ЛАБОРАТОРНА РОБОТА №1

ФІЗИЧНА ТА ЛОГІЧНА АДРЕСАЦІЯ ВУЗЛІВ КОМП'ЮТЕРНИХ МЕРЕЖ

Мета заняття: ознайомитися із загальними принципами адресації вузлів комп'ютерних мереж; ознайомитися із структурою, видами та застосуванням МАС-адрес; ознайомитися із структурою, видами та застосуванням IP-адрес версій 4; отримати практичні навички аналізу та визначення параметрів МАС-адрес; отримати практичні навички аналізу, визначення та розрахунку параметрів IP-адрес версії 4 із застосуванням класового підходу.

Хід роботи:

Завдання 1. Визначити, якими (унікальними, груповими, широкомовними) є задані три МАС-адреси (табл. 8). Також визначити, у яких випадках (як адреси відправників чи як адреси отримувачів) можуть застосовуватися ці МАС-адреси. За можливості для кожної із МАС-адрес визначити виробника мережного адаптера/інтерфейсу чи мережний протокол, який застосовує дану адресу.

Варіант 24

	24	FFFFFFFFFF	000AEB74CB11	01005E000001
- 1				

1) **FFFFFFFFF** = широкомовна MAC-адреса. Широкомовні адреси можуть використовуватись лише як адреси отримувача. Адреса не має виробника, оскільки ϵ зарезервованою.

$$FF = 1111111111 G/L = 1, I/G = 1$$

2) **000AEB74CB11** = унікальна МАС-адреса. Унікальні МАС-адреси можуть зазначатися і як адреси відправника, і як адреси отримувача.

$$00 = 00000000 \text{ G/L} = 0, \text{ I/G} = 0$$

OUI: 00:0A:EB

Vendor name: TP-LINK TECHNOLOGIES CO.,LTD.

					ДУ «Житомирська політехніка».25.121.24.000 — ЛЕ		000 – ЛР1		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата					
Розр	0б.	Семенчук О.А.			Літ.	Арк.	Аркушів		
Пере	евір.	Хохлов М. О			Звіт з		1	5	
Керіє	зник				лабораторної роботи ФІКТ, гр.			ІПЗ-23-1	
Н. ко	нтр.						¬, гр. I		
3am	зерд.								

MAC address prefix **00:0A:EB** is registered to **TP-LINK TECHNOLOGIES CO.,LTD.**, located at Hi-Tech Park R1-B3Shenzhen Guangdong 518057CN.

This registration is classified as MA-L (Mac Address Block Large) containing approximately 16 million MAC addresses

The prefix was initially registered on 14 October 2002, with the most recent update made on 27 April 2016.

Рис. 1 деталі адресу **000AEB74CB11**

3) **01005E000001** = групова МАС-адреса. Групові адреси можуть використовуватись лише як адреси отримувача. Адреса не має виробника.

$$01 = 00000001 = G/L = 0$$
, $I/G = 1$

Initial registration: 14 October 2002

Завдання 2. Для кожної із заданих трьох ІР-адрес мережних адаптерів/інтерфейсів вузлів (табл. 9) із застосуванням класового підходу визначити такі параметри ІР-адресації мереж: клас ІР-адреси; пряму класову маску мережі; інверсну класову маску мережі; класовий префікс мережі; ІР-адресу (номер) мережі; ІР-адресу (номер) вузла; мінімальну ІР-адресу діапазону, що може використовуватися для адресації вузлів мережі; максимальну ІР-адресу діапазону, що може використовуватися для адресації вузлів мережі; широкомовну ІР- адресу мережі; кількість вузлів (ІР-адрес вузлів), які можуть входити в мережу.

Варіант 24

			,
24	199.66.75.201	175.19.0.7	90.255.255.1

1) Задана IP-адреса **199.66.75.201** належить до класу С.

Класова маска: 255.255.255.0

Інверсна класова маска 0.0.0.255

					5) () (
					ДУ «Ж
Змн.	Арк.	№ докум.	Підпис	Дата	

ДУ «Житомирська політехніка».25.121.24.000 – ЛР1

Класовий префікс: /24

Для класу С на номер мережі виділяється три перших байти ІР-адреси.

IP-адреса мережi: 199.66.75.0

IP-адреса вузла: 0.0.0.201

Мінімальна ІР-адреса вузла: 199.66.75.1

Максимальна IP-адреса вузла: 199.66.75.254

Широкомовна ІР-адреса вузла: 199.66.75.255

Кількість вузлів: $2^{(32-8)}$ - $2=2^8$ - 2=253

2) Задана IP-адреса **175.19.0.7** належить до класу В.

Класова маска: 255.255.0.0

Інверсна класова маска 0.0.255.255

Класовий префікс: /16

Для класу В на номер мережі виділяється три перших байти ІР-адреси.

IP-адреса мережi: 175.19.0.0

ІР-адреса вузла: 0.0.0.7

Мінімальна IP-адреса вузла: 175.19.0.1

Максимальна ІР-адреса вузла: 175.19.255.254

Широкомовна ІР-адреса вузла: 175.19.255.255

Кількість вузлів: $2^{(32-16)}$ - $2=2^{16}$ - 2=65 534

3) Задана IP-адреса **90.255.255.1** належить до класу А.

Класова маска: 255.0.0.0

Інверсна класова маска 0.255.255.255

Класовий префікс: /8

Для класу А на номер мережі виділяється три перших байти ІР-адреси.

ІР-адреса мережі: 90.0.0.0

IP-адреса вузла: 0.255.255.1

Мінімальна ІР-адреса вузла: 90.0.0.1

Максимальна ІР-адреса вузла: 90.255.255.254

Широкомовна ІР-адреса вузла: 90.255.255.255

		_			ДУ «Житомирська
Змн.	Арк.	№ докум.	Підпис	Дата	

Кількість вузлів: $2^{(32-24)}$ - $2=2^{24}$ - 2=16777214

Завдання 3. Для мереж A та B, у яких функціонує задана кількість вузлів (табл. 10), із застосуванням класового підходу: визначити оптимальні (щодо економії адрес) маску і префікс мережі; обрати відповідну ІР-адресу мережі; визначити параметри ІР-адресації обраної мережі. Розрахувати відсоток використання адресного простору для кожної із мереж.

Варіант 24

24 652	82

1) 652

Загальна кількість IP-адрес: 652 + 2 - 1 = 653

 $16777214_{[A]} > 65534_{[B]} > 652 > 253_{[C]}$

Клас: В

Оптимальна маска: 255.255.0.0

Оптимальний префікс: /16

Довільна ІР-адреса класу В: 190.190.0.0

Мінімальна ІР-адреса вузла: 190.190.0.1

Максимальна IP-адреса вузла: 190.190.255.254

Широкомовна ІР-адреса вузла: 190.190.255.255

Загальна кількість вузлів: 2^{32-16} - $2=2^{16}$ - 2=65534

Невикористовувані адреси: 65534 - 652 = 64882

Відсоток використання адресного простору: $652 / 65534 \approx 1\%$

2) **82**

Загальна кількість IP-адрес: 82 + 2 - 1 = 83

 $16777214_{\rm [A]} > 65534_{\rm [B]} > 253_{\rm [C]} > \textbf{82}$

Клас: С

Оптимальна маска: 255.255.255.0

Змн.	Арк.	№ докум.	Підпис	Дата

Оптимальний префікс: /24

Довільна ІР-адреса класу С: 200.200.200.0

Мінімальна ІР-адреса вузла: 200.200.200.1

Максимальна IP-адреса вузла: 200.200.200.254

Широкомовна ІР-адреса вузла: 200.200.200.255

Кількість вузлів: $2^{32-24} - 2 = 2^8 - 2 = 253$

Невикористовувані адреси: 253 - 82 = 171

Відсоток використання адресного простору: $82 / 253 \approx 32.5\%$

Висновок: У ході заняття було розглянуто основні принципи фізичної та логічної адресації в комп'ютерних мережах. Детально вивчено структуру, типи та призначення MAC-адрес і IP-адрес версії 4. Набуті практичні навички дозволяють аналізувати та розраховувати параметри адресації з використанням класового підходу. Отримані знання ϵ необхідною основою для подальшого вивчення мережевих технологій.

Змн.	Арк.	№ докум.	Підпис	Дата