

Zvezdne steze

Združena federacija planetov je zavezništvo N planetov, ki so oštevilčeni od 1 do N. Nekateri planeti so povezani z vesoljskimi predori. V vesoljskem predoru lahko vesoljska ladja leti zelo hitro v obe smeri. Obstaja natanko N-1 vesoljskim predorov, pri čemer lahko potujemo od kateregakoli planeta do kateregakoli drugega planeta v federaciji z uporabo teh predorov.

Dobro znano je, da obstaja D dodatnih vzporednih svetov. Ti so natančno kopije našega sveta, imajo enake planete in vesoljske predore. Oštevilčeni so od 1 do D (naš svet ima številko 0). Planet x v svetu i označimo s P_x^i . Iz enega sveta v drugega lahko potujemo z uporabo portalov. Za vsak i ($0 \le i \le D - 1$) bomo postavili natančno en portal, ki nam omogoči leteti od $P_{A_i}^i$ do $P_{B_i}^{i+1}$ za nek par planetov A_i in B_i ($1 \le A_i, B_i \le N$).

Ko bodo vsi portali postavljeni, se bo vesoljska ladja Batthyány podala na svoje prvo potovanje. Trenutno se nahaja v orbiti okoli P_1^0 . Kapitanka Ágnes in poročnik Gábor sta se odločila igrati sledečo igro: izmenično bosta izbirala destinacijo (planet), do katerega bosta letela. Ta planet je lahko v istem vesolju, če do njega vodi vesoljski predor, ali pa v nekem drugem vesolju, če vodi do njega portal. Njun cilj je obiskati kraje, kamor ni šel še nihče. Ko obiščeta planet P_x^i , se zato nikoli več ne vrneta tja (lahko pa obiščeta planet x v drugem vesolju). Kapitanka Ágnes izbere prvo destinacijo (potem izbira Gábor, nato zopet Ágnes itd.) Kdor v svoji potezi ne more izbrati planeta, kjer še nista bila, izgubi.

Kapitanka Ágnes in poročnik Gábor sta oba zelo pametna: poznata vse predore in portale ter oba igrata optimalno. V koliko različnih postavitvah portalov zmaga igro kapitanka Ágnes? Dve postavitvi sta različni, če obstaja indeks i ($0 \le i \le D-1$), da i-ti portal povezuje različna para planetov v postavitvah (tj. A_i ali B_i se razlikuje).

To število je lahko zelo veliko, zato nas zanima njegov ostanek pri deljenju z $10^9 + 7$.

Vhod

Prva vrstica vsebuje dve s presledkom ločeni celi števili, N in D.

Vsaka izmed naslednjih N-1 vrstic vsebuje dve s presledkom ločeni števili u in v, ki pomenita, da sta P_u^i in P_v^i povezana z vesoljskim tunelom za vse i $(0 \le i \le D)$.

Izhod

Izpiši eno samo število - kakšen je ostanek, če število možnih postavitev portalov, pri katerih zmaga kapitanka Ágnes, delimo z $10^9 + 7$. Možni rezultati so torej $0, 1, 2, \ldots, 10^9 + 6$.

1

Primeri

Vhod	Izhod
3 1	4
1 2	
2 3	

v4

Razlaga

Obstaja samo 1 portal in $3 \cdot 3 = 9$ možnih postavitev. V sledečih 4 postavitvah zmaga kapitanka.

Omejitve

 $\begin{array}{c} 2 \leq N \leq 10^5 \\ 1 \leq D \leq 10^{18} \\ 1 \leq u,v \leq N \end{array}$

Časovna omejitev: 0.2 s

Prostorska omejitev: 32 MiB

${\bf Ocenjevanje}$

Podnaloga	Točke	Omejitve
1	0	primer
2	7	N=2
3	8	$N \le 100 \text{ in } D = 1$
4	15	$N \le 1000 \text{ in } D = 1$
5	15	D=1
6	20	$N \le 1000 \text{ in } D \le 10^5$
7	20	$D \le 10^5$
8	15	brez dodatnih omejitev

2

v4