9,=1

G10 = 1

P, = 0

Pn = 0

(, = | +1.0 = |

(o= 1+0 = 1

Monday, November 8, 2021 4:25 PM 1) [1 point] Write the 6-digit sign and magnitude representation of (-5413)₆ (-5413) (= Sm (505413) 6 2) [1 point] Write the 6-digit diminished radix representation of (-6326)9 888 8-6376 = 2562 $(-6326)_9 = DR($ Not correct $)_9$ ordling is alling R-1 to the left = 88252 Try again 22222-1210=221012 3) [1 point] Write the 6-digit radix representation of (-1210)₃ 221012 +1 = 221013 & 3 cont be a number in base 3) there it into a o and add 1 to the next place = 221070 $(-1210)_3 = R($ Not correct $)_3$ Try again 341/2=173-0 19/2=5-0 0001/0101/010 173/2=86-1 5/2=2-1 86/2=43-0 2/2=1-0 43/2=21-1 1/2=0-1 1/10/010/0101=1+1 110/1010/01104) [1 point] Write the 12-digit signed two's complement representation of the decimal number (-346)₁₀ 5) [1 point] Write the sign-extended 8-digit signed two's complement representation of the 6-digit signed two's complement value (111100) $(111100)_2 = R($ 11/1 1100 6) [1 point] Write the sign-extended 8-digit signed two's complement representation of the 6-digit signed two's complement value (000110)₂ 7) [1 point] 66 32 16 8 4 2 1 The value of A is 41 and the value of B is 14. Write the 8-digit two's complement representation of A and -B: A=R(000 (00))2 4(=> 00 0 100) -B=R([11(00(0)2 -14 => 0000 1110 => 1111 0001+1=> 1111 0010 Now compute the 8-digit two's complement addition of the two binary quantities above. (-14) + 1111 $A-B=R(27)_{10}$ 16+8+2+1 = 27 Now write the value of -A and B as 8-digit two's complement numbers. -41 = 0010 (001 = 110) 01/0+1= 1101 0111 -A = R((10| Oll ()2 14 => 0000 1110 $B = R(0000 | | 0)_2$ (14) +0000 1110 Now convert that binary value back to a negative or positive number in base 10. (Express it with only as many digits as you need. Make sure the result is B - A.) $-A+B=R(-27)_{10}$ This is an example of how you can check your own work when constructing the answers to questions 8) [1 point] For the questions below, the value of $A = R(00272837)_{10}$ and $B = R(00799737)_{10}$. Write the 8-digit ten's complement of B: (108-1)-00799737+1=99700263 $-B = R(\frac{99700263}{10})_{10}$ Write the 8-digit ten's complement addition of A and -B: 99200763+00272837=99473100 A-B = R(99473100)10 Now, write the 8-digit ten's complement of A: $-A=R(\frac{99717(63)}{10})_{10}$ $(10^{8}-1)-00272837+1=99727163$ Write the 8-digit ten's complement addition of -A and B: -A+B=R(00526900)10 99727163 + 00799737=100526900 Ci=Gin Ca = eto.(=0 P5 = 1 C1 = 0 + 0 - 10 C1 = 0 + 0 - 10 C2 = 1 + 0 = 1 C4 = 1 + (0 = 1) C5 = 0 + 1 \ 1 = 1 (6 = 0 + 1 \ 1 = 1 (= Go + Cm. Po 9) [1 point] Go=0.1=0 G4= 1.1=1 Pb = 1 G= 1.0=0 For the following 8-bit binary addition, $C_1 = G_1 + C_0 \cdot P$. 6,=0.0=0 Go = 1.0=0 Pn = 1 Gre= 1.1=1 Cz= Gz + C, Pz 11110100 G7 = 1.0 =0 = 0.1 = 0 $C_3 = G_3 + C_2 \cdot P_3$ + 00011101 G₇ ... G₀, P₇ ... P₀, C₇ ... C₀? Assu the carry-in to the 8-bit adder (C_1) is 0. when implemented with a carry look Gir = Xi Yi $G_7 = \bigcirc G_6 = \bigcirc G_5 = \bigcirc G_4 = \bigcirc G_3 = \bigcirc G_2 = \bigcirc G_1 = \bigcirc G_0 = \bigcirc G_0$ Pi = Xi OYi april if xi=0 and Yi=1 $P_{7} = P_{6} = P_{5} = P_{4} = 0$ $P_{3} = P_{2} = 0$ $P_{1} = 0$ $P_{0} = 0$ $C_{7} = C_{6} = C_{5} = C_{4} = C_{3} = C_{2} = C_{1} = 0 C_{0} = 0$ or Xi= 1 and Yi=0 10) [1 point] For the following 8-bit binary addition, when implemented with a carry lookahead adder, what are the values of G₇ ... G₀, P₇ ... P₀, C₇ ... C₀? Assume the carry-in to the 8-bit adder (C₋₁) is 0 $G_7 = \bigcirc G_6 = \bigcirc G_5 = \bigcirc G_4 = \bigcirc G_3 = \bigcirc G_2 = \bigcirc G_1 = \bigcirc G_0 = \bigcirc G_1 = \bigcirc G_1 = \bigcirc G_1 = \bigcirc G_1 = \bigcirc G_2 = \bigcirc G_2 = \bigcirc G_1 = \bigcirc G_2 = \bigcirc G_2 = \bigcirc G_1 = \bigcirc G_2 = \bigcirc G_2 = \bigcirc G_3 = \bigcirc G_3$ $P_7 = \int P_6 = \int P_5 = 0 P_4 = 0 P_3 = 0 P_2 = 0 P_1 = 0 P_0 = 0$ $C_7 = \bigcirc C_6 = \bigcirc C_5 = \bigcirc C_4 = \bigcirc C_3 = \bigcirc C_2 = \bigcirc C_1 = \bigcirc C_0 = \bigcirc C_0 = \bigcirc C_1 = \bigcirc C_0 = \bigcirc C_0$ G_2 = 0 Pa = 1 (==0+1.0=0 Gh = 0 Ph= 1 (6=0+1.0=0 Gr = 0 P3= 0 (==0+1.0=0 Gx = 1 Pa= 0 (a= [+1.0=] (92 = 1 $C_3 = 1 + 0.0 = 1$ P, = 0 G2 = 0 (, = 0 + 1.0 = 0 P2 = 0