1

gg Gate 2011

ai25btech11014-Gooty Suhas

PART A: COMMON TO BOTH GEOLOGY AND GEOPHYSICS CANDIDATES

1) T	1) The increase in the length of a day on the earth at a rate of 2.4 milliseconds/100 years is due to						
	prolate tidal bulge tidal friction			spring tide bodily earth tide			
2) V	Which of the following	rocks contributes the high	est	amount of radioactive	heat in the earth's crust?		
a)	basalt	b) gabbro	c)	dunite	d) granite		
3) 1	The P-wave velocity of	the earth's mantle at the	Mo	horovičić discontinuity	is		
a)	5.5 km/s	b) 6.0 km/s	c)	7.0 km/s	d) 8.0 km/s		
	Variation of the geomag	netic field observed over the has been	the	last 500 years indicate	s that the dipole moment		
	decreasing increasing			constant fluctuating randomly			
a) b) c) d)	tmosphere? Temperature increases Temperature decreases Temperature increases Temperature decreases	statements is TRUE for the sin both stratosphere and incress in stratosphere and decress in both stratosphere and currents in the northern a	me ease ease l me	esosphere es in mesosphere es in mesosphere esosphere			
	thermohaline circulation Coriolis effect	on		El Nino effect monsoon effect			
7) 1	Sunamis are						
	gravity waves acoustic waves			capillary waves internal waves			
8) 7	The planet which contri	butes maximum to the an	gul	ar momentum of the s	olar system is		
a)	Earth	b) Mars	c)	Jupiter	d) Saturn		
	The depositional feature s called	that forms where a stream	n e	merges from a mounta	inous region onto a plain		

	a) alluvial fanb) natural levee			delta point bar	
10)	Hanging valleys are for	med by the geological act	ion	of	
	a) river	b) glacier	c)	ocean	d) wind
11)	The surface of disconting is known as	nuity between older folder	d so	edimentary strata and	younger horizontal strata
	a) disconformityb) parallel unconformity			angular unconformity nonconformity	
12)	The hardest oxide mine	ral in the Mohs' scale of	har	dness is	
	a) corundum	b) topaz	c)	quartz	d) diamond
13)	The dominant constitue	nt of ultramafic rocks in t	he	earth's mantle is	
	a) orthoclaseb) olivine			plagioclase biotite	
14)	A highly vesicular rock	formed by solidification	of v	viscous lava is	
	a) tuff	b) obsidian	c)	volcanic breccia	d) pumice
15)	The most suitable radio	active method for dating l	Hol	ocene events is	
	a) U-Pb	b) Sm-Nd	c)	Rb-Sr	d) C-14
16)	Which of the following	stratigraphic units is NO	Γο	f Proterozoic age?	
	a) Tipam Groupb) Bhima Group		- 1	Nallamalai Group Semri Group	
17)	Rampura-Agucha in Ra	jasthan is known for the o	ore	deposit of	
	a) gold	b) tungsten	c)	zinc	d) iron
18)	The geological age of the	he major hydrocarbon reso	ervo	oir in the Bombay Hig	h oil field is
	a) Cretaceous	b) Holocene	c)	Oligocene	d) Miocene
19)	The geophysical method	d for the exploration of di	sse	minated sulfide deposit	es is
	a) induced polarizationb) self-potential			gravity magnetic	
20)	In a borehole, high pres	ssure gas zone is identified	d b	y	
	a) sonic loggingb) resistivity logging			temperature logging density logging	

		3			
21) The acceleration due to gravity (g) and universal gravitational constant (G) are related by the expression (Me and Re are the mass and radius of the earth, respectively)					
a) $g = \frac{GM_e}{R^2}$ b) $g = \frac{GM_e}{R}$	c) $g = \frac{GR_eM_e}{R_a}$ d) $g = \frac{GR_eM^2}{R^2}$				
22) The metamorphic facies diagnostic of subduction zone is					
a) hornblende hornfels b) pyroxene hornfels	c) blueschist	d) granulite			
23) In a formation, if the density increases and elastic constants remain unchanged, then					

- a) both P and S wave velocities increase
- b) P wave velocity increases and S wave velocity decreases
- c) both P and S wave velocities decrease
- d) P wave velocity decreases and S wave velocity increases
- 24) The Poisson ratio (σ) for rocks in terms of Lame's constants λ and μ is

a)
$$\sigma = \frac{\lambda}{2(\lambda + \mu)}$$
 b) $\sigma = \frac{2\lambda}{2\lambda + \mu}$ c) $\sigma = \frac{\mu}{2(\lambda + \mu)}$ d) $\sigma = \frac{2\mu}{2\lambda + \mu}$

- 25) In seismic exploration, 'ground roll' represents
 - a) direct wave b) surface wave c) Stonely wave d) shear wave

PART B (SECTION 1): FOR GEOLOGY CANDIDATES ONLY

- 26) Choose the correct set of crystal faces for which 'c' crystallographic axis is the zone axis.
 - a) (100), (001), (100)

c) (010), (110), (100)

b) (010), (001), (010)

- d) (110), (001), (110)
- 27) The twin plane in the Manebach law is
 - a) (010)

b) (001)

c) (100)

- d) (021)
- 28) The optic sign of a mineral showing increase (i) and decrease (d) in interference colors after insertion of mica plate is

- Fig. 1. Image for questions 28
 - a) uniaxial positive

c) biaxial positive

b) uniaxial negative

- d) biaxial negative
- 29) The igneous rock falling in the shaded field of the diagram is

- Fig. 2. Image for questions 29
 - a) granite
- b) syenite
- c) tonalite
- d) monzonite
- 30) The figure below is the photomicrograph of a chloritoid mica schist in which chloritoid forms porphyroblasts. The formation of porphyroblasts in the crenulated matrix is

Fig. 3. Image for questions 30

`		
a)	pre-tector	n1C
α,	pro tecto.	

c) late syn-tectonic

b) early syn-tectonic

- d) post-tectonic
- 31) A pelitic rock is uplifted after high pressure metamorphism in the earth's crust. The mineral transformation due to uplift will be
 - a) kyanite to sillimanite

c) andalusite to kyanite

b) sillimanite to kyanite

- d) and alusite to sillimanite
- 32) Which of the following sedimentary structures is **NOT** a 'tool mark'?
 - a) prod cast
- b) groove cast
- c) flute cast
- d) bounce cast
- 33) The echinoids transformed from epifaunal to infaunal type in the Jurassic times. Consider the following morphological changes:
 - P increase in size of spines
 - Q increase in number of spines
 - R development of phyllodes
 - S bulging of shell

Which of the above changes were functionally advantageous in this transformation?

- a) P, Q, R, S
- b) P, S only
- c) Q, S only
- d) Q, R only

34) Match the Bivalvia in Group I with the corresponding ecology in Group II.

	Group I			Group II		
	D. M4'l			1. Cemented		
	P. Mytilus			2. Swimmer	ad	
	Q. Pecten			3. Bysally attach4. Infaunal	ea	
	R. Ostrea					
	S. Mya			5. Floating		
	a) P-1, Q-2, R-3, S-5			c) P-2, Q-3, R-5		
	b) P-3, Q-2, R-1, S-4			d) P-2, Q-4, R-5	5, S–3	
	Determine the correctnet Assertion (a): The Low Spiriferina and Reticular Peninsular India during Reason (r): The braches species of the formation a) Both (a) and (r) are to b) (a) is true but (r) is for c) (a) is false but (r) is d) Both (a) and (r) are to line the following lithost age? P Barail Formation Q Subathu Formation R Sylhet Limestone S Kamlial Formation	er Gondwana rocaria, are consider Permian. iopods are maring n suggest Permia crue and (r) is the false true true but (r) is no	cks in Centered to have organism age. The correct of the correct	tral India, containing tral India, containing trans and the stratign trans and the stratign trans for (a)	ng brachion nsgression raphic rang	of the Tethys Sea in
	a) P, Q	b) Q, R		c) R, S	d)	P, S
37)	The microfaunal assemble Top: High abundance of Middle: Moderate abure Bottom: Moderate abure sponds to a) lowstand systems	of <i>Globigerina</i> , Condance of <i>Uviger</i>	Globorotali rina, Cassi onia, Elph	ia and <i>Orbulina</i> Idulina and low ab	oundance o ueloculina	f <i>Globigerina</i>
	tract	tract	,	tems tract	• ,	tract
38)	Match the geomorpholo	ogical features in	Group I v	with the correspon	ding chara	cteristics in Group II
	Group I			Group II		
				deep lagoon		e and separated by oped by resistant rock
	P. Atolls			and bounded by	_	.1
	Q. Mesa			3. circular reefs		goons
	R. Barchans			4. crescent shape		_

a)	P-1, Q-2, R-3	b) P-3, Q-2, R-4	c) P-3, Q-4, R-1	d) P-2, Q-4, R-1				
39) M	39) Match the optical properties in Group I with the corresponding mineral in Group II.							
1. 2. 3.	roup I internal reflections bireflectance triangular pits pyrrhotite		Group II P. galena Q. sphalerite R. magnetite S. pyrrhotite					
a)	P-4, Q-3, R-1	b) P-3, Q-2, R-4	c) P-2, Q-4, R-1	d) P-2, Q-1, R-4				
	Thich of the following mote sensing?	g bands (in micrometre)	is NOT suitable for eart	h observation in satellite				
a)	0.30-0.35	b) 0.53-0.58	c) 0.62-0.67	d) 0.74–0.78				
a) b) c) d) 42) Do As pl: Re a) b) c) d) 43) W a) b) c)	 41) Thermal maturation of hydrocarbon source rocks can be determined from a) temperature of the borehole drilled into the source rock b) ¹⁸O/¹⁶O ratio of the source rock c) Mg/Ca ratio of foraminifera in the source rock d) color of spores and pollens in the source rock 42) Determine the correctness or otherwise of the following statements: Assertion (a) Strontium concentration in a basic magma decreases with fractional crystallization of plagioclase. Reason (r) Strontium is a compatible trace element in plagioclase during magmatic crystallization. a) Both (a) and (r) are true and (r) is the correct reason for (a) b) (a) is true but (r) is false c) (a) is false but (r) is true d) Both (a) and (r) are true but (r) is not the correct reason for (a) 43) Which of the following is true for the coordination number n of aluminium? a) n = 4 in both plagioclase and garnet b) n = 6 in both plagioclase and garnet c) n = 4 in plagioclase and n = 6 in garnet d) n = 6 in plagioclase and n = 4 in garnet 							
a)	6.00	b) 6.55	c) 7.00	d) 7.55				
a) b) c) d) 46) Th	 45) Choose the correct statement: a) Sandstone forms aquifers and sandy shale forms aquifuges b) Sandstone forms aquifers and sandy shale forms aquitards c) Sandstone forms aquicludes and sandy shale forms aquifuges d) Both sandstone and sandy shale form aquifuges 46) The slow, permanent and continuous deformation of materials under constant load is called 							
a)	strain hardening	b) stress stiffening	c) work hardening	d) creep				

47) Which of the following lithostratigraphic units hosts lignite at Neyveli?

- a) Ariyalur Formation
- b) Cuddalore Formation

- c) Kamthi Beds
- d) Pali Beds

Common Data for Questions 48 and 49:

The figure below is the schematic geological map of a flat terrane.

Fig. 4. Image for questions 48,49

- 48) The strata P, Q and R have been folded into a
 - a) north-plunging anticlinal antiform
 - b) south-plunging anticlinal antiform
- c) north-plunging synclinal antiform
- d) south-plunging synclinal antiform

- 49) The granite pluton intruded
 - a) before folding and faulting
 - b) before faulting but after folding
 - c) after development of unconformity but before faulting
 - d) after development of unconformity and faulting

Common Data for Questions 50 and 51:

Oceanic crust is generally covered by sediments. In a convergent tectonic setting, basaltic crust, along with its sedimentary cover, is subducted beneath continental plate. In such a setting, magmatism leads to the formation of a continental arc.

- 50) The magma series typical of the arc is
 - a) alkaline
 - b) alkaline-shoshonitic
 - c) tholeiitic
 - d) calc-alkaline
- 51) The type of sulphide mineral deposit formed in this tectonic setting is

a) Porphyry copperb) Mississippi Valley le	ead and zinc		Besshi copper and zin Kuroko copper	nc
Statement for Linked A	Answer Questions 52 and	53:		
The modal analysis of 5%	a sandstone shows: Quart	tz 54%	%, Mica 3%, Feldspar 3	33%, Cement 5%, Matrix
52) The sandstone belongs	s to the class			
a) Quartz wacke	b) Arkosic wacke	c)	Arkose	d) Quartz arenite
 53) In which of the follow formed? P - Warm arid climate Q - Humid tropical climate R - Long exposure an S - Quick burial with 	e imate	t sand	stone class in the prev	ious question might have
a) P – S	b) P – R	c)	Q - R	d) Q – S
Statement for Linked A	Answer Questions 54 and	55:		
Lithostratigraphic units	s of different ages and ho	sting	different ore deposits a	are exposed in Peninsular
54) Which of the followin	g lithostratigraphic units	is of	Palaeoproterozoic age'	?
a) Aravalli Supergroupb) Dharwar Supergroup			Vindhyan Supergroup Sukma Group	•
55) The host rock and asso question is	ociated metal deposit foun	ıd in t	he correct lithostratigra	aphic unit in the previous
a) chlorite schist – copb) dolomite – lead and	•		banded haematite qua chlorite schist – antin	

PART B (SECTION 2): FOR GEOLOGY CANDIDATES ONLY

- 26) Rayleigh number associated with convection in the earth's interior is proportional to the ratio of
 - a) buoyancy force to diffusive viscous force
 - b) buoyancy force to gravitational force
 - c) diffusive viscous force to gravitational force
 - d) gravitational force to buoyancy force
- 27) Shadow zones for direct P- and S-waves lie between
 - a) 102° to 142° for both direct P- and S-waves
 - b) 102° to 180° for direct P-wave and 102° to 142° for direct S-wave
 - c) 102° to 180° for both direct P- and S-waves
 - d) 102° to 142° for direct P-wave and 102° to 180° for direct S-wave
- 28) Snell's law of refraction deals with which of the following properties of refracted waves?
 - a) amplitude
- b) direction
- c) energy
- d) phase

- 29) In seismic reflection, the seismic trace is modeled as
 - a) convolution of source wavelet with the reflection coefficient series
 - b) multiplication of source wavelet with the reflection coefficient series
 - c) correlation of source wavelet with the reflection coefficient series
 - d) addition of source wavelet with the reflection coefficient series
- 30) From the following figure, choose the correct multiple reflection events encountered in seismic exploration

Fig. 5. Image for questions 30

- a) P is peg leg multiple, Q is ghost, R is long path multiple
- b) P is ghost, Q is simple multiple, R is reverberation
- c) P is peg leg multiple, O is simple multiple, R is reverberation
- d) P is ghost, Q is reverberation, R is peg leg multiple
- 31) Match the items in **Group I** with those in **Group II**

Group I

- P. Correlation in frequency domain
- Q. Phase spectrum
- R. Frequency interval
- S. Undersampling
- a) P-3, Q-5, R-1, S-2
- b) P-3, Q-4, R-2, S-1

Group II

- 1. Reciprocal of total signal duration
- 2. Aliasing
- 3. Product of Fourier transform and its conjugate
- 4. Autocorrelation
- 5. Hilbert transform
- c) P-3, Q-4, R-1, S-2
- d) P-2, Q-3, R-4, S-5
- 32) The derivative of the following boxcar function is

Fig. 6. Image for questions 33

Fig. 7. Image for questions 33

Fig. 9. Image for questions 33

Fig. 10. Image for questions 33

a)

c)

t

Fig. 8. Image for questions 33

rig. 8. image for questions 3.

- 3d) Gravity measurement is made on a ship sailing at the speed of 6 knots in the direction N65°E at 20°N latitude. The Eotvos correction (in mGal) is
 - a) +38.5

b)

- b) +24.5
- c) -35.5
- d) -39.5
- 35) Isostatic residual anomaly over a mountainous terrain is due to
 - a) gravitational effect of compensating mass
 - b) long wavelength variations of topography
 - c) short wavelength variations of topography
 - d) density inhomogeneities in the upper and middle crust
- 36) In magnetic data reduction, the altitude correction at magnetic equator is 0.015 nT/m. Altitude correction (in nT/m) at the magnetic poles is
 - a) 0.015

b) 0.030

c) 0.045

- d) 0.060
- 37) The Larmor precession frequency (in Hz) measured by proton precession magnetometer for a total field of 50,000 nT is (gyromagnetic ratio of proton $Y_p = 0.267513 \,\mathrm{nT^{-1}s^{-1}}$)
 - a) 1890

b) 2020

c) 2130

d) 2420

- 38) Gamma ray log measurements are used to quantify
 - a) hydrocarbon saturation
 - b) porosity of the formation

	c) density of the format d) volume of shale in the Free fluid index (FFI) of		d from				
	a) neutron log	b) latero log	c) induction log	d) NMR log			
	a) 10 KeV to 50 KeV b) 50 KeV to 100 KeV c) 100 KeV to 2.0 MeV d) 2.0 MeV to 3.5 MeV H) Which of the following Maxwell's equations is NOT CORRECT for time varying electromagnetic						
41)	field?	waxwen's equations is	NOT CORRECT for time	varying electromagnetic			
	a) $\nabla \times \mathbf{E} = \mathbf{J}$ b) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$		c) $\nabla \cdot \mathbf{D} = \rho$ d) $\nabla \cdot \mathbf{B} = 0$				
42)	The apparent resistivity	sounding curve represent	ing the resistivity structur	e $\rho_1 > \rho_2 < \rho_3 < \rho_4$ is			
	a) HK-typeb) HA-type		c) KH-type d) KQ-type				
43)	Forced movement of flu	uids through porous rocks	gives rise to				
	a) streaming potentialb) Nernst potential		c) mineralization potentd) liquid junction potent				
44)	Match the EM methods	in Group I with the corr	esponding quantity measu	red by them in Group II.			
	Group I P. VLF Q. Two-frame R. Slingram S. TURAM		Group II 1. Amplitude ratio and 2. Real and imaginary of 3. Dip angle 4. Amplitude ratio	-			
	a) P-2, Q-4, R-3, S-1 b) P-3, Q-4, R-2, S-1		c) P-3, Q-4, R-1, S-2 d) P-2, Q-3, R-4, S-1				
45)	Arrange the following of P – Time domain EM of Q – Magnetotelluric model R – VLF method S – Ground Penetrating	method ethod	n the decreasing order of	depth of investigation.			

46) The least squares generalized inverse of an overdetermined problem is expressed as

c) Q > P > R > Sd) Q > R > P > S

a) P > Q > S > Rb) S > Q > P > R

a) $(G^T G)^{-1} G^T$ b) $(G^T G)^{-1}$		c) $G^{T}(GG^{T})^{-1}$ d) $(GG^{T})^{-1}$					
47) The primary field (H_p) in EM prospecting is represented by $H_p = K \sin(\omega t)$. Which is the correct expression for induced e.m.f. (e_s) in the subsurface conductor? (K and K' are constants) a) $e_s = K' \sin(\omega t - \phi)$ b) $e_s = K' \cos(\omega t - 2\phi)$ c) $e_s = K' \sin(\omega t - \frac{\phi}{2})$ d) $e_s = K' \cos(\omega t - \phi)$							
Common Data for Que	stions 48 and 49:						
Time series P and Q ar	re given by $P = \{1, -1, -2\}$	$\{0, 0, 1\} Q = \{1, 0, -1\}$					
 48) The convolution of P and Q is a) {-1, 0, 3, 1, -3, -1, 1} b) {1, -1, -3, 1, 3, 0, -1} c) {1, -1, -3, -1, 3, 1, -1} d) {1, 0, 3, 1, -3, -1, 1} 49) P is similar and most out of phase to Q at a lag of 							
a) 0	b) 1	c) 2	d) 3				
Common Data for Question.	s 50 and 51:						
An asymmetric split spre spread yields $t_1 = 0.997 \mathrm{s}$ at 2800 m/s.			reflection observed on the 0s at $x = 0.0 \text{m}$, velocity =				
50) NMO correction estima	ated at $x_1 = -400 \mathrm{m}$ and $x_2 = -400 \mathrm{m}$	$x_2 = 800 \mathrm{m}$ are, respective	ely				
a) 5 and 30 ms	b) 8 and 35 ms	c) 10 and 41 ms	d) 15 and 45 ms				
51) The depth of the reflect	tor at the shot point norn	nal to the reflector is					
a) 700 m	b) 1400 m	c) 2100 m	d) 2800 m				
Linked Answer Questio	Linked Answer Questions 52 and 53:						
A gravity survey is conducted over a highly compact ore deposit (spherical shape). Bouguer anomaly values reduced along a profile are given below: 52) What is the depth to the center of the ore deposit?							
a) 3100 m	b) 1820 m	c) 1560 m	d) 1450 m				
53) What is the excess mass (in metric tons) by the deposit?							

	Table 1		Table 2	Table 3		
Distance (m)	Gravity anomaly (mGal)	Distance (m)	Gravity anomaly (mGal)	Distance (m)	Gravity anomaly (mGal)	
0	0.25	2400	3.50	4800	1.50	
400	0.35	2800	4.00	5200	0.80	
800	0.50	3200	5.00	5600	0.50	
1200	0.80	3600	4.00	6000	0.35	
1600	1.50	4000	3.50	6400	0.25	
2000	2.50	4400	2.50			

- a) 1.615×10^8
- b) 2.165×10^8
- c) 1.312×10^9
- d) 1.825×10^9

Statement for Linked Answer Questions 54 and 55:

An axial dipole–dipole configuration is given below:

Fig. 11. Image for questions 54,55

- 54) The geometrical factor for the above axial dipole array is
 - a) $\pi n(n+1)s$
- b) $\pi n(n + 2)s$
- c) $\pi(n+1)(n+2)s$
- d) $\pi n(n+1)(n+2)s$
- 55) What is the apparent resistivity (in Ω m) if 1.0 Amp current flowing between C1 and C2 produces 10 mV potential difference between P1 and P2 for s = 10 m and n = 10? (Use $\pi = 3.14$)
 - a) 414.48
- b) 41.45

- c) 37.68
- d) 34.54

GENERAL APTITUDE (GA) QUESTIONS

	appropriate word or phrase fron appropriate word or phrase fron appropriate word or phrase from appropriate word or phrase from the lake appropriate word or phrase appropriate word or phra			
a) in restoring	iviromicatours is nope the iun		_ 165 p11561116	Condition.
b) in the restorat	ion of			
c) to restore				
d) restoring				
57) Choose the word word: Polemical	I from the options given below	that is most	nearly oppos	ite in meaning to the given
a) imitative				
b) conciliatory				
c) truthful				
d) ideological				
58) Choose the most	appropriate word from the opt	ions given be	elow to compl	lete the following sentence.
Despite the mix	ture's nature, we found	that by low	ering its temp	perature in the laboratory
we could drama	atically reduce its tendency to	o vaporize.		
a) acerbic				
b) resilient				
c) volatile				
d) heterogeneous				
59) If <i>m</i> students recognizes of stationed	quire a total of m pages of statery in	ionery in m	days, then 10	0 students will require 100
a) 100 days	b) <i>m</i> /100 days	c) 100/m	ı days	d) m days
	<u> </u>	-	-	
c) graciousness.	•			
d) querulousness	affably			
61) The number of s	solutions for the following syst			
	$x_1 \ge 0, x_2 \ge 0, x_1$	$+ x_2 \le 10,$	$2x_1 + 2x_2 \ge 2$	22
a) 0	b) infinite	c) 1		d) 2
subject from the M600: Advanced C600: Computat E600: Experiment The registration have taken C600.	O students in an M.Tech program following three: d Engineering Mathematics ional Methods for Engineers natal Techniques for Engineers data for the M.Tech class show, and 60 students have taken E60 have taken all the above three	ws that 100 00. What is t	students have	taken M600, 200 students

- a) 20 b) 30 c) 40 d) 50
- 63) Three sisters (R, S, and T) received a total of 24 toys during Christmas. The toys were initially divided among them in a certain proportion.n. Subsequently, R gave some toys to S which doubled the share of S. Then S in turn gave some of her toys to T, which doubled Tś share. Next, some of Tś toys were given to R, which doubled the number of toys that R currently had. As a result of all such exchanges, the three sisters were left with equal number of toys. How many toys did R have originally?
 - a) 8 b) 9 c) 11 d) 12
- 64) The quality of services delivered by a company consists of six factors as shown below in the radar diagram. The dots in the figure indicate the score for each factor on a scale of 0 to 10. The standardized coefficient for each factor is given in the parentheses. The contribution of each factor to the overall service quality is directly proportional to the factor score and its standardized coefficient.

Fig. 12. Image for questions 64

Which factor contributes the least?

a) 10

b) 20

c) 24

- d) 40
- 65) In order to develop to full potential, a baby needs to be physically able to respond to the environment. It can be inferred from the passage that
 - a) Full physical potential is needed in order for a baby to be able to respond to the environment.
 - b) It is necessary for a baby to be able to physically respond to the environment for it to develop its full potential.
 - c) Response to the environment of physically able babies needs to be developed to its full potential.
 - d) A physically able baby needs to develop its full potential in order to respond to its environment.