

planetmath.org

Math for the people, by the people.

weak bisimulation

Canonical name WeakBisimulation
Date of creation 2013-03-22 19:30:55
Last modified on 2013-03-22 19:30:55

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 68Q85
Synonym invisible step
Defines silent step

Defines weak simulation

Let $M=(S,\Sigma,\to)$ be a labelled state transition system (LTS). Recall that for each label $\alpha\in\Sigma$, there is an associated binary relation $\stackrel{\alpha}{\to}$ on S. Single out a label $\tau\in\Sigma$, and call it the *silent step*. Define the following relations:

- 1. Let \Rightarrow be the reflexive and transitive closures of $\xrightarrow{\tau}$. In other words, $p \Rightarrow q$ iff either p = q, or there is a positive integer n > 1 and states r_1, \ldots, r_n such that $p = r_1$ and $q = r_n$ and $r_i \xrightarrow{\tau} r_{i+1}$, where $i = 1, \ldots, n-1$.
- 2. Next, for any label α that is not the silent step τ in Σ , define

$$\stackrel{\alpha}{\Rightarrow} := \stackrel{\alpha}{\rightarrow} \circ \Rightarrow \circ \stackrel{\alpha}{\rightarrow},$$

where \circ denotes the relational composition operation. In other words, $p \stackrel{\alpha}{\Rightarrow} q$ iff there are states r and s such that $p \stackrel{\alpha}{\to} r$, $r \Rightarrow s$, and $s \stackrel{\alpha}{\to} q$.

3. Finally, for any label $\alpha \in \Sigma$, let

$$\stackrel{(\alpha)}{\Rightarrow} := \begin{cases} \Rightarrow & \text{if } \alpha = \tau \\ \Rightarrow & \text{otherwise.} \end{cases}$$

Definition. Let $M = (S_1, \Sigma, \to_1)$ and $N = (S_2, \Sigma, \to_2)$ be two labelled state transition systems, with $\tau \in \Sigma$ the silent step. A relation $\approx \subseteq S_1 \times S_2$ is called a *weak simulation* if whenever $p \approx q$ and any labelled transition $p \xrightarrow{\alpha}_1 p'$, there is a state $q' \in S_2$ such that $p' \approx q'$ and $p' \xrightarrow{\alpha}_2 q$. \approx is a *weak bisimulation* if both \approx and its converse \approx^{-1} are weak simulations.