

Data Science Quiz 2 Instructor: Dr. Arian

Time: 90 minutes

- Using Health Care Quality dataset, develop a logistic regression model and evaluate the results.
- 2. We consider the following models of logistic regression for a binary classification with a sigmoid function $g(z) = \frac{1}{1+e^{-z}}$:

Model 1:
$$P(Y = 1 \mid X, w_1, w_2) = g(w_1X_1 + w_2X_2)$$

Model 2:
$$P(Y = 1 \mid X, w_1, w_2) = g(w_0 + w_1X_1 + w_2X_2)$$

We have three training examples:

$$x^{(1)} = [1,1]^T$$
 $x^{(2)} = [1,0]^T$ $x^{(3)} = [0,0]^T$
 $y^{(1)} = 1$ $y^{(2)} = -1$ $y^{(3)} = 1$

- a. Does it matter how the third example is labeled in Model 1? i.e., would the learned value of $\mathbf{w} = (w_1, w_2)$ be different if we change the label of the third example to -1? Does it matter in Model 2? Briefly explain your answer. (Hint: think of the decision boundary on 2D plane.)
- b. (Optional with extra scores) Now, suppose we train the logistic regression model (Model 2) based on the n training examples $x^{(1)}, ..., x^{(n)}$ and labels $y^{(1)}, ..., y^{(n)}$ by maximizing the penalized log-likelihood of the labels:

$$\sum_{i} \log P(y^{(i)} \mid x^{(i)}, \mathbf{w}) - \frac{\lambda}{2} \| \mathbf{w} \|^{2} = \sum_{i} \log g(y^{(i)} \mathbf{w}^{T} x^{(i)}) - \frac{\lambda}{2} \| \mathbf{w} \|^{2}$$

For large λ (strong regularization), the log-likelihood terms will behave as linear functions of w.

$$\log g(y^{(i)}\mathbf{w}^T x^{(i)})) \approx \frac{1}{2} y^{(i)}\mathbf{w}^T x^{(i)}$$

Express the penalized log-likelihood using this approximation (with Model 1), and derive the expression for MLE \hat{w} in terms of λ and training data $\{x^{(i)}, y^{(i)}\}$. Based on this, explain how w behaves as λ increases. (We assume each $x^{(i)} = \left(x_1^{(i)}, x_2^{(i)}\right)^T$ and $y^{(i)}$ is either 1 or -1)

In the following questions briefly explain the reason of your choice.

- 3. Is Logistic regression mainly used for Regression?
 - a. TRUE
 - b. FALSE
- 4. True-False: Is it possible to design a logistic regression algorithm using a Neural Network Algorithm?
 - a. TRUE
 - b. FALSE
- 5. Which of the following methods do we use to best fit the data in Logistic Regression?
 - a. Least Square Error
 - b. Maximum Likelihood
 - c. Jaccard distance
 - d. Both A and B