```
In [9]: import sympy as sp
In [10]: x=sp.symbols('x')
In [11]: exp=x**2+3*x+2
In [12]: simp_exp=sp.simplify(exp)
In [13]: | simp_exp
Out[13]: x^2 + 3x + 2
In [14]: |y=sp.diff(exp,x)
In [15]: y
Out[15]: 2x + 3
In [16]: import sympy as sp
         x=sp.symbols('x')
         exp=x**2+3*x+2
         simp_exp=sp.simplify(exp)
         simp_exp
         y=sp.diff(exp,x)
         z=sp.diff(y,x)
Out[16]: 2
In [17]: #Pandas
In [18]: import pandas as pd
In [36]: | df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6]})
Out[36]:
             А В
            2 5
          2 3 6
In [20]: import matplotlib.pyplot as plt
         import numpy as np
```

```
Data Analysis - Jupyter Notebook
In [21]: x=np.linspace(0,10,100)
In [22]: y=np.sin(x)
In [23]: plt.plot(x,y)
Out[23]: [<matplotlib.lines.Line2D at 0x1b16da86520>]
             1.00
             0.75
             0.50
             0.25
             0.00
            -0.25
            -0.50
            -0.75
            -1.00
                    Ö
                             ż
                                      4
                                               6
                                                         8
                                                                 10
In [24]: plt.title('Sine Wave')
Out[24]: Text(0.5, 1.0, 'Sine Wave')
                                    Sine Wave
            1.0
            0.8
            0.6
            0.4
            0.2
            0.0
              0.0
                        0.2
                                   0.4
                                             0.6
                                                       0.8
                                                                 1.0
```

```
In [25]: plt.show()
 In [ ]:
In [26]: import statsmodels.api as sm
In [28]: |model=sm.OLS(y,x).fit()
```

```
In [29]: model
```

In [30]: print(model.summary())

OLS Regression Results									
=========	=====	=========	====	=====	=====	=====		=======	
=======									
Dep. Variable: 0.035			У	R-sqı	uared ((uncer	ntered):		
Model:		0	LS	Adi.	R-saua	ared ((uncentered):		
0.026				,, .	5946		(4		
Method:	•			F-statistic:					
3.625									
Date:		Sat, 14 Dec 20	24	Prob	(F-sta	atist:	ic):		
0.0598 Time:		10:55:	47	امما	ikelih	anad.			
-102.76		10:55:	4/	Log-i	ткети	1000:			
No. Observatio	ns:	1	.00	AIC:					
207.5									
Df Residuals:			99	BIC:					
210.1									
Df Model:			1						
Covariance Typ		nonrobu							
=======================================	======	=========	:====	======	=====	=====		======	
-	COE-	f std err		+	D.	s1+1	[0 025	0.97	
5]		i sea eri				7151	[0.023	0.57	
-									
x1	0.0224	4 0.012	=	1.904	0.	.060	-0.001	0.04	
6									
=======================================	======	=========	:===:	======		=====		=======	
= Omnibus:		47 242			Durbin-Watson: 0.01				
2		47.242			Dai Din Watson.				
Prob(Omnibus):		0.000			Jarque-Bera (JB): 8.73				
8									
Skew:		-0.356			Prob(JB):				
7		4 730			Cont. No				
Kurtosis: 0		1.739			Cond. No. 1.				
•	======		====	======		=====		=======	
=	_ _						-	_	

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [33]: import numpy as np
    from scipy.integrate import odeint
    import matplotlib.pyplot as plt
    def dydx(y,x):
        return -2*y
    y0=1
    x=np.linspace(0,5,100)
    y=odeint(dydx,y0,x)
    plt.plot(x,y,label="y(x)")
    plt.title("solution of dy/dx=-2y")
    plt.xlabel("x")
    plt.ylabel("y(x)")
    plt.legend()
    plt.grid()
```



```
In [ ]:
```