Notas de aula: Superfícies Quádricas

Professor: Filipe Augusto Alves de Oliveira

Universidade Federal de Viçosa - UFV

22 de agosto de 2016

Introdução

A equação geral do 2° grau nas três variáveis x, y e z:

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz + mx + ny + pz + q = 0$$

com pelo menos um dos coeficientes a, b, c, d, e ou f não nulo, representa uma **superfície quádrica** ou simplesmente uma quádrica.

 Desta equação pode derivar uma cônica, quando a superfície quádrica for cortada por um plano.

Exemplo: plano xy (z = 0)

$$ax2 + by2 + 2dxy + mx + ny + q = 0.$$

 A intersecção de uma superfície com um plano é chamado traço da superfície no plano.

Tipos de Quádricas

- Elipsóides
- Hiperbolóides (de uma folha e de duas folhas)
- Cones
- Parabolóides (elípticos e hiperbólicos)
- Cilindros

Superfícies Quádricas Centradas

• Se nenhum dos coeficientes for nulo, a equação padrão de uma superfície quádrica centrada em (0,0,0) é:

$$\pm \frac{x^2}{a^2} \pm \frac{y^2}{b^2} \pm \frac{z^2}{c^2} = 1.$$

- Desta equação podem ser originadas três superfícies, de acordo com a variação dos sinais (+,+,+), (+,+,-) e (+,-,-):
 - Elipsóide (+,+,+)
 - Hiperbolóide de uma folha (+,+,-)
 - Hiperbolóide de duas folhas (+,-,-)

Elipsóide

Todos os coeficientes na equação são positivos e a, b e c são positivos:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Denomina-se Elipsóide, já que seus traços são elipses:

Se
$$x=0$$
, então $\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ representa uma elipse. Se $y=0$, então $\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$ representa uma elipse. Se $z=0$, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ representa uma elipse.

Características:

- Simetria em relação aos eixos coordenados e à origem;
- Sua intersecção com qualquer plano paralelo aos planos coordenados é uma elipse, um ponto ou o conjunto vazio.

Elipsóide de revolução: ocorre quando pelo menos dois dos valores de a, b ou c são iguais.

Exemplo: a = c = 2, b = 4 e o centro C = (0, 0, 0).

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{4} = 1.$$

Outro exemplo:
$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1$$
.

Quando a = b = c obtemos a equação da forma:

$$x^2 + y^2 + z^2 = a^2,$$

isto é, uma superfície esférica de C = (0,0,0) e raio a.

Se
$$a = b = c$$
 e centro (x_0, y_0, z_0) ,

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=a^2.$$

Hiperbolóide de uma folha

Dada a equação inicial: $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} \pm \frac{z^2}{c^2} = 1$, temos o hiperbolóide de uma

folha, com dois coeficientes positivos e um negativo: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$.

Sinal negativo em z significa figura no eixo z. O mesmo ocorre quando o sinal é negativo em x ou em y.

Denomina-se Hiperbolóide de uma folha já que seus traços são:

Se
$$x=0$$
, então $\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ representa uma hipérbole. Se $y=0$, então $\frac{x^2}{a^2}-\frac{z^2}{c^2}=1$ representa uma hipérbole. Se $z=0$, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ representa uma elipse.

Características:

- Simetria em relação aos eixos coordenados e à origem;
- Sua intersecção com um plano paralelo ao plano xOy é uma elipse e sua intersecção com um plano paralelo ao plano xOz ou yOz é uma hipérbole.
- Se a = b, então temos o Hiperbolóide de revolução em torno do eixo Oz

Exemplo Se a = b = 1 e c = 2, então temos a equação: $x^2 + y^2 - \frac{z^2}{4} = 1$.

Hiperbolóide de duas folhas

Dada a equação inicial: $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} \pm \frac{z^2}{c^2} = 1$, temos o hiperbolóide de uma

folha, com dois coeficientes negativos e um positivo: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Sinal positivo em z significa figura no eixo z. O mesmo ocorre quando o sinal é positivo em x ou em y.

Denomina-se Hiperbolóide de duas folhas já que seus traços são:

Se
$$x=0$$
, então $-\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ representa uma hipérbole. Se $y=0$, então $-\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$ representa uma hipérbole. Se $z=0$, então $-\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, logo NÃO EXISTE GRÁFICO.

Características:

- Simetria em relação aos eixos coordenados e à origem;
- Sua intersecção com um plano paralelo ao plano xOy é uma elipse, um ponto ou o conjunto vazio e sua intersecção com um plano paralelo ao plano xOz ou yOz é uma hipérbole.
- **3** Se a = b, então temos o hiperbolóide de revolução, gerado pela rotação de uma hipérbole em torno do eixo Oz.

Exemplo Se a=c=1 e b=2, então temos a equação: $z^2-x^2-\frac{y^2}{4}=1$.

Superfície Cônica

Considere a superfície quádrica dada pela equação: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$.

Sinal negativo em z significa figura no eixo z. O mesmo ocorre quando o sinal é negativo em x ou em y.

Denomina-se Cone e seus traços são:

Se
$$x=0$$
, então $\frac{y^2}{b^2}=\frac{z^2}{c^2}$, ou seja, $|y|=|\frac{b}{c}z|$ representa duas retas.
Se $y=0$, então $\frac{x^2}{a^2}=\frac{z^2}{c^2}$, ou seja, $|x|=vvert\frac{a}{c}z|$ representa duas retas.
Se $z=0$, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=0$ que representa o ponto $(0,0,0)$.
Se $z=k$, onde k é uma constante, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{k^2}{c^2}$ que representa uma elipse (ou uma circunferência, caso $a=b$).

Obs.: Os traços nos planos x = k e y = k são hipérboles.

Características:

- O traço no plano xOz é constituído por duas retas que passam pela origem;
- ② Os traços nos planos z = k são elipses (se a = b são circunferências obtendo-se a superfície cônica circular reta).

Exemplo Se a = c = 1 e b = 2, então temos a equação: $z^2 = x^2 + \frac{y^2}{4}$.

Parabolóide Elíptico

Considere a superfície quádrica dada pela equação: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = cz$.

Grau um em z significa figura no eixo z. O mesmo ocorre quando o grau um ocorre em x ou em y.

Denomina-se Parabolóide Elíptico e seus traços são:

Se
$$x=0$$
, então $\frac{y^2}{b^2}=cz$, ou seja, $y^2=b^2cz$ representa uma parábola. Se $y=0$, então $\frac{x^2}{a^2}=cz$, ou seja, $x^2=a^2cz$ representa uma parábola. Se $z=0$, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=0$ que representa o ponto $(0,0,0)$. Se $z=k$, onde k é uma constante, então $\frac{x^2}{a^2}+\frac{y^2}{b^2}=ck$ que representa uma elipse (ou uma circunferência, caso $a=b$).

Obs.: Se c > 0, então a superfície situa-se inteiramente acima do plano xOy e, caso contrário, totalmente abaixo.

Características:

- ① É simétrica relativamente aos planos coordenados xOz e yOz;
- A intersecção com um paralelo ao plano xOy é uma elipse, um ponto ou o conjunto vazio;
- A intersecção com um paralelo aos planos xOz ou yOz é uma parábola;
- Se a = b, o parabolóide é de revolução em torno do eixo Oz.

Exemplo Se a=2, b=3 e c=1, então temos a equação: $\frac{x^2}{4}+\frac{y^2}{9}=z$.

Parabolóide Hiperbólico

Considere a superfície quádrica dada pela equação: $\frac{y^2}{b^2} - \frac{x^2}{a^2} = cz$.

Parabolóide Hiperbólico

Denomina-se Parabolóide Hiperbólico e seus traços são:

Se
$$x=0$$
, então $\frac{y^2}{b^2}=cz$, ou seja, $y^2=b^2cz$ representa uma parábola de concavidade para cima.

Se
$$y = 0$$
, então $\frac{x^2}{a^2} = -cz$, ou seja, $x^2 = -a^2cz$ representa uma parábola de concavidade para baixo.

Se
$$z = 0$$
, então $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ que representa um par de retas concorrentes.

Se
$$z = k$$
, onde k é uma constante, então $\frac{x^2}{a^2} - \frac{y^2}{b^2} = ck$ que representa uma hipérbole (no eixo x se $k > 0$ e no eixo y se $k < 0$).

Obs.: Se c > 0, então a superfície está voltada para cima do plano xOy e, se c < 0, voltada para baixo.

Características:

- As parábolas tem o eixo z como eixo de simetria;
- ② O traço no plano z = k é uma hipérbole cujo eixo real é paralelo ao eixo dos y se k > 0 e paralelo ao eixo dos x se k < 0.

Exemplo Se a=3, b=2 e c=1, então temos a equação: $\frac{y^2}{4}-\frac{x^2}{9}=z$.

- ullet Seja C uma curva plana e f uma reta fixa não contida nesse plano.
- Superfície cilíndrica é a superfície gerada por uma reta r que se move paralelamente à reta fixa f em contato permanente com a curva plana C.
- A reta r que se move é denominada geratriz e a curva C é a diretriz da superfície cilíndrica.

De modo geral:

- Diretriz: circunferência, elipse, hipérbole ou parábola.
- Superfície: circular, elíptica, hiperbólica ou parabólica.

Muito Obrigado!