Dynamic Programming Chapter 2

Thomas J. Sargent and John Stachurski

2023

Introduction

Summary of this lecture:

- Introduction to partial orders
- Pointwise orders
- Order-preserving maps
- Fixed points and order
- Conjugate maps
- Convergence rates and gradient-based methods

Order

The next few slides give a quick introduction to order theory

One of the foundational subjects of maths, on par with

- algebra
- geometry
- topology
- number theory
- set theory

But not commonly taught in foundational math courses

Why?

Rarely used in

- physics
- chemistry
- biology, etc.

Math courses are biased toward these subjects!

But not commonly taught in foundational math courses

Why?

Rarely used in

- physics
- chemistry
- biology, etc.

Math courses are biased toward these subjects!

But very important for econ and related fields Examples.

- Does consumer X prefer good A or good B?
- Is welfare greater under policy A or policy B?
- Does R & D increase profits?
- How can firm Y minimize costs?

For these lectures, we need order for

- studying optimality
- fixed point results

Partial orders

Let P be a nonempty set

A **partial order** on a P is a binary relation \leq on $P \times P$ satisfying, for any p,q,r in P,

$$p \leq p$$
,

$$p \leq q$$
 and $q \leq p$ implies $p = q$ and

$$p \leq q$$
 and $q \leq r$ implies $p \leq r$

(Reflexivity, antisymmetry, transitivity)

We call (P, \preceq) (or just P) a partially ordered set

Ex.

- 1. Show that the usual order \leqslant on $\mathbb R$ is a partial order on $\mathbb R$
- 2. Given set M, show that \subset is a partial order on $\wp(M)$

Proof for 2: Clearly, for all $A, B, C \subset M$,

- $A \subset A$ holds
- $A \subset B$ and $B \subset A$ implies A = B
- $A \subset B$ and $B \subset C$ implies $A \subset C$

Ex.

- 1. Show that the usual order \leqslant on $\mathbb R$ is a partial order on $\mathbb R$
- 2. Given set M, show that \subset is a partial order on $\wp(M)$

Proof for 2: Clearly, for all $A, B, C \subset M$,

- $A \subset A$ holds
- $A \subset B$ and $B \subset A$ implies A = B
- $A \subset B$ and $B \subset C$ implies $A \subset C$

A partial order \leq on P is called a **total order** if

either
$$p \leq q$$
 or $q \leq p$ for all $p, q \in P$

Example. \leqslant is a total order on $\mathbb R$

Ex. Prove: \subset is not a total order on $\wp(M)$ when |M|>1

<u>Proof</u>: If M has more than two elements, then we can take nonempty $A,B\subset M$ with $A\cup B=\emptyset$

But then $A \subset B$ and $B \subset A$ both fail

A partial order \leq on P is called a **total order** if

either
$$p \leq q$$
 or $q \leq p$ for all $p, q \in P$

Example. \leq is a total order on $\mathbb R$

Ex. Prove: \subset is not a total order on $\wp(M)$ when |M|>1

<u>Proof</u>: If M has more than two elements, then we can take nonempty $A,B\subset M$ with $A\cup B=\emptyset$

But then $A \subset B$ and $B \subset A$ both fail

Pointwise Partial Orders

Let

- M be any set and
- let \mathbb{R}^M be all $f \colon M \to \mathbb{R}$

The **pointwise partial order** over \mathbb{R}^M is writen as \leqslant and defined as follows:

• Given f,g in \mathbb{R}^M , we set

$$f \leqslant g \iff f(x) \leqslant g(x) \text{ for all } x \in M$$

Ex. Show \leqslant is a partial order on \mathbb{R}^M

Proof:

Let's just check antisymmetry

Fix $f,g \in \mathbb{R}^M$ and suppose $f \leqslant g$ and $g \leqslant f$

Pick any $x \in M$

By definition, $f(x) \leqslant g(x)$ and $g(x) \leqslant f(x)$

Therefore, f(x) = g(x)

Since x was arbitrary, we have f = g

Ex. Show \leqslant is a partial order on \mathbb{R}^M

Proof:

Let's just check antisymmetry

Fix $f,g \in \mathbb{R}^M$ and suppose $f \leqslant g$ and $g \leqslant f$

Pick any $x \in M$

By definition, $f(x) \leqslant g(x)$ and $g(x) \leqslant f(x)$

Therefore, f(x) = g(x)

Since x was arbitrary, we have f = g

Let's define the pointwise partial order for matrices

Let $\mathbb{M}^{n \times k} := \mathsf{all} \ n \times k \mathsf{matrices}$

For
$$A=(a_{ij})$$
 and $B=(b_{ij})$ in $\mathbb{M}^{n\times k}$, we set

$$A \leqslant B \iff a_{ij} \leqslant b_{ij} \text{ for all } i,j$$

Example.

$$\begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix} \leqslant \begin{pmatrix} 10 & 20 \\ 0 & 10 \end{pmatrix}$$

Ex. Show that \leq is a partial order on $\mathbb{M}^{n \times k}$

Special case: pointwise order for vectors

Recall
$$[n] := \{1, ..., n\}$$

For
$$x=(x_1,\ldots,x_n)$$
 and $y=(y_1,\ldots,y_n)$ in \mathbb{R}^n , we write

$$x \leqslant y \iff x_i \leqslant y_i \text{ for all } i \in [n]$$

Pointwise partial order \leq on \mathbb{R}^2 :

Figure: $x \le y$ but neither x, z nor y, z are comparable

Ex. Prove: for $a, b \in \mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have

$$a \leqslant x_k \leqslant b$$
 for all $k \in \mathbb{N}$ and $x_k \to x$ implies $a \leqslant x \leqslant b$

Proof: Fix $i \in [n]$

Let a^i be the *i*-th element of a, etc.

It suffices to show that

$$a^i \leqslant x^i \leqslant b^i \tag{1}$$

Note $x_k \to x$ implies $x_k^i \to x^i$

Moreover, $a^i \leqslant x^i_k \leqslant b^i$ for all k

Weak inequalities in \mathbb{R} are preserved under limits, so (1) holds

Ex. Prove: for $a, b \in \mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have

 $a \leqslant x_k \leqslant b$ for all $k \in \mathbb{N}$ and $x_k \to x$ implies $a \leqslant x \leqslant b$

Proof: Fix $i \in [n]$

Let a^i be the *i*-th element of a, etc.

It suffices to show that

$$a^i \leqslant x^i \leqslant b^i \tag{1}$$

Note $x_k \to x$ implies $x_k^i \to x^i$

Moreover, $a^i \leqslant x_k^i \leqslant b^i$ for all k

Weak inequalities in $\mathbb R$ are preserved under limits, so (1) holds

In other words, the pointwise partial order \leqslant is preserved under limits

As a result, these sets are closed

- $\bullet \ \mathbb{R}^n_+ := \{ x \in \mathbb{R}^n : 0 \leqslant x \}$
- $[a,b] := \{x \in \mathbb{R}^n : a \leqslant x \leqslant b\}$
- etc.

A key connection between order and topology!

Ex. Prove: If B is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leq B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Ex. Prove: If *B* is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leqslant B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Lemma. Given a finite set M and f,g in \mathbb{R}^M , we have

$$|\max_{x \in M} f(x) - \max_{x \in M} g(x)| \leqslant \max_{x \in M} |f(x) - g(x)|$$

Proof: Fixing $f,g \in \mathbb{R}^M$, we have

$$f = f - g + g \le |f - g| + g$$
 (pointwise)

$$\therefore \max f \leqslant \max(|f - g| + g) \leqslant \max|f - g| + \max g$$

$$\therefore \max f - \max g \leqslant \max |f - g|$$

Reversing the roles of f and g proves the claim

Order-preserving maps

Let

- (P, \preceq) and (Q, \preceq) be partially ordered sets
- $T: P \to Q$

T is called **order-preserving** if, for all $x, y \in P$,

$$x \leq y \implies Tx \leq Ty$$

- Meaning: If x goes up then Tx goes up
- Very important concept for dynamic programming

Example. Let $(P, \preceq) = (\mathcal{C}, \leqslant)$ where

- $\mathcal C$ is all continuous functions from [a,b] to $\mathbb R$
- ullet \leqslant is the pointwise partial order

If $I \colon \mathfrak{C} \to \mathbb{R}$ is defined by

$$Ig := \int_{a}^{b} g(x)dx \qquad (g \in \mathcal{C})$$

then I is order-preserving on ${\mathcal C}$

(Larger functions have larger integrals)

Example. Let \leqslant denote the pointwise partial order on \mathbb{R}^n

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by Tx = Ax + b

If $A \geqslant 0$, then T is order preserving on \mathbb{R}^n

Proof: Fix $x \leq y$

Then $0 \leqslant y - x$

$$\therefore \quad 0 \leqslant A(y-x) \leqslant Ay - Ax$$

$$\therefore Ax \leqslant Ay$$

$$\therefore Tx \leqslant Ty$$

Example. Let \leqslant denote the pointwise partial order on \mathbb{R}^n

Let
$$T \colon \mathbb{R}^n \to \mathbb{R}^n$$
 be defined by $Tx = Ax + b$

If $A \geqslant 0$, then T is order preserving on \mathbb{R}^n

Proof: Fix
$$x \leq y$$

Then
$$0 \leqslant y - x$$

$$\therefore 0 \leqslant A(y-x) \leqslant Ay - Ax$$

$$\therefore Ax \leqslant Ay$$

$$\therefore Tx \leqslant Ty$$

Special Case: Real-Valued Functions

Special case: maps from (P, \preceq) into (\mathbb{R}, \leqslant)

Then "order-preserving" = "increasing"

In particular, we also call $h \in \mathbb{R}^P$

- increasing if $x \leq y$ implies $h(x) \leqslant h(y)$ and
- **decreasing** if $x \leq y$ implies $h(x) \geqslant h(y)$

Let P be partially ordered by \leq

We write $i\mathbb{R}^P$ for the increasing functions in \mathbb{R}^P

Thus,

$$h \in i\mathbb{R}^P \quad \iff \quad x,y \in P \text{ and } x \leq y \text{ implies } h(x) \leqslant h(y)$$

Example. Let $P = \{1, ..., n\}$ and let \leq be the usual order \leq on $\mathbb R$

Then

- $x \mapsto 2x$ and $x \mapsto \mathbb{1}\{2 \leqslant x\}$ are in $i\mathbb{R}^P$
- $x \mapsto -x$ and $x \mapsto \mathbb{1}\{x \leqslant 2\}$ are not

Ex. Prove the following:

If $f,g \in i\mathbb{R}^P$, then

- $\alpha f + \beta g \in i\mathbb{R}^P$ when $\alpha, \beta \geqslant 0$
- $f \lor g \in i\mathbb{R}^P$
- $f \wedge g \in i\mathbb{R}^P$

Ex. Given finite P, show that $i\mathbb{R}^P$ is closed in \mathbb{R}^P

<u>Proof</u>: Take $(f_k)_{k\geqslant 1}$ in $i\mathbb{R}^P$ and $f\in\mathbb{R}^P$ with $f_k\to f$

Since $f_k \to f$ we have $f_k(z) \to f(z)$ for all $z \in P$

norm convergence implies pointwise convergence

Fix $x, y \in P$ with $x \leq y$

From $(f_k) \subset i\mathbb{R}^P$ we have $f_k(x) \leqslant f_k(y)$ for all k

Since weak inequalities are preserved under limits, $f(x) \leqslant f(y)$

Hence $f \in i\mathbb{R}^P$

Strict inequalities

We write

- $f \ll g$ if f(x) < g(x) for all $x \in$ some given set M
- $x \ll y$ if $x_i < y_i$ for all $i \in [n]$
- $A \ll B$ if $a_{ij} < b_{ij}$ for all i, j

These are not partial orders

Ex. Why is $f \ll g$ not a partial order on \mathbb{R}^M ?

Parametric Monotonicity

Let (P, \preceq) be a partially ordered set

Given two self-maps S and T on P, we set

$$S \leq T \iff Sx \leq Tx \text{ for every } x \in P$$

We say that T dominates S on P

Ex. Show that \leq is a partial order on

$$S_P := P^P := \text{ set of all self-maps on } P$$

Proof of antisymmetry of \leq on S_P :

Let (P, \preceq) and $S, T \in S_P$ be as defined above

Suppose $S \leq T$ and $T \leq S$

Fix any $x \in P$

We have $Sx \leq Tx$ and $Tx \leq Sx$

Since \leq is antisymmetric on P, we have Sx = Tx

Since p was arbitrary, S = T

Hence \leq is antisymmetric on S_P

Example. If $(\preceq, P) = (\leqslant, \mathbb{R})$, then \leqslant is the pointwise partial order over functions

Example. Consider \mathbb{R}^n_+ with the pointwise partial order \leqslant

• Called the **positive cone** in \mathbb{R}^n

Let

- Sx = Ax + b
- Tx = Bx + b

Ex. Show that $0 \le A \le B \implies T$ dominates S on \mathbb{R}^n_+

<u>Proof</u>: Fixing $x \in \mathbb{R}^n_+$, suffices to show that $Sx \leqslant Tx$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leq Tx$

Example. Consider \mathbb{R}^n_+ with the pointwise partial order \leqslant

• Called the **positive cone** in \mathbb{R}^n

Let

- Sx = Ax + b
- Tx = Bx + b

Ex. Show that $0 \le A \le B \implies T$ dominates S on \mathbb{R}^n_+

<u>Proof</u>: Fixing $x \in \mathbb{R}^n_+$, suffices to show that $Sx \leqslant Tx$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leq Tx$

Conjecture: If $S \leqslant T$, then the fixed points of T will be larger

This is not true in general...

Conjecture: If $S \leqslant T$, then the fixed points of T will be larger

This is <u>not</u> true in general...

Sometimes true:

And sometimes false:

One difference: in the first case, T is globally stable

This leads us to our next result

Proposition. Let

- ullet S and T be self-maps on $M\subset \mathbb{R}^n$
- ullet \leqslant be the pointwise partial order on M

lf

- 1. T dominates S on M and
- 2. T is order-preserving and globally stable on M,

then the unique fixed point of T dominates any fixed point of S

Proof: Assume the conditions

Let

- u_T be the unique fixed point of T and
- u_S be any fixed point of S

Since $S \leqslant T$, we have $u_S = Su_S \leqslant Tu_S$

Applying T to both sides of $u_S \leqslant Tu_S$ gives

$$u_S \leqslant Tu_S \leqslant T^2u_S$$

Continuing in this fashion yields $u_S \leqslant T^k u_S$ for all $k \in \mathbb{N}$ Since \leqslant is preserved under limits and T is globally stable,

$$u_S \leqslant \lim_k T^k u_S = u_T$$

Example. Recall that, in the job search model,

$$h^* = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h^* \right\} \varphi(w')$$

We found h^* as the fixed point of $g\colon \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$g(h) = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(w')$$

In the exercise, you showed that g is a contraction map on \mathbb{R}_+

Ex. Prove that the optimal continuation value h^* is increasing in β

Proof: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* :=$ fixed point corresponding to β_i
- $g_i := \text{fixed point map corresponding to } \beta_i$

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition, g2 is

- 1. a contraction (so globally stable) and
- 2. increasing (order-preserving)

Hence $h_1^* \leqslant h_2^*$

Ex. Prove that the optimal continuation value h^* is increasing in β

<u>Proof</u>: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* := \mathsf{fixed} \; \mathsf{point} \; \mathsf{corresponding} \; \mathsf{to} \; \beta_i$
- $g_i := \text{fixed point map corresponding to } \beta_i$

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition, g_2 is

- 1. a contraction (so globally stable) and
- 2. increasing (order-preserving)

Hence $h_1^* \leqslant h_2^*$

Ex. Replicate this figure

(First Order) Stochastic Dominance

In the discussion above we obtained some results from order theory

• Example. parametric monotonicity

To use these results in a stochastic setting, we need to order distributions!

That is, we need a partial order over distributions

The most important of these partial orders is called "first order stochastic dominance"

In this section we define it

To start, let's consider ordering distributions in a special case

Example. The binomial distribution is defined as follows:

- $X \sim B(n, 0.5)$
- X counts the # of heads in n flips of a fair coin

Suppose $\varphi \stackrel{d}{=} X \sim B(10,0.5)$ and $\psi \stackrel{d}{=} Y \sim B(18,0.5)$

 Y counts over more flips, so it should be "larger" in some sense

Hence we expect that φ is " \preceq " ψ in some sense

Distribution ψ seems "larger than" ϕ — more mass on higher draws

But how can we make this idea precise?

Let X be a finite set partially ordered by \leq

Fix
$$\varphi, \psi \in \mathfrak{D}(X)$$

Write $\langle u, \varphi \rangle$ for $\sum_{x} u(x) \varphi(x)$, etc.

We say that ψ stochastically dominates φ and write $\varphi \preceq_F \psi$ if

$$u \in i\mathbb{R}^{\mathsf{X}} \implies \langle u, \varphi \rangle \leqslant \langle u, \psi \rangle$$

Example. If

- $\varphi \stackrel{d}{=} X \sim B(10, 0.5)$ and
- $\psi \stackrel{d}{=} Y \sim B(18, 0.5),$

then $\varphi \preceq_{\mathrm{F}} \psi$

Proof: Fix $u \in i\mathbb{R}^X$ and let

- $X = \{0, ..., 18\}$ and
- W_1,\ldots,W_{18} be IID Bernoulli with $\mathbb{P}\{W_i=1\}=0.5$ for all i

Then
$$X:=\sum_{i=1}^{10}W_i\stackrel{d}{=}\varphi$$
 and $Y:=\sum_{i=1}^{18}W_i\stackrel{d}{=}\psi$

Clearly $X \leqslant Y$ with probability one (i.e., for any draw of $\{W_i\}_{i=1}^{18}$)

Hence
$$u(X) \leqslant u(Y)$$

Hence
$$\mathbb{E}u(X) \leqslant \mathbb{E}u(Y)$$

In other words,

$$\langle u, \varphi \rangle \leq \langle u, \psi \rangle$$

Example. An agent has preferences over outcomes in X

Preferences are determined by a utility function $u \in \mathbb{R}^{X}$

The agent prefers more to less, so $u \in i\mathbb{R}^X$

Suppose that the agent ranks lotteries over X according to expected utility

• evaluates $\varphi \in \mathcal{D}(\mathsf{X})$ according to $\sum_{x} u(x) \varphi(x)$

Then the agent (weakly) prefers ψ to φ whenever $\varphi \preceq_F \psi$

Another Perspective

Given $\varphi \in \mathfrak{D}(X)$, let

$$G^{\varphi}(y) := \sum_{x \in X} \mathbb{1}\{y \le x\} \varphi(x) \qquad (y \in X)$$

This is the counter CDF of ϕ

Lemma. For each $\varphi, \psi \in \mathcal{D}(X)$, the following statements hold:

- 1. $\varphi \leq_{\mathrm{F}} \psi \implies G^{\varphi} \leqslant G^{\psi}$
- 2. If X is totally ordered by \leq , then $G^{\varphi} \leqslant G^{\psi} \implies \varphi \leq_F \psi$

Lemma. \leq_F is a partial order on $\mathfrak{D}(X)$

Proof:

Let's just prove transitivity

Suppose $f, g, h \in \mathcal{D}(X)$ with $f \leq_F g$ and $g \leq_F h$

Fixing $u \in i\mathbb{R}^X$, we have

$$\langle u, f \rangle \leqslant \langle u, g \rangle$$
 and $\langle u, g \rangle \leqslant \langle u, h \rangle$

Hence $\langle u, f \rangle \leqslant \langle u, h \rangle$

Since u was arbitrary in $i\mathbb{R}^X$, we are done