

SF1624 Algebra och geometri Lösningsförslag till tentamen 2012-12-13

DEL A

- 1. Betrakta punkterna A = (2,2) och B = (6,4) och linjen (-1,3) + t(2,-1) i planet.
 - (a) Det finns exakt en punkt P på linjen så att triangeln ABP är rätvinklig med den räta vinkeln i B. Bestäm P. (2 p)
 - (b) Det finns även exakt en punkt Q på linjen så att triangeln ABQ är rätvinklig med den räta vinkeln i Q. Bestäm Q. (2 p)

Lösningsförslag. a) Låt P = (2t - 1, 3 - t) vara en punkt på linjen. Vi betraktar vektorerna

$$\vec{AB} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \text{ och } \vec{BP} = \begin{bmatrix} 2t - 7 \\ -t - 1 \end{bmatrix}$$

som går längs triangelns två sidor. Vinkeln i B är rät om och endast om $\vec{AB} \cdot \vec{BP} = 0$. Vi vill bestämma t så att detta är uppfyllt. Vi får ekvationen

$$0 = \vec{AB} \cdot \vec{BP} = (8t - 28) + (-2t - 2) = 6t - 30 \iff t = 5.$$

Således är P=(9,-2) den unika punkten på linjen som gör triangeln ABP rätvinklig i punkten B.

b) Låt Q=(2t-1,3-t) vara en punkt på linjen. Nu betraktar vi vektorerna

$$\vec{AQ} = \begin{bmatrix} 2t - 3 \\ 1 - t \end{bmatrix}, \vec{QB} = \begin{bmatrix} 7 - 2t \\ 1 + t \end{bmatrix}.$$

Vinkeln i Q är rät precis då $\vec{AQ} \cdot \vec{QB} = 0$. Vi får ekvationen

$$0 = \vec{AQ} \cdot \vec{QB} = (2t - 3)(7 - 2t) + (1 - t)(1 + t) = -(5t^2 - 20t + 20) = -5(t - 2)^2.$$

Detta är endast uppfyllt då t=2, dvs då Q=(3,1).

- (a) Punkten P = (9, -2).
- (b) Punkten Q = (3, 1).

2

2. Betrakta den linjära avbildning $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ som ges av matrisen

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}.$$

- (a) Linjen med ekvation 3x + 4y = 0 avbildas av T på en linje H. Bestäm en ekvation för linjen H.
- (b) Även linjen med ekvation 3x + 4y = 1 avbildas på en linje. Bestäm en ekvation för denna linje. (1 p)

Lösningsförslag. a) Vi ser att linjen 3x + 4y = 0 har en riktningsvektor $\vec{u} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ (eftersom

 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ är en normal till linjen). Således måste $\vec{v} = T(\vec{u})$ vara en riktningsvektor till linjen H, om \vec{v} är noll-skilld. Vi beräknar \vec{v} :

$$\vec{v} = A\vec{u} = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}.$$

Eftersom linjen 3x + 4y = 0 går genom origo, måste också linjen H gå genom origo (origo avbildas på origo). Alltså är 9x - 5y = 0 en ekvation för linjen H.

b) Eftersom linjerna 3x + 4y = 0 och 3x + 4y = 1 är parallella, måste bilden av linjen 3x + 4y = 1 ha samma rikning som H. Linjen 3x + 4y = 1 går genom punkten (-1,1). En enkel räkning visar att denna punkt avbildas av T på (-1,-2). Således kan den sökta linjen skrivas på formen 9x - 5y = 1, eftersom 9(-1) - 5(-2) = 1.

- (a) En ekvation för H är 9x 5y = 0.
- (b) En ekvation är 9x 5y = 1.

3. Om \vec{u} och \vec{v} är två vektorer i rummet så får vi en linjär avbildning $T\colon\mathbb{R}^3\longrightarrow\mathbb{R}^1$ genom

$$T(\vec{x}) = (\vec{u} \times \vec{x}) \cdot \vec{v},$$

för \vec{x} i \mathbb{R}^3 .

(a) Låt

$$\vec{u} = \begin{bmatrix} 1\\2\\0 \end{bmatrix} \quad \text{och} \quad \vec{v} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$

och bestäm matrisen för T i detta fall.

(2p)

(b) Bestäm nollrum och bildrum för T om \vec{u} och \vec{v} är två linjärt oberoende vektorer.

(2p)

Lösningsförslag. Vi får att

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \left(\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2z \\ -z \\ y - 2x \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 4z + y - 2x.$$

Från detta följer att T ges av matrisen $\begin{bmatrix} -2 & 1 & 4 \end{bmatrix}$.

b) Vi kommer ihåg att $|(\vec{u} \times \vec{x}) \cdot \vec{v}|$ ger volymen av den parallellepiped som spänns upp av vektorerna \vec{u}, \vec{x} och \vec{v} . Eftersom \vec{u} och \vec{v} är linjärt oberoende, så spänner de upp ett plan $V = \operatorname{span}(\vec{u}, \vec{v})$. Om \vec{x} ligger i V så är volymen av parallellepipeden 0; om inte så är volymen positiv. Från detta följer att avbildningen T har nollrummet V och bildrummet \mathbb{R} .

- (a) Matris $\begin{bmatrix} -2 & 1 & 4 \end{bmatrix}$.
- (b) Bildrummet är hela \mathbb{R} , nollrummet är Span (\vec{u}, \vec{v}) .

4

DEL B

4. Låt $\mathfrak{B}=(\vec{e},\vec{f})$ vara en bas för ett delrum V i \mathbb{R}^n . Låt \vec{u} och \vec{v} vara två vektorer i \mathbb{R}^n som uppfyller relationerna

$$\vec{u} + \vec{e} = \vec{v} \quad \text{och} \quad \vec{f} + 2\vec{u} = -3\vec{v}.$$

- (a) Bestäm koordinatvektorn till \vec{v} med avseende på basen \mathfrak{B} . (2 p)
- (b) Visa att vektorerna \vec{u} och \vec{v} också utgör en bas för V. (2 **p**)
- **Lösningsförslag.** a) Vi vill skriva vektorn \vec{v} som en linjärkombination av \vec{e} och \vec{f} . Eftersom vi vet att $\vec{v} = \vec{u} + \vec{e}$, kan vi sätta in detta i den andra relationen, vilket ger oss $\vec{f} + 2\vec{u} = -3(\vec{u} + \vec{e})$. Från detta får vi att $\vec{u} = -(3/5)\vec{e} (1/5)\vec{f}$. Från den första relationen får vi då att $\vec{v} = (2/5)\vec{e} (1/5)\vec{f}$. Således har vektorn \vec{v} koordinaterna $\begin{bmatrix} 2/5 \\ -1/5 \end{bmatrix}$ i basen \mathcal{B} .
 - b) Eftersom rummet V är två-dimensionellt, behöver vi bara se att vektorerna \vec{u} och \vec{v} är linjärt oberoende. Om de var linjärt beroende måste $\vec{v} = t\vec{u}$ för något tal t. Detta betyder nu att $\vec{u} + \vec{e} = t\vec{u}$, och att $\vec{f} + 2\vec{u} = -3t\vec{u}$. Då ser vi att båda \vec{e} och \vec{f} är skalärmultippler av \vec{u} , och då kan inte \vec{e} och \vec{f} vara linjärt oberoende. Detta motsäger antagelsen om att \vec{e} och \vec{f} är en bas.

- (a) Koordinatmatrisen är $\begin{bmatrix} 2/5 \\ -1/5 \end{bmatrix}$.
- (b) -

5. Den linjära avbildningen $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ avbildar enhetskvadraten på en parallellogram enligt figuren nedan. Rita ut egenrummen och ange motsvarande egenvektorer. (4 p)

FIGUR 1. Enhetskvadraten och dess bild genom avbildningen T.

Lösningsförslag. Från figuren ser vi att vektorn $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ avbildas på vektorn $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, och vektorn

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ avbildas på $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Alltså vet vi att avbildningen har standardmatrisen

$$\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}.$$

Vi bestämmer egenvärdena till matrisen ovan. Vi har att det karakteristiska polynomet $c(\lambda)$ är

$$\det \begin{bmatrix} \lambda & -2 \\ -1 & \lambda - 1 \end{bmatrix} = \lambda(\lambda - 1) - 2.$$

Nollställen till det karakteristiska polynomet $c(\lambda)$ är $\lambda=-1$ och $\lambda=2$. Insättning av dessa värden ger med $\lambda=-1$, att egenrummet är nollrummet till matrisen

$$\begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}.$$

En bas för detta egenrum är vektorn $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$. På liknande sätt hittar vi att och en bas för egenrummet $\lambda=2$ är vektorn $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Svar.

(a) Linjen $\begin{bmatrix} -2t \\ t \end{bmatrix}$, tal $t \neq 0$ är egenvektorer med egenvärdet -1. Linjen $\begin{bmatrix} t \\ t \end{bmatrix}$, tal $t \neq 0$ är egenvektorer med egenvärdet 2.

- 6
- 6. Låt V vara alla vektorer $\begin{bmatrix} x & y & z & w \end{bmatrix}^T$ i \mathbb{R}^4 som uppfyller x=y och x+y=z+w.
 - (a) Förklara varför V är ett delrum av \mathbb{R}^4 . (1 **p**)
 - (b) Bestäm standardmatrisen för en linjär avbildning $T \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ vars bildrum, im(T), är V.

Lösningsförslag. a) V är ett delum av \mathbb{R}^4 eftersom det är lösningsrummet till det homogena systemet

$$\begin{cases} x - y = 0 \\ x + y - z - w = 0 \end{cases}.$$

b) Vi betraktar det linjära systemet ovan. Om vi låter x=t och z=s, får vi y=t och w=2t-s. Således har vi

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} + s \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix},$$

 $\text{dvs delrummet } V \text{ sp\"{a}nns upp av vektorerna } \vec{v_1} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} \text{ och } \vec{v_2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}.$

Om den linjära avbildningen T ska ha V som bildrum, så måste V spännas upp av kolonnvektorerna i standardmatrisen för T. Alltså är, t ex,

$$[\vec{v}_1 \ \vec{v}_2 \ 0 \ 0] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 \end{bmatrix}$$

standardmatrisen till en linjär avbildning vars bildrum är ${\cal V}.$

- Svar.
 - (a) -
 - (b) -

DEL C

- 7. (a) Låt A vara en inverterbar och diagonaliserbar matris. Visa att alla potenser A^k också är diagonaliserbara, där k är ett godtyckligt heltal. (2 p)
 - (b) Ge ett exempel på en 2×2 -matris A som inte är diagonaliserbar, medan A^2 är diagonaliserbar. (2 p)
- **Lösningsförslag.** a) Vi betraktar först $k \geq 1$. Eftersom A är diagonaliserbar så finns det en inverterbar matris S sådan att $S^{-1}AS = D$, där D är en diagonalmatris. Detta betyder att A kan skrivas $A = SDS^{-1}$. Från detta följer att $A^2 = (SDS^{-1})(SDS^{-1}) = SD^2S^{-1}$. På sama sätt fås att $A^k = SD^kS^{-1}$ för varje $k \geq 1$. Eftersom D^k är en diagonalmatris (diagonalmatris gånger diagonalmatris ger en diagonalmatris), så ser vi alltså att $S^{-1}A^kS = D^k$, dvs A^k är diagonaliserbar.

Om k=0 är $A^k=I$, som är en diagonalmatris. Vi behandlar nu fallet $k\leq -1$. Eftersom vi vet att $S^{-1}AS=D$, och eftersom A är inverterbar så måste också D vara inverterbar. Vidare måste D^{-1} vara en diagonalmatris. Således har vi $D^{-1}=(S^{-1}AS)^{-1}=(AS)^{-1}(S^{-1})^{-1}=S^{-1}A^{-1}S$, vilket betyder att A^{-1} är diagonaliserbar. Genom att göra på precis samma sätt som ovan, fast för A^{-1} , följer nu att A^k är diagonaliserbar för varje $k\leq -1$.

b) Matrisen

$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

ger en rotation med vinkeln $\pi/2$. Nollställen till det karakteristiska polynomet $\det(\lambda I - R)$ är de komplexa talen $(\pm i)$, så matrisen R är ej diagonaliserbar. Men R^2 är rotation med vinkel π , dvs

$$R^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

som är en diagonalmatris (så speciellt är den diagonaliserbar).

- (a)
- (b)

8. Delrummet W av \mathbb{R}^4 spänns upp av vektorerna

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} \quad \text{och} \quad \vec{w} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 3 \end{bmatrix}.$$

Den linjära avbildningen $T \colon \mathbb{R}^4 \to \mathbb{R}^4$ uppfyller att $T(\vec{v}) = \vec{v} + \vec{w}$ och $T(\vec{w}) = 2\vec{w}$, samt att nollrummet, $\ker(T)$, har dimension 2.

Bestäm egenvärdena till avbildningen T.

(4 p)

Lösningsförslag. Eftersom vektorerna \vec{u} och \vec{v} är linjärt oberoende, så utgör de en bas för delrummet W. Således vet vi att W är två-dimensionellt. Eftersom kärnan $\ker(T)$ är två-dimensionell vet vi att 0 är ett egenvärde (med egenrummet $\ker(T)$), och att multipliciteten är två. Vidare vet vi att $T(\vec{w}) = 2\vec{w}$. Eftersom $\vec{w} \neq \vec{0}$, så måste alltså 2 vara ett egenvärde till T. Vi ser också att

$$T(\vec{w} - \vec{v}) = T(\vec{w}) - T(\vec{v}) = 2\vec{w} - (\vec{v} + \vec{w}) = \vec{w} - \vec{v},$$

så 1 är också ett egenvärde till T. Alltså, avbildningen T har egenvärdena 0,1 och 2, och detta är alla egenvärden.

- (a)
- (b)

- 9. De tre punkterna (6,5,5), (5,4,1) och (4,3,6) är tre av de åtta hörnen i en kub. Bestäm volymen av denna kub. (4 p)
- **Lösningsförslag.** I en kub finns det tre möjliga avstånd mellan två hörn: sidlängd samt läng av diagonalen på vardera sida av kuben, samt längden av den långa diagonalen mellan två motsatta sidor. Vi beräknar avståndet mellan de tre givna punkterna. Låt P = (6,5,5), Q = (5,4,1) och R = (4,3,6). Då är

$$\left| \vec{QP} \right| = \left| \begin{bmatrix} 1\\1\\4 \end{bmatrix} \right| = \sqrt{18} = 3\sqrt{2}, \left| \vec{RP} \right| = \left| \begin{bmatrix} 2\\2\\1 \end{bmatrix} \right| = 3$$

och

$$|RQ| = \left| \begin{bmatrix} 1\\1\\5 \end{bmatrix} \right| = \sqrt{27} = 3\sqrt{3}.$$

Eftersom det minsta av dessa tal, 3, måste vara kubens sidlängd (diagonalerna är alltid längre), följer alltså att kubens volym är $3^3 = 27$.

- (a)
- (b)