Pré-requis de statistique : Essentiels de théorie de la mesure

Notes de cours, Master Maths & IA

Guillermo Durand

Tribu ou σ -algèbre sur $\Omega: \mathcal{A} \subseteq \mathcal{P}(\Omega)$ telle que $\mathcal{A} \neq \emptyset$, \mathcal{A} stable par complémentaire et par union dénombrable.

Propriétés : $\emptyset \in \mathcal{A}, \Omega \in \mathcal{A}, \mathcal{A}$ stable par intersection dénombrable (Exercice).

Tribu engendrée par $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ noté $\sigma(\mathcal{C})$: plus petite tribu qui contient \mathcal{C} , intersection de toutes les tribus qui contiennent \mathcal{C} .

Exemples : $\mathcal{P}(\Omega)$, $\{\emptyset, \Omega\}$, $\{\emptyset, A, A^{\mathsf{c}}, \Omega\} = \sigma(\{A\})$, $\mathcal{B}(\mathbb{R}^d)$ la tribu borélienne de \mathbb{R}^d engendrée par les ouverts.

Tribu produit de \mathcal{A}_1 et \mathcal{A}_2 notée $\mathcal{A}_1 \otimes \mathcal{A}_2$ engendrée par les $A_1 \times A_2$, $A_1 \in \mathcal{A}_1$, $A_2 \in \mathcal{A}_2$. Remarque : $\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R})$ (ça se démontre).

Exercice : soit $f: \Omega_1 \to (\Omega_2, \mathcal{A}_2)$, $f^{-1}(\mathcal{A}_2)$ est une tribu appelée tribu image réciproque de \mathcal{A}_2 . (Moins utile :) soit $f: (\Omega_1, \mathcal{A}_1) \to \Omega_2$, $\{B \in \mathcal{P}(\Omega_2) : f^{-1}(B) \in \mathcal{A}_1\}$ est une tribu appelée tribu image de \mathcal{A}_1 . **ATTENTION** ce n'est pas $f(\mathcal{A}_1)$!! (Contre-exemple : $f: \mathbb{R} \to \mathbb{R}$ constante, $f(\mathcal{A}_1)$ n'est même pas une tribu)

La tribu engendrée par une famille d'applications $f_i: \Omega \to (\Omega_i, \mathcal{A}_i), i \in I$, est $\sigma(\bigcup_{i \in I} f_i^{-1}(\mathcal{A}_i))$.

 $f:(\Omega_1,\mathcal{A}_1)\to (\Omega_2,\mathcal{A}_2)$ est mesurable si $f^{-1}(\mathcal{A}_2)\subseteq \mathcal{A}_1$. Trivialement, $f:(\Omega_1,f^{-1}(\mathcal{A}_2))\to (\Omega_2,\mathcal{A}_2)$ est toujours mesurable.

Mesure : fonction $\mu: \mathcal{A} \to \mathbb{R}_+ \cup \{\infty\}$ telle que $\mu(\emptyset) = 0$ et $\mu\left(\bigcup_{n \in \mathbb{N}} E_n\right) = \sum_{n \in \mathbb{N}} \mu(E_n)$ si les E_n sont deux à deux disjoints.

Propriétés : $\mu\left(\bigcup_{1\leq n\leq N}E_n\right)=\sum_{1\leq n\leq N}\mu(E_n)$ si les E_n sont deux à deux disjoints. $\mu(B\setminus A)=\mu(B)-\mu(A)$ si $A\subseteq B$, en particulier $\mu(A)\leq \mu(B)$. $\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)\leq\sum_{n\in\mathbb{N}}\mu(E_n)$. $\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n)$ si les E_n sont croissants pour l'inclusion, $\mu\left(\bigcap_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n)$ si les E_n sont décroissants

pour l'inclusion et de mesure finie à partir d'un certain rang (Exercice).

 μ est σ -finie si $\Omega = \bigcup_{n \in \mathbb{N}} E_n$ avec $E_n \in \mathcal{A}$, $\mu(E_n) < \infty$ pour tout n. μ est finie si $\mu(\Omega) < \infty$. μ est une mesure de probabilité si $\mu(\Omega) = 1$.

Exemples : mesure de comptage sur $(\Omega, \mathcal{P}(\Omega))$, σ -finie si et seulement si Ω est dénombrable (Exercice). Mesure de Dirac $\delta_y: A \mapsto \mathbbm{1}_{\{y \in A\}}$, de proba. Combinaison dénombrable et positive de Dirac $\sum_{n \in \mathbb{N}} \alpha_n \delta_{y_n}$ toujours σ -finie (on suppose que la tribu contient les $\{y_n\}$), finie ou de proba selon la convergence de la série $\sum \alpha_n$. Mesure de Lebesgue sur les boréliens de \mathbb{R} : la seule mesure λ invariante par translation et telle que $\lambda([0,1])=1$. Elle est σ -finie. Toutes les mesures de probabilité induites par les lois réelles usuelles, par exemple $\mathcal{N}(0,1): A \mapsto \int \mathbbm{1}_{\{x \in A\}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right) \mathrm{d}x$.

Mesure produit de μ_1 et μ_2 sur $\mathcal{A}_1 \otimes \mathcal{A}_2$: μ telle que $\mu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$. Unique si μ_1 et μ_2 σ -finies (admis). Exemple : la mesure de Lebesgue sur \mathbb{R}^d .

Si $f:(\Omega_1, \mathcal{A}_1) \to (\Omega_2, \mathcal{A}_2)$ est mesurable et μ est une mesure sur $(\Omega_1, \mathcal{A}_1)$, on note $f_{\#\mu}$ la mesure "push-forward", ou mesure induite, ou mesure image, définie sur $(\Omega_2, \mathcal{A}_2)$ par $f_{\#\mu}(A_2) = \mu \left(f^{-1}(A_2)\right)$. Dans le cas où $\mu = \mathbb{P}$ est une mesure de probabilité et f = X, on dit que X est une variable aléatoire, et sa mesure induite est souvent notée \mathbb{P}_X ou $\mathcal{L}(X)$ plutôt que $X_{\#\mathbb{P}}$. La loi de X ou distribution de X sont en fait formellement définies comme étant exactement sa push-forward \mathbb{P}_X .

Ensemble négligeable $N\subseteq\Omega$: il existe $Z\in\mathcal{A}$ de mesure nulle avec $N\subseteq Z$. On dit que la tribu \mathcal{A} est complète pour la mesure μ ou que l'espace mesuré (Ω,\mathcal{A},μ) est complet si \mathcal{A} contient tous les ensembles négligeables. Tribu complétée $\bar{\mathcal{A}}=\{A\cup N: A\in\mathcal{A}, N \text{ négligeable}\}$, c'est bien une tribu (Exercice), et μ s'étend dessus (Exercice). $\bar{\mathcal{A}}$ contient tous les négligeables de la mesure complétée et donc $(\Omega,\bar{\mathcal{A}},\mu)$ est complet. Exemple : tribu de Lebesgue. Une propriété $P(\omega)$ est vraie presque partout si $\{\omega\in\Omega: \neg P(\omega)\}$ est négligeable. On dit plutôt "presque sûrement" si de plus μ est une mesure de probabilité.

Intégration de fonctions mesurables à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$: — si f étagée positive, nombre fini de valeurs $\alpha_1, \ldots, \alpha_N$:

$$\int f(x)\mu(\mathrm{d}x) = \int f\mathrm{d}\mu = \int f(x)\mathrm{d}\mu(x) = \sum_{i=1}^{N} \alpha_{i} f_{\#\mu}(\{\alpha_{i}\}) = \sum_{i=1}^{N} \alpha_{i} \mu\left(f^{-1}(\{\alpha_{i}\})\right) \in [0, \infty],$$

— si f positive,

$$\int f(x)\mu(\mathrm{d}x) = \sup_{\substack{h \text{ étagée positive} \\ h < f}} \int h(x)\mu(\mathrm{d}x) \in [0, \infty],$$

— si $\int |f| d\mu < \infty$,

$$\int f d\mu = \int f_{+} d\mu - \int f_{-} d\mu \in \mathbb{R}.$$

Théorème (admis) : chacune de ces définitions existe, est bien posée, et cohérente avec les précédentes.

Propriétés : linéarité, croissance. $\mu(A) = \int \mathbbm{1}_A \mathrm{d}\mu$. Si $f \geq 0$, $\int f \mathrm{d}\mu = 0 \Leftrightarrow f = 0$ presque partout (admis).

Si $\mu=$ la mesure de Lebesgue λ , c'est l'intégrale de Lebesgue et on écrit en général juste $\mathrm{d}x$ au lieu de $\lambda(\mathrm{d}x)$. Si $\mu=\sum_{n\in\mathbb{N}}\alpha_n\delta_{y_n}, \int f\mathrm{d}\mu=\sum_{n\in\mathbb{N}}\alpha_nf(y_n)$ (si défini). Si $\mu=\mathbb{P}$, l'intégrale de la v.a. $X:\Omega\to F$ par rapport à \mathbb{P} (si elle existe) est ce que l'on appelle aussi son espérance $\mathbb{E}\left[X\right]=\int X\mathrm{d}\mathbb{P}=\int_{\omega\in\Omega}X(\omega)\mathbb{P}(\mathrm{d}\omega)$ mais on ne calcule jamais une espérance comme cela, on utilise le théorème de transfert qui dit que $\mathbb{E}\left[X\right]=\int_{x\in F}x\mathbb{P}_X(\mathrm{d}x)$: on passe donc d'une intégrale sur Ω par rapport à la mesure \mathbb{P} à une intégrale sur F par rapport à la mesure induite \mathbb{P}_X .

Soit μ et ν deux mesures. ν domine μ , ou μ est absolument continue par rapport à ν , et on note $\mu \ll \nu$, si $\forall A \in \mathcal{A}, \nu(A) = 0 \Rightarrow \mu(A) = 0$. **Remarque :** toute mesure est dominée par la mesure de comptage.

Théorème de Radon-Nikodym-Lebesgue : Soit μ et ν deux mesures σ -finies, avec $\mu \ll \nu$. Il existe une fonction h réelle positive mesurable, et unique ν -presque partout, telle que $\forall A \in \mathcal{A}, \mu(A) = \int \mathbbm{1}_A h d\nu$. h s'appelle la dérivée de Radon-Nikodym de μ par rapport à ν ou la **densité** de μ par rapport à ν .

Exemple : la densité de $\mathcal{N}(0,1)$ par rapport à λ est $x\mapsto \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}x^2\right)$. **Remarque :** on doit en principe dire "une" densité mais on peut se permettre de dire "la" grâce à l'unicité λ -p.p.

Remarque : la théorie de la mesure donne un cadre unifié pour traiter des distributions de probabilité discrètes et continues.

Lemme des classes monotones. π -système : une partie de $\mathcal{P}(\Omega)$ stable par intersection. Exemple : toute tribu. Classe monotone ou λ -système : une partie \mathcal{M} de $\mathcal{P}(\Omega)$ telle que :

- 1. $\Omega \in \mathcal{M}$
- 2. $A, B \in \mathcal{M}$ et $A \subseteq B$ entraînent que $B \setminus A \in \mathcal{M}$
- 3. $A_i \in \mathcal{M}, i \in \mathbb{N}$ avec $A_i \subseteq A_{i+1}$ entraı̂nent que $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{M}$

 \mathcal{M} est donc stable par différence ensembliste et par union dénombrable croissante. Exemple : toute tribu. Lemme des classes monotones (ou théorème π - λ de Sierpiński–Dynkin) : soit \mathcal{C} un π -système, alors la classe monotone engendrée

par $\mathcal C$ contient la tribu engendrée par $\mathcal C$. Application très utile : soit 2 mesures de probabilité $\mathbb P$ et $\mathbb Q$ qui coïncident sur un π -système $\mathcal C\subseteq\mathcal A$, alors elles coïncident sur $\sigma(\mathcal C)$. En effet, $\{A\in\mathcal A:\mathbb P(A)=\mathbb Q(A)\}$ est une classe monotone (Exercice).