Wireless Communication Systems HW2 109064509 楊暐之

We have the Doppler frequency shift formula

$$f_{D,n}(t) = f_m \cos \theta_n(t)$$

where $f_m = \frac{v}{\lambda_c}$ and λ_c is the wavelength Furthermore, $\lambda_c = \frac{c}{f_c} \Rightarrow f_m = \frac{vf_c}{c}$ where c is the speed of light

For the subproblems (a) and (b) of problem 1, I sample $F_{D,n}(t) = f_m \cos \Theta$ 100000 times and divide [-fm, fm] into 10000 subintervals and then count how many samples lie in each subinterval so that simulate the pdf of $F_{D,n}(t)$

(Instead of [-fm, fm], I use the minimum and maximum of sample to build the interval)

For the subproblem (c), I assume V and Θ are independent so it just need sampling V and Θ respectively and componentwise multipling the samples of V by those of Θ to get new samples. Then, do the same thing as (a) and (b)

(a) $v=20 \text{km/h}, f_c=2 \text{GHz}$

Figure 1: v=20km/h, $f_c=2$ GHz

(b) $v = 90 \text{km/h}, f_c = 26 \text{GHz}$

Figure 2: v=90km/h, $f_c=26$ GHz

(c) $V \sim U(20,90)$ km/h, $f_c{=}2$ GHz Here, I ssume V and Θ are independent

Figure 3: $v \sim U(20, 90) \text{km/h}, f_c = 2 \text{GHz}$

(d) Let $\Theta \sim U(-\pi,\pi), \ X \sim U(0,\pi)$, then, $\cos \Theta = \cos X$ since cos is even Thus, consider $Y = f_m \cos X$

$$F_Y(y) = P(Y \le y)$$

$$= P(f_m \cos X \le y)$$

$$= P\left(X \ge \cos^{-1}\left(\frac{y}{f_m}\right)\right)$$

$$= P\left(X \le \cos^{-1}\left(\frac{-y}{f_m}\right)\right)$$

$$= \frac{\cos^{-1}\left(\frac{-y}{f_m}\right)}{\pi} \qquad \text{for } y \in [-f_m, f_m]$$

$$\Rightarrow f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$$

$$= \frac{1}{\pi f_m \sqrt{1 - \left(\frac{y}{f_m}\right)^2}}$$

Now, take v=20km/h, $f_c=2$ GHz to compare the corresponding $F_Y(y)$ and $f_Y(y)$ with simulation of (a)

Figure 4: compare theoretical result with simulation of (a)

Note that, since $f_Y(y) \to \infty$ as $y \to \pm 1$ in order to plot $f_Y(y)$ and the simulation pdf of (a) in one screen, I discard the points $(y, f_Y(y))$ that are near ± 1 at first axis

Furthermore, the theoretical cdf and the simulative cdf are perfectly consistent but it is not the case for pdf. And it may be due to the fact that $f_Y(y) \to \infty$ as $y \to \pm 1$ but simulation pdf can't approach ∞ no matter how near are y and ± 1