Amendments To The Claims:

Please amend the claims as follows:

Listing of Claims:

1. (Currently Amended) A portable device comprising:

a housing having a first surface with an outlet for egress of an acoustic signal when in a loudspeaker mode and a second surface with an outlet for egress of an acoustic signal when in an earpiece mode; and

an electro-acoustic transducer located within the housing for converting an electrical signal input to the transducer into an acoustic signal, the transducer being operable to output acoustic signals when in the loudspeaker mode or the earpiece mode, an acoustical audio path which conducts the acoustical signal as sound waves between the transducer and the outlet for the egress of an acoustic signal when in the loudspeaker mode also being less attenuated than an acoustical audio path which conducts an acoustical signal as sound waves between the transducer and the outlet for the egress of an the acoustic signal when in the earpiece mode.

 (Previously Presented) A device according to claim 1, wherein an attenuator is provided between the transducer and the outlet for the egress of the acoustic signal when in the earpiece mode.

Docket No. 1156.39104X00 Serial No. 09/684,949 June 8, 2005

- 3. (Previously Presented) A device according to claim 1, further comprising an amplifier for amplifying the electrical signal prior to inputting to the transducer and a gain control for controlling the gain of the amplifier, the gain control being operable to increase the gain of the amplifier when the device is to operate in the loudspeaker mode relative to the gain of the amplifier when the device is in the earpiece mode.
 - (Previously Presented) A device according to claim 1, further comprising:

 a gain control and associated amplifier which amplifies the electrical
 signal;

a first housing and a second housing coupled together in a moveable manner; and

a detector for detecting the position of one housing relative to the other and for operating the gain control in accordance with the position to control gain of the amplifier to control a level of the electrical signal.

- 5. (Previously Presented) A device according to claim3, wherein the difference in gain between the two modes is around 30 dB.
- 6. (Previously Presented) A device according to claim 1, wherein the device is a portable communications device.

7. (Currently Amended) A portable telecommunications device comprising:

a housing having a first surface with an outlet for egress of an acoustic signal when in a hands-free mode and a second surface with an outlet for egress of an acoustic signal when in the earpiece mode; and

an electro-acoustic transducer located within the housing for converting an electrical signal input to the transducer into an acoustic signal, the transducer being operable to output acoustic signals when in the hands-free mode or in the earpiece mode, an acoustical audio path which conducts the acoustical signal as sound waves between the transducer and the outlet for the egress of an acoustic signal when in the hands-free mode being less attenuated than an acoustical audio path which conducts an acoustical signal as sound waves between the transducer and the outlet for the egress of an acoustical signal as sound waves between the transducer and the outlet for the egress of an acoustic signal when in the earpiece mode.

- 8. (Previously Presented) A device a ccording to claim 2, further comprising an amplifier for amplifying the electrical signal prior to inputting to the transducer and a gain control for controlling the gain of the amplifier, the gain control being operable to increase the gain of the amplifier when the device is to operate in the loudspeaker mode relative to the gain of the amplifier when the device is in the earpiece mode.
- (Previously Presented) A device according to claim 2, further comprising:
 a gain control and associated amplifier which amplifies the electrical signal;
- a first housing and a second housing coupled together in a moveable manner; and

a detector for detecting the position of one housing relative to the other and for operating the gain control in accordance with the position to control gain of the amplifier to control a level of the electrical signal.

- 10. (Previously Presented) A device according to claim 3, further comprising:
- a gain control and associated amplifier which amplifies the electrical

signal;

- a first housing and a second housing coupled together in a moveable manner; and
- a detector for detecting the position of one housing relative to the other and for operating the gain control in accordance with the position to control gain of the amplifier to control a level of the electrical signal.
- 11. (Previously Presented) A device according to claim 4, wherein the difference in gain between the two modes is around 30 dB.
- 12. (Previously Presented) A device according to claim 9, wherein the difference in gain between the two modes is around 30 dB.
 - 13. Cancelled.
- 14. (Previously Presented) A device according to claim 2, wherein the device is a portable communications device.

Docket No. 1156.39104X00 Serial No. 09/684,949

June 8, 2005

15. (Previously Presented) A device according to claim 3, wherein the device

is a portable communications device.

16. (Previously Presented) A device according to claim 4, wherein the device

is a portable communications device.

17. (Previously Presented) A device according to claim 5, wherein the device

is a portable communications device.

18. (Currently Amended) A portable device comprising:

a housing having a first surface with a first outlet for egress of an acoustic

signal when in a loudspeaker mode and a second surface with a second outlet for

egress of an acoustic signal when in the earpiece mode;

an electro-acoustic transducer located within the housing for converting an

electrical signal input to the transducer into an acoustic signal;

a first acoustical audio path defined within the housing which conducts: the

acoustical signal as sound waves between the transducer and the first outlet for the

egress of the acoustic signal;

a second acoustical audio path defined within the housing which conducts an

acoustical signal as sound waves between the transducer and the second outlet for

the egress of the acoustic signal; and

attenuation means within the second acoustical audio path for attenuating the

acoustic signal, whereby the acoustic signal egressing from the first outlet has an

amplitude that is greater than an amplitude of the acoustic signal egressing from the

second outlet.

6

19. (Previously Presented) A portable device comprising:

a housing having a first surface with an outlet for egress of an acoustic signal when in a loudspeaker mode and a second surface with an outlet for egress of an acoustic signal when in an earpiece mode;

an electro-acoustic transducer located within the housing for converting an electrical signal input to the transducer into an acoustic signal, the transducer being operable to output acoustic signals when in the loudspeaker mode or the earpiece mode, the audio path between the transducer and the outlet for the egress of an acoustic signal when in the loudspeaker mode being less attenuated than the audio path between the transducer and the outlet for the egress of an acoustic signal when in the earpiece mode;

an amplifier for amplifying the electrical signal prior to inputting to the transducer and a gain control for controlling the gain of the amplifier, the gain control being operable to increase the gain of the amplifier when the device is to operate in the loudspeaker mode relative to the gain of the amplifier when the device is in the earpiece mode;

a gain control and associated amplifier which amplifies the electrical signal;

a first housing and a second housing coupled together in a movable manner; and

a detector for detecting the position of one housing relative to the other and for operating the gain control in accordance with the position to control gain of the amplifier to control a level of the electrical signal; and wherein the difference in gain between the two modes is about 30 dB.