

TPS22910A, TPS22912C, TPS22913B, TPS22913C

SLVSB49E - NOVEMBER 2011 - REVISED JULY 2014

TPS2291xx Ultra-small, Low On Resistance Load Switch With Controlled Turn-on

Features

- Integrated Single Load Switch
- Four Pin Wafer-Chip-Scale Package (Nom)
 - 0.9 mm × 0.9 mm, 0.5-mm Pitch, 0.5-mm Height (YZV)
- Input Voltage Range: 1.4 V to 5.5 V
- Low ON-Resistance
 - r_{ON} = 60 mΩ at VIN = 5 V
 - $r_{ON} = 61 \text{ m}\Omega \text{ at VIN} = 3.3 \text{ V}$
 - r_{ON} = 74 mΩ at VIN = 1.8 V
 - r_{ON} = 84 mΩ at VIN = 1.5 V
- 2-A Maximum Continuous Switch Current
- Low Threshold Control Input
- Controlled Slew-rate
- Under-Voltage Lock Out
- Full-Time Reverse Current Protection
- Quick Output Discharge Transistor (TPS22913B/C Devices)

Applications

- Notebook Computer and Ultrabook™
- Tablets and Set-Top-Boxes
- Portable Industrial / Medical Equipment
- Portable Media Players
- Point Of Sale Pins
- **GPS Navigation Devices**
- **Digital Cameras**
- Portable Instrumentation
- Smartphones / Wireless Handsets

3 Description

The TPS22910A, TPS22912C, and TPS22913B/C are small, low ron load switches with controlled turn on. The device contains a P-channel MOSFET that can operate over an input voltage range of 1.4 V to 5.5 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with lowvoltage GPIO control signals.

The TPS22910A, TPS22912C, and TPS22913B/C devices provide reverse current protection in ON and OFF states. An internal reverse voltage comparator disables the power-switch when the output voltage (V_{OUT}) is driven higher than the input voltage (V_{IN}), by V_{RCP}, to quickly (10 μs typ) stop the flow of current towards the input side of the switch. Reverse current protection is always active, even when the powerswitch is disabled. Additionally, under-voltage lockout (UVLO) protection turns the switch off if the input voltage is too low.

The TPS22913B/C contains a 150-Ω on-chip load resistor for quick output discharge when the switch is turned off.

This family of devices have various slew rate options to avoid inrush current (see Device Comparison Table for details), are available in an ultra-small, 4-pin WCSP packages, and are space-saving characterized for operation over the temperature range of -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS22910A		
TPS22912C	DCDCA (4)	0.00
TPS22913B	DSBGA (4)	0.90 mm × 0.90 mm
TPS22913C		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

On-State Resistance vs Input Voltage

Table of Contents

1	Features 1	10	Detailed Description	18
2	Applications 1		10.1 Overview	18
3	Description 1		10.2 Functional Block Diagram	18
4	Simplified Schematic		10.3 Feature Description	18
5	Revision History		10.4 Device Functional Modes	19
6	Device Comparison Table	11	Application and Implementation	20
7	Pin Configuration and Functions3		11.1 Application Information	
8	Specifications4		11.2 Typical Application	20
•	8.1 Absolute Maximum Ratings	12	Power Supply Recommendations	30
	8.2 Handling Ratings	13	Layout	30
			13.1 Layout Guidelines	
	8.3 Recommended Operating Conditions		13.2 Layout Example	
	8.5 Electrical Characteristics 5		13.3 Thermal Considerations	
		14	Device and Documentation Support	3 ⁻
	8.6 Switching Characteristics, Typical		14.1 Related Links	
	21		14.2 Trademarks	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		14.3 Electrostatic Discharge Caution	
	8.9 Typical AC Characteristics, TPS22912C		14.4 Glossary	
9	8.10 Typical AC Characteristics, TPS22913B	15	Mechanical, Packaging, and Orderable Information	

Changes from Revision D (May 2014) to Revision E	Page
Updated Switching Characteristics table	6
Updated Typical DC Characteristics section.	7
Updated Timing Waveforms graphic.	17
Updated Application Curves section.	22
Changes from Revision C (May 2013) to Revision D	Page

6 Device Comparison Table

DEVICE	r _{ON} (typ) at 3.3 V	RISE TIME at 3.3V (typ)	QUICK OUTPUT DISCHARGE	MAXIMUM OUTPUT CURRENT	ENABLE
TPS22910A	61 mΩ	1 µs	No	2 A	Active Low
TPS22912C	61 mΩ	1000 µs	No	2 A	Active High
TPS22913B	61 mΩ	66 µs	Yes	2 A	Active High
TPS22913C	61 mΩ	660 µs	Yes	2 A	Active High

7 Pin Configuration and Functions

Table 1. Pin Assignments

В	ON	GND
Α	VIN	VOUT
	2	1

Pin Functions

PIN		I/O	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
VOUT	A1	0	Switch output		
VIN	A2	I	Switch input, use a bypass capacitor (ceramic) to ground.		
GND	B1	_	Ground		
ON	B2	I	Switch control input, active low. Do not leave floating		

8 Specifications

8.1 Absolute Maximum Ratings

		MIN	MAX	UNIT
V_{IN}	Input voltage range	-0.3	6	٧
V_{OUT}	Output voltage range	-0.3	6	V
V_{ON}	Input voltage range	-0.3	6	V
I _{MAX}	Maximum continuous switch current		2	Α
I _{PLS}	Maximum pulsed switch current, pulse < 300 μs, 2% duty cycle		2.5	Α
T _A	Operating free-air temperature range	-40	85	ů
T_{J}	Maximum junction temperature		125	°C

8.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	°C
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2	2	14) /
V(ESD)	V _(ESD) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-1	1	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as 2 kV may actually have higher performance.

8.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V_{IN}	Input voltage range		1.4	5.5	V
V _{ON}	ON voltage range		0	5.5	V
V _{OUT}	Output voltage range			V_{IN}	
V _{IH}	High-level input voltage, ON	VIN = 1.4 V to 5.5 V	1.1	5.5	V
.,	V _{IL} Low-level input voltage, ON	VIN = 3.61 V to 5.5 V		0.6	V
VIL		VIN = 1.4 V to 3.6 V		0.4	V
C _{IN}	Input capacitor		1 (1)		μF

⁽¹⁾ Refer to the application section.

8.4 Thermal Information

		TPS22910	TPS22912	TPS22913	
	THERMAL METRIC ⁽¹⁾	CSP	CSP	CSP	UNIT
		4 PINS	4 PINS	4 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	189.1	189.1	189.1	
R _{0JCtop}	Junction-to-case (top) thermal resistance	1.9	1.9	1.9	
R _{0JB}	Junction-to-board thermal resistance	36.8	36.8	36.8	°C/W
ΨЈΤ	Junction-to-top characterization parameter	11.3	11.3	11.3	
ΨЈВ	Junction-to-board characterization parameter	36.8	36.8	36.8	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 1kV may actually have higher performance.

8.5 Electrical Characteristics

The electrical characteristics in this section apply to all devices unless otherwise noted. For TPS22910A $V_{ON}=0$ V where enabled and $V_{ON}=V_{IN}$ where disabled. For TPS22912C and TPS22913B/C $V_{ON}=V_{IN}$ where enabled and $V_{ON}=0$ V where disabled. $V_{IN}=1.4$ V to 5.5 V, $V_{IN}=0.4$ V to 5.5 V, $V_{IN}=0.4$ C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		$I_{OUT} = 0$ mA, $V_{IN} = 5.25$ V, $V_{ON} = Enabled$		·	2	10	
		$I_{OUT} = 0$ mA, $V_{IN} = 4.2$ V, $V_{ON} = Enabled$		·	2	7.0	
I _{IN}	Quiescent current	I _{OUT} = 0 mA, V _{IN} = 5.25 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 4.2 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 3.6 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 3.5 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 2.5 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 1.5 V, V _{ON} = Enabled I _{OUT} = 0 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1.5 V, V _{ON} = Disabled I _{OUT} = 1 mA, V _{IN} = 1 mA, V _I	μΑ				
		$I_{OUT} = 0$ mA, $V_{IN} = 2.5$ V, $V_{ON} = Enabled$			0.9	2 10 2 7.0 2 7.0 0.9 5 0.7 5 1.2 10 0.2 7.0 0.1 7.0 0.1 5 1.2 10 0.2 7.0 0.1 5 1.2 10 0.2 7.0 0.1 5 1.2 10 0.1 5 60 80 110 60 80 110 60 80 110 0.7 80 110 0.7 80 120 4.2 100 130 3.4 90 120 4.2 100 130 3.9 120 150 153 200 144 54	
		I _{OUT} = 0 mA, V _{IN} = 1.5 V, V _{ON} = Enabled			0.7		
		$R_L = 1 \text{ M}\Omega$, $V_{IN} = 5.25 \text{ V}$, $V_{ON} = \text{Disabled}$			1.2	10	
		$R_L = 1 \text{ M}\Omega$, $V_{IN} = 4.2 \text{ V}$, $V_{ON} = \text{Disabled}$			0.2	7.0	
I _{IN(off)}	Off supply current	$R_L = 1 \text{ M}\Omega$, $V_{IN}= 3.6 \text{ V}$, $V_{ON}= \text{Disabled}$	Full	·	0.1	7.0	μΑ
$ I_{OUT} = 0 \text{ mA, } V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Enabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 5.25 \text{ V, } V_{ON} = \text{Disabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 3.6 \text{ V, } V_{ON} = \text{Disabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 3.6 \text{ V, } V_{ON} = \text{Disabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 2.5 \text{ V, } V_{ON} = \text{Disabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Disabled} \\ R_L = 1 \text{ M}\Omega, V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 5.25 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 5.25 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 3.6 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 5.25 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 5.25 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 2.5 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Disabled} \\ V_{OUT} = 0 \text{ V, } V_{IN} = 1.5 \text{ V, } V_{ON} = \text{Disabled} \\ V_{IN} = 5.25 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 4.2 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 4.2 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 3.3 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 2.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.8 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.8 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 2.5 \text{ C} \text{ Color} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 2.5 \text{ Color} \\ V_{IN} = 1.5 \text{ V, } I_{OUT} = -200 \text{ mA} \\ V_{IN} = 2.5 \text{ Color} \\ V_{IN} = 2.5 \text{ Color}$	0.1	5					
		$R_L = 1 \text{ M}\Omega$, $V_{IN} = 1.5 \text{ V}$, $V_{ON} = \text{Disabled}$		·	0.1	5	
		V _{OUT} = 0 V, V _{IN} = 5.25 V, V _{ON} = Disabled		·	1.2	10	
		V _{OUT} = 0 V, V _{IN} = 4.2 V, V _{ON} = Disabled			0.2	7.0	
I _{IN(Leakage)}	Leakage current	V _{OUT} = 0 V, V _{IN} = 3.6 V, V _{ON} = Disabled	Full		0.1	7.0	μΑ
		V _{OUT} = 0 V, V _{IN} = 2.5 V, V _{ON} = Disabled			0.1	5	
		V _{OUT} = 0 V, V _{IN} = 1.5 V, V _{ON} = Disabled		·	0.1	5	
		V _{IN} = 5.25 V, I _{OUT} = -200 mA	25°C	·	60	80	mΩ
			Full	·		110	
		V _{IN} = 5.0 V, I _{OUT} = -200 mA	25°C	·	60	80	
			Full			110	
		V _{IN} = 4.2 V, I _{OUT} = -200 mA	25°C		60	80	
			Full	·		110	
		V _{IN} = 3.3 V, I _{OUT} = -200 mA	25°C	(60.7	80	
r _{ON}	On-resistance		Full	·		110	
			25°C	(63.4	90	
		$V_{IN} = 2.5 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			120	
		V 40V I 000 mA	25°C	-	74.2	100	
		$V_{IN} = 1.8 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full			130	
		V 45V L 000 A	25°C		83.9	120	
		$V_{IN} = 1.5 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full	·		150	
RPD ⁽¹⁾	Output pull down resistance	V _{IN} = 3.3 V, I _{OUT} = 30 mA, V _{ON} = 0	25°C		153	200	Ω
						1 2	
UVLO	Under voltage lockout	I _{OUT} = -100 mA	Full			1.2	V
		V_{IN} decreasing, $V_{ON} = 0$ V, $R_L = 10 \Omega$		0.50			
I _{ON}	ON input leakage current	V _{ON} = 1.4 V to 5.25 V or GND	Full			1	μΑ
V_{RCP}	Reverse current voltage	TPS22910A, TPS22913B/C			44		mV
· KUP	threshold	TPS22912C			54		•
t _{DELAY}	Reverse current response delay	V _{IN} = 5 V			10		μs
I _{RCP} (leak)	Reverse current protection leakage after reverse current event.	$V_{OUT} - V_{IN} > V_{RCP}$	25°C		0.3		μΑ

⁽¹⁾ Only applies to the TPS22913B/C devices

8.6 Switching Characteristics, Typical

	PARAMETER	TEST CONDITION	TPS22910A	TPS22912C	TPS22913B	TPS22913C	UNIT
VIN = 5	V, T _A = 25°C (unless othe	rwise noted)	"				
t _{ON}	Turn-ON time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	2	840	76	770	
t _{OFF}	Turn-OFF time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	5.5	6.6	6.6	6.6	1
t _R	VOUT rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	1	912	82	838	μs
t _F	VOUT fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	3	3	3	3	
VIN = 3	3.3 V, T _A = 25°C (unless oth	nerwise noted)					
t _{ON}	Turn-ON time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	2.5	1147	102	1048	
t _{OFF}	Turn-OFF time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	7	8.6	8.5	8.6	
t _R	VOUT rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	1	1030	97	980	μs
t _F	VOUT fall time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	3.5	3	3	3	
VIN = 1	I.5 V, T _A = 25°C (unless oth	nerwise noted)					
t _{ON}	Turn-ON time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	4.5	2513	234	2344	
t _{OFF}	Turn-OFF time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	16.5	17.4	17	18	1
t _R	VOUT rise time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F$	2	1970	244	1823	μs
t _F	VOUT fall time	$R_L = 10 \Omega, C_L = 0.1 \mu F$	7	6.5	6.5	6.5	1

8.7 Typical DC Characteristics

The typical characteristics curves in this section apply to all devices unless otherwise noted.

Typical DC Characteristics (continued)

The typical characteristics curves in this section apply to all devices unless otherwise noted.

8.8 Typical AC Characteristics, TPS22910A

Typical AC Characteristics, TPS22910A (continued)

8.9 Typical AC Characteristics, TPS22912C

Typical AC Characteristics, TPS22912C (continued)

8.10 Typical AC Characteristics, TPS22913B

Typical AC Characteristics, TPS22913B (continued)

8.11 Typical AC Characteristics, TPS22913C

Typical AC Characteristics, TPS22913C (continued)

9 Parameter Measurement Information

Figure 47. Timing Test Circuit

A. Rise and fall times of the control signal is 100 ns.

Figure 48. Timing Waveforms

10 Detailed Description

10.1 Overview

This family of devices are single channel, 2-A load switches in ultra-small, space saving 4-pin WCSP package. These devices implement a low resistance P-channel MOSFET with a controlled rise time for applications that need to limit the inrush current.

These devices are designed to have very low leakage current during off state. This prevents downstream circuits from pulling high standby current from the supply. Integrated control logic, driver, power supply, and output discharge FET eliminates the need for additional external components, which reduces solution size and BOM count.

10.2 Functional Block Diagram

10.3 Feature Description

10.3.1 On/Off Control

The ON pin controls the state of the switch. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V, 1.8-V, 2.5-V, 3.3-V, or 5.5-V GPIO.

10.3.2 Under-Voltage Lockout

Under-voltage lockout protection turns off the switch if the input voltage drops below the under-voltage lockout threshold (UVLO). With the ON pin active, the input voltage rising above the under-voltage lockout threshold will cause a controlled turn-on of the switch to limit current over-shoot.

Submit Documentation Feedback

Feature Description (continued)

10.3.3 Full-Time Reverse Current Protection

In a scenario where V_{OUT} is greater than V_{IN} , there is potential for reverse current to flow through the pass FET or the body diode. The devices monitor V_{IN} and V_{OUT} voltage levels. When the reverse current voltage threshold (V_{RCP}) is exceeded, the switch is disabled (within 10µs typ). Additionally, the body diode is disengaged so as to prevent any reverse current flow to VIN. The peak instantaneous reverse current is the current it takes to activate the reverse current protection. After the reverse current protection has activated due to the peak instantaneous reverse current, the DC (off-state) leakage current from V_{OUT} and V_{IN} is referred to as I_{RCP} (leak) (see Figure 49). The pass FET, and the output voltage (V_{OUT}) , will resume normal operation when the reverse voltage scenario is no longer present.

The following formula can be used to calculate the amount of peak instantaneous reverse current for a particular application:

$$I_{RC} = \frac{V_{RCP}}{r_{ON(VIN)}}$$

Where,

IRC is the amount of reverse current,

 $\mathbf{r}_{\mathsf{ON}(\mathsf{VIN})}$ is the on-resistance at the VIN of the reverse current condition.

V_{RCP} is the reverse voltage threshold.

Figure 49. Reverse Current

10.4 Device Functional Modes

Table 2 describes what the VOUT pin will be connected to for a particular device as determined by the ON pin

Table 2. VOUT Function Table

ON	TPS22910A	TPS22912C	TPS22913B/C		
L	VIN	Open	GND		
Н	Open	VIN	VIN		

Application and Implementation

11.1 Application Information

This section will highlight some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com for further aid.

11.1.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the VIN condition of the device. Refer to the R_{ON} specification of the device in the Electrical Characteristics table of this datasheet. Once the R_{ON} of the device is determined based upon the VIN conditions, use Equation 1 to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON} \tag{1}$$

Where,

 ΔV = Voltage drop from VIN to VOUT

 I_{LOAD} = Load current

 R_{ON} = On-resistance of the device for a specific V_{IN}

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

11.1.2 On/Off Control

The ON pin controls the state of the switch. The ON pin has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic thresholds. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be driven either high or low for proper functionality.

11.1.3 Input Capacitor (Optional)

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1-µF ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current applications. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

11.1.4 Output Capacitor (Optional)

Due to the integrated body diode in the PMOS switch, a CIN greater than CL is highly recommended. A CL greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN}. A C_{IN} to C_L ratio of 10 to 1 is recommended for minimizing VIN dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more V_{IN} dip upon turn-on due to inrush currents. This can be mitigated by using a device with a longer rise time.

11.2 Typical Application

Figure 50. Typical Application

Submit Documentation Feedback

Typical Application (continued)

11.2.1 Design Requirements

Design Parameter	Example Value				
VIN	1.5 V to 5 V				
CL	0.1 μF to 1 μF				
Maximum Acceptable Inrush Current	1 A				

11.2.2 Detailed Design Procedure

11.2.2.1 Inrush Current

When the switch is enabled, the output capacitors must be charged up from 0-V to VIN voltage. This charge arrives in the form of inrush current. Inrush current can be calculated using the following equation:

Inrush Current =
$$C \times \frac{dv}{dt}$$
 (2)

Where.

C = Output capacitance

 $\frac{dv}{dt}$ = Output slew rate

The TPS22910A, TPS22912C, and TPS22913B/C offer several different rise time options to control the inrush current during turn-on. The appropriate device can be selected based upon the maximum acceptable slew rate which can be calculated using the design requirements and the inrush current equation. An output capacitance of $1.0~\mu\text{F}$ will be used since the inrush follows the following equations:

$$1.0 A = 1.0 \mu F \times \frac{dv}{dt}$$
 (3)

$$\frac{dv}{dt} = 1 \text{ V/}\mu\text{s} \tag{4}$$

To ensure an inrush current of less than 1 A, a device with a slew rate less than 1 V/µs must be used

The TPS22910A has a typical rise time of 1 µs at 3.3 V . This results in a slew rate of 3.3 V/µs which is above the 1 V/µs requirement meaning the TPS22910 could not be used to meet the design requirements.

The TPS22913B has a typical rise time of $66~\mu s$ at 3.3~V. This results in a slew rate of $50~mV/\mu s$ which is below the $1~V/\mu s$ requirement; therefor, the TPS22913B could be used to meet the design requirements. The TPS22912C or TPS22913C have lower slew rates than the TPS22913B, so they could also be used, but the output would rise more slowly.

11.2.3 Application Curves

11.2.3.1 Typical Application Characteristics for TPS22910A

The dark blue curve (Channel 1) represents the VOUT pin of the device. The light blue curve (Channel 2) represents the ON pin of the device.

www.ti.com

11.2.3.2 Typical Application Characteristics for TPS22912C

The dark blue curve (Channel 1) represents the VOUT pin of the device. The light blue curve (Channel 2) represents the ON pin of the device.

TEXAS INSTRUMENTS

www.ti.com

11.2.3.3 Typical Application Characteristics For TPS22913B

The dark blue curve (Channel 1) represents the VOUT pin of the device. The light blue curve (Channel 2) represents the ON pin of the device.

www.ti.com

11.2.3.4 Typical Application Characteristics for TPS22913C

The dark blue curve (Channel 1) represents the VOUT pin of the device. The light blue curve (Channel 2) represents the ON pin of the device.

www.ti.com

12 Power Supply Recommendations

The device is designed to operate with a VIN range of 1.4 V to 5.5 V.

13 Layout

13.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

13.2 Layout Example

The figure below shows an example for these devices. Notice the connection to system ground between the V_{OUT} Bypass Capacitor ground and the GND pin of the load switch, this creates a ground barrier which helps to reduce the ground noise seen by the device.

VIA to Power Ground Plane

13.3 Thermal Considerations

The maximum IC junction temperature should be restricted to 125° C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, use the following equation as a guideline:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}} \tag{5}$$

where

- P_{D(max)} = maximum allowable power dissipation
- T_{J(max)} = maximum allowable junction temperature
- T_A = ambient temperature of the device
- θ_{JA} = junction to air thermal impedance. See the *Thermal Information* section. This parameter is highly dependent upon board layout.

Submit Documentation Feedback

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS22910A	Click here	Click here	Click here	Click here	Click here
TPS22912C	Click here	Click here	Click here	Click here	Click here
TPS22913B	Click here	Click here	Click here	Click here	Click here
TPS22913C	Click here	Click here	Click here	Click here	Click here

14.2 Trademarks

Ultrabook is a trademark of Intel.

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2011–2014, Texas Instruments Incorporated

Submit Documentation Feedback

2-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS22910AYZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	75	Samples
TPS22910AYZVT	ACTIVE	DSBGA	YZV	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	75	Samples
TPS22912CYZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	78	Samples
TPS22912CYZVT	ACTIVE	DSBGA	YZV	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	78	Samples
TPS22913BYZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	64	Samples
TPS22913BYZVT	ACTIVE	DSBGA	YZV	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	64	Samples
TPS22913CYZVR	ACTIVE	DSBGA	YZV	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	76	Samples
TPS22913CYZVT	ACTIVE	DSBGA	YZV	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	76	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

2-Jul-2014

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 2-Jul-2014

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22910AYZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22910AYZVT	DSBGA	YZV	4	250	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22912CYZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22912CYZVT	DSBGA	YZV	4	250	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22913BYZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22913BYZVT	DSBGA	YZV	4	250	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22913CYZVR	DSBGA	YZV	4	3000	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1
TPS22913CYZVT	DSBGA	YZV	4	250	178.0	9.2	1.0	1.0	0.63	4.0	8.0	Q1

www.ti.com 2-Jul-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22910AYZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0
TPS22910AYZVT	DSBGA	YZV	4	250	220.0	220.0	35.0
TPS22912CYZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0
TPS22912CYZVT	DSBGA	YZV	4	250	220.0	220.0	35.0
TPS22913BYZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0
TPS22913BYZVT	DSBGA	YZV	4	250	220.0	220.0	35.0
TPS22913CYZVR	DSBGA	YZV	4	3000	220.0	220.0	35.0
TPS22913CYZVT	DSBGA	YZV	4	250	220.0	220.0	35.0

YZV (S-XBGA-N4)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity