Course Review

CSCI3170 2024T1

Course – Learning Outcomes

The students will be able to

- 1. use an E-R diagram to model a database;
- 2. translate an E-R diagram into a relational model;
- 3. fine tune a relational schema based on the principles of relational database normalization;
- 4. implement queries by using database languages (SQL in particular);
- 5. understand file organizations and index structures of a DBMS;
- understand the ideas of query processing and query optimization;
- 7. understand the principles of concurrency control and recovery schemes;

Overview: Database Design

- Data models: ER, Relational Data Model and their mapping
- Relational Algebra: Being able to use relational algebra to answer question.
- Relational Database Design: Functional Dependency, Normal Forms, Design Algorithms for 3rd normal form and B-C normal form (3.5 normal form)

Overview: RDBMS + Other DB

- Disk, Files, Buffer Replacement Policy
- Index: Introduction.
- Transaction Management
 - ACID properties
 - Conflict-serializable vs serializable
 - Concurrency control (locking, time-stamp ordering)

What's Important

- Why Database: Files vs. DBMS
- Database Modeling: Entity-relationship Model
- How it Works: Relational Algebra and SQL-based Application
- Make it Faster: Schema Refinement
- The Underlying: Storage vs. Memory, Indexes, and B+ Tree
- More: Hashing, Concurrency Control, and Recovery
- (Note: This short slide aims to help you organize what you've learned, please don't forget to review the more comprehensive lecture slide.)

Entity-Relationship diagram (E-R diagram)

 The E-R model can be presented graphically by an E-R diagram.

Relational data model

- Most DBMS today are based on the relational data model.
- Relation
 - the central data description construct in this model.
 - It can be thought of as a set of records.
 - A table with rows and columns.
 - Row a record
 - Column field, attribute.

Relational data model

sid	name	login	age	gpa
53666	Jones	Jones@cs	18	3.4
53688	Smith	Smith@ee	18	3.2
53650	Smith	Smith@math	19	3.8
53831	Madayan	Madayan@music	11	1.8
53832	Guldu	guldu@music	12	2.0

An example of a student relation

- A description of data in terms of a data model is called a schema.
- The schema of the above table is Students(*sid*: string, *name*: string, *login*: string, *age*: integer, *gpa*: real)

Basic Operators

There are six basic operators in relation algebra:

```
- select (σ)
- project (Π)
- union (U)
- set different (-)
- Cartesian product (x)
- rename (ρ)
```

Motivation Example

- Redundant Storage
 - The rating value 8 corresponds to the hourly wage 10, and this association is repeated three times.
 - Storage is not used efficiently.

<u>Id</u>	name	age	rating	Hourly_wages	Hours_worked
123-22-3666	Peter	48	8	10	40
231-31-5368	Paul	22	8	10	30
131-24-3650	Mary	35	5	7	30
434-26-3751	David	35	5	7	32
612-67-4134	Ada	35	8	10	40

 A decomposition of a relation schema R consists of replacing the relation schema by two (or more) relation schemas that each contains a subset of attributes of R and together include all attributes in R

123-22-3666		<u>Id</u>	name	age	rating	Hourly_wages	Hours_	_worked	
131-24-3650 Mary 35 5 7 30		123-22-3666	Peter	48	8	10	4	40	
Mary 35 5 7 32		231-31-5368	Paul	22	8	10	3	30	
Id name age rating Hours_worked 123-22-3666 Peter 48 8 40 231-31-5368 Paul 22 8 30 131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:		131-24-3650	Mary	35	5	7	3	30	
Id name age rating Hours_worked 123-22-3666 Peter 48 8 40 8 10 231-31-5368 Paul 22 8 30 5 7 131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:		434-26-3751	David	35	5	7	3	32	
123-22-3666 Peter 48 8 40 8 10 231-31-5368 Paul 22 8 30 5 7 131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:		612-67-4134	Ada	35	8	10	4	40	
231-31-5368 Paul 22 8 30 5 7 131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:							_		
231-31-5368 Paul 22 8 30 5 7 131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:					·			•	
131-24-3650 Mary 35 5 30 434-26-3751 David 35 5 32 Functional dependency:			_	Ü	_	ked]
434-26-3751 David 35 5 32 Functional dependency:	123-22-36	566 Peter	48	8	40	·ked	8	10]
Tunctional dependency.	123-22-36	566 Peter	48	8	40	rked	8	10	
612-67-4134 Ada 35 8 40 - rating determines Hourly_wages	123-22-36 231-31-53	Peter Paul	48	8	40	rked	8	10	
,	123-22-36 231-31-53 131-24-36	666 Peter 368 Paul 350 Mary	48 22 35	8 8 5	40 30 30		8 5	10 7	

Disks and Files

- DBMS stores information on ("hard") disks.
 - A disk is a sequence of bytes, each has a disk address.
 - READ: transfer data from disk to main memory (RAM).
 - WRITE: transfer data from RAM to disk.
 - Both are high-cost, relative to in-memory operations.
- Data are stored and retrieved in units called disk blocks or pages.
 - Each page has a fixed size, say 512 bytes. It contains a sequence of records.
 - In many (not always) cases, records in a page have the same size, say 100 bytes.
 - In many (not always) cases, records implement relational tuples.

Why Not Store Everything in Main Memory?

- Costs too much.
 - Ram is much more expensive than disk.
- Main memory is volatile.
 - We want data to be saved between runs. (Obviously!)
- Typical storage hierarchy:
 - Main memory (RAM) for currently used data. Disk for the main database (secondary storage).
 - Tapes for archiving older versions of the data (tertiary storage).

Indexes

- An index on a file speeds up selections on the search key fields
- for the index.
 - Any subset of the fields of a relation can be the search key for an index on the relation.
 - Search key is not the same as key (minimal set of fields that uniquely identify a record in a relation).
- An index contains a collection of data entries
 - A data entry is denoted as k^* , where k is a search key value and * tells where to find the record containing k
 - Index must support efficient retrieval of all data entries k* with a given key value k. Structure of data entry in more detail
- Primary vs. secondary: If search key contains primary key, then called primary index, otherwise secondary.
- Unique index: Search key contains a candidate key.

An example of a B+ tree

Extendible Hashing

- Situation: Bucket (primary page) becomes full. Why not reorganize file by doubling # of buckets?
 - Must re-hash all data entries to the right buckets
 - Example: assume hash function h(k) = k mod M
 - For M = 4, entries 3* and 7* both in bucket 3 (3 mod 4 = 7 mod 4 = 3)
 - But for M = 8, entry 7* will be in bucket 7
 - Can we only re-hash those values that have changed addresses?
 - Difficulties: without re-hashing all the values, we don't know which values keep the old addresses and which get new addresses
 - Reading and writing all pages are expensive!
 - Question: how do we add more buckets, but only re-hash a few data entries?
 - Answer: use a level of indirection, directory of pointers to buckets

- **❖ Insert**: If bucket is full, *split* it (*allocate new page, re-distribute*).
- ❖ If necessary, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing global depth with local depth for the split bucket.)

Concurrency

- Multiple users.
- Concurrent accesses.
- Problems could arise if there is no control.
- Example:
 - Transaction 1 (T1): withdraw \$500 from account A.
 - Transaction 2 (T2): deposit \$800 to account A.

Read(A) A = A - 500Write(A)

 T_1

Read(A) A = A + 800 Write(A)

 T_2

Transactions

- A transaction is a sequence of read/write operations.
- A transaction is *atomic*.
 - Either all or none of the operations are executed.
 - No transaction can observe partial effect of other transactions.

Recoverable

- Transactions may be aborted due to logical failure. e.g. deadlock
- Recoverability is required to ensure that aborting a transaction does not change the semantics of committed transaction's operations.
- Example
 - Write₁(x,2); Read₂(x); Write₂(y,3); Commit₂
 - Not recoverable.
 - T₂ has committed before T₁ commits.
 - The problem is: what can we do if T_1 abort?
 - Delaying the commitment of T₂ can avoid this problem
- A schedule H is called *recoverable* (RC) if, whenever T_i reads from T_j . $(i \ne j)$ in H and $c_i \in H$, $c_j < c_i$.
- Intuitively, a history is recoverable if each transaction commits after the commitment of all transactions (other than itself) from which it reads.

In Exam, I will ask about

- I will ask mostly about
 - ER Model, Relational Model
 - Relational Algebra
 - Storage, Indexes (e.g. Buffers, B+ Trees)
 - Transactions, Schedules, Concurrency
 - Recovery (conceptual mostly)

None

- View serializability
- Differences on clustered or unclustered Indexes
- Java
- SQL Triggers/ Check Constraints

Final Exam/Assignment

- 2.5 hrs., 9:30am 12:00pm 6 Dec
- Consultation: 25 Nov and 27 Nov 3-4pm
- You are permitted ONE Double Sided Cheat Sheet (print/non-print)
- For the additional 30 minutes: I will add some conceptual questions
 - E.g. "Briefly explain the how the requirements of 3NF enforce the 1NF and the 2NF (hint: you may frame your discussion by the types of functional dependencies 3NF disallows) (4 marks)"
- That need you to be somewhat familiar with the <u>meaning</u> of the definitions

Remaining Matters of Business

• This week:

- Me submit final exam to RES
- Release of Assignment One Marks
- Release of In-class assessment Solutions
- Course Teaching Evaluation by Tomorrow
- Some students with current grouping difficulties...

This weekend:

- Some students who have lost Oracle Logins
- Some standard notations to expect/follow in Exam

If I ask you to draw a "relational schema"

Draw relational diagram in exam as shown below

Project - Oracle Database

- Select table_name from user_tables;
- describe <tablename>

Connecting to Oracle Database

```
1. import java.sql.*;
Class.forName ("oracle.jdbc.driver.OracleDriver");
3. DriverManager.registerDriver (new
  oracle.jdbc.driver.OracleDriver());
4. Connection conn =
  DriverManager.getConnection("jdbc:oracle:thin:@//db18.cse.
  cuhk.edu.hk:1521/oradb.cse.cuhk.edu.hk", "<username>",
  "<password>");
5. Statement stmt = conn.createStatement();
6. String query =
7. stmt.execute(query);
```

Some Plans for Next Years

- Scrapping Group-based Project
 - 5 Assignments +
 - At least two coding: implementation of B+ Tree/ Buffer Pool in any pre-approved language of your choosing (C++, Python, Java)
- Participation (
 - Per week N: rank a given list of concepts in terms of understanding + a 100-200 statement on the why you don't understand your least understood concept
- A bigger Database (that CSE servers could hold..)
- Tutorials -> Lab Format?
 - Move all of SQL to lab content, and cover advanced SQL in lectures
 - Existing material -> Practice
- Welcome More Comments... put them in the CTE

Course and Teaching Evaluation (CTE) for Term 1, 2024-25

Notes for Students:

- The CTE links were sent to your CUHK Link email accounts. Please check.
- You will receive separate emails for teacher's evaluation and TA's evaluation.
- Subject of the email is "Online CTE Questionnaire for [course code]: [course name] – [Teacher or TA name]".
- No login is required and all feedback is anonymous.
- Course teacher will give you ~10-15 minutes to fill out the CTE questionnaires before the end of the class.
- Submission deadline: By 23:59 tomorrow