UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS.

Integración numérica. Fórmula de los Trapecios. Área bajo un arco de parábola. Fórmula de Simpson. Resto de la Fórmula de Simpson.

Objetivos Instructivos. Con esta clase pretendemos que los alumnos conozcan algunos métodos para calcular la integral definida de forma aproximada.

Integral definida: Cálculo

Regla de Barrow

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

- Pero...
 - Funciones sin primitiva sencilla

$$\int_0^{\pi} \frac{\operatorname{sen}(x)}{x} dx \qquad \int_0^t e^{-x^2} dx$$

Datos experimentales: área de un terreno.

¿Por qué es necesario esto?

Integral elíptica de segunda clase Definición de funciones especiales:

Función de Bessel

$$J_{n}(z) = \frac{1}{\pi} \int_{0}^{\pi} c \cdot o \cdot s \cdot (z \cdot s \cdot e \cdot n \cdot \theta) d \cdot \theta$$

Función error

$$e \quad r \quad f \quad (\quad x \quad) \quad = \quad \frac{2}{\sqrt{\pi}} \quad \int_{0}^{x} e^{-t^{2}} dt$$

Discretización de ecuaciones integrales

Integración Numérica: trapezoidal

- Tenemos que hallar el area debajo la curva f(x)
- Utilizamos la interpretación geométrica
- Sea $x_0 = a y x_1 = b$, entonces

Aproximamos la integral calculando el área del trapecio.

Fórmula de los Trapecios

Simple

$$I_{T} = (b-a) \frac{f(a) + f(b)}{2}$$

Error

$$E_{T} = -\frac{(b-a)^{3}}{12}f''(\xi), \quad \xi \in [a,b]$$

Newton-Cotes: trapezoidal

Aproximamos f(x) como:

$$f_p(x) = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0}$$

 La integral estará dada por:

$$\int_{x_0}^{x_1} f(x)dx \approx \int_{x_0}^{x_1} \left[\frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) \right] dx$$

Newton-Cotes: trapezoidal

Resolviendo:

$$\int_{x_0}^{x_1} f(x) dx \approx \frac{h}{2} [f(x_0) + f(x_1)]$$

Generalizando:

$$\int_{a}^{b} f(x) \approx \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{k=1}^{N-1} f(x_{k}) \right]$$

Newton-Cotes: Simpson

 Ahora la aproximación es de segundo orden:

$$\int_{x_0}^{x_2} f(x)dx \approx \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

Newton-Cotes: Simpson

 Recordamos la integración por intervalos y resolvemos:

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{N-2}}^{x_{N}} f(x)dx$$

$$= \frac{h}{3} \left(\left[f(x_{0}) + 4f(x_{1}) + f(x_{2}) \right] + \left[f(x_{2}) + 4f(x_{3}) + f(x_{4}) \right] + \dots + \left[f(x_{N-2}) + 4f(x_{N-1}) + f(x_{N}) \right]$$

Newton-Cotes: Simpson

Reacomodamos y simplificamos:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(a) + 4 \sum_{i=1}^{N/2} f(x_{2i-1}) + 2 \sum_{i=1}^{(N/2)-1} f(x_{2i}) + f(b) \right]$$

• n=1 Regla del Trapecio

$$\int_{a}^{b} f(x) dx = \frac{h}{2} [f(x_{0}) + f(x_{1})] - \frac{h^{3}}{12} f''(\eta) \qquad x_{0} < \eta < x_{1}$$

• *n*=2 Regla de Simpson

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_{0}) + 4 f(x_{1}) + f(x_{2})] - \frac{h^{-5}}{90} f^{-(iv)}(\eta) \qquad x_{0} < \eta < x_{2}$$

• *n*=3 Regla de Simpson 3/8

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} [f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + f(x_{3})] - \frac{3h^{-5}}{80} f^{(iv)}(\eta) \qquad x_{0} < \eta < x_{3}$$

n=4 Newton-Cotes (5 puntos)

$$\int_{a}^{b} f(x) dx = \frac{2h}{45} \left[7 f(x_{0}) + 32 f(x_{1}) + 12 f(x_{2}) + 32 f(x_{3}) + 7 f(x_{4}) \right] - - \frac{8h^{-5}}{945} f^{-(ii)} (\eta) x_{0} < \eta < x_{4}$$

Integración aproximada ¿más puntos?

- Al evaluar más puntos de la función en el intervalo dado, podemos obtener mayor exactitud
- Pero la aproximación de alto orden nos traen problemas numéricos...