Claims

We Claim:

1

2

3

- 1. A method of designing an electrical wiring structure having a plurality of wires, said method comprising identifying at least one wire pair, said wire pair including a first wire of the plurality of wires and a second wire of the plurality of wires, said second wire already tri-stated or can be tri-stated, said wire pair having a same-direction switching probability Φ_{SD} per clock cycle that is no less than a pre-selected minimum same-direction switching probability $\Phi_{\text{SD,MIN}}$ or having an opposite-direction switching probability $\Phi_{\text{OD,MIN}}$, said first wire and said second wire satisfying at least one mathematical relationship, said at least one mathematical relationship involving L_{COMMON} and W_{SPACING} , said W_{SPACING} defined as a spacing between the first wire and the second wire, said L_{COMMON} defined as a common run length of the first wire and the second wire.
- 1 2. The method of claim 1, said at least one mathematical relationship comprising:
- W_{SPACING} no greater than a pre-selected minimum spacing W_{SPACING, MAX}; and
- L_{COMMON} no less than a pre-selected minimum common run length $L_{COMMON, MIN}$.

- 3. The method of claim 1, said at least one mathematical relationship comprising $F_{LW} \ge F_{LW,MIN}$,
- 2 said F_{LW} defined as L_{COMMON}/W_{SPACING}, said F_{LW,MIN} defined as a pre-selected minimum value of
- F_{LW} .

- 4. The method of claim 1, wherein identifying at least one wire pair comprises:
- 2 identifying at least one high-power wire; and
 - for a high-power wire of the at least one high-power wire, identifying a good neighbor wire of the high-power wire, wherein the first wire of the wire pair is the high-power wire, and wherein the second wire of the wire pair is the good neighbor wire.
 - 5. The method of claim 1, wherein said second wire is not already tri-stated but can be tri-stated, and further comprising adding tri-stating logic to the second wire.
 - 6. The method of claim 1, wherein ϕ_{OD} is no less than $\phi_{OD,MIN}$, and further comprising adding logic for inverting the second wire along the common run length.
- 7. The method of claim 1, further comprising adding blocking logic for blocking propagation of a
- 2 signal from the second wire while the second wire is tri-stated.

- 1 8. The method of claim 1, further comprising reducing $W_{SPACING}$.
- 9. The method of claim 1, wherein the at least one wire pair includes a plurality of wire pairs, and
- 2 further comprising:
- 3 ranking the wire pairs in accordance with power dissipation savings;
- developing a list of the ranked wire pairs in sorted order of the power dissipation savings;
- 5 and

2

truncating the list at a point of diminishing returns in the power dissipation savings, in accordance with a predetermined truncation criterion.

- 10. The method of claim 1, wherein $W_{SPACING}$ is a predetermined spacing, and wherein L_{COMMON} is a predetermined common run length.
- 11. The method of claim 1, wherein $W_{SPACING}$ is an established spacing, and wherein L_{COMMON} is an established common run length.

- 1 12. A method for executing a two-wire voltage transition, comprising the steps of:
- 2 providing two wires of an electrical wire network, said two wires denoted as an A wire
- and a B wire, said A wire having a capacitance C_A, said B wire having a capacitance C_B, said A
- 4 wire and B wire having a coupling capacitance C_c between the A wire and the B wire;
- 5 tri-stating the B wire from a voltage V_{B1} to a high impedance state;
- after tri-stating the B wire, transitioning the A wire from a voltage V_{A1} to a voltage V_{A2}
- 7 such that $V_{A2} \neq V_{A1}$; and
 - after transitioning the A wire to V_{A2} , transitioning the B wire to a voltage V_{B2} such that
 - $V_{B2} \neq V_{B1}$.

- 13. The method of claim 12, wherein $(V_{A2}-V_{A1})(V_{B2}-V_{B1}) > 0$.
- 14. The method of claim 13, wherein the A wire and the B wire have a same-direction switching
- probability per clock cycle ϕ_{SD} that is no less than a pre-selected minimum same-direction
- 3 switching probability $\phi_{SD,MIN}$.
- 1 15. The method of claim 13, wherein $V_{A1} = V_{B1} = 0$ and $V_{A2} = V_{B2} = 1$, and wherein an effective
- 2 capacitance of the two-wire voltage transition is $C_A + C_B$.
- 1 16. The method of claim 13, wherein $V_{A1} = V_{B1} = 1$ and $V_{A2} = V_{B2} = 0$, and wherein an effective
- 2 capacitance of the two-wire voltage transition is 0.

- 1 17. The method of claim 12, wherein $(V_{B2}-V_{B1})(V_{A2}-V_{A1}) < 0$, wherein the A wire and the B wire
- 2 have a common run length, and further comprising inverting the B wire along the common run
- 3 length.

- 1 18. The method of claim 17, wherein the A wire and the B wire have an opposite-direction
- switching probability per clock cycle ϕ_{OD} that is no less than a pre-selected minimum opposite
 - direction switching probability $\phi_{\text{OD,MIN}}$.
 - 19. The method of claim 17, wherein $V_{A1} = 0$, $V_{B1} = 1$, $V_{A2} = 1$, and $V_{B2} = 0$, and wherein an effective capacitance of the two-wire voltage transition is $C_A + C_B$.
 - 20. The method of claim 17, wherein $V_{A1} = 1$, $V_{B1} = 0$, $V_{A2} = 0$, and $V_{B2} = 1$, and wherein an effective capacitance of the two-wire voltage transition is 0.
- 1 21. The method of claim 12, further comprising blocking propagation of a signal from the B wire
- while the B wire is tri-stated.

- 22. An electrical wiring structure, comprising at least one wire pair, said wire pair including a first wire and a second wire, said second wire slated for being tri-stated, said wire pair having a same-direction switching probability ϕ_{SD} per clock cycle that is no less than a pre-selected minimum same-direction switching probability $\phi_{SD,MIN}$ or having an opposite-direction switching probability ϕ_{OD} per clock cycle that is no less than a pre-selected minimum opposite-direction switching probability $\phi_{OD,MIN}$, said first wire and said second wire satisfying at least one mathematical relationship, said at least one mathematical relationship involving L_{COMMON} and $W_{SPACING}$, said $W_{SPACING}$ defined as a spacing between the first wire and the second wire, said L_{COMMON} defined as a common run length of the first wire and the second wire.
- 23. The electrical wiring design of claim 22, said at least one mathematical relationship comprising:

 $W_{SPACING}$ no greater than a pre-selected minimum spacing $W_{SPACING, MAX}$; and L_{COMMON} no less than a pre-selected minimum common run length $L_{COMMON, MIN}$.

- 1 24. The electrical wiring design of claim 22, said at least one mathematical relationship
- 2 comprising $F_{LW} \ge F_{LW,MIN}$, said F_{LW} defined as $L_{COMMON}/W_{SPACING}$, said $F_{LW,MIN}$ defined as a pre-
- 3 selected minimum value of F_{LW} .
- 1 25. The electrical wiring design of claim 22, wherein the first wire of the wire pair is a high-
- 2 power wire, and wherein the second wire of the wire pair is a good neighbor wire of the high

- 3 power wire.
- 1 26. The electrical wiring design of claim 22, wherein ϕ_{OD} is no less than $\phi_{OD,MIN}$, and further
- 2 comprising logic for inverting the second wire along the common run length.
- 1 27. The electrical wiring design of claim 22, further comprising blocking logic for blocking
- 2 propagation of a signal from the second wire while the second wire is tri-stated.
 - 28. The electrical wiring design of claim 22, wherein W_{SPACING} is a predetermined spacing, and wherein L_{COMMON} is a predetermined common run length.
 - 29. The electrical wiring design of claim 22, wherein $W_{SPACING}$ is an established spacing, and wherein L_{COMMON} is an established common run length.

- 1 30. An electrical wire structure, comprising two wires of a wire network, said two wires denoted
- as an A wire and a B wire, said A wire having a capacitance CA, said B wire having a capacitance 2
- C_B, said A wire and B wire having a coupling capacitance C_C between the A wire and the B wire, 3
- said B wire in a tri-state, said A wire transitioning from a voltage V_{A1} to a voltage V_{A2} such that 4
- $V_{A2} \neq V_{A1}$, said B wire having transitioned to the tri-state from a voltage V_{B1} , said B wire 5
- 6 intended to be transitioned to a voltage V_{B2} such that $V_{B2} \neq V_{B1}$ after the A wire has transitioned
- to the voltage V_{A2} , said transition of the A wire from the voltage V_{A1} to the voltage V_{A2} and of the 7
- B wire from the voltage V_{B1} to the voltage V_{B2} identified as a two-wire voltage transition.
 - 31. The electrical wire network of claim 30, wherein $(V_{A2} V_{A1})(V_{B2} V_{B1}) > 0$.
 - 32. The electrical wire network of claim 31, wherein the A wire and the B wire have a samedirection switching probability per clock cycle ϕ_{SD} that is no less than a pre-selected minimum same-direction switching probability $\phi_{SD,MIN}$.
- 1 33. The electrical wire network of claim 31, wherein $V_{A1} = V_{B1} = 0$ and $V_{A2} = V_{B2} = 1$, and
- wherein an effective capacitance of the two-wire voltage transition is $C_A + C_B$. 2
- 1 34. The electrical wire network of claim 31, wherein $V_{A1} = V_{B1} = 1$ and $V_{A2} = V_{B2} = 0$, and
- 2 wherein an effective capacitance of the two-wire voltage transition is 0.

3 common run length.

- 1 36. The electrical wire network of claim 35, wherein the A wire and the B wire have an opposite-
- direction switching probability per clock cycle ϕ_{OD} that is no less than a pre-selected minimum
- 3 opposite-direction switching probability $\phi_{OD,MIN}$.
 - 37. The electrical wire network of claim 35, wherein $V_{A1} = 0$, $V_{B1} = 1$, $V_{A2} = 1$, and $V_{B2} = 0$, and wherein an effective capacitance of the two-wire voltage transition is $C_A + C_B$.
 - 38. The electrical wire network of claim 35, wherein $V_{A1} = 1$, $V_{B1} = 0$, $V_{A2} = 0$, and $V_{B2} = 1$, and wherein an effective capacitance of the two-wire voltage transition is 0.
- 1 39. The electrical wire network of claim 30, wherein propagation of a signal from the B wire
- while the B wire is being blocked.

- 40. A computer system for designing an electrical wiring structure having a plurality of wires, comprising:
- 3 a processor;

2

7

8日 9日 10日 11日 12日 13日 14日 14日 14日

15

16

17

18

1

- 4 an input device coupled to the processor;
- 5 an output device coupled to the processor;
- a first memory device coupled to the processor;
 - a second memory device coupled to the processor;

a computer code stored in the second memory device and executed by the processor; said computer code comprising an algorithm, said algorithm identifying at least one wire pair, said wire pair including a first wire of the plurality of wires and a second wire of the plurality of wires, said second wire already tri-stated or can be tri-stated, said wire pair having a same-direction switching probability ϕ_{SD} per clock cycle that is no less than a pre-selected minimum same-direction switching probability $\phi_{SD,MIN}$ or having an opposite-direction switching probability $\phi_{OD,MIN}$, said first wire and said second wire satisfying at least one mathematical relationship, said at least one mathematical relationship involving L_{COMMON} and $W_{SPACING}$, said $W_{SPACING}$ defined as a spacing between the first wire and the second wire, said L_{COMMON} defined as a common run length of the first wire and the second wire.

- 41. The computer system of claim 40, said at least one mathematical relationship comprising:
- 2 W_{SPACING} no greater than a pre-selected minimum spacing W_{SPACING, MAX}; and

2

3

- 42. The computer system of claim 40, said at least one mathematical relationship comprising F_{LW}
- ≥ F_{LW,MIN}, said F_{LW} defined as L_{COMMON}/W_{SPACING}, said F_{LW,MIN} defined as a pre-selected minimum 2
- value of F_{LW}. 3
- 43. The computer system of claim 40, wherein said algorithm identifying at least one wire pair includes:

said algorithm identifying at least one high-power wire; and

for a high-power wire of the at least one high-power wire, said algorithm identifying a good neighbor wire of the high-power wire, wherein the first wire of the wire pair is the highpower wire, and wherein the second wire of the wire pair is the good neighbor wire.

- 44. The computer system of claim 40, wherein if said algorithm determines that said second wire is not already tri-stated but can be tri-stated, then further comprising said algorithm adding tristating logic to the second wire.
- 45. The computer system of claim 40, wherein if said algorithm determines that ϕ_{OD} is no less 1
- 2 than $\phi_{OD,MIN}$, then further comprising said algorithm adding logic for inverting the second wire
- 3 along the common run length.

2 blocking logic for blocking propagation of a signal from the second wire while the second wire is

3 tri-stated.

1 47. The computer system of claim 40, further comprising the computer algorithm reducing

 $\mathbf{W}_{\text{SPACING}}$.

8

48. The computer system of claim 40, wherein if said the computer algorithm identifies the at least one wire pair as including a plurality of wire pairs, then further comprising:

said computer algorithm ranking the wire pairs in accordance with power dissipation savings;

said computer algorithm developing a list of the ranked wire pairs in sorted order of the power dissipation savings; and

said computer algorithm truncating the list at a point of diminishing returns in the power dissipation savings, in accordance with a predetermined truncation criterion.

- 1 49. The computer system of claim 40, wherein W_{SPACING} is a predetermined spacing, and wherein
- 2 L_{COMMON} is a predetermined common run length.
- 1 50. The computer system of claim 40, wherein W_{SPACING} is an established spacing, and wherein
- 2 L_{COMMON} is an established common run length.

1

- 51. A computer program product, comprising: a computer usable medium having a computer readable program code embodied therein for designing an electrical wiring structure having a plurality of wires, wherein the computer readable program code includes an algorithm, said algorithm identifying at least one wire pair, said wire pair including a first wire of the plurality of wires and a second wire of the plurality of wires, said second wire already tri-stated or can be tristated, said wire pair having a same-direction switching probability ϕ_{SD} per clock cycle that is no less than a pre-selected minimum same-direction switching probability $\phi_{SD,MIN}$ or having an opposite-direction switching probability $\phi_{OD,MIN}$, said first wire and said second wire satisfying at least one mathematical relationship, said at least one mathematical relationship involving L_{COMMON} and $W_{SPACING}$, said $W_{SPACING}$ defined as a spacing between the first wire and the second wire, said L_{COMMON} defined as a common run length of the first wire and the second wire.
- 52. The computer program product of claim 51, said at least one mathematical relationship comprising:

 $W_{SPACING}$ no greater than a pre-selected minimum spacing $W_{SPACING, MAX}$; and L_{COMMON} no less than a pre-selected minimum common run length $L_{COMMON, MIN}$.

- 1 53. The computer program product of claim 51, said at least one mathematical relationship
- 2 comprising $F_{LW} \ge F_{LW,MIN}$, said F_{LW} defined as $L_{COMMON}/W_{SPACING}$, said $F_{LW,MIN}$ defined as a pre-

- 1 selected minimum value of F_{LW}.
- 1 54. The computer program product of claim 51, wherein said algorithm identifying at least one
- wire pair includes:

2

3

- 3 said algorithm identifying at least one high-power wire; and
- for a high-power wire of the at least one high-power wire, said algorithm identifying a good neighbor wire of the high-power wire, wherein the first wire of the wire pair is the high-

power wire, and wherein the second wire of the wire pair is the good neighbor wire.

- 55. The computer program product of claim 51, wherein if said algorithm determines that said second wire is not already tri-stated but can be tri-stated, then further comprising said algorithm adding tri-stating logic to the second wire.
- 56. The computer program product of claim 51, wherein if said algorithm determines that ϕ_{OD} is no less than $\phi_{OD,MIN}$, then further comprising said algorithm adding logic for inverting the second wire along the common run length.
- 57. The computer program product of claim 51, further comprising the computer algorithm
- 2 adding blocking logic for blocking propagation of a signal from the second wire while the second
- 3 wire is tri-stated.

- 1 58. The computer program product of claim 51, further comprising the computer algorithm
- 2 reducing W_{SPACING}.
- 1 59. The computer program product of claim 51, wherein if said the computer algorithm identifies
- 2 the at least one wire pair as including a plurality of wire pairs, then further comprising:
 - said computer algorithm ranking the wire pairs in accordance with power dissipation
- 4 savings;

said computer algorithm developing a list of the ranked wire pairs in sorted order of the power dissipation savings; and

said computer algorithm truncating the list at a point of diminishing returns in the power dissipation savings, in accordance with a predetermined truncation criterion.

- 60. The computer program product of claim 51, wherein $W_{SPACING}$ is a predetermined spacing, and wherein L_{COMMON} is a predetermined common run length.
- 1 61. The computer program product of claim 51, wherein $W_{SPACING}$ is an established spacing, and wherein L_{COMMON} is an established common run length.