CS698N Midterm Presentation Generative Image Models

Nirbhay Modhe Vikas Jain

Department of Computer Science IIT Kanpur

CS698N, Monsoon 2016

Introduction

Problem Statement

DRAW Model

Experimenting with the DRAW Mode

Studying the original network Modifications to the Network

Overall Results

Comparing all models Qualitative Analysis of Generated Images Future Work

Problem Statement

- Learning generative model for images.
- Inspired from DRAW: A Recurrent Neural Nerwork for Image Generation by Gregor et al. (Google DeepMind)

Introduction

Problem Statement

DRAW Model

Experimenting with the DRAW Model

Studying the original network Modifications to the Network

Overall Results

Comparing all models Qualitative Analysis of Generated Images Future Work

DRAW Model

Essential Components

- Encoder: Compresses real images presented during training into latent codes.
- Decoder: Reconstitutes images after from codes during training, samples a latent distribution during generation.

DRAW Model

Essential Components

- Encoder: Compresses real images presented during training into latent codes.
- ► *Decoder*: Reconstitutes images after from codes during training, samples a **latent distribution** during generation.
- A pair of Recurrent Neural Networks for both the encoder and decoder networks.

DRAW Model

Essential Components

- Encoder: Compresses real images presented during training into latent codes.
- Decoder: Reconstitutes images after from codes during training, samples a latent distribution during generation.
- A pair of Recurrent Neural Networks for both the encoder and decoder networks.
- ► Encoder network at every time step is made aware of the decoder output of the previous time step.

The Draw Network

Architecture

Figure: DRAW Network Architecture

The Draw Network

Equations

Decoder Equations:

- ► Input latent code z_t
- $ightharpoonup z_t \sim Q(Z_t|h_t^{enc})$
- $h_t^{dec} = RNN^{dec}(h_{t-1}^{dec}, z_t)$
- $ightharpoonup c_t = c_{t-1} + write(h_t^{dec})$
- $ightharpoonup c_t$ is canvas matrix

Introduction

Problem Statement DRAW Model

Experimenting with the DRAW Model

Studying the original network

Modifications to the Network

Overall Results

Comparing all models Qualitative Analysis of Generated Images Future Work

Experimenting with the DRAW Model

- Importance of attention in read and write operations.
- Effect of allowing the encoder to see previous decoder output.
- Varying the number of time steps in particular the use of a single time step.
- ▶ Removing the original image from the read function output only using the error image $\widehat{x_t} = x \sigma(c_{t-1})$

Experimenting with the DRAW Model

Studying the original network

Modifications to the Network

Qualitative Analysis of Generated Images

Modifications to the Network

Convolution and Devoncolution layers

Figure: Modified DRAW Network

Convergence of DRAW network

Figure: The original DRAW network convergence graph

Convergence of modified network

Initial Model Convergence

Figure: Using only convolution filter map as output of read operation

Convergence of modified network

Subsequent Changes

Figure: Concatenating convolution filter map with the image

Convergence of modified network

Visualising the convolution filter maps

Figure: Filter maps for first convolution layer before the read operation

Introduction

Problem Statement
DRAW Model

Experimenting with the DRAW Model

Studying the original network Modifications to the Network

Overall Results

Comparing all models

Qualitative Analysis of Generated Images Future Work

Analysis of all models

	Average	σ	Max (≤)
DRAW(Attention)	643.09	264.67	1370.03
DRAW(No-Attention)	644.61	268.30	1337.80
DRAW(T=1)	653.31	290.03	1724.63
DRAW(T=2)	698.17	276.37	1402.27
DRAW(T=5)	796.44	302.79	1853.58
$DRAW(no-privy^1)$	809.61	298.31	2546.65
DRAW(error img)	648.66	302.79	1853.58

Table: Negative log likelihood error over 1000 generated images. Calculated using respect to closest image (L2 distance) in the MNIST test set.

Introduction

Problem Statement
DRAW Model

Experimenting with the DRAW Model

Studying the original network Modifications to the Network

Overall Results

Comparing all models

Qualitative Analysis of Generated Images

Future Work

Varying Attention

(a) DRAW - Attention

(b) DRAW - No Attn.

Figure: Generated images using the original DRAW model

Error image and decoder privy

(a) DRAW - ErrorImg

(b) DRAW - No Privy

Figure: Generated images using the original DRAW model

Varying time steps

Figure: Generated images using the original DRAW model

Adding convolution layers to read

(b) Conv - No Concat

Figure: Generated images using the filter maps of two convolution layers before the read operation with (a) and without (a) concatenation with the source image

Introduction

Problem Statement
DRAW Model

Experimenting with the DRAW Model

Studying the original network Modifications to the Network

Overall Results

Comparing all models Qualitative Analysis of Generated Images

Future Work

Future Work

▶ Replacing spatial attention with different known mechanisms.

Future Work

- ▶ Replacing spatial attention with different known mechanisms.
- Studying possible changes to the autoencoder and latent code distribution, inspired by the recent attempts at improving the variational bayes autoencoders (Burda et. al., 2015 -Importance Weighted Autoencoders).

Future Work

- ▶ Replacing spatial attention with different known mechanisms.
- Studying possible changes to the autoencoder and latent code distribution, inspired by the recent attempts at improving the variational bayes autoencoders (Burda et. al., 2015 -Importance Weighted Autoencoders).
- ► Testing our models on more complicated datasets such as SVHN, CIFAR-10.