Labor Condition Monitoring – Setup

unbalance disc

Condition Monitoring – Goal / Workflow

Condition Monitoring – Add-Ons (MATLAB R2024a)

Add-Ons	Requires
Communications Toolbox version 24.1	DSP System Toolbox version 24.1 Signal Processing Toolbox version 24.1
Embedded Coder version 24.1	MATLAB Coder version 24.1
MATLAB Support Package for Raspberry Pi Hardware version 24.1.2	
Predictive Maintenance Toolbox version 24.1	Signal Processing Toolbox version 24.1 Statistics and Machine Learning Toolbox version 24.1 System Identification Toolbox version 24.1
Simulink Coder version 24.1	Simulink version 24.1 MATLAB Coder version 24.1
Simulink Support Package for Raspberry Pi Hardware version 24.1.1	Simulink version 24.1

Raspberry Pi Configuration in Simulink (i)

Raspberry Pi Configuration in Simulink (ii)

Configuration Parameters: raspPi_config/Configuration (Active)

Raspberry Pi Configuration in Simulink (iii)

Measuring System / Hardware

Dr. Mario Jungwirth
Page 7

Measuring System / Software (i)

for loop:

3 cycles for 3 acc-axes

Dr. Mario Jungwirth Page 8

Measuring System / Software (ii)

For Iterator

Measuring System / Software (iii)

Constant (0x22-0x24)

Constant [0 0 0]

Measuring System / Software (iv)

Add

Block Parameters: Add		
Sum		
Add or subtract inputs. Specify one of the following: a) character vector containing + or - for each input port, for spacer between ports (e.g. ++ - ++) b) scalar, >= 1, specifies the number of input ports to be summed. When there is only one input port, add or subtract elements over all dimensions or one specified dimension.		
Main Signal Attributes		
Icon shape: rectangular v		
List of signs:		
++		
OK Cancel Help Apply		

Measuring System / Software (v)

I2C Controller Write/Read

Block Parameters: I2C Controller W	rite	×
I2C Controller Write		
Write data to an I2C peripheral dev	rice or an I2C peripheral device register.	
The block accepts an [Nx1] or [1xN double.	array of data type int8, uint8, int16, uint16, int32,	uint32, single or
		View pin map
Board:	Pi 4 Model B	~
Peripheral address	8	:
Peripheral byte order	LittleEndian	~
☐ Enable register access		
Send NACK at the end of data to	ansfer	
Remove stop bit at the end of d	ata transfer	
Output error status		
	OK Cancel <u>H</u> el	lp <u>A</u> pply

Measuring System / Software (vi)

Assignment

Measuring System / Software (vii)

Data Type Conversion

Signal Analyzer (i)

input format

```
t = (0:0.01:10)';
y = sin(t);
% prepare for SignalAnalyzer
x = seconds(t);
tTable = timetable(x,y);
```

		1
-	x	V V
1	0 sec	, 0
2	0.01 sec	0.0100
3	0.02 sec	0.0200
4	0.03 sec	0.0300
5	0.04 sec	0.0400
6	0.05 sec	0.0500
7	0.06 sec	0.0600
8	0.07 sec	0.0699
9	0.08 sec	0.0799
10	0.09 sec	0.0899
11	0.1 sec	0.0998
12	0.11 sec	0.1098
13	0.12 sec	0.1197
14	0.13 sec	0.1296
15	0.14 sec	0.1395
16	0.15 sec	0.1494
17	0.16 sec	0.1593
18	0.17 sec	0.1692
19	0.18 sec	0.1790
20	0.19 sec	0.1889
21	0.2 sec	0.1987

Signal Analyzer (ii)

Signal Analyzer (iii)

Dr. Mario Jungwirth Page 17

University of

Signal Analyzer (iv)

Dr. Mario Jungwirth

Page 19

$t = \frac{\text{single}(0:0.01:10)}{\text{single}(0:0.01:10)}$ $y = \sin(t);$ % prepare for SignalAnalyzer x = seconds(t);tTable = timetable(x,y); **Function Parameters** Resample Parameters **▼ RESAMPLE SETTINGS** Sample Rate Resampling Method Frequency Units Sample Rate 100 **▼ INTERPOLATION** Interpolation Method Linear Frequency Units Hz

Signal Analyzer (v)

Example 1: Resample Function

MATLAB function: resample()

generating realistic signal (incl. data type(s) unequal double)

Signal Analyzer (vi)

measurement

one

Diagnostic Feature Designer (i)

input format (table of timetables)

dataTrainEnsemble

dataTrainEnsemble.accY{7,1}

dataTrainEnsemble.accY{7,1}			
		1	2
	Time	accY	
1	0 sec	-6.7157	
2	0.01 sec	3.2842	
3	0.02 sec	0.2842	
4	0.03 sec	0.2842	
5	0.04 sec	3.2841	
6	0.05 sec	-3.7159	
7	0.06 sec	4.2840	
8	0.07 sec	0.2840	
9	0.08 sec	0.2839	
10	0.09 sec	0.2839	
11	0.1 sec	2.2839	
12	0.11 sec	1,2838	

Dr. Mario Jungwirth Page 21

Diagnostic Feature Designer (ii)

Diagnostic Feature Designer (iii)

Diagnostic Feature Desi...

Diagnostic Feature Designer (iv)

Dr. Mario Jungwirth

Classification Learner (i)

diagnosticFeatures.m × + % This function computes features: 18 % accY_sigstats/RMS 19 % accY_sigstats/Std 20 21 % accY tsfeat/01 22 % accY_tsfeat/IQR % accX tsfeat/Q1 23 accY tsproc tsfeat/Q1 24 25 accY_tsproc_tsfeat/IQR % accY_ps_spec/PeakAmp1 26

Classification Learner (iii)

Classification Learner (iv)

chose a model and export it to MATLAB workspace

Classification Learner (v)

commands to use trained models in MATLAB/Simulink:

a) saveLearnerForCoder(trainedModel.Classification***, 'trainedModel');

- b) classifier = loadLearnerForCoder("trainedModel.mat");
- c) mode = predict(classifier, featureTable);

ThingSpeak (i)

Sign in to
ThingSpeak">ThingSpeak using your MathWorks Account → New Channel

New Channel

Name	Condition Monitoring	
Description		li de la companya de
Field 1	mode	✓

Save Channel

ThingSpeak (ii)

Condition Monitoring

Channel ID: 2485082
Author: mwa0000032484217
Access: Private

Private View Public View Channel Settings Sharing API Keys Data Import

Write API Key

Key 1SY126GB2QX4EQYD

Generate New Write API Key

COPY Write API Key

ThingSpeak Write

Dr. Mario Jungwirth Page 31

Simscape – Add-Ons (MATLAB R2024a)

Add-Ons	Requires
Simscape version 24.1	Simulink version 24.1
Simscape Driveline version 24.1	Simulink version 24.1 Simscape version 24.1
Simscape Electrical version 24.1	Simulink version 24.1 Simscape version 24.1

Simscape – Electrical Components

DC Motor

Rotational Electromechanical Converter

Simscape – Mechanical Components

Dr. Mario Jungwirth Page 34

Simscape – Interfaces

PS-Simulink Converter

