

Archives Search... Q

Lebesgue Measurable B

August 9, 2015 • Analysis

Home

About

Research

Categories

Subscribe

Contact

The Basic Idea

Our goal for today is to construct a Lebesgue measurable set set exists because the Lebesgue measure is the *completion* o collection \mathcal{B} of Borel sets is generated by the open sets, who measurable sets \mathcal{L} is generated by both the open sets and zethe containment is a proper one.

To produce a set in $\mathcal{L} \setminus \mathcal{B}$, we'll assume two facts:

- 1. Every set in ${\mathscr L}$ with positive measure contains a non (L
- 2. 97.3% of all counterexamples in real analysis involve the $\,$

Okay okay, the last one isn't *really* a fact, but it may not surp central to today's discussion. In summary, we will define a homotion with a continuous inverse) from [0,1] to [0,2] which set) of measure 0 to a set of measure 1. By fact #1, this set of measurable subset, say N. And the preimage of N will be Le a Borel set. We'll fill in the details below, and while we do, ke a homeomorphism – a merely continuous function just won' Cantor set, we'll see that *homeomorphisms* (much less continuous preserve measure. It's because of this that we can produce a not Borel.

© 2015 - 2020 Math3ma Ps. 148

From English to Math

Begin by defining a function f:[0,1] o [0,2] by

$$f(x) = c(x) + x$$

where $c:[0,1]\to[0,1]$ is the Cantor function. The graph of the horizontal lines are now all tilted with a slope of 1. I've dr iterations. This function has the following properties:

Home

About

Research

Categories

Subscribe

Contact

f is strictly increasing

ullet since f'=1 almost everywhere (recall c'=0 almost everywhere)

f is continuous

• since both *c* and *x* are continuous

f^{-1} exists

• f is 1-1 since it's strictly increasing; it's onto by the Intermediate Value Theorem: since f(0)=0, f(1)=2 f is continuous, it assumes all values in between 0 and

 f^{-1} is continuous (hence f is a homeomorphism

• see footnote *

© 2015 - 2020 Math3ma Ps. 148 We should also observe that f maps the intervals of [0,1] wh construction of the Cantor set $\mathscr C$ to intervals of [0,2] of the s

$$\mu(f([0,1] \smallsetminus \mathscr{C})) = \mu([0,1] \smallsetminus \mathscr{C}$$

(0)

Home

About

Research

Categories

Subscribe

Contact

From this we deduce that $f(\mathscr{C})\subset [0,2]$ contains a non-measin the introduction). And here is where we make our

Claim: $f^{-1}(N)$ is Lebesgue measurable but not I This is easy to prove, but its substance lies in the following

Lemma: A strictly increasing function defined or sets to Borel sets.

Proof of Lemma

We follow exercises #45-47 of ch. 2 in Royden's Real Analysis increasing function defined on some interval. By our analysis function is a homeomorphism. This fact enables us to show t sets. To do so, it suffices to show that for any continuous fur

$$\mathscr{A} = \{E: g^{-1}(E) \text{ is Borel }$$

is a σ -algebra containing the open sets. Once we show this, the Borel sets and therefore, taking g to be f^{-1} (which we kr $(f^{-1})^{-1}(E)=f(E)$ is Borel for any Borel set E, which is wh

Showing \mathscr{A} is a σ -algebra (the first two bullets) which contains simple enough (recall that \mathscr{B} denotes the Borel sets):

- If $\{E_i\}\subset\mathscr{A}$ then $f^{-1}(\cup E_i)=\cup f^{-1}(E_i)\in\mathscr{B}$ since \mathscr{E}
- If $E\subset\mathscr{A}$ then $f^{-1}(E^c)=(f^{-1}(E))^c\in\mathscr{B}$ since \mathscr{B} is a
- If U is open, then $f^{-1}(U)$ is open and thus an element

We are now ready for the

Proof of Claim

Since $N\subset f(\mathscr{C})$, we know that $f^{-1}(N)\subset \mathscr{C}$ is measurable (subset of a zero set and the Lebesgue measure is complete. I were, then since f maps Borel sets to Borel sets by our Lemr is Borel. But that's impossible since N isn't even measurable!

© 2015 - 2020 Math3ma Ps. 148

Home

About

Research

Categories

Subscribe

Contact

Footnotes

*Proof: Let $h=f^{-1}:[0,2]\to [0,1]$ and suppose $U\subset [0,1]$ and hence closed (and bounded). Since f is continuous, f([0 rewrite this as

$$egin{aligned} f([0,1] \smallsetminus U) &= f([0,1]) \smallsetminus f \ &= [0,2] \smallsetminus f(U) \ &= [0,2] \smallsetminus h^{-1}(\end{aligned}$$

which allows us to conclude $h^{-1}(U)$ is open.

**Proof: This follows simply because c is constant on any int interval $(a,b)\subset [0,1]\smallsetminus \mathscr{C}$, we have c(a)=c(b) and so

$$\mu((f(a),f(b))) = f(b) - f(a) = c(b) + b - c(a) = b - a.$$

References

- Much of today's discussion is taken from here.
- see also Real Analysis (4ed) by Royden, section 2.7, Proposit

© 2015 - 2020 Math3ma

Ps. 148

Share

Tweet

Share 13

Related Posts

Home

About

Research

Categories

Subscribe

Contact

The Most Obvious Secret in Mathematics

September 12, 2016 in Category Theory

On Constructing Functions, Part 2

March 17, 2015 in Analysis

The Pseud Hyper Metric Lindel Inequa

February 1 in Analysis

Leave a comment!

ALSO ON MATH3MA

© 2015 - 2020 Math3ma Ps. 148 2 years ago · 2 comments **Rational**

Canonical Form:

2 years ago · 8 comments

Notes on Applied

Home

About

Research

Categories

Subscribe

Contact

© 2015 - 2020 Math3ma Ps. 148

Yibing Xie • 5 years ago

This article is well organized and elaborates the a way that everyone with basic measure theory knowledge can understand.

Thank you so much!

Tai-Danae Bradley → Yibing Xie • 5 years ago I'm so glad you found it helpful! Thank y

May • 4 years ago

Thanks q

Christopher • 3 years ago

A very good presentation of the difference betwand lebesgue measure. Great stuff!!!

Tai-Danae Bradley → Christopher • 3 years ag

Thanks for reading!

la flaca • 3 years ago

Hello, I am frequent reader of your blog, which student helps me a lot. I just have a question: When you prove (in the footnote section) that t of f is continuous you take the set [0,1]\U whicl and conclude that its image under f is also clos this? I don't see how the continuity of f implies

ומו-Dallae בו auley ידי ומ וומטם י ט years ago

Hi la flaca, I'm so glad you enjoy the bloglad you asked the question. The 2nd/3 sentences of the footnote aren't worded Here's the idea:

[0,1] \ U is both closed and bounded. TI (by Heine Borel) it's compact. Because continuous, the image f([0,1] \ U) is also and therefore (again, by Heine Borel) it closed.

^ | ✓ • Reply • Share ›

Ia flaca → Tai-Danae Bradley • 3 years
Of course! I forgot about Heineit's clear to me. Thank you very
your quick response and thanks
your great articles, they do what
books should do: explain things
and comprehensive way.

^ | ✓ • Reply • Share ›

Jorge Garcia • 2 years ago

Thank you so much for the article! It really help But I have a question: when you say "The colle Borel sets is generated by the open sets, wher of Lebesgue measurable sets is generated by open sets and zero sets." What do you mean I "zero sets"? I had never Heard of this generati Lebesgue measurable sets before and I am ve interested in understanding it!

Tai-Danae Mod → Jorge Garcia • 2 years ago

Hi Jorge, I'm glad you found the math in A "zero set" can be thought of as a set very small. It's a bit like: if you tried to n with a ruler, then it would be *so* tiny, y do it! Or if you tried to put it on a scale, weigh nothing! But the ruler/scale is reasomething called the Lebesgue measur more, you might enjoy the book *Real Mathematical Analysis* by Charles Pug discussion of zero sets is on p. 365). You find more resources under the 'real and section of this link:

https://www.math3ma.com/blo...

^ | ✓ • Reply • Share ›

Home

About

Research

Categories

Subscribe

Contact

© 2015 - 2020 Math3ma Ps. 148

https://www.math3ma.com/blog/lebesgue-but-not-borel

Jorge Garcia → Tai-Danae • 2 years ε Hi Tai-Danae! Thanks for your a

Home

About

Research

Categories

Subscribe

Contact

© 2015 - 2020 Math3ma

Ps. 148