ELEC 4010N Final Project

Cheng Tsun Hei, Kang Ting Hao Howard

Topics

- 1. Project 1: Semi-supervised Classification
- 2. Project 2: Domain Generalization on Fundus Images

Project 1: Background Introduction

In real cases,, the majority of training data will be unlabelled: hence we need semi-supervised training

The algorithm is based on Pseudo Labelling

- Labelled Sample (Training): random 270
- Labelled Sample (Validation): random 90
- Unlabelled Sample (Training): random 540
- Other testing case

Project 1: Method Development

▼ B. Classification A. Pseudo Labeling ▶ B1. Build training and test loaders for Classification A1. Build training and test loaders for Pseudo Labeling [] 4,1 cell hidden [] L.1 cell hidden ▶ B2. Build the network for Classification A2. Build the network for Pseudo Labeling [] 42 cells hidden [] L, 1 cell hidden A3. Train and test the model for Pseudo Labeling B3. Model Training and Testing [] 4.1 cell hidden [] L, 1 cell hidden > A4. Plot the training and test curves ▶ B4. Plot the training and test curves [] L. 2 cells hidden [] 42 cells hidden

Project 1: Result Analysis

Experiment	#Epoch (A, B)	AUC (Last epoch of A)	Test AUC for B	Test ACC for B
Benchmark	(N/A, 10)	N/A	77.9056%	78.8889%
1	(10, 10)	74.9251	65.7343%	84.4444%
2	(10, 10)	53.2828%	57.3232%	73.3333%
3	(5, 10)	63.3488%	57.9475%	78.8889%
4	(5, 10)	71.3675%	73.8248%	85.5556%

Project 1: Conclusion

- For simplicity, no regularization parameter is given:
 - Performance may improve with regularization.

- Overfitting issue is severe.
 - May require more data or make a easier model

- The final result is similar between supervised and semi-supervised model

Project 2: Background Introduction

- Segmentation on Fundus Images
 - Optic disc and cup
- Domain Generalization
 - Perform well in unseen domain
 - Useful in real world
- Data (With different scanners):
 - O Domain 1: Drishti-GS (Train: 50, Test: 51)
 - O Domain 2: RIM-ONE-r3 (Train: 99, Test: 60)
 - O Domain 3: REFUGE (Train) (Train: 320, Test: 80)
 - O Domain 4: REFUGE (Test) (Train: 320, Test: 80)

Project 2: Method Development

- Domain-oriented Feature Embedding (Dofe)
- Four experiment conducted:
 - Epoch: 80, learning rate: 0.001, model: DeeplabV3+ (include encoder and decoder)

Train	Test
Domain: 1, 2, 3	Domain: 4
Domain: 1, 2, 4	Domain: 3
Domain: 1, 3, 4	Domain: 2
Domain: 2, 3, 4	Domain: 1

Project 2: Result Analysis

• Segmentation Performance on Optic Cup:

Test:	Domain 1	Domain 2	Domain 3	Domain 4	Average
Dice Coefficient	0.8484	0.8290	0.8614	0.8808	0.8799
95% of Hausdorff Distance	30.12	22.22	19.84	14.46	21.66
Average surface Distance	15.44	11.56	9.852	6.627	10.87

Project 2: Result Analysis

• Segmentation Performance on Optic Disc:

Test:	Domain 1	Domain 2	Domain 3	Domain 4	Average
Dice Coefficient	0.9640	0.9154	0.9322	0.9332	0.9362
95% of Hausdorff Distance	13.91	21.84	18.55	16.23	17.63
Average surface Distance	6.305	12.31	9.506	7.47	8.898

Project 2: Conclusion

- Generalization
 - O By using domain generalization, it would be getting better performance for unseen datasets/domain.
- Complexity increased
 - More domain models need to train
- Performance Trade-off
 - Need to fufil all domains