Department of Mathematics IIT Guwahati

Quiz1 MA101 12-12-2020 Total marks: 24 Time: 65 min

- The first question is writing your roll number. It is compulsory.
- Each other question carries 2 marks.
- For single-correct-option question, you get 2 for correct answer, -1 for wrong answer and 0 for not attempting.
- For multiple-correct-option question, you get 2 for correct answer and 0 for wrong answer or not attempting.
- You get extra 5 minutes for submission. REMEMBER to press the SUBMIT button by 11:04:59. The form will not accept responses after that.
- The form permits ONLY ONE submission. It does not allow REVISION.
- 1. Write your roll number.
- 2. (Multiple correct options) Let A and B be nonempty subsets of \mathbb{R} such that for each $a \in A$ and $b \in B$, we have $a^2 \leq b$. Then which of the following statements are correct?
 - A) lub A must exist in \mathbb{R}
 - B) lub B must exist in \mathbb{R}
 - C) glb A must exist in \mathbb{R}
 - D) glb B must exist in \mathbb{R}

Since both the sets are nonempty, let $a_0 \in A$, $b_0 \in B$. So $b_0 \geq a_0^2 \geq 0$ is a nonnegative number. Hence, $-\sqrt{b_0} \leq a \leq \sqrt{b_0}$ for each $a \in A$. Hence A is nonempty and bounded. Hence lub A and glb A will exist in $\mathbb R$.

As $a_0^2 \le b$ for each $b \in B$, we see that 0 is a lower bound of B. As B is nonempty, and bounded below, $\mathsf{glb}\,B$ will exist in \mathbb{R} .

- B) need not be true, for example, take A=(-1,0) and $B=(2,\infty)$.
- 3. For a natural number n define $val(n) = n(1 \frac{n \ln n}{(n+1) \ln(n+1)})$. Let

$$(p_n) = (3, 2, 7, 5, 13, 11, 19, 17, \ldots)$$

be the sequence of prime numbers. We want to find $\lim_{n\to\infty} val(p_n)$. Then which of the following options is correct?

- A) Limit exists and it is less than half.
- B) Limit exists and it is half.
- C) Limit exists and it is more than half.
- D) Limit does not exist.

Sol. C), as the limit is 1.

The main sequence (val(n)) has limit 1. Hence $(val(q_n))$ has limit 1, where (q_n) is the subsequence of primes. Hence the further subsequences $(val(q_{2n}))$ and $(val(q_{2n-1}))$ also converge to 1. Hence

$$(val(q_2), val(q_1), val(q_4), val(q_3), \cdots)$$

also converge to 1. To show that the main sequence converges to 1 we see that

$$\lim n(1 - \frac{n \ln n}{(n+1)\ln(n+1)}) = \lim n(\frac{(n+1)\ln(n+1) - n \ln n}{(n+1)\ln(n+1)})$$
$$= \lim (\frac{(n+1)\ln(n+1) - n \ln n}{\ln(n+1)}) \quad \text{(if exists)}.$$

Now

$$\lim \left(\frac{(n+1)\ln(n+1) - n\ln n}{\ln(n+1)}\right) = \lim \left(\frac{\ln(n+1) + n\ln(n+1) - n\ln n}{\ln(n+1)}\right) = 1 + \lim \frac{n\ln\frac{n+1}{n}}{\ln(n+1)} = 1,$$

as $\ln(1+\frac{1}{n}) \leq \frac{1}{n}$. Students may use LHospital, but they should not.

4. Consider the following two statements.

Statement 1: Take $a_n = (1 + \frac{1}{\sqrt{n}})^n$. Then the sequence (a_n) is convergent.

Statement 2: If (c_n) and (d_n) are two Cauchy sequences, then (c_nd_n) must be a Cauchy sequence.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. B).

For all n > 1, we have $(1 + \frac{1}{n})^n > 2$. Hence, for n^2 , we have $a_{n^2} = (1 + \frac{1}{\sqrt{n^2}})^{n^2} > 2^n$. That is, the sequence is not bounded above (writing 'unbounded above', though conveys the message, is hardly used). So it is divergent. So Statement 1 is wrong.

Statement 2 is correct as Cauchy sequences are convergent sequences.

5. Consider the following two statements.

Statement 1: $\sum (-1)^n \ln \left(1 + \frac{1}{n^2}\right)$ is absolutely convergent.

Statement 2: Let $a_n \geq 0$ and $\sum a_n$ be convergent. Then the sequence (na_n) must be convergent.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. A)

Recall that $\ln\left(1+\frac{1}{n^2}\right)<\frac{1}{n^2}$. So by comparison test, the first one is absolutely convergent.

Next, consider $0+1+0+\frac{1}{2}+0+0+0+\frac{1}{4}+\cdots$. Then $\lim_{n\to\infty}(na_n)$ does not exist, as $3^ka_{3^k}\to 0$ and $2^ka_{2^k}\to 2$.

6. Consider the following two statements.

Statement 1: There exists an increasing sequence (a_n) such that $\sum a_n = 2020$.

Statement 2:
$$\sum_{n>1} \frac{1}{n^{1+\frac{1}{n}}}$$
 is divergent.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. B).

The first one is false. If $\sum a_n$ is convergent, then it means $a_n \to 0$. But as (a_n) is increasing, terms can only be nonpositive (means ≤ 0). Hence their sum cannot be 2020, a positive number.

The second one is true. By limit comparison test with $\sum \frac{1}{n}$

7. Consider the following two statements

Statement 1: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Then $Z = \{x \mid f(x) = 5\}$ contains all its cluster points.

Statement 2: Let f be continuous with
$$\lim_{h\to 0} \frac{f(h)}{h^2} = 2$$
 and $\lim_{h\to 0} \frac{f(h)}{h} = l$. Then $\lim_{h\to 0} \frac{l}{h} = 2$.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. A)

Let a be a cluster point of Z. Then there is a sequence of point $a_n \in Z$ such that $a_n \to a$, $a_n \ne a$. As f is continuous at a we have $f(a_n) \to f(a)$. As $(f(a_n)) = (5, 5, \ldots)$, we have f(a) = 5. That is $a \in Z$.

For the second one, take $f(h) = 2h^2$. Then l = 0.

(General answer: Note that if $\lim_{h\to 0}\frac{f(h)}{h^2}=k$, then $\lim_{h\to 0}\frac{f(h)}{h}=\lim_{h\to 0}h\frac{f(h)}{h^2}=\lim_{h\to 0}h\lim_{h\to 0}\frac{f(h)}{h^2}=0$. Thus $\lim_{h\to 0}\frac{l}{h}=0$. And this limit will be equal to k if and only if k is zero.)

8. (Multiple correct options) I have a polynomial p(x) of degree 2021. Define $f: \mathbb{R} \to \mathbb{R}$ as

$$f(x) = \begin{cases} |p(x)| & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise.} \end{cases}$$

3

Then which of the following options are correct?

- A) The function is discontinuous at each point.
- B) The set $\{a \mid f(x) \text{ is continuous at } a\}$ is nonempty and finite.
- C) The function is continuous at every point a where $\lim_{x\to a} f(x)$ exist.
- D) The limit $\lim_{x\to a} f(x)$ exist at infinitely many points $a \in \mathbb{R}$.

Sol. We know that p(x) has a real zero, say α . Write $p(x) = (x - \alpha)q(x)$. Then $0 \le f(x) \le |x - \alpha||q(x)|$. Note that $\lim_{x \to \alpha} |x - \alpha||q(x)| = 0 \times |q(\alpha)| = 0$. By sandwich lemma, we have $\lim_{x \to \alpha} f(x) = 0 = p(\alpha)$. So f(x) is continuous at α . In fact, in a similar way, f is continuous at each real zero of p(x).

Now suppose $p(\beta) \neq 0$. We show that $\lim_{x \to \beta} f(x)$ does not exist. Suppose that the limit exists and let it be l. Take a sequence of rationals (r_n) converging to β and a sequence of irrationals (i_n) converging to β . Then the sequence $f(r_n) = |p(r_n)| \to |p(\beta)|$. Hence l must be $|p(\beta)| \neq 0$. The sequence $f(i_n) = 0 \to 0$. Hence l must be 0. This is a contradiction.

Hence B) and C) are correct.

9. Consider the following two statements.

Statement 1: Let $f: \mathbb{R} \to \mathbb{R}$ with $\lim_{h \to 0} \Big(f(x+h) - f(x-h) \Big) = 0$ for all x. Then f is continuous on \mathbb{R} .

Statement 2: If $f : \mathbb{R} \to \mathbb{R}$ is continuous and one-one, then it must be strictly monotone (means strictly increasing or strictly decreasing).

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. B)

The first one is false. Define f(0) = 1 and f(x) = 0 else. Then f satisfies the property, but not continuous.

The second one is true. Suppose that the conclusion is not true. Then $\exists a < b < c$ such that f(a) < f(b) > f(c) or f(a) > f(b) < f(c). Assume that $\exists a < b < c$ such that f(a) < f(b) > f(c). Take $m = \max\{f(a), f(c)\}$. By IVT, there exists points $p \in (a,b), q \in (b,c)$ such that $f(p) = f(q) = \frac{f(b)+m}{2}$. A contradiction.

10. Consider the following two statements.

Statement 1: Let $f, g : \mathbb{R} \to \mathbb{R}$ with $\lim_{x \to 5} f(x) = l$ and $\lim_{x \to 5} g(x) = k$. Then

$$\lim_{x\to 5} \max\{f(x),g(x)\} = \max\{l,k\}.$$

Statement 2: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous such at two positive points a, b, we have f(a) = 5a and f(b) = 7b. There there must exist a point c for which f(c) = 6c.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. D)

Since $\max\{f(x),g(x)\}=(f(x)+g(x))/2+|f(x)-g(x)|/2$, and limits for f(x) and g(x) exist, applying limit theorems for functions we see that the statement is correct.

For the second one, Consider g(x) = f(x) - 6x. Then g(a) = -a and g(b) = b. Notice that g is continuous. So by IVT, there is a point c where g(c) = 0, that is f(c) = 6c. So the statement is correct.

11. Consider the following two statements.

Statement 1: The number of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that the image $f(\mathbb{R}) \subseteq \{0, \pi, e, \sqrt{2}\}$ is at least 2.

Statement 2: It is given that $\lim_{x\to 5} \left((f(x))^3 - (f(x))^2 + f(x) - 1 \right)$ exists and it is 0. Then $\lim_{x\to 5} f(x)$ must exist.

Which of the following options is correct?

- A) Statement 1 is correct but Statement 2 is wrong.
- B) Statement 2 is correct but Statement 1 is wrong.
- C) Both Statement 1 and Statement 2 are wrong.
- D) Both Statement 1 and statement 2 are correct.

Sol. D)

Such functions have to be constant functions, by IVT. In that case there are 4 such functions. So the statement is true.

For the second one note that as $\lim_{x\to 5} \left((f(x))^3 - (f(x))^2 + f(x) - 1 \right) = 0$, we have

$$\lim_{x \to 5} \left| \left((f(x))^3 - (f(x))^2 + f(x) - 1 \right) \right| = 0.$$

Also,

$$\left| \left((f(x))^3 - (f(x))^2 + f(x) - 1 \right) \right| = \left| (f(x) - 1) \left((f(x))^2 + 1 \right) \right| \ge |f(x) - 1| \ge 0.$$

Applying sandwich, we see that $\lim_{x\to 5} f(x) = 1$.

- 12. (Multiple correct options) Let 0 < a < b. Which of these irrational numbers are necessarily in the interval (a, b)? Here [x] means the greatest integer function.
 - A) $[a] + \frac{1}{500\sqrt{2}}$
 - B) $\frac{[na] + \frac{1}{500\sqrt{2}}}{n}$, where $n = [\frac{3}{b-a}]$
 - C) $\frac{[na] + 1 + \frac{1}{500\sqrt{2}}}{n}$, where $n = [\frac{3}{b-a}]$
 - D) $\frac{[na] + 1 + \frac{1}{500\sqrt{2}}}{n}$, where $n = [\frac{2}{b-a}]$

Sol. Question dropped as I forgot to add +1 in $n=[\frac{2}{b-a}]$ and $n=[\frac{3}{b-a}]$.

- 13. Let $p(x) = x^4 + 5x^3 3x^2$ and A be an (arbitrary) infinite bounded set of positive real numbers. Define $B = \{x^4 + 5y^3 3z^2 \mid x, y, z \in A\}$. Then which of the following statements is correct?
 - A) We must have lub B = p(lub A).
 - B) We must have lub B < p(lub A).
 - C) We must have lub B > p(lub A).
 - D) No comparisons can be made between lub B and p(lub A) in general.

Sol. C).

The set being infinite is nonempty. It is given to be bounded. So glb A and lub A exist. Note that glb A < lub A, as A has at least two numbers. So