Examen FINAL

Análisis II - Matemática 3 - 3 de Agosto de 2021

Nombre: L. U.: Carrera:

- 1. Consideremos la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : x = y^2 + z^2, 1 \le x \le 4\}$.
 - a) Probar que S es una superficie orientable. ¿Cuántas orientaciones distintas tiene?
 - b) Supongamos que S está orientada con la normal apuntando en la dirección del vector (-1,4,0) en el punto (4,2,0). Hallar un campo vectorial F(x,y,z) que cumpla las siguientes 2 condiciones:
 - 1) $\operatorname{div}(F)(x, y, z) = 0$ para todo $(x, y, z) \in S$;
 - 2) $\int_{S} F \cdot d\mathbf{S} = 1$.
- 2. Considerar el campo vectorial $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ de clase C^1 dado por

$$F(x,y) = (P(x,y), Q(x,y)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

- a) Calcular $Q_x(x,y) P_y(x,y)$
- b) ξ Es F un campo conservativo?
- c) Calcular $\int_C F.d\mathbf{s}$ donde C es la circunferencia unitaria centrada en el origen con radio 7.
- d) Probar que para toda curva cerrada C con $(0,0)\not\in Int(C)$ se tiene

$$\int_C F \cdot d\mathbf{s} = 0,$$
 pero $\int_C F \cdot d\mathbf{s} \neq 0,$

si $(0,0) \in Int(C)$. Revisar la respuesta dada en b).

3. Considerar la ecuación X'(t) = AX(t), con

$$A = \left(\begin{array}{cc} a & 1 \\ -1 & a \end{array} \right) \in \mathbb{R}^{2 \times 2}.$$

- a) Hallar, si existen, todos los $a \in \mathbb{R}$ tales que todas las soluciones verifiquen que $X(t) \to \overrightarrow{0}$ cuando $t \to +\infty$.
- b) Hallar, si existen, todos los $a \in \mathbb{R}$ tales que hay una solución $X(t) \neq 0$ tal que $X(t) \to \overrightarrow{0}$ cuando $t \to +\infty$ y otra Y(t) tal que $Y(t) \not\to \overrightarrow{0}$ cuando $t \to +\infty$.
- c) Hallar, si existen, todos los $a \in \mathbb{R}$ tales que todas las soluciones X(t) estén acotadas.
- 4. Hallar un $a \in \mathbb{R}$ tal que la función $x(t) = e^{2t}$ sea una solución de la ecuación

$$ax''(t) + 2x'(t) + x(t) = 9e^{2t}$$

Para el valor de a hallado, encontrar además la solución de la ecuación que verifica

$$x(0) = 1,$$
 $x'(0) = 0.$

¿Hay alguna solución tal que $x(t) \to 0$ cuando $t \to -\infty$? Si la hubiera, calcularlas todas.

Justifique todas sus respuestas