Dendograma: EJemplo Idiomas

Oscar Elí Bonilla Morales

2022-05-24

Cargamos librerias

```
install.packages("cluster.datasets")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)

library("cluster.datasets")
```

Matriz de datos

```
data("languages.spoken.europe")
```

Cambiamos el nombre de la matriz

```
LSE=languages.spoken.europe
head(LSE)
          country finnish swedish danish norwegian english german dutch flemish
## 1 West Germany
                          0
                                  0
                                                                   100
## 2
             Italy
                          0
                                  0
                                          0
                                                    0
                                                             5
                                                                     3
                                                                                    0
                                  2
                                          3
                                                    0
                                                                     7
## 3
           France
                          0
                                                            10
                                                                           1
                                                                                    1
## 4 Netherlands
                          0
                                  0
                                          0
                                                    0
                                                            41
                                                                    47
                                                                         100
                                                                                  100
                                          0
## 5
                                  0
                                                    0
                                                            14
                                                                           0
                                                                                   59
          Belgium
                          0
                                                                    15
                                                            31
                                                                   100
## 6
        Luxemburg
                          0
                                                                                    1
##
     french italian spanish portuguese
## 1
         10
                   2
                            1
## 2
         11
                 100
                                        0
                            1
                            7
## 3
        100
                  12
                                        1
```

#Exploración de la matriz

dim(LSE)

4

5

6

```
## [1] 16 13
str(LSE)
```

'data.frame': 16 obs. of 13 variables:

```
"West Germany" "Italy" "France" "Netherlands" ...
##
    $ country
                : chr
##
                       0000000000...
    $ finnish
                : num
##
    $ swedish
                : num
                       0 0 2 0 0 0 0 0 0 0 ...
                       0 0 3 0 0 0 0 0 0 0 ...
##
    $ danish
                : num
##
    $ norwegian : num
                       0 0 0 0 0 0 0 0 0 0 ...
##
    $ english
                       21 5 10 41 14 31 100 9 18 21 ...
                : num
##
    $ german
                : num
                       100 3 7 47 15 100 7 0 100 83 ...
##
    $ dutch
                : num
                       2 0 1 100 0 4 0 0 1 1 ...
##
    $ flemish
                : num
                       1 0 1 100 59 1 0 0 1 2 ...
##
    $ french
                : num
                       10 11 100 16 44 92 15 10 4 64
##
    $ italian
                       2 100 12 2 2 10 3 1 2 23 ...
                : num
                       1 1 7 2 1 0 2 2 1 3 ...
##
    $ spanish
                : num
    $ portuguese: num
                       0 0 1 0 0 0 0 100 0 1 ...
anyNA(LSE)
```

[1] FALSE

Calculo de la matriz de distancia de Mahalonobis

Para poder realizar esta función es necesario solo utilizar variables númericas, por lo que realizaremos una modificación en en nuestro data set

```
dist.LSE<-dist(LSE[,2:12])</pre>
```

Convertir los resultados del Calculo de la distancia a una matriz de datos y me indique 3 digitos.

```
round(as.matrix(dist.LSE)[1:12, 1:12],3)
                    2
                             3
                                                              7
                                                                      8
                                                                              9
##
            1
                                             5
                                                     6
## 1
        0.000 138.834 130.461 150.502 108.619
                                                83.024 122.156 100.752
                                                                          6.782
     138.834
                0.000 125.527 181.279 119.996 157.366 135.893
                                                                 99.136 138.683
      130.461 125.527
                        0.000 171.339
                                        82.037
                                                96.068 124.282
                                                                 91.165 134.454
      150.502 181.279 171.339
##
                                 0.000 119.243 166.643 158.376 152.545 151.937
      108.619 119.996
                       82.037 119.243
                                         0.000 115.165 108.554
## 5
                                                                 69.921 110.481
## 6
       83.024 157.366
                       96.068 166.643 115.165
                                                 0.000 139.316 131.567
                                                                         89.370
      122.156 135.893 124.282 158.376 108.554 139.316
                                                          0.000
                                                                 91.428 124.491
## 8
      100.752
               99.136
                      91.165 152.545
                                        69.921 131.567
                                                        91.428
                                                                  0.000 100.603
## 9
        6.782 138.683 134.454 151.937 110.481
                                                89.370 124.491 100.603
                                                                          0.000
       60.432 124.109
                      85.697 154.425
                                       93.638
                                                36.892 121.754 102.171
  11 127.973 148.324 142.151 175.602 126.937 153.330 117.919 109.745 128.464
##
   12 123.576 149.913 141.602 175.083 128.152 147.689 124.888 114.140 124.165
##
           10
                   11
## 1
       60.432 127.973 123.576
## 2
      124.109 148.324 149.913
## 3
       85.697 142.151 141.602
## 4
      154.425 175.602 175.083
## 5
       93.638 126.937 128.152
##
  6
       36.892 153.330 147.689
##
      121.754 117.919 124.888
## 8
      102.171 109.745 114.140
       65.909 128.464 124.165
```

```
## 10 0.000 133.981 129.240
## 11 133.981 0.000 120.241
## 12 129.240 120.241 0.000
```

Calculo del dendrograma

```
dend.LSE<-as.dendrogram(hclust(dist.LSE))</pre>
```

Generacion del dendrograma

Agregar etiquetas al Grafico

```
LSE.nombres=LSE
rownames(LSE.nombres) = LSE.nombres$country
LSE.nombres=LSE.nombres[,-1]
```

Construimos de nuevo el Grafico

plot(as.dendrogram(hclust(dist(LSE.nombres))))

Interpretación idiomas

En nuestro dendograma podemos decir que se divide en 3 clusters principales esto quiere decir que entre nuestros 3 clusters existirán paises que comparten los mismos idiomas, por ejemplo, si creamos grupos podriamos decir que en el grupo 1 el cual incluye (alemania del este, Austria, Luxenburgo y Suiza) el idioma mas hablado es el aleman, mientras que en el grupo 2 (DInamarca, Noruega, Suecia, Gran Bretaña e Irlanda) aunque tambien está presente el alemán predomina mas el inglés.

Modificar el dendrograma

```
install.packages("dendextend")
library(dendextend)
```

Guardar las etiquetas en un objeto "L"

```
L=labels(dend.LSE)
labels(dend.LSE)=LSE$country[L]
```

Cambiar el tama?o de las etiquetas

```
dend.LSE %>%
  set(what="labels_col", "red") %>% #Colores etiqueta
  set(what="labels_cex", 0.8) %>%
  plot(main="Dendrograma de Idiomas en Europa")
```

Dendrograma de Idiomas en Europa

Dendograma de Circulo

