计算物理 作业报告20

PB14203209 张静宁 2017.12.30

第二十题

考虑一维经典粒子组成的理想气体,由于无相互作用,各粒子的能量不依赖于其位置,只需考虑它的动能,因此体系的构型即是各粒子速度坐标值的集合. 给定粒子的质量、初始速度、总粒子数、总能、demon能,模拟足够多步后达到平衡时的粒子速度分布. 微正则系综中没有定义温度,其数值由 $\frac{1}{2}kT=\frac{1}{2}m\langle v^2\rangle$ 给出,求平衡时的温度值.

文件说明

• demon.c 主要程序,实现MC模拟,输出粒子速度分布,或者体系温度与demon能,取决于注释哪一部分代码

算法

设一个粒子的质量为 m=1,总粒子数为N=10000,初始速度为[-1,1]的均匀分布(由直接抽样实现),玻尔兹曼常数 K=1.设初始 demon 能为 $E_d=0$.体系模拟 M=100000 步.

Demon Algorithm

- 1. 初始时刻,粒子速度为 [-1,1] 均匀分布,demon能 $E_d=0$
- 2. 粒子的速度记为 $ve[i], i=1,2,\ldots,N$, 计算此时所有粒子的动能之和为 $E_k = \sum_i^N 0.5 * ve[i]^2$
- 3. 随机生成一个 [1,N] 之间整数 i,即选中第 i 个粒子与demon交换能量
- 4. 随机生成 [-1,1] 中的随机数 $m{r}$, 设定 $m{\delta}=0.5$
- 5. i 粒子速度改变大小为 $\Delta v = \delta * r$,交换前 i 粒子速度 $v_0 = ve[i]$,交换后 $v_1 = ve[i] + \Delta v$
- 6. 计算i 粒子动能改变量 $\Delta E_k = rac{1}{2}(v_1^2 v_0^2)$
- 7. 若 $\Delta E_k \leq 0$ 或 $0 < \Delta E_k < E_d$,则接受这个改变 $ve[i] = v_1, E_k = E_k + \Delta E_k, E_d = E_k \Delta E$,否则不接受这个改变,保持原样
- 8. 回到 3 ,继续进行

计算结果与分析

1、平衡态粒子速度分布

计算得到模拟 $M=10^5$ 步后,认为体系达到了平衡态,一共接受了 83249 步,接受率为 83.25. 高斯曲线

$$f(x\mid \mu,\sigma) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

平衡状态时,粒子速度的平均值为 $\mu = -0.001092$,速度的方差为 $\sigma^2 = 0.332322$

画出此时粒子速度分布直方图和对应的高斯曲线

Velocity distribution in 1D gas (Demon Algorithm)

可见平衡态粒子的分布的确符合正态分布.

2、温度、demon能随步数变化

计算得平衡态气体温度为 T=0.3323

由下图可见,温度随步数的变化微乎其微,去掉基底 0.3317 后才可以看到温度的变化,变化幅度在 $\Delta T=0.001$ 以内. 由于力学体系是个多自由度的系统,相比而言 demon 只有一个自由度,因此力学体系温度的涨落非常小,满足 $\frac{1}{\sqrt{N}}$ 量级

1D ideal gas Monte Carlo simulation Demon Algorithm (100000 steps)

1D ideal gas Monte Carlo simulation Demon Algorithm (100000 steps)

将1000步的数据取平均处理后得到下图,可见demon能一直在波动

1D ideal gas Monte Carlo simulation Demon Algorithm(100000 steps)

不取平均是下图的效果,图中纵坐标 Temperature 应该为 demon E

1D ideal gas Monte Carlo simulation Demon Energy(100000 steps)

总结

本次作业实现了 demon 算法,一维粒子速度分布初始状态为均匀分布,经过 10^5 次和demon交换能量以后,粒子速度分布为正态分布。并且这个过程中系统的温度都近似不变,变化幅度小于 $\frac{1}{\sqrt{N}}$ 量级 ,较好得模拟了微正则系综。

参考资料

- [1] 丁泽军《计算物理讲义》 2.2.3.2 微正则系综
- [2] Monte Carlo: Demon Algorithm Youtube
- [3] MC simulation of "thermodynamic" ensembles PDF