

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want as long as:

(1) you mention Séverin Lemaignan as being the original author, (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: github.com/severin-lemaignan/lectures-hri-symbolic-reasoning

Symbolic Reasoning for HRI

Séverin Lemaignan

Bristol Robotics LabUniversity of the West of England

Last week: NLP down to syntax parsing

IN THIS LECTURE

- o Last week: NLP down to syntax parsing
- Today: meaning (both semantics and pragmatics)

IN THIS LECTURE

- Last week: NLP down to syntax parsing
- Today: meaning (both semantics and pragmatics)
- How to attach *meaning* to natural language?
- What are ontologies?
- o How is 'meaning' represented and used within the robot?
- o How does it relate to mental models?

Situated dialogue effectively evidences the challenges

How can the robot make sense of and act upon a command like:

"Can you give me that book?"

THE SYMBOL GROUNDING PROBLEM

How to attach meaning to a symbol?

THE SYMBOL GROUNDING PROBLEM

How to attach meaning to a symbol? Searle's **Chinese Room Argument**

Read more on Wikipedia

THE SYMBOL GROUNDING PROBLEM

How to attach meaning to a symbol?

Is it possible at all?

SITUATION ASSESSMENT

VISUAL PERSPECTIVE TAKING

Theory of Mind

Subject	Predicate	Object
Location	isAt	Location
	ightarrow isOn	
	ightarrow isIn	
	ightarrow isNextTo	
Location	isAbove	Location
Location	isBelow	Location
Location	hasRelativePosition	Location
	ightarrow behind	
	ightarrow inFrontOf	
	ightarrow leftOf	
	ightarrow rightOf	
Object	farFrom	Agent
Object	near	Agent
Agent	looksAt	SpatialThing
Agent	sees	SpatialThing
SpatialThing	isInFieldOfView	xsd:boolean
Agent	pointsAt	SpatialThing
Agent	focusesOn	SpatialThing
Agent	${\tt seesWithHeadMovement}$	SpatialThing
Agent	canReach	Object

FROM SPATIAL MODEL TO SYMBOLIC MODEL

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

(also known as a knowledge graph)

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

(also known as a knowledge graph)

Ontologies often have close relationships with **first-order logic (FOL)** – more about that later.

- T-box statements: the conceptualisation of the domain, for instance in terms of categories (classes): Dog rdfs:subClassOf Animal
- A-box statements: (T-box compliant) statements about individuals (instances) in the ontology: SPOT rdf:type Dog

- T-box statements: the conceptualisation of the domain, for instance in terms of categories (classes): Dog rdfs:subClassOf Animal
- A-box statements: (T-box compliant) statements about individuals (instances) in the ontology: SPOT rdf:type Dog

Ontologies are represented using a **knowledge description** language. The **Web Ontology Langage (OWL)** is a very common choice that uses a XML encoding.

ONLINE INSTANCIATION

ONLINE INSTANCIATION

ONLINE INSTANCIATION

"Give me the book on the table"

"Give me the book on the table"

 $\begin{array}{c} \text{me} \rightarrow \text{human_1} \\ \text{find(?obj type table)} \rightarrow \text{ikea_table} \\ \text{find(?obj type book, ?obj isOn ikea_table)} \rightarrow \\ \text{harry_potter} \end{array}$

"Give me the book on the table"

 $\begin{array}{c} & \\ \text{me} \rightarrow \text{human_1} \\ & \text{find(?obj type table)} \rightarrow \text{ikea_table} \\ & \text{find(?obj type book, ?obj isOn ikea_table)} \rightarrow \\ & & \text{harry_potter} \\ & \downarrow \end{array}$

MULTI-MODAL INTERACTION

What about "Give me that book"? (or even: "Give me that!")

"Where is the other tape?" find (?obj isAt ?loc, ?obj type VideoTape, ?obj differentFrom WALL_E_TAPE)

"Where is the other tape?" find (?obj isAt ?loc, ?obj type VideoTape, ?obj differentFrom WALL_E_TAPE)

Symbolic approaches effective at dealing with this kind of constraints

1ST ORDER TOM: THE FALSE-BELIEF EXPERIMENT

What if I ask for the video tape in the box, but the robot previously moved it somewhere else?

What if I ask for the video tape in the box, but the robot previously moved it somewhere else?

False-belief situation

PARALLEL MODELS: TOWARDS THEORY OF MIND

Sensorimotor layer

FULL SOCIAL & AUTONOMOUS INTERACTION: ONE EXAMPLE

#

That's all for today, folks!

Questions:

severin.lemaignan@brl.ac.uk

Slides:

github.com/severin-lemaignan/lecture-symbolic-reasoning