- Approximating Compound Distributions:
 - \cdot Issues:
 - \cdot $G(s) = \sum_{n=0}^{\infty} F^{*(n)}(s) p_N(n)$ is VERY complicated
 - · Just use mgfs? Some distributions for X_i have no mgf! (e.g., Pareto or Log-Normal)
 - · $S = \sum_{i=1}^{N} X_i$ is a (random) sum of independent random variables, maybe CLT applies?

- Approximating Compound Distributions (Continued):
 - · Normal approximation to G(s):
 - \cdot Form of approximation:

$$G(s) = Pr(S \le s) \approx \Phi\left\{\frac{s - E(S)}{\sqrt{Var(S)}}\right\}$$

- · Key advantages:
 - · Only need $E(S) = \nu \mu_1$ and $Var(S) = \nu \mu_2 + \mu_1^2(\tau^2 \nu)$ (Don't need $p_N(n)$ or $f_X(x;\theta)$'s, just first two moments).

- Approximating Compound Distributions (Continued):
 - · Normal approximation to G(s) (Continued):
 - \cdot Example:

Let
$$N \sim Pois(\lambda)$$
, $X_i \stackrel{iid}{\sim} G(\alpha, \theta)$
So, $E(S) = E(N)E(X_i) = \lambda \alpha \theta$ and
$$Var(S) = E(N)E(X_i^2) + \{E(X_i)\}^2 \{Var(N) - E(N)\}$$

$$= \lambda \alpha (\alpha + 1)\theta^2$$

"Exact" answer (for $s \ge 0$):

$$G(s) = \sum_{n=0}^{\infty} p_N(n) F^{*(n)}(s)$$

$$= e^{-\lambda} + \sum_{n=1}^{\infty} \frac{e^{-\lambda} \lambda^n}{n!} \int_0^s \frac{1}{\theta^{n\alpha} \Gamma(n\alpha)} x^{n\alpha-1} e^{-x/\theta} dx$$

$$= e^{-\lambda} + \int_0^s e^{-x/\theta} e^{-\lambda} \sum_{n=1}^{\infty} \frac{\lambda^n x^{n\alpha-1}}{n! \theta^{n\alpha} \Gamma(n\alpha)} dx.$$

- Approximating Compound Distributions (Continued):
 - · Normal approximation to G(s) (Continued):
 - · Example (Continued):

20

Normal Approximation CDF Comparisons:

$(\lambda, \alpha, \theta) = (10, 1, 1)$				
$(s-\mu_S)/\sigma_S$	True	Nrm. Approx.		
-1.118	0.1198	0.1318		
0.000	0.5449	0.5000		
1.118	0.8658	0.8682		
2.236	0.9742	0.9873		
$(\lambda, \alpha, \alpha)$	$\theta) = (20, 5, 0.1)$			
$(s-\mu_S)/\sigma_S$	True	Nrm. Approx.		
-2.041	0.0125	0.0206		
0.000	0.5190	0.5000		
2.041	0.9725	0.9794		
	$(s - \mu_S)/\sigma_S$ -1.118 0.000 1.118 2.236 $(\lambda, \alpha, \alpha)$ $(s - \mu_S)/\sigma_S$ -2.041 0.000	$(s - \mu_S)/\sigma_S \qquad \text{True}$ $-1.118 \qquad 0.1198$ $0.000 \qquad 0.5449$ $1.118 \qquad 0.8658$ $2.236 \qquad 0.9742$ $(\lambda, \alpha, \theta) = (20, 5, 0.1)$ $(s - \mu_S)/\sigma_S \qquad \text{True}$ $-2.041 \qquad 0.0125$ $0.000 \qquad 0.5190$		

0.9998

1.0000

4.082

- Approximating Compound Distributions (Continued):
 - · Normal approximation to G(s) (Continued):
 - · Example (Continued):

Normal Approximation Quantile Comparisons:

Approximate 95th and 99th percentiles, $s_{0.95}$ and $s_{0.99}$:

$$\Phi\left(\frac{s_{0.95} - \lambda \alpha \theta}{\theta \sqrt{\lambda \alpha (\alpha + 1)}}\right) = 0.95$$

$$\Phi\left(\frac{s_{0.99} - \lambda \alpha \theta}{\theta \sqrt{\lambda \alpha (\alpha + 1)}}\right) = 0.99$$

Using facts: $\Phi^{-1}(0.95) = 1.645$, $\Phi^{-1}(0.99) = 2.33$, we have

$$s_{0.95} \approx \lambda \alpha \theta + 1.645 \theta \sqrt{\lambda \alpha (\alpha + 1)}$$

 $s_{0.99} \approx \lambda \alpha \theta + 2.33 \theta \sqrt{\lambda \alpha (\alpha + 1)}$

			Nrm. Approx.	True
λ	α	θ	$s_{0.95}$ $s_{0.99}$	$s_{0.95}$ $s_{0.99}$
20	5	0.1	$14.029\ 15.707$	14.221 16.194
100/3	1	0.3	$14.029\ 15.707$	$14.270\ 16.340$
10	1	1	$17.357\ 20.420$	$18.122\ 22.494$
20	1/3	3/2	$17.357\ 20.420$	$18.221\ 22.855$

 $[\]cdot$ Try Java Applet.

- Approximating Compound Distributions (Continued):
 - · Normal approximation to G(s) (Continued):
 - · Accuracy of Normal Approximation depends on skewness.
 - · Standardised coefficient of skewness $\rho_S = \frac{Skew(S)}{\{Var(S)\}^{3/2}}$.
 - · For $CompPois\{\lambda, G(\alpha, \theta)\},\$

$$Var(S) = \lambda \mu_2 = \lambda \alpha (\alpha + 1)\theta^2$$
$$Skew(S) = \lambda \mu_3 = \lambda \alpha (\alpha + 1)(\alpha + 2)\theta^3$$

So,

$$\rho_S = \frac{Skew(S)}{\{Var(S)\}^{3/2}} = \frac{\alpha + 2}{\sqrt{\lambda\alpha(\alpha + 1)}}$$

For
$$(\lambda, \alpha, \theta) = (10, 1, 1), \rho_S = \frac{3}{\sqrt{20}} = 0.671$$

For
$$(\lambda, \alpha, \theta) = (20, 5, 0.1), \rho_S = \frac{7}{\sqrt{600}} = 0.286$$

Rule of Thumb: If $\rho_S < 0.5$, Normal Approximation good

- Approximating Compound Distributions (Continued):
 - · Translated Gamma approximation to G(s):

· If
$$Y \sim G(\alpha_g, \theta_g)$$
, then $X = Y + k \sim transG(k, \alpha_g, \theta_g)$.

· If
$$X = Y + k \sim transG(k, \alpha_g, \theta_g)$$
, then

$$E(X) = k + \alpha_g \theta_g; \quad Var(X) = \alpha_g \theta_g^2; \quad \rho_X = \frac{2}{\sqrt{\alpha_g}}$$

· Approximate G(s) by $F_X(s; k, \alpha_g, \theta_g)$ such that

$$E(S) = k + \alpha_g \theta_g; \quad Var(S) = \alpha_g \theta_g^2; \quad \rho_S = \frac{2}{\sqrt{\alpha_g}}$$

· Example (Continued):

For $S \sim CompPois\{10, G(1, 1)\}$, we saw

$$E(S) = 10, \quad Var(S) = 20 \quad \rho_S = 0.671$$

Translated Gamma approximation uses (k, α_g, θ_g) such that

$$10 = k + \alpha_g \theta_g, \quad 20 = \alpha_g \theta_g^2, \quad 0.671 = \frac{2}{\sqrt{\alpha_g}},$$

which yields $\alpha_g = 8.889, \, \theta_g = 1.5$ and k = -3.333

Thus, our approximation is:

$$G(s) \approx Pr(X \le s) = Pr(-3.333 + Y \le s)$$
$$= Gamma(s + 3.333; 8.889, 1.5)$$
$$= Pr\{\chi^{2}_{(17,778)} \le 2(s + 3.333)/1.5\}$$

- \bullet Approximating Compound Distributions (Continued):
 - · Translated Gamma approximation to G(s) (Continued):
 - · Example (Continued):

$(\lambda, \alpha, \theta) = (10, 1, 1)$					
s	True	Nrm. Approx.	Gamma Approx.		
5	0.1198	0.1318	0.1183		
10	0.5449	0.5000	0.5446		
15	0.8658	0.8682	0.8668		
20	0.9742	0.9873	0.9742		
	(λ, ϵ)	$\alpha, \theta) = (20, 5, 0.1)$			
5	0.0125	0.0206	0.0128		
10	0.5190	0.5000	0.5190		
15	0.9725	0.9794	0.9724		
20	0.9998	1.0000	0.9998		

- Approximating Compound Distributions (Continued):
 - · Translated Gamma approximation to G(s) (Continued):
 - · Example (Continued):

Approximate percentiles:

$$s_p = \gamma_{p;(\alpha_g,\theta_g)} + k = \frac{1}{2}\theta_g \chi^2_{2\alpha_g}(p) + k$$

where
$$Pr\{Gamma(\alpha_g, \theta_g) \leq \gamma_{p;(\alpha_g, \theta_g)}\} = p$$

			Gamma. Approx.	True
λ	α	heta	$s_{0.95}$ $s_{0.99}$	$s_{0.95}$ $s_{0.99}$
20	5	0.1	14.218 16.207	14.221 16.194
100/3	1	0.3	$14.268 \ 16.350$	$14.270\ 16.340$
10	1	1	$18.105\ 22.539$	18.122 22.494
20	1/3	3/2	$18.209\ 22.877$	$18.221\ 22.855$

[·] Try Java Applet.