「はじめての数論」の回答例

yassu

平成29年1月1日

1 第1章の回答例

1.1 以下のプログラムによって, 3, 4番目の三角数は $1225 = 35^2$, $416 = 204^2$. 有効な方法は分からない.

こんな数はたぶん無限にある.

$\underline{1.2}$

$$1 = 1^{2},$$

$$1 + 3 = 4 = 2^{2},$$

$$4 + 5 = 9 = 3^{2},$$

$$9 + 7 = 16 = 4^{2},$$

$$16 + 9 = 25 = 5^{2}$$

などとなるから

$$\sum_{j=1}^{n} (2j-1) = n^2$$

が予想される.

1.3

三つ子素数は (3,5,7) に限ることを示す.

任意の自然数は $3l, 3l + 1, 3l + 2(l \in \mathbb{N})$ と表すことができる.

(p, p+2, p+4) を三つ子素数とする. このとき, ある自然数 l があって, p=3l, 3l+1, 3l+2 のいずれかで表される.

l=1 OZE, (p, p+2, p+4) = (3,5,7) vas.

 $l \neq 1$ のとき, 3l は素数ではないから, p = 3l + 1 もしくは 3l + 2 と表される.

p = 3l + 1 とすると, p + 2 = 3l + 3 = 3(l + 1) となって, これは素数ではないから不敵.

p=3l+2 とすると, p+2=3l+4, p+4=3l+6=3(l+2) となるから, p+4 は素数ではない.

以上によって, 三つ子素数は (3,5,7) に限る.

1.4 (a) $N^2 - 1$ が十数であるのは N = 2 のときに限る. なぜなら,

$$N^2 - 1 = (N - 1)(N + 1)$$

であり, N^2-1 が十数であるためには N-1=1 となる必要があるからである.

(b) おそらく無数に存在する. N によってそれぞれ調べてみると

$$N = 3 \Rightarrow N^2 - 2 = 7$$
; 素数,

$$N=4 \Rightarrow N^2-2=14=2\times 7,$$

$$N = 5 \Rightarrow N^2 - 2 = 23$$
; 素数,

$$N = 6 \Rightarrow N^2 - 2 = 34 = 2 \times 17,$$

$$N = 7 \Rightarrow N^2 - 2 = 47$$
; 素数.

$$N = 8 \Rightarrow N^2 - 2 = 62 = 2 \times 31,$$

$$N = 9 \Rightarrow N^2 - 2 = 79$$
; 素数,

$$N = 10 \Rightarrow N^2 - 2 = 98 = 2 \times 7^2$$
,

$$N = 11 \Rightarrow N^2 - 2 = 119,$$

$$N = 12 \Rightarrow N^2 - 2 = 142 = 2 \times 71$$
,

$$N = 13 \Rightarrow N^2 - 2 = 167$$
,

$$N = 14 \Rightarrow N^2 - 2 = 194 = 2 \times 97$$
,

$$N = 15 \Rightarrow N^2 - 2 = 253.$$

(c) $N^2 - 3$ の形の素数は多分無数に存在する.

最初の方から正の数を列挙してみると

$$N = 2 \Rightarrow 2^2 - 3 = 1$$
,

$$N = 3 \Rightarrow 3^2 - 3 = 6 = 2 \times 3$$
,

$$N = 4 \Rightarrow 4^2 - 3 = 13; \,$$
\$\text{\$\text{\$\text{\$\zeta\$}}\$} \text{\$\text{\$\zeta\$}}\$

$$N = 5 \Rightarrow 5^2 - 3 = 22 = 2 \times 11,$$

$$N = 6 \Rightarrow 6^2 - 3 = 33 = 3 \times 11,$$

$$N = 7 \Rightarrow 7^2 - 3 = 46 = 2 \times 23,$$

$$N = 8 \Rightarrow 8^2 - 3 = 61$$
; prime,

$$N = 9 \Rightarrow 9^2 - 3 = 78 = 2 \times 39,$$

$$N = 10 \Rightarrow 10^2 - 3 = 97$$
; prime

 N^2-4 の形の素数は5に限る. なぜなら

$$N^2 - 4 = (N-2)(N+2)$$

となるからである.

(d) 少なくとも平方数ではない.

1.5

n が偶数のとき: n=2m とおくと

$$1 + 2 + \dots + 2m = (2m+1) + ((2m-1) + 2) + ((2m-2) + 3) + \dots + ((m+1+m))$$
$$= m \cdot (2m+1)$$
$$= \frac{n}{2}(n+1).$$

n が奇数のとき:

n=2m-1 とおくと

$$1+2+\cdots+(2m-1) = (1+(2m-1))+(2+(2m-2))+\cdots+((m-1)+(m+1))+m$$

$$= \underbrace{2m+2m+\cdots+2m}_{m-1}+m$$

$$= 2m(m-1)+m$$

$$= (n+1)(\frac{n+1}{2}-1)+\frac{n+1}{2}$$

$$= (n+1)(\frac{n+1}{2}-1+\frac{1}{2})$$

$$= (n+1)\cdot\frac{n+1-2+1}{2} = \frac{n}{2}(n+1).$$

2 第2章の回答例

2.1 (a) 組み合わせとして考えるのは

$$(a,b) = (3m,3n), (3m+1,3n), (3m+2,3n),$$
$$(3m,3n+1), (3m+1,3n+1), (3m+2,3n+1),$$
$$(3m,3n+2), (3m+1,3n+2), (3m+2,3n+2)$$

のように書かれる場合である. 必要ならaとbを入れ替えることによって、この表の右上半分だけを考える. すなわち.

$$(a,b) = (3m+1,3n+1), (3m+2,3n+1), (3m+2,3n+2)$$

の場合 対応する既約ピタゴラス数 (a,b,c) が存在しないことを示したい.

まず, c=3l とかけているとき, c^2 は 3 の倍数であり, c=3l+1 とかけているとき, c^2 は 3 で割ると 1 余り, c=3l+2 とかけているとき, c^2 は 3 で割ると 1 余る.

$$(a,b) = (3m+1, 3n+1) \mathcal{O} \succeq \mathfrak{F},$$

$$a^{2} + b^{2} = (3m + 1)^{2} + (3n + 1)^{2}$$
$$= 9(m^{2} + n^{2}) + 6(m + n) + 2$$

となるが, c^2 は 3 で割ると 2 余る組がないから不適. (a,b) = (3m+2,3n+1) のとき,

$$a^{2} + b^{2} = 9(m^{2} + n^{2}) + 6(2m + n) + 5.$$

よって、この場合も a^2+b^2 を 3 で割ると 2 余るので不適. (a,b)=(3m+2,3n+2) のとき

$$(3m+2)^2 + (3n+2)^2 = 9(m^2 + n^2) + 12(m+n) + 8.$$

よってこの場合も $a^2 + b^2$ を 3 で割ると 2 余るので不適.

- (b) 分からない.
- 2.2 家庭より、ある整数 k_1, k_2 があって

$$m = dk_1,$$
$$n = dk_2$$

が成り立つ. このとき,

$$m + n = d(k_1 + k_2),$$

 $m - n = d(k_1 - k_2)$

となるから,主張を得る.