TEST REPORT

Reference No. : WTS17S0372802-1E

FCC ID: 2ACZKAWS2KP

Applicant..... : Gradus Group

Manufacturer : Gradus Group

Address 370 West 35th Street, New York, NY 10001, United States

Factory Relacart Electronics Co.,Ltd.

Guangdong, China-529400

Product Name Plug-In Transmitter for AWS-2000

obin.Zhou

Model No. : AWS-2000P

Brand Name:

Standards.....

FCC CFR47 Part 74

Date of Receipt sample..... : Mar. 07, 2017

Date of Test...... : Apr. 22 – Jun. 19, 2017

Date of Issue Jun. 23, 2017

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Robin Zhou / Test Engineer

Philo Zhong / Manager

2 Contents

		Page
1	COVER PAGE	1
2	CONTENTS	2
3	REVISION HISTORY	4
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.3 CHANNEL PLAN & LIST	
	4.4 TEST MODE	6
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	7
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
_	TEST SUMMARY	
6		
7	RF OUTPUT POWER	
	7.1 TEST PROCEDURE	
_		
8	MODULATION CHARACTERISTICS	
	8.1 TEST PROCEDURE	
9	OCCUPIED BANDWIDTH OF EMISSION	
	9.1 TEST PROCEDURE	
10	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
10		
	10.1 Test Procedure	
11	CONDUCTED EMISSIONS	
11		
	11.1 E.U.T. OPERATION	
	11.3 MEASUREMENT DESCRIPTION	
	11.4 CONDUCTED EMISSION TEST RESULT	34
12	RADIATED EMISSION TEST	36
	12.1 EUT SETUP	
	12.2 SPECTRUM ANALYZER SETUP	
	12.3 Test Procedure	
	12.5 TEST RESULT	
13	FREQUENCY STABILITY	42
	13.1 Test Configuration	42
	13.2 TEST PROCEDURE	42
	13.3 TEST RESULT	43

Reference No.: WTS17S0372802-1E Page 3 of 62

14	RF EXPOSURE					
15	PHO1	TOGRAPHS -MODEL AWS-2000P TEST SETUP	47			
	15.1 15.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUPPHOTOGRAPH – CONDUCTED EMISSIONS TEST SETUP				
16	PHO1	TOGRAPHS – CONSTRUCTIONAL DETAILS	50			
		EUT -MODEL AWS-2000P EXTERNAL PHOTOS				

Reference No.: WTS17S0372802-1E Page 4 of 62

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0372802-1E	Mar. 07, 2017	Apr. 22 – Jun. 19, 2017	Jun. 23, 2017	original	-	Valid

Reference No.: WTS17S0372802-1E Page 5 of 62

4 General Information

4.1 General Description of E.U.T.

Product Name : Plug-In Transmitter for AWS-2000

Model No. : AWS-2000P

Differences Describe : N/A

Operation Frequency: 522MHz-586MHz, 172channels

The Lowest Oscillator : 16MHz

Antenna installation : Internal permanently attached antenna

Antenna Gain : 1dBi(Max.)

Modulation : FM

Rated System Deviation $:\pm$ 30KHzMaximum System Deviation $:\pm$ 75KHz

4.2 Details of E.U.T.

Technical Data: : DC 3V by 2*1.5V(size "AA") batteries, Charging: DC 5V by USB from PC.

4.3 Channel Plan & List

Band A Channel List (522MHz-554MHz)

		_			-131 (022					
Group Channel	1	2	3	4	5	6	7	8	9	10
1	523.025	522.725	522.800	522.925	522.650	523.550	523.750	523.850	523.950	523.000
2	525.475	523.450	526.000	525.375	525.100	526.650	525.500	527.625	526.100	524.050
3	526.875	526.475	528.400	529.375	529.100	529.250	527.375	531.175	528.500	527.825
4	529.475	530.925	530.150	534.225	533.950	532.200	529.500	537.200	530.250	531.375
5	532.425	532.350	533.200	538.875	538.600	534.100	531.375	541.600	533.300	537.400
6	534.325	534.825	537.200	543.425	543.950	538.750	533.375	547.675	537.300	541.800
7	538.975	536.300	539.950	548.175	547.900	544.100	537.375		540.050	547.875
8	544.325	540.625	544.975			548.050	538.625		545.075	
9	548.275	545.175	547.675				542.625		547.775	
10		553.725	549.000				548.125		549.100	
11			552.400				552.000			

Band B Channel List (554MHz-586MHz)

					100		, , , , , , , , , , , , , , , , , , , ,			
Group Channel	1	2	3	4	5	6	7	8	9	10
1	559.750	558.800	558.000	558.350	559.575	558.825	560.250	554.550	561.425	557.800
2	560.850	560.250	559.750	561.425	561.900	561.225	562.050	558.225	563.150	562.350
3	562.700	565.300	560.850	564.425	563.475	565.350	564.000	560.700	566.300	564.375
4	564.850	570.700	562.700	567.275	565.725	567.375	567.500	568.575	569.525	566.625
5	567.500	572.775	564.850	569.675	569.625	572.550	569.050	570.675	571.250	570.000
6	569.050	574.325	573.450	573.875	574.725	575.625	577.600	573.300	574.550	572.925
7	571.450	576.450	578.325	576.425	576.150	578.925	580.050	575.175	576.575	575.775
8	581.000	584.375	584.100	583.250	581.475	583.575	585.300	579.450	579.875	578.475
9				584.225	585.900	585.975		582.375	582.725	580.800

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	522.650MHz	553.725MHz	585.975MHz

Test Item	Test Mode
Radiated Emissions	Charging + Transmitting
Conducted Emissions	Charging + Transmitting

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	cted Emissions	-101				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2016	Sep.14,2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2016	Sep.14,2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2016	Sep.14,2017
4.	Cable	LARGE	RF300	-	Sep.15,2016	Sep.14,2017
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2016	Sep.14,2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2017	Apr.18,2018
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2016	Sep.14,2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2017	Apr.18,2018
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2017	Apr.18,2018
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2017	Mar.16,2018
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2017	Apr.09,2018
9	Test Receiver	R&S	ESCI	101296	Sep.15,2016	Sep.14,2017
10	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2016	Sep.14,2017
11	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2016	Sep.14,2017
12	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2016	Sep.14,2017
RF Cor	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2016	Sep.14,2017
3.	Signal Analyzer	Agilent	N9010A	MY50520207	Sep.15,2016	Sep.14,2017

Reference No.: WTS17S0372802-1E Page 8 of 62

1	(9k~26.5GHz)			
	(9K~/D 5(3H/)			
1	(01. 20.00112)			

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious	± 5.03 dB (Bilog antenna 30M~1000MHz)
Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS17S0372802-1E Page 9 of 62

6 Test Summary

Test Items	Test Requirement	Test Method	Result		
RF Output Power	74.861(e)(1)(ii)	ANSI/TIA-603-D:2010	С		
Modulation Characteristics	74.861 (e) (3)	ANSI/TIA-603-D:2010	С		
Occupied Bandwidth	2.1049(c)(1)	ANSI/TIA-603-D:2010	С		
Conducted Emissions	15.207(a)	ANSI C63.10:2013	С		
Radiated Emissions	2.1053 & 74.861(e)(6)	ANSI/TIA-603-D:2010	С		
Spurious emissions at antenna terminals	2.1051	ANSI/TIA-603-D:2010	С		
Frequencies Stability	2.1055(a)(1)	ANSI/TIA-603-D:2010	С		
SAR Evaluation	1.1307(b)(1)	KDB 447498 D01	С		
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTS17S0372802-1E Page 10 of 62

7 RF Output Power

Test requirement: FCC CFR47 Part 74 Section 74.861(e)(1)(ii)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861(e)(1)(ii), the output power shall not exceed

250mW (23.98 dBm).

7.1 Test Procedure

The maximum peak output power was measured with a spectrum analyzer connected to the antenna terminal (conducted measurement) while EUT was operating in normal situation.

7.2 Test result

Power	Test Channel	RF Output Power (dBm)	Limit (dBm)	Result
	Low Channel	6.90	23.98	PASS
Low	Middle Channel	7.16	23.98	PASS
	High Channel	8.12	23.98	PASS
	Low Channel	15.01	23.98	PASS
High	Middle Channel	15.38	23.98	PASS
	High Channel	16.19	23.98	PASS

Please refer to following plot:

Low Power Low Channel

Page 11 of 62

Middle Channel

High Channel

Please refer to following plot:

High Power Low Channel

Middle Channel

High Channel

Reference No.: WTS17S0372802-1E Page 14 of 62

8 Modulation Characteristics

Test requirement: FCC CFR47 § 74.861 (e) (3)

Test method: Based on ANSI/TIA-603-D:2010

Requirement: Any form of modulation may be used.

A maximum deviation of ±75kHz is permitted when frequency

modulation is employed.

8.1 Test Procedure

Modulation Limiting (TIA-603D:2010 Section 2.2.3)

Modulation limiting is the transmitter circuit's ability to limit the transmitter from producing deviations in excess of a rated system deviation.

Method of Measurement

- a) Connect the equipment as illustrated.
- b) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- c) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 0.25 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- d) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation.
- e) Increase the level from the audio frequency generator by 20 dB in one step (rise time between the 10% and 90% points shall be 0.1 second maximum).
- f) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level.
- g) With the level from the audio frequency generator held constant at the level obtained in step e), slowly vary the audio frequency from 300 Hz to 3000 Hz and observe the steady-state deviation. Record the maximum deviation.
- h) Set the test receiver to measure peak negative deviation and repeat steps d) through g).
- i) The values recorded in steps g) and h) are the modulation limiting.

Reference No.: WTS17S0372802-1E Page 15 of 62

Audio Low Pass Filter Response (TIA-603D:2010 Section 2.2.15)

The audio low pass filter response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

Method of Measurement

- a) Connect the equipment as illustrated.
- b) Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.
- c) Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.
- d) Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- e) Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as $\it LEV_{\it REF.}$
- f) Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- g) Record audio spectrum analyzer levels, at the test frequency in step f).
- h) Record the dB level on the audio spectrum analyzer as LEV_{FREQ} .
- i) Calculate the audio frequency response at the test frequency as: $low\ pass\ frequency\ response = LEV_{FREQ} LEV_{REF}$
- j) Repeat steps f) through i) for all the desired test frequencies.

Audio Frequency Response (TIA-603D:2010 Section 2.2.6)

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

Method of Measurement

Constant deviation test method (300 Hz to 3000 Hz)

- a) Connect the equipment as illustrated.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 50 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- c) Set the DMM to measure rms voltage.
- d) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- e) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- f) Set the test receiver to measure rms deviation and record the deviation reading.
- g) Record the DMM reading as VREF.
- h) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- i) Vary the audio frequency generator output level until the deviation reading that was recorded in step f) is obtained.
- j) Record the DMM reading as VFREQ.
- k) Calculate the audio frequency response at the present frequency as:

audio frequency response = 20
$$\log_{10} \left(\frac{V_{FREQ}}{V_{REF_1}} \right)$$

I) Repeat steps h) through k) for all the desired test frequencies.

Reference No.: WTS17S0372802-1E Page 17 of 62

Constant Input Test Method (300 Hz to 3000 Hz)

- a) Connect the equipment as illustrated.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 50 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- c) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- d) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- e) Set the test receiver to measure rms deviation and record the deviation reading as DEVREF .
- f) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- g) Record the test receiver deviation reading as DEVFREQ.
- h) Calculate the audio frequency response at the present frequency as:

audio frequency response = 20
$$\log_{10} \left(\frac{DEV_{FREQ}}{DEV_{REF}} \right)$$

i) Repeat steps f) through h) for all the desired test frequencies.

8.2 Test Result

Modulation Limiting Test Result
Middle Channel

O/ Davidian	Input Signal (mVP)			
% Deviation	500 Hz	1000 Hz	2000 Hz	3000 Hz
10%	43	21	13	6
20%	88	44	25	14
30%	132	67	36	22
40%	177	89	48	30
50%	214	114	60	39
60%	231	137	72	47
70%	257	161	83	56
80%	342	190	95	67
90%	364	248	127	106
100%	371	348	302	177

Audio Frequency Response Test Result

Middle channel

Frequency(Hz)	Audio Frequency Response(Hz)	Audio Frequency Response(dB)
100	29	-30.6
300	188	-13.3
400	319	-9.5
500	388	-8.5
600	458	-6.7
700	528	-4.7
800	599	-3.4
900	659	-0.4
1000	739	-2.8
1500	1118	1.9
2000	1479	3.6
2500	1838	6.1
3000	1978	4.1
4000	639	-2.8
5000	109	-19.5

Audio Low Pass Filter Response Test Result

Middle channel

Frequency(Hz)	Audio Frequency Response(Hz)	Audio Frequency Response(dB)
300	1042	-4.7
400	1411	-2.0
500	1473	-1.1
600	1473	-1.1
700	1473	-1.1
800	1473	-1.1
900	1473	-1.1
1000	1483	-1.7
1500	1483	-1.7
2000	1483	-1.7
2500	1532	-0.8
3000	1423	-1.8
4000	373	-13.0
5000	55	-25.8

Reference No.: WTS17S0372802-1E Page 21 of 62

9 Occupied Bandwidth of Emission

Test requirement: FCC CFR47 Part 2 Section 2.1049©(1)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to FCC 74.861 (e)(5), the frequency emission

bandwidth shall not exceed 200 kHz.

9.1 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Turn on the EUT and set it to any one convenient frequency within its operating range.

9.2 Test Result

power	Test Channel	99% Bandwidth (kHz)	Limit (kHz)	Result
Low	Low Channel	81.836	200	PASS
	Middle Channel	83.832	200	PASS
	High Channel	79.840	200	PASS
High	Low Channel	77.844	200	PASS
	Middle Channel	75.848	200	PASS
	High Channel	81.836	200	PASS

Test Plot:
Low power
Low Channel

Middle Channel

High Channel

Test Plot:
High power
Low Channel

Middle Channel

High Channel

Reference No.: WTS17S0372802-1E Page 26 of 62

10 Spurious Emissions at Antenna Terminals

Test requirement: FCC CFR47 Part 2 Section 2.1053
Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861 (e)(6), the mean power of emissions shall be

attenuated below the mean output power of the transmitter in

accordance with the following schedule:

(i) on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized

bandwidth: at least 25 dB.

(ii) on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized

bandwidth: at least 35 dB.

(iii) on any frequency removed from the operating frequency by more

than 250 percent up to and the authorized bandwidth shall be attenuated below the un-modulated carrier by at least 43 + 10 Log

(output power in watts)dB.

10.1 Test Procedure

- Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
 Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 2. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 3. Set the SA on View mode and then plot the result on SA screen.
- 4. Repeat above procedures until all frequencies measured were complete.

10.2 Test Data

Low Power Emission Mask Low Channel

Low Power Emission Mask Middle Channel

Low Power Emission Mask High Channel

High Power Emission Mask
Low Channel

High Power Emission Mask
Middle Channel

High Power Emission Mask
High Channel

30MHz-1GHz

Reference No.: WTS17S0372802-1E Page 33 of 62

11 Conducted Emissions

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013,ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Free

Frequency (MHz)	Conducted Limit (dBµV)		
Frequency (Miriz)	Qsi-peak	Average	
0.15 to 0.5	66 to 56*	56 to 46*	
0.5 to 5.0	56	46	
5.0 to 30	60	50	
*Decreases with the logarithm of the frequency.			

11.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to section 4.4

11.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

11.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

11.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS17S0372802-1E Page 36 of 62

12 Radiated Emission Test

Test requirement: FCC CFR47 Part 2 Section 2.1053
Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861 (e)(6), the mean power of emissions shall be

attenuated below the mean output power of the transmitter in

accordance with the following schedule:

(i) on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized

bandwidth: at least 25 dB.

(ii) on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized

bandwidth: at least 35 dB.

(iii) on any frequency removed from the operating frequency by more

than 250 percent up to and the authorized bandwidth shall be attenuated below the un-modulated carrier by at least 43 + 10 Log

(output power in watts)dB.

12.1 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 KHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz Emissions.

Reference No.: WTS17S0372802-1E Page 38 of 62

12.2 Spectrum Analyzer Setup

According to FCC Part 2 Section 2.1053 Rules, the system was tested 16MHz to 6000MHz.

SKI IZ ~ JUIVII IZ	
Start Frequency	.9kHz
Stop Frequency	.30MHz
Sweep Speed	. Auto
IF Bandwidth	.10KHz
Video Bandwidth	.10KHz
Resolution Bandwidth	.10KHz

video bandwidth	1UNHZ
Resolution Bandwidth	10KHz
30MHz ~ 1GHz	
Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	300KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz
Above 1GHz	
Start Frequency	1000 MHz
Stop Frequency	7000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	3MHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal

12.3 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Reference No.: WTS17S0372802-1E Page 39 of 62

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

12.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

12.5 Test Result

Low Power	
-----------	--

Low Power							
Frequenc			Antenna	Turntable	Emission		
у	Detecto	Ant.	Height	Angle	Level	Limit	Margin
(MHz)	r	Pol	(m)	(°)	(dBm)	(dBm)	(dB)
			Low Chan	nel:522.650MI	Hz		
1045.30	Peak	Н	1.4	135	-42.21	-13	-29.21
1045.30	Peak	V	1.1	137	-43.04	-13	-30.04
1567.95	Peak	Н	2.0	355	-44.36	-13	-31.36
1567.95	Peak	V	1.9	175	-45.68	-13	-32.68
2090.60	Peak	Н	1.4	21	-45.94	-13	-32.94
2090.60	Peak	V	1.9	299	-46.34	-13	-33.34
			Middle Cha	nnel:553.725N	ЛНz		
1107.45	Peak	Н	1.7	217	-42.90	-13	-29.90
1107.45	Peak	V	1.4	14	-42.64	-13	-29.64
1661.18	Peak	Н	1.2	173	-46.96	-13	-33.96
1661.18	Peak	V	1.8	25	-43.32	-13	-30.32
2214.90	Peak	Н	1.0	62	-42.71	-13	-29.71
2214.90	Peak	V	1.2	102	-46.31	-13	-33.31
			High Char	nel:585.975M	Hz		
1171.95	Peak	Н	1.0	210	-44.32	-13	-31.32
1171.95	Peak	V	1.5	202	-47.31	-13	-34.31
1757.93	Peak	Н	1.1	86	-47.63	-13	-34.63
1757.93	Peak	V	1.8	87	-42.36	-13	-29.36
2343.90	Peak	Н	1.1	178	-44.31	-13	-31.31
2343.90	Peak	V	2.0	106	-47.36	-13	-34.36

High Power

	High Power						
Frequenc			Antenna	Turntable	Emission		
у	Detecto	Ant.	Height	Angle	Level	Limit	Margin
(MHz)	r	Pol	(m)	(°)	(dBm)	(dBm)	(dB)
			Low Chan	nel:522.650M	Hz		
1045.30	Peak	Н	1.2	201	-41.36	-13	-28.36
1045.30	Peak	V	1.6	95	-42.39	-13	-29.39
1567.95	Peak	Н	1.1	328	-44.74	-13	-31.74
1567.95	Peak	V	1.8	269	-45.11	-13	-32.11
2090.60	Peak	Н	1.4	335	-44.12	-13	-31.12
2090.60	Peak	V	1.9	217	-43.39	-13	-30.39
			Middle Cha	nnel:553.725N	ЛНz		
1107.45	Peak	Н	1.6	321	-42.18	-13	-29.18
1107.45	Peak	V	1.1	131	-43.64	-13	-30.64
1661.18	Peak	Н	1.8	307	-46.58	-13	-33.58
1661.18	Peak	V	1.5	105	-44.29	-13	-31.29
2214.90	Peak	Н	1.6	231	-43.66	-13	-30.66
2214.90	Peak	V	1.1	350	-45.32	-13	-32.32
			High Chan	nel:585.975M	Hz		
1171.95	Peak	Н	1.8	315	-44.34	-13	-31.34
1171.95	Peak	V	1.0	113	-47.36	-13	-34.36
1757.93	Peak	Н	1.4	250	-48.31	-13	-35.31
1757.93	Peak	V	1.8	330	-42.37	-13	-29.37
2343.90	Peak	Н	1.4	143	-44.39	-13	-31.39
2343.90	Peak	V	1.9	294	-48.36	-13	-35.36

The measurements below 1G were more than 20 dB below the limit and not reported.

Reference No.: WTS17S0372802-1E Page 42 of 62

13 Frequency Stability

Test requirement: FCC CFR47 Part 2 Section 2.1055(a)(a)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to FCC 74.86(e)(4), the frequency tolerance of the

transmitter shall be 0.005 percent.

13.1 Test Configuration

Figure 1

13.2 Test Procedure

A) Frequency stability versus input voltage

- Setup the configuration per figure 1 for frequencies measured at an environmental chamber whose temperature is set to 20 °C. Install new batteries in the EUT.
- 2. Set SA center frequency to the EUT operation frequency. Then set SA RBW to 30 kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

B) Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measured at an environmental chamber, Install new batteries in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT operation frequency, then set SA RBW to 30kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measurement frequencies.

Reference No.: WTS17S0372802-1E Page 43 of 62

13.3 Test Result

- a) Frequency stability versus input voltage
- b) The EUT is power by two 5# Non-rechargeable AA batteries. The nominal voltage is DC 3V .so we select the extreme condition $\pm 10\%$ according with TIA-C603D section 1.4.4.3. low voltage is 2.7V DC and high voltage is 3.3V DC.

Low Channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	522.650	20	522.646	0.00084
3.3V, DC	522.650	20	522.646	0.00067

Middle Channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	553.725	20	553.730	0.00088
3.3V, DC	553.725	20	553.730	0.00082

High Channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	585.975	20	585.973	0.00039
3.3V, DC	585.975	20	585.978	0.00043

Reference No.: WTS17S0372802-1E Page 44 of 62

c) Frequency stability versus environmental temperature

Low Channel:522.650MHz, Limit: 0.005%					
Environment Temperature(°C)	Power Supply	Frequency Deviation measured w Elapse(30 minutes)			
		MHz	%		
50	3V, DC	522.654	0.00067		
40	3V, DC	522.648	0.00040		
30	3V, DC	522.646	0.00072		
20	3V, DC	522.651	0.00019		
10	3V, DC	522.651	0.00011		
0	3V, DC	522.655	0.00098		
-10	3V, DC	522.648	0.00040		
-20	3V, DC	522.649	0.00017		
-30	3V, DC	522.645	0.00094		

Middle Channel: 553.725MHz, Limit: 0.005%				
Environment	Power Supply	Frequency Deviation measured w Elapse(30 minutes)		
Temperature(°C)		MHz	%	
50	3V, DC	553.728	0.00061	
40	3V, DC	553.729	0.00069	
30	3V, DC	553.721	0.00066	
20	3V, DC	553.719	0.00101	
10	3V, DC	553.730	0.00098	
0	3V, DC	553.727	0.00041	
-10	3V, DC	553.724	0.00012	
-20	3V, DC	553.726	0.00023	
-30	3V, DC	553.723	0.00032	

Reference No.: WTS17S0372802-1E Page 45 of 62

High Channel: 585.975MHz, Limit: 0.005%				
Environment	Power Supply	Frequency Deviation measured Supply Elapse(30 minutes)		
Temperature(°C)		MHz	%	
50	3V, DC	585.978	0.00058	
40	3V, DC	585.979	0.00063	
30	3V, DC	585.969	0.00102	
20	3V, DC	585.973	0.00028	
10	3V, DC	585.973	0.00037	
0	3V, DC	585.971	0.00064	
-10	3V, DC	585.978	0.00054	
-20	3V, DC	585.974	0.00017	
-30	3V, DC	585.973	0.00034	

Test Result: The max frequency tolerance rating is 0.00102% < 0.005%. Passed.

Reference No.: WTS17S0372802-1E Page 46 of 62

14 RF Exposure

Remark: refer to WTS17S0372802-2E SAR Test Report

15 Photographs – Model AWS-2000P Test Setup

15.1 Photograph – Radiation Spurious Emission Test Setup

9KHz~30MHz

30MHz-1GHz

1GHz-6GHz

Reference No.: WTS17S0372802-1E Page 49 of 62

15.2 Photograph – Conducted Emissions Test Setup

16 Photographs – Constructional Details

16.1 EUT -Model AWS-2000P External Photos

Reference No.: WTS17S0372802-1E Page 51 of 62

Reference No.: WTS17S0372802-1E Page 53 of 62

16.2 EUT -Model AWS-2000P Internal Photos

Reference No.: WTS17S0372802-1E Page 55 of 62

Reference No.: WTS17S0372802-1E Page 57 of 62

Reference No.: WTS17S0372802-1E Page 58 of 62

Reference No.: WTS17S0372802-1E Page 59 of 62

Reference No.: WTS17S0372802-1E Page 61 of 62

Reference No.: WTS17S0372802-1E Page 62 of 62

=====End of Report=====