Dinh/Dinh 2012/NOTES/2012-11-13

From ZhangLabWiki

Contents

- 1 African methylomes variant calling
 - 1.1 Increase the number of SNP calls
 - 1.2 Make SNP calls using BisSNP (USC)
 - 1.3 Compare SNP calls accuracies
 - 1.4 Comparison of BisSNP and BisRead

African methylomes - variant calling

- We need to (1) increase the size of the SNP matrix for mQTL and (2) compare the accuracy of SNP calls between different methods.
- Note: I handled the files using the index id instead of sample id. This greatly simplifies batch processing of those data files using shell scripts.
- Note: We do not have bam files from previous mapping, thus, new bam files were generated using an updated pipeline but still using SOAP2aligner.
- BisRead refers to our BisReadMapper pipeline and BisSNP refers to USC bisulfite methylation and SNP calling pipeline.

Increase the number of SNP calls

- I added in homozygous reference SNP calls to TPED file UPenn44.CGI-134.tped (very important for mQTL, less important for ASM).
 - The criteria for making a homozygous reference SNP calls is: depth >= 8 with base quality of Phred>5, and SNP Phred <= 5 (higher chance of being homozygous reference).
 - Reads were mapped using new methylation pipeline, and 1 bam file for each sample was generated (convert crick reads to watson, this is fine for most reads, but may need to ignore reads spanning indels. I assumed no indels).
- Shell script for extracting homozygous reference from bam:
 - Note: old version of samtools used.
 - Note: perl script used: File:ExtractHomoRefSNPs.txt

• Example for Indx1.job:

```
cd Indx1
/home/ddiep/softwares/samtools-0.1.8/samtools pileup -Ac -l ../SNP_LIST -f /media/2TB_storeA/BisRef/bisHg19/hg19.fa Indx1.bam > Indx1.pileup
//extractHomoRefSNPs.pl Indx1.pileup > Indx1.homoRef.snp
```

- SNP calls were added to previous TPED/TFAM using: File:AddHomoRefToTPED.txt
 - Note: Must create TFAM_INDX file for this to work. Also, all Indx*homoRef.snp files must in the same directory with TPED/TFAM.
 - TFAM_INDX:

```
Indx18 CAFU042 0
                                             -9
         CAFU043 0
                                             -9
Indx16 CAMF013 0
Indx20
        CAMF022 0
Indx1
         CAPB016 0
Indx21
        CAPROA3 O
Indx2
         CAPB046 0
Indx3
Indx24
        CAPB056 0
CAPL036 0
Indx22
        CAPL 049 0
Indx4
         CAPL056 0
Indx23 CAPM001 0
                                             -9
Indx36
Indx37
        CAPM004 0
         CAPM007 0
Indx39
        ETAM042 0
Indx42
Indx43
        ETAM058 0
ETAM065 0
Indx40
         ETAM071 0
        ETAM077 0
Indx41
Indx44
Indx45
        ETSB008 0
ETSB027 0
Indx46
        ETSB031 0
Indx47
        ETSB035 0
Tndv48
        ETSR036 0
Indx25
        KEBR007 0
Indx27
Indx29
         KFBR042 0
Indx30 KEPK003 0
                                             -9
Indx31
Indx32
        KEPK007 0
```

```
Indx34
        KEPK016 0
Tndx6
        TZHZ018 0
        TZHZ033 0
Indx7
Indx8
Indx9
        TZHZ075 0
Indx10
        T7H7221 A
                                          -9
Indx11
Indx12
        TZSW128 0
                                          -9
Indx13
        TZSW131 0
Indx14
        TZSW132 0
                                          -9
Indx15 TZSW135 0
```

• Finally, run plink to filter/clean. *I filtered out novel SNPs (no rs), because plink returned an error with more than 2 alleles found at those positions.

```
mv UPenn44.CGI-134.hRef.tped UPenn44.CGI-134.hRef.wNovel
grep -v chr: UPenn44.CGI-134.hRef.wNovel > UPenn44.CGI-134.hRef.tped
ddiep/softwares/plink-1.07-x86_64/plink --tfile UPenn44.CGI-134.hRef --noweb --geno 0.25 --recode --transpose --out UPenn44.CGI-134.hRef.filtered
```

Make SNP calls using BisSNP (USC)

- BisSNP uses GATK based variant caller. BisSNP requires a reference dbSNP file in vcf format (provided on their website), and that only 1 bam file with crick
 positions mapped to watson is the input.
- To make BisSNP runs faster, we can give it a region file, so that it can ignore the majority of SNPs in dbSNP. I generated this file by taking out target regions (hg18), and used UCSC liftover tool to convert to hg19 coordinates. File:Hg19 regions miss24.txt * 24 target regions where not found in hg19.
- Shell script to run BisSNP:

```
ref_fa="/media/2TB_storeA/BisRef/bisHg19/hg19.fa"
ref_fai="/media/2TB_storeA/BisRef/bisHg19/hg19.fa.fai"
ref_fai="/media/2TB_storeA/BisRef/bisHg19/hg19.fa.fai"
ref_fai="/media/2TB_storeA/BisRef/bisHg19/cPos/hg19.fa.cpg.positions.txt"
samtools="/home/ddiep/softwares/samtools-0.1.18/samtools"
imp_dir="";

bisSnp="/home/ddiep/softwares/Bis-SNP/Utils/bissnp_easy_usage.pl --interval ../hg19_regions_miss24.bed /home/ddiep/softwares/Bis-SNP/BisSNP-0.71.jar"
vcf="/media/2TB_storeA/dbSNP/dbsnp_135.hg19.sort.vcf"

picards="java -Xmx4g -jar ~ddiep/softwares/picard-tools-1.74"

BASE_CHRS="chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 \
chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY chrM"

for g in 'seq 1 1 48'

do

    f="Indx$g"
    echo "cd $f" > $f.job
    echo "cd $f" > $f.job
    echo "fs=matools fillad -b $f.bam $ref_fa > $f.fillmd.bam" >> $f.job
    echo "spicards/AddOrReplaceReadGroups.jar I=$f.fillmd.bam O=$f.rg.bam ID=HiSeq LB=HiSeq PL=illumina PU=HiSeq SM=$f CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT" >> $f.job
    echo "$samtools index $f.rg.bam *ref_fa $v.cf" >> $f.job
    echo "$siasnools index $f.rg.bam *ref_fa $v.cf" >> $f.job
    echo "$siasnools index $f.rg.bam *ref_fa $v.cf" >> $f.job
    echo "$siasnools index $f.rg.bam *ref_fa $v.cf" >> $f.job
    echo "$bisSnp $f.rg.bam $ref_fa $v.cf" >> $f.job
    nohup sh $f.job > BisSnp.$f.log
```

■ Example Indx1.job:

- After BisSNP finishes, move all *snp.raw.vcf files into one directory.
- Shell script for filtering out low quality SNP calls, converting VCF to TPED, and adding homozygous reference calls:

```
for f in `seq 1 1 48`

do

grep -v LowQual Indx$f.rg.snp.raw.vcf > tmp.vcf

~/softwares/vcftools_0.1.9/bin/vcftools --vcf tmp.vcf --out Indx$f --plink-tped --recode

awk '{ if($7 >= 8) print $1"\t"$2"\t"$3"\t"$3"\t"$3}' ../HomoRefSNPs/Indx$f.homoRef.snp | sort -u > wHR.Indx$f.tped

cat Indx$f.tped >> wHR.Indx$f.tped

cp Indx$f.tfam wHR.Indx$f.tfam

done
```

Compare SNP calls accuracies

- We have 33 individuals with Illumina 1M duo SNPs calls (Hg18). TPED/TFAM: PennAfrican_Batch1_genotypes
- All SNPs called with BisSNP (USC) are on forward strand, but SNPs from the array could be on forward or reverse strand, thus needs to double check.
- Download reference file for array SNPs:

```
wget http://www.well.ox.ac.uk/~wrayner/strand/Human1M-Duov3_B-b36-strand.zip
```

- I had some issues before with some rs values in BisSNP calls being give more than 1 chromosome positions. To get the correct rs values, I used snp134_snv.txt (reduced from dbSNP134.txt)
- First, script to split TPED into individuals TPED. I wanted to rename the files with index id, so I changed the sample ids in TFAM to index id for this step.

```
for f in `seq 1 1 33`
do
head -n $f PennAfrican_Batch1_genotypes.tfam | tail -n 1 > keep.txt
g=`awk '{print $2}' keep.txt`
#echo "$f $g"
~ddiep/softwares/plink-1.07-x86_64/plink --noweb --tfile PennAfrican_Batch1_genotypes --keep keep.txt --recode --transpose --out PennAfrican_ArraySNP_$g
```

done

- Next, print genotypes from sequence and from array side by side:
 - Note: File:CompareWithArraySnps.txt

```
for f in PennAfrican_ArraySNP*tped
do
g=`echo $f | sed 's/PennAfrican_ArraySNP_//g'`
echo "wHR.$g"
./compareWithArraySnps.pl ../Latest_BisSNP_SNPs/BisSNP-wHR/wHR.$g $f > $g.compareSNPs
done
```

- Next, correct strand of array SNPs to match & count:
 - Note: File:CorrectStrand.txt

```
for f in *compareSNPs
do

grep -v NA $f | grep -v 0:0 | ./correctStrand.pl > $f.Corrected

total=`wc -l $f.Corrected`

match= awk '{if($4 == $5) print $0}' $f.Corrected | wc -l`

echo $f $total $match

done
```

- Go back and check. The wrong Indx matches are around 50% while correct Indx matches are around 96%.
- SNPs printed in *compareSNPs are correct.
- For BisRead SNPs, split the TPED file into individual TPEDs as with for PennAfrican_Batch1_genotypes matrix, and compare TPED to TPED as with BisSNP.

Comparison of BisSNP and BisRead

Conclusions:

(1)BisSNP gives 1-4% more SNPs than BisRead (using the method described above.) (2)BisRead seems to be slightly more accurate than BisSNP when compared with Illumina 1M Duo array.

TFAM_ID	SAMPLE_ID	INDX_ID	#BisSNP_Compared	#BisSNP_Matched	%Matched	#BisRead_Compared	#BisRead_Matched	%Matched	#SNPs_bisSNP
577	CAPB016	Indx1	9803	9448	96%	9806	9533	97%	68856
355	TZSW067	Indx11	9386	9033	96%	9396	9101	97%	66681
606	TZSW128	Indx12	8729	8363	96%	8413	8116	96%	61422
262	TZSW131	Indx13	8868	8481	96%	8621	8360	97%	62949
309	TZSW135	Indx15	8878	8502	96%	8660	8389	97%	62831
200	CAMF013	Indx16	8980	8636	96%	8863	8610	97%	63539
79	CAFU043	Indx17	9582	9208	96%	9515	9256	97%	67271
184	CAFU042	Indx18	9062	8716	96%	8857	8586	97%	63564
376	CAFU028	Indx19	9036	8666	96%	8925	8650	97%	64176
470	CAPB046	Indx2	9525	9152	96%	9544	9278	97%	68074
158	CAMF022	Indx20	8951	8565	96%	8759	8469	97%	63215
735	CAPB043	Indx21	8904	8560	96%	8739	8483	97%	63290
604	CAPM001	Indx23	8868	8553	96%	8688	8451	97%	62896
498	CAPL036	Indx24	9172	8786	96%	9127	8846	97%	65118
742	KEBR007	Indx25	9349	8941	96%	9362	9049	97%	66511
729	KEBR028	Indx26	7829	7083	90%	0	0	NA	53277
110	KEBR042	Indx27	8965	8579	96%	8648	8346	97%	62888
762	KEBR061	Indx29	9182	8793	96%	9004	8718	97%	64874
705	CAPB056	Indx3	9327	8975	96%	9315	9046	97%	66169
750	KEPK003	Indx30	8862	8538	96%	8637	8351	97%	62578
732	KEPK006	Indx31	8735	8367	96%	8540	8256	97%	62054
718	KEPK007	Indx32	8652	8324	96%	8442	8175	97%	61132
749	KEPK010	Indx33	9663	9256	96%	9563	9276	97%	67529
743	KEPK016	Indx34	9199	8823	96%	8995	8743	97%	64606
651	CAPL056	Indx4	8967	8617	96%	8762	8481	97%	63478
716	ETSB008	Indx44	9281	8930	96%	9194	8924	97%	65210
788	ETSB027	Indx45	8839	8517	96%	8676	8396	97%	62471
717	ETSB031	Indx46	9080	8724	96%	8891	8635	97%	63680
719	ETSB035	Indx47	8993	8672	96%	8866	8615	97%	63165
759	ETSB036	Indx48	8971	8644	96%	8772	8516	97%	63517
728	TZHZ018	Indx6	9261	8936	96%	9263	9034	98%	66179
783	TZHZ075	Indx8	8792	8384	95%	8717	8323	95%	60491
463	TZHZ214	Indx9	9196	8803	96%	8881	8623	97%	63972

- This page was last modified on 14 November 2012, at 21:40.
 Content is available under GNU Free Documentation License 1.2.