Sterowanie złożonymi układami mechanicznymi			
Prowadzący Wykład	Wykonali	Kierunek studiów	Rok i semestr studiów
mgr inż. Adam	Krystian Cieślak 38626	A:D	Dale IV ages VIII
Łukomski	Patryk Nowicki 38660 Bartłomiej Koko 38648	AiR	Rok IV sem. VII

1. Cel zadania

Celem zadania jest stworzenie skryptu w programie Matlab umożliwiającego sterowanie symulacją robota dwukołowego dostępną w serwerze ROS.

2. Realizacja zadania

W pierwszej kolejności uruchomiliśmy symulacje robota dwukołowego w serwerze ROS, który przyjmuje postać graficzną żółwia, którego sterowanie na początku było przeprowadzone za pomocą klawiszy klawiatury.

Rysunek 1. Symulacja ruchu pojazdu 2 kołowego sterowanego za pomocą strzałek.

Następnie w środowisku Matlab znajdującym się na głównym komputerze napisaliśmy skrypt sterowania takim robotem i uruchomiliśmy dostęp do ROS znajdującego się w maszynie wirtualnej. Dzięki ROS uzyskujemy informacje o położeniu bezwzględnym i kącie obrotu robota za pomocą komendy rossubscriber. Symulacja dodatkowo rysuje ścieżkę odwzorowującą trajektorie jaką poruszał się pojazd. Skrypt realizował poruszanie się żółwika do wyznaczonego punktu z wykorzystaniem regulatora bazującego na równaniach Lapunowa.

Rysunek 2. Symulacja ruchu pojazdu do wyznaczonego punktu z uwzględnieniem regulatora

3. Wnioski

- Poznaliśmy system ROS, dzięki któremu można symulować ruch robotów, bez potrzeby tworzenia od nowa środowiska. Jest to pomocne narzędzie przy testach jak i sterowaniu gotowym już robotem.
- W trakcie realizacji zadania napisaliśmy skrypt realizujący poruszanie się do wyznaczonego punktu w przestrzeni x, y korzystając z zaprojektowanego regulatora bazującego na równaniach Lapunowa.