

Computer Security

Block ciphers (Semantic security)

Hyoungshick Kim

Department of Software

College of Software

Sungkyunkwan University

Semantic security for one-time key

- $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C)
- For b=0, 1 define EXP(0) and EXP(1) as follows:

• Def: $\mathbb E$ is semantically secure for one-time key if for all "efficient" A:

$$Adv_{SS}[A,\mathbb{E}] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$
 is "negligible."

Semantic security

Semantically Secure \Rightarrow no "efficient" adversary learns information about plaintext from a <u>single</u> ciphertext.

Example: Suppose efficient A can deduce LSB of plaintext from ciphertext.

Then $\mathbb{E} = (E,D)$ is not semantically secure.

Then $Adv_{SS}[B, E] = 1 \implies E$ is not semantically secure

ECB is not Semantically Secure

Electronic Code Book (ECB):

 Not semantically secure for messages that contain more than one block.

If $c_1=c_2$ output 1, else output 0

Then $Adv_{SS}[A, ECB] = 1$

Semantic security for many-time key (CPA security)

- Cipher $\mathbb{E} = (E,D)$ defined over (K,M,C).
- For b=0,1 define EXP(b) as:

• Def: $\mathbb E$ is semantically secure under CPA if for all "efficient" A:

$$Adv_{CPA}[A,E] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$
 is "negligible."

Security for many-time key

<u>Fact:</u> stream ciphers are insecure under CPA.

 More generally: if E(k,m) always produces same ciphertext, then cipher is insecure under CPA.

If secret key is to be used multiple times ⇒
given the same plaintext message twice,
the encryption alg. must produce different outputs.

CBC is not Semantically Secure (when IV is predictable)

Then $Adv_{SS}[A, CBC] = 1$

If an attacker can predict the IV, CBC is not CPA-secure.

Common rules for CPA security

- 1. Do not use ECB (Electronic Codebook) mode for encryption.
- 2. Do not use a non-random IV (Initialization vector) for CBC (Cipher Block Chaining) encryption.
- 3. Do not use constant encryption keys.
- 4. Do not use constant salts for PBE (Password-based encryption).
- 5. Do not use fewer than 1,000 iterations for PBE.
- Do not use static seeds for SecureRandom

"An Empirical Study of Cryptographic Misuse in Android Applications", ACM CCS 2013

What is the best recommendation?

It depends on the situation.

Overall, CTR is the best and most modern way to achieve <u>privacy-only encryption</u>.

It is insecure if a nonce gets reused on encryption or decryption.

"Evaluation of Some Blockcipher Modes of Operation", Phillip Rogaway, 2011

However ...

CBC and CTR modes *are* not secure against chosen-ciphertext attacks.

CPA security cannot guarantee security under active attacks.

Questions?

