Spectral Structure Prediction In Neural Networks

Lauren Koulias, Ian Murphy, Torin Stetina, Andrew Wildman

Overview

Software package using neural networks to predict the structure of simple organic molecules based on nuclear magnetic resonance data

Use Cases

Automatic structural prediction from ¹³C NMR

Train custom nets using modular framework provided by package

Visualize arbitrary chemical structures from connectivity information

DIRECT

Data Input

Export experimental data to a space delimited .txt file separating chemical shift, intensity, and multiplicity.

Prediction

Our neural network predicts the bonding behavior between atoms in the form of a connectivity matrix

Architecture

- $3,350 \rightarrow 1,000$; ELU
- 1,000 \rightarrow 3,000; Sigmoid
- $3,000 \rightarrow 186,624$; ReLU

Visualization

ı	С	С	С	С	N	N	Н	Н
	0	1	0	0	0	0	1	0
	0	0	1	0	0	1	1	0
	1	0	1	0	2	0	0	0
	0	0	0	1	0	2	0	1
	2	1	1	0	1	0	0	1

The full connectivity matrix is truncated to only include atoms which are predicted to participate in bonding with neighbors This smaller matrix is then plotted using the NetworkX visualization package

Results

- Net outputs a predicted connectivity matrix
- Bonding thresholded to integer values
- Limited training time results in non-intuitive structures

Future Work

Challenges	Potential Solutions
Extremely sparse output	-Take upper-triangle of connectivity matrix
Large output space	-Change output space -Bonding network -HOSE
¹³ C NMR carries less than ideal structural information	-Database with ¹ H NMR multiplicities
Functional group context	-Add more specific spectroscopy -Change output space
Sub-optimal prediction	-Increased neural net training time

References

NMR Database:

http://nmrshiftdb.nmr.uni-koeln.de

Packages:

Keras, TensorFlow, Numpy, NetworkX

