

Big - Onega (S) :-MINES fcn) = SL (gcn) gens is 'tigut'. lower bound of b f(n) = 52 (g(n) Theta (0):- It gives both upper flower! f(n) = O (g(cn)) O(q(n)) = f(n) c1. 8cm < fcu) < c5.8cm) + 0200 and c1, c2 >0.000 man(n,, n2)>n

Scanned with

Scanned by CamScanner

for (i=1 ton) Step#2 1,2,4 ---, n (k-tems). e) 2 k-12 n. teeling does K -1 \$ = ded CNJ k = log(n)+1. =) complemently = 0 (lbq n) Ti(n) = { 3T(n-1) n>0. otherwise T(n) = 3T(n-1) + n>0. - 0 putting n=n-1 lu eq. O. T(n-1) = 3T(n-2) — @ putting eq. (2) is (1). T(n) = 800 3 (3 T (n-2)) $= 3^2 \cdot T(n-2)$ publicy n=n-2 in eq. 1. T(n-2) = 3T(n-3) - (9)

CS Scanned with putting ear (9) in (3)?

CamStanner + (n) = 33 + (n-3). -(5)

Scanned by CamScanner

⇒
$$T(n) = 3^k T(n-1k)$$
 _ (2)

Bose case

 $T(0) = 1$

⇒ $1 - k = 0$
 $1 - k = 0$

CS Scanned with CamScanner

Q4

Scanned by CamScanner

$$| \frac{1}{2} + \frac{$$

はりゃんと K= Tr =) T(n)= O(Jn) & vold function Cint n) ? Put i, count =0; for (°= 1; °* ° ≤n; °++) 3 1,2,3, -- \u03cm 2) Tn = O(Tn) void fuction (dut n) ? fut é, j, k, court =0; for Club C= M2 ; (Z=n; ++1) forcj=1; 32=n; j=j*12) for (K=1; K<=n; k= K*2) 2 = 1/2 d = 1 sque spece = 1 sque sp <u>ξ</u> <u>ξ</u> <u>log (n)</u>. Zieni (dog(n))2 (n/2+1) (dog(n)) =) T.(n)=0 (n(de

Scanned by CamScanner

function (fut N) { if (n==1) return; for (1=1 to n) & for Girl town) { printf ("*"); Z= Z= 1 function (n-3); T(n)=T(n-3)+n2-0. pulling n= n-3 in ear 1 $T(n-3) = T(n-6) + (n-3)^{2}$ pully @. is eq O. $T(n) = T(n-6) + (n-3)^{2}$ putty n=n-6 is eq. . T (n-6)=T(n-9)+(n=6)2putly eq (9) is 3. $T(n) = T(n-9) + n^2 + (n-3)^2 + (n-6)^2$ =) T(n)= T(n-3K)+ n2+(n-3)2+ +(n+3(k-1))2 T(1)= 0. $T(n) = n^2 + (n-3)^2 +$ $=) T(n) = n^3$ Scanned by CamScanner

vold fuerion Cout n) & for Ciel ton) for (j-1; j2=n;j+f+i) A= 1+(k-1)C n-1+1= k $\frac{\sum_{\ell=1}^{n}\left(\frac{n-1}{\ell}+1\right)}{\ell}$ (n-1) 2 1/2 + 2 1. (n-1). logn + n. =) T(n) = O (nlogn) 010 $n^k = O(\alpha^n)$:. nk (a'.c + c>0 and n.7,00 let n=no. =) no & c. a.

Scanned with

no (c. 30. K= a= 3 (say) =) C7/1 (no)1.

$$\gamma = \frac{k(k-1)}{2}$$

013	Le Montage 18 Comment of the second of the s
(î)	for (int 3=0; 1<=n; ++i) for (int j=1; 3<=n; 3*=2) O(nlegt
	for (int j=1; j<=n; j*=2) 0 (nld)
~». «\.\)	
(11))	Put a=1; b=23 while Ca<=n) {
	a*=b; 0 (loglogn) b*=2;
	3.
Çîi)\$	ilos (i=1 tou) s
- /2	for (;= 1 40 m) &
Sa .	for (k=1 40 N)?
	3
,	

$$T(n/4)$$
 $T(n/2)$ $= 2cn^2 (3\pi/2) \approx T(n/4)$ $T(n/8)$ $T(n/4)$ $= 3cn^2 (37)$ $T(n/4)$ $= 7(n/4)$ $= 7(n/4)$

- cn2 (3/4) ~

 $\frac{n}{2^{k}} = 1$ $n = 2^{k}$ $k = \log n$

k=dog n

 $T(n)=cn^2 \left[1+\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^2+-\frac{3}{4}\right]$ $= cn^2\cdot(1)$

= n²

=> T(n) = O(n2).

1º nt fun (int n) { for clut (=1; 1'<= 1,++1) } for (int je1; j < ~; +0) =); +i) { Some OID teste T(n)= 2 2=1 (1) $= \frac{1}{2} \frac{n-1}{2}$ = (n-1) (++++++-~~) (n-1) Logu This nlogn =) T(n) = O (nlog n) for (int &= 2; } = = n; L=pow(i,k)) { log cn) = x log2 Scanned with T(n) = O(logleg(n))
CamScanner log (n)= k Scanned by CamScanner

If
$$T(n) = T(\frac{qq}{100}^n) + \frac{n}{1000}$$
.

 $T(1) = 0$

putting $r = \frac{qq}{100}^n$ in ear 0 .

 $T(qq/100^n) = T(\frac{qq}{100}^2 n) + \frac{n}{1000}^n$

putting ear 0 in 0 .

 $T(n) = T(\frac{qq}{100})^n + \frac{n}{1000}^n$
 $T(n) = T(\frac{qq}{100})^n + \frac{n}{1000}^n$
 $T(n) = T(\frac{qq}{100})^n + \frac{n}{1000}^n$
 $T(n) = T(\frac{qq}{100})^n$
 $T(n) = T(n) = T(n) = T(n)$

100 (loglogn (dogn (vn <n < ndogn = dog(cn!) <n² <2ª <2². 1 < loglog (n) & Jugens < logens < 2n < 4n < 2(2n) < log(2N) < 2 Log(n) &n / nlogn = log(n!) <, (c). $96 < \log_2(n) = \log_8(n) < n \log_6(n) = n \log_8(n) < 5n < 8n^2 < 7n < 8^2n$. INPUT ARRENZ, KEY; for (?= 0 +0 u-1) & if (ARR[i]=key) & return 8;

Doog Thorative Forestron Sort

void Tosestron Sort (lut work);

lut i, temp, i;

for (2=1 to m) {

temp = corr (i)

j=i-1;

while (j>=0 And arr(j)>temp);

while (j>=1-1;

dorn [j+i] = temp;

3.

Removine Sout Insertion Sort (int earn [3, int n)

Sold Turnelion Sort (int earn [3, int n)

Februar.

TisentionSout (arr, n-1);

last = arr(n-1), j=n-1;

while (j>=0 AD arr Cj) > tup {

arr Ej+1] = arr Ej];

3

arr Ej+1] = last;

CS Scanned with CamScanner

be cause It process. the elements
one - sy- one on a sortal facture elem
whout considering the future elem
whereas bubble sort, selection sond and
whereas bubble sort, selection sond and
whose sort are office as they require
merge sort are office they can process
all so puts on which they can process
the data for correct suffer input beforehen
algorithms want all the imput beforehen

021	AdorAlm	Best Couse	Ang. Case	Worst Cax
	Bubble Sort	O(n2)	O(n2)	O(n2)
,	School Sout	0 Cm2)	O Cres	O(n,)
<i>~</i>	Disortion Sout	O(n)	O (u2)	O (n2)
3		O (ndogn)	O(nlogn)	O Cudago
(3)	Ourde Sove	O Culogn)	O Cu loga)	O Crighe
(6)	Hearts Sort	O (nlog w)	O Cu (sogn)	OCNLOG
		, , , , , , , , , , , , , , , , , , ,	kole.	
022	Algoritum	Tu-place	Stable	Ouliro.
0				×
3	Selection Some		×	×
3	Instron Sove	/		
0	Merge Sout	×		× ×
(5)	Ouicle Sort	>	×	^×
c M		1 1 1 1 1 1	1 20	
CamSo	d petalog Sort		X	

Iterative Brund seame Eut Brany Stearth (Eut arrET, Pet l', Putr, 20 white (1220) ? Put w= ((+v)/2.; if (over [m]=x) return w. else if (avr [m] (x) (= mai; else r= m-1; retom - 1; Remarkine Brany Scarel i'm Binary Search (The and), int, but v, int if (r>1) int w: (1+1)/2; if (arr [m]= m) return m., else if Caso Cuz (n) return Brusy Search (arr, m+1, v, n); else Scanned with return Binary Search (corr, 1, 14-1, 1 Cam\$canner} Scanned by CamScanner

Iteratur Shay Scarll Time Complemity Bust Conse = OCI) Average Corre = O (dog n) Worst Care = O((ogn). Space Complemity = O(1) Recursive Briany Search Time Complemity Best Corre = OCV) Average Care = O (logn) Worst Care = O (logu) Space comprendy : Best Coure = O(1) Awage Care = O(log w) Worst care = O (dogu) T(n) = T(n/2)+1 T(n) = O(deg ~). Scanned with