PySpark

Знакомство

Иванов Александр Вадимович

работаю в **Сбере** (руководитель направления по исследованию данных): создание и внедрение пайпланов обработки больших объёмов данных для моделирования (банковские транзакции, логи IPA и т.д.)

Образование: физфак МГУ, ФинТех РАНХиГС, MADE (Академия больших данных), New Professions Lab Apache Spark

План курса

- 1. Введение. Используемые инструменты. Обзор интерфейса
- 2. Архитектура Spark. Планы выполнения запросов. Оптимизация запросов.
- 3. Типы данных, сложные запросы. Пользовательские функции
- 4. Машинное обучение

Что будет на уроке

- 1. Что такое большие данные.
- 2. Spark API: python, java, scala
- 3. SparkSession. Параметры приложения spark
- 4. Форматы хранения данных parquet, avro.

Что такое большие данные?

- 1. Время обработки > времени, в течении которых они приносят пользу
- 2. Объем: не умещается на 1 машине

Во многом относительное понятие, если вы Google, то 1Тb для вас не большие данные, вы можете их сохранить (даже на 1 машину), вы можете их обработать. Если вы небольшой стартап, то 100Гб могут стать проблемой....

Вертикальное vs горизонтальное масштабирование

Горизонтальное масштабирование:

- дешевле (много дешевых узлов)
- легко масштабировать (просто добавив новых узлов)
- ...

Как распределить данные? как их обрабатывать? На что обратить внимание?

- 1. Устойчивость к выбытию узлов
- 2. Парадигма "код к данным", а не "данные к коду"
- 3. MapReduce!

Почему Spark

- 1. Spark есть везде: банки (масштабируемость), средний и маленький бизнес (бесплатно)
- 2. Молодая технология, следовательно, мало специалистов
- 3. Универсальный фреймворк: создание хранилища, запросы к данным, потоковая обработка, ML.
- 4. Активное развитие

Откуда пошло

Google File System (2003): Scalable distributed file system for large distributed data-intensive applications

Bigtable: scalable storage of structured data across GFS

MapReduce (MR) is a programming model and an associated implementation for processing and generating big data sets with a parallel, distributed algorithm on a cluster.

Вспомним: что такое map-reduce?

MapReduce

Какие неудобства?

- 1. Нужно писать все руками (трансформации данных, джобы)
- 2. Пайплан обработки тоже создается руками
- 3. Трудности с кешированием, переиспользованием
- 4. Записи промежуточных шагов на диск (медленно)

Логика сложнее джойна нескольких таблиц - дни разработки

map shuffle reduce

Hadoop Modules:

Others (For Data Processing) MapReduce (For Data Processing)

YARN (Resource Management For Cluster)

HDFS (A Reliable & Redundant Storage)

HiveQL (урезанный SQL)

Недостаток Hadoop MapReduce:

промежуточные результаты последовательных операций записываются на диск

Figure 1-1. Intermittent iteration of reads and writes between map and reduce computations

Apache Hive (Tez), Apache Impala

Spark (2009) vs Hadoop MapReduce:

- in-memory storage for intermediate results between iterative and interactive map and reduce computations
- 2. offer easy and composable APIs in multiple languages as a programming model

Причины популярности Spark:

Со времен появления Hadoop MapReduce железо стало лучше по числу ядер CPU и памяти. Вычисления не выполняются последовательно, а оптимизируются после формирования полного запроса.

Потребность в разделении хранилища от вычислений: Spark может принимать данные из любых источников и обрабатывать их в памяти, пакетами (jdbc for SQL) или потоком (Kafka)

Apache Spark — фреймворк с открытым исходным кодом для реализации распределённой обработки неструктурированных и слабоструктурированных данных, входящий в экосистему проектов Hadoop.

Архитектура приложения Spark

Cluster manager Распределяет ресурсы между spark приложениями

standalone	cluster
manager	

FIFO исполнение приложений

Apache Hadoop YARN

стандартное решение

распределяет, освобождает ресурсы между различными приложениями

Часть Hadoop

Apache Mesos

YARN-like, but большая изолированность процессов

поддерживает не-hadoop приложения

Kubernetes

запуск в контейнерах = абсолютная изолированность

существенно сложнее в поддержке

Исполнение запроса

Spark Application Workers User Program Spark Context **RDDs** DAGScheduler Cluster Executor Manager val sc = new SparkContext(conf) DAG Cache val rdd = sc.cassandraTable(...) .map(...) .filter(...) Task Task .keyBy(...) .reduceByKey(...) .cache() Task Task

Spark driver Может находиться вне кластера

- it communicates with the cluster manager
- it requests resources (CPU, memory, etc.) from the cluster manager for Spark's executors (JVMs)
- it transforms all the Spark operations into DAG computations
- it distributes their execution as tasks across the Spark executors

Spark on YARN deployment modes cluster mode

Executor

YARN Container

SparkSession

Точка входа в приложение

С его помощью можно:

- Управлять параметрами spark приложения
- читать и записывать данные в spark DataFrame
- исполнять SQL

```
1 from pyspark.sql import SparkSession
2
3 spark = SparkSession \
4     .builder \
5     .appName("Python Spark SQL basic example") \
6     .config("spark.some.config.option", "some-value") \
7     .getOrCreate()
```

Форматы файлов данных

2.

Бинарные форматы

protobuf, parquet, auro

1. Сжатие

Оптимизация хранения на диске

Текстовые данные через разделитель

 Легко читать (если знаешь разделитель)

```
O O Cov_with_comments.csv2

name, num1, num2, num3
hello,1,2,3
& this is a comment
hello,1,2,3
hello,1,2,3
hello,1,2,3
hello,1,2,3
hello,1,2,3
hello,1,2,3
hello,1,2,3
```


Parquet file format

Формат хранения данных для hadoop

- Колончатый формат
- Разное сжатие для разных типов данных

Parquet vs CSV

న్ల్ GeekBrains

Меньше размер, быстрее чтение

The following table compares the savings as well as the speedup obtained by converting data into Parquet from CSV.

Dataset	Size on Amazon S3	Query Run Time	Data Scanned	Cost
Data stored as CSV files	1TB	236 seconds	1.15 TB	\$5.75
Data stored in Apache Parquet Format	130 GB	6.78 seconds	2.51 GB	\$0.01
Savings	87% less when using Parquet	34x faster	99% less data scanned	99.7% savings

Типы данных в Spark

Data type	Value type	API to access or create data type
ByteType	int or long Note: Numbers are converted to 1-byte signed integer numbers at runtime. Make sure sure that numbers are within the range of -128 to 127.	ByteType()
ShortType	int or long Note: Numbers are converted to 2-byte signed integer numbers at runtime. Make sure sure that numbers are within the range of -32768 to 32767.	ShortType()
IntegerType	int or long	IntegerType()
LongType	long Note: Numbers are converted to 8-byte signed integer numbers at runtime. Make sure sure that numbers are within the range of -9223372036854775808 to 9223372036854775807. Otherwise, convert data to decimal. Decimal and use DecimalType.	LongType()
FloatType	float Note: Numbers are converted to 4-byte single-precision floating point numbers at runtime.	FloatType()
DoubleType	float	DoubleType()
DecimalType	decimal.Decimal	DecimalType()
StringType	string	StringType()
BinaryType	bytearray	BinaryType()
BooleanType	bool	BooleanType()
TimestampType	datetime.datetime	TimestampType()
DateType	datetime.date	DateType()
ArrayType	list, tuple, or array	ArrayType(elementType, [containsNull]) Note: The default value of containsNull is True.

Типы данных в Spark

ArrayType	list, tuple, or array	ArrayType(elementType, [containsNull]) Note:The default value of containsNull is True.
МарТуре	dict	MapType(keyType, valueType, [valueContainsNull]) Note:The default value of valueContainsNull is True.
StructType	list or tuple	StructType(fields) Note: fields is a Seq of StructFields. Also, two fields with the same name are not allowed.
StructField	The value type of the data type of this field (For example, Int for a StructField with the data type IntegerType)	StructField(name, dataType, [nullable]) Note: The default value of nullable is True.

Настройка pyspark

Полезные ссылки

Hастройка pyspark на локальном компьютере

```
from pyspark.sql import SparkSession

spark = SparkSession.builder\
    .master("local")\
    .appName("My_notebook")\
    .getOrCreate()
```

spark

SparkSession - in-memory SparkContext

Spark UI

Version

v3.1.2

Master

local

AppName

My_notebook

Полезные ресурсы

https://sparkbyexamples.com

parquet doc

A Neanderthal's Guide to Apache Spark in Python

Matei Zaharia. Презентация от автора Spark

Спасибо! Каждый день вы становитесь лучше:)

