Introduction to survival analysis

Jorge N. Tendeiro

Department of Psychometrics and Statistics Faculty of Behavioral and Social Sciences University of Groningen

j.n.tendeiro@rug.nl

@www.jorgetendeiro.com

O jorgetendeiro/Seminar-2020-Survival-Analysis

Plan for today

Gentle introduction to survival analysis.

Source:

Harrell, F. E., Jr. (2015). Regression Modeling strategies, 2nd edition.

Springer

Chapters:

17, 18, and 20.

Survival analysis (SA)

Data:

For which the time until the event is of interest.

► This goes beyond *logistic regression*, which focuses on the *occurrence* of the event.

Outcome variable:

- ightharpoonup T = Time until the event.
- ▶ Often referred to as *failure time*, *survival time*, or *event time*.

Examples

Survival time: Time until...

▶ death, desease, relapse.

Failure time: Time until...

▶ product malfunction.

Event time: Time until...

▶ graduation, marriage, divorce.

Advantages of SA over typical regression models

► SA allows modeling units that did not fail up to data collection (*censored on the right* data).

- Regression could be considered to model the expected survival time. But:
 - \checkmark Survival time is often not normally distributed.
 - ✓ P(survival > t) is often more interesting than $\mathbb{E}(\text{survival time})$.

Censoring

- ▶ For some subjects, the event did not occur up to the end of data collection.
- ► These data are right-censored.

Define random variables for the ith subject:

- $ightharpoonup T_i = \text{time to event}$
- $ightharpoonup C_i = censoring time$
- ▶ e_i = event indicator = $\begin{cases} 1 & \text{if event is observed } (T_i \leq C_i) \\ 0 & \text{if event is not observed } (T_i > C_i) \end{cases}$
- $ightharpoonup Y_i = \min(T_i, C_i) = \text{what occurred first (failure or censoring)}$

Variables $\{Y_i, e_i\}$ include all the necessary information.

Typical data set

T_i	C_i	Y_i	e_i
5	10	5	1
4	12	4	1
13+	13	13	0
5	10	5	1
15+	15	15	0

Observe the flexibility of SA data:

- ► Subjects may join the study at different moments.
- ► Censoring times may differ among subjects.

 $\{Y_i, e_i\}$ does include all the necessary information.

Three main functions

Recall that the outcome variable is T = time until event.

► Survival function:

$$S(t) = P(T > t) = 1 - F(t),$$

where $F = P(T \le t)$ is distribution function of T.

► Cumulative hazard function:

$$\Lambda(t) = -\log(S(t))$$

► Hazard function:

$$\lambda(t) = \Lambda'(t)$$

Survival function

$$S(t) = P(T > t) = 1 - F(t)$$

Example:

If event = death, then S(t) = prob. that death occurs after time t.

Properties:

- ► $S(0) = 1, S(\infty) = 0.$
- ► Non-increasing function of *t*.

Cumulative hazard function

$$\Lambda(t) = -\log(S(t))$$

Idea:

Accumulated risk up until time t.

Properties:

- $\Lambda(0) = 0.$
- ► Non-decreasing function of *t*.

Hazard function

$$\lambda(t) = \Lambda'(t)$$

Idea:

Instantaneous event rate at time t.

Relation between the three functions

All functions are related:

Any two functions can be derived from the third function.

▶ The three functions are equivalent ways of describing the same random variable (T = time until event).

More generally, all the following functions give mathematically equivalent specifications of the distribution of *T*:

- \triangleright F(t): Distribution function
- \blacktriangleright f(t): Density function
- \triangleright S(t): Survival function
- \blacktriangleright $\lambda(t)$: Hazard function
- \blacktriangleright $\Lambda(t)$: Cumulative hazard function.

Examples

Next are two primary examples of parametric survival distributions:

- ▶ the exponential distribution;
- ▶ the Weibull distribution.

These models (still) include no covariates, thus:

► Each subject in the sample is assumed to have the same distribution of *T*.

No formulas.

Instead: Let's plot.

Exponential survival distribution

Weibull survival distribution (I)

Weibull survival distribution (II)

Quantiles

Q: What is the time by which (100q)% of the population will fail?

A: Value t_q such that $F(t_q) = q$, or, equiv., $S(t_q) = 1 - q$.

In particular, median survival time = $t_{.50}$.

Expected failure time

(Note: *T* is skewed, so the mean is not the best summary. Better use median.)

Q: What is the expected failure time?

A: It is the area under the survival function.

