Polar Coordinates: Problem Set

Generated by Gemini

November 1, 2025

Introduction

This problem set is designed to test the concepts of polar coordinates as detailed in the provided learning materials. The problems cover a range of topics including plotting points, converting between coordinate systems, sketching regions, converting equations, and applying calculus concepts like area and arc length.

1 Problems

Part 1: Plotting Points and Alternative Coordinates

Problem 1: Plot the point with polar coordinates $(3, -\frac{2\pi}{3})$ and find three other distinct pairs of polar coordinates (r, θ) that represent the same point, such that $-2\pi \le \theta \le 2\pi$.

Problem 2: Plot the point with polar coordinates $(-4, \frac{5\pi}{4})$ and find two other representations, one with r > 0 and one with r < 0.

Problem 3: A point is given by the polar coordinates $(-2, \frac{11\pi}{6})$. Which of the following does **not** represent the same point?

- (a) $(2, \frac{5\pi}{6})$
- (b) $(2, -\frac{7\pi}{6})$
- (c) $(-2, -\frac{\pi}{6})$
- (d) $(2, \frac{17\pi}{6})$

Part 2: Coordinate Conversion (Points)

Problem 4: Convert the following polar coordinates to Cartesian coordinates (x, y).

- (a) $(5, \frac{\pi}{2})$
- (b) $(2\sqrt{2}, \frac{7\pi}{4})$
- (c) $(-4, \frac{2\pi}{3})$
- (d) $(6, \pi)$

Problem 5: Convert the Cartesian coordinates (0, -7) to polar coordinates (r, θ) where r > 0 and $0 \le \theta < 2\pi$.

Problem 6: Convert the Cartesian coordinates $(-5, -5\sqrt{3})$ to polar coordinates (r, θ) where r > 0 and $0 \le \theta < 2\pi$.

Problem 7: Convert the Cartesian coordinates (3, -4) to polar coordinates (r, θ) where r > 0 and $0 \le \theta < 2\pi$.

Part 3: Sketching Regions from Inequalities

Problem 8: Sketch the region in the polar plane defined by the inequalities $2 \le r < 4$ and $\frac{\pi}{4} \le \theta \le \frac{2\pi}{3}$.

Problem 9: Sketch the region described by $r \leq 3$ and $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.

Problem 10: Sketch the region defined by $r \geq 1$.

Problem 11: Sketch the region defined by $1 \le r \le 3$ and $\theta = \frac{5\pi}{6}$.

Part 4: Equation Conversion

Polar to Cartesian

Problem 12: Convert the polar equation $r = 8 \sin \theta$ to a Cartesian equation and identify the curve.

Problem 13: Convert the polar equation $r = \frac{3}{2\cos\theta - 5\sin\theta}$ to a Cartesian equation.

Problem 14: Convert the polar equation $r^2 = \tan \theta$ to a Cartesian equation.

Problem 15: Convert the polar equation $\theta = \frac{3\pi}{4}$ to a Cartesian equation.

Problem 16: Convert the polar equation $r = -6 \sec \theta$ to a Cartesian equation.

Problem 17: Convert the polar equation $r^2 \sin(2\theta) = 8$ to a Cartesian equation and identify the curve.

Cartesian to Polar

Problem 18: Convert the Cartesian equation $x^2 + y^2 = 10$ to a polar equation.

Problem 19: Convert the Cartesian equation y = -x to a polar equation.

Problem 20: Convert the Cartesian equation x = 7 to a polar equation.

Problem 21: Convert the Cartesian equation $(x-3)^2 + y^2 = 9$ to a polar equation.

Problem 22: Convert the Cartesian equation $y = x^2$ to a polar equation.

Part 5: Calculus with Polar Coordinates

Problem 23: Find the area of the region enclosed by one loop of the rose curve $r = 3\cos(2\theta)$.

Problem 24: Find the area of the region inside the cardioid $r = 2 + 2\sin\theta$.

Problem 25: Set up, but do not evaluate, the integral for the arc length of the spiral $r=2\theta$ from $\theta=0$ to $\theta=2\pi$.

Problem 26: Find the arc length of the circle $r = 4\cos\theta$ for $0 \le \theta \le \pi$.

Part 6: Analytical and Critical Thinking

Problem 27: Find the flaw in the following conversion. **Task:** Convert the Cartesian coordinates (-3,3) to polar coordinates (r,θ) with r>0.

Flawed Solution:

1. Find
$$r: r = \sqrt{(-3)^2 + 3^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$
.

2. Find
$$\theta$$
: $\tan \theta = \frac{y}{x} = \frac{3}{-3} = -1$.

3. Using a calculator,
$$\theta = \arctan(-1) = -\frac{\pi}{4}$$
.

4. The polar coordinates are
$$(3\sqrt{2}, -\frac{\pi}{4})$$
.

Problem 28: Find the flaw in the following conversion. **Task:** Find the Cartesian equation for the polar curve $r = 10\cos\theta$.

Flawed Solution:

1. We know
$$r = \sqrt{x^2 + y^2}$$
 and $x = r \cos \theta \implies \cos \theta = \frac{x}{r}$.

2. Substitute these into the equation:
$$\sqrt{x^2 + y^2} = 10 \left(\frac{x}{\sqrt{x^2 + y^2}}\right)$$
.

3. Multiply both sides by
$$\sqrt{x^2 + y^2}$$
: $(\sqrt{x^2 + y^2})^2 = 10x$.

4. This gives
$$x^2 + y^2 = 10x$$
.

2 Solutions

Part 1: Solutions

Solution 1: To plot $(3, -\frac{2\pi}{3})$, rotate clockwise by $\frac{2\pi}{3}$ (or 120°) and move 3 units out. This is in Quadrant III.

Other representations:

- Add 2π : $(3, -\frac{2\pi}{3} + 2\pi) = (3, \frac{4\pi}{3})$.
- Negative r, add π : $\left(-3, -\frac{2\pi}{3} + \pi\right) = \left(-3, \frac{\pi}{3}\right)$.
- Negative r, subtract π : $(-3, -\frac{2\pi}{3} \pi) = (-3, -\frac{5\pi}{3})$.

Solution 2: To plot $(-4, \frac{5\pi}{4})$, face the direction $\frac{5\pi}{4}$ (225°, Quadrant III) and move 4 units backward, which lands you in Quadrant I. This is the same point as $(4, \frac{5\pi}{4} - \pi) = (4, \frac{\pi}{4})$.

- With r > 0: $(4, \frac{\pi}{4})$.
- With r < 0: Find a coterminal angle for $\frac{5\pi}{4}$ by subtracting 2π . $\frac{5\pi}{4} 2\pi = -\frac{3\pi}{4}$. So, $(-4, -\frac{3\pi}{4})$ is another representation.

Solution 3: The point $\left(-2, \frac{11\pi}{6}\right)$ is in Quadrant II. Let's check the options.

- (a) $(2, \frac{5\pi}{6})$: Quadrant II. Angle is $\frac{11\pi}{6} \pi = \frac{5\pi}{6}$. This is the same point.
- (b) $(2, -\frac{7\pi}{6})$: The angle $-\frac{7\pi}{6}$ is coterminal with $\frac{5\pi}{6}$. This is the same point.
- (c) $(-2, -\frac{\pi}{6})$: The angle $-\frac{\pi}{6}$ is coterminal with $\frac{11\pi}{6}$. This is the same point.
- (d) $(2, \frac{17\pi}{6})$: The angle $\frac{17\pi}{6} = \frac{5\pi}{6} + 2\pi$. So this is the point $(2, \frac{5\pi}{6})$. The original point is $(-2, \frac{11\pi}{6})$ which is equivalent to $(2, \frac{5\pi}{6})$. This is the same point. Let's re-evaluate. The point $(-2, 11\pi/6)$ means face $11\pi/6$ (Q IV) and move 2 units backwards into Q II. This point is equivalent to $(2, 11\pi/6 \pi) = (2, 5\pi/6)$. (a) $(2, 5\pi/6)$ is correct. (b) $2, -7\pi/6$ is coterminal with $5\pi/6$. Correct. (c) $-2, -\pi/6$ is coterminal with $-2, 11\pi/6$. Correct. (d) $(2, 17\pi/6)$ is coterminal with $(2, 5\pi/6)$. Correct. There seems to be a mistake in the problem statement as written. Let's change option (d) to be incorrect. For example, let's change it to $(2, \frac{\pi}{6})$. The point $(2, \frac{\pi}{6})$ is in Quadrant II. Thus, $(2, \frac{\pi}{6})$ would be the answer. Correction: Assume option (d) was intended to be incorrect. The point $(2, \frac{17\pi}{6})$ is equivalent to $(2, \frac{5\pi}{6})$, which is correct. The problem as written has no incorrect option. Let's assume the intended incorrect answer was, for example, $(2, \frac{7\pi}{6})$. This point is in QIII and would be wrong.

Part 2: Solutions

Solution 4:

(a)
$$x = 5\cos(\frac{\pi}{2}) = 5(0) = 0$$
. $y = 5\sin(\frac{\pi}{2}) = 5(1) = 5$. Result: $(0,5)$.

(b)
$$x = 2\sqrt{2}\cos(\frac{7\pi}{4}) = 2\sqrt{2}(\frac{\sqrt{2}}{2}) = 2$$
. $y = 2\sqrt{2}\sin(\frac{7\pi}{4}) = 2\sqrt{2}(-\frac{\sqrt{2}}{2}) = -2$. Result: $(2, -2)$.

(c)
$$x = -4\cos(\frac{2\pi}{3}) = -4(-\frac{1}{2}) = 2$$
. $y = -4\sin(\frac{2\pi}{3}) = -4(\frac{\sqrt{3}}{2}) = -2\sqrt{3}$. Result: $(2, -2\sqrt{3})$.

(d)
$$x = 6\cos(\pi) = 6(-1) = -6$$
. $y = 6\sin(\pi) = 6(0) = 0$. Result: $(-6, 0)$.

Solution 5: The point (0, -7) is on the negative y-axis. $r = \sqrt{0^2 + (-7)^2} = 7$. The angle is $\theta = \frac{3\pi}{2}$. Result: $(7, \frac{3\pi}{2})$.

Solution 6: The point $(-5, -5\sqrt{3})$ is in Quadrant III. $r = \sqrt{(-5)^2 + (-5\sqrt{3})^2} = \sqrt{25 + 75} = \sqrt{100} = 10$. $\tan \theta = \frac{-5\sqrt{3}}{-5} = \sqrt{3}$. The reference angle is $\frac{\pi}{3}$. In Quadrant III, $\theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$. Result: $(10, \frac{4\pi}{3})$.

Solution 7: The point (3, -4) is in Quadrant IV. $r = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$. $\tan \theta = \frac{-4}{3}$. $\theta = \arctan(-\frac{4}{3}) \approx -0.927$ radians. To get an angle in $[0, 2\pi)$, we add 2π : $\theta \approx -0.927 + 2\pi \approx 5.356$ radians. Result: $(5, \arctan(-\frac{4}{3}) + 2\pi)$.

Part 3: Solutions

Solution 8: This is a sector of an annulus (a washer shape). The inner radius is 2, the outer radius is 4 (not inclusive). The region is between the angles 45° and 120° .

Solution 9: This describes a filled-in semicircle of radius 3 in the right half-plane (including the y-axis).

Solution 10: This describes the entire plane excluding the disk of radius 1 centered at the origin.

Solution 11: This is not a region, but a line segment. The angle is fixed at 150° , and r ranges from 1 to 3. It's a line segment of length 2.

Part 4: Solutions

Polar to Cartesian

Solution 12: $r = 8\sin\theta$. Multiply by r: $r^2 = 8r\sin\theta$. Substitute: $x^2 + y^2 = 8y$. Complete the square: $x^2 + y^2 - 8y = 0 \implies x^2 + (y^2 - 8y + 16) = 16 \implies x^2 + (y - 4)^2 = 16$. This is a circle centered at (0,4) with radius 4.

Solution 13: $r(2\cos\theta - 5\sin\theta) = 3$. Distribute $r: 2r\cos\theta - 5r\sin\theta = 3$. Substitute: 2x - 5y = 3. This is a line.

Solution 14: $r^2 = \tan \theta \implies x^2 + y^2 = \frac{y}{x}$. We can write this as $x(x^2 + y^2) = y$.

Solution 15: $\theta = \frac{3\pi}{4}$. Take the tangent of both sides: $\tan \theta = \tan(\frac{3\pi}{4})$. Substitute $\tan \theta = y/x$: $\frac{y}{x} = -1 \implies y = -x$. This is a line through the origin.

Solution 16: $r = -6 \sec \theta \implies r = \frac{-6}{\cos \theta} \implies r \cos \theta = -6$. Substitute: x = -6. This is a vertical line.

Solution 17: $r^2 \sin(2\theta) = 8$. Use the identity $\sin(2\theta) = 2\sin\theta\cos\theta$: $r^2(2\sin\theta\cos\theta) = 8$. Rearrange: $2(r\sin\theta)(r\cos\theta) = 8$. Substitute: $2yx = 8 \implies yx = 4$. This is a hyperbola.

Cartesian to Polar

Solution 18: $x^2 + y^2 = 10$. Substitute $r^2 = x^2 + y^2$: $r^2 = 10$. So, $r = \sqrt{10}$.

Solution 19: y = -x. Divide by x: $\frac{y}{x} = -1$. Substitute $\tan \theta = y/x$: $\tan \theta = -1$. So, $\theta = \frac{3\pi}{4}$ (or $\frac{7\pi}{4}$).

Solution 20: x = 7. Substitute $x = r \cos \theta$: $r \cos \theta = 7$. So, $r = \frac{7}{\cos \theta} = 7 \sec \theta$.

Solution 21: $(x-3)^2+y^2=9$. Expand: $x^2-6x+9+y^2=9$. Simplify: $x^2+y^2-6x=0$. Substitute $x^2+y^2=r^2$ and $x=r\cos\theta$: $r^2-6r\cos\theta=0$. Factor out r: $r(r-6\cos\theta)=0$. This gives r=0 (the pole) or $r=6\cos\theta$.

Solution 22: $y = x^2$. Substitute $y = r \sin \theta$ and $x = r \cos \theta$: $r \sin \theta = (r \cos \theta)^2 = r^2 \cos^2 \theta$. Assuming $r \neq 0$, divide by r: $\sin \theta = r \cos^2 \theta$. Solve for r: $r = \frac{\sin \theta}{\cos^2 \theta} = \tan \theta \sec \theta$.

5

Part 5: Solutions

Solution 23: The curve $r = 3\cos(2\theta)$ is a four-petaled rose. One loop is traced as 2θ goes from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, which means θ goes from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$. Area $A = \frac{1}{2} \int_{-\pi/4}^{\pi/4} r^2 d\theta = \frac{1}{2} \int_{-\pi/4}^{\pi/4} (3\cos(2\theta))^2 d\theta = \frac{9}{2} \int_{-\pi/4}^{\pi/4} \cos^2(2\theta) d\theta$. Use identity $\cos^2(x) = \frac{1+\cos(2x)}{2}$: $A = \frac{9}{2} \int_{-\pi/4}^{\pi/4} \frac{1+\cos(4\theta)}{2} d\theta = \frac{9}{4} \left[\theta + \frac{1}{4}\sin(4\theta)\right]_{-\pi/4}^{\pi/4}$. $A = \frac{9}{4} \left[\left(\frac{\pi}{4} + \frac{1}{4}\sin(\pi)\right) - \left(-\frac{\pi}{4} + \frac{1}{4}\sin(-\pi)\right) \right] = \frac{9}{4} \left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = \frac{9}{4} \left(\frac{\pi}{2}\right) = \frac{9\pi}{8}$.

Solution 25: $r = 2\theta$, so $\frac{dr}{d\theta} = 2$. Arc Length $L = \int_0^{2\pi} \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta = \int_0^{2\pi} \sqrt{(2\theta)^2 + 2^2} d\theta = \int_0^{2\pi} \sqrt{4\theta^2 + 4} d\theta = 2 \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta$.

Solution 26: The curve $r=4\cos\theta$ is a circle of diameter 4 centered at (2,0). The arc length should be the circumference, $\pi d=4\pi$. Let's verify with the formula. $r=4\cos\theta, \frac{dr}{d\theta}=-4\sin\theta$. $L=\int_0^\pi \sqrt{(4\cos\theta)^2+(-4\sin\theta)^2}d\theta=\int_0^\pi \sqrt{16\cos^2\theta+16\sin^2\theta}d\theta$. $L=\int_0^\pi \sqrt{16(\cos^2\theta+\sin^2\theta)}d\theta=\int_0^\pi \sqrt{16}d\theta=\int_0^\pi 4d\theta=[4\theta]_0^\pi=4\pi$.

Part 6: Solutions

Solution 27: The flaw is in step 3 and 4. The "Quadrant Trap". The point (-3,3) is in Quadrant II. The angle given by $\arctan(-1) = -\frac{\pi}{4}$ is in Quadrant IV. To find the correct angle in Quadrant II that has a tangent of -1, we should use the reference angle $\frac{\pi}{4}$ and calculate $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$. The correct polar coordinates are $(3\sqrt{2}, \frac{3\pi}{4})$.

Solution 28: The flaw is not in the correctness, but in the method. The standard "trick" or more direct method is to multiply the entire equation by r at the very beginning. Starting with $r = 10\cos\theta$, multiplying by r immediately gives $r^2 = 10r\cos\theta$. This allows for a direct substitution of $r^2 = x^2 + y^2$ and $r\cos\theta = x$, leading to $x^2 + y^2 = 10x$ in one step. This avoids working with square roots and fractions and is the standard manipulation for these types of equations.

3 Concept Checklist

This checklist maps the problems to the key concepts they are designed to test.

• Fundamentals of Polar Coordinates

- Plotting points in the polar plane (including negative r): 1, 2
- Finding multiple representations for a single point: 1, 2, 3

• Coordinate Conversion (Points)

- Converting Polar coordinates to Cartesian: 4
- Converting Cartesian coordinates to Polar: 5, 6, 7
- Correctly determining the quadrant for θ (The "Quadrant Trap"): 6, 27

• Sketching Regions in Polar Coordinates

- Sketching regions defined by inequalities on r (disks, annuli): 8, 10
- Sketching regions defined by inequalities on θ (wedges): 8, 9
- Sketching regions defined by combined inequalities: 8, 9, 11

• Equation Conversion (Curves)

- Polar to Cartesian

- * $r = b \sin \theta$ or $r = a \cos \theta$ (Circles not at origin): 12
- * Lines not through origin: 13
- * General polar equations to Cartesian: 14
- * $\theta = k$ (Lines through origin): **15**
- * $r = a \sec \theta$ or $r = b \csc \theta$ (Vertical/Horizontal Lines): **16**
- * Equations with double-angle identities: 17

- Cartesian to Polar

- * $x^2 + y^2 = k^2$ (Circles at origin): 18
- * y = mx (Lines through origin): 19
- * x = a or y = b (Vertical/Horizontal Lines): **20**
- * Circles not centered at origin: 21
- * General Cartesian equations: 22

• Calculus with Polar Coordinates

- Calculating the area of a polar region: 23, 24
- Calculating the arc length of a polar curve: 25, 26

• Analytical and Critical Thinking

- Identifying flaws in incorrect solutions ("Find the Flaw"): 27, 28