Ensemble des entiers naturels N et notions en arithmétique

- I Ensemble des entiers naturels N
- II Multiples d'un entier naturel Le plus petit multiple commun de deux entiers naturels :
- III Diviseurs d'un entier naturel Le plus grand diviseur commun de deux entiers naturels :
- IV Nombres premiers Décomposition d'un entier naturel en produit de facteurs premiers :

I - L'ensemble des entiers naturels N

1 – Présentation de N:

Les nombres 0,1,2,3,4.... forment un ensemble que l'on note \mathbb{N} .

$$\mathbb{N} = \{0,1,2,3,4.....\}.$$

On a parfois besoin de l'ensemble des entiers naturels privé de 0. On le note \mathbb{N}^*

$$\mathbb{N}^* = \{1, 2, 3, 4, \dots \}$$

Exemples

14, 18, 340, 5324 sont des nombres entiers naturels.

On écrit $18 \in \mathbb{N}$ et se lit 18 appartient à \mathbb{N} aussi $340 \in \mathbb{N}$; $5324 \in \mathbb{N}$

$$-1 \notin N$$
 ; $\frac{2}{3} \notin N$; $\sqrt{2} \notin N$; $3,12 \notin N$ \notin n'appartient pas

L'écriture
$$\frac{2}{3} \notin N$$
 se lit $\frac{2}{3}$ n'appartient pas à N

2 – Les nombres entiers naturels pairs et impairs :

<u>a - Définitions :</u>

- ♣ Tout nombre entier naturel qui s'écrit sous la forme 2k avec $k \in \mathbb{N}$ s'appelle un nombre entier naturel pair.
- ♣ Tout nombre entier naturel qui s'écrit sous la forme 2k + 1 avec $k \in \mathbb{N}$ s'appelle un nombre entier naturel impair.

b - Exemples :

```
0,14,100 sont des nombres pairs. 1,5, 29 sont des nombres impairs 0,2,4,6,8,10,... sont des nombres pairs. 1,3,5,7,9,11,...sont des nombres impairs
```

L'ensemble des nombres pairs se note 2N et on a 2N = $\{0,2,4,6,8.....\}$ = $\{2k \; ; \; k \in N \}$

L'ensemble des nombres impairs $\{1,3,5,7,9...\} = \{2k+1 ; k \in N \}$

Remarques:

- ♦ On peut dire que l'ensemble des entiers naturels peut être divisé en deux groupes : si un entier n'est pas pair c'est-à-dire de la forme 2k, il doit être impair de la forme 2k + 1.
- ◆Deux nombres sont dits de même parité s'ils sont :
 - Soit tous les deux pairs.
 - Soit tous les deux impairs.

c - Activités :

- 1) Montrer que la somme de deux entiers naturels pairs est paire
- 2) Montrer que la somme de deux entiers naturels impairs est paire
- 3) Montrer que le produit de deux entiers naturels impairs est impair
- 4) Montrer que le produit d'un entier naturel impair et d'un entier naturel pair est pair

Solution:

1) Montrer que la somme de deux entiers naturels pairs est paire Soient a et b deux entiers naturels pairs montrons que a + b est pair?
a et b sont pairs donc il existe k et k' deux entiers naturels tels que: a = 2k et b = 2k' a + b = 2k + 2k' = 2(k + k') on pose k'' = k + k' donc $k'' \in N$ donc a + b = 2k'' d'où a + b est pair

2) Montrer que la somme de deux entiers naturels impairs est paire Soient a et b deux entiers naturels impairs montrons que a + b est pair?

a et b sont impairs donc il existe k et k' deux entiers naturels tels que:

$$a = 2k + 1 \quad et \quad b = 2k' + 1$$

$$a + b = 2k + 1 + 2k' + 1 = 2k + 2k' + 2 = 2(k + k' + 1)$$
 on pose
$$k'' = k + k' + 1 \quad donc \quad k'' \in N$$

$$donc \ a + b = 2k'' \qquad \qquad d'où \quad a + b \ est \ pair$$

3) Montrer que le produit de deux entiers naturels impairs est impair

Soient a et b deux entiers naturels impairs montrons que a × b est impair?

a et b sont impairs donc il existe k et k' deux entiers naturels tels que:

$$a=2k+1 \quad et \quad b=2k'+1$$

$$a\times b=(2k+1)(\ 2k'+1)=4kk'+2k+2k'+1$$

$$a\times b=2(2kk'+k+k')+1 \quad \text{on pose} \quad k''=2kk'+k+k' \quad \text{donc} \quad k''\in N$$

$$\text{donc } a\times b=2\ k''+1 \qquad \qquad \text{d'où} \quad a\times b \text{ est impair}$$

4) Montrer que le produit d'un entier naturel impair et d'un entier naturel pair est pair

Soient a un entier naturel pair et b un entier naturel impair montrons que a \times b est pair?

a est pair et b est impair donc il existe k et k' deux entiers naturels tels que:

$$a=2k \ \ \text{et} \ \ b=2k'+1 \qquad \text{donc} \quad a\times b=2k \ (\ 2k'+1)=2(2kk'+k)$$
 on pose
$$k''=2kk'+k \ \ \text{donc} \quad k''\in N$$

$$\text{donc} \ \ a\times b=2\ k'' \qquad \qquad \text{d'où} \quad a\times b \ \text{est pair}$$

<u>d - Propriètes :</u>

Parité du premier nombre	Parité du premier nombre	Parité de la somme	Parité du produit
Pair	Pair	Pair	Pair
Pair	Impair	Impair	Pair
Impair	Pair	Impair	Pair
impair	Impair	Pair	Impair

e - Exercice :

- 1 Soit n∈N, étudier la parité des nombres suivants :
 - a) n(n+1) (Le produit de deux entiers naturels consécutifs)
 - b) n + (n+1) + (n+2) c) $4n^2 + 4n + 1$
- 2- Soit $n \in \mathbb{N}$, montrer que le nombre $\mathbf{n}^2 + \mathbf{n} + 7$ est impair

```
Solution:
```

```
1) Soit n \in \mathbb{N}, étudier la parité des nombres suivants :
a) n(n+1) (Le produit de deux entiers naturels consécutifs)
Si n est pair donc il existe k un entier naturel tel que: n = 2k
 Donc n + 1 = 2k + 1 donc n(n + 1) = 2k(2k + 1)
 on pose k' = k(2k+1) donc k' \in N
  donc n(n+1) = 2k' d'où n(n+1) est pair
 Si n est impair donc il existe k un entier naturel tel que: n = 2k + 1
  Donc n + 1 = 2k + 1 + 1 = 2(k + 1) donc n(n + 1) = (2k + 1) 2(k + 1) = 2(2k + 1)(k + 1)
on pose k' = (2k + 1)(k + 1) donc k' \in N donc n(n + 1) = 2k'
 d'où n (n + 1) est pair
```

Autre méthode: Si n est pair donc n + 1 est impair d'où n (n + 1) est pair Si n est impair donc n + 1 est pair d'où n (n + 1) est pair

Car le produit d'un entier naturel pair et d'un entier naturel impair est pair

```
b) n + (n+1) + (n+2) n \in \mathbb{N} (étudier la parité)
   n + (n+1) + (n+2) = 3n + 3
  Si n est pair donc il existe k un entier naturel tel que: n = 2k
   n + (n+1) + (n+2) = 3 \times 2k + 3 = 6k + 2 + 1
   Donc n + (n+1) + (n+2) = 2(3k+1) + 1 on pose k' = 3k + 1 donc k' \in N
    donc n + (n+1) + (n+2) = 2 k' + 1 d'où n + (n+1) + (n+2) est impair
   Si n est impair donc il existe k un entier naturel tel que: n = 2k + 1
   Donc n + (n+1) + (n+2) = 3n + 3 = 6k + 6 donc n + (n+1) + (n+2) = 2(3k + 3)
  on pose k' = 3k + 3 donc k' \in N donc n + (n+1) + (n+2) = 2k'
   d'où n + (n+1) + (n+2) est pair
 c) 4n^2 + 4n + 1 (étudier la parité)
Donc 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1 on pose k = 2n^2 + 2n donc k \in N
                           d'où 4n^2+4n+1 est impair
donc 4n^2 + 4n + 1 = 2k + 1
```

2- Soit $n \in \mathbb{N}$, montrer que le nombre $n^2 + n + 7$ est impair

On a
$$\mathbf{n}^2 + \mathbf{n} + 7 = \mathbf{n}(\mathbf{n} + 1) + 6 + 1$$

n(n+1) Le produit de deux nombres consécutifs donc n(n+1) est pair

n(n+1) est pair donc il existe k un entier naturel tel que: n(n+1) = 2k

On a
$$\mathbf{n}^2 + \mathbf{n} + 7 = 2\mathbf{k} + 6 + 1 = 2(\mathbf{k} + 3) + 1$$

on pose
$$k' = k + 3$$
 donc $k' \in N$

On a
$$\mathbf{n}^2 + \mathbf{n} + 7 = 2\mathbf{k}' + 1$$
 d'où $\mathbf{n}^2 + \mathbf{n} + 7$ est impair

$$n^2 + n + 7$$