Interpréter la Physique Quantique

Cours d'interpretation de la théorie quantique des champs

Sébastien Fauvel

Remerciements

Avant-propos

Table des matières

1	Pr	éliminaires épistémologiques	1
1	Qu'	est-ce qu'interpréter?	2
	1.1	Interpréter des observations	2
	1.2	Interpréter une théorie effective	2
	1.3	Interpréter une théorie fondamentale	2
2	Que	e puis-je connaître?	3
	2.1	L'impasse solipsiste	3
	2.2	L'objectivisme fondateur	3
	2.3	La connaissance dans un monde aléatoire	3
II	\mathbf{N}	Iodéliser le monde matériel	5
3	Rég	gulariser la théorie quantique des champs	6
	3.1	Inexistence d'une théorie quantique des champs	6
	3.2	Régularisation physique maximale	6
	3.3	L'espace physique	6
4	L'es	space des états quantiques	7
	4.1	Etats localisés du champ	7
	4.2	Opérateurs de création et d'annihilation	7
	4.3	Ondes planes	7
5	Inte	eractions physiques	8
	5.1	Evolution hamiltonienne	8
	5.2	Représentation d'interaction	8
	5.3	Développement perturbatif	8

II	I N	Modéliser le monde mental	9
6	L'ex	périence subjective	10
	6.1	Conscience déclarative	10
	6.2	Subconscient	10
	6.3	Expérience subjective	10
7	Le	champ d'expériences subjectives	11
	7.1	Objectivation des expériences subjectives	11
	7.2	Réalisation physique d'un état mental	11
	7.3	Indiscernabilité des sujets	11
8	Inte	ractions psycho-physiques	12
	8.1	Dynamique stochastique	12
	8.2	Mesure quantique	12
	8.3	Décohérence quantique	12
ΙV	T A	Applications	13
9	Elec	trodynamique quantique	14
•	9.1	Opérateurs de charge, de courant et de potentiel	14
	9.2	Hamiltonien d'interaction	14
	9.3	Exemple : La section efficace de Rutherford $\ \ldots \ \ldots \ \ldots$	14
10	Thé	orème de réincarnation	15
	10.1	Un théorème de récurrence des états mentaux	15
	10.2	Démonstration	15
	10.3	Discussion	15
\mathbf{V}	\mathbf{A}	ppendices	17
\mathbf{A}	Fone	ctions usuelles	18
	A.1	La fonction sinus cardinal	18
	A.2	La fonction esinc	18
	A.3	La fonction δ de Dirac	18
В	Mat	rices de Dirac et de Pauli	19
	B.1	Matrices de Pauli	19
	B.2	$\label{eq:matrices} \text{Matrices de Dirac} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	19
\mathbf{C}	Oná	orateurs spinorials	20

		121
C.1	Opérateurs de polarisation photoniques	20
C.2	Opérateurs d'antisymétrisation fermioniques	20
C.3	Opérateurs spinoriels de Dirac	20

Première partie

Préliminaires épistémologiques

Qu'est-ce qu'interpréter?

- 1.1 Interpréter des observations
- 1.2 Interpréter une théorie effective
- 1.3 Interpréter une théorie fondamentale

Que puis-je connaître?

- 2.1 L'impasse solipsiste
- 2.2 L'objectivisme fondateur
- 2.3 La connaissance dans un monde aléatoire

Deuxième partie Modéliser le monde matériel

Régulariser la théorie quantique des champs

- 3.1 Inexistence d'une théorie quantique des champs
- 3.2 Régularisation physique maximale
- 3.3 L'espace physique

L'espace des états quantiques

- 4.1 Etats localisés du champ
- 4.2 Opérateurs de création et d'annihilation
- 4.3 Ondes planes

Interactions physiques

- 5.1 Evolution hamiltonienne
- 5.2 Représentation d'interaction
- 5.3 Développement perturbatif

Troisième partie Modéliser le monde mental

L'expérience subjective

- 6.1 Conscience déclarative
- 6.2 Subconscient
- 6.3 Expérience subjective

Le champ d'expériences subjectives

- 7.1 Objectivation des expériences subjectives
- 7.2 Réalisation physique d'un état mental
- 7.3 Indiscernabilité des sujets

Interactions psycho-physiques

- 8.1 Dynamique stochastique
- 8.2 Mesure quantique
- 8.3 Décohérence quantique

Quatrième partie Applications

Electrodynamique quantique

- 9.1 Opérateurs de charge, de courant et de potentiel
- 9.2 Hamiltonien d'interaction
- 9.3 Exemple : La section efficace de Rutherford

Théorème de réincarnation

- 10.1 Un théorème de récurrence des états mentaux
- 10.2 Démonstration
- 10.3 Discussion

Cinquième partie Appendices

Annexe A

Fonctions usuelles

- A.1 La fonction sinus cardinal
- A.2 La fonction esinc
- A.3 La fonction δ de Dirac

Annexe B

Matrices de Dirac et de Pauli

B.1 Matrices de Pauli

Pour décrire le spin de l'électron dans la limite non-relativiste, Wolfgang Pauli a été amené à introduire trois automorphismes de \mathcal{H}^2 , notés $\widehat{\sigma}_1$, $\widehat{\sigma}_2$ et $\widehat{\sigma}_3$, dont la propriété essentielle est de vérifier les relations d'anticommutation suivantes :

$$\{\widehat{\sigma}_a, \widehat{\sigma}_b\} := \widehat{\sigma}_a \widehat{\sigma}_b + \widehat{\sigma}_b \widehat{\sigma}_a = 2\delta_{a,b} \mathbb{1}$$

Il existe une infinité de familles d'automorphismes vérifiant ces relations algébriques, le choix de l'une d'entre-elles en particulier n'ayant aucune influence sur les prédictions de la théorie. La famille de matrices suivantes :

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

représente canoniquement une famille d'automorphismes de \mathcal{H}^2 qui vérifie ces relations d'anticommutation. C'est pour cette convention que nous optons dans ce cours pour définir les matrices de Pauli.

B.2 Matrices de Dirac

Annexe C

Opérateurs spinoriels

- C.1 Opérateurs de polarisation photoniques
- C.2 Opérateurs d'antisymétrisation fermioniques
- C.3 Opérateurs spinoriels de Dirac

Bibliographie