CS683: Assignment 1

Sentiment Polarity Classification

Submitted by: Harsh Rajput B-Tech (4th year) CS41 2101081

Data Preparation

- Dataset: Used Cornell movie review dataset (rt-polaritydata) containing positive and negative reviews.
- File Reading & Labeling:
 - Read reviews from files using latin-1 encoding.
 - Assigned labels: Positive reviews (1), Negative reviews (0).
- Data Splitting:
 - Training Set: First 4,000 positive and 4,000 negative reviews.
 - Validation Set: Next 500 positive and 500 negative reviews.
 - Test Set: Remaining 831 positive and 831 negative reviews.
- TF-IDF Vectorization:
 - Converted reviews to numerical format using TF-IDF with 7,000 features.
 - Converted sparse matrices to dense format for model input.

Vectorization and Transformation

- TF-IDF Vectorization:
 - Purpose: Convert text data into a numerical format for input to a neural network.
 - Method: Applied TF-IDF vectorization to convert reviews into numerical features.
 - Features Extracted: Limited to the top 7,000 most important words from the dataset.
- Dense Transformation:
 - Converted the sparse TF-IDF matrix into a dense matrix.
 - Ensured compatibility with the Keras model for training.

Model Architecture

- Input Layer:
 - Accepts TF-IDF features of shape (7,000,).
- Hidden Layers:
 - First Dense Layer: 256 neurons with ReLU activation, L2 regularization, followed by Batch Normalization and Dropout (0.4).
 - Second Dense Layer: 128 neurons with ReLU activation, L2 regularization, followed by Batch Normalization and Dropout (0.4).
- Output Layer:
 - A single neuron with a sigmoid activation function for binary classification.
- Compilation:
 - Optimizer: Adam.
 - Loss Function: Binary Cross-Entropy.
 - Metrics: Accuracy.
- Regularization and Callbacks:
 - L2 Regularization: Helps reduce overfitting.
 - Early Stopping and Learning Rate Reduction: To stop training when validation loss stops improving and adapt the learning rate.

Training and Testing

• Training:

- \circ Trained on 8,000 reviews (4,000 positive and 4,000 negative) for 10 epochs.
- Batch size of 32 used for efficient mini-batch gradient descent.
- Validation Set: Evaluated on 1,000 reviews (500 positive, 500 negative) during training.
- Early stopping and learning rate reduction techniques were applied to prevent overfitting.

Testing:

- Evaluated on a separate test set consisting of 1,662 reviews (831 positive and 831 negative).
- Model performance assessed using precision, recall, F1-score, and a confusion matrix for detailed evaluation.

Evaluation Metrics

- Test Set Evaluation:
 - Confusion Matrix:
 - True Positives (TP): 617
 - True Negatives (TN): 637
 - False Positives (FP): 194
 - False Negatives (FN): 214
- Performance Metrics:
 - Precision: 76.079%
 - o Recall: 74.248%
 - o F1-score: 75.152%

Graphs

Submission Links

- Link to Google Colab:
 - https://colab.research.google.com/drive/11a7HmgiGs-ifIX1yHs1Bf856a0CCSrL_?usp=shar ing
- Link to Github Repository:
 - o https://github.com/hrajput0322/CS683 NLP 2101081