

Fundamentos de Matching Theory

 ${\rm Luis~Ch\'{a}vez^1}_{\rm ^1Departamento~de~Econom\'{a}}$

 $Lima,\,2025$

Contenido

1. Introducción

2. M two-sided

- 2.1 Matching 1:1
- 2.2 Matching m:1

3. M one-sided

3.1 Matching 1:1

4. Comentarios

Overview

- 1962: David Gale y Lloyd Shapley publicaron uno de los artículos más influyentes en teoría de juegos, iniciando la literatura sobre teoría de emparejamiento.
- 2000-: aplicaciones en mercados laborales en U.S.
- 2000⁺: aplicaciones en elección escolar e intercambio de riñones (kidney exchange).
- 2012: Premio Nobel Economía a Alvin Roth y Lloyd Shapley por contribuciones en asignaciones estables y diseños de mercados.

Definition (1)

Matching theory es la rama de las matemáticas que se encarga se realizar asignaciones, cuyos resultados deben verificar ciertas propiedades.

Ejemplo 1

Una universidad peruana ha lanzado una convocatoria para becas estudiantiles de posgrado. Se ha establecido 30 vacantes de 330 postulantes. ¿Quiénes deben ser admitidos?

Ejemplo 2

Cientos de personas esperan por un trasplante de riñón en Perú. La probabilidad de encontrar un donante compatible entre sus familiares y amigos es pequeña. Las donaciones son eventuales. ¿Cómo se puede mejorar los trasplantes exitosos?

Estilizados

- El éxito de la teoría del emparejamiento radica en la tradición teórica iniciada por Gale y Shapley (1962).
- 1990⁻ la investigación sobre el emparejamiento se centraba principalmente en los mercados bilaterales.
- El trabajo de Roth y Sotomayor (1990) ofrece una imagen clara del enfoque de la literatura sobre emparejamiento en esta época.
- Si bien Shapley y Scarf (1974) y Hylland y Zeckhauser (1977) introdujeron dos modelos tempranos *one-sided*, tomaron relevancia 1990⁺.

Requisitos

- Matemáticas.
- Teoría de grafos.
- Microfundamentos.

Disyuntiva

Dados dos grupos de individuos, ¿es posible distribuirlos de forma óptima en parejas formadas por miembros de ambos grupos?

- Sean dos grupos finitos, M y W, tal que: $M \cup W = N, \{i\}_1^n$.
- Las preferencias son completas y transitivas¹ por los miembros del otro grupo, aunque a veces pueden preferir estar solos:

$$\forall m \in M : P^m \to W \cup \{m\}$$

$$\forall w \in W: P^w \to M \cup \{w\}$$

Definition (2)

Un emparejamiento μ de la forma 1:1 es una función

$$\mu: M \cup W \to M \cup W \tag{1}$$

que verifica:

- $m_i = \mu(w_j) \Leftrightarrow w_j = \mu(m_i)$.
- $m_k = \mu(m_i) \Leftrightarrow k = i$.
- $w_s = \mu(w_j) \Leftrightarrow s = j$.

Se requiere que los emparejamientos sean **estables**, es decir, **Pareto-eficientes**.

Definition (3)

Un emparejamiento μ puede ser bloqueado por **un agente** si $\exists h \in M \cup W$ que prefiere estar sólo a están emparejado con $\mu(h)$. Al unísono, un emparejamiento μ puede ser bloqueado por **un par de agentes** (m_i, w_j) si $m_i \neq \mu(w_j)$ y ambos prefieren estar emparejando entre sí.

Definition (4)

Un emparejamiento μ es **estable** si no puede ser bloqueado por uno o un par de agentes. Es decir, si no se cumple la definición 3.

Definition (5)

Un emparejamiento μ está en el **núcleo** si \nexists alguna coalición de individuos en N que puedan emparejarse entre sí para alcanzar una mejora de Pareto.

Teorema (Roth y Sotomayor, 1990)

El núcleo en el mercado *two-sided* coincide con el conjunto de emparejamiento estables: todo emparejamiento estable es Pareto eficiente.

- 1. Cada $m \in M$ hace las propuestas al más preferido de W según su ranking, si existe la posibilidad.
- 2. Cada $w \in W$ acepta temporalmente la propuesta más sugerente, rechazando las no factibles.
- 3. Cada $m \in M$ rechazado previamente, hace las propuestas a su segundo mejor de $w \in W$ si aún estar con alguien a estar solo. Si no quedan alternativas aceptables, no efectúan propuestas.
- 4. Cada $w \in W$ elige la alternativa más atractiva entre todas las propuestas que recibió.

Nota

El resultado del emparejamiento por AD puede depender del lado del mercado que realizan las propuestas.

Ejemplo 3

Considere los conjuntos $M=\{m_1,m_2,m_3,m_4\}$ y $W=\{w_1,w_2,w_3\}$ con preferencias:

P^{m_1}	P^{m_2} w_3 w_1 w_2 m_2	P^{m_3}	P^{m_4}	P^{w_1}	P^{w_2}	P^{w_3}
w_1	w_3	w_2	w_1	m_2	m_4	m_3
w_3	w_1	m_3	w_2	m_1	m_2	m_4
m_1	w_2	w_1	w_3	m_4	m_3	m_2
w_2	m_2	w_3	m_4	w_1	m_1	m_1
				m_3	w_2	w_3

Ejemplo 4

Considere los conjuntos $M=\{m_1,m_2,m_3,m_4\}$ y $W=\{w_1,w_2,w_3,w_4\}$ con preferencias:

P^{m_1}	P^{m_2}	P^{m_3}	P^{m_4}	P^{w_1}	P^{w_2}	P^{w_3}	P^{w_4}
w_1	$w_4 \ w_2 \ w_1 \ m_2$	w_1	w_1	m_2	m_4	m_3	m_3
w_3	w_2	w_4	m_4	m_1	m_2	m_4	m_2
m_1	w_1	w_2	w_4	m_4	m_3	m_2	w_4
w_2	m_2	w_3	w_2	w_1	m_1	m_1	m_4
w_4	w_3	m_3	w_3	m_3	w_2	w_3	m_1

Ejemplo 5

Considere los conjuntos $M=\{m_1,m_2,m_3,m_4\}$ y $W=\{w_1,w_2,w_3,w_4,w_5,w_6\}$ con preferencias:

P^{m_1}	P^{m_2}	P^{m_3}	P^{m_4}	P^{w_1}	P^{w_2}	P^{w_3}	P^{w_4}	P^{w_5}	P^{w_6}
w_1	w_3	w_2	w_1	m_2	m_4	m_1	m_3	m_1	m_2
w_3	w_2	w_4	w_2	m_1	m_2	m_4	m_1	m_3	m_1
w_4	w_5	w_1	w_4	m_4	m_3	m_2	m_4	m_4	m_3
w_6	w_4	w_3	w_6	w_1	m_1	w_3	w_4	m_2	m_4
m_1	w_6	w_5	w_5	m_3	w_2	w_3	w_2	w_5	w_6
w_5	w_1	w_6	w_3						
w_2	m_2	m_3	m_4						

- Sean dos grupos finitos, M y W, tal que: $M \cup W = N, \{i\}_1^n$.
- Se extiende el análisis 1:1, de modo que ahora varios individuos $w \in W$ se emparejan con un elemento $m \in M$.

Definition (6)

Un emparejamiento μ de la forma m:1 es una correspondencia

$$\mu: M \cup W \rightrightarrows M \cup W \tag{2}$$

que verifica:

- $w \in \mu(m) \Leftrightarrow m = \mu(w)$.
- $m_k = \mu(m_i) \Leftrightarrow k = i$.
- $w_s = \mu(w_j) \Leftrightarrow s = j$.

donde $\#\{h \in M \cup W : h \in \mu(m)\} \le q_m, \forall m \in M$.

Definition (7)

Un emparejamiento μ puede ser bloqueado por **un agente** $w \in M$ si prefiere $wP^w\mu(w)$ o por un agente $m \in M$ si $\exists w \in \mu(m)$ que es inaceptable por m (m prefiere no llenar el cupo que aceptar a w). Al unísono, un emparejamiento μ puede ser bloqueado por **un par de agentes** ($m, w \in M \times W$) si:

- $mP^w\mu(w)$.
- $\exists w' \in \mu(w) : wP^mw' \text{ o } wP^mm \text{ si } \#\mu(m) < q_m.$

Definition (8)

Un emparejamiento μ es **estable** si no puede ser bloqueado por uno o un par de agentes. Es decir, si no se cumple la definición 7.

Note

En aplicaciones a estudiantes y colegios, los colegios tienen orden de prioridad más que preferencias.

Mecanismo de Boston

- E1 Se empareja a cada colegio con los estudiantes que lo han posicionado como el más preferido, uno por uno, siguiendo el orden de prioridad de los colegios y la cantidad de cupos ofrecidos por éstos.
- Ek El estudiante que no ha sido emparejado en las etapas previas, se considera únicamente su k-ésima mayor preferencia. Como tal, los colegios que aún cuentan con cupos se les asigna los estudiantes que lo eligieron como k-ésima preferencia, uno por uno.

Mecanismo de Boston

Ejemplo 6

Considere los conjuntos $M=\{m_1,m_2\}$ y $W=\{w_1,w_2,w_3,w_4,w_5\}$ con cupos $q_m=(2,3)$ y preferencias:

Mecanismo de Boston

Ejemplo 7

Considere los conjuntos $M=\{m_1,m_2,m_3\}$ y $W=\{w_1,w_2,w_3,w_4,w_5,w_6,w_7\}$ con cupos $q_m=(2,3,2)$ y preferencias:

P^{m_1}	P^{m_2}	P^{m_3}	P^{w_1}	P^{w_2}	P^{w_3}	P^{w_4}	P^{w_5}	P^{w_6}	P^{w_7}
w_2	w_1	w_4	m_1	m_2	m_3	m_1	m_3	m_2	m_1
w_4	w_3	w_5	m_2	m_1	m_1	m_2	m_1	m_1	m_3
w_1	w_2	w_3	m_3	m_3	m_2	m_3	m_2	m_3	m_2
w_3	w_5	w_2							
w_6	w_4	w_6							
w_5	w_6	w_1							
w_7	w_7	w_7							

Mecanismo TTC

Definition (9)

Un **ciclo** $(m_{i1}, w_{i1}, ..., m_{ik}, w_{ik})$ es una cadena ordenada de colegios y estudiantes donde el colegio m_{i1} anuncia al estudiante w_{i1} , quien anuncia al colegio m_{i2} , y así sucesivamente, hasta que w_{ik} anuncia a m_{i1} , es decir, cerrar la cadena.

Mecanismo TTC

- E1 Cada estudiante anuncia su colegio de preferencia y cada colegio anuncia al estudiante prioritario.
- Ek El estudiante que aún no tiene colegio anuncia a aquellos que aún están disponibles y los colegios anuncian al estudiante prioritario libre.

Nota

En cada ciclo, los estudiantes son asignados al colegio que anunciaron y los colegios que llenaron sus cupos se retiran. El mecanismo concluye cuando todos los estudiantes han sido asignados.

Mecanismo TTC

Ejemplo 8

Considere los conjuntos $M=\{m_1,m_2,m_3\}$ y $W=\{w_1,w_2,w_3,w_4,w_5\}$ con cupos $q_m=(2,2,1)$ y preferencias:

	P^{m_2}						
w_2	w_3	w_1	m_1	m_2	m_3	m_1	m_2
w_3	w_5	w_2	m_2	m_3	m_1	m_3	m_3
w_1	w_1	w_4	m_3	m_1	m_2	m_2	m_1
	w_2						
w_5	w_4	w_5					

- Los emparejamientos unilaterales asignan bienes indivisibles.
- Sólo un lado del mercado tiene preferencias.
- Los agentes son asignados a un único bien, es decir, tiene naturaleza 1:1.
- Variantes: no hay entrantes (todos tiene una casa), no hay propietarios (todos son entrantes) y mixto.

Asignación de casas

Definition (10)

Dado un conjunto N finito y no vacío de individuos, donde cada uno es propietario de una casa. Bajo preferencias racionales y estrictas, un emparejamiento es una función biyectiva

$$\mu: \{1, ..., n\} \to \{1, ..., n\}$$
 (3)

que asigna a cada agente h la casa del agente $\mu(h)$.

Asignación de casas

Mecanismos:

- 1. TTC.
- 2. RSD.
- 3. YRMH-IGYT.

Asignación de casas

Ejemplo 8

Considere un mercado de 3 agentes, N=1,2,3, y 3 casas (h_i) . Las preferencias son:

$$P^{i_1}$$
 P^{i_2} P^{i_3} h_2 h_3 h_1 h_3 w_2 h_3 h_1 w_1 h_2

Reflexiones

- El mecanismo de aceptación diferida necesita ser refinado.
- TTC es condicional cuando se aplica a mercados donde los agentes no tienen derechos sobre los bienes.
- La asignación de bienes indivisibles depende de la naturaleza de los que buscan una casa.
- Se puede extender el mecanismo de asignación de bienes a donación de órganos, médicos a hospitales, etc.

References

- Gale, D. and Shapley, L. *College Admissions and the Stability of Marriage*. The American Mathematical Monthly, 69(1), 1962.
- Roth, A. and Sotomayor, M. *Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis*. Cambridge University Press, 1990.
- Shapley, L and Scarf, H. *On cores and indivisibility*. Journal of Mathematical Economics, 1(1), 1974.
- Torres, Juan Pablo. Apuntes de Clase, Universidad de Chile.