# Scaling Hidden Markov Language Models

Anonymous

2020

#### Motivation for HMMs

- Generative process separates the generation of the latent representations from the observed
  - LSTMs couple the two
- Discrete latent representations
  - Improves performance in low-resource classification (citation todo)

#### HMM LMs

- Previously thought to be very poor language models
  - ▶ Improved performance by departing from HMM structure and turning them into RNNs (Buys et al., 2018)
- ► HMMs performance can be vastly improved by scaling the number of hidden states

#### **HMMs**



Joint distribution

$$p(\mathbf{x}, \mathbf{z}; \theta) = \prod_{t=1}^{T} p(x_t \mid z_t) p(z_t \mid z_{t-1})$$

We shorten the emission matrix  $p(x_t \mid z_t)$  to **O**.

### Training HMMs

- ► Computing the likelihood of the observed sentence is  $O(T|\mathcal{Z}|^2)$ , scaling poorly in the number of states
- ► Tabular parameterizations of distributions are difficult to optimize
- We present three tricks to mitigate these issues

## 3 Tricks 4 Scaling HMMs

- ► A block-sparse emission matrix reduces the computational cost of computing the likelihood
- A compact (neural) parameterization of the transitions and emissions aides optimization
- State dropout further reduces computational cost and reduces overfitting

### Block-sparse Emissions

Constrain emissions to

$$\mathbf{O} = \begin{bmatrix} \mathbf{O}^1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \mathbf{O}^M \end{bmatrix}$$

- Each block O<sub>m</sub> contains k latent states and a variable number of tokens
- ▶ Results in a serial complexity of  $O(Tk^2)$  for computing the likelihood

# Block-sparse Emissions



#### **Neural Parameterization**

- Compute transition and emission parameters using a neural network
  - lackbox State embeddings  $oldsymbol{\mathsf{E}}_z \in \mathbb{R}^{|\mathcal{Z}| imes h/2}$
  - ▶ Token embeddings  $\mathbf{E}_{x} \in \mathbb{R}^{|\mathcal{X}| \times h}$
  - ▶ Block embeddings  $\mathbf{E}_m \in \mathbb{R}^{M \times h/2}$



### State Dropout

- Sample a dropout mask  $\mathbf{b}_m \in \{0,1\}^k$  for each block  $\mathbf{O}_m$
- ightharpoonup Concatenate into a global vector  $\mathbf{b} = \langle \mathbf{b}_1, \dots, \mathbf{b}_M \rangle$



### Results on PTB

| Model                                | # Params | Val PPL | Test PPL |
|--------------------------------------|----------|---------|----------|
| KN 5-gram                            | 2M       | -       | 141.2    |
| AWD-LSTM                             | 24M      | 60.0    | 57.3     |
| 256 FF 5-gram                        | 2.9M     | 159.9   | 152.0    |
| 2x256 dim LSTM                       | 3.6M     | 93.6    | 88.8     |
| HMM + RNN                            | 10M      | 142.3   | _        |
| HMM ( $ \mathcal{Z} $ =900)          | 10M      | 284.6   | _        |
| VL-NHMM ( $ \mathcal{Z}  = 2^{15}$ ) | 7.7M     | 125.0   | 115.8    |
|                                      |          |         |          |

#### Results on WikiText2

| Model                              | # Param | Val PPL | Test PPL |
|------------------------------------|---------|---------|----------|
| KN 5-gram                          | 5.7M    | 248.7   | 234.3    |
| AWD-LSTM                           | 33M     | 68.6    | 65.8     |
| 256 FF 5-gram                      | 8.8M    | 210.9   | 195.0    |
| 2×256 LSTM                         | 9.6M    | 124.5   | 117.5    |
| VL-NHMM ( $ \mathcal{Z} =2^{15}$ ) | 13.7M   | 169.0   | 158.2    |

#### State Size Ablation



Perplexity on PTB by state size  $|\mathcal{Z}|$  ( $\lambda=0.5$  and M=128)

# **Bibliography**

Jan Buys, Yonatan Bisk, and Yejin Choi. 2018. Bridging hmms and rnns through architectural transformations.