

(12) United States Patent Yan et al.

(10) Patent No.:

US 6,340,583 B1

(45) Date of Patent:

Jan. 22, 2002

(54)	ISOLATED HUMAN KINASE PROTEINS,
` '	NUCLEIC ACID MOLECULES ENCODING
	HUMAN KINASE PROTEINS, AND USES
	THEREOF

(75) Inventors: Chunhua Yan, Boyds; Karen A.

Ketchum, Germantown; Valentina Di Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

(73) Assignee: PE Corporation (NY), Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

(22) Filed: Mar. 22, 2001

(51) Int. Cl.⁷ C12N 9/12; C12N 1/20; C12N 15/00; C12N 5/00; C07H 21/04

 (56)

References Cited

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.* Sambrook et al., Molecular Cloning Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

Primary Examiner—Rebecca E. Prouty Assistant Examiner—M. Monshipouri

(74) Attorney, Agent, or Firm-Celera Genomics; Robert

A. Millman; Justin D. Karjala

(57) ABSTRACT

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

1 CCCAGGGCGC CGTAGGCGGT GCATCCCGTT CGCGCCTGGG GCTGTGGTCT
51 TOO GOOD GAGGOGGOGG CGCCAGGAGC TGAGGGGAGI IGIAGGGAAC
101 TOACCCCACT TOTTGTGTCC CCCGCCTCCT CCTCCCCATT TCCGCGCTCC
151 CGGGACCATG TCCGCGCTGG CGGGTGAAGA TGTCTGGAGG TGTCCAGGCT
201 CTCCCCACCA CATTCCTCCA AGCCAGATAT GGIACAGGAC IGICAACGAA
251 ACCTEGEACE ECTETTECTT CEGGTGAAAG TGATGUGUAG CUTGGACUAC
AND COCANTOTOC TOACTTOAT TOSTGTGCTG TACAAGGATA AGAAGCIGAA
351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC TTTCTGCGCA
401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC
451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCACG
501 GCTCATAGTG GAAGAGAGGA AAAGGGCCCC CATGGAGAAG GCCACCACCA
EEL ACAAACCAAC CTTCCCCAAG AACGACCGCA AGAAGCGCIA CACGGIGGIG
601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA
GET TEACACECTE CATATETTET CETTERS GALCATOR
701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC
7E1 CTCAACGTGA AGCTTTTCTG GGAGAAGIII GIICCCACAG AIIGICCCCC
801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA
851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC
901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA
951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT
1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT
1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG
1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA
1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT
1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAC
1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC
1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC
1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA
1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA
1451 AAGACTGATG CCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC
1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG
1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA
1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCACCA ACCCTCACAA
1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA
1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACACTAGAAAGC 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC
1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT
1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC
1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAGCAATCT
1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT
2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG
2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC
2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGGCAGCAT CCTCCTGAGC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC
2151 CACATGTTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG
2201 AACTOTICAT CACAACTAGA TITIGCOTOTT CTAAGTGTCT ATGAGCTTGC
2201 AACTOTICAT CACAACTAGA TITIGCOTOTI CITAAGTATO ATTAGA AAAAAAAAAAAAAAAAAAAAAAAA
2301 AAAAAAAAAA AAAAAAAAAA (SEQ ID NO:1)
CSUI ANAMANAMA ANAMANAMA (SEQ ID NO.1)

FIG.1A

FEATURES: 1-228 5'UTR: 229 Start Codon: 994 Stop Codon: 997 3'UTR: Homologous proteins: Top 10 BLAST Hits Score 485 e-136 CRA|1000682328847 /altid=gi|8051618 /def=ref|NP 057952.1| LIM d... CRA 18000005015874 /altid=gi|5031869 /def=ref|NP 005560.1| LIM ... 485 e-136 CRA 88000001156379 /altid=gi 7434382 /def=pir | JC5814 LIM motif... 469 e-131 CRA|88000001156378 /altid=gi|7434381 /def=pir||JC5813 LIM motif... 469 e-131 CRA 18000005154371 /altid=gi 7428032 /def=pir | JE0240 LIM kinas... CRA 18000005126937 /altid=gi 6754550 /def=ref NP_034848.1| LIM ... 469 e-131 469 e-131 CRA 18000005127186 /altid=gi 2804562 /def=dbj BAA24491.1 (AB00... 469 e-131 CRA 18000005127185 /altid=gi 2804553 /def=dbj BAA24489.1 (AB00... 469 e-131 CRA 18000005004416 /altid=gi 2143830 /def=pir | 178847 LIM motif... 468 e-131 CRA|18000005004415 /altid=gi|1708825 /def=sp|P53670|LIK2 RAT LI... 468 e-131 BLAST dbEST hits: Score 1049 0.0 gi|10950740 /dataset=dbest /taxon=96... 975 0.0 gi | 10156485 /dataset=dbest /taxon=96... 952 0.0 gi|5421647 /dataset=dbest /taxon=9606 ... 757 0.0 gi|10895718 /dataset=dbest /taxon=96... 714 0.0 gi | 13043102 /dataset=dbest /taxon=960... 531 e-149 gi | 519615 /dataset=dbest /taxor=9606 /... 511 e-143 gi | 11002869 /dataset=dbest /taxon=96... EXPRESSION INFORMATION FOR MODULATORY USE: library source: From BLAST dbEST hits: gi|10950740 teratocarcinoma gi|10156485 ovary testis gi | 5421647 gi|10895718 nervous normal gi 13043102 bladder

FIG.1B

infant brain

gi|11002869 thyroid gland

Fetal whole brain

From tissue screening panels:

gi | 519615

1 MVQDCQRNLA RLLLPVKVMR SLDHPNVLKF IGVLYKDKKL NLLTEYIEGG 51 TLKDFLRSMD PFPWQQKVRF AKGIASGMDK TVVVADFGLS RLIVEERKRA 101 PMEKATTKKR TLRKNDRKKR YTVVGNPYWM APEMLNGKSY DETVDIFSFG

151 IVLCEIIGQV YADPDCLPRT LDFGLNVKLF WEKFVPTDCP PAFFPLAAIC

201 CRLEPESRPA FSKLEDSFEA LSLYLGELGI PLPAELEELD HTVSMQYGLT

251 RDSPP (SEQ ID NO:2)

FEATURES:

Functional domains and key regions:
[1] PDOC00004 PS00004 CAMP PHOSPHO SITE
cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

1 108-111 KKRT

2 119-122 KRYT

[2] PDOC00005 PS00005 PKC_PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 4

1 51-53 TLK

2 106-108 TTK

3 107-109 TKK

4 111-113 TLR

[3] PDOC00006 PS00006 CK2_PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 4

1 51-54 TLKD

2 76-79 SGMD

3 139-142 SYDE

4 212-215 SKLE

[4] PDOC00008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

- 2 77-82 GMDKTV
- 3 150-155 GIVLCE
- 4 158-163 GQVYAD

Membrane spanning structure and domains:

Helix Begin End Score Certainty 1 142 162 0.872 Putative 2 184 204 0.652 Putative

BLAST Alignment to Top Hit:

>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM
domain kinase 2 isoform 2b [Homo sapiens] /org=Homo
sapiens /taxon=9606 /dataset=nraa /length=617
Length = 617

Score = 485 bits (1235). Expect = e-136Identities = 241/265 (90%), Positives = 241/265 (90%), Gaps = 22/265 (8%)

Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 72 L VKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK Sbjct: 353 LTEVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 412

Query: 111 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 170

TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT Sbjct: 473 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 532

SDJCU: 4/3 ILKNIUKNAKTI I VIGIN FINIMP ENLINGASTILLI VIDIL SI GIVE CETTA CI VI CEL CI COL

Query: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 230 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI

Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 592

Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255 PLPAELEELDHTVSMQYGLTRDSPP

Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617 (SEQ ID NO:4)

Hommer search results (Pfam):

	arch results (PTam):	Caana	E-value	M
Model	Description	Score		11
PE00069	Eukaryotic protein kinase domain	100.1	1.1e-26	2
CE0003	CE00031 VEGFR	4.9	0.14	1
CEUUUSI	CEDUOSI VEGIN	4.7	1	1
CE00204	CE00204 FIBROBLAST GROWTH RECEPTOR	1.8	7 9	1
CE00359	E00359 bone_morphogenetic_protein_receptor		2.5	1
CF00022	CE00022 MAGUK_subfamily_d	1.5		1
CEN0287	CE00287 PTK_Eph_orphan_receptor	-48.4	3.8e-05	Ī
0500000	CE00292 PTK membrane span	-61.8	2.1e-05	1
CF00292	לבטטבאב דוג ווופוווטו מווכ שלמוו	52.0	=	

	CE00291 PTK_fgf_receptor	-113.0	0.027	1
CE00286	E00286 PTK EGF receptor	-125.1	0.0021	1
CE00290	CE00290 PTK Trk family	-151.3	6.5e-05	1
CE00288	CE00288 PTK Insulin receptor	-210.4	0.014	1
	,			

Parsed for domains:

rai sea for domaths.										
	Model	Domain	seq-f	seq-t		hmm-f	hnun-t		score	E-value
	PF00069	1/2	16	79		41	105		52.1	2.3e-13
	CE00022	1/1	124	153		187	216		1.5	2.5
	PF00069	2/2	81	156		129	182		48.0	3.1e-12
	CE00031	1/1	129	156		1114	1141		4.9	0.14
	CE00204	1/1	129	156		705	732		4.7	1
	CE00359	1/1	79	157		287	356		1.8	7.9
	CE00290	1/1	9	218		1	282	[]	-151.3	6.5e-05
	CE00287	1/1	1	218	[.	1	260	[]	-48.4	3.8e-05
	CE00291	1/1	1	218	[.	1	285		-113.0	0.027
	CE00292	1/1	1	218	[.	1	288	[]	-61.8	2.1e-05
	CE00288	1/1	1	218	[.	1	269	[]	-210.4	0.014
	CE00286	1/1	6	218		1	263	ΓĪ	-125.1	0.0021

FIG.2C

1	TCATCCTTGC	GCAGGGGCCA	TGCTAACCTT	CTGTGTCTCA	GTCCAATTTT
51	AATGTATGTG	CTGCTGAAGC	GAGAGTACCA	GAGGTTTTTT	TGATGGCAGT
101	GACTTGAACT	TATTTAAAAG	ATAAGGAGGA	GCCAGTGAGG	GAGAGGGGTG
151	CTGTAAAGAT	AACTAAAAGT	GCACTTCTTC	TAAGAAGTAA	GATGGAATGG
201	GATCCAGAAC	AGGGGTGTCA	TACCGAGTAG	CCCAGCCTTT	GTTCCGTGGA
251	CACTGGGGAG	TCTAACCCAG	AGCTGAGATA	GCTTGCAGTG	TGGATGAGCC
301	AGCTGAGTAC	AGCAGATAGG	GAAAAGAAGC	CAAAAATCTG	AAGTAGGGCT
351	GGGGTGAAGG	ACAGGGAAGG	GCTAGAGAGA	CATTTGGAAA	GTGAAACCAG
401	GTGGATATGA	GAGGAGAGAG	TAGAGGGTCT	TGATTTCGGG	TCTTTCATGC
451	TTAACCCAAA	GCAGGTACTA	AAGTATGTGT	TGATTGAATG	TCTTTGGGTT
501	TCTCAAGACT	GGAGAAAGCA	GGGCAAGCTC	TGGAGGGTAT	GGCAATAACA
551	AGTTATCTTG	AATATCCTCA	TGGTGGAAAG	TCCTGATCCT	GTTTGAATTT
601	TGGAAATAGA	AATCATTCAG	AGCCAAGAGA	TTGAATTGTT	GAGTAAGTGG
651	GTGGTCAGGT	TACAGACTTA	ATTTTGGGTT	AAAAAGTAAA	AACAAGAAAC
701	AAGGTGTGGC	TCTAAAATAA	TGAGATGTGC	TGGGGGTGGG	GCATGGCAGC
751	TCATAAACTG	ACCCTGAAAG	CTCTTACATG	TAAGAGTTCC	TTTATAAAAA
801	CCAAAACTTG			GTGTTCATTA	AAATCTCTCA
851		GTCTTGTCCA			
901	AGTGAGTCTC	TCAGACTTTC			
951		ACTGTCACCC			TTGACAAGGA
1001		TTTAGACCCA			
1051		GGCATGAGAA			
1101			TITAACTCTT		
1151		ATTGGCTGCT			
1201	CAGGAGCTGT		TTCATGGCCC		
1251	TCGGTGACTG		TGTGGCAGTC	TGTAGTTACC	
1301		ACACAGAGCG		TCTTGTAACA	
1351		GCTGAGTCAG		TTGATCTCAG	
1401	TATTTCAAGA		TGAGCCATAC	CAGGAGTATT	
1451		CTTTTTGGAG		CGACTCTGTG	
1501	TGCTGGTCTC	TGAGCTCACA			TCAGCCAGTG
1551			TTGCAAGGCT		
1601		CTTTCCTGGT			
1651		GAAAGAGCAG			
1701		CCACCACTTA			
1751		TATCCATTAA			
_,	TATTTTGAGA				
	CTTGGCATAT				
	CCATTACTTT				
	AATAACATCC				
	GTGGATTTGC				
	CATACAAAGA				
	CAACTGGTAC				
	GTGAGCGGCG				
	ATCAGTGGTG				
	GCACATGCAA				
	GGCTGATGAT				
	CCCCAACCCC				
	AAGGTTGAGG				
	GTAAATGAGC				
2401	a imma i dadic	TOTIGUATIA	משושאוששאא	MALCIGAM	AMMUNUUUU I

2501	TTTGAGGAAT	AGGAAAAGGC	AGTAACATGT	TTAACCCAGA	GAGAAGTTTC
				GGCTGACACT	
				ATAAGCAAAG	
				AAAAAGGATA	
2701	TTTTAGAAA	ATGGAATGAG	ACTACTTTTG	AGGCCATGAG	TTCCTTGTCC
				CTTACCAGAG	
				GCCTAACCCT	
2851	ATGCTGTTAA	CTCAGTCTTA	TTCTACATGG	TAGGAATCCT	GTCCCTTTGC
2901	CTCCTGCTAC	TTTGGGCCTC	TCAACCTCTT	GGTTTTGTGT	GCAGGTGAAG
2951	ATGTCTGGAG	GTGTCCAGGC	TGTGGGGACC	ACATTGCTCC	AAGCCAGATA
				GGCTCTTGCT	
3051	GGGCCTATCC	TCCCATCTTT	ACCAGTGTAC	TATGGGCCAA	GCACTATTTC
3101	ATGTTCTGAT	GGAAAACACA	GAAACAAGCT	TCTGAGTTGA	GAATTTCAAT
				AGAGCTCATG	
3201	AAGTGTGGCC	CCCCTGAACC	CAGGTTAAAT	TGGAAGAGCC	ATAAATGGGC
3251	CAGCTGGAGG	CAGGGTGGG	GGATGAGAGG	AGCCCTTTCC	AGGGTTGTCC
3301	CATATCCCTC	ACTITATGGG	TGAGGAAACT	GAGGCCCAGG	AAGAGTGACT
3351	TTCCTGTGGC	TGCACTACAG	ATTATGCAGG	TACTTCAAGA	GTTGTTTGTA
3401	TTCTTATTTT	ATTTATTT	ATTITATTIT	ATTTATTTT	ATTITATGAG
				GCAGTGGTGC	
				GATTTTTCTG	
				CCATGCGCAG	
				TTGGTCAGGC	
				ACCTCCCAAA	
3701	TACAGGCGTG	AACCACTGTG	CCCAGCCAAG	AGTTGTTTTT	AGTGTGGTTG
				GCCTCCCTAG	
				ATTATTATTA	
				CTCTGTCGCC	
				CCTCTGCCTC	
3951	GCAGTTCTCC	TGCCTCAGCC	CCCCGAGTAG	GTGGGACTAC	ACCCCCCTCC
4001		CCCTAATTTT	TCTATTTTA	GTAGAGACGG	CCTTTCACCT
				CTCAGGTAAG	
				GTTGTTTTTA	
				CTCCCTAGGT	
				ATTATTATTG	
				TGGTGTACAG	
				TCAAGCAATT	
4331	TTTTCTATT	TTTACTACAC	CCCCCCTTTC	CTGCCACCAC	CCACCETOR
4401	CTCAAACTCC	TCACCTCACC	TCATCCCCCT	ACCTTGTTGG	CCAGGCIGGI
4401	TOCCATTACA	CCCATCACCC	ACCOCCCC	GCCTCGGCCT	CCCAAAAIGI
4501	TOTACCCACC	TCACTTTCT	ACCUCUCCC	GCCTATAGCT	ACATIATITI
4551	TTCCTCCTCT	CTCAGIIICII	AAAAAIIAIA	CAGACTTCAA	ATCAGATITG
4601	ATCTTCTTCA	CIGAGGCICA	GITTETTEAT	CTGGAAAATG	GAIGGIAATA
4001	AICHGIIGA	GATIGAATGA	AAIAAIAIAI	GCAGTGTATC	CAGTACATGG
				CCCATCGGAT	
				CAACGTAAAA	
4801	TOOCOCCA	AAAGAAGAGC	AGTCCACTCC	AGAGGCTGGA	TGGGCATGCC
4851	CATACACTAC	GGTCTGAAGT	GGTAGGGCTG	TGCCTATATC	CTGAGAATGA
4901	GATAGACTAG	GCAGGCACCT	IGIGCTGTAG	ATTCCAGCTC	CTGCACATAG
4951	CICITGITGT	AAAACATCCC	TGTGCTTATA	CCAAGTAATT	GAGTTGACCT

5001	TTAAACACTT	GCCTCTTCCC	TGGGAACCAT	ATAGGGGATT	GGCCTGGAGA
5051	CGTCTGGCCT	CTGGAAGAGT	TGGAAAGCAG	CCATCATTAT	TATCCTTTCC
5101	TTTCAGCTAT	AACTCAGAGC	TCTCAAGTCT	TTTCTGTGGA	TCTTATTGCC
5151	TTGGTTCTTG	CCCCTTTTAC	TCCCAGGGAA	GTTGATTCTG	TCTTTTCTGT
5201	TCCATTTAGT	ATGACAGGAG	CAGAGAATGT	CAGAGCTGTA	AGGGACCTTA
5251	TAGTTAAAGC	CTTTGGCTGG	TCCTTTCATT	TTATAGCTGG	GACTAATAAG
5301	TAACGTCAAA	ACCCAATGAG	TTCACAGATT	GGGTCTCGCC	TTGGCATGTA
5351	ACCCATATGT	TCATATTCTT	GCTGTTTTCC	TATGTGTATG	AATATTTTCT
5401	ATCCAAAATA	AGCAGGACAG	GGTAGAGCAA	GTTAATCTTT	GGAATTTCTG
5451	GATTCTCTTA	GAGCTAAAAA	ACTTCAGAAC	TAGAAGAAAC	CACCCACTAT
5501	ATGGTATAAC	CCATTCATAT	CACAGATGAG	GCCTGAAACC	AAAAAGACTT
5551	GCTCAGGCCA	TGGATGACAA	GAGCTGGCCC	TAGCACTGAA	CTCTTGGGTC
5601	ATTTGTAGGT	CTAGTCAGAT	GCTAGCTTGT	TAGCTCTGTG	CGTGCGTGTG
5651	TGTGTGTGTG	TGTGTGTGTG	TGTGTGAGAT	AGAGACAGAA	AGATAACATA
5701	TGTACACAAA	TACATAAAGA	GGAAGTAGAC	ACGTTAGCAT	GGTAGATAAG
5751	AGTACAGGCA	GGCCAGGCGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTIT
5801	GGGAGGCCAA	GGCAGGTGGA	TCACCTGAGG	TCAGGAATTC	GAGACCAGCC
5851	TGACCAACAT	GGTGAAACCC	CATCTCTACT	AAATACAGAA	ΔΔΔΔΔΤΤΔΩΓ
5901	TTGGCATGGT	GGCACATGCC	TGTAATCCCA	GCTACTTGGG	AAGCTGAAGC
5951	AGGAGAATCG	CTTGAATCCG	GGAAGCAGAA	GTTGCAGTGA	GCCGAGATTG
6001	TGCCATTACA	GTCTAGCCTG	GGCAACAAGA	GGGAAACTCC	ATCCCAAAAA
6051	AACAACCACC	ACCAAGAGTA	CAGGCTATGG	AATGAGACTA	TECTTTTAAA
6101	TCCTGGCTTT	GCAATTTATT	AACTAGCCTT	AAGTGACTTC	CCTCACCTTC
6151	AGGCACCAAT	CTGTAAAATG	AGGATAAGAA	TATTACTCAT	CCTGAGCTTC
6201	TGTTAGGGAG	GATTAAATGT	GATAACCTAT	ATAAACTCC	TACCATACCA
6251	TCTGACATAT	AGAAAACTCT	TAATAGGGCC	CCACCTCCTC	CCTTATCCCT
6301	GTAATCCTAG	CACTCTGGGA	GCCCCACCCA	CAACGATCCC	TTCACCCCAT
6351	GAGCCCAGGA	GTTTGAGACC	ACCCUAGGCA	ACATCCCAAA	ACTCCACCTC
6401	TACAAAAAAT	ΔΓΔΑΔΑΔΤΑΤ	TACCCAGCCA	TEATECCACA	CACCTCTACT
6451	CCCAGCTACT	TEEEAAECTE	ACCACCAGGCG	ATTACCTCAC	CCCACCCATA
6501	TCAAGGCTGT	ACTCACCTCT	CATCATCCCA	CTCTACTCCA	TCCACCTCCC
6551	GGACAGAGTG	AAACCCTGT	CTCAAAACAA	AACAAATCAA	AAAAAAAAAA
6601	CTTAATAATC	ACTAACTETC	ACTITATATT	ATCTTCTCAC	TOTOTOTOTA
6651	TATACACCTA	TATCTATACA	TTTCTCTTAT	TACACATTCA	TTOCTOATOT
6701	GATGTGGAGC	CCCACCCATT	AACCCCAACT	TTCAACTACC	CTCACACACA
6751	CAACCCAAAT	ATCATTCCCC	TOCACCAACT	ACACTATOTA	CIGACACAAI
6001	CAAGCCAAAT	CCTTTACCTT	CACCACACAC	AGAGTATCIA	GGITCIGICI
COUT	CCTAGTTGCA	TOTOCTOACT	GAGGACAGAG	ACTOTACTO	AGCIGIGCTG
6001	AAGGAGCACA	CCCCCTCACA	TACAGOSTOS	CCCCTGGTAA	ATTCAAACTG
60E1	GATGTCACGG	TOCATOTAGA	TAGAGCCTGG	TAATTIGCCC	IGGGGAGAGT
7001	GACTGTCTTT	IGGAICIAAI	TIGACTITIG	CCCCAGTTGG	AGGAAAATCT
7001	TCAGGGCTAG	GAAGGAIIGI	ATTIGICIGA	CCCCAGAGAT	AACCTGGGTT
7051	TTGAGGAACA	IGGGCATCA	ACCIGAATGG	TCTTGTAAGA	TCTCTCCCAC
/101	GCCAGCTTGC	CAGIGITICT	CTGATGAATT	TAGAGTACCT	GAGTAGTGCA
/151	GGCCTGCTGG	GAGGAGGACT	CTCCCTCTGT	GCTACTCAGA	GAAATTCATT
/201	CTTCAAGGCC	CCCTTCCAGC	CTTGCTCTTA	CCCAGCTGGG	CTACAGTTAC
/251	AATAAAGGAA	ATGACTTTTC	TTCTCCCCTT	CCCCCAGTAC	CTTTGTTTTC
/301	CTAGTCACAG	GGTGGGGCTG	GATATTGAAT	GGAGAAATTG	CTGGGGTCCA
/351	TCCTAAACTC	CTCCCCTCAT	CTCTCCCTTA	CATTACCCCA	TTCTTCTGTC
7401	TGCAGCCACA	TCCATAATCC	TGCCTCTGTT	AGCCTTCCGA	CAGACCCTCA
/451	GGTGCCCAGG	ACAACAGGAA	GCTACTTAAA	GCTGGAACCT	CAGACTGTGC

					AATTGTGCTG
				GGATCTCCTG	
				CCTCTTTTTT	
7651	тстттстт	ТТТТСТТС	ттсттстт	TCTTTTTTT	TTTTTTAG
7701	GCTAGTGAAG	TGAAATTGTG	GGAGTGGAAA	AGGAACAAAG	AAATCGGTAA
7751	CTGGTAGTGA	TCAATTACTT	GTAAACACTA	TTGTACTTGG	ACCAGCCCAG
7801	TAGGCCTTTT	TTAAAACTCT	GAGTTACCTC	TCTTTCCTTT	CCTTGAGCAG
7851	TGCCATTAAT	TCTGTATCTG	GGGCAATCCT	TTCTGATGTT	CTCTGGACCT
7901	GGCTCTCTCT	CCTTAGGAGA	GGCCAGGAGA	GTAGCCAGAG	AGCATGTCAT
7951	TTGTAGCTGA	GGTTAAAGTG	TGGAGCTATC	AATGGTGACC	TGGCCTCTTG
8001	GCATGTTAGC	AAGCCAGAGG	ACCTTGACAA	CTTTTTTGAT	GATTGTCCGT
8051	TCACCCTGAT	CAAAGGTGTT	TGGCTTAGGA	GGAGGGAAGA	AAAGCTACCC
8101	CTATTAGTCT	TGATGGCCCC	AGCGTGGGTC	TCTATTGCTT	GACCTGGTTC
8151	CTAGCAGCAT	TATCAGAAGG	AAAATCCACC	GCTCTTAAGG	CTCCTGGGAA
8201	CTTTCAGGAC	TTCCTTTCTC	AGGATTGCAA	ACATAAGACT	ATTTGAGCTT
8251	TCACTTTTGA	AAAGCGGTTA	CTAATACCTA	TACTCTGGGA	AAGGGCTAAT
8301	GCAGATAGAA	GACTGTGGTC	ACTGCATCAG	GCAACAGACC	ATTTCCCCTA
8351	AATTTAGTGA	CTCCAGGAAG	GCCAGTGAAG	AAATAACACA	CCTACCAACC
8401	AGAGACTGTG	TTGTAATATG	TTGGCTGACA	GCAGGGTACT	TTCTCTCATC
8451	CTGAAAGCCA	CATTCATTT	CTCTCCCCTC	ATCCCCATCT	AAGCAAGCCT
8501	GGTAGAATCA	TAATTACAGT	AATAGGTACC	ACTTATTGAG	TACTCTCTCC
8551	CAGACACCCT	CCTGAGCATA	CEACATECAT	AGCACATTTA	ATCCTTACAA
8601	TGACTTAATA	AAATGTAGTA	CTACTITAC	CTACTTCGAG	AATAGGGAAA
8651	TGGAGGTTAC	TTGTTTAAAG	TCACAGAGCT	AATAGGTAGC	ATACCTCACA
8701	TITGAACTCA	GGCATTCTTA	CTCCTTCCCT	GCAAGAGTCT	CTTCCCATTC
8751	TTGAATGCAA	GCATATTTCT	TAACCTCACT	GAGGCTCAGT	TTCCTCTTAT
8801	ATAATATGGG	GTAAAGAGCC	CTCACCCTCACT	CTGCCACACA	CTCCTACTCT
8851	CAGATAACAT	TGAAGGGTGT	TACTTTAAAC	GCTTCATGGA	CTCTATAATC
8901	TCAACAAAAG	TECTETTAAC	TTTCTTCTCC	GTCTCAGGCT	CCTCATCTAC
8951	AGTCAGTGGA	CCAACCCTCC	CATCTCCTCT	TATGCTGTTG	ATCTTCCTCC
9001	CACACTTACT	AACCTAAACC	TTTCATTCTC	GCTGTGGCCT	TOTOCACAAC
9001	CTCTTTACTC	ATTTCTCCAC	TTTATCTTT	AGGAAACAGC	CACCCCCTAC
9031	ATCATTAACC	CTCCCTATTC	CACACCCCCC	TGGGGCCTGC	CAGCCCGTAG.
0151	AACCAACCCC	ACACATCTCC	TTCTTCCTCT	GCCCCTACAA	CIGACAGAGG
9131	CCTCACCACA	CACTCCTACT	CCTACCATCT	ACCACCA CCA	GAGACICCAG
0251	AATCTCCCTT	AATCCTCCTC	CCTAGGATGT	AGCAGCAGCA	TATGAGCTIG
0201	ACACATCTTT	CACACCTTCT	ATACCACCCA	GAAGAGAGAA	CTAAGGACCC
9301	CATCACCCCA	CACATACATA	ATAGGAGGCA	GAGGTAGAAA	AATGGAGAGA
9331	CCTCACTTAC	ATTATOTOAT	ACIGATATIA	ATTAAACGTT	GIAIIAAGAA
9401	CCTLLTTTC	ACAACACCCT	CTACTOTO	TAATAACCCT	GCAACCCCCA
9451	CCTTTTTTT	AGAACAGGGT	CHIGCICIGI	TGTCCAGGCT	ACAGTGCACT
9501	GGTACAATCA	TAGTICACIG	CAGIGICAAC	CTCCTGAGCT	CAAGCAATCC
9551	TUCCACCTCA	GCCTTGCAAG	CAGCITGGAC	TACAGGCGTG	CCACCACACC
9601	TIGCCATTT	HHAIIII	AAGTAGAAAC	AAGGTCTTAT	TAATACTATG
9651	TTGCCCAGGC	TGGTCTTGAA	CTCCAGCGAT	CCTCCTGCCC	CAGCCTCCCA
9/01	AAGIGUIIGG	GATTACGGAA	GIAAGCCACT	GTGCCTGGCC	AGTGCAACCC
9/51	CLATITIATA	CIAAAACAGG	AAGGCCCAGA	AAGGTTTGGA	GTAACTTGTC
9801	LAGGGTCACA	CAGATGATAT	TTGAACTCAG	GTCTCCCTGG	CTCCCAAGAG
9851	AGICIGCTTT	CCACTAGGAC	TCCCAGGAGA		AAAAAACAGT
9901	AGACT TGGAG	ACAGAAAATC	TGATTTGAGT	CTTAGTTGAG	CTAGGCTAAC
9951	IGIGIAACTG	TGGGCAAGTT	CCTTAGCCCC	TGTGAGCCTC	AGTTTCTTAT

10001	CTGTAAAATG	TCATAAAAGA	AATCCATCTC	ATGGAGTAGT	TGTGATGATC
	AAGGACTCTG				
10101	ACATGGCAAC	ATTGTGCATC	TTATATTAAC	TATCCAAATA	TATCAAGCGT
10151	CATTTGCTAT	ATATAAAAGT	CATCAAATTA	GGCACTGTGG	GGGATACGGA
10201	GTTGGCATAC	TAGCCTGGCC	TCTTAATTAA	TTCATTAATT	AGCTTATTTA
	TTTTTGAGAT				
10301	ATGATAGCTT	ACTATAGCCT	CAATCTCCCA	GGCTTAAACA	ATCCTCCTGA
10351	GTAGCTGGGA	CTACAGGCAC	ACACTACCAT	GCCCAGCTAA	ATTTTTTTT
	ATTTTTGTA				
	TCCTGGGCTC				
10501	AGGTATGAGC	CACGGCACCT	GGCCTGGTCT	CTTAACTGGT	TCCCTAAGAC
10551	AGCTGGAAAT	AGAGAATGTC	ATGGAGCATT	CCTAACCATG	GGCTCCAGCC
10601	TGGCTTTCAT	TCTGTTTCTC	CCCTGAAACA	ACATTCCTTT	AGTAATATTC
10651	CGAATAACAG	CTTCATCAGT	CTGTCTACCG	ACCACTCTTC	AGGCTTCATC
10701	TTATATGACC	TCCCAAACTG	CACTAAGGGT	TGTATTAGAG	AAAAGTGGAT
10751	AAAGTTCGGA	GTCAGGCTGC	TTGAGCTTAA	ATGCCAGCTT	CACTTACCAG
10801	CCACCTGACC	ATGAGTCAGC	TGCTTAACCA	TTCTTTGCCA	CAGTTTCCTT
10851	GTCTATGAAA	AGGGAAATGG	CTCCCACCTC	AAAAAGTTGT	TAACATTAAA
10901	TTCAATCATG	TATTCAAAGT	CCTGAGCAGA	ATGTCTGGCC	ATGACTGGGA
	CTTAACAGAT				
	CTCTTCCCTT				
	CTCTCTGGTA				
11101	TTACCATTCC	TTCAGGCGTG	CTGTTTTCTC	CTTAGGCAGT	CTTACACACA
	CTCATGACTT				
11201	TATCTCCAGC	CTAAACCTTT	CCACTGAGTT	CTAGACCCAT	ATGTTGTACT
	ATCAACCTGG				
11301	TCTCTAGACT	TTGCTGGACT	TTCACTCTTC	CCCCTAAAAC	TGGCTCCTCT
11351	TCCACTGAAA	CATGTATGTC	ATTGAGAGGC	ACCACCATCC	ACCCAGTGCC
11401	TAAGCCAGAA	ACCTAGGAAT	CCTTGATACC	TGTTCTCTCT	CATCCTGCAT
	ATCCAAGCCT				
11501	CTTTCCTTTT	CTCCCACCAC	CACCCTGCTC	CAAGCTACCA	TCATCTCACC
	TGGATGTCTG				
	CTGTTCTCTA				
11651	TTTGTTTTAG	ACAGAGTCTC	ACTCTGTTCC	CCAAGGCTGG	AGTGCAGTGG
	CACAATTTCG				
11751	CTGCCTCAGC	CTCCCAAGTA	GCTGGGATTA	AGGCACCGGC	CCCCATACCC
	AGCTAATTIT				
11851				CCACCTGCCT	
	AAGTGCTGGG				
	TCTTAAAAAA				
	GTCTCTCCTA				
	GACCAAAATC				
	AGCACTTTGG				
	CCATCCTGGC				
	TAGCTGGTCG				
	AGGCAGGAGA				
	ATCACGCCAC				
12351	AAAAAAAAA	AAAAAAAA	TTCCTTAATT	TGGCCTACAG	TAGAGCCCTC
	CGTAATGTGG				
	CAGCCTCACC				

12501	. CATTCTGCTC	CCTCTGCCTA	GAATGCCCCC	TTACTCTGTT	CACTTAACTC
12551	CTGCTTATCG	TTTAGATCTT	TACCTGGATG	GCTCAGAGAA	ATATAGAAGT
12601	. AATTCCTCAC	CCTGAAAAAT	AGGTTAGGTC	CCTGTTTTAT	GTTTTCATAG
12651	ACCTTTCCTT	TGAGGCTTTT	TTTAAAAAAG	TAGTTTTAAT	CTCACATITA
12701	TTCATGTGAT	CATCTCCTTA	ATGATATCTT	AAGACCTCTA	ATAGAACAAT
12751	TTGGTCATGG	ACTGTGGGGT	TTTTGCCCCT	CATTGTGTCA	GCACTGAGCA
12801	TATTGTTGGC	ATAGGAGGGA	TATTTGTTGA	ATGAATTGCT	AGAGGTGGCC
12851	AAGAGATATG	ATGTAAGTCA	GGCTTTTCCC	TGCCCTTCCC	CTTCCCCTTC
12901	CCCACATCCT	TCCTATAGCA	GCCACCGTGG	CTGCAGTTAC	TGTAAATGGC
12951	AAGACGGAAT	CAGTTCCGGA	CATTGGGTTG	TTTTAGAAAA	TTGCCTGCAA
13001	GTGTCAGGGT	GATAAGTTAA	AGCTTTGTCT	TTTGCCCTCA	GAGGAGCTAT
13051	CCCATAGTGA	GTAGAAGCCA	GAGAAGCTGA	CCCCAGGAGT	CCTTCTTTCC
13101	AGCAGCAGGT	CTTGAGCTGC	ACTICICIST	AGCTACAATC	CAGGCAGGAA
13151	CAAGCCCTAG	GTACCTCCGG	AGAGGAGGGC	AAGAGAGGAA	GAATGAGTTC
13201	AGCTACTCTA	GCCACCAAAC	TGATTATGAA	TTCCCCTCAA	ATCTGAAAAA
13251	TTTCAATTCC	AATCGTAAGT	TIGITITETT	TCATTTTCTT	TTCTTAAATT
13301	GTATATTIGA	AAGATGGCAT	ΤΔΔΟΤΔΔΔGΔ	TATATATTCA	ATATAGAGTG
13351	GAAAAAATGG	AATACTTGCA	TAGTATCTTT	TACTTATAGE	TGATTTATGA
13401	TGGGGAGTGG	GGTGGATAGG	TTGGCAGTTC	CCCCAAGAAG	TTGGAAATGA
13451	AGTITGTCCT	CTGTGAGTTG	AACTAATTAG	ATCCACAAGT	AATGAAAGCA
13501	GTATTGTGTT	GTAGTTAAGA	CCACACTCTA	CAACCACATT	GCTTAGTTTC
13551	AAATCCTGGT	TOTECOTTTT	ATTATCTCTC	TACTTTCCCC	AAGTTACTTG
13601	CCCTTTGTGT	CCTTCATTTT	TCTCATCTAG	AAAATCCACA	CCCCACCCCT
13651	ACTCCCTCAT	CCCTATAATC	CCACCACTTT	CCCACCCCCA	GGCGGGCAGA
13701	TCACCTGAGG	TEACAACTTC	AAGACCAGCC	ADJUDDADDD	AdAJabababa
12751	TCTCTCTACA	AAAATACAAA	AATTACCCAC	CCATCATCCC	GGTGAAACCC
13/31	AUTCCCACCT	ACCCACCACC	AATTAGCCAG	ACA A CA CACA	GGGTGCCTGT
12001	CCCACACCTT	CTACTCACCC	CTGAGGCGGG	AGAAACACTI	GAACCIGGAA
13001	CACAACACCT	ACACTCACTC	AGGATTGCAC	CACTGCACTC	CAGCCTGGGT
13901	TACACCCTCC	AGACTCAGTC	TAAAAAAAA	AAAAAAAAA	AAACTGGAGA
10901	CTACCCCCCA	CCATTCCTTC	TACACTTATA	ATATCAGCAC	TTTGGGAGGC
14001	ACACACCAAC	ACCTCATCCC	AACTCAGGAG	TITCAAGATC	AGICIGGGIA
14001	ACAGAGCAAG CTCCCTCATC	ACCICATOC	CACAAAAAAT	CAAAAATTTA	GCCAGGCATG
14101	TOOTTOACO	CCIGIGGICC	CAGCTACTCA	GGAGGCTGAG	GCGAGAGGAT
14151	TGCTTGAGCC	CAGGAGGIIG	AGGCTGCAGT	GAACCATGAC	TGCACCACTA
14201	CATGCCAGCC	IGGATGACAG	AGCAAGACCC	TATCTCAAAA	AAAAAAAAA
14251	AAAGAAACGA	GCCAGGCGCG	TTTGCTCACG	CCAGTAATCC	CAGCACTTTG
14301	GGAGGCCAAG	GCAGGTGGAT	CACTTGAGGT	CAGGAGATCG	AGACTAGCCT
14351	GGCCAACATG	GTGAAACCCC	ATCTCAACTG	AAAATACAAA	AATTAGCCAG
14401	GCATGGTGGC	ATGCTCCTGT	AGTCCCAGCT	ACTCACTTGG	AGGCTGAGGC
14451	ACGAGAATCG	CTTGAACCCA	GGAGGCGGAG	GTTGCAGTGG	GCCAACATCA
14501	TGTCACTGCA	CTCCAGCCTG	GGAGACAGAG	CGAGACTCTG	TCTCAATAAA
14551	TAAATAAACA	TAAAATAAAA	TAAAATAAAA	TAAAATAAAA	TAAAAAAATA
14601	TGGAGGCCAG	CAGGCACGGT	GGCTCACGCA	TGTAATCCCA	GCACTTTGGG
14651	AGGCCGAGGG	GGGCGGATCA	CAAGGTCAGG	AGATCGAGAC	CATCCTGGCT
14701	AACACAGTGA	AACCGCGTCT	CTACTAAAAA	TACACAAAAT	TAGCCAGGCA
14751	TGGTGGCAGG	CACCTGTAGT	CCCTGCTACT	CAGGAGGCTG	AGGCAGGAGA
14801	ATGGCGTGAA	CCCGGGAGGC	GGAGCTTGCA	GTGAGCTGAG	ATCGCGCCAC
14851	TGCAGTCCAG	CCTGGGCGAC	AGAGCAAGAC	TCTGTCTCAA	AAAAAAAA
14901	AAAAATGGAG	GTTGGGCGCG	GTGGCTCGCG	CCTGTAATCC	CAGCACTTTG
14951	GGAGGTCGAG	GCGGGCGGAT	CACCTGAGGT	CAGGAGTTCC	AGACCAGCCT

1500	1 GGCCAACATO	G GTGAAACCTT	GTCTCTACTA	AAATTACAAA	A AATTAGCCAG
1505	1 GCACGATGG	CAGGCACCTGT	- AATCCCAGCT	L ACTTAGGAGA	CTAAGGCAGG
1510	1 AGAATAGCTT	GAACCTGGGA	GATGGAGGT	GCAGTGTGC	C CACATCCCCC
1515	1 CACTGCCCTC	CAGTAGAGTO	AGATTCCGTC	ΤΟΔΑΔΑΔΑΔΑ	AAAAAAAAAAA
1520	1 GAAATGGAGA	TACAAACTTA	CTACCTACCT	CCTTACAACC	TACCCTCACA
1272	I GIALIACIGI	GAATAAAAGT	: GTGTGTAGCA	LCTGGGAACAC	TATTCACACA
1530	I GCACTCATGA	N ATGTTTGTTC	: TITGTTATTA	GTTACTAGAG	ACCCAAATCT
1535	1 CTGCCAGGGC	TGAATAATAT	GTGTGAATTG	GTGATTGTCG	CACATATCTA
1540	1 AAGAAGTAGT	TATTTTTTC	ΤΟΔΑΔΤΤΔΑ	TACTTTAAAA	ACCAATATAA
1545	1 GGCCGAGCGC	AGTGGCTCAC	ACCTGTAATC	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CCCACCCCCA
1550	1 GGTGGGCAGA	TCATTTGAGG	TCAGGAGTTC	CONGONCITI	ADJJUDADDD
1555	1 GGTGAAACCC	TGTCTCTGCT	ΔΔΔΔΔΔΔΔΔΔ	AAAAACTACA	AAAATTACCC
1560	1 AGGCATGATG	GCAGGTCCCT	CTAATCCCCC	CTACTTCCCA	CCCCAACCA
1565	1 GGAGAATTGC	TTGAACCCAG	GACCTCCAC	TTCTACTCAC	AJDDADJJUD
1570	1 GCCACTGCAC	TTCAGCCTGG	GTGACAGAGG	CACACACTCT	CTCAAAAAA
1575	I AAAAAAAAAA	ACCAAAACCA	ATATAATAAA	TAACTCCCIGI	CCAATCAAAA
15801	L AGAAAGTGAA	AAGTTAGTGA	ΔΙΔΙΑΛΙΑΛΑ ΔΙΔΙΑΛΙΑΛΑ	CTACTCTATT	GLAATGAAAC
1585	L TGCTGAATCT	AGATTTGGTC	ACCAGAATAC	CCTCCTTTCT	CCCAACCTCC
15901	GCTAGTTTGG	CTGACTCACC	ACCAGAATAG	TCAAATTTCT	TTCACTCCCT
15951	ACTCATTTCC	CTTTATTTTA	ACTOCOAGGA		COTTOTOLE
16001	CCTAATTCAG	CTTCCTGGGA	TACTTAATAA		CTCCAACTAC
16051	TACCTGTATA	GGGGATATGA	CTCTTCTCAT	TTTAATACTO	CIGGAAGIAG
16101	TGTACAGAGG	CTTTCATAAA	TEGTTACCTC	ACAACCATCA	AATTCATAAG
16151	ACACCTCTTT	GGACATTAGG	AACCTCAAAA	ACCTCAAACC	CAGAATGICT
16201	GGCCTAGATT	ACCCTCATTC	AAAAA 1 COAAA	CATCACCCTT	CCAAAAGCTA
16251	CTGGGTGGTC	CACCAGTCAA	CCTTCCTTTC	ATCACACCTO	GAAGAGTICT
16301	GCTTCTTTAA	CONCUMUICAN	CTAATCCCTA	TOCALACTE	CHCCTCGIT
16351	ACTCCTTCCT	TTACACACC	AACAACTTCA	1GGAAIIIII	IGCICACCTA
16401	ACTCCTTCCT	ATCACACCCA	CATTTECTOT	AGUCUAGAGA	GATTTAATGG
16451	CTTGCCTAAG	CCACACCACC	COTTTTT	TAACCAGGG	GATITITCAG
16501	GTGTTCCCTG	CCAACCATTT	TECCCACTO	TIGAATIGCC	TAGAGATTTC
16551	TGTCAACACA	CCATTTOTTA	CTCAATCTTA	AGCCTGGAGA	AGGATGTCCC
16601	TGTCAACACA	CCAACACTCC	CICAAIGIIA	GACATICAAT	TTTCTAATTA
16651	GTATCATGGA	TTACACCOCA	AIGALIAICI	ATAAGGGGTT	GCAATTCCAT
16701	GCTTATGTGC	CATCTCCCCA	TATAGACAAA	TATCAGCTGT	TAAAATGACA
16751	AGGCAGTAGA	CCCACCAAAT	CAGGACAAAG	GCATACTCTG	CTGTTAGTGA
16001	ACACTAGTTG	ATTE TAGOS	TTCACATGGG	CATATACACG	GCCAACTGTA
16001	GACTTTAGGC	ATTIATACCC	ATTCAGAGAG	CCAAACTGGC	AACTAAAGAT
16001	CAGCATTCTC	COTOTOTO	CAGCTTTGCG	TTCTGTTAAA	AATCACTGCT
16051	TGCTTAAATA	CCTCTGATAG	CICTICACTG	CCTGTAGGCA	ACTCTTTAGC
17001	CTAGCAGACT	IGGICTITAG	IGCTCTGCCC	CTACTCTCTT	CCACCATTCT
17001	GGCCTCCTGT	CTAATTGCTG	CCCATATGTG	CCATGCACTA	GAGCTTACAG
17101	ACCTGCTCAG	CGITATATGA	GCATACCATA	CTCTTTATGC	CTCAGTGCAT
TATAT	IIGCACAIGI	TGFTCCFTCA	GGCCAGAATG	CCTGTTACTG	CCTCCCAATC
1/121	AGCCIATIAG	AGTCTGCCAA	TACCATCCC	TCTTCTGTGG	ACCACCCCC
1/201	CGCCAAATCC	ACCCATACCT	CTCCCCACCA	ATCAGAGACT	TCTTCTCTCT
1/251	HGHAHCU	CLICGITATT	CTCTTCATAC	$CTC\DeltaCTTATA$	TCCATTTCAC
1/201	IAIIIGIIIA	CACATCTAGC	ATCACTCTTA	GAGTGTGAAA	TTCTCCAACT
1/351	GIGGAGCCGI	AICIAGTITG	TCTTTGTATC	CCAGAGCTTA	GCAAAGTGCC
1/401	IAGAATGTAG	TGGGTGCTCA	GAGTGTTTGC	TGGGTGAATG	ATCTATTCT
1/451	TGAACGACTC	LITGGACACT	TGAATAAAGT	CCATCCAGTA	TGCACCATTA
					•

17501	CCATCTCTTC	GCTCTACAAT	ATTCTTTTAG	GCAAGAGCTT	ATCTTTTGAG
17551	GTGATAAGAT	AAGCTCAAAC	TTATGTAGAC	TAAGACCTCA	GTCTGTAAAT
17601	GTCATCCCTA	AGTCTTAAAC	CATCAAAACC	AGGGCCTCAA	GGAATGGCAT
17651	GCCTTCTGCA	ACTGTAGCAA	CCTGCTGTGC	TTATTTTGCC	GTGTTTTTCA
17701	TTTTCCCCC	AAAAGCTAGA	GTCCCTTCTC	CCATGGGCAG	TGCTGGAAGT
17751	GTGCTAACAA	ATTCTTTCTC	CATACTGCTT	ACGATTACAA	AAAAAACCCT
17801	CAGCATCTCA	TGCCAGACTT	GAGTTAAGGT	TGTTTTCTTT	TGTGTGTCAG
17851	CTGTATTCTG	GTCATGACTT	CCTGATGATG	CCCTATAGAG	ATTITGCTGA
17901	GATCAGAGGG	TGCTCCACTG	CCATCAGTAG	CACTGACTCT	TGCAGAAGCA
17951	CCGTTTCTGA	AGTTGGCTAA	TGTCATCCCT	CACGTTTGTT	TGTTTGAAAT
18001	TTGTTTTAGT	TCCAGAGATA	GCACTTTCAT	GGAATGACGC	TATCTTCTAG
18051	AATCACTTTT	TTTTTTT	TGAGTTGGAG	TCTCGCTGTG	TCGCCAGGCT
18101	GGAGTGCAGT	GGCACAATCT	CAGCTCACTG	CAATCTCCAC	CTTCCGGGTT
18151	CAAGTGATTC	CCCTGCCTCA	GCCTCCCGAG	GAGCTGTTAC	TACAGGCGCA
18201	CACCCCCACT	CCTGGCTAAT	TTTATGTGTT	TTAGTAGAGA	CGGGGTTTCA
18251	CCGTGTTGGC	CAGGATGGTC	TCGATCTCCT	GACTTTGTGA	TCTGCCTGCT
18301	TCAGCCTCCC	AAAGTGCTGG	GATTACAGGT	GTGAGTCACC	GCGCCTGGCC
					GCGTCACCAA
				CAAATGGGTA	
18451	CAGGAAGGTG	AAAGTCTCTA	CTTAGCCAAG	GCTTAACAAA	ATGTCAATCA
				GATAAGAAGA	
18551	ATCTGTACAT	TCATTTTCTC	GTTTGTAACA	AGGTAATGAT	AGTGATCTAT
18601	CCTGCCTGCC	TCTGAGGGTT	ATTGTGAGAA	TAAAATGAAA	TCAAGTGGAA
18651	AAGCACTTAG	GAAAAAGAAA	AGCATTGGTT	TTCAATTGTT	AGTGTGGATC
18701	AGAAACACTG	GGGCTTGTTT	AAAATGCAGA	TTCTTAGCCC	CAGTCTCAGC
18751	GATTCTGATT	CTGTATATCT	GAAGTGGGAC	TCAGGAATCT	TGATTTTCAA
18801	CAAGCTGACC	AGAGGGTCCA	ATGCTGCTAT	TCCTTTAGTT	ACACTTTCAG
18851	AAATATTACT	GTAAATCAAA	TGGCAAGAAT	AAAATAGTTA	TITGAGGCAG
18901	TTTTAGTATG	TTGGACCTGG	AGTCCAAAGA	CTTGGGTCAA	ACTCCAGCTT
18951	TGTCAGTTCC	TAGACCTGTG	ACCTTAAACA	GCAACCTTCT	CTGTGAACCT
19001	TAGTTCCCTC	AGGAACGGCT	CTGGTCACCT	CCTGCTGTAC	TCCATTGATG
19051	ACTCACCACA	TAAGGCTCCC	TGGGAGTCCC	CCAAACCTTT	GCTCTCTTAA
				GGTGCTGTCT	
19151	TTTCCAGGCC	CTGCTCTGAC	ACAGCATTCA	TTCTCCTCTG	GGAAGGGTTC
19201	CTTCAATGTG	TCTCCAAGCA	CATCACACCC	AGGAAGGACC	CTGTGGCCAT
				AGGCAGGCAC	
				GGTGTCCACA	
				TGAGCAACTA	
				TCTTCAGTTT	
19451	TTTGTACTCA	TCATCTAGTT	TAGTTCCTGC	AACAACCTCT	TGAGGAATAT
19501	AGCACAAGCA	GGACAAGGGA	AGCCCAGAGA	TGTTAAATAA	TTTATCCAAG
19551	TITATGCTGC	TGGGAAGGGC	AGCACTGAAA	TTAAAAGAAA	AGTTTTCTGA
19601	GCTCAAATCC	CATGCCCTTT	CCTCAATGTG	AGCTCTAGCA	AGGTATTCAG
19651	GAATCCTGCC	TCTACAGTTC	AGAGCCTCAA	ATTGCTGGGT	ATGTTGAGTT
19701	CTTGTATCTG	ATTITICTAG	ATTTCCTGCC	CACATTCTTA	CTGTCTGGAT
19751	ATCAGGAAAG	AGTTTATCAA	ATGCCTGTGG	AAATCCAAGA	TAAGGTCTCA
19801	TGATGAGTAA	CCCAGTGAAA	ACATGAAGTC	AAGTCTAACT	AGTCACTACT
19851	ATTTCACTAC	TGCTGACTCC	TGATGATCAG	CTCCTTTTCT	AAGTGCTTAC
19901	TGTCCACTTA	TTCCATCATC	TGCCTAGAAT	TTATGTGAAG	GAATCAAAGC
19951	AAAAGGATCA	TAAGGCTTCC	TITTCCAGT	ATGTTTTTCC	TCCTTTTTGA
			. ,		Journal

20001 AACTGGGCC AGTTAGCTAT CTCCATTITT ATTTCATGAA TACATCCCA 20051 GCGCCTGGTA TATAGTAGAT ATGGAACATT ACACTTTGGA GATATTGCAC 20101 CCATTCTCCA GTTTCTCCAA AGTGACATT ACACTTTGGA GATATTGCAC 20151 AACATATTT CTTTTTCAA TATATTGGAA AATGGTTCCA TCACTGTGCC 20151 AACATATTT CTTTTTCAA TATATTGGAA AATAGTTCTC CCAGTCTGAA 20201 AATCGAACA CATTTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC 20251 CAATTCTCCA TTCCTAGTT CACGTTCATA AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATTCTTT TCTCTTTCCA 20351 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTTGTGAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACCTGTAAA 20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGACCT GTTTGTGAA 20551 TTTTATTTAT TATTGTTATTG ACCCTGACA ACCTGGGAAT TGCTGGGACA 20551 TTTTATTTATT TTATTTTTTG AGACGGGAGTC TGGCCTCTGC ACCTAGGCG 20501 GTGTGCAATG GCATGATCTT GGCTCACCGC AACCTCCGCC TCCCGGGTTC 20501 AGCGATTCT CTTGCCCTCAG CCTCGCAGT ACCTGGAAT ACCGGGCACC 20701 CACCACCAC TCCAGCTAAT TTTGTTATTTT TAGAGAGGAGAT ACGGGGCCCT 20701 CACCACCACA TCCAGCTAAT TTTGTATTTTT TAGAGAGGAGAT ACGGGGCCTC 20801 CTCAGCCTCC CAAAGTGCTG ACGACACACTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG AGCACACACTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG AGCATAACACTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG AGCACAAAGAAT AGCGGGCACCT 20901 TTGGAAGAGG GGAGGAGTGG GCCACGAAAG ATGGTTAAGTA GATGGGGGCTC 20901 TTGGAAGAGG GGAGGAGTGC CAAAAAATTCT 20901 TTGGAAGAGG GGAGGAGTGC CAAAAAAATCT 20901 TTGGAAGAGG GGAGGATGC CAAAAAAATCT 2001 CTCCTTGAT TGGAGTCCT CCAGCAAAAAAAATCAAAAAAAAAA						
20101 CCATTCTCCA GTTTCTCCAA AGTTACTAAC AATGGTTCCA TCACTGTGCC 20151 AACATATTTT CTTTTTTCAA TATATTGGA AATAATTGTC CCAGTCTGAA 20201 AAATCTGAACA CATTTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC 20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATG AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATCTTTT TCTCTTTCCA 20351 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTC 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 TGTTCTCATT TAATGCTCAT ACCCTGTGA AGCTGGGAAT TGCTGGGAAT 20501 TGTTCTCATT TAATGCTCAT ACCCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT ACCCCTGCA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT ACCCCTGCAGC CACCCCCC CCCGGGGTTC 20601 GGTGCAATG CCTGCCCAT ACCCTGGAAT TGCTGGGCACA 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGGAT CCCGGGACCT 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAT GGAGGTTCC 20751 CATGTTGCC AGGTTGGTCA CGAACACTTG ACCTCAGGAT ACGGGGCACA 20801 CTCAGCCTCC CAAAGTGCTG GATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCTCC CAAAGTGCTG GACTACAGGAT GACTGAGCCAC CATGCCTGCC 20801 CTCAGCCTCC CAAAGTGCTG GACTACAGAG ATGGTTGATC 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAGGGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAGGGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAAGTGAT 20901 TTGGAAGAGG GAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAAAGTGTT 21001 CTTCCTTGAT TGGAGTCTC CCAGCCAATA GAGGCTTCC CAAAAACATTC 21001 CTTCCTTGAT TGGAGTCTC CCAGCCAATA GAGGGCTTC CAAAAACATTC 21001 CTTCCTTGAT TGGAGTCTC CACCCCAATA GAGGGCTTCA CACAAACAGT 2101 CTGCTCCA GCTGGTTCTA AGGAGTCCT CTAAACATTAC CTTGGAGGCT 21101 CGGTGCCTCA GCTGGTTCTA AGGAGTCATT TTCTTCCAGC CTAAACATTC 21101 GGGTGAATTCA TTCAATTGTT TCTCCAGCCT GAACATTCA CTTGGAGGCT 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCATT TTCTTCCAGC CTTTGAAGC 21201 CTGTGCCTCA GATGGTTCTA AGGAGTCATT TCTTCAGCC TCCACAGACC 21301 GCCCAACAT TTCATCCC ACCCCACC CAAACACTTC CTGCACTTC 21451 AGGGGAGAG GGCCC TCTCCAGC TGGCCAGCA CCTTTTCAACT 2151 TAGGGGGAGA GGCCC CTCCACCCCAC CAAGCACTT CCACGCCACC 21801 GACCACATCC ATTGTTCCC CACCCACCCC	20001	AAACTGGGCC	AGTTAGCTAT	CTCCATTTTT	ATTTCATGAA	TACATCCCCA
20151 AACATATTIT CITITITCAA TATATTGGGA AATAATTCTC CAGGCTTGAA 20201 AATTCTGCA CATTTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC 20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATGT CCTCATATGT CTTGGGCTTC 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATTCTTT TCTCTTTCCA 20301 GACTACAATCA CATTACAGGA GTAGCAGATA CTAAACTCTT ACTCTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 TGTTCTCATT TAATGCTCAT ACCCAGATAC CTAAACTCTC ACTCTGTAAA 20501 TGTTCTCATT TAATGCTCAT ACCCCTGTCA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT ACCCCTGTCA AGCTGGGAAT TGCTGGGCCT 20601 GGTGCAATG GCATGATCTT GGCTCACCGC ACCTCGCC TCCCGGGTTC 20601 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT GCAGGATCT 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAAT GACGTGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAAT GAGGTTCTC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTAAATGT ACCTCACGCT 20851 CGGGACCCTT GTTTTAGAAG GATGACACTTG ACCTCAAGTG ACTCGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGAGGGTGC 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATCTC 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAAAA ATGGTTAGTA GATGAGGGTG 2101 CGGGTATCA TACATTACT TACACTACC CACCACACA CTTGCCCTGCC 2101 CGGGTATCA TACATTACT CACCCTTGCC TGAACATTCA CTTGGGGCTG 21101 GGGTGATTCA AGCCTATCT CACCCTTGCC TGAACATTCA CTTGGGGCTG 21201 CTGTGCCTCA GCTGGTTCT CACAGCGTGCT TGAACATTCA CTTGGGGCTG 21201 CTGTGCCTCA GCTGGTTCT CACAGCGTGCT TGAACATTCA CTTGGGGCTG 21201 CTGTGCCTCA GCTGGTTCT CACAGCGTGCC TGAACATTCA CTTGGGGCCTG 21201 CTGTGCACACA TTAATGCTTC CACACCTTGC TGAACATTCA CTTGGAGCCTG 21201 CTGTGCACAC ATCCTTCC CAGGGGTGCT TGAACACTTG CTTTGAAGAT 21401 TTTCTATCCA GACCCTCT CAGGGGGGGG CAGGCCCTCC TGCACACC CTTTTGAAGAC 2151 AGGGGGAAGA ATACTCCCC ACCACAC CAGGGGTTCC TGCACACC CTTTTGAACAC 2151 TAGGGGGAAG AACCACACC TTGGGGCC TCTTGGACCT CTTGGACCTC 2151 TGCTCTCCA CACCACCAC CTGCCC CCGCCCC CAAGCACAC CAGGACACTT TTTTCCCC CACCACCAC CAGGACCTTT	20051	GCGCCTGGTA	TATAGTAGAT	ATGGAACATT	ACACTTTGGA	GATATTGCAC
20201 AATCTGAACA CATTTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC 20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATG AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCCT ATCCAGATGC CAAATCTTT TCCTTTCCA 20351 TGATACCTAA GATAGATGCC AAATATTGT TTTTACTGG TGTTTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATAC TTTTTACCTGG TGTTTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATAC TTTTTACCTGG TGTTTGAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATAC TAAACTCTC ACTCTGTAAA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TGTTCACATC TTTACTTTATT TATTTATTG AGACGGAGTC TGGCTCTGC CCCGGGAT TCCTGGGACA 20501 CACCACCACA TCCTGCCCAG CCTCCCGCAGT AGCTGGGAT ACCGGGGCACA 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAT GGAGTTTCTC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAT GGAGTTTCTC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAT GGAGTTTCTC 20801 CTCAGCCTC CAAAGTGCTG GCATTCAGGC ACCTCAGGC ACCTCGCC 20801 CTCAGCCTC CAAAGTGCTG GCATCAGCCAC CATCCTGCC 20801 CTCAGCCTC CAAAGTGCTG GCATCAGCCAC CATCCTGCC 20801 CTCAGCCTC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATCCTGCC 20801 CTCAGCCTT GTTTTACAAG GATGACCTCC TCGAGGTCTC CAAAAATTCT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTC CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGTTCA CACAAACAGT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGTTCA CACAAACAGT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGTTCA CACAAACAGT 2101 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTCTTCCAGC CAAAAAGGTTG 21101 GGGTGATTCA TAGAAATGGT TCCACGCCT GTCACAGACG CTTTCAGCC CACCCACA CCTTCCC TGCCATTTA 21301 TCCCTACTAT AATTGCCAGC CCAGCCATTA AACCCTCCC TGCCCATTTA 21301 TCCCTACTAT AATTGCCAGC CAAAGGATTC CTGCAGGCCTGC CTGCCCAGGC 21251 TTTCCAACTT AATTGCCAGC CAAAGGATTC CTGCCAGCCAGC 21251 TTTCTCAACT AATTGCCAGC CACCCACC CAAGGCACTA GAACACCC 21451 AGTGTGACA TTCACTCTCC AGGGGGGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACA TTCACTCTCC CAGGCCTGCC TGCACATCA CACCCACCAC 21501 GGCCCAGAGA GAACACACC TTGGGACCTC TGCTCAACT CAAGCACC 2161 TGCAATGCA TTCACTCTCC CAGGGGGGG CAGCCTTT	20101	CCATTCTCCA	GTTTCTCCAA	AGTTACTAAC	AATGGTTCCA	TCACTGTGCC
20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATG AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATTCTTT TCTCTTTCCA 203031 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTTGTGAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TTTTATTTAT TTATTTATTGT AGACGGACTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACCGC ACCCTCGCC TCCCGGGTTC 20601 CACCACCACA CCACACACA TCCAGCTAAT TTTGTATTTT TACAGAGCGACTC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TACAGAGCACAC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAAT GGAGGACAC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TACAGAGGACAC 20801 CTCAGCCTCC CAAAGTGCTG GCATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GAATACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGCACCACAAA ATGGTTAGTA GATGGGGGTGC 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTGTGAAGAGG GGAGGAGTGG GCCACGAAAG ATGGTTAGTA GATGGGGGTG 2091 TTCTTGGTT TTGAATTGTT TGACCAGAGC TTTCCCGC CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCT CCAGCCAATA GAGGGCTTCA CACAAACAGT 2101 TTCTTGGGTT TTGAATTGTT TGCACCTAGCC TTTCCAGC CAAAAGGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGC TGAACATTCA CTTTGGGCCTG 21211 TTCCAACTTA AATTGCCCAG CACCACCC GTCACAGACG CTTTCAAACAC 21221 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGACAC 21231 TTCCAACTTA AATTGCCAGT CAAAGGATTC CTGCCCAGC 21351 CATAACTGAT TACACTTACC ACACGTTGC TGAACAGCC CTTTGAACAC 21351 TTTCCAACTT AATTGCCC CACCACCCCC CAAGGACACAC CTTTGCAACACC 21451 AGTGTGAATCA TTCACTCTCC AGGGGTCT TGCTCAACTT CTTGAACAT 2151 TAGGGGAAGGCT TTCATCTCC AGGGGTGCT TGCTCAACT CTTGAACACC 2151 TAGGGGAAAGA TTCCACCTGG GAGGGGCTTC TGCTCAACT CTTGAACACC 2151 TAGGGGAAAGA TTCCACCTGG GAGGGGACACA CATGACTCTC TGCACATTCCT 21801 GACACACCA GCGGGACAGACA CATAATAGAT TTTTTCATCTCC 21801 GACACACCA CTTTGAACA	20151	AACATATTTT	CTTTTTCAA	TATATTGGGA	AATAATTCTC	CCAGTCTGAA
20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATG AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATTCTTT TCTCTTTCCA 203031 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTTGTGAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20401 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TTTTATTTAT TTATTTATTGT AGACGGACTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACCGC ACCCTCGCC TCCCGGGTTC 20601 CACCACCACA CCACACACA TCCAGCTAAT TTTGTATTTT TACAGAGCGACTC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TACAGAGCACAC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAAT GGAGGACAC 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TACAGAGGACAC 20801 CTCAGCCTCC CAAAGTGCTG GCATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GAATACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGCACCACAAA ATGGTTAGTA GATGGGGGTGC 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTGTGAAGAGG GGAGGAGTGG GCCACGAAAG ATGGTTAGTA GATGGGGGTG 2091 TTCTTGGTT TTGAATTGTT TGACCAGAGC TTTCCCGC CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCT CCAGCCAATA GAGGGCTTCA CACAAACAGT 2101 TTCTTGGGTT TTGAATTGTT TGCACCTAGCC TTTCCAGC CAAAAGGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGC TGAACATTCA CTTTGGGCCTG 21211 TTCCAACTTA AATTGCCCAG CACCACCC GTCACAGACG CTTTCAAACAC 21221 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGACAC 21231 TTCCAACTTA AATTGCCAGT CAAAGGATTC CTGCCCAGC 21351 CATAACTGAT TACACTTACC ACACGTTGC TGAACAGCC CTTTGAACAC 21351 TTTCCAACTT AATTGCCC CACCACCCCC CAAGGACACAC CTTTGCAACACC 21451 AGTGTGAATCA TTCACTCTCC AGGGGTCT TGCTCAACTT CTTGAACAT 2151 TAGGGGAAGGCT TTCATCTCC AGGGGTGCT TGCTCAACT CTTGAACACC 2151 TAGGGGAAAGA TTCCACCTGG GAGGGGCTTC TGCTCAACT CTTGAACACC 2151 TAGGGGAAAGA TTCCACCTGG GAGGGGACACA CATGACTCTC TGCACATTCCT 21801 GACACACCA GCGGGACAGACA CATAATAGAT TTTTTCATCTCC 21801 GACACACCA CTTTGAACA	20201	AATCTGAACA	CATTTCATGT	GACTTGGTAT	CCTCATATGT	CTTGGGCTTC
20351 TGATACCTAA GATAGATGCC AAATATTGTC TITTACCTGG TGTTTGTAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGAGCT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGAGAT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGAGAT TGCTGGACA 20551 TITTATTTAT TTATTATTG AGACCGAGTC TGGCTCGCC ACCTAGCCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACGC ACCTCCGCC TCCCGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCCCAGT AGCTGGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT GGAGTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAGAGT GACCTCCCC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCA CATCCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGATTACAGG CATGAGCCA CATCCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTAATGAT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAATG AGAAAGTGT 21001 CTTCCTTGAT TTGGAATTGT TGGCCAGAGC TTCGCAGAGCC CAAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCAC CACAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGAGCTC 21151 CCGGTTATGA AGGCTATTGT TCCCCACAGAGC TTTGTTCAGC CCGCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTC CTGAGAGTCT TTGTTCAGCC CCGTCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGAGGACTC CTCTGCCAGGC 21351 CATAACTGAT GAAATGTTCT CCAGCTGCT CTGAGGACTC CTCTGCCAGGC 21401 TTTCATCCC ACCACCAC TTGGGTTCTA AGGAGCATT CTGAGGACTA ACACCTTCC TGCCAGTTTC 21451 AGTGTGACAT TTCATCTCC ACGCGCTC TGAGGACTCA GATTTCACA 21551 TCTGGTGACT AATTGCTCCTC AGTGGATTA CACACTTCC TGCAGTTGC CTCTGGCAGC 21551 TCTGGTGACT AATTCCTCC ACGCCACCAC CAAGGCTGT GAAGACGCC 21551 TCTGGTGACT AATTCCTCC ACCACCAC CAAGGCTGT TGCCACTTCACCACTCC 21551 GGCTCTGAGG ACCCACCACC TGCCCACCAC CAAGTCCTTT GTAAACTGA 21501 TAAAACTGA TTCCTCCTAC CTTTATTCCCC ACCACCAC CAAGTCCTTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGACGCC TGCAGGCCACCAC CAAGTCCTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGAGACGCC TGCAGGCCACCAC CAAGTCCTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGAGACGCC TGCCAGCCCCC CCCCCCC CCCCCCCCC CCCCCCCCCC						
20351 TGATACCTAA GATAGATGCC AAATATTGTC TITTACCTGG TGTTTGTAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGAGCT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGAGAT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGAGAT TGCTGGACA 20551 TITTATTTAT TTATTATTG AGACCGAGTC TGGCTCGCC ACCTAGCCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACGC ACCTCCGCC TCCCGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCCCAGT AGCTGGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT GGAGTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAGAGT GACCTCCCC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCA CATCCCTGCC 20801 CTCAGCCCTC CAAAGTGCTG GGATTACAGG CATGAGCCA CATCCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTAATGAT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAATG AGAAAGTGT 21001 CTTCCTTGAT TTGGAATTGT TGGCCAGAGC TTCGCAGAGCC CAAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCAC CACAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGAGCTC 21151 CCGGTTATGA AGGCTATTGT TCCCCACAGAGC TTTGTTCAGC CCGCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTC CTGAGAGTCT TTGTTCAGCC CCGTCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGAGGACTC CTCTGCCAGGC 21351 CATAACTGAT GAAATGTTCT CCAGCTGCT CTGAGGACTC CTCTGCCAGGC 21401 TTTCATCCC ACCACCAC TTGGGTTCTA AGGAGCATT CTGAGGACTA ACACCTTCC TGCCAGTTTC 21451 AGTGTGACAT TTCATCTCC ACGCGCTC TGAGGACTCA GATTTCACA 21551 TCTGGTGACT AATTGCTCCTC AGTGGATTA CACACTTCC TGCAGTTGC CTCTGGCAGC 21551 TCTGGTGACT AATTCCTCC ACGCCACCAC CAAGGCTGT GAAGACGCC 21551 TCTGGTGACT AATTCCTCC ACCACCAC CAAGGCTGT TGCCACTTCACCACTCC 21551 GGCTCTGAGG ACCCACCACC TGCCCACCAC CAAGTCCTTT GTAAACTGA 21501 TAAAACTGA TTCCTCCTAC CTTTATTCCCC ACCACCAC CAAGTCCTTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGACGCC TGCAGGCCACCAC CAAGTCCTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGAGACGCC TGCAGGCCACCAC CAAGTCCTT TGTAAACTGA 21551 TAGGGGGAGA GAGAGAGACGCC TGCCAGCCCCC CCCCCCC CCCCCCCCC CCCCCCCCCC						
20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGAGCT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT ACCCTGTGA AGCTGGGAAT TGCTGGGACA 20501 TTTTATTATT TTATTATTT TAATGCTCAT 20601 GTGTGCAATG GCATGATCTT GGCTCACGC TGCCTGCCC TCCCGGGTTC 20601 GTGTGCAATG GCATGATCTT GGCTCACCGC ACCCTCCGCC TCCCGGGTTC 20601 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGGAGT ACCTGGGAT ACCGGGGCACA 20701 CACCACCACA TCCAGCTAAT TTTGATTTTT TAGCAGGAGT ACCGGGGCACA 20701 CACCACCACA TCCAGCTAAT TTTGATTTTT TAGCAGAGAGT GAGGTTTCTC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGACCACC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GCACGAACACTTG ACCTCAAGTG ATCTGCCTGC 20851 CGGGACCTTA CCTTTCAGTA TTTGGAGCACA ATGGTTAGTA GAAAGAGTAT 20901 TTCTTGGGTT TTGAATTGTT TGACCAGAAGA TAGGTTAGA GATGGGGGT 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCCAGACC TTTCCTCCGA CAAAAACGTT 21101 GGGTGATTCA TCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCCCAGCCT GTACACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGC CACACATCA CTTGGGGCTG 21251 TTTCCAACTT ATGAAATGTG CTGCAGGTCT TGAGCACTTC CCGTGCCAGG 21251 TTTCCACACTT AGAATGTG CTGCAGCTC TGAGCACTTC CCGTGCCAGG 21251 CCTGGTGATC AATCCCTAC CAAGGGTGC GCCTTGGCCC GCCAGCAGACACC TTGAGACATTCA CTTGCAGCC 21401 TTTCTACCA GAACGATTCC CAAGGGTGC GCCTTGGCACC CACTTTCACA 21501 GGCCCAAAGG TTCCACCTGC CAAGGGTGC GCCTCTGCACCC CAGCCACAC ACCCACCAC 21551 TCTGGTGATC AATCCTTCA AGGTTCTC TGAGGGTCT TGAGGACCTT GAACAGCCC 21551 TCTGGTGATC AATCCTCTAA AGGTTCTCC TGCAGCTC TGAACATCA CTTGAACTGAC 21551 TCTGGTGAC ACCCACCAC TGCCC CAGCCACCA CAGTTTCAA TTTTTCCACC 21551 TCTGGTGAC ACCCACCAC TGCCC CAGCCACCAC CAGTTTCAA TTTTTCACC 21551 TCTGGTGAC ACCCACCAC TGCCC CAGCCACC CAGCCACCA CAGCCACCAC 21551 TCTGGTGAC ACCCACCAC TTCCCC CCGCCCC CAGCCACC CAGCCACCAC CAGCACCAC CAGCACCAC CAGCACACC TTCCCACCT TGCACCTC TCCACCTCT TGCACCTC TCCACCCT TGCACCTC TCCACCCT CCACCCACCACCACCACCACA						
20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGAGCT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20551 TTTTATTTATT TTAATTTATT AGAGGGAGTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCAGCTG AGCTGGGATT ACCGGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITTGTATTTT TAGCAGAGAT GGAGTTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGACACACTTG ACCTCAGCTG AGCTTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTGAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20901 TTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACGT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACGT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACGT 21101 GGGTGATTCA TTGAATTGTT TGCCCAGCCA 21101 GGGTGATTCA TGCAGTTCTA AGCAGAGC TTTCTTCCGC CAAAAGGTTG 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCACCT CCGTGCCCAG 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCACCT CCGTGCCAGG 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCACCT CCGTGCCAGC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCACCT CCGTGCCAGC 21201 CTGTGCCTCA GCAGCACACC TGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AGAAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21451 AGTGTGACAT TTCATCTCC CAGGGGGGG GAGGACCAGCA GCTTTGAAGT 21451 AGTGTGACAT TTCATCTCCC AGGGGGGGG GAGGACCAGCA GCTTTATCACA 21551 TCTGGTGAC AATCCTTCAA AGGTTCCTC TGAGGACCTA GAAGAGCATT 2161 TGTCACCTAGG GCCCCTGCC GCGGGGGGGGGCTC TGCAGCCTAG ATTTTCACC 2161 GGCTCTAAGG TCCCTCTGCC GCTGGCC CTCTCCACGT CCAGCCCAC CAGGCCACC CAGGCACACACC 21751 TAGGGGGAGA GACCACACC CTGCCCGCC CAGGCCACC CAGGCCACC CAGGCCACC 21801 GACTCACTGA GCCCTCCTCCC GCTGGAACAC CAGAGCCTTT TGTAGAATCCAC 21901 ATATTCTTCC ATTTCTCCT CCGGGGGAGCCTT TTTCAACT CAGGACACCC 21901 TTAAAAGTA TTCCTCTCT CCGGCTGCC CTCTCCACCT CCCCCCC CCCCTCTCC 2201 TTCAGTTACC GTATGTTAT T						
20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20551 TITTATITATT TIATITATTG AGACGGAGTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACCGC ACCTCCGCC TCCCGGGTTC 20701 CACCACCACA TCTCACCTCA CCTCCCCCAGT AGCTGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT ACTCGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCTCT CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTGAGAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCCAATA GAGGGTTCA CACAAACAGTTG 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCAG ACAAAACGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGAGC CTTTGAAGAC 21201 CTGTGCCTCA GCTGTTCTA AGGAGTCAGT TTTCACTC CTGCCCAGCCAGA CACCTTCC CTGCCCAGCCAGA CACCTTTCAGT CCTGCCCAGCCAGA CACCTTCC CTGCCAGCCAGA CACCTTTCAGC CACCACACAC TTCCAGCCTA AGAGATTA ACACCTCTCC CTGCCCAGC 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC CCGTCCCAGC 21351 CATAACTGAT AATTGCCAGT CAAAGGATTA ACACCTCTCC CTGCCAGCCAGC 21451 AGTGTGACAT TTCATCTCCC AGAGGAGTTA ACACCTCTCC CTGCCAGCCAGC 21451 AGTGTGACAT TTCATCTCCC AGGAGGGGGGGG GAAGGGGGCC CTTTGAAGGT CACACACAC TTGGGCC CTTTGAAGCAC 21551 TCTGGTGAG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGAGA ACCACACAC TTGGGGGGGGG GAGGGGTGAAA TATTATCCTCC AGTCATGAG CCCACCCAC CAAGTCCTT GGAACACAC CTTGGAGCACAC CTTGGGCC CTTTATCACA 21551 TGTGGGAAC ACCACACAC TTGGGGGGGGG CAGGCGTTT CACAGGACAC CTTGGAGCACAC CTTGAAGGACAC CTTGGGCC CTTTATCACA CACCACCAC CAAGTCCTT GCTTCACAC AGGACACAC CTTGCCC TCCAGCACAC CAGGACACAC CTTGCCC TCCAGCACAC CAGGACACAC CTTGCCC TCCAGCACAC CAGGACACAC CTTGCCC TCCAGCACAC CACCACAC CACCACAC CACCACAC CACCACAC CACCAC						
20551 TITTATITAT TIATITATIG AGACGGAGTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCAGCCAGA AACCTCCGCC TCCCGGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATITT TAGCAGAGAT GGAGTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAGGT ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTAC 20901 TTGGAAGAGG GGAGGAGGG GGCCCGAACAG ATGGTTAGTA GATGGGGGTG 20951 GTAAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCT CCAGCCAAAA ATGGTTAGTA GATGGGGGTG 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCCGA CAAAAAATTCT 21051 TTCTTGGGTT TTGAATTGTT TCACCCAGCC TTCAGCCAC CAAAAAAATTCT CCAGCCT TTCAGTAGAACAC CACACCTTGCC TGCACAACAC CTTTGGAGCCC CTTTGAAGAC CACACCTTGC TGAACAACTCA CTTTGGAGCCT CAAAAAATTCT CCAGCCT TTCACCACCCT TTCACCACCCT TTCACCACCC CTTTGAAGAC C21251 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGC C21251 CTGTGCCACCT AGAACATTCA CTTGGAGCCT CAACACCTTCC TGCCAGCCT C21351 CAACACCTAC AATGTCTCA CCAGCCTGCC TGCACAGACG CTTTGGAGCACT AGAACACCACAC CACACCACCAC CTTGGGGCC CTTTGAAGAC C21351 CAACACCACAC AATGTCTCA CCAGCCTGCC TGCACAGCCTA GAAGAGCAGT TTCACTCCC AGGACCTA GAAGACGC CTTTGAAGAT TTCACTCCC AGGGGGGG GAGGGTGAAA TATATCCTCC C21451 AGGGGAAAGGA AACCACCACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA C21551 TCTGGTGACA GAACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA C21551 TGGGGAAAGGA GAACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA C21551 TGGGGGAGA GCACCACACAC TTGGGTCTGA GCAGCCACAC CTTTGAGACACC C21501 GGCTCACAAG GCACCCACCCCC CAAGTCCTT TGAAGAGACAC C21501 GGCTCACAA GGTTCCCC TGCCC GCTGGAACAC CAAGCCTTT TCACCACCC CCACCCAC CAAGTCCTT TTCACCACCAC C21501 TGCACAAGAGA TTCCACCTGC CTCACCACC CAAGCCTCT TTCACCTTCC CTGGCC CTCACCACC CCACCCAC CAAGCCCTT TTCACCTTCC CACCCACCCCC CAAGCACAC CAAGCCTTT TTCACCACTT CAACCACAC CTTCACCTAC AACTTGAACACAC TTCACCAAACAC TTCACCAACAC CTCACCCACC						
20601 GTGTGCAATG GCATGATCTT GGCTCACCGC AACCTCCGC TCCCGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGGATT AGCGGGGCACA 20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCGAGGAT GAGATTTCTC 20751 CATGTTGGCC CAGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCATTAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGTG 20951 GTAATGCTTA CCTTCCATTGAT TTGGAGGCT TCCAGCATCAT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCACATA GAGGGGCTTCA CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCACATA GAGGGCTTCC CAAAAAGTTG 21051 TTCTTGGGTT TTGAACTTT TCACCTACC ACACCTTGCC TGAACACTC CAAAAAGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACACTC CTTGAGGGCT TCCAGCCATA AGGGTGATCAC CTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TGTCACACACAC CTTTCAGCC CTGTCCAGCCT TTCCACACT ATGAAATGTG CTGGAGATTA ACACCTCCC TGCCATTTA ATTACCACTT AGAAGATTA ACACCTCCC TGCCATTTA ATTACCACTT AGAAGATTA ACACCTCCC TGCCATTTA ATTACCCAGCT CAAAAGGATTC CTGCAGACAC CTTTCACACT ATGAAATTCT CCAAAGGATTC CTGCAGTTGC CTTTCAGCC CTTTGAAGAC 21251 TTTCCACACTT ATGAAATTCT CCAAAGGATTC CTGCAGTTGC CTTTCAGCC CTTCGCCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCT TGAAGACCT GAAGAGACAC TTTCATCCC AGTGATCTA AATTCCCCC AGTGATCACA TTCATCCC ACACCACC TTGAAGACCAC CTTTGGAGACC CTTTGAAGACC CAAAGGATTC CTGCAGACAC CTTTGAAGAC ACCACACAC TTCAGTGAGACAC TTCAGAGACAC CTTTGAGAGACAC CTTTGAGGT CAAAACGATC TTCACACAC CACCACCAC CACACCAC CACACCAC CACACCAC						
20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTTT TAGCAGAGAT GGAGTTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20801 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTCTCCAC CAAAAAGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 212101 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGATTCTA AGGAGTCAGT TTGTTCAGCT CGTGCCAGG 21251 TTTCCCAACTT ATTGACATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 TCCCTACATT AATTGCCAGT CCAGAGTTC CTGCAGTTCC TGCCATTTA 21301 TCCCTACATT AATTGCCAGT CCAGAGTTC CTGCAGTTCC CTGCCATGC 21251 TTTCCAACTT AATTGCCAGT CCAAGAGGATTC CTGCAGTTCC CTGCCAGG 21251 TTTCAACTTA AATTGCCAGT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21401 TTTCTATCCA GGACCAGCT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACA TTCATCCC AGTGATGGGT GGCTTGGGCC CTTTGGAGGT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTCA GAGCACCAGC GCTTATCCCC 21451 AGTGTGATC AATCCTCCACAC ATGGATGGGT GGCTTGGGC CTTTGAAGTT 21501 GGCTCTGAGG ACCACACAC TTGGGTCTCA GACCACACA CCTTTTCAGCAC 21551 TCTGGTGATC AATCCTCTCA AGGGTTCCTC TGAAGACTCAA ATTTTTGGAG 21551 TCTGGTGATC AATCCTCTTCA AGGGTTCCA GCCAGCCCAGC						
20701 CACCACCACA TCCAGCTAAT TTTGTATTTT TAGCAGAGAT GGAGTTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATCT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCCACGAAAG ATGGTTAGTA AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCCACGAAAG ATGGTTAGTA AGAAACATCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21001 CTTCCTTGAT TTGAATTGTT TGACCAGAGC TTTCTCCGA CACAAACAGT 21011 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTCT TCTCCAACCCT GTAACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCAC CTTGGGGCTG 21251 TTTCCAACCTT ATGAAATGTT CCTCCAGCCT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACCTT ATGAATGTTC CCAGCCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACCTT ATGAATGTTC CCAAGGATTC CTGCCAGTTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCCAGTTCC TGCCAGTTCC 21451 AGTGTGACAT TTCATCTCCC AGTGCTGCT GAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGG GGCTTGGGCC CTTTGAAGT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTC TGAGGACCTA ATATATCCTCC 21551 TCTGGTGAC AATCCTTCAA AGGTTCCTC TGCTTCAACC ACTTTGAAGT 21501 GGCTCTGAGG ACCCACCAC TTGGGGCTC TGCTTCAACT CAGGACCAGC 21551 TCTGGTGATC AATCCTTCCA AGGTTCCTC TGCTTCAACT CAGGACCAGC 21551 TCTGGTGACA TTCCACTTCC ACCCACC CAAGTCCTTT GCAATTCACA 21551 TAGGGGGAGA GGAGAGCCC TGCAGCCCTC TGCTCAATT CCTAGAGACC 21601 GTCAAATGGA TTCCACTTCC ACCCACC CAAGTCCTTT TGTAGAGGAC 21751 TAGGGGGAGA GGAGAGCCC TGCAGCCCCC CAAGTCCTTT TGTAGAGGAC 21751 TAGGGGGAGA GGAGAGCCC TGCAGCCCCC CAAGTCCTTT TGTAGAGGAC 21901 ATATTCTCC ATTATTCCC ACCCACCAC CAAGTCCTTT TGTAGAGGAC 21901 ATATTCTCC ATTATTCCC ACCCACCAC CAAGTCCTTT TGTAGACACC 21801 GACTCACTGA TTCATCTTC CAGGGAGACAC CAGGCCCTT TGTAGACACC 21801 GACTCACTGA TTCATCTTC CAGGCACCACC CAGGCCCTT TGTTCACCT TTGTGAGACACC 21801 GACTCACTGA GACAGCCCT TCCACCTCC TCCACCTCC TCCACCTCC TCCACCTCC TCCACCTCC TCCACCTCC TCCACCTCC TCTGTTAAACT TTCAAGGAGACAC TTTGTTAAACTC ACCTACCAAGA AAAATTTTT TTCC	20651	AAGCGATTCT	CTTGCCTCAG	CCTCCGCAGT	AGCTGGGATT	ACGGGGCACA
20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGAGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGGTCTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTTCCGA CACAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGAGG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCCAACTT ATGAAAATGTG CTGGAGATTA ACACCTCTCC TGCCCATTTA 21301 TCCCTACTAT AATTGCCAGT CCAAGAGGATC CTCGCAGTTCC CTCGCCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCGTGCT TGAAGAACTC CTCTGGCAGC 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGG GGCTTGGGCC CTTTGGAGGT 21501 GGCTCTGAGG AACCACACA TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGAGC AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAC AGGTTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC ATCCTTCAC AGGTTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC ATCCTTCAC AGGTCCTC TGCTCAACT CAGGACATGG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGC 21601 GTCAAATGGA TTCCACCTGG GAGGGGGTTC TGCTTCAACT CAGGACATGC 21751 TAGGGGGAGA GGCGCC TCCCCTGGCC CAAGTCCTTT GTAAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGGCCTCT TGTTCAACT CAGGACATGC 21901 ATATTCTTCC ATTAGTCCC TCCAGCCTCC CAAGTCCTTT GTAAGACACC 21801 GACCACCTGA CTTATTCCCC ACCCACCCAC CAAGTCCTTT TGTGGCTTGC 21901 ATATTCTTCC CATAGGCAC CCCTCTCTGCC TCCAGCCCCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGGGCC TCCTTCTGCC 22151 TGTGGCCCTT GTGTGTCCCC TCCGCC TCCCCCCC CCCTTCTTGC 22201 TTCAAGACAC AAAAATGTTG ATCCCCAGCCTC CAAGCCACC CCCTCCTCTCC 22211 TTCAGGTACC CAAGACAGC CTTGCCACCT CCACCCCCC TCCCCCCCCCC						
20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGAGGGCT TCGGAGTCCT CAAAAATCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCGA CACAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCACCTT ATGAAATGTG CTGAGGAGTTC CTGCAGTTCC TGCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTCC TGCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21401 TTTCTATCCA GGACCAGTTT CCAAGGATTC CTGCAGTTGC CTCTGGCAGC 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTTCTG GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGGCTTC TGCTTCAACT CAGGACATGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCAC CAAGTCCTT GAAGTCTGA ATTTTTGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCACCCCC CAAGTCTCTT GTAAGAGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT TGTGGCTTGC 21801 GACTCACTGA GCCCGTCGCC GCTGGACCAC CAAGTCCTTT TGTGGCTTGC 21801 GACTCACTGA GCCCGTCGCC GCTGGACCAC CAAGTCCTT TTGTGGCTTCC 21801 GACTCACTGA GCCGGCCTC TCCCCTGCC TCCACCTCT TTGTGGCTCC 21801 GACTAACAAT ATTTGCTAGT CCCCAGCCCCC CAAGTCCTT TTGTGGCTTCC 21901 ATATTCTC ATTGCTACT TTCCTCCC ACCCCCCC CAAGTCTCT TTGTGGCTCC 21901 TTAAAAGATA ATTTGCTAGT CCCCAGCCTC CCAGCCCCC CCCTCTCTTGC 22001 CTGATTGAAT TACCAGGGGAAAAA ATTGTCACA ATTGTAAGAT TTTTGCTAGC CCCAGCCTC CCCTCCTCCCCCCCCTCCCTCCCCCCCCCTCCCT						
20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGATGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCCAGAGC TTTCTTCCGA CACAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCC CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTTCCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTGCCAGGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GCCTTGGGCC CTTTGAAGAC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GCCAGCCAGCA GCTTTTCACC 21451 AGTGTGACT TACACCCTCG GAGGGGCTTC TGCTCAGCA ATTTTTGAGGT 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTCAACT CAGGACAGCA 21551 TCTGGTGATC AATCCTCCA AGGTTCTGA GCAGCCAGCA GCTTTATCACA 21551 TGTGGTGATC ATTCCTCTCTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCA CACACCC CAAGTCCTTT GTAAGACACC 21851 AGAGGAGAGA GCCCGTCCCC CCGCGCCC CAAGTCCTTT GTAAGACACC 21851 AGAGGAGTAT TGCTCCTCTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21751 TAGGGGGAGA GCCCGTCCCC CCCCCCCCC CAAGTCCTTT GTAAGACACC 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGCC CACACCACC CAAGTCCTTT GTAAGACACC 21851 ATATTCTTCC ATTAGTACTG TGTTCATCACA ATTTGGGGCC CCCTTCTTGC 22191 ATATTCTTCC ATTAGTACTG TGTTCATCACA ATTTGGGGCC CCCTTCTTGC 22191 TTAAAAGATA ATTTGCTAGT CCCAGACCTTC TCAGCCCACC CACCCCCC CCCCCCCCCC						
20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTTCCGA CAAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAGGGCTG 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCCTCCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGACCAGC 21401 TTTCTATCCA GGACCAGTT CCAAGGGTTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCCA AGGTTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCCA AGGTTCTG CAAGTCTGA ATTTTTGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTCAACT CAGGACATGC 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT CAGGACACG 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAAA GACACACACG CTGCCGCCCC CCAGCCACACACC CAAGTCCTTT GTAAGACACC 21851 AGAGGAGTTA TGCTCATAGG CTCCCCTGCC TCCTCACACTT CCTAGACACC 21851 AGAGGAGTTA TGCTCATAGG CTCCCCTGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTC CCAGCCCACC TCAGCCTCTT TGTGGCTTGC 22011 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAAATGTTG 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAGC TCCCCTCCCC						
20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTCCAG CAAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATCA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGACC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCTC CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGGGGGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GAAGGACCAG CTTTGAAGACT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTCA GCAGGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21651 GGAGAAGGCT CATCCCTCAGA ATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21651 GGAGAAGGCT CATCCTCTCA CAGGGGGGG CAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCA AGGTTCCCC TGAAGTCTGA ATTTTTGGAG 21651 GGAGAAGGCT CTTCCTCTTC CAGGGGAGG CAGTTTACACT CAGGACATGG 21651 GGAGAAGGCT CTTCCTCTTC CAGGGGAGGA CAGAGTCCTTT GTTCACTC CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAGAGGAG 21761 TGCCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAGAGGAGA CATTATGAGA TTCCTCTTCA ACCCACCCAC CAAGTCCTTT TCCTCAGACACC 21801 GACTCACTGA GCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTCC TGCTCACATT CCTAGACACC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTTGGGGCC CCCTTCTTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTTGGGGCC CCCTTCTTTGC 22011 TTCAGTACC GGGAGAAAAATGTTA TTCCCCCACCCAC CCCCCCCC CCCTTCTTTGC 22011 TTCAGTACC GGGAGAAAAATGTTA TTCCCCACCT CCGCCACCC CCCTCCTCTCCACCT CCGCCACCCC CCCTTCTTGC 22151 TGTGGCCCTT GTGTCCCC TCGGCCACATAATAGAT TTTTTAAACCCT CAGCCACCAC CCAGACACAC AACTTTGAGAC CCAGAGACAAAAATGTTA ATGAGACCC CAACTACCT CTGCCCACCAC CCAGACACACAC AACTTTGAGAC CCAGAGACAA TAGAGACCC CTCGCCCACCC CCCTCCCAACACACACACACACACACACACAC						
21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTTCCGA CAAAACAGT 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGACC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCT TGAGGACCTA GAACAGCAGC 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCCTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTCA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21601 GTCAAATGGA TTCCCCCTCC GAGGGGAGG CAGTTTTCAT 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCCCC TGCAGCCTCC TGCTCACATT CCTAAGAGAGA 21751 TAGGGGGAGA GGAGAGCCCC TGCCAGCCCC CAAGTCCTTT GTAAGAGAGA 21751 TAGGGGGAGA GGAGAGCCCC TGCCAGCCCC CAAGTCCTTT TCCACACAC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAC CAAGTCCTTT TCCACACAC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAC CAAGTCCTTT TCCAGCACCC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAC CAAGTCCTTT TCCAGCACCC 21801 GACTCACTGA GCCCGTCGCC TCCCTGGCC TCAGTCTCTT TCCAGCACCC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAACA TTGCTCCCAG CTCTCCAGCT GGCCACCCT 22151 TGTGGCCCTT GTGTCCCC TCGGCTAGGA TCCTGACCCT CTGCCAACCT 22251 TGTGGCCCTT GTGTCCCC TCGGCTAGGA TCCTGACCCT CTGCCAACCT 22251 TGTGGCCCTT GTGTCCCC TCGGCTAGGA TCCTGACCCT CTGCCAACCT 22251 TAGTTGAAC AACATGAAC CAAGGAAAA TAGAGACCC TCTCCAACCT 22251 TAGTTGAAC AACATGAAC AACAGCACACAC CAAGGACACA TACATAGCC TCTGCCAACCT 22251 TAGTTGAAC AACATGTTTA TCCCAACGGC TTACATGCA TTACCCACCAC 22351 TAGTTGAAC AACATGTTTA TCCCCAACGGC TTACACACT TTACACCCAC 22351 TAGTTGAAC AACATGTTTA TCCCCAACGCC TTACACACT						
21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTTCCGA CAAAAGGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGG GAGGGTGAAA TATATCCTCC 21451 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCCA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGGTGG CAGTTTCATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGAGA 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCCTTT GTAAGAGAGAC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAAGGGGAA CATAATAGAT TTTTGGGGAG AAATAGTTGT 22051 CTGTGTGGCC TGGGGAGAAAGA TTGCTCCCAG CTCCCCCC CCCCTCTTTGC 22151 TGTGGCCCTT GTGTGTCCC TCCGCTCACACT CCCAGCCCACC TCCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA CTCTCCAGCC CCCTCCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCCTCACACCAC 22251 CATAGGGGTG AAAAATGTTG ATGCTGGAGA CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG CTATTTACACCT 22401 TTAATGTGTC CCAGACTTTA ATGCTAAAG CTTACTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTA ATGCTAAAG CTTACTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTA ATGCTAAAG CTTACTAACAT TTATCAACCT						
21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGGTTC TGCTTCAACT CAGGACATGG 21601 GTCAAATGGA TTCCACCTGG GAGGGGGGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGACCAC CAGAGCTGTT TGAAATGTC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTT TGAAATGTC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTA ATTTGGGGCC CCCTTTCTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTCCCCCAG CTCCCACCT CCCTTCTTGC 22101 TTCAGTATCC CGTATGTTAT TTCCCCCAC TCCCCACC TCCCCTCCTC 22101 TTCAGTATCC CGTATGTTAT TTCCCCCACTT CCAGCCCCC TCCCCTCTCTC 22151 TGTGGCCCTT GTGTTCCCC TCGGCCTCCAGC TCCCCACC TCCCCTCC 22101 TTCAGTATCC CGTATGTTAT TTCCCCCACT CCAGCCCCC TCCCTCCTCC 22151 TGTGGCCCTT GTGTTCCCC TCGGCTAGGA TCCTCCACC TCCCTCCCCC 22101 TTCAGTATCC CGTATGTTAT TTCCCCCACT CCAGCCCCC TCCCCTCCCC						
21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTTGGTGAG AAAAATGTTG 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTTGGTGAG AAATAGTTGT 22051 CTGTTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCCCAGCC CCCTTCTTGC 22101 TTCAGTACC CGTATGTTAT TTCCCCCACT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTCCAGCC 22101 TTCAGTACC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTCCAACCAA 22301 GGCCCAGACA GAAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAC 22351 TAGTTGTAAC AACAGTGTTA ATGGCTAAAG GCCACATAGC TAGCCCACAC 22401 TTAATGTGTC CCAGACTTTA TTGCCCAGGC TTACCACAT TTATCAACCT						
21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGGC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGCACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGCTTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGCTAAAGGC TTACCATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGCTAAAGGC TTACATGCAG TGCATTGTCC						
21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCACCCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCCAACAC 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTCAAAG CCAAAGAACC TAGCCCACAC TAGCCCACAG 22351 TAGTTGTAAC AATAGTTTA ATGCTCAAGGCC TTACATGCCA TTACACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGCC TTACATGCAG TGCATTGTCC						
21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGAGAC 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAAAATGTTG 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTCCCAACA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG CCCACACC TCACCTCCTC 22551 CATAGGGGTG AAAAATGTTG ATGCTGAGGC CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAC 22351 TAGTTGTAAC AATAGGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTCAGCCC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCTCAAGA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTCAAGG CCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCCAAGGGC TTACATGCAG TGCATTGTCG						
21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCCAACCT 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG	21301	CATAACTCAT	CAATCTTCTC	CCACCTCCTC	TOACCACCTA	CAACACCACT
21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACCTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTCAGCCC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG TAGCAGACCT TCTGCAACCT 2251 TAGTTGTAAC AACATGAGAC CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21501 GGCTCTGAGG AACCACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACAATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATTGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCTCAAGA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21651 GGAGAAGGCT GTTCCTCTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG	21221	CTCAAATCCA	TTCCACCTCC	CACCCCCTTC	TOCATOMACE	CACCACATCC
21701 TGTCCTCTA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCTCAAGA 22201 GTGAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG	22151	TGTGGCCCTT	GTGTGTCCCC	TCGGCTAGGA	TCCTGACCTC	CTGCTCAAGA
22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG	22201	GTTTAAACTC	AACTTGAGAC	CCAAGGAAAA	TAGAGAGCCC	TCTGCAACCT
22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG						
	22351	TAGTTGTAAC	AATAGTCTTA	ATGATATTAA	TGGCTAACAT	TTATCAACCT
22451 CATTCAAACC CAGACAGTCT GGCTCTGGGC CCAGGCTGAG CTTTGGTATA						
	22451	CATTCAAACC	CAGACAGTCT	GGCTCTGGGC	CCAGGCTGAG	CTTTGGTATA

22501	GCATGGTAGA	ACGTTGTCTA	TAATGTCTAG	TCTGGGTTCA	AATCCTGGCT
22551	TCACTTCTCA	CATTTACAGC	TGAGTGACCT	CAGGCAAGTG	ATTTAACCTC
22601	CCTGTACCTC	AGTTGCTTTA	TCTGTAAAGA	GAAAAATCAC	AGCACTGTGG
22651	AATAGTGGGG	GTTAAAATTC	ATTCATACAA	GTAGTGCTGC	AAGCAATGTT
22701	TAATACAGGG	TGAGCACCTG	TTCAGTGCTT	CCTTCTTCTG	GCTGCCTCTG
22751	GGGCTAGAGT	GTGGTGTCTT	CGTGGTATAG	ATAGATAGAT	ATGGCTGAGC
22801	TCTGCACAAA	CACCAAGAGC	TGTTCTTCAC	TATTAGAGGT	AGTAAACAGA
22851	GTGGTTGAGC	TCTGTGGTTC	TAGAACAGAG	GCCGGCAAGC	TATGGCCCAT
22901	TGCCTATTTT	AATACGGCCT	GTGATTGATT	GATTTTTTT	TTCTTTTTGA
22951	GACAGAGTTT	CACTCTTGTT	GCCCAGGCTG	GAATGCAATG	GCACGAACTC
23001	AGCTCACCGC	AACCTCTGCC	TCCTGGGTTC	AAGCGATTCT	CCTGTCTCAG
23051	CCTCTCGAGT	AGCTGGGATT	ACAGGCATGT	GCCACCACGC	CTGGCTAATT
23101	TITGTATITE	TAGTAGAGAC	AGGGTTTCTC	CATGTTGGTC	AGGCTAGTCT
23151	CGAACTTCCA	ACCTCAGGTG	ATCTGCCCGC	CTCAGCCTTC	CANACTECTE
23201	GGATTACAGG	CGTGAGCCAC	CATGACTGGC	CTGATTGACT	CAAAAGIGCIG
23251	GTAGAGATAG	GGTCTTGGTT	TGTTACCCAG	CTCCTCTCA	AACTTCTCCC
23301	TTCAAGCAGT	CCTCCCTCCT	TGGCCTCTCG	AATCCTCCA	TTATACCCAT
23351	GAGCCACTAT	GCCTGGCCTA	TATGACCTGT	CATTTTAAT	CCTTACCCCA
23401	AAAAAAGCAA	AAGAATGCTT	TGTGACATGT	GCAAATTACA	TCAAACTCAA
23451	ATATCAGTGT	CCCACCCTCC	GCAACAAAGT	CACACCCTCT	CTCTACAAAA
			GGCCGGGCGC		
23551	TCACCACTTT	CCCVCCCCC	GGCAAGTGGA	TCACCTCACC	TCACCACTTC
23601	AACACCACTT	TCACCAATAT	GGTGAAACCC	TCTCTCTACT	1 LAGGAGIIC
23651	AAATTACCCC	ACCATCCTCC	CATGCGCCTG	TACTCCCACC	TACTTCCCAC
23701	CCTCACACAA	CACAATTCCT	TGAACCTGGG	ACCCCCACCT	TOCACTOAGO
23701	CAACATCCCC	ACACTACACT	CCACCCTCCC	CAACACACC	1GCAGTGAGC
23/31	ACACCCACCC	ACCCACACAC	GCAGCCTGGG	CAACAGAGGG	AGACTCCGAC
22001	TOTTOTOTAL	CACCTCTCCT	ACACACACAC	ACACACACAC	ACGCTGGGTA
22001	CATCACTTCA	CALGIGIGGI	CCCAGGATGC	ACTGGAGGCT	TAGG TAGGAG
23901	CTCCACTTTA	CCACCCAA	TTGAGACTAC	AATGAACCAT	GITTATACCA
23901	CIGCACTITA	GCCAGGGCAA	CAGTGTGAGA	CIGAATCICA	AAAGAAAAAA
24001	AJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAICII	TCCATAAGTA	AATATCTGTT	GGAACATAGC
			TTATATATGG		
24101	CACAATIGAG	TGGCCACGAC	AGTCTGTATG	GCCTGCAGAG	CCTAAGATAT
24151	HIGCICICIG	GCCCTTTACA	GAAAAAGTGC	CTTGACCTGT	GCTCTAGAGC
24201	CATATGIACC	AGGTTTGAAA	CTCAGCCTCA	CAGCTGGGTG	TGATGGCACG
24251	CATCIGIAGI	CCCAGCTACT	CTGGAGGCTG	AGGTGAGAGG	ATCACTTGAG
24301	TCCAGAAGGT	CGAGGTCAAG	ATTGTAGTGA	GCCATGATGG	CATCACCGCA
24351	CICCAGCCTG	AGTGACAGAG	AGAGACCCTG	ACTCAAAAAA	AAAAAAACAA
24401	AAAAAAAAA	CACCCTCACC	ACTTATCAGC	TATTTGTCTT	GAGAATAGTG
24451	ACATAACCCC	TCAGAACCTA	TTTCCTAATC	TGTTAAATGA	GGCTGATGAC
24501	GTTTCCTCCT	TTTACTGGCA	ATTTAAACAT	GATGGATAAT	AAATGCTAAG
24551	CACTTAACAC	AGGGCCTAGA	AGATATTAAC	TGCTCAATAA	ATGGTAGCTT
24601	CTTAACAGTA	TTCAAACCCA	TGTGCTCTTA	TCACATGCAT	TGTTGTCCCT
24651	GTGTCCAGTT	GGTGGAATGG	GAAAAGGCTC	CCTTGTAACC	CCATCTACCA
24701	TCTTTATCAG	ACTTTCCTGC	CATGGTTCAC	AGTAAGAGAT	AGAAGCTGCA
24751	CGGTGACTTC	TGGCTCTTTA	CAATGGTGAG	CGGTGTGTGC	CTGGTAAGGG
24801	AGAGCTGATG	TCACTGCCCC	AAATCCAGTA	GTGAGATCTG	AGTGTTCTGG
24851	TTTCCTCCAG	CAGCCTTGCT	TTTTCCTTTA	CAATCCTGCA	GGCAGGGAGA
24901	CAAGGGCTTT	CTACATGGTA	GGCTCTGGTT	TGGTCATCGT	CACAACTGGG
24951	GGCTGTTCAG	GTGGGCTCCC	ATTCCAGATA	CCTAGGCTTA	TCAATCCCTT
			•		

25001	TTGGCACCC	AGGCCTTTTT	CTCCCTCATG	CCCCATTITT	CAGTTTGAAA
25051	AGCATGGTTA	TCACAGGACA	AGTAGAAGAA	GCTCCACTGT	CCACTGAGGC
25101	CAATGGATGG	G TGTTCTGCAT	GTGAACACTC	AGTGAATAGT	GAGTGAATGA
25151	. GAGTAACCTO	GGCTCCATCC	TATTTGCAGA	GAGCTTTGGA	AAAGATTTTT
25201	. CTCCTTAAAG	AGCCAGAATG	AAGCCTGGTA	GTGGGAGAGA	TCCAGCTCTA
25251	GAGTCACATO	AGCCTACATT	TAAATTCCAG	CCCTGCCACT	GACTCCCTTT
25301	. TTGACCTTGA	GTGAGTTACC	TAATCTCTCT	GTACCTCACT	TITCTIGTCT
25351	GTAGAGTGGG	AATAATTCCT	GTCTCAGAGA	AATAAAAGAG	TGCATATAGT
25401	GTTTGCCACA	TGGAGACACA	TCAGGTGTAG	GTTAATACTC	TGGGCCTTGT
25451	TTCCTTATTI	GCAACACAGC	CCTGCCCTGG	AGTGGAAGTG	GCACCTCCCA
25501	TTGGTCAGCT	CTTGAGGCTG	TCCCCAGGAC	AGGCAGAGGG	AGGGAATGAA
25551	TGGGAGCCCT	AGTGCCAGGA	CAGAACAGAT	GGCAGCTCAG	AGCTAGGATG
25601	GCTCTCTGGA	CCTGTCTCTC	CTACCAGAGG	TCCCCCCTC	TGGTGTGGCT
25651	CTTCCTGGAC	CTGGCATCCT	CTGCTTTTT	TTTTTTCCA	CCTCCAAGCA
25701	GAATTACTGT	CCTGTAGGCA	GCTCCTCTGC	TTGAGGACAT	CTECECCOAGCA
25751	ATATGTTCAC	ACTCTATCCT	GCCTTGCCCT	TOTOTOACCT	CAGGATGGAC
25801	GCTCAATTGG	TCCCAGTTAT	TGTCTGCAGC	CCCTGCCTCC	ACCUTCATO
25851	CAGCCCAGCT	CCACCCCTTG	CCTGCAAGGT	CTGTTTCCTA	ACACCTCCATC
25901	CAACCACACA	CCTCGGTTCT	GCGGGAGCCC	CTCCTCTTCC	TOCOTOCOTO
25951	CCTCATTCAG	GGGTGGGACT	GAAGAAGAAG	GCTAACTTCA	CACCACCCTC
26001	TCTTTCTTAG	CTAGTCACCG	GCCCCTGCTC	AAGAATGCCA	CAGCAGCGCT
26051	AGCCTCCACA	GAGAGGTCGT	TTTCTCGGAG	TCCAGAGGGG	CCCCCTCACC
26101	TTCTGAGAAC	TAGGGAGGAG	CCATCCCAGC	CATGAGCCCC	TETECCAATC
26151	TGCTGGGGGC	CAAGTGGCCT	GGAGTCCTCA	GGCTCCCCA	CCTCCTCCCC
26201	AGGGAGAGGT	GAGCTCAGGG	CAGCCTGCCT	GCAGCCAGAG	GTGCCGGGAC
26251	CCCCGGGCCT	GTCATGGTGG	CCATCTACAG	CCGCCCTCAG	CCACTCACAC
26301	ACGGATTTGC	AGCTGAGCCT	GTCTATCTGG	TCTCCCAACA	ACATECECA
70221	TIACTIBICA	GICCCGGCII	ACTICACCIC	CAGAGACCTG	TTTCGGTGAG
26401	TTGGTCTCCG	AGTTCCCCTC	TCCATCTCTC	CTGGCCCCCTG	CTCCTCACAC
26451	GAGGGTGGTC	TCCCTAAATC	TCCTTCTCAC	TTAGTCCTTT	ACCATCCCTT
26501	CTGCCGGGCA	GAAGCCAGCG	GAGGTTATAC	CCAACCACAA	Trecrettet
26551	GAGGTACCCC	CATTATGTCC	TGGAAGTGGT	GAGGGGAGAG	ATATACCCAC
26601	AAGGAACTTC	TTAGGGAGCT	CCAGCTCCCC	TTCTATCCCA	CACAAACCTC
26651	AAGGAGCCTC	CAAAAGATGC	CACTGACCTG	CCCATTGTAG	ATCTTACTCC
26701	TTCCGGGGGG	AATAGCCCAA	ATAGAGTGCT	GTTTCCAGCT	CTCACATGTC
26751	TTACCTGCGG	GCCATGCTGC	CTGCCCAGGA	ATTTGTCCCA	ACAAGCAGGA
26801	TGGGCAGGTT	TTGCCAAACT	GTGGAAACTG	GCAAGTCCTG	GGTGTGGGTA
26851	GCCTGGTACA	CAGTAGGCAC	CTTATAAACG	THETTETE	TAATGGCAGG
26901	CACATTTGCC	TCTGGCCTTG	AAGGGCTTCT	GAGCTCCCAG	GTGAATGTAG
26951	TIGC I GGGGA	AAGACCTGGG	CGAGTGCTTC	TAAGACTGGA	CCAATCCCCT
2/001	TTAGAGTGTT	CCTGAGCTGC	TGGGCCAGCC	CCCACACCTC	CTCAGTCCCT
27051	AGGCCTAAGT	ACCTCCACGA	GCCTCTCTCT	GTGGGGCTTC	TCAGAGGGAG
27101	ATGTGGAAAC	TCTACCTCTA	ACCTGGCTTT	CTTTGCTCAT	TGCCCCACTC
27151	CACCTCCCAT	AGAAACTCCC	CAGGGGGTTT	CTGGCCCTCT	GGGTCCTTC
27201	TGAATGGAGC	CATTCCAGGC	TAGGGTGGGG	TITGITTTCA	TTCTTTCCCA
27251	GCAGCCTGTT	GTTCCAAAAA	GGCTGCCTCC	CCCTCACCAG	TEGTECTEGT
27301	CGACTTTTCC	CTTCTGGCTT	CTCTAAGCTA	GGTCCAGTGC	CCAGATCTTC
27351	CTGCCGGGAT	ACTAGTCAGG	TGGCCAGGCC	CTGGGCAGAA	ΔΔΩΓΔΩΤΩΤΛ
2/401	CCATGTGGTT	TTGTGGAATG	ACCGGACCCT	GGTAGATTGC	TGGGAAGTGT
27451	CTGGACAGGG	GGAAGGGGA	AGGGAACTGG	TCCTCAATGC	TGACTCTACC
					10 10 17 10 0

2750	1 AAGCGCCCT	G CTAGACACTT	TATCCTTTA	A TCTCTCAACA	GCCTAAAGAG
2/55.	LAHAIAIA	C CCCATTITAC	CAGATGAGGC	A ACCAGTITCA	ΔΟΔΕΛΕΤΤΛΛ
2/603	L CATATGGAG	U CICACTGGGC	CAGCTTTTTC	I GTOTTCCTGA	CTITCTCTCA
2/65	LICCTICAGG	G GGCTGCAGGT	TIGITITCT	CTCCTAGTGG	ΔGΔGGΔΔΔΤΤ
2//01	L CTCAGGTTT	G THITCCTCTC	CTAGCAGAG/	A GTAAAAAAAA	CCATACTTTC
2//51	LUCILIACITG	I IGAAGGIGTG	i GCTGAGATTO	3 ΤΙΤΤΟΤΑΔΑΘ	AGCCAATGGA
2/801	LAATIGATOL	I GAGTTTAGGA	GAAAGCTTTT	「 ΔCΔTGTGG∧∧	TTAACATCCC
2/001	. AAGIGIIGA	A GTAGCCACAT	TTCAGGTCCT	ΓΛΑΤΤΛΛΊΤΤΟ	TOTTAATOOT
2/901	. GGGAAGGGCA(z CITAGGAGAA	GGGTTGTTCC	, TTTVGGVGCC	ACCAACTATA
C/201		, UUTTUGAGAG	GCAGGGAAGC	: CAGGGAGGAC	$\Lambda \cap \Lambda \Lambda \cap T \cap T \cap T \cap T$
20001	. AUGAAGAGGA	A GAAGUTAGAG	CAGATAGTGA	\ ACTCTCAACC	TGAACCTTTA
58021	. AUGUCCAGA(CACTAATGCC	- ACCCAAGTCC	ACCTGCCGTT	TGTCTTGTTC
58101	IGICCCAGGC	: TITCTGGAGA	ACCTGATCTT	CTTCCCCCTA	CCCCCAACCT
58121	CCGTTGCCC	: AGCTAGAGTC	TGGGGGGTAC	TGACTGACTT	TOCTACACAT
28201	TCTTCCCTTC	CCCAAATAAG	AGGCCACATT	CCTGAAGTCA	CTTCTGAAGA
28251	GATAGCTGCC	ACACAGGGCT	CTTTCCCCCC	AGGGAGGGAC	CACCCACACC
28301	CTCTGCTCTC	CCAGGTATCC	GTTACCACAT	CACTACCTGG	TCACAAAACCT
28351	GTTTCTGCCA	TTAGCCCCTC	CCTCTTTTAT	TATAGGATAT	CCTCAACCCC
28401	TCCTCTTTGG	GCCTCAGTTT	CATCCTTGGC	AGAAAGTAGA	ACCTACACTT
28451	CTTGGGCTCC	TGAACAGGGT	CCTTGCTGGA	TTCTCTCAAA	CANATTAACT
28501	TCTTGACCCT	AGGCCTCTGG	GGGAGTACAA	AGTCTATGGG	ACTICICCC
28551	CTGTGGTTGC	AAGGAAAGTG	ACGCAACCAG	ATTCCATGGG	CACATCATCA
28601	GGCGTGACAT	GTGAGGGAGG	AAGAGGGAGC	AACCCAAGG	ACAATACAAC
TC007	1161616166	CATACACCCC	TGCCTGACAG	GCCATACATA	CTCACCACAC
28701	AATGCACTGT	CTTTCCTACC	ACACTAGCGT	GAGGAGTGAG	CTCCAATTAC
28751	CACTGTGCTT	CCAAGTAAGA	AAATACCTCA	AATTCCAATT	TACAAAACAC
28801	GTAAATTAGG	GAGTGGCTTT	TETTEGATAT	CTTTAAACCA	THERMANAGAG
28851	TATAGAATTT	CACTTAATGT	CCAATACTGA	TTTAATCACC	TTCCCTTTAC
28901	ACATTATCTC	TTGAAGAAAA	CAAATGAACC	TITETETTEC	AAACCAATCC
28951	ATGTTTAAAG	GGAAAAAATT	ATGCATAACT	CTCCCCACCT	TCACACTAAC
29001	CTTTGGCAGG	TGCCTTAGGT	CCTCTGGGAC	TOTTTTCCTT	ATCTCAAAA
29051	TGAAGGACTT	GGATCAGGTG	AATGGTTCCC	AGCTCTGCAA	CTTATCTCCC
29101	TCCTCAGAGG	CACACAAGCT	CTTTTCCATT	ATTTCCCAAA	TAATCCACCC
29151	CCTGTCTTTA	ACTGCAGTAC	ΑΑΓΤΑΓΑΓΑΛ	AATACTTCAA	ACTACACTCT
29201	TCCTGGTTTT	TGGTTGGAAC	TGAATCAGTG	CACTCTACCA	ACACTTATTT
29251	CTTGCTGTTC	GTAGGCTTCA	TTATGTGTTT	CCTTAATTIT	TTA A A A CA A C
29301	AATAACATAT	TCCATAATAA	TTACAGCTTA	ATTECCACAC	TOTTTOACTO
29351	TATAGGATCT	GCAGGAAGGA	GGAGTAATAA	ACCCATTTT	CACTCACCTC
29401	TTATGGAACA	GAGTCTCTCT	AGGCCCCTGT	CATATCTCCC	CTTCTCCCCC
43431	C FGGGGAAAA	(a) HalaCA (CC	CCAGITGTGG	TCCTCTCCAC	CTCCCCTCAC
29501	GCTGTGGTGG	AGGGAGCTTC	CCATTCTCTC	CTTCACCCCA	CTCAATTCAG
72001	AUGU I AUGUS	L.HJAAAGAAG	CHICICIACA	ACTCCCTCTT	CACTCCCACC
29601	TTAAGGGATG	ACCATCCAGC	CAGGCCTTCC	TCACCACATC	CCACCCCTTA
29651	TGCTTTAACA	TGTGTAAATC	CACTCCAATA	ATCACTCCTT	CTTTACCCC
29701	ATAAGGTTGA	GAATTTACCT	CTAAACATTT	TTCTCTCAAC	AATTTOOATO
29751	TAAGTGAGGG	CTGGGCCTCT	ATCTTATCTC	ACTTCCCTTC	PATTIGGAIG
29801	GCACCTTGCC	TGCTTGTTCT	TACACATCE	ACATECACAC	TAACTATTTC
29851	CTAATTATTA	GAAATCTATT	ACAATCAATT	CATTTCACCT	POCCETTOOTS
29901	GCTCCTTCCT	GTAATCCCAG	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CCCTAACCCT	addCIIGGIG
29951	CTGAGTCCAG	GAGTTTAAGA	CUTCILIAGA	440144444 (ACACCCTOTO
	J. WIGIOCAG	WHOTITIANDA I	CONDUCTORS	CAACATAGGG /	AGAUCUTGTC

30001 TCTACAAAAA ATAAAAAATT AGCCAGGCAT GGTGGTGTGC ACCTGTAGT
SUBST CONGLINCTO AGGAGGCIGA GGCAGGAGGA TOTOTTGAGG CTCCCAGGT
30101 AGACTACAGT GAGCAATGAT TGTGCCACTG CACTCCAGCC TGGGTGACAG
30151 AGTAAGACTC TGTCTCTTAA AAAAAAAAAA AAAAAAGTTG ATTTCTATT
30201 GGATAGATAA ATAATTCATT TTAGGACCTT TCTTTTTCAC TTACAGAAA
30251 CTGTTTCATT CTGGGCTGAG AAGCAGGTCC ATATTGCTAG GCATAGGAG
30301 AAAAGGGGTC TGTCTGCATT TGCCCTTGGT GGTCTCAAAT TGGGGAGGGA
30351 AAGAAATGAA CACTTACTGG CTACCTTCTG TGAGCCAGGC ATCATGCAAC
30401 ACATCTGTAC ATAATTTAAT TCTCATAACC CCATAACGC AICATGCAAC
30401 ACATCTGTAC ATAATTTAAT TCTCATAACC CCATAAGATA TTATTAGCAA
30451 TGTACAAGTG AGGAAACTGA GGCTCAGAGT CATGAAGTAA CTGGCCTTGG
30501 GTGACACAGA TGGTAAATGG CAGAGAAGGA ATATGGATCC AGGTCTTGAA
30551 AGAGAAAATC TCAACTGATT ATCTTTTTTA AAAAACTCAT ATGTTCTCTG
30601 CTGACTCAAA AGGTCTCTGT GTGGATCTGG GTTGACCCAC TGAACTGACC
30651 ATCAGGGTTC CATGCACTTT GTATCTGCCC AAGCCCTCAG AACCCCTCAG
30701 TAATGTTTTG GAAGATGAGT TTTGGAGGTT GTCCTTAGGC ATAGCCTCAG
30751 CGTATGTAGG CCTCTAGGTG ATCTCCCCTA ACCTGAGGAT TTCAGCTCAA
SUBULTITUALICISE CICCICAGGA CAGTGGGATG ACTGGTTCAG ACCTCACCTT
SUBSI TACCACCTIC CAGCIGGGTA CTCTTCTACC TACAGCCAGG GCAGATTTTC
SUBUL ACTITICACTE GAAACTICCA AAAATTGAAA GGTAGAAAAA CACCCTTCCC
- 30931 ITIGGGAAGA ACGTATGATG TCCATGGCCT CTAAGCATCT CACCTCCCAC
SIDUL AIGIICGAGI AGCACCIIAC AGTTCCAAAG TGTGTTCTCC GTTCTTTCTT
SIUSI IAAAAGAACA GAGACIGCIG GGGAATTGAA CACTGTGAAC TATATGAACC
SIIVI AGGAGAAIIG IGCIAIIIAA CATTCAGTAC TTGGGCTAAA GGAGAACGAT
SIISI CACGAAGIGI TAACACICAA AGGGTCTTGA GCTGTCAGGG CTCCACCTTC
SIZUI CITATITICA CAGGIGAGAA TOOTGAGGCT CAGCTGTTGA GATCTCCTCT
SIZSI CICACICCEG IGACAIAGIA CAGTGGATGT GGCTTTGCAG CCAACACAC
SISUI AIAGUITUAU AITUUAGUIC CATCAATTAT GTATTGGGCA GCTTTCCACA
31331 AIGAIIIGAC IIIAACICTG CTTTTCAGTC TTCTGTAAAA CACCCATAAT
SITUL COLUCTACCO TAGGGILGIC AGGATTAGAG ATAATATAAA TAACCTACCT
31431 CATATAGGAC CIGGALLATG GCTGGCATTC AATAAATAGT ACCTCTTAAT
31301 IGATAGUTAA GUTAGAACTO TGAAGTOTAO CATGGOAACT TOTTAACTOO
SISSI IUIGAGAAUU CAGIIGIGII CTGTGGCAAA ACACACTTA CCCATCCATA
SIGOT CCCAGCCCTC CTGTCAGCTG TCACCACCACACACCCCC
SIGOI GUAGIGAUI IIGGCCACAI AGCTGGCTGT GCCCTTTAAA CCCATTCCTT
31701 GACACAGATA TGTGGACTGG TGACGTTGCT CTCCAGCCAG GTGTTCTTCC
31751 CAGCAGGCTG GCCTGGCTGT CTCCTGCATG CCTGTACTTG TTTGTCTCCC
SIOUI IUULUULU II HAAANOOAO
31851 GATATTGGCA ATGGAAAGGA GGGTGTGTTC TGGTGCTCCC ATGCCCTGCG
31901 GCGCACATAC CATTGCAAGG GCGTAACAGA GCCCAGGCCT GCATTTGGGT
31951 GCAAATAAGT CTGCACACAG AAGAAAAGAA GGACCTGGTG ACCAGGAGCC
32001 ATGGAACCCT TGTGCTCCCC TACCTGGGCT ACTGGTTCTT GCCACTCCTA
32051 CCATTITCAG TITGGAAATA TITGTTAAGG CTITGCTCTT CCAGGTCCTT
32101 TGCTTGGTGC TGACTCTACC AACACTAAGT COOLTEGETCTT
32101 TGCTTGGTGC TGAGTCTACC AAGAGTAAGT GGGATGCTGT TTTTGTCCTC
32151 AGGGAGCTAA CAGTCTAGTG AAGAAGAAAG ATGGTTGCCC AGGAACTTCT
32201 AAGTCAGAAG GCAGGAGGCA AGAAGGAAGC CCCTGCTCCT ACTGCCAGCC
32251 CTCTGTTGGG CACCCCATAG TTCTTCAGAA CCACATTTAA TCCTCACTGC
32301 AGGCCAGGCA TAGTGGCTCA CACCTGTAAT CGCAGCACTT CGGGAGGCCA
32331 AGGUGGGAG ATUACTIGAG GTUGGGGAGTT CGAGACCACC CTUACCAACA
SETUL IUUUUAAALL LLGILILIAL LAAAAATAGA AAAATTACCC CCCTCTCCTC
32451 GCATGCGCCA GTAATCCCAG CTACTCAGGA GGCTGAGGTG GGAAAATCAC

32501	TTGAACTCG	G GAAGCAGAGG	TTGCAGTGAG	CCGAGATTGT	GCCACTGCAC
3255]	L TCCAGCCTG0	G GCGATAAGAG	CAAAATTCCA	TCTCAAAAA	AAAAAGAAAA
32601	l aagaaaaaa	「 CCTCACTGCT	ACCTTGAAAG	TAGGTGATGA	CATTGCCATT
32651	L TCACAAATG <i>A</i>	\ GAAGTGAAGG	GGCTAGCCCA	AGATCACTTA	GGTGGTAAAT
32701	. GGTGGTGCTA	N AGATTAGAAC	CTCAGATCAT	CTAGGGAAAA	ACACAGATAT
32751	. GCACAGAG™	T AAGGGGACCC	AGGGTATTGT	TTGTCCTCTT	GTTTCACAGG
32801	. TGGGGAAACA	ACCCAGAGAG	GGAAAGGGGC	TTGTCCAAGG	CAATTTAGCA
32851	. CCCAAGAACT	TGAACCCATA	TCTCTCTCCT	CCTCATTTAG	AGCTCATCCC
32901	. ACATGTATCT	TATATTGAGA	GGAGTGTGAG	CCACATACCA	AGAACAGTCT
32951	. TCCCCTCTGC	CTCCAACCTC	ACTGTGCAGT	TTTGAGACAC	TTCACAGCCA
33001	TACTCTTCAT	GCCATACCCA	GCCCTTAAGA	CCCTGAAGTT	CCCCTTCCAT
33051	AAGACAAGTA	GGAAAAGCTA	TAGGGTAAAA	ATAGCCATCA	GTGTTTGTTG
33101	AGCACCCAGG	AGGAATTGGG	CACTCCAGAA	AGATAAAGGG	ATTOTOAGGG
33151	ACTTGCTTCT	CTAGACTTCC	CTAGCTCAGC	TGCTTCAACT	CATTCCTGCC
33201	CCTCTTCTCT	ACCTCCCGCA	GTGCTCAGAA	GTAGTAGAAC	TCACTGTGGC
33251	CTCTCACCTT	GCATTGTTGA	GTTTTATTTA	GACTITUTUT	TCCTCAACTC
33301	TTCATAAGCT	CATGAAAGGT	GAAGTAGGGT	GCCCTGTGTA	TTTATCTTTT
33351	ATATCTGCAG	TGCTTAGCAA	GTTATAATAA	TGCACTTGCC	TEECVAVAGE
33401	CTTTCTCTCA	TACATTAGCT	TATTTCCTCT	TCACATTEEC	TCTTTCTACT
33451	AATAGGATGC	TATTAGTTAT	TTTCAATGAG	AGAAAGCTAC	TAACACAACT
33501	TGTCCAGCTA	GTGACAGTAA	GTGGCTGATA	AAGTGAGCTAC	CCATTACATT
33551	GTCATCATCT	TTAATAGAAG	TTAACACATA	CTCACTTTCT	ACTATATTCC
33601	GTCTTTTTT	ППППППППППППППППППППППППППППППППППППППП	TTTTTTA	CACACCCAAT	CTTCCTCTCT
33651	TGTCCAGGCT	GGAACGCAGT	GGTGCAATTT	TECETEACEA	CAACCTCCCC
33701	TTCCCAGGTT	CAAGCGATTC	TOUTGOOTE	CCTCTCAC	TACCTCCCAC
33751	TACCAGTGCA	CGCCACCACG	CCCCCTAAT	TTTTCTATT	TACTACACA
33801	CAGGGTTTCA	CCATGTTGGC	CACCCTCCTC	TTCAACTCCT	CACCTTCTCA
33851	TOTECCOECC	TCAGCCTCCC	AAAGTCCTCC	CATTACACCT	GACCITGIGA CTCACCCACC
33901	GCGCCCTGCC	TATATTAGGA	CTTTTATATA	ACCTATOTO	GIGAGCCACC
33951	CTAGCTAGCT	ATAATGTTTT	TTGAGACAGA	GTCTCACTCT	AGCTAGCTAG
34001	CTCCACTCCA	CTCCCCTCAT	CTCCACTCAC	TOCALOCTO	ACCTOCTOC
34051	TTCCAGTGAT	GTGGCGTGAT TCTCCTGCCT	CACCCTCCCC	ACTACCTCC	ACCICCIGGG
34101	CATECCACCA	CCCCCACCTA	ATTITIONA	AGTAGCT GGG	ATTATAGGIG
34151	ACCATGTTGG	CGCCCAGCTA CCAGGCTGGT	CTCCAACTCC	TCACTTCAAC	ACCAGGIIIC
34201	CCATATTAG	CCCAAACTCC	TOCCATTATA	ACCATAGOO	IGATCCACCC
3/251	CCTCCTCTCT	CCCAAAGTGC	TACATATTAT	AGCATAAGCC	ACTGTGCCCA
3/301	CTTCATTTTA	ATATTTTTAA	AACTACCCCA	CACAACTAAA	TTTCACAGCA
3/351	CAACATCATC	TAGATGAGGA	CTCCCACCAT	GAGAAGTAAA	ATATCTTGCC
3//01	CANGAIGAIG	TAACTAGTAA	ACAATOTOO	CAAGATICAA	ACCAAGCAAT
3//51	CTTCACAACA	CTTGGAAGCA	AGAATGTGGC	CACTGTGGAA	GGTGCAAGGC
24501	TOCCOTOACA	AGAATAGGGA	AAAGAAGGAA	CTAGAAGGAA	AGAGATGGCA
24501	AACCCACCAA	AGGCCAGGGA	GUICHAGU	GIGIGIGIIG	GGAAGCTCAG
34501	AAUUUAUUAA	GAGGTTGTCT	GIGCAGGIAA	GICCIGAGAA	CACACCAGAC
24661	TACATTTTT	TGGAGCTTCA	TAGULAGGIC	ATTAGGGGAG	AAGGGAGCTA
24701	TTACTATOTT	TTTTTTTT	TOTTO:	ITTTTAG	AGACGGGGTC
34/UL	CCACCTCACC	GCCCAGGCTG	GICTIGAACT	CCTGGGCTCA	AGTGATCCTC
24001	CACCCACCTA	CTCCCAAAGT	GCIGGGATIA	GAGGCATCAG	CCACCCCGCC
340UL	TTCCCTTTCT	TGGATCTAAC	AIGIACATCT	IACACAGTGC	TAATAGAATG
34001	AAAACTTCA	TCCCCAATAT	HIATITIGA	AAAAAAATTC	AAATATATAG
34901	AAAAG I IGAA	AAATGTAGTT	CAAAGAACAC	CTACATACCT	TTCACATAGA
34951	TICATGATT	GTTAATGTTA	IGCCACTITG	TATATATCTC	TCTCCCTCCT

3500	1 ATCTGTATA	C TTTTATTTA	T TTATTTTG	C TGAACTATT	T CAGAGTAACT
ათსთ	I TAAAGGCAT	CHIGATITTA	C CCTTGAACA	C TTCAATATC	T TTCTCCTAAC
3510	T WALLCICCL	A TATAAGTCA	G ATATCATTA	C ATCTAACAA	ATTCACCCCA
3313	T WILLIACKA	T AIMAIALIA	I AGICCAAAT	C CATATTTCC	L CAGITGITCC
3520	i aaaaaaigt	T CATGGCTGT	T TOOTTTTT	Δ ΑΤΟΤΛΛΛΤΤ	CAATCCAACT
3323	1 IIGAGGCAI	I GIAIIIGGI	I GCIGIGTCT	C TAGGGTTTT	[AAAATCTGTG
3530	1 [[[[[[[[C ECCCCATGA	ς πππαςαα	G AGTCAAGACG	COTTATTOTT
ათათ	⊥ ATAGAATAA	C CCACATICIA	A GATTTGCCT	G ATTAGTTTT	TTATACTTAA
3340	T CRIVILLI	G GCAAGAACA	I TACATTGGT	A ACGCTGTTGG	TEATEGETCA
3345	I GIIIIGAAG	A GIGGAGAIGA	A TTAAACTGC	T TITCTTCATI	CAACTATOTO
3330	I ICAAGACCA	G AGAICCITA	A CTGGTGCCA	T AAATAGGTTT	CACACAATCC
3333	i iliaiaiai/	A CAUCUIGICO	J CCCACCTAA	Α ΤΤΔΤΔΤΔΓΔΓ	ATCTTCTTTA
3560.	LIAIAIICAL	I ITTCTAGGG(AGGCTTCTT	G GCTTTTATCA	AATTOTOAGA
3565 .	I GGGCCCCAAI	i acccaaaga	G GTTATGAAA	C ACTAGTOTGT	COACTGAGGC
35/0.	I AGGCAACAC	A GAGCTGGTT⊓	T CTGGGGCCT	T GTTCAGTCTG	AACCAGCTTC
35/5 .	L CCTTGGGGA	3 ATAGCACAA	GCTGTAACT	T TGCCCCATCT	TECETTTECA
ა ნის.	L TUAAAGAGG/	A CIGICCATTI	TGTTGTCATA	A CCTAGGAACC	ACCCACACCT
ათათ.	LIAIGIGGCC	I GGTTCCAGGG	: ATCCAGGAGA	ATTTCACTTC	TTCTCTTCCC
22201	LIIICAGGIGI	L TCAGAATGCC	: AGGATTCCC	T	TACTATCACA
3393J	AGGATGGGA/	A GUICHACIGO	CCCAAGGACT		CTTTCCCCAC
20001	LIIGIGAR	a GG [GC [CCC]	GCTGATGACA	\	TOOTOACTOA
20021	AILLLILAI	ATCTGCCCT	$-$ CTTGGTCTT α	` ^G^GTCC^TT	CACACTCCTT
20101	. CCAGIICCCI	GIGGCCIGII	AATCTTTAG	: TCTTTCCATC	AGCCAGGGCA
20121	.	A TELATICALI	CATTCAACTA	λ GCAGGTATCA	ATTCACCACC
20201	. TACTAAGTGA	N AAGGTAAGAT	- CCTTCCCTC#	L AAGACTTAAT	ACTTCAACCT
30231	I GGGAGIGGG	i AGGAGAGGCA	. GGCAGAGAGG	: ΑΓΔΟΔΟΔΑΤΛ	TACTTCCATA
36301	AGGACCICCA	· AGGAGAGIGT	TACAGGCTGA	GAGGAGGATA	TACTTACCTT
SOSSI	GILLLIAGGG	AATCAGAAAA	GGAGACTCTC	GAATAGGCTG	CCACACACAC
30401	GGGGLIACCIC	CTATACCTGC	TCTGGACAAA	CGACTTTAAG	CATACTCACA
30451	GATTIGUCAA	CCCIGIATIG	GAAGAACTGA	TCTTTTAG	TECCECATEAT
SOSOT	IACTICIGG	GALLICITO	CATAACTGAG	$\Delta C C \Lambda \Lambda \Lambda \Lambda \Lambda C \Lambda C$	TITTCTCCAC
20221	ICICAGAAAI	GACAGGAGG	ΑΓΓΔΔΤΓΤΓΛ	CACTTCCTTT	CCAACCTCTA
20001	GUGULAGAGAG	TGAAAGAGTG	GATTTTG∆∩G	GGGGCCTTGC	TTCCACCTCA
20021	HICACCCACC	CUIGICCICA	CICCAGCAAC	ACTCATAACT	CACTTCCTTC
20/01		ACACCCLICE	CCCCACCTGC	TCACAGGTCC	CTCCCCACTT
20/21	CAAGTACCAC	CCAGAGTGCT	LIGCCTGTAT	GAGCTGCAAG	CTCATCATTC
20001	AGGA I GGGGA	IGCATATGCA	CTGGTGCAGC	ATGCCACCCT	CTACTCCTAA
20021	GATAGTGGTC	CHIGICTAT	CCTCTCCCAT	ΔΤΔΔΕΔΕΤΕΕ	CTCCCCCCCA
2020T	GGGALAGIGG	CAGGGTGAGT	TGGGCAGAAG	GAGTGTTAGG	GTACTCACAC
20221	CATIGGATIC	I LACCACAGC	AGTGCTCTTA	$\Delta C C \Delta C C T C T T$	TAACTTCTAA
3/001	GUAGAATGAT	TIACACATGI	CTCTACCCTT	TTTCCTTACC	AACCTTCAAA
3103T	AIGILIICAL	TUTGCCCTGC	AATCCTCCCA	GTGGGAGGCA	CTCTTCAACC
2/101	ACGATCCCAG	AACA HAAAG	LUAAAGACCC	L LLVCVCCLC	Λ ΥΥΥΥΥΥΝ
3/T2T	ACCACC I IGG	LIGATAAAAG	AAGTCAGCCT	GGGGCCCATC	CAATACAATA
3/401	GIACAAGGGG	AAGGT ICTCA	LIGIGAGICA	AACCTACACT	
2/221	CAGACCATCI	CACCCAACC	CAGGCCAGTG	TTTTCCAAA	TATACCACTT
J/JUI	GUIGCAGAIC	TAGUTUAGUA	UCCUTAGICC.	$\Gamma \Delta G C C C \Lambda C C C$	TORORROCOR
3/331	GGCTCCTCAT	TUTGAGUAGU	CAGCTAGAAT	CATGACAAAG	ACCCTCCTAC
3/401	IGAGACIAIG	GGTACTGTTG	CTTAAAGCCA	CATGGTGCAC	TOOTTOOTOO
5/45I	GGGGCTTCTG	TGTGGGACTC	TAGCATCTTA	TTCCCCCCTG	TGCCCTCTCC

37501 CCAGTGGGAA GTGCCACAAT GAGGTGGTGC TGGCACCCAT GTTTGAGAGA
3/331 UTUTUCACAG AGTUTGITCA GGAGCAGCTG CCCTACTCTC TCACCCTCAT
3/001 UTUCATOUG GUCACCACTG AAGGCAGCG GCCCTTCTCC CTCTCCCTC
3/001 AGAGIGULIG UICCAACIAC GCCACCACTCAA ACACTAACTA
37701 TTTTGAGAAC CCTTCAGCAG GGGTTCTTGA GCAGAGTCTG TAAATGGGCC
37751 TCAGAGGGCT TAGACCTCCA AAGTCTCATG CAGAACTCCC TITATTCTCA
3/OUT TOTORIATOR THE THEORY
37851 TGGCACTTAC TGTTCTCTCT GCCCAGGCTA CTTCCTACCC GATACTTAAG
37901 GCAAGAATCA CTCACCTTTC AGGTGTCAGG TTTCAGGTCA TGTTTGCTCT
37951 TTGAAATCAT CTGGCTTGAT TATGTGTATT AGTTGTTTAT CTTCTATCCC
38001 CTCCACTAGA ATGTAAATTC CAGAAGAAAC TTGCTGTCTT ATTCAGTGCT
38051 GCATGCCCAG GGCTTGGAAG AGTACCTGGC ATATAGTAGG AGTTGATTGA
38101 TTATTATTTT GTCAGTCGAG AGAATGAATG GAGAAAATGT GGTCCATGGC
38151 CCAAAAGAAG TTAAGACCCT ATCCTAGATT CAGGCCAGAG ACCAGATGGA
38201 GAAAGAGTCT GTGTCTATCT AATACCAGTA ATGTCGTACC TCTGGCCGCT
38251 TACCATGTAA ATATTGATTG TGTATCTACC ATGTGTTGGA CACTAGGCTA
38301 GTGCTTGCAC AGCAGGTGAA AGATACTAGA GTTTGGGAAG TCAGGAGGAG
38351 CTAAGGTCTG TTCTACAACC TTATTAGATG AAGAGGAGG GGAATTGTGT
38401 TCAGGGCAGA GGGAGAAGCA TTTCTCCAAA AGTAGGAGTC TTAATCATGT
38451 CTGATGTAGG TTGAGTGTGG CCAGAAAAGG GGCTGTTAAG TATAGAGGGC
38501 CTGGATTATG AAAATCCAGC AGATCCATTG AGAGTTTAAG CAGCAAGGTG
38551 TTGTGACCAA GTTAACATTT TAGAAGGATC ACTGGTATGG AGGTTGGATT
38601 GGAGAGGGA AACCCTAAAC CTATACACAC TAGTAGGATT
38601 GGAGAGGGGA AAGCCTAAAG GTATAGAGAC TAGTTAGGAA GCTATTGTAG
38651 GCTGGGCATG GTGGTTCATG CCTGTAATCT CAGCACTTTG GGAGGCTGAG
38701 GTGGGAGGAT TGCTTGAGGC CAGGAGTTGA AGACCAACCT GGCCAACATA
38751 GCAAGACCCC GTCTCTGTTT TTCTTAATTA AAAGAAAAGT CCAGACGTAG
38801 ACATAGTGGC TCACGCCTGT AATGCCAGCA CTTTGGGAGG CCAAGGTGGG
38851 CAGATTGCTT GAGGTCAAGA GTTTGGGATT AGGCCAGGCG CAGTGGCTCA
38901 CGCCTGTAAT CCCAGCACTT TGGGAGGCCG AGGTGGCGG ATCACAAGGT
38951 CAGGAGATCA AGACCATCCT GGCTAACACA ATGAAACCCC GTCTCTACTA
39001 AAAGTACAAA AATTAGCCGG GCATGGTGGC GGACGCCTGT AGTCCCAGCT
39051 ACTCGGGAGG CTGAGGCAGG AGAATGGCGT GAACCTAGGA GGCGGAGCTT
39101 GCTGTGAGCA GAGATCACGC CACTGCACTC CAGCCTGAGC GACAGAGCGA
39151 GACTCCATCT CAAAAAAAA AAAGAGTTTG GGATTAGCCT GGCCAACATG
STANT ACCURATE TO THE STANTAGE OF THE STANTAGE
STATE OF OUR OF THE PROPERTY O
22201 HUAGUUTUU UAGUTGAGG HIGCAGTGAG CCCACATCAT CCCACTCCAC
SSSSI TUUMGUUTGG ATGACAGAGI AAGATCCCAT CTCAAATAAA AATTAAAAA
JANA WARRITTANA WARANANTE ANTITAL LELEVATORE CANCELLA
23431 TURATAAUTA CAATGATGA AAGAAGGCAG AGTTCTTACA CATCCCACTA
23201 GUAGAGAIGA GGGAACICCA GAIIGGGAAG ATCATCTCA ACTTTCTCCC
23221 HAUGULALA GGG GAGIGG CAATTCCCTT CACTCACATC CCCCATCCTC
STOUL GARAGUIGE HILLETTING INTERCONCECT TACCOCCA
OFFICE TOURS OF A PROPERTY OF
JUNUAL DEPOSIT OF THE PROPERTY
JOINT GIVENUUGHA IGUALAIUAG IIIITAATAAT CEAAACCCCA TCCACCCTCC
SOUT GEACCECAIL CIGEAGAILA AIGGGALLL CETCLOCACA CTTCCACTOC
JOUL AUGHUULAUA GIGIGIGIGICI AAINTGTCTT GTCACCCTCC CACATCCAAC
SOOM AGAICCICIG GGAAAILAGG LIGIAGCCIT TACCCTTTTCC TACCCCCACC
39951 CCATCTCTTT GTCTTAGCAT TGAGCCTGTG ACCACTGGTG ACCTATTTCA
TO THE PROPERTY ACCIDITION

40001	L GCGTAACAGG	TTCCCAGGG	T AGCAGGGAT(G GTTGATGGA	C GGGAGAGCTG
40051	L ACAGGATGCC	: AGGCAGAGG(G CACTGTGAGG	CCACTGGCAC	CTAAACCCCA
40103	L CCATTAGACA	\ AGTTGAGCA(TGGCCACACT	E GTGCCTGAGT	「 C∆TCTGGGTT
40151	L GGCCATGGGT	GGCC TGGGAT	[GGGGCAGCC1	T GTGGGAGCT	TATACTCCTC
40201	L LIGGCCACAG	i GTGGAGGAT(G CAATTAGCC <i>A</i>	L GACGAGCCAG	ACACTTCAGC
4025]	LIGIIGAIIGA	\ ACATGACCC(: GTCTCCCAAC	C GCCTGGACC#	L GCTGCGGCTG
40301	GAGGCCCGGC	TCGCTCCTCA	CATGCAGAAT	GCCGGACACC	CCCACGCCCT
40351	CAGCACCCTG	GACACCAAGO	AGAATCTGGA	GGGGACACTO	AGGAGACGTT
40401	CCCTAAGGTG	CCACCTCCCA	CCCTGGCTCT	GITCTGTCCT	ATGTCTGTCT
40451	. CTCGGATGAA	GCTGAGCTGG	CTTTCAGAAG	COTGOAGAGT	TAGGAAAGGA
40501	ACCAGCTGGC	CAGGGACAGA	CTATGAGGAT	TGTGCTGACC	~ ^ACOTATANA
40551	TGTGGGGATC	ACAGTTTACA	GCCAGAGCCT	GTGCGGACCC	ACCTETETE
40601	CAGGTTTCCT	TAGAAACCTG	AGAGTCAGTC	TOTOTOTOTO	CAACTCCTAA
40651	GCTGGACAGG	AGGCAGTGAT	CCTAVACCCT	CAACCCCAAC	ATCCCCTATA
40701	GAGAAAGCAT	GGAGCTCAGA	CCTCCACTA		TACCATTORA
40751	TAAATTGTGT		TCAAAACAAT		IAGGAIIGAA
40801	GTTTTTTTA	CACTTCACCC	1 PAROPARADI	AAAGCAAAAG	AIGAAIGAAC
40851	AGGTCCATGG	CCAACCACAA	CTTCCCTTCA	CTCCAAACCCC	AGATTCTGCC
40001	AGGTCCATGG		ACACCACTOO	GTGGAAGCCC	CAAGTAGGGA
40001	GACTTACAGA	CCCCTTCACC	AGAGCACIGG	CICCAGGCA	GAAATACTGA
41001	TACCCTACTG	CTCTTTCTCC	LIGAGUICCI	CCCTTCACAA	ATCACTTCAT
41001	CTCTCTGAGC	CIGITICIGO	AICIGIGACA	TAAGATGGTA	AGATAAAGGT
41001	GGCTGTCTCA	CCAATTATG	AAGGATTAAA	TGTGGAAAAG	GACATAAAGT
41101	TGTATAGTGC	IGULATAGGG	ACAGIGITCA	GTAAACGTGA	CACATTCTTA
41101	GTATCACTAA	GAATCAGGII	CITGGCCAGG	CACCGTGGCT	CATGCCTGTA
41201	ATCCCAACAC	TCTGGGAGGC	CTAGGTCGGA	GGATGGCTTG	AACACAGGAG
41251	HIGAGACCA	GCCTGAGCAA	CATAGTGAGA	CACTGTCTCT	ΑΓΑΛΑΛΑΛΑΛ
41301	ATAATAATA	AIAAIIGITI	TTAATTAGAT	GGGCAGGGCA	CTGTGGCTCA
41351	CACCTGTAAT	CCCAGCACTT	TGGGAGGCCA	AGGCCGGAGG	ATTGCTTGAG
41401	GCCAGGAGT	CAGGAGCAGC	CTGGGCCACA	TTCCTGTCTC	TACAAAGAAT
41451	AAAAAAGTTA	ACTGGGCATG	GTGGCACATG	CCTGTAATCC	CAGCTACTCA
41501	AGAGGCTGAG	GAGGAGGATT	GCCTGAGCCC	AGGAGTTCAA	GACTGCAGTG
41551	AGCCTTGATC	ACACCACTGT	ACTACAGCTT	GGGCAACAGA	GTGAGACCTT
41601	GICICCAAAA	AAAAAAGTTT	GTTTTTTT	ATCCACTCTC	CTCACCAAAC
41651	AAACTGAGTA	AGTTAGAGCC	CTCTCAGCTG	GCATGTGTTG	GAAACAGTGC
41/01	CCICTCATTA	AAGTGCTGCC	CTCACTCCCA	TTGCCTCTTG	GCCTTGGTCA
41/51	GIATGATGAA	ATTAGTGGGA	GGCAGGGCAA	CAGAGGGCAG	GGAAGAGCTA
41801	GAAATCCATG	GCCTGGAAAA	GGGAAGATTT	GGGAGTGGCC	AGGTATCTCT
41851	AGAGCCACCA	TGCAGAGGAG	GGGGGCAGCT	AGCCTTGTGT	GCTCTGGTGG
41901	GCATGGTCAG	CAGGAGGCAG	AGCAAAAGGA	CAAGGGTAAG	TAAACCTGTA
41951	GGTCGGGACA	AGCCAAGAGC	CATCCAGCGT	CACTCCTCTC	TECETACCCC
4200I	AAGTAAAGCA	GGAGCATACC	CCAGAGAGAA	AGTTCGCAGG	CCTCTTCACC
42001	IGCAGIGCIG	TGGACTICAA	CCTTCTTGTT	CCTTCTTCAG	TAACTCAAAA
42101	TAACAGTCAT	TGACCATGAC	TATTATCGAC	CCCTTTTCAG	AATCTAAACA
42151	TAGTGACTIT	ATTGCTGTAA	AAATCATACG	TCTTTATCAT	CTTAAAATTC
42201	AGGAAACATG	GACAGGTACA	AACATCTCCA	AAATATCATC	CAAAATCCCA
42251	TTTGCTGGCC	AGGC ACCCTC	CCTCACCCCT	CTAATCCCAC	CACATTOO
42301	GGCCGAGGCG	GCCADATCAC	TTCACCTCAC	CACTTTCACA	CALATTEGGA
42351	CAACATGGTG	ΔΔΔΓΓΓΤΑΤΓ	TOTACTAAAA	ATACAATAAT	TAGGET TAGGE
42401	GCAGTGGCTC	ACCCCTATA A	TOCOLOGIACT	ATACAATAAT	TAGGCTGGGC
42451	AATCACAAGG	TCACCACTTT	CACACTACCC	TOCCOLATA	GAGG I GGGCG
424JI	ANT CACAAGG	CAGGAGIII	UAGAL LAGUC	I GGCCAA FAT	GGTGAAACCC

42551 CATCTCTACT AAAATACAA AAATTAGGGC CGGGTGTGGT GGCTCACCCC 42551 TGTAATCCCA CCACCTTAGGG AGGCCGAGAC AGATGGATCG CGAGATCAGG 42651 AATACAAAAA TTATTCGGTT GTGGTGA AACCCCATCT CTACTAAAAA 42651 AATACAAAAA TTATTCGGTT GTGGTGGCAC AGGCCTGTAA TCCCAGCTAC 42701 TTGGGAGGGCT GAGGCAGGAG AATCTCTTGA ACCTGGAGGG CAGAGGTTGC 42751 AGTGAGTGGA GATCCCGCCG TTGCACTCCA GCCTGGGGG CAGAGGTGGA 42801 CTCCATCAAA AAAAAAAAA AAAAAAAAA AAATTAGCCG GGCGTGTGG 42801 CTGACCTGG TACTCCCAGC TACTTGGGAG GCTGAGGCA GAGAATCGCT 42901 TGAACCTGGA AGCGGAGGG CAGACTGGC CAGACTGTGC 42901 TGAACCTGGA AGCGGAGGGT GCAGTGAGC CAGACTGTG CATTGCACT 42901 TAGACCTGGA AGCGGAGGGT GCAGTGAGC CAGACTGTG CATTGCACT 42901 TAGACCTGGA GGCGAGGGT GGCACTGAGC CAGACTGTG CATTGCACT 43901 AATACTAGC CGGGCCTGGT GGCACATGCC TTCAAAAATAA TAATAATAAC 43001 AATACTAGC CGGGCCTGGT GGCACATGCC TTCAGACAGG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG GTTGCAGTGA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGAT TGGGAGATGG 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAAA AAAAAAATC CATTTGCTCA TTTTTTTGGAT ACTAGTATTA 43401 CCCCAAAATA ATCATCTGA TTGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAAA TACATCTGA ATGACACAGG CCCCTACACTATTC 43451 CCTCAAACTA AGACATTGA ATGACACAGG CCCCCCAACATTATC 43451 CCCCAAAATA AGACATTGA ATGACACAGGT GCCCCCAAATTATC 43451 CCTCAACATT AGACATTGA ATGACACAGGT GCCCCCAACATTATC 43551 CCTCTTGTTCT CAGCCGGAT TACAGCAC GACTTCCCC ATTAAACA 43451 CCCCCAAAATA AGACATTGA AACAATATTC CCAAGCCC CCCCCA CCCCA 43561 CACCCCCCAC CACCATGCA GCACCATGCAC GACCTCCCA CCCCACCA 43561 CACCCCCACC CACCAGCCA CACCATGCCAC 43701 TAATCCATGG GGAGGTTCT CTAGACGT GCCCCCACCCA CCCCACCCA 43561 CACCCCCACC CACCATGCAG GCACCACCAG GCACCACCACACCA						
42601 AGTTCGAGAC CAACCTAGCC AACATGGTGA AACCCCATCT CTACTAAAAA 42651 AATACAAAAAA TTATTCGGTT GTGTGGCAC ACGCCTGTAA TCCCAGCTAC 42751 AGTGAGTGGA GATCCCGCG TTGCACTCT ACGCAGGAGGTGC AGAGGTGGA GATCCCCAGC TTGCACTCT ACTGGAGGC CAGAGGTGAGA 42801 CTCCATCAAA AAAAAAAAAA AAAAAAAAAA AAATTAGCCG GCGTGGTGG 42851 CGTGCACCTA TACTCCCAGC TACTTGGAG GCTGAGGCAG GAGAATCGCT 42991 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGTG CCATTCACCT 42951 TCAGCCTGGA GGCCGGGGG GAGAGAGCG AGACTCGC TCAGAGACTAG CCAGACTCGT CAGAGATCAC CGGGCCTGGT GGCACATGCC TTACACCAGT CAGAGATCAC CAGACTCAG GTGAACTAG GGAGAACAAAAAAAAAA						
42551 AATACAAAAA TTATTCGGTT GTGGTGCAC ACGCCTGTAA TCCCAGCTAC 42701 TTGGGAGGCT GAGGCAGGAG AATCCTTTGA ACCTGGGAGG CAGAGGTTGC 42751 AGTGAGTGGA GATCCCGCGC TTGCACTCCA GCCTGGGCGC CAGAGGTTGC 42801 CTCCATCAAA AAAAAAAAA AAAAAAAAA AAATTAGCCG GCCGTGGG 42801 CTCCATCAAA AAAAAAAAAA AAAAAAAAA AAATTAGCCG GCCGTGGG 42801 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGTG CCATTGCACT 42901 TGAACCTGGA CGCACAGAGCG AGACTCTGC CTCAAAAATAA TAATAAACA 43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTACCAGGA 43051 AGCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACACAG GTTACTCAGG 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CAGACTCTGT 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CATTCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGAGATGG 43251 TGAATTACCA TCTAACAGTGT TGTCATATAT GTCACATACT GAGCATTAC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATAT GTCACATACT GAGCATTAC 43301 ACCTAGTAGA ATCTAGTTAA TTGTTCTATAT GTCACATACT GAGCATTAC 43301 CCCCAAAATG ATCAACTGGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAAACTAT AGGCCTTGGAC ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43551 CCTTCATCTT TGGCCGGTCT CTGAGGACC CCTGTTCCCC AATAATAACA 43451 TCTAAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43551 TCCCATACGG GCACCACTGCT GTTCAGCCCG GCCCCTAAGT TTCCTCCCTC 43551 TCCCACAGG GCAACAATTG TTTCACAGCA GACTCTCAGC CCTGGCCCCAGC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTCTCAGC CCCCCCCA CAGCCCCCA 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTCTCAGC CCCTCAGAATC 43801 ACTGGTTTT GGGGGATTTCT CATCACTTGG CCCCCCCCA GCCCCCCA CACGCCCCA 43801 ACTGGTTTT TGGGGGATTTCT TAGCTGGTG TTCTTCTCCTC 43801 TACTCCAACG GCACCACATGG GCATCAAGT TTGCTCTTCT 43801 ACTGGGAGGC CTCCTTCCTG GCTTTGGCCC 43801 TCCAGCACGG CAACAATTG TTTTCTCCCTC CTCCTCCTCCTCC 43801 TAGCCCCCCAC CAGGCCCCCC AGGCTCCTCCCCCC 43801 TCCACCACAGGG GCACCACAGGG GCACCACAGGG CACCCCCC AGGCCCCCC CAGCCCCCC ACCCCCCC 43801 TCCACCCCCCA CAGGCCCCC CAGGCCCCCC CAGCCCCCC CACCCCCC CACCCCCC 44001 TCCAGCACAT TCCTCCCCCC ATCCTCCTCC CTCCTCCTCC CTCCTCCTCC 44001 TCCAGCACAT CCCCCCCA AAACCTCCC CTCCTCTCCT						
42701 TTGGGAGGCT GAGGCAGGAG AATCTCTTGA ACCTGGGAGG CAGAGGTTGC 42751 AGTGAGTGGA GATCCCGCGG TTGCACTCAA ACCTGGGAGG CAGAGTTGAGA 42801 CTCCATCAAA AAAAAAAAA AAAAAAAAAA AAATTAGCCG GGCTGGTGGG 42851 CGTGCACCTA TACTCCCAGC TACTTGGAGG GCTGAGGCAG GAGAATCGCT 42901 TGAACCTGGA AGGCGGAGGT CGCAGTGAGG CAGACTGTG CCATTGCACT 42901 TGAACCTGGG CGACAGAGGC AGACTCTGTC TCAAAAATAA TAATAATAAC 42951 TCAGCCTGGG CGACAGAGCG AGACTCTGTC TCAAAAATAA TAATAATAAC 43001 AATAACTAGC CGGGCCTGGT GCACATGCC TGTAGTCCCA GTTACTCAGG 43001 AATAACTAGC CGGGCCTGGT GCACATGCC TGTAGTCCCA GTTACTCAGG 43011 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAA TAAATACAC 43251 TGAATTACCA TCTACAGTGT TGTCATAAAT TAAATGCCA 43351 CATTTTGAAT GTGTTTTAC TATGCTTAAA TAAATGCACT AGGCAGTTC 43331 AGCTAGTAGA ATCAACTAGTAA TTGTTCTATG TGTGATGTAT GCAGGAGTTC 43351 CATTTTGAAT GTGTTTTAC TATGCTTAAA TAAATGCACA 43451 CCCCAAAATG ATCAACTCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCT 43501 CAGGGTTTCT TGGCCGGGCT CTGAGGACTA CACATCCCTA CTCCCGTCT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATC CCAAGTCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTCAGGACTA CACATCCCTA CTCCCGTCT 43551 TCCTCATCTT CAGGCGCAGT ATCAAGAGC GACCATACGC GCCCAAGAT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCC TGGCCCCAGC 43601 TCCCCCAAGG AGCCCCTGCT GTCAGGACTA CACATCCCC CCCCCCCCCA 43751 TAATCCATGG GGGAGTTTCT CTGAGGACTA CACATCCCTA CTCCCGTCTT 43901 CACCCCCACC CAGGCCCCT AAGGTTTGCTGT CTCTCCCCCCAG TCCCTCTGCC 43951 TGGACCTGAG GATCCAGGT GGGAAGGGT TTCTCTGGCC CCCTGTTCCC 43951 TGGACGAGG GCAACAATTG CTTTTCGTCTT CTGCCCCCCA CACCATGCAG 43951 TGGACCTGAG GCCACCATT TAGCAGCT TTCTCTCTCT CTCCCCCCCA CACCATGCAG 43951 TGGACCTGAG GCAACAATTG CTTTTCTCTCT CTCCCCCCCA CACCATCCAGC 43951 TGGACCTGAG GCAACAATTG CTTTTCTCTCT CTCCCCCCC CAGGCCCTCCT TTCTCTCTCT TCTCCCCCCC CAGGCCCTCTCTCTCT 43901 CACCCCAACC GGAGGTTGTT TTCTCCCTC CTCCTCCTCTCTCT 43901 CACCCCCACC CAGGCCCTC AAGGTTATCT TCACCCCCAG CCCTCTTGTCT 43901 CACCCCCACC CAGCCCT AAGGTTCTCTCTC	42601	AGTTCGAGAC	CAACCTAGCC	AACATGGTGA	AACCCCATCT	CTACTAAAAA
42891 CTCCATCAAA AAAAAAAAAA AAAAAAAAAA AAATTAGCCG GECGTGGTGG 42891 TGAACCTGGA AGGCGGAGGT CGCAGTGAGG GECTGAGGCAG GAGAATCGCT 42991 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGGT CCATTGCACT 42991 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGGT CCATTGCACT 42991 TGAACCTGGG CGACAGAGCG AGACTCTGC TCAAAAATAA TAATAATAAC 43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGGAGATGA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGGAGATGA 43251 TGAATTACCA TCTACAGTTA TTGTTCTATA TGTCACATAT GAGCAGTTAC 43351 CATTTTGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGTCAGCA 43451 CCCCAAAATG ATCATCTGA TTAGCTTAAA TAAATGACTG ATGTCAGCAA 43451 TCTAAACTAT AGACATTGGA ATGAGACCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAGACCC CTGTTCCCC AATAATAACA 43551 TCCTCACTCT CAGGCGCGTC CTGAGGACTA CACATCCCTA CTCCCGTCTT 43551 TCCCCCAAAAG ACCACTGCT ACCAGCAC CACATCCCTA CTCCCGTCTT 43551 TCCCCCAAGAG AGCCCCTGCT GTCAGGCAG GCCCCTAAGT TTCCTCCCTC 43561 CCTCCATACT CAGGCGCAGT AACAAGTATCT CCAAGTCCCC CGCCCCAGC 43761 TCCCCCAAAGG AGCCCCTGCT GTCAGCCGT GACATCACC CTCCAGCAC 43761 TCCCCCAAGAG ACCCCTGCT TCTCAGCCGT GACATCACCC CCCCCCCCCC						
42801 CTCCATCAAA AAAAAAAAA AAAAAAAAA AAATTAGCCG GGCGTGGTGG 42851 CGTGCACCTA TACTCCCAGC TACTTGGGAG GCTGAGGCAG GAGAATCGCT 42901 TGAACCTGGG GACAGAGCG AGACTCTGTC TCAAAAATTAA TAATTAATAAC 43001 AATAACTAGC CGGGCCTGGT GCACAGTGCC TGAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GAGAACAGAG GTTGCAGTG 43151 TCTCAAAAAAA AAAAAAATCC CATTTGCTA TTTTTTTGGATAGAG CGAGACTCTG 43151 TCTCAAAAAAA AAAAAAATCC CATTTGCTA TTTTTTTGAAT ACTAGTATAA 43201 CTATCACTCT AAACAGTTA GTACACTGCA TTCACAGTG ATTTTTTTTGAAT ACTAGTATAA 43201 CTATCACTCT AAACAGTTA TGTACATATA TGCACATACT GAGCATTAC 43351 TGATTACCA TCTACAGTGT TGTCATATAT GCACAGTTA GCAGAGTTCC 43351 CATTTTGAAT GTGTTTTTAC TGTCATATAT GCACAGTTA GCAGAGTTCC 43351 CATTTTGAAT GTGTTTTTAC TATGTTGATGTATG GCAGAGTTCC 43351 CATTTTGAAT ATGACATCTGA TGTACATACT AGACCAGATA TGCAGAGTTCC 43401 CCCCAAAATG ATACATCTGA TGTACACAGTG CCCCTAAGT TCCCCCCA 43401 CCCCAAAATG ATACATCTGA ATGAACAGGT CCCCTAAGT TTCCCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA ATGTCACCAA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT CCCCTTAAGT TTCCTCCCTC 43501 CAGGGGTTTCT CAGGCGCAGT AACAGTACT CCAAGTCCCC AATAATAACA 43551 CCTTCATCTT CAGGCGCAGT ATCACAGCA GACCTTACCC TGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCGT GCCCCAAGT CCCCTGTGTCC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCGT TCTTTGGGCC GCCCTAGGATC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGCT TCTTTGGGCC GCCCTGGGAC 4361 GTGAGCGCAG GCAACAATTG CTTTCCTCTC CTGCCCCAGC 4361 CCCCCCACCC CACCACCACT AGGTCACT TCTCCTGC CCCAGCAGC 4361 CCCCCCACCC CAGCCCACCT AGGTCCCCC GCCCAGCCCA						
42851 CGTGCACCTA TACTCCCAGC TACTTGGGAG GCTGAGGCAG GAGAATCGCT 42901 TGAACCTGGA AGGCGGAGGT GCAGTGAGC CGAGATCGTG CCATTGCACT 42951 TCAGCCTGGG CGACAGAGCG GACTCTGTC TCAAAAATAA TAATAATAAC 43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGAGAGTGG 43251 TGAATTACCA TCTACAGTTT GTACTTAAAT CAAGCAGATA TGGGAGAGTGG 43251 TGAATTACCA TCTACAGTGT TGTCATAATA GTACATACT GAGCATTAC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTAAT TAGACTGATTA AGACAGTTAC 43351 CATTTTGAAT GTTTTTTAC TATGCTTAAA TAAATACCTG ATGTCAGCAA 43401 CCCCAAAATG ATCAGTTAA TTGTTCATAT TAGACTGACCA ATGTCAGCAA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT CCCCTAAGT TTCCTCCCT 43551 TCCCCAAAAGG ACCCCTGCT GTTCAGCCC ATGACCCC AGAGATCCCC AGAGATCCCC AGAGATCCCC TGGCCCCCAGC 43551 TCCTCACATGT TCCAGCAGCT ACAGTACTC CCAGCTCCC ACCCCCAGC 43661 TCCCCCAAAGG ACCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTTCCCC TGGCCCCCAGC 43661 TCCCCCAAAGG ACCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTTCCCC TGGCCCCCAGC 43661 TCCCCCAAAGG ACCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTTCAGC GCCCCCCAGC 43701 TAATCCATGG GGAGTTTCT CATCACTTT CTGCCCCAG CCCCCAGC 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGCTC TCTTCTGGCA GACTTCAGCA 43851 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCCCAGC CACCATGCAG 43861 ACCTGCTGG GGGTGTTTGT TAGGTGCTG TTGGTGTAC AGGTACCCCCGG 43851 GAGCCCAGGG GAACAATTG CTCTCTCTC CTCCCCAG TCCCCCGG TCCTCTTCTC 43901 CACCCCCAGC CAGCCACCT AAGGTCCC TTGCCTCTCTCTC 43901 CCCCCAAACA GGGAACATGC CTCCCCCG TCCCCCAGC CACCATGCAG 43851 ATTCACCAGG GCACCTCCAGC CTCCTCTCTCC CTCCTCCTCTCTC 43901 CACCCCCAGC GGGTTGGT TTTCTCCCC CTCCTCTGC CAGCCCCAGC CACCATGCAG 43901 CACCCCAACA GAGCCCAG GAACAGCCACA CACACACA	42751	AGTGAGTGGA	GATCCCGCCG	TTGCACTCCA	GCCTGGGCGA	CAGAGTGAGA
42901 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGTG CCATTGCACT 42951 TCAGCCTGG CGACAGAGGG AGACTCTGTC TCAAAAATAA TAATAATAAC 43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CTGAGACTCG 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGATATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGAGATGA 43251 TGAATTACCA TCTACAGTGT TGTCATATAT CAAGCAGATA TGGGAGATTGC 43351 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCATG TGTGATGTAT GCAGAGTTCC 43351 CATTTTGAAT ATACACTGGA ATCACTGA ATCACAGTA TGGAGAGTTCC 43351 TCTAAAATGA ATACACTCTGA TGTAAACAGAGC CCCCTAAGT TCCCCCAAAATG ATACACTCGA TGTAAACAGAG GCCCCTAAGT TCCCCCCAAATGAACA AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCCT 43551 TCCTCATCTT CAGGCGCAGT ACAGTATCT CAAGCCGT CCCCCAAGAGC AGCCCCTGCT GTCAGCCGT GCCCCTAAGT TCCCCCACCCAGATCAGCA AGACACATCT CCCGGCCTGTC TTCAGCCGT GCCCCAAGCC CCCCCACCAGACCAAGGA AGCCCCTGCT GTCAGCCG GACATCAGCC GCCCCAGACAATG CCCCCCACCCAGCAACAATG CCTCCTCTCTC TCCAGGCCAG CACCATGCAG GACCACCATGCAG CTCCAGAACAATTG CTTTCCCCCC CACCACCACCACCACCACAAATG CCCCCCACCCACCCACCACCACCACCACCACACAATG CCCCCCACCCACCCACCCACCACCACCACCACCACCACC						
42951 TCAGCCTGGG CGACAGAGCG AGACTCTGTC TCAAAAATAA TAATAATAAC 43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG GTTGCAGTGA 43101 CCCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTAAAT CAAGCAGATA TGGGAGATTGC 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGGATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATAT GTCACATACT GCAGGATTTC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATAT GTCACATACT GCAGGATTCC 43351 CATTTTGAAT GTGTTTTTAC TATGTCTAAA TAAATGACTG ATGTCAGCAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGACACAGC CCCTGTTCCCC AATAATAACA 43451 TCCTCAACTTT CAGGCGCAGT TACAGCACT CCCCATCCCTA 43551 TCCTCATCTT CAGGCGCAGT TACAGCACT CCCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT CCCAAGTCCCC CTGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43751 GTGAGGCAAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43851 AGTGCCAGGC CTCTTCCTG GCTTTGCTGT CTGCCCCCAG TCCCTCTGTC 43901 CACCCCCACC CACCACCACC CACCATGCAG 43851 GATGCCAGGC CTCTTCCTG GCTTTGGTGT TGGTGTGAG AGGTATCCTT 43901 CACCCCCACC CACGCACCT GCTTCCTG GTGCCCCCAG TCCCTCTGCC 44001 TCCAGGAGAG GCACACAGGG GAATGGCTCC TGCCTCCTG GTGAACAGTC 44011 TCCAGGAGAAT ACCTCTCTT TTCTCTCTC CTCCTCCTTT CTGCTGCAGA 4451 ACTGGGAGGG GGGTCAGGT AGAGGCTCC TGCCTCCTG GTGAACAGTC 44011 TCCAGGAACT ACCTCTCTT TTCTCTCTC CTCCTCCTTT TCTCCTCCC 44351 ACTGGGAAGG GCACACAGGG GAATGGCTC TTCCTGCTC CTGCTCCTGC 44451 ACTGGGAAGG CTCACCCCG ATCCACCAC CACCACGAG CCCCCCCCCC						
43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCCA GTTACTCAGG 43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG GTTGCAGTGA 43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGAGAGTGG 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCATAT GTCACATACT GAGCATTACC 43351 CATTTTGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGTCAGCAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT CAGGCGCAGT ACAGTACT CCCAGAGTTCC 43501 CCCCAAAAGG AGCCCCTGCT CTGAGGACTA CACATCCCTA CTCCCGTCTT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGATC 43651 CCTTCGTTGT TCCAGCAGCT ATCACAGCA GACTTCCGG CCCTGTGCCC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTCAGAC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTCAGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTCAGAC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTCAGCC 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGTGT TTGCTGTTAC AGCGGCCAGT 43891 ACTGTCTTC CAGCCACC AAGGTCCCCCA CACCATGCAG 43991 CACCCCCACC CAGGCCACCT AAGGTCAATG 43991 TGCACCTGGA GATCCAGGTT GGGTTAGAC 44001 TCCAGTCAGT GGGTTTTGT TAGGTGCTG CAGACCTCAG TACCGGCCAT 44001 TCCAGGAGAG CTCCCCCC AGGCTCAGT TCCTCCTCT TCTGCTCTC 44201 TCAGGGAGAG CTCACCCCG ATCCACCCC CAGCCCCAC CACCACAGAACAATG 44201 GCCTGAACA ACCTCTCTTT TCTCTCTCT CTCCTCCTCT TCTCCTCTCT 44301 TATGCCAAAT GACCACACAGGT AACACTTG TTCACCTCTCT TCTCTCTCTC 44201 TCAGGGAGAG CTCACCCCC AGCCTCACGT CCCCCCC 44401 TCCAGTCAAT ACCTCTCTT TCTCTCTCT TCTCTCTCT TCTCTCTC						
43051 AGGCGGAGGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGTGA 43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAA AAAAAACC CATTTGCTCA TTTTTTTGAT ACTAGTATA 43201 CTATCACTCT AAACCAGTTA GTACATATAT CAAGCAGATA TGGGAGATGG 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATG TGTGATGAT GCAGAGTTCC 43351 CATTTTGAAT GTGTTTTTAC TATGCTTAAAA TAAATGACTG ATGTCACCAA 43401 CCCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC CAATAACA 43401 CCCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC CAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCCCTC 43501 CCCCCAAAGG ACCCCTGCT GTCAGCCGT GCCCCTAAGT TCCCCCAGC 43601 TCCCCAAAGG ACCCCTGCT GTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATCACACGA GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATCACACGA GACATCAGCC GCTCAGAATC 43701 TAATCCATGG GGAGGTCCT GGGAAGAGGCT TCTTTGGGC CCCCTGTCC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTG CCCCCCCAG CCCCCA CACCACACAGG 43801 ACTGTCTTTC GGGGATTTCT CATCACTTG CCCCCCCCAG CCCCCACCCCA	42951	TCAGCCTGGG	CGACAGAGCG	AGACTCTGTC	TCAAAAATAA	TAATAATAAC
43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG 43151 TCTCAAAAAA AAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGAGAGATG 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATG TGTGATGTAT GCAGAGTTCC 43351 CATTTTGAAT GTGTTTTAC TATGCTTAAA TAAATGACTG ATGTCAGCAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGGC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT CCCCTAAGT TTCCTCCCT 43551 TCCTCATCTT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCGTCT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCC CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCAG GACTCTCCG CCTGTGACC 43701 TAATCCATGG GGAGGTCCT GGGAAGGGCT TCTTTGGGC CCCTGGCC 43701 TAATCCATGG GGAGGTCCT GGGAAGGGCT TCTTTGGGC CCCTGTGACC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTG CCCCCCAG TCCCCTGTG 43801 ACTGTCTTTC GGGGATTTCT CATCACTTG CCCCCCCAG 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGTTG CCCCCACCCCA						
43151 TCTCAAAAAA AAAAAAATCC CATTTGCTCA TTTTTTGGAT ACTAGTATAA 43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGAGATGG 43251 TGAATTACCA TCTACAGTTA TTGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCATTG GTCACATACT GAGCATTATC 43351 CATTTTGAAT GTTGATTTAA TTGTTCATAT TGTTGATTAT GCAGAGTTCC 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAAACAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43551 TCCTCATCTT CAGGCGCAGT AACAGTACCT CCAAGGCCC TGGCCCCAGC 43501 TCCCCAAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC CCTCCCGTC 43551 TCCTCATCTT CAGGCGGCAGT AACAGTACCT CCAAGGTCCCC TGGCCCCAGC 43601 TCCCCAAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC CCCCAGCACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTAGAATC 43801 ACTGTCTTTC GGGGGTTTCT CATCACTTGG CCCCCCCCCA CACCATGCAG 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGTT CTCCCCCCAG CCCCCACCCC AAGACTCCT A3901 CACCCCCACC CAGGCCACCT AAGGTCAATG TTGCCTGTAC CACCATGCAG 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGTG CCCCCACCCCA	43051	AGGCGGAGGC	ATGAGACTCA	GGTGAACTAG	GGAGACAGAG	GTTGCAGTGA
43201 CTATCACTCT AAACCAGTTA GTACTTAAAT CAAGCAGATA TGGGAGATGG 43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCATAT TGTGATGTAT GCAGAGATTCC 43351 CATTTTGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGCAGCAA 43401 CCCCAAAATG ATCATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCCA CTCCCGTCTT 43551 TCCTCATCTT CAGGCCGCAGT AACAGTATCT CCAAGTCCCC GCTCAGAGT 43601 TCCCCAAAGG AGCCCCTGCT GTTCACCAGC GACATCAGCC GCTCAGAGT 43601 TCCCCAAAGG AGCCCCTGCT GTTCACCAGCA GATCTTCCGG CCCTGGACC 43601 TCCCCAAAGG AGCCCCTGCT GTTCACCAGCA GATCTTCCGG CCCTGGACC 43601 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43701 TAATCCATGG GGAGGTCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43701 TAATCCATGG GGAGGTCTTG CATCACTTGG CCCCCCCA CACCATGCAG 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCCCCCA CACCATGCAG 43801 ACTGTCTTTC GGGGGATTTCT CATCACTTGG CCCCCCCCA CACCATGCAG 43851 GATGCCAGGC CTCCTTCCTG GCTTTGGGTG TTGGTGTGAG AGGTATCATG 43901 CACCCCCCACC CAGGCCACCT AAGGTCAATG TTGCTGTTAC AGTGACCTTG 43901 CACCCCCACC CAGGCCACCT AAGGTCAATG TTGCTGTTAC AGTGACCTTG 44001 TCCAGTCAGT GGGTGTTTGT TAGGTGCCTG CACACCTCAG TACCGGGCAT 44051 GCTACAAGGA GCCCCTCCTTCTT TTCTCTCCT CTCCCCCTGG GTGAACAGTC 44101 TCAGGGACT ACCTCTCTT TTCTCTCCTC CTCCCCCTGT GTGAACAGTC 44201 GGCTGGAAGG CTCACCTCGT TTCTCTCCTC CTCCCCCTGT GGGGCAGCAG 44201 GCCTGGAAG CTCACCCCG ATCCACCCAG TCCCCTGGTG CATGTCTTTG 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGT TTCAGCTTG GGGGCAGCAG 44201 GCCTGCAACT TCCTCCCCC AGACTTCCT TTCAGCCTTG GGGGCAGCAG 44201 GCCTGCAACT TCCTCCCCC AGACTTCCT TTCAGCCTTG GGGGCAGCAG 44201 GCCCTCCAA GGGAACAGAG GTTACCTCC TTCCAGCTTG GGGCCCGGACCAG CTCCCCTGTTT TCAGCTTG CATGTCTTTTCAGCTC CATGTCTTTTCAGCTC CATGTCTTTTCAGCCT CATGTCTTTTCAGCCT CATGTCTTTTCAGCCT CATGTCTTTTCAGCTC CATGTCTTTTTCAGCCT CATGTCTTTTCAGCCT CAGGCTAGAGAACACAAAC AAGCCACAAA CAGAACACAAA GAGCTTCAAAAAGAT TCCCCCTCCTGTG AAGAAGAGAA AACAAAAGAT ACAAAAGAT ACAAAAGAT ACAAAAGAT ACAAAA	43101	GCCAAGATCA	CACCACTGCA	CTCCAGCCTG	GTTGACAGAG	CGAGACTCTG
43251 IGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC 43301 AGCTAGTAGA ATCTAGTTAA TTGTTCATG TGTGATGTAT GCAGAGTTCC 43351 CATTITGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGTCACAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCCTCT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTGGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA 43751 GTGAGCCGAG GCAACAATTG CTTTGCTCTCT CTGCCCCCAG GCCTAGACT 43801 ACTGTCTTTC GGGGATTTCT CATCACTGG CCCCACCCCA						
43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATG TGTGATGTAT GCAGAGTTCC 43351 CATTTTGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGTCAGCAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43401 CCCCAAAATG ATACATCTGA ATGAACAGGT CCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCCGTCTT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCG GACATCAGC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTCCGG CCCTGGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTACAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA						
43351 CATTITGAAT GTGTTTTTAC TATGCTTAAA TAAATGACTG ATGTCAGCAA 43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGCAGT ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43601 TCCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCCCAGAATC 43601 TCCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCCCAGAACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTACAAG 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCCACCCCA						
43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA 43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCGCTCT 43551 TCCTCATCTT CAGGCGCAGT AACAGTACTC CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GACTTCCGG CCCTGTGAACC 43601 TAATCCATGG GAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43701 TAATCCATGG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCCACCCCA						
43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC 43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCGTCTT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTACAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA						
43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCGTCTT 43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GCCTACAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA	43401	CCCCAAAATG	ATACATCTGA	TGTAAGAGCC	CCTGTTCCCC	AATAATAACA
43551 TCCTCATCTT CAGGCGCAGT AACAGTATCT CCAAGTCCCC TGGCCCCAGC 43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA						
43601 TCCCCAAAGG AGCCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAATC 43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGGCA GGCTATCAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA	43501	CAGGGTTTCT	TGGCCGGTCT	CTGAGGACTA	CACATCCCTA	CTCCCGTCTT
43651 CCTTCGTTGT TCCAGCAGCT ATTCACAGCA GATCTTCCGG CCCTGTGACC 43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGCA GGCTATCAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA						
43701 TAATCCATGG GGAGGTCCTG GGGAAGGGCT TCTTTGGCA GGCTATCAAG 43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA						
43751 GTGAGCGCAG GCAACAATTG CTTTGCTCTT CTGCCCCCAG TCCCTCTGTC 43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA	43651	CCTTCGTTGT	TCCAGCAGCT	ATTCACAGCA	GATCTTCCGG	CCCTGTGACC
43801 ACTGTCTTTC GGGGATTTCT CATCACTTGG CCCCACCCCA	43701	TAATCCATGG	GGAGGTCCTG	GGGAAGGGCT	TCTTTGGGCA	GGCTATCAAG
43851 GATGCCAGGC CTCCTTCCTG GCTTTGGGTG TTGGTGTAGA AGGTATCCTT 43901 CACCCCCACC CAGGCCACCT AAGGTCAATG TTGCTGTTAC AGTGAGCTTG 43951 TGGACCTGGA GATCCAGGTT GGGTTGAGCT GTGCCTGTGG CCCTCCTGCC 44001 TCCAGTCAGT GGGTGTTTGT TAGGTGCCTG CAGACCTCAG TACCGGGCAT 44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCCTG GTGAACAGTC 44101 TCAGGGACTA ACCTCTCTCT TTCTCTCCTC CTCCTCCTT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTAGGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 4451 TGCCCTCCAA GGGAAGAGG GTTTGCTTCC GTGTAGTCC CATGTTGCTC 4451 CACGCTGCAT CTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 4451 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44751 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44801 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGGTTACAA 44701 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
43901 CACCCCCACC CAGGCCACCT AAGGTCAATG TTGCTGTTAC AGTGAGCTTG 43951 TGGACCTGGA GATCCAGGTT GGGTTGAGCT GTGCCTGTGG CCCTCCTGCC 44001 TCCAGTCAGT GGGTGTTTGT TAGGTGCCTG CAGACCTCAG TACCGGGCAT 44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCTG GTGAACAGTC 44101 TCAGGGACTA ACCTCTCTCT TTCTCTCCTC CTCCTCCTCT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44501 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44601 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGA 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44701 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
43951 TGGACCTGGA GATCCAGGTT GGGTTGAGCT GTGCCTGTGG CCCTCCTGCC 44001 TCCAGTCAGT GGGTGTTTGT TAGGTGCCTG CAGACCTCAG TACCGGGCAT 44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCCTG GTGAACAGTC 44101 TCAGGGACTA ACCTCTCTCT TTCTCTCCTC CTCCTCCTCT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44601 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44001 TCCAGTCAGT GGGTGTTTGT TAGGTGCCTG CAGACCTCAG TACCGGGCAT 44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCCTG GTGAACAGTC 44101 TCAGGGACTA ACCTCTCTT TTCTCTCCTC CTCCTCCTCT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCTG GTGAACAGTC 44101 TCAGGGACTA ACCTCTCTT TTCTCTCCTC CTCCTCCTCT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 4451 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44101 TCAGGGACTA ACCTCTCTT TTCTCTCCTC CTCCTCTCT TCTGCTGAGA 44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44151 ACTGGGAGGG GGGGTCAGGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG 44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 4451 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44201 GGCTGGAGAG CTCACCCCCG ATCCACCCAG CTCCCTGGTG CATGTCTTTG 44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44251 GCACTGACCT TCCTGCCCCC AGACTTCTGT TCACTCAGGA GACTCACTTC 44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC 44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44351 CTTCTTCCCC ACTTCCCTTT TCTGGGTTCT TGCCTGTCCT CTGTGCATGC 44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44401 CCAGCTCTCC AGGAAAGAGG GTTTGCTTCC GTGTGAGTCC CATGTTGCTC 44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44451 CACGCTGCAT CTTCCACACA TGAACTCTGT CATTCTGACC CGGCTCAGTG 44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAACAGTT 44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44551 CTCCAGAACT TCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA 44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44601 GGTGACACAC AAAGCCACGG GCAAAGTGAT GGTCATGAAA GAGTTAATTC 44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG 44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44701 AGGGGGCCCG GGAGGTTGGT GTCACCATTG GAAGAGAGAA GACCTTACAA 44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44751 ATAATGGCTT CAAGAGAAAA TACAGTTTGG AATTACTGTC TTAAAGACTA 44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44801 AGCAGAAAAG AGCCCTAGAG GAATATCCCA CTCCCTCTAA ATTACAGCGT 44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44851 AATTATTTGT TCAATGAACA CTTACTAAAA GCAACACAAA CAGGGTACAA 44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44901 GGGATGCAGT AACAAAAGAT ACAGGGTTCA GAAGAGCTCT CAGGTTATGA						
44951 GGATGATGGA CATGAAAACA CTCCAATTTA GTACAACTCA ATGTTATAAT						
	44951	GGATGATGGA	CATGAAAACA	CTCCAATTTA	GTACAACTCA	ATGTTATAAT

	CCTCACCTGA				
45051	CTCACACTCC	TTGGGCATTT	ACAGTTTTCA	CTACCCCTCC	CAAGTTACTT
	CATGGAGTAA				
	AGCCACTTGG				
	AGGCCTATGA				
	GATCTTAGTG				
	GTAACACTTG				
45351	GAGAAGTTAA	CCACCAGCTT	TCCTTGGCTT	CCCCCACCCC	CAGGTGAAAG
45401	TGATGCGCAG	CCTGGACCAC	CCCAATGTGC	TCAAGTTCAT	TGGTGTGCTG
45451	TACAAGGATA	AGAAGCTGAA	CCTGCTGACA	GAGTACATTG	AGGGGGCAC
45501	ACTGAAGGAC	TTTCTGCGCA	GTATGGTGAG	CACACCACCC	CATAGTCTCC
45551	AGGAGCCTTG	GTGGGTTGTC	AGACACCTAT	GCTATCACTA	CCCTAGGAGC
45601	TTAAAGGGCA	GAGGGGCCCT	GCTTTGCCTC	CAAAGGACCA	TGCTGGGTGG
45651	GACTGAGCAT	ACATAGGGAG	GCTTCACTGG	GAGACCACAT	TGACCCATGG
45701	GGCCTGGACC	ACGAGTGGGA	CAGGGCTCAA	CAGCCTCTGA	AAATCATTCC
	CCATTCTGCA				
	GGAATCGCCT				
	GAGAGTAGGG				
	CCCTTCCTAT				
	TGTCTGTGTC				
	CTGTTTTCAA				
	GCAAACTGGA				
	CAGGTATTCA				
	CTAGGAAATC				
	AGAATTGGAT				
	AGGAGCAAAG				
	AAACAAATGA				
	GCCCTCTATA				
	TTTATTCCTC				
	ACAGAGCTGG				
	TAGCCACTGC				
46551	CAGTTTGGGG	GTACATCAAG	GTCGCTGTGT	TTTAAGCTAT	GGAGTCTGGA
	CTATAGGAGA				
	TTTTGTTTG				
	TCTGGGGCTT				
	AAGGATATTG				
	TCACTACAGC				
	CCCAAGTAGC				
	TTTTTTCT				
	TTGTTGCCCA				
	CCTCGCCCTC				
47051	CAGGAAAAGA	TTTTTAACCA	ACAAACCTTA	ACACCTCTCC	TTTTCCAAA
	ATGAGTCTGG				
	TGGGAGGCCG				
	CTGGCCAACT				
472F1	TTAGCTGGGC	CTCCTCCTCC	ACCCCTCTAC	TOCOACOTAC	TCACCACCCC
47201	GAGGCAGGAG	AATACCTTCA	ACCTGGCAGG	CACAACTTCC	ACTCACCCA A
47301 473E1	GATCACACCA	CTCCATTCCA	CCTCCCTCA	CACACTCACE	AUTUAULUAA
47301	AAAAAAAAAA	AAAACACACA	CTCATATCCT	TACTACATTO	COCTOCALTO
474UI		ACCCA ATCCA	CCCCTCCATA	CCCCCCTAAT	CAAACATTTC
4/40T	CGGAGGGTCC	AUUUAAUUUA	GCCCIGCAIA	UGGGGGG TAAT	GAAACATTIC

47501	AGATTTCTGA	ATTAAGGTAG	TGGCTGTGGG	GACAGGAGCC	TGGGAGGCAG
47551	GGTGGAGTCA	GAATGGAGAG	ACTGGTTGGC	AATGAGGGAA	CAGGAGGAGG
47601	AGGAGGAGGA	GTTACGAGTG	GCTTGAGGTG	TCACTTACCA	GACATTTGGG
47651	GGATGGGGGA	TAGCCGTGAT	TGTTGAGCAA	CTGGTTTGGG	AAGAGCTAGC
47701	ATTGATCCCT	GCTGTTCTGT	GCTAGCAGAA	CCTATCAGCA	TCTTCTGGGC
47751	AGGAAACTGG	CTCCATGAGA	CTGGCTTAGG	GAGAGGCTGC	TAGTCACCTA
47801	ATCTGCAGAG	AAGGGGCAGC	TGGAGCTGTG	GGACAGAAGA	GGCATCCATG
47851	TAGCTGGTGG	GGGTGTCTCA	GCTTGTGAAG	AGGAGATGGC	TTTGAGCAGG
47901	GCTGACACTG	AAAAGGCTGG	AAGAAAAAA	CAGACACACA	AGAGTCTCAG
47951	GATCAGGTAG	CATAGGAAAG	TTGTGGACAG	TCTTTGAGGA	GCACTCCCTC
48001	AGGCAGGCAG	GCAGGCAGGT	CATGAGCTAT	AGCGATTCAG	GAAGAGCTCC
48051	CTGGGTGTGT	GAGCAGCTCC	AGGAGCCTAA	GGGATGAAAG	TAGTATTGCA
48101	GGGGGCTGGA	GAGCAAGGAG	TGGCTCCTTC	TACATTTGCA	AGGGAAGGAG
48151	AAAGGAAGTT	GCTCCTGAGA	GTGGTAAGAG	TCAGTGGTGG	AGGCCTGGAG
48201	AGGAGACATA	ACAAACAAAT	TTGTTGACAA	ACATITIGGT	AGGAAGGGGG
48251	AGAGCTTAAA	GTTTAGACAG	TGGGGAAGGT	GGAGTCTTAG	AGGAGGTGAA
48301	TGTCTGAAAG	ACAGAGCTAG	CTGGAGCAAG	AAGTCACTTC	TCTGTTGCAG
48351	GCAGGAAGGA	TCCAAAGTGG	CTCAAGCCAG	AGATTGGGAG	AGTGGGGAGG
48401	AGGGAGCAGC	CTGGATCTAA	GTAAAATGGG	TAGAGGTGGA	GGGGGTGCTG
48451	CAACGGCCAG	GGTTTTCTGA	AGTTGGGGAC	ATTAGGAGAG	AGCTGTGAGG
48501	GCTTTGGCCA	GCCACTGTGC	TAGTGATTGG	TGAACCAAAG	GATGGGCAGG
48551	AGATGGCAGC	AGGGAAGCAG	AGGAAGTCCA	GGCTTCCTGT	TECTATTECC
48601	ACAAGGGAGA	GGCCATAGGA	GGCCCTGGCC	CTGTTGTCCA	CCTTCCCTTC
48651	TGAAGCTGGG	TEGECATEGE	CTGGTAGGAG	AGCATCTATG	CCCCCAATT
48701	CCAGATTCAG	GGTCTAGTTG	ATTTECTEEC	CCTGTAGCCT	CACCTCATCC
48751	TICTGTTCCA	GGCCTATTTG	CACTCTATGT	GCATCATCCA	CCCCCATCTC
48801	AACTCGCACA	ACTGCCTCAT	CAACTTECTA	TGTCCCACTG	CTCTCCCCCT
48851	GGCCTCCAGG	GTCCTATCCT	TOTTCCTTC	CTTGTCACAA	ACCACCCTCA
/ggn1	CTTCTCCCCT	CTCCCTACAC	CCCACACCTC	TTGCCTAGGA	CCTCCTATCT
48951	TTCCCTTCCT	GCTTCTTCCA	ATGCCCTTCT	CTGTCCTCTG	GENECTOCEA
49001	GACACACACA	CACATAATTT	CACCTTCTCT	CATTAGCAAC	CTTTCAAATA
49051	ATTTGATTAG	AAGGGACTTC	AGAAGTTTCT	TGACTATATG	TACAAAAACC
49101	TGTCATTTTA	CCTCCTTTTC	CCCCATAGTA	GTCTTGTAAA	ACACTTCATT
	CCTCACCCCA	TTTTACAGTG	CTCCCAIAGIA	AAGCCTCAGC	CTCACCCCAC
49201	CCACCTACTA	AATTTACAGG	CACCACTITC	AGACCAGCAT	TOCTOCOACT
49251	CCCCCTCACC	TETEETEETT	ACAATCTTCT	TTGTCTTACT	CACTTCCTAT
49201	CTECCTTCAGE	CCCTCTCTAC	CCCCTCCCCC	TGGCTCTGCC	CTCTACACCC
19351	ACACCACGCA	ATCTTCATTC	CTTTCCCACA	TGACTGCCCT	CTACCTATTO
/0//01	AAACACCTTC	TCTCCCCCAA	CTCTCCCCAT	CTACTGCCCTC	GAGGETATIC
49401	TTTTCTCTCTCT	TATCCTCCTT	CTACCCACTC	COTCAAATCA	CAUCITIGUET
49401	AACACACCAC	ACCCAAAAAC	AAAACCAACC	CCTGAAATCA CCCTGTCCCA	IIIIAGGAAI
49301	CCACTCTCCA	ACTCCCTCAC	CCTCACCTCC	AGGGCTCCAG	CUTUTGAGII
49331	ATGAACCCAC	TCTCCCCTCC	CACTCTCCTC	TGCACAGATA	IGGCICIGCC
40661	ACAAACACAA	ATCCCAACTC	TOTOTOTOTO	TUCACAGATA	CUAGACCUTC
43031 40701	AHJAJAHADA	CACTCTCATT	CTCTTTCCC	TTTGTTTTGT	HIGHLIGE
43/UL	ATCTTCCCTT	ACTOCACCOT	CTACCTCCCC	GGCTGGAGTG	CAGIGGIGCA
10001	TTCACCCTCC	CACTACCTAC	CACTACACCC	GGTTCTAGTG	ATTGTTCTGC
400E1	AATTTTTTT	CAGTAGCTAG	TOTAL TACAGGC	GTGTGCCACC	ACGUCCAGCT
40001	TOTTOGGGAG	CCTCCTCTTC	IGIAIIIIIA	GTAGAGACAG	GGTTTGCCA
47701	TOCCOTOCO	GUIGGICTIG	AACTCCTGAC	CTCAGGTGAT	ICACCCGCCT
49951	TUBLE FEECA	AAGTTCTGGG	ATTACAGGTG	GAAGCCACCG	TGCCTGGCCT

5000	1 GAGTGTGTC	T ATTTGATAG	A GCTTTCTGC	T CTGATTCTC	C CTTGCTATAC
5005	1 ACCTTTTCT	C CCCTTCTCA	G TEGETTETE	T TECCTATEC	T TCCTCCCCAG
5010	1 GGCCAGGTT	T GAGAACATC	C CCATCAACT	C CTCACCTCT	C TTTTATCCTA
5015	1 CCAGGACAA	G ACTGTGGTG	G TGGCAGACT	T TEGECTETC	A CGGCTCATAG
5020	1 TGGAAGAGA	G GAAAAGGGC	C CCCATGGAG	A ACCCCACCA	C CAAGAAACGC
5025	1 ACCTTGCGC	A AGAACGACC	G CAAGAAGCG	A AGGCCACCAC	G TGGGAAACCC
5030	1 CTACTGGAT	G GCCCCTGAG	A TECTEAACE	C TOACTOOTO	A AGCCCTGGAG
5035	1 GGGACACCC	G CAGAGGGAG	ACAGATGCT	COUTTOOAT	A AGCCCTGGAG C AGAGCCCTGG
5040	1 GAATTCCAG	G GGAGGCCTG	F GAAGCGTAG	ACCCCATAC	CAGAGCCTGAG
5045	1 GATATITIT	CCTTGCCAG	TEEEECCTC	ACCUCIATACC	CAGAGCTGAG CCTGAGCTCA
5050	1 GGGGGCTGG	S AACTGATCAG	TGTCCCATC	A COMITAGO	GGTGAGTTCT
5055	1 GACTGTGGCA	A TITETECCT	ACCCATCCC	1 1000000A1A	GGTGAGTTCT GGTGATTGTCC
5060	1 CAGCTTTAGG	CTTCTCTCTC	CATCCTCAC	ACTO ACTOR	GCTATIGICC GGTGCCCTCT
5065	1 GGTGGATAAT	CTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC	ACCACACAT	ACTOCATOO	GGTGCCCTCT TTCTTGAAAT
5070	1 CAGGGTTGT	ACCOUNTER	A ACCAGAGATO	ATACAATCA	N TICTIGAAAT N TITTGGAGTC
5075	TGAGGCCCA	ACAACTTOAC	TCAATTCCCT	A ATACAATCCA	A TITTGGAGTC CAGCTGCCTAA
50801	TGGCAGAGGC	TACATCAACC	CTACTCTCCT	AGGAGCATAC	AGC IGCCTAA TTTAACGTGC
50851	L AGTTTCATCO	TAGATGAACC	TATOTTATA	COCCTOTOR	ITTAACGTGC
50901	L CCTACGGCTG	ACCAACCACT	ATTTTAINIAI	COTOTOTO	AGGCAGTTCA
50951	TETECETE	CCCTACACAA	ATTITUAGGI	GOOTAGTE	CAGGACAGCC
51001	L TTAGATTCAC	ACCACACIOO	CTCCACACA	CCCTAGITCT	TAGCTGTGGC
51051	L CACTETECTE	TOOTOTOTT	G CCAACCAAA	GGTAAGGGAT	GTAAACTTAA
51101	ATATOTTOTO	CTTTCCCATC	CTTOTOTOTO	GAGCTATGAT	GAGACGGTGG
51151	CCCATCCCC	CITIOGGAIC	GITCICIGIG	AGGTGAGCTC	TGGCACCAAG
51201	GCCATGCCCG	CCTACCCATO	CCTAGCAGCT	CIGCCTTCCC	TCGGAACTGG
51261	CCCTTTTATO	CTITATABLE	ACTAGCTIGA	CIAAAATCAA	CATGGGTGTA
51201	GGGTTTTATG	AACACAAAAA	CATCIGCACA	ICTITGCCAC	GTTCGTGTTT
51361	CATTGGTCTT	ADDAADADAA TOOGAADOOT	CIGGCAGGGI	HILLIGITT	TAGATGGAGC
51331	CTCACTTCGT	CTTCTCCCTT	GGAGTGCAGT	GGCACAATCT	GGGCTCACTG
51461	CAACCTCCCAC	TACCCCCACA	CAAGIGATIC	ICCIGCCTCA	GCCTCCCAAG
51501	TAGCTGGGAC	CACCOTTECA	CACCACCATG	CCCGGCTAAT	TTTTGTATTT
51501	TTAGTAGAGA	CAGGGIIICA	CCATGTTGGC	CAGGCTGGTC	TTGAACTCCG
51501	GACCTCAGGT	GATCUGUCTG	CCTCAGCCTC	TAAAAGTGCT	GGAATTAATA
21001	GGCGTGAGCT	ACCICGCCCG	GCCAGGTTTT	ППППППППППППППППППППППППППППППППППППППП	TTTTTAGTTG
21021	AGGAAAC IGA	GGCTTGGAAG	AGGGCAGTGG	CTTGCACATG	CTCCATAACC
51701	GGCAGATGAG	ACTCAGAATT	CCAGAAGGAA	GGGCAAGAGA	CTGTTCATGT
51/51	GGCTGTCTAG	CTAGCTCTTG	GGCCAAATGT	AGCCCTTCTC	AGTTCCCTTC
STOUT	AAGTAGAAGT	AGCCACTCTA	GGAAGTGTCA	GCCCTGTGCC	ACCTACCACC
DIODI	IUGACAGAGI	UAGUAATUT	GGAAAGATTC	$CT\Delta CCTTTAC$	CACTITACTO
STANT	AGGIGACAGC	ATATCTCAGC	GACTCAAACA	CACACACATT	CAAACCCTTC
DIADI	IGIAATICCI	ACAAAGIIGT	GAGGGGTAGA	GGAGAGGAGA	CACAACCCAT
22001	GUITAGGATA	ATGAAGGAAT	GUITGITI	TGTTTTGTT	TTTCACATCC
25021	AGTITUACTO	TGTCACCCAG	GCTGGAGTGC	AGAGGTGCAA	TCTTCCCTCA
22101	C I GCAGCC IC	CGCCTCCCAG	GTTCAAGCAA	TCCTCCTGCC	TCAGCCTCCC
27121	AAG I AGC I GG	GACTACAGGT	GTGCGCCACC	ACCCCTCCCT	AATTTTCTA
22201	TITICAGTAG	AGACAGGGTT	TCGCCATATT	GGCCAGGCTG	CTCTCAAATC
22221	LUTGACUTUA	GGTGATACAC	CCGCTTCAGC	CTCCCAAACT	CCTCACATTA
22301	CAGGCATGAG	CTACCGTGCC	IGGCCATGAA	GGAAGATITC	TTTTAAAAAA
32331	1161111611	IAATATTAAT	TGAACACCTC	TGTTCAGAGC	ACTECECTOR
22401	TUCLAUAUUU	TITCAGACAT	GAATCAGATC	$C\Delta GC\Delta CCTC\Delta$	TACACCCTTA
52451	ATCTGGCACA	CACACACAGC	CACAAGGAGA	CACAGACAAG	GCAGGGTAGG

52501	ATGAGTGGAA	GCTAGGAGCA	GATGCTGATT	TGGAACACTT	GGCTTCTGCA
52551	GTGAAGCCCC	TTCTTAGTCC	TCTTCAGTAA	CCCAGCTCTC	AGTGGATACA
52601	GGTCTGGATT	AGTAAGATTT	GGAGAGATGA	TTGGGGATTG	GGGAGAGCTC
52651	TCTAACCTAT	TTTACCACCT	CCTCTTCTGC	CATTCTTCCT	GTCCACATCC
			CAAGTATCTG		
			TACAGATCAT		
			CTGGACTTTG		
			AGATTGTCCC		
			AGCCTGAGAG		
52951			CTGGGACGTT		
			AGGGGTGAGA		
53051			CATCTGACAA		
			GCAGCAAGTA		
			TTAAAAGAAG		
			TCTTTCGATA		
			AAATAGTTCT		
			TTCCTGTTTA		
			CTGAACATAT		
			ATAGGTATIT		
			TTTGAGGAAG		
			CATTATTACC		
			GAGAATCTGG		
			GAGGCTGAGG		
			GCCAACATGG		
			CATGGTGGCA		
			GAATTGCTTG		
			TTGCACTCCA		
53851	ACTCTGTCTC	AAAAATGGGG	TTCTTTTCCT	GCCATCAAAA	ATCATGTTTC
			ATTACCAAAG		
			CCAATATATC		CTCCTCACCC
54001	CCAACTCCAC	CCTCCCAGGA	TAACCAGTTG	GGACATAATC	TTTATTTAAA
54051	AATGGTTTCC	GGATAGAGAA	AGCGCTTCGG	CGGCGGCAGC	CCCGGCGGCG
54101	GCCGCAGGGG	ACAAAGGGCG	GGCGGATCGG	CGGGGAGGG	GCGGGGCGCG
54151	ACCAGGCCAG	GCCCGGGGGC	TCCGCATGCT	GCAGCTGCCT	CTCGGGCGCC
54201	CCCGCCGCCG	CCCTCGCCGC	GGAGCCGGCG	AGCTAACCTG	AGCCAGCCGG
54251	CGGGCGTCAC	GGAGGCGGCG	GCACAAGGAG	GGGCCCCACG	CGCGCACGTG
54301	GCCCCGGAGG	CCGCCGTGGC	GGACAGCGGC	ACCGCGGGGG	GCGCGGCGTT
			CCAGGCCAGG		
			CCCCGGGGCC		
			TGAGGCGCCA		
			AAGCACCTCA		
			CGACTGCCAG		
			TCCTGGACAT		
			CTGGTTGACT		
			CAAGATCCGG		
			CCCCGACCCA		
			CCTCGTAGCA		
540U1	TOCCOCCACO	CCTCCTTCCA	TGAGCAGGGC	TOTOTOTO	CCTCCCCCAC
54001	CCCTCTCTTC	CCCTCCCCC	TCAGTTTTCC	ACTITICCAT	TTTTTATTO
					GCGGCACGGG
54951	TIATTAAACT	UA I UUUAL I I	וטוטווווא	TATTGACTCT	ひしひひしろしむ

Jan. 22, 2002

55001	CCCTTTAATA	AAGCGAGGTA	GGGTACGCCT	TTGGTGCAGC	TCAAAAAAA
55051	TAAAAAAAAT	GATTTCCAGC	GGTCCACATT	AGAGTTGAAA	TTTTCTGGTG
55101	GGAGAATCTA	TACCTTGTTC	CTTTATAGGC	CAAGGACCGC	AGTCCTTCAG
55151	TAACACCAGT	GTAAAAGCTT	GAGGAGAAAT	TGTGAAGCTA	CACAGTATTT
55201	GTTTTCTAAT	ACCTCTTGTC	ATTCTAAATA	TCTTTAATTT	TAAAAAATTA
55251	ATATATATAC	AGTATTGAAT	GCCTACTGTG	TGCTAGGTAC	AGTTCTAAAC
55301	ACTTGGGTTA	CAGCAGCGAA	CAAAATAAAG	GTGCTTACCC	TCATAGAACA
55351	TAGATTCTAG	CATGGTATCT	ACTGTATCAT	ACAGTAGATA	CAATAAGTAA
55401	ACTATATTGA	ATATTAGAAT	GTGGCAGATG	CTATGGAAAA	AGAGTCAAGA
55451	CAAGTAAAGA	CGATTGTTCA	GGGTACCAGT	TGCAATTTTA	AATATGGTCG
	TCAGAGCAGG				
	GAGGAGGAGT				
	TTCCGTGGCA				
	ATTTTCTCTA				
	TTAACTCCAG				
	AAATATATGA				
	CTAGGTGAAG				
	TAGATCCCTT				
	AATTTACCTC				
	TTTGAGGCCC				
	AGAGCTGGAG				
	GGGACTCACC				
	CAGCCAGCAT				
	CGGGCTTCCT				
	TATTACCTCC				
	CACAGGTTCT				
	AGCTGTGAAG				
	TACTCGAATC				
	GCTTACACTA AACCTGCCTG				
	TTCAAGTGTG				
	GTCAGTGATG				
	GGTTGAGGGA				-
	CAGGAGTTAG				
	CCAGCCCAGG				
	CAAACTTAAT				
	GTCTGAAACA				
	AGGCCCTGCC				
	GGGTGGGCTC				
	GGTTCTGGAG				
	GAGTGGGAGT				
	TCACCCTTCA				
	GGTGGCAGAG				
	GGGCCATCTG				
	CTGGGCAGCA				
	CTTGGCTCCC				
	TCTAAGTGTC				
	GGGGTATTAA				
	AAAGGAGAGT				
57451	AAATATTGTA	CATAGACCTG	ATGAGTTGTG	GGACCAGATG	TCATCTCTGG

5/501	. ICAGAGTITA	CTTGCTATAT	AGACTGTACT	TATGTGTGAA	GTTTGCAAGC
57551			GGACTCCCAG	CAGCAGCACA	GTTCAGCATT
57601	GTGTGGCTGG	TTGTTTCCTG	GCTGTCCCCA	GCAAGTGTAG	GAGTGGTGGG
57651	CCTGAACTGG	GCCATTGATC	AGACTAAATA	AATTAAGCAG	TTAACATAAC
57701	TGGCAATATG	GAGAGTGAAA	ACATGATTGG	CTCAGGGACA	TAAATGTAGA
57751	GGGTCTGCTA	GCCACCTTCT	GGCCTAGCCC	ACACAAACTC	CCCATAGCAG
57801	AGAGTTTTCA	TGCACCCAAG	TCTAAAACCC	TCAAGCAGAC	ACCCATCTGC
57851	TCTAGAGAAT	ATGTACATCC	CACCTGAGGC	AGCCCCTTCC	TTGCAGCAGG
57901	TGTGACTGAC	TATGACCTTT	TCCTGGCCTG	GCTCTCACAT	GCCAGCTGAG
57951	TCATTCCTTA	GGAGCCCTAC	CCTTTCATCC	TCTCTATATG	AATACTTCCA
58001	TAGCCTGGGT	ATCCTGGCTT	GCTTTCCTCA	GTGCTGGGTG	CCACCTTTGC
58051	AATGGGAAGA	AATGAATGCA	AGTCACCCCA	CCCCTTGTGT	TTCCTTACAA
58101	GTGCTTGAGA	GGAGAAGACC	AGTTTCTTCT	TGCTTCTGCA	TGTGGGGGAT
58151	GTCGTAGAAG	AGTGACCATT	GGGAAGGACA	ATGCTATCTG	GTTAGTGGGG
58201	CCTTGGGCAC	AATATAAATC	TGTAAACCCA	AAGGTGTTTT	CTCCCAGGCA
58251	CTCTCAAAGC	TTGAAGAATC	CAACTTAAGG	ACAGAATATG	GTTCCCGAAA
58301	AAAACTGATG	ATCTGGAGTA	CGCATTGCTG	GCAGAACCAC	AGAGCAATGG
58351	CTGGGCATGG	GCAGAGGTCA	TCTGGGTGTT	CCTGAGGCTG	ATAACCTGTG
58401	GCTGAAATCC	CTTGCTAAAA	GTCCAGGAGA	CACTCCTGTT	GGTATCTTTT
58451	CTTCTGGAGT	CATAGTAGTC	ACCTTGCAGG	GAACTTCCTC	AGCCCAGGGC
58501	TGCTGCAGGC	AGCCCAGTGA	CCCTTCCTCC	TCTGCAGTTA	
58551	GGCTGCTGCA	GCACCACCCC	CGTCACCCAC	CACCCAACCC	CTGCCGCACT
58601	CCAGCCTTTA	ACAAGGGCTG	TCTAGATATT	CATTITAACT	ACCTCCACCT
58651	TGGAAACAAT	TGCTGAAGGG	GAGAGGATTT	GCAATGACCA	ACCACCTTGT
58701	TGGGACGCCT	GCACACCTGT	CTTTCCTGCT	TCAACCTGAA	AGATTCCTGA
58751	TGATGATAAT	CTGGACACAG	AAGCCGGGCA	CGGTGGCTCT	AGCCTGTAAT
58801	CTCAGCACTT	TGGGAGGCCT	CAGCAGGTGG	ATCACCTGAG	ATCAAGAGTT
58851	TGAGAACAGC	CTGACCAACA		CCGTCTCTAC	
58901	AAAATTAGCC	AGGTGTGGTG			
58951	GGCTGAGGCA	GGAGAATCGC	TTGAACCCAC	AAGGCAGAGG	TTGCAGTGAG
59001	GCGAGATCAT	GCCATTGCAC	TCCAGCCTGT	GCAACAAGAG	CCAAACTCCA
59051	TCTCAAAAAA	AAAAA (SEC	ID NO:3)		

FEATURES:

Start: 3000

Exon: 3000-3044 Intron: 3045-45393 Exon: 45394-45525 Intron: 45526-45761 Exon: 45762-45818 Intron: 45819-50154 Exon: 50155-50329 Intron: 50330-51076 51077-51132 Exon: Intron: 51133-52775 Exon: 52776-52933

52934-55922

Exon: 55923-56064 Stop: 56065

Intron:

CHROMOSOME MAP POSITION: Chromosome 22

ALLELIC VARIANTS (SNPs):

	R I		
11	N	4	

DNA			
<u>Position</u>	<u>1 Major</u>	<u>Minor</u>	Domain
941	Α	T	Beyond ORF(5')
2612	G	Α	Beyond ORF(5')
5080	G	Α	Intron
6599	-	A C	Intron
6983	С	G	Intron
9885	Α	-	Intron
12538	G	T	Intron
17707	T	С	Intron
18219	•	Α	Intron
19670	C	Т	Intron
21153	G	T	Intron
24566	C	-	Intron
26604	G	Α	Intron
27255	<u>C</u>	G	Intron
27399	Ţ	С	Intron
28088	G	Α	Intron
28734	G	Α	Intron
29246	•	Τ	Intron
29490	G	Α	Intron
29934	Ţ	С	Intron
34480	Α	G	Intron
38812	T	С	Intron
40731	C	G	Intron
41303	T	Α	Intron
41305	-	Α	Intron
41457	G	С	Intron
43168	Α	- T	Intron
43357	T	G	Intron
45664	T	С	Intron
47549	Α	С	Intron
47908	C	Α	Intron
52267	C	Α	Intron
54654	T	С	Intron
54679	С	G	Intron
54693	Α	C	Intron
54706	T	C.	Intron
54712	T	С	Intron
54799	T	С	Intron
54819	G	Α	Intron
55499	С	T	Intron
56825	С	Α	Beyond ORF(3')
58871	T	Α	Beyond ORF(3')

Context:

DNA Position 941

GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTTGGGTTAAAAAGTAAAAACAAGAAAC AAGGTGTGGCTCTAAAATAATGAGATGTGCTGGGGGTGGGGGCATGGCAGCTCATAAACTG ACCCTGAAAGCTCTTACATGTAAGAGTTCCAAAAATATTTCCCAAAACTTGGAAGATTCAT TTGGATGTTTGTGTTCATTAAAATCTCTCACTAATTCATTGTCTTGTCCACTGTCCGTAA CCCAACCTGGGATTGGTTTGAGTGAGTCTCTCAGACTTTCTGCCTTGGAGTTTGTGAGAG

TGAGTTGGAACAGTTTGATACCAAAACCATCCCCCGCCCCCCAACCCCCAGCCTAGGGT
CCGTGGAAAAATTGGCCCCTGGTGCCAAAAAGGTTGAGGACTGATCTAGAGGACCAA
TTTATTCAATGTTGGTTGAGTAAATGAGCTCTTGGATTAGGTGAAAAAAATCTGAAAA
AACAGGGCTTTTGAGGAATAGGAAAAGGCAGTAACATGTTTAACCCAGAGAGAAGTTTCT
GGCTGTTGGCTGGGAATAGTCATAGGAAGGGCTGACACTGAAAAAGAAGGAGATTGTGTTC
[G,A]

TTTCTTCTCTCAGAGCTATAAGCAAAGGCTGAAAGTTCTAGAAAAAAGGCAAGTTTTGTT
TCAGTAGAAAAAAGGATAATCAGAACCATTTTTAGAAAAATGGAATGAGACTACTTTTGAG
GCCATGAGTTCCTTGTCCCTGGAGAGATGAGCAGAGGTTGGACAAGTGCTTACCAGAGAT
CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCCTAACCCTTTCAAATGAGAT
GCTGTTAACTCAGTCTTATTCTACATGGTAGGAATCCTGTCCCTTTGCCTCCTGCTACTT

ACAACGTAAAATAGTTGAAATTTGTTGGTGGAAAGAAGAGAGCAGTCCACTCCAGAGGCTGG
ATGGGCATGCCTGGCCCCCAAGGTCTGAAGTGGTAGGGCTGTGCCTATATCCTGAGAATG
AGATAGACTAGGCAGGCACCTTGTGCTGTAGATTCCAGCTCCTGCACATAGCTCTTGTTG
TAAAACATCCCTGTGCTTATACCAAGTAATTGAGTTGACCTCTGGAAGAGTTGGAAAGCA
[G, A]
CCATCATTATTATCCTTTCCTTTCAGCTATAACTCACACCTCTCAACCTCTCTAGCTCTCC

CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGGA TCTTATTGCCTTGGTTCTTGCCCCCTTTTACTCCCAGGGAAGTTGATTCTGTCTTTTCTGT TCCATTTAGTATGACAGGAGCAGAGAATGTCAGAGCTGTAAGGGACCTTATAGTTAAAGC CTTTGGCTGGTCCTTTCATTTTATAGCTGGGACTAATAAGTAACGTCAAAACCCAATGAG TTCACAGATTGGGTCTCGCCTTGGCATGTAACCCCATATGTTCATATTCTTGCTGTTTTTCC

- CACATTCATTGGTGATCTGATGTGGAGCCCCAGGGATTAAGGGCAACTTTGAACTACCCT
 GACACAATCAAGCCAAATATCATTCCCGTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC
 TAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC
 TCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACTGGATGTCACGGCGCCCTCAGATA
 GAGCCTGGTAATTTGCCCTGGGGAGGAGTGACTGTCTTTTGGATCTAATTTGACTTTTGCC
 [C,G]
 CAGTTGGAGGAAAATCTTCAGGGCTAGGAAGGATTGTATTTGTCTGACCCCAGAGATAAC
 CTGGGTTTTGAGGAACATGGGGCATCAACCTGAATGGTCTTGTAAGATCTCTCCCACGCC
 AGCTTGCCAGTGTTTCTCTGATGAATTTAGAGTACCTGAGTAGTGCAGGCCTGCTGGGAG
 GAGGACTCTCCCTCTGTGCTACTCAGAGAAATTCATTCTTCAAGGCCCCCTTCCCCCTTCCC

 9885
 GGCGTGCCACCACACCTTGCCATTTTTTTTTAAGTAGAAACAAGGTCTTATTAAT

FIG.3-27

- 18219 TGCCATCAGTAGCACTGACTCTTGCAGAAGCACCGTTTCTGAAGTTGGCTAATGTCATCC CTCACGTTTGTTTGAAATTTGTTTTAGTTCCAGAGATAGCACTTTCATGGAATGAC GCTATCTTCTAGAATCACTTTTTTTTTTTTTTTTTGAGTTGGAGTCTCGCTGTGTCGCCAGG CTGGAGTGCAGTGGCACAATCTCAGCTCACTGCAATCTCCACCTTCCGGGTTCAAGTGAT TCCCCTGCCTCAGCCTCCCGAGGAGCTGTTACTACAGGCGCACACCCCCACTCCTGGCTA TTTTATGTGTTTTAGTAGAGACGGGGTTTCACCGTGTTGGCCAGGATGGTCTCGATCTCC TGACTTTGTGATCTGCCTGCTTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGTCAC CGCGCCTGGCCTAGAATCACCTTTTTATACCATAACGTGAGCACCACTGCCGCGTCACCA AGGAAAGAGAGGCAGCTACTGTGGGGTTACAAATGGGTAAGAGTGGCACCAGGAAGGT
- 19670 GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTTATAATGC ATCTTCAGTTTACAGAGGGCTTTTGTACTCATCATCTAGTTTAGTTCCTGCAACAACCTC TTGAGGAATATAGCACAAGCAGGACAAGGGAAGCCCAGAGATGTTAAATAATTTATCCAA GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAGTTTTCTGAGCTCAAATC CCATGCCCTTTCCTCAATGTGAGCTCTAGCAAGGTATTCAGGAATCCTGCCTCTACAGTT [C.T] AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTTGTATCTGATTTTCTAGATTTCCTGCC CACATTCTTACTGTCTGGATATCAGGAAAGAGTTTATCAAATGCCTGTGGAAATCCAAGA TAAGGTCTCATGATGAGTAACCCAGTGAAAACATGAAGTCAAGTCTAACTAGTCACTACT ATTTCACTACTGCTGACTCCTGATGATCAGCTCCTTTTCTAAGTGCTTACTGTCCACTTA TTCCATCATCTGCCTAGAATTTATGTGAAGGAATCAAAGCAAAAGGATCATAAGGCTTCC
- 21153 GGACCCTTGTTTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAGAGGGG AGGAGTGGGCACGAAAGATGGTTAGTAGATGGGGGGTGGTAATGCTTACCTTTCAGTATT TGGAGGCTTCGGAGTCCTCAAAAATTCTCTTCCTTGATTGGAGTCCTCCCAGCCAATAGA GGGCTTCACACAACAGTTTCTTGGGTTTTGAATTGTTTGACCAGAGCTTTCTTCCGACA AAAGGTTGGGGTGATTCATTCACTTACCACACCTTGCCTGAACATTCACTTGGGGCTGCC [G,T]GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGCTTTGAAGACCTGTGCCTCAGCT GGTTCTAAGGAGTCAGTTTGTTCAGCTCCGTGCCAGGTTTCCAACTTATGAAATGTGCTG GAGATTAACACCTCTCCTGCCATTTTATCCCTACTATAATTGCCAGTCAAAGGATTCCTG CAGTTGCCTCTGGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTCTGAGGACCTAGAA GAGCAGTTTTCTATCCAGGACCAGTTTCCAAGGGTGGGAGGGTGAAATATATCCTCCAGT
- CTACTCTGGAGGCTGAGGTGAGAGGATCACTTGAGTCCAGAAGGTCGAGGTCAAGATTGT 24566 TAGTGACATAACCCCTCAGAACCTATTTCCTAATCTGTTAAATGAGGCTGATGACGTTTC CTCCTTTTACTGGCAATTTAAACATGATGGATAATAAATGCTAAGCACTTAACACAGGGC [C,-] TAGAAGATATTAACTGCTCAATAAATGGTAGCTTCTTAACAGTATTCAAACCCATGTGCT CTTATCACATGCATTGTTGTCCCTGTGTCCAGTTGGTGGAATGGGAAAAGGCTCCCTTGT AACCCCATCTACCATCTTTATCAGACTTTCCTGCCATGGTTCACAGTAAGAGATAGAAGC TGCACGGTGACTTCTGGCTCTTTACAATGGTGAGCGGTGTGTGCCTGGTAAGGGAGAGCT GATGTCACTGCCCCAAATCCAGTAGTGAGATCTGAGTGTTCTGGTTTCCTCCAGCAGCCT

FIG.3-28

26604

27255

CTGTTGTTCCAAAAAGGCTGCCTCCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCT GGCTTCTCTAAGCTAGGTCCAGTGCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCC AGGCCCTGGGCAGAAAAGCAGTGTACCATGTGGTTTTGTGGAATGACCGGACCCTGGTAG ATTGCTGGGAAGTGTCTGGACAGGGGGAAGGGGAACTGGTCCTCAATGCTGACT CTACCAAGCGCCCTGCTAGACACTTTATCCTTTAATCTCTCAACAGCCTAAAGAGATTAT

27399

28088

AAGAGCCAATGGAAATTGATCTTGAGTTTAGGAGAAAGCTTTTACATGTGGAATTAAGAT GCCAAGTGTTGAAGTAGCCACATTTCAGGTCCTCATTAATTTCTCTTAATCCTGGGAAGG CAGCTTAGGAGAAGGGTTGTTCCTTTAGGAGCCAGGAACTATACCCCTTTTACCCTTGGA GAGGCAGGGAAGCCAGGGAGGACCAACTTCTCAGGAAGAGGAGAAGCTAGAGCAGATAG TGAACTCTCAACCTGAACCTTTAAGGGCCAGACCACTAATGCCACCCAAGTCCACCTGCC [G.A]

28734

AAGTAGAAGCTAGACTTCTTGGGCTCCTGAACAGGGTCCTTGCTGGATTCTGTGAAACAA
ATTAAGTTCTTGACCCTAGGCCTCTGGGGGAGTACAAAGTCTATGGGAGTTCTGGGGCTG
TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGGACATGATCAGGCGTGACATGTG
AGGGAGGAAGAGGGAGCAAGGGAATGAAGAATACAACTTCTGTGTCCCATACACCCCTGC
CTGACAGGCCATACATACTCAGCAGAGAATGCACTGTCTTTCCTACCACACTAGCGTGAG
[G,A]

AGTGAGCTGCAATTACCACTGTGCTTCCAAGTAAGAAAATACCTCAAATTGGAATTTACA
AAAGAGGTAAATTAGGGAGTGGCTTTTGTCGGACATCTTTAAAGCATTTTCTTTTATA
GAATTTCACTTAATGTCCAATACTGATTTAATGAGCTTGGGTTTACACATTATCTCTTGA
AGAAAACAAATGAACCTTTGTGTTCCAAAGCAATCCATGTTTAAAGGGAAAAAAATTATGC
ATAACTCTGCCCAGCTTCACAGTAACCTTTGGCAGGTGCCTTAGGTCCTCTGGGACTCTT

29246

AATCCATGTTTAAAGGGAAAAAATTATGCATAACTCTGCCCAGCTTCACAGTAACCTTTG GCAGGTGCCTTAGGTCCTCTGGGACTCTTTTCCTTATCTGAAAAATGAAGGACTTGGATC AGGTGAATGGTTCCCAGCTCTGCAACTTATGTGGCTCCTCAGAGGCACACAAGCTCTTTT CCATTATTTGCCAAATAATGGAGGCCCTGTCTTTAACTGCAGTACAACTACACAAAATAC TTGAAACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACT [-,T]

ATTTCTTGCTGTTCGTAGGCTTCATTATGTGTTTAGTTTATTTTTTAAAACAACAATAAC
ATATTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGA
AGGAGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCC
CTGTCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCT
CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCTCCTTCAGCCCACTCAAT

29490

AACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACTTATT
TCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAACATA
TTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGAAGG
AGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCCCTG
TCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCTCCA
[G.A]

GTGCCCTCAGGCTGTGGAGGGAGGCTTCCCATTCTCCCTTCAGCCCACTCAATTCAG AGGCTAGGGGCTGAAAGAAGCTTCTCTACAACTGGCTGTTCACTGGGAGGTTAAGGGATG ACCATCCAGCCAGGCCTTCCTCAGGACATGGGAGGGCTTATGCTTTAACATGTGTAAATC CACTGCAATAATGACTGGTTCTTTTACCCCCATAAGGTTGAGAATTTACCTGTAAACATTT TTGTCTGAAGAATTTGGATGTAAGTGAGGGCTGGGCCTCTATCTTATCTCACTTGGCTTC

29934

CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTATAAGCATAAGC
CACTGTGCCCAGCTGCTCTCTATATTTTTAATACATATTTTCCATTAATTTTCACAGC
AGTTCATTTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT
GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTCTTGGAAGC
AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCTTGACAACAAGAATAGGGAAAAGAAGGA
[A,G]
CTAGAAGGAAAGAAGAGTGCCATGGCCTCAGCAGGCCAGGGAGCTCTTAGCTGTGTGTTGTTG

38812

ACGCCTGTAATGCCAGCACTTTGGGAGGCCAAGGTGGGCAGATTGCTTGAGGTCAAGAGT
TTGGGATTAGGCCAGGCGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAG
GTGGGCGGATCACAAGGTCAGGAGATCAAGACCATCCTGGCTAACACACAATGAAACCCCGT
CTCTACTAAAAGTACAAAAATTAGCCGGGCATGGTGGCGGACGCCTGTAGTCCCAGCTAC
TCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTAGGAGGCGGAGCTTGCTGTGAGCAGA

40731

GGGCACAGATAGGATTGAATAAATTGTGTAGAAAAGACTTTGAAAAACAATAAAGCAAAAGA TGAATGAACGTTTTTTTTAGACTTGAGGGACCAACACCCCCAAACCCCCAGATTCTGCCA GGTCCATGGGGAAGGAGAAGTTGCCTTGAGTGGAAGCCCCCAAGTAGGGAGACTTACAGAA AAGAAGTCAAGAGCACTGGCTCCCAGGCAGAAATACTGATACCCTACTGGGGCTTCAGGC TGAGCTCCTCCCTTCACAAATCACTTCATCTCTCTGAGCCTGTTTCTGCATCTGTGACAT

41303

AATAATAATTATTTTTTAATTAGATGGGCAGGGCACTGTGGCTCACACCTGTAATCCC AGCACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTG GGCCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCT GTAATCCCAGCTACTCAAGAGGCTGAGGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGAC TGCAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTC

AGGCATGAGACTCAGGTGAACTAGGGAGACAGAGGTTGCAGTGAGCCAAGATCACACCAC

ÄGGGÄGGCTTCACTGGGAGACCACATTGACCCATGGGGCCTGGACCACGAGTGGGACAGG GCTCAACAGCCTCTGAAAATCATTCCCCATTCTGCAGGATCCGTTCCCCTGGCAGCAGAA GGTCAGGTTTGCCAAAGGAATCGCCTCCGGAATGGTGAGTCCCACCAACAAACCTGCCAG CAGGGCGAGAGTAGGGAGAGTGTGAGAATTGTGGGCTTCACTGGAAGGTAGAGACCCCT TCCTATGCAACTTGTGTGGGCTGGGTCAGCAGCTATTCATTGAGTTTTGTCTGTGTCACTG

47549

47908

GGAGTTACGAGTGGCTTGAGGTGTCACTTACCAGACATTTGGGGGGATGGGGGATAGCCGT GATTGTTGAGCAACTGGTTTGGGAAGAGCTAGCATTGATCCCTGCTGTTCTGTGCTAGCA GAACCTATCAGCATCTTCTGGGCAGGAAACTGGCTCCATGAGACTGGCTTAGGGAGAGGGC TGCTAGTCACCTAATCTGCAGAGAAGGGGCAGCTGGAGCTGTGGGACAGAAGAGGCATCC ATGTAGCTGGTGGGGGTGTCTCAGCTTGTGAAGAGGAGATGGCTTTGAGCAGGGCTGACA CC.A1

52267

TTGTGAGGGGTAGAGGAGAGAGAGAGAGAGACAAGGGATGGTTAGGATAATGAAGGAATGTTTTG
TTTTTGTTTTTTGAGATGGAGTTCACCCCAGGCTGGAGTGCAGAGGT
GCAATCTTGGCTCACTGCAGCCTCCGCCTCCCAGGTTCAAGCAATCCTCCTGCCTCAGCC
TCCCAAGTAGCTGGGACTACAGGTGTGCGCCACCACGCCTGGCTAATTTTTGTATTTTCA
GTAGAGACAGGGTTTCGCCATATTGGCCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
[C,A]

CACCCGCTTCAGCCTCCCAAAGTGCTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT GAAGGAAGATTTGTTTTAAAAAATTGTTTTCTTTAATATTAATTGAACACCTCTGTTCAG AGCACTGGGCTGGTGCCAGAGGGTTTCAGACATGAATCAGATCCAGCACCTCATAGAGCC TTAATCTGGCACACACACACACACAGCCACAAGGAGACAAGACAAGGCAGGGTAGGATGAGTG GAAGCTAGGAGCAGATGCTGATTTGGAACACTTGGCTTCTGCAGTGAAGCCCCTTCTTAG

CAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCT GCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCC GACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAACAG CAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTG GCCCAGGGGTCTCTTCCCCTGCCCCCCTCAGTTTTCCACTTTTTGGATTTTTTTATTGTTAT

GGCAGTGGCGGCCAAGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGA
GGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGAGGCGCCAAGGGAAGGTCACCATCAA
GTATGACCCCAAGGAGCTACCGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT
CACGCGCCTCTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA
GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA
[C.G]

TGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAG
AAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCAT
AGGACAATCGCTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG
GCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCC
CTCAGTTTTCCACTTTTTGGATTTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTT

AGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACC CCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTAC CCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGA GCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACT TTTGGATTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTTTATATTGACTCTGCG

TACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGG CCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCA CCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGGCCTCTACGACTGCCAGGAAGA GGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGAGAGTGACGATGC CTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCAT

TCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGA GGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGT AGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCG TGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTT ATTGTTATTAAACTGATGGGACTTTGTGTTTTTTATATTGACTCTGCGGCACGGGCCCTTT

ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN KINASE PROTEINS, AND USES THEREOF

FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Protein Kinases

Kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for 25 controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular 30 protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analogous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a 40 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phos- 45 phorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 50 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out 55 the transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 60 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided 65 into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) *The Protein Kinase Facts Books*, Vol I:7-20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases prima-5 rily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate. phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormoneinduced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glyco-15 gen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, N.Y., pp. 416-431, 1887).

Calcium-calmodulin (CaM) dependent protein kinases are also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase cascade".

Another ligand-activated protein kinase is 5'-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 15:8675-81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling

pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as 5 tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). PRK is related to 10 the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in 15 a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine

Protein tyrosine kinases, PTKs, specifically phosphorylate tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte 40 GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through nonreceptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation 50 acterize previously unknown members of this subfamily of was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau H and Tonks NK (1992) Annu. Rev. 55 Cell. Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/ threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoforn (Genbank gi8051618) 65 in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., J. Biol. Chem. 270 (52), 31321-31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., Science 285: 895-898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., Biochem. Biophys. Res. Commun. 229: 582-589, 1996).

For a further review of LIMK proteins, see Nomoto et at, Gene 236 (2), 259-271 (1999).

Kinase proteins, particularly members of the serine/ threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and charkinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/ threonine kinase subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, 25 such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or 40 sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/ threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript 45 and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA 50 sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the 55 present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present 60 peptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous 65 tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genornic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that com- 30 prise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/ cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence 35 when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally 45 occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or 50 fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are 55 fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion 60 proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian 65 host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and nonhomologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G.,

eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. 20 Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present 25 invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When uti- 40 lizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides 45 of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present 50 invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70–80%, 80–90%, and more typically at least about 90–95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/ regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081–1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899–904 (1992); de Vos et al. Science 255:306–312 (1992)).

The present invention further provides fragments of the ²⁰ kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed ²⁵ publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide of derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, 65 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pro-

teolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins—Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant

brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, 15 and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine 20 kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues 25 that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In 30 addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also usefull in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally systems the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82–84 (1991); Houghten et al., Nature 354:84–86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767–778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, antidiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitopebinding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other, candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding partners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that 20 allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35Slabeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For 35 example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be 40 derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods 45 for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well so as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to 55 use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according 60 to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 65 and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223–232; Madura et al. (1993) J. Biol. Chem. 268:12046–12054; Bartel et al. (1993) Biotechniques 14:920–924; Iwabuchi et al. (1993) Oncogene 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNAbinding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a kinase-dependent complex, the DNAbinding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A bio-

logical sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predispo- 5 sition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic 10 mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide 15 digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a 20 single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 40 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. 45 Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the 50 individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do 55 not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may 60 lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, 65 polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, 5 β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine 10 fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 I, 131 I, 35 S or 3H.

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, 45 level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various 55 tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment only in genetic testing, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy. 65

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the $\ ^{10}$ isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in 15 FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide 20 sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that 35 encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' noncoding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified 55 using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating 60 compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide 65 (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand).

The invention further provides nucleic acid molecules that present with only a few additional nucleic acid residues in 30 encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. fashion, the nucleic acid molecule can be only the nucleotide 40 Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. humans genomic sequence (FIG. 3) and cDNA/transcript 50 Such fragments are useful in controlling heterologous gene expression and in developing screens to identify genemodulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% 10 or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a 15 fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 20 supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide 25 positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA 50 and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs 55 were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule 65 and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for regions, the coding region, and 3' noncoding regions. 60 identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental 10 data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express 20 specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in an the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is 45 identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that 50 express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, 55 PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in 65 teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988), and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme 5 digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127–162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147–159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers etal., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 21 7:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and 40 selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the 45 relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located 55 outside the ORF and in introns, may affect gene transcription.

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the 60 production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, 65 and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein nRNA or DNA.

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be

preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or 10 an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The 20 second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or 25 other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is 45 made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe 50 sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner 55 is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for largescale correlation studies on the sequences, expression 65 patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the kinase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the kinase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1 982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified kinase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, 10 PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell 15 genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can 20 function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor can be produced from the vector itself It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from E. coli, the early 40 and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate 45 transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual.* 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11 d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permnits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore 35 include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by 40 techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for

studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte. e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be 10 introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if 15 not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such 20 as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals 30 carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recom- 35 binant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacte- 40 invention. Although the invention has been described in riophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4 <210> SEQ ID NO 1 <211> LENGTH: 2320 <212> TYPE: DNA <213> ORGANISM: Human <400> SEQUENCE: 1 cccagggcgc cgtaggcggt gcatcccgtt cgcgcctggg gctgtggtct tcccgcgcct 60 gaggcggcgg cggcaggagc tgaggggagt tgtagggaac tgaggggagc tgctgtgtcc 120 ecceptetet ectecceatt teegegetee egggaceatg teegegetgg egggtgaaga 180 tgtctggagg tgtccaggct gtggggacca cattgctcca agccagatat ggtacaggac 240

tgtcaacgaa acctggcacg	gctcttgctt	ccggtgaaag	tgatgcgcag	cctggaccac	300
cccaatgtgc tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	360
gagtacattg aggggggcac	actgaaggac	tttctgcgca	gtatggatcc	gttcccctgg	420
cagcagaagg tcaggtttgc	caaaggaatc	gcctccggaa	tggacaagac	tgtggtggtg	480
gcagactttg ggctgtcacg	gctcatagtg	gaagagagga	aaagggcccc	catggagaag	540
gccaccacca agaaacgcac	cttgcgcaag	aacgaccgca	agaagcgcta	cacggtggtg	600
ggaaacccct actggatggo	ccctgagatg	ctgaacggaa	agagctatga	tgagacggtg	660
gatatettet cetttgggat	cgttctctgt	gagatcattg	ggcaggtgta	tgcagatcct	720
gactgccttc cccgaacact	ggactttggc	ctcaacgtga	agcttttctg	ggagaagttt	780
gttcccacag attgtccccc	ggccttcttc	ccgctggccg	ccatctgctg	cagactggag	840
cctgagagca gaccagcatt	ctcgaaattg	gaggactcct	ttgaggccct	ctccctgtac	900
ctgggggagc tgggcatcc	gctgcctgca	gagctggagg	agttggacca	cactgtgagc	960
atgcagtacg gcctgacccg	ggactcacct	ccctagccct	ggcccagccc	cctgcagggg	1020
ggtgttctac agccagcatt	gcccctctgt	gccccattcc	tgctgtgagc	agggccgtcc	1080
gggcttcctg tggattggcg	gaatgtttag	aagcagaaca	aaccattcct	attacctccc	1140
caggaggcaa gtgggcgcag	caccagggaa	atgtatctcc	acaggttctg	gggcctagtt	1200
actgtctgta aatccaatac	ttgcctgaaa	gctgtgaaga	agasasasac	ccctggcctt	1260
tgggccagga ggaatctgtt	actcgaatcc	acccaggaac	tccctggcag	tggattgtgg	1320
gaggetettg ettacactas	tcagcgtgac	ctggacctgc	tgggcaggat	cccagggtga	1380
acctgcctgt gaactctgaa	gtcactagtc	cagctgggtg	caggaggact	tcaagtgtgt	1440
ggacgaaaga aagactgatg	gctcaaaggg	tgtgaaaaag	tcagtgatgc	tecceettte	1500
tactccagat cctgtccttc	ctggagcaag	gttgagggag	taggttttga	agagtccctt	1560
aatatgtggt ggaacaggco	: aggagttaga	gaaagggctg	gcttctgttt	acctgctcac	1620
tggctctagc cagcccaggg	accacatcaa	tgtgagagga	agcctccacc	tcatgttttc	1680
aaacttaata ctggagacto	gctgagaact	tacggacaac	atcctttctg	tctgaaacaa	1740
acagtcacaa gcacaggaag	aggctggggg	actagaaaga	ggccctgccc	tctagaaagc	1800
tcagatcttg gcttctgtta	ctcatactcg	ggtgggctcc	ttagtcagat	gcctaaaaca	1860
ttttgcctaa agctcgatgg	gttctggagg	acagtgtggc	ttgtcacagg	cctagagtct	1920
gagggagggg agtgggagtd	: tcagcaatct	cttggtcttg	gcttcatggc	aaccactgct	1980
caccetteaa catgeetggt	. ttaggcagca	gettgggetg	ggaagaggtg	gtggcagagt	2040
ctcaaagctg agatgctgag	g agagatagct	ccctgagctg	ggccatctga	cttctacctc	2100
ccatgtttgc tctcccaact	cattagetee	tgggcagcat	cctcctgagc	cacatgtgca	2160
ggtactggaa aacctccatc	ttggctccca	gagetetagg	aactcttcat	cacaactaga	2220
tttgcctctt ctaagtgtct	atgagettge	accatattta	ataaattggg	aatgggtttg	2280
gggtattaaa aaaaaaaaa		4000000000			2320

<210> SEQ ID NO 2 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Human

<400> SEQUENCE: 2

1				5					10					15		
Lys	Val	Met	Arg 20	Ser	Leu	Asp	His	Pro 25	Asn	Val	Leu	Lys	Phe 30	Ile	Gly	
Val	Leu	Tyr 35	Lys	Asp	Lys	Lys	Leu 40	Asn	Leu	Leu	Thr	Glu 45	Tyr	Ile	Glu	
Gly	Gly 50	Thr	Leu	Lys	Asp	Phe 55	Leu	Arg	Ser	Met	А вр 60	Pro	Phe	Pro	Trp	
Gln 65	Gln	Lys	Val	Arg	Phe 70	Ala	Lys	Gly	Ile	Ala 75	Ser	Gly	Met	Asp	Lys 80	
Thr	Val	Val	Val	Ala 85	Asp	Phe	Gly	Leu	Ser 90	Arg	Leu	Ile	Val	Glu 95	Glu	
Arg	Lys	Arg	Ala 100	Pro	Met	Glu	Lys	Ala 105	Thr	Thr	Lys	Lys	Arg 110	Thr	Leu	
Arg	Lys	Asn 115	Авр	Arg	Lув	Ľує	Arg 120	Tyr	Thr	Val	Val	Gly 125	Asn	Pro	Tyr	
Trp	Met 130	Ala	Pro	Glu	Met	Leu 135	Asn	Gly	Lys	Ser	Tyr 140	Двр	Glu	Thr	Val	
Asp 145	Ile	Phe	Ser	Phe	Gly 150	Ile	Val	Leu	Сув	Glu 155	Ile	Ile	Gly	Gln	Val 160	
Tyr	Ala	qaA	Pro	Asp 165	Cys	Leu	Pro	Arg	Thr 170	Leu	Asp	Phe	Gly	Leu 175	Asn	
Val	Lys	Leu	Phe 180	Trp	Glu	Lys	Phe	Val 185	Pro	Thr	Asp	Сув	Pro 190	Pro	Ala	
Phe	Phe	Pro 195	Leu	Ala	Ala	Ile	Cys 200	Сув	Arg	Leu	Glu	Pro 205	Glu	Ser	Arg	
Pro	Ala 210	Phe	Ser	Lys	Leu	Glu 215	qaA	Ser	Phe	Glu	Ala 220	Leu	Ser	Leu	Tyr	
Leu 225	Gly	Glu	Leu	Gly	Ile 230	Pro	Leu	Pro	Ala	Glu 235	Leu	Glu	Glu		Авр 240	
His	Thr	Val	Ser	Met 245	Gln	Tyr	Gly		Thr 250	Arg	Asp	Ser		Pro 255		
<211 <212	> LE > TY	NGTH PE:	NO : 59 DNA SM:	065	n											
<400	> SE	QUEN	CE:	3												
tcat	cctt	gc g	cagg	ggcc	a tg	ctaa	cctt	ctg	tgtc	tca	gtcc	aatt	tt a	atgt	atgtg	60
															aaaag	
															tcttc	
															ccttt	240
															gagcc gaagg	300
															gaagg gagag	360 420
															tgtgt	480
															ggtat	540
															attt	600
tgga	aata	ga a	atcai	ttca	g age	ccaa	gaga	ttga	att	gtt	gagt	aagt	gg g1	Eggt	aggt	660
taca	gacti	ta a	ttttç	gggti	t aad	aaagt	taaa	aaca	aga	aac a	aaggi	tgtg	gc to	taaa	ataa	720

tgagatgtgc	tgggggtggg	gcatggcagc	tcataaactg	accctgaaag	ctcttacatg	780
taagagttcc	aaaaatattt	ccaaaacttg	gaagattcat	ttggatgttt	gtgttcatta	840
aaatctctca	ctaattcatt	gtcttgtcca	ctgtccgtaa	cccaacctgg	gattggtttg	900
agtgagtctc	tcagactttc	tgccttggag	tttgtgagag	agatggcata	ctctgtgacc	960
actgtcaccc	taaaaccaaa	aaggcccctc	ttgacaagga	gtctgaggat	tttagaccca	1020
ggaagaatga	gtgatgggca	tatatatatc	ctattactga	ggcatgagaa	gagtggaatg	1080
ggtgggttga	ggtggtgttt	taaggcctct	tgccagcttg	tttaactctt	ctctggggaa	1140
cgagggggac	aactgtgtac	attggctgct	ccagaatgat	gttgagcaat	cttgaagtgc	1200
caggagctgt	gctttgtcta	ttcatggccc	ctgtgcctgt	gaaacagggt	toggtgactg	1260
tcactgtgcc	tgtggcagtc	tgtagttacc	cagagagaac	aaagctgcat	acacagageg	1320
cacaagggag	tcttgtaaca	accttgtcct	gctttctagg	gctgagtcag	gtaccacage	1380
ttgatctcag	ctgtcctctt	tatttcaaga	agttgacatc	tgagccatac	caggagtatt	1440
gtattttgtt	tgaggcctct	ctttttggag	gaacatggac	cgactctgtg	cttttgtcta	1500
tgctggtctc	tgagctcaca	caacccttca	ccctcctttc	tcagccagtg	ataggtaagt	1560
cttccctatc	ttgcaaggct	cagctcaagt	gtcagcttcc	tctacaaaga	ctttcctggt	1620
tcccctcatt	ggagtgaaca	agagttgaca	tggtagaatg	gaaagagcag	aagctttaga	1680
atgagccaga	cctgagtatg	aatgctagat	ccaccactta	gctagtcaac	cctgccccct	1740
gcctcaagtt	ttaattttcc	tatccattaa	gtgaatataa	taatacctgt	gtcacaggat	1800
tattttgaga	attaaatgag	attaggtcta	tgaaagcacc	tagcagagtt	cttggcatat	1860
aggaggcatt	cattaaatat	ttgttcttcc	ccttttatac	ccattacttt	tctttttctg	1920
aactaaaata	atacttggtt	ctatctctga	aataacatcc	aagtgaaaaa	tcaacaacat	1980
gaaagagcag	ttcttttcca	gtggatttgc	ttcttaagga	gcagagatta	tgtaatctaa	2040
cageetecaa	catacaaaga	gctttgtatc	tagaacaggg	gtccccagcc	cctggaccgc	2100
caactggtac	gggtctgtag	cctgttagga	accaggetge	acagcaggag	gtgagcggcg	2160
ggccagtgag	cattgctgcc	tgagctctgc	ctcctgtcag	atcagtggtg	gcattagatt	2220
ctcataggag	tgtgaaccct	attgtgaact	gcacatgcaa	gggatctggg	ttgcatgctc	2280
cttatgagaa	tctcactaat	ggctgatgat	ctgagttgga	acagtttgat	accasascca	2340
tecceegee	CCCCAACCCC	cagcctaggg	tccgtggaaa	aattggcccc	tggtgccaaa	2400
aaggttgagg	actgctgatc	tagaggacca	atttattcaa	tgttggttga	gtaaatgagc	2460
tcttggatta	ggtgatggaa	aaatctgaaa	aaacagggct	tttgaggaat	aggaaaaggc	2520
agtaacatgt	ttaacccaga	gagaagtttc	tggctgttgg	ctgggaatag	tcataggaag	2580
ggctgacact	gaaaagaagg	agattgtgtt	cgtttcttct	tctcagagct	ataagcaaag	2640
gctgaaagtt	ctagaaaaag	gcaagttttg	tttcagtaga	aaaaaggata	atcagaacca	2700
tttttagaaa	atggaatgag	actactttg	aggccatgag	ttccttgtcc	ctggagagat	2760
gagcagaggt	tggacaagtg	cttaccagag	atcttgtgga	ggcagaaact	gtgcatctag	2820
cagagcattg	gcctaaccct	ttcaaatgag	atgctgttaa	ctcagtctta	ttctacatgg	2880
taggaatcct	gtccctttgc	ctcctgctac	tttgggcctc	tcaacctctt	ggttttgtgt	2940
gcaggtgaag	atgtctggag	gtgtccaggc	tgtggggacc	acattgctcc	aagccagata	3000
tggtacagga	ctgtcaacga	aacctggcac	ggctcttgct	tccggtaggt	gggcctatcc	3060
teccatettt	accagtgtac	tatgggccaa	gcactatttc	atgttctgat	ggaaaacaca	3120

gaaacaagct tctgagtt	ja gaatttcaat	cttagggtgg	ggaaaggaat	gtaccaagga	3180
agageteatg accasace	c aagtgtggcc	cccctgaacc	caggttaaat	tggaagagcc	3240
ataaatgggc cagctgga	g cagggtgggg	ggatgagagg	agccctttcc	agggttgtcc	3300
catatecete actttatg	gg tgaggaaact	gaggcccagg	aagagtgact	ttcctgtggc	3360
tgcactacag attatgca	g tacttcaaga	gttgtttgta	ttcttattt	attttatttt	3420
atttattt atttatt	t attttatgag	agggattctt	gctgttgccc	aggctggagt	3480
gcagtggtgc aatctcgg	t cactgcaatc	tctgcctgct	gggttcaagt	gatttttctg	3540
ccttagcttc ctgagtag	t gagatgacag	gcacctgcca	ccatgcgcag	ctaatttttg	3600
tattttagtg gagacggg	g tttcaacatg	ttggtcaggc	tggtcttgaa	ctcctgacct	3660
caaatgatgc acccacct	g acctcccaaa	gtgctggaat	tacaggcgtg	aaccactgtg	3720
cccagccaag agttgttt	t agtgtggttg	gcagagccag	ctcttccttc	accacaggat	3780
geeteectag gtteetae	t tttgttacta	gcttttatta	tagctatatt	attattatta	3840
ttattattat tattatta	t attattgaga	cagagtctcg	ctctgtcgcc	caggctggtg	3900
tacagtggtg cgatcccg	g ctcactgcaa	cctctgcctc	ccgagttcaa	gcagttctcc	3960
tgcctcagcc ccccgagt	g gtgggactac	aggcgcctgc	caccacaccc	ggctaatttt	4020
tgtattttta gtagagac	g ggtttcacct	tgttgaccag	gctggtctgg	agctcctgac	4080
ctcaggtaag tgctagaa	c acaggogtga	accactgcgc	ccagccaaga	gttgtttta	4140
gtgtggttgg cagagcca	c tetteeteac	cacaggttgc	ctccctaggt	tcctactttt	4200
tgttactagc tttattat	g ctacattatt	attattattg	ttattattat	tgagacagag	4260
totogototg togocoage	jc tggtgtacag	tgatgtgatc	ttggctcact	gcaacctctg	4320
cccccgagt tcaagcaa	t ctcctgcttc	agccccccta	gtaggtggga	ctccaggcac	4380
ctgccaccac gcccagct	a tttttgtatt	tttagtagag	gcggggtttc	accttgttgg	4440
ccaggctggt ctcaaact	c tgacctcagg	tgatccgcct	gcctcggcct	cccaaaatgt	4500
tgggattaca ggcatgag	c accgcgccct	gcctatagct	acattatttt	tgtaggcagc	4560
tcagtttctt aaaaatta	a cagacttcaa	atcagatttg	ttcctgctgt	ctgaggctca	4620
gtttcttcat ctggaaaa	g gatggtaata	atcttgttga	gattgaatga	aataatatat	4680
gcagtgtatc cagtacat	g tagacaccca	gtgaatggtt	attccttcct	cccatcggat	4740
tggaattctc aagggtgg	ga acttgtcttt	atattcttca	caacgtaaaa	tagttgaaat	4800
ttgttggtgg aaagaaga	ge agtecactec	agaggctgga	tgggcatgcc	tggcccccaa	4860
ggtctgaagt ggtagggc	g tgcctatatc	ctgagaatga	gatagactag	gcaggcacct	4920
tgtgctgtag attccago	c ctgcacatag	ctcttgttgt	aaaacatccc	tgtgcttata	4980
ccaagtaatt gagttgac	t ttaaacactt	gcctcttccc	tgggaaccat	ataggggatt	5040
ggcctggaga cgtctggc	t ctggaagagt	tggaaagcag	ccatcattat	tatcctttcc	5100
tttcagctat aactcaga	ge tetcaagtet	tttctgtgga	tcttattgcc	ttggttcttg	5160
ccccttttac tcccaggg	a gttgattctg	tcttttctgt	tccatttagt	atgacaggag	5220
cagagaatgt cagagetg	a agggacctta	tagttaaagc	ctttggctgg	tcctttcatt	5280
ttatagctgg gactaata	ig taacgtcaaa	acccaatgag	ttcacagatt	gggtctcgcc	5340
ttggcatgta acccatat	t tcatattctt	gctgttttcc	tatgtgtatg	aatattttct	5400
atccaaaata agcaggac	ng ggtagagcaa	gttaatcttt	ggaatttctg	gattctctta	5460

gagctaaaaa	acttcagaac	tagaagaaac	cacccactat	atggtataac	ccattcatat	5520
cacagatgag	gcctgaaacc	aaaaagactt	gctcaggcca	tggatgacaa	gagctggccc	5580
tagcactgaa	ctcttgggtc	atttgtaggt	ctagtcagat	gctagcttgt	tagctctgtg	5640
cgtgcgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgagat	agagacagaa	agataacata	5700
tgtacacaaa	tacataaaga	ggaagtagac	acgttagcat	ggtagataag	agtacaggca	5760
ggccaggcgt	ggtggctcac	gcctgtaatc	ccagcacttt	gggaggccaa	ggcaggtgga	5820
tcacctgagg	tcaggaattc	gagaccagcc	tgaccaacat	ggtgaaaccc	catctctact	5880
aaatacagaa	aaaaattagc	ttggcatggt	ggcacatgcc	tgtaatccca	gctacttggg	5940
aagctgaagc	aggagaatcg	cttgaatccg	ggaagcagaa	gttgcagtga	gccgagattg	6000
tgccattaca	gtctagcctg	ggcaacaaga	gggaaactcc	atcgcaaaaa	aacaaccacc	6060
accaagagta	caggctatgg	aatgagacta	tggttttaaa	tcctggcttt	gcaatttatt	6120
aactagcctt	aagtgacttc	cctgagcttc	aggcaccaat	ctgtaaaatg	aggataagaa	6180
tattactcat	gccacatggt	tgttagggag	gattaaatgt	gataacctat	ataaagtggc	6240
tagcatagca	tctgacatat	agaaaactct	taatagggcc	ggacgtggtg	gcttatgcct	6300
gtaatcctag	cactctggga	ggccgaggca	gaaggatcgc	ttgagcccat	gagcccagga	6360
gtttgagacc	agcctggcca	acatggcaaa	actccacctc	tacaaaaaat	acaaaaatat	6420
tagccaggcg	tgatggcaca	cacctgtagt	cccagctact	tgggaagctg	aggagcgatg	6480
attacctgag	cccagggata	tcaaggctgt	agtgagctgt	gatcatgcca	ctgtactcca	6540
tccagctggg	ggacagagtg	aaacccctgt	ctcaaaacaa	aacaaatgaa	aaaaaaaacc	6600
cttaataatc	agtaactgtc	actttatatt	atgttgtgag	tgtgtgtcta	tatacaccta	6660
tatgtataca	tttctcttat	tacacattca	ttggtgatct	gatgtggagc	cccagggatt	6720
aagggcaact	ttgaactacc	ctgacacaat	caagccaaat	atcattcccg	tggaggaagt	6780
agagtatcta	ggttctgtct	cctagttgca	gctttacctt	gaggacagag	actctaatcc	6840
agctgtgctg	aaggagcaca	tetectgact	tctgagcttt	cccctggtaa	attcasactg	6900
gatgtcacgg	cgccctcaga	tagagcctgg	taatttgccc	tggggagagt	gactgtcttt	6960
tggatctaat	ttgacttttg	ccccagttgg	aggaaaatct	tcagggctag	gaaggattgt	7020
atttgtctga	ccccagagat	aacctgggtt	ttgaggaaca	tggggcatca	acctgaatgg	7080
tcttgtaaga	tctctcccac	gccagcttgc	cagtgtttct	ctgatgaatt	tagagtacct	7140
gagtagtgca	ggcctgctgg	gaggaggact	ctccctctgt	gctactcaga	gaaattcatt	7200
cttcaaggcc	cccttccagc	cttgctctta	cccagctggg	ctacagttac	aataaaggaa	7260
atgactttc	ttctcccctt	ccccagtac	ctttgttttc	ctagtcacag	ggtggggctg	7320
gatattgaat	ggagaaattg	ctggggtcca	tcctaaactc	ctcccctcat	ctctccctta	7380
cattacccca	ttcttctgtc	tgcagccaca	tccataatcc	tgcctctgtt	agccttccga	7440
cagaccctca	ggtgcccagg	acaacaggaa	gctacttaaa	gctggaacct	cagactgtgc	7500
aatggaggcc	agtgacaaaa	ctgaaagtag	ctctgtcagt	aattgtgctg	gtgcgattag	7560
gcagctggcc	agaatcttt	ggatctcctg	gacatatggc	tgactagtcc	teccaageet	7620
tcccaacagg	cctcttttt	ttcctttttt	tcttttcttt	tttttctttc	tttctttctt	7680
tettttttt	tttttttag	gctagtgaag	tgaaattgtg	ggagtggaaa	aggaacaaag	7740
aaatcggtaa	ctggtagtga	tcaattactt	gtaaacacta	ttgtacttgg	accagcccag	7800
taggcctttt	ttaaaactct	gagttacctc	tctttccttt	ccttgagcag	tgccattaat	7860

tctgtatctg	gggcaatcct	ttctgatgtt	ctctggacct	ggctctctct	ccttaggaga	7920
ggccaggaga	gtagccagag	agcatgtcat	ttgtagctga	ggttaaagtg	tggagctatc	7980
aatggtgacc	tggcctcttg	gcatgttagc	aagccagagg	accttgacaa	cttttttgat	8040
gattgtccgt	tcaccctgat	caaaggtgtt	tggcttagga	ggagggaaga	aaagctaccc	8100
ctattagtct	tgatggcccc	agcgtgggtc	tctattgctt	gacctggttc	ctagcagcat	8160
tatcagaagg	aaaatccacc	gctcttaagg	ctcctgggaa	ctttcaggac	ttcctttctc	8220
aggattgcaa	acataagact	atttgagctt	tcacttttga	aaagcggtta	ctaataccta	8280
tactctggga	aagggctaat	gcagatagaa	gactgtggtc	actgcatcag	gcaacagacc	8340
atttccgcta	aatttagtga	ctccaggaag	gccagtgaag	aaataacaca	cgtagcaacc	8400
agagactgtg	ttgtaatatg	ttggctgaca	gcagggtact	ttctgtgatg	ctgaaagcca	8460
cattcatttt	ctctcccctc	atccccatct	aagcaagcct	ggtagaatca	taattacagt	8520
aataggtacc	acttattgag	tactctgtgc	cagacaccct	cctgagcata	cgacatgcat	8580
agcacattta	atccttacaa	tgacttaata	aaatgtagta	ctagtcttac	ctacttcgag	8640
aatagggaaa	tggaggttac	ttgtttaaag	tcacagaget	aataggtagc	atagctgaga	8700
tttgaactca	ggcattctta	ctccttgcct	gcaagagtct	cttggcattc	ttgaatgcaa	8760
gcatatttct	taacctcact	gaggctcagt	ttcctcttat	ataatatggg	gtaaagagcc	8820
ctcaccctgc	ctgccacaca	ctggtagtgt	cagataacat	tgaagggtgt	tagtttaaag	8880
gcttcatgga	ctctataatg	tcaacaaaag	tgctgttaac	tttcttctgg	gtctcaggct	8940
cctgatgtag	agtcagtgga	gcaaccctgc	catctgctgt	tatgctgttg	atgttgctgc	9000
cacacttact	aacctaaacc	tttgattctg	gctgtggcct	tctccagaag	gtgtttactc	9060
atttgtccag	tttatctttt	aggaaacagc	cagcccgtag	atcattaagg	ctggctattg	9120
gacagggggc	tggggcctgc	ctgacagagg	aaggaagggc	agacatctgg	ttcttcctct	9180
gcccctacaa	gagactccag	cctgaccaca	gagtggtact	cctaggatgt	agcagcagca	9240
tatgagcttg	aatgtgcctt	aatcctgctc	tttactttga	gaagagagaa	ctaaggaccc	9300
acagatgttt	cacagettet	ataggaggca	gaggtagaaa	aatggagaga	gatgaggcca	9360
gagatagata	actgatatta	attaaacgtt	gtattaagaa	cctcacttag	attatctgat	9420
tcaatcttca	taataaccct	gcaaccccca	ccttttttg	agaacagggt	cttgctctgt	9480
tgtccaggct	acagtgcact	ggtacaatca	tagttcactg	cagtgtcaac	ctcctgagct	9540
caagcaatcc	teccacetea	gccttgcaag	cagcttggac	tacaggcgtg	ccaccacacc	9600
ttgccatttt	tttttatttt	aagtagaaac	aaggtcttat	taatactatg	ttgcccaggc	9660
tggtcttgaa	ctccagcgat	cctcctgccc	cagootocca	aagtgcttgg	gattacggaa	9720
gtaagccact	gtgcctggcc	agtgcaaccc	ccattttata	ctaaaacagg	aaggcccaga	9780
aaggtttgga	gtaacttgtc	cagggtcaca	cagatgatat	ttgaactcag	gtctccctgg	9840
ctcccaagag	agtotgottt	ccactaggac	tcccaggaga	***********	aaaaaacagt	9900
agacttggag	acagaaaatc	tgatttgagt	cttagttgag	ctaggctaac	tgtgtaactg	9960
tgggcaagtt	ccttagcccc	tgtgagcctc	agtttcttat	ctgtaaaatg	tcataaaaga	10020
aatccatctc	atggagtagt	tgtgatgatc	aaggactctg	aaaacattag	aatggtttaa	10080
tgtgaaggat	tagcagcagc	acatggcaac	attgtgcatc	ttatattaac	tatccaaata	10140
tatcaagcgt	catttgctat	atataaaagt	catcaaatta	ggcactgtgg	gggatacgga	10200

gttggcatac tagcctggcc tcttaattaa ttcattaat	t agcttattta tttttgagat	10260
aggtettget etattgeeca ggetggagtg cagtggeat	g atgatagett actatageet	10320
caatotocca ggottaaaca atootoctga gtagotgg	ga ctacaggcac acactaccat	10380
gcccagctaa ttttttttta atttttgta gagacaggg	t cttgctctgt tgcccaggct	10440
ggtctcaaac tcctgggctc gagatcctcc cacctgggc	c tcacaaagtg ttgggattac	10500
aggtatgage caeggeacet ggeetggtet ettaactgg	t tooctaagac agotggaaat	10560
agagaatgtc atggagcatt cctaaccatg ggctccagc	c tggctttcat tctgtttctc	10620
ccctgaaaca acattccttt agtaatattc cgaataaca	g cttcatcagt ctgtctaccg	10680
accaetette aggetteate ttatatgace teccaaact	g cactaagggt tgtattagag	10740
aaaagtggat aaagttcgga gtcaggctgc ttgagctta	a atgccagctt cacttaccag	10800
ccacctgacc atgagtcagc tgcttaacca ttctttgcc	a cagtttcctt gtctatgaaa	10860
agggaaatgg ctcccacctc aaaaagttgt taacattaa	a ttcaatcatg tattcaaagt	10920
cctgagcaga atgtctggcc atgactggga cttaacaga	t gttagcattt attattagta	10980
tctgtcagtc ttgaaatgtt ctcttccctt ggctttcat	g acattocaca ctctcctggt	11040
titetettae etetetggta atacetgttt gettateet	t ctttgtccag ctctgggatg	11100
ttaccattcc ttcaggcgtg ctgttttctc cttaggcag	t cttacacaca ctcatgactt	11160
cettecattg tectecacae actgatgace ctaaaatca	g tatctccagc ctaaaccttt	11220
ccactgagtt ctagacccat atgttgtact atcaacctg	g cttgtccatt tgaatgtctt	11280
ccaggcactt cagactetet tetetagaet ttgetggaet	ttcactcttc cccctaaaac	11340
tggctcctct tccactgaaa catgtatgtc attgagaggc	accaccatce acccagtgce	11400
taagccagaa acctaggaat ccttgatacc tgttctctct	catcotgoat atocaagoot	11460
atcagtttta tototaaatt atattttggt aggtttactt	ctttcctttt ctcccaccac	11520
caccetgete caagetacea teateteace tggatgtetg	caatageete ateteecaca	11580
gocactotgo accocotaat otgitotota tagagoagti	ggaaggagtg atttttgttg	11640
tttgttttgt tttgttttag acagagtctc actctgttcc	ccaaggctgg agtgcagtgg	11700
cacaatttog gotcactgca acttotgcot coogggttta	agcaattctc ctgcctcagc	11760
ctcccaagta gctgggatta aggcaccggc ccccataccc	agctaatttt tatattttta 1	11820
gtagagatgg ggttttgcca tgttggccaa gctagtctcg	aactcctgac ctcaagtgat 1	11880
ccacctgcct cggcctccca aagtgctggg attacaggtg	tgagccactg cacctggctg 1	1940
gaaggagtga tottaaaaaa aaaaaaaaca aaaaaaaact	tgactgtgtc actctgtgtt 1	2000
gtototocta cottgtatac ttocacaact toccagtgtt		2060
cttaacttgg ccaggcgcgg tggctcacac ctatcatctc	agcactttgg gaggccgagg 1	2120
caggcagatc atgaagtcaa gagattgaga ccatcctggc	caacatggtg aaaccccatc 1	2180
cctactaaaa atacaaaaat tagctggtcg tggtggcgtg	tgcctgtagt cccagctact 1	2240
gggaggetg aggcaggaga atcaettgaa cetgggagge	agaggttgca gtgagcccag 1	2300
tcacgccac tgcactccag cctggtgaca gagtaagact		2360
aaaaaaaaa ttoottaatt tggootacag tagagoooto		2420
atotocaca acctectget ceetgeactt cageetcace		2480
ttctgacaa gggctttgtt cattctgctc cctctgccta		2540
acttaactc ctgcttatcg tttagatctt tacctggatg	gctcagagaa atatagaagt 12	2600

aattcctcac	cctgaaaaat	aggttaggtc	cctgttttat	gttttcatag	acctttcctt	12660
tgaggctttt	tttaaaaaag	tagttttaat	ctcacattta	ttcatgtgat	catctcctta	12720
atgatatctt	: aagacctcta	atagaacaat	ttggtcatgg	actgtggggt	ttttgcccct	12780
cattgtgtca	gcactgagca	tattgttggc	ataggaggga	tatttgttga	atgaattgct	12840
agaggtggco	: aagagatatg	atgtaagtca	ggcttttccc	tgcccttccc	cttccccttc	12900
cccacatcct	tcctatagca	gccaccgtgg	ctgcagttac	tgtaaatggc	aagacggaat	12960
cagttccgga	cattgggttg	ttttagaaaa	ttgcctgcaa	gtgtcagggt	gataagttaa	13020
agctttgtct	tttgccctca	gaggagctat	cccatagtga	gtagaagcca	gagaagetga	13080
ccccaggagt	ccttcttcc	agcagcaggt	cttgagctgc	acttctctgt	agctacaatc	13140
caggcaggaa	caagccctag	gtacctccgg	agaggagggc	aagagaggaa	gaatgagttc	13200
agctactcta	gccaccaaac	tgattatgaa	ttgccctgaa	atctgaaaaa	tttcaattcc	13260
aatcgtaagt	ttgttttgtt	tcattttgtt	ttcttaaatt	gtatatttga	aagatggcat	13320
taactaaaga	tatatattca	atatagagtg	gaaaaaatgg	aatacttgca	tagtatcttt	13380
tacttatagg	tgatttatga	tggggagtgg	ggtggatagg	ttggcagttc	ccccaagaag	13440
ttggaaatga	agtttgtcct	ctgtgagttg	aactaattag	atccacaagt	aatgaaagca	13500
gtattgtgtt	gtagttaaga	gcacactcta	gaaccagatt	gcttagtttc	aaatcctggt	13560
tctgcctttt	attatctgtg	tactttgggc	aagttacttg	ccctttgtgt	gcttcatttt	13620
tctcatctag	aaaatggaga	ggccaggcgt	agtggctcat	gcctataatc	ccagcacttt	13680
gggaggccga	ggcgggcaga	tcacctgagg	tgagaagttc	aagaccagcc	tggccaacat	13740
ggtgaaaccc	tgtctctaca	aaaatacaaa	aattagccag	gcatgatggc	gggtgcctgt	13800
aatcccagct	acccaggage	ctgaggcggg	agasacactt	gaacctggaa	ggcagaggtt	13860
gtagtgagcc	aggattgcac	cactgcactc	cagcctgggt	gacaagagct	agactcagtc	13920
taaaaaaaaa	aaaaaaaaac	aaactggaga	tacaggctgg	gtgcagggct	tacacttata	13980
atatcagcac	tttgggaggc	ctaggcggga	ggattgcttg	aactcaggag	tttcaagatc	14040
agtctgggta	acagagcaag	acctcatccc	cacaaaaaat	caaaaattta	gccaggcatg	14100
gtggctcatg	cctgtggtcc	cagctactca	ggaggctgag	gcgagaggat	tgcttgagcc	14160
caggaggttg	aggctgcagt	gaaccatgac	tgcaccacta	catgccagcc	tggatgacag	14220
agcaagaccc	tatctcaaaa	aaaaaaaaa	aaagaaacga	gccaggcgcg	tttgctcacg	14280
ccagtaatcc	cagcactttg	ggaggccaag	gcaggtggat	cacttgaggt	caggagatcg	14340
agactagcct	ggccaacatg	gtgaaacccc	atctcaactg	aaaatacaaa	aattagccag	14400
gcatggtggc	atgctcctgt	agtcccagct	actcacttgg	aggctgaggc	acgagaatcg	14460
cttgaaccca	ggaggcggag	gttgcagtgg	gccaacatca	tgtcactgca	ctccagcctg	14520
ggagacagag	cgagactctg	tctcaataaa	taaataaaca	taaaataaaa	taaaataaaa	14580
taaaataaaa	taaaaaaata	tggaggccag	caggcacggt	ggctcacgca	tgtaatccca	14640
gcactttggg	aggccgaggg	gggcggatca	caaggtcagg	agatcgagac	catcctggct	14700
aacacagtga	aaccgcgtct	ctactaaaaa	tacacaaaat	tagccaggca	tggtggcagg	14760
cacctgtagt	ccctgctact	caggaggctg	aggcaggaga	atggcgtgaa	cccgggaggc	14820
ggagcttgca	gtgagctgag	atogogocac	tgcagtccag	cctgggcgac	agagcaagac	14880
tctgtctcaa	aaaaaaaaa	aaaaatggag	gttgggcgcg	gtggctcgcg	cctgtaatcc	14940

						nueu	
	cagcactttg	ggaggtcgag	gcgggcggat	cacctgaggt	caggagttcc	agaccagcct	15000
	ggccaacatg	gtgaaacctt	gtctctacta	aaattacaaa	aattagccag	gcacgatggc	15060
	aggcacctgt	aatcccagct	acttaggaga	ctaaggcagg	agaatagctt	gaacctggga	15120
	gatggaggtt	gcagtgtgct	gagatcgcgc	cactgccctc	cagtagagtg	agattccgtc	15180
	tcaaaaaaaa	aaaaaagaa	gaaatggaga	tacaaactta	ctacctacct	ccttacaacc	15240
	taccctcaca	gtattactgt	gaataaaagt	gtgtgtagca	ctgggaacac	tattcacaga	15300
	gcactcatga	atgtttgttc	tttgttatta	gttactagag	aggcaaatgt	ctgccagggc	15360
	tgaataatat	gtgtgaattg	gtgattgtcg	cacatatcta	aagaagtagt	tattttttc	15420
	aattaaaact	tagtttaaaa	accaatataa	ggccgagcgc	agtggctcac	acctgtaatc	15480
	ccagcacttt	gggaggccga	ggtgggcaga	tcatttgagg	tcaggagttc	gagactagcc	15540
	tggccaacat	ggtgaaaccc	tgtctctgct	40000000000	aaaaagtaca	aaaattagcc	15600
	aggcatgatg	gcaggtccct	gtaatcccag	ctacttggga	ggccgaggca	ggagaattgc	15660
	ttgaacccag	gaggtggagg	ttgtagtgag	ccgagtttgt	gccactgcac	ttcagcctgg	15720
	gtgacagagg	gagacactgt	ctcaaaaaaa	*******	accaaaacca	atataataaa	15780
	taagtggcca	gcaatgaaac	agaaagtgaa	aagttagtga	agcaaaacta	gtactgtatt	15840
	cagataaaga	tgctgaatct	agatttggtc	accagaatag	ggtcctttgt	ggcaacctgg	15900
	gctagtttgg	ctgactcacc	actgccagga	tgaaatttct	ttcagtggct	actcatttcc	15960
	ctttatttta	agtccatgct	cacagagcaa	ccttctgatg	cctaattcag	cttcctggga	16020
	tacttaataa	caggaagggt	ctggaagtag	tacctgtata	ggggatatga	gtgttctgat	16080
	tttaatagtc	aattcataag	tgtacagagg	gtttgataaa	tggttaggtc	agaaccatca	16140
	cagaatgtct	acacctcttt	ggacattagg	aaggtcaaaa	acctgaaagg	ccasaagcta	16200
	ggcctagatt	agggtcattc	accaagaaaa	catcagcctt	gaagagttct	ctgggtggtc	16260
	caccagtcaa	ccttcctttg	atcacacctc	cttcctcgtt	gcttctttaa	gcattgacct	16320
	gtaatgggta	tggaatttt	tgctcaccta	actccttcct	tttacagagg	aagaagttga	16380
	agcccagaga	gatttaatgg	cttgcctaag	atcacacgca	gattttctgt	taaccagggt	16440
	gatttttcag	gtgttccctg	ccagacgagg	gctttttcc	ttgaattgcc	tagagatttc	16500
	ttgagatatc	cgaagcattt	ttcccagtgc	agcctggaga	aggatgtccc	tgtcaacaca	16560
	gcatttgtta	ctcaatgtta	gacattcaat	tttctaatta	gtatcatgga	gcaacagtgg	16620
	atgattatct	ataaggggtt	gcaattccat	gcttatgtgc	ttacagccca	tatagacaaa	16680
	tatcagctgt	taaaatgaca	aggcagtaga	gatgtggccc	caggacaaag	gcatactctg	16740
	ctgttagtga	acactagttg	gccagcaaat	ttcacatggg	catatacacg	gccaactgta	16800
	gactttaggc	atttataccc	attcagagag	ccaaactggc	aactaaagat	cagcattctc	16860
	tttggcattt	cagctttgcg	ttctgttaaa	aatcactgct	tgcttaaata	cctctgatag	16920
	ctcttcactg	cctgtaggca	actctttagc	ctagcagact	tggtctttag	tgctctgccc	16980
	ctactctctt	ccaccattct	ggcctcctgt	ctaattgctg	cccatatgtg	ccatgcacta	17040
	gagettacag	acctgctcag	cgttatatga	gcataccata	ctctttatgc	ctcagtgcat	17100
	ttgcacatgt	tgttccttca	ggccagaatg	cctgttactg	cctggcaatc	agcctattag	17160
	agtotgocaa	taccatccca	tcttctgtgg	aggageeece	cgccaaatcc	acccatacct	17220
	ctccccacca	atcagagact	tettetetet	ttgttattct	cttcgttatt	ctcttcatac	17280
,	ctcagttata	tccatttcag	tatttgttta	cacatctagc	atcactctta	gagtgtgaaa	17340

ttctccaagt	gtggagccgt	atctagtttg	tctttgtatc	ccagagetta	gcaaagtgcc	17400
tagaatgtag	tgggtgctca	gagtgtttgc	tgggtgaatg	atgtatttgt	tgaacgactc	17460
tttggacact	tgaataaagt	ccatccagta	tgcaccatta	ccatctcttc	gctctacaat	17520
attcttttag	gcaagagctt	atcttttgag	gtgataagat	aagctcaaac	ttatgtagac	17580
taagacctca	gtctgtaaat	gtcatcccta	agtottaaac	catcaaaacc	agggcctcaa	17640
ggaatggcat	gccttctgca	actgtagcaa	cctgctgtgc	ttattttgcc	gtgttttca	17700
tttttccccc	aaaagctaga	gtcccttctc	ccatgggcag	tgctggaagt	gtgctaacaa	17760
attettete	catactgctt	acgattacaa	aaaaaaccct	cagcatctca	tgccagactt	17820
gagttaaggt	tgttttcttt	tgtgtgtcag	ctgtattctg	gtcatgactt	cctgatgatg	17880
ccctatagag	attttgctga	gatcagaggg	tgctccactg	ccatcagtag	cactgactct	17940
tgcagaagca	ccgtttctga	agttggctaa	tgtcatccct	cacgtttgtt	tgtttgaaat	18000
ttgttttagt	tccagagata	gcactttcat	ggaatgacgc	tatcttctag	aatcactttt	18060
tttttttt	tgagttggag	tctcgctgtg	tcgccaggct	ggagtgcagt	ggcacaatct	18120
cagctcactg	caatctccac	cttccgggtt	caagtgattc	ccctgcctca	gcctcccgag	18180
gagctgttac	tacaggcgca	cacccccact	cctggctaat	tttatgtgtt	ttagtagaga	18240
cggggtttca	ccgtgttggc	caggatggtc	tcgatctcct	gactttgtga	tctgcctgct	18300
tcagcctccc	aaagtgctgg	gattacaggt	gtgagtcacc	gcgcctggcc	tagaatcacc	18360
tttttatacc	ataacgtgag	caccactgcc	gcgtcaccaa	ggaaagagag	aggcagctac	18420
tgtggggtta	caaatgggta	agagtggcac	caggaaggtg	aaagtctcta	cttagccaag	18480
gcttaacaaa	atgtcaatca	ccaaacattt	atttattaag	ctacgttcag	gataagaaga	18540
tgaacaagct	atctgtacat	tcattttctc	gtttgtaaca	aggtaatgat	agtgatctat	18600
cctgcctgcc	tctgagggtt	attgtgagaa	taaaatgaaa	tcaagtggaa	aagcacttag	18660
gaaaaagaaa	agcattggtt	ttcaattgtt	agtgtggatc	agaaacactg	gggcttgttt	18720
aaaatgcaga	ttcttagccc	cagtctcagc	gattctgatt	ctgtatatct	gaagtgggac	18780
tcaggaatct	tgattttcaa	caagctgacc	agagggtcca	atgctgctat	tcctttagtt	18840
acactttcag	aaatattact	gtaaatcaaa	tggcaagaat	aaaatagtta	tttgaggcag	18900
ttttagtatg	ttggacctgg	agtccaaaga	cttgggtcaa	actccagctt	tgtcagttcc	18960
tagacctgtg	accttaaaca	gcaaccttct	ctgtgaacct	tagttccctc	aggaacggct	19020
ctggtcacct	cctgctgtac	tccattgatg	actcaccaca	taaggeteee	tgggagtccc	19080
ccaaaccttt	gctctcttaa	ctccttttac	agcctcctac	atctcctgca	ggtgctgtct	19140
tctcctcctt	tttccaggcc	ctgctctgac	acagcattca	ttctcctctg	ggaagggttc	19200
cttcaatgtg	tctccaagca	catcacaccc	aggaaggacc	ctgtggccat	atctgtctat	19260
caccagatca	aactacgtga	aggcaggcac	taggtactgt	cagtgcccag	cataggcctg	19320
gcccatacca	ggtgtccaca	gatgcctagt	aaagaaacct	atgattcagg	acccccatga	19380
tgagcaacta	tagcactaga	acagtgataa	taactaatgt	ttataatgca	tcttcagttt	19440
acagagggct	tttgtactca	tcatctagtt	tagttcctgc	aacaacctct	tgaggaatat	19500
agcacaagca	ggacaaggga	agcccagaga	tgttaaataa	tttatccaag	tttatgctgc	19560
tgggaagggc	agcactgaaa	ttaaaagaaa	agttttctga	gctcaaatcc	catgcccttt	19620
cctcaatgtg	agctctagca	aggtattcag	gaatcctgcc	tctacagttc	agagootcaa	19680

attgctggg	t atgttgagt	t cttgtatct	g atttttcta	g atttcctgo	c cacattetta	19740
ctgtctgga	t atcaggaaa	g agtttatca	a atgcctgtg	g aaatccaag	ja taaggtotoa	19800
tgatgagta	a cccagtgaa	a acatgaagt	c aagtotaac	t agtcactac	t atttcactac	19860
tgctgactc	c tgatgatca	g ctccttttc	t aagtgctta	c tgtccactt	a ttccatcatc	19920
tgcctagaa	t ttatgtgaa	g gaatcaaag	c aaaaggatc	a taaggette	c tttttccagt	19980
atgttttc	c teettttg	a aaactgggc	c agttagcta	t ctccatttt	t atttcatgaa	20040
tacatcccc	a gcgcctggt	a tatagtaga	t atggaacat	t acactttgg	a gatattgcac	20100
ccattctcc	a gtttctcca	a agttactaa	c aatggttcc	a tcactgtgc	c aacatattt	20160
ctttttca	a tatattgggg	a aataattot	c ccagtctga	a aatctgaac	a catttcatgt	20220
gacttggta	t cctcatatgt	t cttgggctt	caattctcc	a ttcctagtt	t caagttcatg	20280
aactgtaaa	a caaaggatta	a gactaaatc	t ctaaagttc	t atccagatg	c caaattottt	20340
tctctttcc	a tgatacctaa	a gatagatgc	aaatattgto	ttttacctg	g tgtttgtgaa	20400
catgacatc	a cattacagga	gtagcagata	ctaaactctc	actctgtaa	a acactgactg	20460
agttccatg	a gccagatact	gaagtgagct	tgttcacate	tgttctcate	t taatgctcat	20520
aaccctgtg	a agctgggaat	tgctgggaca	ttttatttat	ttatttatt	g agacggagtc	20580
tggctctgtd	acctaggctg	gtgtgcaatq	gcatgatctt	ggctcaccg	aacctccgcc	20640
tcccgggtt	aagcgattct	cttgcctcag	cctccgcagt	agctgggatt	acggggcaca	20700
caccaccac	tccagctaat	tttgtattt	tagcagagat	ggagtttctc	catgttggcc	20760
aggttggtc	cgaacacttg	acctcaagtg	atctgcctgc	ctcagcctcc	: caaagtgctg	20820
ggattacagg	g catgagecae	catgcctgcc	cgggaccctt	gttttagaag	gatgactgct	20880
gctataatgt	: agaaagtgat	ttggaagagg	ggaggagtgg	ggcacgaaag	; atggttagta	20940
gatgggggtg	gtaatgetta	cctttcagta	tttggaggct	tcggagtcct	caaaaattct	21000
cttccttgat	tggagtcctc	ccagccaata	gagggcttca	cacaaacagt	ttcttgggtt	21060
ttgaattgtt	tgaccagagc	tttcttccga	caaaaggttg	gggtgattca	ttcacttacc	21120
acaccttgcc	tgaacattca	cttggggctg	ccggttatga	aggctattgt	tctccagcct	21180
gtcacagacg	ctttgaagac	ctgtgcctca	gctggttcta	aggagtcagt	ttgttcagct	21240
ccgtgccagg	tttccaactt	atgaaatgtg	ctggagatta	acacctctcc	tgccatttta	21300
tccctactat	aattgccagt	caaaggattc	ctgcagttgc	ctctggcagc	cataactgat	21360
gaatgttctg	ccagctgctc	tgaggaccta	gaagagcagt	tttctatcca	ggaccagttt	21420
ccaagggtgg	gagggtgaaa	tatatcctcc	agtgtgacat	ttcatctccc	agtgatgggt	21480
ggcttgggcc	ctttgaagtt	ggctctgagg	aaccacacac	ttgggtctga	gcagccagca	21540
gcttatcaca	tctggtgatc	aatccttcaa	aggttcctcc	tgaagtctga	atttttggag	21600
gtcaaatgga	ttccacctgg	gaggggcttc	tgcttcaact	caggacatgg	ggagaaggct	21660
gttcctcttc	cagggggagg	cagttttcat	ggcattgaga	tgtcctctca	cttattcccc	21720
acccacccac	caagtccttt	gtaagaggag	tagggggaga	ggagagcgcc	tgcagcctcc	21780
tgctcacatt	cctagacacc	gactcactga	gcccgtcgcc	gctggaacag	cagagetgtg	21840
tgaaatgtca	agaggagtta	tgctcatagg	ctccctggcc	tcagtctctt	tgtggcttgc	21900
tattcttcc	attagtactg	tgttcatcac	atggaaatca	gagggtacaa	ttaaaagata	21960
	cccagactta					22020
ataatagat	ttttggtgag	aaatagttgt	ctgtgtggct	gggagaaaga	ttgctcccag	22080

ctctccagc	t gggcagccc	t ttcagtatc	c cgtatgtta	t ttccccact	t ccagcccacc	22140
tcacctcct	c tgtggccct	t gtgtgtccc	c teggetagg	a tootgacet	c ctgctcaaga	22200
gtttaaact	c aacttgaga	c ccaaggaaa	a tagagagcc	c tctgcaacc	t cataggggtg	22260
aaaaatgtt	g atgctggga	g ctatttaga	g acctaacca	a ggcccagac	a gagagagtga	22320
cttgctaaa	g gccacatag	c tagcccaca	g tagttgtaa	c aatagtott	a atgatattaa	22380
tggctaaca	t ttatcaacc	t ttaatgtgt	c ccagacttt	g tgccaaggg	c ttacatgcag	22440
tgcattgtc	g cattcaaac	c cagacagte	t ggctctggg	ccaggetga	g ctttggtata	22500
gcatggtag	a acgttgtct	a taatgtcta	g totgggtto	a aatcctggc	t tcacttetca	22560
catttacage	tgagtgacc	t caggcaagt	g atttaacct	cctgtacct	c agttgcttta	22620
tctgtaaag	a gaaaaatca	c agcactgtg	g aatagtggg	gttaaaatt	c attcatacaa	22680
gtagtgctg	aagcaatgt	t taatacagg	g tgagcaccto	f ttcagtgct	t ccttcttctg	22740
gctgcctctq	g gggctagag	t gtggtgtct1	t cgtggtatag	g atagataga	t atggctgagc	22800
tctgcacaaa	a caccaagag	tgttcttcad	: tattagaggt	agtaaacag	gtggttgagc	22860
tctgtggttc	tagaacaga	gccggcaag	tatggcccat	tgcctattt	t aatacggcct	22920
gtgattgatt	gattttttt	ttcttttg	gacagagttt	cactcttgt	gcccaggctg	22980
gaatgcaatg	gcacgaacto	ageteacege	aacctctgcc	tcctgggttc	aagcgattct	23040
cctgtctcag	cctctcgagt	agctgggatt	acaggcatgt	gccaccacgo	ctggctaatt	23100
tttgtatttt	tagtagagad	agggtttctc	: catgttggtc	aggctagtct	: cgaacttcca	23160
acctcaggtg	atctgcccgc	ctcagcctto	: caaagtgctg	ggattacagg	g cgtgagccac	23220
catgactggc	ctgattgact	gatttttta	gtagagatag	ggtcttggtt	tgttacccag	23280
gctggtctca	aacttctggo	ttcaagcagt	cctccctcct	tggcctctcg	aatgctggga	23340
ttataggcat	gagccactat	gcctggccta	tatgacctgt	gattttaat	ggttagggga	23400
aaaaaagcaa	aagaatgott	tgtgacatgt	ggaaattaca	tgaaactcaa	atatcagtgt	23460
cccagcctgg	gcaacaaagt	gagaccctgt	ctctacaaaa	aataaaaaaa	aataagccag	23520
ggccgggcgc	agtggctcac	acctataatc	tcagcacttt	gggaggccga	ggcaagtgga	23580
tcacctgagg	tcaggagttc	aagaccagcc	tgaccaatat	ggtgaaaccc	tgtctgtact	23640
aaaaacacaa	aaattagccg	agcatggtgg	catgcgcctg	tagtcccagc	tacttgggag	23700
gctgagacaa	gagaattgct	tgaacctggg	aggcggaggt	tgcagtgagc	caagatcgcg	23760
acactacact	gcagcctggg	caacagagcg	agactccgac	acacgcacgc	acgcacacac	23820
acacacacac	acacacacac	acgctgggta	tggtggccag	cacgtgtggt	cccaggatge	23880
actggaggct	taggtaggag	gatcacttga	gcttaggtgg	ttgagactac	aatgaaccat	23940
ytttatacca	ctgcacttta	gccagggcaa	cagtgtgaga	ctgaatctca	aaagaaaaaa	24000
aaaaaaaga	aaaaaatctt	tccataagta	aatatctgtt	ggaacatagc	catgtccctt	24060
agtttatgtt	ttatatatgg	ctgcttttgc	cctataatga	cacaattgag	tggccacgac	24120
agtctgtatg	gcctgcagag	cctaagatat	ttgctctctg	gccctttaca	gaaaaagtgc	24180
ttgacctgt	gctctagagc	catatgtacc	aggtttgaaa	ctcagcctca	cagctgggtg	24240
gatggcacg	catctgtagt	cccagctact	ctggaggctg	aggtgagagg	atcacttgag	24300
ccagaaggt	cgaggtcaag	attgtagtga	gccatgatgg	catcaccgca	ctccagcctg	24360
gtgacagag	agagaccctg	actcaaaaaa	aaaaaaacaa	aa aaaaaaa	caccctcacc	24420

acttatcago	: tatttgtctt	gagaatagtg	acataacccc	tcagaaccta	tttcctaatc	24480
tgttaaatga	ggctgatgac	gtttcctcct	tttactggca	atttaaacat	gatggataat	24540
aaatgctaag	cacttaacac	agggcctaga	agatattaac	tgctcaataa	atggtagctt	24600
cttaacagta	ttcaaaccca	tgtgctctta	tcacatgcat	tgttgtccct	gtgtccagtt	24660
ggtggaatgg	gaaaaggctc	ccttgtaacc	ccatctacca	tctttatcag	actttcctgc	24720
catggttcac	agtaagagat	agaagctgca	cggtgacttc	tggctcttta	caatggtgag	24780
cggtgtgtgc	ctggtaaggg	agagctgatg	tcactgcccc	aaatccagta	gtgagatctg	24840
agtgttctgg	tttcctccag	cagccttgct	ttttccttta	caatcctgca	ggcagggaga	24900
caagggcttt	ctacatggta	ggctctggtt	tggtcatcgt	cacaactggg	ggctgttcag	24960
gtgggctccc	attccagata	cctaggctta	tcaatccctt	ttggcacccc	aggccttttt	25020
ctccctcatg	ccccatttt	cagtttgaaa	agcatggtta	tcacaggaca	agtagaagaa	25080
gctccactgt	ccactgaggc	caatggatgg	tgttctgcat	gtgaacactc	agtgaatagt	25140
gagtgaatga	gagtaacctg	ggctccatcc	tatttgcaga	gagctttgga	aaagattttt	25200
ctccttaaag	agccagaatg	aagcctggta	gtgggagagc	tccagctcta	gagtcacatg	25260
agcctacatt	taaattccag	ccctgccact	gactcccttt	ttgaccttga	gtgagttacc	25320
taatctctct	gtacctcact	tttcttgtct	gtagagtggg	aataattcct	gtctcagaga	25380
aataaaagag	tgcatatagt	gtttgccaca	tggagacaca	tcaggtgtag	gttaatactc	25440
tgggccttgt	ttccttattt	gcaacacagc	cctgccctgg	agtggaagtg	gcacctccca	25500
ttggtcagct	cttgaggctg	tecccaggae	aggcagaggg	agggaatgaa	tgggagccct	25560
agtgccagga	cagaacagat	ggcagctcag	agctaggatg	gctctctgga	cctgtctctc	25620
ctaccagagg	tccccccgtc	tggtgtggct	cttcctggac	ctggcatcct	ctgcttttt	25680
ttttttcca	cctccaagca	gaattactgt	cctgtaggca	gctcctctgc	ttgaggacat	25740
ctggggccag	atatgttcac	actctatcct	gccttgccct	tccctgagct	caggatggac	25800
gctcaattgg	tcccagttat	tgtctgcagc	gcctgcctgc	agcctcgatc	cagcccagct	25860
ccaccccttg	cctgcaaggt	ctgtttccta	acagctgctc	caaccacaca	cctcggttct	25920
gcgggagccc	ctcctcttcc	tccctccctc	cctcattcag	gggtgggact	gaagaagaag	25980
gctaacttga	cagcagcgct	tctttcttag	ctagtcaccg	gcccctgctc	aagaatgcca	26040
gtgtgtgtgt	agcctccaca	gagaggtcgt	tttctcggag	tccagagggg	ccgcctgagc	26100
ttctgagaac	tagggaggag	ccatcccagc	catgagcccc	tgtgggaatc	tgctgggggc	26160
caagtggcct	ggagtcctca	ggctcccgca	gctgctccgg	agggagaggt	gagctcaggg	26220
cagcctgcct	gcagccagag	gtgccgggag	ccccgggcct	gtcatggtgg	ccatctacag	26280
ccggcctgag	gcagtcacag	acggatttgc	agctgagcct	gtctatctgg	tgtgggaaga	26340
agatggggag	ttacttgtca	gtcccggctt	acttcacctc	cagagacctg	tttcggtgag	26400
ttggtctccg	agttcccctc	tccatctctc	ctggcccctg	gtcctgagag	gagggtggtc	26460
tccctaaatc	tccttctcac	ttagtccttt	accatcggtt	ctgccgggca	gaagccagcg	26520
gaggttatac	ccaaggagaa	tcggccttgt	gaggtacccc	cattatgtcc	tggaagtggt	26580
gaggggaggg	atatacccag	aaggaacttc	ttagggagct	ccageteece	ttctatccca	26640
gacaaacctg	aaggagcctc	caaaagatgc	cactgacctg	cccattgtag	atgttactgc	26700
ttccgggggg	aatagcccaa	atagagtgct	gtttccagct	ctcacatgtc	ttacctgcgg	26760
gccatgctgc	ctgcccagga	atttgtccca	acaagcagga	tgggcaggtt	ttgccaaact	26820

gtggaaact	g gcaagtect	g ggtgtgggta	geetggtace	a cagtaggcad	cttataaacg	26880
tttgttctct	taatggcag	g cacatttgcc	tetggeett	g aagggettet	gageteecag	26940
gtgaatgtag	ttgctgggg	a aagacctggg	cgagtgctto	taagactgga	gcaatgggct	27000
ttagagtgtt	cctgagctgo	tgggccagcc	cccacacct	ctcagtccct	aggcctaagt	27060
acctccacga	gcctctctct	gtggggcttc	tcagagggag	, atgtggaaac	tctacctcta	27120
acctggcttt	ctttgctcat	tgcccacto	cacctcccat	agaaactccc	: cagggggttt	27180
ctggccctct	gggtcccttc	tgaatggagc	cattccaggo	: tagggtgggg	tttgttttca	27240
ttctttggga	gcagcctgtt	gttccaaaaa	ggctgcctcc	ccctcaccag	tggtcctggt	27300
cgacttttcc	cttctggctt	ctctaagcta	ggtccagtgo	ccagatettg	ctgccgggat	27360
actagtcagg	tggccaggcc	ctgggcagaa	aagcagtgta	ccatgtggtt	ttgtggaatg	27420
accggaccct	ggtagattgc	tgggaagtgt	ctggacaggg	ggaagggga	agggaactgg	27480
tcctcaatgo	tgactctacc	aagcgccctg	ctagacactt	tatcctttaa	tctctcaaca	27540
gcctaaagag	attatatata	cccattttac	agatgaggca	accagtttca	acagagttaa	27600
catatggago	ctcactgggc	agctttttct	gtcttcctga	ctttctctca	tccttcaggg	27660
ggctgcaggt	ttgttttctt	ctcctagtgg	agaggaaatt	ctcaggtttg	ttttcctctc	27720
ctagcagaga	gtaaaaaaag	ggatagtttg	cctgacttgt	tgaaggtgtg	gctgagattg	27780
ttttctaaag	agccaatgga	aattgatctt	gagtttagga	gaaagctttt	acatgtggaa	27840
ttaagatgcc	aagtgttgaa	gtagccacat	ttcaggtcct	cattaatttc	tcttaatcct	27900
gggaaggcag	cttaggagaa	gggttgttcc	tttaggagcc	aggaactata	ccccttttac	27960
ccttggagag	gcagggaagc	cagggaggac	acaacttctc	aggaagagga	gaagctagag	28020
cagatagtga	actctcaacc	tgaaccttta	agggccagac	cactaatgcc	acccaagtcc	28080
acctgccgtt	tgtcttgttc	tgtcccaggc	tttctggaga	acctgatctt	cttgccccta	28140
cccccaagct	ccgtttgccc	agctagagtc	tggggggtac	tgactgactt	togtagacat	28200
tcttcccttc	cccaaataag	aggccacatt	cctgaagtca	cttctgaaga	gatagctgcc	28260
acacagggct	ctttccccc	agggagggac	cacccagacc	ctctgctctc	ccaggtatcc	28320
gttaccacat	cactacctgg	tcagaaagct	gtttctgcca	ttagcccctc	cctcttttat	28380
tataggatat	cctcaaggge	tcctctttgg	gcctcagttt	catccttggc	agaaagtaga	28440
agctagactt	cttgggctcc	tgaacagggt	ccttgctgga	ttctgtgaaa	caaattaagt	28500
tcttgaccct	aggcctctgg	gggagtacaa	agtctatggg	agttctgggg	ctgtggttgc	28560
aaggaaagtg	acgcaaccag	attccatggg	gacatgatca	ggcgtgacat	gtgagggagg	28620
aagagggagc	aagggaatga	agaatacaac	ttctgtgtcc	catacacccc	tgcctgacag	28680
gccatacata	ctcagcagag	aatgcactgt	ctttcctacc	acactagcgt	gaggagtgag	28740
ctgcaattac	cactgtgctt	ccaagtaaga	aaatacctca	aattggaatt	tacaaaagag	28800
gtaaattagg	gagtggcttt	tgtcggacat	ctttaaagca	tttttcttt	tatagaattt	28860
cacttaatgt	ccaatactga	tttaatgagc	ttgggtttac	acattatctc	ttgaagaaaa	28920
caaatgaacc	tttgtgttcc	aaagcaatcc	atgtttaaag	ggaaaaaatt	atgcataact	28980
ctgcccagct	tcacagtaac	ctttggcagg	tgccttaggt	cctctgggac	tcttttcctt	29040
atctgaaaaa	tgaaggactt	ggatcaggtg	aatggttccc	agctctgcaa	cttatgtggc	29100
tcctcagagg	cacacaagct	cttttccatt	atttgccaaa	taatggaggc	cctgtcttta	29160

actgcagtac	aactacacaa	aatacttgaa	actacagtct	tcctggtttt	tggttggaac	29220
tgaatcagtg	cactctagca	acacttattt	cttgctgttc	gtaggcttca	ttatgtgttt	29280
ggttaatttt	ttaaaacaac	aataacatat	tccataataa	ttacagctta	attggcagac	29340
tgtttcagtc	tataggatct	gcaggaagga	ggagtaataa	agggatttt	gactgagete	29400
ttatggaaca	gagtctctct	aggcccctgt	catatctgcc	cttctgggcc	ctggggaaaa	29460
gttggcatcc	ccagttgtgg	tgctctccag	gtgccctcag	gctgtggtgg	agggagcttc	29520
ccattctctc	cttcagccca	ctcaattcag	aggctagggg	ctgaaagaag	cttctctaca	29580
actggctgtt	cactgggagg	ttaagggatg	accatccagc	caggccttcc	tcaggacatg	29640
ggagggctta	tgctttaaca	tgtgtaaatc	cactgcaata	atgactggtt	cttttacccc	29700
ataaggttga	gaatttacct	gtaaacattt	ttgtctgaag	aatttggatg	taagtgaggg	29760
ctgggcctct	atcttatctc	acttggcttc	tctcagcaca	gcaccttgcc	tgcttgttct	29820
tacacatcct	agatgcacag	taactatttc	ctaattatta	gaaatctatt	agaatcaatt	29880
gatttcagct	gggcttggtg	gctccttcct	gtaatcccag	cactttggga	ggctaaggct	29940
ggaggatcac	ctgagtccag	gagtttaaga	ccagcctggg	caacataggg	agaccctgtc	30000
tctacaaaaa	ataaaaaatt	agccaggcat	ggtggtgtgc	acctgtagtc	ccagctactc	30060
aggaggctga	ggcaggagga	tctcttgagc	ctgggaggtc	agactacagt	gagcaatgat	30120
tgtgccactg	cactccagcc	tgggtgacag	agtaagactc	tgtctcttaa	aaaaaaaaa	30180
aaaaaagttg	atttctattt	ggatagataa	ataattcatt	ttaggacctt	tcttttcac	30240
ttacagaaat	ctgtttcatt	ctgggctgag	aagcaggtcc	atattgctag	gcataggaga	30300
aaaaggggtc	tgtctgcatt	tgcccttggt	ggtctcaaat	tggggaggga	aagaaatgaa	30360
cacttactgg	ctaccttctg	tgagccaggc	atcatgcaag	acatctgtac	ataatttaat	30420
tctcataacc	ccataagata	ttattagcaa	tgtacaagtg	aggaaactga	ggctcagagt	30480
catgaagtaa	ctggccttgg	gtgacacaga	tggtaaatgg	cagagaagga	atatggatcc	30540
aggtcttgaa	agagaaaatc	tcaactgatt	atcttttta	aaaaactcat	atgttctctg	30600
ctgactcaaa	aggtctctgt	gtggatctgg	gttgacccac	tgaactgacc	atcagggttc	30660
catgcacttt	gtatctgccc	aagccctcag	aacccctcag	taatgttttg	gaagatgagt	30720
tttggaggtt	gtccttaggc	atagcctcag	cgtatgtagg	cctctaggtg	atctccccta	30780
acctgaggat	ttcagctcaa	ttcactctgg	ctcctcagga	cagtgggatg	actggttcag	30840
acctcagctt	taccacctcc	cagctgggta	ctcttctacc	tacagccagg	gcagattttg	30900
actttcactt	gaaacttcca	aaaattgaaa	ggtagaaaaa	cagccttggc	tttgggaaga	30960
acgtatgatg	tccatggcct	ctaagcatct	gaggtgggac	atgttcgagt	agcaccttac	31020
agttccaaag	tgtgttctgg	gttctttgtt	taaaagaaca	gagactgctg	gggaattgaa	31080
cactgtgaag	tatatgaagg	aggagaattg	tgctatttaa	cattcagtac	ttgggctaaa	31140
ggagaagcat	cacgaagtgt	taacactcaa	agggtcttga	gctgtcaggg	ctccagcttc	31200
cttattttca	caggtgagaa	tcctgaggct	cagctgttga	gatgtgctgt	ctcactccgg	31260
tgacatagta	cagtggatgt	ggctttgcag	ccaagcacac	atagcttcac	attccagctc	31320
catcaattat	gtattgggca	gctttgcaga	atgatttgac	tttaactctg	cttttcagtc	31380
ttctgtaaaa	cagggataat	cctgctaccg	tagggttgtc	aggattagag	ataatataaa	31440
taaggtacct	catataggac	ctggattatg	gctggcattc	aataaatagt	agctgttaat	31500
tgatagctaa	gctagaactc	tgaagtctac	catggcaact	tcttaagtgg	tctgagaacc	31560

cagttgtgtt	ctgtggcaaa	acacagctta	gggatccata	cccagccctc	ctgtcagctg	31620
ttcaccttcc	agttcttcag	agacatgtgt	ggcagtgact	ttggccacat	agctggctgt	31680
gccctttaaa	ggcattcctt	gacacagata	tgtggactgg	tgacgttgct	ctccagccag	31740
gtgttcttcc	cagcaggctg	gcctggctgt	ctcctgcatg	cctgtacttg	tttgtctccc	31800
tgctccctct	cctgggcctg	gccagagcta	cttgcagcaa	acaaaagcag	gatattggca	31860
atggaaagga	gggtgtgttc	tggtgctccc	atgccctgcg	gcgcacatac	cattgcaagg	31920
gcgtaacaga	gcccaggcct	gcatttgggt	gcaaataagt	ctgcacacag	aagaaaagaa	31980
ggacctggtg	accaggagcc	atggaaccct	tgtgctcccc	tacctgggct	actggttctt	32040
gccactccta	ccattttcag	tttggaaata	tttgttaagg	ctttgctctt	ccaggtcctt	32100
tgcttggtgc	tgagtctacc	aagagtaagt	gggatgctgt	ttttgtcctc	agggagctaa	32160
cagtctagtg	aagaagaaag	atggttgccc	aggaacttct	aagtcagaag	gcaggaggca	32220
agaaggaagc	ccctgctcct	actgccagcc	ctctgttggg	caccccatag	ttcttcagaa	32280
ccacatttaa	tcctcactgc	aggccaggca	tagtggctca	cacctgtaat	cgcagcactt	32340
cgggaggcca	aggcgggcag	atcacttgag	gtcgggagtt	cgagaccagc	ctcaccaaca	32400
tggggaaacc	ccgtctctac	taaaaataga	aaaattagcc	gggtgtggtg	gcatgcgcca	32460
gtaatcccag	ctactcagga	ggctgaggtg	ggaaaatcac	ttgaactcgg	gaagcagagg	32520
ttgcagtgag	ccgagattgt	gccactgcac	tccagcctgg	gcgataagag	caaaattcca	32580
tctcaaaaaa	aaaaagaaaa	aagaaaaaat	cctcactgct	accttgaaag	taggtgatga	32640
cattgccatt	tcacaaatga	gaagtgaagg	ggctagccca	agatcactta	ggtggtaaat	32700
ggtggtgcta	agattagaac	ctcagatcat	ctagggaaaa	acacagatat	gcacagagtt	32760
aaggggaccc	agggtattgt	ttgtcctctt	gtttcacagg	tggggaaaca	acccagagag	32820
ggaaaggggc	ttgtccaagg	caatttagca	cccaagaact	tgaacccata	tctctctcct	32880
cctcatttag	agctcatccc	acatgtatct	tatattgaga	ggagtgtgag	ccacatacca	32940
agaacagtct	teccetetge	ctccaacctc	actgtgcagt	tttgagacac	ttcacagcca	33000
tactcttcat	gccataccca	gcccttaaga	ccctgaagtt	ccccttccat	aagacaagta	33060
ggaaaagcta	tagggtaaaa	atagccatca	gtgtttgttg	agcacccagg	aggaattggg	33120
cactccagaa	agataaaggg	attctcaggg	acttgcttct	ctagacttcc	ctagctcagc	33180
tgcttcaact	cattcctgcc	cctcttctct	acctcccgca	gtgctcagaa	gtagtagaac	33240
tcactgtggc	ctctcacctt	gcattgttga	gttttattta	gactttctct	tcctcaactc	33300
ttcataagct	catgaaaggt	gaagtagggt	gccctgtgta	tttatctttt	atatctgcag	33360
tgcttagcaa	gttataataa	tgcacttgcc	tggcaaaagg	ctttctctca	tacattagct	33420
tatttcctct	tcacattggc	tctttgtagt	aataggatgc	tattagttat	tttcaatgag	33480
agaaagctac	taagagaagt	tgtccagcta	gtgacagtaa	gtggctgata	aagtgagctg	33540
ccattacatt	gtcatcatct	ttaatagaag	ttaacacata	ctgagtttct	actatattgg	33600
gtctttttt	ttttttt	tttttttta	gagacggaat	cttgctctgt	tgtccaggct	33660
ggaacgcagt	ggtgcaattt	tgggtcacca	caacctccgc	ttcccaggtt	caagcgattc	33720
tcctgcctca	gcctcctgag	tagctgggac	taccagtgca	cgccaccacg	cccggctaat	33780
ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	ttgaactcct	33840
gaccttgtga	tetgeeegee	tcagcctccc	aaagtgctgg	gattacaggt	gtgagccacc	33900

-						
gcgccctgcc	tatattagga	cttttatata	agctatctct	agctagctag	ctagctagct	33960
ataatgtttt	ttgagacaga	gtctgactct	gtcacccagg	ctggagtgca	gtggcgtgat	34020
ctcgactcac	tgcaacctcc	acctcctggg	ttccagtgat	tctcctgcct	cagcctcccg	34080
agtagctggg	attataggtg	catgccacca	cgcccagcta	attttttgta	tttttagtag	34140
accaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacttcaag	tgatccaccc	34200
gcctcggcct	cccaaagtgc	tgggattata	agcataagcc	actgtgccca	gctgctctct	34260
atatttttaa	tacatattat	ttccattaat	tttcacagca	gttcatttta	tagatgagga	34320
aactaggcca	gagaagtaaa	atatcttgcc	caagatgatg	taactagtaa	gtggcaggat	34380
caagattcaa	accaagcaat	gttcaaacct	cttggaagca	agaatgtggc	cactgtggaa	34440
ggtgcaaggc	cttgacaaca	agaataggga	aaagaaggaa	ctagaaggaa	agagatggca	34500
tgggctcagc	aggccaggga	gctcttagct	gtgtgtgttg	ggaagctcag	aagggaggaa	34560
gaggttgtct	gtgcaggtaa	gtcctgagaa	cacaccagac	ttttgagagg	tggagcttca	34620
tagccaggtc	attaggggag	aagggagcta	tagatttttt	tttttttt	tttttttt	34680
tttttttag	agacggggtc	ttactatgtt	gcccaggctg	gtcttgaact	cctgggctca	34740
agtgatcctc	ccacctcage	ctcccaaagt	gctgggatta	gaggcatcag	ccaccccgcc	34800
cagcgagcta	tggatctaac	atgtacatct	tacacagtgc	taatagaatg	ttgggtttct	34860
tccccaatat	tttattttga	aaaaaaattc	aaatatatag	aaaagttgaa	aaatgtagtt	34920
Caaagaacac	ctacatacct	ttcacataga	ttcatgattt	gttaatgtta	tgccactttg	34980
tatatatctc	tctccctcct	atctgtatac	ttttatttat	ttatttttgc	tgaactattt	35040
cagagtaact	taaaggcatc	ttgattttac	ccttgaacag	ttcaatatgt	ttctgctaag	35100
aattctccta	tataagtcag	atatcattac	atctaagaaa	attcacggca	attttacaat	35160
ataatattat	agtccaaatc	catatttcct	cagttgttcc	aaaaaatgtt	catggctgtt	35220
tcctttttta	atctaaattt	gaatccaagt	ttgaggcatt	gtatttggtt	gctgtgtctc	35280
tagggttttt	aaaatctgtg	ccttttcttc	tccccatgac	tttttagaag	agtcaagacc	35340
ggttattctt	atagaataac	ccacattcta	gatttgcctg	attagtttt	ttatacttaa	35400
cgtatttttg	gcaagaacat	tacattggta	acgctgttgg	tgatgggtca	gttttgaaga	35460
gtggagatga	ttaaactgct	tttgttcatt	gaagtatctg	tcaagaccag	agatoottaa	35520
ctggtgccat	aaataggttt	cagagaatcc	tttatatata	caccctgtcc	cccacctaaa	35580
ttatatacac	atcttcttta	tatattcatt	tttctagggg	aggcttcttg	gcttttatca	35640
aattctcaga	gggccccaag	acccaaagag	gttatgaaac	actagtctgt	ccactgaggc	35700
aggcaacaca	gagctggttt	ctggggcctt	gttcagtctg	aaccagcttc	ccttggggag	35760
atagcacaag	gctgtaactt	tgccccatct	tggctttgga	tcaaagagga	ctgtccattt	35820
tgttgtcata	cctaggaacc	agggacagct	tatgtggcct	ggttccaggg	atccaggaga	35880
atttcagttc	ttgtcttgcc	tttcaggtgt	tcagaatgcc	aggattccct	caccaactgg	35940
tactatgaga	aggatgggaa	gctctactgc	cccaaggact	actgggggaa	gtttggggag	36000
ttctgtcatg	ggtgctccct	gctgatgaca	gggcctttta	tggtgagtga	atcccttcat	36060
atctgcccct	cttggtcttc	agagtccatt	gacagtgctt	ccagttccct	gtggcctgtt	36120
aatcttttag	tctttccatc	agccagggca	tctcccttta	tttattcatt	cattcaacta	36180
gcaggtatca	attgagcacc	tactaagtga	aaggtaagat	ccttccctca	aagacttaat	36240
agttgaacgt	tgggagtggg	aggagaggca	ggcagagagg	agacacaata	tagttggata	36300

aggacctcca	aggagagtgt	tacaggetga	gaggaggata	tacttaggtt	gtctttaggg	36360
aatcagaaaa	ggagactctg	gaataggctg	gcagagagag	gggctacctc	ctatacctgc	36420
tctggacaaa	cgactttaag	catagtgaca	gatttgccaa	ccctgtattg	gaagaactga	36480
tctttttag	tggggatgat	tacttctggg	gatttcttct	cataactgag	accaaaacag	36540
ttttgtgcag	tctcagaaat	gacaggaggt	accaatctga	cacttccttt	ggaagctcta	36600
gggcagagag	tgaaagagtg	gattttgacg	ggggccttgc	ttggaggtca	ttcacccacc	36660
cctgtcctca	ctccagcaac	agtgataact	cacttccttc	ctccctttgt	acacccttct	36720
ccccacctgo	tcacaggtgg	ctggggagtt	caagtaccac	ccagagtgct	ttgcctgtat	36780
gagctgcaag	gtgatcattg	aggatgggga	tgcatatgca	ctggtgcagc	atgccaccct	36840
ctactggtaa	gatagtggtc	ctttgtctat	cctctcccat	ataagagtgg	ctggcgggga	36900
gggacagtgg	cagggtgagt	tgggcagaag	gagtgttagg	gtagtcagag	cattggattc	36960
ttaccacago	agtgctctta	accagetett	taacttgtaa	gcagaatgat	ttacacatgt	37020
ctctaccctt	tttccttacc	aaccttgaaa	atgtcttcac	tctgccctgc	aatcctccca	37080
gtgggaggca	ctcttcaagg	acgatcccag	aacattaaag	tcaaagaccc	cttagagctc	37140
accctgtcca	accaccttgg	ttgataaaag	aagtcagcct	ggggcccatg	gaatagaata	37200
gtacaagggc	aaggttctca	ttgtgagtca	aaggtagagt	gaagagaacc	cagaccatct	37260
caccccaacc	caggccagtg	tttttccaaa	tataccactt	gctgcagatc	tagctcagca	37320
ccccagtcc	cagcccaccc	tgagaaccca	ggctcctcat	tctgagcagc	cagctagaat	37380
catgacaaag	agggtggtag	tgagactatg	ggtactgttg	cttaaagcca	catggtgcag	37440
tggttgctgg	ggggcttctg	tgtgggactc	tagcatctta	ttcccccctg	tgccctctcc	37500
ccagtgggaa	gtgccacaat	gaggtggtgc	tggcacccat	gtttgagaga	ctctccacag	37560
agtctgttca	ggagcagctg	ccctactctg	tcacgctcat	ctccatgccg	gccaccactg	37620
aaggcaggcg	gggcttctcc	gtgtccgtgg	agagtgcctg	ctccaactac	gccaccactg	37680
tgcaagtgaa	agagtaagta	ttttgagaac	ccttcagcag	gggttcttga	gcagagtctg	37740
taaatgggcc	tcagagggct	tagacctcca	aagtctcatg	cagaactccc	tttattctca	37800
tctcatatct	ttctcctgga	ccccactatg	ctgtaaccgt	acctgggcct	tggcacttac	37860
tgttctctct	gcccaggcta	cttcctaccc	gatacttaag	gcaagaatca	ctcacctttc	37920
aggtgtcagg	tttcaggtca	tgtttgctct	ttgaaatcat	ctggcttgat	tatgtgtatt	37980
agttgtttat	cttctatccc	ctccactaga	atgtaaattc	cagaagaaac	ttgctgtctt	38040
attcagtgct	gcatgcccag	ggcttggaag	agtacctggc	atatagtagg	agttgattga	38100
ttattattt	gtcagtcgag	agaatgaatg	gagaaaatgt	ggtccatggc	ccaaaagaag	38160
ttaagaccct	atcctagatt	caggccagag	accagatgga	gaaagagtct	gtgtctatct	38220
aataccagta	atgtcgtacc	tctggccgct	taccatgtaa	atattgattg	tgtatctacc	38280
atgtgttgga	cactaggcta	gtgcttgcac	agcaggtgaa	agatactaga	gtttgggaag	38340
tcaggaggag	ctaaggtctg	ttctacaacc	ttattagatg	aagaggagag	ggaattgtgt	38400
tcagggcaga	gggagaagca	tttctccaaa	agtaggagtc	ttaatcatgt	ctgatgtagg	38460
ttgagtgtgg	ccagaaaagg	ggctgttaag	tatagagggc	ctggattatg	assatccagc	38520
agatccattg	agagtttaag	cagcaaggtg	ttgtgaccaa	gttaacattt	tagaaggatc	38580
actggtatgg	aggttggatt	ggagagggga	aagcctaaag	gtatagagac	tagttaggaa	38640

gctattgtag	gctgggcatg	gtggttcatg	cctgtaatct	cagcactttg	ggaggctgag	38700
gtgggaggat	tgcttgaggc	caggagttga	agaccaacct	ggccaacata	gcaagacccc	38760
gtctctgttt	ttcttaatta	aaagaaaagt	ccagacgtag	, acatagtggc	tcacgcctgt	38820
aatgccagca	ctttgggagg	ccaaggtggg	cagattgctt	gaggtcaaga	gtttgggatt	38880
aggccaggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggcgg	38940
atcacaaggt	caggagatca	agaccatcct	ggctaacaca	atgaaacccc	gtctctacta	39000
aaagtacaaa	aattagccgg	gcatggtggc	ggacgcctgt	agtcccagct	actcgggagg	39060
ctgaggcagg	agaatggcgt	gaacctagga	ggcggagctt	gctgtgagca	gagatcacgc	39120
cactgcactc	cagcctgage	gacagagcga	gactccatct	Caaaaaaaaa	aaagagtttg	39180
ggattagcct	ggccaacatg	gcaaaacccc	atctctacaa	aaagtacaaa	aaaattagct	39240
gggtatggtg	gtgcgcgcct	gtaatcccag	ttactcagga	ggctgaggca	tgagaattgc	39300
ttgagcctgg	gaggtggagg	ttgcagtgag	cccagatcat	gccactgcac	tccagcctgg	39360
atgacagagt	aagatgccat	ctcaaataaa	aattaaaaac	aaagtttaaa	aaaaaaatag	39420
aagctattac	cgtgatccag	gtaagagatg	tgaataacta	caatgatgga	aagaaggcag	39480
agttcttaga	gatgggagta	ggagagatga	gggaactcca	gattgggaag	atgatgttca	39540
agtttctggc	ttaggccaca	gggtgagtgg	caattccctt	cactgagatg	gggcatcctg	39600
gaaaaggtgt	tgcctttctg	tgtgggtatc	ctgggcccct	taggggccac	tggtggcctg	39660
ggacctggta	aaccttccct	gcacaagcag	aattggtcaa	gcaggtttt	aggacatctt	39720
taccctgcct	caactcttgt	ctggcccagg	gtcaaccgga	tgcacatcag	tcccaacaat	39780
cgaaacgcca	tccaccctgg	ggaccgcatc	ctggagatca	atgggacccc	cgtccgcaca	39840
cttcgagtgg	aggaggtaga	gtgtgtgtct	aatctgtctt	gtgagggtgg	gacatggaac	39900
agatcctctg	ggaaatcagg	ctgtagcctt	taccttttcc	tacccccagc	ccatctcttt	39960
gtcttagcat	tgagcctgtg	accactggtg	acctatttca	gcgtaacagg	ttcccagggt	40020
agcagggatg	gttgatggac	gggagagctg	acaggatgcc	aggcagaggg	cactgtgagg	40080
ccactggcag	ctaaaggcca	ccattagaca	agttgagcac	tggccacact	gtgcctgagt	40140
catctgggtt	ggccatgggt	ggcctgggat	ggggcagcct	gtgggagctt	tatactgctc	40200
ttggccacag	gtggaggatg	caattagcca	gacgagccag	acacttcagc	tgttgattga	40260
acatgacccc	gtctcccaac	gcctggacca	gctgcggctg	gaggcccggc	togotootca	40320
catgcagaat	gccggacacc	cccacgccct	cagcaccctg	gacaccaagg	agaatctgga	40380
ggggacactg	aggagacgtt	ccctaaggtg	ccacctccca	ccctggctct	gttctgtcct	40440
atgtctgtct	ctcggatgaa	gctgagctgg	ctttcagaag	cctgcagagt	taggaaagga	40500
accagctggc	cagggacaga	ctatgaggat	tgtgctgacc	cagctgcccc	tgtggggatc	40560
acagtttaca	gccagagcct	gtgcggaccc	agctgtctgc	caggtttcct	tagaaacctg	40620
agagtcagtc	tctgtccact	gaactcctaa	gctggacagg	aggcagtgat	gctaaaccct	40680
gaagggcaac	atggcctatg	gagaaagcat	ggagctcaga	gcctggagta	cgggcacaga	40740
	taaattgtgt					40800
	gacttgaggg					40860
	gttgccttga					40920
	ctcccaggca					40980
cccttcacaa	atcacttcat	ctctctgagc	ctgtttctgc	atctgtgaca	taagatggta	41040

agataaagg	t ggctgtctc	a ccaattatg	t aaggattaa	tgtggaaaa	g gacataaagt	41100
tgtatagtg	c tgccatagg	g acagtgttc	a gtaaacgtga	a cacattotta	gtatcactaa	41160
gaatcaggt	t cttggccag	g caccgtggc	t catgootgte	atcccaacac	: tctgggaggc	41220
ctaggtcgg	a ggatggctt	g aacacagga	g tttgagacca	gcctgagcaa	catagtgaga	41280
cactgtctct	t acaaaaaaa	a aataataat	a ataattgttt	ttaattagat	gggcagggca	41340
ctgtggctc	a cacctgtaat	cccagcacti	tgggaggcca	aggccggagg	attgcttgag	41400
gccaggagtt	caggagcag	ctgggccaca	ttcctgtctc	: tacaaagaat	aaaaaagtta	41460
actgggcatg	g gtggcacato	g cctgtaatco	cagctactca	agaggetgag	gaggaggatt	41520
gcctgagccc	aggagttcas	gactgcagt	g agcettgate	acaccactgt	actacagett	41580
gggcaacaga	gtgagacctt	gtctccaaaa	aaaaaagttt	gtttttttt	atccactctc	41640
ctcaccaaac	: aaactgagta	agttagagco	ctctcagctg	gcatgtgttg	gaaacagtgc	41700
cctctcatta	aagtgctgcc	ctcactccca	ttgcctcttg	gccttggtca	gtatgatgaa	41760
attagtggga	ggcagggcaa	cagagggcag	ggaagagcta	gaaatccatg	gcctggaaaa	41820
gggaagattt	gggagtggcc	: aggtatctgt	agagccacca	tgcagaggag	gggggcagct	41880
agccttgtgt	gctctggtgg	gcatggtcag	caggaggcag	agcaaaagga	caagggtaag	41940
taaacctgta	ggtcgggaca	agccaagagc	catccagcgt	cagtcctctc	tgggtagccc	42000
aagtaaagca	ggagcatacc	ccagagagaa	agttcgcagg	gctgttcacc	tgcagtgctg	42060
tggacttcaa	ccttcttgtt	ccttcttcag	taagtgaaaa	taacagtcat	tgaccatgac	42120
tattatcgac	cgcttttgaa	aatgtaaaca	tagtgacttt	attgctgtaa	aaatcatacg	42180
tgtttatcat	cttaaaattc	aggaaacatg	gacaggtaca	aagatgtgca	aaatatcatc	42240
caaaatccca	tttgctggcc	aggcacggtg	gctcacgcct	gtaatcccag	cacattggga	42300
ggccgaggcg	ggcaaatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	42360
aaaccctatc	tctactaaaa	atacaataat	taggctgggc	gcagtggctc	acgcctataa	42420
tcccagcact	ttgggaggcc	gaggtgggcg	aatcacaagg	tcaggagttt	gagactagcc	42480
tggccaatat	ggtgaaaccc	catctctact	aaaaatacaa	aaattagggc	cgggtgtggt	42540
ggctcacgcc	tgtaatccca	gcacttaggg	aggccgagac	agatggatcg	cgagatcagg	42600
agttcgagac	caacctagcc	aacatggtga	aaccccatct	ctactaaaaa	aatacaaaaa	42660
ttattcggtt	gtggtggcac	acgcctgtaa	tcccagctac	ttgggaggct	gaggcaggag	42720
aatctcttga	acctgggagg	cagaggttgc	agtgagtgga	gatecegeeg	ttgcactcca	42780
gcctgggcga	cagagtgaga	ctccatcaaa	0000000000	aaaaaaaaaa	aaattagccg	42840
ggcgtggtgg	cgtgcaccta	tactcccagc	tacttgggag	gctgaggcag	gagaatcgct	42900
tgaacctgga	aggcggaggt	cgcagtgagc	cgagatcgtg	ccattgcact	tcagcctggg	42960
cgacagagcg	agactctgtc	tcaaaaataa	taataataac	aataactagc	cgggcctggt	43020
ggcacatgcc	tgtagtccca	gttactcagg	aggcggaggc	atgagactca	ggtgaactag	43080
ggagacagag	gttgcagtga	gccaagatca	caccactgca	ctccagcctg	gttgacagag	43140
cgagactctg	tctcaaaaaa	aaaaaaatcc	catttgctca	ttttttggat	actagtataa	43200
tatcactct	aaaccagtta	gtacttaaat	caagcagata	tgggagatgg	tgaattacca	43260
ctacagtgt	tgtcatatat	gtcacatact	gagcattatc	agctagtaga	atctagttaa	43320
tgttctatg	tgtgatgtat	gcagagttcc	cattttgaat	gtgtttttac	tatgcttaaa	43380

taaatgactg	atgtcagcaa	ccccaaaatg	atacatctga	tgtaagagcc	cctgttcccc	43440
aataataaca	tctaaactat	agacattgga	atgaacaggt	gcccctaagt	ttcctccctc	43500
cagggtttct	tggccggtct	ctgaggacta	cacateceta	ctcccgtctt	tcctcatctt	43560
caggcgcagt	aacagtatct	ccaagtcccc	tggccccagc	tccccaaagg	agcccctgct	43620
gttcagccgt	gacatcagcc	gctcagaatc	ccttcgttgt	tccagcagct	attcacagca	43680
gatcttccgg	ccctgtgacc	taatccatgg	ggaggtcctg	gggaagggct	tctttgggca	43740
ggctatcaag	gtgagcgcag	gcaacaattg	ctttgctctt	ctgcccccag	tecctctgtc	43800
actgtctttc	ggggatttct	catcacttgg	ccccacccca	caccatgcag	gatgccaggc	43860
ctccttcctg	gctttgggtg	ttggtgtgag	aggtatcctt	CACCCCCACC	caggccacct	43920
aaggtcaatg	ttgctgttac	agtgagettg	tggacctgga	gatccaggtt	gggttgagct	43980
gtgcctgtgg	ccctcctgcc	tccagtcagt	gggtgtttgt	taggtgcctg	cagacctcag	44040
taccgggcat	gctacaagga	gcacacaggg	gaatggctcc	tgcctccctg	gtgaacagtc	44100
tcagggacta	acctctctct	ttctctcctc	ctcctcctct	tctgctgaga	actgggaggg	44160
ggggtcaggt	aagacgtgtg	tctcagcttg	ggggcagcag	ggctggagag	ctcacccccg	44220
atccacccag	ctccctggtg	catgtctttg	gcactgacct	tectgecece	agacttctgt	44280
tcactcagga	gactcacttc	tatgccaaat	gaccagagcc	cctgcttggc	ttggcagcat	44340
cccctcctgc	cttcttcccc	acttcccttt	tctgggttct	tgcctgtcct	ctgtgcatgc	44400
ccagctctcc	aggaaagagg	gtttgcttcc	gtgtgagtcc	catgttgctc	cacgctgcat	44460
cttccacaca	tgaactctgt	cattctgacc	cggctcagtg	tgccctccaa	gggatgggat	44520
ggccagctgc	atagattttc	tcaaacagtt	ctccagaact	tcctctggtc	tcagcaccat	44580
taacagtcac	cctccctgta	ggtgacacac	aaagccacgg	gcaaagtgat	ggtcatgaaa	44640
gagttaattc	gatgtgatga	ggagacccag	aaaacttttc	tgactgaggt	aagaagatgg	44700
agggggcccg	ggaggttggt	gtcaccattg	gaagagagaa	gaccttacaa	ataatggctt	44760
caagagaaaa	tacagtttgg	aattactgtc	ttaaagacta	agcagaaaag	agccctagag	44820
gaatatccca	ctccctctaa	attacagcgt	aattatttgt	tcaatgaaca	cttactaaaa	44880
gcaacacaaa	cagggtacaa	gggatgcagt	aacaaaagat	acagggttca	gaagagetet	44940
caggttatga	ggatgatgga	catgaaaaca	ctccaattta	gtacaactca	atgttataat	45000
cctcacctga	acgccctgct	aagggagcct	ggaggggagc	tccctgagca	ctcacactcc	45060
ttgggcattt	acagttttca	ctacccctcc	caagttactt	catggagtaa	cttaagttgg	45120
ggacacctgt	ggtctgggta	ttgccctcca	agccacttgg	ccactcccac	cccagttctc	45180
ccaatgcagt	tccaagggta	aggcctatga	agccatctcc	atctatatgg	tggtggtctt	45240
ccctcatcct	gatcttagtg	ccctgtcata	tcacaagata	ggaggtagga	gatacaggtg	45300
gtaacacttg	tcaagctgat	tccttggagg	gaagaggtaa	ggaagacagt	gagaagttaa	45360
ccaccagctt	tccttggctt	CCCCCACCCC	caggtgaaag	tgatgcgcag	cctggaccac	45420
cccaatgtgc	tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	45480
gagtacattg	aggggggcac	actgaaggac	tttctgcgca	gtatggtgag	cacaccaccc	45540
catagtetee	aggagccttg	gtgggttgtc	agacacctat	gctatcacta	ccctaggagc	45600
ttaaagggca	gaggggccct	gctttgcctc	caaaggacca	tgctgggtgg	gactgagcat	45660
acatagggag	gcttcactgg	gagaccacat	tgacccatgg	ggcctggacc	acgagtggga	45720
cagggctcaa	cagcctctga	aaatcattcc	ccattctgca	ggatccgttc	ccctggcagc	45780

agaaggtcag	gtttgccaaa	ggaatcgcct	ccggaatggt	gagtcccacc	aacaaacctg	45840
ccagcagggc	gagagtaggg	agaggtgtga	gaattgtggg	cttcactgga	aggtagagac	45900
cccttcctat	gcaacttgtg	tgggctgggt	cagcagctat	tcattgagtt	tgtctgtgtc	45960
actgaaactg	accccagcca	actgttctca	gttcacagcc	ctgttttcaa	agaattacac	46020
atctctaaag	gcaaacaggg	cacggacaag	gcaaactgga	gaggcaaact	gtagcctgag	46080
atggcctggg	cttgccatca	caggtattca	ggtgctgagg	gcccttagac	caactagagc	46140
acctcactgo	ctaggaaatc	aatgaagggg	aaatgagttc	tagcggagcc	ctgaaggatc	46200
agaattggat	aaagttctta	ttggcagaga	ggcaccagga	ttgaagtgac	aggagcaaag	46260
acctgggagg	aaagaggaga	aaatcatcta	tttcacctgg	aaacaaatga	ttccaagcat	46320
agaaataata	acagctgaca	agtactgagt	gccctctata	tgctaggcac	tgggctgagg	46380
gattaacatg	catgtgcatg	tttattcctc	atgacaacct	tggtttccag	ataagctgga	46440
ctggaaaggg	acagagetgg	gatectggge	taatcagtct	ggtcgccaag	cctgagactt	46500
tagccactgc	ccttcacatg	ggggtccatg	aaaatagtag	tagtctggaa	cagtttgggg	46560
gtacatcaag	gtcgctgtgt	tttaagctat	ggagtctgga	ctataggaga	caaatgtaaa	46620
agagttttt	ggttgactgg	ctttttggtt	tttttgtttg	tttgtttgtt	tgtttgtttg	46680
tttgtttgtt	ttttcctgtt	tctggggctt	gaatcaggaa	ggaggtttt	ttgttgttgt	46740
tgttttgaga	aaggatattg	ctctgttgcc	cagactggag	tgcagtggca	cgatcatggc	46800
tcactacago	ttcgacctcc	tgggctcaag	caatcctcct	gccttagcct	cccaagtagc	46860
tggactacag	gtgtgtacca	ccacacctaa	ttttttgaat	tttttttct	tttttttt	46920
tttttttt	ggtagagaca	ggttctcact	ttgttgccca	ggcctgaatc	tcaaactcct	46980
gggctcaagc	attcctcctg	cctcgccctc	ccaaagtgtt	gggattacag	ttgtgagcca	47040
ccatgcccgg	caggaaaaga	tttttaagca	agaaagctta	agagetgtgg	ttttccaaa	47100
atgagtctgg	gctggcacag	tggctcatgc	ctgtaatccc	agcactttt	tgggaggccg	47160
aggtgagtgg	atcacttgag	gtcaggagtt	tgagaccagc	ctggccaact	ggtgaaaccc	47220
ctgtttctac	taaagaaaaa	aatgcaaaaa	ttagctgggc	gtggtggtgc	acgcctgtag	47280
tcccagctac	tcaggaggcc	gaggcaggag	aatagcttga	acctgggagg	cagaagttgc	47340
agtgagccaa	gatcacacca	ctgcattcca	gcctgggtga	cagagtgaga	cttcatctca	47400
aaaaaaaaa	aaaagagaga	ctgatatggt	tagtacattg	gggtggaatg	cggagggtcc	47460
agggaatgga	gccctgcata	gggggctaat	gaaacatttc	agatttctga	attaaggtag	47520
tggctgtggg	gacaggagcc	tgggaggcag	ggtggagtca	gaatggagag	actggttggc	47580
aatgagggaa	caggaggagg	aggaggagga	gttacgagtg	gcttgaggtg	tcacttacca	47640
gacatttggg	ggatgggga	tagccgtgat	tgttgagcaa	ctggtttggg	aagagctagc	47700
attgatccct	gctgttctgt	gctagcagaa	cctatcagca	tcttctgggc	aggaaactgg	47760
ctccatgaga	ctggcttagg	gagaggctgc	tagtcaccta	atctgcagag	aaggggcagc	47820
tggagctgtg	ggacagaaga	ggcatccatg	tagctggtgg	gggtgtctca	gcttgtgaag	47880
aggagatggc	tttgagcagg	gctgacactg	aaaaggctgg	aagaaaaaaa	cagacacaca	47940
agagtotoag	gatcaggtag	cataggaaag	ttgtggacag	tctttgagga	gcactccctc	48000
aggcaggcag	gcaggcaggt	catgagctat	agcgattcag	gaagagetee	ctgggtgtgt	48060
gagcagctcc	aggagcctaa	gggatgaaag	tagtattgca	gggggctgga	gagcaaggag	48120

tggctccttc	tacatttgca	agggaaggag	aaaggaagtt	gctcctgaga	gtggtaagag	48180
tcagtggtgg	, aggcctggag	aggagacata	acaaacaaat	ttgttgacaa	acattttggt	48240
aggaagggg	, agagcttaaa	gtttagacag	tggggaaggt	ggagtcttag	aggaggtgaa	48300
tgtctgaaag	, acagagctag	ctggagcaag	aagtcacttc	tctgttgcag	gcaggaagga	48360
tccaaagtgg	ctcaagccag	agattgggag	agtggggagg	agggagcagc	ctggatctaa	48420
gtaaaatggg	tagaggtgga	gggggtgctg	caacggccag	ggttttctga	agttggggac	48480
attaggagag	agctgtgagg	gctttggcca	gccactgtgc	tagtgattgg	tgaaccaaag	48540
gatgggcagg	agatggcagc	agggaagcag	aggaagtcca	ggcttcctgt	tggtattggg	48600
acaagggaga	ggccatagga	ggccctggcc	ctgttgtcca	ggttgggttc	tgaagctggg	48660
tgggcatggc	ctggtaggag	agcatctatg	gcgcccaatt	ccagattcag	ggtctagttg	48720
atttgctggc	cctgtagcct	cagctcatgc	ttctgttcca	ggcctatttg	cactctatgt	48780
gcatcatcca	ccgggatctg	aactcgcaca	actgcctcat	caagttggta	tgtcccactg	48840
ctctgggcct	ggcctccagg	gtcctatcct	tcctggcttc	cttgtcacaa	aggaggctga	48900
cttgtcccct	ctggctagag	ggcagaggtg	ttgcctagga	gctcctatct	ttcccttcct	48960
gcttcttcca	atgcccttct	ctgtcctctg	ggagctccga	gacacacaca	gacataattt	49020
caccttctct	cattagcaac	ctttgaaata	atttgattag	aagggacttc	agaagtttgt	49080
tgactatatg	tagaaaaccc	tgtcatttta	cctgcttttg	ccccatagta	gtcttgtaaa	49140
acagttcatt	gctgacccca	ttttacagtg	gtggcacctg	aagcctcagc	ctgaggccac	49200
cgagctagta	aatttacagg	gaccagtttg	agaccagcat	tcctcccact	gcccctcagc	49260
tgtggtggtt	acaatgttgt	ttgtcttact	gacttgctat	ctggcttcct	gggtgtctac	49320
cggctggccc	tggctctgcc	ctctagaccc	acaccacgca	atcttcattc	ctttcccaca	49380
tgactgccct	gtagctattc	aaagagcttg	tctcccccaa	gtctccccat	ctactgcctc	49440
caccttgcct	ttttctgtct	tatcctggtt	ctagccactg	cctgaaatca	ttttaggaat	49500
	agggaaaaac					49560
agtccctgag	cctcacctcc	agggctccag	tggctctgcc	atgaacccac	tgtgggctgg	49620
gagtctgctg	tgcacagata	ccagaccctc	agaaacacaa	atgccaagtg	tgtctgtttt	49680
	tttgttttgt					49740
	atcttggctt					49800
	cagtagctag					49860
	tgtattttta					49920
	ctcaggtgat					49980
	tgcctggcct					50040
	accttttctc					50100
	gagaacatcc					50160
	tggcagactt					50220
	aggccaccac					50280
	tgggaaaccc					50340
	gggacacccg					50400
	ggaggcctgt					50460
ccccgccagg	tggggcctca	cyattraget	cctgagctca	adadacrada	aactgatcag	50520

tgtcccato	a tgggggata	a ggtgagttc	t gactgtggca	tttgtgcctc	agggateget	50580
aagagctca	g gctattgtc	c cagctttage	cttetetete	: catggtgaga	actgaagtgt	50640
ggtgccctc	t ggtggataa	t gctcaaacc	a accagagato	ctggttggga	ttcttgaaat	50700
cagggttgt	g aggcctcag	a aatggtctg	a atacaatcca	ttttggagto	tgaggcccag	50760
agaagttca	g tgaattgcc	t aggagcatad	agotgootaa	tggcagaggc	tagatgaacc	50820
ctagtctgg	t tcttttcca	tttaacgtg	agtttcatco	: taggcagtgt	tatgttataa	50880
gggctctcc	a aggcagttc	a cctacggctq	g aggaaggact	attttcaggt	ggtgtctgcg	50940
caggacago	c tgtggggtg	ccctacaga	cctgttctag	ccctagttct	tagctgtggc	51000
ttagattga	c cctagaccc	gtgcagagca	ggtaagggat	gtaaacttaa	cagtgtgctc	51060
tcctgtgtt	c cccaaggaa	gagctatgat	gagacggtgg	atatottoto	ctttgggatc	51120
gttctctgt	g aggtgagcto	tggcaccaag	gccatgcccg	aggcagcagg	cctagcagct	51180
ctgccttcc	c toggaactg	ggcatctcct	cctagggatg	actagcttga	ctaaaatcaa	51240
catgggtgt	a gggttttatg	gtttataacg	catctgcaca	tctttgccac	gttcgtgttt	51300
cattggtct	t aagagaagga	ctggcagggt	ttttttgttt	tagatggagc	ctcacttcgt	51360
tgcccaggc	t ggagtgcagt	ggcacaatct	gggctcactg	caacctctgc	cttctgggtt	51420
caagtgatt	c tectgeetes	gcctcccaag	tagctgggac	taccggcaca	caccaccatg	51480
cccggctaa	t ttttgtattt	. ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	51540
ttgaactcc	g gacctcaggt	gatccgcctg	cctcagcctc	taaaagtgct	ggaattaata	51600
ggcgtgagc	t acctcgcccg	gccaggtttt	tttttttt	tttttagttg	aggaaactga	51660
ggcttggaa	g agggcagtgg	cttgcacatg	gtcgataagg	ggcagatgag	actcagaatt	51720
ccagaagga	a gggcaagaga	ctgttcatgt	ggctgtctag	ctagctcttg	ggccaaatgt	51780
agcccttct	agttcccttc	aagtagaagt	agccactcta	ggaagtgtca	gccctgtgcc	51840
aggtaccac	g tggacagagt	gaggaatctt	ggaaagattc	ctacctttag	gagtttagtc	51900
aggtgacago	atatctcage	gactcaaaca	cacacacatt	caaagccttc	tgtaattcct	51960
acaaagttgi	gaggggtaga	ggagaggaga	gacaagggat	ggttaggata	atgaaggaat	52020
gttttgttt	: tgtttttgtt	tttgagatgg	agtttcactc	tgtcacccag	gctggagtgc	52080
agaggtgca	tcttggctca	ctgcagcctc	cgcctcccag	gttcaagcaa	tcctcctgcc	52140
tcagcctccc	: aagtagctgg	gactacaggt	gtgcgccacc	acgcctggct	aatttttgta	52200
ttttcagtag	, agacagggtt	tcgccatatt	ggccaggctg	gtctcaaatg	cctgacctca	52260
ggtgatacac	ccgcttcagc	ctcccaaagt	gctgagatta	caggcatgag	ctaccgtgcc	52320
tggccatgaa	ggaagatttg	ttttaaaaaa	ttgttttctt	taatattaat	tgaacacctc	52380
tgttcagago	actgggctgg	tgccagaggg	tttcagacat	gaatcagatc	cagcacctca	52440
tagagcctta	atctggcaca	cacacacage	cacaaggaga	cacagacaag	gcagggtagg	52500
atgagtggaa	gctaggagca	gatgctgatt	tggaacactt	ggcttctgca	gtgaagcccc	52560
ttcttagtcc	tcttcagtaa	cccagctctc	agtggataca	ggtctggatt	agtaagattt	52620
ggagagatga	ttggggattg	gggagagctc	tctaacctat	tttaccacct	cctcttctgc	52680
cattcttcct	gtccacatcc	ccagcatccc	tttcccttgc	caagtatctg	tggcctctgt	52740
agtcctttgt	aaacagctgt	cttcttaccc	tacagatcat	tgggcaggtg	tatgcagatc	52800
ctgactgcct	tccccgaaca	ctggactttg	gcctcaacgt	gaagetttte	tgggagaagt	52860

		c ccggccttc				
		a tootgootti				
		c cctgagecet				
		a acccctgage				
aagagagag	g taaagacat	a gcagcaagta	a atctggata	g gacacagaa	a cacagecatt	53160
aaaagaaag	t ttaaaagaa	g gaaattcacc	caaaccatt	t gaatacagt	a agtgtattca	53220
tctttcgat	a ttcccctgt	c catatctaca	catatactt	t tttttatag	t asatagttct	53280
gtattttgc	c ctgcatttc	c cttgtgttta	ctatccagt	c ttcctgttt.	a tcatttttgt	53340
cgacaacat	g aaattctati	t gagagactgt	ctgaacata	t tgtaatgtag	g atgttcaggt	53400
ttttccagt	t tototttace	a ataggtattt	aactacagt	g agcagtttt	tgcatttagc	53460
taatttctc	c tttgaggaaq	; tattttcaaa	attaccttt	a ttcttctca	gtaataattt	53520
cattattac	c aaagttacco	taggtctttt	caagtgtgt	g gttaaaaaa	gagaatctgg	53580
ctgggcgcg	a tggctcacac	ctgtaatccc	agcactttg	g gaggetgage	ctggtggatc	53640
acctgaggt	c tggagttcga	gaccagcctg	gccaacatg	; tgaaacccca	tctctactaa	53700
aaatacaaa	a cttagccago	, catggtggca	ggtgcctgta	accccageta	cttgggaggc	53760
tgaggcagga	a gaattgettg	aacccagggg	cggaggttg	agtgagccga	tatcacgcca	53820
ttgcactcca	a gcctcggcaa	caagagtgaa	actctgtctc	aaaaatgggg	ttcttttcct	53880
gccatcaaaa	atcatgtttc	ttttaaaaac	aagttcaaac	attaccaaag	tttatagcac	53940
aggaaatacq	, tcttctgtaa	tctcccttaa	ccaatatato	cctcaacatt	ctcctcaccc	54000
ccaactccac	cctcccagga	taaccagttg	ggacataato	tttatttaaa	aatggtttcc	54060
ggatagagaa	agcgcttcgg	cggcggcagc	cccggcggcg	gccgcagggg	acaaagggcg	54120
ggcggatcgg	cggggagggg	gcggggcgcg	accaggccag	gcccgggggc	tccgcatgct	54180
gcagctgcct	ctegggegee	cccgccgccg	ccctcgccgc	ggagccggcg	agctaacctg	54240
agccagccgg	cgggcgtcac	ggaggcggcg	gcacaaggag	gggccccacg	cgcgcacgtg	54300
gccccggagg	ccgccgtggc	ggacagcggc	accgcggggg	gcgcggcgtt	ggcggccccg	54360
gccccggccc	ccaggccagg	cagtggcggc	caaggaccac	gcatctactt	tcagagecee	54420
ccccggggcc	gcaggagagg	gcccgggctg	ggcggatgat	gagggcccag	tgaggcgcca	54480
agggaaggtc	accatcaagt	atgaccccaa	ggagctacgg	aagcacctca	acctagagga	54540
gtggatcctg	gagcagctca	cgcgcctcta	cgactgccag	gaagaggaga	tctcagaact	54600
agagattgac	gtggatgagc	tcctggacat	ggagagtgac	gatgcctggg	cttccagggt	54660
caaggagctg	ctggttgact	gttacaaacc	cacagaggcc	ttcatctctg	gcctgctgga	54720
caagatccgg	gccatgcaga	agctgagcac	accccagaag	aagtgagggt	ccccgaccca	54780
ggcgaacggt	ggctcccata	ggacaatcgc	taccccccga	cctcgtagca	acagcaatac	54840
cgggggaccc	tgcggccagg	cctggttcca	tgagcagggc	tcctcgtgcc	cctggcccag	54900
gggtctcttc	ccctgccccc	tcagttttcc	acttttggat	ttttttattg	ttattaaact	54960
gatgggactt	tgtgtttta	tattgactct	geggeaeggg	ccctttaata	aagcgaggta	55020
gggtacgcct	ttggtgcagc	tcaaaaaaaa .	aaaaaaaaat	gatttccagc	ggtccacatt	55080
agagttgaaa	ttttctggtg	ggagaatcta	taccttgttc	ctttataggc	caaggaccgc	55140
gtccttcag	taacaccagt	gtaaaagctt (gaggagaaat	tgtgaagcta	cacagtattt	55200
gttttctaat	acctcttgtc	attctaaata 1	tctttaattt	attaaaaaat	atatatatac	55260

agtattgaa	t gcctactgt	g tgctaggta	c agttctaaac	acttgggtt	a cagcagcgaa	55320
caaaataaa	g gtgcttacc	c tcatagaac	a tagattotaç	g catggtatct	t actgtatcat	55380
acagtagat	a caataagta	a actatattg	a atattagaat	gtggcagat	g ctatggaaaa	55440
agagtcaag	a caagtaaag	a cgattgttc	a gggtaccagt	tgcaatttta	a aatatggtcg	55500
tcagagcag	g cctcactga	g gtgacatga	c atttaagcat	aaacatggag	g gaggaggagt	55560
aagcctgag	c tgtcttagg	c ttccggggc	gccaagccat	: ttccgtggc	ctaggagcct	55620
ggtgtttcc	g attccacct	t tgataactg	attttctcte	agatatggga	gggaagtttt	55680
tctcctatt	g tttttaagt	a ttaactcca	g ctagtccago	cttgttatag	; tgttacctaa	55740
tctttatag	c adatatatg	a ggtaccggta	a acattatgcc	catttctcac	: agaggcacta	55800
ctaggtgaa	g gagtttgcc	t gacgttatac	aaccaggaag	tagctgagcc	tagatocott	55860
CCACCCACC	c catggccct	g ctcatgttc	acctgcctct	aatttacctc	ttttccttct	55920
agaccagca	t tctcgaaati	t ggaggactco	tttgaggccc	tctccctgta	cctgggggag	55980
ctgggcatco	c cgctgcctg	agagetggag	gagttggacc	acactgtgag	catgcagtac	56040
ggcctgacco	gggactcac	tccctagccc	: tggcccagcc	ccctgcaggg	gggtgttcta	56100
cagccagcat	tgeccetete	g tgccccattc	ctgctgtgag	cagggccgtc	cgggcttcct	56160
gtggattgg	ggaatgttt	a gaagcagaac	aagccattcc	tattacctcc	ccaggaggca	56220
agtgggcgca	gcaccaggga	aatgtatcto	cacaggttct	ggggcctagt	tactgtctgt	56280
aaatccaata	cttgcctgaa	agctgtgaag	aagaaaaaa	cccctggcct	ttgggccagg	56340
aggaatctgt	tactcgaatc	cacccaggaa	ctccctggca	gtggattgtg	ggaggctctt	56400
gcttacacta	atcagcgtga	cctggacctg	ctgggcagga	tcccagggtg	aacctgcctg	56460
tgaactctga	agtcactagt	ccagctgggt	gcaggaggac	ttcaagtgtg	tggacgaaag	56520
aaagactgat	ggctcaaagg	gtgtgaaaaa	gtcagtgatg	ctcccccttt	ctactccaga	56580
tcctgtcctt	cctggagcaa	ggttgaggga	gtaggttttg	aagagtccct	taatatgtgg	56640
tggaacaggc	caggagttag	agaaagggct	ggcttctgtt	tacctgctca	ctggctctag	56700
ccagcccagg	gaccacatca	atgtgagagg	aagcctccac	ctcatgtttt	caaacttaat	56760
actggagact	ggctgagaac	ttacggacaa	catcctttct	gtctgaaaca	aacagtcaca	56820
agcacaggaa	gaggctgggg	gactagaaag	aggccctgcc	ctctagaaag	ctcagatctt	56880
ggcttctgtt	actcatactc	gggtgggctc	cttagtcaga	tgcctaaaac	attttgccta	56940
aagctcgatg	ggttctggag	gacagtgtgg	cttgtcacag	gcctagagtc	tgagggaggg	57000
gagtgggagt	ctcagcaatc	tcttggtctt	ggcttcatgg	caaccactgc	tcacccttca	57060
acatgcctgg	tttaggcagc	agcttgggct	gggaagaggt	ggtggcagag	tctcaaagct	57120
gagatgctga	gagagatagc	tccctgagct	gggccatctg	acttctacct	cccatgtttg	57180
ctctcccaac	tcattagctc	ctgggcagca	tcctcctgag	ccacatgtgc	aggtactgga	57240
aaacctccat	cttggctccc	agagctctag	gaactcttca	tcacaactag	atttgcctct	57300
tctaagtgtc	tatgagcttg	caccatattt	aataaattgg	gaatgggttt	ggggtattaa	57360
tgcaatgtgt	ggtggttgta	ttggagcagg	gggaattgat	aaaggagagt	ggttgctgtt	57420
aatattatct	tatctattgg	gtggtatgtg	aaatattgta	catagacctg	atgagttgtg	57480
ggaccagatg	tcatctctgg	tcagagttta	cttgctatat	agactgtact	tatgtgtgaa	57540
			ggactcccag			57600

gtgtggctg	g ttgtttcct	gctgtcccca	gcaagtgtag	gagtggtggg	cctgaactgg	57660
gccattgat	c agactaaat	a aattaagcag	ttaacataac	tggcaatatg	gagagtgaaa	57720
acatgattg	g ctcagggace	taaatgtaga	gggtctgcta	gccaccttct	ggcctagccc	57780
acacaaact	cccatagcag	g agagttttca	tgcacccaag	tctaaaaccc	tcaagcagac	57840
acccatctgo	c tctagagaat	atgtacatcc	cacctgagge	agccccttcc	ttgcagcagg	57900
tgtgactgac	tatgaccttt	tcctggcctg	gctctcacat	gccagctgag	tcattcctta	57960
ggagccctad	cctttcatco	tctctatatg	aatacttcca	tagcctgggt	atcctggctt	58020
gctttcctca	gtgctgggtg	ccacctttgc	aatgggaaga	aatgaatgca	agtcacccca	58080
ccccttgtgt	ttccttacaa	gtgcttgaga	ggagaagacc	agtttcttct	tgcttctgca	58140
tgtgggggat	gtcgtagaag	agtgaccatt	gggaaggaca	atgctatctg	gttagtgggg	58200
ccttgggcac	aatataaatc	tgtaaaccca	aaggtgtttt	ctcccaggca	ctctcaaagc	58260
ttgaagaato	caacttaagg	acagaatatg	gttcccgaaa	aaaactgatg	atctggagta	58320
cgcattgctg	gcagaaccac	agagcaatgg	ctgggcatgg	gcagaggtca	tctgggtgtt	58380
		gctgaaatcc				58440
ggtatcttt	cttctggagt	catagtagtc	accttgcagg	gaacttcctc	agcccagggc	58500
		cccttcctcc				58560
		Cacccaaccc				58620
tctagatatt	cattttaact	acctccacct	tggaaacaat	tgctgaaggg	gagaggattt	58680
gcaatgacca	accaccttgt	tgggacgcct	gcacacctgt	ctttcctgct	tcaacctgaa	58740
agattcctga	tgatgataat	ctggacacag	aagccgggca	cggtggctct	agcctgtaat	58800
ctcagcactt	tgggaggcct	cagcaggtgg	atcacctgag	atcaagagtt	tgagaacagc	58860
ctgaccaaca	tggtgaaacc	ccgtctctac	taaaaataca	aaaattagcc	aggtgtggtg	58920
		ctactctgga				58980
aaggcagagg	ttgcagtgag	gcgagatcat	gccattgcac ·	tccagcctgt	jcaacaagag	59040
ccaaactcca	tctcaaaaaa	4444				59065

<210> SEQ ID NO 4 <211> LENGTH: 265 <212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp 35 40 45

Pro Phe Pro Trp Gln Gln Lys Val Arg Phe Ala Lys Gly Ile Ala Ser 50 60

Gly Met Ala Tyr Leu His Ser Met Cys Ile Ile His Arg Asp Leu Asn 70 70 80

Ser His Asn Cys Leu Ile Lys Leu Asp Lys Thr Val Val Val Ala Asp 90 95

Phe Gly Leu Ser Arg Leu Ile Val Glu Glu Arg Lys Arg Ala Pro Met 100 $$100\,$

_	_			_											
Glu	Lys	Ala 115	Thr	Thr	Lys	Lys	120	Thr	Leu	Arg	Lys	125	Asp	Arg	Lys
Lys	Arg 130	Tyr	Thr	Val	Val	Gly 135	Asr	Pro	Туг	Trp	Met 140		Pro	Glu	Met
Leu 145	Asn	Gly	Lys	Ser	Tyr 150	Asp	Glu	Thr	Val	Авр 155	Ile	Phe	Ser	Phe	Gly 160
Ile	Val	Leu	Сув	Glu 165	Ile	Ile	Gly	Gln	Val 170	Tyr	Ala	Asp	Pro	Asp 175	Сув
Leu	Pro	Arg	Thr 180	Leu	Asp	Phe	Gly	Leu 185	naA	Val	Lys	Leu	Phe 190	Trp	Glu
Lys	Phe	Val 195	Pro	Thr	Asp	Сув	Pro 200	Pro	Ala	Phe	Phe	Pro 205	Leu	Ala	Ala
Ile	Сув 210	Сув	Arg	Leu	Glu	Pro 215	Glu	Ser	Arg	Pro	Ala 220	Phe	Ser	Lys	Leu
Glu 225	Asp	Ser	Phe	Glu	Ala 230	Leu	Ser	Leu	Tyr	Leu 235	Gly	Glu	Leu		Ile 240
Pro	Leu	Pro	Ala	Glu 245	Leu	Glu	Glu	Leu	Asp 250	His	Thr	Val	Ser	Met 255	Gln
Tyr	Gly		Thr 260	Arg	Asp	Ser	Pro	Pro 265							

That which is claimed is:

1. An isolated nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
- (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
- 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.
 - 3. A host cell containing the vector of claim 2.
- 4. A process for producing a polypeptide comprising nucleic acculturing the host cell of claim 3 under conditions sufficient 45 sequence. for the production of said polypeptide, and recovering the peptide from the host cell culture.

- 5. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:1.
- 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
- (b) a nucleic acid molecule consisting of the nucleic acid 35 selected from the group consisting of a plasmid, virus, and bacteriophage.
 - 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
 - 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter