COM4511 Speech Technology: Spoken Dialogue Systems

Anton Ragni

Why Dialogue Systems?

- One of the most popular applications of speech technology
 - also one of the most complex applications (later)
 - ▶ BUT progress so far has failed to meet market demand
- Integrates a large number of research areas
 - speech recognition (past lectures)
 - noise robustness/speech enhancement (past lecture)
 - natural language processing (COM4513)
 - speech synthesis (last lecture)
- The nature of the underlying phenomenon is highly complex
 - need adequate mathematical models and data
 - need large theoretical and engineering effort

- Written or spoken exchange between "people"
 - generally agreed upon definition
- ► BUT
 - number of people and turns may vary
 - turn taking not pre-determined
 - may target different objective and/or subjective goals
- ► The nature of dialogue is complex
 - no mathematical model proposed to date

Simple Dialogue

- ► A restricted form of a dialogue
 - two parties (human and machine)
 - multi-turn exchange
 - turn taking initiative on either side
 - turn interruption typically on the human side
 - ▶ objective (information gain) and/or subjective (likeness) goal
- ▶ Partially adequate mathematical model available
 - partially observable Markov decision process

Markov Process (Revisited)

- Key elements
 - ightharpoonup states: S_1, \dots, S_N
 - ▶ initial state distribution: $\pi = \{P(S_i)\}_{i=1...N}$
 - ▶ transition probabilities: $\Pi = \{P(S_i|S_j)\}_{i=1...N,j=1...N}$
- Probability of state sequence $P({m q}_{1:T}) \approx \prod^T P(q_t|q_{t-1})$

- ► A version of Markov process
 - takes actions prior to making transitions
 - receives rewards for taking actions
- ► Reduces to Markov process if
 - only one action available per state
 - all rewards are the same
- Popular model for describing interactions with environments

Value Function

ightharpoonup Objective is to find policy a^* (actions) maximising expected discounted reward

$$V^{a^*}(q_1 = S_i) = \mathcal{E}^{a^*}_{\substack{a_t \sim P(a|q_t) \\ q_t \sim P(q|q_{t-1}, a_{t-1})}} \left\{ \sum_{t=1}^T \gamma^{t-1} r(q_t, a_t) \right\}$$

- transition probabilities and rewards usually stationary
- finite $T<\infty$ (FH) and infinite $T=\infty$ (IF) horizon versions
- ▶ Bellman equations provide framework for policy optimisation

$$V^{\mathbf{a}^*}(S_i) = \max_{\mathbf{a}} \left\{ \underbrace{r(S_i, \mathbf{a}) + \gamma \mathcal{E}\{V^{\mathbf{a}^*}(f(S_i, \mathbf{a}))\}}_{Q(S_i, \mathbf{a})} \right\}$$

- ▶ state update $S_j = f(S_i, a)$, quality function $Q(S_i, a)$
- can be solved using dynamic programming (FH) or fixed-point (IH) methods

Example: Mini Tesco Bakery (Stochastic Inventory Model)

► Reward (expected revenue minus ordering and holding cost)

$$r(q_{t+1}, a_t, q_t) = F(q_t + a_t - q_{t+1}) - O(a_t) - H(q_t + a_t)$$

- (qt+1, at, qt) = (qt + at qt+1) (at) (qt + at)
- revenue F(u) = 8uorder cost O(u) = K + o(u), where K = 4 is placement and o(u) = 2u per-unit costs
- ► Transition probabilities

▶ holding cost H(u) = u

$$P(q_{t+1}|q_t,a_t) = egin{cases} p_{q_t+a_t-q_{t+1}}, & ext{if } M \geq q_t+a_t \geq q_{t+1} > 0 \ q_{q_t+a_t}, & ext{if } M \geq q_t+a_t ext{ and } q_{t+1} = 0 \ 0, & ext{otherwise} \end{cases}$$

- **>** partial $p = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \end{bmatrix}$ and full $q_i = \sum_{i=1}^{\infty} p_i$ demand probabilities
- Exercise:
 - compute all reward and transition probabilities
 - ightharpoonup compute expected reward $r(q_t, a_t) = \sum_{q_{t+1}} P(q_{t+1}|q_t, a_t) r(q_{t+1}, q_t, a_t)$

Example (continued)

► Find optimal policy using Bellman recursion

$$V_t^{oldsymbol{a}^*}(q_t) = \max_{oldsymbol{a}_t} \left\{ \underbrace{r(q_t, a_t) + \gamma \sum_{q_{t+1}} P(q_{t+1}|q_t, a_t) V_{t+1}^{oldsymbol{a}^*}(q_{t+1})}_{Q_t(q_t, a_t)}
ight\}$$

- \blacktriangleright value function at time t and state S_i if optimal policy is executed till time $T \leq \infty$
- initialise $V_{T+1}^{a^*}(S_i) = 0$ for all i
- Exercise:
 - ▶ show that value function and optimal actions are as follows

	$V_t^{oldsymbol{a}^*}(q_t) a_t^* $					
t	$q_t = 0$	$q_t = 1$	$q_t = 2$	$q_{t} = 3$		
4	0 -	0 -	0 -	0 -		
3	0 0	5 0	6 0	5 0		
2	2 2	$\frac{25}{4} 0$	10 0	$\frac{21}{2} 0$		
1	$\frac{67}{16} 3$	$\frac{\frac{25}{4}}{16} 0$ $\frac{129}{16} 0$	$\frac{10 0}{\frac{194}{16} 0}$	$\frac{\frac{21}{2}}{16} 0$ $\frac{\frac{227}{16}}{16} 0$		

discuss application of this (non-stationary) policy to bakery operation

Partially Observable Markov Decision Process

- ► Many environments cannot be observed directly
 - belief state expresses uncertainty in the environment state (sufficient statistics)

$$b_{t+1}(S_j) = P(S_j | \boldsymbol{o}_{1:t+1}, \boldsymbol{a}_{1:t}) = \frac{P(o_{t+1} | S_j, a_t) \sum_{i=1}^N P(S_j | S_i, a_t) b_t(S_i)}{\sum_{i=1}^N P(o_{t+1} | S_i, a_t) \sum_{i=1}^N P(S_i | S_i, a_t) b_t(S_i)}$$

belief state update (what are $P_{o_{t+1}}^{\circ}$ and $P_{a_t}^{\operatorname{t}}$?) $\boldsymbol{b}_{t+1} = \boldsymbol{f}(\boldsymbol{b}_t, o_{t+1}, a_t) = \frac{P_{o_{t+1}}^{\circ} P_{a_t}^{\operatorname{t}} \boldsymbol{b}_t}{\mathbf{1}^{\mathsf{T}} P^{\circ} P^{\operatorname{t}} \boldsymbol{b}_t}$

SPANDH

Example: Mini Coffee Shop (Machine Replacement Problem)

Transition probabilities

$$m{P}_0^{ t t} = \left[egin{smallmatrix} 0 & 1 \ 0 & 1 \end{smallmatrix}
ight] = \{P(q_{t+1}|q_t, a_t = 0)\}, \quad m{P}_1^{ t t} = \left[egin{smallmatrix} 1 & 0 \ heta^t & 1 - heta^d \end{smallmatrix}
ight] = \{P(q_{t+1}|q_t, a_t = 1)\}$$

- ▶ states {poor=0, good=1}, actions {replace=0, use=1}
- "poor" state cannot be escaped other than through replacement
- ightharpoonup probability to transition into "poor" state is θ^d
- Observation probabilities

$$m{P_0^o} = egin{bmatrix} heta^{ ext{p}} & 0 \ 0 & 1 - heta^{ ext{g}} \end{bmatrix}, \quad m{P_1^o} = egin{bmatrix} 1 - heta^{ ext{p}} & 0 \ 0 & heta^{ ext{g}} \end{bmatrix}$$

- ▶ observations {poor=0, good=1}, poor θ^p and qood θ^g quality coffee self-probabilities
- ► Immediate rewards or negative costs
 - replacement $r(q_t, a_t = 0)$ and operation $r(q_t, a_t = 1)$ rewards
 - belief state reward

$$r(\boldsymbol{b}_t, a_t) = \sum_{i=1}^{N} b_t(S_i) r(S_i, a_t)$$

Example (continued)

▶ Bellman recursion for finding optimal policy

$$V_t^{\boldsymbol{a}^*}(\boldsymbol{b}_t) = \max_{\boldsymbol{a}_t} \left\{ \underbrace{r(\boldsymbol{b}_t, a_t) + \gamma \sum_{o_{t+1}} P(o_{t+1} | \boldsymbol{b}_t, a_t) V_{t+1}^{\boldsymbol{a}^*}(\boldsymbol{f}(\boldsymbol{b}_t, o_{t+1}, a_t))}_{Q_t(\boldsymbol{b}_t, a_t)} \right\}$$

- non-trivial to solve due to continuous belief state space
- alternative options: discretise, approximate
- **Exercise:**
 - lacktriangle solve POMDP by discretising $\lambda \in [0,1]$ parameterising belief state $m{b}_t = egin{bmatrix} 1-\lambda_t \ \lambda_t \end{bmatrix}$

Reinforcement Learning

- Many environments can be challenging to model
 - ► large state and action spaces
 - lack of analytical forms
 - simulation-only environments
 - trial-and-error setting
- Example:
 - **b** how many transition probabilities needed when $|\mathcal{S}|=10,000$ and $|\mathcal{A}|=1,000$?
 - ▶ how would you estimate transition probabilities in game playing (chess, Go)?
- ▶ Reinforcement learning offers practical solutions for challenging environments
 - learn optimal policy by interacting with environment
 - model-free and model-based environments possible
- Standard reinforcement learning approaches
 - ightharpoonup Q-learning: estimate $Q(m{b},a)$ using any machine learning approach
 - policy search: estimate parametric policy model bypassing value/quality functions
 - actor-critic methods: hybrid of the above

▶ Use stochastic optimisation to learn Q-function (several architectures possible)

$$\mathcal{L}(oldsymbol{ heta}^{(i)}; \mathcal{D}) = \mathcal{E}_{(oldsymbol{b}, oldsymbol{a}, oldsymbol{b}') \sim \mathcal{D}} \left\{ \left(Q(oldsymbol{b}', oldsymbol{a}; \hat{oldsymbol{ heta}}) - Q(oldsymbol{b}, oldsymbol{a}; oldsymbol{ heta}^{(i)})
ight)^2
ight\}$$

- **>** sample of experiences \mathcal{D} , target $\hat{\theta}$ and current $\theta^{(i)}$ network
- ightharpoonup targets $Q(b', a; \hat{\theta})$ change with parameter changes (unlike supervised learning)

- Key components
 - ightharpoonup natural language understanding: convert message into observation o_t
 - ightharpoonup dialogue manager: update belief state $m{b}_t$ and chose action a_t based on $Q(m{b}_t, a_t)$
 - natural language generation: convert action into message and estimate reward
- Alternative architectures
 - rule-based or scripted
 - information retrieval

Anton Ragni

Natural Language Understanding

Α .	lite.	-tin	16

- clarification
- info gathering(a) Intent

All-time NBA player

- Christian Wood
- Kareem Abdul-Jabbar
 (b) Named Entity

She is 88-years old!

who?

(c) Anaphora

Sounds fun, right?

Politics

- Economy
 - (d) Topic (e

I can't believe that!

positive/negativeneutral

(e) Sentiment

- Extract all necessary information from spoken content
 - ▶ BUT message uncertainty, semantic ambiguity
- Perfect speech transcription not possible
 - mistakes may cause harmful/harmless semantic changes
 - error mitigation is critical (confidence scores, embeddings)
- ▶ No known adequate semantic model
 - multiple semantic categories (above) but non-trivial to manually label
 - many conversational phenomena are not accounted for

SPANDH

Dialogue Manager

- Certain tasks can be reduced to filling a pre-determined number of slots
 - most simple and widely deployed type
 - ▶ BUT unnatural and limited in scope
- ► Hand craft extensive flow-chart to describe a typical dialogue
 - trees can be arbitrary deep, cycles enable to create complex dialogues
 - ▶ BUT tedious and error-prone process, lack of generalisation
- ▶ Statistical methods enable dialogue model to be learnt from the data
 - enable unstructured and structured states
 - estimate and update "belief" over states by taking actions and receiving rewards
 - ▶ BUT lack of training data and limited generalisation

Natural Language Generation

- ► Common expressions can be generated based on templates
 - ▶ example: the train from ??? will arrive at platform ???
 - high control ability, high production cost, limited scope
- Cast dialogue as an information retrieval problem
 - queries: user requests, hits: text excerpts from a large data set
 - system responses are spoken summaries of hits
- ▶ Use conditional neural language models $P(\mathbf{w}_{1:L}|\mathbf{c})$ to generate text
 - ightharpoonup conditioning vector c encodes user requests and supplementary information
 - need to know how to encode diverse knowledge sources (Wiki, knowledge graphs)
- ▶ "Natural" natural language generation is a challenging problem[†]
 - Q: Who was Jason Mraz engaged to? A: Jason Mraz was engaged to Tristan Prettyman
 - Q: When did WW2 end? A: WW2 ended in 1945
 - Q: How many people live in the US? A: There are over 300 million people living in the US
 - "natural" written text answers may not sound natural as spoken answers
 - † Examples from 17-billion-parameter language model by Microsoft

- ▶ No standardised evaluation measures exist, instead proxy measures are popular
 - success rate: subjective assessment by users (Likert scale, etc)
 - ▶ dialogue length: typically inversely correlated with above (exceptions: social setting, ...)
- ▶ Paradigm for dialogue system evaluation (PARADISE) most popular scheme
 - weighted combination of proxy measures, where weights estimated on labelled data
 - ▶ BUT mostly correlated with success rate and dialogue length (simple to optimised)
- Evaluation requires interactions with users
 - real: field deployment, need to have a reasonable baseline
 - ▶ paid: difficult to recruit large (statistical significance) number of subjects
 - simulated: wide coverage of dialogue space, hard to model real users

▶ Wide interest in conversational dialogue systems since Amazon Alexa deployment SPANDE

numerous "smart" speakers are currently available

Language	Speakers (B)	Local Manufacturers		
Mandarin	1.1	Alibaba, Baidu, Xiaomi		
English	1.0	Apple, Amazon, Google		
Hindustani	0.5	_		
Spanish	0.5	_		
Arabic	0.4	_		
Malay	0.3	_		
Russian	0.3	Yandex		
Bengali	0.3	_		
Assount for climbtly mare than half of worlds namilation				

Account for slightly more than half of worlds population

- ► Goal-oriented dialogue systems with limited conversational ability
 - modular design (skills) enables to produce new extensions
 - ▶ BUT all extensions have limited scope and independent of each other

- ► This lecture explored spoken dialogue systems
 - simple dialogue model
 - ► Markov decision processes
 - reinforcement learning
- ► Focus on partially observable Markov decision processes
 - unobserved Markov process capable of taking actions and receiving rewards
 - Bellman equations and dynamic programming
- Discussed standard dialogue system architecture
 - natural language understanding
 - natural language generation
 - dialogue manager