Inciso 1

0. Qué prueba usar:

Antes			Después		
Normalidad:					
tho the			The 132 134 136 136 140 142 144 148 148 150 152 154 156 150 162 164 166 166 170 172		
Forma:					
	Antes			Después	
180 160 140 120			180 160 140 120		4.04
100 80 60 40 20		10 11 12 13 14 15 16	100 80 60 40 20 0	5 6 7 8 9 10	11 12 13 14 15 16
Estadístico de	scriptivo:	'	Después		-
					-
Mean			Mean	159.875	
IVICUIT	153.6875				
Standard Erro			Standard Erro		-
			Standard Erro Median		-
Standard Erro	2.39742701		Standard Erro Median Mode	2.66751289 162 164	-
Standard Erro Median	2.39742701 156.5 155		Standard Erro Median	2.66751289 162 164	- - -
Standard Erro Median Mode	2.39742701 156.5 155 9.58970802		Standard Erro Median Mode	2.66751289 162 164 10.6700515	
Standard Erro Median Mode Standard De	2.39742701 156.5 155 9.58970802		Standard Erro Median Mode Standard Dev	2.66751289 162 164 10.6700515	- - - -
Standard Erro Median Mode Standard Dev Sample Varia	2.39742701 156.5 155 9.58970802 91.9625		Standard Erro Median Mode Standard Der Sample Varia	2.66751289 162 164 10.6700515 113.85	
Standard Erro Median Mode Standard Der Sample Varia Kurtosis	2.39742701 156.5 155 9.58970802 91.9625 0.21721454		Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness Range	2.66751289 162 164 10.6700515 113.85 1.2878597	
Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness	2.39742701 156.5 155 9.58970802 91.9625 0.21721454 -0.94560938		Standard Erro Median Mode Standard Der Sample Varia Kurtosis Skewness	2.66751289 162 164 10.6700515 113.85 1.2878597 -1.10207593	
Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness Range	2.39742701 156.5 155 9.58970802 91.9625 0.21721454 -0.94560938 33		Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness Range	2.66751289 162 164 10.6700515 113.85 1.2878597 -1.10207593 40	
Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness Range Minimum	2.39742701 156.5 155 9.58970802 91.9625 0.21721454 -0.94560938 33 132		Standard Erro Median Mode Standard Dev Sample Varia Kurtosis Skewness Range Minimum	2.66751289 162 164 10.6700515 113.85 1.2878597 -1.10207593 40 133	

- No es normal.
- n = 16.
- Procedemos a aplicar la prueba de signos pareada.
- 1. Parámetros de interés: $\tilde{\mu}_1 \tilde{\mu}_2$

2. Hipótesis:

a.
$$H_0$$
: $\tilde{\mu}_1 - \tilde{\mu}_2 = 8$

b.
$$H_a: \tilde{\mu}_1 - \tilde{\mu}_2 < 8$$

- 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

Corredor	Antes	Después	D.		0_0	"+"
1	158	164	2	2	0	1
2	149	158	-1	-1	1	0
3	160	163	5	5	0	1
4	155	160	3	3	0	1
5	164	172	0			
6	138	147	-1	-1	1	C
7	163	167	4	4	0	1
8	159	169	-2	-2	1	(
9	165	173	0			
10	145	147	6	6	0	1
11	150	156	2	2	0	1
12	161	164	5	5	0	1
13	132	133	7	7	0	1
14	155	161	2	2	0	1
15	146	154	0			
16	159	170	-3	-3	1	(

n:	13	Continuity co	0.5
"-":	4		
"+":	9		
p:	0.5		
p-value:	0.1334		
two-tail:	0.2668		
Reject?	Fail to reject		

- Criterio de rechazo: rechazar H_0 si $valor p \leq \alpha$
 - o valor p = 0.1334
 - $\alpha = 0.05$
 - \circ 0.266 \leq 0.05 \rightarrow Falso. No rechazar H_0 .

5. Conclusión:

• Con significancia $\alpha=0.05$, no hay suficiente evidencia para rechazar la hipótesis nula, por lo que no podemos afirmar que correr 8 kilómetros incremente la mediana de la presión sistólica en menos de 8 puntos.

Inciso 2

0. Qué prueba usar:

Jugador de béisbol	Juga
Mana	16 40571420
Mean	16.48571429
Standard Error	0.416978115
Median	16.3
Mode	16.3
Standard Deviation	1.910833775
Sample Variance	3.651285714
Kurtosis	-0.930647221
Skewness	0.01663942
Range	6.8
Minimum	13.2
Maximum	20
Sum	346.2
Count	21

Jugador de Ł	aloncesto
Mean	16.6
Standard Erro	0.92564474
Median	16.1
Mode	#N/A
Standard Dev	3.20652743
Sample Varia	10.2818182
Kurtosis	3.95834145
Skewness	1.64544994
Range	12.3
Minimum	12.7
Maximum	25
Sum	199.2
Count	12

- Una prueba es normal y otra no,
- $n \ge 7$
- Procedemos a aplicar Mann-Whitney-Wilcoxon.
- 1. Parámetros de interés: $\tilde{\mu}_1 \tilde{\mu}_2$
- 2. Hipótesis:

$$\text{a.}\quad H_0{:}\,\tilde{\mu}_1-\tilde{\mu}_2=0$$

b.
$$H_a: \tilde{\mu}_1 - \tilde{\mu}_2 \neq 0$$

- b. H_a : $\tilde{\mu}_1 \tilde{\mu}_2 \neq 0$ 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

gador de béisbol	Jugador de baloncesto	Stack	Ranks
16.3	15.4	16.3	17
18.1	17.7	18.1	25.5
15.9	18.6	15.9	14.5
14.1	12.7	14.1	5.5
17.7	15	17.7	23.5
16.3	15.9	16.3	17
13.2	16.3	13.2	2
20	18.1	20	32
15	16.8	15	9.5
18.6	14.1	18.6	29
14.5	13.6	14.5	7
19.1	25	19.1	31
13.6		13.6	3.5
17.2		17.2	21
18.6		18.6	29
15.4		15.4	11.5
15.6		15.6	13
18.3		18.3	27
17.4		17.4	22
14.8		14.8	8
16.5		16.5	19
		15.4	11.5
		17.7	23.5
		18.6	29
		12.7	1
		15	9.5
		15.9	14.5
		16.3	17
		18.1	25.5
		16.8	20
		14.1	5.5
		13.6	3.5
		25	33

R_BEIS	367.5
R_BAL	193.5
n hair	21
n_beis	21
n_balon	12
mean_W	357
stdev_W	26.7207784
Z	0.39295262
p-val:	0.73860114
alpha:	0.05
Reject?	fail to reject

• Criterio de rechazo: rechazar H_0 si $valor - p \leq \alpha$

$$\circ$$
 valor $-p = 0.73$

$$\alpha = 0.05$$

$$\circ$$
 0.73 \leq 0.05 \rightarrow False

5. Conclusión:

• Con significancia $\alpha=0.05\,$ no se puede rechazar la hipótesis nula y afirmar que las medianas son diferentes.

Inciso 3

- 0. Qué prueba usar:
 - Nos piden una correlación, se procede a aplicar la prueba de correlación Spearman.
- 1. Parámetros de interés: ρ_s
- 2. Hipótesis:

a.
$$H_0: \rho_s = 0$$

b.
$$H_a: \rho_s \neq 0$$

- 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

Marca del cigarrillo	Contenido de alquitrán	Contenido de nicotina	R_A	R_N	d sub i	d sub i ^2
Viceroy	14	0.9	2	2	0	C
Marlboro	17	1.1	4.5	4	0.5	0.25
Chesterfield	28	1.6	9	9	0	C
Kool	17	1.3	4.5	6	-1.5	2.25
Kente	16	1	3	3	0	C
Raleigh	13	0.8	1	1	0	C
Old Gold	24	1.5	7	8	-1	1
Philip Morris	25	1.4	8	7	1	1
Oasis	18	1.2	6	5	1	1
Player	31	2	10	10	0	C
						5.5

n:	10	
Part 1	33	
Part 2:	990	
r(s)	0.96666667	0.96656981
mean	0	
stdev	0.33333333	
z:	2.9	
p-val:	0.00186581	
alpha:	0.05	
Reject?	reject	

• Criterio de rechazo: rechazar H_0 si $valor - p \le \alpha$

- o valor p = 0.001
- $\alpha = 0.05$
- $0.001 \le 0.05 \rightarrow \text{Verdadero}$. Rechazar la nula.

5. Conclusión:

• Con significancia $\alpha=0.05$ se puede rechazar la hipótesis nula y afirmar que no hay una correlación entre el contenido de nicotina.

Inciso 4

- 0. Qué prueba usar:
 - Múltiples poblaciones, $n \ge 5$, procedemos a aplicar la prueba Kruskal-Wallis.
- 1. Parámetros de interés: poblaciones.
- 2. Hipótesis:
 - a. H_0 : todas las poblaciones son iguales.
 - b. H_a : todas las poblaciones no son iguales. (una o más poblaciones no so iguales.)
- 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

		Rank					
	k:	4	65	Método 4	Método 3	Método 2	Método 1
70.	R_1	20	87	94	59	75	65
87.	R_2	10	73	89	78	69	87
5	R_3	13.5	79	80	67	83	73
11	R_4	16.5	81	88	62	81	79
	n_1	6.5	69	90	83	72	81
	n_2	6.5	69	62	76	79	69
	n_3	18.5	83	71		90	
	n_4	16.5	81				
2	n_T	9	72				
0.0170940	part 1:	13.5	79				
4294.363	part 2:	23.5	90				
8	part 3:	1	59				
-7.5920838	H:	12	78				
		5	67				
0.0	significance	2.5	62				
0.3518463	chi-square	18.5	83				
		11	76				
fail to reje	reject?	25	94				
		22	89				
		15	80				
		21	88				
		23.5	90				
		2.5	62				
		8	71				

• Criterio de rechazo: rechazar H_0 si $\chi^2 \leq H$ $\circ \quad \chi^2 = 0.35$

$$\circ$$
 $H = -7.59$

$$\circ$$
 0.35 \leq -7.59 \rightarrow Falso. No rechazar H_0 .

5. Conclusión:

 Con significancia lpha=0.05 no hay suficiente evidencia para rechazar la H_0 por lo que no se puede afirmar que hay diferencia entre los métodos.