空间解析几何和向量代数:

空间2点的距离: $d = \left| M_1 M_2 \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ 向量在轴上的投影 $\Pr j_u \overrightarrow{AB} = \left| \overrightarrow{AB} \right| \cdot \cos \varphi, \varphi$ 是 \overrightarrow{AB} 与u轴的夹角。

$$\Pr{j_u(\vec{a}_1 + \vec{a}_2)} = \Pr{j\vec{a}_1} + \Pr{j\vec{a}_2}$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos\theta = a_x b_x + a_y b_y + a_z b_z$$
,是一个数量,

两向量之间的夹角
$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}, |\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin \theta.$$
 例: 线速度: $\vec{v} = \vec{w} \times \vec{r}$.

向量的混合积[
$$\bar{a}\bar{b}\bar{c}$$
] = $(\bar{a}\times\bar{b})\cdot\bar{c}$ = $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$ = $|\bar{a}\times\bar{b}|\cdot|\bar{c}|\cos\alpha,\alpha$ 为锐角时,

代表平行六面体的体积

平面的方程:

1、点法式:
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
, 其中 $\bar{n}=\{A,B,C\},M_0(x_0,y_0,z_0)$

2、一般方程:
$$Ax+By+Cz+D=0$$

3、截距世方程
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

平面外任意一点到该平面的距离:
$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

空间直线的方程:
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$$
, 其中 $\bar{s} = \{m,n,p\}$; 参数方程: $\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$

二次曲面:

1、椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2、抛物面:
$$\frac{x^2}{2p} + \frac{y^2}{2q} = z, (p, q 同号)$$

3、双曲面:

单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

双叶双曲面:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1(马鞍面)$$