Chap 5 不等式与极限定理

1 概率不等式

• 定义(Markov 不等式) $Y \ge 0, \forall a > 0, 有$

$$P(Y \ge a) \le \frac{E(Y)}{a}.$$

• 证明 令示性变量

$$I = egin{cases} 1, Y \geq a; \\ 0, Y < a. \end{cases}$$

从而有 $I \leq \frac{Y}{a}$, 两边取期望, 即得

$$P(Y \ge a) \le rac{E(Y)}{a}.$$

• 定义(Chebyshev 不等式) Var(Y) 存在, $\forall a > 0$, 有

$$P(|Y - E(Y)| \ge a) \le \frac{Var(Y)}{a^2}.$$

• 证明 注意到

$$P(|Y - E(Y)| \ge a) = P((Y - E(Y))^2 \ge a^2)$$

 $\le \frac{E[(Y - E(Y))^2]}{a^2}$
 $= \frac{Var(Y)}{a^2}.$

- 注 若 Var(Y) = 0, 则 P(Y = E(Y)) = 1. $(Y = E(Y) \ a.s.)$
- 定义(Chernoff 不等式) $\forall a > 0, t > 0, 有$

$$P(Y \ge a) \le rac{E(e^{tY})}{e^{ta}}.$$

• 证明 注意到

$$P(Y \ge a) = P(e^{tY} \ge e^{ta})$$
 (保证 $e^{tY} > 0$) $\le \frac{E(e^{tY})}{e^{ta}}.$

- 例 $X \sim N(0,1)$, 估计 $P(|X| \geq 3)$.
- 解答 我们有

$$P(|X| \geq 3) \leq egin{cases} rac{E(|X|)}{3} = rac{1}{3}\sqrt{rac{2}{\pi}} pprox 0.27; & (Markov) \ rac{Var(X)}{3^2} = rac{1}{9} pprox 0.11; & (Chebyshev) \ rac{2E(e^{tX})}{e^{3t}} = 2e^{rac{t^2}{2} - 3t} \leq 2e^{-rac{9}{2}} pprox 0.02. & (Chernoff) \end{cases}$$

2 大数定律 (LLN)

• 定义 X_1, X_2, \cdots iid (独立同分布), $E(X_i) = \mu$, $Var(X_i) = \sigma^2 > 0$. 定义:

$$\overline{X} = rac{1}{n} \sum_{i=1}^n X_i, \, E(\overline{X}) = \mu, \, Var(\overline{X}) = rac{\sigma^2}{n}
ightarrow 0.$$

• 定义(Khinchin 弱大数定律)(WLLN)

若
$$X_1, X_2, \cdots$$
 iid, $E(X_i) = \mu$, $Var(X_i) = \sigma^2 > 0$. 则 $\forall \varepsilon > 0$, 有

$$\lim_{n\to\infty}P(|\overline{X}-\mu|\geq\varepsilon)=0.$$

• 证明 我们有

$$P(|\overline{X} - \mu| \geq arepsilon) \leq rac{Var(\overline{X})}{arepsilon^2} = rac{\sigma^2}{narepsilon^2}
ightarrow 0,
ot \le n
ightarrow 0.$$

- 注
- \circ $\mu \approx \overline{X}$ (在很大概率意义下可以用作样本均值估计);
- $\circ \forall \varepsilon > 0, \forall \alpha > 0, \exists N > 0$ 使得当 $n \geq N$ 时

$$P(|\overline{X} - \mu| \ge \varepsilon) \le \alpha.$$

其中 ε 体现了精度, α 体现了置信度.

- Bernoulli LLN: $X_i \sim B(p)$, 则特殊地得到 Bernoulli 大数定律。
- o 方差有限条件可去掉, 结论依然成立:
- o 可推广至不同的条件:
 - X_i 两两不相关, $Var(X_i)$ 一致有界 (Chebyshev);
 - $Var(\overline{X}) \rightarrow 0$ (Markov).
- 定义(依概率收敛)

$$Y_n \stackrel{P}{\longrightarrow} Y \Longleftrightarrow orall arepsilon > 0, \lim_{n o \infty} P(|Y_n - Y| \geq arepsilon) = 0.$$

- 注 WLLN $\Rightarrow \overline{X} \stackrel{P}{\longrightarrow} \mu$ (考虑偏差).
- 定义(Kolmogov 强大数定律)(SLLN)

若 X_1, X_2, \cdots **iid**, $E(X_i) = \mu$. 则有

$$P(\omega \in \Omega \mid \lim_{n o \infty} \overline{X_n}(\omega) = \mu) = P(\lim_{n o \infty} \overline{X} = \mu) = 1.$$

- 注 若 $X_i \sim B(p)$ 则 \overline{X} 为频率,从而概率的频率解释是合理的.
- 定义(以概率 1 收敛)

$$Y_n \stackrel{a.s.}{\longrightarrow} Y \Longleftrightarrow P(\lim_{n \to \infty} Y_n = Y) = 1.$$

- 注 SLLN $\Rightarrow \overline{X} \xrightarrow{a.s.} \mu$ (逐点考虑).
- 例 (Monte Carlo 积分)
- 解答 在 $[a,b] \times [0,c]$ 上取点 (X_i,Y_i) iid 在矩形内均匀分布. 定义

$$I_i = egin{cases} 1, (X_i, Y_i) \in D; \ 0, (X_i, Y_i)
otin D. \end{cases}$$

则 $I_i \stackrel{iid}{\longrightarrow} B(p)$. 我们有

$$P = rac{1}{(b-a)c} \int_a^b g(x) dx pprox rac{1}{n} \sum_{i=1}^n I_i.$$

- 例 两种收敛有什么差别?
- **解答** 考虑 $\Omega = [0,1]$ 均匀分布 (从而有 (Ω, \mathcal{F}, P)). 我们构造

$$egin{aligned} Y_1(\omega) &= \omega + I_{[0,1]}(\omega) \ Y_2(\omega) &= \omega + I_{[0,rac{1}{2}]}(\omega) \ Y_3(\omega) &= \omega + I_{[rac{1}{2},1]}(\omega) \ Y_4(\omega) &= \omega + I_{[0,rac{1}{3}]}(\omega) \ Y_5(\omega) &= \omega + I_{[rac{1}{3},rac{2}{3}]}(\omega) \ Y_6(\omega) &= \omega + I_{[rac{2}{3},1]}(\omega) \ & \cdots \ Y(\omega) &= \omega. \end{aligned}$$

因此有 $Y_n \stackrel{P}{\longrightarrow} Y$, 但是 $Y_n \stackrel{a.s.}{\longrightarrow} Y$ 不成立. 这是因为 $\forall \omega_0 \in (0,1), Y_n(\omega_0)$ 是振荡的, 它的极限不存在.

3 中心极限定理 (CLT)

• 定义(中心极限定理)(CLT)

若
$$X_1, X_2, \cdots$$
 iid, $E(X_i) = \mu$, $Var(X_i) = \sigma^2 > 0$. 我们有

$$\lim_{n o\infty}P\left(rac{X_1+\cdots+X_n-n\mu}{\sqrt{n}\sigma}\leq x
ight)=\Phi(x),\,orall\,x\in\mathbb{R}.$$

其中 $\Phi(x)$ 为 N(0,1) 的 CDF. 也即

$$\lim_{n o\infty}P\left(rac{\overline{X}-\mu}{rac{\sigma}{\sqrt{n}}}\leq x
ight)=\Phi(x),\,orall\,x\in\mathbb{R}.$$

• 证明 只在 X_i 的 MGF 存在情形下证明, 记 $M(t) = M_{X_i}(t)$. 不失一般性地, 令 $\mu = 0$, $\sigma^2 = 1$. 因此

$$M(0) = E(1) = 1, \ M'(0) = E(X_i) = \mu = 0, \ M''(0) = E(X_i^2) = \sigma^2 = 1.$$

我们得到

$$egin{align} E(e^{trac{X_1+\cdots+X_n}{\sqrt{n}}}) &= M^n(rac{t}{\sqrt{n}}) \ &= \left(1+rac{t^2}{2n}+o(rac{t^2}{n})
ight)^n \ & o e^{rac{t^2}{2}}. \end{split}$$

- 注
- 上述 CLT 通常称为 Lindeberg-Levy CLT;

$$\circ$$
 CLT $\Rightarrow X_1 + \cdots + X_n \sim N(n\mu, n\sigma^2), \ \overline{X} \sim N(\mu, \frac{\sigma^2}{n});$

 \circ (DeMoivre-Laplace CLT)

若
$$X_i \sim B(p)$$
, 则 $\sum_{i=1}^n X_i \sim B(n,p) \stackrel{CLT}{\longrightarrow}$ 正态分布.

• 定义(二项分布下 CLT 的连续性修正)

我们有
$$P(t_1 \leq \sum_{i=1}^n X_i \leq t_2) \approx \Phi(y_2) - \Phi(y_1)$$
. 其中

$$egin{cases} y_1 = rac{t_1 - np - rac{1}{2}}{\sqrt{np(1-p)}}, \ y_2 = rac{t_2 - np + rac{1}{2}}{\sqrt{np(1-p)}}. \end{cases}$$

修正形式可计算单点 $P(S_n = k)$ 的概率, 对其他离散变量也同样适用.

• 定义(依分布收敛)

$$Y_n \stackrel{d}{\longrightarrow} Y \Longleftrightarrow \lim_{n o \infty} F_n(x) = F(x).$$

- 注 $\mathbf{CLT} \Rightarrow Z_n = \frac{X_1 + \dots + X_n n\mu}{\sqrt{n}\sigma} = \frac{\overline{X} \mu}{\frac{\sigma}{\sqrt{n}}}$ (标准化).
- **例(选举问题)** 设 p 为选民支持率(未知), 随机调查 n 个人, 支持比例为 $p_n = \frac{1}{n} \sum_{i=1}^n X_i$, 其中 $X_i \sim B(p)$. 若 $\varepsilon = 0.03$, $1 \alpha = 0.95$, 求 n 的取值.
- 解答 有

$$P(|p_n - p| > \varepsilon) < \alpha.$$

由 CLT 可得

$$egin{aligned} P(|p_n-p| \geq arepsilon) &= 1 - P\Big(-rac{\sqrt{n}arepsilon}{\sigma} \leq rac{p_n - p}{rac{\sigma}{\sqrt{n}}} \leq rac{\sqrt{n}arepsilon}{\sigma}\Big) \ &= 1 - \Phi\Big(rac{\sqrt{n}arepsilon}{\sqrt{p(1-p)}}\Big) + \Phi\Big(-rac{\sqrt{n}arepsilon}{\sqrt{p(1-p)}}\Big) \ &= 2 - 2\Phi\Big(rac{\sqrt{n}arepsilon}{\sqrt{p(1-p)}}\Big) \leq lpha. \end{aligned}$$

即得

$$\Phi\Big(rac{\sqrt{n}arepsilon}{\sqrt{p(1-p)}}\Big) \geq 1-rac{lpha}{2}.$$

为使得对任意 p 成立, 取 $p = \frac{1}{2}$, 即有

$$\Phi\Big(2\sqrt{n}arepsilon\Big)\geq 1-rac{lpha}{2}.$$

注意到 $\Phi(1.96)\approx 0.975=1-\frac{\alpha}{2},$ 因此取 $n\geq 1068$ 即可 (与 N 无关).

- 4 Review
- 4.1 尾部概率控制
- 4.2 极限定理
 - LLN:弱 or强
 - CLT
- 4.3 三种收敛

4.4 CLT 应用

$$egin{cases} X_1+\cdots+X_n\sim N(n\mu,n\sigma^2);\ \overline{X}\sim N(\mu,rac{\sigma^2}{n}). \end{cases}$$