Introduction to Data Science Final Project: Semantic Analysis of Yelp Dataset

Jia-Wei Liao¹, Yi-Cheng Hung¹, Yu-Lin Tsai² Advisor: Horng-Shing Lu³

Department of ¹ Applied Mathematics, ² Arete Honors Program, ³ Statistics National Yang Ming Chiao Tung University

September 23, 2022

Outline

- Introduction
- 2 Exploratory Data Analysis (EDA)
- 3 Data Preprocessing
- Machine Learning Method
- **5** Deep Learning Method
- 6 State-Of-The-Art (SOTA)
- Conclusion

Motivation

- Do not know what to eat after going out
- It is very troublesome to prepare in advance

Introduction

Yelp Dataset: This data set mainly collects information on restaurant reviews and satisfaction ratings.

Goal: Use the customer review to analyze whether the customer is satisfied with the foods.

Data Preview

We have 10,000 samples of data at the first.

e user_id	type	text	stars	review_id	date	business_id
v rLti8ZkDX5vH5nAx9C3q5Q	review	My wife took me here on my birthday for breakf	5	fWKvX83p0-ka4JS3dc6E5A	2011-01-26	9yKzy9PApeiPPOUJEtnvkg
v 0a2KyEL0d3Yb1V6aivbluQ	review	I have no idea why some people give bad review	5	IjZ33sJrzXqU-0X6U8NwyA	2011-07-27	ZRJwVLyzEJq1VAihDhYiow
v 0hT2KtfLiobPvh6cDC8JQg	review	love the gyro plate. Rice is so good and I als	4	IESLBzqUCLdSzSqm0eCSxQ	2012-06-14	6oRAC4uyJCsJI1X0WZpVSA
v uZetl9T0NcROGOyFfughhg	review	Rosie, Dakota, and I LOVE Chaparral Dog Parkll	5	G-WvGalSbqqaMHlNnByodA	2010-05-27	_1QQZuf4zZOyFCvXc0o6Vg
v vYmM4KTsC8ZfQBg-j5MWkw	review	General Manager Scott Petello is a good eggIII	5	1uJFq2r5QfJG_6ExMRCaGw	2012-01-05	6ozycU1RpktNG2-1BroVtw

Data Preview

Define the label as

$$label_i = egin{cases} 1, & \mathsf{star}_i \geq 4 \ 0, & \mathsf{otherwise} \end{cases}$$

There are 6863 data with label 1 and 3137 data with label 0

Split training set and testing set

Eliminate Stop Words

Stop words are the words which are mostly used as fillers and hardly have any useful meaning. So, we use the following method:

- Remove punctuation and uniform lowercase by ourselves
- Natural Language Toolkit (NLTK) package

Eliminate Stop Words

Review:

My wife took me here on my birthday for breakfast and it was excellent. The weather was perfect which made sitting outside overlooking their grounds an absolute pleasure.

Sentence:

- Self: my wife took me here on my birthday for breakfast and it was excellent the weather was perfect which made sitting outside overlooking their grounds an absolute pleasure
- NLTK: wife took birthday breakfast excellent weather perfect made sitting outside overlooking grounds absolute pleasure

Eliminate Stop Words

Data Preview

Term Frequency (TF)

Let $f_{t,d}$ be the frequency of term t in the document d.

Term frequency (TF)

Term frequency is the number of times each word appeared in document with normalization.

$$TF(t,d) = \frac{f_{t,d}}{\sum_{t=1}^{n} f_{t,d}}$$

Inverse Document Frequency (IDF)

Let $f_{t,d}$ be the frequency of term t in the document d.

Inverse Document Frequency (IDF)

Document frequency is the number of documents which contain the term t. Define inverse document frequency as follow:

$$IDF(t) = \log \frac{m}{1 + |\{d \mid f_{t,d} > 0\}|}$$

TF-IDF

$$\mathsf{TF}\text{-}\mathsf{IDF}(t,d) = \mathsf{TF}(t,d) \times \mathsf{IDF}(t)$$

Top 5	Doc1	Doc2	Doc3	Doc4
good	0	0.0303	0.1388	0
place	0.0417	0.0298	0	0
food	0.0438	0	0	0
great	0	0.0329	0	0
like	0.0480	0.1029	0	0

Experiment: preprocessing by ourselves

Experiment: preprocessing by NLTK

Experiment: preprocessing by ourselves

Model	Precision	Recall	F1-score	Accuracy
Naive Bayes	0.7557	0.8834	0.8016	0.7240
Decision Tree	0.7654	0.8463	0.8038	0.7165
Random Forest	0.7604	0.8878	0.8192	0.7310
AdaBoost	0.8394	0.8834	0.8608	0.8040
Gradient Boosting	0.7897	0.9439	0.8598	0.7890
SVM	0.8255	0.9512	0.8838	0.8285

Experiment: preprocessing by NLTK

Model	Precision	Recall	F1-score	Accuracy
Naive Bayes	0.7547	0.9119	0.8259	0.7360
Decision Tree	0.7288	0.9082	0.8087	0.7050
Random Forest	0.7840	0.8645	0.8223	0.7435
AdaBoost	0.8219	0.8806	0.8502	0.7870
Gradient Boosting	0.7779	0.9541	0.8570	0.7815
SVM	0.8047	0.9541	0.8730	0.8095

Experiment

History of Deep Learning in NLP

Date Manifold

Manifold Assumption

Natural high dimensional data concentrates close to a non-linear low-dimensional manifold.

 \mathcal{D} : collection of high dimensional data Euclidean space \mathbb{R}^d wife wife (2,1,...,4) here (2,3,...,6) (1,3,...,7) took me (5,3,...,9) (4,3,...,8)

 (Σ, \mathbb{P}) : low dimension manifold with probability measure

Word Embedding Model

Count-Based: TF-IDF

• **Prediction-Based** ¹ : CBOW, Skip gram

22 / 45

Word Embedding Model

Continuous bag of word (CBOW)

Word Embedding Model

Skip Gram

Embedding Matrix

• number of the word: 25873

• maximum length: 150

• embedding dimension: 250

T-distributed Stochastic Neighbor Embedding (t-SNE) ²

- It's a manifold learning
- It converts similarities between data points to joint probabilities and minimize the KL divergence

²L.-M., G. Hinton, Visualizing Data usingt-SNE, Journal of Machine Learning Research, 2008.

wife similar word	husbands	girlfriend	boyfriend	dad	brother
cosine similarity	0.77	0.75	0.74	0.71	0.70

b	ad similar word	horrible	shitty	ruined	dissapointed	unhappy
	cosine similarity	0.64	0.63	0.60	0.60	0.60

Convolutional Neural Network (CNN)

Experiment: CNN

Model	Precision	Recall	F1-score	Accuracy
CNN with sigmoid	0.8317	0.9006	0.8648	0.8215
CNN with softmax	0.9038	0.8558	0.8792	0.8295

Evaluation: ROC Curve

Model	Thresholds	Accuracy
CNN + sigmoid	0.5	0.8215
CNN + sigmoid	0.33 (best)	0.8315 (+0.01)

Data Augmentation

Mixup³

Given $(x_i, y_i), (x_j, y_j) \in \mathcal{D}$ and $\lambda \sim \operatorname{Beta}(\alpha, \alpha)$ with $\alpha \in (0, \infty)$

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

 $\tilde{y} = \lambda y_i + (1 - \lambda) y_i$

ERM

mixup

³H. Zhang, M. Cisse, Y.-N. Dauphin, and D. Lopez-Paz mixup: Beyond Empirical Risk Minimization, ICLR, 2018.

Experiment: CNN + Mixup

Model	Accuracy
$CNN + sigmoid \; (thresholds = 0.5)$	0.8215
CNN + sigmoid (thresholds = 0.33)	0.8315 (+0.010)
CNN + softmax	0.8295
CNN + softmax + mixup	0.8320 (+0.002)

Recurrent Neural Network (RNN)

$$s_t = f(Ux_t + Ws_{t-1})$$

- ullet s_t is calculated based on the current input and the previous time step's hidden state.
- \bullet f is non-linear transformation

Long Short Term Memory (LSTM)

$$x = [h_{t-1} \quad x_t]^{\top}$$

$$f_t = \sigma(W_f x + b_f)$$

$$i_t = \sigma(W_i x + b_i)$$

$$o_t = \sigma(W_o x + b_o)$$

$$c_t = f_t \odot c_{t-1} + i_t \tanh(W_c X + b_c)$$

$$h_t = o_t \odot \tanh c_t$$

Experiment: LSTM

Finally, We get the test accuracy of 0.8130.

Transformer

Transformer

BERT

Bidirectional Encoder Representations from Transformers

BERT: Encoder of Transformer ⁴

⁴A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.-N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, Computation and Language, 2017.

39 / 45

BERT

We use pretrain weight in the BERT and connect the linear binary classifier at the end.

- Input: sentences
- Output: predicted class

Attention Block

- Q: queries, K: keys, V: values
- \bullet d_k is keys of dimension

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$

Scaled Dot-Product Attention

Experiment: BERT

Finally, We get the test accuracy of 0.8550.

Conclusion

In this project, we implement machine learning methods and deep learning methods. The deep learning model gets good performance. We compared the result as follow:

• Machine Learning method:

Method	Naive Bayes	Tree-based	SVM
Accuracy	0.7240	0.8040	0.8285

• Deep Learning method:

Model	CNN (with mixup)	LSTM	BERT
Accuracy	0.8320	0.8130	0.8550

Conclusion

In this project, we implement machine learning methods and deep learning methods. The deep learning model gets good performance. We compared the result as follow:

Machine Learning method:

Method	Naive Bayes	Tree-based	SVM
Accuracy	0.7240	0.8040	0.8285

• Deep Learning method:

Model	CNN (with mixup)	LSTM	BERT
Accuracy	0.8320	0.8130	0.8550

Machine learning methods are more explainable but deep learning method like black boxes. At the recent, many research start to develop **Explainable AI**. So, we can develop towards this research topic in the future.

Reference

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Computation and Language, 2018.
- Laurens van der Maaten, Geoffrey Hinton, Visualizing Data using t-SNE. Journal of Machine Learning Research, 2008.
- Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, Computation and Language, 2013.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need, Computation and Language, 2017.
- 5 Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria, Recent Trends in Deep Learning Based Natural Language Processing, Computation and Language, 2017.
- 6 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz, mixup: Beyond Empirical Risk Minimization, ICLR, 2018.

Thanks for listening!