

DATA MINING &
MACHINE LEARNING:

 Consider a uniformly-populated sample in 2 parameters (dimensions). The fraction of the sample found within a radius r of the data's center is:

$$f_2 = \frac{V_{param}}{V_{total}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4} \approx 78.5\%$$

 As a model becomes more complex (of higher dimensionality), more data is required to constrain it.

$$f_3 = \frac{V_{param}}{V_{total}} = \frac{(4/3)\pi r^3}{(2r)^3} = \frac{\pi}{6} \approx 52.3\%$$

for the case of D dimensions,

$$V_D(r) = \frac{2r^D \pi^{D/2}}{D\Gamma(D/2)}$$

$$f_D = \frac{V_D(r)}{(2r)^D} = \frac{\pi^{D/2}}{D2^{D-1}\Gamma(D/2)}$$

$$\lim_{D\to\infty} f_D = 0$$

for the case of D dimensions,

$$V_D(r) = \frac{2r^D \pi^{D/2}}{D\Gamma(D/2)}$$

$$f_D = \frac{V_D(r)}{(2r)^D} = \frac{\pi^{D/2}}{D2^{D-1}\Gamma(D/2)}$$

$$\lim_{D\to\infty} f_D = 0$$

 The number of data points required to evenly sample a hypervolume grows exponentially with dimension.

more familiar "hyperspheres"

INTRINSIC DIMENSIONALITY

- certain projections within the data capture the principal physical and statistical correlations between measured quantities
- if we can find these efficiently, we can use them to:
 - reduce the dimensionality of data
 - more simply visualize, classify data

INTRINSIC DIMENSIONALITY

- Principal Component Analysis (PCA)
 - identifies the axes with <u>maximal variance</u>
 (principal components) and <u>minimal covariance</u>
 - effectively a least squared minimization of the points with respect to the principal components

Variance

$$Var(x) = \frac{\sum (x_i - \overline{x})^2}{N}$$

Covariance

$$COV(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

$$C_X = \frac{1}{N-1} X^T X$$

Calculating a Covariance Matrix:

- Assume data $\{\mathcal{X}_i\}$ with N observations of K parameters
- Center data by subtracting the mean of each feature in $\{X_i\}$ and write this N x K matrix as X.
- The centered data is given by the covariance matrix: $C_X = \frac{1}{N-1} X^T X$

$$COV(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

An example:

The table below displays scores on math, English, and art tests for 5 students. Note that data from the table is represented in matrix **A**, where each column in the matrix shows scores on a test and each row shows scores for a student.

	Student	Math	English	Art
ľ	1	90	60	90
	2	90	90	30
	3	60	60	60
	4	60	60	90
	5	30	30	30

Given the data represented in matrix A, compute the variance of each test and the covariance between the tests.

Calculating a Covariance Matrix:

- Assume data $\{\mathcal{X}_i\}$ with N observations of K parameters
- Center data by subtracting the mean of each feature in $\{x_i\}$ and write this N x K matrix as X.
- The centered data can be presented as the covariance matrix:

$$C_X = \frac{1}{N-1} X^T X$$

 Step 1: Transform the raw scores from matrix A into deviation scores, a

Studen	nt Math	English	Art
1	90	60	90
2	90	90	30
2	90	90	30
3	60	60	60
4	60	60	90
5	30	30	30

a = A - 1 1'A (1/n)

where 1 is an n x 1 column vector of ones,
a is an n x k matrix of deviation scores,
A is an n x k matrix of raw scores

 Step 1: Transform the raw scores from matrix A into deviation scores, a

Student	Math	English	Art
1	90	60	90
2	90	90	30
2	90	90	30
3	60	60	60
4	60	60	90
5	30	30	30

$$a = A - 1 1'A (1/n)$$

 Step 2: Compute a'a, the n x n deviation sums of squares and cross products matrix for A

 Step 3: Divide each element in the deviation sum of squares matrix by n

- Theoretical outline:
 - Identify a projection of $\{x_i\}$, say, R, that is aligned with the directions of maximal variance.
 - We call this projection Y = XR and its covariance is:

$$C_Y = R^T X^T X R = R^T C_X R$$

with

$$C_X = \frac{1}{N-1} X^T X$$

- Theoretical outline:
 - The first principle component, r_1 of R, is defined as the projection with the maximal variance, derived using Lagrange multipliers and defining the cost function as:

$$\phi(r_1, \lambda_1) = r_1^T C_X r_1 - \lambda_1 (r_1^T r_1 - 1)$$

$$\phi(r_1, \lambda_1) = r_1^T C_X r_1 - \lambda_1 (r_1^T r_1 - 1)$$

• Setting the derivative of $\phi(r_1, \lambda_1)$ with respect to r_1 equal to zero gives:

$$C_X r_1 - \lambda_1 r_1 = 0$$

- So λ_1 is the root of the equation $\det(C_X \lambda_1 I) = 0$ and a principal component of the covariance matrix.
- The variance for the first principal component is maximized when $\lambda_1 = r_1^T C_X r_1$ is the largest eigenvalue of the covariance matrix

$$\phi(r_1, \lambda_1) = r_1^T C_X r_1 - \lambda_1 (r_1^T r_1 - 1)$$

- The second (and further principal components can be similarly derived after requiring that the principal components of the cost function are uncorrelated.
- Ordering the eigenvectors by their eigenvalue defines the set principal components for X

- A large, diverse dataset can be encoded in a small number of eigenvectors (94% of SDSS galaxies can be constructed with 10 eigenvectors)
 - High eigenvector numbers = low-order components (e.g., continuum)
 - Low eigenvector numbers = higher-order features (e.g., emission lines)

- Efficient computational methods:
 - Singular Value Decomposition (SVD) of X
 - eigenvalue decomposition of C_X (use when N>>K)
 - eigenvalue decomposition of M_X (use when K>>N)

- Examples of effective pre-processing steps for greater PCA efficiency:
 - flux normalization
 - background subtraction

How many principle components should be fit?

Preferred methods?

e.g., Nonnegative Matrix
 Factorization (NMF), for cases
 when we know that a data
 vector can be represented by
 a linear sum of positive
 components (e.g., galaxy
 spectra)

MANIFOLD LEARNING

- Non-linear dimensionality reduction:
 - Locally Linear Embedding (LLE)
 - Isometric Mapping (IsoMap)

• the preservation of locality enables non-linear features to be captured with fewer components

MANIFOLD LEARNING

Weaknesses:

noisy / gap-ridden data

- tuning the right number of nearest neighbors
- no clean mapping onto a set number of dimensions
- outlier sensitivity
- reconstruction from the manifold

CHOOSING A DIMENSIONALITY REDUCTION TECHNIQUE FOR YOUR PROBLEM

LLE projection

IsoMap projection

- Accuracy
- Interpretability
- Scalability
- Simplicity