(26) Prove $f(x) = \sin x^2$ is Not Siress' uniformly continous on [0,00[Clap This problem is present in Success Clap Overshon Bonk (On 99) Method-1 Given in all books let x= 12 x2= (0+1) 17 (f(n2)-f(n1)=(sin n2-8in n2) = [Sin(n+1)] - Sin 1] $= |0-(\pm i)| = 1$ if nisodé = (1±1-01=1 if n iseven If I take $E=\frac{1}{2}$ which is < 1 in E<1we have (f(n2) -f(n1) |= 17E

we have
$$(f(n_2) - f(n_1)| = 1 > E$$

 $E(22 - 21) = |22 - 21| = |7/2|$
 $|7/2 + |7/2|$

So we got [f(n2)-f(n)] 7E

when | n2-n1 CE

So Not unetown Convergence

BUT BUT

The could not remember $21 = \sqrt{2}$ $21 = \sqrt{2}$ Then what ??

Solve by basic

Let given ε 70 (Arbit $|\varepsilon(n_2)-\varepsilon(n_3)|=|\sin n_2^2-\sin n_3^2|$ $|\varepsilon(n_2)-\varepsilon(n_3)|=|\sin n_2^2-\sin n_3^2|$ $|\varepsilon(n_3)-\varepsilon(n_3)|=|\sin n_2^2-\sin n_3^2|$

[f(n2)-f(n3)] = [203 2/4 = 605in 2-4] [sin0| < 0 $|col| \leq 1$ (ab) < |a| |b| (f(n))-f(n)) < 2/00 x1+n2 sin/n2-n1 < 2×1× 22-21 < | (2-4) (12-4) < |21-4) My ain: Given 870, get(x, x2)s.t (f(n2) - f(n)) < E s.t | 12-21 < 8 in the given Ronge (Note)

Observe: invervel is [0,00] Let us say intervalis
fixed at right side ie [0, 1] (say) x, con hove nox 2 value 12 Car have max & value nithe on have max 27 value $[x_1+x_2] \leq 2\lambda$ 1+(n2)-+(n2) ≤ (n,+n2) |n2-n1) < 27/22-21/ Given E70 what I do is, I will reduce my 71, 72 value such that $|\chi_2-\chi_1|<\frac{\varepsilon}{2\lambda}$

I will choose 2,12, such that 1/2-7/1< = 21 Now when $|\chi_2 - \chi_1| < \frac{\varepsilon}{2\lambda}$ (f(n))-f(n)) < 27/n2-no) we get $<2\lambda.\frac{\varepsilon}{2\lambda}=\varepsilon$ so if $|\chi_2-\chi_1|<\frac{\varepsilon}{2\lambda}$ we get $|f(n_2)-f(n_i)| < \varepsilon$ Hence we get x_1, x_2 such that $(x_2-x_1) < 8$ where $S = \frac{\varepsilon}{2\lambda}$ and satisfy adelon for the cheforn artinary So we found that if

the interval is [0, 7] it is uniform continues Come to our problem. Given 670, $8=\frac{6}{2\lambda}$ Here (I donot know) what is that λ , because it extends to ∞ , but No definite boundary, So I college S Given 8:20, I cannot get S So Not Uniform Continous