CLAIMS

War far

5

10

15

- 1. A ceramic porous body comprising at least Si as a chemical component, the ceramic porous body being obtained by adding a porous silica powder or a porous silica-containing compound powder to a forming raw material to prepare a clay, forming the resulting ceramic clay into a specific shape, and firing the formed product.
- 2. The ceramic porous body according to claim 1, wherein the porous silica powder or the porous silica-containing compound powder has been melted during the firing and reacted with other components of the forming raw material to form a silica-containing compound.
- 3. The ceramic porous body according to claim 2, wherein the silica-containing compound formed by the reaction is a compound of a cordierite composition.
- 4. The ceramic porous body according to any of claims 1 to 3, wherein the porous silica powder or the porous silica-containing compound powder is an amorphous silica-powder or an amorphous silica-containing compound powder.
- 5. The ceramic porous body according to any of claims 1 to 4, wherein the porous silica powder or the porous silica-containing compound powder has a bulk density of 1 g/cm³ or less.
- 6. The ceramic porous body according to any of claims 1 to 4, wherein the porous silica powder or the porous silica-containing compound powder has a bulk density of 0.2 to 1 g/cm³.

7. The ceramic porous body according to any of claims 1 to 6, wherein the porous silica powder or the porous silica-containing compound powder is added in an amount of 40 vol% or less of the total amount of the forming raw material after adding the

powder.

5

10

8. The ceramic porous body according to any of claims 1 to 7, wherein the ceramic porous body has a honeycomb shape.

9. A ceramic porous body comprising at least Si as a chemical component, the ceramic porous body being obtained by adding silica gel granules with a 50% particle size (D_{50}) of 10 to 100 μ m to a forming raw material to prepare a clay, forming the resulting ceramic clay into a specific shape, and firing the formed product.

10. The ceramic porous body according to claim 9, wherein the silica gel granules
15 have a particle size distribution defined by the following expressions (1) and (2) with
respect to the 50% particle size (D₅₀):

$$0.1 \le D_{10}/D_{50} \le 0.5$$
 (1)

$$2 \le D_{90}/D_{50} \le 5$$
 (2)

20

25

where, D₅₀: 50% particle size, D₁₀: 10% particle size, and D₉₀: 90% particle size.

11. The ceramic porous body according to claim 9 or 10, wherein the silica gel granules include particles with an aspect ratio of 5 or less in an amount of 90 mass% or more.

12. The ceramic porous body according to any of claims 9 to 11, wherein the silica

gel granules do not substantially include particles with a particle size exceeding 100 μm .

- 13. The ceramic porous body according to any of claims 9 to 12, wherein the silica gel granules are formed of a porous body with a pore volume of 0.4 to 2.0 ml/g.
- 14. The ceramic porous body according to any of claims 9 to 13, wherein the silica gel granules are particles with a specific surface area (JIS R1626) of 100 to $1000 \text{ m}^2/\text{g}$.
- 15. The ceramic porous body according to any of claims 9 to 14, wherein Si accounts for 95 to 99.99 mol% of the total metal elements of the silica gel.
 - 16. The ceramic porous body according to any of claims 9 to 15, wherein the silica gel granules are obtained by sieving silica gel raw material granules with a 50% particle size (D_{50}) of 10 to 150 μ m through a screen with a pore diameter of 44 to 210 μ m to control the 50% particle size (D_{50}) within a range of 10 to 100 μ m.
 - 17. The ceramic porous body according to claim 16, wherein granules having a particle size distribution defined by the following expressions (3) and (4) with respect to the 50% particle size (D_{50}) are used as the silica gel raw material granules:

 $0.05 \le d_{10}/d_{50} \le 0.5$ (3)

5

15

20

25

 $2 \le d_{90}/d_{50} \le 8$ (4)

where, D_{50} : 50% particle size, D_{10} : 10% particle size, and D_{90} : 90% particle size.

18. The ceramic porous body according to claim 16 or 17, wherein the silica gel granules are sieved using an air jet sieving method.

19. A method of producing a formed product which produces a ceramic porous body upon firing, the method comprising adding silica gel granules or silica gel granules and water-absorbing polymer particles to a forming raw material to prepare a clay, and integrally forming the resulting ceramic clay into a formed product.

5

10

20. A method of producing a formed product which produces a ceramic porous body upon firing, the method comprising adding silica gel granules or silica gel granules and water-absorbing polymer particles to a forming raw material to prepare a clay, and forming the resulting ceramic clay into a formed product using a continuous forming machine.