## Digital Integrated Circuits

### **Lab 1: Device Simulations**

#### Dr. Yanan Sun

Email: sunyanan@sjtu.edu.cn

Office: Rm 414, Building of Microelectronics

#### **Outline**

- □ Lab Contents
- □ Report Requirements

#### Models for DC Simulation

- Use the Predictive Technology Model (PTM) to evaluate the DC characteristics of 16nm bulk Si-MOSFETs and 10nm multi-gate (MG) FinFETs
  - PTM link: http://ptm.asu.edu/
  - Use the highperformance (HP) models
  - For both n-channel and p-channel devices



## Simulation Settings

- $\Box$  L<sub>g</sub> = 14nm for FinFETs while L<sub>g</sub> = 16nm for bulk Si-MOSFETs
- □ Supply voltage (V<sub>DD</sub>) is 0.65V for 10nm FinFETs and 0.7V for 16nm bulk Si-MOSFETs
- □ Simulation temperature
  - $\rightarrow$  T = 25°C
  - $\rightarrow$  T = 90°C

#### Task 1: Plot I-V Curves

#### ☐ For bulk Si-MOSFETs and FinFETs

- $\triangleright$  Plot I<sub>ds</sub>-V<sub>ds</sub> (@V<sub>gs</sub> = V<sub>DD</sub>) curves
- $\triangleright$  Plot I<sub>ds</sub>-V<sub>gs</sub> (@V<sub>ds</sub> = V<sub>DD</sub>) curves
  - For both n-channel and p-channel devices
  - FinFETs: fin number is increased from 1 to 10 with a step of 1
  - Bulk Si-MOSFETs: width is increased from 3λ to 15λ with a step of 3λ

# I<sub>ds</sub>-V<sub>gs</sub> Curve of N-Channel FinFETs

'on' current  $I_{ds}$  versus  $V_{gs}$  in logarithmic coordinate ( $V_{ds}=V_{DD}$ ) N\_Fin=10 **N\_Fin=1** 'off' current

Digital IC

2021/9/29 p.6

# I<sub>ds</sub>-V<sub>ds</sub> Curve of N-Channel FinFETs

I<sub>ds</sub> versus V<sub>ds</sub> in linear coordinate (V<sub>gs</sub> = V<sub>DD</sub>)



#### Task 2: Metrics to be Measured

- ☐ On-state current (I<sub>on</sub>)
- ☐ Off-state current (I<sub>off</sub>)
- ☐ On-state to off-state current ratio (I<sub>on</sub>/I<sub>off</sub>)
- ☐ Equivalent resistance (R<sub>on</sub>&R<sub>off</sub>)
- Subthreshold Swing (SS)

# Measurement Methods — Ion & Ioff

- ☐ Take the n-channel device as an example
  - The on-state current (I<sub>on</sub>) is measured when

$$V_{gs} = V_{DD}$$
  
 $V_{ds} = V_{DD}$ 

$$\triangleright V_{ds} = V_{DD}$$

The off-state current (I<sub>off</sub>) is measured when

$$> V_{gs} = 0$$

$$\triangleright V_{ds} = V_{DD}$$

#### Measurement Methods — Ron & Roff

- ☐ Take the n-channel device as an example
  - $ightharpoonup R_{on}$ : According to Fig. 1, set Vg = V<sub>DD</sub>, conduct simulation and get the curve shown in Fig. 2. Then use equation (1) to estimate Roff value.
  - ➤ R<sub>off</sub>: Set Vg=0V and repeat the above process.





$$R_{eq} = average_{t=t_1...t_2} \Big( R_{on}(t) \Big) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} R_{on}(t) dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{V_{DS}(t)}{I_D(t)} dt \approx \frac{1}{2} \left( R_{on}(t_1) + R_{on}(t_2) \right) \tag{1}$$

# Measurement Methods — Subthrehold Slope (SS)

☐ According to the definition, you can use the following way

ightharpoonup Find the  $V_{gs}$  when  $I_{ds} \neq 0.1$  uA  $\stackrel{1}{
ightharpoonup}$  (W/L) ,denoted by  $V_1$ 

 $\triangleright$  Find the  $V_{gs}$  when  $I_{ds} = 0.01 \text{ uA} \times (W/L)$ , denoted by  $V_2$ 



## Task 3 (optional): TFET

- ☐ I-V Curve
- ☐ On-state current (Ion)
- ☐ Off-state current (loff)
- □ On-state to off-state current ratio (lon/loff)
- ☐ Equivalent resistance (Ron & Roff)
- ☐ Subthreshold Swing (SS)

#### Models for TFET

- Use the Penn State III-V Tunnel FET Model Manual Version 1.0.1 for task 3 (optional).
  - Download the from models and manual from Canvas
  - Models are available for both n-channel and p-channel devices



Verilog-A file

Model path

# Simulation Settings for TFET

- $\Box$  L<sub>g</sub> is fixed at 20nm for both n-channel and p-channel TFETs while W<sub>g</sub> is changed from 3λ to 15λ with a step of 3λ
- ☐ Supply voltage (V<sub>DD</sub>) is 0.3V for 20nm TFETs
- □ Simulation temperature

$$\rightarrow$$
 T = 25°C





# I<sub>ds</sub>-V<sub>ds</sub> Curve of N-Channel TFETs

I<sub>ds</sub> versus V<sub>ds</sub> in linear coordinate (V<sub>gs</sub> sweep from 0 to V<sub>DD</sub>)



# I<sub>ds</sub>-V<sub>gs</sub> Curve of N-Channel TFETs

I<sub>ds</sub> versus V<sub>gs</sub> in logarithmic coordinate (V<sub>ds</sub>=V<sub>DD</sub>)



#### **Outline**

- □ Lab Contents
- □ Report Requirements

## Report Requirement

- □ Write your lab report like writing a technical document (readable, comprehensive analysis, no typo...)
- ☐ You may include
  - Introduction/background
  - Lab procedures
  - Lab results
    - Widths/lengths of transistors, I-V curves, result tables of metrics...
  - Technical analysis of the simulation results
  - Observations and conclusions
    - You can also add some comments on how this lab can be helpful to your understanding of the class material

#### Submission

- ☐ You need to submit your report and code
  - Name of report (in PDF format): lab1\_report\_[Name]\_[Student No.].pdf
  - Name of code (compressing the files):
     lab1\_code\_\_[Name]\_[Student No.].zip
- □ Please upload your report to Canvas course website
- Submission of lab1 report and code will be due on 13<sup>th</sup> October 2021

## Q & A

☐ If you have any technical problem, you may contact TA through

TA: 汪登峰

E-mail: yungsk@sjtu.edu.cn

Lab: Rm 208, Building of Microelectronics