Pitkä matematiikka 21.9.2001, ratkaisut:

- 1. Eliminoimalla ensin toinen tuntematon saadaan ratkaisuksi $x=\frac{9}{23},\ y=\frac{2}{23}.$
- 2. $x = \frac{-a \pm \sqrt{a^2 4ab + 4b^2}}{2(a b)} = \frac{-a \pm (a 2b)}{2(a b)}$. Vastaus: x = -1 tai $x = \frac{b}{b a}$.
- 3. Tampereelta lähtevän junan T matkustusaika on $1\frac{52}{60}$ h, joten sen keskinopeus $v_T = 60 \cdot 187/112$ km/h $\approx 100,2$ km/h. Vastaavasti Helsingistä lähtevän junan H matkustusaika on $2\frac{4}{60}$ h ja keskinopeus $v_H = 60 \cdot 187/124$ km/h $\approx 90,5$ km/h. Jos kohtaamispaikkaan on Helsingistä matkaa s_H km, on $8\frac{58}{60} + \frac{s_H}{v_H} = 8\frac{6}{60} + \frac{187 s_H}{v_T}$. Tämän ratkaisu on $s_H = 187/(1\frac{52}{60} + 2\frac{4}{60}) \approx 47,5$ km. Kohtaamishetkellä kello on $8.58 + s_H/v_H \approx 9.30$.
- 4. Käyrien $y_1=\frac{1}{4}(-x^2+6x+3)$ ja $y_2=2x^2+1$ leikkauspisteillä on samat y-koordinaatit. Niissä on siis $-x^2+6x+3=4(2x^2+1)$ eli $9x^2-6x+1=0$ eli $(3x-1)^2=0$. Tällä on yksi ratkaisu $x=\frac{1}{3}$. Käyrillä on siis yksi leikkauspiste $(\frac{1}{3},\frac{11}{9})$. Edelleen, $y_1'=\frac{1}{2}(-x+3)$ ja $y_2'=4x$. Koska $y_1'(\frac{1}{3})=y_2'(\frac{1}{3})=\frac{4}{3}$, on käyrillä yhteinen tangentti. Sen yhtälö on $y-\frac{11}{9}=\frac{4}{3}(x-\frac{1}{3})$ eli 12x-9y+7=0.
- **5.** Huomenna on pouta (todennäköisyys 0,8) tai sadetta (todennäköisyys 0,2). Näin ollen ylihuomenna sataa todennäköisyydellä $0.8 \cdot 0.2 + 0.2 \cdot 0.6 = 0.28$. Vastaus: 28 % todennäköisyydellä.
- 6. Olkoon R maapallon säde ja h napa-aluekalotin korkeus. Leikkaamalla maapallo napojen kautta kulkevalla tasolla nähdään, että $\frac{R-h}{R}=\sin 66,5^{\circ}$. Siis $h=R(1-\sin 66,5^{\circ})$. Kalotin ala on $A=2\pi Rh=2\pi R^2(1-\sin 66,5^{\circ})$. Napa-alueiden alojen suhde maapallon alaan on siten $\frac{2A}{4\pi R^2}=1-\sin 66,5^{\circ}\approx 0,08294$. Jos sitten trooppisen vyöhykkeen korkeus on k, on $\frac{1}{2}k=R\sin 23,5^{\circ}$. Trooppisen vyöhykkeen alan suhde maapallon alaan on $\frac{2\pi Rk}{4\pi R^2}=\sin 23,5^{\circ}\approx 0,3987$. Vastaus: Napa-alueet ovat 8,3% ja trooppinen alue on 39,9% maapallon pinta-alasta.
- 7. Pisteiden $P_1=(2,11\frac{1}{2},2)$ ja $P_2=(4,\frac{1}{2},-1)$ kautta kulkevan suoran s suunta on $\overline{P_1P_2}=2\overline{i}-11\overline{j}-3\overline{k}$. Pisteiden $P_3=(5,2,0),\ P_4=(1,1,1)$ ja $P_5=(4,1,3)$ kautta kulkevalla tasolla T on suuntavektorit $\overline{P_3P_4}=-4\overline{i}-\overline{j}+\overline{k}$ ja $\overline{P_3P_5}=-\overline{i}-\overline{j}+3\overline{k}$. Koska $\overline{P_1P_2}\cdot\overline{P_3P_4}=-8+11-3=0$ ja $\overline{P_1P_2}\cdot\overline{P_3P_5}=-2+11-9=0$, on $\overline{P_1P_2}$ kohtisuorassa vektoreita $\overline{P_3P_4}$ ja $\overline{P_3P_5}$ vastaan eli s on kohtisuorassa tasoa T vastaan.
- 8. Käyrien y-koordinaattien erotus $e(x) = \ln(1+e^x) x = \ln(1+e^x) \ln e^x = \ln(1+e^{-x})$. Koska e(x) on jatkuva ja $\lim_{x\to\infty} e^{-x} = 0$, on $\lim_{x\to\infty} f(x) = \ln 1 = 0$. Tämä todistaa väitteen.

- 9. Kyseessä on geometrinen sarja $\sum_{k=0}^{\infty}q^k$, jonka suhdeluku $q=\frac{2x-1}{3x+1}$. Sarja suppenee, kun |q|<1 eli kun |2x-1|<|3x+1|. Korottamalla puolittain toiseen saadaan ehdoksi $5x^2+10x>0$. Vasemman puolen nollakohdat ovat -2 ja 0, joten sarja suppenee kun x<-2 tai x>0. Sarjan summa on $\frac{1}{1-q}=\frac{3x+1}{x+2}=3-\frac{5}{x+2}$. Kuvaajan asymptootit ovat suorat x=-2 ja y=3, kun x<-2 ja suora y=3, kun x>0.
- 10. Pisteet $P_1 = (28, 98)$, $P_2 = (70, 112)$ ja $P_3 = (126, 84)$ ovat ympyrän kehällä. Jos ympyrän keskipiste on O = (x, y), on säde $r = OP_1 = OP_2 = OP_3$. Tästä saadaan yhtälöt $OP_1^2 = OP_2^2$ eli $(28-x)^2 + (98-y)^2 = (70-x)^2 + (112-y)^2$ ja $OP_1^2 = OP_3^2$ eli $(28-x)^2 + (98-y)^2 = (126-x)^2 + (84-y)^2$. Edellinen sievenee muotoon 3x+y=252 ja jälkimmäinen muotoon 7x-y=448. Yhtälöparin ratkaisu on x=70, y=42. Säteeksi kartalla saadaan $r = \sqrt{1764 + 3136} = 70$. Luonnossa säde on 25r m = 1750 m.
- **11.** Pinta-ala on $A(a) = \int_a^{a+2} (x^2 + x + 1)^{-1} dx = F(a+2) F(a)$, missä F(x) on funktion $(x^2 + x + 1)^{-1}$ integraalifunktio. Pinta-alan derivaatta on $A'(a) = F'(a+2) F'(a) = ((a+2)^2 + (a+2) + 1)^{-1} (a^2 + a + 1)^{-1} = -(4a+6)(a^2 + 5a + 7)^{-1}(a^2 + a + 1)^{-1}$. Edelleen, A'(a) = 0, kun $a = -\frac{3}{2}$, A'(a) > 0, kun $a < -\frac{3}{2}$ ja A'(a) < 0, kun $a > -\frac{3}{2}$. Näin ollen pinta-ala A(a) saavuttaa suurimman arvonsa, kun $a = -\frac{3}{2}$.
- 12. Siirrämme koordinaattiakselin pyörähdysakselille muunnoksella z=x-3. Tällöin käyrän yhtälö muuttuu muotoon $y=(z+3)^3+1$ tai $z=\sqrt[3]{y-1}-3$. Pyörähdyskappaleen tilavuus on nyt $V=\pi\int_0^9 z^2dy=\pi\int_0^9 ((y-1)^{2/3}-6(y-1)^{1/3}+9)dy=\pi\int_0^9 \frac{3}{5}(y-1)^{5/3}-\frac{9}{2}(y-1)^{4/3}+9y=333\pi/10$.
- 13. a) $\lim_{x\to 0} f(x) = \lim_{x\to 0} 0 = 0$. b) g(x) = 0 kun x = 0 tai $\sin(1/x) = 0$. Jälkimäinen pätee, kun $1/x = n\pi$ eli $x = 1/(n\pi)$, $n \in \mathbf{Z} \{0\}$. c) Kaikilla arvoilla x on $|g(x)| \le 1$. Edelleen g(x) = 1, kun $1/x = \pi/2 + 2n\pi$ eli kun $x = x_n = (\pi/2 + 2n\pi)^{-1}$. Vastaavasti g(x) = -1, kun $x = y_n = (-\pi/2 + 2n\pi)^{-1}$. Välillä $[x_{20}, y_{20}] \in [0,0078; 0,0081] \in [0; 0,01]$ on g jatkuva ja saa päätepisteissä arvot g(x) = 1. Näin ollen se saa ao. välillä myös kaikki arvot päätepistearvojen väliltä. Koska $|g(x)| \le 1$, ei g voi saada muita arvoja. c):n vastaus on siis, että g saa kaikki arvon väliltä [-1, +1]. d) Kun $x \ne 0$, on $|h(x)| = |x\sin(1/x)| \le |x|$. Koska $\lim_{x\to 0} |x| = 0$, on myös $\lim_{x\to 0} h(x) = 0$. e) Koska $\lim_{x\to 0} h(x) = 0 = h(0)$, on h jatkuva origossa. f) Olkoon $x_n = (\pi/2 + 2n\pi)^{-1}$, jolloin $\lim_{n\to\infty} x_n = 0$. Tällöin $h(x_n) = x_n$ ja $\lim_{n\to\infty} f(h(x_n)) = \lim_{n\to\infty} 0 = 0$. Olkoon sitten $x_n = (n\pi)^{-1}$, jolloin $\lim_{n\to\infty} x_n = 0$ ja $h(x_n) = 0$. Tällöin $\lim_{n\to\infty} f(h(x_n)) = \lim_{n\to\infty} f(h(x_n)) = \lim_{n\to\infty} 1$. Näin ollen raja-arvoa $\lim_{x\to 0} f(h(x))$ ei voi olla olemassa.

- 14. Newtonin menetelmällä haetaan yhtälön f(x)=0 juuria, kun f on derivoituva ja derivaatta nollasta poikkeava. Menetelmässä muodostetaan jono (x_n) rekursiivisesti seuraavasti. Valitaan alkuarvo x_0 juuren läheisyydestä. Kun arvo x_n on määrätty, asetetaan $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}, n=0,1,2,...$ Jono suppenee suotuisassa tapauksessa kohti yhtälön juurta. Olkoon määrättäväna yhtälön f(x)=0 suurin juuri, kun $f(x)=e^x+\sin x$. Selvästi $f(-1)\leq -0.47<0$ ja f(0)=1>0. Edelleen $f'(x)=e^x+\cos x>0$, kun x>-1. Näin ollen kaikki yhtälön juuret ovat negatiivisia ja välillä]-1,0[on yksi juuri, joka on suurin. Valitsemalla $x_0=-0.5$ saadaan $x_1=-0.5856438, \ x_2=-0.5885294, \ x_3=-0.5885327=x_4$. Kysytty juuren likiarvo on siis -0.58853.
- 15. Jos elintaso ajan funktiona on y=y(t), on elintason kasvu y'=y'(t). Tehtävän mukaan y'=k/y, missä k>0 on verrannollisuuskerroin. Differentiaaliyhtälömallin ratkaisu on $y^2=2kt+c$ eli $y=\sqrt{2kt+c}$. Kasvu on jatkuvaa, koska y on t:n jatkuva funktio. Koska $y''=-ky^{-2}y'<0$, on y' pienenevä eli kasvu on hidastuva. Koska $\lim_{t\to\infty}y=\lim_{t\to\infty}\sqrt{2kt+c}=\infty$, ei elintaso lähene mitään vakiotasoa.