

Introdução

Processamento e Análise de Imagens Digitais Prof. Daniel Valente de Macedo, D.Sc. – UNIFOR

Computação Visual - Conceitos Gerais

• É uma sub-área da Ciência da Computação que estuda a geração, a manipulação e a interpretação de modelos geométricos e de imagens utilizando o computador.

Sub-áreas da Computação Visual

- A computação visual se divide em subáreas que, basicamente, se diferenciam na relação entre o uso e manipulação dos dados e imagens.
 - Síntese de Imagens
 - Análise de Imagens
 - Processamento de Imagens

Síntese de Imagens

• Gera representações de objetos/imagens do mundo real na tela do computador, a partir das informações geométricas e dos atributos visuais dos mesmos (posicionamento, tamanho, cor, textura, iluminação, efeitos especiais). Os objetos contidos nas imagens podem ser estáticos ou dinâmicos.

Análise de Imagens

• Obtém a especificação dos componentes de uma imagem a partir de sua representação visual, extraindo informações relevantes para a investigação de um determinado parâmetro.

Processamento de Imagens

• Manipula imagens já prontas (imagens de satélites, Ressonância Magnética, Raio-X, vídeo, etc) e usa técnicas/operações matemáticas para transformar estas imagens (formato matricial), melhorando suas características visuais (aumentar contraste, diminuir ruídos e/ou distorções, identificar regiões de interesse).

Computação Visual

Áreas de Aplicações

- Medicina
- Microscopia
- Biologia
- Automação industrial
- Área militar
- Segurança e vigilância
- Arqueologia
- Artes

Medicina

- Diagnósticos médicos podem ser auxiliados com o uso de imagens capturadas por raios X, tomografia computadorizada, ressonância magnética e ultra-sonografia.
- Vários campos da medicina têm se beneficiado com o aprimoramento de diagnósticos por meio de imagens, em particular, a oncologia, a cardiologia e a ortopedia.
- A análise e a interpretação dessas imagens facilitam, por exemplo, a identificação de lesões ou regiões atingidas por câncer, permitindo aos médicos maior precisão e rapidez nos diagnósticos, bem como melhor planejamento dos tratamentos e das cirurgias.

Microscopia

- A análise de imagens capturadas por meio de microscópios ópticos ou eletrônicos beneficia áreas que variam desde a biologia até a metalurgia.
- Exemplos de aplicação:
 - contagem e identificação de células sanguíneas em lâminas de microscopia.
 - análise de estruturas em cristalografia.
 - sequenciamento e análise de genes.

Automação Industrial

- Na automação industrial, montagem e inspeção de produtos, visão robótica e controle de qualidade podem ser realizados a partir de técnicas de processamento e análise de imagens.
- Atividades comuns:
 - verificação de falhas em circuitos impressos.
 - separação de peças por robôs em uma linha de montagem.
 - classificação de defeitos em soldas.

Área Militar

- As técnicas de processamento e análise de imagens possuem inúmeras aplicações na área militar, podendo-se destacar:
 - identificação de alvos em imagens de satélite.
 - rastreamento de alvos para lançamento de mísseis.
 - navegação de veículos autônomos.
 - detecção de obstáculos no trajeto de robôs

•

Segurança e Vigilância

- A identificação de impressões digitais é uma atividade que possibilita a recuperação de uma impressão digital em um banco de imagens.
- A identificação de faces permite a distinção de indivíduos a partir de imagens ou sequências de vídeo, auxiliando o reconhecimento de pessoas em fichas criminais, a criação de retratos falados e a monitoração em sistemas de vigilância.
- O reconhecimento de assinaturas possibilita a verificação da autenticidade de assinaturas em cheques e outros documentos.
- O reconhecimento automático de placas de veículos visa dotar uma máquina com a capacidade de localizar e interpretar o conteúdo da placa de um veículo para uso em medição e planejamento do fluxo de tráfego, reconhecimento de veículos em situação irregular, controle de pedágios e estacionamentos.

Arqueologia e Artes

- Muitas atividades têm sido beneficiadas com o uso de técnicas de processamento e análise de imagens, por exemplo:
 - restauração de artefatos raros.
 - pinturas e documentos antigos.
 - criação de museus virtuais.
 - avanço da fotografia digital.

Sistema de Processamento de Imagens

Domínio do Problema e Base de Conhecimento

- Um sistema de processamento digital de imagens é constituído por um conjunto de etapas capazes de produzir um resultado a partir do domínio do problema.
- O conhecimento sobre o domínio do problema está codificado em um sistema de processamento de imagens na forma de uma base de conhecimento. A base de conhecimento é dependente da aplicação, cujo tamanho e complexidade podem variar significativamente. A base de conhecimento pode ser utilizada para guiar a comunicação entre os módulos de processamento a fim de executar uma determinada tarefa.

Aquisição

- A etapa de aquisição é responsável pela captura da imagem por meio de um dispositivo ou sensor e pela sua conversão em uma representação adequada para o processamento digital subsequente.
- Os principais dispositivos para aquisição de imagens são câmeras de vídeo, tomógrafos médicos, satélites e scanners.
- Dentre os aspectos envolvidos nesta etapa estão a escolha do tipo de sensor, as condições de iluminação da cena, a resolução e o número de níveis de cinza ou cores da imagem digitalizada.

Pré-Processamento

- A imagem digital resultante do processo de aquisição pode apresentar imperfeições ou degradações decorrentes, por exemplo, das condições de iluminação ou características dos dispositivos.
- A etapa de pré-processamento visa melhorar a qualidade da imagem por meio da aplicação de técnicas para atenuação de ruído, correção de contraste ou brilho e suavização de determinadas propriedades da imagem.

Segmentação

- A etapa de segmentação realiza a extração e identificação de áreas de interesse contidas na imagem.
- Esta etapa é geralmente baseada na detecção de descontinuidades (bordas) ou de similaridades (regiões) na imagem.

Representação e Descrição

- Estruturas adequadas de representação devem ser utilizadas para armazenar e manipular os objetos de interesse extraídos da imagem.
- O processo de descrição visa à extração de características ou propriedades que possam ser utilizadas na discriminação entre classes de objetos. Essas características são, em geral, descritas por atributos numéricos que formam um vetor de características.

Reconhecimento ou Classificação

- Reconhecimento ou classificação é o processo que atribui um identificador ou rótulo aos objetos da imagem, baseado nas características providas pelos seus descritores.
- O processo de interpretação consiste em atribuir um significado ao conjunto de objetos reconhecidos.
- A forma dos contornos de células sanguíneas, por exemplo, pode auxiliar o diagnóstico de anemias por meio da contagem automática das células em uma amostra de sangue.

O que é uma imagem?

- Uma imagem pode ser considerada como uma visão bidimensional (2D) de um mundo 3D.
 - Uma imagem digital é uma representação numérica, normalmente binária, de uma imagem 2D como um conjunto finito de valores digitais, que são chamados de *pixels*.

Formulação das imagens (Escala de cinza)

- Uma imagem pode ser descrita como uma função 2D, f(x,y), onde (x,y) são as coordenadas espaciais e o valor de f em qualquer ponto, (x,y), é proporcional ao brilho ou aos níveis de cinza da imagem.
- Portanto, f(x,y) assume os seguintes valores:
 - $\cdot x \in [0, h-1]$, onde h é a altura da imagem
 - $y \in [0, w-1]$, onde w é a largura da imagem
 - $f(x,y) \in [0, L-1]$, onde L = 256 (para uma imagem de 8 bits)

Formulação das imagens (Colorida)

- Uma imagem colorida pode ser representada da mesma forma, mas é preciso definir três funções para representar os valores vermelho, verde e azul, respectivamente.
- Cada uma destas três funções individuais segue a mesma formulação da função f(x,y) que foi definida para as imagens em escala de cinza. Denotaremos estas três funções R, G e B para as três formulações (para as imagens coloridas) como fR(x,y), fG(x,y), e fB(x,y).

Formulação das imagens (Preto e Branco)

• Uma imagem em preto e branco segue a mesma aproximação de forma que apenas uma função é necessária para representar a imagem. Entretanto, um ponto chave é que *f(x,y)* só pode assumir dois valores. Normalmente, estes valores são 0 (preto) e 255 (branco).

Tipos de Imagens Digitais

Pixel (Picture Element)

• É o menor elemento em um dispositivo de exibição (por exemplo, um monitor), ao qual é possível atribuir-se uma cor. De uma forma mais simples, um pixel é o menor ponto que forma uma imagem digital, sendo que o conjunto de pixels formam a imagem inteira.

Modelo de Cores

 Um modelo de cor é um sistema ordenado para criar uma gama completa de cores a partir de um pequeno conjunto de cores primárias. Há dois tipos de modelos de cores, os que são subtrativos e os que são aditivos.

RGB

 O modelo de cor RGB é um modelo de cor aditivo que possui as cores Vermelho, Verde e Azul (RGB) como cores primárias. É chamado de aditivo porque neste modelo o preto é a ausência de cor e mais cores são adicionadas para alcançar o branco.

CMYK

• O modelo de cor CMYK é um modelo de cor subtrativo que possui as cores Ciano, Magenta e Amarelo (CMY) como cores primárias. Neste caso, o branco é a ausência de cor, enquanto o preto é a combinação de cores. Porém, os pigmentos que estão disponíveis para uso não absorvem totalmente a luz, por isso é adicionado um quarto pigmento compensador para contabilizar esta limitação, chamado de "Key" (K). CMYK

Magenta

Yellow

CMYK

• O modelo de cor CMYK é um modelo de cor subtrativo que possui as cores Ciano, Magenta e Amarelo (CMY) como cores primárias. Neste caso, o branco é a ausência de cor, enquanto o preto é a combinação de cores. Porém, os pigmentos que estão disponíveis para uso não absorvem totalmente a luz, por isso é adicionado um quarto pigmento compensador para contabilizar esta limitação, chamado de "Key" (K). CMYK

Magenta

Yellow

HSV

- HSV é um modelo de cor aditivo que remapeia as cores primárias RGB em dimensões que são mais fáceis de serem compreendidas pelos humanos.
 - A tonalidade especifica o ângulo da cor no círculo de cor RGB. Uma tonalidade de 0° resulta em vermelho, 120° resulta em verde, e 240° resulta em azul.
 - A saturação controla a quantidade de cor utilizada. Uma cor com 100% de saturação será a cor mais pura possível, enquanto 0% de saturação resulta em tons de cinza.
 - O valor controla a luminosidade da cor. Uma cor com 0% de brilho é
 preto puro enquanto uma cor com 100% de brilho não tem preto
 misturado com a cor.

Resolução da Imagem

 Resolução de imagem descreve o nível de detalhe que uma imagem comporta. O termo se aplica igualmente a imagens digitais, imagens em filme e outros tipos de imagem.
 Resoluções mais altas significam mais detalhes na imagem.

Profundidade da Imagem

- A profundidade da imagem descreve a quantidade de *bits* usados para representar a cor de um único *pixel* numa imagem.
 - **1 bit por** *pixel* (2¹ = 2 cores)
 - **2 bits por** *pixel* (2² = 4 cores)
 - **3 bits por** *pixel* (2³ = 8 cores)
 - **4 bits por** *pixel* (2⁴ = 16 cores)
 - **5 bits por** *pixel* $(2^5 = 32 \text{ cores})$
 - **6 bits por** *pixel* ($2^6 = 64 \text{ cores}$)
 - **8 bits por** *pixel* (2⁸ = 256 cores)

Obrigado!

Referências

- Aulas Prof. Dr. Hélio Pedrini
 https://www.ic.unicamp.br/~helio/disciplinas/MC919/
- Aulas Prof. Dr. Fabio Augusto Faria <u>http://fafaria.wix.com/fabiofaria</u>

• Links:

https://programmingdesignsystems.com/color/color-models-and-color-spaces/index.html

https://pt.wikipedia.org/wiki/Resolu%C3%A7%C3%A3o_de_imagem

https://pt.wikipedia.org/wiki/Profundidade_de_cor

https://www.mediafrontier.ch/blog/cmyk-vs-rgb/