Álgebra Moderna: Tarea 1.1

Tomás Ricardo Basile Álvarez 316617194

25 de septiembre de 2020

- a) Determina cuales de las siguientes operaciones binarias son asociativas y cuales no. Justifica tu respuesta:
- (a1): La operación \star sobre \mathbb{Z} definida por $a \star b := a b$

No es asociativa pues si $a, b, c \in \mathbb{Z}$, tenemos que:

$$a \star (b \star c) = a \star (b - c)$$
 Por la definición de \star
= $a - (b - c)$ Por la definición de \star
= $a - b + c$

Mientras que por otro lado se tiene:

$$(a \star b) \star c = (a - b) \star c$$
 Por la definición de \star
= $(a - b) - c$ Por la definición de \star
= $a - b - c$

Con esto vemos que $a \star (b \star c)$ es en general distinto a $(a \star b) \star c$ pues para $a, b, c \in \mathbb{Z}$, generalemente a - b + c es distinto a a - b - c.

(a2) La operación \star sobre los \mathbb{R} definida por $a \star b := a + b + ab$

Sí es asociativa, pues si $a, b, c \in \mathbb{Z}$, por un lado tenemos que:

$$a \star (b \star c) = a \star (b + c + bc)$$
 Por la definición de \star
= $a + (b + c + bc) + a(b + c + bc)$ Por la definición de \star
= $a + b + c + bc + ab + ac + abc$ Realizando las operaciones en los enteros

Pero por otro lado, si colocamos asociamos de manera distinta tenemos:

$$(a \star b) \star c = (a + b + ab) \star c$$
 Por la definición de \star
= $(a + b + ab) + c + (a + b + ab)c$ Por la definición de \star
= $a + b + ab + c + ac + bc + abc$ Haciendo las operaciones de enteros
= $a + b + c + bc + ab + ac + abc$ Reordenando las sumas

Vemos que los resultados para $a \star (b \star c)$ y para $(a \star b) \star c$ son iguales y por tanto, la operación es asociativa.

(a3) La operación \star sobre los $\mathbb{Z} \times \mathbb{Z}$ definida por:

$$(a,b)\star(c,d):=(ad+bc,bd)$$

Primero tomamos tres elementos del grupo que sean $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ para $a_1, a_2, a_3, b_1, b_2, b_3$ enteros. Por un lado tenemos:

$$(a_1, b_1) \star ((a_2, b_2) \star (a_3, b_3)) = (a_1, b_1) \star (a_2b_3 + b_2a_3, b_2b_3)$$
 por def de \star
 $= (a_1(b_2b_3) + b_1(a_2b_3 + b_2a_3), b_1(b_2b_3))$ por def de \star
 $= (a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2, b_1b_2b_3)$ Operamos los enteros

Por otro lado, si asociamos de otra forma, tenemos:

$$((a_1, b_1) \star (a_2, b_2)) \star (a_3, b_3) = (a_1b_2 + b_1a_2, b_1b_2) \star (a_3, b_3)$$
 por def de \star
= $((a_1b_2 + b_1a_2)b_3 + (b_1b_2)a_3, (b_1b_2)b_3)$ por def de \star
= $(a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2, b_1b_2b_3)$ Operamos los enteros

Podemos ver que ambas operaciones tienen el mismo resultado, por lo tanto concluimos que \star es una operación asociativa.

b) Determina cuales de los siguientes conjuntos son grupos bajo la suma y cuales no. Justifica tu respuesta.

(b1): $A \subset \mathbb{Q}$, con $A := \{x \in \mathbb{Q} \mid \text{el valor absoluto de } x \text{ es menor que 1 } \}$.

No es un grupo bajo la suma ya que para empezar, la suma en este conjunto no es cerrada. Consideramos como ejemplo los racionales 0.7 y 0.8 que claramente son racionales y tienen valor absoluto menor que 1 por lo que pertenecen a A. Luego, su suma es 0.7 + 0.8 = 1.5 que es un racional pero su valor absoluto es mayor que 1 por lo que no pertenece a A. Entonces, como la operación no es cerrada, A no es un grupo bajo la suma.

(b2) $A \subset \mathbb{Q}$, con $A := \{x \in \mathbb{Q} | \text{ el valor absoluto de } x \text{ es mayor o igual que 1} \}.$

No es un grupo, pues la suma no es cerrada en A. Consideramos los racionales -2 y 1,5. Estos elementos pertenecen a A pues claramente son racionales y sus valores absolutos son respectivamente 2, 1,5, que son mayores que 1. Sin embargo, si realizamos su suma obtenemos -2 + 1,5 = -0,5 y este resultado no se encuentra en A, pues a pesar de ser un racional, su valor absoluto es menor que 1.

(b3):
$$A \subset \mathbb{Q}$$
, con $A := \{ a \in \mathbb{Q} \mid x = \frac{p}{1}, x = \frac{p}{2} \text{ ó } x = \frac{p}{3} \text{ para } p \in \mathbb{Z} \}$

No es un grupo, pues la suma no es cerrada en A. Consideramos $\frac{1}{2}$ y $\frac{1}{3}$, estos números son claramente elementos de A, pues tienen respectivamente la forma $\frac{p}{2}, \frac{p}{3}$ para $p=1\in\mathbb{Z}$. Sin embargo, si realizamos la suma, obtenemos $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ que no es un elemento de A. Esto porque $\frac{5}{6}$ ya está escrito en su mínima expresión y por tanto no puede escribirse como la división de dos enteros con un denominador menor a 6 (y para que pertenezca al conjunto habría que escribirlo como una división de dos enteros con el denominador igual a 1, 2 ó 3).

- c) Sea $G := \{a + b\sqrt{2} \in \mathbb{R} | a, b \in \mathbb{Q}\}$
- (c1) Probar que G es un grupo bajo la suma.
 - 1) Cerradura: Sea $a_1+b_1\sqrt{2}\in G$, $a_2+b_2\sqrt{2}\in G$, para lo cual $a_1,b_1,a_2,b_2\in\mathbb{Q}$. La suma de estos elementos es: $(a_1+b_1\sqrt{2})+(a_2+b_2\sqrt{2})=(a_1+a_2)+(b_1+b_2)\sqrt{2}$. Y por la cerradura de la suma en \mathbb{Q} tenemos que: $a_1+a_2\in\mathbb{Q}$, $b_1+b_2\in\mathbb{Q}$. Entonces $(a_1+b_1\sqrt{2})+(a_2+b_2\sqrt{2})=(a_1+a_2)+(b_1+b_2)\sqrt{2}$ tiene la forma que debe de tener para pertenecer a G.
 - 2) Asociatividad: En este caso, como + es una operación asociativa en \mathbb{R} y claramente $G \subset \mathbb{R}$, entonces la suma sigue siendo asociativa en G como se menciona en la observación 1.4 de las notas de clase 1.
 - 3) Neutro: El neutro es el número real 0. Primero vemos que $0 \in G$, pues $0 = 0 + 0\sqrt{2}$ y este elemento tiene la forma que pide el conjunto G con a = b = 0. Además, efectivamente es el neutro de G pues para todo $a+b\sqrt{2} \in G$ tenemos que $(a+b\sqrt{2})+0=a+b\sqrt{2}$ y que $0+(a+b\sqrt{2})=a+b\sqrt{2}$.
 - 4) Inverso: Sea $a+b\sqrt{2}\in G$, para lo cual $a,b\in\mathbb{Q}$. Este elemento tiene como inverso a $-a+(-b)\sqrt{2}$, que pertenece a G porque $-a,-b\in\mathbb{Q}$ y realmente es el inverso porque: $(a+b\sqrt{2})+(-a+(-b)\sqrt{2})=(a-a)+(b-b)\sqrt{2}=0$ y $(-a+(-b)\sqrt{2})+(a+b\sqrt{2})=(-a+a)+(-b+b)\sqrt{2}=0$.
- (c2) Probar que $G/\{0\}$ es un grupo bajo el producto.
 - 1) Cerradura: Sea $a_1 + b_1\sqrt{2} \in G$ y $a_2 + b_2\sqrt{2} \in G$, para lo cual $a_1, a_2, b_1, b_2 \in \mathbb{Q}$. El producto de estos elementos es $(a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = a_1a_2 + a_2b_1\sqrt{2} + a_1b_2\sqrt{2} + 2b_1b_2 = (a_1a_2 + 2b_1b_2) + (a_2b_1 + a_1b_2)\sqrt{2}$

Y este elemento tiene la forma requerida por G porque como $a_1, b_1, a_2, b_2 \in \mathbb{Q}$, entonces los elementos $(a_1a_2 + 2b_1b_2) \in \mathbb{Q}$ y $(a_2b_1 + a_1b_2) \in \mathbb{Q}$ ya que son conseguidos con puros productos y sumas de racionales. Además, como $a_1 + b_1\sqrt{2}, a_2 + b_2\sqrt{2}$ son distintos de 0 porque pertenecen a $G/\{0\}$ entonces su producto no es 0 y entonces el producto

pertenece a $G/\{0\}$.

- 2) Asociatividad: Como el producto es asociativo en $\mathbb{R}/\{0\}$ y el conjunto $G/\{0\}$ cumple claramente que $G/\{0\} \subset \mathbb{R}/\{0\}$. Entonces el producto es asociativo también en $G/\{0\}$ como se menciona en la obsevación 1.4 de las notas de clase 1.
- 3) Neutro: El neutro es el número real 1. Vemos que $1 \in G/\{0\}$ porque 1 se puede escribir como $1+0\sqrt{2}$ y así tiene la forma requerida por $G/\{0\}$. Además, efectivamente es el neutro de $G/\{0\}$ porque $(a+b\sqrt{2})\cdot 1=1\cdot (a+b\sqrt{2})=a+b\sqrt{2}$ porque 1 es el neutro de \mathbb{R} .
- 4) Inverso: Sea $a + b\sqrt{2} \in G$ distinto de 0, para lo cual $a, b \in \mathbb{Q}$ y no son ambos 0 a la vez, entonces visto como elemento de $\mathbb{R}/\{0\}$, tiene como inverso:

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2+2b^2} = \left(\frac{a}{a^2+2b^2}\right) + \left(\frac{-b}{a^2+2b^2}\right)\sqrt{2}$$

Vemos que este elemento pertenece a $G/\{0\}$ porque ambas expresiones entre paréntesis existen (porque el denominador no se anula ya que al menos uno de los valores a, b es distinto de 0), son racionales (porque a, b son racionales y los productos y sumas son cerrados en \mathbb{Q}) y además, el inverso no es 0 porque por lo menos uno de los números a, -b es distinto de 0, así que el resultado pertenece a $G/\{0\}$.

d) Sea G un grupo y $x \in G$. Definimos el orden de x como n el menor entero positivo tal que $x^n = 1$. Encontrar el orden de los siguientes elementos del grupo multiplicativo $\mathbb{Z}_{36}^*/\{\bar{0}\}$:

$$\overline{1}, \overline{5}, \overline{13}, \overline{17}, \overline{-1}, \overline{-13}$$

Primero notamos que el neutro en este grupo es $\bar{1}$ porque para todo $\bar{a} \in \mathbb{Z}_{36}^*/\{\bar{0}\}$ se tiene que $\bar{a}\bar{1} = \bar{1}\bar{a} = \overline{1\cdot a} = \bar{a}$

- a) $\overline{1}$: Como $(\overline{1})^1 = \overline{1}$ entonces el orden de $\overline{1}$ es 1.
- b) 5 : Calculamos sus potencias y cada que podemos, simplificamos el elemento sustituyéndolo por otro elemento de la misma clase de equivalencia pero que se encuentre entre 1 y 35 (es decir, lo sustituimos por su residuo al dividir por 36)

$$\overline{5}^1 = \overline{5}$$

$$\overline{5}^2 = \overline{5 \cdot 5} = \overline{25}$$

$$\overline{5}^3 = \overline{5} \cdot \overline{5}^2 = \overline{5} \cdot \overline{25} = \overline{5 \cdot 25} = \overline{125} = \overline{17}$$

$$\overline{5}^4 = \overline{5}^1 \cdot \overline{5}^3 = \overline{5} \cdot \overline{17} = \overline{5 \cdot 17} = \overline{85} = \overline{13}$$

$$\overline{5}^5 = \overline{5}^1 \cdot \overline{5}^4 = \overline{5} \cdot \overline{13} = \overline{5 \cdot 13} = \overline{65} = \overline{29}$$

$$\overline{5}^6 = \overline{5}^1 \cdot \overline{5}^5 = \overline{5} \cdot \overline{29} = \overline{5 \cdot 29} = \overline{145} = \overline{1}$$

Con lo que tenemos que el orden de 5 es 6.

c) 13: Realizamos el mismo procedimiento que en b):

$$\overline{13}^1 = \overline{13}$$

$$\overline{13}^2 = \overline{13} \cdot \overline{13} = \overline{13} \cdot \overline{13} = \overline{169} = \overline{25}$$

$$\overline{13}^3 = \overline{13}^1 \cdot \overline{13}^2 = \overline{13} \cdot \overline{25} = \overline{13} \cdot \overline{25} = \overline{325} = \overline{1}$$

Por lo que el orden de 13 es igual a 3.

d) 17 : Realizamos el mismo procedimiento:

$$\overline{17}^1 = \overline{17}$$

$$\overline{17}^2 = \overline{17} \cdot \overline{17} = \overline{17} \cdot \overline{17} = \overline{289} = \overline{1}$$

Por lo que el orden de $\overline{17}$ es igual a 2.

e) $\overline{-1}$: Primero que nada, $\overline{-1} = \overline{35}$ porque 35, -1 son congruente módulo 36 ya que 35 - (-1) = 36, lo cuál es un múltiplo de 36. Ahora calculamos el orden de $\overline{35}$:

$$\overline{35}^1 = \overline{35}$$

$$\overline{35}^2 = \overline{35} \cdot \overline{35} = \overline{35 \cdot 35} = \overline{1225} = \overline{1}$$

Por lo que el orden de $\overline{35} = \overline{-1}$ es 2.

f) $\overline{-13}$: Vemos que $\overline{-13} = \overline{-13+36} = \overline{23}$. Así que mejor calculamos el orden de $\overline{23}$:

$$\overline{23}^{1} = \overline{23}$$

$$\overline{23}^{2} = \overline{23} \cdot \overline{23} = \overline{23} \cdot \overline{23} = \overline{529} = \overline{25}$$

$$\overline{23}^{3} = \overline{23}^{1} \cdot \overline{23}^{2} = \overline{23} \cdot \overline{25} = \overline{23} \cdot \overline{25} = \overline{575} = \overline{35}$$

$$\overline{23}^{4} = \overline{23} \cdot \overline{23}^{3} = \overline{23} \cdot \overline{35} = \overline{23} \cdot \overline{35} = \overline{805} = \overline{13}$$

$$\overline{23}^{5} = \overline{23} \cdot \overline{23}^{4} = \overline{23} \cdot \overline{13} = \overline{23} \cdot \overline{13} = \overline{299} = \overline{11}$$

$$\overline{23}^{6} = \overline{23} \cdot \overline{23}^{5} = \overline{23} \cdot \overline{11} = \overline{23} \cdot \overline{11} = \overline{253} = \overline{1}$$

Por lo que el orden de $\overline{23} = \overline{-13}$ es 6.

e) Sea G un grupo. Probar que si $x^2 = 1$ para todo $x \in G$, entonces G es abeliano.

Como para todo $x \in G$ se tiene que $x^2 = xx = 1$ y como los inversos son únicos, se puede ver que el inverso de x es x.

5

Sean $x, y \in G$ arbitrarios, entonces por cerradura se tiene que $xy \in G$. Y como xy es elemento de G, xy es su propio inverso, entonces:

$$(xy)^{-1} = xy$$

 $\Rightarrow y^{-1}x^{-1} = xy$ Por la proposición 2.3 d) de las notas de clase 2
 $\Rightarrow y^{-1}x^{-1}x = xyx$ Multiplicamos por x a la derecha
 $\Rightarrow y^{-1} = xyx$ porque $x^{-1}x = 1$
 $\Rightarrow x^{-1}y^{-1} = x^{-1}xyx$ multiplicamos por x^{-1} a la izquierda
 $\Rightarrow x^{-1}y^{-1} = yx$ porque $x^{-1}x = 1$
 $\Rightarrow xy = yx$

El último paso debido a lo discutido al inicio de que cada elemento es su propio inverso. Entonces, para todo $x, y \in G$ se cumple que xy = yx y por tanto el grupo es conmutativo.