Ensembles probabilistes impairs

Bien que ces ensembles aléatoires suivent la distribution de $\pi(x)$, il manque une propriété importante des nombres premiers: à l'exception de 2, tous les nombres premiers sont impairs.

Nous allons alors modifier l'algorithme mentionné précedemment afin de générer des ensembles ayant cette propriété. Soit $O_n := E_n \cap 2N + 1$ l'ensemble des entiers impairs inférieurs ou égaux à n. Soit alors l'ensemble aléatoire $U_{k_n} \subset \{O_n \cup \{2\}\}$ tel que $\forall i \in \{O_n \cup \{2\}\}$, le probabililité que i soit dans l'ensemble U_{k_n} soit:

$$P(i \in U_{k_n}) = \begin{cases} 0 & \text{si } i = 1\\ 1 & \text{si } 2 \le i < 9\\ \frac{2}{\log n} & \text{si } i \ge 9 \end{cases}$$

Le fait que $P(i \in U_{k_n}) = 1$ pour les entiers impairs inferieurs à 9 découle du au fait que $2/\log(n) > 1$ pour ces entiers.

On observe alors que ces suites débutent avec les mêmes éléments: (2,3,5,7,...), mais contienent des éléments aléatoires à partir du 5e terme. Pour tout $n \geq 5$, la fonction σ est une valeur aléatoire d'esperance:

$$E[\sigma(n)] = 4 + \sum_{i=5}^{\lfloor n/2 \rfloor} \frac{2}{\log(2i-1)}$$

En réécrivant l'equation $\ref{eq:constant}$ de la page $\ref{eq:constant}$ en une somme de Riemann de pas constant =2, on obtient que:

$$S(\frac{1}{\log(x)}) = \sum_{k=0}^{n} \frac{2}{\log 2 + k}$$