2018年全国统一高考化学试卷(新课标II)

- 一、选择题:本题共7小题,每小题6分,共42分。在每小题给出的四个选项中,只有一项是 符合题目要求的。
- 1. (6分) 化学与生活密切相关,下列说法错误的是()
 - A. 碳酸钠可用于去除餐具的油污
 - B. 漂白粉可用于生活用水的消毒
 - C. 氢氧化铝可用于中和过多胃酸
 - D. 碳酸钡可用于胃肠 X 射线造影检查
- 2. (6分)研究表明, 氮氧化物和二氧化硫在形成雾霾时与大气中的氨有关(如图所示)。下列 叙述错误的是()

- A. 雾和霾的分散剂相同
- B. 雾霾中含有硝酸铵和硫酸铵
- C. NH₃是形成无机颗粒物的催化剂
- D. 雾霾的形成与过度施用氮肥有关
- 3. (6分)实验室中用如图所示的装置进行甲烷与氯气在光照下反应的实验。

在光照下反应一段时间后,下列装置示意图中能正确反映实验现象的是(

- 饱和食盐水
- 4. (6分) W、X、Y和Z为原子序数依次增大的四种短周期元素。W与X可生成一种红棕色有 刺激性气味的气体; Y的周期数是族序数的 3 倍; Z原子最外层的电子数与 W的电子总数相 同,下列叙述正确的是()
 - A. X 与其他三种元素均可形成两种或两种以上的二元化合物
 - B. Y 与其他三种元素分别形成的化合物中只含有离子键
 - C. 四种元素的简单离子具有相同的电子层结构
 - D. W 的氧化物对应的水化物均为强酸
- 5. (6分) N_A代表阿伏加德罗常数的值,下列说法正确的是(
 - A. 常温常压下, $124gP_4$ 中所含 P-P 键数目为 $4N_A$
 - B. 100 mL 1mol•L□1FeCl₃溶液中所含 Fe³⁺的数目为 0.1N_A
 - C. 标准状况下,11.2L 甲烷和乙烯混合物中含氢原子数目为2NA
 - D. 密闭容器中, $2 \text{ mol } SO_2$ 和 $1 \text{mol } O_2$ 催化反应后分子总数为 $2N_A$
- 6. (6分)我国科学家研发了一种室温下"可呼吸"的 Na□CO₂二次电池,将 NaClO₄溶于有机溶 剂作为电解液。钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为: 3CO₂+4Na⇒ 2Na₂CO₃+C,下列说法错误的是()

- A. 放电时, ClO₄[□]向负极移动
- B. 充电时释放 CO₂, 放电时吸收 CO₂
- C. 放电时,正极反应为: 3CO₂+4e[□]—2CO₃^{2□}+C
- D. 充电时,正极反应为: Na⁺+e□─Na
- 7. (6分)下列实验过程可以达到实验目的是()

编号	实验目的	实验过程			
Α	配制 0.4000mol•L ^{®1} 的	称取 4.0g 固体 NaOH 于烧杯中,加入少量蒸			
	NaOH 溶液	馏水溶解,转移至 250mL 容量瓶中定容			
В	探究维生素C的还原	向盛有 2mL 黄色氯化铁溶液的试管中滴加浓			
	性	的维生素 C 溶液,观察颜色变化			
С	制取并纯化氢气	向稀盐酸中加入锌粒,将生成的气体依次通			
		过 NaOH 溶液、浓硫酸和 KMnO4溶液			
D	探究浓度对反应速率	向 2 支盛有 5mL 不同浓度 NaHSO ₃ 溶液的试			
	的影响	管中同时加入 2mL5%H ₂ O ₂ 溶液,观察实验			
		现象			

二、非选择题:每个试题考生必须作答。

A. A

B. B

8. (14 分)我国是世界上最早制得和使用金属锌的国家。一种以闪锌矿(ZnS,含有 SiO_2 和少量 FeS、CdS、PbS 杂质)为原料制备金属锌的流程如图所示:

D. D

C. C

相关金属离子[\mathbf{c}_0 (\mathbf{M}^{n+}) =0.1 \mathbf{mol} • \mathbf{L}^{-1}] 形成氢氧化物沉淀的 \mathbf{pH} 范围如下:

金属离子	Fe ³⁺	Fe ²⁺	Zn ²⁺	Cd ²⁺
开始沉淀的 pH	1.5	6.3	6.2	7.4
沉淀完全的 pH	2.8	8.3	8.2	9.4

回答下列问题:

- (1) 焙烧过程中主要反应的化学方程式为。
- (3)溶液中的 Cd²⁺用锌粉除去,还原除杂工序中反应的离子方程式为____。
- (4) 电解硫酸锌溶液制备单质锌时,阴极的电极反应式为_____; 沉积锌后的电解液可返回___ 工序继续使用。
- 9. (14 分) $CH_4 \square CO_2$ 的催化重整不仅可以得到合成气($CO \ Tampa H_2$),还对温室气体的减排具有重要意义。回答下列问题:
- (1) CH₄□CO₂催化重整反应为: CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g)。

已知: $C(s) + 2H_2(g) = CH_4(g) \triangle H = \Box 75kJ \cdot mol^{\Box 1}$

 $C(s) +O_2(g) =CO_2(g) \triangle H = \square 394kJ \cdot mol^{\square 1}$

 $C(s) + \frac{1}{2} O_2(g) = CO(g) \triangle H = \Box 111kJ \cdot mol^{\Box 1}$

该催化重整反应的 \triangle H=_____kJ•mol $^{\square}$ 1. 有利于提高 CH₄平衡转化率的条件是______(填标号)。

- A. 高温低压 B. 低温高压
- C. 高温高压
- D. 低温低压

某温度下,在体积为 2L 的容器中加入 $2mol\ CH_4$ 、 $1mol\ CO_2$ 以及催化剂进行重整反应,达到平衡时 CO_2 的转化率是 50%,其平衡常数为______mol^2• $L^{\square 2}$ 。

(2) 反中催化剂活性会因积碳反应而降低,同时存在的消碳反应则使积碳碳量减少。相关数据如下表:

		积碳反应	消碳反应	
		$CH_4(g) = C(s) + 2H_2$	CO ₂ (g) +C (s) =2CO	
		(g)	(g)	
△H/ (kJ•mol ^{®1})		75	172	
活化能/	催化剂 x	33	91	
(kJ•mol [™])	催化剂 Y	43	72	

- ①由上表判断,催化剂 X_____Y(填"优于或劣于"),理由是____。在反应进料气组成,压强及反应时间相同的情况下,某催化剂表面的积碳量随温度的变化关系如右图 1 所示。升高温度时,下列关于积碳反应,消碳反应的平衡常数(K)和速率(v)的叙述正确的是_____(填标号)。
- A. K_积、K_消均增加
- B. V_积减小、V_消增加
- C. K 积减小、K 消增加
- D. V_消增加的倍数比 V_积增加的倍数大

- ②在一定温度下,测得某催化剂上沉积碳的生成速率方程为 $v=k ext{-}p$ $(CH_4) ext{-}[p$ $(CO_2)]^{0.5}$ (k 为 速率常数)。在 p (CH_4) 一定时,不同 p (CO_2) 下积碳量随时间的变化趋势如图 2 所示,则 P_a (CO_2) 、 P_b (CO_2) 、 P_c (CO_2) 从大到小的顺序为_____。
- 10. $(15 分) K_3[Fe(C_2O_4)_3] \cdot 3H_2O(三草酸合铁酸钾) 为亮绿色晶体,可用于晒制蓝图,回答$

下列问题:

- (1) 晒制蓝图时,用 K_3 [Fe(C_2O_4) $_3$]•3 H_2O 作感光剂,以 K_3 Fe[(CN) $_6$]溶液为显色剂。其光解反应的化学方程式为 $2K_3$ [Fe(C_2O_4) $_3$]———2Fe C_2O_4 +3 $K_2C_2O_4$ +2 CO_2 ↑;显色反应的化学方程式为____。
- (2) 某小组为探究三草酸合铁酸钾的热分解产物,按如图所示装置进行实验。

- ①通入氮气的目的是。
- ②实验中观察到装置 B、F 中澄清石灰水均变浑浊,装置 E 中固体变为红色,由此判断热分解产物中一定含有____、___。
- ③为防止倒吸,停止实验时应进行的操作是____。
- ④样品完全分解后,装置 A 中的残留物含有 FeO 和 Fe_2O_3 ,检验 Fe_2O_3 存在的方法是: _____。
- (3)测定三草酸合铁酸钾中铁的含量。
- ①称量 mg 样品于锥形瓶中,溶解后加稀 H_2SO_4 酸化,用 $cmol \cdot L^{\Box 1}KMnO_4$ 溶液滴定至终点。滴定 终点的现象是_____。
- ②向上述溶液中加入过量锌粉至反应完全后,过滤、洗涤,将滤液及洗涤液全部收集到锥形瓶中。加稀 H_2SO_4 酸化,用 $cmol \bullet L^{\Box 1}KMnO_4$ 溶液滴定至终点,消耗 $KMnO_4$ 溶液 VmL. 该晶体中铁的质量分数的表达式为

[化学一选修 3: 物质结构与性质](15分)

11. (15分) 硫及其化合物有许多用途。相关物质的物理常数如表所示:

	H ₂ S	S ₈	FeS ₂	SO ₂	SO ₃	H ₂ SO ₄
熔点/℃	285.5	115.2	>600(分	? 75.5	16.8	10.3
沸点/℃	2 60.3	444.6	解)	?10.0	45.0	337.0

回答下列问题:

- (1) 基态 Fe 原子价层电子的电子排布图(轨道表达式)为_____,基态 S 原子电子占据最高能级的电子云轮廓图为_____形。
- (2) 根据价层电子对互斥理论, H_2S , SO_2 , SO_3 的气态分子中,中心原子价层电子对数不同于其他分子的是。
- (3) 图 (a) 为 S_8 的结构,其熔点和沸点要比二氧化硫的熔点和沸点高很多,主要原因为。

[化学一选修 5: 有机化学基础] (15 分)

12. 以葡萄糖为原料制得的山梨醇(A)和异山梨醇(B)都是重要的生物质转化平台化合物。E 是一种治疗心绞痛的药物。由葡萄糖为原料合成 E 的路线如下:

回答下列问题:

(1) 葡萄糖的分子式为____。

- (2) A 中含有的官能团的名称为。
- (3) 由 B 到 C 的反应类型为____。
- (4) C 的结构简式为。
- (5) 由 D 到 E 的反应方程式为。
- (6) F 是 B 的同分异构体,7.30g 的 F 与足量饱和碳酸氢钠反应可释放出 2.24L 二氧化碳(标准 状况),F 的可能结构共有______种(不考虑立体异构);其中核磁共振氢谱为三组峰,峰面积比为 3: 1: 1 的结构简式为 。