PROBLEM SET 6.3

1. Report on Shifting Theorems. Explain and compare the different roles of the two shifting theorems, using your own formulations and simple examples. Give no proofs.

2-11 SECOND SHIFTING THEOREM, **UNIT STEP FUNCTION**

sketch or graph the given function, which is assumed to be outside the given interval. Represent it, using unit step Show the details of your work.

fractio

3.
$$t-3 (t > 3)$$

$$4 \cos 2t (0 < t < \pi)$$

5.
$$e^{-t} (0 < t < \pi)$$

IVPs, SOME WITH DISCONTINUOUS 18-27 INPUT

Using the Laplace transform and showing the details, solve

Using the Laplace transform and showing
18.
$$4y'' - 12y' + 9y = 0$$
, $y(0) = 2/3$, $y'(0) = 1$
19. $y'(0) = 1$, $y'(0) = 1$, $y'(0) = 1$

18.
$$4y'' - 12y' + 9y = 0$$
, $y(0) = 2/3$, $y'(0) = 4$
19. $y'' - 6y' + 8y = e^{-t} - e^{-4t}$, $y(0) = 1$, $y'(0) = 4$

19.
$$y'' - 6y' + 8y = e^{-t} - e^{-t}$$
, $y(0) = 19/12$, $y'' + 10y' + 24y = 144t^2$, $y(0) = 19/12$, $y'(0) = -5$

$$y'(0) = -5$$

21. $y'' + 4y = 4 \cos t$, if $0 < t < \pi$, and 0 if $t > \pi$

21.
$$y'' + 4y = 4 \cos t$$
, if $0 < t < 1$ and $8 \text{ if } t > 1$;
22. $y'' + 3y' + 2y = 4t \text{ if } 0 < t < 1 \text{ and } 8 \text{ if } t > 1$;
 $y(0) = 0, y'(0) = 0$

$$y(0) = 0, y'(0) = 0$$

23. $y'' + y' - 2y = 3 \sin t - \cos t, (0 < t < 2\pi), \text{ and}$
 $3 \sin 2t - \cos 2t, (t > 2\pi); y(0) = 0, y'(0) = -1$

3 sin
$$2t - \cos 2t$$
, $(t > 2\pi)$; $y(0) = 5$; $y(0) = 5$; 24. $y'' + 3y' + 2y = 1$ if $0 < t < 1$ and 0 if $t > 1$; $y(0) = 0$, $y'(0) = 0$

$$y(0) = 0$$
, $y'(0) = 0$
25. $y'' + y = 2t$ if $0 < t < 1$ and 2 if $t > 1$

25.
$$y'' + y = 2t$$
 if $0 < t < 1$ and 2 if $t > 1$
26. Shifted data. $y'' + 2y' + 5y = 10$ sin t if $0 < t < 2\pi$ and 0 if $t > 2\pi$; $y(\pi) = 1$, $y'(\pi) = 2e^{-\pi} - 2$ and 0 if $t > 2\pi$; $y(\pi) = 3t^2$ if $0 < t < 5$ and 0 if

and 0 if
$$t > 2\pi$$
; $y(\pi) = 1$, $y'(\pi) = 2e$
27. Shifted data. $y'' + 4y = 8t^2$ if $0 < t < 5$ and 0 if $t > 5$; $y(1) = 1 + \cos 2$, $y'(1) = 4 - 2 \sin 2$

MODELS OF ELECTRIC CIRCUITS 28-40

RL-CIRCUIT 28-30

Using the Laplace transform and showing the details, find the current i(t) in the circuit in Fig. 126, assuming i(0) = 0

and:
28.
$$R = 1 \text{ k}\Omega \ (=1000 \ \Omega), L = 1 \text{ H}, v = 0 \text{ if } 0 < t < \pi,$$

and 40 sin $t \text{ V}$ if $t > \pi$

and
$$40 \sin t \text{ V if } t > \pi$$

29. $R = 25 \Omega$, $L = 0.1 \text{ H}$, $v = 490 e^{-5t} \text{ V}$ if $0 < t < 1$
and 0 if $t > 1$

and 0 if
$$t > 1$$

30. $R = 10 \Omega$, $L = 0.5 H$, $v = 200t V$ if $0 < t < 2$ and 0 if $t > 2$

Fig. 126. Problems 28-30

Fig. 127. Problem 31

6.
$$\sin \pi t (2 < t < 4)$$

7.
$$e^{-\pi/2t}$$
 (1 < t < 3)

8.
$$t^2 (1 < t < 2)$$

9.
$$2t^2 (t > \frac{5}{2})$$

10.
$$\sinh t (0 < t < 2)$$

11.
$$\sin t (\pi/2 < t < \pi)$$

INVERSE TRANSFORMS BY THE 2ND SHIFTING THEOREM

Find and sketch or graph f(t) if $\mathcal{L}(f)$ equals

12.
$$e^{-2s}/(s-1)^3$$

12-17

13.
$$4(1 - e^{-\pi s})/(s^2 + 4)$$

14.
$$4(e^{-2s} - 2e^{-5s})/$$

14.
$$4(e^{-2s} - 2e^{-5s})/s$$
 15. e^{-2s}/s^6

16.
$$2(e^{-s} - e^{-3s})/(s^2 - 4)$$

17.
$$(1 + e^{-2\pi(s+1)})(s+1)/((s+1)^2+1)$$

31. Discharge in RC-circuit. Using the Laplace transform, find the charge q(t) on the capacitor of capacitance Cin Fig. 127 if the capacitor is charged so that its potential is V_0 and the switch is closed at t = 0.

RC-CIRCUIT

Using the Laplace transform and showing the details, find the current i(t) in the circuit in Fig. 128 with $R = 10 \Omega$ and $C = 10^{-2}$ F, where the current at t = 0 is assumed to be zero, and:

zero, and:
32.
$$v = 0$$
 if $t < 4$ and $14 \cdot 10^6 e^{-3t}$ V if $t > 4$

32.
$$v = 0$$
 if $t < 2$ and $100(t - 2)$ V if $t > 2$

Fig. 128. Problems 32-34

LC-CIRCUIT 35-37

Using the Laplace transform and showing the details, find the current i(t) in the circuit in Fig. 129, assuming zero initial current and charge on the capacitor and:

$$\pi < t < 3\pi$$
 and 0 data
36. $L = 1 \text{ H}, C = 0.25 \text{ F}, v = 200 (t - \frac{1}{3}t^3) \text{ V if}$
 $0 < t < 1 \text{ and 0 if } t > 1$

$$0 < t < 1$$
 and 0 if $t > 1$
37. $L = 0.5$ H, $C = 0.05$ F, $v = 78 \sin t$ V if $0 < t < \pi$
and 0 if $t > \pi$

Fig. 129. Problems 35-37

RLC-CIRCUIT

Using the Laplace transform and showing the details, find the current i(t) in the circuit in Fig. 130, assuming zero initial current and charge and:

initial current and charge and:
38.
$$R = 4 \Omega$$
, $L = 1 \text{ H}$, $C = 0.05 \text{ F}$, $v = 34e^{-t} \text{ V}$ if $0 < t < 4$ and 0 if $t > 4$