Classical text mining

5/5 points (100.00%)

Quiz, 5 questions	
✓ Congratulations! You passed!	Next Item
1/1	
points	
1.	
11	
Choose true statements about text tokens.	
Choose true statements about text tokens.	
Lemmatization is always better than stemming	
Un-selected is correct	
Stemming can be done with heuristic rules	
Steinning can be done with neuristic rules	
Correct	
Yeah, Porter stemmer works this way.	
·	
Lemmatization needs more storage than stemming to work	
Correct This is true, you have to store information about all possible word for	rms in the
vocabulary.	inis in the
•	
A model without stemming/lemmatization can be the best	

Correct

This is true. Word2vec embeddings, for instance, are trained on raw tokens.

Classical text mining

5/5 points (100.00%)

Quiz, 5 questions

1/1 points

2.

Imagine you have a texts database. Here are stemming and lemmatization results for some of the **words**:

Word	Stem	Lemma
operate	oper	operate
operating	oper	operating
operates	oper	operates
operation	oper	operation
operative	oper	operative
operatives	oper	operative
operational	oper	operational

Imagine you want to find results in your texts database using the following queries:

- 1. operating system (we are looking for articles about OS like Windows or Linux)
- 2. operates in winter (we are looking for machines that can be operated in winter)

Before execution of our search we apply either stemming or lemmatization to both query and texts. Compare stemming and lemmatization for a given query and choose the correct statements.

Stemming provides higher recall for **operates in winter** query.

Correct

This is true, lemmatization would only find exact matches with **operates** and lose a lot of relevant forms like **operational**.

Stemming provides higher F1-score for operating system query.	
Classical text mining	5/5 points (100.00%)
Un-selected is correct Quiz, 5 questions	
Stemming provides higher precision for operating system query.	
Un-selected is correct	
Lemmatization provides higher precision for operates in winter quer	y.
Correct This is true, but it would loose a lot of other relevant forms.	
1/1 points	
3.	
Choose correct statements about bag-of-words (or n-grams) features.	
Hashing vectorizer (object that does vectorization) needs an amount o vocabulary size to operate.	f RAM proportional to
Un-selected is correct	
Classical bag-of-words vectorizer (object that does vectorization) need at least proportional to T , which is the number of unique tokens in the \hat{G}	
Correct	

This is true, you have to store a hash map {token: index} to be able to vectorize new texts

Classical text mining	5/5 points (100.00%)
For bag-of-words features you need an amount of RAM at least proportion. Quiz, 5 questions the number of documents, T is the number of unique tokens in the data.	
Un-selected is correct	
We prefer sparse storage formats for bag-of-words features.	
Correct This is true. We have a lot of zeros in these features, that's why we can sto efficiently in sparse formats (look at sklearn.feature_extraction.text.Tfidf scipy.sparse.csr_csr_matrix).	
You get the same vectorization result for any words permutation in your te	xt.
Un-selected is correct	
1/1 points	
4.	

Let's consider the following texts:

· good movie

Classical text mining

5/5 points (100.00%)

• i like it

Quiz, 5 gaestions

Let's count **Term Frequency** here as a distribution over tokens in a particular text, for example for text "good one" we have TF = 0.5 for "good" and "one" tokens.

Term frequency (TF)

- tf(t, d) frequency for term (or n-gram) t in document d
- Variants:

weighting scheme	TF weight
binary	0,1
raw count	$f_{t,d}$
term frequency	$f_{t,d} / \sum_{t' \in d} f_{t',d}$
log normalization	$1 + \log(f_{t,d})$

Inverse document frequency (IDF)

- N = |D| total number of documents in corpus
- $|\{d \in D: t \in d\}|$ number of documents where the term t appears
- $idf(t, D) = log \frac{N}{|\{d \in D: t \in d\}|}$

What is the **sum** of TF-IDF values for 1-grams in "good movie" text? Enter a math expression as an answer. Here's an example of a valid expression: log(1/2)*0.1.

Preview

$$-0.5\log{(3)} - 0.5\log{(2)} + 1.0\log{(5)}$$

Enter math expression l

Classical text mining

5/5 points (100.00%)

	ques	
points Naive Bayes Correct Decision Tree		
What models are usable on top of bag-of-words features (for 100000 words)? Naive Bayes Correct SVM Correct Decision Tree	✓	
Correct SVM Correct Decision Tree	5.	
Correct SVM Correct Decision Tree	What n	nodels are usable on top of bag-of-words features (for 100000 words)?
Correct Correct Decision Tree		Naive Bayes
Correct Decision Tree		rect
Decision Tree		SVM
<u> </u>	Cor	rect
		Decision Tree
Un-selected is correct		
	Un-	selected is correct
Gradient Boosted Trees		Gradient Boosted Trees

Logistic Regi	ression		
Classical	text	min	ing

5/5 points (100.00%)

Correct

Quiz, 5 questions

) Q 12