Principle of Statistics

1 Introduction

- distribution
- p.m.f.
- p.d.f.
- sample
- sample size
- statistical model $\{f(\theta,\cdot)\}$
- law
- parameter space
- correctly specified

Fact. Goal

- (i) estimation
- (ii) testing hypothesis
- (iii) inference
 - estimator
 - test
 - confidence

2 Likelihood Principle

Setting 1. $\{f(\cdot,\theta):\theta\in\Theta\}$ statistical model, X_i i.i.d. copy of X

- likelihood function $L_n(\theta) = \prod f(x_i, \theta)$
- log-likelihood function $l_n(\theta) = \log L_n(\theta)$
- normalized log-likelihood function $\bar{l}_n(\theta) = \frac{1}{n} l_n(\theta)$
- maximum likelihood estimator (MLE) $\hat{\theta} = \hat{\theta}_{MLE}$

- score function $S_n(\theta) = \nabla_{\theta} l_n(\theta)$

Fact.
$$S_n(\hat{\theta}) = 0$$

Setting 2. model $\{f(\cdot,\theta)\}, X \sim P$

Theorem 2.1. $\mathbb{E}|\log(f(X,\theta))| < \infty$, well specified with $f(x,\theta_0)$, then $l(\theta)$ maximised at θ_0

- $l(\theta) = \mathbb{E}_{\theta_0}(\log(f(X, \theta)))$
- sample approximation $\bar{l}_n(\theta) = \frac{1}{n} \sum \log(f(x_i, \theta))$
- strict identifiability $f(\cdot, \theta) = f(\cdot, \theta') \iff \theta = \theta'$

Fact. With strict identifiability, maximizer unique hence must be the true value θ_0

– Kullback-Leibler divergence $KL(P_{\theta_0}, P_{\theta}) = l(\theta_0) - l(\theta)$

Setting 3. regular — integration and differentiation can be interchanged

Theorem 2.2. regular, then $\forall \theta \in int(\Theta), \mathbb{E}[\nabla_{\theta} \log(f(X, \theta))] = 0$

Fact. $\mathbb{E}_{\theta_0}[\nabla_{\theta} \log(f(X, \theta))] = 0$

- Fisher information matrix $I(\theta) = \mathbb{E}_{\theta}[\nabla_{\theta} \log f(X, \theta) \nabla_{\theta} \log f(X, \theta)^{\top}]$

Fact. 1-d case, $I(\theta) = \mathbb{E}\left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f(X,\theta)\right)^2\right] = Var_{\theta}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log f(X,\theta)\right]$

Theorem 2.3. regularity assumptions, $\forall \theta \in int(\Theta), \ \underline{I(\theta)} = -\mathbb{E}_{\theta}[\nabla_{\theta}^2 \log f(X, \theta)]$

Fact. 1-d case, relation between variance of score and curvature of l

$$-I_n(\theta) = \mathbb{E}[\nabla_{\theta} \log f(X_1, \dots, X_n, \theta) \nabla \log f(X_1, \dots, X_n, \theta)^{\top}]$$

Proposition 2.4 (Tensorize). X_i i.i.d , $I_n(\theta) = nI(\theta)$

Theorem 2.5 (Cramer-Rao lower bound (1-d)). $model \{f(\cdot, \theta)\}$, $regular, \Theta \subset \mathbb{R}$, $unbiased estimator \tilde{\theta}(X_1, \ldots, X_n)$, then $\forall \theta \in int(\Theta)$, $Var_{\theta}(\tilde{\theta}) = \mathbb{E}[(\tilde{\theta} - \theta)^2] \geq \frac{1}{nI(\theta)}$

Corollary 2.6. $Var_{\theta}(\tilde{\theta}) \geq \frac{(\frac{d}{d\theta} \mathbb{E}_{\theta}(\tilde{\theta}))^2}{nI(\theta)}$

Proposition 2.7. Φ differentiable functional, $\tilde{\Phi}$ unbiased estimator of $\Phi(\theta)$, then $\forall \theta \in int(\Theta)$, $Var_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \nabla_{\theta} \Phi(\theta)^{\top} I^{-1}(\theta) \nabla_{\theta} \Phi(\theta)$

Fact. $Var_{\theta}(\alpha^{\top}\tilde{\theta}) \geq \frac{1}{n}\alpha^{\top}I^{-1}(\theta)\alpha$

Fact. $Cov_{\theta}(\tilde{\theta}) \succeq \frac{1}{n}I^{-1}(\theta)$ (positive semi-definite)