What You'll Buy Next & When You'll Buy It

Utilizing AWS and Spark ML to Predict User Choices

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

Recommender System Concept

Comparison to Traditional Systems

Traditional Systems:

Suggest products that customers want, but do not address when they may want them.

"Predictive" System:

Sophisticated models introduce time as a predictive factor, providing helpful reminders, not ads

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

Tools and Emergent Techniques

Recommender systems use large amounts of proprietary data gathered for several years

S3 provides:

- Unlimited Storage
- Immediate Access
- Security

Recommender systems require robust computational strength to manipulate high volume data with complex algorithms

Amazon EMR's computing structure is streamlined for big data capabilities

Modern **Recommender systems** are complex and intentional algorithms with many stages

Spark ML's algorithms interface with big data applications and allow for recommender system creation for free with few key strokes

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

System Creation

Input Data

Feature Engineering

Model Building

Output Translation

System Creation: Input Data

User ID

Order Number

Transaction Time

Product

Amt Purchased

Last Visit Time

Item Location

Minimum attributes needed to inform model

Input Data

Feature Engineering

Model Building

Output Translation

System Creation: Feature Engineering

Input Data

Feature Engineering

Model Building

Output
Translation

System Creation: Model Building

Random Forest Algorithm

Good performance

★ 50 tree nodes running parallel across Spark clusters

Model **Building**

Output **Translation**

System Creation: Output Translation

order_id	product_id	pred
1054066	11520	0.12956429
1054066	14211	0.18618035
1054066	35461	0.05001443
1054066	3339	0.06505957
1054066	13452	0.11622027
1054066	24852	0.08288204
1054066	27288	0.13649434
1054066	40604	0.07771818
1054066	17706	0.17063484
1054066	47156	0.42731799
1054066	3896	0.17063484
1054066	16953	0.06505957
1054066	4792	0.08031924
1054066	36929	0.09259171
1054066	27086	0.12956429
1054066	21070	0.13125784
1054066	48974	0.05232617
1054066	27729	0.08752166
1054066	49235	0.08288204

probabilities of a specific user buying specific product at a specific time

Feature Engineering

Model Building

Output Translation

Model Case Example

User: Sydney

- Healthy purchases on Monday afternoon
- Snacks on Weekend nights

Monday Afternoon Basket

- While wheat bread
- Tomatoes
- Coconut Milk
- Lemon Juice

Sunday Evening Basket

- Chocolate nuts
- Chocolate Mint Ice Cream
- Tortilla Chips
- Case Sugar

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

E-Commerce Use Case

User: Kitlyn

- Browse app weekly at 8pm
- Prefer healthy products

Purchased Item

- **Toothpaste**
- Repurchase frequency: monthly
- 90% repurchase rate

- 30 days since last toothpaste order
- Co-purchase with mouthwash

Recommender System:

Recommend toothpaste and mouthwash a month from her last purchase.

Financial Service App Use Case Probinhood

User: Wade

- Trades stock once per week
- Browses app daily 6pm
- Prefers tech

Purchased Item

- APPL stock
- High growth potential
- Technology sector

User x Item features

- Repurchase stock in 10 days
- 30% of user's portfolio

Recommender System:

Recommend purchase MSFT in 10 days from repurchase AAPL stock.

Other Use Case Examples

Healthcare

- Diet
- Drugs
- Checkups

Taxi / Rideshare

- Driver Insights
- Consumer Reminders
- Car Maintenance

Smartphones

- Notifications
- News
- Online Videos
- Apps/Websites

Shipping / Logistics

- Regular Shipments
- Scheduling and Directions

Predictive: System Concept and Comparison to Traditional

Tools and Emergent Techniques

System Creation and Output

Business Use Cases

- Approach a recommendation problem as a predicative problem
- Leveraging Spark on AWS enables business to scale up only when training a model
- Most useful for business challenges with many choices across a significant amount time
- The bigger the data, the smarter the system

Thank You

Team 9: Xiyang Xu, Kitlyn (Hui-Lun) Kuo, Yanlun Ren, Raghuveer Rao Vijjini, Sydney Jiang, Wade Wimer