

Scaling the Namenode - Lessons Learnt

Dinesh Chitlangia, Manager @ Cloudera

September 21, 2021

About me

Dinesh Chitlangia

- Manager @ Cloudera
- Apache Ozone PMC/Committer
- Apache Hadoop Committer
- LinkedIn Dinesh Chitlangia
- Github dineshchitlangia
- Twitter dineshneo
- Email dineshc@apache.org

- Problems
- Causes
- Guidance

Commonly Reported Problems

Performance

- RPC Processing Time
- GC pauses
- Read/Write performance
- Too long to start NN

Stability

- Frequent Failover
- Frequent Crash

Common Causes

- Small files
- Sub optimal heap settings
- Missing RPC improvements
- Bad Applications / Mistuned Components
- Degraded Group Lookup
- Too frequent/delayed checkpointing
- Heavy Services co-located / Disk throughput
- Too much logging
- Degraded JN / communication between NN/JN/ZK

- Optimize Logging
 - Disable getfileinfo audit logging
 - Async Logging
 - Namenode Audit
 - Namenode Edit
 - Reduce State Change Logging
 - BlockStateChange
 - StateChange

- Optimize RPC
 - Service RPC & Handler count
 - RPC Congestion Control
 - RPC Call Queue
 - Datanode Lifeline Protocol

- Dealing with Host Level issues
 - Dedicated disks for NN / JN
 - Don't co-locate heavy services like HiveServer2, HBase Master/Region server, Yarn RM etc on the same host as NN
 - CPU Scaling should prefer Performance over Power Saving
 - Disable THP
 - Verify Kernel Configs after every OS patching

- Group Lookup performance
 - Increase group cache timeout
 - Increase negative cache timeout
 - Add static mapping override for specific users

- Failover / Startup
 - Optimal value for ZKFC timeout
 - Speed-up quota initialization
 - Throttle FSImage transfer bandwidth
- Bonus: If you do not have use cases which need to find last access time for files in HDFS, turn off access time precision to avoid NN writing an edit log entry.

- Dealing with Heap
 - Each namespace object in NN is ~ 150 bytes
 - Block Size 128 MB
 - 128 MB File = 2 objects, 1 inode + 1 block ~ 300 bytes
 - But 128 1 MB files = 256 objects,
 128 inodes + 128 blocks ~ 38.4K bytes
- 1 GB for every million blocks is a very conservative rule of thumb

- Block Reports
 - Split Block Report by Volume
 - Reduce Full Block Report frequency
 - Batch incremental block reports

- Manage External Factors
 - Control small files
 - Avoid du, use Is instead
 - Reduce Max Replication from default 512.
 - Hive/Tez Merge map/reduce/intermediate output,
 ACID Compactions
 - Spark Enable History Cleaner
 - YARN Log aggregation
 - HBase Carefully choose the RegionSplitPolicy, merge size 0 regions
 - Data retention policy

Reference

https://s.apache.org/NamenodeScalability

https://github.com/dineshchitlangia/NamenodeScalability

Questions?

Thank you!

