CURSO "GEOESTADISTICA"

.....

Dr. Martín Díaz Viera¹, Dr. Ricardo Casar González², Ing. Van Huong Le³
1) Instituto Mexicano del Petróleo, Tel: 9175-6473, e-mail: mdiazv@imp.mx
2) e-mail: rcasar@yahoo.com.mx 3) e-mail: levanhuong15011989@gmail.com

Cálculo mediante el método de Kriging

1.- Considere el siguiente arreglo geométrico de puntos en una región rectangular Ω .

Se conoce que:

- En toda la región Ω , dada en la figura anterior, hay definida una función aleatoria estandarizada Z(u).
- La función aleatoria Z(u) se considera estacionaria de segundo orden y su variabilidad espacial es descrita mediante el siguiente variograma esférico e isotrópico:

$$\gamma(h) = 0.05 + 0.95esf_{a=50}(h)$$

Los valores de Z (u) en los puntos son u₁=10, u₂=20 y u₃=30, mientras que el valor en el punto u₀ es desconocido.

Para cada alumno, Los valores de Z (u) en los puntos u_1 , u_2 y u_3 se cambiará según la fórmula siguiente:

$$Z(u) = Z(u) * el número de la lista del alumno.$$

¿Calcule el valor estimado en el punto u_0 y obtenga la varianza del error de la estimación aplicando Kriging cuando d=5 y d=10, respectivamente?

Nota: Recuerde que el variograma esférico es de la forma:

$$esf_a(h) = \begin{cases} \frac{S}{2} \left\{ 3\left(\frac{h}{a}\right) - \left(\frac{h}{a}\right)^3 \right\} & para \ 0 \le h \le a \\ S & para \ h > a \end{cases}$$