

後藤達哉

名古屋大学情報学研究科 博士前期課程2年

2021年9月4日

モデル理論夏の学校 2021

Keisler の定理

 $\mathfrak{c}:=2^{\aleph_0}$ と書く.

定理 (Keisler, 1961)

CH (連続体仮説) を仮定する.このとき任意の可算言語 L と 初等同値な L-構造 A, B で |A|, $|B| \le \mathfrak{c}$ なものに対して,ウルトラフィルター U on ω があり, $A^{\omega}/U \simeq \mathcal{B}^{\omega}/U$ となる.

Keisler の定理

今後 L は可算言語を走り,U はウルトラフィルター on ω を 走るとする.

$$\mathrm{KT}(\kappa) \iff (\forall L)(\forall \mathcal{A}, \mathcal{B} : L\text{-structures of size } \leq \kappa)$$
$$(\mathcal{A} \equiv \mathcal{B} \Rightarrow (\exists U)(\mathcal{A}^{\omega}/U \simeq \mathcal{B}^{\omega}/U))$$

とおく. するとさっきの定理は次のように言い換えられる.

定理 (Keisler, 1961)

 $CH \implies KT(\mathfrak{c}).$

Keisler の定理の逆

2021年8月(!), Golshani と Shelah は Keisler の定理の逆を証明した.

定理 (Golshani-Shelah, 2021)

 $KT(\mathfrak{c}) \Longrightarrow CH.$

含意の図

 $\mathfrak{b},\mathfrak{d},\mathfrak{v}^{\forall}$ や $\operatorname{cov}(\mathcal{M})$ は<mark>基数不変量というもので, \aleph_1 以上 2^{\aleph_0} 以下の定義可能な基数である $(\operatorname{cov}(\mathcal{M})$ は後で定義する).</mark>

私の結果

$$\mathsf{cov}(\mathcal{M}) := \mathsf{min}\{\kappa : (A_i)_{i \in \kappa} \mathsf{という} \ \mathbb{R} \ \mathsf{内の内部が空な閉集合の列で} \ igcup_{i \in \kappa} A_i = \mathbb{R} \ \mathsf{なものが存在} \ \}$$

命題 (G.)

 $(\exists U)(\forall L)(\forall (A_i)_{i\in\omega}:$ 可算 L-構造 $)(\prod_{i\in\omega}A_i/U:\mathfrak{c}$ -飽和的) ならば、 $\mathsf{cov}(\mathcal{M})=\mathfrak{c}$ である.

今日証明する話

Golshani-Shelah による $\mathrm{KT}(\mathfrak{c}) \implies \mathrm{CH} \ \mathbf{ E}$ と私が示した含意の一つの証明を行う.

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ **の証明**

- ¬KT(ℵ₂) を示せばよい. そこで背理法で KT(ℵ₂) を仮 定する.
- 言語 L を $L = \{<\}$ で定め, $\mathcal{A} = (\mathbb{Q}, <)$, $\mathcal{B} = (\mathbb{Q} + (\omega_2 + 1) \times \mathbb{Q}_{\geq 0}, <_{\mathcal{B}})$ とする.ただし $<_{\mathcal{B}}$ は辞書式順序と直和順序により定める.
- $|\mathcal{A}| = \aleph_0, |\mathcal{B}| = \aleph_2 \, \mathbf{\tilde{c}}$ $\mathbf{\tilde{s}}$ $\mathbf{\tilde{s}}$.
- A, B はどちらも DLO なため, DLO の完全性より A, B は初等同値。
- そこで $\mathrm{KT}(\aleph_2)$ よりウルトラフィルター U と同型写像 $f:\mathcal{B}^\omega/U\simeq\mathcal{A}^\omega/U$ がとれる・
- $\mathcal{A}^* = \mathcal{A}^\omega/U, \mathcal{B}^* = \mathcal{B}^\omega/U$ とおく.

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ の証明

アイディアは $\mathcal{A}=\mathbb{Q}$ は等質的, $\mathcal{B}=\mathbb{Q}+(\omega_2+1)\times\mathbb{Q}_{\geq 0}$ はデコボコしていて,それが超冪に反映されるので,同型でないというものだ.

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ の証明

• \mathcal{B} の元 a,bで $\mathrm{cf}(\mathcal{B}_a)=\omega_1,\mathrm{cf}(\mathcal{B}_b)=\omega_2$ なものをとる・ただし

$$\mathcal{B}_c = \{d \in \mathcal{B} : d <_{\mathcal{B}} c\}.$$

• $a_* = [(a, a, a, \dots)]_U, b_* = [(b, b, b, \dots)]_U \in \mathcal{B}^*$ とおく・

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ の証明

補題

$$\mathsf{cf}((\mathcal{B}^*)_{a_*}) = \omega_1, \mathsf{cf}((\mathcal{B}^*)_{b_*}) = \omega_2.$$

 $\because \operatorname{cf}(\mathcal{B}_a) = \omega_1$ より単調増加共終列 $(a_i : i < \omega_1)$ をとる。すると $(a_i^* : i < \omega_1)$ where $a_i^* = [(a_i, a_i, a_i, \ldots)]_U$ は $(\mathcal{B}^*)_{a_*}$ の共終列である (by ω_1 の正則性)。よって $\operatorname{cf}((\mathcal{B}^*)_{a_*}) = \omega_1$. $\operatorname{cf}((\mathcal{B}^*)_{b_*}) = \omega_2$ の証明も同様.

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ **の証明**

- $a_{\dagger} = f(a_{*}), b_{\dagger} = f(b_{*})$ とおく.
- 同型写像は共終数を保つので、 $cf((\mathcal{A}^*)_{a_{\dagger}}) = \omega_1, cf((\mathcal{A}^*)_{b_{\dagger}}) = \omega_2$ がわかる.

$\mathrm{KT}(\mathfrak{c}) \Longrightarrow \mathrm{CH}$ の証明

補題

関数 $F: \mathbb{Q}^3 \to \mathbb{Q}$ があって,どんな $c, d \in \mathbb{Q}$ についても $x \mapsto F(x, c, d)$ は $(\mathbb{Q}, <)$ の自己同型で c を d に移す.

$$:: F(x,y,z) = x - y + z$$
でよい。 //

- さて、Fから誘導される (A*)³から A*への写像を考えると次がわかる:
 - (*) $F_*: (\mathcal{A}^*)^3 \to \mathcal{A}^*$ はどんな $c, d \in \mathcal{A}^*$ についても $x \mapsto F_*(x, c, d)$ は \mathcal{A}^* の自己同型で c を d に移す
- 特に $x\mapsto F_*(x,a_\dagger,b_\dagger)$ は a_\dagger を b_\dagger に移す自己同型なので $\operatorname{cf}((\mathcal{A}^*)_{a_\dagger})=\operatorname{cf}((\mathcal{A}^*)_{b_\dagger}).$

これは
$$\operatorname{cf}((\mathcal{A}^*)_{a_{\dagger}}) = \omega_1, \operatorname{cf}((\mathcal{A}^*)_{b_{\dagger}}) = \omega_2$$
 に矛盾・

私の結果

命題(再掲)(G.)

 $(\exists U)(\forall L)(\forall (A_i)_{i\in\omega}:$ 可算 L-構造 $)(\prod_{i\in\omega}A_i/U:\mathfrak{c}$ -飽和的) ならば、 $\mathsf{cov}(\mathcal{M})=\mathfrak{c}$ である.

私の結果の証明

次の $cov(\mathcal{M})$ を特徴づける補題を使う.

補題 (Bartoszyński)

$$\operatorname{cov}(\mathcal{M}) = \mathfrak{c} \iff (\forall X \subseteq \omega^{\omega} \text{ of size } < \mathfrak{c})(\exists S \in \prod_{i \in \omega} [\omega]^{\leq i})$$
$$(\forall x \in X)(\exists^{\infty} n)(x(n) \in S(n))$$

私の結果の証明

- $X \subset \omega^{\omega}$ でサイズ $< \mathfrak{c}$ なものを任意にとる.
- 言語 L は $\{\subseteq\}$ を考え,L-構造 A_i は $A_i = ([\omega]^{\leq i},\subseteq)$ で定める.
- 各 $x \in \omega^{\omega}$ について $S_x = (\{x(i)\} : i \in \omega)$ とおく.
- 超幕 $A^* = \prod_{i \in \omega} A_i/U$ において,変数 S の一変数論理式の集合

$$p = \{ [S_x]_U \subseteq S : x \in X \}$$

は有限充足的でパラメータの個数は < c である.

- よって命題の仮定 (飽和性) より p を充足する $[S]_U \in \mathcal{A}^*$ がとれる.
- S は $(\forall x \in X)(\exists^{\infty} n)(x(n) \in S(n))$ を満たしている. \Box

今後の課題

- 図の紫線の含意は ZFC の定理か?
- **②** KT(ℵ₀) と超積の飽和性は分離できるか?

参考文献

- [She92] Saharon Shelah. "Vive la différence I: Nonisomorphism of ultrapowers of countable models". In: Set theory of the continuum. Springer, 1992, pp. 357–405.
- [GS21] Mohammad Golshani and Saharon Shelah. The Keisler-Shelah isomorphism theorem and the continuum hypothesis. 2021. arXiv: 2108.03977 [math.L0].
- [Kei61] H Jerome Keisler. "Ultraproducts and elementary classes". PhD thesis. University of California, Berkeley, 1961.
- [ER72] Erik Ellentuck and R v B Rucker. "Martin's Axiom and saturated models". In: *Proceedings of the American Mathematical Society* 34.1 (1972), pp. 243–249.

Photo by Karl Fredrickson on Unsplash.