CS 190I Deep Learning Graph Neural Networks

Lei Li (leili@cs)
UCSB

Recap

	training objective	backbone	size(#params)	training data (#tokens)
ELMo	next token prediction	two separate LSTM	94M	5.5 billion
BERT	masked token prediction + next sentence prediction	Transformer Encoder	110M 340M	3.3 billion
GPT-3	next token prediction	Transformer Decoder	175B	500 billion

Graph Data is everywhere

Social Graphs

Web Graphs

Transportation Graphs

Brain Graphs

Gene Graphs

ML on Graphs

Numerous real-world problems can be summarized as a set

Example: predict toxicity of a drug

Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

- CNNs for fixed-size images/grids
- RNNs for text/sequences

But nodes on graphs have different connections

- Arbitrary neighbor size
- Complex topological structure
- No fixed node ordering

Graph Representation

Graph: $G = \{V, E\}$

Nodes: $V = \{v_1, v_2, ..., v_N\}$

Edges: $E = \{e_1, e_2, ..., e_M\} \subset V \times V$

Node Embedding

$$Enc(\cdot): V \to \mathbb{R}^d$$

"Shallow" Node Embedding

is just a lookup-table

embedding

Embedding matrix

 $\mathbf{Z} =$

Deep Graph Neural Network

Output is embedding matrix for nodes for further downstream tasks: e.g. node classification

Graph Neural Network

Every node's neighbor defines a convolutional kernel

aggregate information from its neighbors

Aggregate Neighbors

 h_i : node (hidden) embedding vector

aggregate information from its neighbors

 $N(v_i)$: Neighbors of the node v_i .

 $f(\cdot)$: Feedforward network.

Multiple Computation Layers

A Simple Graph Convolution Layer

• Simple approach: averaging neighbor's message and apply nonlinear transformation

initial embedding:

$$h_i^0 = x_i$$

$$h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_i \in N(v_i)} h_j^k + B_k h_i^k)$$

$$h_1^2 = tanh\left(W_1 \cdot \frac{1}{3}(h_3^1 + h_5^1 + h_8^1) + B_1h_1^1\right)$$

A Simple Graph Convolution Layer

More layers:

$$h_1^{(3)} = \tanh\left(W_2 \cdot \frac{1}{3}(h_3^{(2)} + h_5^{(2)} + h_8^{(2)}) + B_2 h_1^{(2)}\right)$$

Matrix Representations of Graphs

Adjacency Matrix: $A\left[i,j\right]=1$ if v_i is adjacent to v_j

A[i,j] = 0, otherwise

Adjacency Matrix A

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Matrix Representation of GCN

Neighbor Aggregation can be performed efficiently using matrix operations

$$H^{k} = [h_{1}^{k}, ..., h_{|V|}^{k}]^{T}$$
Then
$$\sum_{v_{j} \in N(v_{i})} h_{j}^{k} = A_{i,:}H^{k}$$

Let D be diagonal matrix

$$D_{i,i} = \text{Degree}(v_i) = \sum_{j} A_{i,j}$$

Then
$$\frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k = D^{-1}AH^k$$

Matrix Representation of GCN

Neighbor Aggregation can be performed efficiently using matrix operations

$$H^{k} = [h_{1}^{k}, \dots, h_{|V|}^{k}]^{T}$$

$$\tilde{A} = D^{-1}A$$

$$H^{k+1} = \sigma(\tilde{A}H^{k} \cdot W_{k}^{T} + H^{k}B_{k}^{T})$$

Graph Convolution Network

- Neighbor Aggregation can be performed efficiently using matrix operations
- To make \tilde{A} symmetric

$$H^{k} = [h_{1}^{k}, ..., h_{|V|}^{k}]^{T}$$

$$\tilde{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

$$H^{k+1} = \sigma(\tilde{A}H^{k} \cdot W_{k}^{T} + H^{k}B_{k}^{T})$$

Prediction Layer

For node classification:

$$o_i = \text{Softmax}(h_i^{(m)})$$

• For graph classification:

$$o = \text{Softmax}(\frac{1}{N} \sum_{i} h_i^{(m)})$$

Property: Equivariant

 the embeddings computed from graph convolution layers is invariant to node permutation

$$h_i^0 = x_i$$

$$h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_i \in N(v_i)} h_j^k + B_k h_i^k)$$

Model Training

Parameters: weight matrix for each layer

$$h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k + B_k h_i^k)$$

- Supervised training: e.g. Node classification
 - Linked nodes have similar embedding

$$L = \sum_{i} CE(y_i, f(h_i^K)) \qquad f_i = \text{Softmax}(h_i^{(K)})$$

 $-y_i$ is node label

Model Training

Parameters: weight matrix for each layer

$$h_i^{k+1} = \sigma(\underline{W_k} \frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k + \underline{B_k} h_i^k)$$
 • Unsupervised training:

- - Linked nodes have similar embedding

$$L = \sum_{i,j} CE(y_{i,j}, Sim(h_i^K, h_j^K))$$

- $y_{i,j} = 1$ if there is edge from v_i to v_j
- Similarity can be defined in many ways: e.g. inner product $h_i \cdot h_i$

Generic GNN framework

- GNN layer = message passing + Aggregation
 - different design choices under this framework
 - Graph convolutional network (GCN)
 - GraphSAGE
 - GAT

Message Computation

- Each node will create a message
- e.g. Linear projection

$$m_i^k = W_k \cdot h_i^{(k)}$$

Aggregation/Pooling

- Each node will aggregate messages from its neighbors
- e.g.
 - Sum, Mean, Max operator
- Concat(AGG{m_j}, m_i)
- Apply nonlinear activation

GraphSAGE

$$h_i^{k+1} = \sigma\left(W_k \cdot \text{CONCAT}\left(h_i^k, \text{AGG}(\{h_j^k, \forall v_j \in N(v_i)\})\right)\right)$$

AGG can be designed in multiple ways, like pooling (sum, avg, max)

Graph Attention Network (GAT)

$$h_i^{k+1} = \sigma(\sum_{v_i \in N(v_i)} \alpha_{ij} W_k h_{v_j}^k)$$

attention weight

$$\alpha_{ij} = Attention(W_k h_i, W_k h_j) =$$

attention weight
$$\alpha_{ij} = \text{Attention}(W_k h_i, W_k h_j) = \frac{\exp(W_k h_i)^T W_k h_j}{\sum_{j'} \exp(W_k h_i)^T W_k h_{j'}}$$

Multi-head Attention for GAT? Yes

$$h_i^{k+1} = \sigma(\sum_{v_i \in N(v_i)} \alpha_{ij} W_k h_{v_j}^k)$$

$$\alpha_{ij} = \text{Attention}(W_k h_i, W_k h_j) = \frac{\exp(W_k h_i)^T W_k h_j}{\sum_{j'} \exp(W_k h_i)^T W_k h_{j'}}$$

Tasks on Graph-Structured Data

Node-level

Link Prediction

Node Classification

Graph-level

Graph Classification

Relation between GNN and CNN

CNN can be viewed as a special GNN on grid graph³¹

GNN vs. Transformer

 Transformer is special GNN on a fullconnected graph

Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/ dlg_book/

Summary

- Graph neural network
 - message passed along graph edges
 - aggregate message/embedding by FFN
 - many variants

Next Up

Variational Auto-Encoder