Computational Intelligence Methods

Jaroslav Langer *

Říjen 2020

Contents

1	Introduction2Machine Learning32.1 Types learning4Evolutionary Algos6					
2						
3						
4	Neu	ıral Ne	etworks	6		
	4.1	Percer	otron	7		
		4.1.1	Perceptron training	7		
		4.1.2	Perceptron gradient learning	7		
		4.1.3	Deriving gradietn of error	7		
		4.1.4	Cross entropy loss	7		
	4.2		propagation algorithm	7		
	1.2	4.2.1	Multilayer perceptron – MLP	7		
		4.2.2	Chain rule and backprop	7		
		4.2.3	Training MLP	7		
		4.2.4	Propagating the error through multiple layers	7		
		4.2.5	Backprop summary	7		
	4.3	_	propagation algorithm variants	7		
	4.0					
		4.3.1	Backprop variants	7		
		4.3.2	Modified transfer functions	7		

^{*}notes form lectures MIE-MVI/FIT/CTU

	4.3.3 Backprop with momentum	1					
	4.3.4 Batch updates and variable learning rate	7					
	4.3.5 Second order methods	7					
	4.4 MLP as universal approximator	7					
	4.5 Self-organizing Map	7					
5	Convolutional Networks						
6	Text and Graph Embeddings	7					
7	Autoencoders						
8	Neuroevolution						
9	Recurent Neural Nets						
10	Metalearning	7					
11	1 CMAES and Swarm Optimisation						

Abstract

Definitions, terms and knowledge from course NI-MVI.

1 Introduction

What is intelligence

Evolutionary

Genotype fenotype

• fitness function

Significant fields

- self-driving cars
- intelligent assistents

• general artifical inteligence (play game from visual input)

Research at Datalab

prg.ai

ethics

2 Machine Learning

History

- 1940
- 1950
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010

GAN

Transformers (pros of conv + recu)

• 2020+

AutoML in RL

Machine learning tasks

- regression / prediction
- classification / recomendation
- clustering /
- problem solving / planing / control

2.1 Types learning

- supervised
- unsupervised
- semisupervised
- Active learning
- transfer learning
- few-shot learning
- meta-learning / continual learning

Examples by types

Measuring the performace

Learning systems

Defining learning task

- T task ()
- P performance
- E expirience

Design learning system

- database, prepare data
- choose what to be learnt target function
- choose representation of target function
- choose learning algoritm
- supply algorithm with performance metric

Checkers example

Building the database

- Direct expirience set of board with correct move
- indirect expirience sequences of game moves and final results

Choose target function

- choseMove(board, legalMoves) -> bestMove
- $V(board) \rightarrow R$ (how favorible position) can be applied for all legal-Moves

Choose target function representation

${\bf Machine\ learning\ methods}$

Ants AI challenge

3 Evolutionary Algos

4 Neural Networks

Overview

- Introduction to artificial neural networks
- Perceptron, gradient learning
- MLP, Back-propagation of error
- Unsupervized training SOM

4.1	Perce	ptron

- 4.1.1 Perceptron training
- 4.1.2 Perceptron gradient learning
- 4.1.3 Deriving gradietn of error
- 4.1.4 Cross entropy loss
- 4.2 Backpropagation algorithm
- 4.2.1 Multilayer perceptron MLP
- 4.2.2 Chain rule and backprop
- 4.2.3 Training MLP
- 4.2.4 Propagating the error through multiple layers
- 4.2.5 Backprop summary
- 4.3 Backpropagation algorithm variants
- 4.3.1 Backprop variants
- 4.3.2 Modified transfer functions
- 4.3.3 Backprop with momentum
- 4.3.4 Batch updates and variable learning rate
- 4.3.5 Second order methods
- 4.4 MLP as universal approximator
- 4.5 Self-organizing Map
- 5 Convolutional Networks
- 6 Text and Graph Embeddings
- 7 Autoencoders
- 8 Neuroevolution
- 9 Recurent Neural Nets
- 10 Metalearning
- 11 CMAES and Swarm Optimisation