Statistics Project

Introduction

This project is basically the analysis of the vocabularies of people based on their medium of schooling, their reading habits and the various newspapers they read. We conducted three tests for every individual namely verbal speed, how fast you are and verbal responsiveness.

Basically the first test checked the verbal speed of an individual in determining if 2 adjacent words are either same, opposite or different. They had to solve this test in 3 minutes for 30 words.

The 2nd test comprised of jotting down words beginning from 'D' within 3 minutes except nouns and tenses of a single word.

The third test was to write synonyms or approximately same meaning word of the given word mandatorily starting with alphabet 'P'. This one had no time limit. We collected about 150 samples in our college ageing from 17-24 years.

Result Table

Table displaying Summary Statistics -

Test-1		Test-2		Combining test1 and test2		Test-3	
Mean	56.52174	Mean	33.69565	Mean	90.21739	Mean	7.695652
Standard Error	3.919077	Standard Error	2.98576	Standard Error	4.905009	Standard Error	0.651647
Median	50	Median	25	Median	75	Median	7
Mode	50	Mode	25	Mode	75	Mode	6
Standard Deviation	18.79524	Standard Deviation	14.3192	Standard Deviation	23.5236	Standard Deviation	3.125188
Sample Variance	353.2609	Sample Variance	205.0395	Sample Variance	553.3597	Sample Variance	9.766798
Kurtosis	0.072466	Kurtosis	1.411298	Kurtosis	-0.893199	Kurtosis	1.872025
Skewness	0.217922	Skewness	1.457427	Skewness	0.193846	Skewness	1.366518
Range	75	Range	50	Range	75	Range	13
Minimum	25	Minimum	25	Minimum	50	Minimum	3
Maximum	100	Maximum	75	Maximum	125	Maximum	16
Count	23	Count	23	Count	23	Count	23

Interpretation from the result table:

We thus conclude that the since there is a great variance the vocabulary varies from individual to individual.

Here in the cases of test1, test2 and their combined summary statistics we notice

A.M. $>M_0 \ge M_E$ therefore the distributions are positively skewed.

But only in test 3 $A.M.>M_E>M_O$, hence it denotes that the distribution of scores in test 3 is perfectly positively skewed.

Kurtosis for the distributions of all the three tests are less than 3 i.e. hence all the distributions are <u>platykurtic.</u>

Correlation between age and score of test 1 is:

Corr(age, test1)= -0.1261 this reveals that the correlation is negligible since mod r< 0.3