启明学院 2016 - 2017 学年第一学期

《微积分(一)》(上)课程考试试卷(A卷)(闭卷)

参考答案与评分标准

一、(每小题3分)

1.
$$\sup E = 0$$
, $\inf E = -\frac{\pi}{2}$;

2.
$$a=1,b=-1$$
;

3.
$$x = 1, y = x - 5$$

4.
$$\frac{x}{\ln x} + C$$
;

5.
$$\frac{16\pi^3}{3}$$
;

$$6.2 \ln 2 - 1;$$

7.
$$\forall \varepsilon > 0, \exists G > 0, \forall u_1, u_2 > G : |\int_{u_1}^{u_2} f(x) dx| < \varepsilon.$$

- 二、(每小题 3 分) 8. A; 9. D; 10. B.
- 三、(每小题6分,共30分)
 - 11. 解:特征方程为 $r^2 + 4 = 0$,特征根 $r_{1,2} = \pm 2i$

对应齐次方程的通解:
$$Y = C_1 \cos 2x + C_2 \sin 2x$$
 (2分)

设非齐次方程的特解为
$$y^* = a\cos x + b\sin x$$
 (3分)

代入原方程得 $-a\sin x - b\cos x + 4d \sin b \cos s$)

比较系数得
$$a = \frac{1}{3}, b = 0$$
, \therefore $y^* = \frac{1}{3}\sin x$

原方程的通解为
$$y = Y + y^* = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x$$
 (6分)

12. 解: 原式=
$$\lim_{x\to 0} e^{\csc 2x \ln(1+\int_0^x \frac{\sin t}{t} dt)} = e^{\lim_{x\to 0} \frac{\ln(1+\int_0^x \frac{\sin t}{t} dt)}{\sin 2x}}$$
 (3 分)

$$= e^{\lim_{t \to 0} \frac{\int_{0}^{x} \frac{\sin t}{t} dt}{2x}} = e^{\lim_{t \to 0} \frac{1}{2} \frac{\sin x}{x}} = e^{\frac{1}{2}}.$$
 (6 $\%$)

13. 解: 令
$$\sqrt{x} = t$$
,则 $x = t^2$, $dx = 2tdt$ (2分)

原式=
$$\int \frac{\arcsin t}{t\sqrt{1-t^2}} 2tdt = \int 2\arcsin td(\arcsin t)$$

$$= (\arcsin t)^2 + C = (\arcsin \sqrt{x})^2 + C. \tag{6 \%}$$

14.
$$\text{M}$$
: R :

$$=4\int_0^{\frac{\pi}{2}}\cos^4 x dx - 2\int_0^{\frac{\pi}{2}}\cos^6 x dx = 4\frac{3!!}{4!!}\frac{\pi}{2} - 2\frac{5!!}{6!!}\frac{\pi}{2} = \frac{7\pi}{16}.$$
 (6 \(\frac{\pi}{2}\))

15.
$$\Re: V = \int_0^1 2\pi (1-x)e^{-x} dx = \int_0^1 2\pi (1-x)de^{-x}$$
 (3 $\%$)

$$=2\pi(x-1)e^{-x}\Big|_{0}^{1}-2\pi\int_{0}^{1}e^{-x}dx=2\pi+2\pi e^{-x}\Big|_{0}^{1}=\frac{2\pi}{e}.$$
 (6 \(\frac{1}{2}\))

四、(每小题8分,共16分)

16.解: 因为当x → +∞ 时,

$$\ln(\cos\frac{1}{x} + \sin\frac{1}{x^2}) = \ln[1 + (\cos\frac{1}{x} - 1) + \sin\frac{1}{x^2}] \sim (\cos\frac{1}{x} - 1) + \sin\frac{1}{x^2}$$
$$= -\frac{1}{2x^2} + o(\frac{1}{x^2}) + \frac{1}{x^2} + o(\frac{1}{x^2}) = \frac{1}{2x^2} + o(\frac{1}{x^2})$$
(3 \(\frac{\psi}{x}\))

所以
$$\lim_{x \to +\infty} x^2 \ln(\frac{1}{e^{-ols}} + \frac{1}{x^2}) = \frac{1}{2}$$

由比较判别法知,原反常积分收敛. (6分)

17.
$$\Re: f(x) = \frac{x}{(x+1)(2x+1)} = \frac{1}{x+1} - \frac{1}{2x+1}$$

由归纳法可知 $f^{(n)}(x) = \frac{(-1)^n n!}{(x+1)^{n+1}} - \frac{(-1)^n 2^n n!}{(x+1)^{n+1}} (n \in N^+)$,

所以
$$f^{(n)}(0) = (-1)^n (1-2^n) n!$$
, (3分)

所要求的展开式为

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(x)}{(n+1)!} x^{n+1} \qquad \theta \in (0,$$

$$= \sum_{k=1}^{n} (-1)^{k} (1 - 2^{k}) x^{k} + (-1)^{n+1} \left(\frac{1}{(\theta x + 1)^{n+2}} - \frac{2^{n}}{(2\theta x + 1)^{n+2}} \right) x^{n+1}. \tag{6.7}$$

五、(每小题8分,共24分)

右边=
$$\int_0^{\pi} f(\pi+t)\sin^2(\pi+t)d(\pi+t) = \int_0^{\pi} f(\pi+t)\sin^2(t)dt$$
, (2分)

左边-右边=
$$\int_0^{\pi} [f(t) - f(\pi + t)] \sin^2 t dt$$
, (4分)

因为 f(x)在 $[0,2\pi]$ 上单调增,所以 $f(x) \le f(x+\pi), x \in [0,\pi]$

左边 – 右边=
$$\int_0^\pi [f(t)-f(\pi+t)]\sin^2tdt \le 0$$
,即:左边 \le 右边,原式得证. (8分)

19. 证明: 令 $F(x) = f(x) \sin x$, $F(x) \oplus [0, \pi]$ 上二阶可导, 且

$$F'(x) = f'(x)\sin x + f(x)\cos x,$$

$$F''(x) = f''(x)\sin x + 2f'(x)\cos x - f(x)\sin x.$$
 (3 \(\frac{1}{2}\))

由题设即所设知, $F(0) = F(1) = F(\pi) = 0$, 由罗尔定理可知,

再对F(x)在 (ξ_1,ξ_2) 上用罗尔定理,得

∃ ξ ∈(ξ ₁, ξ ₂)⊂(0,1),使得 $F''(\xi)$ =0,即:

 $f''(\xi)\sin\xi + 2f'(\xi)\cos\xi - f(\xi)\sin\xi = 0,$

变形即得 $f''(\xi) + 2f'(\xi) \cot \xi = f(\xi)$,

20. 证明: (i) 当 $x \in [-a,a]$ 时,

$$g(x) = \int_{-a}^{a} |x - t| f(t) dt = \int_{-a}^{x} (x - t) f(t) dt + \int_{x}^{a} (t - x) f(t) dt$$
$$= x \int_{-a}^{x} f(t) dt - \int_{-a}^{x} t f(t) dt + x \int_{a}^{x} f(t) dt - \int_{a}^{x} t f(t) dt$$
(2 \(\frac{1}{2}\))

又 f(x) 是 $(-\infty, +\infty)$ 上连续的正值的偶函数,所以

$$g'(x) = \int_{-a}^{x} f(t)dt + xf(x) - xf(x) + \int_{a}^{x} f(t)dt + xf(x) - xf(x)$$
$$= \int_{-a}^{x} f(t)dt + \int_{a}^{x} f(t)dt$$

$$g''(x) = 2f(x) > 0$$
,

所以
$$g(x)$$
是 $[-a,a]$ 上的凸函数. (4 分)

(ii) 由 (i) 知, g(x)在[-a,a]上有唯一最小值点.

由 g''(x) > 0,知 g'(x) 连续且单调增,因

$$g'(-a) = -\int_{-a}^{a} f(t)dt < 0$$
, $g'(a) = \int_{-a}^{a} f(t)dt > 0$,

再由零点定理,g'(x)在[-a,a]上有唯一零点.

又由 f(x) 是偶函数,知

$$g'(0) = \int_{-a}^{0} f(t)dt + \int_{a}^{0} f(t)dt = 0$$
,即 $g(x)$ 在 $x = 0$ 处取得最小值,最小值为
$$g(0) = -\int_{-a}^{0} tf(t)dt - \int_{a}^{0} tf(t)dt = 2\int_{0}^{a} tf(t)dt$$
. (6分)

由题设知 $2\int_0^a tf(t)dt = f(a) - e^{a^2}$, 两边对a求导并整理得

$$f'(a) - 2af(a) = 2ae^{a^2}$$
, $\coprod f(0) = 1$.

上述关于 f 的微分方程的通解为

$$f(a) = e^{\int 2ada} \left(\int 2ae^{a^2} e^{-\int 2ada} da + C \right) = e^{a^2} (a^2 + C),$$

由
$$f(0) = 1$$
 得 $C = 1$,所以 $f(a) = e^{a^2}(a^2 + 1)$,

即
$$f(x) = (x^2 + 1)e^{x^2}$$
. (8 分)