Dinámica del Cáncer con Cuatro Fenotipos Celulares desde la Perspectiva de Teoría de Juegos

Erika Rivadeneira Métodos Numéricos

Diciembre 14, 2020

Outline

- Introducción
- Resumen del proyecto
 - Motivación
 - Métodos
- 3 Resultados

Introducción

- El desarrollo de un tumor canceroso requiere que las células afectadas muestren colectivamente una variedad de comportamientos característicos que contribuyen de manera diferente a su crecimiento.
- Al comparar las interacciones estratégicas por pares, se estudia la invasión y la contra-invasión de las células, estableciendo condiciones para el dominio y la existencia de equilibrios monomórficos y polimórficos.

Resumen del Proyecto

Motivación

La agrupación de ciertas subpoblaciones sugiere una comprensión de los comportamientos de las células cancerosas que podrían influir en las estrategias de tratamiento futuras.

Resumen

- Se considera la evolución de la composición de los tumores desde la perspectiva de teoría de juegos en juegos clásicos de dos jugadores.
- Las interacciones imponen costos y beneficios a las células participantes que pueden ser plasmados en forma de una matriz de pagos en teoría de juegos.

Interacción de fenotipos (estrategias):

- A⁺ factor angiogénesis : reclutamiento de nutrientes
- A⁻ célula del estroma : célula neutra
- C citotoxinas : liberan un compuesto químico
- P proliferativas : ventaja reproductiva o metabólica

Jugador\Oponente	A -	A^+	Р	С
A-	1	1+d	1	1-c
A^+	1-a+d	1-a+d+f	1-a+d	1-c-a+d
P	1+g	1+d+g	1+g	(1+g)(1-c)
С	1-b+e	1-b+d+e	1-b+e	1-b

TABLE - Matriz de pagos de cuatro fenotipos de células cancerígenas..

parámetros involucrados:

Parámetro	Interpretación
a	Costo de producir factores de angiogénesis
b	Costo de producción de citotoxina
С	Costo de interacción con citotoxina
d	Beneficio de recursos al interactuar con A ⁺
е	Beneficio de explotación para C cuando la citotoxina daña a otros
f	Beneficio de recursos sinérgicos cuando interactúan dos células A+
g	Ventaja reproductiva de la célula P

TABLE - Parámetros usados en la dinámica del juego

Método

Método Simplex

Problema de programación lineal

donde A es una matriz $m \times n$, c es un vector $1 \times m$ y b es un vector $1 \times n$.

Método Simplex

minimizar
$$cx^t$$

sujeto a $Ax \ge b$,
 $x > 0$

Paso 1. Seleccione una variable de entrada utilizando la condición de optimalidad. Nos detenemos si no hay variable de entrada; la última condición es óptima. De otro modo, prosiga con el paso 2.

Paso 2. Seleccione una variable de salida utilizando la condición de factibilidad.

Paso 3. Aplique

- Fila pivote
 - Reemplace la variable de entrada en la columna Básica con la variable de entrada.
- Todas las demás filas, incluida la z Nueva fila = (Fila actual) (Su coeficiente en la columna pivote) \times (Nueva fila pivote). Volver al paso 1.

Problema

minimizar
$$z=x_1+x_2+x_3+x_4$$

sujeto a $x_1+(1+d)x_2+x_3+(1-c)x_4\leq 1$
 $(1-a+d)x_1+(1-a+d+f)x_2+(1-a+d)x_3+(1-c-a+d)x_4\leq 1$
 $(1+g)x_1+(1+d+g)x_2+(1+g)x_3+(1+g)(1-c)x_4\leq 1$
 $(1-b+e)x_1+(1-b+d+e)x_2+(1-b+e)x_3+(1-b)x_4\leq 1$

Resultados

Primer caso

Jugador\Oponente	A -	A^+
	1	1+d
\mathcal{A}^+	1-a+d	1-a+d+f
Р	1+g	1+d+g

$$a = 0.02, b = 0.1, c = 0.08, d = 0.09, e = 0.2, f = 0.55, g = 0.03$$

Estrategias por parejas :

Competencia	Resultado	Condición
A ⁺ vs. A ⁻	A ⁺ domina	f, d > a
A^+ vs. P	A^+ domina	f, d > a + g
A^- vs. P	P domina	g > 0

TABLE - Equilibrios de Nash para el primer caso

Resultados

Jugador\Oponente	A -	A^+
	1	1+d
\mathcal{A}^+	1-a+d	1-a+d+f
Р	1+g	1+d+g

Solución por método gráfico:

FIGURE - Solución por método gráfico para el caso 1

Resultados en estrategias de cuatro fenotipos

■ **Segundo caso :** dominancia de las células proliferativas Parámetros : a=0.02, b=0.02, c=0.11, d=0.1, e=0.1, f=0.1, g=0.15. Equilibrios por parejas :

Competencia	Resultado	Condición
A ⁺ vs. A ⁻	A ⁺ domina	f, d > a
A^+ vs. P	P domina	f, d < a + g
A^+ vs. C	C domina	d < a + (e + b), d < a + (c - b)
A^- vs. P	P domina	g > 0
A^- vs. C	C domina	b < c, e
P vs. C	P domina	b+g>c(1+g),e

- Coeficientes: x = [0.03591874, 0, 0.06987587, 0.91871522]'
- Valor óptimo es : z = 1.02451
- Iteraciones :4

La mejor estrategia del jugador es utilizar A^- un 3.1% de las veces, no utilizar A^+ , utilizar C un 6.9% y utilizar P un 90% de las veces.

Resultados en estrategias de cuatro fenotipos

■ **Tercer caso**: Equilibrio angiogénico (A^+) y citotóxico (C) Parámetros: a=0.02, b=0.04, c=0.08, d=0.1, e=0.15, f=0.1, g=0.05 Equilibrios por parejas:

Competencia	Resultado	Condición
A ⁺ vs. A ⁻	A ⁺ domina	f, d > a
A^+ vs. P	A^+ domina	f, d > a + g
A^+ vs. C	Coexisten	f < a + (e - b), d > a + (c - b)
A^- vs. P	P domina	g > 0, c < 1
A^- vs. C	C domina	b < c, e
P vs. C	C domina	b+g < c(1+g), e

- Coeficientes : x = [0, 0.90815007, 0.06131165, 0]'
- Valor óptimo es : z = 0.96946
- Iteraciones :4

La mejor estrategia del jugador es no utilizar A^- , utilizar A^+ un 90% de las veces, utilizar C un 6.1% y no utilizar P.

Conclusiones

- Comprender las interacciones de las células tumorales puede ayudar a decidir cómo combatir el crecimiento y el desarrollo del tumor cancerígeno.
- El enfoque de la teoría de juegos clásica muestra que cada uno de los fenotipos de células podría persistir o dominar ciertas estrategias de la célula oponente.
- Con el método simplex se puede optimizar la estrategia de una célula estudiando previamente los valores adecuados de los parámetros.

Referencias

Bussard, K.D.; Mutkus, L.; Stumpf, K.; Gomez-Manzano, C.; Marini, F.C. Tumor-associated stromal cells as keycontributorstothetumormicroenvironment.BreastCancerRes.2016,18,84. [CrossRef][PubMed]

Joaquín Pérez, Jose Luis Jimeno, Emilio Cerdá, Teoría de Juegos, PEARSON EDUCACION. 2004.

Basanta, D.; Deutsch, A. A game theoretical perspective on the somatic evolution of cancer. Sel. Top. Cancer Model. 2008, 63, 393–397.

Torres, R. Economía Financiera. Instituto Tecnológico Autónomo de México. 2008, 31, 125-160.

