CHAPTER 4 DERIVATIVES BY THE CHAIN RULE

The Chain Rule (page 158) 4.1

z = f(g(x)) comes from z = f(y) and y = g(x). At x = 2 the chain $(x^2 - 1)^3$ equals $3^3 = 27$. Its inside function is $y = x^2 - 1$, its outside function is $z = y^3$. Then dz/dx equals $3y^2dy/dx$. The first factor is evaluated at $y = x^2 - 1$ (not at y = x). For $z = \sin(x^4 - 1)$ the derivative is $4x^3 \cos(x^4 - 1)$. The triple chain $z = \cos(x + 1)^2$ has a shift and a square and a cosine. Then $dz/dx = 2\cos(x + 1)(-\sin(x + 1))$.

The proof of the chain rule begins with $\Delta z/\Delta x = (\Delta z/\Delta y)(\Delta y/\Delta x)$ and ends with dz/dx = (dz/dy)(dy/dx). Changing letters, $y = \cos u(x)$ has $dy/dx = -\sin u(x) \frac{du}{dx}$. The power rule for $y = [u(x)]^n$ is the chain rule $dy/dx = nu^{n-1} \frac{du}{dx}$. The slope of 5g(x) is 5g'(x) and the slope of g(5x) is 5g'(5x). When f = cosine and g = sine and x = 0, the numbers f(g(x)) and g(f(x)) and f(x)g(x) are 1 and sin 1 and 0.

```
1 z = y^3, y = x^2 - 3, z' = 6x(x^2 - 3)^2 3 z = \cos y, y = x^3, z' = -3x^2 \sin x^3
 5 z = \sqrt{y}, y = \sin x, z' = \cos x/2\sqrt{\sin x} 7 z = \tan y + (1/\tan x), y = 1/x, z' = (\frac{-1}{x^2})\sec^2(\frac{1}{x}) - (\tan x)^{-2}\sec^2x
 9 z = \cos y, y = x^2 + x + 1, z' = -(2x + 1)\sin(x^2 + x + 1) 11 17 \cos 17x 13 \sin(\cos x)\sin x
15 x^2 \cos x + 2x \sin x 17 (\cos \sqrt{x+1}) \frac{1}{2} (x+1)^{-1/2} 19 \frac{1}{2} (1+\sin x)^{-1/2} (\cos x) 21 \cos (\frac{1}{\sin x}) (\frac{-\cos x}{\sin^2 x})
23 8x^7 = 2(x^2)^2(2x^2)(2x) 25 2(x+1) + \cos(x+\pi) = 2x + 2 - \cos x
27 (x^2+1)^2+1; sin U from 0 to sin 1; U(\sin x) is 1 and 0 with period 2\pi; R from 0 to x; R(\sin x) is half-waves.
29 g(x) = x + 2, h(x) = x^2 + 2; k(x) = 3 31 f'(f(x))f'(x); no; (-1/(1/x)^2)(-1/x^2) = 1 and f(f(x)) = x
33 \frac{1}{2}(\frac{1}{2}x+8)+8; \frac{1}{8}x+14; \frac{1}{16} 35 f(g(x))=x, g(f(y))=y
37 f(g(x)) = \frac{1}{1-x}, g(f(x)) = 1 - \frac{1}{x}, f(f(x)) = x = g(g(x)), g(f(g(x))) = \frac{x}{x-1} = f(g(f(x)))
39 f(y) = y - 1, g(x) = 1 43 2\cos(x^2 + 1) - 4x^2\sin(x^2 + 1); -(x^2 - 1)^{-3/2}; -(\cos\sqrt{x})/4x + (\sin\sqrt{x})/4x^{3/2}
45 f'(u(t))u'(t) 47 (\cos^2 u(x) - \sin^2 u(x))\frac{du}{dx} 49 2xu(x) + x^2\frac{du}{dx} 51 1/4\sqrt{1-\sqrt{1-x}}\sqrt{1-x}
53 df/dt 55 f'(g(x))g'(x) = 4(x^3)^3 3x^2 = 12x^{11} 57 3600; \frac{1}{2}; 18 59 3; \frac{1}{3}
```

2
$$f(y) = y^2$$
; $g(x) = x^3 - 3$; $\frac{dz}{dx} = 6x^2(x^3 - 3)$ 4 $f(y) = \tan y$; $g(x) = 2x$; $\frac{dz}{dx} = 2 \sec^2 2x$
6 $f(y) = \sin y$; $g(x) = \sqrt{x}$; $\frac{dz}{dx} = \frac{\cos x}{2\sqrt{x}}$ 8 $f(y) = \sin y$; $g(x) = \cos x$; $\frac{dz}{dx} = -\sin x \cos(\cos x)$
10 $f(y) = \sqrt{y}$; $g(x) = x^2$; $\frac{dz}{dx} = (\frac{1}{2\sqrt{y}})(2x) = 1$ 12 $\frac{dz}{dx} = \sec^2(x+1)$ 14 $\frac{dz}{dx} = 3x^2$ 16 $\frac{dz}{dx} = \frac{27}{2}\sqrt{9x+4}$
18 $\frac{dz}{dx} = \frac{\cos(x+1)}{2\sqrt{\sin(x+1)}}$ 20 $\frac{dz}{dx} = \frac{\cos(\sqrt{x}+1)}{2\sqrt{x}}$ 22 $\frac{dz}{dx} = 4x(\sin x^2)(\cos x^2)$
24 $\frac{dz}{dx} = 3(3x)^2(3)$ or $z = 27x^3$ and $\frac{dz}{dx} = 81x^2$ 26 $\frac{dz}{dx} = \frac{2\cos x \sin x}{2\sqrt{1-\cos^2 x}} = \cos x$ or $z = \sin x$ and $\frac{dz}{dx} = \cos x$
28 $f(y) = y + 1$; $h(y) = \sqrt[3]{y}$; $k(y) \equiv 1$ 30 $f(y) = \sqrt{y}$, $g(x) = 1 - x^2$; $f(y) = \sqrt{1-y}$, $g(x) = x^2$
32 (a) 22 (b) 4 $f'(5)$ (c) 8 (d) 4 34 $C = 16$ because this solves $C = \frac{1}{2}C + 8$ (fixed point)
36 $f(y)$, $g(x)$, $|f(g(x)) - 9| < \varepsilon$
38 For $g(g(x)) = x$ the graph of g should be symmetric across the 45° line: If the point (x, y)

- 40 False (The chain rule produces -1: so derivatives of even functions are odd functions) False (The derivative of f(x) = x is f'(x) = 1) False (The derivative of f(1/x) is f'(1/x) times $-1/x^2$) True (The factor from the chain rule is 1) False (see equation (8)).
- 42 From $x=\frac{\pi}{4}$ go up to $y=\sin\frac{\pi}{4}$. Then go across to the parabola $z=y^2$. Read off $z=\sqrt{\sin\frac{\pi}{4}}$ on the horizontal z axis.
- **44** This is the chain rule applied to $\frac{dz}{dy}$ (a function of y). Its x derivative is its y derivative $(\frac{d^2z}{dy^2})$ times $\frac{dy}{dx}$. If $z = y^2$ and $y = x^3$ then $\frac{dz}{dy} = 2y$ and $\frac{d^2z}{dy^2} \frac{dy}{dx} = 2(3x^2)$. Check another way: $\frac{dz}{dy} = 2x^3$ and $\frac{d}{dx}(\frac{dz}{dy}) = 6x^2$.
- **46** $\frac{dz}{dx} = (3u^2)(3x^2) = 9x^8$ **48** $\frac{dy}{dt} = \frac{1}{2\sqrt{u(t)}} \frac{du}{dt}$ **50** $\frac{dy}{dx} = 2xf'(x^2) + 2f(x)\frac{df}{dx}$
- **52** $\frac{dz}{dt} = -nu(t)^{-n-1}\frac{du}{dt}$ **54** $\frac{dy}{dt} = -\frac{1}{t^2}$ **56** $\cos(\sin x)\cos x$
- 58 (a) 53 (sum rule for derivatives) (b) 60 (chain rule)
- 60 Note that $G' = \cos(\sin x)\cos x$ and $G'' = -\cos(\sin x)\sin x \sin(\sin x)\cos^2 x$. We were told that $H(x) = \cos(\cos x)$ should be included too.

Implicit Differentiation and Related Rates 4.2(page 163)

For $x^3 + y^3 = 2$ the derivative dy/dx comes from implicit differentiation. We don't have to solve for y. Term by term the derivative is $3x^2 + 3y^2 \frac{dy}{dx} = 0$. Solving for dy/dx gives $-x^2/y^2$. At x = y = 1 this slope is -1. The equation of the tangent line is y - 1 = -1(x - 1).

A second example is $y^2 = x$. The x derivative of this equation is $2y \frac{dy}{dx} = 1$. Therefore dy/dx = 1/2y. Replacing y by \sqrt{x} this is $dy/dx = 1/2\sqrt{x}$.

In related rates, we are given dg/dt and we want df/dt. We need a relation between f and g. If $f=g^2$, then (df/dt) = 2g(dg/dt). If $f^2 + g^2 = 1$, then $df/dt = -\frac{g}{f}\frac{dg}{dt}$. If the sides of a cube grow by ds/dt = 2, then its volume grows by $dV/dt = 3s^2(2) = 6s^2$. To find a number (8 is wrong), you also need to know s.

17
$$\sec^2 \theta = \frac{c}{200\pi}$$
 19 $500\frac{dt}{dx}$; $500\sqrt{1 + (\frac{dt}{dx})^2}$ 21 $\frac{dy}{dt} = -\frac{8}{3}$; $\frac{dy}{dt} = -2\sqrt{3}$; ∞ then 0

23
$$V = \pi r^2 h$$
; $\frac{dh}{dt} = \frac{1}{4\pi} \frac{dV}{dt} = -\frac{1}{4\pi}$ in/sec **25** $A = \frac{1}{2} ab \sin \theta$, $\frac{dA}{dt} = 7$ **27** 1.6 m/sec; 9 m/sec; 12.8 m/sec

29
$$-\frac{7}{5}$$
 31 $\frac{dz}{dt} = \frac{\sqrt{2}}{2} \frac{dy}{dt}; \frac{d\theta}{dt} = \frac{1}{10} \cos^2 \theta \frac{d\theta}{dt}; \theta'' = \frac{\cos \theta}{10} y'' - \frac{1}{50} \cos^3 \theta \sin \theta (y')^2$

$$2 \frac{dy}{dx} = -\frac{y^2 + 2xy}{x^2 + 2xy} \quad 4 \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \text{ so } \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} = -\frac{1}{2} \quad 6 f'(x) + F'(y) \frac{dy}{dx} = y + x \frac{dy}{dx} \text{ so } \frac{dy}{dx} = \frac{y - f'(x)}{f'(y) - x}$$

8 1 =
$$\cos y \frac{dy}{dx}$$
 so $\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}$. 10 $ny^{n-1} \frac{dy}{dx} = 1$ so $\frac{dy}{dx} = \frac{1}{n}$

12
$$2(x-2) + 2y \frac{dy}{dx} = 0$$
 gives $\frac{dy}{dx} = 1$ at (1,1); $2x + 2(y-2) \frac{dy}{dx} = 0$ also gives $\frac{dy}{dx} = 1$.

14
$$2 + 2y \frac{d^2y}{dx^2} + 2(\frac{dy}{dx})^2 = 0$$
 yields $\frac{d^2y}{dx^2} = -\frac{1}{y} - \frac{x^2}{y^3} = -\frac{y^2 + x^2}{y^3}$.

16 y catches up to z as θ increases to $\frac{\pi}{2}$. So y' should be larger than z'. 18 y' approaches $200\pi c/200\pi = c$ 20 x is a constant (fixed at 7) and therefore a change Δ x is not allowed

- 22 $x^2 + y^2 = 10^2$ so $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$ and $\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt} = -2 \frac{x}{y} = -c$ when $x = \frac{1}{2}cy$. This means $(\frac{1}{2}cy)^2 + y^2 = 10^2$ or $y = \frac{10}{\sqrt{1 + (\frac{1}{2}c)^2}}$
- 24 Distance to you is $\sqrt{x^2 + 8^2}$, rate of change is $\frac{x}{\sqrt{x^2 + 8^2}} \frac{dx}{dt}$ with $\frac{dx}{dt} = 560$. (a) Distance = 16 and $x = 8\sqrt{3}$ and rate is $\frac{8\sqrt{3}}{16}(560) = 280\sqrt{3}$; (b) x = 8 and rate is $\frac{8}{\sqrt{8^2 + 8^2}}(560) = 280\sqrt{2}$; (c) x = 0 and rate is zero.
- **26** 10c(t-3) = 8t divided by c(t-3) = 4 gives 10 = 2t. So t = 5 and c = 2. The x and y distances between ball and receiver are 2t 10 and 12t 60. The derivative of $\sqrt{(2t-10)^2 + (12t-60)^2} = \sqrt{148}|t-5|$ is $-\sqrt{148}$.
- 28 Volume = $\frac{4}{3}\pi r^3$ has $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$. If this equals twice the surface area $4\pi r^2$ (with minus for evaporation) than $\frac{dr}{dt} = -2$.
- 30 $\frac{d\theta}{dt} = 4\pi$ radians/second; $0 = 2x\frac{dx}{dt} 6\cos\theta\frac{dx}{dt} + 6x\sin\theta\frac{d\theta}{dt}$; at $\theta = \frac{\pi}{2}$, $x = 3\sqrt{3}$ and $6\sqrt{3}\frac{dx}{dt} + 18\sqrt{3}\frac{d\theta}{dt}$ gives $\frac{dx}{dt} = -12\pi$; at $\theta = \pi$, x = 0 and $\frac{dx}{dt} = 0$.

4.3 Inverse Functions and Their Derivatives (page 170)

The functions g(x) = x - 4 and f(y) = y + 4 are inverse functions, because f(g(x)) = x. Also g(f(y)) = y. The notation is $f = g^{-1}$ and $g = f^{-1}$. The composition of f and f^{-1} is the identity function. By definition $x = g^{-1}(y)$ if and only if y = g(x). When y is in the range of g, it is in the domain of g^{-1} . Similarly x is in the domain of g when it is in the range of g^{-1} . If g has an inverse then $g(x_1) \neq g(x_2)$ at any two points. The function g must be steadily increasing or steadily decreasing.

The chain rule applied to f(g(x)) = x gives (df/dy)(dg/dx) = 1. The slope of g^{-1} times the slope of g equals 1. More directly dx/dy = 1/(dy/dx). For y = 2x + 1 and $x = \frac{1}{2}(y - 1)$, the slopes are dy/dx = 2 and $dx/dy = \frac{1}{2}$. For $y = x^2$ and $x = \sqrt{y}$, the slopes are dy/dx = 2x and $dx/dy = 1/2\sqrt{y}$. Substituting x^2 for y gives dx/dy = 1/2x. Then (dx/dy)(dy/dx) = 1.

The graph of y = g(x) is also the graph of $x = g^{-1}(y)$, but with x across and y up. For an ordinary graph of g^{-1} , take the reflection in the line y = x. If (3,8) is on the graph of g, then its mirror image (8,3) is on the graph of g^{-1} . Those particular points satisfy $8 = 2^3$ and $3 = \log_2 8$.

The inverse of the chain z = h(g(x)) is the chain $x = g^{-1}(h^{-1}(z))$. If g(x) = 3x and $h(y) = y^3$ then $z = (3x)^3 = 27x^3$. Its inverse is $x = \frac{1}{3}z^{1/3}$, which is the composition of $g^{-1}(y) = \frac{1}{3}y$ and $h^{-1}(z) = z^{1/3}$.

1
$$x = \frac{y+6}{3}$$
 3 $x = \sqrt{y+1}$ (x unrestricted \to no inverse) 5 $x = \frac{y}{y+1}$ 7 $x = (1+y)^{1/3}$ 9 (x unrestricted \to no inverse) 11 $y = \frac{1}{x-a}$ 13 $2 < f^{-1}(x) < 3$ 15 f goes up and down 17 $f(x)g(x)$ and $\frac{1}{f(x)}$ 19 $m \ne 0$; $m \ge 0$; $|m| \ge 1$ 21 $\frac{dy}{dx} = 5x^4$, $\frac{dx}{dy} = \frac{1}{5}y^{-4/5}$ 23 $\frac{dy}{dx} = 3x^2$; $\frac{dx}{dy} = \frac{1}{3}(1+y)^{-2/3}$ 25 $\frac{dy}{dx} = \frac{-1}{(x-1)^2}$, $\frac{dx}{dy} = \frac{-1}{(y-1)^2}$ 27 y ; $\frac{1}{2}y^2 + C$ 29 $f(g(x)) = -1/3x^3$; $g^{-1}(y) = \frac{-1}{y}$; $g(g^{-1}(x)) = x$ 39 $2/\sqrt{3}$ 41 $1/6\cos 9$

43 Decreasing;
$$\frac{dx}{dy} = \frac{1}{dy/dx} < 0$$
 45 F; T; F **47** $g(x) = x^m$, $f(y) = y^n$, $x = (z^{1/n})^{1/m}$

49
$$g(x) = x^3$$
, $f(y) = y + 6$, $x = (z - 6)^{1/3}$ **51** $g(x) = 10^x$, $f(y) = \log y$, $x = \log(10^y) = y$

53
$$y = x^3$$
, $y'' = 6x$, $d^2x/dy^2 = -\frac{2}{9}y^{-5/3}$; m/sec², sec/m² **55** $p = \frac{1}{\sqrt{y}} - 1$; $0 < y \le 1$

57 max =
$$G = \frac{3}{8}y^{4/3}$$
, $G' = \frac{1}{2}y^{1/3}$ **59** $y^2/100$

2
$$x = \frac{y-B}{A}$$
 4 $x = \frac{y}{y-1}(f^{-1} \text{ matches } f)$ 6 no inverse 8 $x = \begin{cases} \frac{1}{3}y & y \ge 0 \\ y & y \le 0 \end{cases}$ 10 $x = y^5$ 12 The graph is a hyperbola, symmetric across the 45° line; $\frac{dy}{dx} = -\frac{2}{(x-1)^2}$; $\frac{dx}{dy} = -\frac{1}{2}(x-1)^2$ (or $-\frac{2}{(y-1)^2}$).

12 The graph is a hyperbola, symmetric across the 45° line;
$$\frac{dy}{dx} = -\frac{2}{(x-1)^2}$$
; $\frac{dx}{dy} = -\frac{1}{2}(x-1)^2$ (or $-\frac{2}{(y-1)^2}$)

14
$$f^{-1}$$
 does not exist because $f(3)$ is the same as $f(5)$.

16 No two x's give the same y. 18
$$y = \frac{x}{x-1}$$
 and $y = 2 - x$ (functions of $x + y$ and xy lead to suitable f)

$$22 \frac{dy}{dx} = -\frac{1}{(x-1)^2}; \frac{dx}{dy} = -\frac{1}{y^2} = -(x-1)^2. \quad 24 \frac{dy}{dx} = -\frac{3}{x^4}; \frac{dx}{dy} = -\frac{1}{3}y^{-4/3}. \quad 26 \frac{dy}{dx} = \frac{ad-bc}{(cx+d)^2}; \frac{dx}{dy} = \frac{ad-bc}{(cy-a)^2}.$$

28
$$\frac{dy}{dx} = y$$
. 30 jumps at 0, y_1 , y_2 to heights x_1 , x_2 , x_3 ; a piecewise constant function has no inverse.

32 Hyperbola centered at
$$(-1,0)$$
: shift the standard hyperbola $xy=1$.

34
$$y = -3x$$
 for $x \le 0$; $y = -x$ for $x \ge 0$. **36** The graph is the first quarter of the unit circle.

38 The graph starts at
$$(0,1)$$
 and increases with vertical asymptote at $x=1$.

40
$$1 = \sec^2 x \frac{dx}{dy}$$
 so $\frac{dx}{dy} = \cos^2 x = \frac{1}{2}$ **42** $\frac{dy}{dx} = 1 - \cos x = 0$ so $\frac{dx}{dy} = \infty$. (The derivative does not exist.)

44 First proof Suppose
$$y = f(x)$$
. We are given that $y > x$. This is the same as $y > f^{-1}(y)$.
Second proof The graph of $f(x)$ is above the 45° line, because $f(x) > x$. The mirror image is below the 45° line so $f^{-1}(y) < y$.

46
$$g(x) = x - 4$$
, $f(y) = 5y$, $g^{-1}(y) = y + 4$, $f^{-1}(z) = \frac{z}{5}$, $\mathbf{x} = \frac{1}{5}\mathbf{z} + 4$.

48
$$g(x) = x + 6$$
, $f(y) = y^3$, $g^{-1}(y) = y - 6$, $f^{-1}(z) = \sqrt[3]{z}$; $\mathbf{x} = \sqrt[3]{z} - \mathbf{6}$

50
$$g(x) = \frac{1}{2}x + 4$$
, $f(y) = g(y)$, $g^{-1}(y) = 2y - 8$, $f^{-1}(z) = g^{-1}(z)$; $\mathbf{x} = 2(2z - 8) - 8 = 4z - 24$.

52
$$x^* = f^{-1}(0)$$

54
$$f^{-1}(0) \approx f^{-1}(y) + (\frac{df^{-1}}{dy})(0-y)$$
 is the same as $x^* \approx x + \frac{1}{df/dx}(0-f(x))$, which gives Newton's method.

56
$$\frac{dG}{dy} = f^{-1}(y) + y \frac{df^{-1}}{dy} - F'(f^{-1}(y)) \frac{df^{-1}}{dy}$$
. The second term cancels the third because $F'(f^{-1}(y))$ is equal to $f(f^{-1}(y)) = y$. This leaves the first term $\frac{dG}{dy} = f^{-1}(y)$. G is the antiderivative of f^{-1} if $F' = f$.

58 To maximize
$$yx - F(x)$$
 set the x derivative to zero: $y = \frac{dF}{dx} = f(x)$ or $x = f^{-1}(y)$. Substitute this x into $xy - F(x)$: the maximum value is exactly $G(y)$ from Problem 56. Now maximize $xy - G(y)$. The y derivative gives $x = \frac{dG}{dy}$ or by Problem 56 $x = f^{-1}(y)$. Substitute $y = f(x)$ into $xy - G(y)$ to find that the maximum value is $xf(x) - G(f(x)) = xf(x) - [f(x)x - F(f^{-1}(f(x))] = F(x)$. Note: This is the Legendre transform between $F(x)$ and $G(y)$ - important but not well known. Since $\frac{dF}{dx}$ is increasing (then f^{-1} exists), the function $F(x)$ is convex (concave up). So is $G(y)$.

Inverses of Trigonometric Functions (page 175)

The relation $x = \sin^{-1} y$ means that y is the sine of x. Thus x is the angle whose sine is y. The number y lies between -1 and 1. The angle x lies between $-\pi/2$ and $\pi/2$. (If we want the inverse to exist, there cannot be two angles with the same sine.) The cosine of the angle $\sin^{-1} y$ is $\sqrt{1-y^2}$. The derivative of $x=\sin^{-1} y$ is

$$dx/dy = 1/\sqrt{1-y^2}.$$

The relation $x = \cos^{-1} y$ means that y equals $\cos x$. Again the number y lies between -1 and 1. This time the angle x lies between 0 and π (so that each y comes from only one angle x). The sum $\sin^{-1} y + \cos^{-1} y = \pi/2$. (The angles are called complementary, and they add to a right angle.) Therefore the derivative of $x = \cos^{-1} y$ is $dx/dy = -1/\sqrt{1-y^2}$, the same as for $\sin^{-1} y$ except for a minus sign.

The relation $x = \tan^{-1} y$ means that $y = \tan x$. The number y lies between $-\infty$ and ∞ . The angle x lies between $-\pi/2$ and $\pi/2$. The derivative is $dx/dy = 1/(1+y^2)$. Since $\tan^{-1}y + \cot^{-1}y = \pi/2$, the derivative of $\cot^{-1} y$ is the same except for a minus sign.

The relation $x = \sec^{-1} y$ means that $y = \sec x$. The number y never lies between -1 and 1. The angle x lies between 0 and π , but never at $x = \pi/2$. The derivative of $x = \sec^{-1} y$ is $dx/dy = 1/|y| \sqrt{y^2 - 1}$.

1 0,
$$\frac{\pi}{2}$$
, 0 3 $\frac{\pi}{2}$, 0, $\frac{\pi}{4}$ 5 π is outside $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 7 $y = -\sqrt{3}/2$ and $\sqrt{3}/2$

9 $\sin x = \sqrt{1 - y^2}$; $\sqrt{1 - y^2}$ and 1 11 $\frac{d(\sin^{-1}y)}{dy} \cos x = 1 \rightarrow \frac{d(\sin^{-1}y)}{dy} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - y^2}}$

13 $y = 0: 1, -1, 1; y = 1: 0, 0, \frac{1}{2}$ 15 F; F; T; T; F; F 17 $\frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}}$ 19 $\frac{dz}{dx} = 3$

21 $\frac{dz}{dx} = \frac{2\sin^{-1}x}{\sqrt{1 - x^2}}$ 23 $1 - \frac{y\sin^{-1}y}{\sqrt{1 - y^2}}$ 25 $\frac{dx}{dy} = \frac{1}{|y + 1|\sqrt{y^2 + 2y}}$ 27 $u = 1$ so $\frac{du}{dy} = 0$ 31 $\sec x = \sqrt{y^2 + 1}$

33 $\frac{1}{10}, 1, \frac{1}{2}$ 35 $-y/\sqrt{1 - y^2}$ 37 $\frac{1}{2}\sec \frac{x}{2}\tan \frac{x}{2}$ 39 $\frac{nx^{n-1}}{|x^n|\sqrt{x^{2n} - 1}}$ 41 $\frac{dy}{dx} = \frac{1}{1 + x^2}$

43 $\frac{dy}{dx} = \frac{1}{1 + x^2}$ 47 $u = 4\sin^{-1}y$ 49 π 51 $-\pi/4$

- $2\sin^{-1}(-1) = -\frac{\pi}{2}$; $\cos^{-1}(-1) = \pi$; $\tan^{-1}(-1) = -\frac{\pi}{4}$. Note that $-\frac{\pi}{2}$, π , $-\frac{\pi}{4}$ are in the required ranges.
- $4 \sin^{-1} \sqrt{3}$ doesn't exist; $\cos^{-1} \sqrt{3}$ doesn't exist; $\tan^{-1} \sqrt{3} = \frac{\pi}{3}$.
- 6 The range of $\sin^{-1}(y)$ is $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Note that $\sin 2\pi = 0$ but 2π is not $\sin^{-1} 0$.
- 8 $\frac{dx}{dy} = \frac{1}{2\sqrt{1-y^2/4}} = \frac{1}{\sqrt{4-y^2}}$. The graph goes from $y = -\pi$ to $y = \pi$.
- 10 The sides of the triangle are $y, \sqrt{1-y^2}$, and 1. The tangent is $\frac{y}{\sqrt{1-y^2}}$.
- 12 $\frac{d\sin^{-1}}{dy}(\sin x)\cos x$ equals $\frac{1}{\sqrt{1-\sin^2 x}}\cos x = 1$ as required. 14 $\frac{d(\sin^{-1}y)}{dy}|_{x=0} = 1$; $\frac{d(\cos^{-1}y)}{dy}|_{x=0} = -\infty$; $\frac{d(\tan^{-1}y)}{dy}|_{x=0} = 1$; $\frac{d(\sin^{-1}y)}{dy}|_{x=1} = \frac{1}{\cos 1}$; $\frac{d(\cos^{-1}y)}{dy}|_{x=1} = -\frac{1}{\sin 1}$; $\frac{d(\tan^{-1}y)}{dy}|_{x=1} = \frac{1}{\sec^2 1}$.
- 16 $\cos^{-1}(\sin x)$ is the complementary angle $\frac{\pi}{2} x$. The tangent of that angle is $\frac{\cos x}{\sin x} = \cot x$.
- 18 $\frac{du}{dx} = \frac{1}{1+(2x)^2}(2) = \frac{2}{1+4x^2}$. 20 $\frac{du}{dx} = \frac{1}{\sqrt{1-(\cos x)^2}}(-\sin x) = -1$. Check: $z = \frac{\pi}{2} x$ so $\frac{dz}{dx} = -1$.
- 22 $\frac{dz}{dx} = -1(\sin^{-1}x)^{-2} \frac{1}{\sqrt{1-x^2}}$. 24 $\frac{dz}{dx} = 2x \tan^{-1}x + (1+x^2) \frac{1}{1+x^2} = 2x \tan^{-1}x + 1$. 26 $u = x^2$ so $\frac{du}{dx} = 2x$. 28 $\frac{du}{dy} = \frac{1}{1+y^2}$. The range of this function is $0 \le y \le \frac{\pi}{2}$.
- 30 The right triangle has far side y and near side 1. Then the near angle is $\tan^{-1} y$. That angle is also $\cot^{-1}(\frac{1}{y})$.
- 34 The requirement is $u' = \frac{1}{1+t^2}$. To satisfy this requirement take $u = \tan^{-1}t$.
- 36 $u = \tan^{-1} y$ has $\frac{du}{dy} = \frac{1}{1+y^2}$ and $\frac{d^2u}{dy^2} = \frac{-2y}{(1+y^2)^2}$. 38 $\frac{du}{dy} = \frac{2}{|2y|\sqrt{(2y)^2-1}} = \frac{1}{|y|\sqrt{4u^2-1}}$

- 40 By the chain rule $\frac{du}{dx} = \frac{1}{|\tan x|\sqrt{\tan^2 x 1}}(\sec^2 x)$. 42 By the product rule $\frac{dz}{dx} = (\cos x)(\sin^{-1} x) + (\sin x)\frac{1}{\sqrt{1-x^2}}$. Note that $z \neq x$ and $\frac{dz}{dx} \neq 1$.
- **44** $\frac{dz}{dx} = \cos(\cos^{-1}x)(\frac{-1}{\sqrt{1-x^2}}) + \sin(\sin^{-1}x)(\frac{1}{\sqrt{1-x^2}}) = \frac{-x+x}{\sqrt{1-x^2}} = 0.$
- 46 Domain $|y| \ge 1$; range $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ with x = 0 deleted.
- 48 $u(x) = \frac{1}{2} \tan^{-1} 2x$ (need $\frac{1}{2}$ to cancel 2 from the chain rule). 50 $u(x) = \frac{x-1}{x+1}$ has $\frac{du}{dx} = \frac{(x+1)-(x-1)}{(x+1)^2} = \frac{2}{(x+1)^2}$. Then $\frac{d}{dx} \tan^{-1} u(x) = \frac{1}{1+u^2} \frac{du}{dx} = \frac{1}{1+(\frac{x-1}{x+1})^2} \frac{2}{(x+1)^2} = \frac{1}{1+(\frac{x-1}{x+1})^2} = \frac{1}{1+(\frac{x \frac{2}{(x+1)^2+(x-1)^2}=\frac{1}{\mathbf{x^2+1}}.$ This is also the derivative of $\tan^{-1}x!$ So $\tan^{-1}u(x)$ minus $\tan^{-1}x$ is a constant.
- **52** Problem 51 finds u(0) = -1 and $\tan^{-1} u(0) = -\frac{\pi}{4}$ and $\tan^{-1} 0 = 0$ and therefore $\tan^{-1} u(x) \tan^{-1} x$ should have the constant value $-\frac{\pi}{4} - 0$. But as $x \to -\infty$ we now find $u \to 1$ and $\tan^{-1} u \to \frac{\pi}{4}$ and the difference is $\frac{\pi}{4} - \left(-\frac{\pi}{2}\right) = \frac{3\pi}{4}$. The "constant" has changed! It happened when x passed -1 and u became infinite and the angle $tan^{-1}u$ jumped.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Online Textbook Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.