Machine Learning pour le Big Data

Claude Barras

claude.barras@u-psud.fr

LIMSI / Université Paris-Sud - Polytech Paris-Sud

Bibliographie / source des exemples: Pattern Classification, R. Duda, P. Hart & D. Stork, éd. Wiley-Interscience, 2000.

But de la 1ère partie du cours

- Apprentissage automatique
- Approches symboliques :
 - collection de règles et concepts
- Approche numériques (statistiques)
 - Représentation numérique du monde (photo, image scannée, signal audio, capteur de gestes, stylo électronique, données génériques, ...)
 - Utilisation d'algorithme d'apprentissage
 - L'être humain ne doit pas dire comment résoudre un problème, mais annoter des exemples typiques
 - Présentation de la plupart des algorithmes de base

- Comment développer des machines intelligentes?
- Perception de l'environnement
 - capteurs (lumière, images, température, son...)⇒ signaux électriques/binaires
 - interprétation des signaux?
 - signal audio ⇒ mots prononcés
 - image d'une enveloppe ⇒ code postal
 - image médicale 2D ⇒ détection d'une tumeur
 - ____
 - facile pour l'être humain (processus subconscient)
- Analyse d'un problème plus simple
 - associer des objets physiques à quelques catégories prédéfinies : classification

Problème 1: classification de matériaux

Tri de ≠ types de bois sur une chaîne de fabrication

- Problème
 - les informations fournies par la caméra sont-elles toutes pertinentes pour la décision?
 - forme exacte, position, ...
- Prétraitement
 - réduction de la quantité de données pour extraire des valeurs pertinentes pour la décision : codage

Problème 1: codage et décision

- Connaissance "experte": le pin est plus clair
 - module de codage calculant la luminosité de l'image
 - une seule valeur numérique
- Processus de décision
 - présenter l'objet à la caméra
 - calculer sa luminosité
 - si elle est plus élevée qu'un seuil s, alors on décide "pin", sinon "cerisier"
- Comment déterminer le seuil?

Problème 1: choix du seuil

Histogramme

avec quelques morceaux de bois représentatifs

- + le pin est en moyenne plus clair que le cerisier
- il y a une zone de chevauchement
- il n'y a pas de seuil s qui permette de séparer parfaitement les 2 catégories de bois

Problème 1: amélioration du codage

ajout d'autres valeurs au codage ex: nombre de nœuds par m²

$$\Rightarrow$$
 codage $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

avec x_1 : brillance x_2 : nombre de nœuds

diagramme

Il semble possible de séparer les 2 types de bois par une droite

Problème 1: qualité de la décision

- Questions
 - comment trouver la droite de séparation?
 - peut-on garantir que d'autres morceaux de bois seront correctement classés?
 - les échantillons étaient-ils
 - assez nombreux?
 - assez représentatif?
 - y a-t-il une mesure d'erreur ou de risque pour évaluer notre système?

Problème 2: étude commerciale

- grande surface:
 - base de données résumant les habitudes de consommation de ses clients
 - dépenses de nourriture, de loisir, ...
- objectif marketing:
 - cibler les campagnes de publicité
 - y a-t-il des groupes de clients aux comportements "proches"?

Problème 2:regroupements possibles

- a) petites courses ~ 20 €
- b) courses hebdomadaires (1 ou 2 catégories?)
- c) clients achetant des articles de loisir, et parfois tentés par des achats de nourriture

- Problèmes:
 - nombre de classes?

(deux cas extrêmes: une seule classe pour tous, ou autant de classes que de clients...)

interprétation des regroupements?

Problème 3: détection de faux billets

- Comparable au problème 1 (mesure de luminosité, épaisseur du papier,...)
- Particularités
 - il y a beaucoup moins de faux billets que de vrais
 - peut-on utiliser cette connaissance pour la décision?
 - cas extrême: on déclare toujours le billet vrai (on fera moins d'erreurs qu'en utilisant des mesures fausses!)
 - les fausses décisions n'ont pas le même coût:
 - prendre un vrai billet pour un faux ⇒ on dérange le client
 - prendre un faux billet pour un vrai ⇒ on perd de l'argent!

Système de classification

- Architecture d'un système de classification
 - acquisition + numérisation des données
 - prétraitement/codage, spécifique au problème
 - réduction de la dimension des données
 - extraction d'un ensemble de valeurs pertinentes au problème de classification
 - \Rightarrow vecteur $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_d)^t \in \mathbf{R}^d$
 - classification (suivant plusieurs approches générales)
 - décision pour une classe en fonction du vecteur 🗴

Rôle du codage

- La frontière prétraitement/classification est floue:
 - un codage inadapté rend la classification difficile
 - un codage sophistiqué peut simplifier la classification
- Exemple: orientation horizontale ou verticale d'un crayon sur une table?
 - acquisition: image 2D
 - codage 1: coordonnées (x,y) du début et de la fin du crayon ⇒ x ∈ R⁴
 - codage 2: angle du crayon par rapport au bas de l'image
- Un codage peut être invariant par rapport à certaines propriétés

(ex: le codage 2 est invariant par rapport à la translation et l'agrandissement de l'objet)

Approche statistique

- Ensemble d'exemples typiques du problème: base d'apprentissage
 - des **statistiques** sur ces données permettent de déterminer les paramètres du système, ex:
 - paramètres de la droite séparatrice
 - forme et position des regroupements
- Deuxième ensemble d'exemples pour évaluer les performances du système: base de test
 - exemple: 1000 morceaux de bois (600 pin, 400 cerisier)
 - 900 pour l'apprentissage (dont 540 pins), 27 erreurs ⇒ 3%
 - 100 pour le test (dont 60 pins), 5 erreurs ⇒ 5%
 - en général, l'erreur sur la base de test est plus élevée, car les exemples n'ont pas servi à déterminer les paramètres

Approche statistique ou structurelle

Exemple: reconnaissance des lettres A-Z à partir d'une image 32x32 points en niveaux de gris

- Approche statistique:
 - création d'une base d'apprentissage
 - choix du codage
 - détermination des paramètres
 - classification d'une nouvelle image comme le caractère le "plus probable", suivant les statistiques de l'apprentissage
- Avantage
 - pas de règles à définir
- Inconvénients
 - réponse non justifiée
 - améliorations difficiles

- Approche structurelle
 - classification en utilisant explicitement les caractéristiques de chaque caractère
 - ex: forme d'un 'A' ⇒ 2 traits diagonaux à 30°, et une barre horizontale au milieu
- Avantage
 - la décision est justifiée par le choix des règles
- Inconvénients
 - il faut un expert pour établir les règles
 - on risque de mal réagir avec des lettres déformées, des écritures atypiques...

Approche supervisée ou non supervisée

Classification supervisée

- on connaît la bonne réponse pour chaque exemple de la base d'apprentissage
- l'algorithme d'apprentissage essaye de trouver les meilleurs paramètres pour que le système donne la bonne réponse pour tous les exemples de la base d'apprentissage
- Exemples: reconnaissance du bois, de faux billets, des caractères...

Classification non supervisée

- on ne connaît pas la "bonne" réponse pour les exemples de la classe d'apprentissage
- l'algorithme d'apprentissage essaye de trouver un regroupement de plusieurs exemples qui "se ressemblent" (critère à définir!)
- Exemples: étude commerciale
- Approches combinées

Problème

- reconnaissance des catégories "naturelles" d'objets (morceaux de bois, faux billets)
- b) attribuer des catégories **prédéfinies** à des collections de données

Formalisation

- en entrée:
 - vecteur d'observation $\mathbf{x} = (x_1, ..., x_d)^t$ de dimension d
- en sortie:
 - classe de l'observation $\omega \in \Omega = \{\omega_1, ..., \omega_C\}$ parmi C classes
- base d'apprentissage:
 - n paires associant un vecteur d'entrée \mathbf{x} + sa classe $\{(\mathbf{x}^{(1)}, \omega^{(1)}), ..., (\mathbf{x}^{(n)}, \omega^{(n)})\}$
 - alternativement, un ensemble d'exemples par classe:

$$\omega_1$$
: { $\mathbf{x}^{(1,1)}$, ..., $\mathbf{x}^{(1,n_1)}$ } ... ω_C : { $\mathbf{x}^{(C,1)}$, ..., $\mathbf{x}^{(C,n_C)}$ }

Architecture générale

Approches envisagées

1. Déterminer un représentant μ_i pour chaque classe fonction discriminante à minimiser: distance entre l'observation et le représentant

$$g_i(\mathbf{x}) = D(\mathbf{x}, \mu_i)$$

- Modéliser les fonctions discriminantes g_i(x) ou les frontières de décision, en supposant une forme paramétrique – par ex. une droite
- Modéliser la probabilité a posteriori de la classe i (après avoir observé x)

$$g_i(\mathbf{x}) = P(\omega_i/\mathbf{x})$$

- forme paramétrique des probabilités par ex. une gaussienne
- apprentissage des paramètres avec la base d'apprentissage
- ⇒ classifieur Bayésien

Frontières de décision (1)

Tout classifieur peut être caractérisé par les frontières de décision:

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$

Ex: 2 classes

plusieurs droites séparatrices possibles ⇒ critère d'optimalité?

Frontières de décision (2)

ex: 3 classes

ou

Frontières de décision (3)

Peut-on toujours séparer 2 classes par une droite?

Ces problèmes ne sont pas linéairement séparables! Une solution: utiliser plusieurs droites

Frontières de décision (4)

Autres exemples:

- Il peut être préférable de commettre des erreurs sur les exemples de la base d'apprentissage, au lieu de chercher à les séparer parfaitement:
 - on cherche les caractéristiques "générales" du problème, afin que les exemples non utilisés pendant l'apprentissage soient correctement classés: capacité de généralisation
 - problème des exemples atypiques, bruités, faussement étiquetés...

- Fonction discriminante = distance entre l'observation et un représentant de la classe
 - choix de la classe pour laquelle la distance est minimale
- Variantes possibles :
 - calcul des représentants
 - nombre de représentants par classe
 - mesure de distance
- Cas de base :
 - représentant = moyenne de tous les exemples de la classe
 - Distance euclidienne

$$\mu_i = \frac{1}{n_i} \sum_{\mathbf{x}_i \in \omega_i} \mathbf{x}_j$$

$$D(\mathbf{x}, \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{t} (\mathbf{x} - \boldsymbol{\mu})$$
$$= \sum_{k=1}^{d} (x_{k} - \mu_{k})^{2}$$

Cas euclidien

- Exemple
 - points de distance constantecercles
 - frontière de décisiondroite

Fonctions discriminantes

$$\begin{cases} g_1(\mathbf{x}) = (\mathbf{x} - \mu_1)^t (\mathbf{x} - \mu_1) \\ g_2(\mathbf{x}) = (\mathbf{x} - \mu_2)^t (\mathbf{x} - \mu_2) \end{cases} \text{ on décide } \begin{cases} \text{classe 1, si } g_1(\mathbf{x}) < g_2(\mathbf{x}) \\ \text{classe 2, si } g_2(\mathbf{x}) < g_1(\mathbf{x}) \end{cases}$$

Frontière de décision

$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$
 (pas de décision possible)

Equation de la droite séparatrice

$$\begin{split} g_1(\mathbf{x}) &= g_2(\mathbf{x}) \\ \Leftrightarrow (\mathbf{x} - \mu_1)^t (\mathbf{x} - \mu_1) &= (\mathbf{x} - \mu_2)^t (\mathbf{x} - \mu_2) \\ \Leftrightarrow \mathbf{x}^t \mathbf{x} - \mu_1^t \mathbf{x} - \mathbf{x}^t \mu_1 + \mu_1^t \mu_1 &= \mathbf{x}^t \mathbf{x} - \mu_2^t \mathbf{x} - \mathbf{x}^t \mu_2 + \mu_2^t \mu_2 \\ \Leftrightarrow -2\mu_1^t \mathbf{x} + 2\mu_2^t \mathbf{x} + \mu_1^t \mu_1 - \mu_2^t \mu_2 &= 0 \\ \Leftrightarrow 2(\mu_2 - \mu_1)^t \mathbf{x} - (\mu_2 - \mu_1)^t (\mu_1 + \mu_2) &= 0 \\ \Leftrightarrow (\mu_2 - \mu_1)^t \left(\mathbf{x} - \frac{\mu_1 + \mu_2}{2}\right) &= 0 \\ \text{équation de la droite séparatrice} &= \text{médiatrice de } (\mu_1, \mu_2) \end{split}$$

et
$$(\mu_2 - \mu_1)^t \left(\mathbf{x} - \frac{\mu_1 + \mu_2}{2} \right)_{\substack{\omega_2 \\ \omega_2}}^{\omega_1} 0$$

Exemple

$$\omega_{1} : \begin{cases}
-1 & 0 & 1 \\
1 & 1 & 1
\end{cases} \Rightarrow \mu_{1} = \begin{pmatrix} 0 \\
1 \end{pmatrix} \qquad \mu_{2} - \mu_{1} = \begin{pmatrix} 0 \\
2 \end{pmatrix} \\
\omega_{2} : \begin{cases}
-1 & 0 & 1 \\
3 & 3 & 3
\end{cases} \Rightarrow \mu_{2} = \begin{pmatrix} 0 \\
3 \end{pmatrix} \qquad \frac{\mu_{1} + \mu_{2}}{2} = \begin{pmatrix} 0 \\
2 \end{pmatrix}$$

Equation

$$(0 \quad 2)\left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \end{pmatrix}\right) = 0 \Leftrightarrow 2(y-2) = 0 \Leftrightarrow y = 2$$

- Bilan
 - droite séparatrice y=2
 - classement de l'observation

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 classé $\begin{cases} \omega_1 \text{ si } y < 2 \\ \omega_2 \text{ si } y > 2 \end{cases}$ (pas de décision si $y = 2!$)

test pour tous les exemples

⇒ tous correctement classés

∀x ∈ A

Choix de la mesure de distance (1)

- Comparaison de plusieurs distances, performances?
 - points à distance constante (cercles, ovales...)
 - type de frontière de décision (droite, ...)
- Distance euclidienne

$$D(\mathbf{x}, \boldsymbol{\mu}) = \|\mathbf{x} - \boldsymbol{\mu}\|^2 = (\mathbf{x} - \boldsymbol{\mu})^t (\mathbf{x} - \boldsymbol{\mu}) = \sum_{k=1}^d (x_k - \mu_k)^2$$

- avantage: simplicité
- inconvénient: fonctionne mal avec une dispersion différente sur les différents axes

Choix de la mesure de distance (2)

 Amélioration: pondérer la distance par la variance des données dans chaque direction

$$D(\mathbf{x}, \mu) = (\mathbf{x} - \mu)^{t} \begin{pmatrix} 1/\sigma_{1}^{2} & 0 \\ & \ddots & \\ 0 & 1/\sigma_{d}^{2} \end{pmatrix} (\mathbf{x} - \mu) = \sum_{k=1}^{d} \frac{1}{\sigma_{k}^{2}} (x_{k} - \mu_{k})^{2}$$

- points équivalents: ellipses alignées aux axes
- frontière de décision: paraboles

Choix de la mesure de distance (3)

...il faudrait que les ellipses ne soient pas forcément alignées

Distance de Mahalanobis: $D(\mathbf{x}, \mu) = (\mathbf{x} - \mu)^t \Sigma^{-1} (\mathbf{x} - \mu)$ avec Σ^{-1} inverse de la matrice de covariance

estimée par
$$\hat{\Sigma} = \frac{1}{n} \sum_{i} (\mathbf{x}_{i} - \mu)(\mathbf{x}_{i} - \mu)^{T}$$

(par classe ou global)

Nombre de représentants

 La distance de Mahalanobis n'est pas assez générale pour traiter tous les problèmes séparables linéairement

- utiliser plusieurs références
 - combien par classe? (choix délicat)
 - comment les déterminer? (moins simple que la moyenne)
- Permet aussi de traiter des problèmes non séparables linéairement:

A.2. Classifieur à fonction discriminante linéaire

- Estimation directe des fonctions discriminantes ou des frontières de décision
 - hypothèse: forme paramétrique
 - paramètres estimés avec la base d'apprentissage
 - critère:
 - nombre d'erreurs commises sur les exemples de la base d'apprentissage
- Problème à 2 classes
 - on pose: $g(\mathbf{x}) = g_1(\mathbf{x}) g_2(\mathbf{x})$
 - soit x un observation, on décide:

$$\begin{cases} \omega_1 \text{ si } g(\mathbf{x}) > 0 \\ \omega_2 \text{ si } g(\mathbf{x}) < 0 \end{cases}$$
 (pas de décision si $g(\mathbf{x}) = 0$)

A.2. Classifieur à fonction discriminante linéaire Droite séparatrice (1)

Fonction discriminante linéaire

$$g(\mathbf{x}) = \mathbf{a}^t \cdot \mathbf{x} + a_0$$
, avec
$$\begin{cases} \mathbf{a} : \text{vecteur des poids} \\ a_0 : \text{le seuil} \end{cases}$$

Calcul de la droite séparatrice (en 2 dimensions)

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}^t \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + a_0 = 0$$

$$\Leftrightarrow a_1 x_1 + a_2 x_2 + a_0 = 0$$

$$\Leftrightarrow x_2 = -\frac{a_1}{a_2} x_1 - \frac{a_0}{a_2}$$

A.2. Classifieur à fonction discriminante linéaire Droite séparatrice (2)

- le vecteur **a** donne l'orientation de la droite il est **normal** à la surface de décision
- le seuil a_0 détermine la position de la droite $(a_0 = 0 \Rightarrow \text{la droite})$ passe par l'origine)

A.2. Classifieur à fonction discriminante linéaire Exemple

$$\omega_1 : \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\} \qquad g(\mathbf{x}) = \mathbf{a}^t \cdot \mathbf{x} + a_0 \quad \text{avec} \quad \mathbf{a} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \text{et } a_0 = -2$$

$$\omega_2 : \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\} \qquad \Rightarrow g(\mathbf{x}) = (-1 \quad 2) \cdot \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} - 2 = -X_1 + 2X_2 - 2$$

Test des points

$$g(\mathbf{x}) > 0, \forall \mathbf{x} \in \omega_1$$

 $g(\mathbf{x}) < 0, \forall \mathbf{x} \in \omega_2$
 $g(\mathbf{x}) = 0 \Rightarrow x_2 = \frac{1}{2}x_1 + 1$

A.2. Classifieur à fonction discriminante linéaire Interprétation de q(x)

Soit \mathbf{x}_p la projection de \mathbf{x} sur la droite séparatrice H Comme a est normal à H, on peut écrire

$$\mathbf{X} = \mathbf{X}_p + r \frac{\mathbf{a}}{\|\mathbf{a}\|}$$

où r est une mesure de distance du point x à la frontière H

d'où

$$g(\mathbf{x}) = \mathbf{a}^{t} (\mathbf{x}_{p} + r \frac{\mathbf{a}}{\|\mathbf{a}\|}) + a_{0}$$

$$= (\mathbf{a}^{t} \mathbf{x}_{p} + a_{0}) + r \frac{\mathbf{a}^{t} \mathbf{a}}{\|\mathbf{a}\|}$$

$$= g(\mathbf{x}_{p}) + r \frac{\|\mathbf{a}\|^{2}}{\|\mathbf{a}\|}$$

$$g(\mathbf{x}) = r.\|\mathbf{a}\|$$

ou
$$r = \frac{g(\mathbf{x})}{\|\mathbf{a}\|}$$

ou
$$r = \frac{g(\mathbf{x})}{\|\mathbf{a}\|}$$
 (en particulier : $OH = \frac{|a_0|}{\|\mathbf{a}\|}$)

A.2. Classifieur à fonction discriminante linéaire Cas multi-classes (c>2)

- Approches possibles
 - 1. on considère (c-1) décisions du type: ω_i / pas ω_i
 - 2. on utilise c.(c-1)/2 fonctions discriminantes linéaires pour séparer chaque paire de classes
- ... mais les deux approches peuvent donner des régions pour lesquelles la classification n'est pas définie:

A.2. Classifieur à fonction discriminante linéaire Cas multi-classes (c>2)

- 3. définir c fonctions discriminantes linéaires
 - décision pour la classe ω_i :

si
$$g_i(\mathbf{x}) > g_i(\mathbf{x}), \forall j \neq i$$

 on peut montrer que les frontières des régions ainsi définies sont convexes

A.2. Classifieur à fonction discriminante linéaire Formalisation

- En entrée:
 - n exemples $\mathbf{x} \in \mathbb{R}^d$, avec attribut de classe (ω_1 ou ω_2)
 - on recherche

$$g(\mathbf{x}) = \mathbf{a}^t . \mathbf{x} + a_0$$

tel que
$$\int g(\mathbf{x}) > 0$$
 pour $\mathbf{x} \in \omega_1$
 $g(\mathbf{x}) < 0$ pour $\mathbf{x} \in \omega_2$

A.2. Classifieur à fonction discriminante linéaire Simplification des notations (1)

Suppression du seuil

$$g(\mathbf{x}) = \mathbf{a}^{t} \cdot \mathbf{x} + a_{0}$$

$$= (a_{1} \cdots a_{d}) \begin{pmatrix} x_{1} \\ \vdots \\ x_{d} \end{pmatrix} + a_{0}$$

$$= (a_{0} \ a_{1} \cdots a_{d}) \begin{pmatrix} 1 \\ x_{1} \\ \vdots \\ x_{d} \end{pmatrix}$$

$$= \overline{\mathbf{a}}^{t} \overline{\mathbf{x}}$$

A.2. Classifieur à fonction discriminante linéaire Simplification des notations (2)

Suppression des labels de classe

$$\forall \mathbf{x} \in \omega_{2}, g(\overline{\mathbf{x}}) < 0$$

$$\Leftrightarrow \overline{\mathbf{a}}^{t} . \overline{\mathbf{x}} < 0$$

$$\Leftrightarrow \overline{\mathbf{a}}^{t} . (-\overline{\mathbf{x}}) > 0$$

$$\Rightarrow \forall \mathbf{x}, g(\widetilde{\mathbf{x}}) > 0 \text{ avec}$$

$$\begin{cases}
\widetilde{\mathbf{x}} = \begin{pmatrix} 1 \\ X_{1} \\ \vdots \\ X_{d} \end{pmatrix} \text{ si } \mathbf{x} \in \omega_{1} \\
\vdots \\ X_{d} \end{cases}$$

$$\Rightarrow \forall \mathbf{x}, g(\widetilde{\mathbf{x}}) > 0 \text{ avec}$$

$$\begin{cases}
\widetilde{\mathbf{x}} = \begin{pmatrix} -1 \\ -X_{1} \\ \vdots \\ -X_{d} \end{pmatrix} \text{ si } \mathbf{x} \in \omega_{2}
\end{cases}$$

A.2. Classifieur à fonction discriminante linéaire Recherche de la solution

Unicité de la solution a ?

$$\forall \mathbf{x}, \ g(\widetilde{\mathbf{x}}) = \overline{\mathbf{a}}^t.\widetilde{\mathbf{x}} > 0$$

⇒ la solution, si elle existe, doit être dans l'intersection des ½ plans positifs construits avec tous les vecteurs normaux

⇒ il n'y a pas de solution unique (quel critère de qualité?)

A.2. Classifieur à fonction discriminante linéaire Algorithme du perceptron (1)

Principe de l'algorithme (a_0 =0 pour simplifier)

$$\omega_1: \mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \, \omega_2: \mathbf{x}_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \implies \widetilde{\mathbf{x}}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \, \widetilde{\mathbf{x}}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

1ère itération: $\mathbf{a} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

$$\mathbf{a}^t \widetilde{\mathbf{x}}_1 = -1 \quad \Rightarrow g(\widetilde{\mathbf{x}}_1) < 0$$

 $\mathbf{a}^t \widetilde{\mathbf{x}}_2 = 3 \quad \Rightarrow g(\widetilde{\mathbf{x}}_2) > 0$

- $\widetilde{\mathbf{X}}_1$ est mal classé: il faut tourner la droite H vers $\widetilde{\mathbf{X}}_1$
- par exemple:

$$\mathbf{a}' = \mathbf{a}_{\text{initial}} + \overset{\sim}{\mathbf{x}}_1$$

A.2. Classifieur à fonction discriminante linéaire Algorithme du perceptron (2)

2e itération:

$$\widetilde{\mathbf{x}}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \widetilde{\mathbf{x}}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\mathbf{a}^{\prime t} \widetilde{\mathbf{x}}_1 = 4 \quad \Rightarrow g(\widetilde{\mathbf{x}}_1) > 0$$

$$\mathbf{a}^{\prime t} \widetilde{\mathbf{x}}_2 = 0 \quad \Rightarrow g(\widetilde{\mathbf{x}}_2) = 0$$

$$\mathbf{a}^{\prime t} \widetilde{\mathbf{x}}_2 = 0 \implies g(\widetilde{\mathbf{x}}_2) = 0$$

 $\Rightarrow \widetilde{\mathbf{x}}_1$ bien classé, $\widetilde{\mathbf{x}}_2$ à la frontière

il faut tourner H vers $\tilde{\mathbf{x}}_2$

$$\mathbf{a}'' = \mathbf{a}' + \widetilde{\mathbf{x}}_2$$

A.2. Classifieur à fonction discriminante linéaire Algorithme du perceptron (3)

3e itération: $\mathbf{a}'' = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

$$\widetilde{\mathbf{x}}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \widetilde{\mathbf{x}}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\mathbf{a}^{"t}\widetilde{\mathbf{x}}_1 = 1 \implies g(\widetilde{\mathbf{x}}_1) > 0$$

 $\mathbf{a}^{"t}\widetilde{\mathbf{x}}_2 = 5 \implies g(\widetilde{\mathbf{x}}_2) > 0$

$$\mathbf{a}^{"t}\widetilde{\mathbf{X}}_2 = 5 \Rightarrow g(\widetilde{\mathbf{X}}_2) > 0$$

 $\Rightarrow \widetilde{\mathbf{x}}_1$ et $\widetilde{\mathbf{x}}_2$ sont bien classés

et x₁ et x₂ sont chacun d'un côté de la frontière de décision H

A.2. Classifieur à fonction discriminante linéaire Algorithme du perceptron (4)

Résumé

- normaliser les exemples
 - ajouter une composante $x_0 = 1$
 - inverser tous les exemples de la classe ω₂
- algorithme
 - a initial arbitraire
 - tant qu'il existe x tel que g(x)<0, faire a' ← a + x
- Variantes
 - présentation des exemples
 - cyclique (continuer après une erreur)
 - séquentielle (modifier **a** et recommencer au début après une erreur)

A.2. Classifieur à fonction discriminante linéaire

Algorithme du perceptron: exemple

$$\omega_{1}: \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ -2 \end{pmatrix} \right\} \\ \omega_{2}: \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 0 \end{pmatrix} \right\} \end{cases} \quad \overline{\mathbf{a}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Frontière de décision:
$$(1 - 2 \ 0)$$
 $\begin{pmatrix} x \\ y \\ y \end{pmatrix} = 0$

$$\Leftrightarrow 1 - 2x = 0 \quad \Leftrightarrow x = \frac{1}{2}$$

$$\begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ -2 \end{vmatrix} \begin{vmatrix} -1 \\ -1 \\ 0 \end{vmatrix} \begin{vmatrix} -1 \\ -3 \\ 0 \end{vmatrix} \begin{vmatrix} -1 \\ -5 \\ 0 \end{vmatrix}$$

$$\bar{\mathbf{a}}_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\bar{\mathbf{a}}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$$

$$\bar{\mathbf{a}}_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$$

$$\bar{\mathbf{a}}_{3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{vmatrix}$$

Règle de décision: $X < \frac{1}{2}$: ω_1 $X > \frac{1}{2}$: ω_2

A.2. Classifieur à fonction discriminante linéaire Algorithme du perceptron

Problèmes

- l'algorithme ne converge pas lorsque la solution n'existe pas! (problème non linéairement séparable)
- si une solution existe, l'algorithme converge après un nombre fini d'itérations, mais on n'a pas de critère de qualité de la solution
- Critère proposé

minimiser la fonction
$$J = \sum_{\substack{\text{exemple } \mathbf{x} \\ \text{mal classé}}} -\mathbf{a}^t \mathbf{x}$$

- descente du gradient $\mathbf{a}' = \mathbf{a} \varepsilon \frac{\partial J}{\partial \mathbf{a}} = \mathbf{a} + \varepsilon \sum_{\substack{\text{exemple } \mathbf{x} \\ \text{mal classé}}} \mathbf{x}$
- déterminer l'ensemble des points mal classés à chaque itération, et incrémenter le vecteur **a** de leur somme

A.2. Classifieur à fonction discriminante linéaire

Procédure à relaxation

Contrainte de seuil minimum b

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \rho \sum_{\substack{\mathbf{x} \text{ tel que} \\ \mathbf{a}_k^t \mathbf{x} \le b}} \frac{b - \mathbf{a}_k^t \mathbf{x}}{\|\mathbf{x}\|^2} \mathbf{x} \qquad (0 < \rho < 2)$$

- procédure à correction d'erreur (comme le perceptron)
 - ne converge que pour les cas linéairement séparables
 - pas forcément en un nombre fini d'itérations (≠ perceptron)
 - dépend de la dimension d vs. le nombre d'exemples n
 - n < 2d = généralement linéairement séparable
- cas non séparable
 - détection de non convergence?
 - Perceptron: cycle des solutions dans le cas de valeurs entières
 - moyenne des derniers vecteurs de poids **a**_k
 - évite de choisir une mauvaise solution

A.2. Classifieur à fonction discriminante linéaire Autres algorithmes

Minimisation de la distance quadratique

$$\sum_{\mathbf{x}} \left\| \mathbf{a}^t \mathbf{x} - b \right\|^2$$

Procédure de Widrow-Hoff

$$\mathbf{a}_{k+1} = \mathbf{a}_k + \rho_k \sum_{\mathbf{x}} (b - \mathbf{a}^t \mathbf{x}) \mathbf{x} \qquad (\rho_k = \frac{\rho_1}{k})$$

- prend en compte tous les exemples
- interruption lorsque $|\mathbf{a}_{k+1} \mathbf{a}_k| < \varepsilon$
- cas linéairement séparable: séparation pas garantie
- cas non linéairement séparable: solution acceptable
- Procédure de Ho-Kashyap
 - combinaison des propriétés Perceptron + Widrow-Hoff
 - minimise la distance quadratique + séparation linéaire

A.2. Classifieur à fonction discriminante linéaire Support Vector Machines (SVM)

Maximisation de la marge

$$\forall k, \ \overline{\mathbf{a}}^t.\widetilde{\mathbf{y}}_k \geq 1$$

Les vecteurs support sont sur la marge

$$\overline{\mathbf{a}}^t . \widetilde{\mathbf{y}}_k = 1$$

- Dans les cas non linéaire
 - projeter les données dans un espace de très grande dimension rend le problème linéairement séparable

$$\mathbf{y}_k = \varphi(\mathbf{x}_k)$$

Il n'est pas nécessaire de calculer explicitement y si on dispose d'une fonction noyau tel que

$$k(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i).\varphi(\mathbf{x}_j)$$

Classifieur à 2 classes très populaire

- Approche plus générale en classification supervisée
 - caractérisation des classes
 - trouver la distribution de probabilité des observations pour chaque classe
 - règle de décision Bayésienne
 - choisir la classe qui minimise le risque d'erreur
- Exemple
 - détecteur de faux billets

Connaissances a priori

- Probabilités a priori
 - le nombre d'exemples d'apprentissage peut varier d'une classe à l'autre
 - on peut utiliser ce nombre d'exemples pour déterminer les probabilités a priori $P(\omega_1)$... $P(\omega_C)$:
 - fréquence relative des classes dans base d'apprentissage: $P(\omega_i) = n_i / n$
 - utilisation pour un problème à 2 classes:
 - si on connaît uniquement $P(\omega_1)$ et $P(\omega_2)$? (on a: $P(\omega_2) + P(\omega_1) = 1$)
 - choisir la classe la plus probable! (surtout si $P(\omega_1) >> P(\omega_2)...$)
- Prise en compte de l'observation ?

Vraisemblance conditionnelles

- La valeur de l'observation x dépend de la classe
 - densité de probabilité de x conditionnelle à la classe ω
 - $p(x/\omega_1)$: probabilité d'une mesure x pour un vrai billet
 - $p(x/\omega_2)$: " " pour un faux billet
 - densité de probabilité de x quelque soit la nature du billet

$$p(x) = p(x/\omega_1)P(\omega_1) + p(x/\omega_2)P(\omega_2)$$

Probabilités a posteriori

- Prise en compte de la valeur de x dans la décision
 - Probabilité a posteriori de ω_1 et ω_2
 - $P(\omega_1/x)$: probabilité que le billet soit vrai en sachant la mesure x
 - $P(\omega_2/X)$:
- Calcul de $p(\omega_i/x)$?
 - formule de Bayes

$$P(\omega_1/x) = \frac{p(x/\omega_1)P(\omega_1)}{p(x)}$$

$$P(\omega_2/x) = \frac{p(x/\omega_2)P(\omega_2)}{p(x)}$$

$$\forall x, P(\omega_1/x) + P(\omega_2/x) = 1$$

faux

Règle de décision

- Choix de la classe la plus probable, dans l'état des connaissances
 - Décider ω_1 si $P(\omega_1/x) > P(\omega_2/x)$ ω_2 sinon
 - Règle équivalente: ω_1 si $p(x/\omega_1)P(\omega_1)$ $p(x/\omega_2)P(\omega_2)$ ω_2 sinon
 - \Rightarrow Régions de décision D_1 et D_2

Probabilité d'erreur

$$P(\text{erreur}) = P(\omega_1, \text{décide } \omega_2) + P(\omega_2, \text{décide } \omega_1)$$

$$= P(\omega_1)P(x \in D_2 / \omega_1) + P(\omega_2)P(x \in D_1 / \omega_2)$$

$$= \int_{D_2} p(x / \omega_1)P(\omega_1)dx + \int_{D_1} p(x / \omega_2)P(\omega_2)dx$$

Le classifieur Bayésien est optimal dans le sens où il **minimise le taux d'erreur**

Cas général

Probabilité *a posteriori* de la classe i, en applicant la règle de Bayès:

$$P(\omega_i/\mathbf{x}) = \frac{p(\mathbf{x}/\omega_i).P(\omega_i)}{p(\mathbf{x})} \text{ avec } p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x}/\omega_j).P(\omega_j)$$

Choix de la classe la plus probable au vu de l'observation

$$\omega = \underset{\omega_i}{\operatorname{argmax}} P(\omega_i/\mathbf{x}) = \underset{\omega_i}{\operatorname{argmax}} \frac{p(\mathbf{x}/\omega_i).P(\omega_i)}{p(\mathbf{x})}$$

or, la probabilité a priori de **x** est indépendante de ω_i , donc:

$$\omega = \underset{\omega_i}{\operatorname{argmax}} p(\mathbf{x}/\omega_i) P(\omega_i)$$

 $\omega = \underset{\omega_i}{\operatorname{argmax}} p(\mathbf{x}/\omega_i) P(\omega_i)$ Probabilité d'erreur: $P(\text{erreur}) = 1 - \sum_{i=1}^{c} \int_{D_i} p(\mathbf{x}/\omega_i) P(\omega_i) d\mathbf{x}$

Décision avec coûts (1)

- Plusieurs actions possibles $A = \{\alpha_1, \alpha_2, \dots \alpha_s\}$
 - décider une classe ω_i , rejeter (pas de prise de décision)
- Fonction de coût $\lambda_{ij} = \lambda(\alpha_i/\omega_j)$
 - coût de l'action α_i si la classe est ω_i
- Risque conditionnel $R(\alpha_i/\mathbf{x})$
 - risque associé à l'action α_i sachant x
 - si la classe est ω_j , le coût est λ_{ij}
 - sur l'ensemble des classes le risque de l'action α_i est

$$R(\alpha_i / \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i / \omega_j) P(\omega_j / \mathbf{x})$$

- Règle de décision
 - choisir l'action α_i si $R(\alpha_i/\mathbf{x}) < R(\alpha_i/\mathbf{x})$, $\forall j \neq i$
 - action qui minimise le risque conditionnel

Décision avec coûts (2)

- Cas particulier
 - action $\alpha_i = \text{choisir la classe } \omega_i$
 - fonctions de coût

$$\begin{cases} \lambda(\alpha_i / \omega_i) = 0 & \text{bonne décision} \\ \lambda(\alpha_i / \omega_j) = 1, \forall j \neq i & \text{mauvaise décision} \end{cases}$$

$$\Rightarrow R(\alpha_i / \mathbf{x}) = \sum_{j \neq i} P(\omega_j / \mathbf{x}) = 1 - P(\omega_i / \mathbf{x})$$

- minimiser $R(\alpha_i/\mathbf{x})$ revient à maximiser $P(\omega_i/\mathbf{x})$
- on retrouve le classifieur à taux d'erreur minimum

Décision avec coûts - exemple

- 2 classes
 - ω_1 vrai billet, $P(\omega_1)=0.6$
 - ω_2 faux billet, $P(\omega_2)=0.4$
- Fonction de coût

- 2 actions
 - α_1 accepter le billet
 - α_2 refuser le billet
- $\lambda(\alpha_1/\omega_1) = \lambda_{11} = 1$ € accepter un vrai billet (test)
- $\lambda(\alpha_1/\omega_2) = \lambda_{12} = 101$ € accepter un faux billet (test+perte)
- $\lambda(\alpha_2/\omega_1) = \lambda_{21} = 11$ € refuser un vrai billet (préjudice commercial)
- $\lambda(\alpha_2/\omega_2) = \lambda_{22} = 1$ € refuser un faux billet (test)
- Règle de décision
 - choisir α_1 si $R(\alpha_1/\mathbf{x}) < R(\alpha_2/\mathbf{x})$ $\Leftrightarrow \lambda_{11} P(\omega_1 / \mathbf{x}) + \lambda_{12} P(\omega_2 / \mathbf{x}) < \lambda_{21} P(\omega_1 / \mathbf{x}) + \lambda_{22} P(\omega_2 / \mathbf{x})$ $\Leftrightarrow (\lambda_{21} - \lambda_{11})p(\mathbf{x} / \omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x} / \omega_2)P(\omega_2)$ $\Leftrightarrow 10 \times 0.6 \times p(\mathbf{x} / \omega_1) > 100 \times 0.4 \times p(\mathbf{x} / \omega_2)$
 - modification des régions de décision

Fonctions discriminantes

Cas général

$$g_i(\mathbf{x}) = -R(\alpha_i/\mathbf{x})$$

Taux minimal d'erreur $g_i(\mathbf{x}) = P(\omega_i/\mathbf{x})$

- Fonctions équivalentes
 - décision invariante par
 - biais additif
 - constante multiplicative
 - composition par une fonction monotone
 - exemples

$$g_{i}(\mathbf{x}) = P(\omega_{i}/\mathbf{x})$$

$$g_{i}(\mathbf{x}) = p(\mathbf{x}/\omega_{i})P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x}/\omega_{i}) + \log P(\omega_{i})$$

fonctions équivalentes ⇒décisions identiques ⇒régions de décision identiques

Frontières de décision

Loi normale

En dimension 1:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad \text{avec } \left\{\frac{\mu = E[x]}{\sigma^2 = E[x-\mu]^2}\right\} \text{ moyenne}$$

$$p(x) \sim N(u, \sigma^2)$$

~95% de la courbe entre μ -2 σ et μ +2 σ

Loi normale

En dimension d:

$$p(\mathbf{x}) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^{t} \Sigma^{-1}(\mathbf{x} - \mu)}$$

$$\text{avec} \begin{cases} \mu = E[\mathbf{x}] & \text{vecteur moyenne} \\ \Sigma = E[\mathbf{x} - \mu)(\mathbf{x} - \mu)^{t} \end{bmatrix} \text{matrice de covariance}$$

- Σ matrice de covariance symétrique, définie positive
- si les d dimensions sont indépendantes, alors Σ est diagonale

$$\Rightarrow p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i)$$

produit de densités de probabilités normales de dimension 1

Loi normale

- En dimension 2: $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$
 - courbes d'équidensité

$$p(x) = K \Rightarrow (\mathbf{x} - \mu)^{t} \Sigma^{-1} (\mathbf{x} - \mu) = K'$$

$$\sigma_{12} = 0$$

$$\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}=K''$$

$$\sigma_{12} = 0 \qquad \sigma_{12} \neq 0$$

$$\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} = K'' \qquad \frac{(x_1 - \mu_1)^2}{a} + \frac{(x_2 - \mu_2)^2}{b} + \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{c} = K'''$$

Fonctions discriminantes pour loi normale

 Fonctions discriminantes pour une distribution normale des données

$$p(\mathbf{x} / \omega_{i}) \sim N(\mu_{i}, \Sigma_{i})$$
1er cas particulier $\Sigma_{i} = \sigma^{2}I = \begin{pmatrix} \sigma^{2} & 0 \\ & \ddots & \\ 0 & \sigma^{2} \end{pmatrix}$

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x}/\omega_{i}) + \log P(\omega_{i})$$

$$= K - \frac{\|\mathbf{x} - \mu_{i}\|^{2}}{2\sigma^{2}} + \log P(\omega_{i})$$

si en plus $P(\omega_i) = P(\omega_j)$, on peut simplifier: σ^2 disparaît $g_i(\mathbf{x}) = -\|\mathbf{x} - \mu_i\|^2$

classifieur à distance minimum (distance euclidienne)

Fonctions discriminantes pour loi normale

- 2ème cas particulier $\Sigma_i = \Sigma$
 - matrice de covariance identique pour toutes les classes

$$g_i(\mathbf{x}) = \log P(\omega_i) - \frac{1}{2}(\mathbf{x} - \mu_i)^{\dagger} \Sigma^{-1}(\mathbf{x} - \mu_i)$$

si en plus $P(\omega_i) = P(\omega_i)$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mu_i)^{\dagger} \Sigma^{-1}(\mathbf{x} - \mu_i)$$

- on retrouve le classifieur à distance minimum (associé à la distance de Mahalanobis)
- Cas général Σ_i est quelconque

$$g_i(\mathbf{x}) = \log P(\omega_i) - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (\mathbf{x} - \mu_i)^t \Sigma_i^{-1} (\mathbf{x} - \mu_i)$$

fonctions discriminantes quadratiques

Estimation paramétrique

- On suppose connu le type des lois de probabilité $p(\mathbf{x} / \omega_i)$
 - il faut estimer les paramètres de ces lois par des statistiques sur la base d'apprentissage
- Cas d'une distribution normale $p(\mathbf{x} / \omega_i) \sim N(\mu_i, \Sigma_i)$
 - il faut estimer la moyenne et la matrice de covariance
 - estimation par maximum de vraisemblance
 - (valeur maximisant la probabilité que les données d'apprentissage aient été générées suivant la densité)

dimension 1:

dimension d:

$$\begin{cases}
\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \\
\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2
\end{cases}$$

$$\begin{cases}
\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k \\
\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \hat{\mu})(\mathbf{x}_k - \hat{\mu})^t
\end{cases}$$

Estimation non paramétrique

- Principe: estimation directe de la densité de probabilité $p(\mathbf{x})$ à partir des données observées autour de \mathbf{x}
- Hypothèse:
 - densité $p(\mathbf{x})$ fonction continue
 - lacksquare R un voisinage de $oldsymbol{x}$ de volume V
 - peu de variation de $p(\mathbf{x})$ dans R
- Alors

$$P(x' \in R) = \int_{R} p(x') dx' \approx p(x) \int_{R} dx'$$

$$\Rightarrow \hat{p}(x) = \frac{P(x' \in R)}{V}$$

- Soient n tirages suivant la densité p(x)
 - Probabilité que k échantillons appartiennent à R

$$E[k] = n.P(x' \in R)$$

Estimation non paramétrique

- Il faut se rapprocher assez de \mathbf{x} pour que les hypothèses sur $p(\mathbf{x})$ soient valables, sans que le voisinage soit vide
 - soient
 - n: le nombre d'échantillons observés
 - V_n : le volume d'une région de \mathbb{R}^d centrée sur \mathbb{X}^d
 - k_n : le nombre de points dans le volume V_n
 - alors $\hat{p}_n(\mathbf{x}) = k_n/(n \times V_n)$
 - convergence $\hat{p}_n(\mathbf{x}) \xrightarrow{n \to \infty} p(\mathbf{x})$ si $\begin{cases} \lim_{n \to \infty} V_n = 0 \\ \lim_{n \to \infty} k_n = \infty \\ \lim_{n \to \infty} k_n / n = 0 \end{cases}$
- Deux approches
 - contrôler le volume V_n ou le nombre de point k_n

Estimation non paramétrique

- 1ère approche: estimateur de Parzen
 - on fixe le volume, par exemple $V_n = 1/\sqrt{n}$
 - puis on calcule k_n
- Voisinage défini comme un hyper-cube de côté h_n
 - volume $V_n = h_n^d$ fonction d'appartenance $\varphi(\mathbf{u}) = \begin{cases} 1 & \max_{k \le d} |u_k| \le \frac{1}{2} \\ 0 & \text{sinon} \end{cases}$ alors $\hat{p}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$
- Généralisation: fenêtres de Parzen

$$\varphi(u) \ge 0$$
 et $\int \varphi(u) du = 1$

exemple de noyau $\varphi(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$

Règle des k plus proches voisins

- 2ème approche: estimation non-paramétrique directe de la densité de probabilité $P(\omega_i / \mathbf{x})$
 - soient
 - n: le nombre d'échantillons observés
 - lacksquare V: le volume d'une région de \mathbf{R}^d centrée sur \mathbf{x}
 - k: le nombre de points dans le volume V
 - k_i : le nombre de points de la classe ω_i dans le volume V
 - alors $\hat{p}(\mathbf{x}; \omega_i) = k_i/(n \times V)$

$$\Rightarrow \hat{P}(\omega_i / \mathbf{x}) = \frac{\hat{p}(\mathbf{x}; \omega_i)}{\sum_{j} \hat{p}(\mathbf{x}; \omega_j)} = k_i / k$$

- $P(\omega_i / \mathbf{x})$ est estimé par la proportion de points de la classe ω_i parmi les k plus proches voisins de x
- Choix de k: ni trop grand, ni trop petit, typiquement $k \sim \sqrt{n}$
- Règle de décision des k-ppv ("k nearest neighbours"):
 - Décider ω_i si $k_i > k_j$, $\forall i \neq j$

- Classification supervisée
 - on dispose d'exemples, et on connaît leur classe
- Classification non-supervisée
 - on dispose d'exemples, sans connaître leurs classes
 - situation
 - étiquetage possible mais coûteux
 - système évolutif, apparition de nouvelles classes
 - meilleure connaissance de la structure des données
 - connaissances a priori ou hypothèses possibles sur:
 - le nombre de classes C
 - la probabilités a priori de chaque classe (?)
 - la forme paramétrique de la densité de probabilité de chaque classe (??)

Principes

- Méthodes de coalescence ("clustering")
 - Idée: séparer les données en paquets de points similaires
 - mesure de similarité/dissimilarité entre points?
 - qualité de la partition des données entre paquets?
- Mesure de similarité
 - distance euclidienne + seuil de distance
 - problème: sensibilité aux changements d'échelle x/y
 - normalisation préalable des données
 - moyenne et variance
 - analyse en composantes principales
 - autres distances: de Mahalanobis, de Minkovski

$$d_{\lambda}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} \sum_{k=1}^{d} |x_k - y_k|^{\lambda} \end{bmatrix}^{\frac{1}{\lambda}} \quad \lambda = 1: \text{ Manhattan/city bloc (valeur absolue)} \\ \lambda = 2: \text{ euclidienne} \\ \lambda \rightarrow \infty: \text{ Chebyshev (max)}$$

toute mesure de similarité (symétrique)

Critère de qualité

- Critère de qualité
 - n échantillons $\{\mathbf{x}_1...\mathbf{x}_n\}$, partition H en c paquets disjoints $H_1...H_c$
 - Qualité Q(H) à maximiser (question de recherche ouverte!)
- Moindre carrés
 - soit μ_i la moyenne du paquet H_i $\mu_i = \frac{1}{n_i} \sum_{\mathbf{x}_j \in H_i} \mathbf{x}_j$

alors la somme des erreurs au carré est
$$J = \sum_{i=1}^{C} \sum_{\mathbf{x}_i \in H_i} \|\mathbf{x}_j - \mathbf{\mu}_i\|^2$$

- partition à variance minimum
 - adapté pour des nuages de points compacts
 - problème si le nombre de point des nuages est déséquilibré

$$J = \frac{1}{2} \sum_{i=1}^{C} n_i S_i \text{ avec}$$

reformulation
$$J = \frac{1}{2} \sum_{i=1}^{c} n_i S_i \text{ avec} \begin{cases} S_i = \frac{1}{n_i^2} \sum_{\mathbf{x}_j, \mathbf{x}_k \in H_i} \|\mathbf{x}_j - \mathbf{x}_k\|^2 & \text{cas euclidien} \\ S_i = \frac{1}{n_i^2} \sum_{\mathbf{x}_j, \mathbf{x}_k \in H_i} s(\mathbf{x}_j, \mathbf{x}_k) & \text{cas général} \end{cases}$$

Recherche de la partition

- Recherche directe
 - explosion combinatoire en fonction de n et c
 - ~cⁿ/c! possibilités...
- Recherche par optimisation itérative
 - partition initiale
 - modification de la partition en améliorant le critère de qualité pb: atteinte d'un optimum local
- Cas du critère J_{euclidien}
 - Le réassignement des échantillons à la classe du centroïde dont il est le plus proche améliore le critère J_{euclidien}
 - l'initialisation est un problème critique
- Procédure des k-moyennes
- Généralisation: nuées dynamiques
- Variante ISODATA
 - regroupement/division pour avoir des homogènes classes

Algorithme des k-moyennes

- 1. Choisir des valeurs initiales $\hat{\mu}_1^0 \dots \hat{\mu}_c^0$
- 2. Classifier les n échantillons dans la classe pour laquelle ils sont le plus proche de $\hat{\mu}_i$

$$\omega(\mathbf{x}_k) = \underset{i}{\operatorname{argmin}} \|\mathbf{x}_k - \hat{\mu}_i\|^2$$

3. Recalculer la moyenne à partir des points associés à la classe $\sum_{\mathbf{x}_{\nu}} \mathbf{x}_{\nu}$

$$\hat{\boldsymbol{\mu}}_{i}' = \frac{\sum_{\omega(\mathbf{x}_{k})=i}^{\mathbf{x}_{k}}}{card\{\mathbf{x}_{k} / \omega(\mathbf{x}_{k}) = i\}}$$

- 4. Reboucler à l'étape 2 tant que:
 - il existe i tel que $\hat{\mu}'_i \neq \hat{\mu}_i$
 - le nombre maximal d'itération n'est pas atteint
 - la gain relatif du critère de qualité est trop faible

Classification hiérarchique

- Au lieu d'une partition, on considère une séquence de partitions imbriquées:
 - niveau 1: 1 paquet de n éléments
 - niveau n: n paquets de 1 élément

 Approches ascendantes (par agglomération) et descendantes (par division)

Méthode par agglomération

Principe

- 1. Initialement, un paquet par classe: c=n, $H_i=\{\mathbf{x}_i\}$
- 2. Choisir les 2 paquets les plus proches et les fusionner
- 3. Répéter l'étape 2 jusqu'à atteindre le nombre de classe désiré (ou c=1, ou autre critère d'arrêt)
- Distances inter-clusters

$$d_{\min}(H_i, H_j) = \min_{\mathbf{x} \in H_i, \mathbf{y} \in H_j} \|\mathbf{x} - \mathbf{y}\| \qquad d_{\max}(H_i, H_j) = \max_{\mathbf{x} \in H_i, \mathbf{y} \in H_j} \|\mathbf{x} - \mathbf{y}\|$$

$$d_{avg}(H_i, H_j) = \frac{1}{n_i n_j} \sum_{\mathbf{x} \in H_i, \mathbf{y} \in H_j} \|\mathbf{x} - \mathbf{y}\| \qquad d_{mean}(H_i, H_j) = \|\mu_i - \mu_j\|$$
(équivalentes dans le cas euclidien)

- si le critère dérive de la distance inter-éléments:
 - tous les calculs sont faits à partir de la matrice des distances
- Généralisation du critère
 - Fusionner les 2 paquets tant que le critère de qualité croît

Méthode par division

- Principe
 - 1. Initialement, tous les points dans une classe (c=1)
 - 2. Diviser un ou plusieurs paquets en sous-paquets
 - 3. Répéter jusqu'à satisfaction du critère d'arrêt
- Quantification vectorielle binaire
 - algorithme LBG (Linde, Buzo, Gray)
 - on part d'un centroïde
 - à chaque itération, le nombre de paquets est doublé en créant de nouveaux centroïdes par perturbation du centroïde initial de chaque classe

$$\begin{cases} \mu_i^+ = \mu_i (1 + \varepsilon) \\ \mu_i^- = \mu_i (1 - \varepsilon) \end{cases}$$

les centroïdes sont recalculés par les k-moyennes

Densités de probabilité plus complexes

- Une densité de probabilité normale ne suffit pas à modéliser toutes les distributions observées...
- Un mélange de gaussiennes ("gaussian mixture") permet de modéliser des distributions plus complexes

$$p(\mathbf{x}) = \sum_{j=1}^{c} P(\omega_j) p(\mathbf{x}/\omega_j)$$
 avec $p(\mathbf{x}/\omega_j) \sim N(\mu_j, \Sigma_j)$

- les poids des gaussiennes et les paramètres des gaussiennes sont inconnus: leur estimation est typiquement un problème d'apprentissage non supervisé
 - approche itérative maximisant la vraisemblance
 - pb de l'initialisation: utilisation de k-moyennes, approche par division
 - simplifications: Σ_i diagonale, Σ_i identique pour toutes les gaussiennes
- avec un nombre de gaussiennes "suffisant", on peut s'approcher de toute densité de probabilité
 - limité par la quantité des données d'apprentissage!
 - pas de règle simple pour (bien) choisir le nombre de gaussiennes...