ECE 3150: Microelectronics

Spring 2015

Homework 5

Due on March. 05, 2015 at 5:00 PM

Suggested Readings:

a) Lecture notes

Important Notes:

1) MAKE SURE THAT YOU INDICATE THE UNITS ASSOCIATED WITH YOUR NUMERICAL ANSWERS. OTHERWISE NO POINTS WILL BE AWARDED.

2) Unless noted otherwise, always assume room temperature.

Problem 5.1: (A PFET Amplifier driving a load)

Consider the following PFET amplifier circuit:

Assume:

$$W = 150 \ \mu \text{m}$$

 $L = 15 \ \mu \text{m}$
 $\mu_p C_{ox} = 50 \ \mu \text{A}/\text{V}^2$
 $\lambda_p = .067 \ \text{I/V}$
 $V_{DD} = 2.5 \ \text{V}$
 $R_L = 10 \ \text{k}\Omega$
 $I_{BIAS} = 100 \ \mu \text{A}$
 $V_{TP} = -0.5 \ \text{V}$

a) What should be the value of V_{IN} such that $V_{OUT} = 0 V$?

- b) Draw a small signal model of the entire circuit.
- c) Find and expression for and calculate the numerical value of the small signal gain at the bias value calculated in part (a):

$$A_{V} = \frac{v_{out}}{v_{in}} = ?$$

- d) What are the maximum and minimum values of the output voltage such that the PFET remains in saturation?
- e) What are the maximum and minimum values of the input voltage such that the PFET remains in saturation?

Problem 5.2: (A NFET former exam problem)

A NFET (of unknown gate material) has the $I_D - vs - V_{DS}$ curve shown below for $V_{GS} = 4 V$ and $V_{BS} = 0 V$. The threshold voltage V_{TN} of the device is 1 V when $V_{BS} = 0 V$.

Assume:

$$W = 25 \mu \text{m}$$

 $L = 10 \mu \text{m}$
 $\varepsilon_{ox} = 3.45 \times 10^{-13} \text{ F/cm}$
 $t_{ox} = 10^{-6} \text{ cm}$
 $\lambda_n = 0$
 $N_a = 10^{17} \text{ 1/cm}^3$

- a) What is the drain-to-source voltage at which the device saturates when $V_{GS} = 4 V$?
- b) What is the electron mobility (cm²/V-s) in the channel?
- c) What is the inversion layer sheet charge density (in C/cm²) in the FET channel at the source end when $V_{GS} = 4 V$ and $V_{DS} = 1 V$ and $V_{BS} = 0 V$?

- d) What is the inversion layer sheet charge density (in C/cm²) in the FET channel at the drain end when $V_{GS} = 4 V$ and $V_{DS} = 1 V$ and $V_{BS} = 0 V$?
- e) For the same bias conditions as in parts (c) and (d), what is the drift velocity of electrons (cm/s) near the source end?
- f) For the same bias conditions as in parts (c) and (d), what is the drift velocity of electrons (cm/s) near the source end?
- g) What is the inversion layer sheet charge density (in C/cm²) in the FET channel at the source end when $V_{GS} = 4 V$ and $V_{DS} = 5 V$ and $V_{BS} = 0 V$?
- h) What is the inversion layer sheet charge density (in C/cm^2) in the FET channel at the drain end when $V_{GS} = 4 V$ and $V_{DS} = 5 V$ and $V_{BS} = 0 V$?
- i) Now suppose $V_{GS} = 4 V$ and $V_{DS} = 5 V$ and $V_{BS} = -5 V$. Find the FET current (in Amps).