SurfCast – Ocean & Weather Forecast Data **Processing**

Integração de Sistemas de Informação

Licenciatura em Engenharia de Sistemas Informáticos (regime pós-laboral) 2025-26

Número	Nome		
27990	Pedro Alvaro Carvalho Duarte		

Organização

relatório_ISI/ Pasta que contem o relatório do projeto

surf_data/ dados recebidos da API após ser processados pelo Python

Workflows/ Workflows para tratamento de dados, conexões à API

Introdução

O projeto SurfCast tem como objetivo o desenvolvimento de uma aplicação inteligente de apoio à prática do surf, baseada em dados meteorológicos e marítimos obtidos através da Open-Meteo API. A ferramenta visa fornecer previsões fiáveis sobre as condições do mar e do tempo, ajudando surfistas a planear as suas surf sessions. O sistema recolhe automaticamente dados diários e horários como altura e direção das ondas, período de swell, velocidade e direção do vento, temperatura da superfície do mar, duração da luz solar e índice **UV**, entre outros parâmetros relevantes. A partir destas variáveis, são gerados indicadores de qualidade do surf, classificando os dias como favoráveis ou não. Além da recolha e análise, o projeto integra também a ferramenta KNIME Analytics Platform, que permite processar, classificar e automatizar ações sobre os dados — como o envio de notificações por email aos utilizadores quando se prevê um "bom dia para surfar". Desta forma, o SurfCast combina análise de dados, automação e comunicação inteligente num ecossistema acessível e escalável. Este projeto integra dados meteorológicos e marítimos da Open-Meteo API para apoiar previsões e análises relacionadas com o surf.

Objetivo

Este projeto visa desenvolver uma solução para manipular dados metereológicos, utilizando API's. Os dados são obtidos em e processados para extrair informações diárias e horárias como:

- Altura e direção das ondas
- Período das ondas e ondulação
- Temperatura da superfície do mar
- Índice UV máximo
- Duração do dia (daylight duration)
- Horas de nascer e pôr do sol

Estrutura do Projeto

- relatório_ISI/ Documentação do projeto.
- surf_data/
 - Armazena os JSON's obtidos da API junto com a database.
 - daily_data.json
 - Registo diários.
 - hourly_data.json
 - Registo horário.
 - surfcast.db
 - base de dados sql lite.
 - database_setup.py
 - Registo horário.
- Workflows/ Contém os workflows do Knime.
- README.md Arquivo que contém informações básicas sobre o projeto, a sua descrição, uso e outras instruções.
- main.py Arquivo python que é o cérebro.

Descrição da Estrutura

Este projeto está organizado de forma a separar claramente os componentes do códigofonte, dados e documentação.

Os diretórios *relatório_ISI/* e *surf_data/* contêm a o relatório do projeto e os dados obtidos pelo programa bem como a bd sql lite, respetivamente.

Já o diretório Workflows/ contém os workflows do Knime.

Workflow

1. Recolha dos dados

- Os dados são obtidos através de dois endpoints da Open-Meteo:
- O endpoint abaixo conecta á api maritima e tráz variáveis Marítimas (ondas, direção, swell, etc.) e diárias (Onda máxima e Direção Dominante).

```
https://marine-api.open-meteo.com/v1/marine
```

• O endpoint abaixo conecta á api de forecast e tráz variáveis horárias (temperatura, vento, percipitação etc.) e diárias (nascer/pôr do sol, duração do dia, UV).

```
https://marine-api.open-meteo.com/v1/forecast
```

2. Conversão dos dados em KNIME

- O JSON gerado pela API é importado para o KNIME utilizando o nó **JSON Reader**.
- São extraídos e normalizados os campos de interesse para posterior análise e visualização.

3. Conexão de dados no KNIME

- Uma conexção à API é usado através do nó Get Request.
- São extraídos e normalizados os campos de interesse para posterior análise e visualização.

Screenshots

Above: Knime Workflow

Altura Ondas

Above: Altura das Ondas

Above: Campos Não Normalizados

Above: Campos Normalizados

```
1 // enter ordered set of rules, e.g.:
2 // $double column name$ > 5.0 => "large"
3 // $string column name$ LIKE "*blue*" => "small and blue"
4 // TRUE => "default outcome"
5 $uv_index_maxs$ > 6 AND $daylight_durations$ > 12 => "Dia solar intenso * - boa luz para surf"
6 $uv_index_maxs$ > 3 AND $uv_index_maxs$ < 6 => "Condições agradáveis $\frac{1}{2}$"
7 $uv_index_maxs$ < 3 => "Pouca luz / tempo nublado $\frac{1}{2}$"
8 TRUE => "Condições medianas"
```

Above: Rules

Above: Campos Criados pelas rules

times	sunrises	sunsets	uv_index_maxs	daylight_durations	latitude	longitude	wave_height_maxs	wave_direction_dominants	classification
Filter	Filter	Filter	Filter	Filter	Filter	Filter	Fifter	Filter	Filter
2025-10-19	2025-10-19 07:51:00	2025-10-19 18:48:00	0	39385.71	41.4375	-8.75	1.76	249	Pouca luz / tempo nublado 🙈
2025-10-20	2025-10-20 07:52:00	2025-10-20 18:46:00	3	39226.9	41.4375	-8.75	1.86	282	Condições medianas
2025-10-21	2025-10-21 07:54:00	2025-10-21 18:45:00	4	39068.41	41.4375	-8.75	1.96	281	Condições agradáveis 😁
2025-10-22	2025-10-22 07:55:00	2025-10-22 18:43:00	3	38910.38	41.4375	-8.75	2.28	270	Condições medianas
2025-10-23	2025-10-23 07:56:00	2025-10-23 18:42:00	1	38752.96	41.4375	-8.75	2.66	270	Pouca luz / tempo nublado 🙈
2025-10-24	2025-10-24 07:57:00	2025-10-24 18:40:00	3	38596.27	41.4375	-8.75	2.14	271	Condições medianas
2025-10-25	2025-10-25 07:58:00	2025-10-25 18:39:00	4	38440.45	41.4375	-8.75	1.58	289	Condições agradáveis 😁
2025-10-19	2025-10-19 07:51:00	2025-10-19 18:48:00	0	39385.71	41.4375	-8.75	1.76	249	Pouca luz / tempo nublado 🙈
2025-10-20	2025-10-20 07:52:00	2025-10-20 18:46:00	3	39226.9	41.4375	-8.75	1.86	282	Condições medianas
2025-10-21	2025-10-21 07:54:00	2025-10-21 18:45:00	4	39068.41	41.4375	-8.75	1.96	281	Condições agradáveis 😁
2025-10-22	2025-10-22 07:55:00	2025-10-22 18:43:00	3	38910.38	41.4375	-8.75	2.28	270	Condições medianas
2025-10-23	2025-10-23 07:56:00	2025-10-23 18:42:00	1	38752.96	41.4375	-8.75	2.66	270	Pouca luz / tempo nublado 🙈
2025-10-24	2025-10-24 07:57:00	2025-10-24 18:40:00	3	38596.27	41.4375	-8.75	2.14	271	Condições medianas
2025-10-25	2025-10-25 07:58:00	2025-10-25 18:39:00	4	38440.45	41.4375	-8.75	1.58	289	Condições agradáveis 😁

Above: Exported Database

Conclusão

O desenvolvimento do SurfCast demonstrou o potencial das tecnologias de análise de dados e automação aplicadas a contextos desportivos e ambientais. A integração entre Python (para recolha e formatação de dados via API) e KNIME (também para recolha de dados para análise e notificação automática) permitiu criar um fluxo de trabalho robusto, reproduzível e facilmente adaptável a diferentes localizações costeiras. Os resultados obtidos provam que é possível utilizar dados abertos, como os disponibilizados pela Open-Meteo, para gerar valor prático para comunidades locais, promovendo um surf mais informado, seguro e sustentável. Como perspetiva futura, o projeto poderá evoluir para incluir visualizações interativas e integração com dispositivos móveis, tornando o SurfCast uma ferramenta ainda mais útil para surfistas de todos os níveis.