Álgebra Linear - Resumo P2

BCC IME-USP 2018

October 28, 2018

1 Aula 9 - Sistemas Lineares

Sistemas Lineares - Definição

• Um sistema linear é uma equação de forma AX = B, tal que:

A é uma matriz com n linhas e m colunas, B e X são da forma:

$$B = b^t = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}; X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

• Tal sistema se equivale à: $\begin{cases} a_{11}x_1 + \dots + a_{1m}x_m = b_1 \\ \vdots & \ddots & \vdots \\ a_{n1}x_1 + \dots + a_{nm}x_m = b_n \end{cases}$

ullet Chamamos A de matriz dos coeficientes do sistemas e a matriz $\hat{\mathbf{A}}$ com

$$\hat{\mathbf{A}} = \begin{bmatrix} a_{11} & \dots & a_{1m} & b_1 \\ \vdots & \ddots & \vdots & \\ a_{n1} & \dots & anm & b_n \end{bmatrix} \text{ de } \textit{matriz estendida } \text{do sistema linear.}$$

 \bullet Chamamos o sistema de sistema homogêneo se, e somente se $B=\overrightarrow{0}$.

Sistemas Lineares - Propriedades e outros

- Equivalência sobre troca de linhas $L_i \leftrightarrow L_j$: Dado um sistema linear AX = B, um sistema linear denotado por $A_{L_i \leftrightarrow L_j} X = B_{L_i \leftrightarrow L_j}$, onde $A_{L_i \leftrightarrow L_j}$ é a matriz A com as linhas i e j trocadas, e o mesmo realizado com $B_{L_i \leftrightarrow L_j}$. Isto é, as soluções de ambos os sistemas são idênticas.
- Equivalência sobre troca de linhas $L_i \leftrightarrow L_i \lambda L_j$: A propriedade acima segue (equivalência) se a linha i for trocada por uma combinação linear $L_i - \lambda L_j$.
- Definimos as operações de trocas de linhas $L_i \leftrightarrow L_j$ em A, B como operações elementares sobre qualquer sistema AX = B.

1

- Matriz escalonada Definição:
 - a. Se a linha i for nula, todas as linhas abaixo de i(j|j>i) são nulas.
 - b. A primeira entrada não nula de cada linhas é 1.
 - c. Utilizando as operações elementares acima, podemos escalonar qualquer matriz de um sistema linear, em especial, procuraremos escalonar matrizes estendidas, pois, dessa forma, mantemos a equivalência do sistema linear, pois realizaremos as mesmas mudanças para B.
- Soluções de sistemas lineares não homogêneos:
 - Considere o sistema linear não homogêneo $AX_0 = B$.
 - Considere X_0 , uma solução particular desse sistema, e W o espaço de soluções do sistema homogêneo associado (AX = 0).
 - Então, existe um $w \in W$ tal que, sendo X_0 e X soluções particulares do sistema não homogêneo, vale $X = X_0 + w$.
 - O que queremos dizer aqui é que dada uma solução particular do sistema não homogêneo, as outras soluções do sistema podem ser construída com essa solução encontrada mais alguma solução do sistema homogêneo associado.

Sistemas Lineares - Exemplos

Exemplo 1:

• Considere o sistema:
$$\begin{bmatrix} 1 & -1 & 1 & 2 \\ 2 & 1 & 3 & 2 \\ 1 & 5 & 3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Sua matriz estendida:
$$\begin{bmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 1 & 3 & 2 & 0 \\ 1 & 5 & 3 & -2 & 0 \end{bmatrix}$$

• Escalonando a matriz estendida:

$$-\begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 2 & 1 & 3 & 2 & 0\\ 1 & 5 & 3 & -2 & 0\end{bmatrix} L_{2} \leftrightarrow L_{2} - 2L_{1} \begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 0 & 3 & 1 & -2 & 0\\ 0 & 6 & 2 & -4 & 0\end{bmatrix}$$

$$-\begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 0 & 3 & 1 & -2 & 0\\ 0 & 6 & 2 & -4 & 0\end{bmatrix} L_{3} \leftrightarrow L_{3} - 2L_{2} \begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 0 & 3 & 1 & -2 & 0\\ 0 & 0 & 0 & 0 & 0\end{bmatrix}$$

$$-\begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 0 & 3 & 1 & -2 & 0\\ 0 & 3 & 1 & -2 & 0\\ 0 & 0 & 0 & 0 & 0\end{bmatrix} L_{2} \leftrightarrow L_{2} - \frac{2}{3}L_{2} \begin{bmatrix}1 & -1 & 1 & 2 & 0\\ 0 & 1 & \frac{1}{3} & -\frac{2}{3} & 0\\ 0 & 0 & 0 & 0 & 0\end{bmatrix}$$

• Temos o sistema equivalente:

$$\begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 1 & \frac{1}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Ou seja: $\begin{cases} x y + z + 2w = 0 \\ y + \frac{1}{3}z \frac{2}{3}w = 0 \end{cases}$
- $\bullet \begin{cases}
 y = -\frac{1}{3}z + \frac{2}{3}w \\
 x = y z 2w = -\frac{4}{3}z \frac{4}{3}w
 \end{cases}$
- Logo, temos a solução: $(x, y, z, w) = \left(-\frac{4}{3}z \frac{4}{3}w, -\frac{1}{3}z + \frac{2}{3}w, z, w\right)$ = $z\left(-\frac{4}{3}, -\frac{1}{3}, 1, 0\right) + w\left(-\frac{4}{3}, \frac{2}{3}, 0, 1\right)$
- \bullet E o espaço de soluções: $Span_{\mathbb{K}}\left[\left(-\frac{4}{3},-\frac{1}{3},1,0\right),\left(-\frac{4}{3},\frac{2}{3},0,1\right)\right]$

Aula 10 - Determinantes

Introdução

Dada uma matriz quadrada de tamanho n com entradas em um corpo \mathbb{K} , ou seja, um elemento do \mathbb{K} -espaço vetorial $V = \mathbb{K}^n \times \cdots \times \mathbb{K}^n$, o determinante é uma função $det: V \to \mathbb{K}$. Melhor dizendo, procuramos uma função em que **podemos enviar uma matriz e receber um outro valor pertencente ao corpo que a matriz possui entradas**, como, por exemplo, temos uma matriz com entradas em \mathbb{R} e então podemos ligá-la ao \mathbb{R} . $(V \to \mathbb{R})$

Definindo a função (casos n' = 1 até n' = 3)

- 1. Considere a matriz $A = (a_{11})$, representante do sistema ax = b, assumimos que $det(A) = a_{11}$, vale notar que a condição fundamental para que o sistema seja possível (dado $b \neq 0$) é que $a \neq 0$.
- 2. Considere a matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, claramente, pode representar o sistema $\begin{cases} ax + by = r \\ cx + dy = s \end{cases}$, calculando o valor de x, temos (ad bc)x = rd sb e para y, (ad bc)y = bs rc. Para o sistema ser resolvido, temos a condição fundamental $ad bc \neq 0$. Nota-se, portanto, que ad bc deve ser um **invariante** da matriz, o qual define uma condição fundamental para que a mesma seja resolvida, temos, então, det(A) = ad bc.
- 3. Considere as matrizes

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 e
$$B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Definimos com essas matrizes o sistema $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$

Para resolver o sistema, dividimos em:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \end{cases}, \begin{cases} a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

e resolvemos cada um como fizemos no caso anterior, resultando em:

$$\begin{cases} (a_{21}a_{12} - a_{22}a_{11})x_2 + (a_{21}a_{13} - a_{11}a_{23})x_3 = b_3 \\ (a_{31}a_{22} - a_{21}a_{32})x_2 + (a_{31}a_{23} - a_{21}a_{33})x_3 = b_3 \end{cases}$$

Como condição para possibilidade do sistema, resolvendo de forma análoga ao item anterior, temos:

$$(a_{21}a_{12} - a_{22}a_{11})(a_{31}a_{23} - a_{21}a_{33}) - (a_{31}a_{22} - a_{21}a_{32})(a_{21}a_{13} - a_{11}a_{23})$$

$$= a_{21}a_{12}a_{23}a_{31} - a_{21}a_{12}a_{21}a_{33} - a_{22}a_{11}a_{23}a_{31} + a_{21}a_{11}a_{22}a_{33}$$

$$-a_{21}a_{13}a_{22}a_{31} + a_{22}a_{11}a_{23}a_{31} + a_{21}a_{13}a_{21}a_{32} - a_{21}a_{11}a_{23}a_{32}$$

Eliminando os zeros e o elemento em comum (o qual não deve influenciar o resultado da função, pois procuramos um invariante), temos:

- $= a_{12}a_{23}a_{31} a_{12}a_{21}a_{33} + a_{11}a_{22}a_{33} a_{13}a_{22}a_{31} + a_{13}a_{21}a_{32} a_{11}a_{23}a_{32}$
- $= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} (a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32})$

Estudando os casos dados

- Para estudar os casos dados, revisitamos os grupos de permutações, para o caso n=1, é trivial, para o caso n=2, temos a matriz: $\begin{bmatrix} 1 & 2 \\ \sigma(1) & \sigma(2) \end{bmatrix}$ representando uma permutação.
 - Obviamente, sabemos que a quantidade de permutações para n=2 é 2, sendo a permutação netura, em que nada é alterado, portanto, $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = \sigma_1 \leftrightarrow a_{11}a_{22}$, a permutação em que trocamos de lugar os elementos (apenas uma nesse caso), $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \sigma_2 \leftrightarrow a_{12}a_{21}$ (aqui associamos uma permutação com um dos termos do determinante da matriz 2×2 . Note que a permutação neutra (σ_0) se associa com o sinal positivo, e a permutação 1 (σ_1) se associa com o sinal negativo.
- Definimos aqui o conceito da paridade de permutações, dada uma permutação, sua paridade é definida pela quantidade de inversões que a mesma possui, isto é, todos os pares x, y tais que x < y e $\sigma(x) > \sigma(y)$. Por exemplo, na permutação $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$, analisamos os pares (1,2), (1,3), (2,3):
 - (1,2): 1 < 2; $\sigma(1)=3,\,\sigma(2)=1\rightarrow\sigma(1)>\sigma(2)\rightarrow 1$ inversão.
 - -(1,3): 1 < 3; $\sigma(1) = 3$, $\sigma(3) = 2 \to \sigma(1) > \sigma(3) \to 1$ inversão.
 - (2,3): 2 < 3; $\sigma(2)=1,\,\sigma(3)=2\rightarrow \neg(\sigma(2)>\sigma(3))\rightarrow$ sem inversão.
 - Total: 2 inversões
- O sinal associado à cada permutação, e, por consequência, a um termo do determinante, é relacionado com a paridade de sua permutação, se esta é par, o sinal é positivo, se não, é negativo, ou seja: $sign(\sigma) = (-1)^{n_i}$, sendo n_i a quantidade de inversões da permutação. No caso anterior, temos $n_i = 2$, portanto $sign(\sigma) = (-1)^2$, ou seja, positivo.

Definição do determinante

Podemos, então, definir a função determinante:

$$det(A) = \sum_{\sigma \in S_n} sign(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

Aula 11 - Determinantes (parte 2)

Permutações

Considere os polinômios das variáveis x_1, x_2, x_3 :

$$P_2(x_1, x_2) = x_1 - x_2$$

$$P_3(x_1, x_2, x_3) = (x_1 - x_2)(x_2 - x_3)$$

$$P_n(x_1, \dots, x_n) = \prod_{1 \le i \le j \le n} (x_i - x_j)$$

e defina:

$$\sigma P_2(x_1, x_2) = P_2(x_{\sigma(1)}, x_{\sigma(2)})$$

$$\sigma P_3(x_1, x_2, x_3) = P_3(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)})$$

Para o caso geral:

$$P_n(x_{\sigma(1)},\ldots,x_{\sigma(n)}) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

Note que $\sigma P_n \in \{P_n, -P_n\}$, pois a diferença dois-a-dois entre todos os monômios está definida, então, qualquer permutação apenas troca o sinal dessa diferença, é trivial que, portanto, para um número par de trocas, o sinal será positivo, e, caso contrário, será negativo. Logo, temos:

$$\sigma P_n = sign(\sigma) P_n$$

$$sign(\sigma \tau) = \frac{\sigma \tau P_n}{P_n} = \frac{\sigma(sign(\tau)P_n)}{P_n} = sign(\tau) \frac{sign(\sigma)P_n}{P_n} = sign(\sigma) sign(\tau)$$

Do último, temos que $sign: S_n \to \{1, -1\}$ é um homomorfismo de grupos, pois $sign(\sigma * \tau) = sign(\sigma) \times sign(\tau)$ (preserva as operações dos grupos).

Vale dizer que no. de permutações pares = ímpares = $\frac{n!}{2}$

Ciclos

Um k-ciclo é um elemento $\alpha \in S_n$ que "movimenta" $k \geq 2$ elementos, i_1, \ldots, i_k de $\{1, \ldots, n\}$ da seguinte forma:

$$\begin{cases} \alpha(i_j) = i_{j+1}, \text{ se } 1 \le j \le k-1 \\ \alpha(i_k) = i_1 \\ \alpha(l) = l, \forall l \notin \{i_1, \dots, i_k\} \end{cases}$$

Nesse caso, a notação para esse k-ciclo é $\alpha(i_1 \dots i_k)$ e o conjunto chamado de **suporte do ciclo** é $supp(\alpha) = \{i_1, \dots, i_k\}.$

Exemplificando, o 2-ciclo é uma transposição, onde apenas troca 2 elementos de lugar, ao passo que um 3-ciclo (134) para n=4 é a permutação:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

Note que dois ciclos disjuntos, isto é, seus respectivos suportes são disjuntos $(supp(\alpha) \cap supp(\beta) = \emptyset)$, comutam, ou seja, $\alpha\beta = \beta\alpha$, ciclos com tal propriedade são chamados de **ciclos disjuntos**.

Concluindo, temos:

1. Existem ciclos disjuntos $\alpha_1, \ldots, \alpha_r$ tais que $\alpha = \alpha_1 * \cdots * \alpha_r$

2. Cada ciclo α_i é um produto de m_i transposições.

3. α é um produto de $m_1 + \cdots + m_r$ transposições.

4. $sign(\alpha) = (-1)^m$

5. α é permutação par se, e somente se m é par.

Determinantes - Redução para dimensões menores

Na aula anterior, foi visto para o exemplo n=3 que o cálculo do determinante foi reduzido para um exemplo de n=2, o objetivo dessa seção é mostrar como reduzir de uma dimensão $n\in\mathbb{N}$ para n-1.

• Definição: Minor

Dada uma matriz $A \in M_n(\mathbb{K})$ (Matriz quadrada n por n, com entradas no corpo \mathbb{K}), seu minor A_{ij} $(1 \le i, j \le n)$ é a matriz que obtém retirando a linha i e coluna j de A, claramente, reduzindo seu tamanho de n para n-1. Exemplo:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} A_{21} = \begin{bmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{bmatrix} A_{31} = \begin{bmatrix} a_{12} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} A_{12} = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}$$

• Definição: Cofator

Definimos o cofator(i, j) como sendo

$$d_{i,j} = (-1)^{i+j} det(A_{ij})$$

• Fórmula: Determinante de uma matriz A à partir da redução de sua dimensão Pelo resultado anterior, sendo j_0 uma coluna fixada temos:

$$det_{n+1}(A) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$
$$= \sum_{i=1}^n (-1)^{i+j_0} a_{ij_0} det(A_{ij_0})$$
$$= \sum_{i=n}^n a_{ij_0} d_{ij_0}$$

Determinantes - det(A) = 0 quando uma linha (ou coluna) é repetida

Tal propriedade provém do caso base n=2, considere $A=\begin{bmatrix} a & b \\ a & b \end{bmatrix}$, calculando seu determinante, temos ab-ab=det(A)=0, sabemos também que o determinante de qualquer matriz, por exemplo, para uma matriz n=3, pode ser expresso como somas/diferenças de determinantes de matrizes 2x2, igualando a zero para n=3, e assim por diante (uma prova formal é um bom exercício).

Determinantes - Outras Propriedades

- $det(A) = det(A^t)$
- cof(A) é a matriz dos cofatores de A, isto é, a matriz obtida substituindo cada entrada de A por seu cofator.
- $adj(A) = cof(A)^t$ é a **matriz adjunta** de A, isto é, a transposta da matriz dos cofatores de A.

$$A^{-1} = \frac{adj(A)}{det(A)}$$

Aula 12 - Determinantes (parte 3)

Determinantes - Interpretação geométrica

Seja $A \in M_3(\mathbb{R})$, no curso de Vetores e Geometria foi visto que esta pode representar 3 vetores $\in \mathbb{R}^3$, e seu determinante representa o produto misto entre esses vetores. Relembramos aqui que tal produto misto representa o volume do paralelepído formado por estes 3 vetores.

Definimos aqui o volume de um sólido no \mathbb{K}^n -espaço vetorial, o mesmo deve ser definido pelos vetores v_1, \ldots, v_n :

$$P(v_1, \dots, v_n) = \left\{ \sum_{i=1}^n x_i v_i : x_i (0 \le x_i \le 1), \forall 1 \le i \le n \right\}$$

O volume será definido pelo produto misto entre esses vetores, o qual pode ser expresso por:

$$volume(P(v_1, ..., v_n)) = |[v_1, ..., v_n]| = |det_n(A)|,$$

onde A é matriz cujas columas são os vetores $v_1, ..., v_n$

Determinantes - Propriedades gerais

- 1. det(A) é invariante sob operações elementares (definidas na Aula 9) de linhas e colunas de A. Se houverem trocas de linhas, cada troca de linhas inverte o sinal do determinante, e, caso haja multiplicação de uma linha por escalar λ , o determinante de A' será $det(A') = \lambda det(A)$.
- 2. $det_n(A) = \sum_{i=1}^n a_{ij_0} d_{ij_0} = \sum_{j=1}^n a_{i_0j} d_{i_0j}$, onde d_{ij} são cofatores (i,j) de A.
- 3. $det(A) = det(A^t)$ e det(Id) = 1
- 4. O sistema linear AX=B tem uma solução única se, e somente se $det(A)\neq 0$
- 5. $det(AB) = det(A) \cdot det(B)$
- 6. $adj(A) \cdot A = A \cdot adj(A) = det(A) \cdot Id$
- 7. A é invertível se, e somente se $det(A) \neq 0$, e, nesse caso: $A^{-1} = \frac{1}{det(A)} \cdot adj(A)$

Grupo Linear Geral e Grupo Linear Especial

Definimos o GL (General Linear) e SL (Special Linear):

$$GL_n(\mathbb{K}) = \{ A \in M_n(\mathbb{K}) : det(A) \neq 0 \}$$

$$SL_n(\mathbb{K}) = \{ A \in M_n(\mathbb{K}) : det(A) = 1 \}$$

Aula 13

Homomorfismo de grupos - Definição

Dados dois grupos $(G_1, *)$ e (G_2, \circ) . Um homomorfismo de grupos é uma função:

$$f:G_1\to G_2$$

que satisfaz as seguintes propriedades, sendo e_1 e e_2 os elementos neutros dos grupos:

$$f(x * y) = f(x) \circ f(y)$$
$$f(e_1) = e_2$$

Isto é, a f preserva as operações desses grupos, temos, de imediato, que:

$$f(x^{-1}) = [f(x)]^{-1}$$

Núcleo e Imagem - Definição

Definimos aqui o núcleo e imagem de um homomorfismo de grupos $f: G_1 \to G_2$, considere e_2 como elemento neutro de G_2 :

$$Ker(f) = \{x \in G_1 : f(x) = e_2\} \subset G_1$$

 $Im(f) = \{f(x) : x \in G_1\} \subset G_2$

São subgrupos e respectivamente chamados de núcleo (Kernel) e imagem (Image) de f.

Homomorfismo de grupos - Exemplos

1. Considere $sign: (S_n, \circ) \to (\{1, -1\}, \cdot)$. Sabemos que sign satisfaz, sendo e a permutação $\in S_n$ neutra:

$$sign(a \circ b) = sign(a) \cdot sign(b)$$

 $sign(e) = 1$

2. Considere $det_n: GL_n(\mathbb{K}) \to (\mathbb{K}^*, \cdot)$, é um homomorfismo pois:

$$det(Id) = \overrightarrow{1}$$
$$det(AB) = det(A) \cdot det(B)$$

Note que: $Ker(det_n) = SL_n(\mathbb{K})$

Transformações Lineares e Funcionais Lineares - Definição

Sabemos que um espaço vetorial é um grupo abeliano sobre o qual é definida uma segunda operação, denotada por **multiplicação por escalar**. Aqui estendemos a noção de homomorfismos de grupos para espaços vetoriais, nessa situação, claramente é preciso levar em conta a multiplicação por escalar. Considere + como a operação num grupo abeliano.

Sejam V_1 e V_2 espaços vetoriais sobre um corpo \mathbb{K} . Uma **transformação linear** entre V_1 e V_2 é sempre denotada por:

$$T: V_1 \rightarrow V_2$$

Tal que

1.
$$T(v + w) = T(v) + T(w)$$

2.
$$T(\lambda v) = \lambda T(v)$$

Se $V_2 = \mathbb{K}$, então T é um funcional linear e denotamos como $T: V_1 \to \mathbb{K}$. Utilizamos o nome **linearidade** de T para nos referir às propriedades citadas acima:

$$T\left(\sum_{i=1}^{m} \lambda_i v_i\right) = \sum_{i=1}^{m} \lambda_i T(v_i)$$

Transformações Lineares e Funcionais Lineares - Núcleo e Imagem

Analogamente ao que foi definido para grupos, temos para Transformações e Funcionais Lineares:

$$Ker(T) = \{x \in V_1 : T(x) = \overrightarrow{0}\} \subset V_1$$

 $Im(T) = \{T(x) \in V_2 : x \in V_1\} \subset V_2$

Denotando $\overrightarrow{0}$ como o vetor nulo de ambos os espaços vetoriais, temos:

$$T(\overrightarrow{0}) = \overrightarrow{0}$$

Note que Ker(T) e Im(T) são subgrupos e subespaços vetoriais.

Nulidade e Posto - Definição

Seja $T: V_1 \to V_2$ uma transformação linear entre K-espaços vetoriais, definimos:

a. Nulidade de
$$\mathbf{T} = N(T) = dim_{\mathbb{K}}(Ker(T))$$

b. Posto de $\mathbf{T} = P(T) = dim_{\mathbb{K}}(Im(T))$

Seja $T: V_1 \to V_2$ uma transformação linear entre K-espaços vetoriais.

- Se T é uma função injetora, T é um monomorfismo.
- \bullet Se T é uma função sobrejetora, T é um **epimorfismo**.
- Se T é uma bijeção, T é um **isomorfismo**.
- Se $V_1 = V_2$, T é um **operador linear**, em vez de transformação linear.

Injetividade de Transformações Lineares

Seja $T: V_1 \to V_2$ uma transformação entre K-espaços lineares.

- 1. T é um monomorfismo se, e somente se $Ker(T) = \{\overrightarrow{0}\}\$
- Prova do item 1:

$$T(x) = T(y) \leftrightarrow T(x - y) = \overrightarrow{0} \leftrightarrow x - y \in Ker(T)$$

Portanto, temos que $Ker(T) = \{\overrightarrow{0}\}$ se, e somente se $T(x) = T(y) \to x = y$

- 2. Se T é um isomorfismo linear, então $T^{-1}:V_2\to V_1$ existe e é linear, e $dim_{\mathbb{K}}(V_1)=dim_{\mathbb{K}}(V_2)$
- Prova do item 2:

Sendo T uma bijeção, a existência da inversa é trivial, portanto, provaremos apenas sua linearidade.

Seja z = T(x), w = T(y) e $\lambda \in \mathbb{K}$, logo, T(x) + T(y) = z + w, $T(\lambda x) = \lambda T(x)$, tem-se que:

$$T^{-1}(z) = x e T^{-1}(w) = y$$

 $T^{-1}(z+w) = x + y = T^{-1}(z) + T^{-1}(w)$
 $T^{-1}(\lambda z) = \lambda T(z)$

O que prova a linearidade de T. Note que T^{-1} é um isomorfismo linear.

Considere $n = dim_{\mathbb{K}}(V_1)$ e $\beta = \{v_1, \ldots, v_n\}$ uma base de V_1 . Como T é sobrejetora, temos que $z \in V_2 \to \exists x \in V_1(T(x) = z)$. Dado que β é uma base de V_1 , e considerando $\lambda_i \in \mathbb{K}$ podemos escrever x como $x = \sum_{i=1}^n \lambda_i v_i$, pela linearidade de T, temos $T(x) = \sum_{i=1}^n T(\lambda_i v_i) = \sum_{i=1}^n \lambda_i T(v_i)$. Como não houve perda de generalidade na suposição de z, podemos escrever qualquer $z \in V_2$ como $T(\beta) = \{T(v_1), \ldots, T(v_n)\}$, logo, temos que $T(\beta)$ é conjunto gerador de V_2 , e, portanto, deste podemos extrair uma base, o que nos dá $dim_{\mathbb{K}}(V_1) = n = |\beta| = |T(\beta)| \ge dim_{\mathbb{K}}(V_2)$, no entanto, como T^{-1} é um isomorfismo linear, sabemos que $dim_{\mathbb{K}}(V_2) \ge dim_{\mathbb{K}}(V_1)$, resultando em $dim_{\mathbb{K}}(V_2) = dim_{\mathbb{K}}(V_1)$.

Transformações Lineares - Exemplos

- 1. Considere a função traço, $Tr:(M_n(\mathbb{K}),+)\to (\mathbb{K},+)$, tal função recebe uma matriz e retorna a soma de todos os valores da sua diagonal principal $a_{ii}, i \in [1,n]$. Percebe-se que Tr é um homomorfismo de grupos abelianos, e também uma transformação linear, pois: $Tr(\lambda A) = \lambda Tr(A)$, com $\lambda \in \mathbb{K}$, segue Tr é um funcional linear (transformação do espaço vetorial ao corpo em qual o espaço está definido sobre).
- 2. Seja $V = C(\mathbb{R}, \mathbb{R})$ o espaço vetorial das funções contínuas de \mathbb{R} em \mathbb{R} , sobre esse espaço, definimos a seguinte função:

$$T(f) = \int_{0}^{1} f(x)dx$$

Dos cursos anteriores, sabemos que:

$$T(f + \lambda g) = \int_{0}^{1} [f(x) + \lambda g(x)] dx = \int_{0}^{1} f(x) dx + \lambda \int_{0}^{1} g(x) dx$$

= $T(f) + \lambda T(g)$

Note que T é um **funcional** linear sobre V. Ker(T) são todas as função cuja integral de 0 a 1 é igual a 0. Como $f(x) = \frac{1}{2} - x$.

3. Seja $V = C^{\infty}(\mathbb{R}, \mathbb{R})$ e $T: V \to V$ e definimos a função T como

$$T(f) = f'$$

Lembramos que:

$$T(f + \lambda g) = (f + \lambda g)' = f' + \lambda g' = T(f) + \lambda T(g)$$

Verificado que T é um homomorfismo de grupos abelianos (pois as operaçõe se mantém) sobre os quais a multiplicação por escalar vale, assim como para a função T, temos que, sabendo que o domínio e o contradomínio da função são os mesmos, T é um operador linear. Note também que Ker(T) é o conjunto das funções constantes, implicando f' = 0.

4. Seja $T: \mathbb{R}^3 \to \mathbb{R}$, definida por T(x, y, z) = x (a projeção na primeira coordenada). Sendo u = (x, y, z) e v = (a, b, c), ambos $\in \mathbb{R}^3$ e $\lambda \in \mathbb{R}$, temos

$$T(u + \lambda v) = T(x + \lambda a, y + \lambda b, z + \lambda c) = x + \lambda a = T(u) + \lambda T(v)$$

Aula 14 - Transformações Lineares (Parte 2)

Teorema - Imagem/Núcleo em Posto/Nulidade

Seja $T:V_1\to V_2$ uma transformação linear entre \mathbb{K} -espaços vetoriais de dimensão finita, então, temos

- 1. $dim(V_1) = dim(Ker(T)) + dim(Im(T))$
- 2. $dim(V_1) = N(T) + P(T)$

Transformação Linear - Propriedade Fundamental

Seja $T:V\to W$ uma transformação linear entre \mathbb{K} -espaços vetoriais de dimensão n e m, respectivamente. Seja α uma base $\{v_1,\ldots,v_n\}$ de V.

Logo, dado $v \in V$ existem $x_1, \ldots, x_n \in \mathbb{K}$ tais que

$$v = \sum_{i=1}^{n} x_i v_i,$$
 logo,

$$T(v) = \sum_{i=1}^{n} x_i T(v_i)$$