Math~342W/642/742W

Recitation – Day # 7 (2.25.25)

I. Linear Algebra Basics for Vectors		
Define the following for a set of vector	fors $V = \{ oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k \} \in \mathbb{R}^n$:	
(i) $\operatorname{span}(V)$:		
(ii) linearly independent set V :		
II. Linear Algebra Basics for Matrices		
Given an $n \times p$ matrix $A \in \mathbb{R}^{n \times p}$, de	efine the following:	
(i) $\operatorname{co}\ell(A)$:	(iii) $rank(A)$:	
(ii) $row(A)$:	(iv) $\text{null}(A)$:	
Define the matrix multiplication of t	two matrices $A \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times m}$:	
Define the matrix-column represe	entation for the matrix product AB :	
Define the matrix-row representa	ation for the matrix product AB :	

III. More on Rank

Provide justification for the following statements on rank:

1. Given $A \in \mathbb{R}^{n \times p}$, rank $(A) = \text{rank}(A^T)$.

2. Given $A \in \mathbb{R}^{n \times p}$, rank(A) = rank(UA) = rank(AV) whenever U, V are invertible matrices.

3. Given $A \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times m}$, (i) $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$, and (ii) $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$

IV. Equivalent Statements

Complete the following list of equivalent statements for $A \in \mathbb{R}^{n \times p}$ (assume n > p):

1. rank(A) = p.

4.

2.

5.

3.

6.