91/Let Exo bo orbitary. Ren

$$|f(x) - f(z)| = \left| \frac{x^2 - x - 2}{z \times - 3} - \frac{1}{2} \right| = \left| \frac{x^2 - 15 + 26x}{z \times - 3} \right| = \left| \frac{x^2 - 15 + 26x}{z \times - 3} \right|$$

$$Z \Rightarrow |f(x) - f(z)| = \left| \frac{(x - 7)(x - 13)}{z \times - 13} \right|$$

Let 1x-71 < 8, since S can be any positive real number, we say SELO, IJ. Thon

Takin, he boundaries for both expressions, we see 1x-131<12 and 1=1 < 1, therefore

$$\frac{1\times -131}{12\times -31} < 12 \iff \frac{1\times -211\times -131}{12\times -31} < 12.8 < \varepsilon$$

Herce, let S=min (1, E/12). We see that |x-2165 => 1/(x)-f(2)/68, as required.

a) I) of is continuous at 0, then, for only E>0, there exists \$70 s.t.

IXICS => { | X sin file | 1 × × +0 | 0 × =0

Note that $|f(x)-f(x)| = |f(x)| \le |x| < \delta$ $\forall x \in dom(f)$. Then we let $\delta = \mathcal{E}$, and we see that f is continuous at O, as required.

b) Let us assume g is continuous at O. Then, by Theorem 5.9, the sequential cheachersation of continuity, any sequence $(x_n)_{n=1}^{\infty}$ in dem(f) with $x_n \to c$ as $n \to \infty \Rightarrow f(x_n) \to f(c)$ or $n \to \infty$.

Let us define $(x_n)_{n=1}^{\infty}$ as $x_n = \frac{1}{r_n} \cdot \frac{1}{1+4n}$, so clearly $x_n \to 0$ as $n \to \infty$. Since g is continuous, then $g(x_n) \to g(0) = 0$. Observe that

$$g(x_n) = \begin{cases} \left| \sin \left(\frac{1}{2} - \frac{1}{14n} \right) \right| x_n \neq 0 \\ 0 & \chi_n = 0 \end{cases}$$

$$(3) \quad \xi(x_n) = \begin{cases} \left| \sin \left(\frac{n}{2} + 2n\mathbf{n} \right) \right| x_n \neq 0 \\ 0 & \chi_n = 0 \end{cases}$$

Then we have $S(x_n) = \sin(\frac{\pi}{2}) = 1$ $\forall x_n \in \mathbb{R} \setminus \{0\}$. This implies that $g(x_n) \to 1$ as $n \to \infty$. But this is a contradiction, since we said that f = g to be continuous, $g(x_n) \to 0$ as $n \to \infty$. Therefore, g is not continuous at 0.

93

a) We are concorned with the rake of flo). We see that for x=y=0 (x, yelk) as here

$$\int (x+y) = \int (x) + \int (y)$$
(=> $\int (0+0) = \int (0) + \int (0) = \int (0) + \int (0)$

Let c = f(0), hen are have c = 2c. We see this can only be true if c = 0 for $c \in \mathbb{R}$. So f(0) = 0.

b) We are concerned with the value of f(q). Let us state with f(r) for nENV.
We can easily see

$$f(n) = f(\frac{n}{2}) + f(\frac{n}{3}) = f(\frac{n}{3}) + f(\frac{n}{3}) + f(\frac{n}{3}) + f(\frac{n}{3}).$$

$$\Rightarrow f(n) = \sum_{k=1}^{K} f(\frac{n}{k}) = K \cdot f(\frac{n}{k})$$

Now, let K=n, so we get $f(n)=n \cdot f(\frac{n}{n})=n f(\frac{1}{n})$.

Let us extend our retration to $f(\frac{n}{n})$ for $n,m \in IV$. Then we have, from our prevous result,

$$f(\frac{n}{m}) = f(\frac{1}{m} \cdot n) = n \cdot f(\frac{1}{m})$$

Those discours he value of f(m), observe that

$$f(t) = f(m \cdot \frac{1}{m}) = m \cdot f(\frac{1}{m})$$

$$(\Rightarrow) f(\frac{1}{m}) = \frac{1}{m} \cdot f(1)$$

Therefore

$$f(\frac{n}{m}) = n \cdot f(\frac{1}{m}) = n \cdot \frac{1}{m} \cdot f(1) = \frac{n}{m} f(1)$$
.

To extend to the set of rational numbers, observe that $f(-1) \cdot \frac{n}{m} = \frac{n}{m} f(-1)$ from our provious result. Then we're left with the task of discovering the value of f(-1). Using the definition of f(-1) we left x=1 and y=-1, for and observe

$$f(1-1) = f(0) = f(1) + f(-1)$$

$$(\Rightarrow) f(-1) = f(0) - f(1) = -f(1)$$

So me home

$$\int \left((-1) \frac{n}{m} \right) = \frac{n}{m} \int (-1) = -\frac{n}{m} \int (\underline{A})$$

So that type of me have f(g) = of(1), as required.

E) Suppose that thereexists a sequence $(q_n)_{n=1}^{\infty}$ with $q_n \in q_1 \forall n \in \mathbb{N}$ such that $q_n \to x$ as $n \to \infty$. From above, we know $f(q_n) = q_n f(1) \forall q_n \in q_n$. Since f is antinuous, we have that $q_n \to x \Rightarrow f(q_n) \to f(x)$. Since the sequence $(q_n)_{n=1}^{\infty}$ and its commercially value are in dem(4). Therefore, if f is continuous then f(x) = x f(1), as required.