

IN THE CLAIMS:

1 1. (Currently Amended) A method for a storage operating system implemented in a
2 storage system to optimize the amount of readahead data retrieved for a read stream es-
3 tablished in a data container stored in the storage system, the method comprising:

4 receiving a client read request at the storage system, the client read request indi-
5 cating client-requested data for the storage operating system to retrieve from the data
6 container containing the read stream;

7 determining whether the storage operating system is permitted to retrieve reada-
8 head data from the data container in response to the received client read request;

9 if it is determined that the storage operating system is permitted to retrieve reada-
10 head data from the data container, performing the steps of:

11 (i) selecting an amount of readahead data to retrieve from the data container
12 | based on a plurality of factors stored within a readset data structure associ-
13 | ated with the read stream; and
14 (ii) retrieving the selected amount of readahead data from the data container.

1 2. (Original) The method of claim 1, wherein the data container is a file, directory, vdisk
2 or lun.

1 3. (Original) The method of claim 1, wherein the storage operating system is determined
2 to be permitted to retrieve readahead data from the data container when the client-
3 requested data extends the read stream past a predetermined next readahead value.

1 4. (Original) The method of claim 3, wherein the predetermined next readahead value is
2 stored in a readset data structure associated with the read stream.

- 1 5. (Original) The method of claim 3, wherein the predetermined next readahead value is
- 2 updated based on a percentage of the selected amount of readahead data.

- 1 6. (Previously Presented) The method of claim 1, wherein a read-access style associated
- 2 with the data container is one of the plurality of factors used to select the amount of
- 3 readahead data.

- 1 7. (Original) The method of claim 6, wherein the selected amount of readahead data
- 2 equals zero if the read-access style corresponds to a random read-access style.

- 1 8. (Previously Presented) The method of claim 1, wherein a number of client read re-
- 2 quests processed in the read stream is one of the plurality of factors used to select the
- 3 amount of readahead data.

- 1 9. (Original) The method of claim 8, wherein the number of client read requests proc-
- 2 essed in the read stream is stored as a count value in a readset data structure associated
- 3 with the read stream.

- 1 10. (Previously Presented) The method of claim 1, wherein the amount of client-
- 2 requested data is one of the plurality of factors used to select the amount of readahead
- 3 data.

- 1 11. (Original) The method of claim 10, wherein the selected amount of readahead data is
- 2 set equal to a predetermined upper limit for large amounts of client-requested data.

- 1 12. (Original) The method of claim 1, wherein the selected amount of readahead data is
- 2 doubled if the number of client read requests processed in the read stream is greater than
- 3 a first threshold value.

1 13. (Original) The method of claim 1, wherein the client-requested data is identified as
2 read-once data when either (i) the number of client read requests processed in the read
3 stream is greater than a second threshold value or (ii) a set of metadata associated with
4 the read stream indicates that the client-requested data is read-once data.

1 14. (Original) The method of claim 1, wherein the selected amount of readahead data is
2 stored in one or more buffers enqueued on a flush queue, the flush queue being config-
3 ured to reuse buffers after a predetermined period of time.

1 15. (Original) The method of claim 14, wherein the predetermined period of time equals
2 two seconds.

1 16. (Currently Amended) An apparatus configured to implement a storage operating sys-
2 tem that optimizes the amount of readahead data retrieved for a read stream established in
3 a data container stored in the apparatus, the apparatus comprising:

4 means for receiving a client read request, the client read request indicating client-
5 requested data for the storage operating system to retrieve from the data container con-
6 taining the read stream;

7 means for determining whether the storage operating system is permitted to re-
8 trieve readahead data from the data container in response to the received client read re-
9 quest;

10 means for selecting an amount of readahead data to retrieve from the data con-
11 tainer based on a plurality of factors stored within a readset data structure associated with
12 the read stream; and

13 means for retrieving the selected amount of readahead data from the data con-
14 tainer.

1 17. (Original) The apparatus of claim 16, wherein the data container is a file, directory,
2 vdisk or lun.

- 1 18. (Original) The apparatus of claim 16, wherein the storage operating system is deter-
2 mined to be permitted to retrieve readahead data from the data container when the client-
3 requested data extends the read stream past a predetermined next readahead value.
- 1 19. (Original) The apparatus of claim 18, further comprising means for updating the pre-
2 determined next readahead value based on a percentage of the selected amount of reada-
3 head data.
- 1 20. (Previously Presented) The apparatus of claim 16, wherein the plurality of factors
2 used to select the amount of readahead data includes at least one of:
 - 3 (i) the amount of client-requested data,
 - 4 (ii) a number of client read requests processed in the read stream, and
 - 5 (iii) a read-access style associated with the data container.
- 1 21. (Original) The apparatus of claim 16, wherein the selected amount of readahead data
2 is doubled if the number of client read requests processed in the read stream is greater
3 than a first threshold value.
- 1 22. (Currently Amended): A storage system configured to optimize the amount of reada-
2 head data retrieved for a read stream established in a data container stored in the storage
3 system, the storage system comprising:
 - 4 a network adapter for receiving a client read request, the client read request indic-
5 ating client-requested data to retrieve from the data container containing the read stream;
 - 6 and
 - 7 a memory configured to store instructions for implementing a storage operating
8 system that performs the steps of:
 - 9 determining whether the storage operating system is permitted to retrieve
10 readahead data from the data container in response to the received client read re-
11 quest, and

12 if it is determined that the storage operating system is permitted to retrieve
13 readahead data from the data container:

14 (i) selecting an amount of readahead data to retrieve from the
15 data container based on a plurality of factors stored within a readset data
16 structure associated with the read stream; and

17 (ii) retrieving the selected amount of readahead data from the
18 data container.

1 23. (Original) The storage system of claim 22, wherein the data container is a file, direc-
2 tory, vdisk or lun.

1 24. (Original) The storage system of claim 22, wherein the storage operating system is
2 determined to be permitted to retrieve readahead data from the data container when the
3 client-requested data extends the read stream past a predetermined next readahead value.

1 25. (Original) The storage system of claim 24, wherein the predetermined next reada-
2 head value is updated based on a percentage of the selected amount of readahead data.

1 26. (Previously Presented) The storage system of claim 22, wherein the plurality of fac-
2 tors used to select the amount of readahead data includes at least one of:

3 (i) the amount of client-requested data,
4 (ii) a number of client read requests processed in the read stream, and
5 (iii) a read-access style associated with the data container.

1 27. (Original) The storage system of claim 22, wherein the selected amount of readahead
2 data is doubled if the number of client read requests processed in the read stream is
3 greater than a first threshold value.

1 28. (Currently Amended) A computer-readable media comprising instructions for execu-
2 tion in a processor for the practice of a method for a storage operating system imple-
3 mented in a storage system to optimize the amount of readahead data retrieved for a read
4 stream established in a data container stored in the storage system, the method compris-
5 ing:

6 receiving a client read request at the storage system, the client read request indi-
7 cating client-requested data for the storage operating system to retrieve from the data
8 container containing the read stream;

9 determining whether the storage operating system is permitted to retrieve reada-
10 head data from the data container in response to the received client read request;

11 if it is determined that the storage operating system is permitted to retrieve reada-
12 head data from the data container, performing the steps of:

- 13 (i) selecting an amount of readahead data to retrieve from the data container
14 based on a plurality of factors stored within a readset data structure associ-
15 ated with the read stream; and
- 16 (ii) retrieving the selected amount of readahead data from the data container.

1 29. (Original) The computer-readable media of claim 28, wherein the data container is a
2 file, directory, vdisk or lun.

1 30. (Previously Presented) The method of claim 1, wherein the retrieved readahead data
2 is stored in one or more buffers, the buffers containing a flush queue, the flush queue be-
3 ing configured to reuse buffers after a predetermined period of time.

1 31. (Previously Presented) The method of claim 30, wherein the read stream corresponds
2 to a read-once data transfer and data retrieved from the data container is stored in the
3 flush queue.

1 32. (Previously Presented) The method of claim 30, wherein the retrieved readahead data
2 is stored in the flush queue.

1 33. (Previously Presented) The method of claim 30, wherein one or more buffers ac-
2 cessed from the flush queue are re-enqueued on a normal queue.

1 34. (Currently Amended) A method for optimizing readahead data retrieval for a read
2 stream established in a data container stored in a storage system, the method comprising:
3 receiving a client read request at the storage system, the client read request be-
4 longing to the read stream and indicating an amount of client-requested data;
5 selecting an amount of readahead data based on the indicated amount of client-
6 requested data stored within a readset data structure associated with the read stream; and
7 retrieving the selected amount of readahead data from the data container.

1 35. (Previously Presented) The method of claim 34, wherein the selected amount of
2 readahead data is set equal to a multiple of a predetermined amount, and wherein the
3 multiple is associated with the amount of client-requested data.

1 36. (Previously Presented) The method of claim 34, wherein the selected amount of
2 readahead data is set equal to a multiple of the amount of client-requested data.

1 37. (Previously Presented) The method of claim 36, further comprising the step of
2 rounding the selected amount of readahead data to the size of a data block.

1 38. (Previously Presented) The method of claim 34, wherein the selected amount of
2 readahead data is set equal to a predetermined upper limit.

1 39. (Currently Amended) A method for optimizing readahead data retrieval for a read
2 stream established in a data container stored in a storage system, the method comprising:

3 receiving a client read request at the storage system, the client read request be-
4 longing to the read stream and indicating client-requested data;
5 selecting an amount of readahead data based on a read-access style associated
6 with the data container, wherein the read-access style is stored within a readset data struc-
7 ture associated with the read stream; and
8 retrieving the selected amount of readahead data from the data container.

1 40. (Previously Presented) The method of claim 39, wherein the selected amount of
2 readahead data equals zero if the read-access style corresponds to a random read-access
3 style.

1 41. (Previously Presented) A method for optimizing readahead data retrieval for a read
2 stream established in a data container stored in a storage system associated with a number
3 of storage devices, the method comprising:

4 receiving a client read request at the storage system, the client read request be-
5 longing to the read stream and indicating client-requested data;
6 selecting an amount of readahead data based on the number of storage devices;
7 and
8 retrieving the selected amount of readahead data from the data container.

1 42. (Previously Presented) The method of claim 41, wherein the step of selecting an
2 amount of readahead data further comprises:

3 determining whether a flag is associated with the read stream, the flag indicating
4 that the storage system is associated with more than a predetermined number of storage
5 devices; and
6 in response to determining whether the flag is associated, selecting the amount of
7 readahead data.

- 1 43. (Previously Presented) The method of claim 41, wherein the storage devices com-
- 2 prise one or more disks.

- 1 44. (Currently Amended) A method for optimizing readahead data retrieval for a read
- 2 stream established in a data container stored in a storage system, the method comprising:
 - 3 receiving a client read request at the storage system, the client read request be-
 - 4 longing to the read stream and indicating client-requested data;
 - 5 selecting an amount of readahead data based on a plurality of factors stored within
 - 6 a readset data structure associated with the read stream; and
 - 7 retrieving the selected amount of readahead data from the data container.

- 1 45. (Previously Presented) The method of claim 44, wherein the retrieved readahead
- 2 data is stored in one or more buffers, the buffers containing a flush queue, the flush queue
- 3 being configured to reuse buffers after a predetermined period of time.

- 1 46. (Previously Presented) The method of claim 45, wherein the read stream corre-
- 2 sponds to a read-once data transfer and data retrieved from the data container is stored in
- 3 the flush queue.

- 1 47. (Previously Presented) The method of claim 45, wherein the retrieved readahead
- 2 data is stored in the flush queue.

- 1 48. (Previously Presented) The method of claim 45, wherein one or more buffers ac-
- 2 cessed from the flush queue are re-enqueued on a normal queue.

- 1 49. (Currently Amended) A system for optimizing readahead data retrieval for a read
- 2 stream established in a data container stored in a storage system, the system comprising:
 - 3 means for receiving a client read request at the storage system, the client read re-
 - 4 quest belonging to the read stream and indicating client-requested data;

5 means for selecting an amount of readahead data based on a plurality of factors
6 stored within a readset data structure associated with the read stream; and
7 means for retrieving the selected amount of readahead data from the data con-
8 tainer.

1 50. (Previously Presented) The system of claim 49, wherein the retrieved readahead data
2 is stored in one or more buffers, the buffers containing a flush queue, the flush queue be-
3 ing configured to reuse buffers after a predetermined period of time.

1 51. (Previously Presented) The system of claim 50, wherein the read stream corresponds
2 to a read-once data transfer and data retrieved from the data container is stored in the
3 flush queue.

1 52. (Previously Presented) The system of claim 50, wherein the retrieved readahead data
2 is stored in the flush queue.

1 53. (Previously Presented) The system of claim 50, wherein one or more buffers ac-
2 cessed from the flush queue are re-enqueued on a normal queue.

1 Please add new claims 54 *et al.*

1 54. (New) A method, comprising:

2 receiving a plurality of client read requests at a storage system, the client read re-
3 quests indicating client-requested data sets for a storage operating system to retrieve from
4 one or more data containers containing one or more read streams;

5 selecting an amount of readahead data to retrieve from the one or more data con-
6 tainers based on a plurality of factors stored within a readset data structure associated
7 with each read stream;

8 retrieving the selected amount of readahead data from the data container;

9 processing one or more of the plurality of client read requests; and

10 adjusting, as client requests are processed, the plurality of factors stored within
11 the readset data structure associated with each read stream to optimize amount of reada-
12 head data is cached for each read stream.

1 55. (New) The method of claim 54, further comprising:

2 determining whether the storage operating system is permitted to retrieve reada-
3 head data from the one or more data containers in response to each received client read
4 request.

1 56. (New) The method of claim 54, wherein the one or more data containers are at least
2 one of a file, a directory, a vdisk or a lun.

1 57. (New) The method of claim 55, wherein the storage operating system is determined
2 to be permitted to retrieve readahead data from the one or more data containers when the
3 client-requested data extends the read stream past a predetermined next readahead value.

1 58. (New) The method of claim 57, wherein the predetermined next readahead value is
2 stored in a readset data structure associated with the read stream.

- 1 59. (New) The method of claim 57, wherein the predetermined next readahead value is
- 2 updated based on a percentage of the selected amount of readahead data.

- 1 60. (New) The method of claim 54, wherein a read-access style associated with the one
- 2 or more data containers is one of the plurality of factors used to select the amount of
- 3 readahead data.

- 1 61. (New) The method of claim 60, wherein the selected amount of readahead data equals
- 2 zero if the read-access style corresponds to a random read-access style.

- 1 62. (New) The method of claim 54, wherein a number of client read requests processed
- 2 in the read stream is one of the plurality of factors used to select the amount of readahead
- 3 data.

- 1 63. (New) The method of claim 62, wherein the number of client read requests processed
- 2 in the read stream is stored as a count value in a readset data structure associated with the
- 3 read stream.

- 1 64. (New) The method of claim 54, wherein the amount of client-requested data is one
- 2 of the plurality of factors used to select the amount of readahead data.

- 1 65. (New) The method of claim 64, wherein the selected amount of readahead data is set
- 2 equal to a predetermined upper limit for large amounts of client-requested data.

- 1 66. (New) The method of claim 54, wherein the selected amount of readahead data is
- 2 doubled if the number of client read requests processed in the read stream is greater than
- 3 a first threshold value.

- 1 67. (New) The method of claim 55, wherein the client-requested data is identified as
- 2 read-once data when either (i) the number of client read requests processed in the read
- 3 stream is greater than a second threshold value or (ii) a set of metadata associated with
- 4 the read stream indicates that the client-requested data is read-once data.

- 1 68. (New) The method of claim 54, wherein the selected amount of readahead data is
- 2 stored in one or more buffers enqueued on a flush queue, the flush queue being config-
- 3 ured to reuse buffers after a predetermined period of time.