MATH 5B - Single Variable Calculus II

Spring 2019

§9.4 Models for Population Growth

In-class Activity 9.4

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

Prove that the only solutions to the law of natural growth/decay, $\frac{dP}{dt} = kP$, are of the form $P(t) = P_0 e^{kt}$, where $P_0 = P(0)$.

Activity 2:

We consider the DE: $\frac{dP}{dt} = 0.3P(4-P)$

- (a) What is the k and the carrying capacity M?
- (b) What are the general solutions?
- (c) If the initial conditions are P(0) = 1, predict the population size when t = 3.

Activity 3:

A deer population grows logistically with growth constant k = 0.4 (units are $year^{-1}$) in a forrest with carrying capacity of 1000 deer.

- (a) Find the population of deer after t years if the initial population is 100 deer.
- (b) How long does it take for the deer population to reach 500?