Papers written by Australian Maths Software

SEMESTER ONE

MATHEMATICS SPECIALIST REVISION 2 UNIT 3

2016

SOLUTIONS

Section One

1. (6 marks)

(b)

2. (10 marks)

(a)

$$\begin{bmatrix} 1 & 2 & 3 & 15 \\ 1 & -1 & -1 & -3 \\ 2 & 1 & 1 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 15 \\ 0 & 3 & 4 & 18 \\ 0 & 3 & 5 & 21 \end{bmatrix} \qquad R_1 - R_2$$

$$2R_1 - R_3$$

$$\begin{bmatrix} 1 & 2 & 3 & 15 \\ 0 & 3 & 4 & 18 \\ 0 & 0 & -1 & -3 \end{bmatrix} \qquad R_2 - R_3$$

$$-z = -3 \rightarrow z = 3$$

$$3(y) + 4(3) = 18 \rightarrow y = 2$$

$$x + 2(2) + 3(3) = 15 \rightarrow x = 2$$

The point of intersection is (2,2,3)

(4)

(b)
$$\begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 2p-7 & 2q-12 \end{bmatrix}$$

- (i) Exactly one solution if $2p 7 \neq 0 \Rightarrow p \neq 3.5 \checkmark \checkmark$ (2)
- (ii) There is no solution if p = 3.5 and $2q 12 \neq 0$ i.e. $q \neq 6 \quad \checkmark \checkmark$ (2)
- (iii) There are inifinitely many solutions if p = 3.5 and q = 6 $\checkmark\checkmark$ (2)

3. (13 marks)

(a)
$$(z - (1+2i))(z - (1-2i))(z - (3+i))(z - (3-i))$$

$$= [(z - (1+2i))(z - (1-2i))][(z - (3+i))(z - (3-i))]$$

$$= [z^2 - z(1+2i+1-2i)+(1+2i)(1-2i)][z^2 - z(3+i+3-i)+(3+i)(3-i)]$$

$$= (z^2 - 2z + 1 - 4i^2)(z^2 - 6z + 9 - i^2)$$

$$= (z^2 - 2z + 5)(z^2 - 6z + 10)$$

$$= z^4 - 8z^3 + 27z^2 - 50z + 50$$

Therefore equation is $z^4 - 8z^3 + 27z^2 - 50z + 50 = 0$

(3)

(b) Let
$$P(z) = z^3 - z^2 + 3z + 5$$

 $P(-1) = -1 - 1 - 3 + 5 = 0$
 $\therefore z = -1$

Using synthetic division with z = -1 You can use long division but slower

(c) (i)
$$z^4 = -16$$

∴z =-1 so z+1 is a factor
$$z^{2}-2z + 5$$
z+1)z³-z²+3z+5
$$-(z³+z²)$$

$$-2z²+3z$$

$$-(-2z²-2z)$$

$$5z+5$$

$$-(5z+5)$$
0
$$z =-1 \text{ or } z²-2z+5=0$$

$$z^{4} = 16cis(\pi + n \times 2\pi) \quad n \in \mathbb{R}$$

$$z = 2(cis(\pi + 2n\pi))^{\frac{1}{4}}$$

$$z = 2cis\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)$$

$$n = 0, \quad z = 2cis\left(\frac{\pi}{4}\right) = \sqrt{2} + \sqrt{2}i$$

$$n = 1, \quad z = 2cis\left(\frac{3\pi}{4}\right) = -\sqrt{2} + \sqrt{2}i$$

$$n = 2, \quad z = 2cis\left(\frac{5\pi}{4}\right)$$

$$n = -1, \quad z = 2cis\left(-\frac{\pi}{4}\right) = \sqrt{2} - \sqrt{2}i$$

$$n = -2, \quad z = 2cis\left(-\frac{3\pi}{4}\right) = -\sqrt{2} - \sqrt{2}i$$

(ii)

(iii) $z^4 = -16$ is equivalent to $z = 2cis\left(\frac{\pi}{4} + \frac{n\pi}{2}\right)$ whereas $z^4 = 16$ is equivalent to $z = 2cis\left(0 + \frac{n\pi}{2}\right)$ which means the starting positions of the roots are different $\frac{\pi}{4}$ apart..

The roots themselves are $\frac{\pi}{2}$ apart and the roots of the two equations

start
$$\frac{\pi}{4}$$
 apart. \checkmark (1)

4. (13 marks)

(b)

(a)
$$\left(cis \left(\frac{\pi}{4} \right) \right)^{5} + \left(1 - i \right)^{5} = \left(cis \left(\frac{\pi}{4} \right) \right)^{5} + \left(\sqrt{2} cis \left(-\frac{\pi}{4} \right) \right)^{5}$$

$$= cis \left(\frac{5\pi}{4} \right) + \left(\sqrt{2} \right)^{5} cis \left(-\frac{5\pi}{4} \right)$$

$$= -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} + 4\sqrt{2} \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right)$$

$$= -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} + 4(-1+i)$$

$$\left(cis \left(\frac{\pi}{4} \right) \right)^{5} + (1-i)^{5} = \left(-4 - \frac{1}{\sqrt{2}} \right) + i \left(4 - \frac{1}{\sqrt{2}} \right)$$

$$(3)$$

Im(z)

5

4

3

7

Re(z)

(c)
$$|z+1| = |z-i| \quad \checkmark \checkmark$$
 (2)
(d) $z = \frac{\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)}{\left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right)} = cis\left(\frac{\pi}{3} - \frac{4\pi}{3}\right) = cis(-\pi) \quad \checkmark$

$$mod(z) = 1 \quad \arg(z) = \pi \quad \checkmark$$

(e)
$$z = \frac{(3-2i)}{(4+3i)} \times \frac{(4-3i)}{(4-3i)} = \frac{6-17i}{25}$$
 $Re(z) = \frac{6}{25}$ (2)

5. (8 marks)

(a)
$$(g(x))^2 = (1-x)^2$$
 $f^{-1}(x) = x-1$ \checkmark $(g(x))^2 = f^{-1}(x)$ $(1-x)^2 = x-1$ i.e. $(x-1)^2 = x-1$ \checkmark $(x-1)^2 - (x-1) = 0$ $(x-1)[x-1-1] = 0$ $x = 1 \text{ or } x = 2$

- (b) (i) $x \le 0$ $\checkmark \checkmark$ Answers will vary (2)
 - (ii) $y = x \checkmark$

(2)

(iii)
$$f^{-1}(32) = 4 \checkmark$$
 (1)

END OF SECTION ONE

Section Two

6. (6 marks)

(a)
$$\int_{0}^{3} (2-t)\mathbf{i} + (3t^{2}+1)\mathbf{j} dt$$

$$= \left[\left(2t - \frac{t^{2}}{2} \right) \mathbf{i} + (t^{3}+t)\mathbf{j} \right]_{1}^{3}$$

$$= \left[\left(6 - \frac{9}{2} \right) \mathbf{i} + (27+3)\mathbf{j} \right] - \left(\left(2 - \frac{1}{2} \right) \mathbf{i} + (1+1)\mathbf{j} \right)$$

$$= 0\mathbf{i} + 28\mathbf{j}$$

(3)

(b)
$$\int_{3}^{\pi/2} (\sin(3t))\mathbf{i} + (-\cos(3t))\mathbf{j} dt$$

$$= -\left[\frac{\cos(3t)}{3}\mathbf{i} + \frac{\sin(3t)}{3}\mathbf{j}\right]_{0}^{\pi/2}$$

$$= -\frac{1}{3} \left(\left[\cos\left(\frac{3\pi}{2}\right)\mathbf{i} + \sin\left(\frac{3\pi}{2}\right)\mathbf{j}\right] - (\cos(0)\mathbf{i} + \sin(0)\mathbf{j})\right]$$

$$= -\frac{1}{3}(-\mathbf{j} - \mathbf{i})$$

$$= \frac{1}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} \qquad \checkmark$$

(3)

7. (27 marks)

(a) (i)
$$r(t) = (10\cos(t))\mathbf{i} + (10\sin(t))\mathbf{j}$$

$$x = 10\cos(t) \quad y = 10\sin(t) \quad \checkmark$$

$$\sin^{2}(t) + \cos^{2}(t) = 1$$

$$\therefore \left(\frac{x}{10}\right)^{2} + \left(\frac{y}{10}\right)^{2} = 1$$

$$x^{2} + y^{2} = 100 \quad \checkmark$$

(3)

(3)

(ii)
$$r(t) = (10\cos(t))\mathbf{i} + (10\sin(t))\mathbf{j}$$

 $\mathbf{v}(t) = (-10\sin(t))\mathbf{i} + (10\cos(t))\mathbf{j}$ \checkmark
 $\mathbf{r}(t) \cdot \mathbf{v}(t) = \begin{bmatrix} 10\cos(t) \\ 10\sin(t) \end{bmatrix} \cdot \begin{bmatrix} -10\sin(t) \\ 10\cos(t) \end{bmatrix}$
 $\mathbf{r}(t) \cdot \mathbf{v}(t) = -100\cos(t)\sin(t) + 100\sin(t)\cos(t) = 0$ \checkmark
 $|\mathbf{r}(t)| \neq 0$, $|\mathbf{v}(t)| \neq 0$ $\therefore \cos(t) = 0 \Rightarrow t = \frac{\pi}{2}$

Therefore the position vector is always at right angles to the velocity vector.

(iii) $a(t) = (-10\cos(t))\mathbf{i} + (-10\sin(t))\mathbf{j}$ \checkmark $a(t) = -((10\cos(t))\mathbf{i} + (10\sin(t))\mathbf{j}) \checkmark$ $a(t) = -\mathbf{r}(t)$

r(t) is a position vector, i.e. it goes out from the origin.

Therefore a(t) is directed towards the origin. \checkmark (3)

(iv)
$$r(0) = \begin{pmatrix} 10 \\ 0 \\ \checkmark \end{pmatrix}$$
, $v(0) = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$, $a(0) = \begin{pmatrix} -10 \\ 0 \\ \checkmark \end{pmatrix}$

(4)

(v) Speed =
$$|v(t)|$$
 \checkmark

$$|v(t)| = \sqrt{(-10\sin(t))^2 + (10\cos(t))^2} \quad \checkmark$$

$$= \sqrt{100(\sin^2(t) + \cos^2(t))}$$

$$= 10\sqrt{1}$$

$$= 10 \quad \checkmark$$

The speed is constant.

(3)

(3)

(b) (i)
$$r(t) = (\sin^3(t))\mathbf{i} + (\cos^3(t))\mathbf{j}$$
.
 $r(0) = (\sin^3(0))\mathbf{i} + (\cos^3(0))\mathbf{j}$
 $r(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad r(0^+) = \begin{pmatrix} 0^+ \\ 1^- \end{pmatrix}$

(ii)
$$v(t) = (3\sin^2(t)\cos(t))\mathbf{i} - (3\cos^2(t)\sin(t))\mathbf{j} \checkmark \checkmark \checkmark$$
 (2)
-1/error

(iii)
$$r\left(\frac{\pi}{4}\right) = \begin{pmatrix} \frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} \end{pmatrix} \approx \begin{pmatrix} 0.35 \\ 0.35 \end{pmatrix}$$
 \checkmark $v\left(\frac{\pi}{4}\right) \approx \begin{pmatrix} 1.06 \\ -1.06 \end{pmatrix}$

(3)

(3)

(iv)
$$v(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $t = ?$
 $v(t) = (3sin^2(t)cos(t))i - (3cos^2(t)sin(t))j$
 $x = (3sin^2(t)cos(t)) = 1.5sin(2t)sin(t)$
If $x = 0$ $sin(2t) = 0$ or $sin(t) = 0$
 $2t = 0, \pi, 2\pi$ $t = 0, \pi, 2\pi$...
If $x = 0$ $t = 0, \frac{\pi}{2}, \pi$ \checkmark
 $y = (3cos^2(t)sin(t)) = 1.5sin(2t)cos(t)$
If $y = 0$ $sin(2t) = 0$ or $cos(t) = 0$
 $2t = 0, \pi, 2\pi$ $t = \frac{\pi}{2}, \frac{3\pi}{2}$...
If $y = 0$ $t = 0, \frac{\pi}{2}, \pi$ \checkmark
So for $v(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for $t > 0$, first time is $t = \frac{\pi}{2}$ \checkmark

8. (3 marks)

(a)
$$AG = AO + OG = -OA + OG$$

$$= -a + g$$

$$(2)$$

(b) OM = OA +
$$\frac{1}{2}$$
AG = $a + \frac{1}{2}(-a + g) = \frac{1}{2}(a + g)$ \checkmark (1)

9. (13 marks)

(a) (i)
$$C(-1,4,0)$$
 $r^2 = (1-(-1))^2 + (2-4)^2 + (4-0)^2 = 4+4+16=24$ \checkmark $(x+1)^2 + (y-4)^2 + z^2 = 24$ \checkmark (3)

(ii)
$$\mathbf{PQ} = \begin{pmatrix} -4\\4\\-8 \end{pmatrix}, \ \mathbf{PR} = \begin{pmatrix} 0\\-1\\-3 \end{pmatrix}$$

$$\mathbf{r} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} -4\\4\\-8 \end{pmatrix} + s \begin{pmatrix} 0\\-1\\-3 \end{pmatrix}$$

Other solutions are possible

(iii)
$$\mathbf{PQ} = \begin{pmatrix} -4 \\ 4 \\ -8 \end{pmatrix}, \ \mathbf{PR} = \begin{pmatrix} 0 \\ -1 \\ -3 \end{pmatrix}$$

$$\mathbf{PQ} \times \mathbf{PR} = \begin{pmatrix} -20 \\ -12 \\ 4 \end{pmatrix} \checkmark \tag{1}$$

(b) (i)
$$\mathbf{r}_{bird}(t) = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + t \begin{pmatrix} 2.5 \\ -1 \\ -3 \end{pmatrix}$$

$$x = 4 + 2.5t, \quad y = 5 - t, \quad z = 6 - 3t$$

$$If \quad z = 0, t = 2 \quad \text{check} \quad x = 4 + 5 = 9$$

$$z = 6 - 6 = 0$$
So at $(9,0,3) \quad t = 2 \quad \checkmark$ (1)

(ii) (9,3,0) to (9,4,0) Mouse takes 1 second to get to its hole. \checkmark (1)

(iii)
$$\begin{vmatrix} 2.5 \\ -1 \\ -3 \end{vmatrix} = 4.03 \text{ m/s} \begin{vmatrix} 2.5 \\ 0 \\ -3 \end{vmatrix} = 3.91 \text{ m/s} \checkmark$$
Change in speed is 0.12 m/s \checkmark (2)

(iv) At t = 1the bird is at P(6.5, 4, 3)

$$\mathbf{r}_{bird}(t) = \begin{pmatrix} 6.5 \\ 4 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2.5 \\ 0 \\ -3 \end{pmatrix}$$

After one second (when the mouse gets to its hole)

$$\mathbf{r}_{bird}$$
 (1) = $\begin{pmatrix} 6.5 \\ 4 \\ 3 \end{pmatrix}$ + 1 $\begin{pmatrix} 2.5 \\ 0 \\ -3 \end{pmatrix}$ = $\begin{pmatrix} 9 \\ 4 \\ 0 \end{pmatrix}$ the bird arrives at the nest,

so they both arrive at the hole together.

Let's hope the mouse does not have a long tail!!!

(2)

10. (12 marks)

(a)

$$Re\left(\frac{(1+i)^{6} cis\left(\frac{\pi}{2}\right)}{(1-i)^{2}}\right) = Re\left(\frac{\sqrt{2} cis\left(\frac{\pi}{4}\right)^{6} cis\left(\frac{\pi}{2}\right)}{\sqrt{2} cis\left(-\frac{\pi}{4}\right)^{2}}\right)$$

$$= \frac{8}{2} Re\left(cis\left(\frac{6\pi}{4} + \frac{\pi}{2} + \frac{2\pi}{4}\right)\right) \checkmark$$

$$= 4 Re\left(cis\left(\frac{5\pi}{2}\right)\right)$$

$$= 4 Re\left(cis\left(\frac{\pi}{2}\right)\right) \checkmark$$

$$= 4 Re\left(cos\left(\frac{\pi}{2}\right) + i sin\left(\frac{\pi}{2}\right)\right)$$

$$= 4 Re\left(0 + i\right)$$

$$= 0 \checkmark$$

(3)

(b)

(2)

(6)

(2)

(c) (i)
$$x + yi = \frac{2+3i}{1+i} - \frac{1+5i}{3-i}$$
.

$$\frac{2+3i}{1+i} - \frac{1+5i}{3-i} = \frac{2+3i}{1+i} \times \frac{1-i}{1-i} - \frac{1+5i}{3-i} \times \frac{3+i}{3+i} \checkmark$$

$$= \frac{2+3i-2i-3i^2}{1-i^2} - \frac{3+15i+i+5i^2}{9-i^2} \checkmark$$

$$= \frac{5+i}{2} - \left(\frac{-2+16i}{10}\right)$$

$$= \frac{5}{2} + \frac{1}{5} + i\left(\frac{1}{2} - \frac{8}{5}\right)$$

$$= \frac{27}{10} - \frac{11i}{10}$$

$$x = 2.7 \text{ and } y = -1.1 \checkmark \checkmark$$

(ii)
$$x + yi = \sqrt{4 + 3i}$$
 $x = 2.12, y = 0.71$ \checkmark

11. (6 marks)

(a)
$$\cos(\theta) = \frac{\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}}{\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}} \checkmark$$

$$\cos(\theta) = \frac{6+6+4}{\sqrt{4+9+1}\sqrt{9+4+16}}$$

$$= \frac{16}{\sqrt{14}\sqrt{29}}$$

$$\theta = 37.43^{\circ}$$

(b) The projection of a on $b = \frac{a \cdot b}{|b|} = \frac{16}{\sqrt{29}}$ (2)

(c)
$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix} = 0$$
 $\mathbf{p} = \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$ $\checkmark \checkmark$ Answers will vary (2)

(4)

12. (17 marks)

$$p(q(x)) = (x+1)(x+3) \text{ and } p(x) = x^2 - 1 \text{ find } y = q(x).$$

$$p(q(x)) = (q(x))^2 - 1 \qquad \checkmark$$

$$p(q(x)) = (x+1)(x+3)$$

$$= x^2 + 4x + 3$$

$$= x^2 + 4x + 4 - 1 \qquad \checkmark$$

$$p(q(x)) = (x+2)^2 - 1 \qquad \checkmark$$

$$\therefore q(x) = x + 2 \qquad \checkmark$$

(b) (i) f(x) = |x(x-1)(x+1)| (1)

(ii)
$$f(x) = |x|(|x|-1)(|x|+1)$$
 $\checkmark \checkmark$

(iii)
$$f(x) = \frac{1}{x(x-1)(x+1)}$$
 $\checkmark \checkmark \checkmark$ (3)

(c) (i)
$$2f(1) = 2 \times (-3) = -6$$
 \checkmark (1)

(ii)
$$f(-1) = f(1) = -3$$
 (1)

(iii)
$$|f^{-1}(3)| = |-1| = 1$$
 \checkmark (1)

(iv) True \checkmark (as f(-1)=3 and f(1)=-3

and f^{-1} is monotonically decreasing) (1)

(d) (i)
$$f(x)=e^{2x} \Rightarrow y=e^{2x}$$

To get inverse $x=e^{2y}$
 $2y=\ln(x)$
 $y=f^{-1}(x)=\frac{\ln(x)}{2}$
 \checkmark (1)

(ii)
$$f(f^{-1}(f^{-1}(1))) = f^{-1}(1) = \frac{\ln(1)}{2} = 0$$
 (1)

13. (4 marks)

(a)
$$f(g(x)) = f(x^2) = \sqrt{1 - x^2}$$
 $-1 \le x \le 1$ $0 \le f(g(x)) \le 1$

(b) (i) $h(x) = 1 + e^x$

To get inverse:

$$x = 1 + e^{y}$$

 $x - 1 = e^{y}$
 $ln(x - 1) = y$
 $y = h^{-1}(x) = ln(x - 1)$

(ii) $h^{-1}(2) = ln(2-1) = 0$ (1)

14. (4 marks)

(a)
$$y = -2|x| + 2 = \begin{cases} -2x + 2 & \text{for } x \ge 0 \\ \underline{2x + 2} & \text{for } x < 0 \end{cases}$$
 (1)

(b)
$$y = |1 - x| = \begin{cases} 1 - x & \text{for } \underline{x \le 1} \\ x - 1 & \text{for } \underline{x > 1} \end{cases}$$
 (1)

(c) For
$$x > 1$$
 $-2x + 2 = x - 1$ For $0 < x < 1$ $-2x + 2 = 1 - x$ $1 = x$

For
$$x < 0$$
 $2x + 2 = 1 - x$ $3x = -1$ $x = -\frac{1}{3}$ (2)

15. (3 marks)

$$a = -1, b = -2, c = 0$$
 $\checkmark \qquad \checkmark \qquad \checkmark$
(2)

16.
$$(5 \text{ marks})$$

Prove that $\cos(5\theta) = 16\cos^5(\theta) - 20\cos^3(\theta) + 5\cos(\theta)$
 $\cos(5\theta) = Re(\cos(5\theta))$
 $= Re(\cos(\theta) + i\sin(\theta))^5$
 $= Re(\cos^5(\theta) + 5\cos^4(\theta)(i\sin(\theta)) + 10\cos^3(\theta)(i\sin(\theta))^2$
 $+ 10\cos^2(\theta)(i\sin(\theta))^3 + 5\cos(\theta)(i\sin(\theta))^4 + (i\sin(\theta))^5$)
 $= \cos^5(\theta) - 10\cos^3(\theta)\sin^2(\theta) + 5\cos(\theta)\sin^4(\theta)$
BUT $\sin^2(\theta) = 1 - \cos^2(\theta)$
 $\cos(5\theta) = \cos^5(\theta) - 10\cos^3(\theta)[1 - \cos^2(\theta)] + 5\cos(\theta)[1 - \cos^2(\theta)]^2$
 $= \cos^5(\theta) - 10\cos^3(\theta) + 10\cos^5(\theta) + 5\cos(\theta)[1 - 2\cos^2(\theta) + \cos^4(\theta)]$
 $= 11\cos^5(\theta) - 10\cos^3(\theta) + 5\cos(\theta) - 10\cos^3(\theta) + 5\cos^5(\theta)$
 $\cos(5\theta) = 16\cos^5(\theta) - 20\cos^3(\theta) + 5\cos(\theta)$

END OF SECTION TWO