Junho Choi

Columbia Sustainable Development

September 13, 2025

CU Environmental and Resource Economics Workshop

 Motivation
 Data and methods
 Findings
 Future work

 ●000
 000000
 000000
 000000

Motivation: Computation and Electricity Usage

- Estimated floating-point operations for Gemini 1.0: 5×10^{25}
- ullet A modern laptop pprox 1 trillion FLOPs per second ightarrow 1.6 million years
- BOTE calculation: "enough to power a small city for a year" (6-10K HH)

Why Gemini 1.0 and Iowa?

Gemini 1.0 training: one of the most computationally intensive

Data center at Council Bluffs, IA

- Well-connected to wind and solar
- Marginal emissions: such locations are still connected to fossil-fuel power plants
- Suspected deployment of TPUs (Patel, Nishball, & Ontiveros 2024)
- Other candidate: Mayes County, OK evidence of TPU presence (Morgan 2022)

Figure: Council Bluffs, IA data center (Davis 2017)

Main cost of Al training: electricity

PPA

- Data centers: power purchasing agreements (Verge 2014; EDF 2017)
- PPAs as price hedges (Pombo-Romero et al. 2024)

"Hidden" cost: environment and climate

Main cost of Al training: electricity

PPA

- Data centers: power purchasing agreements (Verge 2014; EDF 2017)
- PPAs as price hedges (Pombo-Romero et al. 2024)

What about the **social costs** of Al training?

- Price shocks to unprotected consumers & busi. (Penn and Weise 2025)
- Emissions: when computationally intensive, is energy demand at data centers sufficiently met by renewables?
- If relying on fossil fuels, is Google doing enough in offset efforts?
- Potential health and labor consequences? (Almond, Choi, and Papp WP)

0000

More context & potential contribution

Fossil fuel plants: electrically proximate + generative capacity↑

More context & potential contribution

Fossil fuel plants: electrically proximate + generative capacity↑

Research Question: Is there evidence that Google's Gemini 1.0 training led to significant rise in emissions (CO_2, NO_x, SO_2) ?

Suspected timeline

- April 2023: Google DeepMind is AI effort is announced (Deepmind 2023)
- May 2023: Official "Gemini still in training" (Google 2023)
- Aug-Sep 2023: Paywalls being setup, and recruitment of testers (Thompson 2025)
- Nov 2023: Still in fine-tuning but Deepmind CEO "happy" CNBC 2023
- Dec 2023: Official launch of Gemini 1.0

Suspected timeline

- April 2023: Google DeepMind is AI effort is announced (Deepmind 2023)
- May 2023: Official "Gemini still in training" (Google 2023)
- Aug-Sep 2023: Paywalls being setup, and recruitment of testers (Thompson 2025)
- Nov 2023: Still in fine-tuning but Deepmind CEO "happy" CNBC 2023
- Dec 2023: Official launch of Gemini 1.0

(just a sketch!)

Assembling the dataset

Emissions data – Continuous Emissions Monitoring System

- Power plant-level hourly data on NO_x, SO₂, CO₂ emissions (in mass) and heat input (in BTU); also available from PUDL
- CO₂ focus, but also SO₂: potentially health channel
 - EPA and WHO: acute respiratory attacks and forms PM
- Missing: exact mix of fuels plants are using
- TBC: transport modeling (AERMOD; suitable for short-range)

Emissions data - Continuous Emissions Monitoring System

- Power plant-level hourly data on NO_x, SO₂, CO₂ emissions (in mass) and heat input (in BTU); also available from PUDL
- CO₂ focus, but also SO₂: potentially health channel
 - EPA and WHO: acute respiratory attacks and forms PM
- Missing: exact mix of fuels plants are using
- TBC: transport modeling (AERMOD; suitable for short-range)

Locational marginal prices by node – MISO:

- Midcontinent Independent System Operator (MISO)
- Focus on North (e.g., IA, MT, MN) and Central regions (e.g., WI, MO), excluding Manitoba and South region
- Congestion components of LMP at the hourly level

Assembling the dataset

Emissions data – Continuous Emissions Monitoring System

- Power plant-level hourly data on NO_x, SO₂, CO₂ emissions (in mass) and heat input (in BTU); also available from PUDL
- CO₂ focus, but also SO₂: potentially health channel
 - EPA and WHO: acute respiratory attacks and forms PM
- Missing: exact mix of fuels plants are using
- TBC: transport modeling (AERMOD; suitable for short-range)

Locational marginal prices by node – MISO:

- Midcontinent Independent System Operator (MISO)
- Focus on North (e.g., IA, MT, MN) and Central regions (e.g., WI, MO), excluding Manitoba and South region
- Congestion components of LMP at the hourly level

Weather data – ECWMF and ERA5:

Access through Openmeteo historical data API

Methodology

Difference-in-differences setup

$$Y_{i,t} = \beta \left(T_i \times C_t \right) + X_{i,t} \gamma + \rho_i + \iota_{\mathsf{ym}(t)} + \epsilon_{i,t}$$

- $Y_{i,t}$: heat content (BTU) or emissions (CO₂, SO₂, NO_x)
- $T_i \in \{0,1\}$: =1 if plant i is "electrically proximate"
- $C_t \in \{0,1\}$: =1 if day t falls within training window (May-Sep 2023); trials with different timings as well
- ρ_i , $\iota_{ym(t)}$: fixed effects
- $X_{i,t}$: weather, (local) economic variables, etc.

Accompanied by a similar event-study (with control groups) setup

Electrical proximity

Currently using simpler, congestion-driven LMP differences to identify electrical proximity (Godin and Ibrahim 2021; also ideas from Brown, Zarnikau, & Woo 2020; Bushnell, Mansur, & Saravia 2008)

- ightarrow strong co-movement of congestion price indicates injection/withdrawals are jointly limited by the same bottlenecks
 - Identify the "demand node" that Council Bluffs DC is connected to
 - Identify the power plants linked with each generation node ("gennode") within MISO North and Central
 - So For the demand node and each gennode, calculate the correlation of congestion component of LMP. Specifically, fix the timeframe to a pre-training period
 - \blacksquare Rank the said correlations, defining \geq 90pct as "treated" and < 60pct as "control"

Alternative: resistance-based method, requiring specific transmission line-level information (FOIA + CEII form application for FERC Form 715 underway)

Electrical proximity (continued)

Electrical proximity (continued)

	Electrical proximity			
Variable	Far	Close	t	
Total MW	394.7	344.4	0.41	
Natural gas	0.59	0.83	-1.29	
Coal	0.34	0.00	3.84	
N	29	6		

ightarrow Proceeding with natural gas power plants

Pre-trend comparisons

Figure: Comparison of CO₂ emissions

Figure: Comparison of NO_x emissions

ightarrow suggestive that training may have started before May 2023

Diff-in-diff results, natural gas power plants

	DV: Daily CO ₂ emissions (kilotons)				
	(1)	(2)	(3)	(4)	
Gemini 1.0 training	0.888**	0.888** 0.864***		0.822***	
	(0.067)	67) (0.072) (0.068)		(0.822)	
Gemini 1.5 training		0.081		0.101	
		(0.050)		(0.052)	
Gemini 1.5 Flash		-0.603***		-0.552	
Fine-tuning		(0.040)		(0.043)	
	DV: Daily heat input (billions of BTU)				
	(1)	(2)	(3)	(4)	
Gemini 1.0 training	15.46***	14.93***	14.51***	14.08***	
	(1.069)	(1.133)	(1.094)	(1.172)	
Gemini 1.5 training		0.680 1			
		(2.781)		(0.642)	
Gemini 1.5 Flash		-11.72***		-10.69***	
Fine-tuning		(0.353)		(0.422)	
FE	— Year-month, power plant —				
Weather controls	N	Υ	N	Υ	
Additional controls	 Local economic conditions — 				
N	— 30,322 —				

Note: Reporting difference-in-differences results. Clustered (plant groups) SE in parentheses. ***: p < 0.01, **: p < 0.05.

During the suspected training period, CO₂ (and heat input) significantly higher for electrically proximate plants

 ≈0.57SD↑ in daily CO₂ emissions

Other training / fine-tuning

- G1.5 training: Oct-Dec 2023
- G1.5 fine-tuning: Mar-Apr 2023
- "Gemini 1.5 has been training in parallel": likely adding onto 1.0, not from scratch

	DV: Daily SO ₂ emissions (tons)					
	(1)	(2)	(3)	(4)		
Gemini 1.0 training	0.211	0.239	0.213	0.240		
	(0.080)	(0.092)	(0.086)	(0.097)		
Gemini 1.5 training		0.228		0.226		
		(0.093)		(0.094)		
Gemini 1.5 Flash		0.222		0.218		
Fine-tuning		(0.094)		(0.090)		
	DV: Daily NO _x emissions (tons)					
	(1)	(2)	(3)	(4)		
Gemini 1.0 training	0.123	0.144	0.102	0.123		
	(0.080)	(0.088)	(0.089)	(0.096)		
Gemini 1.5 training		0.183		0.192*		
		(0.067)		(0.063)		
Gemini 1.5 Flash		0.146		0.153		
Fine-tuning		(0.063)		(0.058)		
FE	— Year, month, power plant —					
Weather controls	N	Υ	N	Υ		
Additional controls	 Local economic conditions — 					
N	— 30,322 —					

NOx and SO2: not significant

- Likely due to natural gas
- Potentially differences in scrubber uses

Note: Reporting difference-in-differences results. Clustered (plant groups) SE in parentheses. * : p < 0.1.

Event study results

- Calculated relative to Jan 2023, due to training window uncertainty
- Pre-trends are not ideal; unsure what is occurring on April 2023

Sensitivity checks (CO2) with control group definitions

- Slight non-linearity
- \bullet In general, more stringent conditions to define a control group \rightarrow greater DiD estimates

Continuous treatment

	DV: Daily CO ₂ emissions (kilotons)				
	(1)	(2)	(3)	(4)	
Gemini 1.0 training	0.908***	0.883***	0.863***	0.843***	
	(0.057)	(0.060)	(0.060)	(0.822)	
Gemini 1.5 training		0.071	0.071 0.0		
		(0.030)		(0.032)	
Gemini 1.5 Flash		-0.603***		-0.554***	
Fine-tuning		(0.027)		(0.028)	
	DV: Daily NOx emissions (tons)				
	(1)	(2)	(3)	(4)	
Gemini 1.0 training	0.100	0.116	0.078	0.094	
	(0.049)	(0.054)	(0.055)	(0.060)	
Gemini 1.5 training		0.139*		0.147*	
		(0.051)		(0.051)	
Gemini 1.5 Flash		0.109*		0.115*	
Fine-tuning		(0.045)		(0.044)	
FE	— Year-month, power plant —				
Weather controls	N	Υ	N	Υ	
Additional controls	-	Local econor	nic conditior	ns —	
N	— 39,822 —				

Note: Reporting difference-in-differences results. Clustered (plant groups) SE in parentheses. *** : p < 0.01, ** : p < 0.05.

Continuous treatment: coarsely generated from electrical proximity, normalized to be in [0, 1]

- Suggestions for a better continuous treatment?
- Aligned with discrete treatment results
- Slightly more NOx in the latter periods (barely stat. sig.)

Google's decarbonization pledge?

BIG

IF we are to believe the estimated effects...

Our pledge to support carbon removal solutions

- Google pledged \$35M in carbon removal credits
- Equivalent to \sim 686k tCO₂ (using SCC = \$51/t) or \sim 184k tCO₂ (using SCC = \$190/t)
- Extra emissions from 5 plants over 4 months: ~480k tCO₂
- This equals \sim 70% of pledge (SCC \$51/t) or \sim 260% of pledge (SCC \$190/t)

otivation Data and methods Findings Future work 0000 00000 00000 00000 €0000

Potential network or spillover effects?

Figure: Energy imports into Bonneville Power Authority

- Potential evidence that Google's resource shifts are causing spillovers to other data centers, such as that in The Dalles, OR
- Fossil fuel energy (e.g., from ID and WY) likely to reach, say, Pacific NW due to projects like Boardman-to-Hemingway (B2H) single-circuit line

Hints of spillover effects

Table: Transmission Flow Effects by Plant and Training Period

	Plant 4162			Plant 8066		
Variable	CO_2	NO_{\times}	SO_2	CO_2	NO_{\times}	SO_2
PACE-to-BPAT, not training	0.138	0.098	0.104	0.249	0.183	0.202
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
PACE-to-BPAT, training	0.195	0.141	0.092	0.457	0.288	0.350
	(0.005)	(0.005)	(0.006)	(0.004)	(0.005)	(0.004)
Dependent variable SD	0.075	0.083	0.063	0.152	0.106	0.137
DOW FE	— Yes —					
Hour-of-day FE	— Yes —					
Year FE	— Yes —					
Month FE			— Y	es —		
Number of observations		124,917			166,566	

NOTE: All variables are scaled by their respective **standard deviations**. Robust standard errors (SE) in parentheses. All estimates statistically significant at $\alpha=0.01$. "Training" period refers to the suspected training period for Gemini 1.0, which is from June 2023 to November 2023. PACE-to-BPAT transmission is measured in MWh, CO_2 is measured in 1,000s of metric tonnes, and SO_2 and NO_3 are measured in metric tonnes. All observations are at the hourly level.

Extension to Mayes County, OK

Google Cloud unveils world's largest publicly available ML hub with Cloud TPU v4, 90% carbon-free energy

HOME - NEWS - THE ENERGY & SUSTRINABILITY CHANNES

Google signs PPA with Leeward to power Oklahoma data center operations

The energy will be supplied from a 724MW portfolio of solar assets

Google has signed a series of Power Purchase Agreements (PPA) with Leeward Energy for energy from 7246/W of sola

The solar portfolio comprises three large-scale installations strategically located adjacent to Google's data center in Piyor, Oklahomia.

- Location of Google's TPU v4 Pod cluster (world's largest public ML cluster, 2022)
- High energy efficiency: PUE \sim 1.10 and \sim 90% carbon-free grid mix
- Strong grid capacity in OK, with cheaper electricity relative to other regions
- Central U.S. geography: lower latency and good connectivity to both coasts
- Purpose-built for Al training workloads (supporting JAX, PyTorch, TensorFlow)
- Similar to IA center, Mayes County OK: a focal point for large-scale AI training

Next steps

- Construct engineering-based electrical proximity relying on transmission + resistance for further robustness
 - Requires information from FERC Form 715
- Incorporate Mayes County, Oklahoma data
 - Arguably the largest evidence on TPUv4/v5e deployment
 - ullet More computational efficiency o more energy use?
- Open Potential shift-share IV design for labor or health outcomes
 - Homebase data: worker-level data (hats off to Hannah Farkas!)
 - Impact through elec. price channel (e.g., Deschênes 2011)?
 - Shares as (normalized) elec. prox.; shift as training periods
- Possible expansions to Al usage?
 - Fradkin WP: comparisons of Al usage through OpenRouter
- TBA: Your suggestions!

THANK YOU!

Questions, comments, criticisms, & potential collaboration at:

jc5341@columbia.edu

