7. Topologie Übung

Ferdinand Szekeresch

10. Januar 2017

Aufgabe 1

p Primzahl, $\forall n \in \mathbb{N}$ setze $c_n := \mathbb{Z}/p^n\mathbb{Z}$ mit diskr. Topologie. Betrachte Teilmenge $\mathbb{Z}_p : \subseteq \prod_{n \in \mathbb{N}} x_n$ der Tupel $(x_n)_{n \in \mathbb{N}}$ mit der Eigenschaft

$$\forall m \ge n : x_m \equiv x_n (\mod p^n)$$

- (a) Beh: \mathbb{Z}_p ist Ring. zeige: \mathbb{Z}_p ist Teilring von $\prod_{n\in\mathbb{N}} x_n$. Nachrechnen: z. B. $(x_n), (y_n) \in \mathbb{Z}_p$ $\Rightarrow \forall m \geq n : x_m + y_m \equiv x_n + y_m \pmod{p^n} \Rightarrow (x_n) + (y_n) \in \mathbb{Z}_p$
- (b) \mathbb{Z}_p ist kpompakt. Denn: klar: $\mathbb{Z}/p^n\mathbb{Z}$ ist kompakt (da endlich) $\stackrel{\text{Tichonoff}}{\Longrightarrow} \prod_{\underline{}} (\mathbb{Z}/p^n\mathbb{Z}) \text{ ist kompakt.}$

Zeige: \mathbb{Z}_p ist abgeschlossen in $\prod_{n\in\mathbb{N}} x_n$.

Beh: $\prod_{n\in\mathbb{N}} x_n \backslash \mathbb{Z}_p$ ist offen. Bew: Sei $(x_n)_{n\in\mathbb{N}} \in \prod_{n\in\mathbb{N}} x_n \backslash \mathbb{Z}_p$ $\Rightarrow \exists n, m \in \mathbb{N} : n \leq m \text{ und } x_m \neq x_n \pmod{p^n}$ Setze $U := \pi_n^- 1(\{x_n\})$ ist offen in $\prod_{n\in\mathbb{N}} x_n$ und es ist $U \cup \mathbb{Z}_p = \emptyset$

 \Rightarrow Beh.

- (c) $\mathbb{Z} \to \mathbb{Z}_p, a \mapsto ((a+p^n\mathbb{Z}))_{n \in \mathbb{N}}$. Nachrechnen: Das ist ein Ringhomomorphismus. Sein kern ist $\bigcap_{n=1}^\infty p^n\mathbb{Z}=\{0\}\Rightarrow$ der Homomorphismus ist injektiv.
- (d) Vergleiche Blatt 2, Aufgabe 4. Sei hier p=5. Beh: $\exists w = (x_n)_{n \in \mathbb{N}} \in \mathbb{Z}_5$, sodass gilt: $w^5 = -1$, d.h. $x_n^2 \equiv -1 \pmod{p^n}$. Setze $x_1 := 2 (\text{denn } 2^2 = 4 \equiv -1 (\text{mod } 5))$ Weitere Folgenglieder werden induktiv definiert: Sei x_n gefunden mit $x_n^2 \equiv -1 \pmod{p^n}$

Zu zeigen: Es gibt ein $k \in \mathbb{Z}$, sodass $(x_n + kp^n)^2 \equiv -1 \pmod{p^{n+1}}$

$$\Rightarrow a_p \stackrel{!}{=} (x_n + kp^n)^2 + 1 = x_n^2 + 2kx_np^n + k^2p^{2n} + 1 = (x_n^2 + 1) + 2kx_np^n + k^2p^{2n}$$
$$= bp^n + 2kp^nx_n + k^2p^{2n} = p^n(2kx_n + b) + p^{2n}k^2$$

Es muss gelten: $2kx_n + b \equiv 0 \pmod{p}$. Das geht, denn $\mathbb{Z}/p\mathbb{Z}$ ist Körper, x_n kann nicht kongruent 0 (mod p) sein, da $x_n^2 \equiv -1 \pmod{p}$ wäre.

(e) Beh: \mathbb{Z}_p ist überabzählbar.

Bew: z. B. Finde Bijektion von \mathbb{Z}_p nach $[0,1), (x_n)_{n\in\mathbb{N}} \mapsto 0, x_1x_2...$ Oder: Fasse \mathbb{Z}_p auf als "Potenzreihen"der form $\sum_{n=0}^{\infty} a_n p^n \quad a_i \in \mathbb{N}$

Aufgabe 3

Sei \mathcal{A} eine kommutative Banachalgebra, $\varphi:\mathcal{A}\to\mathbb{C}$ ein \mathbb{C} linearer Ringhomomorphismus.

Beh: φ ist stetige Linearform, d.h. $\exists \delta > 0 \forall f \in \mathcal{A} : |\varphi(f)| \leq \delta ||f||$

Bew: Es gilt:
$$f - c = -c \left(1 - \frac{f}{c} \right)$$
. Es ist $\left\| \frac{f}{c} \right\| = \frac{1}{\|c\|} \cdot \|f\| < \frac{1}{|c|} \cdot |c| = 1$

Bew: Es gilt:
$$f - c = -c \left(1 - \frac{f}{c}\right)$$
. Es ist $\left\|\frac{f}{c}\right\| = \frac{1}{\|c\|} \cdot \|f\| < \frac{1}{|c|} \cdot |c| = 1$

$$\Rightarrow \sum_{n=0}^{\infty} \left(\frac{f}{c}\right)^n \text{ konvergiert gegen } \frac{1}{1 - \frac{f}{c}} \Rightarrow (-c)^{-1} \cdot \sum_{n=0}^{\infty} \left(\frac{f}{n}\right)^n \text{ ist invers zu } f - c.$$

Beh: Es gilt $|\varphi(f)| \leq ||f||$ für alle $f \in \mathcal{A}$.

Bew: Es gilt: $f - \varphi(f) \in \text{Kern}(\varphi)$ (Klar, da φ Ringhomomorphismus ist $\varphi(f - \varphi(f) \cdot 1_A) = 0$ $\varphi(f) - \varphi(f)\varphi(1_A) = 0$

 $\Rightarrow f - \varphi$ ist nicht invertierbar (da Kern(φ) eis Ideal in \mathcal{A} , d.h. wäre $f - \varphi(f)$ invertierbar, wäre $kern(\varphi) = \mathcal{A} \Rightarrow \varphi = 0$.

 $\stackrel{\text{Beh. }^1}{\Longrightarrow} Beh.$

Aufgabe 2

Sei X norm. Raum, X seine Stone-Cech-Kompaktifizierung, K ein kompakter, normierter Raum, $\varphi:X\to K$ eine stetige Abbildung. Beh: φ kann eindeutig fortgesetzt werden zu einer stetigen Abbildung $\bar{X} \to K$.

Bew: X normal $\Rightarrow \bar{X}$ ex. und ist Teilmenge von $C_0(x,\mathbb{C})'$

K normal und kompakt $\Rightarrow \bar{K}$ ex. ist $\subseteq C_0(K,)'$ und ist gleich K.

...Rest wird ins Netz gestellt