Computer Organization Lab4

Source code and the note:

藉由這個module我們才得以實現Pipeline CPU, 在其中可以注意到我們使用<=而並非=是因為我 們需要我們的訊號能夠在register中維持一個

clock cycle的時間,而這是<=才能做到的,若使用

=的話,data_i一變data_o就會馬上改變,也不會

使我們希望的結果。

```
module Pipe Reg(
這次作業中我認為最重要的module就是Pipe_Reg,
                                                 parameter size = 0;
                                                 input
                                                        clk i;
                                                 input [size-1:0] data_i;
                                                 output reg [size-1:0] data o;
                                                 always@(posedge clk i) begin
                                                    if(~rst_i) data_o <= 0;
                                                    else data_o <= data_i;</pre>
                                                 endmodule
```

Architecture diagrams:

Hardware module analysis:

這次的電路圖與 Lab2 的大致相同,最大的差別是為了要做出 Pipeline CPU,我們在不同 stage 之中新增了許多 register,讓 CPU 可以一次處理多個指令,同時控制的訊號也是與 single cycle 一樣正確無誤。

Finished part:

Register=								
r0=	0, r1=	3, r2=	4, r3=	1, r4=	6, r5=	2, тб=	7, r7=	1
r8=	1, r9=	0, r10=	3, r11=	0, r12=	0, r13=	0, r14=	0, r15=	0
r16=	0, r17=	0, r18=	0, r19=	0, r20=	0, r2	1= 0, r22=	0, r23=	0
r24=	0, r25=	0, r26=	0, r27=	0, r28=	0, r29	9= 0, r30:	0, r31=	0
Memory===								
mO=	O, m1=	3, m2=	0, m3=	O, m4=	0, m5= (О, m6= О, r	n7= 0	
m8=	0, m9=	0, m10=	O, m11=	O, m12=	O, m13=	O, m14=	0, m15= 0	
r16=	O, m17=	0, m18=	O, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0
m24=	0, m25=	0, m26=	0, m27=	O, m28=	O, m29=	O, m30=	O, m31=	0

Bonus:

Machine Code:

Finish Part:

r0=	0, r1=	16, r2=	20, r3=	8, r4=	16, r5=	8, r6=	24, r7= 26	
r8=	8, r9=	100, r10=	0, r11=	0, r12=	0, r13=	0, r14=	0, r15=	0
r16=	0, r17=	0, r18=	0, r19=	0, r20=	0, r21=	0, r22=	0, r23=	0
r24=	0, r25=	0, r26=	0, r27=	0, r28=	0, r29=	0, r30=	0, r31=	0

Memory-----

mO=	O, m1=	16, m2=	O, m3=	O, m4=	0, m5=	О, мб=	0, m7= 0	
m8=	0, m9=	O, m10=	O, m11=	0, m12=	O, m13=	0, m14=	O, m15=	0
r16=	0, m17=	O, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0
m24=	0, m25=	O, m26=	0, m27=	O, m28=	O, m29=	O, m30=	O, m31=	0