

Parsing Speech: A Neural Approach to Integrating Lexical and Acoustic-Prosodic Information

Trang Tran*1, Shubham Toshniwal*2, Mohit Bansal³, Kevin Gimpel², Karen Livescu², Mari Ostendorf¹

¹Electrical Engineering, University of Washington ²Toyota Technological Institute at Chicago ³Computer Science, UNC Chapel Hill

^{*}Equal Contribution

Challenges in Parsing Speech

- Voice-based HCI more widely used → parsing speech (and NLP for speech) more important
- Speech vs. text:
 - Speech lacks clues for conventional parsing (punctuation, case, ...)
 - ASR (and human) errors in transcribed speech are common
 - Speech has disfluent components (filled pauses, [edits], ...)

Wall Street Journal:

Pierre Vinken, 61 years old, will join the board as a non executive director Nov. 29.

Switchboard:

and <u>uh</u> [we were] i was fortunate in that i was personally acquainted with the <u>uh</u> people who <u>uh</u> ran the nursing home in our little hometown

Prosody and Parsing

- Prosody
 - Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 - Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality
- Prosodic information in the acoustic signal can help parsing
 - Prosodic cues signal disfluencies (interruption points)
 - Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 - Boundary and prominence help resolve ambiguities (Price et al., 1991)

Prosody and Parsing

- Prosody
 - Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 - Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality
- Prosodic information in the acoustic signal can help parsing
 - Prosodic cues signal disfluencies (interruption points)
 - Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 - Boundary and prominence help resolve ambiguities (Price et al., 1991)

Prosody and Parsing

- Prosody
 - Symbolic level: phrase boundaries (constituents) and prominence (stress, pitch accent)
 - Acoustic cues: pauses, word/syllable lengthening, pitch (f0) contour, energy, voice quality
- Prosodic information in the acoustic signal can help parsing
 - Prosodic cues signal disfluencies (interruption points)
 - Prosodic boundaries align with constituent boundaries (Grosjean et al., 1979)
 - Boundary and prominence help resolve ambiguities (Price et al., 1991)

Using Prosody

Prior work:

- Most gains were obtained in unknown sentence boundary setting (Kahn and Ostendorf, 2012)
- Need expensive human annotations (Kahn et al., 2005; Hale et al., 2006; Dreyer and Shafran, 2007)
- Direct use of acoustic cues and sentence-internal prosody seemed to hurt parsing (Gregory et al., 2004)

Our contributions:

- Framework for integrating acoustic-prosodic features without prosodic labels
- Gains in using sentence-internal prosody: disfluent sentences, reduced attachment errors
- Assessment of transcription error effects on utility of prosody

Task and Model Overview

- Encoder-decoder with attention (Vinyals et al., 2015)
 - Input: word-level features

$$\mathbf{x_i} = [e_i, (s_i, \Phi_i)]$$

- e_i : word embeddings
- ϕ_i : pause and duration features
- s_i : f0/E features
- Output: linearized parse symbols y_t
- Location-aware attention
 (Chorowski et al., 2015)
- CNN-learned pitch/energy features si

Attention Mechanism

Standard attention (global/content-only):

$$c_t = \sum_{i=1}^{T_s} \alpha_{i,t} h_i$$

$$\alpha_t = \operatorname{softmax}(u_t)$$

$$u_{i,t} = f(h_i, d_t)$$

 Convolutional attention (content+location):

(Chorowski et al., 2015)

$$u_{i,t} = f(h_i, d_t, F * \alpha_{t-1})$$

CNN-learned Acoustic-Prosodic Features

- Pause (p)
 - Before and after
 - Bin and embed
- Word duration (d)
- Pitch and energy contours (f0/E)
 - Learned via CNN
 - Frame-level filters capturing sub-word, word, word boundary context

Data and Metrics

- Data
 - Switchboard NXT (Calhoun et al., 2010)
 - 642 telephone conversations
 - 100K sentences, 14K vocabulary
- Metrics
 - Parseval F1 (label and span)
 - Disfluency F1 (detection)

Results: Text-Only & Baselines (dev set)

- Location-aware attention (CL-attn) overcomes problems of baseline in handling disfluencies
- Use CL-attn for the rest of the experiments

Results: Text + Prosody (dev set)

- Adding acoustic-prosodic features helps
- Pause and f0/E contribute most of the gain

Comparison with Previous Work (test set)

Model	Text-only	Text+Prosody	Rel. (1-F) reduction
Kahn et al., 2005	86.4	86.6	+1.5%
Hale et al., 2006	71.2	71.1	-0.3%
CL-attn	88.0	88.5	+4.2%

- Slightly different training data and experiment settings → compare relative performance
- We are gaining more over text-only baselines
- Results (text vs. text + prosody) are statistically significant (p-value < 0.02)

Analysis: Sentence Types

Model	Fluent	Disfluent
Text- only	92.07	85.90
Text + Prosody	92.03	87.02

Prosody helps in longer sentences

Prosody helps in disfluent sentences

Analysis: Parse Error Types

- Error classifications from Berkeley Parser Analyzer (Kummerfeld et al., 2012)
- Prosody helps most in reducing attachment errors

Analysis: Parse Error Example

Prosody (pause) helped avoid attachment error

Analysis: Transcription Error Effects

- Prosody seems to hurt in fluent sentences, what is going on?
- Compare parser performance on sentences with and without transcription errors
- Errors result in inconsistent prosody features

# Fluent sentences	Prosody helped	Prosody "hurt"
with errors	57	82
no errors	270	269

MS-State (accurate) transcription

Conclusion

- Contributions:
 - Framework for automatically integrating acoustic-prosodic features, which previously was a challenge
 - For sentence-internal structure, prosody helps:
 - in disfluent and long sentences
 - in reducing attachment errors
 - Gain from prosody has been underestimated due to transcription errors
- Future:
 - Extend to other parsing frameworks (dependency) and systems (transition-based)
 - Assess impact with unknown sentence boundaries and ASR errors
 - Transfer parses to accurate transcripts

Thank you!

Backup Slides

Full model details

$$oldsymbol{c}_t = \sum_{i=1}^{T_s} lpha_{ti} oldsymbol{h}_i \qquad \qquad oldsymbol{lpha}_t = \operatorname{softmax}(oldsymbol{u}_t)$$

$$u_{it} = \boldsymbol{v}^{\top} \tanh(\boldsymbol{W}_1 \boldsymbol{h}_i + \boldsymbol{W}_2 \boldsymbol{d}_t + \boldsymbol{b}_a)$$

$$u_{it} = \boldsymbol{v}^{\top} \tanh(\boldsymbol{W}_1 \boldsymbol{h}_i + \boldsymbol{W}_2 \boldsymbol{d}_t + \boldsymbol{W}_f \boldsymbol{f}_{ti} + \boldsymbol{b}_a)$$

Data and Metrics (details)

Data

- Switchboard NXT (Calhoun et al., 2010)
- 642 conversations
- Train/Dev/Test splits follow previous work (e.g. Charniak and Johnson, 2001)
- Vocabulary: 14k
- Metrics
 - Standard Parseval F1
 - Flattened EDIT Parseval F1

Split	# sentences	# tokens
Train	97,113	729,252
Dev	5,769	50,445
Test	5,901	48,625

Pause duration distribution

Preprocessing

```
Original parse tree
S — FRAG — INTJ — UH — uh

S — IN — about

NP — PRP — yourself
Linearized parse tree
(S (FRAG (INTJ (UH uh)) (PP (IN about)
(NP (PRP yourself) ))))
Final POS-normalized linearized parse tree
(S (FRAG (INTJ XX) (PP XX (NP XX)))
```

Another NP attachment error example

Text-only

Text + prosody

Original fig from paper

Results in different format

Test Set Ablations

More Transcription Error Examples

Parse structure changes:
 and because <uh> like if your spouse died <all of a sudden you
 be> all alone it 'd be nice to go someplace with people similar to
 you to have friends

Disfluent → Fluent:
 uh <u>uh</u> <i had> my wife 's picked up a couple <u>of</u> things saying
 uh boy if we could refinish that 'd be a beautiful piece of furniture

- Gains using prosody obscured by transcription errors
- Effect is statistically significant (p-value < 0.05)

Analysis: Transcription Error Effects

# Fluent Sentences	Prosody helped	Prosody "hurt"
with errors	57	82
no errors	270	269

INTJ | INTJ NP UH UH my wife VBZ has uh VBN PRT NP S-ADV RB picked NP **VP** saying... DT NN IN NP a couple of NNS Treebank (inaccurate) transcription things

→ Parse structure changes

uh uh <i had> my wife 's picked up a couple of things saying uh boy if we could refinish that 'd be a beautiful piece of furniture

MS-State (accurate) transcription