Föreläsningsanteckningar

Pouya Ashraf

I detta dokument är föreläsningsanteckningar till kursen komplex analys, som gavs av Jörgen Östensson på Uppsala Universitet 2017. Samtliga figurer är ritade med vektorgrafik direkt i LATEX, så om något inte syns tydligt nog är det bara att zooma in utan att det blir grynigt (fantastiskt, eller hur?).

January 17, 2017

Uppskattar du att all info för kursen finns i detta dokument, så att du (kanske) slipper köpa kurslitteraturen? Känner du att du vill öka min livskvalitet litegrann som tack för arbetet jag lagt ner? Swisha valfri summa (typ 20-30kr) till 070-422 40 81

Contents

Introduction			1
Polar form	 	 	2
The Locarithm Function			;

Introduction

Definition 1. A complex number is a number on the form x + iy, where $x, y \in \mathbb{R}$. Two omplex numbers $x_1 + iy_1$, $x_2 + iy_2$ are said to be equal iff. $x_1 = x_2$ and $y_1 = y_2$. The number x is called the real part, and the number y is called the imaginary part.

We write $x = \Re(x + iy)$, $y = \Im(x + iy)$. The set of complex numbers is denoted \mathbb{C} .

We define addition and multiplication as follows:

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

$$(x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

complex numbers are often denoted by z or w.

Definition 2. The complex conjugate of z = x + iy is denoted \overline{z} and is defined by $\overline{z} = x - iy$. It holds that

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}.$$

Note also that $\mathfrak{Re}(z) = \frac{z + \overline{z}}{2}$, $\mathfrak{Im} = \frac{z - \overline{z}}{2i}$. It is natural to represent a complex number z = x + iy as a point $(x, y) \in \mathbb{R}^2$. Thus geometric representation is called the complex/Argand plane.

Definition 3. The absolute value of a complex number z = x + iy is denoted |z|, and is defined by $|z| = \sqrt{x^2 + y^2}$. It holds that

$$|z|^2 = z \cdot \overline{z}$$
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

Note also that every $z \in \mathbb{C}$, $z \neq 0$ has a multiplicative inverse $\frac{1}{z}$ given by $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$

Theorem 1 (The Triangle Inequality). For $z_1, z_2 \in \mathbb{C}$ it holds that

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Corollary 1. For $z_1, z_2 \in \mathbb{C}$, it holds that

$$||z_1| - |z_2|| \le |z_1| - |z_2|$$

Proof.

$$|z_1| = |(z_1 - z_2) + z_2| \le |z_1 - z_2| + |z_2|$$

 $\Rightarrow |z_1| - |z_2| \le |z_1 - z_2|$

Now let
$$z_1 \longleftrightarrow z_2$$

Polar form

Let $z = x + iy \neq 0$. The point $\left(\frac{x}{|z|}, \frac{y}{|z|}\right)$ lies on the unit circle, so $\exists \theta$ s.t. $\frac{x}{|z|} = \cos(\theta) \quad \frac{y}{|z|} = \sin(\theta).$

Therefore z = x + iy can be written as follows:

$$z = |z|(\cos(\theta) + i\sin(\theta))$$

Note that r = |z| is uniquely determined by z, but θ is **not**. θ is only unique up to integer multiples of 2π , i.e. if a particular θ suffices, then so does $\theta + 2\pi n$, $n \in \mathbb{Z}$. We let all these numbers be denoted by $\arg(z)$

It is practical to have a notation for one of these values of $\arg(z)$. The so called **principal** value of $\arg(z)$, denoted $\operatorname{Arg}(z)$ is specified as the value of $\arg(z)$ which belongs to the interval $(-\pi, \pi]$.

Example 1.

$$\arg(1+i) = \left\{ \frac{\pi}{4} + 2\pi n \mid n \in \mathbb{Z} \right\}$$
$$\operatorname{Arg}(1+i) = \frac{\pi}{4}$$

Remark 1. One calls Arg(z) a **branch** of arg(z). Note that Arg(z) is 'discontinuous' along the negative real axis, which is called the branch cut of this function

Suppose
$$z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1)), z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2)),$$
 then
$$z_1 z_2 = r_1 r_2(\cos(\theta_1) + i\sin(\theta_1))(\cos(\theta_2) + i\sin(\theta_2))$$

$$= r_1 r_2[(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2))]$$

$$+ i(\sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2))]$$

$$= r_1 r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

Correctly interpreted, then, $|z_1z_2| = |z_1||z_2|$, and $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$. **Definition 4** (The exponential function). For z = x + iy, let $e^z := e^x(\cos(y) + i\sin(y))$

Remark 2. Note that e^z agrees with the 'usual' exponential function if $z \in \mathbb{R}$, i.e. the above definition extends the 'usual' exponential function to all of \mathbb{C} .

Note in particular that $e^{iy} = \cos(y) + i\sin(y)$, $y \in \mathbb{R}$ is called Euler's formula. In polar form, z can be written as $z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$. Moreover, if $z_1 = r_1r^{i\theta_1}$, $z_2 = r_2e^{i\theta_2}$, then

$$z_1 z_2 = r_1 r_2 e^{i\theta_1} e^{i\theta_2}$$
$$= r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

From this it follows that $e^{z_1}e^{z_2}?e^{z_1+z_2}$. Note also that $(e^{i\theta})^n = e^{i\theta} \cdot \dots \cdot e^{i\theta} = e^{in\theta}$, i.e. $(\cos(\theta) + i\sin(\theta))^n = (\cos(n\theta) + i\sin(n\theta))$ [de Moivre's formula].

The Logarithm Function

In real analysis, one defines the logarithm ln(x) as the inverse of the exponential function e^x , but the problem here is that e^z is not an injective function (and has no inverse).

Given $z \in \mathbb{C} \setminus \{0\}$ one chooses the define $\log(z)$ as the set of all $w \in \mathbb{C}$ whose image is z under the exponential function, i,e, $w = \log(z) \iff e^w = z$ (So $\log(z)$ is a multivalued function).

Write $z = re^{i\theta}$, w = u + iv. Then

$$e^{w} = z \iff re^{i\theta} = e^{r}e^{iv}$$

 $\iff u = \log(r) = \log(|z|)$

and

$$v = \theta + 2\pi k, \ k \in \mathbb{Z} = \arg(z)$$

The explicit definition is:

Definition 5. For $z \neq 0$ we define $\log(z)$ as

$$\log(z) = \ln(|z|) + i \arg(z)$$

= \ln(|z|) + i \larg(z + 2\pi k), \kappa \in \mathbb{Z}

Example 2. Compute $\log(1+i)$

$$\log 1 + i = \ln(|1 + i|) + i \arg(1 + i)$$

$$= \ln(\sqrt{2}) + i(\frac{\pi}{4} + 2\pi k), \ k \in \mathbb{Z}$$

$$= \frac{1}{2} \ln 2 + i(\frac{\pi}{4} + 2\pi k), \ k \in \mathbb{Z}$$