Архитектура ЭВМ

Лектор: к.т.н., доцент, Попов Алексей Юрьевич

Цель дисциплины:

•получить знания и навыки, необходимые для проектирования и эффективного использования современных аппаратных вычислительных средств.

Задачами дисциплины является изучение:

- •принципов организации ЭВМ;
- •методики проектирования ЭВМ и устройств, их составляющих.

ЛИТЕРАТУРА

- 1. Угрюмов Е. П. Цифровая схемотехника: Учеб. Пособие для вузов. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2004. 800 с.: ил.
- 2. Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. СПб.: Питер, 2004. 668 с.: ил.
- 3. Каган Б.М. Электронные вычислительные машины и системы. М.: Энергоатомиздат, 1991.

План проведения теоретических и практических занятий:

Семестр	Теоретические занятия	Лабораторные работы	Вид отчетности
4	•Вводная часть •Арифметические основы ЭВМ •Логические основы ЦВТ •Элементы и узлы ЭВМ •Организация памяти ЭВМ	 Исследование работы триггеров Исследование работы регистров Исследование работы счетчиков. Исследование работы мультиплексоров. 	зачет
5	•Принципы построения и архитектура ЭВМ •Процессорные устройства •Организация ввода вывода •Вычислительные системы	•Разработка радиоэлектронной аппаратуры на основе микроконтроллеров ARM7 TDMI •Синхронизация микроконтроллеров ARM7 TDMI и управление таймерами •Система прерываний микроконтроллера микроконтроллера и управление интерфейсом RS232. •Организация памяти конвейерных суперскалярных электронных вычислительных машин •Практикум: Проектирование систем на кристалле на основе ПЛИС	зачет

<u>І. Введение</u>

История развития вычислительной техники.

Механические вычислительные устройства.

Абак

Машина Паскаля Машина Лейбница Машина Бэбиджа Современные механические машины

Электромеханические счетные машины Машины Конрада Цузе (Z1, Z2, Z3, Z4)

- Z1 полностью механическая машина (1936);
- Z2 использование реле в арифметическом устройстве (1939);
- Z3 и Z4 электромеханические машины с механической памятью (1941 и 1945).

Машина Z4

Поколения электронных вычислительных машин

Первое поколение ЭВМ (с конца 30-х до середины 50-х)

Поколение ЭВМ

Элементная база

Тип основного запоминающего устройства Представители классов ЭВМ Языки программи-рова ния Программное обеспечение Средства связи с

пользователем

I (с конца 30-х до середины 50-х) Электро-магнит ные реле; электронные лампы

Линии задержки на электронные лучевых трубках, Ферритовые сердечники (\sim 2¹²-2¹⁶)

Калькуляторы (ABC, <u>ENIAC</u>), Большие ЭВМ (MARK I, EDVAC, UNIVAC, <u>БЭСМ,</u> МЭСМ, Стрела, Минск, IAS) Ручная коммутация, Машинные коды Ассемблер

Индикаторы, Пульт управления, Перфокарты

3BM MARK I

ЭВМ ENIAC

Ферритовые сердечники

Второе поколение ЭВМ (с середины 50-х до середины 60-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программиров ания	Программное обеспечение	Средства связи с пользователем
II (с середины 50-х до середины 60-х)	Транзисторы	Ферритовые сердечники (до 2 ¹⁹)	Малые и средние ЭВМ (БЭСМ-4, Урал-14, Минск-2, Днепр), Большие ЭВМ(ТRADIAC, IBM 7030, IBM 7090, TX-O, БЭСМ-2,3)	Фортран, Алгол, Кобол	Компиляторы, автоматизирова нные системы управления, диспетчеры	Индикаторы, Пульт управления, Перфокарты, Перфоленты

ЭВМ БЭСМ-4

Третье поколение ЭВМ (с середины 60-х до середины 70-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи- рования	Программное обеспечение	Средства связи с пользователем
III (с середины 60-х до середины 70-х)	Интегральные схемы малой и средней степени интеграции	Полупроводни-ковые ЗУ на интегральных схемах (до 2 ²⁵)	Мини и микро-ЭВМ (Мир-1, М220), Средние и большие универсальные ЭВМ (ILLIAC IV, <u>CDC6600</u> , CDC7600, IBM 360, EC ЭВМ, CM ЭВМ, <u>БЭСМ-6</u>)	Фортран, Алгол, В, С	ОС (UNIX, IBM), СУБД, САПР, Пакеты прикладных программ	Алфавитно-цифр овые дисплеи

ЭВМ БЭСМ-6

Четвертое поколение ЭВМ (с середины 70-х до середины 80-х)

Программное обеспечение Поколение Элементная база Представители Тип основного Языки Средства связи ЭВМ классов ЭВМ программизапоминающего устройства рования пользователем IV Графические Графические Интегральные Полупроводниковые Персональные Пролог, схемы большой и ЗУ на сверх больших ОС,Среды компьютеры Фортран, С, дисплеи, (с середины сверхбольшой интегральных (Intellec8, IBM Паскаль визуальной клавиатура, 70-х до PC/XT/AT, Sinclair схемах (до 228) разработки, степени середины 80-х) МЫШЬ Spectrum), Средние CATIP. интеграции и Больши́е ЭВМ Системы (Сгау, Эльбрус-1,2,3) программиров ания, Игры

Intellec8 (Intel 8080)

Sinclair Spectrum

Пятое поколение ЭВМ (с середины 80-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи- рования	Программное обеспечение	Средства связи с пользователем
V (с середины 80-х)	Интегральные схемы сверхбольшой степени интеграции	Полупроводниковые ЗУ на сверх больших интегральных схемах (до ~2^32)	ПК на универсальных конвейерных МП (IA 32, PowerPC), Средние большие ЭВМ с массовым параллелизмом (серия IBM Mainframes, Cray, HP, DEC)	Языки с ООП, Языки параллельн ого программир ования (MPI), Специализи рованные языки (VHDL, Perl, PHP, SQL и т.д.)	Мультимедиа, WWW	Графические дисплеи, клавиатура, мышь, звук

Классификация ЭВМ

Классификация ЭВМ по назначению: Общего назначения

- Супер ЭВМ
- Минисупер ЭВМ
- Мэйнфреймы
- Серверы
- Рабочие станции
- Персональные компьютеры
- Ноутбуки
- Портативные компьютеры
- ...

Специализированные

- - -

Классификация ЭВМ по структуре:

- Однопроцессорные
- Многопроцессорные

<u>Классификация ЭВМ по режимам</u> работы:

- Однопрограммные
- Мультипрограммные
- Мультипрограммные в составе систем
- ЭВМ в системах реального времени

<u>Классификация ЭВМ по количеству</u> <u>потоков команд и данных:</u>

- ЭВМ с одним потоком команд и одним потоком данных (ОКОД, SISD);
- ЭВМ с одним потоком команд и многими потоками данных (ОКМД, SIMD);
- ЭВМ с многими потоками команд и одним потоком данных (МКОД, MISD);
- ЭВМ с многими потоками команд и многими потоками данных (МКМД, МІМD).

ОКОД, SISD

ОКМД, SIMD

MKOД, MISD

MKMД, MIMD

Основные характеристики ЭВМ

- •Эффективность
- •Производительность
- •Надежность
- •Стоимость
- •Энергопотребление

Общий коэффициент эффективности

$$\ni := \frac{P}{C_{\ni BM} + C_{\ni \kappa c n j y a \tau a \downarrow u u}}$$

$$\mathfrak{I}' := \frac{P}{C_{\mathfrak{I}}}$$

$$\exists := \frac{P \cdot K_{u}}{C_{\exists BM} + C_{\exists \kappa c n, y a t a u u}}$$

Э'

- Эффективность без учета эксплуатационных издержек.

Эн

- Эффективность с учетом эксплуатационной надежности.

Производительность ЭВМ

$$P := \frac{\sum_{s=1}^{n} K_{s}}{\sum_{s=1}^{n} K_{s} \cdot t_{s}}$$

K

- Весовой коэффициент задачи S ,
- Время выполнения задачи S .

Единицы измерения производительности:

MIPs = 10⁶ целочисленных операций в секунду.

MFlops = 10⁶ операций с плавающей запятой в секунду.

Закон Мура

Число транзисторов на кристалле будет удваиваться каждые 24 месяца

CPU Transistor Counts 1971-2008 & Moore's Law

Список наиболее производительных ЭВМ (11.2013)

Параметры: Количество процессоров; Максимальная производительность Rmax (TFlops); Пиковая производительность Rpeak (TFlops); Рассеиваемая мощность (KW).

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,659.9
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
9	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972
10	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM	147,456	2,897.0	3,185.1	3,422.7

Список наиболее производительных ЭВМ (06.2012, продолжение)

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
37	Moscow State University - Research Computing Center Russia	Lomonosov - T-Platforms T-Blade2/1.1, Xeon X5570/X5670 /E5630 2.93/2.53 GHz, Nvidia 2070 GPU, PowerXCell 8i Infiniband QDR T-Platforms	78,660	901.9	1,700.2	2,800
84	Joint Supercomputer Center Russia	MVS-10P - RSC Tornado, Xeon E5-2690 8C 2.900GHz, Infiniband FDR, Intel Xeon Phi SE10X RSC Group	28,704	375.7	523.6	222.7
127	South Ural State University Russia	RSC Tornado SUSU - RSC Tornado, Xeon X5680 6C 3.330GHz, Infiniband QDR, Intel Xeon Phi SE10X RSC Group	28,032	288.2	473.6	294
277	IT Services Provider Russia	Cluster Platform 3000 BL460c Gen8, Xeon E5-2660 8C 2.200GHz, Gigabit Ethernet Hewlett-Packard	18,032	160.9	317.4	
487	Joint Supercomputer Center Russia	MVS-100K - Cluster Platform 3000 BL460c/BL 2x220/SL390, Xeon E5450/5365/X5675 4C 3.000GHz, Infiniband DDR, NVIDIA 2090 Hewlett-Packard	13,004	119.9	227.9	

Application Area / Systems June 2011

Architecture - Systems Share

Processor Family / Systems
June 2011

Segments - Systems Share

Operating system Family - Systems Share

II. Арифметические основы ЭВМ

<u>Системой счисления</u> называется совокупность правил для представления чисел с помощью символов (цифр).

Позиционная система счисления:

$$(...a_3a_2a_1a_0.a_{-1}a_{-2}a_{-3}...) = ... + a_3b^3 + a_2b^2 + a_1b^1 + a_0 + a_{-1}b^{-1} + a_{-2}b^{-2} + a_{-3}b^{-3}$$

Системы счисления, используемые в ЭВМ:

- Двоичная (0,1)
- Десятичная (0,...,9)
- Восьмеричная (0,...,7)
- Шестнадцатиричная (0,...,9,A,B,C,D,E,F)
- Двоично-десятичная (0000,...,1001)
- Шестидесятиричная (0,...,59)
- Троичная (-1,0,1)

Преобразование из двоичной системы счисления в десятичную:

$$1011.01_2 = 1*2^3 + 0*2^2 + 1*2^1 + 1 + 0*2^{-1} + 1*2^{-2} = (8 + 2 + 1 + 0.25)_{10} = 11.25_{10}$$

Преобразование из двоичной системы счисления в восьмеричную:

$$10111101_2 = 010$$
 111 $101 = 275_8$

Преобразование из двоичной системы счисления в шестнадцатиричную:

$$10111101_2 = 10 \ 11 \ 1101 = BD_{16}$$

Преобразование из десятичной системы счисления в двоичную:

Целая часть

$$17,95_{10} = 10001,11110..._{2}$$

Дробная часть

	×		.95 2
Старший		1	.90
разряд	×		2
	×	1	.80
	^		2
		1	.60
	× _		2
		1	.20
Младший	X		2
разряд	_	0	.40
	^		

Двоичная арифметика

25

Архитектура ЭВМ

Прямой, обратный и дополнительный коды

Прямой КОД

$$A-B=A+(-B)$$

$$G_{np} = \begin{cases} G, \\ A+IGI \end{cases}$$

 $G_{np} = \left\{ egin{array}{ll} G, & \mbox{при G}>=0 & G-n\mbox{-разрядное число;} \ A-\mbox{-вес старшего разряда} \ A+|G|, & \mbox{при G}<=0 & A=2^{n-1}\mbox{ для целых и A=1 для дробей} \end{array}
ight.$

Положительные числа

$$10_{10} = 01010_2$$

 $0.725_{10} = 0.110_2$

$$-10_{10} = 11010_2 = 10000 + 01010$$

 $-0.725_{10} = 1.110_2 = 1.000 + 0.110$

Обратный код

2013

$$G_{obp} = \begin{cases} G, & \text{при } G>=0 \\ B-|G|, & \text{при } G<=0 \end{cases}$$

G – n-разрядное число;

В – наибольшее число без знака

 $B = 2^{n}-1$ для целых и $B=2-2^{-(n-1)}$ для дробей

Положительные числа

$$10_{10} = 01010_2$$

 $0.725_{10} = 0.110_2$

$$-10_{10} = 10101_2 = 11111-01010$$

 $-0.725_{10} = 1.001_2 = 1.111-0.110$

Дополнительный код

$$G_{\text{доп}} = \begin{cases} G, & \text{при } G >= 0 \\ C - |G|, & \text{при } G < 0 \end{cases}$$

Положительные числа

$$10_{10} = 01010_2$$

 $0.725_{10} = 0.110_2$

G – n-разрядное число;

С – наибольшее число без знака + 1

 $C = 2^n$ для целых и C = 2 для дробей

Отрицательные числа

$$-10_{10} = 10110_2 = 100000-01010$$

 $-0.725_{10} = 1.010_2 = 10.000-0.110$

Переполнение при сложении чисел в дополнительном коде определяется, если перенос в знаковый разряд не вызывает перенос из знакового разряда, и перенос из знакового разряда не вызван переносом в знаковый

•<u>Числа в ЭВМ:</u>

Числа с фиксированной запятой (позиция разделителя дробной и целой части заранее определена)

Числа с плавающей запятой (позиция разделителя определяется с помощью порядка числа)

Числа с плавающей запятой: Пример:

$$X = S^{P*q}$$
 0,0110000 * 10⁰¹¹ ₂= 0,375 * 2³₁₀=

$$q$$
 – мантисса числа X ; =0.0011000*10 $^{100}_{2}$ =0.1100000*10 $^{010}_{2}$ =0.

смещенный код, в котором знаковый разряд

инвертирован. Это позволяет легко сравнивать

порядки чисел

У Ч.П.З. Большой диапазон представления

Арифметика над Ч.П.З. более сложная

[•]Сравнение числе с Ф.З и с П.З.:

III. Логические основы цифровой вычислительной техники

Любую ЭВМ можно рассматривать как сложное устройство, на вход которого подается входная информация в определенной последовательности. При этом на выходе должна формироваться ожидаемая выходная информация

•ЭВМ состоит из взаимодействующих устройств, задачей которых является преобразование входной информации в выходную.

Такие устройства бывают двух типов: Комбинационные схемы

Цифровые автоматы

Комбинационные схемы

Цифровые автоматы

Цифровые автоматы представляют собой комбинационные схемы и устройства хранения (память).

Работа цифровых автоматов происходит в соответствии с частотой поступления входного слова. Для того, чтобы сигналы поступали одновременно, срабатывание ЦА происходит по синхросигналу

Цифровые автоматы

Для задания ЦА необходимо определить:

- •Входной алфавит: множество значений x(t).
- •Выходной алфавит: множество значений y(t).
- •Алфавит состояний: Q.
- •Начальное состояния Q₀.
- •Функция переходов A(Q,x).
- •Функция выходов B(Q, x).

Автомат Мили

Автомат Мура

$$Q(t+1) = A(Q(t),x(t)).$$

 $Y(t+1) = B(Q(t),x(t)).$

Схема автомата Мили

Схема автомата Мура

Проектирование комбинационных схем

Проектирование комбинационных схем заключается в определении выходного слова в виде функции алгебры логики от входного слова

Дизъюнктивной (конъюнктивной) нормальной формой называется равносильная ей формула, представляющая собой дизъюнкцию (конъюнкцию) элементарных конъюнкций (дизъюнкций).

Любую функцию можно образовать посредством базисных операций: Отрицания, дизъюнкции и конъюнкции.

ДНФ и КНФ не являются самым простым способом задания ФАЛ. Для минимизации нормальных форм применяют карты Карно

Логические функции

Α	0	0	1	1	Обозначение функции	Название функции
В	0	1	0	1		
	0	1	1	1	AUB	Дизъюнкция
	0	0	0	1	$A \cap B$	Конъюнкция
	1	1	0	0	_A	Отрицание А
	0	0	1	0	$A \rightarrow B$	Запрет ¯А→ В
	0	1	0	0	$^{-}B\rightarrow A$	Запрет ¯А→ В
	0	1	1	0	A ⁻ B	Исключающее ИЛИ
	1	0	0	0	A↓B	Стрелка Пирса ИЛИ-НЕ
	1	0	0	1	A~B	Равнозначность
	1	0	1	1	B→A	Импликация от В к А
	1	1	0	1	A→B	Импликация от А к В
	1	1	1	0	A/B	Штрих Шеффера И-НЕ