ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/237012410

The Millimeter Wave Rotational Spectrum of N-Cyanomethanimine, CH2NCN

ARTICLE in JOURNAL OF MOLECULAR SPECTROSCOPY · MAY 1984

Impact Factor: 1.48 · DOI: 10.1016/0022-2852(84)90111-5

CITATIONS READS

18 19

3 AUTHORS, INCLUDING:

Curt Wentrup University of Queensland

576 PUBLICATIONS **6,481** CITATIONS

SEE PROFILE

The Millimeter Wave Rotational Spectrum of N-Cyanomethanimine, CH₂NCN

MANFRED WINNEWISSER AND BRENDA P. WINNEWISSER

Physikalisch-Chemisches Institut, Justus-Liebig-Universität, Giessen, Heinrich-Buff-Ring 58, 6300 Giessen, West Germany

AND

CURT WENTRUP

Fachbereich Chemie, Philipps-Universität, Marburg, West Germany

The rotational spectrum of the short-lived species N-cyanomethanimine, CH₂NCN, has been measured in the frequency range 100–250 GHz. The observed transitions allow the determination of the rotational and centrifugal distortion constants and the nitrogen quadrupole coupling constants for both nitrogen nuclei. The N-cyanomethanimine spectrum was measured directly in the products of the pyrolysis of trimethylenetetrazole. The rotational constants obtained are $A = 63\ 372.995(11)\ \text{MHz}$, $B = 5\ 449.347\ 90(28)\ \text{MHz}$, and $C = 5\ 009.559\ 86(29)\ \text{MHz}$; the quadrupole coupling constants are $\chi_{aa} = 2.057(39)\ \text{MHz}$ and $\chi_{bb} - \chi_{cc} = -7.205(21)\ \text{MHz}$ for the imine nitrogen, and $\chi_{aa} = -3.264(33)\ \text{MHz}$ and $\chi_{bb} - \chi_{cc} = -1.630(18)\ \text{MHz}$ for the cyanogroup nitrogen. The accurate constants obtained allow the calculation of the line position and hyperfine structure of any rotational transition appropriate for a radioastronomical search.

INTRODUCTION

Since HCN is a rather abundant interstellar molecule, there is a growing interest in the various chemical dimers of HCN, exemplified by the recent *ab initio* study of Dykstra *et al.* (1). None of the dimers of HCN are stable in the laboratory, and only two have been identified so far in the vapor phase; the linear van der Waals dimer (2-4) and N-cyanomethanimine, H_2 CNCN. The first experimental detection of N-cyanomethanimine, by Wentrup (5), was in the products of a gas-phase pyrolysis of trimethylenetetrazole, where mass spectrometry data indicated that one of the products was N-cyanomethanimine (5). Meanwhile, this has been confirmed using low-temperature infrared spectroscopy by Wentrup and Lorencak (6). Another pyrolysis precursor, dimethylcyanamide, was shown by Bak *et al.* (7) to also yield N-cyanomethanimine. They were able to measure microwave transitions of both normal and deuterated N-cyanomethanimine (7, 8), and could thus determine the dipole moment components and a partial substitution structure (8, 9) which agrees rather well with the *ab initio* structure given in (1).

Because of the possible interstellar interest of the molecule, we undertook to extend the measurement of the rotational spectrum into the millimeter wave range and try to find the b-type spectrum. Similar studies of the related molecules acrylonitrile

(vinyl cyanide), CH_2CHCN (10), and isocyanoethene (vinyl isocyanide), CH_2CHNC (11), had previously been made in this laboratory, in which both a- and b-type rotational transitions were measured. At the time our millimeter wave work was begun, Bak and co-workers had been able to identify only a-type transitions. Following an exchange of information between the two laboratories, the b-type spectrum could be found both in the microwave (9) and millimeter wave regions.

Nuclear quadrupole hyperfine splitting due to both nitrogen nuclei, which contributed to very broad lines in the microwave work, could be resolved in the millimeter wave spectrum. The present report therefore includes the measurement and analysis of the hyperfine structure in the millimeter wave rotational spectrum of *N*-cyanomethanimine.

EXPERIMENTAL PROCEDURES

The pyrolysis precursor, trimethylenetetrazole, was prepared as described in Ref. (5). About 100 mg of trimethylenetetrazole was placed in a small Pyrex finger attached to a quartz pyrolysis tube, 2 cm in diameter, which led into the absorption cell of the spectrometer over a pyrex pathway of about 50 cm. The precursor was warmed to 50–70°C, giving a vapor pressure of about 0.5 Pa, and the quartz tube was heated in an oven held at 500°C. The pyrolysis products expanded directly into an absorption cell with a volume of about 20 liters, and were pumped either continuously at a slow rate or intermittently. The half-life of N-cyanomethanimine in the cell was approximately 10 min. The strongest lines could be observed on the oscilloscope in the video mode, without signal averaging, at total pressures of 0.1–0.2 Pa. The only other products identified in Ref. (5) were N₂ and ethylene, as indicated in Fig. 1. Indeed, no absorptions other than those of N-cyanomethanimine were observed in the millimeter wave spectrum.

The millimeter wave spectrometer (12, 13) uses harmonic multiplication of microwave klystron radiation to generate millimeter wave power, and a helium-cooled InSb chip as detector. The detector and the sweep stabilization of the free-running klystron are described in Ref. (14). Most of the rotational transitions of N-cyanomethanimine were measured with computer averaging of the detected signal in the fast sweep mode, but the eight lines whose hyperfine structures were analyzed in detail were recorded with source modulation and phase stabilization of the klystron as described in Ref. (15). In the latter case the second harmonic of the reference

FIG. 1. Reaction scheme for the gas-phase pyrolysis of trimethylenetetrazole at 500°C and 1 Pa (5).

N-Cyanomethanimine

frequency was taken for the phase-sensitive detection, so that a second-derivative line shape was obtained. The modulation frequency was 3.2 kHz.

ROTATIONAL STRUCTURE

From the low-J, a-type lines observed by Bak $et\ al.$ (7), and with centrifugal distortion constants taken from acrylonitrile (10), the a-type transitions in the frequency range 100–300 GHz were predicted. The typical pattern for a-type transitions of a slightly asymmetric rotor could then easily be identified. The lines for $K_a=3$ to 8 in each J transition form a bandhead, as shown in Fig. 2 for J=20–19. After fitting the first few lines, it was possible to follow the a-type transitions up to J=25 and $K_a=16$. Only the highest K_a lines for J=9 to 13 showed broadening or splitting due to quadrupole coupling, as is discussed below.

On the basis of the a-type transitions, a least-squares fit was made to refine those constants which determine the a-type transition frequencies, and a prediction of the b-type transitions was made. The $K_a = 2$ inertial asymmetry splitting gave a good determination of the linear combination $A - D_K$, but the distortion constant D_K remained undetermined. Our predictions for the b-type transitions were thus uncertain by roughly $D_K K_a^2$, and D_K was expected to be of the order of 2-10 MHz. The region where we sought likely candidates in the b-type spectrum was sprinkled with a-type transitions in excited vibrational states which were stronger than the b-type lines turned out to be. As shown in Ref. (9), the b component of the dipole moment is only ~ 1.5 Debye, whereas the a component is 4.6 Debye. In addition, as we soon discovered, the b-type lines were much more affected by quadrupole splitting than the a-type lines, reducing their peak intensity and thus making them even more

Fig. 2. A typical bandhead in the a-type spectrum of CH₂NCN. The second derivative of the spectrum was recorded with source modulation in the 6th harmonic of the klystron frequency. The frequency markers are separated by 23.4 MHz.

difficult to find; only later could we use the splitting to confirm assignments. In the microwave region, where the identification of lines is somewhat less difficult than in the millimeter wave region, Bak and Svanholt (9) were able to use constants refined from our data together with a calculated D_K value to identify eight b-type lines. On the basis of their assignment we were able to confirm a tentative assignment of the distinctive RQ_1 bandhead at 146 GHz. A Fortrat diagram showing the very similar RQ_1 bandhead of isocyanoethene is given in Ref. (11), Fig. 2. Due to the collapse of the hyperfine pattern at the bandhead, the lines are more intense than other b-type lines. It was then possible to go on to identify other b-type lines, including the lower RQ_2 bandhead.

Our initial least-squares fit to the a- and b-type transitions together was very unsatisfactory; the large deviations revealed the magnitude of the quadrupole hyperfine structure of most of the b-type lines. Whereas the b-type lines of acrylonitrile are only broadened by the hyperfine interaction in the millimeter wave range, the lines of N-cyanomethanimine are split by as much as 2.5 MHz in this region.

Following the hyperfine analysis discussed in the next section, the calculated hyperfine structure was plotted for all of the lines which had been measured with signal averaging, and a correction was introduced, where necessary, for the deviation between the observed absorption maximum and the unsplit line center.

The list of rotational line centers given in Table I was then fitted to Watson's S-reduced rotational Hamiltonian (16), extended by two higher-order constants (17) required to fit the very high J and K values represented in the data:

$$\hat{H}_{\text{rot}} = \frac{1}{2(B+C)\hat{P}^2} + \frac{A-1}{2(B+C)}\hat{P}_a^2 - D_J(\hat{P}^2)^2 - D_{JK}\hat{P}^2\hat{P}_a^2 - D_K\hat{P}_a^4 + \frac{(B-C)}{4} + d_1\hat{P}^2\hat{P}_a^2 + \hat{P}_-^2 + d_2(\hat{P}_+^4 + \hat{P}_-^4) + H_J(\hat{P}^2)^3 + H_{JK}(\hat{P}^2)^2\hat{P}_a^2 + H_{KJ}\hat{P}^2\hat{P}_a^4 + H_K\hat{P}_a^6 + h_1(\hat{P}^2)^2(\hat{P}_+^2 + \hat{P}_-^2) + h_2\hat{P}^2(\hat{P}_+^4 + \hat{P}_-^4) + h_3(\hat{P}_+^6 + \hat{P}_-^6) - L_{JK}(\hat{P}^2)^2\hat{P}_a^4 - L_{KJ}\hat{P}^2\hat{P}_a^6.$$
 (1)

The operators \hat{P} , \hat{P}_a , $\hat{P}_+ = \hat{P}_x + i\hat{P}_y$, and $\hat{P}_- = \hat{P}_x - i\hat{P}_y$ are the total angular momentum and its components, respectively, in the principal axis system. The adjusted rotational and centrifugal distortion constants are listed in Table II and compared with those of acrylonitrile. The magnitude of the centrifugal distortion constants indicate that N-cyanomethanimine is quite rigid. The lines reported by Bak and co-workers (7, 9) were omitted from the fit because of the large deviations found between the observed and calculated values. These deviations are easily explained by the calculated quadrupole splitting, which varies between 0 and 2 MHz among these lines, and by the wall broadening and pressure broadening in a microwave cell at the higher pressures apparently required in the pyrolysis of dimethylcyanamide. For six of the eight b-type lines reported in Ref. (9), corrections estimated from plotting the hyperfine pattern account for all but ca. 50 kHz of the deviation.

QUADRUPOLE HYPERFINE STRUCTURE

The two nitrogen nuclei are labeled N(1) and N(2) in Fig. 3, which shows the molecule in its inertial axis system. Since both nitrogen nuclei contribute substantially to the observed hyperfine structure, the hyperfine patterns were calculated by determining the first-order hyperfine energy for two nuclei. The computer programs to

TABLE I Observed and Calculated Rotational Transitions (in MHz) of N-Cyanomethanimine in the Ground Vibrational State

J'(K',K')-J"(K",K")	OBSERVED	CALCULATED	OBS-CALC	J'(K'a,K'c)-J"(K'a,K'c)	OBSERVED	CALCULATED	OBS-CALC
a-type transitions (Q)R(K) 1(0, 1)- 0(0, 0)		10458.8982		20(8,13)-19(8,12) 20(9,12)-19(9,11) 20(10,11)-19(10,10) 20(11,10)-19(11, 9)	209489.5412 209564.0336 209651.1078 209749.4374	209489.5455 209564.0275 209651.1091 209749.4427	-0.0043 0.0061 -0.0013 -0.0053
2(0, 2)-1(0, 1) 2(1, 2)-1(1, 1) 2(1, 1)-1(1, 0)	20915.2900 20479.3500 21357.4800	20915,2432 20478,4859 21358.0309	0.0468 a 0.8641 a -0.5509 a	20(12, 9)-19(12, 8) 20(13, 8)-19(13, 7)	209858.1307 209976.5128	209858.1267 209976.5013	0.0040 0.0115
3(0,3)-2(0,2) 3(1,3)-2(1,2) 3(1,2)-2(1,1) 3(2,2)-2(2,1) 3(2,1)-2(2,0)	31366.5200 30716.3000 32035.2200 31380.6900 31388.3100	31366.4834 30716.0580 32035.3085 31379.5827 31389.5576	0.0366 a 0.2420 a -0.0885 a 1.1073 a -1.2476 a	21(0,21)-20(0,20) 21(1,21)-20(1,20) 21(1,20)-20(1,19) 21(2,20)-20(2,19) 21(2,19)-20(2,18) 21(3,19)-20(3,18)	216201.2842 214144.1763 223056.0569 218949.7673 222285.7518 219945.1397	216201.2752 214144.1817 223056.0846 218949.7671 222285.7589 219945.1463	0.0090 -0.0054 -0.0277 0.0002 -0.0071 -0.0066
10(0,10) - 9(0, 9) 10(1,10) - 9(1, 9) 10(1, 9) - 9(1, 8) 10(2, 9) - 9(2, 7) 10(3, 8) - 9(2, 7) 10(3, 8) - 9(3, 7) 10(3, 7) - 9(3, 6) 10(4, 6) - 9(4, 5) 10(5, 6) - 9(5, 5) 10(6, 5) - 9(6, 4) 10(7, 4) - 9(7, 3)	104171.5617 102288.8254 106675.8277 104526.9298 104934.5847 104655.3716 104652.7085 104652.7085 104655.244 104688.3076 104718.3695	104171.5624 102288.8235 106675.8458 104526.9426 104934.5775 104655.3663 104662.3437 104652.6726 104655.6726 104665.5155 104688.3079 104718.2923	-0.0017 0.0019 -0.0181 -0.0128 0.0072 0.0053 -0.0103 0.0263 c -0.0182 c 0.0089 -0.0003	211 3,181-202 3,17) 211 4,181-202 4,15) 211 4,171-201 4,16) 211 5,171-201 5,16) 211 5,161-201 5,16) 212 16,161-202 6,15) 21 6,161-202 6,15) 21 6,161-202 7,13) 21 8,113-202 8,12) 21 8,121-202 9,11) 21 11,101-202 (11,9) 21 11,101-202 (11,9) 21 11,101-202 (11,9) 21 11,101-202 (11,9) 21 11,101-202 (11,9) 21 11,101-202 (11,9)	220232.8198 219894.4856 219903.2821 219851.3910 219851.3910 219860.4066 219860.4066 219900.3923 219961.2777 220038.2340 220128.8317 220231.3744 22031.3744	220232.8124 219894.4819 219903.3017 219851.3220 219851.4606 219860.4095 219860.4095 219900.3964 219900.3964 219901.2638 220038.2588 220128.8247 220231.4252 220331.4252	0.0074 0.0027 -0.0196 0.0690 d -0.0696 d -0.0029 c -0.0042 c -0.0041 0.0139 -0.0248 0.0070 -0.0508 -0.0163
10(8, 3)- 9(8, 2) 10(9, 2)- 9(9, 1)	104754.4163 104795.7957	104718.2923 104754.3180 104795.8009	0.0983 f -0.0052 g	21(13, 8)-20(13, 7) 21(14, 7)-20(14, 6) 21(15, 6)-20(15, 5)	220468.9442 220602.5335 220745.3604	220468.9343 220602.5292 220745.3499	0.0099 0.0043 0.0105
13(3, 13)-12(0, 12) 13(1, 13)-12(1, 12) 13(1, 13)-12(1, 11) 13(2, 12)-12(2, 11) 13(2, 11)-12(2, 11) 13(2, 11)-12(2, 10) 13(3, 11)-12(1, 10) 13(3, 10)-12(3, 9) 13(4, 10)-12(3, 9) 13(4, 10)-12(4, 9) 13(4, 10)-12(4, 9) 13(6, 9)-12(4, 9) 13(6, 9)-12(6, 7) 13(6, 8)-12(6, 7) 13(7, 7)-12(7, 6) 13(8, 6)-12(8, 5) 13(9, 5)-12(9, 4) 13(12, 4)-12(10, 3) 13(13, 7)-12(10, 6)	138566, 5222 138814, 6319 136700, 1314 136081, 2588 136107, 6146 136064, 6180 136071, 9630 136071, 9630 136071, 973 136177, 7874 136230, 4227 136284, 4029 136362, 2669	135058.4049 132884.1603 138566.5266 135814.6343 136700.1294 136081.2569 136107.6124 136064.4634 1360671.9567 136071.9577 136096.7090 136177.7734 136230.4283 136290.0775	-0.0044 -0.0024 0.0020 0.0019 0.0022 0.1546 d -0.1410 d 0.0069 c -0.0038 c -0.0038 0.0082 0.0140 0.0044 -0.6746 f	25(0,25)-24(0,24) 25(1,25)-24(1,24) 25(1,24)-24(1,23) 25(1,24)-24(1,23) 25(2,24)-24(2,23) 25(2,23)-24(1,23) 25(3,23)-24(3,21) 25(3,22)-24(3,21) 25(3,22)-24(3,21) 25(3,21)-24(4,20) 25(5,20)-24(5,20) 25(5,20)-24(6,19) 25(6,19)-24(6,18) 25(1,18)-24(6,18) 25(1,	256236.2764 254582.4823 264845.4870 260305.2974 265358.5290 261875.6925 262546.3397 261851.9677 261881.763 261761.7330 261762.3670 261747.8809 261747.8809 261748.8029 261843.8432	256236.2870 254582.4904 264845.4954 266305.2962 255358.5290 261875.6892 2612546.3303 261851.9687 261761.7092 261762.3819 261747.8894 261747.8894 261747.8894 261748.8106 261843.8412	-0.0106 -0.0081 -0.0084 0.0012 0.0000 0.0033 0.0094 -0.0010 0.0071 0.0238 -0.0149 0.0005 c -0.0087 0.0097 0.0020
14(0,14)-13(0,13) 14(1,13)-13(1,12) 14(1,14)-13(1,13) 14(2,13)-13(2,12) 14(2,13)-13(2,12) 14(2,12)-13(3,11) 14(3,11)-13(3,11) 14(3,11)-13(4,10)	145299.0233 149176.9615 143068.8392 146232.3240 147330.5350 146560.114 146589.3870 146537.6648	145299.0174 149176.9666 143068.89441 146232.3285 147330.5357 146560.1134 146598.3799 146537.6426	0.0059 -0.0051 -0.0049 -0.0045 -0.0007 0.0013 0.0071	25(10,16)-24(10,15) 25(11,15)-24(11,14) 25(12,14)-24(12,13) 25(13,13)-24(13,12) 25(14,12)-24(14,11) 25(15,11)-24(15,10) 25(16,10)-24(16, 9) b-type transitions (R)(0(0)	262032.2346 262150.9067 262283.5053 262428.8694 262586.1923 262764.7391 262933.9505	262032.2373 262150.9209 262283.5036 262428.8650 262586.1614 262754.7294 262933.9765	-0.0027 -0.0142 0.0017 0.0044 0.0309 0.0097 -0.0260
14(4,10)-13(4, 9) 14(5,10)-13(5, 9) 14(5, 9)-13(5, 8)	146538.1142 146541.8891 146541.8891	146538.1446 146541.8811 146541.8844	-0.0304 0.0080 c 0.0047 c	18(1,17)-18(0,18)	104068.9720 110026.2298 146525.3910	104068.9878 110026.2200 146525.3889	-0.0158 g 0.0098 g 0.0021 g
14(6, 9)-13(6, 8) 14(7, 8)-13(7, 7) 14(8, 7)-13(8, 6)	146566.4767 146604.1427 146651.7975	146566.4856 146604.1367 146651.7874	-0.0089 0.0060 0.0101	24(1,23)-24(0,24) (R)R(0) 14(1,14)-13(0,13) 19(1,19)-18(0,18)	183806.3316 223328.6900	183805.3436 223328.6885	-0.0120 g 0.0015 h
14(9, 6)-13(9, 5) 14(10, 5)-13(10, 4) 14(11, 4)-13(11, 3)	146707.9669 146771.8265 146842.8122	146707.9572 146771.8101 146842.8072	0.0097 0.0164 0.0050	(R)P(1) 8(0, 8)-7(1, 7) 14(0,14)-13(1,13)	31223.0400 104562.4983	31223.4585 104562.5179	-0.4185 b -0.0196 g
14(12, 3)-13(12, 2) 14(13, 2)-13(13, 1) 17(0,17)-16(0,16) 17(1,17)-16(1,16) 17(1,16)-16(1,15) 17(2,16)-16(2,15) 17(2,15)-16(2,14)	146920.6225 147004.7428 175847.5140 173577.5468 180933.7739 177444.5746 179348.2210	146920.5583 147004.7527 175847.5065 173577.5392 180933.7737 177444.5658	0.0642 e -0.0099 h 0.0075 0.0076 0.0002 0.0088 0.0151	(R)Q(1)L 18(2,16)-18(1,17) 19(2,17)-19(1,18) 20(2,18)-20(1,19) 21(2,19)-21(1,20) 22(2,20)-22(1,21) 23(2,21)-23(1,22)	149753.3380 148511.5310 147489.0100 146718.6720 146229.3770 146048.8232 146202.9723	149753.3529 148510.9007 147489.0048 146718.6791 146229.3742 146048.8240 146202.9787	-0.0149 h 0.6303 f 0.0052 h -0.0071 h 0.0028 -0.0008
17(3,15)-16(3,14) 17(3,14)-16(3,13) 17(4,14)-16(4,13)	178005.7617 178106.8512	179348.2059 178005.7402 178106.8456 177966.1749	0.0215 0.0056 0.0353	24(2,22)-24(1,23) 25(2,23)-25(1,24) 26(2,24)-26(1,25) 27(2,25)-27(1,26)	146716.0190 147610.4200 148906.9250	146716.0123 147610.3868 148906.9477	0.0067 h 0.0332 h -0.0227 h
17(4,13)-16(4,12) 17(5,13)-16(5,12) 17(5,12)-16(5,11)	177968.1357 177955.5911 177955.5911	177968.1670 177955.5973 177955.6174	-0.0313 -0.0062 c -0.0263 c	(R)Q(1)U 9(2,8)-9(1,9)	184344.9920	184344.9505	0.0415 n
17(6,11)-16(6,10) 17(7,10)-16(7, 9) 17(8, 9)-16(8, 8)	177976.9184 178017.5888 178072.1431	177976.9045 178017.5470 178072.1416	0.0139 0.0418 0.0015	5(2, 4)- 4(1, 3) (P)P(1)(224450.5530 32123.0800	224450.6072 32122.6031	-0.0542 h
17(9, 8)-16(9, 7) 17(10, 7)-16(10, 6) 17(11, 6)-16(11, 5)	178138.0896 178213.9865 178299.0715	178138.1118 178214.0417 178299.0527	-0.0222 -0.0552 D.0188	11(2,10)-12(1,11) 17(1,16)-16(2,15) 22(1,21)-21(2,20) (R)P(1)U	35562.6800 107202.9885	35563.1072 107203.0061	-0.4272 b -0.0176 g
17(12, 5)-16(12, 4) 17(13, 4)-16(13, 3) 17(14, 31-16(14, 2) 17(15, 2)-16(15, 1)	178392.5496 178493.9899 178603.1920 178719.6146	178392.5374 178494.0348 178603.1681 178719.6122	0.0122 -0.0449 0.0239 0.0024	16(2,14)-17(1,17) 17(2,15)-18(1,18) 18(2,16)-19(1,19)	38693.1500 34309.9600 30492.9400 27266.4400	38693.9902 34310.8507 30493.6522 27267.2938	-0.8402 b -0.8907 b -0.7122 b -0.8538 b
18(0,18)-17(0,17) 18(1,18)-17(1,17) 18(2,17)-17(2,16)	185973.7573 183731.3456 187833.5860	185973.7534 183731.3454 187833.5930 208586.5863	0.0039 0.0002 -0.0070 0.0175	(RIO(2)L 41(3,38)-41(2,39) 42(3,39)-42(2,40) 43(3,40)-43(2,41) 44(3,41)-44(2,42) 45(3,42)-45(2,43) 46(3,43)-46(2,44)	223568.9312 222784.0175 222428.1902 222526.6109 223102.2133	223568.9496 222784.0160 222428.1728 222526.5997 223102.2214	-0.0184 0.0015 0.0174 0.0112 -0.0081
20(2,19)-19(2,18) 20(3,18)-19(3,17) 20(3,17)-19(3,16)	208586.6038 209460.0101 209686.3105 209409.7342	208586.5863 209460.0085 209686.3008 209409.7168	0.0175 0.0016 0.0097 0.0174		223102.2133 224175.7439 186112.3800	223102.2214 224175.7491 186112.3521	-0.0081
20(4,17)-19: 4,16: 20(4,16)-19(4,15) 20(5,16)-19(5,15)	209409.7342 209415.9929 209376.1861 209376.1861	209409.7168 209415.9783 209376.1134 209376.2023	0.0174 0.0146 0.0727 d -0.0162 d	9(3, 6)-10(2, 9) 13(3,10)-14(2,13) (R)P(3)L	186112.3800 145244.8653 184876.3700	186112.3521 145244.8907 184876.9003	-0.0254 -0.5303 f
20(5,15)-19(5,14) 20(6,15)-19(6,14) 20(6,14)-19(6,13) 20(7,14)-19(7,13)	2093/0.1861 209389.1903 209389.1903 209429.8971	209370.2023 209389.1860 209389.1868 209429.8906	0.0043 c 0.0035 c 0.0065	9(3,7)-10(2,8) 22(3,20)-23(2,21) 37(2,35)-36(3,34)	29632.8700 185302.6920	29632.9092 185302.6909	-0.0392 b 0.001: h

 $^{^{\}rm a}{\rm From\ Ref.\ (\underline{7})};$ given zero weight.

From Fef. (9); given zero weight.

Sunresolved doublet; each line given weight 0.5.

doartially resolved doublet; given zero weight.

^eUncorrected quadrupole shift; given zero weight.

^{**}Goverlap of excited state line or bad measurement; given zero weight.

9Exact quadruppole analysis; see text and Table III.

**Reaphical quadruppole correction; see text.

TABLE II

Rotational and Centrifugal Distortion Constants of N-Cyanomethanimine^a and Acrylonitrile^b in the S-Reduced Rotational Hamiltonian for the Ground Vibrational State

	CH ₂ NCN	CH ₂ CHCN
A/MHz	63 372.995 3(115)	49 850.698 2(87)
B/MHz	5 449.347 90(28)	4 971.164 06(70)
C/MHz	5 009.559 86(29)	4 513.877 20(76)
D _J /kHz	2.394 66(58)	2.182 1(17)
D _{JK} /kHz	- 129.900 2(59)	-85.076(18)
D _K /kHz	5 786.6(35)	2 717.1(11)
d ₁ /kHz	-0.485 46(20)	-0.457 14(58)
d ₂ /kHz	-0.032 994(64)	-0.030 53(20)
H _J /Hz	0.006 27(43)	0.004 4(13)
H _{JK} /Hz	-0.297 0(71)	-0.343(26)
H _{KJ} /Hz	-27.417(46)	-7.09(12)
H _K /Hz	1 486.(260)	433.(37)
h ₁ /Hz	0.002 45(16)	0.002 90(71)
h ₂ /Hz	0.000 330(85)	-0.000 12(38)
h ₃ /Hz	0.000 117(32)	0.000 146(48)
L _{JK} /Hz	0.000 307(34)	
L _{KJ} /Hz	-0.009 31(15)	
No. of lines	150	129
σ/kHz	17	44

aThis work.

carry out this calculation and do a least-squares adjustment of the coupling constants were made available to us by H. Günther, University of Tübingen (18). The programs calculate the matrix elements

$$\langle \Phi | \hat{H}_Q | \Phi'
angle$$

$$= \frac{1}{4} (-1)^{F_1' + J + I_1 + I} \delta_{F_1 F_1'} \frac{\begin{cases} F_1' & I_1 & J \\ 2 & J & I_1 \end{cases}}{\begin{pmatrix} I_1 & 2 & I_1 \\ -I_1 & 0 & I_1 \end{pmatrix} \begin{pmatrix} J & 2 & J \\ -J & 0 & J \end{pmatrix}} D(1) + \frac{1}{4} (-1)^{F + F_1 + F_1' - J + I_1 + I_2 + 1}$$

$$\times \left[(2F'_1 + 1)(2F_1 + 1) \right]^{1/2} \frac{\begin{cases} F & I_2 & F'_1 \\ 2 & F_1 & I_2 \end{cases}}{\begin{pmatrix} I_2 & 2 & I_2 \\ -I_2 & 0 & I_2 \end{pmatrix}} \begin{pmatrix} J & 2 & J \\ -J & 0 & J \end{pmatrix} D(2) \tag{2}$$

 $^{^{}m b}$ The data of Ref. $(\underline{10})$ was refitted to the S-reduced Hamiltonian.

Fig. 3. CH_2NCN in its inertial axis system, based on the *ab initio* structure (Ref. (1)). The auxiliary axis systems shown are the principal axis systems of the *ab initio* quadrupole coupling tensors (Ref. (20)) for the two nitrogen nuclei.

in the basis

$$|\Phi\rangle = |(JI_1)F_1I_2FM_F\rangle$$
,

where

$$D(i) = \frac{2}{(J+1)(2J+3)} \left\{ \chi_{aa}^{(i)}(\langle \hat{P}_a^2 \rangle - \langle \hat{P}_c^2 \rangle) + \chi_{bb}^{(i)}(\langle \hat{P}_b^2 \rangle - \langle \hat{P}_c^2 \rangle) \right\}, \qquad i = 1, 2. \quad (3)$$

The $\chi^{(i)}_{\alpha\alpha}$ are the diagonal tensor elements of the quadrupole coupling tensor in the inertial axis system, and the $\langle \hat{P}^2_{\alpha} \rangle$ are the expectation values of the square of the rotational angular momentum operators. The coupling scheme used is $J+I_1=F_1$ and $F_1+I_2=F$. The notation used in the definitions of $|\Phi\rangle$ and Eq. (2) are explained in Ref. (19). The matrix of \hat{H}_Q is diagonalized and treated as a first-order perturbation to the rotational energy. A plotting routine was added for generating a Gaussian line shape or the first or second derivative thereof. Such plots allow a direct comparison of calculated spectra with recorded spectra.

The starting point for analyzing the N-cyanomethanimine quadrupole structure was acrylonitrile. The cyanide nitrogen N(2) of N-cyanomethanimine was expected to have coupling tensor components roughly similar to those of the nitrogen atom in acrylonitrile. It was further found that for the high-J, near-symmetric-top transitions observed, the splitting of the a-type transitions depends only on the χ_{aa} component of the two coupling tensors, and the splitting of the b-type transitions depends only on the differences $\chi_{bb} - \chi_{cc}$.

Eight lines showing large and characteristic hyperfine splitting were recorded at approximately Doppler broadening (ca. 0.2 Pa) with source modulation, in order to have a well-defined (second-derivative) line shape. The hyperfine coupling constants were adjusted empirically until a qualitative fit of splitting patterns was achieved. The measured splittings of these eight lines were then put into a least-squares adjustment. However, the spectra are only partly resolved, so that the observed absorption maxima do not correspond to individual hyperfine components. Ideally, a whole-line least-squares adjustment should be made. In the present case, we plotted the

calculated spectra, measured the distance between the calculated maxima and the individual hyperfine components, and added these corrections to the data for the least-squares fit. Since each measured maximum provides only one data point in this procedure, one calculated component was selected from each clump for the leastsquares fit, generally a line showing large Jacobian matrix elements for the adjustment of the coupling constants. Table III summarizes the data used. Actually, the minimum information needed to obtain the four determinable constants is contained in the two transitions reproduced in Fig. 4. The two splitting intervals in the $10_{9,1}$ - $9_{9,0}$ transition determine the two χ_{aa} values. The splitting between the pair of doublets in the $24_{1.23}$ - $24_{0.24}$ transition determine the difference $\chi_{bb} - \chi_{cc}$ for one nucleus, and the doublet splitting itself determines the difference for the other. The set of four constants determined is unique in both sign and magnitude. As can be deduced by inspection of the small shoulder in the $10_{9,1}$ - $9_{9,1}$ transition, the line width is very critical in reproducing the shape of the absorption features. A discrete least-squares procedure does not help here, and the line width was adjusted empirically on the more isolated features in each transition. A good reproduction of the shoulders in all of the a-type transitions in Table III was required. Thus, the fitting of the splittings required several iterations to optimize the line widths and the corrections, before the fit shown in Fig. 4 was attained.

The four coupling constants obtained are unique. However, ambiguities remain because it is possible (i) to associate each difference $\chi_{bb} - \chi_{cc}$ with either value of χ_{aa} , leading to quite different sets of individual components χ_{bb} and χ_{cc} since $\chi_{aa} + \chi_{bb} + \chi_{cc} = 0$ for each nucleus; and (ii) to associate either set of χ 's with each of the two nitrogen nuclei. Table IV compares the hyperfine tensor components obtained in the two cases and those obtained for acrylonitrile. The standard errors

TABLE III

Measured Components (in MHz) of Selected Rotational Transitions of CH₂NCN Split by Quadrupole Hyperfine Interaction

JKaKc	- JKKK	Unperturbed frequency	Observed maxima	Calculated components	Fi F'	- F ₁ F"	JKAKC - JKAKC	Unperturbed frequency	Observed maxima	Calculated components	Γį	ŗ'	- F	. r.
-type	transition	8											_	_
109.2	- 99,1	104 795.7957	-0.5281	-0.5552	9 9	8 8	18 _{1,17} - 18 _{0,18}	104 068.9720	-0.7794	-0.8488	17			161
				-0.5054	11 11	10 10b	1,1, 0,10			-D.B303	17			18
			-0.1882c	-0.1755	10 10	9 9				-0.7516	19			18
			0.0734	0.0263	9 10	8 9				-0.7217	19			20
				0.0590	11 12 9 8	10 11			-0.3278	-0.3927	17			175
				0.0874	11 10	8 7b				-0.2898	19			19
			0.4721	0.4216	10 11	9 10b			1.1217	1.1075	18	17		17E
			0.4721	0.4997	10 9	9 8				1.1317	18			19
				0.4997	10 9	9 8			1.5734	1.5750	18	18	18	181
1311,3	- 1211.2	136 356.2669	-0.3792	-0.3721	12 12	11 11ь	191,18 - 190,19	110 026.229B	-0.8036	-0.8642	18			171
			0.0628	-0.3466 -0.1096	14 14	13 13	-, 0,13			-0.8459	18		19	19
			0.0628	0.1096	13 13	12 12				-0.7694	20			19
				0.0231	12 13 14 15	11 12 13 14b			-0.3291	-0.7409 -D.3998	20		20	21 18b
				0.0562	12 11	11 10			-0.3291	-0.3000	18			20
				0.0879	14 13	13 12			1.1432	1.1344	19			18b
			c	0.2918	13 14	12 13			1.1432	1.1578	19			20
				0.3316	13 12	12 11			1.6131	1.6090	19		19	19b
-type	transition						24 _{1,23} - 24 _{0,24}	146 525.3910	-0.8773	-0.9214	23	22	23	221
•••							1,230,24			-0.9052	23	24	23	24
140 14	- 131.13	104 562.4983	-0.3611	-0.4315	13 12	12 11				-0.8389	25	24	25	24
0,14	1.13			-0.4056	13 14	12 13				-0.8152	25		25	26
				-0.3578	15 14	14 13b			-0.3356	-0.4253	23	23	23	23t
				-0.3405	15 16	14 15				-0.3391	25			25
				-0.2174	13 13	12 12			1.2386	1.2361	24			23t
				-0.1495	15 15	14 14				1.2561	24			25
		0.5798	0.5507	14 13	13 12			1.7682	1.7397	24	24	24	24t	
			0.5738	14 15	L3 14b									
				0.7563	14 14	13 13	221,21 - 212,20	107 202.9885	-0.4765	-0.5061 -0.4997	21	20	20	19E
14	- 13	183 805.3316	-0.6672	-0.8221	14 14	13 13				-0.4619	23			21
¹⁴ 1,14 - ¹³ 0,13	100 00010016	-0.00/2	-0.6144	14 15	13 14b				-0.4619	23			23	
			-0.6048	14 13	13 12			-0.2100	-0.2598	21		20	20	
		0.3647	0.1605	15 15	14 14				-0.2086	23			22E	
			0.2323	13 13	12 12			0.7065	0.6985	22			201	
				0.3778	15 16	14 15b				0.7118	22	23	21	22
				0.3812	15 14	14 13			0.9925	0.9586	22	22	21	21 t
				0.4461	13 14	12 13								
				0.4591	13 12	12 11								

All listed components have at least 73% of the intensity of the strongest component in each transition.

Components used in fit. Standard deviation was 8 kHz.

Shoulder; not used in least squares fit

FIG. 4. Observed and calculated second derivative of the hyperfine structure of (a) an a-type and (b) a b-type transition in the millimeter wave spectrum of N-cyanomethanimine. The frequency markers in the observed transitions are separated by 117 kHz in (a) and 156 kHz in (b). The stick diagrams give the intensity and line position of the components, for which the quantum numbers are listed in Table III. (a) CH₂NCN, $J_{K_a} = 10_9 - 9_9$, $\nu_0 = 104$ 795.7970 MHz; (b) CH₂NCN, $J_{K_a} = 24_{1,23} - 24_{0,24}$, $\nu_0 = 146$ 525.3954 MHz.

quoted are from the least-squares fit, and are perhaps optimistic measures of the true errors for this type of spectrum. The second ambiguity, which tensor is to be associated with which nitrogen nucleus, has been resolved in Table IV by requiring a similarity between the $\chi_{\alpha \alpha}$'s of the cyano-nitrogen N(2) in N-cyanomethanimine and acrylonitrile.

TABLE IV

14N Quadrupole Coupling Tensor Components (in MHz) in the Inertial Principal Axis
Systems of N-Cyanomethanimine and Acrylonitrile

			CH ₂ CHCN				
		Experin	nental ^a	Ab initio ^b	Experimental ^C		
		Solution 1	Solution 2				
N(1):	Xaa	2.057(39)	2.057	2.123			
	Χ _{bb}	-4.631	-1.844	-3.899			
	Xcc	2.574	-0.214	1.776			
	x _{bb} - x _{cc}	-7.205(21)	-1.630	-5.675			
N(2):	X _{aa}	-3.264(33)	-3.264	-2.362	-3.69(5)		
	Χ _{bb}	0.817	-1.971	0.627	-0.53		
	Xcc	2.447	5.234	1.736	4.22		
	X _{bb} - X _{cc}	-1.630(18)	-7.205	-1.109	-4.75(19)		

^aThis work. The standard errors of the determinable components are given in parentheses in units of the last significant figure.

bRef. (20).

CRef. (10).

This is possible because the two molecules have similar orientations in their inertial principal axis systems, so that the χ tensor associated with the C=N bond may be assumed to have a similar orientation. The use of this same argument to resolve the first ambiguity fails because the χ_{bb} and χ_{cc} values for acrylonitrile fall just between the values found for solutions 1 and 2 in Table IV for N(2). Low-J, $K_a = 1$ lines are predicted to have different hyperfine patterns for the two solutions, but b-type lines in this category are very weak in the millimeter wave region, and the corresponding a-type lines in the microwave region are difficult to observe under high resolution. The choice was made by considering the ab initio electric field gradient tensor q at each nitrogen nucleus, made available by Jasien and Dykstra (20), together with the known structure. Because further results of the ab initio calculations were used, the ab initio structure given in Ref. (1) and reproduced in Fig. 3 was taken for purposes of interpretation of the χ tensors rather than the partial r_s structure of Ref (9).

The hyperfine coupling tensors $\chi = eqQ$ were obtained from the field gradient tensors q of Jasien and Dykstra by taking the nuclear quadrupole moment Q to be 0.0156×10^{-24} cm² (21). The resulting tensors were diagonalized to give the principal components and the principal axis system of each tensor. These axis systems are shown in Fig. 3, and the principal components are listed in Table V. The axis system of $\chi^{(2)}$ is just 2° from the C=N bond, while the axis system of $\chi^{(1)}$ is displaced 8.8° from the CNC angle bisector, representing the nitrogen lone pair. The rotation necessary to transform the ab initio tensors from the arbitrary axis system to the inertial axis system could also be determined, and the calculated diagonal tensor components in this axis system are listed in Table IV together with our experimental values. The

TABLE V

Principal Components^a (in MHz) of the ¹⁴N Quadrupole Coupling Tensors in N-Cyanomethanimine

:	Experi	Ab initio ^C		
	Solution 1	Solution 2		
N(1): X _{xx}	-4.654	-1.865	-3.9315	
Xyy	2.086	2.078	2.1549	
Xzz	2.574	0.214	1.7764	
$\eta = \frac{\chi_{yy} - \chi_{zz}}{\chi_{xx}}$	0.105	-0.999	-0.096	
N(2): χ _{xx}	-3.680	-3.396	-2.6663	
X _{YY}	1.233	-1.839	0.9307	
Xzz	2.447	5.234	1.7356	
$\eta = \frac{\chi_{yy} - \chi_{zz}}{\chi_{xx}}$	0.330	2.083	0.302	

^aThe axes were defined by diagonalization of the ab initio χ tensors. See Fig. 3.

bThis work.

^CRef. (20).

Fig. 5. Calculated hyperfine splitting of the as yet unobserved $1_{0,1}$ – $0_{0,0}$ transition of CH₂NCN at 10 458.8982 MHz (calculated standard deviation = 0.5 kHz). The line shape is Gaussian, with a line width parameter of 100 kHz. The quantum numbers shown for the components are F'_1 , $F' - F''_1$, F''. From left to right, the five pairs of components are predicted to lie at -1.391, -0.818, 0.044, 0.576, and 1.748 MHz from the line center. The stick diagram should actually indicate twice as much intensity for all but the central pair, because they are degenerate.

similarity between the values found for solution 1 and the ab initio values allows us to choose solution 1 as the correct solution. This choice is further confirmed by rotating the experimental values, which are obtained in the inertial principal axis system, to their principal axis systems (22), assumed to be those of the ab initio χ tensors. The difference between the theoretical and true axis systems should be small enough to be negligible in this discussion. The components thus obtained are listed in Table V together with the eigenvalues of the ab initio tensors. We can now look at the asymmetry, $\eta = (\chi_{yy} - \chi_{zz})/\chi_{xx}$, of each coupling tensor in its principal axis system, which is a measure of the cylindrical symmetry of the electron distribution around the x axis (and is independent of the nuclear quadrupole moment O). If solution 1 is taken, the experimental values of η agree satisfactorily with the ab initio values. However, if solution 2 is taken, the magnitude of both asymmetries is equal to or greater than 1, which would be at variance with any remotely cylindrical electronic distribution in the bonds under consideration. This circumstance would suffice to eliminate solution 2. Although this latter criterion is based on the experimental data alone, the experimental η values could be evaluated more reliably with the support of the theoretical structure and χ tensors.

CONCLUSION

The coupling constants as given in Table IV can be used to predict the hyperfine splitting in any rotational transition of N-cyanomethanimine. Plots were made of the predicted pattern of all the lines measured, and corrections were introduced to give the line center for most of the lines measured with the averaging technique, as men-

Fig. 6. Part of the rotational energy level diagram for CH₂NCN and CH₂CHCN showing possible interstellar transitions. For CH₂CHCN four transitions, entered as heavy arrows, have been observed in interstellar sources (Refs. (23, 24)).

tioned above. For the information of radioastronomers, the calculated hyperfine pattern of the 1_{01} – 0_{00} transition is shown in Fig. 5. Upon request, the corresponding pattern for any other transition can be supplied by the authors. Such patterns are quite distinctive, and would suffice to identify a single interstellar line. Figure 6 shows part of the rotational energy level diagram of N-cyanomethanimine and acrylonitrile. Four of the five observed interstellar transitions of acrylonitrile (23, 24) fall in the region shown and have been entered as heavy lines. The same transitions for N-cyanomethanimine can be considered opportune for a radioastronomical search for this molecule.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Dr. H. Günther for making his quadrupole programs available to us, and Dr. P. G. Jasien and Dr. C. E. Dykstra for sending us their hyperfine coupling constants

derived from *ab initio* calculations. The programming help of J. Reinstädtler is appreciated. The experimental work in Giessen and Marburg was supported by funds of the respective universities, the Deutsche Forschungsgemeinschaft, and the Fonds der Chemischen Industrie. The work in Giessen was also supported by the Max Planck Institute for Radioastronomy, Bonn. All calculations were carried out at the Hochschulrechenzentrum of the Justus Leibig University, Giessen.

RECEIVED: December 5, 1983

REFERENCES

- 1. J. H. CLEMMONS, P. G. JASIEN, AND C. E. DYKSTRA, Mol. Phys. 48, 631-637 (1982).
- 2. A. C. LEGON, D. J. MILLEN, AND F. J. MJÖBERG, Chem. Phys. Lett. 47, 589-591 (1977).
- 3. L. W. BUXTON, E. J. CAMPBELL, AND W. H. FLYGARE, Chem. Phys. 56, 399-406 (1981).
- 4. R. D. Brown, F. D. GODFREY, AND D. A. WINKLER, J. Mol. Spectrosc. 89, 352-355 (1981).
- 5. C. WENTRUP, Tetrahedron 27, 1281-1286 (1971).
- 6. C. WENTRUP AND P. LORENCAK, unpublished results.
- 7. B. BAK, O. J. NIELSEN, AND H. SVANHOLT, Chem. Phys. Lett. 59, 330-333 (1978).
- 8. B. BAK AND H. SVANHOLT, Chem. Phys. Lett. 66, 387-389 (1979).
- 9. B. BAK AND H. SVANHOLT, Chem. Phys. Lett. 75, 528-532 (1980).
- 10. M. C. L. GERRY, K. YAMADA, AND G. WINNEWISSER, J. Phys. Chem. Ref. Data 8, 107-123 (1979).
- 11. K. YAMADA AND M. WINNEWISSER, Z. Naturforsch. a 30, 672-689 (1975).
- 12. M. WINNEWISSER, Z. Angew. Phys. 30, 359-370 (1970).
- 13. M. WINNEWISSER AND B. P. WINNEWISSER, Z. Naturforsch. a 29, 633-641 (1974).
- 14. D. A. HELMS, M. WINNEWISSER, AND G. WINNEWISSER, J. Phys. Chem. 84, 1758-1765 (1980).
- M. WINNEWISSER, E. F. PEARSON, J. GALICA, AND B. P. WINNEWISSER, J. Mol. Spectrosc. 91, 255–268 (1982).
- J. K. G. WATSON, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Elsevier, Amsterdam/ New York, 1977.
- K. Yamada, M. Winnewisser, G. Winnewisser, L. B. Szalanski, and M. C. L. Gerry, J. Mol. Spectrosc. 78, 189–202 (1979).
- 18. H. GÜNTHER, Dissertation, Universität Tübingen, 1975.
- A. R. EDMONDS, "Angular Momentum in Quantum Mechanics," Princeton Univ. Press, Princeton, New Jersey, 1960.
- 20. P. G. JASIEN AND C. E. DYKSTRA, private communication.
- Currently accepted value in Nucl. Phys. A 360 (1981), taken from a comparison of ab initio field gradients and experimental hyperfine structures: C. T. O'Konski and T.-K. Ha, J. Chem. Phys. 48, 5356-5361 (1968).
- W. GORDY AND R. L. COOK, "Microwave Spectroscopy" (W. West, Ed.), p. 267, Interscience, New York, 1970.
- 23. F. F. GARDNER AND G. WINNEWISSER, Astrophys. J. Lett. 195, L127 (1975).
- 24. H. E. MATTHEWS AND T. J. SEARS, Astrophys. J. 272, 149-153 (1983).