# Binary adders and subtractors

- Half adder, full adder, parallel adder
- Half subtractor, full subtractor, parallel subtractor
- Subtraction using complements, parallel adder/subtractor
- Carry Look ahead adder, Decimal adder

# Subtraction using complements





Subtraction.

Az Az Aj Ho 7483IL

### 4-bit parallel adder/subtractor:

 Design a 4-bit adder/ subtractor using FA blocks or 7483 IC and minimum external gates, i.e. if the control input bit K=0, the circuit should add the input numbers or if K=1, the circuit should subtract the two numbers using 2's complement method.

 Note: Unless and otherwise mentioned assume subtraction to be using 27s complement method.

# 4-bit parallel adder/subtractor:



# 4-bit parallel adder/subtractor:



# Carry Look Ahead (CLA) Adder

• Propogation delay in Full Adder is  $3T_g$  with respect to following circuit, where  $T_g$  is the propagation delay of a gate. All the gates are assumed to have a propagation delay of  $T_g$ .

• Pi is the carry propagate term and Gi is the carry generate term



Ci

Ai

Bi

Pi = Ai ⊕ Bi

rast

Gi = Ai. Bi

+dan 3) 4+3A:

# **CLA** continued



• Carry generation in CLA from Ai, Bi, and Co

Coe input carry

C1 = 
$$COP_0 + K_0 = Co(A_0 + B_0) + A_0 + C_0$$

C2 =  $C_1P_1 + K_1 = (C_0P_0 + K_0) + K_1$ 
 $C_2P_1 + K_2 = (C_1P_0 + P_1P_0 + P_$ 

#### **CLA Continued**

• Expressions for sum

Expressions for sum
$$S0 = A B B B C$$

$$S1 = A B B C$$

$$S2 = A B B C$$

$$S3 = A B B C$$

$$C4 = A$$

# CLA: Carry look ahead generator circuit

• Draw the combinational circuit to generate C1, C2 and C3 from Pi, Gi and C0 terms.

# CLA: Carry look ahead generator circuit



Time required to generate C1,C2,C3 in terms of Tg?

### 4-bit CLA



Time required to generate S1,S2,S3,C4 in terms of Tg?

D+2D+D

### Comparison

•CLA or CPA...which is better? than

4-1st Cla is 3 fines

4-1st Pipple Carry

4-1st Pipple

BCD addur

Decimal adder: Used to add decimal numbers represented in binary coded form

#### Decimal adder:

• Design a decimal adder to add two, single digit decimal numbers input in 8421 code using 4-bit parallel adder and basic logic gates. Output should





### **BCD ADDER: TRUTH TABLE**

| Decimal |                | m              | CD Su                 | BO                    |             | Binary Sum     |                |       |                       |    |
|---------|----------------|----------------|-----------------------|-----------------------|-------------|----------------|----------------|-------|-----------------------|----|
|         | S <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>4</sub> | <b>S</b> <sub>8</sub> | c           | Z <sub>1</sub> | Z <sub>2</sub> | $Z_4$ | <b>Z</b> <sub>8</sub> | k) |
| 0       | 0              | 0              | 0                     | 0                     | 0           | 0              | 0              | 0     | 0                     | 0  |
| 1       | 1              | 0              | 0                     | 0                     | 0           | 1              | 0              | 0     | 0                     | 0  |
| 2       | 0              | 1              | 0                     | 0                     | 0           | 0              | 1              | 0     | 0                     | 0  |
| 3       | 1              | 1              | 0                     | 0                     | 0           | 1              | 1              | 0     | 0                     | 0  |
| 4       | 0              | 0              | 1                     | 0                     | 0           | 0              | 0              | 1     | 0                     | 0  |
| 5       | 1              | 0              | 1                     | 0                     | 0           | 1              | 0              | 1     | 0                     | 0  |
| 6       | 0              | 1              | 1                     | 0                     | 0           | 0              | 1              | 1     | 0                     | 0  |
| 7       | 1              | 1              | 1                     | 0                     | 0           | 1              | 1              | 1     | 0                     | 0  |
| 8       | 0              | 0              | 0                     | 1                     | 0           | 0              | 0              | 0     | 1                     | 0  |
| 9       | 1              | 0              | 0                     | 1                     | $\supset 0$ | 1              | 0              | 0     | 1                     | 0  |
| 10      | 0              | 0              | 0                     | 0                     | 1           | 0              | 1              | 0     | 1                     | 0  |
| 11      | 1              | 0              | 0                     | 0                     | 1           | 1              | 1              | 0     | 1                     | 0  |
| 12      | 0              | 1              | 0                     | 0                     | 1           | 0              | 0              | 1     | 1                     | 0  |
| 13      | 1              | 1              | 0                     | 0                     | 1           | 1              | 0              | 1     | 1                     | 0  |
| 14      | 0              | 0              | 1                     | 0                     | 1           | 0              | 1              | 1     | 1                     | 0  |
| 15      | 1              | 0              | 1                     | 0                     | 1           | 1              | 1              | 1     | 1                     | 0  |
| 16      | 0              | 1              | 1                     | 0                     | 1           | 0              | 0              | 0     | 0                     | 1  |
| 17      | 1              | 1              | 1                     | 0                     | 1           | 1              | 0              | 0     | 0                     | 1  |
| 18      | 0              | 0              | 0                     | 1                     | 1           | 0              | 1              | 0     | 0                     | 1  |
| 19      | 1              | 0              | 0                     | 1                     | 1           | 1              | 1              | 0     | 0                     | 1  |



#### **BCD ADDER**

- Binary sum can be converted to BCD by adding 6 to binary sum.
- 6 needs to be added only when binary sum is > 9 or  $(1001)_2$
- Referring the truth table, write the expression for F such that, F=1 if binary sum is > 9
  else F=0

## **Block diagram of BCD adder**



1- digit BCD adden B7-134 H7-14 (4-lit broad

#### Reference:

- Digital design , third edition by morris mano, chapter 4
- . Slides are used only as a supporting material to teach the subject.
- . Students should write down the notes and read the text book.

**Questions?**