LAB#9

CSE-203L Circuit & Systems-II Lab Fall 2022

Submitted by: Ali Asghar

Registration No.: 21PWCSE2059

Class Section: C

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Student Signature: _____

Submitted to:

Engr. Faiz Ullah

20th December, 2022

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

TITLE:

Operational Amplifier as Integrator

OBJECTIVES:

• To learn how to use the operational amplifier as an integrator

APPARATUS:

- Oscilloscope
- AC Function Generator

COMPONENTS:

- 10k Ω & 22K Ω Resistors
- 0.1 μF Capacitor
- LM 741 Op-Amp

THEORY OVERVIEW:

Figure 2

PROCEDURE:

- Connect the components/equipment as shown in the circuit diagram Figure
 2.
- 2. Switch ON the power supply.
- 3. Apply sine wave at the input terminals of the circuit using function Generator.

- 4. Connect channel-1 of CRO at the input terminals and channel-2 at the output terminals.
- 5. Observe the output of the circuit on the CRO which is a cosine wave (90° phase shifted from the sine wave input) and note down the position, the amplitude and the time period of Vin & Vo.
- 6. Now apply the square wave as input signal.
- 7. Observe the output of the circuit on the CRO which is a triangular wave and note down the position, the amplitude and the time period of V_{in} & V_o.
- 8. Plot the output voltages corresponding to sine and square wave inputs as shown in the Figure 3 below.

Figure 3

CALCULATIONS:

Vo can be calculated by the following formula.

$$V_o = \frac{1}{R_{in}C_f} \int V_{in}dt$$

By putting given values in above formula, we get the results shown in table on the next page.

OBSERVATIONS:

Op-Amp as an Integrator

Vin(p-p)	Frequency	V _o (Theoretical)	V _o (Experimental)	%Error
1V	1kHz	0.1592	0.1607	1%
2V	1kHz	0.3183	0.3201	0.55%
1V	2kHz	0.0796	0.0832	4.6%
2V	1.5kHz	0.2122	0.2147	1.19%
2.5V	2.5kHz	0.1592	0.1641	3.11%

CONCLUSION:

We conclude the following results from this experiment:

- **Op-amp Integrator** is an operational amplifier circuit that performs the mathematical operation of **Integration**
- By replacing this feedback resistance with a capacitor, we have an RC Network connected across the operational amplifiers feedback path producing another type of operational amplifier circuit commonly called an **Op-amp Integrator** circuit as shown below.