Convex Optimization Note

Garrick Lin

March 12, 2019

1 Affine Set

1.1 Definition

A set A is called affine set when it satisfied:

If
$$\mathbf{x_1} \in \mathcal{A}$$
 and $\mathbf{x_2} \in \mathcal{A}$, then, $\forall \theta \in \mathcal{R}$, $x = \theta \mathbf{x_1} + (1 - \theta) \mathbf{x_2}$ also belong to \mathcal{A} .

The expression $\theta \mathbf{x_1} + (1 - \theta)\mathbf{x_2}$ represent a line that cross through $\mathbf{x_1}$ and $\mathbf{x_2}$. Hence, affine set can be explained intuitively as:

Affine set is a set that contain the line which cross through any two point within this set.

1.2 Properties

Assume a affine set $\mathcal{A} \subseteq \mathcal{R}^n$. If \mathcal{A} contain original point(0), then, \mathcal{A} is a subspace. In order to prove this, \mathcal{A} must satisfied following three rules:

- 1. \mathcal{A} contain original point.
- 2. If $\mathbf{v} \in \mathcal{A}$, then, $\forall \theta \in \mathcal{R}$, $\theta \mathbf{v} \in \mathcal{A}$.
- 3. If $\mathbf{v_1}, \mathbf{v_2} \in \mathcal{A}$, then, $\mathbf{v_1} + \mathbf{v_2} \in \mathbf{A}$.

The first rule is already satisfied. For the second rule, $\forall \theta \in \mathcal{R}, \theta \mathbf{v}$ satisfied:

$$\theta \mathbf{v} = \theta \mathbf{v} + (1 - \theta) \mathbf{0}$$

Since \mathcal{A} is affine and $\mathbf{v}, \mathbf{0} \in \mathcal{A}, \, \theta \mathbf{v} \in \mathcal{A}$ always true. For the third rule, there is:

$$\mathbf{v_1} + \mathbf{v_2} = 2(\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2})$$

 $\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2} \text{ is in } \mathcal{A} \text{ as } \mathcal{A} \text{ is affine and } \frac{1}{2}\mathbf{v_1}, \frac{1}{2}\mathbf{v_2} \in \mathcal{A} (\text{According to the second rule, } \mathbf{v_1}, \mathbf{v_2} \in \mathcal{A}, \text{ then, } \frac{1}{2}\mathbf{v_1}, \frac{1}{2}\mathbf{v_2} \in \mathcal{A}).$ According to the second rule, $2(\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2}) \in \mathcal{A}$

Therefore, any affine set \mathcal{A}' can be thought as a subspace \mathcal{V} with a transportation \mathbf{v} , which means, $\mathcal{A}' = \mathcal{V} + \mathbf{v}$. On the other hand, an affine set subtract some constant vector $(\mathcal{A}' - \mathbf{v})$, which make the new set contain original point, can form a subspace. Formally, for a affine set $\mathcal{A} = \{\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_n}\}$ and $\mathbf{a_i} \in \mathcal{A}$, the set:

$$\mathcal{A}-\mathbf{a_i} = \{\mathbf{a_1}-\mathbf{a_i}, \mathbf{a_2}-\mathbf{a_i}, \cdots, \mathbf{a_{i-1}}, \mathbf{0}, \mathbf{a_{i+1}}, \cdots, \mathbf{a_n}-\mathbf{a_i}\}$$

form a subspace.