

Sequential logic-2

EEE 241: Digital Logic Design

Department of Electrical and Computer Engineering

Lecture Contents

- Review
- Flip Flops
- SR Flip Flop
- D Flip Flop
- Jk Flip Flop
- T Flip Flop

Reference Readings and Acknowledgements

 Chapter 5: Digital Design with Introduction to Verilog HDL M. Morris Mano, Michael D. Ciletti, 5th Edition

Flip-Flops

- A trigger
 - The state of a latch or flip-flop is switched by a change of the control input
- Level triggered latches
- Edge triggered flip-flops

Fig. 5.8

- If level-triggered flip-flops are used
 - the feedback path may cause instability problem
- Edge-triggered flip-flops
 - the state transition happens only at the edge
 - eliminate the multipletransition problem

Edge-triggered D flip-flop

- Master-slave D flip-flop
 - two separate flip-flops
 - a master flip-flop (positive-level triggered)
 - a slave flip-flop (negative-level triggered)

Fig. 5.9 Master-slave *D* flip-flop

- CP = 1: (S,R) \Rightarrow (Y,Y'); (Q,Q') holds
- CP = 0: (Y,Y') holds; (Y,Y') ⇒ (Q,Q')
- (S,R) could not affect (Q,Q') directly
- the state changes coincide with the negative-edge transition of CP

- Edge-triggered flip-flops
 - the state changes during a clock-pulse transition
- A D-type positive-edge-triggered flip-flop

Fig. 5.10 D——D-type positive-edge-triggered flip-flop

- three basic flip-flops
- (S,R) = (0,1): Q = 1
- (S,R) = (1,0): Q = 0
- (S,R) = (1,1): no operation
- (S,R) = (0,0): should be avoided

(a) With CP = 0

10

The setup time

• D input must be maintained at a constant value prior to the application of the positive CP pulse

The hold time

D input must not changes after the application of the positive CP pulse

The propagation delay time

• The interval between the trigger edge and the stabilization of the output to a new state

Fig. 10-4 Measurement of Propagation Delay

Summary

- CP=0: (S,R) = (1,1), no state change
- CP=↑: state change once
- CP=1: state holds

Other Flip-Flops

- The edge-triggered D flip-flops
 - The most economical and efficient
 - Positive-edge and negative-edge

Fig. 5.11 Graphic symbols for edgetriggered *D* flip-flop

Fig. 5.12 JK flip-flop

- D=JQ'+K'Q
 - J=0, K=0: D=Q, no change
 - J=0, K=1: D=0 , Q =0
 - J=1, K=0: D=1, Q=1
 - J=1, K=1: D=Q', Q=Q'

Fig. 5.13 T flip-flop

• T flip-flop

- $D = T \bigoplus Q = TQ' + T'Q$
 - T=0: D=Q, no change
 - T=1: D=Q', Q=Q'

Characteristic tables

SOM WOOD TO ASLAMABAD.

Table 5.1 *Flip-Flop Characteristic Tables*

JK Flip-Flop

J	K	Q(t + 1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop

D	Q(t + 1)	
0	0 1	Reset Set

T Flip-Flop

T	Q(t + 1)	
0	Q(t) $Q'(t)$	No change Complement

- Characteristic equations
 - D flip-flop
 - Q(t+1) = D
 - JK flip-flop
 - Q(t+1) = JQ' + K'Q
 - T flop-flop
 - Q(t+1) = T⊕Q

