

Cooperative Microsystems

Dr. Joseph Pancrazio

Program Director, Extramural Research Program, National Institute of Neurological Disorders and Stroke / National Institutes of Health

The views and opinions presented by the invited speakers are their own and should not be interpreted as representing the official views of DARPA or DoD

Approved For Public Release, Distribution Unlimited

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Info	rmation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington	
1. REPORT DATE MAR 2009	2. REPORT TYPE		3. DATES COVERED 00-00-2009 to 00-00-2009			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Cooperative Microsystems and Neural Interfaces				5b. GRANT NUMBER		
				5c. PROGRAM F	ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
National Institutes	ZATION NAME(S) AND AE of Health,National nural Research Prog	Institute of Neurolo	O	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO MTO (DARPA Mi	otes crosystems Technol	ogy Office) Sympos	ium, 2009, Mar 2	-5, San Jose,	CA.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	14	RESTUNSIBLE FERSON	

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Cooperative Microsystems and Neural Interfaces

Joseph J. Pancrazio, PhD Program Director March 4, 2009

Google "Neural Prosthesis Program"

Approved For Public Release, Distribution Unlimited

Outline

- Signaling in the Nervous System
 - Signal sources of cortex and peripheral nerve
- Clinically Useful Neural Interfaces
- Cortical Recording Arrays
- Peripheral Nerve Interfaces
- Challenges and Opportunities for Microsystems in New Neural Interfaces

Signaling in the Nervous System

Control signal sources at the level of motor cortex and peripheral nerve

Clinically-Relevant Neural Interfaces

Neural interfaces have already provided substantial benefits to individuals.

Cochlear Ltd. Nucleus® 24 cochlear implant system

Cochlear Prosthesis bypasses damaged hair cells in the auditory system by direct electrical stimulation of the auditory nerve. 60,000 world-wide

Case Western Reserve University, Cleveland, OH

Functional Electrical Stimulation has been used to restore motor function in paralyzed individuals. e.g., Upper- and lower-extremity, bladder.

- Neural Interfaces for restoring neurological function via electrical stimulation
- Cortical recording arrays and the peripheral nerve interfaces?

Cortical Recording Arrays

Design inspired by biology?

Critical Issue – tethering forces

- Pedestal connector, wireless system
- Cable flexibility and scalability

Cortical Array Microsystems

F. Solzbacher, University of Utah – K. Shenoy, Stanford

Performance Specifications

100 recording sites, integrated spike detection, 6 months capability

Thin film fabricated gold-on-polyimide coil for wireless power/data transfer

Integrated
amplifiers, signal
processing & RF
telemetry electronics
VLSI ASIC

Microelectrode array

- Demonstrated wireless operation of implanted chip in non-human primates.
- Research platform for freely behaving nonhuman primates; pre-clinical technology

Cortical Array Microsystems

Critical issue:

Cable flexibility & scalability – limit to how many leads you can pack.

Possible Approach:

Collapse cable into a single biocompatible optical fiber.

Challenge: develop and demonstrate low power multi-channel data acquisition chip to multiplex data onto one optical fiber

Peripheral Nerve Interfaces

Adapted from IEEE Trans Neural Syst Rehab Engin 16: 453-472 (2008)

Peripheral Nerve Microsystems

Critical issue:

Lack of spatial selectivity with electrical stimulation of cuff electrodes

Possible Approach:

Optically-based stimulation – use spatial selectivity of light

Infrared pulses, λ =4 μ m, <1J/cm²

From Optics Lett. 30: 504-506 (2005) – Vanderbilt & Aculight

Challenge: implement flexible cuff electrodes that incorporate multiple light sources

Peripheral Nerve Microsystems

Critical issue:

Selectivity of targeted reinnervation limited to donor muscle constraints

Possible Approach:

Microscale reinnervation; device integrated muscle fibers

From J Neurophysiol .98:2974-2982 (2007)

Challenge: develop microelectrode/microactuator integrated 3D structures that maintain myofiber integrity and nerve viability

Summary

- Neural Interfaces applications
- Opportunities and challenges for integrating microsystems in neural interfaces:
 - Optical technologies
 - Microscale targeted reinnervation
- Emergence of computational neuroscience systems biology eventually will result in predictive models of biological that facilitate the design of interactive microsystems.

Thank you

