| SEAT No. | : |
|----------|---|
|----------|---|

P1761

[Total No. of Pages: 3

## [5460] - 591 T.E. (IT) THEORY OF COMPUTATION (2015 Pattern)

*Time* : 2½ *Hours*]

[Max. Marks:70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary
- 3) Figures to the right, indicate full marks
- 4) Assume suitable data, if necessary
- Q1) a) Convert the NFA with ∈ moves, for the following Transition Diagram, into its equivalent DFA.[8]



b) State properties & limitations of FSM.

[2

OR

**Q2)** a) Find the regular expression for the language

[6

- i) Consisting of all strings of a's & b's without any combination of double letters.
- ii) over  $\Sigma = \{a, b\}$  containing at least one 'a' & at least one 'b'.
- iii) Consisting of set of all strings that start with 'a' and do not have two consecutive 'b's.
- b) Construct Transition Graph for the following regular expression. [4]



| Q3)         | a)                                             | Write a context free language (CFL) for the following CFG.               | [6] |  |
|-------------|------------------------------------------------|--------------------------------------------------------------------------|-----|--|
|             |                                                | i) $S \rightarrow OSO   A   \in$                                         |     |  |
|             |                                                | $A \rightarrow 1SO \mid \in$                                             |     |  |
|             |                                                | ii) $S \rightarrow a Sc  A  \in$                                         |     |  |
|             |                                                | $A \rightarrow aAb \mid \in$                                             |     |  |
|             | b)                                             | Eliminate ∈ - productions from the given Grammar consisting of following | ing |  |
|             |                                                |                                                                          | [4] |  |
|             |                                                | $S \rightarrow a S a  b S b  \in$                                        |     |  |
|             |                                                | OR                                                                       |     |  |
| <b>Q4</b> ) | a)                                             | Convert the following grammar G to GNF                                   | [8] |  |
|             |                                                | $G = \{(A_1 A_2 A_3), (a, b), P, A_1\}$                                  |     |  |
|             | Where P consists of the following productions: |                                                                          |     |  |
|             |                                                | $A_1 \rightarrow A_2 A_3$                                                |     |  |
|             |                                                | $A_2 \rightarrow A_3 A_1   b$                                            |     |  |
|             |                                                | $A_2 \rightarrow A_3 A_1 \mid b$<br>$A_3 \rightarrow A_1 A_2 \mid a$     |     |  |
|             | b)                                             |                                                                          | [2] |  |
|             | U)                                             | State applications of Context - free Grammar.                            | [2] |  |
| Q5)         | a)                                             | Define PDA. Construct PDA that accepts the following language.           | [8] |  |
|             |                                                | $L = \{a^n b^n / n > 0\}$                                                |     |  |
|             |                                                | Simulate for $\omega$ = aaabb                                            |     |  |
|             |                                                |                                                                          |     |  |
|             | b)                                             |                                                                          | [8] |  |
|             |                                                | $L = \{X, aXa, bXb, aaXaa, abXba\}$                                      |     |  |
|             |                                                | OR OR                                                                    |     |  |
| <b>Q6</b> ) | a)                                             | Construct PM that multiplies two unary numbers                           |     |  |
|             |                                                | write simulation for [1                                                  | [0] |  |
|             |                                                | i) aa.a                                                                  |     |  |
|             |                                                | ii) aaa.aaa                                                              |     |  |
|             | b)                                             | Give difference between PDA & PM.                                        | [6] |  |
|             |                                                |                                                                          |     |  |
| <b>Q</b> 7) | a)                                             | Design a TM that recognizes strings containing equal no. of 0's &        |     |  |
|             |                                                |                                                                          | [9] |  |
|             | b)                                             | Design a TM that recognizes binary palindromes. Write simulation         |     |  |
|             | 0.1                                            | O-*                                                                      | [9] |  |
| <b> 546</b> | 0] - 5                                         | 591 2                                                                    |     |  |

| <b>Q8</b> ) | a) | Design TM that finds the Greatest Common Divisor (GO | CD) of two given |
|-------------|----|------------------------------------------------------|------------------|
|             |    | numbers. Find GCD of 4 & 2.                          | [12]             |

b) Write short note on types of TM.

[6]

a) Prove that. **Q9**)

> $PCP = \{ \langle p \rangle | p \text{ is an instance of the Post Correspondence problem with } \}$ a match \. [10]

b) Write short note on p - class with examples.

[6]

OR

**Q10)** a) Prove that following are decidable languages.

[10]

- i)  $A_{NFA} = \{ \langle B, \omega \rangle \mid B \text{ is an NFA that accepts input string } \omega \}$ ii)  $A_{REX} = \{ \langle R, \omega \rangle \mid R \text{ is a regular expression that generates string } \omega \}$
- b) Explain computational complexity with example.

[6]