Clasificación de Imágenes con CNN

Proyecto de Deep Learning

Índice

- 1. Introducción y Objetivos
- 2. Metodología
- 3. Arquitecturas Implementadas
- 4. Resultados
- 5. Análisis Comparativo
- 6. Conclusiones
- 7. Demo

1. Introducción y Objetivos

- Dataset: CIFAR-10
 - 60,000 imágenes de 32x32 píxeles
 - 10 clases diferentes
 - 6,000 imágenes por clase

Objetivos:

- Implementar CNN personalizada
- Aplicar transfer learning con VGG16
- Comparar rendimiento de ambos enfoques

2. Metodología

Preprocesamiento

- Normalización de píxeles [0,1]
- Data augmentation:
 - Rotación: ±15°
 - Desplazamientos: 10%
 - Volteo horizontal
 - Zoom: ±10%

Validación

- Split 80/20 train/test
- Early stopping

3. Arquitecturas Implementadas

CNN Personalizada

- 3 bloques convolucionales
- Batch Normalization
- Dropout progresivo
- Dense layers (512 units)

3. Arquitecturas Implementadas

Transfer Learning (VGG16)

- Pesos pre-entrenados ImageNet
- Fine-tuning últimas 4 capas
- Global Average Pooling
- Dense layers personalizadas

4. Resultados

CNN Personalizada

• Accuracy: ~75%

• F1-Score: 0.74

• Precisión: 0.75

• Recall: 0.74

VGG16 Transfer Learning

• Accuracy: ~82%

• F1-Score: 0.81

• Precisión: 0.82

Recall: 0.81

5. Análisis Comparativo

- VGG16 superó a CNN personalizada
- Mejor generalización
- Convergencia más rápida
- Menor overfitting

6. Conclusiones

Ventajas Transfer Learning

- Mayor precisión (+7%)
- Menor tiempo de entrenamiento
- Mejor generalización

Lecciones Aprendidas

- Importancia del data augmentation
- Efectividad de batch normalization
- Beneficios del fine-tuning

7. Demo

API REST con Flask

- Endpoint: /predict
- Input: Imagen 32x32
- Output:
 - Clase predicha
 - Nivel de confianza
- Despliegue local en puerto 5001

¡Gracias!

¿Preguntas?