CS-C3100 Computer Graphics

5.2 Articulated Characters Jaakko Lehtinen

In This Video

- Hierarchical modeling of articulated characters
 - humans, animals, etc
- Parameterized transformations
- Forward and inverse kinematics

Animation

- Hierarchical structure is essential for animation
 - Eyes move with head
 - Hands move with arms
 - Feet move with legs

— ...

• Without such structure the model falls apart

Articulated Models

- *Articulated models* = hierarchies of rigid parts (called "bones") connected by joints
 - Each joint has some angular degrees of freedom
 - These are commonly called "joint angles"
- Articulated models can be animated by specifying the joint angles as functions of time

What This Looks Like

Pinocchio, Baran & Popovic, SIGGRAPH 2007

What This Looks Like

Pinocchio, Baran & Popovic, SIGGRAPH 2007

- Describes the positions of the body parts as a function of joint angles.
- Joint movement is determined by its degrees of freedom (DoF)
 - Usually rotation for articulated bodies
 - Also, a *fixed* origin in the parent's coordinate system

Skeleton Hierarchy

• Each bone position/orientation described relative to the parent in the hierarchy:

How to determine the world-space position for point **v**_s?

Transformation matrix $\bf S$ for a point $\bf v_s$ is a matrix composition of all joint transformations between the point and the root of the hierarchy. $\bf S$ is a function of all the joint angles between here and root.

Transformation matrix $\bf S$ for a point $\bf v_s$ is a matrix composition of all joint transformations between the point and the root of the hierarchy. $\bf S$ is a function of all the joint angles between here and root.

Note that the angles have a non-linear effect.

T = translate, R = rotate, TR = rotate & translate

T, R, TR etc. are matrices & their product is S

$$\mathbf{v}_{w} = \mathbf{T}(x_{h}, y_{h}, z_{h}) \mathbf{R}(q_{h}, f_{h}, s_{h}) \mathbf{T} \mathbf{R}(q_{t}, f_{t}, s_{t}) \mathbf{T} \mathbf{R}(q_{c}) \mathbf{T} \mathbf{R}(q_{f}, f_{f}) \mathbf{v}_{s}$$

Local coordinates in foot's coordinate system

Coordinates in calf coordinate system

$$\mathbf{v}_{w} = \mathbf{T}(x_{h}, y_{h}, z_{h}) \mathbf{R}(q_{h}, f_{h}, s_{h}) \mathbf{T} \mathbf{R}(q_{t}, f_{t}, s_{t}) \mathbf{T} \mathbf{R}(q_{c}) \mathbf{T} \mathbf{R}(q_{f}, f_{f}) \mathbf{v}_{s}$$

Coordinates in leg coordinate system

$$\mathbf{v}_{w} = \mathbf{T}(x_{h}, y_{h}, z_{h}) \mathbf{R}(q_{h}, f_{h}, s_{h}) \mathbf{T} \mathbf{R}(q_{t}, f_{t}, s_{t}) \mathbf{T} \mathbf{R}(q_{c}) \mathbf{T} \mathbf{R}(q_{f}, f_{f}) \mathbf{v}_{s}$$

Coordinates in hip (root) coordinate system

$$\mathbf{v}_{w} = \mathbf{T}(x_{h}, y_{h}, z_{h}) \mathbf{R}(q_{h}, f_{h}, s_{h}) \mathbf{T} \mathbf{R}(q_{t}, f_{t}, s_{t}) \mathbf{T} \mathbf{R}(q_{c}) \mathbf{T} \mathbf{R}(q_{f}, f_{f}) \mathbf{v}_{s}$$

World space origin & coordinate axes

Coordinates in world space

$$\mathbf{v}_{w} = \left[\mathbf{T}(x_{h}, y_{h}, z_{h}) \mathbf{R}(q_{h}, f_{h}, s_{h}) \mathbf{T} \mathbf{R}(q_{t}, f_{t}, s_{t}) \mathbf{T} \mathbf{R}(q_{c}) \mathbf{T} \mathbf{R}(q_{f}, f_{f}) \mathbf{v}_{s} \right]$$

parameter vector **p**

Forward & Inverse Kinematics

- Forward kinematics
 - Given the skeleton parameters \mathbf{p} (position of the root and all joint angles) and the position of the point in local coordinates \mathbf{v}_s , what is the position of the point in the world coordinates \mathbf{v}_w ?
 - Not hard, just apply transform accumulated from root.

Forward & Inverse Kinematics

- Inverse kinematics
 - Given the current position of the desired new position $\tilde{\mathbf{v}}_w$ in world coordinates, what are the skeleton parameters \mathbf{p} that take the point to the desired position?

Inverse Kinematics

• Given the position of the point in local coordinates \mathbf{v}_s and the desired position $\tilde{\mathbf{v}}_w$ in world coordinates, what are the skeleton parameters \mathbf{p} ?

$$v_{w} = S\left(\underbrace{x_{h}, y_{h}, z_{h}, \theta_{h}, \phi_{h}, \sigma_{h}, \theta_{t}, \phi_{t}, \sigma_{t}, \theta_{c}, \theta_{f}, \phi_{f}}\right) v_{s} = S(p)v_{s}$$
skeleton parameter vector p

- Requires solving for \mathbf{p} , given \mathbf{v}_s and $\mathbf{\tilde{v}}_w$
 - Non-linear, and...

Underconstrained

 $X_h, Y_h, Z_h, q_h, f_h, s_h$ q_t, f_t, s_t

- Count degrees of freedom:
 - We specify one 3D point (3 equations)
 - We usually need more than 3 angles
 - p usually has tens of dimensions

- The set of possible elbow location is a circle in 3D

$$oldsymbol{v}_{ ext{WS}} = oldsymbol{S}(oldsymbol{p})\,oldsymbol{v}_{ ext{S}}$$

• Deal with non-linearity: $oldsymbol{v}_{
m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
m S}$ Iterative solution (steepest descent)

- Deal with non-linearity: $m{v}_{
 m WS} = m{S}(m{p})\,m{v}_{
 m s}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"
 - But wait! The Jacobian is non-invertible (3xN)

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"
 - But wait! The Jacobian is non-invertible (3xN)
 - Deal with ill-posedness: Pseudo-inverse
 - Solution that displaces things the least
 - See http://en.wikipedia.org/wiki/Moore-Penrose pseudoinverse

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"
 - But wait! The Jacobian is non-invertible (3xN)
 - Deal with ill-posedness: Pseudo-inverse
 - Solution that displaces things the least
 - See http://en.wikipedia.org/wiki/Moore-Penrose pseudoinverse

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"
 - But wait! The Jacobian is non-invertible (3xN)
 - Deal with ill-posedness: Pseudo-inverse
 - Solution that displaces things the least
 - See http://en.wikipedia.org/wiki/Moore-Penrose pseudoinverse

- Deal with non-linearity: $oldsymbol{v}_{
 m WS} = oldsymbol{S}(oldsymbol{p}) \, oldsymbol{v}_{
 m S}$ Iterative solution (steepest descent)
 - Compute Jacobian of world position w.r.t. angles
 - Jacobian: "If the parameters \mathbf{p} change by tiny amounts, what is the resulting change in the world position \mathbf{v}_{WS} ?"
 - Then invert Jacobian
 - This says "if \mathbf{v}_{WS} changes by a tiny amount, what is the change in the parameters \mathbf{p} ?"
 - But wait! The Jacobian is non-invertible (3xN)
 - Deal with ill-posedness: Pseudo-inverse
 - Solution that displaces things the least
 - See http://en.wikipedia.org/wiki/Moore-Penrose pseudoinverse

Example: Style-Based IK

• <u>Video</u> (YouTube)

Prior on "good pose"

• Link to paper: <u>Grochow, Martin, Hertzmann, Popovic: Style-Based Inverse Kinematics, ACM SIGGRAPH 2004</u>

Mesh-Based Inverse Kinematics

Video

• Doesn't even need a hierarchy or skeleton: Figure proper transformations out based on a few example deformations!

Link to paper:
 <u>Sumner, Zwicker, Gotsman, Popovic: Mesh-Based Inverse Kinematics, ACM SIGGRAPH</u>
 2005

