Ninja Cursors

Using Multiple Cursors to Assist Target Acquisition on Large Screens

Masatomo Kobayashi

(The University of Tokyo)

I BM Tokyo Research Lab

Takeo Igarashi

(The University of Tokyo)

Outline

Background & Motivation

O NA (1

Our Method

Evaluation

Discussion & Future Work

Conclusion

Background

Large display

Background

Multi-display

Background

(Virginia Tech)

Larger screens

Problem

It is difficult to point to a distant object.

Introducing "ninja cursors"

Basic idea of "ninja cursors"

Cover the screen with multiple, synchronously moving cursors.

→ The user can use the nearest cursor.

Reducing the distance

Average distance from the nearest cursor:

$$D \rightarrow \frac{D}{\sqrt{n}} \qquad (n: \text{# of cursors})$$

Studies on target pointing

Target Size

Cursor Size

e.g., [Fitts 1954]

e.g., [Kabbash & Buxton 1995]

Target Density

Cursor Density

e.g., [Guiard et al. 2004]

Outline

Background & Motivation

Our Method

Evaluation

Discussion & Future Work

Conclusion

Ambiguity problem

What happens if multiple cursors point to multiple targets simultaneously?

Resolving ambiguity

Only one cursor can point to a target; others are blocked and in the waiting queue.

Resolving ambiguity

Visual feedbacks

Visual feedbacks

Long waiting Short waiting

Pointing

Outline

Background & Motivation

Our Method

Evaluation

Discussion & Future Work

Conclusion

Goal

Determine how the cursor number and the target density affect the performance.

Hypothesis

of Cursors

Design

- √ 8 participants (within-participant)
- √ 4 cursor types×3 target numbers×3 target sizes
- √ 10 trials for each condition

Setup

Cursor types

1 cursor (standard cursor)

8 cursors

2 cursors

18 cursors

Target numbers

$$N = 1$$

$$N = 100$$

$$N = 400$$

Movement Time (MT)

N = 2, 8 worked well.

Error rate

No significant trend.

Feedback & observation

- The participants annoyed by frequent waiting (*N* = 18)
- The participants often used the secondor third-nearest cursor.

Outline

Background & Motivation

Our Method

Evaluation

Discussion & Future Work

Conclusion

Advanced features

Drag & drop

Lasso tool

Drag & drop

Drag with a cursor, drop with another cursor

Drag & drop

Lasso tool

Resolving ambiguity by implicit rules

Lasso tool

1. No lasso stroke ever intersects with targets.

2. Any lasso must contain at least one target.

Lasso tool

Limitations

Dense targets increase the *MT* too much.

Direct pointing devices cannot be used.

Future work

Measure the decision time

Combination with other techniques

Decision time

Compare 2 configuration:

Cursors are visible even before each trial.

$$\rightarrow$$
 Total Time = MT

Cursors are hidden until the start of each trial.

$$\rightarrow$$
 Total Time = $\underline{DT} + MT$

Decision time

Regularly distributed targets

Regularly distributed targets

Regularity of cursors or targets

Extra cursors or extra targets

Bubbling ninja cursors

Bubbling ninja cursors

Post-selection method

Use a post-selection menu instead of a waiting queue.

- + Does not increase the MT so much.
- + Does not modify the C-D gain.

Post-selection method

Post-selection method

Outline

Background & Motivation

Our Method

Evaluation

Discussion

Conclusion

Related work

[Grossman & Balakrishnan 2005]

→ Change the cursor size

Delphian Desktop

[Asano et al. 2005]

→ Jump the cursor

Shadow Reaching

[Shoemaker et al. 2007]

→ Use the shadow

Conclusion

- ✓ Ninja cursors
 - + Multiple cursors cover a large screen
- √ User study
 - + More cursors → efficient in sparse targets inefficient in dense targets
- ✓ Advanced features
 - + Drag & drop, lasso tool

Thank you

http://www-ui.is.s.u-tokyo.ac.jp/~kobayash/ninja_cursors.html