DNA

Learning Objectives

- Apply the principles of chromatography
- Describe the methods used in the analysis of compounds
- Explain the chemistry behind the methods of analysis of compounds
- Identify which method is more effective for the analysis of compounds

Analysis of Compounds

Analysis of

- 1 Fibres
- Cotton, wool, silk, polyester, nylon?

- 2 Dyes
- 3 Athletes' blood / urine
- 4 Suspected illegal drugs

Unauthorised substances?

Analysis of Compounds

Complication

- 1 Complex mixtures
- 2 A few or one compound(s) of interest

ibre Analysis

Analysis of Compounds

- 1 How to separate out mixtures
 - Find compound(s) of interest
- 2 Identify the compound
 - → What is it?

DNA

Chromatography

Separate a mixture into its components

Stationary phase

Inert absorbent material

Mobile phase

Liquid or gas

DNA

Chromatography

Separate a mixture into its components

Stationary phase

Inert absorbent material

Mobile phase

Liquid or gas

Longer experiment

Greater separation

Types of Chromatography

1 Thin Layer Chromatography (TLC)

Blank plate

Thin layer of absorbent material

Inert backing

Coloured compounds

Inspection

Colourless compounds

UV light

Chemical staining

TLC plate under UV light

Unknown mixture C

Standards A & B

TLC to identify compounds?

Presumptive test

Too many organic compounds

→ TLC plate too small

Unknown spot corresponding to standard

Too many organic compounds

→ TLC plate too small

Unknown spot corresponding to standard

Standards

Unknown

ibre Analysis

ONA

Thin Layer Chromatography

Solvent front

Compounds present

- 1 Green
- 2 Black

Solvent front

Compounds present

2 Black

Retention factor (R_f)

Numerical method to describe position of spots

Solvent front

 $R_f = X_1 / y$

