به نام خدا

مجموعه تمارين نظريه اعداد جلسه هفتم دوره تابستاني المپياد رياضي ١۴٠١

مبحث ريشه اوليه

- اد. برای هر $n\in\mathbb{N}$ فرض کنید $\{a_1,\cdots,a_{arphi(n)}\mid a_1\cdots a_{arphi(n)}\pmod n$ دستگاه مخفف ماندهها به پیمانه n باشد. مقدار $a_1,\cdots,a_{arphi(n)}$ را به دست آورید.
- ری که وجود است به طوری که $\gcd(m,n)=1$ و همچنین $a,b,m,n\in\mathbb{N},p\in\mathbb{P}$. ثابت کنید $a,b,m,n\in\mathbb{N},p\in\mathbb{P}$. ثابت کنید $a,b,m,n\in\mathbb{N},p\in\mathbb{P}$. ثابت کنید اعداد عداد عداد داشته باشیم باشیم و موجود است به طوری که عنون کنید اعداد مورد است به طوری که باشیم و موجود است به موجود است به طوری که باشیم و موجود است به موج
 - $\prod_{s\in\mathbb{S}}s\stackrel{p}{\equiv}1$ عددی اول و فرد باشد و \mathbb{S} مجموعه تمام ریشههای اولیه p باشد. ثابت کنید $p\in\mathbb{P}$ عددی اول و فرد باشد و \mathbb{S}
- $\{\pi_1, \pi_1\pi_2, \pi_1\pi_2\pi_3, \cdots\}$ عددی اول باشد. ثابت کنید جایگشت π_1, \cdots, π_{p-1} از اعداد π_1, \cdots, π_{p-1} موجود است به طوری که مجموعه π_1, \cdots, π_{p-1} به فرض کنید π_2, \cdots, π_{p-1} عددی اول باشد. یک دستگاه مخفف مانده ها به پیمانه π_1 باشد.
 - ... فرض کنید $p\in\mathbb{P}$ عددی اول و بزرگتر از ۳ و به فرم p+1 باشد. ثابت کنید ۳ ریشه اولیه به پیمانه p است.
 - و همچنین $rac{4}{\equiv}$. ثابت کنید ۲ ریشه اولیه به پیمانه p=2q+1 و همچنین $rac{4}{\equiv}$. ثابت کنید ۲ ریشه اولیه به پیمانه p است.
 - بایید. واصل ضرب تمام باقیماندههای ممکن به پیمانه p^2 به طوری که به پیمانه p ریشه اولیه باشند اما به پیمانه p^2 ریشه اولیه نباشند را بیایید.
- ه فرض کنید $p\in \mathbb{P}$ عددی اول و فرد و g یک ریشه اولیه به پیمانه p باشد. ثابت کنید دقیقا یکی از اعضای مجموعه $p\in \mathbb{P}$ عددی اول و فرد و p یک ریشه اولیه به پیمانه p نیست.
 - $a\mid 1^b+\cdots+a^b$ داده شده اند به طوری که a فرد و b زوج است و $\gcd(a,2^b-1)=1$ فرض کنید $a,b\in\mathbb{N}$ داده شده اند به طوری که a
- ۱۰. برای هر $n\in\mathbb{N}$ تایی یکتای $a\in\mathbb{N}$ را یک ابرریشه اولیه مینامیم اگر aتایی اگر $a\in\mathbb{N}$ موجود باشد به طوری که به ازای هر $a\in\mathbb{N}$ که نسبت به $a\in\mathbb{N}$ اول دارد. $a\in\mathbb{N}$ موجود باشد به نحوی که $a\in\mathbb{N}$ و همچنین a=a a_1 a_2 a_3 a_4 و همچنین a=a a_4 a_4 a_5 a_4 و همچنین a=a a_4 a_5 a_5 a_6 a_7 a_8 a_8
 - $p\mid n^3-3n+1$ عددی اول به فرم $p\in\mathbb{R}$ باشد. ثابت کنید $n\in\mathbb{R}$ موجود است به طوری که $p\in\mathbb{R}$ عددی اول به فرم
 - .۱۲. فرض کنید $q \in [(x+1)^p]$ اعدادی اول و فرد باشند. ثایت کنید $x \in \mathbb{Z}$ موجود است که $q \mid (x+1)^p x^p$ اعدادی اول و فرد باشند. ثایت کنید
 - $n^b+1
 mid a^n+1$ داده طبیعی $a,b\in\mathbb{N}$ داده شدهاند. ثابت کنید نامتناهی $n\in\mathbb{N}$ موجود است به طوری که $a,b\in\mathbb{N}$
 - : فرض کنید $a\in\mathbb{Z}$ داده شده باشد. تعریف می کتیم $a\in\mathbb{Z}$ می کتیم $a\in\mathbb{Z}$ داریم: داده شده باشد. تعریف می کتیم $a\in\mathbb{Z}$ داریم:

$$f(a) + f(b) \stackrel{10100}{\equiv} f(c) + f(d) \implies \{a,b\} = \{c,d\}$$

- p-1 فرض کنید $p,q\in\mathbb{P}$ اعدادی اول باشند به طوری که p-1=2q ثابت کنید اعداد طبیعی $k,m\in\mathbb{N}$ موجودند به طوری که p-1=2q و همچنین ۱۵ فرض کنید تاییهای $p,q\in\mathbb{P}$ ایند باشند. p+1 تاییهای p+1 تاییهای p+1 برای هر p+1 برای هر p+1 د استگاه کامل مانده ها باشد و این p+1 تا p+1 تاییهای p+1 برای هر p+1 برای هر p+1 د استگاه کامل مانده ها باشد و این p+1 تایی دو به دو ترتیبهای متفاوتی داشته باشند.
- $\{a_1,\cdots,a_{arphi(n)}\}$ داده شده باشند به طوری که k زوج بوده و برای هر $p\in\mathbb{P},p\mid n$ داشته باشیم $p\in\mathbb{P},p\mid n$ همچنین فرض کنید $n,k\in\mathbb{N}$ داده شده باشند به طوری که $n,k\in\mathbb{N}$ دستگاه مخفف مانده ها به پیمانه n باشد. مقدار n فرص کنید n باشد. مقدار n فرص کنید و بازد دستگاه مخفف مانده ها به پیمانه n باشد. مقدار n باشد و بازد و بازد
- $p(p-1)\mid rac{n}{p}-1$ اگر و فقط اگر هر عامل اول $p\mid n$ دارای این خاصیت باشد که n=1 ۱۷ اگر و فقط اگر هر عامل اول $p\mid n$ دارای این خاصیت باشد که n=1 ۱۷ اگر و فقط اگر هر عامل اول $p\mid n$ دارای این خاصیت باشد که $p\mid n$
- ه پیمانه $p\in \mathbb{P}$ عددی اول و فرد باشد. ثابت کنید a_i+a_j موجودند به طوری که اعداد a_i+a_j که در آن a_i+a_j که در a_i+a_j به پیمانه ۱۸. فرض کنید a_i+a_j عددی اول و فرد باشد.
 - .۱۹ موجود باشد به طوری که ریشه اولیه p به پیمانه $p \in \mathbb{P}$ ما را بیابید به طوری که اوری که .

$${n^2 + 1 \mid 1 \le n \le \frac{p-1}{2}} \stackrel{p}{=} {g^n \mid 1 \le n \le \frac{p-1}{2}}$$

- برای هر $\mathbb{P} \in \mathbb{P}$ اول و فرد ثابت کنید $x \in \mathbb{Z}$ موجود است به نحوی که x,4x هر دو ریشه اولیه به پیمانه p باشند.
- د. فرض کنید $p>10^9$ عددی اول باشد به طوری که 4p+1 نیز عددی اول است. ثابت کنید بسط اعشاری کسر $rac{1}{4v+1}$ شامل تمام ارقام p>0 میباشد.

تمارين اضافه

- .) فرض کنید $p\in\mathbb{P}$ عددی اول و بزرگتر از ۳ باشد به طوری که $rac{p-1}{3}>rac{p-1}{3}$. ثابت کنید $p\in\mathbb{P}$ عددی اول و بزرگتر از ۳ باشد به طوری که
- ۲. فرض کنید $p \in \mathbb{P}$ عددی اول بوده و m(n) که در آن m(n) برابر تعداد عوامل اول متمایز m است. همچنین فرض کنید $p \in \mathbb{P}$ عددی اول بوده و m(n) کنید در هر بازه از اعداد طبیعی متوالی به طول m(n) که در آن m(n) عداقل یک ریشه اولیه از m(n) موجود است.
 - ۳. (اختیاری) فرض کنید $\epsilon>0$ عددی حقیقی و مثبت باشد. ثابت کنید $c\in\mathbb{R}$ موجود است به طوری که هر عدد اول و فرد، ریشه اولیهای کمتر از $cp^{rac{1}{2}+\epsilon}$ داشته باشد.
 - به الحتیاری) ثابت کنید هر عدد اول به اندازه کافی بزرگ مثل p دارای ریشه اولیهای کمتر از p است که نسبت به p-1 اول است.