Madeling Constant for a 10 Crystal

Calculate the potential of a ion within the a crystal due to all the other a crystals (assume the ions to behave like Problem: point Charges)

Energy clue to interaction with nearest Potential neighbours = $-e^2 + \left(\frac{-e^2}{4\pi\epsilon_0 x_0}\right)$ = - 2e²
4118, x.

Next nearest neighbours = $+e^2$ + (8econd 8hell) = $+e^2$ + $(2x_0)$

 $= +2e^{2}$ 4TE. (2%)

Next next neighbours = $-e^2$ $-e^2$ $-\pi$ $4\pi\epsilon_0 (3\pi_0)$

Thus the total energy due to all the ions in a linear array = E

 $\frac{-2e^2}{4\pi\epsilon_0 \chi_0} + \frac{2e^2}{4\pi\epsilon_0 (2\chi_0)} - \frac{2e^2}{4\pi\epsilon_0 (3\chi_0)} \dots \dots$ $= \frac{e^2}{4\pi\epsilon_0 x_0} \left[2\left(+1 + -\frac{1}{2} + \frac{1}{3} + \cdots \right) \right]$

Using expansion: $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \dots$ putting $\chi = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$ $W = E = -\frac{e^2}{4\pi\epsilon_0 \epsilon_0} \quad (2 \ln 2)$ $= -e^2 \qquad (\alpha_m)$ 4116090 Here &m is called Madeling's constant 9± is a property of a crystal which depends on various lattice parameters

The higher the α_m value, more is the PE interaction within a lattice, generally the crystal is more closely packed.