

الذكاء الصنعي العملي المحاضرة 4 كلية الهندسة Transformers:

Decoder Part

د. ریاض سنبل

Transformers

- Transformers are a type of neural network architecture that transforms or changes an input sequence into an output sequence.
- They do this by learning context and tracking relationships between sequence components.
- And break the problem into two parts:
 - An encoder (e.g., Bert)
 - A decoder (e.g., GPT)

Output Embedding

Ich have einen apfel gegessen

Generate Target Emebeddings

Mask the available attention values?

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}} + M
ight)V$$

- $oldsymbol{Q}, K, V \in \mathbb{R}^{T imes d_k}$: represent queries, keys, and values.
- M: a mask matrix with $-\infty$ in positions corresponding to future tokens, ensuring softmax output is zero for those.

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}} + M
ight)V$$

- $oldsymbol{Q}, K, V \in \mathbb{R}^{T imes d_k}$: represent queries, keys, and values.
- M: a mask matrix with $-\infty$ in positions corresponding to future tokens, ensuring softmax output is zero for those.

Encoder-Decoder Attention (Cross-Attention)

Encoder-Decoder Attention (Cross-Attention)

The outputs of the **Encoder** act as Keys and Values, and the output from the **Decoder's** self-attention acts as Queries.

Transformers

- a Transformer architecture can be designed in three different ways depending on the task and objective:
- 1. Encoder-Only Transformers
- 2. Decoder-Only Transformers
- 3. Encoder-Decoder Transformers (Seq2Seq)

BERT Oct 2018

Representation

Output

GPT Jun 2018

Generation

RIAD SONBOL - ML COURSE 10

Transformers... The LLM Era

BERT – 2018 **DistilBERT** – 2019

RoBERTa - 2019

ALBERT - 2019

ELECTRA – 2020

DeBERTa – 2020

•••

Representation

GPT - 2018 GPT-2 - 2019 GPT-3 - 2020 GPT-Neo - 2021 GPT-3.5 (ChatGPT) - 2022 LLaMA - 2023 GPT-4 - 2023 ...

Generation

RIAD SONBOL - ML COURSE 11

RIAD SONBOL - ML COURSE 12