- 1. Fie vectorii $\bar{u} = \bar{i} + \bar{j}$ și $\bar{v} = \bar{i} \bar{j}$. Vectorul sumă $\bar{u} + \bar{v}$ este (4 pct.)
 - a) $\frac{1}{2}\overline{i}$; b) \overline{i} ; c) \overline{j} ; d) $-2\overline{j}$; e) $2\overline{i}$; f) $\frac{3}{2}\overline{j}$.

Solutie. $\vec{u} + \vec{v} = (\vec{i} + \vec{i} + \vec{j} - \vec{j}) = 2\vec{i}$.

- 2. Dacă aria unui cerc este π , atunci lungimea cercului este (4 pct.)
 - a) $\sqrt[3]{4}$; b) 100; c) 1000; d) 2π ; e) $\sqrt{2}$; f) 10.

Soluție. $A = \pi R^2 = \pi$, deci R = 1, și deci lungimea cercului este $= 2\pi$.

- 3. Determinați care dintre numerele complexe de mai jos verifică ecuația $z^2 = -1$ (4 pct.)
 - a) i; b) $\sqrt[3]{7}$ i; c) 1; d) 0; e) $5\sqrt{3} + \sqrt{7}$ i; f) 10.

Soluție. Dintre numerele specificate doar z = i satisface ecuația $z^2 = -1$.

- 4. Ordinea crescătoare a numerelor $a = \sin 0$, $b = \sin \frac{\pi}{4}$ și $c = \sin \frac{\pi}{2}$ este (4 pct.)
 - a) b, a, c; b) b, c, a; c) a, b, c; d) a, c, b; e) c, b, a; f) c, a, b.

Soluție. Funcția sinus este strict crescătoare în intervalul $[0, \frac{\pi}{2}]$, deci $0 < \frac{\pi}{4} < \frac{\pi}{2} \Rightarrow \sin 0 < \sin \frac{\pi}{4} < \sin \frac{\pi}{2}$, deci a < b < c. Pe altă cale, avem $a = 0, b = \frac{\sqrt{2}}{2}, c = 1$, deci a < b < c, iar ordinea este a, b, c.

- 5. Distanța dintre punctele A(12,0) și B(0,5) este (4 pct.)
 - a) π ; b) 13; c) 1; d) 5; e) 0; f) $\sqrt{3}$.

Solutie. $||AB|| = \sqrt{(0-12)^2 + (5-0)^2} = \sqrt{144 + 25} = \sqrt{169} = 13.$

- 6. Dacă perimetrul unui pătrat este 4, atunci aria lui este (4 pct.)
 - a) -4; b) $\sqrt{2}$; c) π ; d) 10; e) 7; f) 1.

Soluție. Notând cu l latura pătratului și cu A aria sa, avem $4l = 4 \Rightarrow l = 1 \Rightarrow A = 1$.

- 7. Numărul de soluții ale ecuației $\cos x = 2$ este (4 pct.)
 - a) 2; b) 4; c) 5; d) 3; e) 0; f) 1.

Soluție. Deoarece $\cos x \in [-1,1], \forall x \in \mathbb{R}$, egalitatea $\cos x = 2$ nu poate avea loc, deci ecuația are 0 soluții.

- 8. Aria triunghiului ale cărui vârfuri au coordonatele (1,1), (1,2) și (2,1) este (4 pct.)
 - a) 31; b) $\sqrt[3]{2}$; c) $\frac{4}{103}$; d) 100; e) 17; f) $\frac{1}{2}$.

Soluţie. Folosind formula ariei cu determinant, obţinem $A = \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \end{vmatrix} = \frac{1}{2}$.

- 9. Dacă aria unui romb este 6 iar lungimea unei diagonale este 3, atunci lungimea celeilalte diagonale este (4 pct.)
 - a) 4; b) 17; c) $\sqrt[3]{2}$; d) 13; e) 7; f) 10.

Soluţie. Aria rombului este semiprodusul diagonalelor, deci $d_2 = 2A/d_1 = 2 \cdot 6/3 = 4$.

- 10. Modulul numărului complex $1 + i\sqrt{3}$ este (4 pct.)
 - a) 5; b) 2; c) 0; d) 20; e) -1; f) $\sqrt{5}$.

Soluţie. Avem $|1+i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2$.

- 11. Produsul numerelor complexe $1 + i \sin 1 i$ este (4 pct.)
 - a) -3i; b) 10i; c) $\sqrt{7}$; d) 2; e) $\sqrt[3]{5}$; f) 10.

Solutie. $(1+i)(1-i) = 1 - i^2 = 1 + 1 = 2$.

12. Produsul scalar al vectorilor $\bar{u}=2\bar{i}+\bar{j}$ și $\bar{v}=\bar{i}-2\bar{j}$ este (4 pct.)

a) 5; b)
$$\sqrt{3}$$
; c) 3; d) 0; e) 100; f) -200 .

Solutie.
$$\langle \vec{u}, \vec{v} \rangle = 2 \cdot 1 + 1 \cdot (-2) = 0.$$

13. Valoarea expresiei $\sin \frac{\pi}{2} + tg^{\frac{\pi}{4}}$ este (6 pct.)

a) 100; b)
$$\sqrt{5}$$
; c) 11; d) 2; e) $\sqrt[4]{7}$; f) -3.

Soluţie.
$$\sin \frac{\pi}{2} + tg \frac{\pi}{4} = 1 + 1 = 2.$$

14. Ecuația dreptei care trece prin punctele A(1,1) și B(2,2) este (6 pct.)

a)
$$y = 7x$$
; b) $y = -2x$; c) $x + 2y + 3 = 0$; d) $y = x$; e) $y = 2x + 1$; f) $y = 2x$.

Soluție. Folosim ecuația dreptei prin două puncte:
$$\frac{x-1}{2-1} = \frac{y-1}{2-1} \Leftrightarrow y = x$$
.

15. Într-un triunghi dreptunghic lungimea unei catete este 3, iar lungimea ipotenuzei este 5. Lungimea celeilalte catete este (6 pct.)

a)
$$-2$$
; b) 2; c) $\sqrt[3]{4}$; d) 4; e) π ; f) 5.

Soluție. Folosind teorema lui Pitagora, notând cu $c_1=3,c_2$ lungimile celor două catete ale triunghiului, și cu a=5 lungimea ipotenuzei triunghiului, rezultă $c_2^2=a^2-c_1^2=25-9=16 \Rightarrow c_2=4$.

16. Dacă $\cos x = \frac{\sqrt{3}}{2}$, atunci $\sin^2 x$ are valoarea (8 pct.)

a)
$$\frac{1}{7}$$
; b) -1; c) 2; d) $\sqrt{5}$; e) 0; f) $\frac{1}{4}$.

Soluție.
$$\sin^2 x = 1 - \cos^2 x = 1 - \frac{3}{4} = \frac{1}{4}$$
.

17. Punctul de intersecție al dreptelor y = x - 1 și y = -x + 1 are coordonatele (8 pct.)

Soluție. Rezolvând sistemul $\begin{cases} y=x-1 \\ y=-x+1 \end{cases}$, obținem x=1,y=0, deci punctul de intersecție este (1,0).

18. Expresia $\frac{\sin 2x}{2\sin x}$, unde $x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$, este egală cu (8 pct.)

a)
$$\cos x$$
; b) $\tan \frac{x}{\sqrt{3}}$; c) 1; d) $1 + \cot x$; e) $\sin x$; f) 0.

Soluţie.
$$\frac{\sin 2x}{2\sin x} = \frac{2\sin x \cos x}{2\sin x} = \cos x.$$