Andre Milzarek · Fall Semester 2020/21

MDS 6106 – Introduction to Optimization

Solutions 2

Exercise E2.1 (Optimization Problem I):

Consider the function $f_{\alpha}: \mathbb{R}^2 \to \mathbb{R}$,

$$f_{\alpha}(x) := \alpha x_1^2 + x_2^2 - 2x_1x_2 - 2x_2$$

where $\alpha \in \mathbb{R}$ is a scalar.

- a) Find the stationary points (in case they exist) of f_{α} for each value of α .
- b) For each stationary point x^* in part a), determine whether x^* is a local maximizer or a local minimizer or a saddle point of f_{α} .
- c) For which values of α can f_{α} have a global minimizer?

Solution:

a) The gradient and Hessian of f_{α} are given by

$$\nabla f_{\alpha}(x) = \begin{pmatrix} 2\alpha x_1 - 2x_2 \\ 2x_2 - 2x_1 - 2 \end{pmatrix}, \quad \nabla^2 f_{\alpha}(x) = \begin{pmatrix} 2\alpha & -2 \\ -2 & 2 \end{pmatrix}$$

and it holds that

$$\nabla f_{\alpha}(x) = 0 \iff x_2 = x_1 + 1 \text{ and } 2\alpha x_1 - 2x_1 = 2$$

which implies $(\alpha - 1)x_1 = 1$. This equation only has a solution if $\alpha \neq 1$. In this case, we obtain

$$x_1^* = \frac{1}{\alpha - 1}, \quad x_2^* = 1 + \frac{1}{\alpha - 1} = \frac{\alpha}{\alpha - 1}.$$

This is also the unique stationary point of f_{α} .

b) We have

$$\operatorname{tr}(\nabla^2 f_{\alpha}(x)) = 2\alpha + 2 = 2(\alpha + 1), \quad \det(\nabla^2 f_{\alpha}(x)) = 4\alpha - 4 = 4(\alpha - 1) \quad (\forall x).$$

Consequently, if $\alpha < 1$, the Hessian is indefinite and x^* is a saddle point. If $\alpha > 1$, then $\nabla^2 f_{\alpha}(x)$ is positive definite and x^* is a local minimizer of f_{α} .

c) The function f_{α} can only have a global minimizer if $\alpha > 1$. In the case $\alpha \leq 1$, f_{α} is unbounded and it does not possess a global minimizer (all stationary points are saddle points). Moreover, since the mapping f_{α} is quadratic (i.e., the Hessian $\nabla^2 f_{\alpha}(x)$ does not depend on x), the positive definiteness of the Hessian implies that f_{α} is strongly convex for all $\alpha > 1$. Hence, x^* is the unique global solution of $\min_x f_{\alpha}(x)$ in this situation.

Exercise E2.2 (Optimization Problem II):

We consider the optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) = \frac{1}{2} x_1^2 x_2^2 + \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 - 2x_1.$$

- a) Is the function f coercive?
- b) Calculate the gradient and Hessian of f and determine all stationary points of f.
- c) Show that f has a unique global minimizer.
- d) Is the mapping f convex?

Solution:

a) Yes, the function f is coercive. To see this, we use the estimate

$$f(x) \ge \frac{1}{2}(x_1^2 - 4x_1 + 4) + \frac{1}{2}x_2^2 - 2 = \frac{1}{2}(x_1 - 2)^2 + \frac{1}{2}x_2^2 - 2.$$

Obviously the latter lower bound converges to $+\infty$ if either $|x_1| \to \infty$ or $|x_2| \to \infty$. This establishes coercivity of f.

b) It holds that

$$\nabla f(x) = \begin{pmatrix} x_1 x_2^2 + x_1 - 2 \\ x_1^2 x_2 + x_2 \end{pmatrix}, \quad \nabla^2 f(x) = \begin{pmatrix} x_2^2 + 1 & 2x_1 x_2 \\ 2x_1 x_2 & x_2^2 + 1 \end{pmatrix}.$$

Furthermore, we have $\nabla f(x) = 0$ if and only if $x_2(1 + x_1^2) = 0$ which implies $x_2 = 0$ and $x_1 = 2$. Thus, $x^* = (2,0)^{\top}$ is the single stationary point of f.

- c) Since f is coercive, it possesses a global solution. Every global solution of $\min_x f(x)$ is a stationary point of f. Since f has only one stationary point, this implies that x^* is the unique global solution of the problem $\min_x f(x)$.
- d) We have $tr(\nabla^2 f(x)) = x_1^2 + x_2^2 + 2 \ge 0$ and

$$\det(\nabla^2 f(x)) = (x_1^2 + 1)(x_2^2 + 1) - 4x_1^2 x_2^2 = -3x_1^2 x_2^2 + x_1^2 + x_2^2 + 1.$$

Consequently, setting $x_1 = x_2 = \sqrt{2}$, we obtain $\det(\nabla^2 f(x)) = -3 \cdot 4 + 2 + 2 + 1 = -7$ which shows that $\nabla^2 f(x)$ is indefinite at $x = (\sqrt{2}, \sqrt{2})^{\top}$. Hence, f can not be convex on \mathbb{R}^2 .

Exercise E2.3 (Convex Sets and Convex Functions):

In this exercise, we investigate convexity of sets and functions.

- a) Let $A \in \mathbb{R}^{n \times n}$ be a given symmetric and positive semidefinite matrix and consider the set $X := \{x \in \mathbb{R}^n : x^\top Ax \leq 0\}$. Show that the set X is convex.
- b) Show that the function $f: \mathbb{R}^2_{++} \to \mathbb{R}$, $f(x) = x_1^2 2x_1x_2 + x_2^2 \ln(x_1x_2)$ is strictly convex on $\mathbb{R}^2_{++} := \{x \in \mathbb{R}^2 : x > 0\}$.
- c) Determine whether the function $f(x) = -x_1^2 x_2^2 2x_3^2 + x_1x_2$ is convex or concave.
- d) Show that the hyperbolic set $\{x \in \mathbb{R}^2_+ : x_1x_2 \ge 1\}$ is convex, where $\mathbb{R}^2_+ := \{x \in \mathbb{R}^2 : x \ge 0\}$.

Hint: Rewrite the condition " $x_1x_2 \ge 1$ " in a suitable way.

Solution:

- a) Since the matrix A is symmetric and positive semidefinite, the mapping $f(x) = x^{\top}Ax$ is convex. As a consequence the level set $L_{\leq 0} := \{x \in \mathbb{R}^n : f(x) \leq 0\} = X$ is convex. (See lecture L-05, slide 15).
- b) We calculate the gradient and Hessian of f. It holds that

$$\nabla f(x) = \begin{pmatrix} 2x_1 - 2x_2 - \frac{1}{x_1} \\ 2x_2 - 2x_1 - \frac{1}{x_2} \end{pmatrix}, \quad \nabla^2 f(x) = \begin{pmatrix} 2 + \frac{1}{x_1^2} & -2 \\ -2 & 2 + \frac{1}{x_2^2} \end{pmatrix}$$

Furthermore, we have $\operatorname{tr}(\nabla^2 f(x)) = 4 + \frac{1}{x_1^2} + \frac{1}{x_2^2} > 4$ for all $x \in \mathbb{R}^2_{++}$ and

$$\det(\nabla^2 f(x)) = \left(2 + \frac{1}{x_1^2}\right) \left(2 + \frac{1}{x_2^2}\right) - 4 = \frac{2}{x_1^2} + \frac{2}{x_2^2} + \frac{1}{x_1^2 x_2^2} > 0$$

for all $x \in \mathbb{R}^2_{++}$. This implies that $\nabla^2 f(x)$ is positive definite for all $x \in \mathbb{R}^2_{++}$ and hence, f is (strictly) convex on \mathbb{R}^2_{++} .

c) As in part b), we utilize definiteness of the Hessian to determine convexity. We have

$$\nabla f(x) = \begin{pmatrix} -2x_1 + x_2 \\ -2x_2 + x_1 \\ -4x_3 \end{pmatrix}, \quad \nabla^2 f(x) = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix}.$$

We calculate the eigenvalues of $\nabla^2 f(x)$:

$$\det \left(\begin{bmatrix} -2 - \lambda & 1 & 0 \\ 1 & -2 - \lambda & 0 \\ 0 & 0 & -4 - \lambda \end{bmatrix} \right) = -(4 + \lambda)[(2 + \lambda)^2 - 1] = -(4 + \lambda)[3 + 4\lambda + \lambda^2].$$

This yields $\lambda_1 = -4$, $\lambda_{2/3} = \frac{1}{2}(-4 \pm \sqrt{16-12}) = \frac{1}{2}(-4 \pm 2) = -3/-1$. Consequently, $\nabla^2 f(x)$ is negative definite for all x which shows that f is a concave mapping.

d) We first notice $X := \{x \in \mathbb{R}^2_+ : x_1x_2 \ge 1\} = \{x \in \mathbb{R}^2_{++} : x_1x_2 \ge 1\}$, where $\mathbb{R}^2_{++} = \{x \in \mathbb{R}^2 : x > 0\}$. Since the (natural) logarithm $\ln(\cdot)$ is monotonically increasing, the condition $x_1x_2 \ge 1$ is equivalent to

$$f(x_1, x_2) := -\ln(x_1) - \ln(x_2) \le 0.$$

The gradient and Hessian of f are given by:

$$\nabla f(x_1, x_2) = \begin{pmatrix} -x_1^{-1} \\ -x_2^{-1} \end{pmatrix}, \quad \nabla^2 f(x_1, x_2) = \begin{pmatrix} x_1^{-2} & 0 \\ 0 & x_2^{-2} \end{pmatrix}$$

Since $\nabla^2 f$ is positive definite on the open and convex set \mathbb{R}^2_{++} , it follows that f is convex on \mathbb{R}^2_{++} . This shows that the set X is convex.

Exercise E2.4 (Multiple Choice):

Answer the following multiple choice questions and decide whether the statements are true or false. Try to give short explanations of your answer.

a)	A point is a stationary point of	$f f ext{ if and only if it is a local minimum or maximum of } f.$
	\square True.	\Box False.
b) The point x^* is a stationary point of f if and only if $\nabla f(x^*)^{\top} h = 0$ for a		int of f if and only if $\nabla f(x^*)^{\top} h = 0$ for all $h \in \mathbb{R}^n \setminus \{0\}$.
	\square True.	\Box False.
c)	c) Let $X \subset \mathbb{R}^n$ be nonempty and let $x^* \in X$ be a global solution of $\min_{x \in X} f(x)$. Then, i that $\nabla f(x^*) = 0$.	
	\square True.	\Box False.
d)	I) The function $f(x) = x^4$ is strongly convex.	
	\square True.	\Box False.
e)	e) Let $I := [a, b]$ be given with $a, b \in \mathbb{R}$, $a < b$. Suppose that $g : I \to \mathbb{R}$ is a convex further, g^2 is strictly convex.	
	\square True.	\Box False.
f)	Suppose that $g: \mathbb{R} \to \mathbb{R}$ is convex but not strictly convex. Then, g has either no glo minimum or infinitely many.	
	\square True.	\Box False.
g)	Suppose we have $\lambda_{\min}(\nabla^2 f(x)) > 0$ for all $x \in \mathbb{R}^n$, then f is strongly convex.	
	\square True.	□ False.

Solution:

- a) False. Consider the function $f(x) = x^3$. Then, the point $x^* = 0$ is a stationary point, i.e., it satisfies $f'(x^*) = 3(x^*)^2 = 0$. However, x^* is a saddle-point, i.e., it's neither a minimum nor a maximum.
- b) True. If x^* is a stationary point then we have $\nabla f(x^*) = 0$ and the condition is obviously satisfied. On the other hand, let us assume $\nabla f(x^*)^{\top}h = 0$ for all $h \in \mathbb{R}^n \setminus \{0\}$. In the case $\nabla f(x^*) = 0$, there is nothing to show. Hence, let us assume $\nabla f(x^*) \neq 0$. But then setting $h = \nabla f(x^*) \neq 0$ implies $\|\nabla f(x^*)\|^2 = 0$ which is a contradiction to $\nabla f(x^*) \neq 0$ and thus, this case cannot occur. Together, we can infer $\nabla f(x^*) = 0$ which finishes the proof.
- c) False. Consider the problem $\min_{x \in X} f(x) = x$ with $X = [1, \infty)$. Obviously, $x^* = 1$ is the global solution of the this problem, but we have $f'(x^*) = 1 \neq 0$.
- d) False. It holds that $f''(x) = 12x^2$ and f''(0) = 0. Hence, by Theorem 4.15, $f(x) = x^4$ cannot be strongly convex.
- e) False. Take I = [0, 1] and g(x) = 1. This function is convex, but $g(x)^2 = 1 = g(x)$ is not strictly convex.
- f) False. The function g(x) = |x| is convex but not strictly convex. Moreover, it has a unique global minimum at x = 0.

g) False. For strong convexity a uniform lower bound for the minimal eigenvalue of the Hessian is required. A possible counterexample is the function $f(x) = e^x$.

Assignment A2.1 (Optimization Problem):

(approx. 20 points)

Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^2} f(x) = \frac{1}{3}x_1^3 - x_1\left(\frac{3}{2} + x_2^2\right) + x_2^4.$$

- a) Is the function f coercive?
- b) Compute the gradient and Hessian of f and calculate all stationary points.
- c) For each stationary point x^* found in part c) investigate whether x^* is a local maximizer, local minimizer, or saddle point and explain your answer.
- d) Does the mapping f possess any strict local or global minimizer?

Solution:

a) No, the function f is not coercive. We have

$$f(x_1, 0) = \frac{1}{6}x_1(2x_1^2 - 9) \to \pm \infty \text{ if } x_1 \to \pm \infty.$$

b) The gradient and Hessian of f are given by

$$\nabla f(x) = \begin{pmatrix} x_1^2 - x_2^2 - \frac{3}{2} \\ -2x_1x_2 + 4x_2^3 \end{pmatrix} \quad \text{and} \quad \nabla^2 f(x) = \begin{pmatrix} 2x_1 & -2x_2 \\ -2x_2 & -2x_1 + 12x_2^2 \end{pmatrix}.$$

Moreover, it holds that $\nabla f(x) = 0$ if and only if $2x_2(2x_2^2 - x_1) = 0$. Let us first consider the case $x_2 = 0$. Then, it follows $x_1 = \pm \sqrt{3/2}$. Otherwise, we have $x_1 = 2x_2^2$ which implies $4x_2^4 - x_2^2 - \frac{3}{2} = 0$, i.e.,

$$x_2^2 = \frac{1 \pm \sqrt{1 + 6 \cdot 4}}{2 \cdot 4} = \frac{1 \pm 5}{8} = \frac{3}{4} \text{ or } -\frac{1}{2}$$

This yields $x_2 = \pm \sqrt{3}/2$ and $x_1 = 3/2$. In total, f has the following for stationary points:

$$\bar{x}_1 = \left(\frac{\sqrt{6}}{2}, 0\right), \quad \bar{x}_2 = \left(-\frac{\sqrt{6}}{2}, 0\right), \quad \bar{x}_3 = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right), \quad \bar{x}_3 = \left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right).$$

c) We have

$$abla^2 f(\bar{x}_1) = \begin{pmatrix} \sqrt{6} & 0 \\ 0 & -\sqrt{6} \end{pmatrix} \quad \text{and} \quad \nabla^2 f(\bar{x}_2) = \begin{pmatrix} -\sqrt{6} & 0 \\ 0 & \sqrt{6} \end{pmatrix}.$$

Both Hessians are diagonal matrices with eigenvalues $-\sqrt{6}$ and $\sqrt{6}$ and, hence $\nabla^2 f(\bar{x}_1)$ and $\nabla^2 f(\bar{x}_2)$ are indefinite and the stationary points \bar{x}_1 and \bar{x}_2 are saddle points. Furthermore, it holds that

$$\nabla^2 f(\bar{x}_3) = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 6 \end{pmatrix} \quad \text{and} \quad \nabla^2 f(\bar{x}_2) = \begin{pmatrix} 3 & -\sqrt{3} \\ -\sqrt{3} & 6 \end{pmatrix}$$

and $\operatorname{tr}(\nabla^2 f(\bar{x}_3)) = \operatorname{tr}(\nabla^2 f(\bar{x}_4)) = 9 > 0$ and $\det(\nabla^2 f(\bar{x}_3)) = \det(\nabla^2 f(\bar{x}_4)) = 18 - 3 > 0$. This shows that $\nabla^2 f(\bar{x}_3)$ and $\nabla^2 f(\bar{x}_4)$ are positive definite. Thus, by the second order sufficient conditions, \bar{x}_3 and \bar{x}_4 are strict local minimizer.

d) Our results in a) and c) show that \bar{x}_3 and \bar{x}_4 are strict local solutions and that f does not possess a global minimum.

Assignment A2.2 (Another Optimization Problem):

(approx. 15 points)

Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^3} f(x) = x_1^4 - 2x_1^2 + x_2^2 + 2x_2x_3 + 2x_3^2$$

- a) Is the mapping f coercive?
- b) Verify whether the function f is convex on \mathbb{R}^3 .
- c) Find all stationary points of f and classify them according to whether they are saddle points, strict / non-strict, local / global, minimum / maximum points.

Solution:

a) Yes, the mapping f coercive. In particular, we have

$$f(x) = x_1^2(x_1^2 - 2) + \frac{1}{3}x_2^2 + \frac{1}{2}x_3^2 + \left(\frac{2}{3}x_2^2 + 2x_2x_3 + \frac{3}{2}x_3^2\right)$$

= $x_1^2(x_1^2 - 2) + \frac{1}{3}x_2^2 + \frac{1}{2}x_3^2 + \left(\sqrt{\frac{2}{3}}x_2 + \sqrt{\frac{3}{2}}x_3\right)^2 \ge x_1^2(x_1^2 - 2) + \frac{1}{3}x_2^2 + \frac{1}{2}x_3^2.$

Since x_1^4 dominates x_1^2 (i.e., it grows faster than x_1^2 as $|x_1| \to \infty$, this establishes coercivity of f.

b) We calculate the gradient and Hessian of f. It holds that

$$\nabla f(x) = \begin{pmatrix} 4x_1^3 - 4x_1 \\ 2x_2 + 2x_3 \\ 2x_2 + 4x_3 \end{pmatrix}, \quad \nabla^2 f(x) = \begin{pmatrix} 12x_1^2 - 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 4 \end{pmatrix},$$

and

$$e_1^{\top} \nabla^2 f(x) e_1 = 12x_1^2 - 4.$$

For all $x_1 \in (-1/\sqrt{3}, 1/\sqrt{3})$, this term is negative which implies that f can not be convex on \mathbb{R}^3 .

c) We have $4x_1(x_1^2-1)=0$ and $x_2=x_3=0$ which yields the stationary points

$$\bar{x}_1 = (0, 0, 0), \quad \bar{x}_2 = (1, 0, 0), \quad \bar{x}_3 = (-1, 0, 0).$$

Furthermore, it holds that $\det(\nabla^2 f(\bar{x}_1) - \lambda I) = (-4 - \lambda)[(2 - \lambda)(4 - \lambda) - 4] = -(4 + \lambda)(4 - 6\lambda + \lambda^2)$. Hence, the eigenvalues of $\nabla^2 f(\bar{x}_1)$ are given by -4, $3 \pm \sqrt{5}$. This shows that $\nabla^2 f(\bar{x}_1)$ is indefinite and thus, \bar{x}_1 is a saddle point. Similarly, we obtain $\det(\nabla^2 f(\bar{x}_{2/3}) - \lambda I) = (8 - \lambda)(4 - 6\lambda + \lambda^2)$ and consequently, $\nabla^2 f(\bar{x}_{2/3})$ is positive definite and the stationary points \bar{x}_2 and \bar{x}_3 are strict local minimizer. Since the function f is coercive, it possesses at least one global minimizer that needs to be a stationary point. Due to $f(\bar{x}_2) = f(\bar{x}_3) = -1$, all local minimizer have the same function value and we can infer that \bar{x}_2 and \bar{x}_3 are global solutions of the problem $\min_x f(x)$.

Assignment A2.3 (Convex Sets):

(approx. 20 points)

In this exercise, we study convexity of various sets.

a) Verify whether the following sets are convex or not and explain your answer!

$$X_1 = \{ x \in \mathbb{R}^n : \alpha \le (a^\top x)^2 \le \beta \}, \quad \alpha, \beta \in \mathbb{R}, \ \alpha \le \beta, \ a \in \mathbb{R}^n,$$

 $X_2 = \{ x \in \mathbb{R}^n : ||x - a||_2 \le ||x - b||_2 \}, \quad a, b \in \mathbb{R}^n, \ a \ne b.$

- b) Let the set of all positive semidefinite and symmetric $n \times n$ matrices be denoted by \mathbb{S}^n_+ . Show that the set $X := \{A \in \mathbb{R}^{n \times n} : A \in \mathbb{S}^n_+ \text{ and } \operatorname{tr}(A) = 1\}$ is a convex subset of $\mathbb{R}^{n \times n}$.
- c) Decide whether the following statements are true or false. Explain your answer and either present a proof / verification or a counter-example.
 - The union of two convex sets $X_1, X_2 \subset \mathbb{R}^n, X_1 \neq X_2$ is never a convex set.
 - Let $f: \mathbb{R}^n \to \mathbb{R}$ be a concave. Then, the set $X := \{x \in \mathbb{R}^n : f(x) \ge 0\}$ is convex.

Solution:

a) The set X_1 is not convex. We can choose n = 1 and $\alpha = \beta = a = 1$. Then, it follows $X_1 = \{x \in \mathbb{R} : x^2 = 1\} = \{\pm 1\}$. This set is obviously not convex.

The condition $||x - a|| \le ||x - b||$ in the definition of X_2 is equivalent to

$$\|x-a\|^2 \le \|x-b\|^2 \iff -2a^\top x + \|a\|^2 \le -2b^\top x + \|b\|^2 \iff 2(b-a)^\top x \le \|b\|^2 - \|a\|^2.$$

Hence, X_2 is a convex half space.

b) Let $A, B \in X$ be two symmetric, positive semidefinite matrices and let $\lambda \in [0, 1]$ be arbitrary. Then, the matrix $C = \lambda A + (1 - \lambda)B$ is symmetric and it follows

$$x^{\top}Cx = \lambda[x^{\top}Ax] + (1-\lambda)[x^{\top}Bx] \ge 0, \quad \forall \ x \in \mathbb{R}^n,$$

where we used the positive semidefiniteness of A and B. Hence, we have $C \in \mathbb{S}^n_+$ and by the linearity of the trace operator, it follows $\operatorname{tr}(C) = \lambda \operatorname{tr}(A) + (1-\lambda)\operatorname{tr}(B) = \lambda + 1 - \lambda = 1$. This shows that X is a convex subset of $\mathbb{R}^{n \times n}$.

c) The first statement is wrong: consider $X_1 = [0,1]$ and $X_2 = [-1,0]$. Then $X_1 \neq X_2$ and $X_1 \cup X_2 = [-1,1]$ is a convex set.

We verify the second statement briefly. Let $x, y \in X$ and $\lambda \in [0, 1]$ be arbitrary. To establish convexity of X, we need to show that $\lambda x + (1 - \lambda)y \in X$. Utilizing the concavity of f and $x, y \in X$, we have

$$g(\lambda x + (1 - \lambda)y) \ge \lambda g(x) + (1 - \lambda)g(y) \ge 0.$$

Hence, X is a convex set.

Assignment A2.4 (Convex Functions):

(approx. 25 points)

In this exercise, convexity properties of different functions are investigated.

- a) Verify that the following functions are convex over the specified domain:
 - $-f: \mathbb{R}_{++} \to \mathbb{R}, f(x) := \sqrt{1+x^{-2}}, \text{ where } \mathbb{R}_{++} := \{x \in \mathbb{R} : x > 0\}.$
 - $-f: \mathbb{R}^n \to \mathbb{R}, f(x):=\frac{1}{2}\|Ax-b\|^2+\mu\|Lx\|^2$, where $A \in \mathbb{R}^{m \times n}, L \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^m$, and $\mu > 0$ are given.
 - $-f: \mathbb{R}^{n+1} \to \mathbb{R}, \ f(x,y) := \frac{\lambda}{2} ||x||^2 + \sum_{i=1}^m \max\{0, 1 b_i(a_i^\top x + y)), \text{ where } a_i \in \mathbb{R}^n \text{ and } b_i \in \{-1, 1\} \text{ are given data points for all } i = 1, ..., m \text{ and } \lambda > 0 \text{ is a parameter.}$
- b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex mapping and set $g(x) := (f(x))^2$. Is the function g convex? Explain your answer and either present a brief verification or a counter-example.

Is the mapping $x \mapsto \frac{1}{2}(||x||^2 - 1)^2$ convex?

Solution:

a) The mapping $f(x) = \sqrt{1 + x^{-2}}$ is twice continuously differentiable on the convex set \mathbb{R}_{++} and it holds that

$$f'(x) = \frac{1}{2\sqrt{1+x^{-2}}} \frac{-2}{x^3} = \frac{-1}{x^2\sqrt{1+x^2}}, \ f''(x) = \frac{2x\sqrt{1+x^2} + \frac{x^3}{\sqrt{1+x^2}}}{x^4(1+x^2)} = \frac{3x^2+2}{x^3(1+x^2)\sqrt{1+x^2}}.$$

Notice that we have f''(x) > 0 for all x > 0 and thus, f is (strictly) convex on \mathbb{R}_{++} .

In the second example, we obtain

$$\nabla f(x) = A^{\top} (Ax - b) + \mu L^{\top} Lx$$
 and $\nabla^2 f(x) = A^{\top} A + \mu L^{\top} L$

Thus, it follows $h^{\top} \nabla^2 f(x) h = h^{\top} A^{\top} A h + \mu h^{\top} L^{\top} L h = ||Ah||^2 + \mu ||Lh||^2 \ge 0$ for all $h \in \mathbb{R}^n$. This establishes convexity of f on \mathbb{R}^n .

Finally, let us define $g(x,y) = \frac{\lambda}{2} ||x||^2$ and $g_i(x,y) = \max\{0, 1 - b_i(a_i^\top x + y)\}$. Then, f can be interpreted as the sum of the functions g and g_i , i = 1, ..., m and convexity follows if each of the functions g, g_i , i = 1, ..., m is convex. The mapping g_i is the composition of the maxfunction $z \mapsto \max\{0, z\}$ and the affine-linear function $(x, y) \mapsto h_i(x, y) := 1 - b_i(a_i^\top x + y)$. Since h_i is convex (as a linear mapping), the max-function g_i also is convex! Finally, the Hessian of g is given by

$$\mathbb{R}^{(n+1)\times(n+1)}\ni\nabla^2g(x,y)=\begin{pmatrix}I&0\\0&0\end{pmatrix}\succeq0.$$

Combining these different results, we see that f is a convex function.

b) No, the mapping g generally does not need to be convex. We can consider the example $g(x) = \frac{1}{2}(x^2 - 1)^2 = \frac{1}{2}x^4 - x^2 + \frac{1}{2}$. The derivatives of g are given by $g'(x) = 2x^3 - 2x$ and $g''(x) = 6x^2 - 2$. Since g'' takes negative values around x = 0, the mapping g can not be convex. This also verifies that $\frac{1}{2}(\|x\|^2 - 1)^2$ is not a convex function.

Remark: Since the function $x \mapsto x^2$ is monotonically increasing on $[0, \infty)$, we can infer convexity in the case $f(x) \geq 0$ for all $x \in \mathbb{R}^n$.

Assignment A2.5 (A Penalty Problem):

(approx. 2θ points)

We consider the parametrized optimization problem

$$\min_{x} f_{\beta}(x) := \frac{1}{2} \|x - b\|^{2} + \frac{\beta}{2} \left(\sum_{i=1}^{n} x_{i} \right)^{2}, \quad x \in \mathbb{R}^{n},$$
 (1)

where $b \in \mathbb{R}^n$ is given and $\beta \geq 0$ is a parameter.

- a) Calculate the gradient and Hessian of f_{β} .
- b) Show that the mapping f_{β} is strongly convex for all $\beta \geq 0$.
- c) Show that f_{β} has a unique stationary point x_{β}^* and compute it explicitly. Determine whether x_{β}^* is a local minimizer, a local maximizer, or a saddle point of problem (1).
- d) For $\beta \to \infty$, the solutions x_{β}^* converge to a point x^* . Calculate the limit $x^* = \lim_{\beta \to \infty} x_{\beta}^*$ explicitly and show that x^* satisfies the constraint $\mathbb{1}^\top x^* = \sum_{i=1}^n x_i^* = 0$.

Solution:

a) The objective function is given by $f_{\beta}(x) = \frac{1}{2} \sum_{i=1}^{n} (x_i - b_i)^2 + \frac{\beta}{2} (\sum_{i=1}^{n} x_i)^2$. Hence, we obtain

$$\frac{\partial f_{\beta}}{\partial x_{i}}(x) = (x_{i} - b_{i}) + \beta \left(\sum_{i=1}^{n} x_{i}\right) \cdot 1 \quad \text{and} \quad \frac{\partial^{2} f_{\beta}}{\partial x_{i} \partial x_{j}}(x) = \begin{cases} 1 + \beta & \text{if } i = j, \\ \beta & \text{if } i \neq j. \end{cases}$$

Due to $\mathbb{1}^{\top} x = \sum_{i=1}^{n} x_i$ and $(\mathbb{1}\mathbb{1}^{\top})_{ij} = 1$ for all i, j, this shows that ∇f_{β} and $\nabla^2 f_{\beta}$ are given by:

$$\nabla f_{\beta}(x) = x - b + \beta \cdot (\mathbb{1}^{\top} x) \mathbb{1}, \quad \nabla^2 f_{\beta}(x) = I + \beta \cdot \mathbb{1} \mathbb{1}^{\top}.$$

b) We have

$$d^{\top} \nabla^2 f_{\beta}(x) d = d^{\top} d + \beta (\mathbb{1}^{\top} d)^2 \ge ||d||^2 \quad \forall \ d \in \mathbb{R}^n$$

and hence, the Hessian $\nabla^2 f_{\beta}$ is uniformly positive definite for all x. This implies that f_{β} is 1-strongly convex for all $\beta \geq 0$.

c) Multiplying the condition $\nabla f_{\beta}(x) = 0$ with $\mathbb{1}^{\top}$, we obtain

$$\mathbb{1}^\top x - \mathbb{1}^\top b + \beta n \cdot (\mathbb{1}^\top x) = 0 \quad \Longrightarrow \quad \mathbb{1}^\top x = \frac{\mathbb{1}^\top b}{1 + \beta n}.$$

Using this formula, it now follows $\nabla f_{\beta}(x) = 0$ if and only if $x = b - \frac{\beta}{1+\beta n} \cdot (\mathbb{1}^{\top}b)\mathbb{1}$. Since all stationary points are uniquely characterized in this way, this implies that $x_{\beta}^* = b - \frac{\beta}{1+\beta n} \cdot (\mathbb{1}^{\top}b)\mathbb{1}$ is the unique stationary point of problem (1). Moreover, due to part b), we know that x^* is a strict global minimizer of problem (1).

d) We have $x_{\beta}^* = b - \frac{1}{1/\beta + n} \cdot (\mathbb{1}^\top b) \mathbb{1} \to b - \frac{1}{n} \cdot (\mathbb{1}^\top b) \mathbb{1} =: x^* \text{ as } \beta \to \infty.$ Moreover, we obtain

$$\mathbb{1}^{\top} x^* = \mathbb{1}^{\top} b - \frac{\mathbb{1}^{\top} \mathbb{1}}{n} \mathbb{1}^{\top} b = 0.$$