

# EE782 Advanced Topics in Machine Learning 06 Neural Networks for NLP

Amit Sethi

Electrical Engineering, IIT Bombay



## Module objectives

- Design LSTM based networks for various NLP tasks
- Articulate the information bottleneck in encoder-decoder architectures
- Explain how attention alleviates the information bottleneck
- Understand how attention can do almost all tasks done by the other layers



## Pre-processing for NLP

 The most basic pre-processing is to convert words into an embedding using Word2Vec or GloVe

 Otherwise, a one-hot-bit input vector can be too long and sparse, and require lots on input weights



## Pre-training LSTMs

- Learning to predict the next word can imprint powerful language models in LSTMs
- This captures the grammar and syntax
- Usually, LSTMs are pre-trained on corpora





## Sentiment analysis

- Very common for customer review or new article analysis
- Output before the end can be discarded (not used for backpropagation)
- This is a many-to-one task





## Multi-layer LSTM

More than one hidden layer can be used





#### Machine translation

 A naïve model would be to use a many-tomany network and directly train it





#### Machine translation

 One could also feed in the output to the next instance input to predict a coherent structure





#### Machine translation

 In actuality, one would use separate LSTMs pre-trained on two different languages





Machine translation using encoder-decoder

#### Decoder



Encoder



#### **Bi-directional LSTM**

- Many problems require a reverse flow of information as well
- For example, POS tagging may require context from future words





## Sentence generation

- Very common for image captioning
- Input is given only in the beginning
- This is a one-to-many task





## Sentence generation

- Very common for image captioning
- Input is given only in the beginning
- This is a one-to-many task





## Video Caption Generation



Source: "Translating Videos to Natural Language Using Deep Recurrent Neural Networks", Venugopal et al., ArXiv 2014



#### Information bottlenech in the context vector





## Pooling summarizes feature vectors over several locations

- Average pooling:  $1/N \sum_i x_i$
- Max pooling: max<sub>i</sub> (x<sub>i</sub>)
- Attention: ∑<sub>i</sub> a<sub>i</sub>x<sub>i</sub>
  - Often,  $a_i = softmax(e_i)$
  - And  $e_i = f(q, k_i)$



## Attention is like intelligent pooling

- E.g. kernel methods:  $y = \sum_i k(x_i, x_i) y_i$ 
  - Query is x
  - Key is  $x_i$
  - Value is  $y_i$
  - Permutation-invariant in  $x_i$
- In softmax attention, the sum of the attentions is 1



### Side-branches in neural networks





#### LSTM with Attention Mechanism





### LSTM with Attention Mechanism





### LSTM with Attention Mechanism





### Attention between encoder and decoder





Source: "Neural Machine Translation by Jointly Learning to Align and Translate," by Bahdanau, Cho, Bengio, 2014



## How attention changes information flow

#### Previously

$$h_{t} = f(x_{t}, h_{t-1})$$

$$c = q(\{h_{1}, \dots, h_{T_{x}}\})$$

$$q(\{h_{1}, \dots, h_{T}\}) = h_{T}$$

$$p(\mathbf{y}) = \prod_{t=1}^{T} p(y_{t} \mid \{y_{1}, \dots, y_{t-1}\}, c)$$

$$p(y_{t} \mid \{y_{1}, \dots, y_{t-1}\}, c) = g(y_{t-1}, s_{t}, c)$$

#### With attention

$$p(y_{i}|y_{1},...,y_{i-1},\mathbf{x}) = g(y_{i-1},s_{i},c_{i})$$

$$\begin{vmatrix} \mathbf{\hat{h_{T}}} \\ \mathbf{\hat{h_{T}}} \\ \mathbf{X_{T}} \end{vmatrix} c_{i} = \int_{j=1}^{T_{x}} \alpha_{ij}h_{j} \qquad \alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_{x}} \exp\left(e_{ik}\right)}$$

$$e_{ij} = a(s_{i-1},h_{j})$$



## No vs. global vs. local attention







Source: "Effective Approaches to Attention-based Neural Machine Translation," by Luong, Pham, Manning, 2015



# Transformer networks



Source: "Attention Is All You Need," by Vaswani et al., 2017



#### Attention in Transformer networks

Scaled Dot-Product Attention





Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

Source: "Attention Is All You Need," by Vaswani et al., 2017



## Details of transfomer by Vaswani et al. (2017)

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$



## Layer norm visualized



<sup>&</sup>quot;Batch Normalization" by Ioffe, Szegedy, 2015

<sup>&</sup>quot;Layer Normalization" by Ba, Kiros, Hinton, 2016

<sup>&</sup>quot;Group Normalization" by Wu, He, 2017



### **BERT**



Source: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," by Devli et al., 2018



### **BERT**



Source: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," by Devli et al., 2018



### **BERT**



Source: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," by Devli et al., 2018





Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

<sup>&</sup>quot;An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," Dosovitskiy et al. ICLR 2021 https://arxiv.org/pdf/2010.11929.pdf



#### **Vision Transformer**

$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1}\mathbf{E}; \, \mathbf{x}_{p}^{2}\mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N}\mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \qquad \ell = 1 \dots L$$

$$\mathbf{y} = \text{LN}(\mathbf{z}_{L}^{0})$$

 $\mathbf{U}_{msa} \in \mathbb{R}^{k \cdot D_h \times D}$ 

$$[\mathbf{q}, \mathbf{k}, \mathbf{v}] = \mathbf{z} \mathbf{U}_{qkv}$$

$$A = \operatorname{softmax} \left( \mathbf{q} \mathbf{k}^{\top} / \sqrt{D_h} \right)$$

$$A \in \mathbb{R}^{N \times N},$$

$$SA(\mathbf{z}) = A\mathbf{v}.$$

"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," Dosovitskiy et al. ICLR 2021 https://arxiv.org/pdf/2010.11929.pdf

 $MSA(\mathbf{z}) = [SA_1(z); SA_2(z); \cdots; SA_k(z)] \mathbf{U}_{msa}$ 



## Association of words to image regions



A woman is throwing a frisbee in a park.



A <u>dog</u> is standing on a hardwood floor.



A <u>stop</u> sign is on a road with a mountain in the background.



A little <u>girl</u> sitting on a bed with a teddy bear.



A group of <u>people</u> sitting on a boat in the water.



A giraffe standing in a forest with trees in the background.

Source: Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. "Show, attend and tell: Neural image caption generation with visual attention." In *International conference on machine learning*, pp. 2048-2057. 2015.



# Injecting attribute extraction into the attention process



Source: You Q, Jin H, Wang Z, Fang C, Luo J. Image captioning with semantic attention. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 4651-4659).



# Injecting attribute extraction into the attention process



Source: You Q, Jin H, Wang Z, Fang C, Luo J. Image captioning with semantic attention. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 4651-4659).



#### Outline

- Attention in NLP
- Attention in vision
  - Attention for image captioning
  - Attention for image recognition
  - Attention for segmentation and detection
  - Attention in other vision applications



## Residual attention network



Source: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 (pp. 3156-3164).



## Two branches of residual attention network



Code snippet (GitHub: koichiro11 / residual-attention-network):

with tf.variable\_scope("attention"):

output = (1 + output soft mask) \* output trunk

with tf.variable\_scope("output"):

output\_soft\_mask = tf.layers.conv2d...

output soft mask = tf.nn.sigmoid(output soft mask)

Paper: Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 (pp. 3156-3164).



## Squeeze and excitation networks



Source: Hu J, Shen L, Sun G. Squeeze-and-excitation networks. InProceedings of the IEEE conference on computer vision and pattern recognition 2018 (pp. 7132-7141).



## Convolutional block attention module



Source: Woo S, Park J, Lee JY, So Kweon I. Cbam: Convolutional block attention module. InProceedings of the European Conference on Computer Vision (ECCV) 2018 (pp. 3-19).



#### Outline

- Attention in NLP
- Attention in vision
  - Attention for image captioning
  - Attention for image recognition
  - Attention for segmentation and detection
  - Attention in other vision applications



## Multi-scale attention for segmentation



Source: Chen LC, Yang Y, Wang J, Xu W, Yuille AL. Attention to scale: Scale-aware semantic image segmentation. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 3640-3649).



## Multi-scale attention for segmentation



Source: Chen LC, Yang Y, Wang J, Xu W, Yuille AL. Attention to scale: Scale-aware semantic image segmentation. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 3640-3649).



## Multi-scale attention for segmentation



Source: Chen LC, Yang Y, Wang J, Xu W, Yuille AL. Attention to scale: Scale-aware semantic image segmentation. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 3640-3649).



# One-shot object detection



Source: Hsieh TI, Lo YC, Chen HT, Liu TL. One-Shot Object Detection with Co-Attention and Co-Excitation. InAdvances in Neural Information Processing Systems 2019 (pp. 2721-2730).



## Outline

- Attention in NLP
- Attention in vision
  - Attention for image captioning
  - Attention for image recognition
  - Attention for segmentation and detection
  - Attention in other vision applications



# Attention-based Multiple Instance Learning





Source: Ilse M, Tomczak JM, Welling M. Attention-based deep multiple instance learning. In 35th International Conference on Machine Learning, ICML 2018 2018 Jan 1 (pp. 3376-3391). And, adapted in unpublished work by Deepak Anand, Kumar Yashashwi, Neeraj Kumar, Swapnil Rane, Peter Gann, and Amit Sethi