

TMSCA HIGH SCHOOL MATHEMATICS

TEST #5 ©

NOVEMBER 17, 2018

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $\sqrt[4]{65536} \div (1296)^{\frac{3}{4}} + 9 \times 3^{-1}$.
 - (A) $3\frac{2}{27}$
- (B) 1 (C) $27\frac{2}{27}$
- (D) 3459
- 2. The city of Denton, TX grew from a population of 4,732 in 1910 to 117,052 in 2010. What was the average annual growth rate for the population of Denton during that 100-year period? (nearest tenth of a percent)
 - (A) 2.2%
- (B) 3.8%
- (C) 4.8%
- **(D)** 4.2%
- **(E)** 3.3%
- 3. What is the y intercept of the perpendicular bisector of the line segment shown?

- (A) $\left(0,\frac{1}{2}\right)$ (B) $\left(0,3\right)$ (C) $\left(1,0\right)$ (D) $\left(0,-\frac{3}{2}\right)$ (E) $\left(3,0\right)^{-6}$
- 4. Write this expression as a simplified improper fraction: $1 + \frac{1}{3 + \frac{1}{6 + \frac{1}{10 + \frac{1}{15}}}}$.

- (A) $\frac{921}{2914}$ (B) $\frac{65}{40}$
- (C) $\frac{3835}{2014}$ (D) $\frac{85}{64}$
- **(E)**
- 5. Coach Cleve has 9 girls on his tennis team, 3 of whom are seniors. He can take 4 of them to a special invitational training clinic. How many distinct groups of 4 could be form if he wants to take at least one senior?
 - (A) 126
- **(B)** 111
- (C) 14
- (D) 180
- (E) 60

- 6. Solve: $\frac{x-3}{x-9} = \frac{6}{x-9}$

 - (A) 9 (B) -9
- (C) 6
- (D) No solution (E) infinitely many solutions
- 7. Let $Z = \{z,e,u,s\}$, $J = \{j,u,p,i,t,e,r\}$ and $M = \{m,i,n,e,r,v,a\}$. How many elements are in $(Z \cup M) \cap J$?
 - (A) 2
- (C) 4
- (\mathbf{E}) 6
- 8. If A is $66\frac{2}{3}\%$ of B, and C is $116\frac{2}{3}\%$ of B, then A = _____% of C?
 - (A) $71\frac{3}{7}$ (B) $28\frac{4}{7}$ (C) $77\frac{7}{9}$ (D) $55\frac{5}{9}$ (E) $57\frac{1}{7}$

- 9. $\angle A$ and $\angle B$ are complementary, and $m\angle B$ is 22° less than three times $m\angle A$. Find the measure of the supplementary angle to $\angle A$.
 - (A) 148°
- (B) 62°
- (C) 152°
- (D) 116°
- (E) 114°

- 10. A large conical storage tank has an 8-foot base diameter and maximum 1000-gallon capacity. What is the vertex angle of the tank? (nearest degree)
 - (A) 27°
- (B) 53°
- (D) 31°
- (E) 62°
- 11. The circle with center D shown has an area of 25π cm² and BC = CD. The area of triangle ABC =

 - (A) 25 (B) $\frac{25\sqrt{2}}{2}$ (C) 50 (D) $\frac{25}{2}$ (E) $\frac{25\sqrt{3}}{2}$

- 12. Two events, A and B are not independent and have probabilities such that p(A) = 0.2, $p(A' \cap B) = 0.22$ and $p(A \cap B) = 0.18$. Find p(A|B).

- (A) $\frac{1}{11}$ (B) $\frac{9}{11}$ (C) $\frac{3}{7}$ (D) $\frac{10}{21}$

- 13. If $\int_2^k \frac{1}{r+8} dx = \ln 2$, find the value of k.
 - (A) 0
- **(B)** 12
- (\mathbf{C}) -4
- (\mathbf{D}) 8
- (\mathbf{E}) 4

- 14. Simplify $\left(\sqrt[3]{2a^3b^2}\right)\left(\sqrt[6]{32a^3b^2}\right)$.

- (A) $2ab\sqrt[3]{2a^3}$ (B) $2ab\sqrt[3]{2b^3}$ (C) $2ab\sqrt[6]{2a^3}$ (D) $2ab\sqrt[6]{2b^3}$ (E) $2ab\sqrt[6]{2a^3b^3}$
- 15. If p and q are the roots of the function $f(x) = 6x^2 + x 35$, then $p^3 + 3p^2q + 3pq^2 + q^3 = ?$

- (A) $-\frac{1}{216}$ (B) $\frac{1}{36}$ (C) $\frac{1}{1728}$ (D) $\frac{1}{216}$ (E) $-\frac{1}{1728}$
- 16. The relation $x^2 + y^2 14x + 10y = -66$ is a circle. Find the area of the circle.
 - (A) 8π
- (B) 16π
- **(C)** 4π
- (D) 64π
- **(E)** 32π

17. Find *K* if the triangular pattern continues:

- (A) 108
- **(B)** 27
- (C) 81
- (D) 25
- **(E)** 270

18.	8. Who was the first known Greek mathematician who realized fractions as numbers; thus he all positive rational numbers for coefficients and solutions?							us he allowed			
	(A)	Archimedes	(B)	Euclid		(C)	Diophantus	(D)	Hypatia	(E)	Agnesi
19.		ncenter of a cir		n be fou	nd by	consti	ructing the		of the triangle	e and	finding the
	(A)	Medians			(B)	Altitu	ıdes		(C) Perper	ndicul	ar Bisectors
	(D)	Angle Bisecto	ors		(E)	Sides					
20.	The F	Real value solut	tion se	et for $\left \frac{1}{3} \right $	+4x ≥	≥ 36 is	:				
	(A)	$\left(-\infty,\frac{107}{12}\right] \cup \left[$	$\frac{109}{12}$,	∞	(B)	(-∞,	$-\frac{107}{12}\bigg] \cup \bigg[\frac{109}{12},$,∞)	$(C) \left[-\frac{109}{12}, \right.$	$\frac{107}{12}$	
	(D)	$\left[-\frac{107}{12}, \frac{109}{12} \right]$			(E)	(-∞,	$-\frac{109}{12}\bigg] \cup \bigg[\frac{107}{12},$,∞)			
21.	How	many positive	prope	r fractio	ns in l	lowest	terms have a d	lenom	inator of 78?		
	(A)	22	(B)	24		(C)	25	(D)	26	(E)	20
22. Angela tossed a fair nickel until she got 2 heads. What is the probability that she first got the second head on the 8 th toss?										got the second	
	(A)	$\frac{1}{256}$	(B)	$\frac{3}{128}$		(C)	$\frac{3}{64}$	(D)	$\frac{7}{256}$	(E)	$\frac{7}{64}$
23.	111 ₂ ·	+ 333 ₄ + 777 ₈ =	:	-10 •							
	(A)	1221	(B)	1887		(C)	629	(D)	407	(E)	581
24.	Acco	rding to Descar	rtes' r	ule of sig	gns, f	(x) =	$7x^4 - 9x^2 + 20$	x - 25	has how many	y poss	ible negative
	real r	oots?									
	(A)	2 or 0	(B)	0		(C)	1	(D)	1 or 3	(E)	4, 2 or 0
25.	Giver <i>a</i> + <i>b</i>	that $z^5 = -12$	16-1	312 <i>i</i> and	$dz^4 =$	-112	– 384 <i>i</i> , where	z = a +	$+bi$ and $a,b \in$	$\mathbb{Z},$ fin	d the value of
	(A)	1	(B)	-1		(C)	2	(D)	-2	(E)	0
26.		w many distinc and Joseph mu	•			_	n's 8-member r	nath t	eam sit aroun	d a cir	cular table if
	(A)	1440	(B)	2880		(C)	5040	(D)	10080	(E)	720
	. ,				Con		© 2018 TMSC	. ,			
					~ v P	JB*					

27. The area of a sector of a circle with a central angle $\frac{3\pi}{8}$ in a circle with a diameter of 44 cm is

cm². (nearest square centimeter)

- (A) 1140
- **(B)** 285
- (C) 2281
- (D) 570
- (E) 71
- 28. If the equation of the function shown is $y = a \sin(bx) + c$, which of the following could be a value of b?

- (A) 2π (B) $\frac{2}{\pi}$ (C) $\frac{1}{\pi}$ (D) π (E) $\frac{\pi}{2}$

- 29. The school day at Houston Elementary School begins at 8:35 am and ends at 3:45 pm. How many degrees has the minute hand on a clock travelled during the school day?
 - (A) 2550°
- (B) 2430°
- (C) 2310°
- (D) 2640°
- **(E)** 2580°
- 30. Two standard dice are rolled and the values on the top faces are added. What is the expected value of the sum?
 - (A) 7
- **(B) 6.5**
- (C) 7.5
- (D) 7.25
- (E) 6.75
- 31. $\frac{3x+5}{(x+3)(x-1)} = \frac{A}{x+3} + \frac{B}{x-1}$, where A and B are integers. Find the value of A.
 - (A) 2
- (\mathbf{B}) -2
- (C) -1
- **(D)** 1
- (\mathbf{E}) -4

- 32. What is the tenth harmonic number?
 - (A)
- (B) $\frac{4861}{2520}$ (C) $\frac{7381}{2520}$ (D) $\frac{4609}{2520}$
- 33. If A represents a digit 0-9 in the equation $6A5_8+3A2_4=111011011_2$, find the value of A.
 - (A) 1
- $(\mathbf{B}) \quad \mathbf{0}$
- (C) 3
- (\mathbf{D}) 2
- (E) cannot be determined
- 34. Paul has a 12-inch by 15-inch piece of cardstock that he would like to form into an open-top box in the shape of a rectangular prism by cutting a square out of each corner and folding up the sides. What is the largest possible volume box he can form? (nearest cubic inch)
 - (A) 176 in^3
- (B) 162 in^3
- (C) 130 in^3
- (D) 400 in^3
- (E) 177 in^3
- 35. Given the sequence 9,-19,-51,-69,-55,9,141,..., find the 20^{th} term.
 - (A) 16,235
- (B) 13,581
- (C) 19,209
- **(D)** -1207
- **(E)** -1311
- 36. A function, f(x), exists such that $f''(x) = 6x^2 + 18x 8$, f(-2) = 6 and f(2) = 10. Find f(4).
 - (A) -68
- **(B)** 208
- (C) 228
- (D) 285
- (E) 251

37. If $5^x \cdot 25^{2y} = 1$ and $3^{5x} \cdot 9^y = \frac{1}{9}$, then x + y equals____.

- (A) $-\frac{4}{9}$ (B) $\frac{1}{9}$ (C) $\frac{1}{3}$ (D) $-\frac{1}{3}$ (E) $-\frac{1}{9}$

38. $\sum_{k=0}^{3} [kx + (k-1)y - k] = ? = ?$

- (A) 6x+4y-6 (B) 6x+2y-6 (C) 6x+2y+6 (D) 6x+3y-6

39. When Cora received her paycheck, she immediately paid 1/4 of it for rent and \$120 to her phone company. The next day, she spent 30% of what was left for her car payment. Finally, she put half of the remaining money in savings and was left with \$420. How much was she paid?

- **(A) \$1710**
- **(B)** \$3893
- (C) \$2190
- **(D)** \$2025
- **(E) \$1760**

40. Morgan folds the net shown into a fair tetrahedral die. She rolls her tetrahedral die and adds the three visible sides. What is the expected value for the sum?

- (A) 18
- (B) 14.5
- (C) 13.5
- (D) 14
- (E) 12.5

41. Let $5x^2y + 8y^2 = 48$. Find the slope of the line normal to the graph of the relation at the point (-2,-4).

- (A) $-\frac{10}{3}$ (B) $\frac{5}{3}$ (C) $\frac{20}{11}$ (D) $-\frac{11}{20}$ (E) $-\frac{4}{7}$

42. Given f(x) = 2x - 3 and g(x) = 4 - 2x find $(f/g)^{-1}(x)$.

- (A) $\frac{3+4x}{2x-2}$ (B) $\frac{3+4x}{2x+2}$ (C) $\frac{3-4x}{2x-2}$ (D) $\frac{3-4x}{2x+2}$

- **(E)**

43. Working together, Aaron and Brandon can paint and trim a wall in half an hour. If Aaron works three times faster than Brandon, how long would it take Aaron to do the job alone?

- (A) 40 min
- (B) 42 min
- (C) 45 min
- (D) 120 min
- **(E) 135** min

44. Let x + y = 18 and xy = 11. Calculate $x^3 + y^3$.

- (A) 5238
- **(B)** 5634
- (C) 5436
- **(D)** 6030
- (E) 6228

45. A regular octagon has vertices A, B, C, D, E, F, G and H respectively. What is $m \angle AFD$?

- (A) 60°
- (B) 45°
- (C) 57.5°
- (D) 67.5°
- (E) 112.5°

										U
46.				nas a mean of 3 arranged from					nge of	38. If A, B, C,
	(A)	18	(B)	24	(C)	20	(D)	30	(E)	22
47.		the function $\int dx dx$ where $x = -2$			4x - 2	, find the slop	e of tl	ne secant line b	etwee	en the points on
	(A)			45	(C)	67	(D)	26	(E)	27
48.	48. Find the sum of the coefficients of the 4 th and 7 th terms in the polynomial expansion of $(3x-5)^{10}$.									
	(A)	254,430	(B)	286,132,500	(C)	298,586,250	(D)	232,976,250	(E)	59,717,250
49.	49. Let $f(x) = \frac{3x^4 + 5x^2 - 8x + 3}{x^3 + 9x^2 + 2}$ and $s(x)$ be the slant asymptote of f . Find the value of $s(-5)$.									
	(A)	-12	(B)	-42	(C)	12	(D)	15	(E)	-27
50.	Let f	$f(x) = ax^4 - bx$	^2+5x	+6 where, the	en f	(-9) = 48, find	f(9)			
	(A)	48	(B)	36	(C)	132	(D)	-132	(E)	138
51.	If $\begin{bmatrix} 3 \\ a \end{bmatrix}$	$\begin{bmatrix} 5 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 & b \\ 1 & -8 \end{bmatrix} =$	$=\begin{bmatrix} 14 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -61 \\ -34 \end{bmatrix}$, find the	e valu	e of $a+b$.				
	(A)	12	(B)	-6	(C)	-9	(D)	14	(E)	-5
52.	Let f	$f(x) = \begin{cases} mx^4 + 6 \\ nx^2 - 6 \end{cases}$	6x, 3	$x \le 2$ be continuous $x > 2$	nuous	and differentia	able e	verywhere. Fii	nd <i>n</i> .	
	(A)	$\frac{5}{8}$	(B)	$-\frac{8}{5}$	(C)	$\frac{15}{2}$	(D)	$\frac{5}{4}$	(E)	$-\frac{15}{16}$
53.	If f is	continuous on	the cl	osed interval [a,b] a	and k is any nu	mber	between $f(a)$	and	f(b), then
	there	is at least one ı	ıumb	$\operatorname{er} c \operatorname{in} [a,b] \operatorname{su}$	ich th	at $f(c) = k$. T	This is	the	_•	
	(A)	Rolle's Theore	em	(B) Sandw	ich Tł	neorem (C)	Fur	ndamental The	orem	of Calculus
	(D)	Intermediate `	Value	Theorem (E) Fu	ındamental Th	eoren	of Algebra		
54. A circle is inscribed in an equilateral triangle with perimeter 18 inches. The area of the circle isin ² .										
	(A)	9π	(B)	6π	(C)	12π	(D)	3π	(E)	12

55. The repeating decimal 0.363636...8 is equal to what reduced fraction in base 8?

- (A) $\frac{10}{21_8}$ (B) $\frac{17}{34_8}$ (C) $\frac{12}{25_8}$ (D) $\frac{30}{56_9}$

56. A metallurgist has an alloy with 5% titanium and an alloy with 30% titanium by mass. He needs 100 grams of an alloy with 15% titanium. How much of the 5% alloy should he use to obtain the new 100gram alloy?

- $(A) \quad 30 g$
- (B) 40 g
- (C) 50 g
- $(D) \quad 60 \text{ g}$
- **(E)** 70 g

57. The graph of $f(x) = \frac{x^2 + 3x - 10}{x^2 + 9x + 20}$ suggests that the discontinuity at x = -5 is removable by defining

- f(-5) to be_____.
- (B) 7
- (C) **–1**
 - **(D)** 1
- **(E)** 5

58. What is the shortest distance between the line 4x - 3y = 18 and the point? (-6,5)?

- (A) 4.2
- **(B)** 5.6
- (C) 7.4
- (D) 9.2
- **(E)** 11.4

59. How many ordered pairs (a,b) exist such that the four-digit number, 5a7b, is divisible 2 and 3 both?

- (A) 16
- **(B)** 20
- (C) 12
- (D) 17
- **(E)** 11

60. If $f(x) = 3\cos^2(2\theta)$, then $\lim_{h \to 0} \frac{f\left(\frac{\pi}{6} + h\right) - f\left(\frac{\pi}{6} - h\right)}{2h} =$

- (A) 3
- (C) 0
- (\mathbf{E}) 6

2018-2019 TMSCA Mathematics Test Five Answers

1	. A	21. B	41. D
2	. Е	22. D	42. B
3	. В	23. E	43. A
4	. С	24. C	44. A
5	. В	25. C	45. D
6	. D	26. A	46. C
7	. С	27. B	47. E
8	. Е	28. D	48. D
9	. С	29. E	49. B
1	0. B	30. A	50. E
1	1. E	31. D	51. C
1	2. E	32. C	52. C
1	3. B	33. C	53. D
1	4. C	34. E	54. D
1	5. A	35. A	55. C
1	6. A	36. C	56. D
1	7. E	37. D	57. B
1	8. C	38. B	58. E
1	9. D	39. E	59. D
2	0. E	40. C	60. D

2018-2019 TMSCA Mathematics Test Five Solutions

- 11. Any triangle inscribed in a semicircle is a right triangle with the right angle across from the diameter. Also, since the short leg is ½ the length of the hypotenuse, this is 30-60-90 special triangle. So, r = 5 = BC and $AB = 5\sqrt{3}$ for a triangle are of $\frac{1}{2}(5)(5\sqrt{3}) = \frac{25\sqrt{3}}{2}$.
- 12. For conditional events, either use the formula:

$$p(A|B) = \frac{p(A \text{ and } B)}{p(B)} = \frac{0.18}{0.40} = \frac{9}{20}$$
 or use a Venn diagram

to visualize the situation:

13. $\left[\ln(x+8)\right]_2^k = \ln(k+8) - \ln 10 = \ln 2$ for $\frac{k+8}{10} = 2$ and k = 12.

14.
$$\left(2^{\frac{1}{3}}a^{\frac{3}{3}}b^{\frac{2}{3}}\right)\left(2^{\frac{5}{6}}a^{\frac{3}{6}}b^{\frac{2}{6}}\right) = 2^{\frac{7}{6}}a^{\frac{9}{6}}b^{\frac{6}{6}} = 2ab^{\frac{6}{3}}2a^{\frac{3}{6}}$$

15. The expression is the polynomial expansion of

$$(p+q)^3 = \left(-\frac{1}{6}\right)^3 = -\frac{1}{216}$$

- 17. Each row is the coefficients of the polynomial expansion of $(3x+1)^n$ where n is the row number beginning with 0 for the top row, so the third term of the expansion of $(3x+1)^5$ is ${}_5C_3(3)^3(1)^2 = 270$
- 22. There are seven different possibilities: HTTTTTH, THTTTTTH, TTHTTTTH, TTTTTTH, TTTTTTHTH, TTTTTTHH

for each toss of a fair coin, $p(H) = p(T) = \frac{1}{2}$, so the

probability of each of the seven is $\left(\frac{1}{2}\right)^8 = \frac{1}{216}$ and a total

probability of $\frac{7}{216}$

- 26. Treat Alex and Joseph as one item when seating the students for $\frac{7!}{7}$ = 720 possible arrangements at a circular table, then multiply by two to adjust for the different orders that Alex and Joseph can sit in and still be next to each other for 1440 possible arrangements.
- 27. The area of a sector when the central angle measure is given in radians is $A = \frac{1}{2}r^2\theta = \frac{1}{2}\left(22^2\right)\left(\frac{3\pi}{8}\right)$ or about 285 cm².
- 31. Multiply both sides by the least common multiple of the denominators for 3x+5=A(x-1)+B(x+3), then let x=-3 for -9+5=-4A and A=1.
- 34. Let the side length of the square corner cutouts be x, then find the maximum of the function V = (12-2x)(15-2x)x on the domain [0,6] because the cutout side can not be more than $\frac{1}{2}$ the shortest side. For a volume of 177 in³.

36. Find $f'(x) = 2x^3 + 9x^2 - 8x + A$ and $f(x) = \frac{1}{2}x^4 + 3x^3 - 4x^2 + Ax + B$ where A and B are unknown constants. Then use the known function values to find A = -11, B = 16 and f(4) = 228.

- 41. Use the product rule and implicit differentiation to get $5x^2 \frac{dy}{dx} + y(10x) + 16y \frac{dy}{dx} = 0 \text{ then}$ $5(-2)^2 \frac{dy}{dx} + (-4)10(-2) + 16(-4) \frac{dy}{dx} = 0 \text{ and } \frac{dy}{dx} = \frac{20}{11} \text{ and a}$ slope for the normal line of $-\frac{11}{20}$.
- 43. Let A be the time it would take Aaron on his own and B be the time it would take Brandon on his own. Solve the equation $\left(\frac{1}{B} + \frac{3}{B}\right)(30) = 1$ for Brandon's time 120 minutes and Aaron's time 40 minutes.
- 44. $x^3 + y^3 = (x + y)[(x + y)^2 - 3xy] = (18)(18^2 - 3.11) = 5238$

Think of the octagon as if it was inscribed in a circle. The intercepted arc of the angle is 135°, so the measure of the angle is $135^{\circ} \div 2 = 67.5^{\circ}$.

52. If the function is continuous and differentiable at every point, then the function values and derivative values at 2 for each piece of the function must be the same, so

$$4mx + 6 = 2nx - 4$$
 and $mx^4 + 6x = nx^2 - 4x$ when $x = 2$ and $n = \frac{15}{2}$.

57.
$$f(x) = \frac{(x+5)(x-2)}{(x+4)(x+5)} \approx \frac{x-2}{x+4}$$
 and if there wasn't a hole

in the graph, the function value would be
$$\frac{-5-2}{-5+4} = 7$$