Komisja Egzaminacyjna dla Aktuariuszy

XLVI Egzamin dla Aktuariuszy z 2 czerwca 2008 r.

Część IV

Prawdopodobieństwo i statystyka

Czas egzaminu: 100 minut

Komisja Nadzoru Finansowego, Warszawa 2.06.2008 r.

Zadanie 1.

Wykonano n razy niezależnie doświadczenie, które może zakończyć się jednym z dwóch wyników: sukcesem lub porażką. Prawdopodobieństwo sukcesu w każdym doświadczeniu jest jednakowe, nieznane równe θ . Parametr θ jest realizacją zmiennej losowej o rozkładzie prawdopodobieństwa o gęstości

$$p(\theta) = \begin{cases} 6\theta(1-\theta) & \text{gdy } \theta \in (0,1) \\ 0 & \text{gdy } \theta \notin (0,1) \end{cases}$$

Otrzymano r sukcesów. Oblicz prawdopodobieństwo, że w n+1 doświadczeniu otrzymamy sukces.

- (A) $\frac{r}{n}$
- (B) $\frac{r+1}{n+1}$
- (C) $\frac{r+1}{n+2}$
- (D) $\frac{r+3}{n+5}$
- (E) $\frac{r+2}{n+4}$

Zadanie 2.

Niech X będzie zmienną losową o rozkładzie Pareto o gęstości

$$f_{\theta}(x) = \begin{cases} \frac{\theta}{(1+x)^{\theta+1}} & \text{gdy } x > 0\\ 0 & \text{gdy } x \le 0 \end{cases}$$

Niestety nie obserwujemy zmiennej X, ale zmienną Y równą X-1, gdy X>1. W wyniku tych obserwacji otrzymujemy prostą próbę losową Y_1,Y_2,\ldots,Y_{10} (nie wiemy ile razy pojawiły się wartości zmiennej X z przedziału (0,1]) i na jej podstawie weryfikujemy hipotezę $H:\theta=2$ przy alternatywie $K:\theta=4$. Moc testu najmocniejszego na poziomie istotności 0,05 jest równa

- (A) 0,1937
- (B) 0,3570
- (C) 0,3614
- (D) 0,6430
- (E) 0,6386

Zadanie 3.

Obserwujemy działanie pewnego urządzenia w kolejnych chwilach $t=0,1,2,\ldots$. Działanie tego urządzenia zależy od pracy dwóch podzespołów A i B. Każdy z nich może ulec awarii w jednostce czasu z prawdopodobieństwem 0,2 niezależnie od drugiego. Jeżeli jeden z podzespołów ulega awarii, to urządzenie nie jest naprawiane i działa dalej wykorzystując drugi podzespół. Jeżeli oba podzespoły są niesprawne w chwili t, to następuje ich naprawa i w chwili t+1 oba są sprawne. Prawdopodobieństwo, że dokładnie jeden z podzespołów A i B jest sprawny w chwili t dąży, przy t dążącym do nieskończoności, do następującej liczby (z dokładnością do 0,001):

- (A) 0,337
- (B) 0,541
- (C) 0,270
- (D) 0,878
- (E) 0,663

Zadanie 4.

Niech $X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym $N(m, \sigma^2)$, gdzie $m \in R$, $\sigma > 0$ są nieznanymi parametrami. Niech T będzie estymatorem nieobciążonym o minimalnej wariancji funkcji od parametrów równej $E(X_1^2)$. Wtedy wariancja tego estymatora jest równa

(A)
$$\frac{2\sigma^2}{n} \left(m^2 + \sigma^2 \right)$$

(B)
$$\frac{2\sigma^2}{n} \left(2m^2 + \frac{\sigma^2}{n} \right)$$

(C)
$$\frac{2\sigma^2}{n} \left(2m^2 + \sigma^2 + \frac{\sigma^2}{n} \right)$$

(D)
$$\frac{2\sigma^2}{n} \left(2m^2 + \sigma^2 \right)$$

(E)
$$\frac{2\sigma^2}{n}\left(m^2 + \frac{\sigma^2}{n}\right)$$

Zadanie 5.

Niech $X_1,X_2,...,X_n,...$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie logarytmiczno-normalnym z parametrami $\mu \in R$ i $\sigma > 0$. Niech T_n oznacza estymator największej wiarogodności wartości oczekiwanej m w tym modelu w oparciu o próbę $X_1,X_2,...,X_n$. Niech $\mu=0$ i $\sigma=1$. Wtedy

(A)
$$\lim_{n \to +\infty} P(|T_n - m|\sqrt{n} > 2\sqrt{2}) = 0.32218$$

(B)
$$\lim_{n \to +\infty} P(|T_n - m|\sqrt{n} > 2\sqrt{2}) = 0,12602$$

(C)
$$\lim_{n \to +\infty} P(|T_n - m|\sqrt{n} > 2\sqrt{2}) = 0,49020$$

(D)
$$\lim_{n \to +\infty} P(|T_n - m|\sqrt{n} > 2\sqrt{2}) = 0$$

(E)
$$\lim_{n \to +\infty} P(|T_n - m|\sqrt{n} > 2\sqrt{2}) = 0,16152$$

Zadanie 6.

Załóżmy, że A i C są zdarzeniami losowymi takimi, że $\Pr(A-C)>0$, $\Pr(C-A)>0$ oraz $\Pr(A\cap C)>0$. Wiadomo, że dla pewnego zdarzenia B zachodzi nierówność

$$\Pr(B|A \cup C) > \Pr(B|C)$$

Wynika stąd, że

(A)
$$\Pr(B|A \cup C) < \Pr(B|A)$$

(B)
$$\Pr(B|A \cup C) > \Pr(B|A)$$

(C)
$$\Pr(B|A-C) > \Pr(B|C)$$

(D)
$$\Pr(B|A \cap C) > \Pr(B|C)$$

(E)
$$Pr(B|A-C) > Pr(B|C-A)$$

Zadanie 7.

W urnie jest 15 kul, w tym: 1 kula biała, 9 różowych, k czerwonych i pozostałe zielone. Losujemy n razy ze zwracaniem po jednej kuli. Niech

 N_b oznacza liczbę wylosowanych kul białych,

N, oznacza liczbę wylosowanych kul różowych,

 N_{cz} oznacza liczbę wylosowanych kul czerwonych,

 N_z oznacza liczbę wylosowanych kul zielonych.

Jaka jest liczba kul czerwonych w urnie, jeśli zmienne $N_b + N_z$ i $N_r + N_z - N_{cz}$ są nieskorelowane.

- (A) 4
- (B) 3
- (C) 2
- (D) 1
- (E) 0

Zadanie 8.

Zmienne losowe X_1, X_2, \dots, X_n , n > 2, są niezależne o tym samym rozkładzie o gęstości

$$f(x) = \begin{cases} 2x & \text{gdy } x \in (0,1) \\ 0 & \text{gdy } x \notin (0,1) \end{cases}.$$

 $f(x) = \begin{cases} 2x & \text{gdy } x \in (0,1) \\ 0 & \text{gdy } x \notin (0,1) \end{cases}.$ Niech $M = \max\{X_1, X_2, \dots, X_n\}$ i $z \in (0,1)$. Wtedy $E(M \mid X_1 = z)$ jest równa

(A)
$$\frac{2n-2}{2n-1} \cdot (1-z^{2n-1}) + z$$

(B)
$$\frac{2n-2}{2n-1} \cdot \frac{1-z^{2n-1}}{1-z^{2n-2}}$$

(C)
$$\frac{2n-2+z^{2n-1}}{2n-1}$$

(D)
$$\frac{2n}{2n+1} \cdot (1-z^{2n-1}) + z$$

(E)
$$\frac{2n+z^{2n-1}}{2n+1}$$

Zadanie 9.

Niech $N, X_1, X_2, \dots, Y_1, Y_2, \dots$ będą niezależnymi zmiennymi losowymi przy danym $\Lambda = \lambda$. Zmienne X_i , $i = 1, 2, \dots$, mają warunkowe rozkłady wykładnicze o wartości oczekiwanej $\frac{1}{\lambda}$, zmienne losowe Y_i , $i = 1, 2, \dots$, mają warunkowe rozkłady wykładnicze o wartości oczekiwanej $\frac{2}{\lambda}$, przy danym $\Lambda = \lambda$. Warunkowy rozkład zmiennej losowej N przy danym $\Lambda = \lambda$ jest rozkładem Poissona o wartości oczekiwanej λ . Rozkład brzegowy zmiennej Λ jest rozkładem gamma o gęstości

$$f(\lambda) = \begin{cases} \frac{8}{3} \lambda^3 e^{-2\lambda} & \text{gdy } \lambda > 0 \\ 0 & \text{gdy } \lambda \le 0 \end{cases}.$$

Niech

$$S = \begin{cases} \sum_{i=1}^{N} X_{i} & \text{gdy } N > 0 \\ 0 & \text{gdy } N = 0 \end{cases} \quad i \quad T = \begin{cases} \sum_{i=1}^{N} Y_{i} & \text{gdy } N > 0 \\ 0 & \text{gdy } N = 0 \end{cases}$$

Oblicz współczynnik korelacji Corr(S,T).

- (A) $\frac{1}{2}$
- (B) 1
- (C) 0
- (D) $\frac{1}{3}$
- (E) $\frac{3}{4}$

Zadanie 10.

Niech X_1,X_2,\ldots,X_{10} będą niezależnymi zmiennymi losowymi z rozkładu normalnego $N(m_1,\sigma^2)$, a Y_1,Y_2,\ldots,Y_{10} niezależnymi zmiennymi losowymi z rozkładu normalnego $N(m_2,\sigma^2)$. Wszystkie zmienne są niezależne, a parametry m_1,m_2,σ są nieznane. Testujemy hipotezę $H:m_1=m_2$ przy alternatywie $K:m_1\neq m_2$. Hipotezę H odrzucamy, gdy spełniona jest nierówność

$$\frac{|\overline{X} - \overline{Y}|}{S} > c,$$

gdzie
$$\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$$
, $\overline{Y} = \frac{1}{10} \sum_{i=1}^{10} Y_i$ i $S^2 = \frac{1}{10} \sum_{i=1}^{10} (X_i - Y_i)^2$.

Wyznacz c tak, aby rozmiar testu był równy 0,05.

- A) 2,262
- (B) 0,754
- (C) 2,759
- (D) 0,362
- (E) 0,602

Egzamin dla Aktuariuszy z 2 czerwca 2008 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko:		
Pesel	•••••	

Zadanie nr	Odpowiedź	Punktacja
1	Е	
2	D	
3	В	
4	D	
5	Е	
6	С	
7	D	
8	С	
9	A	
10	Е	

[·] Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

[·] Wypełnia Komisja Egzaminacyjna.