The Examination Paper of Jinan University

For Instructor Only	Academic Year : 20 <u>22</u> -20 <u>23</u> Semester: 1 st [/] 2 nd []	Course Type Compulsory[✓] Elective []
	Course Title: Advanced Mathematics I Date of the Examination 26/12/2022	Form of the Examination Open-book [] Closed-book []
	Instructor's Name Lianghui Xia	Paper A[] Paper B[✓] Total Pages 5
For Student Only	School/College International School Major Compu. Name 32 220 Student No. 2	ter science and technology 022102336
Only	Mainland Student [V] Non-mainland Student [T anii

Section No.	I	II	III	IV	V	VI	VII	VIII	IX	X	Total Scor
Score					N. N. S.	Jest.			100		

Score	Evaluator	Section I: Filling blanks (There are 8 questions, each question is
		3 marks, the total score of this section is 24 marks)

16.	16	2	3	(44)	5
X 2 2 (3 - 4)	[-2	2,-1) [1,2]	X=1 #X=2	e-'	4=1
6	-V.41	7	8		
In IXI - sin X + 2x2 - arcsin	X+2X!	-3	X = 0	SENTE T	
	+1:	, , , , , , , , , , , , , , , , , , , ,			

Score	Evaluator	Section II: Choice questions (There are 10 questions, each
	question has four choices, but only one	question has four choices, but only one is true, the other three are
		false, choose the one which is true, each question is 2 marks, and the
	_ 26a, t. 1	total score of this section is 20 marks)

1	2	3	4	5	6	7	8	9	10
C	B	C	D	D	B	C	В	DO C	B

Student Name

Score	Evaluator	Section III: Calculation (There are 7 questions, each question is
1 11		6 marks, the total score of this section is 42 marks)

1. Solution:

$$\lim_{x \to 9} \frac{\sqrt{x-3}}{x + 9} = \lim_{x \to 9} \frac{\sqrt{x-3}}{(\sqrt{x+3})(\sqrt{x-3})} = \lim_{x \to 9} \frac{1}{\sqrt{x+3}} = \frac{1}{6}$$

3. Solution:

$$h(x) = (\frac{1}{x^2} - 5)^{-2}$$

 $50 : h(x) = -2($
 $= 4x^{-5}x$)
$$= 4x^{-5}x$$

3. Solution:

$$h(x) = (\frac{1}{x^2} - 5)^{-2}$$

$$50: h(x) = -2(\frac{1}{x^2} - 5) \cdot (-2x^{-3})$$

$$= 4x^{-3}(\frac{1}{x^2} - 5)^{-3}$$

$$= 4x^{-3}(\frac{1}{x^2} - 5)^{-3}$$

4. Solution:

$$y-xy^{2}+x^{2}+1=0$$

$$y'-(y^{2}+x\cdot 2y\cdot y')+2X=0$$

$$y'(1-2xy)=y^{2}-2X$$

$$y'=\frac{y^{2}-2x}{1-2xy}$$

Student Name

5. Solution:

$$\lim_{X \to 1} \left(\frac{X}{X - 1} - \frac{1}{\ln X} \right)$$

$$= \lim_{X \to 1} \left(\frac{1 + \ln X - 1}{\ln X + 1 - \frac{1}{X}} \right)$$

$$= \lim_{x \to 1} \left(\frac{x}{x + \frac{1}{x^2}} \right) = \frac{1}{2}$$

6. Solution:

$$\int \frac{1}{1+e^{x}} dx$$

$$= \int \frac{11+e^{x}-e^{x}}{1+e^{x}} dx$$

=
$$\int 11 - \frac{e^x}{1 + e^x} dx$$

$$= \int I dx - \int \frac{e^{x}}{1+e^{x}} dx$$

$$= X - \ln(1+e^X) + C$$
7. Solution:

$$= \frac{1}{2} x^2 \cdot \arctan x - \int \frac{x^2}{2(1+x^2)} dx$$

$$= \frac{1}{2} x^{2} \cdot \arctan x - \frac{1}{2} \int \frac{(1+x^{2})-1}{(1+x^{2})} \frac{dx}{dx}$$

The following that is the following that the state of the sta

$$= \frac{1}{2} x^2 \arctan x - \frac{1}{2} \left(\int 1 dx - \int \frac{1}{1+x^2} dx \right)$$

$$= \frac{1}{2} x^2 \arctan x - \frac{1}{2} (x - \arctan x + c)$$

Page 3 of 5

Tee fixer. of From OWE Aser, Note

the factor in the critical point are his a smal x

Student Name Student No.

Score	Evaluator	Section IV: Application problem (There are two questions, the first
		one is 8 marks, and the second one is 6 marks, the total score of this
		section is 14 marks.)

1. Solution:

So:
$$f(x) = 3x^2(x+2) + x^3 = 4x^3 + 6x^2 = 2x^2(2x+3)$$

 $f''(x) = 12x^2 + 12x = 12x(x+1)$

let f(x)=0, we know that $X_1=0$, $X_2=-\frac{3}{2}$ let fix=0, we know that x=0, x4=-1

t fx	$(-\infty, -\frac{3}{2})$	- 3	1-3/-1)	-1	(-1,0)	0	1(0,+10)
sign of fix	-	0	+	1	+	0	b+ 9+
sign of flix	+		+	0	-	010	x3+1
shape of time	(1		1	t itx	31/2

So we know: (1) the critical point are $X_1 = 0$ and $X_2 = -\frac{3}{2}$

- 12) fix is increasing when x 61-2, 3 fix is decreasing when $x \in (-\infty, -\frac{3}{2})$ fix) has a local minimum value when $x = -\frac{3}{2}$, $f(-\frac{2}{2}) = -\frac{16}{16}$ and fix) doesn't have local maximum value
- 13) fixt con the graph of fix) is concave up when X (1-0,-1) U (0,+10) the graph of fix) is concave down when x & 1-110)
- 14) the inflection points are (-1, f(-1)) and (0, f(0)) Page 4 of 5 that is: (-11) and (0,0)

Student Name

Student No

2. Solution:

We know: x= 9-y2

then we know
$$V' = \frac{1}{3}\pi \left[-2y(3+y) + (9-y^2) \right]$$

 $= \frac{1}{3}\pi \left(-3y^2 - 6y + 9 \right)$
 $= -\pi \left(y^2 + 2y - 3 \right)$
 $= -\pi \left(y + 3 \right) (y - 1)$

then we know:

V'70. when y 6 (0,1), so V is increasing on (0,1)

V'co when yor & (1,3), so V is decreasing on (1,3)

So we know, when y=1, V is the max.

So
$$V_{max} = \frac{1}{3}\pi (9-1)(3+1)$$

= $\frac{32\pi}{3}$

50: the largest volume is 32 70