MTL783: Theory of Computation

1st Semester, 2025-2026

Lecture 3 - 31/07/2025

Lecturer: Prof Minati De Scribe: Team 3

Scribed by:

- 1. Shivaani Hari (2022MT11273)
- 2. Siya Gupta (2022MT11274)
- 3. Shrenik Mohan Sakala (2022MT11920)
- 4. Aahna Jain (2022MT11930)
- 5. Nilay Sharma (2022MT12007)

1 Optimisation Problems as Decision Problems

Any optimisation problem can be represented as a **decision problem**, and can be called a function that takes some input and returns "yes" or "no" as output.

Examples

1. Connected Graph Problem:

• Input: Any graph

• Output: Yes if the graph is connected, else no.

2. Checking if an integer is prime:

• Input: An integer

• Output: Yes if prime, else no.

The solutions to a decision problem can be represented in the form of a language which comprises of the set of all inputs such that the output for the decision problem is yes, i.e., if the input is a valid word in the language, return yes.

2 Automata

An automaton is an abstract mathematical model. It has a mechanism for reading input; the input is a string over a given alphabet, written on an input file, which the automaton can read but not change. Some key points about automata-

- An automaton whose output response is limited to a simple "yes" or "no" is called an **accepter**. Presented with an input string, an accepter either accepts the string or rejects it.
- A more general automaton, capable of producing strings of symbols as output, is called a **transducer**.
- In case of an acceptor, when we finish reading the string (done from left to right), a yes/no decision is made and returned.

Figure 1: Basic Structure of Automata

3 Deterministic Finite Accepters (DFA)

Definition 3.1: A deterministic finite accepter or DFA is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- ullet Q is a finite set of internal states
- Σ is a finite set of symbols called the input alphabet
- $\delta: Q \times \Sigma \to Q$ is a total function called the **transition function**
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

4 Transition Graph

- Each state in Q corresponds to a vertex in the transition graph.
- It is a directed graph.
- An incoming edge from nowhere is drawn to the initial state node.

The graph in Figure 2 represents the DFA

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

where δ is given by:

$$\delta(q_0, 0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_2$$

$$\delta(q_1, 1) = q_0$$

$$\delta(q_2, 0) = q_2$$

$$\delta(q_2, 1) = q_1$$

Figure 2: Simple Example of a DFA

This DFA accepts the string 010. Starting in state q_0 , the symbol 0 is read first: the automaton remains in q_0 . Next, 1 is read and the automaton transitions to q_1 . Next, 0 is read and the automaton transitions to q_2 . We are now at the end of the string and in a final state q_2 , so the string is accepted.

The DFA does not accept the string 101, since it first goes to q_1 after reading 1, then to q_2 after reading 0, but then returns back to q_1 on reading 1, and the string ends here, leading to termination at a non-final state.

5 Transition Table

We can represent a transition function in the form of a table. There is a one-to-one relationship between M and its graph representation.

6 Extended Transition Function

It's convenient to introduce the **extended transition function** $\delta^*: Q \times \Sigma^* \to Q$. Here, the second argument is a string (not just a symbol) and the value is the state after reading the string.

$$\delta(q_0, a) = q_1$$
 and $\delta(q_1, b) = q_2$,

then

$$\delta^*(q_0, ab) = q_2.$$

Formally, we define δ^* recursively as:

$$\delta^*(q,\lambda) = q \tag{2.1}$$

$$\delta^*(q, wa) = \delta(\delta^*(q, w), a) \tag{2.2}$$

for all $q \in Q$, $w \in \Sigma^*$, $a \in \Sigma$.

Example application:

$$\delta^*(q_0, ab) = \delta(\delta^*(q_0, a), b)$$

Now, $\delta^*(q_0, a) = \delta(\delta^*(q_0, \lambda), a) = \delta(q_0, a) = q_1$. So,

$$\delta^*(q_0, ab) = \delta(q_1, b) = q_2.$$

7 Language Accepted by a DFA

Definition 3.2: The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Non-acceptance means the DFA stops in a non-final state; that is,

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

8 Questions

Q1: If you have a DFA, how can we construct a DFA whose language is the complement of that of the original DFA?

Ans: Make all the final states non-final and vice versa to get a new DFA.

Q2: Find a deterministic finite accepter that recognizes the set of all strings on $\Sigma = \{a, b\}$ starting with the prefix ba.

Q3: Find a DFA that accepts all the strings on $\{0,1\}$ except those containing the substring 001.

You can obtain this by drawing a DFA that accepts strings containing 001 and then taking its complement.

9 A Theorem Connecting DFA and Graphs

Theorem 3.1: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite accepter, and let G_M be its associated transition graph. Then for every $q_i, q_j \in Q$, and $w \in \Sigma^+$,

 $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j .

Proof: (Sketch) The proof can be done by induction on the length of w. Assume the claim is true for all v with $|v| \leq n$. For w of length n+1, write w=va. Suppose $\delta^*(q_i,v)=q_k$. Since |v|=n, there is a walk in G_M labeled v from q_i to q_k . If $\delta^*(q_i,w)=q_j$, then M must have a transition $\delta(q_k,a)=q_j$, so by construction G_M has an edge (q_k,q_j) with label a. Thus, there is a walk in G_M labeled va=w from q_i to q_j .

Since the result is obviously true for n = 1, we can claim by induction that for every $w \in \Sigma^+$,

$$\delta^*(q_i, w) = q_j \implies \text{there is a walk in } G_M \text{ from } q_i \text{ to } q_j \text{ labeled } w.$$

The argument can be turned around in a straightforward way to show that the existence of such a path implies $\delta^*(q_i, w) = q_j$, thus completing the proof.

10 Regular Languages

Definition 3.3: A language L is called **regular** if and only if there exists some DFA M such that L = L(M).

Example 3.1 Show that the language $L = \{awa : w \in \{a, b\}^*\}$ is regular.

Example 3.2 Show that $L_2 = \{aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*\}$ is regular.

References

• Peter Linz, An Introduction to Formal Languages and Automata, 6th Edition, Jones & Bartlett Learning, 2016