1.

let the first number be in the form of p = 2k+1 where k is an integer, and the second number be in the form of q = 2l+1

$$q + p = (2k+1) + (2l+1)$$

= $2k + 2l + 2$
= $2(k + l + 1) \rightarrow is even$

2.

let the first number be in the form of p=2k where k is an integer, and the second number be in the form of q=2l

$$p + k = 2k + 2q$$

= $2(k+q) \rightarrow is even$

11.

we can disprove it by counterexample of value sqr(2), where sqr(2) * sqr(2) = 2.

12.

a : nonzero rational number

b : irrational number

 $P \ \to \ Q$

 $a*b \rightarrow irrational$

• proof by contradition :

we assume that ab is rational and trying to disprove it a = x/y

$$ab = z/w$$

$$b(x/y) = z/w$$

b = (y/x) * (z/w) which is rational

 $\mbox{-Q} \rightarrow \mbox{-P}$ that means that that the product of two irrational numbers is rational.

```
15.
     if x+y >= 2 then x >= 1 and y >= 1
     x+y >= 2 \rightarrow x >=1 \land y >=1
     proving using contrapositive p \rightarrow q \equiv -q \rightarrow -p
      -q = x < 1 \land y < 1
     x < 1 \land y < 1 \rightarrow x+y<2 #
16.
     if mn is even, then m is even and n is even
 we can prove this using contrapositive:
   -q \rightarrow -p
   assuming m is an odd number and n is an odd number
   m = 2k+1 , n = 2l+1
   m*n = (2k+1)*(2l+1)
        = 4lk + 2k + 2l +1
        = 2(2lk+k+l)+1
        = 2a+1 , m = 2lk+k+l m is an integer
        2a+1, m = 2lk+k+l is odd number
so using contrapositive we proved that -q \rightarrow -p , then p \rightarrow q
17.
     n^3 + 5 is odd, then n is even
     p \rightarrow q
     a) using contrapositive:
     n is odd can be written as n = 2t+1
      n^3 + 5
     = (2t+1)^3 + 5
     = (2t)^3 + 3(2t)^2 + 3(2t) + 1 + 5
     = 8t^3 + 12t^2 + 6t + 1 + 5
     = 2(4t^3 + 6t^2 + 6t + 3) \rightarrow is even
     -q \rightarrow -p == p \rightarrow q
     b)
     assuming that n^3 + 5 is odd and n is odd
     goal : p \land -q \rightarrow false
     since n^3 + 5 is odd and n^3 is odd, n^3 + 5 - n^3 is
odd which is false because odd - odd = even
p \land -q \rightarrow false == p \rightarrow q
```

18.

$$3n + 2$$
 is even, then n is even $p \rightarrow q$

a) if n is odd n = 2k+13n + 2 = 3(2k+1) +2 = 6k+3+2 = 6k+5 = 2(3k+2)+1 is odd $-q \rightarrow -p$ == $p \rightarrow q$

b) if 3n + 2 is even and n is odd n = 2k+1 3(2k+1)+2 = 6k+3+2 = 6k+5 = 2(3k+2)+1 is odd which is a contradiction to the assumption we made. $p \land -q \rightarrow false == p \rightarrow q$

21.

for n = 1 the proposition is
$$(a + b)^1 >= a^1 + b^1$$

== $(a + b) >= a + b$
 $(a + b) = a + b #$

22.

p : if you pick three socks from a drawer containing just blue socks and black socks.

q : you must get either a pair of blue socks or a pair of black socks.

$$p \rightarrow q$$

using contradiction $p \wedge -q$

if you pick three socks from a drawer containing just blue socks and black socks, but u didn't get neithera pair of blue socks nor a pair of black socks, which is a contradiction to our statement, because there are only two color not 3 colors in the drawer. $p \rightarrow q$

choosing 3 different dates from 25 dates different from each other is immpossible because the year has only 12 months, such that 25 dates is 2 dates from the same month is equal to 24 + 1 last date from any other month.

25.

theorm : r irrational such that $r^3 + r + 1 = 0$, where r = a/b

$$(a/b)^3 + (a/b) + 1 = 0$$

if a and b both odds, then the L.H.S is odd != 0 if a is odd and b is even, then the L.H.S is odd != 0 if a is even and b is odd, then the L.H.S is odd != 0

because a and b are in the simplist form, both cant be even at the same time. Leading to there is no such root exists

34.

this is NOT a valid solution. it's a solution for $(2X)^2 - 1 = x^2 + (2x)^2 - 1 = x$

35.

this is NOT a valid solution its valid for $x + 3 = (x - 3)^2$ not for sqr(x+3) = x - 3

36.

 $p1 \ \rightarrow \ p2$

 $p2 \rightarrow p3$

 $p3 \ \rightarrow \ p4$

 $p4 \ \rightarrow \ p1$

to prove p4 \leftrightarrow p1 we need to prove that p4 \rightarrow p1 (p2 \rightarrow p3 \land p3 \rightarrow p4 \land p4 \rightarrow p1) \rightarrow (p4 \rightarrow p1), then we can say that p1 and p4 are logically equivalence and same for the rest

- 37. reverse the method before.
- 38. 2 is a counter example and 4.