

SISTEMAS OPERATIVOS

Mg. Leandro Ezequiel Mascarello

<leandro.mascarello@uai.edu.ar>

- Conocer los conceptos de fichero y directorio así como sus características.
- Utilizar los servicios de gestión de Ficheros y directorios ofrecidos por el sistema operativo.
- Comprender la estructura de un sistema de ficheros.
- Comprender los mecanismos en los que se apoya un servidor de ficheros y aplicarlos a ejercicios sencillos.

- Memoria principal.
 - Memoria volátil -> datos no persistentes.
 - Datos accedidos por el procesador.

- Memoria secundaria.
 - Memoria no volátil -> datos persistentes.
 - Organizada en bloques de datos.
 - Se necesita una abstracción para simplificar las aplicaciones: Fichero.

- Ofrece al usuario una visión lógica simplificada del manejo de los dispositivos periféricos en forma de ficheros.
- Proporciona un mecanismo de abstracción que oculta los detalles relacionados con el almacenamiento y distribución de la información en los periféricos.
- Constituye la parte del S.O. que gestiona los ficheros.
- Funciones:
 - Organización
 - Almacenamiento
 - Recuperación
 - Gestión de nombres
 - Implementación de la semántica de Coutilización
 - Protección

 El SF establece una correspondencia entre los ficheros y los dispositivos lógicos.

- Visión lógica:
 - Ficheros
 - Directorios
 - Sistemas de Ficheros y particiones
- Visión física:
 - Bloques o bytes ubicados en dispositivos

- Almacenamiento permanentes de información.
 - No desaparece aunque se apague el computador.
- Conjunto de información estructurada de forma lógica según criterios de aplicación.
- Nombres lógicos y estructurados.
- No están ligados al ciclo de vida de una aplicación particular.
- Abstraen los dispositivos de almacenamiento físico.
- Se acceden a través de llamadas al sistema operativo o de bibliotecas de utilidades.

- Nombre: Identificador en formato legible por una persona.
- Identificador: Etiquetan unívoca del archivo
 - Suele ser numérico.
- Tipo de fichero: necesario en sistemas que proporcionan distintos formatos de Ficheros. Como mínimo se suele diferenciar el atributo de ejecutable.
- Ubicación: Identificación del dispositivo de almacenamiento y la posición dentro del dispositivo.
- Tamaño del fichero: número de bytes en el fichero, máximo tamaño posible, etc.
- Protección: control de accesos y de las operaciones sobre el fichero.
- Información temporal: de creación, de acceso, de modificación, etc.

- Muy importante para los usuarios. Es característico de cada sistema de Ficheros.
- Problema: usar nombre lógicos basados en tiras de caracteres.
- Motivo: los usuarios no recuerdan el nombre 001223407654
- Tipo y longitud cambian de un sistema a otro:
 - Longitud: fija en MS-DOS o variable en UNIX, Windows.
 - Extensión: obligatoria o no, más de una o no, fija para cada tipo de Ficheros, etc.
- Sensibles a tipografía. Ejemplo: CATALINA y catalina son el mismo fichero en Windows pero distintos en LINUX.
- El sistema de ficheros trabaja con descriptores internos, sólo distingue algunos formatos (ejecutables, texto, ...). Ejemplo: número mágico UNIX.

- Los directorios relacionan nombres lógicos y descriptores internos de ficheros
- Las extensiones son significativas para las aplicaciones (html, c, cpp, etc.)

- Creación: Asignación de espacio inicial y metadatos.
- Borrado: Liberación de recursos asociados.
- Escritura: Almacena información en el fichero.
- Lectura: Recupera información del fichero.

Operaciones adicionales dependiendo de la semántica concreta de acceso a ficheros

- El acceso a los dispositivos es:
 - Incómodo
 - Detalles físicos de los dispositivos
 - Dependiente de las direcciones físicas
 - No seguro
 - Si el usuario accede a nivel físico no tiene restricciones
- El sistema de Ficheros es la capa de software entre dispositivos y usuarios.
- Objetivos:
 - Suministrar una visión lógica de los dispositivos.
 - Ofrecer primitivas de acceso cómodas e independientes de los detalles físicos.
 - Mecanismos de protección.

- Ninguna secuencia de palabras o bytes (UNIX)
- Estructura sencilla de registros
 - Líneas
 - Longitud fija
 - Longitud variable
- Estructuras complejas
 - Documentos con formato (HTML, postscript, etc.)
 - Fichero de carga reubicable (módulo de carga dinámica)
- Se puede simular estructuras de registro y complejas con una estructura plana y secuencias de control
- ¿Quién decide la estructura?
 - Interna: El sistema operativo
 - Externa: Las aplicaciones

- Conjunto de información relacionada que ha sido definida por su creador
- Estructura de un fichero:
 - Secuencia o tira de bytes (UNIX, POSIX)

Posición

Acceso secuencial

- Basado en el modelo de acceso a datos en una cinta magnética.
- Utilizable en dispositivos de acceso secuencial o directo.
- Operaciones orientadas a bytes o a registros.

Acceso directo

- Basado en el modelo de acceso a dispositivo de disco.
- Fichero dividido en registros de longitud fija.
- Se puede especificar el número de registro para las operaciones de lectura y escritura.
- Se puede utilizar un puntero de posición para evitar tener que especificar la posición en todas las operaciones.
- Permite construir sobre él otros métodos de acceso más complejos (ejemplo: secuencial indexado).

 Varios procesos pueden acceder simultáneamente aun fichero

- Es necesario definir una semántica de coherencia.
 - ¿Cuándo son observables por otros procesos las modificaciones a un fichero?
- Opciones:
 - Semántica UNIX.
 - Semántica de sesión.
 - Semántica de archivos inmutables.

- Las escrituras en un archivo son inmediatamente visibles a todos los procesos.
- Un archivo abierto tiene asociado un puntero de posición.
- Alternativas en cuanto al puntero.
 - Cada proceso mantiene su propio puntero de posición.
 - Posibilidad de que dos procesos puedan compartir el puntero de posición.
- Implicación:
 - El sistema operativo debe mantener una imagen única del fichero.
 - Problemas de contención por acceso exclusivo a la imagen.

- Las escrituras sobre un archivo abierto no son visibles por otros procesos con el archivo abierto.
- Cuando se cierra un fichero los cambios son visibles por otros procesos que abran el fichero posteriormente.
- Un fichero puede estar asociado con varias imágenes distintas.
- No hay contención.
- Caso de utilización: AFS (Andrew File System).

- Un archivo puede ser declarado como compartido.
 - A partir de ese momento no se puede modificar.

- Un archivo inmutable no admite modificación de
 - Nombre.
 - Contenido.

- Las actualizaciones se hacen sobre copias con nº versión.
- Sólo son visibles cuando se consolidan versiones.
- Sincronización explícita si se requiere actualización inmediata.

- Listas de control de acceso.
 - Definen la lista de usuarios que pueden acceder a un fichero.
 - Si hay diferentes tipos de acceso una lista por tipo de control de acceso.
- Permisos.
 - Versión condensada.
 - Tres tipos de acceso (rwx).
 - Permisos para tres categorías (usuario, grupo, otros).

- El sistema operativo debe mantener información sobre el fichero: metadatos.
- Los metadatos son dependientes del sistema de ficheros.
- Importante: Un sistema operativo puede admitir varios sistemas de ficheros.
 - Ejemplo: en Linux se pueden montar particiones Ext2,
 NTFS, ...

- Gestión de espacio libre y ocupado del disco.
- Asignación de espacio a cada fichero.

- Aspectos:
 - Ficheros nuevos: ¿Se asigna el espacio máximo en creación?
 - ¿Qué unidad de asignación se utiliza?
 - ¿Qué estructura de datos representa la asignación del fichero?

- Preasignación: Asignación en creación del tamaño máximo posible del fichero.
 - Se reserva todo el espacio que podría necesitar el fichero.
- Asignación dinámica: Asignación de espacio según se va necesitando.
 - División del fichero en unidades de asignación que se van tomando según haga falta.

Cuestiones a considerar:

- Tamaño de asignación fijo
 reasignación de espacio simple.
- Tamaño de asignación pequeño

 aumenta el tamaño de los metadatos.
- Tamaño de asignación grande

 más información contigua en disco.
 - Mayor rendimiento.
- Tamaño de asignación fijo y grande
 incrementa el malgasto de espacio (fragmentación interna).
- Tamaño de asignación variable y grande
 incrementa el rendimiento, pero aumenta la fragmentación externa.

		A	A	Α
0	1	2	3	4
				8
5	6	7	8	9
В	В	В	В	
10	11	12	13	14
			C	C
15	16	17	18	19
C	C	C	C	C
20	21	22	23	24
C	E	E	E	
25	26	27	28	29
D	D			
30	31	32	33	34

Fichero	Inicio	Long.
Α	2	3
В	9	5
С	18	8
D	30	2
Е	26	3

Necesidad de compactación

A	A	A	В	В
0	1	2	3	4
В	В	B	C	С
5	6	7	8	9
C	C	C	C	С
10	11	12	13	14
C	E	E	E	D
15	16	17	18	19
D				
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34

Fichero		Long.
Α	0	3
В	3	5
С	8	8
D	19	2
E	16	3

- Cada bloque contiene un puntero al bloque siguiente.
- Asignación de bloques de uno en uno.
- No hay fragmentación externa.
- Bloques distribuidos por todo el disco.
- Consolidación del sistema para mejorar las prestaciones de procesamiento de archivos secuenciales.

0	B 1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	B 24
25	26	27	28	29
30	31	32	33	34

Fichero	inicio	Long.
В	1	5

B 0	B 1	B 2	B 3	B 4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34

Fichero	Inicio	Long.
В	0	5

- Se mantiene una tabla con los identificadores de las unidades de asignación que forman el fichero.
- Alternativas:
 - Asignación por bloques.
 - Asignación por porciones (extents).

- El sistema operativo debe saber que bloques están libres.
- Alternativas:
 - Mapas de bits: Vector con un bit por bloque.
 - Tabla resumen por rangos de direcciones: número de bloques libres en el rango.
 - Lista encadenada de porciones libres.
 - Indexación: Tabla índice de porciones libres.

- Tipo de fichero y protección.
- Usuario propietario del fichero.
- Grupo propietario del fichero.
- Tamaño del fichero.
- Hora y fecha de creación.
- Hora y fecha del último acceso.
- Hora y fecha de la última modificación.
- Número de enlaces.
- Punteros directos a bloques (10).
- Puntero indirecto simple.
- Puntero indirecto doble.
- Puntero indirecto triple.

Cabecera

Atributos

Tamaño

Nombre

Seguridad

1,5 KB

Datos

Vclusters

