Assignment 4 Changrong Chen 001276880 Tiancheng Lin 001839357

In this assignment, we want to design a parallel sort method and then analyze two different scheme for deciding whether to sort in parallel: the cutoff and maximum recursion depth or number of available threads.

First, when there is one thread, we tried different values of cutoff in different array size. When array size equals 200, We could see that when the value of cutoff is larger than array size/4, the cost is similar, when this value become smaller, the cost will increase dramatically. So, we can have the conclusion that the best value of cutoff is N/4, where N is the size of the array.

	Array Array Array Array Array Array	size size size size size size	is: is: is: is: is:	200Cutoff 200Cutoff 200Cutoff 200Cutoff 200Cutoff 200Cutoff 200Cutoff	is: is: is: is: is:	20, 30, 40, 50, 60, 70,	sort sort sort sort sort	time time time time time	is: is: is: is: is:	1.974813 0.804291 0.849655 0.27876 m 0.336567 0.255288	ms, ms, ms, ms, ms,	the	read i read i read is read is read i	s: 1 s: 1 s: 1 : 1 s: 1
l				200Cutoff										
l				200Cutoff 200Cutoff										
	Array	5126	15;	200001	15;	100		200	1		0	6.20		
								200		2	0	3.60	7787	
								200		3	0	1.57	2972	
								200		4	0	1.77	4505	
								200		5	0	0.72	2396	
								200		6	0	0.86	5053	
								200		7	0	0.95	7953	
								200		8	0	0.949	9256	
								200		9	0	0.90	1587	
								200		10	0	0.310	0384	

Array size		Cutoff	Time(ms)
	400	20	8.307683
	400	40	11.675354
	400	60	1.883212
	400	80	1.469741
	400	100	0.563732
	400	120	0.611439
	400	140	0.592674
	400	160	0.61727
	400	180	0.620251
	400	200	0.213117

Array size		Cutoff	Time(ms)
	1600	80	6.155396
	1600	160	3.784481
	1600	240	1.566711
	1600	320	1.425941
	1600	400	0.594542
	1600	480	0.588528
	1600	560	0.626356
	1600	640	0.700164
	1600	720	0.893376
	1600	800	0.470746

In order to prove this assumption, we change the value of N to 400, 1600 and 6400, we could also see that the time will decrease dramatically when cutoff = N/4.

Array size		Cutoff	Time(ms)
	6400	320	5.223046
	6400	640	3.31316
	6400	960	2.497383
	6400	1280	2.027977
	6400	1600	1.665518
	6400	1920	1.200826
	6400	2240	1.431027
	6400	2560	1.462851
	6400	2880	1.712171
	6400	3200	1.21513

For the recursion depth or the number of available threads.

The value of cut off can decide whether the parallel sort method can stop dividing array into two part and sorting then. If the value of cutoff is smaller, the recursion depth will become bigger, and the number of thread will become more. Base on ur assumption, when the value of cutoff is smaller than N/4, where N is the size of the array, which means that the recursion depth exceed $\log 4 = 2$ and the number of thread exceed 4, the cost will increase dramatically. So, the recursion depth should not exceed 2 and the maximum number of thread is 4. And the best value of cutoff is N/4.

Main():

Sort:

```
public static void sort(int[] array, int from, int to) {
    int size = to - from + 1;
    if (size <= cutoff) Arrays.sort(array, from, tolndex: to+1);</pre>
    else {
        int mid = from + (to - from) / 2;
        CompletableFuture<int[]> parsort1 = parsort(array, from, mid); // TODO implement me
        CompletableFuture<int[]> parsort2 = parsort(array, from: mid + 1, to); // TODO implement me
        CompletableFuture<int[]> parsort = parsort1.
                thenCombine(parsort2, (xs1, xs2) -> {
                    int[] result = new int[xs1.length + xs2.length];
                    int a = 0, b = 0;// TODO implement me
                    for (int i = 0; i < xs1.length + xs2.length; i++) {</pre>
                        if (a > xs1.length-1) {
                            result[i] = xs2[b++];
                        else if (b < xs2.length && xs2[b] <= xs1[a]){</pre>
                            result[i] = xs2[b++];
                        else {
                            result[i] = xs1[a++];
                        }
                    return result;
                }).whenComplete((result, throwable) -> {
                    System.arraycopy(result, srcPos: 0, array, destPos: 0, array.length);
          parsort.whenComplete((result, throwable) -> {
              System.arraycopy(result, 0, array, 0, array.length);
        parsort.join();
```

Unit test:

