Machine Learning using MATLAB

Ankur Kulhari Raju Pal Himanshu Mittal

Department of Computer Science Jaypee Institute of Information Technology, Noida

Introduction to Machine Learning Machine Learning

ML Applications
The Learning Process

ML Categories

Classification
Decision Tree Induction
Naive Bayesian classifier
Support Vector Machine

Machine Learning

- ► Herbert Alexander Simon: "Learning is any process by which a system improves performance from experience."
- "Machine Learning is concerned with computer programs that automatically improve their performance through experience."

Why Machine Learning?

- ▶ Discover new knowledge from large databases (data mining).
 - -Market basket analysis (e.g. diapers and beer)
- ▶ Develop systems that can automatically adapt and customize themselves to individual users.
 - -Personalized news or mail filter

Introduction to Machine Learning

Machine Learning

ML Applications

The Learning Process

ML Categories

Classification

Decision Tree Induction

Naive Bayesian classifier

Support Vector Machine

Clustering

ML Applications

Introduction to Machine Learning

Machine Learning ML Applications

The Learning Process

ML Categories

Classification

Decision Tree Induction

Naive Bayesian classifier

Support Vector Machine

Clustering

The Learning Process

Learning Process

Figure: Supervised Learning Process

ML Categories

- Supervised Learning
 - Classification (discrete labels)
 - Regression (real values)
- Unsupervised Learning
 - Clustering
 - Dimension reduction
- Semi-Supervised Learning

Introduction to Machine Learning

ML Applications
The Learning Process

ML Categories Classification

Docision Troo Induction

Naive Bayesian classifier

Support Vector Machine

Clustering

Classification

Classification

Model Construction

Classification

Using the Model in Prediction

Introduction to Machine Learning

ML Applications
The Learning Process

ML Categories

Classification

Decision Tree Induction

Naive Bayesian classifier Support Vector Machine Clustering

Classification

Decision Tree Induction

- Decision tree builds classification or regression models in the form of a tree structure.
- Leaf node represents a classification or decision.
- ► The topmost decision node in a tree which corresponds to the best predictor called root node.
- Decision trees can handle both categorical and numerical data.

Attribute Selection Measure

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Expected information (entropy) needed to classify a tuple in D

$$Info(D) = -\sum p_i \log_2(p_i) \tag{1}$$

Information needed (after using A to split D into v partitions) to classify D

$$Info_A(D) = -\sum_{i=1}^{\nu} \frac{|D_j|}{|D|} \times info(D_j)$$
 (2)

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$
 (3)

Decision Tree Induction

Data set

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Attribute Selection Measure

(Information Gain)

Class P: buys computer = "yes" Info ag

Class N: buys computer = "no"

Info
$$(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$$

age $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{9}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{9}{14} \log_2(\frac{9}{14}) = 0.940$
 $(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14})$

age	income	student	credit rating	buys computer
<=30	high	по	fair	no
<=30	high	по	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	ves	excellent	yes
<=30	medium	по	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	madium		avaallant	20

Info _{age}
$$(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

 $+\frac{5}{14}I(3,2) = 0.694$

$$\frac{5}{14}I(2.3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

ML Categories

Decision Tree Induction

Decision Tree Induction

Classification using Decision Tree

Predict Labels Using a Classification Tree

- Load data set (Fisher's iris)
 - load fisheriris
 - -X = meas;
 - Y = species;
- Partition the data into training (50%) and validation (50%) sets
 - n = size(meas, 1);
 - idxTrn = false(n,1);
- Training set logical indices
 - idxTrn(randsample(n,round(0.5*n))) = true;
- Find the logical indices of validation set
 - idxVal = idxTrn == false;

Classification using Decision Tree

Predict Labels Using a Classification Tree

- Construct a classification tree using the training set
 - Mdl = fitctree(meas(idxTrn,:), species(idxTrn));
- Predict labels for the validation data
 - label = predict(MdI,meas(idxVaI,:));
- Display predicted labels for some random samples
 - label(randsample(numel(label),5))
- ► Count the number of miss-classified observations
 - numMisclass = sum(strcmp(label,species(idxVal)))
- Display Accuracy
 - -Accuracy=(size(ytest)-numMisclass)*100/size(ytest)

Introduction to Machine Learning

ML Applications
The Learning Process

ML Categories

Classification

Naive Bayesian classifier

Support Vector Machine Clustering

Classification

Naive Bayesian classifier

▶ Based on Bayes Theorem.

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

- ► A statistical classifier that performs probabilistic prediction
- ► Each training example can incrementally increase/decrease the probability that a hypothesis is correct.
- Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can't.

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data to be classified: X = (age <=30, Income = medium, Student = yes Credit rating = Fair)

<u> </u>				
age	income	student	redit_rating	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
P(C_i): P(buys computer = "yes") = 9/14 = 0.643
          P(buys computer = "no") = 5/14 = 0.357
Compute P(X | C<sub>i</sub>) for each class
       P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
       P(age = "<= 30" | buys computer = "no") = 3/5 = 0.6
       P(income = "medium" | buys computer = "yes") = 4/9 = 0.444
       P(income = "medium" | buys computer = "no") = 2/5 = 0.4
       P(student = "yes" | buys computer = "yes) = 6/9 = 0.667
       P(student = "yes" | buys computer = "no") = 1/5 = 0.2
       P(credit rating = "fair" | buys computer = "yes") = 6/9 = 0.667
       P(credit rating = "fair" | buys computer = "no") = 2/5 = 0.4
X = (age <= 30, income = medium, student = yes, credit rating = fair)
P(X|C_i): P(X|buys computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044
        P(X | buys computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
P(X|C_i)*P(C_i): P(X|buys computer = "yes") * P(buys computer = "yes") = 0.028
                P(X|buys computer = "no") * P(buys computer = "no") = 0.007
Therefore, X belongs to class ("buys_computer = yes")
```

- Load data set (Fisher's iris)
 - load fisheriris
 - -X = meas; (Predictors)
 - Y = species; (Response)
- Train the naive Bayes classifier and specify holdout 30% of the data for test sample

```
CVMdl = fitcnb(X,Y,'Holdout',0.30, ...'ClassNames','setosa','versicolor','virginica');
```

- Extract trained, compact classifier
 - CMdl = CVMdl.Trained1;
- Extract the test indices
 - testIdx = test(CVMdI.Partition);
 - XTest = X(testIdx,:);
 - YTest = Y(testIdx);

- Label the test sample observations
 - idx = randsample(sum(testIdx),10);
 - label = predict(CMdI,XTest);
- Display the results for a random set of 10 observations in the test sample
 - table(YTest(idx),label(idx),'VariableNames',...'TrueLabel','PredictedLabel')
- Count the number of miss-classified observations
 - numMisclass = sum(strcmp(label,YTest));
- Display Accuracy
 - Accuracy=(size(YTest)-numMisclass)*100/size(YTest)
- ► For Training Naive bayes on a data set and testing on a new sample like [1 2 3 4]
 - MdI = fitcnb(X,Y)
 - label = predict(Mdl,X);

Introduction to Machine Learning

ML Applications
The Learning Process

ML Categories

Classification

Decision Tree Induction

Naive Bayesian classifier

Support Vector Machine

Clustering

Classification using Support Vector Machine

➤ A Support Vector Machine (SVM) performs classification by finding the hyperplane that maximizes the margin between the two classes. The vectors (cases) that define the hyperplane are the support vectors.

Classification using Support Vector Machine

- Load data set (Fisher's iris)
 - load fisheriris
 - -X = meas; (Predictors)
 - Y = categorical(species); (Response)
- ► Train an ECOC model using SVM binary classifiers and specify holdout 30% of the data for test sample
 - CVMdI = fitcecoc(X,Y,'Holdout',0.30);
- Extract trained, compact classifier
 - CMdl = CVMdl.Trained1;
- Extract the test indices
 - testIdx = test(CVMdI.Partition);
 - XTest = X(testIdx,:);
 - YTest = Y(testIdx,:);

Classification using Support Vector Machine

- Predict the test-sample labels
 - labels = predict(CMdI,XTest);
 - idx = randsample(sum(testInds),10);
- Print a random subset of true and predicted labels
 - table(YTest(idx),labels(idx),'VariableNames',...'TrueLabels','PredictedLabels')
- Display Confusion Matrix
 - [C,order] = confusionmat(YTest,labels)
- Count the number of miss-classified observations
 - numMisclass = sum(strcmp(labels,YTest));
- Display Accuracy
 - Accuracy=(size(YTest)-numMisclass)*100/size(YTest)

Introduction to Machine Learning

ML Applications
The Learning Process

ML Categories

Classification
Decision Tree Induction
Naive Bayesian classifier
Support Vector Machine
Clustering

What is Clustering?

- · Organizing data into groups or classes such that there is
 - high intra-class similarity
 - low inter-class similarity
- Finding the class labels and the number of classes directly from the data (in contrast to classification)
- More informally, finding natural groupings among objects.

└ Clustering

What is a natural grouping among these objects?

└-Clustering

What is a natural grouping among these objects?

K-Means

- Widely used algorithm for performing clustering
- k-means minimizes within-cluster point scatter
- Dissimilarity measure: Euclidean distance metric

Algorithm:

- 1. Randomly choose **k** data items from dataset X as initial centroids.
- 2. Repeat until the convergence criteria is met.
 - Assign each data point to the cluster with closet centroid based on the distance measure.
 - Update cluster centroids using the mean of data items.
- Number of clusters to be created needs to be known inadvance
- •Different initial partitions result in different final clusters

Clustering using k-Means

- Eg; identify the cluster for newdata (1.2,0.5) using the 'fisher's iris' dataset.
 - Load 'Fisher's iris' data set.

load fisheriris;

Use the petal lengths and widths as predictors.

x = meas(:,3:4);

- Clustering the data with k = 3 clusters

[idx,C] = kmeans(x,3);

where, idx is a column vector of predicted cluster indices for each observation and C is matrix of centroid locations.

Load the data of cluster to be identified

newData=[1.20.5]

- Calculate the distance b/w newData and identified centroids dis=pdist2(C,newData)
- Find the cluster with minimum distance

[M,I] = min(dis)

where, M represents the distance of newData from identified cluster and I represents the cluster number

Machine Learning Excercise

Compare the performance of naive bayes and support vector machine classifier over pima-indians-diabetes dataset.

-Use 80% sample for training and 20% for testing.

Dataset link:

https://data.world/data-society/pima-indians-diabetes-database

For Further Reading I

Ethem Alpaydin. Introduction to Machine Learning. MIT Press.

Jiawei Han, Micheline Kamber, and Jian Pei Data Mining: Concepts and Techniques, The Morgan Kaufmann