Experimentalphysik III - Zusammenfassung

Luca Cordes

WS 2023/2024

Inhaltsverzeichnis

und

1	Licht	1	$\frac{b}{q} = \frac{B}{G}$
	1.1 Fermat's Prinzip	1	g-G
	1.2 Snell's Gesetz	1	
2	Strahlenoptik	1	Linsenmachergleichung für dünne Linsen:
	2.1 Dünne Linsen in Paraxialer Näherung .	1	Empermaenci Sicientalis Tai daline Emper.
	2.2 Dicke Linsen	1	
	2.3 Kugelfläche in Paraxialer Näherung	1	$n_0 = n_0 = n_0 = n_0 = n_0$
3	Fotometrie	2	$D = \frac{n_0}{f} = (n_L - n_0) \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$

Licht 1

Fermat's Prinzip 1.1

Die geometrische Optik lässt sich mathematisch elegant beschreiben wenn man den Lichtweg $L = \int |\vec{r}(t)|$. $n(\vec{r}(t)) dt$ definiert. Er ist der normale Weg, gewichtete mit dem lokalen Brechungsindex. Das Licht nimmt immer den Weg, der den Lichtweg extremal werden lässt. Zur Erinnerung: Es gilt $n = \frac{c}{v}$

Es Weg des Lichts kann daher formal mithilfe der Euler-Lagrange Gleichungen beschrieben werden:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\vec{x}}} = \frac{\partial \mathcal{L}}{\partial \vec{x}} \;, \quad \mathrm{mit} \; \mathcal{L} = |\vec{r}(t)| \cdot n(\vec{r}(t))$$

1.2 Snell's Gesetz

Reist ein Lichtstrahl von einem Medium mit Brechungsindex n_1 in ein zweites mit Brechungindex n_2 , wird er gebrochen. Der Winkel kann mithilfe von Snell's Gesetz berechnet werden:

$$\frac{\sin \beta}{\sin \alpha} = \frac{n_a}{n_b}$$

AuSSerdem gilt für dünne Linsen:

$$D = D_1 + D_2$$

B

2.2 Dicke Linsen

Linsenmachergleichung:

$$D = \frac{n_0}{f} = (n_L - n_0) \left(\frac{1}{r_1} + \frac{1}{r_2}\right) + \frac{(n_L - n_0)^2}{n_L} \frac{d}{r_1 r_2}$$

Newtonsch'sche Abbildungsgleichung

$$z \cdot z' = f_B \cdot f_G$$

Kugelfläche in Paraxialer Nähe-

$\mathbf{2}$ Strahlenoptik

2.1 Dünne Linsen in Paraxialer Näherung

Sowohl für Sammel-/ aus auch Streulinsen gelten die Für eine Kugelfläche gilt die Abbe'sche Invariante: Linsengleichungen:

$$\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$$

$$n_0 \left(\frac{1}{r} + \frac{1}{q}\right) = n_l \left(\frac{1}{r} - \frac{1}{b}\right)$$

2.3

rung

3 Fotometrie

Strahlungsphysika	Strahlungsphysikalische Größen			Lichttechnische Größen		
Name	Definition	Einheit	Name	Definition	Einheit	
Strahlungsfluss	Φ_E	1 W	Lichtstrom	Φ_V	1 lm	
Strahlungsmenge	$Q_E = \int \Phi_E dt$	1 J	Lichtmenge	$Q_V = \int \Phi_V dt$	1 lms	
Strahlstärke	$I_E = \frac{d\Phi_E}{d\Omega}$	$1\frac{W}{sr}$	Lichtstärke	$I_V = \frac{d\Phi_V}{d\Omega}$	1 cd	
Strahldichte	$L_E = \frac{1}{\cos \varphi} \frac{d\Phi_E}{dAd\Omega}$	$1\frac{W}{m^2sr}$	Leuchtdichte	$L_V = \frac{1}{\cos \varphi} \frac{d\Phi_V}{dAd\Omega}$	$1\frac{cd}{m^2}$	
Bestrahlungsstärke	$E_E = \frac{d\Phi_E}{dA}$	$1\frac{W}{m^2}$	Beleuchtungsstärke	$E_V = \frac{d\Phi_V}{dA}$	1 lx	
			Belichtung	$H_V = \int E_V dt$	1 lxs	

Lemma 1 (Stefan-Boltzmann-Gesetz)

$$\Phi_E = \sigma \cdot A \cdot T^4$$

$$\sigma = 5.670 \cdot 10^{-8} \frac{W}{m^2 K^4} \ , \ Stefan\text{-Boltzmann-Konstante}$$

Lemma 2 (Wien'sches Verschiebungsgesetz)

Ist λ_{max} die Wellenlänge, bei der die Emission eines Schwarzerkörpers die maximale Intensität zeigt, so gilt:

$$\lambda_{max} \cdot T = const = 2.8978 \cdot 10^{-3} \text{m K}$$

Lemma 3 (Rayleigh-Jean-Gesetz) Das Rayleigh-Jean-Gesetz beschreibt die Abstrahlung als

$$M_E(\lambda) := \frac{\mathrm{d}\Phi_E(\lambda)}{\mathrm{d}\lambda} = 2\pi kc \frac{T}{\lambda^4}$$