

JP7336875

Biblio

Page 1

Drawing

esp@cenet

OVERHEAT DETECTOR

Patent Number: JP7336875

Publication date: 1995-12-22

Inventor(s): NOSE TADASHI

Applicant(s): NEC KANSAI LTD

Requested Patent: [JP7336875](#)

Application Number: JP19940132720 19940615

Priority Number(s):

IPC Classification: H02H5/04

EC Classification:

Equivalents: JP3334337B2

Abstract

PURPOSE: To maintain specified detection accuracy without deteriorating detection accuracy even when dispersion on the manufacture of an overheat detector is generated at reference voltage output from a band gap circuit section.

CONSTITUTION: In an overheat detector, in which reference voltage VR having no temperature dependency is formed by a band gap circuit section 11 on the basis of power-supply voltage VCC, reference voltage VR and detecting voltage VB being formed by an element for detecting an overheat and having temperature dependency are compared, and an overheat detecting signal S is output on the basis of the result of the comparison, diodes D1, D2 as circuit elements forming potential difference having temperature dependency in the band gap circuit section 11 are operated as the elements for detecting the overheat in combination.

Data supplied from the **esp@cenet** database - I2

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-336875

(43)公開日 平成7年(1995)12月22日

(51)Int.Cl.⁶

H 02 H 5/04

識別記号

府内整理番号

H

F I

技術表示箇所

(21)出願番号

特願平6-132720

(22)出願日

平成6年(1994)6月15日

(71)出願人

000156950 関西日本電気株式会社

滋賀県大津市晴嵐2丁目9番1号

(72)発明者

能勢 忠司 滋賀県大津市晴嵐2丁目9番1号 関西日本電気株式会社内

(74)代理人

弁理士 江原 省吾 (外2名)

(54)【発明の名称】 過熱検出回路

(57)【要約】

【目的】 バンドギャップ回路部から出力される基準電圧にその製造上のバラツキが生じても、検出精度が低下することなく、所定の検出精度を維持することにある。

【構成】 電源電圧 V_{CC} に基づいてバンドギャップ回路部 11 により温度依存性のない基準電圧 V_B を生成し、前記基準電圧 V_B と過熱検出用素子により生成した温度依存性のある検出電圧 V_A とを比較し、その比較結果に基づいて過熱検出信号 S を出力するようにした過熱検出回路において、前記バンドギャップ回路部 11 内で温度依存性のある電位差を生成する回路素子であるダイオード D_1 , D_2 を過熱検出用素子に兼用する。

【特許請求の範囲】

【請求項 1】 電源電圧に基づいてバンドギャップ回路部により温度依存性のない基準電圧を生成し、前記基準電圧と過熱検出用素子により生成した温度依存性のある検出電圧とを比較し、その比較結果に基づいて過熱検出信号を出力するようにした過熱検出回路において、前記バンドギャップ回路部内で温度依存性のある電位差を生成する回路素子を過熱検出用素子に兼用したことを特徴とする過熱検出回路。

【請求項 2】 前記バンドギャップ回路部内に設けられた回路素子がダイオードであることを特徴とする請求項 1 記載の過熱検出回路。

【請求項 3】 前記回路素子が複数のダイオードを直列接続したものであることを特徴とする請求項 2 記載の過熱検出回路。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は過熱検出回路に関し、詳しくは、IC等に組み込まれ、その内部温度の異常上昇による過熱状態を検出して回路を保護する過熱検出回路に関する。

【0002】

【従来の技術】例えば、IC等には、その内部温度の異常上昇による過熱状態を検出して回路を保護するために過熱検出回路を組み込むことが一般的になされている。

【0003】この種の過熱検出回路は、図3に示すように温度依存性のない基準電圧 V_R 〔以下、単に基準電圧と称す〕を生成するバンドギャップ回路部1と、そのバンドギャップ回路部1の後段に設けられ、前記基準電圧 V_R を分割して温度依存性のない電圧 V_A と温度依存性のある検出電圧 V_B とを比較し、その比較結果を検出信号Sとして出力する判定回路部2で構成される。

【0004】前記バンドギャップ回路部1は、複数の抵抗 $R_1 \sim R_3$ 、PチャンネルのMOSトランジスタTr₁、複数のダイオードD₁～D₄、オペアンプOP₁により回路構成され、電源電圧 V_{CC} に基づいて温度依存性のない基準電圧 V_R を生成し、オペアンプOP₁及びMOSトランジスタTr₁を介して出力する。

【0005】一方、判定回路部2は、複数の抵抗 $R_4 \sim R_7$ 、過熱検出用素子としてのダイオードD₅、D₆、オペアンプOP₂、NチャンネルのMOSトランジスタTr₂により回路構成され、前記バンドギャップ回路部1から出力される基準電圧 V_R 〔具体的には抵抗R₅とR₆、R₇で分圧した一定電圧 V_A 〕をオペアンプOP₂のマイナス端子に入力すると共に、前記ダイオードD₅、D₆の順方向電圧である温度依存性のある検出電圧 V_B を前記オペアンプOP₂のプラス端子に入力する。このオペアンプOP₂にて、温度依存のない一定の基準電圧 V_R と温度依存性のある検出電圧 V_B とを比較し、その比較結果に基づいて過熱検出信号S〔以下、単に検

出信号と称す〕を出力し、この検出信号Sにより後段の保護回路〔図示せず〕を動作させ、IC等の内部回路を過熱状態から未然に保護するようしている。尚、前記MOSトランジスタTr₂は、過熱検出レベル近傍でのノイズ等による振動を抑制するためのものである。

【0006】IC等の内部回路が正常状態の場合、オペアンプOP₂に入力される基準電圧 V_R よりも検出電圧 V_B が大きくなるように設定しておく。この時のオペアンプOP₂から出力される検出信号Sは“H”となっている。これに対して、IC等の内部回路が異常に温度上昇して過熱状態となると、温度依存性のある検出電圧 V_B が低下して前記基準電圧 V_R よりも小さくなり、前記オペアンプOP₂から出力される検出信号Sが“L”となる。この検出信号Sのレベル変化に基づいて前記保護回路を動作させるようしている。

【0007】

【発明が解決しようとする課題】ところで、前述した従来の過熱検出回路では、判定回路部2に設けられた過熱検出用ダイオードD₅、D₆により生成された検出電圧 V_B を、バンドギャップ回路部1から出力される基準電圧 V_R と比較することにより、その比較結果に基づいて検出信号Sを出力するようしている。このように、前記バンドギャップ回路部1とは別に、判定回路部2の過熱検出用ダイオードD₅、D₆により検出電圧 V_B を生成するようしている。

【0008】ここで、前記バンドギャップ回路部1はIC内に作り込まれるが、その製造上、バンドギャップ回路部1の回路特性にバラツキが生じ、そのバンドギャップ回路部1から出力される基準電圧 V_R に製造上のバラツキが発生することがある。この場合、前述したように検出電圧 V_B を生成する過熱検出用ダイオードD₅、D₆は、前記バンドギャップ回路部1とは別に作り込まれるため、前記検出電圧 V_B は、基準電圧 V_R に依存することなく独立に生成している。その結果、基準電圧 V_R に製造上のバラツキが生じても、検出電圧 V_B に変わらないので、判定回路部2から出力される検出信号のレベル変化のタイミングにずれが生じて検出精度が低下するという問題があった。

【0009】そこで、本発明は上記問題点に鑑みて提案されたもので、その目的とするところは、バンドギャップ回路部から出力される基準電圧にその製造上のバラツキが生じても、検出精度が低下することなく、所定の検出精度を維持し得る過熱検出回路を提供することにある。

【0010】

【課題を解決するための手段】上記目的を達成するための技術的手段として、本発明は、電源電圧に基づいてバンドギャップ回路部により温度依存性のない基準電圧を生成し、前記基準電圧と過熱検出用素子により生成した温度依存性のある検出電圧とを比較し、その比較結果に

基づいて過熱検出信号を出力するようにした過熱検出回路において、前記バンドギャップ回路部内で温度依存性のある電位差を生成する回路素子を過熱検出用素子に兼用したことを特徴とする。

【0011】尚、前記バンドギャップ回路部内に設けられた回路素子はダイオードであり、前記回路素子は複数のダイオードを直列接続したものであることが望ましい。

【0012】

【作用】本発明に係る過熱検出回路では、過熱検出用素子は、バンドギャップ回路部内に設けられた温度依存性のある電位差を生成する回路素子で兼用したから、前記バンドギャップ回路部とは別に過熱検出用素子を設ける必要がない。その結果、バンドギャップ回路部から出力される基準電圧に製造上のバラツキが生じても、その回路特性でもって、前記基準電圧に依存した検出電圧を生成することができ、所定の検出精度を維持できると共に回路構成の簡略化が図れる。

【0013】

【実施例】本発明に係る過熱検出回路の実施例を図1及び図2に示して説明する。尚、図3と同一部分には同一参照符号を付して重複説明は省略する。

【0014】本発明の特徴は、バンドギャップ回路部1内で温度依存性のある電位差を生成する回路素子を過熱検出用素子に兼用したことにある。即ち、図1に示す実施例では、図3に示す従来回路における判定回路部2の過熱検出用ダイオードD₅、D₆を省略し、判定回路部12のオペアンプOP₂のプラス入力を、バンドギャップ回路部11のオペアンプOP₁のマイナス入力とダイオードD₁との間に接続する。このようにして、過熱検出用ダイオードD₅、D₆を判定回路部12に設けることなく、バンドギャップ回路部11の温度依存性のある回路素子であるダイオードD₁、D₂を過熱検出用素子として兼用することが可能となる。

【0015】尚、図2に示す実施例のように、判定回路部12のオペアンプOP₂のプラス入力を、バンドギャップ回路部11の電源電圧V_{CC}を分圧する分圧抵抗R₃とダイオードD₃との間に接続するようにしてもよい。この場合、バンドギャップ回路部11の温度依存性のある回路素子であるダイオードD₃、D₄を過熱検出用素子として兼用することになる。

【0016】上記二つの実施例における過熱検出回路では、従来と同様、バンドギャップ回路部11にて、電源

電圧V_{CC}に基づいて温度依存性のない基準電圧V_Rを生成して出力し、その基準電圧V_R〔具体的には抵抗R₅とR₆、R₇で分圧した一定電圧V_A〕をオペアンプOP₂のマイナス端子に入力する。一方、本発明では、前記バンドギャップ回路部11内に設けられた温度依存性のある電位差を生成するダイオードD₁、D₂又はD₃、D₄の順方向電圧である検出電圧V_Bを判定回路部12の前記オペアンプOP₂のプラス端子に入力する。

【0017】このオペアンプOP₂にて、温度依存性のない一定の基準電圧V_Rと温度依存性のある検出電圧V_Bとを比較し、その比較結果に基づいて検出信号Sを出力する。IC等の内部回路が正常な場合、オペアンプOP₂に入力される基準電圧V_Rよりも検出電圧V_Bが大きくなるように設定しておけば、この時のオペアンプOP₂から出力される検出信号Sは“H”となっている。これに対して、IC等の内部回路が異常に温度上昇して過熱状態となると、温度依存性のある検出電圧V_Bが低下して前記基準電圧V_Rよりも小さくなり、前記オペアンプOP₂から出力される検出信号Sが“L”となる。この検出信号Sのレベル変化に基づいて後段の保護回路〔図示せず〕を動作させ、IC等の内部回路を過熱状態から未然に保護するようしている。

【0018】

【発明の効果】本発明によれば、バンドギャップ回路部とは別に過熱検出用素子を設ける必要がなく、バンドギャップ回路部内の回路素子を過熱検出用素子として兼用できる。その結果、バンドギャップ回路部から出力される基準電圧に製造上のバラツキが生じても、その回路特性に応じて、前記基準電圧に依存した検出電圧を生成することができ、所定の検出精度を維持できると共に、回路構成の簡略化により部品点数の低減化が図れてコストダウンを実現できる。

【図面の簡単な説明】

【図1】本発明に係る過熱検出回路の一実施例を示す回路図

【図2】本発明の他の実施例を示す回路図

【図3】過熱検出回路の従来例を示す回路図

【符号の説明】

11 バンドギャップ回路部

D₁， D₂ 過熱検出用素子〔ダイオード〕

V_{CC} 電源電圧

V_R 基準電圧

V_B 過熱検出信号

【図1】

【図2】

【図3】

