ANALOG INTEGRATED CIRCUIT LAYOUT (EE 549)

DESIGN OF A LINEAR VOLTAGE REGULATOR

PROJECT

Name: Anish Madurai Narayanamurthy

UB Person #: 50249279

Date: 05-12-2018

INTRODUCTION:

A linear voltage regulator circuit provides a constant voltage over a fixed load independent of the supply voltage.

SCHEMATIC OF LDO:

Fig 1

LAYOUT AND DESIGN RULE CHECK:

Fig 2

Fig 3

The total area covered by the layout is $(1.2692 \times 1.0264) \text{ mm} = 1.302 \text{ mm}^2$

SCHEMATIC EXTRACTION:

SCHEMATIC, LAYOUT DESIGN AND EXTRACTED OUTPUT OF EACH BLOCK: Widlar Bandgap Reference

FIG 5

The total area covered by this block is (225.6 \times 217.2) $\mu m=0.049~mm^2$ PMOS current mirrors were used to generate the current of 300 μA

PMOS interdigitated pattern: ${}_{S}A_{D}B_{S}B_{D}A_{S}$

Fig 8 Fig 9

FIG 10

FIG 11

The total area covered by this block is $(505.2 \times 450) \mu m = 0.22734 \text{ mm}^2$

Common-centroid layout interdigitated pattern:

MP1(A), MP2(B), MP3(C): MP7(A), MP8(B):

 $_{D}C_{S}A_{D} \,_{S}C_{D}$ $_{D}C_{S}B_{D} \,_{S}C_{D}$ $_{D}C_{S}B_{D} \,_{S}C_{D}$ $_{D}C_{S}B_{D} \,_{S}C_{D}$ $_{D}C_{S}B_{D} \,_{S}C_{D}$ $_{D}C_{S}B_{D} \,_{S}C_{D}$

 $\begin{array}{ll} \textbf{MP4(A), MP5(B):} & _{D}A_{S}B_{D}B_{S}A_{D} \\ _{D}A_{S}B_{D}B_{S}A_{D} & _{D}B_{S}A_{D}A_{S}B_{D} \end{array}$

 $_{D}B_{S}A_{D}A_{S}B_{D}$ $_{D}A_{S}B_{D}B_{S}A_{D}$ $_{S}A_{D}SB_{S}B_{S}DA_{S}$ $_{S}A_{D}SB_{S}B_{S}DA_{S}$

 $_{D}B_{S}A_{D}A_{S}B_{D}$ MN4(A), MN5(B), MN6(C), MN7(D):

 $\begin{array}{ccc} _{D}A_{S}B_{D}B_{S}A_{D} & CDDC \\ _{D}B_{S}A_{D}A_{S}B_{D} & DACD \\ _{D}A_{S}DB_{S}B_{D}SA_{D} & CBB \end{array}$

MP7(A), MP8(B): $_{D}A_{S} _{D}B_{SS}B_{D} _{S}A_{D}$

FIG 12

Feedback Resistors and the external load resistor

Common-centroid layout interdigitated pattern for the resistors:

Resistors(Feedback):R2(B)- 40k Ω , R1(A)- 32k Ω **BBAABAABB** (Each segment equivalent to 8k Ω ; W-16 μ m, L- 87.2 μ m)

Load Resistor: $10\Omega = 3$ segments $AAA = 30\Omega$ each (W=3.2 μ m, L= 2.8 μ m)

The total area covered by the feedback resistor block is (248.8 \times 108) $\mu m = 0.0268704 \ mm^2$

R2 and R1 values are chosen to be big enough to kill the current which satisfies the following specification of standby current < 0.1mA and also to reduce load on the power transistor, so that a smaller (W/L) ratio can be used which saves area. The ratio is also maintained;

$$V_{out} \!\! = V_{ref} \, (R_1 \!\! + \!\! R_2) \! / \!\! R_1;$$

$$2.6 = 1.2 \, (32k \, \Omega + 40k \, \Omega) \! / \!\! 32k \, \Omega$$

NMOS Power Pass Transistor

FIG 19

The total area covered by this block is (420.8 \times 1026.4) $\mu m = 0.431909 \ mm^2$

Interdigitated pattern: (A: W/L= 1mm/1.6 µm) 50 fingers

 $_SA_DA_SA_$

FIG 22

The power pass transistor is placed at least 300 μ m apart (304.8 μ m) from the rest of the circuit and placed 52.8 μ m from the pad frame to protect the circuit from thermal runaway/breakdown. The area inside the pad frame is 1348 μ m × 1348 μ m. The total area covered by the regulator inside the layout is (1.2692 × 1.0264) mm = 1.302 mm²

LAYOUT VS SCHEMATIC

```
/eng/home/anishmad/Desktop/LVS/si.log
    <u>F</u>ile <u>E</u>dit <u>V</u>iew <u>H</u>elp
                                                                                                                                                                                                                                                                                                                                                                                            cādence
                                                          May 12 10:54:49 2018
Moving original netlist to extNetlist
Removing parasitic components from netlist
presistors removed: 0
pcapacitors removed: 261
pinductors removed: 0
pdiodes removed: 0
trans lines removed: 0
110 nodes merged into 110 nodes
Begin netlist: May 12 10:54:49 2018

view name list = ("auLvs" "schematic")
stop name list = ("auLvs")
library name = "Project"
cell name = "LDO"
view name = "schematic"
globals lib = "basic"
Running Artist Flat Netlisting . . .
*WARNING* (icLic-3) Could not get license Virtuoso Layout_Suite L
*WARNING* (icLic-21) License Virtuoso_Layout_Suite_L ("Layout L") is not available to run Layout L.
Trying to check out the license Virtuoso_Layout_Suite_XL ("Layout XL") instead.
*WARNING* (icLic-3) Could not get license Virtuoso_Layout_Suite_XL ("Layout XL") instead.
*WARNING* (icLic-3) Could not get license Virtuoso_Layout_Suite XL
*WARNING* (icLic-21) License Virtuoso_Layout_Suite XL ("Layout XL") instead.
*WARNING* (icLic-25) License Virtuoso_Layout_Suite_GXL ("Layout GXL") instead.
*INFO* (icLic-25) License Virtuoso_Layout_Suite_GXL ("Layout GXL") was used to run Layout L.
End netlist: May 12 10:54:50 2018
Moving original netlist to extNetlist
Removing parasitic components from netlist
presistors removed: 0
pcapacitors removed: 0
pinductors removed: 0
pdiodes removed: 0
trans lines removed: 0
71 nodes merged into 71 nodes
 Running netlist comparison program: LVS
Begin comparison: May 12 10:54:50 2018
@(#)$CDS: LVS version 6.1.6-64b 10/30/2014 21:55 (sjfbm191) $
 10 net-list ambiguities were resolved by random selection.
 The net-lists match.
                                                                                                       layout
                                                                                                                                     schematic
                                                                                                                  yout schema
instances
0 0
0 0
0 0
182 90
182 90
                             un-matched
rewired
size errors
pruned
                                                                                                               nets
0
0
0
                              total
                              un-matched
                             merged
pruned
active
                                                                                                                   69
69
                              total
                                                                                                                   terminals
0 0
                             un-matched
matched but
different type
total
                                                                                                                                                                                                 FIGURE: LVS
```

SIMULATION RESULT OF VOUT:

FIG 25

Fig 25: Transient response of V_{out} of the regulator from the pad frame with load connected - V_{out} = 2.6 V

Simulation results to find $(W/L) = (50mm/1.6\mu m)$

Considering current driving capability, output voltage with and without load and power handling capability. Fig 26: Output voltage vs W (V = 2.5 to 2.6), Fig 27: Current with load (10Ω) vs W = 254mA, Fig 28: Current without load (Standby Current) vs $W = 37.4\mu A$ at 50mm

FIG 26

FIG 27

Fig 28

Simulation results of Widlar Bandgap reference used in the regulator:

Fig 29: Transient response of V_{ref} in the regulator, Fig 30: V_{ref} with respect to temperature (-50°C - 100

 $^{\circ}$ C) – Average $V_{ref} = 1.201 V$

Fig 29

Fig 30

Simulation results with respect to the power pass transistor used in the regulator:

FIG 32

FIG 3

Fig 31: Transient response with respect to handling power

Fig 32: Transient response with respect to handling load current from one node of the power pass transistor (1 mm) -5.0964 mA, so for 50 nodes (50 mm) -5.0964 mA \times 50

Fig 33: Transient response of the power pass transistor's current without load (Standby Current)

Table below shows the specifications met by the power pass transistor.

Power Handling	624.8 mW
Current Handling	254.8215 mA
Standby Current	37.4μΑ

Power dissipated by T1:

$$\begin{split} P_{\text{d}} &= I \; (V_{\text{in}} - V_{\text{out}}) \\ P_{\text{d}} &= 254.8215 \; (5 - 2.6) \\ P_{\text{d}} &= 611 \; mW \end{split}$$

Fig 34 and Fig 35: Shows the rate of change of Vout with respect to Vin, it can be observed that a Vin of 2.8V is required for the circuit to be operated in the regulated region.

The rate of change of output with respect to the input is $dV_{out}/dV_{in} = 6.76 mV/V$

LOAD REGULATION (dV_{OUT}/dV_{IN})

FIG 37

Fig 37: Shows dV_{out}/dI_L of the circuit varying beyond the load(0 – 10 Ω), from this plot the dV_{out}/dI_L is 337mV/A, however we are interested in this circuit which is operated with a maximum of an assumed load of 10 Ω , the figure below shows the variation of the output with respect to this load.

Fig 38: Shows the actual load regulation of the circuit,

The rate of change of output with respect to the load is $dV_{out}/dI_L=10mV$ per milliamps V_{OUT} vs TEMPERATURE (-30°C to 100°C)

The rate of change of output with respect to the temperature is $dV_{out}/dTemp = 1.3mV/^{\circ}C$

DROPOUT VOLTAGE $(V_{IN} - V_{OUT})$

Dropout voltage can be defined as the minimum difference between the input and output voltage where the circuit ceases to regulate.

As per Fig 40, the dropout voltage V_{IN} - V_{OUT} = 2.9842 - 2.6 = 384mV

EFFICIENCY

$$P_{OUT}/P_{IN} = V_{OUT}/V_{IN} = \frac{5}{2.6} \times 100\% = 52 \%$$

Table of specifications met by the voltage regulator vs the required specs

$ m V_{ref}$	1.201V (Average)
V _{out}	2.6V
Maximum load current handling capability	254.8215mA > 125mA
Maximum Power handling capability	624.8 mW > 320mW
Standby Current	$37.4 \mu A < 0.2 mA$
Line Regulation	6.76mV per volt
Load Regulation	10mV per milliamps
Temperature variation	1.3mV per °C
Dropout Voltage	384mV
Efficiency	52%
Power dissipated by T1	611 mW

CONCLUSION

A linear voltage regulator is designed and the required specifications are met.