ЛАБОРАТОРНА РОБОТА №8

ДОСЛІДЖЕННЯ МЕТОДІВ КОМП'ЮТЕРНОГО ЗОРУ Мета роботи:

використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися обробляти зображення за допомогою бібліотеки OpenCV.

Хід роботи:

Завдання 2.1. Завантаження зображень та відео в OpenCV Лістинг коду:

```
import cv2
# LOAD AN IMAGE USING 'IMREAD'
img = cv2.imread("shcherback.jpg")
# DISPLAY
cv2.imshow("shcherback",img)
cv2.waitKey(0)
```


Висновок: За допомогою бібліотеки су2 ми відобразили зображення.

					ДУ «Житомирська політехніка».20. <mark>121.26</mark> .000 – Лр8			000 – Лр8
Змн.	Арк.	№ докум.	Підпис	Дата	,			
Розр	0 б.	Щербак М.Ю.				Лim.	Арк.	Аркушів
Пере	евір.	Голенко М.Ю.			Звіт з		1	14
Керіє	зник							
Н. контр.					лабораторної роботи ФІКТ Гр. ІПЗ-2	3-20-2[2]		
Зав.	каф.						F	

Завдання 2.2. Дослідження перетворень зображення

Лістинг коду:

```
import cv2
import numpy as np
img = cv2.imread("shcherback.jpg")
kernel = np.ones((5, 5), np.uint8)
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray, (7, 7), 0)
# Застосування алгоритму Canny для виявлення границь
imgCanny = cv2.Canny(img, 150, 200)
# Збільшення областей границь на зображенні за допомогою операції діляції
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
# Зменшення областей границь за допомогою операції ерозії
imgEroded = cv2.erode(imgDialation, kernel, iterations=1)
cv2.imshow("Gray Image", imgGray)
cv2.imshow("Blur Image", imgBlur)
cv2.imshow("Canny Image", imgCanny)
cv2.imshow("Dialation Image", imgDialation)
cv2.imshow("Eroded Image", imgEroded)
cv2.waitKey(0)
```


		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

Завдання 2.3. Вирізання частини зображення

Лістинг коду:

```
import cv2
img = cv2.imread("shcherback.jpg")
print(img.shape)
imgResize = cv2.resize(img, (1000, 500))
```

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
print(imgResize.shape)
imgCropped = img[46:119, 352:495]
cv2.imshow("Image", img)
cv2.imshow("Image Resize", imgResize)
cv2.imshow("Image Cropped", imgCropped)
cv2.waitKey(0)
```


Завдання 2.4. Розпізнавання обличчя на зображенні

Лістинг коду:

		Щербак М.Ю			
		Голенко М.Ю.			ДУ «Житомирська політехніка».20. <mark>121.26</mark> .000 – Лр8
Змн.	Арк.	№ докум.	Підпис	Дата	

```
import cv2

faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
img = cv2.imread('shcherback.jpg')
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("Result", img)
cv2.waitKey(0)
```


Висновок:

Спочатку відбувається перетворення зображення в відтінки сірого, а потім використовується класифікатор каскаду Нааг для визначення координат обличчя на зображенні. Знайдені обличчя помічається синім прямокутником.

Завдання 2.5. Розпізнавання об'єктів на зображенні за допомогою методів зіставлення шаблонів (Template Matching)

Лістинг коду:

```
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('shcherback.jpg', 0)
```

		Щербак М.Ю			
		Голенко М.Ю.			ДУ «Житомирська політехніка».20. <mark>121.26</mark> .000 – Лр8
Змн.	Апк.	№ докум.	Підпис	Лата	

```
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('shcherback.jpg', 0)
img2 = img.copy()
template = cv.imread('shcherback-face.jpg', 0)
w, h = template.shape[::-1]
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
           'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:
    img = img2.copy()
    method = eval(meth)
    res = cv.matchTemplate(img, template, method)
    min val, max val, min loc, max loc = cv.minMaxLoc(res)
    if method in ['cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv.rectangle(img, top_left, bottom_right, 255, 2)
    plt.subplot(121), plt.imshow(res, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(img, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()
```

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

Висновок:

cv.TM_CCOEFF: Коефіцієнт кореляції. Більше значення вказує на більш точне співпадіння.

cv.TM_CCOEFF_NORMED: Нормалізований коефіцієнт кореляції. Значення нормалізовані в межах від -1 до 1, де 1 - ідеальне співпадіння.

cv.TM_CCORR: Коефіцієнт кореляції. Більше значення вказує на більш точне співпадіння, але цей метод використовується для яскравих областей.

cv.TM_CCORR_NORMED: Нормалізований коефіцієнт кореляції. Значення нормалізовані в межах від 0 до 1, де 1 - ідеальне співпадіння.

cv.TM_SQDIFF: Квадрат різниці. Менше значення вказує на більш точне співпадіння.

cv.TM_SQDIFF_NORMED: Нормалізований квадрат різниці. Значення нормалізовані в межах від 0 до 1, де 0 - ідеальне співпадіння.

На мою думку обидва TM_CCORR та cv.TM_CCOEFF добре впорадися з залачею.

Завдання 2.6. Сегментація зображення алгоритмом водорозподілу Лістинг коду:

```
import numpy as np
import cv2

img = cv2.imread('coins.jpg')
cv2.imshow("coins", img)
cv2.waitKey(0)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
cv2.imshow("coins bin ", thresh)
cv2.waitKey(0)

# видалення шуму
```

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
# певна фонова область
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Пошук впевненої області переднього плану
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)
cv2.imshow("coins ", opening)
cv2.waitKey(0)
# Маркування міток
ret, markers = cv2.connectedComponents(sure_fg)
# Додайте один до всіх міток, щоб впевнений фон був не 0, а 1
markers = markers + 1
# Тепер позначте область невідомого нулем
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]
cv2.imshow("coins_markers", img)
cv2.waitKey(0)
```


Coins.jpg

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

Висновок:

Програма досить добре впоралася із сегментацією монет на зображенні, але області монет, де вони торкаються мають дефекти.

Додаткове завдання 2.7. Сегментація зображення

Лістинг коду:

```
import numpy as np
import cv2
img = cv2.imread('coins_2.JPG')
cv2.imshow('coins', img)
shifted = cv2.pyrMeanShiftFiltering(img, 20, 50)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Певна фонова область
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Пошук певної області переднього плану
dist transform = cv2.distanceTransform(sure bg, cv2.DIST L2, 5)
# Область переднього плану
ret, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure fg)
unknown = cv2.subtract(sure_bg, sure_fg)
# Визначення маркерів та застосування методу watershed
ret, markers = cv2.connectedComponents(sure_fg)
markers += 1
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
for label in range(2, ret + 1):
    img[markers == label] = np.random.randint(0, 255, 3)
cv2.imshow("coins_markers", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

		Щербак М.Ю			
		Голенко М.Ю.			ДУ «Житомирська політехніка».20.1
Змн.	Арк.	№ докум.	Підпис	Дата	

Github: https://github.com/mtvi/ipz202_Shcherback_lab8

Висновки: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідили деякі типи нейронних мереж.

		Щербак М.Ю		
		Голенко М.Ю.		
Змн.	Арк.	№ докум.	Підпис	Дата