7

MULTIMEDIA OPERATING SYSTEMS

- 7.1 INTRODUCTION TO MULTIMEDIA
- 7.2 MULTIMEDIA FILES
- 7.3 VIDEO COMPRESSION
- 7.4 MULTIMEDIA PROCESS SCHEDULING
- 7.5 MULTIMEDIA FILE SYSTEM PARADIGMS
- 7.6 FILE PLACEMENT
- 7.7 CACHING
- 7.8 DISK SCHEDULING FOR MULTIMEDIA
- 7.9 RESEARCH ON MULTIMEDIA
- **7.10 SUMMARY**

Fig. 7-1. Video on demand using different local distribution technologies. (a) ADSL. (b) Cable TV.

Source	Mbps	GB/hr		
Telephone (PCM)	0.064	0.03		
MP3 music	0.14	0.06		
Audio CD	1.4	0.62		
MPEG-2 movie (640 × 480)	4	1.76		
Digital camcorder (720 × 480)	25	11		
Uncompressed TV (640 × 480)	221	97		
Uncompressed HDTV (1280 × 720))648	288		

Device	Mbps			
Fast Ethernet	100			
EIDE disk	133			
ATM OC-3 network	156			
SCSI UltraWide disk	320			
IEEE 1394 (FireWire)	400			
Gigabit Ethernet	1000			
SCSI Ultra-160 disk	1280			

Fig. 7-2. Some data rates for multimedia and high-performance I/O devices. Note that 1 Mbps is 10^6 bits/sec but 1 GB is 2^{30} bytes.

Fig. 7-3. A movie may consist of several files.

Fig. 7-4. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the samples to 4 bits.

Fig. 7-5. The scanning pattern used for NTSC video and television.

Fig. 7-6. (a) RGB input data. (b) After block preparation.

Fig. 7-7. (a) One block of the *Y* matrix. (b) The DCT coefficients.

	[OCT	Co	effic	ient	S			Quantized coefficients Quantizatio					tion	n table										
150	80	40	14	4	2	1	0	ŀ	150	80	20	4	1	0	0	0		1	1	2	4	8	16	32	64
92	75	36	10	6	1	0	0		92	75	18	3	1	0	0	0	L	1	1	2	4	8	16	32	64
52	38	26	8	7	4	0	0		26	19	13	2	1	0	0	0	L	2	2	2	4	8	16	32	64
12	8	6	4	2	1	0	0		3	2	2	1	0	0	0	0	L	4	4	4	4	8	16	32	64
4	3	2	0	0	0	0	0		1	0	0	0	0	0	0	0		8	8	8	8	8	16	32	64
2	2	1	1	0	0	0	0		0	0	0	0	0	0	0	0		16	16	16	16	16	16	32	64
1	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	L	32	32	32	32	32	32	32	64
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		64	64	64	64	64	64	64	64

Fig. 7-8. Computation of the quantized DCT coefficients.

150	80	20	4	1	0	0	0
92	75	18	3	1	0	0	0
26	19	13	2	1	0	0	0
3	2	2	1	0	0	0	0
	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Fig. 7-9. The order in which the quantized values are transmitted.

Fig. 7-10. Three consecutive video frames.

Fig. 7-11. Three periodic processes, each displaying a movie. The frame rates and processing requirements per frame are different for each movie.

Fig. 7-12. An example of RMS and EDF real-time scheduling.

Fig. 7-13. Another example of real-time scheduling with RMS and EDF.

Fig. 7-14. (a) A pull server. (b) A push server.

Fig. 7-15. Near video on demand has a new stream starting at regular intervals, in this example every 5 minutes (9000 frames).

Fig. 7-16. (a) Initial situation. (b) After a rewind to 12 min. (c) After waiting 3 min. (d) After starting to refill the buffer. (e) Buffer full.

Fig. 7-17. Interleaving video, audio, and text in a single contiguous file per movie.

Fig. 7-18. Noncontiguous movie storage. (a) Small disk blocks. (b) Large disk blocks.

Fig. 7-19. Optimal frame placement for near video on demand.

Fig. 7-20. The curve gives Zipf's law for N = 20. The squares represent the populations of the 20 largest cities in the U.S., sorted on rank order (New York is 1, Los Angeles is 2, Chicago is 3, etc.).

Fig. 7-21. The organ-pipe distribution of files on a video server

Fig. 7-22. Four ways of organizing multimedia files over multiple disks. (a) No striping. (b) Same striping pattern for all files. (c) Staggered striping. (d) Random striping.

Fig. 7-23. (a) Two users watching the same movie 10 sec out of sync. (b) Merging the two streams into one.

Fig. 7-24. In one round, each movie asks for one frame.

Fig. 7-25. The scan-EDF algorithm uses deadlines and cylinder numbers for scheduling.