Aufgabe 4

Gegeben sei die Relation

```
R(A, B, C, D, E, F)
```

```
mit den FDs

FA = \{ \{ A \} \rightarrow \{ B, C, F \}, \{ B \} \rightarrow \{ A, B, F \}, \{ C, D \} \rightarrow \{ E, F \}, \}
```

(a) Geben Sie alle Kandidatenschlüssel an.

```
- A, D
- B, D
```

(b) Überführen Sie die Relation mittels Synthesealgorithmus in die 3. NF. Geben Sie alle Relationen in der 3. NF an und **unterstreichen Sie in jeder einen Kandidatenschlüssel.** — Falls Sie Zwischenschritte notieren, machen Sie das Endergebnis **klar kenntlich.**

(i) Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

i. Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq AttrHülle(F, \alpha - A)$.

```
FA = \{ \\ \{ A \} \rightarrow \{ B, C, F \}, \\ \{ B \} \rightarrow \{ A, B, F \}, \\ \{ C, D \} \rightarrow \{ E, F \}, \}
```

ii. Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrHülle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

```
FA = \{ \{ A \} \rightarrow \{ B, C \}, \{ B \} \rightarrow \{ A, F \}, \{ C, D \} \rightarrow \{ E \}, \}
```

iii. Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

nichts zu tun

iv. Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt.

nichts zu tun

(ii) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta.$

 $R_1(A, B, C)$ $R_2(A, B, F)$ $R_3(C, D, E, F)$

(iii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$

 $R_1(A, B, C)$ $R_2(A, B, F)$ $R_3(C, D, E, F)$ $R_4(A, D)$

(iv) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha}\subseteq R_{\alpha'}$.

nichts zu tun