Mathematical Finance Exercise Sheet 4

Please hand in until Wednesday, October 15th, 12:00 in your assistant's box in HG G 52.1

Exercise 4-1

For a financial market with discounted price process S, define as usual $G(\vartheta) = \int \vartheta \, dS$ when ϑ is predictable and the stochastic integral is well defined, i.e. $\vartheta \in L(S)$. For all $a \geq 0$, set

$$\Theta^{a} := \{ \vartheta \in L(S) \mid G.(\vartheta) \ge -a \text{ } P\text{-a.s.} \},$$

$$\mathcal{G}^{a} := \{ G_{T}(\vartheta) \mid \vartheta \in \Theta^{a} \} = G_{T}(\Theta^{a}).$$

and

$$\Theta_{adm} := \bigcup_{a \ge 0} \Theta^a,$$

$$\mathcal{G}_{adm} := \bigcup_{a \ge 0} \mathcal{G}^a = G_T(\Theta_{adm}).$$

Suppose that S satisfies (NA). For the case of finite discrete time, show that

- a) each \mathcal{G}^a is closed in L^0 but you are not allowed to use martingale measures.
- **b)** \mathcal{G}_{adm} is not closed in L^0 .

Remark: This corrects an error in the course.

Exercise 4-2

Let $X = (X_t)_{0 \le t \le T}$ be an adapted RCLL process and $\mathcal{D}_n := k2^{-n}T$, $k := 0, 1, ..., 2^n$, the *n*-th dyadic partition of [0, T], for each $n \in \mathbb{N}$. Suppose that X is bounded.

a) Show that for each stopping time ρ with values in [0,T] that

$$MV(X^{\rho}, \mathcal{D}_n) \leq \sum_{t_i \in \mathcal{D}_n} E\Big[1_{\{t_i < \rho\}} \ \big| E\big[X_{t_{i+1}} - X_{t_i} \ \big| \ \mathcal{F}_{t_i}\big] \big| \ \Big] + 2\|X\|_{\infty} =: MV(X^{\rho+}, \mathcal{D}_n) + 2\|X\|_{\infty}.$$

b) Show that $MV(X) = \lim_{n \to \infty} MV(X, \mathcal{D}_n)$.

Exercise 4-3

Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space satisfying the usual conditions and let $(X_t)_{t\geq 0}$ be a nonnegative product-measurable process.

a) Show that there is an optional process ${}^{\mathcal{O}}\!X$ such that for every stopping time τ

$$E[X_{\tau} 1_{\{\tau < \infty\}} | \mathcal{F}_{\tau}] = ({}^{\mathcal{O}}X)_{\tau} 1_{\{\tau < \infty\}} \quad P\text{-a.s.}$$

Remark: In fact, one can show that ${}^{\mathcal{O}}X$ is unique. It is called the *optional projection* of X.

b) For every stopping time τ , we can define the σ -field

$$\mathcal{F}_{\tau-} := \mathcal{F}_0 \vee \sigma(A \cap \{t < \tau\}; t \ge 0, A \in \mathcal{F}_t).$$

One can show that for any sequence of stopping times (τ_n) with $\tau = \sup_n \tau_n$ and $\tau_n < \tau$ on $\{0 < \tau_n < \infty\}$ for all n, we have $\mathcal{F}_{\tau-} = \bigvee_n \mathcal{F}_{\tau_n}$.

A stopping time σ is called *predictable* if its graph $\llbracket \sigma \rrbracket = \{(\omega, t) \in \Omega \times [0, \infty) \mid \sigma(\omega) = t\}$ is in \mathcal{P} . In particular, every deterministic time $t \in [0, \infty]$ is a predictable stopping time. One can show that a stopping time σ is predictable if and only if there exists a sequence of stopping time (τ_n) converging to σ with $\tau_n \leq \sigma$ and $\tau_n < \sigma$ on $\{\sigma > 0\}$. We call (τ_n) a foretelling sequence for σ .

Now let $(Y_t)_{t\in[0,\infty]}$ be a (right-closed) RCLL martingale. Show that for every predictable stopping time σ and any stopping time $\tau \geq \sigma$, we have

$$E[Y_{\tau} | \mathcal{F}_{\sigma-}] = Y_{\sigma-} \quad P\text{-a.s.} \tag{1}$$

Remark: The result in (1) is called the *predictable stopping theorem*.

c) Show that there is a predictable process ${}^{\mathcal{P}}\!X$, such that for every predictable stopping time σ

$$E[X_{\sigma} 1_{\{\sigma < \infty\}} | \mathcal{F}_{\sigma-}] = ({}^{\mathcal{P}}X)_{\sigma} 1_{\{\sigma < \infty\}} \quad P\text{-a.s.}$$

Remark: In fact, one can show that ${}^{\mathcal{P}}X$ is unique. It is called the *predictable projection* of X.

Remark: By decomposing $X = X^+ - X^-$ into its positive and negative parts, we see that we can generalize the above results as long as the (conditional) expectation of X is well defined.

Exercise sheets and further information are also available on:

http://www.math.ethz.ch/education/bachelor/lectures/hs2014/math/mf/uebungen