

 $V_1 = (2, -2, 0)$, $V_2 = (6, 1, 4)$, $V_3 = (2, 0, -4)$ are three vectors in IR^3 that have their initial points at the origin.

Determine whether the three vectors lie on the same plane.

Way 1: Assume the three vectors lie in a plane 0x + by + Cz - d = 0Since the plane goes through the origin (0,0,0), then $a \cdot 0 + b \cdot 0 + c \cdot 0 - d = 0 \Rightarrow d = 0 \Rightarrow ax + by + cz = 0$

Then
$$\begin{pmatrix} 2 & -2 & 0 \\ 6 & l & 4 \\ 2 & 0 & -4 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Using Modelas to get $RREF(AIB) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

The system has only the trivial Solution a=b=c=0.

Hence, V1, V2, V3 do NOT lie on the same plane.

Way 2: We observe that V_1 , V_2 are not scalar multiple of each other, so span $\{ V_1, V_2 \} = a$ plane P.

V3 is on the plane P if and only if V3 is a linear combination of V_1 , V_2 .

Assume $C_1V_1 + C_2V_2 = V_3$, CC_1 , $C_2 \in IR$).

Then
$$\begin{pmatrix} 2 & 6 \\ -2 & 1 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix}$$
 Using Matles to get
$$RREF(AIB) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The system has no solution.

Hence, V1, V2, V3 do NOT lie on the same plane.

Way3: V,, Vs. Us are three vectors on the same plane if and only if $Yank(A) \leq 2$, There A is formed by stacking v_i , v_2 , v_3 horizontally or vertically.

$$A = \begin{pmatrix} 2 & -2 & 0 \\ 6 & 1 & 4 \\ 2 & 0 & -4 \end{pmatrix}$$

We assume,
$$A = \begin{pmatrix} 2 & -2 & 0 \\ 6 & 1 & 4 \\ 2 & 0 & -4 \end{pmatrix}$$
Using Modeles to get,
$$RREF(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Thus, Yank(A) = 3.

Hence, V1, V2, V3 do NOT lie on the same plane.

Way 4: V, , V, le are three vectors on the same plane if and only if V1, V2, V3 are linearly dependent.

We assume $C_1V_1 + C_2V_2 + C_3V_3 = 0$.

$$\begin{pmatrix} 2 & 6 & 2 \\ -2 & 1 & 0 \\ 0 & 4 & -4 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Using Modeles to get

$$RREF(AIB) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The system has only the trivial solution $G_1 = G_2 = C_3 = 0$ Hence, V,, V2, V3 do NOT lie on the same plane.