# VIZINHANÇA E BUSCA LOCAL DCE770 - Heurísticas e Metaheurísticas

Atualizado em: 25 de outubro de 2022



Departamento de Ciência da Computação



### ALGORITMO, HEURÍSTICA E META-HEURÍSTICA

Um algoritmo computa a resposta exata para um problema específico

Uma heurística computa uma solução aproximada para um problema específico

Uma meta-heurística é um *framework* para construção de heurísticas

- Não resolvem um problema específico
- Possibilita criar heurísticas para diversos problemas
- São extremamente generalizáveis

### META-HEURÍSTICAS

Problemas NP-Completos possuem um número exponencial de soluções

Impraticável listar todas elas

Meta-heurísticas exploram um subconjunto destas soluções

Uma meta-heurística é um *framework*, um "guia", sobre como explorar esse subconjunto de soluções

 Quanto mais eficaz e mais eficiente for esta amostragem melhor é a heurística resultante

### CARACTERÍSTICAS DE META-HEURÍSTICAS

### Simplicidade

São baseadas em princípios claros

#### Generalidade

O Podem ser facilmente generalizadas para diversos problemas

#### Eficácia

O Produzem soluções de boa qualidade

#### Eficiência

O Baixo custo computacional

### PRINCÍPIOS DE META-HEURÍSTICAS

### Diversificação

- Como ela realiza a busca
- O Ato de explorar uma grande área do espaço de buscas

### Intensificação

- Buscas realizadas em soluções próximas a outras
- No geral, tende-se a intensificar a busca próximo a soluções de boa qualidade

## CONJUNTO DE SOLUÇÕES

Definimos o conjunto de soluções como Γ

- $\bigcirc$  Define-se uma solução como  $S \in \Gamma$
- O Uma busca é realizada neste conjunto de soluções



### VIZINHANÇA

Considera-se soluções vizinhas como sendo soluções próximas umas das outras

- O Função de proximidade definida anteriormente
- Normalmente, relacionado a quantidade de diferentes elementos entre as soluções



## VIZINHANÇA - DEFINIÇÃO FORMAL

Uma vizinhança é uma função  $N:\Gamma\mapsto 2^\Gamma$ 

 $\bigcirc$  Mapeia uma solução  $S \in \Gamma$  a um subconjunto  $N(S) \subseteq \Gamma$ 



# VIZINHANÇA NO ESPAÇO $\mathbb{B}^3$



### VIZINHANÇA PARA O PROBLEMA DO CAIXEIRO VIAJANTE



### META-HEURÍSTICAS DE BUSCA LOCAL

Duas soluções em Γ podem ou não ser vizinhas

O Depende da função de vizinhança aplicada

Meta-heurísticas de busca local são algoritmos que possuem uma única solução

- Realizam buscas no espaço de soluções aplicando uma ou mais funções de vizinhança sobre uma solução inicial
  - Solução inicial muitas vezes criada com uma heurística construtiva

### UMA PRIMEIRA META-HEURÍSTICA DE BUSCA LOCAL

#### Random walk

Inicia de uma solução viável

O Criada a partir de uma heurística construtiva

#### Iteração

Move-se para um vizinho aleatório

### Critério de parada

Tempo ou número de iterações sem melhora

### MELHORANDO UM POUQUINHO...

### Hill climbing

Inicia de uma solução viável

O Criada a partir de uma heurística construtiva

#### Iteração

- Move-se para um vizinho aprimorante
  - Vizinho de melhor qualidade

### Critério de parada

- Não existe nenhum vizinho aprimorante
- Ótimo local

## ÓTIMO LOCAL



### ALGORITMOS DE BUSCA LOCAL

VNS/VND Link
GRASP Link
ILS Link Link
Busca tabu Link

## VARIABLE NEIGHBORHOOD DESCENT (VND)



### **GRASP**

```
procedure GRASP(Max_Iterations, Seed)

1 Read_Input();

2 for k = 1,..., Max_Iterations do

3 Solution ← Greedy_Randomized_Construction(Seed);

4 Solution ← Local_Search(Solution);

5 Update_Solution(Solution, Best_Solution);

6 end;

7 return Best_Solution;
end GRASP.
```