Tutorial 4 Floating point number representation and arithmetic

COMP2120B Computer organization

Kevin Lam (yklam2)

Floating point number representation

Suppose we have an 8-bit floating point number with the following format:

<u>Sign</u>	<u>Biased exponent</u>	<u>Significand</u>
0	001	0011

- Sign (1 bit), 0 = positive, 1 = negative
 - In this case, it is a positive value
- Biased exponent (k = 3 bits), exponent = biased exponent biased
 - biased = $2^{k-1} 1 = 3$
 - exponent = 1 3 = -2
- **Significand** (N k 1 = 4 bits), 1. Significand
 - $1.0011_2 = 1.1875$
- Therefore, the value above equals $1.1875 \times 2^{-2} = 0.296875$

Exercise 1

a. Find the decimal value represented by this 12-bit binary pattern:

<u>Sign</u>	Biased exponent	<u>Significand</u>
1	1000	1010000

b. Find the corresponding binary pattern for the decimal value 10.125, using the above representation.

Exercise 1 - answer

a.
$$-1.101_2 \times 2^{8-7} = -1.625 \times 2 = -3.25$$

Refer to the lecture slides on how to convert between decimal and binary

b.
$$10.125 = 1010.001_2 = 1.010001_2 \times 2^3 = 1.010001_2 \times 2^{10-7}$$

Sign (positive): 0

Biased exponent (decimal value 10): 1010

Biased exponent

Significand (1.010001): **010001**0

Sign

Remember to check the number of required bits

<u>Significand</u>

0 1010 0100010

IEEE 754 basic binary formats

	Sign	Biased exponent	Significand
binary32	1	8	23
binary64	1	11	52
binary128	1	15	112

Number of bits

- What are the smallest and largest (non-zero) positive values that can be represented by the binary32 format?
 - Bit pattern 0 00000000 000...00 and 0 11111111 1111...11?

Interpretation of IEEE754 floating-point numbers (1)

Smallest positive normal value for binary32 representation: biased exponent is 00...1, significand is 00...0, value = $1.0... \times 2^{1-127} = 2^{-126}$

Interpretation of IEEE754 floating-point numbers (2)

 $2^{-126} = 2^{-149}$

Zero is here also: When significand is 00...0, $value = 0.0 ... \times 2^{E} = 0$

Floating point multiplication/division (the general flow)

- Multiplication:
 - Determine sign
 - Add biased exponent, subtract bias
 - Multiply significand
 - Normalize result

- Division:
 - Determine sign
 - Subtract biased exponent, add bias
 - Divide significand
 - Normalize result

Example	Sign	Biased exponent (bias = 3) Significand		Note that we assumed that we have enough guard bits for the	
<i>X</i> (0.34375)	0 (+ve)	001 (=1 ₁₀)	0110 (1.011 ₂ =1.375 ₁₀)	calculation	
Y (-3)	1 (-ve)	100 (=4 ₁₀)	1000 (1.1 ₂ =1.5 ₁₀)		
<i>X</i> × <i>Y</i> (-1.03125)	1 (-ve)	Biased exponent = $1 + 4 - 3 = 2_{10}$ Significand = $1.375 \times 1.5 = 2.0625_{10} = 10.0001_2$			
Normalize result (shift right once)		Biased exponent = 3 Significand = 1.00001_2			
(-1 or -1.0625) 1		011 (=3 ₁₀)	0000 or 0001 (depending approaches)	ng on rounding	

Exercise 2

Perform X/Y with the following representation.

		Biased exponent (bias = 7)	Significand
<i>X</i> (0.34375)	0 (+ve)	0101 (=5 ₁₀)	011 (1.011 ₂ =1.375 ₁₀)
Y (-3)	1 (-ve)	1000 (=8 ₁₀)	100 (1.1 ₂ =1.5 ₁₀)

	Sign	Biased exponent (bias = 3)	Significand
<i>X</i> (0.34375)	0 (+ve)	001 (=1 ₁₀)	0110 (1.011 ₂ =1.375 ₁₀)
Y (-3)	1 (-ve)	100 (=4 ₁₀)	1000 (1.1 ₂ =1.5 ₁₀)

Exercise 2 answer

Example	Sign	Biased exponent (bias = 7)	Significand
X (0.34375)	0 (+ve)	0101 (=5 ₁₀)	011 (1.011 ₂ =1.375 ₁₀)
Y (-3)	1 (-ve)	1000 (=8 ₁₀)	100 (1.1 ₂ =1.5 ₁₀)
<i>X / Y</i> (-0.114583)	1 (-ve)	Biased exponent = $5 - 8 + 7 = 4_{10}$ Significand = $1.375/1.5 = 0.91666 \dots_{10} = 0.111010 \dots_{2}$	
Normalize result (shift left once)		Biased exponent = 3, Significand = $1.11010 \dots_2$	
(-0.109375 or -0.1171875)	1	0011 (=3 ₁₀)	110 or 111 (depending on rounding approaches)

Example	Sign	Biased exponent (bias = 3)	Significand	
X (0.34375)	0 (+ve)	001 (=1 ₁₀)	0110 (1.011 ₂ =1.375 ₁₀)	
Y (-3)	1 (-ve)	100 (=4 ₁₀)	1000 (1.1 ₂ =1.5 ₁₀)	
<i>X / Y</i> (0.114583)	1 (-ve)	Biased exponent = $1 - 4 + 3 = 0_{10}$ Significand = $1.375/1.5 = 0.91666 \dots_{10} = 0.111010 \dots_{2}$		
Normalize result (shift left once)		Biased exponent = -1 , Significand = $1.11010 \dots_2$ Exponent underflow!		

Floating point addition/subtraction (the general flow)

- Addition:
 - Shift smaller exponent until both exponents equal
 - Add signed significands
 - Normalize result

- Subtraction (X-Y):
 - Change sign of Y
 - Do addition

Example	Sign	Biased exponent (bias = 3)	Significand	Signed significand
<i>X</i> (0.4375)	0	001 (=1 ₁₀)	1100	1.11 ₂ (=1.75 ₁₀)
Y (-3)	1	100 (=4 ₁₀)	1000	-1.1 ₂ (=-1.5 ₁₀)
X (shifting exponent)		100 (=4 ₁₀)		0.00111 ₂ (=0.21875 ₁₀)
X + Y (-2.5625)		Biased exponent = Significand = 0.001		-1.01001 ₂ (=-1.28125 ₁₀)
normalize result (do nothing)				
(-2.5 or -2.625)	1	100 (=4 ₁₀)	0100 or 0101	(depending on rounding approaches)

Exercise 3

Perform subtraction on the following

Example	Sign	Biased exponent (bias = 3)	Significand	Signed significand
X (28)	0	111 (=7 ₁₀)	1100	1.11 ₂ (=1.75 ₁₀)
Y (-12)	1	110 (=6 ₁₀)	1000	-1.1 ₂ (=-1.5 ₁₀)

Exercise 3 answer

Example	Sign	Biased exponent (bias = 3)	Significand	Signed significand
X (28)	0	111 (=7 ₁₀)	0110	1.11 ₂ (=1.75 ₁₀)
Y (-12)	1	110 (=6 ₁₀)	1000	-1.1 ₂ (=-1.5 ₁₀)
<i>-Y</i> (12)	0	110 (=6 ₁₀)	1000	1.1 ₂ (=1.5 ₁₀)
-Y (shifting exponent)		111 (=7 ₁₀)		0.11 ₂ (=0.75 ₁₀)
X + (-Y) (40)		Biased exponent = 7, Significand = $1.11_2 + 0.11_2 = 10.1_2$ (=2.5 ₁₀)		
normalize result (shift right once)		Biased exponent = 8, Significand = 1.01_2 (= 1.25_{10}) Exponent overflow!		