Hadamard Matrix

Time limit: 1 sec

a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix. There are several Hadamard matrices, each is identified by an integer \mathbf{n} . The Hadamard matrix of the order \mathbf{n} is denoted by H_n and has the size of \mathbf{n} row and \mathbf{n} column. The Hadamard matrix of rank 2n can be constructed from the Hadamard matrix of rank \mathbf{n} . The construction of the Hadamard matrix of rank \mathbf{n} can be defined recursively as follow.

$$H_{1}=[1]$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H_{n} = \begin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \\ H_{2^{n-1}} & -H_{2^{n-1}} \end{bmatrix}$$

Given a column vector of size n $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, calculate $H_n v$ which is the production

of the metrix H_n and a vector v

Input

- The first line of input contains an integers n. It is guaranteed that $n = 2^k$ where 0 $\leq k \leq 18$.
- The second line contains **n** integers representing v_1 , v_2 , ..., v_n where -1,000 < v_n < 1000.

Output

The output must be exactly 1 lines that contains N integers that described the vector $H_{\eta}v$.

Example

Input	Output
1	10
10	
2	30 -10
10 20	
4	15 -5 -9 3
1 2 4 8	