<110> Purdue Research Foundation

Pak, William

Li, Chenjian

Geng, Chaoxian

<120> CALCIUM CHANNEL REGULATORS

- <130> 290.00370101
- <140> 09/700,869
- <141> 2001-07-03
- <150> 60/087,368
- <151> 1998-05-18
- <150> 60/098,072
- <151> 1998-08-27
- <160> 4
- <170> PatentIn version 3.0
- <210> 1
- <211> 2905
- <212> DNA
- <213> Drosophila melanogaster

<400> 1

gaattccgcc tgctcaccct gttgctctac atgggcggcg ttagcggcat gggcttgact

60

ctggctgtct actacctgtt catctgggat tcacgcatgc cgccgctgcc cgtgttcaag

120

	(020802.sequ	ence.ST25		
cacacgcatc cgattggcta				ccatctccca	180
gcgacatcag tgaccggaat	tggataaaat	tgtgataccc	gagaaaatag	ccattcgcct	240
cctgaactca tcggaagtga	ccgcggagca	gttctacaag	cacatcctcg	agcagtaccg	300
catcctcagc cacatgcaac	agcagcgcca	gcaactgctg	cagcgccaac	atctccaact	360
gcagcagctg gaggcaaaca	atcgcttcca	ggaggtcttt	gccacggcca	ccatcattca	420
ggcacatccg catccccatc	cacatcccag	ggagccgccc	aagaagccgc	ttttaggacc	480
atatagcccg caacccggca	acataagtca	cgctatgggt	ggtgatcagt	tggatgcaga	540
aacggaacag ggtcacatgc	ctctaatcct	ggatacctca	ccgccggtcg	aagtaaccgg	600
aatgggtcac ctgaagcgga	agacacatcg	cggtcactac	aaacatcata	gagcccgagc	660
cggtggtcaa aagaaactgt	ccattgccaa	ttcgatggcc	agctccacgc	cgagcaccac	720
agccggagga gatgcgtcaa	tggccactgc	ggccactttg	ccacatggtt	atatggacgc	780
tccactaaat ccggcggcag	gaaccattgt	ccaggcacca	caactgcagc	tatacacctc	840
gatgcccatt ccactgatcc	tgagtcccag	cgacgaaaag	cgtccttcgc	accacgccca	900
cggacatgtc catggcgaga	ggcggaacgg	ggcgcaatcc	ggcggccggc	gaaggaccac	960
gacggcatcg gtttctggct	acgaggcgca	gacctacctc	aatccgtttc	tcaccggcga	1020
gctgatcttc gagaagtaag	ggactgcacc	cagatcagga	aacgtcgcgg	ttcattgttt	1080
ttttttttt ttttttta	atgcatgtag	agggatatac	actacagtca	agatcggaat	1140
tggagattag ctcatagaaa	tggtaactgc	ccaagaaaca	aaaaaagaaa	tgactaacaa	1200
atgggcaata ataccctcaa	taccttgtca	tacctatttg	aatggagaaa	taactcagtt	1260
aagctcagta ctggcataag	catggggaaa	atatttcaat	taatcagttc	gagtagatat	1320
gttttccaaa ttgatagcga	tattagacat	ttcatattga	aatttacagg	tacaaatata	1380
atctcagtta atgcgtagaa	tgcgtttgca	attgaacaaa	tttaacgttt	tatagcaaga	1440
acttaggaac aaaagttgta	atcgcttatt	ctataataat	gttaactaaa	gccaaagcaa	1500
gtagatcggt tgtataactc	atttctgcta	tagataagtc	ttgacttgta	tcagtactga	1560
gctataaatt ggtccatata	tacgtagcca	ggcctggcca	catatagagg	ttaataaacg	1620
ttatgtactg caaaaggata	gttgaaacca	tagctaaacg	atagtcgatg	taccaaccac	1680
actccactcc aatccaatcc	aatccaatcc	actcaaatca	attcaaaaca	acacactcgt	1740
aagggacaca cactcacgca	taatacggga	cccacttcag	tagaaagtca	cacgatatca	1800
gcgatcacgg atcacgaatt	acggatcacg	gaatacgtat	cacggatcac	acaggcggct	1860
cacctcacca agctcagcag	caaactcacc	ccacctagga	cactgcttcc	aggcagctag	1920
cgaacgctac accaactaca	ataattagcc	aaccctagag	taatcagttt	accagtaaac	1980
agtaaccagt aactagtaac	caattaccaa	ttaccagtaa Page		gagtataccc	2040

cccttgcaaa	cggggaagcg	gataaatgtc	actagaattc	agcatcatca	gattgaatca	2100
cacacaatcc	tagtcgcctc	acgcgaagag	aactatgtca	tgatcagata	tcggtgtatg	2160
cattctatat	tatgtacttc	gaaatatgta	atttattaag	ttttcgctat	acttttcatt	2220
caaattggca	aaaaccaatt	caaaggtttt	caatattttc	gaaaagcatt	ttaggctttc	2280
tatgtaacgt	atgtttttca	aacaaaatat	tagtttttga	aactttatta	tcggataaac	2340
aaatgtaagc	caaattacaa	cgtttatgat	actccaaaga	ttcgcactat	aaagtggcct	2400
aaaaatagct	gacgcattag	ccataggcgc	ttcgcttctc	aagataaaac	ctgggcgtgc	2460
tcaactcaag	aacaaatatg	tggttatata	catatataca	tatatggggc	atataaccga	2520
tgtgtgacgt	gacattggct	cgttctattc	acatacttaa	acactaaatg	caaacctatc	2580
aaaaaccaac	tacactaagc	gaaaagcggc	agagatagtt	aaggaaagtg	gtcaagagag	2640
gacgagagag	agagagagag	aaagtgaaag	tgaaagggag	agatagtaaa	actgcatctg	2700
catccaaaga	cacgagaatt	gaattcatca	ataataacat	acgtataaac	gatatgcata	2760
cgatatagaa	ttgaatctgt	aactgatggg	catataccgc	atatatatct	tatataccgc	2820
atatatctta	tatatgtata	ccaagaaaaa	caaagtcatt	tggcaataat	aaagcatagc	2880
aaacaacaat	aaaaaaagg	aattc				2905

<210> 2

<211> 3112

<212> DNA

<213> Drosophila melanogaster

<400> 2 60 gaattgtgtt cagttcgttc gaagaggcgg ttacggttgc gattggccac ctttttccat atcgcttggg tcattcagca cattctcgaa ataaataaga agcggcataa tgagcggacc 120 180 gtcggcactg atggccaatc tggccgatgt ggtcaaggag gccaaggatg aggagatccc gatgcccaaa tcgaatgact tcttcgagtc caagaccttc cgcttgctca ccctgatgct 240 300 ctacatgggc ggcgttagcg gcatgggctt gactctggct gtctactacc tgttcatctg 360 ggattcacgc atgccgccgc tgcccgtgtt caagcacacg catccgattg gctaggatcg gatggctatc atttagttag ccatccatct cccagcgaca tcagtgaccg gaattggata 420 480 aaattgtgat acccgagaaa atagccattc gcctcctgaa ctcatcggaa gtgaccgcgg 540 agcagttcta caagcacatc ctcgagcagt accgcatcct cagccacatg caacagcagc gccagcaact gctgcagcgc caacatctcc aactgcagca gctggaggca aacaatcgct 600

		020802.sequ	ence ST25		
tccaggaggt ctttgccacg	gccaccatca	ttcaggcaca	tccgcatccc	catccacatc	660
ccagggagcc gcccaagaag	ccgcttttag	gaccatatag	cccgcaaccc	ggcaacataa	720
gtcacgctat gggtggtgat	cagttggatg	cagaaacgga	acagggtcac	atgcctctaa	780
tcctggatac ctcaccgccg	gtcgaagtaa	ccggaatggg	tcacctgaag	cggaagacac	840
atcgcggtca ctacaaacat	catagagccc	gagccggtgg	tcaaaagaaa	ctgtccattg	900
ccaattcgat ggccagctcc	acgccgagca	ccacagccgg	aggagatgcg	tcaatggcca	960
ctgcggccac tttgccacat	ggttatatgg	acgctccact	aaatccggcg	gcaggaacca	1020
ttgtccaggc accacaactg	cagctataca	cctcgatgcc	cattccactg	atcctgagtc	1080
ccagcgacga aaagcgtcct	tcgcaccacg	cccacggaca	tgtccatggc	gagaggcgga	1140
acggggcgca atccggcggc	cggcgaagga	ccacgacggc	atcggtttct	ggctacgagg	1200
cgcagaccta cctcaatccg	tttctcaccg	gcgagctgat	cttcgagaag	taagggactg	1260
cacccagatc aggaaacgtc	gcggttcatt	gtttttttt	tttttttt	tttaatgcat	1320
gtagagggat atacactaca	gtcaagatcg	gaattggaga	ttagctcata	gaaatggtaa	1380
ctgcccaaga aacaaaaaa	gaaatgacta	acaaatgggc	aataataccc	tcaatacctt	1440
gtcataccta tttgaatgga	gaaataactc	agttaagctc	agtactggca	taagcatggg	1500
gaaaatattt caattaatca	gttcgagtag	atatgttttc	caaattgata	gcgatattag	1560
acatttcata ttgaaattta	caggtacaaa	tataatctca	gttaatgcgt	agaatgcgtt	1620
tgcaattgaa caaatttaac	gttttatagc	aagaacttag	gaacaaaagt	tgtaatcgct	1680
tattctataa taatgttaac	taaagccaaa	gcaagtagat	cggttgtata	actcatttct	1740
gctatagata agtcttgact	tgtatcagta	ctgagctata	aattggtcca	tatatacgta	1800
gccaggcctg gccacatata	gaggttaata	aacgttatgt	actgcaaaag	gatagttgaa	1860
accatagcta aacgatagtc	gatgtaccaa	ccacactcca	ctccaatcca	atccaatcca	1920
atccactcaa atcaattcaa	aacaacacac	tcgtaaggga	cacacactca	cgcataatac	1980
gggacccact tcagtagaaa	gtcacacgat	atcagcgatc	acggatcacg	aattacggat	2040
cacggaatac gtatcacgga	tcacacaggc	ggctcacctc	accaagctca	gcagcaaact	2100
caccccacct aggacactgc	ttccaggcag	ctagcgaacg	ctacaccaac	tacaataatt	2160
agccaaccct agagtaatca	gtttaccagt	aaacagtaac	cagtaactag	taaccaatta	2220
ccaattacca gtaacccatc	caaggagtat	acccccttg	caaacgggga	agcggataaa	2280
tgtcactaga attcagcatc	atcagattga	atcacacaca	atcctagtcg	cctcacgcga	2340
agagaactat gtcatgatca	gatatcggtg	tatgcattct	atattatgta	cttcgaaata	2400
tgtaatttat taagttttcg	ctatactttt	cattcaaatt	ggcaaaaacc	aattcaaagg	2460
ttttcaatat tttcgaaaag	cattttaggc	tttctatgta Page		ttcaaacaaa	2520

atattagttt	ttgaaacttt	attatcggat	aaacaaatgt	aagccaaatt	acaacgttta	2580
tgatactcca	aagattcgca	ctataaagtg	gcctaaaaat	agctgacgca	ttagccatag	2640
gcgcttcgct	tctcaagata	aaacctgggc	gtgctcaact	caagaacaaa	tatgtggtta	2700
tatacatata	tacatatatg	gggcatataa	ccgatgtgtg	acgtgacatt	ggctcgttct	2760
attcacatac	ttaaacacta	aatgcaaacc	tatcaaaaac	caactacact	aagcgaaaag	2820
cggcagagat	agttaaggaa	agtggtcaag	agaggacgag	agagagagag	agagaaagtg	2880
aaagtgaaag	ggagagatag	taaaactgca	tctgcatcca	aagacacgag	aattgaattc	2940
atcaataata	acatacgtat	aaacgatatg	catacgatat	agaattgaat	ctgtaactga	3000
tgggcatata	ccgcatatat	atcttatata	ccgcatatat	cttatatatg	tataccaaga	3060
aaaacaaagt	catttggcaa	taataaagca	tagcaaacaa	caataaaaaa	aa	3112

<210> 3

<211> 241

<212> PRT

<213> Drosophila melanogaster

<400> 3

Met Gln Gln Gln Arg Gln Gln Gln Leu Leu Gln Arg Gln His Leu Gln Leu Gln Gln Gln Leu Gln Ala Asn Asn Arg Phe Gln Glu Val Phe Ala Thr Ala 30 Thr Ile Ile Gln Ala His Pro His Pro His Pro His Pro His Pro Arg Glu Pro Lys Lys Pro Leu Leu Gly Pro Tyr Ser Pro Gln Pro Gly Asn Ile Ser His Ala Met Gly Gly Asp Gln Leu Asp Ala Glu Thr Glu Gln Roy Roy His Met Pro Leu Ile Leu Asp Thr Ser Pro Pro Val Glu Val Thr Gly Roy Met Gly His Leu Lys Arg Lys Thr His Arg Gly His Tyr Lys His His Arg Ala Arg Ala Gly Gly Gln Lys Lys Leu Ser Ile Ala Asn Ser Met Ala Ser Ser Thr Pro Ser Thr Thr Ala Gly Gly Asp Ala Pro Leu Asn Pro His Ala Ala Thr Leu Pro His Gly Tyr Met Asp Ala Pro Leu Asn Pro 160

Page 5

Ala Ala Gly Thr Ile Val Gln Ala Pro Gln Leu Gln Leu Tyr Thr Ser 175 Ser Met Pro Ile Pro Leu Ile Leu Ser Pro 185 Ser Asp Glu Lys Arg Pro Ser 186 His Ala His Gly His Val His 200 Gly Glu Arg Arg Asp Gly Ala Gln Ser Gly Gly Arg Arg Arg Thr Thr Thr Ala Ser Val Ser Gly Tyr Glu 210 Ala Gln Thr Tyr Leu Asp Pro Phe Leu Thr Gly Glu Leu Ile Phe Glu 240 Lys

<210> 4

<211> 241

<212> PRT

<213> Drosophila melanogaster

<400> 4

Met 1
Gln Gln Gln Gln Arg
Gln Gln Gln Leu Su
Leu Gln Arg
Leu Gln Arg
Gln His Leu Gln His Leu Gln Arg
Leu Gln Gln Leu Gln Ala His Arg
Arg Phe Gln Glu Val Phe Ala Thr Ala 30
Thr Ala 30

Thr Ile Ile Gln Ala His Pro His Pro His Pro His Pro His Pro His Pro Arg Glu Pro Arg
Arg Glu Pro Arg Glu Pro Arg
Arg Glu Pro Arg Glu Pro Arg
Arg</td

Met Pro Ile Pro Leu Ile Leu Ser Pro Ser Asp Glu Lys Arg Pro Ser 180 190

His His Ala His Gly His Val His Gly Glu Arg Arg Asn Gly Ala Gln 195 200 205

Ser Gly Gly Arg Arg Arg Thr Thr Ala Ser Val Ser Gly Tyr Glu 210 215 220

Ala Gln Thr Tyr Leu Asn Pro Phe Leu Thr Gly Glu Leu Ile Phe Glu 225 230 235 240

Lys