Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	iméros	figure	nt sur	la con	vocatio	on.)											1.1

ÉVALUATION COMMUNE
CLASSE: Première
EC : □ EC1 ⊠ EC2 □ EC3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Ce QCM comprend cinq questions indépendantes.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.

Aucune justification n'est demandée mais il peut être nécessaire d'effectuer des recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n'apporte ni ne retire de point.

Question 1.

$$\frac{e^{5x}}{e^{2x-2}} =$$

۵١	$^{3}x+2$	ا ما	-3x-2	-1	$^{2.5}x - 2.5$	۵١	2x-2
(a)	e	(מו	e	(C)	e-,=	a)	e
,		,		,		,	

Question 2.

Soit la suite définie par : $\left\{ \begin{array}{ll} u_0=2 \\ u_{n+1}=\ 3u_n-2 \quad ; \quad \mbox{pour } n\in \mathbb{N}. \end{array} \right.$

a) $u_3 = 7$ b) $u_3 = 10$	c) $u_3 = 28$	d) $u_3 = 4$
----------------------------	---------------	--------------

Question 3.

Dans un atelier 3% des pièces produites sont défectueuses. On constate qu'au cours du contrôle qualité, si la pièce est bonne, elle est acceptée dans 95% des cas, et que si elle est défectueuse, elle est refusée dans 98% des cas.

La probabilité qu'une pièce soit refusée est égale à :

a)	0,0779	b)	0,0294	c)	0,0485	d)	0,98

Question 4.

Sachant que $\cos x = \frac{5}{13}$ et que x est compris entre $-\frac{\pi}{2}$ et 0, la valeur de $\sin x$ est :

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tior	n :			
	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)		1	•							•	
RÉPUBLIQUE FRANÇAISE NÉ(e) le :						/												1.1

a) $\frac{8}{13}$ b) $-\frac{8}{13}$ c) $\frac{12}{13}$ d) $-\frac{12}{13}$

Question 5.

La loi de probabilité d'une variable aléatoire X est donnée par le tableau ci-contre :

Valeurs x_i	-2	0	5
$p_i = P(X = x_i)$	0,3	0,5	0,2

L'espérance E(X) de la variable aléatoire X est égale à :

a)	3	b)	0,9	c)	0,4	d)	0,5

Exercice 2 (5 points)

En 2019, le nombre d'abonnés à une page de réseau social d'un musicien était de 6000. On suppose que chaque année, il obtient 750 abonnés supplémentaires. On désigne par u_n le nombre d'abonnés en 2019+n pour tout entier naturel n.

- 1. Calculer le nombre d'abonnés en 2020 et 2021.
- **2.** Exprimer u_{n+1} en fonction de u_n .
- **3.** Quelle est la nature de la suite (u_n) ?
- **4.** En déduire une expression de u_n en fonction de n.
- 5. En quelle année le nombre d'abonnés aura triplé par rapport à l'année 2019 ?

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s):																		
N° candidat :											N° (d'ins	scrip	otio	n :			
Libert · Égalité · Fraternité RÉPUIRI JOJE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocation	on.)											1.1

Exercice 3 (5 points)

Un médicament contre la douleur est administré par voie orale. La concentration du produit actif dans le sang, en milligramme par litre de sang, est modélisé par la fonction f qui, au temps écoulé x en heure, x étant compris entre 0 et 6, associe :

$$f(x) = x^3 - 12x^2 + 36x$$
 où $x \in [0; 6]$.

Le produit actif est efficace si sa concentration dans le sang est supérieure ou égale à 5 mg/L.

1. En exécutant le script Python ci-dessous, on obtient la liste [0, 1, 1, 1, 1, 1, 0].

```
1 liste=[0,0,0,0,0,0,0]
2 for x in range(0,7):
3    if x**3-12*x**2+36*x>=5:
4    liste[x]=1
5    print(liste)
```

À l'aide de ce résultat, indiquer l'intervalle de temps en unité d'heures sur lequel le médicament est efficace.

- **2.** On admet que la fonction f est dérivable sur l'intervalle [0; 6], calculer sa fonction dérivée.
- **3.** Justifier que la tangente T à la courbe représentative de la fonction f au point A d'abscisse 4 admet pour équation réduite y = -12x + 64.
- **4.** Démontrer que $f(x) (-12x + 64) = (x 4)^3$.
- **5.** En déduire la position relative de la courbe représentative de la fonction f par rapport à la tangente T au point A.

Exercice 4 (5 points)

Dans le plan muni d'un repère orthonormé, on considère le point A de coordonnées (3;1) ainsi que la droite (d) d'équation cartésienne x-3y-4=0.

- 1. Déterminer les coordonnées du point B d'abscisse 7 appartenant à la droite (d).
- 2. Donner un vecteur normal à la droite (d).
- 3. Déterminer une équation de la droite (Δ) perpendiculaire à la droite (d) passant par le point A.
- 4. Calculer les coordonnées du projeté orthogonal H du point A sur la droite (d).
- 5. Calculer la distance AH et en donner une interprétation.