```
void Function(int n) {
    int i=1, s=1;
    while( s <= n) {
        i++;
        s= s+i;
        printf("*");
}</pre>
```

Solution: Consider the comments in the below function:

```
void Function (int n) {
  int i=1, s=1;
  // s is increasing not at rate 1 but i
  while( s <= n) {
    i++;
    s = s+i;
    printf("*");
}</pre>
```

We can define the 's' terms according to the relation $s_i = s_{i-1} + i$. The value oft' increases by 1 for each iteration. The value contained in 's' at the i^{th} iteration is the sum of the first '('positive integers. If k is the total number of iterations taken by the program, then the *while* loop terminates if:

$$1 + 2 + ... + k = \frac{k(k+1)}{2} > n \implies k = O(\sqrt{n}).$$

Problem-24 Find the complexity of the function given below.

Solution:

```
void function(int n) {
    int i, count = 0;
    for(i=1; i*i<=n; i++)
        count++;
}</pre>
```

In the above-mentioned function the loop will end, if $i^2 > n \Rightarrow T(n) = O(\sqrt{n})$. This is similar to Problem-23.

Problem-25 What is the complexity of the program given below:

Solution: Consider the comments in the following function.

The complexity of the above function is $O(n^2 log n)$.

Problem-26 What is the complexity of the program given below:

Solution: Consider the comments in the following function.

The complexity of the above function is $O(nlog^2n)$.

Problem-27 Find the complexity of the program below.

```
function( int n ) {
      if(n == 1) return;
      for(int i = 1 ; i <= n ; i + + ) {
            for(int j = 1 ; j <= n ; j + + ) {
                 printf("*" );
                 break;
      }
}</pre>
```

Solution: Consider the comments in the function below.

```
function(int n) {
    //constant time
    if( n == 1 ) return;
    //outer loop execute n times
    for(int i = 1 ; i <= n ; i + + ) {
        // inner loop executes only time due to break statement.
        for(int j = 1 ; j <= n ; j + + ) {
            printf(=== );
            break;
        }
}
```

The complexity of the above function is O(n). Even though the inner loop is bounded by n, due to the break statement it is executing only once.

Problem-28 Write a recursive function for the running time T(n) of the function given below. Prove using the iterative method that $T(n) = \Theta(n^3)$.

Solution: Consider the comments in the function below:

```
function (int n) {

//constant time

if( n == 1 ) return;

//outer loop execute n times

for(int i = 1; i <= n; i + +)

//inner loop executes n times

for(int j = 1; j <= n; j + +)

//constant time

printf("+" );

function( n-3 );
```

The recurrence for this code is clearly $T(n) = T(n-3) + cn^2$ for some constant c > 0 since each call prints out n^2 asterisks and calls itself recursively on n-3. Using the iterative method we get: $T(n) = T(n-3) + cn^2$. Using the Subtraction and Conquer master theorem, we get $T(n) = \Theta(n^3)$.

Problem-29 Determine Θ bounds for the recurrence relation: $T(n) = 2T\left(\frac{n}{2}\right) + nlogn$

Solution: Using Divide and Conquer master theorem, we get $O(nlog^2n)$.

Problem-30 Determine Θ bounds for the recurrence: $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$

Solution: Substituting in the recurrence equation, we get: $T(n) \le c1 * \frac{n}{2} + c2 * \frac{n}{4} + c3 * \frac{n}{8} + cn \le k * n$, where k is a constant. This clearly says $\Theta(n)$.

Problem-31 Determine Θ bounds for the recurrence relation: $T(n) = T(\lceil n/2 \rceil) + 7$.

Solution: Using Master Theorem we get: $\Theta(logn)$.

Problem-32 Prove that the running time of the code below is $\Omega(logn)$.

Solution: The *while* loop will terminate once the value of 'k' is greater than or equal to the value of 'n'. In each iteration the value of 'k' is multiplied by 3. If i is the number of iterations, then 'k' has the value of 3^i after i iterations. The loop is terminated upon reaching i iterations when $3^i \ge n$

 $i \ge \log_3 n$, which shows that $i = \Omega(\log n)$.

Problem-33 Solve the following recurrence.

$$T(n) = \begin{cases} 1, & \text{if } n = 1 \\ T(n-1) + n(n-1), & \text{if } n \ge 2 \end{cases}$$

Solution: By iteration:

$$T(n) = T(n-2) + (n-1)(n-2) + n(n-1)$$
...
$$T(n) = T(1) + \sum_{i=1}^{n} i(i-1)$$

$$T(n) = T(1) + \sum_{i=1}^{n} i^{2} - \sum_{i=1}^{n} i$$

$$T(n) = 1 + \frac{n((n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$$

$$T(n) = \Theta(n^{3})$$

Note: We can use the *Subtraction and Conquer* master theorem for this problem.

Problem-34 Consider the following program:

Solution: The recurrence relation for the running time of this program is: T(n) = T(n-1) + T(n-2) + c. Note T(n) has two recurrence calls indicating a binary tree. Each step recursively calls the program for n reduced by 1 and 2, so the depth of the recurrence tree is O(n). The number of leaves at depth n is 2^n since this is a full binary tree, and each leaf takes at least O(1) computations for the constant factor. Running time is clearly exponential in n and it is $O(2^n)$.

Problem-35 Running time of following program?

Solution: Consider the comments in the function below:

```
function (n) {
    //this loop executes n times
    for(int i = 1; i <= n; i + +)
    //this loop executes j times with j increase by the rate of i
    for(int j = 1; j <= n; j + = i)
        printf(" * " );
}</pre>
```

In the above code, inner loop executes n/i times for each value of i. Its running time is $n \times (\sum_{i=1}^{n} n/i) = O(n\log n)$.

Problem-36 What is the complexity of $\sum_{i=1}^{n} log i$?

Solution: Using the logarithmic property, logxy = logx + logy, we can see that this problem is equivalent to

$$\sum_{i=1}^{n} logi = log \ 1 + log \ 2 + \dots + log \ n = log(1 \times 2 \times \dots \times n) = log(n!) \le log(n^n) \le nlogn$$

This shows that the time complexity = O(nlogn).

Problem-37 What is the running time of the following recursive function (specified as a function of the input value n)? First write the recurrence formula and then find its complexity.

```
function(int n) {

if(n <= 1) return;

for (int i=1; i <= 3; i++)

f(\lceil \frac{n}{3} \rceil);
```

Solution: Consider the comments in the below function:

```
function (int n) {

//constant time

if(n <= 1) return;

//this loop executes with recursive loop of \frac{n}{3} value

for (int i=1; i <= 3; i++)

f(\frac{n}{3});
```

We can assume that for asymptotical analysis $k = \lceil k \rceil$ for every integer $k \ge 1$. The recurrence for this code is $T(n) = 3T(\frac{n}{3}) + \Theta(1)$. Using master theorem, we get $T(n) = \Theta(n)$.

Problem-38 What is the running time of the following recursive function (specified as a function of the input value n)? First write a recurrence formula, and show its solution using induction.

```
function(int n) {
      if(n <= 1) return;

      for (int i=1 ; i <= 3 ; i++ )
            function (n - 1).
}</pre>
```

Solution: Consider the comments in the function below:

```
function (int n) {

//constant time

if(n <= 1) return;

//this loop executes 3 times with recursive call of n-1 value

for (int i=1; i <= 3; i++)

function (n - 1).
```

The *if* statement requires constant time [O(1)]. With the *for* loop, we neglect the loop overhead and only count three times that the function is called recursively. This implies a time complexity recurrence:

$$T(n) = c, if \ n \le 1;$$

= $c + 3T(n - 1), if \ n > 1.$

Using the *Subtraction and Conquer* master theorem, we get $T(n) = \Theta(3^n)$.

minimum 1 time. Therefore, $T(n) = O(\sqrt{n})$ and $T(n) = \Omega(1)$.

Problem-55 In the following C function, let $n \ge m$. How many recursive calls are made by this function?

```
int gcd(n,m){
    if (n%m ==0)
        return m;
    n = n%m;
    return gcd(m,n);
}
```

- (A) $\Theta(\log_2^n)$
- (B) $\Omega(n)$
- (C) $\Theta(\log_2 \log_2^n)$
- (D) $\Theta(n)$

Solution: No option is correct. Big O notation describes the tight upper bound and Big Omega notation describes the tight lower bound for an algorithm. For m = 2 and for all $n = 2^i$, the running time is O(1) which contradicts every option.

Problem-56 Suppose T(n) = 2T(n/2) + n, T(O)=T(1)=1. Which one of the following is false?

- (A) $T(n) = O(n^2)$
- (B) $T(n) = \Theta(nlogn)$
- (C) $T(n) = Q(n^2)$
- (D) T(n) = O(nlog n)

Solution: (C). Big O notation describes the tight upper bound and Big Omega notation describes the tight lower bound for an algorithm. Based on master theorem, we get $T(n) = \Theta(nlogn)$. This indicates that tight lower bound and tight upper bound are the same. That means, O(nlogn) and O(nlogn) are correct for given recurrence. So option (C) is wrong.

Problem-57 Find the complexity of the below function:

```
function(int n) {
  for (int i = 0; i < n; i++)
    for(int j=i; j < i*i; j++)
        if (j %i == 0){
        for (int k = 0; k < j; k++)
            printf(" * ");
        }
}</pre>
```

Solution:

Time Complexity: $O(n^5)$.

Problem-58 To calculate 9^n , give an algorithm and discuss its complexity.

Solution: Start with 1 and multiply by 9 until reaching 9^n .

Time Complexity: There are n-1 multiplications and each takes constant time giving a $\Theta(n)$ algorithm.

Problem-59 For Problem-58, can we improve the time complexity?

Solution: Refer to the *Divide and Conquer* chapter.

Problem-60 Find the time complexity of recurrence $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{8}) + n$.

Solution: Let us solve this problem by method of guessing. The total size on each level of the recurrence tree is less than n, so we guess that f(n) = n will dominate. Assume for all i < n that $c_1 n \le T(i) < c_2 n$. Then,

$$\left(\frac{1}{4}n\right)^2 + \left(\frac{1}{3}n\right)^2 + \left(\frac{1}{3}n\right)^2 + \left(\frac{1}{3}n\right)^2 + \left(\frac{4}{9}n\right)^2 = \frac{625}{1296}n^2 = \left(\frac{25}{36}\right)^2 n^2$$

Similarly the amount of work at level k is at most $\left(\frac{25}{36}\right)^k n^2$.

Let $\alpha = \frac{25}{36}$, the total runtime is then:

$$T(n) \leq \sum_{k=0}^{\infty} \alpha^{k} n^{2}$$

$$= \frac{1}{1-\alpha} n^{2}$$

$$= \frac{1}{1-\frac{25}{36}} n^{2}$$

$$= \frac{1}{\frac{11}{36}} n^{2}$$

$$= \frac{\frac{36}{11} n^{2}}{0(n^{2})}$$

That is, the first level provides a constant fraction of the total runtime.

Problem-62 Rank the following functions by order of growth: (n + 1)!, n!, 4^n , $n \times 3^n$, $3^n + n^2 + 20n$, $(\frac{3}{2})^n$, $n^2 + 200$, 20n + 500, 2^{lgn} , $n^{2/3}$, 1.

Solution:

$$c_{1}\frac{n}{2} + c_{1}\frac{n}{4} + c_{1}\frac{n}{8} + kn \leq T(n) \leq c_{2}\frac{n}{2} + c_{2}\frac{n}{4} + c_{2}\frac{n}{8} + kn$$

$$c_{1}n(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{k}{c_{1}}) \leq T(n) \leq c_{2}n(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{k}{c_{2}})$$

$$c_{1}n(\frac{7}{8} + \frac{k}{c_{1}}) \leq T(n) \leq c_{2}n(\frac{7}{8} + \frac{k}{c_{2}})$$

If $c_1 \ge 8k$ and $c_2 \le 8k$, then $c_1n = T(n) = c_2n$. So, $T(n) = \Theta(n)$. In general, if you have multiple recursive calls, the sum of the arguments to those calls is less than n (in this case $\frac{n}{2} + \frac{n}{4} + \frac{n}{8} < n$), and f(n) is reasonably large, a good guess is $T(n) = \Theta(f(n))$.

Problem-61 Solve the following recurrence relation using the recursion tree method: $T(n)=T(\frac{n}{2})+T(\frac{2n}{3})+n^2$.

Solution: How much work do we do in each level of the recursion tree?

In level 0, we take n^2 time. At level 1, the two subproblems take time:

$$\left(\frac{1}{2}n\right)^2 + \left(\frac{2}{3}n\right)^2 = \left(\frac{1}{4} + \frac{4}{9}\right)n^2 = \left(\frac{25}{36}\right)n^2$$

At level 2 the four subproblems are of size $\frac{1}{2}\frac{n}{2}$, $\frac{2}{3}\frac{n}{2}$, $\frac{1}{2}\frac{2n}{3}$ and $\frac{2}{3}\frac{2n}{3}$ respectively. These two subproblems take time:

Function	Rate of Growth
(n+1)!	O(n!)
n!	O(n!)
4 ⁿ	$O(4^n)$
$n \times 3^n$	$O(n3^n)$
$3^n + n^2 + 20n$	$O(3^n)$
$(\frac{3}{2})^n$	$O((\frac{3}{2})^n)$
$4n^2$	$O(n^2)$
4^{lgn}	$O(n^2)$
$n^2 + 200$	$O(n^2)$
20n + 500	O(n)
2^{lgn}	O(n)
$n^{2/3}$	$O(n^{2/3})$
1	O(1)

Decreasing rate of growths

Problem-63 Find the complexity of the below function:

```
function(int n) {
   int sum = 0;
   for (int i = 0; i < n; i++)
      if (i > j)
        sum = sum +1;
   else {
      for (int k = 0; k < n; k++)
            sum = sum -1;
      }
  }
}</pre>
```

Solution: Consider the worst-case.