Fuzzy Modelling

DS = 0.2

Exercise 3

Write a script to draw the sigmoidal membership functions, which are described by the following mathematical relations:

$$\mu_{A}(x) = \frac{1}{1 + e^{-4(x-3)}} \qquad \mu_{B}(x) = \frac{1}{1 + e^{-2(x-5)}} \qquad \mu_{C}(x) = \frac{1}{1 + e^{-8(x-5)}}$$
C1 - red C2 - green C3 - blue

Z1 - line character ,*" Z2 - line character ,+" Z3 - line character ,,d"
$$DS = 0.25 \qquad R = [-1, 9]$$
b)
$$\mu_{A}(x) = \frac{1}{1 + e^{-2(x-2)}} \qquad \mu_{B}(x) = \frac{1}{1 + e^{-2(x-6)}} \qquad \mu_{C}(x) = \frac{1}{1 + e^{-4(x-6)}}$$
C1 - cyan C2 - magenta C3 - black
Z1 - line character ,,x" Z2 - line character ,,o" Z3 - line character ,,d"

Draw the membership functions $\mu_A(x)$, $\mu_B(x)$ and $\mu_C(x)$ on one graph in the range of R. Use the following colors $\mu_A(x) - C1$, $\mu_B(x) - C2$, $\mu_C(x) - C3$, a continuous line for each function and line characters Z1, Z2, Z3.

R=[-2, 10]

Sign the membership functions in the following way $\mu_A(x)$ – MFA, $\mu_B(x)$ – MFB and $\mu_C(x)$ – MFC. Use a DS discretization step.

Write the equation describing the α -cut of a fuzzy set. Determine the α -cut of the fuzzy sets: α -cut(A) for α =0.3 and α -cut(B) for α =0.6.