M9 - Table of Contents

Duotang/Notes/Homework

M9 - Table of Contents

M9 - Methods

M9 - Remember

M9 - 1.0 - Symmetry

M9 - 2.0 - Real Numbers

M9 - 3.0 - Exponents

M9 - 5.0 - Algebraic Expressions

M9 - 10.0 - Circles

M9 - 10.0 - Parallel Lines

M9 - 3.1 - Exponent Laws

M9 - 3.2 - Negative Exponents

M9 - 5.1 - Combine Like Terms

M9 - 5.2 - Multiplying Polynomials

M9 - 5.3 - Dividing Polynomials

M9 - 6.1 - Patterns

M9 - 6.1 - Toothpicks

M8 - 9.1 - Inequalities

M8 - 10.1 - Angles

M8 - 10.2 - Inscribed/Central Angles

M8 - 10.2 - Tangents/Semi Circles

M8 - 10.1 - Opposite Angles

M8 - 10.1 - Interior Angles

M9 - Methods

Numbers

Real

Rational Integers Whole Natural Irrational

Circles

Shade the Cord/Arc Extend the lines Draw a radius Rotate the page

Exponents

Laws

Change of base:
$$9 = 3 \times 3 = 3^2$$

 $9 = 3^2$

Linear Relations

TOV

Equations

$$Slope = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$$

Polynomials

Adding and Subtracting Like Terms

$$a + a = 2a$$
$$5a - 2a = 3a$$

Combine like terms. Add/Subtract Coefficients Circle, square or cloud like terms.

Multiply: Multiply coefficients, add exponents.

$$a \times a = a^{2}$$

$$2a \times 3a = 6a^{2}$$

$$3x^{2} \times 5x^{3} = 15x^{5}$$

Divide: Divide coefficients, subtract exponents.

$$20x^{3} \div 5x^{2} = 4x$$
$$30a^{4} \div 6a^{2} = 5a^{2}$$

Symmetry:

Horizontal Line Symmetry Vertical Flip Vertical Line Symmetry Horizontal flip Oblique-Oblique

Inequalities

Signs

Laws

Number Line

Equations

Similar triangles

SAS, ASA, AAS, SSS, AAS, AAA,

M9 - Remember

 $2^3\times5^3\neq10^3$

Algebra

$$a(b) = a \times b = ab$$

$$a(-b) = a \times (-b) = -ab$$

 $2(-3) = 2 \times (-3) = -6$

$$-a(-b) = -a \times (-b) = +ab$$

 $-2(-3) = -2 \times (-3) = +6$

$$-a(b) = -a \times (b) = -ab$$

-2(3) = -2 \times (3) = -6

Exponents

Laws Need same base!

$$2^3 = 2 \times 2 \times 2$$
$$3 \times 3 = 3^2$$

$$3^2 - 2^2 \neq 1^2$$

Mistakes

Never multiply the base by the exponent

$$2^{3} \neq 2 \times 3$$

 $3^{2} \neq 3 \times 2$

$$2^3 \neq 2 \times 3$$
$$3^2 \neq 3 \times 2$$

$$2^3 = 8$$
 $2^4 = 16$

Negative numbers with brackets to odd exponents

 $2^3 = 8$ $2^4 = 16$

Negative numbers with brackets to even exponents

 $2^3 \times 5^2 \neq 10^5$

$$(-2)^3 = -8$$
 $(-2)^4 = 16$

Negative numbers without brackets stay negative

$$-2^3 = -8 \qquad -2^4 = -16$$

Unnecessary brackets

$$-(2)^3 = -8$$
 $-(2)^4 = -16$

$$-(2)^4 = -16$$

$$(-2^3) = -8$$

$$(-2^4) = -16$$

Polynomials

Remember to circle the term's sign!

Can only add or subtract Like Terms

stay negative.

 $-(-2)^3 = 8$

Or

become positive

 $-(-2)^4 = -16$

Cannot add or subtract unlike terms

Inequality:

- -The alligator eats the bigger number.
- -When graphing inequalities/solving treat $Greater\ than\ or\ equal\ to: \ge$ the inequality sign like an equal sign.
- -Divide / Multiply by a negative: Change the direction of the sign.

Greater than: >

Less than: <

Less than or equal to: \leq *Does not equal: ≠*

Not Included (open, round, dotted)

Circles

ΔABC

M9 - 2.0 - Real/Irrational/Rational/Integers/Whole/Natural Review

Real Numbers

$$(\dots \ -\frac{3}{1}, -\frac{5}{2}, -\frac{1}{1}, -\frac{7}{7}, \frac{0}{1}, \frac{1}{13}, \frac{1}{17}, \frac{2}{3}, \frac{1}{1}, \frac{2}{1}, \pi, \sqrt{2} \ \dots)$$

Irrational Numbers

$$(..., e, \pi, 5.49..., \sqrt{2}..., ...)$$

Decimal: - Does not end - Does not repeat Cannot be expressed as a fraction **Rational Numbers**

$$(\dots -\frac{5}{2}, -\frac{2}{1}, -\frac{3}{2}, -\frac{1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{3}{1}, \dots)$$

Decimal: - ends OR - repeats

Can be expressed as a fraction

Integers
$$(... -3, -2, -1, 0, 1, 2, 3, ...)$$

Whole Numbers

(0, 1, 2, 3, ...)

Natural Numbers

(1, 2, 3, ...)

- All numbers are real.
- Irrational numbers cannot be expressed as a fraction.
- Rational numbers can be expressed as a fraction.

A number can be shown on a number line with a dot and the number above or below.

Remember: -Never multiply the base by the exponent -Must have same base

Rule:

Example:

1)
$$2^3 \times 2^2 = 2^{3+2} = 2^5 = 32$$

$$2^3 \times 2^2 = (2 \times 2 \times 2) \times (2 \times 2) = 2^5$$

Add exponents

Exponent

2)
$$\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27$$

$$\frac{3^5}{3^2} = \frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3} = 3^3$$

Subtract exponents

to use laws.

3)
$$(2^2)^3 = 2^{2 \times 3} = 2^6 = 64$$

$$(2^2)^3 = 2^{2 \times 3} = 2^6 = 64$$
 $(2^2)^3 = (2 \times 2) \times (2 \times 2) \times (2 \times 2) = 2^6$

Multiply exponents

$$(2x)^3 = 2^3x^3 = 8x^3$$

$$(2x)^3 = (2x) \times (2x) \times (2x) = 8x^3$$

Distribute exponents

$$\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2} = \frac{9}{25}$$

$$\left(\frac{3}{5}\right)^2 = \frac{3}{5} \times \frac{3}{5} = \frac{3^2}{5^2} = \frac{9}{25}$$

Distribute exponents

4)
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

Bring to the bottom, make exponent positive

$$\frac{1}{3^{-2}} = \frac{3^2}{1} = 9$$

Bring to the top, make exponent positive

5)
$$-2^{2} = -2 \times 2 = -4$$

$$(-2)^{2} = (-2) \times (-2) = 4$$

$$(-4)^{3} = (-4) \times (-4) \times (-4) = -64$$

Negative numbers WITHOUT brackets stay NEGATIVE Negative numbers with brackets to EVEN exponents become POSITIVE Negative numbers with brackets to ODD exponents stay NEGATIVE

6)
$$5^0 = 1$$

Anything (nonzero) to the 0 is 1.

$$8^1 = 8$$

Anything to the 1 is itself.

$$1^{12} = 1$$

1 to the anything is 1.

0 to the (positive) anything is 0.

Theory 7)

$$3^{3} = 27$$

$$3^{2} = 9$$

$$3^{1} = 3$$

$$3^{0} = 1$$

$$3^{-1} = \frac{1}{3^{1}} = \frac{1}{3}$$

$$x \times x = x^2$$
$$x \times x^2 = x^3$$

$$\frac{x^{3}}{x^{2}} = \frac{x \times x \times x}{x \times x} = x$$

$$\frac{x^{2}}{x} = \frac{x \times x}{x} = x$$

$$\frac{x^{3}}{x} = \frac{x \times x \times x}{x} = x^{2}$$

$$\frac{x}{x} = 1$$

$$\frac{x}{x^{2}} = \frac{x^{1}}{x \times x} = \frac{1}{x}$$

$$\frac{x^3}{x^2} = x$$

$$\frac{x^2}{x} = x$$

$$x^3$$

$$\frac{x}{x} = x^2$$

$$\frac{x}{x} = 1$$

$$\frac{x}{x} = \frac{1}{x}$$

M9 - 3.0 - Exponents Table

٨	0	1	2	3	4	5	6	7	8	9	10
0		0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	16	32	64	128	256	512	1024
3	1	3	9	27	81	243	729				
4	1	4	16	64	256	1024					
5	1	5	25	125	625						
6	1	6	36	216							
7	1	7	49	343							
8	1	8	64	512							
9	1	9	81	729							
10	1	10	100	1000							
11	1	11	121								
12	1	12	144								
13	1	13	169								
14	1	14	196								
15	1	15	225								
16	1	16	256								
17	1	17	289								
18	1	18	324								
19	1	19	361								
20	1	20	400	8000							

M9 - 5.0 - Algebraic Expressions Review

Coefficient: a number in front of a variable

Variable: a letter

Exponent:
$$3^2 = 3 \times 3 = 9$$

 $5^3 = 5 \times 5 \times 5 = 125$

Like term: same letter(s), same exponent(s).

Term	Like terms			
2	1, 2, 3, 4, 5, 6,			
a	a, 2a, 3a, 4a,			
<i>x</i> ————	x, 2x, 3x, 4x,			
a^2	a^2 , $2a^2$, $3a^2$, $4a^2$,			

Adding and Subtracting like terms.

$$a + a = 2a$$
 Add or subtract coefficients.
 $3a + 2a = 5a$ coefficients.
 $6a - 3a = 3a$
 $a^2 + a^2 = 2a^2$

Multiplying and Dividing

$$a \times a = a^2$$
 Multiply coefficients, $3x^2 \times 5x^3 = 15x^5$ add exponents $20x^3 \div 5x^2 = 4x$

$$20x^3 \div 5x^2 = 4x$$

 $30a^4 \div 6a^2 = 5a^2$ Divide coefficients, subtract exponents

Degree of term: The variable exponent or sum of variable exponents.

Term	Degree:	
x^2	2	
$x^{2}(y^{3})$	5	
$8=8x^0$	0	Numbers have a degree of "zero"
x^1	1	

Leading Term: The term with the highest degree.

Degree of polynomial: Degree of highest degree term.

Polynomial	Leading Term:	Degree of Polynomial
$x^2 - 4$	x^2	2
$2x^2 - 5x^3$	$-5x^{3}$	3
3x + 2	3 <i>x</i>	1
$8x^2y + 5x + 2$	$8x^2y$	3

Polynomial: Terms with variables with whole number exponents.

Examples:

Monomial: One term. $2, x, x^2, 2xy, 5z, 10$

Binomial: Two terms. x + 2, $x^2 - 4$, xy + 5, $3x^2 + y^2$, $2x^2 + x$

 $x^2 + 5x + 6$, a + b + c**Trinomial:** Three terms.

Polynomial:

 $2x + 2x^2 + 5x + 6a + b + c + d + e$ Monomials, Binomials, Trinomials and more

than three terms.

Not Polynomial: \sqrt{x} , $\frac{1}{x}$, x^{-2} , 2^x

M9 - 9.0 - Inequalities Review

5 is less than 8. 5 < 8 8 is greater than 5. 5 < 8 > 5

7 is less than or equal to 7. $7 \le 7$ 9 is greater than or equal to 7. $9 \ge 7$ The alligator eats the bigger section.

5 **E**

Sketching Inequalities

Place a <u>closed circle</u> at 5 on the number line (when a x can equal 5) Draw a line with an arrow to the right (greater than)

Place an **open circle** at 3 (when *x* cannot equal 3) Draw a line with an arrow to the left (less than)

Parallel Line Rules

Angles on a line sum to 180. (supplementary) Opposite angles are equal.
Alternate interior angles equal.
Corresponding angles equal.
Co-Interiors angles add to 180°
Angles on a point add to 360°

Methods

Rotate the Page Extend Parallel lines Extend the transversal lines Draw a radius/Connect Points Draw a radius to exterior point

Equal/Parallel Lines

Tick/Double Tick The Equal Lines Arrow the Parallel Lines If multiple act accordingly

Identify an unknown as "x"

Identifying Angles in Circles

- 1. Make a slice of pie with your left and right hand.
- 2. Central/inscribed angle is between your index fingers.
- 3. Arc/chord is crust of piece of pie.
- 4. Shade Arc

Finding Shared Arcs/Chords

Do you see an angle measure?
What type of angle is it?
Where is its arc/chord?
Shade in its arc.
Are there any other angles from that arc/chord.

Circle Rules

Central angles from same/equal chords are equal. Inscribed angles from same/equal chords are equal.

Inscribed angles are half central angles from same/equal chords. Central angles are twice inscribed angles from same/equal chords

Opposite angles in a cyclic quadrilateral sum to 180.

Tangent lines are perpendicular to radius.

Perpendicular bisector of a chord passes through center of circle.

Tangents to exterior points are equal.

Inscribed angles in a semi-circle equal 90°.

The angle between the tangent and the chord is equal to the inscribed angle on the opposite side of the chord.

Triangles

Draw Triangles 180⁰ in a triangle Isosceles Equilateral Right - Pythagoras

Polygons

Sum of Interior Angles = $(n-2) \times 180$

 $Interior + Exterior = 180^{o}$

Interior Angle =
$$\frac{Sum}{n} = \frac{(n-2) \times 180}{n}$$

Sum of all Exterior Angles sum to 360

n = # of sides

M9 - 10.1 - Parallel Lines Rules Review

$$1 + 2 = 180^{\circ}$$

Angles on a line sum to 180. (supplementary)

Opposite angles are equal.

Alternate interior angles equal.

50°

Corresponding angles equal.

$$\angle 1 = \angle 2$$

Corresponding angles equal.

$$\angle 1 = \angle 2$$

Angles on a point add to 360°

$$\angle 3 + \angle 4 = 180^{o}$$

Angles on a line sum to 180.

$$Co-Interior \angle add$$
 to 180^o

Parallel lines: lines that never touch

Transversal: a line passing through parallel lines.

Alternate: angles across a transversal. Interior: angles inside parallel lines.

Co-interior: angles inside parallel lines on the same side of a transversal

// : parallel lines.

Extend the Lines