Second Assignment

Andrea Lavino March 2025

Contents

L	Ver	y Busy Expressions													;
	1.1	Problem formalization													,
	1.2	Example													
2	Dor	ninator Analysis													
		Problem formalization													
	2.2	Example													
3	Cor	stant Propagation													
	3.1	Problem formalization													
	3.2	Example													

1 Very Busy Expressions

The search for very busy expressions can be useful for code hoisting, since very busy expressions can be moved from the place they are up to a joint point from which the flow departures.

1.1 Problem formalization

Formally an expression is said to be **very busy** when it is computed along each path that part from the point p without any redefinition of its operands. This information can be used to move the expression to a point of the code in which is computation can be used by all the paths that use the expression.

	Very Busy Expressions
Domain	Sets of expressions
Direction	Backward
	$in[b] = f_b(out[b])$
	$out[b] = \wedge in[succ(b)]$
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$
Meet Operation (\land)	Π
Boundary Condition	$out[exit] = \varnothing$
Initial interior points	out[b] = U

Table 1: Very busy expressions summary table

1.2 Example

Figure 1: Very Busy Expression Example

	Iteration	n 1	Iteration 2					
	IN[B]	OUT[B]	IN[B]	OUT[B]				
BB1	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$				
BB2	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$				
BB3	$\{b-a\}, \{a-b\}$	$\{a-b\}$	$\{b-a\}, \{a-b\}$	$\{a-b\}$				
BB4	$\{a-b\}$	Ø	$\{a-b\}$	Ø				
BB5	$\{b-a\}$	Ø	$\{b-a\}$	Ø				
BB6	Ø	$\{a-b\}$	Ø	$\{a-b\}$				
BB7	$\{a-b\}$	Ø	$\{a-b\}$	Ø				
BB8	Ø	Ø	Ø	Ø				

Table 2: Very Busy Expression Algorithm Execution Table

2 Dominator Analysis

Dominator analysis is fundamental to create the single static assignment form.

2.1 Problem formalization

A basic block B_1 dominates another block B_2 if it is encountered in every path from entry to B_2 .

	Dominator Analysis
Domain	Sets of Basic Blocks
Direction	Forward
Transfer function	$f_b(x) = \{x\} \cup (\bigcap_{m \in preds(x)} f_b(m))$
Meet Operation (\land)	Λ
Boundary Condition	$Dom[entry] = \{entry\}$
Initial interior points	$Dom[b] = N \forall b \neq entry, \text{ with } N$
	the number of basic blocks of the
	CFG

Table 3: Dataflow Problem X Properties

2.2 Example

Figure 2: Dominance Analysis example

	DOM[B]
A	$\{A\}$
В	$\{A,B\}$
\mathbf{C}	$\{A,C\}$
D	$\{A, C, D\}$
\mathbf{E}	$\{A,C,E\}$
F	$\{A,C,F\}$
\mathbf{G}	$\{A\}$

Table 4: Dominance analysis execution table

3 Constant Propagation

The constant propagation problem aims at finding what are the couples $< variable, constant\ value >$ that are availables in a certain basic block, so that the variable constant value can be propagated across the blocks.

3.1 Problem formalization

We say that a couple < variable, constant > is valid at block n if it is guaranteed that the variable x gets that constant value every time that the block is reached.

	Constant Propagation
Domain	Sets of variables and their con-
	stant values
Direction	Forward
	$in[b] = \land (out[pred(b)])$
	$out[b] = f_b(in[b])$
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$
Meet Operation (\land)	Π
Boundary Condition	$out[entry] = \varnothing in[entry] = \varnothing$
Initial interior points	$out[b] = \varnothing in[b] = U$

Table 5: Constant Propagation Problem Summary Table

3.2 Example

Figure 3: Constant Propagation example

	Iteration 1					
	IN[B]	$\mathrm{OUT}[\mathrm{B}]$				
BB1	Ø	< k, 2 >				
BB2	Ø	< k, 2 >				
BB3	< k, 2 >	< k, 2 >				
BB4	< k, 2 >	< k, 2 >, < a, 4 >				
BB5	< k, 2 >	< k, 2 >, < a, 4 >				
BB6	< k, 2 >, < a, 4 >	< k, 2 >, < a, 4 >, < x, 5 >				
BB7	< k, 2 >, < a, 4 >	< k, 2 >, < a, 4 >, < x, 8 >				
BB8	< k, 2 >, < a, 4 >	< k, 4 >, < a, 4 >				
BB9	< k, 2 >, < a, 4 >	< k, 2 >, < a, 4 >				
BB10	< k, 4 >, < a, 4 >	< k, 2 >, < a, 4 >, < b, 2 >				
BB11	< k, 4 >, < a, 4 >, < b, 2 >	< k, 4 >, < a, 4 >, < b, 2 >, < x, 8 >				
BB12	< k, 4 >, < a, 4 >,	< k, 2 >, < a, 4 >,				
DD12	< b, 2 >, < x, 8 >	< b, 2 >, < x, 8 >, < y, 8 >				
BB13	< k, 4 >, < a, 4 >,	< k, 5 >, < a, 4 >,				
DD10	< b, 2 >, < x, 8 >, < y, 8 >	< b, 2 >, < x, 8 >, < y, 8 >				
BB14	< k, 4 >, < a, 4 >	< k, 4 >, < a, 4 >				
BB15	< k, 4 >, < a, 4 >	< k, 4 >, < a, 4 >				

Table 6: Constant Propagation Algorithm Execution Table (Iteration 1)

	Iteration 2						
	IN[B]	OUT[B]					
BB1	Ø	< k, 2 >					
BB2	Ø	< k, 2 >					
BB3	< k, 2 >	< k, 2 >					
BB4	< k, 2 >	< k, 2 >, < a, 4 >					
BB5	< k, 2 >	< k, 2 >, < a, 4 >					
BB6	< k, 2 >, < a, 4 >	< k, 2 >, < a, 4 >, < x, 5 >					
BB7	< k, 2 >, < a, 4 >	< k, 2 >, < a, 4 >, < x, 8 >					
BB8	< k, 2 >, < a, 4 >	< k, 4 >, < a, 4 >					
BB9	< a, 4 >	$\langle a, 4 \rangle$					
BB10	< a, 4 >	< a, 4 >, < b, 2 >					
BB11	< a, 4 >, < b, 2 >	< k, 8>, < a, 4>, < b, 2>					
BB12	< a, 4 >, < b, 2 >	< a, 4>, < b, 2>, < y, 8>					
BB13	< a, 4>, < b, 2>, < y, 8>	< k, 5 >, < a, 4 >, < b, 2 >, < y, 8 >					
BB14	< a, 4 >	$\langle a, 4 \rangle$					
BB15	< a, 4 >	$\langle a, 4 \rangle$					

Table 7: Constant Propagation Algorithm Execution Table (Iteration 2)