Лабораторная работа № 3.3.6 Влияние магнитного поля на проводимость полупроводников

Баранов Михаил

November 2, 2022

Цель работы: Измерение зависомости сопротивления полупроводников от магнитного поля в них.

В работе используются: стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции III1-10, образцы (InSb) монокристаллического антимонида индия птипа.

Экспериментальная установка: Схема установки для исследования магнетосопротивления полупроводников и геометрического резистивного эффекта представлена на рис. 1.

Puc. 1. Схема установки для исследования влияния магнитного поля на проводимость полупроводников

В зазоре электромагнита создаётся постоянное магнитное поле. Ток питания магнита подаётся от источника постоянного напряжения GPR-11H30D, регулируется ручками управления источника (R_1) и измеряется амперметром источника A_1 . Магнитная индукция в зазоре электромагнита определяется при помощи измерителя магнитной индукции Ш1-10 (описание прибора расположено на установке).

Образец в форме кольца (диск Корбйно) или пластинки, смонтирован- ный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа К сквозь образец течёт ток, величина которого измеряется миллиамперметром A_2 и регулируется реостатом R_2 Балластное сопротивление R_0 ограничивает ток через образец. Измеряемое напряжение подаётся на вход цифрового вольтметра B7 - 78/1

Калибровка магнита

I, mA	B, mT
0	12
50	81
100	144
150	197
200	248
250	304
300	338
350	360
390	370
$\sigma I = 10 \mathrm{mA}$	$\delta B = 0.01$

Измерим зависимость напряженности магнитного поля в зазоре электромагнита от тока через него. Занесем результаты в Taблицу. Построим $\Gamma pa\phiu\kappa$ зависимости $B(I_M)$:

Table 1: Калибровка магнита

Результаты измерений

Обработка результатов

$$U = IR_0(1 + (\mu B)^2) \tag{1}$$

Так как $IR_0=U_0$ найдем подвижность μ как угловой коэфициент графика $\mu=5.1\pm0.5$ I=10mA,U=680mV тогда R=68 Ом $_0=3,861*10^-3$ Ом/м, $\sigma_0=259$ м/Ом Параллелопипед также имеет линейную зависимость от B^2 однако график идет не из нуля, значит функция имеет другой коэфициент прямой.

Вывод

Мы измерили подвижность носителей заряда для антимонида индия. Результаты попали в порядок табличных величин. У данных высокая воспроизводимость и относительно низкая погрешность.