Lista 3

Zadanie 1. Załóżmy, że dla przestrzeni liniowych $\mathbb{W}, \mathbb{W}' \leq \mathbb{V}$ zachodzi

$$\dim(\mathbb{W} + \mathbb{W}') = 1 + \dim(\mathbb{W} \cap \mathbb{W}')$$

Udowodnij, że suma $\mathbb{W} + \mathbb{W}'$ jest jedną z przestrzeni \mathbb{W}, \mathbb{W}' , a przecięcie $\mathbb{W} \cap \mathbb{W}'$ —drugą.

Zadanie 2. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- 1. $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- 2. $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Zadanie 3. Dane są dwa układy wektorów w przestrzeni \mathbb{R}^5 (nad ciałem \mathbb{R}):

$$S = \left\{ \begin{pmatrix} 3 & -1 & 1 & 1 & 5 \end{pmatrix}, \begin{pmatrix} 0 & 5 & -2 & 4 & -1 \end{pmatrix} \right\} \text{ i } T = \left\{ \begin{pmatrix} 1 & -5 & 3 & -3 & 3 \end{pmatrix}, \begin{pmatrix} -1 & -3 & 3 & -2 & 0 \end{pmatrix} \right\}. \text{ Ile wynoszą wymiary LIN}(S \cup T) \text{ oraz LIN}(S) \cap \text{LIN}(T)? Podaj dowolną bazę LIN}(S \cup T).$$

Zadanie 4. Niech $\mathbb{W} \leq \mathbb{V}$ będą przestrzeniami liniowymi, zaś $U \subseteq \mathbb{V}$. Udowodnij, że następujące warunki są równoważne:

- 1. istnieje wektor $\vec{u} \in \mathbb{V}$, taki że $U = \vec{u} + \mathbb{W}$;
- 2. istnieje wektor $\vec{u} \in U$, taki że $U = \vec{u} + \mathbb{W}$;
- 3. dla każdego wektora $\vec{u} \in U$ zachodzi $U = \vec{u} + \mathbb{W}$.

Udowodnij też równoważność poniższych warunków:

- 1. istnieje wektor $\vec{u} \in \mathbb{V}$, taki że $U \vec{u}$ jest przestrzenią liniową;
- 2. istnieje wektor $\vec{u} \in U$, taki że $U \vec{u}$ jest przestrzenią liniową;
- 3. dla każdego wektora $\vec{u} \in U$ zbiór $U \vec{u}$ jest przestrzenią liniową.

Zadanie 5. Dla podanych warstw U przestrzeni \mathbb{R}^3 oraz wektorów \vec{V} określ, czy $\vec{V} \in U$. Odpowiedzi uzasadnij.

- (a) $U = [1, 3, 2] + LIN([2, 1, 5], [2, 0, 1]), \vec{V} = [3, 6, 15]$
- (b) $U = [1, 3, 2] + LIN([2, 1, 5], [2, 0, 1]), \vec{V} = [3, 6, 16]$
- (c) $U = [1, 0, 1] + LIN([1, 1, 1], [3, -1, 2]), \vec{V} = [-4, 7, 11]$
- (d) $U = [1, 0, 1] + LIN([1, 1, 1], [3, -1, 2]), \vec{V} = [-8, 14, 22]$

Zadanie 6. Pokaż, że na zbiorze warstw (podprzestrzeni $\mathbb{W} \leq \mathbb{V}$ nad ciałem \mathbb{F}) można zadać strukturę przestrzeni liniowej poprzez:

$$(\vec{u} + \mathbb{W}) + (\vec{u}' + \mathbb{W}) = (\vec{u} + \vec{u}') + \mathbb{W}$$
$$\alpha(\vec{u} + \mathbb{W}) = (\alpha \vec{u}) + \mathbb{W}$$

Ile wynosi wymiar tak zdefiniowanej przestrzeni (w zależności od $\dim \mathbb{V}$ i $\dim \mathbb{W}$)?

 \mathbb{W} skazówka: W drugim punkcie: rozważ bazę \mathbb{W} i rozszerz ją do bazy $\mathbb{V}.$

Zadanie 7. Niech \mathbb{V} będzie przestrzenią liniową wymiaru n nad ciałem \mathbb{F} , zaś $F: \mathbb{V} \to \mathbb{F}$ niezerowym (tj. istnieje $\vec{v} \in \mathbb{V}$ takie że $F(\vec{v}) \neq \vec{0}$) przekształceniem liniowym (takie przekształcenia nazywamy funkcjonalami liniowymi). Pokaż, że istnieją $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ takie że

$$F((x_1,\ldots,x_n)) = \sum_{i=1}^n \alpha_i x_i .$$

Wskazówka: Wystarczy zadać F' na bazie standardowej.

Zadanie 8. Które z poniższych przekształceń są liniowe (dziedzinami i przeciwdziedzinami przekształceń są przestrzenie \mathbb{R}^n dla odpowiednich n)?

- L(x,y) = (2x y, x + 3y 1, 5x + 2y),
- L'(x, y, z) = (3x + 5y 2z, 2x y),
- $L''(x, y, z) = (x \cdot y + z, -2x z, -2y z)$.

Zadanie 9. Niech $F: \mathbb{V} \to \mathbb{W}$ będzie przekształceniem liniowym i jest funkcją "na" \mathbb{W} . Załóżmy, że $\mathrm{LIN}(\vec{v}_1,\ldots,\vec{v}_n) = \mathbb{V}$. Pokaż, że $\mathrm{LIN}(F(\vec{v}_1),\ldots,F(\vec{v}_n)) = \mathbb{W}$.

Zadanie 10. Niech $F: \mathbb{V} \to \mathbb{W}$ będzie przekształceniem liniowym. Załóżmy, że $F(\vec{v}_1), \dots, F(\vec{v}_n)$ są liniowo niezależne. Pokaż, że $\vec{v}_1, \dots, \vec{v}_n$ są liniowo niezależne.

Zadanie 11 (* Nie liczy się do podstawy, choć nie jest takie trudne). Załóżmy, że dla przekształcenia liniowego $L: \mathbb{R}^2 \to \mathbb{R}^2$ zachodzi $L^3(\vec{v}) = \vec{0}$, dla każdego wektora $v \in \mathbb{R}^2$. Pokaż, że wtedy również $L^2(\vec{v}) = \vec{0}$, dla każdego wektora v.

Udowodnij uogólnienie tego faktu:

Jeśli dla $L: \mathbb{R}^n \to \mathbb{R}^n$ oraz pewnego k > n zachodzi $L^k(\vec{v}) = \vec{0}$ dla dowolnego wektora \vec{v} , to zachodzi również $L^n(\vec{v}) = \vec{0}$.

Wskazówka: Rozważ wektory $\vec{v}, L(\vec{v}), L^2(\vec{v}), \ldots, L^n(\vec{v})$. Są one liniowo zależne.