# CLASSICAL CONTROL SYSTEMS ENGINEERING CS 322

Lecture 5: System Modelling - Block Diagrams Week 6 SMS II 2022/23

# DESIRED OUTCOMES

- Understand relation between Block Diagrams and Transfer Function
- Understand Block Diagrams reduction techniques

Control systems modelling uses two forms of mathematical models

#### i. Transfer function models

Express relationship between inputs and outputs based on Laplace Transform

#### ii. Block diagram models

- Block diagrams represent the relationship of system variables by diagrammatic means.
- In Block diagrams, blocks correspond to system elements
- Lines, signal flow; summing and measurement points

#### Transfer function of a block diagram



#### Where

- **R(s)** is Laplace transform of reference input r(t)
- **C(s)** is Laplace transform of controlled output c(t)
- **B(s)** is primary feedback signal of value H(s)C(s)
- **E(s)** is actuating or error signal of value R(s)-B(s)
- **G(s)** is product of all transfer functions along the forward path
- **H(s)** is product of all transfer functions along the feedback path
- **G(s)H(s)** is **open loop** transfer function

#### Transfer function of a block diagram

#### From the diagram

$$C(s) = G(s)E(s) \tag{4.1}$$

$$B(s) = H(s)C(s) \tag{4.2}$$

$$E(s) = R(s) - B(s) \tag{4.3}$$

Substituting (4.2) and (4.3) into (4.1)

$$C(s) = G(s)\{R(s) - H(s)C(s)\}\$$
  
 $C(s) = G(s)R(s) - G(s)H(s)C(s)$   
 $C(s)\{1 + G(s)H(s)\} = G(s)R(s)$ 

$$\frac{C}{R}(s) = \frac{G(s)}{1 + G(s)H(s)} \tag{4.4}$$

The closed-loop transfer function is the forward-path transfer function divided by one plus the open-loop transfer function.

**Example 5.1**: Find the transfer function for the closed loop control system below



#### **Solution**

$$E_{a}(s) = R(s) - B(s) = R(s) - H(s)Y(s).$$

$$Y(s) = G(s)U(s) = G(s)G_{a}(s)Z(s) = G(s)G_{a}(s)G_{c}(s)E_{a}(s);$$

$$Y(s) = G(s)G_{a}(s)G_{c}(s)[R(s) - H(s)Y(s)].$$

$$Y(s)[1 + G(s)G_{a}(s)G_{c}(s)H(s)] = G(s)G_{a}(s)G_{c}(s)R(s).$$

$$\frac{Y(s)}{R(s)} = \frac{G(s)G_a(s)G_c(s)}{1 + G(s)G_a(s)G_c(s)H(s)}.$$

- A block diagram of a given system can be reduced to a simplified block diagram with fewer blocks than the original diagram.
- This is important especially for control systems with multiple feedback loops.
- When reducing multiple loop systems, the minor loops are considered first, until the system is reduced to a single overall closed loop transfer function.
- In some cases, **reduction** of a block diagram requires to **rearrange positions of elements** in the diagrams.
- Block diagrams rearrangements is simplified using Block Diagram Transformation Theorems.

#### Block diagram transformation theorems

| Transformation                                                             | Equation              | Block diagram                                                 | Equivalent block diagram                          |
|----------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------|---------------------------------------------------|
| Combining     blocks in     cascade                                        | $Y=(G_1G_2)X$         | $X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$ | $X \longrightarrow G_1G_2 \longrightarrow Y$      |
| 2. Combining<br>blocks in<br>parallel; or<br>eliminating a<br>forward loop | $Y = G_1 X \pm G_2 X$ | $X \longrightarrow G_1 \longrightarrow Y \longrightarrow Y$   | $X \longrightarrow G_1 \pm G_2 \longrightarrow Y$ |
| 3. Removing a<br>block from<br>a forward<br>path                           | $Y = G_1 X \pm G_2 X$ | - G <sub>2</sub>                                              | $G_2$ $G_2$ $G_2$ $G_2$ $G_2$ $G_2$               |

#### Block diagram transformation theorems



#### Block diagram transformation theorems

| 8. Moving a summing point beyond a block    | $Z = G(X \pm Y)$ | $X + \bigcirc Z$ $Y + \bigcirc Z$           | $X \longrightarrow G$ $Y \longrightarrow G$ |
|---------------------------------------------|------------------|---------------------------------------------|---------------------------------------------|
| 9. Moving a take-off point ahead of a block | Y = GX           | $X \longrightarrow G$ $Y \longrightarrow Y$ | $X \longrightarrow G \longrightarrow Y$     |
| 10. Moving a take-off point beyond a block  | Y = GX           | $X \longrightarrow G \longrightarrow Y$     | $X$ $G$ $Y$ $X$ $\frac{1}{G}$               |

**Example 5.2:** Find the reduce block diagram for the given figure below



#### **Solution:**

1<sup>st</sup> step: Move H<sub>2</sub> behind block G<sub>4</sub>

2<sup>nd</sup> step: Eliminate the loop G<sub>3</sub>G<sub>4</sub>H<sub>1</sub>

3<sup>rd</sup> step: Eliminate the inner loop H<sub>2</sub>/G<sub>4</sub>

4<sup>th</sup> step: Reduce the loop containing H<sub>3</sub>

#### **Example 5.2: Solution**

1st: Move H<sub>2</sub> behind block G<sub>4</sub> using transformation 10



2<sup>nd</sup>: Eliminate the loop G<sub>3</sub>G<sub>4</sub>H<sub>1</sub> using transformation 4



#### **Example 5.2: Solution**

3<sup>rd</sup>: Eliminate the inner loop H<sub>2</sub>/G<sub>4</sub>



4th: Reduce the loop containing H<sub>3</sub>

$$\begin{array}{c|c}
R(s) & G_1G_2G_3G_4 & Y(s) \\
\hline
1 - G_3G_4H_1 + G_2G_3H_2 + G_1G_2G_3G_4H_3 & Y(s)
\end{array}$$

**Example 5.3:** Find the overall closed loop transfer function for the system below



#### **Solution:**

 $1^{st}$ : Move  $H_3$  ahead of  $G_1$  and beyond  $G_4$ , combine  $G_1G_2$ 

and G<sub>3</sub>G<sub>4</sub>



#### **Example 5.3: Solution**

2<sup>nd</sup>: Reduce the loops G<sub>1</sub>G<sub>2</sub>H<sub>1</sub> and G<sub>3</sub>G<sub>4</sub>H<sub>2</sub>



#### The overall transfer function

$$\frac{C}{R}(s) = \frac{G_1(s)G_2(s)G_3(s)G_4(s)}{(1 + G_1(s)G_2(s)H_1(s))(1 + G_3(s)G_4(s)H_2(s)) + G_2(s)G_3(s)H_3(s)}$$

#### Systems with multiple inputs

We use the **Principle of Superposition** for analysis of systems with **multiple inputs**.



The principle states that "The **response** c(t) of a **linear system** due to **several inputs**  $r_1(t)$ ,  $r_2(t)$ ,...., $r_n(t)$  acting **simultaneously** is equal to the **sum** of the responses of **each input** acting alone."

**Example 5.4:** Find the overall output for the system in the

figure below



#### **Solution:**

1st: Remove the inner loop G<sub>2</sub>H<sub>2</sub> and sum with G<sub>1</sub>



2<sup>nd</sup>: Consider input R<sub>1</sub>(s) alone



$$\frac{C^{\mathbf{I}}}{R_1}(s) = \frac{\frac{G_1 G_2}{1 + G_2 H_2}}{1 + \frac{G_1 G_2 H_1}{1 + G_2 H_2}}$$

$$C^{I}(s) = \frac{G_1(s)G_2(s)R_1(s)}{1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)}$$

3<sup>rd</sup>: Considering input R<sub>2</sub>(s) alone



$$C^{II}(s) = \frac{-G_1(s)G_2(s)H_1(s)R_2(s)}{1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)}$$

Using Principle of Superposition  $C(s) = C^{I}(s) + C^{II}(s)$ 

$$C(s) = \frac{(G_1(s)G_2(s))R_1(s) - (G_1(s)G_2(s)H_1(s))R_2(s)}{1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)}$$

**Example 5.5:** Find the overall closed loop transfer function for the system below

(Class work 10 mins)

