Testing of Hypothesis

- If we test whether the population mean has a specified value μ_0 , then the null hypothesis would be expressed as H_0 : $\mu = \mu_0$
- The alternative hypothesis may be formulated suitably as anyone of the following:
- **(i)** H_1 : $\mu \neq \mu_0$ (two- sided alternative) $\mu \neq \mu_0$

• (ii) H_1 : $\mu > \mu_0$ (one-sided (right) alternative)

• (iii) H_1 : $\mu < \mu_0$ (one-sided (left) alternative)

man.

Types of test	Level	of	significance
	1%	5%	10%
Two tailed test	2.58	1.96	1.645
One tailed test	2.33	1.645	1.28

TYPE I: TEST OF SIGNIFICANCE OF SINGLE MEAN (POPULATION VARIANCE IS KNOWN)

Formulate:

Ho: mill hypothesis

- \bullet H₀: μ = a specific value
- ⊕ H₁: μ≠ a specific value

il -> population man

- Compare the computed value of z with table value at $\alpha\%$ level.
- If |z| < 1.96 H_0 is accepted at 5% level otherwise rejected.
- If |z| < 2.58 H_0 is accepted at 1% level otherwise rejected.

Peoblem.

A company producing LED bulbs finds that mean life span of the population of its bulbs is 2000 hours with a standard derivation of 150 hours. A sample of 100 bulbs randomly chosen is found to have the mean life span of 1950 hours. Test, at 5% level of significantly different from 2000 hours.

of the bulbs is significantly different from 2000 hours.

If n = 100SD of population. 0 = 150Population mean 1 = 2000Sample mean. 2 = 1950level of significance 2 = 5% 2 = 2000

hy:

Ho: U = 2000 (mean life span of the bulb is not significantly different from 2000 hours)

H1: M = 2000 (significantly differen)

(two tail test)

2. A sample of 900 members is found to have a mean 3.5 cm. Can it be reasonably regarded as a simple sample from a large population whose mean is 3.38 cm and SD 2.4 cm.

Sample mean 2 - 3.5 0 = 2,4 Ho: M = 3.38 H1: 1 + 3.38 (two tail) Ztable (51. two lail) = 1.96 Ho is accepted.

3. a survey of 40 senior citizens selected at random showed that they watched TV on an average of 24 hours per week with SD of 10 hours. Test the hypothesis H_0 : μ =30 versus H1: μ <30 at α =0.05 level.

 $4n \quad n = 40 \quad \bar{\chi} = 24 \quad S = 10$ Ho: N=30 L: 0.05 = 5% H1: U 230 (ometail) Note: pppla. SD & hot howen. $z : \overline{x} - \mu = 24 - 30$ 3/vn = -3.79 121 - 3.79 2 tab (5 % + Ovetail) = 1.645 121: 3.79 > 1..645 ti, is rejected Conclusion: