Lecture 4

MAL2, Spring 2025

- What if Y was X?
- Dimensionality reduction
- Unsupervised pretraining
- Denoising images
- Colorization

WHAT IF Y WAS X?

Every neural network we have seen so far has looked like this:

What if we were crazy enough to make it look like this?

BUT ISN'T THAT EASY?

Yes, but not if we constrain it!

AN UNDERCOMPLETE AUTOENCODER

To reconstruct X, we need to express as much information as possible in these two neurons

- What if Y was X?
- Dimensionality reduction
- Unsupervised pretraining
- Denoising images
- Colorization

REMEMBER THIS?

PERFORMING PCA WITH AN AUTOENCODER

```
encoder = Sequential([Dense(2)]) encoder w/ 2 neurous, no activition
decoder = Sequential([Dense(49)]) #questions
autoencoder = Sequential([encoder, decoder]) constact full NN
optimizer = SGD(learning_rate=0.5) it will be fast, so GD ok
autoencoder.compile(loss="mse", optimizer=optimizer) reconstruction loss
history = autoencoder.fit(X, X, epochs=500, verbose = False)
codings = encoder.predict(X)
```

AUTOENCODERS VS PCA

AUTOENCODERS VS PCA

An autoencoder with linear activation is essentially PCA except for a scale factor and a rotation

linear algebra.

they span

the same

subspace

So now we can do PCA in an overcomplicated way ... why care?

DEEP AUTOENCODERS

- What if Y was X?
- Dimensionality reduction
- Unsupervised pretraining
- Denoising images
- Colorization

Sometimes, you have a lot of data, but only a fraction of it is labeled

UNSUPERVISED PRETRAINING

- What if Y was X?
- Dimensionality reduction
- Unsupervised pretraining
- Denoising images
- Colorization

DENOISING

Add noise to the input and try to reconstruct the noise-free image

DENOISING

Take the autoencoder we just made

and experiment with the constraint

AN INTERESTING APPLICATION

train AE to
turn lawres
into high-res
whigh-res
whigh-res
dose

low-radiation dose image of brain

high-raddion inage

- What if Y was X?
- Dimensionality reduction
- Unsupervised pretraining
- Denoising images
- Colorization

Great idea for a final project!

COLORIZATION

2. Make a copy of the dataset and turn each picture black-and-white.

colored ones.

```
conv_encoder = Sequential([
   Conv2D(...),
   MaxPool2D(...),
```

white pictures into the conv_decoder = Sequential([Conv2D(...), Conv2DTranspose
UpSamling2D(...),

YOUR TICKET OUT THE DOOR

Scan this QR code

and tell me about something you are still unsure about