

¿Podemos aplicar Markov para modelar el precio de las acciones en la bolsa?

Pensemos:

"Las cadenas de Markov describen una secuencia donde la probabilidad de que ocurra un evento depende del evento inmediatamente anterior".

Si consideramos que el valor de una acción se comporta de manera estocástica, el precio en un momento dado depende del precio en el momento anterior y no de todo el historial de precios.

Con estas suposiciones, ¡podemos aplicar Markov!

Intentemos predecir si el precio de la acción de Apple va a subir o bajar:

Tomemos los valores de la acción correspondientes al último año:

Para modelizarlo como una <u>Cadena de Markov Homogenea</u>

Variable discreta: Precio ent.
Parámetro discreto: Días

Discretizamos la variable en precios promedio y el parámetro en días.

$$Precio\ prom = \frac{Pabrir + Pcierre}{2}$$

Fecha	Abrir	Máx.	Mín.	Cierre*
19 abr 2024	166,21	166,40	164,08	165,00
18 abr 2024	168,03	168,64	166,55	167,04
17 abr 2024	169,61	170,65	168,00	168,00
16 abr 2024	171,75	173,76	168,27	169,38

¿Que estados puede tomar el sistema?

$$T = \frac{Sube}{Baja} \begin{pmatrix} pss & psb \\ pbs & pbb \end{pmatrix}$$

Tenemos que calcular los valores de probabilidades de transición. Para eso, medimos la frecuencia con la que una acción pasa de un estado a otro:

Fecha	Precio	Comparativa
19/04/2024	165.605	Bajó
18/04/2024	167.535	Bajó
17/04/2024	168.805	Bajó
16/04/2024	170.565	Bajó
15/04/2024	174.025	Bajó
12/04/2024	175.405	Subió
11/04/2024	171.68999	Subió

$$F = \frac{Sube}{Baja} \begin{pmatrix} 87 & 43 \\ 43 & 77 \end{pmatrix}$$

*Tomamos los valores del ultimo año

Si dividimos la frecuencia por la cantidad de eventos de la fila, podemos obtener las probabilidades de trancisión:

Matriz de transición:
$$T = \frac{Sube}{Baja} \begin{pmatrix} 0.669 & 0.330 \\ 0.358 & 0.641 \end{pmatrix}$$

¡Listo! Con la matriz y un vector de estado inicial, ya podemos calcular probabilidades.

Probemos:

Si hoy la acción de Apple bajó, ¿que pasará con ella dentro de 2 días?

$$p2 = poT^2 = (0 \quad 1) \begin{pmatrix} 0.566 & 0.433 \\ 0.469 & 0.530 \end{pmatrix}$$

$$p2 = (0.469 \quad 0.530)$$

Podemos decir que con un 53% de probabilidad Apple va a bajar

*Esto no es una recomendación de inversión

Para concluir, ¡simulemos un camino!

^{*}Notebook en Colab

