Probabilités discrètes Version 2.5

Michaël Guedj

Probabilités discrètes de Michaël Guedj est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Table des Matières

1	Loi de Probabilité	4
2	Premiers résultats	5
3	Probabilité conditionnelle	8
4	Théorème des probabilités totales	11
5	Application : paradoxe de Monty Hall	13
6	Théorème de Bayes-Laplace	15
7	Variable aléatoire	16

1 Loi de Probabilité

Dans ce qui suit,

- Nous considérons un ensemble non vide Ω appelé **univers**;
- $-\Omega$ est ici considéré fini (i.e. contient un nombre fini d'éléments) ;
- Tout élément $\omega \in \Omega$ est appelé **éventualité** ;
- Toute partie A de Ω est appelée **événement** ;
- L'ensemble des parties d'un ensemble E est noté : 2^E ; e.g. :

$$E = \{a, b, c\}$$

$$2^E = \{\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, E\}$$

– En particulier, l'ensemble des événements de Ω est noté : 2^{Ω} .

Définition (loi de probabilité). Une loi de probabilité (ou probabilité) Pr, sur 2^{Ω} , est une application vérifiant :

- 1. Masse unitaire : $Pr(\Omega) = 1$;
- 2. Positivité : $Pr: 2^{\Omega} \rightarrow [0,1]$;
- 3. Additivité : $\forall A, B \in 2^{\Omega}$,

$$A \cap B = \emptyset \Rightarrow \Pr(A \cup B) = \Pr(A) + \Pr(B)$$

Dans ce qui suit Pr est une probabilité sur Ω .

2 Premiers résultats

Théorème. $\forall A \in 2^{\Omega}$,

$$\Pr(A) = 1 - \Pr(\bar{A})$$

Preuve. Soit $A \in 2^{\Omega}$, on a :

$$A\cap \bar{A}=\emptyset$$

d'où par définition de Pr :

$$\Pr(A \cup \bar{A}) = \Pr(A) + \Pr(\bar{A})$$

On a : $A \cup \bar{A} = \Omega$; et par définition de Pr : $\Pr(\Omega) = 1$; donc :

$$\Pr(A \cup \bar{A}) = 1$$

Par suite,

$$1 = \Pr(A) + \Pr(\bar{A}) \iff 1 - \Pr(\bar{A}) = \Pr(A)$$

Théorème.

$$\Pr(\emptyset) = 0$$

Preuve.

$$\Pr(\emptyset) = 1 - \Pr(\Omega)$$

Théorème. $\forall A, B \in 2^{\Omega}$,

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Preuve. Soit $A,B\in 2^{\Omega}$; On pose :

$$A' := A - (A \cap B)$$

$$B' := B - (A \cap B)$$

On a : $A' \cap B' = \emptyset$ et donc, par définition de Pr,

$$\Pr(A' \cup B') = \Pr(A') + P(B')$$

On a :

$$(A \cap B) \cap (A' \cup B') = \emptyset$$

et donc, par définition de Pr,

$$\Pr((A \cap B) \cup (A' \cup B')) = \Pr(A \cap B) + \Pr(A' \cup B')$$

En outre,

$$A \cup B = (A \cap B) \cup (A' \cup B')$$

Donc,

$$Pr(A \cup B) = Pr(A \cap B) + Pr(A' \cup B')$$

Soit,

$$\underline{\Pr(A \cup B)} = \Pr(A \cap B) + \Pr(A') + \Pr(B') \qquad (\mathcal{E}_1)$$

On a:

$$A = (A \cap B) \cup A'$$
 et $(A \cap B) \cap A' = \emptyset$

$$B = (A \cap B) \cup B'$$
 et $(A \cap B) \cap B' = \emptyset$

D'où par définition de Pr :

$$\Pr(A) = \Pr(A \cap B) + \Pr(A') \iff \Pr(A') = \Pr(A) - \Pr(A \cap B) \quad (\mathcal{E}_2)$$

$$\Pr(B) = \Pr(A \cap B) + \Pr(B') \iff \underline{\Pr(B') = \Pr(B) - \Pr(A \cap B)} \quad (\mathcal{E}_3)$$

$$\Pr(\mathcal{E}_1), (\mathcal{E}_2) \text{ et } (\mathcal{E}_3),$$

$$\Pr(A \cup B) = \Pr(A \cap B) + \Pr(A) - \Pr(A \cap B) + \Pr(B) - \Pr(A \cap B)$$

D'où

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

Théorème. Soient deux événements $A, B \in 2^{\Omega}$,

$$A\subset B\Rightarrow \Pr(A\cap B)=\Pr(A)$$

Preuve.

$$A \subset B \Rightarrow A \cap B = A$$

Lemme. Soit $A \in 2^{\Omega}$ tel que :

- (i) $A \subset B$;
- (ii) $B \neq \emptyset$;

Alors, $\exists C \in 2^{\Omega}$, tel que :

- (i) $A \cup C = B$;
- (ii) $A \cap C = \emptyset$.

Preuve. Sous les hypothèses, deux cas se présentent :

- 1. $A = \emptyset$; alors C = B;
- 2. $A \neq \emptyset$; on pose : $C = \bar{A} \cap B$; en effet :

(i)
$$A \cup C = A \cup (\bar{A} \cap B) = (A \cup \bar{A}) \cap (A \cup B) = \Omega \cap B = B$$
;

(ii) $A \cap C = A \cap (\bar{A} \cap B) = (A \cap \bar{A}) \cap B = \emptyset \cap B = \emptyset$.

Théorème. Soient deux événements $A, B \in 2^{\Omega}$,

$$A \subset B \Rightarrow \Pr(A) \le \Pr(B)$$

Preuve.

- 1. $\frac{\text{Cas 1}: B = \emptyset}{\text{D'où}, A = \emptyset}$; et donc $\Pr(A) = \Pr(B) = 0$.
- 2. $Cas 2 : B \neq \emptyset$ $\exists C \in 2^{\Omega}$, tel que : $A \cup C = B$ et $A \cap C = \emptyset$. D'où,

$$\Pr(A \cup C) = \Pr(A) + \Pr(C) = \Pr(B)$$

Par positivité de la probabilité, $Pr(A) \leq Pr(B)$.

3 Probabilité conditionnelle

Définition (Probabilité conditionnelle). Une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Soient deux événements A et B (i.e. $A, B \in 2^{\Omega}$), si $\Pr(A) \neq 0$, alors la probabilité conditionnelle de B conditionnée par A (aussi appelée probabilité de B sachant A) est définie par :

$$\Pr(B|A) := \frac{\Pr(A \cap B)}{\Pr(A)}$$

Exemple. Soit une classe de lycée. Nous considérons les événements suivants :

- F: "un élève est une fille";

- A : "un élève étudie l'allemand".

La classe vérifie:

	F	$\neg F$
A	10	7
$\neg A$	4	9

Quelle est la probabilité qu'un élève étudie l'allemand, sachant que cet élève est une fille (i.e. Pr(A|F)) ?

On a par définition:

$$\Pr(A|F) = \frac{\Pr(A \wedge F)}{\Pr(F)}$$

Ici:

$$Pr(A|F) = \frac{Nombre \text{ de filles \'etudiant l'allemand}}{Nombre \text{ de filles}}$$

Soit:

$$\Pr(A|F) = \frac{10}{14} = \frac{5}{7}$$

Théorème. $\forall A, B \in 2^{\Omega}, \Pr(A) \neq 0$,

$$Pr(A \cap B) = Pr(B|A). Pr(A)$$

Preuve.

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)} \iff \Pr(B|A). \Pr(A) = \Pr(A \cap B)$$

Lemme. Soient $A_1, A_2..., A_k$ des événements tels que $\Pr(A_1 \cap ... \cap A_k) \neq 0$. Alors : $\forall i \in \{1, ..., k\}, \Pr(A_1 \cap ... \cap A_i) \neq 0$.

Preuve. On pose:

$$B_i := A_1 \cap ... \cap A_i$$

On a alors, $\forall i \in \{1, ..., k\},\$

$$B_k \subset B_i$$

D'où, $\forall i \in \{1,...,k\}, \exists C \subset \Omega$, tel que :

$$B_i = B_k \cup C$$
 et $B_k \cap C = \emptyset$

Par hypothèse, $\Pr(B_k) \neq 0$ et $\Pr(C) \in [0,1]$. On en déduit :

$$\Pr(B_i) = \Pr(B_k) + \Pr(C) \neq 0$$

Théorème. Soient $A_1, A_2..., A_k$ des événements tels que :

- (i) $k \geq 2$;
- (ii) $\Pr(A_1 \cap ... \cap A_{k-1}) \neq 0$;

Alors:

$$\Pr(A_1 \cap ... \cap A_k) = \Pr(A_1). \Pr(A_2 | A_1). \Pr(A_3 | A_1 \cap A_2)... \Pr(A_k | A_1 \cap A_2 \cap ... \cap A_{k-1})$$

Preuve. On démontre, par récurrence, la propriété Π , définie ci-après, pour $\iota \in \{2,...,k\}$:

$$\Pi(\iota) : \Pr(A_1 \cap ... \cap A_{\iota}) = \Pr(A_1) \cdot \Pr(A_2 | A_1) \cdot \Pr(A_3 | A_1 \cap A_2) ... \cdot \Pr(A_{\iota} | A_1 \cap A_2 \cap ... \cap A_{\iota-1})$$

1. Cas initial: Par hypothèse, on a : $Pr(A_1) \neq 0$, d'où :

$$\Pi(2): \Pr(A_1 \cap A_2) = \Pr(A_1). \Pr(A_2 | A_1)$$

2. Hypothèse de récurrence : Pour $\kappa \in \{2,...,k-1\},$

$$\Pi(\kappa): \Pr(A_1 \cap \ldots \cap A_{\kappa}) = \Pr(A_1). \Pr(A_2 | A_1). \Pr(A_3 | A_1 \cap A_2) \ldots \Pr(A_{\kappa} | A_1 \cap A_2 \cap \ldots \cap A_{\kappa-1})$$

3. <u>Hérédité</u> : On a :

$$\Pr(A_1 \cap ... \cap A_{\kappa} \cap A_{\kappa+1}) = \Pr(A_{\kappa+1} \cap (A_1 \cap ... \cap A_{\kappa}))$$

En outre, par hypothèse,

$$\Pr(A_1 \cap ... \cap A_{\kappa}) \neq 0$$

D'où,

$$\Pr(A_{\kappa+1} \cap (A_1 \cap \dots \cap A_{\kappa})) = \Pr(A_{\kappa+1} | A_1 \cap \dots \cap A_{\kappa}). \Pr(A_1 \cap \dots \cap A_{\kappa})$$

Par hypothèse de récurrence,

$$\Pr(A_1 \cap ... \cap A_{\kappa}) = \Pr(A_1). \Pr(A_2 | A_1). \Pr(A_3 | A_1 \cap A_2)... \Pr(A_{\kappa} | A_1 \cap A_2 \cap ... \cap A_{\kappa-1})$$

D'où,

$$\Pr(A_{\kappa+1} \cap (A_1 \cap \dots \cap A_{\kappa})) = \Pr(A_{\kappa+1} | A_1 \cap \dots \cap A_{\kappa}) \times$$

$$\Pr(A_1) \cdot \Pr(A_2 | A_1) \cdot \Pr(A_3 | A_1 \cap A_2) \dots \Pr(A_{\kappa} | A_1 \cap A_2 \cap \dots \cap A_{\kappa-1})$$

D'où, l'établissement de $\Pi(\kappa+1)$.

Donc, en particulier, $\Pi(k)$ est vraie.

4 Théorème des probabilités totales

Définition (Partition). $(B_i)_{i \in I}$ est une partition de B (I est supposé fini dénombrable) si :

(i)
$$\forall i \in I, B_i \neq \emptyset$$
;

(ii)
$$i \neq j \Rightarrow B_i \cap B_j = \emptyset$$
;

(iii)
$$B = \bigcup_{i \in I} B_i$$
.

Théorème. Soient A et B deux évènements. Si $(B_i)_{i\in I}$ est une partition de B, alors :

$$\Pr(A \cap B) = \sum_{i \in I} \Pr(A \cap B_i)$$

Preuve.

$$\Pr(A \cap B) = \Pr(A \cap \bigcup_{i \in I} B_i) \qquad ; (B = \bigcup_{i \in I} B_i)$$

$$\Pr(A \cap B) = \Pr\left(\bigcup_{i \in I} A \cap B_i\right)$$

$$\Pr(A \cap B) = \sum_{i \in I} \Pr(A \cap B_i)$$

Théorème. Soit A un évènement. Si $(B_i)_{i\in I}$ est une partition de Ω , alors :

$$\Pr(A) = \sum_{i \in I} \Pr(A \cap B_i)$$

Preuve.

$$\Pr(A) = \Pr(A \cap \Omega) = \sum_{i \in I} \Pr(A \cap B_i)$$

Théorème (premier théorème des probabilités totales). Soit A et B deux évènements. Si $(B_i)_{i\in I}$ est une partition de l'évènement B, alors :

$$\Pr(A|B) = \sum_{i \in I} \Pr(A|B_i) \Pr(B_i|B)$$

Preuve.

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

$$Pr(A|B) = \frac{\sum_{i} Pr(A \cap B_{i})}{Pr(B)}$$

$$Pr(A|B) = \sum_{i} \frac{Pr(A \cap B_{i})}{Pr(B)}$$

$$Pr(A|B) = \sum_{i} \frac{Pr(A \cap B_{i})}{Pr(B)} \frac{Pr(B_{i})}{Pr(B_{i})}$$

$$Pr(A|B) = \sum_{i} \frac{Pr(A \cap B_{i})}{Pr(B_{i})} \frac{Pr(B_{i})}{Pr(B_{i})}$$

$$Pr(A|B) = \sum_{i} \frac{Pr(A \cap B_{i})}{Pr(B_{i})} \frac{Pr(B_{i})}{Pr(B)}$$

$$Pr(A|B) = \sum_{i} Pr(A|B_{i}) \frac{Pr(B_{i})}{Pr(B)}$$

$$Pr(A|B) = \sum_{i} Pr(A|B_{i}) \frac{Pr(B_{i} \cap B)}{Pr(B)}$$

$$Pr(A|B) = \sum_{i} Pr(A|B_{i}) Pr(B_{i} \cap B)$$

Lemme. Soient A un événement, alors :

$$Pr(A|\Omega) = Pr(A)$$

Preuve.
$$\Pr(A|\Omega) = \frac{\Pr(A\cap\Omega)}{\Pr(\Omega)} = \Pr(A)$$
.

Théorème (deuxième théorème des probabilités totales). Soit A un évènement. Si $(B_i)_{i\in I}$ est une partition de Ω , alors :

$$\Pr(A) = \sum_{i \in I} \Pr(A|B_i) \Pr(B_i)$$

Preuve.

$$Pr(A) = Pr(A|\Omega) = \sum_{i \in I} Pr(A|B_i) Pr(B_i|\Omega)$$
$$Pr(A) = \sum_{i \in I} Pr(A|B_i) Pr(B_i)$$

5 Application: paradoxe de Monty Hall

Définition (problème de Monty Hall).

- Soient trois portes : l'une cache une voiture, chacune des deux autres cachant une chèvre.
- Le présentateur sait où se cache la voiture.
- Le joueur, qui souhaite trouver la voiture, choisit une des portes (sans que celle-ci ne soit ouverte).
- Le présentateur ouvre une autre porte (que celle choisie par le joueur), qui révèle alors une chèvre.
- Le présentateur demande au candidat si celui-ci souhaite modifier son choix, avant que soit effectué l'ouverture des portes.

On pose:

- -G := "Le joueur gagne";
- $-1^{Vrai} :=$ "le premier choix effectué par le joueur est le bon".

Lemme.

$$\Pr(G) = \Pr(G|1^{Vrai}).\Pr(1^{Vrai}) + \Pr(G|\overline{1^{Vrai}}).\Pr(\overline{1^{Vrai}})$$

Preuve. $\{1^{Vrai}, \overline{1^{Vrai}}\}$ est une partition de l'espace des possibles. On utilise le deuxième théorème des probabilités totales.

Dans ce qui suit, le problème est implicitement généralisé à n portes (le problème initial supposant n=3); le nombre de portes ouvertes (dévoilant chacune une chèvre) est ainsi : n-2.

Lemme.

$$\Pr(G) = \Pr(G|1^{Vrai}) \cdot \frac{1}{n} + \Pr(G|\overline{1^{Vrai}}) \cdot \frac{n-1}{n}$$

Preuve.
$$\Pr(1^{Vrai}) = \frac{1}{n} \; ; \Pr(\overline{1^{Vrai}}) = \frac{n-1}{n}.$$

Théorème.

- Si le joueur conserve son premier choix, alors $Pr(G) = \frac{1}{n}$;
- Si le joueur modifie son premier choix, alors $Pr(G) = \frac{n-1}{n}$.

Preuve. Cas 1 : le joueur conserve son premier choix

–
$$Pr(G|1^{Vrai}) = 1$$
;

$$- \Pr(G|\overline{1^{Vrai}}) = 0.$$

D'où,

$$\Pr(G) = 1.\frac{1}{n} + 0.\frac{n-1}{n} = \frac{1}{n}$$

 $\operatorname{Cas}\,2$: le joueur modifie son premier choix

$$- \Pr(G|1^{Vrai}) = 0 ;$$

$$- \Pr(G|\overline{1^{Vrai}}) = 1.$$

D'où,

$$\Pr(G) = 0.\frac{1}{n} + 1.\frac{n-1}{n} = \frac{n-1}{n}$$

6 Théorème de Bayes-Laplace

Théorème (théorème de Bayes-Laplace). Soient A et B deux événements de probabilités non nulles. Alors :

$$\Pr(B|A) = \frac{\Pr(A|B)\Pr(B)}{\Pr(A)}$$

Preuve.

$$\Pr(B|A) = \frac{\Pr(B \cap A)}{\Pr(A)} \iff \Pr(A \cap B) = \Pr(B|A).\Pr(A)$$

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} \iff \Pr(A \cap B) = \Pr(A|B).\Pr(B)$$

D'où,

$$\Pr(B|A).\Pr(A) = \Pr(A|B).\Pr(B) \iff \Pr(B|A) = \frac{\Pr(A|B).\Pr(B)}{\Pr(A)}$$

7 Variable aléatoire

Definition 1 (critère). Un critère sur Ω est une application $X:\Omega\to\mathbb{R}$.

On pose:

$$X(\Omega) := \{X(w_i) : w_i \in \Omega\}$$

 $X(\Omega)$ exprime : "l'ensemble des valeurs possibles du critères X" sur Ω .

Definition 2 (variable aléatoire). Une variable aléatoire (selon le critère X) est une variable parcourant $X(\Omega)$.

Autrement dit, $X(\Omega)$ est l'ensemble des valeurs que peut prendre une variable aléatoire (selon le critère X).

Un abus courant est de confondre la variable aléatoire avec son critère : X est un critère sur Ω , tout en étant une variable aléatoire selon ce critère. Nous suivons cet abus, comme il est de coutume. Par suite,

- 1. $X \in X(\Omega)$;
- 2. Pour $x \in \mathbb{R}$, "X = x" signifie : "x est réalisée", i.e. :

$$\exists w \in \Omega, X(w) = x$$

3. Pour $x \in \mathbb{R}$, " $\Pr(X = x)$ " signifie : "la probabilité que x soit réalisée" ; autrement dit :

$$\Pr(X=x) := \frac{\#\{w \in \Omega : X(w) = x\}}{\#\Omega}$$

Il suit que : $\forall x \in \mathbb{R} - X(\Omega)$,

$$Pr(X = x) = 0$$

Exemple (fil rouge). On lance deux pièces.

$$\Omega = \{FF, PF, FP, PP\}$$

La variable aléatoire X quantifie le nombre de pile :

$$X(\Omega) = \{0, 1, 2\}$$

On a:

$$\Pr(X = 0) = \frac{\#\{FF\}}{4} = \frac{1}{4}$$
$$\Pr(X = 1) = \frac{\#\{PF, FP\}}{4} = \frac{1}{2}$$
$$\Pr(X = 2) = \frac{\#\{PP\}}{4} = \frac{1}{4}$$

Définition (loi de probabilité d'une variable aléatoire). La loi de probabilité d'une variable aléatoire X est la fonction :

$$\mathcal{L}_X:X(\Omega)\to[0,1]$$

$$x \mapsto \Pr(X = x)$$

Exemple (fil rouge).

$$\mathcal{L}_X = \{ 0 \to \frac{1}{4}; 1 \to \frac{1}{2}; 2 \to \frac{1}{4} \}$$

Définition (espérance).

$$E(X) := \sum_{i} x_i \cdot Pr(X = x_i)$$

Exemple (fil rouge).

$$E(X) = 0. \Pr(X = 0) + 1. \Pr(X = 1) + 2. \Pr(X = 2)$$

$$E(X) = 0.\frac{1}{4} + 1.\frac{1}{2} + 2.\frac{1}{4} = \frac{1}{2} + \frac{1}{2}$$

$$E(X) = 1$$

Autrement dit, pour chaque lancé de 2 pièces, on peut "espérer" avoir 1 pile. En pratique, cela signifie que si on effectue n lancés de 2 pièces, alors : si n est "grand", le nombre de piles est "proche" de n.