COMP9602: Convex Optimization

Convex Set

Dr. C Wu

Department of Computer Science
The University of Hong Kong

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (convex and nonconvex sets):

Affine set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

examples: solution set of linear equations $\{x \mid Ax = b\}$

Convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull $\operatorname{conv} S$: set of all convex combinations of points in S

conv
$$S = \{\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n | x_i \in S, \theta_i \ge 0, \sum_{i=1}^n \theta_i = 1\}$$

examples:

Cones

cones: a set C is a cone, if for every $x \in C$ and $\theta \ge 0$, we have $\theta x \in C$.

convex cones: a set C is a convex cone, if it is a cone and it is convex, i.e., for any $x_1, x_2 \in C$ and $\theta_1 \ge 0$, $\theta_2 \ge 0$, we have $\theta_1 x_1 + \theta_2 x_2 \in C$

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

Proper cone

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line) i.e., $x \in K$, $-x \in K => x=0$

examples

- ullet nonnegative orthant $K={f R}^n_+=\{x\in{f R}^n\mid x_i\geq 0, i=1,\ldots,n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$

Positive semidefinite cone

 \mathbf{S}^n is set of symmetric $n \times n$ matrices

 $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

Property: \mathbf{S}^n_+ is a proper cone

Generalized inequalities

inequality in $\mathbf{R}_+ = \{x | x \ge 0\}$: $x \le y \iff y - x \in \mathbf{R}_+$

generalized inequality defined by a proper cone *K*:

$$x \leq_K y \iff y - x \in K \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

Examples:

componentwise inequality $(K = \mathbf{R}_+^n)$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

Note: these two types are so common that we usually drop the subscript in \preceq_K

Generalized inequality defined by a proper cone K is in general not a total ordering (i.e., it is not true either $x \leq_K y$ or $y \leq_K x$)

E.g., positive semidefinte cone example: it is not always either " $X \leq Y$ " or " $Y \leq X$ "

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

lengths of semi-axes: $\sqrt{\lambda_i}$, (λ_i eigenvalues of P)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular $(A = P^{1/2})$

Norm

norm: a function | · | that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ (homogeneous)
- $||x+y|| \le ||x|| + ||y||$ (triangle inequality)

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

lp-norm:
$$\|\mathbf{x}\|_p = (\sum |x_i|^p)^{\frac{1}{p}}, p \ge 1$$

lp-norm:
$$\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, p \ge 1$$
ll-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$

$$l_{\infty} - norm : || \mathbf{x} ||_{\infty} = \lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{\frac{1}{p}} = \lim_{p \to \infty} \left(\max_{i} |x_{i}|^{p} \right)^{\frac{1}{p}} = \max_{i} |x_{i}|$$

Property: $B(x_c, r)$ is convex for all norms.

Proof as exercise

Polyhedron and polytope

Polyhedron is solution set of finitely many linear inequalities and equalities

$$P = \{x | \mathbf{a}_j^T \mathbf{x} \le \mathbf{b}_j, j = 1, \dots, m,$$
$$\mathbf{c}_j^T \mathbf{x} = \mathbf{d}_j, j = 1, \dots, k\}$$

- polyhedron is intersection of finite number of halfspaces and hyperplanes
- polyhedron is convex
- Polytope is a bounded polyhedron

Methods for establishing convexity of a set

1. apply definition:

$$x_1, x_2 \in C, 0 \le \theta \le 1 \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity

intersection
affine functions
perspective function
linear-fractional functions

Intersection

If Si is (affine, convex, convex cone), for $i \in A$, then $\bigcap_{i \in A} S_i$ is (affine, convex, convex cone)

★ intersection need not be finite: e.g., a convex set is intersection of infinite halfspaces

Union?

Affine function

Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = Ax + b$$
 with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

 \star If S is convex, f(S) is also convex

$$S \subseteq \mathbb{R}^n$$
 convex $\implies f(S) = \{f(x) \mid x \in S\}$ convex

★If C is convex, f⁻¹(C) is also convex

$$C \subseteq \mathbf{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

example:

• The ellipsoid $\mathcal{E} = \{x \mid (x-x_c)^T P^{-1}(x-x_c) \leq 1\}$ is the image of the unit ball $\{u \mid \|u\|_2 \leq 1\}$ under the affine mapping $f(u) = P^{1/2}u + x_c$. It is also the inverse image of the unit ball under the affine mapping $g(x) = P^{-1/2}(x-x_c)$.

Perspective function & linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $dom f = \{x \mid c^T x + d > 0\}$

- ★ images and inverse images of convex set under these functions are convex
- ★ perspective functions preserve lines => preserve convexity

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

i.e.,
$$a^Tx \leq b$$
 for $x \in C$, $a^Tx \geq b$ for $x \in D$

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

- Reference
 - Chapter 2, Appendix A, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto