Fizyka Zestaw 8

Jan Kwinta

2023-01-03

Zadanie 1. Jaka siła Lorentza działa na proton, który z predkością $\vec{v}=(v_0,0,0)$ wpada w pole magnetyczne o indukcji $\vec{B}=(0,B_0,0)$? Ładunek protonu wynosi $e=1.6\cdot 10^{-19} {\rm C}, B_0=2 {\rm T}$ i $v_0=108 {\rm m}\over {\rm s}$.

Zadanie 3. Udowodnić, że całkowita siła działajaca na zamknięty obwód z prądem w jednorodnym polu magnetycznym wynosi zero. Obwód ma dowolny kształt i nie musi zawierać się w jednej płaszczyźnie.

Zadanie 5. W nieskończenie długim walcu o promieniu R płynie prad o stałej gęstści J. Korzystajac z prawa Ampère'a znaleźć indukcję magnetyczną \vec{B} w odległości r od osi walca w dwóch przypadkach:

(a)
$$r \leq R$$

(b)
$$r > R$$

Zadanie 7. Kwadratową ramkę o boku a i całkowitym oporze R umieszczono w odległości s od nieskończonego przewodnika liniowego, w którym płynie prąd I(t)

$$I(t) = \begin{cases} (1 - \alpha t)I_0, & 1 \le t \le \frac{1}{\alpha} \\ 0, & t > \frac{1}{\alpha} \end{cases}$$

gdzie α i I_0 to dodatnie stałe. Ramka i przewodnik leżą w jednej płaszczyźnie, a bok ramki jest równoległy do przewodnika. Jaka bedzie wartość natężenia i kierunek prądu indukowanego w ramce prądu $I_i(t)$?

Zadanie 8. Dany jest tzw. szeregowy obwód RLC. Znaleźć równanie różniczkowe opisujace napiecie na kondensatorze V(t) i jego zwiazek z natężeniem prądu I płynacego w obwodzie. W ogólnym przypadku w obwód można wpiać źródło zewnętrznej siły elektromotorycznej zmiennej w czasie $\epsilon(t)$. Co stanowi mechaniczny odpowiednik takiego obwodu? Dlaczego zwykle rozważania ograniczaja się do siły elektromotorycznej postaci $\epsilon(t) = \epsilon_0 \cos(\omega t)$ lub $\epsilon(t) = \epsilon_0 \sin(\omega t)$, gdzie ϵ_0 i ω to stałe?

