

Core Topics Overview

Introduction to PLCs

- Specialized industrial computers for control.
- Efficiently monitor and manage equipment.
- Operation based on custom programming.

Industrial Computers

Equipment

Control

Custom Programming

Ladder Logic Programming

- A foundational, graphical PLC language.
- Mirrors electrical circuit diagrams for intuition.
- Crucial for control logic and troubleshooting.

Graphical Language
Troubleshooting

Circuit Analogy

SCADA System Architecture

- Centralized control and data acquisition.
- Real-time monitoring of industrial processes.
- Manages data acquisition and process flow.

Centralized Control
Process Monitoring

Data Acquisition

Phase 1: Foundational & Core Concepts (Online)

Online Delivery Overview

2 Months

Dedicated Online Delivery for Comprehensive Theoretical Understanding.

PLC Fundamentals & Ladder Logic

PLCs: Industrial computers central to controlling and monitoring equipment via custom programming, forming the backbone of automated processes.

Ladder Logic: A graphical programming language, visually structured like electrical circuit diagrams, fundamental for control logic.

Industrial Computing

Programming

Graphical

SCADA & HMI Principles

SCADA Systems: Enable centralized control and real-time monitoring of industrial processes, crucial for comprehensive operational oversight.

HMI Principles: Focus on designing intuitive Human-Machine Interfaces for seamless operator interaction and data visualization.

Centralized Control

Intuitive

Industrial Communication Protocols

Exploration of standardized protocols that facilitate robust data exchange and

Software Simulation Exercises

Hands-on application of theoretical knowledge through realistic software-based simulations.

Provides a safe and controlled

Month 1: PLC Fundamentals & Basic Ladder Logic (Weeks 1-2)

Week 1

PLC Basics & Software

Week 2

PLC I/O & Ladder Logic

Understanding Industrial Automation & PLCs

Introduces PLCs as specialized industrial computers for controlling equipment, covering their history, architecture (modular vs. compact), and types for various applications.

Industrial Control

System Architecture

An overview of dedicated software platforms for PLC programming, guiding through initial setup, project creation, and basic configuration for hands-on exercises.

Software Interface

Project Configuration

Month 1: Advanced PLC Concepts & Troubleshooting (Weeks 3-4)

Timers & Counters Applications

Timers (TON, TOF, RTO): Implement precise time-based control for sequences like motor startups or process delays.

Counters (CTU, CTD): Manage events, batches, and production quantities for accurate process monitoring and part tracking.

Time-Based Control

Event Counting

Sequential Logic

Data Types & Addressing: Understand data types (Boolean, Integer, Real) and how PLCs organize and access data in memory.

Data Manipulation: Learn essential instructions for moving, comparing, and performing arithmetic operations on data.

Memory Organization

Data Integrity

Arithmetic Logic

Modular Programming with POUs

Understanding POUs: Use Programs, Functions (FCs), and Function Blocks (FBs) to structure complex PLC projects logically.

Benefits of Modularity: POUs enhance code reusability, improve program readability, simplify debugging, and facilitate team-based development in large-scale automation systems.

Code Reusability

Enhanced Readability

Scalable Design

Essential PLC Troubleshooting Techniques

Learn critical methods for diagnosing and resolving issues in PLC systems to ensure operational

Month 2: SCADA & HMI Design Principles (Weeks 5-6)

(Learning Progression

week 5

SCADA Intro & Arch.

week o

HMI Design & Apps

Understanding SCADA Systems

X HMI Design & Best Practices

Month 2: Industrial Communication & Process Control (Weeks 7-8)

Weekly Focus

Week 8

Industrial Communication Protocols

Process Control & Project Scoping

Crucial for Automation: Industrial communication protocols are the backbone of modern automation, enabling seamless data exchange between diverse devices (PLCs, HMIs, sensors, actuators, SCADA systems) and ensuring efficient, synchronized operation.

OSI Model in Industrial Context: The OSI model provides a conceptual framework for understanding how network layers interact. In industrial settings, it helps diagnose connectivity issues, ensures interoperability, and facilitates secure data flow across complex control networks.

Network Standard

System Integration

∳ Serial Protocols

Point-to-point or multi-drop communication over serial lines, often used for simpler, robust

Ethernet-based Protocols

Leverage standard Ethernet for higher speeds videos..., Automation desired sources and IT integration sources: What is a PLC?maintaindesired setpoints; Basics of PLC, SCADA, DCS and HMI

Phase 2: Industry Immersion & Integrated Project (Offline)

Month 3: 1 Month Intensive Offline Phase

Applying Concepts on Actual Hardware

- Translate theoretical knowledge into tangible skills on industrialgrade PLCs, HMIs, and SCADA systems.
- Focus on live wiring, configuration, programming, and troubleshooting.

Hardware Integration

System Troubleshooting

Direct Mentorship & Skill Development

- Receive personalized guidance and real-time feedback from experienced professionals.
- Develop critical thinking and adaptive problem-solving skills for dynamic industrial challenges.

Personalized Guidance

Problem-Solving

Month 3: Hardware Integration & Troubleshooting (Weeks 9-10)

Week 9 PLC Hardware, I/O Mapping, Wiring

Week 10 PLC-HMI/SCADA Comm, Troubleshooting

PLC Hardware Mastery & Physical Practice

Integrated System Communication & Diagnostics

Foundational Hardware Setup

Explore PLC components, power requirements, and master fundamental wiring practices according to industrial safety standards.

PHYSICAL ASSEMBLY | ELECTRICAL SAFETY | WIRING STANDARDS

← Hardware Communication Setup

Configure communication links between physical PLCs and HMI/SCADA systems using industrial protocols for seamless data exchange.

CONNECTIVITY

PROTOCOL CONFIG Y DATA FLOW

Program Deployment & I/O Mapping

Link PLC addresses to physical terminals, download ladder logic

Real-time System Monitoring

Observe live process data on HMI panels, validating data integrity and to a continue to the form and the form the continue of the con

Month 3: Conveyor Belt Mini Project (Week 11)

Key Inputs

Start/Stop Buttons: For operational control to initiate and halt conveyor movement.

E-Stop (Emergency Stop): Critical safety input for immediate system shutdown in hazardous conditions.

Photoelectric/Proximity Sensors: For precise detection and positioning of items on the belt.

Control System

Detailed PLC Ladder Logic: Creating

safety interlocks, and control algorithms.

comprehensive programs with sequential control,

HMI Development for Control: Designing user-

friendly screens for interaction, data visualization,

Development

Operator Control

Safety Mechanism

Process

Sensing

Project Definition

Design & Implement Conveyor Belt Control System

Control System

Material Handling

Automation

→ Key Outputs

Conveyor Motor: The primary actuator driving the

mechanical motion of the belt.

Indicator Lights: Provide clear visual status

feedback (running, stopped, fault).

Alarm Buzzer: Audible warning system to alert personnel to critical events or malfunctions.

Actuation

Visual Feedback

Audible Alert

***** Hands-on Implementation

Intensive Design, Implementation, & Testing on Physical Hardware. This phase involves connecting all components, deploying code, and rigorously validating the system's functionality and safety on actual equipment.

System Integration Quality Assurance

Functional Validation

Logic Programming

and manual overrides.

User Interface

Control

Algorithms

Project Showcase & Career Launchpad (Week 12)

Week 12: Program Culmination & Future Pathways

Final Project Showcase: Innovation in Action

Functional System Demonstration

Participants present their final projects, showcasing fully functional systems with live demonstrations of PLC programming, HMI interfaces, and integrated control logic in action.

Live Demo

Problem Solving

System Integration

Engineering Documentation Excellence

Submission of comprehensive project documentation mirroring industry standards, including detailed design specifications, clean code, HMI layouts, and a Bill of Materials (BOM).

Design Specs

Code Quality

Resource Planning

Career Launchpad: Empowering Your Future

Essential Job Search Skills

Dedicated career workshops covering resume crafting, optimizing LinkedIn profiles for industry visibility, and mock interviews to present technical skills effectively.

Resume Building

Networking Profile

Interview Practice

Building Industry Connections

An invaluable networking session providing direct interaction with leading industry professionals to discuss career paths, gain insights, and explore opportunities.

Professional Links

Career Insights

Mentorship

Program Conclusion & Future Steps

Celebrating Your Achievement

You will receive a **Graduation Certificate**, formally recognizing your successful completion of this rigorous industrial automation program. This certification validates your comprehensive knowledge and enhances your credibility in the job market.

Official Certification

Validated Skills

Industry Recognition

✓ Launching Your✓ ProfessionalJourney

Graduates are equipped for diverse careers like Automation Engineer, PLC Programmer, or SCADA System Integrator. Your expertise in PLC, SCADA, and HMI systems makes you a highly sought-after professional in a rapidly expanding field.

Career Opportunities

High Demand Skills

Industry Impact

Applying Practical Competencies

You now possess the skills to design, develop, and implement complex industrial control systems. Your mastery of troubleshooting for PLCs, SCADA, and HMIs will enable efficient resolution of real-world operational issues.

Practical Design

Diagnostic Expertise

Operational Excellence