Parking Partner

Lurjan Sela COE Jude Clidoro COE Julia Wojcik COE

Faculty Advisor: Dr. Sosnowski

Project Objectives

- Use a microcontroller and attachable sensors to assist drivers with parking
- Use an Arduino to store the data gathered from the sensors
- Deliver instructions to the linked LED strips so that the driver can be guided
- Alert the driver that something is in the proximity of the sensors
- Promote the system to customers who lack experience with parking or access to smart features

Potential Applications and Societal Benefits

- Aid for inexperienced drivers
- Drivers with a fear of parking
- Drivers without cars that have parking assist features
- Preventing drivers from damaging other cars or their own car

Approach

- Implemented an ELEGOO 2560 Mega Board to interact with HC-SR04 sensors, LED strips, and a buzzer
- Attach ultrasonic sensors at the corner bumpers of the car
- Created a software program in Arduino IDE
 - Takes data from sensors to interact with the LED strips
 - LED strips with light up either RED, GREEN, or YELLOW depending on the distance read
 - When the distance reaches a certain limit, the program makes the buzzer go off to alert the driver

FlowChart

Block Diagram

Sensor

Microcontroller

Realistic Demonstration

Multitasking Demonstration

Verification and validation

```
241, 242, 240 and 204 cm
241, 242, 228 and 203 cm
243, 241, 242 and 201 cm
241, 243, 242 and 201 cm
241, 242, 239 and 203 cm
```

Distances collected from the ultrasonic sensors

Demonstration on where the sensors can be attached

Verification and validation

Right half of the LED strip lighting up RED, due to object detected by front-right sensor

Left half of the LED strip lighting up RED, due to object detected by front-left sensor

BUDGET

Components	Cost
HC-SR04 Ultrasonic Module Sensors (5)	\$12.99
Mega R3 Board ATmega 2560 + USB Cable	\$20.99
BTF-Lighting WS2812B RGB (2 strips of 6.5in)	\$2.50
ELEGOO Dupont Wires	\$6.98
Adafruit Buzzer 5V	\$6.99
3-D Printed Housings	\$15.00
Total	\$65.45

Learning Experience

- Learned how to utilize hardware and software components together to create a real-world application
- Understood and worked around design limitations
 - How far the sensors can detect?
 - What is the most efficient way to have sensors interacting with all electrical components?
- Alternative Approaches:
 - Apply a Raspberry Pi controller
 - Include a Bluetooth module
 - Phone application
 - Include more diverse set of sensors
 - Proximity sensors
 - Camera sensors

Future potential: Development

Hardware:

- Add more Sensors: increase coverage area or add redundancy in case a sensor fails
- Multi-Threaded Microcontroller: Use a microcontroller will multiple cores and a lower frequency
- Seperate Battery:

Machine Learning:

- Classify objects based on their shape and size
 - Cars vs Pedestrians vs Curbs

Camera:

- To recognize objects in real time
- Feedback Mechanism
 - Voice prompts or an LCD screen to alert the driver

Future potential: Market

- Home application
 - Integrate with smart homes
 - Alerts when someone is approaching their home
 - Alerts when someone is approaching their vehicle
- Driving Schools
 - The device can be used by driving instructors to aid in teaching students how to drive and park
- Commercial
 - The device can be used by commercial trucks to help avoid collisions at loading docks