Introduction to Scientific Computing in Python

Continuum Analytics and Robert Johansson

August 17, 2015

Table of Contents

1	Inti	roduction to scientific computing with Python	2
	1.1	The role of computing in science	2
		1.1.1 References	3
	1.2	Requirements on scientific computing	3
		1.2.1 Tools for managing source code	3
	1.3	What is Python?	4
	1.4	What makes Python suitable for scientific computing?	4
		1.4.1 The scientific Python software stack	5
		1.4.2 Python environments	5
		1.4.3 Python interpreter	6
		1.4.4 IPython	7
		1.4.5 IPython notebook	7
		1.4.6 Spyder	8
	1.5	Versions of Python	8
	1.6	Installation	9
		1.6.1 Linux	9
		1.6.2 MacOS X	9
		1.6.3 Windows	9
	1.7	Further reading	10
	_		
2		roduction to Python programming	11
2	Int: 2.1	Python program files	11
2		Python program files	11 11
2	2.1	Python program files	11 11 12
2		Python program files	11 11 12 12
2	2.1	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules	11 11 12 12 12
2	2.1	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References.	11 11 12 12 12 12
2	2.1	Python program files	11 11 12 12 12 12 13
2	2.1	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types	11 11 12 12 12 12 13 14
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names	11 11 12 12 12 12 13 14 14
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks. Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment	11 11 12 12 12 12 13 14 14
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types	11 11 12 12 12 13 14 14 14 15
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks. Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment	111 112 122 122 123 144 144 154 15
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types	11 11 12 12 12 13 14 14 14 15
2	2.1 2.2 2.3	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types 2.4.4 Type utility functions 2.4.5 Type casting Operators and comparisons	111 112 122 122 123 144 144 154 15
2	2.1 2.2 2.3 2.4	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types 2.4.4 Type utility functions 2.4.5 Type casting	111 112 122 122 123 144 144 155 16
2	2.1 2.2 2.3 2.4 2.5	Python program files 2.1.1 Example: 2.1.2 Character encoding. IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types 2.4.4 Type utility functions 2.4.5 Type casting Operators and comparisons	11 11 12 12 12 12 13 14 14 14 15 15 16 17
2	2.1 2.2 2.3 2.4 2.5	Python program files 2.1.1 Example: 2.1.2 Character encoding IPython notebooks Modules 2.3.1 References 2.3.2 Looking at what a module contains, and its documentation Variables and types 2.4.1 Symbol names 2.4.2 Assignment 2.4.3 Fundamental types 2.4.4 Type utility functions 2.4.5 Type casting Operators and comparisons Compound types: Strings, List and dictionaries	11 11 12 12 12 12 13 14 14 15 15 16 17 18

		2.6.4 Dictionaries	22
	2.7	Control Flow	23
		2.7.1 Conditional statements: if, elif, else	23
	2.8	Loops	24
		2.8.1 for loops:	24
		2.8.2 Using Lists: Creating lists using for loops:	25
		2.8.3 while loops:	26
	2.9	Functions	26
		2.9.1 Default argument and keyword arguments	27
		2.9.2 Unnamed functions (lambda function)	28
	2.10	Classes	28
	2.11	Modules	29
	2.12	Exceptions	31
	2.13	Further reading	33
3		mpy - multidimensional data arrays	34
	3.1	Introduction	34
	3.2	Creating numpy arrays	34
		3.2.1 From lists	34
		3.2.2 Using array-generating functions	36
	3.3	File I/O	38
		3.3.1 Comma-separated values (CSV)	38
		3.3.2 Numpy's native file format	39
	3.4	More properties of the numpy arrays	40
	3.5	Manipulating arrays	40
		3.5.1 Indexing	40
		3.5.2 Index slicing	41
		3.5.3 Fancy indexing	42
	3.6	Functions for extracting data from arrays and creating arrays	43
		3.6.1 where	43
		3.6.2 diag	43
		3.6.3 take	44
		3.6.4 choose	44
	3.7	Linear algebra	44
		3.7.1 Scalar-array operations	44
		3.7.2 Element-wise array-array operations	45
		3.7.3 Matrix algebra	45
		3.7.4 Array/Matrix transformations	
		3.7.5 Matrix computations	47
		3.7.6 Data processing	48
		3.7.7 Computations on subsets of arrays	49
		3.7.8 Calculations with higher-dimensional data	50
	3.8	Reshaping, resizing and stacking arrays	51
	3.9	Adding a new dimension: newaxis	52
	3.10		52
		3.10.1 tile and repeat	52
		3.10.2 concatenate	52
		3.10.3 hstack and vstack	53
		Copy and "deep copy"	53
		Iterating over array elements	54
		Vectorizing functions	55
		Using arrays in conditions	55
	3.15	Type casting	56
	3.16	Further reading	56

4	SciF	Py - Library of scientific algorithms for Python	57
	4.1	Introduction	57
	4.2	Special functions	58
	4.3	Integration	59
		4.3.1 Numerical integration: quadrature	59
	4.4	Ordinary differential equations (ODEs)	61
	4.5	Fourier transform	65
	4.6	Linear algebra	66
		4.6.1 Linear equation systems	67
		4.6.2 Eigenvalues and eigenvectors	67
		4.6.3 Matrix operations	68
		4.6.4 Sparse matrices	68
	4.7	Optimization	70
		4.7.1 Finding a minima	71
		4.7.2 Finding a solution to a function	72
	4.8	Interpolation	73
	4.9	Statistics	74
		4.9.1 Statistical tests	75
	4.10	Further reading	76
5	mat	plotlib - 2D and 3D plotting in Python	77
	5.1	Introduction	77
	5.2	MATLAB-like API	78
		5.2.1 Example	78
	5.3	The matplotlib object-oriented API	79
		5.3.1 Figure size, aspect ratio and DPI	84
		5.3.2 Saving figures	85
		5.3.3 Legends, labels and titles	85
		5.3.4 Formatting text: LaTeX, fontsize, font family	87
		5.3.5 Setting colors, linewidths, linetypes	90
		5.3.6 Control over axis appearance	92
		5.3.7 Placement of ticks and custom tick labels	93
		5.3.8 Axis number and axis label spacing	95
		5.3.9 Axis grid	97
		5.3.10 Axis spines	98
		5.3.11 Twin axes	98
		5.3.12 Axes where x and y is zero	99
		5.3.13 Other 2D plot styles	
		5.3.14 Text annotation	
		5.3.15 Figures with multiple subplots and insets	
		or a second of the second of t	
	5.4		109
			112
		5.4.2 Backends	
	5.5	Further reading	119
c	G	Complete along the Double of	100
6	-		120 120
	$6.1 \\ 6.2$		-
	0.2	Symbolic variables	
		6.2.1 Complex numbers	
	6.2		
	6.3	Numerical evaluation	
	6.4	Algebraic manipulations	
		6.4.1 Expand and factor	124

		6.4.2 Simplify
		6.4.3 apart and together
	6.5	Calculus
		6.5.1 Differentiation
	6.6	Integration
	0.0	6.6.1 Sums and products
	6.7	Limits
	6.8	Series
	6.9	Linear algebra
		6.9.1 Matrices
		Solving equations
		Quantum mechanics: noncommuting variables
	6.12	States
		6.12.1 Operators
	6.13	Further reading
7	Usir	ng Fortran and C code with Python 136
	7.1	Fortran
		7.1.1 F2PY
		7.1.2 Example 0: scalar input, no output
		7.1.3 Example 1: vector input and scalar output
		7.1.4 Example 2: cummulative sum, vector input and vector output
		7.1.5 Further reading
	7.2	C
	7.2	ctypes
	1.5	V I
		7.3.1 Product function:
		7.3.2 Cummulative sum:
		7.3.3 Simple benchmark
		7.3.4 Further reading
	7.4	Cython
		7.4.1 Cython in the IPython notebook
		7.4.2 Further reading
0		
		ls for high-performance computing applications 146
		multiprocessing
	8.2	IPython parallel
		8.2.1 Further reading
	8.3	MPI
		8.3.1 Example 1
		8.3.2 Example 2
		8.3.3 Example 3: Matrix-vector multiplication
		8.3.4 Example 4: Sum of the elements in a vector
		8.3.5 Further reading
	8.4	OpenMP
	J.T	8.4.1 Example: matrix vector multiplication
	0 =	
	8.5	OpenCL
		8.5.1 Further reading
0	D ==	icion control coftwore
		ision control software 160
	9.1	There are two main purposes of RCS systems:
	9.2	Basic principles and terminology for RCS systems
		9.2.1 Some good RCS software
	9.3	Installing git

9.4	Creating and cloning a repository
9.5	Status
9.6	Adding files and committing changes
9.7	Committing changes
9.8	Removing files
9.9	Commit logs
9.10	Diffs
9.11	Discard changes in the working directory
9.12	Checking out old revisions
9.13	Tagging and branching
	9.13.1 Tags
9.14	Branches
9.15	pulling and pushing changesets between repositories
	9.15.1 pull
	9.15.2 push
9.16	Hosted repositories
9.17	Graphical user interfaces
9.18	Further reading

Chapter 1 Introduction to scientific computing with Python

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

1.1 The role of computing in science

Science has traditionally been divided into experimental and theoretical disciplines, but during the last several decades computing has emerged as a very important part of science. Scientific computing is often closely related to theory, but it also has many characteristics in common with experimental work. It is therefore often viewed as a new third branch of science. In most fields of science, computational work is an important complement to both experiments and theory, and nowadays a vast majority of both experimental and theoretical papers involve some numerical calculations, simulations or computer modeling.

Figure 1.1: Theory, experiment, computation

In experimental and theoretical sciences there are well established codes of conduct for how results and methods are published and made available to other scientists. For example, in theoretical sciences, derivations, proofs and other results are published in full detail, or made available upon request. Likewise, in experimental sciences, the methods used and the results are published, and all experimental data should be available upon request. It is considered unscientific to withhold crucial details in a theoretical proof or experimental method, that would hinder other scientists from replicating and reproducing the results.

In computational sciences there are not yet any well established guidelines for how source code and generated data should be handled. For example, it is relatively rare that source code used in simulations for

published papers are provided to readers, in contrast to the open nature of experimental and theoretical work. And it is not uncommon that source code for simulation software is withheld and considered a competitive advantage (or unnecessary to publish).

However, this issue has recently started to attract increasing attention, and a number of editorials in high-profile journals have called for increased openness in computational sciences. Some prestigious journals, including Science, have even started to demand of authors to provide the source code for simulation software used in publications to readers upon request.

Discussions are also ongoing on how to facilitate distribution of scientific software, for example as supplementary materials to scientific papers.

1.1.1 References

- Reproducible Research in Computational Science, Roger D. Peng, Science 334, 1226 (2011).
- Shining Light into Black Boxes, A. Morin et al., Science 336, 159-160 (2012).
- The case for open computer programs, D.C. Ince, Nature 482, 485 (2012).

1.2 Requirements on scientific computing

Replication and **reproducibility** are two of the cornerstones of the scientific method. With respect to numerical work, complying with these concepts have the following practical implications:

- Replication: An author of a scientific paper that involves numerical calculations should be able to rerun the simulations and replicate the results upon request. Other scientists should also be able to perform the same calculations and obtain the same results, given the information about the methods used in a publication.
- Reproducibility: The results obtained from numerical simulations should be reproducible with an independent implementation of the method, or using a different method altogether.

In summary: A sound scientific result should be reproducible, and a sound scientific study should be replicable.

To achieve these goals, we need to:

- Keep and take note of *exactly* which source code and version were used to produce data and figures in published papers.
- Record information of which version of external software was used. Keep access to the environment that was used.
- Make sure that old codes and notes are backed up and kept for future reference.
- Be ready to give additional information about the methods used, and perhaps also the simulation codes, to an interested reader who requests it (even years after the paper was published!).
- Ideally codes should be published online, to make it easier for other scientists interested in the codes to access them.

1.2.1 Tools for managing source code

Ensuring replicability and reprodicibility of scientific simulations is a *complicated problem*, but there are good tools to help with this:

- Revision Control System (RCS) software.
 - Good choices include:

- * git http://git-scm.com
- * mercurial http://mercurial.selenic.com. Also known as hg.
- * subversion http://subversion.apache.org. Also known as svn.
- Online repositories for source code. Available as both private and public repositories.
 - Some good alternatives are
 - * Github http://www.github.com
 - * Bitbucket http://www.bitbucket.com
 - * Privately hosted repositories on the university's or department's servers.

Note Repositories are also excellent for version controlling manuscripts, figures, thesis files, data files, lab logs, etc. — basically any digital content that must be preserved and is frequently updated. Again, both public and private repositories are readily available. They are also excellent collaboration tools!

1.3 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language. General characteristics of Python:

- clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syntax, maintainability scales well with size of projects.
- expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

- dynamically typed: No need to define the type of variables, function arguments or return types.
- automatic memory management: No need to explicitly allocate and deallocate memory for variables and data arrays. No memory leak bugs.
- **interpreted:** No need to compile the code. The Python interpreter reads and executes the python code directly.

Advantages:

- The main advantage is ease of programming, minimizing the time required to develop, debug and maintain the code.
- Well designed language that encourage many good programming practices:
- Modular and object-oriented programming, good system for packaging and re-use of code. This often results in more transparent, maintainable and bug-free code.
- Documentation tightly integrated with the code.
- A large standard library, and a large collection of add-on packages.

Disadvantages:

- Since Python is an interpreted and dynamically typed programming language, the execution of Python code can be slow compared to compiled statically typed programming languages, such as C and Fortran.
- Somewhat decentralized, with different environment, packages and documentation spread out at different places. Can make it harder to get started.

1.4 What makes Python suitable for scientific computing?

- Python has a strong position in scientific computing:
 - Large community of users, easy to find help and documentation.

Figure 1.2: Optimizing what

- Extensive ecosystem of scientific libraries and environments
 - numpy: http://numpy.scipy.org Numerical Python
 - scipy: http://www.scipy.org Scientific Python
 - matplotlib: http://www.matplotlib.org graphics library
- Great performance due to close integration with time-tested and highly optimized codes written in C and Fortran:
 - blas, altas blas, lapack, arpack, Intel MKL, ...
- Good support for
 - Parallel processing with processes and threads
 - Interprocess communication (MPI)
 - GPU computing (OpenCL and CUDA)
- Readily available and suitable for use on high-performance computing clusters.
- No license costs, no unnecessary use of research budget.

1.4.1 The scientific Python software stack

1.4.2 Python environments

Python is not only a programming language, but often also refers to the standard implementation of the interpreter (technically referred to as CPython) that actually runs the Python code on a computer.

There are also many different environments through which the Python interpreter can be used. Each environment has different advantages and is suitable for different workflows. One strength of Python is that it is versatile and can be used in complementary ways, but it can be confusing for beginners so we will start with a brief survey of Python environments that are useful for scientific computing.

Figure 1.3: Scientific Python Stack

1.4.3 Python interpreter

The standard way to use the Python programming language is to use the Python interpreter to run Python code. The python interpreter is a program that reads and execute the Python code in files passed to it as arguments. At the command prompt, the command python is used to invoke the Python interpreter.

For example, to run a file my-program.py that contains Python code from the command prompt, use::

```
$ python my-program.py
```

We can also start the interpreter by simply typing python at the command line, and interactively type Python code into the interpreter.

```
2. ~/Drive/Modules/scientific-python-lectures (dmertz) (python3.4)

503-scientific-python-lectures % python

Python 3.4.3 |Anaconda 2.3.0 (x86_64)| (default, Mar 6 2015, 12:07:41)

[GCC 4.2.1 (Apple Inc. build 5577)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello world!")

Hello world!

>>> def hello(name):
... print("Hello %s!" % name)
...

>>> hello('Sally')

Hello Sally!

>>> ■

Default (python3.4) Hoi Polloi (python3.4)
```

Figure 1.4: Python screenshot

This is often how we want to work when developing scientific applications, or when doing small calculations. But the standard Python interpreter is not very convenient for this kind of work, due to a number of limitations.

1.4.4 IPython

IPython is an interactive shell that addresses the limitation of the standard Python interpreter, and it is a work-horse for scientific use of python. It provides an interactive prompt to the Python interpreter with a greatly improved user-friendliness.

```
2. ~/Drive/Modules/scientific-python-lectures (dmertz) (python)
IPython 3.2.1 -- An enhanced Interactive Python.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
          -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
          -> Python's own help system.
help
object?
          -> Details about 'object', use 'object??' for extra details.
In [1]: print("Hello world!")
Hello world!
In [2]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:
       a file-like object (stream); defaults to the current sys.stdout.
       string inserted between values, default a space.
sep:
       string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.
           builtin_function_or_method
Type:
In [3]:
    Default (python3.4)
                        Hoi Polloi (python3.4)
                                              Hoi Polloi (python)
```

Figure 1.5: IPython screenshot

Some of the many useful features of IPython includes:

- Command history, which can be browsed with the up and down arrows on the keyboard.
- Tab auto-completion.
- In-line editing of code.
- Object introspection, and automatic extract of documentation strings from Python objects like classes and functions.
- Good interaction with operating system shell.
- Support for multiple parallel back-end processes, that can run on computing clusters or cloud services like Amazon EC2.

1.4.5 IPython notebook

IPython notebook is an HTML-based notebook environment for Python, similar to Mathematica or Maple. It is based on the IPython shell, but provides a cell-based environment with great interactivity, where calculations can be organized and documented in a structured way.

Although using a web browser as graphical interface, IPython notebooks are usually run locally, from the same computer that run the browser. To start a new IPython notebook session, run the following command:

\$ ipython notebook

from a directory where you want the notebooks to be stored. This will open a new browser window (or a new tab in an existing window) with an index page where existing notebooks are shown and from which new notebooks can be created.

Figure 1.6: IPython notebook

1.4.6 Spyder

Spyder is a MATLAB-like IDE for scientific computing with python. It has the many advantages of a traditional IDE environment, for example that everything from code editing, execution and debugging is carried out in a single environment, and work on different calculations can be organized as projects in the IDE environment.

Some advantages of Spyder:

- Powerful code editor, with syntax high-lighting, dynamic code introspection and integration with the python debugger.
- Variable explorer, IPython command prompt.
- Integrated documentation and help.

1.5 Versions of Python

There are two currently maintained families of python: Python 2 and Python 3. Python 3 will eventually supercede Python 2, but it is not fully backward-compatible. For these lectures either version will be work, since most features are compatible between versions.

To see which version of Python you have, run

```
% python --version
Python 3.4.3 :: Anaconda 2.3.0 (x86_64)
% python2 --version
Python 2.7.10
```

Several versions of Python can be installed in parallel, as shown above.

Figure 1.7: Spyder screenshot

1.6 Installation

1.6.1 Linux

In Ubuntu Linux, to installing python and all the requirements of these lectures run:

```
% sudo apt-get install python ipython ipython-notebook
% sudo apt-get install python-numpy python-scipy python-matplotlib python-sympy
% sudo apt-get install spyder
```

To use the Anaconda Python distribution that includes a very large range of scientific libraries precompiled (including all of those required for these lectures), you can run:

```
% wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
% bash Miniconda-latest-Linux-x86_64.sh
% conda install anaconda
```

1.6.2 MacOS X

Python is included by default in Mac OS X, but OS releases typically lag the latest Python versions. To use the Anaconda Python distribution that includes a very large range of scientific libraries pre-compiled, you can run these commands in a terminal:

```
% wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
% bash Miniconda3-latest-MacOSX-x86_64.sh
% conda install anaconda
```

1.6.3 Windows

Windows lacks a good packaging system, so the easiest way to set up a Python environment is to install a pre-packaged distribution. Some good alternatives are:

- Anaconda. The Anaconda Python distribution comes with many scientific computing and data science packages and is free, including for commercial use and redistribution. It also has add-on products such as Accelerate, IOPro, and MKL Optimizations, which have free trials and are free for academic use.
- Python.org. Official distribution from the creators of Python. The tools pip (included with recent versions) or conda may be used to install additional packages.
- Enthought Python Distribution. EPD is a commercial product but is available free for academic use.

1.7 Further reading

- Python. The official Python website.
- Python tutorials. The official Python tutorials.
- Think Python. A free book on Python.

Chapter 2

Introduction to Python programming

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

2.1 Python program files

• Python code is usually stored in text files with the file ending ".py":

myprogram.py

- Every line in a Python program file is assumed to be a Python statement, or part thereof.
 - The only exception is comment lines, which start with the character # (optionally preceded by an arbitrary number of white-space characters, i.e., tabs or spaces). Comment lines are usually ignored by the Python interpreter.
- To run our Python program from the command line, we use:
 - \$ python myprogram.py
- On UNIX systems, it is common to define the path to the interpreter on the first line of the program. Note that this is a comment line as far as the Python interpreter is concerned:
 - #!/usr/bin/env python

If we do, and if we additionally set the file script to be executable, we can run the program like this:

```
$ myprogram.py
```

2.1.1 Example:

```
In [1]: ls scripts/hello-world*.py
scripts/hello-world-in-swedish.py scripts/hello-world.py
In [2]: cat scripts/hello-world.py
```

```
#!/usr/bin/env python
print("Hello world!")
In [3]: !python scripts/hello-world.py
Hello world!
```

2.1.2 Character encoding

The standard character encoding is ASCII, but we can use any other encoding; for example, UTF-8. To specify that UTF-8 is used, we include the special line

```
# -*- coding: UTF-8 -*-
   at the top of the file.
In [4]: cat scripts/hello-world-in-swedish.py
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
print("Hej världen!")
In [5]: !python scripts/hello-world-in-swedish.py
Hej världen!
```

Other than these two *optional* lines in the beginning of a Python code file, no additional code is required for initializing a program.

2.2 IPython notebooks

This file - an IPython notebook - does not follow the standard pattern with Python code in a text file. Instead, an IPython notebook is stored as a file in the JSON format. The advantage is that we can mix formatted text, Python code and code output. It requires the IPython notebook server to run it though, and therefore isn't a standalone Python program as described above. Other than that, there is no difference between the Python code that goes into a program file or an IPython notebook.

2.3 Modules

Most of the functionality in Python is provided by modules. The Python Standard Library is a large collection of modules that provides cross-platform implementations of common facilities such as access to the operating system, file I/O, string management, network communication, and much more.

2.3.1 References

- The Python Language Reference: http://docs.python.org/2/reference/index.html
- The Python Standard Library: http://docs.python.org/2/library/

To use a module in a Python program, it first has to be imported. A module can be imported using the import statement. For example, to import the module math, which contains many standard mathematical functions, we can do:

```
In [6]: import math
```

This includes the whole module and makes it available for use later in the program. For example, we can do:

Alternatively, we can choose to import all symbols (functions and variables) in a module to the current namespace (so that we don't need to use the prefix "math." every time we use something from the math module:

```
In [8]: from math import *
    x = cos(2 * pi)
    print(x)
1.0
```

This pattern can be very convenient, but in large programs that include many modules, it is often a good idea to keep the symbols from each module in their own namespaces, by using the import math pattern. This would eliminate potentially confusing problems with namespace collisions.

As a third alternative, we can choose to import only a few selected symbols from a module by explicitly listing which ones we want to import instead of using the wildcard character *:

```
In [9]: from math import cos, pi
    x = cos(2 * pi)
    print(x)
```

1.0

2.3.2 Looking at what a module contains, and its documentation

Once a module is imported, we can list the symbols it provides using the dir function:

```
Help on built-in function log in module math:
log(...)
   log(x[, base])

Return the logarithm of x to the given base.
   If the base not specified, returns the natural logarithm (base e) of x.
```

```
In [12]: log(10)
Out[12]: 2.302585092994046
In [13]: log(10, 2)
Out[13]: 3.3219280948873626
```

We can also use the help function directly on modules: Try

help(math)

Some very useful modules from the Python standard library are os, sys, math, shutil, re, subprocess, multiprocessing, threading.

A complete list of standard modules for Python 2 and Python 3 are available at http://docs.python.org/2/library/ and http://docs.python.org/3/library/, respectively.

2.4 Variables and types

2.4.1 Symbol names

Variable names in Python can contain alphanumerical characters a-z, A-Z, 0-9 and some special characters such as _. Normal variable names must start with a letter.

By convention, variable names start with a lowercase letter, and Class names start with a capital letter. In addition, there are a number of Python keywords that cannot be used as variable names. These keywords are:

```
and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield
```

Note: Be aware of the keyword lambda, which could easily be a natural variable name in a scientific program. But being a keyword, it cannot be used as a variable name.

2.4.2 Assignment

The assignment operator in Python is =. Python is a dynamically typed language, so we do not need to specify the type of a variable when we create one.

Assigning a value to a new variable creates the variable:

```
In [14]: # variable assignments
    x = 1.0
    my_variable = 12.2
```

Although not explicitly specified, a variable does have a type associated with it. The type is derived from the value that was assigned to it.

```
In [15]: type(x)
Out[15]: float
```

If we assign a new value to a variable, its type can change.

```
In [16]: x = 1
In [17]: type(x)
```

```
Out[17]: int
  If we try to use a variable that has not yet been defined, we get an NameError:
In [18]: try:
             print(y)
         except NameError as e:
             print(repr(e))
NameError("name 'y' is not defined",)
2.4.3 Fundamental types
In [19]: # integers
         x = 1
         type(x)
Out[19]: int
In [20]: # float
         x = 1.0
         type(x)
Out[20]: float
In [21]: # boolean
         b1 = True
         b2 = False
         type(b1)
Out [21]: bool
In [22]: # complex numbers: note the use of 'j' to specify the imaginary part
         x = 1.0 - 1.0j
         type(x)
Out[22]: complex
In [23]: print(x)
(1-1j)
In [24]: print(x.real, x.imag)
1.0 -1.0
2.4.4 Type utility functions
The module types contains a number of type name definitions that can be used to test if variables are of
certain types:
In [25]: import types
         # print all types defined in the 'types' module
         print(dir(types))
['BuiltinFunctionType', 'BuiltinMethodType', 'CodeType', 'DynamicClassAttribute', 'FrameType', 'FunctionType',
```

```
In [26]: x = 1.0
         # check if the variable x is a float
         type(x) is float
Out [26]: True
In [27]: # check if the variable x is an int
         type(x) is int
Out[27]: False
  We can also use the isinstance method for testing types of variables:
In [28]: isinstance(x, float)
Out[28]: True
2.4.5
       Type casting
In [29]: x = 1.5
         print(x, type(x))
1.5 <class 'float'>
In [30]: x = int(x)
         print(x, type(x))
1 <class 'int'>
In [31]: z = complex(x)
         print(z, type(z))
(1+0j) <class 'complex'>
In [32]: try:
             x = float(z)
         except TypeError as e:
             print(repr(e))
TypeError("can't convert complex to float",)
   Complex variables cannot be cast to floats or integers. We need to use z.real or z.imag to extract the
part of the complex number we want:
In [33]: y = bool(z.real)
         print(z.real, " -> ", y, type(y))
         y = bool(z.imag)
         print(z.imag, " -> ", y, type(y))
1.0 -> True <class 'bool'>
0.0 -> False <class 'bool'>
```

2.5 Operators and comparisons

Most operators and comparisons in Python work as one would expect:

• Arithmetic operators +, -, *, /, // (integer division), '**' power

Note: The / operator always performs a floating point division in Python 3.x. This is not true in Python 2.x, where the result of / is always an integer if the operands are integers. To be more specific, 1/2 = 0.5 (float) in Python 3.x, and 1/2 = 0 (int) in Python 2.x (but 1.0/2 = 0.5 in Python 2.x).

• The boolean operators are spelled out as the words and, not, or.

```
In [38]: True and False
Out[38]: False
In [39]: not False
Out[39]: True
In [40]: True or False
Out [40]: True
  • Comparison operators >, <, >= (greater or equal), <= (less or equal), == equality, is identical.
In [41]: 2 > 1, 2 < 1
Out[41]: (True, False)
In [42]: 2 > 2, 2 < 2
Out[42]: (False, False)
In [43]: 2 >= 2, 2 <= 2</pre>
Out[43]: (True, True)
In [44]: # equality
         [1,2] == [1,2]
Out [44]: True
In [45]: # objects identical?
         11 = 12 = [1,2]
         11 is 12
Out [45]: True
```

2.6 Compound types: Strings, List and dictionaries

2.6.1 Strings

```
Strings are the variable type that is used for storing text messages.
```

Heads up, MATLAB users: Indexing start at 0!

We can extract a part of a string using the syntax [start:stop], which extracts characters between index start and stop -1 (the character at index stop is not included):

```
In [50]: s[0:5]
Out[50]: 'Hello'
In [51]: s[4:5]
Out[51]: 'o'
```

If we omit either (or both) of start or stop from [start:stop], the default is the beginning and the end of the string, respectively:

```
In [52]: s[:5]
Out[52]: 'Hello'
In [53]: s[6:]
Out[53]: 'world'
In [54]: s[:]
Out[54]: 'Hello world'
```

We can also define the step size using the syntax [start:end:step] (the default value for step is 1, as we saw above):

```
In [55]: s[::1]
Out[55]: 'Hello world'
In [56]: s[::2]
Out[56]: 'Hlowrd'
```

This technique is called slicing. Read more about the syntax here: http://docs.python.org/release/2.7.3/library/functions.html?highlight=slice#slice

Python has a very rich set of functions for text processing. See for example http://docs.python.org/2/library/string.html for more information.

String formatting examples

```
In [57]: print("str1", "str2", "str3") # The print statement concatenates strings with a space
str1 str2 str3
In [58]: print("str1", 1.0, False, -1j) # The print statement converts all arguments to strings
str1 1.0 False (-0-1j)
In [59]: print("str1" + "str2" + "str3") # strings added with + are concatenated without space
str1str2str3
In [60]: print("value = %f" % 1.0)
                                    # we can use C-style string formatting
value = 1.000000
In [61]: # this formatting creates a string
         s2 = "value1 = \%.2f. value2 = %d" % (3.1415, 1.5)
         print(s2)
value1 = 3.14. value2 = 1
In [62]: # alternative, more intuitive way of formatting a string
         s3 = 'value1 = {0}, value2 = {1}'.format(3.1415, 1.5)
         print(s3)
value1 = 3.1415, value2 = 1.5
2.6.2
       List
Lists are very similar to strings, except that each element can be of any type.
  The syntax for creating lists in Python is [...]:
In [63]: 1 = [1,2,3,4]
         print(type(1))
         print(1)
<class 'list'>
[1, 2, 3, 4]
   We can use the same slicing techniques to manipulate lists as we could use on strings:
In [64]: print(1)
         print(1[1:3])
         print(1[::2])
[1, 2, 3, 4]
[2, 3]
[1, 3]
```

Heads up, MATLAB users: Indexing starts at 0!

```
In [65]: 1[0]
Out[65]: 1
  Elements in a list do not all have to be of the same type:
In [66]: 1 = [1, 'a', 1.0, 1-1j]
         print(1)
[1, 'a', 1.0, (1-1j)]
  Python lists do not have to be homogeneous and may be arbitrarily nested:
In [67]: nested_list = [1, [2, [3, [4, [5]]]]]
         nested_list
Out[67]: [1, [2, [3, [4, [5]]]]
  Lists play a very important role in Python. For example, they are used in loops and other flow control
structures (discussed below). There are a number of convenient functions for generating lists of various
types; for example, the range function:
In [68]: start = 10
         stop = 30
         step = 2
         range(start, stop, step)
Out[68]: range(10, 30, 2)
In [69]: # in Python 3 range generates an iterator, which can be converted to a list using 'list(...)'.
         # It has no effect in Python 2
         list(range(start, stop, step))
Out[69]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]
In [70]: list(range(-10, 10))
Out [70]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [71]: s
Out[71]: 'Hello world'
In [72]: # convert a string to a list by type casting:
         s2 = list(s)
         s2
Out[72]: ['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']
In [73]: # sorting lists
```

s2.sort()

print(s2)

[' ', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']

Adding, inserting, modifying, and removing elements from lists

```
In [74]: # create a new empty list
         1 = []
         # add an elements using 'append'
         1.append("A")
         1.append("d")
         1.append("d")
         print(1)
['A', 'd', 'd']
  We can modify lists by assigning new values to elements in the list. In technical jargon, lists are mutable.
In [75]: 1[1] = "p"
         1[2] = "p"
         print(1)
['A', 'p', 'p']
In [76]: 1[1:3] = ["d", "d"]
         print(1)
['A', 'd', 'd']
  Insert an element at an specific index using insert.
In [77]: l.insert(0, "i")
         1.insert(1, "n")
         1.insert(2, "s")
         1.insert(3, "e")
         1.insert(4, "r")
         1.insert(5, "t")
         print(1)
['i', 'n', 's', 'e', 'r', 't', 'A', 'd', 'd']
   Remove first element with specific value using 'remove'.
In [78]: 1.remove("A")
         print(1)
['i', 'n', 's', 'e', 'r', 't', 'd', 'd']
   Remove an element at a specific location using del.
In [79]: del 1[7]
         del 1[6]
         print(1)
['i', 'n', 's', 'e', 'r', 't']
```

See help(list) for more details, or read the online documentation.

2.6.3 Tuples

```
Tuples are like lists, except that they cannot be modified once created; that is, they are immutable. In Python, tuples are created using the syntax (..., ...), or even ..., ...:
```

We can unpack a tuple by assigning it to a comma-separated list of variables:

If we try to assign a new value to an element in a tuple we get an error:

TypeError("'tuple' object does not support item assignment",)

2.6.4 Dictionaries

Dictionaries are also like lists, except that each element is a key-value pair. The syntax for dictionaries is {key1 : value1, ...}:

```
In [86]: params["parameter1"] = "A"
         params["parameter2"] = "B"
         # add a new entry
         params["parameter4"] = "D"
         print("parameter1 = " + str(params["parameter1"]))
         print("parameter2 = " + str(params["parameter2"]))
         print("parameter3 = " + str(params["parameter3"]))
         print("parameter4 = " + str(params["parameter4"]))
parameter1 = A
parameter2 = B
parameter3 = 3.0
parameter4 = D
```

2.7 Control Flow

2.7.1Conditional statements: if, elif, else

The Python syntax for conditional execution of code uses the keywords if, elif (else if), else:

```
In [87]: statement1 = False
         statement2 = False
         if statement1:
             print("statement1 is True")
         elif statement2:
             print("statement2 is True")
         else:
             print("statement1 and statement2 are False")
```

statement1 and statement2 are False

For the first time, here we encounter a peculiar and unusual aspect of the Python programming language: Program blocks are defined by their indentation level.

Compare to the equivalent C code:

```
if (statement1)
    printf("statement1 is True\n");
else if (statement2)
    printf("statement2 is True\n");
}
else
{
    printf("statement1 and statement2 are False\n");
```

In C, blocks are defined by enclosing them in curly braces { and }. The level of indentation (spaces or a tab before the code statements) does not have an effect; it's just optional formatting.

But in Python, the extent of a code block is defined by its indentation level — denoted with a tab or 4-5 spaces. This means that we have to be careful to indent our code correctly, or else we will get syntax errors.

Examples:

```
In [88]: statement1 = statement2 = True
         if statement1:
             if statement2:
                 print("both statement1 and statement2 are True")
both statement1 and statement2 are True
# Bad indentation!
if statement1:
    if statement2: # next line is not properly indented
   print("both statement1 and statement2 are True")
  File "<ipython-input-17-d663108bdb86>", line 4
   print("both statement1 and statement2 are True")
IndentationError: expected an indented block
In [89]: statement1 = False
         if statement1:
             print("printed if statement1 is True")
             print("still inside the if block")
In [90]: if statement1:
             print("printed if statement1 is True")
         print("now outside the if block")
now outside the if block
```

2.8 Loops

In Python, loops can be programmed in a number of different ways. The most common is the for loop, which is used together with iterable objects, such as lists. The basic syntax is:

2.8.1 for loops:

The for loop iterates over the elements of the supplied list, and executes the containing block once for each element. Any kind of list can be used in the for loop. For example:

```
Note: range(4) does not include 4!
In [93]: for x in range(-3,3):
              print(x)
-3
-2
-1
0
1
2
In [94]: for word in ["scientific", "computing", "with", "python"]:
              print(word)
scientific
computing
with
python
   To iterate over key-value pairs of a dictionary:
In [95]: for key, value in params.items():
              print(key + " = " + str(value))
parameter2 = B
parameter3 = 3.0
parameter4 = D
parameter1 = A
   Sometimes it is useful to have access to the indices of the values when iterating over a list. We can use
the enumerate function for this:
In [96]: for idx, x in enumerate(range(-3,3)):
              print(idx, x)
0 -3
1 -2
2 -1
3 0
4 1
5 2
```

2.8.2 Using Lists: Creating lists using for loops:

A convenient and compact way to initialize lists:

2.8.3 while loops:

Note that the print("done") statement is not part of the while loop body because of the difference in indentation.

2.9 Functions

A function in Python is defined using the keyword def, followed by a function name, a signature within parentheses (), and a colon:. The following code, with one additional level of indentation, is the function body.

Optional, but highly recommended: Define a so-called "docstring" — a description of the function's purpose and behavior. The docstring should follow directly after the function definition, before the code in the function body.

Functions that return a value use the return keyword:

2.9.1 Default argument and keyword arguments

when defining a function, we can give default values to the arguments the function takes:

If we don't provide a value of the debug argument when calling the function myfunc, it defaults to the value provided in the function definition:

```
In [110]: myfunc(5)
Out[110]: 25
In [111]: myfunc(5, debug=True)
evaluating myfunc for x = 5 using exponent p = 2
Out[111]: 25
```

If we explicitly list the names of the arguments in the function calls, they do not need to come in the same order as in the function definition. This is called keyword arguments, and is often very useful in functions that take a lot of optional arguments.

```
In [112]: myfunc(p=3, debug=True, x=7)
evaluating myfunc for x = 7 using exponent p = 3
Out[112]: 343
```

2.9.2 Unnamed functions (lambda function)

In Python we can also create unnamed functions using the lambda keyword:

This technique is useful, for example, when we want to pass a simple function as an argument to another function, like this:

2.10 Classes

Classes are the key features of object-oriented programming. A class is a structure for representing an object and the operations that can be performed on the object.

In Python, a class can contain attributes (variables) and methods (functions).

A class is defined almost like a function, but using the class keyword, and the class definition usually contains a number of class method definitions (a function in a class).

- Each class method should have an argument self as its first argument. This object is a self-reference.
- Some class method names have special meaning; for example:
 - __init__: The name of the method that is invoked when the object is first created.
 - __str__: A method that is invoked when a simple string representation of the class is needed, as for example when printed.
 - There are many more; see http://docs.python.org/2/reference/datamodel.html#special-method-names

```
In [117]: class Point:
    """
    Simple class for representing a point in a Cartesian coordinate system.
    """

def __init__(self, x, y):
    """
    Create a new Point at x, y.
    """
    self.x = x
```

```
self.y = y
              def translate(self, dx, dy):
                   Translate the point by dx and dy in the x and y direction.
                  self.x += dx
                  self.y += dy
              def __str__(self):
                  return("Point at [%f, %f]" % (self.x, self.y))
  To create a new instance of a class:
In [118]: p1 = Point(0, 0) # this will invoke the __init__ method in the Point class
                             # this will invoke the __str__ method
          print(p1)
Point at [0.000000, 0.000000]
  To invoke a class method in the class instance p:
In [119]: p2 = Point(1, 1)
          p1.translate(0.25, 1.5)
          print(p1)
          print(p2)
Point at [0.250000, 1.500000]
Point at [1.000000, 1.000000]
```

Note that calling class methods can modify the state of that particular class instance, but does not affect other class instances or any global variables.

That is one of the nice things about object-oriented design: code such as functions and related variables are grouped in separate and independent entities.

2.11 Modules

One of the most important concepts in good programming is to reuse code and avoid repetitions.

The idea is to write functions and classes with a well-defined purpose and scope, and reuse these instead of repeating similar code in different parts of a program (modular programming). This improves readability and maintainability of your programs. In practice, your programs have fewer bugs, and are easier to extend and debug/troubleshoot.

Python supports modular programming at different levels. Functions and classes are examples of tools for low-level modular programming. Python modules are a higher-level modular programming construct, where we can collect related variables, functions and classes in a module. A Python module is defined in a Python file (with file-ending .py), and can be made accessible to other Python modules and programs using the import statement.

The following example, mymodule.py, contains simple example implementations of a variable, function and a class:

```
a function called my_function, and a class called MyClass.
          my_variable = 0
          def my_function():
               11 11 11
               Example function
               11 11 11
               return my_variable
          class MyClass:
               Example class.
               11 11 11
               def __init__(self):
                   self.variable = my_variable
               def set_variable(self, new_value):
                   Set self.variable to a new value
                   self.variable = new_value
               def get_variable(self):
                   return self.variable
Overwriting mymodule.py
   We can import the module mymodule into our Python program using import:
In [121]: import mymodule
   Use help(module) to get a summary of what the module provides:
In [122]: help(mymodule)
Help on module mymodule:
NAME
    mymodule
DESCRIPTION
    Example of a Python module. Contains a variable called my_variable,
    a function called {\tt my\_function}, and a class called {\tt MyClass}.
CLASSES
    builtins.object
        MyClass
    class MyClass(builtins.object)
     | Example class.
     | Methods defined here:
```

```
get_variable(self)
        set_variable(self, new_value)
            Set self.variable to a new value
        Data descriptors defined here:
            dictionary for instance variables (if defined)
        __weakref__
            list of weak references to the object (if defined)
FUNCTIONS
    my_function()
        Example function
DATA
    my_variable = 0
FILE
    /Users/dmertz/Drive/Modules/scientific-python-lectures/mymodule.py
In [123]: mymodule.my_variable
Out[123]: 0
In [124]: mymodule.my_function()
Out[124]: 0
In [125]: my_class = mymodule.MyClass()
          my_class.set_variable(10)
          my_class.get_variable()
Out[125]: 10
  If we make changes to the code in mymodule.py, we need to reload it using reload:
In [126]: from imp import reload
          reload(mymodule)
Out[126]: <module 'mymodule' from '/Users/dmertz/Drive/Modules/scientific-python-lectures/mymodule.py'>
```

2.12 Exceptions

__init__(self)

In Python, errors are managed with a special language construct called "Exceptions". When errors occur, exceptions can be raised, which interrupts the normal program flow and falls back to the point in the code where the closest try-except statement is defined.

To generate an exception, we can use the raise statement, which takes an argument that must be an instance of the class BaseException or a class derived from it.

```
In [127]: try:
              raise Exception("description of the error")
          except Exception as e:
              print(repr(e))
Exception('description of the error',)
   A typical use of exceptions is to abort functions when some error condition occurs. For example:
def my_function(arguments):
    if not verify(arguments):
        raise Exception("Invalid arguments")
    # rest of the code goes here
  To gracefully catch errors that are generated by functions and class methods, or by the Python interpreter
itself, use the try and except statements:
try:
    # normal code goes here
except:
    # code for error handling goes here
    # this code is not executed unless the code
    # above generated an error
  For example:
In [128]: try:
              print("test")
               # generate an error: the variable test is not defined
              print(test)
          except:
              print("Caught an exception")
test
Caught an exception
   To get information about the error, we can access the Exception class instance that describes the
exception by using, for example:
except Exception as e:
In [129]: try:
              print("test")
               # generate an error: the variable test is not defined
              print(test)
          except Exception as e:
              print("Caught an exception:" + str(e))
Caught an exception:name 'test' is not defined
```

2.13 Further reading

- http://www.python.org The official web page of the Python programming language.
- \bullet http://www.python.org/dev/peps/pep-0008 Style guide for Python programming. Highly recommended.
- http://www.greenteapress.com/thinkpython/ A free book on Python programming.
- Python Essential Reference A good reference book on Python programming.

Chapter 3

Numpy - multidimensional data arrays

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

Populating the interactive namespace from numpy and matplotlib

3.1 Introduction

The numpy package (module) is used in almost all numerical computation using Python. Numpy provides high-performance vector, matrix and higher-dimensional data structures for Python. It is implemented in C and Fortran, so when calculations are vectorized (formulated with vectors and matrices), performance is very good.

To use numpy, you need to import the module. For example:

```
In [2]: from numpy import *
```

In the numpy package, the terminology used for vectors, matrices and higher-dimensional data sets is array.

3.2 Creating numpy arrays

There are a number of ways to initialize new numpy arrays, including:

- from a Python list or tuples
- using functions that are dedicated to generating numpy arrays, such as arange, linspace, etc.
- reading data from files

3.2.1 From lists

To create new vector and matrix arrays from Python lists, we can use the numpy.array function.

```
In [3]: # a vector: the argument to the array function is a Python list
    v = array([1,2,3,4])
    v
```

The v and M objects are both of the type ndarray that the numpy module provides.

```
In [5]: type(v), type(M)
Out[5]: (numpy.ndarray, numpy.ndarray)
```

The difference between the v and M arrays is only their shapes. We can get information about the shape of an array by using the ndarray.shape property.

```
In [6]: v.shape
Out[6]: (4,)
In [7]: M.shape
Out[7]: (2, 2)
```

The number of elements in the array is available through the ndarray.size property:

```
In [8]: M.size
Out[8]: 4
```

Or we could use the function numpy.shape and numpy.size

```
In [9]: shape(M)
Out[9]: (2, 2)
In [10]: size(M)
Out[10]: 4
```

So far the numpy.ndarray looks very much like a Python list (or nested list). Why not simply use Python lists for computations, instead of creating a new array type?

There are several reasons:

- Python lists are very general. They can contain any kind of object. They are dynamically typed. They do not support mathematical functions such as matrix and dot multiplications. Implementing such functions for Python lists would not be very efficient because of the dynamic typing.
- Numpy arrays are **statically typed** and **homogeneous**. The type of the elements is determined when the array is created.
- Numpy arrays are memory efficient.
- Because of the static typing, fast implementation of mathematical functions such as multiplication and addition of numpy arrays can be implemented in a compiled language (C and Fortran is used).

Using the dtype (data type) property of an ndarray, we can see what type the data of an array has:

```
In [11]: M.dtype
```

```
Out[11]: dtype('int64')
```

We get an error if we try to assign a value of the wrong type to an element in a numpy array:

```
ValueError("invalid literal for int() with base 10: 'hello'",)
```

If we want, we can explicitly define the type of the array data when we create it, using the <code>dtype</code> keyword argument:

Common data types that can be used with dtype are: int, float, complex, bool, object, etc.

We can also explicitly define the bit size of the data types, for example: int64, int16, float128, complex128.

3.2.2 Using array-generating functions

For larger arrays, it is impractical to initialize the data manually, using explicit Python lists. Instead we can use one of the many functions in numpy that generate arrays of different forms. Some of the more common are:

arange

```
In [14]: # create a range
        x = arange(0, 10, 1) # arguments: start, stop, step
Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [15]: x = arange(-1, 1, 0.1)
Out[15]: array([ -1.00000000e+00, -9.00000000e-01, -8.00000000e-01,
                -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
                -4.00000000e-01, -3.00000000e-01, -2.00000000e-01,
                -1.00000000e-01, -2.22044605e-16, 1.00000000e-01,
                 2.00000000e-01,
                                 3.00000000e-01,
                                                    4.0000000e-01,
                 5.0000000e-01,
                                   6.0000000e-01,
                                                    7.0000000e-01,
                 8.0000000e-01,
                                   9.0000000e-01])
```

linspace and logspace

```
In [16]: # using linspace, both end points ARE included
         linspace(0, 10, 25)
Out[16]: array([ 0.
                                0.41666667,
                                               0.83333333,
                                                             1.25
                                                             2.91666667,
                  1.66666667,
                                2.08333333,
                                               2.5
                  3.33333333,
                                3.75
                                                             4.58333333,
                                               4.16666667,
                  5.
                                5.41666667,
                                               5.83333333,
                                                             6.25
                                7.08333333,
                  6.6666667,
                                              7.5
                                                             7.91666667,
                                                             9.58333333,
                                                                                      1)
                  8.33333333,
                                8.75
                                               9.16666667,
                                                                          10.
```

```
In [17]: logspace(0, 10, 10, base=math.e)
Out[17]: array([ 1.00000000e+00,
                                   3.03773178e+00, 9.22781435e+00,
                 2.80316249e+01,
                                   8.51525577e+01, 2.58670631e+02,
                 7.85771994e+02.
                                   2.38696456e+03, 7.25095809e+03,
                 2.20264658e+04])
mgrid
In [18]: x, y = mgrid[0:5, 0:5] # similar to meshgrid in MATLAB
In [19]: x
Out[19]: array([[0, 0, 0, 0, 0],
                [1, 1, 1, 1, 1],
               [2, 2, 2, 2, 2],
               [3, 3, 3, 3, 3],
               [4, 4, 4, 4, 4]
In [20]: y
Out[20]: array([[0, 1, 2, 3, 4],
                [0, 1, 2, 3, 4],
                [0, 1, 2, 3, 4],
                [0, 1, 2, 3, 4],
               [0, 1, 2, 3, 4]])
random data
In [21]: from numpy import random
In [22]: # uniform random numbers in [0,1]
        random.rand(5,5)
Out[22]: array([[ 0.12802947,  0.60652292,  0.2973041 ,  0.7762001 ,  0.51374617],
               [ 0.83084453, 0.2014901 , 0.4452018 , 0.4567917 , 0.1003796 ],
               [0.70152128, 0.92483649, 0.99032806, 0.71376291, 0.66902477],
               [0.25738627, 0.80390256, 0.51696599, 0.89671163, 0.14462983],
               [ 0.67869706, 0.60716068, 0.90129472, 0.3632927, 0.58651417]])
In [23]: # standard normal distributed random numbers
        random.randn(5,5)
Out[23]: array([[ 0.80813749, -0.45796321, -1.05030765, -0.06156713, 2.80145863],
               [0.49906338, 0.9471265, 0.63460865, 0.37024668, -0.82567128],
               [-0.62480853, -1.12918429, -1.45015362, 1.5230681, -1.06038741],
               [ 2.11408217, 1.73683181, 0.91758826, 0.38963193, 0.02243749],
               [-0.44219893, -0.64039458, -0.05168848, 0.41248188, -0.50387127]])
diag
In [24]: # a diagonal matrix
        diag([1,2,3])
Out[24]: array([[1, 0, 0],
               [0, 2, 0],
               [0, 0, 3]])
```

```
In [25]: # diagonal with offset from the main diagonal
        diag([1,2,3], k=1)
Out[25]: array([[0, 1, 0, 0],
                [0, 0, 2, 0],
                [0, 0, 0, 3],
               [0, 0, 0, 0]])
zeros and ones
In [26]: zeros((3,3))
Out[26]: array([[ 0., 0., 0.],
               [0., 0., 0.],
               [ 0., 0., 0.]])
In [27]: ones((3,3))
Out[27]: array([[ 1.,
                      1., 1.],
               [1., 1., 1.],
               [1., 1., 1.]])
```

3.3 File I/O

3.3.1 Comma-separated values (CSV)

A very common file format for data files is comma-separated values (CSV), or related formats such as TSV (tab-separated values). To read data from such files into Numpy arrays, we can use the numpy.genfromtxt function. For example:

```
In [28]: !head stockholm_td_adj.dat
1800 1
        1
              -6.1
                      -6.1
                              -6.11
1800
     1
                     -15.4
        2
             -15.4
                             -15.41
    1
        3
             -15.0
                     -15.0
                             -15.0 1
1800
1800
     1
        4
             -19.3
                     -19.3
                             -19.3 1
             -16.8
                     -16.8
1800
     1
        5
                             -16.8 1
1800
     1 6
             -11.4
                     -11.4
                             -11.4 1
1800
     1 7
              -7.6
                      -7.6
                              -7.61
              -7.1
                      -7.1
                              -7.11
1800
     1 8
1800
     1
        9
             -10.1
                     -10.1
                             -10.1 1
     1 10
              -9.5
                      -9.5
                              -9.5 1
1800
In [29]: data = genfromtxt('stockholm_td_adj.dat')
In [30]: data.shape
Out[30]: (77431, 7)
In [31]: fig, ax = subplots(figsize=(14,4))
         ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
         ax.axis('tight')
         ax.set_title('temperatures in Stockholm')
         ax.set_xlabel('year')
         ax.set_ylabel('temperature (C)');
```


Using numpy.savetxt, we can store a Numpy array to a file in CSV format:

3.3.2 Numpy's native file format

Useful when storing and reading back numpy array data. Use the functions numpy.save and numpy.load:

3.4 More properties of the numpy arrays

```
In [38]: M.itemsize # bytes per element
Out[38]: 8
In [39]: M.nbytes # number of bytes
Out[39]: 72
In [40]: M.ndim # number of dimensions
Out[40]: 2
```

3.5 Manipulating arrays

3.5.1 Indexing

We can index elements in an array using square brackets and indices:

In [41]: # v is a vector, and has only one dimension, taking one index

```
v[0]
Out[41]: 1
In [42]: # M is a matrix, or a 2-dimensional array, taking two indices
         M[1,1]
Out [42]: 0.54212166838686904
  If we omit an index of a multidimensional array, it returns the whole row (or, in general, a N-1 dimensional
array)
In [43]: M
Out[43]: array([[ 0.84067376,  0.33167461,  0.10605794],
                 [ 0.01078626, 0.54212167, 0.8104294 ],
                 [ 0.0765549 , 0.72662149, 0.96613488]])
In [44]: M[1]
Out[44]: array([ 0.01078626,  0.54212167,  0.8104294 ])
  The same thing can be achieved with using: instead of an index:
In [45]: M[1,:] # row 1
Out[45]: array([ 0.01078626,  0.54212167,  0.8104294 ])
In [46]: M[:,1] # column 1
Out[46]: array([ 0.33167461,  0.54212167,  0.72662149])
   We can assign new values to elements in an array using indexing:
In [47]: M[0,0] = 1
In [48]: M
```

3.5.2 Index slicing

Index slicing is the technical name for the syntax M[lower:upper:step] to extract part of an array:

Array slices are *mutable*: if they are assigned a new value, the original array from which the slice was extracted is modified:

```
In [53]: A[1:3] = [-2,-3]

A
Out[53]: array([ 1, -2, -3, 4, 5])
```

In [58]: A = array([1,2,3,4,5])

In [59]: A[-1] # the last element in the array

We can omit any of the three parameters in M[lower:upper:step]:

```
In [54]: A[::] # lower, upper, step all take the default values

Out[54]: array([ 1, -2, -3, 4, 5])

In [55]: A[::2] # step is 2, lower and upper defaults to the beginning and end of the array

Out[55]: array([ 1, -3, 5])

In [56]: A[:3] # first three elements

Out[56]: array([ 1, -2, -3])

In [57]: A[3:] # elements from index 3

Out[57]: array([4, 5])

Negative indices count from the end of the array (positive index from the beginning):
```

```
In [60]: A[-3:] # the last three elements
Out[60]: array([3, 4, 5])
  Index slicing works exactly the same way for multidimensional arrays:
In [61]: A = array([[n+m*10 for n in range(5)] for m in range(5)])
Out[61]: array([[ 0, 1, 2, 3, 4],
                [10, 11, 12, 13, 14],
                [20, 21, 22, 23, 24],
                [30, 31, 32, 33, 34],
                [40, 41, 42, 43, 44]])
In [62]: # a block from the original array
         A[1:4, 1:4]
Out[62]: array([[11, 12, 13],
                [21, 22, 23],
                [31, 32, 33]])
In [63]: # strides
         A[::2, ::2]
Out[63]: array([[ 0, 2, 4],
                [20, 22, 24],
                [40, 42, 44]])
```

3.5.3 Fancy indexing

Out[59]: 5

Fancy indexing is the name for when an array or list is used in place of an index:

We can also use index masks: If the index mask is an Numpy array of data type bool, then an element is selected (True) or not (False) depending on the value of the index mask at the position of each element:

3.6 Functions for extracting data from arrays and creating arrays

3.6.1 where

The index mask can be converted to position index using the where function:

3.6.2 diag

With the diag function we can also extract the diagonal and subdiagonals of an array:

```
In [74]: diag(A)
Out[74]: array([ 0, 11, 22, 33, 44])
In [75]: diag(A, -1)
Out[75]: array([10, 21, 32, 43])
```

3.6.3 take

The take function is similar to the fancy indexing described above:

3.6.4 choose

Constructs an array by picking elements from several arrays:

3.7 Linear algebra

Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means that as much as possible of a program should be formulated in terms of matrix and vector operations, like matrix-matrix multiplication.

3.7.1 Scalar-array operations

We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers.

```
In [81]: v1 = arange(0, 5)
In [82]: v1 * 2
Out[82]: array([0, 2, 4, 6, 8])
In [83]: v1 + 2
Out[83]: array([2, 3, 4, 5, 6])
In [84]: A * 2, A + 2
```

3.7.2 Element-wise array-array operations

When we add, subtract, multiply and divide arrays using other arrays, the default behavior is **element-wise** operations:

```
In [85]: A * A # element-wise multiplication
Out[85]: array([[
                    0,
                           1,
                                 4,
                                            16],
                 [ 100, 121,
                              144,
                                     169,
                                           196],
                [ 400, 441, 484,
                                     529,
                                           576],
                [ 900, 961, 1024, 1089, 1156],
                [1600, 1681, 1764, 1849, 1936]])
In [86]: v1 * v1
Out[86]: array([0, 1, 4, 9, 16])
  If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:
In [87]: A.shape, v1.shape
Out[87]: ((5, 5), (5,))
In [88]: A * v1
Out[88]: array([[
                   Ο,
                        1,
                              4,
                                   9, 16],
                   0,
                       11,
                            24,
                                  39,
                                       56],
                       21,
                             44,
                                  69, 96],
                   Ο,
                       31,
                            64,
                                 99, 136],
                   0,
                [ 0,
                       41,
                            84, 129, 176]])
```

3.7.3 Matrix algebra

What about matrix multiplication? There are two ways. We can either use the dot function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:

```
In [91]: dot(v1, v1)
Out[91]: 30
   Or we can cast the array objects to the type matrix. This changes the behavior of the standard arithmetic
operators +, -, * to use matrix algebra.
In [92]: M = matrix(A)
         v = matrix(v1).T # make it a column vector
In [93]: v
Out[93]: matrix([[0],
                  [2],
                  [3],
                  [4]])
In [94]: M * M
Out[94]: matrix([[ 300, 310, 320, 330, 340],
                  [1300, 1360, 1420, 1480, 1540],
                  [2300, 2410, 2520, 2630, 2740],
                  [3300, 3460, 3620, 3780, 3940],
                  [4300, 4510, 4720, 4930, 5140]])
In [95]: try:
             M * v
         except ValueError as e:
             print(repr(e))
In [96]: # inner product
         v.T * v
Out[96]: matrix([[30]])
In [97]: # with matrix objects, standard matrix algebra applies
         try:
             v + M*v
         except ValueError as e:
             print(repr(e))
  If we try to add, subtract or multiply objects with incompatible shapes, we get an error:
In [98]: v = matrix([1,2,3,4,5,6]).T
In [99]: shape(M), shape(v)
Out[99]: ((5, 5), (6, 1))
In [100]: try:
          except ValueError as e:
              print(repr(e))
ValueError('shapes (5,5) and (6,1) not aligned: 5 (dim 1) != 6 (dim 0)',)
```

Explore these related functions: inner, outer, cross, kron, tensordot using the help function. For example: help(kron).

3.7.4 Array/Matrix transformations

Above we used the .T to transpose the matrix object v. We could have used the transpose function to accomplish the same thing.

Other mathematical functions that transform matrix objects are:

```
In [101]: C = matrix([[1j, 2j], [3j, 4j]])
Out[101]: matrix([[ 0.+1.j,  0.+2.j],
                  [0.+3.j, 0.+4.j]
In [102]: conjugate(C)
Out[102]: matrix([[ 0.-1.j,  0.-2.j],
                  [0.-3.j, 0.-4.j]
  Hermitian conjugate: transpose + conjugate:
In [103]: C.H
Out[103]: matrix([[ 0.-1.j,  0.-3.j],
                  [0.-2.j, 0.-4.j]
  We can extract the real and imaginary parts of complex-valued arrays using real and imag:
In [104]: real(C) # same as: C.real
Out[104]: matrix([[ 0., 0.],
                 [ 0., 0.]])
In [105]: imag(C) # same as: C.imag
Out[105]: matrix([[ 1., 2.],
                  [3., 4.]])
  Or the complex argument and absolute value:
In [106]: angle(C+1) # heads up MATLAB Users, angle is used instead of arg
Out[106]: array([[ 0.78539816,  1.10714872],
                 [ 1.24904577, 1.32581766]])
In [107]: abs(C)
Out[107]: matrix([[ 1., 2.],
                  [3., 4.]])
3.7.5
       Matrix computations
Inverse
In [108]: inv(C) # equivalent to C.I
Out[108]: matrix([[ 0.+2.j , 0.-1.j ],
                  [0.-1.5j, 0.+0.5j]
In [109]: C.I * C
Out[109]: matrix([[ 1.00000000e+00+0.j,
                                          4.44089210e-16+0.j],
                  [ 0.0000000e+00+0.j,
                                          1.00000000e+00+0.j]])
```

Determinant

```
In [110]: det(C)
Out[110]: (2.0000000000000004+0j)
In [111]: det(C.I)
Out[111]: (0.5000000000000011+0j)
```

3.7.6Data processing

Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate statistics of datasets in arrays.

For example, let's calculate some properties from the Stockholm temperature dataset used above.

```
In [112]: # reminder, the tempeature dataset is stored in the data variable:
          shape(data)
Out[112]: (77431, 7)
mean
In [113]: # the temperature data is in column 3
          mean(data[:,3])
Out[113]: 6.1971096847515854
  The daily mean temperature in Stockholm over the last 200 years has been about 6.2 C.
standard deviations and variance
In [114]: std(data[:,3]), var(data[:,3])
Out[114]: (8.2822716213405734, 68.596023209663414)
```

```
min and max
In [115]: # lowest daily average temperature
          data[:,3].min()
Out[115]: -25.800000000000001
In [116]: # highest daily average temperature
          data[:,3].max()
Out[116]: 28.300000000000001
sum, prod, and trace
In [117]: d = arange(0, 10)
Out[117]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [118]: # sum up all elements
          sum(d)
Out[118]: 45
```

```
In [119]: # product of all elements
          prod(d+1)
Out[119]: 3628800
In [120]: # cummulative sum
          cumsum(d)
Out[120]: array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])
In [121]: # cummulative product
          cumprod(d+1)
Out[121]: array([
                                                  24,
                                                          120,
                                                                   720,
                                                                           5040,
                   40320, 362880, 3628800])
In [122]: # same as: diag(A).sum()
          trace(A)
Out[122]: 110
```

3.7.7 Computations on subsets of arrays

We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods of extracting data from an array (described above).

For example, let's go back to the temperature dataset:

The dataformat is: year, month, day, daily average temperature, low, high, location.

If we are interested in the average temperature only in a particular month, say February, then we can create a index mask and use it to select only the data for that month using:

With these tools we have very powerful data processing capabilities at our disposal. For example, to extract the average monthly average temperatures for each month of the year only takes a few lines of code:

3.7.8 Calculations with higher-dimensional data

When functions such as min, max, etc. are applied to a multidimensional arrays, it is sometimes useful to apply the calculation to the entire array, and sometimes only on a row or column basis. Using the axis argument we can specify how these functions should behave:

Many other functions and methods in the array and matrix classes accept the same (optional) axis keyword argument.

3.8 Reshaping, resizing and stacking arrays

The shape of an Numpy array can be modified without copying the underlaying data, which makes it a fast operation even for large arrays.

```
In [132]: A
Out[132]: array([[ 0, 1, 2, 3, 4],
                 [10, 11, 12, 13, 14],
                 [20, 21, 22, 23, 24],
                 [30, 31, 32, 33, 34],
                 [40, 41, 42, 43, 44]])
In [133]: n, m = A.shape
In [134]: B = A.reshape((1,n*m))
Out[134]: array([[ 0,  1,  2,  3,  4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31,
                  32, 33, 34, 40, 41, 42, 43, 44]])
In [135]: B[0,0:5] = 5 # modify the array
Out[135]: array([[ 5,  5,  5,  5,  5,  10,  11,  12,  13,  14,  20,  21,  22,  23,  24,  30,  31,
                  32, 33, 34, 40, 41, 42, 43, 44]])
In [136]: A # and the original variable is also changed. B is only a different view of the same data
Out[136]: array([[ 5, 5, 5, 5, 5],
                 [10, 11, 12, 13, 14],
                 [20, 21, 22, 23, 24],
                 [30, 31, 32, 33, 34],
                 [40, 41, 42, 43, 44]])
```

We can also use the function flatten to make a higher-dimensional array into a vector. But this function create a copy of the data.

3.9 Adding a new dimension: newaxis

With newaxis, we can insert new dimensions in an array; for example, converting a vector to a column or row matrix:

3.10 Stacking and repeating arrays

Using function repeat, tile, vstack, hstack, and concatenate, we can create larger vectors and matrices from smaller ones:

3.10.1 tile and repeat

Out[150]: array([[1, 2, 5],

[3, 4, 6]])

3.10.3 hstack and vstack

3.11 Copy and "deep copy"

To achieve high performance, assignments in Python usually do not copy the underlying objects. This is important, for example, when objects are passed between functions, to avoid an excessive amount of memory copying when it is not necessary (technical term: pass by reference).

```
In [153]: A = array([[1, 2], [3, 4]])
          Α
Out[153]: array([[1, 2],
In [154]: # now B is referring to the same array data as A
          B = A
In [155]: # changing B affects A
          B[0,0] = 10
          В
Out[155]: array([[10,
                       2],
                 [ 3,
                       4]])
In [156]: A
Out[156]: array([[10,
                       2],
                 [ 3,
                       4]])
```

If we want to avoid this behavior, so that when we get a new completely independent object B copied from A, then we need to do a so-called "deep copy" using the function copy:

3.12 Iterating over array elements

Generally, it's best to avoid iterating over the elements of arrays whenever we can. Why? In a interpreted language like Python (or MATLAB), iterations are really slow compared to vectorized operations.

However, sometimes iterations are unavoidable. For such cases, the Python for loop is the most convenient way to iterate over an array:

```
In [160]: v = array([1,2,3,4])
          for element in v:
              print(element)
1
2
3
In [161]: M = array([[1,2], [3,4]])
          for row in M:
              print("row", row)
              for element in row:
                   print(element)
row [1 2]
1
row [3 4]
3
4
```

When we need to iterate over each element of an array and modify its elements, it is convenient to use the enumerate function to obtain both the element and its index in the for loop:

3.13 Vectorizing functions

As mentioned several times, to get good performance we should try to avoid looping over elements in our vectors and matrices, and instead use vectorized algorithms. The first step in converting a scalar algorithm to a vectorized algorithm is to make sure that the functions we write work with vector inputs.

ValueError('The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

OK, that didn't work because we didn't write the Theta function so that it can handle a vector input.

To get a vectorized version of Theta, we can use the Numpy function vectorize. In many cases it can automatically vectorize a function:

```
In [166]: Theta_vec = vectorize(Theta)
In [167]: Theta_vec(array([-3,-2,-1,0,1,2,3]))
Out[167]: array([0, 0, 0, 1, 1, 1, 1])
```

We can also implement the function to accept a vector input from the beginning (requires more effort but might give better performance):

3.14 Using arrays in conditions

When using arrays in conditions, for example in if statements and other boolean expressions, one needs to use any or all, which requires that any or all elements in the array evaluates to True:

```
In [171]: M
```

3.15 Type casting

Since Numpy arrays are *statically typed*, the type of an array does not change once created. But we can explicitly cast an array of some type to another using the astype functions (see also the similar asarray function). This always create a new array of new type:

3.16 Further reading

- http://numpy.scipy.org
- http://scipy.org/Tentative_NumPy_Tutorial
- http://scipy.org/NumPy_for_Matlab_Users A Numpy guide for MATLAB users.

Chapter 4 SciPy - Library of scientific algorithms for Python

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

Populating the interactive namespace from numpy and matplotlib

4.1 Introduction

The SciPy framework builds on top of the low-level NumPy framework for multidimensional arrays, and provides a large number of higher-level scientific algorithms. Some of the topics that SciPy covers are:

- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse Eigenvalue Problems (scipy.sparse)
- Statistics (scipy.stats)
- Multi-dimensional image processing (scipy.ndimage)
- File IO (scipy.io)

Each of these submodules provides a number of functions and classes that can be used to solve problems in their respective topics.

In this lecture, we will look at how to use some of these subpackages.

To access the SciPy package in a Python program, we start by importing everything from the scipy module.

```
In [2]: from scipy import *
```

If we only need to use part of the SciPy framework, we can selectively include only those modules we are interested in. For example, to include the linear algebra package under the name la, we can do:

```
In [3]: import scipy.linalg as la
```

4.2 Special functions

A large number of mathematical special functions are important for many computional physics problems. SciPy provides implementations of a very extensive set of special functions. For details, see the list of functions in the reference documentation at http://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special.

To demonstrate the typical usage of special functions, we will look in more detail at the Bessel functions:

```
In [4]: #
        # The scipy.special module includes a large number of Bessel functions
        # Here we will use the functions in and yn, which are the Bessel functions
        # of the first and second kind and real-valued order. We also include the
        # function jn_zeros and yn_zeros that gives the zeroes of the functions jn
        # and yn.
        from scipy.special import jn, yn, jn_zeros, yn_zeros
In [5]: n = 0
                 # order
       x = 0.0
        # Bessel function of first kind
        print("J_{d}(f) = f" % (n, x, jn(n, x)))
        x = 1.0
        # Bessel function of second kind
        print("Y_{d(f)} = f" % (n, x, yn(n, x)))
J_{-0}(0.000000) = 1.000000
Y_{-}0(1.000000) = 0.088257
In [6]: x = linspace(0, 10, 100)
        fig, ax = subplots()
        for n in range(4):
            ax.plot(x, jn(n, x), label=r"$J_%d(x)$" % n)
        ax.legend();
```


4.3 Integration

4.3.1 Numerical integration: quadrature

Numerical evaluation of a function of the type

$$\int_{a}^{b} f(x)dx$$

is called *numerical quadrature*, or simply *quadrature*. SciPy provides a series of functions for different kind of quadrature, for example the quad, dblquad and tplquad for single, double and triple integrals, respectively.

```
In [8]: from scipy.integrate import quad, dblquad, tplquad
```

The quad function takes a large number of optional arguments which can be used to fine-tune the behavior of the function (try help(quad) for details).

The basic usage is as follows:

```
val, abserr = quad(f, x_lower, x_upper)
         print("integral value =", val, ", absolute error =", abserr )
integral value = 0.5 , absolute error = 5.551115123125783e-15
  If we need to pass extra arguments to the integrand function, we can use the args keyword argument:
In [11]: def integrand(x, n):
             Bessel function of first kind and order n.
             return jn(n, x)
         x_lower = 0 # the lower limit of x
         x\_upper = 10 \# the upper limit of x
         val, abserr = quad(integrand, x_lower, x_upper, args=(3,))
         print(val, abserr)
0.7366751370811073 9.389126882496403e-13
   For simple functions, we can use a lambda function (nameless function) instead of explicitly defining a
function for the integrand:
In [12]: val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)
         print("numerical =", val, abserr)
         analytical = sqrt(pi)
         print("analytical =", analytical)
numerical = 1.7724538509055159 1.4202636780944923e-08
analytical = 1.77245385091
   As shown in the example above, we can also use 'Inf' or '-Inf' as integral limits.
  Higher-dimensional integration works in the same way:
In [13]: def integrand(x, y):
             return exp(-x**2-y**2)
         x_lower = 0
         x_upper = 10
         y_lower = 0
         y_upper = 10
         val, abserr = dblquad(integrand, x_lower, x_upper, lambda x : y_lower, lambda x: y_upper)
         print(val, abserr)
0.7853981633974476 1.638229942140971e-13
```

Note how we had to pass lambda functions for the limits for the y integration, since these in general can be functions of x.

4.4 Ordinary differential equations (ODEs)

SciPy provides two different ways to solve ODEs: An API based on the function odeint, and an object-oriented API based on the class ode. Usually odeint is easier to get started with, but the ode class offers a finer level of control.

Here we will use the odeint functions. For more information about the class ode, try help(ode). It does pretty much the same thing as odeint, but in an object-oriented fashion.

To use odeint, first import it from the scipy.integrate module.

```
In [14]: from scipy.integrate import odeint, ode
```

A system of ODEs are usually formulated on standard form before it is attacked numerically. The standard form is:

```
y' = f(y, t)
where
y = [y_1(t), y_2(t), ..., y_n(t)]
```

and f is some function that gives the derivatives of the function $y_i(t)$. To solve an ODE, we need to know the function f and an initial condition, y(0).

Note that higher-order ODEs can always be written in this form by introducing new variables for the intermediate derivatives.

Once we have defined the Python function f and array y_0 (that is f and g(0) in the mathematical formulation), we can use the odeint function as:

```
y_t = odeint(f, y_0, t)
```

where t is and array with time-coordinates for which to solve the ODE problem. y_t is an array with one row for each point in time in t, where each column corresponds to a solution y_i(t) at that point in time.

We will see how we can implement f and y_0 in Python code in the examples below.

Example: double pendulum Let's consider a physical example: The double compound pendulum, described in some detail here: http://en.wikipedia.org/wiki/Double_pendulum

described in some detail here: http://en.wikipedia.org/wiki/Double_pendulum

In [15]: Image(url='http://upload.wikimedia.org/wikipedia/commons/c/c9/Double-compound-pendulum-dimensi

Out[15]: <IPython.core.display.Image object>

The equations of motion of the pendulum are given on the wiki page:

$$\begin{split} \dot{\theta}_1 &= \frac{6}{m\ell^2} \frac{2p_{\theta_1} - 3\cos(\theta_1 - \theta_2)p_{\theta_2}}{16 - 9\cos^2(\theta_1 - \theta_2)} \\ \dot{\theta}_2 &= \frac{6}{m\ell^2} \frac{8p_{\theta_2} - 3\cos(\theta_1 - \theta_2)p_{\theta_1}}{16 - 9\cos^2(\theta_1 - \theta_2)}. \\ \dot{p}_{\theta_1} &= -\frac{1}{2}m\ell^2 \left[\dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) + 3\frac{g}{\ell} \sin\theta_1 \right] \\ \dot{p}_{\theta_2} &= -\frac{1}{2}m\ell^2 \left[-\dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) + \frac{g}{\ell} \sin\theta_2 \right] \end{split}$$

To make the Python code simpler to follow, let's introduce new variable names and the vector notation:

To make the 1 yellon code simpler to follow,
$$x = \begin{bmatrix} \theta_1, \theta_2, p_{\theta_1}, p_{\theta_2} \end{bmatrix}$$

$$\dot{x}_1 = \frac{6}{m\ell^2} \frac{2x_3 - 3\cos(x_1 - x_2)x_4}{16 - 9\cos^2(x_1 - x_2)}$$

$$\dot{x}_2 = \frac{6}{m\ell^2} \frac{8x_4 - 3\cos(x_1 - x_2)x_3}{16 - 9\cos^2(x_1 - x_2)}$$

$$\dot{x}_3 = -\frac{1}{2}m\ell^2 \left[\dot{x}_1 \dot{x}_2 \sin(x_1 - x_2) + 3\frac{q}{\ell} \sin x_1 \right]$$

$$\dot{x}_4 = -\frac{1}{2}m\ell^2 \left[-\dot{x}_1 \dot{x}_2 \sin(x_1 - x_2) + \frac{q}{\ell} \sin x_2 \right]$$
In [16]: g = 9.82
$$L = 0.5$$

$$m = 0.1$$

```
def dx(x, t):
              11 11 11
              The right-hand side of the pendulum ODE
             x1, x2, x3, x4 = x[0], x[1], x[2], x[3]
             dx1 = 6.0/(m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
             dx2 = 6.0/(m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
             dx3 = -0.5 * m * L**2 * ( dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))
             dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * sin(x1-x2) + (g/L) * sin(x2))
             return [dx1, dx2, dx3, dx4]
In [17]: # choose an initial state
         x0 = [pi/4, pi/2, 0, 0]
In [18]: # time coordinate to solve the ODE for: from 0 to 10 seconds
         t = linspace(0, 10, 250)
In [19]: # solve the ODE problem
         x = odeint(dx, x0, t)
In [20]: # plot the angles as a function of time
         fig, axes = subplots(1,2, figsize=(12,4))
         axes[0].plot(t, x[:, 0], 'r', label="theta1")
         axes[0].plot(t, x[:, 1], 'b', label="theta2")
         x1 = + L * sin(x[:, 0])
         y1 = -L * cos(x[:, 0])
         x2 = x1 + L * sin(x[:, 1])
         y2 = y1 - L * cos(x[:, 1])
         axes[1].plot(x1, y1, 'r', label="pendulum1")
         axes[1].plot(x2, y2, 'b', label="pendulum2")
         axes[1].set_ylim([-1, 0])
         axes[1].set_xlim([1, -1]);
      2.0
                                                 0.0
      1.5
                                                 -0.2
      1.0
      0.5
                                                 -0.4
      0.0
                                                 -0.6
     -0.5
     -1.0
                                                 -0.8
     -1.5
     -2.0 L
                                                 -1.0 L
1.0
                                                                             -0.5
                                                                                      -1.0
```

Simple animation of the pendulum motion. We will see how to make a better animation in Lecture 4.

```
In [21]: from IPython.display import clear_output
         import time
In [22]: fig, ax = subplots(figsize=(4,4))
         for t_idx, tt in enumerate(t[:200]):
             x1 = + L * sin(x[t_idx, 0])
             y1 = -L * cos(x[t_idx, 0])
             x2 = x1 + L * sin(x[t_idx, 1])
             y2 = y1 - L * cos(x[t_idx, 1])
             ax.cla()
             ax.plot([0, x1], [0, y1], 'r.-')
             ax.plot([x1, x2], [y1, y2], 'b.-')
             ax.set_ylim([-1.5, 0.5])
             ax.set_xlim([1, -1])
             display(fig)
             clear_output()
             time.sleep(0.1)
                      0.5
                      0.0
                    -0.5
                    -1.0
```

0.5

Example: Damped harmonic oscillator ODE problems are important in computational physics, so we will look at one more example: the damped harmonic oscillation. This problem is well described on the wiki page: http://en.wikipedia.org/wiki/Damping

0.0

-0.5

-1.0

The equation of motion for the damped oscillator is:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\zeta\omega_0 \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0$$

where x is the position of the oscillator, ω_0 is the frequency, and ζ is the damping ratio. To write this second-order ODE on standard form, we introduce $p = \frac{dx}{dt}$:

```
\frac{\mathrm{d}p}{\mathrm{d}t} = -2\zeta\omega_0 p - \omega_0^2 x
\frac{\mathrm{d}x}{\mathrm{d}t} = p
```

In the implementation of this example, we will add extra arguments to the RHS function for the ODE, rather than using global variables as we did in the previous example. As a consequence of the extra arguments to the RHS, we need to pass an keyword argument args to the odeint function:

```
In [23]: def dy(y, t, zeta, w0):
             The right-hand side of the damped oscillator ODE
             x, p = y[0], y[1]
             dx = p
             dp = -2 * zeta * w0 * p - w0**2 * x
             return [dx, dp]
In [24]: # initial state:
         y0 = [1.0, 0.0]
In [25]: # time coordinate to solve the ODE for
         t = linspace(0, 10, 1000)
         w0 = 2*pi*1.0
In [26]: # solve the ODE problem for three different values of the damping ratio
         y1 = odeint(dy, y0, t, args=(0.0, w0)) # undamped
         y2 = odeint(dy, y0, t, args=(0.2, w0)) # under damped
         y3 = odeint(dy, y0, t, args=(1.0, w0)) # critial damping
         y4 = odeint(dy, y0, t, args=(5.0, w0)) # over damped
In [27]: fig, ax = subplots()
         ax.plot(t, y1[:,0], 'k', label="undamped", linewidth=0.25)
         ax.plot(t, y2[:,0], 'r', label="under damped")
         ax.plot(t, y3[:,0], 'b', label=r"critical damping")
         ax.plot(t, y4[:,0], 'g', label="over damped")
         ax.legend();
```


4.5 Fourier transform

Fourier transforms are one of the universal tools in computational physics; they appear over and over again in different contexts. SciPy provides functions for accessing the classic FFTPACK library from NetLib, an efficient and well tested FFT library written in FORTRAN. The SciPy API has a few additional convenience functions, but overall the API is closely related to the original FORTRAN library.

To use the fftpack module in a python program, include it using:

```
In [28]: from scipy.fftpack import *
```

To demonstrate how to do a fast Fourier transform with SciPy, let's look at the FFT of the solution to the damped oscillator from the previous section:

```
In [29]: N = len(t)
    dt = t[1]-t[0]

# calculate the fast fourier transform
    # y2 is the solution to the under-damped oscillator from the previous section
F = fft(y2[:,0])

# calculate the frequencies for the components in F
    w = fftfreq(N, dt)
In [30]: fig, ax = subplots(figsize=(9,3))
    ax.plot(w, abs(F));
```


Since the signal is real, the spectrum is symmetric. We therefore only need to plot the part that corresponds to the postive frequencies. To extract that part of the w and F, we can use some of the indexing tricks for NumPy arrays we saw in Lecture 2:

As expected, we now see a peak in the spectrum that is centered around 1, which is the frequency we used in the damped oscillator example.

3

2

4.6 Linear algebra

1

5

The linear algebra module contains a lot of matrix-related functions, including linear equation solving, eigenvalue solvers, matrix functions (for example matrix-exponentiation), a number of different decompositions (SVD, LU, cholesky), etc.

Detailed documetation is available at: http://docs.scipy.org/doc/scipy/reference/linalg.html Here we will look at how to use some of these functions:

4.6.1 Linear equation systems

```
Linear equation systems on the matrix form
  Ax = b
  where A is a matrix and x, b are vectors can be solved like:
In [33]: A = array([[1,2,3], [4,5,6], [7,8,9]])
         b = array([1,2,3])
In [34]: x = solve(A, b)
         х
Out[34]: array([-0.33333333, 0.66666667, 0.
                                                      ])
In [35]: # check
         dot(A, x) - b
Out[35]: array([ -1.11022302e-16,
                                     0.00000000e+00, 0.0000000e+00])
  We can also do the same with
  AX = B
  where A, B, X are matrices:
In [36]: A = rand(3,3)
         B = rand(3,3)
In [37]: X = solve(A, B)
In [38]: X
Out[38]: array([[ 2.70799194,  0.51640491,  1.19688238],
                [-3.32262551, 0.70367645, 0.01223018],
                [ 3.72353778, -0.72204184, 0.05911114]])
In [39]: # check
         norm(dot(A, X) - B)
Out[39]: 3.3306690738754696e-16
```

Eigenvalues and eigenvectors

The eigenvalue problem for a matrix A:

```
Av_n = \lambda_n v_n
```

where v_n is the *n*th eigenvector and λ_n is the *n*th eigenvalue.

To calculate eigenvalues of a matrix, use the eigvals and for calculating both eigenvalues and eigenvectors, use the function eig:

```
In [40]: evals = eigvals(A)
In [41]: evals
Out[41]: array([ 1.65906267, -0.52654555, -0.12435119])
In [42]: evals, evecs = eig(A)
In [43]: evals
Out[43]: array([ 1.65906267, -0.52654555, -0.12435119])
```

The eigenvectors corresponding to the *n*th eigenvalue (stored in evals[n]) is the *n*th column in evecs, i.e., evecs[:,n]. To verify this, let's try mutiplying eigenvectors with the matrix and compare to the product of the eigenvector and the eigenvalue:

There are also more specialized eigensolvers, like the eigh for Hermitian matrices.

4.6.3 Matrix operations

4.6.4 Sparse matrices

Sparse matrices are often useful in numerical simulations dealing with large systems, if the problem can be described in matrix form where the matrices or vectors mostly contains zeroes. Scipy has good support for sparse matrices, with basic linear algebra operations (such as equation solving, eigenvalue calculations, etc).

There are many possible strategies for storing sparse matrices in an efficient way. Some of the most common are the so-called coordinate form (COO), list of list (LIL) form, and compressed-sparse column CSC (and row, CSR). Each format has advantages and disadvantages. Most computational algorithms (equation solving, matrix-matrix multiplication, etc.) can be efficiently implemented using CSR or CSC formats, but they are not so intuitive and not so easy to initialize. Often a sparse matrix is initially created in COO or LIL format (where we can efficiently add elements to the sparse matrix data), and then converted to CSC or CSR before being used in real calculations.

For more information about these sparse formats, see http://en.wikipedia.org/wiki/Sparse_matrix When we create a sparse matrix, we have to choose which format it should be stored in. For example:

```
Out[50]: array([[1, 0, 0, 0],
                [0, 3, 0, 0],
                [0, 1, 1, 0],
                [1, 0, 0, 1]])
In [51]: # convert from dense to sparse
         A = csr_matrix(M); A
Out[51]: <4x4 sparse matrix of type '<class 'numpy.int64'>'
                 with 6 stored elements in Compressed Sparse Row format>
In [52]: # convert from sparse to dense
         A.todense()
Out[52]: matrix([[1, 0, 0, 0],
                 [0, 3, 0, 0],
                 [0, 1, 1, 0],
                 [1, 0, 0, 1]], dtype=int64)
  More efficient way to create sparse matrices: create an empty matrix and populate it using matrix
indexing (avoids creating a potentially large dense matrix):
In [53]: A = lil_matrix((4,4)) # empty 4x4 sparse matrix
         A[0,0] = 1
         A[1,1] = 3
         A[2,2] = A[2,1] = 1
         A[3,3] = A[3,0] = 1
Out[53]: <4x4 sparse matrix of type '<class 'numpy.float64'>'
                 with 6 stored elements in LInked List format>
In [54]: A.todense()
Out[54]: matrix([[ 1., 0., 0., 0.],
                 [0., 3., 0., 0.],
                 [ 0., 1., 1., 0.],
                 [1., 0., 0., 1.]])
  Converting between different sparse matrix formats:
In [55]: A
Out[55]: <4x4 sparse matrix of type '<class 'numpy.float64'>'
                 with 6 stored elements in LInked List format>
In [56]: A = csr_matrix(A); A
Out[56]: <4x4 sparse matrix of type '<class 'numpy.float64'>'
                 with 6 stored elements in Compressed Sparse Row format>
In [57]: A = csc_matrix(A); A
Out[57]: <4x4 sparse matrix of type '<class 'numpy.float64'>'
```

We can compute with sparse matrices like we do with dense matrices:

with 6 stored elements in Compressed Sparse Column format>

```
In [58]: A.todense()
Out[58]: matrix([[ 1., 0., 0., 0.],
                 [ 0., 3.,
                            0., 0.],
                 [0., 1., 1., 0.],
                 [ 1., 0.,
                            0., 1.]])
In [59]: (A * A).todense()
Out[59]: matrix([[ 1., 0.,
                            0., 0.],
                 [ 0., 9.,
                            0., 0.],
                 [ 0., 4., 1.,
                                 0.],
                 [ 2., 0.,
                            0.,
                                 1.]])
In [60]: try:
            dot(A, A).todense()
         except ValueError as e:
            print(repr(e))
ValueError('Cannot find a common data type.',)
In [61]: v = array([1,2,3,4])[:,newaxis]; v
Out[61]: array([[1],
                [2],
                [3],
                [4]])
In [62]: # sparse matrix - dense vector multiplication
         v * A
Out[62]: array([[ 1.],
                [ 6.],
                [5.],
                [ 5.]])
In [63]: # same result with dense matrix - dense vector multiplication
         A.todense() * v
Out[63]: matrix([[ 1.],
                 [ 6.],
                 [5.],
                 [ 5.]])
```

4.7 Optimization

Optimization (finding minima or maxima of a function) is a large field in mathematics, and optimization of complicated functions or in many variables can be rather involved. Here we will only look at a few very simple cases. For a more detailed introduction to optimization with SciPy, see: http://scipy-lectures.github.com/advanced/mathematical_optimization/index.html

To use the optimization module in SciPy, first include the optimize module:

```
In [64]: from scipy import optimize
```

4.7.1 Finding a minima

First, let's find the minima of a simple function of a single variable:

We can use the fmin_bfgs function to find the minima of a function:

```
Out[68]: array([ 0.46961745])
```

We can also use the **brent** or **fminbound** functions. They have slightly different syntax and use different algorithms.

```
In [69]: optimize.brent(f)
Out[69]: 0.46961743402759754
In [70]: optimize.fminbound(f, -4, 2)
Out[70]: -2.6729822917513886
```

4.7.2 Finding a solution to a function

To find the root for a function of the form f(x) = 0, we can use the fsolve function. It requires an initial guess:

```
In [71]: omega_c = 3.0
    def f(omega):
        # a transcendental equation: resonance frequencies of a low-Q SQUID terminated microwave r
        return tan(2*pi*omega) - omega_c/omega

In [72]: fig, ax = subplots(figsize=(10,4))
        x = linspace(0, 3, 1000)
        y = f(x)
        mask = where(abs(y) > 50)
        x[mask] = y[mask] = NaN # get rid of vertical line when the function flip sign
        ax.plot(x, y)
        ax.plot([0, 3], [0, 0], 'k')
        ax.set_ylim(-5,5);
```

/Users/dmertz/anaconda/lib/python3.4/site-packages/IPython/kernel/_main_.py:4: RuntimeWarning: divide


```
In [73]: optimize.fsolve(f, 0.1)
Out[73]: array([ 0.23743014])
```

```
In [74]: optimize.fsolve(f, 0.6)
Out[74]: array([ 0.71286972])
In [75]: optimize.fsolve(f, 1.1)
Out[75]: array([ 1.18990285])
```

4.8 Interpolation

Interpolation is simple and convenient in SciPy: The interp1d function, when given arrays describing X and Y data, returns an object that behaves like a function that can be called for an arbitrary value of x (in the range covered by X). It returns the corresponding interpolated y value:

```
In [76]: from scipy.interpolate import *
In [77]: def f(x):
             return sin(x)
In [78]: n = arange(0, 10)
         x = linspace(0, 9, 100)
         y_meas = f(n) + 0.1 * randn(len(n)) # simulate measurement with noise
         y_real = f(x)
         linear_interpolation = interp1d(n, y_meas)
         y_interp1 = linear_interpolation(x)
         cubic_interpolation = interp1d(n, y_meas, kind='cubic')
         y_interp2 = cubic_interpolation(x)
In [79]: fig, ax = subplots(figsize=(10,4))
         ax.plot(n, y_meas, 'bs', label='noisy data')
         ax.plot(x, y_real, 'k', lw=2, label='true function')
         ax.plot(x, y_interp1, 'r', label='linear interp')
         ax.plot(x, y_interp2, 'g', label='cubic interp')
         ax.legend(loc=3);
      1.5
      1.0
      0.5
      0.0
             noisy data
               true function
     -1.0
               linear interp
               cubic interp
```

4.9 Statistics

The scipy.stats module contains a large number of statistical distributions, statistical functions and tests. For a complete documentation of its features, see http://docs.scipy.org/doc/scipy/reference/stats.html.

There is also a very powerful Python package for statistical modeling called statsmodels. See http://statsmodels.sourceforge.net for more details.

```
In [80]: from scipy import stats
In [81]: # create a (discrete) random variable with poissionian distribution
         X = stats.poisson(3.5) # photon distribution for a coherent state with n=3.5 photons
In [82]: n = arange(0,15)
         fig, axes = subplots(3,1, sharex=True)
         # plot the probability mass function (PMF)
         axes[0].step(n, X.pmf(n))
         # plot the commulative distribution function (CDF)
         axes[1].step(n, X.cdf(n))
         # plot histogram of 1000 random realizations of the stochastic variable X
         axes[2].hist(X.rvs(size=1000));
          0.25
          0.20
          0.15
          0.10
          0.05
          0.00
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
          250
          200
          150
          100
            50
             0
```

4

2

8

10

12

14

```
In [84]: x = linspace(-5,5,100)
fig, axes = subplots(3,1, sharex=True)

# plot the probability distribution function (PDF)
axes[0].plot(x, Y.pdf(x))

# plot the commulative distributin function (CDF)
axes[1].plot(x, Y.cdf(x));

# plot histogram of 1000 random realizations of the stochastic variable Y
axes[2].hist(Y.rvs(size=1000), bins=50);
```


Statistics:

```
In [85]: X.mean(), X.std(), X.var() # poission distribution
Out[85]: (3.5, 1.8708286933869707, 3.5)
In [86]: Y.mean(), Y.std(), Y.var() # normal distribution
Out[86]: (0.0, 1.0, 1.0)
```

4.9.1 Statistical tests

Test whether two sets of (independent) random data comes from the same distribution:

```
t-statistic = -0.417051784216
p-value = 0.676685334969
```

Since the p value is very large, we cannot reject the hypothesis that the two sets of random data have different means.

To test whether the mean of a single sample of data has mean 0.1 (the true mean is 0.0):

```
Out[88]: (-3.2508441263708945, 0.0011890862823326403)
    Low p-value means that we can reject the hypothesis that the mean of Y is 0.1.
In [89]: Y.mean()
Out[89]: 0.0
In [90]: stats.ttest_1samp(Y.rvs(size=1000), Y.mean())
Out[90]: (0.46553155390367817, 0.64165231381420407)
```

In [88]: stats.ttest_1samp(Y.rvs(size=1000), 0.1)

4.10 Further reading

- http://www.scipy.org The official web page for the SciPy project.
- http://docs.scipy.org/doc/scipy/reference/tutorial/index.html A tutorial on how to get started using SciPy.
- https://github.com/scipy/scipy/ The SciPy source code.

Chapter 5 matplotlib - 2D and 3D plotting in Python

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

5.1 Introduction

Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advantages of this library include:

- Easy to get started
- Support for LATEX formatted labels and texts
- Great control of every element in a figure, including figure size and DPI.
- High-quality output in many formats, including PNG, PDF, SVG, EPS, and PGF.
- GUI for interactively exploring figures and support for headless generation of figure files (useful for batch jobs).

One of the features of matplotlib that I would like to emphasize, and that I think makes matplotlib highly suitable for generating figures for scientific publications is that all aspects of the figure can be controlled *programmatically*. This is important for reproducibility and convenient when one needs to regenerate the figure with updated data or change its appearance.

More information at the Matplotlib web page: http://matplotlib.org/

To get started using Matplotlib in a Python program, either include the symbols from the pylab module (the easy way):

```
In [2]: from pylab import *
  or import the matplotlib.pyplot module under the name plt (the tidy way):
In [3]: import matplotlib.pyplot as plt
```

5.2 MATLAB-like API

The easiest way to get started with plotting using matplotlib is often to use the MATLAB-like API provided by matplotlib.

It is designed to be compatible with MATLAB's plotting functions, so it is easy to get started with if you are familiar with MATLAB.

To use this API from matplotlib, we need to include the symbols in the pylab module:

```
In [4]: from pylab import *
```

5.2.1 Example

A simple figure with MATLAB-like plotting API:

Most of the plotting related functions in MATLAB are covered by the pylab module. For example, subplot and color/symbol selection:

```
subplot(1,2,2)
plot(y, x, 'g*-');
   25
   20
                                               Δ
   15
                                               3
   10
                                               2
     5
                                               1
                           3
                                   4
                                          5
                                                        5
                                                              10
                                                                     15
                                                                            20
                                                                                    25
```

The good thing about the pylab MATLAB-style API is that it is easy to get started with if you are familiar with MATLAB, and it has a minumum of coding overhead for simple plots.

However, I'd encourrage not using the MATLAB compatible API for anything but the simplest figures. Instead, I recommend learning and using matplotlib's object-oriented plotting API. It is remarkably powerful. For advanced figures with subplots, insets and other components it is very nice to work with.

5.3 The matplotlib object-oriented API

The main idea with object-oriented programming is to have objects that one can apply functions and actions on, and no object or program states should be global (such as the MATLAB-like API). The real advantage of this approach becomes apparent when more than one figure is created, or when a figure contains more than one subplot.

To use the object-oriented API we start out very much like in the previous example, but instead of creating a new global figure instance we store a reference to the newly created figure instance in the fig variable, and from it we create a new axis instance axes using the add_axes method in the Figure class instance fig:

```
In [8]: fig = plt.figure()
    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)
    axes.plot(x, y, 'r')
    axes.set_xlabel('x')
    axes.set_ylabel('y')
    axes.set_title('title');
```


Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure:

```
In [9]: fig = plt.figure()

axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes

# main figure
axes1.plot(x, y, 'r')
axes1.set_xlabel('x')
axes1.set_ylabel('y')
axes1.set_title('title')

# insert
axes2.plot(y, x, 'g')
axes2.set_xlabel('y')
axes2.set_ylabel('x')
axes2.set_title('insert title');
```


If we don't care about being explicit about where our plot axes are placed in the figure canvas, then we can use one of the many axis layout managers in matplotlib. My favorite is **subplots**, which can be used like this:

That was easy, but it isn't so pretty with overlapping figure axes and labels, right?

We can deal with that by using the fig.tight_layout method, which automatically adjusts the positions of the axes on the figure canvas so that there is no overlapping content:

```
In [12]: fig, axes = plt.subplots(nrows=1, ncols=2)

for ax in axes:
    ax.plot(x, y, 'r')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_title('title')

fig.tight_layout()
```


5.3.1 Figure size, aspect ratio and DPI

Matplotlib allows the aspect ratio, DPI and figure size to be specified when the Figure object is created, using the figsize and dpi keyword arguments. figsize is a tuple of the width and height of the figure in inches, and dpi is the dots-per-inch (pixel per inch). To create an 800x400 pixel, 100 dots-per-inch figure, we can do:

```
In [13]: fig = plt.figure(figsize=(8,4), dpi=100)
<matplotlib.figure.Figure at 0x1091524a8>
```

The same arguments can also be passed to layout managers, such as the subplots function:

5.3.2 Saving figures

To save a figure to a file we can use the savefig method in the Figure class:

```
In [15]: fig.savefig("filename.png")
```

Here we can also optionally specify the DPI and choose between different output formats:

```
In [16]: fig.savefig("filename.png", dpi=200)
```

What formats are available and which ones should be used for best quality? Matplotlib can generate high-quality output in a number formats, including PNG, JPG, EPS, SVG, PGF and PDF. For scientific papers, I recommend using PDF whenever possible. (LaTeX documents compiled with pdflatex can include PDFs using the includegraphics command). In some cases, PGF can also be good alternative.

5.3.3 Legends, labels and titles

Now that we have covered the basics of how to create a figure canvas and add axes instances to the canvas, let's look at how decorate a figure with titles, axis labels, and legends.

Figure titles

A title can be added to each axis instance in a figure. To set the title, use the set_title method in the axes instance:

```
In [17]: ax.set_title("title");
```

Axis labels

Similarly, with the methods set_xlabel and set_ylabel, we can set the labels of the X and Y axes:

Legends

Legends for curves in a figure can be added in two ways. One method is to use the legend method of the axis object and pass a list/tuple of legend texts for the previously defined curves:

```
In [19]: ax.legend(["curve1", "curve2", "curve3"]);
```

The method described above follows the MATLAB API. It is somewhat prone to errors and unflexible if curves are added to or removed from the figure (resulting in a wrongly labelled curve).

A better method is to use the label="label text" keyword argument when plots or other objects are added to the figure, and then using the legend method without arguments to add the legend to the figure:

```
In [20]: ax.plot(x, x**2, label="curve1")
          ax.plot(x, x**3, label="curve2")
          ax.legend();
```

The advantage with this method is that if curves are added or removed from the figure, the legend is automatically updated accordingly.

The legend function takes an optional keyword argument loc that can be used to specify where in the figure the legend is to be drawn. The allowed values of loc are numerical codes for the various places the legend can be drawn. See http://matplotlib.org/users/legend_guide.html#legend-location for details. Some of the most common loc values are:

```
In [21]: ax.legend(loc=0) # let matplotlib decide the optimal location
          ax.legend(loc=1) # upper right corner
          ax.legend(loc=2) # upper left corner
          ax.legend(loc=3) # lower left corner
          ax.legend(loc=4) # lower right corner
          # .. many more options are available
```

Out[21]: <matplotlib.legend.Legend at 0x107da0f60>

The following figure shows how to use the figure title, axis labels and legends described above:

```
In [22]: fig, ax = plt.subplots()
```

```
ax.plot(x, x**2, label="y = x**2")
ax.plot(x, x**3, label="y = x**3")
ax.legend(loc=2); # upper left corner
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title');
```


5.3.4 Formatting text: LaTeX, fontsize, font family

The figure above is functional, but it does not (yet) satisfy the criteria for a figure used in a publication. First and foremost, we need to have LaTeX formatted text, and second, we need to be able to adjust the font size to appear right in a publication.

Matplotlib has great support for LaTeX. All we need to do is to use dollar signs encapsulate LaTeX in any text (legend, title, label, etc.). For example, "\$y=x^3\$".

But here we can run into a slightly subtle problem with LaTeX code and Python text strings. In LaTeX, we frequently use the backslash in commands, for example α to produce the symbol α . But the backslash already has a meaning in Python strings (the escape code character). To avoid Python messing up our latex code, we need to use "raw" text strings. Raw text strings are prepended with an 'r', like r"\alpha" or r'\alpha' instead of "\alpha" or '\alpha':

```
In [23]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha^2$")
ax.plot(x, x**3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
ax set xlabel(r'$\alpha$) fontsize=18)
```

ax.set_xlabel(r'\$\alpha\$', fontsize=18)
ax.set_ylabel(r'\$y\$', fontsize=18)
ax.set_title('title');

We can also change the global font size and font family, which applies to all text elements in a figure (tick labels, axis labels and titles, legends, etc.):

```
In [25]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha^2$")
ax.plot(x, x**3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$y$')
ax.set_title('title');
```


A good choice of global fonts are the STIX fonts:

ax.set_title('title');

Or, alternatively, we can request that matplotlib uses LaTeX to render the text elements in the figure:

```
In [28]: matplotlib.rcParams.update({'font.size': 18, 'text.usetex': True})
In [29]: fig, ax = plt.subplots()

ax.plot(x, x**2, label=r"$y = \alpha^2$")
ax.plot(x, x**3, label=r"$y = \alpha^3$")
ax.legend(loc=2) # upper left corner
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$y$')
ax.set_title('title');
```


5.3.5 Setting colors, linewidths, linetypes

Colors With matplotlib, we can define the colors of lines and other graphical elements in a number of ways. First of all, we can use the MATLAB-like syntax where 'b' means blue, 'g' means green, etc. The MATLAB API for selecting line styles are also supported: where, for example, 'b.-' means a blue line with dots:

Out[31]: [<matplotlib.lines.Line2D at 0x109175a58>]

We can also define colors by their names or RGB hex codes and optionally provide an alpha value using the color and alpha keyword arguments:

Line and marker styles To change the line width, we can use the linewidth or lw keyword argument. The line style can be selected using the linestyle or ls keyword arguments:

```
In [33]: fig, ax = plt.subplots(figsize=(12,6))
         ax.plot(x, x+1, color="blue", linewidth=0.25)
         ax.plot(x, x+2, color="blue", linewidth=0.50)
         ax.plot(x, x+3, color="blue", linewidth=1.00)
         ax.plot(x, x+4, color="blue", linewidth=2.00)
         # possible linestype options '-', '{', '-.', ':', 'steps'
         ax.plot(x, x+5, color="red", lw=2, linestyle='-')
         ax.plot(x, x+6, color="red", lw=2, ls='-.')
         ax.plot(x, x+7, color="red", lw=2, ls=':')
         # custom dash
         line, = ax.plot(x, x+8, color="black", lw=1.50)
         line.set_dashes([5, 10, 15, 10]) # format: line length, space length, ...
         # possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ...
         ax.plot(x, x+ 9, color="green", lw=2, ls='*', marker='+')
         ax.plot(x, x+10, color="green", lw=2, ls='*', marker='o')
         ax.plot(x, x+11, color="green", lw=2, ls='*', marker='s')
         ax.plot(x, x+12, color="green", lw=2, ls='*', marker='1')
         # marker size and color
         ax.plot(x, x+13, color="purple", lw=1, ls='-', marker='o', markersize=2)
         ax.plot(x, x+14, color="purple", lw=1, ls='-', marker='o', markersize=4)
```


5.3.6 Control over axis appearance

The appearance of the axes is an important aspect of a figure that we often need to modify to make a publication quality graphics. We need to be able to control where the ticks and labels are placed, modify the font size and possibly the labels used on the axes. In this section we will look at controling those properties in a matplotlib figure.

Plot range The first thing we might want to configure is the ranges of the axes. We can do this using the set_ylim and set_xlim methods in the axis object, or axis('tight') for automatrically getting "tightly fitted" axes ranges:

Logarithmic scale It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one application of a more general transformation system in Matplotlib. Each of the axes' scales are set seperately using **set_xscale** and **set_yscale** methods which accept one parameter (with the value "log" in this case):

```
In [35]: fig, axes = plt.subplots(1, 2, figsize=(10,4))
           axes[0].plot(x, x**2, x, exp(x))
           axes[0].set_title("Normal scale")
           axes[1].plot(x, x**2, x, exp(x))
           axes[1].set_yscale("log")
           axes[1].set_title("Logarithmic scale (y)");
                                                                     Logarithmic scale (y)
                       Normal scale
      160
                                                        10<sup>3</sup>
      140
      120
                                                        10<sup>2</sup>
      100
       80
                                                        10<sup>1</sup>
        60
                                                        10<sup>0</sup>
       40
       20
                                                       10^{-1}
                                   3
                                                                                     3
```

5.3.7 Placement of ticks and custom tick labels

We can explicitly determine where we want the axis ticks with set_xticks and set_yticks, which both take a list of values for where on the axis the ticks are to be placed. We can also use the set_xticklabels and set_yticklabels methods to provide a list of custom text labels for each tick location:

There are a number of more advanced methods for controlling major and minor tick placement in matplotlib figures, such as automatic placement according to different policies. See http://matplotlib.org/api/ticker_api.html for details.

Scientific notation With large numbers on axes, it is often better use scientific notation:

5.3.8 Axis number and axis label spacing

```
In [38]: # distance between x and y axis and the numbers on the axes
    rcParams['xtick.major.pad'] = 5
    rcParams['ytick.major.pad'] = 5

fig, ax = plt.subplots(1, 1)

ax.plot(x, x**2, x, exp(x))
ax.set_yticks([0, 50, 100, 150])

ax.set_title("label and axis spacing")

# padding between axis label and axis numbers
ax.xaxis.labelpad = 5
ax.yaxis.labelpad = 5
ax.yaxis.labelpad = 5
ax.set_xlabel("x")
ax.set_ylabel("y");
```


Axis position adjustments Unfortunately, when saving figures the labels are sometimes clipped, and it can be necessary to adjust the positions of axes a little bit. This can be done using subplots_adjust:

5.3.9 Axis grid

With the grid method in the axis object, we can turn on and off grid lines. We can also customize the appearance of the grid lines using the same keyword arguments as the plot function:

```
In [41]: fig, axes = plt.subplots(1, 2, figsize=(10,3))
         # default grid appearance
         axes[0].plot(x, x**2, x, x**3, lw=2)
         axes[0].grid(True)
         # custom grid appearance
         axes[1].plot(x, x**2, x, x**3, lw=2)
         axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
     140
                                                140
     120
                                                120
     100
                                                100
      80
                                                 80
      60
                                                 60
      40
                                                 40
      20
                                                 20
```

5.3.10 Axis spines

We can also change the properties of axis spines:

```
In [42]: fig, ax = plt.subplots(figsize=(6,2))
         ax.spines['bottom'].set_color('blue')
         ax.spines['top'].set_color('blue')
         ax.spines['left'].set_color('red')
         ax.spines['left'].set_linewidth(2)
         # turn off axis spine to the right
         ax.spines['right'].set_color("none")
         ax.yaxis.tick_left() # only ticks on the left side
          1.0
          0.8
          0.6
          0.4
          0.2
                                                                             10
                         0.2
                                      0.4
                                                   0.6
                                                                0.8
```

5.3.11 Twin axes

Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting curves with different units together. Matplotlib supports this with the twinx and twiny functions:

5.3.12 Axes where x and y is zero

5.3.13 Other 2D plot styles

In addition to the regular plot method, there are a number of other functions for generating different kind of plots. See the matplotlib plot gallery for a complete list of available plot types: http://matplotlib.org/gallery.html. Some of the more useful ones are show below:

```
In [45]: n = array([0,1,2,3,4,5])
In [46]: fig, axes = plt.subplots(1, 4, figsize=(12,3))
         axes[0].scatter(xx, xx + 0.25*randn(len(xx)))
         axes[0].set_title("scatter")
         axes[1].step(n, n**2, lw=2)
         axes[1].set_title("step")
         axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5)
         axes[2].set_title("bar")
         axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5);
         axes[3].set_title("fill_between");
                                                           bar
                                                                             fill between
                                                                      140
      1.5
                            25
                                                  25
                                                                      120
      1.0
                            20
                                                  20
                                                                      100
      0.5
                            15
                                                  15
                                                                       80
      0.0
                                                                       60
                            10
                                                 10
                                                                       40
                             5
     -1.0
                                                                       20
     -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
                                                  0 1 2 3 4 5 6
                                         3
                                            4
                                                5
```

```
In [47]: # polar plot using add_axes and polar projection
    fig = plt.figure()
    ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True)
    t = linspace(0, 2 * pi, 100)
    ax.plot(t, t, color='blue', lw=3);
```



```
In [48]: # A histogram
    n = np.random.randn(100000)
    fig, axes = plt.subplots(1, 2, figsize=(12,4))

axes[0].hist(n)
    axes[0].set_title("Default histogram")
    axes[0].set_xlim((min(n), max(n)))

axes[1].hist(n, cumulative=True, bins=50)
    axes[1].set_title("Cumulative detailed histogram")
    axes[1].set_xlim((min(n), max(n)));
```


5.3.14 Text annotation

Annotating text in matplotlib figures can be done using the text function. It supports LaTeX formatting just like axis label texts and titles:

```
In [49]: fig, ax = plt.subplots()

ax.plot(xx, xx**2, xx, xx**3)

ax.text(0.15, 0.2, r"$y=x^2$", fontsize=20, color="blue")

ax.text(0.65, 0.1, r"$y=x^3$", fontsize=20, color="green");

1.0

0.5

-0.5
```

5.3.15 Figures with multiple subplots and insets

Axes can be added to a matplotlib Figure canvas manually using fig.add_axes or using a sub-figure layout manager such as subplots, subplot2grid, or gridspec:

0.6

0.8

1.0

subplots

${\bf subplot2grid}$

${\bf grid spec}$

add_axes Manually adding axes with add_axes is useful for adding insets to figures:

5.3.16 Colormap and contour figures

Colormaps and contour figures are useful for plotting functions of two variables. In most of these functions we will use a colormap to encode one dimension of the data. There are a number of predefined colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined colormaps, see: http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps

imshow

```
In [58]: fig, ax = plt.subplots()
    im = ax.imshow(Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])
    im.set_interpolation('bilinear')
    cb = fig.colorbar(im, ax=ax)
```


contour

In [59]: fig, ax = plt.subplots()

cnt = ax.contour(Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])

5.4 3D figures

To use 3D graphics in matplotlib, we first need to create an instance of the Axes3D class. 3D axes can be added to a matplotlib figure canvas in exactly the same way as 2D axes; or, more conveniently, by passing a projection='3d' keyword argument to the add_axes or add_subplot methods.

```
In [60]: from mpl_toolkits.mplot3d.axes3d import Axes3D
```

Surface plots

```
In [61]: fig = plt.figure(figsize=(14,6))

# 'ax' is a 3D-aware axis instance because of the projection='3d' keyword argument to add_subplace ax = fig.add_subplot(1, 2, 1, projection='3d')

p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)

# surface_plot with color grading and color bar
ax = fig.add_subplot(1, 2, 2, projection='3d')
p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=
```


cb = fig.colorbar(p, shrink=0.5)

Wire-frame plot

Coutour plots with projections

```
In [63]: fig = plt.figure(figsize=(8,6))
    ax = fig.add_subplot(1,1,1, projection='3d')

ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
    cset = ax.contour(X, Y, Z, zdir='z', offset=-pi, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='x', offset=-pi, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='y', offset=3*pi, cmap=cm.coolwarm)

ax.set_xlim3d(-pi, 2*pi);
    ax.set_ylim3d(0, 3*pi);
    ax.set_zlim3d(-pi, 2*pi);
```


Change the view angle We can change the perspective of a 3D plot using the view_init method, which takes two arguments: elevation and azimuth angle (in degrees):

```
In [64]: fig = plt.figure(figsize=(12,6))

ax = fig.add_subplot(1,2,1, projection='3d')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
ax.view_init(30, 45)

ax = fig.add_subplot(1,2,2, projection='3d')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
ax.view_init(70, 30)

fig.tight_layout()
```


5.4.1 Animations

Matplotlib also includes a simple API for generating animations for sequences of figures. With the FuncAnimation function we can generate a movie file from sequences of figures. The function takes the following arguments: fig, a figure canvas, func, a function that we provide which updates the figure, init_func, a function we provide to setup the figure, frame, the number of frames to generate, and blit, which tells the animation function to only update parts of the frame which have changed (for smoother animations):

```
def init():
    # setup figure

def update(frame_counter):
    # update figure for new frame

anim = animation.FuncAnimation(fig, update, init_func=init, frames=200, blit=True)

anim.save('animation.mp4', fps=30) # fps = frames per second

To use the animation features in matplotlib we first need to import the module matplotlib.animation:

In [65]: from matplotlib import animation

In [66]: # solve the ode problem of the double compound pendulum again

from scipy.integrate import odeint

g = 9.82; L = 0.5; m = 0.1

def dx(x, t):
    x1, x2, x3, x4 = x[0], x[1], x[2], x[3]

dx1 = 6.0/(m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
dx2 = 6.0/(m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
```

```
dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * sin(x1-x2) + (g/L) * sin(x2))
             return [dx1, dx2, dx3, dx4]
         x0 = [pi/2, pi/2, 0, 0] # initial state
         t = linspace(0, 10, 250) # time coordinates
         x = odeint(dx, x0, t)
                                # solve the ODE problem
  Generate an animation that shows the positions of the pendulums as a function of time:
In [67]: fig, ax = plt.subplots(figsize=(5,5))
         ax.set_ylim([-1.5, 0.5])
         ax.set_xlim([1, -1])
         pendulum1, = ax.plot([], [], color="red", lw=2)
         pendulum2, = ax.plot([], [], color="blue", lw=2)
         def init():
             pendulum1.set_data([], [])
             pendulum2.set_data([], [])
         def update(n):
             # n = frame counter
             # calculate the positions of the pendulums
             x1 = + L * sin(x[n, 0])
             y1 = -L * cos(x[n, 0])
             x2 = x1 + L * sin(x[n, 1])
             y2 = y1 - L * cos(x[n, 1])
             # update the line data
             pendulum1.set_data([0 ,x1], [0 ,y1])
             pendulum2.set_data([x1,x2], [y1,y2])
         anim = animation.FuncAnimation(fig, update, init_func=init, frames=len(t), blit=True)
         # anim.save can be called in a few different ways, some which might or might not work
         # on different platforms and with different versions of matplotlib and video encoders
         #anim.save('animation.mp4', fps=20, extra_arqs=['-vcodec', 'libx264'],
                     writer=animation.FFMpegWriter())
         anim.save('animation.mp4', fps=20, extra_args=['-vcodec', 'libx264'])
         #anim.save('animation.mp4', fps=20, writer="ffmpeg", codec="libx264")
         #anim.save('animation.mp4', fps=20, writer="avconv", codec="libx264")
         plt.close(fig)
  Note: To generate the movie file we need to have either ffmpeg or avconv installed. Install it on Ubuntu
using:
$ sudo apt-get install ffmpeg
  or (newer versions)
$ sudo apt-get install libav-tools
  On MacOSX, try:
```

dx3 = -0.5 * m * L**2 * (dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))

Figure 5.1: Double pendulum animation

5.4.2 Backends

Matplotlib has a number of "backends" which are responsible for rendering graphs. The different backends are able to generate graphics with different formats and display/event loops. There is a distinction between noninteractive backends (such as 'agg', 'svg', 'pdf', etc.) that are only used to generate image files (e.g. with the savefig function), and interactive backends (such as Qt4Agg, GTK, MaxOSX) that can display a GUI window for interactively exploring figures.

A list of available backends are:

```
In [70]: print(matplotlib.rcsetup.all_backends)
['GTK', 'GTKAgg', 'GTKCairo', 'MacOSX', 'Qt4Agg', 'Qt5Agg', 'TkAgg', 'WX', 'WXAgg', 'CocoaAgg', 'GTK3Ca
```

The default backend, called agg, is based on a library for raster graphics which is great for generating raster formats like PNG.

Normally we don't need to bother with changing the default backend; but sometimes it can be useful to switch to, for example, PDF or GTKCairo (if you are using Linux) to produce high-quality vector graphics instead of raster based graphics.

Generating SVG with the svg backend

```
In [71]: #
         # RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
         # (e.g. Kernel > Restart)
         import matplotlib
         matplotlib.use('svg')
         import matplotlib.pylab as plt
         import numpy
         from IPython.display import Image, SVG
/Users/dmertz/anaconda/lib/python3.4/site-packages/matplotlib/__init__.py:1318: UserWarning: This call
because the backend has already been chosen;
matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.
  warnings.warn(_use_error_msg)
In [72]: #
         # Now we are using the sug backend to produce SVG vector graphics
         fig, ax = plt.subplots()
         t = numpy.linspace(0, 10, 100)
         ax.plot(t, numpy.cos(t)*numpy.sin(t))
         plt.savefig("test.svg")
```



```
In [73]: #
     # Show the produced SVG file.
     #
     SVG(filename="test.svg")
```

Out[73]:

The IPython notebook inline backend When we use IPython notebook it is convenient to use a matplotlib backend that outputs the graphics embedded in the notebook file. To activate this backend, somewhere in the beginning on the notebook, we add:

%matplotlib inline

It is also possible to activate inline matplotlib plotting with:

%pylab inline

The difference is that "pylab inline imports a number of packages into the global address space (scipy, numpy), while "matplotlib inline only sets up inline plotting. In new notebooks created for IPython 1.0+, I would recommend using "matplotlib inline, since it is tidier and you have more control over which packages are imported and how. Commonly, scipy and numpy are imported separately with:

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
```

The inline backend has a number of configuration options that can be set by using the IPython magic command "config to update settings in InlineBackend. For example, we can switch to SVG figures or higher resolution figures with either:

Interactive backend (this makes more sense in a python script file)

In [76]: #

plt.show()

```
# RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
# (e.g. Kernel > Restart)
#
import matplotlib
matplotlib.use('Qt4Agg') # or for example MacOSX
import matplotlib.pylab as plt
import numpy

/Users/dmertz/anaconda/lib/python3.4/site-packages/matplotlib/_init__.py:1318: UserWarning: This call because the backend has already been chosen;
matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
or matplotlib.backends is imported for the first time.

warnings.warn(_use_error_msg)

In [77]: # Now, open an interactive plot window with the Qt4Agg backend
fig, ax = plt.subplots()
t = numpy.linspace(0, 10, 100)
ax.plot(t, numpy.cos(t)*numpy.sin(t))
```


Note that when we use an interactive backend, we must call <code>plt.show()</code> to make the figure appear on the screen.

5.5 Further reading

- http://www.matplotlib.org The project web page for matplotlib.
- https://github.com/matplotlib/matplotlib The source code for matplotlib.
- http://matplotlib.org/gallery.html A large gallery showcaseing various types of plots matplotlib can create. Highly recommended!
- \bullet http://www.loria.fr/~rougier/teaching/matplotlib A good matplotlib tutorial.
- http://scipy-lectures.github.io/matplotlib/matplotlib.html Another good matplotlib reference.

Chapter 6 Sympy - Symbolic algebra in Python

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

6.1 Introduction

There are two notable Computer Algebra Systems (CAS) for Python:

- SymPy A python module that can be used in any Python program, or in an IPython session, that provides powerful CAS features.
- Sage Sage is a full-featured and very powerful CAS environment that aims to provide an open source system that competes with Mathematica and Maple. Sage is not a regular Python module, but rather a CAS environment that uses Python as its programming language.

Sage is in some aspects more powerful than SymPy, but both offer very comprehensive CAS functionality. The advantage of SymPy is that it is a regular Python module and integrates well with the IPython notebook. In this lecture we will therefore look at how to use SymPy with IPython notebooks. If you are interested

in an open source CAS environment I also recommend to read more about Sage.

To get started using SymPy in a Python program or notebook, import the module sympy:

```
In [2]: from sympy import *
```

To get nice-looking LATEX formatted output run:

In [3]: init_printing()

```
# or with older versions of sympy/ipython, load the IPython extension
#%load_ext sympy.interactive.ipythonprinting
# or
#%load_ext sympyprinting
```

6.2 Symbolic variables

In SymPy we need to create symbols for the variables we want to work with. We can create a new symbol using the Symbol class:

```
In [4]: x = Symbol('x')

In [5]: (pi + x)**2

Out[5]:

(x+\pi)^2

In [6]: # alternative way of defining symbols
a, b, c = symbols("a, b, c")

In [7]: type(a)

Out[7]: sympy.core.symbol.Symbol
We can add assumptions to symbols when we create them:

In [8]: x = Symbol('x', real=True)

In [9]: x.is_imaginary

Out[9]: False

In [10]: x = Symbol('x', positive=True)

In [11]: x > 0

Out[11]:
```

True

6.2.1 Complex numbers

The imaginary unit is denoted I in Sympy.

6.2.2 Rational numbers

```
There are three different numerical types in SymPy: Real, Rational, Integer:
```

6.3 Numerical evaluation

SymPy uses a library for artitrary precision as numerical backend, and has predefined SymPy expressions for a number of mathematical constants, such as: pi, e, oo for infinity.

To evaluate an expression numerically we can use the evalf function (or N). It takes an argument n which specifies the number of significant digits.

When we numerically evaluate algebraic expressions we often want to substitute a symbol with a numerical value. In SymPy we do that using the **subs** function:

Out [23]:

21.5443823618587

The subs function can of course also be used to substitute Symbols and expressions:

$$(a+2\pi)^2$$

We can also combine numerical evolution of expressions with NumPy arrays:

However, this kind of numerical evolution can be very slow, and there is a much more efficient way to do it: Use the function lambdify to "compile" a Sympy expression into a function that is much more efficient to evaluate numerically:

```
In [29]: f = lambdify([x], (x + pi)**2, 'numpy') # the first argument is a list of variables that # f will be a function of: in this case only x \rightarrow f(x) In [30]: y_vec = f(x_vec) # now we can directly pass a numpy array and f(x) is efficiently evaluated
```

The speedup when using "lambdified" functions instead of direct numerical evaluation can be significant, often several orders of magnitude. Even in this simple example we get a significant speed up:

The slowest run took 13.77 times longer than the fastest. This could mean that an intermediate result i 1000000 loops, best of 3: 1.51 μ s per loop

6.4 Algebraic manipulations

One of the main uses of an CAS is to perform algebraic manipulations of expressions. For example, we might want to expand a product, factor an expression, or simply an expression. The functions for doing these basic operations in SymPy are demonstrated in this section.

6.4.1 Expand and factor

The first steps in an algebraic manipulation

```
In [33]: (x+1)*(x+2)*(x+3)

Out [33]: (x+1)(x+2)(x+3)
In [34]: expand((x+1)*(x+2)*(x+3))
Out [34]: x^3+6x^2+11x+6
```

The expand function takes a number of keywords arguments which we can tell the functions what kind of expansions we want to have performed. For example, to expand trigonometric expressions, use the trig=True keyword argument:

```
In [35]: \sin(a+b) Out[35]: \sin(a+b) In [36]: \exp(a+b), \operatorname{trig=True}) Out[36]: \sin(a)\cos(b) + \sin(b)\cos(a)
```

See help(expand) for a detailed explanation of the various types of expansions the expand functions can perform.

The opposite a product expansion is of course factoring. The factor an expression in SymPy use the factor function:

6.4.2 Simplify

The simplify tries to simplify an expression into a nice looking expression, using various techniques. More specific alternatives to the simplify functions also exists: trigsimp, powsimp, logcombine, etc.

The basic usages of these functions are as follows:

6.4.3 apart and together

To manipulate symbolic expressions of fractions, we can use the apart and together functions:

```
In [41]: f1 = 1/((a+1)*(a+2))
In [42]: f1
Out [42]:
                                                      \frac{1}{(a+1)(a+2)}
In [43]: apart(f1)
Out [43]:
                                                     -\frac{1}{a+2} + \frac{1}{a+1}
In [44]: f2 = 1/(a+2) + 1/(a+3)
In [45]: f2
Out [45]:
                                                      \frac{1}{a+3} + \frac{1}{a+2}
In [46]: together(f2)
Out [46]:
   Simplify usually combines fractions but does not factor:
In [47]: simplify(f2)
Out [47]:
                                                      \frac{2a+5}{(a+2)(a+3)}
```

6.5 Calculus

In addition to algebraic manipulations, the other main use of CAS is to do calculus, like derivatives and integrals of algebraic expressions.

6.5.1 Differentiation

Differentiation is usually simple. Use the diff function. The first argument is the expression to take the derivative of, and the second argument is the symbol by which to take the derivative:

```
In [48]: y
Out [48]:
                                              (x+\pi)^2
In [49]: diff(y**2, x)
Out[49]:
                                              4\left(x+\pi\right)^3
   For higher order derivatives we can do:
In [50]: diff(y**2, x, x)
Out [50]:
                                             12(x+\pi)^2
In [51]: diff(y**2, x, 2) # same as above
Out[51]:
                                             12(x+\pi)^2
   To calculate the derivative of a multivariate expression, we can do:
In [52]: x, y, z = symbols("x,y,z")
In [53]: f = \sin(x*y) + \cos(y*z)
In [54]: diff(f, x, 1, y, 2)
Out [54]:
                                     -x(xy\cos(xy)+2\sin(xy))
```

6.6 Integration

```
Integration is done in a similar fashion:
```

```
In [55]: f  \sin{(xy)} + \cos{(yz)}  In [56]: integrate(f, x)  \cot{(56)} :
```

$$x\cos(yz) + \begin{cases} 0 & \text{for } y = 0\\ -\frac{1}{y}\cos(xy) & \text{otherwise} \end{cases}$$

By providing limits for the integration variable we can evaluate definite integrals:

```
In [57]: integrate(f, (x, -1, 1))
Out[57]:
```

 $2\cos(yz)$

and also improper integrals

Out[58]:

Out[61]:

Out [62]:

 $\sqrt{\pi}$

Remember, oo is the SymPy notation for inifinity.

6.6.1 Sums and products

We can evaluate sums and products using the functions: 'Sum'

```
In [59]: n = Symbol("n")
In [60]: Sum(1/n**2, (n, 1, 10))
Out[60]: \sum_{n=1}^{10} \frac{1}{n^2}
In [61]: Sum(1/n**2, (n,1, 10)).evalf()
```

1.54976773116654

```
In [62]: Sum(1/n**2, (n, 1, oo)).evalf()
```

1.64493406684823

Products work much the same way:

$$\prod\nolimits_{n=1}^{10} n$$

6.7 Limits

```
Limits can be evaluated using the limit function. For example,
```

```
In [64]: limit(sin(x)/x, x, 0)
Out[64]:
```

1

We can use 'limit' to check the result of derivation using the diff function:

```
In [65]: f  \begin{aligned} &\text{Out} \text{ [65]:} \\ &\text{ sin} \left( xy \right) + \cos \left( yz \right) \end{aligned} \\ &\text{In [66]: diff(f, x)} \\ &\text{Out[66]:} \\ &\frac{\mathrm{d} f(x,y)}{\mathrm{d} x} = \frac{f(x+h,y) - f(x,y)}{h} \end{aligned}
```

In [67]: h = Symbol("h")

In [68]: limit((f.subs(x, x+h) - f)/h, h, 0)

Out[68]:

 $y\cos(xy)$

OK!

We can change the direction from which we approach the limiting point using the dir keywork argument:

```
In [69]: limit(1/x, x, 0, dir="+")
Out[69]:

In [70]: limit(1/x, x, 0, dir="-")
Out[70]:
```

 $-\infty$

6.8 Series

Series expansion is also one of the most useful features of a CAS. In SymPy we can perform a series expansion of an expression using the series function:

In [71]: series(exp(x), x)
Out[71]:

$$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \mathcal{O}(x^6)$$

By default it expands the expression around x = 0, but we can expand around any value of x by explicitly include a value in the function call:

In [72]: series(exp(x), x, 1)

Out[72]:

$$e + e(x - 1) + \frac{e}{2}(x - 1)^{2} + \frac{e}{6}(x - 1)^{3} + \frac{e}{24}(x - 1)^{4} + \frac{e}{120}(x - 1)^{5} + \mathcal{O}\left((x - 1)^{6}; x \to 1\right)$$

And we can explicitly define to which order the series expansion should be carried out:

In [73]: series(exp(x), x, 1, 10)

Out[73]:

$$e + e\left(x - 1\right) + \frac{e}{2}\left(x - 1\right)^{2} + \frac{e}{6}\left(x - 1\right)^{3} + \frac{e}{24}\left(x - 1\right)^{4} + \frac{e}{120}\left(x - 1\right)^{5} + \frac{e}{720}\left(x - 1\right)^{6} + \frac{e}{5040}\left(x - 1\right)^{7} + \frac{e}{40320}\left(x - 1\right)^{8} + \frac{e}{362880}\left(x - 1\right)^{9} + \mathcal{O}\left(\left(x - 1\right)^{10}; x \to 1\right)^{8} + \frac{e}{120}\left(x - 1\right)^{10} + \frac{e}{120}\left(x - 1\right)^{10$$

The series expansion includes the order of the approximation, which is very useful for keeping track of the order of validity when we do calculations with series expansions of different order:

In [74]: s1 = cos(x).series(x, 0, 5)s1

Out[74]:

$$1 - \frac{x^2}{2} + \frac{x^4}{24} + \mathcal{O}\left(x^5\right)$$

In [75]: s2 = sin(x).series(x, 0, 2)

Out [75]:

$$x + \mathcal{O}(x^2)$$

In [76]: expand(s1 * s2)

Out [76]:

$$x + \mathcal{O}(x^2)$$

If we want to get rid of the order information we can use the removeO method:

In [77]: expand(s1.removeO() * s2.removeO())

Out [77]:

$$\frac{x^5}{24} - \frac{x^3}{2} + x$$

But note that this is not the correct expansion of $\cos(x)\sin(x)$ to 5th order:

In [78]: $(\cos(x)*\sin(x)).\sec(x, 0, 6)$

Out [78]:

$$x - \frac{2x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^6)$$

6.9 Linear algebra

6.9.1 Matrices

Matrices are defined using the Matrix class:

Out[81]:

 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

With Matrix class instances we can do the usual matrix algebra operations:

In [82]: A**2

Out[82]:

$$\begin{bmatrix} m_{11}^2 + m_{12}m_{21} & m_{11}m_{12} + m_{12}m_{22} \\ m_{11}m_{21} + m_{21}m_{22} & m_{12}m_{21} + m_{22}^2 \end{bmatrix}$$

In [83]: A * b

Out[83]:

$$\begin{bmatrix} b_1 m_{11} + b_2 m_{12} \\ b_1 m_{21} + b_2 m_{22} \end{bmatrix}$$

And calculate determinants and inverses, and the like:

In [84]: A.det()

Out [84]:

 $m_{11}m_{22} - m_{12}m_{21}$

In [85]: A.inv()

Out[85]:

$$\begin{bmatrix} \frac{1}{m_{11}} + \frac{m_{12}m_{21}}{m_{11}^2 \left(m_{22} - \frac{m_{12}m_{21}}{m_{11}}\right)} & -\frac{m_{12}}{m_{11} \left(m_{22} - \frac{m_{12}m_{21}}{m_{11}}\right)} \\ -\frac{m_{21}}{m_{11} \left(m_{22} - \frac{m_{12}m_{21}}{m_{11}}\right)} & \frac{1}{m_{22} - \frac{m_{12}m_{21}}{m_{11}}} \end{bmatrix}$$

6.10 Solving equations

For solving equations and systems of equations we can use the solve function:

```
In [86]: solve(x**2 - 1, x)

Out[86]:

[-1, 1]
In [87]: solve(x**4 - x**2 - 1, x)

Out[87]:

\left[-i\sqrt{-\frac{1}{2} + \frac{\sqrt{5}}{2}}, i\sqrt{-\frac{1}{2} + \frac{\sqrt{5}}{2}}, -\sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}}, \sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}}\right]
System of equations:

In [88]: solve([x + y - 1, x - y - 1], [x,y])

Out[88]:

\{x:1, y:0\}
In terms of other symbolic expressions:

In [89]: solve([x + y - a, x - y - c], [x,y])

Out[89]:
```

6.11 Quantum mechanics: noncommuting variables

How about non-commuting symbols? In quantum mechanics we need to work with noncommuting operators, and SymPy has a nice support for noncommuting symbols and even a subpackage for quantum mechanics related calculations!

```
In [90]: from sympy.physics.quantum import *
```

6.12 States

We can define symbol states, kets and bras:

```
In [91]: Ket('psi')  
Out[91]:  
|\psi\rangle  
In [92]: Bra('psi')  
Out[92]:  
\langle\psi|
```

```
In [93]: u = Ket('0')
              a, b = symbols('alpha beta', complex=True)
In [94]: phi = a * u + sqrt(1-abs(a)**2) * d; phi
Out [94]:
                                                        \alpha|0\rangle + \sqrt{-\left|\alpha\right|^2 + 1}|1\rangle
In [95]: Dagger(phi)
Out [95]:
                                                        \overline{\alpha}\langle 0| + \overline{\sqrt{-\left|\alpha\right|^2 + 1}}\langle 1|
In [96]: Dagger(phi) * d
Out [96]:
                                                    \left(\overline{\alpha}\langle 0| + \overline{\sqrt{-\left|\alpha\right|^2 + 1}}\langle 1|\right)|1\rangle
    Use qapply to distribute a mutiplication:
In [97]: qapply(Dagger(phi) * d)
Out [97]:
                                                   \overline{\alpha} \langle 0 | 1 \rangle + \overline{\sqrt{-|\alpha|^2 + 1}} \langle 1 | 1 \rangle
In [98]: qapply(Dagger(phi) * u)
Out [98]:
                                                   \overline{\alpha} \langle 0 | 0 \rangle + \overline{\sqrt{-|\alpha|^2 + 1}} \langle 1 | 0 \rangle
6.12.1 Operators
In [99]: A = Operator('A')
              B = Operator('B')
    Check if they are commuting!
In [100]: A * B == B * A
Out[100]: False
In [101]: expand((A+B)**3)
Out[101]:
                          ABA + A(B)^{2} + (A)^{2}B + (A)^{3} + BAB + B(A)^{2} + (B)^{2}A + (B)^{3}
In [102]: c = Commutator(A,B)
```

Out [102]:

[A,B]

We can use the doit method to evaluate the commutator:

In [103]: c.doit()

Out[103]:

AB - BA

We can mix quantum operators with C-numbers:

Out[104]:

 $\alpha\beta [A, B]$

To expand the commutator, use the expand method with the commutator=True keyword argument:

Out[105]:

-[A, B]B + A[A, B]

In [106]: Dagger(Commutator(A, B))

Out[106]:

 $-\left[A^{\dagger},B^{\dagger}\right]$

In [107]: ac = AntiCommutator(A,B)

In [108]: ac.doit()

Out[108]:

AB + BA

Example: Quadrature commutator Let's look at the commutator of the electromagnetic field quadatures x and p. We can write the quadrature operators in terms of the creation and annihilation operators as:

$$x = (a + a^{\dagger})/\sqrt{2}$$
$$p = -i(a - a^{\dagger})/\sqrt{2}$$

Out[109]:

$$\frac{\sqrt{2}}{2}\left(A^{\dagger}+A\right)$$

In [110]: P = -I * (A - Dagger(A))/sqrt(2)

Out[110]:

$$-\frac{\sqrt{2}i}{2}\left(-A^{\dagger}+A\right)$$

Let's expand the commutator [x, p]

In [111]: Commutator(X, P).expand(commutator=True).expand(commutator=True)

Out[111]:

$$-i\left[A^{\dagger},A\right]$$

Here we see directly that the well known commutation relation for the quadratures

$$[x,p]=i$$

is a directly related to

$$[A, A^{\dagger}] = 1$$

(which SymPy does not know about, and does not simplify).

For more details on the quantum module in SymPy, see:

- http://docs.sympy.org/0.7.2/modules/physics/quantum/index.html
- $\bullet \ http://nbviewer.ipython.org/urls/raw.github.com/ipython/ipython/master/docs/examples/notebooks/sympy_quantum/ipython/ipy$

6.13 Further reading

- http://sympy.org/en/index.html The SymPy projects web page.
- https://github.com/sympy/sympy The source code of SymPy.
- http://live.sympy.org Online version of SymPy for testing and demonstrations.

Figure 6.1: Continuum Logo

Chapter 7

Using Fortran and C code with Python

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

Populating the interactive namespace from numpy and matplotlib

The advantage of Python is that it is flexible and easy to program. The time it takes to setup a new calulation is therefore short. But for certain types of calculations Python (and any other interpreted language) can be very slow. It is particularly iterations over large arrays that is difficult to do efficiently.

Such calculations may be implemented in a compiled language such as C or Fortran. In Python it is relatively easy to call out to libraries with compiled C or Fortran code. In this lecture we will look at how to do that.

But before we go ahead and work on optimizing anything, it is always worthwhile to ask....

In [2]: Image(filename='images/optimizing-what.png')
Out[2]:

7.1 Fortran

7.1.1 F2PY

F2PY is a program that (almost) automatically wraps fortran code for use in Python: By using the f2py program we can compile fortran code into a module that we can import in a Python program.

F2PY is a part of NumPy, but you will also need to have a fortran compiler to run the examples below.

7.1.2 Example 0: scalar input, no output

```
In [3]: %%file hellofortran.f
        C File hellofortran.f
                subroutine hellofortran (n)
                integer n
                do 100 i=0, n
                    print *, "Fortran says hello"
        100
                continue
                end
Overwriting hellofortran.f
  Generate a python module using f2py:
In [4]: !f2py -c -m hellofortran hellofortran.f
/bin/sh: f2py: command not found
  Example of a python script that use the module:
In [5]: %%file hello.py
        import hellofortran
       hellofortran.hellofortran(5)
Overwriting hello.py
In [6]: # run the script
        !python hello.py
Traceback (most recent call last):
  File "hello.py", line 1, in <module>
    import hellofortran
ImportError: No module named 'hellofortran'
       Example 1: vector input and scalar output
In [7]: %%file dprod.f
               subroutine dprod(x, y, n)
               double precision x(n), y
               y = 1.0
               do 100 i=1, n
                   y = y * x(i)
        100
               continue
```

end

```
Overwriting dprod.f
In [8]: !rm -f dprod.pyf
        !f2py -m dprod -h dprod.pyf dprod.f
/bin/sh: f2py: command not found
   The f2py program generated a module declaration file called dsum.pyf. Let's look what's in it:
In [9]: !cat dprod.pyf
cat: dprod.pyf: No such file or directory
  The module does not know what Fortran subroutine arguments is input and output, so we need to
manually edit the module declaration files and mark output variables with intent(out) and input variable
with intent(in):
In [10]: %%file dprod.pyf
         python module dprod ! in
             interface ! in :dprod
                 subroutine dprod(x,y,n) ! in :dprod:dprod.f
                      double precision dimension(n), intent(in) :: x
                      double precision, intent(out) :: y
                      integer, optional,check(len(x)>=n),depend(x),intent(in) :: n=len(x)
                 end subroutine dprod
             end interface
         end python module dprod
Writing dprod.pyf
   Compile the fortran code into a module that can be included in python:
In [11]: !f2py -c dprod.pyf dprod.f
/bin/sh: f2py: command not found
Using the module from Python
In [12]: import dprod
                                                    Traceback (most recent call last)
        ImportError
        <ipython-input-12-3a1d7a723444> in <module>()
    ---> 1 import dprod
        ImportError: No module named 'dprod'
In [ ]: help(dprod)
In []: dprod.dprod(arange(1,50))
In [ ]: # compare to numpy
        prod(arange(1.0,50.0))
```

```
In []: dprod.dprod(arange(1,10), 5) # only the 5 first elements
   Compare performance:
In []: xvec = rand(500)
In []: timeit dprod.dprod(xvec)
In []: timeit xvec.prod()
```

7.1.4 Example 2: cumulative sum, vector input and vector output

The cumulative sum function for an array of data is a good example of a loop intense algorithm: Loop through a vector and store the cumulative sum in another vector.

Fortran subroutine for the same thing: here we have added the intent(in) and intent(out) as comment lines in the original fortran code, so we do not need to manually edit the fortran module declaration file generated by f2py.

We can directly compile the fortran code to a python module:

```
In [ ]: !f2py -c dcumsum.f -m dcumsum
In [ ]: import dcumsum
In [ ]: a = array([1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0])
In [ ]: py_dcumsum(a)
In [ ]: dcumsum.dcumsum(a)
In [ ]: cumsum(a)
```

Benchmark the different implementations:

```
In []: a = rand(10000)
In []: timeit py_dcumsum(a)
In []: timeit dcumsum.dcumsum(a)
In []: timeit a.cumsum()
```

7.1.5 Further reading

- 1. http://www.scipy.org/F2py
- 2. http://dsnra.jpl.nasa.gov/software/Python/F2PY_tutorial.pdf
- 3. http://www.shocksolution.com/2009/09/f2py-binding-fortran-python/

7.2 C

7.3 ctypes

ctypes is a Python library for calling out to C code. It is not as automatic as f2py, and we manually need to load the library and set properties such as the functions return and argument types. On the otherhand we do not need to touch the C code at all.

```
In [ ]: %%file functions.c
        #include <stdio.h>
        void hello(int n);
        double dprod(double *x, int n);
        void dcumsum(double *a, double *b, int n);
        void
        hello(int n)
            int i;
            for (i = 0; i < n; i++)
                printf("C says hello\n");
        }
        double
        dprod(double *x, int n)
            int i;
            double y = 1.0;
            for (i = 0; i < n; i++)
```

```
y *= x[i];
}

return y;
}

void
dcumsum(double *a, double *b, int n)
{
   int i;

   b[0] = a[0];
   for (i = 1; i < n; i++)
   {
      b[i] = a[i] + b[i-1];
   }
}</pre>
```

Compile the C file into a shared library:

The result is a compiled shared library libfunctions.so:

In []: !file libfunctions.so

Now we need to write wrapper functions to access the C library: To load the library we use the ctypes package, which included in the Python standard library (with extensions from numpy for passing arrays to C). Then we manually set the types of the argument and return values (no automatic code inspection here!).

```
In [ ]: %%file functions.py
```

```
import numpy
import ctypes

_libfunctions = numpy.ctypeslib.load_library('libfunctions', '.')

_libfunctions.hello.argtypes = [ctypes.c_int]
_libfunctions.hello.restype = ctypes.c_void_p

_libfunctions.dprod.argtypes = [numpy.ctypeslib.ndpointer(dtype=numpy.float), ctypes.c_int]
_libfunctions.dprod.restype = ctypes.c_double

_libfunctions.dcumsum.argtypes = [numpy.ctypeslib.ndpointer(dtype=numpy.float), numpy.ctypeslib_
_libfunctions.dcumsum.restype = ctypes.c_void_p

def hello(n):
    return _libfunctions.hello(int(n))

def dprod(x, n=None):
    if n is None:
        n = len(x)
    x = numpy.asarray(x, dtype=numpy.float)
```

return _libfunctions.dprod(x, int(n))

```
def dcumsum(a, n):
           a = numpy.asarray(a, dtype=numpy.float)
           b = numpy.empty(len(a), dtype=numpy.float)
           _libfunctions.dcumsum(a, b, int(n))
           return b
In [ ]: %%file run_hello_c.py
       import functions
       functions.hello(3)
In [ ]: !python run_hello_c.py
In [ ]: import functions
7.3.1 Product function:
In []: functions.dprod([1,2,3,4,5])
7.3.2 Cummulative sum:
In []: a = rand(100000)
In []: res_c = functions.dcumsum(a, len(a))
In [ ]: res_fortran = dcumsum.dcumsum(a)
In [ ]: res_c - res_fortran
7.3.3
       Simple benchmark
In []: timeit functions.dcumsum(a, len(a))
In []: timeit dcumsum.dcumsum(a)
In []: timeit a.cumsum()
7.3.4 Further reading
  • http://docs.python.org/2/library/ctypes.html
```

7.4 Cython

• http://www.scipy.org/Cookbook/Ctypes

A hybrid between python and C that can be compiled: Basically Python code with type declarations.

A build file for generating C code and compiling it into a Python module.

```
In [ ]: %%file setup.py
        from distutils.core import setup
        from distutils.extension import Extension
        from Cython.Distutils import build_ext
        setup(
            cmdclass = {'build_ext': build_ext},
            ext_modules = [Extension("cy_dcumsum", ["cy_dcumsum.pyx"])]
In [ ]: !python setup.py build_ext --inplace
In [ ]: import cy_dcumsum
In []: a = array([1,2,3,4], dtype=float)
        b = empty_like(a)
        cy_dcumsum.dcumsum(a,b)
In []: a = array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])
In [ ]: b = empty_like(a)
        cy_dcumsum.dcumsum(a, b)
In [ ]: py_dcumsum(a)
In []: a = rand(100000)
       b = empty_like(a)
In [ ]: timeit py_dcumsum(a)
In []: timeit cy_dcumsum.dcumsum(a,b)
```

7.4.1 Cython in the IPython notebook

In []: timeit cy_dcumsum2(a,b)

When working with the IPython (especially in the notebook), there is a more convenient way of compiling and loading Cython code. Using the %%cython IPython magic (command to IPython), we can simply type the Cython code in a code cell and let IPython take care of the conversion to C code, compilation and loading of the function. To be able to use the %%cython magic, we first need to load the extension cythonmagic:

7.4.2 Further reading

- http://cython.org
- $\bullet \ \, \text{http://docs.cython.org/src/userguide/tutorial.html}$
- http://wiki.cython.org/tutorials/numpy

Figure 7.1: Continuum Logo

Chapter 8

Tools for high-performance computing applications

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

```
In [1]: %matplotlib inline
    import matplotlib.pyplot as plt
```

8.1 multiprocessing

Python has a built-in process-based library for concurrent computing, called multiprocessing.

```
In [2]: import multiprocessing
        import os
        import time
        import numpy
In [3]: def task(args):
            print("PID =", os.getpid(), ", args =", args)
            return os.getpid(), args
In [4]: task("test")
PID = 39698 , args = test
Out[4]: (39698, 'test')
In [5]: pool = multiprocessing.Pool(processes=4)
In [6]: result = pool.map(task, [1,2,3,4,5,6,7,8])
PID = 39708 , args = 1
PID = 39709 , args = 2
PID = 39710 , args = 3
PID = 39711 , args = 4
PID = 39708 , args = 7
PID = 39709 , args = 5
PID = 39710 , args = 6
PID = 39709 , args = 8
```

The multiprocessing package is very useful for highly parallel tasks that do not need to communicate with each other, other than when sending the initial data to the pool of processes and when and collecting the results.

8.2 IPython parallel

IPython includes a very interesting and versatile parallel computing environment, which is very easy to use. It builds on the concept of ipython engines and controllers, that one can connect to and submit tasks to. To get started using this framework for parallel computing, one first have to start up an IPython cluster of engines. The easiest way to do this is to use the ipcluster command,

```
$ ipcluster start -n 4
```

Or, alternatively, from the "Clusters" tab on the IPython notebook dashboard page. This will start 4 IPython engines on the current host, which is useful for multicore systems. It is also possible to setup IPython clusters that spans over many nodes in a computing cluster. For more information about possible use cases, see the official documentation Using IPython for parallel computing.

To use the IPython cluster in our Python programs or notebooks, we start by creating an instance of IPython.parallel.Client:

```
In [8]: from IPython.parallel import Client
In [9]: cli = Client()
/Users/dmertz/anaconda/lib/python3.4/site-packages/IPython/parallel/client/client.py:452: RuntimeWarnin
            Controller appears to be listening on localhost, but not on this machine.
            If this is true, you should specify Client(...,sshserver='you@192.168.0.107')
            or instruct your controller to listen on an external IP.
  RuntimeWarning)
   Using the 'ids' attribute we can retreive a list of ids for the IPython engines in the cluster:
In [10]: cli.ids
Out[10]: [0, 1, 2, 3]
   Each of these engines are ready to execute tasks. We can selectively run code on individual engines:
In [11]: def getpid():
              """ return the unique ID of the current process """
             import os
             return os.getpid()
In [12]: # first try it on the notebook process
         getpid()
```

We can use this cluster of IPython engines to execute tasks in parallel. The easiest way to dispatch a function to different engines is to define the function with the decorator:

```
@view.parallel(block=True)
```

Here, view is supposed to be the engine pool which we want to dispatch the function (task). Once our function is defined this way we can dispatch it to the engine using the map method in the resulting class (in Python, a decorator is a language construct which automatically wraps the function into another function or a class).

To see how all this works, lets look at an example:

Now, to map the function dummy_task to the random delay time data, we use the map method in dummy_task:

Let's do the same thing again with many more tasks and visualize how these tasks are executed on different IPython engines:

```
In [19]: def visualize_tasks(results):
    res = numpy.array(results)
    fig, ax = plt.subplots(figsize=(10, res.shape[1]))
```

```
vticks = []
             yticklabels = []
             tmin = min(res[:,1])
             for n, pid in enumerate(numpy.unique(res[:,0])):
                 yticks.append(n)
                 yticklabels.append("%d" % pid)
                 for m in numpy.where(res[:,0] == pid)[0]:
                     ax.add_patch(plt.Rectangle((res[m,1] - tmin, n-0.25),
                                   res[m,2] - res[m,1], 0.5, color="green", alpha=0.5))
             ax.set_ylim(-.5, n+.5)
             ax.set_xlim(0, max(res[:,2]) - tmin + 0.)
             ax.set_yticks(yticks)
             ax.set_yticklabels(yticklabels)
             ax.set_ylabel("PID")
             ax.set_xlabel("seconds")
In [20]: delay_times = numpy.random.rand(64)
In [21]: result = dummy_task.map(delay_times)
         visualize_tasks(result)
       37560
       37558
     딢
       37557
       37556
                           2
                                           4
           0
                                                           6
                                                                          8
```

That's a nice and easy parallelization! We can see that we utilize all four engines quite well.

But one short coming so far is that the tasks are not load balanced, so one engine might be idle while others still have more tasks to work on.

seconds

However, the IPython parallel environment provides a number of alternative "views" of the engine cluster, and there is a view that provides load balancing as well (above we have used the "direct view", which is why we called it "dview").

To obtain a load balanced view we simply use the load_balanced_view method in the engine cluster client instance cli:

```
time.sleep(delay)
t1 = time.time()
return [pid, t0, t1]
```


In the example above we can see that the engine cluster is a bit more efficiently used, and the time to completion is shorter than in the previous example.

8.2.1 Further reading

There are many other ways to use the IPython parallel environment. The official documentation has a nice guide:

• http://ipython.org/ipython-doc/dev/parallel/

8.3 MPI

When more communication between processes is required, sophisticated solutions such as MPI and OpenMP are often needed. MPI is process based parallel processing library/protocol, and can be used in Python programs through the mpi4py package:

http://mpi4py.scipy.org/

To use the mpi4py package we include MPI from mpi4py:

from mpi4py import MPI

A MPI python program must be started using the mpirun -n N command, where N is the number of processes that should be included in the process group.

Note that the IPython parallel environment also has support for MPI, but to begin with we will use mpi4py and the mpirum in the follow examples.

8.3.1 Example 1

```
In [25]: %%file mpitest.py
    from mpi4py import MPI
    comm = MPI.COMM_WORLD
```

```
rank = comm.Get_rank()
         if rank == 0:
            data = [1.0, 2.0, 3.0, 4.0]
            comm.send(data, dest=1, tag=11)
         elif rank == 1:
           data = comm.recv(source=0, tag=11)
         print "rank =", rank, ", data =", data
Overwriting mpitest.py
In [26]: !mpirun -n 2 python mpitest.py
/bin/sh: mpirun: command not found
8.3.2
      Example 2
Send a numpy array from one process to another:
In [27]: %%file mpi-numpy-array.py
         from mpi4py import MPI
         import numpy
         comm = MPI.COMM_WORLD
         rank = comm.Get_rank()
         if rank == 0:
            data = numpy.random.rand(10)
            comm.Send(data, dest=1, tag=13)
         elif rank == 1:
            data = numpy.empty(10, dtype=numpy.float64)
            comm.Recv(data, source=0, tag=13)
         print "rank =", rank, ", data =", data
Overwriting mpi-numpy-array.py
In [28]: !mpirun -n 2 python mpi-numpy-array.py
/bin/sh: mpirun: command not found
       Example 3: Matrix-vector multiplication
In [29]: # prepare some random data
         N = 16
         A = numpy.random.rand(N, N)
         numpy.save("random-matrix.npy", A)
         x = numpy.random.rand(N)
         numpy.save("random-vector.npy", x)
In [30]: %%file mpi-matrix-vector.py
         from mpi4py import MPI
         import numpy
```

```
comm = MPI.COMM_WORLD
         rank = comm.Get_rank()
         p = comm.Get_size()
         def matvec(comm, A, x):
            m = A.shape[0] / p
             y_part = numpy.dot(A[rank * m:(rank+1)*m], x)
             y = numpy.zeros_like(x)
             comm.Allgather([y_part, MPI.DOUBLE], [y, MPI.DOUBLE])
             return y
         A = numpy.load("random-matrix.npy")
         x = numpy.load("random-vector.npy")
         y_mpi = matvec(comm, A, x)
         if rank == 0:
            y = numpy.dot(A, x)
             print(y_mpi)
             print "sum(y - y_mpi) = ", (y - y_mpi).sum()
Overwriting mpi-matrix-vector.py
In [31]: !mpirun -n 4 python mpi-matrix-vector.py
/bin/sh: mpirun: command not found
8.3.4 Example 4: Sum of the elements in a vector
In [32]: # prepare some random data
        N = 128
         a = numpy.random.rand(N)
        numpy.save("random-vector.npy", a)
In [33]: %%file mpi-psum.py
         from mpi4py import MPI
         import numpy as np
         def psum(a):
            r = MPI.COMM_WORLD.Get_rank()
             size = MPI.COMM_WORLD.Get_size()
            m = len(a) / size
            locsum = np.sum(a[r*m:(r+1)*m])
             rcvBuf = np.array(0.0, 'd')
             MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE], op=MPI.SUM)
             return rcvBuf
         a = np.load("random-vector.npy")
         s = psum(a)
         if MPI.COMM_WORLD.Get_rank() == 0:
             print "sum =", s, ", numpy sum =", a.sum()
Overwriting mpi-psum.py
```

```
In [34]: !mpirun -n 4 python mpi-psum.py
/bin/sh: mpirun: command not found
```

8.3.5 Further reading

- http://mpi4py.scipy.org
- http://mpi4py.scipy.org/docs/usrman/tutorial.html
- https://computing.llnl.gov/tutorials/mpi/

8.4 OpenMP

What about OpenMP? OpenMP is a standard and widely used thread-based parallel API that unfortunaltely is **not** useful directly in Python. The reason is that the CPython implementation use a global interpreter lock, making it impossible to simultaneously run several Python threads. Threads are therefore not useful for parallel computing in Python, unless it is only used to wrap compiled code that do the OpenMP parallelization (Numpy can do something like that).

This is clearly a limitation in the Python interpreter, and as a consequence all parallelization in Python must use processes (not threads).

However, there is a way around this that is not that painful. When calling out to compiled code the GIL is released, and it is possible to write Python-like code in Cython where we can selectively release the GIL and do OpenMP computations.

```
In [35]: N_core = multiprocessing.cpu_count()
         print("This system has %d cores" % N_core)
This system has 8 cores
  Here is a simple example that shows how OpenMP can be used via cython:
In [36]: %load_ext Cython
%%cython -f -c-fopenmp --link-args=-fopenmp -c-g
cimport cython
cimport numpy
from cython.parallel import prange, parallel
cimport openmp
def cy_openmp_test():
    cdef int n. N
    # release GIL so that we can use OpenMP
    with nogil, parallel():
        N = openmp.omp_get_num_threads()
        n = openmp.omp_get_thread_num()
            print("Number of threads %d: thread number %d" % (N, n))
In [37]: # cy_openmp_test()
```

8.4.1 Example: matrix vector multiplication

```
In [38]: # prepare some random data
        N = 4 * N_core
        M = numpy.random.rand(N, N)
         x = numpy.random.rand(N)
         y = numpy.zeros_like(x)
  Let's first look at a simple implementation of matrix-vector multiplication in Cython:
In [39]: %%cython
         cimport cython
         cimport numpy
         import numpy
         @cython.boundscheck(False)
         @cython.wraparound(False)
         def cy_matvec(numpy.ndarray[numpy.float64_t, ndim=2] M,
                       numpy.ndarray[numpy.float64_t, ndim=1] x,
                       numpy.ndarray[numpy.float64_t, ndim=1] y):
            cdef int i, j, n = len(x)
            for i from 0 <= i < n:
                 for j from 0 \le j \le n:
                    y[i] += M[i, j] * x[j]
            return y
In [40]: # check that we get the same results
        y = numpy.zeros_like(x)
         cy_matvec(M, x, y)
         numpy.dot(M, x) - y
Out[40]: array([ 0.00000000e+00, -8.88178420e-16, 0.00000000e+00,
                  8.88178420e-16, 0.00000000e+00, 0.00000000e+00,
                  0.0000000e+00, 8.88178420e-16, 0.00000000e+00,
                 -8.88178420e-16, -8.88178420e-16, -1.77635684e-15,
                 -1.77635684e-15,
                                  8.88178420e-16, 0.00000000e+00,
                  0.00000000e+00, -2.66453526e-15, -1.77635684e-15,
                  8.88178420e-16, 1.77635684e-15, 8.88178420e-16,
                  0.00000000e+00, 8.88178420e-16, -1.77635684e-15,
                 -1.77635684e-15, 0.00000000e+00, 0.00000000e+00,
                  8.88178420e-16,
                                   0.00000000e+00,
                                                      1.77635684e-15,
                                    0.0000000e+00])
                 -1.77635684e-15,
In [41]: %timeit numpy.dot(M, x)
The slowest run took 12.13 times longer than the fastest. This could mean that an intermediate result i
1000000 loops, best of 3: 935 ns per loop
In [42]: %timeit cy_matvec(M, x, y)
100000 loops, best of 3: 3.24 \mu s per loop
```

The Cython implementation here is a bit slower than numpy.dot, but not by much, so if we can use multiple cores with OpenMP it should be possible to beat the performance of numpy.dot.

```
%cython -f -c-fopenmp --link-args=-fopenmp -c-g
cimport cython
cimport numpy
from cython.parallel import parallel
cimport openmp
@cython.boundscheck(False)
@cython.wraparound(False)
def cy_matvec_omp(numpy.ndarray[numpy.float64_t, ndim=2] M,
                  numpy.ndarray[numpy.float64_t, ndim=1] x,
                  numpy.ndarray[numpy.float64_t, ndim=1] y):
    cdef int i, j, n = len(x), N, r, m
    # release GIL, so that we can use OpenMP
    with nogil, parallel():
        N = openmp.omp_get_num_threads()
        r = openmp.omp_get_thread_num()
        m = n / N
        for i from 0 <= i < m:</pre>
            for j from 0 <= j < n:
                y[r * m + i] += M[r * m + i, j] * x[j]
    return y
# check that we get the same results
y = numpy.zeros_like(x)
cy_matvec_omp(M, x, y)
numpy.dot(M, x) - y
In [43]: %timeit numpy.dot(M, x)
The slowest run took 18.91 times longer than the fastest. This could mean that an intermediate result i
1000000 loops, best of 3: 894 ns per loop
In [44]: # %timeit cy_matvec_omp(M, x, y)
   Now, this implementation is much slower than numpy.dot for this problem size, because of overhead
associated with OpenMP and threading, etc. But let's look at the how the different implementations compare
with larger matrix sizes:
In [45]: N_vec = numpy.arange(25, 2000, 25) * N_core
duration_ref = numpy.zeros(len(N_vec))
duration_cy = numpy.zeros(len(N_vec))
duration_cy_omp = numpy.zeros(len(N_vec))
```

for idx, N in enumerate(N_vec):

M = numpy.random.rand(N, N)
x = numpy.random.rand(N)

```
y = numpy.zeros_like(x)
   t0 = time.time()
   numpy.dot(M, x)
   duration_ref[idx] = time.time() - t0
   t0 = time.time()
   cy_matvec(M, x, y)
   duration_cy[idx] = time.time() - t0
   t0 = time.time()
    cy_matvec_omp(M, x, y)
   duration_cy_omp[idx] = time.time() - t0
fig, ax = plt.subplots(figsize=(12, 6))
ax.loglog(N_vec, duration_ref, label='numpy')
ax.loglog(N_vec, duration_cy, label='cython')
ax.loglog(N_vec, duration_cy_omp, label='cython+openmp')
ax.legend(loc=2)
ax.set_yscale("log")
ax.set_ylabel("matrix-vector multiplication duration")
ax.set_xlabel("matrix size");
```


Figure 8.1: Comparison of numpy, cython, and cython+openmp

For large problem sizes the the cython+OpenMP implementation is faster than numpy.dot. With this simple implementation, the speedup for large problem sizes is about:

```
In [46]: # ((duration\_ref / duration\_cy\_omp)[-10:]).mean()
```

Obviously one could do a better job with more effort, since the theoretical limit of the speed-up is:

```
In [47]: N_core
Out[47]: 8
```

8.4.2 Further reading

- http://openmp.org
- http://docs.cython.org/src/userguide/parallelism.html

8.5 OpenCL

OpenCL is an API for heterogenous computing, for example using GPUs for numerical computations. There is a python package called pyopencl that allows OpenCL code to be compiled, loaded and executed on the compute units completely from within Python. This is a nice way to work with OpenCL, because the time-consuming computations should be done on the compute units in compiled code, and in this Python only server as a control language.

```
In [48]: %%file opencl-dense-mv.py
         import pyopencl as cl
         import numpy
         import time
         # problem size
         n = 10000
         # platform
         platform_list = cl.get_platforms()
         platform = platform_list[0]
         # device
         device_list = platform.get_devices()
         device = device_list[0]
         if False:
            print("Platform name:" + platform.name)
            print("Platform version:" + platform.version)
            print("Device name:" + device.name)
            print("Device type:" + cl.device_type.to_string(device.type))
            print("Device memory: " + str(device.global_mem_size//1024//1024) + ' MB')
            print("Device max clock speed:" + str(device.max_clock_frequency) + ' MHz')
            print("Device compute units:" + str(device.max_compute_units))
         # context
         ctx = c1.Context([device]) # or we can use c1.create_some_context()
         # command queue
         queue = cl.CommandQueue(ctx)
         # kernel
         KERNEL_CODE = """
         // Matrix-vector multiplication: r = m * v
         #define N %(mat_size)d
         __kernel
         void dmv_cl(__global float *m, __global float *r)
         {
```

```
r[gid] = 0;
             for (i = 0; i < N; i++)
                 r[gid] += m[gid * N + i] * v[i];
         }
         11 11 11
         kernel_params = {"mat_size": n}
         program = cl.Program(ctx, KERNEL_CODE % kernel_params).build()
         # data
         A = numpy.random.rand(n, n)
         x = numpy.random.rand(n, 1)
         # host buffers
         h_y = numpy.empty(numpy.shape(x)).astype(numpy.float32)
         h_A = numpy.real(A).astype(numpy.float32)
         h_x = numpy.real(x).astype(numpy.float32)
         # device buffers
         mf = cl.mem_flags
         d_A_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_A)
         d_x_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_x)
         d_y_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=h_y.nbytes)
         # execute OpenCL code
         t0 = time.time()
         event = program.dmv_cl(queue, h_y.shape, None, d_A_buf, d_x_buf, d_y_buf)
         event.wait()
         cl.enqueue_copy(queue, h_y, d_y_buf)
         t1 = time.time()
         print("opencl elapsed time =", (t1-t0))
         # Same calculation with numpy
         t0 = time.time()
         y = numpy.dot(h_A, h_x)
         t1 = time.time()
         print("numpy elapsed time =", (t1-t0))
         # see if the results are the same
         print("max deviation =", numpy.abs(y-h_y).max())
Overwriting opencl-dense-mv.py
% python opencl-dense-mv.py
('opencl elapsed time =', 0.05729985237121582)
('numpy elapsed time =', 0.023556947708129883)
('max deviation =', 0.015380859)
```

int i, gid = get_global_id(0);

8.5.1 Further reading

 $\bullet \ \, \rm http://mathema.tician.de/software/pyopencl$

Chapter 9 Revision control software

This curriculum builds on material by J. Robert Johansson from his "Introduction to scientific computing with Python," generously made available under a Creative Commons Attribution 3.0 Unported License at https://github.com/jrjohansson/scientific-python-lectures. The Continuum Analytics enhancements use the Creative Commons Attribution-NonCommercial 4.0 International License.

In [1]: from IPython.display import Image

In any software development, one of the most important tools are revision control software (RCS).

They are used in virtually all software development and in all environments, by everyone and everywhere (no kidding!)

RCS can used on almost any digital content, so it is not only restricted to software development, and is also very useful for manuscript files, figures, data and notebooks!

9.1 There are two main purposes of RCS systems:

- 1. Keep track of changes in the source code.
 - Allow reverting back to an older revision if something goes wrong.
 - Work on several "branches" of the software concurrently.
 - Tags revisions to keep track of which version of the software that was used for what (for example, "release-1.0", "paper-A-final", ...)
- 2. Make it possible for serveral people to collaboratively work on the same code base simultaneously.
 - Allow many authors to make changes to the code.
 - Clearly communicating and visualizing changes in the code base to everyone involved.

9.2 Basic principles and terminology for RCS systems

In an RCS, the source code or digital content is stored in a **repository**.

- The repository does not only contain the latest version of all files, but the complete history of all changes to the files since they were added to the repository.
- A user can **checkout** the repository, and obtain a local working copy of the files. All changes are made to the files in the local working directory, where files can be added, removed and updated.
- When a task has been completed, the changes to the local files are **committed** (saved to the repository).

- If someone else has been making changes to the same files, a **conflict** can occur. In many cases conflicts can be **resolved** automatically by the system, but in some cases we might manually have to **merge** different changes together.
- It is often useful to create a new **branch** in a repository, or a **fork** or **clone** of an entire repository, when we doing larger experimental development. The main branch in a repository is called often **master** or **trunk**. When work on a branch or fork is completed, it can be merged in to the master branch/repository.
- With distributed RCSs such as GIT or Mercurial, we can **pull** and **push** changesets between different repositories. For example, between a local copy of there repository to a central online repository (for example on a community repository host site like github.com).

9.2.1 Some good RCS software

```
1. GIT (git): http://git-scm.com/
```

2. Mercurial (hg): http://mercurial.selenic.com/

In the rest of this lecture we will look at git, although hg is just as good and work in almost exactly the same way.

9.3 Installing git

```
On Linux:
```

```
$ sudo apt-get install git
On Mac (with macports):
$ sudo port install git
The first time you start to use git, you'll need to configure your author information:
$ git config --global user.name 'Robert Johansson'
```

9.4 Creating and cloning a repository

\$ git config --global user.email robert@riken.jp

To create a brand new empty repository, we can use the command git init repository-name:

```
In [2]: # create a new git repository called gitdemo:
    !git init gitdemo
```

Reinitialized existing Git repository in /Users/dmertz/Drive/Modules/scientific-python-lectures/gitdemo

If we want to fork or clone an existing repository, we can use the command git clone repository:

```
In [3]: !git clone https://github.com/qutip/qutip
```

fatal: destination path 'qutip' already exists and is not an empty directory.

Git clone can take a URL to a public repository, like above, or a path to a local directory:

```
In [4]: !git clone gitdemo2
```

fatal: destination path 'gitdemo2' already exists and is not an empty directory.

We can also clone private repositories over secure protocols such as SSH:

```
$ git clone ssh://myserver.com/myrepository
```

9.5 Status

Using the command git status we get a summary of the current status of the working directory. It shows if we have modified, added or removed files.

```
In [5]: !git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified:
                   Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       deleted: Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
       animation.mp4
       dprod.f
       dprod.pyf
       filename.png
       gitdemo/
       gitdemo2/
       hello.py
       hellofortran.f
       "images/Icon\r"
       mpi-matrix-vector.py
       mpi-numpy-array.py
```

```
mpi-psum.py
mpitest.py
mymodule.py
opencl-dense-mv.py
qutip/
random-matrix.csv
random-matrix.npy
random-vector.npy
"scripts/Icon\r"
test.svg
```

In this case, only the current ipython notebook has been added. It is listed as an untracked file, and is therefore not in the repository yet.

9.6 Adding files and committing changes

To add a new file to the repository, we first create the file and then use the git add filename command:

```
In [6]: %%file README
       A file with information about the gitdemo repository.
Overwriting README
In [7]: !git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
                   Lecture-O-Scientific-Computing-with-Python.ipynb
       modified:
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       modified: README
```

```
deleted:
                    Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
        dprod.f
        dprod.pyf
        filename.png
        gitdemo/
        gitdemo2/
        hello.py
       hellofortran.f
        "images/Icon\r"
       mpi-matrix-vector.py
        mpi-numpy-array.py
       mpi-psum.py
        mpitest.py
       mymodule.py
        opencl-dense-mv.py
        qutip/
        random-matrix.csv
        random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
        test.svg
  After having added the file README, the command git status list it as an untracked file.
In [8]: !git add README
In [9]: !git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
        modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: README
       new file: images/cython-numpy-openmp.png
        new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
```

```
(use "git checkout -- <file>..." to discard changes in working directory)
        modified: Lecture-O-Scientific-Computing-with-Python.ipynb
        modified: Lecture-1-Introduction-to-Python-Programming.ipynb
        modified: Lecture-2-Numpy.ipynb
        modified: Lecture-3-Scipy.ipynb
        modified: Lecture-4-Matplotlib.ipynb
        modified: Lecture-5-Sympy.ipynb modified: Lecture-6A-Fortran-and-C.ipynb
        modified: Lecture-6B-HPC.ipynb
        modified: Makefile
        deleted:
                    Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
        dprod.f
        dprod.pyf
        filename.png
        gitdemo/
        gitdemo2/
        hello.py
        hellofortran.f
        "images/Icon\r"
        mpi-matrix-vector.py
        mpi-numpy-array.py
        mpi-psum.py
        mpitest.py
        mymodule.py
        opencl-dense-mv.py
        qutip/
        random-matrix.csv
        random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
        test.svg
  Now that it has been added, it is listed as a new file that has not yet been committed to the repository.
In [10]: !git commit -m "Added a README file" README
[master 415eea7] Added a README file
1 file changed, 1 insertion(+), 5 deletions(-)
In [11]: !git add Lecture-7-Revision-Control-Software.ipynb
In [12]: !git commit -m "added notebook file" Lecture-7-Revision-Control-Software.ipynb
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
```

```
(use "git push" to publish your local commits)
Changes not staged for commit:
       modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
        modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
        modified: Makefile
        deleted: Scientific-Computing-with-Python.pdf
Untracked files:
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
        dprod.f
        dprod.pyf
        filename.png
        gitdemo/
        gitdemo2/
       hello.py
       hellofortran.f
        "images/Icon\r"
        images/cython-numpy-openmp.png
        images/double-pendulum-animation.png
        mpi-matrix-vector.py
        mpi-numpy-array.py
        mpi-psum.py
        mpitest.py
        mymodule.py
        opencl-dense-mv.py
        qutip/
        random-matrix.csv
       random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
        test.svg
no changes added to commit
In [13]: !git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
        modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
```

```
modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
                   Lecture-O-Scientific-Computing-with-Python.ipynb
       modified:
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       deleted: Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
       __pycache__/
       animation.mp4
       dprod.f
       dprod.pyf
       filename.png
       gitdemo/
       gitdemo2/
       hello.py
       hellofortran.f
       "images/Icon\r"
       mpi-matrix-vector.py
       mpi-numpy-array.py
       mpi-psum.py
       mpitest.py
       mymodule.py
       opencl-dense-mv.py
       qutip/
       random-matrix.csv
       random-matrix.npy
       random-vector.npy
        "scripts/Icon\r"
       test.svg
```

After *committing* the change to the repository from the local working directory, git status again reports that working directory is clean.

9.7 Committing changes

When files that is tracked by GIT are changed, they are listed as modified by git status:

```
In [14]: %%file README
        A file with information about the gitdemo repository.
        A new line.
Overwriting README
In [15]: !git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       modified: README
       deleted:
                   Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
       __pycache__/
       animation.mp4
       dprod.f
```

```
dprod.pyf
        filename.png
        gitdemo/
        gitdemo2/
       hello.py
       hellofortran.f
        "images/Icon\r"
        mpi-matrix-vector.py
        mpi-numpy-array.py
        mpi-psum.py
        mpitest.py
        mymodule.py
        opencl-dense-mv.py
        qutip/
        random-matrix.csv
        random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
        test.svg
  Again, we can commit such changes to the repository using the git commit -m "message" command.
In [16]: !git commit -m "added one more line in README" README
[master b39d371] added one more line in README
1 file changed, 3 insertions(+), 1 deletion(-)
In [17]: !git status
On branch master
Your branch is ahead of 'origin/master' by 2 commits.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
        modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
        new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
        modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
```

```
modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
        deleted:
                    Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add {\rm sile}..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
        dprod.f
        dprod.pyf
        filename.png
        gitdemo/
        gitdemo2/
       hello.py
        hellofortran.f
        "images/Icon\r"
        mpi-matrix-vector.py
       mpi-numpy-array.py
       mpi-psum.py
       mpitest.py
        mymodule.py
        opencl-dense-mv.py
        qutip/
        random-matrix.csv
       random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
        test.svg
```

9.8 Removing files

To remove file that has been added to the repository, use git rm filename, which works similar to git add filename:

```
Remove it again:

In [21]: !git rm tmpfile

rm 'tmpfile'

In [22]: !git commit -m "remove file tmpfile" tmpfile

[master 7daed99] remove file tmpfile

1 file changed, 2 deletions(-)

delete mode 100644 tmpfile
```

9.9 Commit logs

The messages that are added to the commit command are supposed to give a short (often one-line) description of the changes/additions/deletions in the commit. If the -m "message" is omitted when invoking the git commit message an editor will be opened for you to type a commit message (for example useful when a longer commit message is required).

We can look at the revision log by using the command git log:

```
In [23]: !git log
commit 7daed99af367b55643dc69e92dbd9829a68638f7
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:34 2015 -0700
Date:
   remove file tmpfile
commit f9aa373cf281933540f9527cdb025c5aae809271
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:30 2015 -0700
    adding file tmpfile
commit b39d371c7be26d05dcd9ac04b00f84457c7352fd
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:26 2015 -0700
    added one more line in README
commit 415eea7fc94559f68177a542e49a3c63eb3e26b7
Author: David Mertz <dmertz@continuum.io>
Date:
       Mon Aug 17 12:39:17 2015 -0700
    Added a README file
commit badf19df6934093cea8364c927e2320adf608c08
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:16:52 2015 -0700
   added a line in expr1 branch
commit d925777dd7b7211b963d9ef141c1c2a13596e370
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:16:40 2015 -0700
Date:
```

remove file tmpfile

commit 954a45d37c2b6e03e3887d2e0958e12fcb6b0b9c

Author: David Mertz <dmertz@continuum.io>Date: Mon Aug 17 12:16:37 2015 -0700

adding file tmpfile

commit 218064fe4e88ae9efd16197084778fc29c8d56b1

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:30 2015 -0700

added one more line in README

commit 285806d6c9f40356a78414dae626dad0caf2acf5

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:18 2015 -0700

Added a README file

commit 028ab85c90c45c2b5c1bbf14b6182d269dd0c00a

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 10:11:26 2015 -0700

Working on running output cells

commit 5eef8aa451b5130b3f8ca9a5b3a9f5da51d3c1c1

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 09:36:31 2015 -0700

TOC newline after logo

commit 6f20a92de4ff6d8fafa5d35706ce2cb14f14951d

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:26 2015 -0400

added a line in expr1 branch

commit 68e750697b772952a0e06984199d334521e3a6ea

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

remove file tmpfile

commit 0bf6faad396fd7bca5400e3b09c765a05328edf5

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

adding file tmpfile

commit 6a7b9ebb8fd1fceb54505a2db0d2b87ca43a1680

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

added one more line in README

commit 792c1853277a399db7b66327d23c789dca0fa9b6

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:22 2015 -0400

Added a README file

commit ca1cb01fc10536fdd9960d88dee2e4eea87a2dbf

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 11:38:01 2015 -0400

Fixed LaTeX build problems.

commit 849d904634219cfd92719d3ca5f5fa3d63524544

Merge: 012cc74 767bded

Author: DavidMertz <dmertz@continuum.io> Date: Mon Aug 17 08:04:05 2015 -0700

Merge pull request #3 from ContinuumIO/New-branding

New branding

commit 767bded862ce839064f7aabc4505b70a5a6ff1b0

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 19:00:34 2015 -0700

Customization of Lecture-O for Continuum

commit 98fa8dd86c9b9d3b22befd2f347d232e40aa1254

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 14:48:06 2015 -0700

Remove external refs in README

 $\verb|commit|| 012cc740b820899fdd88fcd26f06411b3662acd3|$

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 14:24:46 2015 -0700

Bunch of changes to generate book acceptably

commit Ofcfe7b15d4141Of41ce20b30aa3e2cccc2d1b48

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 13:30:09 2015 -0700

Getting LaTeX glitches fixed

commit af7227f185cbf9b470358a759fcad449c61abba4

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 07:57:43 2015 -0700

ready to generate PDF

commit 9684487886e274ab5d952de38f80e5dfe57ef732

Merge: 3edfcb8 2d272b5

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:47:21 2015 -0700

Merge pull request #2 from ContinuumIO/master

Merge pull request #1 from ContinuumIO/New-branding

${\tt commit}\ 2d272b55815ee4c7ba04f26ba6cfab268d4e260e$

Merge: ac1dba6 3edfcb8

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:39:37 2015 -0700

Merge pull request #1 from ContinuumIO/New-branding

Merge in new branding

Merge: 20283fa d35de96

Author: Susan Price <sprice@continuum.io> Date: Thu Aug 13 13:33:21 2015 -0500

Merge branch 'New-branding' of github.com:ContinuumIO/scientific-python-lectures into New-branding

commit 20283fad70f1cc4b4e97a268265fcffcf441a2e7

Author: Susan Price <sprice@continuum.io> Date: Wed Aug 12 18:02:27 2015 -0500

Light editing to Lectures 1-3

Typos, also added branding blocks but Will did all.

commit d35de965c893ee18b94d17e54984bf5d423d2e65

Author: Will Warner <electronwill@gmail.com>
Date: Wed Aug 12 17:49:53 2015 -0500

branding

branding

commit f4098deac3c20073733800746d984e470bd94f47

Author: Will Warner <electronwill@gmail.com>

Date: Wed Aug 12 17:08:55 2015 -0500

next branding draft

next branding draft

$\verb|commit|| 31a060e6e7098a96febae0d4f67d4bfd7d5fda7a| \\$

Author: Susan Price <sprice@continuum.io> Date: Wed Aug 12 15:53:29 2015 -0500

add branding to lecture 1

add branding to lecture 1

commit 190d4c0d291e5f9c1502716e71cd7d9b7cd57c4b

Author: Will Warner <electronwill@gmail.com>

Date: Wed Aug 12 15:07:49 2015 -0500

add branding to lecture 0

Add logo and text crediting Johansson to lecture 0.

commit a9c0e42b155bf306d180862ad1820fc2819ee6f9

Author: Susan Price <susan@firecatstudio.com>

Date: Wed Aug 12 13:29:27 2015 -0500

Update Lecture-O-Scientific-Computing-with-Python.ipynb

commit ac1dba63ea3a7e7f5a22b8ade0ffe39b8c296889

Merge: 834e492 475e588

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Jun 28 23:00:45 2015 +0900

Merge pull request #27 from MartinHeroux/master

Minor corrections to Lectures 0-2

commit 834e49248e502e869b030392d2e50f05bd2bf50e

Merge: efaadbd cd2a475

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 24 21:12:14 2015 +0900

Merge pull request #26 from electronwill/anaconda

Update Anaconda information

commit cd2a4758a4052d8b93e8e49596c87ab93ec7947a

Author: Will Warner <electronwill@gmail.com>

Date: Tue Jun 23 11:14:06 2015 -0500

Update Anaconda information

Update Anaconda information: Anaconda is currently not divided into CE and Pro, but rather a single free open source distribution, with some commercial add-ons which are free for academic use.

commit 475e5880b5f80aa4d4de2df7ebf457291c9db1d2

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Tue Jun 23 21:10:22 2015 +1000

Fix typos and grammar

$\verb|commit| 5b53bde2b223ef2f02b47620167299a25854b209|\\$

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Mon Jun 22 07:13:53 2015 +1000

Made minor English corrections & a few minor corrections/additions

commit efaadbdc1ca5e743c7abf66bc61beb5c5eabb60b

Merge: fd8fde6 34a1684

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 12 15:17:10 2015 +0900

Merge pull request #24 from chichilalescu/develop

typo and python2 division comment

commit 34a1684ec893ff1cc70a896e0eafe650850a9afc

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:30:17 2014 -0500

add comment on division operator py3 vs py2

since these are lecture notes, and the students hear about python for the first time (supposedly), it is very likely that they will use python 3 if the instructor is using python 3.

however, some of them might soon find themselves working on some remote system which only has some python 2.x available. therefore, my note.

commit 00eda462f2e7afa2abeadd37d1f19c89df74e401

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:20:42 2014 -0500

fix typo

commit fd8fde6b6fd43526315c30c6bfffa699d0439baa

Merge: eb1a5db 12c2d69

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:20:50 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit eb1a5db5c07d4f35fd915a35640beaec6b80033a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:19:57 2014 +0900

fixed typos expect.. -> except.. Thanks @DigNeurosurgeon Closes #22

commit 12c2d6976230ad3e604153e2b40b3282fa168c86

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 17:14:30 2014 +0900

added link to the PDF file

$\verb|commit|| 4 f 7 2 2 da 1 c f d 2 4 4 de c 4 6 5 d 5 f c 2 d 2 6 8 7 c 15 c 8 1 9 6 6 c$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 00:14:28 2014 +0900

files for building a pdf that includes all notebooks

commit 890e238cb4dcdcdf28f1d39a8f5150bfda76ef50

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:51:17 2014 +0900

updated image urls

commit be11c73f1acbc3805018460888adda0f053d91a8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:49:29 2014 +0900

updated section headers from markdown to header cells

commit 5a82957470bbd75da6200b5b96f3dcb5e2c96212

Merge: c4496f1 b0f18ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 27 19:39:31 2014 +0900

Merge pull request #21 from ozancaglayan/patch-1

Lecture-5-Sympy: Add missing verb 'use'

commit b0f18ec70a0d4fbee17796bedf832672da69683a

Author: Ozan Çağlayan <ozancag@gmail.com>
Date: Tue May 27 12:50:35 2014 +0300

Lecture-5-Sympy: Add missing verb 'use'

Replace 'we can the' with 'we can use the'

commit c4496f12eecdf9bc9fe62eb4a93950861812e398

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 14 11:03:14 2014 +0900

Fixed typo. Thanks again @yuvallanger, closes #20

commit d97b4f7e7e318b140c6ccc3d47c6477347dcfdd3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 13 22:25:04 2014 +0900

Fixed spelling error. Closes #19. Thanks @yuvallanger , I appreciate it!

commit 7cef4a43e44465e23bdc5b7cf402537f56d0aeaa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu May 1 10:41:38 2014 +0900

removed reference to the --pylab command line argument (closes #18)

commit 210e36d6eb83e44094c02b263d7cdc62ba0e21ac

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Apr 22 10:49:39 2014 +0900

fixed some issues with pyplot/00 API usage in 3D examples. Fixed annimation example on ubuntu 14.04

commit 3f41f36ba794ee071dab6ebfbc3faa3d3311e342

Merge: 4aa61bb 1bcb1fa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:16:11 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 4aa61bbdbb759c0b054673ee75d3ad6df33be763

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:15:44 2014 +0900

minor text updates

 $\verb|commit 1bcb1fa79c3e564ec5d04d1a51612391cdb40e0f|\\$

Merge: b4d6f56 543c6ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 22:14:52 2014 +0900

Merge pull request #17 from ajvengo/master

Fix mispring in hyposthesis word on theory-experiment-computation images

commit 543c6ffe35d18bea682a989935dd6861b84fcb51

Author: Vladimir Rapatskiy <rapatsky@gmail.com>

Date: Mon Mar 17 15:50:52 2014 +0400

Fix mispring in hyposthesis word on theory-experiment-computation.svg (and .png) images

commit b4d6f5635146c4a6b6e3ee0d117c786a7cf8321d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 17:35:24 2014 +0900

added small section on openmp via cython

commit 4b6ce271b87ae4908bf5f0fcbbc02254f03b9695

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Mar 14 13:44:34 2014 +0900

added some sections on figure tweaking: axis/label spacing, Stix fonts/usetex, scientific notation

commit da83715000c063072a66b2947bde4a5942f50cc4

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:51:02 2014 +0900

update matplotlib init method

commit 2a93f47400a84ac748c505c11c9a620cc426ad80

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:45:01 2014 +0900

updated sympy init_printing method

commit a0aac9fd5971d50e61c21b585d3cc9730e5a2102

Merge: 6793df7 49152e6

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:43:51 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 6793df7d1a82a59448914b6857c35619d1eb0a51

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:39:17 2014 +0900

fixed problems with matvec MPI example

commit 49152e6c8c33c3649349ac554fffadeb2ddfafaa

Merge: ba77020 85fe99a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 24 16:09:48 2014 +0900

Merge pull request #14 from kostyabazhanov/master

Fix misprints.

commit 85fe99a67946a39ee15e4c90e1205e61918af3ac

Author: Kostya Bazhanov <kostyabazhanov@mail.ru>

Date: Sat Feb 22 20:50:41 2014 +0400

Fix misprints.

commit ba770205a8d733758d86fb233cb243a1562a0657

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 11 15:59:31 2013 +0900

reverted change to now anim.save is called and reran notebook

commit edb1e6158294af074c418d88b1b2329890753fac

Merge: 5e82ad2 ad71d7e

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 10 22:54:45 2013 -0800

Merge pull request #12 from westurner/lecture_4_wording_ffmpeg

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

$\verb|commit|| ad71d7e463bba7ab5e941bd5d497422e729eb591|$

Author: westurner <wes.turner@gmail.com>
Date: Mon Dec 9 06:40:09 2013 -0600

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

commit 5e82ad23bcd3bacb3e731c7527a5d0264a41f146

Merge: 8c046ac 363e92c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Nov 27 14:38:31 2013 -0800

Merge pull request #11 from anddam/patch-1

fixing typo: added missing word

commit 363e92ceefcecc601976ddfa7b812c6b473dd483

Author: Andrea D'Amore <anddam@brapi.net>
Date: Wed Nov 27 16:16:39 2013 +0100

fixing typo: added missing word

commit 8c046acdc909667488811237fb85d029143e99a1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:37:58 2013 +0900

fixed a couple of grammar and spelling errors

commit 4bdc21ae7f3ca7a584cc23a3da55f8503d173104

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:18:48 2013 +0900

fix typo: this example should be a syntax error

commit 1b903019834ab47b78e55f86717fcdf57cb6e95b

Merge: 68fd7b9 bd6d1cf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 18 05:49:01 2013 -0800

Merge pull request #9 from janpipek/master

Logarithmic scale + histograms to matplotlib text

commit bd6d1cf82bde9f31905ee58d0cd2e1a63a6dd10f

Author: Jan Pipek <pipek@ipp.cas.cz> Date: Mon Nov 18 11:59:48 2013 +0100

Matplotlib: histograms

commit 3285e81e02a648ac9c03e3778a9463821d68bdc7

Author: Jan Pipek <pipek@ipp.cas.cz>
Date: Mon Nov 18 11:57:08 2013 +0100

Matplotlib: Logarithmic scale

commit 68fd7b99e1cf79a550b2b335d20bb994070a3768

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:12:40 2013 +0900

ran notebook with python3. added version information table.

commit 4c5aea0c465b5c412cb9cc4a15df327ca0e29864

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:08:41 2013 +0900

fixed some python3 compability issues

commit 0c4b617ccd809dec852678c3f3793d67c32d2357

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:57:28 2013 +0900

added note about %config InlineBackend

commit fcb3044f9a3b95b74d0283cf7bf2d9f56c3fd7b2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:40:44 2013 +0900

changes make_axes (wrong) to fig.add_axes

commit 52f5b2aec24a077c21cb417842155ff7a798df94

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Sep 7 11:05:36 2013 +0900

rephrase note on replicability and reproducibility

commit 0cd9434239db08d2d73bbe2ef440ff2e30ff45c0

Merge: a35e372 6f96618

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Aug 31 18:39:37 2013 -0700

Merge pull request #8 from gfrubi/master

more typos corrected in Lecture 3

commit 6f966189d0b6992640c2d5b18a9d37f08b90e70b

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 21:31:49 2013 -0400

typos

commit 116b9c42cea07add280fa347826277e090398e8a

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:52:15 2013 -0400

typos

commit 8d73e06731ac0c23944b83f07bc81f4cc22535a7

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:42:28 2013 -0400

corrected "zeres"

commit f583f7ffe3ef79328806bd55efc013c79754781b

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:38:03 2013 -0400

typos

$\verb|commit|| a 35 e 372793767201391 c 5159 d 78 d e 5760 e 06 a b f d$

Merge: 3dc5ac4 25c7383

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Aug 17 00:05:10 2013 +0900 Manually merged PR #7 commit 25c7383048d60d703858a960c4eea79ae8170f39 Author: Guillermo <gfrubi@users.noreply.github.com> Wed Aug 14 19:09:41 2013 -0400 typo commit 4a6faf53aaaf4b71aa25ba20ee7c2d2441e1d840 Author: Guillermo <gfrubi@users.noreply.github.com> Date: Wed Aug 14 17:44:00 2013 -0400 "are" should be "is" commit 69cc3169db832f5b57c6cc13959677630400e637 Author: Guillermo <gfrubi@users.noreply.github.com> Wed Aug 14 11:19:55 2013 -0400 typo commit 844d495d3f68e3577527be727e026f5bd671b8ee Author: Guillermo <gfrubi@users.noreply.github.com> Date: Tue Aug 13 14:50:54 2013 -0400 small typos commit 4d45ae28840a5ff7f45649c11cbff76329e977ea Author: Guillermo <gfrubi@users.noreply.github.com> Date: Mon Aug 12 14:42:29 2013 -0400 removed "the" from "Using THE 'numpy.savetxt'..." commit d7b5ee5125322757c94451ddb4095e8eedba7824 Author: Guillermo <gfrubi@users.noreply.github.com> Date: Mon Aug 12 14:37:53 2013 -0400 typo: "tempature" to "temperature" commit ba911c59b9c1308060e78072b1e5d8409718d23b Author: Guillermo <gfrubi@gmail.com> Date: Sun Aug 11 00:46:06 2013 -0400 typo commit 90f9404d1b02fd1d8e6f7d6a2de4d108d4f4d5a7 Author: Guillermo <gfrubi@gmail.com> Sun Aug 11 00:34:09 2013 -0400 Date: small typo commit 3dc5ac4fb0fc36db0cd4645d219202796a5656f3

Merge: 059c1eb 6920d5b

186

Author: Robert Johansson <jrjohansson@gmail.com> Date: Fri Aug 9 18:26:37 2013 -0700 Merge pull request #6 from gfrubi/master more small corrections to the text commit 6920d5b38cd34703146523e7452530b57429d5a1 Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 18:39:12 2013 -0400 typos with "expection" commit ea1aba2d8beb765a8dd358d75b5ce3024b2cf67a Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 18:32:36 2013 -0400 typo commit 9fc54a9eeb3a67254196c1f4e9c4619976195a5c Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 18:28:25 2013 -0400 small typo commit 8f259bd1b8819ca84cbf42baa3d09bc33c990805 Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 18:02:34 2013 -0400 small typo commit f1b8788ff070e1198f7cb8c3b5a32d262c0f6da7 Author: Guillermo <gfrubi@gmail.com> Fri Aug 9 17:59:39 2013 -0400 removed "the" from "of THE that particular class..." commit 8dfd5898ded19907033afe414c6707f44e4b2779 Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 17:43:21 2013 -0400 Fixed plural to singular commit 0bb9f8f2222f2b54e0955874f3f8eaccc5f45da2 Author: Guillermo <gfrubi@gmail.com> Fri Aug 9 16:33:41 2013 -0400 Date: "lists" replaced by "dictionaries", since this is what the text is reffering to commit 9ffd7f6841b225617fdd2da6aa788c9252c95949 Author: Guillermo <gfrubi@gmail.com> Date: Fri Aug 9 16:18:37 2013 -0400

Bad sentence corrected

```
commit 83869535a6f22fe2afa4562ed48d03002cf8c389
Author: Guillermo <gfrubi@gmail.com>
       Fri Aug 9 15:26:11 2013 -0400
    small typo: "use" removed from "We can USE extract a part..."
commit 29183d0d0fe6db44bc903f9c83d7a4921f7b0eb2
Author: Guillermo <gfrubi@gmail.com>
Date: Thu Aug 8 12:09:56 2013 -0400
    added "that" to "...definitions THAT can be used..."
commit e968df274546b2633ad4d446e0639048f918ec3b
Author: Guillermo <gfrubi@gmail.com>
Date:
       Thu Aug 8 11:54:42 2013 -0400
    small typo: "varable" to "variable"
commit 059c1eb1bf62f4804388abfe310053bd99f9095d
Author: Robert Johansson <jrjohansson@gmail.com>
       Thu Aug 8 17:00:44 2013 +0900
   use header cells instead of markdown headings
commit 23fc637a378d5b237e5a6b4c1d8ff9e70e8c73fd
Author: Robert Johansson <jrjohansson@gmail.com>
       Thu Aug 8 16:44:01 2013 +0900
Date:
    added versions table
commit ce8c6ad1d120e7990580464620d7b92d14d827c0
Author: Robert Johansson <jrjohansson@gmail.com>
       Thu Aug 8 16:42:50 2013 +0900
   added versions table
commit ae2b44e25a8525a1ab2cee396e53607692c214da
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Thu Aug 8 12:38:46 2013 +0900
    added ax=ax to fig.colorbar call, which is useful when packing figures with colorbars into subplots
commit ae364b6992ba1754859e80ccd056fe09a8b60ff4
Author: Robert Johansson <jrjohansson@gmail.com>
Date:
       Thu Aug 8 12:29:24 2013 +0900
    use header cells instead of markdown headers. added note about matplotlib magic, more consistent us
```

commit bc93fcbc3402430e5311604cebbe6cef71cfd091
Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:05:45 2013 +0900

use header cells instead of markdown titles for better nbconvert compatibility

commit 44d17a2a7498fba14482d5b3aeb43eddecb58611 Author: Robert Johansson <jrjohansson@gmail.com> Date: Thu Aug 8 11:52:38 2013 +0900 Added section about version_information

commit c93a27a654886b7534f7707c5dc53c2b88e90fe2
Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 11:02:11 2013 +0900

updated link to IPython notebook

commit c0e73c9ef461e1313d25598772a1324c1256ea47

Merge: d8b027f f4171b0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 7 18:55:06 2013 -0700

Merge pull request #4 from gfrubi/master

fixed link to Ipython notebook in lecture 0

commit f4171b06aa029d065d91735e2871fde49982778a

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 20:00:36 2013 -0400

fixed typo: "This is pattern..." to "This pattern..."

commit fbb3c0d87f95d99ae0b45f87706a78fe33af0e0d

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 19:53:14 2013 -0400

corrected typo (double "for")

commit 9ab7e545f74b74dbd6b2aee2a420558839097879

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 19:13:01 2013 -0400

fixed link to Ipython notebook

commit d8b027f435f050172f4b8a307f38c573abb19937

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Jun 15 09:24:09 2013 +0900

reran the notebook after cython code updated by jfeist. Added note about using IPythons %%cython mag

commit 11c4be54a8004a8ff50d720955fb02a35e8ecbc7

Merge: 09ce4af 3ad9c75

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Jun 14 08:49:48 2013 -0700

Merge pull request #3 from jfeist/master

some small fixes

commit 3ad9c75d0873a2443ad257cb954d62b0a79165a8

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 17:09:43 2013 +0200

in the cython example of lecture 6A: added a cdef for int i as well, giving speedup of more than 10

commit 2e40ce5c48a0884ae6a4dad8b7707fc1925d0999

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 16:35:34 2013 +0200

fixed some typos in lecture 5

commit 3f5caf8410b4d649fcd8c5c3b91fcbd7871f83ce

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 16:21:38 2013 +0200

fixed two typos in lecture 1

commit 09ce4af2c2822678f38257852f5abbb1b9665417

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 23:55:00 2013 +0900

added example of how to efficiently evaluate expressions using lambdify

commit b20823e1f1fa5fa19c897830d6a81d02b381bdb2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 00:44:24 2013 +0900

fixed typo in explanation of add_axes arguments (thanks to Derek Bridges)

commit 3fdedfabebbf870cc4110e1df85ac81f20a74b13

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri May 10 21:06:01 2013 +0900

fixed problem with animation figure being showed. added arguments to animation save to make it work

commit 46caf73baf20920bdc1a4c10965b15a7caaa6850

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 1 16:15:43 2013 +0900

fixed a python 3 syntax error

commit 7703269d3f7e11d0df72701f7d61ba4d9e6695bc

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Apr 29 16:37:36 2013 +0900

python3 fixes

commit c0844f6caa98b7ea0695a86add9a2e5be7538406

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 14 11:40:36 2013 +0900

spelling and grammar fixes

commit 99fb70c8f0c55a6605397e68af00bd8a5721874a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:54:47 2013 +0900

spelling, grammar and terminology fixes

commit 5ba305b265636ddc06a37461811ff550736cf06d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:33:13 2013 +0900

added some examples on how to use IPython.parallel

commit b5f8c55bd27a87974f9be97b819796032028a04b

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:32:07 2013 +0900

ran a spell checker on the notebook...

commit 403fdc71e7389f42b54c2c67524441c2566b1e18

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:19:53 2013 +0900

bugfix in the opencl example

commit 72e8a1a7ec81c5e36d18aaca540c394a4f1dba6c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 10:55:43 2013 +0900

Fixes #2: correctly compare mpi sum and numpy sum, and make sure that all processes get the same ra

commit 196b77fd7955ffaf22e5a16f14fa5d6e16a8d9c9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:25:00 2013 +0900

removed excessive output from git clone in notebook

$\verb|commit|| 75033f9e6ac366b4fd5546ab683fbbf65331d9af|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:16:29 2013 +0900

Added CC-BY as license for the notebooks. Closes #1.

commit 79bb8f76b154dd9b30ad58ff1147db185eb875fd

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jan 23 17:16:49 2013 +0900

added links to github page

commit 297d1fb26f207502105c9cf2c9554ad31c2ce299

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 21 11:07:36 2012 +0900

remove archive files

commit 47ba13714881e644b7570e936f40bfc583a4dcda

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 16:51:53 2012 +0100

remove unnecessary directory

commit 6e5903a48807a17d78ac243f94e38b3ca9f46066

Merge: 4c1c5e8 1f15644

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:45 2012 +0100

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit 4c1c5e8ea22a900be1106a0049fa0a174adfe3ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:22 2012 +0100

updated mac installation instructions

commit 1f15644e8bdf7590f32458f173e65b884c8ab5cb

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 11 21:46:00 2012 +0900

added urls to new notebooks

commit a4f3f148d8e537c7f0716358edee194a88fd1665

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 20:42:04 2012 +0900

updaged archives

commit 24c174d00a5bdaf14a9d6a7bcb2b7c955549bbaf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 11:11:13 2012 +0100

added HPC notebook

commit 8bbf262a9bef6c4cc5e002df6e103164a7078614

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:40:11 2012 +0100

updated RCS noteboook

commit d0d6a70a9b717549306c6d595b4815c527b9a8ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:09:20 2012 +0100

added lecture notebook about RCS

$\verb|commit|| 2495af428aaefea851dea2fd4b8e8bc77119522c|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Dec 9 20:26:11 2012 +0100

added stuff about ctypes and cython

commit da6f436f41302520c2426abf0baaf8f19224a280 Author: Robert Johansson <jrjohansson@gmail.com> Date: Sun Dec 9 09:34:58 2012 +0100 Added a README file commit 19f776e81fe1efd214dfd9a28f4b208f0046cd72 Merge: 9db5eaf b12a6e0 Author: Robert Johansson <jrjohansson@gmail.com> Fri Dec 7 17:20:47 2012 +0900 Date: Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures ${\tt commit b12a6e0f2d0bffef492e2355dd6d7d6a0eef45b3}$ Author: Robert Johansson <jrjohansson@gmail.com> Fri Dec 7 08:30:21 2012 +0100 minor updates commit 9db5eaf720c4fe57b1b7135582bc73cdcae28269 Author: Robert Johansson <jrjohansson@gmail.com> Date: Fri Dec 7 15:48:19 2012 +0900 regenerated movie commit 13e17183c56da03c5f26acc9f8028c17f63d3b4c Merge: 2e5cf5f e55b247 Author: Robert Johansson <jrjohansson@gmail.com> Date: Fri Dec 7 07:39:03 2012 +0100 Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures commit 2e5cf5fadfb68989b4846ff77d6a855d7c66c2f2 Author: Robert Johansson <jrjohansson@gmail.com> Date: Fri Dec 7 07:38:06 2012 +0100 minor additions and typo fixes commit e55b247c8c3ac6dd1401987957d4c024a62609cd Author: Robert Johansson <jrjohansson@gmail.com> Date: Thu Dec 6 22:19:02 2012 +0900 added installation instructions for using Fink instead of macports

commit 402bb65f7e82c280b0f19ef1ad09dfde0707b710

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 09:03:25 2012 +0100

minor updates and typo fixes

commit bc5a3fd4dbe6fc97fed0bb2297f62c6da8ee83d8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 08:12:15 2012 +0100

minor updates, typo fixes

commit 35dc225eb08a09522bef450289470f449d4de0aa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 07:54:45 2012 +0100

fixed typo

commit 35c057e0306cea1b525b4bce70d9bb5228b793fb

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 07:04:47 2012 +0100

updated figs

commit af2358522536100663bbb80caf7ce249a4ee3fec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 06:59:10 2012 +0100

added new subfig

commit fd7e0699c3fafa81699af324273a542a0f819bf9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:14:28 2012 +0100

added archives

commit 3cc4be6135f8a4f4dd0d69b4479094bb2a963327

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:11:04 2012 +0100

fixed typo

commit 380a6744a0e0fcaab74694fc0f9643d1e6656ed1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:56:30 2012 +0100

minor updates

commit 3ea43c1ad956ecac84d5009333ef452b69a182b3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:32:37 2012 +0100

added start on fortran-c-python lecture

commit f443fbaa480c01673bdacba4f10257ef7f2aa983

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 07:48:23 2012 +0100

minor additions, fixed typos

commit d3d6c3cffc3fd6794c9a5e410c2db7e3a628ea1c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 3 21:39:31 2012 +0100

fixed typos

commit ee9af6faea7f765354744edbfeb52f6b7f087610

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:56:33 2012 +0900

added PNGs or SVGs

commit 29656641b013a1bf66c47d457b6f224d7a6c3e97

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:55:58 2012 +0900

use urls to github instead of local files so that nbviewer works

commit a73fd26e3fbff6a2a9239d66d267cf082401df14

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:26:39 2012 +0900

added urls to notebooks via nbviewer in readme file

commit 86d4e9b48ba0e0eae7d2476f3f1fdcbc94e31c4c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:16:28 2012 +0900

added introduction lecture

commit a419680209976d1c20ee6062e9613961c207ef2e

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 00:38:58 2012 +0900

rename

commit 88f1c03d9b1ae122fc90e1f251abc1e837eb13e7

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Nov 29 20:50:00 2012 +0900

added missing extra files

commit 7ec2ad522915406d4704daaaa39cea95febd1228

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Nov 29 20:46:10 2012 +0900

imported initial version of scientific computing lectures

commit 200b15424c4058d44d251408bf890871a7fe0c93

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Nov 29 03:43:35 2012 -0800

Initial commit

In the commit log, each revision is shown with a timestampe, a unique has tag that, and author information and the commit message.

9.10 Diffs

All commits results in a changeset, which has a "diff" describing the changes to the file associated with it. We can use git diff so see what has changed in a file:

```
In [24]: %%file README
         A file with information about the gitdemo repository.
         README files usually contains installation instructions, and information about how to get star
Overwriting README
In [25]: !git diff README
diff --git a/README b/README
index 4f51868..d3951c6 100644
--- a/README
+++ b/README
00 -1,4 +1,4 00
A file with information about the gitdemo repository.
-A new line.
\ No newline at end of file
+README files usually contains installation instructions, and information about how to get started using
\ No newline at end of file
  That looks quite cryptic but is a standard form for describing changes in files. We can use other tools,
like graphical user interfaces or web based systems to get a more easily understandable diff.
  In github (a web-based GIT repository hosting service) it can look like this:
In [26]: Image(filename='images/github-diff.png')
Out [26]:
```


9.11 Discard changes in the working directory

To discard a change (revert to the latest version in the repository) we can use the **checkout** command like this:

```
In [27]: !git checkout -- README
In [28]: !git status
On branch master
Your branch is ahead of 'origin/master' by 4 commits.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
                   Lecture-1-Introduction-to-Python-Programming.ipynb
       modified:
                   Lecture-2-Numpy.ipynb
       modified:
       modified:
                  Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
                   Lecture-5-Sympy.ipynb
       modified:
       modified:
                   Lecture-6A-Fortran-and-C.ipynb
```

```
modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file:
                   images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified:
                   Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
        deleted:
                   Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
       dprod.f
        dprod.pyf
        filename.png
        gitdemo/
       gitdemo2/
       hello.py
       hellofortran.f
        "images/Icon\r"
       mpi-matrix-vector.py
       mpi-numpy-array.py
       mpi-psum.py
       mpitest.py
       mymodule.py
        opencl-dense-mv.py
        qutip/
       random-matrix.csv
       random-matrix.npy
        random-vector.npy
        "scripts/Icon\r"
       test.svg
```

9.12 Checking out old revisions

If we want to get the code for a specific revision, we can use "git checkout" and giving it the hash code for the revision we are interested as argument:

```
In [29]: !git log
```

commit 7daed99af367b55643dc69e92dbd9829a68638f7

Author: David Mertz <dmertz@continuum.io>Date: Mon Aug 17 12:39:34 2015 -0700

remove file tmpfile

commit f9aa373cf281933540f9527cdb025c5aae809271

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:39:30 2015 -0700

adding file tmpfile

commit b39d371c7be26d05dcd9ac04b00f84457c7352fd

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:39:26 2015 -0700

added one more line in README

commit 415eea7fc94559f68177a542e49a3c63eb3e26b7

Author: David Mertz <dmertz@continuum.io>
Date: Mon Aug 17 12:39:17 2015 -0700

Added a README file

commit badf19df6934093cea8364c927e2320adf608c08

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:52 2015 -0700

added a line in expr1 branch

commit d925777dd7b7211b963d9ef141c1c2a13596e370

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:40 2015 -0700

remove file tmpfile

commit 954a45d37c2b6e03e3887d2e0958e12fcb6b0b9c

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:37 2015 -0700

adding file tmpfile

commit 218064fe4e88ae9efd16197084778fc29c8d56b1

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:30 2015 -0700

added one more line in README

commit 285806d6c9f40356a78414dae626dad0caf2acf5

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:18 2015 -0700

Added a README file

commit 028ab85c90c45c2b5c1bbf14b6182d269dd0c00a

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 10:11:26 2015 -0700

Working on running output cells

commit 5eef8aa451b5130b3f8ca9a5b3a9f5da51d3c1c1

Author: David Mertz <dmertz@continuum.io>
Date: Mon Aug 17 09:36:31 2015 -0700

TOC newline after logo

commit 6f20a92de4ff6d8fafa5d35706ce2cb14f14951d

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:26 2015 -0400

added a line in expr1 branch

commit 68e750697b772952a0e06984199d334521e3a6ea

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

remove file tmpfile

commit 0bf6faad396fd7bca5400e3b09c765a05328edf5

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

adding file tmpfile

commit 6a7b9ebb8fd1fceb54505a2db0d2b87ca43a1680

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

added one more line in README

commit 792c1853277a399db7b66327d23c789dca0fa9b6

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:22 2015 -0400

Added a README file

commit ca1cb01fc10536fdd9960d88dee2e4eea87a2dbf

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 11:38:01 2015 -0400

Fixed LaTeX build problems.

commit 849d904634219cfd92719d3ca5f5fa3d63524544

Merge: 012cc74 767bded

Author: DavidMertz <dmertz@continuum.io> Date: Mon Aug 17 08:04:05 2015 -0700

Merge pull request #3 from ContinuumIO/New-branding

New branding

commit 767bded862ce839064f7aabc4505b70a5a6ff1b0

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 19:00:34 2015 -0700

Customization of Lecture-O for Continuum

commit 98fa8dd86c9b9d3b22befd2f347d232e40aa1254

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 14:48:06 2015 -0700

Remove external refs in README

commit 012cc740b820899fdd88fcd26f06411b3662acd3

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 14:24:46 2015 -0700

Bunch of changes to generate book acceptably

commit 0fcfe7b15d41410f41ce20b30aa3e2cccc2d1b48

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 13:30:09 2015 -0700

Getting LaTeX glitches fixed

commit af7227f185cbf9b470358a759fcad449c61abba4

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 07:57:43 2015 -0700

ready to generate PDF

commit 9684487886e274ab5d952de38f80e5dfe57ef732

Merge: 3edfcb8 2d272b5

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:47:21 2015 -0700

Merge pull request #2 from ContinuumIO/master

Merge pull request #1 from ContinuumIO/New-branding

commit 2d272b55815ee4c7ba04f26ba6cfab268d4e260e

Merge: ac1dba6 3edfcb8

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:39:37 2015 -0700

Merge pull request #1 from ContinuumIO/New-branding

Merge in new branding

 $\verb|commit| 3edfcb801e335c4fbbadc2e67ad4f4818228646e|$

Merge: 20283fa d35de96

Author: Susan Price <sprice@continuum.io>

Date: Thu Aug 13 13:33:21 2015 -0500 Merge branch 'New-branding' of github.com:ContinuumIO/scientific-python-lectures into New-branding commit 20283fad70f1cc4b4e97a268265fcffcf441a2e7 Author: Susan Price <sprice@continuum.io> Wed Aug 12 18:02:27 2015 -0500 Light editing to Lectures 1-3 Typos, also added branding blocks but Will did all. commit d35de965c893ee18b94d17e54984bf5d423d2e65 Author: Will Warner <electronwill@gmail.com> Date: Wed Aug 12 17:49:53 2015 -0500 branding branding commit f4098deac3c20073733800746d984e470bd94f47 Author: Will Warner <electronwill@gmail.com> Date: Wed Aug 12 17:08:55 2015 -0500 next branding draft next branding draft commit 31a060e6e7098a96febae0d4f67d4bfd7d5fda7a Author: Susan Price <sprice@continuum.io> Date: Wed Aug 12 15:53:29 2015 -0500 add branding to lecture 1 add branding to lecture 1 commit 190d4c0d291e5f9c1502716e71cd7d9b7cd57c4b Author: Will Warner <electronwill@gmail.com> Wed Aug 12 15:07:49 2015 -0500 add branding to lecture 0 Add logo and text crediting Johansson to lecture 0. commit a9c0e42b155bf306d180862ad1820fc2819ee6f9 Author: Susan Price <susan@firecatstudio.com> Date: Wed Aug 12 13:29:27 2015 -0500 Update Lecture-O-Scientific-Computing-with-Python.ipynb $\verb|commit|| ac1dba63ea3a7e7f5a22b8ade0ffe39b8c296889|$ Merge: 834e492 475e588 Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Jun 28 23:00:45 2015 +0900

202

Merge pull request #27 from MartinHeroux/master

Minor corrections to Lectures 0-2

commit 834e49248e502e869b030392d2e50f05bd2bf50e

Merge: efaadbd cd2a475

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 24 21:12:14 2015 +0900

Merge pull request #26 from electronwill/anaconda

Update Anaconda information

commit cd2a4758a4052d8b93e8e49596c87ab93ec7947a

Author: Will Warner <electronwill@gmail.com>
Date: Tue Jun 23 11:14:06 2015 -0500

Update Anaconda information

Update Anaconda information: Anaconda is currently not divided into CE and Pro, but rather a single free open source distribution, with some commercial add-ons which are free for academic use.

commit 475e5880b5f80aa4d4de2df7ebf457291c9db1d2

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Tue Jun 23 21:10:22 2015 +1000

Fix typos and grammar

$\verb|commit| 5b53bde2b223ef2f02b47620167299a25854b209|\\$

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Mon Jun 22 07:13:53 2015 +1000

Made minor English corrections & a few minor corrections/additions

commit efaadbdc1ca5e743c7abf66bc61beb5c5eabb60b

Merge: fd8fde6 34a1684

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 12 15:17:10 2015 +0900

Merge pull request #24 from chichilalescu/develop

typo and python2 division comment

commit 34a1684ec893ff1cc70a896e0eafe650850a9afc

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:30:17 2014 -0500

add comment on division operator py3 vs py2

since these are lecture notes, and the students hear about python for the first time (supposedly), it is very likely that they will use python 3 if the instructor is using python 3. however, some of them might soon find themselves working on some remote system which only has some python 2.x available. therefore, my note.

commit 00eda462f2e7afa2abeadd37d1f19c89df74e401

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:20:42 2014 -0500

fix typo

commit fd8fde6b6fd43526315c30c6bfffa699d0439baa

Merge: eb1a5db 12c2d69

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:20:50 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit eb1a5db5c07d4f35fd915a35640beaec6b80033a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:19:57 2014 +0900

fixed typos expect.. -> except.. Thanks @DigNeurosurgeon Closes #22

commit 12c2d6976230ad3e604153e2b40b3282fa168c86

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 17:14:30 2014 +0900

added link to the PDF file

$\verb|commit|| 4 f 7 2 2 da 1 c f d 2 4 4 de c 4 6 5 d 5 f c 2 d 2 6 8 7 c 1 5 c 8 1 9 6 6 c$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 00:14:28 2014 +0900

files for building a pdf that includes all notebooks

${\tt commit}\ 890e238cb4dcdcdf28f1d39a8f5150bfda76ef50$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:51:17 2014 +0900

updated image urls

commit be11c73f1acbc3805018460888adda0f053d91a8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:49:29 2014 +0900

updated section headers from markdown to header cells

commit 5a82957470bbd75da6200b5b96f3dcb5e2c96212

Merge: c4496f1 b0f18ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 27 19:39:31 2014 +0900

Merge pull request #21 from ozancaglayan/patch-1

Lecture-5-Sympy: Add missing verb 'use'

commit b0f18ec70a0d4fbee17796bedf832672da69683a

Author: Ozan Çağlayan <ozancag@gmail.com>
Date: Tue May 27 12:50:35 2014 +0300

Lecture-5-Sympy: Add missing verb 'use'

Replace 'we can the' with 'we can use the'

commit c4496f12eecdf9bc9fe62eb4a93950861812e398

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 14 11:03:14 2014 +0900

Fixed typo. Thanks again @yuvallanger, closes #20

commit d97b4f7e7e318b140c6ccc3d47c6477347dcfdd3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 13 22:25:04 2014 +0900

Fixed spelling error. Closes #19. Thanks @yuvallanger , I appreciate it!

commit 7cef4a43e44465e23bdc5b7cf402537f56d0aeaa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu May 1 10:41:38 2014 +0900

removed reference to the --pylab command line argument (closes #18)

${\tt commit}\ 210e36d6eb83e44094c02b263d7cdc62ba0e21ac$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Apr 22 10:49:39 2014 +0900

fixed some issues with pyplot/00 API usage in 3D examples. Fixed annimation example on ubuntu 14.04

commit 3f41f36ba794ee071dab6ebfbc3faa3d3311e342

Merge: 4aa61bb 1bcb1fa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:16:11 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 4aa61bbdbb759c0b054673ee75d3ad6df33be763

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:15:44 2014 +0900

minor text updates

commit 1bcb1fa79c3e564ec5d04d1a51612391cdb40e0f

Merge: b4d6f56 543c6ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 22:14:52 2014 +0900

Merge pull request #17 from ajvengo/master

Fix mispring in hyposthesis word on theory-experiment-computation images

commit 543c6ffe35d18bea682a989935dd6861b84fcb51

Author: Vladimir Rapatskiy <rapatsky@gmail.com>

Date: Mon Mar 17 15:50:52 2014 +0400

Fix mispring in hyposthesis word on theory-experiment-computation.svg (and .png) images

commit b4d6f5635146c4a6b6e3ee0d117c786a7cf8321d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 17:35:24 2014 +0900

added small section on openmp via cython

commit 4b6ce271b87ae4908bf5f0fcbbc02254f03b9695

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Mar 14 13:44:34 2014 +0900

added some sections on figure tweaking: axis/label spacing, Stix fonts/usetex, scientific notation

commit da83715000c063072a66b2947bde4a5942f50cc4

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:51:02 2014 +0900

update matplotlib init method

commit 2a93f47400a84ac748c505c11c9a620cc426ad80

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:45:01 2014 +0900

updated sympy init_printing method

commit a0aac9fd5971d50e61c21b585d3cc9730e5a2102

Merge: 6793df7 49152e6

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:43:51 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 6793df7d1a82a59448914b6857c35619d1eb0a51

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:39:17 2014 +0900

fixed problems with matvec MPI example

commit 49152e6c8c33c3649349ac554fffadeb2ddfafaa

Merge: ba77020 85fe99a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 24 16:09:48 2014 +0900

Merge pull request #14 from kostyabazhanov/master

Fix misprints.

commit 85fe99a67946a39ee15e4c90e1205e61918af3ac

Author: Kostya Bazhanov <kostyabazhanov@mail.ru>

Date: Sat Feb 22 20:50:41 2014 +0400

Fix misprints.

commit ba770205a8d733758d86fb233cb243a1562a0657

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 11 15:59:31 2013 +0900

reverted change to now anim.save is called and reran notebook

commit edb1e6158294af074c418d88b1b2329890753fac

Merge: 5e82ad2 ad71d7e

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 10 22:54:45 2013 -0800

Merge pull request #12 from westurner/lecture_4_wording_ffmpeg

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

commit ad71d7e463bba7ab5e941bd5d497422e729eb591

Author: westurner <wes.turner@gmail.com>
Date: Mon Dec 9 06:40:09 2013 -0600

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

commit 5e82ad23bcd3bacb3e731c7527a5d0264a41f146

Merge: 8c046ac 363e92c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Nov 27 14:38:31 2013 -0800

Merge pull request #11 from anddam/patch-1

fixing typo: added missing word

$\verb|commit|| 363e92ceefcecc601976ddfa7b812c6b473dd483|$

Author: Andrea D'Amore <anddam@brapi.net>
Date: Wed Nov 27 16:16:39 2013 +0100

fixing typo: added missing word

commit 8c046acdc909667488811237fb85d029143e99a1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:37:58 2013 +0900

fixed a couple of grammar and spelling errors

commit 4bdc21ae7f3ca7a584cc23a3da55f8503d173104

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:18:48 2013 +0900

fix typo: this example should be a syntax error

commit 1b903019834ab47b78e55f86717fcdf57cb6e95b

Merge: 68fd7b9 bd6d1cf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 18 05:49:01 2013 -0800

Merge pull request #9 from janpipek/master

Logarithmic scale + histograms to matplotlib text

commit bd6d1cf82bde9f31905ee58d0cd2e1a63a6dd10f

Author: Jan Pipek <pipek@ipp.cas.cz>
Date: Mon Nov 18 11:59:48 2013 +0100

Matplotlib: histograms

commit 3285e81e02a648ac9c03e3778a9463821d68bdc7

Author: Jan Pipek <pippek@ipp.cas.cz>
Date: Mon Nov 18 11:57:08 2013 +0100

Matplotlib: Logarithmic scale

commit 68fd7b99e1cf79a550b2b335d20bb994070a3768

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:12:40 2013 +0900

ran notebook with python3. added version information table.

commit 4c5aea0c465b5c412cb9cc4a15df327ca0e29864

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:08:41 2013 +0900

fixed some python3 compability issues

commit 0c4b617ccd809dec852678c3f3793d67c32d2357

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:57:28 2013 +0900

added note about %config InlineBackend

 $\verb|commit fcb3044f9a3b95b74d0283cf7bf2d9f56c3fd7b2|\\$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:40:44 2013 +0900

changes make_axes (wrong) to fig.add_axes

commit 52f5b2aec24a077c21cb417842155ff7a798df94

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Sep 7 11:05:36 2013 +0900

rephrase note on replicability and reproducibility

commit 0cd9434239db08d2d73bbe2ef440ff2e30ff45c0

Merge: a35e372 6f96618

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Aug 31 18:39:37 2013 -0700

Merge pull request #8 from gfrubi/master

more typos corrected in Lecture 3

commit 6f966189d0b6992640c2d5b18a9d37f08b90e70b

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 21:31:49 2013 -0400

typos

commit 116b9c42cea07add280fa347826277e090398e8a

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:52:15 2013 -0400

typos

commit 8d73e06731ac0c23944b83f07bc81f4cc22535a7

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:42:28 2013 -0400

corrected "zeres"

commit f583f7ffe3ef79328806bd55efc013c79754781b

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:38:03 2013 -0400

typos

commit a35e372793767201391c5159d78de5760e06abfd

Merge: 3dc5ac4 25c7383

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Aug 17 00:05:10 2013 +0900

Manually merged PR #7

commit 25c7383048d60d703858a960c4eea79ae8170f39

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Wed Aug 14 19:09:41 2013 -0400

typo

commit 4a6faf53aaaf4b71aa25ba20ee7c2d2441e1d840

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Wed Aug 14 17:44:00 2013 -0400

"are" should be "is"

commit 69cc3169db832f5b57c6cc13959677630400e637

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Wed Aug 14 11:19:55 2013 -0400

typo

```
commit 844d495d3f68e3577527be727e026f5bd671b8ee
Author: Guillermo <gfrubi@users.noreply.github.com>
       Tue Aug 13 14:50:54 2013 -0400
   small typos
commit 4d45ae28840a5ff7f45649c11cbff76329e977ea
Author: Guillermo <gfrubi@users.noreply.github.com>
       Mon Aug 12 14:42:29 2013 -0400
   removed "the" from "Using THE 'numpy.savetxt'..."
commit d7b5ee5125322757c94451ddb4095e8eedba7824
Author: Guillermo <gfrubi@users.noreply.github.com>
Date:
       Mon Aug 12 14:37:53 2013 -0400
    typo: "tempature" to "temperature"
commit ba911c59b9c1308060e78072b1e5d8409718d23b
Author: Guillermo <gfrubi@gmail.com>
Date: Sun Aug 11 00:46:06 2013 -0400
   typo
commit 90f9404d1b02fd1d8e6f7d6a2de4d108d4f4d5a7
Author: Guillermo <gfrubi@gmail.com>
       Sun Aug 11 00:34:09 2013 -0400
Date:
    small typo
commit 3dc5ac4fb0fc36db0cd4645d219202796a5656f3
Merge: 059c1eb 6920d5b
Author: Robert Johansson <jrjohansson@gmail.com>
Date:
       Fri Aug 9 18:26:37 2013 -0700
   Merge pull request #6 from gfrubi/master
   more small corrections to the text
commit 6920d5b38cd34703146523e7452530b57429d5a1
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:39:12 2013 -0400
   typos with "expection"
commit ea1aba2d8beb765a8dd358d75b5ce3024b2cf67a
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:32:36 2013 -0400
   typo
commit 9fc54a9eeb3a67254196c1f4e9c4619976195a5c
```

Author: Guillermo <gfrubi@gmail.com>

```
Fri Aug 9 18:28:25 2013 -0400
    small typo
commit 8f259bd1b8819ca84cbf42baa3d09bc33c990805
Author: Guillermo <gfrubi@gmail.com>
      Fri Aug 9 18:02:34 2013 -0400
    small typo
commit f1b8788ff070e1198f7cb8c3b5a32d262c0f6da7
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 17:59:39 2013 -0400
   removed "the" from "of THE that particular class..."
commit 8dfd5898ded19907033afe414c6707f44e4b2779
Author: Guillermo <gfrubi@gmail.com>
      Fri Aug 9 17:43:21 2013 -0400
Date:
   Fixed plural to singular
commit 0bb9f8f2222f2b54e0955874f3f8eaccc5f45da2
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 16:33:41 2013 -0400
    "lists" replaced by "dictionaries", since this is what the text is reffering to
commit 9ffd7f6841b225617fdd2da6aa788c9252c95949
Author: Guillermo <gfrubi@gmail.com>
      Fri Aug 9 16:18:37 2013 -0400
Date:
   Bad sentence corrected
commit 83869535a6f22fe2afa4562ed48d03002cf8c389
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 15:26:11 2013 -0400
    small typo: "use" removed from "We can USE extract a part..."
commit 29183d0d0fe6db44bc903f9c83d7a4921f7b0eb2
Author: Guillermo <gfrubi@gmail.com>
Date: Thu Aug 8 12:09:56 2013 -0400
    added "that" to "...definitions THAT can be used..."
commit e968df274546b2633ad4d446e0639048f918ec3b
Author: Guillermo <gfrubi@gmail.com>
Date:
       Thu Aug 8 11:54:42 2013 -0400
    small typo: "varable" to "variable"
commit 059c1eb1bf62f4804388abfe310053bd99f9095d
```

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 17:00:44 2013 +0900

use header cells instead of markdown headings

commit 23fc637a378d5b237e5a6b4c1d8ff9e70e8c73fd

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 16:44:01 2013 +0900

added versions table

commit ce8c6ad1d120e7990580464620d7b92d14d827c0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 16:42:50 2013 +0900

added versions table

commit ae2b44e25a8525a1ab2cee396e53607692c214da

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:38:46 2013 +0900

added ax=ax to fig.colorbar call, which is useful when packing figures with colorbars into subplots

commit ae364b6992ba1754859e80ccd056fe09a8b60ff4

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:29:24 2013 +0900

use header cells instead of markdown headers. added note about matplotlib magic, more consistent us

$\verb|commit|| bc93fcbc3402430e5311604cebbe6cef71cfd091|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:05:45 2013 +0900

use header cells instead of markdown titles for better nbconvert compatibility

commit 44d17a2a7498fba14482d5b3aeb43eddecb58611

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 11:52:38 2013 +0900

Added section about version_information

commit c93a27a654886b7534f7707c5dc53c2b88e90fe2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 11:02:11 2013 +0900

updated link to IPython notebook

commit c0e73c9ef461e1313d25598772a1324c1256ea47

Merge: d8b027f f4171b0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 7 18:55:06 2013 -0700

Merge pull request #4 from gfrubi/master

fixed link to Ipython notebook in lecture 0

commit f4171b06aa029d065d91735e2871fde49982778a Author: Guillermo <gfrubi@gmail.com> Wed Aug 7 20:00:36 2013 -0400 fixed typo: "This is pattern..." to "This pattern..." commit fbb3c0d87f95d99ae0b45f87706a78fe33af0e0d Author: Guillermo <gfrubi@gmail.com> Date: Wed Aug 7 19:53:14 2013 -0400 corrected typo (double "for") commit 9ab7e545f74b74dbd6b2aee2a420558839097879 Author: Guillermo <gfrubi@gmail.com> Wed Aug 7 19:13:01 2013 -0400 fixed link to Ipython notebook commit d8b027f435f050172f4b8a307f38c573abb19937 Author: Robert Johansson <jrjohansson@gmail.com> Date: Sat Jun 15 09:24:09 2013 +0900 reran the notebook after cython code updated by jfeist. Added note about using IPythons %%cython ma commit 11c4be54a8004a8ff50d720955fb02a35e8ecbc7 Merge: 09ce4af 3ad9c75 Author: Robert Johansson <jrjohansson@gmail.com> Fri Jun 14 08:49:48 2013 -0700 Merge pull request #3 from jfeist/master some small fixes commit 3ad9c75d0873a2443ad257cb954d62b0a79165a8 Author: Johannes Feist <johannes.feist@gmail.com> Date: Fri Jun 14 17:09:43 2013 +0200 in the cython example of lecture 6A: added a cdef for int i as well, giving speedup of more than 10 commit 2e40ce5c48a0884ae6a4dad8b7707fc1925d0999 Author: Johannes Feist <johannes.feist@gmail.com> Date: Fri Jun 14 16:35:34 2013 +0200 fixed some typos in lecture 5 commit 3f5caf8410b4d649fcd8c5c3b91fcbd7871f83ce Author: Johannes Feist <johannes.feist@gmail.com> Date: Fri Jun 14 16:21:38 2013 +0200

213

fixed two typos in lecture 1

commit 09ce4af2c2822678f38257852f5abbb1b9665417
Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 23:55:00 2013 +0900

added example of how to efficiently evaluate expressions using lambdify

commit b20823e1f1fa5fa19c897830d6a81d02b381bdb2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 00:44:24 2013 +0900

fixed typo in explanation of add_axes arguments (thanks to Derek Bridges)

commit 3fdedfabebbf870cc4110e1df85ac81f20a74b13

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri May 10 21:06:01 2013 +0900

fixed problem with animation figure being showed. added arguments to animation save to make it work

commit 46caf73baf20920bdc1a4c10965b15a7caaa6850

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 1 16:15:43 2013 +0900

fixed a python 3 syntax error

commit 7703269d3f7e11d0df72701f7d61ba4d9e6695bc

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Apr 29 16:37:36 2013 +0900

python3 fixes

commit c0844f6caa98b7ea0695a86add9a2e5be7538406

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 14 11:40:36 2013 +0900

spelling and grammar fixes

commit 99fb70c8f0c55a6605397e68af00bd8a5721874a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:54:47 2013 +0900

spelling, grammar and terminology fixes

commit 5ba305b265636ddc06a37461811ff550736cf06d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:33:13 2013 +0900

added some examples on how to use IPython.parallel

commit b5f8c55bd27a87974f9be97b819796032028a04b

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:32:07 2013 +0900

ran a spell checker on the notebook...

commit 403fdc71e7389f42b54c2c67524441c2566b1e18

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:19:53 2013 +0900

bugfix in the opencl example

commit 72e8a1a7ec81c5e36d18aaca540c394a4f1dba6c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 10:55:43 2013 +0900

Fixes #2: correctly compare mpi sum and numpy sum, and make sure that all processes get the same ra

commit 196b77fd7955ffaf22e5a16f14fa5d6e16a8d9c9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:25:00 2013 +0900

removed excessive output from git clone in notebook

commit 75033f9e6ac366b4fd5546ab683fbbf65331d9af

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:16:29 2013 +0900

Added CC-BY as license for the notebooks. Closes #1.

commit 79bb8f76b154dd9b30ad58ff1147db185eb875fd

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jan 23 17:16:49 2013 +0900

added links to github page

commit 297d1fb26f207502105c9cf2c9554ad31c2ce299

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 21 11:07:36 2012 +0900

remove archive files

commit 47ba13714881e644b7570e936f40bfc583a4dcda

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 16:51:53 2012 +0100

remove unnecessary directory

commit 6e5903a48807a17d78ac243f94e38b3ca9f46066

Merge: 4c1c5e8 1f15644

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:45 2012 +0100

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit 4c1c5e8ea22a900be1106a0049fa0a174adfe3ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:22 2012 +0100

updated mac installation instructions

commit 1f15644e8bdf7590f32458f173e65b884c8ab5cb

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 11 21:46:00 2012 +0900

added urls to new notebooks

commit a4f3f148d8e537c7f0716358edee194a88fd1665

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 20:42:04 2012 +0900

updaged archives

commit 24c174d00a5bdaf14a9d6a7bcb2b7c955549bbaf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 11:11:13 2012 +0100

added HPC notebook

commit 8bbf262a9bef6c4cc5e002df6e103164a7078614

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:40:11 2012 +0100

updated RCS noteboook

commit d0d6a70a9b717549306c6d595b4815c527b9a8ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:09:20 2012 +0100

added lecture notebook about RCS

commit 2495af428aaefea851dea2fd4b8e8bc77119522c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Dec 9 20:26:11 2012 +0100

added stuff about ctypes and cython

commit da6f436f41302520c2426abf0baaf8f19224a280

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Dec 9 09:34:58 2012 +0100

Added a README file

commit 19f776e81fe1efd214dfd9a28f4b208f0046cd72

Merge: 9db5eaf b12a6e0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 17:20:47 2012 +0900

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit b12a6e0f2d0bffef492e2355dd6d7d6a0eef45b3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 08:30:21 2012 +0100

minor updates

commit 9db5eaf720c4fe57b1b7135582bc73cdcae28269

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 15:48:19 2012 +0900

regenerated movie

commit 13e17183c56da03c5f26acc9f8028c17f63d3b4c

Merge: 2e5cf5f e55b247

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 07:39:03 2012 +0100

Merge branch 'master' of github.com: jrjohansson/scientific-python-lectures

commit 2e5cf5fadfb68989b4846ff77d6a855d7c66c2f2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 07:38:06 2012 +0100

minor additions and typo fixes

commit e55b247c8c3ac6dd1401987957d4c024a62609cd

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 22:19:02 2012 +0900

added installation instructions for using Fink instead of macports

commit 402bb65f7e82c280b0f19ef1ad09dfde0707b710

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 09:03:25 2012 +0100

minor updates and typo fixes

commit bc5a3fd4dbe6fc97fed0bb2297f62c6da8ee83d8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 08:12:15 2012 +0100

minor updates, typo fixes

commit 35dc225eb08a09522bef450289470f449d4de0aa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 07:54:45 2012 +0100

fixed typo

$\verb|commit|| 35c057e0306cea1b525b4bce70d9bb5228b793fb|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 07:04:47 2012 +0100

updated figs

commit af2358522536100663bbb80caf7ce249a4ee3fec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 06:59:10 2012 +0100

added new subfig

commit_fd7e0699c3fafa81699af324273a542a0f819bf9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:14:28 2012 +0100

added archives

commit 3cc4be6135f8a4f4dd0d69b4479094bb2a963327

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:11:04 2012 +0100

fixed typo

commit 380a6744a0e0fcaab74694fc0f9643d1e6656ed1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:56:30 2012 +0100

minor updates

commit 3ea43c1ad956ecac84d5009333ef452b69a182b3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:32:37 2012 +0100

added start on fortran-c-python lecture

commit f443fbaa480c01673bdacba4f10257ef7f2aa983

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 07:48:23 2012 +0100

minor additions, fixed typos

commit d3d6c3cffc3fd6794c9a5e410c2db7e3a628ea1c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 3 21:39:31 2012 +0100

fixed typos

commit ee9af6faea7f765354744edbfeb52f6b7f087610

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:56:33 2012 +0900

added PNGs or SVGs

commit 29656641b013a1bf66c47d457b6f224d7a6c3e97

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:55:58 2012 +0900

use urls to github instead of local files so that nbviewer works

commit a73fd26e3fbff6a2a9239d66d267cf082401df14

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:26:39 2012 +0900

added urls to notebooks via nbviewer in readme file

```
commit 86d4e9b48ba0e0eae7d2476f3f1fdcbc94e31c4c
Author: Robert Johansson <jrjohansson@gmail.com>
        Fri Nov 30 12:16:28 2012 +0900
    added introduction lecture
commit a419680209976d1c20ee6062e9613961c207ef2e
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Fri Nov 30 00:38:58 2012 +0900
    rename
commit 88f1c03d9b1ae122fc90e1f251abc1e837eb13e7
Author: Robert Johansson <jrjohansson@gmail.com>
Date:
        Thu Nov 29 20:50:00 2012 +0900
    added missing extra files
commit 7ec2ad522915406d4704daaaa39cea95febd1228
Author: Robert Johansson <jrjohansson@gmail.com>
        Thu Nov 29 20:46:10 2012 +0900
    imported initial version of scientific computing lectures
commit 200b15424c4058d44d251408bf890871a7fe0c93
Author: Robert Johansson <jrjohansson@gmail.com>
        Thu Nov 29 03:43:35 2012 -0800
    Initial commit
In [30]: !git checkout 1f26ad648a791e266fbb951ef5c49b8d990e6461
fatal: reference is not a tree: 1f26ad648a791e266fbb951ef5c49b8d990e6461
  Now the content of all the files like in the revision with the hash code listed above (first revision)
In [31]: !cat README
A file with information about the gitdemo repository.
A new line.
   We can move back to "the latest" (master) with the command:
In [32]: !git checkout master
         Lecture-O-Scientific-Computing-with-Python.ipynb
М
М
         Lecture-1-Introduction-to-Python-Programming.ipynb
М
         Lecture-2-Numpy.ipynb
         Lecture-3-Scipy.ipynb
         Lecture-4-Matplotlib.ipynb
М
         Lecture-5-Sympy.ipynb
М
         Lecture-6A-Fortran-and-C.ipynb
         Lecture-6B-HPC.ipynb
         Makefile
М
```

```
D
        Scientific-Computing-with-Python.pdf
Α
        images/cython-numpy-openmp.png
        images/double-pendulum-animation.png
Already on 'master'
Your branch is ahead of 'origin/master' by 4 commits.
  (use "git push" to publish your local commits)
In [33]: !cat README
A file with information about the gitdemo repository.
A new line.
In [34]: !git status
On branch master
Your branch is ahead of 'origin/master' by 4 commits.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
                   Lecture-O-Scientific-Computing-with-Python.ipynb
       modified:
       modified:
                   Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       deleted: Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
       animation.mp4
       dprod.f
```

```
dprod.pyf
filename.png
gitdemo/
gitdemo2/
hello.py
hellofortran.f
"images/Icon\r"
mpi-matrix-vector.py
mpi-numpy-array.py
mpi-psum.py
mpitest.py
mymodule.py
opencl-dense-mv.py
qutip/
random-matrix.csv
random-matrix.npy
random-vector.npy
"scripts/Icon\r"
test.svg
```

9.13 Tagging and branching

9.13.1 Tags

Tags are named revisions. They are useful for marking particular revisions for later references. For example, we can tag our code with the tag "paper-1-final" when when simulations for "paper-1" are finished and the paper submitted. Then we can always retreive the exactly the code used for that paper even if we continue to work on and develop the code for future projects and papers.

```
In [35]: !git log
commit 7daed99af367b55643dc69e92dbd9829a68638f7
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:34 2015 -0700
   remove file tmpfile
commit f9aa373cf281933540f9527cdb025c5aae809271
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:30 2015 -0700
    adding file tmpfile
commit b39d371c7be26d05dcd9ac04b00f84457c7352fd
Author: David Mertz <dmertz@continuum.io>
Date:
       Mon Aug 17 12:39:26 2015 -0700
    added one more line in README
commit 415eea7fc94559f68177a542e49a3c63eb3e26b7
Author: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:39:17 2015 -0700
Date:
    Added a README file
```

commit badf19df6934093cea8364c927e2320adf608c08

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:52 2015 -0700

added a line in expr1 branch

commit d925777dd7b7211b963d9ef141c1c2a13596e370

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:40 2015 -0700

remove file tmpfile

commit 954a45d37c2b6e03e3887d2e0958e12fcb6b0b9c

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:37 2015 -0700

adding file tmpfile

commit 218064fe4e88ae9efd16197084778fc29c8d56b1

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 12:16:30 2015 -0700

added one more line in README

commit 285806d6c9f40356a78414dae626dad0caf2acf5

Author: David Mertz <dmertz@continuum.io>
Date: Mon Aug 17 12:16:18 2015 -0700

Added a README file

commit 028ab85c90c45c2b5c1bbf14b6182d269dd0c00a

Author: David Mertz <dmertz@continuum.io> Date: Mon Aug 17 10:11:26 2015 -0700

Working on running output cells

commit 5eef8aa451b5130b3f8ca9a5b3a9f5da51d3c1c1

Author: David Mertz <dmertz@continuum.io>
Date: Mon Aug 17 09:36:31 2015 -0700

TOC newline after logo

 $\verb|commit|| 6 f 20 a 9 2 d e 4 f f 6 d 8 f a f a 5 d 3 5 7 0 6 c e 2 c b 14 f 14 9 5 1 d$

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:26 2015 -0400

added a line in expr1 branch

commit 68e750697b772952a0e06984199d334521e3a6ea

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

remove file tmpfile

commit 0bf6faad396fd7bca5400e3b09c765a05328edf5

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

adding file tmpfile

commit 6a7b9ebb8fd1fceb54505a2db0d2b87ca43a1680

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:23 2015 -0400

added one more line in README

commit 792c1853277a399db7b66327d23c789dca0fa9b6

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 12:20:22 2015 -0400

Added a README file

commit ca1cb01fc10536fdd9960d88dee2e4eea87a2dbf

Author: Dhavide Aruliah <dhavide@gmail.com>
Date: Mon Aug 17 11:38:01 2015 -0400

Fixed LaTeX build problems.

commit 849d904634219cfd92719d3ca5f5fa3d63524544

Merge: 012cc74 767bded

Author: DavidMertz <dmertz@continuum.io> Date: Mon Aug 17 08:04:05 2015 -0700

Merge pull request #3 from ContinuumIO/New-branding

New branding

commit 767bded862ce839064f7aabc4505b70a5a6ff1b0

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 19:00:34 2015 -0700

Customization of Lecture-O for Continuum

commit 98fa8dd86c9b9d3b22befd2f347d232e40aa1254

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 14:48:06 2015 -0700

Remove external refs in README

commit 012cc740b820899fdd88fcd26f06411b3662acd3

Author: David Mertz <dmertz@continuum.io>
Date: Fri Aug 14 14:24:46 2015 -0700

Bunch of changes to generate book acceptably

commit Ofcfe7b15d4141Of41ce20b30aa3e2cccc2d1b48

Author: David Mertz <dmertz@continuum.io>

Date: Fri Aug 14 13:30:09 2015 -0700

Getting LaTeX glitches fixed

commit af7227f185cbf9b470358a759fcad449c61abba4

Author: David Mertz <dmertz@continuum.io> Date: Fri Aug 14 07:57:43 2015 -0700

ready to generate PDF

commit 9684487886e274ab5d952de38f80e5dfe57ef732

Merge: 3edfcb8 2d272b5

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:47:21 2015 -0700

Merge pull request #2 from ContinuumIO/master

Merge pull request #1 from ContinuumIO/New-branding

commit 2d272b55815ee4c7ba04f26ba6cfab268d4e260e

Merge: ac1dba6 3edfcb8

Author: DavidMertz <dmertz@continuum.io> Date: Fri Aug 14 07:39:37 2015 -0700

Merge pull request #1 from ContinuumIO/New-branding

Merge in new branding

commit 3edfcb801e335c4fbbadc2e67ad4f4818228646e

Merge: 20283fa d35de96

Author: Susan Price <sprice@continuum.io> Date: Thu Aug 13 13:33:21 2015 -0500

Merge branch 'New-branding' of github.com:ContinuumIO/scientific-python-lectures into New-branding

 ${\tt commit}\ 20283 {\tt fad} 70 {\tt f1cc4b4e97a268265fcffcf441a2e7}$

Author: Susan Price <sprice@continuum.io> Date: Wed Aug 12 18:02:27 2015 -0500

Light editing to Lectures 1-3

Typos, also added branding blocks but Will did all.

 $\verb|commit|| d35de965c893ee18b94d17e54984bf5d423d2e65| \\$

Author: Will Warner <electronwill@gmail.com>

Date: Wed Aug 12 17:49:53 2015 -0500

branding

branding

commit f4098deac3c20073733800746d984e470bd94f47

Author: Will Warner <electronwill@gmail.com>

Date: Wed Aug 12 17:08:55 2015 -0500

next branding draft

next branding draft

commit 31a060e6e7098a96febae0d4f67d4bfd7d5fda7a

Author: Susan Price <sprice@continuum.io> Date: Wed Aug 12 15:53:29 2015 -0500

add branding to lecture 1

add branding to lecture 1

commit 190d4c0d291e5f9c1502716e71cd7d9b7cd57c4b

Author: Will Warner <electronwill@gmail.com>

Date: Wed Aug 12 15:07:49 2015 -0500

add branding to lecture ${\tt 0}$

Add logo and text crediting Johansson to lecture 0.

commit a9c0e42b155bf306d180862ad1820fc2819ee6f9

Author: Susan Price <susan@firecatstudio.com>

Date: Wed Aug 12 13:29:27 2015 -0500

Update Lecture-O-Scientific-Computing-with-Python.ipynb

commit ac1dba63ea3a7e7f5a22b8ade0ffe39b8c296889

Merge: 834e492 475e588

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Jun 28 23:00:45 2015 +0900

Merge pull request #27 from MartinHeroux/master

Minor corrections to Lectures 0-2

$\verb|commit|| 834e49248e502e869b030392d2e50f05bd2bf50e| \\$

Merge: efaadbd cd2a475

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 24 21:12:14 2015 +0900

Merge pull request #26 from electronwill/anaconda

Update Anaconda information

commit cd2a4758a4052d8b93e8e49596c87ab93ec7947a

Author: Will Warner <electronwill@gmail.com>

Date: Tue Jun 23 11:14:06 2015 -0500

Update Anaconda information

Update Anaconda information: Anaconda is currently not divided into CE and Pro, but rather a single free open source distribution, with some commercial add-ons which are free for academic use.

commit 475e5880b5f80aa4d4de2df7ebf457291c9db1d2

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Tue Jun 23 21:10:22 2015 +1000

Fix typos and grammar

commit 5b53bde2b223ef2f02b47620167299a25854b209

Author: Martin Heroux <heroux.martin@gmail.com>

Date: Mon Jun 22 07:13:53 2015 +1000

Made minor English corrections & a few minor corrections/additions

commit efaadbdc1ca5e743c7abf66bc61beb5c5eabb60b

Merge: fd8fde6 34a1684

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 12 15:17:10 2015 +0900

Merge pull request #24 from chichilalescu/develop

typo and python2 division comment

commit 34a1684ec893ff1cc70a896e0eafe650850a9afc

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:30:17 2014 -0500

add comment on division operator py3 vs py2

since these are lecture notes, and the students hear about python for the first time (supposedly), it is very likely that they will use python 3 if the instructor is using python 3.

however, some of them might soon find themselves working on some remote system which only has some python 2.x available. therefore, my note.

$\verb|commit| 00eda 462 f2e7 afa 2abeadd 37d1 f19c89df74e401|$

Author: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri Nov 28 21:20:42 2014 -0500

fix typo

commit fd8fde6b6fd43526315c30c6bfffa699d0439baa

Merge: eb1a5db 12c2d69

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:20:50 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit eb1a5db5c07d4f35fd915a35640beaec6b80033a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 7 10:19:57 2014 +0900

fixed typos expect.. -> except.. Thanks @DigNeurosurgeon Closes #22

commit 12c2d6976230ad3e604153e2b40b3282fa168c86

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 17:14:30 2014 +0900

added link to the PDF file

commit 4f722da1cfd244dec465d5fc2d2687c15c81966c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 27 00:14:28 2014 +0900

files for building a pdf that includes all notebooks

commit 890e238cb4dcdcdf28f1d39a8f5150bfda76ef50

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:51:17 2014 +0900

updated image urls

commit be11c73f1acbc3805018460888adda0f053d91a8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Aug 26 23:49:29 2014 +0900

updated section headers from markdown to header cells

commit 5a82957470bbd75da6200b5b96f3dcb5e2c96212

Merge: c4496f1 b0f18ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 27 19:39:31 2014 +0900

Merge pull request #21 from ozancaglayan/patch-1

Lecture-5-Sympy: Add missing verb 'use'

commit b0f18ec70a0d4fbee17796bedf832672da69683a

Author: Ozan Çağlayan <ozancag@gmail.com> Date: Tue May 27 12:50:35 2014 +0300

Lecture-5-Sympy: Add missing verb 'use'

Replace 'we can the' with 'we can use the'

commit c4496f12eecdf9bc9fe62eb4a93950861812e398

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 14 11:03:14 2014 +0900

Fixed typo. Thanks again @yuvallanger, closes #20

commit d97b4f7e7e318b140c6ccc3d47c6477347dcfdd3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue May 13 22:25:04 2014 +0900

Fixed spelling error. Closes #19. Thanks @yuvallanger , I appreciate it!

commit 7cef4a43e44465e23bdc5b7cf402537f56d0aeaa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu May 1 10:41:38 2014 +0900

removed reference to the --pylab command line argument (closes #18)

commit 210e36d6eb83e44094c02b263d7cdc62ba0e21ac

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Apr 22 10:49:39 2014 +0900

fixed some issues with pyplot/00 API usage in 3D examples. Fixed annimation example on ubuntu 14.04

commit 3f41f36ba794ee071dab6ebfbc3faa3d3311e342

Merge: 4aa61bb 1bcb1fa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:16:11 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 4aa61bbdbb759c0b054673ee75d3ad6df33be763

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Mar 18 14:15:44 2014 +0900

minor text updates

commit 1bcb1fa79c3e564ec5d04d1a51612391cdb40e0f

Merge: b4d6f56 543c6ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 22:14:52 2014 +0900

Merge pull request #17 from ajvengo/master

Fix mispring in hyposthesis word on theory-experiment-computation images

commit 543c6ffe35d18bea682a989935dd6861b84fcb51

Author: Vladimir Rapatskiy <rapatsky@gmail.com>

Date: Mon Mar 17 15:50:52 2014 +0400

Fix mispring in hyposthesis word on theory-experiment-computation.svg (and .png) images

commit b4d6f5635146c4a6b6e3ee0d117c786a7cf8321d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Mar 17 17:35:24 2014 +0900

added small section on openmp via cython

commit 4b6ce271b87ae4908bf5f0fcbbc02254f03b9695

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Mar 14 13:44:34 2014 +0900

added some sections on figure tweaking: axis/label spacing, Stix fonts/usetex, scientific notation

 $\verb|commit|| \verb|da83715000c063072a66b2947bde4a5942f50cc4| \\$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:51:02 2014 +0900

update matplotlib init method

commit 2a93f47400a84ac748c505c11c9a620cc426ad80

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:45:01 2014 +0900

updated sympy init_printing method

commit a0aac9fd5971d50e61c21b585d3cc9730e5a2102

Merge: 6793df7 49152e6

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:43:51 2014 +0900

Merge branch 'master' of https://github.com/jrjohansson/scientific-python-lectures

commit 6793df7d1a82a59448914b6857c35619d1eb0a51

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Mar 12 11:39:17 2014 +0900

fixed problems with matvec MPI example

commit 49152e6c8c33c3649349ac554fffadeb2ddfafaa

Merge: ba77020 85fe99a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 24 16:09:48 2014 +0900

Merge pull request #14 from kostyabazhanov/master

Fix misprints.

commit 85fe99a67946a39ee15e4c90e1205e61918af3ac

Author: Kostya Bazhanov <kostyabazhanov@mail.ru>

Date: Sat Feb 22 20:50:41 2014 +0400

Fix misprints.

commit ba770205a8d733758d86fb233cb243a1562a0657

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 11 15:59:31 2013 +0900

reverted change to now anim.save is called and reran notebook

$\verb|commit|| edb1e6158294af074c418d88b1b2329890753fac||$

Merge: 5e82ad2 ad71d7e

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 10 22:54:45 2013 -0800

Merge pull request #12 from westurner/lecture_4_wording_ffmpeg

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

commit ad71d7e463bba7ab5e941bd5d497422e729eb591

Author: westurner <wes.turner@gmail.com>

Date: Mon Dec 9 06:40:09 2013 -0600

Updated Lecture-4-Matplotlib.ipynb: Syntax, FFMpeg workaround, clarification

commit 5e82ad23bcd3bacb3e731c7527a5d0264a41f146

Merge: 8c046ac 363e92c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Nov 27 14:38:31 2013 -0800

Merge pull request #11 from anddam/patch-1

fixing typo: added missing word

commit 363e92ceefcecc601976ddfa7b812c6b473dd483

Author: Andrea D'Amore <anddam@brapi.net>
Date: Wed Nov 27 16:16:39 2013 +0100

fixing typo: added missing word

commit 8c046acdc909667488811237fb85d029143e99a1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:37:58 2013 +0900

fixed a couple of grammar and spelling errors

commit 4bdc21ae7f3ca7a584cc23a3da55f8503d173104

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Nov 19 00:18:48 2013 +0900

fix typo: this example should be a syntax error

commit 1b903019834ab47b78e55f86717fcdf57cb6e95b

Merge: 68fd7b9 bd6d1cf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 18 05:49:01 2013 -0800

Merge pull request #9 from janpipek/master

Logarithmic scale + histograms to matplotlib text

commit bd6d1cf82bde9f31905ee58d0cd2e1a63a6dd10f

Author: Jan Pipek <pipek@ipp.cas.cz>
Date: Mon Nov 18 11:59:48 2013 +0100

Matplotlib: histograms

commit 3285e81e02a648ac9c03e3778a9463821d68bdc7

Author: Jan Pipek <pippek@ipp.cas.cz>
Date: Mon Nov 18 11:57:08 2013 +0100

Matplotlib: Logarithmic scale

commit 68fd7b99e1cf79a550b2b335d20bb994070a3768

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:12:40 2013 +0900

ran notebook with python3. added version information table.

commit 4c5aea0c465b5c412cb9cc4a15df327ca0e29864

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Nov 11 15:08:41 2013 +0900

fixed some python3 compability issues

commit 0c4b617ccd809dec852678c3f3793d67c32d2357

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:57:28 2013 +0900

added note about %config InlineBackend

commit fcb3044f9a3b95b74d0283cf7bf2d9f56c3fd7b2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Sep 30 15:40:44 2013 +0900

changes make_axes (wrong) to fig.add_axes

commit 52f5b2aec24a077c21cb417842155ff7a798df94

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Sep 7 11:05:36 2013 +0900

rephrase note on replicability and reproducibility

commit 0cd9434239db08d2d73bbe2ef440ff2e30ff45c0

Merge: a35e372 6f96618

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Aug 31 18:39:37 2013 -0700

Merge pull request #8 from gfrubi/master

more typos corrected in Lecture 3

commit 6f966189d0b6992640c2d5b18a9d37f08b90e70b

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 21:31:49 2013 -0400

typos

$\verb|commit 116b9c42cea07add280fa347826277e090398e8a|\\$

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:52:15 2013 -0400

typos

commit 8d73e06731ac0c23944b83f07bc81f4cc22535a7

Author: Guillermo <gfrubi@users.noreply.github.com>

Date: Thu Aug 29 15:42:28 2013 -0400

corrected "zeres"

```
commit_f583f7ffe3ef79328806bd55efc013c79754781b
Author: Guillermo <gfrubi@users.noreply.github.com>
       Thu Aug 29 15:38:03 2013 -0400
   typos
commit a35e372793767201391c5159d78de5760e06abfd
Merge: 3dc5ac4 25c7383
Author: Robert Johansson <jrjohansson@gmail.com>
       Sat Aug 17 00:05:10 2013 +0900
   Manually merged PR #7
commit 25c7383048d60d703858a960c4eea79ae8170f39
Author: Guillermo <gfrubi@users.noreply.github.com>
Date: Wed Aug 14 19:09:41 2013 -0400
   typo
commit 4a6faf53aaaf4b71aa25ba20ee7c2d2441e1d840
Author: Guillermo <gfrubi@users.noreply.github.com>
       Wed Aug 14 17:44:00 2013 -0400
Date:
    "are" should be "is"
commit 69cc3169db832f5b57c6cc13959677630400e637
Author: Guillermo <gfrubi@users.noreply.github.com>
      Wed Aug 14 11:19:55 2013 -0400
   typo
commit 844d495d3f68e3577527be727e026f5bd671b8ee
Author: Guillermo <gfrubi@users.noreply.github.com>
Date:
       Tue Aug 13 14:50:54 2013 -0400
    small typos
commit 4d45ae28840a5ff7f45649c11cbff76329e977ea
Author: Guillermo <gfrubi@users.noreply.github.com>
       Mon Aug 12 14:42:29 2013 -0400
   removed "the" from "Using THE 'numpy.savetxt'..."
commit d7b5ee5125322757c94451ddb4095e8eedba7824
Author: Guillermo <gfrubi@users.noreply.github.com>
Date: Mon Aug 12 14:37:53 2013 -0400
   typo: "tempature" to "temperature"
```

Author: Guillermo <gfrubi@gmail.com>

Date:

commit ba911c59b9c1308060e78072b1e5d8409718d23b

Sun Aug 11 00:46:06 2013 -0400

typo

```
commit 90f9404d1b02fd1d8e6f7d6a2de4d108d4f4d5a7
Author: Guillermo <gfrubi@gmail.com>
Date: Sun Aug 11 00:34:09 2013 -0400
   small typo
commit 3dc5ac4fb0fc36db0cd4645d219202796a5656f3
Merge: 059c1eb 6920d5b
Author: Robert Johansson <jrjohansson@gmail.com>
Date:
       Fri Aug 9 18:26:37 2013 -0700
   Merge pull request #6 from gfrubi/master
   more small corrections to the text
commit 6920d5b38cd34703146523e7452530b57429d5a1
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:39:12 2013 -0400
   typos with "expection"
commit ea1aba2d8beb765a8dd358d75b5ce3024b2cf67a
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:32:36 2013 -0400
   typo
commit 9fc54a9eeb3a67254196c1f4e9c4619976195a5c
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:28:25 2013 -0400
    small typo
commit 8f259bd1b8819ca84cbf42baa3d09bc33c990805
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 18:02:34 2013 -0400
    small typo
commit f1b8788ff070e1198f7cb8c3b5a32d262c0f6da7
Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 17:59:39 2013 -0400
   removed "the" from "of THE that particular class..."
commit 8dfd5898ded19907033afe414c6707f44e4b2779
Author: Guillermo <gfrubi@gmail.com>
      Fri Aug 9 17:43:21 2013 -0400
   Fixed plural to singular
```

commit 0bb9f8f2222f2b54e0955874f3f8eaccc5f45da2

Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 16:33:41 2013 -0400

"lists" replaced by "dictionaries", since this is what the text is reffering to

commit 9ffd7f6841b225617fdd2da6aa788c9252c95949

Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 16:18:37 2013 -0400

Bad sentence corrected

commit 83869535a6f22fe2afa4562ed48d03002cf8c389

Author: Guillermo <gfrubi@gmail.com>
Date: Fri Aug 9 15:26:11 2013 -0400

small typo: "use" removed from "We can USE extract a part..."

commit 29183d0d0fe6db44bc903f9c83d7a4921f7b0eb2

Author: Guillermo <gfrubi@gmail.com>
Date: Thu Aug 8 12:09:56 2013 -0400

added "that" to "...definitions THAT can be used..."

commit e968df274546b2633ad4d446e0639048f918ec3b

Author: Guillermo <gfrubi@gmail.com>
Date: Thu Aug 8 11:54:42 2013 -0400

small typo: "varable" to "variable"

commit 059c1eb1bf62f4804388abfe310053bd99f9095d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 17:00:44 2013 +0900

use header cells instead of markdown headings

 $\verb|commit|| 23 fc 637 a 378 d 5b 237 e 5a 6b 4c 1d 8ff 9e 70 e 8c 73 fd$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 16:44:01 2013 +0900

added versions table

commit ce8c6ad1d120e7990580464620d7b92d14d827c0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 16:42:50 2013 +0900

added versions table

commit ae2b44e25a8525a1ab2cee396e53607692c214da

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:38:46 2013 +0900

added ax=ax to fig.colorbar call, which is useful when packing figures with colorbars into subplots

 $\verb|commit|| ae 364b6992ba 1754859e 80ccd 056fe 09a8b60ff 4$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:29:24 2013 +0900

use header cells instead of markdown headers. added note about matplotlib magic, more consistent us

commit bc93fcbc3402430e5311604cebbe6cef71cfd091

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 12:05:45 2013 +0900

use header cells instead of markdown titles for better nbconvert compatibility

commit 44d17a2a7498fba14482d5b3aeb43eddecb58611

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 11:52:38 2013 +0900

Added section about version_information

commit c93a27a654886b7534f7707c5dc53c2b88e90fe2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Aug 8 11:02:11 2013 +0900

updated link to IPython notebook

commit c0e73c9ef461e1313d25598772a1324c1256ea47

Merge: d8b027f f4171b0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Aug 7 18:55:06 2013 -0700

Merge pull request #4 from gfrubi/master

fixed link to Ipython notebook in lecture 0

commit f4171b06aa029d065d91735e2871fde49982778a

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 20:00:36 2013 -0400

fixed typo: "This is pattern..." to "This pattern..."

commit fbb3c0d87f95d99ae0b45f87706a78fe33af0e0d

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 19:53:14 2013 -0400

corrected typo (double "for")

commit 9ab7e545f74b74dbd6b2aee2a420558839097879

Author: Guillermo <gfrubi@gmail.com>
Date: Wed Aug 7 19:13:01 2013 -0400

fixed link to Ipython notebook

$\verb|commit|| d8b027f435f050172f4b8a307f38c573abb19937|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sat Jun 15 09:24:09 2013 +0900

reran the notebook after cython code updated by jfeist. Added note about using IPythons %%cython ma

commit 11c4be54a8004a8ff50d720955fb02a35e8ecbc7

Merge: 09ce4af 3ad9c75

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Jun 14 08:49:48 2013 -0700

Merge pull request #3 from jfeist/master

some small fixes

commit 3ad9c75d0873a2443ad257cb954d62b0a79165a8

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 17:09:43 2013 +0200

in the cython example of lecture 6A: added a cdef for int i as well, giving speedup of more than 10

commit 2e40ce5c48a0884ae6a4dad8b7707fc1925d0999

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 16:35:34 2013 +0200

fixed some typos in lecture 5

commit 3f5caf8410b4d649fcd8c5c3b91fcbd7871f83ce

Author: Johannes Feist <johannes.feist@gmail.com>

Date: Fri Jun 14 16:21:38 2013 +0200

fixed two typos in lecture 1

commit 09ce4af2c2822678f38257852f5abbb1b9665417

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 23:55:00 2013 +0900

added example of how to efficiently evaluate expressions using lambdify

commit b20823e1f1fa5fa19c897830d6a81d02b381bdb2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jun 12 00:44:24 2013 +0900

fixed typo in explanation of add axes arguments (thanks to Derek Bridges)

commit 3fdedfabebbf870cc4110e1df85ac81f20a74b13

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri May 10 21:06:01 2013 +0900

fixed problem with animation figure being showed. added arguments to animation save to make it work

commit 46caf73baf20920bdc1a4c10965b15a7caaa6850

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed May 1 16:15:43 2013 +0900

fixed a python 3 syntax error

commit 7703269d3f7e11d0df72701f7d61ba4d9e6695bc

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Apr 29 16:37:36 2013 +0900

python3 fixes

commit c0844f6caa98b7ea0695a86add9a2e5be7538406

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Apr 14 11:40:36 2013 +0900

spelling and grammar fixes

commit 99fb70c8f0c55a6605397e68af00bd8a5721874a

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:54:47 2013 +0900

spelling, grammar and terminology fixes

commit 5ba305b265636ddc06a37461811ff550736cf06d

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Feb 19 11:33:13 2013 +0900

added some examples on how to use IPython.parallel

commit b5f8c55bd27a87974f9be97b819796032028a04b

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:32:07 2013 +0900

ran a spell checker on the notebook...

commit 403fdc71e7389f42b54c2c67524441c2566b1e18

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 11:19:53 2013 +0900

bugfix in the opencl example

commit 72e8a1a7ec81c5e36d18aaca540c394a4f1dba6c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Feb 18 10:55:43 2013 +0900

Fixes #2: correctly compare mpi sum and numpy sum, and make sure that all processes get the same ra

commit 196b77fd7955ffaf22e5a16f14fa5d6e16a8d9c9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:25:00 2013 +0900

removed excessive output from git clone in notebook

commit 75033f9e6ac366b4fd5546ab683fbbf65331d9af

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Feb 7 10:16:29 2013 +0900

Added CC-BY as license for the notebooks. Closes #1.

commit 79bb8f76b154dd9b30ad58ff1147db185eb875fd

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Jan 23 17:16:49 2013 +0900

added links to github page

commit 297d1fb26f207502105c9cf2c9554ad31c2ce299

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 21 11:07:36 2012 +0900

remove archive files

commit 47ba13714881e644b7570e936f40bfc583a4dcda

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 16:51:53 2012 +0100

remove unnecessary directory

commit 6e5903a48807a17d78ac243f94e38b3ca9f46066

Merge: 4c1c5e8 1f15644

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:45 2012 +0100

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit 4c1c5e8ea22a900be1106a0049fa0a174adfe3ff

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 14 13:56:22 2012 +0100

updated mac installation instructions

commit 1f15644e8bdf7590f32458f173e65b884c8ab5cb

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 11 21:46:00 2012 +0900

added urls to new notebooks

commit a4f3f148d8e537c7f0716358edee194a88fd1665

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 20:42:04 2012 +0900

updaged archives

commit 24c174d00a5bdaf14a9d6a7bcb2b7c955549bbaf

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 11:11:13 2012 +0100

added HPC notebook

commit 8bbf262a9bef6c4cc5e002df6e103164a7078614

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:40:11 2012 +0100

 ${\tt updated} \ {\tt RCS} \ {\tt noteboook}$

commit d0d6a70a9b717549306c6d595b4815c527b9a8ec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 10 07:09:20 2012 +0100

added lecture notebook about RCS

commit 2495af428aaefea851dea2fd4b8e8bc77119522c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Dec 9 20:26:11 2012 +0100

added stuff about ctypes and cython

commit da6f436f41302520c2426abf0baaf8f19224a280

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Sun Dec 9 09:34:58 2012 +0100

Added a README file

commit 19f776e81fe1efd214dfd9a28f4b208f0046cd72

Merge: 9db5eaf b12a6e0

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 17:20:47 2012 +0900

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit b12a6e0f2d0bffef492e2355dd6d7d6a0eef45b3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 08:30:21 2012 +0100

minor updates

commit 9db5eaf720c4fe57b1b7135582bc73cdcae28269

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 15:48:19 2012 +0900

regenerated movie

commit 13e17183c56da03c5f26acc9f8028c17f63d3b4c

Merge: 2e5cf5f e55b247

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 07:39:03 2012 +0100

Merge branch 'master' of github.com:jrjohansson/scientific-python-lectures

commit 2e5cf5fadfb68989b4846ff77d6a855d7c66c2f2

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Dec 7 07:38:06 2012 +0100

minor additions and typo fixes

$\verb|commit|| e55b247c8c3ac6dd1401987957d4c024a62609cd|$

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 22:19:02 2012 +0900

added installation instructions for using Fink instead of macports

commit 402bb65f7e82c280b0f19ef1ad09dfde0707b710

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 09:03:25 2012 +0100

minor updates and typo fixes

commit bc5a3fd4dbe6fc97fed0bb2297f62c6da8ee83d8

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 08:12:15 2012 +0100

minor updates, typo fixes

commit 35dc225eb08a09522bef450289470f449d4de0aa

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Dec 6 07:54:45 2012 +0100

fixed typo

commit 35c057e0306cea1b525b4bce70d9bb5228b793fb

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 07:04:47 2012 +0100

updated figs

commit af2358522536100663bbb80caf7ce249a4ee3fec

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Wed Dec 5 06:59:10 2012 +0100

added new subfig

commit fd7e0699c3fafa81699af324273a542a0f819bf9

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:14:28 2012 +0100

added archives

commit 3cc4be6135f8a4f4dd0d69b4479094bb2a963327

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 18:11:04 2012 +0100

fixed typo

commit 380a6744a0e0fcaab74694fc0f9643d1e6656ed1

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:56:30 2012 +0100

minor updates

commit 3ea43c1ad956ecac84d5009333ef452b69a182b3

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 17:32:37 2012 +0100

added start on fortran-c-python lecture

commit f443fbaa480c01673bdacba4f10257ef7f2aa983

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Tue Dec 4 07:48:23 2012 +0100

minor additions, fixed typos

commit d3d6c3cffc3fd6794c9a5e410c2db7e3a628ea1c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Mon Dec 3 21:39:31 2012 +0100

fixed typos

commit ee9af6faea7f765354744edbfeb52f6b7f087610

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:56:33 2012 +0900

added PNGs or SVGs

commit 29656641b013a1bf66c47d457b6f224d7a6c3e97

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:55:58 2012 +0900

use urls to github instead of local files so that nbviewer works

commit a73fd26e3fbff6a2a9239d66d267cf082401df14

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:26:39 2012 +0900

added urls to notebooks via nbviewer in readme file

commit 86d4e9b48ba0e0eae7d2476f3f1fdcbc94e31c4c

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 12:16:28 2012 +0900

added introduction lecture

commit a419680209976d1c20ee6062e9613961c207ef2e

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Fri Nov 30 00:38:58 2012 +0900

rename

commit 88f1c03d9b1ae122fc90e1f251abc1e837eb13e7

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Nov 29 20:50:00 2012 +0900

added missing extra files

commit 7ec2ad522915406d4704daaaa39cea95febd1228

Author: Robert Johansson <jrjohansson@gmail.com>

Date: Thu Nov 29 20:46:10 2012 +0900

```
commit 200b15424c4058d44d251408bf890871a7fe0c93
Author: Robert Johansson <jrjohansson@gmail.com>
Date:
        Thu Nov 29 03:43:35 2012 -0800
    Initial commit
In [36]: !git tag -a demotag1 -m "Code used for this and that purpuse"
fatal: tag 'demotag1' already exists
In [37]: !git tag -1
demotag1
In [38]: !git show demotag1
tag demotag1
Tagger: David Mertz <dmertz@continuum.io>
       Mon Aug 17 12:16:48 2015 -0700
Code used for this and that purpuse
commit d925777dd7b7211b963d9ef141c1c2a13596e370
Author: David Mertz <dmertz@continuum.io>
Date:
       Mon Aug 17 12:16:40 2015 -0700
   remove file tmpfile
diff --git a/tmpfile b/tmpfile
deleted file mode 100644
index ee4c1e7..0000000
--- a/tmpfile
+++ /dev/null
00 - 1, 2 + 0, 0 00
-A short-lived file.
\ No newline at end of file
```

To retrieve the code in the state corresponding to a particular tag, we can use the git checkout tagname command:

\$ git checkout demotag1

9.14 Branches

With branches we can create diverging code bases in the same repository. They are for example useful for experimental development that requires a lot of code changes that could break the functionality in the master branch. Once the development of a branch has reached a stable state it can always be merged back into the trunk. Branching-development-merging is a good development strategy when serveral people are involved in working on the same code base. But even in single author repositories it can often be useful to always keep the master branch in a working state, and always branch/fork before implementing a new feature, and later merge it back into the main trunk.

In GIT, we can create a new branch like this:

```
In [39]: !git branch expr1
  We can list the existing branches like this:
In [40]: !git branch
expr1
* master
  And we can switch between branches using checkout:
In [41]: !git checkout expr1
М
         Lecture-O-Scientific-Computing-with-Python.ipynb
         Lecture-1-Introduction-to-Python-Programming.ipynb
М
М
         Lecture-2-Numpy.ipynb
М
         Lecture-3-Scipy.ipynb
М
         Lecture-4-Matplotlib.ipynb
         Lecture-5-Sympy.ipynb
М
М
         Lecture-6A-Fortran-and-C.ipynb
М
         Lecture-6B-HPC.ipynb
М
         Makefile
D
         Scientific-Computing-with-Python.pdf
Α
         images/cython-numpy-openmp.png
         images/double-pendulum-animation.png
Switched to branch 'expr1'
  Make a change in the new branch.
In [42]: %%file README
         A file with information about the gitdemo repository.
         README files usually contains installation instructions, and information about how to get star
         Experimental addition.
Overwriting README
In [43]: !git commit -m "added a line in expr1 branch" README
[expr1 707b8a6] added a line in expr1 branch
1 file changed, 3 insertions(+), 1 deletion(-)
In [44]: !git branch
* expr1
 master
In [45]: !git checkout master
         Lecture-O-Scientific-Computing-with-Python.ipynb
М
         Lecture-1-Introduction-to-Python-Programming.ipynb
М
М
         Lecture-2-Numpy.ipynb
М
         Lecture-3-Scipy.ipynb
         Lecture-4-Matplotlib.ipynb
М
```

Lecture-5-Sympy.ipynb

М

```
Lecture-6A-Fortran-and-C.ipynb
М
         Lecture-6B-HPC.ipynb
М
         Makefile
D
         Scientific-Computing-with-Python.pdf
Α
         images/cython-numpy-openmp.png
         images/double-pendulum-animation.png
Switched to branch 'master'
Your branch is ahead of 'origin/master' by 4 commits.
  (use "git push" to publish your local commits)
In [46]: !git branch
expr1
* master
```

We can merge an existing branch and all its changesets into another branch (for example the master branch) like this:

First change to the target branch:

```
In [47]: !git checkout master
         Lecture-O-Scientific-Computing-with-Python.ipynb
М
         Lecture-1-Introduction-to-Python-Programming.ipynb
М
М
         Lecture-2-Numpy.ipynb
М
         Lecture-3-Scipy.ipynb
         Lecture-4-Matplotlib.ipynb
М
М
         Lecture-5-Sympy.ipynb
         Lecture-6A-Fortran-and-C.ipynb
М
М
         Lecture-6B-HPC.ipynb
         Makefile
M
D
         Scientific-Computing-with-Python.pdf
         images/cython-numpy-openmp.png
Δ
         images/double-pendulum-animation.png
Already on 'master'
Your branch is ahead of 'origin/master' by 4 commits.
  (use "git push" to publish your local commits)
In [48]: !git merge expr1
Updating 7daed99..707b8a6
Fast-forward
README | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
In [49]: !git branch
expr1
* master
  We can delete the branch expr1 now that it has been merged into the master:
In [50]: !git branch -d expr1
Deleted branch expr1 (was 707b8a6).
In [51]: !git branch
```

```
* master
```

```
In [52]: !cat README
```

A file with information about the gitdemo repository.

README files usually contains installation instructions, and information about how to get started using Experimental addition.

9.15 pulling and pushing changesets between repositories

If the respository has been cloned from another repository, for example on github.com, it automatically remembers the address of the parant repository (called origin):

```
In [53]: !git remote
origin
In [54]: !git remote show origin

* remote origin
  Fetch URL: git@github.com:ContinuumIO/scientific-python-lectures.git
  Push URL: git@github.com:ContinuumIO/scientific-python-lectures.git
  HEAD branch: master
  Remote branches:
    New-branding tracked
    master tracked
  Local branch configured for 'git pull':
    master merges with remote master
  Local ref configured for 'git push':
    master pushes to master (fast-forwardable)
```

9.15.1 pull

We can retrieve updates from the origin repository by "pulling" changesets from "origin" to our repository:

```
In [55]: !git pull origin
Already up-to-date.
```

We can register addresses to many different repositories, and pull in different changesets from different sources, but the default source is the origin from where the repository was first cloned (and the work origin could have been omitted from the line above).

9.15.2 push

After making changes to our local repository, we can push changes to a remote repository using git push. Again, the default target repository is origin, so we can do:

```
In [56]: !git status
On branch master
Your branch is ahead of 'origin/master' by 5 commits.
  (use "git push" to publish your local commits)
Changes to be committed:
```

```
(use "git reset HEAD <file>..." to unstage)
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       new file: images/cython-numpy-openmp.png
       new file: images/double-pendulum-animation.png
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)
       modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       deleted: Scientific-Computing-with-Python.pdf
Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
       __pycache__/
       animation.mp4
       dprod.f
       dprod.pyf
       filename.png
       gitdemo/
       gitdemo2/
       hello.py
       hellofortran.f
       "images/Icon\r"
       mpi-matrix-vector.py
       mpi-numpy-array.py
       mpi-psum.py
       mpitest.py
       mymodule.py
       opencl-dense-mv.py
       qutip/
       random-matrix.csv
       random-matrix.npy
       random-vector.npy
       "scripts/Icon\r"
```

```
test.svg
In [57]: !git add Lecture-7-Revision-Control-Software.ipynb
In [58]: !git commit -m "added lecture notebook about RCS" Lecture-7-Revision-Control-Software.ipynb
On branch master
Your branch is ahead of 'origin/master' by 5 commits.
  (use "git push" to publish your local commits)
Changes not staged for commit:
       modified: Lecture-O-Scientific-Computing-with-Python.ipynb
       modified: Lecture-1-Introduction-to-Python-Programming.ipynb
       modified: Lecture-2-Numpy.ipynb
       modified: Lecture-3-Scipy.ipynb
       modified: Lecture-4-Matplotlib.ipynb
       modified: Lecture-5-Sympy.ipynb
       modified: Lecture-6A-Fortran-and-C.ipynb
       modified: Lecture-6B-HPC.ipynb
       modified: Makefile
       deleted: Scientific-Computing-with-Python.pdf
Untracked files:
        .DS_Store
        .Makefile.swp
        .ipynb_checkpoints/
        __pycache__/
        animation.mp4
       dprod.f
       dprod.pyf
       filename.png
       gitdemo/
       gitdemo2/
       hello.py
       hellofortran.f
        "images/Icon\r"
        images/cython-numpy-openmp.png
        images/double-pendulum-animation.png
        mpi-matrix-vector.py
       mpi-numpy-array.py
       mpi-psum.py
       mpitest.py
       mymodule.py
        opencl-dense-mv.py
        qutip/
       random-matrix.csv
       random-matrix.npy
       random-vector.npy
        "scripts/Icon\r"
       test.svg
no changes added to commit
In [59]: !git push
Counting objects: 11, done.
Delta compression using up to 8 threads.
```

```
Compressing objects: 100% (10/10), done.
Writing objects: 100% (11/11), 1.04 KiB | 0 bytes/s, done.
Total 11 (delta 5), reused 0 (delta 0)
To git@github.com:ContinuumIO/scientific-python-lectures.git
badf19d..707b8a6 master -> master
```

9.16 Hosted repositories

Github.com is a git repository hosting site that is very popular with both open source projects (for which it is free) and private repositories (for which a subscription might be needed).

With a hosted repository it easy to collaborate with colleagues on the same code base, and you get a graphical user interface where you can browse the code and look at commit logs, track issues etc.

Some good hosted repositories are

Github: http://www.github.comBitbucket: http://www.bitbucket.org

In [60]: Image(filename='images/github-project-page.png')

Out [60]:

9.17 Graphical user interfaces

There are also a number of graphical users interfaces for GIT. The available options vary a little bit from platform to platform:

http://git-scm.com/downloads/guis

In [61]: Image(filename='images/gitk.png')

Out[61]:

9.18 Further reading

- http://git-scm.com/book
- http://www.vogella.com/articles/Git/article.html
- http://cheat.errtheblog.com/s/git