Лабораторная работа № 3.3.4.

Ситников Арсений С01-019.

Цель работы:

Измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование:

Электромагнит с источником питания GPR, цифровой вольтметр B7-65/5, батарейка, реостат, миллиамперметр, образцы легированного германия, измеритель магнитной индукции, ATE-8702.

Ход работы:

- 1. Подготовили приборы к работе.
- 2. Подключили измеритель магнитной индукции.
- 3. С помощью измерителя исследовали зависимость индукции магнитного поля от тока через обмотки магнита.

N	1	2	3	4	5	6
I, A	1.44	1.12	0.86	0.67	0.39	0.1
В, мТл	998.8	893.4	755.8	622.6	365.9	114.9

4.Сняли зависимость напряжения от тока через обмотки магнита при разных значениях тока через образец.

<i>I</i> ₀ , мА	I, A / -U, мВ	I, A / -U, мВ	I, А / -U, мВ	I, A / -U, мВ	I, A / -U, мВ	I, A / -U, мВ
0.15	0 / -0.025	0.28 / 0.005	0.62 / 0.044	0.93 / 0.073	1.23 / 0.092	1.43 / 0.100
0.30	0 / -0.054	0.29 / 0.014	0.61 / 0.090	0.93 / 0.154	1.22 / 0.194	1.42 / 0.211
0.45	0 / -0.082	0.31 / 0.030	0.58 / 0.128	0.92 / 0.232	1.22 / 0.290	1.42 / 0.315
0.60	0 / -0.110	0.30 / 0.032	0.59 / 0.173	0.90 / 0.304	1.21 / 0.381	1.41 / 0.417
0.75	0 / -0.137	0.29 / 0.033	0.61 / 0.227	0.93 / 0.383	1.20 / 0.475	1.41 / 0.517
0.90	0 / -0.167	0.30 / 0.048	0.61 / 0.269	0.91 / 0.464	1.23 / 0.580	1.40 / 0.625

Пересчитаем значения в этой таблице, учитывая U_0 -значение при нулевом токе, созданное в связи с несовершенством контактов обмотки.

<i>I</i> ₀ , мА	<i>U</i> ₀ , мВ	I, A / -U, мВ	I, A / -U, мВ	I, A / -U, мВ	I, A /-U, мВ	I, A / -U, мВ
0.15	-0.025	0.28 / 0.030	0.62 / 0.069	0.93 / 0.098	1.23 / 0.117	1.43 / 0.125
0.30	-0.054	0.29 / 0.068	0.61 / 0.144	0.93 / 0.208	1.22 / 0.248	1.42 / 0.265
0.45	-0.082	0.31 / 0.112	0.58 / 0.210	0.92 / 0.314	1.22 / 0.372	1.42 / 0.397
0.60	-0.110	0.30 / 0.142	0.59 / 0.283	0.90 / 0.414	1.21 / 0.491	1.41 / 0.527
0.75	-0.137	0.29 / 0.170	0.61 / 0.364	0.93 / 0.420	1.20 / 0.612	1.41 / 0.654
0.90	-0.167	0.30 / 0.215	0.61 / 0.436	0.91 / 0.631	1.23 / 0.747	1.40 / 0.792

5. Характеристики образца: a = 1,0 mm; L35 = 5,0 mm; l = 4,0 mm, U35 = 4,093 \pm 0,001 мВ при I = 1,00 \pm 0,02 мА.

6. Обработка результатов.

Построим график B = f(I)

Рассчитаем ЭДС Холла и построим на одном листе семейство характеристик $\varepsilon_{\chi}=f(B)$ при разных значениях тока I через образец. Определим угловые коэффициенты $K(I)=\Delta\varepsilon/\Delta B$ различных прямых.

Построим график k=f(l), рассчитаем угловой коэффициент и по формуле $\varepsilon_x = -R_x * \frac{IB}{a}$ рассчитаем постоянную Холла R_x .(мA)

$$R_x = (8.6 \pm 0.6) * 10^{-4} \,\mathrm{M}^3/\mathrm{K}\pi$$

По формуле $R_{x}=rac{1}{ne}$ рассчитаем концентрацию носителей тока в образце.

$$n = (7.25 \pm 0.02) * 10^{21} \frac{1}{\text{M}^3}$$

По формуле $\sigma = \frac{IL_{35}}{U_{35}al}$ рассчитаем удельную проводимость материала образца:

$$\sigma = (305.4 \pm 1.0) \, \frac{1}{0 \, \text{m} \, \text{m}}$$

По формуле $b = \frac{\sigma}{en}$ вычислим подвижность носителей тока в образце.

b = (2626.4
$$\pm$$
 11.2) $\frac{\text{cm}^2}{\text{B* c}}$

Вывод: Мы измерили зависимость магнитной индукции от тока. Посчитали постоянную Холла. Измерили подвижность и концентрацию частиц в проводниках. Значения не совпали с табличными. Это объясняется тем, что работали мы не с чистым германием, а его примесью.