Clustering

Congratulations! You passed!

Grade Latest Submission received 100% Grade 100%

To pass 80% or

higher

Go to next item	
-----------------	--

1.	Which of	these	best	describes	unsupe	rvised	learning?

1/1 point

- A form of machine learning that finds patterns in data using only labels (y) but without any inputs (x) .
- A form of machine learning that finds patterns without using a cost function.
- A form of machine learning that finds patterns using unlabeled data (x).
- A form of machine learning that finds patterns using labeled data (x, y)
- ✓ Correct

Unsupervised learning uses unlabeled data. The training examples do not have targets or labels "y". Recall the T-shirt example. The data was height and weight but no target size.

1/1 point

Which of these statements are true about K-means? Check all that apply.

- lacksquare If you are running K-means with K=3 clusters, then each $c^{(i)}$ should be 1, 2, or 3.
- \bigcirc correct $c^{(i)}$ describes which centroid example(i) is assigned to. If K=3, then $c^{(i)}$ would be one of 1,2 or 3 assuming counting starts at 1.
- lacksquare The number of cluster assignment variables $c^{(i)}$ is equal to the number of training examples.
- \bigcirc Correct $c^{(i)}$ describes which centroid example (i) is assigned to.

Clustering 1

	If each example x is a vector of 5 numbers, then each cluster centroid μ_k is also going to be a vector of 5 numbers.	
	\bigcirc Correct The dimension of μ_k matches the dimension of the examples.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
3.		1/1 point
	You run K-means 100 times with different initializations. How should you pick from the 100 resulting solutions?	
	Pick the last one (i.e., the 100th random initialization) because K-means always improves over time	
	Average all 100 solutions together.	
	Pick randomly that was the point of random initialization.	
	lacktriangle Pick the one with the lowest cost J	
	 Correct K-means can arrive at different solutions depending on initialization. After running repeated trials, choose the solution with the lowest cost. 	
4.	You run K-means and compute the value of the cost function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K)$ after each iteration. Which of these statements should be true?	1/1 point
	The cost will either decrease or stay the same after each iteration	
	O The cost can be greater or smaller than the cost in the previous iteration, but it decreases in the long run.	
	There is no cost function for the K-means algorithm.	
	O Because K-means tries to maximize cost, the cost is always greater than or equal to the cost in the previous iteration.	
	 ✓ Correct The cost never increases. K-means always converges. 	
5.	In K-means, the elbow method is a method to	1/1 point
	Choose the best random initialization	
	Choose the number of clusters K	
	Choose the best number of samples in the dataset	
	Choose the maximum number of examples for each cluster	
	Correct The elbow method plots a graph between the number of clusters K and the cost function. The 'bend' in the cost curve can suggest a natural value for K. Note that this feature may not exist or be significant in some data sets.	

Clustering 2

Clustering 3