Interpretable Machine Learning in R with iml

Christoph Molnar 2018-07-05

## IML theory

### INTERPRETABLE MACHINE LEARNING



- Machine learning (ML) has huge potential to improve research, products and processes
- ML models usually operate as intransparent black boxes
- The lack of explanation hurts trust and creates barrier for adoption
- $\Rightarrow$  We need interpretability for machine learning models

### WHEN DO WE NEED INTERPRETABILITY?

- Debugging the models
- Increasing trust
- Newly developed systems with unknown consequences
- Decisions about humans
- Critical applications that decide about life and death
- Models using proxies instead of causal inputs
- When the loss function does not cover all constraints

Doshi-Velez, F., and Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning, (Ml), 1-13. Retrieved from http://arxiv.org/abs/1702.08608

### WHAT TOOLS DO WE HAVE?



### PERMUTATION FEATURE IMPORTANCE

- Calculates the increase of the model's prediction error after permuting the feature
- Features are important if permuting one feature's value increases the model error



Fisher, A., Rudin, C., and Dominici, F. (2018). Model Class Reliance.

### PERMUTATION FEATURE IMPORTANCE

- 1. Estimate model error on test data
- 2. For each feature  $x_i$
- Shuffle the feature

|       | OI | ugun  | .aı |       |
|-------|----|-------|-----|-------|
| $x_1$ |    | $x_j$ |     | $x_p$ |
| 3     |    | 1.4   |     | 6.0   |
| 5     |    | 1.2   |     | 7.2   |
|       |    |       |     |       |
| 6     |    | 2.0   |     | 8.9   |



## shuffled $x_j$

| $x_1$ |  | $x_j$ |  | $x_p$ |
|-------|--|-------|--|-------|
| 3     |  | 2.0   |  | 6.0   |
| 5     |  | 1.4   |  | 7.2   |
|       |  |       |  |       |
| 6     |  | 1.2   |  | 8.9   |

- Estimate the error of the model after shuffling
- Calculate importance as increase in error
- Average the feature importance over shuffle repetitions

### PARTIAL DEPENDENCE PLOTS

Show the marginal effect of a feature on the predicted outcome of a fitted model

$$f_{x_S}(x_S) = \mathbb{E}_{x_C} f(x_S, x_C)$$



Friedman, J.H. 2001. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of Statistics 29: 1189-1232.

### PARTIAL DEPENDENCE PLOTS

- Select a feature  $x_j$
- Choose grid points along  $x_j$
- For each grid point:
  - Overwrite feature  $x_j$  in the dataset with the current grid value
  - Get the predictions for these points from the ML model
  - Average the predictions
- Draw a curve with the grid points on the x-axis and the average prediction on the y-axis.

### LIME

### Local Interpretable model-agnostic Explanations

- Fits local, interpretable models that can explain single predictions of any black-box model
- Local surrogate models, that are interpretable like a LM or CART and are learned on predictions of original model



Ribeiro, M. T., (2016, August). Why should i trust you?: Explaining the predictions of any classifier

### LIME

How to fit local surrogate model

- 1. Choose instance of interest x
- 2. Perturb data and get black box predictions for them
- 3. Weight new samples by their proximity to x
- 4. Fit a weighted, interpretable model on this new data set



Ribeiro, M. T., (2016, August). Why should i trust you?: Explaining the predictions of any classifier

# IML examples

### THE IML PACKAGE

- R6 package for **model-agnostic** Interpretable Machine Learning methods
- Analyses a fixed machine learning model
- Available on CRAN and Github: https://github.com/christophM/iml
- Detailed explanations for the methods can be found in the book "Interpretable Machine Learning": https://christophm.github.io/interpretable-ml-book/agnostic.html

Molnar et al., (2018). iml: An R package for Interpretable Machine Learning . Journal of Open Source Software, 3(26), 786, https://doi.org/10.21105/joss.00786

### PACKAGE IML

The iml package contains the following IML tools

- Permutation Feature Importance (FeatureImp)
- Feature Interactions (Interaction)
- Partial Dependence Plots (Partial)
- LIME (LocalModel)
- Shapley Values (Shapley)
- Tree Surrogates (TreeSurrogate)

### **EXAMPLE**

• Load neccessary packages

```
library(mlr)
library(iml)
```

• Import data

```
load("bike.RData")
```

## THE BIKE DATA SET

| name                | type    | mean   | nlevs |
|---------------------|---------|--------|-------|
| season              | factor  | NA     | 4     |
| yr                  | factor  | NA     | 2     |
| mnth                | factor  | NA     | 12    |
| holiday             | factor  | NA     | 2     |
| weekday             | factor  | NA     | 7     |
| workingday          | factor  | NA     | 2     |
| weathersit          | factor  | NA     | 3     |
| temp                | numeric | 15.3   | 0     |
| hum                 | numeric | 62.8   | 0     |
| windspeed           | numeric | 12.8   | 0     |
| cnt                 | integer | 4504.3 | 0     |
| $days\_since\_2011$ | numeric | 365.0  | 0     |

### FIT MLR MODEL AND CREATE IML PREDICTOR

• We have to fit a ML model first

```
task = makeRegrTask(data = bike, target = "cnt")
lrn = makeLearner("regr.randomForest")
mod = train(lrn, task)
```

• We can use one IML model for all methods

```
# Create data frame without target column
bike.x = bike[names(bike) != 'cnt']

predictor = Predictor$new(mod, data = bike.x, y = bike$cnt)
```

### PERMUTATION FEATURE IMPORTANCE PLOT

```
importance = FeatureImp$new(predictor, loss = 'mse')
plot(importance)
```



### ACCESS RESULTS IN TABLE FORMAT

• All results can be viewed in table form

| importance\$results |    |                 |                |                   |            |
|---------------------|----|-----------------|----------------|-------------------|------------|
| ##                  |    | feature         | original.error | permutation.error | importance |
| ##                  | 1  | days_since_2011 | 94220          | 1162402           | 12.34      |
| ##                  | 2  | temp            | 94220          | 1042154           | 11.06      |
| ##                  | 3  | yr              | 94220          | 480761            | 5.10       |
| ##                  | 4  | hum             | 94220          | 340594            | 3.61       |
| ##                  | 5  | mnth            | 94220          | 333412            | 3.54       |
| ##                  | 6  | season          | 94220          | 276730            | 2.94       |
| ##                  | 7  | weathersit      | 94220          | 252174            | 2.68       |
| ##                  | 8  | weekday         | 94220          | 195678            | 2.08       |
| ##                  | 9  | windspeed       | 94220          | 192280            | 2.04       |
| ##                  | 10 | workingday      | 94220          | 122380            | 1.30       |
| ##                  | 11 | holiday         | 94220          | 106049            | 1.13       |

### PARTIAL DEPENDENCE PLOT

```
pdp = Partial$new(predictor, "temp", ice = TRUE)
pdp$plot()
```



• ice = TRUE: Individual Conditional Expectation (ICE)
Plots visualizes the relationship between the predicted
response and the feature for *individual* observations

### REUSE PD OBJECTS

• PD objects can be reused, e.g. for fitting other features

```
pdp$set.feature("weathersit")
pdp$plot()
```



### LIME PLOT

• Select one instance (ml model prediction is 4262.193)

```
bike.x[295,]

## season yr mnth holiday weekday workingday

## 295 WINTER 2011 OKT NO HOLIDAY SAT NO WORKING DAY

## weathersit temp hum windspeed days_since_2011

## 295 GOOD 11.9 62.9 6.21 294
```

```
lim = LocalModel$new(predictor, x.interest = bike.x[295,], k = 3)
plot(lim)
```

