

https://github.com/ RobertoDelGiudice MovieGenresClassi ication

## Movies Genres Classification

Big Data Analytics Project

Made by Roberto Del Giudice

(Serial Num: 592998)



# My objective (





My project aims to apply a **Multi-Class Classification** model to a movie dataset.



The main goal is predict the genre of a single movie just by its own synopsis.



#### How will I do?

I've trained an Artificial Neural Network on an IMDB dataset, which provides Synopsis (as input X) and Genres (as output Y).



# Why is it important?

- This process could be relevant for automatically updating or validating the genre of new movies (e.g. in an online catalogue).
- Also to suggest users, which movie might be perfect to watch based on its «Genre Score».

# What do other works?

At the moment, there isn't a highly accurate classification model that can predict the genre fitting well based on a movie's title. Sure, you can consult a GPT to foresee it, but that is more or less what my project my project aims to accomplish with this NLP application.



### Before starting with enbeddings, let's Tidy our dataset

|       | imdb_title_id | title                          | genre                     | description                                       |
|-------|---------------|--------------------------------|---------------------------|---------------------------------------------------|
| 0     | tt0000009     | Miss Jerry                     | Romance                   | The adventures of a female reporter in the 1890s. |
| 1     | tt0000574     | The Story of the Kelly Gang    | Biography, Crime, Drama   | True story of notorious Australian outlaw Ned     |
| 2     | tt0001892     | Den sorte drøm                 | Drama                     | Two men of high rank are both wooing the beaut    |
| 3     | tt0002101     | Cleopatra                      | Drama, History            | The fabled queen of Egypt's affair with Roman     |
| 4     | tt0002130     | L'Inferno                      | Adventure, Drama, Fantasy | Loosely adapted from Dante's Divine Comedy and    |
|       |               |                                |                           |                                                   |
| 85848 | tt9905462     | Pengalila                      | Drama                     | An unusual bond between a sixty year old Dalit    |
| 85849 | tt9906644     | Manoharam                      | Comedy, Drama             | Manoharan is a poster artist struggling to fin    |
| 85850 | tt9908390     | Le lion                        | Comedy                    | A psychiatric hospital patient pretends to be     |
| 85851 | tt9911196     | De Beentjes van Sint-Hildegard | Comedy, Drama             | A middle-aged veterinary surgeon believes his     |
| 85854 | tt9914942     | La vida sense la Sara Amat     | Drama                     | Pep, a 13-year-old boy, is in love with a girl    |



|       | imdb_title_id | title                          | description                                    | Action | Comedy | Drama | Horror | Genre                |
|-------|---------------|--------------------------------|------------------------------------------------|--------|--------|-------|--------|----------------------|
| 0     | tt0001892     | Den sorte drøm                 | Two men of high rank are both wooing the beaut | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
| 1     | tt0002461     | Richard III                    | Richard of Gloucester uses manipulation and mu | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
| 2     | tt0002646     | Atlantis                       | After Dr. Friedrich's wife becomes mentally un | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
| 3     | tt0003014     | Il calvario di una madre       | Single mother is separated from her children d | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
| 4     | tt0003102     | Ma l'amor mio non muore        | Leslie Swayne, an adventurer, in order to obta | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
|       |               |                                |                                                |        |        |       |        |                      |
| 28991 | tt9905462     | Pengalila                      | An unusual bond between a sixty year old Dalit | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |
| 28992 | tt9906644     | Manoharam                      | Manoharan is a poster artist struggling to fin | 0.0    | 1.0    | 1.0   | 0.0    | [0.0, 1.0, 1.0, 0.0] |
| 28993 | tt9908390     | Le lion                        | A psychiatric hospital patient pretends to be  | 0.0    | 1.0    | 0.0   | 0.0    | [0.0, 1.0, 0.0, 0.0] |
| 28994 | tt9911196     | De Beentjes van Sint-Hildegard | A middle-aged veterinary surgeon believes his  | 0.0    | 1.0    | 1.0   | 0.0    | [0.0, 1.0, 1.0, 0.0] |
| 28995 | tt9914942     | La vida sense la Sara Amat     | Pep, a 13-year-old boy, is in love with a girl | 0.0    | 0.0    | 1.0   | 0.0    | [0.0, 0.0, 1.0, 0.0] |

I've selected movies that contain only genre from this list: ['Action', 'Comedy', 'Drama', 'Horror']. Then I dropped the other ones.

#### The final dataset is compound by these movies:



The **total** is **28996** distinct movies

## What embeddings is?

We cannot use input data as Natural Language, we must encode them into embeddings, which are numerical representation of the semantic and lexical meaning of a sentence for ML applications. I'll use BERT model, to obtain this conversion.

'The famous detective is pulled away from retirement and his fiancée when the condemned Moriarty escapes from prison and swears vengeance.'

#### This synopsis becomes:

```
array([-2.03396827e-01, -1.08847693e-01, 3.33505034e-01, -8.47090334e-02 ... -1.57784790e-01, -4.68660668e-02, 5.69955930e-02, -1.50748715e-01], dtype=float32) with shape (768,)
```



## NEURAL NETWORK

In this phase, we need to choose the best configuration of the Neural Network to achieve the optimal performance on a *cross-validation dataset*. We have to tune two hyperparameters: the **«number of hidden layers»** and the **«number of neurons»**.

I've tested 16 possible configurations, where each of them has 768 neurons in the input layer and only 4 neurons in the last output layers.

The hidden layers have «ReLu» as the activation function, while the output layer has «Sigmoid» as the activation function because we are dealing with a classification problem.



|            | Action<br>Precision Recall Accuracy F-Score |       |       | Comedy<br>Precision Recall Accuracy F-Score |         |       |       | Pre   | Drama<br>Precision Recall Accuracy F-Score |       |       |       | Horror<br>Precision Recall Accuracy F-Score |   |       |       |       | Overall Precision Recall Accuracy F-Score |   |       |       |       |       |
|------------|---------------------------------------------|-------|-------|---------------------------------------------|---------|-------|-------|-------|--------------------------------------------|-------|-------|-------|---------------------------------------------|---|-------|-------|-------|-------------------------------------------|---|-------|-------|-------|-------|
| Model 1 -  | 0.637                                       | 0.526 | 0.931 | 0.576                                       | - 0.670 | 0.685 | 0.713 | 0.677 | - 0.                                       | ).784 | 0.781 | 0.734 | 0.783                                       | - | 0.832 | 0.718 | 0.950 | 0.771                                     | - | 0.738 | 0.723 | 0.832 | 0.731 |
| Model 2 -  | 0.662                                       | 0.470 | 0.931 | 0.550                                       | - 0.676 | 0.647 | 0.709 | 0.661 | - 0.                                       | .760  | 0.822 | 0.733 | 0.790                                       | - | 0.751 | 0.749 | 0.942 | 0.750                                     | - | 0.726 | 0.729 | 0.829 | 0.728 |
| Model 3    | 0.650                                       | 0.485 | 0.931 | 0.556                                       | - 0.670 | 0.644 | 0.704 | 0.657 | - 0.                                       | ).751 | 0.827 | 0.726 | 0.787                                       | - | 0.774 | 0.743 | 0.945 | 0.758                                     | - | 0.721 | 0.731 | 0.826 | 0.726 |
| Model 4 -  | 0.580                                       | 0.491 | 0.923 | 0.532                                       | - 0.721 | 0.521 | 0.701 | 0.605 | - 0.                                       | ).749 | 0.853 | 0.735 | 0.797                                       | - | 0.762 | 0.747 | 0.943 | 0.755                                     | - | 0.732 | 0.702 | 0.826 | 0.716 |
| Model 5 -  | 0.673                                       | 0.549 | 0.936 | 0.605                                       | - 0.691 | 0.665 | 0.722 | 0.678 | - 0.                                       | ).793 | 0.776 | 0.740 | 0.785                                       | - | 0.754 | 0.775 | 0.944 | 0.765                                     | - | 0.747 | 0.721 | 0.836 | 0.734 |
| Model 6 -  | 0.672                                       | 0.456 | 0.932 | 0.544                                       | - 0.658 | 0.710 | 0.710 | 0.683 | - 0.                                       | ).802 | 0.750 | 0.734 | 0.776                                       | - | 0.804 | 0.731 | 0.948 | 0.766                                     | - | 0.740 | 0.714 | 0.831 | 0.726 |
| Model 7    | 0.681                                       | 0.499 | 0.934 | 0.576                                       | - 0.671 | 0.679 | 0.712 | 0.675 | - 0.                                       | .761  | 0.810 | 0.728 | 0.785                                       | - | 0.802 | 0.734 | 0.948 | 0.766                                     |   | 0.729 | 0.735 | 0.831 | 0.732 |
| Model 8 -  | 0.650                                       | 0.532 | 0.933 | 0.585                                       | - 0.690 | 0.635 | 0.714 | 0.661 | - 0.                                       | ).770 | 0.812 | 0.737 | 0.790                                       | - | 0.838 | 0.674 | 0.947 | 0.747                                     | - | 0.742 | 0.717 | 0.833 | 0.729 |
| Model 9 -  | 0.726                                       | 0.476 | 0.937 | 0.575                                       | - 0.733 | 0.622 | 0.734 | 0.673 | - 0.                                       | ).763 | 0.859 | 0.751 | 0.808                                       | - | 0.787 | 0.765 | 0.948 | 0.776                                     | - | 0.754 | 0.740 | 0.843 | 0.747 |
| Model 10 - | 0.754                                       | 0.427 | 0.937 | 0.546                                       | - 0.700 | 0.660 | 0.726 | 0.679 | - 0.                                       | ).776 | 0.817 | 0.744 | 0.796                                       | - | 0.857 | 0.672 | 0.949 | 0.753                                     | - | 0.755 | 0.721 | 0.839 | 0.738 |
| Model 11   | 0.663                                       | 0.511 | 0.933 | 0.577                                       | - 0.644 | 0.725 | 0.703 | 0.683 | - 0.                                       | ).783 | 0.789 | 0.737 | 0.786                                       | - | 0.814 | 0.684 | 0.945 | 0.743                                     | - | 0.725 | 0.737 | 0.830 | 0.731 |
| Model 12   | 0.681                                       | 0.528 | 0.936 | 0.595                                       | - 0.686 | 0.685 | 0.724 | 0.686 | - 0.                                       | ).799 | 0.788 | 0.749 | 0.793                                       | - | 0.812 | 0.734 | 0.949 | 0.771                                     | - | 0.753 | 0.729 | 0.839 | 0.740 |
| Model 13 - | 0.785                                       | 0.460 | 0.941 | 0.580                                       | - 0.699 | 0.676 | 0.730 | 0.687 | - 0.                                       | ).778 | 0.825 | 0.749 | 0.801                                       | - | 0.827 | 0.733 | 0.951 | 0.777                                     | - | 0.755 | 0.738 | 0.843 | 0.747 |
| Model 14 - | 0.752                                       | 0.482 | 0.940 | 0.587                                       | - 0.746 | 0.578 | 0.728 | 0.651 | - 0.                                       | .769  | 0.855 | 0.754 | 0.810                                       | - | 0.822 | 0.750 | 0.952 | 0.785                                     | } | 0.767 | 0.722 | 0.844 | 0.744 |
| Model 15   | 0.824                                       | 0.406 | 0.939 | 0.544                                       | - 0.711 | 0.657 | 0.732 | 0.683 | - 0.                                       | .761  | 0.859 | 0.748 | 0.807                                       | - | 0.816 | 0.716 | 0.948 | 0.763                                     | - | 0.751 | 0.743 | 0.842 | 0.747 |
| Model 16   | 0.769                                       | 0.456 | 0.939 | 0.573                                       | - 0.728 | 0.610 | 0.728 | 0.664 | - 0.                                       | .751  | 0.880 | 0.748 | 0.810                                       | - | 0.838 | 0.694 | 0.949 | 0.759                                     | - | 0.752 | 0.738 | 0.841 | 0.745 |

# Heatmap of overall accuracy (1)

To choose the best configuration, I considered the *accuracy\** of all genres concatenated (precisely *overall*), calculated on the crossvalidation dataset which comprises the 20% of the initial dataset.

I noticed best performances are obtained when we have a low number of hidden layers and a low number of neurons.



\*  $Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$ 

# Heatmap of overall accuracy (2)

So I decided to test other configurations with a lower number of neurons and a lower number of hidden layers. I've conducted three different simulations, and the outcomes suggest that one hidden layer is sufficient with approximately 16 neurons.



### **CONCLUSIONS**

The best performance (highest overall accuracy on a testing dataset) is achieved when using only one hidden layer with 16 neurons. The results are visualized in the plot below.

Here, the three datasets have been generated by splitting the initial dataset into three parts, each comprising 60%, 20%, and 20% of the total data, respectively.











