Universidad Mariano Gálvez de Guatemala Boca del Monte

Ingeniería en Sistemas. Ciclo II, "c" Jornada Sábado.

ALGEBRA LÍNEAL HENRRY WALDEMAR SONTAY CHAN

Nombre: Luis Fernando Lima Ixcuná

Carné: 7690-20-17409

Si
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$$
 Hallar $\begin{vmatrix} -3a & -3b & -3c \\ d & e & f \\ g - 4d & h - 4e & i - 4f \end{vmatrix} = ?$

-69	-6b	- 60	7					1	
-60	-60	-6+							
-69	- Gn	-6i							
							-	1	
L-6at	3= 39	6	-			2	3	-	
46643	= -36	()		- (500	14	7		
1-664	3=-50	1	H.	- 12	13	5	> 1		
1-60+1	0=0			1	-7:	3			
T 6 0+	2 40								
E-66	F+2=4	村							
-6 ·-	464]		1 2						
1 + 6 h	b=h	4	9	- 3	7-	36	-30		+
[-69-	1-17		-	0	1	-4,		46	
[-6ht			L	9-4	0 1	7-71		71	4
						12/	13		

SERIE II: (15 puntos)

Por la regla de Cramer, determinar los valores de "a" para que sistema:

$$(2a+2)x + (a-1)y + (a+3)z = -2$$
$$(a-1)y - (a-1)z = 0$$
$$2x + y + z = -1$$

- a) Tenga solución única. Hallarla
- b) Tenga más de una solución.
- c) No tenga solución.

SERIE III: (15 puntos)

Encuentre el área del triángulo el cual tiene los siguientes vértices: P=(1,3,2), Q=(2,-1,1), R=(-1,2,3)

SERIE IV: (15 puntos)

Si $\vec{A} = \hat{\imath} + 4\hat{\jmath} - 2\hat{k}$ y $\vec{B} = 2\hat{\imath} - 3\hat{\jmath} - \hat{k}$ encuentre:

- a) $\vec{A} \times \vec{B}$
- b) $\vec{B} \times \vec{A}$ c) $(\vec{A} + \vec{B}) \times (\vec{A} \vec{B})$

