Travel Time Estimation Based on Neural Network with Auxiliary Loss

Yunchong Gan, Haoyu Zhang, Mingjie Wang

Contribution

- We propose a Wide-Deep-Double-Recurrent model with Auxiliary loss named WDDRA, which has excellent performances in the ETA problem.
- We show that auxiliary loss can reduce the influence of overfitting, which makes the training process more stable and generalization ability better.
- We show that K-fold bagging strategy can further improve the accuracy and robustness of our model in the ETA problem.

Problem setting

- Problem purpose: Accurately predict the trip duration time of each sample.
- Given features: The departure time, driver id, route links and average through time and traffic condition of each links.
- Dataset: The travel data of Shenzhen in china from August 1st to August 31st from DiDi platform.
- Metrics: MAPE = $\frac{1}{n}\sum_{i=1}^{n} \frac{|eta-ata|}{ata}$

Auxiliary loss

Cross Embedding

Link Feature

LinkID Embedding status/ratio/time...
254837

LinkID Embedding status/ratio/time...
448818

"cross_id": "254837_448818", "cross_time": 35.0

"link_arrival_status": 1,
"link_current_status": 1,

"link_id": 448818,

"link_ratio": 1.0,

"link_time": 6.075

Cross Embedding

"cross_id": "254837_448818",

Training

Train	Validation	Test
Aug. 1st	Aug. 25th	Sep. 1st

Hyper parameters

Batch size: 512

Optimizer: Adam

Learning rate: 1e-4

Epochs: 25

Time decay: 0.98

K-Fold Bagging

Numerical Result

Performance Comparison

Model	MAPE
WDR	12.103%
WDR-A	12.045%
WDDR	12.037%
WDDR-A	12.000%

The MAPE test on single-fold local CV

Improvement of K-fold Bagging

Bagging Strategy	MAPE
Single Fold	12.378%
5 Fold	12.161%
10 Fold	12.138%
Model Fusion (15 model)	12.086%

The MAPE test on test set

Note: A means auxiliary loss

Future Work

- Use graph neural network to model road network
- Use fine-grained weather information
- Add geographic information such as latitude and longitude, road length, etc.

Thank You