1	Modeling and Simulation of Macrosegregation Induced
2	by Thermomechanical Deformation in Steels

3 Ali SAAD

December 2014

. Contents

2	2 Introduction		
3	Modelling Review	3	
4	1.1 Standard FE model	4	
5	1.2 Biblio test	4	
1	Bibliography	5	

Introduction

- 3 Metallurgical processes have known a great evolution during the last 60 years. The advance-
- 4 ment is attributed to research disciplines, like physical metallurgy, which investigated a great
- 6 deal of solidification-related phenomena. Nowadays, metallurgists and physicists seek to un-
- derstand deeper the connection between the different scales involved. From the nucleation
- 7 theory to the mechanical behavior of metals, an chain of intricate phenomena occur in a such
- a way to create defects in the final product. This has been seen in casting processes like con-
- 9 tinuous casting and ingot casting. Suface and volume porosity, hot tearing and composition
- heterogeneities are known defects to the casting community. As far as the current project is
- concerned, the last defect, widely known as macrosegregation, is the subject of our interest.

12 Defects

Worth checking notes from the Ecole Thématique CNRS oléron (Check Mail Draft)

- Hot tearing
- Porosity
- Freckles
- Macrosegregation

18 Industrial Worries

19 Production

20

23

- Talk about total steel production, variations over the last few decades
- Quality constraints for many applications thats require steel like construction, nuclear engines?
 - Difficulties to meet these constraints and what are the present solutions

Research and Simulation

Need for software handling multicomponent alloys

2 CONTENTS

- Need for software handling finite diffusion in the solid
- Need for realistic alloy properties (not only constants)
- Need for handling moulds along with volume change (creating thermal resistances)

Worth discussing Isabelle Poitraut and David Cardianaux - and Claudine Allentin (respo comm Arcelor Dunkerque, search for mail)

6 CCEMLCC contribution

- some words about this ESA project
- in what ways does this project tries to alleviate the aforementionned problems?
- academic and industrial partners and how does each of them contribute actually
- mention Thercast as the final developped code destination?

² Chapter 1

Modelling Review

4	Contents		
5 6	1.1	Standard FE model	4
7 8	1.2	Biblio test	4

- 2 In this chapter the following points are discussed
- what does a typical solidifications problem consist of? heat fluid solid chemical
 species
- what are the modeling scales of these physics? direct (micro: phase field / macro: CA)
 and indirect (micro Nancy models / macro: current FE model)

Maybe worth showing the 2x2 table that CAG showed at the ICASP conference?

- Overview of these models ??
- Presence of AIR requires a new problem definition: Lagrangian or Eulerian framework

1.1 Standard FE model

- 11 A section presenting the main FE equations that will be solved in the metal being a single do-
- main. I call it "standard" because it doesnt contain anything about levelsets, compressibility,

13

15

16

- Energy (chapter 1)
 - Species mass (voller prakash)
 - should I mention the tabulation approach that I couldnt finalize because of the equality between w and wl in liquid phase ?
- Fluid mechanics (vms: darcy model with boussinesq)
- talking about Eulerian approach Air Metal will be presented in the next chapters

19 1.2 Biblio test

1 [1] are going to appear in the paper

2 Bibliography

- 3 [1] Tommy Carozzani, Charles-André Gandin, Hugues Digonnet, Michel Bellet, Kader Zai-
- dat, and Yves Fautrelle. Direct simulation of a solidification benchmark experiment.
- Metallurgical and Materials Transactions A, 44(2):873-887, February 2013. ISSN 1073-
- 5623, 1543-1940. doi: 10.1007/s11661-012-1465-1. URL http://link.springer.com/
- 78 article/10.1007/s11661-012-1465-1.