

CMSC471: Machine Learning

Evaluation

Evaluation methodology (1)

Standard methodology:

- 1. Collect large set of examples with correct classifications (aka ground truth data)
- Randomly divide collection into two disjoint sets: training and test (e.g., via a 90-10% split)
- 3. Apply learning algorithm to **training** set giving hypothesis
- 4. Measure performance of Hon the held-out **test** set

Evaluation methodology (2)

Important: keep the training and test sets disjoint!

Study efficiency & robustness of algorithm: repeat steps 2-4
 for different training sets & training set sizes

• On modifying algorithm, **restart with step 1** to avoid evolving algorithm to work well on just this collection

Evaluation methodology (3)

Common variation on methodology:

- 1. Collect set of examples with correct classifications
- Randomly divide it into two disjoint sets:
 development & test; further divide development
 into devtrain & devtest
- 3. Apply ML to devtrain, giving hypothesis H
- 4. Measure performance of H w.r.t. *devtest* data
- 5. Modify approach, repeat 3-4 as needed
- 6. Final test on test data

Evaluation methodology (4)

Comm

1. Colle

2. Rand

into

3. Appl

4. Mea

devtest data

5. Modify approach, repeat 3-4 as needed

6. Final test on test data

• Only devtest data used for evaluation during system development

• When all development has ended, test data used for final evaluation

deve • Ensures final system not influenced by test data

> • If more development needed, get new dataset!

lfications

opment

K-fold Cross Validation

- **Problem:** getting *ground truth* data expensive
- Problem: need different test data for each test

- Goal: minimize training+test data needed
- **Idea:** split training data into K subsets; use K-1 for *training* and one for *development testing*
- Repeat K times and average performance
- Common K values are 5 and 10
- Best practice: hold out a <u>final</u> test data set

K-fold Cross Validation

Iteration 1: Training: Subset-1,2,3 Test:Subset-4

Iteration 2: Training: Subset-1,3,4 Test:Subset-2

Iteration 3: Training: Subset-2,4,1 Test:Subset-3

Leave one out

- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

- 1 test sample taken at a time
- K-fold cross validation where k = number of samples

Learning curve (1)

A <u>learning curve</u> shows accuracy (% correct) on test set as a function of training set size or (for neural networks) running time

- When evaluating ML algorithms, steeper learning curves are better
- Represent faster learning with less data

Let's assume there are two classes/labels

Assume is the "positive" label

Given X, our classifier predicts either label p(|X|) vs. p(|X|)

	What is the actual label?	
What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed		
Not selected/ not guessed		

Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Contingency Table Example

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)	False Positive (FP)
Not selected/ not guessed	False Negative (FN)	True Negative (TN)

Predicted:

0

0

Actual:

0

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)= 2	False Positive (FP)
Not selected/ not guessed	False Negative (FN)	True Negative (TN)

Predicted:

Actual:

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)= 2	False Positive (FP)=1
Not selected/ not guessed	False Negative (FN)	True Negative (TN)

Predicted:

Actual:

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)= 2	False Positive (FP)=1
Not selected/ not guessed	Fabe Negative (FN)=1	True Negative (TN)

Actual:

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)= 2	False Positive (FP)=1
Not selected/ not guessed	False Negative (FN)=1	True Negative (TN)=1

What label does our system predict? (↓)	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP)= 2	False Positive (FP)=1
Not selected/ not guessed	FaseNegative (FN)=1	True Negative (TN)=1

Accuracy, Precision, and Recall

Accuracy: %of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Accuracy, Precision, and Recall

Accuracy: %of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Precision: % of selected items that are correct

$$\frac{TP}{TP + FP}$$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Accuracy, Precision, and Recall

Accuracy: %of items correct TP + TN

$$\overline{\text{TP} + \text{FP} + \text{FN} + \text{TN}}$$

Precision: % of selected items that are correct

$$\frac{TP}{TP + FP}$$

Recall: % of correct items that are selected

$$\frac{TP}{TP + FN}$$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Accuracy, Precision, and Recall Accuracy: % of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Precision: % of selected items that are correct $\frac{TP}{TP + FP}$

Min: 0 ⊗ Max: 1 ⊕

Recall: % of correct items that are selected $\frac{TP}{TP + FN}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Precision and Recall Present a Tradeoff

Precision and Recall Present a Tradeoff Q: Where do you

Precision and Recall Present a Tradeoff

Precision and Recall Present a Tradeoff

Precision and Recall Present a

recall

Q: Where do you want your ideal model?

Q: You have a model
That identifies all correct
instances. Where on this graph is it?

Q: You have a model
That identifies only correct
instances. Where on this graph is it?

Idea: measure the tradeoff between precision and recall

Precision and Recall Present a Tradeoff

Area Under the Curve (AUC)

AUC measures the area under this trade-off curve

Min AUC: 0 ⊗ Max AUC: 1 ⊕

Area Under the Curve (AUC)

Min AUC: 0 ⊗ Max AUC: 1 ⊕

AUC measures the area under this trade-off curve

Computing the curve
 You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Area Under the Curve (AUC)

Min AUC: 0 ⊗ Max AUC: 1 ⊕

AUC measures the area under this tradeoff curve

- Computing the curve
 You need true labels & predicted labels with
 some score/confidence estimate
 Threshold the scores and for each
 threshold compute precision and
 recall
- 2. Finding the area

 How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

ROC-AUC

AUC measures the area under this tradeoff curve

You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute metrics

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some flipped metrics

Min ROC-AUC: 0.5 ⊗ Max ROC-AUC: 1 ⊕

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(1 + \beta^2) * P * R}{(\beta^2 * P) + R}$$
algebra
(not important)

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{(1+\beta^2) * P * R}{(\beta^2 * P) + R}$$

Balanced F1 measure: β=1

$$F_1 = \frac{2 * P * R}{P + R}$$

Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \sum_{c} \text{precision}_{c}$$
(missing 1/C)

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

Micro- vs. Macro-Averaging: Example

Class 1

Tahla					
	Truth	Truth			
	: yes	: no			
Classifier	10	10			
:					
yes					
Classifier	10	970			
: no					

Class 2

	Truth : yes	Truth : no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave.

	Truth	Truth
	: yes	: no
Classifier	100	20
:		
yes		
Classifier	20	1860
: no		

Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

Microaveraged precision: 100/120 = .83

Microaveraged score is dominated by score on frequent classes

confusion watrix. Generalizing the 2-by-2 contingency table

	Correct Value		
	#	#	#
Guessed Value	#	#	#
	#	#	#

Confusion Matrix: Generalizing the 2-by-2 contingency table

	Correct Value		
	80	9	11
Guessed Value	7	86	7
	2	8	9

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

	Correct Value		
	30	40	30
Guessed Value	25	30	50
	30	35	35

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

	CGIOTO		
	Correct Value		
	7	3	90
Guessed Value	4	8	88
	3	7	90

Q: Is this a good result?