Central Forces Homework 9

Sensemaking: For every problem, before you start the problem, make a brief statement of the form that a correct solution should have, clearly indicating what quantities you need to solve for. This statement will be graded.

REQUIRED:

1. Show that the angular momentum operators L^2 and L_z commute with the central force Hamiltonian H, where

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

$$L_z = -i\hbar \frac{\partial}{\partial \phi}$$

$$H = -\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] + V(r)$$

2. Write out the first 9 terms in the sum:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} c_{\ell,m} Y_{\ell,m}$$

Describe the energy degeneracy of the rigid rotor system, i.e. give the number of eigenstates that all have the same energy.

3. Consider the normalized function:

$$f(\theta, \phi) = \begin{cases} N\left(\frac{\pi^2}{4} - \theta^2\right) & 0 < \theta < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < \theta < \pi \end{cases}$$

where

$$N = \frac{1}{\sqrt{\frac{\pi^5}{8} + 2\pi^3 - 24\pi^2 + 48\pi}}$$

- (a) Find the $|\ell, m\rangle = |0, 0\rangle$, $|1, -1\rangle$, $|1, 0\rangle$, and $|1, 1\rangle$ terms in a spherical harmonics expansion of $f(\theta, \phi)$.
- (b) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that a measurement of the square of the total angular momentum will yield $2\hbar^2$? $4\hbar^2$?

- (c) If a quantum particle, confined to the surface of a sphere, is in the state above, what is the probability that the particle can be found in the region $0 < \theta < \frac{\pi}{6}$ and $0 < \phi < \frac{\pi}{6}$? Repeat the question for the region $\frac{5\pi}{6} < \theta < \pi$ and $0 < \phi < \frac{\pi}{6}$. Plot your approximation from part (a) above and check to see if your answers seem reasonable.
- 4. Make a table, similar to the one you made for a particle confined to a ring, showing the different representations of the physical quantities associated with the rigid rotor. Include information about the operators \hat{H} , \hat{L}_z , and \hat{L}^2 .

Particle on a Ring

	Ket Representation	Wave Function Representation	Matrix Representation
Hamiltonian	\hat{H}	$-\frac{\hbar^2}{2I}\frac{d^2}{d\phi^2}$	$ \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \dots & E_1 & 0 & 0 & \dots \\ \dots & 0 & E_0 & 0 & \dots \\ \dots & 0 & 0 & E_{-1} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \dots & \frac{\hbar^2}{2I} & 0 & 0 & \dots \\ \dots & 0 & 0 & 0 & \dots \\ \dots & 0 & 0 & \frac{\hbar^2}{2I} & \dots \\ \dots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} $
Eigenvalues of Hamiltonian	$E_m = \frac{\hbar^2}{2I}m^2$	$E_m = \frac{\hbar^2}{2I}m^2$	$E_m = \frac{\hbar^2}{2I}m^2$
Normalized Eigenstates of Hamiltonian	$ m\rangle$	$\Phi_m(\phi) = \sqrt{\frac{1}{2\pi r_0}} e^{im\phi}$	$\begin{bmatrix} \vdots \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} \begin{pmatrix} \vdots \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} \dots$
Coefficient of m^{th} energy eigenstate	$c_{\scriptscriptstyle m} = \langle m \big \Phi \rangle$	$c_{m} = \int_{0}^{2\pi} \sqrt{\frac{1}{2\pi r_{0}}} e^{-im\phi} \Phi(\phi) r_{0} d\phi$	$(\cdots \ 1 \ \cdots \ 0 \ \cdots)$ $\begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}$
Probability of measuring E_m		$P(E_m) = \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{-im\phi} \Phi(\phi) r_0 d\phi \right ^2$ $+ \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{im\phi} \Phi(\phi) r_0 d\phi \right ^2$	$P(E_m) = \begin{pmatrix} \cdots & 1 & \cdots & 0 & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}^2 + \begin{pmatrix} \cdots & 0 & \cdots & 1 & \cdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_0 \\ \vdots \\ c_{-m} \\ \vdots \end{pmatrix}^2$
Expectation value of Hamiltonian	$\langle \Phi H \Phi \rangle = \sum_{m} c_{m} ^{2} E_{m}$	$\langle \Phi H \Phi \rangle = \int_{0}^{2\pi} \Phi^{*}(\phi) \hat{H} \Phi(\phi) r_{0} d\phi$	$ \langle \Phi H \Phi \rangle = \left(\cdots c_{1}^{*} c_{0}^{*} c_{-1}^{*} \cdots \right) \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & E_{1} & 0 & 0 & \cdots \\ \cdots & 0 & E_{0} & 0 & \cdots \\ \cdots & 0 & 0 & E_{-1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ c_{1} \\ c_{0} \\ \vdots \\ \vdots \end{pmatrix} $

Particle on a Ring

Operator for z- component of angular momentum	L_z	$-i\hbar \frac{\partial}{\partial \phi}$	$ \begin{pmatrix} \ddots & \vdots & \vdots & \ddots \\ \cdots & 1\hbar & 0 & 0 & \cdots \\ \cdots & 0 & 0\hbar & 0 & \cdots \\ \cdots & 0 & 0 & -1\hbar & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} $
Eigenvalues of L_z	mħ	mħ	$m\hbar$
Normalized Eigenstates of L_z	$ m\rangle$	$\Phi_m\left(\phi ight) = \sqrt{rac{1}{2\pi r_0}}e^{im\phi}$	$ \dots, \begin{pmatrix} \vdots \\ 1 \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} \vdots \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} \dots $
Coefficient of m^{th} eigenstates of L_z	$c_{\scriptscriptstyle m} = \langle m \Phi \rangle$	$c_{m} = \int_{0}^{2\pi} \sqrt{\frac{1}{2\pi r_{0}}} e^{-im\phi} \Phi(\phi) r_{0} d\phi$	$(\cdots \ 1 \ \cdots \ 0 \ \cdots) \begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}$
Probability of measuring <i>mh</i> for z-component of angular momentum	$P(\hbar m) = c_m ^2 = \langle m \Phi\rangle ^2$	$P(\hbar m) = \left c_m \right ^2 = \left \int_0^{2\pi} \sqrt{\frac{1}{2\pi r_0}} e^{-im\phi} \Phi(\phi) r_0 d\phi \right ^2$	$P(m\hbar) = \left c_m \right ^2 = \left(\cdots 1 \cdots 0 \cdots \right) \begin{pmatrix} \vdots \\ c_m \\ \vdots \\ c_0 \\ \vdots \end{pmatrix}^2$
Expectation value of z- component of angular momentum	$\left\langle \Phi \left \hat{L}_{z} \right \Phi \right\rangle = \sum_{m} \left c_{m} \right ^{2} m \hbar$	$\langle \Phi \hat{L}_z \Phi \rangle = \int_0^{2\pi} \Phi^*(\phi) \left(-i\hbar \frac{\partial}{\partial \phi} \right) \Phi(\phi) r_0 d\phi$	$\langle \Phi L_{z} \Phi \rangle = \begin{pmatrix} \cdots & c_{1}^{*} & c_{0}^{*} & c_{-1}^{*} & \cdots \end{pmatrix} \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & 1\hbar & 0 & 0 & \cdots \\ \cdots & 0 & 0\hbar & 0 & \cdots \\ \cdots & 0 & 0 & -1\hbar & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ c_{1} \\ c_{0} \\ c_{-1} \\ \vdots \end{pmatrix}$

5 (Challenge Problem) Let **J** be an angular momentum with a set of three observables J_x , J_y , and J_z that satisfy:

$$[J_x, J_y] = i\hbar J_z$$
$$[J_y, J_z] = i\hbar J_x$$
$$[J_z, J_x] = i\hbar J_y$$

 \mathbf{J}^2 , J_+ , and J_- are three operators that are defined as following:

$$\mathbf{J}^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}$$

$$J_{+} = J_{x} + iJ_{y}$$

$$J_{-} = J_{x} - iJ_{y}$$

Show that the operators J_+ , J_- , J_z , and \mathbf{J}^2 satisfy the following commutation relations:

$$[\mathbf{J}^{2}, J_{z}] = [\mathbf{J}^{2}, J_{+}] = [\mathbf{J}^{2}, J_{-}] = 0$$

$$[J_{z}, J_{+}] = +\hbar J_{+}$$

$$[J_{z}, J_{-}] = -\hbar J_{-}$$

$$[J_{+}, J_{-}] = 2\hbar J_{z}$$