TTIC 31020: Introduction to Machine Learning Problem Set 4

Hung Le Tran 30 Jan 2024

Problem 4.1 (Problem 1)

(a) Choose

$$S = \{((1,k),+1),((-1,k),-1): k \in [9]\} \cup \{((1000,-1),-1),((-1000,-1),+1)\}$$

See picture below.

Then a predictor that minimizes L_S^{01} is $h_{w=(1,0)}(x) = \langle (1,0), x \rangle = x[1]$ (1-index), which has $L^{01}(h) = \frac{2}{20} \leq 0.1$. It thus follows that $\inf_{h \in \mathcal{H}} L_S^{01}(h) \leq 0.1$. Meanwhile, $L^{hinge}(h) = \frac{1}{20} \times 2 \times [1 - (-1000)]_+ = \frac{2002}{20} = 100.1$.

Then, the predictor \hat{h}_{hinge} is the one that corresponds to $w_{hinge} = (-1,0)$, with $L^{01}(\hat{h}_{hinge}) = \frac{18}{20} = 0.9$, and $L^{hinge}(\hat{h}_{hinge}) = \frac{1}{20} \times 18 \times [1 - (-1)]_{+} = 1.8$

(b) No. $\inf_{h\in\mathcal{H}} L_S^{01}(h) = 0$, for finite S, means that there exists \hat{w} such that $L_S^{01}(h_{\hat{w}}) = 0$. Then there exists a hinge loss minimizer \hat{h}_{hinge} , which achieves a hinge loss of 0, namely the one that corresponds to $w = M\hat{w}$ where $M \in \mathbb{R}_+$ is sufficiently large, so that the hinge loss is assured to go to 0. This \hat{h}_{hinge} has the same decision boundary as $h_{\hat{w}}$ and so has 0 zero-one loss.

Problem 4.2 (Problem 2)

(a) Want to show that $\forall t, w_t \in S := \text{span}\{\phi(x_1), \dots, \phi(x_m)\}.$

Base case: t = 0. $w_0 = 0 \in S$ trivially.

Induction step: Assume that $w_t \in S$ for t = k. WTS $w_{k+1} \in S$. Indeed, w_{k+1} only exists if there still exists a misclassification, say, for $\phi(x_j)$ and y_j . Then the update rule is:

$$w_{t+1} = w_t + y_j \phi(x_j)$$

$$w_t, y_j \phi(x_j) \in S \Rightarrow w_{t+1} \in S.$$

By mathematical induction, we therefore have that $w_t \in S$ for all t, i.e.,

$$w_t = \sum_{i=1}^m \alpha_t[i]\phi(x_i) = \Phi^T \alpha_t$$

- (b) We reiterate the original Perceptron algorithm:
- 1: $w_0 \leftarrow 0$
- 2: while $\exists i \in [m]$ such that sign $(\langle w_t, \phi(x_i) \rangle) \neq y_i$ do $w_{t+1} \leftarrow w_t + y_i \phi(x_i)$
- 3: end while

We have that $\alpha_0 = 0 \in \mathbb{R}^m$. Then, we have

$$w_t \phi(x_i) = \sum_{j=1}^{m} \alpha_t[j] \phi(x_j) \phi(x_i) = \sum_{j=1}^{m} \alpha_t[j] K(x_i, x_j)$$

and

$$w_{t+1} = w_t + y_i \phi(x_i) = \sum_{i=1}^m \alpha_t[j]\phi(x_i) + y_i \phi(x_i) = \sum_{i=1}^m (\alpha_t[j] + \delta_{ij}y_j)\phi(x_j)$$

so we have that $\alpha_{t+1}[j] = \alpha_t[j] + \delta_{ij}y_j$ where δ_{ij} is the Kronecker delta.

Therefore, we can rewrite the Perceptron algorithm in terms of α_t and only with accesses to K:

- 1: $\alpha_0 \leftarrow 0 \in \mathbb{R}^m$
- 2: while $\exists i \in [m]$ such that sign $\left(\sum_{j=1}^{m} \alpha_t[j]K(x_i, x_j)\right) \neq y_i$ do $\alpha_{t+1}[i] \leftarrow \alpha_t[j] + y_i$
- 3: end while
- (c) Each iteration starts with checking if there remains some $i \in [m]$ such that

$$\operatorname{sign}\left(\sum_{j=1}^{m} \alpha_t[j]K(x_i, x_j) \neq y_i\right)$$

which takes $O(m^2 \cdot TIME_K) = O(m^2)$. Each update to α_t then takes O(1), so in total each iteration takes $O(m^2)$ which is independent from d.

(d) From the Perceptron analysis, we know that

$$T_{max} = \frac{\|w*\|_2^2 \sup_{i \in [m]} \|\phi(x_i)\|_2^2}{\gamma^2}$$

but $\|\phi(x_i)\|_2^2 = K(x_i, x_i)$ so

$$T_{max} = \frac{\|w*\|_2^2 \max_{i \in [m]} K(x_i, x_i)}{\gamma^2}$$

It follows that the overall runtime bound is $O(m^2 \cdot TIME_K \cdot T_{max})$.

Overall memory requirement of Kernelized Perceptron is $O(m^2)$ (to store the Gram matrix $O(m^2)$ and the current weight O(m), assuming that the kernel computation does not take up memory).

(e) It must store the last weight w_T and all training samples $\{x_i\}$. The prediction of the new point x may be computed as:

$$\langle w_T, \phi(x) \rangle = \langle \sum_{j=1}^m \alpha_T[j] \phi(x_j), \phi(x) \rangle$$
$$= \sum_{j=1}^m \alpha_T[j] K(x, x_j)$$
$$\operatorname{sign} (\langle w_T, \phi(x) \rangle) = \operatorname{sign} \left(\sum_{j=1}^m \alpha_T[j] K(x, x_j) \right)$$

Memory requirement: O(md') where d' is the dimension of the original feature space, i.e., $len(x_1)$, to be able to compute $K(x, x_i)$. Prediction runtime: $O(m \cdot TIME_K)$

Problem 4.3 (Problem 3)

(a) Remark that G is symmetric, so $G^T = G$. We have:

$$L_{S,\lambda}(\alpha) = L_{S,\lambda}(w(\alpha))$$

$$= \frac{1}{m} \|\Phi w - y\|^2 + \frac{\lambda}{2} \|w\|^2$$

$$= \frac{1}{m} \|\Phi \Phi^T \alpha - y\|^2 + \frac{\lambda}{2} \|\Phi^T \alpha\|^2$$

$$= \frac{1}{m} \|G\alpha - y\|^2 + \frac{\lambda}{2} (\Phi^T \alpha)^T (\Phi^T \alpha)$$

$$= \frac{1}{m} (G\alpha - y)^T (G\alpha - y) + \frac{\lambda}{2} \alpha^T \Phi \Phi^T \alpha$$

$$= \frac{1}{m} (\alpha^T G^T G\alpha - 2\alpha^T G^T y + y^T y) + \frac{\lambda}{2} \alpha^T G\alpha$$

$$= \frac{1}{m} (\alpha^T G^2 \alpha - 2\alpha^T G y + y^T y) + \frac{\lambda}{2} \alpha^T G\alpha$$

(b) $\hat{\alpha}_{\lambda} = \arg \min L_{S,\lambda}(\alpha)$ has $\nabla_{\alpha} L = 0$: We do the calculation:

$$\nabla_{\alpha}L = \frac{1}{m}(2G^2\alpha - 2Gy) + \lambda G\alpha$$

then for this to be zero, we have:

$$2G^{2}\alpha - 2Gy + m\lambda G\alpha = 0$$

$$\Rightarrow (G^{2} + \frac{m\lambda}{2}G)\alpha = Gy$$

$$\Rightarrow \hat{\alpha}_{\lambda} = (G + \frac{m\lambda}{2}I)^{-1}y$$

(c) For any test point x, we have the prediction

$$\langle \hat{w}_{\lambda}, \phi(x) \rangle = \sum_{i=1}^{m} \hat{\alpha}_{\lambda}[i] \langle \phi(x_i), \phi(x) \rangle$$
$$= \sum_{i=1}^{m} \hat{\alpha}_{\lambda}[i] K(x_i, x)$$