Кубические неравенства

Кубическое неравенство – неравенство, в обеих частях которого стоят многочлены 3-ей степени. Простейшим примером кубического неравенства может быть неравенство вида:

$$ax^3 + bx^2 + cx + d > 0.$$

Существует утверждение, что любой многочлен 3-ей степени можно представить в виде:

$$a(x-\alpha)(x-\beta)(x-\gamma)$$
.

Воспользуемся этим и составим таблицу возможных знаков каждого из слагаемых и их произведения:

$x - \alpha$	$x - \beta$	$ x-\gamma $	произведение
+	+	+	+
+	+	-	_
+	_	+	_
+	_	_	+
_	+	+	_
_	+	_	+
_	_	+	+
_	_	_	_

Мы видим, что если нужно найти значения x, при которых неравенство положительно или отрицательно, то мы должно рассмотреть 4 варианта произведения. Вспоминая аналитический метод решения неравенств мы приходим к тому, что нужно рассмотреть 4 системы из трех неравенств, решить их, и записать ответ в виде объединения. Это потребоует многочисленных записей, в которых можно запутаться, и как следствие сделать ошибку.

Применить графический метод решения также нерационально, поскольку мы не знаем как выглядит график многочлена 3-ей степени, а если его строить по точкам, то границы интервалом можно найти лишь приближен-

Точное решение можно получить воспользовавшись методом интервалов.

Метод интервалов

Метод интервалов основан на идее чередования интервалов, которые можно было обнаружить в графическом методе решения квадратных неравенств. Сравните два графика:

Здесь намеренно не нарисована ось ординат, потому что не играет роли, где именно относительно начала координат расположены графики. Видно, что если мы расставим на числовой прямой точки пересечения графика функции с осью абсцисс, то в этих точках происходит смена знака функции (произведения).

Аналогичная картина наблюдается и с прямой линией, которая может пересекать ось абсцисс только в одной точке (см. следующую страницу).

Поняв, что знаки чередуются, остается решить, с какого знака начинать. Обе левые картинки можно получить из правых отрожением относительно оси абсцисс,

т.е. домножением функции на -1. Заметим, что старший коэффициент функций, которые изображены на правых рисунках отрицательный. Это и является условием для требуемого домножения.

Алгоритм

- 1. Преобразовать левую часть кубического неравенства к виду $a(x-\alpha)(x-\beta)(x-\gamma)$.
- 2. Разделить неравенство на a.
- 3. Расставить числа α , β и γ по возрастанию на числовой прямой, обозначив их кружками.
- 4. Заштрифовать круги, если неравенство нестрогое.
- 5. Расставить между отмеченными точками чередующиеся знаки справа налево, начиная с плюса.
- 6. Записать объединение интервалов одного знака, который определяем из неравенства.

УПРАЖНЕНИЯ

- 1.1. Выполнить первый и второй шаг алгоритма для следующих неравенства и найти числа α , β и γ :
 - 1) -(x-2)(x+3)(x-5) > 0;
 - 2) (1-x)(x+3)(8-x) > 0;
 - 3) (x+13)(7-x)(8-x) < 0;
 - 4) (x-2)(4-x)(x-5) < 0;
 - 5) $(10-x)(15-x)(16-x) \ge 0$;
 - 6) $-(15-x)(5-x)(7-x) \ge 0$;
 - 7) $(10-5x)(15-3x)(16-x) \le 0$;
 - 8) $-(16-8x)(5-x)(7-x) \le 0$;

Решить неравенства методом интервалов:

- 11.2. 1) (x-1)(x-3)(x-5) > 0;
 - 2) $(x+1)(x-1)(x-2) \ge 0$;
 - 3) (x-1)(x-2)(x+5) < 0;
 - 4) $(x+2)(x+1)(x-3) \le 0$;
 - 1) (2-x)(x+3)(x-7) < 0;
 - 2) (5-x)(x-3)(x+12) > 0:
 - 3) (3x-4)(1-x)(2x+1) < 0;
 - 4) (2x-5)(7x+3)(x+8) < 0.

 - 1) $(x-3)(x^2-3x+2) \ge 0$; 2) $(2-x)(x^2-x-12) \le 0$.
 - 1) $(2-4x)(x^2-x-2)<0$;
 - 2) $(-4-3x)(x^2+3x-4) > 0$;
 - 3) $(3x-7)(x^2+2x+2) < 0;$ 4) $(5x-8)(x^2-4x+5) > 0.$

Обобщенный метод интервалов

Знак не будет чередоваться, если парабола пересекает ось абсцисс в одной точке.

8-Д

$$ax^2 + cx + b = a(x - x_1)^2$$
.

Это замечание обобщает метод интервалов на случай решения неравенств

$$(x - \alpha)^2 (x - \beta) > 0, \quad (x - \alpha)^3 > 0.$$

Измененные шаги в обобщенном методе

1*. Преобразовать левую часть кубического неравенства к одному из следующих видов:

$$a(x - \alpha)(x - \beta)(x - \gamma),$$

$$a(x - \alpha)^{2}(x - \beta),$$

$$a(x - \alpha)^{3}.$$

4*. Расставить знаки справа налево, начиная с плюса, изменяя знак при прохождении точек β и γ . При прохождении точки α изменяем знак, если $x-\alpha$ в нечетное степени, и оставляем его, если $x - \alpha$ в четной степени.

УПРАЖНЕНИЯ

Решить неравенства обобщенным методом интервалов:

1.6. 1)
$$(x-2)^2(x-1) > 0$$
;

2)
$$(x+4)(x+3)^2 < 0$$
;

3)
$$(x+2)(3-5x)^2 < 0;$$

4) $(3x-1)(x+1)^2 > 0.$

4)
$$(3x-1)(x+1)^2 > 0$$

1.7. 1)
$$(8x-9)^3 \ge 0$$
;

1)
$$(8x - 9) \neq 0$$
;

2)
$$(30-10x)^3 \ge 0$$
;

3)
$$(0.2x - 0.4)^3 \le 0$$
;

4)
$$(1.5 - 4.5x)^3 \le 0$$

5)
$$(\sqrt{2}x - \sqrt{8})^3 > 0$$

6)
$$(2^3 7^5 m)^3 > 0$$

5)
$$(0.2x - 0.4) \le 0;$$

4) $(1.5 - 4.5x)^3 \le 0;$
5) $(\sqrt{2}x - \sqrt{8})^3 > 0;$
6) $(2\frac{3}{4} - 7\frac{5}{8}x)^3 > 0;$

7)
$$(\sqrt{10x} - \sqrt{100})^3 < 0$$

7)
$$(\sqrt{10}x - \sqrt{100})^3 < 0;$$

8) $(-\frac{1}{4} - \frac{15}{16}x)^3 < 0.$

1.8. 1)
$$(x+1)(x^2-x+x) > 0;$$

2) $(3-x)(x^2+2x+1)^2 < 0;$

2)
$$(3-x)(x^2+2x+1)^2 < 0$$
;

3)
$$(4x^2 + 4x + 4)(8 - 4x)^2 < 0$$
;

4)
$$(3x^2 + 2x - 1)(x + 1) > 0$$
.