### Online E-Companion:

## Robust Aircraft Routing

#### Chiwei Yan, Jerry Kung

Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139 {chiwei, jkung}@mit.edu

#### EC.1. Detailed Computational Results in Section 4.3

Figures EC.1 - EC.9 depict the performance in flight network  $N_1$ , and Figures EC.10 - EC.18 depict the performance in flight network  $N_2$ . Specifically, Figures EC.1 - EC.3, EC.10 - EC.12 present the relative performance ratio  $100 \cdot (\text{DFW} - \text{RAR})/\text{DFW}$  when the mean of the testing data under three different distributions deviate from the training data for two flight networks. Figures EC.4 - EC.6, EC.13 - EC.15 show the relative performance ratio  $100 \cdot (\text{DFW} - \text{RAR})/\text{DFW}$  when the standard deviation of the testing data under three different distributions deviate from the training data for two flight networks. Figures EC.7 - EC.9, EC.16 - EC.18 show the relative performance ratio  $100 \cdot (\text{DFW} - \text{RAR})/\text{DFW}$  when the correlation structure of the testing data under three different distributions deviate from the training data for two flight networks. Performance is evaluated in three criteria: (1) average total propagated delay, (2) standard deviation of total propagated delay, (3) maximum total propagated delay. The long dashed line indicates 0% relative performance ratio, which denotes the region where DFW and RAR have the same performance.

Figure EC.1 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.2 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.3 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.4 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /



Figure EC.5 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /



Figure EC.6 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution /



Figure EC.7 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



Figure EC.8 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



Figure EC.9 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



Figure EC.10 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.11 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.12 Impact of Deviation in Mean (Training Delay Data: Truncated Normal Distribution / Testing Delay



Figure EC.13 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution



Figure EC.14 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution



Figure EC.15 Impact of Deviation in Standard Deviation (Training Delay Data: Truncated Normal Distribution



Figure EC.16 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



Figure EC.17 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



Figure EC.18 Impact of Deviation in Correlation (Training Delay Data: Truncated Normal Distribution / Testing



# EC.2. Method to Perturb Spearman's Rank Correlation Coefficient Matrix

The method is inspired by Galeeva et al. (2007) where they provide a way to generate correlation matrices around a base correlation matrix by perturbing its eigenvalues. The detailed procedure we use is as follows,

1. Apply eigenvalue decomposition on the Spearman's rank correlation coefficient matrix  $\rho^{\text{train}}$  for the training data set,

$$\rho_{i,j}^{\text{train}} = \sum_{k,l=1}^{|\mathcal{F}|} V_{i,k} \Lambda_{k,l} V_{l,j},$$

where  $\Lambda_{k,l} = \lambda_k \delta_{k,l}$ .  $\delta_{k,l} = 1$  if k = l; 0, otherwise.  $\lambda_1 > \lambda_2 > \dots > \lambda_{|\mathcal{F}|}$  are the  $|\mathcal{F}|$  eigenvalues for  $\rho^{\text{train}}$ . V is the eigenvectors.

2. Create variables  $\sigma_1, \sigma_2, \dots, \sigma_{|\mathcal{F}|}$  for each eigenvalue, which satisfy the following set of equations

$$\lambda_1 e^{\sigma_1} = \lambda_2 e^{\sigma_2} = \dots = \lambda_{|\mathcal{F}|} e^{\sigma_{|\mathcal{F}|}}$$

There are multiple solutions for the set of equations above. We fix  $\sigma_1 = 1$ , and the remaining values of  $\sigma$  can be calculated accordingly. Since  $\lambda_1$  is the largest eigenvalue, it can be seen easily that  $\sigma_2, \dots, \sigma_{|\mathcal{F}|} > 1$ .

- 3. Perturb these eigenvalues with a parameter  $\alpha$ . The perturbed eigenvalues  $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_{|\mathcal{F}|}$  will be calculated as  $\hat{\lambda}_i = \lambda_i e^{\sigma_i \alpha}$ ,  $\forall i = 1, \dots, |\mathcal{F}|$ .
  - 4. Normalize the perturbed eigenvalues to make  $\sum_{i=1}^{|\mathcal{F}|} \hat{\lambda}_i = |\mathcal{F}|$ .
  - 5. Construct matrix  $\rho'$  with the perturbed eigenvalues and the eigenvectors for  $\rho_{i,j}^{\text{train}}$ ,

$$\rho'_{i,j} = \sum_{k,l=1}^{|\mathcal{F}|} V_{i,k} \hat{\Lambda}_{k,l} V_{l,j},$$

where  $\hat{\Lambda}_{k,l} = \hat{\lambda}_k \delta_{k,l}$ .

6. Construct Spearman's rank correlation coefficient matrix by normalizing matrix  $\rho'$ ,

$$\rho_{i,j}^{\text{test}} = \frac{\rho'_{i,j}}{\sqrt{\rho'_{i,i}\rho'_{j,j}}}$$

The normalizing step makes sure that  $-1 \le \rho_{i,j}^{\text{test}} \le 1$  and  $\rho_{i,i}^{\text{test}} = 1, \ \forall i = 1, \cdots, |\mathcal{F}|$ .

To understand the meaning of parameter  $\alpha \in (-\infty, 1]$ :

- if  $\alpha = 1$ ,  $\hat{\lambda}_1 = \hat{\lambda}_2 = \cdots = \hat{\lambda}_{|\mathcal{F}|} = 1$ , thus  $\hat{\Lambda} = I$  and  $\rho' = V \hat{\Lambda} V^T = V V^T = V V^{-1} = I$ . This leads to  $\rho^{\text{test}} = I$ , which means the testing data will have independent primary delays.
- if  $\alpha = 0$ , then  $\hat{\lambda}_i = \lambda_i$ ,  $\forall i = 1, \dots, |\mathcal{F}|$ . This means the testing data will have the same Spearman's rank correlation coefficient matrix as the training data.
  - for the case  $\alpha \to -\infty$ , we have

$$\rho_{i,j}^{\text{test}} = \frac{\rho_{i,j}'}{\sqrt{\rho_{i,i}'\rho_{j,j}'}} = \frac{\sum_{k,l=1}^{|\mathcal{F}|} V_{i,k} \hat{\Lambda}_{k,l} V_{l,j}}{\sqrt{\sum_{k,l=1}^{|\mathcal{F}|} V_{i,k} \hat{\Lambda}_{k,l} V_{l,i}}} \sqrt{\sum_{k,l=1}^{|\mathcal{F}|} V_{j,k} \hat{\Lambda}_{k,l} V_{l,j}} = \frac{\sum_{k=1}^{|\mathcal{F}|} V_{i,k} \hat{\lambda}_{k} e^{\sigma_{k}\alpha} V_{k,j}}{\sqrt{\sum_{k=1}^{|\mathcal{F}|} V_{j,k} \hat{\lambda}_{k} e^{\sigma_{k}\alpha} V_{k,j}}}$$

Divide both the numerator and denominator by  $e^{\alpha}$ , we have

$$\rho_{i,j}^{\text{test}} = \frac{V_{i,1} \hat{\lambda}_1 V_{1,j} + \sum_{k=2}^{|\mathcal{F}|} V_{i,k} \hat{\lambda}_k e^{(\sigma_k - 1)\alpha} V_{k,j}}{\sqrt{V_{i,1} \hat{\lambda}_1 V_{1,i} + \sum_{k=2}^{|\mathcal{F}|} V_{i,k} \hat{\lambda}_k e^{(\sigma_k - 1)\alpha} V_{k,i}}} \sqrt{V_{j,1} \hat{\lambda}_1 V_{1,j} + \sum_{k=2}^{|\mathcal{F}|} V_{j,k} \hat{\lambda}_k e^{(\sigma_k - 1)\alpha} V_{k,j}}}$$

Since  $\sigma_2, \dots, \sigma_{|\mathcal{F}|} > \sigma_1 = 1$ , as  $\alpha \to -\infty$  we have

$$\lim_{\alpha \to -\infty} \rho_{i,j}^{\text{test}} = \frac{V_{i,1} \hat{\lambda}_1 V_{1,j}}{|V_{i,1}| \hat{\lambda}_1 |V_{1,j}|} = \frac{V_{i,1} V_{1,j}}{|V_{i,1} V_{1,j}|} = \begin{cases} 1, & V_{i,1} V_{1,j} > 0 \\ -1, & V_{i,1} V_{1,j} < 0 \end{cases}$$

This means the testing data will be perfectly correlated. Whether it is positively or negatively correlated depends on the eigenvectors of  $\rho^{\text{train}}$ .

#### References

Galeeva, Roza, Jiri Hoogland, Alexander Eydeland, Morgan Stanley. 2007. Measuring correlation risk. Tech. rep.