ESE 531: Homework 1

Noah Schwab

January 29, 2022

Problem solutions with figures are shown below. Work and code is shown in attachments at end of document.

2.23

a) $T(x[n]) = (\cos \pi n)x[n]$

1) Stable

2) Causal

3) Linear

4) Not time-invariant

b) $T(x[n]) = x[n^2]$

1) Stable

2) Not causal

3) Linear

4) Not time-invariant

c) $T(x[n]) = x[n] \sum_{k=0}^{\infty} \delta[n-k]$

1) Stable

2) Causal

3) Linear

4) Not time-invariant

d) $T(x[n]) = \sum_{k=n-1}^{\infty} x[k]$

1) Unstable

2) Not causal

3) Linear

4) Time-invariant

2.36

a) $h[n] = (0.8)^n u[n] + (0.8)^{n-2} u[n-2]$

b) y[n] = 0.8y[n-1] + x[n] + x[n-2]

c) $\omega_0 = \frac{\pi}{2}$; A = 40

2.54

a) $h[n] = \alpha^n u[n] + \beta \alpha^{n-1} u[n-1]$

b) $H(e^{j\omega}) = \frac{1+\beta e^{-j\omega}}{1-\alpha e^{-j\omega}}, |\alpha| < 1$

c) $y[n] - \alpha y[n-1] = x[n] + \beta x[n-1]$

d) $|\alpha| < 1$ and $|\beta| < \infty$

2.64

a)
$$H_1(e^{j\omega}) = \begin{cases} 1 : 0.8\pi \le |\omega| \le \pi \\ 0 : |\omega| < 0.8\pi \end{cases}$$

Figure 1: High-pass Filter

b)
$$H_2(e^{j\omega}) = \begin{cases} 1 & : 0.3\pi \le |\omega| \le 0.7\pi \\ 0 & : |\omega| < 0.3\pi, \ 0.7\pi < |\omega| \le \pi \end{cases}$$

Figure 2: Band-pass Filter

c)
$$H_3(e^{j\omega}) = \begin{cases} 0.1 & : |\omega| \le 0.1\pi \\ \frac{\omega}{2\pi} + 0.15 & : -0.3\pi \le \omega < -0.1\pi \\ \frac{-\omega}{2\pi} + 0.15 & : 0.1\pi < \omega \le 0.3\pi \\ 0 & : 0.3\pi < |\omega| \le \pi \end{cases}$$

Figure 3: Trapezoidal Low-pass Filter

2.76

- a) The product of LTI systems is not guaranteed to be an overall LTI system.
- b) $Y(e^{j\omega})$ is only guaranteed to be zero in the region $0.6\pi < |\omega| \le \pi$

Matlab Problem

I wrote all code in Python (see attached).

a)
$$s[n] = 2n(0.9)^n$$

Figure 4: $s[n] = 2n(0.9)^n$

b) $w[n] = \text{independent random Gaussian}, \mu = 0, \sigma^2 = 1$

Figure 5: $w[n] = \text{independent random Gaussian}, \mu = 0, \sigma^2 = 1$

c) x[n] = s[n] + w[n]

Figure 6: x[n] = s[n] + w[n]

d) y[n] and s[n]

Figure 7: y[n] and s[n]

e) Moving Average Filter applied to Interfered Signal

Figure 8: $x_{int}[n]$ filtered by 4-point MA

Figure 9: $x_{int}[n]$ filtered by 5-point MA

Figure 10: $x_{int}[n]$ filtered by 6-point MA

While the interference is not completely removed, the filter does a relatively good job

smoothing over the interfered signal, as we can see it converges on the original, clean signal. It appears the M=5 is the most effective at removing the interference, and that M=4 and M=6 result in the signal oscillating about the true, original values. I am guessing that the window size being odd vs. even may play a role here.

-

--3 -3 -3 HW 1: Discrete-time Signals and Systems -3 2.23 -3 a) T(XEn] = (cos rin) XEn]-3 (1) Cos nn evaluates to either +1 or -1 -3 if n is even or odd, respectively. Therefore, -3 if XEn] is bounded, the system output is also -3 bounded since the output is identical to the injut, aside a sign flip at odd indices. Therefore, this -9 system is stable. a) The system output only depends on the corner iteration, XInj. There is no indication that it looks -9 into the Future. Therefore it is Enusal. -9 (3) To prove linearity, we must demonstrate -9 $T(\alpha x, [n] + \beta x_{\delta}[n]) = \alpha T(x, [n]) + \beta T(x, [n])$ -5 -Consider Y, [n] = T(x, [n]) and Ya [n] = T(xa [n]) 2 y'[n] = T(x'[n]) - $X' [n] = \langle X, [n] + \beta X_{a}[n]$ カラララ ラスクラスクラ Substitution: y'[n] = T(X, [n] + B X, [n]) Apply system: = (cosnn) (xx, [n] + Bx2[n]) = & ((05 Mn) X, [n] + B ((05 Mn) X = [n] = XT(X,[n]) + BT(Xo[n]) $= \rangle T(\langle x_1[n] + B x_2[n]) = \langle T(x_1[n]) + BT(x_2[n]) \rangle$ Therefore, the system is linear (4) To prove time-invariance, we must demonstrate T(x[n-q]) = Y[n-q], where T(x[n]) = Y[n]Consider X'[n] = X[n-q] and y'[n] = T(x'[n]) Substitution: Y'[n] = (costin)x'[n] = (costin)x[n-q]

```
This does not satisfy T(x[n-q]) = V[n-q]
Y[n-q] = (cos(n(n-q))) x[n-q] ≠ (cos nn) x[n-q]
We can provide a simple counter example.
Consider q = 1 and \chi[n] = \delta[n].
 T(\sigma[n]) = (\cos(\pi n)) \delta[n] = \delta[n]
T(\delta[n-1]) = (cos(\eta n) \delta[n-1] = -\delta[n-1]
Therefore T(x[n-q]) 7 /[n-q]. It is not time-invariant
 b) T(x[n]) = x[n]
    (1) IF X[n] is bounded, then X[n] must
 also be bounded. If we cassume that KingliB.
 for all n, then X[n] will also be upper
 bounded since the transformation does not affect the range
of the output, only its domain. It is stable
   (2) The output X[n] depends on the value
of the input sional at an index greater than
n for all indices except n=0 and n=1.
 Therefore, it is not causal.
    (3) Consider VIEN] = T(XIEN] and VOEN] = T(XOEN]
Y'[n] = T(x'[n])
X'[n] = axi[n] + Bxa[n]
V'[n] = T (XX,[n] + BXo[n])
     = XX, [n] + BX0[n]
      = XT(X,[n]) + BT(Xo[n])
      = X Y, [n] + B Yo [n]
Therefore, it is linear
```

```
(4) Consider X'En] = XEn-q] and Y'En] = T(X'En])
   y'[n] = T(x'[n]) = X'[n] = X[n] - q]
This does not satisfy T(x[n-q]) = Y[n-q]
V. [n-q] = X[(n-q)] = X[n2-2nq+q2] = X[n2-q]
Simple counter example
Consider q=2 and X[n] = S[n]
T(o[n]) = o[n] = o[n]
T(\sigma[n-a]) = \sigma[n^a-a] = \sigma[n-4]
Therefore, T(X[n-q]) = y [n-q]. This is not time-invarian
   c) T(x[n]) = x[n] \stackrel{>}{\underset{\sim}{\sim}} \delta[n-k]
     (1) If x cn) is bounded such that [XEn] & Bx & Do
For all n, then the output must also be bounded this
is due to the fact that the transformation vicide the
Same Signal as the input, except all values pror to
n=0 are zeroed out. It is stable.
(2) Since the summation is only defined for positive K.
the transformation only involves knowledge of Signal values
of the current and prior iterations. Therefore, it is causal
(3) Consider Y. [n] = T(x, [n]) and Ya [n] = T(x, [n])
1, [U] = L(X, [V])
X'[n] = \alpha X, [n] + \beta X, [n]
Y'[n] = T(\alpha X, [n] + \beta X_{o}[n])
      = ( ax, [n] + Bx, [n] ) & 6[n-k]
       = \propto \chi_1 [n] \stackrel{\mathcal{Z}}{\underset{\kappa=0}{\sim}} \delta[n-\kappa] + \mathcal{B} \chi_2 [n] \stackrel{\mathcal{Z}}{\underset{\kappa=0}{\sim}} \delta[n-\kappa]
       = & T (x,[n]) + BT(x,[n]) = & y,[n] + By,[n]
```

```
Therefore, it is linear
   (4) Consider X'[n] = X[n-q] and Y'[n] = T(x'[n])
 V'[n] = T(x'[n]) = X'[n] \stackrel{\approx}{\underset{k=0}{\sum}} \delta[n-k] = x[n-q] \stackrel{\approx}{\underset{k=0}{\sum}} \delta[n-k]
 Y [n-q] = T(x[n-q]) = x[n-q] ξ δ[(n-q)-κ]
 This does not sutisfy T(x[n-q]) = y[n-q]
   Y[n-q] = X[n-q] & S[[n-e]-k] # X[n-e] & S[n-k]
 Simple counter example:
 consider X[n] = S[n] and q=-1
  T(\delta[n]) = \delta[n] \overset{2}{\underset{\kappa=0}{\leqslant}} \delta[n-\kappa] = \delta[n]
  T(\delta[n+1]) = \delta[n+1] \stackrel{\circ}{\underset{\kappa \in O}{\sim}} \delta[n-k] = 0
                                                                         6
                                                                         3
 Therefore, T(X[n-q]) + y[n-q]. It is not time-invariant.
                                                                         8
   d) T(x[n]) = \sum_{k=0}^{\infty} x[k]
     (1) This transformation yields the sum of the signal
 values from the previous iteration to so. Therefore,
 a bounded input may vield an unbounded output, such
 as x[n] = u[n], which diverges as n-1 sp.
Therefore, it is unstable.
  (2) The output "signal value lat, index n depends
 on input sisual values ahead in time. Therefore it is
 not causal.
 (3) Consider VIEN] = T(XIEN] and VIEN] = T(XIEN]
Y'[n] = T(x'[n])
X'[n] = \alpha X_1[n] + \beta X_2[n]
```

```
iFT (1-0.8000) = (0.8) " u[n]
FT ( 2-12 w ) = (0.8) n-3 4 [n-2]
We were able to evaluate the second by recognizing
it is relentical to the first but w/ a modulation
of nd = 2. See theorem 3 in Tuble 2.2
There fore,
 [h[n] = (0.8) " u[n] + (0.8) "- 2 u[n-2]
 b) The frequency response can be expressed
 as the catro of the output FT over the
 input FT. In other words, a difference equation
  H(eim) = Y(eim) = 1+e-1.2m
          X(e'") 1-0.8e-1"
 => Y(e'") - 0.8e" Y(e'") = X(e'") + e" X(e'")
Citing the Time shifting and Freavency shifting Theorem
(Theorem 2, Table 2.2) and Linearity of the FT
  y[n] - 0.8 y[n-1] = X[n] + X[n-2]
  Y[n] = 0.8 y [n-1] + X[n] + X[n-2]
```

C) System imput: X[n] = 4+ Deoslwon) - 20 cnes The output can be expressed in terms of the Frequency response: V[n] = 4 H(eio)+2 | H(eiw) | cos (won + 0) where O = LH(eino) [see Example 2.15] For Yen] to be constant, Hermal = 0 Using the second form of the Frenches response. 1-0.82.1mg = 0 = > | = -e-1,3 mo Solving for Wo: - Cos(-2wo) - Usin(-2wo) Cos (2 Wo) = -1 Sin (2wo) = 0 A = y [n] = 4 H(e') = 4 1+1 1+0.8 A = 40

a. 54 a) Using the block diagram we can find the overall impulse response. h[n] = (o[n] + h, [n]) * ho[n] = (8[n], 88[n-1]) * x ? u[n] δ[n] * α " u[n] : B δ[n-1] * α " u[n] h[n] = ~ u[n] + & x - u[n-1] b) Apply FT to the impulse response to find frequency response. Table 2.3, Fourer Transform Pair 4 yields a solution; H(ein) = 1-xe-in + (1-xe-in) e-in Hlesw) 1+ Be-iw for |x/ <1 1- a e -, w c) H(ein) = Y(ein) = 1+Be-in 1-00 e-iw X (ejw) Y(ein) (1-de-in) = X(ein) (1: Be-in) y[n] - x y[n-1] = X[n] + 8x[n-1] d) As we can see from part (a), h[n] = 0 for nco, therefore this system is causal To test stability, we can evaluate the sum Bh = 2 | h[n] In order for Bh (00 , | x | () and & (od . These are the stability conditions.

2,64 $H_{1p}(e^{jw}) = \begin{cases} 1, & |w| \leq 0.377 \\ 0, & 0.371 \leq |w| \leq 77 \end{cases}$ a) ha [n] = (-1) hap [n] = einh ap[n] A modulation in the time-domain corresponds to a shift in the frequency domain. H1(ejw) = H1p(ej(w-n)) = (1, 1w-n) < 0.00 Considering periodicity of frequency response H2 (e'") = 11, 0.8000 x 1201 x 1.00 O, else See figure in write-up. This is an ideal high-pass filter. b) ho[n] = 2hap[n] cos(o.smn) Multiplication in the time-domain corresponds to a convolution in the Frequency domain. The Frequency response of (os (5n) is as follows: E TO(W- 5+27K) + TO(W+5+27K)] In the range [-11, 11], this corresponds to two unit impulses at w= + 12, with amplitudes of M. The convolution w/ 4 Shifted impulse is a shift of the signal. Therefore, Ha(e'w) = 2 H1p(e'w) * (115(w-11) + 115(w+11))

= $2 \pi H_{1p}(e^{i(w-\xi)}) + 2 \pi H_{1p}(e^{i(w+\xi)})$ Ha (eim) = (11, 0.37 < lw/ 20.77 6, IWI 6 0.37, 0.712 W/27 See figure in write-up. This is a band-pass Filter () $h_3[n] = \frac{\sin(0.1\pi n)}{\pi n} h_{1}p[n]$ Again, we must use the time-convolution theorem, we can recognize that sincoinal has a Fourier Transform that is a window centered at w=0 with a width of O.SMIII G(e) = { 0, 0.17 \le 1 \w| \le 1 Hip(eiw) is also a window, but with a width of 0.47. proposes in the law that is he H3 (e'w) = (0.1 | W < 0.1 M 2n + 0.15, -0.3n & w < -0.17 = un 10.15, 0.17 6 W 5 0.37 0, 0.3m 4 W 5 T See figure in write-up. This is a trapezoidal low-pass filter.

```
2.76
a) Y \sqsubseteq n \rbrack = Y_1 \sqsubseteq n \rbrack Y_2 \sqsubseteq n \rbrack = S_1 (X \sqsubseteq n \rbrack) S_2 (X \sqsubseteq n \rbrack)
  To determine if the overall system is LTI, we must
  demonstrate it is both linear and fine-invariant
Since S, and So are both linear, the Pollowing
is true :
                XCAJ = X EI EAJ + B Zz EA)
 S, ( XZ, [n] + B Zn [n] = x S, (2, [n]) + B 5, (2, [n])
 Sa ( d Z, [n] + B Zo [n] = d Sa (Z, En] , B Sa (Z, En])
For the overall system is to be linear, we must
prove S(dZ, En)+ BZ, En]) = 0(8/8 ch3)+ AS(2, En])
S ( dz. Cn] + A Zo [n] = S, ( d Z, En] ? A ZEn] So ( d Z, En] , B Zo [n)
          = ( & S, (Z, [n]) + BS, (Z, [n]) ( & S, [Z, [n]) + BS, (Z, [n]))
       = ~ 35, (Z, [n]) So (Z, [n]) + &BS, (Z, [n]) So (Zo [n])
           + &B S, (20 [n]) Sa (21 [n]) + B2 S, (20 [n]) Sa (20 [n])
From this, there is no clear way of reducing the
expression to & S. (z. [n] S. (z, [n]) + B S, (z, [n]) S. (z, [n]).
Instead, we will provide a counter example.
Consider S, and Sa are, both identity transformations
with hich = holad = Send. In this case,
VIENJ = YZEN] = XEN]
The overall system would yield
Y[n] = YI[n] YI[n] = Y[n] X[n] = X[n]
```

Clearly, y [n] = X[n] = is not a linear	
System.	
-751011.	
Therefore, the product of LTI systems is not	
granteed to be an overall LTI system	
b) We can use properties of the Fourier Transform	
1 - 1 - 1/ //	
to solve this problem.	
$\gamma[n] = \gamma[n] \gamma[n]$	
VI [n] = X[n] * h,[n]	
Vo [n] = X [n] * ho [n]	
Substitution: YEn] = (XEn] + h, En] / x (XEn] + h, En])	
The state of the s	-
A convolution in time is a multiplication in fre	equen
and a multiplication in time is a convolution in	
and a multiplecation in time is a convolution in	
frequency.	
Frequency.	
•	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$	
Frequency.	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$ $= \begin{cases} Unspecified & 0.2n \le w \le 0.3n \end{cases} * \begin{cases} Unspecified \\ 0, & elsewhere \end{cases}$	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$	
Frequency. $Y(z^{iw}) = X(e^{iw}) H_1(e^{iw}) * X(e^{iw}) H_2(e^{iw})$ $= \left\{ \begin{array}{c} Unspecified & 0.2 n \leq w \leq 0.3 n \\ 0 & else where \end{array} \right\} * \left\{ \begin{array}{c} Unspecified \\ 0 & else \end{array} \right\}$	
Frequency. $Y(e^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$ $= \begin{cases} Unspecified & 0.2n \le w \le 0.3n \end{cases} * \begin{cases} Unspecified \\ 0, & elsewhere \end{cases}$	
Frequency. $Y(z^{iw}) = X(e^{iw}) H_1(e^{iw}) * X(e^{iw}) H_2(e^{iw})$ $= \left\{ \begin{array}{c} Unspecified & 0.2 n \leq w \leq 0.3 n \\ 0 & else where \end{array} \right\} * \left\{ \begin{array}{c} Unspecified \\ 0 & else \end{array} \right\}$	
Frequency. $Y(z^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$ $= \begin{cases} \text{Unspecified} & 0.2 \text{ nc} w \le 0.3 \text{ n} \\ 0, & \text{else where} \end{cases} * \begin{cases} \text{Unspecified} \\ 0, & \text{else where} \end{cases}$	(w/ c
Frequency. Y(tim) = X(eim) H, (eim) * X(eim) Haleim) = { Unspecified 0.2 n \(\) [w \(\) 0.3 n \\ \) * { Unspecified 0.2 n \(\) elsewhere \(\) 0, sn \(\) 0.3 n \	(w) c Isenhen
Frequency. $Y(z^{jw}) = X(e^{jw}) H_1(e^{jw}) * X(e^{jw}) H_2(e^{jw})$ $= \begin{cases} \text{Unspecified} & 0.2 \text{ nc} w \le 0.3 \text{ n} \\ 0, & \text{else where} \end{cases} * \begin{cases} \text{Unspecified} \\ 0, & \text{else where} \end{cases}$	(w) c Isenhen

```
# This script plots the frequency response of a low-pass filter and transformed versions
import numpy as np
import matplotlib.pyplot as plt
# frequency array
w_array = np.arange(-np.pi, np.pi + 1, 0.01)
# low-pass filter
H1p = []
for w in w_array:
  if np.abs(w) < 0.2 * np.pi:
     H1p.append(1)
  else:
     H1p.append(0)
# plot low-pass filter
plt.plot(w_array, H1p)
plt.xlim(-np.pi, np.pi)
plt.ylim(0, 1.5)
plt.xlabel('$\omega$')
plt.ylabel('$H(e^{j\omega})$')
plt.show()
# part (a)
H1 = []
for w in w_array:
  if (np.abs(w) < 1.2 * np.pi) and (np.abs(w) > 0.8 * np.pi):
     H1.append(1)
  else:
     H1.append(0)
# plot H1
plt.plot(w_array, H1)
plt.xlim(-np.pi, np.pi)
plt.ylim(0, 1.5)
plt.xlabel('$\omega$')
plt.ylabel('$H(e^{j\omega})$')
plt.show()
# part (b)
H2 = []
for w in w_array:
  if (np.abs(w) < 0.7 * np.pi) and (np.abs(w) > 0.3 * np.pi):
     H2.append(1)
  else:
     H2.append(0)
# plot H2
plt.plot(w_array, H2)
plt.xlim(-np.pi, np.pi)
plt.ylim(0, 1.5)
plt.xlabel('$\omega$')
plt.ylabel('$H(e^{j\omega})$')
plt.show()
# part (c)
H3 = []
for w in w_array:
  if (np.abs(w) < 0.1 * np.pi):
     H3.append(0.1)
  elif (w >= -0.3 * \text{ np.pi}) and (w <= -0.1 * \text{ np.pi}):
     H3.append(w / (2 * np.pi) + 0.15)
  elif (w >= 0.1 * np.pi) and (w <= 0.3 * np.pi):
     H3.append(-w / (2 * np.pi) + 0.15)
  else:
     H3.append(0)
```

plot H3 plt.plot(w_array, H3) plt.xlim(-np.pi, np.pi) plt.ylim(0, 0.15) plt.xlabel('\$\omega\$') plt.ylabel('\$H(e^{j\omega})\$') plt.show()

```
# ESE 531: HW1 Problem 2
# M-point Moving Average Filter
# import libraries
from turtle import color
import numpy as np
import matplotlib.pyplot as plt
# PART A
# generate defined signal
s = np.array([2 * n * 0.9 ** n for n in range(101)])
#PARTB
# random gaussain noise
w = np.array([np.random.normal(0, 1) for n in range(101)])
# PART C
# define signal x as s plus noise
x = s + w
# plot all three signals
plt.stem(s)
plt.xlabel('n')
plt.ylabel('$s[n]$')
plt.show()
plt.stem(w)
plt.xlabel('n')
plt.ylabel('$w[n]$')
plt.show()
plt.stem(x)
plt.xlabel('n')
plt.ylabel('$x[n]$')
plt.show()
# PART D
# Moving Average Function
Arguments:
  x: input signal
  m: window size of moving average
Output:
  y: averaged signal
def moving_avg(x, m):
  # the impulse response of the moving average filter is a scaled and shifted window
  h = np.ones(m) / m
  # to apply the filter, we simply convolve the signal with the impulse response
  y = np.convolve(x, h)
  return y
# apply 5-point moving average filter to x[n]
y = moving\_avg(x, 5)
plt.stem(y, label='$y[n]$', markerfmt='ro', linefmt='r-')
plt.stem(s, label='$s[n]$', markerfmt='bo')
plt.xlabel('n')
plt.ylabel('signal value')
plt.legend()
```

```
plt.show()
# PART E
# generate interference signal
f = 0.2
w_int = np.cos([2 * np.pi * f * n for n in range(101)])
# interfered signal
x_int = s + w_int
# Filter interfered signal with moving average filter of variable window sizes
m_list = [4, 5, 6]
for m in m_list:
  y_int = moving_avg(x_int, m)
  plt.stem(y_int, label='$y_{int}[n]$', markerfmt='ro', linefmt='r-')
  plt.stem(s, label='$s[n]$', markerfmt='bo')
  plt.title('M = {}'.format(m))
  plt.xlabel('n')
  plt.ylabel('signal value')
  plt.legend()
  plt.show()
```