

Multivariate analysis

Romain Grandchamp, PhD Arnaud Delorme, PhD

published: 03 July 2018 doi: 10.3389/fnins.2018.00368

From ERPs to MVPA Using the Amsterdam Decoding and Modeling Toolbox (ADAM)

Johannes J. Fahrenfort 1,2,3*, Joram van Driel 1, Simon van Gaal 2,3 and Christian N. L. Olivers 1

Department of Experimental and Applied Psychology, Institute Brain and Behavior Amsterdam (iBBA), VU University Amsterdam, Amsterdam, Netherlands, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands, Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands

Adam Features

- **Decoding (backward decoding, BDM):** Classifiers can be trained to discriminate between different experimental conditions based on EEG/MEG patterns.
- Encoding modeling (forward encoding, FEM): Allows reconstruction of "Channel Tuning Functions" (CTFs) or spatial maps of transformed weights (using the Haufe method) from the encoding model.
- Temporal and generalization analyses (temporal generalization): ADAM can compute "train vs. test at different times" matrices to examine the stability of neural representations over time.
- Time-frequency domain decoding: Before decoding, one can apply a time-frequency decomposition (TFR) and then perform decoding within separate frequency bands.
- Statistics and multiple-comparison correction: ADAM provides permutation testing, FDR correction, and group-level analyses to assess the statistical significance of results.
- Visualization and publication-ready figures: Generation of classifier performance time courses, topographical maps of weights, channel tuning functions, generalization matrices, and more.
- Automatic control of potential biases (balanced design, AUC computation, etc.): To prevent biases in the analyses, ADAM applies several default controls, such as balancing training classes and using AUC instead of raw accuracy.

Import and pre-process (not part of ADAM)		Import native EEG or MEG data into EEGLAB or FieldTrip format, pre-process, e.g. highpass filter, epoching, artefact rejection. Baseline correction and muscle artefact rejection can also be applied by ADAM during first-level analysis.		
adam_MVPA_	firstlevel In: Out:	ADA perfo	ched files in either EEGLAB or FieldTrip form M result files (one for each subject), contain remance metric for every train-test time sam r every train-test sample of every frequency	ing a ple (raw)
Use RAW data			Compute time-frequency representat	ions
encoding mo on testing da	odel (FEM) using t ata. Weights of BD	training)Ms are	d decoding model (BDM) or forward data, and compute performance metric e forward transformed.	Several transformations can be performed on the transformations, can be performed on the training, whitening, computing induced power, etc. either performed separately on training and testing indiscriminately across all stimulus classes.
iteration 1	Training data		Test fold	lations ng, com separat
iteration 2				can be puting lely on
iteration 3				performinduce training
iteration 4				ned on d power and te sses.
iteration 5				the tra
The final perfor	mance metric is com	puted by	averaging over test folds (in this example, K=5).	ining a These t
			ts for training and testing (either using event values for train and test data)	training and lesting data, e.g. tc. These transformations are g data, or they are performed
	Training data		Testing data	data, e ations a perform
The performan	ce metric is compute	d over th	ne testing data.	ane e.g.
	e_group_MVPA e_group_ERP	In: Out:	ADAM result files computed by adam_MV ADAM stats variable(s) containing group s	_
adam_compare_MVPA_stats		In: Out:	ADAM stats variable(s) containing group s ADAM stats variable(s) containing group s	

FIGURE 1 | ADAM processing pipeline, from top to bottom. The top left corner of each box states the ADAM function that performs the transformations that are described in the box. The top right describes the input-output transformation that the function performs. The output of each function serves as input for the function described in the box below it. The adam_MVPA_firstlevel box contains more detailed information about train-test algorithms. Further details about functionality and how to execute functions are provided in the main text.

Main functions

- adam MVPA firstlevel (computes and stores first level / single subject results)
- adam_compute_group_ERP (reads single subject ERPs and computes group statistics which can be plotted using adam_plot_MVPA)
- adam_compute_group_MVPA (reads single subject classification performance and computes group statistics which can be plotted using adam plot MVPA)
- adam_compare_MVPA_stats (compares outcomes of group analyses, which can be plotted using adam_plot_MVPA)
- adam_plot_MVPA (plots the outcome of the adam_compute_group_ or the adam_compare_MVPA_stats functions)
- adam_plot_BDM_weights (plots topomaps of the classifier weights or forward transformed weights, the latter of which are equivalent to univariate difference maps and are interpretable as neural sources, see (Haufe et al., 2014).

FIGURE 4 | Classification performance across time for the three comparisons in the experiment. Thick lines denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007).

FIGURE 6 | Activation patterns from 250 to 400 ms, spatially normalized (z-scored) for every subject. Thick electrodes denote p < 0.05 under two-sided cluster-based permutation (Maris and Oostenveld, 2007).

FIGURE 7 | Temporal generalization plots for all six analyses. The plots show the degree to which the classifier when trained on a given time point (on the y-axis), generalizes to other time points in the trial (on the x-axis). Color indicates classifier performance using AUC. The diagonal from the left bottom to the top right) shows classification performance when the classifier is trained and tested on the same time point. More off-diagonal activity indicates stronger temporal generalization. (top row: EEG, bottom row: MEG).

eeg_adam plugin

Manually install eeglab_adam plugin

- Unzip eeglab_adam.zip in eeglab/plugins folder
- Contains:
 - Fieldtrip special brew
 - ADAM toolbox
 - EEGLAB Study
 - Paper results

Setup: Step 1

Uninstall Fieldtrip plugin using EEGLAB Extengion Manager

Setup: Step 2

Load STUDY eeglab_adam\ds002718\MVPA_with_ADAM_light.study

Setup: Step 3

Set eeglab_adam plugin Preferences to setup proper paths to required toolboxes

