

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia de Sistemas Eletrônicos - PSI – EPUSP PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Guia Experimental e Roteiro para Relatório

Versão para simulação da

Exp. 06: Resposta em Frequência de Circuitos RC e RLC

Elaboração: Profs. W.J. Salcedo e M. Lobo, Revisão: E G./L.Y./MNPC/2020

No. USP	Nome	Nota	Bancada	
10792132	Tiago de Almeida Takeda			
Data: 20/01/2020	Turmas: ₀₃	Profs:		

Objetivos: Saber analisar a resposta em frequência de quadrupolos constituídos por circuitos passivos RC e RLC, utilizando métodos de simulação computacional.

Lista de materiais

- Osciloscópio digital (DSO-X 2002A, Agilent)
- Gerador de funções
- Multímetro digital portátil Yokogawa TY720
- Medidor RLC
- Resistores: $1 k\Omega = 10 k\Omega$
- Capacitor: 100 nFIndutor: ~3,0 mH
- Planilha Excel e Software de cálculo

Obs: Esta experiência será feita através da simulação dos circuitos elétricos propostos

- Onde diz "meça" uma variável (com voltímetro, osciloscópio, etc.) entenda que você deve obter o valor dessa variável a partir das simulações e dos recursos que o programa de simulação fornecer!
- Onde diz "dados experimentais" entenda que deve obter esses dados das simulações

1 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RC:

1.1 Identificação e medição dos componentes passivos

Meça as resistências (R) e a capacitância (C) dos componentes da lista de materiais utilizando o multímetro portátil. Meça a indutância (L_s) e a resistência série do indutor (R_s) utilizando o medidor RLC na frequência de 1 kHz. Você pode também medir a capacitância (R_p) e resistência paralela parasitária (R_p) do capacitor com o medidor RLC na frequência de 1 kHz.

Tabela 1 – Valores dos componentes R, L e C

	Resistor 1	Resistor 2	Capacitor	Indutor (medido em 1kHz)		
Valor	R (kΩ)	R (kΩ)	C _p (nF)	L _s (mH)	$R_{s}\left(\Omega\right)$	
Nominal	1	10	100	3,0	8,0	
Medido						

1.2 Determinação da resposta em frequência do circuito RC

Monte o circuito mostrado na Figura 1, com os valores nominais dos componentes iguais a $\mathbf{R} = \mathbf{1} \ \mathbf{k} \Omega$ e $\mathbf{C} = \mathbf{100} \ \mathbf{nF}$, respectivamente. Programe o gerador de funções para fornecer uma **onda senoidal** de amplitude de **10 Vpp**. Meça os valores eficazes de entrada (V_E) e saída (tensão no capacitor V_S) com o osciloscópio.

Figura 1- Circuito RC.

a) Apresente as fórmulas para calcular o módulo do ganho linear $|G(j\omega)|$ e a fase $\phi(j\omega)$ a partir dos parâmetros do circuito.

Como
$$G(jw) = \ / (1+wRCj) => |G(jw)| = 1 / sqrt(1+(wRC)^2)$$

 $phi(jw) = -arctan(wRC)$
 $Fc(RC) = 1 / 2piRC$

Wc = 1 / RC

b) Apresente a fórmula para obter $|G(j\omega)|$ (módulo do ganho linear) a partir das tensões experimentais.

|G(jw)| = VSef / VEef, com VSef e VEef as tensões eficazes de saída e entrada

c) Meça com o osciloscópio e anote na Tabela 2 os valores eficazes de V_E e de V_S , como também a defasagem entre esses sinais (ϕ_{VS}, ϕ_{VE}) , para os valores de frequência f escolhidas.

Nota: para sinais com amplitude baixa recomenda-se utilizar o recurso "média" do osciloscópio (ACQUIRE), a fim de reduzir a flutuação da medição.

- d) Calcule o módulo do ganho |G(f)| a partir das tensões experimentais.
- e) Indique o módulo do ganho |G(f)| e a defasagem φ , calculados previamente (efetuados na preparação do experimento) utilizando-se os valores nominais dos componentes.
 - ★ Utilize a planilha eletrônica disponibilizada no Moodle para essa experiência para efetuar os cálculos, caso não tenha efetuado a preparação.

Tabela 2 - Resposta em frequência de um circuito RC.

	Valores exp	Cálculos a partir das tensões medidas		
f (Hz)	V_{E} (CA V_{RMS})	V _S (CA V _{RMS})	Fase $\theta_{S \to E}$ = $\phi_{VS,VE}(^{\circ})$	Ganho G(f)
10	3,53V	3,53V	0,9°	1
50	3,53V	3,53V	-1,2°	1
100	3,53V	3,52V	-2,90	1
300	3,53V	3,46V	-10,10	0,98
500	3,52V	3,35V	-17,20	0,95
700	3,51V	3,20V	-23,80	0,91
1 k	3,48V	2,94V	-32,40	0,84
1,2 k	3,47V	2,76V	-38,10	0,79
1,3 k	3,46V	2,66V	-40,9°	0,77
1,4 k	3,45V	2,57V	-41,6°	0,74
1,5 k	3,45V	2,49V	-43,20	0,72
1,6 k	3,44V	2,41V	-45,2°	0,70
1,7 k	3,44V	2,33V	-46,7°	0,68
1,8 k	3,43V	2,27V	-48,1°	0,66
2 k	3,42V	2,12V	-51,4°	0,62
3 k	3,39V	1,57V	-61,6°	0,46
6 k	3,35V	0,86V	-75,7°	0,26
10 k	3,36V	0,53V	-80,60	0,16

f) Anexe os gráficos de:
 i. Módulo do ganho G(f) (valores experimentais);
ii. Defasagem ($\phi_{VS,VE}$) em função da frequência f (valores experimentais).
g) Compare as curvas experimentais com as teóricas (traçadas na "preparação"). O modelo teórico foi
adequado? Justifique sua resposta.
h) Determine a <u>faixa de passagem</u> ¹ e a <u>frequência de corte</u> (f _c) a partir das curvas experimentais. <u>Indique-</u>
as nos dois gráficos acima.
ao nos dolo granose dolina.
¹ Faixa de passagem é a faixa de frequências onde o ganho está dentro do intervalo de 3 dB em relação ao valor máximo
(patamar).

i) Calcule a frequência de corte teórica (f_c) do circuito, utilizando os valores experimentais dos componentes (Tabela 1). (Apresente seu cálculo).

$$Fc = 1,592,4kHz => Fc = 1/(2*3,14*1000*100e-9)$$

j) Compare o resultado obtido no item h (valor experimental) com o do item i (valor teórico) (indique o erro relativo!). Justifique eventuais discrepâncias.

k) Quais seriam as possíveis aplicações para o circuito RC analisado neste experimento? Explique.

O circuitos RC analisado pode ser usado como filtro passa baixas, dado que o ganho é maior para frequências mais baixas e aproxima-se de zero em frequências maiores que 1,5kHz.

2 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RLC PARALELO:

Monte o circuito da Figura 2, com R = $10 \text{ k}\Omega$ e os componentes L e C fornecidos. Note que R_s e L_s estão representando o modelo do indutor real utilizado na montagem. Programe o gerador de funções para fornecer uma **onda senoidal** com amplitude de **10 Vpp**.

Figura 2- Circuito RLC.

2.1 Determinação de resposta em frequência do circuito RLC

a) Indique o número das expressões da *Introdução Teórica* devem ser usadas para calcular $|G(j\omega)|$ e ϕ a partir dos parâmetros do circuito da Figura 2.

As expressões 11 e 12

- b) Meça com o osciloscópio os valores eficazes das tensões de entrada e saída do circuito (V_E e V_S), bem como a defasagem entre esses sinais ($\phi_{VS,VE}$) para as diferentes frequências, e preencha a Tabela 3.
- c) Calcule o módulo do ganho |G(f)| experimental a partir das tensões experimentais.
- d) Indique o módulo do ganho |G(f)| e a defasagem φ , calculados previamente através das <u>fórmulas</u> <u>teóricas indicadas no item 2.1.a</u> (utilize a planilha disponibilizada) utilizando-se os valores nominais dos componentes.

Tabela 3 – Resposta em frequência da de circuito RLC

	Valores exp	Cálculos a partir das tensões medidas			
f (Hz)	V _E (CH1) (CA V _{RMS})	V _S (CH2) (CA V _{RMS})	Fase $\theta_{2 \to 1}$ = $\phi_{VS,VE}(^{\circ})$	Ganho G(f)	
1,0 k	3,35V	72mV	63°	0,002	
3 k	3,36V	217mV	76º	0,006	
5 k	3,37V	448mV	73°	0,013	
7 k	3,39V	832mV	62°	0,031	
8 k	3,43V	915mV	45°	0,061	
8,5 k	3,47V	941mV	29°	0,102	
8,8 k	3,49V	950mV	16°	0,161	
9 k	3,50V	953mV	7º	0,227	
9,2 k	3,51V	955mV	-30	0,273	
9,3 k	3,51V	954mV	-80	0,256	
9,4 k	3,50V	953mV	-13º	0,223	
9,6 k	3,49V	950mV	-22º	0,161	
10 k	3,46V	940mV	-37º	0,096	
11 k	3,41V	898mV	-57°	0,047	
12 k	3,39V	843mV	-67°	0,032	
15 k	3,37V	576mV	-77°	0,017	
20 k	3,36V	346mV	-83°	0,010	

- e) Utilizando a planilha eletrônica, anexe os seguintes gráficos a partir dos dados experimentais:
 - i. O gráfico de |G(f)|;
 - ii. O gráfico da fase ($\phi_{VS,VE}$) em função da frequência, f.
- f) Determine as frequências de corte inferior (f_{c1}) e superior (f_{c2}), a frequência de ressonância (f_R), a faixa de passagem e o índice de mérito (Q) do circuito a partir da curva experimental de |G(f)| (indique-os também no gráfico).

g) C	alcule a frequêr	ncia de re	essonância a	partir	dos p	arâmetros	do	circuito	e compa	re com	o val	or c	btido
gı	raficamente. Apı	resente se	eus cálculos	(da fre	quênd	cia e do en	ro re	lativo).					

$$Fr = 1 / (2*pi*(sqrt(LC))) = 9188,81Hz$$

h) Analise o comportamento da defasagem entre o sinal de saída e o da entrada na faixa de passagem e na frequência de ressonância.

i) Analisando o comportamento da defasagem do circuito (principalmente em baixa frequência), descreva como seria a curva experimental da defasagem caso a resistência parasitária do indutor, Rs, fosse zero?

2.2 Aplicação de funções automáticas do *Gerador de Funções* para análise da resposta em frequência de circuitos.

Nesta parte da experiência faremos uma observação experimental do comportamento ressonante do circuito no osciloscópio, utilizando-se um recurso do gerador de funções **AGILENT 33500B** denominado **SWEEP**. Por meio de tal programação, avaliaremos a resposta em frequência do circuito de forma indireta. Ao ativar a função **SWEEP**, o gerador de funções fornecerá na sua saída um sinal senoidal com frequência variável, com taxa de repetição do sinal definida pelo usuário. Neste experimento programaremos o gerador de funções para fornecer um sinal senoidal que variará sua frequência de 5 kHz a 15 kHz linearmente a cada intervalo de 100 ms. A resposta do circuito V_S deve ser observada no osciloscópio.

Para programar o sinal V_E no gerador no modo SWEEP, mantendo V_E = 10 Vpp:

- Tecle o botão SWEEP no painel do gerador. Na sequência, tecle as seguintes funções, impondo os valores indicados:
- STARTFREQ = 5 kHz,
- STOPFREQ = 15 kHz.
- SWEEPTIME = 100 ms.
- SWEEP TYPE = linear,
- SWEEP = ON.

No osciloscópio:

- Certifique-se que o modo "acquire" ou "média" do seu osciloscópio esteja desabilitado.
- Mude a escala de tempo do osciloscópio para visualizar os sinais, de modo a identificar um ponto de máximo dentro do intervalo indicado no SWEEPTIME (no seu caso é igual a 100 ms).

Para correlacionar as leituras das medições da forma da onda na escala do tempo do osciloscópio com medições na escala em frequência, utilize a seguinte correspondência: cada intervalo de 100 ms (adotado na função SWEEPTIME) corresponde a um intervalo de 10 kHz em frequência (que foi definido pela frequência final menos a frequência inicial adotadas).

Para estabilizar o sinal na tela do osciloscópio utilize o trigger externo.

★Veja o vídeo sobre a função Sweep para entender melhor esta função.

Com isso, <u>esboce a curva obtida no osciloscópio por meio deste recurso</u> do gerador e determine as seguintes grandezas relacionadas à tensão V_s com auxílio dos cursores:

- i. $V_{max} e V_{max} / \sqrt{2}$, respectivamente;
- ii. a faixa (ou banda) de passagem (em Hz);
- iii. a frequência de ressonância.
- iv. Determine o Q do circuito através deste esboço.

Um filtro passa faixas

ii. Discuta como o a função Sweep observada no osciloscópio pode ajudar a caracterizar o comportamento de circuitos em frequência.