Tyche Example

Set up.

One only needs to execute the following line once, in order to make sure recent enough packages are installed.

```
In [ ]: !pip install 'numpy>=1.17.2' 'pandas>=0.25.1'
```

Import packages.

```
In [1]: import numpy
                                  as np
        import matplotlib.pyplot as pl
        import pandas
                                 as pd
        import re
                                 as re
        import scipy.stats
                                 as st
        import seaborn
                                 as sb
        # The `tyche` package is located at <https://github.com/NREL/portfolio/tree/master/production-func
        tion/framework/code/tyche/>.
        import tyche
                                  as ty
        from copy import deepcopy
```

Load data.

The data are stored in a set of tab-separated value files in a folder.

```
In [2]: designs = ty.Designs("../data")
In [3]: investments = ty.Investments("../data")
```

Compile the production and metric functions for each technology in the dataset.

```
In [4]: designs.compile()
```

Examine the data.

The functions table specifies where the Python code for each technology resides.

Right now, only the style $\ \ numpy \ \ is \ supported.$

The indices table defines the subscripts for variables.

In [6]: designs.indices

Out[6]:

			Offset	Description	Notes
Technology	Type	Index			
	Capital	Catalyst	0	Catalyst	
	Fixed	Rent	0	Rent	
	Input Metric	Electricity	1	Electricity	
		Water	0	Water	
Simple electrolysis		Cost	0	Jobs	
		GHG	2	Greenhouse gas emissions	
		Jobs	1	Jobs	
	Output	Hydrogen	1	Hydrogen	
	Output	Oxygen	0	Oxygen	

The designs table contains the cost, input, efficiency, and price data for a scenario.

In [7]: designs.designs

Out[7]:

				Value	Units	Notes
Technology	Scenario	Variable	Index			
Simple electrolysis		Input	Electricity	279	kJ/mole	
electiolysis		iliput	Water	19.04	g/mole	
		Input	Electricity	0.85	1	
		efficiency	Water	0.95	1	
		Input price	Electricity	3.33e-5	USD/kJ	
		F F	Water	4.8e-3	USD/mole	
	Base Electrolysis	Lifetime	Catalyst	3	yr	Effective lifetime of Al-Ni catalyst.
		Output	Hydrogen	0.90	1	
		efficiency	Oxygen	0.90	1	
		Output price	Hydrogen	1.0e-2	USD/g	
			Oxygen	3.0e-3	USD/g	
		Scale	NaN	6650	mole/yr	Rough estimate for a 50W setup.
	Fast Progress on Electrolysis	Input	Electricity	279	kJ/mole	
	Lieuwiyale		Water	19.04	g/mole	
		Input	Electricity	st.truncnorm(-3, 0.75, loc=0.97, scale=0.04)	1	
		efficiency	Water	st.truncnorm(-3, 2, loc=0.97, scale=0.01)	1	
		Input price	Electricity	3.33e-5	USD/kJ	
		input price	Water	4.8e-3	USD/mole	
		Lifetime	Catalyst	3	yr	Effective lifetime of Al-Ni catalyst.
		Output	Hydrogen	st.beta(3, 2, loc=0.90, scale=0.03)	1	
		efficiency	Oxygen	st.beta(3, 2, loc=0.90, scale=0.06)	1	
		Output price	Hydrogen	1.0e-2	USD/g	
		Salpat piloo	Oxygen	3.0e-3	USD/g	

					Value	Units	Notes
Tec	chnology	Scenario	Variable	Index			
			Scale	NaN	6650	mole/yr	Rough estimate for a 50W setup.
			Input	Electricity	279	kJ/mole	
			iliput	Water	19.04	g/mole	
			Input	Electricity	st.truncnorm(-2, 1.75, loc=0.93, scale=0.04)	1	
			efficiency	Water	st.truncnorm(-2, 3, loc=0.97, scale=0.01)	1	
			Input price	Electricity	3.33e-5	USD/kJ	
		Moderate Progress on	input price	Water	4.8e-3	USD/mole	
	Electrolysis	Electrolysis	Lifetime	Catalyst	3	yr	Effective lifetime of Al-Ni catalyst.
			Output	Hydrogen	st.beta(2, 2, loc=0.90, scale=0.03)	1	
		efficiency	Oxygen	st.beta(2, 2, loc=0.90, scale=0.06)	1		
			Output price	Hydrogen	1.0e-2	USD/g	
			Catput prioc	Oxygen	3.0e-3	USD/g	
			Scale	NaN	6650	mole/yr	Rough estimate for a 50W setup.
		Slow Progress on Electrolysis	Input	Electricity	279	kJ/mole	
		Licotrolysis	mpat	Water	19.04	g/mole	
			Input	Electricity	st.truncnorm(-1, 2.75, loc=0.89, scale=0.04)	1	
			efficiency	Water	st.truncnorm(-1, 4, loc=0.96, scale=0.01)	1	
			Input price	Electricity	3.33e-5	USD/kJ	
			input price	Water	4.8e-3	USD/mole	
			Lifetime	Catalyst	3	yr	Effective lifetime of Al-Ni catalyst.
			Output	Hydrogen	st.beta(1, 2, loc=0.90, scale=0.03)	1	
			efficiency	Oxygen	st.beta(1, 2, loc=0.90, scale=0.06)	1	

Notes	Units	Value				
			Index	Variable	Scenario	Technology
	USD/g	1.0e-2	Hydrogen	Output price		
	USD/g	3.0e-3	Oxygen	Output price		
Rough estimate for a 50W setup.	mole/yr	6650	NaN	Scale		

The parameters table contains additional techno-economic parameters for each technology.

In [8]: designs.parameters

Out[8]:

			Offset	Value	Units	Notes
Technology	Scenario	Parameter				
Simple		Electricity consumption	3	237	kJ	
electrolysis		GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e
		GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e
		Hydrogen production	1	2.00	g	
	Base Electrolysis	Jobs	4	1.5e-4	job/mole	
	Dase Liectiolysis	Oxygen production	0	16.00	g	
		Reference capital cost for catalyst	6	0.63	USD	
		Reference fixed cost for rent	7	1000	USD/yr	
		Reference scale	5	6650	mole/yr	
		Water consumption	2	18.08	g	
		Electricity consumption	3	237	kJ	
		GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e
		GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e
		Hydrogen production	1	2.00	g	
	Foot Drogropp on Flootrolygic	Jobs	4	1.5e-4	job/mole	
	Fast Progress on Electrolysis	Oxygen production	0	16.00	g	
		Reference capital cost for catalyst	6	0.63	USD	
		Reference fixed cost for rent	7	1000	USD/yr	
		Reference scale	5	6650	mole/yr	
		Water consumption	2	18.08	g	
	Moderate Progress on	Electricity consumption	3	237	kJ	
	Electrolysis	GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e
		GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e

		Offset	Value	Units	Notes
Technology Scenario	Parameter				
	Hydrogen production	1	2.00	g	
	Jobs	4	1.5e-4	job/mole	
	Oxygen production	0	16.00	g	
	Reference capital cost for catalyst	6	0.63	USD	
	Reference fixed cost for rent	7	1000	USD/yr	
	Reference scale	5	6650	mole/yr	
	Water consumption	2	18.08	g	
	Electricity consumption	3	237	kJ	
	GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e
	GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e
	Hydrogen production	1	2.00	g	
Slow Progress on Electrolysis	Jobs	4	1.5e-4	job/mole	
Slow Flogress on Electrorysis	Oxygen production	0	16.00	g	
	Reference capital cost for catalyst	6	0.63	USD	
	Reference fixed cost for rent	7	1000	USD/yr	
	Reference scale	5	6650	mole/yr	
	Water consumption	2	18.08	g	

The results table specifies the units of measure for results of computations.

Technology	Variable	Index	
	Cost	Cost	USD/mole
		Cost	USD/gH2
Circula ala atrabiaia	Metric	GHG	gCO2e/gH2
Simple electrolysis		Jobs	job/gH2
	Outerut	Hydrogen	g/mole
	Output Oxygen	Oxygen	g/mole

The tranches table specifies multually exclusive possibilities for investments: only one $\, Tranch \, may \, be \, selected for each <math>\, Cateogry \, .$

In [10]: investments.tranches
Out[10]:

Notes

Scenario	Tranche	Category
Fast Progress on Electrolysis	High Electrolysis R&D	
Slow Progress on Electrolysis	Low Electrolysis R&D	Flacture in DOD
Moderate Progress on Electrolysis	Medium Electrolysis R&D	Electrolysis R&D
Base Electrolysis	No Electrolysis R&D	

The investments table bundles a consistent set of tranches (one per category) into an overall investment.

```
In [11]: investments.investments
```

Amount Notes

Out[11]:

Investment	Category	Tranche	
High R&D Spending	Electrolysis R&D	High Electrolysis R&D	5000000.0
Low R&D Spending	Electrolysis R&D	Low Electrolysis R&D	1000000.0
Medium R&D Spending	Electrolysis R&D	Medium Electrolysis R&D	2500000.0
No R&D Spending	Electrolysis R&D	No Electrolysis R&D	0.0

Evaluate the scenarios in the dataset.

```
In [12]: scenario_results = designs.evaluate_scenarios(sample_count=50)
```

In [13]: scenario_results.xs(1, level="Sample", drop_level=False)

Out[13]:

					Value	Units
Technology	Scenario	Sample	Variable	Index		
			Cost	Cost	0.183900	USD/mole
				Cost	0.102121	USD/gH2
	Daga Flactrolynia	4	Metric	GHG	21.391959	gCO2e/gH2
	Base Electrolysis	1		Jobs	0.000083	job/gH2
			Output	Hydrogen	1.800796	g/mole
			Output	Oxygen	14.406372	g/mole
			Cost	Cost	0.182463	USD/mole
				Cost	0.097287	USD/gH2
	Fast Progress on Electrolysis	1	Metric	GHG	20.539648	gCO2e/gH2
	rast Flogress on Electrolysis	1		Jobs	0.000080	job/gH2
			Output	Hydrogen	1.875522	g/mole
Simple electrolysis			Output	Oxygen	15.780807	g/mole
Simple electrolysis			Cost	Cost	0.182335	USD/mole
				Cost	0.096208	USD/gH2
	Moderate Progress on Electrolysis	1	Metric	GHG	20.326215	gCO2e/gH2
	Woderate Frogress on Electrorysis	'		Jobs	0.000079	job/gH2
			Output	Hydrogen	1.895216	g/mole
			Output	Oxygen	15.558470	g/mole
			Cost	Cost	0.184527	USD/mole
				Cost	0.098531	USD/gH2
	Slow Progress on Electrolysis	1	Metric	GHG	20.569724	gCO2e/gH2
	Clow i Togress on Electrorysis	'		Jobs	0.000080	job/gH2
			Output	Hydrogen	1.872780	g/mole
			Output	Oxygen	14.612968	g/mole

Save results.

```
In [14]: scenario_results.to_csv("example-scenario.csv")
```

Plot GHG metric.

Plot cost metric.

Plot employment metric.

```
In [17]: g = sb.boxplot(
    x="Scenario",
    y="Value",
    data=scenario_results.xs(
        ["Metric", "Jobs"],
        level=["Variable", "Index"]
    ).reset_index()[["Scenario", "Value"]],
    order=["Base Electrolysis", "Slow Progress on Electrolysis", "Moderate Progress on Electrolysis",
    s", "Fast Progress on Electrolysis"]
)
g.set(ylabel="Employment [job / gH2]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Evaluate the investments in the dataset.

```
In [18]: investment_results = investments.evaluate_investments(designs, sample_count=50)
```

Costs of investments.

In [19]: investment_results.amounts

Out[19]:

Amount

 Investment

 High R&D Spending
 5000000.0

 Low R&D Spending
 1000000.0

 Medium R&D Spending
 2500000.0

 No R&D Spending
 0.0

Benefits of investments.

In [20]: investment_results.metrics.xs(1, level="Sample", drop_level=False)

Out[20]:

		Index	Technology	Sample	Scenario	Tranche	Category	Investment				
USD/gH2	0.102121	Cost										
gCO2e/gH2	21.391959	GHG	Simple electrolysis	1	Base Electrolysis	No Electrolysis R&D	Electrolysis R&D	No R&D Spending				
job/gH2	0.000083	Jobs										
USD/gH2	0.097203	Cost										
gCO2e/gH2	20.509349	GHG	Simple electrolysis	1	Fast Progress on Electrolysis	High Electrolysis R&D	Electrolysis R&D	High R&D Spending				
job/gH2	0.000080	Jobs	,		,			Openang				
USD/gH2	0.097801	Cost										
gCO2e/gH2	20.505051	GHG	Simple electrolysis	1	,	Moderate Progress on Electrolysis	Medium Electrolysis R&D	Electrolysis R&D	•	,		Medium R&D Spending
job/gH2	0.000080	Jobs	0.000.0.90.0		,	. 13.2	. 10.2	Gpeag				
USD/gH2	0.100331	Cost										
gCO2e/gH2	21.160737	GHG	Simple electrolysis	1	Slow Progress on Electrolysis	Low Electrolysis R&D	Electrolysis R&D	Low R&D Spending				
job/gH2	0.000082	Jobs	S.Soli Gry Glo		Licotrolydio	Nab	Ναυ	Spending				

Value

Units

```
In [21]: investment_results.summary.xs(1, level="Sample", drop_level=False)
```

Out[21]:

			Value	Units
Investment	Sample	Index		
		Cost	0.102121	USD/gH2
No R&D Spending	1	GHG	21.391959	gCO2e/gH2
		Jobs	0.000083	job/gH2
		Cost	0.097203	USD/gH2
High R&D Spending	1	GHG	20.509349	gCO2e/gH2
		Jobs	0.000080	job/gH2
		Cost	0.097801	USD/gH2
Medium R&D Spending	1	GHG	20.505051	gCO2e/gH2
		Jobs	0.000080	job/gH2
		Cost	0.100331	USD/gH2
Low R&D Spending	1	GHG	21.160737	gCO2e/gH2
		Jobs	0.000082	job/gH2

Save results.

```
In [22]: investment_results.amounts.to_csv("example-investment-amounts.csv")
In [23]: investment_results.metrics.to_csv("example-investment-metrics.csv")
```

Plot GHG metric.

```
In [24]: 
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "GHG",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending", "High R&D Spending"]
)
g.set(ylabel="GHG Footprint [gCO2e / gH2]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot cost metric.

```
In [25]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Cost",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending", "High R&D Spending"]
)
    g.set(ylabel="Cost [USD / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot employment metric.

```
In [26]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Jobs",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=["No R&D Spending", "Low R&D Spending", "Medium R&D Spending", "High R&D Spending"]
)
    g.set(ylabel="Employment [job / gH2]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Sensitity analysis.

Vary the four efficiencies in the design.

Start from the base case.

In [29]: base_design = designs.designs.xs("Base Electrolysis", level=1, drop_level=False)
base_design

Out[29]:

				Value	Units	Notes
Technology	Scenario	Variable	Index			
	Base Electrolysis	Input	Electricity	279	kJ/mole	
			Water	19.04	g/mole	
		Input efficiency	Electricity	0.85	1	
			Water	0.95	1	
		Input price	Electricity	3.33e-5	USD/kJ	
Simple electrolysis			Water	4.8e-3	USD/mole	
Simple electrolysis		Lifetime	Catalyst	3	yr	Effective lifetime of Al-Ni catalyst.
		Output efficiency	Hydrogen	0.90	1	
			Oxygen	0.90	1	
		Output price	Hydrogen	1.0e-2	USD/g	
			Oxygen	3.0e-3	USD/g	
		Scale	NaN	6650	mole/yr	Rough estimate for a 50W setup.

In [30]: base_parameters = designs.parameters.xs("Base Electrolysis", level=1, drop_level=False)
base_parameters

Out[30]:

			Offset	Value	Units	Notes
Technology	Scenario	Parameter				
	Base Electrolysis	Electricity consumption	3	237	kJ	
		GHG factor for electricity	9	0.138	gCO2e/kJ	based on 1 kWh = 0.5 kg CO2e
		GHG factor for water	8	0.00108	gCO2e/g	based on 244,956 gallons = 1 Mg CO2e
		Hydrogen production	1	2.00	g	
Simple electrolysis		Jobs	4	1.5e-4	job/mole	
Simple electrolysis		Oxygen production	0	16.00	g	
		Reference capital cost for catalyst	6	0.63	USD	
		Reference fixed cost for rent	7	1000	USD/yr	
		Reference scale	5	6650	mole/yr	
		Water consumption	2	18.08	g	

Generate the new scenarios and append them to the previous ones.

```
In [31]: sensitivities = deepcopy(designs)
    sensitivities.designs = sensitivities.designs[0:0]
    sensitivities.parameters = sensitivities.parameters[0:0]
```

```
In [32]: # Iterate over variables and efficiencies.
for variable, index in variables:
    for efficiency in efficiencies:

# Name the scenario.
        scenario = "Let " + variable + " @ " + index + " = " + str(round(efficiency, 3))

# Alter the base case.
        vary_design = base_design.rename(index={"Base Electrolysis" : scenario}, level=1)
        vary_design.loc[("Simple electrolysis", scenario, variable, index), "Value"] = efficiency

# Keep the parameters the same.
        vary_parameters = base_parameters.rename(index={"Base Electrolysis" : scenario}, level=1)

# Append the results to the existing table of scenarios.
        sensitivities.designs = sensitivities.designs.append(vary_design)
        sensitivities.parameters = sensitivities.parameters.append(vary_parameters)
```

Remember to compile the design, since we've added scenarios.

```
In [33]: sensitivities.compile()
```

See how many rows there are in the tables now.

```
In [34]: sensitivities.designs.shape
Out[34]: (480, 3)
In [35]: sensitivities.parameters.shape
Out[35]: (400, 4)
```

In [36]: sensitivities.designs

Out[36]:

				Value	Units	Notes
Technology	Scenario	Variable	Index			
		Input	Electricity	279	kJ/mole	
	Let Input efficiency @ Water = 0.75		Water	19.04	g/mole	
		Input efficiency	Electricity	0.85	1	
Simple electrolysis			Water	0.75	1	
		Input price	Electricity	3.33e-5	USD/kJ	
	Let Output efficiency @ Hydrogen = 0.975	Output efficiency	Hydrogen	0.975	1	
			Oxygen	0.90	1	
		Output price	Hydrogen	1.0e-2	USD/g	
			Oxygen	3.0e-3	USD/g	
		Scale	NaN	6650	mole/yr	Rough estimate for a 50W setup.

480 rows × 3 columns

Compute the results.

```
In [37]: results = sensitivities.evaluate_scenarios(1)
results
```

Out[37]:

					Value	Units
Technology	Scenario	Sample	Variable	Index		
	Let Input efficiency @ Electricity = 0.75	1	Cost	Cost	0.190164	USD/mole
			Metric	Cost	0.119657	USD/gH2
				GHG	24.239606	gCO2e/gH2
				Jobs	0.000094	job/gH2
			Output	Hydrogen	1.589241	g/mole
Simple electrolysis						
				Cost	0.100121	USD/gH2
	Let Output efficiency @ Oxygen = 0.975		Metric	GHG	21.391959	gCO2e/gH2
		1		Jobs	0.000083	job/gH2
			Output	Hydrogen	1.800796	g/mole
				Oxygen	15.606903	g/mole

240 rows × 2 columns

Plot the cost results.

```
In [38]: cost_results = results.xs("Cost", level="Variable").reset_index()[["Scenario", "Value"]]
```

```
In [39]: cost_results[0:10]
```

Out[39]:

```
ScenarioValue0Let Input efficiency @ Electricity = 0.750.1901641Let Input efficiency @ Electricity = 0.7750.1885952Let Input efficiency @ Electricity = 0.80.1870263Let Input efficiency @ Electricity = 0.8250.1854574Let Input efficiency @ Electricity = 0.850.1839005Let Input efficiency @ Electricity = 0.8750.1841326Let Input efficiency @ Electricity = 0.90.1843647Let Input efficiency @ Electricity = 0.9250.1845978Let Input efficiency @ Electricity = 0.950.1848299Let Input efficiency @ Electricity = 0.9750.185061
```

```
In [41]: cost_results = cost_results[["Variable", "Efficiency", "Cost [USD/mole]"]]
cost_results[0:10]
```

Out[41]:

	Variable	Efficiency	Cost [USD/mole]
0	Input efficiency[Electricity]	0.750	0.190164
1	Input efficiency[Electricity]	0.775	0.188595
2	Input efficiency[Electricity]	0.800	0.187026
3	Input efficiency[Electricity]	0.825	0.185457
4	Input efficiency[Electricity]	0.850	0.183900
5	Input efficiency[Electricity]	0.875	0.184132
6	Input efficiency[Electricity]	0.900	0.184364
7	Input efficiency[Electricity]	0.925	0.184597
8	Input efficiency[Electricity]	0.950	0.184829
9	Input efficiency[Electricity]	0.975	0.185061

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff0148837f0>

