Отчет о выполнении лабораторной работы 4.5.2 Интерференция лазерного излучения

Выполнил: Голубович Тимур, группа Б01-108 27.04.2023

Цель работы

Исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

Оборудование и приборы

He-Ne-лазер; интерферометр Майкельсона с подвижным зеркалом; фотодиод с усилителем; осциллограф; поляроид; линейка.

Теоретическое введение

Важный параметр интерференционной картины — ее видность:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{1}$$

Удобно представлять видимость в виде произведения функций различных параметров установки/системы:

$$V = V_1 V_2 V_3 \tag{2}$$

Рассмотрим эти функции подробнее. Первая из них отвечает за отношение интенсивностей интерферирующих волн:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta}, \quad \delta = \frac{B_m^2}{A_m^2} \tag{3}$$

Здесь A_m, B_m — амплитуды волн. Вторая функция учитывает влияние разности хода и спектрального состава волн:

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi\Delta\nu nl}{c}}{\sum_n A_n^2} \sim e^{-(\pi\Delta F l/c^2)}$$
(4)

Рис. 1: Качественный график V_2

Здесь l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивность мод. Оценка приведена из перехода к непрерывному пределу. На графике (рис.1) показан вид $V_2(l)$, позволяющий получить расстояние L между зеркалами резонатора и межмодовое расстояние $\Delta \nu$. Величина $l_{1/2}$ позволяет оценить диапазон частот ΔF . Формулы связи межмодового расстояния и длины L, а также $l_{1/2}$ и ΔF таковы:

$$\Delta \nu = \frac{c}{2L}, \quad l_{1/2} \approx \frac{0.26c}{\Delta F} \tag{5}$$

Последняя функция — зависимость от угла поляризации α :

$$V_3 = |\cos \alpha| \tag{6}$$

Экспериментальная установка

Для получения интерференционной картины используется интерферометр Майкельсона, смонтированный на вертикально стоящей массивной металлической плите. Схема установки приведена на рисунке.

Схема установки. З, З₁, З₂, З₃ — зеркала. П₁ и П₂ — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. ФД — фотодиод, Э — экран, ПК — пьезокерамика, Л — линза

Рис. 2: Экспериментальная установка

Источником света служит гелий-неоновый лазер (средняя длина волны $\lambda_0=632.8$ нм). Пучок лазерного излучения отражается от зеркала 3 и проходит призму полного

внутреннего отражения РФ (ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Если в установке используется лазер, излучающий неполяризованный свет, то ромб Френеля не нужен, но он и не мешает выполнению работы. Далее лазерное излучение делится диагональной плоскостью делительного кубика Π K на два пучка.

Осциллограф мы используем для нахождения следующих величин: фоновой засветки (линия 0 — перекрыты оба пучка 1 и 2); интенсивность света каждого из пучков (линии 1 или 2 — перекрыт пучок 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба пучка). При этом параметр δ из (3), определяется отношением

$$\delta = \frac{h_1}{h_2} \tag{7}$$

Рис. 3: Сигнал фотодиода на осциллографе формуле (1), так:

Понятно, что из физического смысла, наша видимость рассчитывается очевидным образом, согласно

$$V = \frac{h_4 - h_3}{h_4 + h_3} \tag{8}$$

Отсюда, используя (2), мы можем получить наши функции из (8), фиксируя одну из них (т.е. беря равной единице). Так, при $\alpha = 0 \Rightarrow V_3 = 1$,

$$V_2(l) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{9}$$

А приняв разность хода $l=0 \Rightarrow V_2=0$, можно найти

$$V_3(\alpha) = \frac{V}{V_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{h_2}{h_1} \tag{10}$$

Ход работы

Изучение поляризации

Поворотами поляризатора Π_1 убедимся, что свет от лазера — поляризованный. Настроив поляроид на минимальную видимость и введя дополнительный поляроид, мы вновь получаем интерференционную картину при его поворотах. Интенсивность излучения при вращении поляроида меняется, что говорит о его **не хаотической** поляризации. При вращении также изменяется интерференционная картина, что говорит о **линейной или круговой** поляризации, а не хаотической.

Измерение зависимости видности от угла

Исследуем зависимость видности интерференционной картины от угла α поворота поляроида Π_1 при нулевой разности хода $(V_2 = 1)$. Для этого измерим величины h_1, h_2, h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу ?? и построим график согласно формуле (10). Значения для δ, V, V_1 получим из формул выше.

β , $^{\circ}$	h_1 , дел	h_2 ,	h_3 , дел	h_3 , дел	V_3
90	1.0	4.1	4.6	6.1	0.177
80	1.2	4.1	3.5	7.2	0.413
70	1.5	4.1	2.6	9.0	0.623
60	2.0	4.1	1.8	10.5	0.753
50	2.8	4.0	1.0	13.0	0.871
40	4.2	4.2	0.9	16.1	0.894
30	5.0	4.1	0.8	17.0	0.915
20	6.4	4.1	1.2	20.0	0.909
10	5.6	4.2	1.4	23.1	0.895
0	6.6	4.3	2.0	24.6	0.869

Таблица 1: Измерение зависимости V_3 от β

Рис. 4: График зависимости $V_3(\beta)$

Из графика следует, что он приближается функцией $\cos^2\alpha$. Это значит, что **поляризация** — **линейная**. Выполняется **закон Малюса**:

$$I = I_0 \cos^2 \alpha$$

Измерение зависимости видности от дальности хода

Теперь установим α на максимальную видность и будем перемещать блок B_2 , тем самым изменяя дальность хода x. Аналогично предыдущему пункту измерим величины h_1,h_2,h_3 и h_4 на экране осциллографа. Результаты занесем в таблицу 1

и построим график согласно формуле (9). Значения для δ, V, V_1 получим из формул выше.

x,	h_1 , дел	h_2 ,	h_3 , дел	h_3 , дел	V_2
10	4.5	5.5	3.7	16.1	0.629
12	4.5	7.0	3.2	19.5	0.736
14	4.5	8.9	3.1	23.1	0.808
16	4.5	7.1	2.3	20.6	0.820
18	4.6	9.5	3.7	24.0	0.782
20	4.7	6.8	3.1	18.8	0.729
24	4.7	11.0	8.5	22.0	0.483
28	4.6	12.0	13.0	18.8	0.204
34	4.1	7.8	10.6	12.8	0.099
40	4.1	11.0	13.2	15.9	0.104
50	2.0	4.5	6.0	7.1	0.091
60	5.0	12.3	16.4	18.2	0.057
70	3.0	11.0	9.4	17.2	0.357
74	3.0	10.6	7.5	19.0	0.523
76	4.0	13.2	7.0	28.0	0.710
78	4.1	10.5	4.5	25.0	0.773
80	4.8	13.5	4.8	31.0	0.832
82	4.9	8.5	3.0	23.0	0.799
84	5.0	16.7	7.9	34.6	0.746
86	3.1	12.5	7.5	23.3	0.643
88	3.1	10.0	7.4	18.6	0.507

Таблица 2: Измерение зависимости V_2 от x

Видно, что у нас наблюдается 2 максимума по краям области измерения и некоторые колебания в промежуточной области. А именно, максимумы в области $x_1 \approx (16 \pm 1)$ см и в области $x_2 \approx (80 \pm 1)$ см, откуда получаем следующий результат:

$$L = \frac{1}{2}(x_2 - x_1) = (32.0 \pm 1.2) \text{ cm}$$
 (11)

Отсюда нетрудно получить и значение $\Delta \nu$ из формулы (5):

$$\Delta \nu = \frac{c}{2L} \approx (4.7 \pm 0.2) \cdot 10^8 \, \Gamma \text{H}$$
 (12)

Оценим $l_{1/2} \approx (80-72)$ см = (8 ± 2) см, откуда по формуле (5) получаем

$$2\Delta F = 2 \cdot \frac{0.26c}{l_{1/2}} \approx (19.5 \pm 4.9) \cdot 10^8 \, \Gamma$$
ц (13)

Тогда для числа одновременно генерируемых лазером продольных волн можно провести оценку:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} \approx 5 \pm 1 \tag{14}$$

Рис. 5: График зависимости $V_2(x)$

Вывод

- В ходе выполнения лабораторная работы была изучена поляризация излучения лазера. При этом было установлено, что при вращении поляроида интенсивность излучения меняется, что говорит о его не хаотической поляризации. При этом изменяется и интерференционная картина. По этим результатам можно предположить, что поляризация линейная или круговая.
- Затем была исследована зависимость видности интерференционной картины от угла поляроида Π_1 . Из результатов измерений и аппроксимации следует, что зависимость приближается функцией $\cos^2 \alpha$. Это значит, что поляризация излучения **линейная** согласно закону Малюса.
- В заключительной части работы была исследована зависимости видности интерференционной картины от разности хода. По полученным данным было оценено расстояние между максимумами, расстояние L между зеркалами оптического резонатора лазера, а также межмодовое расстояние $\Delta \nu$. Для этих величин были получены следующие результаты:

$$L = (32.0 \pm 1.2) \text{ cm}$$

$$\Delta \nu = (4.7 \pm 0.2) \cdot 10^8 \, \mathrm{\Gamma u}$$

• Также по графику также было оценена полуширина $l_{1/2}$. При помощи этих данных было получен диапазон частот $2\Delta F$, в котором происходит генерация

продольных мод, и приблизительное число мод. Были получены следующие результаты:

$$\boxed{ l_{1/2} = (8 \pm 2) \text{ см} }$$

$$\boxed{ 2\Delta F = (19.5 \pm 4.9) \cdot 10^8 \text{ } \Gamma \text{ц} }$$

$$\boxed{ N = 5 \pm 1 }$$

• Основной вклад в погрешнсть в ходе выполнения работы могла внести ошибка при определении продольного сдвига второго зеркального блока. Также не всегда было реальным точное измерение максимумов напряжений по показаниям осциллографа в силу их изменения во времени.

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 4 Оптика, 2004
- [2] Кириченко Н.А. Оптика., 2011
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 3. Оптика: учебное пособие под ред. А. В. Максимычева, М. Г. Никулина