QR recap and argument raising

Patrick D. Elliott

December 5, 2022

Contents

1	Exercises (from Coppock and Champollion)	1
	1.1 Composing quantifiers in object position	1

1 Exercises (from Coppock and Champollion)

1.1 Composing quantifiers in object position

Produce a translation into the simply-typed lambda calculus for the following sentence:

(1) Beth speaks a European language.

Here are some translations to help you get started.

- Beth \Rightarrow Beth : E
- speaks \Rightarrow speaks : $E \rightarrow E \rightarrow T$
- European $\Rightarrow \lambda P_{ET} \cdot \lambda x \cdot \mathbf{european}(x) \wedge P(x) : (E \to T) \to E \to T$
- language \Rightarrow language : $E \rightarrow T$
- $a \Rightarrow \lambda R_{ET} \cdot \lambda S_{ET} \cdot \exists x [P(x) \land Q(x)] : (E \to T) \to (E \to T) \to T$

Some important facts about quantifier raising.

- Traces are translated into variables.
- The moved expression introduces an abstraction variable into the LF, which triggers a special translation rule, predicate abstraction.

Predicate abstraction works as follows:

- γ is a syntax tree whose only two subtrees are x and β , where x is an abstraction variable.
- β is translated as β' , an expression of type T
- Then translate γ as $\lambda x \cdot \beta'$

Now, the exercise proper:

- Draw synax trees for the sentence (1), both before and after quantifier raising (assume that "a European language" undergoes QR). The syntax tree post-quantifier raising is called the "LF".
- Provide a translation for the sentence into the lambda calculus by compositionally translating each component part, and reducing the result using the reduction rules we've discussed.