НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ НИУ «МЭИ» (ФГБОУ ВО «НИУ МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра Формирования и обработки радиосигналов

Лабораторная работа №5
по курсу «Формирование колебаний и сигналов для медицинских приборов»
«Фазовая автоподстройка частоты»

Группа: ЭР-17-21

Студенты: Горбунова А.Н.

Дьячкова А.С.

Преподаватель: Плутешко А.В.

СОДЕРЖАНИЕ

Обработка результатов измерений	3
1 Построение характеристики ФД	3
2 Построение характеристики управления частотой ГУН	4
3 Величины, определяющие поведение кольца ФАПЧ	5
4 Оценка величины полосы захвата	6
5 Временные зависимости переходных процессов – напряжения н	ŧа
выходе ФД и напряжения, управляющего частотой от времени	9
Выводы	2
ПРИЛОЖЕНИЕ А1	.3
ПРИЛОЖЕНИЕ Б	.7

Обработка результатов измерений

1 Построение характеристики ФД

Подобрали $f_{\rm on}$ так, чтобы частота биений на выходе фазового дискриминатора (далее — Φ Д) была в диапазоне от 40 до 60 к Γ ц и сохранили осциллограмму напряжения на выходе Φ Д E_{Φ Д}(t) (см. Рисунок 1).

Рисунок 1 — Осциллограмма $E_{\phi J}(t)$

Построим характеристику ФД $E_{\Phi Д}(\varphi)$ (см. Рисунок 2):

Рисунок 2 — Характеристика $E_{\phi I\!\!I}(\phi)$

2 Построение характеристики управления частотой ГУН

Установим частоту равной 8 МГц и замкнем кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполним таблицу Б.1 (см. ПРИЛОЖЕНИЕ Б), которую будем вносить В только значения, соответствующие режиму синхронизма.

По снятым данным построим характеристику управления частотой генератора, управляемого напряжением (далее – ГУН) (см. Рисунок 3).

Рисунок 3 — Характеристика управления частотой ГУН $f_{\mbox{\tiny ГУН}}(E_{\mbox{\tiny упр}})$

3 Величины, определяющие поведение кольца ФАПЧ

Рассчитаем величины, определяющие поведение кольца ФАПЧ (см. Таблицу 1), используя для расчета дифференциальные параметры характеристик в точках, соответствующих $E_{\rm ФД}=E_{\rm упp}=2.5~{\rm B}$.

Значение $K_{\Gamma
m YH}$ рассчитаем по графику характеристики управления частотой ГУН $f_{\Gamma
m YH}(E_{
m ynp})$ в окрестности точки $E_{
m ynp}=2.5~{
m B}$ по формуле (1), (2):

$$K_{\Gamma \text{YH}} = \frac{f_{\Gamma \text{YH2}} - f_{\Gamma \text{YH2}}}{E_{\text{ynp2}} - E_{\text{ynp1}}} \tag{1}$$

$$K_{\text{\tiny \Gamma YH}} = \frac{(119.3 - 116.4) \cdot 10^6}{2.727 - 2.408} = 9.091 \frac{\text{M}\Gamma\text{II}}{\text{B}}$$
 (2)

$$K_{\Phi \Pi} = \frac{E_{\Pi}}{\pi} = \frac{5}{\pi} = 1.59 \frac{B}{\text{рад}}$$
 (3)

Значение $T_{\Phi \Lambda \Pi^{\mathrm{H}}}$ определим по формуле (4), где P — делитель частоты внутри кольца $\Phi \Lambda \Pi^{\mathrm{H}}$ (P = 16):

$$T_{\Phi A\Pi \Psi} = \frac{P}{2\pi K_{\Gamma YH} K_{\Phi \Pi}} = 0.176 \text{ MKc}$$
 (4)

Таблица 1 – Величины, определяющие поведение кольца ФАПЧ

$K_{\Phi Д}, \frac{\mathrm{B}}{\mathrm{рад}}$	$K_{\Gamma YH}, \frac{M\Gamma \Pi}{B}$	$T_{\Phi ext{A}\Pi ext{ ext{Ψ}}}$, мкс
1.59	9.091	0.176

4 Оценка величины полосы захвата

Включим ЧМ модуляцию. При треугольной форме модуляции и её частоте 500 Γ ц установим центральную частоту и девиацию так, чтобы частота менялась в пределах от f_1 до f_2 (5):

$$f_{1} = f_{\text{оп мин}} - \left(E_{\text{упр мин}} + 0.1\right) \frac{K_{\text{ГУН}}}{16} = 6.656 \text{ МГц}$$

$$f_{2} = f_{\text{оп макс}} + \left(5.1 - E_{\text{упр макс}}\right) \frac{K_{\text{ГУН}}}{16} = 8.399 \text{ МГц}$$
(5)

Далее ознакомимся с изменением формы осциллограммы $E_{\phi J}(t)$ при изменении постоянной времени фильтра. Осциллограммы получим при положении переключателей 4 и 6, на них сразу укажем параметры, необходимые для дальнейшего расчета полосы захвата и синхронизма (см. Рисунки 4 и 5).

Рисунок 4 — Осциллограмма $E_{\phi \mathcal{I}}(t)$ для положения переключателя 4

Чтобы оценить значение относительной полосы захвата, необходимо узнать значения постоянной времени ФНЧ для используемых положений переключателей. Рассчитаем их по формуле (6), где $R_1 = 300 \text{ Om}$:

$$T_{\Phi H \Psi} = R_1 C_i \tag{6}$$

Внесем в таблицу 2 известные значения емкостей для нужных положений переключателя и рассчитанные значения постоянной времени ФНЧ.

Таблица 2 – Значения постоянной времени ФНЧ

і (номер			
положения	$R_{\rm l},~{ m Om}$	С, пФ	$T_{\Phi m HY}$, мкс
переключателя)			
4	300	2200	0.66
6	300	6800	2.04

По рисункам 4 и 5 определим значения полосы захвата и синхронизма для переключателей 4 и 6 по формуле (7):

$$\Pi_{\text{\tiny SAX}} = \frac{\left|\Delta_{\text{\tiny SAX}}\right|}{2\pi T_{\text{\tiny DAIIY}}} \tag{7}$$

Для определения теоретических значений полосы захвата необходимо рассчитать нормированные постоянные времени ФНЧ τ для положений переключателей 4 и 6 (8), (9):

$$\tau_4 = \frac{T_4}{T_{\text{DAFIY}}} = \frac{0.66 \text{ MKC}}{0.176 \text{ MKC}} = 3.75 \tag{8}$$

$$\tau_6 = \frac{T_6}{T_{\Phi A \Pi \Psi}} = \frac{2.04 \text{ MKC}}{0.176 \text{ MKC}} = 11.59 \tag{9}$$

По данным значениям τ из зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ (см. Описание лабораторной работы №5, рисунок 7) можно определить значение γ .

• Для переключателя №4 $\gamma = 0.45$

 Для переключателя №6 γ = 0.28 (данное значение было получено путем мысленного продления характеристики)

Полученные данные сведем в таблицу 3.

Таблица 3 – Рассчитанные и теоретические значения ү

і (номер положения	Рассчитанное значение	Теоретическое
переключателя)	γ	значение ү
4	0.52	0.45
6	0.34	0.28

5 Временные зависимости переходных процессов – напряжения на выходе ФД и напряжения, управляющего частотой от времени

Рисунок 6 – Переходные процессы по частоте для 2 положения переключателя

Рисунок 7 — Переходные процессы по частоте для 4 положения переключателя

Рисунок 8 — Переходные процессы по частоте для 6 положения переключателя

Также построим осциллограммы переходных процессов по фазе (см. Рисунок 9)

Рисунок 9 – Переходные процессы по фазе для 3 положения переключателя

Выводы

Фазовый детектор преобразует разность фаз между опорным сигналом и сигналом с генератора, управляемого напряжением (ГУН) в выходное напряжение ($E_{\phi J}(t)$). Форма характеристики ФД близка к треугольной, с линейным участком, где ЕФД пропорциональна ϕ . Наличие нелинейностей, указывает на потенциальные ограничения в диапазоне синхронизма и возможное влияние на устойчивость системы ФАПЧ. При подаче на входы ФД колебаний с неравными частотами, на выходе наблюдаются биения. Этот эффект демонстрирует работу ФД в условиях рассогласования частот.

ГУН продемонстрировал линейную зависимость частоты генерации от управляющего напряжения в пределах рабочего диапазона. Это подтверждает возможность точной подстройки частоты генератора под опорный сигнал в системе ФАПЧ.

Полоса захвата системы ФАПЧ меньше полосы синхронизма. Это связано с наличием ФНЧ в цепи обратной связи. Увеличение постоянной времени ФНЧ приводит к сужению полосы захвата.

При увеличении постоянной времени ФНЧ возрастает время переходных процессов, то есть, при увеличении расстройки, после выхода за полосу синхронизма будут возникать биения (рисунки 4 и 5), и чем выше разность частот опорного колебания и ГУНа, тем дольше будет их длительность. Однако предыдущее утверждение верно лишь, когда мы изначально находимся в полосе захвата, в случае же, когда расстройка изначально превышает полосу синхронизма, захват не произойдёт до тех пор, пока частота не перестанет превышать полосу пропускания ФНЧ.

ПРИЛОЖЕНИЕ А

Дано кольцо ФАПЧ с ФД на элементе ИСКЛЮЧАЮЩЕЕ ИЛИ, имеющем треугольную характеристику с крутизной

$$K_{\Phi \Pi} = \frac{E_{\Pi}}{\pi},$$

где $E_{_{\rm II}}$ — напряжение питания логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, и с ФНЧ в цепи обратной связи, имеющем постоянную времени $T_{_{\rm II}}$ (см. Таблицу А.1).

Таблица А.1 – Исходные данные для расчета кольца ФАПЧ

$E_{_{\Pi}},\mathrm{B}$	$K_{\text{\tiny \Gamma YH}}, \frac{\text{\tiny K}\Gamma_{\text{\tiny II}}}{\text{\tiny B}}$	$T_{\scriptscriptstyle 1}$, MKC
+5	200	0,5

Построим переходные процессы $E_{\phi_{\overline{A}}}(t)$ при скачке опорной частоты на $+375~{\rm к}\Gamma$ ц из стационарного режима с $\phi^+=\frac{\pi}{8}$ для $T\to 0~{\rm i}~T_1$.

Для $T \to 0$ дифференциальное уравнение примет вид (A.1) с начальными условиями (A.2):

$$\frac{d}{dx}\varphi + \varphi = \frac{\pi}{2} \tag{A.1}$$

$$\begin{cases} \varphi(0) = \frac{\pi}{8} \\ \varphi(0) = \frac{3\pi}{8} \end{cases}$$
 (A.2)

Для T_1 дифференциальное уравнение примет вид (A.3) с начальными условиями (A.2):

$$\frac{d^2}{dx^2}\varphi + \frac{d}{dx}\varphi + \varphi = \frac{\pi}{2} \tag{A.3}$$

Результат решений дифференциальных уравнений представлен на рисунке А.1.

Рисунок А.1 — Переходные процессы в системе ФАПЧ при скачке опорной частоты на +375 кГц из стационарного режима с $\phi^+ = \frac{\pi}{8}$

Решим дифференциальное уравнение (A.4) с начальными условиями (A.5):

$$\frac{d}{dx}\varphi + \varphi = \frac{\pi}{8} \tag{A.4}$$

$$\begin{cases} \varphi(0) = \frac{\pi}{2} \\ \varphi(0) = -\frac{3\pi}{8} \end{cases}$$
 (A.5)

Для T_1 дифференциальное уравнение примет вид (A.6) с начальными условиями (A.5):

$$\frac{d^2}{dx^2}\varphi + \frac{d}{dx}\varphi + \varphi = \frac{\pi}{8} \tag{A.6}$$

Для T_4 дифференциальное уравнение примет вид (7) с начальными условиями (5):

$$4\frac{d^2}{dx^2}\varphi + \frac{d}{dx}\varphi + \varphi = \frac{\pi}{8}$$
 (A.7)

где коэффициент перед оператором дифференцирования второго порядка

$$\tau = \frac{T_4}{T_{\Phi A \Pi^{4}}} = \frac{2 \text{ MKC}}{0.5 \text{ MKC}} = 4.$$

Результат решений дифференциальных уравнений представлен на рисунке A.2.

Рисунок А.2 – Переходные процессы в системе ФАПЧ при скачке опорной частоты на -375 к Γ ц из стационарного режима с $\varphi^+ = \frac{\pi}{2}$

Изобразим осциллограммы, которые должны наблюдаться при выполнении п. 5.2 («Измерение характеристики Φ Д»). Если не настраивать величину +Duty, которая является величиной, обратной скважности (8), то изменится форма биений сигнала, он примет трапециевидную форму (см. Рисунок A.3).

Рисунок А.3 — Осциллограмма $E_{\phi_{\overline{J}}}(t)$ при изменении параметра Duty

На рисунке A.3 черным обозначено настройка +Duty = 50 %, красным — изменение данного параметра.

Изобразим осциллограммы, которые должны наблюдаться при выполнении п. 5.4 («Измерение полосы захвата») на рисунке А.4.

Рисунок А.4 — Осциллограмма $E_{\phi_{\overline{J}}}(t)$ при выполнении п. 5.4

приложение б

Таблица Б.1 — Характеристика управления частотой ГУН

$f_{ m on},$ М Γ ц	$f_{\scriptscriptstyle \Gamma m YH}$, М Γ ц	$E_{ m ynp},~{ m B}$
6.8	106.3	0.153
6.9	107.5	0.583
7.0	109.7	1.003
7.1	111.2	1.387
7.2	113.5	1.743
7.3	114.6	2.081
7.4	116.4	2.408
7.5	119.3	2.727
7.6	120.9	3.038
7.7	121.3	3.336
7.8	123.5	3.624
7.9	126.2	3.907
8	128.2	4.150
8.1	129.5	4.460
8.2	131.6	4.750