Definizioni e Teoremi di Analisi Matematica II

Noè Murr

March 20, 2017

Contents

1	Teo	remi sulle Equazioni Differenziali Ordinarie	1
	1.1	Teorema di Peano per l'esistenza di una soluzione locale di un	
		problema di Cauchy in cui l'equazione differenziale è a variabili	
		separabili	1
	1.2	Primo Teorema di esistenza ed unicità locale della soluzione di un	
		problema di Cauchy in cui l'equazione differenziale è a variabili	
		separabili	1
	1.3	Secondo Teorema di esistenza ed unicità locale della soluzione di	
		un problema di Cauchy in cui l'equazione differenziale è a variabili	
		separabili	1
_	ъ.		_
2		inizioni sulle Equazioni Differenziali Ordinarie	2
	2.1	Definizione di Funzione Lipschitziana	2

Teoremi

Questo capitolo conterrà l'insieme dei teoremi del corso di analisi matematica II. Ogni parte sarà divisa in capitoli i quali saranno divisi in sezioni le quale raggrupperanno i diversi teoremi. Solo i teoremi più importanti saranno muniti di dimostrazione.

1 Teoremi sulle Equazioni Differenziali Ordinarie

1.1 Teorema di Peano per l'esistenza di una soluzione locale di un problema di Cauchy in cui l'equazione differenziale è a variabili separabili

Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = f(x)g(x) \\ y(x_0) = y_0 \end{cases}$$
 (1)

dove $(x_0, y_0) \in \mathbb{R}$, f è una funzione continua su un intervallo aperto I contenente x_0 e g è una funzione continua su un intervallo aperto J contenente y_0 . Allora il problema di Cauchy assegnato ha almeno una soluzione $y \in C^1(I')$ definita su un intervallo aperto $I' \subseteq I$ contenete x_0 .

1.2 Primo Teorema di esistenza ed unicità locale della soluzione di un problema di Cauchy in cui l'equazione differenziale è a variabili separabili

Supponendo che tutte le ipotesi del teorema 1.1 siano soddisfatte allora. Se $g(y_0) \neq 0$ esiste un intervallo aperto I'contenuto in I e contenente x_0 e un intervallo aperto J' contenuto in J e contenente y_0 tale che la soluzione del problema di Cauchy sia unica in $I' \times J'$.

1.3 Secondo Teorema di esistenza ed unicità locale della soluzione di un problema di Cauchy in cui l'equazione differenziale è a variabili separabili

Supponiamo che le ipotesi della sezione 1.1 siano vere allora se $g \in C^1(J)$ o g è una funzione lipschitziana (vedi 2.1) su J, allora il problema di Cauchy ha soluzione unica in un intervallo aperto I' contenente x_0 .

Definizioni

2 Definizioni sulle Equazioni Differenziali Ordinarie

2.1 Definizione di Funzione Lipschitziana

Sia f una funzione di una variabile x definita su $D\subseteq\mathbb{R}$ a valori in \mathbb{R} . Diciamo che f è lipschitziana su D se esiste una costante $L\geq 0$ tale che:

$$\forall x_1, x_2 \in D \to |f(x_1) - f(x_2)| \le L * |x_1 - x_2|$$