

2013

TRIAL

HIGHER SCHOOL CERTIFICATE EXAMINATION

GIRRAWEEN HIGH SCHOOL

MATHEMATICS EXTENSION 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided
- Show all necessary working in Questions 11-14

Total marks - 70

Section 1

pages 2-3

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section 2

pages 4 - 8

- Attempt Questions 11 14
- Allow about 1 hour 45 minutes for this section

Girraween High School Mathematics Extension 1 Trial Examination 2013

SECTION 1

Multiple Choice (10 marks) Circle the correct answer on this question paper.

1. Which expression is a correct factorisation of $v^3 - 125$?

(A)
$$(y-5)(y^2+5y+25)$$
 (C) $(y-5)(y^2-5y+25)$

(C)
$$(y-5)(y^2-5y+25)$$

(B)
$$(y+5)(y^2+5y+25)$$

(B)
$$(y+5)(y^2+5y+25)$$
 (D) $(y+5)(y^2-5y+25)$

2. The point P divides the interval from A(-5,6) to B(-2,3) externally in the ratio 3:2. What is the y – coordinate of P?

$$(A) -4$$

3. A polynomial equation has roots α , β and γ where $\alpha + \beta + \gamma = -2$, $\alpha\beta + \alpha\gamma + \beta\gamma = 3$ and $\alpha\beta\gamma = -4$. Which polynomial equation has the roots α , β and γ ?

(A)
$$x^3 + 2x^2 + 3x - 4 = 0$$

(A)
$$x^3 + 2x^2 + 3x - 4 = 0$$
 (C) $x^3 - 2x^2 + 3x - 4 = 0$

(B)
$$x^3 - 2x^2 + 3x + 4 = 0$$

(B)
$$x^3 - 2x^2 + 3x + 4 = 0$$
 (D) $x^3 + 2x^2 + 3x + 4 = 0$

4. $\frac{\sin x}{1-\cos x}$ when expressed in terms of half-angle is equal to

(A)
$$\tan \frac{x}{2}$$

(B)
$$-\tan\frac{x}{2}$$

(C)
$$\cot \frac{x}{2}$$

(A)
$$\tan \frac{x}{2}$$
 (B) $-\tan \frac{x}{2}$ (C) $\cot \frac{x}{2}$ (D) $-\cot \frac{x}{2}$

5. Find the equation of the normal to the parabola x = 6t, $y = 3t^2$ at the point where

t = -2.

(A)
$$x - 3v + 24 = 0$$

(C)
$$2x + v + 12 = 0$$

(B)
$$x - 2y + 36 = 0$$

(D)
$$2x - y - 12 = 0$$

Girraween High School Mathematics Extension 1 Trial Examination 2013

- 6. In the expansion of $\left(x^2 \frac{1}{x^2}\right)^{16}$, the constant term is
 - (A) $-^{15}C_{8}$
- **(B)** $^{15}C_8$ **(C)** $-^{16}C_8$
- **(D)** $^{16}C_{8}$
- 7. The solutions of the equation $e^{2x} 3e^x + 2 = 0$ are
 - (A) 0,1
- **(B)** 1.2
- (C) 0, log₂ 2
- **(D)** $1, \log_e 2$

- 8. The value of k if $\int_0^1 \frac{dx}{x^2 + 3} = k\pi$ is

 - **(A)** $6\sqrt{3}$ **(B)** $\frac{1}{6\sqrt{3}}$
- (C) 6
- **(D)** $\frac{1}{6}$
- 9. The velocity vm/s of a particle moving in simple harmonic motion along the x-axis is given by $v^2 = -5 + 6x - x^2$, where x is in metres. The amplitude of the oscillation **(D)** 5m is (A) 2m**(B)** 3*m* (C) 4m
- 10. Which of the following graphs represent function(s) whose inverse(s) are also functions?

- (A) I and II
- (C) III only

(B) I and III

(D) *II* only

Question 11 (15 marks)

Marks

(a) Evaluate:
$$\int_{0}^{1} \frac{1}{\sqrt{2-x^2}} dx$$

(b) Evaluate
$$\int_{-1}^{0} x\sqrt{1+x}dx$$
 using the substitution $u=1+x$.

(c) Solve
$$\frac{x}{x+4} > 2$$

- (d) The line y = mx makes an angle of 45° with the line y = 3x. Find the values of m. 3
- (e) In how many ways can a jury of 7 people reach a majority decision?
- (f) Find the value of k if the roots of the equation $x^3 3x^2 6x + k = 0$ are in arithmetic progression.

Question 12 (15 marks)

(a) The temperature gauge of a car is giving an overheating warning and the car is stopped. At time t minutes, the temperature T of the liquid in the radiator decreases according to the equation $\frac{dT}{dt} = -k(T-35)$, where k is a positive constant. The initial temperature of the liquid in the radiator is 95°C and it cools to 70°C after 10 minutes.

(i) Show that
$$T = 35 + Ae^{-kt}$$
 is a solution of $\frac{dT}{dt} = -k(T - 35)$

- (ii) Find the value of A.
- (iii) Find the value of k, correct to 3 decimal places.
- (iv) How long will it take for the temperature of the radiator to cool to 40°C?

 Give your answer correct to the nearest minute.

(b) (i) Use mathematical induction to prove that

$$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\dots\left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n} \text{ for all integers } n \ge 2.$$

- (ii) Hence find the exact value of $\left(1 \frac{1}{49}\right)\left(1 \frac{1}{64}\right)\left(1 \frac{1}{81}\right)....\left(1 \frac{1}{144}\right)$.
- (c) The diagram shows the graph of the parabola $x^2 = 4ay$. The tangent to the parabola at $P(2ap,ap^2)$ cuts the x-axis at T. The normal to the parabola at P cuts the y-axis at N.

- (i) Find the coordinates of T, given that the equation of the tangent at P is $y = px ap^2$
- (ii) Show that the coordinates of N are $(0, a(p^2 + 2))$.

1

(iii) Let M be the midpoint of NT. Find the Cartesian equation of the locus of M and describe this locus.

Question 13 (15 marks)

(a) A person on horizontal ground is looking at an aeroplane A through a telescope T.

The aeroplane is approaching at a speed of 80m/s at a constant altitude of 200 meters above the telescope. When the horizontal distance of the aeroplane from the telescope is x metres, the angle of elevation of the aeroplane is θ radians.

(i) Show that
$$\theta = \tan^{-1} \frac{200}{x}$$

(ii) Show that
$$\frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$

(iii) Find the rate at which
$$\theta$$
 is changing when $\theta = \frac{\pi}{4}$, (answer in degrees) 3

(b) By integrating the expansion of $(1-x)^n$ show that

$$1 - \frac{{}^{n}C_{1}}{2} + \frac{{}^{n}C_{2}}{3} - \dots + (-1)^{n} \frac{{}^{n}C_{n}}{n+1} = \frac{1}{n+1}$$

(c) (i) Show that the function $f(x) = x^2 - \log_e(x+3)$ has a zero between 1.1 and 1.3.

(ii) Use the method of halving the interval to find an approximation to this

zero of f(x), correct to one decimal place. 2

Girraween High School Mathematics Extension 1 Trial Examination 2013

(d) The function $f(x) = \sin x - \frac{x}{3}$ has a zero near x = 2.2. Use one application of Newton's method to find a second approximation to the zero. Write your answer correct to 3 significant figures.

Question 14 (15 marks)

(a) In the figure below, AP is a tangent to the circle at A. PBCQ and ADQ are straight lines. Prove that $\angle PAB = \frac{1}{2} (\angle CFD + \angle CQD)$

- (b) The motion of a particle is given by $x = 10 + 8\sin 2t + 6\cos 2t$. Prove that the motion is simple harmonic. Write down the centre and period of the motion.
- (c) The rise and fall of the tide at a certain port may be considered to be simple harmonic.

The interval between successive high tides is 12 hours. The port entrance has a depth of 12 m at high tide and 4m at low tide. If the low tide occurs at noon on a certain day, find the earliest time thereafter that a ship drawing 9m can pass through the entrance.

(d) A particle is projected with velocity Vm/s at an angle θ above the horizontal from a point O on the edge of a vertical cliff 32 metres above a horizontal beach. The particle moves in a vertical plane under gravity, and 4 seconds later it hits the beach at a point 64 metres from the foot of the cliff. (Take $g = 10m/s^2$)

(i) Use integration to show that after t seconds the horizontal displacement x metres and the vertical displacement y metres of the particle from O are given by

$$x = (V \cos \theta)t$$
 and $y = (V \sin \theta)t - 5t^2$ respectively.

- (ii) Write down two equations in V and θ then solve these equations to find the exact value of V and the value of θ in degrees correct to the nearest minute.
- (iii) Find the speed of impact with the beach correct to the nearest whole number and the angle of impact with the beach correct to the nearest minute.

END OF TEST

Year 12 Extension | Trual Hoc 2013

Section (Clomarks)

(a)
$$\int_{0}^{\infty} \frac{1}{\sqrt{2-2\epsilon^{2}}} dsx$$

$$= \left[Sin^{-1}\frac{3L}{\sqrt{2}}\right]_0^1$$

(b)
$$tam 45 = \left| \frac{m-3}{1+3m} \right|$$

$$\left|\frac{m-3}{1+3m}\right|=1$$

$$\frac{m-3}{1+3m} = 1$$
 $\frac{-(m-3)}{1+3m} = 1$

$$m-3=1+3m$$
 $-m+3=1+3m$

$$2m = 4$$

$$m = \frac{1}{2}$$

$$\frac{C}{x_{+4}} > 2$$

when
$$N = -1$$
, $N = 0$

$$=\int \left(\mathcal{U}^{\frac{3}{2}}-\mathcal{U}^{\frac{1}{2}}\right)du$$
 when $n=0$, $M=1$

$$=\int \left(\sqrt{2} - N^{2} \right) dN$$

$$= \frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}}$$

$$= \frac{2}{5} - \frac{2}{3} = \frac{-4}{15}$$

If)
$$0c^3 - 33c^2 - 6x + k > 0$$

Let the rooks be d-d, d, d+d

Sum of rooks taken two at

a time

 $(x-d) d + (x-d) (x+d) + d(x+d) + d(x+d$

(11) When t=0, T=95 page 2 95 = 35+A (1) A = 60 ('iii) When t = 10, T = 70 70 = 35+60e 60E lok = 35 $e^{-10k} = \frac{35}{4n} = \frac{7}{12}$ $-10k = \ln\left(\frac{7}{12}\right)$ $k = \frac{1}{10} \ln \left(\frac{7}{12} \right) = 0.054$ T= 40, t= ? 40 = 35 + 60e Lt 60c-W = 5 e-kt = 5 = 12 $-kt = h(\frac{1}{12})$ t = -1 In(tz) = 46.02 The temperature will fall to 40°C after 46 minutes

(b) When
$$n=2$$
, lits = $1-\frac{1}{4}=\frac{3}{4}$

R Hos = $\frac{2+1}{2\times 2}=\frac{3}{4}$

Lits = RHo

The result is true when $n=2$

Proof:

(1-\frac{1}{2^2})\left(1-\frac{1}{3^2})\left(1-\frac{1}{4^2})\left(1-\

Hence by the principle of mathematical Induction, the result is true for $n \ge 2$.

$$(ii) \left(1 - \frac{1}{2^{2}}\right) \left(1 - \frac{1}{3^{2}}\right) \cdot - - \left(1 - \frac{1}{6^{2}}\right) \left(1 - \frac{1}{7^{2}}\right) \cdot - \cdot \left(1 - \frac{1}{12^{2}}\right) = \frac{13}{24}$$

$$\left(1 - \frac{1}{2^{2}}\right) \left(1 - \frac{1}{3^{2}}\right) \cdot - \cdot \left(1 - \frac{1}{6^{2}}\right) = \frac{7}{12}$$

$$\left(1 - \frac{1}{44}\right) \left(1 - \frac{1}{64}\right) \cdot - \cdot \left(1 - \frac{1}{144}\right) = \frac{13}{24} \div \frac{7}{12}$$

$$= 13$$

$$= 13$$

(c) (j)
$$y = p_{2} c - \alpha p^{2}$$
Substitute $y = 0$

$$p_{2} c - \alpha p^{2} = 0$$

$$p_{2} c = \alpha p^{2}$$

$$p_{3} c = \alpha p$$

$$T(\alpha p_{1} o)$$

(ii) Equation of normal

$$y - ap^{2} = -1 (2x - 2ap)$$
Substitute $2x = 0$

$$y - ap^{2} = 2a$$

$$y = ap^{2} + 2a = a(p^{2} + 2)$$

$$N(0, a(p^{2} + 2))$$

$$N(0, a(p$$

$$2x^{2} + a^{2} = ay$$

$$2x^{2} = ay - a^{2}$$

$$= a(y - a)$$

$$9x^{2} = \frac{a}{2}(y - a)$$
3

This is a parabola with Vertesi Co, a) and focal length a units.

Question 13 (15 marks)

tomo = 200 0 = tem = 200 0

(ii)
$$\frac{do}{dt} = \frac{do}{dx} \times \frac{dx}{dt}$$

$$= \frac{1}{1 + (\frac{200}{2})^2} \times \frac{-200}{20^2} \times -90$$

(III) When $Q = \overline{II}$, TP = AP : DL = 200

Hence a is increasing at 11° |s

(b)
$$(1-2)^{n} = 1 - n(12) + n(22)^{2} - n(32)^{3} + \cdots + (1)^{n} n(n)^{2}$$

Question 13 (15 marks)
$$|\int_{0}^{\infty} (1-x)^{n} dx = \int_{0}^{\infty} (1-n(x)x + \cdots + (-1)^{n} n(x)x^{n})$$

(b)
$$(1-3i)^n = 1 - nc_1 x + nc_2 x^2 - nc_3 x^3 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^n dn = \int_0^1 (1-nc_1 x + nc_2 x^2 - nc_3 x^3 + ... + (-i)^n nc_n x^n) dx$$

$$\int_0^1 (1-x)^n dn = \int_0^1 (1-nc_1 x + nc_2 x^2 - nc_3 x^3 + ... + (-i)^n nc_n x^n) dx$$

$$\int_0^1 (1-x)^n dn = \int_0^1 (1-nc_1 x + nc_2 x^2 - nc_3 x^4 + ... + (-i)^n nc_n x^n) dx$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-nc_1 x + nc_2 x^2 - nc_3 x^4 + ... + (-i)^n nc_n x^n) dx$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 = \int_0^1 (1-x)^2 + nc_2 x^3 - nc_3 x^4 + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^{n+1} \int_0^1 (1-x)^n x^n + nc_2 x^n - nc_3 x^n + ... + (-i)^n nc_n x^n$$

$$\int_0^1 (1-x)^n x^n + nc_n x^n$$

$$\int_0^1 (1-x)^n x^n + nc_n x^n$$

(d)
$$f(\alpha) = \sin \alpha - \frac{3\ell}{3}$$

 $f(\alpha) = \cos \alpha - \frac{1}{3}$
 $\alpha_1 = 2\cdot 2 - \frac{f(2\cdot 2)}{f(2\cdot 2)}$ (2)
 $= 2 - 28$

Question 14 (15 marks)

ZPAB = ZACB (angle between

tempert and chord is equal to

angle in the alternate segment)

LACB = LADB (angles at the circums ference standing on the same arc)

∠BCA = ∠CQF+ ∠CFQ

(entenor ∠ of △FQC)

CADF = CDQF + CDFQ (exterior < of AFQD)

∠BCA+

= < CQF+ < CFQ + < DQF+ < DFQ -

page 7 $= \angle CQF + \angle DQF + \angle CFQ + \angle DFQ$ $= \angle CQD + \angle CFD$ $2d = \angle CQD + \angle CFD$ $d = \underline{1}(\angle CQD + \angle CFD)$

(b) $9c = 10 + 88 \text{ in } 2t + 6 \cos 2t$ $9c = 16 \cos 2t - 12 \sin 2t$ $9c = -32 \sin 2t - 24 \cos 2t$ $= -4(8 \sin 2t + 6 \cos 2t)$ = -4(n-10)

Centre gl=10, m=2Period $T = \frac{2\pi}{n} = T$ seconds (c) Period = |2hn|

12-00pm fm 8m 12m Anglitude = 4m

 $T = \frac{2\Gamma}{2\Gamma} \qquad \mathfrak{N} = \frac{2\Gamma}{T} = \frac{2\Gamma}{12} = \frac{T}{6}$

Let 12.00 pm denote t=0

when t=0, n=-4

-4 = 4 Losel

 $Cosd = -1 \qquad -d = \Pi$ $OL = 4 cos \left(\frac{\Pi}{6} + H\right)$

Let at time to the depth of water be 9m. Then
$$n = 1$$

$$1 = 4\cos\left(\frac{\pi}{6}t_1 + \pi\right)$$

$$\cos\left(\frac{\pi}{6}t_1 + \pi\right) = \frac{1}{4}$$

$$\frac{\pi}{6}t_1 + \pi = \cos^{3}\left(\frac{1}{4}\right), 2\pi - \omega^{3}\left(\frac{1}{4}\right)$$

$$\frac{\pi}{6}t_1 = \cos^{3}\left(\frac{1}{4}\right) - \pi, \pi - \cos^{3}\left(\frac{1}{4}\right)$$

$$t_1 = \frac{b}{\pi}\left(\cos^{3}\left(\frac{1}{4}\right) - \pi\right), \frac{b}{\pi}\left(\pi - \cos^{3}\left(\frac{1}{4}\right)\right)$$

$$= \frac{b}{\pi}\left(\cos^{3}\left(\frac{1}{4}\right) - b\right), \frac{b}{\pi} - \frac{b}{\pi}\left(\cos^{3}\left(\frac{1}{4}\right)\right)$$

$$= \frac{b}{\pi}\left(\cos^{3}\left(\frac{1}{4}\right) - b\right), \frac{b}{\pi} - \frac{b}{\pi}\left(\cos^{3}\left(\frac{1}{4}\right)\right)$$

$$= \frac{3.4926 \text{ hy}}{6}$$

= 3.4826 hr = 3hr 29 minutes

 $t_1 = 12.00 \, \text{pm} + 3 \, \text{hr} \, 29 \, \text{min}$ = 3:29 pm

 $\frac{dn}{dt} = n \qquad (3) \qquad \frac{dy}{dt} = -gt + B \qquad (4)$

Where A and B are constants of integration

when t=0, doi = VCOID, dy = Voin.0

VOUS - A Voin & B

 $9c = (V \omega \phi) t + C - (7)$ $y = -g + \frac{1}{2} + (V \omega in \phi) t + D - (8)$ where c and D are constants of integration.

when
$$t=0$$
, $2l=0$ and $y=0$
 $0=0+C$:: $C=0$
 $0=0+0+D$:: $D=0$
 $0=0+D+D$:: $D=0$
:: $D=0$
 $0=0+D+D$:: $D=0$
::

0=0+0+D :: D=0

y = (vsma) t -5+2 10

$$V = \frac{20 \text{ mV}}{20 \text{ mV}}$$

$$Simo = \frac{12}{20} = \frac{3}{5}$$

$$O = 36^{\circ} 52^{1}$$

$$O = 36^{\circ} 52^{1}$$

$$V^{2} = 16^{2} + 28^{2}$$

$$= 1040$$

$$V = 32.25 \text{ m/s}$$

$$V = 32.25 \text{ m/s}$$

$$V = 32.25 \text{ m/s}$$

$$V = 12 - 40$$

$$V = 32.25 \text{ m/s}$$

$$V = 32.25 \text{ m/s}$$