

Ayudantía 7

Problema 1

- a) Considere el plano 2x + y z + 2 = 0 y la recta que pasa por los puntos (-3,1,0) y (-1,5,6). Determine, si es que lo hay, el punto de intersección.
- b) Encuentre los valores de $a \in \mathbb{R}$ para los cuales el plano x + y + 2z + a = 0 es tangente a la esfera centrada en (3,0,0) y de radio 2.

Problema 2

- a) Determine la ecuación del plano que es perpendicular a la recta dada por la intersección de los planos 2x y + z = 10 y x y + 3z = 8, y que pasa por el punto (0, 1, 2).
- b) Hallar la ecuación del plano que contiene a la recta de intersección de los planos 5x 3y + 2z = -1 y x + 3y z = -11, y que es paralelo a la recta de intersección de los planos x + 4y 3z = 2 y 3x y + 4z = 9.

Problema 3

24-25 de abril de 2025

a) Dados los planos paralelos $ax + by + cz + d_1 = 0$ y $ax + by + cz + d_2 = 0$, muestre que la distancia D entre ellos está dada por:

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

b) Sea el plano x + 2y - 2z = 1. Use lo anterior para encontrar las ecuaciones de los planos paralelos al plano dado que están a dos unidades de distancia.

Problema 4

Considere la recta dada por $r(t) = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + t \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ y el plano ax + by + cz + d = 0.

Muestre que el ángulo agudo entre la recta y el plano está dado por

$$\sin \varphi = \frac{|av_1 + bv_2 + cv_3|}{\sqrt{a^2 + b^2 + c^2} \sqrt{v_1^2 + v_2^2 + v_3^2}}$$

Problema 5*

Sean \hat{n} y $\vec{r_0}$ vectores en \mathbb{R}^3 , L la recta descrita por la ecuación

$$\vec{r} = \gamma \hat{n} + \vec{r}_0$$

y M el plano descrito por la ecuación

$$\hat{n} \cdot (\vec{r} - \vec{r}_0) = 0.$$

Como podemos observar, la ecuación vectorial de la recta y la ecuación vectorial del plano se ven muy diferentes. En este ejercicio, escribiremos la ecuación del plano en una forma análoga a la de la recta, y la ecuación de la recta en una forma análoga a la del plano.

- a) Demuestre que existen vectores normalizados \hat{u} y \hat{v} tales que $\hat{u} \cdot \hat{v} = 0$, $\hat{u} \cdot \hat{n} = 0$ y $\hat{v} \cdot \hat{n} = 0$.
- b) Demuestre que $\{\hat{u}, \hat{v}, \hat{n}\}$ es una base de \mathbb{R}^3 , esto es, demuestre que para todo vector \vec{r} , existen constantes $\alpha, \beta, \gamma \in \mathbb{R}$ tales que

$$\vec{r} = \alpha \hat{u} + \beta \hat{v} + \gamma \hat{n} .$$

Más aún, muestre que $\alpha = \hat{n} \cdot \hat{r}$, $\beta = \hat{u} \cdot \hat{r}$ y $\gamma = \hat{v} \cdot \hat{r}$ (esta condición es característica de las llamadas bases ortonormales).

c) Demuestre que el plano M consiste exactamente de los vectores \vec{r} de la forma

$$\vec{r} = \alpha \hat{u} + \beta \hat{v} + \vec{r_0} .$$

d) Demuestre que la recta L consiste exactamente de los vectores \vec{r} que satisfacen

$$(\vec{r} - \vec{r}_0) \cdot \vec{u} = 0$$
 y $(\vec{r} - \vec{r}_0) \cdot \vec{v} = 0$.