Geometric Optics

The Ray Model of Light

Reflection

The Law of Reflection

The angle of incidence is ______ to the angle of Reflection

Diffuse and Specular Reflection

Curved Mirrors

Refraction

- when light slows down, it bends ______ normal.
- when light speeds up, it bends _____ normal.

Total Internal Reflection

Lenses

Refraction Practice Problems

1. The speed of light in ice is 2.29×10^8 m/s. What is the index of refraction of ice?

2. A flashlight beam strikes the surface of a pane of glass (n=1.56) at an angle of 67° to the normal. What is the angle of refraction?

3. A diver shines a flashlight upward from beneath the water (n = 1.33) at an angle 35° to the vertical. At what angle does the light leave the water?

4. What is the critical angle for the interface between acryllic plastic (n = 1.49) and water (n = 1.33). To be internally reflected, the light must start out in which medium?

Vame:	Date:	Period:

_____ focused on a screen

Images

An image is the point where light rays ______.

virtual images real images

rays of light appear to intersect at a location, but in reality there is _____ at a point in space at that location.

Equations for Locating Images

_____ focused on a screen

Sign Conventions

- d_o distance between mirror/lens and object
- d_i distance between mirror/lens and image
- f focal length
- h_o height of object
- h_i height of image
- m magnification

Image Formation in Mirrors

Three (Four?) Principle Rays

- 1. A ray travelling parallel to the principal axis gets reflected to _____
- 2. A ray traveling through the focal point gets reflected _____
- 3. A ray that goes through center of curvature gets reflected _____
- 4. A ray that hits the precise center of the mirror gets reflected _____

Image Formation in Lenses

Three Principle Rays

- 1. A ray travelling parallel to the principal axis gets refracted to _____
- 2. A ray traveling through the focal point gets refracted _____
- 3. A ray that goes through center of optical center _____

Example #1

object

F

F'

Example #2

F object

F'

Lens Equation Practice Problems

- 1. A rutabaga, which has a height of 44 cm is placed 10 cm in front of a converging lens. The image produced has a height of 66 cm and is inverted.
 - (a) What is the image distance?
 - (b) What is the power of the lens?
- 2. A diverging lens has a focal length of 9.0 cm, and an object is placed 3.0 cm from the lens.
 - (a) What would be the distance of the image from the lens?
 - (b) What is the magnification of the image?
 - (c) Will the image be real or virtual, upright or inverted? How do you know?
 - (d) What is the power of the lens?
- 3. A lens has a power of 0.1 Diopters. Locate the image of an antelope placed upright 30.0 m from the lens. Find the magnification of the image.