Оцінювання характеристик частково спостережуваного ланцюга Маркова на двійкових послідовностях

А. В. Цибульник І. І. Ніщенко

Всеукраїнська науково-практична конференція студентів, аспірантів та молодих вчених

2023

План доповіді

Моделювання об'єкту дослідження

Постановка задачі

Результати чисельного експерименту

План доповіді

Моделювання об'єкту дослідження

Постановка задачі

Результати чисельного експерименту

$$x^{t} y^{t}$$

$$t = 1 (0,1,1) (1,1)$$

$$t = 2 (0,1,0) (1,0)$$

$$t = 3 (1,1,0) (2,0)$$

$$t = 4 (1,0,0) (1,0)$$

```
x^{t} 	 y^{t}
t = 1 	 010011101101 	 (1,4)
t = 2 	 011011101101 	 (2,4)
t = 3 	 0110111111101 	 (2,4)
t = 4 	 011011111111 	 (2,5)
```

Твердження

Послідовність $\{(X^t,Y^t)\}_{t=\overline{1,T}}$ утворює приховану марковську модель (π,A,B) , де

$$B_{xy} = P\left(Y^t = y \mid X^t = x\right) = \prod_{k=1}^{L} \mathbb{1}\left(y_k = \sum_{i \in I_k} x_i\right)$$

План доповіді

Моделювання об'єкту дослідження

Постановка задачі

Результати чисельного експерименту

① Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

1 Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Метод максимальної правдоподібності:

$$P\left(Y=y\,|\,p\right) = \sum_{x \in E^T} P\left(X=x,\,Y=y\,|\,p\right) \longrightarrow \max$$

① Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Метод максимальної правдоподібності:

$$P\left(\left. Y = y \, | \, p \right) = \sum_{x \in E^T} P\left(X = x, \, Y = y \, | \, p \right) \longrightarrow \max$$

Відтак

$$\widehat{p} = \operatorname*{argmax}_{p} \sum_{x \in E^T} L_{p,x,y}$$

1 Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Ітераційний алгоритм Баума-Велша:

$$Q\left(p^{(n)}, p\right) = \sum_{x \in E^T} L_{p^{(n)}, x, y} \cdot \ln L_{p, x, y} \longrightarrow \max$$

① Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Ітераційний алгоритм Баума-Велша:

$$Q\left(p^{(n)}, p\right) = \sum_{x \in E^T} L_{p^{(n)}, x, y} \cdot \ln L_{p, x, y} \longrightarrow \max$$

Тож починаючи з деякого $p^{(0)}$

$$p^{(n+1)} = \underset{p}{\operatorname{argmax}} \ Q\left(p^{(n)}, p\right)$$

1 Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Формула переоцінки параметра p:

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)},$$

де

$$\alpha_t(x) = P(Y^1 = y^1, \dots, Y^t = y^t, X^t = x \mid p^{(n)})$$

 $\beta_t(x) = P(Y^{t+1} = y^{t+1}, \dots, Y^T = y^T \mid X^t = x, p^{(n)})$

① Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

Алгоритм Вітербі: пошук такої послідовності прихованих станів $\widehat{X}^1, \widehat{X}^2, \dots, \widehat{X}^T$, яка найкращим чином описує наявні спостереження:

$$\widehat{X} = \operatorname*{argmax}_{x \in E^{T}} P\left(X = x \mid Y = y, \ \widehat{p}\right)$$

 $oldsymbol{0}$ Відтворити елементи «множини неявних індексів» I_* ;

2 Відтворити елементи «множини неявних індексів» I_* ;

	x^t	y^t	$y_{I_*}^t$
t = 1	010 011101101	(1, 4)	3
t = 2	011011101101	(2, 4)	3
t = 3	011011111101	(2, 4)	4
t = 4	011 011111111	(2, 5)	4

 $oldsymbol{0}$ Відтворити елементи «множини неявних індексів» I_* ;

Твердження

Змістовною і незміщеною оцінкою потужності множини I_* є статистика

$$|\widehat{I_*}| = \frac{N}{1-p} \left(1 - \frac{1}{T-1} \sum_{t=1}^{T-1} \mathbb{1} \left(Y_{I_*}^t = Y_{I_*}^{t+1} \right) \right)$$

 $oldsymbol{2}$ Відтворити елементи «множини неявних індексів» I_* ;

Визначення компонент множини I_{\ast} :

$$\widehat{I} = \underset{1 \leqslant k \leqslant C_N^{\widehat{I_{\mathbf{k}}}|}}{\operatorname{argmin}} \, d\left(\widehat{Y}_{\, \mathbf{I}_{\mathbf{k}}}, \, Y_{I_{\mathbf{k}}}\right),$$

 $oldsymbol{0}$ Відтворити елементи «множини неявних індексів» I_* ;

Визначення компонент множини I_{st} :

$$\widehat{I} = \underset{1 \leqslant k \leqslant C_N^{\widehat{I_{\mathbf{k}}}|}}{\operatorname{argmin}} \, d\left(\widehat{Y}_{\mathsf{I}_{\mathbf{k}}}, \, Y_{I_{\mathbf{k}}}\right),$$

де

$$\begin{split} d_{S}\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}},\,\boldsymbol{Y}_{I_{*}}\right) &= \sum_{t=1}^{T} \left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t} - \boldsymbol{Y}_{I_{*}}^{t}\right)^{2} \\ d_{J}\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}},\,\boldsymbol{Y}_{I_{*}}\right) &= 1 - \frac{\sum_{t=1}^{T} \min\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t},\,\boldsymbol{Y}_{I_{*}}^{t}\right)}{\sum_{t=1}^{T} \max\left(\widehat{\boldsymbol{Y}}_{\mathbf{I}_{k}}^{t},\,\boldsymbol{Y}_{I_{*}}^{t}\right)} \end{split}$$

© Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \dots, q_L .

	x^t	\widetilde{x}^t	y^t	q
t = 1	010011101101	0 <mark>0</mark> 0011101101	(0, 4)	$(\mathit{q}_1,\mathit{q}_2)$
t = 2	011011101101	01 <mark>0</mark> 011101101	(1, 4)	$(\mathit{q}_1,\mathit{q}_2)$
t = 3	011011111101	11101111111111111111111111111111111111	(3, 5)	$(\mathit{q}_1,\mathit{q}_2)$
t = 4	011011111111	0110111111100	(2,3)	(q_1, q_2)

© Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \ldots, q_L .

$$x^t$$
 \widetilde{x}^t y^t q $t=1$ 010011101101 000011101101 (0,4) (q_1,q_2) $t=2$ 011011101101 010011101101 (1,4) (q_1,q_2) $t=3$ 0110111111101 111011111111 (3,5) (q_1,q_2) $t=4$ 011011111111 011011111100 (2,3) (q_1,q_2)

$$orall i \in I_1: \quad \widetilde{X}_i^t = egin{cases} 1-X_i^t, & extbf{3} ext{ імовірністю } q_1 \ X_i^t, & extbf{3} ext{ імовірністю } 1-q_1 \end{cases}$$

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \ldots, q_L .

Твердження

Якщо множини I_1,\dots,I_L є попарно неперетинними, то утворена послідовність $\{(X^t,Y^t)\}_{t=\overline{1,T}}$ є прихованою марковською моделлю (π,A,B^q) , де

$$B_{xy}^q = P(Y^t = y \mid X^t = x) = \prod_{k=1}^L P(\xi_{01}^k(x) + \xi_{11}^k(x) = y_k),$$

$$\xi_{01}^k(x) \sim Bin\left(|I_k| - \sum\limits_{i \in I_k} x_i, \ q_k\right), \ \xi_{11}^k(x) \sim Bin\left(\sum\limits_{i \in I_k} x_i, \ 1 - q_k\right), \ k = \overline{1,L}$$

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \dots, q_L .

$$p^{(n+1)} = p^{(n)} \cdot \frac{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) B_{xy^{t+1}}^{q^{(n)}} \beta_{t+1}(x)}{\sum_{t=1}^{T-1} \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$
$$q_k^{(n+1)} = q_k^{(n)} \cdot \frac{\sum_{t=1}^{T} \sum_{x \in E} \beta_t(x) \sum_{x' \in E} \alpha_{t-1}(x') A_{x'x}^{(n)} \sum_{i \in I_k} P_{x,i}^{q^{(n)}}}{|I_k| \sum_{t=1}^{T} \sum_{x \in E} \alpha_t(x) \beta_t(x)}$$

План доповіді

Моделювання об'єкту дослідження

Постановка задачі

Результати чисельного експерименту

Було згенеровано прихований ланцюг Маркова протягом T=200 моментів часу, N=5 та p=0.2. Множина спостережуваних індексів: $I=\{I_1,I_2\}=\{(2,3),(1,4)\}$.

① Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

p	0.2	0.0041
\widehat{p}	0.1959	0.0041

1 Оцінити параметр p та декодувати послідовність станів прихованого ланцюга;

2 Відтворити елементи «множини неявних індексів» I_* ;

② Відтворити елементи «множини неявних індексів» I_{*} ;

Таблиця: Збіжність змістовної оцінки

T	200	400	600	800	1000
\widehat{p}	0.1959	0.1823	0.1882	0.2099	0.2092
$\widehat{ I_* }$	2	2	2	3	3

② Відтворити елементи «множини неявних індексів» I_{*} ;

Таблиця: Збіжність змістовної оцінки

T	200	400	600	800	1000
\widehat{p}	0.1959	0.1823	0.1882	0.2099	0.2092
$ \widehat{I_*} $	2	2	2	3	3

$$|\widehat{I_*}| = \max_{1 \le t \le T} Y_{I_*}^t$$

② Відтворити елементи «множини неявних індексів» I_* ;

Таблиця: Збіжність змістовної оцінки

T	200	400	600	800	1000
\widehat{p}	0.1959	0.1823	0.1882	0.2099	0.2092
$\widehat{ I_* }$	2	2	2	3	3

Отримані результати

$$|\widehat{I_*}| = \max_{1 \leqslant t \leqslant T} Y_{I_*}^t$$

I_*	(1, 3, 5)
\widehat{I}_S	(1, 2, 5)
\widehat{I}_J	(1, 2, 3)

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \ldots, q_L .

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \dots, q_L .

p	0.2	$\begin{bmatrix} 0.0559 \end{bmatrix}$
\widehat{p}	0.2559	0.0000

③ Оцінити невідомий параметр моделі p при ймовірностях спотворення q_1, q_2, \ldots, q_L .

q_1	0.05	0.0046
\widehat{q}_{1}	0.0454	0.0040

q_2	0.1	0.0184
\widehat{q}_{2}	0.1184	0.0104