

Magnetic Field from a Muon Alignment Perspective

Jim Pivarski

Alexei Safonov

Texas A&M University

2 February, 2009

- ▶ The alignment of the muon chambers and the distribution of magnetic field are both imperfectly known
- Both cause deviations in muon trajectories with respect to tracks propagated from the tracker
- How can they be distinguished?
 - residuals from misalignment are independent of track momentum and charge
 - \triangleright residuals from \vec{B} -field mismodelling depends on momentum and is antisymmetric with charge
- This talk will be about exploiting the above to
 - align the DT chambers
 - ightharpoonup verify \vec{B} -field error calculations using techniques developed for alignment

HIP algorithm: "Hits and Impact Points"

- Using a track as reference, alignment correction is the peak of the residuals distribution
- ightharpoonup Our residual \equiv (impact point) (hit)

Implementation is not exactly the same as that in the tracker

- ▶ Muon hits excluded from refitted tracks: tracker is external reference
 - ▶ breaks the circularity between fitting tracks and aligning chambers
 - no need to iterate: convergence in one step
- Muon chambers are much bigger than silicon wafers: study residuals as a function of position throughout each chamber

Effect of \vec{B} -field on residuals

Jim Pivarski

► Track propagation is sensitive to the integral of \vec{B} -field error along its path

- ▶ Effect on residuals flips sign with charge
- The number of positively-charged tracks is not equal to the number of negatively-charged tracks
- ▶ But both charges have the same momentum distribution (a fact used in the cosmics charge ratio analysis)

of negatively-charged tracks

- Measure residuals peak in two bins, one for each charge
- Non-weighted average is insensitive to \vec{B} -field errors

$$\mathsf{alignment} = \frac{R_+ + R_-}{2}$$

▶ Difference is maximally sensitive

error tracer =
$$\frac{R_+ - R_-}{2}$$

- ▶ Alignment calculation effectively scales up negatively-charged muon contribution so that the \vec{B} -field errors cancel
- Systematic error = (error tracer) × (charge mismeasurement) × $\frac{0.3}{2.3}$ \sim (error tracer) \times (a few percent or less)

Demonstration in station 4

Jim Pivarski

- ▶ Station 4 has the largest \vec{B} -field mismodelling
- $\,\blacktriangleright\,$ The misalignment measure breaks cleanly at the chamber boundaries
- ▶ The tracer of \vec{B} -field errors is constant

grey background is the raw 2-D residuals distribution linear fits are only a guide for the eye: not used in alignment!

- ➤ Sample before-and-after residuals plots from alignment shown at right
- Complete set of 152 pages at last DT-DPG ("more information")

http://indico.cern.ch/ conferenceDisplay.py?confId=51267

- ▶ Aligned local x, y, ϕ_z for DT chambers with sufficient statistics
- ▶ Trend in $r\phi$ residual vs. ϕ suggests DT chamber description error (under investigation)
- ▶ 5–10 mm misalignments reduced to $\mathcal{O}(1$ –2 mm)

- ► Consider difference of residuals between stations on the same track: difference = (st. 3 track st. 3 hit) (st. 2 track st. 2 hit)
- Linearly-independent cross-check on alignment because it displays relative alignment of chambers, rather than absolute position
- lacktriangle Also sensitive to local \vec{B} -field error, rather than integral over path
 - $\,\blacktriangleright\,$ wrong sign in $\phi>0$ part because cosmic muon's velocity is down

Calculating B_7 error in Tesla Jim Pivarski

9/14

P. Martinez: $r\phi$ residual vs. q/p_T by station

- $\Delta B = \operatorname{residual}\left(\frac{300 \text{ cm}}{\ell^2}\right) p_T$
- $ightharpoonup r\phi$ residual as a function of track curvature (q/p_T) is linear if B_z is mismodelled
- quadratic in extrapolation length (ℓ)
- charge confusion with charge ratio $\neq 1$ distorts linear dependence at small $|q/p_T|$ if extrapolation length is large
 - use residuals differences
- scattering distorts linear dependence at large $|q/p_T|$

- Scattering processes have power-law distributions, while experimental resolution is Gaussian
- "Peak" of residuals distribution used in alignment comes from an unbinned fit to Lorentzian-Gaussian convolution

$$f(x) = \int_{-\infty}^{\infty} \frac{1}{\pi} \frac{\Gamma/2}{(x-\xi)^2 + (\Gamma/2)^2} \times \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-\xi^2}{2\sigma^2}\right) d\xi$$

- ▶ Regular mean $(\sum x_i/N)$ = center of an unbinned Gaussian fit; this just adds tails
 - outliers matter less in peak-finding
- \triangleright For B_z measurement, make peak a linear function of q/p_T (red is crest of 2-D fit)

B_z error between stations 1&2

- ightharpoonup Points calculated from unbinned 2-D fits to $r\phi$ residuals and q/pT
- lacktriangle Assumptions: $B_x=B_y=0$, uniform B_z between stations, no dE/dx error
- lacktriangle Shown as a function of ϕ , z (same magnitude as combined fit)
 - ▶ largest B_z errors seem to be 8% between stations 3&4 (dataset is all 3.8 T: 66604-66904, 67126-67225, 67534-67647, 67680-68087)
 - ▶ slight wheel-by-wheel dependence? or dE/dx error?

B_z error between stations 2&3

- ▶ Points calculated from unbinned 2-D fits to $r\phi$ residuals and q/pT
- lacktriangle Assumptions: $B_x=B_y=0$, uniform B_z between stations, no dE/dx error
- lacktriangle Shown as a function of ϕ , z (same magnitude as combined fit)
 - ▶ largest B_z errors seem to be 8% between stations 3&4 (dataset is all 3.8 T: 66604-66904, 67126-67225, 67534-67647, 67680-68087)
 - ▶ slight wheel-by-wheel dependence? or dE/dx error?

B_z error between stations 3&4

- ightharpoonup Points calculated from unbinned 2-D fits to $r\phi$ residuals and q/pT
- Assumptions: $B_x = B_y = 0$, uniform B_z between stations, no dE/dx error
 - lacktriangle Shown as a function of ϕ , z (same magnitude as combined fit)
 - ▶ largest B_z errors seem to be 8% between stations 3&4 (dataset is all 3.8 T: 66604-66904, 67126-67225, 67534-67647, 67680-68087)
 - ▶ slight wheel-by-wheel dependence? or dE/dx error?

- ightharpoonup Misalignments and \vec{B} -field errors can be disentangled
- \triangleright Alignment validation plots quantify systematic error from \vec{B} -field (times a large factor) in millimeters
- ightharpoonup Residuals differences localize \vec{B} error between stations, rather than integrated along the whole track
- \triangleright B_7 error in Tesla can be calculated from linear dependence in $r\phi$ residuals vs. q/p_T
- ▶ Largest B_z errors seem to be only 8% of 3.8 T