Algebraic Topology I, WS 2021/22

Exercise sheet 5

solutions due: 22.11.21

Exercise 5.1: We denote by $V_n(\mathbb{R}^k)$ the Stiefel manifold of n-frames in \mathbb{R}^k . An element of $V_n(\mathbb{R}^k)$ is an n-tuple (x_1, \ldots, x_n) of orthonormal vectors from \mathbb{R}^k . The set $V_n(\mathbb{R}^k)$ is topologized as a subspace of $(\mathbb{R}^k)^n$. We denote by $Gr_n(\mathbb{R}^k)$ the Grassmann manifold of n-dimensional vector subspaces of \mathbb{R}^k . The set $Gr_n(\mathbb{R}^k)$ carries the quotient topology with respect to the map $q:V_n(\mathbb{R}^k)\to Gr_n(\mathbb{R}^k)$ that takes an n-frame onto its span. The complex Stiefel and Grassmann manifolds $V_n(\mathbb{C}^k)$ and $Gr_n(\mathbb{C}^k)$ are defined analogously. Show that the following maps are fiber bundles and identify the fibers:

$$q: V_n(\mathbb{R}^k) \to Gr_n(\mathbb{R}^k) \qquad \text{für } 1 \le n \le k,$$

$$q: V_n(\mathbb{C}^k) \to Gr_n(\mathbb{C}^k) \qquad \text{für } 1 \le n \le k,$$

$$p: V_n(\mathbb{R}^k) \to V_m(\mathbb{R}^k) \qquad \text{für } 1 \le m < n \le k,$$

$$p: V_n(\mathbb{C}^k) \to V_m(\mathbb{C}^k) \qquad \text{für } 1 \le m < n \le k,$$

here the maps p forget the last m-n vectors: $p(x_1,\ldots,x_n)=(x_1,\ldots,x_m)$. Use the long exact homotopy group sequences to show that $V_n(\mathbb{R}^k)$ is (k-n-1)-connected and $V_n(\mathbb{C}^k)$ is (2k-2n)-connected. Calculate $\pi_{k-n}(V_n(\mathbb{R}^k))$ and $\pi_{2k-2n+1}(V_n(\mathbb{C}^k))$.

Exercise 5.2: Let G be a topological group that is also a Hausdorff space. Let H be a subgroup of G and G/H the space of right cosets with the quotient topology. Show:

- (a) If H is closed in G, then G/H is a Hausdorff space.
- (b) Let H be closed in G and suppose that there is a *local section*, i.e., a neighborhood U of $1 \cdot H$ in G/H and a continuous section $\sigma: U \to G$ (i.e., $p \circ \sigma = \mathrm{Id}_U$). Let K be a closed subgroup of H. Then the projection

$$G/K \to G/H$$
, $gK \mapsto gH$

is a fibre bundle with fibre H/K. (Hint: show that

$$H/K \times U \rightarrow p^{-1}(U)$$
, $(hK, x) \mapsto \sigma(x) \cdot hK$

is a homeomorphism. Use the action of G to produce enough local trivializations.)

Exercise 5.3: Let $p: E \to B$ be a fiber bundle with path connected base, $F = p^{-1}(b)$ the fiber over a point $b \in B$, and $x \in F$. Suppose that the inclusion $F \to E$ is homotopic to a constant map.

Show that the long exact homotopy group sequence degenerates into an isomorphism between $\pi_n(B,b)$ and $\pi_n(E,x) \times \pi_{n-1}(F,x)$ for all $n \geq 1$. Apply this to the Hopf fibrations $\nu: S^7 \to S^4$ and $\sigma: S^{15} \to S^8$ to deduce that the groups $\pi_7(S^4,z)$ and $\pi_{15}(S^8,z)$ each contain a copy of $\mathbb Z$ as a direct summand.