四川大学期末考试试卷(A)

(2011- 2012 学年第二学期)

适用专业年级: 各学院选修微积分(I)的本科 2011 级学生 课程号: 201073050 课程名称: 微积分(I)-2

题号	 =	Ξ	Į.	Ц	3	5.	7	Υ'	总分	
得分										

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理。

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》。有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。

得 -,分	
评阅人	

一、填空题(每小题3分,共15分)

- 2. 设函数 f(x,y) 可微分,且在点 (x_0,y_0) 处的梯度 $\operatorname{grad} f(x_0,y_0) = \mathbf{i} + 2\mathbf{j}$,则函数在点 (x_0,y_0) 处沿方向 $l=3\mathbf{i}+4\mathbf{j}$ 的方向导数为
- 3. 微分方程 $(3x^2 + 2xy y^2)dx + (x^2 2xy)dy = 0$ 的通解为 ______.
- 4. 交换积分次序, $\int_{-1}^{0} dx \int_{0}^{x+1} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy =$ _______
- 5. 曲面 $z = 1 x^2 y^2$ (0 $\leq z \leq 1$)的面积为 ______.

得 分 评阅人

二、选择题(每小题3分,共15分)

1. 以下哪一个方程表示一张双曲抛物面? ().

(A)
$$z = x^2 + 2y^2$$
. (B) $z^2 = x^2 + y^2$. (C) $z = xy$. (D) $x^2 + 2y^2 + 3z^2 = 1$.

2.
$$\c y$$
 $x^3 + y^3 + z^3 + xyz = 0$, $\c y$ $\c \frac{\partial y}{\partial z} = ($

(A)
$$-\frac{3z^2 + xy}{3y^2 + xz}$$
 . (B) $-\frac{3z^2 + xz}{3z^2 + xy}$. (C) $-\frac{3x^2 + yz}{3z^2 + xy}$. (D) $\frac{3x^2 + yz}{3z^2 + xz}$.

3. 设光滑曲线C的方程是 F(x,y)=0,则曲线C在点 (x_0,y_0) 处的切线方程是()

(A)
$$F_{\nu}(x_0, y_0)(x - x_0) + F_{\nu}(x_0, y_0)(y - y_0) = 0$$
.

(B)
$$F_x(x_0, y_0)(x - x_0) = F_y(x_0, y_0)(y - y_0)$$
.

(C)
$$F_{\nu}(x_0, y_0)(y - y_0) = F_{\nu}(x_0, y_0)(x - x_0)$$
.

(D)
$$F_{\nu}(x_0, y_0)(x - x_0) + F_{\nu}(x_0, y_0)(y - y_0) = 0$$
.

4. 设有二元函数
$$f(x,y) = x^2 + y^2 - 2x - 6y$$
, 则 ().

- (A) f(x,y) 有极大值,无极小值. (B) f(x,y) 有极小值,无极大值.
- (C) f(x,y)有极大值,也有极小值. (D) f(x,y)无极大值,也无极小值.
- 5. 考虑二元函数 f(x,y) 的以下五个性质: (1) f(x,y) 在点 (x_0,y_0) 连续.
 - (2) f(x,y) 在点 (x_0,y_0) 的偏导数存在. (3) f(x,y) 的偏导数在点 (x_0,y_0) 连续.
- (4) f(x,y) 在点 (x_0,y_0) 可微分.(5) f(x,y) 在 (x_0,y_0) 沿任一方向的方向导数存在. 则以下蕴含式成立的是().

(A)
$$(4) \Rightarrow (2) \Rightarrow (1)$$
. (B) $(3) \Rightarrow (5) \Rightarrow (2)$.

(C)
$$(3) \Rightarrow (4) \Rightarrow (5)$$
. (D) $(4) \Rightarrow (2) \Rightarrow (5)$

三、计算题(每小题8分,共24分)

得 分	-
评阅人	

1. 计算
$$I = \int_0^1 \frac{\varphi(x)}{\sqrt{x}} dx$$
,其中 $\varphi(x) = \int_{\sqrt{x}}^1 e^{-y^2} dy$.

得分	
评阅人	

2. 计算曲线积分 $\oint_L (e^x - x^2 y) dx + (xy^2 - \sin y) dy$, 其中 L 是圆

$$x^2 + y^2 = a^2$$
 的逆时针方向.

得 分	
评阅人 .	

3. 计算曲面积分 $\iint_{\Sigma} (2x+3y)dydz + (y+z)dxdy$, 其中 Σ 是抛物面

 $z = x^2 + y^2 \ (0 \le z \le 1)$ 的上侧.

四、解答题(每小题8分,共16分)

得 分	
评阅人	

1. (1) 讨论函数 $f(x,y) = \sqrt[3]{xy}$ 在原点的偏导数是否存在(若存在,

要求出偏导数)

(2) 讨论函数 $f(x,y) = \sqrt[3]{xy}$ 在原点是否可微分(若可微分,要求出全微分).

得 分	
评阅人	

2. 设函数 f(x) 和 g(x) 满足 f'(x) = g(x), g'(x) = x + f(x), 且

f(0)=1, g(0)=2. 试建立 f(x) 满足的微分方程, 求 f(x) 的表达式.

五、应用题 (每小题 8分, 共 16分)

得 分	
评阅人	

1. 求 f(x, y, z) = xyz 在球面 $x^2 + y^2 + z^2 = 3$ 上的最大值和最小值.

得 分	
评阅人	

2. 求球面 $x^2 + y^2 + z^2 = 14$ 在点 (1,2,3) 处的切平面方程, 并求该切平面

与圆柱面 $x^2 + y^2 = 4$ 及平面 z = 0 所围成的立体的体积.

六、证明题 (每小题 7分, 共 14分)

得 分	,
评阅人	

1. 设z = f(x, y)可微, $x = \rho \cos \theta$, $y = \rho \sin \theta$.

证明:
$$(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial \rho})^2 + \frac{1}{\rho^2} (\frac{\partial z}{\partial \theta})^2$$

得 分	
评阅人	

2. 设函数 f(z)连续, Ω 是椭球体: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.

(1) 证明:
$$\iiint_{\Omega} f(z) dv = \pi ab \int_{-c}^{c} (1 - \frac{z^2}{c^2}) f(z) dz;$$

(2) 利用 (1) 证明椭球体 Ω 的体积为 $\frac{4}{3}\pi abc$.