THE INVENTOR CLAIMS:

- A batch blend to produce a glass composition useful
 for forming glass fibers of high heat resistance, comprising:
- SiO_2 in an amount ranging from about 46.0 to about 71.0 weight percent,
- Al_2O_3 in an amount ranging from about 9.0 to about 26.0 weight percent,
- ${
 m Na}_2{
 m O}$ in an amount ranging from about 0 to about 5.80 weight percent,
- $\rm K_2O$ in an amount ranging from about 0 to about 5.70 weight 10 percent,
- CaO in an amount ranging from about 3.76 to about 10.5 weight percent,
- MgO in an amount ranging from about 1.84 to about 10.5 weight percent,
- ${\rm Fe_2O_3+FeO}$ in an amount ranging from about 4.64 to about 15.5 weight percent, and
- ${
 m TiO}_2$ in an amount ranging from about 0.72 to about 3.0 weight percent.

8

10

12

- 2. The batch blend of Claim 1, wherein the resulting composition is essentially free of Na_2O and K_2O .
- 3. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 46.23 weight percent,

4 Al_2O_3 in an amount of about 25.91 weight percent,

Na20 in an amount of about 2.40 weight percent,

 K_2O in an amount of about 0.82 weight percent,

CaO in an amount of about 8.27 weight percent,

MgO in an amount of about 4.06 weight percent,

Fe₂O₃+FeO in an amount of about 10.22 weight percent,

 TiO_2 in an amount of about 1.58 weight percent,

 ${\rm ZrO}_2$ in an amount of about 0.01 weight percent,

 P_2O_5 in an amount of about 0.28 weight percent, and

10

- 4. The batch blend of Claim 3, wherein the resulting composition is essentially free of ZrO₂.
- 5. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 61.03 weight percent,

4 Al_2O_3 in an amount of about 11.71 weight percent,

 $\mathrm{Na}_2\mathrm{O}$ in an amount of about 2.35 weight percent,

 K_2O in an amount of about 0.80 weight percent,

CaO in an amount of about 8.10 weight percent,

8 MgO in an amount of about 3.97 weight percent,

 $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 9.99 weight percent,

 $ext{TiO}_2$ in an amount of about 1.55 weight percent,

ZrO2 in an amount of about 0 weight percent,

 P_2O_5 in an amount of about 0.27 weight percent, and

10

6. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 64.95 weight percent,

4 Al_2O_3 in an amount of about 11.13 weight percent,

Na20 in an amount of about 2.24 weight percent,

 $ext{K}_2 ext{O}$ in an amount of about 2.24 weight percent,

CaO in an amount of about 3.76 weight percent,

8 MgO in an amount of about 3.77 weight percent,

 Fe_2O_3+FeO in an amount of about 9.51 weight percent,

 $ext{TiO}_2$ in an amount of about 1.47 weight percent

 ${\rm ZrO}_2$ in an amount of about 0.01 weight percent,

 P_2O_5 in an amount of about 0.70 weight percent, and

MnO in an amount of about 0.22 weight percent.

7. The batch blend of Claim 6, wherein the resulting composition is essentially free of $\rm ZrO_2$.

		8.	A bato	ch blend	l to	produ	ice a	glass	compo	sition	useful
2	for	forming	glass	fibers	of	high h	neat	resista	ance,	compris	sing:

SiO₂ in an amount of about 53.69 weight percent,

Al₂O₃ in an amount of about 13.84 weight percent,

Na₂O in an amount of about 2.79 weight percent,

K₂O in an amount of about 0.95 weight percent,

CaO in an amount of about 9.61 weight percent,

MgO in an amount of about 4.71 weight percent,

Fe₂O₃+FeO in an amount of about 11.87 weight percent,

TiO₂ in an amount of about 1.83 weight percent,

ZrO₂ in an amount of about 0 weight percent,

 P_2O_5 in an amount of about 0.38 weight percent, and MnO in an amount of about 0.33 weight percent.

		9.	A bato	ch blend	d to	o prod	duce a	a glass	compo	sition	useful
2	for	forming	glass	fibers	οf	high	heat	resist	ance,	compris	sing:

 SiO_2 in an amount of about 55.25 weight percent,

- 4 Al_2O_3 in an amount of about 18.25 weight percent,
 - $\mathrm{Na}_{2}\mathrm{O}$ in an amount of about 2.30 weight percent,
- 6 K₂O in an amount of about 1.80 weight percent,
 - . CaO in an amount of about 8.38 weight percent,
- 8 MgO in an amount of about 3.97 weight percent,
 - Fe₂O₃+FeO in an amount of about 8.50 weight percent,
- $_{10}$ TiO₂ in an amount of about 1.09 weight percent,
 - ${\rm ZrO}_2$ in an amount of about 0.31 weight percent,
- P_2O_5 in an amount of about 0.20 weight percent, and
 - MnO in an amount of about 0.18 weight percent.

8

10

12

	10.	A bato	ch blend	to produce	a glass co	mposition useful
2	for forming	glass	fibers of	high heat	resistance	, comprising:

 SiO_2 in an amount of about 67.55 weight percent,

 $\mathrm{Al}_{2}\mathrm{O}_{3}$ in an amount of about 9.76 weight percent,

 ${
m Na_2O}$ in an amount of about 1.96 weight percent,

 K_2O in an amount of about 0.67 weight percent,

CaO in an amount of about 6.74 weight percent,

MgO in an amount of about 3.30 weight percent,

 $\mathrm{Fe}_{2}\mathrm{O}_{3}\mathrm{+FeO}$ in an amount of about 8.32 weight percent,

TiO2 in an amount of about 1.28 weight percent,

 ${\rm ZrO}_2$ in an amount of about 0.01 weight percent,

 $extsf{P}_2 extsf{O}_5$ in an amount of about 0.22 weight percent, and

11. The batch blend of Claim 10, wherein the resulting
2 composition is essentially free of ZrO₂.

12. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

SiO₂ in an amount of about 70.02 weight percent,

Al₂O₃ in an amount of about 10.14 weight percent,

Na₂O in an amount of about 2.03 weight percent,

K₂O in an amount of about 0.01 weight percent,

CaO in an amount of about 6.53 weight percent,

MgO in an amount of about 4.26 weight percent,

Fe₂O₃+FeO in an amount of about 5.26 weight percent,

TiO₂ in an amount of about 1.33 weight percent,

ZrO₂ in an amount of about 0 weight percent,

		13.	A bat	ch bler	nd to	pro	oduce	a	glass	comp	position	useful
2	for	forming	glass	fibers	of l	high	heat	re	esistar	ice,	compris	ing:

 SiO_2 in an amount of about 46.47 weight percent,

4 Al_2O_3 in an amount of about 25.91 weight percent,

 $\mathrm{Na}_{2}\mathrm{O}$ in an amount of about 2.41 weight percent,

 K_2O in an amount of about 0.95 weight percent,

CaO in an amount of about 8.31 weight percent,

MgO in an amount of about 4.08 weight percent,

 $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 10.27 weight percent, and

10 TiO₂ in an amount of about 1.60 weight percent.

	14. A batch blend to produce a glass composition useful
2	for forming glass fibers of high heat resistance, comprising:
	SiO_2 in an amount of about 66.92 weight percent,
4	$\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 11.42 weight percent,
	${ m Na}_2{ m O}$ in an amount of about 2.59 weight percent,
6	$ ext{K}_2 ext{O}$ in an amount of about 2.59 weight percent,
	CaO in an amount of about 3.81 weight percent,

 $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 8.66 weight percent, and

TiO₂ in an amount of about 0.72 weight percent.

		15. A	batch	blend to produce a glass composition useful
2	for	forming	glass	fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 55.50 weight percent,

- $A1_20_3$ in an amount of about 18.33 weight percent,
 - $\mathrm{Na}_{2}\mathrm{O}$ in an amount of about 2.31 weight percent,
- 6 K₂O in an amount of about 1.81 weight percent,
 - CaO in an amount of about 8.42 weight percent,
- 8 MgO in an amount of about 3.99 weight percent,
 - $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 8.54 weight percent, and
- 10 TiO2 in an amount of about 1.10 weight percent.

	16. A batch blend to produce a glass composition useful
2	for forming glass fibers of high heat resistance, comprising:
	SiO_2 in an amount of about 67.83 weight percent,
4	$\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 9.80 weight percent,
	Na ₂ O in an amount of about 1.97 weight percent,
6	K_2O in an amount of about 0.67 weight percent,
	CaO in an amount of about 6.77 weight percent,

8 MgO in an amount of about 3.31 weight percent,

 $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 8.36 weight percent, and

10 TiO₂ in an amount of about 1.29 weight percent.

2	17. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:
	SiO_2 in an amount of about 70.31 weight percent,
4	$\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 10.18 weight percent,
	${ m Na_2O}$ in an amount of about 2.03 weight percent,
6	$ ext{K}_2 ext{O}$ in an amount of about 0.01 weight percent,
	CaO in an amount of about 6.55 weight percent,
8	MgO in an amount of about 4.27 weight percent,

 $\mathrm{Fe_2O_3} + \mathrm{FeO}$ in an amount of about 5.28 weight percent, and

 TiO_2 in an amount of about 1.37 weight percent.

18. The blend according to Claim 13, wherein the batch is substantially free of TiO₂ and is resistant to heat and fire for a substantial period of at least three hours to prevent burn-through by the conversion of at least a portion of the fibers into a fiber mat of ceram glass.

19. The blend according to Claim 14, wherein the batch is substantially free of TiO₂ and is resistant to heat and fire for a substantial period of at least three hours to prevent burn-through by the conversion of at least a portion of the fibers into a fiber mat of ceram glass.

20. The blend according to Claim 17, wherein the batch is substantially free of TiO₂ and is resistant to heat and fire for a substantial period of at least three hours to prevent burn-through by the conversion of at least a portion of the fibers into a fiber mat of ceram glass.

- 21. A batch blend to produce a glass composition useful 2 for forming glass fibers of high heat resistance, comprising:
- SiO_2 in an amount ranging from about 49.0 to about 76.0 weight percent,
- $$\mathrm{B}_2\mathrm{O}_3$$ in an amount ranging from about 0 to about 9 weight 6 percent,
- Li $_2$ O in an amount ranging from about 0 to about 9 weight percent,
- $${\rm Al}_2{\rm O}_3$$ in an amount ranging from about 2.0 to about 26.0 $% {\rm C}_{\rm C}$ weight percent,
- ${\rm Na}_2{\rm O}$ in an amount ranging from about 0 to about 12.0 weight percent,
- $$\rm K_2O$$ in an amount ranging from about 0 to about 6.0 weight 14 $\,$ percent,
- CaO in an amount ranging from about 3.0 to about 15.0 weight percent,
- MgO in an amount ranging from about 2.0 to about 15.0 weight percent,
- $${\rm Fe}_2{\rm O}_3{\rm +FeO}$$ in an amount ranging from about 1.0 to about 20 $\,$ 18.0 weight percent,
- ${
 m TiO}_2$ in an amount ranging from about 0 to about 4.0 weight 22 percent, and
- $$\mathrm{P}_2\mathrm{O}_5$$ in an amount ranging from about 0 to about 4.0 weight percent.

6

8

12

22. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

SiO₂ in an amount of about 67.55 weight percent,

 $\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 9.76 weight percent,

Na₂O in an amount of about 0.67 weight percent,

 B_2O_3 in an amount of about 1.96 weight percent,

CaO in an amount of about 6.74 weight percent,

MgO in an amount of about 3.30 weight percent,

 Fe_2O_3+FeO in an amount of about 8.32 weight percent,

10 TiO₂ in an amount of about 1.28 weight percent,

 ZrO_2 in an amount of about 0.01 weight percent,

 P_2O_5 in an amount of about 0.22 weight percent, and

6

8

12

		23.	A bat	tch ble	end t	o pro	oduce	a	glass	comp	osition	useful
2	for	forming	glass	fibers	sof	high	heat	re	sistar	nce,	comprisi	ing:

 SiO_2 in an amount of about 67.55 weight percent,

 Al_2O_3 in an amount of about 9.76 weight percent,

Na₂O in an amount of about 0.67 weight percent,

Li20 in an amount of about 1.96 weight percent,

CaO in an amount of about 6.74 weight percent,

MgO in an amount of about 3.30 weight percent,

Fe₂O₃+FeO in an amount of about 8.32 weight percent,

10 TiO₂ in an amount of about 1.28 weight percent,

ZrO2 in an amount of about 0.01 weight percent,

 P_2O_5 in an amount of about 0.22 weight percent, and

	24. A batch blend to produce a glass composition useful
2 for form	ning glass fibers of high heat resistance, comprising:
	SiO ₂ in an amount of about 67.55 weight percent,
4	$\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 9.76 weight percent,
	Na ₂ O in an amount of about 0.67 weight percent,
6	K ₂ O in an amount of about 1.96 weight percent,
	CaO in an amount of about 6.74 weight percent,
8	MgO in an amount of about 3.30 weight percent,
	Fe ₂ O ₃ +FeO in an amount of about 8.32 weight percent,
10	${ m TiO}_2$ in an amount of about 1.28 weight percent,
	${ m ZrO}_2$ in an amount of about 0.01 weight percent,

 P_2O_5 in an amount of about 0.22 weight percent, and

6

8

10

		25.	A ba	tch ble	nd to	produce	a	glass	comp	position	useful
2	for	forming	glass	fibers	of h	igh heat	r	esista	nce,	comprisi	ing:

SiO₂ in an amount of about 49.0 weight percent,

 Al_2O_3 in an amount of about 23.0 weight percent,

 B_2O_3 in an amount of about 2.35 weight percent,

Na₂O in an amount of about 1.04 weight percent,

CaO in an amount of about 8.31 weight percent,

MgO in an amount of about 4.08 weight percent,

Fe₂0₃+FeO in an amount of about 10.27 weight percent, and

 TiO_2 in an amount of about 1.59 weight percent.

8

		26.	A b	atch	blend	l to	proc	duce	a	glass	comp	osition	useful
2	for	forming	glas	s fil	ers o	of h	igh h	heat	re	sistar	ice,	comprisi	ing:

 SiO_2 in an amount of about 67.36 weight percent,

 Al_2O_3 in an amount of about 9.76 weight percent,

Li20 in an amount of about 2.86 weight percent,

Na₂O in an amount of about 1.00 weight percent,

CaO in an amount of about 5.28 weight percent,

MgO in an amount of about 3.80 weight percent,

 Fe_2O_3+FeO in an amount of about 8.46 weight percent, and

10 TiO₂ in an amount of about 1.48 weight percent.

б

- 27. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:
 - SiO_2 in an amount of about 65.16 weight percent,
- 4 Al_2O_3 in an amount of about 11.18 weight percent,
 - $\mathrm{B}_{2}\mathrm{O}_{3}$ in an amount of about 3.01 weight percent,
 - CaO in an amount of about 7.14 weight percent,
 - MgO in an amount of about 3.99 weight percent,
- $_{8}$ Fe $_{2}$ O $_{3}$ +FeO in an amount of about 8.95 weight percent, and
 - ${
 m TiO}_2$ in an amount of about 0.57 weight percent.

6

8

10

		28.	A bat	tch ble	nd to	o prod	luce a	glass	comp	osition	useful
2	for	forming	glass	fibers	of l	high h	eat r	esistar	ice,	comprisi	ing:

 SiO_2 in an amount of about 56.01 weight percent,

 Al_2O_3 in an amount of about 13.92 weight percent,

 $\mathrm{B}_{2}\mathrm{O}_{3}$ in an amount of about 4.01 weight percent,

Na20 in an amount of about 2.92 weight percent,

 ${
m K}_2{
m O}$ in an amount of about 0.96 weight percent,

CaO in an amount of about 8.40 weight percent,

Fe₂O₃+FeO in an amount of about 11.94 weight percent, and

 ${
m TiO}_2$ in an amount of about 1.84 weight percent.

6

8

		29. A	batc	h bler	nd t	o pro	oduce	a g	glass	comp	osition	useful
2	for for	ming gl	ass f	ibers	of	high	heat	res	sistar	ce,	comprisi	ing:

 SiO_2 in an amount of about 66.51 weight percent,

 Al_2O_3 in an amount of about 9.34 weight percent,

 $\mathrm{Li}_2\mathrm{O}$ in an amount of about 3.41 weight percent,

Na₂O in an amount of about 2.81 weight percent,

CaO in an amount of about 6.41 weight percent,

MgO in an amount of about 2.99 weight percent, and

 $\text{Fe}_2\text{O}_3\text{+FeO}$ in an amount of about 8.53 weight percent.

- 30. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:
 - SiO_2 in an amount of about 68.00 weight percent,
- 4 Al_2O_3 in an amount of about 9.06 weight percent,
 - $\mathrm{B}_{2}\mathrm{O}_{3}$ in an amount of about 2.01 weight percent,
- Na₂O in an amount of about 2.33 weight percent,
 - ${
 m K_2O}$ in an amount of about 0.42 weight percent,
- 8 CaO in an amount of about 6.23 weight percent,
 - MgO in an amount of about 3.06 weight percent,
- 10 Fe₂O₃+FeO in an amount of about 7.70 weight percent, and
 - ${
 m TiO}_2$ in an amount of about 1.19 weight percent.

6

8

	31.	A batch	blend t	o produce	a glass	composition	useful
2	for forming	glass fi	bers of	high heat	resistan	ce, comprisi	ng:

 SiO_2 in an amount of about 65.24 weight percent,

 $\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 2.50 weight percent,

 $\mathrm{B}_2\mathrm{O}_3$ in an amount of about 6.00 weight percent,

Na20 in an amount of about 13.00 weight percent,

CaO in an amount of about 6.70 weight percent,

MgO in an amount of about 1.85 weight percent,

 $\mathrm{Fe}_{2}\mathrm{O}_{3}\mathrm{+FeO}$ in an amount of about 4.01 weight percent, and

10 TiO₂ in an amount of about 0.70 weight percent.

	32. A batch blend to produce a glass composition useful
2	for forming glass fibers of high heat resistance, comprising:
	SiO_2 in an amount of about 67.50 weight percent,
4	$\mathrm{Al}_2\mathrm{O}_3$ in an amount of about 9.34 weight percent,
	$\mathrm{Li}_2\mathrm{O}$ in an amount of about 2.31 weight percent,
6	K_2O in an amount of about 0.81 weight percent,
	CaO in an amount of about 8.41 weight percent,

MgO in an amount of about 2.00 weight percent,

 $\mathrm{Fe}_{2}\mathrm{O}_{3}\mathrm{+FeO}$ in an amount of about 8.53 weight percent, and

10 TiO₂ in an amount of about 1.10 weight percent.

6

8

33. A batch blend to produce a glass composition useful
for forming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 46.47 weight percent,

 Al_2O_3 in an amount of about 25.91 weight percent,

 $\mathrm{B}_{2}\mathrm{O}_{3}$ in an amount of about 2.41 weight percent,

 Na_2O in an amount of about 2.55 weight percent,

CaO in an amount of about 8.31 weight percent,

MgO in an amount of about 4.08 weight percent, and

 $\text{Fe}_2\text{O}_3\text{+FeO}$ in an amount of about 10.27 weight percent.

6

8

34. A batch blend to produce a glass composition useful forforming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 66.92 weight percent,

 Al_2O_3 in an amount of about 11.42 weight percent,

 Na_2O in an amount of about 2.59 weight percent,

 B_2O_3 in an amount of about 4.24 weight percent,

CaO in an amount of about 4.02 weight percent,

MgO in an amount of about 0.81 weight percent, and

 $\text{Fe}_2\text{O}_3\text{+FeO}$ in an amount of about 10.00 weight percent.

6

8

35. A batch blend to produce a glass composition useful for forming glass fibers of high heat resistance, comprising:

 SiO_2 in an amount of about 70.31 weight percent,

 $\mathrm{Al}_{2}\mathrm{O}_{3}$ in an amount of about 8.30 weight percent,

Na₂O in an amount of about 2.03 weight percent,

 B_2O_3 in an amount of about 1.01 weight percent,

CaO In an amount of about 6.55 weight percent,

MgO in an amount of about 3.27 weight percent, and

 $\text{Fe}_{2}\text{O}_{3}\text{+FeO}$ in an amount of about 8.53 weight percent.