PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

PRIMER SEMESTRE DE 2018

Directed Polymers in Random Environment

Chapter 4

Rodrigo Bazaes

rebazaes@uc.cl

May 20, 2018

1 Semimartingale Approach and Localization Transition

In this section, we will study semimartingales to deduce a phase transition of the localization of the polymer.

1.1 Semimartingale Decomposition

If $(a_n)_{n\geq 0}$ is a sequence (random or not), we write $\triangle a_n := a_n - a_{n-1}$ for $n \geq 1$. We will use the following fact: **Doob's Decomposition:** Any (\mathcal{F}_n) process $X = (X_n)_{n\geq 0} \subset L^1(\mathbb{P})$ can be decomposed in a unique way as

$$X_n = M_n(X) + A_n(X), n \ge 1$$

where M(X) is an (\mathcal{F}_n) martingale and A(X) is predictable,i.e, $A_n(X)$ is \mathcal{F}_{n-1} measurable, and $A_0(X) = 0$. To obtain such processes, we compute their increments

$$\triangle A_n = \mathbb{P}(\triangle X_n | \mathcal{F}_{n-1}), \quad \triangle M_n = \triangle X_n - \mathbb{P}(\triangle X_n | \mathcal{F}_{n-1}).$$

Then $A_n = \sum_{t=1}^n \triangle A_t$, $M_n = X_0 + \sum_{t=1}^n \triangle M_t$ The processes $M_n(X), A_n(X)$ are called the martingale part and the compensator of X respectively.

Remark 1.1. If N is a square integrable martingale, then $N^2 \subset L^1(\mathbb{P})$ and the compensator $A(N^2)$, denoted by $\langle N_n \rangle$ is given by

$$\triangle \langle N \rangle_n = \mathbb{P}[N_n^2 - N_{n-1}^2 | \mathcal{F}_{n-1}] = \mathbb{P}[(N_n - N_{n-1})^2 | \mathcal{F}_{n-1}] = \mathbb{P}[(\triangle N_n)^2 | \mathcal{F}_{n-1}]$$
(1.1.1)

We are interested in the process $X_n = -\log(W_n)$. Because W_n is a martingale, then X_n is a submartingale. In particular $\mathbb{P}(\triangle X_n | \mathcal{F}_{n-1}) \geq 0$. Therefore, A_n is an increasing process. To obtain M_n, A_n , we introduce

$$U_n := P_n^{\beta,\omega} [e^{\beta\omega(n,S_n) - \lambda(\beta)}] - 1$$

Recall the relation

$$Z_{n+m} = Z_n \times P_n^{\beta,\omega}(Z_m \circ \theta_{n,S_n}) \tag{1.1.2}$$

Using this, we have $W_n/W_{n-1} = 1 + U_n$. Then we write $W_n = \prod_{j=1}^n (1 + U_t) \Rightarrow X_n = -\sum_{t=1}^n \log(1 + U_t)$. Finally, we decompose each term $-\log(1 + U_t) = \triangle M_t + \triangle A_t$, with $\triangle A_t = -\mathbb{P}(\log(1 + U_t)|\mathcal{F}_{t-1})$, $\triangle M_t = -\log(1 + U_t) + \mathbb{P}(\log(1 + U_t)|\mathcal{F}_{t-1})$ As stated in [1], a key role in the asymptotics of the model is in the random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$

$$I_n := \sum_{x \in \mathbb{Z}^d} P_{n-1}^{\beta,\omega} (S_n = x)^2$$
 (1.1.3)

We can see this random variable as the probability that two independent random walks intersect. More precisely, on the product space Ω^2_{traj} we consider the probability measure $(P_n^{\beta,\omega})^{\otimes 2}$ and we will consider in this space two independent random walks (S,\tilde{S}) , with S,\tilde{S} have the same law $P_n^{\beta,\omega}$. The path S,\tilde{S} are called replica. So, we can write I_n as

$$I_n = (P_n^{\beta\omega})^{\otimes 2} (S_n = \tilde{S}_n) \tag{1.1.4}$$

Hence, $\sum_{k=1}^{n} I_k$ is the expected amount of overlap up to time n of two independent polymers in the same (fixed) environment. The following theorem relates this expression with W_n :

Theorem 1.2. Let $\beta \neq 0$. Then

$$A := \{W_{\infty} = 0\} = B := \{\sum_{n=1}^{\infty} I_n = \infty\} \quad \mathbb{P} \ a.s \tag{1.1.5}$$

Moreover, if $\mathbb{P}(W_{\infty}=0)=1$, there exist $c_1,c_2\in(0,\infty)$ depending on β,\mathbb{P} such that \mathbb{P} a.s

$$c_1 \sum_{k=1}^{n} I_k \le -\log(W_n) \le c_2 \sum_{k=1}^{n} I_k$$
 (1.1.6)

and also

$$\lim_{n \to \infty} \frac{-\log(W_n)}{A_n} = 1 \quad \mathbb{P} \ a.s \tag{1.1.7}$$

Proof. In order to prove (1.1.5),(1.1.6), it's enough to show the following:

$$\{W_{\infty} = 0\} \subset \{\sum_{n=1}^{\infty} I_n = \infty\} \quad \mathbb{P} \ a.s \tag{1.1.8}$$

and that there exists $c_1, c_2 \in (0, \infty)$ such that

$$\left\{\sum_{n=1}^{\infty} I_n = \infty\right\} \subset \left\{ (1.1.6) \text{ holds} \right\} \quad \mathbb{P} \ a.s \tag{1.1.9}$$

To convince of that, note that using (1.1.8) we only need to show that $\mathbb{P}(B \setminus A) = 0$. If $\mathbb{P}(A) = 1$ this is clear, and if $\mathbb{P}(A) = 0$, then $W_{\infty} > 0$ $\mathbb{P}(A) = 0$, and in that case, $\mathbb{P}(A) = 0$, otherwise, $\mathbb{P}(\{(1.1.6) \text{ holds}\}) > 0$, but this cannot happen if $-\log(W_{\infty}) < \infty$ because $\sum_{n\geq 1} I_n < \infty$. Recall that $\Delta M_n = -\log(1 + U_n) + \mathbb{P}(\log(1 + U_n) | \mathcal{F}_{n-1})$. Then

$$\mathbb{P}[(\triangle M_n)|\mathcal{F}_{n-1}] = \mathbb{P}[\log^2(1+U_n)|\mathcal{F}_{n-1}] - \mathbb{P}[\log(1+U_n)|\mathcal{F}_{n-1}]^2 \le \mathbb{P}[\log^2(1+U_n)|\mathcal{F}_{n-1}]$$

Using (1.1.1), we deduce that

$$\langle M \rangle_n \le \mathbb{P}[\log^2(1 + U_n)|\mathcal{F}_{n-1}] \tag{1.1.10}$$

Now we claim that there exists a constant $c \in (0, \infty)$ such that

$$\frac{1}{c}I_n \le \triangle A_n \le cI_n, \quad \triangle \langle M \rangle_n \le cI_n \tag{1.1.11}$$

The proof of the claim will be postponed.

Now we use the fact that a square integrable martingale converges a.s on the event $\{\langle M \rangle_{\infty} < \infty\}$ and (1.1.11) to conclude (1.1.8) $\mathbb{P} a.s$:

$$\{\sum_{n\geq 1} I_n < \infty\} \subset \{A_\infty < \infty, \langle M \rangle_\infty < \infty\} \subset \{A_\infty < \infty, \lim_{n\to\infty} M_n \text{ exists and is finite}\}$$
$$\subset \{\lim_{n\to\infty} \log W_n \text{ exists and is finite}\} = \{W_\infty > 0\}$$

Now we prove (1.1.9).By (1.1.11),it's enough to show that

$$\{A_{\infty} = \infty\} \subset \{\lim_{n \to \infty} -\frac{\log W_n}{A_n} = 1\}, \quad \mathbb{P} \ a.s \tag{1.1.12}$$

To show this, let's suppose that $A_{\infty} = \infty$. If $\langle M \rangle_{\infty} < \infty$, then $\lim_{n \to \infty} M_n$ exists and is finite a.s. Therefore, (1.1.12) holds. Now, if $\langle M \rangle_{\infty} = \infty$, using the Law of Large Numbers for

martingales, we deduce that $M_n/\langle M \rangle_n \to 0$ a.s on the event $\{\langle M \rangle_\infty = \infty\}$. In this case, we see that

$$-\frac{-\log W_n}{A_n} = \frac{M_n + A_n}{A_n} = 1 + \frac{M_n}{\langle M \rangle_n} \frac{\langle M \rangle_n}{A_n} \to 1 \quad \mathbb{P} \ a.s$$

by (1.1.11), because $\langle M \rangle_n \leq c^2 A_n$.

To prove the claim (1.1.11), we need the following lemma:

Lemma 1.3. Let $e_i, 1 \leq i \leq m$ be positive, non constant i.i.d random variables on a probability space $(H, \mathcal{G}, \mathbb{P})$ such that

$$\mathbb{P}(e_1) = 1, \quad \mathbb{P}(e_1^3 + \log^2 e_1) < \infty$$

For $\{\alpha_i\}_{1\leq i\leq m}\subset [0,\infty)$ such that $\sum_{1\leq i\leq m}\alpha_i=1$, define a centered random variable U>-1 by $U=\sum_{1\leq i\leq m}\alpha_ie_i-1$. Then there exists a constant $c\in (0,\infty)$, independent of m and $\{\alpha_i\}_{1\leq i\leq m}$ such that

$$\frac{1}{c} \sum_{1 \le i \le m} \alpha_i^2 \le \mathbb{P} \left[\frac{U^2}{U+2} \right] \tag{1.1.13}$$

$$\frac{1}{c} \sum_{1 \le i \le m} \alpha_i^2 \le -\mathbb{P}[\log(1+U)] \le c \sum_{1 \le i \le m} \alpha_i^2$$
 (1.1.14)

$$\mathbb{P}[\log^2(1+U)] \le c \sum_{1 \le i \le m} \alpha_i^2$$
 (1.1.15)

Proof. We will use constants c_1, c_2, \cdots for constants independent of $\{\alpha_i\}_{1 \leq i \leq m}$. We have

$$\mathbb{P}[U^2] = c_1 \sum_{1 \le i \le m} \alpha_i^2, \ \mathbb{P}[U^3] \le c_2 \sum_{1 \le i \le m} \alpha_i^2$$

Now we deduce the first inequality as follows:

$$c_{1} \sum_{1 \leq i \leq m} \alpha_{i}^{2} = \mathbb{P}\left[\frac{U}{\sqrt{2+U}}\sqrt{2+U} \cdot U\right] \leq \mathbb{P}\left[\frac{U^{2}}{2+U}\right]^{1/2} \mathbb{P}[2U^{2} + U^{3}]^{1/2}$$

$$\leq c_{3} \mathbb{P}\left[\frac{U^{2}}{2+U}\right]^{1/2} \left(\sum_{1 \leq i \leq m} \alpha_{i}^{2}\right)^{1/2}$$

To prove the other two inequalities, we define a function $\phi: (-1, \infty) \to [0, \infty)$ by $\phi(u) = u - \log(1+u)$, so that (recall that $\mathbb{P}(U) = 0$)

$$-\mathbb{P}[\log(1+U)] = \mathbb{P}[\phi(U)]$$

So, $-\mathbb{P}[\log(1+U)] = \mathbb{P}[\phi(U)] \ge \frac{1}{4}\mathbb{P}\left[\frac{U^2}{2+U}\right] \ge \frac{1}{c}\sum_{1\le i\le m}\alpha_i^2$

because if $u > -1, \phi(u) \ge \frac{1}{4} \frac{u^2}{2+u}$. This give us the first inequality in (1.1.14). To obtain the second one, note that for $\epsilon \in (0,1)$,

$$\mathbb{P}(\phi(U)) = \mathbb{P}(\phi(U) : 1 + U \ge \epsilon) + \mathbb{P}(\phi(U) : 1 + U \le \epsilon)$$

$$\leq \mathbb{P}(\phi(U) : 1 + U \ge \epsilon) - \mathbb{P}[\log(1 + U) : 1 + U \le \epsilon]$$

Note that if $1 + u \ge \epsilon$, $\phi(u) \le \frac{1}{2}u^2 \le \frac{1}{2}(\frac{u}{\epsilon})^2$. Then we have

$$\mathbb{P}(\phi(U): 1 + U \ge \epsilon) \le \frac{1}{2} \epsilon^{-2} \mathbb{P}(U^2) = \frac{1}{2} e^{-2} c_1 \sum_{1 \le i \le m} \alpha_i^2$$
 (1.1.16)

Now define $\gamma := -\mathbb{P}[\log e_1] \geq 0$ by Jensen, and take $\epsilon > 0$ small enough such that $\log(1/\epsilon) - \gamma \geq 1$. Define another centered random variable by $V := \sum_{1 \leq i \leq m} \alpha_i (\log(e_i) + \gamma)$. Note that by Jensen inequality (-log is convex) we have that $\sum \alpha_i \log(e_i) \leq \log(\sum \alpha_i e_i)$. Using that, we have

$$\begin{aligned} \{1+U \leq \epsilon\} \subset \{V-\gamma \subset \log(1+U) \leq \log \epsilon\} \\ \leq \{-\log(1+U) \leq -V+\gamma\} \cap \{1 \leq -V\} \end{aligned}$$

Hence, we have

$$\begin{split} -\mathbb{P}[\log(1+U):1+U \leq \epsilon] \leq \mathbb{P}[-V+\gamma:1 \leq -V] \leq \mathbb{P}[-V:1 \leq -V] + \gamma \mathbb{P}[1 \leq -V] \\ \leq (1+\gamma)\mathbb{P}[V^2] = c_4 \sum_{1 \leq i \leq m} \alpha_i^2 \end{split}$$

where the last inequality comes from on the event $-V \ge 1, V^2 \ge -V \ge 1$, and this implies that $\mathbb{P}[-V:-V \ge 1] \le \mathbb{P}[V^2], \mathbb{P}[1 \le -V] \le \mathbb{P}[V^2]$

This result,together with (1.1.16),deduce the second part in (1.1.14). To prove the last inequality, the argument is similar. We use the fact that $|\log(1+u)| \leq \epsilon^{-1} \log(\epsilon^{-1})|u|$ if $\epsilon < 1 + u$, we have that

$$\mathbb{P}[\log^2(1+U):\epsilon \leq 1+U] \leq \epsilon^{-2}\log^2(\epsilon^{-1})\mathbb{P}[U^2]$$

On the other hand, the following holds:

$$\{1 + U < \epsilon\} = \{V - \gamma < \log(1 + U) < \log(\epsilon)\} \subset \{\log^2(1 + U) < 2V^2 + 2\gamma^2\} \cap \{1 < -V\}$$

(Because $0 \le -\log(1+U) \le \gamma - V \to \log^2(1+U) \le (V-\gamma)^2 \le 2V^2 + 2\gamma^2$) Therefore, we have

$$\mathbb{P}[\log^2(1+U): 1+U \le \epsilon] \le 2\mathbb{P}[V^2] + 2\gamma^2\mathbb{P}[1 \le -V] \le c_5 \sum_{1 \le i \le m} \alpha_i^2$$

Proof of the claim. Recall that $\triangle A_n = -\mathbb{P}(\log(1+U_n)|\mathcal{F}_{n-1})$ and (1.1.10). We apply the lemma with $\{e_i\}, \{\alpha_i\}$ and \mathbb{P} as $\{e^{\beta\omega(n,z)-\lambda(\beta)}\}_{|z|_1\leq n}, \{P_{n-1}^{\beta,\omega}(S_n=z)\}_{|z|_1\leq n}$ and $\mathbb{P}[\cdot|\mathcal{G}_{n-1}]$. More precisely, we use the last two equation in the lemma, and recall that in our case, $\alpha_i^2 = I_i$ by (1.1.4)

1.2 Localization versus Delocalization

The strong disorder regime present a strange behavior. On one hand, the polymer has a tendency to diffuse. On the other hand, it tends to localize in certain regions (the regions which maximizes H_n). To study this phenomenon, we will consider the random variable J_n , which is the probability of the favorite endpoint for the polymer of size n:

$$J_n := \max_{x \in \mathbb{Z}^d} P_{n-1}^{\beta,\omega}(S_n = x) \tag{1.2.1}$$

This random variable measures how much spread is the polymer. For example, if $\beta = 0$, we have $J_n = O(n^{-d/2})$, but it should be larger if the polymer is localized in certain regions. Recalling the definition of $I_n = \sum_{x \in \mathbb{Z}^d} P_{n-1}^{\beta,\omega}(S_n = x)^2$, we have the following inequalities

$$J_n^2 \le I_n \le J_n \tag{1.2.2}$$

Definition 1.4.

We say the polymer is **localized** if

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} J_t > 0 \quad \mathbb{P} a.s \tag{1.2.3}$$

and the polymer is **delocalized** if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} J_t = 0 \quad \mathbb{P} a.s \tag{1.2.4}$$

Now we show that a criterion to distinguish each case, and also a phase transition:

Theorem 1.5 (Localization Transition). Let $\beta \neq 0$. Then

- localized if and only if $p < \lambda$
- delocalized if and only if $p = \lambda$

Localization occurs for all $\beta > \beta_c$, and delocalization for $\beta \leq \beta_c$

Proof. Note first that $\frac{1}{n}\sum_{n}I_{n}\approx\frac{1}{n}\sum_{n}J_{n}$, so they have the same limits.

If the polymer is localized, then $\sum_n I_n = \infty \Rightarrow W_\infty = 0 \Rightarrow p < \lambda$. If $p < \lambda$, then $W_\infty = 0$. Then $\sum_n I_n/n \approx -\log(W_n)/n$. But $\log(W_n)/n = -\log(Z_n)/n\lambda \to \lambda - p > 0$. Thus, the polymer is localized.

If $p = \lambda$, then $\sum_n I_n < \infty$, so the polymer is delocalized. If the polymer is delocalized, then must happen that $p = \lambda$, because we proved that $p < \lambda$ implies that the polymer is localized. That concludes the proof.

References

[1] Francis Comets. Directed polymers in random environments. Lecture Notes in Mathematics, 2175, 2017.