Formale Systeme, Automaten und Prozesse Beweise

Justin Korte

Februar 2023

1 Beweise

1.1 Sprachbeweise

1.1.1 Assoziativgesetz

Für alle Sprachen K, L, M gilt: (KL)M = K(LM)

Beweis:

Wir zeigen folgende Teilaussagen:

- 1. $(KL)M \subseteq K(LM)$
- 2. $K(LM) \subseteq (KL)M$
- 1. Sei $u \in (KL)M$.

Daraus folgt, dass ein $v \in KL$ und ein $w \in M$ existiert, sodass u = vw.

Da $v \in KL$ gilt, folgt v = xy, $x \in K$, $y \in L$ und damit u = xyw.

Definiere man nun v' = yw, so ergibt sich u = xv', also $u \in K(LM)$.

2. Sei $u \in K(LM)$.

Daraus folgt, dass ein $v \in K$ und ein $w \in LM$ existiert, sodass u = vw.

Da $w \in LM$ gilt, folgt w = xy, $x \in L$, $y \in M$ und damit u = vxy.

Definiere man nun w' = vx, so ergibt sich u = w'y, also $u \in (KL)M$

Aus $(KL)M \subseteq K(LM)$ und $K(LM) \subseteq (KL)M$ folgt (KL)M = K(LM)

1.1.2 Rechtsseitige Distributivität

Für alle Sprachen K, L, M gilt: $K(L \cup M) = KL \cup KM$

$\underline{\mathbf{Beweis}}$:

Wir zeigen folgende Teilaussagen:

- 1. $K(L \cup M) \subseteq KL \cup KM$
- 2. $KL \cup KM \subseteq K(L \cup M)$
- 1. Sei $u \in K(L \cup M)$.

Daraus folgt, dass ein $v \in K$ und ein $w \in L \cup M$ existiert, sodass u = vw.

Da $w \in L \cup M$ gilt, folgt $w \in L \vee w \in M$.

Fall 1: $w \in L$

Dann ist $u = vw \in KL \subset KL \cup KM$

Fall 2: $w \in M$

Dann ist $u = vw \in KM \subset KL \cup KM$

Also gilt in beiden Fällen $u \in K(L \cup M) \Rightarrow u \in KL \cup KM \Leftrightarrow K(L \cup M) \subseteq KL \cup KM$

2. Sei $u \in KL \cup KM$.

Fall 1: $u \in KL$

Dann existieren $v \in K$ und $w \in L$ mit u = vw. Da $w \in L \Rightarrow w \in L \cup M$ gilt $u \in K(L \cup M)$

<u>Fall 2:</u> $u \in KM$ Dann existieren $v \in K$ und $w \in M$ mit u = vw. Da $w \in M \Rightarrow w \in L \cup M$ gilt $u \in K(L \cup M)$

Also gilt in beiden Fällen $u \in KL \cup KM \Rightarrow u \in K(L \cup M) \Leftrightarrow KL \cup KM \subseteq K(L \cup M)$

Aus $K(L \cup M) \subseteq KL \cup KM$ und $KL \cup KM \subseteq K(L \cup M)$ folgt $K(L \cup M) = KL \cup KM$

1.1.3 Kleene-Iteration

Für alle Sprachen K gilt: $K^*K = KK^*$

Wir zeigen folgende Teilaussagen:

- 1. $K^*K \subseteq KK^*$ 2. $KK^* \subset K^*K$
- 1. Sei $u \in K^*K$. Dann ist $u = w_1 \dots w_n v$ mit $u, w_i \in K$, $1 \le i \le n$. Definieren wir nun $v' = w_1, w'_1 = w_2 \dots w'_{n-1} = w_n$ und $w'_n = v$. Dann ist $w = v'w'_1 \dots w'_n$, also ist $u \in KK^*$
- 2. Sei $u \in KK^*$. Dann ist $u = vw_1 \dots w_n$ mit $u, w_i \in K$, $1 \le i \le n$. Definieren wir nun $w_1' = v, w_2' = w_1 \dots w_n' = w_{n-1}$ und $v' = w_n$. Dann ist $w = w_1' \dots w_n' v'$, also ist $u \in K^*K$

Aus $K^*K \subseteq KK^*$ und $KK^* \subset K^*K$ folgt $K^*K = KK^*$

1.1.4 Schnitt von Sprachen unter Kleene-Iteration

Für alle Sprachen K,L gilt: $(K \cap L)^* \subseteq K^* \cap L^*$, aber es gilt nicht $K^* \cap L^* \subseteq (K \cap L)^*$ und damit insbesondere nicht $(K \cap L)^* = K^* \cap L^*$

Wir zeigen folgende Teilaussagen:

- 1. $(K \cap L)^* \subseteq K^* \cap L^*$ 2. $K^* \cap L^* \nsubseteq (K \cap L)^*$
- 1. Sei $w \in (K \cap L)^*$.

Fall 1: $w = \varepsilon$

 $\varepsilon \in (K \cap L)^*$. Da $\varepsilon \in K^* \wedge \varepsilon \in L^* \Rightarrow \varepsilon \in K^* \cap L^* \Leftrightarrow (K \cap L)^* \subseteq K^* \cap L^*$

Fall 2: $w \neq \varepsilon$

Dann existiert ein $n \geq 1$, dass $w = w_1 \dots w_n$ gilt mit $w_i \in (K \cap L) \forall i \in \{1 \dots n\}$ Also ist $w_i \in K$ und $w_i \in L \ \forall i \in \{1 \dots n\}$ Daraus folgt $w \in K^*$ und $w \in L^* \Rightarrow w \in K^* \cap L^*$.

2. Wir zeigen per Widerspruchsbeweis $K^* \cap L^* \nsubseteq (K \cap L)^*$. Wir nehmen an, dass $K^* \cap L^* \subseteq (K \cap L)^*$ gilt. Daraus folgt: $\forall w \in K^* \cap L^* \Rightarrow w \in (K \cap L)^*$.

Sei nun $K := \{a\}$ und $L := \{aa\}$. Dann folgt:

 $K^* \cap L^* = \{a^{2n} | n \in \mathbb{N}\}$ und $(K \cap L)^* = \{\varepsilon\}$. Aus oberer Definition ergibt sich $K^* \cap L^* \nsubseteq (K \cap L)^*$, was aber einen Widerspruch zur Annahme ergibt. Somit muss $K^* \cap L^* \nsubseteq (K \cap L)^*$ gelten.

 $\text{Aus } (K\cap L)^*\subseteq K^*\cap L^* \text{ und } K^*\cap L^* \nsubseteq (K\cap L)^* \text{ folgt } K^*\cap L^* \neq (K\cap L)^*.$

1.2 Hilfsbeweise

1.2.1 Darstellung eines Wortes im b-adischen System

Sei $w \in \{0, \dots, b\}^*$ und $a \in \{0, \dots, b\}$ Zahlendarstellungen zur Basis b.

Dann gilt $k(wa) = b \cdot k(w) + a$ mit $k(w) = \sum_{i=1}^{n} w_i \cdot b^{n-i}$

Beweis:

Sei $z = z_1 \dots z_{n+1}$ mit $w = z_1 \dots z_n$ und $a = z_{n+1}$.

Daraus folgt:

$$k(z) = \sum_{i=1}^{n+1} z_i \cdot b^{n+1-i}$$

$$= \sum_{i=1}^{n} (z_i \cdot b^{n+1-i}) + z_{n+1} \cdot b^0$$

$$= b \cdot \sum_{i=1}^{n} (z_i \cdot b^{n-i}) + z_{n+1}$$

$$= b \cdot k(z_1 \dots z_n) + z_{n+1}$$

$$= b \cdot k(w) + a$$

1.3 Automatenbeweise

1.3.1 Binärautomat mit Teilbarkeit 3

Sei A_2 der folgende Automat:

Dann gilt A_2 akzeptiert $w \in \{0,1\}^* \Leftrightarrow b(w) \equiv 0 \mod 3$

Beweis:

Wir zeigen per vollständiger Induktion über $n \in \mathbb{N}_0$, dass für alle Wörter $w = a_1 \dots a_n \in \Sigma^*$ gilt: Ist (r_0, r_1, \dots, r_n) ein Lauf von A_2 auf $w \Rightarrow r_n \equiv bin(w) \mod 3$

Induktionsanfang:

Sei n = 0. Dann ist der Lauf von A_2 auf $w = \varepsilon$ demnach (0), und $bin(\varepsilon) = 0 \Rightarrow r_0 \equiv bin(\varepsilon) \mod 3$.

Induktionsvoraussetzung:

Für ein beliebiges, festes $n \in \mathbb{N}_0$ gilt $r_n \equiv bin(a_1 \dots a_n) \mod 3$

${\bf Induktions schritt}:$

Sei
$$(r_0,\ldots,r_{n+1})$$
 der Lauf von A_2 auf $w=a_1\ldots a_{n+1}$.
Aus $(1.2.1)$ gilt : $bin(w)=bin(a_1\ldots a_n a_{n+1})=2\cdot bin(a_1\ldots a_n)+a_{n+1}$
Nun gilt mithilfe der Voraussetzung $b(w)=2\cdot bin(a_1\ldots a_n)+a_{n+1}\stackrel{IV}{\equiv} 2\cdot r_n+a_{n+1}\ mod\ 3$

Nun betrachten wir alle Belegungen von r_n und a_{n+1} :

Fall 1:
$$r_n = 0, a_{n+1} = 0$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 0 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(0, 0) = 0$

Fall 2:
$$r_n = 0, a_{n+1} = 1$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 1 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(0, 1) = 1$

Fall 3:
$$r_n = 1, a_{n+1} = 0$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 2 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(1, 0) = 2$

Fall 4:
$$r_n = 1, a_{n+1} = 1$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 0 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(1, 1) = 0$

Fall 5:
$$r_n = 2, a_{n+1} = 0$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 1 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(2, 0) = 1$

Fall 6:
$$r_n = 2, a_{n+1} = 1$$

Dann gilt
$$bin(w) \equiv 2 \cdot r_n + a_{n+1} \mod 3 \equiv 2 \mod 3$$
 und $\delta(r_n, a_{n+1}) = r_{n+1} \Rightarrow \delta(2, 1) = 2$

Damit wurde die Behauptung der Induktion bewiesen. Wenn nun $r_n = 0$ gilt, so befindet sich der Automat in q_0 und akzeptiert. Aus der bewiesenen Induktion folgt nun:

$$A_2$$
 akzeptiert $w \in \{0,1\}^* \Leftrightarrow r_n = 0 \stackrel{Ind.}{\Leftrightarrow} bin(w) \equiv 0 \mod 3$

Damit wurde die Behauptung bewiesen.

1.4 Abschlusseigenschaften von DFA-erkennbaren Sprachen

1.4.1 Abschluss des Komplements

Sei $L\subseteq \Sigma^*$ DFA-erkennbar. Dann ist auch \overline{L} DFA-erkennbar

Beweis:

Sei $\underline{A}=(Q,\Sigma,\delta,q_0,F)$ ein DFA mit L(A)=L. Sei \overline{A} der DFA, der aus A durch Vertauschen von Endzuständen und Nicht-Endzuständen entsteht, also $\overline{A}=(Q,\Sigma,\delta,q_0,Q\setminus F)$

Wir zeigen nun $L(\overline{A}) = \overline{L}$, also dass \overline{L} DFA-erkennbar ist.

Sei nun $w = a_1 \dots a_n \in \Sigma^*$. Wir zeigen

A akzeptiert $w \Leftrightarrow \overline{A}$ akzeptiert w nicht

A und \overline{A} haben den gleichen Lauf $(r_0 \dots r_n)$ auf w. Es gilt:

A akzeptiert w
$$\Leftrightarrow r_n \in F$$

$$\Leftrightarrow r_n \notin Q \setminus F$$

$$\Leftrightarrow \overline{A} \text{ akzeptiert w nicht}$$

Daraus folgt, dass \overline{A} genau alle Wörter w verwirft, wenn A diese akzeptiert. Negiert bedeutet das, dass \overline{A} genau alle Wörter w akzeptiert, wenn A diese verwirft. Damit akzeptiert \overline{A} alle Wörter aus \overline{L} , also gilt $L(\overline{A}) = \overline{L}$. Damit ist \overline{L} DFA-erkennbar.

1.4.2 Abschluss des Schnittes

Seien $L_1, L_2 \subseteq \Sigma^*$ DFA-erkennbar. Dann ist $L_1 \cap L_2$ DFA-erkennbar.

$\underline{\mathbf{Beweis}}$:

Sei
$$A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$$
 ein DFA mit $L(A_1) = L_1$ und sei $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ ein DFA mit $L(A_2) = L_2$.

Wir konstruieren einen Produktautomaten $A = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F)$ mit $\delta((r_1, r_2), a) := (\delta_1(r_1, a), \delta_2(r_2, a))$ und $F = F_1 \times F_2$

Wir zeigen nun:

A akzeptiert w $\Leftrightarrow A_1$ akzeptiert w und A_2 akzeptiert w

woraus
$$L(A) = L(A_1) \cap L(A_2)$$
 folgt.

Sei $w = a_1 \dots a_n$ und der Lauf von $A_1 = (r_0, a_1, r_1, \dots, a_n, r_n)$ und von $A_2 = (s_0, a_1, s_1, \dots, a_n, s_n)$. Daraus folgt der Lauf von A als $((r_0, s_0), a_1, (r_1, s_1), \dots, a_n, (r_n, s_n))$ Gleichermaßen gilt dadurch:

$$A_1$$
 akzeptiert $w \Leftrightarrow r_n \in F_1$

$$A_2$$
 akzeptiert $w \Leftrightarrow s_n \in F_2$

Desweiteren folgt:

$$\begin{split} A \text{ akzeptiert } w &\Leftrightarrow (r_n, s_n) \in F = F_1 \times F_2 \\ &\Leftrightarrow r_n \in F_1 \text{ und } s_n \in F_2 \\ &\Leftrightarrow A_1 \text{ akzeptiert } w \text{ und } A_2 \text{ akzeptiert } w \end{split}$$

Damit ist $L(A) = L_1 \cap L_2$, also ist $L_1 \cap L_2$ DFA-erkennbar.

1.4.3 Abschluss der Vereinigung

Seien $L_1, L_2 \subseteq \Sigma^*$ DFA-erkennbar. Dann ist $L_1 \cup L_2$ DFA-erkennbar.

Beweis 1:

Aus den de-Morganschen Gesetzen folgt $L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$.

Da sowohl L_1 als auch L_2 DFA-erkennbar sind, folgt aus (1.4.1), dass $\overline{L_1}$ und $\overline{L_2}$ DFA-erkennbar sind. Aus (1.4.2) folgt, dass auch $\overline{L_1} \cap \overline{L_2}$ DFA-erkennbar ist. Da $\overline{L_1} \cap \overline{L_2} + L_1 \cup L_2$ gilt, muss auch $L_1 \cup L_2$ DFA-erkennbar sein.

1.5 Erreichbarkeitsbeweise

1.5.1 Äquivalenz von Akzeptanz und Erreichbarkeit

Sei $A = (Q, \Sigma, \Delta, q_0, F)$ ein NFA und $w \in \Sigma^*$. Dann gilt :

$$w \in L(A) \Leftrightarrow E(A, w) \cap F \neq \emptyset$$

Beweis:

$$w \in L(A) \Leftrightarrow A$$
 akzeptiert w
 $\Leftrightarrow \exists q \in F : q \in E(A, w)$
 $\Leftrightarrow E(A, w) \cap F \neq \emptyset$

1.5.2 Strukturelle Erreichbarkeit

Sei $A = (Q, \Sigma, \Delta, q_0, F)$ ein NFA. Dann gilt:

- 1. $E(A,\varepsilon) = \{q_0\}$
- 2. Für alle $w \in \Sigma^*$ und $a \in \Sigma$ gilt:

$$E(A,wa) = \bigcup_{q \in E(a,w)} \{q' \in Q | (q,a,q') \in \Delta\}$$

Beweis:

1. $\forall q \in Q$ gilt:

$$q \in E(A, \varepsilon) \Leftrightarrow q_0 \stackrel{\varepsilon}{\to} q \Leftrightarrow q = q_0$$

2. Sei $w \in \Sigma^*$ und $a \in \Sigma$. Dann gilt $\forall q \in Q$:

$$\begin{split} q \in E(A,wa) &\Leftrightarrow q_0 \overset{wa}{\to} q \\ &\Leftrightarrow \exists \ q' \in Q: \quad q_0 \overset{w}{\to} q' \ \text{und} \ (q',a,q) \in \Delta \\ &\Leftrightarrow \exists \ q' \in Q: \quad q' \in E(A,w) \ \text{und} \ (q',a,q) \in \Delta \\ &\Leftrightarrow q \in \bigcup_{q' \in E(A,w)} \{q'' \in Q | (q',a,q'') \in \Delta \} \end{split}$$

1.6 Äquivalenz von Automaten

1.6.1 Äquivalenz von DFA und NFA

DFA und NFA sind zueinander äquivalent .

Beweis:

Wir zeigen 2 Teilaussagen:

- 1. Zu jedem DFA gibt es einen äquivalenten NFA
- 2. Zu jedem NFA gibt es einen äquivalenten DFA
- 1. Sei $A = (Q, \Sigma, \delta, q_0, F)$ ein DFA. Wir definieren $\Delta \subseteq Q \times \Sigma \times Q$ mit $\Delta = \{(q, a, q') | \delta(q, a) = q'\}$.

Wir zeigen, dass der NFA $A' = (Q, \Sigma, \Delta, q_0, F)$ äquivalent zu A ist.

Dazu betrachten wir die Folge $\rho = (r_0, a_1, r_1, \dots, a_n, r_n)$ mit $r_0 \dots r_n \in Q$ und $a_1 \dots a_n \in \Sigma$. Dann gilt mit $1 \leq in$:

$$\delta(r_{-1}, a_i) = r_i \Leftrightarrow (r_{i-1}, a_i, r_i) \in \Delta$$

Da A und A' beide in q_0 anfangen, folgt daraus:

$$\rho$$
 ist Lauf von $A \Leftrightarrow \rho$ ist Lauf von A'

Und da sowohl A als auch A' die gleichen Endzustände besitzen , so folgt daraus:

 ρ ist akzeptierender Lauf von $A \Leftrightarrow \rho$ ist akzeptierender Lauf von A'

Daraus folgt schließlich

A akzeptiert
$$a_1 \dots a_n \Leftrightarrow A$$
; akzeptiert $a_1 \dots a_n \Rightarrow L(A) = L(A')$

Also sind A und A' äquivalent .

2. Sei $A=(Q,\Sigma,\Delta,q_0,F)$ ein NFA und $A'=Q',\Sigma,\delta,q'_0,F'$ der **Potenzmengenautomat** von A mit :

$$\begin{array}{ll} Q' := Pot(Q), & \delta(q',a) := \{q \in Q \mid \exists \ p \in q' : (p,a,q) \in \Delta\} \ \mathrm{mit} \\ q' \in Q, a \in \Sigma, & q'_0 := \{q_0\}, & F' = \{q' \in Q' | q' \cap F \neq \emptyset\} \end{array}$$

Wir zeigen, dass jeder NFA zum oben gebauten Potenzmengenautomat äquivalent sind, also L(A) = L(A').

Dazu zeigen wir erst, dass bei $w \in \Sigma^*$ und $q' \in Q'$ gilt: $A' : q_0' \xrightarrow{w} q' \Leftrightarrow q' = E(A, w)$

1.6.* Beweis mit Induktion über n := |w|:

Induktionsanfang:

Sei n = 0. Dann ist $w=\varepsilon$ und $q'=q'_0=\{q'_0\}\stackrel{(1.5.2)}{=}E(A,\varepsilon).$

Induktionsvoraussetzung:

Es gibt ein $q' \in Q'$ mit $A' : q_0' \xrightarrow{w} q'$

Induktionsschritt:

Sei w=w'a mit $w'\in \Sigma^*$ und |w'|=n sowie $a\in \Sigma/$ Sei $q''\in Q'$ mit $A':q_0'\xrightarrow{w}q''$. Dann folgt:

$$\begin{aligned} q' &= \delta(q'', a) \\ &= \{ q \in Q \mid \exists \ p \in q'' : (p, a, q) \in \Delta \} \\ &= \bigcup_{\substack{p \in E(A, w') \\ (1.5.2) \\ = }} \{ q \in Q | (p, a, q) \in \Delta \} \end{aligned}$$

Damit wurde die Induktionsbehauptung bewiesen

Sei $w \in \Sigma^*$ und sei $q' \in Q'$ mit $A' : q_0' \xrightarrow{w} q'$, dann gilt:

$$w \in L(A) \overset{(1.5.1)}{\Longleftrightarrow} E(A, w) \cap F \neq \emptyset$$
$$\overset{(1.6.*)}{\Longleftrightarrow} q' \cap F\emptyset$$
$$\Longleftrightarrow q' \in F$$
$$\Longleftrightarrow A' \text{ akzeptiert } w$$
$$\Longleftrightarrow w \in L(A')$$

Aus 1. und 2. folgt, dass DFA und NFA zueinander äquivalent sind, also ist eine Sprache genau dann DFA-erkennbar, wenn sie NFA-erkennbar ist. Somit Ist die Menge der DFA-erkennbaren Sprachen gleich der Menge der NFA-erkennbaren Sprachen.