Maths 761 Lecture 16

- ▶ **Topic for today:** The Hopf bifurcation
- ► Reading for this lecture: Glendinning §8.8, to end of Example 8.8
- Suggested exercises: Worksheet 6
- ► Reading for next lecture: Glendinning §8.8
- ► Today's handoust: Lecture 16 summary Worksheet 6

Hopf bifurcations

We consider the bifurcation of a stationary solution that occurs when the Jacobian has one pair of purely imaginary eigenvalues.

In this case the centre manifold is two-dimensional and we need to consider the possibility that periodic orbits may occur near the bifurcation.

Example 1:

Determine the dynamics in the following system for $\mu \approx$ 0.

$$\dot{x} = -\mu x + 0.5y + x(x^2 + y^2),$$

$$\dot{y} = -0.5x - \mu y + y(x^2 + y^2).$$

The Hopf bifurcation theorem

Consider the system

$$\dot{x} = f(x, y; \mu), \ \dot{y} = g(x, y; \mu),$$

where $x, y, \mu \in \mathbf{R}$, $f(0,0; \mu) = g(0,0; \mu) = 0$, and the Jacobian evaluated at the origin when $\mu = 0$ is

$$\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)$$

for some constant $\omega \neq 0$. Define

$$a = \frac{1}{16} (f_{xxx} + g_{xxy} + f_{xyy} + g_{yyy}) + \frac{1}{16\omega} [f_{xy} (f_{xx} + f_{yy}) - g_{xy} (g_{xx} + g_{yy}) - f_{xx} g_{xx} + f_{yy} g_{yy}.]$$

Then if $f_{\mu x}+g_{\mu y}\neq 0$ and $a\neq 0$, a curve of periodic solutions bifurcates from the origin into $\mu>0$ if $a(f_{\mu x}+g_{\mu y})<0$ or into $\mu<0$ if $a(f_{\mu x}+g_{\mu y})>0$.

Hopf bifurcation theorem continued...

The origin is stable for $\mu < 0$ and unstable for $\mu > 0$ if $f_{\mu x} + g_{\mu y} > 0$, with stabilities reversed if $f_{\mu x} + g_{\mu y} < 0$. The periodic solutions are stable if the origin is unstable on the side of $\mu = 0$ that the periodic solutions exist, and vice versa.

The amplitude of the periodic orbit grows as $\sqrt{|\mu|}$ for $|\mu|$ near zero, and the period of the orbit tends to $2\pi/\omega$ as $|\mu|$ tends to zero.

- ▶ A Hopf bifurcation is *supercritical* if on the centre manifold the bifurcating periodic orbits are stable. Otherwise the bifurcation is said to be *subcritical*.
- The theorem assumes there is a fixed point at (x, y) = (0, 0) for all values of μ . We may have to change coordinates to translate the fixed point to the origin before applying the theorem.

Example 2

Check that the conditions of the Hopf bifurcation theorem hold at $\mu={\rm 0}$ in Example 1:

$$\dot{x} = -\mu x + 0.5y + x(x^2 + y^2),$$

$$\dot{y} = -0.5x - \mu y + y(x^2 + y^2).$$

Example 3

Find the bifurcations that occur as $\boldsymbol{\lambda}$ is varied in the system

$$\dot{x} = \lambda x + 2xy + xy^2,$$

$$\dot{y} = 1 - x^2 - y^2.$$