Project: Investigate a Dataset (The Movie Database - TMDb)

Table of Contents

- Introduction
- · Questions I am going to ask and find
- Data Wrangling
- Exploratory Data Analysis
- Analysis Shortcoming and Data limitations
- Conclusions

Introduction

I have selected TMDB Movie dataset which contains over 10,000 movies including user rating, authors, budget and revenue. In the following I will descirbe my understnding about columns of the table.

- id Unique id of each movie
- imdb_id Unique ID to access the movie from IMDB (https://www.imdb.com/title/tt0369610/)
- popularity Popularity range from 0 to 33.
- budget Estimated budget in dollars (precise to extracted date)
- revenue Revenue in dollars (precise to extracted date)
- original_title Title of the movie
- cast Top actors/actresses/cast
- homepage web home page address
- director director name
- tagline short text like search keyword
- keywords movie keywords, need to split by |
- overview Short description/storyline
- runtime duration of the movie
- genres genres need to split by |
- production companies productioners, need to split by |
- · release date Released date
- vote count integer
- vote average average vote
- budget_adj, revenue_adj The final two columns ending with "_adj" show the budget and revenue of the associated movie in terms of 2010 dollars

I would like to investigate some patterns associated with genres, revenues, budget and profit. Timeline such as release_year grouping is mostly important to do this task. After reviewing the dateset, we can clearly see NaN/NULL values exist. I am dropping related NULL rows. Therefore, I decided to work with seperate dataset for each Research questions to preserve original one(Maybe, i will need some of columns to investigate). So, I am transforming main

dataframe to sub-dataframes. For example, $df_q1(dataframe for research question 1)$ will be created from main df(dataframe),. df_q2 - dataframe for research question 2 and so on... Overall, you can consider df_qN s are cleaned dataset.

Questions I am going to ask and find.

- Which genres are most popular from year to year?
- What kinds of properties are associated with movies that have high revenues?
- Which movies made the most profit, yearly?

```
In [1]: import pandas as pd # CSV reader pandas library
import matplotlib.pyplot as plt # Matplotlib for styling
import seaborn as sns # Seaborn data visualization library
import matplotlib.pyplot as plt # Matplotlib for styling
import matplotlib.ticker as ticker #tick locators and formatters
import numpy as np # Numpy library
#to draw the graphs inline
%matplotlib inline
pd.options.mode.chained_assignment = None
```

Data Wrangling

General Properties

In the following several lines, I am reviewing the given dataset by printing several rows, all columns, desciribe, info, hist() and null_values checking for the reason of determining properties and relationships.

In [2]: ### Importing city_list.csv file into city_lists file object
 df = pd.read_csv('./dataset/tmdb-movies.csv')
 df.head(3)

Out[2]:

	id	imdb_id	popularity	budget	revenue	original_title	cast	
0	135397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	
1	76341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	
2	262500	tt2908446	13.112507	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	http://www.the

3 rows × 21 columns

In [3]: df.tail(3)

Out[3]:

	id	imdb_id	popularity	budget	revenue	original_title	cast	homepage
10863	39768	tt0060161	0.065141	0	0	Beregis Avtomobilya	Innokentiy Smoktunovskiy Oleg Efremov Georgi Z	NaN
10864	21449	tt0061177	0.064317	0	0	What's Up, Tiger Lily?	Tatsuya Mihashi Akiko Wakabayashi Mie Hama Joh	NaN
10865	22293	tt0060666	0.035919	19000	0	Manos: The Hands of Fate	Harold P. Warren Tom Neyman John Reynolds Dian	NaN

3 rows × 21 columns

Some of my reviews for necessary columns

- It seems from below that id, budget_adj and revenue_adj don't neccessary for my Research Questions.
- It seems from below that more thean 50% of the budget and revenue equals to zero.
- It seems from below that popularity value ranges from 0 to 33
- It seems from below that there exists runtime of the movies equal to zero

In [5]: df.describe()

Out[5]:

	id	popularity	budget	revenue	runtime	vote_count	vote_
count	10866.000000	10866.000000	1.086600e+04	1.086600e+04	10866.000000	10866.000000	1086
mean	66064.177434	0.646441	1.462570e+07	3.982332e+07	102.070863	217.389748	;
std	92130.136561	1.000185	3.091321e+07	1.170035e+08	31.381405	575.619058	(
min	5.000000	0.000065	0.000000e+00	0.000000e+00	0.000000	10.000000	
25%	10596.250000	0.207583	0.000000e+00	0.000000e+00	90.000000	17.000000	1
50%	20669.000000	0.383856	0.000000e+00	0.000000e+00	99.000000	38.000000	(
75%	75610.000000	0.713817	1.500000e+07	2.400000e+07	111.000000	145.750000	(
max	417859.000000	32.985763	4.250000e+08	2.781506e+09	900.000000	9767.000000	•

It seems from below that homepage, tagline and keywords columns doesn't seem usefull for further analysis. So, I will not consider them in my sub-dataframes. Worth to note that, length of the column genres is not equal to 10866. So, it means I have to consider NULL values and drop them.

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	10866 non-null	int64
1	imdb_id	10856 non-null	object
2	popularity	10866 non-null	float64
3	budget	10866 non-null	int64
4	revenue	10866 non-null	int64
5	original_title	10866 non-null	object
6	cast	10790 non-null	object
7	homepage	2936 non-null	object
8	director	10822 non-null	object
9	tagline	8042 non-null	object
10	keywords	9373 non-null	object
11	overview	10862 non-null	object
12	runtime	10866 non-null	int64
13	genres	10843 non-null	object
14	production_companies	9836 non-null	object
15	release_date	10866 non-null	object
16	vote_count	10866 non-null	int64
17	vote_average	10866 non-null	float64
18	release_year	10866 non-null	int64
19	budget_adj	10866 non-null	float64
20	revenue_adj	10866 non-null	float64

dtypes: float64(4), int64(6), object(11)

memory usage: 1.7+ MB

```
In [7]: # to see wich columns have, how many NULL values
        df.isna().sum()
Out[7]: id
                                    0
        imdb id
                                   10
        popularity
                                    0
        budget
                                    0
        revenue
                                    0
        original_title
                                    0
                                   76
        cast
                                 7930
        homepage
        director
                                   44
        tagline
                                 2824
        keywords
                                 1493
        overview
                                    4
        runtime
                                    0
        genres
                                   23
        production companies
                                 1030
        release date
                                    0
        vote_count
                                    0
        vote_average
                                    0
        release year
                                    0
        budget adj
                                    0
        revenue adj
        dtype: int64
In [8]: # count zero values on `budget`, `revenue` and `popularity`
        print('Zero values of Budget: ', df.query('budget == 0').count()['budget'])
        print('Zero values of Revenue: ', df.query('revenue == 0').count()['revenue
        Zero values of Budget:
                                 5696
        Zero values of Revenue: 6016
In [9]: # to check if popularity ranges mostly > 0 and less than 10
        df.query('popularity < 10')['popularity']</pre>
Out[9]: 4
                  9.335014
        5
                  9.110700
        6
                  8.654359
        7
                  7.667400
                  7.404165
        10861
                  0.080598
        10862
                  0.065543
        10863
                  0.065141
        10864
                  0.064317
                  0.035919
        10865
        Name: popularity, Length: 10855, dtype: float64
```

In [10]: df.iloc[:, 1:].hist(figsize=(10,10));

Data is described according to the above histograms. Which means, only visible value ranges is considered. We will check more exact values in the following.

- It seems from below that popularity table's almost all values ranges from 0 to 10.
- Budget table ranges from 0 million to 300 million. Currency name is not available, but should be dollar I think.
- Revenue table ranges from 0 billion to 1 billion. Currency name is not available, but should be dollar I think.
- Runtime ranges mostly from 0 to 200

- vote average seems almost symmetric
- and so on ...

```
In [11]: # to determine, if release year have missing value
          null_data_release_year = df[df['release_year'].isnull()]
          null_data_release_year.head(3)
Out[11]:
             id imdb id popularity budget revenue original title cast homepage director tagline ...
                                                                                              ove
          0 rows × 21 columns
In [12]: # to determine, if release year have missing value
          null data genres = df[df['genres'].isnull()]
          # null data genres.shape
          null data genres.head(2)
Out[12]:
                        imdb_id popularity budget revenue original_title
                    id
                                                                                 cast homepage
                                                                                Diego
                                                                     Abatantuono|Matilde
                                 0.244648
                                                          Belli di papÃ
           424 363869 tt4835298
                                                                                           NaN
                                                                           Gioli|Andrea
                                                                              Pisani|...
                                                          All Hallows'
           620 361043 tt5022680
                                 0.129696
                                               0
                                                                                 NaN
                                                                                           NaN
```

2 rows × 21 columns

Data Cleaning (Dropping, unique, merging, grouping, duplicate values)

Here, I decided to remove values of budget and revenue that equals to 0 at the same time. However, I will keep rows if one of them is not equals to zero

Eve 2

```
In [13]: # deleteing rows when budget and revenue eugals to zero
   indexes_to_delete= df.query('budget == 0 and revenue == 0').index
   df.drop(indexes_to_delete, inplace = True)
   df.shape
Out[13]: (6165, 21)
```

Here, I will asses mean value of budget when it is equal to 0; However, I decided to give budget value to its revenue for avoiding big difference in values. I mean, I thought movie's profit at least should equal to its budget.)

```
In [15]: # Chech if zero values on `budget` and `revenue` exists
    print('Zero values of Budget: ', df.query('budget == 0').count()['budget'])
    print('Zero values of Revenue: ', df.query('revenue == 0').count()['revenue
```

Zero values of Budget: 0 Zero values of Revenue: 0

To answer Q1(Question - 1), I decided to transform given dataframe to df_q1 which will be comfortable to draw barplot. The answer of the question 1 can be found in release_year and genres. Therefore, I did some cleaning process as following to above mentioned columns.

genres

```
In [16]: # to select non-null genres with release_year for Question 1 (Q1)
    df_q1 = df.dropna(subset=['genres'])[['release_year','genres']]
# To determine the non-null values lengh
    print('Lenght of Q1 dataset : ', len(df_q1))
    df_q1.head(4)
```

Lenght of Q1 dataset: 6164

release vear

Out[16]:

genies	reiease_year	
Action Adventure Science Fiction Thriller	2015	0
Action Adventure Science Fiction Thriller	1 2015	1
Adventure Science Fiction Thriller	2 2015	2
Action Adventure Science Fiction Fantasy	3 2015	3

```
In [17]: # Finding the unique values of the year
df_q1['release_year'].unique()
```

```
Out[17]: array([2015, 2014, 1977, 2009, 2010, 1999, 2001, 2008, 2011, 2002, 1994, 2012, 2003, 1997, 2013, 1985, 2005, 2006, 2004, 1972, 1980, 2007, 1979, 1984, 1983, 1995, 1992, 1981, 1996, 2000, 1982, 1998, 1989, 1991, 1988, 1987, 1968, 1974, 1975, 1962, 1964, 1971, 1990, 1961, 1960, 1976, 1993, 1967, 1963, 1986, 1973, 1970, 1965, 1969, 1978, 1966])
```

```
In [18]: # Grouping all other genres in the same year by using `/` character
    df_q1['genres']= df_q1.groupby('release_year')['genres'].transform(lambda x
    df_q1.head()
```

Out[18]:

	release_year	genres
0	2015	Action Adventure Science Fiction Thriller Acti
1	2015	Action Adventure Science Fiction Thriller Acti
2	2015	Action Adventure Science Fiction Thriller Acti
3	2015	Action Adventure Science Fiction Thriller Acti
4	2015	Action Adventure Science Fiction Thriller Acti

```
In [19]: #droping duplicate values after merging dataset of `df_q1`
    df_q1 = df_q1.drop_duplicates()

# sorting values to draw barplot in ascending order
    df_q1 = df_q1.sort_values(by=['release_year'])
```

```
In [20]: # to check if release_year is sorted
df_q1.head(4)
```

Out[20]:

	release_year	genres
10141	1960	Drama Horror Thriller Action Adventure Western
10110	1961	Adventure Animation Comedy Family Comedy Drama
9849	1962	Adventure Action Thriller Adventure Drama Hist
10438	1963	Action Thriller Adventure Horror Comedy Myster

```
In [21]: # to check if genres is merged correctly by manually checking original data
df_q1['genres'][10141]
```

Out[21]: 'Drama|Horror|Thriller|Action|Adventure|Western|Action|Drama|History|Come dy|Drama|Romance|Thriller|Adventure|Fantasy|Science Fiction|Romance|Comed y|Drama|Romance|Horror|Thriller|Comedy|Horror|Science Fiction|Comedy|Family|Comedy|Romance'

```
In [22]: # shape should be equal to df_q1['release_year'].unique() value, manually c
df_q1.shape
```

Out[22]: (56, 2)

Exploratory Data Analysis

Research Question 1 (Which genres are most popular from year to vear?)

Importance of the Research Question 1

By analayzing the question, we can explore which genres are in demand from year to year as well as overall. I am also going to determine top 2 genres every year to know more insights.

To explore, I am going to work with genres and release_year columns. To Explore Question 1 visually, I have to split genres by | character and should create columns to each genre with argument count values.

Mainly, I am planning to use barplot and piechart in my statistics result.

Function get_genre_frequency splits the genres and return it as numpy.ndarray like tuple. So, it returns unique - unique genre name and counts - counts the number of its appearance

```
In [23]: def get_genre_frequency(genres):
    array = np.array(genres.split('|'))
    (unique, counts) = np.unique(array, return_counts=True)
    return np.asarray((unique, counts)).T
```

Function create_each_genre_columns . Here, I am transferring all genres values into columns which is resulted from get genre frequency function.

```
In [24]: def create_each_genre_columns(np_genre_frequencies, df, ind):
    for unique, counts in np_genre_frequencies:
        if unique not in df.columns:
            df[unique] = 0
            df[unique][ind] = counts
        return df
```

Function create_the_most_popular_genre_columns is created to visualize the winner of the genres from year to year.

```
In [25]: def create_the_most_popular_genre_columns(np_genre_frequencies, df, ind):
    df['popular_genre_count'] = df.iloc[:, 4:].max(axis=1)
    df['popular_genre_name'] = df.iloc[:, 4:].idxmax(axis=1)
    return df
```

Here I am running above 3 functions to create df q1 by considering index.

```
In [26]: df_q1['popular_genre_name'] = 'UNKNOWN'
    df_q1['popular_genre_count'] = 0
    for ind in df_q1.index:
        np_genre_frequencies = get_genre_frequency(df_q1['genres'][ind])
        df_q1 = create_each_genre_columns(np_genre_frequencies, df_q1, ind)
        df_q1 = create_the_most_popular_genre_columns(np_genre_frequencies, df_df_q1.head(10))
```

Out[26]:

	release_year	genres	popular_genre_name	popular_
10141	1960	Drama Horror Thriller Action Adventure Western	Comedy	
10110	1961	Adventure Animation Comedy Family Comedy Drama	Drama	
9849	1962	Adventure Action Thriller Adventure Drama Hist	Drama	
10438	1963	Action Thriller Adventure Horror Comedy Myster	Adventure	
9881	1964	Adventure Action Thriller Drama Comedy War Com	Drama	
10689	1965	Adventure Action Thriller Drama Family Music R	Action	
10820	1966	Animation Family Comedy Drama Drama Family Adv	Adventure	
10398	1967	Family Animation Adventure Comedy Drama Romanc	Drama	
9719	1968	Science Fiction Mystery Adventure Adventure Sc	Drama	
10724	1969	Adventure Action Thriller History Drama Wester	Drama	
4.0	0.4			

10 rows × 24 columns

```
In [27]: # Ranaming release_year to Years for convinience
    df_q1.rename(columns={'release_year': 'Years'}, inplace=True)
    df_q1.head(3)
```

Out[27]:

	Years	genres	popular_genre_name	popular_genre_
10141	1960	Drama Horror Thriller Action Adventure Western	Comedy	
10110	1961	Adventure Animation Comedy Family Comedy Drama	Drama	
9849	1962	Adventure Action Thriller Adventure Drama Hist	Drama	

3 rows × 24 columns

```
In [28]: # This cells code has been copied from here
#[https://towardsdatascience.com/reordering-pandas-dataframe-columns-thumbs
# Aim of this function is to change the position of the columns
def movecol(df, cols_to_move=[], ref_col='', place='After'):

    cols = df.columns.tolist()
    if place == 'After':
        seg1 = cols[:list(cols).index(ref_col) + 1]
        seg2 = cols_to_move
    if place == 'Before':
        seg1 = cols[:list(cols).index(ref_col)]
        seg2 = cols_to_move + [ref_col]

    seg1 = [i for i in seg1 if i not in seg2]
    seg3 = [i for i in cols if i not in seg1 + seg2]

    return(df[seg1 + seg2 + seg3])
```

Out[29]:

genres popular_genre_name popular_genre_count

10141	Drama Horror Thriller Action Adventure Western	Comedy	5
10110	Adventure Animation Comedy Family Comedy Drama	Drama	9
9849	Adventure Action Thriller Adventure Drama Hist	Drama	10

3 rows × 24 columns

Answer to Q1 (Question 1).

It is obvious that Drama genres movies is the most popular from the below bar plot. However, rarely we can see comedy genre movies can beat the Drama genre movies.

```
In [31]: # Here I am using `Years`, `popular_genre_count` and `popular_genre_name` c
    fig, ax1 = plt.subplots(figsize=(16, 10))
    ax1.set_title('The most popular genres over years', fontsize=16)
    ax1.set_xlabel('Years', fontsize=16)
    ax1.set_ylabel('Count', fontsize=16)
    ax1 = sns.barplot(x='Years', y='popular_genre_count', hue='popular_genre_na
    plt.xticks(rotation=70)
    plt.show()
    sns.despine(fig)
```


According to the bar plot above Drama genre is the most popular genres over years, whereas you can rarely see some comedy, advanture and Action genre movies winning.

```
In [32]: # slicing df_q1 dataframe for pie chart data
    df_q1_1 = df_q1.loc[:, 'Action':'TV Movie']
    df_q1_1 = df_q1_1.sum(axis = 0)
```

In [33]: #Using matplotli'sb pie chart pie, ax = plt.subplots(figsize=[10,6]) labels = list(df_q1_1.index.values) explode = np.full(shape=len(labels), fill_value=0.1, dtype=np.float64) plt.pie(x=df_q1_1, autopct="%.1f%%", explode=explode, labels=labels, pctdis plt.title("All Genres share", fontsize=14); pie.savefig("all_genres.png")

According to the pie chart above Drama genre is the most popular genres, the second is comedy , the third place is Thriller and follows Action , Adventure and so on.

To explore all other genres, I decided to draw bar plot by slicing the <code>df_q1</code> dataframe within 15 years

```
In [35]: # to draw the bar plot by grouping them yearly
def draw_bar_plot(title, df):
    fig, axl = plt.subplots(figsize=(14, 10))
    axl.set_title(title, fontsize=16)
    axl.set_xlabel('Years', fontsize=16)
    axl.set_ylabel('Count', fontsize=16)
    tidy = df.melt(id_vars='Years').rename(columns=str.title)
    axl = sns.barplot(x='Years', y='Value', hue='Variable', data=tidy)
    plt.xticks(rotation=70)

    change_width(axl, .3)
    plt.show()
    sns.despine(fig)
```

```
In [37]: # Bar Plot of all Genres from 1960 to 2015
         df q1 1 = get_top_three_genres(df q1.iloc[:30, 3:])
         draw bar_plot('Top 2 Genres for the first 30 years of period(1960-1989)', d
         df_q1_2 = get_top_three_genres(df_q1.iloc[30:56,3:])
         draw bar plot('Top 2 Genres for the second 24 years of period(1990-2015)',
```


^{ર્યું} કૃષ્ટ Years

1979 1980 1981 1982 1983

1972 1973

1965

1967 1968 1969

Top 2 Genres for the second 24 years of period(1990-2015)

Above two barplot shows top 2 number of genre from year to year. number of movies created from year to year in all periods have increased considerably. Especially, Drama is increased considerably higher than other genres

Research Question 2 (Q2.What kinds of properties are associated with movies that have high revenues?)

Importance of the Research Question 2

In this research question, I am going to find out which properties are most important to make big profit. For example, does investing high amount of budget will be reason to make high revenue? or Does length(runtime) of movie realted? and etc...

- In the analysis process, firstly, I will find out correlation between continuous number columns. Regression plot of seaborn will be appropriate:
- Then I will explore it using Seaborn's heatmap plot

To answer the question following posts' idea is partially used

https://towardsdatascience.com/correlation-is-simple-with-seaborn-and-pandas-28c28e92701e (https://towardsdatascience.com/correlation-is-simple-with-seaborn-and-pandas-28c28e92701e).

None of code is copied!

```
In [38]: # to see the highest revenue value
df_q2 = df.sort_values(by ='revenue', ascending=False)
df_q2.head(2)
```

Out[38]:

	id	imdb_id	popularity	budget	revenue	original_title	cast	
1386	19995	tt0499549	9.432768	237000000.0	2781505847	Avatar	Sam Worthington Zoe Saldana Sigourney Weaver S	
3	140607	tt2488496	11.173104	200000000.0	2068178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	http://

2 rows × 21 columns

```
In [39]: def plot_correlation(xPlot, YPlot, df, title, isCurrency):
             fig, ax1 = plt.subplots(figsize=(7, 4))
             ax1 = sns.reqplot(x=xPlot, y=YPlot, data=df);
             ax1.set title(title, fontsize=16)
             ax1.set(xlim = (min(df[xPlot]), max(df[xPlot])))
             ax1.set(ylim = (min(df[YPlot]), max(df[YPlot])))
             xlabels = ['$\{:,.2f\}'.format(x) + 'B' for x in ax1.get xticks()/1000000]
             ticks loc = ax1.get xticks().tolist()
             ax1.xaxis.set major locator(ticker.FixedLocator(ticks loc))
             ax1.set xticklabels(xlabels)
             ax1.xaxis.set_tick_params(which='major', labelcolor='green')
             if isCurrency:
                 ylabels = ['\$\{:,.2f\}'.format(x) + 'B' for x in ax1.get_yticks()/100]
                 ticks loc = ax1.get yticks().tolist()
                 ax1.yaxis.set major locator(ticker.FixedLocator(ticks loc))
                 ax1.set yticklabels(ylabels)
                 ax1.yaxis.set tick params(which='major', labelcolor='green',
                                       labelleft=True, labelright=False)
             plt.show()
```

```
In [40]: plot_correlation('revenue', 'budget', df_q2, 'Revenue vs Budget in Billions
    plot_correlation('revenue', 'popularity', df_q2, 'Revenue vs Popularity', F
    plot_correlation('revenue', 'vote_count', df_q2, 'Revenue vs Vote Count', F
    plot_correlation('revenue', 'runtime', df_q2, 'Revenue vs Runtime', False);
```


- It seems Revenue vs Budget and Revenue vs Vote Count have positive correlation whereas others not much correlated.
- It seems number of movies that spent more than 200 million dollar budget is very scarce.
- It seems most of the movies doesn't earn more than 4000 vote count.
- It seems Runtime doesn't much related to movie's revenue

Let's check the following cells with exact numbers.

```
In [41]: # to calculate correaltion between continuous numbers
correlations = df_q2.corr()
```

In [42]: correlations.iloc[1:, 1:]

Out[42]:

	popularity	budget	revenue	runtime	vote_count	vote_average	release_year	bu
popularity	1.000000	0.478008	0.641816	0.188585	0.794867	0.286433	0.145786	
budget	0.478008	1.000000	0.702172	0.242477	0.578710	0.084338	0.197265	1
revenue	0.641816	0.702172	1.000000	0.222407	0.773191	0.215797	0.101229	1
runtime	0.188585	0.242477	0.222407	1.000000	0.227404	0.304330	-0.102140	1
vote_count	0.794867	0.578710	0.773191	0.227404	1.000000	0.335786	0.166422	1
vote_average	0.286433	0.084338	0.215797	0.304330	0.335786	1.000000	-0.131538	1
release_year	0.145786	0.197265	0.101229	-0.102140	0.166422	-0.131538	1.000000	1
budget_adj	0.453438	0.920227	0.679727	0.301063	0.540527	0.092213	0.048262	
revenue_adj	0.580560	0.559666	0.908316	0.238660	0.682493	0.252553	-0.085461	1

Let's look at the revenue column from above and discuss:

- It is the most probable that spending high budget resulted high revenue.
- The second most probable association is vote_count . So, if vote_count is high, then movie can earn high amount of money.
- The third most probable association is popularity for revenue. So, It can be considered that if the popularit value is high then they earned high revenue
- runtime and vote average doesn't seem to be related to the revenue

In [43]: # Code idea is copied from [https://medium.com/@szabo.bibor/how-to-create-a
plt.figure(figsize=(16, 6))
heatmap = sns.heatmap(correlations.iloc[1:, 1:], vmin=-1, vmax=1, annot=Tru
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12);
plt.show()

Research Question 3 (Q3. Which movies made the most profit, yearly?)

Importance of the Research Question 3

In this research question, I am going to find out movies which made the highest amount of profit from year to year? By doing yearly, I will be able to know top profitable movie types.

```
In [44]: df_q3 = pd.DataFrame()
    df_q3['profit'] = df['revenue'] - df['budget']
    df_q3['year'] = df['release_year']
    df_q3['movie_name'] = df['original_title']
    df_q3.head()
```

Out[44]:

movie_name	year	profit	
Jurassic World	2015	1.363529e+09	0
Mad Max: Fury Road	2015	2.284364e+08	1
Insurgent	2015	1.852382e+08	2
Star Wars: The Force Awakens	2015	1.868178e+09	3
Furious 7	2015	1.316249e+09	4

```
In [45]: # df_q3 = df_q3.groupby(['year'], sort=True)['profit'].max()
    idxs = df_q3.groupby(['year'], sort=False)['profit'].transform(max) == df_q
    df_q3 = df_q3[idxs]
    df_q3 = df_q3.sort_values(by='year', ascending=True, na_position='first')
    df_q3 = df_q3.reset_index()
    df_q3.head(5)
```

Out[45]:

movie_name	year	profit	index	
Spartacus	1960	48000000.0	10143	0
One Hundred and One Dalmatians	1961	211880014.0	10110	1
Dr. No	1962	58500000.0	9849	2
From Russia With Love	1963	76398765.0	10438	3
Goldfinger	1964	121400000.0	9881	4

```
In [46]: | fig, ax1 = plt.subplots(figsize=(16, 10))
         ax1.set_title('Movies` profit', fontsize=16)
         ax1 = sns.barplot(x='year', y='profit', data=df_q3)
         plt.xticks(rotation=70)
         ylabels = [ ' \{ :, .2f \} '.format(x) + 'B' for x in ax1.get_yticks()/1000000000]
         ticks_loc = ax1.get_yticks().tolist()
         ax1.yaxis.set major locator(ticker.FixedLocator(ticks loc))
         ax1.set_yticklabels(ylabels)
         ax1.yaxis.set_tick params(which='major', labelcolor='green',
                               labelleft=True, labelright=False)
         def autolabel(rects):
             for i in range(0, len(rects)):
                 height = rects[i].get_height()
                 ax1.text(rects[i].get_x() + rects[i].get_width() / 2.,
                          1.01 * height,
                          df q3.iloc[i]['movie name'],
                          ha='center', va='bottom', rotation=90, color='black', fontd
         autolabel(ax1.patches)
         plt.show()
```


Analysis Shortcoming & Data Limitations

Please note that the report is expected to include a discussion about the limitations and shortcomings of the analysis and the dataset. For example, Do you think that the number of samples is a good representative of the population? Do you think that missing values might influence the results of the analysis? The analysis includes comparisons between different categories, you can discuss the importance of statistical test to appreciate the significance of the differences. Optionally you can even implement the appropriate statistical test.

Size of the table: (10866 - rows, 21 - columns)

Representation of samples can be sometimes challenging to process, for example, splitting genres by | character and transforming each unique value(with its count) to column dataframe can increase time complexity.

More than half of the data for column budget and revenue equal to zero, which requires dropping and replacing. For instance, I dropped given the dataframe rows when both of the columns equal to zero. However, if one of them is not equal to zero, I took mean for budget and for revenue equal to zero, I transformed budget value.

I believe, there are many aspects to explore the dataset. However, my solution above should work pretty well for genres, revenue and movies name.

Conclusions

Following summarizations I get from three research questions above

- Drama genre movies is the most popular from the below bar plot. However, rarely we can see comedy genre movies can beat the Drama genre movies.
- Action, Thriller, Romance genres are the next most made movies after Drama.
- Overall, there 20 unique genre movies in the dataset
- Correaltions beetwen revenue and other tables are as following:
 - Correlation beetwen revenue and vote count is the highest val = (0.79);
 - The second and third highest corresponds to budget(0.73) and popularity``(0.66), respectively;
 - It seems from the given dataset, runtime(0.16) and vote_average(0.17) properties doesn't associated with revenue.
- Avatar movive made the most profit, followed by Star Wars: The Force Awakens and Titanic

August 1, 01:29, 2021. Made by Sanatbek Matlatipov