

《语音识别:从入门到精通》 第五章作业提示

Viterbi解码

% name: compWeights

% type: matrix

% rows: 102

% columns: 1

初始状态、

对应GMM序号、

EIGH!

NINE

OH

ONE

SEVEN SIX

THREE

~SIL

<epsilon>

<ensilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epsilon>

<epstlon>

<epsilon> <epsilon>

<epsilon>

<epstlon>

<epsilon>

<epsilon>

<epsilon>

24

33

20

22

23

24

26

28

38

31

NINE 9

p018k1.noloop.fsm

跳转状态、

Lab2 vit.C

输入:

GMM参数、 状态转移参数、 音频数据、 单词标签

输出:

获得记录log概率 和弧id的矩阵 chart

name: utt2a

% type: matrix

columns: 1

% rows: 14080

p018k7.22.20.gmm

GMM参数

n. (30404 H. 187033	11 30 33
p018k7.1.dat	
音频数据	<pre><epsilon> 0 ONE 1</epsilon></pre>
一条语音14080个数字	TWO 2 THREE 3 FOUR 4 FIVE 5
	SIX 6 SEVEN 7 EIGHT 8

p018k2.syms

作业一: Viterbi解码


```
On exit, chart(frmIdx, stateIdx).get_log_prob()
should be set to the logarithm of the probability
of the best path from the start state to
state "stateIdx" given the
first "frmIdx" frames of observations;
and chart(frmIdx, stateIdx).get_arc_id() should be set
to the arc ID for the last arc of this best path (or -1
if the best path is of length 0).
```

矩阵chart 对应上节课的 δ 矩阵 (帧数,状态),每个单元是一个VitCell (log概率,弧id) 无法到达的单元初始化为 g_zeroLogProb 和 -1

VitCell	•••
•••	

作业一: Viterbi解码

用到的一些方法:

获取该状态跳转的弧总数: graph.get_arc_count(状态id) 获取第一个弧的id: graph.get_arc_count(状态id) 由弧的id 来获取对应弧参数给arc: graph.get_arc(arcId, arc)

获取弧转移到的目的状态: arc.get_dst_state() 获取弧的转移log概率aij: arc.get_log_prob() 获取弧对应的gmmld: arc.get_gmm() 从gmmProbs矩阵中获取发射log概率: gmmProbs(frameId, gmmId)

赋值给chart单元: chart(row,column).assign(log概率, 当前弧ld)

作业二: GMM参数估计


```
p018k7.22.dat
               % name: rn:7a
                                      音频数据
                 type: matrix
lab2 train.C
                                一条语音20992个数字
               % rows: 20992
                 columns: 1
输入:
音频数据、
对齐序列、
                             p018k7.22.2.align
GMM初始参数
               % name: rn:7a
                           viterbi解码的最优状态序列
               % type: matrix
               % rows: 103
                         标记每个frame对应哪个gmm
输出:
               % columns: 1
                         这些帧对应第45个gmm
GMM更新后参数45
```

45

```
p018k1.gmm.dat
% name: gaussParams
                             GMM初始参数
% type: matrix
% rows: 102
% columns: 24
```

作业二: GMM参数估计

GmmStats::add_gmm_count(gmmid, posterior, 帧特征)

"m_gaussCounts" is intended to hold the total occupancy count of each Gaussian; "m_gaussStats1" is intended for storing some sort of first-order statistic for each dimension of each Gaussian; and "m_gaussStats2" is intended for storing some sort of second-order statistic for each dimension of each Gaussian. The statistics you take need to be sufficient for doing the reestimation step below.

M步:

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

$$\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$

更新到GmmStats 中的三个属性:

m_gaussCounts采用vector容器存储语料库中对应状态出现的总数m_gaussStats1采用Matrix容器存储总体特征数据m_gaussStats2也采用Matrix容器存储总体平方特征数据

用于后续计算

$$\gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

作业二: GMM参数估计

GmmStats::reestimate()

- m_gmmSet.set_gaussian_mean(gaussIdx, dimIdx, newMean);
- -m_gmmSet.set_gaussian_var(gaussIdx, dimIdx, newVar);

用上一步得到的m_gaussCounts、m_gaussStats1、m_gaussStats2 中存储的数值来计算每一个高斯均值和方差并更新到m_gmmSet

$$\boldsymbol{\mu}_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\mathbf{\Sigma}_{k}^{new} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{new}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{new})^{T}$$

$$\pi_k^{new} = \frac{N_k}{N}, \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

作业三: 前向后向算法

	p018k7.1.dat
% name: utt2a % type: matrix	音频数据
% rows: 14080 % columns: 1	一条语音14080个数字
3	
3	
2	
3	

			p018k7.1.fsm
# name:	utt2a		状态转移参数
1	2	81	TWO
state	3 stat	e ₈₁ gi	mmepsilon> word
2	5	82	<epsilon></epsilon>
3	6	99	<epsilon></epsilon>
3	7	180	<epsilon></epsilon>
4	4	81	<epsilon></epsilon>
4	5	82	<epsilon></epsilon>
5	5	82	<epsilon></epsilon>
5	8	83	<epsilon></epsilon>
6	6	99	<epsilon></epsilon>
6	7	100	<epsilon></epsilon>
7	7	160	<epsilon></epsilon>

```
p018k7.22.2.gmm
% name: gaussParams
% type: matrix
                               GMM初始参数
% rows: 102
% columns: 24
1.78483 9.07439 -1.37606 0.770062 1.2342 1.24608 1.1
0.778223
1.86406 5.8347 0.324437 1.72267 2.92862 1.04291 0.40
0.627198 3.72614 2.5177 0.380028 3.71711 0.377435 -0
0.370245
0.842158 2.86277 2.78368 0.640238 2.36568 1.81553 1.
0.087329
-0.614734 2.07299 2.63426 0.404085 1.47429 0.118752
-0.101324 0.0442475
-0.313438 3.29428 0.795127 1.33528 1.04143 0.365529
```

lab2_fb.C

输入: 音频数据、状态转移参数、GMM初始参数

输出: GMM更新后参数

作业三: 前向后向算法

矩阵chart 的每个单元FbCell用于存储 前向概率 α_t (i) 和后向概率 β_t (i)

前向递推:
$$\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_{t}(j) a_{ji}\right] b_{i}(o_{t+1}),$$

后向递推:
$$\beta_i(i) = \sum_{j=1}^N a_{ij} b_j(o_{i+1}) \beta_{i+1}(j)$$

弧上概率:
$$\xi_t(i,j) = P(i_t = q_i, i_{t+1} = q_j | O, \lambda)$$
$$= \frac{P(i_t = q_i, i_{t+1} = q_j, O | \lambda)}{P(O | \lambda)}$$
$$= \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^N \alpha_T(i)}$$

FbCell	•••
•••	

作业三: 前向后向算法

用到的其它方法:

存储前向概率: chart(frmldx, stateIdx).set_forw_log_prob(logProb)

存储后向概率: chart(frmldx, stateIdx).set_back_log_prob(logProb)

获取前向概率: chart(frmldx, stateIdx).get_forw_log_prob()

获取后向概率: chart(frmldx, stateIdx).get_back_log_prob()

将一组log概率转正常概率求和再取log: add_log_probs(vector<double>)

总前向概率和 $\sum_{i=1}^{N} \alpha_T(i)$: uttLogProb = init_backward_pass(graph, chart)

存储结果后验概率到 gmmCountList 中 gmmCountList.push_back(GmmCount(arc.get_gmm(), frmldx - 1, exp(logProb - uttLogProb)))

感谢各位聆听 Thanks for Listening

