KDD Cup 2017

M10515031 黄佳郁 M10515036 謝奇元 M10515104 羅煜賢

指導教授:李漢銘 教授

Problem Description

TASK 1:

Travel Time Prediction

For every 20-minute time window, estimate the average travel time of each route.

- A. Intersection A Tollgates 2 & 3
- B. Intersection B Tollgates 1 & 3
- C. Intersection C Tollgates 1 & 3

TASK 2:

Traffic Volume Prediction

For every 20-minute time window, predict the entry and exit traffic volumes at tollgates 1, 2 and 3 from Oct. 25th - Oct. 31st.

Competition website: KDD Cup 2017

Day	startTime	x1	x2	h	y
1	1	71	103	127	118
1	7	90	115	90	86
1	2	103	118	127	168
1	8	115	86	90	85
1	3	118	168	127	161
1	9	86	85	90	91
1	4	168	161	127	145

- 1 Label date with 1-7 which means Mon. to Sun.
- 2 Label time with 1-12(1: 8:00-8:20; 7: 17:00-17:20)
- 3 Use sqlQuery to count volume of each time range(every 20 mins)
- 4 Get average volume of 8-10 and 17-19 of each day
- 5 Create training data with day label, time, volumes of two previous time
- range, average volume of the same time range it belongs to(8-10 or 17-19)
- 6 Regress with Linear Regression
- 7 Fit the model
- 8 Predict volume

Previous Result

Linear Regression

0.2539

Feature:

- What day?
- Time range
 - One unit / 20 min
 - 0 8-10, 17-19
- Volume of two previous time range
 - 8:00-8:20 => 7:20-7:40, 7:40-8:00
- Average volume of the same time range(8-10 or 17-19) of that day

Grade

Volume Prediction 592 / 0.2220

Travel Time Prediction	Volume Prediction			
时间	N	ИАРЕ	当天排名	
2017-05-24 12:49:30	•).2220 †	148	

Using Xgboost

- n_estimators=10
- 0.2457
- n_estimators=20
- 0.2401
- n_estimators=100
- 0.2451

Using xgboost method surely improve the result. First, we try different n_estimators.

Using Xgboost

linear booster; n_estimator=50

0.2500

tweedie

© 0.2550

gamma

0.2665

According to the result, n_estimators=20 when using linear booster got the best result.

Using Xgboost

learning_rate=0.55

0.2248

learning_rate=0.6

0.2220

learning_rate=0.65

0.2295

According to the result, when reducing learning_rate, the result might be better.

Briefly conclusion for Task 2

naramatara

- We can infer that the model fall into overfitting/underfitting problem from our experiments. (Overfitting, estimator >= 50; Underfitting estimator = 10.) Therefore, we chose 20.
- Second, we chose differents algorithms, including Linear Regression, Gamma, Tweedie. Linear Regression is better than others, according to results.
- Next, we modified learning rate for our model, get 0.6 is better than 5.5 and 6.5.
 - Finally, we get 0.2220 grade by using Linear Regression with estimators 20 and 0.6 learning rate in our xgboost

- 1 Get 21 Models by dividing intersection_id and day(Mon.-Sun.)
- 2 Address noise data by ignoring the data whose travel_time is less than
- 3 25% and higher than 75%
- 4 For i in 21 Models:
- 5 Label starting_time
- 6 Train with DecisionTreeRegressor with AdaBoostRegressor
- 7 Predict travel_time

Grade

					Travel Time Prediction 21/ / 0.2	045
	Travel Time Prediction	Volume Prediction				
	时间	M	ЛАРЕ	当天排名		
1	2017-06-01 13:54:40	0).2045 ↓	111		
	2017-05-31 14:37:36	0	0.2045 ↓	127		
		•				

Data Preprocessing

- Divide data into 21 sets
 - with intersection id (A, B, C)
 - what day? (Mon. Sun.)
- Label Mon.- Sun. with 0-7

Training models => 21 models (3 * 7)

intersection A - Mon.

intersection A - Tue.

intersection A - Wed.

• • •

intersection C - Sun.

intersection	n_id	tollgate_:	id	vehicle	e_id	starting	<u>_ti</u>	me	travel_s	eq		travel_	tim	weeke	nd		
A			2	101	4410	2016	7/	25 00:16	110#20	16-0	7-25 00	41	.39		0		
A int	tersec	ction_id	tol	llgate_	id	vehicle	id	starting	_time		travel	seq	trav	el_tir	n weeke	nd	
A		W.Fo.			2	10711	81	2016	/7/19 00):37	110#20	016-07		58.0	5	1	1
$\frac{A}{A}$		intersec	tio	n_id	tollg	ate_id	ve	hicle_id	starting	_tim	ie	travel	l_sec	q 1	travel_ti	m v	veekend
A A		C				3	1	.064323	2016	/7/24	4 01:29	115#2	2016	07-	222.5	3	6
A A		C				1	1	.018237	2016	/7/24	4 05:36	115#2	2016	07-	186.7	7	6
A A		C				1	1	.056942	2016	/7/24	4 06:00	115#2	2016	07-	158.4	9	6
A A		C				1	1	.079264	2016	/7/24	4 06:29	115#2	2016	07-	126.9	8	6
A A		C				1	1	.034865	2016	/7/24	4 06:52	115#2	2016	07-	154.9	3	6
A A		С				1	1	.018948	2016	/7/24	4 07:01	115#2	2016	07-	123.4	4	6
A A		С				3	1	024998	2016	/7/24	4 07:04	115#2	2016	07-	39.3	5	6
A A		C				3	1	.002743	2016	/7/24	4 07:20	115#2	2016	07-	119.6	4	6
A		С				3	1	.072724	2016	/7/24	4 07:20	115#2	2016	07-	188.2	21	6
A		C				1	1	.054062	2016	/7/24	4 07:22	115#2	2016	07-	219.	.5	6
A		C				3	1	071321	2016	/7/24	4 07:25	115#2	2016	07-	210.0)2	6
		С				1	1	.007882	2016	/7/2	4 08:00	115#2	2016	07-	157.0)3	6
		С				3	1	.063882	2016	/7/24	4 08:17	115#2	2016	07-	207.9	5	6
4.	0	С				1	1	.064065	2016	/7/24	4 08:19	115#2	2016	07-	146.8	88	6

Problem - Travel Time

A-2		A-3		B-1	
mean	70.123898	mean	123.824527	mean	128.078528
std	45.561928	std	83.335008	std	57.578811
min	9.260000	min	19.790000	min	19.460000
25%	44.980000	25%	88.860000	25%	96.290000
50%	58.660000	50%	107.710000	50%	117.850000
75%	82.715000	75%	137.210000	75%	144.510000
max	1569.640000	max	6711.110000	max	1627.380000
B-3		C-1		C-3	
mean	113.412535	mean	184.307117	mean	187.242564
std	53.858812	std	73.699985	std	72.014020
min	11.740000	min	38.500000	min	32.040000
25%	78.700000	25%	142.140000	25%	142.830000
50%	106.315000	50%	171.455000	50%	176.200000
75%	137.942500	75%	210.382500	75%	217.170000
max	1498.970000	max	2489.570000	max	1260.760000

1	107	108	110	117	120	123	intersection_id	starting_time	tollgate_id	travel_time
	3.04	3.57	9.42	19.39	0.54	5.27	A	2016/7/25 00:16	2	41.39
5	3.26	3.83	24.77	0	0	5.65	A	2016/7/25 00:46	3	122.91
	3.45	4.05	25.2	27.79	0.61	5.98	A	2016/7/25 01:55	2	66.79
.(3.9	4.59	16.52	17.03	0.69	7.62	A	2016/7/25 02:08	2	51.03
	4.19	8.52	22.75	52.59	1.36	4.34	A	2016/7/25 02:28	2	93.59
	3.33	3.92	8.4	13.33	0.59	5.78	A	2016/7/25 03:24	2	35.33
	4.23	4.97	13.55	16.91	0.75	7.34	A	2016/7/25 04:23	2	47.91
	4.15	4.88	13.43	45.61	0.73	7.2	A	2016/7/25 04:36	2	75.61
	4.38	5.15	9.12	36.75	0.77	7.6	A	2016/7/25 04:44	2	63.75
2	4	4.71	8.54	38.09	0.71	4.62	A	2016/7/25 04:45	2	61.09
	3	3.53	9.62	59.34	0.53	5.21	A	2016/7/25 04:54	2	81.34
	4.73	5.56	15.16	18.91	0.83	8.2	A	2016/7/25 04:55	2	52.91
	3.53	4.16	15.29	20.7	0.62	6.13	A	2016/7/25 04:55	2	50.7

Remove Noise

- As the table shown, there exists noise in the data (e.g. maximum time, minimum time)
- As the figure shown, the distribution position of total time is similar to that of travel time of each link

Take the data which total travel time is in the range of 25%-75% as training data

Decision Tree with Adaboost

Decision Tree

Easily overfit

Adaboost

- Improve accuracy
- Avoid overfitting

Parameters Selection

n_estimators

- **50**
- 0 100
- 0 300

max_depth

- 5
- 0 10
- **20**

loss function

- linear
- square
- exponential

learning_rate

- 0.01
- 0.1
- 0 1

Decision Tree Regression with Adaboost

Feature

- Start point time
- Exit path

Target

Total travel time

Field	Type	Description
intersection id	string	intersection ID
tollgate id	string	tollgate ID
vehicle_id	string	vehicle ID
starting_time	datetime	time point when the vehicle enters the route
travel_seq	string	trajectory in the form of a sequence of link traces separated by ";", each trace consists of link id, enter time, and travel time in seconds, separated by "#"
travel_time	float	the total time (in seconds) that the vehicle takes to travel from the intersection to the tollgate

Table 5

starting_time	travel_seq	travel_time
2016/7/19 00:14	105#2016-	70.85
2016/7/19 00:35	105#2016-	148.79
2016/7/19 00:37	105#2016-	79.76
2016/7/19 00:37	110#2016-	58.05
2016/7/19 00:56	105#2016-	137.98
2016/7/19 00:56	115#2016-	113.54
2016/7/19 01:26	105#2016-	176.7
2016/7/19 01:36	110#2016-	74.47
2016/7/19 01:36	110#2016-	94.57
2016/7/19 01:36	115#2016-	214.87
2010///25 01/00		

Result

max_depth=5

O.2045

max_depth=10

0.2114

max_depth=20

0.2096

Although the more depth the tree is, the better the result we got when learning, it might be overfitting.

Get Model 2

Use previous model to train the second model (decision tree with adaboost).

- Travel time of every 30 minutes
- Travel time of every hour

Decision Tree Regression with Adaboost

Feature

- Start point time
- Exit path
- Average travel time of last 30 minutes
- Average travel time of last one hour

Target

Total travel time

Result

max_depth=5; max_depth=5

0.2058

max_depth=5; max_depth=50

0.2049

max_depth=20; max_depth=20

© 0.2045

According to the previous result, we thought that if using max_depth=5, the result might be the best. However, the real result does not match what we thought.

Problem

Noise correction is not complete.

There exist null values, but the total travel time is inside the range of 25%-75%.

4.55	5.45	13.2	0	0	7.66 A	2016/7/25 07:55	3	201.28
3.86	4	10.3	0	0	5.41 A	2016/7/25 07:55	3	175.33
3.7	4.75	13.89	117.21	0.86	5.8 A	2016/7/25 07:57	2	146.21
3.18	3.89	13.55	0	0	6.18 A	2016/7/25 08:02	3	179.41
5.23	6.15	37.81	0	0	15.25 A	2016/7/25 08:07	3	157.31
3.63	4.27	13.17	0	0	6.3 A	2016/7/25 08:08	3	191.41
5.22	6.29	13.44	93.69	0.97	6.72 A	2016/7/25 08:09	2	126.69

