

Thanks for joining we will start at 4pm (L)

Today's Agenda

Understanding the Big Mart Sales Prediction Dataset

- Understanding the dataset and problem statement.
- Data Cleaning and formatting.
- Feature Encoding. (Ordinal/Nominal)
- Feature Scaling. (MinMax)
- Train Test Split.
- Modeling and predictions.
- Q/A Session.
- Developer Student Clubs

Nata Science for Everyone

ZOHAIR ABBAS

ZOHAIB AZAM

MUHAMMAD ARHAM

ABDUL REHMAN ABBASI

ABDUL AHAD IMTIAZ

WHO AM !?

- Technical Lead GDSC IBA
- Google certified Data Analyst
- SAP Functional Analyst 3STEM
- Deputy Team Lead TCF ADP
- ML/DL Enthusiast
- Loves to bring useful insights out of Data.

Google Developers

Developer Student Clubs Big Mart Sales Prediction

2013 sales data for 1559 products across 10 stores in

Challenge?

-The data scientists at BigMart have collected **2013** sales data for **1559** products across **10 stores** in different cities.

-Also, certain attributes of each product and store have been defined.

-The aim is to build a **Predictive Model** and predict the sales of each product at a particular outlet.

In this challenge, we ask you to build a predictive model that answers the question: "What would be the sale of each product at a particular outlet given its properties?"

Understanding of Data

Features:

Variable	Description	
Item_Identifier	Unique product ID	
Item_Weight	Weight of product	
Item_Fat_Content	Whether the product is low fat or not	
Item_Visibility	The % of total display area of all products in a store allocated to the particular product	
Item_Type	The category to which the product belongs	
ltem_MRP	Maximum Retail Price (list price) of the product	
Outlet_Identifier	Unique store ID	
Outlet_Establishment_Year	Year The year in which store was established	
Outlet_Size	The size of the store in terms of ground area covered	
Outlet_Location_Type	The type of city in which the store is located	
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket	
Item_Outlet_Sales	Sales of the product in the particular store. This is the outcome variable to be predicted.	

What is Train/Test data

- Train/Test is a method to measure the accuracy of your model.
- It is called **Train/Test split** because you split the the data set into two sets: a training set and a testing set.
- You train the model using the training set.
- You test the model using the testing set.
- Train the model means create the model.
- **Test** the model means test the accuracy of the model.

Machine Learning Techniques

- 1) Feature Selection: is the method of reducing the input variable to your model by using only relevant data and getting rid of noise in data.
- 2) **Feature Encoding**: Machine learning models can only work with numerical values. For this reason, it is necessary to transform the categorical values of the relevant features into numerical ones.
- 3) **Feature Scaling**: Feature Scaling is a technique to standardize the independent features present in the data in a fixed range.

Feature Selection

- When building a machine learning model in real-life, it's almost rare that all the variables in the dataset are **useful** to build a model. Adding redundant variables **reduces** the generalization capability of the model and may also reduce the overall **accuracy** of a classifier.
- The goal of feature selection in machine learning is to find the **best set of features** that allows one to build useful models of studied phenomena.
 - A. Filter methods (Chi-Square Test, Fisher's Test, Pearson' Correlation..)
 - B. Wrapper methods
 - C. Embedded methods
 - D. Hybrid methods
- Developer Student Clubs

Feature Encoding

- Ordinal Data: The categories have an inherent order
- Nominal Data: The categories do not have an inherent order

	Degree	De	gree
0	High school	0	1
1	Masters	1	4
2	Diploma	2	2
3	Bachelors	3	3
4	Bachelors	4	3
5	Masters	5	4
6	Phd	6	5
7	High school	7	1
8	High school	8	1

Index	Animal		Index	Dog	Cat	Sheep	Lion	Horse
0	Dog	One-Hot code	0	1	0	0	0	0
1	Cat		1	0	1	0	0	0
2	Sheep		2	0	0	1	0	0
3	Horse		3	0	0	0	0	1
4	Lion		4	0	0	0	1	0

Feature Scaling

I'm sure most of you must have faced this issue in your projects or your learning journey. For example, one feature is entirely in **kilograms** while the other is in **grams**, another one is **liters**, and so on. How can we use these features when they vary so vastly in terms of what they're presenting?

	Student	CGPA	Salary '000
0	1	3.0	60
1	2	3.0	40
2	3	4.0	40
3	4	4.5	50
4	5	4.2	52

	Student	CGPA	Salary '000
0	1	-1.184341	1.520013
1	2	-1.184341	-1.100699
2	3	0.416120	-1.100699
3	4	1.216350	0.209657
4	5	0.736212	0.471728

Cont.

 Normalization: is a scaling technique in which values are shifted and rescaled so that they end up ranging between 0 and 1. It is also known as Min-Max scaling.

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

• Standardization: is another scaling technique where the values are centered around the mean with a unit standard deviation.

$$X' = \frac{X - \mu}{\sigma}$$

Developer Student Clubs

How Kaggle Works?

- We have given Train and Test data.

Supervised Learning Algorithms

- Linear Regression
- Logistic Regression
- K Nearest Neighbor KNN
- Decision Trees
- Random Forest
- Naive Bayes'
- Support Vector Machine SVM and many more...
- Developer Student Clubs

Life Cycle of Data Science Project

Are you all ready Now to kick-start your journey as **Data Scientists**?

Let's get started!

Thank you so much!!!

Hope you all are pumped up and excited for upcoming DSC Sessions!

