Homework 10 (Due Dec 8, 2023)

Jack Hyatt MATH 546 - Algebraic Structures I - Fall 2023

December 28, 2023

Justify all of your answers completely.

1. Find a subgroup of S_4 that is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ by carrying through the procedure we used to prove Cayley's theorem.

Denote elements of $Z_2 \times Z_2$ as $g_1 = ([0], [0]), g_2 = ([1], [0]), g_3 = ([0], [1]), g_4 = ([1], [1]).$ For each g_i , associate a σ_i by constructing $\sigma_i(\ell) = j$ if $g_i + g_\ell = g_j$.

For g_1 : $g_1+g_i=g_i$ for all i. So $\sigma_1=e$

For
$$g_2$$
: $g_2+g_1=g_2$, $g_2+g_2=g_1$, $g_2+g_3=g_4$, $g_2+g_4=g_3$. So $\sigma_2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}=(1\ 2)(3\ 4)$.
For g_3 : $g_3+g_1=g_3$, $g_3+g_2=g_4$, $g_3+g_3=g_1$, $g_3+g_4=g_2$. So $\sigma_3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}=(1\ 3)(2\ 4)$.
For g_4 : $g_4+g_1=g_4$, $g_4+g_2=g_3$, $g_4+g_3=g_2$, $g_4+g_4=g_1$. So $\sigma_3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}=(1\ 4)(2\ 3)$.
So the subgroup, H , of S_4 that is isomorphic to $Z_2\times Z_2$ is $H=\{e,(1\ 2)(3\ 4),(1\ 3)(2\ 4),(1\ 4)(2\ 4)\}$.

- 2. Cayley's theorem tells us that there exists a subgroup of S_6 that is isomorphic to Z_6 .
 - (a) Give an example of such a subgroup and justify the isomorphism.

We know that cyclic groups of the same order are isomorphic. Z_6 is a cyclic group of order 6, so we want a cyclic subgroup of S_6 also with order 6. The subgroup $((1\ 2\ 3\ 4\ 5\ 6))$ is a simple example of that.

(b) Does there exist any n < 6 such that \mathbb{Z}_6 is isomorphic to a subgroup of S_n ? Find the smallest such value of n.

Since Z_6 is cyclic of order 6, the subgroup of S_n it would be isomorphic to would also have to be cyclic of order 6.

So we are looking for values of n that when partitioned, the lcm of the partitions can be 6.

n=5 works since you can partition 5 into 2+3, so a cyclic subgroup generated from permutation decomposed into cycles of length 2 and 3 would be isomorphic. n < 5 cannot be partitioned for the lcm to equal 6, so 5 is the lowest.

- 3. For the group G and the subgroup H, list all the cosets with respect to H. For each coset, list the elements of the coset. How many distinct cosets are there?
 - (a) $G = S_3$, $H = \{e, (1\ 2)\}$ $G = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$ $eH = \{e, (1\ 2)\}, (1\ 2)H = \{(1\ 2), e\}, (1\ 3)H = \{(1\ 3), (1\ 2\ 3)\}$ $(2\ 3)H = \{(2\ 3), (1\ 3\ 2)\}, (1\ 2\ 3)H = \{(1\ 2\ 3), (1\ 3)\}$ $(1\ 3\ 2)H = \{(1\ 3\ 2), (2\ 3)\}$ So there are 3 distinct cosets.
 - (b) $G = \mathbb{Z}_4 \times \mathbb{Z}_4$, $H = \langle ([1]_4, [1]_4) \rangle$.

Since distinct cosets are disjoint, this can cut our search space down a lot.

$$e + H = \{([0]_4, [0]_4), ([1]_4, [1]_4), ([2]_4, [2]_4), ([3]_4, [3]_4)\}$$

$$([1]_4, [0]_4) + H = \{([1]_4, [0]_4), ([2]_4, [1]_4), ([3]_4, [2]_4), ([0]_4, [3]_4)\}$$

$$([2]_4, [0]_4) + H = \{([2]_4, [0]_4), ([3]_4, [1]_4), ([0]_4, [2]_4), ([1]_4, [3]_4)\}$$

$$([3]_4, [0]_4) + H = \{([3]_4, [0]_4), ([0]_4, [1]_4), ([1]_4, [2]_4), ([2]_4, [3]_4)\}$$

That gives us 4 cosets, each with 4 elements in them, giving 16 total elements. That covers all the elements in $\mathbb{Z}_4 \times \mathbb{Z}_4$, so we know no more distinct cosets exists.

- 4. For the group G and the subgroup H, decide whether H is a normal subgroup of G or not.
 - (a) $G = S_3$, $H = \{e, (1\ 2)\}$

It is not since $(2\ 3) \in G$ and $(1\ 2) \in G$ is a counter example. The inverse of $(2\ 3)$ is itself. So $(2\ 3)(1\ 2)(2\ 3) = (1\ 3) \notin H$. So H is not a normal subgroup of G.

(b) $G = S_4$, $H = A_4$

Proof. Let $g \in G$ and $h \in H$.

Let us represent g and h as transpositions.

 $g = \tau_1 \dots \tau_n$ and $h = \tau'_1 \dots \tau'_{2k}$. h has 2k transpositions since $h \in A_4$.

Since the inverse of transpositions is just the order reversed, we get $g^{-1} = \tau_n \dots \tau_1$. So then $ghg^{-1} = (\tau_1 \dots \tau_n)(\tau'_1 \dots \tau'_{2k})(\tau_n \dots \tau_1)$.

 ghg^{-1} has n+2k+n=2(n+k) transpositions, which is an even amount.

So $ghg^{-1} \in H$, making H a normal subgroup.

- 5. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$, and let $H = \langle ([1]_4, [0]_6) \rangle$. Consider the factor group G/H.
 - (a) What is the order of the element ([1]₄, [2]₆) as an element of G?
 [1]₄ has order 4 and [2]₆ has order 3, so the order of ([1]₄, [2]₆) will be the lcm(3,4), which is 12.
 - (b) What is the order of the element ([1]₄,[2]₆) + H as an element of G/H?

 To find the order of the element, want to find the smallest n s.t. $n \cdot (([1]_4,[2]_6) + H)$ is the identity of G/H, which is e + H = H.

```
 \begin{aligned} &(([1]_4,[2]_6)+H)\neq H.\\ &(([1]_4,[2]_6)+H)+(([1]_4,[2]_6)+H)=(([2]_4,[4]_6)+H)\neq H.\\ &(([1]_4,[2]_6)+H)+(([1]_4,[2]_6)+H)+(([1]_4,[2]_6)+H)=(([2]_4,[4]_6)+H)+\\ &(([1]_4,[2]_6)+H)=(([3]_4,[0]_6)+H)=H \text{ since } ([3]_4,[0]_6)\in H.\\ &\text{So the order is } 3. \end{aligned}
```