Landmark-Dependent Hierarchical Beta Process for Robust Sparse Factor Analysis

Mingyuan Zhou¹ Hongxia Yang² Guillermo Sapiro³ David Dunson⁴ Lawrence Carin¹

MZ1@EE.DUKE.EDU
YANGHO@IBM.US.COM
GUILLE@UMN.EDU
DUNSON@STAT.DUKE.EDU
LCARIN@EE.DUKE.EDU

Abstract

A computationally efficient landmark-dependent hierarchical beta process is developed as a prior for data with associated covariates. The landmarks define local regions in the covariate space where feature usages are likely to be similar. The landmark locations are learned, to which the data are linked through normalized kernels. The proposed model is well suited for local latent feature discovery, and adding a robustness term, it successfully separates out non-local sparse spiky components, as demonstrated in image denoising and document analysis applications.

1. Introduction

In this paper we address dictionary learning for data that are endowed with an associated covariate. We explore the idea that data nearby in the covariate space (e.g., nearby in terms of temporal, spatial or cosine distances) are likely to share similar sparseness properties. Hence we employ "landmarks" in the covariate space, whose positions are learned, to guide the usage probabilities of dictionary atoms. Links between the data and landmarks are established via normalized kernels. The proposed model may be viewed as a landmark-based extension of the recently proposed dependent hierarchical beta process (dHBP) (Zhou et al., 2011). We refer to the proposed model as Landmark-dHBP, which is considerably more efficient than the original dHBP for large scale learning and out-of-sample prediction.

A robustness term is employed to model sparse spiky noise or localized data anomalies, related to robust principal component analysis (RPCA) (Candès et al., 2009). However, our model differs from RPCA in that the low-rank assumption on data is replaced with the richer covariate-dependent union-of-subspace assumption, realized with a sparse factor analysis (SFA) model using the Landmark-dHBP as the prior. Therefore, our model might better handle data that violate the low-rank assumption, and the use of covariates to define a local region is important to distinguish non-local spiky or anomalous data components from local latent features.

2. Review of Motivating Models

Following (Thibaux & Jordan, 2007), a beta process (BP) $B \sim \mathrm{BP}(c,B_0)$ is a positive random measure on a space Ω , where c is a positive function over Ω , and B_0 is a fixed measure on Ω , called the base measure; here we assume c is a positive constant. A BP draw can be expressed as $B = \sum_{k=1}^{\infty} p_k \delta_{\omega_k}$, where $\omega_k \sim B_0/B_0(\Omega)$ is the kth atom, and each p_k is drawn i.i.d. from a degenerate beta distribution with parameter c. We draw the atom usage vector for the ith sample, $i=1,\cdots,N$, from a Bernoulli process as $X_i \sim \mathrm{BeP}(B)$.

The BP construction above is exchangeable. Building on a hierarchical BP (HBP) construction (Thibaux & Jordan, 2007), a dependent HBP (dHBP) was recently proposed to introduce covariant dependence, demonstrating significant improvements over BP in image interpolation and denoising applications. The model can be express as

$$B_i = \sum_{j=1}^{N} a_{ij} B_j^*, B_j^* \sim BP(c_1, B), B \sim BP(c_0, B_0)$$
 (1)

$$a_{ij} = \mathcal{K}(\boldsymbol{\ell}_i, \boldsymbol{\ell}_j) / \sum_{j'=1}^{N} \mathcal{K}(\boldsymbol{\ell}_i, \boldsymbol{\ell}_{j'})$$
 (2)

where c_1 is a constant, a_{ij} is an element of the random-walk matrix $\mathbf{A} \in \Re^{N \times N}$, each row of which sums to one,

¹Department of ECE, ⁴Department of Statistical Science, Duke University, Durham, NC 27708, USA

²IBM Watson Research Center, Yorktown Heights, NY 10598, USA

³Department of ECE, University of Minnesota, Minneapolis, MN 55455, USA

 $\ell_i \in \mathbb{R}^{\mathcal{L}}$ is a covariate associated with the ith sample, the kernel $\mathcal{K}(\ell_i,\ell_j) \in [0,1]$ monotonically decreases towards 0 with increasing $\|\ell_i - \ell_{i'}\|$. As shown in (Zhou et al., 2011), for any measurable subset S, when B_i and $B_{i'}$ are constituted as in the above model, these dependent random measures satisfy

$$corr\{B_{i}(S), B_{i'}(S)\} = \frac{\langle a_{i}, a_{i'} \rangle}{\|a_{i}\| \cdot \|a_{i'}\|}$$
(3)

where $a_i = [a_{i1}, ..., a_{iN}]^T$.

When constructing the random-walk matrix, (Zhou et al., 2011) used a neighborhood constraint on the kernel that $\mathcal{K}(\ell_i,\ell_j) \neq 0$ if and only if $j \in \mathcal{Q}_i$, where \mathcal{Q}_i includes the indexes of the L nearest covariates of ℓ_i from $\{\ell_j\}_{j=1,N}$. This construction directly links B_j^* to $\{B_i\}_{\{i:\{j\in\mathcal{Q}_i\}\}}$. Since given B_i , X_i is independently drawn as $X_i \sim \text{BeP}(B_i)$, this construction makes it feasible to infer the posterior distribution of B_j^* based on $\sum_{i:\{j\in\mathcal{Q}_i\}} X_i$.

3. Landmarks and Kernels

The salutary characteristics of (3) are undermined by several additional attributes. First, the complexity of the model grows with the number of data samples N, even if many of them provide redundant information. Second, inference on a new sample i' is complicated by the fact that one must retain all training data to compute the weights $\{a_{i'j}\}$ when subsequently using the model. We seek to remove these deficiencies of the dHBP model, while retaining its desirable characteristics, particularly the covariate-dependent removal of exchangeability. Toward this end, we introduce the concept of "landmarks" in the covariate space.

Consider the J landmarks $\{\tilde{\ell}_j\}_{j=1,J}$ to be learned, where each $\tilde{\ell}_j \in \mathbb{R}^{\mathcal{L}}$. These landmarks are meant to capture the support of the set of covariates $\{\ell_i\}_{i=1,N}$, serving as reference points to guide the covariate-dependent usage of atoms $\{\omega_k\}$. We are typically interested in $J \ll N$. For general covariate ℓ , the landmark-dependent probability measure for atom usage is expressed as

$$B_{\ell} = \sum_{j=1}^{J} a_{\ell j} B_{j}^{*}, B_{j}^{*} \sim \text{BP}(c_{1}, B), B \sim \text{BP}(c_{0}, B_{0}) \quad (4)$$

where the ℓ -dependent probabilities $\{a_{\ell i}\}$ are defined as

$$a_{\ell j} = \mathcal{K}(\ell, \tilde{\ell}_j) / \sum_{j'=1}^{J} \mathcal{K}(\ell, \tilde{\ell}_{j'})$$
 (5)

where $\mathcal{K}(\ell_i, \tilde{\ell}_j)$ is a kernel as discussed above. Note that B_{ℓ} varies smoothly with the covariate ℓ .

To complete the model specification, the landmarks are assumed drawn from a probability measure H in $\mathbb{R}^{\mathcal{L}}$, as $\tilde{\ell}_{j} \sim H$. A simple way to do this is to densely select \widetilde{N} positions $\{\ell_{i}\}_{i=1,\widetilde{N}}$ in the covariate space as potential landmarks, and assume $H = \sum_{i=1}^{\widetilde{N}} \theta_{i} \delta_{\ell_{i}}$ with $\boldsymbol{\theta} = [\theta_{1}, \cdots, \theta_{\widetilde{N}}]^{T}$

drawn from a Dirichlet distribution. In this way the model selects a subset of the \widetilde{N} covariates as landmarks.

The kernel is constructed as

 $\mathcal{K}(\boldsymbol{\ell}_i,\tilde{\boldsymbol{\ell}}_j) = \delta\big(j \in \mathcal{Q}_i\big) \exp(-\|\boldsymbol{\ell}_i - \tilde{\boldsymbol{\ell}}_j\|_2/\sigma) \qquad (6)$ where σ is a constant and \mathcal{Q}_i includes the indexes of the L nearest landmarks of $\boldsymbol{\ell}_i$ from $\{\tilde{\boldsymbol{\ell}}_j\}_{j=1,J}$. We now have a random walk matrix $\mathbf{A} \in \Re^{N \times J}$, each row of which $a_i \in \Re^J$ has L nonzero components and sums to one. As J increases to N and $\tilde{\boldsymbol{\ell}}_j = \boldsymbol{\ell}_j$, the Landmark-dHBP becomes the dHBP, and as J decreases to one, the Landmark-dHBP becomes HBP. An appropriate size of J is selected based on a compromise between computational complexity and the desired level of covariant dependence.

A property analogous to (3) holds for the Landmark-dHBP model as well, and it is is true for *any* fixed set of landmarks, $\{\tilde{\ell}_j\}$, which may not necessarily well reflect the dependencies between data. When using the proposed prior to fit data, the likelihood function encourages the posterior distribution on landmark positions to be well matched to the data, as discussed below in specific applications.

4. Robust Sparse Factor Analysis

As shown in (Zhou et al., 2009), a beta-Bernoulli process sparse factor analysis model can be constructed as

$$\mathbf{x}_i \sim \mathcal{N}(\mathbf{D}(\mathbf{s}_i \odot \mathbf{z}_i), \gamma_{\epsilon}^{-1} \mathbf{I}_P)$$
 (7)

$$\mathbf{d}_k \sim \mathcal{N}(0, P^{-1}\mathbf{I}_P), \ \mathbf{s}_i \sim \mathcal{N}(0, \gamma_s^{-1}\mathbf{I}_K)$$
 (8)

$$z_{ik} \sim \text{Bernoulli}(\pi_k), \ \pi_k \sim \text{Beta}(c\eta, c(1-\eta))$$
 (9)

where \boldsymbol{x}_i is the ith sample, \odot represents the Hadamard product, $\mathbf{D} = [\boldsymbol{d}_1, \cdots, \boldsymbol{d}_K] \in \mathbb{R}^{P \times K}$ is the dictionary, $\boldsymbol{s}_i = [s_{i1}, \cdots, s_{iK}]^T$, $\boldsymbol{z}_i = [z_{i1}, \cdots, z_{iK}]^T$, $s_{ik} \in \mathbb{R}$, $z_{ik} = X_i(\boldsymbol{d}_k) \in \{0,1\}$ indicates whether the kth atom is active within sample i, and $\pi_k = B(\boldsymbol{d}_k)$ is the probability for the kth atom to be selected. Gamma hyper-priors are placed on both γ_ϵ and γ_s .

Motivated by recent increased interest in RPCA (Candès et al., 2009), we assume that in addition to the Gaussian noise ϵ_i , there are sparse spiky data components as

$$\boldsymbol{x}_i = \mathbf{D}(\boldsymbol{s}_i \odot \boldsymbol{z}_i) + \boldsymbol{\epsilon}_i + \boldsymbol{v}_i \odot \boldsymbol{m}_i$$
 (10) where $\boldsymbol{v}_i = [v_1, \cdots, v_P]^T$ and $\boldsymbol{m}_i = [m_1, \cdots, m_P]^T$, $v_{ip} \in \mathbb{R}$ is the weight and m_{ip} is the binary spiky indicator. A beta-Bernoulli prior is constituted on \boldsymbol{m}_i as

 $m_{ip} \sim \operatorname{Bernoulli}(\tilde{\pi}_{ip}), \quad \tilde{\pi}_{ip} \sim \operatorname{Beta}(a_0, b_0).$ (11) We impose $v_i \sim \mathcal{N}(0, \gamma_v^{-1}\mathbf{I}_P)$ with a gamma hyper-prior on γ_v and we have Gaussian noise with precision γ_ϵ . After performing analysis with this model, the noise and outliers free data is estimated as $\hat{x}_i = \mathbf{D}(s_i \odot z_i)$.

4.1. Landmark-dependent dictionary learning

Assuming we have data and associated covariates $\{x_i, \ell_i\}_{i=1,N}$, we wish to impose that if $\|\ell_i - \ell_{i'}\|$ is relatively small then z_i and $z_{i'}$ will have similar sparseness

properties (i.e., x_i and $x_{i'}$ will be constituted in terms of a similar set of the columns of **D**). When employing the landmark-based construction in (4), (9) generalizes as

$$z_{ik} \sim \text{Bernoulli}(\pi_{ik}), \quad \pi_{ik} = \sum_{j=1}^{J} a_{ij} \pi_{jk}^*$$
 (12)

$$\pi_{ik}^* \sim \text{Beta}(c_1 \eta_k, c_1 (1 - \eta_k)) \tag{13}$$

$$\eta_k \sim \text{Beta}(c_0 \eta_0, c_0 (1 - \eta_0))$$
(14)

where $z_{ik} = X_{\ell_i}(\boldsymbol{d}_k)$, $\pi_{ik} = B_{\ell_i}(\boldsymbol{d}_k)$, $\pi_{jk}^* = B_{\ell_j}^*(\boldsymbol{d}_k)$, $\eta_k = B(\boldsymbol{d}_k)$ and a_{ij} is constructed via the landmarks as in (5). We use all the observed covariates as potential landmarks and learn the landmark locations with

$$\tilde{\boldsymbol{\ell}}_j = \boldsymbol{\ell}_{g_j}, \quad g_j \sim \sum_{i=1}^N \theta_i \delta_i \;, \; \boldsymbol{\theta} \sim \text{Dir}(\alpha_0, \cdots, \alpha_0). \quad (15)$$

In one application considered below, the objective is to denoise an image, potentially in the presence of non-Gaussian noise, the $\{x_i\}$ correspond to pixels from image patches, and the associated covariates $\{\ell_i\}$ locate patch positions within the image. For applications in which data reside on a manifold (or approximate manifold), we can define covariates as sample locations relative to each other. Specifically, we can define

$$\ell_i = \boldsymbol{x}_i / \|\boldsymbol{x}_i\|_2 \tag{16}$$

and we have $\|\boldsymbol{\ell}_i - \boldsymbol{\ell}_{i'}\|_2 = \sqrt{2 - 2\cos(\boldsymbol{x}_i, \boldsymbol{x}_{i'})}$, where the cosine distance $\cos(\boldsymbol{x}_i, \boldsymbol{x}_{i'}) = \frac{\boldsymbol{x}_i^T \boldsymbol{x}_{i'}}{\|\boldsymbol{x}_i\|_2 \|\boldsymbol{x}_{i'}\|_2}$ is widely used to measure similarity between vectors.

After the dictionary is learned on the training data, for the sparse coding of a new sample $x_{i'}$, we can calculate its kernel distances to the J landmarks and calculate $\pi_{i'}$ as

$$a_{i'j} = \frac{\mathcal{K}(\ell_{i'}, \tilde{\ell}_j)}{\sum_{j'=1}^{J} \mathcal{K}(\ell_{i'}, \tilde{\ell}_{j'})}, \quad \pi_{i'k} = \sum_{j=1}^{J} a_{i'j} \pi_{jk}^*.$$
 (17)

With $\pi_{i'}$ and the learned dictionary **D**, we can infer the landmark-dependent sparse codes of $x_{i'}$.

5. Example Results

The inference is performed using MCMC analysis. With the same robust term in (10) employed to model the sparse spiky noise, we apply BP, dHBP, and Landmark-dHBP as the prior for the robust sparse factor analysis (RSFA) model; our goal is to discover local latent features, and separate outliers from given data. Let L_0 denote the prior belief that a local region formed by a set of L_0 nearest samples share similar features, we set the kernel parameter as $L = \max\{\lfloor L_0 \frac{J}{N} \rceil, 2\}$, where $\lfloor \cdot \rceil$ represents the closest integer.

We first consider denoising an image corrupted by both sparse spiky noise and white Guassian noise. We use the same test procedure as that described in (Zhou et al., 2011) (omitted here for brevity). We find that as the landmark size

Figure 1. Denoisng results of BP, dHBP, Landmark-dHBP on "House" image, with 10% pixels corrupted by spiky noise situated uniformly at random. The spike amplitudes are uniformly distributed between -255 and 255. Zero-mean WGN with standard deviation 10 is also added to the image. (a) the original image; (b) the noisy image; (c), (e), and (g) show learned dictionaries; and (d), (f), and (h) the denoised images for BP (21.63 dB), dHBP (35.32 dB) and Landmark-dHBP (35.66 dB) with $J = \lfloor N/64 \rfloor$, respectively.

increases from 1 to N in Landmark-dHBP, the computational complexity increases and the performance generally improves until it saturates. Fig. 1 shows example results on denoising the House image.

The second example we consider is analyzing a document matrix $\mathbf{X} \in \mathbb{R}^{P \times N}$, whose ith column x_i encodes the relative number of times each term/word is manifested in the ith document. Word-count matrices of this form have usually been analyzed via latent semantic indexing (LSI) (Deerwester et al., 1990) or latent Dirichlet allocation (LDA) (Blei et al., 2003). Here we show that RSFA can infer not only easily interpretable topics sparsely used by documents, but also unique spiky keywords to each document, providing a novel way for document analysis. We use covariates defined in (16) for Landmark-dHBP.

We choose the widely studied NIPS dataset, available online at http://www.cs.nyu.edu/~roweis/data.html, which includes 1740 conference papers from 1987 to 1999. We consider the most frequently used 2000 terms and use the *tf-idf* to construct $\mathbf{X} \in \mathbb{R}^{2000 \times 1740}$. For better interpretation, we impose a non-negative constraint on both the dictionary and sparse codes with a truncated normal prior lower bounded by zero, and impose that only the top $N_s = 10$ most probable spiky terms can be captured. Each dictionary atom represents a topic, and the components of such a topic encode each term's relative importance in that topic. We set the landmark size $J = \lfloor N/2 \rfloor = 870$ and kernel parameter L=16, aiming to capture locally popular topics as well as distinct spiky keywords for each document. The dictionary size is truncated to be K=200, and the atoms are initialized at random.

After learning, RSFA summarizes a document by a sparse set of topics and N_s spiky keywords. RSFA with Landmark-dHBP discovers 104 topics, 80 of which have been used more than 10 times. For example, ranking the

TOPIC 1	TOPIC 2	TOPIC 3	TOPIC 4	TOPIC 5	TOPIC 6	TOPIC 7	TOPIC 8	TOPIC 9	TOPIC 10	TOPIC 11	TOPIC 12	TOPIC 13	TOPIC 14	TOPIC 15	TOPIC 16	TOPIC 17	TOPIC 18
units	training	neuron	image	mixture	estimate	cells	gradient	theorem	dynamics	bayesian	classifier	weight	synaptic	stimulus	analog	cortex	memory
unit	hidden	neurons	images	likelihood	variance	cell	descent	proof	dynamical	posterior	classifiers	weights	synapses	stimuli	vlsi	cortical	associative
hidden	layer	network	pixel	mixtures	error	inhibitory	learning	lemma	equations	prior	classification	error	synapse	response	chip	visual	stored
network	network	synapses	pixels	gaussian	sample	response	convergence	prove	fixed	monte	class	decay	presynaptic	responses	circuit	cells	memories
TOPIC 19	TOPIC 20	TOPIC 21	TOPIC 22	TOPIC 23	TOPIC 24	TOPIC 25	TOPIC 26	TOPIC 27	TOPIC 28	TOPIC 29	TOPIC 30	TOPIC 31	TOPIC 32	TOPIC 33	TOPIC 34	TOPIC 35	TOPIC 36
markov	bound	object	recognition	receptive	matrix	frequency	energy	speech	map	examples	firing	control	reinforcement	signal	convergence	tree	search
state	bounds	objects	character	field	eigenvalues	frequencies	hopfield	phoneme	mapping	learning	spike	controller	sutton	signals	state	trees	algorithms
states	upper	recognition	handwritten	fields	eigenvectors	filter	solution	recognition	kohonen	class	spikes	state	barto	noise	programming	node	algorithm
transition	vapnik	visual	recognize	cells	eigenvalue	auditory	constraint	speaker	maps	positive	rate	system	learning	filter	optimal	nodes	population
TOPIC 37	TOPIC 38	TOPIC 39	TOPIC 40	TOPIC 41	TOPIC 42	TOPIC 43	TOPIC 44	TOPIC 45	TOPIC 46	TOPIC 47	TOPIC 48	TOPIC 49	TOPIC 50	TOPIC 51	TOPIC 52	TOPIC 53	TOPIC 54
TOPIC 37 connectionist		TOPIC 39 belief	TOPIC 40 circuit	TOPIC 41 word	TOPIC 42 images	TOPIC 43 bit	TOPIC 44 functions	TOPIC 45 policy	TOPIC 46 decision	TOPIC 47 eq	TOPIC 48 generalization		TOPIC 50 phase	TOPIC 51 state	TOPIC 52 eye	TOPIC 53 orientation	
connectionist								policy									
connectionist cognitive	nearest	belief	circuit	word	images principal	bit	functions	policy	decision	eq fig	generalization	clustering	phase	state recurrent	eye	orientation spatial	threshold
connectionist cognitive representation	nearest neighbor class	belief graphical	circuit voltage transistor	word words	images principal	bit processor	functions approximation	policy action state	decision table	eq fig	generalization phys	clustering clusters cluster	phase oscillatory oscillations	state recurrent	eye position	orientation spatial tuning	threshold boolean
connectionist cognitive representation	nearest neighbor class	belief graphical variables conditional	circuit voltage transistor	word words recognition	images principal image	bit processor bits	functions approximation basis	policy action state	decision table classification	eq fig matrix	generalization phys student	clustering clusters cluster	phase oscillatory oscillations	state recurrent symbol	eye position movements	orientation spatial tuning	threshold boolean polynomial
connectionist cognitive representation representations	nearest neighbor class neighbors	belief graphical variables conditional	circuit voltage transistor current TOPIC 58	word words recognition speech	images principal image recognition	bit processor bits hardware	functions approximation basis approximate TOPIC 62	policy action state actions	decision table classification accuracy	eq fig matrix learning	generalization phys student training	clustering clusters cluster unsupervised	phase oscillatory oscillations coupling	state recurrent symbol finite	eye position movements movement	orientation spatial tuning visual	threshold boolean polynomial gates
connectionist cognitive representation representations TOPIC 55	nearest neighbor class neighbors TOPIC 56	belief graphical variables conditional TOPIC 57	circuit voltage transistor current TOPIC 58	word words recognition speech TOPIC 59	images principal image recognition TOPIC 60	bit processor bits hardware	functions approximation basis approximate TOPIC 62 matching	policy action state actions TOPIC 63	decision table classification accuracy TOPIC 64	eq fig matrix learning TOPIC 65	generalization phys student training TOPIC 66	clustering clusters cluster unsupervised TOPIC 67	phase oscillatory oscillations coupling TOPIC 68	state recurrent symbol finite TOPIC 69 perception	eye position movements movement TOPIC 70	orientation spatial tuning visual TOPIC 71	threshold boolean polynomial gates TOPIC 72
connectionist cognitive representation representations TOPIC 55 kernel	nearest neighbor class neighbors TOPIC 56 intensity	belief graphical variables conditional TOPIC 57 trajectories	circuit voltage transistor current TOPIC 58 blind separation	word words recognition speech TOPIC 59 hmm	images principal image recognition TOPIC 60 membrane channels	bit processor bits hardware TOPIC 61 movement movements	functions approximation basis approximate TOPIC 62 matching	policy action state actions TOPIC 63 edge	decision table classification accuracy TOPIC 64 natural	eq fig matrix learning TOPIC 65 motor	generalization phys student training TOPIC 66 support	clustering clusters cluster unsupervised TOPIC 67 kalman	phase oscillatory oscillations coupling TOPIC 68 ocular	state recurrent symbol finite TOPIC 69 perception	eye position movements movement TOPIC 70 tangent	orientation spatial tuning visual TOPIC 71 cues	threshold boolean polynomial gates TOPIC 72 algorithm

Figure 2. The top 72 NIPS topics discovered by Landmark-dHBP (most-probable four words in each topic).

ID	Title, Authors	Topics	Top 10 Spiky Keywords
716	Supervised Learning from Incomplete Data via an EM Approach, Ghahramani_Z, Jordan_M	56	missing density em mixture supervised expectation gaussians jacobs valued estimator
1383	Stacked Density Estimation, Smyth_P, Wolpert_D	5 6 11	density kernel kernels combining estimation estimators partition vowel weighting sample
			em update loss eq entropy estimation updates distance parameter setting
1524	SMEM Algorithm for Mixture Models, Ghahramani_Z, Hinton_G, Nakano_R, Ueda_N		split em operations criteria manifold usual mixture fig posterior algorithm
1509	Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm, Jebara_T, Pentland_A	5 20	conditional em gate bound experts likelihood maximization gates joint update
1525	Learning Mixture Hierarchies, Lippman_A, Vasconcelos_N	5 6 4 22 62 21	em hierarchy mixture sample hierarchical object kernel level bottom smoothing
			variational bayesian factor predictive posterior evidence overfitting intrinsic exact inference
	ESTIMATING CONDITIONAL PROBABILITY DENSIOES FOR PERIODIC VARIABLES, Bishop_C, Legleye_C	5 44 6	periodic conditional kernel density kernels bishop densities estimating euclidean angle
717	Training Neural Networks with Deficient Data, Ahmad_S, Neuneier_R, Tresp_V	5 2 6 44 11	missing uncertainty integral unknown closed noise complete convolution solutions network

Figure 3. Topics and spiky keywords for the first 8 retrieved papers for Paper 716.

topics and the words in a topic based on their usage probabilities, the top 8 words of Landmark-dHBP Topic 73 are "segmentation frame category speaker segment classifier boundaries classification," and shown in Fig. 2 are the top 72 topics in the corpora, which are all very easily interpretable. The average number of topics used per document is about 4.80. The unique number of landmark locations is 259. The results presented are based on the last MCMC sample of 2500 iterations, for simple interpretation.

We also tested using the BP. We found that BP only discovers 67 topics, 65 of which have been used more than 6 times. Examining the correlation coefficients between the top 65 BP topics and the top 80 Landmark-dHBP topics, as shown in Fig. 4 (a), we find that most of the BP topics are highly correlated with one of the Landmark-dHBP topics. Examining the not well correlated ones, we find that they are either not obviously interpretable, or evenly correlated with multiple Landmark-dHBP topics. For example, shown in Figs. 4 (b)-(d) are the correlation coefficients between BP Topics 10, 56 and 62 and the top 80 Landmark-dHBP topics. Comparing these three BP topics with their correlated Landmark-dHBP topics, we can find that a BP topic of this kind is the superposition of several related but distinct Landmark-dHBP topics. This suggests that BP tends to model some distinct but related topics as a single topic. This is not surprising, since BP is trying to model globally popular features while Landmark-dHBP is able to discover locally popular topics as defined by regions near landmarks. This also suggests that the covariate dependence plays an important role in revealing locally popular features, and hence to better model the corpora.

We pick a widely cited NIPS paper, and retrieve the 8 closest papers based on the cosine distance between their topic

Figure 4. Correlation coefficients between the top 65 BP topics (dictionary atoms) and the top 80 Landmark-dHBP topics.

usage weights (sparse codes). Shown in Fig. 3 are the topics and 10 spiky keywords discovered by RSFA for these papers. We find that the captured spiky keywords well correspond to a paper's unique aspects compared to its neighbors, and the underlying topics are shared often, but can also be different.

References

Blei, D., Ng, A., and Jordan, M. Latent dirichlet allocation. *J. Mach. Learn. Res.*, 2003.

Candès, E.J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? to apear in Journal of the ACM, 2009.

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., and Harshman, R. Indexing by latent semantic analysis. *J. Amer. Soc. Inf. Sci.*, 1990.

Thibaux, R. and Jordan, M. I. Hierarchical beta processes and the Indian buffet process. In *AISTATS*, 2007.

Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., and Carin, L. Non-parametric bayesian dictionary learning for sparse image representations. In NIPS, 2009.

Zhou, M., Yang, H., Sapiro, G., Dunson, D.B., and Carin, L. Dependent hierarchical beta process for image interpolation and denoising. In *AISTATS*, 2011.