U.S. Airline Labor Shortage Impact Reduction: Flight Delay Prediction

W261 - Final Project: Section 3 Group 2

Shehzad Shahbuddin

Mohamed Sondo

Max Hoff

Justin Wong

Charles Carlson

Outline

Abstract /	Project	Description
		_ 000110011

Feature Engineering EDA

Predicted Weather

Windowed Net Flow

Windowed Squared Net Flow

Pagerank

Lagged Features

Modeling Pipelines

Results

Conclusions/Future Work

Abstract / Project Description

Problem Statement

- Recent U.S. labor shortages have caused flight cancellations
- Goal: Predict cancellation of flights using weather data in order to help re-allocate workers to higher probability flights

Challenges

- Ideation on feature engineering
- Selecting focus areas
- Scalability
- Domain Knowledge
- Time

Focus Areas

- Feature engineering
 - Net flow
 - Weather Prediction
 - Cascading Delays
- Modeling approaches
 - Random Forest
 - XGBoost
 - Neural Nets

Results

- Model: Random Forest
- Weighted Precision: 0.764
- Weighted Recall: 0.806
- Weighted F1: 0.784

Feature Engineering

Predicted Weather

Linear Regression

- Outcome variables being basic meteorological variables like temperature.
- Regressors include the same basic meteorological variables from 2 hours before the flight; aggregates of these variables for the hours preceding; the latitude, longitude, and elevation; and the day of the year (doy) and the doy squared.
- The average R-Squared was 0.815 with the highest R-Squared being 0.985.

Windowed Net Flow

Windowed Squared Net Flow

Page Rank - Graph

	ORIGIN A	collect_set(DEST)		
1	ABE	F ["SRQ", "SAV", "PGD", "PHL", "ORD", "CLT", "DTW", "FLL", "MDW", "PIE", "SFB", "ATL", "MYR", "BNA", "MDT", "EWR"]		
2	ABI	* ["IAH", "DFW", "GRK"]		
3	ABQ	["SEA", "SNA", "DFW", "ORD", "MSP", "IAH", "HOU", "DEN", "LAX", "ATL", "LAS", "MCI", "PHX", "SLC", "OAK", "CLT", "SAF", "AUS", "DAL", "PDX", "MDW", "SFO", "MCO", "SJC", "SFB", "JFK", "SAN", "SAT", "BWI"]		
4	ABR	* ["MSP"]		
5	ABY	["ATL"]		
6	ACK	["HPN", "BOS", "JFK", "DCA", "PHL", "CLT", "ORD", "LGA", "EWR"]		
7	ACT	▶ ["DFW", "DEN"]		
8	ACV	* ["SFO", "DEN", "LAX", "PHX"]		
9	ACY	["FLL", "DTW", "MIA", "RSW", "MSY", "PBI", "MCO", "TPA", "ATL", "MYR", "BOS", "ORD", "SJU"]		
10	ADK	▶ ["ANC", "CDB"]		

Showing all 381 rows.

Page Rank - Scores

Top 10 Airports by Page Rank Scores

- 1. DEN
- 2. ORD
- 3. DFW
- 4. ATL
- 5. CLT
- 6. MSP
- 7. IAH
- 8. DTW
- 9. LAX
- 10. LAS

	AIRPORT A	PAGERANK_SCORE
1	DEN	0.02833679043953247
2	ORD	0.02720138389532315
3	DFW	0.026113989462048345
4	ATL	0.02094847110411796
5	CLT	0.018122952067459074
6	MSP	0.017373383868555144
7	IAH	0.016012097811575685
8	DTW	0.014814794751604531
9	LAX	0.014294680537843548
10	LAS	0.014139842097311534

Lagged Features

Cascading Delays

•	Window function o Partition by Tail Number	Category	Delay (min)
	o Order by flight date	5	60+
•	Lag Function Ouick column addition	4	30+
•	Conditional checks	3	15+
	Same day flightNo time leakage	2	10+
•	Error handling	1	1+
	No prior flight (-2)Attribute Error (-1)	0	<= 0

Modeling Pipeline

Results

Algorithm	Time	Weighted Precision	Weighted Recall	Precision (1)	Recall (1)
Random Forest	8.68 minutes	0.764	0.806	0.456	0.269
XG Boost	1.56 hours	0.762	0.803	0.446	0.267
Single Hidden Layer Multilayer Perceptron Neural Network	5.85 minutes	0.743	0.773	0.350	0.287
Multiple Hidden Layer Multilayer Perceptron Neural Network	8.24 minutes	0.725	0.612	0.224	0.494

Top 10 Important Features

Random Forest

1. origin_pred_dew	64.3
2. origin_pred_wind_speed	5.18
3. origin_pred_wind_direction	4.67
4. origin_pred_wind_direction	4.67
5. origin_pred_wet_bulb_temp	4.5
6. origin_pred_visibility:	4.48
7. origin_pred_pressure :	2.12
8. origin_pred_humidity	2.07
9. origin_pred_sum_precipitation_bulb	1.24
10. origin_pred_dry_bulb	0.7

Conclusion/Future Work

Best Model: Random Forest

Metric	Result
Weighted Precision	0.764
Weighted Recall	0.806
Precision (1)	0.456
Recall (1)	0.269
Time	8.68 minutes

Challenges

- Scalability
- Domain Knowledge
- Collaboration
- Time

Future Work

- Upsampling: SMOTE
- Predicting additional features
- Feature Engineering
 - Weather Combinations
 - Weather Movement

Thank You

Appendix

Features

Distribution of Avg. Temperature and Precipitation by Station

Precipitation and temperature are fairly normally distributed across stations

Summary Statistics

• 30M records

% of Null Values by Feature

Field	% NULL	Field	% NULL			
STATION	0.0%	NormalsHeatingDegreeDay	100.0%	DellyAverageRelativeHumidity		99.7%
DATE	0.0%	ShortDurationEndDate005	100.0%	DailyAverageSeaLevelPressure		99.9%
LATITUDE	0.0%	ShortDurationEndDate010	100.0%	DailyAverageStationPressure		99.9%
LONGITUDE	0.8%	ShortDurationEndDate015	100.0%	DailyAverageWetBulbTemperature		99.7%
ELEVATION	0.8%	ShortDurationEndDate020	100.0%	DailyAverageWindSpeed		99.9%
NAME	0.8%	ShortDurationEndDate030	100.0%	DailyCoolingDegreeDays		99.7%
REPORT_TYPE	0.8%	ShortDurationEndDate045	100.0%	DailyOepartureFromNormalAverageTe	mperature	99.7%
SOURCE	0.0%	ShortDurationEndDate060	100.0%	DailyHeatingDegreeDays		99.7%
HourlyAttimeterSetting	0.0%	ShortDurationEndDate080	100.0%	DailyMaximumDrySulbTemperature		99.7%
HourlyOewPointTemperature	46.1%	ShortDurationEndDate100	100.0%	DailyMinimumOryBulbTemperature		99.7%
HourlyOryBuibTemperature	17.6%	ShortDurationEndDate120	100.0%	DailyPeaktWndDirection		99.7%
HourlyPrecipitation	2.1%	ShortDurationEndDate150	100.0%	DailyPeakWndSpeed		99.7%
HourlyPresentWeatherType	87.1%	ShortDurationEndDate180	100.0%		- 0000	_
HourlyPressureChange	87.1%	ShortDurationPrecipitationValue005	100.0%	BackupDistanceUnit	98.3%	-
HourtyPressureTendency	72.4%	ShortDurationPrecipitationValueD10	100.0%	BackupElements	96.3%	
HourlyRelativeHumidity	71,4%	ShortDurationPrecipitationValue015	100.0%	BackupElevation	98.3%	
HourlySkyConditions	17.6%	ShortDurationPrecipitationValue020	100.0%	BackupEquipment	98.7%	
HourlyGeaLevelPressure	47.4%	ShortDurationPrecipitationValue030	100.0%	BackupLatitude	98.3%	
HourlyStationPressure	63.8%	ShortDurationPrecipitationValue045	100.0%	Backupt.ong/tude	98.7%	
HourlyVisibility	49.2%	ShortDurationPrecipitationValue060	100.0%	BackupName	98.7%	
HourtyWetBulbTemperature	34.6%	ShortDurationPrecipitationValue080	100.0%	WindEquipmentChangeDate	98.2%	
HourtyWindDirection	50,1%	ShortDurationPrecipitationValue100	100.0%	YEAR	93.9%	-
HourlyWindGustSpeed	14.3%	ShortDurationPrecipitationNatue120	100.0%	HTDD	100.0%	7
HourlyWindSpeed	92.6%	ShortDurationPrecipitationValue160	100.0%	NormalsCoolingDegreeDay	100.0%	
Surrise	13.2%	ShortDurationPrecipitationValue180	100.0%			-
Sureel	99.5%	REM	100.0%			
DailyAverageDewPointTemperature	99.5%	BackupOirection	13.2%			
DailyAverageDryGulbTemperature	99.9%	BackupDistance	98.3%			

A majority of features within the weather dataset are null

Flights EDA

Categorized Delay by Hour of Day

Flights are more likely to be on-time earlier in the day, and late later in the day. Time of day is likely to be an important feature while modeling.

Flights EDA

Delay by Hour of Day and Season

Summer has more delays later in the day. Autumn has the least delays overall. Season is likely to be an important feature while modeling.

Flight distribution throughout the year is fairly even.

Join Process

Use airport data module which has the airport codes and their latitude and longitude

Step 1

Train 1NN model on stations lat/lon to station ID data

Step 2

Fit airports lat/lon data to KNN model to map closest station and mapped time zones to lat/lon via timezonefinder

Step 3

Joined flights and weather data on station ID filtering weather by stations and within the 2-3 hours before takeoff

Step 5

Created time window
Flight - 3 hours to
Flight - 2 hours
and converted to times to
UTC

Step 4

Merged flights data with airport/stations data in previous step

Data Pipeline

Joins **Feature Engineering** Modeling Introduced airport Removed unnecessary Cross validation using 1-year geolocation data in order to columns and duplicates cuts join with Stations data ex: dew point dropped Test on random Calculated nearest when precipitation quarter of following available airport using KNN year Only 2 hours prior used for Precision as the main metric Removed unnecessary features to reduce data size Logistic regression as weather Joined Weather to Airlines on No dimensionality reduction baseline model time (minus 2 hours) and used Look at F1 score(in case data Features importance is unbalanced) origin airport Decision Trees & Random **Forest** Parameter optimization(Gridsearch, Input split etc..)

Modeling Improvements

Cross Validation

• Train: Full Year

• Validate: Q1 Following Year

Class Balancing

- Undersampled majority class
- Determined ratio imbalance
- Pyspark SampleBy function
- Not Delayed: ratio% (for each training split)
- Delayed: 100%

Additional Models and Feature Selection

- Logistic Regression Baseline
- Random Forest
- XGBoost
- Single-Layer Neural Net
- Multi-Layer Neural Net

Results

Random Forest

Metric	Result
Weighted Precision	0.764
Weighted Recall	0.806
Precision (1)	0.456
Recall (1)	0.269
Time	8.68 minutes

Single Layer Neural Network

Metric	Result
Weighted Precision	0.743
Weighted Recall	0.773
Precision (1)	0.350
Recall (1)	0.287
Time	5.85 minutes

XGBoost

Metric	Result
Weighted Precision	0.71
Weighted Recall	0.67
Precision (1)	0.22
Recall (1)	0.51
Time	1.56 hours

Multilayer Neural Network

Metric	Result
Weighted Precision	0.725
Weighted Recall	0.612
Precision (1)	0.224
Recall (1)	0.494
Time	8.24 minutes 23

Feature Engineering

Net Flow / Squared Net Flow / PageRank

- Logic
- Implementation

Weather Prediction

- Predicted weather for the flight departure time based on weather inputs 2 hours in advance.
- Used basic Linear Regression with the outcome variables being basic meteorological variables like temperature.

Delay Accumulation

- Window logic:
 - Partition on Tail Number
 - Order by Flight Time
- Ensure flights occurred on same day
- Look at flights that departed 2 hours prior to flight
- 3 hours before delay maxed at an hour
- 2-3 hours before delay maxed at minutes between flights

Weather Aggregation

- Calculate averages and sums leading up to the current weather.
- Calculated means for variables like pressure but sums for variables like precipitation.
- Window Functions:
 - Partition by weather station
 - Order by Date descending