Lecture 8

Finish Linear Algebra Review, Cost Analysis, Maybe Gaussian Elimination

Owen L. Lewis

Department of Mathematics and Statistics University of New Mexico

Sept. 12, 2024

Notes

Singularity of A

If an $n \times n$ matrix, A, is **singular** then

- the columns of A are linearly dependent
- the rows of A are linearly dependent
- rank(*A*) < *n*
- det(A) = 0
- A⁻¹ does not exist
- a solution to Ax = b may not exist
- If a solution to Ax = b exists, it is not unique

Know these conditions

3/38

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024

Notes

Two vectors lying along the same line are not independent

$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $v = -2u = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$

Any two independent vectors, for example,

$$v = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$$
 and $w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

define a plane. Any other vector in this plane of v and w can be represented by

$$x = \alpha v + \beta w$$

x is **linearly dependent** on v and w because it can be formed by a linear combination of v and w.

A set of vectors is linearly independent if it is impossible to use a linear combination of vectors in the set to create another vector in the set. Linear independence is easy to see for vectors that are orthogonal, for example,

$$\begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ -3 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

are linearly independent.

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination of u and v, then the set $\{u, v, w\}$ is linearly independent.

In other words, if $\{u, v, w\}$ is linearly independent then

$$\alpha u + \beta v = \delta w$$

can be true only if $\alpha = \beta = \delta = 0$.

More generally, if the only solution to

$$\alpha_1 V_{(1)} + \alpha_2 V_{(2)} + \cdots + \alpha_n V_{(n)} = 0$$
 (1)

is $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, then the set $\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\}$ is **linearly independent**. Conversely, if equation (1) is satisfied by at least one nonzero α_i , then the set of vectors is **linearly dependent**.

Let the set of vectors $\{v_{(1)}, v_{(2)}, \dots, v_{(n)}\}$ be organized as the columns of a matrix. Then the condition of linear independence is

$$\begin{bmatrix} v_{(1)} & v_{(2)} & \cdots & v_{(n)} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 (2)

The columns of the $m \times n$ matrix, A, are linearly independent if and only if $x = (0, 0, \dots, 0)^T$ is the only n element column vector that satisfies Ax = 0.

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 8/38

Summary of Requirements for Solution of Ax = b

Given the $n \times n$ matrix A and the $n \times 1$ vector, b

 the solution to Ax = b exists and is unique for any b if and only if rank(A) = n.

Recall: rank = # of linearly independent rows or columns

Recall: Range(A) = set of vectors y such that Ax = y for some x

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 9/38

Solving a system

$$Ax = b$$

Three situations:

- **1** A is nonsingular: There exists a unique solution $x = A^{-1}b$
- **2** A is singular and $b \in Range(A)$: There are infinite solutions.
- **3** A is singular and $b \notin Range(A)$: There no solutions.

2
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, then infinitely many solutions. $x = \begin{bmatrix} 1/2 \\ \alpha \end{bmatrix}$.

3
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, then no solutions.

Big-O

How to measure the impact of *n* on algorithmic cost?

 $\mathcal{O}(\cdot)$

Let g(n) be a function of n. Then define

$$\mathcal{O}(g(n)) = \{f(n) \mid \exists c, n_0 > 0 : 0 \leqslant f(n) \leqslant cg(n), \forall n \geqslant n_0\}$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \leqslant f(n) \leqslant cg(n)$ is satisfied.

- assume non-negative functions (otherwise add $|\cdot|$) to the definitions
- $f(n) \in \mathcal{O}(g(n))$ represents an asymptotic upper bound on f(n) up to a constant
- example: $f(n) = 3\sqrt{n} + 10^3 \log n + 8n + 0.004n^2 \in O(n^2)$

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 11/38

BLAS

Basic Linear Algebra Subprograms (BLAS) interface introduced APIs for common linear algebra tasks

Level 1: vector operations (dot products, vector norms, etc) e.g.

$$y \leftarrow \alpha x + y$$

· Level 2: matrix-vector operations, e.g.

$$y \leftarrow \alpha Ax + By$$

· Level 3: matrix-matrix operations, e.g.

$$C \leftarrow \alpha AB + \beta C$$

optimized versions of the reference BLAS are used everyday: ATLAS, etc.

12/38

• inner product of u and v both $[n \times 1]$

$$\sigma = u^T v = u_1 v_1 + \cdots + u_n v_n$$

- $\rightarrow n$ multiplies, n-1 additions
- $\rightarrow \mathfrak{O}(n)$ flops

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 13/38

• mat-vec of A ($[n \times n]$) and u ($[n \times 1]$)

```
for i=1,\ldots,n %Loop over rows
for j=1,\ldots,n %Loop over each column
v(i)=a(i,j)u(j)+v(i) %Multiply and add to this row
end
end
```

- $\rightarrow n^2$ multiplies, n^2 additions
- $\rightarrow \mathcal{O}(n^2)$ flops

• mat-mat of A ([$n \times n$]) and B ([$n \times n$])

```
for j=1,\ldots,n %Loop over columns of output

for i=1,\ldots,n %Perform matrix-vector mult.

for k=1,\ldots,n

C(k,j)=A(k,i)B(i,j)+C(k,j)

end

end

end
```

- $\rightarrow n^3$ multiplies, n^3 additions
- $\rightarrow \mathcal{O}(n^3)$ flops

Operation	FLOPS	
$u^T v$	O(n)	
Au	$O(n^2)$	
AB	$O(n^3)$	

FLOPS = "floating point operations" (addition/subtraction/multiplication/division)

Notes

Remember how to spot $O(n^{\alpha})!!$

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 17/38

Timing in Matlab: vec-vec

Listing 1: Matlab

```
%Create two random vectors of size n
 n = 50000;
 u = rand(n,1);
  v = rand(n,1);
  %Measure time using the cputime command
6
  t = cputime;
7
  %Do the epxeriment 100 times
  for i = 1 : 100
     %Inner Product
     ip = u'*v;
  end
13
14
  %average the times
15
  timing = (cputime - t)/100;
```

18/38

Timing in Matlab: vec-vec

Let's dig into the timings a bit more with

Example

test_flops.m

• mat-vec of A ([$n \times n$]) and u ([$n \times 1$])

```
for i = 1, ..., n

for j = 1, ..., n

v(i) = a(i, j)u(j) + v(i)

end

end
```

- $\rightarrow n^2$ multiplies, n^2 additions
- $\rightarrow \mathcal{O}(n^2)$ flops

20/38

• mat-mat of A ([$n \times n$]) and B ([$n \times n$])

```
for j = 1, ..., n

for i = 1, ..., n

for k = 1, ..., n

C(k, j) = A(k, i)B(i, j) + C(k, j)

end

end

end
```

- $\rightarrow n^3$ multiplies, n^3 additions
- $\rightarrow \mathcal{O}(n^3)$ flops

Operation	FLOPS		
$u^T v$	O(n)		
Au	$O(n^2)$		
AB	$O(n^3)$		

How you access memory can greatly affect the constant in front of the $\mathcal{O}(n^k)$. For instance, both row and column access patterns for a mat-vec behave like $\mathcal{O}(n^2)$, but with very different constants, depending on how A is stored.

Example

test_memory_patterns_matvec.m

Let's draw out the dot-product and column-wise view of a mat-vec.

22/38

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024

Turning the Problem Around

The central problem is

$$A\vec{x} = \vec{b}$$
.

So far: if we know A and \vec{x} , can we calculate \vec{b} .

Now: if we know A and \vec{b} , can we solve for \vec{x} ?

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 23/38

Common Problems

Motivating example:

$$u''(x) = f(x), \quad u(0) = u(1) = 0.$$

Given an f(x), can we find u(x)?

Common Problems

Motivating example:

$$u''(x) = f(x), \quad u(0) = u(1) = 0.$$

Given an f(x), can we find u(x)?

Yes! (But we have to solve a matrix equation)

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 24/38

What's the big deal?cost

Look at 1D:

- 3 equations
- 3 unknowns
- · each unknown coupled to its neighbor

$$\begin{array}{ccccc} 2x_1 & -x_2 & = 5.8 \\ -x_1 & 2x_2 & -x_3 & = 13.9 \\ & -x_2 & 2x_3 & = 0.03 \end{array}$$

or

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 5.8 \\ 13.9 \\ 0.03 \end{bmatrix}$$

Easy in 1d

- *n* points in the grid
- 3 * n 2 or about 3n nonzeros in the matrix
- tridiagonal (easy)

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 26/38

2D: harder

$$\begin{bmatrix} 8 & -1 & -1 \\ & \ddots & \\ -1 & -1 & 8 & -1 & -1 \\ & & \ddots & \\ & -1 & & -1 & 8 \end{bmatrix}$$

- *n* points in one direction
- n² points in grid
- about 9 nonzeros in each row
- about 9n² nonzeros in the matrix

27/38

• *n*-banded (harder...we will see)

3D: hardest

- *n* points in one direction
- n³ points in grid

- about 27 nonzeros in each row
- about 27n³ nonzeros in the matrix
- n²-banded (yikes!) • •

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024

Applications get harder and harder...

courtesy of LLNL

courtesy of Rice

Posterior view of the forefoot mesh and bones

courtesy of TrueGrid

courtesy of Warwick U.

Solving is a problem...

dim	unknowns	storage	example (n)		
1D	n	3n	10	100	1000
2D	n²	9 <i>n</i> ²	10 ²	10^{4}	10 ⁶
3D	n³	27 <i>n</i> 3	10 ³	10 ⁶	10 ⁹

30/38

Gaussian Elimination (eventually)

- Solving Diagonal Systems
- Solving Triangular Systems
- Gaussian Elimination Without Pivoting
 - Hand Calculations
 - Cartoon Version
 - · The Algorithm
- Gaussian Elimination with Pivoting
 - Row or Column Interchanges, or Both
 - Implementation
- Solving Systems with the Backslash Operator

31/38

The system defined by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ 6 \\ -15 \end{bmatrix}$$

The system defined by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ 6 \\ -15 \end{bmatrix}$$

is equivalent to

$$x_1$$
 = -1
 $3x_2$ = 6
 $5x_3$ = -15

The system defined by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ 6 \\ -15 \end{bmatrix}$$

is equivalent to

$$x_1 = -1$$

 $3x_2 = 6$
 $5x_3 = -15$

The solution is

$$x_1 = -1$$
 $x_2 = \frac{6}{3} = 2$ $x_3 = \frac{-15}{5} = -3$

Listing 2: Diagonal System Solution

```
given A, b

for i = 1...n

x_i = b_i/a_{i,i}

end
```

In Matlab:

This is the *only* place where element-by-element division (./) has anything to do with solving linear systems of equations.

Example

Try this in Matlab using A = diag(rand(5,1));

33/38

Operations?

Try...

Sketch out an operation count to solve a diagonal system of equations...

34/38

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024

Operations?

Try...

Sketch out an operation count to solve a diagonal system of equations...

cheap!

one division n times $\longrightarrow \mathfrak{O}(n)$ FLOPS

This is the best we can ever do. Why?

34/38

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024

Triangular Systems

The generic lower and upper triangular matrices are

$$L = \begin{bmatrix} I_{11} & 0 & \cdots & 0 \\ I_{21} & I_{22} & & 0 \\ \vdots & & \ddots & \vdots \\ I_{n1} & & \cdots & I_{nn} \end{bmatrix}$$

and

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & & u_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & u_{nn} \end{bmatrix}$$

The triangular systems

$$Ly = b$$
 $Ux = c$

are easily solved by **forward substitution** and **backward substitution**, respectively

$$A = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 3 & 0 \\ 2 & 1 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 8 \\ -1 \\ 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 3 & 0 \\ 2 & 1 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 8 \\ -1 \\ 9 \end{bmatrix}$$

is equivalent to

36/38

$$A = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 3 & 0 \\ 2 & 1 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 8 \\ -1 \\ 9 \end{bmatrix}$$

is equivalent to

$$\begin{array}{rclrcrcr}
4x_1 & = & 8 \\
-2x_1 & + & 3x_2 & = & -1 \\
2x_1 & + & x_2 & + & -2x_3 & = & 9
\end{array}$$

Solve in forward order (first equation is solved first, etc)

$$x_1 = \frac{8}{4} = 2$$
 $x_2 = \frac{1}{3}(-1 + 2x_1) = \frac{3}{3} = 1$ $x_3 = \frac{1}{-2}(9 - x_2 - 2x_1) = \frac{4}{-2} = -2$

Owen L. Lewis (UNM) Math/CS 375 Sept. 12, 2024 36/38

Notes

Solving for x_1, x_2, \ldots, x_n for a lower triangular system is called **forward substitution**.

```
given L (lower \triangle), b

x_1 = b_1/\ell_{11}

for i = 2...n

s = b_i

for j = 1...i-1

s = s - \ell_{i,j}x_j

end

x_i = s/\ell_{i,i}

end
```

What about Upper Triangular?

$$A = \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & -2 \\ 0 & 0 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 9 \\ -1 \\ 8 \end{bmatrix}$$

What about Upper Triangular?

$$A = \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & -2 \\ 0 & 0 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 9 \\ -1 \\ 8 \end{bmatrix}$$

is equivalent to

What about Upper Triangular?

$$A = \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & -2 \\ 0 & 0 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 9 \\ -1 \\ 8 \end{bmatrix}$$

is equivalent to

Solve in backwards order (last equation is solved first, etc)

$$x_3 = \frac{8}{4} = 2 \qquad \qquad x_2 = \frac{1}{3} \left(-1 + 2 x_3 \right) = \frac{3}{3} = 1 \\ x_1 = \frac{1}{-2} \left(9 - x_2 - 2 x_3 \right) = \frac{4}{-2} = -2$$