Indhold

1	\mathbf{Uge}		1
	1.1	Basis opgaver	1
		1.1.1 i	1
		1.1.2 ii	1
	1.2	Standard opgaver	1
		1.2.1 1.1	1
		1.2.2 1.2	2
		1.2.3 1.4	3
		1.2.4 1.5	5
		1.2.5 1.6	6
		1.2.6 1.7	6
		1.2.7 1.9	7
		1.2.8 1.10	7
		1.2.9 M1	8
		1.2.10 M2	8
	1.3	Opgaver til fordybelse	8
		1.3.1 1.12	8
		1.3.2 1.13	8
		1.3.3 M3	9
2	Uge	2	9
	2.1	Basis opgaver	9
		2.1.1 i	9
		2.1.2 ii	9
	2.2	Standard opgaver	9
		2.2.1 0.2	9
		2.2.2 0.6 - kun d-e	0
		2.2.3 2.16	0
		2.2.4 2.17	0
		2.2.5 2.20	1
	2.3	Opgaver til fordybelse	1
		231 05	1

		2.3.2 0.7	19
		2.3.3 2.18	
		2.3.4 2.19	12
3	Uge	lpha 3	12
	_		12
			12
		3.1.2 ii	12
	3.2	Standard opgaver	13
	0.2	3.2.1 3.1	13
		3.2.2 3.2	13
		3.2.3 3.3	13
		3.2.4 3.4	14
		3.2.5 3.5	14
		3.2.6 3.6	14
	3.3	Øvelser til fordybelse	
	0.0		14
			14
		3.3.2 3.8	14
		3.3.3 3.9	14
4	Uge	$ ilde{f 4}$	15
	0		15
			15
		4.1.2 ii	15
	4.2	Standard opgave	
	1.2		15
		4.2.2 4.5	16
		4.2.3 4.7	16
		4.2.4 4.8	16
		4.2.5 4.9	16
		4.2.6 M5	17
	4.3	Opgaver til fordybelse	17
	4.5		
		4.3.1 4.6	17
5	Uge	2.5	17
		Basis opgaver	17
		5.1.1 i	17
		5.1.2 #	17

	5.2	Standard opgaver
		5.2.1 4.20
		5.2.2 4.21
		5.2.3 4.22
		5.2.4 4.23
		5.2.5 4.24
		5.2.6 4.25
	5.3	Opgaver til fordybelse
		5.3.1 4.16
		5.3.2 4.17
6	Uge	~ 6
	6.1	Basis opgaver
	0.1	6.1.1 i
		6.1.2 ii
	6.2	Standard opgaver 21
	0.2	6.2.1 6.1
		6.2.2 6.2
		6.2.3 6.3
		6.2.4 6.4
		6.2.5 6.5
		6.2.6 6.6
		6.2.7 6.7
	6.3	Opgaver til fordybelses
		6.3.1 Opgave 1
7	$\mathbf{U}\mathbf{g}\mathbf{e}$	~ 7
1	7.1	Basisopgaver
	1.1	7.1.1 i
		7.1.2 ii
	7.2	Standardopgaver 25
	1.2	7.2.1 6.8
		7.2.2 6.9
		7.2.3 6.10
		7.2.4 6.12
		7.2.5 6.15
		7.2.6 6.16
		7.2.7 Opgaver til fordybelse
		_ - 0

Litteratur 29

1 LinAlg 19/20 Anton Suhr

Alle tal, f.eks. 2.4, refererer til opgaver i [Hesselholt and Wahl, 2017]. Opgaver med bogstaver refererer til ugesedler på Canvas. Det er yderligere indforstået hvorvidt en given variabel er en vektor eller skalar.

1. Uge 1

1.1 Basis opgaver

1.1.1 i

Angiv totalmatricen for ligningssystemet

$$\begin{cases} x_1 + 7x_2 = -1 \\ 3x_1 + 4x_2 = -4 \end{cases}$$

Per [Hesselholt and Wahl, 2017, Eksempel 1.1.2] får vi at

$$\left(\begin{array}{cc|c}
1 & 7 & -1 \\
3 & 4 & -4
\end{array}\right)$$
(1.1)

er totalmatrixen for ligningssytemet.

1.1.2 ii

 Er

$$\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(1.2)

på echelon form?

Den opfylder ikke betingelse (1) i [Hesselholt and Wahl, 2017, Def. 1.2.7], da den har to ledende indgange over hinanden. Den er derfor ikke på echelon form. Flyene skal således flyve i vifte.

1.2 Standard opgaver

1.2.1 1.1

Vi får matricen på reduceret echelonform, f.eks. ved:

$$A = \left(\begin{array}{rrrrrrrrrr} 1 & -2 & 3 & 2 & 1 & 10 \\ 2 & -4 & 8 & 3 & 10 & 7 \\ 3 & -6 & 10 & 6 & 5 & 27 \end{array}\right)$$

2 LinAlg 19/20 Anton Suhr

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 & 10 \\ 2 & -4 & 8 & 3 & 10 & 7 \\ 3 & -6 & 10 & 6 & 5 & 27 \end{pmatrix} -2R_1$$

$$\begin{pmatrix} 1 & -2 & 3 & 2 & 1 & 10 \\ 0 & 0 & 2 & -1 & 8 & -13 \\ 0 & 0 & 1 & 0 & 2 & -3 \end{pmatrix} -3R_3$$

$$\begin{pmatrix} 1 & -2 & 0 & 2 & -5 & 19 \\ 0 & 0 & 0 & -1 & 4 & -7 \\ 0 & 0 & 1 & 0 & 2 & -3 \end{pmatrix} -3R_3$$

$$\begin{pmatrix} 1 & -2 & 0 & 2 & -5 & 19 \\ 0 & 0 & 0 & -1 & 4 & -7 \\ 0 & 0 & 1 & 0 & 2 & -3 \end{pmatrix} -2R_3$$

$$\begin{pmatrix} 1 & -2 & 0 & 2 & -5 & 19 \\ 0 & 0 & 0 & -1 & 4 & -7 \\ 0 & 0 & 1 & 0 & 2 & -3 \end{pmatrix} -2R_2$$

$$\begin{pmatrix} 1 & -2 & 0 & 0 & 3 & 5 \\ 0 & 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 0 & 1 & -4 & 7 \end{pmatrix}$$

$$A' = \begin{pmatrix} 1 & -2 & 0 & 0 & 3 & 5 \\ 0 & 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 0 & 1 & -4 & 7 \end{pmatrix}$$

1.2.2 1.2

Vi får matricen på reduceret echelonform, f.eks. ved:

$$B = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 3 & 8 & 7 & 20 \\ 2 & 7 & 9 & 23 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & 4 \\ 3 & 8 & 7 & 20 \\ 2 & 7 & 9 & 23 \end{pmatrix} -3R_1$$

$$-2R_1$$

$$\begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 7 & 15 \end{pmatrix} -R_2$$

$$\begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix} -R_2$$

$$\begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix} -3/2R_2$$

$$\begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix} -2R_3$$

$$B' = \left(\begin{array}{rrrr} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{array}\right)$$

$1.2.3 \quad 1.4$

Vi bruger her [Hesselholt and Wahl, 2017, Sætning 1.2.18]

 \mathbf{a}

Vi har fået givet

a)
$$\begin{cases} 2x_1 - x_2 + x_3 = 3\\ -x_1 + 2x_2 + 4x_3 = 6\\ x_1 + x_2 + 5x_3 = 9 \end{cases}$$

Den tilhørende totalmatrice er da

$$A = \begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 2 & 4 & 6 \\ 1 & 1 & 5 & 9 \end{pmatrix}. \tag{1.3}$$

Denne løses:

$$\begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 2 & 4 & 6 \\ 1 & 1 & 5 & 9 \end{pmatrix} -2R_3$$

$$\begin{pmatrix} 0 & -3 & -9 & -15 \\ 0 & 3 & 9 & 15 \\ 1 & 1 & 5 & 9 \end{pmatrix} -15 \begin{pmatrix} R_2 \\ 1/3 \\ -1/3R_2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 5 \\ 1 & 0 & 2 & 4 \end{pmatrix}$$

$$A' = \begin{pmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Vi har at r=2<3=n vi er derfor i tilfælde (4). Vi aflæser løsningsmængden til

$$x = \left(\begin{array}{c} 4 - 2t \\ 5 - 3t \\ t \end{array}\right).$$

b

Vi har fået givet

b)
$$\begin{cases} 2x_1 - x_2 + x_3 = 4 \\ -x_1 + 2x_2 + 4x_3 = 6 \\ x_1 + x_2 + 5x_3 = 9 \end{cases}$$

Den tilhørende totalmatrice er da

$$B = \begin{pmatrix} 2 & -1 & 1 & | & 4 \\ -1 & 2 & 4 & | & 6 \\ 1 & 1 & 5 & | & 9 \end{pmatrix}. \tag{1.4}$$

Denne løses:

$$\begin{pmatrix} 2 & -1 & 1 & 4 \\ -1 & 2 & 4 & 6 \\ 1 & 1 & 5 & 9 \end{pmatrix} -2R_3$$

$$\begin{pmatrix} 0 & -3 & -9 & -14 \\ 0 & 3 & 9 & 15 \\ 1 & 1 & 5 & 9 \end{pmatrix} -1/3R_2$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 3 & 5 \\ 1 & 0 & 2 & 4 \end{pmatrix}$$

$$B' = \begin{pmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Vi er nu i tilfælde (2), ligningssystemet har da ingen løsninger.

 \mathbf{c}

Vi har fået givet

c)
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 4 \\ -x_1 + 2x_2 + 4x_3 = 6 \\ x_1 + x_2 + 5x_3 = 9 \end{cases}$$

Den tilhørende totalmatrice er da

$$C = \begin{pmatrix} 2 & -1 & 2 & | & 4 \\ -1 & 2 & 4 & | & 6 \\ 1 & 1 & 5 & | & 9 \end{pmatrix}. \tag{1.5}$$

Denne løses:

$$\begin{pmatrix} 2 & -1 & 2 & 4 & 1 & -2R_3 \\ -1 & 2 & 4 & 6 & 1 & R_3 \\ 1 & 1 & 5 & 9 & R_3 \end{pmatrix} = \begin{pmatrix} 0 & -3 & -8 & -14 & R_2 \\ 0 & 3 & 9 & 15 & 1/3 \\ 1 & 1 & 5 & 9 & -1/3R_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 3 & 5 \\ 1 & 0 & 2 & 4 & -2R_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 2 & 1 \end{pmatrix}$$

$$C' = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Vi er nu i tilfælde (3), ligningssystemet har da præcis løsningen $x_1 = 2, x_2 = 2, x_3 = 1.$

1.2.4 1.5

Vi bruger her [Hesselholt and Wahl, 2017, Sætning 1.2.18]. Totalmatricen:

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & -1 & 4 & 0 \\ 1 & 3 & -2 & 3 \\ -3 & -2 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & -1 & 4 & 0 \\ 1 & 3 & -2 & 3 \\ -3 & -2 & 1 & 0 \end{pmatrix} -2R_1$$

$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ -3 & -2 & 1 & 0 \end{pmatrix} 3R_3$$

$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & -3 & 0 & -6 \\ 0 & 2 & -4 & 0 \\ 0 & 1 & 7 & 9 \end{pmatrix} -R_4$$

$$A' = \begin{pmatrix} 1 & 0 & -5 & | & -6 \\ 0 & 0 & 21 & | & 21 \\ 0 & 0 & -18 & | & -18 \\ 0 & 1 & 7 & | & 9 \end{pmatrix} \begin{pmatrix} -R_4 \\ 3R_4 \\ -2R_4 \\ 9 \end{pmatrix}$$

$$A' = \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix},$$

hvorfra det ses x = -1, y = 2, z = 1 er den eneste løsning.

1.2.5 1.6

Inter nyt, vi bruger [Hesselholt and Wahl, 2017, Sætning 1.2.18].

$$A = \begin{pmatrix} 2 & 4 & -1 & -2 & 2 & 6 \\ 1 & 3 & 2 & -7 & 3 & 9 \\ 5 & 8 & -7 & 6 & 1 & 4 \end{pmatrix}$$
$$A' = \begin{pmatrix} 1 & 0 & 0 & 0 & -3 & 2 \\ 0 & 1 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & -2 & 0 & 2 \end{pmatrix}.$$

Vi får da løsningsmængden til

$$x = \begin{pmatrix} 2+3t \\ 1+s-2t \\ 2+2s \\ s \\ t \end{pmatrix}.$$

$1.2.6 \quad 1.7$

Vi bruger [Hesselholt and Wahl, 2017, Sætning 1.2.18]. Den kompleks konjugerede er ofte brugbar her.

$$A = \begin{pmatrix} i & 2 & 1 \\ 1+2i & 2+2i & 3i \end{pmatrix} \frac{-i}{iR_1}$$

$$\begin{pmatrix} 1 & -2i & -i \\ 2i & 2+4i & 4i \end{pmatrix} \frac{-2i}{-2i}$$

$$\begin{pmatrix} 1 & -2i & -i \\ 4 & 8-4i & 8 \end{pmatrix} \frac{-4R_1}{-4R_1}$$

$$\begin{pmatrix} 1 & -2i & -i \\ 0 & 8+4i & 8+4i \end{pmatrix} \frac{1}{80(8-4i)}$$

$$\begin{pmatrix} 1 & -2i & -i \\ 0 & 1 & 1 \end{pmatrix} \frac{2iR_2}{1}$$

$$A' = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 1 \end{pmatrix}.$$

Vi har præcis løsningen $x_1 = i$ og $x_2 = 1$.

1.2.7 1.9

Vi bruger [Hesselholt and Wahl, 2017, Sætning 1.2.18].

$$A = \begin{pmatrix} 1-i & i & 3 & 0 \\ 0 & 2i & 2 & 0 \\ 2 & 1-i & 1+i & 0 \end{pmatrix}$$
$$A' = \begin{pmatrix} 1 & 0 & 1+i & 0 \\ 0 & 1 & -i & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Og løsningen er da x = 0.

1.2.8 1.10

Vi bruger [Hesselholt and Wahl, 2017, Sætning 1.2.18].

$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 1 & 1 & a \\ 1 & 0 & 2 & 3 \end{pmatrix} -R_3$$

$$-2R_3$$

$$\begin{pmatrix} 0 & 1 & -3 & -1 \\ 0 & 1 & -3 & a - 6 \\ 1 & 0 & 2 & 3 \end{pmatrix} -2R_1$$

$$\begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & a - 5 \end{pmatrix}$$

og det ses herfra at for $a \neq 5$ eksisterer der ingen løsninger. Hvis a = 5 er løsningsmængden givet ved

$$x = \left(\begin{array}{c} 3 - 2t \\ -1 + 3t \\ t \end{array}\right).$$

8 LinAlg 19/20 Anton Suhr

1.2.9 M1

a Et homogent ligningssystem tillader altid løsningen x = 0.

b Et ikke homogent ligningssystem kan ikke have 0 som løsning.

1.2.10 M2

a Ja,
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = \{0, 1, 2, 3, 4\}.$$

b Nej, $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0$ 5 gange har f.eks. løsningen x = 0.

c Nej, hvis vi lavede det på reduceret echelon form ville vi se at der ville være en fri variabel altid. Se f.eks. opgave 1.5.

d Ja, massere af eksempler.

e a) Ja, oftest. b) Nej, hvis ligningerne f.eks. er ens. c) Ja, den ene ligning kan være overflødig og vi har så egentlig en 5 ligninger med 5 ubekendte. d) Ja med samme argument som før. Ligninger kan være overflødige.

1.3 Opgaver til fordybelse

$1.3.1 \quad 1.12$

Lad f.eks. x_2 til x_6 være frie variable og lad x_1 være bestemt af disse.

1.3.2 1.13

Hvis det prøves at få totalmatricen på reduceret echelon form fåes

$$\left(\begin{array}{cc|c} 1 & b & 0 \\ 0 & ad-bc & 0 \end{array}\right).$$

Det ses herfra at 0 er den unikke løsning til ligningssystemet hvis og kun hvis $ad - bc \neq 0$. Bemærk vi har divideret med a for at få matricen på reduceret echelon form, men hvis a = 0 ville det oplagt være rigtigt.

1.3.3 M3

Det ses at d = -1 og c = 5 fra de to første betingelser. De to næste betingelse kan skrives op som to ligninger med to ubekendte, hvor det let udregnes at b = 1 og a = -2. Samlet bliver polynomiet $-2x^3 + x^2 + 5x - 1$. Kan også opskrive som en matrice og løse systemet derfra.

2. Uge 2

2.1 Basis opgaver

2.1.1 i

1 Da der kun er indgange i diagonalen er den inverse matrice da

$$A^{-1} = \left(\begin{array}{ccc} \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{3} & 0\\ 0 & 0 & \frac{1}{4} \end{array}\right),$$

per [Hesselholt and Wahl, 2017, Sætning 2.4.12]

2 C er ikke invertibel da den har determinant 0. Alternativ uden brug af determinant: Matricen skal have fuld rang for at være invertibel. Det har den ikke.

2.1.2 ii

Svaret er

$$\left(\begin{array}{cc} -5/2 & 3/2 \\ 2 & -1 \end{array}\right),\,$$

hvilket enten kan ses ved direkte udregning eller [Hesselholt and Wahl, 2017, Eksempel 3.4.3] (Som jeg nok ville mene er et korollar). Alternativt: Prøv at gange de to matricer sammen og se, om det giver enhedsmatricen.

2.2 Standard opgaver

$2.2.1 \quad 0.2$

a Hverken eller, man rammer ikke -1, men omvendt bliver 1 ramt to gange. Billedet er \mathbb{R}_+ .

b Bijektiv. Billedet er \mathbb{R} . Den inverse er $g: x \mapsto \sqrt[3]{y}$

- **c** Surjektiv, men ej injektiv. F.eks. f(-1,1) = -1 = f(1,-1), men $(-1,1) \neq (1,-1)$. Billedet er \mathbb{R} .
- **d** Den er injektiv og surjektiv. $g:(x_2,y_2)\mapsto\left(\frac{x_1+y_1}{2},\frac{x_1-y_1}{2}\right)$

$2.2.2 \quad 0.6 - \text{kun d-e}$

- a Tag $s, t \in Z$ hvorom der gælder g(f(s)) = g(f(t)). Siden g er injektiv må f(s) = f(t) og da f er injektiv må s = t og deraf må $g \circ f$ også selv være injektiv.
- **b** Tag et vilkårligt $z \in Z$. Da g er surjektiv findes der et $y \in Y$ sådan g(y) = z. Da f er surjektiv findes der et $x \in X$ sådan f(x) = y. Fra dette må $g \circ f$ også være surjektiv.
- **c** Første del følger af a og b. Fra [Hesselholt and Wahl, 2017, Lemma 0.1.3] ved vi at den inverse eksisterer og den er bijektiv selv. Da $(g \circ f) \circ (f^{-1} \circ g^{-1}) = id$ må $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})$ per unikhed af den inverse.
- **d** Antag, at $f(x_1) = f(x_2)$ for $x_1, x_2 \in X$. Da må $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$. Eftersom $f \circ g$ er antaget injektiv, fås $x_1 = x_2$. Således er f injektiv.
- e Da $f(X) \subset Y$ må $g(f(X)) \subset g(Y) \subset Z$. Da $g \circ f$ er antaget surjektiv må $Z \subset g(Y) \subset Z$ hvilket giver at g(Y) = Z og g må derfor selv være surjektiv.

Alternativt: Antag, at $z \in Z$. Da $g \circ f$ er surjektiv, findes et $x \in X$ med $(g \circ f)(x) = g(f(x)) = z$. Sæt $y = f(x) \in Y$, hvorved g(y) = g(f(x)) = z. Således er g surjektiv.

2.2.3 2.16

Ved direkte udregning ses det at $A_1 = A_3^{-1}$ og $A_5 = A_6^{-1}$.

$2.2.4 \quad 2.17$

Per [Hesselholt and Wahl, 2017, sætning 2.4.9] kan vi vise afbildningen er bijektiv ved at vise at Ax = b har præcis en løsning for hvert $b \in \mathbb{R}^3$. Vi får matricen på reduceret echelon form:

$$A|b = \begin{pmatrix} 0 & 0 & 1/4 & b_1 \\ 0 & -2 & 0 & b_2 \\ 3 & 0 & 0 & b_3 \end{pmatrix}$$
$$A|b = \begin{pmatrix} 0 & 0 & 1 & 4b_1 \\ 0 & 1 & 0 & -1/2b_2 \\ 1 & 0 & 0 & 1/3b_3 \end{pmatrix}$$

LinAlg~19/20 Anton Suhr

og det ses for ethvert b har afbildningen præcis løsningen $x = (4b_1, -1/2b_2, 1/3b_3)$.

Per sætning [Hesselholt and Wahl, 2017, 2.4.12] kan den inverse matrix findes til at være

$$A^{-1} = \left(\begin{array}{ccc} 0 & 0 & 1/3 \\ 0 & -1/2 & 0 \\ 4 & 0 & 0 \end{array}\right),$$

og $g(y) = A^{-1}y$.

$2.2.5 \quad 2.20$

Definér $f(e_1) = b_1, f(e_2) = b_2, f(e_3) = (1, 1, 1, 0), \text{ dvs. } f(x) = Ax \text{ for } x \in \mathbb{R}^3 \text{ hvor}$

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

Det ses, at f lineær (kan repræsenteres som en matrix) og injektiv (kernen er klart triviel). Desuden er de to vektorer elementer i billedet som ønsket.

2.3 Opgaver til fordybelse

$2.3.1 \quad 0.5$

 \mathbf{a}

f Injektivitet: Antag f(x,y,z) = f(x',y',z'), så (x+y,y+z,x+z) = (x'+y',y'+z',x'+z'). Dette ville give at x = x'+y'-y og så videre at (x'+y'-y)+z = x'+z' og deraf y'-y=0 sådan at y'=y. På samme måde ville det kunne vises at x=x', z=z' og f er deraf injektiv. Surjektiv: Lad (a,b,c) være en vektor i \mathbb{R}^3 . Man har da 3 ligninger med 3 ubekendte løses disse fåes

$$x = \frac{a-b+c}{2}$$
$$y = \frac{a+b-c}{2}$$
$$z = \frac{-a+b+c}{2}$$

g g er ej surjektiv. Laves en lignende isolering fåes at a=b+c hvis der skal være en løsning. Punktet (1,0,0) kan derfor ikke rammes.

12 LinAlq 19/20 Anton Suhr

 \mathbf{b}

Den inverse er

$$g\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{a-b+c}{2} \\ \frac{a+b-c}{2} \\ \frac{-a+b+c}{2} \end{pmatrix}.$$

$2.3.2 \quad 0.7$

F.eks. ville

$$f(x) = \begin{cases} \frac{1}{n+1}, & \text{hvis } x = \frac{1}{n} \text{ for et } n \in \mathbb{N} \\ x, & \text{ellers} \end{cases}$$

være en bijektion fra $[0,1]\mapsto [0,1)$

2.3.3 2.18

Følger af en udvidelse af [Hesselholt and Wahl, 2017, Eksempel 0.1.4]. $a, b, c \neq 0$ og den inverse er da

$$A^{-1} = \left(\begin{array}{ccc} 0 & 0 & 1/c \\ 0 & 1/b & 0 \\ 1/a & 0 & 0 \end{array}\right).$$

2.3.4 2.19

Ved brug af Maple ses det, at $C^3 = I$. Da matrix multiplikation er associativ, fås $C^2C = I = CC^2$, hvorved $C^{-1} = C^2$ per definition.

3. Uge 3

3.1 Basis opgaver

3.1.1 i

Per [Hesselholt and Wahl, 2017, Eksempel 3.2.25] fåes determinanten til $2 \cdot 4 - 3 \cdot 1 = 5$.

3.1.2 ii

Vi udregner determinanten af den første matrice til $1 \cdot 3 - 4 \cdot 2 = -5 \neq 5$. De er da ikke lig med hinanden.

3.2 Standard opgaver

3.2.1 3.1

 $i \quad 2 \cdot 1 - (-1) \cdot 1 = 3.$

ii Vi bruger Laplace udvikling langs 3. søjle. (husk fortegn)

$$\det \begin{pmatrix} 2 & -2 & 3 \\ 4 & 3 & 1 \\ 2 & 0 & 1 \end{pmatrix} = 2 \det \begin{pmatrix} -2 & 3 \\ 3 & 1 \end{pmatrix} + 1 \det \begin{pmatrix} 2 & -2 \\ 4 & 3 \end{pmatrix} = 2(-2 - 9) + (6 + 8) = -22 + 14 = -8.$$

iii Laplace udvikling langs første søjle

$$\det\begin{pmatrix} 1 & 2 & 1 \\ 5 & \pi & 5 \\ 2 & 1/2 & 2 \end{pmatrix} = 1 \det\begin{pmatrix} \pi & 5 \\ 1/2 & 2 \end{pmatrix} - 2 \det\begin{pmatrix} 5 & 5 \\ 2 & 2 \end{pmatrix} + 1 \det\begin{pmatrix} 5 & \pi \\ 2 & 1/2 \end{pmatrix}$$
$$= 2\pi - 5/2 - 2(10 - 10) + 5/2 - 2\pi = 0$$

$3.2.2 \quad 3.2$

A Vi laver matricen om til en øvre triangulær matrice og bruger [Hesselholt and Wahl, 2017, Sætning 3.3.3]. Vi får

B Vi får determinanten $\cos \theta^2 + \sin \theta^2 = 1$, hvor den sidste lighed kommer af grundrelation mellem cosinus og sinu.

C Det ses at determinanten er (1+i)(1-i)-2=0

3.2.3 3.3

i Det ses let ved en triangulation at determinanten er -24.

ii Det er matricen i i's transponerede og de har derfor samme determinant, -24.Det ses også let ved en triangulation at determinanten er -24.

3.2.4 3.4

- **a** Ja per [Hesselholt and Wahl, 2017, Sætning 3.2.1] eller det kan indses ved Laplace udvikling af første søjle
- **b** Den er ikke på øvre eller nedre triagulær form, men ved at få den på dette ses det at determinanten er -abc. Se opgave 3.9 for generel regel.
- c Det er en triagulær matrix, det er sandt.
- d Ved tilsvarende argument som i b ses det at det er falsk, da determinanten har positivt fortegn.
 Se opgave 3.9 for generel regel.

3.2.5 3.5

Ved en længere Laplace udvikling fåes determinanten til $a^4b - 2ba^2 + b$.

3.2.6 3.6

- i Determinanten er 4 1 = 3.
- ii Determinanten er 4.
- iii Determinanten er 5.

3.3 Øvelser til fordybelse

3.3.1 3.7

Determinanten er 1. Den drejer rummet, effektivt laver den om på akserne.

3.3.2 3.8

- i Determinanten er (2+i)(1-i) 12i = 3-i 12i = 3 13i.
- ii Determinanten er 1 + 9i.

3.3.3 3.9

 \mathbf{a}

Dette bliver exchange matricen (enhedsmatricen spejlet).

LinAlg~19/20 Anton Suhr

 \mathbf{b}

Det lader til determinanten skifter fra -1 til 1 for hver anden dimension du går op.

 \mathbf{c}

Kan indses ved at 'ombytte' rækker og huske på at fortegnet skifter ved hver operation. Med dette ses det at determinanten er bestem ved

$$\begin{cases} (-1)^{\frac{n}{2}} & n \text{ er lige} \\ (-1)^{\frac{n-1}{2}} & n \text{ er ulige} \end{cases},$$

hvilket præcis giver det ønskede.

d

Når $\frac{n(n-1)}{2},$ hvor ner dimensionen af matricen, er lige.

4. Uge 4

4.1 Basis opgaver

4.1.1 i

Vi tjekker om U er stabil med hensyn til vektorrumsstrukturen vha. betingelse 1-3 i [Hesselholt and Wahl, 2017, Definition 4.1.4]. 1) 0 er en del U. 2) $(x,0), (y,0) \in U$, da er $(x+y,0) \in U$ oplagt. 3) Antag (x,0), så er $a \cdot (x,0) = (ax,0) \in U$ også U er også en delmængde af \mathbb{R}^2 . Der er derfor et underrum.

4.1.2 ii

Den opfylder ikke A4 i [Hesselholt and Wahl, 2017, Definition 4.1.4] da f.eks. (-a, -b) ikke findes i V.

4.2 Standard opgave

$4.2.1 \quad 4.4$

Den opfylder ikke tredje betingelse i [Hesselholt and Wahl, 2017, Definition 4.1.4] da $-2 \cdot (x_1, x_2, \dots, x_n) \neq \mathbb{R}^n_{\geq 0}$.

16 LinAlg~19/20 Anton~Suhr

$4.2.2 \quad 4.5$

Opfylder ej V3. Eks. i 2-dimensioner: $(1,1)*((1+1i)+(1+2i))=(1,1)*(2+3i)=(\sqrt{13},\sqrt{13})$. Omvendt $(1,1)*(1+i)+(1,1)*(1+2i)=(\sqrt{2},\sqrt{2})+(\sqrt{5},\sqrt{5})=(\sqrt{2}+\sqrt{5},\sqrt{2}+\sqrt{5})$. Følger af trekantsluligheden at det ikke er sandt.

$4.2.3 \quad 4.7$

 \mathbf{a}

Det er oplagt kun V1 - V4 der kan gå galt. Disse kan let tjekkes at være opfyldt

b

Brug regneregler og indse at a = -2 og b = 3.

4.2.4 4.8

- a Nej, $1/2 \cdot (1,1)$ vil ikke være en del af underrummet og 3 vil ej være opfyldt.
- **b** Ja, samme argument som i basis opgave i.
- **c** Nej, 2 ej opfyldt. Tag en vektor hvor førstekoordinatet er 0 kun og en anden hvor andenkoordinatet 0 kun. Summen af disse vil ikke ligge i underrummet.
- d Ja, tjekkes nemt
- e Nej, 0 er ikke en del af underrumet.

$4.2.5 \quad 4.9$

 \mathbf{a}

1) Ja, da 0 er i begge underrum. 2) Hvis $x,y \in V \cap W$, så ligger $x,y \in V$ og $x,y \in W$. Dette betyder at $x+y \in V$ og $x+y \in W$ og videre at $x+y \in V \cap W$. 3) $x \in V \cap W$ så har vi at $a \cdot x \in V$ og $a \cdot x \in W$ og deraf at $a \cdot x \in V \cap W$ pga. de V og W selv er vektorrum.

b

1) Ja, 0 er i begge underrum. 2) Hvis $a,b \in V+W$ så har via'+a''=a hvor de hver ligger i henholdsvis V og W. Samme med b'+b''=b. Da V og W hver især er vektorrum følger det at $(a'+b')+(a''+b'')\in V+W$. 3) a'+a''=a. ca=c(a'+a'')=ca'+ca'' og dette ligger i V+W da de hver især er vektorrum.

4.2.6 M5

For at være linæer skal afbildningen opfylde to ting. f(u+v) = f(u) + f(v) og $f(c \cdot u) = cf(u)$. Ergo vi skal tjekke 1) $(cA)^T = cA^T$ og 2) $(A+B)^T = A^T + B^T$. 1) er klart opfyldt og to følger af [Hesselholt and Wahl, 2017, Sætning 2.6.7]. Den er dermed linæer.

4.3 Opgaver til fordybelse

4.3.1 4.6

Vi ved allerede matrixsum opfylder A1-A4 i [Hesselholt and Wahl, 2017, Definition 4.1.1]. Vi tjekker V1-V4.

5. Uge 5

5.1 Basis opgaver

5.1.1 i

 $v_1 + v_2 = (7,3)$. Med hensyn til standardbasen bliver koordinaterne (7,3). Med hensyn til basen (v_1, v_2) bliver det (1,1).

5.1.2 ii

Da vi har basen (v_1, v_2) for både domænet og codomænet bliver matricen bare

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right).$$

5.2 Standard opgaver

5.2.1 4.20

a Indses f.eks. vha. [Hesselholt and Wahl, 2017, Korollar 4.3.12], da rangen af matricen basen udspænder er 2.

b Denne bliver

$$P = \left(\begin{array}{cc} 2 & 3 \\ 5 & 7 \end{array}\right).$$

c Denne bliver den inverse af P (se f.eks. [Hesselholt and Wahl, 2017, Eks. 4.4.13]), dvs.

$$P^{-1} = \left(\begin{array}{cc} -7 & 5\\ 3 & -2 \end{array} \right).$$

d Per [Hesselholt and Wahl, 2017, Eks. 4.4.18] fås koordinaterne

$$y = P^{-1}x = \begin{pmatrix} -7 & 5 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -7x_1 + 5x_2 \\ 3x_1 - 2x_2 \end{pmatrix}.$$

$5.2.2 \quad 4.21$

a Indses f.eks. vha. [Hesselholt and Wahl, 2017, Korollar 4.3.12], da rangen af matricen basen udspænder er 3.

b Denne bliver

$$P = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right).$$

c Denne bliver den inverse af P (se f.eks. [Hesselholt and Wahl, 2017, Eks. 4.4.13]), dvs.

$$P^{-1} = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

d Per [Hesselholt and Wahl, 2017, Eks. 4.4.18] får vi vektoren til

$$y = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 \end{pmatrix}.$$

$5.2.3 \quad 4.22$

a Dette bliver matricen dannet af vektorene (u_1, u_2, u_3) , dvs.

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{array}\right).$$

b Dette bliver matricen dannet af vektorene (v_1, v_2) , dvs.

$$P = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right).$$

- **c** Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = Q^{-1}AP$
- d Dette bliver

$$B = Q^{-1}AP = \begin{pmatrix} -1 & 16 & 10 \\ 3 & 3 & 0 \end{pmatrix}.$$

e Tegn.

5.2.4 4.23

a Dette bliver matricen dannet af vektorene (v_1, v_2, v_3) , dvs.

$$P = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{array}\right).$$

- **b** Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = P^{-1}AP$
- c Dette bliver

$$B = P^{-1}AP = \begin{pmatrix} 3 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

d Tegn.

$5.2.5 \quad 4.24$

- a Det har rang 3
- **b** Dette bliver matricen dannet af vektorene (v_1, v_2, v_3) , dvs.

$$P = \left(\begin{array}{rrr} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

- c Indses f.eks. fra en tegning at $A = PBP^{-1}$
- **d** Vi får

$$A = PBP^{-1} = \begin{pmatrix} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{pmatrix}.$$

e Tegn.

$5.2.6 \quad 4.25$

a Dette bliver matricen dannet af vektorene (v_1, v_2, v_3) , dvs.

$$P = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

- **b** Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = P^{-1}AP$
- c Dette bliver

$$B = P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

- \mathbf{d} Ja, f er en isomorfi, da B er invertibel (kvadratisk med fuld rang).
- e Tegn.

5.3 Opgaver til fordybelse

$5.3.1 \quad 4.16$

- a Oplagt.
- **b** Skriv det ud og brug at g er lineær.

$5.3.2 \quad 4.17$

Bemærk: Denne opgave påstår fejlagtigt, at $(V, +, \cdot)$ fra opgave 4.7 er et reelt vektorrum. Dette opnås dog først ved at specialisere til $\mathbb{F} = \mathbb{R}$.

- a Følger af linearitet af matricer
- **b** Den naturlige basis er familien (1,i). Således har dette reelle vektorrum dimension 2.

c Den naturlige basis er familien

$$\left(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right).$$

Således har dette reelle vektorrum dimension 4.

6. Uge 6

6.1 Basis opgaver

6.1.1 i

De er ortogonale, da det indre produkt er 0. De er dog ikke ortonormale, da vektorerne ikke er enhedsvektorer.

6.1.2 ii

Det er $\sqrt{4^2 + 0^2 + 3^2} = \sqrt{25} = 5$.

6.2 Standard opgaver

6.2.1 6.1

 \mathbf{a}

Vi tjekker [Hesselholt and Wahl, 2017, Definition 6.1.1], oplagt

b

$$|x| = \sqrt{3+4} = \sqrt{7}$$
. $|y| = \sqrt{3 \cdot 16 + 4 \cdot 9} = \sqrt{84} = 2\sqrt{21}$. $|z| = \sqrt{3 \cdot \sqrt{3}\sqrt{3} + 4 \cdot (-2i)(2i)} = \sqrt{9+8} = \sqrt{17}$.

 \mathbf{c}

Indre produktet er 0, x og y er da ortogonale.

 \mathbf{d}

De er de ikke, da deres standard indre produkt er -1.

22 LinAlg 19/20 Anton Suhr

$6.2.2 \quad 6.2$

 \mathbf{a}

Følger af linearitet af integralet.

b

Det integrerer til 0 og er derfor ortogonale. 1 er oplagt en enhedsvektor med hensyn til indre produktet. At $\sqrt{3}(2x-1)$ er følger af en let udregning.

 \mathbf{c}

Normen er $\sqrt{\frac{1}{2n+1}}$.

6.2.3 6.3

Vi har at

$$(x_1 + \ldots + x_n)^2 = \langle v, 1 \rangle^2 \le ||1||^2 ||v||^2 = n(x_1^2 + \ldots + x_n^2),$$

hvor vi brugte Cauchy-Schwarz i uligheden.

6.2.4 6.4

Vi følger [Hesselholt and Wahl, 2017, Eksempel 6.1.6]. Indreprodukt af $\langle x, y \rangle = 3$. Vi får da vinklen til $\cos \theta = 1/2$, $\theta = \pi/3$.

$6.2.5 \quad 6.5$

Gram-Schmidt.

6.2.6 6.6

 \mathbf{a}

Det ses at de er ortogonale og fra definition af lineært uafhængighed [Hesselholt and Wahl, 2017, Definition 4.3.4] er de også det.

b

Tag f.eks. $w_3 = (0, 0, 1)$. Da er det en basis for \mathbb{R}^3 per [Hesselholt and Wahl, 2017, Lemma 4.3.9].

 \mathbf{c}

Du ender med standardbasen for \mathbb{R}^3 .

 \mathbf{d}

Oplagt da det er enhedsmatricen.

 \mathbf{e}

Oplagt igen.

$6.2.7 \quad 6.7$

 \mathbf{a}

Det en basis for \mathbb{R}^3 per [Hesselholt and Wahl, 2017, Lemma 4.3.9], at de er ortogonale eftervises let.

 \mathbf{b}

Linearitet følger af at standard indreproduktet er en indreprodukt.

 \mathbf{c}

Denne er forkert:)

Der regnes og man får da matricen for A til

$$\left(\begin{array}{cccc} 1 & -1 & 1 & 1 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ -1 & 1 & -1 & 1 \end{array}\right).$$

Og ved brug af [Hesselholt and Wahl, 2017, Eksempel 4.4.16] bliver B

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
2 & 1/4 & -1/4 & 1/4 \\
0 & 7/2 & 1/2 & -1/2 \\
0 & 1/2 & 7/2 & 1/2
\end{pmatrix}.$$

 \mathbf{d}

Gøres i Maple...

24 LinAlg 19/20 Anton Suhr

e

fhar rang 3, $f^{\circ 2}$ har rang 2, $f^{\circ 3}$ har rang 1, $f^{\circ 4}$ har rang 0.

6.3 Opgaver til fordybelses

6.3.1 Opgave 1

 \mathbf{a}

Første del indses let, evt. ved Maple. Dette giver ortogonalitet. At det basis følger af den per definition udspænder Sig_3 og den er lineært uafhængig per [Hesselholt and Wahl, 2017, Definition 4.3.4].

b

Divider med π og vektorerne er ortonormale per a.

 \mathbf{c}

Følger af [Hesselholt and Wahl, 2017, Sætning 6.2.6] og at basen er ortonormal divideret med π .

 \mathbf{d}

Vi ender med

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & -9
\end{array}\right).$$

7. Uge 7

7.1 Basisopgaver

7.1.1 i

Den er lineær, men ikke en isometri. F.eks. bliver f(1,0) = (2,0). (1,0) har norm 1, mens (2,0) har norm 2 og det ikke være en isometri per definition

7.1.2 ii

Den adjungerede matrix er

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
,

hvilket oplagt ikke er den inverse til matricen A da den har determinant 2. Den er derfor ikke ortogonal per definition.

7.2 Standardopgaver

7.2.1 - 6.8

- Alle kvadratiske matricer har egenvektore i C (da det er algebraisk lukket), svaret er derfor
 ja.
- 2. Dette er ækvivalent med at endomorfien er normal, hvilket ikke er givet. Svaret er derfor nej.
- 3. Ja, per [Hesselholt and Wahl, 2017, Korollar 6.2.11]
- 4. Ja, per [Hesselholt and Wahl, 2017, Korollar 6.2.11]
- 5. Nej. Dette gælder hvis og kun hvis $AA^* = I$ (Brødtekst s.239)

$7.2.2 \quad 6.9$

a og b Det ses ved direkte udregning af den inverse til Q at den er normal, da inverse er

$$\frac{1}{3} \left(\begin{array}{rrr} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{array} \right).$$

7.2.3 - 6.10

Det ses at matricerne både er unitære og hermitiske per [Hesselholt and Wahl, 2017, Definition 6.3.14]. Det ses også ved at hver matrix giver opgaver til polynomiet $\lambda^2 - 1$, hvilket har løsningerne ± 1 .

7.2.4 6.12

- **a** Vi har $1 = \det I = \det Q^*Q = \det Q^* \det Q = (\det Q)^2$.
- **b** Samme bevis som i a.

$7.2.5 \quad 6.15$

a Vi får det karakteriske polynomium til $-t^3 + 11t^2 - 38t + 40$. Løses med maple og man får her 5, 2, 4 som løsninger.

b Vi udregner først egenvektorene ved at Gauss-eliminere matricen A med rødderne fra det karakteristiske polynomium sat ind. Vi får da vektorene (-1, -1, 1), (1, 1, 0), (2, -1, 1). Disse kan derefter laves om til en ortonormal base med Gram Schmidt og det ses også denne udspænder hele \mathbb{R}^3 . Her f.eks.

$$\begin{bmatrix} -1/3\sqrt{3} \\ -1/3\sqrt{3} \\ 1/3\sqrt{3} \end{bmatrix}, \begin{bmatrix} 1/6\sqrt{6} \\ 1/6\sqrt{6} \\ 1/3\sqrt{6} \end{bmatrix}, \begin{bmatrix} 1/2\sqrt{2} \\ -1/2\sqrt{2} \\ 0 \end{bmatrix} \end{bmatrix}$$

c Tag vektorene i din ortonormale basis.

7.2.6 - 6.16

a og b Samme som i 6.15. Egenværdierne bliver 8, 2 og 2. Og en ortonormal basis:

$$\begin{bmatrix} -1/6\sqrt{6} \\ 1/6\sqrt{6} \\ 1/3\sqrt{6} \end{bmatrix}, \begin{bmatrix} 1/2\sqrt{2} \\ 1/2\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 1/3\sqrt{3} \\ -1/3\sqrt{3} \\ 1/3\sqrt{3} \end{bmatrix} \end{bmatrix}$$

c Tag vektorene i din ortonormale basis.

6.17

a og b Samme som i de to foregående. Egenvektore: 1 - i, 1 + i. Ortonormal basis:

$$\begin{bmatrix} -1/2\sqrt{2} \\ 1/2\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/2\sqrt{2} \\ 1/2\sqrt{2} \end{bmatrix} \end{bmatrix}$$

c Tag vektorene i din ortonormale basis.

7.2.7 Opgaver til fordybelse

6.11

6.13

6.19

6.20

6.21

Litteratur

[Hesselholt and Wahl, 2017] Hesselholt, L. and Wahl, N. (2017). *Lineær Algebra*. Institut for Matematiske Fag, Københavns Universitet, København, 2 edition.