E. The most beautiful equation in mathematics

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Akash Datta is learning about the most beautiful concept in mathematics. The most beautiful equation in mathematics is widely considered to be:

$$e^{i\pi} + 1 = 0$$

This is called **Euler's Identity**, and it's celebrated because it connects five of the most fundamental constants in all of mathematics:

- 1. e the base of natural logarithms
- 2. i the imaginary unit, where $i^2 = -1$
- 3. π the ratio of a circle's circumference to its diameter
- 4. 1 the multiplicative identity
- 5. 0 the additive identity

To prove the equation:

$$e^{ix} = cos(x) + isin(x)$$

we can plug in $x = \pi$:

$$e^{i\pi} = \cos(\pi) + i\sin(\pi)$$

$$e^{i\pi} = \cos(\pi) + i\sin(\pi)$$

$$e^{i\pi} = (-1)^{1} + i * 0$$

$$e^{i\pi} = -1 + 0$$

$$e^{i\pi} = -1$$

So the **Euler's Identity** becomes:

$$e^{i\pi} + 1 = 0$$

But now **Akash Datta** is curious about the generalized form:

$$e^{ni\pi} + 1 = ?$$

She knows that for any non-negative integer n (n = 0, 1, 2, 3, ...):

$$e^{nix} = \cos(nx) + i\sin(nx)$$

Help her find the value of the expression $e^{ni\pi} + 1$ for different values of n.

Input

The input contains multiple test cases.

The first line contains a single integer t $(1 \le t \le 10^4)$ — the number of test cases. Each of the next t lines contains a single integer n $(0 \le n \le 10^9)$.

Output

For each test case, output the value of the expression $e^{ni\pi} + 1$ on a new line.

Example

standard input	standard output
2	2
0	0
1	

Note

- 1. $\cos(n\pi) = (-1)^n$
- $2. \sin(n\pi) = 0$
- 3. $i = \sqrt{-1}$
- 4. $\pi \approx 3.1415$
- 5. $e \approx 2.718$