CSC336 A2 Report Tianshu Zhu 1002111225

Q1

```
Assume n \in \mathbb{N}

Assume x \in \mathbb{R}^n

Then ||x||_2

= (|x|_1^2 + (x_1)^2 + (x_1)^2)^{\frac{1}{2}}

= [(|x_1|_1^2 + \dots + |x_n|_2^2) + (2|x_1||x_2| + 2|x_1||x_3| + \dots + 2|x_{n-1}||x_n|)]^{\frac{1}{2}}

= [(|x_1|_1 + |x_2|_1 + \dots + |x_n|_2^2)^{\frac{1}{2}}

= ||x_1|_1 + ||x_2|_1 + \dots + ||x_n|_2^2

Then \forall n \in \mathbb{N} \ \forall x \in \mathbb{R}^n ||x||_2 \in ||x||_1
```

Q2

Q3

Assume A is invertible

Let
$$Ax = b$$
; $Ax = b$

Then $A^{\dagger}b = x$; $A^{-\dagger}b = x$

Since $Ax = b$; $Ax = b$ $\Rightarrow \frac{1/x - x/1}{||x/||} \in Cond(A) \frac{1/b - b/1}{||b||}$

Then $\frac{1/b - b/1}{||b||} \in Cond(A^{-1}) \frac{1/x - x/1}{||x/||}$

Since $Cond(A) = \frac{1}{||A^{-1}||} \frac{1}{||A^{-1}||} = \frac{1}{||A^{-1}||} \frac{1}{||A||} = Cond(A)$

Then $\frac{1}{Cond(A)} \frac{1/b - b/1}{||b||} \in \frac{1/x - x/1}{||x/||}$

Q4

code:

```
% a): compute f_hat
a = sqrt(2)/2;
A = zeros(13, 13);
b = [0 \ 10 \ 0 \ 0 \ 0 \ 0 \ 15 \ 0 \ 20 \ 0 \ 0]';
A(1,2)=1; A(1,6)=-1;
A(2,3)=1;
A(3,1)=a; A(3,4)=-1; A(3,5)=-a;
A(4,1)=a; A(4,3)=1; A(4,5)=a;
A(5,4)=1; A(5,8)=-1;
A(6,7)=1;
A(7,5)=a; A(7,6)=1; A(7,9)=-a; A(7,10)=-1;
A(8,5)=a; A(8,7)=1; A(8,9)=a;
A(9,10)=1; A(9,13)=-1;
A(10,11)=1;
A(11,8)=1; A(11,9)=a; A(11,12)=-a;
A(12,9)=a; A(12,11)=1; A(12,12)=a;
A(13,12)=a; A(13,13)=1;
f_hat = A b;
%b compute bound using 2 norm
condition = cond(A);
relative residual = norm(b-(A*f hat))/norm(b);
upper bound = condition*relative residual;
lower_bound = relative_residual/condition;
a):
f hat =
```

```
-28.2843
20.0000
10.0000
-30.0000
14.1421
20.0000
-30.0000
 7.0711
 25.0000
20.0000
-35.3553
25.0000
```

b):

Since
$$Af = b$$
, $Af = \hat{b}$
Since $\frac{1}{cond(A)} \frac{||b-\hat{b}||}{||b||} \le \frac{||f-\hat{f}||}{||f||} \le cond(A) \frac{||b-\hat{b}||}{||b||}$
Then $\frac{1}{cond(A)} \frac{||r||}{||b||} = \frac{1}{cond(A)} \frac{||b-Af||}{||b||} \le \frac{||f-\hat{f}||}{||f||} \le cond(A) \frac{||b-Af||}{||b||} = cond(A) \frac{||r||}{||b||}$

```
upper_bound = 2.0952e-15
lower bound = 1.9326e-17
```

Q5

code:

```
C = zeros(12, 1);
logC = zeros(12, 1);
D = zeros(12, 1);
R = zeros(12, 1);
N = (2:13)';
for n = 2:13
    H = hilb(n);
    x = ones(n,1);
    b = H*x;
    x hat = H \b;
    relative_error = norm(x-x_hat, inf)/norm(x, inf);
    R(n-1) = relative_error;
    if relative error >= 1
        max_n = n-1;
    end
    condition = cond(H, inf);
    C(n-1) = condition;
    logC(n-1) = log(condition);
    % use -log10(r_e) to approximate number of correct digits
    num correct digits = floor(-log10(relative error));
    D(n-1) = num\_correct\_digits;
end
% part1: find the largest n with relative error < 1</pre>
fprintf('The largest n with relative error smaller than one: %d\n\n', max n);
% part2: plot n versus log(cond(hilb(n)))
figure;
plot(N, logC, 'b.');
xlabel('n');
ylabel('cond(hilb(n), inf)');
% part3: print table of number of matched digits versus condition
Table = table(N, R, C, D, 'VariableNames', ...
        {'n', 'relative_error', 'condition_number', 'number_correct_digits'});
disp(Table);
```

result:

Condition number of hill(n) is positively proportional to exp(n)

n	relative_error	condition_number	number_correct_digits
2	7.7716e-16	27	15
3	7.4385e-15	748	14
4	4.6785e-13	28375	12
5	3.4417e-13	9.4366e+05	12
6	3.9883e-10	2.907e+07	9
7	1.5394e-08	9.8519e+08	7
8	5.7771e-07	3.3873e+10	6
9	2.1096e-05	1.0996e+12	4
10	0.00027738	3.5354e+13	3
11	0.021296	1.2311e+15	1
12	0.1144	3.9473e+16	0
13	9.4529	3.7285e+18	-1

The largest n with relative error smaller than 1 is 12.

As n gets larger, condition number gets larger, number of correct digits gets fewer.