

ANT2: PSD 802.11ac20 5240MHz

ANT1: PSD 802.11ac40 5230MHz

ANT2: PSD 802.11ac40 5230MHz

ANT2: PSD 802.11ac80 5210MHz

ANT1: PSD 802.11n(HT20) 5200MHz

ANT2: PSD 802.11n(HT20) 5180MHz

ANT2: PSD 802.11n(HT20) 5240MHz

ANT1: PSD 802.11n(HT40) 5230MHz

ANT2: PSD 802.11n(HT40) 5230MHz

4.5 Band Edge

Test Requirement:	FCC Part15 E Se	ection 15.407	and 15.205									
Test Method:	ANSI C63.10:2013											
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)											
Receiver setup:		Frequency Detector RBW VBW Remark										
·	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Value											
	Above 1GHz	Above 1GHz Peak 1MHz 3MHz Peak Value										
1	AV 1MHz 3MHz Average Value											
Limit:	Frequer	ncv	Limit (dBuV	/m @3m)	Remark							
	30MHz-88		40.0		Quasi-peak Value							
	88MHz-216		43.		Quasi-peak Value							
	216MHz-96		46.0)	Quasi-peak Value							
	960MHz-1	GHz	54.0	0	Quasi-peak Value							
	Above 10	GHz -	54.0		Average Value							
	Above 1GHz 68.2 Peak Value											
Tost Procedure:	outside of the dBm/MHz. (2) For transmitted outside of the dBm/MHz. If generate errapplicable to band (include emission EIF) (3) For transmitted outside of the dBm/MHz.	ers operating e 5.15-5.35 Devices openissions in echnical requiring indoor RP limit of -27 ers operating e 5.47-5.725	GHz band she in the 5.25- GHz band she rating in the 5.15-5.2 irements for use) or alte dBm/MHz in the 5.47-8 GHz band she	nall not exc -5.35 GHz nall not exc ne 5.25-5.3 25 GHz ba operation in rnatively m n the 5.15-5 5.725 GHz hall not exc	band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 85 GHz band that and must meet all the 5.15-5.25 GHz eet an out-of-band 5.25 GHz band. band: all emissions eed an EIRP of -27 e 1.5 m above the							
Test Procedure:	ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data											
Test setup:	sheet. Above 1GHz											

Measurement Data:

Band Edge

Condition	Mode	Frequency	Max Value	Limit	Verdict
		(MHz)	(dBm)	(dBm)	
ANT1	802.11a	5180	-50.88	-27	Pass
ANT1	802.11a	5240	-49.95	-27	Pass
ANT2	802.11a	5180	-51.52	-27	Pass
ANT2	802.11a	5240	-50.35	-27	Pass
ANT1	802.11ac20	5180	-51.09	-27	Pass
ANT1	802.11ac20	5240	-50.97	-27	Pass
ANT2	802.11ac20	5180	-51.39	-27	Pass
ANT2	802.11ac20	5240	-51.34	-27	Pass
ANT1	802.11ac40	5190	-50.76	-27	Pass
ANT1	802.11ac40	5230	-51.29	-27	Pass
ANT2	802.11ac40	5190	-51.98	-27	Pass
ANT2	802.11ac40	5230	-51.21	-27	Pass
ANT1	802.11n(HT20)	5180	-50.7	-27	Pass
ANT1	802.11n(HT20)	5240	-51.3	-27	Pass
ANT2	802.11n(HT20)	5180	-49.79	-27	Pass
ANT2	802.11n(HT20)	5240	-50.63	-27	Pass
ANT1	802.11n(HT40)	5190	-51.21	-27	Pass
ANT1	802.11n(HT40)	5230	-51.2	-27	Pass
ANT2	802.11n(HT40)	5190	-52.31	-27	Pass
ANT2	802.11n(HT40)	5230	-49.65	-27	Pass

ANT1: Band Edge 802.11a 5240MHz

ANT2: Band Edge 802.11a 5240MHz

ANT1: Band Edge 802.11ac20 5240MHz

ANT2: Band Edge 802.11ac20 5240MHz

ANT1: Band Edge 802.11ac40 5230MHz

ANT2: Band Edge 802.11ac40 5230MHz

ANT1: Band Edge 802.11n(HT20) 5240MHz

ANT2: Band Edge 802.11n(HT20) 5240MHz

ANT1: Band Edge 802.11n(HT40) 5230MHz

ANT2: Band Edge 802.11n(HT40) 5230MHz

4.6 Radiated Emission

4.6	Radiated Emission										
	Test Requirement:	FCC Part15 C S	Section 15.20	9 and 15.205							
	Test Method:	ANSI C63.10:20	013								
	Test Frequency Range:	30MHz to 40GH	Hz								
	Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
		Frequency Detector RBW VBW Value									
	Receiver setup:	30MHz- 1GHz	Frequency Detector RBW VBW 30MHz- Quasi-peak 100KHz 300KHz C								
		Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		Above Toriz	AV	1MHz	3MHz	Average Value					
	Limit:	Freque		Limit (dBuV		Remark					
		30MHz-8		40.0		Quasi-peak Value					
		88MHz-2		43.5		Quasi-peak Value					
		216MHz-9		46.0		Quasi-peak Value					
		960MHz-	-TGHZ	54.0 74.0		Quasi-peak Value Peak Value					
		Above 1	IGHz -	54.0		Average Value					
	Test Procedure:	Substitution me									
		emission levels The following to 1>.Below 1GHz 1. The EUT w 1GHz and meter camp position of 2. The EUT w antenna, w antenna to 3. The anten the ground Both horiz make the i 4. For each s case and t meters and degrees to 5. The test-re Specified 6. If the emis the limit sp values of t did not had peak, quad reported ir 2>.Above 1GHz 1. On the test s the 1.5m sup use as declar 2. The test ante shall be chose	test procedure test p	as below: re: the top of a re above 1GHz was rotated a diation. ers away from unted on the t aried from one the maximun cical polarizati ission, the EU ma was tuned able was turn imum reading m was set to F th Maximum F he EUT in per testing could d be reported. in would be re arage method is re: up graph above rotable and in vider. oriented initia ond to the free	otating table) above the 360 degree If the interfer op of a variate meter to find value of the ons of the action of the position of the action of the position of the action of the act	e (0.8m for below ground at a 3 s to determine the rence-receiving table-height our meters above he field strength. Antenna are set to reged to its worst from 1 meter to 4 legrees to 360. Function and as 10dB lower than and the peak the emissions that he by one using d and then shall be placed at an closest to normal cal polarization and the transmitter. The					
		receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test									

transmitter under test.

4. The test antenna shall be raised and lowered from 1m to 4m until a

- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:

Below 1GHz

Above 1GHz

EUT Description	802.11ac Wireless USB Adapter	Model No.	U1233
Temperature	24℃	Humidity	56%
Pol	Vertical	Test date	2019/5/15
Test Voltage	AC 120V/60Hz	Test mode	802.11 ac20 (MID CH, ANT1+ANT2)

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.6160	9.10	14.91	24.01	40.00	-15.99	peak			
2	*	145.3506	18.26	15.69	33.95	43.50	-9.55	peak			
3		336.0352	13.85	16.15	30.00	46.00	-16.00	peak			
4		490.7447	10.34	19.45	29.79	46.00	-16.21	peak			
5		601.4265	11.32	21.69	33.01	46.00	-12.99	peak			
6		842.1296	10.16	24.70	34.86	46.00	-11.14	peak			

Pol Test date 2019/5/15

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		75.7114	10.32	11.19	21.51	40.00	-18.49	peak			
2		144.8418	17.70	15.65	33.35	43.50	-10.15	peak			
3		207.8501	22.75	12.12	34.87	43.50	-8.63	QP			
4	*	294.1137	25.11	15.09	40.20	46.00	-5.80	QP			
5		446.4141	11.25	18.75	30.00	46.00	-16.00	peak			
6		975.7529	9.72	26.23	35.95	54.00	-18.05	peak			

^{*:}Maximum data x:Over limit !:over margin

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Above 1GHz:

(worst case : ANT1) 802.11a 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	18.58	39.67	14.62	32.65	40.22	74.00	-33.78	Vertical
15540	23.48	38.6	17.66	34.46	45.28	74.00	-28.72	Vertical
10360	25.32	39.67	14.62	32.65	46.96	74.00	-27.04	Horizontal
15540	23.43	38.6	17.66	34.46	45.23	74.00	-28.77	Horizontal

802.11a 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	20.67	39.67	14.62	32.65	42.31	74.00	-31.69	Vertical
15600	23.91	38.6	17.66	34.46	45.71	74.00	-28.29	Vertical
10400	22.68	39.67	14.62	32.65	44.32	74.00	-29.68	Horizontal
15600	24.22	38.6	17.66	34.46	46.02	74.00	-27.98	Horizontal

802.11a 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	23.30	39.67	14.62	32.65	44.94	74.00	-29.06	Vertical
15720	21.36	38.6	17.66	34.46	43.16	74.00	-30.84	Vertical
10480	22.62	39.67	14.62	32.65	44.26	74.00	-29.74	Horizontal
15720	25.60	38.6	17.66	34.46	47.40	74.00	-26.60	Horizontal

(worst case : ANT1+ANT2) 802.11n(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	20.78	39.67	14.62	32.65	42.42	74.00	-31.58	Vertical
15540	19.13	38.6	17.66	34.46	40.93	74.00	-33.07	Vertical
10360	28.83	39.67	14.62	32.65	50.47	74.00	-23.53	Horizontal
15540	28.11	38.6	17.66	34.46	49.91	74.00	-24.09	Horizontal

802.11n(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	23.00	39.67	14.62	32.65	44.64	74.00	-29.36	Vertical
15600	24.24	38.6	17.66	34.46	46.04	74.00	-27.96	Vertical
10400	26.21	39.67	14.62	32.65	47.85	74.00	-26.15	Horizontal
15600	19.56	38.6	17.66	34.46	41.36	74.00	-32.64	Horizontal

802.11n(HT20) 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	26.26	39.67	14.62	32.65	47.90	74.00	-26.10	Vertical
15720	21.25	38.6	17.66	34.46	43.05	74.00	-30.95	Vertical
10480	21.83	39.67	14.62	32.65	43.47	74.00	-30.53	Horizontal
15720	20.85	38.6	17.66	34.46	42.65	74.00	-31.35	Horizontal

(worst case : ANT1+ANT2) 802.11ac(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	22.41	39.67	14.62	32.65	44.05	74.00	-29.95	Vertical
15540	22.55	38.6	17.66	34.46	44.35	74.00	-29.65	Vertical
10360	24.37	39.67	14.62	32.65	46.01	74.00	-27.99	Horizontal
15540	25.76	38.6	17.66	34.46	47.56	74.00	-26.44	Horizontal

802.11ac(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	20.24	39.67	14.62	32.65	41.88	74.00	-32.12	Vertical
15600	26.26	38.6	17.66	34.46	48.06	74.00	-25.94	Vertical
10400	27.13	39.67	14.62	32.65	48.77	74.00	-25.23	Horizontal
15600	20.57	38.6	17.66	34.46	42.37	74.00	-31.63	Horizontal

802.11ac(HT20) 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	23.87	39.67	14.62	32.65	45.51	74.00	-28.49	Vertical
15720	21.33	38.6	17.66	34.46	43.13	74.00	-30.87	Vertical
10480	24.06	39.67	14.62	32.65	45.70	74.00	-28.30	Horizontal
15720	24.61	38.6	17.66	34.46	46.41	74.00	-27.59	Horizontal

(worst case : ANT1+ANT2) 802.11n(HT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	24.44	39.67	14.62	32.65	46.08	74.00	-27.92	Vertical
15570	22.48	38.6	17.66	34.46	44.28	74.00	-29.72	Vertical
10380	24.71	39.67	14.62	32.65	46.35	74.00	-27.65	Horizontal
15570	25.74	38.6	17.66	34.46	47.54	74.00	-26.46	Horizontal

802.11n(HT40) 5230MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	24.13	39.67	14.62	32.65	45.77	74.00	-28.23	Vertical
15690	23.41	38.6	17.66	34.46	45.21	74.00	-28.79	Vertical
10460	24.15	39.67	14.62	32.65	45.79	74.00	-28.21	Horizontal
15690	25.36	38.6	17.66	34.46	47.16	74.00	-26.84	Horizontal

802.11ac(HT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	21.32	39.67	14.62	32.65	42.96	74.00	-31.04	Vertical
15570	20.67	38.6	17.66	34.46	42.47	74.00	-31.53	Vertical
10380	23.80	39.67	14.62	32.65	45.44	74.00	-28.56	Horizontal
15570	21.64	38.6	17.66	34.46	43.44	74.00	-30.56	Horizontal

(worst case : ANT1+ANT2) 802.11ac(HT40) 5230MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	23.91	39.67	14.62	32.65	45.55	74.00	-28.45	Vertical
15690	22.97	38.6	17.66	34.46	44.77	74.00	-29.23	Vertical
10460	21.95	39.67	14.62	32.65	43.59	74.00	-30.41	Horizontal
15690	23.75	38.6	17.66	34.46	45.55	74.00	-28.45	Horizontal

(worst case : ANT1+ANT2) 802.11ac(HT80) 5210MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420	21.87	39.67	14.62	32.65	43.51	74.00	-30.49	Vertical
15630	23.21	38.6	17.66	34.46	45.01	74.00	-28.99	Vertical
10420	25.05	39.67	14.62	32.65	46.69	74.00	-27.31	Horizontal
15630	25.14	38.6	17.66	34.46	46.94	74.00	-27.06	Horizontal

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

5 Frequency Stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test results:	Pass					

Measurement Data:

Condition	Mode	Frequency	Measured	Deviation	Limit	Verdict
		(MHz)	Frequency (MHz)	(ppm)	(ppm)	
ANT1	802.11a	5180	5179.98	3.86	25	Pass
ANT1	802.11a	5200	5199.96	7.69	25	Pass
ANT1	802.11a	5240	5239.98	3.82	25	Pass
ANT2	802.11a	5180	5179.98	3.86	25	Pass
ANT2	802.11a	5200	5199.96	7.69	25	Pass
ANT2	802.11a	5240	5239.96	7.63	25	Pass
ANT1	802.11ac20	5180	5179.98	3.86	25	Pass
ANT1	802.11ac20	5200	5199.94	11.54	25	Pass
ANT1	802.11ac20	5240	5239.96	7.63	25	Pass
ANT2	802.11ac20	5180	5180	0	25	Pass
ANT2	802.11ac20	5200	5199.96	7.69	25	Pass
ANT2	802.11ac20	5240	5239.96	7.63	25	Pass
ANT1	802.11ac40	5190	5190	0	25	Pass
ANT1	802.11ac40	5230	5229.92	15.3	25	Pass
ANT2	802.11ac40	5190	5189.96	7.71	25	Pass
ANT2	802.11ac40	5230	5230	0	25	Pass
ANT1	802.11ac80	5210	5210	0	25	Pass
ANT2	802.11ac80	5210	5210	0	25	Pass
ANT1	802.11n(HT20)	5180	5179.96	7.72	25	Pass
ANT1	802.11n(HT20)	5200	5199.94	11.54	25	Pass
ANT1	802.11n(HT20)	5240	5239.92	15.27	25	Pass
ANT2	802.11n(HT20)	5180	5180	0	25	Pass
ANT2	802.11n(HT20)	5200	5199.98	3.85	25	Pass
ANT2	802.11n(HT20)	5240	5239.96	7.63	25	Pass
ANT1	802.11n(HT40)	5190	5189.96	7.71	25	Pass
ANT1	802.11n(HT40)	5230	5230	0	25	Pass
ANT2	802.11n(HT40)	5190	5189.96	7.71	25	Pass
ANT2	802.11n(HT40)	5230	5229.92	15.3	25	Pass

ANT1: Freq. Stability 802.11a 5200MHz

ANT2: Freq. Stability 802.11a 5180MHz

ANT2: Freq. Stability 802.11a 5240MHz

ANT1: Freq. Stability 802.11ac20 5200MHz

ANT2: Freq. Stability 802.11ac20 5180MHz

ANT2: Freq. Stability 802.11ac20 5240MHz

ANT1: Freq. Stability 802.11ac40 5230MHz

ANT2: Freq. Stability 802.11ac40 5230MHz

ANT2: Freq. Stability 802.11ac80 5210MHz

ANT1: Freq. Stability 802.11n(HT20) 5180MHz

ANT1: Freq. Stability 802.11n(HT20) 5200MHz

ANT2: Freq. Stability 802.11n(HT20) 5180MHz

ANT2: Freq. Stability 802.11n(HT20) 5240MHz

ANT1: Freq. Stability 802.11n(HT40) 5230MHz

ANT2: Freq. Stability 802.11n(HT40) 5230MHz

6 Test Setup Photo

Radiated Emission

Conducted Emission

7 EUT Photos

Reference to the test report No. T1905010-C01-R02.

---END---