Listing of Claims:

3

4

1	1.	(Currently Amended) A solenoid assembly, comprising:	
2		a) a unitary, one-piece housing comprised of encapsulant,	
3		b) an electromagnetic device completely encompassed by and embedded in the	
4	encaj	encapsulant, the electromagnetic device including:	
5		i) a bobbin and coil subassembly, the bobbin having a central cavity and	
6		circumscribing a central axis and the coil wound around the bobbin, and	
7		an opening in the housing into the central cavity for receipt of a valve;	
8		ii) terminal means electrically connected to the coil;	
9		iii) a yoke surrounding the subassembly; and	
0		iv) a flux plate with an opening into the central cavity, the flux plate	
1		electrically connected to the yoke and electrically insulated from the coil	
2		such that a flux gap is provided between the coil and yoke;	
3		c) lead wires having one end embedded in the encapsulant and electrically	
4	conn	ected to the terminal means; [and]	
5		d) a hollow conduit having one end thereof embedded in the encapsulant and	
6	recei	ving and enclosing the lead wires, and having a distal end, free of encapsulant; and	
7		e) an insulating plug located within the conduit at the one end thereof, the lead	
8	wires	s extending through the insulating plug;	
9		whereby upon energization of the coil by a current applied to the lead wires,	
20	elect	romagnetic forces generate a magnetic field within the central cavity for movement	
21	of a v	valve member.	
1	2.	(Original) The solenoid assembly as in claim 1, wherein the lead wires extend the	
2	iengt	h of the conduit and project outwardly from the distal end of the conduit, and further	

including a connector assembly at the distal end of the lead wires exterior to the conduit

for connecting the solenoid assembly to a current source.

Application Serial No. 10/737,321 Response dated September 28, 2005 Reply to Office Action of May 3, 2005

- 1 3. (Cancelled) The solenoid assembly as in claim 1, further including an insulating
- 2 plug located within the conduit at the one end thereof, the lead wires extending through
- 3 the insulating plug.
- 1 4. (Currently Amended) The solenoid assembly as in claim [3] 1, wherein the
- 2 insulating plug includes a circular plug portion sealing the one end of the conduit, and a
- 3 flat support portion disposed along the flux plate, and between the flux plate and the lead
- 4 wires and terminal to electrically insulate the lead wires and terminal means from the flux
- 5 plate.
- 1 5. (Original) The solenoid assembly as in claim 4, wherein the support portion of the
- 2 insulating plug is embedded in the encapsulant.
- 1 6. (Original) The solenoid assembly as in claim 4, wherein the support portion
- 2 includes a trough extending from the plug portion to the terminal means, and the lead
- wires are received and arranged in the trough.
- 1 7. (Currently Amended) The solenoid assembly as in claim [3] 1, wherein the
- 2 insulating plug is plastic.
- 1 8. (Original) The solenoid assembly as in claim 1, wherein the encapsulant is a non-
- 2 magnetic, moldable material.
- 1 9. (Original) The solenoid assembly as in claim 8, wherein the encapsulant is a
- 2 thermoplastic or theremoset epoxy.

11.

parallel to the central axis of the assembly.

1

2

1	10. (Currently Amended) [[The solenoid assembly as in claim 1,]] A solenoid
2	assembly, comprising:
3	a) a unitary, one-piece housing comprised of encapsulant,
4	b) an electromagnetic device completely encompassed by and embedded in the
5	encapsulant, the electromagnetic device including:
6	i) a bobbin and coil subassembly, the bobbin having a central cavity and
7	circumscribing a central axis and the coil wound around the bobbin, and
8	an opening in the housing into the central cavity for receipt of a valve;
9	ii) terminal means electrically connected to the coil;
10	iii) a yoke surrounding the subassembly; and
11	iv) a flux plate with an opening into the central cavity, the flux plate
12	electrically connected to the yoke and electrically insulated from the coil
13	such that a flux gap is provided between the coil and yoke;
14	c) lead wires having one end embedded in the encapsulant and electrically
15	connected to the terminal means; and
16	d) a hollow conduit having one end thereof embedded in the encapsulant and
17	receiving and enclosing the lead wires, and having a distal end, free of encapsulant,
18	wherein the flux plate includes a second opening closely receiving and supporting the
19	conduit;
20	whereby upon energization of the coil by a current applied to the lead wires,
21	electromagnetic forces generate a magnetic field within the central cavity for movement
22	of a valve member.

(Original) The solenoid assembly as in claim 1, wherein the conduit extends

19

(Original) The solenoid assembly as in claim 1, wherein the housing is the 12. 1 2 outermost container for the electromagnetic device. 1 13. (Original) The solenoid assembly as in claim 1, further including a flux bushing closely received in the central cavity of the subassembly to concentrate magnetic flux in 2 the central cavity. 3 (Original) A solenoid assembly for a valve, comprising: 1 14. a) a unitary, one-piece housing comprised of non-magnetic encapsulant, 2 b) an electromagnetic device completely encompassed by and embedded in the 3 encapsulant, the electromagnetic device including: 4 i) a bobbin and coil subassembly, the bobbin having a central cavity and 5 circumscribing a central axis and the coil wound around the bobbin, 6 openings in the housing into the central cavity, and the central cavity of 7 8 the bobbin dimensioned to receive a portion of the valve; ii) terminal means electrically connected to the coil; 9 iii) a yoke surrounding the subassembly with a first opening at one end of 10 the bobbin into the central cavity; and 11 iv) a flux plate with a second opening at another end of the bobbin into the 12 central cavity, the flux plate electrically connected to the yoke and 13 electrically insulated from the coil such that a flux gap is provided 14 between the coil and yoke; 15 c) lead wires having one end embedded in the encapsulant and electrically 16 connected to the terminal means; 17 d) a hollow conduit having one end thereof embedded in the encapsulant and 18

receiving and enclosing the lead wires, and having a distal end, free of encapsulant; and

22

move a valve member in the valve.

20	e) an insulating plug at the one end of the conduit, with the lead wires extending	
21	through the plug and the plug electrically insulating the lead wires and terminal means	
22	from the flux plate;	
23	whereby upon energization of the coil by a current applied to the lead wires,	
24	electromagnetic forces generate a magnetic field which can be transmitted to an armature	
25	in the valve portion.	
1	15. (Currently Amended) A valve assembly, comprising:	
2	a valve;	
3	a solenoid assembly for actuating said valve, the solenoid assembly including a	
4	unitary, one-piece housing comprised of encapsulant, an electromagnetic device	
5	encompassed by and embedded in the encapsulant, the electromagnetic device including:	
6	i) a bobbin and coil subassembly, the subassembly circumscribing a	
7	central axis and having a central cavity receiving the valve through an	
8	opening in the housing;	
9	ii) terminal means electrically connected to the coil;	
10	iii) a yoke surrounding the subassembly; and	
11	iv) a flux plate with an opening into the central cavity with the valve	
12	projecting through the opening, the flux plate electrically connected to the	
13	yoke and electrically insulated from the coil such that a flux gap is	
14	provided between the coil and yoke;	
15	lead wire means having one end embedded in the encapsulant and electrically	
16	connected to the terminal means; and a hollow conduit having one end thereof embedded	
17	in the encapsulant and receiving and enclosing the lead wire means; and	
18	an insulating plug located within the conduit at the one end thereof, the wire	
19	means extending through the insulating plug;	
20	whereby upon energization of the coil by a current applied to the lead wire means,	
21	electromagnetic forces generate a magnetic field which can be transmitted to the valve to	

Application Serial No. 10/737,321 Response dated September 28, 2005 Reply to Office Action of May 3, 2005

- 1 16. (Currently Amended) The solenoid assembly as in claim 15, wherein the wire
- 2 means extends the length of the conduit and [[project]] projects outwardly from the distal
- end of the conduit, and further including a connector assembly at the distal end of the
- wire means exterior to the conduit for connecting the solenoid assembly to a current
- 5 source.
- 1 17. (Cancelled) The solenoid assembly as in claim 15, further including an insulating
- 2 plug located within the conduit at the one end thereof, the wire means extending through
- 3 the insulating plug.
- 1 18. (Currently Amended) The solenoid assembly as in claim [[17]] 15, wherein the
- 2 insulating plug includes a circular plug portion sealing the one end of the conduit, and a
- flat support portion disposed along the flux plate, and between the flux plate and the wire
- 4 means and terminal to electrically insulate the wire means and terminal means from the
- 5 flux plate.
- 1 19. (Original) The solenoid assembly as in claim 18, wherein the support portion of
- 2 the insulating plug is embedded in the encapsulant.
- 1 20. (Original) The solenoid assembly as in claim 18, wherein the support portion
- 2 includes a trough extending from the plug portion to the terminal means, and the wire
- 3 means are received and supported in the trough.
- 1 21. (Currently Amended) The solenoid assembly as in claim [[17]] 15, wherein the
- 2 insulating plug is plastic.
- 1 22. (Original) The solenoid assembly as in claim 15, wherein the encapsulant is a
- 2 moldable, non-conductive material.

23.

1

2	thermoplastic or thermoset epoxy.
1	24. (Currently Amended) [[The solenoid assembly as in claim 15,]] A valve
2	assembly, comprising:
3	a valve;
4	a solenoid assembly for actuating said valve, the solenoid assembly including a
5	unitary, one-piece housing comprised of encapsulant, an electromagnetic device
6	encompassed by and embedded in the encapsulant, the electromagnetic device including:
7	i) a bobbin and coil subassembly, the subassembly circumscribing a
8	central axis and having a central cavity receiving the valve through an
9	opening in the housing;
10	ii) terminal means electrically connected to the coil;
11	iii) a yoke surrounding the subassembly; and
12	iv) a flux plate with an opening into the central cavity with the valve
13	projecting through the opening, the flux plate electrically connected to the
14	yoke and electrically insulated from the coil such that a flux gap is
15	provided between the coil and yoke;
16	lead wire means having one end embedded in the encapsulant and electrically
17	connected to the terminal means; and a hollow conduit having one end thereof embedded
18	in the encapsulant and receiving and enclosing the lead wire means, wherein the flux
19	plate includes a second opening closely receiving and supporting the conduit;
20	whereby upon energization of the coil by a current applied to the lead wire means,
21	electromagnetic forces generate a magnetic field which can be transmitted to the valve to
22	move a valve member in the valve.

(Original) The solenoid assembly as in claim 22, wherein the encapsulant is a

1	25. (Original) The solenoid assembly as in claim 15, wherein the conduit extends	
2	parallel to the central axis of the assembly.	
1	26. (Original) The solenoid assembly as in claim 15, wherein the housing is the	
2	outermost container for the electromagnetic device.	
1	27. (Original)The solenoid assembly as in claim 15, further including a flux bushing	
2	closely received in the central cavity of the subassembly to concentrate magnetic flux in	
3	the central cavity.	
4	28. (New) A solenoid assembly, comprising:	
5	a) a unitary, one-piece housing comprised of encapsulant,	
6	b) an electromagnetic device encompassed by and embedded in the encapsulant,	
7	the electromagnetic device including:	
8	i) a bobbin and coil subassembly, the bobbin having a central cavity and	
9	circumscribing a central axis and the coil wound around the bobbin, and	
10	an opening in the housing into the central cavity for receipt of a valve;	
11	ii) a terminal electrically connected to the coil;	
12	iii) a yoke surrounding the subassembly; and	
13	iv) a flux plate with an opening into the central cavity, the flux plate	
14	electrically connected to the yoke and electrically insulated from the coil	
15	such that a flux gap is provided between the coil and yoke;	
16	c) lead wire means electrically connected to the terminal and at least partially	
17	embedded in the encapsulant;	
18	d) a hollow conduit having one end thereof embedded in the encapsulant and	
19	receiving and enclosing the lead wires means, and having a distal, free end; and	
20	e) a vapor barrier plug at the one end of the hollow conduit, the wire means	

extending through the vapor barrier plug and into the hollow conduit;

21

Application Serial No. 10/737,321 Response dated September 28, 2005 Reply to Office Action of May 3, 2005

- whereby upon energization of the coil by a current applied to the lead wire means, electromagnetic forces generate a magnetic field within the central cavity for movement of a valve member.
- 1 29. (New) The solenoid assembly as in claim 28, wherein the wire means comprises
- at least one wire connected to the terminal, and wherein the at least one wire is at least
- 3 partially embedded in the encapsulant, and extends through the vapor barrier plug.
- 1 30. (New) The solenoid assembly as in claim 29, wherein the at least one wire is
- 2 completely embedded in the encapsulant from the terminal to the vapor barrier plug.
- 1 31. (New) The solenoid assembly as in claim 30, wherein the at least one wire
- 2 extends from the vapor barrier plug through the length of the conduit.
- 1 32. (New) The solenoid assembly as in claim 28, wherein the vapor barrier plug is an
- 2 insulating member.
- 1 33. (New) The solenoid assembly as in claim 28, wherein the vapor barrier plug
- 2 includes a potting compound.
- 1 34. (New) The solenoid assembly as in claim 28, wherein the vapor barrier plug
- 2 includes a sealing plug portion within the one end of the conduit.