

UNISONIC TECHNOLOGIES CO., LTD

UT3N06 Power MOSFET

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

DESCRIPTION

The UTC UT3N06 is an N-channel power MOSFET providing very low on-resistance. It has high efficiency and perfect cost-effectiveness. It can be generally applied in the commercial and industrial fields.

FEATURES

* Simple drive requirement

SYMBOL

ORDERING INFORMATION

Ordering Number		Dookaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT3N06L-AB3-R	UT3N06G-AB3-R	SOT-89	G	D	S	Tape Reel	
UT3N06L-AE2-R	UT3N06G-AE2-R	SOT-23-3	S	G	D	Tape Reel	
UT3N06L-AE3-R	UT3N06G-AE3-R	SOT-23	S	G	D	Tape Reel	
UT3N06L-TM3-T	UT3N06G-TM3-T	TO-251	G	D	S	Tube	
UT3N06L-TN3-R	UT3N06G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

(1) T: Tube, R: Tape Reel

(2) AB3: SOT-89, AE2: SOT-23-3, AE3: SOT-23,

TM3: TO-251, TN3: TO-252

(3) G: Halogen Free and Lead Free, L: Lead Free

UT3N06 Power MOSFET

■ MARKING

PACKING	MARKING			
SOT-89	Date Code L: Lead Free G: Halogen Free			
SOT-23 SOT-23-3	☐ SN06☐ L: Lead Free G: Halogen Free			
TO-252	UTC UT3N06 UTC UT3N06 G: Halogen Free Lot Code Date Code			

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		$V_{ extsf{DSS}}$	60	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current (V _{GS} =4.5V, T _A = 25°C) (Note 2)		I _D	3	Α
Pulsed Drain Current (Note 3, 4	ed Drain Current (Note 3, 4)		12	Α
,	SOT-23-3/SOT-23	P _D	1.25	W
Power Dissipation (T _A = 25°C)	SOT-89		1.4	W
	TO-251/TO-252		3.13	W
Junction Temperature	nction Temperature		+150	°C
Storage Temperature		T_{STG}	-55 ~ + 150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Surface mounted on 1 in² copper pad of FR4 board; 270°C/W when mounted on min. copper pad.
 - 3. Repetitive Rating: Pulse width limited by maximum junction temperature.
 - 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
	SOT-23-3/SOT-23		100	°C/W
Junction to Ambient	SOT-89	θ_{JA}	89.3	°C/W
	TO-251/TO-252		40	°C/W

Note: Surface mounted on 1 in² copper pad of FR4 board; 270°C/W when mounted on min. copper pad

UT3N06

Power MOSFET

■ ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV_{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$				V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μΑ	
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±20V			±100	nA	
ON CHARACTERISTICS							
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.0		3.0	V	
Drain to Source On-state Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 3.0A$			90	mΩ	
Dialii to Source Off-state Resistance		$V_{GS} = 4.5V, I_D = 2.0A$			120	mΩ	
DYNAMIC PARAMETERS	-		-			_	
Input Capacitance	C_{ISS}			475		pF	
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f =1.0MHz		40		pF	
Reverse Transfer Capacitance	C_{RSS}			30		pF	
SWITCHING PARAMETERS	_		ā.				
Total Gate Charge (Note)	Q_{G}	V -10V V -20V I -2A		14.5		nC	
Gate Source Charge	Q_GS	V_{GS} =10V, V_{DS} =30V, I_{D} =3A, I_{G} =1mA		2.3		nC	
Gate Drain Charge	Q_GD			2.2		nC	
Turn-ON Delay Time (Note)	$t_{D(ON)}$			4		ns	
Turn-ON Rise Time	t_R	V_{DD} =30V, I_D =3A, R_{GEN} =25 Ω ,		15		ns	
Turn-OFF Delay Time	t _{D(OFF)}	V_{DD} =30V, I_{D} =3A, R_{GEN} =25 Ω , V_{GS} =10V		50		ns	
Turn-OFF Fall-Time	t_{F}			25		ns	
SOURCE- DRAIN DIODE RATINGS AND CHA	ARACTERIS	STICS				_	
Maximum Continuous Drain-Source Diode	ı				3	Α	
Forward Current	I _S				3	А	
Maximum Pulsed Drain-Source Diode	1				12	Α	
Forward Current	I _{SM}				12	^	
Drain-Source Diode Forward Voltage (Note)	V_{SD}	I _S =1.2A, V _{GS} =0V			1.2	V	
Reverse Recovery Time	t _{rr}	 I _S =3A,V _{GS} =0V, dl/dt=100A/μs		26		ns	
Reverse Recovery Charge	Q_{rr}	17.8 17.8		17.8		μC	

Note: Pulse width ≤300µs, duty cycle≤2%.

■ TEST WAVEFORMS

Switching Time Waveform

Gate Charge Waveform

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.