Math 3T03 - Topology

Sang Woo Park

January 16, 2018

Contents

1	Introduction to topology 1.1 What is topology?	
2	Functions	4
3	Relation	6
4	Finite and infinite sets	7
5	Toplogy	10

1 Introduction to topology

1.1 What is topology?

Definition 1.1 (Toplogy). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- $\bullet \ \varnothing \in \tau.$
- $X \in \tau$.
- The union of any collections of elements in τ is also in τ .
- THe intersection of any finite collection of elements in τ is also in τ .

Definition 1.2. (X,τ) is a topological space.

Definition 1.3. The elements of τ are called the open sets.

Example 1.1. Consider $X = \{a, b, c\}$. Is $\tau_1 = \{\emptyset, X, \{a\}\}$ a topology?

Proof. Yes, τ_1 is a topology. Clearly, $\emptyset \in \tau_1$ and $X \in \tau_1$ so it suffices to verify the arbitrary unions and finite intersection axioms.

Let $\{V_{\alpha}\}_{{\alpha}\in A}$ be a subcollection of τ_1 . Then, we want to show

$$\bigcup_{\alpha \in A} V_{\alpha} \in \mathsf{\tau}_1.$$

If $V_{\alpha} = \emptyset$ for any $\alpha \in A$, then this does not contribute to the union. Hence, φ can be omittied:

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\substack{\alpha \in A \\ V_{\alpha} \neq \emptyset}} V_{\alpha}.$$

If $V_{\alpha} = X$ for some $\alpha \in A$, then

$$\bigcup_{\alpha \in A} V_{\alpha} = X \in \mathsf{\tau}_1$$

and we are done. So we may assume $V_{\alpha} \neq X$ for all $\alpha \in A$. Similarly, if $V_{\alpha} = V_{\beta}$ for $\alpha \neq \beta$, then we can omit V_{β} from the union. Since τ_1 only contains \emptyset , X and $\{a\}$, we must have

$$\bigcup_{\alpha \in A} V_{\alpha} = \{a\} \in \mathsf{\tau}_1.$$

Similarly, if any element of $\{V_{\alpha}\}_{{\alpha}\in A}$ is empty, then

$$\bigcap_{\alpha \in A} V_{\alpha} = \varnothing \in \mathsf{\tau}_1.$$

We can therefore assume $V_{\alpha} \neq \emptyset$ for all $\alpha \in A$. Again, repetition can be ignored and any V_{α} that equals X can be ignored. Then,

$$\bigcap_{\alpha \in A} V_{\alpha} = \begin{cases} \{a\} \in \tau_1 \\ X \in \tau_1 \end{cases}$$

Example 1.2. Consider $X = \{a, b, c\}$. Is $\tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ a topology?

Proof. No. Note that $\{a\} \in \tau_2$ and $\{b\} \in \tau_2$ but $\{a\} \cup \{b\} = \{a,b\} \notin \tau_2$.

Example 1.3. Consider $X = \{a, b, c\}$. Then, $\tau_3 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ is a topology.

1.2 Set theory

Definition 1.4. If X is a set and a is an element, we write $a \in X$.

Definition 1.5. If Y is a subset of X, we write $Y \subset X$ or $Y \subseteq X$.

Example 1.4. Suppose X is a set. Then, *power set* of X is the set P(X) whose elements are all subsets of X. In other words,

$$Y \in P(X) \iff Y \subseteq X$$

Note that P(X) is closed under arbitrary unions and intersections. Hence, P(X) is a topology on X.

Definition 1.6. P(X) is the discrete topology on X.

Definition 1.7. The indiscrete (trivial) topology on X is $\{\emptyset, X\}$.

Definition 1.8. Suppose U, V are sets. Then, their union is

$$U \cup V = \{x | x \in U \text{ or } x \in V\}.$$

Note that if U_1, U_2, \dots, U_10 are sets, their union can be written as follows:

- $U_1 \cup U_2 \cup \cdots \cup U_{10}$
- $\bullet \bigcup_{k=1}^{10} U_k$
- $\bullet \bigcup_{k=\{1,2,\ldots,10\}} U_k$

Definition 1.9. Let A be any set. Suppose $\forall \alpha \in A$, I have a set U_{α} . The union of the U_{α} over $\alpha \in A$ is

$$\bigcup_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

Similarly, the intersection is

$$\bigcap_{\alpha \in A} U_{\alpha} = \{x | \exists \alpha \in A, x \in U_{\alpha}\}.$$

2 Functions

Definition 2.1. A function is a rule that assigns to element of a given set A, an element in another set B.

Often, we use a formula to describe a function.

Example 2.1. $f(x) = \sin(5x)$

Example 2.2. $g(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Definition 2.2. A rule of assignment is a subset R of the Cartesian product $C \times D$ of two sets with the property that each element of C appears as the first coordinate of at most one ordered pair belonging to R. In other words, a subset R of $C \times D$ is a rule of assignment if it satisfies

If
$$(c,d) \in R$$
 and $(c,d') \in R, d = d'$.

Definition 2.3. Given a rule of assignment R, we define the doamin of R to be the subset of C consisting of all first coordinates of elements of R:

$$domain(R) \equiv \{c \mid \exists d \in D \ni (c, d) \in R\}$$

Definition 2.4. The image set of R is defined to be the subset of D consisting of all second coordinates.

$$image(R) \equiv \{d \mid \exists c \in C \ni (c, d) \in R\}$$

Definition 2.5. A function is a rule of assignment R, together with a set that contains the image set of R. The domain of the rule of assignment is also called the domain of f, and the image of f is defined to be the image set of the rule of assignment.

Definition 2.6. The set B is often called the range of f. This is also referred to as the codomain.

If A = domain(f), then we write

$$f: A \to B$$

to indicate that f is a function with domain A and codomain B.

Definition 2.7. Given $a \in A$, we write $f(a) \in B$ for the unique element in B associated to a by the rule of assignment.

Definition 2.8. If $S \subseteq A$ is a subset of A, let

$$f(S)\{f(a) \mid a \in S\} \subseteq B.$$

Definition 2.9. Given $A_0 \subseteq A$, we can restrict the doamin of f to A_0 . The restriction is denoted

$$f|A_0 \equiv \{(a, f(a)) \mid a \in A_0\} \subseteq A \times B.$$

Definition 2.10. If $f: A \to B$ and $g: B \to C$ then $g \circ f: A \to C$ is defined to be

$$\{(a,c) \mid \exists b \in B \text{ s.t. } f(a) = b \text{ and } g(b) = c\} \subseteq A \times C.$$

Definition 2.11. A function $f: A \to B$ is called injective (or one-to-one) if f(a) = f(a') implies a = a' for all $a, a' \in A$.

Definition 2.12. A function $f: A \to B$ is called surjective (or onto) if the image of f equals B, i.e. f(A) = B., i.e. if, for every $b \in B$, there exists $a \in A$ with f(a) = b.

Definition 2.13. $f: A \rightarrow B$ is a bijection if it is one-to-one and onto.

Definition 2.14. If $B_0 \subseteq B$ is a subset and $f: A \to B$ is a function, then the preimage of B_0 under f is the subset of A given by

$$f^{-1}(B_0) = \{ a \in A \mid f(a) \in B_0 \}$$

Example 2.3. If B_0 is disjoint from f(A) then $f^{-1}(B_0) = \emptyset$.

3 Relation

Definition 3.1. A relation on a set A is a subset R of $A \times A$.

Given a relation R on A, we will write xRy "x is related to y" to mean $(x,y) \in R$.

Definition 3.2. An equivalence relation on a set is a relation with the following properties:

- Reflexivity. $xRx \text{ holds } \forall x \in A.$
- Symmetric. if xRy then yRx holds $\forall x, y \in A$.
- Transitive. if xRy and yRz then xRz holds $\forall x, y, z \in A$.

Definition 3.3. Given $a \in A$, let $E(a) = \{x \mid x \sim a\}$ denote the equivalence class of a.

Remark. $E(a) \subseteq A$ and it is nonempty because $a \in E(a)$.

Proposition 3.1. If $E(a) \cap E(b) \neq \emptyset$ then E(a) = E(b).

Proof. IAssume the hypothesis, i.e., suppose $x \in E(a) \cap E(b)$. So $x \sim a$ and $x \sim b$. By symmetry, $a \sim x$ and by transitivity $a \sim b$.

Now suppose that $y \in E(a)$. Then $y \sim a$ but we just saw that $a \sim b$ so $y \sim b$ and $y \in E(b)$. Hence, $E(a) \subseteq E(b)$. Likewise, we can show that $E(b) \subseteq E(a)$.

Definition 3.4. A partition of a set is a collection of pairwise disjoint subsets of A whose union is all of A.

Example 3.1. Consider $A = \{1, 2, 3, 4, 5\}$. Then, $\{1, 2\}$ and $\{3, 4, 5\}$ is a partition of A.

Proposition 3.2. An equivalence relation in a set determines a partition of A, namely the one with equivalence classes as subsets. Conversely, a partition¹ $\{Q_{\alpha}|\alpha\in J\}$ of a set A determines an equivalence relation on A by: $x\sim y$ if and only if $\exists \alpha\in J$ s.t. $x,y\in Q_{\alpha}$. The equivalence classes of this equivalence relation are precisely the subsets Q_{α} .

 $^{^1}$ Note that J is an index set: $Q_\alpha\subseteq A$ for each $\alpha\in J$ and $Q_\alpha\cap Q_\beta=\varnothing$ if $\alpha\neq\beta.$ Furthermore, $\cup_{\alpha\in J}=A.$

4 Finite and infinite sets

Definition 4.1. A nonempty set A is finite if there is a bijection from A to $\{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.

Remark. Consider $n, m \in \mathbb{Z}^+$ with $n \neq m$. Then, there is no bijection from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, m\}$.

Definition 4.2. Cardinality of a finite set A is defined as follows:

- 1. card(A) = 0 if $A = \emptyset$.
- 2. $\operatorname{card}(A) = n$ if there is a bijection form A to $\{1, 2, \dots, n\}$.

Note that \mathbb{Z}^+ is not finite. How would you prove this? A sneaky approach is that there is a bijection from \mathbb{Z}^+ to a proper subset of \mathbb{Z}^+ .

Consider the shift map:

$$S: \mathbb{Z}^+ \to \mathbb{Z}^+$$

where S(k) = k + 1. So S is a bijection from \mathbb{Z}^+ to $\{2, 3, ...\} \subset \mathbb{Z}^+$, a proper subset of \mathbb{Z}^+ . On the other hand, any proper sbset B of a finite set A with $\operatorname{card}(A) = n$ has $\operatorname{card}(B) < n$. In particular, there is no bijection from A to B. Therefore, \mathbb{Z}^+ is not finite.

Theorem 4.1. A non-empty set is finite if and only if one of the following holds:

- 1. \exists bijection $f: A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{Z}^+$.
- 2. \exists injection $f: A \rightarrow \{1, 2, ..., N\}$ for some $N \in \mathbb{Z}^+$
- 3. \exists surjection $g: \{1, ..., N\} \rightarrow A$ for some $N \in \mathbb{Z}^+$

Remark. Finite unions of finite sets are finite. Finite products of finite sets are also finite.

Recall that if X is a set, then

$$X^w = \pi_{n \in \mathbb{Z}^+} X = \{ (x_n) \mid x_n \in X \forall n \in \mathbb{Z}^+ \}$$

the set of infinite sequences in X.

If $X = \{a\}$ is a singleton, then X^w is also a singleton. Otherwise, if card(X) > 1, then X^w is an infinite set.

Example 4.1. Consider $X = \{0, 1\}$. Then, X^w is a set of binary sequences.

Definition 4.3. If there exists a bijection from a set X to \mathbb{Z}^+ , then X is said to be countably infinite.

Definition 4.4. Let A be a nonempty collection of sets. An indexing family is a set J together with a surjection $f: J \to A$. We use A_{α} to denote $f(a) \subseteq A$. So

$$\mathcal{A} = \{ A_{\alpha} \mid \alpha \in J \}$$

Most of the time, we will be able to use \mathcal{Z}^+ for the index set J.

Definition 4.5 (Cartesian product). Let $\mathcal{A} = \{A_i \mid i \in \mathbb{Z}^+\}$. Finite cartesian product is defined as

$$A_1 \times \cdots \times A_n = \{(x_1, \dots, x_n) \mid x_i \in A_i\}$$

It is a vector space of n tuples of real numbers.

Definition 4.6 (Infinite Cartesian product). Infinite Cartesian product \mathbb{R}^{ω} is an ω -tuple $x : \mathbb{Z}^+ \to \mathbb{R}$, i.e., a sequence

$$x = (x_i)_{i=1}^{\infty} = (x_1, x_2, \dots, x_n, \dots)$$

= $(x_i)_{i \in \mathbb{Z}^+}$

More generally, if $A = \{A_i \mid i \in \mathbb{Z}^+\}$. Then,

$$\prod_{i \in \mathbb{Z}^+} A_i = \{(a_i)_{i \in \mathbb{Z}^+} \mid a_i \in A_i\}.$$

Definition 4.7. A set A is countable if A is finite or it is countably infinite.

Theorem 4.2 (Criterion for countability). Suppose A is a non-empty set. Then, the following are equivalent.

- 1. A is countable
- 2. There is an injection $f: A \to \mathbb{Z}^+$
- 3. There is a surjection $g: \mathbb{Z}^+ \to A$

Theorem 4.3. If $C \subseteq \mathbb{Z}^+$ is a subset, then C is countable.

Proof. Either C is finite or infinite. If C is finite, it follows C is countable.

Assume that C is finite. We will define a bijection $h: \mathbb{Z}^+ \to C$ by induction. Let h(1) be the smallest element in C^2 . Suppose

$$h(1),\ldots,h(n-1)\in C$$

and are defined. Let h(n) be the smallest element in $C \setminus \{h(1), \dots h(n-1)\}$. (Note that this set is nonempty.)

We want to show that h is inejctive. Let $n, m \in \mathbb{Z}$ where $n \neq m$. Suppose n < m. So $h(n) \in \{h(1), \ldots, h(n)\}$ and

$$h(n) \in C \setminus \{h(1), h(2), \dots, h(m-1)\}.$$

So $h(n) \neq h(m)$.

We want to show that h is surjective. Suppose $c \in C$. We will show that c = h(n) for some $n \in \mathbb{Z}^+$. First, notice that $h(\mathbb{Z}^+)$ is not contained in $\{1, 2, \dots, c\}$

 $^{^2}$ $C \neq \emptyset$ and every nonempty subset of \mathbb{Z}^+ has a smallest elemnt

because $h(\mathbb{Z}^+)$ is an infinite set. Therefore, there must exists $n \in \mathbb{Z}^+$ such that h(n) > c. So let m be the smallest element with $h(m) \geq c$. Then for all i < m, h(i) < c. Then,

$$c \notin \{h(1), \dots, h(m-1)\}.$$

By definition, h(m) is the smallest element in

$$C \setminus \{h(1), \ldots, h(m-1)\}.$$

Then, $h(m) \leq c$. Therefore, h(m) = c.

Corollary 4.1. Any subset of a countable set is countable.

Proof. Suppose $A \subset B$ with B countable. Then, there exists an injection $f: B \to \mathbb{Z}^+$. The restriction

$$f|_A:A\to\mathbb{Z}^+$$

is also injective. Therefore, A is countable by the criterion.

Theorem 4.4. Any countable union of countable is countable. In other words, if J is countable and A_{α} is countable for all $\alpha \in J$, then $\bigcup_{\alpha \in J}$ is countable.

Theorem 4.5. A finite product of countable sets is countable.

Example 4.2. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

Note that a countable product of countable sets is not countable.

Example 4.3. Consider $X = \{0, 1\}$. Then, X^{ω} binary sequence is not countable.

Proof. Suppose $g: \mathbb{Z}^+ \to X^\omega$ is a function. We will show g is not surjective by contructing an element $y \neq g(n)$ for any $n \in \mathbb{Z}^+$.

Write $g(n) = (x_{n1}, x_{n2}, \dots) \in X^{\omega}$ for each $x_{ni} \in \{0, 1\}$. Define

$$y = (y_1, y_2, \dots)$$

where $y_i = 1 - x_{ii}$. Clearly, $y \in X^{\omega}$ but $y \neq g(n)$ for any n since $y_n = 1 - x_{nn} \neq x_{nn}$, the n-th entry in g(n).

Example 4.4. Let X be a set and $\{V_{\alpha}\}_{{\alpha}\in I}$ a collection of subsets of X. Show

$$\bigcup_{\alpha \in I} (X - V_{\alpha}) = X - \bigcap_{\alpha \in I} V_{\alpha}$$

Proof.

$$x \in \bigcup_{\alpha \in I} X - V_{\alpha} \iff \exists \alpha \in I, x \in X - V_{\alpha}$$

$$\iff \exists \alpha \in I, x \in X, x \notin V_{\alpha}$$

$$\iff x \in X, \exists \alpha \in I, x \notin V_{\alpha}$$

$$\iff x \in X, x \notin \bigcup_{\alpha \in I} V_{\alpha}$$

$$\iff x \in X - \bigcap_{\alpha inI} V_{\alpha}$$

5 Toplogy

Definition 5.1 (Toplogy). Let X be a set. A topology on X is a collection τ of subsets of X satisfying:

- $\bullet \ \varnothing \in \tau.$
- $X \in \tau$.
- If $\{V_{\alpha}\}_{{\alpha}\in I}\subseteq \tau$, then $\bigcup_{{\alpha}\in I}V_{\alpha}\in \tau$.
- If $\{V_1, \ldots, V_n\} \subseteq \tau$, then $\bigcap_{k=1}^n V_k inI$.

Remark. If τ is a topology, then $\{\emptyset, X\} \subseteq \tau$ and $\tau \subseteq \mathcal{P}(X)$, where \mathcal{P} is a power set.

Definition 5.2. Suppose τ, τ' are topologies on X. We say τ is coarser than τ' if $\tau \subseteq \tau'$.

Example 5.1. If X is a set and τ is a topology. Then, τ is coarser than the discrete topology, $\mathcal{P}(X)$, and finer than the trivial topology, $\{\emptyset, X\}$.

Note that if $\tau \subseteq \tau'$ and $\tau' \subseteq \tau$, then $\tau = \tau'$.

Example 5.2. Define τ_f to consist of the subsets U of X wiith the property that X - U is finite or all of X.

Lemma 5.1. τ_f is a topology on X. This is defined as the finite complement topology.

Proof. To show $\emptyset \in \tau_f$, notice that $X - \emptyset = X$. So $\emptyset \in \tau_f$. To show that $X \in \tau_f$, notice that $X - X = \emptyset$, which is finite. So $X \in \tau_f$.

To show that it is closed under arbitrary unions, suppose

$${V_{\alpha}}_{\alpha\in I}\subseteq \tau_f.$$

It suffices to show that $X - \bigcup_{\alpha \in I} V_{\alpha}$ is finite. For this, note

$$X - \bigcup_{\alpha \in I} V_{\alpha} = \bigcap_{\alpha \in I} (X - V_{\alpha}).$$

 $X - V_{\alpha}$ is finite so

$$\bigcap_{\alpha \in I} (X - V_{\alpha}) \subseteq X - V_{\alpha}'$$

for any $\alpha' \in I$ which implies $\bigcap_{\alpha \in I} X - V_{\alpha}$ is finite. For closure under finite intersections, let

$$\{V_1,\ldots,V_n\}\subseteq \mathsf{\tau}_f.$$

Then,

$$X - \bigcap_{k=1}^{n} V_k = \bigcup_{k=1}^{n} (X - V_k)$$

is a finite union of finite sets and so it is finite.

Example 5.3. Consider $X = \mathbb{R}$. Then, $\mathbb{R} - \{0\}$ is open in the finite complement topology. $\mathbb{R} - \{0, 3, 100\}$ is open in τ_f . Note that $(4, \infty)$ is not open in τ_f because its complement is not finite.