1 SIMO Systems

Remarks

- \bullet In SIMO Systems only <u>coding</u> and <u>diversity</u> <u>gains</u> can be exploited (no multiplexing gains)
- To realize these gains diversity combining has to be performed
- Diversity combining schemes vary in complexity and performance
- There are many diversity combining schemes. Here we consider:
 - Maximal ratio combining (MRC)
 - Equal gain combining (EGC)
 - Selection combining (SC)
- Diversity combining problem

- how to choose combining weights w_n ?
- what performance (e.g. error rate, outage probability) is achieved?
- what diversity and coding/combining gain is achieved?

- G_c : Coding gain
- G_d : Diversity gain

1.1 Preliminaries

Consider an equivalent system:

$$y=hx+n;$$

$$\mathcal{E}\{|x^2|\}=\epsilon_s; \qquad \qquad \mathcal{E}\{|n^2|\}=\sigma_n^2; \qquad \qquad \mathcal{E}\{|h|^2\}=1$$

- Instantaneous SNR: $\gamma_t = \frac{\epsilon_s}{\sigma_n^2} \times |h|^2$
- Average SNR: $\bar{\gamma}_t = \mathcal{E}\{\gamma_t\} = \frac{\epsilon_s}{\sigma_n^2}$

Bit and Symbol Error Rate

• The Bit and Symbol Error Rate of many modulation schemes can be expressed for given γ_t as:

$$P_e(\gamma_t) = aQ\{\sqrt{b\gamma_t}\}$$

where:

- $Q(x) = \frac{1}{\sqrt{2\pi}} \times \int_x^\infty e^{-\frac{t^2}{2}} dt$
- $P_e(\gamma_t)$ may be exact result or approximation
- BPSK: exact with a = 1, b = 2
- M-ary QAM: tight approximation with $a = 4\left(1 \frac{1}{\sqrt{M}}\right), b = \frac{3}{M-1}$

 $\left(Einschub:Gray-Code:BER=\frac{1}{\log_2 M}\times SER\right)$

• Alternative representation of Q - function:

$$Q(x) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{x^{2}}{2sin^{2}\theta}} d\theta$$

- \rightarrow Integral limits are fixed and do not depend on integration variables!
- Average error probability

$$P_e = \mathcal{E}\{P_e(\gamma_t)\} = \int_0^\infty aQ(\sqrt{bx})p_{\gamma_t}(x) dx$$

- Integral may be difficult to solve analytically
- Integral has infinite support \rightarrow numerical evaluation difficult
- Using alternative representation of Q-function we get:

$$P_{e} = \int_{0}^{\infty} \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{bx}{2sin^{2}\theta}} p_{\gamma_{t}}(x) d\theta dx$$

$$= \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} p_{\gamma_{t}}(x) e^{-\frac{b}{2sin^{2}\theta}} dx d\theta \qquad = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}}(\frac{b}{2sin^{2}\theta}) d\theta$$

where:

- $-M_{\gamma_t}(s) = \int_0^\infty p_{\gamma_t}(x)e^{-sx} dx$ is the Laplace transform of p_{γ_t}
- $-M_{\gamma_t}(-s)$ is the so called Moment Generation Function (MGF) of p_{γ_t}
- Here, we will also refer to $M_{\gamma_t}(s)$ as MGF
- $M_{\gamma_t}(s)$ is sometimes easier to obtain than p_{γ_t}
- The above integral can be easily evaluated numerically because of the finite integral limits

Outage probability

• The outage probability is the probability that the channel cannot support a certain rate, R, i.e. (where γ_T is the threshold SNR):

$$C = \log_2(1 + \gamma_t) < R \quad \leftrightarrow \quad \gamma_t < 2^R - 1 \triangleq \gamma_T$$

Thus, the outage probability is given by:

$$P_{out} = P_0 \gamma_t < \gamma - T = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx$$

• Using the inverse Laplace Transform

$$p_{\gamma_t}(x) = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{sx} dx$$

where c > 0 is a small constant that lies in the region of convergence of the integral, we

- 1.

$$P_{out} = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) \int_0^{\gamma_T} e^{sx} dx ds = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{\gamma_T s} \frac{ds}{s}$$

(lower integral limit is 0 since $p_{\gamma_t}(0) = 0$)

- and 2.:

$$p_{\gamma_t}(x) = \int_0^x p_{\gamma_t}(t) \ dt = 0$$
for $x = 0$ note: $p_{\gamma_t}(x) \xleftarrow{Laplace}{transform} \frac{1}{s} M_{\gamma_t}(s)$

General combining scheme

$$y = \left(\sum_{n=1}^{N_R} h_n w_n\right) x + \sum_{n=1}^{N_R} w_n n_n$$
$$\gamma_t = \frac{\epsilon_s \left|\sum_{n=1}^{N_R} h_n w_n\right|^2}{\sigma_n^2 \sum_{N=1}^{N_R} |w_n|^2}$$

where w_n depends on the particular combining scheme.

1.2 MRC (Maximum Ratio Combining)

- what weight w_n maximize γ_t ?
 - Cauchy-Schwarz inequality

$$\left| \sum_{n=1}^{N_R} h_n w_n \right|^2 \le \sum_{n=1}^{N_R} |h_n|^2 \cdot \sum_{n=1}^{N_R} |w_n|^2$$

where equality holds if and only if $w_n = c \cdot h_n^*$ for some non-zero constant c.

- for $w_n = h_n^*$, we obtain

$$\gamma_t = \frac{\epsilon_s}{\sigma_n^2} \cdot \frac{\left(\sum_{n=1}^{N_R} |h_n|^2\right)^2}{\sum_{n=1}^{N_R} |h_n|^2} = \frac{\epsilon_s}{\sigma_n^2} \sum_{n=1}^{N_R} |h_n|^2$$

- $-w_n = h_n^* \forall n$ are the MRC combining weights.
- \bullet For performance analysis we assume independent identically distributed (IID) Rayleigh fading

• Error rate

$$\gamma_t = \sum_{n=1}^{N_R} \gamma_n$$

 \rightarrow sum of IID random variables (r.v.s.)

$$M_{\gamma_t}(s) = \left(M_{\gamma}(s)\right)^{N_R} = \frac{1}{(1+s\bar{\gamma})^{N_R}} = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{1}{(s+\frac{1}{\bar{z}})^{N_R}}$$

inverse Laplace-transform (from tables)

$$p_{\gamma_t}(x) = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

• Direct approach

$$p_e = \int_0^\infty a \cdot Q(\sqrt{ax}) p_{\gamma_t}(x) \ dx = a \left(\frac{1-\mu}{2}\right)^{N_R} \cdot \sum_{n=0}^{N_R-1} \binom{N_R-1+n}{n} \left(\frac{1+\mu}{2}\right)^n$$
 where $\mu = \sqrt{\frac{b\bar{\gamma}}{2+b\bar{\gamma}}}$

• MGF approach

$$\begin{split} p_e &= \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2 \sin^2 \theta} \right) d\theta \\ &= \frac{a}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{\bar{\gamma}^{N_R} \left(\frac{b}{\sin^2 \theta} + \frac{1}{\bar{\gamma}} \right)^{N_R}} d\theta \quad \text{(numerisch berechnen!)} \end{split}$$

• high SNR: $\bar{\gamma} \to \infty \Longleftrightarrow \frac{1}{\bar{\gamma}} \to 0$

$$\begin{split} p_e &= \frac{a}{\pi} \cdot \frac{1}{\bar{\gamma}^{N_R}} \cdot \left(\frac{2}{b}\right)^{N_R} \int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta \\ \text{(from MGF approach: } \int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta &= \frac{\pi}{2^{N_R+1}} \cdot \binom{2N_R}{N_R} \\ &= \frac{a}{2^{N_R+1} \cdot b^{N_R}} \left(2N_R \quad N_R\right) \frac{1}{\bar{\gamma}^{N_R}} \quad \text{as } \bar{\gamma} \to \infty \\ &= \frac{1}{G_c \bar{\gamma}} \end{split}$$

where: Diversity gain: $G_d = N_R$

Combining/Coding gain:
$$G_c = 2b \left(\frac{a}{2} \binom{2N_R}{N_R}\right)^{-\frac{1}{N_R}}$$

- MRC exploits the maximal possible diversity
- Diversity gain is not affected by correlation as the branches are not fully correlated
- Diversity gain depends on fading distribution

Outage probability

$$P_{out} = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx = \frac{1}{\bar{\gamma}^{N_R}} \int_0^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}} \ dx$$
$$= 1 - e^{-\frac{\gamma_T}{\bar{\gamma}}} \cdot \sum_{n=1}^{N_R} \frac{\left(\frac{\gamma_T}{\bar{\gamma}}\right)^n}{(n-1)!}$$

• Approximation (Taylor series): $\bar{\gamma} \to \infty$: $-e^{-\frac{x}{\bar{\gamma}}} = 1 - \frac{x}{\bar{\gamma}} + O(\frac{1}{\bar{\gamma}})$ where a function f(x) is O(x) if $\lim_{x \to \infty} \frac{f(x)}{x} = 0$.

$$\Rightarrow P_{out} = \frac{1}{\gamma^{N_R}} \int_{0}^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} \left(1 - \frac{x}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \right)$$

 \bullet Diversity and coding gain can also be defined for P_{out}

1.3 EGC (Equal Gain Combining)

Combining Weights

- For MRC, both, the amplitudes and phases of the channel gains $h_n = |h_n|e^{j\varphi_n}$ have to be known (or estimated in practice)
- In EGC it is assumed that only the phases are known and weights $w_n = e^{-j\varphi_n}$ are used.

$$\Rightarrow \gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{\left| \sum_{n=1}^{N_R} |h_n| e^{j\varphi_n} e^{-j\varphi_n} \right|^2}{\sum_{n=1}^{N_R} |e^{-j\varphi_n}|^2} = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{1}{N_R} \left(\sum_{n=1}^{N_R} |h_n| \right)^2$$
$$= \frac{1}{N_R} \left(\sum_{n=1}^{N_R} \sqrt{\gamma_n} \right)^2; \text{ with } \gamma_n = \frac{\mathcal{E}_s}{\sigma_n^2} |h_n|^2$$

Performance Analysis

- i.i.d. case $\Rightarrow \sqrt{\gamma_n}$ is Rayleigh distributed \Rightarrow Exact analysis is much more difficult than for MRC \Rightarrow see book by Simon&Alouini $\Rightarrow 241$
- Approximate result

$$P_{e} = \frac{a}{2} \left[1 - \sqrt{\frac{2b\bar{\gamma}}{5 + 2b\bar{\gamma}}} \sum_{n=0}^{N_{R}-1} \frac{\binom{2n}{n}}{4^{n} (1 + \frac{2}{5}b\bar{\gamma})^{n}} \right]$$

- high SNR
 - ⇒ use high SNR analysis of Wang & Giannakis, 2003
 - \Rightarrow at high SNR, only pdf of γ_n around 0 is relevant for performance

$$\Rightarrow \begin{array}{l} \text{Rayleigh} \\ p_{\gamma}(x) = \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \stackrel{\text{Taylor Serie}}{=} \frac{1}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \text{ as } x \to 0 \end{array}$$

• need pdf γ_t : (γ_n bekannt, \rightarrow ges.: Wurzel, etc.) (cumulative distribution function of $\sqrt{\gamma_n}$ (cdf))

$$\begin{split} P_{\sqrt{\gamma}}(x) &= \Pr\{\sqrt{\gamma} \leq x\} = \Pr\{\gamma \leq x^2\} = P_{\gamma}(x^2) = \operatorname{cdf} \text{ of } \gamma \\ &\to P_{\sqrt{\gamma}}(x) = \frac{d}{dx} P_{\sqrt{\gamma}}(x) = 2x \cdot p_{\gamma}(x^2) = \frac{2x}{\bar{\gamma}} + O(\frac{1}{\bar{\gamma}}) \\ &\to M_{\sqrt{\gamma}}(s) = \mathcal{L}\{p_{\sqrt{\gamma}}(x)\} = \frac{2}{\bar{\gamma}} \cdot \frac{1}{s^2} + O(\frac{1}{\bar{\gamma}}) \\ &\sqrt{\gamma_t} = \sum_{n=1}^{N_R} \frac{\sqrt{\gamma_n}}{N_R} \\ M_{\sqrt{\gamma_t}}(s) &= \mathcal{E}\left\{exp(-s\sqrt{\gamma_t})\right\} = \mathcal{E}\left\{exp(-\frac{s}{\sqrt{N_R}} \cdot \sum_{n=1}^{N_R} \sqrt{\gamma_n})\right\} = \left(\mathcal{E}\left\{exp(-\frac{s}{\sqrt{N_R}} \cdot \sqrt{\gamma_n}\right\}\right)^{N_R} \\ &= \left(M_{\sqrt{\gamma}}(\frac{s}{\sqrt{N_R}})\right)^{N_R} = \left(\frac{2}{\bar{\gamma}} \cdot \frac{N_R}{s^2}\right)^{N_R} + O\left(\frac{1}{\bar{\gamma} \cdot N_R}\right) \\ p_{\sqrt{\gamma_t}}(x) &= \mathcal{L}^{-1}\left\{M_{\sqrt{\gamma_t}}(s)\right\} = \left(\frac{2N_R}{\bar{\gamma}}\right)^{N_R} \cdot \frac{x^{2N_R-1}}{(2N_R-1)!} + O\left(\frac{1}{\bar{\gamma}N_R}\right) \\ P_{\gamma_t}(x) &= Pr\{\gamma_t \leq x\} = \Pr\{\sqrt{\gamma_t} \leq \sqrt{x}\} = P_{\sqrt{\gamma_t}}(\sqrt{x}) \to \operatorname{cdf} \operatorname{of} \sqrt{\gamma_t} \\ p_{\gamma_t}(x) &= \frac{d}{dx} P_{\gamma_t}(x) = \frac{1}{2\sqrt{x}} \cdot p_{\gamma_t}(\sqrt{x}) = \frac{1}{2}\left(\frac{2N_R}{\bar{\gamma}}\right)^{N_R} \cdot \frac{x^{N_R-1}}{(2N_R-1)!} + O(\bar{\gamma}^{-N_R}) \\ \to M_{\gamma_t}(s) &= \mathcal{L}\left\{p_{\gamma_t}(x)\right\} = \frac{1}{2}\left(\frac{2N_R}{\bar{\gamma}}\right)^{N_R} \cdot \frac{(N_R-1)!}{(2N_R-1)!} \cdot \frac{2^{N_R}}{b^{N_R}} \int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \\ + O(\bar{\gamma}^{-N_R}) \\ &= \frac{aN_R^{N_R}}{3} \cdot \frac{1}{\bar{\gamma}^{N_R}} + O(\bar{\gamma}^{-N_R}) \stackrel{!}{=} \left(\frac{1}{G_c\bar{\gamma}}\right)^{G_d} \\ \text{where: } \sin^{2N_R} \theta \ d\theta = \frac{\pi}{2^{2N_R+1}} \left(2N_R - N_R\right) = \frac{\pi(2N_R)!}{2^{2N_R+1}(N_R!)^2} \\ \Rightarrow \text{Diversity gain: } G_d = N_R \\ \Rightarrow \text{Combining gain: } G_c = \frac{b}{N_R} \left(\frac{2N_R!}{a}\right)^{\frac{1}{N_R}} \right. \end{split}$$

A similar asymptotic analysis can be conducted for the outage probability.

vergleiche auch Blatt mit Kurven $\overline{\mathrm{III}}$ und $\overline{\mathrm{IV}}$

1.4 SC (Selection Combining)

Combining weights

- only the strongest branch is chosen
- strongest branch: $\hat{n} = \underset{n}{\operatorname{argmax}} \gamma_n \longrightarrow \gamma_t = \gamma_{\hat{n}}$
- \bullet only on RF receiver chain required \rightarrow saves hardware complexity

Performance analysis

• cdf of: γ_t

$$P_{\gamma_t}(x) = Pr\{\gamma_{\hat{n}} \le x\} = Pr\{\gamma_1 \le x \cap \gamma_2 \le x \cap \dots \gamma_{N_R} \le x\}$$

$$\stackrel{(IID)}{=} \left(Pr\{\gamma_n \le x\}\right)^{N_R} = \left(P_{\gamma}(x)\right)^{N_R}$$

• pdf:

$$\begin{split} p_{\gamma_t}(x) &= \frac{d}{dx} P_{\gamma_t}(x) = N_R \big(P_{\gamma}(x) \big)^{N_R - 1} \cdot p_{\gamma}(x) \\ \text{where:} \qquad p_{\gamma_t}(x) &= \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \\ P_{\gamma}(x) &= \int_0^x p_{\gamma} 8x) \ dx = 1 - e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \\ &\to p_{\gamma_t}(x) = \frac{N_R}{\bar{\gamma}} \big(1 - e^{-\frac{x}{\bar{\gamma}}} \big)^{N_R - 1} e^{-\frac{x}{\bar{\gamma}}}; \quad x \geq 0 \end{split}$$

Error probability

- direct approach \rightarrow closed-form solution possible
- MGF approach
 - Binomial expansion

$$\begin{split} p_{\gamma_t}(x) &= \frac{N_R}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \sum_{n=0}^{N_R-1} \binom{N_R-1}{n} 1^{N_R-1-n} \Big(-e^{-\frac{x}{\bar{\gamma}}} \Big)^n \\ &= \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R-1} \binom{N_R-1}{n} \cdot (-1)^n e^{-\frac{x(n+1)}{\bar{\gamma}}}; \quad x \geq 0 \end{split}$$

- MGF

$$M_{\gamma_t}(s) = \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R - 1} {N_R - 1 \choose n} (-1)^n \frac{1}{s + \frac{n+1}{\bar{\gamma}}}$$

$$P_e = \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2 \sin^2 \theta} \right) d\theta = \frac{a N_R}{\pi \bar{\gamma}} \sum_{n=0}^{N_R - 1} \binom{N_R - 1}{n} (-1)^n \int_0^{\frac{\pi}{2}} \frac{d\theta}{\frac{b}{2 \sin^2 \theta} + \frac{n+1}{\bar{\gamma}}}$$

 \rightarrow can be evaluated numerically