Correction contrôle - 2023-2024

Exercice 1.

1. On pose (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . On a $v_1 - v_3 = e_1$, $2v_3 + v_2 - v_1 = e_2$ et $-v_2 + v_1 - v_3 = e_3$. La famille v est donc une famille génératrice de E, comme elle est de cardinal $3 = \dim E$, il s'agit bien d'une base. On aurait aussi pu calculer le déterminant

$$\det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

2. Par définition, v_1^* est une forme linéaire sur E telle que $v_1^*(v_i) = \delta_{i,1}$ pour i = 1, 2, 3. En écrivant $v_1^*(x, y, z) = a_1x + b_1y + c_1z$, on trouve que a_1, b_1, c_1 sont solutions du système linéaire

$$\begin{cases} a_1 + b_1 + c_1 = 1 \\ a_1 - c_1 = 0 \\ b_1 + c_1 = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

De même, en écrivant $v_2(x, y, z) = a_2x + b_2y + c_2z$, on trouve que a_2, b_2, c_2 sont solutions du système linéaire

$$\begin{cases} a_2 + b_2 + c_2 = 0 \\ a_2 - c_2 = 1 \\ b_2 + c_2 = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Et de même pour v_3^* . Ainsi, les coefficients de v_1^*, v_2^*, v_3^* dans la base e_1^*, e_2^*, e_3^* sont les colonnes de la matrice M^{-1} , où

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}.$$

On calcule cet inverse, pour trouver,

$$M^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix} \Rightarrow \begin{cases} v_1^* = e_1^* - e_2^* + e_3^* \\ v_2^* = e_2^* - e_3^* \\ v_3^* = -e_1^* + 2e_2^* - e_3^* \end{cases} \Leftrightarrow \begin{cases} v_1(x, y, z) = x - y + z \\ v_2(x, y, z) = y - z \\ v_3(x, y, z) = -x + 2y - z \end{cases}$$

3. La base duale de v^* est une base $v^{**} = (v_1^{**}, v_2^{**}, v_3^{**})$ de E^{**} telle que

$$\forall i, j \in [1, 3], \ v_i^{**}(v_i^*) = \delta_{i,j}$$

L'isomorphisme ev : $E \to E^{**}$ identifie v et v^{**} . En effet, on a

$$\forall i, j \in [1, 3], \text{ ev}_{v_i}(v_i^*) = v_i^*(v_i) = \delta_{i,j}.$$

Exercice 2.

- 1. Soit M un R-module simple. Comme $M \neq \{0\}$, il existe $x \in M$ non nul. On peut alors considérer le sous-R-module $\langle x \rangle$ de M engendré par x. Comme $x \neq 0$, on a $\langle x \rangle \neq \{0\}$, et donc $\langle x \rangle = M$ car M est simple. Ainsi, $M = \langle x \rangle$ est engendré par x et est donc monogène.
- 2. Premièrement, $\mathbb{Z}/p\mathbb{Z} \neq \{0\}$ car il est de cardinal p. Ensuite, soit N un sous-module de $\mathbb{Z}/p\mathbb{Z}$. En particulier, N est un sous-groupe (abélien) de $\mathbb{Z}/p\mathbb{Z}$. Par le théorème de Lagrande, l'ordre de N divise $|\mathbb{Z}/p\mathbb{Z}| = p$. Comme p est premier, on obtient soit |N| = 1 et $N = \{0\}$, soit |N| = p et $N = \mathbb{Z}/p\mathbb{Z}$. On a donc bien que $\mathbb{Z}/p\mathbb{Z}$ est un \mathbb{Z} -module simple.
- 3. Par la question 1, un k-espace vectoriel simple doit être monogène, donc en particulier de dimension 1. Réciproquement, soit E = Vect(x) un k-espace vectoriel de dimension 1. Un sous-espace vectoriel F de E doit avoir une dimension ≤ 1 , donc dim F = 0 ou dim F = 1. Dans le premier cas, on a $F = \{0\}$, et dans le second cas, on a F = E. Ainsi, les k-espaces vectoriels simples sont exactement les k-espaces vectoriels de dimension 1.
- 4. Comme φ est non nul, on a Ker $\varphi \neq M$ et Im $\varphi \neq \{0\}$. Comme M et N sont des modules simples, on en déduit que Ker $\varphi = \{0\}$ et que Im $\varphi = N$. Ainsi, φ est un morphisme de modules à la fois surjectif et injectif : c'est un isomorphisme de modules.

Exercice 3.

- 1. L'espace E est de dimension 3 (une base est donnée par $1, X, X^2$).
- 2. On montre que ev_x est linéaire. Soient $P,Q \in E$ et $\lambda, \mu \in \mathbb{R}$. On a

$$\operatorname{ev}_{x}(\lambda P + \mu Q) = (\lambda P + \mu Q)(x)$$
$$= \lambda P(x) + \mu Q(x)$$
$$= \lambda \operatorname{ev}_{x}(P) + \mu \operatorname{ev}_{x}(Q)$$

Ainsi, ev_x est bien linéaire et c'est un élément de E^* .

3. Pour montrer que la famille (ev_x, ev_y, ev_z) est libre, il suffit de montrer qu'elle est génératrice (car dim $E^* = 3$). Soit F le sous-espace de E^* engendré par (ev_x, ev_y, ev_z) . Pour montrer que $F = E^*$ (i.e. que (ev_x, ev_y, ev_z) est génératrice), on montre que l'orthogonal oF est réduit à 0. On a

$${}^{o}F = {}^{o}\{\text{ev}_{x}, \text{ev}_{y}, \text{ev}_{z}\} = \{P \in E \mid \text{ev}_{x}(P) = \text{ev}_{y}(P) = \text{ev}_{z}(P) = 0\}$$

= $\{P \in E \mid P(x) = P(y) = P(z) = 0\}$.

Un élément de ${}^{o}F$ est donc un polynôme de degré au plus 2 et qui a au moins 3 racines distinctes. Un tel polynôme est nul, donc ${}^{o}F = \{0\}$ et la famille (ev_x, ev_y, ev_z) est une base de E^* .

- 4. On pose x=2,y=3,z=0, qui sont bien trois réels distincts. Comme (ev_x,ev_y,ev_z) est une base de E^* par la question précédente, elle admet une base antéduale. En particulier, il existe un unique polynôme S tel que $ev_x(S)=0$, $ev_y(S)=0$ et $ev_z(S)=1$ (c'est le troisième vecteur de cette base antéduale). Le polynôme 6S est l'unique polynôme dans E satisfaisant les conditions souhaitées.
- 5. On raisonne par analyse synthèse. Si P satisfait aux conditions données, alors il est divisible par (X-2) et par (X-3), donc par leur ppcm (X-2)(X-3). On vérifie facilement que le polynôme $P(X) := (X-2)(X-3) = X^2 5X + 6$ vaut bien 0 en 2, 3 et 6 en 0.

Exercice 4.

- 1. On calcule v=(1,1,1), u(v)=(1,0,-1) $u^2(v)=(0,1,1)$. La famille $\{v,u(v),u^2(v)\}$ est la famille de vecteurs considérée dans l'exercice 1, où l'on a vu qu'il s'agissait bien d'une base de E.
- 2. Dans (E, u) vu comme $\mathbb{R}[X]$ -module, on a X.v = u(v) et $X^2.v = u^2(v)$. En particulier, u(v) et $u^2(v)$ se trouvent dans le sous $\mathbb{R}[X]$ -module engendré par v. Le sous- $\mathbb{R}[X]$ -module engendré par $\{v, u(v), u^2(v)\}$

contient en particulier le sous- \mathbb{R} -module engendré par $\{v, u(v), u^2(v)\}$ car $\mathbb{R} \subset \mathbb{R}[X]$. Par la question précédente, ce dernier est égal à E, et donc $\{v\}$ engendre E vu comme $\mathbb{R}[X]$ -module.

3. On a vu en TD que, pour (E, u) un $\mathbb{R}[X]$ -module monogène, les polynômes minimaux et caractéristiques de u sont égaux. Comme (E, u) est monogène (engendré par v) d'après la question précédente, on a le résultat.

Autre méthode plus directe : soit P le polynôme minimal de u. On sait par le théorème de Cayley-Hamilton que P divise le polynôme caractéristique, il suffit alors de montrer que P est de degré 3 (le degré de χ_u) pour montrer qu'ils sont égaux. Supposons que P est de degré ≤ 2 , disons $P(X) = aX^2 + bX + c$. On a P(u) par définition, donc en particulier

$$P(u)(v) = au^{2}(v) + bu(v) + cv = 0.$$

Comme $\{v, u(v), u^2(v)\}$ forme une \mathbb{R} -base de E, ceci entraîne a = b = c = 0, donc P = 0, ce qui est une contradiction (le polynôme minimal n'est jamais nul).

4. On a $u^3(v) = (1,1,1) = v$. La matrice de u dans la base $\{v,u(v),u^2(v)\}$ est donc donnée par

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$