

Lista 3 – Complexidade Ciclomática

INFORMAÇÕES DOCENTE						
CURSO:	DISCIPLINA:		MANHÃ	TARDE	NOITE	PERÍODO/SALA:
ENGENHARIA DE SOFTWARE	FUNDAMENTOS DE PROJETO E ANÁLISE DE ALGORITMOS	TURNO			х	5º
PROFESSOR (A): João Paulo Carneiro Aramuni						

Lista 3

Complexidade Ciclomática - Recursividade

1) O algoritmo abaixo implementa uma função recursiva para o cálculo fatorial.

```
1  def fatorial(n):
2     if n == 0 or n == 1:
3         return 1
4     return n * fatorial(n - 1)
```

- 1. Monte o grafo de fluxo de controle da função:
- Identifique os nós (representando os pontos de decisão e instruções da função).
- Identifique as arestas (representando as transições entre os nós).
- 2. Calcule a complexidade ciclomática da função usando a fórmula:

$$M = E - N + 2P$$

- Onde: E é o número de arestas no grafo.
- N é o número de nós no grafo.
- P é o número de componentes conexos (neste caso, P=1, pois a função é uma unidade única).
- 3. Interprete o valor da complexidade ciclomática:
- Explique o que significa o valor obtido para o número de caminhos independentes no código.
- 4. Descreva os caminhos independentes possíveis no grafo de fluxo de controle para essa função.

2) O algoritmo abaixo implementa uma função recursiva para o cálculo do número de Fibonacci.

```
1  def fibonacci(n):
2     if n == 0 or n == 1:
3         return 1
4     return fibonacci(n - 1) + fibonacci(n - 2)
```

- 1. Monte o grafo de fluxo de controle da função:
- Identifique os nós (representando os pontos de decisão e instruções da função).
- Identifique as arestas (representando as transições entre os nós).
- 2. Calcule a complexidade ciclomática da função usando a fórmula:

$$M = E - N + 2P$$

- Onde: E é o número de arestas no grafo.
- N é o número de nós no grafo.
- P é o número de componentes conexos (neste caso, P=1, pois a função é uma unidade única).
- 3. Interprete o valor da complexidade ciclomática:
- Explique o que significa o valor obtido para o número de caminhos independentes no código.
- 4. Descreva os caminhos independentes possíveis no grafo de fluxo de controle para essa função.