Tetrahymena Pipeline

Reference Locations:

References

Reference genome of Tlr location:

/storage/datasets/Tetrahymena thermophila/analyses/virus/data

Mac reference location: /storage/reference genomes/tetrahymena thermophila/mac/mac.genome.fasta

Mic reference location:

/storage/reference genomes/tetrahymena thermophila/mic/mic.genome.fasta

Illumina:

Sample location: /storage/datasets/Tetrahymena thermophila/ancestor ges/fastq

Pachio:

Pacbio location: /storage/datasets/Tetrahymena thermophila/SRX2635099/fastq

Combing R1 and R2 for all 40 ancestors: (MAKE BASH SCRIPT IN FOLDER)

Found in: /work/jgjohns6/Tetrahymena/illumina/scripts/Ancestors R1.sh (and Ancestors R2.sh)

 $folder = '/storage/datasets/Tetrahymena_thermophila/ancestor_ges/fastq/Anc*'$

DIR='Ancestors'

mkdir -p \$DIR

for subfolder in \$folder;

do

oldfilename=\${subfolder##*/}

oldfilename=\${oldfilename}.R2.fastq

#echo \$subfolder "\$DIR/\$subfolder R2.fastq";

find \$subfolder -name "*R2*" -exec cat {} \; >> "\$DIR/\$oldfilename";

Done

Make ultra-reference using cat command on Mic + Mac + Tlr references and create reference index using bowtie2 build

Ultra-reference found in: /work/jgjohns6/Tetrahymena/illumina/ultra_reference

Referenced from Bowtie2 Manual: http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml#the-bowtie2-build-indexer

Aligning Ancestors R1 and R2 individually using bowtie2, reference bash script, ultra_RG.sh:

Found in: /work/jgjohns6/Tetrahymena/illumina/scripts/bowtie2 Anc.sh

bowtie2 --rg-id Anc_10_A -x ultra_reference.index -1 /home/jgjohns6/Ancestors/Anc_10_A-32273406.R1.fastq -2 /home/jgjohns6/Ancestors/Anc_10_A-32273406.R2.fastq -S Anc_10_A_ultra.sam

Run full script in parallel using:

Parallel -j 20 < bowtie2.sh

Merging all 40 ancestor files into one file, Anc_ultra.sam:

Found in /work/jgjohns6/Tetrahymena/illumina/Anc ultra/Anc ultra.sam

samtools merge Anc ultra.sam *.sam

Convert Sam file to Bam file:

Found in /work/jgjohns6/Tetrahymena/illumine/Anc ultra/Anc ultra.bam

samtools view -b -o Anc ultra.bam Anc ultra.sam

Filter on SAM flag 3852 and mapping quality 10 to create filtered bam file:

SAM flag 3852 filters read unmapped, mate unmapped, not primary alignment, read fails platform/vendor quality checks, read is PCR or optical duplicate, and supplementary alignment. Used this website as reference: https://broadinstitute.github.io/picard/explain-flags.html

```
samtools view -h -F3852 -q10 Anc RG ultra.bam > Anc RG ultra 3852 10.bam
```

Sort bam file

Samtools sort Anc ultra 3852 10.bam > Anc ultra 3852 10 sorted.bam

Create an Index for the bam in order to run the filter:

samtools index Anc_RG_ultra.bam Anc_RG_ultra.bai

Filter on AF45 (Tlr chromosome)

samtools view -h -b Anc RG ultra.bam AF451863.1 > Anc_RG_ultra_AF45v2.bam

Count Plot:

SAM flag is not actually needed to make count plot, yet is shown in these scripts, count plot is made from RG and header

Convert Bam file back into Sam

Create text file of RG and SAM flag columns using the filtered bam

```
awk '{for(i=1;i<=NF;i++) if(i==2 || $i~"RG") printf $i" ";print ""}' Anc_ultra_3852_10.sam > Anc RG ultra 3852.txt
```

Create a png file on the count plot using the text file

```
import pandas as pd
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import seaborn as sns
df = pd.read csv('Anc ultra 3852 10 AF45.txt',sep=" ",index col=False, header=None,
names=['Ancestor'], engine=
'python')
\#df = df.iloc[4:]
#df.head()
#df['Ancestor']
df = df[\sim df['Ancestor'].astype(str).str.startswith('VN')]
df = df[\sim df['Ancestor'].astype(str).str.startswith('SN')]
df = df[\sim df['Ancestor'].astype(str).str.startswith('ID')]
df = df[\sim df['Ancestor'].astype(str).str.startswith('ID')]
df = df[df]'Ancestor'].astype(str).str.startswith('RG')]
df['Ancestor split'] = df['Ancestor'].str.split(':')
```

```
df['Ancestor_split_last'] = df['Ancestor_split'].str[-1]
#print(df)
#df2 = df.iloc[10:]
x = df['Ancestor_split_last'].value_counts()
#print(x)
my_figure = sns.countplot(x='Ancestor_split_last', hue=None, data=df) #no y input needed, counts
occurances for y axis
plt.xticks(rotation=45)
my_figure.tick_params(labelsize=5)
#my_figure.savefig('Ancestorplot.png')
fig = my_figure.get_figure()
fig.savefig('Ancestorplot_ultra_AF39_3852_3.png')
```

Must download png to home computer to view, hines does not allowing viewing of images

Coverage Histogram

Create coverage file of filtered bam

samtools depth deduped MA605.bam > deduped MA605.coverage

Plot Histogram in python

```
import pandas as pd
import matplotlib.pyplot as plt
import scipy
import numpy as np
df=pd.read_csv("ancestoralign_sorted.coverage",header=None, sep="\t", names=['contig', 'position', 'depth'])
print(df)
df.plot(x='position', y='depth')
```

