Computer Graphics I

Lecture 18: Computer animation 2

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

Rigid body

What is a rigid body?

- The body never deforms nonlinearly (ideal)
- The distance between any two given points of a rigid body remains constant in time regardless of any external forces

Rigid body motion

- Motion due to external forces
 - Translation
 - Rotation

1. Rigid body

Particle system

- Description of particle state
 - Each particle is described by position and velocity

$$\mathbf{Y}(t) = \left(\begin{array}{c} x(t) \\ v(t) \end{array}\right)$$

For a particle system with n particles

$$\mathbf{Y}(t) = \begin{pmatrix} x_1(t) \\ v_1(t) \\ \vdots \\ x_n(t) \\ v_n(t) \end{pmatrix}$$

Particle system

- Dynamic system of particles
 - For each particle
 - A force **F**(t) acting on it
 - A mass m associated with it
 - Dynamic equation by ordinary differential equations

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$

Position and orientation

World space and body space

- World space: a global space which does not change
- Body space: a space relative to the body; the coordinate frame can be translated and rotated

Position and orientation

Connection between body space and world space

- Body space origin is usually defined at the center of mass

body space

Transformation between body space and world space:

$$p(t) = R(t)p_0 + x(t)$$

We call x(t) and R(t) the position and orientation of the body

Linear & angular velocity

- Definition of linear velocity
 - The linear velocity v(t)

$$v(t) = \dot{x}(t)$$

- Definition of an angular velocity
 - An axis the body rotates about
 - The speed of the rotation

Calculation of rotation

Given r(t) in world coordinates

Decomposition of r(t)

$$r(t) = a + b$$

Instant velocity

$$v(t) = \omega(t) \times b$$

$$\dot{r}(t) = \omega(t) \times b = \omega(t) \times b + \omega(t) \times a = \omega(t) \times (b+a)$$

$$\dot{r}(t) = \omega(t) \times r(t)$$

Calculation of rotation

Rotating a body coordinate frame

$$R(t) = \begin{pmatrix} r_{xx} & r_{yx} & r_{zx} \\ r_{xy} & r_{yy} & r_{zy} \\ r_{xz} & r_{yz} & r_{zz} \end{pmatrix} \longrightarrow R(t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix}$$

$$R(t) = [x' \ y' \ z']$$

Calculation of rotation

 Apply the angular velocity to the body frame after rotation

$$\dot{r}(t) = \omega(t) \times r(t)$$

$$\dot{R} = \begin{pmatrix} \omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \end{pmatrix}$$

world space

$$a^*b = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_yb_z - b_ya_z \\ -a_xb_z + b_xa_z \\ a_xb_y - b_xa_y \end{pmatrix} = a \times b$$

$$\dot{R}(t) = \omega(t)^* \left(\begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right) \qquad \dot{R}(t) = \omega(t)^* R(t)$$

Mass of a body

Particle assumption

- Imagine that a rigid body is made up of a large number of small particles
- The location of the i-th particle in world space at time t:

$$r_i(t) = R(t)r_{0i} + x(t)$$

- The total mass of the body, M, is the sum

$$M = \sum_{i=1}^{N} m_i$$

Center of mass

- The center of mass in a body
 - In world space (definition)

$$\frac{\sum m_i r_i(t)}{M}$$

In body space

$$\frac{\sum m_i r_{0i}}{M} = \mathbf{0} = \left(\begin{array}{c} 0\\0\\0\end{array}\right)$$

Center of mass

- x(t) as being the location of the center of mass?
 - Yes

$$\frac{\sum m_i r_i(t)}{M} = \frac{\sum m_i (R(t) r_{0i} + x(t))}{M} = \frac{R(t) \sum m_i r_{0i} + \sum m_i x(t)}{M} = x(t) \frac{\sum m_i}{M} = x(t)$$

$$\sum m_i(r_i(t) - x(t)) = \sum m_i(R(t)r_{0i} + x(t) - x(t)) = R(t) \sum m_i r_{0i} = \mathbf{0}$$

Velocity of a particle

The velocity of the i-th particle

$$\dot{r}_i(t) = R(t)r_{0i} + x(t)$$

$$\dot{R}(t) = \omega(t)^*R(t)$$

$$v(t) = \dot{x}(t)$$

$$\dot{r}_i(t) = \omega(t)^*R(t)r_{0i} + v(t)$$

$$= \omega(t)^*(R(t)r_{0i} + x(t) - x(t)) + v(t)$$

$$= \omega(t)^*(r_i(t) - x(t)) + v(t)$$

$$\dot{r}_i(t) = \omega(t) \times (r_i(t) - x(t)) + v(t)$$

Velocity of a particle

Illustration of particle velocity

The velocity can be decomposed into a linear term and an angular

Force and torque

At each particle

- A force $F_i(t)$ may be exerted on it
- A torque may be generated due to $F_i(t)$

$$\tau_i(t) = (r_i(t) - x(t)) \times F_i(t)$$

For the whole body

Total force

$$F(t) = \sum F_i(t)$$

Total torque

$$\tau(t) = \sum \tau_i(t) = \sum (r_i(t) - x(t)) \times F_i(t)$$

Linear momentum

The linear momentum p of a particle

Defined with mass m and velocity v

$$p = mv$$

- The total linear momentum P(t)
 - The sum of the products of the mass and velocity of each particle

$$\dot{r}_{i}(t) = \omega(t) \times (r_{i}(t) - x(t)) + v(t)$$

$$P(t) = \sum_{i} m_{i}\dot{r}_{i}(t)$$

$$= \sum_{i} \left(m_{i}v(t) + m_{i}\omega(t) \times (r_{i}(t) - x(t)) \right) \sum_{i} m_{i}(r_{i}(t) - x(t)) = \mathbf{0}$$

$$= \sum_{i} m_{i}v(t) + \omega(t) \times \sum_{i} m_{i}(r_{i}(t) - x(t))$$

$$P(t) = \sum_{i} m_{i}v(t) = \left(\sum_{i} m_{i}\right) v(t) = Mv(t)$$
19

Linear momentum

- Linear momentum is irrespective of rotation of the body
 - Linear acceleration

$$\dot{v}(t) = \frac{\dot{P}(t)}{M}$$

Relation to total force

$$\dot{P}(t) = F(t)$$
 $\dot{v}(t) = \frac{F(t)}{M}$

Angular momentum

Why consider angular momentum?

- Conserved unless there is external torque
- Let you write simpler equations

Analogous to linear momentum

Linear momentum

$$P(t) = Mv(t)$$

- Angular momentum $L(t) = I(t)\omega(t)$

Relationship between angular momentum and the total torque

$$\dot{L}(t) = \tau(t)$$
 Analogous to linear momentum relation: $\dot{P}(t) = F(t)$

Intrinsic property of a body

- Determines the torque needed for a desired angular acceleration
- Depends on the body's mass distribution and the axis chosen

Definition by discrete particles

- Let r_i be the displacement of the i-th particle from x(t)

$$I(t) = \sum \begin{pmatrix} m_i(r_{iy}'^2 + r_{iz}'^2) & -m_ir_{ix}'r_{iy}' & -m_ir_{ix}'r_{iz}' \\ -m_ir_{iy}'r_{ix}' & m_i(r_{ix}'^2 + r_{iz}'^2) & -m_ir_{iy}'r_{iz}' \\ -m_ir_{iz}'r_{ix}' & -m_ir_{iz}'r_{iy}' & m_i(r_{ix}'^2 + r_{iy}'^2) \end{pmatrix} \begin{array}{c} r_i' = r_i(t) - x(t) \\ \text{Shall we re-compute} \\ \text{when rotated?} \end{array}$$

- Continuous distribution: sum to integral, mass to density

Transformation of I(t)

$$I(t) = \sum \begin{pmatrix} m_{i}(r'_{iy}^{2} + r'_{iz}^{2}) & -m_{i}r'_{ix}r'_{iy} & -m_{i}r'_{ix}r'_{iz} \\ -m_{i}r'_{iy}r'_{ix} & m_{i}(r'_{ix}^{2} + r'_{iz}^{2}) & -m_{i}r'_{iy}r'_{iz} \\ -m_{i}r'_{iz}r'_{ix} & -m_{i}r'_{iz}r'_{iy} & m_{i}(r'_{ix}^{2} + r'_{iy}^{2}) \end{pmatrix} + t'_{i}^{T}r'_{i} = r'_{ix}^{2} + r'_{iy}^{2} + r'_{iz}^{2}$$

$$f_i^T r_i' = r_{ix}'^2 + r_{iy}'^2 + r_{iz}'^2$$

$$I(t) = \sum m_{i}r_{i}^{\prime T}r_{i}^{\prime} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} m_{i}r_{ix}^{\prime 2} & m_{i}r_{ix}^{\prime}r_{iy}^{\prime} & m_{i}r_{ix}^{\prime}r_{iz}^{\prime} \\ m_{i}r_{iy}^{\prime}r_{ix}^{\prime} & m_{i}r_{iy}^{\prime}r_{iz}^{\prime} \\ m_{i}r_{iz}^{\prime}r_{iy}^{\prime} & m_{i}r_{iz}^{\prime}r_{iy}^{\prime} & m_{i}r_{iz}^{\prime 2} \end{pmatrix} + r_{i}^{\prime}r_{i}^{\prime T} = \begin{pmatrix} r_{ix}^{\prime 2} & r_{ix}^{\prime}r_{iy}^{\prime} & r_{ix}^{\prime}r_{iz}^{\prime} \\ r_{iy}^{\prime}r_{ix}^{\prime} & r_{ix}^{\prime 2}r_{iz}^{\prime} \\ r_{iz}^{\prime}r_{ix}^{\prime} & r_{iz}^{\prime}r_{iy}^{\prime} & r_{iz}^{\prime 2} \end{pmatrix}$$

$$+ r'_{i}r'_{i}^{T} = \begin{pmatrix} r'_{ix}^{2} & r'_{ix}r'_{iy} & r'_{ix}r'_{iz} \\ r'_{iy}r'_{ix} & r'_{iy}^{2} & r'_{ix}r'_{iz} \\ r'_{iz}r'_{ix} & r'_{iz}r'_{iy} & r'_{iz}^{2} \end{pmatrix}$$

$$I(t) = \sum m_i((r_i'^T r_i') \mathbf{1} - r_i' r_i'^T)$$

Transformation of *I(t)*

$$I(t) = \sum_{i} m_i ((r_i^T r_i^T) \mathbf{1} - r_i^T r_i^T) + r_i(t) = R(t) r_{0i} + x(t) \qquad r_i^T = R(t) r_{0i}$$

$$R(t) R(t)^T = \mathbf{1}$$

$$I(t) = \sum_{i} m_{i} ((r_{i}^{T} r_{i}^{T}) \mathbf{1} - r_{i}^{T} r_{i}^{T})$$

$$= \sum_{i} m_{i} ((R(t)r_{0i})^{T} (R(t)r_{0i}) \mathbf{1} - (R(t)r_{0i}) (R(t)r_{0i})^{T})$$

$$= \sum_{i} m_{i} (r_{0i}^{T} R(t)^{T} R(t)r_{0i} \mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= \sum_{i} m_{i} ((r_{0i}^{T} r_{0i}) \mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= \sum_{i} m_{i} (R(t) (r_{0i}^{T} r_{0i}) R(t)^{T} \mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= R(t) \left(\sum_{i} m_{i} ((r_{0i}^{T} r_{0i}) \mathbf{1} - r_{0i}r_{0i}^{T}) \right) R(t)^{T}$$

- General computation
 - Define body intrinsic inertia tensor

$$I(t) = R(t) \left(\sum_{i=1}^{T} m_i ((r_{0i}^T r_{0i}) \mathbf{1} - r_{0i} r_{0i}^T) \right) R(t)^T$$

$$I_{body} = \sum_{i=1}^{T} m_i ((r_{0i}^T r_{0i}) \mathbf{1} - r_{0i} r_{0i}^T)$$

$$I(t) = R(t) I_{body} R(t)^T$$

- General computation
 - Inverse inertia tensor

$$R(t)^{T} = R(t)^{-1} \qquad \left(R(t)^{T}\right)^{T} = R(t)$$

$$I^{-1}(t) = \left(R(t)I_{body}R(t)^{T}\right)^{-1}$$

$$= \left(R(t)^{T}\right)^{-1}I_{body}^{-1}R(t)^{-1}$$

$$= R(t)I_{body}^{-1}R(t)^{T}$$

2. Rigid body dynamics

Rigid body equations of motion

State variable

- Position and orientation
- Linear and angular momentum

$$\mathbf{Y}(t) = \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix}$$

Auxiliary quantities

$$v(t) = \frac{P(t)}{M}$$
, $I(t) = R(t)I_{body}R(t)^T$ and $\omega(t) = I(t)^{-1}L(t)$

Rigid body equations of motion

Time rate change of the state variable

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^*R(t) \\ F(t) \\ \tau(t) \end{pmatrix}$$

Computing order

$$F(t) \longrightarrow P(t)$$

$$\tau(t) \longrightarrow L(t)$$

$$P(t) = Mv(t)$$

$$P(t) \longrightarrow v(t) \longrightarrow x(t)$$

$$L(t) \longrightarrow \omega(t) \longrightarrow R(t)$$

Quaternions vs. rotation matrices

Using rotation matrix is problematic

- Why?
 - Numerical error will accumulate on rotation matrix
 - Artificial skewing effects
 - Can be alleviated by representing rotations with unit quaternions

Quaternion

- The quaternion $s + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$
- Written as [s, v]

Quaternions vs. rotation matrices

Quaternion multiplication

$$[s_1, v_1][s_2, v_2] = [s_1s_2 - v_1 \cdot v_2, s_1v_2 + s_2v_1 + v_1 \times v_2]$$

From quaternion to rotation matrix

$$\begin{pmatrix} 1 - 2v_y^2 - 2v_z^2 & 2v_x v_y - 2s v_z & 2v_x v_z + 2s v_y \\ 2v_x v_y + 2s v_z & 1 - 2v_x^2 - 2v_z^2 & 2v_y v_z - 2s v_x \\ 2v_x v_z - 2s v_y & 2v_y v_z + 2s v_x & 1 - 2v_x^2 - 2v_y^2 \end{pmatrix}$$

Quaternions vs. rotation matrices

Rotation of a rigid body

– Suppose the body to rotate with constant $\omega(t)$ for a period of time Δt :

$$\left[\cos\frac{|\omega(t)|\Delta t}{2}, \sin\frac{|\omega(t)|\Delta t}{2}\frac{\omega(t)}{|\omega(t)|}\right]$$

– Equation for $\dot{q}(t)$

$$\dot{q}(t) = \frac{1}{2}\omega(t)q(t)$$

Solving ordinary differential equations

- The rigid body dynamics results in
 - Ordinary set of differential equation of the form:

$$y' = f(x, y)$$

- Seldom have closed-form solution
- Usually with initial condition

$$y(x_0) = y_0$$

Initial value problem

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y}) , \qquad \mathbf{y}(x_0) = \mathbf{y}_0$$

Solving ordinary differential equations

Numerical solution

- Euler's method
 - We divide this interval by the mesh-points

$$x_n = x_0 + nh, n = 0, \dots, N$$

• Integrating the differential equation

$$y' = f(x, y)$$

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

$$\int_{x_n}^{x_{n+1}} g(x) dx \approx hg(x_n)$$

$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

Solving ordinary differential equations

Runge–Kutta methods

- Achieve higher accuracy
- Re-evaluate $f(\cdot, \cdot)$ at points intermediate between $(x_n, y(x_n))$ and $(x_n+1, y(x_n+1))$

Now pick a step-size h > 0 and define

$$y_{n+1} = y_n + rac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4
ight), \ t_{n+1} = t_n + h$$

for n = 0, 1, 2, 3, ..., using

$$egin{align} k_1 &= h \; f(t_n,y_n), \ k_2 &= h \; f\left(t_n + rac{h}{2}, y_n + rac{k_1}{2}
ight), \ k_3 &= h \; f\left(t_n + rac{h}{2}, y_n + rac{k_2}{2}
ight), \ k_4 &= h \; f\left(t_n + h, y_n + k_3
ight). \ \end{cases}$$

3. Non-penetration constraints

Problems of non-penetration constraints

Two types of contacts

- Colliding contact
 - Two bodies are in contact at some point p
 - They have a velocity towards each other
 - Y(t) has discontinuity
 - E.g., instantaneous change of velocity
 - How to solve?
 - Stop ODE solver at the contact
 - Compute how Y(t) changes
 - Restart ODE solver

Problems of non-penetration constraints

Two types of contacts

- Resting contact
 - Whenever bodies are resting on one another at some point p
 - We compute a force that prevents the particle from accelerating
 - Contact force
 - A force that acts at the point of contact between two objects

Two problems to solve

- Compute velocity changes for colliding contact
- Compute the contact forces that prevent interpendent penetration

Bisection

When inter-penetration is detected

- We inform the ODE solver that we wish to restart back at time t
- Simulate forward to time t_o + $\Delta t/2$, and repeat until some tolerance is met

- Description of a colliding contact
 - Illustration

- Formula

$$\dot{p}_a(t_0) = v_a(t_0) + \omega_a(t_0) \times (p_a(t_0) - x_a(t_0))$$

$$\dot{p}_b(t_0) = v_b(t_0) + \omega_b(t_0) \times (p_b(t_0) - x_b(t_0))$$

Examine the relative velocity

$$v_{rel} = \hat{n}(t_0) \cdot (\dot{p}_a(t_0) - \dot{p}_b(t_0))$$

- v_{rel} >0: two bodies leaving apart, not interested
- v_{rel} =0: resting contact
- v_{rel} <0: a colliding contact
 - How do we compute the change in velocity?

Definition of an impulse

Force exerted over a time period

$$F\Delta t = J$$

Apply an impulse J to a rigid body with mass M

$$\Delta v = \frac{J}{M} \qquad \Delta P = J$$

Impulsive torque

$$\tau_{impulse} = (p - x(t)) \times J$$

Change in angular momentum

$$\Delta L = \tau_{impulse}$$

Change in angular velocity

$$\Gamma^{1}(t_0)\tau_{impulse}$$

How to compute the impulse?

- Force F is unknown
- For frictionless bodies, the direction of the impulse will be in the normal direction

$$J = j\hat{n}(t_0)$$

- How to compute j?
 - We compute j by using an empirical law for collisions
- Some definitions

$$\dot{p}_a^-(t_0)$$
 velocity of the contact vertex of A prior to the impulse being applied

$$\dot{p}_a^+(t_0)$$
 velocity after we apply the impulse J

Definition of relative velocities

Initial relative velocity in the normal direction

$$v_{rel}^- = \hat{n}(t_0) \cdot (\dot{p}_a^-(t_0) - \dot{p}_b^-(t_0))$$

After the application of the impulse

$$v_{rel}^+ = \hat{n}(t_0) \cdot (\dot{p}_a^+(t_0) - \dot{p}_b^+(t_0))$$

Empirical law for frictionless collisions

$$v_{rel}^{+} = -\epsilon v_{rel}^{-}$$
 $0 \le \epsilon \le 1$

- Physical meaning for coefficient of restitution
 - Perfect bouncing
 - No kinetic energy is lost

$$\epsilon = 1$$
 $v_{rel}^+ = -v_{rel}^-$

- Perfect dissipative
 - A maximum of kinetic energy is lost

$$\epsilon = 0$$
 $v_{rel}^+ = 0$

After this collision, the two bodies will be in rest contact

- Physical meaning for coefficient of restitution
 - Illustration

Derivation

$$\dot{p}_{a}^{+}(t_{0}) = v_{a}^{+}(t_{0}) + \omega_{a}^{+}(t_{0}) \times r_{a} \quad v_{a}^{+}(t_{0}) = v_{a}^{-}(t_{0}) + \frac{j\hat{n}(t_{0})}{M_{a}} \quad \omega_{a}^{+}(t_{0}) = \omega_{a}^{-}(t_{0}) + I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)$$

$$\dot{p}_{a}^{+}(t_{0}) = \left(v_{a}^{-}(t_{0}) + \frac{j\hat{n}(t_{0})}{M_{a}}\right) + \left(\omega_{a}^{-}(t_{0}) + I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)\right) \times r_{a}$$

$$= v_{a}^{-}(t_{0}) + \omega_{a}^{-}(t_{0}) \times r_{a} + \left(\frac{j\hat{n}(t_{0})}{M_{a}}\right) + \left(I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)\right) \times r_{a}$$

$$= \dot{p}_{a}^{-} + j\left(\frac{\hat{n}(t_{0})}{M_{a}} + I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0})\right)\right) \times r_{a}$$

$$\dot{p}_{b}^{+}(t_{0}) = \dot{p}_{b}^{-} - j\left(\frac{\hat{n}(t_{0})}{M_{b}} + I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0})\right)\right) \times r_{b}$$

This yields

$$\dot{p}_{a}^{+}(t_{0}) - \dot{p}_{b}^{+} = (\dot{p}_{a}^{-}(t_{0}) - \dot{p}_{b}^{-}) + j \left(\frac{\hat{n}(t_{0})}{M_{a}} + \frac{\hat{n}(t_{0})}{M_{b}} + \left(I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0}) \right) \right) \times r_{a} + \left(I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0}) \right) \right) \times r_{b} \right)$$

$$v_{rel}^{+} = \hat{n}(t_0) \cdot (\dot{p}_a^{+}(t_0) - \dot{p}_b^{+})$$

$$= \hat{n}(t_0) \cdot (\dot{p}_a^{-}(t_0) - \dot{p}_b^{-}) + j \left(\frac{1}{M_a} + \frac{1}{M_b} + \frac{1}{M_b} \right)$$

$$\hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b \right)$$

$$= v_{rel}^{-} + j \left(\frac{1}{M_a} + \frac{1}{M_b} + \frac{1}{M_b} \right)$$

$$\hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b \right)$$

This yields

Empirical law for frictionless collision

$$v_{rel}^{+} = -\epsilon v_{rel}^{-} \qquad 0 \le \epsilon \le 1$$

$$v_{rel}^{-} + j \left(\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b \right) = -\epsilon v_{rel}^{-}$$

$$j = \frac{-(1 + \epsilon) v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b}$$

Handling fixed bodies

- Some bodies cannot be moved
 - Floors, walls, etc.
- Look at the formulation again

$$j = \frac{-(1+\epsilon)v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0)\right)\right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0)\right)\right) \times r_b}$$

- What we need
 - Inverse of mass and inertia tensor
- Tricks
 - Set inverse mass to be zero
 - Set inverse inertia tensor to be zero matrix

Resting contact

Condition of resting contact

- Relative velocity v_{rel} is zero (within numerical threshold)
- Contact force $f_i \hat{n}_i(t_0)$
 - At each contact point, there is a contact force where f_i is an unknown scalar
 - Our goal
 - Determine each f_i at the same time
 - To maintain contact between bodies

Resting contact

- Condition of resting contact
 - Computing contact forces

Resting contact

Derivation

- Contact force subject to three conditions
 - 1. Must prevent inter-penetration
 - 2. Must be repulsive
 - Never act like a "glue" and hold bodies together
 - 3. Be zero if the bodies begin to separate

4. Collision detection

Collision Detection Problem

Problem formulation

 The computational problem of detecting the intersection of two or more objects

Collision detection

How to detect inter-penetration?

- Convex polyhedron
 - Two polyhedra do no inter-penetrate if and only if a separating plane between them exists
 - Finding the separating plane

Collision detection

- How to detect inter-penetration?
 - Convex polyhedra
 - Progress with defining face

Bounding volumes

- Axis-aligned bounding boxes (AABBs)
 - AABBs in terms of different coordinate system

(a) AABBs in world space (b) AABBs in the local space of A (c) AABBs in the local space of B

Basic primitive tests

Testing primitives

- Testing triangle against triangle
 - Detecting the intersection of two triangles ABC and DEF
 - When two triangles intersect
 - Two edges of one triangle pierce the interior of the other
 - One edge from each triangle pierces the interior of the other

Spatial partitioning

Uniform grids

In-depth tests are only performed against those found sharing cells

Bounding volume hierarchies

Bounding volume hierarchy (BVH)

 Time complexity can be reduced to logarithmic in the number of tests performed

Spatial partitioning

Trees

- Octree (quadtree for 2D)
 - An axis-aligned hierarchical partitioning of a volume of 3D world space

Spatial partitioning

Trees

- k-d trees
 - A generalization of octrees and quadtrees
 - The k-d tree divides space along one dimension at a time

5. Rigid body fracture

What is a fracture?

A fracture

 The separation of an object or material into two or more pieces under the action of stress

How to model fracture?

Consider material deformations

- Even rigid body objects have small deformations
- Deformation causes change of internal stress
- Fracture arises when internal stress exceed the material toughness (strength)

Modeling

- Computation of internal stress distribution
- Determine the fracture point and fracture geometry

Continuum mechanics

A branch of mechanics

- Modeled as a continuous mass rather than as discrete particles
- The matter in the body is continuously distributed
- A continuum is a body that can be continually sub-divided into infinitesimal elements
 - Derivatives are available to compute
- Deal with deformable bodies
 - As opposed to ideal rigid bodies
 - Analyzing internal force of rigid bodies should consider deformation (very small)

Simulation results

• Fracture-based rigid body simulation

What you will get finally?

An example of a system of rigid body motion

Next lecture: Computer anmiation 3