SVM

Máquinas de Vetores de Suporte

Prof. Frederico Coelho.

Introdução

Classificação > tarefa de separar classes no espaço de entrada

Introdução

Dado um conjunto de dados $D_L = \{\mathbf{x}_i, y_i\}_{i=1}^N$

Onde $y_i \in \{-1,+1\}$

Se sign($\mathbf{w}^{\mathsf{T}}\mathbf{x} + b$) tiver o mesmo sinal de y então a classificação estará correta

Assim, para que todos os vetores x_i sejam classificados corretamente a seguinte desigualdade deve ser satisfeita para todos os N pares (x_i, y_i)

$$\mathbf{y}(\mathbf{w}^{\mathrm{T}}\mathbf{x} + b) \ge 1$$

Separador linear

Mas qual separador é o melhor?

Margem de classificação

- A distância de uma amostra \mathbf{x}_i ao separador é $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Amostras próximas ao hiperplano são chamados Vetores de Suporte
- ρ é a margem máxima entre vetores de suporte.

Margem larga

Apenas vetores de suporte interessam – todo o resto pode ser ignorado

Objetivo – maximizar a margem

SVM linear

Dado um conjunto de dados $D_L = \{\mathbf{x}_i, y_i\}_{i=1}^N$

Onde $y_i \in \{-1,+1\}$, para cada par (x_i, y_i) teremos:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -\rho/2 \quad \text{se } y_{i} = -1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge \rho/2 \quad \text{se } y_{i} = 1$$

$$\Leftrightarrow \quad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge \rho/2$$

SVM linear

Para cada vetor de suporte Xs a desigualdade anterior é uma igualdade.

Reescalando w e b por $\rho/2$ temos que a distância entre o hiperplano e Xs será:

$$r = \frac{\mathbf{y}_{s}(\mathbf{w}^{T}\mathbf{x}_{s} + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

Então a margem será: $\rho = 2r = \frac{2}{\|\mathbf{w}\|}$

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

SVM linear

Então podemos formular o seguinte problema quadrático de otimização:

Encontrar w e b tal que

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 é maximizado,

Para todo
$$(x_i, y_i)$$
, $i=1,...,n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Que por sua vez pode ser reformulado como:

Encontrar w e b tal que

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 é minimizado,

Para todo
$$(x_i, y_i)$$
, $i=1,...,n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Resolvendo o problema de otimização

Encontrar w e b tal que

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} \quad \text{if minimizado,}$$
 Para todo $(\mathbf{x}_i, \mathbf{y}_i)$, $i=1,...,n: y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

- Necessidade de otimizar uma função quadrática sujeita a restrições lineares.
- Problemas de otimização quadrática são uma classe bem conhecida de problemas de programação matemática para os quais existem vários algoritmos (não triviais).
- A solução envolve a construção de um problema duplo, onde um multiplicador de Lagrange αi está associado a todas as restrições de desigualdade no problema primal (original):

Encontrar
$$\alpha_1...\alpha_{n \text{ tal que}}$$

$$\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \text{ é máximo e}$$

- $\sum \alpha_i y_i = 0$
- $\alpha_i \ge 0$ para todo α_i

Resolvendo o problema de otimização

• Dada uma solução α_1 ... α_n para o problema duplo, a solução para o primal é:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_j - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \quad \text{para todo } \alpha_j > 0$$

• Cada α_i diferente de zero indica que x_i correspondente é um vetor de suporte. Em seguida, a função de classificação é (observe que não precisamos de w explicitamente):

$$\hat{y} = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

• Observe que ele depende de um produto interno entre o ponto de teste x e os vetores de suporte x_i . Lembre-se também de que a solução do problema de otimização envolveu a computação dos produtos internos $x_i^T x_j$ entre todos os pontos de treinamento.

E se o problema não for linearmente separável?

As amostras X no espaço de entrada podem ser mapeadas para outro espaço onde o problema pode ser linearmente separável.

O classificador linear depende do produto interno entre os vetores $K(x_i, x_j) = x_i^T x_j$

Se todo ponto de dados for mapeado no espaço de alta dimensão através de alguma transformação $\Phi: x \to \phi(x)$, o produto interno se tornará: $K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$

Uma função do kernel é uma função que é equivalente a um produto interno em algum espaço de variáveis

Assim, uma função do kernel mapeia implicitamente os dados para um espaço de alta dimensão (sem a necessidade de calcular cada ϕ (x) explicitamente).

Para algumas funções K (x_i, x_j) , verifcar se K $(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ pode ser complicado.

Teorema de Mercer:

Toda função simétrica definida semi-positiva é um kernel

As funções simétricas definidas semi-positivas correspondem a uma matriz simétrica definida semi-positiva:

K=	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	•••	$K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
	•••	•••	•••	•••	•••
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Linear: $K(x_i, x_i) = x_i^T x_i$

Mapeamento Φ: $x \rightarrow \phi(x)$, onde $\phi(x)$ é o próprio x

Polinômio de potência p: $K(x_i, x_j) = (1 + x_i^T x_j)^p$ Mapeamento $\Phi: x \to \phi(x)$, onde $\phi(x)$ tem $\binom{d+p}{p}$ dimensões Gaussiana (função de base radial): $K(x_i, x_j) = e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$

Mapeamento Φ: $x \to \phi(x)$, onde $\phi(x)$ é de dimensão infinita: todo ponto é mapeado para uma função (um gaussiano); A combinação de funções para vetores de suporte é o separador.

Então o problema dual pode ser formulado como:

Encontrar $\alpha_1 ... \alpha_{n \text{ tal que}}$

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i \mathbf{x}_j)$$
 é máximo e

- $\sum \alpha_i y_i = 0$
- $\alpha_i \ge 0$ para todo α_i

E a solução será:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

SVM com variável de folga

Variáveis de folga ξi podem ser adicionadas para permitir a classificação incorreta de exemplos difíceis ou ruidosos, a margem resultante é denominada suave (soft margin).

SVM linear com variável de folga

O problema pode ser formulado da seguinte forma:

Encontrar \mathbf{w} e b tal que $\mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i} \quad \text{\'e m\'inimo}$ e para todo $(\mathbf{x}_{i}, y_{i}), i=1..n: \quad y_{i} (\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0$

O parâmetro C pode ser visto como uma maneira de controlar o *overfitting*: "trade off" entre a importância de maximizar a margem e ajustar os dados de treinamento.

SVM linear com variável de folga

Resolvendo o problema dual teremos:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{para qualquer } k \text{ sujeito a } \alpha_k > 0$$

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

SVM não-linear com variável de folga

Resolvendo o problema dual teremos:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) \quad \text{para qualquer } k \text{ sujeito a } \alpha_k > 0$$

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$