B0911006Y-01: Computer Organization and Design

2023 Spring

Homework 9 — May 25

Lecturer: Ke Zhang Completed by: 吉骏雄

9.1, 9.3, 9.6, 9.12, 9.14

- 9.1 设 CPU 内有这些部件: PC、IR、MAR、MDR、AC、CU。
 - (1) 写出取指周期的全部微操作。
 - (2) 写出减法指令 "SUB X"、取数指令 "LDA X"、存数指令 "STA X" (X 均为主存地址) 在执行阶段所需的全部微操作。
 - (3) 当上述指令为间接寻址时,写出执行这些指令所需的全部微操作。
 - (4) 写出无条件转移指令 "JMP Y" 和结果溢出则转指令 "BAO Y" 在执行阶段所需的全部微操作。

解

- (1) PC \rightarrow MAR
 - $1 \rightarrow R$
 - $M(MAR) \rightarrow MDR$
 - MDR \rightarrow IR
 - op(IR) \rightarrow CU
 - $PC + 1 \rightarrow PC$
- (2) SUB X:
 - $addr(IR) \rightarrow MAR$
 - $1 \rightarrow R$
 - $M(MAR) \rightarrow MDR$
 - AC MDR \rightarrow AC

LDA X:

- $addr(IR) \rightarrow MAR$
- $1 \rightarrow R$
- $M(MAR) \rightarrow MDR$
- $MDR \rightarrow AC$

STA X:

- $addr(IR) \rightarrow MAR$
- $1 \rightarrow W$
- $AC \rightarrow MDR$
- $MDR \rightarrow M(MAR)$
- (3) 如果是间址, 那么它们在非间址阶段的微操作是完全一致的. 在间址阶段, 需要额外的微操作:
 - $addr(IR) \rightarrow MAR$
 - $1 \rightarrow R$
 - $M(MAR) \rightarrow MDR$
- (4) JMP Y:
 - $addr(IR) \rightarrow PC$

BAO Y:

- $O \cdot addr(IR) \rightarrow PC$
- 9.3 什么是指令周期、机器周期和时钟周期? 三者有何关系?

解 指令周期是 CPU 每取出并执行一条指令执行所需要的全部时间.

机器周期是在同步控制的机器中, CPU 执行指令周期中一个步骤所需的时间.

时钟周期是 CPU 时钟的周期.

通常情况下 (机器周期需要取同样的时钟周期长度), 三者的关系是层层包含的. 一个指令周期由若干个机器周期组成, 一个机器周期由若干个时钟周期组成.

指令周期 =
$$\sum$$
 机器周期 = \sum $\left(\sum$ 指令周期 $\right)$

9.6 设某计算机的 CPU 主频为 8MHz,每个机器周期平均含 2个时钟周期,每条指令平均有 4个机器周期,试问该计算机的平均指令执行速度为多少 MIPS。若 CPU 主频不变,但每个机器周期平均含 4个时钟周期,每条指令平均有 4个机器周期,则该机的平均指令执行速度又是多少 MIPS?由此可得出什么结论?

解 每条指令的时钟周期数为 $2 \times 4 = 8$, 每条指令的执行时间为 8/8 MHZ = 1 $^-$ s, 所以该计算机的平均指令执行速度为 1/1 $^-$ s = 1MIPS.

每条指令的时钟周期数为 $4 \times 4 = 16$, 每条指令的执行时间为 $16/8\,\mathrm{MHZ} = 2^-\mathrm{s}$, 所以该计算机的平均指令执行速度为 $1/2^-\mathrm{s} = 0.5MIPS$.

指令执行速度和每个指令周期平均含的时钟周期数成反比, 进而和每个机器周期平均含的时钟周期数成反比.

- **9.12** CPU 结构如图,另有 B、C、D、E、H、L 六个寄存器,写出完成下列指令所需的全部微操作和控制信号(包括取指令)。
- (1) 寄存器间接寻址的无条件转移指令 "JMP B"。
- (2) 间接寻址的存数指令 "STA X"。

图 9.1. 9.12 题图

解

(1) JMP B:

微操作	控制信号
$PC \rightarrow Bus \rightarrow MAR$ $M(MAR) \rightarrow MDR$ $MDR \rightarrow Bus \rightarrow IR$ $PC + 1 \rightarrow PC$	$\begin{aligned} & PC_o, MAR_i \\ & MAR_o, MDR_i, R/\overline{W} \\ & MDR_o, IR_i \\ & +1 \end{aligned}$
$\begin{array}{c} \text{B} \rightarrow \text{MAR} \\ \text{M(MAR)} \rightarrow \text{MDR} \\ \text{addr(MDR)} \rightarrow \text{Bus} \rightarrow \text{PC} \end{array}$	$\begin{aligned} &B_{o}, MAR_{i}\\ &MAR_{o}, MDR_{i}, R/\overline{W}\\ &MDR_{o}, PC_{i} \end{aligned}$

(2) STA X_o

微操作	控制信号
$PC \rightarrow Bus \rightarrow MAR$	PC_{o}, MAR_{i}
$M(MAR) \to MDR$	$\mathrm{MAR}_{\mathrm{o}}, \mathrm{MDR}_{\mathrm{i}}, R/\overline{\mathrm{W}}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{IR}$	$\mathrm{MDR}_{\mathrm{o}}, \mathrm{IR}_{\mathrm{i}}$
$PC + 1 \rightarrow PC$	+1
$X \rightarrow MAR$	X_{o}, MAR_{i}
$M(MAR) \to MDR$	$\mathrm{MAR}_{\mathrm{o}}, \mathrm{MDR}_{\mathrm{i}}, R/\overline{\mathrm{W}}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{MAR}$	$\mathrm{MDR}_{\mathrm{o}}, \mathrm{MAR}_{\mathrm{i}}$
$AC \to Bus \to MDR$	$\mathrm{AC}_{\mathrm{o}}, \mathrm{MDR}_{\mathrm{i}}$
$\mathrm{MDR} \to \mathrm{Bus} \to \mathrm{M}(\mathrm{MAR})$	$\mathrm{MDR_o}, \mathrm{MAR_o}, \mathrm{W}/\overline{\mathrm{R}}$

9.14 设单总线计算机结构如图 9.5 所示,其中 M 为主存,XR 为变址寄存器,EAR 为有效地址寄存器,LATCH 为锁存器。假设指令地址已存于 PC 中,画出 "LDA * D" 和 "SUB X,D" 指令周期信息流程图,并列出相应的控制信号序列。说明:

- (1) "LDA*D"指令字中*表示相对寻址, D为相对位移量。
- (2) "SUB X,D" 指令字中 X 为变址寄存器 XR, D 为形式地址。
- (3) 寄存器的输入和输出均受控制信号控制,例如, PC_i 表示 PC 的输入控制信号, MDR_o 表示 MDR 的输出控制信号。
- (4) 凡是需要经过总线实现寄存器之间的传送,需在流程图中注明,如 $PC \to Bus \to MAR$,相应的控制信号为 PC_o 和 MAR_i

图 9.2. 9.14 题图

解 LDA * D:

微操作	控制信号
$PC \rightarrow Bus \rightarrow MAR$	PC_{o}, MAR_{i}
$M(MAR) \to MDR$	$\mathrm{MAR_o}, \mathrm{MDR_i}, R/\overline{W}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{IR}$	$\mathrm{MDR}_\mathrm{o}, \mathrm{IR}_\mathrm{i}$
$PC + 1 \rightarrow PC$	+1
$\mathrm{PC} + \mathrm{addr}(\mathrm{IR}) \to \!\! \mathrm{EAR}$	$\mathrm{PC}_\mathrm{o}, \mathrm{IR}_\mathrm{o}, +, \mathrm{EAR}_\mathrm{i}$
$\mathrm{EAR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{MAR}$	$\mathrm{EAR}_{\mathrm{o}}, \mathrm{MAR}_{\mathrm{i}}$
$M(MAR) \to MDR$	$\mathrm{MAR_o}, \mathrm{MDR_i}, R/\overline{W}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{ACC}$	$\mathrm{MDR}_{\mathrm{o}}, \mathrm{ACC}_{\mathrm{i}}$

SUB X,D:

微操作	控制信号
$PC \rightarrow Bus \rightarrow MAR$	PC_o, MAR_i
$M(MAR) \to MDR$	$MAR_o, MDR_i, R/\overline{W}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{IR}$	$\mathrm{MDR}_{\mathrm{o}}, \mathrm{IR}_{\mathrm{i}}$
$PC + 1 \rightarrow PC$	+1
$XR + addr(IR) \rightarrow EAR$	$XR_{\rm o}, IR_{\rm o}, +, EAR_{\rm i}$
$\mathrm{EAR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{MAR}$	$\mathrm{EAR}_{\mathrm{o}}, \mathrm{MAR}_{\mathrm{i}}$
$M(MAR) \to MDR$	$MAR_o, MDR_i, R/\overline{W}$
$\mathrm{MDR} \to \!\! \mathrm{Bus} \to \!\! \mathrm{X}$	$\mathrm{MDR}_{\mathrm{o}}, \mathrm{X}_{\mathrm{i}}$
$\mathrm{ACC} \text{ - } \mathrm{X} \to \!\! \mathrm{LATCH}$	$ACC_{o}, X_{o}, K_{i} = -, LATCH_{i}$
$\text{LATCH} \rightarrow \text{Bus} \rightarrow \text{ACC}$	$\mathrm{LATCH}_{\mathrm{o}}, \mathrm{ACC}_{\mathrm{i}}$