Contrôle — Calcul différentiel et Algèbre linéaire

Durée: 55 minutes

Consignes. Justifiez clairement vos réponses.

Exercice 1 — Dérivée d'une composition

[10 pts]

On considère les applications

$$f: \mathbb{R} \to \mathbb{R}^2$$
, $f(t) = (e^{2t}, t^2 - 1)$, $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x,y) = x^2y + \sin y$.

On note $h = g \circ f : \mathbb{R} \to \mathbb{R}$.

- 1) Rappeler la règle de la chaîne pour la dérivée d'une composition. [3 pts]
- 2) Calculer f'(t) (la dérivée de f) et le gradient $\nabla g(x,y)$. [3 pts]
- 3) En déduire l'expression générale de h'(t). [3 pts]
- 4) Calculer la valeur numérique h'(0). [1 pts]

Exercice 2 — Diagonalisation d'une matrice 2×2 [10 pts]

On considère la matrice

$$A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}.$$

- 1) Déterminer les valeurs propres de A et, pour chacune, donner une base d'un sous-espace propre (donner une base). [4 pts]
- 2) La matrice A est-elle diagonalisable? Justifier soigneusement. [3 pts]
- 3) Si oui, construire une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$. [2 pts]
- 4) Question ouverte (réflexion). En apprentissage automatique, en quoi la diagonalisation (ou la réduction en base propre) peut-elle être utile? Donner un ou deux arguments concrets en quelques lignes. [1 pt]

Correction

Exercice 1

Rappel — Règle de la chaîne. Si $f: \mathbb{R} \to \mathbb{R}^2$ est \mathcal{C}^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ est \mathcal{C}^1 , alors, pour $h = g \circ f$,

$$h'(t) = f'(t) \cdot \nabla g(f(t))$$

En écriture composante : si f(t) = (u(t), v(t)), alors

$$h'(t) = g_x(u(t), v(t)) u'(t) + g_y(u(t), v(t)) v'(t).$$

2) Dérivées.

$$f'(t) = (2e^{2t}, 2t), \qquad \nabla g(x, y) = (2xy, x^2 + \cos y).$$

3) Expression de h'(t). Posons $x = e^{2t}$ et $y = t^2 - 1$. Alors

$$h'(t) = \nabla g(x,y) \cdot f'(t) = (2xy, \ x^2 + \cos y) \cdot (2e^{2t}, \ 2t)$$
$$= (2xy)(2e^{2t}) + (x^2 + \cos y)(2t) = 4(t^2 - 1)e^{4t} + 2t(e^{4t} + \cos(t^2 - 1)).$$

Éventuellement, on peut factoriser

$$h'(t) = 2e^{4t} (2t^2 - 2 + t) + 2t \cos(t^2 - 1)$$

4) Valeur numérique. En t = 0, f(0) = (1, -1), f'(0) = (2, 0) et $\nabla g(1, -1) = (-2, 1 + \cos 1)$. Donc

$$h'(0) = \nabla g(1, -1) \cdot f'(0) = (-2) \cdot 2 + (1 + \cos 1) \cdot 0 = \boxed{-4}.$$

Exercice 2

1) Valeurs propres et sous-espaces propres. A est triangulaire supérieure, donc ses valeurs propres sont les éléments diagonaux :

$$\lambda_1 = 4, \qquad \lambda_2 = 2.$$

Pour $\lambda = 4$: $A - 4I = \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix} \Rightarrow y = 0$, x libre. Un vecteur propre est $v_1 = (1,0)^{\top}$; $E_{\lambda=4} = \operatorname{Span}\{(1,0)\}$. Ce résultat se lisait directement sur la matrice car l'image du vecteur canonique e_1 renvoyait $4e_1...$

Pour
$$\lambda = 2$$
: $A - 2I = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow 2x + y = 0 \Rightarrow y = -2x$. Un vecteur propre est $v_2 = (1, -2)^{\mathsf{T}}$; $E_{\lambda=2} = \mathrm{Span}\{(1, -2)\}$.

2) Diagonalisabilité. On a deux valeurs propres distinctes et deux vecteurs propres linéairement indépendants $\Rightarrow A$ est diagonalisable.

2

3) Construction de P et D. Prenons P dont les colonnes sont v_1, v_2 et D = diag(4,2):

$$P = \begin{pmatrix} 1 & 1 \\ 0 & -2 \end{pmatrix}, \qquad D = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}.$$

On vérifie que P est inversible $(\det P = -2 \neq 0)$ et

$$P^{-1} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & -\frac{1}{2} \end{pmatrix}, \qquad PDP^{-1} = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix} = A.$$

- 4) Réflexion (ML / data).
 - PCA et covariance. La diagonalisation (ou SVD) de la matrice de covariance aligne les données sur les directions de variance maximale (composantes principales) ⇒ réduction de dimension, débruitage, visualisation.
 - **Dynamique linéaire.** Dans les itérations linéaires $x_{k+1} = Ax_k$, la diagonalisation décompose le système selon les valeurs propres \Rightarrow compréhension de la stabilité (modes qui croissent/décroissent) et calcul efficace de A^k , $\exp(A)$, etc.