EXERCISE 8 Exploration and Bandits

Tue Herlau tuhe@dtu.dk

25 March, 2022

Objective: Today's exercises will deal with a core issue in reinforcement learning, known as the exploration-exploitation dilemma. To introduce the topic, we start by considering a slightly modified (nonstationary) version of the standard (stationary) k-armed bandit problem. You'll implement your own agents and observe how different approaches to balancing exploration and exploitation perform in this setting. (47 lines of code)

Material: Obtain exercise material from our gitlab repository at https://gitlab.gbar.dtu.dk/02465material/02465students

Contents

1	Getting started (bandits.py) 1.1 Running agents and the testbed	2
2	The ε -greedy agent (simple_agents.py)	4
3	<pre>Upper Confidence Bound (UCB) (ucb_agent.py)</pre>	5
4	Gradient bandits (gradient_agent.py) *	6
5	A nonstationary bandit problem (nonstationary.py) *	7
6	The grand bandit race (grand_bandit_race.py) **	8

1 Getting started (bandits.py)

My experience is that Bandits can feel a bit disconnected from the rest of [SB18]. This is really a shame, since bandits are the primary mechanism by which the agent explores. To enforce this connection, we will therefore implement Bandits using the same Agent / Environment -distinction we are have already seen. Specifically:

• The bandit is the *environment* (i.e. the *slot machine*) where your actions corresponding to pulling a particular arm (labeled from 0 to k-1) and get a reward. There are two specific things to keep in mind:

- The reset-function has to completely reset the environment, i.e. it will randomize which arm is the optimal arm.

- For plotting, we want to track the average regret, which is defined as the expected difference in reward between the optimal arm and the currently selected arm. I.e., if the regret is zero, we have selected an optimal arm. Since only the bandit-environment knows which arm is optimal, we have to compute it in the environment.

To simplify this, our bandit-environment will all inherit from the same BanditEnvironment (defined below) and simply implement the reset and bandit_step methods:

```
# bandits.py
1
     class BanditEnvironment(Env):
2
        def __init__(self, k):
3
4
            super().__init__()
5
            self.observation_space = Discrete(0) # Empty observation space (no observations)
6
            self.action_space = Discrete(k)
                                                  # The arms labelled 0,1,\ldots,k-1.
7
             self.k = k # Number of arms
8
9
         def reset(self):
             """ You should extend this method. Use it to reset all internal parameters of the environment;
10
             \hookrightarrow i.e. shuffle best arm etc. """
11
            pass
12
13
         def bandit_step(self, a):
14
             You should extend this method. It should return the reward and average_regret.
15
             The 'reward' is the reward from pulling arm a, and 'average_regret' is the regret. Once done, the
16
             'step'-function will be automatically defined (see below) """
17
             reward = 0 # Compute the reward associated with arm a
18
             regret = 0 # Compute the regret, by comparing to the optimal arms reward.
19
             return reward, regret
20
21
         def step(self, action):
22
             """ We also return the average regret. Average regret = 0 means the optimal arm was chosen.
23
             We return it as a dict because this is the recommended way to pass extra information from the
24
             environment in openai gym. The train(env, agent,...) method allows us to gather/use the
25
         information again. """
26
             reward, average_regret = self.bandit_step(action)
27
             info = {'average_regret': average_regret}
28
             return None, reward, False, info
```

• The agent will just be our regular Agent class, where the policy function (def pi(s,t):) should ignore s and return the arm to pull:

$$\pi: \emptyset \mapsto \{0, 1, \dots, k-1\}.$$

1.1 Running agents and the testbed

Since a bandit is just a special kind of agent we can train it using the methods we have already seen. As a first example, we will instantiate a bandit environment and plot the reward obtained over 500 time steps:

Figure 1: Simple bandit examples

```
# bandit_example.py
from irlc import Agent, train, savepdf
from irlc.ex08.bandits import StationaryBandit
bandit = StationaryBandit(k=10) # A 10-armed bandit
agent = Agent(bandit) # Recall the agent takes random actions
_, trajectories = train(bandit, agent, return_trajectory=True, num_episodes=1, max_steps=500)
plt.plot(trajectories[0].reward)
plt.xlabel("Time step")
plt.ylabel("Reward per time step")
```

This code should be familiar from the previous weeks, and the result can be found in fig. 1 (left). This plot is not very informative at all since the reward is just random. To get closer to the plots in [SB18], we need to compute the regret, and average the reward over multiple runs where the optimal arm is reset. A more elaborate example show 10 runs and plot the accumulated regret (see fig. 1 (right)):

```
# bandit_example.py
agent = Agent(bandit) # Recall the agent takes random actions
for i in range(10):
    _, trajectories = train(bandit, agent, return_trajectory=True, num_episodes=1, max_steps=500)
    regret = np.asarray([r['average_regret'] for r in trajectories[0].env_info])
    cum_regret = np.cumsum(regret)
    plt.plot(cum_regret, label=f"Episode {i}")
plt.legend()
plt.xlabel("Time step")
plt.ylabel("Accumulated Regret")
```

In our real experiments, we will be using the so-called 10-armed-testbed as described in [SB18]. The 10-armed testbed is more or less what you have already seen, but with a few niceties:

- The 10 regret-lines should be averaged into a single line
- It allows easy plotting of multiple bandit-algorithms in one plot

It saves results as they are computed so plots can happen quickly

Caching results is very helpful in machine learning, but it can a pain when you develop your methods. You can disable cache using use_cache = False (see exercise scripts) and delete all cached results by removing the ex08/cache directory. The following example illustrate what it looks like in practice:

```
# simple_agents.py
env = StationaryBandit(k=10)
agents = [BasicAgent(env, epsilon=.1), BasicAgent(env, epsilon=.01), BasicAgent(env, epsilon=0) ]
eval_and_plot(env, agents, num_episodes=100, steps=1000, max_episodes=150, use_cache=use_cache)
savepdf("bandit_epsilon")
plt.show()
```

This code set up three different agents (in this case we vary the parameter <code>epsilon</code>), test them for 100 episodes, and plot the average performance. The parameter <code>max_episodes</code> control the maximum number of episodes to compute, i.e. if you run the script again it will only compute an additional 50 episodes and show results of all 150 runs, and if you run it a third time it will compute no additional episodes but show all 150 results. The result is shown in problem 1.

Warning: Remember to reset your agent Your bandit agent is supposed to learn the best arm in the current environment. Since the environment is randomized after each episode, the bandit algorithm too has to reset itself. The way this is handled is in the policy-function: Whenever the agent is in time-step 0, it should reset itself and train anew:

```
# simple_agents.py

def pi(self, s, t=None):

""" Since this is a bandit, s=None and can be ignored, while k refers to the

time step in the current episode """

if t == 0:

# At step 0 of episode. Re-initialize data structure.

self.Q = np.zeros((self.k,))

self.N = np.zeros((self.k,))

# compute action here
```

2 The ε -greedy agent (simple_agents.py)

Our first objective will be to re-produce the results in [SB18, Section 2.3] for the epsilon-greedy agent using the 10-armed-testbed with the **simple bandit agent** described in the box in [SB18, Section 2.4]. The testbed environment will be implemented as the class StationaryBandit in bandits.py.

Problem 1 *The first bandits*

Implement the basic, stationary environment and the epsilon-greedy basic agent to test an epsilon-greedy bandit strategy. When done, you should get a plot showing the influence of (ε -greedy exploration)

Info: When done, you should get the same output as in [SB18]

3 Upper Confidence Bound (UCB) (ucb_agent.py)

In contrast to the random exploration we've seen so far, the UCB method provides a systematic approach by taking into account the uncertainty about the underlying probability distributions of the levers. This takes into account that actions that are less explored have a reasonably high potential for optimality and they're as a consequence picked more often initially.

Problem 2 *UCB* action potential

Implement the UCB bandit algorithm and compare it against an epsilon-greedy bandit algorithm. When done, you should re-produce [SB18, Fig. 2.4]

4 Gradient bandits (gradient_agent.py) ★

Next, let's implement the gradient bandit algorithm in order to re-produce [SB18, Fig. 2.5] where the bandit problem is assumed to (optionally) include a baseline reward of four.

Problem 3 Gradient Bandits

Update the simple bandit environment to include the baseline if you have not already done so. Then implement the gradient bandit algorithm by picking actions with probability [SB18, Eqn. (2.11)] and update the action preference vector using [SB18, Eqn. (2.12)] during training.

Info: When done, you should get the same output as in [SB18]

Evaluated on StationaryBandit_4 for 100 episodes

5 A nonstationary bandit problem (nonstationary.py) **★**

This exercise is based on [SB18, Exercise 2.5]. Implement the new non-stationary bandit class which changes the mean of the reward distribution by adding a small normally distributed variable to each coordinate which has mean 0 and standard deviation of 0.01.

When done, implement a new bandit agent which should be similar to the basic one described in [SB18, Section 2.4], but with moving average α parameter as described in [SB18, Eqn. (2.3)] which allows it to forget the past and therefore adapt.

We will use 10'000 time steps, but it is recommended you start out with less runs/steps first to test your methods.

Problem 4 Nonstationary bandits (Ex. 2.5)

Solve [SB18, Exercise 2.5] using the hints above. We will use a few more values of α , but feel free to only try one value.

6 The grand bandit race (grand_bandit_race.py) ★★

Let's try to summarize what we have seen today by comparing all our agents; note this time around the cache can be turned on.

Problem 5 Big comparison

Complete the script to run all bandit algorithms on the principal settings we have seen today. It will take some time, so consider using the cache system.

References

[SB18] Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, second edition, 2018. (See **sutton2018.pdf**).