Lecture 6

Local Search

Lusi Li Department of Computer Science ODU

Reading for This Class: Chapter 4, Russell and Norvig

Review

- Last Class
 - Informed Search
 - Greedy Best-first Search
 - A* Search
 - Heuristic Functions
- This Class
 - Local Search
 - Hill-Climbing
 - Simulated Annealing
- Next Class
 - Global Search
 - Genetic Algorithms

Path Search VS. Local Search

- The search algorithms we discussed before are designed to find a goal state from a start state s
 - the path to the goal that constitutes a solution to the problem
 - Uninformed search: g(s)
 - Informed search: h(s), g(s)+h(s)
- In many optimization problems
 - the path to the goal is irrelevant
 - the goal state itself is the solution
- Another category of search problem
 - Local Search Problem
 - Never worry about the path
 - Just want the goal
 - Examples
 - Integrated-circuit Design
 - Factory-floor layout
 - Automatic programming
 - Telecommunications network optimization

Path Search VS. Local Search

- Path Search maintains a search tree to find the path
 - keep paths in memory and remember alternatives
 - can backtrack
- Local search uses a single search path of solutions, not a search tree
 - start from an initial state
 - at each step consider the current state, and try to improve it by moving only to one of its neighbors (not the one in frontier set)
 - → Iterative improvement algorithms
 - No frontier set and no backtracking
 - Each state is a solution

Local Search Algorithms

- Objective (Fitness) Function f(s)
 - All local search problems have an objective function to specify how "good" a state is
 - Each state s has a score f(s)
 - The goal is to find the state with the highest (or the lowest) score, or a reasonably high (or low) score
- General Procedure
 - Keep only a single (complete) state in memory
 - Generate only the neighbours of that state
 - Keep one of the neighbors and discard others
- Two strategies for choosing the state to visit next
 - Hill climbing
 - Simulated annealing
- Then, an extension to multiple current states
 - Genetic algorithms

Local Search Algorithms

- Two key advantages
 - Very little memory required
 - Often find reasonable solutions in large or infinite state spaces
- Usage
 - Pure optimization problem
 - Find or approximate the best state according to some objective function
 - Optimal if the space to be searched is convex

1-D State Space Landscape

- Global maximum
 - Find the highest peak
- Global minimum
 - Find the lowest valley

A one-dimensional state-space landscape in which elevation corresponds to the objective function.

Hill Climbing Algorithm

function HILL-CLIMBING(problem) **returns** a state that is a local maximum

```
\begin{array}{l} \textit{current} \leftarrow \mathsf{MAKE\text{-}NODE}(\textit{problem}.\mathsf{INITIAL\text{-}STATE}) \\ \textbf{loop do} \\ \textit{neighbor} \leftarrow \text{a highest-valued successor of } \textit{current} \\ \textbf{if neighbor}.\mathsf{VALUE} \leq \mathsf{current}.\mathsf{VALUE} \textbf{then return } \textit{current}.\mathsf{STATE} \\ \textit{current} \leftarrow \textit{neighbor} \end{array}
```

- Idea: start from some state s
 - move to a neighbor t with a better score f(t). Repeat.
- Properties:
 - Terminate when no neighbor has better value
 - Does not look ahead beyond the immediate neighbors of the current state
 - Choose randomly among the set of best successors, if there is more than one
 - Do not backtrack, since it doesn't remember where it's been
 - Required data structure: the current state and the f(s)
 - a.k.a. greedy local search

Hill Climbing Algorithm

- Q1: What's a neighbor?
- Q2: Pick which neighbor?
- Q3: What if no neighbor is better than the current state?

Hill Climbing Algorithm

- Q1: What's a neighbor?
 - You have to define that!
 - The neighborhood of a state is the set of neighbors.
 - Also called 'move set'
 - Similar to successor function
- Q2: Pick which neighbor?
 - The best one (greedy) based on objective function values
- Q3: What if no neighbor is better than the current state?
 - Stop

Hill-climbing: 8-Queens problem

- Put all 8 queens on the 8 x 8 board with no two queens attacking each other, i.e, no two queens can share the same row, column, or diagonal.
- Complete state formulation:
 - State:
 - Neighbor states:
 - Fitness function f:

Constraints:

- 1.Each row must contain exactly one queen.
- 2.Each column must contain exactly one queen.
- 3.No two queens should be in the same row, column, or diagonal.

坐			8				
				坐			
	坐			_			
					坐		
		坐					
						坐	
			坐				
							座

Hill-climbing: 8-Queens problem

- Put all 8 queens on the 8 x 8 board with no two queens on the same row, column, or diagonal
- Complete state formulation:
 - State: positions of the 8 Queens one per column
 - Neighbor states: generated by moving one queen to a different square in the same column
 - Fitness function f: number of pairs of queens that are attacking each other
 - Note that we want a state s with the lowest score f(s) = 0
 - Low or high should be obvious from context.

Constraints:

- 1.Each row must contain exactly one queen.
- 2.Each column must contain exactly one queen.
- 3.No two queens should be in the same row, column, or diagonal.

8-Queens problem: fitness values of neighborhood

$$f(s) = 3 + 4 + 2 + 3 + 2 + 2 + 1 + 0 = 17$$

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	剣	13	16	13	16
溪	14	17	15	嵄	14	16	16
17	刾	16	18	15	剫	15	颩
18	14	阑	15	15	14	淗	16
14	14	13	17	12	14	12	18

An 8-queens state with f(s) = 17.

It also shows the value of f for each possible successor obtained by moving a queen within its column, with the best one having f = 12.

The best moves are marked.

Hill-climbing algorithms typically choose randomly among the set of best successors if there is more than one.

Fig. 1 An 8-queens state s

8-Queens problem: Local minimum

An 8-queens state with f(t) = 1.

It is a local optimum because every move leads to a larger f.

Fig. 2 An 8-queens state t

Performance of 8-Queens Problem

8-queens statistics:

- State space of size ≈ 17 million
 - Starting from random state, steepest-ascent hill climbing solves 14% of problem instances and gets stuck for 86% of problem instances
 - It takes 4 steps on average when it succeeds, 3 when it gets stuck
- When sideways moves are allowed, performance improve
 - Sideways moves: if no uphill moves, allow moving to a state with the same value as the current one.
 - E.g., 100 consecutive sideways moves, 14% -> 94%

Analysis of Hill-Climbing

- Continually moves uphill
 - increasing value of the evaluation function
 - (or "downhill" decreasing value of the cost function)
 - gradient descent search is a variation that moves downhill
- Very simple strategy with low space requirements
 - stores only the state and its evaluation, no search tree
- Problems
 - local maxima
 - plateau
 - ridges

Analysis of Hill-Climbing

Problems

- local maxima
 - the peak is higher than all its neighbors, but not the global maximum
 - algorithm can't go higher, but is not at a satisfactory solution
- plateau
 - area where the evaluation function is flat
 - the best neighborhood has the same value as the current state
- ridges
 - sequence of local maxima difficult for greedy algorithms to navigate
 - search may oscillate slowly

Further Variants of Hill Climbing

Sideways moves:

 if no uphill moves, allow moving to a state with the same value as the current one (escape shoulders)

Stochastic hill-climbing:

- selection among the available uphill moves is done to be "less" greedy
- the better, the more likely

First-choice hill-climbing:

- successors are generated randomly, one at a time, until one that is better than the current state is found
- if better, take the move
- deal with large neighborhoods

Random-restart hill climbing:

- conducts a series of hill-climbing searches from randomly generated initial states, until a goal is found.
- "If at first you don't succeed, try, try again."

- Escape from local optima
 - by accepting, with a probability that decreases during the search, also moves that are worse than the current solution (going "downhill")
- Inspired by the process of annealing of solids in metallurgy:
 - annealing: harden metals and glass by heating them to a high temperature and then gradually cooling them, thus allowing the material to reach a low-energy crystalline state
 - at the start, make lots of moves and then gradually slow down

Simulated Annealing: Intuition

- Minimization problem
- Imagine a state space landscape on table
- Shake table

 ball tends to find different minimum
- Shake hard at first (high temperature) but gradually reduce intensity (lower temperature)

Ball on terrain example – SA vs Greedy Algorithms

- 1. Pick an initial state s
- 2. Randomly pick t in neighbors(s)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept s ← t with a small probability
- 6. GOTO 2 until bored.

Q: How to choose the small probability?

- 1. Pick an initial state s
- 2. Randomly pick t in neighbors(s)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept s ← t with a small probability
- 6. GOTO 2 until bored.

Q: How to choose the small probability?

- idea 1: p = 0.1
- idea 2: p decreases with time
- idea 3: p decreases with time, also as the difference between f(t) and f(s) increases

- 1. Pick initial state s
- 2. Randomly pick t in neighbors(s)
- 3. IF f(t) better THEN accept $s \leftarrow t$.
- 4. ELSE /* t is worse than s */
- 5. accept s ← t with a small probability
- 6. GOTO 2 until bored.

Q: How to choose the small probability?

- idea 1: p = 0.1
- idea 2: p decreases with time
- idea 3: p decreases with time, also as the difference between f(t) and f(s) increases

- $\triangle E = f(t) f(s)$
- If f(t) is better than f(s), always accept t
- Otherwise, accept t with probability

$$p = e^{\frac{\Delta E}{T}}$$

- i.e., if r < p ($r \in [0, 1]$ is a uniform random number), accept t
- where T is a temperature parameter that 'cools' (anneals) over time, e.g. T ← T * 0.9
 - High T allows more worse moves
 - Low T results in few or no bad moves
- If the difference (formally known as energy difference) |f(t)-f(s)| is large, the probability is small.

Acceptance criterion and cooling schedule

if (delta>=0) accept else if ($random < e^{delta / Temp}$) accept, else reject /* 0<=random<=1 */

Initially temperature is very high (most bad moves accepted)
Temp slowly goes to 0, with multiple moves attempted at each temperature
Final runs with temp=0 (always reject bad moves) greedily "quench" the system


```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
   inputs: problem, a problem
            schedule, a mapping from time to "temperature"
   current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
   for t = 1 to \infty do
       T \leftarrow schedule(t) // T is the current temperature, which is monotonically decreasing with t
       if T = 0 then return current //halt when temperature = 0
       next \leftarrow a randomly selected successor of current
       \Delta E \leftarrow next. Value - current. Value
                                                         // If positive, next is better than current.
                                                         // Otherwise, next is worse than current.
       if \Delta E > 0 then current \leftarrow next
       else current \leftarrow next only with probability e^{\Delta E/T}
                                                        // as T \rightarrow 0, p \rightarrow 0; as \DeltaE \rightarrow - \infty, p \rightarrow 0
```


Summary

- Local Search
- Hill-climbing
- Simulated Annealing

What I want you to do

Review Chapter 4

