

Chapter 10: Storage and File Structure

Edited by Radhika Sukapuram

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Classification of Physical Storage Media

- Speed with which data can be accessed
- Cost per unit of data
- Reliability
 - data loss on power failure or system crash
 - physical failure of the storage device
- Can differentiate storage into:
 - volatile storage: loses contents when power is switched off
 - non-volatile storage:
 - Contents persist even when power is switched off.
 - Includes secondary and tertiary storage, as well as batterbacked up main-memory.

Storage Hierarchy

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Magnetic Disks

Read-write head

- Positioned very close to the platter surface (almost touching it)
- Reads or writes magnetically encoded information.
- □ Surface of platter divided into circular tracks
 - Over 50K-100K tracks per platter on typical hard disks
- Each track is divided into sectors.
 - A sector is the smallest unit of data that can be read or written.
 - Sector size typically 512 bytes
 - Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to 2000 (on outer tracks)
- To read/write a sector
 - disk arm swings to position head on right track
 - platter spins continually; data is read/written as sector passes under head
- Head-disk assemblies
 - multiple disk platters on a single spindle (1 to 5 usually)
 - one head per platter, mounted on a common arm.
- Cylinder i consists of ith track of all the platters

Magnetic Disks (Cont.)

- □ **Disk controller** interfaces between the computer system and the disk drive hardware.
 - accepts high-level commands to read or write a sector
 - initiates actions such as moving the disk arm to the right track and actually reading or writing the data
 - Computes and attaches checksums to each sector to verify that data is read back correctly
 - If data is corrupted, with very high probability stored checksum won't match recomputed checksum
 - Ensures successful writing by reading back sector after writing it
 - Performs remapping of bad sectors

Performance Measures of Disks

- Access time the time it takes from when a read or write request is issued to when data transfer begins. Consists of:
 - □ **Seek time** time it takes to reposition the arm over the correct track.
 - 4 to 10 milliseconds on typical disks
 - Rotational latency time it takes for the sector to be accessed to appear under the head.
 - ▶ 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)
- Data-transfer rate the rate at which data can be retrieved from or stored to the disk.
 - 25 to 100 MB per second max rate, lower for inner tracks

Performance Measures (Cont.)

- Mean time to failure (MTTF) the average time the disk is expected to run continuously without any failure.
 - Typically 3 to 5 years
 - □ Probability of failure of new disks is quite low, corresponding to a "theoretical MTTF" of 500,000 to 1,200,000 hours for a new disk
 - ▶ E.g., an MTTF of 1,200,000 hours for a new disk means that given 1000 relatively new drives, on an average one will fail every 1200 hours
 - MTTF decreases as disk ages

Optimization of Disk-Block Access

- □ Block a contiguous sequence of sectors from a single track
 - data is transferred between disk and main memory in blocks
 - sizes range from 512 bytes to several kilobytes
 - Smaller blocks: more transfers from disk
 - Larger blocks: more space wasted due to partially filled blocks
 - Typical block sizes today range from 4 to 16 kilobytes
- Disk-arm-scheduling algorithms order pending accesses to tracks so that disk arm movement is minimized
 - elevator algorithm: Rn: Read request

Optimization of Disk Block Access (Cont.)

- ☐ **File organization** optimize block access time by organizing the blocks to correspond to how data will be accessed
 - E.g. Store related information on the same or nearby cylinders.
 - Files may get fragmented over time
 - ▶ E.g. if data is inserted to/deleted from the file
 - Or free blocks on disk are scattered, and newly created file has its blocks scattered over the disk
 - Sequential access to a fragmented file results in increased disk arm movement
 - Some systems have utilities to defragment the file system, in order to speed up file access

File Organization, Record Organization and Storage Access

File Organization

- The database is stored as a collection of files.
 - Each file is a sequence of records.
 - A record is a sequence of fields.
 - A database file is partitioned into fixed-length storage units called blocks.
 - Blocks are units of both storage allocation and data transfer.
 - A block may contain several records

File organization cont.

- How to represent records in a file?
- One approach:
 - assume record size is fixed
 - each file has records of only one particular type
 - do not allow records to cross block boundaries
 - different files are used for different relations

This case is easiest to implement; variable length records are also possible.

Organization of Records in Files

- We discussed how to represent records in a file. But how to organize them in a file?
- Heap a record can be placed anywhere in the file where there is space
- Sequential store records in sequential order, based on the value of the search key of each record
- □ Hashing a hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed
- Records of each relation may be stored in a separate file.
 - In a multitable clustering file organization records of several different relations can be stored in the same file
 - Motivation: store related records on the same block to minimize I/O

Sequential File Organization

- Suitable for applications that require sequential processing of the entire file
- The records in the file are ordered by a search-key (ID)
- For fast retrieval records are chained

10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Sequential File Organization (Cont.)

- Insertion –locate the position where the record is to be inserted
 - if there is free space insert there
 - ☐ if no free space, insert the record in an overflow block
 - In either case, pointer chain must be updated
- Need to reorganize the file from time to time to restore sequential order

10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
32222	Verdi	Music	48000	
	, ciai	TVIUDIC	10000	

Deletion – pointer chains

- Store the address of the first deleted record in the file header.
- Use this first record to store the address of the second deleted record, and so on
- Can think of these stored addresses as pointers since they "point" to the location of a record.
- More space efficient representation: reuse space for normal attributes of free records to store pointers. (No pointers stored in in-use records.)

		•	\ 1		
header				_	
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				4	
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				<u>*</u>	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
record 11	98345	Kim	Elec. Eng.	80000	

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering

file organization

department

dept_name	building	budget
Comp. Sci.	Taylor	100000
Physics	Watson	70000

instructor

	ID	name	dept_name	salary
	10101	Srinivasan	Comp. Sci.	65000
ı	33456	Gold	Physics	87000
ı	45565	Katz	Comp. Sci.	75000
	83821	Brandt	Comp. Sci.	92000

multitable clustering of department and instructor

Comp. Sci.	Taylor	100000
45564	Katz	75000
10101	Srinivasan	65000
83821	Brandt	92000
Physics	Watson	70000
33456	Gold	87000

Multitable Clustering File Organization (cont.)

- □ good for queries involving *department* ⋈ *instructor*, and for queries involving one single department and its instructors
- □ bad for queries involving only *department*
- results in variable size records
- Can add pointer chains to link records of a particular relation

Comp. Sci.	Taylor	100000	
45564	Katz	75000	
10101	Srinivasan	65000	
83821	Brandt	92000	
Physics	Watson	70000	
33456	Gold	87000	_

Storage Access

- A database file is partitioned into fixed-length storage units called blocks.
 - Blocks are units of both storage allocation and data transfer.
- Database system seeks to
 - minimize the number of block transfers between the disk and memory.
 - We can reduce the number of disk accesses by
 - keeping as many blocks as possible in main memory.
- Buffer portion of main memory available to store copies of disk blocks.
- Buffer manager subsystem responsible for allocating buffer space in main memory
 - Not the same as the virtual memory manager of the OS

End of Chapter 10

Edited by Radhika Sukapuram

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use