Tutorial 02

NAME: Aditi . R. Mandavkar

ROLL NO. : 34

CLASS : BE-IT

SUB: 15 LAB

PAGE No.	1	
DATE /	///	

1.2 Tutorial 2: To Understand State Space problem Formulation.

Aim: To understand State Space based Problem formulation of Al problem so that Problem solving Agent can be applied.

Theory:

First we understand the problem solving agent. Algorithm shown in figure 3 show agent program for problem solving agent. Agent first formulates goal and problem, then determines or rather search an action sequence, after which it returns the next action to be executed in a sequential manner.

static: seq, an action sequence, initially empty

State, some description of the current world state.

goal a goal initially null

State = UPDATE-STATE (state, percept)

if seq is empty then do

problem - FORMULATE - PROBLEM (State, goal)

Seq = SEAR(H (problem)

seq = REST (seq)

setura action.

Problem Solving Agent Architecture

	DATE // 'e No. :
	Defining the Problem is refferred to as problem formulation.
Ĭ,	It involves defining following five things:
<u></u>	Initial State It is the starting state the problem is in.
	Actions It defines all possible actions available to the
	agent, given it is in some state a currently. It
	is a function Action(s) that returns list of
	all possible actions,
	Transition Model also known as successor function which -
	define which states the system tend to
	move to when a particular action is executed
	by the agent. Successive application of
	transition model gives rise to what is known
1	as State space.
	Good Test this act as a stopping condition when the
	State passed to this Function is goal state H
	will return true and searching would stop.
	Path Cost It is gownulated lost of performing certain
	sequence of actions. This can help in determining
	weather the action sequence under consideration
	15 optional, and more and more and
	Thus, a problem can formally specified by identifying
	initial state, actions (operators), transition model (successor
	function), goal test and path cost, In term of problem
	solving agent solution is the path from initial state to
	a goal state, optional solution is the lowest path cost
	from 1 ntth of all solutions. Process of finding a solution
	Is called search:
	15 capta seatons

	DATE / /
	Working:
	Based on understanding of problem formulation students
	need to formulate following problems.
	They will clearly show state space up to depth level 3
Cis	or till goal node which ever is shallowest.
(0)	8- puzzle problem
	The problem can be formulated as?
	States; States can be represented by 3x3 matrix data
	Structure with blank denoted by an underscore '-'.
	Initial State: { [1,2,33, 24,83, 27,6,53}
-	2. Actions: The blank space moves in left, right, up and
2	down direction specifying the actions,
	. Sucresser function: If we apply 'docon' operation, to the start state, the next state has 15' and 1' switch.
,	1. Goal test : 331,2,33, 24,5,63, 87,8,-33
	5. Path cost: No. of Steps to reach to the final State.
_	- Soln:
	₹ £1,2,33,£4,8,-3, £7,6,533 → £ £1,2,33, £4,8,53, £7,6,
	1116
	₹\$1,2,33,54,8,53, ₹7,-,633°→₹\$1,2,33,\$4,-,53,\$7,8,63}
	33 - 221 - 133 , 124, - 133 , 124, 01653
	えらい、2,33、34、5、-3、27、8、633-> えもい、2、33、34、5、63、27、8、-3
	Path cost = 5 Steps.

PAGE No.

