PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-171921

(43) Date of publication of application: 09.07.1993

(51)Int.CI.

F01N 3/08 B01D 53/34

B01D 53/36

B01D 53/36

B01J 29/28

F01N 3/10

(21)Application number: 03-338588

(71)Applicant: MAZDA MOTOR CORP

(22)Date of filing:

20.12.1991

(72)Inventor: IWAKUNI HIDEJI

KOMATSU KAZUYA

WATANABE YASUTO TAKEMOTO TAKASHI

(54) EXHAUST GAS PURIFYING DEVICE

(57)Abstract:

PURPOSE: To effectively increase an NOx purifying ratio when an HC

quantity in exhaust gas is small.

CONSTITUTION: Catalyst 6 comprising metal-including silicate carrying transition metal is provided in an exhaust passage 3, a means 12 to supply HC to the catalyst 6 is provided, and HC is supplied to the catalyst 6 by actuating the HC supplying means when a ratio of HC/NOx in exhaust gas is a specified value or less and simultaneously when a temperature of exhaust gas or the catalyst 6 is a specified value or more.

LEGAL STATUS

[Date of request for examination] 21.09.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

abandonment

[Date of final disposal for application]

20.10.2000

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection

(19)日本国特許庁(JP)

(51)Int.Cl.⁵

(12) 公開特許公報(A)

FΙ

庁内整理番号

(11)特許出願公開番号

特開平5-171921

(43)公開日 平成5年(1993)7月9日

技術表示箇所

		2.1 区内级小园门
F01N 3/08	B 7910-3G	
B 0 1 D 53/34	129 E 6953-4D	
53/36	101 A 9042-4D	
	1 0 2 B 9042-4D	
В 0 1 Ј 29/28	A 7038-4G	
	71 1000 44	審査請求 未請求 請求項の数 5(全 7 頁) 最終頁に続く
(21)出願番号	特題平3-338588	(71)出願人 000003137
***		マツダ株式会社
(22)出願日	平成3年(1991)12月20日	広島県安芸郡府中町新地3番1号
		(72)発明者 岩国 秀治
		広島県安芸郡府中町新地3番1号 マッダ
		株式会社内
		(72)発明者 小松 一也
.:		広島県安芸郡府中町新地 3番 1号 マッダ
•		株式会社内
	•	(72)発明者 渡辺 康人
•		広島県安芸郡府中町新地3番1号 マッダ
		株式会社内
		(74)代理人 弁理士 前田 弘 (外2名)
		最終頁に続く

(54)【発明の名称】 排気ガス浄化装置

(57) 【要約】

【目的】排気ガス中のHC量が少ないときのNOx浄化率を効率良く高める。

識別記号

【構成】金属含有シリケートに遷移金属が担持されてなる触媒6を排気通路3に設けるとともに、この触媒6にHCを供給する手段12を設け、排気ガス中のHC/NO×比が所定値以下のときであって且つ排気ガス又は触媒6の温度が所定値以上のときに、上記HC供給手段12を作動させて触媒6にHCを供給する。

【特許請求の範囲】

【請求項1】金属含有シリケートに遷移金属が担持されてなり、NO×を含有する排気ガスを浄化する触媒と、上記触媒にHCを供給するためのHC供給手段と、

上記排気ガス中のHCとNOxとの成分比を検出する成分比検出手段と、

上記排気ガス若しくは触媒の温度を検出する温度検出手 段と、

上記成分比検出手段によって検出されるHC/NOx比と上記温度検出手段によって検出される温度とに基づき、上記HC/NOx比が所定値以下のときであって且つ上記温度が所定値以上のときに、上記HC供給手段を作動させる制御手段とを備えていること特徴とする排気ガス浄化装置。

【請求項2】金属含有シリケートに遷移金属が担持されてなり、NOxを含有する排気ガスを浄化する触媒と、上記触媒にO2を供給するためのO2供給手段と、

上記排気ガス中のHCとNO×との成分比を検出する成分比検出手段と、

上記排気ガス若しくは触媒の温度を検出する温度検出手 段と、

上記成分比検出手段によって検出されるHC/NO×比と上記温度検出手段によって検出される温度とに基づき、上記HC/NO×比が所定値以下のときであって且つ上記温度が所定値以下のときに、上記O2 供給手段を作動させる制御手段とを備えていること特徴とする排気ガス浄化装置。

【請求項3】上記触媒にO2 を供給するためのO2 供給手段を備え、

上記制御手段は、上記成分比検出手段によって検出されるHC/NO×比と上記温度検出手段によって検出される温度とに基づき、上記HC/NO×比が所定値以下のときであって且つ上記温度が所定値以上のときには、上記HC供給手段を作動させ、上記HC/NO×比が所定値以下のときであって且つ上記温度が所定値以下のときには、上記O2 供給手段を作動させる請求項1に記載の排気ガス浄化装置。

【請求項4】上記触媒は、ゼオライトにCuがイオン交換によって担持されてなり、上記制御手段がHC供給手段を作動させる温度条件は排気ガス温度が400℃以上のときである請求項1に記載の排気ガス浄化装置。

【請求項5】上記触媒は、ゼオライトにCuがイオン交換によって担持されてなり、上記制御手段がO2供給手段を作動させる温度条件は排気ガス温度が400℃以下のときである請求項2に記載の排気ガス浄化装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、排気ガス浄化装置に関する。

[0002]

【従来の技術】エンジンの排気ガス浄化用触媒として、CO(一酸化炭素)及びHC(炭化水素)の酸化と、NOx(窒素酸化物)の還元とを同時に行なう三元触媒が一般に知られている。この三元触媒は、例えばアーアルミナにPt(白金)及びRh(ロジウム)を担持させてなるもので、エンジンの空燃比(A/F)を理論空燃比14.7付近に制御したときに、高い浄化効率が得られる。

【0003】これに対して、上記空燃比を高くしてエンジンの低燃費化を図るという要望があり、そのために、希薄燃焼方式のエンジンが開発されている。すなわち、このエンジンは、混合気の霧化の改善等を図って希薄混合気であっても安定な燃焼を実現できるようにしたものであり、エンジン温度が低い時には空燃比を理論空燃比付近に設定し、エンジン温度が上昇して混合気の燃焼安定性が高くなってから、空燃比が希薄(リーン)側に切換えて設定されるのが通常である。その場合、排気ガスは酸素過剰となるため、上記三元触媒では、COやHCは酸化浄化することができても、NO×の還元浄化ができなくなる。

【0004】そこで、近年は、遷移金属をイオン交換担持させてなるゼオライト(アルミノ珪酸塩)系のNO×浄化触媒の研究が進められている。この触媒の場合、リーン雰囲気においても、NO×を直接、あるいは共存する還元剤(例えば、CO、HC等)により、N2 とO2とに接触分解させることができる。

【0005】しかし、上記NO×浄化触媒の場合、排気ガス中のHC量が少ないときのNO×の浄化率が低いという問題がある。これに対して、排気ガス中にHCを補給することが考えられる(特開昭63-283727号公報参照)。

[0006]

【発明が解決しようとする課題】しかし、NO×の浄化のために必要以上にHCを使用することは、燃料消費率の低減の観点から好ましくない。すなわ、本発明の課題は、排気ガス中のHC量が少ないときのNO×浄化率を効率良く高めることにある。

[0007]

【課題を解決するための手段及びその作用】上記NO× 浄化率の低下の問題につき、本発明者が検討したところ、まず、HC/NO×比とNO×浄化率の関係について、図9に示す結果が得られたものである。そして、上記NO×浄化率の低下は、排気ガス若しくは触媒の温度が低い場合にはそれほどでもなく、同温度が高い場合に顕著になるため、同温度が高いときに触媒にHCを補給すればよいこと、また、同温度が低い場合には、触媒に酸素を補給するとNO×浄化率の向上が図れることを見出だしたものである。

【0008】すなわち、上記課題を解決する第1の手段は、金属含有シリケートに遷移金属が担持されてなり、

NOxを含有する排気ガスを浄化する触媒と、上記触媒 にHCを供給するためのHC供給手段と、上記排気ガス 中のHCとNOxとの成分比を検出する成分比検出手段 と、上記排気ガス若しくは触媒の温度を検出する温度検 出手段と、上記成分比検出手段によって検出されるHC /NOx比と上記温度検出手段によって検出される温度 とに基づき、上記HC/NO×比が所定値以下のときで あって且つ上記温度が所定値以上のときに、上記HC供 給手段を作動させる制御手段とを備えていること特徴と する排気ガス浄化装置である。

 $CnHm+(n+m/4)O_2 \rightarrow nCO_2 +m/2 \cdot H_2O_1$

これは、HCの完全燃焼反応であり、それがため、HC がNOxの分解反応における還元剤として十分に寄与せ ず、NOxの浄化率が低下する。

【0011】これに対して、上記装置の場合、HC供給

Cn Hm+X1 O2 →X2 CO2 +X3 H2 O+X4 Cn' Hm'

すなわち、不完全燃焼によって中間物 Cn' Hm' が生成 し、これが排気ガス中のNOxと反応するため、NOx 浄化率が高くなる、と考えられる。この場合、排気ガス 温度若しくは触媒温度が低いときに上記HCの補給を行 なっても、低温であるが故にこのHCの燃焼自体が円滑 に行われず、効果は少ない。

【0013】ここで、金属含有シリケートに遷移金属が 担持されてなる触媒について説明する。金属含有シリケ 一トは、ミクロの細孔を有する結晶質の多孔体であり、 この金属含有シリケートとしては、ゼオライト(アルミ ノシリケート)が好適である。もちろん、このゼオライ トに代えて、他のシリケート、例えば、結晶の骨格を形 成する金属として、AIとFe、Ce、Mn、Tb、C u、B、Pなど他の金属(半金属)とを組み合わせてな るシリケートや、AIを含まない非アルミノシリケート も採用することができ、これらは耐熱性を得る上で有効 である。また、耐熱性を向上せしめる観点からは、Na 型よりもH型の方が好ましく、特にH型ゼオライトが好 適である。上記ゼオライトとしては、ZSM-5が好適 であるが、A型、X型、Y型等であってもよい。

【0014】上記金属含有シリケートに担持せしめる遷 移金属としては、Cuが好適であるが、それ以外のC o、Cr、Ni、Fe、Mnなどでもよい。また、この 遷移金属は、上記金属含有シリケートにイオン交換によ って担持せしめることが好適であるが、含浸によって担 持せしめてもよい。

【0015】また、上記触媒は、その使用にあたって は、ペレットタイプとすることができるが、担体に担持 せしめることもでき、その場合の担体としては、コーデ ィライトが好適であり、また、他の無機多孔質体を用い ることもできる。

【OO16】上記触媒に供給するHCとしては、例えば 自動車エンジンの場合には該エンジンの燃料(ガソリ ン)であってよく、また、C3 H6 やC4 H10のような

【0009】このように、特定の条件において、HCを 触媒に供給すると、触媒のNO×浄化率の低下が少なく なるものである。その理由は、以下のように考えられ る。すなわち、上記HC/NOx比が所定値以下のと き、例えば、この比が1近傍にあるとき、あるいはそれ 以下にあるというように、HC量が相対的に少ないとき には、排気ガス若しくは触媒の温度が高くなると(例え ぱ400℃以上になると)、次のようなHC燃焼反応を 生じ易くなる。

[0010]

手段からHCが補給されるため、以下のように、HCの 不完全燃焼反応が進行すると考えられる。

[0012]

他の炭化水素でもよい。

【OO17】上記排気ガス中のHCとNOxとの成分比 を検出する成分比検出手段としては、空燃比センサ (O 2 濃度センサ)を代用して、A/Fの値に基づいてHC /NOx比が所定値以下か否かを判断することができ る。また、自動車等のエンジンの場合には、エンジン回 転数と吸気負圧とに基づいてA/Fを検出するようにす ることもできる。もちろん、HC及びNOxの各々の濃 度をセンサでとらえてHC/NOx比を求めるようにし てもよい。

【0018】また、上記課題を解決する第2の手段は、 金属含有シリケートに遷移金属が担持されてなり、NO ×を含有する排気ガスを浄化する触媒と、上記触媒にO 2 を供給するためのO2 供給手段と、上記排気ガス中の HCとNOxとの成分比を検出する成分比検出手段と、 上記排気ガス若しくは触媒の温度を検出する温度検出手 段と、上記成分比検出手段によって検出されるHC/N O×比と上記温度検出手段によって検出される温度とに 基づき、上記HC/NOx比が所定値以下のときであっ て且つ上記温度が所定値以下のときに、上記O2 供給手 段を作動させる制御手段とを備えていること特徴とする 排気ガス浄化装置である。

【0019】この第2の手段においても、上記特定条件 でのO2 の補給によりNO×の浄化率が向上する。これ は、HC/NOx比が所定値以下のときであって且つ上 記排気ガス若しくは触媒の温度が所定値以下のときにO 2 を補給するから、この補給によってHCの燃焼が促さ れ、先の第1の手段の場合と同様の不完全燃焼による中 間物が生成し、それがNO×の浄化(還元)に寄与する ためと考えられる。

【〇〇2〇】この場合、排気ガス若しくは触媒の温度が 高いときに上述の如き〇2 の補給を行なってもNOx浄 化率の向上は望めない。それは、同温度が高いときは、 本来的にHCの燃焼が進行し易いからである。つまり、

かかる状態にあるときにO2 を供給すると、HCの燃焼がさらに促進されることになって、上述のHCの不完全燃焼を期待することはできず、また、HCの燃焼の促進によって触媒温度の過度上昇を招く懸念がある。

【0021】上記触媒に供給するO2 としては、酸素そのものでもよいが、空気を用いてもよく、自動車エンジンの場合には吸気通路から排気通路に2次エアを導く方式が好適である。

【OO22】以上の説明から明らかなように、上記HC/NO×比が所定値以下のときであって且つ上記排気ガス若しくは触媒の温度が所定値以上のときには、上記HC供給手段を作動させ、上記HC/NO×比が所定値以下のときであって且つ上記温度が所定値以下のときには、上記O2供給手段を作動させることは、上述の本発明の課題を解決する好ましい第3の手段である。

[0023]

【発明の効果】従って、上記第1の手段によれば、HC /NO×比が所定値以下のときであって且つ排気ガス若しくは触媒の温度が所定値以上のときに、触媒にHCを別途供給するようにしたから、HCの効果的な供給によって、つまり、HC使用量を最少限に抑えながら、NO×浄化率を高めることができる。

【0024】また、第2の手段によれば、HC/NOx比が所定値以下のときであって且つ上記排気ガス若しくは触媒の温度が所定値以下のときに、触媒にO2を供給するようにしたから、触媒温度の過度上昇を招くことなく、NOx浄化率を高めることができる。

【 O O 2 5 】また、第3の手段によれば、H C / N O x 比が所定値以下のときであって且つ上記排気ガス若しくは触媒の温度が所定値以上のときには、触媒にH C を供給し、上記H C / N O x 比が所定値以下のときであって且つ上記温度が所定値以下のときには、触媒にO2 を供給するようにしたから、上記温度が低いときから高いときわたる広い温度範囲でN O x 浄化率を高めることができる

【0026】さらに、ゼオライトにCuがイオン交換によって担持されてなる触媒を用い、排気ガス温度400℃を基準として、HCの供給あるいはO2の供給を行なうようにしたものによれば、NOx浄化率の向上を確実に図ることができる。

[0027]

【実施例】以下、本発明の実施例を説明する。

一排気ガス浄化装置の機械的構成ー

図1には装置の機械的構成が記載されている。同図において、1はリーンパーン(希薄燃焼)エンジン、2は吸気通路、3は排気通路、4は燃料(ガソリン)タンク、5はエアクリーナである。上記排気通路3には排気ガス中のNOxを主として浄化するNOx浄化用触媒6が設けられ、さらに、その下流に酸化触媒7が設けられている。また、上記吸気通路2のスロットル弁8の上流部位

から排気通路3の上記NOx浄化用触媒6の直上流部位に2次エア通路9が延設されている。

【0028】上記燃料タンク4から延設された燃料供給 通路は燃料ポンプ10の下流で分岐し、その一方が上記 吸気通路2のスロットル弁8の下流部位に燃料を噴射す る第1インジェクタ11に接続され、他方は上記2次工 ア通路9の途中に設けられたサージタンク9 a に燃料を 噴射する第2インジェクタ(HC供給手段)12に接続 されている。上記燃料タンク4に燃料を戻すリターン通 路にはプレッシャレギュレータ13が介設されている。 【0029】上記2次エア通路9にはサージタンク9a の上流部位に開閉弁(O2供給手段)14が介設されて いる。上記排気通路3には、上記2次エア通路9の開口 部よりも上流部位に第1温度センサ15と第1空燃比センサ16とが設けられ、上記開口部よりも下流部位に第 2温度センサ17と第2空燃比センサ18とが設けられ ている。上記第1の各センサ15、16は、エンジン1 から排出された排気ガス (HC及び〇) の供給前) の温 度、空燃比を検出するためのものであり、上記第2の各 センサ17, 18は、上記排気ガスにHC及び〇2 が供 給された後の当該ガスの温度(触媒入口温度)、空燃比 を検出するためのものである。また、NOx浄化用触媒 6には該排気ガスの温度を検出する排気ガス温度センサ 19が設けられている。

【0030】そうして、上記第2インジェクタ12と開閉弁14とは、上述の各センサ15~19の出力に基づいて、制御手段(CPU)20により作動が制御されるようになっている。

【0031】上記NO×浄化用触媒6は、ゼオライト(ZSM-5)にCuをイオン交換によって担持せしめたものである。また、上記酸化触媒はィーアルミナに貴金属(Pt,Pd)を担持せしめたものである。

【〇〇32】一制御例1-

上記制御手段 2 0 による上記第 2 インジェクタ 1 2 及び 開閉弁 1 4 の制御の一例が図 2 に示されている。すなわち、同図において、領域①及び②(触媒入口温度 3 5 0 ~ 4 5 0 °C)では開閉弁 1 4 が開とされて単位時間に一定量の 2 次エアが供給され、領域②及び③(A \angle F = 1 5 ~ 1 8,触媒入口温度 4 0 0 °C以上)では第 2 インジェクタ 1 2 がオンとされて単位時間に一定量の燃料(HC)が噴射される。

【0033】この場合、基本的には、各領域の制御の開始は上記第1のセンサ15、16からの出力に基づいて決定され、当該領域の制御は上記第1のセンサ15、16と上記第2のセンサ17、18とのいずれか一方の出力値が当該領域を外れることによって終了する。

【0034】また、上記2次エアの供給量は、排気ガス中の酸素濃度が10%以上に、好ましくは13%になる 置とする。一方、上記燃料の供給量は、排気ガス中のH C濃度が2000ppmC以上に、好ましくは3000

ppmCになる量とする。

【0035】また、上記装置において、サージタンク9 aは2次エアと燃料との混合器としての機能を呈する。 【0036】一制御例2一

上記制御手段 20による上記第 2インジェクタ 12及び開閉弁 14の別の制御例が図 3に示されている。すなわち、同図において、領域①(触媒入口温度 350~450°C)では開閉弁 14が開とされて単位時間に一定量の2次エアが供給され、領域②(A/F=15~18、触媒入口温度 350°C以上)では第 2インジェクタ 12がオンとされるとともに、開閉弁 14が開とされ、図4に示す添加量特性に従って燃料(HC)と酸素(2次エア)とが供給される。この場合、領域①における 2次エア供給量は制御例 1における 2次エア供給量と同じである。また、図4において添加量 10の酸素量は上記領域①の2次エア供給量と同じであり、添加量 10の燃料量と同じである。

【0037】なお、制御例2における各領域の制御の開始及び終了の決定は制御例1と同様である。

【0038】 - A / FとHC / NO×との関係ーここで、上記A / FとHC / NO×との関係について説明する。すなわち、図5に示すように、エンジン1からの排気ガスは、A / Fによって成分濃度が変動するものであり、A / FとHC / NO×との間には略一定の関係がある。そこで、本実施例では、HC / NO×を直接には検出せずに、上記A / Fを検出してHC / NO×の検出に代えるものである。この場合、A / F=15~18においては、HC / NO×=1.0~1.8程度となる。

【0039】一浄化テストー

図6は、上記制御例1及び制御例2による各浄化テストデータを無制御のものと比較して示すものである。この浄化テストにおいては次の組成の模擬排気ガスを用いた。すなわち、温度を変えて各々模擬排気ガスを触媒に通じ、無制御では酸素及び燃料の供給を別途行なうことなくNO×浄化率を調べ、制御例1及び制御例2ではそれぞれ温度に応じて酸素ないしは燃料を供給してNO×浄化率を調べたものである。HCはC3 H6 である。

[0040] HC ; 350ppm

NOx; 260ppm CO; 650ppm

CO2 ; 10%

02 : 6%

浄化テストの結果、制御例 1、2ではいずれにおいても無制御のものに比べてNO×浄化率が高くなっている。特に、無制御のものでは触媒入口温度 4 0 0 ℃を越えるとNO×浄化率が急に低下しているのに対し、制御例 1、2では 4 0 0 ℃以降においても浄化率の低下は少な

く、また、低温での活性の立ち上がりも急になってい

る。このことから、HC/NO×比が低い排気ガスにおいては、低温でのO2の供給と高温でのHCの供給がNO×浄化率の向上に大きく寄与するということがわかる。

【OO41】-HC供給の効果について-

図7は上記模擬排気ガス組成でのNO×浄化率と、同組成におけるHCのみを10倍の3500ppmにした模擬排気ガス組成でのNO×浄化率とを調べ比較したものである。同図から、HCの供給がNO×浄化率の向上に有効であることが裏付けられる。

【0042】-02供給の効果について-

図8は次の模擬排気ガス組成を基本としてO2 濃度を6%、12%、17%と3種類に変えてNO×浄化率を調べた結果を示す。

[0043] HC ; 350ppm

NOx; 1000ppm

CO ; 650ppm

CO2:10%

図8の結果から、O2 の供給がNO×浄化率の向上に有効であること、特に450℃以下においてNO×浄化率の向上に良く寄与することが裏付けられる。 ☆

【図面の簡単な説明】

【図1】実施例の排気ガス浄化装置の構成図

【図2】実施例の制御例1にかかる制御領域図:

【図3】実施例の制御例2にかかる制御領域図。

【図4】制御例2における酸素及び燃料の添加特性を示すグラフ図

【図5】空燃比とHC及びNOx排出量との関係を示す グラフ図

【図6】制御例1、制御例2及び無制御の各々における 浄化テスト結果を示すグラフ図

【図7】HC量とNO×浄化率との関係を調べた結果を示すグラス図。

【図8】 O_2 量と $NO \times$ 浄化率との関係を調べた結果を示すグラフ図

【図9】HC/NOxとNOx浄化率との関係を調べた 結果を示すグラフ図

【符号の説明】

1 エンジン

2 吸気通路

3 排気通路

4 燃料タンク

6 NO×浄化用触媒

9 2次エア通路

12 インジェクタ (HC供給手段)

14 開閉弁(O2供給手段)

15, 17 温度センサ

16, 18 空燃比センサ (HC/NOx比検出手段)

20 制御手段

【図8】

【図9】

フロントページの続き

(51) Int. CI. 5 F O 1 N 3/10 識別記号 庁内整理番号

A 7910-3G

FI

技術表示箇所

(72) 発明者 竹本 崇

広島県安芸郡府中町新地3番1号 マツダ 株式会社内