

Fast-Transient Low-Dropout Regulator

Main Points

- Introduction
- Design specs
- Design methodology
- Simulation results
- Design challenges

Introduction

- Who are we
- Our goals
 Robust power management unit
- What is an LDO
 Is it really an LDO?

Design Specs

Parameter	Name	Min	Тур	Max	Units	Comments	
Power Supply Voltage	Vin	2.4		3.5	V	Large range for drop out	
Output Voltage	Vout	0.85	1	1.25	٧	Programmable with 12.5 mV step	
Untrimmed Output Voltage Accuracy			±6		%		
Load Current	lout	0.1		150	mA	Large range of current	
Vin Ramp Rate	dVin/dt			0.2	mV/μs		
Rate of lout Change	dlout/dt			5	mA/ns	Load transient regulation for maximum load variation	
Undershoot/Overshoot				50	mV	at maximum capacitance	
Load Capacitance	CL			1	nF	Not a large enough	
Power Supply Rejection at 1 MHz	PSR1MHz	30			dB		
Power Supply Rejection at 10 MHz	PSR10MHz	20			dB		
Line Regulation			2		mV/V		
Load Regulation			50		mV/A		

Design Methodology

LDO Topology

We want a stable fast-transient topology

Error Amplifier's Topology

How is the input and output's swings?

Design Methodology

• Static gain error

Map it into V_{ref} , β and $A_{v_{error\ amplifier}}$.

Stability constraints

Hard to achieve. What about Miller compensation?

Load and Line regulation

How to make the current change negligible?

Achieving PSR proposals

Simulation Results

- 1. DC operating parameters simulation
- 2. Transient load simulation
- 3. Transient input simulation
- 4. Stability analysis and PSR
- 5. Figure of merit
- 6. Specs achieved

DC OP Simulation

1. Max output error

Evaluated at Minimum $loop\ gain$ (minimum V_{in} &minimum β)

Transient Load Simulation

1. Load regulation

Transient Load Simulation

1. Load regulation

2. Overshoot

Transient Load Simulation

- 1. Load regulation
- 2. Overshoot
- 3. Undershoot

Transient Input Simulation

1. Line regulation

Stability Analysis and PSR

1. Phase Margin

Stability Analysis and PSR

1. Phase Margin

2. PSR

Figure of Merit

$$FOM = \frac{C_L * \Delta V_{out} * I_Q}{I_{L,max}^2} = 2.16 * 10^{-6} (ns)$$

Achieved Specs

Spec	Required	Achieved		
Technology used	45nm CMOS			
Supply Voltage	$2.4~V \rightarrow 3.5~V$	_		
Output Voltage	$0.85 V \rightarrow 1.25 V$	-		
Untrimmed output voltage accuracy	< ±6%	1%		
Load Current	$0.1~mA \rightarrow 150~mA$	-		
Undershoot/Overshoot	< 50 mV	27 mV		
Phase margin	> 45°	49°		
Max Load Capacitance	1 nF	_		
Line Regulation	< 2 mV/V	1.7 <i>mV /V</i>		
Load Regulation	$< 50 \ mV/A$	9 mV/A		
Power Supply Rejection at 1 MHz	30 <i>dB</i>	10 <i>dB</i>		
Power Supply Rejection at 10 MHz	20 <i>dB</i>	4 <i>dB</i>		
FOM	-	$2.16 * 10^{-6} (ns)$		

Design Challenges

1. PSR

Bypass device length, low-pass filter and El-Nozahy's paper

2. Load regulation

Magical mismatch effect

3. Line regulation

Decrease the bypass current change

Thank You

Presented by:

Mohamed Essam

Bilal Ramadan

Abdelrahman Abohendy

Mahmoud Saker