

CHAPTER

2

Solution

Vapour Pressure

Pressure exerted by vapours over the liquid surface at equilibrium.

 $T\uparrow \Rightarrow V.P.\uparrow$

Attractive Forces $\uparrow \Rightarrow V.P. \downarrow$

Raoult's Law

(1) Volatile binary liquid mix:

Volatile liq. A

 $\label{eq:molecular_molecules} \text{Mole fraction} \qquad \quad \textbf{X}_{\textbf{A}} / \, \textbf{Y}_{\textbf{A}} \qquad \quad \textbf{X}_{\textbf{B}} / \, \textbf{Y}_{\textbf{B}} \Rightarrow \text{liq/vapour}$

V.P. of pure liq. P_A° P_A°

Binary liquid solution:

By Raoult's law
$$\Rightarrow P_T = P_A^{\circ} X_A + P_B^{\circ} X_B = P_A + P_B \qquad ...(i)$$

By Dalton's law
$$\Rightarrow P_A = Y_A P_T$$
 ...(ii)

$$P_{B} = Y_{B} P_{T} \qquad ...(iii)$$

Ideal and Non-Ideal Solutions

Ideal Solutions

Ideal solution: $\begin{cases} F_1 \simeq F_2 \simeq F \\ V_{-} = V_1 + V_2 \end{cases} \Rightarrow \Delta H_{\text{solution}} = 0$

Non-Ideal Solutions

(1) Solution showing +ve deviation :

$$F < F_1 \text{ or } F_2$$
$$V_T > V_1 + V_2$$

 $\therefore \Delta H_{\text{solution}} > 0$

Fig.: A solution that shows +ve deviation from Raoult's law

(2) Solution showing -ve deviation:

$$\Rightarrow F > F_1 \text{ and } F_2$$

$$\Rightarrow V_T < (V_1 + V_2)$$

$$\Rightarrow \Delta H_{\text{solution}} < 0$$

Fig.: A solution that shows -ve deviation from Raoult's law

Table: Deviation from Raoult's Law

	Positive deviation (ΔH = +ve)	Negative deviation (ΔH = – ve)	Zero deviation (ΔH = 0)
(i)	ethanol + cyclohexane	acetone + chloroform	benzene + toluene
(ii)	acetone + carbon disulphide	benzene + chlorform	n-hexane + n-heptane
(iii)	acetone + benzene	nitric acid + chloroform	ehyl bromide + ethyl iodide
(iv)	ethanol + acetone	acetone + aniline	chlorobenzene + bromo benzene
(v)	ethanol + water	water + nitric acid	
(vi)	carbon tetrachloride + chloroform	diethyl ether + chloroform	

Azeotropic mixtures: Some liquids on mixing in a particular composition form azeotropes which are binary mixture having same composition in liquid and vapour phase and boil at a constant temperature. Azeotropic mixture cannot be separated by fracional distillation.

Types of Azeotropic Mixtures

- (i) Minimum boiling Azeotropic mixtures: The mixture of two liquids whose boiling point is less than either of the two pure components. They are formed by non-ideal soluton showing positive deviation. For example ethanol (95.5%) + water (4.5%) water boils at 351.15 K.
- (ii) Maximum boiling Azeotropic mixtures: The mixture of two liquids whose boiling point are more than either of the two pure components. They are formed by non-ideal solutions showing negative deviation. For example HNO₃ (68%) + water (32%) mixture boils at 393.5 K.

Colligative Properties

Properties depends on relative no. of particles of non volatile solute in solution.

No. of particle of Non volatile solute \uparrow \Rightarrow Colligative Properties

(1) Relative lowering of V.P.:

$$\frac{P_{A}^{^{\circ}}-P_{A}}{P_{A}^{^{\circ}}}=i\frac{n_{B}}{n_{A}+n_{B}}\simeq i\frac{n_{B}}{n_{A}} \ \ [\text{For dilute solution}]$$

i = Van't Hoff's factor.

(2) Elevation in B.P.:

$$\Delta T_b = (T_b' - T_b) = i. K_b \times m.$$

where
$$K_b = \frac{RT_b^2}{1000 \times l_y}$$

where $T_b = B.P.$ of pure solvent.

l = Latent heat of vapourization (per gm)

 K_b = molal elevation constant

M = Molar mass

where
$$l_v = \left(\frac{\Delta H_{vap}}{M}\right)$$

(3) Depression in FP:

$$\Delta T_f = T_f - T_f' = i K_f \times m$$

where
$$K_f = \frac{RT_f^2}{1000 \times \ell_f}$$

 $T_f = f.p.$ of pure solvent

 $K_f = \text{molal depression constant}$

 l_f = latent heat of fusion per gm.

(4) Osmotic pressure:

$$\pi \propto (P_A^{\circ} - P_A)$$

$$\pi = iC. R.T.$$

where $\pi =$ osmotic pressure

C = molarity (mole/lit)

Sol. (1) Sol (2)

If $\pi_1 = \pi_2$ Isotonic

If $\pi_{1} > \pi_2$ $\begin{cases} sol^n(1) \text{ hypertonic} \\ sol^n(2) \text{ hypotonic} \end{cases}$

Table: Van't Hoff factor for different Cases of solutes undergoing Ionisation and Association

Solute	Example	Ionisation/association (x degree)	y*	Van't Hoff factor	Abnormal mol. wt. (m ₁ ')
Non- electrolyte	urea, glucose, sucrose etc.	none	1	1	normal mol.wt.
Ternary electrolyte	K ₂ SO ₄ , BaCl ₂	$A_2B \rightleftharpoons 2A^+ + B_x^{2-}$ $1-x$	3	(1+2x)	$\frac{m_1}{(1+2x)}$
Electrolyte	K ₃ [Fe(CN) ₆],	$A_{3}B \rightleftharpoons A_{x}^{3+} + 3B_{3x}^{-}$	4	(1+3x)	$\frac{m_1}{(1+3x)}$
Associated Solute	benzoic acid in benzene	$2A \xrightarrow{\longrightarrow} A_2$ $_{1-x} \xrightarrow{x/2}$	$\frac{1}{2}$	$\left(1 - \frac{x}{2}\right) = \left(\frac{2 - x}{2}\right)$	$\frac{2m_1}{(2-x)}$
	forming dimer	$\underset{(1-x)}{A} = \frac{1}{2} \underset{x/2}{A_2}$	$\frac{1}{2}$	$\left(1 - \frac{x}{2}\right) = \left(\frac{2 - x}{2}\right)$	$\frac{2m_1}{(2-x)}$
	any solute	$ \underset{l-x}{\overset{nA}{\longleftrightarrow}} A_n $	$\frac{1}{n}$	$\left[1 + \left(\frac{1}{n} - 1\right)x\right]$	$\left[\frac{m_1}{1 + \left(\frac{1}{n} - 1\right)x}\right]$
	forming polymer A _n	$\underset{(1-x)}{A} \longleftrightarrow \frac{1}{n} \underset{x/n}{A_n}$	1/n	$1-x+\frac{x}{n}$	$\frac{m_l}{1-x+\frac{x}{n}}$
General	one mole of solute giving y mol of products	$\underset{l-x}{\mathbf{A}} = \longrightarrow \underset{xy}{\longrightarrow} y\mathbf{B}$	у	[1 + (y-1)x]	$\frac{m_1}{[1+(y-1)x]}$

 $^{^{}st}$ number of products from one mole of solute

