О минимальных бильярдных траекториях

Кора Александр * 20 мая 2018 г.

Аннотация

Плотным дисковым многоугольником назовем, пересечение конечного числа равных замкнутых дисков на плоскости, расстояния между центрами которых, не превосходят их радиусов. В работе мы приводим новое доказательство теоремы Д. Бездека и К. Бездека о количестве звеньев в минимальной бильярдной траектории в плотных дисковых многоугольниках на плоскости.

Введение

Бильярдные траектории активно исследуются (см. [1], [5], [6], [7]).

Определение 1. Пусть **K** выпуклое тело в \mathbb{R}^d , $d \geqslant 2$. Тогда замкнутая несамопересекающаяся ломаная **P** с n звеньями называется обобщенной бильярдной траекторией периода n в **K**, если все вершины лежат на границе **K**, и биссектриса любого внутреннего угла между соседними звеньями ломаной перпендикулярна опорной гиперплоскости к **K**, проведенной в вершине этого угла. (Если через точку можно провести несколько опорных гиперплоскостей, то среди них должна найтись гиперплоскость перпендикулярная биссектрисе угла между звеньями).

Определение 2. *Кратчайшей обобщенной бильярдной траекторией* называется траектория с минимальным периметром.

В статье [9] доказана следующая теорема о обобщенных бильярдных траекториях.

Теорема 1. Пусть **K** — выпуклое тело в \mathbb{R}^d , $d \geqslant 2$. Тогда в **K** существует хотя бы одна кратчайшая бильярдная траектория, причем любая кратчайшая траектория в **K** имеет период не более чем d+1.

В некоторых случаях на плоскости удается сказать, что кратчайшая бильярдная траектория имеет период 2. Для этого введем следующее определение.

Определение 3. *Дисковым многоугольником* назовем пересечение конечного числа равных замкнутых дисков на плоскости, имеющее ненулевую площадь.

Определение 4. *Плотным дисковым многоугольником* назовем дисковый многоугольник, расстояния между центрами образующих дисков которого, не превосходит радиуса этих дисков.

^{*}ФИВТ МФТИ, группа 699, научный руководитель: А.А. Полянский. e-mail: kabutops@mail.ru

Примером плотных дисковых многоугольников может послужить треугольник Рело. Следующая теорема говорит периоде кратчайших бильярдных траекторий в плотных дисковых многоугольниках. Она была доказана в статье [9]. Здесь мы приводим новое доказательство.

Теорема 2. Пусть **D** плотный дисковый многоугольник. Тогда минимальная бильярдная траектория имеет период ровно 2.

1 Новое доказательство теоремы 2

Вначале мы докажем следующую вспомогательную лемму.

Лемма 1. Дан треугольник ABC, длины сторон которого не превосходят 1. На лучах, содержащих биссектрисы внутренних углов треугольника ABC, выбраны соответственно точки A_1, B_1, C_1 так, что $AA_1 = BB_1 = CC_1 = 1$. Тогда периметр треугольника $P(A_1B_1C_1) > 2$ (рис. 1).

Рис. 1: Треугольник ABC и выбранные точки A_1, B_1, C_1 .

Доказательство. Оценим снизу каждую из сторон треугольника $A_1B_1C_1$. Положим углы треугольника ABC равны соответственно $2\alpha, 2\beta, 2\gamma, I$ — точка пересечения биссектрис. Рассмотрим отдельно четырехугольник ABA_1B_1 .

Рис. 2: Четырехугольник ABA_1B_1 со всеми отмеченными элементами.

На лучах IA, IB, IA_1 и IB_1 найдутся соответственно точки A', B', A'_1 и B'_1 такие, что $A'B' \parallel AB$, $A'B' = A'A'_1 = B'B'_1 = 1$. Так как $AB \leqslant 1 = A'B'$, то точки A' и B' лежат соответственно вне отрезков IA и IB. Из равенства отрезков $AA_1 = A'A'_1 = BB_1 = B'B'_1 = 1$ получаем, что точки A'_1 и B'_1 лежат соответственно на отрезках IA_1 и IB_1 .

Угол $\angle A'IB' = 90^\circ + \gamma$ как соответствующий угол при точке пересечения биссектрис. Следовательно, треугольник A_1IB_1 тупоугольный и A_1A_1 в нем максимальная сторона. А значит длина любого отрезка с концами на сторонах IA_1 и IB_1 меньше длины AA_1A_1 . Имеем:

$$A_1'B_1' \leqslant A_1B_1 \tag{1}$$

Выразим длину отрезка $A_1'B_1'$ как функцию от углов треугольника $\Gamma(\alpha,\beta)$. Применим теорему косинусов для треугольника $A'B'A_1'$ и стороны $B'A_1'$:

$$(B'A'_1)^2 = (A'B')^2 + (A'A'_1)^2 - 2\cos\alpha(A'B')(A'A'_1) = 2 - 2\cos\alpha = 2(1 - \cos\alpha) = 2(2 - 2\cos^2\frac{\alpha}{2}) = 4\sin^2\frac{\alpha}{2}.$$
 (2)

Вычислим угол $\angle B_1'B'A_1'$. Так как $A'B'=A'A_1'=1$, то треугольник $A'B'A_1'$ равнобедренный. Значит, $\angle A'B'A_1'=\frac{(180^\circ-\angle B'A'A_1')}{2}=90^\circ-\frac{\alpha}{2}$. Имеем:

$$\angle B_1' B' A_1' = \angle I B' A_1' = \angle A' B' A_1' - \angle A' B' I = 90^{\circ} - \frac{\alpha}{2} - \beta.$$
 (3)

Используя (2) и (3) применим теорему косинусов для треугольника $B'_1B'A'_1$ и стороны $B'_1A'_1$:

$$\begin{split} (A_1'B_1')^2 &= (B'B_1')^2 + (B'A_1')^2 - 2\cos(90^\circ - \frac{\alpha}{2} - \beta)(B'A_1')(B'B_1') \\ &= 1 + 4\sin^2\frac{\alpha}{2} - 2\cos(90^\circ - \frac{\alpha}{2} - \beta)(2\sin\frac{\alpha}{2}) \\ &= 1 + 4\sin^2\frac{\alpha}{2} - 4\sin(\frac{\alpha}{2} + \beta)\sin\frac{\alpha}{2} \\ &= 1 + 4\sin^2\frac{\alpha}{2} - 4(\sin\frac{\alpha}{2}\cos\beta + \cos\frac{\alpha}{2}\sin\beta)\sin\frac{\alpha}{2} \\ &= 1 + 4\sin^2\frac{\alpha}{2} - 4\sin^2\frac{\alpha}{2}\cos\beta - 4\cos\frac{\alpha}{2}\sin\beta\sin\frac{\alpha}{2} \\ &= 1 + 4\sin^2\frac{\alpha}{2}(1 - \cos\beta) - 2\sin\beta\sin\alpha \\ &= 1 + 4\sin^2\frac{\alpha}{2}(2 - 2\cos^2\frac{\beta}{2}) - 2\sin\beta\sin\alpha \\ &= 1 + 8\sin^2\frac{\alpha}{2}\sin^2\frac{\beta}{2} - 2\sin\beta\sin\alpha. \end{split}$$

Рассмотрим функцию Г:

$$\Gamma(\alpha, \beta) := \sqrt{1 + 8\sin^2\frac{\alpha}{2}\sin^2\frac{\beta}{2} - 2\sin\beta\sin\alpha}.$$
 (4)

Можно сделать аналогичные оценки для остальных сторон треугольника $A_1B_1C_1$:

$$\Gamma(\alpha, \beta) \leqslant A_1 B_1, \tag{5}$$

$$\Gamma(\alpha, \gamma) \leqslant A_1 C_1,$$
 (6)

$$\Gamma(\gamma,\beta) \leqslant C_1 B_1. \tag{7}$$

Складывая оценки (5), (6), (7) и делая замену $\gamma = 90^{\circ} - \alpha - \beta$, справа получаем $P(A_1B_1C_1)$, а слева функцию от двух переменных $\Theta(\alpha,\beta)$:

$$\Theta(\alpha, \beta) := \Gamma(\alpha, \beta) + \Gamma(\alpha, 90^{\circ} - \alpha - \beta) + \Gamma(90^{\circ} - \alpha - \beta, \beta) \leqslant P(A_1 B_1 C_1).$$

Используя Wolfram Mathematica получаем, что минимум функции $\Theta(\alpha, \beta)$ как функции от 2 аргументов больше 2 (рис. 3, программу, подсчитывающую минимум, см. в приложении).

Имеем:

$$P(A_1B_1C_1) \geqslant \Theta(\alpha, \beta) > 2 \tag{8}$$

Что и требовалось доказать.

Рис. 3: На картинке изображен график функции $\Theta(\alpha, \beta) - 2$. Как видно, все его точки лежат в полупространстве z > 0.

Перейдем непосредственно к доказательству теоремы. Можем считать, что радиусы r дисков, образующих плотный дисковый многоугольник \mathbf{D} , равны 1. (Действительно, все случаи сводятся к данному гомотетией с центром в произвольной точке плоскости и коэффициентом $\frac{1}{r}$.)

По теореме 1 количество звеньев в минимальной кратчайшей траектории в **D** не превосходит 3. Положим их ровно 3 и P_1, P_2, P_3 — вершины минимальной обобщенной бильярдной траектории **P**.

Воспользуемся следующей леммой, доказанной в статье [9].

Лемма 2. Если **P** это треугольная обобщенная бильярдная траектория в **D**, то все вершины **P** являются гладкими граничными точками **D** (т. е. не лежат на пересечении границ дисков).

По лемме 2 можно однозначно определить O_1, O_2, O_3 - центры дисков, границам которых принадлежат точки P_1, P_2, P_3 соответственно. Обозначим соответствующие диски за $\mathbf{D_1}, \mathbf{D_2}, \mathbf{D_3}$ (рис. 4)

Лемма 3. На лучах P_1O_1 , P_2O_2 , P_3O_3 найдутся точки O_1' , O_2' , O_3' , что $O_1O_1' = O_2O_2' = O_3O_3'$ равны какому-то из отрезков $O_1'O_2'$, $O_2'O_3'$, $O_3'O_1'$.

Доказательство. Пусть K — точка пересечения отрезков P_1O_1, P_2O_2, P_3O_3 . Углы $\angle O_1KO_2, \angle O_2KO_3, \angle O_3KO_1$ в сумме дают 360°. Следовательно один из них больше 90°, положим $\angle O_1KO_2$. Обозначим его как $90^\circ + \gamma$ Докажем, что на лучах P_1O_1, P_2O_2 точки O_1', O_2' , такие что $P_1O_1 = P_2O_2 = O_1'O_2'$. Так как при движении точек O_1', O_2' по лучам P_1O_1, P_2O_2 соответственно, длина отрезка $O_1'O_2'$ меняется непрерывно, а изначально при $O_1' = O_1$ и $O_2' = O_2$ она меньше 1 то достаточно показать, что существует момент, когда $O_1'O_2' > P_1O_1 = P_2O_2 = 1$. Обозначим отрезки P_1K, KO_1, P_2K, KO_2 за a_1, a, b_1, b соответственно, а отрезки $O_1O_1' = O_2O_2'$ за x (рис 5).

Применяя теорему косинусов к треугольнику O_1KO_2 и стороне O_1O_2 запишем то, что хотим получить через длины отрезков:

$$O_1'O_2' > P_1O_1 = P_2O_2 = 1$$

$$\sqrt{(a+x)^2 + (b+x)^2 - 2(a+x)(b+x)\cos(90^\circ + \gamma)} > (x+a+a_1) = (x+b+b_1)$$

Рис. 4: Расположение точек $O_1, O_2, O_3, P_1, P_2, P_3$

Для этого достаточно показать существование такого x, что:

$$(a+x)^{2} + (b+x)^{2} - 2(a+x)(b+x)\cos(90^{\circ} + \gamma) > (x+a+a_{1})^{2} + (x+b+b_{1})^{2}$$

$$-2(a+x)(b+x)\cos(90^{\circ} + \gamma) > 2(x+a)a_{1} + a_{1}^{2} + 2(x+b)b_{1} + b_{1}^{2}$$

$$2(a+x)(b+x)\cos(90^{\circ} - \gamma) > 2(x+a)a_{1} + a_{1}^{2} + 2(x+b)b_{1} + b_{1}^{2}$$

$$2(a+x)(b+x)\cos(90^{\circ} - \gamma) - 2(x+a)a_{1} - a_{1}^{2} - 2(x+b)b_{1} - b_{1}^{2} > 0$$

Слева имеем квадратное уравнение относительно x с положительным коэффициентом при x^2 . Следовательно, существует такое положительное x для которого данное неравенство выполнено. Что и требовалось доказать.

Применяя лемму 3, обозначим пресечение дисков с центрами в точках O_1', O_2', O_3' и радиусами соответственно $P_1O_1' = P_2O_2' = P_3O_3 = r'$ за \mathbf{D}' . Заметим, что \mathbf{D}' это широкий дисковый треугольник и \mathbf{P} в нем по-прежнему бильярдная траектория. Значит применяя лемму 1 к треугольнику P_1, P_2, P_3 и точкам O_1', O_2', O_3' , мы получаем оценку на длину \mathbf{P} .

$$per(P) > 2r'. (9)$$

Обозначим через $H(\mathbf{D})$ минимальное расстояние между параллельными опорными прямыми \mathbf{D} .

Рис. 5: Построение точек O'_1, O'_2

Лемма 4. Положим l_1, l_2 парамлельные опорные прямые к **D**, расстояние между которыми минимально. Тогда, если L_1, L_2 это соответственные точки касания l_1, l_2 с **D**, то удвоенный отрезок L_1L_2 это обобщенная бильярдная траектория в **D**'.

Данная лемма доказана в статье [9]. Так как:

$$(\mathbf{D_1'}\cap\mathbf{D_2'})\supset\mathbf{D'}\supset(\mathbf{D_1}\cap\mathbf{D_2}\cap\mathbf{D_3})\supset\mathbf{D},$$

TO:

$$H(\mathbf{D}) \leqslant H(\mathbf{D_1'} \cap \mathbf{D_2'}) = r'.$$

Применяя лемму $4 \ \mathrm{K} \ \mathrm{D}$ имеем:

$$2L_1L_2 \leqslant 2r'. \tag{10}$$

Обединяя (9) и (10) получаем:

$$2L_1L_2 \leqslant 2r' < per(P), \tag{11}$$

что противоречит минимальности ${\bf P}$. Значит изначальное предположение было неверно, и период минимальной обобщенной бильярдной траектории в плотном дисковом многоугольнике на плоскости равен 2.

Список литературы

- [1] V. Benci and F.Giannoni, Periodic bounce trajectories with a low number of bounce points, Ann. Inst. H. Poincar Anal. Non Linaire, 6:1 (1989), pp. 73–93.
- [2] K. Bezdek and R. Connelly, Covering curves by translates of a convex set, Amer. Math. Monthly, **96**:9 (1989), pp. 789–806.
- [3] K. Bezdek, L. Langi, M. Naszodi and P. Papez, *Ball-polyhedra*, Discrete Comput. Geom., **38** (2007), pp. 201–230.
- [4] T. Bonnesen and W. Fenchel, *Theorie der konvexen Korper*, Springer Verlag, Berlin (1974).
- [5] M. Farber and S. Tabachnikov, Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards, Topology, 41:3 (2002), pp. 553–589.
- [6] M. Ghomi, Shortest periodic billiard trajectories in convex bodies, Geom. Funct. Anal., 14 (2004), pp. 295–302.
- [7] S. Tabachnikov, Geometry and billiards, Amer. Math. Soc., (2005).
- [8] S. Zelditch, Spectral determination of analytic bi-axisymmetric plane domains, Geom. Funct. Anal., 10:3 (2000), pp. 628-677.
- [9] D. Bezdek and K. Bezdek, Shortest billiard trajectories, 2011, ссылка.