# TIME-DEPENDENT PARAMETRIC AND HARMONIC TEMPLATES IN NON-NEGATIVE MATRIX FACTORIZATION

13<sup>th</sup> International Conference on Digital Audio Effects

Romain Hennequin, Roland Badeau and Bertrand David

Telecom ParisTech

September 8, 2010







#### Introduction

- Musical spectrograms decomposition (on a basis of notes)
- Decomposition based on Non-negative Matrix Factorization (NMF)
- Spectrogram models are introduced into decomposition methods:
  - parametric harmonic atoms
  - makes it possible to model slight pitch variations
- Potential applications:
  - Multipitch estimation/transcription
  - Source separation



# Sommaire

- Non negative-Matrix Factorization
- 2 Spectrogram model
- 3 Decomposition of musical spectrograms



# Contents

- Non negative-Matrix Factorization
  - Principle
  - Issues
  - Proposed solution
- 2 Spectrogram model
- 3 Decomposition of musical spectrograms

# Principle of NMF



#### Low-rank approximation:

$$\mathbf{V} pprox \hat{\mathbf{V}} = \mathbf{W}\mathbf{H} \qquad \hat{\mathbf{V}}_{\mathit{ft}} = \sum_{r=1}^{R} \mathbf{W}_{\mathit{fr}} \mathbf{H}_{\mathit{rt}}$$



#### Issues with NMF

#### Pitch variations

Low-rank approximation does not permit to model variations over time, such as slight pitch variations (vibrato...).



#### Issues with NMF



Note with vibrato: Decomposition with a single atom.





#### Issues with NMF



Note with vibrato: Decomposition with 3 atoms.





# Proposed solution

#### What does an atom look like in a musical spectrogram?

- In a musical spectrogram most of the (non-percussive) elements are instruments notes which are generally harmonic tones.
- Parameters of interest are generally the fundamental frequency of these tones, and the shape of the amplitudes of the harmonics.
- Proposed method: parametric model of spectrogram with harmonic atoms.



### Contents

- Non negative-Matrix Factorization
- 2 Spectrogram model
  - Parametric spectrogram
  - Parametric atoms
  - Algorithm
- 3 Decomposition of musical spectrograms

# Parametric spectrogram

#### Time-varying atoms in NMF:

$$\hat{\mathbf{V}}_{ft} = \sum_{r=1}^{R} \mathbf{W}_{fr} \mathbf{H}_{rt} \qquad \rightarrow \qquad \hat{\mathbf{V}}_{ft} = \sum_{r=1}^{R} \mathbf{W}_{fr}^{\theta^{rt}} \mathbf{H}_{rt}$$

 $\theta^{rt}$  is a time-varying parameter associated to each atom. In this paper,  $\theta^{rt}$  is the fundamental frequency  $f_0^{rt}$  of each atom.



#### Parametric atoms



#### Parametric harmonic atom construction

$$\mathbf{W}_{fr}^{f_{0}^{rt}} = \sum_{k=1}^{n_{h}(f_{0}^{rt})} a_{k} g(f - k f_{0}^{rt})$$





# Parametric spectrogram

#### Hypotheses of the model

- The harmonic part of notes is supposed to be stationary within an analysis frame.
- Interferences between harmonics are supposed to be negligible.
- Classical hypothesis of NMF about positive summation of parts.



# Algorithm

#### Parametric spectrogram

$$\hat{\mathbf{V}}_{ft} = \sum_{r=1}^{K} \underbrace{\sum_{k=1}^{n_h} \frac{\mathbf{a}_k \mathbf{g}(f - k \mathbf{f}_0^{rt})}{\mathbf{W}_{fr}^{fot}} \mathbf{h}_{rt}}_{\mathbf{W}_{fr}}$$

#### Learnt parameters

A divergence between  $\mathbf{V}$  and  $\hat{\mathbf{V}}$  is to be minimized w.r.t.:

- $f_0^{rt}$ : the fundamental frequency of each atom at each frame
- $a_k$ : the amplitudes of harmonics (Atoms share the same set of amplitudes)
- $h_{rt}$ : the activation of each atom at each frame

Cost function:  $C(f_0^{rt}, a_k, h_{rt}) = D(\mathbf{V}_{ft}|\hat{\mathbf{V}}_{ft})$ 



# Algorithm

#### Minimization

- Global optimization w.r.t.  $f_0^{rt}$  is impossible (numerous local minima in  $\mathcal{C}$ ).  $\Rightarrow$  one atom is introduced for each MIDI note. Optimization thus becomes local (fine estimate of  $f_0^{rt}$ ).
- Minimization achieved with multiplicative update rules.

#### Remark

The proposed method is no longer a rank-reduction method but still reduces the data dimension.



# Contents

- Non negative-Matrix Factorization
- 2 Spectrogram model
- Decomposition of musical spectrograms
  - Decomposition
  - Improvement
  - Estimated frequency
  - Real signals

# Decomposition of a synthetic spectrogram



Spectrogram of the first bars of JS Bach's first prelude played by a synthesizer.



# Obtained decomposition



Activations for each MIDI note.





# Obtained decomposition

#### Decomposition

- Notes appear at the right place with decreasing amplitudes
- Numerous atoms activated at onset time
- Notes activated at octave, twelfth and double octave of the right note (note with many common partials).

# **Improvement**

#### Onset

A few standard NMF atoms can be used to model onsets:

$$\hat{\mathbf{V}}_{ft} = \sum_{r=1}^{R} \mathbf{W}_{fr}^{\theta^{rt}} \mathbf{H}_{rt} + \sum_{k=1}^{K} \mathbf{A}_{fk} \mathbf{B}_{kt}$$

#### Octaves, twelfths...

Add constraints to the cost function:

- Sparsity constraints on activations
- Decorrelation constraints (between activations of octaves...)
- Smoothness constraints on amplitudes





# Obtained decomposition



Activations for each MIDI note.





# Time/frequency representation



Activations centered on estimated frequency for each MIDI note: vibrato appears.





# Issues with real signals



Activations for each MIDI note. (Piano sound)





# Issues with real signals

#### Issues

- The model of amplitudes of harmonics is quite rough
- Issues with onsets and octaves are more important
- Noisy components (breath...)
- Some instruments are not perfectly harmonic (piano...)

#### Conclusion

#### Summary

- New way of decomposing musical spectrograms with slight pitch variations in constituting elements.
- Parametric thus flexible model.

#### Perspectives

Improve decomposition to make it more adapted to real data:

- Better modeling of harmonic amplitudes
- Supervised learning of amplitudes
- Better onset and noise modeling



# Conclusion

Any questions?