Math136 - January 13'th, 2016 Dot Product and Orthogonality

Fact:

A K-Flat in \mathbb{R}^n that passes through the origin is a subspace.

E.g. Find a basis for the subspace
$$S = \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R} \mid x_1 + x_+ x_3 = 0 \}$$

Note: if
$$x_1 + x_2 + x_3 = 0$$
, then $x_3 = -x - 1 - x_2$

So,

$$\begin{split} S &= \{ \begin{bmatrix} x_1 \\ x_2 \\ -1_1 - x_2 \end{bmatrix} \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R} \} \\ &= \{ \begin{bmatrix} x_1 \\ 0 \\ -x_1 \end{bmatrix} + \begin{bmatrix} 0 \\ x_2 \\ -x_2 \end{bmatrix} \mid x_1, x_2 \in \mathbb{R} \} \\ &= \{ x_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \} \\ &= \mathrm{span} \{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \} \end{split}$$

So if we find that this span is L.I. then it will be a basis. We will use the fact that a set of two vectors is L.I. iff neither vector is a scalar multiple of eachother. You should prove this, but we can see of course this is the case, so we have a basis.

Dot Product

Recall in \mathbb{R}^2 , \mathbb{R}^3 we have dot products:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 y_1 + x_2 y_2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 = +x_3 y_3$$

We can now generalize this to \mathbb{R}^n

The **Dot Product** of
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$ is:

$$\vec{x} + \vec{y} = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Note: The dot product is also called the standard inner product or the scalar product.

1

E.g.
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -3 \\ -4 \end{bmatrix} = 1 \cdot 2 + 1 \cdot (-1) + 1 \cdot (-3) + 1 \cdot (-4) = -6$$

Notice the dot product always gives a scalar.

Theorem 1.3.2

If $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$, then:

- 1) $\vec{x} \cdot \vec{x} \ge 0$ and $\vec{x} \cdot \vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$
- $2) \ \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- 3) $\vec{x} \cdot (s\vec{x} + t\vec{z}) = s(\vec{x} \cdot \vec{y}) + t(\vec{x} \cdot \vec{z})$

Norm

The **length** or **norm** of $\vec{x} \in \mathbb{R}^n$ is $||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}}$

Orthogonal

 $\vec{x}, \vec{y} \in \mathbb{R}^n$ are **orthogonal** if $\vec{x} \cdot \vec{y} = 0$

Note: $\vec{0}$ is orthogonal to any $\vec{x} \in \mathbb{R}^n$

Orthogonal Set

A set of vectors $\{\vec{v}_1,\ldots,\vec{v}_k\}$ in \mathbb{R}^n is an orthogonal set iff $\vec{v}_i\cdot\vec{v}_j=0$ for all $i\neq j,i,j\in\{1,\ldots,k\}$

For example, the standard basis for \mathbb{R}^n is an orthogonal set.

Unit Vector

A vector $\vec{x} \in \mathbb{R}^n$ with $||\vec{x}|| = 1$ is called a unit vector.

Theorem 1.3.3

If $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}^n$, then:

- 1) $||\vec{x}|| \ge 0$, and $||\vec{x}|| = 0$ iff $\vec{x} = \vec{0}$
- 2) $|| c\vec{x} || = |c| || \vec{x} ||$
- 3) $(\vec{x} \cdot \vec{y})^2 \le ||\vec{x}||^2 ||\vec{y}||^2$
- 4) $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$