Section 1.4—The Limit of a Function

The notation $\lim_{x\to a} f(x) = L$ is read "the limit of f(x) as x approaches a equals L" and means that the value of f(x) can be made arbitrarily close to L by choosing x sufficiently close to a (but not equal to a). But $\lim_{x\to a} f(x)$ exists if and only if the limiting value from the left equals the limiting value from the right. We shall use this definition to evaluate some limits.

Note: This is an intuitive explanation of the limit of a function. A more precise definition using inequalities is important for advanced work but is not necessary for our purposes.

INVESTIGATION 1 Determine the limit of $y = x^2 - 1$, as x approaches 2.

A. Copy and complete the table of values.

x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3
$y=x^2-1$											

- B. As x approaches 2 from the left, starting at x = 1, what is the approximate value of y?
- C. As x approaches 2 from the right, starting at x = 3, what is the approximate value of y?
- D. Graph $y = x^2 1$ using graphing software or graph paper.
- E. Using arrows, illustrate that, as we choose a value of x that is closer and closer to x = 2, the value of y gets closer and closer to a value of 3.
- F. Explain why the limit of $y = x^2 1$ exists as x approaches 2, and give its approximate value.

EXAMPLE 1 Determine $\lim_{x\to 1} \frac{x^2-1}{x-1}$ by graphing.

Solution

On a graphing calculator, display the graph of $f(x) = \frac{x^2 - 1}{x - 1}$, $x \ne 1$.

The graph shown on your calculator is a line (f(x) = x + 1), whereas it should be a line with point (1, 2) deleted $(f(x) = x + 1, x \neq 1)$. The WINDOW used is $X_{\min} = -10$, $X_{\max} = 10$, $X_{\text{scl}} = 1$, and similarly for Y. Use the TRACE function to find X = 0.85106383, Y = 1.8510638 and X = 1.0638298, Y = 2.0638298.

Click ZOOM; select 4:ZDecimal, ENTER. Now, the graph of $f(x) = \frac{x^2 - 1}{x - 1}$ is displayed as a straight line with point (1, 2) deleted. The WINDOW has new values, too.

Use the TRACE function to find X = 0.9, Y = 1.9; X = 1, Y has no value given; and X = 1.1, Y = 2.1.

We can estimate $\lim_{x\to 1} f(x)$. As x approaches 1 from the left, written as " $x\to 1$ ", we observe that f(x) approaches the value 2 from below. As x approaches 1 from the right, written as $x\to 1^+$, f(x) approaches the value 2 from above.

We say that the limit at x = 1 exists only if the value approached from the left is the same as the value approached from the right. From this investigation, we conclude that $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$.

EXAMPLE 2 Selecting a table of values strategy to evaluate a limit

Determine $\lim_{x\to 1} \frac{x^2-1}{x-1}$ by using a table.

Solution

We select sequences of numbers for $x \to 1^-$ and $x \to 1^+$.

NEL CHAPTER 1 35

x approaches 1 from the left $ o$								← x approaches 1 from the right						
х	0	0.5	0.9	0.99	0.999	1		1.001	1.01	1.1	1.5	2		
$\frac{x^2-1}{x-1}$	1	1.5	1.9	1.99	1.999	undefined		2.001	2.01	2.1	2.5	3		
$f(x) = \frac{x^2 - 1}{x - 1}$ approaches 2 from below \rightarrow $\leftarrow f(x) = \frac{x^2 - 1}{x - 1}$ approaches 2 from above											above			

This pattern of numbers suggests that $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$, as we found when graphing in Example 1.

EXAMPLE 3

Tech **Support**

For help graphing piecewise functions on a graphing calculator, see Technology Appendix p. 607.

Selecting a graphing strategy to evaluate a limit

Sketch the graph of the piecewise function:

$$f(x) = \begin{cases} x - 1, & \text{if } x < 1\\ 1, & \text{if } x = 1\\ 2 + \sqrt{x - 1}, & \text{if } x > 1 \end{cases}$$

Determine $\lim_{x \to 1} f(x)$.

Solution

The graph of the function f consists of the line y = x - 1 for x < 1, the point (1, 1) and the square root function $y = 2 + \sqrt{x - 1}$ for x > 1. From the graph of f(x), observe that the limit of f(x) as $x \to 1$ depends on whether x < 1 or x > 1. As $x \to 1^-$, f(x) approaches the value of 0 from below. We write this as $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x - 1) = 0$.

Similarly, as $x \to 1^+$, f(x) approaches the value 2 from above. We write this as $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(2 + \sqrt{x-1}\right) = 2$. (This is the same when x = 1 is substituted into the expression $2 + \sqrt{x-1}$.) These two limits are referred to as one-sided

limits because, in each case, only values of x on one side of x = 1 are considered. How-ever, the one-sided limits are unequal— $\lim_{x \to 1^-} f(x) = 0 \neq 2 = \lim_{x \to 1^+} f(x)$ —or more briefly, $\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)$. This implies that f(x) does not approach a single value as $x \to 1$. We say "the limit of f(x) as $x \to 1$ does not exist" and write " $\lim_{x \to 1} f(x)$ does not exist." This may be surprising, since the function f(x) was defined at x = 1—that is, f(1) = 1. We can now summarize the ideas introduced in these examples.

Limits and Their Existence

We say that the number L is the limit of a function y = f(x) as x approaches the value a, written as $\lim_{x \to a} f(x) = L$, if $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$. Otherwise, $\lim_{x \to a} f(x)$ does not exist.

IN SUMMARY

Key Idea

• The limit of a function y = f(x) at x = a is written as $\lim_{x \to a} f(x) = L$, which means that f(x) approaches the value L as x approaches the value a from both the left and right side.

Need to Know

- $\lim_{x\to a} f(x)$ may exist even if f(a) is not defined.
- $\lim_{x\to a} f(x)$ can be equal to f(a). In this case, the graph of f(x) passes through the point (a, f(a)).
- If $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$, then L is the limit of f(x) as x approaches a, that is $\lim_{x\to a} f(x) = L$.

Exercise 1.4

PART A

- 1. What do you think is the appropriate limit of each sequence?
 - a. 0.7, 0.72, 0.727, 0.7272, . . .
 - b. 3, 3.1, 3.14, 3.141, 3.1415, 3.141 59, 3.141 592, . . .
- 2. Explain a process for finding a limit.
 - 3. Write a concise description of the meaning of the following:
 - a. a right-sided limit
- b. a left-sided limit
- c. a (two-sided) limit

NEL CHAPTER 1 37

- 4. Calculate each limit.

- a. $\lim_{x \to -5} x$ c. $\lim_{x \to 10} x^2$ e. $\lim_{x \to 1} 4$ b. $\lim_{x \to 3} (x + 7)$ d. $\lim_{x \to -2} (4 3x^2)$ f. $\lim_{x \to 3} 2^x$
- 5. Determine $\lim_{x \to 4} f(x)$, where $f(x) = \begin{cases} 1, & \text{if } x \neq 4 \\ -1, & \text{if } x = 4 \end{cases}$.

PART B

- 6. For the function f(x) in the graph below, determine the following:
- b. $\lim_{x \to 2^{-}} f(x)$
- $c. \lim_{x \to 2^+} f(x)$
- d. f(2)

K 7. Use the graph to find the limit, if it exists.

b.
$$\lim_{x\to 2} f(x)$$

c.
$$\lim_{x \to 3} f(x)$$

8. Evaluate each limit.

a.
$$\lim_{x \to -1} (9 - x^2)$$

b.
$$\lim_{x \to 0} \sqrt{\frac{x+20}{2x+5}}$$
 c. $\lim_{x \to 5} \sqrt{x-1}$

c.
$$\lim_{x \to 5} \sqrt{x-1}$$

- 9. Find $\lim (x^2 + 1)$, and illustrate your result with a graph indicating the limiting value.
- 10. Evaluate each limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 0^+} x^4$$

c.
$$\lim_{x \to 2^{-}} (x^2 - 4)$$

e.
$$\lim_{x \to 3^+} \frac{1}{x+2}$$

b.
$$\lim_{x \to 2^{-}} (x^2 - 4)$$

d.
$$\lim_{x \to 1^+} \frac{1}{x - 3}$$

a.
$$\lim_{x \to 0^{+}} x^{4}$$
 c. $\lim_{x \to 3^{-}} (x^{2} - 4)$ e. $\lim_{x \to 3^{+}} \frac{1}{x + 2}$ b. $\lim_{x \to 2^{-}} (x^{2} - 4)$ d. $\lim_{x \to 1^{+}} \frac{1}{x - 3}$ f. $\lim_{x \to 3} \frac{1}{x - 3}$

11. For each function, sketch the graph of the function. Determine the indicated limit if it exists.

a.
$$f(x) = \begin{cases} x + 2, & \text{if } x < -1 \\ -x + 2, & \text{if } x \ge -1 \end{cases}$$
; $\lim_{x \to -1} f(x)$

b.
$$f(x) = \begin{cases} -x + 4, & \text{if } x \le 2 \\ -2x + 6, & \text{if } x > 2 \end{cases}, \lim_{x \to 2} f(x)$$

c.
$$f(x) = \begin{cases} 4x, & \text{if } x \ge \frac{1}{2} \\ \frac{1}{x}, & \text{if } x < \frac{1}{2} \end{cases}$$
; $\lim_{x \to \frac{1}{2}} f(x)$

d.
$$f(x) = \begin{cases} 1, & \text{if } x < -0.5 \\ x^2 - 0.25, & \text{if } x \ge -0.5 \end{cases}$$
; $\lim_{x \to -0.5} f(x)$

12. Sketch the graph of any function that satisfies the given conditions. A

a.
$$f(1) = 1$$
, $\lim_{x \to 1^+} f(x) = 3$, $\lim_{x \to 1^-} f(x) = 2$
b. $f(2) = 1$, $\lim_{x \to 2} f(x) = 0$
c. $f(x) = 1$, if $x < 1$ and $\lim_{x \to 1^+} f(x) = 2$
d. $f(3) = 0$, $\lim_{x \to 3^+} f(x) = 0$

b.
$$f(2) = 1$$
, $\lim_{x \to 2} f(x) = 0$

c.
$$f(x) = 1$$
, if $x < 1$ and $\lim_{x \to 1^+} f(x) = 2$

d.
$$f(3) = 0$$
, $\lim_{x \to 3^+} f(x) = 0$

13. Let f(x) = mx + b, where m and b are constants. If $\lim_{x \to 1} f(x) = -2$ and $\lim_{x \to -1} f(x) = 4, \text{ find } m \text{ and } b.$

PART C

- 14. Determine the real values of a, b, and c for the quadratic function T $f(x) = ax^2 + bx + c$, $a \ne 0$, that satisfy the conditions f(0) = 0, $\lim_{x \to 1} f(x) = 5$, and $\lim_{x \to -2} f(x) = 8$.
 - 15. The fish population, in thousands, in a lake at time t, in years, is modelled by the following function:

$$p(t) = \begin{cases} 3 + \frac{1}{12}t^2, & \text{if } 0 \le t \le 6\\ 2 + \frac{1}{18}t^2, & \text{if } 6 < t \le 12 \end{cases}$$

This function describes a sudden change in the population at time t = 6, due to a chemical spill.

a. Sketch the graph of p(t).

b. Evaluate $\lim p(t)$ and $\lim_{t \to 0} p(t)$.

c. Determine how many fish were killed by the spill.

d. At what time did the population recover to the level before the spill?