Лекція 30

[10, стор.107 - 112]

Згідно до *першої теореми Фредгольма* маємо, що з єдиності розв'язку рівняння (2.23'') випливає існування розв'язку для довільного вільного члена $F\in \overset{0}{W}_2^1(\Omega)$. Оскільки (2.23'') еквівалентне тотожності (2.21), то перша теорема Фредгольма гарантує існування узагальненого розв'язку задачі Діріхле (2.18), (2.4') $u\in \overset{0}{W}_2^1(\Omega)$ для довільних $f\in L_2(\Omega)$, $f\in L_2(\Omega)$ при виконанні умови єдиності розв'язку.

Зауважимо також, що оскільки оператори A та B ε симетричними, то симетричним також буде оператори D^{-1} та $D^{-1}B$.

Друга теорема Фредгольма стверджує, що для однорідного симетричного рівняння $u=\mu D^{-1}Bu,\; \mu=\lambda-\lambda_0$ (2.25) нетривіальний розв'язок рівняння існує лише для зліченої множини дійсних значень параметра $\{\lambda_k\}=\{\mu_k+\lambda_0\}_{k=1,\infty}$, кожному λ_k відповідає принаймні один нетривіальний розв'язок \mathbf{v}_k . Ці значення $\lambda=\lambda_k$, $_k=1,\infty$ називаються спектральними значеннями причому їх можна занумерувати так, що $|\lambda_1|\leq |\lambda_2|\leq|\lambda_n|\leq$ Друга теорема Фредгольма стверджує також, що кожне власне (спектральне) значення має скінчену кратність, тобто для кожного значення $\lambda=\lambda_k$, $_k=1,\infty$ існує лише скінчена кількість лінійно — незалежних розв'язків однорідного рівняння (2.25). Для неоднорідного рівняння (2.23'') у випадку $\lambda=\lambda_k$, $_k=1,\infty$ порушується єдиність розв'язку.

Третя теорема Фредгольма для неоднорідного рівняння (2.23") дає необхідні і достатні умови існування розв'язку для випадку, коли $\lambda = \lambda_k$, $k = 1, \infty$, тобто для спектральних значень параметру λ . А саме , якщо $\lambda = \lambda_k$, $k = 1, \infty$, то задача (2.23") має розв'язок для тих і лише тих значень вільного члена $D^{-1}F$, які ортогональні до усіх розв'язків спряженого (вихідного) однорідного рівняння

(2.25), тобто
$$\left(D^{-1}F, v_{k+j}\right)_3 = 0, \ j = 0, q_k - 1$$
 (2.26),

де $q_{\scriptscriptstyle k}$ - кратність власного числа $\lambda_{\scriptscriptstyle k}=\lambda_{\scriptscriptstyle k+1}=....=\lambda_{\scriptscriptstyle q_{\scriptscriptstyle k}-1}$.

Покажемо, що умова (2.26) еквівалентна умові

$$\int_{\Omega} (-fv_j + \sum_{i=1}^n f_i v_{jx_i}) dx = 0, \ j = k, k+1, k+2, \ k+q_k - 1$$
 (2.27).

Дійсно, враховуючи симетричність рівняння (2.25), його можна для $u=v_k,\ \lambda=\lambda_k$ записати у вигляді $v_k=\mu_k B D^{-1} v_k,\ \mu_k=\lambda_k-\lambda_0$. (2.25').

Вводячи функцію $w_k = D^{-1}v_k$, запишемо рівняння (2.25') у вигляді

$$Dw_k = \mu_k Bw_k$$
, $\mu_k = \lambda_k - \lambda_0$, afo $w_k = \mu_k D^{-1} Bw_k$, $\mu_k = \lambda_k - \lambda_0$ (2.25")

Враховуючи, що $BD^{-1}=D^{-1}B$, то рівняння (2.25") співпадає з (2.25'), тобто $w_k=v_k$, таким чином має місце рівність $\left(D^{-1}F,v_{k+j}\right)_3=\left(F,D^{-1}v_{k+j}\right)_3=\left(F,w_{k+j}\right)_3=\left(F,v_{k+j}\right)_3=0,\ j=0,q_k-1$.

Теорема 3 (*Про існування узагальненого розв'язку задачі Дірихле з параметром*) Задача Діріхле (2.18), (2.4') має єдиний розв'язок у просторі $W_2^1(\Omega)$ при будь яких $f,\mathbf{f}\in L_2(\Omega)$ для будь-яких дійсних значень параметру λ , окрім не більш ніж зліченої множини $\lambda=\lambda_k$, k=1,2,..., які утворюють спектр задачі Дірихле (2.18), (2.4'). Кожне значення λ_k має скінчену кратність і єдиною граничною точкою спектру є $\lambda=\infty$. Для існування розв'язку задачі Дірихле при $\lambda=\lambda_k$, k=1,2,... необхідно і достатньо що б виконувалася умова ортогональності (2.27), де v_{k+j} , $j=0...q_k-1$ розв'язки однорідної задачі Дірихле при $\lambda=\lambda_{k+1}=\lambda_{k+2}=...=\lambda_{k+q_k-1}$. Розв'язок у цьому випадку неєдиний і визначається з точністю до загального розв'язку однорідної задачі Дірихле $\sum_{j=0}^{q_k-1} c_j v_{k+j}$, де c_j довільні константи.

Узагальнена задача на власні значення Розвинення функцій в ряд по власних функціях симетричного оператора

Розглянемо однорідну задачу Діріхле

$$Lu = div(p(x)gradu) + a(x)u = \lambda u$$
(2.18'),

$$u|_{s} = 0 ag{2.4'}.$$

Узагальненими розв'язками цієї задачі з простору $W_2^1(\Omega)$ є елемент $u\in \overset{^0}{W_2^1}(\Omega)$, який задовольняє інтегральній тотожності

$$L(u, \overline{\eta}) := \int_{\Omega} \left(\sum_{i=1}^{n} p(x) u_{x_i} \overline{\eta_{x_i}} - a(x) u \overline{\eta} \right) dx = -\lambda \int_{\Omega} u \overline{\eta} dx, \ \forall \eta \in \overset{0}{W}_{2}^{1}(\Omega)$$
 (2.28).

Для дослідження задачі Дірихле на власні значення введемо скалярний

добуток
$$(u,v)_4 = \int_{\Omega} \left(\sum_{i=1}^n p(x) u_{x_i} \overline{\eta_{x_i}} + (\lambda_0 - a(x)) u \overline{\eta} \right) dx$$
 (2.29).

Для того щоб (2.29) представляв собою скалярний добуток, необхідно обрати $\lambda_0 > 0$ достатньо великим, наприклад таким, щоб $\lambda_0 > a_2$.

Враховуючи введений скалярного добутку, запишемо (2.28) у вигляді:

$$(u,\eta)_4 = (\lambda_0 - \lambda)(u,\eta) \tag{2.30}.$$

Аналогічно (2.22) з використанням теореми Риса — Фішера введемо оператор B за правилом — $\int\limits_{\Omega}\!\!u\,\eta dx = (Bu,\eta)_{\!_4}$ (2.31).

Оператор $B \in цілком$ неперервним, симетричним та від'ємним.

В результаті (2.30) буде мати вигляд:

$$(u,\eta)_A = (\lambda - \lambda_0)(Bu,\eta)_A \tag{2.30'}$$

Враховуючи, що остання рівність повинна виконуватись для усіх $\eta\in \overset{_{0}}{W}_{2}(\Omega)$, з (2.30') маємо операторну рівність $u=(\lambda-\lambda_{_{0}})Bu$, або

$$Bu = \mu u, \quad \mu = (\lambda - \lambda_0)^{-1}$$
 (2.32).

3 загальної теорії самоспряжених цілком неперервних операторі випливає,

що спектр оператора B є дійсним, від'ємним і усі власні числа μ_k , k=1,2,... можна занумерувати в порядку спадання їх модулів, з урахуванням кратності. Єдиною точкою накопичення може бути $\mu=0$. Відповідні власні функції v_k , які задовольняють операторне рівняння $Bv_k=\mu_k v_k$ є дійсні і ортогональними, тобто

$$(v_k, v_l)_4 = 0, k \neq l$$
 (2.33).

При $\mu=0$ рівняння (2.32) має лише тривіальний розв'язок. Таким чином власні функції $\{v_k\}$ складають базис в просторі $\overset{_0}{W}_2^1(\Omega)$, а враховуючи, що $\overset{_0}{W}_2^1(\Omega)$ є нескінченновимірний простір, то кількість елементів базису є злічена множина.

Будь який елемент $F\in \overset{0}{W}_2^1(\Omega)$ розкладається в ряд Фур'є по елементах базису $\{v_k\},\, k=\overline{1,\infty}$, тобто має місце представлення

$$F(x) = \sum_{k=1}^{\infty} \frac{(F, v_k)_4}{(v_k, v_k)_4} v_k(x)$$
 (2.34).

Ряд (2.34) збігається в нормі простору $\overset{_{0}}{W}_{2}^{1}(\Omega)$. Нагадаємо, що збіжність ряду в просторі $\overset{_{0}}{W}_{2}^{1}(\Omega)$ означає збіжність в $L_{2}(\Omega)$ самого ряду (2.34), а також рядів отриманих шляхом однократного диференціювання по x_{i} , i =1..n.

Зауважимо, що крім ортогональності по введеній нормі (2.33), власні функції $\{v_k\}, k=\overline{1,\infty}$ також є ортогональними у просторі $L_2(\Omega)$. Дійсно, з (2.30) та (2.32) випливає $\mu_k(v_k,v_l)_4=(Bv_k,v_l)_4=-(v_k,v_l)=0, k\neq l$ (2.35).

Для власних функцій $\{v_k\},\,k=\overline{1,\infty}$ можна обрати нормування так що $(v_k,v_l)=\boldsymbol{\delta}_{k,l}=-(\lambda_k-\lambda_0)^{-1}(v_k,v_l)_4$ (2.36).

В цьому випадку з урахуванням (2.30') ряд (2.34) можна записати у вигляді:

$$F(x) = \sum_{k=1}^{\infty} (F, v_k) v_k(x)$$
 (2.37).

Оскільки $\stackrel{0}{W}_2^1(\Omega)$ складає щільну множину в $L_2(\Omega)$, то $\{v_k\}$, $k=\overline{1,\infty}$ будучі

базисом в $\overset{_{0}}{W}_{2}^{1}(\Omega)$ є також базисом і в просторі $L_{2}(\Omega)$, а розвинення в ряд (2.37) має місце не тільки для $F\in \overset{_{0}}{W}_{2}^{1}(\Omega)$, але й для $F\in L_{2}(\Omega)$ при чому ряд (2.37) збігається в нормі $L_{2}(\Omega)$. Таким чином має місце теорема:

Теорема 4 (Про властивості узагальненої граничної задачі на власні значення для еліптичного оператора) Спектральна задача (2.18'), (2.4') при виконанні обмежень (2.2), (2.3) в просторі $W_2^0(\Omega)$ має злічену множину власних чисел λ_k та власних функцій v_k k=1,2.... Усі власні числа за винятком декількох перших від'ємні і $\lambda_k \to -\infty, k \to \infty$. Власні функції v_k утворюють базис в $L_2(\Omega)$ та $W_2^0(\Omega)$, ортонормований в $L_2(\Omega)$ і ортогональний в $W_2^0(\Omega)$ по скалярному добутку (2.29). Будь — який елемент $F \in W_2^0(\Omega)$ можна розкласти в ряд Фур'є по системі власних функцій $\{v_k\}_{k=1,\infty}$, який збігається по нормі простору $W_2^0(\Omega)$.

§3 Узагальнені розв'язки другої та третьої граничних задач

[10, стор.112 - 116]

Будемо вивчати граничну задачу:

$$Lu = div(p(x)gradu) + a(x)u = \lambda u + f(x), x \in \Omega$$
 (3.1),

$$\left. \frac{\partial u}{\partial N} + \sigma(x) u \right|_{S} = 0 \tag{3.2}.$$

3 обмеженнями (2.3), (2.4) та додатковою умовою на функцію $\sigma = \sigma(x)\big|_{x \in S}$ (3.3).

При дослідженні граничної задачі (3.1), (3.2) ми будемо користуватися деякими допоміжними результатами.

Сліди функцій класу $W_2^k(\Omega)$

Як випливає зі способу побудови простору функцій $W_2^{\,k}(\Omega)$, цей простір

утворений шляхом поповнення простору $C^\infty(\overline{\Omega})$ по нормі $\sum_{|\alpha| \le k} \int_{\Omega} (D^\alpha u(x))^2 dx$. Кожна функція $u \in C^\infty(\overline{\Omega})$ має значення на границі самої функції та усіх своїх похідних, тобто існує неперервна на границі S функція $u_S(x) \equiv u(x)\big|_{x \in S}$ та функції $u_S^{(\alpha)}(x) = D^\alpha u(x)\big|_{x \in S}$, $|\alpha| \le k$. Оскільки $u_S(x) \in C(S)$ - неперервна функція на S , то $u_S \in L_2(S)$. Функцію $u_S \in L_2(S)$ будемо називати слідом функції $u \in C^\infty(\Omega)$ на поверхні S.

Наша задача розповсюдити концепцію слідів для довільних функцій з $W_2^k(\Omega)$ на поверхні S як многовид розмірності n-1 Оскільки $W_2^k(\Omega) \subset W_2^1(\Omega)$, достатньо визначити поняття сліду для функцій $W_2^1(\Omega)$. Розглянемо для цього допоміжну нерівність.

Нехай S - поверхня класу C^1 , яка лежить в $\overline{\Omega}$, а S_1 її простий кусок який однозначно проектується на частину D площини $x_n=0$, і має рівняння $x_n=\varphi(x_1,...x_{n-1})\in C^1\left(D\right)$. Оскільки область Ω обмежена, то можна рахувати, що вона розташована у кубі $\left\{0< x_i < a,\, i=1,...n\right\}$. Розглянемо функцію $u\in C^\infty(\overline{\Omega})$ і покладемо її рівною нулю поза межами $\overline{\Omega}$. Згідно формули Ньютона — Лейбніца маємо $u(x)\big|_{S_1}=u(x_1,...x_{n-1},\varphi(x_1,...x_{n-1}))=\int\limits_0^{\varphi(x_1,...,x_{n-1},\xi)}\frac{\partial u(x_1,...,x_{n-1},\xi)}{\partial \xi}d\xi$. Використовуючи нерівність Коші—Буняківського отримаємо:

$$\left| u_{S_1} \right|^2 \leq \varphi(x_1, ..., x_{n-1}) \int_0^{\varphi(x_1, ..., x_{n-1})} \left| \frac{\partial u(x_1, ..., x_{n-1}, \xi)}{\partial \xi} \right|^2 d\xi \leq a \int_0^a \left| \frac{\partial u(x_1, ..., x_{n-1}, \xi)}{\partial \xi} \right|^2 d\xi.$$

Помноживши цю рівність на $\sqrt{1+arphi_{x_1}^2+...+arphi_{x_{n-1}}^2}$ та інтегруючи по D , отримаємо нерівність $\int\limits_{S_1}\left|u_{S_1}(x)\right|^2dS=\left\|u\right\|_{L_2(S_1)}^2\leq C^2\left\|u\right\|_{W_2^1(\Omega)}^2$ з постійною C , яка не залежить від функції u . Оскільки поверхню S можна покрити скінченим числом простих кусків, то підсумовуючи попередні нерівності по усіх кусках поверхні S

отримаємо нерівність $\|u\|_{L_2(S)} \le C \|u\|_{W_2^1(\Omega)}$ (3.4).

Нерівність (3.4) має місце для усіх функцій з класу $C^{\infty}(\overline{\Omega})$. Нехай тепер $u\in W_2^1(\Omega)$, тоді існує фундаментальна послідовність $\{u_n(x)\}\in C^{\infty}(\overline{\Omega}),\ n=1,...\infty$, така, що збігається до функції u в нормі $W_2^1(\Omega)$. Для цієї послідовності має місце нерівність $\left\|u_p-u_q\right\|_{L_2(S)}\leq C\left\|u_p-u_q\right\|_{W_2^1(\Omega)}$ (3.5).

Нерівність (3.5) означає, що послідовність слідів $u_{S}^{(n)}(x)$ буде фундаментальною в $L_{2}(S)$.

Оскільки простір $L_2(S)$ є повним, то існує функція $u_S \in L_2(S)$, до якої збігається послідовність слідів $u_S^{(n)}(x)$ по нормі $L_2(S)$. Таким чином функцію $u_S \in L_2(S)$ будемо називати слідом функції $u \in W_2^1(\Omega)$ на поверхні S.

Наші дослідження можна сформулювати у вигляді теореми

Теорема 1 (Про існування сліду функцій з $W_2^1(\Omega)$) Нехай Ω область з границею Ліпшица, тоді існує єдиний обмежений оператор T, який відображає простір $W_2^1(\Omega)$ у простір $L_2(S)$, тобто $Tu(x)=u_S(x)$ і при цьому має місце нерівність (3.4).

Оскільки оператор T є обмеженим, а значить неперервним, то близьким в $W_2^1(\Omega)$ функціям відповідають близькі сліди.

Теорема 2 (Про компактність вкладення $W_2^1(\Omega)$ в $L_2(S)$). Якщо Ω обмежена область з кусково - ліпшецевой границею S , то будь — яка обмежена в $W_2^1(\Omega)$ множина функцій є компактною в $L_2(S)$.

Компактність вкладення простору $W_2^1(\Omega)$ в $L_2(S)$ означає, що з будь — якої множини $M \subset W_2^1(\Omega)$, такої, що $\forall u \in M\,,\; \left\|u\right\|_{W_2^1(\Omega)} \leq C$ можна вибрати збіжну в нормі $L_2(S)$ підпослідовність.

Теорема 3 (*Нерівність Фрідріхса*) Нехай Ω - область з границею Ліпшица, тоді існує така константа $C_1>0$, яка залежить лише від області Ω , що для кожної

 $u \subset W^1_2(\Omega)$ має місце нерівність

$$\left\| u \right\|_{W_2^1(\Omega)}^2 \le C_1 \left\{ \sum_{j=1}^n \int_{\Omega} \left(\frac{\partial u}{\partial x_j} \right)^2 dx + \int_{S} u^2(x) dS \right\}$$
 (3.6).

Нерівність (3.6) випливає з теореми про еквівалентність норм у просторі $W^1_2(\Omega)$ лекції 29.

Дослідження узагальнених розв'язків другої та третьої задачі

Визначення узагальненого розв'язку ведемо за допомогою інтегральної тотожності, для цього помножимо рівняння (3.1) на η , проінтегруємо по області Ω , застосуємо формулу інтегрування за частинами і граничну умову (3.2). В результаті цих перетворень отримаємо інтегральну тотожність:

$$\int_{\Omega} [p(x) \sum_{i=1}^{n} u_{x_i} \eta_{x_i} - (a(x) - \lambda) u \eta] dx + \int_{S} \sigma(x) u \eta dS = -\int_{\Omega} f(x) \eta dx$$
 (3.7).

Співвідношення (3.6) має зміст для будь — яких $u,\eta\in W_2^1(\Omega)$, оскільки функції цього класу мають узагальнені похідні з $L_2(\Omega)$ та сліди з $L_2(S)$. Таким чином усі інтеграли в (3.6) існують і є обмеженими.

Для випадку, коли функція $\mathbf{u}(\mathbf{x}) \in \mathrm{C}^2(\Omega) \cap \mathrm{C}^1(\overline{\Omega})$ та коефіцієнти рівняння достатньо гладкі, то з інтегральної тотожністі (3.7), шляхом обернених перетворень можна отримати граничну задачу (3.1), (3.2). Тобто, використання інтегральної тотожності розширяє поняття розв'язку для другої та третьої граничних задач.

Означення Будь — який елемент $u \in W_2^1(\Omega)$ будемо називати узагальненим розв'язком граничної задачі (3.1), (3.2), якщо він задовольняє інтегральній тотожності (3.7) для $\forall \, \eta \in W_2^1(\Omega)$.

Для дослідження узагальненого розв'язку введемо скалярний добуток

$$(u,v)_5 = \int_{\Omega} [p(x) \sum_{i=1}^n u_{x_i} \eta_{x_i} + u \eta] dx$$
 (3.8).

Скалярний добуток (3.7) породжує норму в просторі $W_2^1(\Omega)$ еквівалентну стандартній нормі.

Інтегральну тотожність (3.7) у цьому випадку можна записати у вигляді:

$$(u,\eta)_{5} - \int_{\Omega} [(a(x)+1)u\eta]dx + \lambda \int_{\Omega} u\eta dx + \int_{S} \sigma(x)u\eta dS = -\int_{\Omega} f(x)\eta dx$$
 (3.9)

Усі інтеграли в (3.9) представляють собою лінійні неперервні функціонали від η , введемо для них відповідні позначення:

$$-\int_{\Omega} [(a(x)+1)u\eta]dx = l_u^1(\eta), \qquad -\int_{\Omega} u\eta dx = l_u^2(\eta),$$
$$\int_{\Omega} \sigma(x)u\eta dS = l_u^3(\eta), \qquad \int_{\Omega} f(x)\eta dx = l_f^4(\eta).$$

Лінійність кожного функціоналу є очевидною і випливає з вигляду кожного функціоналу. Неперервність (обмеженість) функціоналів l_u^1, l_u^2, l_f^4 випливає безпосередньо з нерівності Коші Буняківського та вигляду норми (3.8).

Покажемо обмеженість лінійного функціоналу $l_u^3(\eta)$, дійсно:

$$\begin{aligned} \left| l_{u}^{3}(\eta) \right| &= \left| \int_{S} \sigma(x) u \eta dS \right| \leq \mu_{3} \left\| u \right\|_{L_{2}(S)} \left\| \eta \right\|_{L_{2}(S)} \leq \\ &\leq \mu_{3} C^{2} \left\| u \right\|_{W_{3}^{1}(\Omega)} \left\| \eta \right\|_{W_{3}^{1}(\Omega)} \leq \mu_{3} C^{2} C_{2}^{2} \left\| u \right\|_{5} \left\| \eta \right\|_{5} \end{aligned} \tag{3.10}$$

Де $\,C\,$ константа з оцінки (3.4), а $\,C_2\,$ - константа еквівалентності норм.

Враховуючи лінійність та неперервність функціоналів, згідно до теореми Ріса — Фішира, кожний функціонал може бути представлений у вигляді:

$$-\int_{\Omega} [(a(x)+1)u\eta]dx = (Au,\eta)_{5}$$

$$-\int_{\Omega} u\eta dx = (Bu,\eta)_{5}$$

$$\int_{S} \sigma(x)u\eta dS = (Cu,\eta)_{5}$$

$$-\int_{\Omega} f(x)\eta dx = (F,\eta)_{5}$$
(3.11).

Оператори, що фігурують у формулах (3.10) є лінійними, обмеженими та цілком неперервними. Цілковита неперервність операторів A,B тепер буде випливати з теореми Релліха.

Покажемо цілковиту неперервність оператора ${\it C}$.

Нехай $\{w_m\}$ - деяка нескінчена множина елементів , яка обмежена в $W_2^1(\Omega)$, тобто $\|w_k\|_{W_2^1(\Omega)} \leq C_3$, $\forall w_k$, оскільки ${\mathcal C}$ - обмежений оператор, то обмеженою в $W_2^1(\Omega)$ буде також і множина елементів $\{{\mathcal C}w_m\}$, тобто $\|{\mathcal C}w_k\|_{W_2^1(\Omega)} \leq C_3\|{\mathcal C}\| \ \forall w_k$. 3 компактності вкладення простору $W_2^1(\Omega)$ в $L_2(S)$ випливає, що з будь — яких обмежених в $W_2^1(\Omega)$ послідовностей $\{w_m\}$ та $\{{\mathbf C}w_m\}$ можна виділити підпослідовності, сліди яких збігаються в $L_2(S)$ (позначимо їх тими же символами).

Покажемо фундаментальність послідовності $\{\mathbf{C}w_m\}$.

$$\begin{aligned} & \left(Cw_m - Cw_k, Cw_m - Cw_k \right)_5 = \int\limits_S \sigma(x) (w_m - w_k) C(w_m - w_k) dS \leq \\ & \text{Дійсно:} \\ & \left. \mu_3 \middle\| w_m - w_k \middle\|_{L_2(S)} \middle\| C(w_m - w_k) \middle\|_{L_2(S)} \xrightarrow{k,m \to \infty} 0 \end{aligned}$$

Права частина нерівності прямує до нуля в силу повноти простору $L_2(S)$.

Враховуючи усе викладене, рівність (3.8) можна записати у вигляді:

$$(u,\eta)_5 + (Au,\eta)_5 - \lambda (Bu,\eta)_5 + (Cu,\eta)_5 = (f,\eta)_5$$
(3.12).

Або враховуючи, що (3.11) повинна виконуватись для будь — якого елементу $\eta \in W_2^1(\Omega)$, можна записати операторне рівняння

$$u + Au - \lambda Bu + Cu = F \tag{3.13}.$$

Перепишемо рівняння (3.13) у вигляді:

$$(E + A + C - \lambda_0 B)u = (\lambda - \lambda_0)Bu + F \tag{3.14}$$

Позначимо $E+A+C-\lambda_0 B=D$. Враховуючи, що оператор B симетричний від'ємнозначений оператор, то обираючи λ_0 достатньо великим додатнім числом можна показати, що оператор D має обмежений обернений оператор D^{-1} . Таким чином можемо записати рівняння (3.14) у вигляді: $u=(\lambda-\lambda_0)D^{-1}Bu+D^{-1}F$

Оператор $D^{-1}B$ як добуток цілком неперервного і обмеженого оператора є оператором цілком неперервним і симетричним. Таким чином для операторного

рівняння (3.14') можна застосувати три теореми Фредгольма, які визначають умови існування і єдиність розв'язку. Міркування по застосуванню теорем Фредгольма повністю повторюють ті міркування, що наведені для задачі Дірихле, таким чином має місце теорема.

Теорема 4 (Про існування узагальненого розв'язку другої та третьої граничної задачі) Друга і третя граничні задачі (3.1), (3.2) мають єдиний розв'язок в $W_2^1(\Omega)$ для будь – якого вільного члена $f \in L_2(\Omega)$ та для усіх дійсних значень параметру λ окрім не більш ніж зліченої множини дійсних значень $\lambda = \lambda_k$, $k = 1, \infty$, які називаються спектром граничної задачі (3.1), (3.2). Кожне спектральне значення має скінчену кратність, усі власні числа від'ємні за винятком декількох перших і єдиною точкою накопичення власних чисел $\varepsilon - \infty$. При умові, коли параметр $\lambda = \lambda_k$ розв'язок граничної задачі існує тоді і лише тоді, коли вільний член f ортогональний усім розв'язкам однорідної задачі (3.1'), (3.2') при $\lambda = \lambda_k$, тобто $\int_{\Omega} f(x) v_{k+j}(x) dx = 0$, $j = \overline{0,r_k-1}$, де r_k - кратність власного числа λ_k . В цьому випадку

розв'язок неєдиний і визначається з точність до лінійної оболонки $\sum_{j=0}^{r_k-1} c_{_j} v_{_{k+j}}$.