Classes de Equivalência na Congruência módulo m

José Antônio O. Freitas

MAT-UnB

 $\overline{n} =$

$$\overline{n} = C(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n)

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} ,

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\}\$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_{m}(1) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{ x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{ x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z} \}$$

$$R_m(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{ x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z} \}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

As classes de equivalência definidas pela congruência módulo m

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

$$R_m(k) = R_m(l)$$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

Exemplos

i) Se m = 2,

Exemplos

i) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1.

$$R_2(0) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \text{ (mod 2)}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

ii) Se m = 3,

$$R_3(0) =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}\$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}$$

Na relação de equivalência módulo m existem m classes de equivalência.

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por *m*

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1).

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente,

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

Proposição

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

Fixado m inteiro positivo,

Fixado m inteiro positivo, denotaremos

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Vamos definir um meio de somar

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m .

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em \mathbb{Z}_2 =

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ temos:

\oplus	ō	$\overline{1}$
Ō		
$\overline{1}$		

Para multiplicação, temos

\otimes	ō	$\overline{1}$
0		
$\overline{1}$		

Dados \bar{a} , $\bar{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} =$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova:

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1=\overline{a}_2$ e

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

Definição

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

$$b_1 \equiv b_2 \pmod{m}$$
.

$$a_1+b_1\equiv a_2+b_2 \pmod{m}$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

$$\mathsf{Mas}\;\mathsf{de}\; a_1+b_1\equiv a_2+b_2\;(\mathsf{mod}\; m)$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} =$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} =$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de $a_1+b_1\equiv a_2+b_2\pmod m$ segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$
 segue que $a_1b_2 =$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de $a_1+b_1\equiv a_2+b_2\pmod m$ segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$
 segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$
 segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

Agora de $a_1b_1\equiv a_2b_2\pmod{m}$ segue que $a_1b_2=a_2b_2$. Ass

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $a_1b_2 = a_2b_2$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência,

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $a_1b_2 = a_2b_2$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência, como queríamos.

A soma e a multiplicação em $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

Classes de Equivalência na Congruência módu

A soma e a multiplicação em $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

A soma e a multiplicação em $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

Tabela: Soma em \mathbb{Z}_4

\oplus	ō	$\overline{1}$	$\overline{2}$	3
⊕ <u>0</u>				
ī				
2				
3				

Tabela: Multiplicação em \mathbb{Z}_4

\otimes	ō	$\overline{1}$	2	3
⊗ <u>0</u>				
1				
2				
3				

As operações de soma ⊕

As operações de soma \oplus e multiplicação \otimes

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$:

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$:

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \overline{x} , \overline{y} e $\overline{z} \in \mathbb{Z}_m$: $(\overline{x} \oplus \overline{y}) \oplus \overline{z} =$

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \overline{x} , \overline{y} e $\overline{z} \in \mathbb{Z}_m$: $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x} \oplus (\overline{y} \oplus \overline{z})$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \textit{Para todos} \ \overline{x}, \ \overline{y} \ e \ \overline{z} \in \mathbb{Z}_m \colon \big(\overline{x} \oplus \overline{y} \big) \oplus \overline{z} = \overline{x} \oplus \big(\overline{y} \oplus \overline{z} \big).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$,

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{\textbf{x}}, \ \bar{\textbf{y}} \ e \ \bar{\textbf{z}} \in \mathbb{Z}_{\textit{m}} \text{:} \ (\bar{\textbf{x}} \oplus \bar{\textbf{y}}) \oplus \bar{\textbf{z}} = \bar{\textbf{x}} \oplus (\bar{\textbf{y}} \oplus \bar{\textbf{z}}).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$,

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{x} \textit{,} \ \bar{y} \ e \ \bar{z} \in \mathbb{Z}_{\textit{m}} \text{:} \ \big(\bar{x} \oplus \bar{y} \big) \oplus \bar{z} = \bar{x} \oplus \big(\bar{y} \oplus \bar{z} \big).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$:

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \otimes \overline{y} = \overline{y} \otimes \overline{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \otimes \overline{y} = \overline{y} \otimes \overline{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} =$

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível**

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} =$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b}

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a}

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível

Um elemento $\bar{a} \in \mathbb{Z}_m$ *é inversível se, e somente se, mdc*(a, m) = 1.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.

Exemplos

ii) Em \mathbb{Z}_{11} ,

Exemplos

ii) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$,

Exemplos

ii) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$, possuem inverso:

Tabela: Inversos em \mathbb{Z}_{11}

Elemento	1	2	3	4	5	<u>6</u>	7	8	9	10
Inverso										