

Learning from Structures for Long Term Autonomous Robots

AKSHAYA THIPPUR SRIDATTA

Doctoral Thesis Stockholm, Sweden 2020

TRITA-CSC-XXXXX ISSN-XXXXXXXXX ISRN-KTH/CSC/XXXX ISBN XXXXXXXXXXXX Robotics, Perception and Learning School of Computer Science and Communication KTH Royal Institute of Technology SE-100 44 Stockholm, Sweden

Copyright $\hbox{@ }2020$ by Akshaya Thippur Sridatta except where otherwise stated.

Tryck: Universitetsservice US-AB 2020

Abstract

Here is my Abstract

Sammanfattning

The Swedish Abstract

Acknowledgments

Thank everyone here

Contents

C	onten	ts	\mathbf{v}			
	1	On the structures in our universe	1			
	2	Where is structure?	1			
	3	Why care for structure?	1			
	4	Machine Learning: Attention to structures	1			
1		ding Structure				
	Tov	wards Spatial Relationships: KTH-3D-Total Dataset	3			
	1	Long-term observations of human indoor environments	3			
	2	RELATED WORK	3			
	3	Interesting surfaces - Why desks?	3			
	4	KTH Long Term Dataset	3			
	5	Matterport Dataset	3			
	6	KTH 3D Total Dataset	3			
	7	Spatial Relations: Language of Spatial Structures	3			
	8	TODO	3			
2	Des	cribing Spatial Structure				
	Qu	alitative and Quantitative Spatial Relations	5			
	1	Spatial Relations - Intro	5			
	2	RELATED WORKS	5			
	3	Spatial Relations for our problem	5			
	4	Task description - object recognition	5			
	5	INSERT PAPER - AAAI QSR	5			
	6	Spatial Relations recommendations	5			
	7	SR for STRANDS?	5			
	8	INSERT PAPER - IROS QSR	6			
3	Des	igning Spatial Relations				
		Joint Object Classification with Intrinsic Frame of Reference				
		lculi IFRC	7			
	1	What kind of spatial relations to design?	7			
			-			

vi CONTENTS

	3 4	INSERT PAPER- IFRC	7 7
4		ect Estimation	0
	•	vesian Optimisation based Multiple Instance Estimation	9 9
	1 2	Difficulties of Object Estimation	9
	_	RELATED WORKS - Object Estimation	
	3	INSERT PAPER – Bayesian Optimisation for Object Estimation	9
	4	Discussion	9
5	Mal	king the Environment Continuous	
3		ite Mixture Models for Stochastic Kronecker Graphs	11
	1	Environment Recognition	11
	2	Kronecker graph theory	11
	3	Related works for large network analysis	11
	4	INSERT PAPER - FMM for SKG	11
	5		11
	5 6	Discussion on generative model	11
	O	TODO	11
6	Dee	p Learning and Demo	
v		sible chapter	13
	1	DNN problem formulations	13
	2	Parallels to graph neural networks	13
	3	SORHACK Demo	13
	4	Further challenges	13
	5	•	14
	3	TODO	14
7	Fina	al Discussion	15

Introduction

- 1 On the structures in our universe
- 2 Where is structure?
- 3 Why care for structure?
- 4 Machine Learning: Attention to structures

Finding Structure

Towards Spatial Relationships: KTH-3D-Total Dataset

- 1 Long-term observations of human indoor environments
- 2 RELATED WORK
- 3 Interesting surfaces Why desks?
- 4 KTH Long Term Dataset
- **5** Matterport Dataset
- 6 KTH 3D Total Dataset
- 6.1 Need and construction
- **6.2** Noticing Spatial structures
- 6.3 INSERT PAPER KTH 3D TOTAL
- 7 Spatial Relations: Language of Spatial Structures
- 8 TODO
 - See if you can convert Matterport pointclouds into 2D projections
 - Matterport arXiv paper and hosting?
 - KTH 3D Total hosting

Describing Spatial Structure

Qualitative and Quantitative Spatial Relations

1 Spatial Relations - Intro

- why use it?
- language and description
- compression topological descriptions
- mapping and directions

2 RELATED WORKS

- 3 Spatial Relations for our problem
- 4 Task description object recognition

Talk about aiding the vision system and why? Extrinsic cues.

5 INSERT PAPER - AAAI QSR

6 Spatial Relations recommendations

Take the discussion section from paper and elaborate. When to use what SR and why should QSRs be measureable?

7 SR for STRANDS?

How to go forward from this analysis?

CHAPTER 2. DESCRIBING SPATIAL STRUCTURE QUALITATIVE AND QUANTITATIVE SPATIAL RELATIONS

8 INSERT PAPER - IROS QSR

Discuss practical issues

Designing Spatial Relations

Joint Object Classification with Intrinsic Frame of Reference Calculi IFRC

- 1 What kind of spatial relations to design?
- 2 Why IFRC?

TODO: Insert the linguistic experiment data. Conclusions drawn from it – elaborate.

- 3 INSERT PAPER- IFRC
- 4 Discussion

Difficulties of Joint Object Classification.

Elaborate discussion of joint object classification with IFRC. What can be improved? What are the pitfalls?

Object Estimation

Bayesian Optimisation based Multiple Instance Estimation

1 Difficulties of Object Estimation

- Multiple instances
- Only extrinsic features
- small data
- multiple instances explain different location hits

2 RELATED WORKS - Object Estimation

Focus: Non parametric methods for Object Estimation

- 3 INSERT PAPER Bayesian Optimisation for Object Estimation
- 4 Discussion

Making the Environment Continuous

Finite Mixture Models for Stochastic Kronecker Graphs

1 Environment Recognition

- Why constrain to objects?
- Generalise to all kinds of environments. Football scenes, Chess boards, Crime scenes
- Key points large network graphs
- Use large networks to analyse
- place in this context environment recognition in office places
- elaborate on nodes, graph construction, edges what ARE nodes in interpretation.

2 Kronecker graph theory

- 3 Related works for large network analysis
- 4 INSERT PAPER FMM for SKG
- 5 Discussion on generative model

What are the main takeaways from the generative model?

6 TODO

- convert couple scenes into large networks for examples - run inference experiments

Deep Learning and Demo

Possible chapter

1 DNN problem formulations

- Bar code type of problem
- fly on object type of problem Who am I?
- In painting
- Include IFRC data as metadata

Why not deep learning explored? Model importance for interpretability. Data constraints. Data feeding constraints.

2 Parallels to graph neural networks

refer to work from Talukdar tutorial

3 SORHACK Demo

Possible to include this chapter 4

3.1 Problem statement

- motivation
- · resources
- hidden object estimation

success measurement. Precision Recall why not used? Refer papers - Sanne Elena

4 Further challenges

problems with object identification with integration to vision system.

5 TODO

- Report? arXiv paper on system integration?
- Make up the video

Final Discussion

Discussion