Sprawozdanie Projekt 2 – Algorytmy sortowania Wojciech Konury

Wprowadzenie

Projekt polegał na zbadaniu czasu wykonywania różnych algorytmów sortowania w zależności od ilości danych. Algorytmy sortowania testowano na dwóch różnych danych wejściowych: Tablica wypełniona losowymi elementami

• Tablica wypełniona posortowanymi elementami

Badano czasy wykonania trzech różnych algorytmów:

- Bubble Sort
- Merge Sort
- Heap Sort

Przedstawienie czasu wykonania algorytmów w zależności od ilości danych dla tablicy wypełnionej losowymi danymi

	Średni czas wykonania [s]				
Ilość elementów w tablicy	Merge Sort	Heap Sort	Bubble Sort		
10	7.08E-07	8.00E-07	6.04E-07		
100	8.48E-06	1.06E-05	3.35E-05		
1000	0.000122428	0.000154872	0.00267698		
10000	0.00126835	0.00162845	0.328749		
100000	100000 0.0142742		35.8928		
1000000	0.155645	0.239987			

Na podstawie powyższych danych możemy zaobserwować, że najszybszymi algorytmami sortowania tablicy wypełnionej losowymi elementami jest algorytm Merge Sort lub Heap Sort, których czasy wykonania są podobne do siebie. Algorytm Bubble sort widocznie odstaje od pozostałych, jednakże dla tablicy z małą ilością elementów (10) jest on najszybszy.

Przedstawienie czasu wykonania algorytmów w zależności od ilości danych dla tablicy wypełnionej posortowanymi danymi

	Średni czas wykonania [s]				
Ilość elementów w tablicy	Merge Sort	Heap Sort	Bubble Sort		
10	5.12E-07	6.56E-07	3.25E-07		
100	6.49E-06	8.99E-06	2.70E-05		
1000	7.75E-05	0.000128441	0.0023648		
10000	0.000913107	0.00147974	0.210238		
100000	0.0094136	0.016447	20.6818		
1000000	0.106864	0.185156			

Na podstawie wyników uzyskanych dla tablicy wypełnionej posortowanymi elementami również możemy zauważyć, że algorytm Bubble Sort jest najszybszy dla tablic z małymi ilościami elementów (10 – 100). Dla tablic z większą ilością elementów dalej najoptymalniejszym wyborem jest algorytm Merge Sort lub Heap Sort, których czasy wykonywania są porównywalne.

Możemy również zauważyć, że czasy sortowania uległy skróceniu przy tych danych wejściowych.

Różnice w czasie wykonywania algorytmów pomiędzy tablicą wypełnioną losowo a tablicą wypełnioną posortowanymi elementami

	Średni czas wykonania [s]						
	Merge Sort		Heap Sort		Bubble Sort		
Ilość elementów w							
tablicy	Losowo	Posortowane	Losowo	Posortowane	Losowo	Posortowane	
10	7.08E-07	5.12E-07	8.00E-07	6.56E-07	6.04E-07	3.25E-07	
100	8.48E-06	6.49E-06	1.06E-05	8.99E-06	3.35E-05	2.70E-05	
1000	0.000122428	7.75E-05	0.000154872	0.000128441	0.00267698	0.0023648	
10000	0.00126835	0.000913107	0.00162845	0.00147974	0.328749	0.210238	
100000	0.0142742	0.0094136	0.0187957	0.016447	35.8928	20.6818	
1000000	0.155645	0.106864	0.239987	0.185156			

Źródła:

- https://www.geeksforgeeks.org/https://www.youtube.com/user/kolboch/