7 Problems: Linear Transformations

1. Show that the pair of conditions:

(i)
$$L(u + v) = L(u) + L(v)$$

(ii)
$$L(cv) = cL(v)$$

is equivalent to the single condition:

(iii)
$$L(ru + sv) = rL(u) + sL(v)$$
.

Your answer should have two parts. Show that (i,ii)⇒(iii), and then show that (iii)⇒(i,ii).

- 2. Let P_n be the space of polynomials of degree n or less in the variable t. Suppose L is a linear transformation from $P_2 \to P_3$ such that L(1) = 4, $L(t) = t^3$, and $L(t^2) = t 1$.
 - Find $L(1+t+2t^2)$.
 - Find $L(a + bt + ct^2)$.
 - Find all values a, b, c such that $L(a + bt + ct^2) = 1 + 3t + 2t^3$.

3. Show that integration is a linear transformation on the vector space of polynomials. What would a matrix for integration look like? Be sure to think about what to do with the constant of integration.								
	mtegration	HOOK like: D	e sure to timi	k about what	to do with the	constant of me	egration.	