CMOS VLSI Design Introduction

CMOS VLSI Design

Introduction

- ☐ Integrated circuits: many transistors on one chip.
- Very Large Scale Integration (VLSI): very many
- Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- This chapter: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- ☐ Rest of the course: How to build a good CMOS chip

Silicon Lattice

- ☐ Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- ☐ Silicon is a semiconductor
- ☐ Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- □ Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- □ A junction between p-type and n-type semiconductor forms a diode.
- ☐ Current flows only in one direction

anode cathode

nMOS Transistor

- ☐ Four terminals: gate, source, drain, body
- ☐ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain
 - Even though gate is
 no longer made of metal
 and different
 insulators

n+

Polysilicon

SiO2

n+

body

bulk Si

nMOS Operation

- ☐ Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

- ☐ When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- ☐ Similar, but doping and voltages reversed
 - Body tied to positive voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- \Box GND = $V_{SS} = 0 \text{ V}$
- \Box In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- \Box $V_{DD} = 5.0, 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ... 450V$

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- ☐ Voltage at gate controls path from source to drain

g = 0

g = 1

CMOS Inverter

CMOS Inverter

CMOS Inverter

А	Υ
0	1
1	0

CMOS Fabrication

- ☐ CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- □ Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistors
- □ Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- ☐ Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- ☐ Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Fabrication

- ☐ Chips are built in huge factories called fabs
- ☐ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Α	В	Υ		
0	0			
0	1			
1	0			
1	1			

Α	В		Υ	
0	0		1	
0	1			
1	0			
1	1			

Α	В		Υ	
0	0		1	
0	1		1	
1	0			
1	1			

Α	-	3	Υ	
0		C	1	
0	,	1	1	
1		0	1	
1	,	1		

Α	В	Y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

CMOS NOR Gate

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

3-input NAND Gate

- ☐ Y pulls low if ALL inputs are 1
- ☐ Y pulls high if ANY input is 0
- \square ?

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- ☐ Y pulls high if ANY input is 0

CMOS Realization of Logic Gates

- ☐ NOT
- ☐ 2-NAND, 3-NAND
- □ NOR
- ☐ OR
- ☐ 2-AND, 3-AND
- □ Schematic
- ☐ Truth table with explanation

Pass Transistors

☐ Transistors can be used as switches

$$g = 0$$

$$s - - d$$

$$g = 1$$

 $s \rightarrow d$

$$g = 0$$
$$s \longrightarrow 0$$

Input
$$g = 1$$
 Output $0 \rightarrow -strong 0$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

$$g = 0$$
1 \longrightarrow strong 1

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

Tristates

☐ *Tristate buffer* produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

- ☐ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- ☐ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

☐ 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- \square $Y = SD_1 + SD_0$ (too many transistors)
- ☐ How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- □ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- ☐ 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- ☐ When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- \Box When CLK = 0, the latch is *opaque*
 - Q holds its old value independent of D
- □ a.k.a. transparent latch or level-sensitive latch

D Latch Design

■ Multiplexer chooses D or old Q

