Задача 11-2. «Кольцевая»

Построение всех графиков выполняйте на отдельных, выданных Вам бланках!

Часть 1. Электрическое поле кольца.

Суммарный электрический заряд тонкого равномерно заряженного кольца равен Q, радиус кольца - R. Совместим ось Z с осью кольца, начало отсчета поместим в центр кольца.

1.1 Найдите зависимость проекции вектора напряженности электрического поля $E_z(z)$ на ось Z от координаты на оси кольца.

$$Q$$
 \overrightarrow{E}

Обозначим
$$E_0 = \frac{Q}{4\pi\varepsilon_0 R^2}$$
.

- 1.2 Постройте график зависимости величины $\frac{E_z(z)}{E_0}$ от величины $\xi = \frac{z}{R}$.
- 1.3 Получите упрощенный вид зависимости $E_z(z)$ при z >> R.
- 1.4 На оси кольца на расстоянии z находится электрический диполь с дипольным моментом \vec{p}_e . Считая, что z >> R найдите силу \vec{F} , действующую на диполь.

Электрическим диполем называется система из двух точечных зарядов, одинаковых по величине и противоположных по знаку +q,-q, находящихся на малом расстоянии а друг от друга. Характеристикой диполя является его дипольный момент, который определяется как $\vec{p}_e = q\vec{a}$.

<u>Подсказка.</u> Покажите, что сила, действующая на диполь равна $F_z = p_e \frac{\Delta E_z}{\Delta z}$.

Часть 2. Магнитное поле кольца.

Закон Био - Савара:

Малый элемент тока $I\Delta l$ создает в произвольной точке A магнитное поле, индукция которого определяется по формуле

$$\Delta B = \frac{\mu_0}{4\pi} \frac{I\Delta l}{r^2} \sin \alpha \tag{1}$$

По проволочному кольцу радиуса R протекает постоянный электрический ток силы I .

Совместим ось Z с осью кольца, начало отсчета поместим в центр кольца.

2.1 Найдите зависимость проекции вектора индукции магнитного поля $B_z(z)$ на ось Z от координаты на оси кольца.

Обозначим $B_0 = \frac{\mu_0 I}{2R}$.

- 2.2 Постройте график зависимости величины $\frac{B_z(z)}{B_0}$ от величины $\xi = \frac{z}{R}$.
- 2.3 Получите упрощенный вид зависимости $B_z(z)$ при z >> R.
- 2.4 На оси кольца на расстоянии z находится магнитный диполь с дипольным моментом \vec{p}_m . Считая, что z >> R найдите силу \vec{F} , действующую на диполь.

Магнитным диполем является малое кольцо с током. Магнитный I дипольный момент определяется как произведение силы тока на площадь кольца $p_m = IS$. Направление вектора дипольного момента совпадает с осью кольца.

<u>Подсказка.</u> Известно, что сила, действующая на магнитный диполь равна $F_z = p_m \frac{\Delta B_z}{\Delta r}$.

Часть 3. Взаимодействие постоянных магнитов.

Постоянные магниты изготавливаются из намагниченных ферромагнетиков. Характеристикой степени намагниченности является вектор намагничения \vec{J} , равный дипольному моменту единицы объема вещества.

Постоянный магнит имеет форму тонкого диска радиуса R и толщины h (h << R). Диск намагничен однородно его вектор намагничения равен \vec{J} и направлен вдоль оси диска.

- 3.1 Найдите индукцию магнитного поля \vec{B}_0 в центре диска.
- 3.2 Найдите зависимость проекции вектора индукции на ось диска
- $B_z(z)$ в точках находящихся на оси диска, в зависимости от расстояния от его центра.
- 3.3 На большом расстоянии L (L>>R) от магнита расположили еще один такой же магнит. Оси магнитов совпадают. Найдите зависимость силы взаимодействия между магнитами от расстояния между ними.

В описанном дисковом магните вырезают полость в цилиндра радиуса $\frac{R}{2}$, соосную с магнитом. В результате чего получился кольцевой магнит.

3.3 Найдите зависимость проекции вектора индукции на ось диска $B_z(z)$ в точках находящихся на оси магнита, в зависимости от расстояния от его центра. Постройте схематический график зависимости величины $\frac{B_z(z)}{B_0}$ от величины $\frac{z}{R}$.

Величина B_0 - та, что определена вами в n.3.1.