PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-178654

(43)Date of publication of application: 27.06.2000

(51)Int.Cl.

C21D 9/46 C21D 9/48 C22C 38/00 C22C 38/12

(21)Application number: 10-352432

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

11.12.1998

(72)Inventor: FUJITA NOBUHIRO

TANAHASHI HIROYUKI

KISHIDA KOJI

TAKAHASHI MANABU **MIZUHASHI NOBUO**

FURUOI SEIJI

(54) HIGH TENSILE STRENGTH THIN STEEL SHEET NARROW IN WELD HEAT AFFECTED SOFTENED ZONE AND ITS PRODUCTION

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the softening of the weld heat affected zone in a thin steel sheet used for a structural member such as chassis line of an automobile accompanied with welding.

SOLUTION: This high tensile strength thin steel sheet narrow in the weld heat affected softened zone is the one having a compsn. contg., by weight, 0.01 to 0.05% C, 0.5 to 3.0% Si, 0.8 to 3.0% Mn, 0.02 to 0.10% Nb, 0.002 to 0.010% N, and the balance Fe with inevitable impurities and satisfying $7.0 \times 10^{-4} \ge [N \text{ wt.}\%] [Nb \text{ wt.}\%] \ge 5.0 \times 10^{-5}$ and having a structure of ferrite and martensite.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-178654 (P2000-178654A)

(43)公開日 平成12年6月27日(2000.6.27)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート*(参考)
C 2 1 D 9/46		C 2 1 D 9/46	T 4K037
9/48		9/48	S
C 2 2 C 38/00		C 2 2 C 38/00	301B
38/12		38/12	
		審査請求 未請求	請求項の数2 OL (全 5 頁)
(21)出願番号	特願平10-352432	(71)出願人 0000066	55 5 5 夏鐵株式会社
(22)出願日	平成10年12月11日(1998.12.11)		千代田区大手町2丁目6番3号
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者 藤田 別	
			○一 富津市新富20-1 新日本製鐵株式
			新開発本部内
	4	(72)発明者 棚橋 1	当之
		千葉県智	富津市新富20-1 新日本製鐵株式
		会社技術	斯 開発本部内
		(74)代理人 1000747	90
		弁理士	椎名 彊

最終頁に続く

(54) 【発明の名称】 溶接熱影響軟化部の狭い高張力薄鋼板とその製造方法

(57)【要約】

【課題】 溶接を伴う自動車の足廻り等の構造部材に用いられる薄鋼板の溶接熱影響部の軟化を防止する。

【解決手段】 重量%で、 $C:0.01\sim0.05\%$ 、 $Si:0.5\sim3.0\%$ 、 $Mn:0.8\sim3.0\%$ 、 $Nb:0.02\sim0.10\%$ 、 $N:0.002\sim0.010\%$ を含有し、残部がFe および不可避的不純物からなり、 $7.0\times10^{-4} \ge [Nwt\%][Nbwt\%] \ge 5.0\times10^{-5}$ を満たし、フェライトおよびマルテンサイトから成る溶接熱影響軟化部の狭い高張力薄鋼板。

1

【特許請求の範囲】

【請求項1】 重量%で、.

C : 0. $01 \sim 0. 05\%$

 $Si:0.5\sim3.0\%$

 $Mn: 0.8\sim 3.0\%$

 $Nb:0.02\sim0.10\%$

 $N : 0.002 \sim 0.010\%$

を含有し、残部が Fe および不可避的不純物からなり、 7. $0 \times 10^{-1} \ge [Nwt\%]$ $[Nbwt\%] \ge 5. 0$ $\times 10^{-5}$ を満たし、フェライトおよびマルテンサイトか 10 ら成る溶接熱影響軟化部の狭い高張力薄鋼板。

【請求項2】 重量%で、

 $C : 0. 01 \sim 0. 05\%$

 $Si:0.5\sim3.0\%$

 $Mn: 0. 8\sim 3. 0\%$

 $Nb: 0. 02 \sim 0. 10\%$

 $N : 0.002 \sim 0.010\%$

を含有し、さらに $7.0 \times 10^{-1} \ge [Nwt\%] [Nbwt\%] \ge 5.0 \times 10^{-1}$ を満たし、残部がFe および不可避的不純物からなる鋳片を1100 % - 1250 % に加熱して圧延し、圧延終了温度をAr。以上Ar。 + 100%以下とし、その後圧延終了温度からAr1.点までの冷却を20 - 7% をで除冷してフェライト相を体積率で80%以上得た後で10% - 200%に平均冷却速度を20%/ 8 - 100%/ 8 - 100% 速度を20%/ 8 - 100%/ 8 - 100% 速度を10%/ 100%

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、溶接を伴う構造部材、例えば自動車の足廻り、メンバーなどに用いられる溶接熱影響軟化部の狭い高張力薄鋼板およびその製造方法に関するものである。

[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高強度化が望まれている。高強度化することで板厚減少や衝突時の安全性向上が狙いである。鋼板の高強度化の手法は析出や組織強化が主である。しかしながら、この種の強化方法では、溶接部および溶接熱影響部における強度・加工性を、溶接ままで、母材なみに確保することは困難である。したがって、溶接部の再熱処理や溶接部分を強加工部分からはずすといった付加的処理が施されていた。また、最近では、複雑な形状の部位について、高強度鋼の素鋼板または鋼管からハイドロフォーム法を用いて成形加工する試みが行われている。この様な場合、溶接部の再熱処理や溶接部分の強加工部分からの除外などは極めて困難になる。

【0003】一方では、フェライトおよびマルテンサイトから成る複合組織鋼板は低YRかつ高強度であるため、この種の用途に使用される候補材の1つであると考 50

えられる。Nb添加の複合組織鋼板に関しては、伸びフランジ特性や打ち抜き性を考慮した鋼板が開発されている(特開平8-269617号公報、特開平9-31593号公報)。また、溶接性と延性を考慮した高Si-Nb添加鋼が開発されている(特開平4-28846号公報)。しかしながら、NbNの析出を活用して溶接部および熱影響部の軟化防止を考慮した複合組織鋼板の開発例はこれまでない。

[0004]

【発明が解決しようとする課題】本発明は溶接を伴う構造部材、例えば自動車の足廻り、メンバーなどに用いられる薄鋼板の溶接部及び溶接熱影響部の軟化を防止することを目的とする。

[0005]

【課題を解決するための手段】本発明は、高強度鋼板をハイドロフォーム法等の溶接部の再熱処理や溶接部分の強加工部からの除外などは極めて困難な場合に、590 MPa級のフェライトおよびマルテンサイトから成る複合組織高張力鋼を、問題となる溶接熱影響軟化部を狭くするため成分を限定し、その範囲で有効な製造方法を見い出したものである。この成分限定および製法により、NbN析出を有効的に活用することで溶接熱影響軟化部の狭い高張力薄鋼板を供給できる。

[0006]

【発明の実施の形態】以下に、本発明を詳細に説明する。

C :強化元素であるとともにオーステナイトフォーマーであるため、硬質相(マルテンサイト)の強化のため 0.01%以上とした。一方では溶接部靱性や加工性を確保するため 0.05%以下とした。

Si:フェライト変態を促進させるため0.5%以上とした。また、過剰添加は延性低下が懸念されるため3.0%以下とした。

Mn:強化元素であるとともにオーステナイトフォーマーであるため、強化および硬質相の生成のため0.8%以上とした。一方では加工性劣化を防止する観点から3.0%以下とした。

【0007】Nb:溶接熱影響軟化現象を抑制するために特に有効な添加元素で0.02%以上の添加とした。また、過剰添加はNbNの析出粗大化を促進するため0.10%以下とした。また、溶接熱影響軟化部を狭くするための有効な範囲をN量との組み合わせで成分範囲を限定した。溶接部および溶接熱影響部のフェライト相または硬質相(マルテンサイト)中にNbNを析出させ溶接熱影響軟化部を狭化する条件として溶接前の鋼板の状態で $7.0\times10^4 \ge [Nwt\%][Nbwt\%] \ge 5.0\times10^4 を満たすこととした。また、さらなる狭化のためには、<math>0.05\%$ 以上の添加とし、 $7.0\times10^4 \ge [Nwt\%][Nbwt\%] \ge 2.0\times10^4 を満たすことが好ましい。これらを満たすことで、100$

nm以下のNbNが得られ、溶接部及び溶接熱影響部の軟化防止に効果的である。

【0008】N :溶接熱影響軟化現象を抑制するために特に有効な添加元素で0.002%以上の添加とした。また、過剰添加はNbNの析出粗大化を促進するため0.010%以下とした。また、溶接熱影響軟化部を小さくするための有効な範囲をNb量との組み合わせで成分範囲を限定した。溶接部および溶接熱影響部のフェライト相または硬質相(マルテンサイト)中にNbNを析出させ溶接熱影響軟化部を狭化する条件として溶接前の鋼板の状態で7.0×10 4 \geq [Nwt%] [Nbwt%] \geq 5.0×10 5 を満たすこととした。また、さらなる狭化のためには、0.005%以上の添加とし、7.0×10 4 \geq [Nwt%] [Nbwt%] \geq 2.0×10 5 を満たすことが好ましい。

【0009】以下に製造方法について説明する。 鋳片加熱温度:Nbの固溶の観点から1150℃以上と し、粒の粗大化防止のため1250℃以下の加熱とし た。

圧延終了温度:製造性とフェライト相の延性確保の点からAr。以上Ar。+100℃以下の範囲とした。延性確保のためオーステナイト域で圧延を完了させることとし終了温度をAr。以上とした。また、製造性の点からAr。+100℃以下とした。

【0010】仕上げ圧延後の冷却:フェライト相を体積率にして80%以上得るため圧延終了温度からAr.温度までを20~7℃/sの徐冷とした。圧延終了温度からの冷速が20℃/s超では、フェライト相を十分得ることが出来ない。一方、7℃/s以上の冷速であれば80%以上のフェライトが得られるため、製造性の点から*30

* これを下限とした。さらに、その後の冷却はパーライトの生成を抑制して硬質相のマルテンサイトを得るためであり、10 C以上200 C以下の冷却終了温度まで平均冷却速度20 C/s ~ 100 C/s の急冷とした。また、製造上10 C未満にまで冷却することは困難なため下限を10 Cとし、マルテンサイトを得る上で100 C/s以下の冷却速度で十分なため、これを上限とした。【0011】

【実施例】表1に示す成分の各鋼を、25kgインゴッ トに鋳造して1200℃に加熱後、熱間圧延して厚み2 0 mmの鋼板を得た。これを用いて各鋼のAr。および Arı は加工フォーマスタを用いて実験的に求めた。そ の後、20mm厚の鋼板を再度1200℃に加熱して圧 延の終了温度を950~850℃の範囲で制御し、その 後Arュ 点(700℃付近)まで10℃/sで徐冷後室 温まで平均冷却速度80℃/sで焼き入れした。これに より板厚2mmの熱延薄鋼板を得た。鋼板のフェライト 組織体積率はいずれも80%以上で、残部はマルテンサ イトであった。また、この鋼板を照射熱量0.38kJ /mmのレーザー溶接にてビードオンプレートにより溶 接して、溶接部、溶接熱影響部および母材部の硬度測定 を行い溶接熱影響の幅を測定して、Nb、N無添加鋼に おける軟化幅と比較することで評価した。また、母材に 対しては引張試験を行い機械的特性を評価した。表2に 発明鋼のNo.5の材質特性に及ぼす工程条件の影響お よび組織分率を示す。組織分率は、画像解析装置を用い て測定した。

[0012]

【表1】

表1 各綱の化学成分(wt%)と材質特性

Г	T	1		1	Т	T	1	1	T		1	г
No.	C	Si	Man	Nb	N	TS/MPa	B1. /%	R:軟化幅の比#	(Nowth) (North)	Ar=/*C	Ar₁/℃	備考
1	0.03	2.2	1.0	=	0. 002	630	26	1.00	0.0	880	690	比較鋼
2	0. 03	2.2	1.0	0. 03	0.002	640	25	0.60	6. 0×10 ⁻⁸	890	695	発明鋼
3	0. 03	2.2	1.0	0.06	0.003	645	25	0.45	1.8×10 ⁻⁴	880	690	発明鋼
4	0. 03	2.2	1.0	0.01	0.002	635	25	0.85	2.0×10 ⁻⁵	880	690	比較鋼
5	0. 03	2.2	1.0	0.08	0.006	670	24	0, 25	4.8×10 ⁻⁴	885	690	発明鋼
6	0.03	2.2	1. 0	<u>0. 15</u>	0.005	700	21	0.70	7.5×10 ⁻⁴	890	690	比較調
7	0. 03	22	1.0	0.07	0.012	690	23	0.80	8.4×10 ⁻⁴	890	690	比較鋼
8	0.005	2.2	1.0	0.06	0.003	515	34	0. 45	1.8×10 ⁻⁴	895	695	比較鋼
9	0.08	22	LO	0.06	0.003	715	20	0.75	1.8×10 ⁻⁴	870	690	比較鋼

注1)*:軟化圏の比-網材の軟化組/Nb無添加のNa1網の軟化組

注2) 下線は本発明の範囲外の条件

加熱温度(℃)	圧延仕上 げ温度 (*C)	Arıまで の冷速 (℃/s)	Ar ₁ から 100 ℃までの冷速 (℃/s)	TS OMPa)	E 1	组 織 (vol. %)	
1200	935	10	80	670	24	90%フェライト+10% マルテンサイト	
1200	920	50	80	750	16	50%フェライト+50% マルテンサイト	
1200	925	10	<u>0. 01</u>	560	24	フェライト+ パーライト	
1200	820	10	80	700	19	80%加工フェライト+ 20%マルテンサイト	

注) 下線は本発明の範囲外の条件

【0014】発明鋼であるNo. 2, 3および5は機械 的特性が良好な上、Nb無添加のNo. 1に比べ軟化幅 が狭い。Nb添加量の少ないNo. 4は、Nb無添加の No. 1に比べて軟化幅は狭くなるものの、狭化の程度 は小さい。また、NbまたはNを多量添加したNo.6 および7においても狭化の幅は小さい。これは、Nbま たはNの過剰添加によりNbN析出が促進されて析出サ イズが大きくなったためである。 C 量の低い No. 8は 強度が低くなってしまっており、C量の高いNo.9は Nb, N量は本発明の範囲にあるも狭化の幅は小さい。 これは、NbNに加えてNbCも同時析出してしまうた め狭化の幅が小さくなったためと考えられる。図1に 0.03wt%C材(No.1~7)について軟化幅の 比:Rと[Nbwt%] [Nwt%] の関係を示す。本 発明の範囲である $7 \times 10^{-1} \ge [Nbwt\%] [Nwt]$ %] $\geq 5 \times 10^{3}$ $\forall R \leq 0.6$, $\forall 5 \in (7 \times 10^{4})$ $[Nbwt\%] [Nwt\%] \ge 2 \times 10^{-1} \text{ \vec{c} R} \le 0.3$ と良好な値を示すことがわかる。

*【0015】工程条件については、No. 5について種々の条件を変えて機械的特性を調査した。圧延仕上げ温度からAriまでの冷速が早すぎるとフェライトの体積率が低く低延性になってしまう。また、Ariからの冷却速度が遅くなると、硬質のマルテンサイトの代わりにパーライトが生成して強度・延性バランスの悪いものとなってしまう。圧延仕上げ温度が低くなっても延性が低下してしまう。これは、2相域での圧延となり、フェライト相に比較的高い転位密度が残存したためと考えられる。

[0.016]

【発明の効果】本発明により溶接をともなう自動車足廻り等の構造部材に用いられる薄鋼板の溶接熱影響部の軟化を防止することが出来る。

【図面の簡単な説明】

【図1】軟化幅比:R(鋼材の軟化幅/Nb無添加のNo.1鋼の軟化幅)と[Nwt%] [Nbwt%] の関係を示す図である。

[図1]

30

フロントページの続き

(72)発明者 岸田 宏司

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72)発明者 高橋 学

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72)発明者 水橋 伸雄

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72)発明者 古追 誠司

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

F ターム(参考) 4KO37 EA05 EA15 EA16 EA18 EA19

EA27 EA28 EB11 FA02 FA03

FC07 FD02 FD03 FD04