Rank-355 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_1^2 X_2 = 0$$

(0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)The point rank of the equation over GF(2) is 355

General information

Number of lines	3
Number of points	9
Number of singular points	1
Number of Eckardt points	0
Number of double points	2
Number of single points	5
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$2^2, 1^5, 0^2$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{13}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_4$$

Rank of lines: (4, 3, 18)

Rank of points on Klein quadric: (2, 13, 4)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_2 = (0, 0, 1, 0) = \ell_0 \cap \ell_2$$

Single Points

The surface has 5 single points:

The single points on the surface are:

0:
$$P_4 = (1, 1, 1, 1)$$
 lies on line ℓ_1
1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_0

 $2: P_9 = (1, 0, 0, 1)$ lies on line ℓ_2

 $3: P_{13} = (1,0,1,1)$ lies on line ℓ_2

4: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

$$0: P_1 = (0, 1, 0, 0) 1: P_8 = (1, 1, 1, 0)$$

Line Intersection Graph

$$\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0
\end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_2

Line 1 intersects

Line	ℓ_0
in point	P_0

Line 2 intersects

Line	ℓ_0
in point	P_2

 $8: P_{14} = (0, 1, 1, 1)$

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_6 = (1,0,1,0) \\ 1: \, P_1 = (0,1,0,0) & 5: \, P_8 = (1,1,1,0) \\ 2: \, P_2 = (0,0,1,0) & 6: \, P_9 = (1,0,0,1) \\ 3: \, P_4 = (1,1,1,1) & 7: \, P_{13} = (1,0,1,1) \end{array}$$