AAA Online Seminar TU BRAUNSCHWEIG & U OSNABRÜCK

NEW CONDITION-BASED BOUNDS NUMBER OF REAL ZEROS

Joint work with Elias Tsigaridas

Vosué TONELLI- CUETO Invia Paris & IMJ-PRG

Which questions are we interested in?

- Given a real polynomial system, how many real zeros does it have?

what are the possibilities?

what are the restrictions?

- Given a random real polynomial system,
what are the statistics of its number of real zeros?
how robust
are our estimates?
how do the estimates
depend on the structures?

Real is the real complex, not Complex!

Let

$$g: \begin{cases} g_1 = \sum_{|\alpha| \leq d_1} g_{1,\alpha} \times x \\ g_n = \sum_{|\alpha| \leq d_n} g_{n,\alpha} \times x \end{cases}$$

have generic complex/real coefficients, then:

$$\#Z(\S, \mathbb{R}^n) \leq \#Z(\S, \mathbb{C}^n) = \bigcap_{i=1}^n d_i$$

Real is the real complex, not Complex I

Let
$$A_1, \dots, A_n \subseteq M^n$$
, $g_1 = \sum_{\alpha \in A_1} g_{1,\alpha} \times g_{2,\alpha}$

have generic complex/real coefficients, then:

$$Z(8, (\mathbb{R}^*)^n) \leq \# Z(8, (\mathbb{C}^*)^n) = MV(conv(A_1), ..., conv(A_n))$$

Bernstein-Khovanskii-KushnirenKo

Keal is the real complex, not Complex III Kushnirenko Hypothesis III Let $A_1, \ldots, A_N \subseteq M^N$, $g: \{ g: = \sum_{\alpha \in A_i} g_{i,\alpha} \times^{\alpha} (i = 1, ..., N) \}$ The Holy GRAIL

Then:

Widely open

 $(n=1) \# Z_{\nu}(8,\mathbb{R}^*) \leq 2\#A_1$ (Descartes vule of signs) $(n=2) (A_2 = \{(x_1,x_2) | a_1 + a_2 \leq a_2\}) \# Z_V(8,(R^*)^2) \leq (0(\#A_1 d_2^3 + (\#A_1)^3 d_2^2))$ (Sevastyanov) (Koiran, Portier, Tavenas) (Az = {(0,0),(1,0),(0,1)}) #Z,(8,(R4)2) < 6t-7 (Bihan, El Hilany)

(Az arbitrary) Open! Zr: regular Zeros

Keal is the real complex, not Complex IV Kushnirenko Hypothesis III

Let
$$A_1, \ldots, A_n \subseteq M^n$$
,
 $g: \{ g: = \sum_{\alpha \in A_i} g_{i,\alpha} \times^{\alpha} (i = 1, ..., n) \}$
The holy GRAIL

Then:

$$\#Z_{l}(8,(\mathbb{R}^{*})^{n}) \leq poly(n, \tilde{\Sigma}_{1}^{*}\#A_{1})^{n}$$

Widely open

Widely open
(General n)
$$\#(\mathring{U}A_i) \leq t$$
 $\#Z_{V}(8, (\mathbb{R}^*)^{N}) \leq \mathcal{O}(2^{n+(t-n-1)})$ (Bihan, Soffile)

 $(A_1 = \cdots = A_N, \# A_i \le t) (3_{i,x} \sim N(0,\sigma(x)) ind.)$

$$E_3 \# Z_V(8, (R^n)^n) \leq 2\binom{t}{n} \leq \frac{2t^n}{n!}$$
(Bürgisser, Ergür, TC)

Zr: regular Zeros

Real is the real complex, not Complex V A Concrete Example

$$\delta: \begin{cases} \alpha_{1} + \beta_{1} \times + \gamma_{1} + \delta_{1} \times \gamma \neq d \\ \alpha_{2} + \beta_{2} \times + \gamma_{2} + \delta_{2} \times \gamma \neq d \\ \alpha_{3} + \beta_{3} \times + \gamma_{3} + \delta_{3} \times \gamma \neq d \end{cases}$$

For generic $\alpha_i, \beta_i, \gamma_i, \delta_i \in \mathbb{C}$, $\# Z(3, \mathbb{C}^3) = d$ For generic $\alpha_i, \beta_i, \gamma_i, \delta_i \in \mathbb{R}$, $\# Z(3, \mathbb{R}^3) \leq 1$ Small!

A Random Path towards ...

Kushnirenko Hypothesis III

Kushnireuko Random Hypothesis (Unmixed) Let A EMM and a random real polynomial system

$$\frac{8}{8}: \begin{cases} 8_i = \sum_{\alpha \in A} & 8_{i,\alpha} \times \\ & (i = 1, ..., n) \end{cases}$$

with the dix random independent random variables, then for all REM.

- · Equivalent to Kushnirenko Hypothesis II
- It creates a continuum between where we are and the Holy Grail of Real Algebraic Geometry

All this is very nice, but do you have anything new to say?

Condition Numbers I

Def. Let g∈ Pa[n]:={g∈R[x1,...,Xn]n|d+gg:∈di}, and $x \in I'' := [-1,1]^n$, the local condition number of & at x is 118111 C(8,x):= max { || ε(x) || ω, Sn(Δ-1Dx 8) } Where

 $\Delta := d \log (d_1, ..., d_n)$ $\|8\|_1 := \max_{i} \sum_{\alpha} |8_{i,\alpha}|$ $S_n(A) = \min_{v \neq 0} \frac{\|Av\|_{\infty}}{\|v\|_{\infty}} = \|A^{-1}\|_{\infty, \infty}^{-1}$

Condition Numbers II

Def. Let $g \in P_d[n] := \{g \in \mathbb{R}[x_1,...,x_n]^n | d \cdot g \cdot g \in di\},$ the condition number of g is

$$C(8) := \sup_{x \in I^{n}} C(8, x)$$

Condition Number Theorem. Let & EPa[h], then

$$\frac{||3||_{1}}{dist_{1}(3, \mathbb{Z})} \leq C(3) \leq n(D+1) \frac{||3||_{1}}{dist_{1}(3, \mathbb{Z})}$$

where $\Sigma := \{g \in \mathcal{P}_d[u] \mid \text{every zero of } g \text{ in } I^u \text{ is regular}\}$

((3) measures how far is & from the discriminant

The New Bound

Thm. Let $g \in \mathcal{P}_{\mathbf{J}}[n]$. Then $\# \mathcal{Z}(g, \mathbf{I}^n) \leq \max \{ \mathcal{O}(n \log(2D))^{2n}, \mathcal{O}(\log(2D))^{n} \}$

Logarithmicl

Cor. Real polynomial systems with many zeros are ill-conditioned.

Proof Ideas I

1. Analytic approximation
+ Smale's x-theory

Real polynomial systems can be approximated locally by polynomial of degree max {O(logD), O(logC(8))}
with the same number of real zeros

Generalizes an idea by Moroz for the univariate case

Proof Ideas II

2. A cover where the local approximation happens can be easily constructed

This cover can be constructed a priori, there is computational content in the proof.

Similar bound cau be obtained in the projective setting for the orthogonally invariant condition number of Cucker, Krick, Malajovich & Wscheborl

Random consequences I.

Our probabilistic results hold also if 8i,a ~ U([-1,1]) or more general probability distributions.

Random consequences II

Thm. Let FEPICNI be a vandom Kac system with support ADO. Then

 $P(\log C(F) \ge t) \le poly(n, D, \#A)^n e^{-ct}$

for some universal constant c>0.

Condition numbers are easier to control probabilistically

Cor. $\mathbb{E} C(F)^e \leq (\widehat{c} N^2 \log D \log \# Ae)^e$

for some universal constant 2>0.

Random consequences III

Cor. E#Z(F, In) < (ĉ n3log2D #A e) en for some universal constant 2>0.

Cor. Random real polynomials with many zeros are extremely rare. Eskerrik Asko

> Galderah? Oder Fragen?