DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Advanced Probability Theory and Statistics: Inequalities, Convergence of Random Variables, Confidence Intervals, and Hypothesis Tests

Kim Steenstrup Pedersen

You should either prior to the lectures, or just after

- Read the material and take notes
- Watch the extended video lectures and take notes
- Browse the slides

Plan for today

- Probability theory
 - Bounds on expectations and tail probabilities
 - Limit theorems for random variables:
 - Weak law of large numbers
 - Central limit theorem
 - Student-t distribution and Chi-square distribution (see video lecture)
- Statistics
 - Confidence intervals
 - Hypothesis tests the t-test

- It is not always possible to compute expectations and probabilities analytically (i.e. exactly).
- Instead we can do
 - Bounds using inequalities. Has many applications in statistics and in theoretical machine learning. This is a topic for this lecture.
 - Approximations using limit theorems. This is also a topic for this lecture.
 - Simulation by sampling the Monte Carlo approach. More on this after Christmas.

Inequalities: Bounds on expectations and tail probabilities

Reading material: Blitzstein & Hwang, Ch. 10.1

Cauchy-Schwarz: A marginal bound on joint expectation

Theorem Cauchy-Schwarz: For any random variables
 (r.v.) X and Y with finite variances (i.e. Var[X] < ∞ etc),

$$|E[XY]| \le \sqrt{E[X^2]E[Y^2]} = E_{P(X)}[X^2]$$
where $|\cdot|$ denotes absolute value.

Meaning: Expectation over the joint distribution is bounded by the marginal second moment expectations. See book for proof.

• Simple example: Using the trick $X = X \cdot 1$ and Cauchy-Schwarz (then Y=1), we have $|E[X \cdot 1]| \le \sqrt{E[X^2]E[1^2]}$

Rearranging and substitution gives

$$|E[X \cdot 1]| = |E[X]| \le \sqrt{E[X^2]} \Rightarrow (E[X])^2 \le E[X^2]$$

Hence variance is always nonnegative. $\Rightarrow 0 \le E[X^2] - (E[X])^2 = Var[X]$

Jensen's Inequality: Functions of r.v.'s and expectations

- Theorem Jensen's Inequality: Let X be a r.v. If g is a convex function, then $E[g(X)] \ge g(E[X])$. If g is concave, then $E[g(X)] \le g(E[X])$. Equality holds only, if there are constants a and b, such that g(X) = a + bX, i.e. g is linear (with probability 1).
- Allows us to move expectations in and out of functions.
- Examples:
 - For $g(x) = x^2$ (convex), we get $E[X^2] \ge (E[X])^2$ (known from Cauchy-Schwarz)
 - For g(x) = |x| (convex), we get $E[|X|] \ge |E[X]|$
 - For $g(x) = \log x$ (concave), we get $E[\log X] \le \log E[X]$ for X > 0
 - For g(x) = a + bx (linear), we get E[g(X)] = E[a + bX] = a + bE[X] = g(E[X]) (using linearity property of expectation)

Derivative f'(x) = df/dx

- **Def.:** A function f differentiable in (a, b) is convex if $f(x_2) \ge f(x_1) + f'(x_1)(x_2 x_1), \forall x_1, x_2 \in (a, b), x_1 \ne x_2$ and concave if $f(x_2) \le f(x_1) + f'(x_1)(x_2 x_1), \forall x_1, x_2 \in (a, b), x_1 \ne x_2$
- Geometric interpretation: The graph of a convex function
 f never lies below any of its tangents (as given by the
 derivative f'). The opposite holds for concave functions.

Markov, Chebyshev: Bounds on tail probabilities

Theorem Markov: For any r.v. X and constant a > 0,

$$P(|X| \ge a) \le \frac{E[|X|]}{a}$$

Tail probabilities

$$P(|X| \ge a) \le \frac{E[|X|]}{a}$$

Markov inequality for a Normal distributed r.v. X with $N(0,\sigma^2)$

$$\lim_{a \to \infty} \frac{E[|X|]}{a} = 0, \text{ hence } \lim_{a \to \infty} P(|X| \ge a) = 0$$

Markov, Chebyshev: Bounds on tail probabilities

Theorem Markov: For any r.v. X and constant a > 0,

$$P(|X| \ge a) \le \frac{E[|X|]}{a}$$

• Theorem Chebyshev: Let X have mean μ and variance σ^2 , then for any a > 0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

(A specialization of the Markov inequality)

Limit Theorems:

Convergence properties of sums of random variables

Reading material: Blitzstein & Hwang, Ch. 10.2 – 10.3

Or

Pishro-Nik, Ch. 7.0 – 7.1

Sample mean

• Consider independent and identically distributed (i.i.d.) r.v.'s X_1 , X_2 , X_3 , ... with finite mean μ and finite variance σ^2 and the sample mean

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

Realize that this is also a r.v. (a function of r.v.'s) with

$$E\left[\overline{X}_{n}\right] = \frac{1}{n}E\left(X_{1} + \dots + X_{n}\right) = \frac{1}{n}\left(E\left[X_{1}\right] + \dots + E\left[X_{n}\right]\right) = \frac{1}{n}\left(n\mu\right) = \mu$$

$$\operatorname{Var}\left[\overline{X}_{n}\right] = \frac{1}{n^{2}}\operatorname{Var}\left(X_{1} + \dots + X_{n}\right) = \frac{1}{n^{2}}\left(\operatorname{Var}\left[X_{1}\right] + \dots + \operatorname{Var}\left[X_{n}\right]\right)$$

$$= \frac{1}{n^{2}}\left(n\sigma^{2}\right) = \frac{\sigma^{2}}{n}$$

$$\operatorname{Variance of sample mean:}$$

$$\lim_{n \to \infty} \operatorname{Var}\left[\overline{X_{n}}\right] = 0$$

Law of Large Numbers

- **Intuition:** The law of large numbers state that as *n* increases, the sample mean $ar{X}_{_{n}}$ converges to the true mean μ . It comes in two flavours – the strong and weak law of large numbers.
- Theorem Weak law of large numbers: For all $\varepsilon > 0$, $\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \varepsilon) = 0$
- Proof: We just need to use Chebyshev's inequality

$$P(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$$

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

 $P(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$ • and since $\lim_{n \to \infty} \frac{\sigma^2}{n\varepsilon^2} = 0$, so does the probability.

The Central Limit Theorem

- What's the distribution of the sample mean r.v. X_n as n increases?
- Central Limit Theorem (CLT): As $n \to \infty$,

$$\sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \rightarrow N(0,1)$$
 in distribution

we consider the distribution of this r.v.

• Note: Standardization of r.v. refers to subtracting the mean and division by the standard deviation. This is done above to $\bar{X}_{_n}$

The central limit theorem in practice

 CLT says that the distribution of a sum of random variables converges to a Gaussian distribution, e.g.

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$

- It does not matter what the distribution of the individual X_i is, as long they are i.i.d. and have finite mean, $0 \le |E[X_i]| < \infty$, and finite variance, $0 < Var[X_i] < \infty$.
- You do not need a large n for CLT to hold. To see this, write a small program that generates samples from a Uniform distribution U(0,1) and compute sample mean 1.000 times for an increasing list of n values (e.g. $n \in \{1, 2, 50, 100\}$). Plot the histogram over the 1.000 estimates for each n value.
- Lets look at the example in clt.py

Distributions:

Lets look at a couple of named probability distributions we need now

Reading material: Blitzstein & Hwang, Ch. 10.4

Chi-square (χ_n^2) distribution

Example: Sum of sample variances

- **Definition:** Let $V = Z_1^2 + ... + Z_n^2$ where $Z_1, ..., Z_n$ are i.i.d. N(0,1). Then V is said to have the Chi-square distribution with n degrees of freedom and we write $V \sim \chi_n^2$.
- The χ_n^2 distribution is a special case of the Gamma distribution, $\operatorname{Gamma}\left(\frac{n}{2},\frac{1}{2}\right)$
- The probability density function (PDF) is given by

$$f_{V}(v) = \frac{1}{\Gamma(n/2)} \left(\frac{1}{2}v\right)^{n/2} \frac{1}{v} e^{-\frac{1}{2}v} , v > 0 \qquad \Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt,$$

$$z \in \mathbb{C}$$

Relates to the distribution of sample variance.

PDF (probability density function)

CDF (cumulative distribution function)

scipy.stats.chi2.cdf(x,n)

(Student's) t-distribution

Definition: The t-distribution with n degrees of freedom is defined by this r.v.

$$T = \frac{Z}{\sqrt{V/n}}$$

where $Z \sim N(0,1)$ and $V \sim \chi_n^2$ and Z is independent of V.

The PDF is given by

$$f_T(t) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} (1+t^2/n)^{-(n+1)/2}$$

Visualizing the t-distribution

The distribution is symmetric and has two distributions as special instances (Cauchy distribution at n=1 and Normal distribution as $n \to \infty$)

Confidence intervals

Reading material: Kreyszig, Ch. 25.1, 25.3

Pishro-Nik, Ch. 8.1 - 8.2.2, 8.3

- We want to estimate parameters of a probability distribution model (e.g. the mean and variance in a Normal distribution).
- The function computing the estimate from sampled data is called an estimator.
- If the estimator provides a specific value for our parameter, this is called a point estimate.
- **Example:** Computing the sample mean of a Normal distributed r.v. is a point estimator for the mean parameter. Let $x_1, ..., x_n$ be sampled data from a Normal distributed r.v. X, then the **sample mean** is

$$\overline{x} = \frac{1}{n} \left(x_1 + \dots + x_n \right)$$
 This is deterministic once x_1, \dots, x_n are fixed

Parameter estimation – confidence interval

- We can also compute an interval in which the true estimate (value) lies with a chosen probability (confidence level). This is referred to as a confidence interval. The interval informs us how certain we are about the estimate.
- **Definition:** Let $x_1, x_2, ..., x_n$ be samples from a set of i.i.d. r.v.'s $X_1, X_2, ..., X_n$, a parameter θ to estimate, and $0 \le \gamma \le 1$. If there exist sample statistics $L_n(X_1, X_2, ..., X_n) = g(X_1, X_2, ..., X_n)$ and $U_n(X_1, X_2, ..., X_n) = h(X_1, X_2, ..., X_n)$ such that $P(L_n \le \theta \le U_n) = \gamma$ for every value of θ . Then $l_n(x_1, x_2, ..., x_n) = g(x_1, x_2, ..., x_n)$ and $u_n(x_1, x_2, ..., x_n) = h(x_1, x_2, ..., x_n)$ form the γ -confidence

interval $[l_n; u_n]$ of θ at confidence level γ for a dataset.

Confidence level? For the case of symmetric probability distribution

Pick an interval [-c,c] such that with probability γ (e.g. 95%), the true parameter value is within this interval

Confidence interval for the mean of a normal distribution with known variance

deviation of the sample

mean.

- First consider the sample mean (our estimator) as a r.v. and transform by standardization. CLT gives that it becomes standard normal distributed N and divide by the standard
- Our problem can then be defined as

$$P\left(-c \le \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le c\right) = \gamma$$

$$\Rightarrow P\left(-c \le \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le c\right) = \Phi(c) - \Phi(-c) = \gamma$$

Where $\Phi(c)$ is the CDF of the standard normal distribution.

Using symmetry of $\Phi(c)$: $\Phi(-c) = 1 - \Phi(c)$

$$\Phi(c) - 1 + \Phi(c) = \gamma \Longrightarrow 2\Phi(c) = 1 + \gamma \Longrightarrow \Phi(c) = \frac{1 + \gamma}{2} \Longrightarrow c = \Phi^{-1}\left(\frac{1 + \gamma}{2}\right)$$

Inverse of the CDF

Table A8 Normal Distribution

Values of z for given values of $\Phi(z)$ [see (3), Sec. 24.8] and $D(z) = \Phi(z) - \Phi(-z)$ Example: z = 0.279 if $\Phi(z) = 61\%$; z = 0.860 if D(z) = 61%.

%	z(Φ)	z(D)	%	₹(Φ)	z(D)	%	z(Φ)	z(D)
1	-2.326	0.013	41	-0.228	0.539	81	0.878	1.311
2	-2.054	0.025	42	-0.202	0.553	82	0.915	1.341
3	-1.881	0.038	43	-0.176	0.56 8	83	0.954	1.372
4	-1,751	0.050	44	-0.151	0.583	84	0.994	1.405
5	-1.645	0.063	45	-0,126	0.598	85	1.036	1.440
6 7 8 9	-i a co -i In p	mputer! ython, w	e can	this is old compute	0.628 this by	87 88 89	1.126 1.175 1.227	1,476 1,514 1,555 1,598 1,645
11 12 13	-1.227 -1.175 -1.126	0.138 0.151 0.164	51 52 53	0.025 0.050 0.075	0.690 0.706 0.722	91 92 93	1.341 1.405 1.476	1.695 1.751 1.812
14 15	-1.080 -1.036	0.176 0.189	54 55	0.100 0.126	0.739 0.755	94 95	1.555 1.645	1.881 1.960

Percent Point Function (PPF): Inverse of the CDF

Confidence interval for the mean of a normal distribution with known variance

• The derivation was for a standardized statistics, so what is the confidence interval for the estimator \bar{X}_n of μ ?

$$P\left(-c \le \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le c\right) = \gamma$$

$$\Rightarrow P\left(-c\frac{\sigma}{\sqrt{n}} \le \bar{X}_n - \mu \le c\frac{\sigma}{\sqrt{n}}\right) = \gamma$$

$$\Rightarrow P\left(-\left(\bar{X}_n + c\frac{\sigma}{\sqrt{n}}\right) \le -\mu \le c\frac{\sigma}{\sqrt{n}} - \bar{X}_n\right) = \gamma$$

$$\Rightarrow P\left(\bar{X}_n + c\frac{\sigma}{\sqrt{n}} \ge \mu \ge \bar{X}_n - c\frac{\sigma}{\sqrt{n}}\right) = \gamma$$

The γ -confidence interval for the mean parameter μ of a Normal distributed sample with known variance σ^2 is $\left[\bar{X}_n - c \frac{\sigma}{\sqrt{n}} ; \bar{X}_n + c \frac{\sigma}{\sqrt{n}} \right]$.

Notice: As number of samples *n* grows the interval becomes smaller.

Steps: Confidence interval for the mean of a normal distribution with known variance.

- 1. Choose a confidence level γ (e.g. 95%, 99%, ...)
- 2. Determine the corresponding critical value *c*:

$$c = \Phi^{-1} \left(\frac{1 + \gamma}{2} \right)$$

- 3. Compute the sample mean \bar{x} of actual samples $x_1, x_2, ..., x_n$.
- 4. The confidence interval for μ is

$$\left[\bar{x} - c\frac{\sigma}{\sqrt{n}}; \bar{x} + c\frac{\sigma}{\sqrt{n}}\right]$$

With probability γ the true mean μ will be in this interval.

Confidence interval for mean of the Normal distribution with unknown variance

- What about the more general case of mean estimator for Normal distribution with unknown variance?
- As before we consider the sample mean estimator as a r.v. and transform so it has zero mean and unit variance.
- As variance we will use the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{j} - \overline{X} \right)^{2}$$

Our problem can then be defined as

$$P\left(-c \le \frac{\overline{X}_n - \mu}{S/\sqrt{n}} \le c\right) = \gamma$$

What is the distribution of this estimator?

• **Theorem:** Let $X_1, ..., X_n$ be i.i.d. Normal r.v.'s with mean μ and variance σ^2 . Then the r.v.

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

is t-distributed with n-1 degrees of freedom (d.f). Where \overline{X} is the sample mean and the sample variance is

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{j} - \bar{X} \right)^{2}$$

 S is a sum of squared Normal distributed random variables, hence T is t-distributed according to definition.

(Student's) t-distribution

Definition: The t-distribution with n degrees of freedom is defined by this r.v.

$$T = \frac{Z}{\sqrt{V/n}}$$

where $Z \sim N(0,1)$ and $V \sim \chi_n^2$ and Z is independent of V.

• Remember that the definition of the χ_n^2 distribution states that V is a sum of squared i.i.d. standard Normal distributed r.v.'s.

How to find the interval limits c in the case of unknown variance?

Our problem can then be defined as

$$P\left(-c \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le c\right) = F(c) - F(-c) = \gamma$$

- Where F(c) is the CDF of the t-distribution of d.f. n-1.
- Using symmetry of the t-distribution F(-c)=1-F(c) and substition in above gives us

$$F(c) - F(-c) = \gamma \Rightarrow 2F(c) = 1 + \gamma \Rightarrow F(c) = (1 + \gamma)/2$$

We need to compute the inverse of the CDF F

$$c = F^{-1} \left(\frac{1 + \gamma}{2} \right)$$

Percent Point Function (PPF): Inverse lookup in the CDF

c = scipy.stats.t.ppf((1+gamma)/2)

Confidence interval for the mean of a normal distribution with unknown variance

 We can compute the confidence interval for the estimator of μ in the same way we did for the known variance case

$$P\left(-c \le \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \le c\right) = \gamma$$

$$\Rightarrow P\left(\bar{X}_n - c \frac{S}{\sqrt{n}} \le \mu \le \bar{X}_n + c \frac{S}{\sqrt{n}}\right) = \gamma$$

The γ -confidence interval for the mean parameter μ of a Normal distributed sample with unknown variance is $\left[\bar{X}_n - c\frac{S}{\sqrt{n}}; \bar{X}_n + c\frac{S}{\sqrt{n}}\right]$.

Notice: Again as number of samples *n* grows the interval becomes smaller.

Steps: Confidence interval for the mean of a normal distribution with unknown variance.

- 1. Choose a confidence level γ (e.g. 95%, 99%, ...)
- 2. Determine the corresponding critical value *c*:

$$c = F^{-1} \left(\frac{1 + \gamma}{2} \right)$$

- 3. Compute the sample mean \bar{x} and variance s^2 of actual samples $x_1, x_2, ..., x_n$.
- 4. The confidence interval for μ is

$$\left[\bar{x} - c\frac{s}{\sqrt{n}}; \bar{x} + c\frac{s}{\sqrt{n}}\right]$$

With probability γ the true mean μ will be in this interval.

Confidence intervals for parameters of other estimators

- If we have many samples, we can invoke the central limit theorem and assume that the distribution is a Normal distribution.
- This works as long as the individual r.v.'s are i.i.d. and have finite variance and our estimator is a sum of these r.v.'s (e.g. computing the sample mean).
- If so, then we can just use one of the techniques mentioned to compute confidence intervals.

Hypothesis testing

Reading material: Kreyszig, Ch. 25.4

Or

Pishro-Nik, Ch. 8.4 – 8.4.4

Hypothesis testing - intuition

- Assume we have a set of samples $x_1, ..., x_n$ from some r.v. X, and we would like to verify whether a specific hypothesis about the data is correct or not.
- **Example:** We hypothesize that the average price of food in the HCØ canteen have stayed constant since last year, where the average price was kr. 50,-. We have collected data by buying 8 meals and recording the prices. Using hypothesis testing we can evaluate whether the hypothesis holds or not.

Hypothesis testing - intuition

Pick a null and an alternative hypothesis, a significance level α , and find a critical value c based on the distribution of a test statistics (a function of the samples).

Fig. 531. t-distribution in Example 1

Consider an unknown parameter θ and the null hypothesis is θ = θ_0 . There are 3 types of alternative hypotheses

- 1. $\theta > \theta_0$
- 2. $\theta < \theta_0$
- 3. $\theta \neq \theta_0$

Called right-sided, leftsided, and two-sided tests.

Rejection region

- Assume we have a set of samples $x_1, ..., x_n$ from some i.i.d. r.v. $X_1, ..., X_n$, and a test statistics $\Theta = g(X_1, ..., X_n)$ as well as the observed test statistics based on the samples $\theta = g(x_1, ..., x_n)$.
- Compute the rejection regions based on the distribution of the test statistics Θ and the choice of significance level α.
- For the 3 alternative hypotheses:
 - 1. $P(c \le \Theta) = 1 P(\Theta \le c) = \alpha \Longrightarrow P(\Theta \le c) = 1 \alpha$, compute the inverse of the CDF of Θ and get rejection region $\mathcal{R} = [c; \infty)$.
 - 2. $P(\Theta \le c) = \alpha$, compute the inverse of the CDF of Θ and get rejection region $\mathcal{R} = (-\infty; c]$.
 - 3. $P(\Theta \le c_1) = \alpha/2$ and $P(c_2 \le \Theta) = 1 P(\Theta \le c_2) = \alpha/2$, and form the rejection region $\mathcal{R} = (-\infty; c_1] \cup [c_2; \infty)$.

Six steps of hypothesis testing

- 1. Formulate a model for the data
- 2. Formulate a **null hypothesis** H_0 to be tested and an **alternative hypothesis** H_A .
- 3. Specify a **test statistics** r.v. $\Theta = g(X_1, ..., X_n)$, whose distribution depends on the null and alternative hypotheses.
- 4. Choose a **significance level** α (e.g. 5%, 1%, 0.1%, ...).
- 5. Compute the rejection region *R* based on the choice of alternative hypothesis (based on the test type).
- 6. Use samples $x_1, ..., x_n$ to compute observed value $\theta=g(x_1, ..., x_n)$. Reject the hypothesis, depending on if θ is in R or not (do not reject the null hypothesis).

Assume that the data is normal distributed with mean μ but unknown variance σ², then the relevant test statistics is

$$T = \frac{X - \mu_0}{S / \sqrt{n}}$$

which we, by now, know is t-distributed with n-1 d.f.'s – this is what we use to find the critical value *c*.

- **Example:** We hypothesize that the average price of food in the HCØ canteen have stayed constant since last year, where the average price was kr. 50,-. We have collected data by buying *n*=8 meals and recording the price. Using hypothesis testing we can evaluate whether the hypothesis holds or not.
- The observed prices are x = [55, 54, 48, 75, 61, 65, 61, 49]

Example of a two-sided t-test

- Lets assume the prices are normal distributed with mean 50 kr, but unknown variance.
- We choose the null hypothesis $\mu_0 = 50 \text{ kr}$
- The alternative is $\mu_A \neq \mu_0$, hence we have to perform a two-sided t-test.
- Lets choose the significance level to be α =5% (its not a live or death decision we are making here!)
- Our test statistics is t-distributed with d.f. n-1 = 7

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

Example of a two-sided t-test

- The sample mean is $\bar{x} = 58.5$ kr. and sample standard deviation is s = 8.94 kr.
- Our test statistics is for the samples we have

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{58.5 - 50}{8.94 / \sqrt{8}} = 2.69$$

- Since we are doing a two-sided t-test at significance level α =5%, we find c_1 and c_2 by inverse lookup in the t-distribution CDF at P(T $\leq c_1$)= $\alpha/2$ and P(T $\leq c_2$)=1- $\alpha/2$. We get c_1 = -2.37 and c_2 = 2.37.
- Since $t > c_2$ (i.e. in rejection region), we reject the hypothesis of constant price. In fact, it appears to be increasing!

Errors in the hypothesis

- A statistical test can be thought of as a decision function $d: \mathbb{R}^n \to \{H_0, H_A\}$ with $P(d = H_A) \le \alpha$ (a bound).
- We can make two types of errors (mistakes) when doing hypothesis testing.
 - Type I error: H_0 is correct, but we choose $d = H_A$
 - Type II error: H_0 is false, but we choose $d = H_0$ anyway
- A statistical test puts a bound on the probability of making type I errors.
- Therefore, in practices always choose hypotheses $\{H_0, H_A\}$ such that the type I error becomes the "worst error" the one we want to avoid
- Lunch example: If we want to save money, it is not good
 if we by mistake reject constant price if it was true (type I)

Summary

- Inequalities, law of large numbers, and the central limit theorem can be used to proof various central results of probability theory and statistics.
- Inequalities are also essential in Machine Learning to proof theoretical bounds on the performance of algorithms.
- Confidence intervals provide an interval estimate of a parameter from a sample of data. The mid-point of the interval can act as point estimate and the interval as error bars on the estimate.
- Perform a statistical test of a hypothesis based on a sample of data. We looked specifically at the t-test.

Reading material

- Inequalities:
 - Blitzstein & Hwang, Ch. 10.1 (http://probabilitybook.net)
- Law of large numbers, central limit theorems, and distributions:
 - Blitzstein & Hwang, Ch. 10.2 10.5 (http://probabilitybook.net)
 - Pishro-Nik, Ch. 7.0 7.1 (https://www.probabilitycourse.com)
- Confidence intervals and hypothesis tests:
 - Kreyszig, Ch. 25.1, 25.3, 25.4
 - Pishro-Nik, Ch. 8.1 8.2.2, 8.3 8.4.4
 (https://www.probabilitycourse.com)
- Supplemental reading:
 - Blitzstein & Hwang, Ch. 4.4 on indicator random variables and the fundamental bridge (needed for some proofs and in Ch. 10).