Lossless Join Decomposition (I)

 \square Each decomposition of a relation schema R into n relation schemas $R_1, ..., R_n$ must fulfil the attribute preservation condition, i.e.,

$$\bigcup_{i=1}^{n} R_i = R$$

- \square Each attribute in relation schema R should appear in at least one relation schema R_i of the decomposition; no attribute should be lost
- An arbitrary decomposition of a relation schema R into n relation schemas $R_1, ..., R_n$ does not make sense
- Example: Split of the schema $LectureProf(\underline{id}, title, pers-id, room)$ into the schemas $R_1(\underline{id}, title)$ and $R_2(pers-id, room)$ is incorrect since we cannot reconstruct LectureProf from R_1 and R_2
- A decomposition of a relation schema R into the relation schemas $R_1, ..., R_n$ has the lossless (nonadditive) join property, or is lossless, with respect to a set F of FDs on R if, for *every* relation r of R that satisfies F, the following holds: $\pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r) = r$

Lossless Join Decomposition (II)

- □ Example
 - This example demonstrates
 - the importance of the lossless join property
 - that normal forms alone are not sufficient to guarantee a good database design
 - We again consider the schema CarIndex(model-id, manufacturer, manufacturer-id) with the FDs
 - FD1: {model-id, manufacturer} → {manufacturer-id}
 - FD2: {manufacturer-id} → {manufacturer}
 - We know that this relation schema is in the 3NF
 - A decomposition of this schema into two BCNF schemas is not straightforward
 - ❖ We abstract from and rewrite this example and consider the schema $R(\underline{A}, \underline{B}, C)$ with the FDs $AB \rightarrow C$ (FD1) and $C \rightarrow B$ (FD2)

Lossless Join Decomposition (III)

- ☐ Example (*continued*)
 - ❖ The three possible decompositions of *R* into two relation schemas are:
 - $R_1(\underline{A}, \underline{B})$ and $R_2(\underline{A}, \underline{C})$
 - $R_1(B, \underline{C})$ and $R_2(\underline{B}, \underline{A})$
 - $R_1(\underline{C}, \underline{A})$ and $R_2(\underline{C}, B)$
 - ❖ FD1 is not preserved by any of these decompositions since it involves three attributes but all relation schemas have two attributes only
 - ❖ We translate the three decompositions back into the original context
 - R_1 (model-id, manufacturer) and R_2 (model-id, manufacturer-id)
 - R_1 (manufacturer, manufacturer-id) and R_2 (manufacturer, model-id)
 - R_1 (manufacturer-id, model-id) and R_2 (manufacturer-id, manufacturer)
 - \diamond All three decompositions lead to two relational schemas R_1 and R_2 that are both in the BCNF
 - Question: Which of the three BCNF decompositions should be selected?

Lossless Join Decomposition (IV)

- ☐ Example (*continued*)
 - We check R_1 (model-id, manufacturer) and R_2 (model-id, manufacturer-id)
 - Can we reconstruct R from R_1 and R_2 , i.e., does for every relation r of R that satisfies F hold that $\pi_{R_1}(r)\bowtie\pi_{R_2}(r)=r$?
 - The answer is *no* since, e.g., the same value for the common attribute *model-id* could be used in tuples in R_1 and R_2 but the *manufacturer* value in the R_1 tuple does not fit to the *manufacturer-id* value in the R_2 tuple; in other words, two different car brands have different cars with the same *model-id* value (\rightarrow inconsistency)
 - We call this a lossy (join) decomposition
 - The problem is that neither {model-id} → {manufacturer} nor {model-id} → {manufacturer-id} holds

Lossless Join Decomposition (V)

- ☐ Example (*continued*)
 - ❖ We check R₁(manufacturer, manufacturer-id) and R₂(manufacturer, model-id)
 - The answer is *no* since, e.g., with respect to the common attribute *manufacturer* the same *manufacturer* value can appear with different *manufacturer-id* values in R₁
 - All these R_1 tuples will be joined to all R_2 tuples with the same manufacturer value (\rightarrow spurious tuples, lossy decomposition)
 - The problem here is that {manufacturer} \rightarrow {manufacturer-id} does not hold in R_1
 - We check R_1 (manufacturer-id, model-id) and R_2 (manufacturer-id, manufacturer)
 - The answer is yes since with respect to the common attribute manufacturer-id each manufacturer-id value of an R₁ tuple uniquely finds one R₂ tuple with that manufacturer-id value (primary key)
 - The reason is that {manufacturer-id} → {manufacturer} holds

Lossless Join Decomposition (VI)

- ☐ Generalization of our observation: Nonadditive Join Test for Binary Decompositions (NJB) (only), which is independent of normal forms
- A decomposition of a relation schema R into two relation schemas R_1 and R_2 has the lossless (nonadditive) join property (or: is lossless) with respect to a set F of FDs on R if, and only if, either

❖
$$(R_1 \cap R_2) \to (R_1 - R_2) \in F^+$$
 [or: $(R_1 \cap R_2) \to R_1 \in F^+$], or

♦
$$(R_1 \cap R_2) \to (R_2 - R_1) \in F^+$$
 [or: $(R_1 \cap R_2) \to R_2 \in F^+$]

- ☐ This means: If $R_1 \cap R_2$ forms a superkey of either R_1 or R_2 , the decomposition of R into R_1 and R_2 is lossless
- □ Alternative algorithmic formulation
 - ❖ Let $R = A \cup B \cup C$, $R_1 = A \cup B$, and $R_2 = A \cup C$ with pairwise disjoint attribute sets A, B, $C \subseteq R$; obviously $R_1 \cap R_2 = A$ holds
 - Then the two conditions above can be checked by
 - $B \subseteq CalculateAttributeClosure(F, A)$, or
 - $C \subseteq CalculateAttributeClosure(F, A)$

Lossless Join Decomposition (VII)

- Example of a lossy join decomposition
 - \diamond Let us consider the decomposition of a relation r(R) into the relations $r_1(R_1)$ and $r_2(R_2)$

$$r = \begin{array}{|c|c|c|c|c|} \hline A & B & C \\ \hline 1 & 2 & 3 \\ \hline 4 & 2 & 5 \\ \hline \end{array}$$

 $\neq r$

$$R = R_1 \cup R_2, R_1 \cap R_2 = \{B\}$$

$$r_{1} \bowtie r_{2} = \begin{array}{|c|c|c|c|} \hline A & B & C \\ \hline 1 & 2 & 3 \\ \hline 1 & 2 & 5 \\ \hline 4 & 2 & 3 \\ \hline 4 & 2 & 5 \\ \hline \end{array}$$

The tuples (1, 2, 5) and (4, 2, 3) are spurious. The reason is that according to the NJB test neither $B \rightarrow A \text{ nor } B \rightarrow C \text{ holds.}$

Lossless Join Decomposition (VIII)

- The Chase test provides a general method for testing whether any decomposition of a relation schema R into n relation schemas R_1, \ldots, R_n is lossless with respect to a given set F of FDs on R, i.e., it allows to check whether for *every* relation r of R that satisfies F holds: $\pi_{R_1}(r) \bowtie \ldots \bowtie \pi_{R_n}(r) = r$
- Observations to motivate the idea of the Chase test
 - ❖ The result of the natural join is the set of tuples t such that for all $1 \le i \le n$ tuple t projected onto the set R_i of attributes is a tuple in $\pi_{R_i}(r)$, i.e., ∀ $1 \le i \le n$: $\pi_{R_i}(\{t\}) \subseteq \pi_{R_i}(r)$
 - Any tuple t in r is surely contained in the result of the natural join, i.e., $\forall t \in r : t \in \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r)$ [or: $r \subseteq \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r)$] since the projection of t onto R_i is surely in $\pi_{R_i}(r)$ for each i, and hence, by the previous point, t is contained in the result of the natural join
 - ❖ Consequently, the result of the natural join is equal to r if, and only if, every tuple in the natural join is also in r, i.e., $\pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r) \subseteq r$ with the set F of FDs $\Leftrightarrow \forall t \in \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r) : t \in r$

Lossless Join Decomposition (IX)

- □ The last point indicates that the membership test right of the '⇔' symbol is all we need to verify that a decomposition has a lossless join
- The Chase test performs this membership test and checks by using the FDs in F whether any tuple in $\pi_{R_1}(r)\bowtie\ldots\bowtie\pi_{R_n}(r)$ can be proved also to be a tuple in r
- If a tuple t is contained in the natural join, then there must be tuples t_1, \ldots, t_n in r such that t is the result of the natural join of the projections of each t_i onto R_i for $1 \le i \le n$, i.e., $\pi_{R_1}(\{t_1\}) \bowtie \ldots \bowtie \pi_{R_n}(\{t_n\}) = \{t\}$
- Therefore, we know that each tuple t_i agrees with tuple t on the values of the attributes in R_i but each t_i has unknown values for the attributes not in R_i
- We use this insight and construct a *matrix* or *tableau* according to the following rules:
 - ❖ If *R* has the attributes *A*, *B*, ..., we use *a*, *b*, ... for the components of *t*
 - For the t_i we use the same letter as t in the components that are in R_i
 - ❖ We subscript the letter with i if the component is not in R_i

Lossless Join Decomposition (X)

Example

- Assume a relation schema R(A, B, C, D) is decomposed into the relation schemas $R_1(A, D)$, $R_2(A, C)$, and $R_3(B, C, D)$
- The matrix for this decomposition is

Α	В	С	D
а	<i>b</i> ₁	C ₁	d
а	<i>b</i> ₂	С	d_2
a ₃	b	С	d

The *i*th row corresponds to tuple $t_i \in r$. The components for the attributes A and D of R_1 are represented by the unscripted letters a and d in t_1 . For the other attributes b and c we add the subscript 1 to show that they are unknown values.

This makes sense since the tuple $t_1 = (a, b_1, c_1, d)$ represents a tuple of r that contributes to tuple t = (a, b, c, d) by being projected onto $\{A, D\}$ and then joined with other tuples. Since the B- and C- components of t_1 are projected out, we know nothing about the values t_1 has for those attributes. The second and third row can be explained similarly. Since row i uses number i as a subscript, the only symbols that can appear more than once are the unsubscripted letters.