WHAT IS CLAIMED IS:

between 200-600 sccm.

1		1.	A method of forming an optical waveguide on an undercladding
2	layer of a substrate, the method comprising:		
3		formin	g at least one silicate glass optical core on said undercladding
4	layer using a l	high-de	nsity plasma deposition process including a silicon source gas and
5	an oxygen sou	irce gas	;
6		where	in the refractive index of the undercladding layer is less than the
7	refractive index of the optical core.		
1		2.	The method of claim 1 wherein the high-density plasma process
2	comprises pre	ssure of	fless than 100 millitorr and an RF energy greater than 3
3	Watts/cm ² .		
1		3.	The method of claim 2 wherein the high-density plasma process
2	further comprises a nitrogen source gas and the optical core comprises silicon, oxygen,		
3	and nitrogen.		
i		4.	The method of claim 3 wherein the nitrogen source gas is
2	molecular nitr	rogen.	
1		5.	The method of claim 3 wherein the optical core is an SiON
2	optical core.		
1		6.	The method of claim 3 wherein the ratio of oxygen atoms to
2	silicon atoms	is great	er than 3:1.
1		7.	The method of claim 3 wherein the silicon source comprises
2	silane, the oxy	ygen soi	arce comprises molecular oxygen, and the nitrogen source
3	comprises mo	lecular	nitrogen.
1		8.	The method of claim 7 wherein the ratio of molecular oxygen to
2	silane is great		
1		9.	The method of claim 7 wherein the oxygen source flow is

1	10.	The method of claim 7 wherein the ratio of molecular nitrogen to
2	silane is between 0	5 and 5.0.
1	11.	The method of claim 7 wherein the nitrogen source flow is
2	between 300-500 se	ccm.
1	12.	The method of claim 1 wherein the high-density plasma process
2	is carried out at a te	emperature of greater than 600°C.
1	13.	The method of claim 1 wherein the optical core comprises a
2		silicate glass or germanium doped silicate glass.
1	14.	The method of claim 1 wherein the contrast between the
2		the core and the refractive index of the undercladding layer is
3	greater than 2%.	
1	15.	The method of claim 1 wherein forming at least one optical core
2	comprises:	
3	depo	ositing a continuous optical core layer using said high-density
4	plasma deposition	process; and
5	etch	ing the continuous optical core layer to form the at least one optical
6	core.	
1	16.	The method of claim 15 wherein the depositing using said high-
2	density plasma dep	osition process does not use an RF bias.
1	17.	The method of claim 1 wherein forming at least one optical core
2	comprises:	
3	etch	ing at least one trench in the undercladding layer;
4	depe	ositing the at least one optical core in the corresponding at least one
5	-	igh-density plasma deposition process; and
6	_	ositing an uppercladding layer over the at least one optical core.
1	18.	The method of claim 17 wherein the depositing using said high-
2	density plasma dep	osition process does includes an RF bias.

1	19. The method of claim 1 wherein said high-density plasma		
2	deposition process is a high-density plasma electron-cyclotron resonance process.		
1	20. The method of claim 1 wherein said high-density plasma		
2	deposition process is a high-density plasma chemical vapor deposition process.		
1	21. The method of claim 1 further comprising annealing the at least		
2	one optical core after the high-density plasma deposition process.		
1	22. A method of depositing an optical core on a substrate in a		
2	processing chamber comprising:		
3			
	establishing a pressure of less than 100 millitorr in said processing		
4	chamber;		
5	generating an RF power density of greater than 3 Watts/cm ² ; and		
6	providing a silicon source gas, an oxygen source gas, and a dopant		
7	source gas in said processing chamber, wherein the dopant source gas increases the		
8	refractive index of said optical core above 1.46.		
1	23. The method of claim 22 wherein the ratio of oxygen atoms to		
2	silicon atoms is greater than 3:1.		
1	24. The method of claim 22 wherein the dopant source gas is a		
2	nitrogen source gas and the optical core comprises silicon, oxygen, and nitrogen.		
1	25. The method of claim 24 wherein said nitrogen source gas is		
2	molecular nitrogen.		
1	26. The method of claim 25 wherein the silicon source gas is silane		
1	27. The method of claim 26 wherein the ratio of molecular nitroger		
2	to silane is between 0.5 and 5.0.		
1	28. The method of claim 22 wherein the dopant source gas is a		
2	phosphorus containing gas or germanium containing gas.		
1	29. A substrate processing system comprising:		
2	a housing defining a process chamber;		

J	a night-censity phasma generating system operatively coupled to the			
4	process chamber;			
5	a substrate holder configured to hold a substrate during substrate			
6	processing;			
7	a gas-delivery system configured to introduce gases into the process			
8	chamber, including sources for a silicon-containing gas, an oxygen-containing gas, and			
9	a dopant-containing gas;			
10	a pressure-control system for maintaining a selected pressure within the			
11	process chamber;			
12	a controller for controlling the high-density plasma generating system,			
13	the gas-delivery system, and the pressure-control system; and			
14	a memory coupled to the controller, the memory comprising a computer-			
15	readable medium having a computer-readable program embodied therein for directing			
16	operation of the substrate processing system to form an optical core a substrate, the			
17	computer-readable program including			
18	instructions to flow a gaseous mixture containing flows of the			
19	silicon-containing gas, the oxygen-containing gas, and the dopant-containing gas;			
20	instructions to maintain a pressure of less than 100 millitorr			
21	within the process chamber; and			
22	instructions to provide an RF power density greater than 3 Watts/			
23	cm ² into the process chamber, and in accordance therewith, generate a high-density			
24	plasma from the gaseous mixture and deposit a doped silicate glass optical core,			
25	wherein the dopant-containing gas increases the refractive index of said optical core			
26	above 1.46.			
1	30. The substrate processing system of claim 29 wherein the ratio of			
2	oxygen atoms to silicon atoms is greater than 3:1.			
	70			
1	31. The substrate processing system of claim 29 wherein the dopant-			
2	containing gas comprises a nitrogen-containing gas and the optical core comprises			
3	silicon, oxygen, and nitrogen.			
1	32. The substrate processing system of claim 31 wherein the silicon-			
2	containing comprises silane and the nitrogen-containing gas includes molecular			
3	nitrogen.			

1

2	molecular nitrogen to silane is between 0.5 and 5.0.		
1	34. The substrate processing system of claim 29 wherein the		
2	substrate holder comprises an electrostatic chuck, and wherein computer-readable		
3	program further includes instructions for turning electrostatic chuck off during		
4	deposition of the silicate glass optical core.		
1	35. The substrate processing system of claim 29 further comprising a		
2	top RF source and a side RF source, wherein the ratio of power of the top RF source to		
3	the side RF source is between 0.21 and 0.73.		
1	36. The substrate processing system of claim 29 wherein the dopant		
2	containing gas is a phosphorus containing gas or germanium containing gas.		
1	37. A computer-readable storage medium having a computer-		
2	readable program embodied therein for directing operation of a substrate processing		
3	system including a process chamber; a plasma generation system; and a gas delivery		
4	system configured to introduce gases into the process chamber, the computer-readable		
5	program including instructions for operating the substrate processing system to form an		
6	optical core on a substrate disposed in the processing chamber in accordance with the		
7	following:		
8	establishing a pressure of less than 100 millitorr in said processing		
9	chamber;		
10	generating an RF power density of greater than 3 Watts/cm ² ; and		
1	providing a silicon source gas, an oxygen source gas, and a dopant		
12	source gas in said processing chamber, wherein the dopant source gas increases the		
13	refractive index of said optical core above 1.46.		
1	38. The computer-readable storage medium of claim 37 wherein the		
2	ratio of oxygen atoms to silicon atoms is greater than 3:1.		
1	39. The computer-readable storage medium of claim 37 wherein the		
2	dopant source gas is a nitrogen source gas and the optical core comprises silicon,		
3	oxygen, and nitrogen.		

The substrate processing system of claim 32 wherein the ratio of

33.

- 1 40. The computer-readable storage medium of claim 39 wherein said 2 nitrogen source gas is molecular nitrogen and the silicon source is silane.
- 1 41. The computer-readable storage medium of claim 40 wherein the 2 ratio of molecular nitrogen to silane is between 0.5 and 5.0.
- 1 42. The computer-readable storage medium of claim 37 wherein the 2 dopant source gas is a phosphorus containing gas or germanium containing gas.