Optimizing quantum measurements through Pauli sparsification

MAXIME CAUTRÈS

M2 internship with DANIEL STILCK FRANÇA

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix}$$

(Maxime Cautrès) Pauli Sparsification M2 defense 2 / 12

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

◆ロ ト ◆ 部 ト ◆ 差 ト ◆ 差 ・ 夕 へ ⊙

(Maxime Cautrès)

$$H^4$$
 CX

$$H^{4} = \begin{bmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{bmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

Definition

The **Pauli observables** are define as $\mathcal{P}_n := \{I, X, Y, Z\}^{\otimes n}$.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The weight property

$$w(X_4 \otimes Y_2 \otimes Z_1) = w(Z \otimes Y \otimes I \otimes X) = w(ZYIX) = 3$$

2/12

(Maxime Cautrès) Pauli Sparsification M2 defense

Definition

A Clifford operator belongs to $\mathcal{U}(2^n)$ and stabilises \mathcal{P}_n by conjugation.

Remark:

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

Observation

Number of measurements \sim size of the decomposition

(Maxime Cautrès) Pauli Sparsification M2 defense 4 / 12

Remark:

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

Observation

Number of measurements \sim size of the decomposition

Solution: Simultaneous sparcification and measurements

(Maxime Cautrès) Pauli Sparsification

4 / 12

Remark:

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

Observation

Number of measurements \sim size of the decomposition

Solution: Simultaneous sparcification and measurements

Not always possible:

4 / 12

Remark:

$$\begin{pmatrix} -.24 & 0 & 0 & .18 \\ 0 & -1.06 & .18 & 0 \\ 0 & .18 & -1.06 & 0 \\ .18 & 0 & 0 & -1.84 \end{pmatrix} = .4IZ - 1.05II - .4ZI + .01ZZ + .18XX$$

Observation

Number of measurements \sim size of the decomposition

Solution: Simultaneous sparcification and measurements

Not always possible:

Solution: Partitioning the set of Pauli observables

Entries

 Q_1

 Q_2

 Q_3

:

 Q_m

Entries Partitioning
$$Q_1 \\ Q_2 \\ S_1 \begin{cases} Q_{\sigma(1)} \\ Q_{\sigma(2)} \end{cases}$$

$$Q_3 \longrightarrow S_2 \langle Q_{\sigma(3)} \\ \vdots \\ Q_m \\ S_k \langle Q_{\sigma(3)} \rangle$$

(Maxime Cautrès)

Entries Partitioning Sparcifying
$$Q_{1} \qquad S_{1} \begin{cases} Q_{\sigma(1)} & S_{1} \begin{cases} C_{1}Q_{\sigma(1)}C_{1}^{\dagger} \\ Q_{\sigma(2)} & S_{1} \end{cases} \begin{cases} C_{1}Q_{\sigma(2)}C_{1}^{\dagger} \\ C_{1}Q_{\sigma(2)}C_{1}^{\dagger} \end{cases}$$

$$Q_{3} \longrightarrow S_{2} \begin{cases} Q_{\sigma(3)} \longrightarrow S_{2} \begin{cases} C_{2}Q_{\sigma(3)}C_{2}^{\dagger} \\ \vdots & \vdots \\ Q_{m} & S_{k} \end{cases} \begin{cases} Q_{\sigma(3)} & S_{k} \end{cases}$$

5/12

(Maxime Cautrès) Pauli Sparsification

Entries	Partitioning	Sparcifying	Outputs
Q_1	$Q_{\sigma(1)}$	$S_1 egin{cases} C_1 Q_{\sigma(1)} C_1^\dagger \ C_1 Q_{\sigma(2)} C_1^\dagger \end{cases}$	Q_1'
Q_2	$S_1 egin{cases} Q_{\sigma(1)} \ Q_{\sigma(2)} \end{cases}$	$C_1Q_{\sigma(2)}C_1^{\dagger}$	Q_2'
Q_3 —	\longrightarrow $S_2 \langle Q_{\sigma(3)} \longrightarrow$	$ ightharpoonup S_2 \langle C_2 Q_{\sigma(3)} C_2^{\dagger} -$	\longrightarrow Q_3'
:	:	:	:
Q_m	$S_k \langle Q_{\sigma(3)}$	$S_k \langle C_k Q_{\sigma(3)} C_k^{\dagger} \rangle$	Q_m'

5 / 12

A basis a \mathcal{P}_n :

$$X_1,\ldots,X_n,Z_1,\ldots,Z_n$$

A basis a \mathcal{P}_n :

$$X_1,\ldots,X_n,Z_1,\ldots,Z_n$$

Anticommutation relations:

$$\begin{array}{ccccc} X_1 & X_2 & \cdots & X_n \\ \mid & \mid & & \mid \\ Z_1 & Z_2 & \cdots & Z_n \end{array}$$

(Maxime Cautrès) Pauli Sparsification M2 defense 6 / 12

A basis a \mathcal{P}_n :

$$X_1,\ldots,X_n,Z_1,\ldots,Z_n$$

Anticommutation relations:

$$\begin{array}{ccccc} X_1 & X_2 & \cdots & X_n \\ \mid & \mid & & \mid \\ Z_1 & Z_2 & \cdots & Z_n \end{array}$$

Characterization:

$$Q_1 Q_2 = (-1)^{\Omega(Q_1, Q_2)} Q_2 Q_1$$

6/12

(Maxime Cautrès)

A basis a \mathcal{P}_n :

$$X_1,\ldots,X_n,Z_1,\ldots,Z_n$$

Anticommutation relations:

$$\begin{array}{ccccc} X_1 & X_2 & \cdots & X_n \\ \mid & \mid & & \mid \\ Z_1 & Z_2 & \cdots & Z_n \end{array}$$

Characterization:

$$Q_1 Q_2 = (-1)^{\Omega(Q_1, Q_2)} Q_2 Q_1$$

Stalibilisation:

$$\Omega(Q_1, Q_2) = \Omega(CQ_1C^{\dagger}, CQ_2C^{\dagger})$$

6/12

(Maxime Cautrès) Pauli Sparsification M2 defense

A basis a \mathcal{P}_n :

$$X_1, \ldots, X_n, Z_1, \ldots, Z_n$$

Anticommutation relations:

$$\begin{array}{ccccc} X_1 & X_2 & \cdots & X_n \\ \mid & \mid & & \mid \\ Z_1 & Z_2 & \cdots & Z_n \end{array}$$

Characterization:

$$Q_1 Q_2 = (-1)^{\Omega(Q_1, Q_2)} Q_2 Q_1$$

Stalibilisation:

$$\Omega(Q_1,Q_2) = \Omega(CQ_1C^{\dagger},CQ_2C^{\dagger})$$

(Maxime Cautrès) Pauli Sparsification

A natural question about anticommutation structure.

Question

Can two sets with **isomorphic anticommutation structure** be linked by a Clifford?

7/12

A natural question about anticommutation structure.

Question

Can two sets with **isomorphic anticommutation structure** be linked by a Clifford?

Answer: No

Counter example

 $\{XII, IXI, IIX\}$ and $\{XXI, YYI, ZZI\}$

A natural question about anticommutation structure.

Question

Can two sets with **isomorphic anticommutation structure** be linked by a Clifford?

Answer: No

Counter example

 $\{XII, IXI, IIX\}$ and $\{XXI, YYI, ZZI\}$

Theorem (Fundamental form)

Let B_1 and B_2 be to linearly independent sets of \mathcal{P}_n with isomorphic anticommutation structure. Then, it exists C such that $CB_1C^{\dagger}=B_2$.

Proof: by construction based on **our new symplectic Gram Schmidt.**

7 / 12

The sketch of the proof

(Maxime Cautrès) Pauli Sparsification M2 defense 8 / 12

A first Pauli sparcification algorithm

Bottlenecks of the algorithm:

- Linearly independent entries
- Cliques

A first Pauli sparcification algorithm

Bottlenecks of the algorithm:

- Linearly independent entries
- Cliques

The **partition** part:

- Assumption: Linearly independent family in entry
- **Heuristics**: Cutting each connected components in *k* parts

Simulation results

Average weight depending on the number of qubit in different sparcification scenarios.

The Pauli Sparcification is in fact more complexe

The clifford synthetization

Question: Let $C \in \mathcal{C}_n$:

How to find a efficient circuit that compute *C*?

State of the art:

Theorem: (Maslov Zindorf)

 $\forall C \in \mathcal{C}_n, Time(C) \lesssim \lfloor 3n \rfloor$

The Pauli Sparcification is in fact more complexe

The clifford synthetization

Question: Let $C \in \mathcal{C}_n$:

How to find a efficient circuit that compute C?

State of the art:

Theorem: (Maslov Zindorf)

 $\forall C \in \mathcal{C}_n, Time(C) \lesssim |3n|$

The qubit networks

Figure: IBM SEATTLE, 433 qubits, 2 qubits gates network

• A new approach to noise mitigations

Maxime Cautrès) Pauli Sparsification M2 defense 12 / 12

- A **new approach** to noise mitigations
- At the intersection of dynamic fields of study:

Unitary synthetezis, quantum code, etc

12 / 12

(Maxime Cautrès) Pauli Sparsification M2 defense

- A new approach to noise mitigations
- At the intersection of dynamic fields of study:
 Unitary synthetezis, quantum code, etc
- Futur works:
 - ► An experiment onto a real quantum computer.
 - Better sparcification and partition heuristics.

- A new approach to noise mitigations
- At the intersection of dynamic fields of study:
 Unitary synthetezis, quantum code, etc
- Futur works:
 - An experiment onto a real quantum computer.
 - Better sparcification and partition heuristics.

Thanks for your attention

12 / 12

(Maxime Cautrès) Pauli Sparsification M2 defense