

FIG.2

12/47

13/47

14/47

F I G . 2 0

FIG.23

FIG.28

29/47

FETCH ALL G SIGNALS IN SECOND TAKEN IMAGE FOR WHICH POSITION (χ_2 , γ_4) TRANSFORMED FROM POSITION (χ_2 , γ_2) OF EACH G SIGNAL IN SECOND TAKEN IMAGE SATISFIES α \times (i - 1) + eta - 2 \leq X₄₂ \leq lpha $\dot{\lambda}$ (i - 1) + eta dand lpha $\dot{\lambda}$ (i - 1) + eta - 2 \leq Y₄₂ \leq lpha $\dot{\lambda}$ (i - 1) + eta + 2. Let number of G signals be n_2 and let value and position of Each Fetched G signal BE ($G_2(p)$, $X_2(p)$, $Y_2(p)$). LET (X_{42} , Y_{42}) TRANSFORMED FROM (X_2 , Y_2) OR ($X_2(p)$, $Y_2(p)$) FROM POSITION (X2, Y2)

S314

E $(X_{42}(p), Y_{42}(p))$. IN THIS CASE, $p = 1 \sim N_2$

<u>-</u>

FETCH ALL G SIGNALS IN THIRD TAKEN IMAGE FOR WHICH POSITION (X43, Y43) TRANSFORMED FROM POSITION (X₃, Y₃) OF EACH G SIGNAL IN THIRD TAKEN IMAGE SATISFIES α x (i - 1) + β + 2 AND α x (j - 1) + γ - 2 \leq Y₄₃ \leq α x (j - 1) + γ + 2. LET NUMBER OF G SIGNALS BE N₃ AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL BE (G₃(p), X₃(p), Y₃(p)). LET (X₄₃, Y₄₃) TRANSFORMED FROM (X₃, Y₃) OR (X₃(p), Y₃(p)) BE (X₄₃(p), Y₄₃(p)). IN THIS CASE, $p = 1 \sim N_3$ **S316**

30/47

FETCH ALL G SIGNALS IN FOURTH TAKEN IMAGE FOR WHICH POSITION (X44, Y44) TRANSFORMED FROM POSITION (X4, Y4) OF EACH G SIGNAL IN FOURTH TAKEN IMAGE SATISFIES α × (i - 1) + β - 2 \leq X44 \leq α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq Y44 \leq α × (j - 1) + γ + 2. LET NUMBER OF G SIGNALS BE N4 AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL BE (G₄(p), X₄(p), Y₄(p)). LET (X₄₄, Y₄₄) TRANSFORMED FROM (X₄, Y₄) OR (X₄(p), Y₄(p)) BE (X₄₄(p), Y₄₄(p)). IN THIS CASE, p = 1 \sim N₄ **S317**

FROM POSITION (X₅, Y₅) OF EACH G SIGNAL IN FIFTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le Y_{45} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF G SIGNALS BE N₅ AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL FETCH ALL G SIGNALS IN FIFTH TAKEN IMAGE FOR WHICH POSITION (X45, Y45) TRANSFORMED BE (G₅(p), X₅(p), Y₅(p)). LET (X₄₅, Y₄₅) TRANSFORMED FROM (X₅, Y₅) OR (X₅(p), Y₅(p)) BE (X₄₅(p), Y₄₅(p)). IN THIS CASE, $p = 1 \sim N_5$

(2)

7

FETCH ALL G SIGNALS IN SIXTH TAKEN IMAGE FOR WHICH POSITION (X $_{46}$, Y $_{46}$) TRANSFORMED FROM POSITION (X $_6$, Y $_6$) OF EACH G SIGNAL IN SIXTH TAKEN IMAGE SATISFIES lpha × (i - 1) + FROM POSITION (X_6 , Y_6) OF EACH G SIGNAL IN SIXTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le Y_{46} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF G SIGNALS BE N_6 AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL BE ($G_6(p)$, $X_6(p)$, $Y_6(p)$). LET (X_{46} , Y_{46}) TRANSFORMED FROM (X_6 , Y_6) OR ($X_6(p)$, $Y_6(p)$). IN THIS CASE, $p=1 \sim N_3$ D | \$319

31/47

FETCH ALL G SIGNALS IN SEVENTH TAKEN IMAGE FOR WHICH POSITION (X 47, Y 47) TRANSFORMED FROM POSITION (X₇, Y₇) OF EACH G SIGNAL IN SEVENTH TAKEN IMAGE SATISFIES α × (i - 1) + β - 2 \leq X₄₇ \leq α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq Y₄₇ \leq α × (j - 1) + γ + 2. LET NUMBER OF G SIGNALS BE N₇ AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL BE $(G_7(p), X_7(p), Y_7(p))$. LET (X_{47}, Y_{47}) TRANSFORMED FROM (X_7, Y_7) OR $(X_7(p), Y_7(p))$ $Y_{47}(p)$). IN THIS CASE, $p = 1 \sim N_7$ $(X_{47}(p),$ **S320**

FETCH ALL G SIGNALS IN EIGHTH TAKEN IMAGE FOR WHICH POSITION (χ_{48} , γ_{48}) TRANSFORMED FROM POSITION (χ_8 , γ_8) OF EACH G SIGNAL IN EIGHTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le \gamma_{48} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF G SIGNALS BE N8 AND LET VALUE AND POSITION OF EACH FETCHED G SIGNAL BE ($G_8(p)$, $X_8(p)$, $Y_8(p)$). LET (X_{48} , Y_{48}) TRANSFORMED FROM (X_8 , Y_8) OR ($X_8(p)$, $Y_8(p)$) BE ($X_{48}(p)$, $Y_{48}(p)$). IN THIS CASE, $p=1{\sim}N_8$

(3)

4

FETCH ALL R SIGNALS IN THIRD TAKEN IMAGE FOR WHICH POSITION (X43, Y43) TRANSFORMED FROM POSITION (X3, Y3) OF EACH R SIGNAL IN THIRD TAKEN IMAGE SATISFIES α × (i - 1) + β - 2 \leq X43 \leq α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq Y43 \leq α × (j - 1) + γ + 2. LET NUMBER OF R SIGNALS BE N3 AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE (R₃(p), X₃(p), Y₃(p)). LET (X₄₃, Y₄₃) TRANSFORMED FROM (X₃, Y₃) OR (X₃(p), Y₃(p)) BE (X₄₃(p), Y₄₃(p)). IN THIS CASE, $p = 1 \sim N_3$ 3325

33/47

FETCH ALL R SIGNALS IN FOURTH TAKEN IMAGE FOR WHICH POSITION (X₄₄, Y₄₄) TRANSFORMED FROM POSITION (X₄, Y₄) OF EACH R SIGNAL IN FOURTH TAKEN IMAGE SATISFIES α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq Y₄₄ \leq α × (j - 1) + γ + 2. LET NUMBER OF R SIGNALS BE N₄ AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE (R₄(p), X₄(p), Y₄(p)). LET (X₄₄, Y₄₄) TRANSFORMED FROM (X₄, Y₄) OR (X₄(p), Y₄(p)) BE (X₄₄(p), Y₄₄(p)). IN THIS CASE, $p = 1 \sim N_4$ **S326**

FROM POSITION (X_5 , Y_5) OF EACH R SIGNAL IN FIFTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le Y_{45} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF R SIGNALS BE N₅ AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE ($X_5(p)$, $X_5(p)$, $Y_5(p)$). LET (X_{45} , Y_{45}) TRANSFORMED FROM (X_5 , Y_5) OR ($X_5(p)$, $Y_5(p)$) BE ($X_{45}(p)$, $Y_{45}(p)$). IN THIS CASE, $p=1 \sim N_5$ FETCH ALL R SIGNALS IN FIFTH TAKEN IMAGE FOR WHICH POSITION (X45, Y45) TRANSFORMED

(5)

S329

FIG.35

(2)

FETCH ALL R SIGNALS IN SIXTH TAKEN IMAGE FOR WHICH POSITION (X 46, Y 46) TRANSFORMED FROM POSITION (X_6 , Y_6) OF EACH R SIGNAL IN SIXTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ And $\alpha \times (j-1) + \gamma - 2 \le Y_{46} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF R SIGNALS BE N_6 AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE ($R_6(p)$, $X_6(p)$, $Y_6(p)$). LET (X_{46} , Y_{46}) TRANSFORMED FROM (X_6 , Y_6) OR ($X_6(p)$, $Y_6(p)$) BE ($X_{46}(p)$, $Y_{46}(p)$). IN THIS CASE, $p=1 \sim N_6$ FETCH ALL R SIGNALS IN SEVENTH TAKEN IMAGE FOR WHICH POSITION (X $_{47}$, Y $_{47}$) TRANSFORMED FROM POSITION (X $_{7}$, Y $_{7}$) OF EACH R SIGNAL IN SEVENTH TAKEN IMAGE SATISFIES α x (i - 1) + eta - 2 \le X₄₇ \le α × (i - 1) + eta + 2 AND α × (j - 1) + γ - 2 \le Y₄₇ \le α × (j - 1) + γ + 2. LET NUMBER OF R SIGNALS BE N₇ AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE (R₇(p), X₇(p), Y₇(p)). LET (X₄₇, Y₄₇) TRANSFORMED FROM (X₇, Y₇) OR (X₇(p), Y₇ (p)) BE (X₄₇(p), Y₄₇(p)). IN THIS CASE, $p = 1 \sim N_7$ FROM POSITION (X, Y,)

34/47

S328

FETCH ALL R SIGNALS IN EIGHTH TAKEN IMAGE FOR WHICH POSITION (X₄₈, Y₄₈) TRANSFORMED FROM POSITION (X₈, Y₈) OF EACH R SIGNAL IN EIGHTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le Y_{48} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF R SIGNALS BE N₈ AND LET VALUE AND POSITION OF EACH FETCHED R SIGNAL BE (R₈(p), X₈(p), Y₈(p)). LET (X₄₈, Y₄₈) TRANSFORMED FROM (X₈, Y₈) OR (X₈(p), Y₈(p)) BE (X₄₈(p), Y₄₈(p)). IN THIS CASE, p = $1 \sim N_8$

9

S332

FIG.37

FETCH ALL B SIGNALS IN THIRD TAKEN IMAGE FOR WHICH POSITION (χ_{43} , γ_{43}) TRANSFORMED FROM POSITION (χ_3 , γ_3) OF EACH B SIGNAL IN THIRD TAKEN IMAGE SATISFIES α × (i - 1) + β - 2 \leq X₄₃ \leq α × (i - i) + β + 2 AND α × (i - 1) + γ - 2 \leq Y₄₃ \leq α × (i - 1) + γ + 2. LET NUMBER OF B SIGNALS BE N₃ AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL BE (B₃(p), X₃(p), Y₃(p)). LET (X₄₃, Y₄₃) TRANSFORMED FROM (X₃, Y₃) OR (X₃(p), Y₃(p)) BE (X₄₃(p), Y₄₃(p)). IN THIS CASE, p = 1 \sim N₃ FETCH ALL B SIGNALS IN FOURTH TAKEN IMAGE FOR WHICH POSITION (χ_{44} , γ_{44}) TRANSFORMED FROM POSITION (χ_4 , γ_4) OF EACH B SIGNAL IN FOURTH TAKEN IMAGE SATISFIES α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq $\gamma_{44} \leq \alpha$ × (j - 1) + γ + 2. LET NUMBER OF B SIGNALS BE N₄ AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL BE (B₄(p), χ_4 (p), χ_4 (p), χ_4 (p), χ_4 (p), IN THIS CASE, ρ = 1 \sim N₄

36/47

S334

FETCH ALL B SIGNALS IN FIFTH TAKEN IMAGE FOR WHICH POSITION (X45, Y45) TRANSFORMED FROM POSITION (X₅, Y₅) OF EACH B SIGNAL IN FIFTH TAKEN IMAGE SATISFIES α × (i - 1) + β - 2 \leq X₄₅ \leq α × (i - 1) + β + 2 AND α × (j - 1) + γ - 2 \leq Y₄₅ \leq α × (j - 1) + γ + 2. LET NUMBER OF B SIGNALS BE N₅ AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL BE (B $_5$ (p), X $_5$ (p), Y $_5$ (p)). LET (X $_4$ $_5$, Y $_4$ $_5$) TRANSFORMED FROM (X $_5$, Y $_5$) OR (X $_5$ (p), Y $_5$ (p)) BE (X $_4$ $_5$ (p), Y $_4$ $_5$ (p)). IN THIS CASE, p = 1 \sim N $_5$

8

∞

FETCH ALL B SIGNALS IN SIXTH TAKEN IMAGE FOR WHICH POSITION (X 46, Y 46) TRANSFORMED FROM POSITION (X_6 , Y_6) OF EACH B SIGNAL IN SIXTH TAKEN IMAGE SATISFIES α x (i - 1) + β + 2 AND α x (j - 1) + γ + 2 \leq $X_{46} \leq \alpha$ x (j - 1) + γ + 2. LET NUMBER OF B SIGNALS BE N₆ AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL BE (B₆(p), X₆(p), Y₆(p)). LET (X_{46} , Y_{46}) TRANSFORMED FROM (X_6 , Y₆) OR (X_6 (p), Y₆(p)) BE (X_{46} (p), Y₄₆(p)). IN THIS CASE, γ = 1 \sim N₆ FETCH ALL B SIGNALS IN SEVENTH TAKEN IMAGE FOR WHICH POSITION (X $_{47}$, Y $_{47}$) TRANSFORMED FROM POSITION (X $_{7}$, Y $_{7}$) OF EACH B SIGNAL IN SEVENTH TAKEN IMAGE SATISFIES α x (i - 1) + eta - 2 \leq X₄₇ \leq α \times (i - 1) + eta + 2 AND α \times (j - 1) + γ - 2 \leq Y₄₇ \leq α \times (j - 1) + γ + 2. LET NUMBER OF B SIGNALS BE N, AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL

37/47

5337

BE (B₇(p), X₇(p), Y₇(p)). LET (X₄₇, Y₄₇) TRANSFORMED FROM (X₇, Y₇) OR (X₇(p), Y₇(p)) BE (X₄₇(p), Y₄₇(p)). IN THIS CASE, $p = 1 \sim N_7$

FETCH ALL B SIGNALS IN EIGHTH TAKEN IMAGE FOR WHICH POSITION (χ_{48} , γ_{48}) TRANSFORMED FROM POSITION (χ_8 , γ_8) OF EACH B SIGNAL IN EIGHTH TAKEN IMAGE SATISFIES $\alpha \times (i-1) + \beta + 2$ AND $\alpha \times (j-1) + \gamma - 2 \le \gamma_{48} \le \alpha \times (j-1) + \gamma + 2$. LET NUMBER OF B SIGNALS BE N₈ AND LET VALUE AND POSITION OF EACH FETCHED B SIGNAL $(B_8(p), X_8(p), Y_8(p))$. LET (X_{48}, Y_{48}) TRANSFORMED FROM (X_8, Y_8) OR $(X_8(p), Y_8(p))$ BE (B₈(p), X₈(p), Y₈(p)), Y₈(p)), Y₈(p)). IN THIS CASE, p = $1 \sim N_8$

S338

40/47

41/47

42/47

45/47

FIG.46

FIG.47

