Studiju darba uzdevums.

Minimizēt doto funkciju, izmantojot divus-trīs optimizācijas algoritmus

$$f(x_1, x_2, x_3) = ax_1^4 - bx_1x_2^2 + cx_2^2x_3^2 - dx_3^3 + lx_1 - kx_2 + e^{x_3} - \ln(x_1^2 + x_2^2 + 1)$$

Konstantes a, b, c, d, e, f individuālas katram variantam (skat. tabulu)

Darba gaitā:

- Izmantojiet jebkuru programmēšanas valodu pēc savas izvēles un patstāvīgi izveidojiet gradienta algoritmu izmantojot konstantu soli t (algoritmu ir jādefinē funkcijā un jāizsauc)*
- Veiciet optimizāciju trīs dažādiem izvēlētiem sākumpunktiem
 - Katrā optimizācijā izmēģiniet dažādas soļa t vērtības, varat variēt arī precizitātes ε līmeņus.
 - Veidojiet diagrammas
 - Funkcijas vērtības atšķirība no optimuma katrā iterācijā
 (Jūs varat izmantot Wolframalpha, lai izpētītu funkciju un vizualizētu to, kā arī aprēķinātu precīzu optimālo vērtību ar kuru salīdzināt)
 - Iterāciju skaita atkarība no soļa lieluma t
 - Līdzīgi veiciet optimizāciju ar vēl vienu-diviem algoritmiem, kas pieejami optimizācijas bibliotēkās. (Veiciet optimizāciju trīs dažādiem izvēlētiem sākumpunktiem, variējiet precizitātes ε līmeņus, norādiet iterāciju skaitu, veidojiet diagrammas funkcijas vērtības atšķirībai no optimuma katrā iterācijā)
- Veiciet rezultātu analīzi, izstrādājiet secinājumus

(*gradienta algoritma vietā varat izvēlēties patstāvīgi programmēt arī kādu citu, kas atbilst nelineārajai optimizācijai; tādā gadījumā skatiet iterāciju skaita atkarību no izvēlētajam algoritmam atbilstošajiem parametriem)

Ievērojiet, ka

- Darbu pārbaudei tiks izmantota plaģiāta pārbaudes sistēma OBLIGĀTI LIEKAM ATSAUCES
- STUDIJU DARBĀ jābūt nelielam apskatam par implementācijai izvēlētajiem algoritmiem, koda aprakstam, rezultātu analīzei, secinājumiem, etc

Atskaitei jāsatur:

- 1. Titullapa,
- 2. Satura rādītājs,
- 3. Izvēlēto algoritmu apraksts, salīdzinājums, izvēles pamatojums,
- 4. Vizualizēti iegūtie rezultāti, secinājumi, analīze
- 5. Secinājumi par darbu un algoritmiem
- 6. Atsauces un avotu saraksts

Varianta izvēle

Variants sakrīt ar studentu apliecības pēdējiem diviem cipariem, no 01 līdz 40. Ja skaitlis ir

- 00 tiek izvēlēts variants 40;
- virs 40 variants tiek izvēlēts kā dalījums pēc moduļa 40 (piem., 41 atbilst 1,...50 10,... 64 24,... 72 32... 99 19)

Varianti	а	b	С	d	1	k
1	2	1	2	2	10	2
2	0	1	2	2	10	-4
3	2	1	-1	2	10	-4
4	2	1	2	4	5	-2
5	2	2	2	4	5	-4
6	2	4	2	4	5	-1
7	2	10	2	10	4	-5
8	2	10	-4	10	10	-4
9	-2	10	-4	10	10	-4
10	-2	5	-2	5	5	-2
11	1	5	-4	5	5	-4
12	10	5	-1	5	5	-1
13	2	4	-5	4	2	10
14	2	10	-4	10	2	1
15	-2	10	-4	10	0	1
16	-2	5	-2	5	2	1
17	1	5	-4	5	2	1
18	10	5	-1	5	2	2
19	2	4	-5	4	2	4
20	2	10	2	13	2	6
21	2	1	2	2	2	10
22	0	1	2	2	-2	10
23	2	1	-1	2	-2	5
24	2	1	2	4	1	5
25	2	2	2	4	10	5
26	2	4	2	4	2	4
27	2	10	2	5	2	1
28	2	6	-4	10	0	1
30	-2	8	-4	10	2	1
31	-2	5	-2	5	2	1
32	1 10	5 5	<u>-4</u> -1	5 5	0	1
33	2	4	-1 -5	4	2	1
34	2	1	2	2	2	1
35	0	1	2	2	2	2
36	2	1	-1	2	2	4
37	2	1	2	4	7	9
38	2	2	2	4		
39	3	7	-4	5		
40	8	5	-3	5		
		<u> </u>				