı	0.001	90.1	0.32	_
	Women (8)	beens .	1.82 (1.19–2.80)	_	-	_	_	_	-
	Men (8)		1.80 (0.99–3.29)	_	_	_	_	_	_
Dominant	All (5,8)	2	1.21 (0.41–3.57)	8.0	ı	0.01	87.5	0.32	-
	Women (8)	8666	1.80 (1.02–3.19)	_	-	_	_	_	_
	Men (8)	-	2.78 (1.16–6.67)	-	-	-	-	-	-
Recessive	All (5,8)	2	1.31 (0.48–3.54)	4.9	1	0.03	79.4	0.32	-
	Women (8)	888	2.92 (1.25-6.82)	-	-	-	-	-	-
	Men (8)	-	1.32 (0.44–3.95)	-	_	_	-		_
			PGR PROGINS ins	ert					
Any migraine									
Additive	All (7,8,12)	4*	1.02 (0.55–1.87)		3	< 0.0001	87.5	0.50	0.37
	Caucasians (7,12)	3*	1.39 (0.94–2.06)	6.0	2	0.05	66.5	0.60	0.27
	Women (8,12)	3*	1.15 (0.44–2.97)	16.8	2	< 0.0001	88.1	0.60	0.67
	Men (8,12)	3*	0.97 (0.28–3.39)	8.1	2	0.02	75.4	0.60	0.56
Dominant	All (7,8,12)	4*	1.06 (0.53–2.09)	24.5	3	< 0.0001	87.8	0.50	0.35
	Caucasians (7,12)	3*	1.49 (0.98–2.26)	5.3	2	0.07	62.5	0.60	0.18
	Women (8,12)	3*	1.26 (0.42–3.76)	19.2	2	< 0.0001	89.6	0.60	0.83
	Men (8,12)	3*	0.91 (0.24–3.40)	7.4	2	0.03	72.9	0.60	0.58
Recessive	All (7,12)	3*	1.22 (0.59–2.55)	2.0	2	0.37	0.7	0.60	0.56
	Caucasians (7,12)	3*	1.22 (0.59-2.55)	2.0	2	0.37	0.7	0.60	0.56
	Women (12)	2*	1.11 (0.34–3.69)	0.1	1	0.81	0	0.32	-
	Men (12)	5	1.97 (0.17–22.26)	-	-	_	-	-	-
Migraine with au					_				
Additive	All (7,8,12)	4 *	1.11 (0.68–1.81)	10.9		0.01	72.6	0.17	0.08
	Caucasians (7,12)	3*	1.40 (1.05–1.86)		2	0.29	18.8	0.60	0.59
	Women (8)	-	0.44 (0.19–1.06)	_	_	_	_	_	_
	Men	0	_	_	_	_	_	_	_
Dominant	All (7,8,12)	4*	1.13 (0.65–1.96)		3	0.01	72.9	0.17	0.04
	Caucasians (7,12)	3*	1.49 (1.10–2.01)	2.1	2	0.35	4.3	0.60	0.42
	Women (8)		0.44 (0.19–1.06)	_	_	_	_	_	_
	Men (8)	0							
Recessive	All (7,12)	3*	1.59 (0.70–3.61)	1.0	2	0.59	0	0.60	0.58
	Caucasians (7,12)	3*	1.59 (0.70–3.61)	1.0	2	0.59	0	0.60	0.58
	Women	0	_	_	_	_	_	_	_
	Men	0	-	_	-	_	_	-	-
Migraine without Additive	aura All (7,8,12)	4*	1.01 (0.48–2.13)	20.0	3	< 0.0001	85.0	0.50	0.70
Additive		3*	1.42 (0.79–2.57)		2	0.03	72.5	0.60	0.38
	Caucasians (7,12) Women (8)	3.	0.36 (0.16–0.82)	7.3			72.3		
	` '	1	, ,	_	_	_		_	_
Dominant	Men (8)	1 4*	0.14 (0.02–1.17)	215	-	- 0.0001	94.0	-	0.76
Dominant	All (7,8,12)	3*	1.06 (0.45–2.50)	21.5		< 0.0001 0.02	86.0	0.60	0.76
	Caucasians (7,12)		1.56 (0.79–3.09)	7.5	2	0.02	73.5	0.60	0.65
	Women (8)		0.36 (0.16–0.82)	_	_	_	_	_	_
	Men (8)	-	0.14 (0.02–1.17)	_	_				

Table 4. Continued

					Н	eterogene	eity	Publica	tion bias
Genetic model	Population	Studies, n	Relative risk (95% CI)	Q	df	P-value	f ² (in %)	P-value Begg	P-value Egger
Recessive	All (7,12)	2	1.28 (0.19–8.76)	2.6	1	0.11	61.3	0.32	
	Caucasians (7,12)	2	1.28 (0.19-8.76)	2.6	I	0.11	61.3	0.32	_
	Women	0	_	_	_	_	_	_	_
	Men	0	_	_	_	_	_	_	_
*Two studies fro	m Colson et al. (200	5) (12).							

 $594 \,\mathrm{G} > \mathrm{A}$ and a recessive model in case of the ESR-1 325 C > G polymorphism. In contrast, pooled results for the ESR-1 Pvu II C>T and the PGR PROGINS insert polymorphisms did not suggest an association with migraine. This pattern of association may differ by ethnicity. However, while most studies were conducted in Caucasian populations, only one was done in an Indian population (8), which does not allow an among non-Caucasian populations. evaluation Further, given a lack of replication studies, we cannot conclusively assess an association of additional polymorphisms in ESR-1 (7,9), AR (12), FSHR (11), ESR-2 (11), CYP19A1 (11), and NRIP1 (11) with migraine or migraine subgroups.

Evidence from population-based, clinical, and physiological studies suggests a pivotal role for sex hormones in the pathogenesis of migraine (2–4). In addition, association studies have investigated multiple variants in genes coding for sex hormone receptors or proteins involved in their pathways and metabolism. Among those, multiple studies looked at the ESR-1 594 G > A (6,7,9,10), ESR-1 325 C > G (5,7–11), ESR-1 Pvu II C > T (5,8), ESR-1 30 T > C (7,9), and PGR PROGINS insert (7,8,12) polymorphisms. Apart from the two studies that did not find an association between the ESR-1 30 T > C polymorphism and migraine, results from studies in the other polymorphisms were contradictory.

ESR-1 is located on chromosome 6q25.1 and has eight exons (18). The receptor is expressed, for example, in the hypothalamus, limbic system, hippocampus, and the brainstem of the human brain (19), regions which are implicated in many pain syndromes including migraine. The ESR-1 594 G > A (exon 8) and $325 \,\mathrm{C} > \mathrm{G}$ (exon 4) polymorphisms are synonymous, hence, their functional implication is unknown (20). While our results support that the variant alleles are associated with an increased risk for migraine, they are likely not causative, since they do not alter the amino acid sequence of the receptor. They may be in linkage disequilibrium with another causative variant or set of variants (haplotype) within ESR-1. The Pvu II C > T polymorphism is intronic, thus located in a non-coding region. It does not alter the protein sequence, but may affect splicing and thus modify protein production (21). While our overall pooled results do not support a role for this variant in migraine, the individual results from the two available studies may suggest a difference between Caucasians (5) and Indians (8) (also reflected by the large heterogeneity for the pooled effect estimates). We may speculate that post-transcriptional modification such as splicing differs between ethnic groups. PGR is located on chromosome 11q22 (22). Progesterone receptors are located in various human brain regions (23) and their expression is regulated by oestrogen and progesterone levels (24). The PROGINS polymorphism is a 306-bp long Alu insertion in intron 7 and may negatively affect progesterone receptor expression (25). Our pooled analysis suggests that this Alu insert increases the risk for migraine only among Caucasians.

Study limitations

Some limitations need to be considered:

- Migraine is biologically heterogeneous. Although, in all studies, patients were classified according to the criteria established by the International Headache Society (26,27), the clinical spectrum among patients is wide, which may be a source of misclassification.
- 2. While sample sizes for migraineurs and controls in the studies are about 200 or more (Table 1), power to detect overall and more so gender- or aura-specific associations in subgroups may not be adequate. In addition, not all studies looking at one polymorphism investigated any migraine and also presented stratified analyses according to aura subtype and gender. Further, the total number of studies identified was eight, which is limited. These studies looked at many different gene variants and not all studies investigated the same ones. For example, there were only two studies investigating the *ESR-1* Pvu II C>T polymorphism with conflicting results (5,8). The non-significant results from the pooled analysis may be due to insufficient pooled sample size.

- 3. Power also depends on the minor allele frequencies of the polymorphisms investigated. For example, the minor allele frequency for the *PGR* PROGINS insert polymorphism is less than 10% in some of the studies leaving few or no observations among the homozygous '22' carriers. Although pooling available study results increases precision and power, there may still be remaining uncertainties.
- 4. Initial publications of genetic association studies often report positive associations, while successive ones do not find an association. We have performed this meta-analysis at an early stage; however, we still consider it valuable. While the systematic review part allows an overview of the available studies including individual results, the meta-analytic part also enables evaluation of magnitude and direction of combined results from pooled effect estimates including sources of heterogeneity.
- 5. Ethnicity may be a source of heterogeneity in the association between polymorphisms in genes coding for proteins in sex hormone receptor pathways and metabolism and migraine. The available data suggest this for the *ESR-1* Pvu II C>T and *PGR* PROGINS insert polymorphisms. However, only one study was performed in a non-Caucasian population.
- 6. Residual heterogeneity among Caucasians for the ESR-1 594 G > A, ESR-1 Pvu II C > T, and PGR PROGINS insert polymorphisms were medium to high, indicating that the effect estimates carry further unidentified sources of uncertainties. In addition, the results from the single study among Indians (8), suggesting an increased risk for migraine among carriers of the ESR-1 Pvu II T allele and a reduced risk among carriers of the PGR PROGINS Alu insertion await replication.
- 7. In one study (10), genotype distribution of *ESR-1* 594 G > A and 325 C > G and in another (8) of *ESR-1* Pvu II C > T was in Hardy–Weinberg Disequilibrium.
- 8. We only used extractable data from the papers. One (9) of two (7,9) studies investigating the *ESR-1* 30 T > C polymorphism did not allow us to extract genotype frequencies; hence, we could not calculate pooled effect estimates. However, both studies did not find an association with migraine, which would likely not change in a pooled analysis.
- 9. Since we did not have primary data among the studies investigating multiple polymorphisms, we were not able to perform haplotype analyses or investigate potential genc–gene interactions. Such interactions were suggested by individual studies (8,11).

Conclusions and outlook

Additional research is warranted to delineate further the association between gene variants coding for proteins in sex hormone receptor pathways and metabolism and migraine, among Caucasian and more so among non-Caucasian populations. We suggest the following criteria to be applied in future studies:

- 1. Studies need to be adequately powered. Power in genetic association studies is determined by sample size and allelc frequencies. Sample sizes of at least several hundred migraineurs and non-migraineurs are needed to detect at least moderate associations. If the minor allele frequency of a polymorphism investigated is low, the sample size must further increased to have be adequate power.
- Results should not just be presented overall, but also stratified by gender and migraine aura status. This must also be considered with regard to power.
- Investigators should use standardized migraine classification including aura status.
- Analyses should focus on main gene effects first, since power to detect gene-gene interactions is often limited.

References

- Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: Focus on epilepsy and migraine. *Lancet Neurol* 2006; 5: 148–157.
- Brandes JL. The influence of estrogen on migraine: A systematic review. JAMA 2006; 295: 1824–1830.
- Charles A. Advances in the basic and clinical science of migraine. Ann Neurol 2009; 65: 491–498.
- Lipton RB, Bigal ME. The epidemiology of migraine. Am J Med 2005; 118(Suppl 1): 3S-10S.
- Colson NJ, Lea RA, Quinlan S, Griffiths LR. No role for estrogen receptor 1 gene intron 1 Pvu II and exon 4 C325G polymorphisms in migraine susceptibility. BMC Med Genet 2006; 7: 12.
- Colson NJ, Lea RA, Quinlan S, MacMillan J, Griffiths LR. The estrogen receptor 1 G594A polymorphism is associated with migraine susceptibility in two independent case/control groups. *Neurogenetics* 2004; 5: 129–133.
- Corominas R, Ribases M, Cuenca-Leon E, Cormand B, Macaya A. Lack of association of hormone receptor polymorphisms with migraine. *Eur J Neurol* 2009; 16: 413–415.
- Joshi G, Pradhan S, Mittal B. Role of the oestrogen receptor (ESRI PvuII and ESRI 325 C->G) and progesterone receptor (PROGINS) polymorphisms in genetic susceptibility to migraine in a North Indian population. Cephalalgia 2009; doi: 10.1111/j.468-2982.009.01967.x.

 Kaunisto MA, Kallela M, Hamalainen E, et al. Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. *Cephalalgia* 2006; 26: 1462–1472.

- Oterino A, Pascual J, Ruiz de Alegria C, et al. Association of migraine and ESR1 G325C polymorphism. Neuroreport 2006; 17: 61–64.
- Oterino A, Toriello M, Cayon A, et al. Multilocus analyses reveal involvement of the ESR1, ESR2, and FSHR genes in migraine. Headache 2008; 48: 1438–1450.
- Colson NJ, Lea RA, Quinlan S, MacMillan J, Griffiths LR. Investigation of hormone receptor genes in migraine. *Neurogenetics* 2005; 6: 17–23.
- Sagoo GS, Little J, Higgins JP. Systematic reviews of genetic association studies. PLoS Med 2009; 6: e28.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 1994; 50: 1088–1101.
- Egger M, Davey Smith G, Sehneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997; 315: 629–634.
- Lee H, Sininger L, Jen JC, Cha YH, Baloh RW, Nelson SF. Association of progesterone receptor with migraineassociated vertigo. *Neurogenetics* 2007; 8: 195–200.
- 18. Iwase H, Greenman JM, Barnes DM, Hodgson S, Bobrow L, Mathew CG. Sequence variants of the estrogen receptor (ER) gene found in breast eancer patients with ER negative and progesterone receptor positive tumors. Cancer Lett 1996; 108: 179–184.

- Osterlund MK, Grandien K, Keller E, Hurd YL. The human brain has distinct regional expression patterns of estrogen receptor alpha mRNA isoforms derived from alternative promoters. *J Neurochem* 2000; 75: 1390–1397.
- UCSC Genome Browser. http://genome.ucsc.edu/
 [Last accessed 17 September 2009]
- Huang Q, Wang TH, Lu WS, et al. Estrogen receptor alpha gene polymorphism associated with type 2 diabetes mellitus and the serum lipid concentration in Chinese women in Guangzhou. *Chinese Med J* 2006; 119: 1794–1801.
- Rowe SM, Coughlan SJ, McKenna NJ, et al. Ovarian eareinoma-associated TaqI restriction fragment length polymorphism in intron G of the progesterone receptor gene is due to an Alu sequence insertion. Cancer Res 1995; 55: 2743–2745.
- Bethea CL, Lu NZ, Gundlah C, Streieher JM. Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol 2002; 23: 41–100.
- 24. Bouehard P. Progesterone and the progesterone receptor. *J Reprod Med* 1999; 44: 153–157.
- Donaldson CJ, Crapanzano JP, Watson JC, Levine EA, Batzer MA. PROGINS Alu insertion and human genomie diversity. Mutat Res 2002; 501: 137–141.
- International Headaehe Soeiety. The International Classification of Headaehe Disorders: 2nd edition. Cephalalgia 2004; 24(Suppl 1): 9–160.
- 27. Headaehe Committee of the International Headaehe Soeiety. Classification and diagnostic criteria for headaehe disorders, eranial neuralgias and facial pain. Cephalalgia 1988; 8(Suppl 7): 1–96.