The Value of Knowing When to Switch

Investigating the Interaction of Value and Control

DAVID A. BRAUN¹ & CATHERINE M. ARRINGTON^{1,2}

¹Lehigh University ²National Science Foundation

Introduction Value and Effort

The control needed to switch to a new task is more **effortful** than continually performing the same task.

Effort acts as a cost when making choices

- When instructed to choose between two tasks equally often and randomly in voluntary task switching (VTS), people tend to repeat tasks more than switch. (Arrington & Logan, 2005)
- There are individual differences in the effort that is required to switch tasks. (Arrington & Yates, 2009; Butler, Weywadt, & Arrington, 2001

Reward can offset the cost of effort

• People will perform more challenging tasks when given reward. [Kool & Botvinick, 2014]

Question 1

How do people balance chasing **reward** with avoiding the cost of **effort** when choosing tasks?

Value and Task Set

Task set is a representation consisting of information needed to execute tasks.

- Contains stimulus-response mappings (Gilbert & Shallice, 2002)
- Unclear what other information might be included

Task set is activated in order to perform a task. (Yeung, 2011)

- Task set activation persists after execution and must be inhibited before performing a new task.
- Activation is stronger for more difficult tasks.

Question 2

Is **value** included in the **task set** representation?

Reward-Based VTS (rVTS)

Reward and Effort (Study 1)

- Systematically assign value to tasks during VTS
- Do people who use more effort to switch need more reward before choosing to switch?

Value and Task Set (Study 1 and 2)

- If value is included in task set, sensitivity to value of previously performed task should be greater.
- Since a difficult task is activated more strongly, people should be more sensitive to its value.

Method Reward Rules

- Points (0-10) linked to each task
- For current task, 50% chance of decrease by one point on next trial
- For other task, 50% chance of increase by one point on next trial
- Reach 500 points as fast as possible

Independent Variables (manipulated within blocks)

Current task change – decrease by one

Other task constant – remain constant change – increase by one

Difference other point value minus the current point value

Study 2

Is value included in the task set representation?

We expected

Sensitivity to be greatest to the value of the hard task (after performing the hard task).

But

Sensitivity to value was generally even across the two tasks. There was even a bias to be more sensitive to the easy task's value.

This means that

We found further evidence to suggest that task value is **not** part of the task set.

Task X Only Current Change X Only Other Change: p = .04

Study

How do people balance chasing **reward** with avoiding the cost of **effort** when choosing tasks?

What's the value of switching?

- Equally likely to switch or repeat when other task is about two (1.71) points higher than current
- People can assign a value to the effort required in switching tasks

Other Constant

Current Constant

Current: p < .001 **Other**: p < .001 **Current X Other**: p < .001

Other Change

٥.5

§ 0.2

Difference: *p* < .001

Current Change

Greater value for greater effort?

- The point of equal switching varies systematically with subjects' switch costs
- People who use more effort to switch wait for greater reward when switching tasks
 Current X Difference X Switch Cost: p = .04

Balancing **reward** and **effort** cost

- Lowest switch rates when both values remain constant, highest when both change
- People recruit effort in response to changing values

Sensitive to reward and effort when selecting tasks.

Value and the task set

- When only one value changes, more sensitive to changes in other task value
- Task execution impacts task selection, leading to greater sensitivity to nonperformed task value.

Evidence that value **might not** be part of task set.

Discussion

Balancing reward and effort cost

- Although reward and effort are on completely different scales in rVTS (points versus time), people can sensibly balance pursing reward and avoiding effort when making task selections.
 - Effort may automatically impact the cost-benefit analysis in complex decision making.

Strategic or strained?

It is possible that high switch-cost individuals value switching more, but it is also possible that they are less effectively comparing values to make selections.

Value and the task set

- Evidence that value is **not** included in the task set representation
- Task execution does impact task selection, but not in the way that
 would be expected if value were part of the task set.
 - People more sensitive to changes in other task's value

Task-set hierarchy?

Information needed to execute a task may be organized into a hierarchy, with procedural information represented at lower levels and goal-related information at higher levels.

Take-away points

- People are sensitive to both **value** and **effort** when making task selections.
- Value might not be included in the task set representation that is used to execute the task.

A version of this poster is available from our lab webpage: http://luccl.blogspot.com/ For more information email dab414@lehigh.edu