UNIVERSIDAD DE SAN ANDRÉS - Introducción al Razonamiento Matemático Primavera 2020

Práctica 3: Funciones, dominio e imagen. Composición. Función Inversa

1. Para cada una de las siguientes funciones homográficas, $f:A\subseteq\mathbb{R}\to\mathbb{R}$: 1) hallar el dominio, 2) hallar sus asíntotas (vertical y horizontal), 3) hallar su imagen, 4) hallar, analíticamente, la intersección con los ejes coordenados, 5) realizar un gráfico aproximado.

(a)
$$f(x) = 1/x$$

(b)
$$f(x) = 3 - \frac{2}{x-4}$$

(c)
$$f(x) = -3 + \frac{1}{2x+4}$$

(d)
$$f(x) = \frac{x-2}{x+1}$$

(e)
$$f(x) = \frac{-3x+2}{2x+1}$$

- 2. La función de demanda inversa de un producto está dada por $p=\bar{D}(q)=\frac{a}{q}$, y la función de oferta inversa por $p = \bar{O}(q) = 3q - 60$ (p indica el precio y q la cantidad de unidades). Determinar el valor de $a \in \mathbb{R}$ sabiendo que el precio de equilibrio es \$15.
- 3. Para cada una de las siguientes funciones partidas $f: Dom(f) \subseteq \mathbb{R} \to \mathbb{R}$, hallar el dominio y realizar un gráfico aproximado. Hallar analíticamente la intersección con los ejes coordenados y hallar gráficamente su imagen.

(a)
$$f(x) = \begin{cases} 2x+1 & \text{si } x > 1 \\ x^2 & \text{si } x \le 1 \end{cases}$$

(b) $f(x) = \begin{cases} \frac{1}{x} & \text{si } x < 2 \\ x - \frac{3}{2} & \text{si } 2 \le x \end{cases}$

$$\begin{cases} \frac{1}{x} & \text{si } x < 2 \end{cases}$$

(c)
$$f(x) = \begin{cases} |x-2| & \text{si } x \geqslant -1 \\ 4 & \text{si } x \leqslant 1 \end{cases}$$

(c)
$$f(x) = \begin{cases} |x-2| & \text{si } x \ge -1\\ 4 - x^2 & \text{si } x < -1 \end{cases}$$

(d)
$$f(x) = \begin{cases} -2 & \text{si } x < -1 \\ x^2 & \text{si } -1 \le x \le 1 \\ x+1 & \text{si } x > 1 \end{cases}$$

(e)
$$f(x) = \begin{cases} \frac{x+2}{-x+1} & \text{si } x < 3\\ |2x-4| - 6 & \text{si } 3 \le x \end{cases}$$

4. Escribir las siguientes funciones como funciones partidas y realizar un gráfico aproximado:

(a)
$$f(x) = |3x - 4|$$

(b)
$$f(x) = |-5x + 2|$$

(c)
$$f(x) = |3x - 4| + 2x - 1$$

5. Resolver las siguientes inecuaciones:

(a)
$$|x-3| \le 5$$

(d)
$$|3x-2| < 3x-4$$

(b)
$$|2-x| < 2$$

(e)
$$\frac{3}{|5-2x|} < 2$$

(c)
$$|2x+1| \ge 2$$

(f)
$$\frac{2}{|2x+3|} \ge 5$$

6. Calcular $f \circ g$, $g \circ f$, $f \circ h$, $h \circ f$, $g \circ h$ y $h \circ g$, en cada uno de los siguientes casos:

(a)
$$f(x) = x + 8$$
, $g(x) = x^2$, $h(x) = x - 8$.

$$q(x) = x^2$$
.

$$h(x) = x - 8$$

1

- (b) f(x) = |x 1|, $g(x) = x^2$, h(x) = x + 2.
- 7. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = |2x^2 3| + 1$. Describir la función f como composición de
 - (a) dos funciones de dos maneras distintas,
 - (b) tres funciones.
- 8. Sean $f, g, h : \mathbb{R} \to \mathbb{R}$ dadas por f(x) = |x|, g(x) = x 2 y h(x) = 3x.

En cada uno de los siguientes casos describir la función $r: \mathbb{R} \to \mathbb{R}$ como composición de f y/o g y/o h.

- (a) r(x) = |x 2|
- (b) r(x) = |x| 2
- (c) r(x) = |3x 2|
- 9. Analizar la inyectividad de cada una de las siguientes funciones $f:Dom(f)\subseteq \mathbb{R}\to \mathbb{R}$. Si es inyectiva probarlo y si no lo es dar un contraejemplo. En los casos en los que no sea inyectiva hallar un intervalo I, lo más grande posible, tal que $f:I\to\mathbb{R}$ resulte inyectiva (probar que es inyectiva en I).
 - (a) f(x) = 2x + 1
 - (b) $f(x) = -\frac{1}{3}x 1$
 - (c) f(x) = 2
 - (d) $f(x) = x^2 3x + 2$
 - (e) $f(x) = 1 x^2$

- (f) $f(x) = \frac{1}{x}$
- (g) $f(x) = 3 \frac{1}{x+4}$
- (h) $f(x) = \frac{-3x+2}{2x-1}$
- (i) f(x) = |x| + 2
- (i) f(x) = 2|3x + 2| 1

En los siguientes items, graficar la función y decidir a partir del gráfico:

- (a) $f(x) = |x^2 8x + 12| 7$
- (b) $f(x) = x^3$
- (c) $f(x) = x^2 + |x 2|$

(d)
$$f(x) = \begin{cases} 2x+1 & \text{si } x > 1 \\ x^2 & \text{si } x \leqslant 1 \end{cases}$$

(e) $f(x) = \begin{cases} \frac{1}{x} & \text{si } x < 2\\ x - \frac{3}{2} & \text{si } 2 \leqslant x \end{cases}$

(f)
$$f(x) = \begin{cases} -2 & \text{si } x < -1 \\ x^2 & \text{si } -1 \le x \le 1 \\ x+1 & \text{si } 1 < x \end{cases}$$

- 10. Para cada una de las siguientes funciones cuadráticas f hallar Im(f). Hallar un intervalo (lo más grande posible) I_1 donde f sea creciente y un intervalo (lo más grande posible) I_2 en donde f sea decreciente. Probar que f es inyectiva en I_1 y también en I_2 . Considerando $f: I_1 \to Im(f)$, hallar la expresión de $f^{-1}: Im(f) \to I_1$ y considerando $f: I_2 \to Im(f)$, hallar la expresión de $f^{-1}: Im(f) \to I_2$.
 - (a) $f(x) = x^2 + 4x + 4$

(d) $f(x) = (3-x)^2$

(b) f(x) = (x+2)(3-x)

(e) $f(x) = (x-7)^2 - 9$

(c) $f(x) = -x^2 + x + 6$

- (f) $f(x) = -2(x+1)^2 + 8$
- 11. Para cada una de las siguientes funciones, elegir dos intervalos $A, B \subseteq \mathbb{R}$ (lo más grandes posible) de manera que $f: A \to B$ resulte biyectiva y hallar la expresión de $f^{-1}: B \to A$. Graficar f y f^{-1} en un mismo sistema de coordenadas.

- (a) f(x) = 3x 7

- (a) f(x) = 3x 7(b) $f(x) = \frac{4x+3}{x-2}$ (c) $f(x) = 3 \frac{1}{x+4}$ (d) $f(x) = -2(x+1)^2 + 3$ (e) $f(x) = x^2 2x + 2$
- (f) f(x) = |x| + 2

- (g) f(x) = 2|3x + 2| 1
- (h) $f(x) = \sqrt{x}$
- (i) $f(x) = -2\sqrt{x} + 3$
- (j) $f(x) = \sqrt{x}$
- (k) $f(x) = \sqrt{x+2}$