Exercices corrigés d'algèbre linéaire

Yannick Henrio

5 mars 2013

Chapitre 1

L'espace vectoriel \mathbb{R}^n : Exercices corrigés

Exercice 1: Considérons les vecteurs de \mathbb{R}^2 : $\vec{u}_1 = (1, -1)$, $\vec{u}_2 = (2, 3)$, $\vec{u}_3 = (4, 5)$.

- 1. Calculer les combinaisons linéaires suivantes : $3\vec{u}_1 + 2\vec{u}_2 \vec{u}_3$, $-\vec{u}_1 + 5\vec{u}_2 4\vec{u}_3$, $2\vec{u}_1 + 9\vec{u}_2 5\vec{u}_3$, et $\vec{u}_1 + \vec{u}_2 + 6\vec{u}_3$.
- 2. Déduire d'un calcul précédent que \vec{u}_3 est combinaison linéaire de \vec{u}_1 et \vec{u}_2 .
- 3. En déduire que **vect** $(\vec{u}_1, \vec{u}_2, \vec{u}_3) = \mathbf{vect} (\vec{u}_1, \vec{u}_2)$.

Corrigé de l'exercice 1 :

1.

$$3\vec{u}_1 + 2\vec{u}_2 - \vec{u}_3 = 3.(1, -1) + 2.(2, 3) - (4, 5) = (3, -2)$$
$$-\vec{u}_1 + 5\vec{u}_2 - 4\vec{u}_3 = -(1, -1) + 5.(2, 3) - 4.(4, 5) = (-7, -4)$$
$$2\vec{u}_1 + 9\vec{u}_2 - 5\vec{u}_3 = 2.(1, -1) + 9.(2, 3) - 5.(4, 5) = (0, 0) = \vec{0}_2$$
$$\vec{u}_1 + \vec{u}_2 + 6\vec{u}_3 = (1, -1) + (2, 3) + 6.(4, 5) = (27, 32)$$

- 2. Comme $2\vec{u}_1 + 9\vec{u}_2 5\vec{u}_3 = \vec{0}_2$, on a $2\vec{u}_1 + 9\vec{u}_2 = 5\vec{u}_3$ et donc $\vec{u}_3 = \frac{2}{5} \cdot \vec{u}_1 + \frac{3}{5} \cdot \vec{u}_2$.
- 3. Clairement, **vect** $(\vec{u}_1, \vec{u}_2, \vec{u}_3) \supset \mathbf{vect}$ (\vec{u}_1, \vec{u}_2) . Réciproquement, soit $\vec{v} \in \mathbf{vect}$ $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$. Il existe des scalaires α_1 , α_2 et α_3 tels que $\vec{v} = \alpha_1 . \vec{u}_1 + \alpha_2 . \vec{u}_2 + \alpha_3 . \vec{u}_3$. Donc

$$\vec{v} = \alpha_1 \cdot \vec{u}_1 + \alpha_2 \cdot \vec{u}_2 + \alpha_3 \cdot (\frac{2}{5} \cdot \vec{u}_1 + \frac{3}{5} \cdot \vec{u}_2) = (\alpha_1 + \frac{2}{5}\alpha_3) \cdot \vec{u}_1 + (\alpha_2 + \frac{3}{5}\alpha_3) \cdot \vec{u}_2 \in \mathbf{vect} \ (\vec{u}_1, \vec{u}_2)$$

Ainsi **vect** $(\vec{u}_1, \vec{u}_2, \vec{u}_3) \subset \mathbf{vect}$ (\vec{u}_1, \vec{u}_2) . Les deux inclusions prouvent l'égalité des deux sous-espaces vectoriels.

Exercice 2: Parmi les parties suivantes de \mathbb{R}^3 , lesquelles sont des sous-espaces vectoriels de \mathbb{R}^3 ? Pour chacun de ces sous-espaces vectoriels, trouver une famille génératrice.

- 1. $A = \{ (x, y, z) \in \mathbb{R}^3 : xyz = 0 \}.$
- 2. $B = \{ (x, y, z) \in \mathbb{R}^3 : 3x + 2y + 5z = 0 \}.$
- 3. $C = \{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 4 \}.$
- 4. $D = \{ (x, y, z) \in \mathbb{R}^3 : x + 2z = 0 \text{ et } y 3z = 0 \}.$

Corrigé de l'exercice 2 :

- 1. On a $(1,1,0) \in A$, $(0,0,1) \in A$ mais $(1,1,0) + (0,0,1) = (1,1,1) \notin A$. Donc A n'est pas un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Comme 3.0 + 2.0 + 5.0 = 0, $\vec{0}_3 \in B$. Soient $\vec{u} = (x, y, z) \in B$ et $\vec{u}' = (x', y', z') \in B$. Alors,

$$3(x+x') + 2(y+y') + 5(z+z') = (3x+2y+5z) + (3x'+2y'+5z') = 0 + 0 = 0$$

donc $\vec{u} + \vec{u}' \in B$. Enfin, soient $\vec{u} = (x, y, z) \in B$ et $\alpha \in \mathbb{R}$. Alors

$$3(\alpha x) + 2(\alpha x) + 5(\alpha x) = \alpha(3x + 2y + 5z) = \alpha.0 = 0$$

et donc $\alpha.\vec{u} \in B$. Ainsi, B est un sous-espace vectoriel de \mathbb{R}^3 . Soit $\vec{u}=(x,y,z) \in B$. Alors $x=-\frac{2}{3}y-\frac{5}{3}z$, et donc

$$\vec{u} = (-\frac{2}{3}y - \frac{5}{3}z, y, z) = y.(-\frac{2}{3}, 1, 0) + z.(-\frac{5}{3}, 0, 1)$$

De plus, $\vec{u}_1=(-\frac{2}{3},1,0)\in B$ et $\vec{u}_2=(-\frac{5}{3},0,1)\in B$. Donc (\vec{u}_1,\vec{u}_2) est une famille génératrice de B.

- 3. Comme $0+0+0=0\neq 4$, $\vec{0}_3\notin C$. Donc C n'est pas un sous-espace vectoriel de \mathbb{R}^3 .
- 4. Comme 0 + 2.0 = 0 et 0 3.0 = 0, $\vec{0}_3 \in D$. Soient $\vec{u} = (x, y, z) \in D$ et $\vec{u}' = (x', y', z') \in D$. Alors,

$$(x+x') + 2(z+z') = (x+2z) + (x'+2z') = 0 + 0 = 0$$
$$(y+y') - 3(z+z') = (y-3z) + (y'-3z') = 0 + 0 = 0$$

donc $\vec{u} + \vec{u}' \in D$. Enfin, soient $\vec{u} = (x, y, z) \in D$ et $\alpha \in \mathbb{R}$. Alors

$$(\alpha x) + 2(\alpha z) = \alpha(x + 2z) = \alpha . 0 = 0$$
 et $(\alpha y) - 3(\alpha z) = \alpha(y - 3z) = \alpha . 0 = 0$

et donc $\alpha.\vec{u} \in D$. Ainsi, D est un sous-espace vectoriel de \mathbb{R}^3 . Soit $\vec{u} = (x, y, z) \in D$. Alors x = -2z et y = 3z et donc

$$\vec{u} = (-2z, 3z, z) = z.(-2, 3, 1)$$

De plus, $\vec{u}_1 = (-2, 3, 1) \in D$. Donc (\vec{u}_1) est une famille génératrice de D.

Exercice 3: Posons $V = \{ (x, y, z) \in \mathbb{R}^3 : 8x - 18y + 7z = 0 \}, \vec{u} = (1, 2, 4) \text{ et } \vec{v} = (-3, 1, 6).$

- 1. Vérifier que V est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Vérifier que $\vec{u} \in V$ et $\vec{v} \in V$.
- 3. Montrer que (\vec{u}, \vec{v}) est une famille génératrice de V.

Corrigé de l'exercice 3 :

1. Comme 8.0 - 18.0 + 7.0 = 0, $\vec{0}_3 \in V$. Soient $\vec{u} = (x, y, z) \in V$ et $\vec{u}' = (x', y', z') \in V$. Alors,

$$8(x+x') - 18(y+y') + 7(z+z') = (8x - 18y + 7z) + (8x' - 18y' + 7z') = 0 + 0 = 0$$

donc $\vec{u} + \vec{u}' \in V$. Enfin, soient $\vec{u} = (x, y, z) \in V$ et $\alpha \in \mathbb{R}$. Alors

$$8(\alpha x) - 18(\alpha x) + 7(\alpha x) = \alpha(8x - 18y + 7z) = \alpha.0 = 0$$

et donc $\alpha.\vec{u} \in V$. Ainsi, V est un sous-espace vectoriel de \mathbb{R}^3 .

2. On a 8.1 - 18.2 + 7.4 = 0, on a $\vec{u} \in V$. Par ailleurs, 8.(-3) - 18.1 + 7.6 = 0 et donc $\vec{v} \in V$.

3. Compte tenu de la question précédente, il suffit de vérifier que tout vecteur de V est combinaison linéaire de (\vec{u}, \vec{v}) . Une telle combinaison linéaire s'écrit

$$\alpha \vec{u} + \beta \vec{v} = \alpha(1, 2, 4) + \beta(-3, 1, 6) = (\alpha - 3\beta, 2\alpha + \beta, 4\alpha + 6\beta)$$

Il faut donc vérifier que si $(x, y, z) \in V$, alors le système d'inconnues réelles α et β

$$\begin{cases} \alpha - 3\beta = x \\ 2\alpha + \beta = y \\ 4\alpha + 6\beta = z \end{cases}$$

possède une solution. Résolvons ce système :

$$\begin{cases}
\alpha - 3\beta = x \\
2\alpha + \beta = y & L_2 \leftarrow L_2 - 2L_1 \\
4\alpha + 6\beta = z & L_3 \leftarrow L_3 - 4L_1
\end{cases}$$

$$\begin{cases}
\alpha - 3\beta = x \\
7\beta = y - 2x \\
18\beta = z - 4x & L_3 \leftarrow L_3 - \frac{18}{7}L_2
\end{cases}$$

$$\begin{cases}
\alpha - 3\beta = x \\
7\beta = y - 2x \\
0 = (z - 4x) - \frac{18}{7}(y - 2x) = \frac{8x - 18y + 7z}{7} = 0
\end{cases}$$

On en tire $\beta = \frac{y-2x}{7}$ et ensuite $\alpha = 3\beta + x = \frac{3y+x}{7}$. Ainsi,

$$\forall (x, y, z) \in V \qquad (x, y, z) = \frac{3y + x}{7}\vec{u} + \frac{y - 2x}{7}\vec{v}$$

La famille (\vec{u}, \vec{v}) est bien une famille génératrice de V.

Exercice 4: Notons $V = \{ \ (x,y) \in \mathbb{R}^2 \ : \ y = 0 \ \} \text{ et } W = \{ \ x,y) \in \mathbb{R}^2 \ : \ x = 0 \ \}.$

- 1. Représenter V et W dans le plan \mathbb{R}^2 .
- 2. Vérifier que V et W sont des sous-espaces vectoriels de \mathbb{R}^2 .
- 3. La partie $V \cup W$ est-elle un sous-espace vectoriel de \mathbb{R}^2 ?

Exercice 5: Soient V et W deux sous-espaces vectoriels de \mathbb{R}^n . On définit un ensemble

$$V + W = \{ \vec{u} \in \mathbb{R}^n : \exists \vec{v} \in V \exists \vec{w} \in W \ \vec{u} = \vec{v} + \vec{w} \}$$

- 1. Montrer que V + W est un sous-espace vectoriel de \mathbb{R}^n .
- 2. Soit $(\vec{v}_1, \ldots, \vec{v}_p)$ une famille génératrice de V et $(\vec{w}_1, \ldots, \vec{w}_q)$ une famille génératrice de W. Montrer qu'alors $(\vec{v}_1, \ldots, \vec{v}_p, \vec{w}_1, \ldots, \vec{w}_q)$ est une famille génératrice de V + W.

Corrigé de l'exercice 5 :

1. Comme $\vec{0} \in V$ et $\vec{0} \in W$, on a $\vec{0} = \vec{0} + \vec{0} \in V + W$. Supposons $\vec{u} \in V + W$ et $\vec{u}' \in V + W$. Il existe des vecteurs $\vec{v} \in V$, $\vec{v}' \in V$, $\vec{w} \in W$ et $\vec{w}' \in W$ tels que $\vec{u} = \vec{v} + \vec{w}$ et $\vec{u}' = \vec{v}' + \vec{w}'$. Donc,

$$\vec{u} + \vec{u}' = (\vec{v} + \vec{w}) + (\vec{v}' + \vec{w}') = (\vec{v} + \vec{v}') + (\vec{w} + \vec{w}')$$

Comme V et W sont des sous-espaces vectoriels de \mathbb{R}^n , on a $\vec{v} + \vec{v}' \in V$ et $\vec{w} + \vec{w}' \in W$. Ainsi, $\vec{u} + \vec{u}' \in V + W$. Enfin, si $\vec{u} \in V + W$ et $\alpha \in \mathbb{R}$, il existe des vecteurs $\vec{v} \in V$ et $\vec{w} \in W$ tels que $\vec{u} = \vec{v} + \vec{w}$. Donc

$$\alpha \vec{u} = \alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$$

Or, comme V et W sont des sous-espaces vectoriels de \mathbb{R}^n , on a $\alpha \vec{v} \in V$ et $\alpha \vec{w} \in W$. Ainsi, $\alpha \vec{u} \in V + W$. Ainsi, V + W est bien un sous-espace vectoriel de \mathbb{R}^n .

2. Soit $(\vec{v}_1,\ldots,\vec{v}_p)$ une famille génératrice de V et $(\vec{w}_1,\ldots,\vec{w}_q)$ une famille génératrice de W. Comme $\vec{v}_i = \vec{v}_i + \vec{0} \in V + W$ et $\vec{w}_j = \vec{0} + \vec{w}_j \in V + W$, nous devons vérifier que tout vecteur de V + W est combinaison linéaire de la famille $(\vec{v}_1,\ldots,\vec{v}_p,\vec{w}_1,\ldots,\vec{w}_q)$. Or, si $\vec{u} \in V + W$, il existe des vecteurs $\vec{v} \in V$ et $\vec{w} \in W$ tels que $\vec{u} = \vec{v} + \vec{w}$. De plus, il existe des scalaires α_1,\ldots,α_p et β_1,\ldots,β_q tels que

$$\vec{v} = \alpha_1 \vec{v}_1 + \dots + \alpha_p \vec{v}_p$$
 et $\vec{w} = \beta_1 \vec{w}_1 + \dots + \beta_q \vec{w}_q$

et ainsi

$$\vec{u} = \vec{v} + \vec{w} = \alpha_1 \vec{v}_1 + \dots + \alpha_p \vec{v}_p + \beta_1 \vec{w}_1 + \dots + \beta_q \vec{w}_q$$

est bien combinaison linéaire de la famille $(\vec{v}_1, \dots, \vec{v}_p, \vec{w}_1, \dots, \vec{w}_q)$.

Exercice 6: Notons V l'ensemble des solutions du système à 5 inconnues :

$$\begin{cases} x_1 & -2x_3 & -8x_5 = 0 \\ x_2 - 5x_3 & +3x_5 = 0 \\ x_4 - x_5 = 0 \end{cases}$$

- 1. Montrer que V est un sous-espace vectoriel de \mathbb{R}^5 .
- 2. Vérifier que si $\vec{v} \in V$, alors toutes les coordonnées canoniques de $\vec{v} \in V$ peuvent s'écrire en fonction des seules coordonnées x_3 et x_5 . En déduire la forme générale d'un vecteur de V.
- 3. Construire une famille génératrice à deux vecteurs de V.
- 4. Existe-t'il un vecteur \vec{u} de V satisfaisant $V = \mathbf{vect}$ (\vec{u}) ?

Corrigé de l'exercice 6 :

- 1. V est un sous-espace vectoriel de \mathbb{R}^5 car ...
- 2. Si $(x_1, x_2, x_3, x_4, x_5) \in V$, on a $x_1 = 2x_3 + 8x_5$, $x_2 = 5x_3 3x_5$, $x_3 = x_3$, $x_4 = x_5$ et $x_5 = x_5$. Donc,

$$(x_1, x_2, x_3, x_4, x_5) = (2x_3 + 8x_5, 5x_3 - 3x_5, x_3, x_5, x_5) = x_3 \cdot (2, 5, 1, 0, 0) + x_5 \cdot (8, -3, 0, 1, 1)$$

- 3. Comme $\vec{v}_1 = (2, 5, 1, 0, 0) \in V$ et $\vec{v}_2 = (8, -3, 0, 1, 1) \in V$, la formule précédente entraı̂ne que (\vec{v}_1, \vec{v}_2) est une famille génératrice de V.
- 4. S'il existait un vecteur \vec{u} de V satisfaisant $V = \mathbf{vect}$ (\vec{u}), on aurait en particulier $\vec{v}_1 = \alpha \vec{u}$ et $\vec{v}_2 = \beta \vec{u}$, où α et β sont des scalaires. Comme \vec{v}_2 est non nul, on a $\beta \neq 0$. Mais alors, $\vec{v}_1 = \alpha \vec{u} = \frac{\alpha}{\beta} \vec{v}_2$. En particulier, $2 = \frac{\alpha}{\beta} . 8$ et $5 = \frac{\alpha}{\beta} . (-3)$ ce qui est impossible car $\frac{1}{4} \neq -\frac{5}{3}$. Ainsi, il n'existe aucun vecteur \vec{u} satisfaisant $V = \mathbf{vect}$ (\vec{u}).

Chapitre 2

Pivot de Gauss : Corrigés des exercices

2.1 Exercice 1

2.1.1 Enoncé

Pour chacune des matrices A_i ci-dessous,

$$A_1 = \begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 & 5 & 6 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 7 & -2 & 4 & 8 & -5 \\ 1 & 0 & 0 & 5 & 2 & 3 \\ 2 & 0 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} 1 & 0 & 0 & 5 & 5 & 7 \\ 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \ A_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 5 & 2 & 3 \\ 4 & 0 & 0 & 5 & 0 & 7 \\ 0 & 0 & -8 & 0 & 4 & 3 \end{pmatrix}$$

$$A_5 = \begin{pmatrix} 1 & 2 & -7 & 3 & 7 & 15 \\ 13 & 27 & -93 & 32 & 54 & 151 \\ 23 & 48 & -165 & 56 & 92 & 263 \end{pmatrix}, A_6 = \begin{pmatrix} 1 & 2 & 5 & 1 \\ 2 & 7 & 4 & 5 \\ -1 & 1 & 7 & 7 \\ -3 & 4 & 3 & 5 \end{pmatrix}$$

- 1) Donner les profondeurs des lignes de A_i . La matrice A_i est-elle échelonnée?
- 2) Calculer un échelonnement M_i de A_i .
- 3) Déterminer les colonnes principales et les colonnes auxiliaires de M_i .
- 4) Donner le rang de A_i .
- 5) Calculer l'échelonnement réduit B_i de A_i .

2.1.2 Corrigé pour la matrice A_1

On a $j_1 = 1$, $j_2 = 3$, $j_3 = 3$, et $j_4 = 2$. Comme $j_4 < j_3$, la matrice n'est pas échelonnée. On trouve un échelonnement comme suit :

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 & 5 & 6 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix} L_2 \leftrightarrow L_4$$

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & 4 & 5 & 6 \\ 0 & 0 & 0 & 1 & 2 & 3 \end{pmatrix} L_3 \leftrightarrow L_4$$

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 & 5 & 6 \end{pmatrix} L_4 \leftrightarrow L_4 - 4L_3$$

$$M_1 = \begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -3 & -6 \end{pmatrix} \text{ est un \'echelonnement de } A_1$$
Les colonnes principales de M_1 sont les colonnes C_2, C_3, C_4

Les colonnes principales de M_1 sont les colonnes C_2, C_3, C_4 et les colonnes auxiliaires sont C_1, C_5, C_6 . Le rang de A_1 est le nombre de pivots de M_1 : $\operatorname{rg}(A_1) = 4$.

$$C_1, C_5, C_6. \text{ Le rang de } A_1 \text{ est le nombre de pivots de } M_1 : \operatorname{rg}(A_1) = 4.$$

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -3 & -6 \end{pmatrix} \quad L_2 \leftarrow \frac{1}{2}L_2$$

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 8 & -5 \\ 0 & 0 & 1 & 0 & -4 & 9/2 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \quad L_1 \leftarrow L_1 - 8L_4$$

$$L_2 \leftarrow L_2 + 4L_4$$

$$L_3 \leftarrow L_3 - 2L_4$$

$$\begin{pmatrix} 0 & 1 & 3 & 4 & 0 & -21 \\ 0 & 0 & 1 & 0 & 0 & 25/2 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \quad L_1 \leftarrow L_1 - 4L_3$$

$$\begin{pmatrix} 0 & 1 & 3 & 0 & 0 & -17 \\ 0 & 0 & 1 & 0 & 0 & 25/2 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \quad L_1 \leftarrow L_1 - 3L_2$$

$$B_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & -109/2 \\ 0 & 0 & 1 & 0 & 0 & 25/2 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \text{ est l'échelonnement réduit de } A_1.$$

2.1.3 Corrigé pour la matrice A_2

On a $j_1 = 1$, $j_2 = 0$, $j_3 = 0$ et $j_4 = 2$. La matrice n'est pas échelonnée car $j_2 < j_1$. On obtient un échelonnement comme suit :

$$\begin{pmatrix} 0 & 7 & -2 & 4 & 8 & -5 \\ 1 & 0 & 0 & 5 & 2 & 3 \\ 2 & 0 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix} \begin{pmatrix} L_1 \leftrightarrow L_2 \\ L_2 \leftrightarrow L_3 \end{pmatrix}$$

2.1. EXERCICE 1 7

$$\begin{pmatrix} 1 & 0 & 0 & 5 & 2 & 3 \\ 0 & 7 & -2 & 4 & 8 & -5 \\ 2 & 0 & 0 & 3 & 5 & 4 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix} L_3 \leftarrow L_3 - 2L_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 5 & 2 & 3 \\ 0 & 7 & -2 & 4 & 8 & -5 \\ 0 & 0 & 0 & -7 & 1 & -2 \\ 0 & 0 & 2 & 0 & -8 & 9 \end{pmatrix} L_3 \leftrightarrow L_4$$

$$M_2 = \begin{pmatrix} 1 & 0 & 0 & 5 & 2 & 3 \\ 0 & 7 & -2 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & -7 & 1 & -2 \end{pmatrix} \text{ est un \'echelonnement de A_2. Les colonnes principales}$$
sont C_1, C_2, C_3, C_4 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_2 est donc 4. On calcule

sont C_1, C_2, C_3, C_4 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_2 est donc 4. On calcule

sont
$$C_1, C_2, C_3, C_4$$
 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_2 de l'échelonnement réduit :
$$\begin{pmatrix} 1 & 0 & 0 & 5 & 2 & 3 \\ 0 & 7 & -2 & 4 & 8 & -5 \\ 0 & 0 & 2 & 0 & -8 & 9 \\ 0 & 0 & 0 & -7 & 1 & -2 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow 1/7.L_2 \\ L_3 \leftarrow 1/2.L_3 \\ L_4 \leftarrow -1/7.L_4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 5 & 2 & 3 \\ 0 & 1 & -2/7 & 4/7 & 8/7 & -5/7 \\ 0 & 0 & 1 & 0 & -4 & 9/2 \\ 0 & 0 & 0 & 1 & -1/7 & 2/7 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 19/7 & 11/7 \\ 0 & 1 & -2/7 & 0 & 60/49 & -43/49 \\ 0 & 0 & 1 & 0 & -4 & 9/2 \\ 0 & 0 & 0 & 1 & -1/7 & 2/7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 19/7 & 11/7 \\ 0 & 1 & 0 & 0 & 4/49 & 20/49 \\ 0 & 0 & 1 & 0 & -4 & 9/2 \\ 0 & 0 & 0 & 1 & -1/7 & 2/7 \end{pmatrix}$$
 est l'échelonnement réduit de A_2 .

Corrigé pour la matrice A_3 2.1.4

On a $j_1 = 0, j_2 = 2, j_3 = 4$ et $j_4 = 6$. La matrice est donc échelonnée. Ses colonnes principales sont C_1, C_3, C_5 et les colonnes auxiliaires sont C_2, C_4, C_6 . Le rang de A_3 est donc 3. On calcule l'échelonnement réduit :

l'échelonnement réduit :
$$\begin{pmatrix} 1 & 0 & 0 & 5 & 5 & 7 \\ 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 $L_3 \leftarrow 1/2.L_3$
$$\begin{pmatrix} 1 & 0 & 0 & 5 & 5 & 7 \\ 0 & 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 $L_1 \leftarrow L_1 - 5.L_3$ $L_2 \leftarrow L_2 - 2.L_3$
$$\begin{pmatrix} 1 & 0 & 0 & 5 & 0 & -1/2 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 est l'échelonnement réduit de A_3 .

2.1.5Corrigé pour la matrice A_4

On a $j_1 = 0$, $j_2 = 3$, $j_3 = 0$ et $j_4 = 2$. La matrice n'est pas échelonnée car $j_3 = j_1 < 6$ avec 6 colonnes dans la matrice. On obtient un échelonnement comme suit :

colonnes dans la matrice. On obtient un échelonnement comme suit :
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 5 & 2 & 3 \\ 4 & 0 & 0 & 5 & 0 & 7 \\ 0 & 0 & -8 & 0 & 4 & 3 \end{pmatrix} L_3 \leftarrow L_3 - 4.L_1$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 5 & 2 & 3 \\ 0 & -8 & -12 & -11 & -20 & -17 \\ 0 & 0 & -8 & 0 & 4 & 3 \end{pmatrix} L_2 \leftarrow L_3$$

$$L_3 \leftarrow L_4$$

$$L_4 \leftarrow L_2$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & -8 & -12 & -11 & -20 & -17 \\ 0 & 0 & -8 & 0 & 4 & 3 \\ 0 & 0 & 0 & 5 & 2 & 3 \end{pmatrix}$$
 est un échelonnement de A_4 . Les colonnes principales sont C_1, C_2, C_3, C_4 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_4 est donc 4. On calcula l'échelonnement réduit

pales sont C_1, C_2, C_3, C_4 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_4 est donc 4. On

pales sont
$$C_1, C_2, C_3, C_4$$
 et les colonnes auxiliaires sont C_5, C_6 . Le rang de A_4 est donc 4. O calcule l'échelonnement réduit :
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & -8 & -12 & -11 & -20 & -17 \\ 0 & 0 & -8 & 0 & 4 & 3 \\ 0 & 0 & 0 & 5 & 2 & 3 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow -1/8.L_2 \\ L_3 \leftarrow -1/8.L_3 \\ L_4 \leftarrow 1/5.L_4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 3/2 & 11/8 & 5/2 & 17/8 \\ 0 & 0 & 1 & 0 & -1/2 & -3/8 \\ 0 & 0 & 0 & 1 & 2/5 & 3/5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 - 4.L_4 \\ L_2 \leftarrow L_2 - 11/8.L_4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 & 17/5 & 18/5 \\ 0 & 1 & 3/2 & 0 & 39/20 & 13/10 \\ 0 & 0 & 1 & 0 & -1/2 & -3/8 \\ 0 & 0 & 0 & 1 & 2/5 & 3/5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 - 3.L_3 \\ L_2 \leftarrow L_2 - 3/2.L_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & 0 & 49/10 & 189/40 \\ 0 & 1 & 0 & 0 & 27/10 & 149/80 \\ 0 & 0 & 1 & 0 & -1/2 & -3/8 \\ 0 & 0 & 0 & 1 & 2/5 & 3/5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 - 2.L_2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & 1 \\ 0 & 1 & 0 & 0 & 27/10 & 149/80 \\ 0 & 0 & 1 & 0 & -1/2 & -3/8 \\ 0 & 0 & 0 & 1 & 2/5 & 3/5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 - 2.L_2 \end{pmatrix}$$
est l'échelonnement réduit de A_4 .

Corrigé pour la matrice A_5

On a $j_1 = 0$, $j_2 = 0$ et $j_3 = 0$. La matrice n'est pas échelonnée car $j_2 = j_1 < 6$ avec 6 colonnes dans la matrice. On obtient un échelonnement comme suit :

$$\begin{pmatrix} 1 & 2 & -7 & 3 & 7 & 15 \\ 13 & 27 & -93 & 32 & 54 & 151 \\ 23 & 48 & -165 & 56 & 92 & 263 \end{pmatrix} \begin{array}{c} L_2 \leftarrow L_2 - 13L_1 \\ L_3 \leftarrow L_3 - 23L_1 \\ L_4 \leftarrow L_3 - 23L_1 \\ L_5 \leftarrow L_3 - 23L_1 \\ L_7 \leftarrow L_3 - 23L_1 \\ L_8 \leftarrow L_3 - 23L_1 \\ L_8 \leftarrow L_3 - 24L_2 \\ L_8 \leftarrow L_3 - 24L_2 \\ L_8 \leftarrow L_3 - 24L_2 \\ L_9 \leftarrow L_9 - 13L_1 \\ L_9 \leftarrow$$

2.1. EXERCICE 1 9

$$M_5 = \begin{pmatrix} 1 & 2 & -7 & 3 & 7 & 15 \\ 0 & 1 & -2 & -7 & -37 & -44 \\ 0 & 0 & 0 & 1 & 5 & 6 \end{pmatrix} \text{ est un \'echelonnement de } A_5. \text{ Les colonnes principales sont } C_1, C_2, C_4 \text{ et les colonnes auxiliaires sont } C_3, C_5, C_6. \text{ Le rang de } A_5 \text{ est donc 3. On calcule l'\'echelonnement r\'eduit :}$$

2.1.7 Corrigé pour la matrice A_6

On a $j_1 = 0$, $j_2 = 0$, $j_3 = 0$ et $j_4 = 0$. La matrice n'est pas échelonnée car $j_2 = j_1 < 4$ avec 4 colonnes dans la matrice. On obtient un échelonnement comme suit :

colonnes dans la matrice. On obtient un échelonnement comme suit :
$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 2 & 7 & 4 & 5 \\ -1 & 1 & 7 & 7 \\ -3 & 4 & 3 & 5 \end{pmatrix} L_2 \leftarrow L_2 - 2L_1$$

$$L_3 \leftarrow L_3 + L_1$$

$$L_4 \leftarrow L_4 + 3L_1$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 3 & -6 & 3 \\ 0 & 3 & 12 & 8 \\ 0 & 10 & 18 & 8 \end{pmatrix} L_2 \leftarrow 1/3L_2$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 3 & 12 & 8 \\ 0 & 10 & 18 & 8 \end{pmatrix} L_3 \leftarrow L_3 - 3L_2$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 3 & 12 & 8 \\ 0 & 10 & 18 & 8 \end{pmatrix} L_3 \leftarrow L_4 - 10L_2$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 3 & 12 & 8 \\ 0 & 10 & 18 & 8 \end{pmatrix} L_4 \leftarrow L_4 - 10L_2$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 18 & 8 \end{pmatrix} L_4 \leftarrow L_4 - 10L_2$$

$$\begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 18 & 5 \\ 0 & 0 & 38 & -2 \end{pmatrix} L_4 \leftarrow L_4 - 19/9L_3$$

$$M_6 = \begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 18 & 5 \\ 0 & 0 & 0 & -113/19 \end{pmatrix}$$
 est un échelonnement de A_6 . Les colonnes principales sont $A_6 = A_6 = A_6$ est donc 4. On vérifie immédia-

 C_1, C_2, C_3, C_4 . Il n'y a aucune colonne auxiliaire. Le rang de A_6 est donc 4. On vérifie immédiatement que l'échelonnement réduit de A_6 est

$$B_6 = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

2.2 Exercice 2

2.2.1 Enoncé

Soit M une matrice de taille (n,p). Si $1 \le q \le p$, on note M_q la matrice formée des q premières colonnes de M.

- 1) Vérifier que si $1 \le k \le n$, alors $j_k(M_q) = \min(j_k(M), q)$.
- 2) En déduire que si M est échelonnée, alors M_q est échelonnée.

2.2.2 Corrigé

Posons $j_k = j_k(M)$ pour simplifier.

- 1) Si $j_k < q$, alors $M_q[k, j_k + 1] = M[k, j_k + 1] \neq 0$ et $M_q[k, j] = M[k, j] = 0$ si $1 \le j \le j_k$. Donc $j_k(M_q) = j_k$. Si $j_k \ge q$, alors $M_q[k, j] = M[k, j] = 0$ si $1 \le j \le q$ et donc $j_k(M_q) = q$. Dans les deux cas, $j_k(M_q) = \min(j_k, q)$.
- 2) Supposons M échelonnée. Comme $(j_k)_{1 \leq k \leq n}$ est croissante, il en est de même de $(\min(j_k,q))_{1 \leq k \leq n}$. Par ailleurs, si k < n et $j_k(M_q) < q$, alors $j_k(M_q) = j_k < j_{k+1}$. Donc $j_k(M_q) < j_{k+1}$ et $j_k(M_q) < q$, donc $j_k(M_q) < \min(j_{k+1},q) = j_{k+1}(M_q)$. Ainsi, M_q est échelonnée.

2.3 Exercice 3

2.3.1 Enoncé

Expliquer comment calculer un échelonnement d'une matrice quelconque seulement avec des transvections.

2.3.2 Corrigé

Dans la méthode du pivot de Gauss, les seuls moments où on utilise des permutations de lignes sont les situations où le coefficient à l'intersection de la ligne L_i et de la colonne C_j curseurs est nul. On peut toujours remédier à cette situation en effectuant la transvection $L_i \leftarrow L_i + L_k$, où l'entier k est un numéro de ligne d'un pivot quelconque de la colonne C_j .

2.4 Exercice 4

2.4.1 Enoncé

Pour toute matrice A de taille (n, p) et pour tout $q \in \{1, \ldots, p\}$, on note $V_q(A)$ le sous-espace vectoriel engendré par les q premières colonnes de A. On note par ailleurs $(\vec{e}_1, \ldots, \vec{e}_n)$ la base canonique de \mathbb{R}^n .

- 1. Vérifier que $\forall A \in \mathcal{M}_{n,p} \ \forall q \in \{1,\ldots,p-1\}$ $V_q(A) \subset V_{q+1}(A)$.
- 2. Vérifier que $\forall A \in \mathcal{M}_{n,p} \ \forall q \in \{1,\ldots,p-1\}$ $V_q(A) = V_{q+1}(A) \iff C_{q+1}(A) \in V_q(A)$.
- 3. On suppose ici que A est une matrice échelonnée réduite de taille (n,p). On note $j_0(A)=0$ et $j_{n+1}(A)=p$. Vérifier que si $0 \le k \le n$ et si $j_k(A) < q \le j_{k+1}(A)$, alors $V_q(A)=$ vect $(\vec{e}_1,\ldots,\vec{e}_k)$
- 4. Soit A une matrice de taille (n,p) et B une matrice déduite de A par une opération élémentaire sur les lignes. Vérifier que $\forall q \in \{1,\ldots,p-1\}$ $V_q(A) = V_{q+1}(A) \iff V_q(B) = V_{q+1}(B)$.

2.4. EXERCICE 4 11

5. En déduire une preuve de la proposition 6 du chapitre 2.

2.4.2 Corrigé

- 1. Comme $V_{q+1}(A) = \mathbf{vect} \ (C_1(A), \dots, C_q(A), C_{q+1}(A))$ est un sous-espace vectoriel de \mathbb{R}^n qui contient en particulier les vecteurs $C_1(A), \dots, C_q(A)$, il contient le sous-espace vectoriel engendré par ces vecteurs, c'est-à-dire $V_q(A) = \mathbf{vect} \ (C_1(A), \dots, C_q(A))$.
- 2. Si $V_q(A) = V_{q+1}(A)$, comme $C_{q+1}(A) \in V_{q+1}(A)$, on a donc $C_{q+1}(A) \in V_q(A)$. Réciproquement, si $C_{q+1}(A) \in V_q(A)$, alors $V_q(A)$ est un sous-espace vectoriel de \mathbb{R}^n contenant les vecteurs $C_j(A)$ pour $1 \leq j \leq q+1$. Donc, $V_{q+1}(A) \subset V_q(A)$ et donc $V_q(A) = V_{q+1}(A)$ d'après la question précédente.
- 3. Supposons $0 \le k \le n$ et $j_k(A) < q \le j_{k+1}(A)$. Soit $m \in \{k+1,\ldots,n\}$. Alors, comme A est échelonnée, $j_m(A) \ge j_{k+1}(A)$. Donc, si $1 \le j \le q \le j_{k+1}(A)$, A[m,j] = 0. Donc, $C_j(A) \in \mathbf{vect}\ (\vec{e_1},\ldots,\vec{e_k})$. Donc $V_q(A) \subset \mathbf{vect}\ (\vec{e_1},\ldots,\vec{e_k})$. Réciproquement, soit $i \in \{1,\ldots,k\}$. Alors $j_i(A)+1 \le j_k(A)+1 \le q$. Donc, comme A est échelonnée réduite, on a $C_{j_i(A)+1} = \vec{e_i}$. Ainsi, $\vec{e_i} \in V_q(A)$. Donc, comme $V_q(A)$ est un sous-espace vectoriel de \mathbb{R}^n , on a $\mathbf{vect}\ (\vec{e_1},\ldots,\vec{e_k}) \subset V_q(A)$. On a donc prouvé l'égalité

$$V_q(A) = \mathbf{vect} \ (\vec{e}_1, \dots, \vec{e}_k)$$

4. Traitons en détail le cas d'une transvection $L_i \leftarrow L_i + \lambda L_k$. Les autres cas se prouvent de manière similaire.

Supposons pour commencer que $V_q(A) = V_{q+1}(A)$. Alors, $C_{q+1}(A) \in V_q(A)$. Il existe des scalaires $\alpha_1, \ldots, \alpha_q$ tels que $C_{q+1}(A) = \alpha_1 C_1(A) + \cdots + \alpha_q C_q(A)$. Soit $m \in \{1, \ldots, n\}$. Si $m \neq i$, alors

$$B[m, q+1] = A[m, q+1] = \alpha_1 A[m, 1] + \dots + \alpha_q A[m, q] = \alpha_1 B[m, 1] + \dots + \alpha_q B[m, q]$$

D'autre part,

$$\begin{split} B[i,q+1] &= A[i,q+1] + \lambda A[k,q+1] \\ &= \alpha_1 A[m,1] + \dots + \alpha_q A[m,q] + \lambda (\alpha_1 A[k,1] + \dots + \alpha_q A[k,q]) \\ &= \alpha_1 (A[m,1] + \lambda A[k,1]) + \dots + \alpha_q (A[m,q] + \lambda A[k,q]) \\ &= \alpha_1 B[m,1] + \dots + \alpha_q B[m,q] \end{split}$$

Finalement, on obtient $C_{q+1}(B) = \alpha_1 C_1(B) + \cdots + \alpha_q C_q(B) \in V_q(B)$. Donc $V_q(B) = V_{q+1}(B)$. La réciproque résulte de ce qui précède et du fait que A se déduit de B par la transvection inverse $L_i \leftarrow L_i - \lambda L_k$.

5. Soit M un échelonnement de A, et B un échelonnement réduit de M (et donc de A). On remarque que par construction, $j_k(M) = j_k(B)$ pour $1 \le k \le n$. Par ailleurs, d'après les questions précédentes, on a les équivalences

$$V_q(A) \neq V_{q+1}(A) \iff V_q(M) \neq V_{q+1}(M)$$

 $\iff V_q(B) \neq V_{q+1}(B)$
 $\iff \exists k \in \{1, \dots, n\} \qquad q = j_k(B) = j_k(M)$

Ainsi, $V_q(A) \neq V_{q+1}(A)$ si et seulement si la colonne $C_{q+1}(M)$ est principale. Ainsi, les numéros des colonnes principales de M ne dépendent que de A et pas du choix de l'échelonnement M.

Chapitre 3

Systèmes linéaires : exercices corrigés

3.1 Exercice 1

3.1.1 Enoncé

Pour chacun des systèmes ci-dessous,

- a) Déterminer s'il est compatible
- b) S'il est compatible, donner l'ensemble de ses solutions.
- c) S'il est compatible, donner une solution particulière et une base de solutions du système homogène associé

1.
$$\begin{cases} x + 2y + 3z = 10 \\ 2x + y - z = 3 \\ -x + 3y + 2z = 5 \end{cases}$$
2.
$$\begin{cases} 3x - 4y + 5z = 1 \\ 7x - 2y - 4z = 3 \\ -x - 6y + 14z = 8 \end{cases}$$
3.
$$\begin{cases} 6x + 10y + 4z - 7t = -33 \\ 7x + 9y + 10z + 12t = 57 \\ 4x + 5y + 6z + 8t = 38 \end{cases}$$
4.
$$\begin{cases} 6x_1 + 6x_2 + 2x_3 - 58x_4 + x_5 = 53 \\ 3x_1 + 3x_2 + x_3 - 29x_4 + x_5 = 31 \\ 5x_1 + 5x_2 + 2x_3 - 50x_4 + x_5 = 48 \\ 3x_1 + 3x_2 - 24x_4 + x_5 = 24 \end{cases}$$
5.
$$\begin{cases} 4x + 5y + 3z + 21t = 18 \\ 3x + 3y + 4z + 27t = 10 \\ 2x + 2y + 3z + 20t = 10 \\ 18x + 22y + 15z + 104t = 85 \end{cases}$$

3.1.2 Corrigé pour le premier système

$$\begin{cases} x + 2y + 3z = 10 \\ 2x + y - z = 3 \\ -x + 3y + 2z = 5 \end{cases}$$

Il n'y a pas de ligne nulle, donc la système échelonné ci-dessus est compatible. Calculons l'éche-

Ce système possède une unique solution : $\vec{s}_0 = (2, 1, 2)$.

3.1.3 Corrigé pour le deuxième système

$$\begin{cases} 3x - 4y + 5z = 1 \\ 7x - 2y - 4z = 3 \\ -x - 6y + 14z = 8 \end{cases}$$

$$\begin{pmatrix} 3 & -4 & 5 & 1 \\ 7 & -2 & -4 & 3 \\ -1 & -6 & 14 & 8 \end{pmatrix} L_1 \leftarrow -L_3$$

$$\begin{pmatrix} 1 & 6 & -14 & -8 \\ 7 & -2 & -4 & 3 \\ 3 & -4 & 5 & 1 \end{pmatrix} L_2 \leftarrow L_2 - 7L_1$$

$$\begin{pmatrix} 1 & 6 & -14 & -8 \\ 0 & -44 & 94 & 59 \\ 0 & -22 & 47 & 25 \end{pmatrix} L_3 \leftarrow L_3 - 1/2L_1$$

$$\begin{pmatrix} 1 & 6 & -14 & -8 \\ 0 & -44 & 94 & 59 \\ 0 & 0 & 0 & -9/2 \end{pmatrix}$$
Ce système est incompatible.

3.1. EXERCICE 1 15

3.1.4 Corrigé pour le troisième système

$$\begin{cases} 6x + 10y + 4z - 7t = -33 \\ 7x + 9y + 10z + 12t = 57 \\ 4x + 5y + 6z + 8t = 38 \end{cases}$$

$$\begin{cases} 6 & 10 & 4 & -7 & | & -33 \\ 7 & 9 & 10 & 12 & | & 57 \\ 4 & 5 & 6 & 8 & | & 38 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow L_2 - 7/6.L_1 \\ L_3 \leftarrow L_3 - 2/3.L_1 \end{pmatrix}$$

$$\begin{cases} 6 & 10 & 4 & -7 & | & -33 \\ 0 & -8/3 & 16/3 & 121/6 & | & 191/2 \\ 0 & -5/3 & 10/3 & 38/3 & | & 60 \end{pmatrix} \begin{pmatrix} L_3 \leftarrow L_3 - 5/8.L_2 \\ 6 & 10 & 4 & -7 & | & -33 \\ 0 & -8/3 & 16/3 & 121/6 & | & 191/2 \\ 0 & 0 & 0 & 1/16 & | & 5/16 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow 1/6.L_1 \\ L_2 \leftarrow -3/8.L_2 \\ L_3 \leftarrow 16.L_3 \end{pmatrix}$$

$$\begin{cases} 6 & 10 & 4 & -7 & | & -33 \\ 0 & -8/3 & 16/3 & 121/6 & | & 191/2 \\ 0 & 0 & 0 & 1/16 & | & 5/16 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow 1/6.L_3 \\ L_2 \leftarrow -3/8.L_2 \\ L_3 \leftarrow 16.L_3 \end{pmatrix}$$

$$\begin{cases} 1 & 5/3 & 2/3 & -7/6 & | & -11/2 \\ 0 & 1 & -2 & -121/16 & | & -573/16 \\ 0 & 0 & 0 & 1 & | & 5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 + 7/6.L_3 \\ L_2 \leftarrow L_2 + 121/16.L_3 \end{pmatrix}$$

$$\begin{cases} 1 & 5/3 & 2/3 & 0 & | & 1/3 \\ 0 & 1 & -2 & -121/16 & | & 573/16 \\ 0 & 0 & 0 & 1 & | & 5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 + 7/6.L_3 \\ L_2 \leftarrow L_2 + 121/16.L_3 \end{pmatrix}$$

$$\begin{cases} 1 & 5/3 & 2/3 & 0 & | & 1/3 \\ 0 & 1 & -2 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 5 \end{pmatrix} \begin{pmatrix} L_1 \leftarrow L_1 - 5/3.L_2 \\ L_2 \leftarrow L_2 + 121/16.L_3 \end{pmatrix}$$

$$\begin{cases} 1 & 0 & 4 & 0 & | & -3 \\ 0 & 1 & -2 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 & 0 & | & -3 \\ 0 & 1 & -2 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 5 \end{pmatrix}$$

L'unique variable auxiliaire est z. Une solution particulière se trouve en résolvant le système avec la contrainte supplémentaire z=0: On trouve $\vec{s}_0=(-3,2,0,5)$. Une base de solutions est donnée par le vecteur $\vec{s}_3=(-4,2,1,0)$, obtenue en résolvant le système homogène associé avec z=1. L'ensemble des solutions est

$$\{ \vec{s}_0 + z.\vec{s}_3 : z \in \mathbb{R} \} = \{ (-3 - 4z, 2 + 2z, z, 5) : z \in \mathbb{R} \}$$

3.1.5 Corrigé pour le quatrième système

$$\begin{cases} 6x_1 + 6x_2 + 2x_3 - 58x_4 + x_5 &= 53 \\ 3x_1 + 3x_2 + x_3 - 29x_4 + x_5 &= 31 \\ 5x_1 + 5x_2 + 2x_3 - 50x_4 + x_5 &= 48 \\ 3x_1 + 3x_2 & - 24x_4 + x_5 &= 24 \end{cases}$$

$$\begin{pmatrix} 6 & 6 & 2 & -58 & 1 & | 53 \\ 3 & 3 & 1 & -29 & 1 & | 31 \\ 5 & 5 & 2 & -50 & 1 & | 48 \\ 3 & 3 & 0 & -24 & 1 & | 24 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & | 5 \\ 3 & 3 & 1 & -29 & 1 & | 31 \\ 5 & 5 & 2 & -50 & 1 & | 48 \\ 3 & 3 & 0 & -24 & 1 & | 24 \end{pmatrix}$$

$$L_2 \leftarrow L_2 - 3.L_1$$

$$L_3 \leftarrow L_3 - 5.L_1$$

$$L_4 \leftarrow L_4 - 3.L_1$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & 5 \\ 0 & 0 & 1 & -5 & 1 & 16 \\ 0 & 0 & 2 & -10 & 1 & 23 \\ 0 & 0 & 0 & 0 & 1 & 9 \end{pmatrix} L_3 \leftarrow L_3 - 2.L_2$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & 5 \\ 0 & 0 & 1 & -5 & 1 & 16 \\ 0 & 0 & 0 & 0 & -1 & -9 \\ 0 & 0 & 0 & 0 & 1 & 9 \end{pmatrix} L_4 \leftarrow L_4 + L_3$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & 5 \\ 0 & 0 & 1 & -5 & 1 & 16 \\ 0 & 0 & 0 & 0 & -1 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} L_4 \leftarrow L_4 + L_3$$

Dans ce système échelonné, seule la quatrième ligne de la matrice est nulle. Comme le second membre correspondant est aussi nul, le système est compatible.

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & | & 5 \\ 0 & 0 & 1 & -5 & 1 & | & 16 \\ 0 & 0 & 0 & 0 & -1 & | & -9 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} L_3 \leftarrow -L_3$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & | & 5 \\ 0 & 0 & 1 & -5 & 1 & | & 16 \\ 0 & 0 & 0 & 0 & 1 & | & 9 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & -8 & 0 & | & 5 \\ 0 & 0 & 1 & -5 & 0 & | & 7 \\ 0 & 0 & 0 & 0 & 1 & | & 9 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Les variables auxiliaires sont x_2 et x_4 . Une solution particulière est obtenue en calculant l'unique solution qui satisfait $x_2 = 0$ et $x_4 = 0$. On obtient $\vec{s}_0 = (5, 0, 7, 0, 9)$. Une base de solutions du système homogène associé est (\vec{s}_2, \vec{s}_4) , où :

 $-\vec{s}_2$ est l'unique solution du système homogène associé satisfaisant $x_2=1$ et $x_4=0$. On trouve

$$\vec{s}_2 = (-1, 1, 0, 0, 0)$$

 $-\vec{s}_4$ est l'unique solution du système homogène associé satisfaisant $x_2=0$ et $x_4=1.$ On trouve

$$\vec{s}_4 = (8, 0, 5, 1, 0)$$

L'ensemble des solutions du système est donc

$$\{\vec{s}_0 + x_2\vec{s}_2 + x_4\vec{s}_4 : (x_2, x_4) \in \mathbb{R}^2\} = \{(5 - x_2 + 8x_4, x_2, 7 + 5x_4, x_4, 9) : (x_2, x_4) \in \mathbb{R}^2\}$$

3.1.6 Corrigé pour le cinquième système

3.2. EXERCICE 2 17

3.2 Exercice 2

3.2.1 Enoncé

Trouver tous les polynômes $f(x) = ax^3 + bx^2 + cx + d$ satisfaisant f(-1) = 0, f(0) = 5, f(1) = 4 et f'(1) = 0.

3.2.2 Corrigé

On a $f'(x) = 3ax^2 + 2bx + c$. Donc f satisfait les conditions indiquées si et seulement si

$$\begin{pmatrix} -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 5 \\ 1 & 1 & 1 & 1 & 4 \\ 3 & 2 & 1 & 0 & 0 \end{pmatrix} \quad L_3 \leftarrow L_3 + L_1 \\ \begin{pmatrix} -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 2 & 2 & 2 & 4 \\ 0 & 5 & -2 & 3 & 0 \end{pmatrix} \quad L_2 \leftrightarrow L_4$$

L'unique solution est (a, b, c, d) = (2, -3, 0, 5). Ainsi $f(x) = 2x^3 - 3x^2 + 5$.

Exercice 3 3.3

Enoncé 3.3.1

On considère un rectangle satisfaisant les conditions suivantes : Si on augmente de 5m la largeur d'un rectangle et de 4m sa longueur, son aire augmente de $180m^2$. Si on diminue sa largeur de 2m et sa longueur de 3m, l'aire diminue de $72m^2$. Calculez les dimensions du rectangle.

3.3.2 Corrigé

Notons x la longueur et y la largeur du rectangle. On a (x + 4)(y + 5) = xy + 180, donc 5x + 4y = 160. De plus, (x - 3)(y - 2) = xy - 72. Ainsi, 2x + 3y = 78. On résout le système : $\begin{pmatrix} 5 & 4 & 160 \\ 2 & 3 & 78 \end{pmatrix}$ $L_1 \leftarrow L_1 - 2.L_2$

3.4. EXERCICE 4 19

$$\begin{pmatrix} 1 & -2 & | & 4 \\ 2 & 3 & | & 78 \end{pmatrix} L_2 \leftarrow L_2 - 2.L_1$$

$$\begin{pmatrix} 1 & -2 & | & 4 \\ 0 & 7 & | & 70 \end{pmatrix} L_2 \leftarrow 1/7.L_2$$

$$\begin{pmatrix} 1 & -2 & | & 4 \\ 0 & 1 & | & 10 \end{pmatrix} L_1 \leftarrow L_1 + 2.L_1$$

$$\begin{pmatrix} 1 & 0 & | & 24 \\ 0 & 1 & | & 10 \end{pmatrix} L_1 \leftarrow L_1 + 2.L_1$$

La longueur du rectangle est 24m et sa largeur 10m.

3.4 Exercice 4

3.4.1 Enoncé

Soit D un sous-espace affine de \mathbb{R}^n de direction V. Vérifier qu'alors

$$\forall \vec{v} \in \mathbb{R}^n \qquad \vec{v} \in V \iff (\exists \vec{u}_1 \in D \exists \vec{u}_2 \in D \qquad \vec{v} = \vec{u}_2 - \vec{u}_1)$$

En déduire que la direction de D est entièrement déterminée par V.

3.4.2 Corrigé

Soit $\vec{u} \in D$. Si $\vec{v} \in V$, alors $\vec{v} = (\vec{u} + \vec{v}) - \vec{u}$ avec $\vec{u} + \vec{v} \in D$ et $\vec{u} \in D$. Réciproquement, s'il existe $\vec{u}_1 \in D$ et $\vec{u}_2 \in D$ tels que $\vec{v} = \vec{u}_2 - \vec{u}_1$. Comme $\vec{u}_1 \in D$, on a $\vec{u}_1 - \vec{u} \in V$. Comme $\vec{u}_2 \in D$, on a $\vec{u}_2 - \vec{u} \in V$. Donc, comme V est un sous-espace vectoriel de \mathbb{R}^n , on obtient

$$\vec{v} = \vec{u}_2 - \vec{u}_1 = (\vec{u}_1 - \vec{u}) - (\vec{u}_2 - \vec{u}) \in V$$

Ainsi, $V = \{ \vec{u}_2 - \vec{u}_1 : \vec{u}_1 \in D, \vec{u}_2 \in D \}$ ne dépend que de D.

3.5 Exercice 5

3.5.1 Enoncé

Exercice 5: On note E l'ensemble des applications de $f: \mathbb{R} \to \mathbb{R}$ satisfaisant

$$\exists (\alpha, \beta) \in \mathbb{R}^2 \ \forall x \in \mathbb{R} \qquad f(x) = \alpha \cos x + \beta \sin x$$

- 1. Montrer que les scalaires α et β sont uniquement déterminés par f.
- 2. Vérifier que toutes les fonctions f de E sont dérivables.
- 3. Montrer qu'il existe une unique fonction f de E telle que $f(\frac{\pi}{4})=1$ et $f'(\frac{\pi}{6})=3$.

3.5.2 Corrigé

- 1. Supposons $\forall x \in R$ $\alpha \cos x + \beta \sin x = \alpha' \cos x + \beta' \sin x$. Pour x = 0, on obtient $\alpha = \alpha.1 + \beta.0 = \alpha'.1 + \beta'.0 = \alpha'$. Pour $x = \frac{\pi}{2}$, on obtient $\beta = \alpha.0 + \beta.1 = \alpha'.0 + \beta'.1 = \beta'$.
- 2. La fonction f est combinaison linéaire des fonctions dérivables cos et sin, donc est dérivable. De plus,

$$\forall x \in \mathbb{R}$$
 $f'(x) = \alpha(-\sin x) + \beta \cos x = -\alpha \sin x + \beta \cos x$

3. Soit $f \in E$. Il existe des scalaires α et β tels que

$$\forall x \in \mathbb{R}$$
 $f(x) = \alpha \cos x + \beta \sin x$

On a alors $f(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\alpha + \beta)$ et $f'(\frac{\pi}{6}) = -\frac{1}{2}\alpha + \frac{\sqrt{3}}{2}\beta$. On doit donc vérifier que le système

$$\begin{cases} \frac{\sqrt{2}}{2}\alpha + \frac{\sqrt{2}}{2}\beta = 1\\ -\frac{1}{2}\alpha + \frac{\sqrt{3}}{2}\beta = 3 \end{cases}$$

possède une unique solution.
$$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & 3 \end{pmatrix} \stackrel{L_1}{L_2} \leftarrow 2L_1 \\ L_2 \leftarrow 2L_2 \\ \begin{pmatrix} 1 & 1 & | \sqrt{2} \\ -1 & \sqrt{3} & 6 \end{pmatrix} & L_2 \leftarrow L_2 + L_1 \\ \begin{pmatrix} 1 & 1 & | \sqrt{2} \\ 0 & 1 + \sqrt{3} & | 6 + \sqrt{2} \end{pmatrix} & L_2 \leftarrow \frac{1}{1 + \sqrt{3}} L_2 \\ \begin{pmatrix} 1 & 1 & | \sqrt{2} \\ 0 & 1 & | \frac{6 + \sqrt{2}}{1 + \sqrt{3}} \end{pmatrix} & L_1 \leftarrow L_1 - L_2 \\ \begin{pmatrix} 1 & 0 & | \sqrt{2} - \frac{6 + \sqrt{2}}{1 + \sqrt{3}} \\ 0 & 1 & | \frac{6 + \sqrt{2}}{1 + \sqrt{3}} \end{pmatrix} & L_1 \leftarrow L_1 - L_2$$

On a bien une unique solution : $\alpha = \sqrt{2} - \frac{6 + \sqrt{2}}{1 + \sqrt{3}}$ et $\beta = \frac{6 + \sqrt{2}}{1 + \sqrt{3}}$.