CTL Computation Tree Logic

idée: ne plus voir le système comme un ensemble d'exécutions linéaires... être plus proche du STE.

A tout moment le système est dans un état et il peut évoluer de plusieurs manières.

--> un arbre d'exécution.

CTL

Formules de CTL

$$\varphi,\psi ::= \mathsf{P} \mid \neg \varphi \mid \varphi \lor \psi \mid \mathbf{E} \mathbf{X} \varphi \mid \mathbf{A} \mathbf{X} \varphi \mid \mathbf{E} \varphi \mathbf{U} \psi \mid \mathbf{A} \varphi \mathbf{U} \psi$$

avec P ∈ AP

CTL - sémantique

 $S = (Q, Act, \rightarrow, q_{init}, AP, L)$

Exec(q) = ens. des exécutions infinies partant de q.

 $\pi \in \text{Exec}(q)$: $\pi = q_0 q_1 q_2 q_3 q_4 \dots \text{ avec } q_0 = q \text{ et } q_i \rightarrow q_{i+1}$

Notation: $\pi(i) = q_i \quad \forall i \ge 0$

On interprète les formules de CTL sur des états de S.

```
q \models P \text{ iff } P \in L(q)

q \models EX\phi \text{ iff } \exists q \rightarrow q' \text{ t.q. } q' \models \phi

q \models AX \phi \text{ iff } \forall q \rightarrow q', \text{ on a: } q' \models \phi

q \models E\phi U\psi \text{ iff } \exists \pi \in Exec(q) \text{ t.q. } \exists i \geq 0 \text{ t.q. } (\pi(i) \models \psi \text{ et}

(\forall 0 \leq j < i : \pi(j) \models \phi)

q \models A\phi U\psi \text{ iff } \forall \pi \in Exec(q), \exists i \geq 0 \text{ t.q. } (\pi(i) \models \psi \text{ et}

(\forall 0 \leq j < i : \pi(j) \models \phi)
```

CTL

 $P \in AP$

Définition alternative (équivalente!!):

Formules d'état:

$$\varphi, \psi := \mathsf{P} \mid \neg \varphi \mid \varphi \lor \psi \mid \mathbf{E} \varphi_{\mathsf{p}} \mid \mathbf{A} \varphi_{\mathsf{p}}$$

Formules de chemin:

$$\varphi_{p}, \psi_{p} ::= \mathbf{X} \varphi \mid \varphi \mathbf{U} \psi$$

 $\mathbf{E} \ \phi_p = \text{``il existe un chemin v\'erifiant } \phi_p \text{'`}$

 $\mathbf{A} \, \phi_p = \text{``tous les chemins vérifient } \phi_p \text{'`}$

CTL - sémantique

Définition alternative (équivalente!!):

```
q \models P \text{ iff } P \in L(q)
q \models E \phi_p \text{ iff } \exists \pi \in Exec(q) \text{ t.q. } \pi \models \phi_p
q \models A \phi_p \text{ iff } \forall \pi \in Exec(q), \ \pi \models \phi_p
\pi \models X \phi \text{ iff } \pi(1) \models \phi
\pi \models \phi U \psi \text{ iff } \exists i \geq 0 \ (\pi(i) \models \psi \text{ et } (\forall 0 \leq j < i : \pi(j) \models \phi))
```

CTL - sémantique

$q \models E \text{ rouge } U \text{ vert}$

CTL - sémantique

$q \models A rouge U vert$

CTL - sémantique

 $q \models \mathbf{EF} \mathbf{vert}$

CTL - sémantique

 $q \models \mathbf{AF} \mathbf{vert}$

ou:

CTL - sémantique

 $q \models EG rouge$

CTL - sémantique

 $q \models AG rouge$

Tout ce qui est accessible depuis q est rouge.

Exemples

AG (problème $\Rightarrow AF$ alarme)

« tout état accessible qui vérifie problème est suivi inévitablement, un jour, par un état vérifiant alarme »

AG (EX a)

« tout état accessible a un successeur immédiat vérifiant a »

E (EX a) U b

« il est possible d'atteindre un état vérifiant b le long d'un chemin où tout état a un successeur immédiat vérifiant a »

AG (EF a)

« Depuis tout état accessible, il est possible d'atteindre un état vérifiant a »

Comment évaluer une formule de CTL sur un état d'un STE?

$$\varphi = \mathbf{AG} (\mathbf{a} \Rightarrow \mathbf{E} (\mathbf{EX} \mathbf{c}) \mathbf{U} \mathbf{b})$$
 $Q_0 \models \varphi$?

Les sous-formules de ϕ :

$$\phi$$
, a, a \Rightarrow E (EX c) U b,
E (EX c) U b, EX c, b, c

	а	b	O	EX c	E (EX c) U b	a ⇒	φ
q 0	Т	上	\perp	Τ	Τ	 	Τ
q ₁	上	1	긕	1	Т	H	\vdash
q ₂	上	上	Т	Τ	Τ	Τ	\vdash
q з	上	1	Τ	Τ	Т	H	Τ
Q4	Т	Т	\dashv	1	Т	H	\top
q 5	Т	上	上	Т			上

Quelle logique choisir?

Quelle est la « meilleure »? CTL*?LTL?CTL? ...

Plusieurs critères:

- L'expressivité
- La complexité des procédures de décision
- Les outils (model-checkers...)
- **–** ...

Comparer l'expressivité de LTL et CTL