Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $8 \ / \ 4 \ / \ 3$

Выполнил: студент 102 группы Шутков Г. А.

> Преподаватель: Кулагин А. В.

Содержание

Постановка задачи	
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	6
Отладка программы, тестирование функций	7
Программа на Си и на Ассемблере	
Анализ допущенных ошибок	9
Список цитируемой литературы	10

Постановка задачи

Требуется реализовать численный метод приближенного вычисления площади фигуры, ограниченной тремя кривыми. Для определения координат пересечения кривых используется комбинированный метод хорд и касательных, при этом отрезки для поиска корней должны быть заданы вручную. Для подсчета площади фагуры применяется Формула Симпсона.

Математическое обоснование

На основе оценки погрешности в формуле Симпсона,

$$|E(f)| \le \frac{(b-a)^5}{2880} \max |f^{(4)}(x)| \ x \in [a,b]$$

было получено неравенство $4(\varepsilon_2)^4 + 14\varepsilon_1 < 0.001$. После этого, учитывая, что ε_1 и ε_2 положительны, получим, что достаточно принять $\varepsilon_1 = 0.00001$, а $\varepsilon_2 = 0.01$. Отрезки для поиска выбирались вручную, с учетом монотонности первой и второй производных функции на данном участке. График заданного набора кривых приведен ниже (рис. 1).

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

В пезультате вычислений найдены следующие координаты точек пересечения кривых (таблица 1) и площадь полученной фигуры.

Кривые	x	y
1 и 2	1.2517	5.4962
2 и 3	-0.5495	9.099
1 и 3	-2.3905	2.0915

Таблица 1: Координаты точек пересечения

Результат проилюстрирован на графике (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Список функций программы: Ассемблер

- double f1(double x)
 - вычисление значения первой функции в точке х
- double f2(double x)
 - вычисление значения второй функции в точке х
- double f3(double x)
 - вычисление значения третьей функции в точке х
- double df1(double x)
 - вычисление производной первой функции в точке х
- double df2(double x)
 - вычисление производной второй функции в точке х
- double df3(double x)
 - вычисление производной третьей функции в точке х
- double d2f1(double x)
 - вычисление второй производной первой функции в точке х
- double d2f2(double x)
 - вычисление второй производной второй функции в точке х
- double d2f3(double x)
 - вычисление второй производной третьей функции в точке х

Си

- - вычисление абсциссы точки пересечения двух заданных фунуций на указанном отрезке
- double integral(double (*f)(double), double a, double b, double eps2)
 - вычисление приближенного значения определенного интеграла от заданной функции в заданных пределах
- void key_detect(int argc, char **argv, double (*func[])(double))
 - работа с ключами командной строки и выполнение необходимых команд

Сборка программы (Маке-файл)

Код Make-файла приведен ниже:

```
all: task

task: task6_c.o task6_asm.o
@ gcc -m32 task6_c.o task6_asm.o -o task6

task6_c.o: task6.c
@ gcc -m32 -c task6.c -o task6_c.o

task6_asm.o: task6.asm
@ nasm task6.asm -f elf32 -o task6_asm.o

clean:
@ rm -rf *.o task6
```


Рис. 3: Diagram

В данной програме есть два отдельных модуля. Один из них реализован на языке Си, а другой на Ассемблере. Данные блоки компилируются раздельно и полученные объектные файлы собираются в исполняемый файл при комапоновке программы.

Отладка программы, тестирование функций

При отлаке программы было использовано по 3 теста для каждого из численных методов.

Вычисление абсциссы корня:

- 1. Пересечение функций exp(x) + 2 и -2 * x + 8. Абсцисса 1.2517
- 2. Пересечение функций -2*x+8 и $\frac{-5}{x}$. Абсцисса -0.5495
- 3. Пересечение функций $\frac{-5}{x}$ и exp(x) + 2. Абсцисса -2.3905

Вычисление интеграла по формуле Симпсона:

- 1. Интеграл от функции exp(x) + 2 на [0, 1] = 3.6712
- 2. Интеграл от функции -2*x+8 на [2, 4]=3.9999
- 3. Интеграл от функции $\frac{-5}{x}$ на [-8, -4] = 3.4533

Для каждого из тестов решение было так жы вычислено аналитически и сверено с полученным в рещультате работы программы решением. Во всех тестах пограешность не привышала необходимой.

Для каждого теста необходимо привести уравнения кривых и нужных производных, аналитическое вычисление корней и отрезков применения методов, результаты работы численных методов.

Программа на Си и на Ассемблере

Исходные тексты описанных выше программ имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

При написании программы на Ассемблере была допущена ошибка, при которой в сопроцессоре не освобождались все выделенные для рассчетов ячейки. Это приводило к возникновеню ошибки при попытке вызвать данную функцию более 7 раз.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 — Москва: Наука, 1985.