

2019—2020 学年第 2 学期 《计算方法》试卷

专业	班级 _	计算 1802				
姓	名	张世琛				
学	号	1804030401				
开课	系室	计算机科学系				
考试	日期	2020.06.20				

题号	<u> </u>	 111	四	总分
得分				
阅卷人				

说明:(1)本试卷答案中考题共10页

(2) 试题本禁止撕开, 否则成绩为0分

一、方程与方程组(共30分)

1.用 Newton-Raphson 法求 $x^4 - 3x^2 + x - 2 = 0$ 的根,计算三次迭代过程,给出每次迭代过程根的近似值,结果保留 4 位小数。(本小题 10 分)

2.追赶法解下列三对角线方程组,要求给出分解步骤,以及中间结果和方程组解,结果保留 4 位小数。(本小题 10 分)

$$\begin{bmatrix} 0.5 & 0.25 & & & \\ 0.35 & 0.8 & 0.4 & & \\ & 0.25 & 1.0 & 0.5 \\ & & 1.0 & -2.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.35 \\ 0.77 \\ -0.5 \\ -2.25 \end{bmatrix}$$

$$A = \begin{pmatrix} 0.5 & 0.25 & 0 & 0 \\ 0.35 & 0.8 & 0.4 & 0 \\ 0 & 0.35 & 1 & 0.5 \end{pmatrix} = \begin{pmatrix} \gamma_1 & 0 & 0 & 0 \\ \beta_2 & \gamma_2 & 0 & 0 \\ \beta_3 & \gamma_4 & 0 & 0 \\ \beta_4 & \gamma_4 & \gamma_4 & \gamma_4 & \gamma_4 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 & 1 \\ \beta_1 & = Q_1 & 1 & 1 \\ \beta$$

3.使用 Gauss-Seidel 迭代法解下面线性方程组,要求分析其收敛性,然后给出迭代格式,并计算方程组的解,初值为 $x^{(0)} = (0.0,0.0,0.0,0.0)^T$,要求相对误差小于 0.001. (本小题 10 分)

$$\begin{cases}
-x_1 + 11x_2 - x_3 + 3x_4 = 25 \\
2x_1 - x_2 + 10x_3 - x_4 = -11 \\
10x_1 - x_2 + 2x_3 = 6 \\
3x_2 - x_3 + 8x_4 = 15
\end{cases}$$

文格(张世保)
$$\begin{pmatrix}
a & -1 & 11 & -1 & 3 \\
2 & -1 & 10 & -1 \\
10 & -1 & 2 & 0 \\
0 & 3 & +1 & 8
\end{pmatrix} = \begin{pmatrix}
0 & 11 & -1 & 3 \\
0 & -1 & 0 \\
0 & 3 & -1 & 0
\end{pmatrix}$$

$$G = -(D+L)^{-1}U = \begin{pmatrix}
0 & 11 & -1 & 3 \\
0 & 2 & 8 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44 & 9 & 5 \\
0 & -44$$

二、插值与拟合(共40分)

1.已知sin(0.32) = 0.315,sin(0.34) = 0.333,sin(0.36) = 0.352,使用二次 Lagrange 插值多项式,计算sin(0.3367),并估计截断误差,结果保留 3 位小数。(本小题 10 分)

人答: (张世球)
$$\frac{X_1}{y_1} = 0.32 = 0.34 = 0.36$$

$$y_2 = \frac{(Y-0.34)(X-0.36)}{(0.32-0.34)(0.32-0.36)} = 0.09611$$

$$\lambda_1(X) = \frac{(X-0.32)(X-0.36)}{(0.34-0.32)(0.34-0.36)} = 0.97278$$

$$\lambda_2(X) = \frac{(Y-0.32)(X-0.34)}{(0.34-0.32)(0.34-0.32)} = -0.06889.$$
Sin $(0.3367) = L_2(0.3367) = \lambda_0(X) = -0.06889.$

$$\lambda_2(X) = \frac{f^2(X)}{3!} (X-0.32)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36)) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36)) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36)) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36)) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.31)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.34)(X-0.36) \leq \frac{\cos(6.34)}{3!} \cos((6.6.34)(X-0.34)(X-0.34)(X-0.34)(X-0.36)$$

2.已知某函数f(x)的四个离散点为: f(0.4) = 0.411, f(0.55) = 0.578, f(0.65) = 0.697, f(0.8) = 0.888, 使用三次 Newton 插值多项式,计算f(0.596),结果保留 3 位小数。(本小题 10 分)

2.
$$\frac{1}{2}$$
: (3k $\pm i\pi$)

2. $\frac{1}{2}$: $\frac{1}$: $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}$

3. 某实验获得实验数据如下表,呈指数形式,经验函数为 $\varphi(x) = ae^{mx} (a, m)$ 常数),请使用线性最小二乘法拟合该数据,写出拟合函数表达式,结果保留 3 位小数。 (本小题 10 分)

x_i	1.2	2.8	4.3	5.4	6.8	7.9
$\varphi(x_i)$	7.5	16.1	38.9	67.0	146.6	266.2

文字: (強性深)

$$y(x) = ae^{mx}$$
 $y' = a' + mx$
 $y' = a' + mx$

4.已知 $s(x) = \begin{cases} ax^3 + bx^2 + cx + 2 & 0 \le x \le 1 \\ 5x + 3 & 1 \le x \le 2 \end{cases}$, 是以 0,1,2 为节点的三次样条插值函数,请计算 a,b 和 c 的值,结果保留 3 位小数。(本小题 10 分)

4.答:(张世深)
$$\begin{cases}
S'(b) = S'(1+) \Rightarrow a+b+c+2=5+3 \\
S'(b) = S'(1+) \Rightarrow 3a+2b+c=5
\end{cases}$$

$$S''(1-) = S''(1+) \Rightarrow 6a+2b=0$$

$$C = 5.000:$$

$$C = 8.000$$

三、数值积分与数值微分。(共20分)

1. 说明数值微分的两种解决思路及其优缺点。(本小题 10 分)

人名(张世深)

1.利用超量值为项式成数值导数 缺点: 额费,复杂,麻烦,高次可能出现龙格现象,放果误差大优点: 精确度相比之下要高

2.用盖商近似代替导数 缺点:误盖可能比较大, 优点:简单进化简,

2.已知某函数f(x)在区间[0,1]进行采样,获得数据表如下

x_k	0.0000	0.1250	0.2500	0.3750	0.5000	0.6250	0.7500	0.8750	1.0000
$f(x_k)$	0.0000	0.1247	0.2474	0.3663	0.4794	0.5851	0.6816	0.7675	0.8415

用复化 Simpson 公式求积分 $\int_0^1 f(x) dx$, 结果保留 3 位小数。 (本小题 10 分)

四、常微分方程(共10分)