MOBILE SENSING LEARNING

CS5323 & 7323

Mobile Sensing and Learning

doppler and activity monitoring

Eric C. Larson, Lyle School of Engineering, Computer Science, Southern Methodist University

agenda and logistics

- logistics:
 - grades update
 - A2 is due soon!
- agenda:
 - A2 explanations
 - general FFT review
 - peak finding
 - the doppler effect
 - activity processing

class overview

FFT review

- sampling rate
 - dictates the time between each sample, (1 / Fs) (query from the Novocaine audioManager)
 - Nyquist: max frequency we can measure is half of sampling rate
- resolution in frequency
 - tradeoff between length of FFT and sampling rate
 - each frequency "bin" is an index in the FFT array
 - each bin represents (Fs / N) Hz
 - what does that mean for 6 Hz accuracy?

time and frequency

Note: the FFT class ALWAYS rounds to the next power of 2

local peak finding

peak interpolation

peak interpolation

peak interpolation

great for **module A**! no need to do this for **module B**, Why?

.

 (f_1, m_1)

mpeak

$$f_{peak} \approx f_2 + \frac{m_1 - m_3}{m_3 - 2m_2 + m_1} \frac{\Delta f}{2}$$

 (f_2,m_2)

quadratic approximation

good resource:

 (f_3, m_3)

https://
www.dsprelated.com/
freebooks/sasp/

Quadratic Interpolation Spectral Peaks.html

 f_3

 f_2 f_3

Southern Methodist University

fts from

ineal

and the sails

doppler shifts

Questions on the FFT/audio

- we are about to move to motion processing...
- so ask now!

A2 specifications

6_Zoomed FFT7 Test App