GAP 4 Package FinInG

Finite Incidence Geometry

1.5.4

13/12/2022

John Bamberg Anton Betten Jan De Beule Philippe Cara Michel Lavrauw Max Neunhöffer

Email: support@fining.org

Homepage: http://www.fining.org

Copyright

© 2014-2022 by the authors

This package may be distributed under the terms and conditions of the GNU Public License Version 2 or higher.

The development group of FinInG welcomes contact with users. In case you have obtained the package as a deposited package part of archive during the installation of GAP, we call on your beneficence to register at http://www.fining.org when you use FinInG, or to tell us by sending an e-mail to council@fining.org.

Please also tell us about the use of FinInG in your research or teaching. We are very interested in results obtained using FinInG and we might refer to your work in the future. If your work is published, we ask you to cite FinInG like a journal article or book. We provide the necessary BibTex and LaTeX code in Section 1.2.

Acknowledgements

The development phase of FinInG started roughly in 2005. The idea to write a package for projective geometry in GAP had emerged before, and resulted in pg, a relic that still can be found in the undeposited packages section of the GAP website. One of the main objectives was to develop the new package was to create a tighter connection between finite geometry and the group theoretical functions present in GAP.

The authors thank Michael Pauley, Maska Law and Sven Reichard, for their contributions during the early days of the project.

Jan De Beule and Michel Lavrauw have been supported by the Research Foundation Flanders – Belgium (FWO), and John Bamberg has been supported by a Marie Curie grant and an ARC grant during almost the whole development phase of FinlnG. The authors are grateful for this support.

John Bamberg, Philippe Cara and Jan De Beule have spent several weeks in Vicenza while developing FinInG. We acknowledge the hospitality of Michel Lavrauw and Corrado Zanella. Our stays in Vicenza were always fruitful and very enjoyable. During or daily morning and afternoon coffee breaks, we discussed several topics, while enjoying coffee in *Caffe Pigaffeta*. Although one cannot acknowledge everybody, such as the bakery who provided us with the sandwiches, we acknowledge very much the hospitality of Carla and Luigi, who introduced us to many different kinds of coffees from all over the world.

Contents

1	Intr	oduction					
	1.1	Philosophy					
	1.2	How to cite FinInG					
	1.3	Overview of this manual					
	1.4	Getting and installing FinInG					
	1.5	The Development Team					
2	Examples 1						
	2.1	Elementary examples					
	2.2	Some objects with interesting combinatorial properties					
	2.3	Geometry morphisms					
	2.4	Some geometrical objects					
	2.5	Some particular incidence geometries					
	2.6	Elation generalised quadrangles					
	2.7	Algebraic varieties					
3	Incidence Geometry						
	3.1	Incidence structures					
	3.2	Elements of incidence structures					
	3.3	Flags of incidence structures					
	3.4	Shadow of elements					
	3.5	Enumerating elements of an incidence structure					
	3.6	Lie geometries					
	3.7	Elements of Lie geometries					
	3.8	Changing the ambient geometry of elements of a Lie geometry 69					
4	Projective Spaces 7						
	4.1	Projective Spaces and basic operations					
	4.2	Subspaces of projective spaces					
	4.3	Shadows of Projective Subspaces					
	4.4	Enumerating subspaces of a projective space					
5	Projective Groups 8						
	5.1	Projectivities, collineations and correlations of projective spaces					
	5.2	Construction of projectivities, collineations and correlations					
	5.3	Basic operations for projectivities, collineations and correlations of projective spaces 9.					

	5.4	The groups PFL, PGL, and PSL in FinlnG	97			
	5.5	Basic operations for projective groups	100			
	5.6	Natural embedding of a collineation group in a correlation/collineation group	100			
	5.7	Basic action of projective group elements	101			
	5.8	Projective group actions	101			
	5.9	Special subgroups of the projectivity group	103			
	5.10	Nice Monomorphisms	106			
6	Polarities of Projective Spaces 10					
	6.1	Creating polarities of projective spaces	109			
	6.2	Operations, attributes and properties for polarities of projective spaces	111			
	6.3	Polarities, absolute points, totally isotropic elements and finite classical polar spaces	114			
	6.4	Commuting polarities	116			
7	Finite Classical Polar Spaces 1					
	7.1	Finite Classical Polar Spaces	117			
	7.2	Canonical and standard Polar Spaces	119			
	7.3	Basic operations for finite classical polar spaces	125			
	7.4	Subspaces of finite classical polar spaces	129			
	7.5	Basic operations for polar spaces and subspaces of projective spaces	131			
	7.6	Shadow of elements	137			
	7.7	Projective Orthogonal/Unitary/Symplectic groups in FinInG	139			
	7.8	Enumerating subspaces of polar spaces	142			
8	Orbits, stabilisers and actions					
	8.1	Orbits	144			
	8.2	Stabilisers	147			
	8.3	Actions and nice monomorphisms revisited	153			
9	Affin	Affine Spaces				
	9.1	Affine spaces and basic operations	157			
	9.2	Subspaces of affine spaces	159			
	9.3	Shadows of Affine Subspaces	164			
	9.4	Iterators and enumerators	165			
	9.5	Affine groups	166			
	9.6	Low level operations	169			
10	Geometry Morphisms 170					
	10.1	Geometry morphisms in FinInG	170			
	10.2	Type preserving bijective geometry morphisms	172			
		Klein correspondence and derived dualities	173			
	10.4	Embeddings of projective spaces	178			
	10.5	Embeddings of polar spaces	183			
	10.6	Projections	189			
	10.7	Projective completion	190			

11	Alge	braic Varieties	191	
	11.1	Algebraic Varieties	191	
	11.2	Projective Varieties	193	
	11.3	Quadrics and Hermitian varieties	194	
	11.4	Affine Varieties	198	
	11.5	Geometry maps	198	
		Segre Varieties	199	
		Veronese Varieties	200	
	11.8	Grassmann Varieties	202	
12	Gen	eralised Polygons	204	
12		Categories	204	
		Generic functions to create generalised polygons	204	
			200	
		Attributes and operations for generalised polygons		
		Elements of generalised polygons	218	
		The classical generalised hexagons	223	
	12.6	Elation generalised quadrangles	229	
13	Cose	et Geometries and Diagrams	243	
		Coset Geometries	243	
		Automorphisms, Correlations and Isomorphisms	255	
		Diagrams	257	
14		geometries of projective spaces	26 4	
	14.1	Particular Categories	265	
		Subgeometries of projective spaces	265	
	14.3	Basic operations	267	
	14.4	Constructing elements of a subgeometry	270	
	14.5	Groups and actions	273	
٨	The	structure of FinInG	27 4	
•	A.1	The different components	274	
	A.2	The complete inventory	214	
В	The	finite classical groups in FinInG	310	
	B.1	Standard forms used to produce the finite classical groups	310	
	B.2	Direct commands to construct the projective classical groups in FinInG	312	
	B.3	Basis of the collineation groups	316	
	D .3	Busis of the confinement groups	510	
C	Low	level functions for morphisms	317	
	C .1	Field reduction and vector spaces	317	
	C.2	Field reduction and forms	318	
	C .3	Low level functions	319	
Re	feren	ces	322	
Ind	lex		323	

Chapter 1

Introduction

1.1 Philosophy

FinInG (pronunciation: [fining]) is a package for computation in Finite Incidence Geometry. It provides users with the basic tools to work in various areas of finite geometry from the realms of projective spaces to the flat lands of generalised polygons. The algebraic power of GAP is employed, particularly in its facility with matrix and permutation groups.

1.2 How to cite FinInG

The development group of FinInG welcomes contact with users. In case you have obtained the package as a deposited package part of archive during the installation of GAP, we call on your beneficence to register at http://www.fining.org when you use FinInG or to tell us by sending a message to council@fining.org.

Please tell us about the use of FinInG in your research or teaching. We are very interested in results obtained using FinInG and we might refer to your work in the future. If your work is published, we ask you to cite FinInG like a journal article or book.

If you are using BibTeX, you can use the following BibTeX entry for the current FinInG version:

Here is the bibliography entry produced by BibTeX (in bibliography style 'alpha'), to be pasted directly inside the bibliography environment of your LaTeX document:

```
Example

\bibitem[FinInG]{fining}

J.~Bamberg, A.~Betten, {Ph}. Cara, J.~De~Beule, M.~Lavrauw, and

M.~Neunh\"offer.

\newblock {\em Finite Incidence Geometry}.

\newblock FInInG -- a {GAP} package, version 1.5.4, 2022.
```

When linking to FinInG from a web page you can use the link

```
Example ______
<a href="http://www.fining.org">FinInG</a>.
```

1.3 Overview of this manual

This chapter (section 1.4) describes the installation of the package. Chapter 2 contains some extended examples to introduce the user to the basic functionality and philosophy to get started. Chapter 3 contains a rigorous description of the basic structures. This chapter can be omitted at first reading, since the set of consequent chapters is also self contained. Chapters 4, 5 and 6 deal with projective spaces, projective semilinear groups and polarities of projective spaces, respectively. In Chapter 7 the functionality for classical polar spaces is treated and in Chapter 9 affine spaces and their groups are considered. *Geometry morphisms* between various geometries that are available in the package, are introduced and discussed in Chapter 10. The final three chapters, 11, 12, and 13 explain the basic functionality which is provided for algebraic varieties (in projective or affine spaces), generalised polygons, of which several models can be constructed, and finally coset geometries and diagrams.

1.4 Getting and installing FinInG

Since version 4.7.8, the official GAP distribution includes the FinInG package. The FinInG package requires the GAP packages GAPDoc, version 1.6 or higher, Forms, version 1.2.3 or higher, Orb, version 4.7.6 or higher, GenSS, version 1.6.4 or higher, and GRAPE, version 4.7 or higher, and cvec, version 2.5.7 or higher. These required packages are all part of the standard GAP distribution. However, the packages cvec, GRAPE, IO, and Orb may require additional compilation (cfr. infra for detailed instructions). Note that the IO is a package required by cvec and Orb, and is also part of the standard GAP distribution. Shortly summarized, to get FinInG working, download and install GAP as explained in its installation instructions, and, under UNIX like systems (including MacOS), make sure that the compilation of the packages cvec, GRAPE, IO, and Orb is done. Note that the windows distribution of GAP contains precompiled binaries of these packages, so under Windows, no further steps are required after installing GAP according to its installation instructions. In the next section we summarize the installation procedure under UNIX like systems.

1.4.1 Installation procedure under UNIX like systems

The installation of GAP itself is generic for each UNIX like system, including the different flavours of Mac OS. You only need a terminal application, and you need access to the standard unix tools gunzip and tar, and the make tools. Detailed information on how to install GAP, can be found in the documentation of GAP. The installation procedure for FinlnG, a standard GAP package, does *not* require compilation, however the packages cvec, GRAPE, IO, and Orb do. First install GAP according to the installation instructions. If you start GAP the output might look like in the example below. Note that IO is not listed as loaded package (see line starting with 'Packages' in the example output). This means that IO has not been compiled. Trying to load the IO will result in an error message.

```
GAP |
             https://www.gap-system.org
             Architecture: x86_64-apple-darwin16.7.0-gcc-default64
 Libs used:
 Loading the library and packages ...
 Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
             AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.1, AutPGrp 1.8,
 Packages:
             CRISP 1.4.4, Cryst 4.1.12, CrystCat 1.1.6, CTblLib 1.2.2,
             FactInt 1.5.4, FGA 1.3.1, GAPDoc 1.6, IRREDSOL 1.4, LAGUNA 3.7.0,
             Polenta 1.3.7, Polycyclic 2.11, RadiRoot 2.7, ResClasses 4.6.0,
             Sophus 1.23, SpinSym 1.5, TomLib 1.2.6, Utils 0.46
 Try '??help' for help. See also '?copyright', '?cite' and '?authors'
gap> LoadPackage("io");
#I IO package is not available. To see further details, enter
#I SetInfoLevel(InfoPackageLoading,4); and try to load the package again.
fail
```

1.4.2 Compiling packages

In this subsection it is explained how to compile the necessary packages in case this is not yet done for your GAP installation. We assume that you have write access to the GAP installation on your computer. If this is not the case, you should ask your system administrator to do this for you. Locate your GAP installation. The examples below are generated using a GAP4.8.8 installation residing in "/opt/gap4r8". Clearly, subsequent versions of gap will reside in a differently named directory, e.g. "/opt/gap4r9". Another commonly used directory under UNIX like systems to install software is "/usr/local", so gap might reside in "/usr/local/gap4r8" too. In all examples in this section, we assume your GAP installation resides in "/opt/gap4r8". Therefore, replace any occurrence of "/opt/gap4r8" with the actual directory of your GAP installation when executing the installation steps. Three steps will be necessary to compile the IO package: go into the correct directory, and issue the 'configure' command and then issue the 'make' command. Note that the directory name of the package is dependent on its version number. The correct name can be found as follows:

```
jdebeule ~ $ ls /opt/gap4r8/pkg/ |grep io-
io-4.4.6
```

From this output, it can be determined that the IO resides in "/opt/gap4r8/pkg/io-4.4.6/". The three steps to be taken to compile io are demonstrated in the example below.

```
root ~ $ cd /opt/gap4r8/pkg/io-4.4.6/
root /opt/gap4r8/pkg/io-4.4.6 $ ./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... cnf/install-sh -c -d
...
...lots of output
...
config.status: creating Makefile
config.status: creating src/pkgconfig.h
config.status: src/pkgconfig.h is unchanged
config.status: executing depfiles commands
config.status: executing libtool commands
```

Now starting GAP should produce the following output, notice the presence of "IO 4.4.6" as one of the loaded packages.

```
__ Example _
jdebeule ~
           $ gap4r8
+----+ GAP 4.8.8, 20-Aug-2017, build of 2017-09-04 15:17:33 (CEST)
| GAP | https://www.gap-system.org
            Architecture: x86_64-apple-darwin16.7.0-gcc-default64
+----+
Libs used: gmp
Loading the library and packages ...
Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
            AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.1, AutPGrp 1.8,
            CRISP 1.4.4, Cryst 4.1.12, CrystCat 1.1.6, CTblLib 1.2.2,
            FactInt 1.5.4, FGA 1.3.1, GAPDoc 1.6, IO 4.4.6, IRREDSOL 1.4,
            LAGUNA 3.7.0, Polenta 1.3.7, Polycyclic 2.11, RadiRoot 2.7,
            ResClasses 4.6.0, Sophus 1.23, SpinSym 1.5, TomLib 1.2.6,
            Utils 0.46
Try '??help' for help. See also '?copyright', '?cite' and '?authors'
gap>
```

Similar steps are now necessary to compile the package cvec, Orb, and grape: go into the correct directory, and issue the 'configure' and 'make' command. In the example below, we include the determination of the correct directory names. Note that the directory name of the grape package is not dependent on its version number, so it resides in "/opt/gap4r8/pkg/grape".

```
Example
root /opt/gap4r8/pkg/cvec-2.5.7 $ cd
root ~ $ ls /opt/gap4r8/pkg/ |grep cvec-
cvec-2.5.7
root ~ $ cd /opt/gap4r8/pkg/cvec-2.5.7/
root /opt/gap4r8/pkg/cvec-2.5.7 $ ./configure
...lots of output
. . .
config.status: executing libtool commands
root /opt/gap4r8/pkg/cvec-2.5.7 $ make
  CC
          src/cvec_la-cvec.lo
  CCLD
          cvec.la
cnf/install-sh -c -d ./bin/x86_64-apple-darwin16.7.0-gcc-default64
cp .libs/cvec.so bin/x86_64-apple-darwin16.7.0-gcc-default64/cvec.so
root ~ $ ls /opt/gap4r8/pkg/ |grep orb-
orb-4.7.6
root ~ $ cd /opt/gap4r8/pkg/orb-4.7.6/
root /opt/gap4r8/pkg/orb-4.7.6 $ ./configure
...lots of output
config.status: executing libtool commands
```

```
root /opt/gap4r8/pkg/orb-4.7.6 $ make
...some output
cp .libs/orb.so bin/x86_64-apple-darwin16.7.0-gcc-default64/orb.so
root ~ $ cd /opt/gap4r8/pkg/grape
root /opt/gap4r8/pkg/grape $ ./configure
root /opt/gap4r8/pkg/grape $ make
...lots of output
root /opt/gap4r8/pkg/grape $
```

Note that warnings may occur during the compilation process, which can all be ignored. If compilation of these packages has been successful, restart GAP and load FinInG using "LoadPackage("fining")". The output should look as follows.

```
\_ Example \_
jdebeule ~ $ gap4r8
 +----+ GAP 4.8.8, 20-Aug-2017, build of 2017-09-04 15:17:33 (CEST)
 | GAP | https://www.gap-system.org
 +----+ Architecture: x86_64-apple-darwin16.7.0-gcc-default64
Libs used: gmp
Loading the library and packages ...
Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
Packages:
           AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.1, AutPGrp 1.8,
           CRISP 1.4.4, Cryst 4.1.12, CrystCat 1.1.6, CTblLib 1.2.2,
           FactInt 1.5.4, FGA 1.3.1, GAPDoc 1.6, IO 4.4.6, IRREDSOL 1.4,
           LAGUNA 3.7.0, Polenta 1.3.7, Polycyclic 2.11, RadiRoot 2.7,
           ResClasses 4.6.0, Sophus 1.23, SpinSym 1.5, TomLib 1.2.6,
           Utils 0.46
Try '??help' for help. See also '?copyright', '?cite' and '?authors'
gap> LoadPackage("fining");
  -----
Loading 'Forms' 1.2.5 (21/09/2017)
by John Bamberg (http://school.maths.uwa.edu.au/~bamberg/)
  Jan De Beule (http://www.debeule.eu)
For help, type: ?Forms
______
Loading orb 4.7.6 (Methods to enumerate orbits)
by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),
  Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef), and
  Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: https://gap-packages.github.io/orb
______
Loading cvec 2.5.7 (Compact vectors over finite fields)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef).
Homepage: https://gap-packages.github.io/cvec
______
Loading genss 1.6.4 (Generic Schreier-Sims)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef) and
  Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: https://gap-packages.github.io/genss
```

```
Loading GRAPE 4.7 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/
                 _ / _ / / / _ / / _ / / / /
                 /_/ /_//__/ /_//__/
                                                   /_/_(_)/_/
Loading FinInG 1.4.1 (Finite Incidence Geometry)
by John Bamberg (http://school.maths.uwa.edu.au/~bamberg/)
   Anton Betten (http://www.math.colostate.edu/~betten)
  Jan De Beule (http://www.debeule.eu)
  Philippe Cara (http://homepages.vub.ac.be/~pcara)
  Michel Lavrauw (http://people.sabanciuniv.edu/~mlavrauw/)
  Max Neunhoeffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef/)
For help, type: ?FinInG
true
gap>
```

1.4.3 Updating FinInG

New releases of FinInG will be distributed automatically with new releases of GAP. However, it is possible easily to update FinInG in an existing installation of GAP, provided the new version of FinInG does not require newer versions of existing packages in the installation. It is also possible to have different versions of FinInG installed on one system. To update FinInG it is sufficient to download and unpack the archive containing the new release. First find the location of your existing GAP installation. We assume in the example below that it is

```
/opt/gap4r8/
```

Make sure you have write permission on this location. If this is not the case, you must ask your system administrator to do this. Download the FinInG archive "fining-....tgz" to this location, and unpack the archive. This can be done by issuing

```
gunzip fining-....tgz
```

which yields a file "fining-....tar", in the pkg directory, after which issuing the command

```
tar -xf fining-....tar
```

Unpack the archive in a subdirectory fining. Starting GAP and loading FinInG the usual way should give you the newly installed version. Please notice that you can unpack your archive in your favorite local "./pkg" directory, e.g. "/home/yourself/pkg/", in case you are using GAP on a server on which you have only a restricted access. In this case, i.e. if you installed FinInG in your local pkg directory, e.g. "/home/yourself/pkg/", then move to "/home/yourself", and issue the command

```
gap -l "/opt/gap4r8;./"
```

This will cause gap to startup and use as pkg directory both its own central pkg directory, i.e. "/opt/gap4r8/pkg/", as well as your local pkg directory, i.e. "/home/yourself/pkg/". You should see something like the following output.

```
_ Example _
 +----+ GAP 4.8.8, 20-Aug-2017, build of 2017-09-04 15:17:33 (CEST)
 | GAP | https://www.gap-system.org
+----+ Architecture: x86_64-apple-darwin16.7.0-gcc-default64
Libs used: gmp
Loading the library and packages ...
Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
Packages:
         AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.0, AutPGrp 1.6,
         Browse 1.8.6, CRISP 1.3.8, Cryst 4.1.12, CrystCat 1.1.6,
         CTblLib 1.2.2, FactInt 1.5.3, FGA 1.2.0, GAPDoc 1.5.1, IO 4.4.4,
         IRREDSOL 1.2.4, LAGUNA 3.7.0, Polenta 1.3.2, Polycyclic 2.11,
         RadiRoot 2.7, ResClasses 3.4.0, Sophus 1.23, SpinSym 1.5,
         TomLib 1.2.5
Try '?help' for help. See also '?copyright' and '?authors'
gap> LoadPackage("fining");
Loading 'Forms' 1.2.5 (21/09/2017)
by John Bamberg (http://school.maths.uwa.edu.au/~bamberg/)
  Jan De Beule (http://www.debeule.eu)
For help, type: ?Forms
______
  -----
Loading orb 4.7.6 (Methods to enumerate orbits)
by Juergen Mueller (http://www.math.rwth-aachen.de/~Juergen.Mueller),
  Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef), and
  Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: https://gap-packages.github.io/orb
______
Loading cvec 2.5.7 (Compact vectors over finite fields)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef).
Homepage: https://gap-packages.github.io/cvec
______
Loading genss 1.6.4 (Generic Schreier-Sims)
by Max Neunhöffer (http://www-groups.mcs.st-and.ac.uk/~neunhoef) and
  Felix Noeske (http://www.math.rwth-aachen.de/~Felix.Noeske).
Homepage: https://gap-packages.github.io/genss
______
Loading GRAPE 4.7 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.maths.qmul.ac.uk/~leonard/grape/
_____
______
```

1.5 The Development Team

This is the development team (without Anton), meeting in St. Andrews in September 2008, from left to right: Philippe Cara, Michel Lavrauw, Max Neunhöffer, Jan De Beule and John Bamberg.

The development team meeting again (without Anton and Max), now in Vicenza in april 2011. from left to right: Michel Lavrauw, John Bamberg, Philippe Cara, Jan De Beule.

Survivors of the first version of FinInG, enjoying a trip to Chioggia, december 2011.

The same survivors, staring at the destiny.

Anton Betten, during a milestone meeting at the finite geometries conference in Irsee, september 2014.

Chapter 2

Examples

In this chapter we provide some simple examples of the use of FinInG.

2.1 Elementary examples

2.1.1 subspaces of projective spaces

The following example shows how to create some subspaces of a projective space, test their incidence, and determine their span and intersection. Projective spaces are considered as incidence geometries too. Incidence, to be tested with IsIncident or equivalently *, is symmetrized set-theoretic containment, the latter which can be tested through the operation in.

```
Example
gap > pg := PG(3,8);
ProjectiveSpace(3, 8)
gap> vec := [0,1,0,1]*Z(8)^0;
[ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
gap> point := VectorSpaceToElement(pg,vec);
<a point in ProjectiveSpace(3, 8)>
gap> mat := [[0,0,1,1],[0,1,0,0]]*Z(8)^0;
[ [0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)] ]
gap> line := VectorSpaceToElement(pg,mat);
<a line in ProjectiveSpace(3, 8)>
gap> mat2 := [[1,0,0,1],[1,0,1,0],[1,1,0,0]]*Z(8)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ],
  [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ]
gap> plane := VectorSpaceToElement(pg,mat2);
<a plane in ProjectiveSpace(3, 8)>
gap> IsIncident(point,line);
false
gap> IsIncident(line,point);
false
gap> point * line;
false
gap> line * point
> point in line;
Syntax error: ; expected
point in line;
```

```
gap> line in point;
false
gap> IsIncident(point,plane);
gap> IsIncident(line,plane);
false
gap> line in plane;
false
gap> plane2 := Span(point,line);
<a plane in ProjectiveSpace(3, 8)>
gap> Meet(plane,plane2);
<a line in ProjectiveSpace(3, 8)>
gap> mat3 := [[1,0,0,0],[0,0,0,1]]*Z(8)^0;
[ [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0] ]
gap> line2 := VectorSpaceToElement(pg,mat3);
<a line in ProjectiveSpace(3, 8)>
gap> Meet(line,line2);
< empty subspace >
gap> Span(plane,plane2);
ProjectiveSpace(3, 8)
```

2.1.2 Subspaces of classical polar spaces

FinInG provides classical polar spaces. Subspaces can be constructed the same way as subspaces of projective spaces. Upon construction, it is checked whether the given vector space does determine a subspace of the polar space. Subspaces of polar spaces are also subspaces of the ambient projective space. Operations like Span and Meet are naturally applicable. However, the span of two subspaces might not be a subspace of the polar space anymore, and if the two subspaces belong to two different polar spaces in the same ambient projective space, it cannot be determined in which polar space the span should be constructed. Therefore the result of Span of two subspaces of a polar space is a subspace of the ambient projective space. It can be checked whether the result belongs to a polar space using in. This illustrates very well a general philosophy: a subspace of a polar space, and more generally, an element of any incidence structure is always aware of its ambient geometry. This example also illustrates how to create an element that belongs to the polar space from the subspace of the ambient projective geometry by using ElementToElement. Finally note the behaviour of = applied on the two subspaces. Clearly, a subspace of a polar space is really also a subspace of the ambient projective space.

```
gap> EquationForPolarSpace(ps);
x_1^2+x_2^2+x_3*x_4+x_5*x_6
gap> vec := [0,0,1,0,0,0]*Z(7)^0;
[0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7)]
gap> point := VectorSpaceToElement(ps,vec);
<a point in Q-(5, 7)>
gap > vec2 := [0,0,0,1,0,0] *Z(7)^0;
[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ]
gap> point2 := VectorSpaceToElement(ps,vec2);
<a point in Q-(5, 7)>
gap> line := Span(point,point2);
<a line in ProjectiveSpace(5, 7)>
gap> mat := [[0,0,1,0,0,0],[0,0,0,0,1,0]]*Z(7)^0;
[ [ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7)],
  [0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7)]
gap> line2 := VectorSpaceToElement(ps,mat);
\langle a \text{ line in } Q-(5, 7) \rangle
gap> meet := Meet(line,line2);
<a point in ProjectiveSpace(5, 7)>
gap> meet in ps;
true
gap> point3 := ElementToElement(ps,meet);
<a point in Q-(5, 7)>
```

2.1.3 Underlying objects

Subspaces of projective spaces and polar spaces (and in general, elements of incidence structures), are determined by a mathematical object, called in FinInG the *underlying object*. The operation UnderlyingObject simply returns this underlying object. For elements determined by vectors or sub vector spaces, the underlying objects are a vector or a matrix. To represent these objects and to do very efficient orbit calculations under groups, we use the cvec. This can be noted when applying UnderlyingObject. The operation Unpack simply converts the cvec objects into GAP vectors and matrices. The example also illustrates how the underlying object of an element of an affine spaces looks like.

```
Example =
gap > pg := PG(3,169);
ProjectiveSpace(3, 169)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(3, 169)>
gap> UnderlyingObject(p);
<cvec over GF(13,2) of length 4>
gap> Unpack(last);
[ Z(13)^0, Z(13^2)^49, Z(13^2)^31, Z(13^2)^143 ]
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(3, 169)>
gap> UnderlyingObject(1);
<cmat 2x4 over GF(13,2)>
gap> Unpack(last);
[ [ Z(13)^0, 0*Z(13), 0*Z(13), Z(13^2)^96 ],
  [0*Z(13), Z(13)^0, Z(13^2)^113, Z(13^2)^99]
```

2.1.4 Constructing polar spaces

FinInG provides the classical polar spaces as the geometries of which the subspaces are represented by the totally isotropic (resp. totally singular) vector subspaces with relation to a chosen sesquilinear (resp. quadratic form). The user may choose any non-degenerate (resp. non-singular) form to construct the polar space. The usage of the forms makes FinInG dependent on the package forms. Shortcuts to polar spaces in *standard* representation are included. Detailed information can be found in Section 7.2.

```
_ Example
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> EquationForPolarSpace(ps);
x_1^4+x_2^4+x_3^4+x_4^4+x_5^4
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> EquationForPolarSpace(ps);
x_1*x_2+x_3*x_4+x_5*x_6
gap> ps := SymplecticSpace(3,3);
W(3, 3)
gap> EquationForPolarSpace(ps);
x1*y2-x2*y1+x3*y4-x4*y3
gap> mat := IdentityMat(4,GF(11));
[ [ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ],
  [ 0*Z(11), Z(11)^0, 0*Z(11), 0*Z(11) ],
  [ 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11) ],
  [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^0 ] ]
gap> form := BilinearFormByMatrix(mat,GF(11));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(11)): x_1^2+x_2^2+x_3^2+x_4^2=0 >
gap> Rank(ps);
gap> ps;
Q+(3, 11): x_1^2+x_2^2+x_3^2+x_4^2=0
```

2.1.5 Some collineation groups

In principle, the full group of collineations of almost any incidence structure can be computed in FinInG. Mathematically, this is almost obvious for projective spaces and affine spaces. For classical polar spaces, the particular forms plays a role. The coordinate change capabilities of the package forms, together with the standard theory (see [KL90]), ensure that the full collineation group of a classical polar space can be relatively easily obtained. The computation of the full collineation group of particular incidence structures, such as generalised polygons, may rely on the computation of the automorphism group of an underlying incidence graph, which is done by using nauty through the package GRAPE. Note that the elements of a projective collineation group are semilinear maps, they consist of a matrix together with a field automorphism.

```
Example
gap > pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> coll := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,4)
gap> gens := GeneratorsOfGroup(coll);
[ < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
  < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
  < a collineation: <cmat 4x4 over GF(2,2)>, F^2> ]
gap> UnderlyingMatrix(gens[2]);
<cmat 4x4 over GF(2,2)>
gap> Unpack(last);
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
  [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]]
gap> as := AffineSpace(3,4);
AG(3, 4)
gap> coll := CollineationGroup(as);
AGammaL(3,4)
gap> GeneratorsOfGroup(coll);
[ < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
  < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
  < a collineation: <cmat 4x4 over GF(2,2)>, F^0>,
  < a collineation: <cmat 4x4 over GF(2,2)>, F^2> ]
gap> gp := SplitCayleyHexagon(3);
H(3)
gap> coll:= CollineationGroup(gp);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_{2}(3)
gap> GeneratorsOfGroup(coll);
[ < a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
  < a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
  < a collineation: <cmat 7x7 over GF(3,1)>, F^0>,
  < a collineation: \langle \text{cmat } 7x7 \text{ over } GF(3,1) \rangle, F^0 \rangle,
  < a collineation: <cmat 7x7 over GF(3,1)>, F^0> ]
gap> egq := EGQByqClan(LinearqClan(3));
#I Computed Kantor family. Now computing EGQ...
```

2.2 Some objects with interesting combinatorial properties

The examples here are meant to give a flavour of how to explore geometrical objects from different point of views.

2.2.1 The Tits ovoid

In this example we consider the Tits ovoid in PG(3,8). We explicitly check the intersection number of the Tits-ovoid with planes of the projective space, and compute its stabiliser group inside the homography group of PG(3,8). The use of ;; after a command suppresses its output, which is particularly interesting if the output is a long list. The operation Collected is self-explanatory, and a very useful GAP command. The computed stabiliser is the Suzuki group Sz(8), a finite simple group.

```
_ Example
gap> q := 8;
gap > pg := PG(3,q);
ProjectiveSpace(3, 8)
gap> f := GF(q);
GF(2^3)
gap> vecs := Union(List(f,x->List(f,y->[One(f),x*y+x^6+y^4,x,y])));;
gap> Add(vecs,[0,1,0,0]*Z(q)^0);
gap> ovoid := List(vecs,x->VectorSpaceToElement(pg,x));;
gap> numbers := List(Planes(pg),x->Number(ovoid,y->y in x));
9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 1, 9, 9,
1, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9,
9, 9, 9, 9, 1, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 9,
 1, 9, 9, 1, 9, 9, 1, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 1, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 1,
```

```
9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9,
 9, 1, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1,
 9, 1, 9, 9, 9, 9, 9, 9, 1]
gap> Collected(numbers);
[[1,65],[9,520]]
gap> group := HomographyGroup(pg);
The FinInG projectivity group PGL(4,8)
gap> stab := FiningSetwiseStabiliser(group,ovoid);
#I Computing adjusted stabilizer chain...
cprojective collineation group with 5 generators>
gap> time;
55290
gap> IsSimple(stab);
gap> Order(stab);
29120
```

2.2.2 Lines meeting a hermitian curve

Here we see how the lines of a projective plane $PG(2,q^2)$ meet a hermitian curve. It is well known that every line meets in either 1 or q+1 points. Note that the last comment takes a while to complete.

```
gap> h:=HermitianPolarSpace(2, 7^2);
H(2, 7^2)
gap> pg := AmbientSpace( h );
ProjectiveSpace(2, 49)
gap> lines := Lines( pg );
lines of ProjectiveSpace(2, 49)>
gap> curve := AsList( Points( h ) );;
gap> Size(curve);
344
gap> Collected( List(lines, t -> Number(curve, c-> c in t)));
[[1, 344], [8, 2107]]
gap> time;
26412
```

2.2.3 The Patterson ovoid

In this example, we construct the unique ovoid of the parabolic quadric Q(6,3), first discovered by Patterson, but for which was given a nice construction by E. E. Shult. We begin with the "sums of squares" quadratic form over GF(3) and the associated polar space.

```
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space in ProjectiveSpace(
6,GF(3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
```

The construction of the ovoid (a la Shult):

```
gap> psl32 := PSL(3,2);
Group([ (4,6)(5,7), (1,2,4)(3,6,5) ])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0],
> [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)^0;
[ [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
        [ Z(3), Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
        [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
        [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ]
gap> ovoid := Union( List(reps, x-> Orbit(psl32, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;
```

We check that this is indeed an ovoid. The observant reader will notice #I Computing collineation group of canonical polar space... which is caused by the command AsList applied to the collection of elements planes. The use of AsList invokes the computation of all elements in planes as an orbit under the collineation group of the ambient polar space. The reader is invited to redo, in a new GAP session, the same example omitting the AsList command, just defining planes := Planes(ps);;. The result will be te same, but the computation of all elements will now be done using an enumerator, and will be slower.

```
gap> planes := AsList(Planes( ps ));;
#I Computing collineation group of canonical polar space...
gap> ForAll(planes, p -> Number(ovoid, x -> x * p) = 1);
true
```

The stabiliser is interesting since it yields the embedding of Sp(6,2) in PO(7,3). To efficiently compute the set-wise stabiliser, we refer to the induced permutation representation.

2.2.4 A hyperoval

In this example, we consider a hyperoval of the projective plane PG(2,4), that is, six points no three collinear. We will construct such a hyperoval by some basic explorations into particular properties of the projective plane PG(2,4). The projective plane is initialised, its points are computed and listed;

then a standard frame is constructed, of which we may assume that it is a subset of the hyperoval. Finally, the stabiliser group of the hyperoval is computed, and it is checked that this group is isomorphic with the symmetric group on six elements.

```
_ Example _
gap> pg := ProjectiveSpace(2,4);
ProjectiveSpace(2, 4)
gap> points := Points(pg);
<points of ProjectiveSpace(2, 4)>
gap> pointslist := AsList(points);
[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,
  <a point in ProjectiveSpace(2, 4)> ]
gap> Display(pointslist[1]);
 . . 1
```

Now we may assume that our hyperoval contains the fundamental frame.

```
Example

gap> frame := [[1,0,0],[0,1,0],[0,0,1],[1,1,1]]*Z(2)^0;

[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],

      [ 0*Z(2), 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0, Z(2)^0 ] ]

gap> frame := List(frame,x -> VectorSpaceToElement(pg,x));

[ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)>,

      <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]
```

Alternatively, we could use:

There are six secant lines to this frame ("four choose two"). So we put together these secant lines from the pairs of points of this frame.

```
Example

gap> pairs := Combinations(frame,2);

[ [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
        [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
        [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
        [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
        [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ],
        [ <a point in ProjectiveSpace(2, 4)>, <a point in ProjectiveSpace(2, 4)> ]

gap> secants := List(pairs,p -> Span(p[1],p[2]));
        [ <a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,
        <a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)>,
        <a line in ProjectiveSpace(2, 4)>, <a line in ProjectiveSpace(2, 4)> ]
```

By a counting argument, it is known that the frame of PG(2,4) completes uniquely to a hyperoval.

This hyperoval has the symmetric group on six symbols as its stabiliser, which can easily be calculated:

```
gap> g := CollineationGroup(pg);
The FinInG collineation group PGammaL(3,4)
gap> stab := Stabilizer(g,Set(hyperoval),OnSets);
cprojective collineation group of size 720>
gap> StructureDescription(stab);
"S6"
```

2.3 Geometry morphisms

A geometry morphism in FinInG is a map between (a subset of) the elements of one geometry to (a subset of) the elements of a second geometry, preserving the incidence. Geometry morphisms are not necessarily type preserving. This section is meant to illustrate, in a non exhaustive way the basis philosophy behind geometry morphisms in FinInG.

2.3.1 Isomorphic polar spaces

We've seen already that a polar space can be constructed from any non-degenerate sesquilinear or non-singular quadratic form. An isomorphism between polar spaces of the same type, can easily be obtained. This example illustrates IsomorphismPolarSpaces, which is in its basic use self-explanatory, and the use of the obtained map to compute images and pre-images of elements.

```
Example
gap> mat1 := IdentityMat(4,GF(16));
 \hbox{\tt [ [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)], } 
  [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> form1 := HermitianFormByMatrix(mat1,GF(16));
< hermitian form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat2 := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
  [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> form2 := HermitianFormByMatrix(mat2,GF(16));
< hermitian form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(</pre>
3,GF(2^4)): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0 >
gap> map := IsomorphismPolarSpaces(ps1,ps2);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <Elements of H(3,</pre>
```

```
4^2): x_1^5+x_2^5+x_3^5+x_4^5=0> to <Elements of H(3, 4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>> gap> p := Random(Points(ps1)); <a point in H(3, 4^2): x_1^5+x_2^5+x_3^5+x_4^5=0> gap> p^map; <a point in H(3, 4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0> gap> 1 := Random(Lines(ps2)); <a line in H(3, 4^2): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0> gap> PreImageElm(map,1); <a line in H(3, 4^2): x_1^5+x_2^5+x_3^5+x_4^5=0>
```

2.3.2 Intertwiners

We reconsider the previous example. The observant reader might have noticed the message #I No intertwiner computed.... Given a geometry morphism f from S to S', an intertwiner ϕ is a map from the automorphism group of S to the automorphism group of S', such that for every element p of S and every automorphism g of S, we have

 $f(p^g) = f(p)^{\phi(g)}.$

```
_ Example __
gap> mat1 := IdentityMat(4,GF(16));
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
  [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]
gap> form1 := HermitianFormByMatrix(mat1,GF(16));
< hermitian form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat2 := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(16)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
  [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0], [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
gap> form2 := HermitianFormByMatrix(mat2,GF(16));
< hermitian form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(</pre>
3,GF(2^4)): x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0 >
gap> CollineationGroup(ps1);
#I Computing collineation group of canonical polar space...
jective collineation group of size 4073472000 with 3 generators>
gap> map := IsomorphismPolarSpaces(ps1,ps2);
<geometry morphism from <Elements of H(3,</pre>
4^2): x_1^5+x_2^5+x_3^5+x_4^5=0> to <Elements of H(3,
4^2): \ x_1^4*x_2+x_1*x_2^4+x_3^4*x_4+x_3*x_4^4=0>>
gap> phi := Intertwiner(map);
3 generators>, <projective collineation group of size 4073472000 with
3 generators>, function(y) ... end, function(x) ... end)
gap> g := Random(CollineationGroup(ps1));
< a collineation: <cmat 4x4 over GF(2,4)>, F^4>
gap> h := g^phi;
< a collineation: <cmat 4x4 over GF(2,4)>, F^4>
gap> h in CollineationGroup(ps2);
```

```
#I Computing collineation group of canonical polar space...
true
gap> h := Random(CollineationGroup(ps2));
< a collineation: <cmat 4x4 over GF(2,4)>, F^2>
gap> g := PreImageElm(phi,h);
< a collineation: <cmat 4x4 over GF(2,4)>, F^2>
gap> g in CollineationGroup(ps1);
true
```

2.3.3 Klein correspondence

The Klein correspondence is well known. The user may define its own hyperbolic quadric as range for the geometry morphism in FinInG. Note that more is possible than illustrated in the elementary example, see Section 10.3.

```
Example
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> klein := KleinCorrespondence(ps);
<geometry morphism from <lines of ProjectiveSpace(3, 5)> to <points of Q+(5,</pre>
5)>>
gap> line1 := Random(Lines(PG(3,5)));
<a line in ProjectiveSpace(3, 5)>
gap> line2 := Random(Lines(PG(3,5)));
<a line in ProjectiveSpace(3, 5)>
gap> p := line1^klein;
\langle a \text{ point in } Q+(5, 5) \rangle
gap> q := line2^klein;
<a point in Q+(5, 5)>
gap> p in ps;
true
gap> q in ps;
gap> IsCollinear(ps,p,q);
gap> Meet(line1,line2);
< empty subspace >
```

2.3.4 Embedding in a subspace

A projective space can be embedded as a subspace in a higher dimensional projective space. A comparable embedding is possible for polar spaces, clearly only when a given subspace intersects the polar space of higher rank in a polar space of the same type as the polar space to be embedded.

```
gap> pg2 := PG(2,5);
ProjectiveSpace(2, 5)
gap> pg3 := PG(3,5);
ProjectiveSpace(3, 5)
gap> hyp := VectorSpaceToElement(pg3,[[1,2,4,0],[0,3,2,0],[1,1,0,1]]*Z(5)^0);
<a plane in ProjectiveSpace(3, 5)>
```

```
gap> em := NaturalEmbeddingBySubspace( pg2, pg3, hyp );
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
5)> to <All elements of ProjectiveSpace(3, 5)>>
gap> 1 := Random(Lines(pg2));
<a line in ProjectiveSpace(2, 5)>
gap> l^em;
<a line in ProjectiveSpace(3, 5)>
gap> p := Random(Points(hyp));
<a point in ProjectiveSpace(3, 5)>
gap> PreImageElm(em,p);
<a point in ProjectiveSpace(2, 5)>
gap> mat := [[0,0,0,1],[0,0,1,0],[0,-1,0,0],[-1,0,0,0]]*Z(3);
[ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ],
  [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ]
gap> form := BilinearFormByMatrix(mat,GF(3));
< bilinear form >
gap> w3 := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(3)): -x1*y4-x2*y3+x3*y2+x4*y1=0 >
gap> w5 := SymplecticSpace(5, 3);
W(5, 3)
gap> pg := AmbientSpace( w5 );
ProjectiveSpace(5, 3)
gap> solid := VectorSpaceToElement(pg,[[1,0,0,0,0,0],[0,1,0,0,0,0],
> [0,0,1,0,0,0],[0,0,0,1,0,0]]*Z(3)^0);
<a solid in ProjectiveSpace(5, 3)>
gap> TypeOfSubspace(w5,solid);
"symplectic"
gap> em := NaturalEmbeddingBySubspace( w3, w5, solid );
<geometry morphism from <Elements of <polar space in ProjectiveSpace(</pre>
3,GF(3)): -x1*y4-x2*y3+x3*y2+x4*y1=0 >> to <Elements of W(5, 3)>>
gap> points := Points( w3 );
<points of W(3, 3): -x1*y4-x2*y3+x3*y2+x4*y1=0>
gap> points2 := ImagesSet(em, AsSet(points));;
#I Computing collineation group of canonical polar space...
gap> ForAll(points2, x -> x in solid);
true
```

2.3.5 Subgeometries

A projective space can be embedded as a subgeometry in a projective space of the same dimension but over a field extension. A polar space, determined by a form f can be embedded in a polar space considered over a field extension by interpreting the form f over this field extension. This is an interesting tool to construct geometrical objects in projective and polar spaces.

```
gap> pgsub := PG(2,7);
ProjectiveSpace(2, 7)
gap> pg := PG(2,7^2);
ProjectiveSpace(2, 49)
gap> em := NaturalEmbeddingBySubfield(pgsub,pg);
<geometry morphism from <All elements of ProjectiveSpace(2, 7)> to <All elements of ProjectiveSpace(2, 49)>>
```

```
gap> baer := List(Points(pgsub),x->x^em);;
gap> numbers := Collected(List(Lines(pg),x->Number(baer,y->y in x)));
[[1, 2394], [8, 57]]
gap> mat := [[0,0,0,1],[0,0,-1,0],[0,1,0,0],[-1,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^{0} ], [ 0*Z(5), 0*Z(5), Z(5)^{2}, 0*Z(5) ],
  [0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5)], [Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5)]]
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
gap> symplecticspace := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(5)): x1*y4-x2*y3+x3*y2-x4*y1=0 >
gap> hermitianspace := HermitianPolarSpace(3,25);
H(3, 5^2)
gap> em := NaturalEmbeddingBySubfield(symplecticspace,hermitianspace);
#I No intertwiner computed. <geom1> must have a collineation group computed
<geometry morphism from <Elements of <polar space in ProjectiveSpace(</pre>
3,GF(5)): x1*y4-x2*y3+x3*y2-x4*y1=0 >> to <Elements of H(3, 5^2)>>
gap> 1 := Random(Lines(symplecticspace));
<a line in W(3, 5): x1*y4-x2*y3+x3*y2-x4*y1=0>
gap> l^em;
\langlea line in H(3, 5^2)\rangle
```

2.3.6 Embedding by field reduction

Field reduction is a power full tool to embed low dimensional projective (and polar spaces) over a field K in to high dimensional spaces over a subfield of K. The mathematics behind field reduction is explained in sections 10.4.3 and 10.5.3. The examples here show the use of these embeddings to construct a regular spread of a projective space and a so-called Hermitian spread of a hyperbolic quadric.

```
Example
gap > pg1 := PG(1,3^2);
ProjectiveSpace(1, 9)
gap > pg2 := PG(3,3);
ProjectiveSpace(3, 3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(1,</pre>
9)> to <All elements of ProjectiveSpace(3, 3)>>
gap> spread := List(Points(pg1),x->x^em);
[ <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)> ]
gap> Union(List(spread,x->List(Points(x))))=Set(Points(pg2));
true
gap> ps1 := HermitianPolarSpace(3,3^2);
H(3, 3^2)
gap> ps2 := HyperbolicQuadric(7,3);
Q+(7, 3)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
```

```
<geometry morphism from <Elements of H(3, 3^2)> to <Elements of Q+(7, 3)>>
gap> spread := List(Points(ps1),x->x^em);;
gap> Union(List(spread,x->List(Points(x))))=Set(Points(ps2));
true
```

2.4 Some geometrical objects

2.4.1 Spreads of W(5,3)

A spread of W(5,q) is a set of $q^3 + 1$ planes which partition the points of W(5,q). Here we enumerate all spreads of W(5,3) which have a set-wise stabiliser of order a multiple of 13.

```
Example
gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> g := IsometryGroup(w);
PSp(6,3)
gap> syl := SylowSubgroup(g, 13);
cprojective collineation group of size 13>
gap> planes := Planes( w );
<planes of W(5, 3)>
gap> points := Points( w );
<points of W(5, 3)>
gap> orbs := Orbits(syl, planes , OnProjSubspaces);;
gap> IsPartialSpread := x -> Number(points, p ->
           ForAny(x, i \rightarrow p in i)) = Size(x)*13;;
gap> partialspreads := Filtered(orbs, IsPartialSpread);;
gap> Length(partialspreads);
gap> 13s := Filtered(partialspreads, i -> Size(i) = 13);;
gap> Length(13s);
gap> 13s[1];
[ \langlea plane in W(5, 3)\rangle, \langlea plane in W(5, 3)\rangle, \langlea plane in W(5, 3)\rangle,
  <a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
  <a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
  <a plane in W(5, 3)>, <a plane in W(5, 3)>, <a plane in W(5, 3)>,
  <a plane in W(5, 3) > ]
gap> 26s := List(Combinations(13s,2), Union);;
gap> two := Union(Filtered(partialspreads, i -> Size(i) = 1));;
gap> good26s := Filtered(26s, x->IsPartialSpread(Union(x, two)));;
gap> spreads := List(good26s, x->Union(x, two));;
gap> Length(spreads);
```

2.4.2 Distance-6 spread of the split Cayley hexagon

A distance 6 spread of a split Cayley hexagon is a set of lines mutually at maximal distance in the incidence graph. It is well known that the lines of the hexagon contained in a hyperplane meeting the

ambient polar space in an elliptic quadric, yield such a spread. This example also illustrates how an element of a geometry *remembers* its ambient geometry, and how ElementToElement can be used to embed an element in another geometry, see 3.8.1.

```
_{-} Example .
gap> gh := SplitCayleyHexagon(3);
H(3)
gap> q6 := AmbientPolarSpace(gh);
Q(6, 3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0
gap> hyp := First(Hyperplanes(PG(6,3)),x->TypeOfSubspace(q6,x)="elliptic");
<a proj. 5-space in ProjectiveSpace(6, 3)>
gap> q5 := EllipticQuadric(5,3);
Q-(5, 3)
gap> lines := AsList(Lines(q5));
<closed orbit, 280 points>
gap> em := NaturalEmbeddingBySubspace(q5,q6,hyp);
<geometry morphism from <Elements of Q-(5, 3)> to <Elements of Q(6, 3)
3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0>>
gap> spread := Filtered(lines,x->x^em in gh);
[ \langle a \text{ line in } Q_{-}(5, 3) \rangle, \langle a \text{ line in } Q_{-}(5, 3) \rangle, \langle a \text{ line in } Q_{-}(5, 3) \rangle,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q_{-}(5, 3)>, <a line in Q_{-}(5, 3)>, <a line in Q_{-}(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)>, <a line in Q-(5, 3)>, <a line in Q-(5, 3)>,
  <a line in Q-(5, 3)> ]
gap> spread := List(spread,x->ElementToElement(gh,x^em));
[ \langlea line in H(3)\rangle, \langlea line in H(3)\rangle, \langlea line in H(3)\rangle, \langlea line in H(3)\rangle,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)>,
  <a line in H(3)>, <a line in H(3)>, <a line in H(3)>, <a line in H(3)> ]
gap> Collected(Concatenation(List(spread,x->List(spread,y->DistanceBetweenElements(x,y)))));
[ [ 0, 28 ], [ 6, 756 ] ]
```

2.5 Some particular incidence geometries

2.5.1 The split Cayley hexagon

The split Cayley hexagon is one the well known classical generalised hexagons that are obtained using a triality of the hyperbolic quadric in 7 dimensions. This example shows some basic properties of this geometry.

```
gap> hexagon := SplitCayleyHexagon(5);
H(5)
gap> Order(hexagon);
```

```
[5,5]
gap> g := CollineationGroup( hexagon );
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
gap> incgraph := IncidenceGraph( hexagon );;
#I Computing incidence graph of generalised polygon...
gap> Diameter(incgraph);
gap> Girth(incgraph);
gap> points := Points(hexagon);
<points of H(5)>
gap> lines := Lines(hexagon);
of H(5)>
gap> iter := Iterator(points);
<iterator>
gap> x := NextIterator(iter);
<a point in H(5)>
gap> Display(x);
[.1....]
gap> UnderlyingObject(x);
<cvec over GF(5,1) of length 7>
gap> onx := Lines(x);
<shadow lines in H(5)>
gap> 1 := Random(onx);
<a line in H(5)>
gap> onl := Points(1);
<shadow points in H(5)>
gap> List(onl, t -> DistanceBetweenElements(x,t));
[0, 2, 2, 2, 2, 2]
gap> stabl := FiningStabiliser(g, 1);
cprojective collineation group of size 1500000 with 3 generators>
gap> gl := Action(stabl, onl);
Group([(1,6,5,4,3), (1,4,3,6), (1,5,4,3,6,2)])
gap> StructureDescription(gl);
"S5"
gap> Transitivity(gl);
```

2.5.2 An (apartment of) a building of type E_6

This example shows the constructions of an incidence geometry whose automorphism group is an exceptional group of type E_6 . The construction is done as a coset geometry. This example also illustrates how to get a diagram of such a coset geometry.

```
gap> L := SimpleLieAlgebra("E",6,Rationals);
<Lie algebra of dimension 78 over Rationals>
gap> rs := RootSystem(L);
<root system of rank 6>
```

```
gap> w := WeylGroup(rs);
<matrix group with 6 generators>
gap> gens := GeneratorsOfGroup(w);;
gap> pabs := List(gens, g -> Group(Difference(gens, [g])));
[ <matrix group with 5 generators>, <matrix group with 5 generators>,
  <matrix group with 5 generators>, <matrix group with 5 generators>,
  <matrix group with 5 generators>, <matrix group with 5 generators> ]
gap> g := Group(gens);
<matrix group with 6 generators>
gap> cg := CosetGeometry(g,pabs);;
gap> diag := DiagramOfGeometry( cg );;
#I Using NiceMonomorphism...
gap> DrawDiagram(diag, "E6");
gap> #Exec("open E6.ps");
```


2.5.3 A rank 4 geometry for PSL(2,11)

Here we look at a particular flag-transitive geometry constructed from four subgroups of PSL(2,11), and we construct the diagram for this geometry. To view this diagram, you need to either use a postscript viewer or a dotty viewer (such as GraphViz).

```
gap> g := PSL(2,11);
Group([ (3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11) ])
```

```
gap > g1 := Group([(1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)]);
Group([(1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)])
gap > g2 := Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)]);
Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)])
gap> g3 := Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)]);
Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)])
gap> g4 := Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12)]);
Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)(4,9)(5,8)(6,7)(11,12)])
gap> cg := CosetGeometry(g, [g1,g2,g3,g4]);
CosetGeometry( Group( [ (3,11, 9, 7, 5)(4,12,10, 8, 6),
  (1, 2, 8)(3, 7, 9)(4,10, 5)(6,12,11)])
gap> SetName(cg, "Gamma");
gap> ParabolicSubgroups(cg);
[ Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7), (1,2)(3,4)(5,12)(6,11)(7,10)
  (8,9) ]), Group([ (1,2,7)(3,9,4)(5,11,10)(6,8,12), (1,2)(3,4)(5,12)(6,11)
  (7,10)(8,9)]), Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,12)(4,11)
  (5,10)(6,9)(7,8)]), Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12), (1,2)(3,10)
  (4,9)(5,8)(6,7)(11,12)])]
gap> BorelSubgroup(cg);
Group(())
gap> AmbientGroup(cg);
Group([(3,11,9,7,5)(4,12,10,8,6), (1,2,8)(3,7,9)(4,10,5)(6,12,11)])
gap> type2 := ElementsOfIncidenceStructure( cg, 2 );
<elements of type 2 of Gamma>
gap> IsFlagTransitiveGeometry( cg );
true
gap> DrawDiagram( DiagramOfGeometry(cg), "PSL211");
```

The output of this example uses dotty which is a sophisticated graph drawing program. We also provide DrawDiagramWithNeato to make a diagram with straight lines, using neato. Here is what the output looks like with the standard DrawDiagram command:

2.5.4 The Ree-Tits octagon of order [2,4] as coset geometry

In this example we construct the Ree-Tits octagon of order [2,4] as a coset geometry. From the computation of the so-called rank 2 parameters, it can be observed already that the constructed geometry

must be a generalised octagon. Then the points and lines are computed explicitly, and together with the incidence and the available group as a subgroup of the collineation group, a generalised octagon is constructed.

```
_ Example .
gap> LoadPackage( "AtlasRep" );
gap> titsgroup:=AtlasGroup("2F4(2)');
<permutation group of size 17971200 with 2 generators>
gap> g1:=AtlasSubgroup(titsgroup,3);
<permutation group of size 10240 with 2 generators>
gap> g2:=AtlasSubgroup(titsgroup,5);
<permutation group of size 6144 with 2 generators>
gap> conj:=ConjugacyClassSubgroups(titsgroup,g1);;
gap> # Now look for the conjugate of g1 with maximal intersection
gap> g1:=First(conj, sg -> Size(Intersection(sg,g2))=2048);
<permutation group of size 10240 with 2 generators>
gap> cg:=CosetGeometry(titsgroup,[g1,g2]);;
gap> Rank2Parameters(cg);
[[8, 8, 8], [2, 1755], [4, 2925]]
gap> pts := Set(ElementsOfIncidenceStructure(cg,1));;
gap> lines := Set(ElementsOfIncidenceStructure(cg,2));;
gap> gp := GeneralisedPolygonByElements(pts,lines,\*,titsgroup,OnCosetGeometryElement);
<generalised octagon of order [ 2, 4 ]>
```

2.6 Elation generalised quadrangles

In this section, we construct a classical elation generalised quadrangle from a q-clan, and we see that the associated BLT-set is a conic.

2.6.1 The classical q-clan

```
_____ Example __
gap> f := GF(3);
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> IsqClan( clan, f );
gap> clan := qClan(clan, f);
<q-clan over GF(3)>
gap> egq := EGQByqClan( clan );
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> elations := ElationGroup( egq );
<matrix group of size 243 with 8 generators>
gap> points := Points( egq );
<points of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> p := Random(points);
<a point of class 2 of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> x := Random(elations);
[[Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0], [0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0],
```

```
[ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> OnKantorFamily(p,x);
<a point of class 2 of <EGQ of order [ 9, 3 ] and basepoint 0>>
gap> orbs := Orbits( elations, points, OnKantorFamily);;
gap> Collected(List( orbs, Size ));
[[1, 1], [9, 4], [243, 1]]
gap> blt := BLTSetByqClan( clan );
[ <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>]
gap> q4q := AmbientGeometry( blt[1] );
Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0
gap> span := Span( blt );
<a plane in ProjectiveSpace(4, 3)>
gap> ProjectiveDimension( span );
```

2.6.2 Two ways to construct a flock generalised quadrangle from a Kantor-Knuth semifield q-clan

We will construct an elation generalised quadrangle directly from the *Kantor-Knuth semifield q-clan* and also via its corresponding BLT-set. The q-clan in question here are the set of matrices C_t of the form $\begin{pmatrix} t & 0 \\ 0 & -nt^{\phi} \end{pmatrix}$ where t runs over the elements of GF(q), q is odd and not prime, n is a fixed nonsquare and ϕ is a nontrivial automorphism of GF(q).

```
Example
gap> q := 9;
gap> f := GF(q);
GF(3<sup>2</sup>)
gap> squares := AsList(Group(Z(q)^2));
[ Z(3)^0, Z(3^2)^6, Z(3), Z(3^2)^2 ]
gap> n := First(GF(q), x \rightarrow not IsZero(x) and not x in squares);
Z(3^2)
gap> sigma := FrobeniusAutomorphism( f );
Frobenius Automorphism (GF(3^2))
gap> zero := Zero(f);
0*Z(3)
gap> qclan := List(GF(q), t -> [[t, zero], [zero,-n * t^sigma]] );
[ [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ],
  [ [ Z(3^2), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
  [ [ Z(3^2)^5, 0*Z(3) ], [ 0*Z(3), Z(3) ] ],
  [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3^2)^5 ] ],
    [Z(3^2)^2, 0*Z(3)], [0*Z(3), Z(3^2)^3]],
  [ [ Z(3^2)^3, 0*Z(3) ], [ 0*Z(3), Z(3^2)^6 ] ],
  [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3^2) ] ],
  [ [ Z(3^2)^7, 0*Z(3) ], [ 0*Z(3), Z(3^2)^2 ] ],
  [ [ Z(3^2)^6, 0*Z(3) ], [ 0*Z(3), Z(3^2)^7 ] ]
gap> IsqClan( qclan, f );
```

```
true
gap> qclan := qClan(qclan , f);
<q-clan over GF(3^2)>
gap> egq1 := EGQByqClan( qclan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 81, 9 ] and basepoint 0>
gap> blt := BLTSetByqClan( qclan );
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
  <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]
gap> egq2 := EGQByBLTSet( blt );
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 81, 9 ] and basepoint in W(5, 9 ) >
```

2.7 Algebraic varieties

2.7.1 A projective variety

In this example we demonstrate the construction of projective varieties.

```
_____ Example _
gap > pg1 := PG(1, 7);
ProjectiveSpace(1, 7)
gap > pg3 := PG(3, 7);
ProjectiveSpace(3, 7)
gap> points := Points(pg1);
<points of ProjectiveSpace(1, 7)>
gap> coords := List(points, Coordinates);
[ [ Z(7)^0, 0*Z(7) ], [ Z(7)^0, Z(7)^0 ], [ Z(7)^0, Z(7) ],
  [ Z(7)^0, Z(7)^2 ], [ Z(7)^0, Z(7)^3 ], [ Z(7)^0, Z(7)^4 ],
  [ Z(7)^0, Z(7)^5 ], [ 0*Z(7), Z(7)^0 ] ]
gap> curve := List(coords, t -> VectorSpaceToElement(pg3, [ t[1]^3, t[1]^2 * t[2], t[1] * t[2]^2,
gap> pgl := ProjectivityGroup( pg3 );
The FinInG projectivity group PGL(4,7)
gap> stabcurve := FiningSetwiseStabiliser( pgl, curve );
#I Computing adjusted stabilizer chain...
cprojective collineation group with 6 generators>
gap> StructureDescription( stabcurve );
"PSL(3,2) : C2"
gap> Span( curve );
ProjectiveSpace(3, 7)
gap> pg3lines := Lines( pg3 );
s of ProjectiveSpace(3, 7)>
```

```
gap> orbits := FiningOrbits(stabcurve, pg3lines);
2\% ... 3\% ... 9\% ... 15\% ... 16\% ... 21\% ... 22\% ... 28\% ... 34\% ... 40\% ... 46\% ... 52\% ... 64\% ... 75\% ... 81\% ... 84\% ... 88\% ... 94\% ... 95\% ... 99\% ... 95\% ... 99\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ... 95\% ...
   <closed orbit, 28 points>, <closed orbit, 168 points>,
    <closed orbit, 168 points>, <closed orbit, 28 points>,
   <closed orbit, 168 points>, <closed orbit, 28 points>,
   <closed orbit, 168 points>, <closed orbit, 168 points>,
    <closed orbit, 168 points>, <closed orbit, 168 points>,
   <closed orbit, 168 points>, <closed orbit, 336 points>,
   <closed orbit, 336 points>, <closed orbit, 168 points>,
   <closed orbit, 84 points>, <closed orbit, 112 points>,
   <closed orbit, 168 points>, <closed orbit, 21 points>,
   <closed orbit, 112 points>, <closed orbit, 21 points> ]
gap> List(orbits, Size);
[8, 56, 28, 168, 168, 28, 168, 28, 168, 168, 168, 168, 168, 336, 336, 168,
   84, 112, 168, 21, 112, 21 ]
gap> pg3points := Points( pg3 );
<points of ProjectiveSpace(3, 7)>
gap> orbits := FiningOrbits(stabcurve, pg3points);
2%..16%..30%..72%..100%..[ <closed orbit, 8 points>, <closed orbit, 56 points>,
    <closed orbit, 56 points>, <closed orbit, 168 points>,
    <closed orbit, 112 points> ]
gap> List(orbits, Size);
[8, 56, 56, 168, 112]
gap> reps := List(orbits, Representative);
[ <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
    <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
   <a point in ProjectiveSpace(3, 7)> ]
gap> x := reps[2];
<a point in ProjectiveSpace(3, 7)>
gap> proj := NaturalProjectionBySubspace(pg3, x);
<geometry morphism from <All elements of ProjectiveSpace(3,</pre>
7)> to <All elements of ProjectiveSpace(2, 7)>>
gap> curveminusx := Difference(curve, [x]);
[ <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
   <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
   <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)>,
    <a point in ProjectiveSpace(3, 7)>, <a point in ProjectiveSpace(3, 7)> ]
gap> cuspidal := ImagesSet(proj, List(curveminusx, t -> Span(x, t)));
[ <a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,
   <a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,
   <a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)>,
   <a point in ProjectiveSpace(2, 7)>, <a point in ProjectiveSpace(2, 7)> ]
gap> coords := List(cuspidal, Coordinates);
[ [ Z(7)^0, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^0 ],
    [ Z(7)^0, Z(7)^0, Z(7)^0], [ Z(7)^0, Z(7)^2, Z(7)^0],
    [ Z(7)^0, Z(7)^4, Z(7)^0 ], [ Z(7)^0, Z(7)^0, Z(7)^3 ],
    [ Z(7)^0, Z(7)^2, Z(7)^3 ], [ Z(7)^0, Z(7)^4, Z(7)^3 ] ]
gap> r := PolynomialRing(GF(7), 3);
GF(7)[x_1,x_2,x_3]
gap> indets := IndeterminatesOfPolynomialRing(r);
[x_1, x_2, x_3]
gap> shapes := Filtered(Tuples([0,1,2,3], 3), t -> Sum(t) = 3);
```

```
[[0, 0, 3], [0, 1, 2], [0, 2, 1], [0, 3, 0], [1, 0, 2],
                      [1, 1, 1], [1, 2, 0], [2, 0, 1], [2, 1, 0], [3, 0, 0]]
 gap> mat := List(coords, t -> List(shapes, u -> Product([1,2,3], i -> t[i]^u[i])));
  [ [0*Z(7), 0*Z(7), 0
                                                        Z(7)^0],
                      [Z(7)^0, 0*Z(7), 0*Z
                                                        0*Z(7)],
                      [Z(7)^0, Z(7)^0, Z(7
                                                        Z(7)^0],
                      [Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^0, Z(7)^2, Z(7)^4, Z(7)^0, Z(7)^2,
                                                        Z(7)^0,
                      [Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^4,
                                                        Z(7)^0],
                      [Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0,
                                                        Z(7)^0],
                      [Z(7)^3, Z(7)^2, Z(7), Z(7)^0, Z(7)^0, Z(7)^5, Z(7)^4, Z(7)^3, Z(7)^2,
                                                        Z(7)^0],
                      [Z(7)^3, Z(7)^4, Z(7)^5, Z(7)^0, Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4,
                                                        Z(7)^0 ] ]
 gap> mat2 := ShallowCopy(mat);
  [ [0*Z(7), 0*Z(7), 0
                                                          Z(7)^0,
                      [2(7)^0, 0*Z(7), 0*Z
                                                        0*Z(7)],
                      [ Z(7)^0, Z(
                                                        Z(7)^0,
                      [Z(7)^{0}, Z(7)^{2}, Z(7)^{4}, Z(7)^{0}, Z(7)^{0}, Z(7)^{2}, Z(7)^{4}, Z(7)^{0}, Z(7)^{2},
                                                        Z(7)^0],
                      [Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^0, Z(7)^4, Z(7)^2, Z(7)^0, Z(7)^4,
                                                        Z(7)^0,
                      [Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7)^3, Z(7)^0, Z(7
                                                        Z(7)^0],
                      [Z(7)^3, Z(7)^2, Z(7), Z(7)^0, Z(7)^0, Z(7)^5, Z(7)^4, Z(7)^3, Z(7)^2,
                                                        Z(7)^0],
                      [Z(7)^3, Z(7)^4, Z(7)^5, Z(7)^0, Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4,
                                                        Z(7)^0 ] ]
  gap> sol := NullspaceMat(TransposedMat(mat2))[1];
   [0*Z(7), 0*Z(7), 0*Z(7), 2(7)^3, Z(7)^0, 0*Z(7), 0*Z
                             0*Z(7)
  gap> terms := List(shapes, u -> Product([1,2,3], i -> indets[i]^u[i]));
  [x_3^3, x_2*x_3^2, x_2^2*x_3, x_2^3, x_1*x_3^2, x_1*x_2*x_3, x_1*x_2^2, x_2^2, x_1*x_2^2, x_2^2, x_1*x_2^2, x_2^2, x_2^
                   x_1^2*x_3, x_1^2*x_2, x_1^3
 gap> poly := terms * sol;
 x_1*x_3^2-x_2^3
  gap> pg2 := AmbientGeometry(Range(proj));
 ProjectiveSpace(2, 7)
 gap> variety := ProjectiveVariety(pg2, [poly]);
Projective Variety in ProjectiveSpace(2, 7)
 gap> points := Points(variety);
 <points of Projective Variety in ProjectiveSpace(2, 7)>
 gap> Size(points);
 8
```

Chapter 3

Incidence Geometry

We follow [BC13] for the definitions of incidence structure and incidence geometry. An *incidence structure* consists of a set of elements, a symmetric relation on the elements and a type function from the set of elements to an index set (i.e., every element has a "type"). It satisfies the following axiom: (i) no two elements of the same type are incident. An incidence structure without type function is in fact a multipartite graph where the adjacency is the incidence (so with a loop on each vertex). The term geometry, or incidence geometry, is interpreted broadly in this package. Particularly, an *incidence geometry* is an incidence structure satisfying the following axiom: (ii) every maximal flag contains an element of each type. In graph terminology, this means that every maximal clique contains an element of each type. Thus, a projective 5-space is an incidence geometry with five types of elements: points, lines, planes, solids, and hyperplanes. A finite classical polar space of rank 3 is an incidence geometry with three types of elements: points, lines, and planes. Depending on the viewpoint, the Grassmann variety of the lines of a projective 4-space, is an incidence structure that is not an incidence geometry.

FinInG concerns itself primarily with the most commonly studied incidence geometries of rank at least 2: projective spaces, polar spaces, and affine spaces. Throughout, no matter the geometry, we have made the convention that an element of type 1 is a "point", an element of type 2 is a "line", and so forth. The examples we use in this section use projective spaces, which have not yet been introduced to the reader in this manual. For further information on projective spaces, see Chapter 4.

In this chapter we describe functionality that is DECLARED for incidence structures, which does not imply that operations described here will work for arbitrary user-constructed incidence structures. Its aim is furthermore to allow the user to become familiar with the general philosophy of the package, using examples that are self-explanatory. Not all details of the commands used in the examples will be explained in this chapter, therefore we refer to the relevant chapter for the commands. These can easily be found using the index.

3.1 Incidence structures

Incidence structures can be more general than incidence geometries, e.g., if they do not satisfy axiom (ii) mentioned above. We allow the construction of such objects. This explains one of the top level categories in FinlnG.

3.1.1 IsIncidenceStructure

▷ IsIncidenceStructure

(Category)

Top level category for all objects representing an incidence structure.

3.1.2 IsIncidenceGeometry

```
▷ IsIncidenceGeometry
```

(Category)

Category for all objects representing an incidence geometry. All particular geometries implemented in FinInG are incidence geometries.

3.1.3 IncidenceStructure

```
▶ IncidenceStructure(eles, inc_rel, type, typeset) (operation)
Returns: an incidence structure
```

eles is a set containing the elements of the incidence structure. inc_rel must be a function that determines whether two objects in the set eles are incident. type is a function mapping any element to its type, which is a unique element in the set typeset.

In the following example we define an incidence structure that is not an incidence geometry. The example used is the incidence structure with elements the subspaces contained in the line Grassmannian of PG(4,2). This example is not meant to create this incidence structure in an efficient way, but just to demonstrate the general philosophy.

```
Example -
gap > pg := PG(4,2);
ProjectiveSpace(4, 2)
gap > pg2 := PG(9,2);
ProjectiveSpace(9, 2)
gap> points := List(Lines(pg),x->VectorSpaceToElement(pg2,GrassmannCoordinates(x)));;
gap> flags := Concatenation(List(Points(pg),x->List(Planes(x),y->FlagOfIncidenceStructure(pg,[x,y])
gap> prelines := List(flags,flag->ShadowOfFlag(pg,flag,2));;
gap> lines := List(prelines,x->VectorSpaceToElement(pg2,List(x,y->GrassmannCoordinates(y))));;
gap> flags2 := Concatenation(List(Points(pg),x->List(Solids(x),y->FlagOfIncidenceStructure(pg,[x,
gap> preplanes := List(flags2,flag->ShadowOfFlag(pg,flag,2));;
gap> planes := List(preplanes,x->VectorSpaceToElement(pg2,List(x,y->GrassmannCoordinates(y))));;
gap> maximals1 := List(Planes(pg),x->VectorSpaceToElement(pg2,List(Lines(x),y->GrassmannCoordinat
gap> maximals2 := List(Points(pg),x->VectorSpaceToElement(pg2,List(Lines(x),y->GrassmannCoordinat
gap> elements := Union(points,lines,planes,maximals1,maximals2);;
gap> Length(elements);
1891
gap> type := x -> ProjectiveDimension(x)+1;
function(x) ... end
gap> inc_rel := \*;
<Operation "*">
gap> inc := IncidenceStructure(elements,inc_rel,type,[1,2,3,4]);
Incidence structure of rank 4
gap> Rank(inc);
4
```

Lie Geometries, i.e., geometries with a projective space as ambient space, affine spaces and generalised polygons have their own category, which is a subcategory of IsIncidenceGeometry.

3.1.4 Main categories in IsIncidenceGeometry

```
    ▷ IsLieGeometry (Category)
    ▷ IsAffineSpace (Category)
    ▷ IsGeneralisedPolygon (Category)
    ▷ IsCosetGeometry (Category)
```

Within each category, several subcategories are declared. Subcategories of IsLieGeometry are discussed in Section 3.6 and subcategories of IsGeneralisedPolygon are discussed in Chapter 12

3.1.5 Examples of categories of incidence geometries

```
Example
gap> CategoriesOfObject(ProjectiveSpace(5,7));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
  "IsProjectiveSpace" ]
gap> CategoriesOfObject(HermitianPolarSpace(5,9));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
  "IsClassicalPolarSpace", "IsAlgebraicVariety", "IsProjectiveVariety",
  "IsHermitianVariety" ]
gap> CategoriesOfObject(AffineSpace(3,3));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsAffineSpace" ]
gap> CategoriesOfObject(SymplecticSpace(3,11));
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
  "IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
  "IsClassicalGQ" ]
gap> CategoriesOfObject(SplitCayleyHexagon(9));
 \hbox{[\ "IsIncidenceStructure",\ "IsIncidenceGeometry",\ "IsLieGeometry",\ } \\
  "IsGeneralisedPolygon", "IsGeneralisedHexagon",
  "IsClassicalGeneralisedHexagon" ]
gap> CategoriesOfObject(ParabolicQuadric(4,16));
 "IsIncidenceStructure", "IsIncidenceGeometry", "IsLieGeometry",
  "IsClassicalPolarSpace", "IsGeneralisedPolygon", "IsGeneralisedQuadrangle",
  "IsClassicalGQ", "IsAlgebraicVariety", "IsProjectiveVariety"]
```

3.1.6 TypesOfElementsOfIncidenceStructure

```
    ▶ TypesOfElementsOfIncidenceStructure(inc) (attribute)
    ▶ TypesOfElementsOfIncidenceStructurePlural(inc) (attribute)
    Returns: a list of strings or integers
```

Both attributes are declared for objects in the category IsIncidenceStructure. Any incidence structure has a set of types, which is usually just the list [1..n]. If specific names are given to each type, like points, lines, etc., this attribute returns the names for the particular incidence structure inc. The second variant returns the list of plurals of these names. For generically constructed incidence structures, the names of the Elements are also generic: elements of type 1, elements of type 2, etc.

```
Example

gap> TypesOfElementsOfIncidenceStructure(ProjectiveSpace(5,4));

[ "point", "line", "plane", "solid", "proj. 4-space" ]

gap> TypesOfElementsOfIncidenceStructurePlural(AffineSpace(7,4));

[ "points", "lines", "planes", "solids", "affine. subspaces of dim. 4",

"affine. subspaces of dim. 5", "affine. subspaces of dim. 6" ]
```

3.1.7 Rank

```
▷ Rank(inc) (operation)
▷ RankAttr(inc) (attribute)
```

Returns: rank of *inc*, an object which must belong to the category IsIncidenceStructure
The operation Rank returns the rank of the incidence structure inc. The highest level method for
Rank, applicable to objects in IsIncidenceStructure simply refers to the attribute RankAttr. In
FinInG, the rank of an incidence structure is determined upon creation, when also RankAttr is set.

```
gap> Rank(ProjectiveSpace(5,5));
5
gap> Rank(AffineSpace(3,5));
3
gap> Rank(SymplecticSpace(5,5));
3
```

3.1.8 IncidenceGraph

The vertices are the elements of *inc*, adjacency between different vertices is equal to incidence, and there are of course no loops. For generic incidence structures, i.e. constructed through IncidenceStructure, there is no efficient method installed, so this operation can be time consuming.

If *inc* is a generic incidence structure, i.e. created using IncidenceStructure, the vertex names of the graph are integers. It is not by default possible to use the elements of *inc* as vertex names, since it is not known in the generic case whether the elements of different type of *inc* can be ordered. For particular incidence geometries, e.g. projective spaces, etc., the vertex names will be the elements, which will be demonstrated through examples in the appropriate chapters.

In the example we consider the so-called doubling of the smallest generalised quadrangle: the points of the incidence structure are the points and the lines of the GQ, the lines of the incidence structure are all the point-line flags of the GQ. The incidence is the natural one. It is then checked that diameter and girth of the incidence graph are 8 and 16 respectively, which makes that the incidence structure is a generalised octagon.

```
gap> ps := SymplecticSpace(3,2);
W(3, 2)
gap> pts := List(Points(ps));;
gap> lines := List(Lines(ps));;
gap> flags := Union(List(pts,x->List(Lines(x),y->FlagOfIncidenceStructure(ps,[x,y]))));;
```

```
gap> inc := function(x,y)
> if x = y then
     return true;
> elif IsFlagOfIncidenceStructure(x) and IsElementOfIncidenceStructure(y) then
     return IsIncident(x,y);
> elif IsElementOfIncidenceStructure(x) and IsElementOfIncidenceStructure(y) then
     return false;
> elif IsFlagOfIncidenceStructure(x) and IsFlagOfIncidenceStructure(y) then
>
     return false;
> else
>
     return inc(y,x);
> fi;
> end;
function(x, y) ... end
gap> type := function(x)
> if IsList(Type(x)) then
     return 2;
> else
     return 1;
> fi;
> end;
function(x) ... end
gap> els := Union(pts,lines,flags);;
gap> struc := IncidenceStructure(els,inc,type,[1,2]);
Incidence structure of rank 2
gap> gamma := IncidenceGraph(struc);
rec(adjacencies := [[31, 32, 33], [34, 35, 36], [37, 38, 39],
      [ 40, 41, 42 ], [ 43, 44, 45 ], [ 46, 47, 48 ], [ 49, 50, 51 ],
      [ 52, 53, 54 ], [ 55, 56, 57 ], [ 58, 59, 60 ], [ 61, 62, 63 ],
      [ 64, 65, 66 ], [ 67, 68, 69 ], [ 70, 71, 72 ], [ 73, 74, 75 ],
      [ 31, 40, 43 ], [ 32, 52, 55 ], [ 33, 64, 67 ], [ 34, 41, 46 ],
      [ 35, 53, 58 ], [ 36, 65, 70 ], [ 37, 42, 49 ], [ 38, 54, 61 ],
      [ 39, 66, 73 ], [ 44, 59, 74 ], [ 45, 62, 71 ], [ 47, 56, 75 ],
      [50, 57, 72], [48, 63, 68], [51, 60, 69], [1, 16], [1, 17],
      [1, 18], [2, 19], [2, 20], [2, 21], [3, 22], [3, 23],
      [3, 24], [4, 16], [4, 19], [4, 22], [5, 16], [5, 25],
      [5, 26], [6, 19], [6, 27], [6, 29], [7, 22], [7, 28],
      [7, 30], [8, 17], [8, 20], [8, 23], [9, 17], [9, 27],
      [9, 28], [10, 20], [10, 25], [10, 30], [11, 23], [11, 26],
      [ 11, 29 ], [ 12, 18 ], [ 12, 21 ], [ 12, 24 ], [ 13, 18 ], [ 13, 29 ],
      [ 13, 30 ], [ 14, 21 ], [ 14, 26 ], [ 14, 28 ], [ 15, 24 ], [ 15, 25 ],
      [ 15, 27 ] ], group := Group(()), isGraph := true, names := [ 1 .. 75 ],
  order := 75,
  representatives := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
      17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
      35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
     53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
     71, 72, 73, 74, 75],
  -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27,
     -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41,
     -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55,
```

```
-56, -57, -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, -75])

gap> Diameter(gamma);
8

gap> Girth(gamma);
16
```

3.2 Elements of incidence structures

3.2.1 Main categories for individual elements of incidence structures

```
▷ IsElementOfIncidenceStructure
                                                                                   (Category)
▷ IsElementOfIncidenceGeometry
                                                                                   (Category)
▷ IsElementOfLieGeometry
                                                                                   (Category)
▷ IsElementOfAffineSpace
                                                                                   (Category)
▷ IsElementOfCosetGeometry
                                                                                   (Category)
▷ IsSubspaceOfProjectiveSpace
                                                                                   (Category)
▷ IsSubspaceOfClassicalPolarSpace
                                                                                   (Category)
▷ IsElementOfGeneralisedPolygon
                                                                                   (Category)
```

In general, elements of an incidence structure belonging to IsIncStr, are in the category IsElementOfIncStr. The inclusion for different categories of geometries is followed for their elements, with an exception for IsSubspaceOfClassicalPolarSpace, which is a subcategory of IsSubspaceOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of IsProjectiveSpace.

```
Example
gap> Random(Lines(SplitCayleyHexagon(3)));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
    "IsElementOfLieGeometry", "IsSubspaceOfProjectiveSpace",
    "IsSubspaceOfClassicalPolarSpace", "IsElementOfGeneralisedPolygon" ]
gap> Random(Solids(AffineSpace(7,17)));
<a solid in AG(7, 17)>
gap> CategoriesOfObject(last);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
    "IsSubspaceOfAffineSpace" ]
```

3.2.2 UnderlyingObject

```
▶ UnderlyingObject(el)
Returns: an object
```

(operation)

An element of an incidence structure has a type and an underlying object. E.g. a line of a projective space is determined by a two dimensional sub vector space, which is determined by a basis. Elements

of incidence structure can also be objects representing elements of other incidence structures, as is e.g. the case in the example of 3.1.3. The examples shows the underlying objects of elements of three totally different incidence geometries.

```
_ Example _
gap > pg := PG(2,2);
ProjectiveSpace(2, 2)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(2, 2)>
gap> UnderlyingObject(p);
<cvec over GF(2,1) of length 3>
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> UnderlyingObject(1);
<cmat 2x3 over GF(2,1)>
gap> mat := [ [ 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
    [0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
    [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
   [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
   [0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
   [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
   [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
   [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
   [0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0],
   [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0],
   [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1],
   [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1],
   [1,0,0,0,0,0,0,1,0,0,1,0,0,],
   [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1];
[[1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
  [0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
  [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
  [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
  [0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
  [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0],
  [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
  [0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
  [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0],
  [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1],
  [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1],
  [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]
gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
<generalised quadrangle of order [ 2, 2 ]>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 2, 2 ]>>
gap> UnderlyingObject(p);
15
gap> 1 := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 2, 2 ]>>
gap> UnderlyingObject(1);
```

```
[ 7, 13, 15 ]
gap> egq := EGQByBLTSet(BLTSetByqClan(LinearqClan(3)));
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >
gap> p := Random(Points(egq));
<a point in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3 ) >>
gap> UnderlyingObject(p);
<a point in W(5, 3)>
```

3.2.3 Type

▷ Type(el)

Returns: an integer

An element of an incidence structure has a type and an underlying object. Its type is always a non-negative integer. This operation returns the type of an element.

```
gap> pg := PG(2,2);
ProjectiveSpace(2, 2)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(2, 2)>
gap> Type(p);
1
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(2, 2)>
gap> Type(1);
2
```

3.2.4 ObjectToElement

```
▷ ObjectToElement(inc, t, obj)
```

(operation)

Returns: an element of the incidence structure *inc*

If obj represents an element of inc of type t, this operation returns the element. An error (or no method found error) is shown when obj does not represent an element of type t. Note that ObjectToElement is a generic operation. Versions with a different argument set and even alternative operations exist for some particular geometries to construct particular elements.

3.2.5 Main categories for collections of all the elements of a given type of an incidence structure

```
    ▷ IsElementsOfIncidenceStructure
    ▷ IsElementsOfIncidenceGeometry
    ▷ IsElementsOfLieGeometry
    ▷ IsElementsOfAffineSpace
    ▷ IsElementsOfCosetGeometry
    ▷ IsElementsOfCosetGeometry
    ▷ IsElementsOfCosetGeometry
    ▷ IsSubspacesOfProjectiveSpace
```

▷ IsSubspacesOfClassicalPolarSpace

(Category)

For a given incidence structure, the collection of elements of a given type can be constructed. constructed here means that an object is returned that represents all the elements of a given type, rather than listing them immediately, to avoid long computation times. Such an abstract object is e.g. used as a range for In general, the collection of elements of a given type of an incidence structure belonging to IsIncStr, is in the category IsElementsOfIncStr. The inclusion for different categories of geometries is followed for their collection of elements of a given type, with an exception for IsSubspacesOfClassicalPolarSpace, which is a subcategory of IsSubspacesOfProjectiveSpace, while IsClassicalPolarSpace is not a subcategory of IsProjectiveSpace.

The object representing the set of elements of a given type can be computed using the general operation ElementsOfIncidenceStructure.

3.2.6 ElementsOfIncidenceStructure

```
▷ ElementsOfIncidenceStructure(inc, j) (operation)
▷ ElementsOfIncidenceStructure(inc, str) (operation)

Returns: a collection of elements
```

inc must be an incidence structure, j must be a type of element of inc. This function returns all elements of inc of type j, and an error is displayed if inc has no elements of type j. Calling the elements (of a given type) of inc yields an object in the category IsElementsOfIncidenceStructure (or the appropriate category for projective spaces and classical polar spaces), which does not imply that all elements are computed and stored. In an alternative form of this function str can be one of the strings found in the list obtained by calling TypesOfElementsOfIncidenceStructurePlural(inc). E.g. for projective spaces, "points", "lines", "planes" or "solids" are the names for elements of type 1,2,3 or 4, respectively, of course if inc has elements of the deduced type.

```
_ Example .
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> 1 := ElementsOfIncidenceStructure(ps,2);
<lines of ProjectiveSpace(3, 3)>
gap> ps := EllipticQuadric(5,9);
Q-(5, 9)
gap> lines := ElementsOfIncidenceStructure(ps,2);
of Q-(5, 9)>
gap> planes := ElementsOfIncidenceStructure(ps,3);
Error, <geo> has no elements of type <j> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 12 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> as := AffineSpace(3,9);
gap> lines := ElementsOfIncidenceStructure(as, "lines");
s of AG(3, 9)>
```

3.2.7 ElementsOfIncidenceStructure

▷ ElementsOfIncidenceStructure(inc)

(operation)

Returns: a collection of elements

inc must be an incidence structure, then this operation returns the collection of all elements of inc. Such a collection can e.g. be the range of a geometry morphism. Note that this operation has no method for generic incidence structures constructed using Incidence Structure.

3.2.8 Short names for ElementsOfIncidenceStructure

```
▷ Points(inc)
                                                                                              (operation)
▷ Lines(inc)
                                                                                              (operation)
▷ Planes(inc)
                                                                                              (operation)
▷ Solids(inc)
                                                                                              (operation)
```

Returns: The points, lines, planes, solids, respectively of inc

For geometries in IsLieGeometry, IsAffineSpace, and IsGeneralisedPolygon, the elements of type 1,2,3,4 respectively are called usually points, lines, planes, solids, respectively. These methods are, for such geometries, are shortcuts to ElementsOfIncidenceStructure(inc,j), with j equal to 1,2,3,4, respectively.

```
_ Example _
gap> Points(HermitianVariety(2,64));
<points of Hermitian Variety in ProjectiveSpace(2, 64)>
gap> Lines(EllipticQuadric(5,2));
of Q-(5, 2)>
gap> Planes(SymplecticSpace(7,3));
<planes of W(7, 3)>
gap> Lines(TwistedTrialityHexagon(2^3));
of T(8, 2)>
```

3.2.9 **NrElementsOfIncidenceStructure**

```
▷ NrElementsOfIncidenceStructure(inc, j)
                                                                                   (operation)
▷ NrElementsOfIncidenceStructure(inc, str)
                                                                                   (operation)
   Returns: a positive integer
```

inc must be an incidence structure, j must be a type of element of inc. This function returns

the number of elements of inc of type j, and an error is displayed if inc has no elements of type j. In the alternative form of this function str can be one of "points", "lines", "planes" or "solids" and the function returns the number of elements of type 1, 2, 3 or 4 respectively, of course if *inc* has elements of the deduced type. For geometries in the category IsLieGeometry, IsAffineSpace, and IsGeneralisedPolygon, the number of elements of a given type is known upon construction of the geometry. As such, for these geometries, this operation requires no computing time.

```
_ Example
gap> ps:=ProjectiveSpace(4,3);
ProjectiveSpace(4, 3)
gap> NrElementsOfIncidenceStructure(ps, 2);
gap> NrElementsOfIncidenceStructure(ps, "points");
```

121

3.2.10 Random

 \triangleright Random(C) (operation)

Returns: an element in the collection C

C is a collection of elements of an incidence structure, i.e., an object in the category IsElementsOfIncidenceStructure. Random(C) will return a random element in C provided there is a method installed. The generic method will compute all elements in C and return a random member from the list. For e.g. Lie geometries, more efficient methods are installed.

3.2.11 IsIncident

Returns: true or false

u and v must be elements of an incidence structure. This function returns true if and only if u is incident with v. Recall that IsIncident is a symmetric relation, while in is not. A method for the operation $*$ is installed, applicable to objects in IsElementOfIncidenceStructure. It just calls IsIncident.

```
- Example
gap> p := Random(Points(PG(5,4)));
<a point in ProjectiveSpace(5, 4)>
gap> 1 := Random(Lines(p));
<a line in ProjectiveSpace(5, 4)>
gap> IsIncident(p,1);
true
gap> IsIncident(1,p);
true
gap> p * 1;
true
gap > 1 * p;
true
gap> p * p;
true
gap > 1 * 1;
true
```

3.2.12 AmbientGeometry

▷ AmbientGeometry(v)

(operation)

Returns: the ambient geometry of the element v

If v is an element of an incidence geometry currently implemented in FinlnG, then this operation returns the ambient geometry of v, i.e., in general the geometry in which v was created. If an incidence structure is created with elements that are a subset of elements of another incidence structure, the ambient geometry might stay unchanged.

```
Example
gap> plane := Random(Planes(HyperbolicQuadric(5,2)));
\langle a plane in Q+(5, 2) \rangle
gap> AmbientGeometry(plane);
Q+(5, 2)
gap> 1 := Random(Lines(SplitCayleyHexagon(3)));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> Print(1);
NewMatrix(IsCMatRep,GF(3,1),7,[[ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3),
     Z(3)^0, Z(3)
gap> AmbientGeometry(1);
gap> p := Random(Points(EGQByBLTSet(BLTSetByqClan(LinearqClan(3)))));
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<a point in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3) >>
gap> Print(p);
NewRowVector(IsCVecRep, GF(3,1), [Z(3)^0,Z(3),Z(3),Z(3),Z(3)^0,0*Z(3),])
gap> AmbientGeometry(p);
 <EGQ of order [ 9, 3 ] and basepoint in W(5, 3) >
```

3.3 Flags of incidence structures

A flag of an incidence structure S is a set F of elements of S that are two by two incident. This implies that all elements in F have a different type. A flag is maximal if it cannot be extended with more elements. FinlnG provides a basic category IsFlagOfIncidenceStructure. For different types of incidence structures, methods to create a flag can be installed. A *chamber* is a flag of size n, where n is the rank of the incidence structure. Recall that an incidence structure is an incidence geometry if every maximal flag is a chamber.

3.3.1 FlagOfIncidenceStructure

```
▷ FlagOfIncidenceStructure(inc, 1)
```

(operation)

Returns: the flag consisting of the elements of *inc* in the list 1

It is checked if all elements in 1 are incident and belong to the same incidence structure. An empty list is allowed.

```
gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> line := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0]]*Z(7)^0);
```

```
<a line in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
<a plane in ProjectiveSpace(3, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 7)>
```

3.3.2 IsChamberOfIncidenceStructure

▷ IsChamberOfIncidenceStructure(flag)

(operation)

Returns: true if and only if flag contains an element of each type

The incidence structure is determined by the elements.

```
___ Example
gap > ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> line := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0]]*Z(7)^0);
<a line in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
<a plane in ProjectiveSpace(3, 7)>
gap> flag1 := FlagOfIncidenceStructure(ps,[point,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> IsChamberOfIncidenceStructure(flag1);
false
gap> flag2 := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> IsChamberOfIncidenceStructure(flag2);
true
```

3.3.3 IsEmptyFlag

▷ IsEmptyFlag(flag)

(operation)

Returns: true or false

It is possible to construct the empty flag of an incidence structure. This operation tests whether a given flag is empty.

3.3.4 ElementsOfFlag

▷ ElementsOfFlag(flag)

(operation)

Returns: a list of elements

This operations simply returns the list of elements that define flag

```
gap> gp := SplitCayleyHexagon(4);
H(4)
gap> p := Random(Points(gp));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
```

```
<a point in H(4)>
gap> l := Random(Lines(p));
<a line in H(4)>
gap> flag := FlagOfIncidenceStructure(gp,[l,p]);
<a flag of H(4)>
gap> ElementsOfFlag(flag);
[ <a point in H(4)>, <a line in H(4)> ]
```

3.3.5 Rank

Returns: an integer

This operations returns the number of elements that define flag

```
gap> ps := ParabolicQuadric(8,3);
Q(8, 3)
gap> 1 := Random(Lines(ps));
<a line in Q(8, 3)>
gap> plane := Random(Planes(1));
<a plane in Q(8, 3)>
gap> solid := Random(Solids(plane));
<a solid in Q(8, 3)>
gap> flag := FlagOfIncidenceStructure(ps,[1,plane,solid]);
<a flag of Q(8, 3) >
gap> Rank(flag);
3
```

3.3.6 Size

Returns: an integer

This operations returns the number of elements that define flag

```
gap> ps := SymplecticSpace(5,7);
W(5, 7)
gap> p := Random(Points(ps));
<a point in W(5, 7)>
gap> plane := Random(Planes(p));
<a plane in W(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[p,p,plane]);
<a flag of W(5, 7) >
gap> Size(flag);
2
gap> ElementsOfFlag(flag);
[ <a point in W(5, 7)>, <a plane in W(5, 7)> ]
```

3.3.7 AmbientGeometry

▷ AmbientGeometry(flag)

(attribute)

Returns: an incidence structure

This operations returns the ambient geometry of the flag

```
gap> ps := SymplecticSpace(5,7);
W(5, 7)
gap> p := Random(Points(ps));
<a point in W(5, 7)>
gap> plane := Random(Planes(p));
<a plane in W(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[p,p,plane]);
<a flag of W(5, 7) >
gap> Size(flag);
2
gap> ElementsOfFlag(flag);
[ <a point in W(5, 7)>, <a plane in W(5, 7)> ]
```

3.3.8 Type

▷ Type(flag)

(operation)

Returns: an list of integers

This operations returns the list of types of the elements defining flag

```
____ Example .
gap > pg := PG(8,9);
ProjectiveSpace(8, 9)
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(8, 9)>
gap> s := Random(Solids(1));
<a solid in ProjectiveSpace(8, 9)>
gap> flag := FlagOfIncidenceStructure(pg,[1,s]);
<a flag of ProjectiveSpace(8, 9)>
gap> Type(flag);
[2,4]
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(8, 9)>
gap> flag := FlagOfIncidenceStructure(pg,[p]);
<a flag of ProjectiveSpace(8, 9)>
gap> Type(flag);
[1]
```

3.3.9 IsIncident

```
▷ IsIncident(el, flag) (operation)
▷ IsIncident(flag, el) (operation)
```

Returns: true or false

An element is incident with a flag if and only if it is incident with all elements defining the flag.

```
gap> pg := PG(3,5);
ProjectiveSpace(3, 5)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(3, 5)>
gap> 1 := Random(Lines(p));
<a line in ProjectiveSpace(3, 5)>
gap> plane := Random(Planes(1));
<a plane in ProjectiveSpace(3, 5)>
gap> flag := FlagOfIncidenceStructure(pg,[1,plane]);
<a flag of ProjectiveSpace(3, 5)>
gap> IsIncident(flag,1);
true
gap> IsIncident(1,flag);
true
```

3.4 Shadow of elements

3.4.1 ShadowOfElement

```
▷ ShadowOfElement(inc, v, str) (operation)
▷ ShadowOfElement(inc, v, j) (operation)
```

Returns: The collection of elements of type str or type j incident with v

inc is an incidence structure, v must be an element of inc, str must be a string which is THE PLURAL of the name of one of the types of the elements of inc. For the second variant, j is an integer representing one of the types of the elements of inc. This first variant relies on TypesOfElementsOfIncidenceStructurePlural and on a particular method installed for the second variant for particular incidence structures. The use of the argument inc makes it flexible, i.e., if the element v can belong to different incidence structures, its shadow can be different, as the second example shows.

```
\_ Example _{-}
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> pi := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> lines := ShadowOfElement(ps,pi,"lines");
<shadow lines in ProjectiveSpace(3, 3)>
gap> Size(lines);
13
gap> p := Random(Points(PG(3,3)));
<a point in ProjectiveSpace(3, 3)>
gap> lines1 := ShadowOfElement(SymplecticSpace(3,3),p,2);
<shadow lines in W(3, 3)>
gap> Size(lines1);
gap> lines2 := ShadowOfElement(PG(3,3),p,2);
<shadow lines in ProjectiveSpace(3, 3)>
gap> Size(lines2);
```

13

3.4.2 ElementsIncidentWithElementOfIncidenceStructure

riangleright ElementsIncidentWithElementOfIncidenceStructure(v, j)

(operation)

Returns: The collection of elements of type j incident with v

This operation is applicable for objects v belonging to IsElementOfIncidenceStructure, and is a shortcut to ShadowOfElement(AmbientGeometry(v), v, j).

3.4.3 ShadowOfFlag

```
    ShadowOfFlag(inc, flag, str) (operation)
    ShadowOfFlag(inc, list, str) (operation)
    ShadowOfFlag(inc, flag, j) (operation)
    ShadowOfFlag(inc, list, j) (operation)
```

Returns: The collection of elements of type str or type j incident with all elements of flag, or with all elements of list

Variants 2 and 4 convert *list* to a flag of *inc*, using FlagOfIcidenceStructure, which performs the necessary checks. Variants 1 and 2 rely on variants 3 and 4 respectively, for which a method must be installed for the particular incidence structure *inc*.

```
gap> ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> point := VectorSpaceToElement(ps,[1,2,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0],[0,1,0,0],[0,0,0,1]]*Z(7)^0);
<a plane in ProjectiveSpace(3, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[point,plane]);
<a flag of ProjectiveSpace(3, 7)>
gap> lines := ShadowOfFlag(ps,flag,"lines");
<shadow lines in ProjectiveSpace(3, 7)>
```

3.4.4 ResidueOfFlag

▷ ResidueOfFlag(flag)

(operation)

Returns: an incidence structure

Consider the flag flag, and its ambient geometry G. All elements of G incident with all elements of flag, together with the incidence of G, determine an incidence structure. This incidence structure is returned by this operation. Note that independently of the Category of G, the returned incidence structure is constructed using the operation IncidenceStructure.

```
gap> pg := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(pg));
<a point in ProjectiveSpace(4, 5)>
gap> 1 := Random(Lines(p));
<a line in ProjectiveSpace(4, 5)>
```

```
gap> flag := FlagOfIncidenceStructure(pg,[p,1]);
<a flag of ProjectiveSpace(4, 5)>
gap> res := ResidueOfFlag(flag);
Incidence structure of rank 2
gap> gamma := IncidenceGraph(res);;
gap> Diameter(gamma);
3
gap> Girth(gamma);
6
```

3.4.5 Short names for ElementsIncidentWithElementOfIncidenceStructure

```
▷ Points(inc, v)
                                                                                              (operation)
▷ Lines(inc, v)
                                                                                              (operation)
▷ Planes(inc, v)
                                                                                              (operation)
▷ Solids(inc, v)
                                                                                              (operation)
▷ Points(v)
                                                                                              (operation)
▷ Lines(v)
                                                                                              (operation)
▷ Planes(v)
                                                                                              (operation)
▷ Solids(v)
                                                                                              (operation)
```

Returns: The collections of elements of *inc* of respective type 1, 2, 3 and 4, that are incident with v

If inc, or the ambient geometry of v is an incidence structure, where the elements of type 1, 2, 3 and 4 are called "points", "lines", "planes", and "solids" respectively, these operations are shortcuts to ShadowOfElement. If this is not the case, a method for these operations is not installed.

```
gap> line := Random(Lines(AG(5,4)));
<a line in AG(5, 4)>
gap> Points(line);
<shadow points in AG(5, 4)>
gap> Planes(line);
<shadow planes in AG(5, 4)>
```

3.5 Enumerating elements of an incidence structure

In several situations, it can be useful to compute a complete list of objects satisfying one or more conditions. To list all elements of a given type of an incidence structure, is a typical example. FinInG provides functionality that is common in GAP for this purpose.

In FinInG, typically a list of all elements satisfying a property, e.g. all points of a projective space, are represented by a GAP object that is a *collection*. The word 'collection' is important here. E.g. subspaces of a vector space are not calculated on calling Subspaces, rather primitive information is stored in an IsComponentObjectRep. So for example

```
gap> v:=GF(31)^5;
( GF(31)^5 )
```

```
gap> subs:=Subspaces(v,1);
Subspaces( ( GF(31)^5 ), 1 )
```

For a given collection C, one can use the GAP function List to compute all objects in the collection C. Such a list can be used to iterate over all objects in the list. However, if one needs only few random objects from C, or if one needs to iterate over the list of objects until a certain condition is satisfied, it can be highly inefficient to first compute all these objects. Therefore iterators and enumerators come into the picture.

An iterator is a GAP object that gives a user friendly way to loop over all elements without repetition. Only three operations are applicable on an iterator: NextIterator, IsDoneIterator and ShallowCopy. Clearly, all elements of a collection can be obtained by using an available iterator.

3.5.1 Iterator

 \triangleright Iterator(C) (operation)

Returns: an iterator for the collection C

C is a collection of elements of an incidence structure. An iterator is returned. The second example demonstrates how an iterator is used by First. Clearly, not all points of the projective space are computed.

```
Example -
gap > ps := PG(3,7);
ProjectiveSpace(3, 7)
gap> planes := Planes(ps);
<planes of ProjectiveSpace(3, 7)>
gap> iter := Iterator(planes);
<iterator>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(3, 7)>
gap> IsDoneIterator(iter);
false
gap > pg := PG(12,81);
ProjectiveSpace(12, 81)
gap> pts := Points(pg);
<points of ProjectiveSpace(12, 81)>
gap> Size(pts);
80763523615333416236653
gap> ps := ParabolicQuadric(12,81);
Q(12, 81)
gap> First(pts,x->x in ps);
<a point in ProjectiveSpace(12, 81)>
gap> time;
23
```

In its simplest form, an enumerator is just a list containing all the elements of the collection. Given any object in the list, it is possible to retrieve its number in the list (which is then just its position). Also, given any number between 1 and the length of the list, it is possible to get the corresponding element. For some collections of elements of particular incidence structures, a more advanced version of enumerators is implemented. Such an advanced version is an object containing the two functions

ElementNumber and NumberElement. Such functions are able to compute directly, without listing all elements, the element with a given number, or, conversely, compute directly the number of a given element. Clearly, using an enumerator, it is possible to obtain a list containing all elements of a collection.

3.5.2 Enumerator

Returns: an enumerator for the collection C

C is a collection of elements of an incidence structure. An enumerator is returned. The second example demonstrates how an enumerator is used by Random. Clearly, not all points of the polar space are to obtain an random point.

```
_ Example .
gap> lines := Lines( ParabolicQuadric(6,3) );
of Q(6, 3)>
gap> enum := Enumerator( lines );
EnumeratorOfSubspacesOfClassicalPolarSpace( <lines of Q(6, 3)> )
gap> s := Size(enum);
3640
gap> n := Random([1..s]);
3081
gap> 1 := enum[n];
<a line in Q(6, 3)>
gap> Position(enum, 1);
3081
gap> ps := ParabolicQuadric(16,7^4);
Q(16, 2401)
gap> pts := Points(ps);
<points of Q(16, 2401)>
gap> Size(pts);
508233536514931541724405776067904925314839705888016\\
gap> Random(pts);
<a point in Q(16, 2401)>
gap> time;
565
```

When an iterator or enumerator is installed for a collection, List can be used to obtain all objects in that collection.

3.5.3 List

ightharpoonup List(C) (operation)

Returns: all objects in the collection C

```
<a point in ProjectiveSpace(2, 2)>, <a point in ProjectiveSpace(2, 2)>,
  <a point in ProjectiveSpace(2, 2)> ]
gap> List(Lines(pg));
[ <a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,
  <a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,
  <a line in ProjectiveSpace(2, 2)>, <a line in ProjectiveSpace(2, 2)>,
  <a line in ProjectiveSpace(2, 2)> ]
gap> ps := ParabolicQuadric(6,2);
Q(6, 2)
gap> lines := List(Lines(ps));
[ <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
```

```
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
\langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
```

From the example in 3.5.3 it can be noted that although the number of lines is only 315, already 3 seconds of computing time are needed. This is typically observed for elements of classical polar spaces different from points or generators, and is explained by the recursive nature of the implementation of the enumerator. Computing a list of these objects as an orbit under the collineation group is, even taking into account the computation of the nice monomorphism of the collineation group, often much faster. Given a collection C, the function AsList performs this computation using the collineation group.

3.5.4 AsList

▷ AsList(C) (operation)

Returns: an ORB object containing all objects in C

The returned object is an ORB object. All objects can easily be obtained by applying the operation List.

```
Example
gap> ps := ParabolicQuadric(6,2);
gap> lines := AsList(Lines(ps));
<closed orbit, 315 points>
gap> time;
gap> List(lines);
[ \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
```

```
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
\langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
```

```
<a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle, \langlea line in Q(6, 2)\rangle,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)>,
  <a line in Q(6, 2)>, <a line in Q(6, 2)>, <a line in Q(6, 2)> ]
gap> time;
1
```

3.6 Lie geometries

3.6.1 Main categories in IsLieGeometry

```
▷ IsProjectiveSpace (Category)▷ IsClassicalPolarSpace (Category)
```

In FinInG, a *Lie geometry G* refers to a geometry whose automorphism group is a (subgroup of a) group of Lie type. Generally spoken, one could say that a Lie geometry is an incidence geometry, such that each element of type i is represented by a sub space of dimension i+1 of a vector space V. The projective space P associated with V is naturally the *ambient space* of G. However, as one may also consider subspaces of the given vector space over *subfields of the ground field of V*, one cannot not just say that the set of elements of G of a given type i, is a subset of the set of elements of type i of P. Geometrically, this means that embeddings may be full or not, i.e. when a line of a Lie geometry is embedded into P as a line I, the embedding is full only if all projective points of I have a pre image in I0. Embeddings of finite classical polar spaces are full, and indeed the set of elements of type I1 is a proper subset of the set of elements of type I2 of I3. Subgeometries of projective spaces behave differently, and indeed, a line of a subgeometry can be embedded into I3, but will not be identified with a line of I3. All geometries in FinInG that have a projective space as ambient space, belong to a subcategory of IsLieGeometry.

One common fact of Lie geometries is that their elements are represented by subspaces of a vector space. In these geometries, incidence is symmetrized set-theoretic containment. In this section we describe methods that are declared in a generic way for (elements of) Lie geometries. These operations are applicable to Lie geometries and related objects.

3.6.2 AmbientSpace

▷ AmbientSpace(ig)

(attribute)

Returns: the ambient projective space of a Lie geometry ig

```
gap> AmbientSpace(PG(3,4));
ProjectiveSpace(3, 4)
gap> AmbientSpace(ParabolicQuadric(4,4));
ProjectiveSpace(4, 4)
gap> AmbientSpace(SplitCayleyHexagon(3));
ProjectiveSpace(6, 3)
```

3.6.3 Underlying Vector Space

▷ UnderlyingVectorSpace(ig)

(operation)

Returns: the underlying vector space of the Lie geometry ig

```
gap> UnderlyingVectorSpace(PG(5,4));
( GF(2^2)^6 )
gap> UnderlyingVectorSpace(HermitianPolarSpace(4,4));
( GF(2^2)^5 )
```

3.6.4 ProjectiveDimension

▷ ProjectiveDimension(ig)

(operation)

Returns: the projective dimension of the ambient projective space of ig

```
gap> ProjectiveDimension(PG(7,7));
7
gap> ProjectiveDimension(EllipticQuadric(5,2));
5
```

Mathematically, it makes sense to implement an object representing the empty subspace, since this is typically obtained as a result of a Meet operation, which computes the intersection of two or more elements. On the other hand, we do not consider the empty subspace as an element of the incidence geometry. Hence, using the empty subspace as an argument of IsIncident (and consequently of *), will result in a "no method found" error.

3.6.5 IsEmptySubspace

```
\triangleright IsEmptySubspace (Category)
```

Category for objects representing the empty subspace of a particular Lie geometry. Empty subspaces of different geometries will be different objects, and have a different ambient geometry.

3.7 Elements of Lie geometries

Elements of a Lie geometry are constructed using a list of vectors. The methods installed for the particular Lie geometries check whether the subspace of the vector space represents an element of the Lie geometry.

3.7.1 VectorSpaceToElement

```
▷ VectorSpaceToElement(ig, v) (operation)
▷ VectorSpaceToElement(ig, 1) (operation)
```

Returns: the element of ig, represented by the subspace spanned by v or 1, or returns the empty subspace.

The first variant of this operation takes as second argument a vector of the underlying vector space of ig. Such a vector possibly represents a point of ig. The second variant takes as second argument a list of vectors in the underlying vector space of ig. Such a list represents a subspace of the vector space. If the dimension of the subspace generated by 1 is larger than zero and strictly less than the dimension of the vector space, it is checked if the subspace represents an element of ig, except when ig is a projective space. If 1 is a list of vectors generating the whole vector space, then ig is returned if and only if ig is a projective space, otherwise an error is produced. An empty list is not allowed as second argument.

```
Example

gap> v := [1,1,1,0,0,0]*Z(7)^0;

[ Z(7)^0, Z(7)^0, Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ]

gap> w := [0,0,0,1,1,1]*Z(7)^0;

[ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, Z(7)^0, Z(7)^0 ]

gap> VectorSpaceToElement(PG(5,7),v);

<a point in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement(PG(5,7),[v,w]);
```

```
<a line in ProjectiveSpace(5, 7)>
gap> VectorSpaceToElement(SymplecticSpace(5,7),v);
<a point in W(5, 7)>
gap> VectorSpaceToElement(SymplecticSpace(5,7),[v,w]);
Error, <x> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 13 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> VectorSpaceToElement(HyperbolicQuadric(5,7),v);
Error, <v> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 13 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> VectorSpaceToElement(HyperbolicQuadric(5,7),0*v);
< empty subspace >
```

3.7.2 UnderlyingObject

▷ UnderlyingObject(v)

(operation)

Returns: a CVEC object, which is the vector or matrix representing the element v

The argument v must be an element, so it is not allowed that v is the empty subspace, or just a projective space. Note that Unpack can be used to convert the CVEC object into a usual GAP vector or matrix.

```
gap> 1 := Random(Lines(PG(4,3)));
<a line in ProjectiveSpace(4, 3)>
gap> UnderlyingObject(1);
<cmat 2x5 over GF(3,1)>
gap> Unpack(last);
[ [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3), Z(3) ],
        [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ]
```

3.7.3 \in

Returns: true if and only if the element u is set-theoretically contained in the element w Both arguments must be elements of the same Lie geometry. The empty subspace and a Lie geometry.

etry are also allowed as arguments. This relation is not symmetric, and the methods for IsIncident use this method to test incidence between elements.

```
gap> p := VectorSpaceToElement(PG(3,3),[1,0,0,0]*Z(3)^0);
<a point in ProjectiveSpace(3, 3)>
gap> 1 := VectorSpaceToElement(PG(3,3),[[1,0,0,0],[0,1,0,0]]*Z(3)^0);
<a line in ProjectiveSpace(3, 3)>
gap> p in 1;
```

```
true
gap> p in p;
true
gap> l in p;
false
gap> l in PG(3,3);
true
```

3.7.4 More short names for ElementsIncidentWithElementOfIncidenceStructure

```
▷ Hyperplanes(inc, v) (operation)
▷ Hyperplanes(v) (operation)
```

Returns: the elements of type j-1 incident with v, which is an element of type j

This operation is a shortcut to the operation ShadowOfElement, where the geometry is taken from v, and where the elements of type one less than the type of v are asked. v is allowed to be a complete projective space here, yielding the hyperplanes of that space.

```
gap> pg := PG(3,7);
ProjectiveSpace(3, 7)
gap> hyp := Random(Hyperplanes(pg));
<a plane in ProjectiveSpace(3, 7)>
gap> h1 := Random(Hyperplanes(hyp));
<a line in ProjectiveSpace(3, 7)>
gap> h2 := Random(Hyperplanes(h1));
<a point in ProjectiveSpace(3, 7)>
gap> ps := SymplecticSpace(7,3);
W(7, 3)
gap> solid := Random(Solids(ps));
<a solid in W(7, 3)>
gap> plane := Random(Hyperplanes(solid));
<a plane in W(7, 3)></a>
```

3.8 Changing the ambient geometry of elements of a Lie geometry

A Lie geometry, i.e., an object in the category IsLieGeometry, is naturally embedded in a projective space. This is of course in a mathematical sense. In FinInG, certain embeddings are implemented by providing a mapping between geometries. The Lie geometries are in some sense hard wired embedded, just simply because a category containing elements of a Lie geometry, is always a subcategory of IsSubspaceOfProjectiveSpace. As a consequence, operations applicable to objects in the category IsSubspaceOfProjectiveSpace are by default applicable to objects in any subcategory, so to elements of any Lie geometry. When dealing with elements of e.g. different polar spaces in the same projective space, this yields a natural way of working with them, and investigating relations between them, without bothering about all necessary mappings. On the other hand, in some situations, it is impossible to decide in which geometry an element has to be considered. An easy example is the following. Consider two different quadrics in the same projective space. The intersection of two elements, one of each quadric, is clearly an element of the ambient projective space. But also of both

quadrics. Without extra input of the user, the system cannot decide in which geometry to construct the intersection. To avoid complicated methods with many arguments, in such situations, the resulting element will be constructed in the common ambient projective space. Only in clear situations, where the ambient geometry of all elements is the same, and equal to the geometry of the resulting element, the resulting element will be constructed in this common geometry. We provide however conversion operations for elements of Lie geometries.

3.8.1 ElementToElement

```
▷ ElementToElement(ps, el)
                                                                                   (operation)
▷ Embed(ps, el)
                                                                                   (operation)
   Returns: el as an element of ps
                                                               This
   Let
           ps
                  be
                         any
                                 Lie
                                         geometry.
                                                                        method
                                                                                    returns
VectorSpaceToElement(ps, ElementToVectorSpace(el)), if the conversion is possible.
Embed is declared as a synonym of ElementToElement.
```

```
_ Example .
gap> p := VectorSpaceToElement(PG(3,7),[0,1,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> q := ElementToElement(HyperbolicQuadric(3,7),p);
<a point in Q+(3, 7)>
gap> r := VectorSpaceToElement(PG(3,7),[1,1,0,0]*Z(7)^0);
<a point in ProjectiveSpace(3, 7)>
gap> ElementToElement(HyperbolicQuadric(3,7),r);
Error, <v> does not generate an element of <geom> called from
VectorSpaceToElement( geom, Unpack( v ) ) called from
VectorSpaceToElement( ps, UnderlyingObject( el ) ) called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 11 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

Chapter 4

Projective Spaces

In this chapter we describe how to use FinInG to work with finite projective spaces.

4.1 Projective Spaces and basic operations

A projective space is a point-line incidence geometry, satisfying a few well known axioms. An axiomatic treatment can be found in [VY65a] and [VY65b]. In FinInG, we deal with *finite Desarguesian projective spaces*. It is well known that these geometries can be described completely using vector spaces over finite fields. The elements of the projective space are all nontrivial subspaces of the vector space. So the projective points are the one-dimensional subspaces, the projective lines are the two-dimensional subspaces, and so on. From the axiomatic point of view, a projective space is a point-line geometry, and has rank at least 2. But a projective line is obtained if we start with a two dimensional vector space. Starting with a one dimensional vector space yields a single projective point. Both examples are not a projective space in the axiomatic point of view, but in FinInG they are considered as projective spaces.

4.1.1 IsProjectiveSpace

▷ IsProjectiveSpace (Category)

This category is a subcategory of IsLieGeometry, and contains all finite Desarguesian projective spaces.

We refer the reader to [HT91] for the necessary background theory in case it is not provided in the manual.

4.1.2 ProjectiveSpace

Returns: a projective space

d must be a positive integer. In the first form, F is a field and the function returns the projective space of dimension d over F. In the second form, q is a prime power specifying the size of the field. The user may also use an alias, namely, the common abbreviation PG(d, q).

```
gap> ProjectiveSpace(3,GF(3));
ProjectiveSpace(3, 3)
gap> ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
```

4.1.3 ProjectiveDimension

```
    ▷ ProjectiveDimension(ps)
    ▷ Dimension(ps)
    ▷ Rank(ps)
    (attribute)
    (attribute)
```

Returns: the projective dimension of the projective space ps

```
gap> ps := PG(5,8);
ProjectiveSpace(5, 8)
gap> ProjectiveDimension(ps);
5
gap> Dimension(ps);
5
gap> Rank(ps);
5
```

4.1.4 BaseField

▷ BaseField(ps) (operation)

Returns: returns the base field for the projective space ps

```
gap> BaseField(ProjectiveSpace(3,81));
GF(3^4)
```

4.1.5 Underlying Vector Space

▷ UnderlyingVectorSpace(ps)

(operation)

Returns: a vector space

If ps is a projective space of dimension n over the field of order q, then this operation simply returns the underlying vector space, i.e. the n+1 dimensional vector space over the field of order q.

```
gap> ps := ProjectiveSpace(4,7);
ProjectiveSpace(4, 7)
gap> vs := UnderlyingVectorSpace(ps);
( GF(7)^5 )
```

4.1.6 AmbientSpace

Returns: a projective space

The ambient space of a projective space ps is the projective space itself. Hence, simply ps will be returned.

4.2 Subspaces of projective spaces

The elements of a projective space PG(n,q) are the subspaces of a suitable dimension. The empty subspace, also called the trivial subspace, has dimension -1 and corresponds to the zero dimensional vector subspace of the underlying vector space of PG(n,q), and is hence represented by the zero vector of length n+1 over the underlying field GF(q). The trivial subspace and the whole projective space are mathematically considered as a subspace of the projective geometry, but not as elements of the incidence geometry, and hence do in FinInG NOT belong to the category IsSubspaceOfProjectiveSpace.

4.2.1 VectorSpaceToElement

VectorSpaceToElement(geo, v)
 Returns: an element

geo is a projective space, and v is either a row vector (for points) or an $m \times n$ matrix (for an (m-1)-subspace of projective space of dimension n-1). In the case that v is a matrix, the rows represent generators for the subspace. An exceptional case is when v is a zero-vector, in which case the trivial subspace is returned.

```
_{-} Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> v := [3,5,6,0,3,2,3]*Z(7)^0;
[ Z(7), Z(7)^5, Z(7)^3, 0*Z(7), Z(7), Z(7)^2, Z(7)
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(6, 7)>
gap> Display(p);
[142.131]
gap> ps := ProjectiveSpace(3,4);
ProjectiveSpace(3, 4)
gap> v := [1,1,0,1]*Z(4)^0;
[Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0]
gap> p := VectorSpaceToElement(ps,v);
<a point in ProjectiveSpace(3, 4)>
gap> mat := [[1,0,0,1],[0,1,1,0]]*Z(4)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in ProjectiveSpace(3, 4)>
gap> e := VectorSpaceToElement(ps,[]);
Error, <v> does not represent any element called from
<function "unknown">( <arguments> )
called from read-eval loop at line 17 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
```

```
brk> quit;
```

4.2.2 EmptySubspace

▷ EmptySubspace(ps)

(operation)

Returns: the trivial subspace in the projective ps

The object returned by this operation is contained in every projective subspace of the projective space ps, but is not an element of ps. Hence, testing incidence results in an error message.

```
gap> e := EmptySubspace(PG(5,9));
< empty subspace >
gap> p := VectorSpaceToElement(PG(5,9),[1,0,0,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(5, 9)>
gap> e*p;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound Error, no 1st choice method found for '*' on 2 arguments called from <function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
    called from read-eval loop at line 10 of *stdin*
    you can 'quit;' to quit to outer loop, or
    you can 'return;' to continue
    brk> quit;
gap> e in p;
true
```

4.2.3 ProjectiveDimension

▷ ProjectiveDimension(sub)

(operation)

Returns: the projective dimension of a subspace of a projective space. The operation ProjectiveDimension is also applicable on the EmptySubspace.

```
gap> ps := PG(2,5);
ProjectiveSpace(2, 5)
gap> v := [[1,1,0],[0,3,2]]*Z(5)^0;
[ [ Z(5)^0, Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^3, Z(5) ] ]
gap> line := VectorSpaceToElement(ps,v);
<a line in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(line);
1
gap> Dimension(line);
1
gap> p := VectorSpaceToElement(ps,[1,2,3]*Z(5)^0);
<a point in ProjectiveSpace(2, 5)>
gap> ProjectiveDimension(p);
0
gap> Dimension(p);
0
gap> ProjectiveDimension(EmptySubspace(ps));
```

-1

4.2.4 ElementsOfIncidenceStructure

▷ ElementsOfIncidenceStructure(ps, j)

(operation)

Returns: the collection of elements of the projective space ps of type j

For the projective space ps of dimension d and the type j (where $1 \le j \le d$), this operation returns the collection of j-1 dimensional subspaces. An error message is produced when the projective space ps has no elements of the required type.

```
Example
gap> ps := ProjectiveSpace(6,7);
ProjectiveSpace(6, 7)
gap> ElementsOfIncidenceStructure(ps,1);
<points of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,2);
of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,3);
<planes of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,4);
<solids of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,5);
oj. 4-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,6);
proj. 5-subspaces of ProjectiveSpace(6, 7)>
gap> ElementsOfIncidenceStructure(ps,7);
Error, <ps> has no elements of type <j> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 15 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

4.2.5 Short names for ElementsOfIncidenceStructure

```
ightharpoonup Points(ps) (operation)

ightharpoonup Lines(ps) (operation)

ightharpoonup Planes(ps) (operation)

ightharpoonup Solids(ps) (operation)

ightharpoonup Hyperplanes(ps) (operation)
```

Returns: The elements of ps of respective type 1, 2, 3, 4, and the hyperplanes An error message is produced when the projective space ps has no elements of a required type.

```
gap> ps := PG(6,13);
ProjectiveSpace(6, 13)
gap> Points(ps);
<points of ProjectiveSpace(6, 13)>
gap> Lines(ps);
of ProjectiveSpace(6, 13)>
```

```
gap> Planes(ps);
  <planes of ProjectiveSpace(6, 13)>
  gap> Solids(ps);
  <solids of ProjectiveSpace(6, 13)>
  gap> Hyperplanes(ps);
  <proj. 5-subspaces of ProjectiveSpace(6, 13)>
  gap> ps := PG(2,2);
  ProjectiveSpace(2, 2)
  gap> Hyperplanes(ps);
```

4.2.6 Incidence and containment

Returns: true or false

Recall that for projective spaces, incidence is symmetrized containment, where the empty subspace and the whole projective space are excluded as arguments for this operation, since they are not considered as elements of the geometry, but both the empty subspace and the whole projective space are allowed as arguments for \in.

```
_{-} Example _{\cdot}
gap> ps := ProjectiveSpace(5,9);
ProjectiveSpace(5, 9)
gap> p := VectorSpaceToElement(ps,[1,1,1,1,0,0]*Z(9)^0);
<a point in ProjectiveSpace(5, 9)>
gap> 1 := VectorSpaceToElement(ps,[[1,1,1,1,0,0],[0,0,0,0,1,0]]*Z(9)^0);
<a line in ProjectiveSpace(5, 9)>
gap> plane := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(9)^0);
<a plane in ProjectiveSpace(5, 9)>
gap> p * 1;
true
gap> 1 * p;
true
gap> IsIncident(p,1);
gap> p in 1;
true
gap> 1 in p;
false
gap> p * plane;
false
gap> 1 * plane;
false
gap> 1 in plane;
false
gap> e := EmptySubspace(ps);
< empty subspace >
gap> e * 1;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
```

```
Error, no 1st choice method found for '*' on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
  called from read-eval loop at line 21 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> e in 1;
true
gap> l in ps;
true
```

4.2.7 StandardFrame

▷ StandardFrame(ps)

(operation)

Returns: the standard frame of the projective space ps

4.2.8 Coordinates

Coordinates (p)Returns: the homogeneous coordinates of the projective point p

(attribute)

```
gap> p := Random(Points(PG(5,16)));
<a point in ProjectiveSpace(5, 16)>
gap> Coordinates(p);
[ Z(2)^0, Z(2^4)^13, Z(2)^0, Z(2^4)^8, Z(2^4)^3, Z(2^4)^7 ]
```

4.2.9 **DualCoordinatesOfHyperplane**

 $\qquad \qquad \triangleright \ \, {\tt DualCoordinatesOfHyperplane}({\tt hyp})$

(operation)

Returns: a list

The argument *hyp* is a hyperplane of a projective space. This operation returns the dual coordinates of the hyperplane *hyp*, i.e. the list with the coefficients of the equation defining the hyperplane *hyp* as an algebraic variety.

4.2.10 HyperplaneByDualCoordinates

⊳ HyperplaneByDualCoordinates(pg, list)

(operation)

Returns: a hyperplane of a projective space

The argument pg is a projective space, and list is the coordinate vector of a point of pg. This operation returns the hyperplane that has list as the list of coefficients of the equation defining the hyperplane as an algebraic variety.

4.2.11 EquationOfHyperplane

▷ EquationOfHyperplane(h)

(operation)

Returns: the equation of the hyperplane h of a projective space

```
Example
gap> hyperplane := VectorSpaceToElement(PG(3,2),[[1,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(2)^0);
<a plane in ProjectiveSpace(3, 2)>
gap> EquationOfHyperplane(hyperplane);
x_1+x_2
```

4.2.12 AmbientSpace

▷ AmbientSpace(el)

(operation)

Returns: returns the ambient space of an element el of a projective space. This operation is also applicable on the empty subspace and the whole space.

```
gap> ps := PG(3,27);
ProjectiveSpace(3, 27)
gap> p := VectorSpaceToElement(ps,[1,2,1,0]*Z(3)^3);
<a point in ProjectiveSpace(3, 27)>
gap> AmbientSpace(p);
ProjectiveSpace(3, 27)
```

4.2.13 BaseField

▷ BaseField(el)

(operation)

Returns: returns the base field of an element el of a projective space

This operation is also applicable on the trivial subspace and the whole space.

```
gap> ps := PG(5,8);
ProjectiveSpace(5, 8)
gap> p := VectorSpaceToElement(ps,[1,1,1,0,0,1]*Z(2));
<a point in ProjectiveSpace(5, 8)>
gap> BaseField(p);
GF(2^3)
```

4.2.14 Random

▷ Random(elements)

(operation)

Returns: a random element from the collection elements

The collection *elements* is an object in the category IsElementsOfIncidenceStructure, i.e. an object representing the set of elements of a certain incidence structure of a given type. The latter information can be derived e.g. using AmbientSpace and Type.

```
Example
gap > ps := PG(9,49);
ProjectiveSpace(9, 49)
gap> Random(Lines(ps));
<a line in ProjectiveSpace(9, 49)>
gap> Random(Points(ps));
<a point in ProjectiveSpace(9, 49)>
gap> Random(Solids(ps));
<a solid in ProjectiveSpace(9, 49)>
gap> Random(Hyperplanes(ps));
<a proj. 8-space in ProjectiveSpace(9, 49)>
gap> elts := ElementsOfIncidenceStructure(ps,6);
proj. 5-subspaces of ProjectiveSpace(9, 49)>
gap> Random(elts);
<a proj. 5-space in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^14,Z(7^2)^44,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7^2)^14,Z(7
Z(7)^5,
     [0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7^2)^2, Z(7^2)^13, Z(7^2)^19,
Z(7^2)^2
     [0*Z(7), 0*Z(7), Z(7)^{0}, 0*Z(7), 0*Z(7), 0*Z(7), Z(7^{2})^{2}, Z(7^{2})^{10}, Z(7^{2})^{18},
Z(7^2)^2,
      [0*Z(7), 0*Z(7), 0*Z(7), 2(7)^0, 0*Z(7), 0*Z(7), 2(7), 2(7)^2, 30, 2(7^2)^18, 2(7^2)^2
     [0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 2(7)^{0}, 0*Z(7), 2(7^{2})^{10}, 2(7^{2})^{28}, 2(7^{2})^{47},
Z(7^2)^29,
      [0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7^2)^9,Z(7^2)^42,Z(7^2)^34,
Z(7^2)^25,
gap> RandomSubspace(ps,3);
<a solid in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^{0}, 0*Z(7), 0*Z(7), 0*Z(7), Z(7^{2})^{17}, Z(7^{2})^{33}, Z(7^{2})^{4}, 0*Z(7), Z(7^{2}),
Z(7^2)^33,
     [0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), Z(7^2)^30, Z(7)^2, Z(7)^3, Z(7)^0, Z(7^2)^20, Z(7^2)^2
     [0*Z(7),0*Z(7),Z(7)^0,0*Z(7),Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,0,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,
Z(7),]
     [0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7)^2,Z(7)^0,Z(7)^2,Z(7)^0,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2,Z(7)^2
Z(7^2)^9,
gap> RandomSubspace(ps,7);
<a proj. 7-space in ProjectiveSpace(9, 49)>
gap> Display(last);
[[Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),2(7^2)^42,Z(7^2)^6]
35,]
```

```
[0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^43,Z(7^2),]
[0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^44,Z(7)^4,]
[0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7^2)^41,Z(7^2)^1
10,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),0*Z(7),Z(7^2)^37,Z(7^2)^1
12,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),0*Z(7),Z(7^2)^11,Z(7^2)^3
39,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,0*Z(7),Z(7^2)^22,Z(7^2)^1
10,]
[0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),0*Z(7),Z(7)^0,Z(7)^2,43,Z(7^2)^2
22,]
]
gap> RandomSubspace(ps);
<a proj. 6-space in ProjectiveSpace(9, 49)>
gap> RandomSubspace(ps);
<a proj. 6-space in ProjectiveSpace(9, 49)>
```

4.2.15 RandomSubspace

Returns: the first variant returns a random element of type i of the projective space ps. The second variant returns a random element of a random type of the projective space ps

```
Example -
gap > ps := PG(8,16);
ProjectiveSpace(8, 16)
gap> RandomSubspace(ps);
<a point in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 5-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 7-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a proj. 4-space in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
gap> RandomSubspace(ps);
<a plane in ProjectiveSpace(8, 16)>
```

4.2.16 Span

```
ightharpoonup \operatorname{Span}(u, v) (operation) 
ightharpoonup \operatorname{Span}(list) (operation)
```

Returns: an element or the empty subspace or the whole space

When u and v are elements of a projective space. This function returns the span of the two elements. When list is a list of elements of the same projective space, then this function returns the span of all elements in list. It is checked whether the elements u and v are elements of the same projective space. Although the trivial subspace and the whole projective space are not objects in the category IsSubspaceOfProjectiveSpace, they are allowed as arguments for this operation, and also for the second variant of this operation.

```
Example
gap> ps := ProjectiveSpace(3,3);
ProjectiveSpace(3, 3)
gap> p := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> q := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 3)>
gap> s := Span(p,q);
ProjectiveSpace(3, 3)
gap> s = Span([p,q]);
gap> t := Span(EmptySubspace(ps),p);
<a plane in ProjectiveSpace(3, 3)>
gap> t = p;
true
gap> Span(ps,p);
ProjectiveSpace(3, 3)
```

4.2.17 Meet

```
ightharpoonup  Meet(u, v) (operation) 
ightharpoonup  Meet(list) (operation)
```

Returns: an element or the empty subspace or the whole space

When u and v are elements of a projective space. This function returns the intersection of the two elements. When list is a list of elements of the same projective space, then this function returns the intersection of all elements in list. It is checked whether the elements u and v are elements of the same projective space. Although the trivial subspace and the whole projective space are not objects in the category IsSubspaceOfProjectiveSpace, they are allowed as arguments for this operation, and also for the second variant of this operation. We remark that the result of a Meet operation can be the empty subspace.

```
ProjectiveSpace(7, 8)

gap> p := Random(Solids(ps));

<a solid in ProjectiveSpace(7, 8)>
gap> q := Random(Solids(ps));

<a solid in ProjectiveSpace(7, 8)>
gap> s := Meet(p,q);

<empty subspace >
gap> Display(s);

<empty subspace >
gap> r := Random(Hyperplanes(ps));

<a proj. 6-space in ProjectiveSpace(7, 8)>
gap> Meet(p,r);
```

```
<a plane in ProjectiveSpace(7, 8)>
gap> Meet(q,r);
<a plane in ProjectiveSpace(7, 8)>
gap> Meet([p,q,r]);
< empty subspace >
```

4.2.18 FlagOfIncidenceStructure

▷ FlagOfIncidenceStructure(ps, els)

(operation)

Returns: the flag of the projective space ps, determined by the subspaces of ps in the list els. When els is empty, the empty flag is returned.

```
_ Example _
gap> ps := ProjectiveSpace(12,11);
ProjectiveSpace(12, 11)
gap> s1 := RandomSubspace(ps,8);
<a proj. 8-space in ProjectiveSpace(12, 11)>
gap> s2 := RandomSubspace(s1,6);
<a proj. 6-space in ProjectiveSpace(12, 11)>
gap> s3 := RandomSubspace(s2,4);
<a proj. 4-space in ProjectiveSpace(12, 11)>
gap> s4 := Random(Solids(s3));
<a solid in ProjectiveSpace(12, 11)>
gap> s5 := Random(Points(s4));
<a point in ProjectiveSpace(12, 11)>
gap> flag := FlagOfIncidenceStructure(ps,[s1,s3,s2,s5,s4]);
<a flag of ProjectiveSpace(12, 11)>
gap > ps := PG(4,5);
ProjectiveSpace(4, 5)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(4, 5)>
gap> 1 := Random(Lines(ps));
<a line in ProjectiveSpace(4, 5)>
gap> v := Random(Solids(ps));
<a solid in ProjectiveSpace(4, 5)>
gap> flag := FlagOfIncidenceStructure(ps,[v,1,p]);
Error, <els> does not determine a flag> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 19 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> flag := FlagOfIncidenceStructure(ps,[]);
<a flag of ProjectiveSpace(4, 5)>
```

4.2.19 IsEmptyFlag

▷ IsEmptyFlag(flag)

(operation)

Returns: return true if flag is the empty flag

4.2.20 IsChamberOfIncidenceStructure

▷ IsChamberOfIncidenceStructure(flag)

(operation)

Returns: true if flag is a chamber

```
gap> ps := PG(3,13);
ProjectiveSpace(3, 13)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(3, 13)>
gap> line := Random(Lines(plane));
<a line in ProjectiveSpace(3, 13)>
gap> point := Random(Points(line));
<a point in ProjectiveSpace(3, 13)>
gap> flag := FlagOfIncidenceStructure(ps,[point,line,plane]);
<a flag of ProjectiveSpace(3, 13)>
gap> IsChamberOfIncidenceStructure(flag);
true
```

4.3 Shadows of Projective Subspaces

4.3.1 ShadowOfElement

```
▷ ShadowOfElement(ps, el, i) (operation)
▷ ShadowOfElement(ps, el, str) (operation)
```

Returns: the elements of type *i* incident with *el*. The second variant determines the type *i* from the position of *str* in the list returned by TypesOfElementsOfIncidenceStructurePlural

```
_ Example
gap > ps := PG(4,3);
ProjectiveSpace(4, 3)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(4, 3)>
gap> shadowpoints := ShadowOfElement(ps,plane,1);
<shadow points in ProjectiveSpace(4, 3)>
gap> List(shadowpoints);
[ <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)> ]
gap> shadowlines := ShadowOfElement(ps,plane,2);
<shadow lines in ProjectiveSpace(4, 3)>
gap> List(shadowlines);
[ <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
  <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
  <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
  <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
  <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
  <a line in ProjectiveSpace(4, 3)>, <a line in ProjectiveSpace(4, 3)>,
```

```
<a line in ProjectiveSpace(4, 3)> ]
```

4.3.2 ShadowOfFlag

```
▷ ShadowOfFlag(ps, flag, i) (operation)
▷ ShadowOfFlag(ps, flag, str) (operation)
```

Returns: the type i shadow elements of the flag flag, i.e. the elements of type i incident with all elements of flag. The second variant determines the type i from the position of str in the list returned by TypesOfElementsOfIncidenceStructurePlural.

```
gap> ps := PG(5,7);
ProjectiveSpace(5, 7)
gap> p := VectorSpaceToElement(ps,[1,0,0,0,0,0]*Z(7)^0);
<a point in ProjectiveSpace(5, 7)>
gap> 1 := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0]]*Z(7)^0);
<a line in ProjectiveSpace(5, 7)>
gap> v := VectorSpaceToElement(ps,[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(7)^0);
<a plane in ProjectiveSpace(5, 7)>
gap> flag := FlagOfIncidenceStructure(ps,[v,l,p]);
<a flag of ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,4);
<shadow solids in ProjectiveSpace(5, 7)>
gap> s := ShadowOfFlag(ps,flag,"solids");
<shadow solids in ProjectiveSpace(5, 7)>
```

4.3.3 ElementsIncidentWithElementOfIncidenceStructure

```
▷ ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation
```

Returns: the elements of type *i* incident with *el*, in other words, the type *i* shadow of the element *el*

Internally, the function FlagOfIncidenceStructure is used to create a flag from list. This function also performs the checking.

```
___ Example _
gap> ps := PG(6,9);
ProjectiveSpace(6, 9)
gap> p := VectorSpaceToElement(ps, [1,0,1,0,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(p,3);
<shadow planes in ProjectiveSpace(6, 9)>
gap> line := VectorSpaceToElement(ps,[[1,1,1,1,0,0,0],[0,0,0,0,1,1,1]]*Z(9)^0);
<a line in ProjectiveSpace(6, 9)>
gap> els := ElementsIncidentWithElementOfIncidenceStructure(line,1);
<shadow points in ProjectiveSpace(6, 9)>
gap> List(els);
[ <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
  <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
  <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
  <a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)>,
```

```
<a point in ProjectiveSpace(6, 9)>, <a point in ProjectiveSpace(6, 9)> ]
```

4.3.4 Short names for ElementsIncidentWithElementOfIncidenceStructure

```
▷ Points(ps, v)
                                                                                                               (operation)
\triangleright Lines(ps, v)
                                                                                                              (operation)
\triangleright Planes(ps, v)
                                                                                                               (operation)
▷ Solids(ps, v)
                                                                                                               (operation)
▷ Hyperplanes(inc, v)
                                                                                                              (operation)
▷ Points(v)
                                                                                                              (operation)
\triangleright Lines(v)
                                                                                                              (operation)
\triangleright Planes(v)
                                                                                                               (operation)
▷ Solids(v)
                                                                                                               (operation)
▷ Hyperplanes(v)
                                                                                                              (operation)
```

Returns: The elements of the incidence geometry of the according type. If ps is not given as an argument, it is deduced from v as its ambient geometry.

```
gap> ps := PG(6,13);
ProjectiveSpace(6, 13)
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(6, 13)>
gap> Points(plane);
<shadow points in ProjectiveSpace(6, 13)>
gap> Lines(plane);
<shadow lines in ProjectiveSpace(6, 13)>
gap> Solids(plane);
<shadow solids in ProjectiveSpace(6, 13)>
gap> Hyperplanes(plane);
<shadow lines in ProjectiveSpace(6, 13)>
gap> Hyperplanes(plane);
<shadow lines in ProjectiveSpace(6, 13)>
gap> ElementsIncidentWithElementOfIncidenceStructure(plane,6);
<shadow proj. 5-subspaces in ProjectiveSpace(6, 13)>
```

4.4 Enumerating subspaces of a projective space

4.4.1 Iterator

▷ Iterator(subspaces)

(operation)

Returns: an iterator for the collection subspaces

We refer to the GAP operation Iterator for the definition of an iterator.

```
gap> pg := PG(5,7);
ProjectiveSpace(5, 7)
gap> planes := Planes(pg);
<planes of ProjectiveSpace(5, 7)>
gap> iter := Iterator(planes);
<iterator>
gap> NextIterator(iter);
```

```
<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(5, 7)>
gap> NextIterator(iter);
<a plane in ProjectiveSpace(5, 7)>
```

4.4.2 Enumerator

▷ Enumerator(subspaces)

(operation)

Returns: an enumerator for the collection subspaces

For complete collections of subspaces of a given type of a projective space, currently, no non-trivial enumerator is installed, i.e. this operation just returns a list containing all elements of the collection *subspaces*. Such a list can, of course, be used as an enumerator, but this might be time consuming.

```
gap> pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> lines := Lines(pg);
lines of ProjectiveSpace(3, 4)>
gap> enum := Enumerator(lines);;
gap> Length(enum);
357
```

4.4.3 List

```
▷ List(subspaces) (operation)

▷ AsList(subspaces) (operation)
```

Returns: the complete list of elements in the collection subspaces

The operation List will return a complete list, the operation AsList will return an orb object, representing a complete orbit, i.e. representing in this case a complete list. To obtain the elements explicitly, one has to issue the List operation with as argument the orb object again. Applying List directly to a collection of subspaces, refers to the enumerator for the collection, while using AsList uses the orb to compute all subspaces as an orbit.

```
gap> pg := PG(3,4);
ProjectiveSpace(3, 4)
gap> lines := Lines(pg);
lines of ProjectiveSpace(3, 4)>
gap> list := List(lines);;
gap> Length(list);
357
gap> aslist := AsList(lines);
<closed orbit, 357 points>
gap> list2 := List(aslist);;
gap> Length(list2);
357
```

Chapter 5

Projective Groups

A collineation of a projective space is a type preserving bijection of the elements of the projective space, that preserves incidence. The Fundamental Theorem of Projective Geometry states that every collineation of a Desarguesian projective space of dimension at least two is induced by a semilinear map of the underlying vector space. The group of all linear maps of a given n+1-dimensional vector space over a given field GF(q) is denoted by GL(n+1,q). This is a matrix group consisting of all nonsingular square n+1-dimensional matrices over GF(q). The group of all semilinear maps of the vector space V(n+1,q) is obtained as the semidirect product of GL(n+1,q) and Aut(GF(q)), and is denoted by $\Gamma L(n+1,q)$. Each semilinear map induces a collineation of PG(n,q). The Fundamental theorem of Projective Geometry also guarantees that the converse holds. Note also that $\Gamma L(n+1,q)$ does not act faithfully on the projective points, and the kernel of its action is the group of scalar matrices, Sc(n+1,q). So the group $P\Gamma L(n+1,q)$ is defined as the group $\Gamma L(n+1,q)/Sc(n+1,q)$, and the group PGL(n+1,q) as GL(n+1,q)/Sc(n+1,q). An element of the group PGL(n+1,q) is also called a *projectivity* or *homography* of PG(n,q), and the group PGL(n+1,q) is called the *projectivity group* or *homography group* of PG(n,q). An element of $P\Gamma L(n+1,q)$ is called a *collineation* of PG(n,q) and the group $P\Gamma L(n+1,q)$ is the *collineation group* of PG(n,q).

As usual, we also consider the special linear group SL(n+1,q), which is the subgroup of GL(n+1,q) of all matrices having determinant one. Its projective variant, i.e. PSL(n+1,q) is defined as $SL(n+1,q)/(SL(n+1,q)\cap Sc(n+1,q))$ and is called the *special homography group* or *special projectivity group* of PG(n,q).

Consider the projective space PG(n,q). As described in Chapter 4, a point of PG(n,q) is represented by a row vector. A k-dimensional subspace of PG(n,q) is represented by a generating set of k+1 points, and as such, by a $(k+1)\times (n+1)$ matrix. The convention in FinlnG is that a collineation ϕ with underlying matrix A and field automorphism θ maps the projective point represented by row vector (x_0, x_1, \ldots, x_n) to the projective point represented by row vector $(y_0, y_1, \ldots, y_n) = ((x_0, x_1, \ldots, x_n)A)^{\theta}$. This convention determines completely the action of collineations on all elements of a projective space, and it follows that the product of two collineations ϕ_1, ϕ_2 with respective underlying matrices A_1, A_2 and respective underlying field automorphisms θ_1, θ_2 is the collineation with underlying matrix $A_1 \cdot A_2^{\theta_1^{-1}}$ and underlying field automorphism $\theta_1 \theta_2$.

A correlation of the projective space PG(n,q) is a collineation from PG(n,q) to its dual. A projectivity from PG(n,q) to its dual is sometimes called a reciprocity. The standard duality of the projective space PG(n,q) maps any point v with coordinates (x_0,x_1,\ldots,x_n) on the hyperplane with equation $x_0X_0+x_1X_1+\cdots+x_nX_n$. The standard duality acts as an automorphism on $P\Gamma L(n+1,q)$ by mapping the underlying matrix of a collineation to its inverse transpose matrix. (Recall that

the frobenius automorphism and the standard duality commute.) The convention in FinInG is that a correlation ϕ with underlying matrix A and field automorphism θ maps that projective point represented by row vector (x_0, x_1, \ldots, x_n) to the projective hyperplane represented by row vector $(y_0, y_1, \ldots, y_n) = ((x_0, x_1, \ldots, x_n)A)^{\theta}$ i.e. $(y_0, y_1, \ldots, y_n) = ((x_0, x_1, \ldots, x_n)A)^{\theta}$ are the dual coordinates of the hyperplane.

The product of two correlations of PG(n,q) is a collineation, and the product of a collineation and a correlation is a correlation. So the set of all collineations and correlations of PG(n,q) forms a group, called the *correlation-collineation group* of PG(n,q). The correlation-collineation group of PG(n,q) is isomorphic to the semidirect product of $P\Gamma L(n+1,q)$ with the cyclic group of order 2 generated by the *standard duality* of the projective space PG(n,q). The convention determines completely the action of correlations and collineations on all elements of a projective space, and it follows that the product of two elements of the correlation-collineation group ϕ_1, ϕ_2 with respective underlying matrices A_1, A_2 , respective underlying field automorphisms θ_1, θ_2 , and respective underlying projective space isomorphisms (standard duality or identity map) δ_1, δ_2 , is the element of the correlation-collineation group with underlying matrix $A_1 \cdot (A_2^{\theta_1^{-1}})^{\delta_1}$, underlying field automorphism $\theta_1\theta_2$, and underlying projective space automorphism $\delta_1\delta_2$, where the action of δ_1 on a matrix is defined as taking the transpose inverse if δ_1 is the standard duality, and as the identity map if δ_1 is the identity.

Action functions for collineations and correlations on the subspaces of a projective space are described in detail in Section 5.8

We mention that the commands PGL (and ProjectiveGeneralLinearGroup) and PSL (and ProjectiveSpecialLinearGroup) are available in GAP and return a (permutation) group isomorphic to the required group. Therefore we do not provide new methods for these commands, but assume that the user will obtain these groups as homography or special homography group of the appropriate projective space. We will follow this philosophy for the other classical groups. The terminology projective semilinear group will be used for a group generated by collineations of a projective space.

5.1 Projectivities, collineations and correlations of projective spaces.

These are the different type of actions on projective spaces in FinInG, and they naturally give rise to the following distinct categories and representations. Note that these categories and representations are to be considered on a non-user level. Below we describe all user construction methods that hide nicely these technical details.

5.1.1 Categories for group elements

```
    ▷ IsProjGrpEl
    ▷ IsProjGrpElWithFrob
    ▷ IsProjGrpElWithFrobWithPSIsom

(Category)
(Category)
```

IsProjGrpEl, IsProjGrpElWithFrob, and IsProjGrpElWithFrobWithPSIsom are the categories naturally induced by the notions of projectivities, collineations, and correlations of a projective space.

5.1.2 Representations for group elements

```
    ▷ IsProjGrpElRep (Representation)
    ▷ IsProjGrpElWithFrobRep (Representation)
    ▷ IsProjGrpElWithFrobWithPSIsomRep (Representation)
```

representation naturally induced IsProjGrpElRep is the by projectivity; IsProjGrpElWithFrobRep is the representation naturally induced by the notion of a collineation of projective space; and IsProjGrpElWithFrobWithPSIsomRep is the representation naturally induced by a correlation of a projective space. This means that an object in the representation IsProjGrpElRep has as underlying object a matrix; an object in the category IsProjGrpElWithFrobRep has as underlying object a pair consisting of a matrix and a field automorphism; and IsProjGrpElWithFrobWithPSIsomRep has as underlying object a triple consisting of a matrix, a field automorphism and an isomorphism from the projective space to its dual space. Also the base field is stored as a component in the representation.

The above mentioned categories allow us to make a distinction between projectivities, collineations and correlations apart from their representation. However, in FinInG, a group element constructed in the categories IsProjGrpElMore is always constructed in the representation IsProjGrpElMoreRep. Furthermore, projectivities of projective spaces (and also collineations of projective spaces) will by default be constructed in the category IsProjGrpElWithFrobRep. This technical choice was made by the developers to have the projectivity groups naturally embedded in the collineation groups. Correlations of projective spaces will be constructed in the category IsProjGrpElWithFrobWithPSIsom.

5.1.3 Projectivities

```
▷ IsProjectivity (Property)
```

IsProjectivity is a property. Projectivities are the elements of PGL(n+1,q). Every element belonging to IsProjGrpEl is by construction a projectivity. If IsProjectivity is applied to a an element belonging to IsProjGrpElWithFrob, then it verifies whether the underlying field automorphism is the identity. If IsProjectivity is applied to a an element belonging to IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is the identity, and whether the projective space isomorphism is the identity. This operation provides a user-friendly method to distinguish the projectivities from the projective strictly semilinear maps, and the correlations of a projective space.

```
3,GF(2^2)) ) ) >
gap> IsProjectivity(g);
false
```

5.1.4 Collineations of projective spaces

```
▷ IsCollineation (Property)
```

IsCollineation is property. All elements of $P\Gamma L(n+1,q)$ are collineations, and therefore all elements belonging to IsProjGrpElWithFrob are collineations. But also a projectivity is a collineation, as well as an element belonging to IsProjGrpElWithFrobWithPSIsom with projective space isomorphism equal to the identity, is a collineation.

5.1.5 Projective strictly semilinear maps

```
▷ IsStrictlySemilinear
```

(Property)

IsStrictlySemilinear is a property that checks whether a given collineation has a non-trivial underlying field automorphisms, i.e. whether the element belongs to $P\Gamma L(n+1,q)$, but not to PGL(n+1,q). If IsStrictlySemilinear is applied to a an element belonging to IsProjGrpElWithFrobWithPSIsom, then it verifies whether the underlying field automorphism is different from the identity, and whether the projective space isomorphism equals the identity. This operation provides a user-friendly method to distinguish the projective strictly semilinear maps from projectivities inside the category of collineations of a projective space.

```
gap> g := Random(HomographyGroup(PG(3,25)));
  < a collineation: <cmat 4x4 over GF(5,2)>, F^0>
  gap> IsStrictlySemilinear(g);
  false
  gap> g := Random(CollineationGroup(PG(3,25)));
  < a collineation: <cmat 4x4 over GF(5,2)>, F^5>
  gap> IsStrictlySemilinear(g);
  true
```

5.1.6 Correlations and collineations

```
    ▷ IsProjGrpElWithFrobWithPSIsom
    ▷ IsCorrelationCollineation
    ▷ IsCorrelation
    ○ Property
```

The underlying objects of a correlation-collineation in FinInG are a nonsingular matrix, a field automorphism and a projective space isomorphism. IsProjGrpElWithFrobWithPSIsom is the category of these objects. If the projective space isomorphism is not the identity, then the element is a correlation, and IsCorrelation will return true. IsCorrelationCollineation is a synonym of IsProjGrpElWithFrobWithPSIsom.

5.2 Construction of projectivities, collineations and correlations.

FinInG. projectivities collineations In and both constructed the are in catcorrelations egory IsProjGrpElWithFrob; are constructed in the category IsProjGrpElWithFrobWithPSIsom.

5.2.1 Projectivity

```
    ▷ Projectivity(mat, f) (operation)
    ▷ Projectivity(pg, mat) (operation)
    Returns: a projectivity of a projective space
```

The argument mat must be a nonsingular matrix over the finite field f. In the second variant, the size of the nonsingular matrix mat must be one more than the dimension of the projective space pg. This creates an element of a projectivity group. But the returned object belongs to IsProjGrpElWithFrob!

```
Example

gap> mat := [[1,0,0],[0,1,0],[0,0,1]]*Z(9)^0;

[ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3) ],

        [ 0*Z(3), 0*Z(3), Z(3)^0 ] ]

gap> Projectivity(mat,GF(9));

< a collineation: <cmat 3x3 over GF(3,2)>, F^0>
```

5.2.2 CollineationOfProjectiveSpace

```
▷ CollineationOfProjectiveSpace(mat, frob, f)
                                                                                 (operation)
▷ CollineationOfProjectiveSpace(mat, f)
                                                                                 (operation)
▷ CollineationOfProjectiveSpace(mat, frob, f)
                                                                                  (operation)
▷ CollineationOfProjectiveSpace(mat, f)
                                                                                  (operation)
▷ CollineationOfProjectiveSpace(pg, mat)
                                                                                  (operation)
▷ CollineationOfProjectiveSpace(pg, mat, frob)
                                                                                 (operation)
▷ Collineation(pg, mat)
                                                                                  (operation)
▷ Collineation(pg, mat, frob)
                                                                                  (operation)
```

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and pg is a projective space. This function (and its shorter version) returns the collineation with matrix mat and automorphism frob of the field f. If frob is not specified then the companion automorphism of the resulting group element will be the identity map. The returned object belongs to the category IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of frob equals f. When the arguments pg and mat are used, then it is checked that these two arguments are compatible.

```
_{-} Example _{-}
gap> mat:=
> [[Z(2^3)^6, Z(2^3), Z(2^3)^3, Z(2^3)^3], [Z(2^3)^6, Z(2)^0, Z(2^3)^2, Z(2^3)^3],
> [0*Z(2), Z(2^3)^4, Z(2^3), Z(2^3)], [Z(2^3)^6, Z(2^3)^5, Z(2^3)^3, Z(2^3)^5]];
[ [ Z(2^3)^6, Z(2^3), Z(2^3)^3, Z(2^3)^3 ],
  [ Z(2^3)^6, Z(2)^0, Z(2^3)^2, Z(2^3)^3 ],
  [0*Z(2), Z(2^3)^4, Z(2^3), Z(2^3)],
  [ Z(2^3)^6, Z(2^3)^5, Z(2^3)^3, Z(2^3)^5 ] ]
gap> frob := FrobeniusAutomorphism(GF(8));
FrobeniusAutomorphism(GF(2<sup>3</sup>))
gap> phi := ProjectiveSemilinearMap(mat,frob^2,GF(8));
< a collineation: <cmat 4x4 over GF(2,3)>, F^4>
\texttt{gap} > \texttt{mat2} := [[Z(2^8)^31, Z(2^8)^182, Z(2^8)^49], [Z(2^8)^224, Z(2^8)^25, Z(2^8)^45],
> [Z(2^8)^128,Z(2^8)^165,Z(2^8)^217]];
[ [Z(2^8)^31, Z(2^8)^182, Z(2^8)^49], [Z(2^8)^224, Z(2^8)^25, Z(2^8)^45],
  [ Z(2^8)^128, Z(2^8)^165, Z(2^8)^217 ] ]
gap> psi := CollineationOfProjectiveSpace(mat2,GF(256));
< a collineation: <cmat 3x3 over GF(2,8)>, F^0>
```

5.2.3 ProjectiveSemilinearMap

```
▷ ProjectiveSemilinearMap(mat, frob, f)
```

(operation)

Returns: a projectivity of a projective space

mat is a nonsingular matrix, frob is a field automorphism, and f is a field. This function returns the collineation with matrix mat and automorphism frob. The returned object belongs to the category IsProjGrpElWithFrob. When the argument frob is given, it is checked whether the source of frob equals f.

5.2.4 IdentityMappingOfElementsOfProjectiveSpace

```
▷ IdentityMappingOfElementsOfProjectiveSpace(ps)
```

(operation)

This operation returns the identity mapping on the collection of subspaces of a projective space ps.

5.2.5 StandardDualityOfProjectiveSpace

```
⊳ StandardDualityOfProjectiveSpace(ps)
```

(operation)

This operation returns the standard duality of the projective space ps

```
_ Example
gap> ps := ProjectiveSpace(4,5);
ProjectiveSpace(4, 5)
gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(4,GF(5)) ) )
IdentityMapping( <All elements of ProjectiveSpace(4, 5)> )
gap> p := VectorSpaceToElement(ps,[1,2,3,0,1]*Z(5)^0);
<a point in ProjectiveSpace(4, 5)>
gap> h := p^delta;
<a solid in ProjectiveSpace(4, 5)>
gap> UnderlyingObject(h);
<cmat 4x5 over GF(5,1)>
gap> Unpack(last);
[ [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^2 ],
  [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), Z(5)^3 ],
  [ 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5), Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5) ] ]
```

5.2.6 CorrelationOfProjectiveSpace

```
▷ CorrelationOfProjectiveSpace(mat, f) (operation)
▷ CorrelationOfProjectiveSpace(mat, frob, f) (operation)
▷ CorrelationOfProjectiveSpace(mat, f, delta) (operation)
▷ CorrelationOfProjectiveSpace(mat, frob, f, delta) (operation)
▷ CorrelationOfProjectiveSpace(pg, mat, frob, delta) (operation)
▷ Correlation(pg, mat, frob, delta) (operation)
```

(operation)

mat is a nonsingular matrix, frob is a field automorphism, f is a field, and delta is the standard duality of the projective space PG(n,q). This function returns the correlation with matrix mat, automorphism frob, and standard duality delta. If frob is not specified then the companion automorphism of the resulting group element will be the identity map. If the user specifies delta, then it must be the standard duality of a projective space, created using StandardDualityOfProjectiveSpace (5.2.5), or the identity mapping on the collection of subspaces of a projective space, created using IdentityMappingOfElementsOfProjectiveSpace (5.2.4). If not specified, then the companion vector space isomorphism is the identity mapping. The returned object belongs to the category IsProjGrpElWithFrobWithPSIsom

```
Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7^3);
[ [ Z(7^3), 0*Z(7), 0*Z(7) ], [ Z(7^3)^58, 0*Z(7), Z(7^3)^115 ],
 [ 0*Z(7), Z(7^3)^286, Z(7^3)^229 ] ]
gap> phi1 := CorrelationOfProjectiveSpace(mat,GF(7^3));
3 over GF(7,3)>, F^0, IdentityMapping( <All elements of ProjectiveSpace(2,
343)> ) >
gap> frob := FrobeniusAutomorphism(GF(7^3));
Frobenius Automorphism (GF(7^3))
gap> phi2 := CorrelationOfProjectiveSpace(mat,frob,GF(7^3));
3 over GF(7,3)>, F^7, IdentityMapping( <All elements of ProjectiveSpace(2,
343)> ) >
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7^3)));
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)))
gap> phi3 := CorrelationOfProjectiveSpace(mat,GF(7^3),delta);
3 over GF(7,
3)>, F^0, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) >
gap> phi4 := CorrelationOfProjectiveSpace(mat,frob,GF(7^3),delta);
3 over GF(7,3)>, F^
7, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3))))>
```

5.3 Basic operations for projectivities, collineations and correlations of projective spaces

5.3.1 Representative

g is a projectivity, collineation or correlation of a projective space. This function returns the representative components that determine g, i.e. a matrix, a matrix and a field automorphism, and a matrix, a field automorphism, and a vector space isomorphism, respectively.

```
gap> g:=CollineationGroup( ProjectiveSpace(2,49));
The FinInG collineation group PGammaL(3,49)
gap> x:=Random(g);;
gap> Representative(x);
[ <immutable cmat 3x3 over GF(7,2)>, FrobeniusAutomorphism( GF(7^2) ) ]
```

5.3.2 MatrixOfCollineation

```
▷ MatrixOfCollineation(g)
```

(operation)

g is a collineation (including a projectivity) of a projective space. This function returns the matrix that was used to construct g.

```
Example

gap> g:=CollineationGroup( ProjectiveSpace(3,3));

The FinInG collineation group PGL(4,3)

gap> x:=Random(g);;

gap> MatrixOfCollineation(x);

<cmat 4x4 over GF(3,1)>

gap> Unpack(last);

[ [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],

[ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), 0*Z(3) ] ]
```

5.3.3 MatrixOfCorrelation

```
▷ MatrixOfCorrelation(g)
```

(operation)

g is a correlation of a projective space. This function returns the matrix that was used to construct g.

```
Example

gap> g:=CorrelationCollineationGroup( ProjectiveSpace(4,9));

The FinInG correlation-collineation group PGammaL(5,9) : 2

gap> x:=Random(g);;

gap> MatrixOfCorrelation(x);

<cmat 5x5 over GF(3,2)>

gap> Unpack(last);

[ [ Z(3^2)^3, Z(3^2)^6, 0*Z(3), 0*Z(3), 0*Z(3) ],

       [ Z(3^2), Z(3^2)^3, Z(3^2)^2, Z(3^2)^5, Z(3^2) ],

       [ Z(3^2)^2, Z(3^2)^3, Z(3^2), Z(3^2), Z(3^2)^3 ],

       [ Z(3^2)^2, Z(3^2), Z(3^2)^6, Z(3^2), Z(3^2)^5 ],

       [ Z(3^2), Z(3^2)^3, Z(3^2), O*Z(3), Z(3^2)^6 ] ]
```

5.3.4 BaseField

▷ BaseField(g)
Returns: a field

(operation)

g is a projectivity, collineation or correlation of a projective space. This function returns the base field that was used to construct g.

```
Example

gap> mat := [[0,1,0],[1,0,0],[0,0,2]]*Z(3)^0;

[ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ],

        [ 0*Z(3), 0*Z(3), Z(3) ] ]

gap> g := Projectivity(mat,GF(3^6));

< a collineation: <cmat 3x3 over GF(3,6)>, F^0>

gap> BaseField(g);

GF(3^6)
```

5.3.5 FieldAutomorphism

```
▷ FieldAutomorphism(g)
```

(operation)

g is a collineation of a projective space or a correlation of a projective space. This function returns the companion field automorphism which defines g. Note that in the following example, you may want to execute it several times to see the different possible results generated by the random choice of projective semilinear map here.

```
gap> g:=CollineationGroup( ProjectiveSpace(3,9));
The FinInG collineation group PGammaL(4,9)
gap> x:=Random(g);;
gap> FieldAutomorphism(x);
IdentityMapping( GF(3^2) )
```

5.3.6 ProjectiveSpaceIsomorphism

```
▷ ProjectiveSpaceIsomorphism(g)
```

(operation)

g is a correlation of a projective space. This function returns the companion isomorphism of the projective space which defines g.

```
Example
gap> mat := [[1,0,0],[3,0,2],[0,5,4]]*Z(7^3);
[[Z(7^3), 0*Z(7), 0*Z(7)], [Z(7^3)^58, 0*Z(7), Z(7^3)^115],
  [ 0*Z(7), Z(7^3)^286, Z(7^3)^229 ] ]
gap> frob := FrobeniusAutomorphism(GF(7^3));
Frobenius Automorphism (GF(7^3))
gap> delta := StandardDualityOfProjectiveSpace(ProjectiveSpace(2,GF(7^3)));
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)))
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(7^3),delta);
3 over GF(7,3)>, F^{-}
7, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
2,GF(7^3)) ) >
gap> ProjectiveSpaceIsomorphism(phi);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
```

```
2,GF(7^3)) ) )
```

5.3.7 Order

```
\triangleright Order(g) (operation)
```

g is a projectivity, collineation or correlation of a projective space. This function returns the order of g.

```
gap> x := Random(CollineationGroup(PG(4,9)));
< a collineation: <cmat 5x5 over GF(3,2)>, F^3>
gap> t := Order(x);
32
gap> IsOne(x^t);
true
```

5.4 The groups PΓL, PGL, and PSL in FinInG

As mentioned before the commands PGL (and ProjectiveGeneralLinearGroup) and PSL (and ProjectiveSpecialLinearGroup) are already available in GAP and return a (permutation) group isomorphic to the required group. In FinlnG, different categories are created for these groups.

5.4.1 ProjectivityGroup

Returns: the group of projectivities of geom

Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group of projectivities PGL(n+1,q) of the projective space PG(n,q). Note that although a projectivity is a collineation with the identity as associated field isomorphism, this group belongs to the category IsProjectiveGroupWithFrob, and its elements belong to IsProjGrpElWithFrob.

```
_ Example _
gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(4,16)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(5,81)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> ProjectivityGroup(ps);
```

```
The FinInG projectivity group PGL(6,3)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> ProjectivityGroup(ps);
The FinInG projectivity group PGL(3,2)
gap> HomographyGroup(ps);
The FinInG projectivity group PGL(3,2)
```

5.4.2 CollineationGroup

▷ CollineationGroup(geom)

(operation)

Returns: the group of collineations of geom

Let geom be the projective space PG(n,q). This operation returns the group of collineations $P\Gamma L(n+1,q)$ of the projective space PG(n,q). If GF(q) has no non-trivial field automorphisms, i.e. when q is prime, the group PGL(n+1,q) is the full collineation group and will be returned.

```
_ Example
gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> CollineationGroup(ps);
The FinInG collineation group PGammaL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> CollineationGroup(ps);
The FinInG collineation group PGammaL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> CollineationGroup(ps);
The FinInG collineation group PGL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> CollineationGroup(ps);
The FinInG collineation group PGL(3,2)
```

5.4.3 SpecialProjectivityGroup

```
▷ SpecialProjectivityGroup(geom) (operation)
▷ SpecialHomographyGroup(geom) (operation)
```

Returns: the group of special projectivities of geom

Let geom be the projective space PG(n,q) This operation (and its synonym) returns the group of special projectivities PSL(n+1,q) of the projective space PG(n,q).

```
gap> ps := ProjectiveSpace(3,16);
ProjectiveSpace(3, 16)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(4,16)
gap> SpecialHomographyGroup(ps);
```

```
The FinInG PSL group PSL(4,16)
gap> ps := ProjectiveSpace(4,81);
ProjectiveSpace(4, 81)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(5,81)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(5,81)
gap> ps := ProjectiveSpace(5,3);
ProjectiveSpace(5, 3)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(6,3)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(6,3)
gap> ps := ProjectiveSpace(2,2);
ProjectiveSpace(2, 2)
gap> SpecialProjectivityGroup(ps);
The FinInG PSL group PSL(3,2)
gap> SpecialHomographyGroup(ps);
The FinInG PSL group PSL(3,2)
```

5.4.4 IsProjectivityGroup

▷ IsProjectivityGroup

(Property)

IsProjectivityGroup is a property, which subgroups of a the CollineationGroup or a CorrelationCollineationGroup of a projective space might have. It checks whether the generators are projectivities. Of course ProjectivityGroup has this property.

5.4.5 IsCollineationGroup

```
▷ IsCollineationGroup
```

(Property)

IsCollineationGroup is a property, which subgroups of a the CorrelationCollineationGroup of a projective space might have. It checks whether the generators are collineations. Of course ProjectivityGroup and CollineationGroup have this property.

5.4.6 CorrelationCollineationGroup

▷ CorrelationCollineationGroup(geom)

(operation)

Returns: the group of correlations and collineations of geom

Let *geom* be the projective space PG(n,q). This operation returns the correlations and collineations of PG(n,q).

```
gap> pg := PG(4,3);
ProjectiveSpace(4, 3)
gap> group := CorrelationCollineationGroup(pg);
The FinInG correlation-collineation group PGL(5,3) : 2
gap> pg := PG(3,8);
```

```
ProjectiveSpace(3, 8)
gap> group := CorrelationCollineationGroup(pg);
The FinInG correlation-collineation group PGammaL(4,8) : 2
```

5.5 Basic operations for projective groups

5.5.1 BaseField

ightharpoonup BaseField(g) (operation)

Returns: a field

g must be a projective group. This function finds the base field of the vector space on which the group acts.

5.5.2 Dimension

 \triangleright Dimension(g) (attribute)

Returns: a number

g must be a projective group. This function finds the dimension of the vector space on which the group acts.

5.6 Natural embedding of a collineation group in a correlation/collineation group

In FinInG a collineation group is not constructed as a subgroup of a correlation group. However, collineations can be multiplied with correlations (if they both belong mathematically to the same correlation group.

5.6.1 Embedding

▷ Embedding(coll, corr)

(function)

Let coll be a the full collineation group of a projective space, and corr its full correlation group. FinlnG provides a method for this operation Embedding, returning the natural embedding from coll into corr. Remark that only an embedding of a collineation group into a correlation group with exactly the same underlying projective space is possible.

```
Example

gap> coll := CollineationGroup(PG(4,8));

The FinInG collineation group PGammaL(5,8)

gap> corr := CorrelationCollineationGroup(PG(4,8));

The FinInG correlation-collineation group PGammaL(5,8) : 2

gap> phi := Embedding(coll,corr);

MappingByFunction( The FinInG collineation group PGammaL(5,8), The FinInG correlation-collineation group PGammaL(5,8) : 2, function( y ) ... end )
```

5.7 Basic action of projective group elements

5.7.1 \^

Returns: a subspace of a projective space

This is an operation which returns the image of x, a subspace of a projective space, under g, an element of the projective group, the collineation group, or the correlation group.

5.8 Projective group actions

In this section we give more detailed about the actions that are used in FinInG for projective groups. Consider the projective space PG(n,q). As described in Chapter 4, a point of PG(n,q) is represented by a row vector and a k-dimensional subspace of PG(n,q) is represented by a $(k+1) \times (n+1)$ matrix.

Consider a point p with row vector (x_0, x_1, \ldots, x_n) , and a collineation or correlation ϕ with underlying matrix A and field automorphism θ . Define the row vector $(y_0, y_1, \ldots, y_n) = ((x_0, x_1, \ldots, x_n)A)^{\theta}$. When ϕ is a collineation, p^{ϕ} is the point with underlying row vector (y_0, y_1, \ldots, y_n) . When ϕ is a correlation, p^{ϕ} is a hyperplane of PG(n,q) with equation $y_0X_0 + y_1X_1 + \ldots + y_nX_n$. The action of collineations or correlations on points determines the action on subspaces of arbitrary dimension completely.

5.8.1 OnProjSubspaces

```
▷ OnProjSubspaces(subspace, el)
```

(function)

Returns: a subspace of a projective space

This is a global function that returns the action of an element el of the collineation group on a subspace subspace of a projective space.

IMPORTANT: This function should only be used for objects el in the category IsProjGrpElWithFrob! This is because this function does not check whether el is a correlation or a collineation. So when el is a object in the category IsProjGrpElWithFrobWithPSIsom, and el is a correlation (i.e. the associated PSIsom is NOT the identity) then this action will not give the image of the subspace under the correlation el. For the action of an object el in the category IsProjGrpElWithFrobWithPSIsom, the action OnProjSubspacesExtended (8.3.1) should be used.

```
_{-} Example _{\cdot}
gap> ps := ProjectiveSpace(4,27);
ProjectiveSpace(4, 27)
gap> p := VectorSpaceToElement(ps,[ Z(3^3)^22,Z(3^3)^10,Z(3^3),Z(3^3)^3,Z(3^3)^3]);
<a point in ProjectiveSpace(4, 27)>
gap> ps := ProjectiveSpace(3,27);
ProjectiveSpace(3, 27)
gap> p := VectorSpaceToElement(ps,[ Z(3^3)^22,Z(3^3)^10,Z(3^3),Z(3^3)^3]);
<a point in ProjectiveSpace(3, 27)>
gap> Display(p);
[16nh]
gap> mat := [[Z(3^3)^25, Z(3^3)^6, Z(3^3)^7, Z(3^3)^15],
    [Z(3^3)^9, Z(3)^0, Z(3^3)^10, Z(3^3)^18],
    [Z(3^3)^19,0*Z(3),Z(3),Z(3^3)^12],
    [Z(3^3)^4, Z(3^3), Z(3^3), Z(3^3)^22]];
[ [Z(3^3)^25, Z(3^3)^6, Z(3^3)^7, Z(3^3)^15],
  [ Z(3^3)^9, Z(3)^0, Z(3^3)^10, Z(3^3)^18 ],
  [ Z(3^3)^19, 0*Z(3), Z(3), Z(3^3)^12 ],
  [ Z(3^3)^4, Z(3^3), Z(3^3), Z(3^3)^2 ] ]
gap> theta := FrobeniusAutomorphism(GF(27));
Frobenius Automorphism (GF(3^3))
gap> phi := CollineationOfProjectiveSpace(mat,theta,GF(27));
< a collineation: <cmat 4x4 over GF(3,3)>, F^3>
gap> r := OnProjSubspaces(p,phi);
<a point in ProjectiveSpace(3, 27)>
gap> Display(r);
[1..1]
gap> vect := [[Z(3^3)^9, Z(3^3)^5, Z(3^3)^19, Z(3^3)^17],
    [Z(3^3)^2, Z(3^3)^2, Z(3^3)^4, Z(3^3)^1],
    [Z(3^3)^8,0*Z(3),Z(3^3)^24,Z(3^3)^21]];
[ [ Z(3^3)^9, Z(3^3)^5, Z(3^3)^19, Z(3^3)^17 ],
  [ Z(3^3)^22, Z(3^3)^22, Z(3^3)^4, Z(3^3)^17 ],
  [ Z(3^3)^8, 0*Z(3), Z(3^3)^24, Z(3^3)^21 ] ]
gap> s := VectorSpaceToElement(ps,vect);
<a plane in ProjectiveSpace(3, 27)>
gap> r := OnProjSubspaces(s,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> Display(r);
[[1..c]
 [.1.7]
 [..17]
]
```

5.8.2 ActionOnAllProjPoints

```
▷ ActionOnAllProjPoints(g)
```

(function)

g must be a projective group. This function returns the action homomorphism of g acting on its projective points. This function is used by NiceMonomorphism when the number of points is small enough for the action to be easy to calculate.

5.8.3 OnProjSubspacesExtended

```
▷ OnProjSubspacesExtended(subspace, el) (function)
Returns: a subspace of a projective space
```

of This should be used for the action elements in the category IsProjGrpElWithFrobWithPSIsom where subspace is a subspace of a projective or polar space and el is an element of the correlation group of the ambient geometry of subspace. This function returns the image of subspace under e1, which is a subspace of the same dimension as subspace if e1 is a collineation and an element of codimension equal to the dimension of subspace if e1 is a correlation.

```
Example
gap> ps := ProjectiveSpace(3,27);
ProjectiveSpace(3, 27)
gap> mat := IdentityMat(4,GF(27));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],
  [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> delta := StandardDualityOfProjectiveSpace(ps);
StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(3^3)))
gap> frob := FrobeniusAutomorphism(GF(27));
Frobenius Automorphism (GF(3^3))
gap> phi := CorrelationOfProjectiveSpace(mat,frob,GF(27),delta);
4 over GF(3,3)>, F^{-}
3, StandardDuality( AllElementsOfIncidenceStructure( ProjectiveSpace(
3,GF(3^3))))>
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(p,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> 1 := Random(Lines(ps));
<a line in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(p,phi);
<a plane in ProjectiveSpace(3, 27)>
gap> psi := CorrelationOfProjectiveSpace(mat,frob^2,GF(27));
4 over GF(3,3)>, F^9, IdentityMapping( <All elements of ProjectiveSpace(3,
27)>)>
gap> OnProjSubspacesExtended(p,psi);
<a point in ProjectiveSpace(3, 27)>
gap> OnProjSubspacesExtended(1,psi);
<a line in ProjectiveSpace(3, 27)>
```

5.9 Special subgroups of the projectivity group

A transvection of the vector space V = V(n+1,F) is a linear map τ from V to itself with matrix M such that the rank of M-I equals 1 (where I denotes the $(n+1)\times(n+1)$ identity matrix), and $(M-I)^2=0$. Different equivalent definitions are found in the literature, here we followed [Cam00a]. Note that what follows is true for arbitrary fields F, but we will restrict to finite fields. Choosing a

basis e_1, \dots, e_n, e_{n+1} such that e_1, \dots, e_n generates the kernel of M-I, it follows that M equals

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_{n-1} & 1 \end{pmatrix}.$$

It is also a well known fact that all transvections generate the group SL(n+1,q). A transvection gives rise to a projectivity of PG(n,q), we call such an element an *elation*, and it is a projectivity ϕ fixing a hyperplane H pointwise, and such that there exists exactly one point $p \in H$ such that all hyperplanes through p are stabilized. The hyperplane P is called the *axis* of P0, and the point P1 is called the *centre* of P1. As a transvection is an element of PSL(n+1,q), an elation is completely determined by its axis and the image of one point (not contained in the axis). The group of elations with a given axis and centre, is isomorphic with the additive group of PSL(n+1,q) and is isomorphic with the additive group of the vector space PSL(n+1,q).

5.9.1 ElationOfProjectiveSpace

▷ ElationOfProjectiveSpace(sub, point1, point2) (operation)

Returns: the unique elation with axis sub mapping point1 on point2

It is checked whether the two points do not belong to sub. If point1 equals point2, the identity mapping is returned.

```
gap> ps := PG(3,9);
ProjectiveSpace(3, 9)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,0]]*Z(3)^0);
<a plane in ProjectiveSpace(3, 9)>
gap> p1 := VectorSpaceToElement(ps,[1,0,1,2]*Z(3)^0);
<a point in ProjectiveSpace(3, 9)>
gap> p2 := VectorSpaceToElement(ps,[1,2,0,2]*Z(3)^0);
<a point in ProjectiveSpace(3, 9)>
gap> phi := ElationOfProjectiveSpace(sub,p1,p2);
<a collineation: <cmat 4x4 over GF(3,2)>, F^0>
```

5.9.2 ProjectiveElationGroup

```
▷ ProjectiveElationGroup(axis, centre) (operation)
▷ ProjectiveElationGroup(axis) (operation)
```

Returns: A group of elations

The first version returns the group of elations with with given axis axis and centre centre. It is checked whether centre belongs to axis. The second version returns the group of elations with given axis axis.

```
gap> ps := PG(2,27);
ProjectiveSpace(2, 27)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,0]]*Z(3)^0);
```

```
<a line in ProjectiveSpace(2, 27)>
gap> p := VectorSpaceToElement(ps,[1,1,1]*Z(3)^0);
<a point in ProjectiveSpace(2, 27)>
gap> g := ProjectiveElationGroup(sub,p);
ctive collineation group with 3 generators>
gap> Order(g);
27
gap> StructureDescription(g);
"C3 x C3 x C3"
gap> ps := PG(3,4);
ProjectiveSpace(3, 4)
gap> sub := Random(Hyperplanes(ps));
<a plane in ProjectiveSpace(3, 4)>
gap> g := ProjectiveElationGroup(sub);
ctive collineation group with 6 generators>
gap> Order(g);
gap> Transitivity(g,Difference(Points(ps),Points(sub)),OnProjSubspaces);
gap> StructureDescription(g);
"C2 x C2 x C2 x C2 x C2 x C2"
```

A *homology* of the projective space PG(n,q) is a collineation fixing a hyperplane H pointwise and fixing one more point $p \notin H$. It is easily seen that after a suitable choice of a basis for the space, the matrix of a homology is a diagonal matrix with all its diagonal entries except one equal to 1. We call the hyperplane the *axis* and the point the *centre* of the homology. Homologies with a common axis and centre are a group isomorphic to the multiplicative group of the field GF(q).

5.9.3 HomologyOfProjectiveSpace

```
→ HomologyOfProjectiveSpace(sub, centre, point1, point2) (operation)
```

Returns: the unique homology with axis sub and centre centre that maps point1 on point2 It is checked whether the three points do not belong to sub and whether they are collinear. If point1 equals point2, the identity mapping is returned.

```
gap> ps := PG(3,81);
ProjectiveSpace(3, 81)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,0],[0,1,0,1],[1,2,3,0]]*Z(3)^0);
<a plane in ProjectiveSpace(3, 81)>
gap> centre := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^36,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> p1 := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^51,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> p2 := VectorSpaceToElement(ps,[0*Z(3),Z(3)^0,Z(3^4)^44,0*Z(3)]);
<a point in ProjectiveSpace(3, 81)>
gap> phi := HomologyOfProjectiveSpace(sub,centre,p1,p2);
<a collineation: <cmat 4x4 over GF(3,4)>, F^0>
```

5.9.4 ProjectiveHomologyGroup

▷ ProjectiveHomologyGroup(axis, centre)

(operation)

Returns: the group of homologies with with given axis axis and centre centre.

It is checked whether centre does not belong to axis.

```
gap> ps := PG(2,27);
ProjectiveSpace(2, 27)
gap> sub := VectorSpaceToElement(ps,[[1,0,1,],[0,1,0]]*Z(3)^0);
<a line in ProjectiveSpace(2, 27)>
gap> p := VectorSpaceToElement(ps,[1,0,2]*Z(3)^0);
<a point in ProjectiveSpace(2, 27)>
gap> g := ProjectiveHomologyGroup(sub,p);
<projective collineation group with 1 generators>
gap> Order(g);
26
gap> StructureDescription(g);
"C26"
```

5.10 Nice Monomorphisms

A nice monomorphism of a group G is roughly just a permutation representation of G on a suitable action domain. An easy example is the permutation action of the full collineation group of a projective space on its points. FinInG provides (automatic) functionality to compute nice monomorphisms. Typically, for a geometry S with G a (subgroup of the) collineation group of S, a nice monomorphism for S is a homomorphism from S to the permutation action of S on a collection of elements of S. Thus, to obtain such a homomorphism, one has to enumerate the collection of elements. As nice monomorphisms for projective semilinear groups are often computed as a byproduct of some operations, suddenly, these operations get time consuming (when executed for the first time). In general, it is decided automatically whether a nice monomorphism is computed or not. A typical example is the following.

```
Example
gap > pg := PG(4,8);
ProjectiveSpace(4, 8)
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(5,8)
gap> HasNiceMonomorphism(group);
false
gap> Random(group);
< a collineation: <cmat 5x5 over GF(2,3)>, F^4>
gap> time;
1028
gap> HasNiceMonomorphism(group);
gap> Random(group);
< a collineation: <cmat 5x5 over GF(2,3)>, F^0>
gap> time;
3
```

5.10.1 NiceMonomorphism

▷ NiceMonomorphism(g)

(operation)

Returns: an action, i.e. a group homomorphism

g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the action of g on the points of the geometry is returned.

```
gap> g := HomographyGroup(PG(4,8));
The FinInG projectivity group PGL(5,8)
gap> NiceMonomorphism(g);
<action isomorphism>
gap> Image(last);
<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> NiceMonomorphism(g);
<action isomorphism>
gap> Image(last);
<permutation group of size 13914678022473032663040 with 3 generators>
```

5.10.2 NiceObject

▷ NiceObject(g)

(operation)

Returns: a permutation group

g is a projective semilinear group. If g was constructed as a group stabilizing a geometry, the permutation representation of g acting on the points of the geometry is returned. This is actually equivalent with Image(NiceMonomorphism(g)).

```
gap> g := HomographyGroup(PG(4,8));
The FinInG projectivity group PGL(5,8)
gap> NiceObject(g);
<permutation group of size 4638226007491010887680 with 2 generators>
gap> g := CollineationGroup(PG(4,8));
The FinInG collineation group PGammaL(5,8)
gap> NiceObject(g);
<permutation group of size 13914678022473032663040 with 3 generators>
```

5.10.3 FINING

▷ FINING
 (global variable)

The global variable FINING stores a record with two components, FINING.Fast and FINING.LimitForCanComputeActionOnPoints By default, FINING.Fast is set to true. Setting FINING.Fast to false causes the use of the generic GAP function ActionHomomorphism instead of the functions NiceMonomorphismByDomain and NiceMonomorphismByOrbit, which both rely on the packages GenSS and Orb.

5.10.4 CanComputeActionOnPoints

▷ CanComputeActionOnPoints(g)

(operation)

Returns: true or false

g must be a projective group. This function returns true if GAP can feasibly compute the action of g on the points of the projective space on which it acts. This function can be used (and is, by other parts of FinInG) to determine whether it is worth trying to compute the action. This function actually checks if the number of points of the corresponding projective space is less than the constant FINING.LimitForCanComputeActionOnPoints, which is by default set to 1000000. The next example requires about 500M of memory.

5.10.5 NiceMonomorphismByDomain

▷ NiceMonomorphismByDomain(g, dom, op)

(operation)

Returns: an action, i.e. a group homomorphism

This operation is not intended for the user. It relies on GenSS and Orb. The argument g is a projective group (in the category IsProjectiveGroupWithFrob) with a set Size attribute, dom is an orbit of g, and op an operation suitable for x and g.

5.10.6 NiceMonomorphismByOrbit

▷ NiceMonomorphismByOrbit(g, dom, op, orblen)

(operation)

Returns: an action, i.e. a group homomorphism

This operation is not intended for the user. It relies on GenSS and Orb. The argument g is a projective group (in the category IsProjectiveGroupWithFrob) with a set Size attribute, dom is an orbit of g, op an operation suitable for x and g, and orblen is the length of the final orbit.

Chapter 6

Polarities of Projective Spaces

A *polarity* of a incidence structure is an incidence reversing, bijective, and involutory map on the elements of the incidence structure. It is well known that every polarity of a projective space is just an involutory correlation of the projective space. The construction of correlations of a projective space is described in Chapter 5. In this chapter we describe methods and operations dealing with the construction and use of polarities of projective spaces in FinInG.

6.1 Creating polarities of projective spaces

Since polarities of a projective space necessarily have an involutory field automorphism as companion automorphism and the standard duality of the projective space as the companion projective space isomorphism, a polarity of a projective space is determined completely by a suitable matrix A. Every polarity of a projective space PG(n,q) is listed in the following table, including the conditions on the matrix A.

	q odd	q even
hermitian		$A^{\theta} = A^{T}$
symplectic	$A^T = -A$	$A^T = A$, all $a_{ii} = 0$
orthogonal	$A^T = A$	
pseudo		$A^T = A$, not all $a_{ii} = 0$

Table: polarities of a projective space

A hermitian polarity of the projective space PG(n,q) exists if and only if the field GF(q) admits an involutory field automorphism.

It is well known that there is a correspondence between polarities of projective spaces and non-degenerate sesquilinear forms on the underlying vector space. Consider a sesquilinear form f on the vector space V(n+1,q). Then f induces a map on the elements of PG(n,q) as follows: every element with underlying subspace α is mapped to the element with underlying subspace α^{\perp} , i.e. the subspace of V(n+1,q) orthogonal to α with respect to the form f. It is clear that this induced map is a polarity of PG(n,q). Also the converse is true, with any polarity of PG(n,q) corresponds a sesquilinear form on V(n+1,q). The above classification of polarities of PG(n,q) follows from the classification of sesquilinear forms on V(n+1,q). For more information, we refer to [HT91] and [KL90]. We mention that the implementation of the action of correlations on projective points (see 5.8) guarantees that a sesquilinear form with matrix M and field automorphism θ corresponds to a polarity with matrix M and field automorphism θ and vice versa.

polarities of projective spaces are always objects in the category IsPolarityOfProjectiveSpace, which subcategory of the category IsProjGrpElWithFrobWithPSIsom.

6.1.1 PolarityOfProjectiveSpace

```
▷ PolarityOfProjectiveSpace(mat, f)
```

(operation)

Returns: a polarity of a projective space

The underlying correlation of the projective space is constructed using matrix mat, field f, the identity mapping as field automorphism and the standard duality of the projective space. It is checked whether the matrix mat satisfies the necessary conditions to induce a polarity.

```
gap> mat := [[0,1,0],[1,0,0],[0,0,1]]*Z(169)^0;
[ [ 0*Z(13), Z(13)^0, 0*Z(13) ], [ Z(13)^0, 0*Z(13), 0*Z(13) ],
       [ 0*Z(13), 0*Z(13), Z(13)^0 ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(169));
polarity of PG(2, GF(13^2)) >
```

6.1.2 PolarityOfProjectiveSpace

form.

The underlying correlation of the projective space is constructed using matrix mat, field automorphism frob, f and the standard duality of the projective space. It is checked whether the mat satisfies the necessary conditions to induce a polarity, and whether frob is a non-trivial involutory field automorphism. The second operation only needs the arguments mat and f to construct a hermitian polarity of a projective space, provided the field f allows an involutory field automorphism and mat satisfies the necessary conditions. The latter is checked by constructing the underlying hermitian

6.1.3 PolarityOfProjectiveSpace

▶ PolarityOfProjectiveSpace(form)
Returns: a polarity of a projective space

(operation)

The polarity of the projective space is constructed using a non-degenerate sesquilinear form form. It is checked whether the given form is non-degenerate.

6.1.4 PolarityOfProjectiveSpace

▷ PolarityOfProjectiveSpace(ps)

(operation)

Returns: a polarity of a projective space

The polarity of the projective space is constructed using the non-degenerate sesquilinear form that defines the polar space ps. When ps is a parabolic quadric in even characteristic, no polarity of the ambient projective space can be associated to ps, and an error message is returned.

```
gap> ps := HermitianPolarSpace(4,64);
H(4, 8^2)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(4, GF(2^6)) >
gap> ps := ParabolicQuadric(6,8);
Q(6, 8)
gap> PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> called from <function "unknown">( <arguments> )
    called from read-eval loop at line 11 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

6.2 Operations, attributes and properties for polarities of projective spaces

6.2.1 SesquilinearForm

```
▷ SesquilinearForm(phi)
```

(attribute)

Returns: a sesquilinear form

The sesquilinear form corresponding to the given polarity *phi* is returned.

```
Example

gap> mat := [[0,-2,0,1],[2,0,3,0],[0,-3,0,1],[-1,0,-1,0]]*Z(19)^0;

[ [ 0*Z(19), Z(19)^10, 0*Z(19), Z(19)^0 ],

[ Z(19), 0*Z(19), Z(19)^13, 0*Z(19) ],

[ 0*Z(19), Z(19)^4, 0*Z(19), Z(19)^0 ],

[ Z(19)^9, 0*Z(19), Z(19)^9, 0*Z(19) ] ]
```

```
gap> phi := PolarityOfProjectiveSpace(mat,GF(19));
<polarity of PG(3, GF(19)) >
  gap> form := SesquilinearForm(phi);
< non-degenerate bilinear form >
```

6.2.2 BaseField

▷ BaseField(phi) (attribute)

Returns: a field

The base field over which the polarity phi was constructed.

```
gap> mat := [[1,0,0],[0,0,2],[0,2,0]]*Z(5)^0;
[ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5) ],
        [ 0*Z(5), Z(5), 0*Z(5) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(2, GF(5^2)) >
        gap> BaseField(phi);
GF(5^2)
```

6.2.3 GramMatrix

▷ GramMatrix(phi) (attribute)

Returns: a matrix

The Gram matrix of the polarity phi.

```
Example
gap> mat := [[1,0,0],[0,0,3],[0,3,0]]*Z(11)^0;
[ [ Z(11)^0, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8 ],
        [ 0*Z(11), Z(11)^8, 0*Z(11) ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(11));
<polarity of PG(2, GF(11)) >
gap> GramMatrix(phi);
<immutable cmat 3x3 over GF(11,1)>
```

6.2.4 CompanionAutomorphism

 $hd \ ext{CompanionAutomorphism}(phi)$

(attribute)

Returns: a field automorphism

The involutory field automorphism accompanying the polarity phi.

6.2.5 IsHermitianPolarityOfProjectiveSpace

▷ IsHermitianPolarityOfProjectiveSpace(phi)

(property)

Returns: true or false

The polarity *phi* is a hermitian polarity of a projective space if and only if the underlying matrix is hermitian.

6.2.6 IsSymplecticPolarityOfProjectiveSpace

▷ IsSymplecticPolarityOfProjectiveSpace(phi)

(property)

Returns: true or false

The polarity *phi* is a symplectic polarity of a projective space if and only if the underlying matrix is symplectic.

6.2.7 IsOrthogonalPolarityOfProjectiveSpace

▷ IsOrthogonalPolarityOfProjectiveSpace(phi)

(property)

Returns: true or false

The polarity *phi* is an orthogonal polarity of a projective space if and only if the underlying matrix is symmetric and the characteristic of the field is odd.

6.2.8 IsPseudoPolarityOfProjectiveSpace

```
▷ IsPseudoPolarityOfProjectiveSpace(phi)
```

(property)

Returns: true or false

The polarity *phi* is a pseudo-polarity of a projective space if and only if the underlying matrix is symmetric, not all elements on the main diagonal are zero and the characteristic of the field is even.

6.3 Polarities, absolute points, totally isotropic elements and finite classical polar spaces

We already mentioned the equivalence between polarities of PG(n,q) and sesquilinear forms on V(n+1,q), hence there is a relation between polarities of PG(n,q) and polar spaces induced by sesquilinear forms. The following concepts express these relations geometrically.

Suppose that ϕ is a polarity of PG(n,q) and that α is an element of PG(n,q). We call α a totally isotropic element or an absolute element if and only if α is incident with α^{ϕ} . An absolute element that is a point is also called an absolute point or an isotropic point. It is clear that an element of PG(n,q) is absolute if and only if the underlying vector space is totally isotropic with respect to the sesquilinear form equivalent to ϕ . Hence the absolute elements induce a finite classical polar space, the same that is induced by the equivalent sesquilinear form. When ϕ is a pseudo-polarity, the set of absolute elements are the elements of a hyperplane of PG(n,q).

We restrict our introduction to finite classical polar spaces in this section to the following examples. Many aspects of these geometries are extensively described in Chapter 7.

6.3.1 GeometryOfAbsolutePoints

▷ GeometryOfAbsolutePoints(f)

(operation)

Returns: a polar space or a hyperplane

When f is not a pseudo-polarity, this operation returns the polar space induced by f. When f is a pseudo-polarity, this operation returns the hyperplane containing all absolute elements.

```
gap> mat := IdentityMat(4,GF(16));
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
        [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(16));
<polarity of PG(3, GF(2^4)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<polar space in ProjectiveSpace(3,GF(2^4)): x_1^5+x_2^5+x_3^5+x_4^5=0 >
gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
        [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)] ]
```

```
gap> phi := PolarityOfProjectiveSpace(mat,GF(32));
<polarity of PG(3, GF(2^5)) >
gap> geom := GeometryOfAbsolutePoints(phi);
<a plane in ProjectiveSpace(3, 32)>
```

6.3.2 AbsolutePoints

▷ AbsolutePoints(f)

(operation)

Returns: a set of points

This operation returns all points that are absolute with respect to f.

```
Example
gap> mat := IdentityMat(4,GF(3));
[[Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],
  [0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3)], [0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0]
gap> phi := PolarityOfProjectiveSpace(mat,GF(3));
<polarity of PG(3, GF(3)) >
gap> points := AbsolutePoints(phi);
<points of Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>
gap> List(points);
[ <a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0>,
  <a point in Q+(3, 3): x_1^2+x_2^2+x_3^2+x_4^2=0> ]
```

6.3.3 PolarSpace

▷ PolarSpace(f)

(operation)

Returns: a polar space

When f is not a pseudo-polarity, this operation returns the polar space induced by f.

```
Example

gap> mat := [[1,0,0,0],[0,0,1,1],[0,1,1,0],[0,1,0,0]]*Z(32)^0;

[[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],

[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]]

gap> phi := PolarityOfProjectiveSpace(mat,GF(32));

<polarity of PG(3, GF(2^5)) >
    gap> ps := PolarSpace(phi);

Error, <polarity> is pseudo and does not induce a polar space called from
```

```
<function "unknown">( <arguments> )
    called from read-eval loop at line 10 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> mat := IdentityMat(5,GF(7));
[ [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],
        [ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],
        [ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ],
        [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
        [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >
```

6.4 Commuting polarities

FinInG constructs polarities of projective spaces as correlations. This allows polarities to be multiplied easily, resulting in a collineation. The resulting collineation is constructed in the correlation group but can be mapped onto its unique representative in the collineation group. We provide an example with two commuting polarities.

```
Example -
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(5)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ],
  [0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0], [0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5)]
gap> phi := HermitianPolarityOfProjectiveSpace(mat,GF(25));
<polarity of PG(3, GF(5^2)) >
gap> mat2 := IdentityMat(4,GF(5));
[ [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ],
  [0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0]
gap> psi := PolarityOfProjectiveSpace(mat2,GF(25));
<polarity of PG(3, GF(5^2)) >
gap> phi*psi = psi*phi;
gap> g := CorrelationCollineationGroup(PG(3,25));
The FinInG correlation-collineation group PGammaL(4,25) : 2
gap> h := CollineationGroup(PG(3,25));
The FinInG collineation group PGammaL(4,25)
gap> hom := Embedding(h,g);
MappingByFunction( The FinInG collineation group PGammaL(4,25), The FinInG cor
relation-collineation group PGammaL(4,25) : 2, function( y ) ... end )
gap> coll := PreImagesRepresentative(hom,phi*psi);
< a collineation: <cmat 4x4 over GF(5,2)>, F^5>
```

Chapter 7

Finite Classical Polar Spaces

In this chapter we describe how to use FinInG to work with finite classical polar spaces.

7.1 Finite Classical Polar Spaces

A polar space is a point-line incidence geometry, satisfying the famous one-or-all axiom, i.e. for any point P, not incident with a line l, P is collinear with exactly one point of l or with all points of l. The axiomatic treatment of polar spaces has its foundations in [Vel59], [Tit74], and [BS74], the latter in which the one-or-all axiom is described. Polar spaces are axiomatically, point-line geometries, but may contain higher dimensional projective subspaces too. All maximal subspaces have the same projective dimension, and this determines the rank of the polar space.

Well known examples of *finite* polar spaces are the geometries attached to sesquilinear and quadratic forms of vector spaces over a finite field, these geometries are called the *finite classical* polar spaces. For a given sesquilinear, respectively quadratic, form f, the elements of the associated geometry are the totally isotropic, respectively totally singular, subspaces of the vectors space with relation to the form f. The treatment of the forms is done through the package Forms.

From the axiomatic point of view, a polar space is a point-line geometry, and has rank at least 2. Considering a sesquilinear or quadratic form f, of Witt index 1, the associated geometry consists only of projective points, and is then in the axiomatic treatment, not a polar space. However, as is the case for projective spaces, we will consider the rank one geometries associated to forms of Witt index 1 as examples of classical polar spaces. Even the elliptic quadric on the projective line, a *geometry* associated to an elliptic quadratic form on a two dimensional vector space over a finite field, is considered as a classical polar space, though it has no singular subspaces. The reason for this treatment is that most, if not all, methods for operations applicable on these geometries, rely on the same algebraic methodology. So, in FinInG, a classical polar space (sometimes abbreviated to polar space), is the geometry associated with a sesquilinear or quadratic form on a finite dimensional vector space over a finite field.

7.1.1 IsClassicalPolarSpace

 \triangleright IsClassicalPolarSpace

(Category)

This category is a subcategory of IsLieGeometry, and contains all the geometries associated to a non-degenerate sesquilinear or quadratic form.

The underlying vector space and matrix group are to our advantage in the treatment of classical polar spaces. We refer the reader to [HT91] and [Cam00b] for the necessary background theory (if it is not otherwise provided), and we follow the approach of [Cam00b] to introduce all different flavours.

Consider the projective space PG(n,q) with underlying vector space V(n+1,q). Consider a non-degenerate sesquilinear form f. Then f is Hermitian, alternating or symmetric. When the characteristic of the field is odd, respectively even, a symmetric bilinear form is called orthogonal, respectively, pseudo. We do not consider the pseudo case, so we suppose that f is Hermitian, symplectic or orthogonal. The classical polar space associated with f is the incidence geometry whose elements are of the subspaces of PG(n,q) whose underlying vector subspace is totally isotropic with relation to f. We call a polar space Hermitian, respectively, symplectic, orthogonal, if the underlying sesquilinear form is Hermitian, respectively, symplectic, orthogonal.

Symmetric bilinear forms have completely different geometric properties in even characteristic than in odd characteristic. On the other hand, polar spaces geometrically comparable to orthogonal polar spaces in odd characteristic, do exist in even characteristic. The algebraic background is now established by quadratic forms on a vector space instead of bilinear forms. Consider a non-singular quadratic form q on a vector space V(n+1,q). The classical polar space associated with f is the incidence geometry whose elements are the subspaces of PG(n,q) whose underlying vector subspace is totally singular with relation to q. The connection with orthogonal polar spaces in odd characteristic is clear, since in odd characteristic, quadratic forms and symmetric bilinear forms are equivalent. Therefore, we call polar spaces with an underlying quadratic form in even characteristic also *orthogonal* polar spaces.

7.1.2 PolarSpace

```
▷ PolarSpace(form) (operation)
▷ PolarSpace(pol) (operation)
```

Returns: a classical polar space

form must be a sesquilinear or quadratic form created by use of the GAP package Forms. In the second variant, the argument pol must be a polarity of a projective space. An error message will be displayed if pol is a pseudo polarity. We refer to Chapter 6 for more information on polarities of projective spaces, and more particularly to Section 6.3 for the connection between polarities and forms.

```
_ Example
gap> mat := [[0,0,0,1],[0,0,-2,0],[0,2,0,0],[-1,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), Z(5)^3, 0*Z(5) ],
  [0*Z(5), Z(5), 0*Z(5), 0*Z(5)], [Z(5)^2, 0*Z(5), 0*Z(5), 0*Z(5)]
gap> form := BilinearFormByMatrix(mat,GF(25));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(</pre>
3,GF(5^2): x1*y4+Z(5)^3*x2*y3+Z(5)*x3*y2-x4*y1=0 >
gap> r := PolynomialRing(GF(32),4);
GF(2^5)[x_1,x_2,x_3,x_4]
gap > poly := r.3*r.2+r.1*r.4;
x_1*x_4+x_2*x_3
gap> form := QuadraticFormByPolynomial(poly,r);
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(2^5)): x_1*x_4+x_2*x_3=0 >
```

```
gap> mat := IdentityMat(5,GF(7));
[ [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7) ],
       [ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7) ],
       [ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7) ],
       [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
       [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ] ]
gap> phi := PolarityOfProjectiveSpace(mat,GF(7));
<polarity of PG(4, GF(7)) >
gap> ps := PolarSpace(phi);
<polar space in ProjectiveSpace(4,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >
```

FinInG relies on the package Forms for its facility with sesquilinear and quadratic forms. One can specify a polar space with a user-defined form, and we refer to the documentation for Forms for information on how one can create and use forms. Here we just display a worked example.

```
Example
gap> id := IdentityMat(7, GF(3));;
gap> form := QuadraticFormByMatrix(id, GF(3));
< quadratic form >
gap> ps := PolarSpace( form );
<polar space in ProjectiveSpace(</pre>
6,GF(3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
gap > ps132 := PSL(3,2);
Group([(4,6)(5,7), (1,2,4)(3,6,5)])
gap> reps:=[[1,1,1,0,0,0,0], [-1,1,1,0,0,0,0], [1,-1,1,0,0,0,0], [1,1,-1,0,0,0,0]]*Z(3)^0;;
gap> ovoid := Union( List(reps, x-> Orbit(ps132, x, Permuted)) );;
gap> ovoid := List(ovoid, x -> VectorSpaceToElement(ps, x));;
gap> planes := AsList( Planes( ps ) );;
#I Computing collineation group of canonical polar space...
gap> ForAll(planes, p -> Number(ovoid, x -> x in p) = 1);
true
```

7.2 Canonical and standard Polar Spaces

To introduce the classification of polar spaces, we use the classification of the underlying forms in similarity classes. We follow mostly the approach and terminology of [KL90], as we did in the manual of the package Forms.

Consider a vector space V = V(n+1,q) and a sesquilinear form f on V. The pair (V,f) is called a formed space. Consider now two formed spaces (V,f) and (V,f'), where f and f' are two sesquilinear forms on V. A non-singular linear map ϕ from V to itself induces a *similarity* of the formed space (V,f) to the formed space (V,f') if and only if

$$f(v,w) = \lambda f'(\phi(v),\phi(w)),$$

for all vectors v, w and some non-zero $\lambda \in \mathrm{GF}(q)$. Up to similarity, there is only one class of non-degenerate Hermitian forms, and one class of non-degenerate symplectic forms on a given vector space V. For symmetric bilinear forms in odd characteristic, the number of similarity classes depends on the dimension of V. In odd dimension, there is only one similarity class, and non-degenerate forms

in this class are called parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

Consider now a vector space V and a quadratic form q on V. The pair (V,q) is called a formed space. Consider now two formed spaces (V,q) and (V,q'), where q and q' are two quadratic forms on V. A non-degenerate linear map ϕ from V to itself induces a *similarity* of the formed space (V,q) to the formed space (V,q') if and only if

$$q(v) = \lambda q'(\phi(v)),$$

for all vectors v and some non-zero $\lambda \in \mathrm{GF}(q)$. For quadratic forms in even characteristic, the number of similarity classes depends on the dimension of V. In odd dimension, there is only one similarity class, and non-degenerate forms in this class are called parabolic (bilinear) forms. In even dimension, there are two similarity classes, and non-degenerate forms are either elliptic (bilinear) forms or hyperbolic (bilinear) forms.

If ϕ induces a similarity of a formed vector space such that $\lambda=1$, then the similarity is called an *isometry* of the formed vector space. In almost all cases, each similarity class contains exactly one isometry class. Only the orthogonal sesquilinear forms (in odd characteristic) have two isometry classes. Consequently, if an isometry exists between formed vector spaces, they are called *isometric*. Projectively, a formed vector space becomes a classical polar space embedded in a projective space. Obviously, forms in the same similarity class determine exactly the same classical polar space. Conversely, it is well known that a classical polar space determines a form up to a constant factor, i.e. it determines a similarity class of forms. In FinInG, the word *canonical* is used in the mathematical sense, i.e. a classical polar space is *canonical* if its determining form belongs to a fixed similarity class. A classical polar space is called *standard* if its determining form is the fixed representative of the canonical similarity class. Hence a *standard* classical polar space is always a *canonical* classical polar space, a canonical polar space is determined by a standard form up to a constant factor. In the following table, we summaries the above information on polar spaces, together with the standard forms that are chosen in FinInG. Note that Tr refers to the absolute trace map from GF(q) to GF(p).

polar space	standard form	characteristic p	projective dimension
hermitian polar space	$X_0^{q+1} + X_1^{q+1} + \ldots + X_n^{q+1}$	odd or even	odd or even
symplectic space	$X_0Y_1 - Y_0X_1 + \ldots + X_{n-1}Y_n - Y_{n-1}X_n$	odd or even	odd
hyperbolic quadric	$X_0X_1+\ldots+X_{n-1}X_n$	$p \equiv 3 \pmod{4}$ or $p = 2$	odd
hyperbolic quadric	$2(X_0X_1+\ldots+X_{n-1}X_n)$	$p \equiv 1 \pmod{4}$	odd
parabolic quadric	$X_0^2 + X_1X_2 + \ldots + X_{n-1}X_n$	$p \equiv 1,3 \pmod{8}$ or $p = 2$	even
parabolic quadric	$t(X_0^2 + X_1X_2 + + X_{n-1}X_n),$ t a primitive element of GF(p)	$p \equiv 5,7 \pmod{8}$	even
elliptic quadric	$X_0^2 + X_1^2 + X_2X_3 + \ldots + X_{n-1}X_n$	$p \equiv 3 \pmod{4}$	odd
elliptic quadric	$X_0^2 + tX_1^2 + X_2X_3 + \dots + X_{n-1}X_n$, t a primitive element of GF(p)	$p \equiv 1 \pmod{4}$	odd
elliptic quadric	$X_0^2 + X_0 X_1 + dX_1^2 + X_2 X_3 + \dots + X_{n-1} X_n,$ Tr(d) = 1	even	odd

Table: finite classical polar spaces

We refer to Appendix B for information on the operations that construct gram matrices that are used to obtain the above standard forms.

The FinInG provides a wealth of flexibility in constructing polar spaces. The user may choose a particular quadratic or sesquilinear form, but may also chose to construct polars spaces that have one of the above mentioned forms as underlying form. Furthermore, FinInG will detect when necessary if the user-constructed polar space is canonical. This mechanism gives the user complete flexibility while avoiding unnecessary computations when, for example, constructing the collineation group of a user-defined polar space.

The following five operations always return polar spaces induced by one of the above standard forms.

7.2.1 SymplecticSpace

```
ightharpoonup SymplecticSpace(d, F) (operation)

ightharpoonup (operation)
```

Returns: a symplectic polar space

This function returns the symplectic polar space of dimension d over F for a field F or over GF(q) for a prime power q.

7.2.2 HermitianPolarSpace

```
▷ HermitianPolarSpace(d, F) (operation)
▷ HermitianPolarSpace(d, q) (operation)
```

Returns: a Hermitian polar space

This function returns the Hermitian polar space of dimension d over F for a field F or over GF(q) for a prime power q.

```
gap> ps := HermitianPolarSpace(2,25);
H(2, 5^2)
gap> Display(ps);
H(2, 25)
Hermitian form
Gram Matrix:
1 . .
. . 1
Polynomial: [ [ x_1^6+x_2^6+x_3^6 ] ]
Witt Index: 1
```

7.2.3 ParabolicQuadric

```
ightharpoonup  ParabolicQuadric(d, F) (operation) 
ightharpoonup  ParabolicQuadric(d, q) (operation)
```

Returns: a parabolic quadric

d must be an even positive integer. This function returns the parabolic quadric of dimension d over F for a field F or over GF(q) for a prime power q.

```
Example
gap> ps := ParabolicQuadric(2,9);
Q(2, 9)
gap> Display(ps);
Q(2, 9)
Parabolic bilinear form
Gram Matrix:
 1 . .
 . . 2
 . 2 .
Polynomial: [ [x_1^2+x_2*x_3] ]
Witt Index: 1
gap> ps := ParabolicQuadric(4,16);
Q(4, 16)
gap> Display(ps);
Q(4, 16)
Parabolic quadratic form
Gram Matrix:
Polynomial: [ [ x_1^2+x_2*x_3+x_4*x_5 ] ]
Witt Index: 2
Bilinear form
Gram Matrix:
 . . . . .
 . . 1 . .
 . 1 . . .
 . . . . 1
```

7.2.4 HyperbolicQuadric

Returns: a hyperbolic quadric

d must be an odd positive integer. This function returns the hyperbolic quadric of dimension d over F for a field F or over GF(q) for a prime power q.

```
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
Example
```

```
gap> Display(ps);
Q+(5, 3)
Hyperbolic bilinear form
Gram Matrix:
 . 2 . . . .
 2 . . . . .
 . . . 2 . .
 . . 2 . . .
 . . . . . 2
 . . . . 2 .
Polynomial: [ [x_1*x_2+x_3*x_4+x_5*x_6] ]
Witt Index: 3
gap> ps := HyperbolicQuadric(3,4);
Q+(3, 4)
gap> Display(ps);
Q+(3, 4)
Hyperbolic quadratic form
Gram Matrix:
 . 1 . .
 . . . .
 . . . 1
Polynomial: [ [ x_1*x_2+x_3*x_4 ] ]
Witt Index: 2
Bilinear form
Gram Matrix:
 . 1 . .
 1 . . .
 . . . 1
 . . 1 .
```

7.2.5 EllipticQuadric

```
ightharpoonup EllipticQuadric(d, F) (operation)

ightharpoonup (operation)
```

Returns: an elliptic quadric

d must be an odd positive integer. This function returns the elliptic quadric of dimension d over F for a field F or over GF(q) for a prime power q.

```
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> Display(ps);
Q-(3, 27)
Elliptic bilinear form
Gram Matrix:
1 . . .
. 1 . .
. . . . 2
. . 2 .
Polynomial: [ [ x_1^2+x_2^2+x_3*x_4 ] ]
Example
```

```
Witt Index: 1
gap> ps := EllipticQuadric(5,8);
Q-(5, 8)
gap> Display(ps);
Q-(5, 8)
Elliptic quadratic form
Gram Matrix:
 11....
 . 1 . . . .
 . . . 1 . .
Polynomial: [ [x_1^2+x_1*x_2+x_2^2+x_3*x_4+x_5*x_6] ]
Witt Index: 2
Bilinear form
Gram Matrix:
 . 1 . . . .
 1 . . . . .
 . . . 1 . .
  . 1 . .
```

The following operations are applicable on any classical polar space in FinInG.

7.2.6 IsCanonicalPolarSpace

```
▷ IsCanonicalPolarSpace(ps) (attribute)
Returns: true or false
```

This attribute returns true when a polar space with a particular underlying form is canonical. The execution of this attribute on a general user constructed polar space needs to check the type of ps. The obtained extra information is stored automatically as attribute for ps, as can be noted by the different printing of ps before and after execution.

```
Example
gap> mat := [[0,1,0,0],[0,0,0,0],[0,0,0,1],[0,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5)], 
  [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(5));
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(5)): x_1*x_2+x_3*x_4=0 >
gap> IsCanonicalPolarSpace(ps);
true
gap> ps;
Q+(3, 5): x_1*x_2+x_3*x_4=0
gap> mat := [[1,0,0],[0,0,1],[0,1,0]]*Z(3)^0;
[ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ],
  [ 0*Z(3), Z(3)^0, 0*Z(3) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(3));
< quadratic form >
```

```
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(2,GF(3)): x_1^2-x_2*x_3=0 >
gap> IsCanonicalPolarSpace(ps);
false
gap> ps;
Q(2, 3): x_1^2-x_2*x_3=0
```

7.2.7 CanonicalPolarSpace

▷ CanonicalPolarSpace(form)

(operation)

▷ CanonicalPolarSpace(P)

(operation)

Returns: a classical polar space

the canonical polar space isometric to the given polar space P or the classical polar space with underlying form form.

7.2.8 StandardPolarSpace

▷ StandardPolarSpace(form)

(operation)

⊳ StandardPolarSpace(P)

(operation)

Returns: a classical polar space

the polar space induced by a standard form and similar to the given polar space P or the classical polar space with underlying form form.

7.3 Basic operations for finite classical polar spaces

7.3.1 Underlying Vector Space

▷ UnderlyingVectorSpace(ps)

(operation)

Returns: a vector space

The polar space ps is the geometry associated with a sesquilinear or quadratic form f. The vector space on which f is acting is returned.

```
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> vs := UnderlyingVectorSpace(ps);
( GF(2^2)^6 )
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> vs := UnderlyingVectorSpace(ps);
( GF(3^4)^4 )
```

7.3.2 AmbientSpace

▷ AmbientSpace(ps)

(operation)

Returns: the ambient projective space

When ps is a polar space, this operation returns the ambient projective space, i.e. the underlying projective space of the sesquilinear or quadratic form that defines ps.

```
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> AmbientSpace(ps);
ProjectiveSpace(5, 4)
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> AmbientSpace(ps);
ProjectiveSpace(3, 81)
```

7.3.3 ProjectiveDimension

Returns: the dimension of the ambient projective space of ps

When ps is a polar space, an ambient projective space P is uniquely defined and can be asked using AmbientSpace. This operation and its synonym Dimension returns the dimension of P.

```
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> ProjectiveDimension(ps);
5
gap> ps := SymplecticSpace(3,81);
W(3, 81)
gap> ProjectiveDimension(ps);
3
```

7.3.4 Rank

 $\triangleright \operatorname{Rank}(ps)$ (operation)

Returns: the rank of ps

When ps is a polar space, its rank, i.e. the number of different types, equals the Witt index of the defining sesquilinear or quadratic form.

```
gap> ps := EllipticQuadric(5,4);
Q-(5, 4)
gap> Rank(ps);
2
gap> ps := HyperbolicQuadric(5,4);
Q+(5, 4)
gap> Rank(ps);
3
gap> ps := SymplecticSpace(7,81);
W(7, 81)
gap> Rank(ps);
4
```

7.3.5 BaseField

ightharpoonup BaseField(ps) (operation)

Returns: the base field of the polar space ps

```
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> BaseField(ps);
GF(7)
gap> ps := HermitianPolarSpace(2,256);
H(2, 16^2)
gap> BaseField(ps);
GF(2^8)
```

7.3.6 IsHyperbolicQuadric

▷ IsHyperbolicQuadric(ps)

(property)

Returns: true or false

returns true if and only if ps is a hyperbolic quadric.

```
Example
gap> mat := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(</pre>
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsHyperbolicQuadric(ps);
true
gap> mat := IdentityMat(6,GF(7));
< mutable compressed matrix 6x6 over GF(7) >
gap> form := BilinearFormByMatrix(mat,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(</pre>
5,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsHyperbolicQuadric(ps);
false
```

7.3.7 IsEllipticQuadric

▷ IsEllipticQuadric(ps)

(property)

Returns: true or false

returns true if and only if ps is an elliptic quadric.

```
gap> mat := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form := BilinearFormByMatrix(mat,GF(5));
< bilinear form >
```

```
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsEllipticQuadric(ps);
false
gap> mat := IdentityMat(6,GF(7));
< mutable compressed matrix 6x6 over GF(7) >
gap> form := BilinearFormByMatrix(mat,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(
5,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> IsEllipticQuadric(ps);
true
```

7.3.8 IsParabolicQuadric

▷ IsParabolicQuadric(ps)

(property)

Returns: true or false

returns true if and only if ps is a parabolic quadric.

```
_ Example
gap> mat := IdentityMat(5,GF(9));
[ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
  [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ],
  [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ],
  [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ],
  [ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ]
gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(3^2)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=0 >
gap> IsParabolicQuadric(ps);
true
gap> mat := [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0]]*Z(2)^0;
[ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
  [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
  [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
  [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
  [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(8));
< quadratic form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(2^3)): x_1^2+x_2*x_3+x_4*x_5=0 >
gap> IsParabolicQuadric(ps);
true
```

7.4 Subspaces of finite classical polar spaces

The elements of a finite classical polar space P are the subspaces of the ambient projective space that are totally isotropic with relation to the sesquilinear or quadratic form that defines P. Constructing subspaces of finite classical polar spaces is done as in the projective space case, except that additional checks are implemented in the methods to check that the subspace of the vector space is totally isotropic. The empty subspace, also called the trivial subspace, which has dimension -1, corresponds with the zero dimensional vector space of the underlying vector space of the ambient projective space of P, and is of course totally isotropic. As such, is is considered as a subspace of a finite classical polar space in the mathematical sense, but not as an element of the incidence geometry, and hence do in FinInG not belong to the category IsSubspaceOfClassicalPolarSpace.

7.4.1 VectorSpaceToElement

```
▷ VectorSpaceToElement(ps, v)
```

(operation)

Returns: an element of the polar space geo

Let ps be a polar space, and v is either a row vector (for points) or an mxn matrix (for an (m-1)-subspace of a polar space with an (n-1)-dimensional ambient projective space. In the case that v is a matrix, the rows represent basis vectors for the subspace. An exceptional case is when v is a zero-vector, whereby the trivial subspace is returned. It is checked that the subspace defined by v is totally isotropic with relation to the form defining ps.

```
Example
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> v := [1,0,1,0]*Z(4)^0;
[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ]
gap> p := VectorSpaceToElement(ps,v);
<a point in W(3, 4)>
gap> mat := [[1,1,0,1],[0,0,1,0]]*Z(4)^0;
[ [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
Error, <x> does not generate an element of <geom> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 12 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> mat := [[1,1,0,0],[0,0,1,0]]*Z(4)^0;
[ [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> line := VectorSpaceToElement(ps,mat);
<a line in W(3, 4)>
gap> p := VectorSpaceToElement(ps,[0,0,0,0]*Z(4)^0);
< empty subspace >
```

7.4.2 EmptySubspace

▷ EmptySubspace(ps)

(operation)

Returns: the trivial subspace in the projective ps

The object returned by this operation is contained in every projective subspace of the projective space ps, but is not an element of ps. Hence, testing incidence results in an error message.

```
gap> ps := HermitianPolarSpace(10,49);
H(10, 7^2)
gap> e := EmptySubspace(ps);
< empty subspace >
```

7.4.3 Projective Dimension

```
▷ ProjectiveDimension(sub) (operation)
▷ Dimension(sub) (operation)
```

Returns: the projective dimension of a subspace of a polar space. The operation ProjectiveDimension is also applicable on the EmptySubspace

```
gap> ps := EllipticQuadric(7,8);
Q-(7, 8)
gap> mat := [[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]*Z(8)^0;
[ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
        [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]]
gap> line := VectorSpaceToElement(ps,mat);
<a line in Q-(7, 8)>
gap> ProjectiveDimension(line);
1
gap> Dimension(line);
1
gap> e := EmptySubspace(ps);
< empty subspace >
gap> ProjectiveDimension(e);
-1
```

7.4.4 ElementsOfIncidenceStructure

▷ ElementsOfIncidenceStructure(ps, j)

(operation)

Returns: the collection of elements of the projective space ps of type j

For the projective space ps of dimension d and the type j, $1 \le j \le d$ this operation returns the collection of j-1 dimensional subspaces.

```
gap> ps := HermitianPolarSpace(8,13^2);
H(8, 13^2)
gap> planes := ElementsOfIncidenceStructure(ps,3);
<planes of H(8, 13^2)>
gap> solids := ElementsOfIncidenceStructure(ps,4);
<solids of H(8, 13^2)>
gap> ElementsOfIncidenceStructure(ps,5);
Error, <geo> has no elements of type <j> called from
<function "unknown">( <arguments> )
    called from read-eval loop at line 11 of *stdin*
```

```
you can 'quit;' to quit to outer loop, or you can 'return;' to continue brk> quit;
```

7.4.5 AmbientSpace

▷ AmbientSpace(e1)

(operation)

Returns: returns the ambient space of an element el of a polar space

This operation is also applicable on the trivial subspace. For a Lie geometry, the ambient space of an element is defined as the ambient space of the Lie geometry, i.e. a projective space.

```
Example

gap> ps := HermitianPolarSpace(3,7^2);

H(3, 7^2)

gap> line := VectorSpaceToElement(ps,[[Z(7)^0,0*Z(7),Z(7^2)^34,Z(7^2)^44],

> [0*Z(7),Z(7)^0,Z(7^2)^2,Z(7^2)^4]]);

<a line in H(3, 7^2)>
gap> AmbientSpace(line);

ProjectiveSpace(3, 49)
```

7.4.6 Coordinates

▷ Coordinates(p)

(operation)

Returns: the homogeneous coordinates of the point p

```
gap> ps := ParabolicQuadric(6,5);
Q(6, 5)
gap> p := VectorSpaceToElement(ps,[0,1,0,0,0,0,0]*Z(5)^0);
<a point in Q(6, 5)>
gap> Coordinates(p);
[ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ]
```

7.5 Basic operations for polar spaces and subspaces of projective spaces

7.5.1 Incidence and containment

Returns: true or false

Recall that for projective spaces, incidence is symmetrized containment, where the empty subspace and the whole projective space are excluded as arguments for this operation, since they are not considered as elements of the geometry, but both the empty subspace and the whole projective space are allowed as arguments for \in.

```
_{-} Example
gap> ps := HyperbolicQuadric(7,7);
Q+(7, 7)
gap> p := VectorSpaceToElement(ps,[1,0,1,0,0,0,0,0]*Z(7)^0);
<a point in Q+(7, 7)>
gap> 1 := VectorSpaceToElement(ps,[[1,0,1,0,0,0,0,0],[0,-1,0,1,0,0,0,0]]*Z(7)^0);
\langle a \text{ line in } Q+(7, 7) \rangle
gap> p * 1;
true
gap > 1 * p;
true
gap> IsIncident(p,1);
true
gap> p in 1;
true
gap> 1 in p;
false
gap> e := EmptySubspace(ps);
< empty subspace >
gap> e * 1;
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for '*' on 2 arguments called from
<function "HANDLE_METHOD_NOT_FOUND">( <arguments> )
called from read-eval loop at line 17 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> e in 1;
true
gap> 1 in ps;
true
```

7.5.2 Span

 \triangleright Span(u, v) (operation)

Returns: an element

u and v are elements of a projective or polar space. This function returns the join of the two elements, that is, the span of the two subspaces.

```
gap> ps := HyperbolicQuadric(5,2);
Q+(5, 2)
gap> p := Random(Planes(ps));
<a plane in Q+(5, 2)>
gap> q := Random(Planes(ps));
<a plane in Q+(5, 2)>
gap> s := Span(p,q);
<a proj. 4-space in ProjectiveSpace(5, 2)>
gap> s = Span([p,q]);
true
gap> t := Span(EmptySubspace(ps),p);
<a plane in Q+(5, 2)>
```

```
gap> t = p;
true
```

7.5.3 Meet

```
    Meet(u, v)
    (operation)
```

Returns: an element

u and v are elements of a projective or polar space. This function returns the meet of the two elements. If two elements do not meet, then Meet returns EmptySubspace, which in FinInG, is an element with projective dimension -1. (Note that the poset of subspaces of a polar space is a meet-semilattice, but not closed under taking spans).

```
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> pi := Random( Planes(ps) );
<a plane in Q+(5, 3)>
gap> tau := Random( Planes(ps) );
<a plane in Q+(5, 3)>
gap> Meet(pi,tau);
<a point in Q+(5, 3)>
```

Note: the above example will return different answers depending on the two planes chosen at random.

7.5.4 IsCollinear

u and v are points of the ambient space of the polar space ps. This function returns True if u and v are collinear in ps. Note that belonging to ps is a necessary condition for u and v to be collinear.

```
Example
gap> ps := ParabolicQuadric(4,9);
Q(4, 9)
gap> p := VectorSpaceToElement(PG(4,9),[0,1,0,0,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> q := VectorSpaceToElement(PG(4,9),[0,0,1,0,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> r := VectorSpaceToElement(PG(4,9),[0,0,0,1,0]*Z(9)^0);
<a point in ProjectiveSpace(4, 9)>
gap> p in ps;
true
gap> q in ps;
true
gap> r in ps;
true
gap> IsCollinear(ps,p,q);
gap> IsCollinear(ps,p,r);
true
```

```
gap> IsCollinear(ps,q,r);
true
gap> ps := ParabolicQuadric(4,4);
Q(4, 4)
gap> p := VectorSpaceToElement(PG(4,4),[1,0,0,0,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> q := VectorSpaceToElement(PG(4,4),[0,1,0,0,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> r := VectorSpaceToElement(PG(4,4),[0,0,0,1,0]*Z(2)^0);
<a point in ProjectiveSpace(4, 4)>
gap> p in ps;
false
gap> q in ps;
true
gap> r in ps;
true
gap> IsCollinear(ps,p,q);
false
gap> IsCollinear(ps,q,r);
true
```

7.5.5 PolarityOfProjectiveSpace

▷ PolarityOfProjectiveSpace(ps)

(operation)

Returns: a polarity of a projective space

ps must be a polar space. This operation returns, when possible a polarity of the ambient projective space of ps. It is well known that except for orthogonal polar spaces in even characteristic, a classical polar space is in fact the geometry of absolute points of a polarity of a projective space, and that no polarity can be associated to parabolic quadrics in even characteristic. Polarities of projective spaces are discussed in more detail in Chapter 6.

```
Example
gap> ps := SymplecticSpace(5,9);
W(5, 9)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(5, GF(3^2)) >
gap> ps := EllipticQuadric(3,4);
Q-(3, 4)
gap> phi := PolarityOfProjectiveSpace(ps);
<polarity of PG(3, GF(2^2)) >
gap> ps := ParabolicQuadric(4,4);
Q(4, 4)
gap> phi := PolarityOfProjectiveSpace(ps);
Error, no polarity of the ambient projective space can be associated to <ps> called from
<function "unknown">( <arguments> )
called from read-eval loop at line 13 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

7.5.6 TypeOfSubspace

This operation is a convenient way to find out the intersection type of a projective subspace with a polar space. The argument *ps* is a nondegenerate polar space, and the argument *v* is a subspace of the ambient projective space. The operation returns a string in accordance with the type of subspace: "degenerate", "symplectic", "hermitian", "elliptic", "hyperbolic" or "parabolic".

```
Example

gap> h1 := HermitianPolarSpace(2, 3^2);
H(2, 3^2)
gap> h2 := HermitianPolarSpace(3, 3^2);
H(3, 3^2)
gap> pg := AmbientSpace( h2 );
ProjectiveSpace(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
gap> TypeOfSubspace(h2, pi);
"hermitian"
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,Z(9)]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
gap> TypeOfSubspace(h2, pi);
"degenerate"
```

7.5.7 TangentSpace

```
▷ TangentSpace(e1) (operation)
▷ TangentSpace(ps, e1) (operation)
```

Returns: A subspace of a projective space

Let el be an element of a classical polar space. The first version returns the tangent space at el to this polar space. Let el be a subspace of the ambient space of the polar space ps. The second version checks whether el belongs to ps and returns the tangent space at el to ps. Some obvious properties are demonstrated in the example.

```
Example
gap> ps := HermitianPolarSpace(3,4^2);
H(3, 4^2)
gap> p := Random(Points(ps));
<a point in H(3, 4^2)>
gap> plane := TangentSpace(p);
<a plane in ProjectiveSpace(3, 16)>
gap> TypeOfSubspace(ps,plane);
"degenerate"
gap> ps := ParabolicQuadric(6,4);
Q(6, 4)
gap> p := VectorSpaceToElement(PG(6,4),[0,1,0,0,0,0,0]*Z(4)^0);
<a point in ProjectiveSpace(6, 4)>
gap> hyp := TangentSpace(ps,p);
<a proj. 5-space in ProjectiveSpace(6, 4)>
gap> NucleusOfParabolicQuadric(ps) in hyp;
true
```

```
gap> ps := EllipticQuadric(5,2);
Q-(5, 2)
gap> line := Random(Lines(ps));
<a line in Q-(5, 2)>
gap> TangentSpace(line);
<a solid in ProjectiveSpace(5, 2)>
gap> ps := HermitianPolarSpace(5,4);
H(5, 2^2)
gap> plane := Random(Planes(ps));
\langlea plane in H(5, 2^2)\rangle
gap> tan := TangentSpace(plane);
<a plane in ProjectiveSpace(5, 4)>
gap> tan in ps;
true
gap> tan = plane;
true
```

7.5.8 Pole

```
    Pole(ps, el)
    (operation)
```

Returns: A subspace of a projective space

Let el be a subspace of the ambient space of the polar space ps. This operation returns the pole of el with relation to the polar space ps.

```
gap> conic := ParabolicQuadric(2,13);
Q(2, 13)
gap> p := VectorSpaceToElement(PG(2,13),[1,0,0]*Z(13)^0);
<a point in ProjectiveSpace(2, 13)>
gap> pole := Pole(conic,p);
<a line in ProjectiveSpace(2, 13)>
gap> TypeOfSubspace(conic,pole);
"hyperbolic"
gap> tangent_points := Filtered(Points(pole),x->x in conic);
[ <a point in ProjectiveSpace(2, 13)>, <a point in ProjectiveSpace(2, 13)> ]
gap> tangent_lines_on_p := List(tangent_points,x->Span(x,p));
[ <a line in ProjectiveSpace(2, 13)>, <a line in ProjectiveSpace(2, 13)> ]
gap> List(tangent_lines_on_p,x->Number(Points(x),y->y in conic));
[ 1, 1 ]
```

7.5.9 EvaluateForm

```
▷ EvaluateForm(form, el1) (operation)

▷ EvaluateForm(form, el1, el2) (operation)

▷ \^(form, el1) (operation)

▷ \^(form, el1, el2) (operation)
```

Returns: a finite field element or a list (of lists) of finite field elements

This method passes form and the underlying vector or matrix of ell, when form is a quadratic form, and ell and ell when form is a sesquilinear form to the operation Evaluate of the package

Forms. The same applies to the respective methods for \^. The example below illustrates how the points of a projective space that evaluate to zero under a given form, are precisely the points of the quadric associated with the given form.

```
_____ Example _
gap> f := GF(5);
GF(5)
gap> mat := IdentityMat(4,f);
[ [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], 
  [0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0]
gap> form := BilinearFormByMatrix(mat,f);
< bilinear form >
gap > pg := PG(3,5);
ProjectiveSpace(3, 5)
gap> pts := Filtered(Points(pg),x->[x,x]^form = Zero(f));;
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(3,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2=0 >
gap> Collected(List(pts,x->x in ps));
[ [ true, 36 ] ]
gap> Size(Points(ps));
gap> qform := QuadraticForm(ps);
< quadratic form >
gap> pts2 := Filtered(Points(pg),x->x^qform = Zero(f));;
gap> Collected(List(pts2,x->x in ps));
[ [ true, 36 ] ]
```

7.6 Shadow of elements

The functionality in this section is comparable to the shadow functionality for elements of projective spaces, which are described in Section 4.3. The generic description of shadows of elements of incidence structures can be found in Section 3.4.

7.6.1 ShadowOfElement

```
▷ ShadowOfElement(ps, el, i) (operation)
▷ ShadowOfElement(ps, el, str) (operation)
```

Returns: the elements of type *i* incident with *el*. The second variant determines the type *i* from the position of *str* in the list returned by TypesOfElementsOfIncidenceStructurePlural

```
gap> id := IdentityMat(8,GF(7));
< mutable compressed matrix 8x8 over GF(7) >
gap> form := BilinearFormByMatrix(id,GF(7));
< bilinear form >
gap> ps := PolarSpace(form);
< polar space in ProjectiveSpace(
7,GF(7)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0 >
gap> Rank(ps);
4
gap> ps;
```

```
\mathbb{Q} + (7, 7): x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 = 0
gap> mat := [[1,0,0,0,3,2,0,0],[0,1,0,0,0,0,3,2],[0,0,1,0,5,3,0,0]]*Z(7)^0;
[[Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), Z(7), Z(7)^2, 0*Z(7), 0*Z(7)],
  [0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7), Z(7)^2],
  [ 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), Z(7)^5, Z(7), 0*Z(7), 0*Z(7) ] ]
gap> plane := VectorSpaceToElement(ps,mat);
<a plane in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>
gap> time;
1
gap> shadow := ShadowOfElement(ps,plane,4);
<shadow solids in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>
gap> List(shadow);
[ <a solid in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>,
  <a solid in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0> ]
gap> shadow := ShadowOfElement(ps,plane,2);
<shadow lines in Q+(7, 7): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0>
```

7.6.2 ElementsIncidentWithElementOfIncidenceStructure

▷ ElementsIncidentWithElementOfIncidenceStructure(e1, i)

(operation)

Returns: the elements of type i incident with el, in other words, the type i shadow of the element el

Internally, the function FlagOfIncidenceStructure is used to create a flag from list. This function also performs the checking.

```
Example -
   gap> ps := HyperbolicQuadric(11,2);
 Q+(11, 2)
  \mathsf{gap} > \mathsf{vec} := [[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0
> 0*Z(2),0*Z(2),0*Z(2)],
> [0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),Z(2)^0,Z(2)^0,Z(2)^0,Z(2)^0,
> 0*Z(2),Z(2)^0,Z(2)^0,
> [0*Z(2),0*Z(2),Z(2)^0,0*Z(2),0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),
> 0*Z(2),0*Z(2),Z(2)^0],
> [0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2),Z(2)^0,0*Z(2)^0,0*Z(2),Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,0*Z(2)^0,
> 0*Z(2),Z(2)^0,0*Z(2),
> [0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,Z(2)^0,0*Z(2),0*Z(2),0*Z(2),
 > Z(2)^0,Z(2)^0,Z(2)^0]];
   [ [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z
                                                                     0*Z(2), 0*Z(2), 0*Z(2)],
                           [\ 0*Z(2),\ Z(2)^0,\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ Z(2)^0,\ Z(2)^0,\ Z(2)^0,\ Z(2)^0,
                                                                     0*Z(2), Z(2)^0, Z(2)^0],
                           [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), (2)^0, 0*Z(2), (2)^0,
                                                                     0*Z(2), 0*Z(2), Z(2)^0,
                           [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)^0, Z(2)^0, Z
                                                                     0*Z(2), Z(2)^0, 0*Z(2),
                           [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z
                                                                     Z(2)^0, Z(2)^0, Z(2)^0 ] ]
 gap> subspace := VectorSpaceToElement(ps,vec);
   <a proj. 4-space in Q+(11, 2)>
   gap> els := ElementsIncidentWithElementOfIncidenceStructure(subspace,6);
```

```
<shadow proj. subspaces of dim. 5 in Q+(11, 2)>
gap> List(els);
[ <a proj. 5-space in Q+(11, 2)>, <a proj. 5-space in Q+(11, 2)> ]
```

7.7 Projective Orthogonal/Unitary/Symplectic groups in FinInG

The classical groups (apart from the general lines group), are the matrix groups that *respect*, in a certain way, a sesquilinear or quadratic form. We formally recall the definitions used in FinInG. These definitions are exactly the same as in Forms.

Let (V, f) and (W, g) be two formed vector spaces over the same field F, where both f and g are sesquilinear forms. Suppose that ϕ is a linear map from V to W. The map ϕ is an *isometry* from the formed space (V, f) to the formed space (W, g) if for all v, w in V we have

$$f(v,w) = f'(\phi(v), \phi(w)).$$

The map ϕ is a *similarity* from the formed space (V, f) to the formed space (W, g) if for all v, w in V we have

$$f(v,w) = \lambda f'(\phi(v),\phi(w))$$

for some non-zero $\lambda \in F$. Finally, the map ϕ is a *semi-similarity* from the formed space (V, f) to the formed space (W, g) if for all v, w in V we have

$$f(v,w) = \lambda f'(\phi(v),\phi(w))^{\alpha}$$

for some non-zero $\lambda \in F$ and a field automorphism α of F.

Let (V, f) and (W, g) be two formed vector spaces over the same field F, where both f and g are quadratic forms. Suppose that ϕ is a linear map from V to W. The map ϕ is an *isometry* from the formed space (V, f) to the formed space (W, g) if for all v, w in V we have

$$f(v) = f'(\phi(v)).$$

The map ϕ is a *similarity* from the formed space (V, f) to a formed space (W, g) if for all v, w in V we have for some non-zero $\lambda \in F$. Finally, the map ϕ is a *semi-similarity* from the formed space (V, f) to the formed space (W, g) if for all v, w in V we have

$$f(v) = \lambda f'(\phi(v))^{\alpha}$$

for some non-zero $\lambda \in F$ and a field automorphism α of F.

Collineations of classical polar spaces are induced by semi-similarities of the underlying formed vector space, and vice versa, analogously by factoring out scalar matrices. The only exceptions are the two-dimensional unitary groups where the the full semi-similarity group can contain elements of its centre that are not scalars. In FinInG, the subgroups corresponding with similarities and isometries are also implemented, including a *special* variant, corresponding with the matrices having determinant one. We use a consistent terminology, where isometries, similarities, respectively, of the polar space, correspond with isometries, similarities, respectively, of the underlying formed vector space. Special isometries of a polar space are induced by isometries of the formed vector space that have a matrix with determinant one. If P is a polar space with special isometry group, isometry group, similarity group, collineation group, respectively, S, I, G, Γ , respectively, then clearly $S \le I \le G \le \Gamma$. Equalities can occur in certain cases, and will, as we will see in the following overview.

(sub)group	symplectic	hyperbolic	elliptic	parabolic	hermitian
special isometry	PSp(d,q)	PSO(1,d,q)	PSO(-1,d,q)	PSO(0,d,q)	$PSU(d,q^2)$
isometry	PSp(d,q)	PGO(1,d,q)	PGO(-1,d,q)	PGO(0,d,q)	$PGU(d,q^2)$
similarity	PGSp(d,q)	$P\Delta O^+(d,q)$	$P\Delta O^{-}(d,q)$	PGO(0,d,q)	$PGU(d,q^2)$
collineation	$P\Gamma Sp(d,q)$	$P\Gamma O^+(d,q)$	$P\Gamma O^-(d,q)$	$P\Gamma O(d,q)$	$P\Gamma U(d,q^2)$

Table: projective finite classical groups

7.7.1 SpecialIsometryGroup

▷ SpecialIsometryGroup(ps)

(operation)

Returns: the special isometry group of the polar space ps

```
__ Example _
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> SpecialIsometryGroup(ps);
PSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> SpecialIsometryGroup(ps);
PSO(1,6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> SpecialIsometryGroup(ps);
PSO(-1,4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> SpecialIsometryGroup(ps);
PSO(0,5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> SpecialIsometryGroup(ps);
PSU(5,3^2)
```

7.7.2 IsometryGroup

▷ IsometryGroup(ps)

(operation)

Returns: the isometry group of the polar space ps

```
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> IsometryGroup(ps);
PSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> IsometryGroup(ps);
PGO(1,6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> IsometryGroup(ps);
```

```
PGO(-1,4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> IsometryGroup(ps);
PGO(0,5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> IsometryGroup(ps);
PGU(5,3^2)
```

7.7.3 SimilarityGroup

▷ SimilarityGroup(ps)

(operation)

Returns: the similarity group of the polar space ps

```
_ Example
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> SimilarityGroup(ps);
PGSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> SimilarityGroup(ps);
PDeltaO+(6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> SimilarityGroup(ps);
PDelta0-(4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> SimilarityGroup(ps);
PGO(0,5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> SimilarityGroup(ps);
PGU(5,3<sup>2</sup>)
```

7.7.4 CollineationGroup

▷ CollineationGroup(ps)

(operation)

Returns: the collineation group of the polar space ps

In most cases, the full projective semisimilarity group is returned. For two-dimensional unitary groups, the centre may contain elements that are not scalars. In this case, we return a central extension of the projective semisimilarity group. If the base field of ps is $GF(q^2)$, q prime, the similarity group is returned.

```
gap> ps := SymplecticSpace(3,4);
W(3, 4)
gap> CollineationGroup(ps);
Example
```

```
PGammaSp(4,4)
gap> ps := HyperbolicQuadric(5,8);
Q+(5, 8)
gap> CollineationGroup(ps);
PGammaO+(6,8)
gap> ps := EllipticQuadric(3,27);
Q-(3, 27)
gap> CollineationGroup(ps);
PGammaO-(4,27)
gap> ps := ParabolicQuadric(4,8);
Q(4, 8)
gap> CollineationGroup(ps);
PGammaO(5,8)
gap> ps := HermitianPolarSpace(4,9);
H(4, 3^2)
gap> CollineationGroup(ps);
PGammaU(5,3<sup>2</sup>)
```

7.8 Enumerating subspaces of polar spaces

7.8.1 Enumerators for polar spaces

An enumerator for a collection of subspaces of a given type of a polar space is provided in FinInG. If C is such a collection, then List(C) will use the enumerator to compute a list with all the elements of C.

7.8.2 Enumerator

```
ightharpoonup Enumerator(C) (operation)

ightharpoonup (operation)
```

Returns: an enumerator for the collection C and a list with all elements of C. The argument C is a collection of subspaces of a polar space.

```
gap> Enumerator(Points(ParabolicQuadric(6,3)));
EnumeratorOfSubspacesOfClassicalPolarSpace( <points of Q(6, 3)> )
gap> Enumerator(Lines(HermitianPolarSpace(4,4)));
EnumeratorOfSubspacesOfClassicalPolarSpace(  clines of H(4, 2^2)> )
gap> planes := List(Planes(HermitianPolarSpace(5,4)));;
gap> time;
11515
gap> Length(planes);
891
```

7.8.3 Iterators for polar spaces

For all polar spaces an iterator is constructed using IteratorList(enum), where enum is an appropriate enumerator.

7.8.4 Iterator

▷ Iterator(elements) (operation)

Returns: an iterator

C is a collection of subspaces of a polar space.

```
gap> iter := Iterator(Lines(ParabolicQuadric(4,2)));
<iterator>
gap> NextIterator(iter);
<a line in Q(4, 2)>
gap> NextIterator(iter);
<a line in Q(4, 2)></a>
```

7.8.5 AsList

▷ AsList(subspaces)

(operation)

Returns: an Orb object or list

```
gap> ps := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> lines := AsList(Lines(ps));
<closed orbit, 520 points>
```

Chapter 8

Orbits, stabilisers and actions

8.1 Orbits

GAP provides generic functionality to compute orbits. These functions are, generally spoken, applicable to the groups implemented in FinInG, combined with the appropriate action functions. However, the generic functions applied in such situations are rather time consuming. FinInG therefore provides alternative functions to compute orbits.

8.1.1 FiningOrbit

```
> FiningOrbit(g, obj, act) (operation)
```

Returns: The orbit of the object *obj* under the action act of the group g.

The argument *obj* is either a subspace of a projective space, then combined with the action func-

The argument obj is either a subspace of a projective space, then combined with the action function OnProjSubspaces, or a set of elements of a projective space, then combined with the action function OnSetsProjSubspaces. The group g is a subgroup of a collineation group of a projective space. In both cases the action function computes the action of el under the group element g.

```
gap> ps := ParabolicQuadric(6,3);
Q(6, 3)
gap> g := CollineationGroup(ps);
PGammaO(7,3)
gap> pg := PG(6,3);
ProjectiveSpace(6, 3)
gap> s := First(Solids(pg),t -> TypeOfSubspace(ps,t) = "elliptic" );
<a solid in ProjectiveSpace(6, 3)>
gap> orbit := FiningOrbit(g,s,OnProjSubspaces);
<closed orbit, 265356 points>
gap> time;
33555
```

The second example shows the possible use of FiningOrbit in combination with the action function OnSetsProjSubspaces. Please note that this variant is probably not the most efficient way to compute all elliptic quadrics contained in the parabolic quadric ps. Experiments show that for q = 5 the second variant takes an unreasonable amount of time. Also note that the second argument e1 must be a set (and therefore it might be necessary to apply Set on a collection of elements).

```
_{-} Example
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> g := CollineationGroup(ps);
PGammaO(5,3)
gap > pg := PG(4,3);
ProjectiveSpace(4, 3)
gap> s := First(Solids(pg),t -> TypeOfSubspace(ps,t) = "elliptic" );
<a solid in ProjectiveSpace(4, 3)>
gap> orbit1 := FiningOrbit(g,s,OnProjSubspaces);
<closed orbit, 36 points>
gap> time;
gap> spts := Filtered(Points(s),s->s in ps);
[ <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)>,
  <a point in ProjectiveSpace(4, 3)>, <a point in ProjectiveSpace(4, 3)> ]
gap> orbit2 := FiningOrbit(g,Set(spts),OnSetsProjSubspaces);
<closed orbit, 36 points>
gap> time;
18
```

8.1.2 FiningOrbits

```
▷ FiningOrbits(g, set, act) (operation)
▷ FiningOrbits(g, coll) (operation)
```

Returns: The orbits of the group g on set under the action of act.

The set is a set of elements of a projective space, the group g is a subgroup of the collineation group of a projective space, and act is the function OnProjSubspaces. If coll is a collection of elements of a projective space (i.e. not a list or set, but and object representing the collection of elements of a given type, such as Lines(PG(3,4))), then the second versions returns the orbits of g on the elements of coll under the action OnProjSubspaces.

```
gap> ps := HermitianPolarSpace(3,9);
H(3, 3^2)
gap> g := CollineationGroup(ps);
PGammaU(4,3^2)
gap> FiningOrbits(g,Lines(PG(3,9)));
75%...98%...100%..[ <closed orbit, 5670 points>, <closed orbit, 112 points> ]
gap> FiningOrbits(g,Planes(PG(3,9)));
65%...100%..[ <closed orbit, 540 points>, <closed orbit, 280 points> ]
gap> ps := ParabolicQuadric(2,5);
Q(2, 5)
gap> g := CollineationGroup(ps);
PGammaO(3,5)
gap> pts := Filtered(Points(PG(2,5)),x->not x in ps);;
gap> Length(pts);
```

8.1.3 FiningOrbitsDomain

```
▷ FiningOrbitsDomain(g, coll, act)
```

(operation)

Returns: The orbits of the group g on a collection coll under the action of act.

The argument coll must be an object in the category IsElementsOfIncidenceGeometry, the argument g can be any group, acting on the elements of coll through a suitable action function act. This operation is inspired by the GAP operation OrbitsDomain. It computes the orbits of the group g on the set of elements in coll assuming that the set of elements of coll is closed under that action of g. There is no check whether the assumption is correct, so this operation should typically be used when it is known that the assumption is correct. The operation is generic in the sense that it can be used for different types of incidence geometries as long as the triple arguments consist of a suitable action of g on the elements of coll. In general, if the assumption is correct, this operation will be faster than FiningOrbits.

```
Example
gap > pg := PG(7,2);
ProjectiveSpace(7, 2)
gap> group:=CollineationGroup(pg);
 The FinInG collineation group PGL(8,2)
gap> syl127:=SylowSubgroup(group,127);
 ctive collineation group of size 127>
 gap> orbits := FiningOrbits(syl127,AsList(Solids(pg)));;
 1\% \dots 2\% \dots 3\% \dots 4\% \dots 5\% \dots 6\% \dots 7\% \dots 8\% \dots 9\% \dots 10\% \dots 11\% \dots 12\% \dots 13\% \dots 14\% \dots 15\% \dots 16\% \dots 17\% \dots 18\% \dots 19\% \dots 20\% \dots 21\% \dots 18\% \dots 19\% \dots 1
22\% \dots 23\% \dots 24\% \dots 25\% \dots 26\% \dots 27\% \dots 28\% \dots 29\% \dots 30\% \dots 31\% \dots 32\% \dots 33\% \dots 34\% \dots 35\% \dots 36\% \dots 37\% \dots 38\% \dots 39\% \dots 40\% \dots 41\% 
   ...42\%...43\%...44\%...45\%...46\%...47\%...48\%...49\%...50\%...51\%...52\%...53\%...54\%...55\%...56\%...57\%...58\%...59\%...60\%...
61\% \dots 62\% \dots 63\% \dots 64\% \dots 65\% \dots 66\% \dots 67\% \dots 68\% \dots 69\% \dots 70\% \dots 71\% \dots 72\% \dots 73\% \dots 74\% \dots 75\% \dots 76\% \dots 77\% \dots 78\% \dots 79\% 
80%..81%..82%..83%..84%..85%..86%..87%..88%..89%..90%..91%..92%..93%..94%..95%..96%
   ...97%...98%...99%...100%...
gap> time;
212661
gap> Collected(List(orbits,x->Length(x)));
   [ [ 127, 1581 ] ]
 gap> orbits := FiningOrbitsDomain(syl127,Solids(pg),OnProjSubspaces);;
gap> time;
 26529
 gap> Collected(List(orbits,x->Length(x)));
   [ [ 127, 1581 ] ]
gap> orbits := OrbitsDomain(syl127,Solids(pg),OnProjSubspaces);;
gap> time;
gap> Collected(List(orbits,x->Length(x)));
 [ [ 127, 1581 ] ]
gap > ag := AG(4,5);
AG(4, 5)
```

8.2 Stabilisers

The GAP function Stabilizer is a generic function to compute stabilisers of one object (or sets or tuples etc. of objects) under a group, using a specified action function. This generic function can be used together with the in FinInG implemented groups and elements of geometries. However, computing time can be very long, already in small geometries.

```
_ Example
gap > ps := PG(3,8);
ProjectiveSpace(3, 8)
gap> g := CollineationGroup(ps);
The FinInG collineation group PGammaL(4,8)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 8)>
gap> Stabilizer(g,p,OnProjSubspaces);
gap> time;
10026
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(3, 8)>
gap> Stabilizer(g,line,OnProjSubspaces);
jective collineation group of size 21849440256 with 2 generators>
gap> time;
78126
```

The packages GenSS and orb required by FinInG provide efficient operations to compute stabilisers, and FinInG provides functionality to use these operations for the particular groups and (elements) of geometries.

8.2.1 FiningStabiliser

```
▷ FiningStabiliser(g, el)
```

(operation)

Returns: The subgroup of g stabilising the element e1

The argument g is a group of collineations acting on the element el, being a subspace of a projective space (and hence, all elements of a Lie geometry are allowed as second argument). This operation relies on the GenSS operation Stab.

```
gap> ps := PG(5,4);
ProjectiveSpace(5, 4)
gap> g := SpecialHomographyGroup(ps);
The FinInG PSL group PSL(6,4)
```

```
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,p);
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,line);
jective collineation group of size 3881174040576000 with 3 generators>
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(5, 4)>
gap> FiningStabiliser(g,plane);
#I Have 106048 points.
#I Have 158748 points.
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> g := IsometryGroup(ps);
PGO(1,6,5)
gap> p := Random(Points(ps));
<a point in Q+(5, 5)>
gap> FiningStabiliser(g,p);
cprojective collineation group of size 36000000 with 3 generators>
gap> line := Random(Lines(ps));
<a line in Q+(5, 5)>
gap> FiningStabiliser(g,line);
cprojective collineation group of size 6000000 with 3 generators>
gap> plane := Random(Planes(ps));
<a plane in Q+(5, 5)>
gap> FiningStabiliser(g,plane);
cprojective collineation group of size 93000000 with 2 generators>
gap> h := SplitCayleyHexagon(3);
H(3)
gap> g := CollineationGroup(h);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_{2}(3)
gap> p := Random(Points(h));
<a point in H(3)>
gap> FiningStabiliser(g,p);
cprojective collineation group of size 11664 with 2 generators>
gap> line := Random(Lines(h));
<a line in H(3)>
gap> FiningStabiliser(g,line);
cprojective collineation group of size 11664 with 2 generators>
```

8.2.2 FiningStabiliserOrb

```
⊳ FiningStabiliserOrb(g, el)
Returns: The subgroup of g stabilising the element el
```

The argument g is a group of collineations acting on the element el, being a subspace of a projective space (and hence, all elements of a Lie geometry are allowed as second argument). This operation relies on some particular orb functionality.

```
_____ Example _
gap > ps := PG(5,4);
ProjectiveSpace(5, 4)
gap> g := SpecialHomographyGroup(ps);
The FinInG PSL group PSL(6,4)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,p);
ctive collineation group with 15 generators>
gap> line := Random(Lines(ps));
<a line in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,line);
ctive collineation group with 15 generators>
gap> plane := Random(Planes(ps));
<a plane in ProjectiveSpace(5, 4)>
gap> FiningStabiliserOrb(g,plane);
ctive collineation group with 15 generators>
gap> ps := HyperbolicQuadric(5,5);
Q+(5, 5)
gap> g := IsometryGroup(ps);
PGO(1,6,5)
gap> p := Random(Points(ps));
<a point in Q+(5, 5)>
gap> FiningStabiliserOrb(g,p);
projective collineation group with 15 generators>
gap> line := Random(Lines(ps));
\langle a \text{ line in } Q+(5, 5) \rangle
gap> FiningStabiliserOrb(g,line);
projective collineation group with 15 generators>
gap> plane := Random(Planes(ps));
\langle a plane in Q+(5, 5) \rangle
gap> FiningStabiliserOrb(g,plane);
projective collineation group with 15 generators>
gap> h := SplitCayleyHexagon(3);
H(3)
gap> g := CollineationGroup(h);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_{2}(3)
gap> p := Random(Points(h));
<a point in H(3)>
gap> FiningStabiliserOrb(g,p);
ctive collineation group with 15 generators>
gap> line := Random(Lines(h));
\langlea line in H(3)\rangle
gap> FiningStabiliserOrb(g,line);
ctive collineation group with 15 generators>
```

A small example shows the difference in computing time. Clearly the FiningStabiliserOrb is the fastest way to compute stabilizers of one element.

```
gap > ps := PG(3,8);
ProjectiveSpace(3, 8)
gap> g := CollineationGroup(ps);
The FinInG collineation group PGammaL(4,8)
gap> p := Random(Points(ps));
<a point in ProjectiveSpace(3, 8)>
gap> g1 := Stabilizer(g,p);
iective collineation group of size 177223237632 with 2 generators>
9576
gap> g2 := FiningStabiliser(g,p);
gap> time;
244
gap> g3 := FiningStabiliserOrb(g,p);
ctive collineation group with 15 generators>
gap> time;
46
gap> g1=g2;
true
gap> g2=g3;
true
```

8.2.3 FiningSetwiseStabiliser

▷ FiningSetwiseStabiliser(g, els)

(operation)

Returns: The subgroup of g stabilising the set els

The argument g is a group of collineations acting on the element el, being a subspace of a projective space (and hence, all elements of a Lie geometry are allowed as second argument). The argument els is a set of elements of the same type of the same Lie geometry, the elements are all in the category IsSubspaceOfProjectiveSpace. The underlying action function is assumed to be OnProjSubspaces

Computing the setwise stabiliser under a group is also possible using Stabilizer. But, not surprisingly, the computing time can be very long.

The package GenSS provides an efficient operations to compute setwise stabilisers. This is why FinInG provides functionality, such as FiningSetwiseStabiliser, to use these GenSS operations for the particular groups and (elements) of geometries. A small example shows the difference in computing time.

```
Example
gap> ps := ParabolicQuadric(4,4);
gap> g := CollineationGroup(ps);
PGamma0(5,4)
gap> 11 := Random(Lines(ps));
<a line in Q(4, 4)>
gap> 12 := Random(Lines(ps));
<a line in Q(4, 4)>
gap> g1 := Stabilizer(g,Set([11,12]),OnSets);
cprojective collineation group of size 2304 with 6 generators>
gap> time;
2633
gap> g2 := FiningSetwiseStabiliser(g,Set([11,12]));
#I Computing adjusted stabilizer chain...
ctive collineation group with 5 generators>
gap> time;
70
gap> g1=g2;
true
```

For subspaces of projective spaces we can be even more efficient by writing down generators of the stabiliser and then return the generated subgroup.

8.2.4 StabiliserGroupOfSubspace

```
    ▷ StabiliserGroupOfSubspace(sub)
```

(operation)

Returns: The subgroup of the collineation group of AmbientSpace(sub) stabilising the subspace sub

The argument sub is a subspace of a projective space.

8.2.5 ProjectiveStabiliserGroupOfSubspace

▷ ProjectiveStabiliserGroupOfSubspace(sub)

operation)

Returns: The subgroup of the projectivity group of AmbientSpace(sub) stabilising the subspace sub

The argument sub is a subspace of a projective space.

8.2.6 SpecialProjectiveStabiliserGroupOfSubspace

▷ SpecialProjectiveStabiliserGroupOfSubspace(sub)

(operation)

Returns: The subgroup of the special projectivity group of AmbientSpace(sub) stabilising the subspace sub

The argument sub is a subspace of a projective space.

```
gap> pg:=ProjectiveSpace(5,9);
ProjectiveSpace(5, 9)
gap> sub:=RandomSubspace(pg,2);
<a plane in ProjectiveSpace(5, 9)>
gap> coll:=StabiliserGroupOfSubspace(sub); time;
cprojective collineation group of size 11173786189009966655078400 with
6 generators>
10
gap> computed:=FiningStabiliserOrb(CollineationGroup(pg),sub);
ctive collineation group with 15 generators>
gap> time;
34923
gap> coll = computed;
true
gap> proj:=ProjectiveStabiliserGroupOfSubspace(sub);
jective collineation group of size 5586893094504983327539200 with
5 generators>
gap> time;
gap> FiningStabiliserOrb(ProjectivityGroup(pg),sub)=proj;
true
gap> time;
116113
gap> specproj:=SpecialProjectiveStabiliserGroupOfSubspace(sub);
5 generators>
gap> time;
gap> specproj = FiningStabiliserOrb(SpecialProjectivityGroup(pg),sub);
gap> time;
65564
```

8.3 Actions and nice monomorphisms revisited

GAP provides generic functions to compute action homomorphisms and their images for arbitrary groups. These functions are applicable on the projective groups implemented in FinlnG.

8.3.1 Action functions

```
    ▷ OnProjSubspaces(e1, g) (function)
    ▷ OnProjSubspacesExtended(e1, g) (function)
    ▷ OnSetsProjSubspaces(set, g) (function)
    Returns: a element of a Lie geometry
```

Let el be an element of any Lie geometry, and g an element of a projective group acting on the elements of the ambient Lie geometry of el. Then then OnProjSubspaces will return simply the image of el under g. When g is an element of the correlation/collineation group of a projective space, OnProjSubspacesExtended returns the image of el under g. Finally, when set is a set of elements of a Lie geometry, OnSetsProjSubspaces returns the set of images under g. OnProjSubspaces is also explained in 5.8.1, OnProjSubspacesExtended is also explained in 5.8.3.

8.3.2 Generic GAP functions

```
\triangleright ActionHomomorphism(g, S, act) (operation) \triangleright Action(g, S, act) (operation)
```

g is a projective group, S is a set or a collection of elements, act is an action function. Action simply returns Image(hom), if hom is the result of ActionHomomorphism. The examples are self-explanatory.

```
___ Example _
gap > pg := PG(2,3);
ProjectiveSpace(2, 3)
gap> conic := Set(Points(ParabolicQuadric(2,3)));;
gap> coll := CollineationGroup(pg);
The FinInG collineation group PGL(3,3)
gap> orb := Orbit(coll,conic,OnSetsProjSubspaces);;
gap> Length(orb);
234
gap> hom := ActionHomomorphism(coll,orb,OnSetsProjSubspaces);
<action homomorphism>
gap> perm := Image(hom);
<permutation group with 2 generators>
gap> Order(perm);
5616
gap> NrMovedPoints(perm);
234
gap> ps := SymplecticSpace(5,2);
W(5, 2)
gap> coll := CollineationGroup(ps);
gap> perm := Action(coll,Lines(ps),OnProjSubspaces);
<permutation group with 4 generators>
gap> NrMovedPoints(perm);
```

315

A nice monomorphism of a group G is roughly just a permutation representation of G on a suitable action domain. An easy example is the permutation action of the full collineation group of a projective space on its points.

8.3.3 NiceMonomorphism

▷ NiceMonomorphism(group)

(attribute)

Returns: A group homomorphism

This is a generic GAP function, and returns a homomorphism to a "better" representation.

8.3.4 NiceObject

▷ NiceObject(group)

(attribute)

Returns: A permutation group

group is a projective group. The object this operation returns is actually equivalent with Image(NiceMonomorphism(group)).

8.3.5 Different behaviour for different collineation groups

For the different Lie geometries implemented in FinlnG, nicemonomorphisms are (necessarily) treated in a different way. As the aim of a nicemonomorphism of group G is to provide a permutation representation, such that efficient algorithms for permutation groups become available for certain operations applicable on G, clearly the efficiency will be increased if the degree of the permutation representation is as small as possible.

For the collineation group, projectivity group and special projectivity group of a projective space, it is clear that the smallest degree permutation representation is the action of the group on the projective points. In principle, one could also consider the action on the hyperplanes. For the collineation group, similarity group and isometry group of a classical polar space, in most cases, the smallest degree permutation representation is the action on the points. A notorious exception to this is the hermitian polar space in three dimensions, of which the number of lines is smaller than the number of points, and hence of which the smallest degree permutation representation is the action of the group on the lines. When constructing a collineation group (or (special) projectivity group) of a projective space, the nicemonomorphism is not computed. It is only computed when needed. The reason is that from the underlying field and dimension, the underlying projective space can be determined at any time, and hence the smallest degree representation can be computed. For the collineation groups (and similarity and isometry groups) of classical polar spaces, this behaviour is different. Indeed, given a group of collineations, from the underlying field and dimension, the original polar space can not be determined. Of course one could consider the action on the points of the underlying projective space, but typically the number of points of a classical polar space is much smaller than the number points of the underlying projective space. This explains why, currently, a nice monomorphism is computed at the moment a collineation group of a classical polar space is computed. As a consequence, just asking the collineation group of a polar space can be time consuming.

```
gap> g := CollineationGroup(PG(5,9));
The FinInG collineation group PGammaL(6,9)
```

```
gap> time;
28
gap> HasNiceMonomorphism(g);
false
gap> h := CollineationGroup(EllipticQuadric(5,9));
PGammaO-(6,9)
gap> time;
1584
gap> HasNiceMonomorphism(h);
true
```

8.3.6 SetParent

```
▷ SetParent(group) (operation)
```

Assume that G is a group of collineations. As mentioned already, from the underlying field and dimension, only the underlying projective space can be determined. An operation like Order requires a nice monomorphism, so for an arbitrary group G, the action on the points of the underlying projective space will be computed, which can be time consuming for large projective spaces. However, if it is known that G is a subgroup of another collineation group H, this group H can be set as a parent group for G. If a nice monomorphism is available for H, it will become available for G. In the example we construct the collineation group of the hermitian polar space H(3,81). As explained, a nice monomorphism is computed upon construction. Then construct a group generated by two random elements of this collineation group of H(3,81), and compute its order. Without further information, it will be assumed by the system that this new group is a subgroup of the collineation group of PG(3,81), and a nice monomorphism will be computed through this group. In the second part we set the parent group as the collineation group of H(3,81), and compute the order again. Compare the different timings.

```
_{-} Example _{-}
gap> ps := HermitianPolarSpace(3,81);
H(3, 9^2)
gap> group := CollineationGroup(ps);
PGammaU(4,9<sup>2</sup>)
gap> time;
2219
gap> g := Random(group);
< a collineation: <cmat 4x4 over GF(3,4)>, F^27>
gap> h := Random(group);
< a collineation: <cmat 4x4 over GF(3,4)>, F^3>
gap> group2 := Group([g,h]);
projective collineation group with 2 generators>
gap> HasNiceMonomorphism(group2);
false
gap> Order(group2);
407194345728000
gap> time;
371559
gap> HasNiceMonomorphism(group2);
true
```

```
gap> NrMovedPoints(NiceObject(group2));
538084
gap> Size(Points(PG(3,81)));
538084
gap> group2 := Group([g,h]);
ctive collineation group with 2 generators>
gap> SetParent(group2,group);
gap> HasNiceMonomorphism(group2);
true
gap> HasNiceObject(group2);
false
gap> Order(group2);
407194345728000
gap> time;
888
gap> HasNiceObject(group2);
true
gap> NrMovedPoints(NiceObject(group2));
7300
gap> Size(Lines(ps));
7300
```

Chapter 9

Affine Spaces

In this chapter we show how one can work with finite affine spaces in FinInG.

9.1 Affine spaces and basic operations

An affine space is a point-line incidence geometry, satisfying few well known axioms. An axiomatic treatment can e.g. be found in [VY65a] and [VY65b]. As is the case with projective spaces, affine spaces are axiomatically point-line geometries, but may contain higher dimensional affine subspaces too. An affine space can also be described as the "geometry you get" when you remove a hyperplane from a projective space. Conversely, each affine space can be extended to a projective space in a unique way (by "adding its hyperplane at infinity"). In FinlnG, we deal with *finite Desarguesian affine spaces*, i.e. an affine space, such that its projective completion is Desarguesian. Other concepts can be easily defined using this projective completion. E.g. lines of the projective space which are concurrent in a point of the hyperplane at infinity, become now *parallel* in the affine space. In order to implement (Desarguesian) affine spaces in FinlnG, we have to represent the elements of the affine space (the affine subspaces), in a standard way. By definition, the points (i.e. the elements of type 1) of the *n*-dimensional affine space AG(n,q) are the vectors of the underlying *n*-dimensional vector space over the finite field GF(q). The *i*-dimensional subspaces of AG(n,q) (i.e. the elements of type i-1) are defined as the cosets of the *i*-dimensional subspaces of the underlying vector space. Hence, the common representation of such a subspace is

$$v + S$$
,

where v is a vector and S is a subspace of a vector space. Equivalently one can also think of a subspace of an affine space as consisting of: (i) an affine point, representing the coset, and and (ii) a "direction", which is an element of an n-1-dimensional projective space, representing the hyperplane at infinity. In FinInG, we represent an i-dimensional subspace, $1 \le i \le n-1$ as

where v is a row vector and mat is a matrix (representing a basis of the projective element representing the direction at infinity). For affine points, we simply use vectors.

9.1.1 IsAffineSpace

▷ IsAffineSpace (Category)

This category is a subcategory of IsIncidenceGeometry, and contains all finite Desarguesian affine spaces.

9.1.2 AffineSpace

Returns: an affine space

d must be a positive integer. In the first form, F is a field and the function returns the affine space of dimension d over F. In the second form, q is a prime power specifying the size of the field. The user may also use an alias, namely, the common abbreviation AG(d, q).

```
gap> AffineSpace(3,GF(4));
AG(3, 4)
gap> AffineSpace(3,4);
AG(3, 4)
gap> AG(3,GF(4));
AG(3, 4)
gap> AG(3,4);
AG(3, 4)
```

9.1.3 Dimension

```
ightharpoonup Dimension(as) (attribute) 
ightharpoonup Rank(as) (attribute)
```

Returns: the dimension of the affine space as (which is equal to its rank)

```
gap> Dimension(AG(5,7));
5
gap> Rank(AG(5,7));
5
```

9.1.4 BaseField

▷ BaseField(as) (operation)

Returns: returns the base field for the affine space as

```
gap> BaseField(AG(6,49));
GF(7^2)
```

9.1.5 Underlying Vector Space

▷ UnderlyingVectorSpace(as)

(operation)

Returns: a vector space

The underlying vector space of AG(n,q) is simply V(n,q).

```
gap> UnderlyingVectorSpace(AG(4,5));
( GF(5)^4 )
```

9.1.6 AmbientSpace

▷ AmbientSpace(as)

(attribute)

Returns: an affine space

The ambient space of an affine space as is the affine space itself. Hence, simply as will be returned.

```
gap> AmbientSpace(AG(4,7));
AG(4, 7)
```

9.2 Subspaces of affine spaces

9.2.1 AffineSubspace

```
▷ AffineSubspace(geo, v) (operation)
▷ AffineSubspace(geo, v, M) (operation)
```

Returns: a subspace of an affine space

geo is an affine space, v is a row vector, and M is a matrix. There are two representations necessary for affine subspaces in FinlnG: (i) points represented as vectors and (ii) subspaces of dimension at least 1 represented as a coset of a vector subspace:

```
v + S.
```

For the former, the underlying object is just a vector, whereas the second is a pair [v, M] where v is a vector and M is a matrix representing the basis of S. Now there is a canonical representative for the coset v + S, and the matrix M is in semi-echelon form, therefore we can easily compare two affine subspaces. If no matrix is given in the arguments, then it is assumed that the user is constructing an affine point.

```
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> x := [[1,1,0]]*Z(3)^0;
[ [ Z(3)^0, Z(3)^0, 0*Z(3) ] ]
gap> v := [0,-1,1] * Z(3)^0;
[ 0*Z(3), Z(3), Z(3)^0 ]
gap> line := AffineSubspace(ag, v, x);
<a line in AG(3, 3)>
```

9.2.2 ElementsOfIncidenceStructure

▷ ElementsOfIncidenceStructure(as, j)

(operation)

Returns: the collection of elements of the affine space as of type j

For the affine space as of dimension d and the type j, $1 \le j \le d$ this operation returns the collection of j-1 dimensional subspaces. An error message is produced when the projective space ps has no elements of a required type.

```
_{-} Example _{-}
gap> ag := AffineSpace(9, 64);
AG(9, 64)
gap> ElementsOfIncidenceStructure(ag,1);
<points of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,2);
of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,3);
<planes of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,4);
<solids of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,6);
<affine. subspaces of dim. 5 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,9);
<affine. subspaces of dim. 8 of AG(9, 64)>
gap> ElementsOfIncidenceStructure(ag,10);
Error, <as> has no elements of type <j> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 15 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

9.2.3 Short names for ElementsOfIncidenceStructure

```
ightharpoonup Points(ps) (operation)

ightharpoonup Lines(ps) (operation)

ightharpoonup Planes(ps) (operation)

ightharpoonup Solids(ps) (operation)

ightharpoonup Hyperplanes(ps) (operation)
```

Returns: The elements of ps of respective type 1, 2, 3, 4, and the hyperplanes An error message is produced when the projective space ps has no elements of a required type.

```
gap> as := AG(5,4);
AG(5, 4)
gap> Points(as);
<points of AG(5, 4)>
gap> Lines(as);
lines of AG(5, 4)>
gap> Planes(as);
<planes of AG(5, 4)>
gap> Solids(as);
<solids of AG(5, 4)>
```

```
gap> Hyperplanes(as);
<affine. subspaces of dim. 4 of AG(5, 4)>
gap> as := AG(2,8);
AG(2, 8)
gap> Hyperplanes(as);
lines of AG(2, 8)>
```

9.2.4 Incidence and containment

```
▷ IsIncident(el1, el2) (operation)
▷ \*(el1, el2) (operation)
▷ \in(el1, el2) (operation)
```

Returns: true or false

Recall that for affine spaces, incidence is symmetrized containment, where the whole affine space is excluded as one of the arguments for the operation IsIncident, since they it is not considered as an element of the geometry, but the whole affine space is allowed as one of the arguments for \in. The method for * is using IsIncident.

```
_{-} Example _{-}
gap> as := AG(3,16);
AG(3, 16)
gap> p := AffineSubspace(as,[1,0,0]*Z(16)^0);
<a point in AG(3, 16)>
gap> 1 := AffineSubspace(as,[1,0,0]*Z(16),[[0,1,1]]*Z(16)^0);
<a line in AG(3, 16)>
gap> plane := AffineSubspace(as,[1,0,0]*Z(16)^0,[[1,0,0],[0,1,1]]*Z(16)^0);
<a plane in AG(3, 16)>
gap> p in p;
true
gap> p in 1;
false
gap> 1 in p;
false
gap> 1 in plane;
true
gap> plane in 1;
false
gap> p in plane;
true
gap> p in as;
true
gap> 1 in as;
true
gap> plane in as;
true
gap> as in p;
false
gap> IsIncident(p,1);
false
gap> IsIncident(1,p);
false
```

```
gap> IsIncident(1,plane);
true
gap> IsIncident(plane,1);
true
gap> IsIncident(p,plane);
true
gap> IsIncident(plane,p);
true
```

9.2.5 AmbientSpace

▷ AmbientSpace(el)

(operation)

Returns: returns the ambient space of an element el of an affine space

```
gap> as := AG(5,7);
AG(5, 7)
gap> solid := AffineSubspace(as,[1,0,0,1,0]*Z(7)^3,[[1,0,0,0,0],[0,1,1,1,0]]*Z(7)^0);
<a plane in AG(5, 7)>
gap> AmbientSpace(solid);
AG(5, 7)
```

9.2.6 BaseField

▷ BaseField(el)

(operation)

Returns: returns the base field of an element el of an affine space

```
gap> as := AG(5,11);
AG(5, 11)
gap> sub := AffineSubspace(as,[1,4,3,1,0]*Z(11)^5,[[1,0,0,0,0],[0,1,1,1,0],
> [0,0,0,0,1]]*Z(11)^0);
<a solid in AG(5, 11)>
gap> BaseField(sub);
GF(11)
```

9.2.7 Span

 \triangleright Span(u, v)

(operation)

Returns: a subspace

u and v are subspaces of an affine space. This function returns the span of the two subspaces.

```
gap> ag := AffineSpace(4,5);
AG(4, 5)
gap> p := AffineSubspace(ag, [1,0,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> r := AffineSubspace(ag, [0,1,0,0] * One(GF(5)) );
<a point in AG(4, 5)>
gap> 1 := Span(p, r);
```

```
<a line in AG(4, 5)>
gap> 1^_;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ] ] ]
gap> Display(1);
Affine line:
Coset representative: [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ]
Coset (direction): [ [ Z(5)^0, Z(5)^2, 0*Z(5), 0*Z(5) ] ]
```

9.2.8 Meet

 \triangleright Meet(u, v) (operation)

Returns: an affine subspace or the empty list

u and v are subspaces of an affine space. This function returns the meet of the two subspaces. If the two subspaces are disjoint, then Meet returns the empty list.

9.2.9 IsParallel

```
\triangleright IsParallel(u, v) (operation)
```

Returns: true or false

The arguments u and v must be affine subspaces of a common affine space. Two subspaces are parallel if and only if the direction space of the first is contained in the direction space of the second or vice-versa.

```
gap> as := AffineSpace(3, 3);
AG(3, 3)
gap> 1 := AffineSubspace(as,[0,0,0]*Z(3)^0,[[1,0,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> m := AffineSubspace(as,[1,0,0]*Z(3)^0,[[1,0,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> n := AffineSubspace(as,[1,0,0]*Z(3)^0,[[0,1,0]]*Z(3)^0);
<a line in AG(3, 3)>
gap> IsParallel(1,m);
true
gap> IsParallel(m,n);
false
```

```
gap> IsParallel(1,n);
false
```

9.2.10 ParallelClass

```
    ParallelClass(as, v) (operation)
    ParallelClass(v) (operation)
```

Returns: a collection of affine subspaces

The argument v is an affine subspace of as. This operation returns a collection for which an iterator is installed. The collection represents the set of elements of as of the same type as v which are parallel to v; they have the same direction. If v is a point, then this operation returns the collection of all points of as. If one argument is given, then it is assumed that the affine space which we are working with is the ambient space of v.

9.3 Shadows of Affine Subspaces

9.3.1 ShadowOfElement

```
⊳ ShadowOfElement(as, v, type)
```

(operation)

Returns: the subspaces of the affine space as of dimension type which are incident with v as is an affine space and v is an element of as. This operation computes and returns the subspaces of dimension type which are incident with v. In fact, this operation returns a collection which is only computed when iterated (e.g. when applying AsList to the collection). Some shorthand notation for ShadowOfElement is available for affine spaces: Points(as,v), Points(v), Lines(v), etc.

9.3.2 ShadowOfFlag

```
▷ ShadowOfFlag(as, list, type)
```

operation)

Returns: the subspaces of the affine space as of dimension type which are incident with each element of list

as is an affine space and *list* is a list of pairwise incident elements of as. This operation computes and returns the subspaces of dimension *type* which are incident with every element of *list*. In fact, this operation returns a collection which is only computed when iterated (e.g. when applying AsList to the collection).

9.4 Iterators and enumerators

Recall from Section 4.4 ("Enumerating subspaces of a projective space", Chapter 4), that an iterator allows us to obtain elements from a collection one at a time in sequence, whereas an enumerator for a collection give us a way of picking out the i-th element. In FinInG we have enumerators and iterators for subspace collections of affine spaces.

9.4.1 Iterator

▷ Iterator(subs)

(operation)

Returns: an iterator for the given subspaces collection subs is a collection of subspaces of an affine space, such as Points(AffineSpace(3, 3)).

```
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
lines of AG(3, 3)>
gap> iter := Iterator( lines );
<iterator>
gap> 1 := NextIterator( iter );
<a line in AG(3, 3)>
```

9.4.2 Enumerator

▷ Enumerator(subs) (operation)

Returns: an enumerator for the given subspaces collection subs is a collection of subspaces of an affine space, such as Points(AffineSpace(3, 3)).

```
gap> ag := AffineSpace(3, 3);
AG(3, 3)
gap> lines := Lines( ag );
lines of AG(3, 3)>
gap> enum := Enumerator( lines );
<enumerator of <lines of AG(3, 3)>>
gap> 1 := enum[20];
<a line in AG(3, 3)>
gap> Display(1);
Affine line:
Coset representative: [ 0*Z(3), 0*Z(3), Z(3)^0 ]
Coset (direction): [ [ Z(3)^0, 0*Z(3), Z(3) ] ]
```

9.5 Affine groups

A *collineation* of an affine space is a permutation of the points which preserves the relation of collinearity within the affine space. The fundamental theorem of affine geometry states that the group $A\Gamma L(n,q)$ of collineations of an affine space AG(n,q) is generated by the translations T, the matrices of GL(n,q) and the automorphisms of the field GF(q). The translations T form a normal subgroup of $A\Gamma L(n,q)$, and $A\Gamma L(n,q)$ is the semidirect product of T and $\Gamma L(n,q)$.

Suppose we have an affine transformation of the form x + A where x is a vector representing a translation, and A is a matrix in GL(n,q) Then by using the natural embedding of AGL(n+1,q) in PGL(n+1,q), we can write this collineation as a matrix:

$$\begin{pmatrix} & & & 0 \\ & A & & 0 \\ & & & 0 \\ \hline & x & & 1 \end{pmatrix}.$$

We can extend this idea to the full affine collineation group by adjoining the field automorphisms as we would for projective collineations. Here is an example:

```
, F^0>
```

Here we see that this affine transformation is

$$(1,2,1) + \left(\begin{array}{ccc} 0 & 1 & 1 \\ 2 & 2 & 0 \\ 2 & 1 & 1 \end{array}\right).$$

As we have seen, in FinInG, we represent an element of an affine collineation group as a projective semilinear element, i.e. as an object in the category ProjElsWithFrob, so that we can use all the functionality that exists for such objects. However, an affine collineation group (i.e. a group of collineations of the affine space AG(n,q) is not by default constructed as a subgroup of $P\Gamma L(n+1,q)$, but the compatibility between the elements of both groups enables testing for such relations.

9.5.1 AffineGroup

▷ AffineGroup(as)

(operation)

Returns: a group

If as is the affine space AG(n,q) This operation returns the affine linear group AGL(n+1,q) acting on as. The elements of this group are projectivities of the associated projective space. In order to get the full group of collineations of the affine space, one needs to use the operation CollineationGroup.

```
gap> as := AffineSpace(4,7);
AG(4, 7)
gap> g := AffineGroup(as);
AGL(4,7)
gap> as := AffineSpace(4,8);
AG(4, 8)
gap> g := AffineGroup(as);
AGL(4,8)
```

9.5.2 CollineationGroup

```
▷ CollineationGroup(as)
```

(operation)

Returns: a group

If as is the affine space AG(n,q), then this operation returns the affine semilinear group $A\Gamma L(n,q)$. The elements of this group are collineations of the associated projective space. Note that if the defining field has prime order, then the groups $A\Gamma L(n,q)$ and AGL(n+1,q) coincide.

```
gap> as := AffineSpace(4,8);
AG(4, 8)
gap> g := CollineationGroup(as);
AGammaL(4,8)
gap> h := AffineGroup(as);
AGL(4,8)
gap> IsSubgroup(g,h);
true
gap> as := AffineSpace(4,7);
AG(4, 7)
gap> g := CollineationGroup(as);
AGL(4,7)
```

9.5.3 OnAffineSpaces

```
▷ OnAffineSpaces(subspace, el) (operation)
▷ \^(subspace, el) (operation)
```

Returns: an element of an affine space

subspace must be an element of an affine space and el a collineation of an affine space (which is in fact also a collineation of an associated projective space). This is the action one should use for collineations of affine spaces, and it acts on subspaces of all types of affine spaces: points, lines, planes, etc.

```
\_ Example \_
gap> as := AG(3,27);
AG(3, 27)
gap> p := Random(Points(as));
<a point in AG(3, 27)>
gap> g := Random(CollineationGroup(as));
< a collineation: [ [Z(3^3)^25, Z(3^3)^11, Z(3^3)^23, 0*Z(3)],
  [Z(3^3)^20, 0*Z(3), Z(3^3), 0*Z(3)],
  [ Z(3^3)^16, Z(3^3)^15, Z(3^3)^21, 0*Z(3) ],
  [ Z(3^3)^20, Z(3^3)^4, 0*Z(3), Z(3)^0 ] ], F^3>
gap> OnAffineSubspaces(p,g);
<a point in AG(3, 27)>
gap> p^g;
<a point in AG(3, 27)>
gap> 1 := Random(Lines(as));
<a line in AG(3, 27)>
gap> OnAffineSubspaces(1,g);
<a line in AG(3, 27)>
gap> 1^g;
```

<a line in AG(3, 27)>

9.6 Low level operations

One technical aspect of the design behind affine spaces in FinlnG is having canonical transversals for subspaces of vector spaces. We provide some documentation below for the interested user.

9.6.1 IsVectorSpaceTransversal

▷ IsVectorSpaceTransversal

(filter)

The category IsVectorSpaceTransversal represents a special object in FinInG which carries a record with two components: <code>space</code> and <code>subspace</code>. This category is a subcategory of IsSubspacesOfVectorSpace, however, we do not recommend the user to apply methods to objects in IsVectorSpaceTransversal, which are normally used for the category IsSubspacesOfVectorSpace(they won't work!). The objects in IsVectorSpaceTransversal are only used in order to facilitate computing enumerators of subspace collections.

9.6.2 VectorSpaceTransversal

▷ VectorSpaceTransversal(space, mat)

(operation)

Returns: a collection for representing a transversal of a subspaces of a vector space

space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V. A transversal for U in V is a set of coset representatives for the quotient V/U. This collection comes equipped with an enumerator operation.

9.6.3 VectorSpaceTransversalElement

▷ VectorSpaceTransversalElement(space, mat, vector)

(operation)

Returns: a canonical coset representative

space is a vector space V, mat is a matrix whose rows are a basis for a subspace U of V, and vector is a vector v of V. A canonical representative v' is returned for the coset U + v.

9.6.4 ComplementSpace

▷ ComplementSpace(space, mat)

(operation)

Returns: a collection for representing a transversal of a subspaces of a vector space

space is a vector space V and mat is a matrix whose rows are a basis for a subspace U of V. The operation is almost a complete copy of the function BaseSteinitzVector except that just a basis for the complement of U is returned instead of a full record.

Chapter 10

Geometry Morphisms

Here we describe what is meant by a *geometry morphism* in FinInG and the various operations and tools available to the user. When using groups in GAP, we often use homomorphisms to pass from one situation to another, even though mathematically it may appear to be unnecessary, there can be ambiguities if the functionality is too flexible. This also applies to finite geometry. Take for example the usual exercise of thinking of a hyperplane in a projective space as another projective space. To conform with similar situations in GAP, the right thing to do is to embed one projective space into another, rather than having one projective space automatically as a substructure of another. The reason for this is that there are many ways one can do this embedding, even though we may dispense with this choice when we are working mathematically. So to avoid ambiguity, we stipulate that one should construct the embedding explicitly. How this is done will be described this chapter.

Suppose that S and S' are two incidence geometries. A geometry morphism from S to S' is defined to be a map from the elements of S to the elements of S' which preserves incidence and induces a function from the type set of S to the type set of S'. For instance, a correlation and a collineation are examples of geometry morphisms, but they have been dealt with in more specific ways in FinlnG. We will mainly be concerned with geometry morphisms where the source and range are different. Hence, the natural embedding of a projective space in a larger projective space, the mapping induced by field reduction, and e.g. the Klein correspondence are examples of such geometry morphisms.

As a geometry morphism from S to S' preserves incidence, it also preserves the symmetry, and hence it induces also a map from the collineation group of S into the collineation group of S'. Such a map will be called an *Intertwiner*, and FinInG can provide these maps for some of the geometry morphisms.

Note that quite some technicalities are needed in the implementation of some geometry morphisms. This chapters deals only with the user interface. Some low level functions for geometry morphisms are described in Appendix C.

10.1 Geometry morphisms in FinInG

10.1.1 IsGeometryMorphism

▷ IsGeometryMorphism

(family)

The category IsGeometryMorphism represents a special object in FinInG which carries attributes and the given element map. The element map is given as a IsGeneralMapping, and so has a source

and range.

```
gap> ShowImpliedFilters(IsGeometryMorphism);
Implies:
    IsGeneralMapping
    IsTotal
    Tester(IsTotal)
    IsSingleValued
    Tester(IsSingleValued)
```

The usual operations of ImageElm, and PreImageElm, have methods installed for geometry morphisms, as well as the overload operator \^.

10.1.2 Intertwiner

 \triangleright Intertwiner(f) (attribute)

Returns: a group homomorphism

The argument f is a geometry morphism. If f comes equipped with a natural intertwiner from an automorphism group of the source of f to the automorphism group to the image of f, then the user may is able to obtain the intertwiner by calling this operation (see the individual geometry morphism constructions). For most geometry morphisms, there is also an accompanying intertwiner for the automorphism groups of the source and range. Given a geometry morphism f from f to f, an intertwiner f is a map from the automorphism group of f to the automorphism group of f such that for every element f of f and every automorphism f of f, we have

$$f(p^g) = f(p)^{\phi(g)}.$$

There is no method to compute an intertwiner for a given geometry morphism, the attribute is or is not set during the construction of the geometry morphism, depending whether the Source and Range of the morphism have the appropriate automorphism group known as an attribute. When this condition is not satisfied, the user is expected to call the appropriate automorphism groups, so that they are computed, and to recompute the geometry morphism (which will not cost a lot of computation time then). This will make the attribute Intertwiner available. Here is a simple example of the intertwiner for the isomorphism of two polar spaces (see IsomorphismPolarSpaces (10.2.1)). The source of the homomorphism is dependent on the geometry.

```
gap> form := BilinearFormByMatrix( IdentityMat(3,GF(3)), GF(3) );
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(2,GF(3)): x_1^2+x_2^2+x_3^2=0 >
gap> pq := ParabolicQuadric(2,3);
standard Q(2, 3)
gap> iso := IsomorphismPolarSpaces(ps, pq);
#I Computing nice monomorphism...
<geometry morphism from <Elements of <polar space in ProjectiveSpace(2,GF(3)): x_1^2+x_2^2+x_3^2=0 >> to <Elements of standard Q(2, 3)>>
gap> KnownAttributesOfObject(iso);
[ "Range", "Source", "Intertwiner" ]
gap> hom := Intertwiner(iso);
```

```
MappingByFunction( projective semilinear group with
3 generators>, PGammaO(3,3), function( y ) ... end, function( x ) ... end )
```

10.2 Type preserving bijective geometry morphisms

An important class of geometry morphisms in FinInG are the isomorphisms between polar spaces of the same kind that are induced by coordinate transformations.

10.2.1 IsomorphismPolarSpaces

```
    ▷ IsomorphismPolarSpaces(ps1, ps2) (operation)
    ▷ IsomorphismPolarSpaces(ps1, ps2, boolean) (operation)
    Returns: a geometry morphism
```

The arguments ps1 and ps2 are equivalent polar spaces, i.e. up to coordinate transformation, the underlying sesquilinear or quadratic form determines the same polar space, or, ps1 is a parabolic quadric over a finite field f of even characteristic in dimension 2n and ps2 is a symplectic space over f in dimension 2n-1, then this operation returns a geometry isomorphism between them. The optional third argument boolean can take either true or false as input, and then the operation will or will not compute the intertwiner accordingly. The user may wish that the intertwiner is not computed when working with large polar spaces. The default (when calling the operation with two arguments) is set to true, and in this case, if at least one of ps1 or ps2 has a collineation group installed as an attribute, then an intertwining homomorphism is installed as an attribute of the resulting geometry morphism. Hence we also obtain a natural group isomorphism from the collineation group of ps1 onto the collineation group of ps2 (see also Intertwiner (10.1.2)).

```
Example
gap> mat1 := IdentityMat(6,GF(5));
< mutable compressed matrix 6x6 over GF(5) >
gap> form1 := BilinearFormByMatrix(mat1,GF(5));
< bilinear form >
gap> ps1 := PolarSpace(form1);
<polar space in ProjectiveSpace(</pre>
5,GF(5)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> mat2 := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0,0]]*Z(5)^0;
[ [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0 ],
  [0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5)],
  [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5) ] ]
gap> form2 := QuadraticFormByMatrix(mat2,GF(5));
< quadratic form >
gap> ps2 := PolarSpace(form2);
<polar space in ProjectiveSpace(5,GF(5)): x_1*x_6+x_2*x_5+x_3*x_4=0 >
gap> iso := IsomorphismPolarSpaces(ps1,ps2,true);
#I No intertwiner computed. One of the polar spaces must have a collineation group computed
<geometry morphism from <Elements of Q+(5,</pre>
5): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0> to <Elements of Q+(5,
```

```
5): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> CollineationGroup(ps1);
#I Computing collineation group of canonical polar space...
gap> CollineationGroup(ps2);
#I Computing collineation group of canonical polar space...
cprojective collineation group of size 58032000000 with 4 generators>
gap> iso := IsomorphismPolarSpaces(ps1,ps2,true);
<geometry morphism from <Elements of Q+(5,</pre>
5): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0> to <Elements of Q+(5,
5): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> hom := Intertwiner( iso );
MappingByFunction( <projective collineation group of size 58032000000 with
4 generators>, , projective collineation group of size 58032000000 with
4 generators>, function( y ) ... end, function( x ) ... end )
gap> ps1 := ParabolicQuadric(6,8);
Q(6, 8)
gap> ps2 := SymplecticSpace(5,8);
gap> em := IsomorphismPolarSpaces(ps1,ps2);
#I Have 36171 points.
#I Have 37381 points in new orbit.
   Have 36171 points.
#I Have 37388 points in new orbit.
<geometry morphism from <Elements of Q(6, 8)> to <Elements of W(5, 8)>>
gap> hom := Intertwiner(em);
27231016821530296320 with
3 generators>, function(el) ... end, function(el) ... end)
```

10.3 Klein correspondence and derived dualities

The Klein correspondence is a well known geometry morphism from the lines of PG(3,q) to the points of a hyperbolic quadric in PG(5,q). This morphism and some derived morphisms are provided in FinlnG. The bare essential of the Klein correspondence is the so-called Plücker map.

10.3.1 PluckerCoordinates

```
▷ PluckerCoordinates(line)
```

(operation)

This operation takes a line of PG(3,q) as argument. It returns the plucker coordinates of the argument as list of finite field elements. The returned list can be used in operations as vector spaceToElement, and represents a point of the hyperbolic quadric in PG(5,q) with equation $X_0X_5 + X_1X_4 + X_2X_3 = 0$

```
gap> pg := PG(3,169);
ProjectiveSpace(3, 169)
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(3, 169)>
```

```
gap> vec := PluckerCoordinates(1);
[ Z(13)^0, Z(13^2)^138, Z(13^2)^93, Z(13^2)^53, Z(13^2)^71, Z(13^2)^106 ]
gap> mat := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
> [0,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0,0]]*Z(13)^0;
[ [ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0 ],
  [ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0, 0*Z(13) ],
  [ 0*Z(13), 0*Z(13), 0*Z(13), Z(13)^0, 0*Z(13), 0*Z(13) ],
  [ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13) ],
  [ 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13) ],
  [0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13), 0*Z(13)]
gap> form := QuadraticFormByMatrix(mat,GF(169));
< quadratic form >
gap> klein := PolarSpace(form);
<polar space in ProjectiveSpace(5,GF(13^2)): x_1*x_6+x_2*x_5+x_3*x_4=0 >
gap> VectorSpaceToElement(klein, vec);
<a point in Q+(5, 169): x_1*x_6+x_2*x_5+x_3*x_4=0>
```

10.3.2 KleinCorrespondence

```
    ▷ KleinCorrespondence(f) (operation)
    ▷ KleinCorrespondence(f, boolean) (operation)
    ▷ KleinCorrespondence(q) (operation)
    ▷ KleinCorrespondence(q, boolean) (operation)
    Returns: a geometry morphism
```

The argument f is a finite field, the argument q is a prime power. The first an the third version use true as value for boolean. When using true as value for the boolean, the intertwiner is computed. This variant of the operation KleinCorrespondence has always as ambient geometry of its range the hyperbolic quadric $Q^+(5,q)$ with equation $X_0X_5 + X_1X_4 + X_2X_3 = 0$ The returned geometry morphism has the lines of PG(3,q) as source and the points of $Q^+(5,q)$ as range.

```
Example -
gap> k := KleinCorrespondence( 9 );
<geometry morphism from <lines of ProjectiveSpace(3, 9)> to <points of Q+(5,</pre>
9): x_1*x_6+x_2*x_5+x_3*x_4=0>>
gap> Intertwiner(k);
lineation group with
3 generators>, function(g) ... end, function(g) ... end)
gap> pg := ProjectiveSpace(3, 9);
ProjectiveSpace(3, 9)
gap> AmbientGeometry(Range(k));
Q+(5, 9): x_1*x_6+x_2*x_5+x_3*x_4=0
gap> 1 := Random( Lines(pg) );
<a line in ProjectiveSpace(3, 9)>
gap> l^k;
<a point in Q+(5, 9): x_1*x_6+x_2*x_5+x_3*x_4=0>
```

10.3.3 KleinCorrespondence

```
    ▷ KleinCorrespondence(quadric) (operation)
    ▷ KleinCorrespondence(quadric, boolean) (operation)
    Returns: a geometry morphism
```

The argument *quadric* is a hyperbolic quadric in a 5 dimensional projective space. If *boolean* is true or not given, this operation returns the geometry morphism equipped with an intertwiner. The returned geometry morphism has the lines of PG(3,q) as source and the points of $Q^+(5,q)$ as range.

```
_ Example -
gap> quadric := HyperbolicQuadric(5,3);
Q+(5, 3)
gap> k := KleinCorrespondence( quadric );
<geometry morphism from <lines of ProjectiveSpace(3, 3)> to <points of Q+(5,</pre>
3)>>
gap> pg := ProjectiveSpace(3, 3);
ProjectiveSpace(3, 3)
gap> 1 := Random( Lines(pg) );
<a line in ProjectiveSpace(3, 3)>
gap> l^k;
<a point in Q+(5, 3)>
gap> id := IdentityMat(6,GF(13));
< mutable compressed matrix 6x6 over GF(13) >
gap> form := QuadraticFormByMatrix(id,GF(13));
< quadratic form >
gap> quadric := PolarSpace(form);
<polar space in ProjectiveSpace(</pre>
5,GF(13)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0 >
gap> k := KleinCorrespondence( quadric );
<geometry morphism from <lines of ProjectiveSpace(3, 13)> to <points of Q+(5,</pre>
13): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0>>
gap> pg := AmbientGeometry(Source(k));
ProjectiveSpace(3, 13)
gap> 1 := Random(Lines(pg));
<a line in ProjectiveSpace(3, 13)>
gap> 1^k;
<a point in Q+(5, 13): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2=0>
```

10.3.4 KleinCorrespondenceExtended

```
▷ KleinCorrespondenceExtended(quadric) (operation)
▷ KleinCorrespondenceExtended(quadric, boolean) (operation)
Returns: a geometry morphism
```

The argument quadric is a hyperbolic quadric in a 5 dimensional projective space. If boolean is true or not given, this operation returns the geometry morphism equipped with an intertwiner. The returned geometry morphism has all the elements of PG(3,q) as source (not just the lines) and the elements of $Q^+(5,q)$ as range, hence this operation is a kind of extension of KleinCorrespondence.

```
gap> ps := HyperbolicQuadric(5,7);
Q+(5, 7)
gap> em := KleinCorrespondenceExtended(ps);
```

```
<geometry morphism from <All elements of ProjectiveSpace(3,</pre>
7)> to <Elements of Q+(5, 7)>>
gap> hom := Intertwiner(em);
MappingByFunction( The FinInG collineation group PGL(4,7), projective colline
ation group with 2 generators>, function(g) ... end, function(g) ... end)
gap> mat := [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],
          [0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]]*Z(7)^0;
[ [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0 ],
  [ 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7) ],
  [0*Z(7), 0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7)],
  [0*Z(7), 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7)],
  [ 0*Z(7), Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7)],
  [ Z(7)^0, 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7), 0*Z(7)] ]
gap> g := Projectivity(mat,GF(7));
< a collineation: <cmat 6x6 over GF(7,1)>, F^0>
gap> g in CollineationGroup(ps);
true
gap> PreImageElm(hom,g);
#I <el> is not inducing a collineation of PG(3,q)
fail
```

It is well known that the classical generalised quadrangles W(3,q) and Q(4,q) are dual incidence structures, the same holds for the classical generalised quadrangles $Q^-(5,q)$ and $H(3,q^2)$. Essentially, these dual dualities are based on the Klein correspondence, and are implemented through the operation NaturalDuality, this operation will return a geometry morphism with ElementsOfIncidenceStructure(gq1) as source and ElementsOfIncidenceStructure(gq2) as range, in other words, it is a geometry morphism from all the elements of gq1 onto all the elements of gq2, preserving the incidence, and swapping the types.

10.3.5 Natural Duality

```
▷ NaturalDuality(gq1, gq2) (operation)

▷ NaturalDuality(gq1, gq2, boolean) (operation)

▷ NaturalDuality(gq) (operation)

▷ NaturalDuality(gq, boolean) (operation)
```

Returns: a geometry morphism

The operation allows the construction of the duality between W(3,q) and Q(4,q), respectively $Q^-(5,q)$, in two directions. It is checked if the arguments are appropriate, i.e. the right type of generalised quadrangle(s). The first version requires two arguments: either the symplectic or parabolic quadrangle, in any order, and defined by any suitable bilinear/quadratic and bilinear form; or the elliptic or hermitian quadrangle (in dimension 3), in any order, and defined by any suitable bilinear/quadratic and hermitian form. In all cases the generalised quadrangles may be the standard one provided by the package FinlnG.

The third version requires only one argument, either W(3,q), Q(4,q), $Q^-(5,q)$, or $H(3,q^2)$, standard or user specified using an appropriate bilinear, quadratic or hermitian form. The range of the returned geometry morphism will be the set of all elements of a suitable generalised quadrangle, in standard form.

The first and third version without a boolean as argument will, if possible return a geometry morphism equipped with an intertwiner. Using the boolean argument false will return a geometry morphism that is not equipped with an intertwiner.

```
_{-} Example _{-}
gap> w := SymplecticSpace(3,5);
W(3, 5)
gap> lines:=AsList(Lines(w));;
gap> duality := NaturalDuality(w);
<geometry morphism from <Elements of W(3, 5)> to <Elements of Q(4, 5)>>
gap> 1:=lines[1];
\langle a \text{ line in } W(3, 5) \rangle
gap> l^duality;
\langle a \text{ point in } \mathbb{Q}(4, 5) \rangle
gap> PreImageElm(duality,last);
\langle a \text{ line in } W(3, 5) \rangle
gap> hom := Intertwiner(duality);
9360000 with 4 generators>, function(g) ... end, function(g) ... end)
gap > q := 5;
gap> q5q := EllipticQuadric(5,q);
Q-(5, 5)
gap> mat := [[0,1,0,0],[1,0,0,0],[0,0,0,Z(q)],[0,0,Z(q),0]]*Z(q)^0;
[ [ 0*Z(5), Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, 0*Z(5), 0*Z(5), 0*Z(5) ],
  [ 0*Z(5), 0*Z(5), 0*Z(5), Z(5) ], [ 0*Z(5), 0*Z(5), Z(5), 0*Z(5) ] ]
gap> hform := HermitianFormByMatrix(mat,GF(q^2));
< hermitian form >
gap> herm := PolarSpace(hform);
<polar space in ProjectiveSpace(</pre>
3,GF(5^2): x1^5*x2+x1*x2^5+Z(5)*x3^5*x4+Z(5)*x3*x4^5=0 >
gap> duality := NaturalDuality(q5q,herm,true);
<geometry morphism from <Elements of Q-(5, 5)> to <Elements of H(3,</pre>
5^2): x1^5*x2+x1*x2^5+Z(5)*x3^5*x4+Z(5)*x3*x4^5=0>>
gap> hom := Intertwiner(duality);
MappingByFunction(PDeltaO-(6,5), <projective collineation group of size
58968000000 with 3 generators>, function(g) ... end, function(g) ... end)
gap> g := Random(CollineationGroup(q5q));
< a collineation: <cmat 6x6 over GF(5,1)>, F^0>
gap> g^hom;
< a collineation: <cmat 4x4 over GF(5,2)>, F^5>
```

The combination of the isomorphism of the GQs W(3,q), Q(4,q) when q is even and the duality between the same GQs, yields a duality from each of these GQs itself. The operation SelfDuality implements this combination.

10.3.6 SelfDuality

```
▷ SelfDuality(gq) (operation)

▷ SelfDuality(gq, boolean) (operation)

Returns: a geometry morphism
```

It is checked whether the base field of gq is a field of characteristic 2 and whether gq is a symplectic generalised quadrangle in 3-dimensional projective space or a parabolic quadric in 4-dimensional projective space. The first version will return, when possible, a geometry morphism equipped with an intertwiner. Using the boolean argument false will return a geometry morphism that is not equipped with an intertwiner. The example shows the use of the boolean argument.

```
Example
gap > q := 16;
gap> mat := [[0,1,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0]]*Z(q)^0;
[ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
  [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
  [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
  [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
  [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap> form := QuadraticFormByMatrix(mat,GF(q));
< quadratic form >
gap> q4q := PolarSpace(form);
<polar space in ProjectiveSpace(4,GF(2^4)): x_1*x_2+x_3^2+x_4*x_5=0 >
gap> em := SelfDuality(q4q);
#I No intertwiner computed. The polar space must have a collineation group computed
<geometry morphism from <Elements of Q(4,</pre>
16): x_1*x_2+x_3^2+x_4*x_5=0> to <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0>>
gap> CollineationGroup(q4q);
#I Computing collineation group of canonical polar space...
gap> em := SelfDuality(q4q);
<geometry morphism from <Elements of Q(4,</pre>
16): x_1*x_2+x_3^2+x_4*x_5=0> to <Elements of Q(4,
16): x_1*x_2+x_3^2+x_4*x_5=0>>
gap> hom := Intertwiner(em);
MappingByFunction( projective collineation group of size 4380799795200 with
3 generators>, , projective collineation group of size 4380799795200 with
3 generators>, function(el) ... end, function(el) ... end)
gap > q := 16;
gap> w := SymplecticSpace(3,q);
W(3, 16)
gap> em := SelfDuality(w);
<geometry morphism from <Elements of W(3, 16)> to <Elements of W(3, 16)>>
```

10.4 Embeddings of projective spaces

The most natural of geometry morphisms include, for example, the embedding of a projective space into another via a subspace, the embedding of a projective space over a field into a projective space of the same dimension over an extended field, or the embedding of a projective space over a field into a projective space of higher dimension over a subfield through so-called field reduction.

10.4.1 NaturalEmbeddingBySubspace

```
NaturalEmbeddingBySubspace(geom1, geom2, v) (operation)
Returns: a geometry morphism
```

The arguments geom1 and geom2 are both projective spaces, and v is an element of a geom2. This function returns a geometry morphism representing the natural embedding of geom1 into geom2 as the subspace v. Hence geom1 and v must be equivalent as geometries. An Intertwiner is not implemented for this geometry morphism.

```
_ Example
gap> geom1 := ProjectiveSpace(2, 3);
ProjectiveSpace(2, 3)
gap> geom2 := ProjectiveSpace(3, 3);
ProjectiveSpace(3, 3)
gap> planes := Planes(geom2);
<planes of ProjectiveSpace(3, 3)>
gap> hyp := Random(planes);
<a plane in ProjectiveSpace(3, 3)>
gap> em := NaturalEmbeddingBySubspace(geom1, geom2, hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
3)> to <All elements of ProjectiveSpace(3, 3)>>
gap> points := Points(geom1);
<points of ProjectiveSpace(2, 3)>
gap> x := Random(points);
<a point in ProjectiveSpace(2, 3)>
gap> x^em;
<a point in ProjectiveSpace(3, 3)>
```

10.4.2 NaturalEmbeddingBySubField

```
▷ NaturalEmbeddingBySubField(geom1, geom2) (operation)

▷ NaturalEmbeddingBySubField(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
```

The arguments geom1 and geom2 are projective spaces of the same dimension. This function returns a geometry morphism representing the natural embedding of geom1 into geom2 as a subfield geometry. The geometry morphism also comes equipped with an intertwiner (see Intertwiner (10.1.2)). The optional third argument boolean can take either true or false as input, and then our operation will or will not compute the intertwiner accordingly. The default (when calling the operation with two arguments) is set to true. Note that the source of the intertwiner is the projectivity group of geom1 and its range is a subgroup of the projectivity group of geom2. Here is a simple example where the geometry morphism embeds PG(2,3) into PG(2,9).

```
gap> pg1 := PG(2,3);
ProjectiveSpace(2, 3)
gap> pg2 := PG(2,9);
ProjectiveSpace(2, 9)
gap> em := NaturalEmbeddingBySubfield(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(2, 3)> to <All elements of ProjectiveSpace(2, 9)>>
gap> points := AsList(Points( pg1 ));
```

```
[ <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)>, <a point in ProjectiveSpace(2, 3)>,
  <a point in ProjectiveSpace(2, 3)> ]
gap> image := ImagesSet(em, points);
[ <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)>, <a point in ProjectiveSpace(2, 9)>,
  <a point in ProjectiveSpace(2, 9)> ]
gap> hom := Intertwiner(em);
MappingByFunction( The FinInG projectivity group PGL(3,3), projective colline
ation group of size 5616 with
2 generators>, function( x ) ... end, function( y ) ... end )
gap> group1 := ProjectivityGroup(pg1);
The FinInG projectivity group PGL(3,3)
gap> gens := GeneratorsOfGroup(group1);
[ < a collineation: <cmat 3x3 over GF(3,1)>, F^0>,
  < a collineation: <cmat 3x3 over GF(3,1)>, F^0> ]
gap> group1_image := Group(List(gens,x->x^hom));
projective collineation group with 2 generators>
gap> Order(group1_image);
5616
gap> group2 := ProjectivityGroup(pg2);
The FinInG projectivity group PGL(3,9)
gap> Order(group2);
42456960
gap> g := Random(group2);
< a collineation: <cmat 3x3 over GF(3,2)>, F^0>
gap> PreImageElm(hom,g);
#I <el> is not in the range of the intertwiner
fail
```

10.4.3 Embedding of projective spaces by field reduction

We briefly describe the mathematics behind field reduction. For more details we refer to [LVdV13]. Consider the fields GF(q) and $GF(q^t)$. The field $GF(q^t)$ is a t-dimensional vector space over GF(q). Hence, with respect to a chosen basis B for $GF(q^t)$ as a GF(q)-vector space, the bijection between the vector spaces $V(n,q^t)$ and V(tn,q) can be implemented. Consider the projective space $PG(n-1,q^t)$. The elements are represented by subspaces of $V(n,q^t)$. Clearly, a k dimensional subspace of $V(n,q^t)$ is also a kn-dimensional subspace of V(n,q). This induces an embedding from $PG(n-1,q^t)$ into PG(nt-1,q). The embedding will be determined by the chosen basis of $GF(q^t)$ as a vector space over GF(q)

10.4.4 BlownUpSubspaceOfProjectiveSpace

 $\quad \triangleright \ {\tt BlownUpSubspaceOfProjectiveSpace}({\tt B, subspace})$

(operation)

Returns: a subspace of a projective space

Let B be a basis for the field $\mathrm{GF}(q^t)$ as $\mathrm{GF}(q)$ vector space, and let subspace be a k-1-dimensional subspace of $\mathrm{PG}(n-1,q^t)$ represented by a k-dimensional subspace S of $V(n,q^t)$. This operation returns the kt-1-dimensional subspace of $\mathrm{PG}(nt-1,q)$ represented by blowing up S with respect to the base B. This operation relies on the GAP operation BlownUpMat. In the example, the effect of choosing a different basis is shown.

```
Example
gap > pg := PG(3,5^2);
ProjectiveSpace(3, 25)
gap> basis := Basis(AsVectorSpace(GF(5),GF(5^2)));
CanonicalBasis( GF(5^2) )
gap> line := Random(Lines(pg));
<a line in ProjectiveSpace(3, 25)>
gap> solid1 := BlownUpSubspaceOfProjectiveSpace(basis,line);
<a solid in ProjectiveSpace(7, 5)>
gap> BasisVectors(basis);
[Z(5)^0, Z(5^2)]
gap> basis := Basis(AsVectorSpace(GF(5), GF(5^2)), [Z(5),Z(5^2)^8]);
Basis( GF(5^2), [ Z(5), Z(5^2)^8 ] )
gap> solid2 := BlownUpSubspaceOfProjectiveSpace(basis,line);
<a solid in ProjectiveSpace(7, 5)>
gap> solid1 = solid2;
false
```

10.4.5 NaturalEmbeddingByFieldReduction

```
▷ NaturalEmbeddingByFieldReduction(geom1, f2, B) (operation)

▷ NaturalEmbeddingByFieldReduction(geom1, f2) (operation)

▷ NaturalEmbeddingByFieldReduction(geom1, geom2) (operation)

▷ NaturalEmbeddingByFieldReduction(geom1, geom2, B) (operation)
```

Returns: a geometry morphism

This operation comes in four flavours. For the first flavour, the argument geom1 is a projective space over a field $GF(q^t)$. The argument f2 is a subfield GF(q) of $GF(q^t)$. The argument B is a basis for $GF(q^t)$ as a GF(q)-vector space. When this argument is not given, a basis for $GF(q^t)$ over GF(q) is computed using Basis(Asvector space(GF(q), $GF(q^t)$)). It is checked whether f2 is a subfield of the base field of geom1. The third and fourth flavour are comparable, where now GF(q) is found as the base field of geom2. In fact the arguments geom1 and geom2 are the projective spaces $PG(n-1,q^t)$ and PG(nt-1,q) respectively. As in the previous flavours, the argument B is optional.

An intertwiner is always available for this geometry morphism, and has source the homography group of geom1 and as range a subgroup of the homography group of geom2 (or the projective space of the appropriate dimension over f2. Notice in the example below the difference of a factor 2 in the orders of the group, which comes of course from restricting the homomorphism to the homography group, which differs a factor 2 from the collineation group of the projective line, that has an extra automorphism of order two, corresponding with the Frobenius automorphism.

```
_{-} Example
gap> pg1 := ProjectiveSpace(2,81);
ProjectiveSpace(2, 81)
gap> f2 := GF(9);
GF(3<sup>2</sup>)
gap> em := NaturalEmbeddingByFieldReduction(pg1,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
81)> to <All elements of ProjectiveSpace(5, 9)>>
gap > f2 := GF(3);
GF(3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,f2);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
81)> to <All elements of ProjectiveSpace(11, 3)>>
gap> pg2 := ProjectiveSpace(11,3);
ProjectiveSpace(11, 3)
gap> em := NaturalEmbeddingByFieldReduction(pg1,pg2);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
81)> to <All elements of ProjectiveSpace(11, 3)>>
gap > pg1 := PG(1,9);
ProjectiveSpace(1, 9)
gap> em := NaturalEmbeddingByFieldReduction(pg1,GF(3));
<geometry morphism from <All elements of ProjectiveSpace(1,</pre>
9)> to <All elements of ProjectiveSpace(3, 3)>>
gap> i := Intertwiner(em);
MappingByFunction( The FinInG projectivity group PGL(2,9), projective colline
ation group of size 720 with
2 generators>, function( m ) ... end, function( m ) ... end )
gap> spread := List(Points(pg1),x->x^em);
[ <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)>,
  <a line in ProjectiveSpace(3, 3)>, <a line in ProjectiveSpace(3, 3)> ]
gap> stab := Stabilizer(CollineationGroup(PG(3,3)),Set(spread),OnSets);
cprojective collineation group of size 5760 with 3 generators>
gap> hom := HomographyGroup(pg1);
The FinInG projectivity group PGL(2,9)
gap> gens := GeneratorsOfGroup(hom);;
gap> group := Group(List(gens,x->x^i));
cprojective collineation group with 2 generators>
gap> Order(group);
2880
gap> IsSubgroup(stab,group);
true
```

10.5 Embeddings of polar spaces

10.5.1 NaturalEmbeddingBySubspace

```
NaturalEmbeddingBySubspace(geom1, geom2, v) (operation)
Returns: a geometry morphism
```

The arguments geom1 and geom2 both polar spaces, and v is an element of a projective space. This function returns a geometry morphism representing the natural embedding of geom1 into the intersection of geom2 and v. Hence the intersection of geom2 and v must induce a polar space of the same type as geom1 in v. This operation performs all necessary checks. An Intertwiner is not implemented for this geometry morphism.

```
Example
gap> h1 := HermitianPolarSpace(2, 3^2);
H(2, 3^2)
gap> h2 := HermitianPolarSpace(3, 3^2);
H(3, 3^2)
gap> pg := AmbientSpace( h2 );
ProjectiveSpace(3, 9)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0],[0,1,0,0],[0,0,1,0]] * Z(9)^0 );
<a plane in ProjectiveSpace(3, 9)>
gap> em := NaturalEmbeddingBySubspace( h1, h2, pi );
<geometry morphism from <Elements of H(2, 3^2)> to <Elements of H(3, 3^2)>>
gap> ps1 := ParabolicQuadric(4,4);
Q(4, 4)
gap> ps2 := ParabolicQuadric(6,4);
Q(6, 4)
gap> pg := AmbientSpace( ps2 );
ProjectiveSpace(6, 4)
gap> pi := VectorSpaceToElement( pg, [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0],]
> [0,0,0,1,0,0,0],[0,0,0,0,1,0,0]] * Z(4)^0);
<a proj. 4-space in ProjectiveSpace(6, 4)>
gap> em := NaturalEmbeddingBySubspace( ps1, ps2, pi );
<geometry morphism from <Elements of Q(4, 4)> to <Elements of Q(6, 4)>>
gap> List(Lines(ps1),x->x^em);
[ \langlea line in Q(6, 4)\rangle, \langlea line in Q(6, 4)\rangle, \langlea line in Q(6, 4)\rangle,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
  <a line in Q(6, 4)>, <a line in Q(6, 4)>, <a line in Q(6, 4)>,
```

10.5.2 NaturalEmbeddingBySubField

```
▷ NaturalEmbeddingBySubField(geom1, geom2) (operation)
▷ NaturalEmbeddingBySubField(geom1, geom2, boolean) (operation)

Returns: a geometry morphism
```

The arguments geom1 and geom2 are projective or polar spaces with an underlying vector space of the same dimension and the base field L of geom2 is an extension of the base field K of geom1. The form f determining geom1 also defines a form over L, and determines a polar space. By considering the underlying vector spaces determining the elements of geom1 over the extension field L, there is an obvious embedding of geom1 in the polar space over the extension field. Considering f over a field extension might change its type. The possible embeddings, where the polar spaces may be chosen up to equivalent form, are listed in the table below (see [KL90]):

Polar Space 1	Polar Space 2	Conditions
W(2n-1,q)	$W(2n-1,q^a)$	_
W(2n-1,q)	$H(2n-1,q^a)$	_
$H(d,q^2)$	$H(d,q^{2r})$	r odd
$\mathrm{O}^{oldsymbol{arepsilon}}(d,q)$	$H(d,q^2)$	q odd
$\mathrm{O}^{arepsilon}(d,q)$	$O^{\varepsilon'}(d,q^r)$	$\boldsymbol{arepsilon} = (oldsymbol{arepsilon}')^r$

Table: Subfield embeddings of polar spaces

The geometry morphism also comes equipped with an intertwiner (see Intertwiner (10.1.2)). The optional third argument boolean can take either true or false as input, and then our operation will or will not compute the intertwiner accordingly. When set true, the intertwiner will be computed if HasCollineationGroup(geom1) is true. The user may wish that the intertwiner is not computed when embedding large polar spaces. The default (when calling the operation with two arguments) is set to true.

```
gap> w := SymplecticSpace(5, 3);
W(5, 3)
gap> h := HermitianPolarSpace(5, 3^2);
H(5, 3^2)
gap> em := NaturalEmbeddingBySubfield(w, h);
#I No intertwiner computed. <geom1> must have a collineation group computed
<geometry morphism from <Elements of W(5, 3)> to <Elements of H(5, 3^2)>>
gap> points := AsList(Points(w));;
```

10.5.3 Embedding of polar spaces by field reduction

Field reduction for polar spaces is somewhat more involved than for projective spaces, and we give a brief description. Let L be the field $GF(q^t)$ and let K be the field GF(q) Let P be a polar space over a field L. Let f be the form on the r dimensional vector space V over L determining P. Consider the trace map

$$T: L \to K: x \mapsto x^{q^t} + x^{q^{t-1}} + \ldots + x.$$

Define for any $\alpha \in L$ the map

$$T_{\alpha}: L \to K: x \mapsto T_{\alpha}(x) = T(\alpha x).$$

Consider the rt dimensional vector space W over K. There is a bijective map $\Phi: V \to W$ and $T_\alpha \circ f \circ \Phi^{-1}$ defines a quadratic or sesquilinear form (depending on α , and f being quadratic or sesquilinear) acting on W, and hence, if not singular or degenerate, inducing a polar space S over the finite field GF(q). An element of P can be mapped onto an element of S by simply blowing up P using field reduction for projective spaces. So the resulting polar space S is dependent on the original form f, the parameter α and the blowing up of elements by field reduction, the latter being dependent on the basis of L as a K vector space. FinInG provides two approaches. The first approach starts from P and the parameters K, α and a basis for L as K vector space. Then the resulting form $T_\alpha \circ f \circ \Phi^{-1}$ is determined, and the associated polar space S will be the range of the embedding. Note that the resulting polar space will not necessarily be canonical. The second approach starts from two given polar spaces P and S. Based on this input, it is determined whether an embedding based on the above described principle is possible, and the necessary parameters are computed. The resulting embedding is a geometry morphism from P to S. Note that the polar spaces used as an argument may be freely chosen and are not required to be in the canonical form.

For more information on the embeddings by field reduction of polar spaces, including conditions on the parameter α , we refer to [Gil08] and [LVdV13]. The possible embeddings are listed in the following table.

Polar Space 1	Polar Space 2	Conditions	
$W(2n-1,q^t)$	W(2nt-1,q)	_	
$Q^+(2n-1,q^t)$	$Q^+(2nt-1,q)$	_	
$Q^{-}(2n-1,q^t)$	$Q^{-}(2nt-1,q)$	_	
$Q(2n, q^{2a+1})$	Q((2a+1)(2n+1)-1,q)	q odd	
$Q(2n,q^{2a})$	$Q^{-}(2a(2n+1)-1,q)$	$q \equiv 1 \pmod{4}$	
$Q(2n, q^{4a+2})$	$Q^+((4a+2)(2n+1)-1,q)$	$q \equiv 3 \pmod{4}$	
$Q(2n, q^{4a})$	$Q^{-}(4a(2n+1)-1,q)$	$q \equiv 3 \pmod{4}$	
$H(n,q^{2a+1})$	H((2a+1)(n+1)-1,q)	q square	
$H(n,q^{2a})$	W(2a(n+1)-1,q)	q even	
$H(2n,q^{2a})$	$Q^{-}(2a(2n+1)-1,q)$	q odd	
$H(2n+1,q^{2a})$	$Q^+(2a(2n+2)-1,q)$	q odd	

Table: Field reduction of polar spaces

10.5.4 NaturalEmbeddingByFieldReduction

```
▷ NaturalEmbeddingByFieldReduction(ps1, f2, alpha, basis, bool) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, f2, alpha, basis) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, f2, alpha, bool) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, f2, alpha) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, f2, bool) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, f2) (operation)
```

Returns: a geometry morphism

ps1 is a polar space over a field extension L of f2, basis is a basis for L over f2, alpha is a non-zero element of L. The version of NaturalEmbeddingByFieldReduction implements the first approach as explained in 10.5.3. When no argument basis is given, a basis for L over f2 is computed using Basis(Asvector space(K,L)). When no argument alpha is given, One(f2) is used as value for alpha. When bool is true or not given, an intertwiner is computed, when bool is false, no intertwiner is computed. This intertwiner has as its domain the ISOMETRY GROUP of ps1. The user may wish that the intertwiner is not computed when embedding large polar spaces. The default (when calling the operation with two arguments) is set to true. In the first example, we construct a spread of maximal subspaces (solids) in a 7 dimensional symplectic space. We compute a subgroup of its stabilizer group using the intertwiner. In the second example, we construct a linear blocking set of the symplectic generalised quadrangle over GF(9).

```
gap> ps1 := SymplecticSpace(1,3^3);
W(1, 27)
gap> em := NaturalEmbeddingByFieldReduction(ps1,GF(3),true);
<geometry morphism from <Elements of W(1,
27)> to <Elements of <polar space in ProjectiveSpace(
5,GF(3)): -x1*y6-x2*y5-x3*y4-x3*y6+x4*y3+x5*y2+x6*y1+x6*y3=0 >>>
gap> ps2 := AmbientGeometry(Range(em));
<polar space in ProjectiveSpace(
5,GF(3)): -x1*y6-x2*y5-x3*y4-x3*y6+x4*y3+x5*y2+x6*y1+x6*y3=0 >
gap> spread := List(Points(ps1),x->x^em);
gap> i := Intertwiner(em);
MappingByFunction( PSp(2,27), <projective collineation group of size
9828 with 2 generators>, function( m ) ... end, function( m ) ... end )
```

187

```
gap> coll := CollineationGroup(ps2);
#I Computing collineation group of canonical polar space...
jective collineation group of size 9170703360 with 4 generators>
gap> stab := Group(ImagesSet(i,GeneratorsOfGroup(IsometryGroup(ps1))));
ctive collineation group with 2 generators>
gap> IsSubgroup(coll,stab);
true
gap> List(Orbit(stab,spread[1]),x->x in spread);
[ true, true,
  true, true, true, true, true, true, true, true, true, true, true, true,
  true, true, true, true ]
gap> ps1 := SymplecticSpace(3,9);
W(3, 9)
gap> em := NaturalEmbeddingByFieldReduction(ps1,GF(3),true);
<geometry morphism from <Elements of W(3,</pre>
9)> to <Elements of <polar space in ProjectiveSpace(
 ,GF(3)): -x1*y3+x1*y4+x2*y3+x3*y1-x3*y2-x4*y1-x5*y7+x5*y8+x6*y7+x7*y5-x7*y6-x8
*v5=0 >>>
gap> ps2 := AmbientGeometry(Range(em));
<polar space in ProjectiveSpace(</pre>
 , GF(3)): -x1*y3+x1*y4+x2*y3+x3*y1-x3*y2-x4*y1-x5*y7+x5*y8+x6*y7+x7*y5-x7*y6-x8
*y5=0 >
gap> pg := AmbientSpace(ps2);
ProjectiveSpace(7, 3)
gap> spread := List(Points(ps1),x->x^em);;
gap> el := Random(ElementsOfIncidenceStructure(pg,5));
<a proj. 4-space in ProjectiveSpace(7, 3)>
gap> prebs := Filtered(spread,x->Meet(x,el) <> EmptySubspace(pg));;
gap> bs := List(prebs,x->PreImageElm(em,x));;
gap> Length(bs);
gap> lines := List(Lines(ps1));;
gap> Collected(List(lines,x->Length(Filtered(bs,y->y * x))));
[[1,702],[4,117],[10,1]]
```

10.5.5 NaturalEmbeddingByFieldReduction

```
▷ NaturalEmbeddingByFieldReduction(ps1, ps2, boo1) (operation)
▷ NaturalEmbeddingByFieldReduction(ps1, ps2) (operation)
```

Returns: a geometry morphism

If ps1 and ps2 are two polar spaces which are suitable for field reduction as listed in the table with possible embeddings in Section 10.5.3, then this operation returns the corresponding embedding. An intertwiner is computed if the third argument bool is true, or if there is no third argument. This intertwiner has as its domain the ISOMETRY GROUP of ps1. The example shows two cases where a spread is computed, including a subgroup of its stabiliser group using the intertwiner.

```
gap> ps1 := SymplecticSpace(1,5^3);
Example
```

```
W(1, 125)
gap> ps2 := SymplecticSpace(5,5);
W(5, 5)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
<geometry morphism from <Elements of W(1, 125)> to <Elements of W(5, 5)>>
gap> pts := Points(ps1);
<points of W(1, 125)>
gap> spread := List(pts,x->x^em);;
gap> test := Union(List(spread,x->List(Points(x))));;
gap> Set(test)=Set(AsList(Points(ps2)));
gap> hom := Intertwiner(em);
MappingByFunction( PSp(2,125), projective collineation group of size
976500 with 2 generators>, function( m ) ... end, function( m ) ... end )
gap> group := IsometryGroup(ps1);
PSp(2,125)
gap> Order(group);
976500
gap> gens := List(GeneratorsOfGroup(group),x->x^hom);
[ < a collineation: <cmat 6x6 over GF(5,1)>, F^0>,
  < a collineation: <cmat 6x6 over GF(5,1)>, F^0> ]
gap> group2 := Range(hom);
cprojective collineation group of size 976500 with 2 generators>
gap> Order(group2);
976500
gap> biggroup := CollineationGroup(ps2);
PGammaSp(6,5)
gap> stab := FiningSetwiseStabiliser(biggroup,spread);
#I Computing adjusted stabilizer chain...
cprojective collineation group with 7 generators>
gap> time;
6907
gap> Order(stab);
5859000
gap> ps1 := HermitianPolarSpace(2,7^2);
H(2, 7^2)
gap> ps2 := EllipticQuadric(5,7);
Q-(5, 7)
gap> em := NaturalEmbeddingByFieldReduction(ps1,ps2);
#I These polar spaces are suitable for field reduction
<geometry morphism from <Elements of H(2, 7^2)> to <Elements of Q-(5, 7)>>
gap> pts := Points(ps1);
<points of H(2, 7^2)>
gap> spread := List(pts,x->x^em);;
gap> test := Union(List(spread,x->List(Points(x))));;
gap> Set(test)=Set(AsList(Points(ps2)));
true
gap> hom := Intertwiner(em);
MappingByFunction( PGU(3,7^2), projective collineation group of size
5663616 with 2 generators>, function( m ) ... end, function( m ) ... end )
gap> group := IsometryGroup(ps1);
```

```
PGU(3,7^2)
gap> Order(group);
5663616
gap> gens := List(GeneratorsOfGroup(group),x->x^hom);
[ < a collineation: <cmat 6x6 over GF(7,1)>, F^0>,
  < a collineation: <cmat 6x6 over GF(7,1)>, F^0> ]
gap> group2 := Range(hom);
jective collineation group of size 5663616 with 2 generators>
gap> Order(group2);
5663616
gap> biggroup := CollineationGroup(ps2);
PDelta0-(6,7)
gap> stab := FiningSetwiseStabiliser(biggroup,spread);
#I Computing adjusted stabilizer chain...
ctive collineation group with 10 generators>
gap> time;
3438
gap> Order(stab);
90617856
```

10.6 Projections

10.6.1 NaturalProjectionBySubspace

```
{\color{red} \triangleright \; \texttt{NaturalProjectionBySubspace}(\textit{ps, } \textit{v})} \qquad \qquad (\textit{operation})
```

Returns: a geometry morphism

The argument ps is a projective or polar space, and v is a subspace of ps. In the case that ps is a projective space, the geometry of subspaces containing v is a projective space of lower dimension over the same base field, and this operation returns the corresponding geometry morphism. In the case that ps is a polar space, the geometry of elements ps containing ps is a polar space of lower rank and of the same type over the same base field, and this operation returns the corresponding geometry morphism. It is checked whether ps is a subspace of ps, and whether the input of the function and preimage of the returned geometry morphism is valid or not. There is a shorthand for this operation which is basically an overload of the quotient operation. So, for example, ps / ps v achieves the same thing as AmbientGeometry (Range (NaturalProjectionBySubspace ps v)). An intertwiner is not available for this geometry morphism.

10.7 Projective completion

10.7.1 ProjectiveCompletion

▷ ProjectiveCompletion(as)

(operation)

Returns: a geometry morphism

The argument as is an affine space. This operation returns an embedding of as into the projective space ps of the same dimension, and over the same field. For example, the point (x, y, z) is mapped onto the projective point with homogeneous coordinates (1, x, y, z). An intertwiner is unnecessary, CollineationGroup(as) is a subgroup of CollineationGroup(ps).

```
gap> as := AffineSpace(3,5);
AG(3, 5)
gap> map := ProjectiveCompletion(as);
<geometry morphism from <Elements of AG(3,
5)> to <All elements of ProjectiveSpace(3, 5)>>
gap> p := Random( Points(as) );
<a point in AG(3, 5)>
gap> p^map;
<a point in ProjectiveSpace(3, 5)>
```

Chapter 11

Algebraic Varieties

In FinInG we provide some basic functionality for algebraic varieties defined over finite fields. The algebraic varieties in FinInG are defined by a list of multivariate polynomials over a finite field, and an ambient geometry. This ambient geometry is either a projective space, and then the algebraic variety is called a *projective variety*, or an affine geometry, and then the algebraic variety is called an *affine variety*. In this chapter we give a brief overview of the features of FinInG concerning these two types of algebraic varieties. The package FinInG also contains the Veronese varieties VeroneseVariety (11.7.1), the Segre varieties SegreVariety (11.6.1) and the Grassmann varieties GrassmannVariety (11.8.1); three classical projective varieties. These varieties have an associated *geometry map* (the VeroneseMap (11.7.3), SegreMap (11.6.3) and GrassmannMap (11.8.3)) and FinInG also provides some general functionality for these.

11.1 Algebraic Varieties

An *algebraic variety* in FinInG is an algebraic variety in a projective space or affine space, defined by a list of polynomials over a finite field.

11.1.1 Algebraic Variety

```
▷ AlgebraicVariety(space, pring, pollist) (operation)
▷ AlgebraicVariety(space, pollist) (operation)

Returns: an algebraic variety
```

The argument space is an affine or projective space over a finite field F, the argument pring is a multivariate polynomial ring defined over (a subfield of) F, and pollist is a list of polynomials in pring. If the space is a projective space, then pollist needs to be a list of homogeneous polynomials. In FinInG there are two types of projective varieties: projective varieties and affine varieties. The following operations apply to both types.

```
gap> F:=GF(9);
GF(3^2)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
```

```
x_1*x_3-x_2^2
gap> f2:=r.4*r.1^2-r.4^3;
x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> DefiningListOfPolynomials(var);
[ x_1*x_3-x_2^2, x_1^2*x_4-x_4^3 ]
gap> AmbientSpace(var);
ProjectiveSpace(3, 9)
```

11.1.2 DefiningListOfPolynomials

▷ DefiningListOfPolynomials(var)

(attribute)

Returns: a list of polynomials

The argument *var* is an algebraic variety. This attribute returns the list of polynomials that was used to define the variety *var*.

11.1.3 AmbientSpace

▷ AmbientSpace(var)

(attribute)

Returns: an affine or projective space

The argument var is an algebraic variety. This attribute returns the affine or projective space in which the variety var was defined.

11.1.4 PointsOfAlgebraicVariety

Returns: a list of points

The argument var is an algebraic variety. This operation returns the list of points of the AmbientSpace (14.3.1) of the algebraic variety var whose coordinates satisfy the DefiningListOfPolynomials (11.1.2) of the algebraic variety var.

```
Example
gap> F:=GF(9);
GF(3<sup>2</sup>)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap > pg := PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
x_1*x_3-x_2^2
gap> f2:=r.4*r.1^2-r.4^3;
x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> points:=Points(var);
<points of Projective Variety in ProjectiveSpace(3, 9)>
gap> Size(points);
28
```

11.1.5 Iterator

▷ Iterator(pts) (operation)

Returns: an iterator

The argument pts is the set of PointsOfAlgebraicVariety (11.1.4) of an algebraic variety var. This operation returns an iterator for the points of an algebraic variety.

11.1.6 \in

Returns: true or false

The argument x is a point of the AmbientSpace (14.3.1) of an algebraic variety AlgebraicVariety (11.4.1). This operation also works for a point x and the collection pts returned by PointsOfAlgebraicVariety (11.1.4).

11.2 Projective Varieties

A *projective variety* in FinInG is an algebraic variety in a projective space defined by a list of homogeneous polynomials over a finite field.

11.2.1 Projective Variety

```
▷ ProjectiveVariety(pg, pring, pollist) (operation)
▷ ProjectiveVariety(pg, pollist) (operation)
▷ AlgebraicVariety(pg, pring, pollist) (operation)
▷ AlgebraicVariety(pg, pollist) (operation)
```

Returns: a projective algebraic variety

```
gap> F:=GF(9);
GF(3^2)
gap> r:=PolynomialRing(F,4);
GF(3^2)[x_1,x_2,x_3,x_4]
gap> pg:=PG(3,9);
ProjectiveSpace(3, 9)
gap> f1:=r.1*r.3-r.2^2;
Example
```

```
x_1*x_3-x_2^2
gap> f2:=r.4*r.1^2-r.4^3;
x_1^2*x_4-x_4^3
gap> var:=AlgebraicVariety(pg,[f1,f2]);
Projective Variety in ProjectiveSpace(3, 9)
gap> DefiningListOfPolynomials(var);
[ x_1*x_3-x_2^2, x_1^2*x_4-x_4^3 ]
gap> AmbientSpace(var);
ProjectiveSpace(3, 9)
```

11.3 Quadrics and Hermitian varieties

Quadrics (QuadraticVariety (11.3.2)) and Hermitian varieties (HermitianVariety (11.3.1)) are projective varieties that have the associated quadratic or hermitian form as an extra attribute installed. Furthermore, we provide a method for PolarSpace taking as an argument a projective algebraic variety.

11.3.1 Hermitian Variety

```
▷ HermitianVariety(pg, pring, pol) (operation)
▷ HermitianVariety(pg, pol) (operation)
▷ HermitianVariety(n, F) (operation)
▷ HermitianVariety(n, q) (operation)
```

Returns: a hermitian variety in a projective space

For the first two methods, the argument pg is a projective space, pring is a polynomial ring, and pol is polynomial. For the third and fourth variations, the argument n is an integer, the argument p is a finite field, and the argument p is a prime power. These variations of the operation return the hermitian variety associated to the standard hermitian form in the projective space of dimension p over the field p of order p.

```
_ Example .
gap > F := GF(25);
GF(5^2)
gap> r:=PolynomialRing(F,3);
GF(5^2)[x_1,x_2,x_3]
gap> x:=IndeterminatesOfPolynomialRing(r);
[x_1, x_2, x_3]
gap> pg:=PG(2,F);
ProjectiveSpace(2, 25)
gap> f:=x[1]^6+x[2]^6+x[3]^6;
x_1^6+x_2^6+x_3^6
gap> hv:=HermitianVariety(pg,f);
Hermitian Variety in ProjectiveSpace(2, 25)
gap> AsSet(List(Lines(pg),1->Size(Filtered(Points(1),x->x in hv))));
[1, 6]
gap> hv:=HermitianVariety(5,4);
Hermitian Variety in ProjectiveSpace(5, 4)
gap> hps:=PolarSpace(hv);
```

```
<polar space in ProjectiveSpace(
5,GF(2^2)): x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3=0 >
gap> hf:=SesquilinearForm(hv);
< hermitian form >
gap> PolynomialOfForm(hf);
x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3
```

11.3.2 Quadratic Variety

```
▷ QuadraticVariety(pg, pring, pol) (operation)
▷ QuadraticVariety(pg, pol) (operation)
▷ QuadraticVariety(n, F, type) (operation)
▷ QuadraticVariety(n, q, type) (operation)
▷ QuadraticVariety(n, F) (operation)
▷ QuadraticVariety(n, q) (operation)
```

Returns: a quadratic variety in a projective space

In the first two methods, the argument pg is a projective space, pring is a polynomial ring, and pol is a polynomial. The latter four return a standard non-degenerate quadric. The argument n is a projective dimension, F is a field, and q is a prime power that gives just the order of the defining field. If the type is given, then it will return a quadric of a particular type as follows:

variety	standard form	characteristic <i>p</i>	proj. dim.	type
hyperbolic quadric	$X_0X_1+\ldots+X_{n-1}X_n$	$p \equiv 3 \pmod{4}$ or $p = 2$	odd	"hyperbol
hyperbolic quadric	$2(X_0X_1+\ldots+X_{n-1}X_n)$	$p \equiv 1 \pmod{4}$	odd	"hyperbol
parabolic quadric	$X_0^2 + X_1X_2 + \ldots + X_{n-1}X_n$	$p \equiv 1,3 \pmod{8}$ or $p = 2$	even	"parabolio
parabolic quadric	$t(X_0^2 + X_1X_2 + + X_{n-1}X_n),$ t a primitive element of GF(p)	$p \equiv 5,7 \pmod{8}$	even	"parabolio
elliptic quadric	$X_0^2 + X_1^2 + X_2X_3 + \ldots + X_{n-1}X_n$	$p \equiv 3 \pmod{4}$	odd	"elliptic",
elliptic quadric	$X_0^2 + tX_1^2 + X_2X_3 + \dots + X_{n-1}X_n$, t a primitive element of GF(p)	$p \equiv 1 \pmod{4}$	odd	"elliptic",
elliptic quadric	$\begin{cases} X_0^2 + X_0 X_1 + dX_1^2 + X_2 X_3 + \dots + X_{n-1} X_n, \\ \operatorname{Tr}(d) = 1 \end{cases}$	even	odd	"elliptic",

Table: standard quadratic varieties

If no type is given, and only the dimension and field/field order are given, then it is assumed that the dimension is even and the user wants a standard parabolic quadric.

```
gap> F:=GF(5);
GF(5)
gap> r:=PolynomialRing(F,4);
GF(5)[x_1,x_2,x_3,x_4]
gap> x:=IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3, x_4 ]
gap> pg:=PG(3,F);
ProjectiveSpace(3, 5)
gap> Q:=x[2]*x[3]+x[4]^2;
x_2*x_3+x_4^2
```

```
gap> qv:=QuadraticVariety(pg,Q);
Quadratic Variety in ProjectiveSpace(3, 5)
gap> AsSet(List(Planes(pg),z->Size(Filtered(Points(z),x->x in qv))));
[ 1, 6, 11 ]
gap> qf:=QuadraticForm(qv);
< quadratic form >
gap> Display(qf);
Quadratic form
Gram Matrix:
 . . . .
 . . 1 .
 . . . .
 . . . 1
Polynomial: [ [ x_2*x_3+x_4^2 ] ]
gap> IsDegenerateForm(qf);
#I Testing degeneracy of the *associated bilinear form*
gap> qv:=QuadraticVariety(3,F,"-");
Quadratic Variety in ProjectiveSpace(3, 5)
gap> PolarSpace(qv);
<polar space in ProjectiveSpace(3,GF(5)): x_1^2+Z(5)*x_2^2+x_3*x_4=0 >
gap> Display(last);
<polar space of rank 3 over GF(5)>
Non-singular elliptic quadratic form
Gram Matrix:
 1 . . .
 . 2 . .
 . . . 1
Polynomial: [ [x_1^2+Z(5)*x_2^2+x_3*x_4] ]
Witt Index: 1
Bilinear form
Gram Matrix:
 2 . . .
 . 4 . .
 . . . 1
 . . 1 .
gap> qv:=QuadraticVariety(3,F,"+");
Quadratic Variety in ProjectiveSpace(3, 5)
gap> Display(last);
Quadratic Variety in ProjectiveSpace(3, 5)
 Polynomial: [Z(5)*x_1*x_2+Z(5)*x_3*x_4]
```

11.3.3 QuadraticForm

```
▷ QuadraticForm(var)
```

(attribute)

Returns: a quadratic form

When the argument var is a Quadratic Variety (11.3.2), this returns the associated quadratic form.

11.3.4 SesquilinearForm

```
▶ SesquilinearForm(var) (attribute)
Returns: a hermitian form
```

If the argument var is a Hermitian Variety (11.3.1), this returns the associated hermitian form.

11.3.5 PolarSpace

```
    PolarSpace(var) (operation)
```

the argument var is a projective algebraic variety. When its list of defining polynomial contains exactly one polynomial, depending on its degree, the operation QuadraticFormByPolynomial or HermitianFormByPolynomial is used to compute a quadratic form or a hermitian form. These operations check whether this is possible, and produce an error message if not. If the conversion is possible, then the appropriate polar space is returned.

```
_{-} Example
gap> f := GF(25);
GF(5^2)
gap> r := PolynomialRing(f,4);
GF(5^2)[x_1,x_2,x_3,x_4]
gap> ind := IndeterminatesOfPolynomialRing(r);
[ x_1, x_2, x_3, x_4 ]
gap> eq1 := Sum(List(ind,t->t^2));
x_1^2+x_2^2+x_3^2+x_4^2
gap> var := ProjectiveVariety(PG(3,f),[eq1]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
<polar space in ProjectiveSpace(3,GF(5^2)): x_1^2+x_2^2+x_3^2+x_4^2=0 >
gap > eq2 := Sum(List(ind,t->t^4));
x_1^4+x_2^4+x_3^4+x_4^4
gap> var := ProjectiveVariety(PG(3,f),[eq2]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
Error, <poly> does not generate a Hermitian matrix called from
GramMatrixByPolynomialForHermitianForm( pol, gf, n, vars ) called from
HermitianFormByPolynomial( pol, pring, n ) called from
HermitianFormByPolynomial( eq, r ) called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 16 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> eq3 := Sum(List(ind,t->t^6));
x_1^6+x_2^6+x_3^6+x_4^6
gap> var := ProjectiveVariety(PG(3,f),[eq3]);
Projective Variety in ProjectiveSpace(3, 25)
gap> PolarSpace(var);
<polar space in ProjectiveSpace(3,GF(5^2)): x_1^6+x_2^6+x_3^6+x_4^6=0 >
```

11.4 Affine Varieties

An affine variety in FinInG is an algebraic variety in an affine space defined by a list of polynomials over a finite field.

11.4.1 AffineVariety

▷ AffineVariety(ag, pring, pollist)

(operation)

▷ AffineVariety(ag, pollist)

(operation)

▷ AlgebraicVariety(ag, pring, pollist)

(operation)

▷ AlgebraicVariety(ag, pollist)

(operation)

Returns: an affine algebraic variety

The argument ag is an affine space over a finite field F, the argument pring is a multivariate polynomial ring defined over (a subfield of) F, and pollist is a list of polynomials in pring.

11.5 Geometry maps

A geometry map is a map from a set of elements of a geometry to a set of elements of another geometry, which is not necessarily a geometry morphism. Examples are the SegreMap (11.6.3), the VeroneseMap (11.7.3), and the GrassmannMap (11.8.3).

11.5.1 **Source**

Source(gm) (operation)

Returns: the source of a geometry map. The argument *gm* is a geometry map.

11.5.2 Range

Returns: the range of a geometry map. The argument *gm* is a geometry map.

11.5.3 ImageElm

 \triangleright ImageElm(gm, x)

(operation)

Returns: the image of an element under a geometry map

The argument gm is a geometry map, the element x is an element of the Source (11.8.4) of the geometry map gm.

11.5.4 ImagesSet

▷ ImagesSet(gm, elms)

(operation)

Returns: the image of a subset of the source under a geometry map

The argument gm is a geometry map, the elements elms is a subset of the Source (11.8.4) of the geometry map gm.

11.5.5 \^

Returns: the image of an element of the source under a geometry map

The argument gm is a geometry map, the element x is an element of the Source (11.8.4) of the geometry map gm.

11.6 Segre Varieties

A Segre variety in FinInG is a projective algebraic variety in a projective space over a finite field. The set of points that lie on this variety is the image of the Segre map.

11.6.1 SegreVariety

```
    ▷ SegreVariety(listofpgs) (operation)
    ▷ SegreVariety(listofdims, field) (operation)
    ▷ SegreVariety(pg1, pg2) (operation)
    ▷ SegreVariety(d1, d2, field) (operation)
    ▷ SegreVariety(d1, d2, q) (operation)
    Returns: a Segre variety
```

The argument listofpgs is a list of projective spaces defined over the same finite field, say $[PG(n_1-1,q), PG(n_2-1,q), ..., PG(n_k-1,q)]$. The operation also takes as input the list of dimensions (listofdims) and a finite field field (e.g. $[n_1,n_2,\ldots,n_k,GF(q)]$). A Segre variety with only two factors (k=2), can also be constructed using the operation with two projective spaces pg1 and pg2 as arguments, or with two dimensions d1, d2, and a finite field field (or a prime power q). The operation returns a projective algebraic variety in the projective space of dimension $n_1n_2...n_k-1$

11.6.2 PointsOfSegreVariety

PointsOfSegreVariety(sv) (operation)

 Points(sv) (operation)

Returns: the points of a Segre variety

The argument sv is a Segre variety. This operation returns a set of points of the AmbientSpace (14.3.1) of the Segre variety. This set of points corresponds to the image of the SegreMap (11.6.3).

11.6.3 SegreMap

▷ SegreMap(listofpgs)
(operation)

▷ SegreMap(listofdims, field)
(operation)

▷ SegreMap(pg1, pg2)
(operation)

▷ SegreMap(d1, d2, field)
(operation)

▷ SegreMap(d1, d2, q)
(operation)

▷ SegreMap(sv)
(operation)

Returns: a geometry map

The argument listofpgs is a list of projective spaces defined over the same finite field, say $[PG(n_1-1,q), PG(n_2-1,q), ..., PG(n_k-1,q)]$. The operation also takes as input the list of

dimensions (listofdims) and a finite field field (e.g. $[n_1, n_2, ..., n_k, GF(q)]$). A Segre map with only two factors (k = 2), can also be constructed using the operation with two projective spaces pg1 and pg2 as arguments, or with two dimensions d1, d2, and a finite field field (or a prime power q). The operation returns a function with domain the product of the point sets of projective spaces in the list $[PG(n_1 - 1, q), PG(n_2 - 1, q), ..., PG(n_k - 1, q)]$ and image the set of points of the Segre variety (PointsOfSegreVariety (11.6.2)) in the projective space of dimension $n_1 n_2 ... n_k - 1$. When a Segre variety sv is given as input, the operation returns the associated Segre map.

```
Example
gap> sv:=SegreVariety(2,2,9);
Segre Variety in ProjectiveSpace(8, 9)
gap> sm:=SegreMap(sv);
Segre Map of [ <points of ProjectiveSpace(2, 9)>,
  <points of ProjectiveSpace(2, 9)> ]
gap> cart1:=Cartesian(Points(PG(2,9)),Points(PG(2,9)));;
gap> im1:=ImagesSet(sm,cart1);;
gap> Span(im1);
ProjectiveSpace(8, 9)
gap> 1:=Random(Lines(PG(2,9)));
<a line in ProjectiveSpace(2, 9)>
gap> cart2:=Cartesian(Points(1),Points(PG(2,9)));;
gap> im2:=ImagesSet(sm,cart2);;
gap> Span(im2);
<a proj. 5-space in ProjectiveSpace(8, 9)>
gap> x:=Random(Points(PG(2,9)));
<a point in ProjectiveSpace(2, 9)>
gap> cart3:=Cartesian(Points(PG(2,9)),Points(x));;
gap> im3:=ImagesSet(sm,cart3);;
gap> pi:=Span(im3);
<a plane in ProjectiveSpace(8, 9)>
gap> AsSet(List(Points(pi),y->y in sv));
[true]
```

11.6.4 Source

▷ Source(sm) (operation)

Returns: the source of a Segre map

The argument sm is a SegreMap (11.6.3). This operation returns the cartesian product of the list consisting of the pointsets of the projective spaces that were used to construct the SegreMap (11.6.3).

11.7 Veronese Varieties

A *Veronese variety* in FinInG is a projective algebraic variety in a projective space over a finite field. The set of points that lie on this variety is the image of the *Veronese map*.

11.7.1 Veronese Variety

```
▷ VeroneseVariety(pg) (operation)

▷ VeroneseVariety(n-1, field) (operation)
```

```
\triangleright VeroneseVariety(n-1, q)
```

(operation)

Returns: a Veronese variety

The argument pg is a projective space defined over a finite field, say PG(n-1,q). The operation also takes as input the dimension and a finite field field (e.g. [n-1,q]). The operation returns a projective algebraic variety in the projective space of dimension $(n^2+n)/2-1$, known as the (quadratic) Veronese variety. It is the image of the map $(x_0,x_1,\ldots,x_n)\mapsto (x_0^2,x_0x_1,\ldots,x_0x_n,x_1^2,x_1x_2,\ldots,x_1x_n,\ldots,x_n^2)$

11.7.2 PointsOfVeroneseVariety

```
    PointsOfVeroneseVariety(vv) (operation)
    Points(vv) (operation)
```

Returns: the points of a Veronese variety

The argument vv is a Veronese variety. This operation returns a set of points of the AmbientSpace (14.3.1) of the Veronese variety. This set of points corresponds to the image of the VeroneseMap (11.7.3).

11.7.3 VeroneseMap

Returns: a geometry map

The argument pg is a projective space defined over a finite field, say PG(n-1,q). The operation also takes as input the dimension and a finite field field (e.g. [n-1,q]). The operation returns a function with domain the product of the point set of the projective space PG(n-1,q) and image the set of points of the Veronese variety (PointsOfVeroneseVariety (11.7.2)) in the projective space of dimension $(n^2+n)/2-1$. When a Veronese variety vv is given as input, the operation returns the associated Veronese map.

```
\_ Example _-
gap> pg:=PG(2,5);
ProjectiveSpace(2, 5)
gap> vv:=VeroneseVariety(pg);
Veronese Variety in ProjectiveSpace(5, 5)
gap> Size(Points(vv))=Size(Points(pg));
true
gap> vm:=VeroneseMap(vv);
Veronese Map of <points of ProjectiveSpace(2, 5)>
gap> r:=PolynomialRing(GF(5),3);
GF(5)[x_1,x_2,x_3]
gap > f := r.1^2 - r.2 * r.3;
x_1^2-x_2*x_3
gap> c:=AlgebraicVariety(pg,r,[f]);
Projective Variety in ProjectiveSpace(2, 5)
gap> pts:=List(Points(c));
[ <a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,
  <a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)>,
  <a point in ProjectiveSpace(2, 5)>, <a point in ProjectiveSpace(2, 5)> ]
```

```
gap> Dimension(Span(ImagesSet(vm,pts)));
4
```

11.7.4 Source

▷ Source(vm) (operation)

Returns: the source of a Veronese map

The argument vm is a VeroneseMap (11.7.3). This operation returns the pointset of the projective space that was used to construct the VeroneseMap (11.7.3).

11.8 Grassmann Varieties

A *Grassmann variety* in FinInG is a projective algebraic variety in a projective space over a finite field. The set of points that lie on this variety is the image of the *Grassmann map*.

11.8.1 GrassmannVariety

```
▷ GrassmannVariety(k, pg) (operation)
▷ GrassmannVariety(subspaces) (operation)
▷ GrassmannVariety(k, n, q) (operation)
```

Returns: a Grassmann variety

The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k is an integer (k at least 1 and at most n-2) and denotes the projective dimension determining the Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projective space, or the dimension k, the dimension n and the size q of the finite field (k at least 1 and at most n-2). The operation returns a projective algebraic variety known as the Grassmann variety.

11.8.2 PointsOfGrassmannVariety

```
\triangleright PointsOfGrassmannVariety(gv) (operation) \triangleright Points(gv) (operation)
```

Returns: the points of a Grassmann variety

The argument gv is a Grassmann variety. This operation returns a set of points of the AmbientSpace (14.3.1) of the Grassmann variety. This set of points corresponds to the image of the GrassmannMap (11.8.3).

11.8.3 GrassmannMap

Returns: a geometry map

The argument pg is a projective space defined over a finite field, say PG(n,q), and argument k is an integer (k at least 1 and at most n-2), and denotes the projective dimension determining the

Grassmann Variety. The operation also takes as input the set subspaces of subspaces of a projective space, or the dimension k, the dimension n and the size q of the finite field (k at least 1 and at most n-2). The operation returns a function with domain the set of subspaces of dimension k in the n-dimensional projective space over GF(q), and image the set of points of the Grassmann variety (PointsOfGrassmannVariety (11.8.2)). When a Grassmann variety gv is given as input, the operation returns the associated Grassmann map.

11.8.4 Source

▷ Source(gm) (operation)

Returns: the source of a Grassmann map

The argument gm is a GrassmannMap (11.8.3). This operation returns the set of subspaces of the projective space that was used to construct the GrassmannMap (11.8.3).

This is the chapter of the documentation describing generalised polygons. ->

Chapter 12

Generalised Polygons

A generalised n-gon is a point/line geometry whose incidence graph is bipartite of diameter n and girth 2n. Although these rank 2 structures are very much a subdomain of GRAPE and Design, their significance in finite geometry warrants their inclusion in FinInG. By the famous theorem of Feit and Higman, a generalised n-gon which has at least three points on every line, must have n in $\{2,3,4,6,8\}$. The case n=2 concerns the complete multipartite graphs, which we disregard. The more interesting cases are accordingly projective planes (n=3), generalised quadrangles (n=4), generalised hexagons (n=6), and generalised octagons (n=8).

FinInG provides some basic functionality to deal with generalised polygons as incidence geometries. A lot of non-trivial interaction with the package GRAPE has been very useful and even necessary. Currently, generic functions to create generalised polygons, to create elements of generalised polygons, and to explore the elements are implemented. This generic functionality allows the user to construct generalised polygons through many different objects available in GAP and FinInG. Apart from these generic functions, some particular generalised polygons are available: the classical generalised hexagons and elation generalised quadrangles from different perspectives can be constructed.

12.1 Categories

12.1.1 IsGeneralisedPolygon

▷ IsGeneralisedPolygon▷ IsGeneralisedPolygonRep(Representation)

This category is a subcategory of IsIncidenceGeometry, and contains all generalised polygons. Generalised polygons constructed through functions described in this chapter, all belong to IsGeneralisedPolygonRep.

12.1.2 Subcategories in IsGeneralisedPolygon

\triangleright	\cdot IsProjectivePlaneCategory	(Category)
\triangleright	IsGeneralisedQuadrangle	(Category)
\triangleright	IsGeneralisedHexagon	(Category)
\triangleright	IsGeneralisedOctagon	(Category)

All generalised polygons in FinInG belong to one of these four categories. It is not possible to construct generalised polygons of which the gonality is not known (or checked). Note that the classical generalised quadrangles (which are the classical polar spaces of rank 2) belong also to IsGeneralisedQuadrangle and that the desarguesian projective planes (which are the projective spaces of dimension 2) also belong to IsProjectivePlaneCategory, but both do not belong to IsGeneralisedPolygonRep.

12.1.3 IsWeakGeneralisedPolygon

```
▷ IsWeakGeneralisedPolygon
```

(Category)

IsWeakGeneralisedPolygon is the category for weak generalised polygons.

12.1.4 Subcategories in IsProjectivePlaneCategory

```
▷ IsDesarguesianPlane
```

(Category)

IsDesarguesianPlane is declared as a subcategory of IsProjectivePlaneCategory and IsProjecticeSpace. Projective spaces of dimension 2 constructed using ProjectiveSpace belong to IsDesarguesianPlane.

12.1.5 Subcategories in IsGeneralisedQuadrangle

```
▷ IsClassicalGQ▷ IsElationGQ(Category)
```

IsClassicalGQ is declared as a subcategory of IsGeneralisedQuadrangle and IsClassicalPolarSpace. All classical polar spaces of rank 2 belong to IsClassicalGQ. IsElationGQ is declared as subcategory of IsGeneralisedQuadrangle. Elation GQs will be discussed in detail in Section 12.6

```
gap> gp := SymplecticSpace(3,2);
W(3, 2)
gap> IsGeneralisedPolygon(gp);
true
gap> IsGeneralisedQuadrangle(gp);
true
gap> IsClassicalGQ(gp);
true
gap> IsClassicalGQ(gp);
true
```

12.1.6 IsClassicalGeneralisedHexagon

\triangleright IsClassicalGeneralisedHexagon

(Category)

IsClassicalGeneralisedHexagon is declared as subcategory of IsGeneralisedHexagon and IsLieGeometry. The so called classical generalised hexagons are the hexagons that come from the

triality of the hyperbolic quadric $Q^+(7,q)$. The Split Cayley hexagon is embedded in the parabolic quadric Q(6,q), or W(5,q) in even characteristic. The twisted triality hexagon is embedded in the hyperbolic quadric $Q^+(7,q)$. The construction of these hexagons in a subcategory of IsLieGeometry means that the usual operations for Lie geometries become applicable. The classical generalised hexagons are in detail discussed in Section 12.5

```
gap> gp := SplitCayleyHexagon(3);
H(3)
gap> IsGeneralisedHexagon(gp);
true
gap> IsClassicalGeneralisedHexagon(gp);
true
gap> IsLieGeometry(gp);
true
gap> IsGeneralisedPolygonRep(gp);
true
```

12.2 Generic functions to create generalised polygons

12.2.1 GeneralisedPolygonByBlocks

▷ GeneralisedPolygonByBlocks(1)

(operation)

Returns: a generalised polygon

The argument 1 is a finite homogeneous list consisting of ordered sets of a common size n+1. This operation will assume that each element of 1 represents a line of the generalised polygon. Its points are assumed to be the union of all elements of 1. The incidence is assumed to be symmetrised containment. From this information, an incidence graph is computed using GRAPE. If this graph has diameter d and girth 2d, a generalised polygon is returned. The thickness condition is not checked. If $d \in \{3,4,6,8\}$, a projective plane, a generalised quadrangle, a generalised hexagon, a generalised octagon respectively, is returned. Note that for large input, this operation can be time consuming.

12.2.2 GeneralisedPolygonByIncidenceMatrix

▶ GeneralisedPolygonByIncidenceMatrix(incmat)
Returns: a generalised polygon

(operation)

The argument *incmat* is a matrix representing the incidence matrix of a point line geometry. The points are represented by the columns, the rows represent the lines. From *incmat* a homogeneous list of sets of column entries is derived, which is then passed to GeneralisedPolygonByBlocks. When *incmat* indeed represents a generalised polygon, it is returned. The checks are performed by GeneralisedPolygonByBlocks.

```
_ Example
gap> incmat := [
   1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
   [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
   [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
       0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
    0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
       1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0],
   [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1],
   [0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1],
   [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],
   [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0],
   [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]
       0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0],
       0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0],
       0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
   [0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
   [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0],
   [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1],
   [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
   [0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,0,0]];;
gap> pp := GeneralisedPolygonByIncidenceMatrix( incmat );
ctive plane order 4>
```

12.2.3 GeneralisedPolygonByElements

```
▷ GeneralisedPolygonByElements(pts, lns, inc) (operation)
▷ GeneralisedPolygonByElements(pts, lns, inc, grp, act) (operation)

Returns: a generalised polygon
```

The argument pts, lns and inc are respectively a set of objects, a set of objects and a function. The function inc must represent an incidence relation between objects of pts and lns. The first version of GeneralisedPolygonByElements will construct an incidence graph, and if this graph has diameter d and girth 2d, a generalised polygon is returned. The thickness condition is not checked. If $d \in \{3,4,6,8\}$, a projective plane, a generalised quadrangle, a generalised hexagon, a generalised octagon respectively, is returned. The argument grp is a group, and act a function, representing an action of the elements of grp on the objects in the lists pts and lns, preserving the incidence. The second version of GeneralisedPolygonByElements acts as the first version, but uses grp and act to construct the incidence graph in a more efficient way, so if grp is a non trivial group, the construction of the graph will be faster. This operation can typically be used to construct generalised polygons from objects that are available in FinlnG. This difference in time is shown in the first two examples. The third examples shows the construction of the generalised quadrangle $T_2(O)$.

```
Example -
gap > pg := PG(2,25);
ProjectiveSpace(2, 25)
gap> pts := Set(Points(pg));;
gap> lns := Set(Lines(pg));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(pts,lns,inc);
ctive plane order 25>
gap> time;
26427
gap> grp := CollineationGroup(pg);
The FinInG collineation group PGammaL(3,25)
gap> act := OnProjSubspaces;
function( var, el ) ... end
gap> gp := GeneralisedPolygonByElements(pts,lns,inc,grp,act);
ctive plane order 25>
gap> time;
127
gap> q := 4;
gap> conic := Set(Points(ParabolicQuadric(2,q)));
[ \langlea point in Q(2, 4)\rangle, \langlea point in Q(2, 4)\rangle, \langlea point in Q(2, 4)\rangle,
  <a point in Q(2, 4)>, <a point in Q(2, 4)> ]
gap > pg := PG(3,q);
ProjectiveSpace(3, 4)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> 0 := List(conic,x->x^em);;
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,4)
gap> stab := FiningSetwiseStabiliser(group,0);
#I Computing adjusted stabilizer chain...
cprojective collineation group with 6 generators>
gap> points1 := Set(Filtered(Points(pg),x->not x in hyp));;
gap> tangents := List(conic,x->TangentSpace(x)^em);
[ <a line in ProjectiveSpace(3, 4)>, <a line in ProjectiveSpace(3, 4)>,
  <a line in ProjectiveSpace(3, 4)>, <a line in ProjectiveSpace(3, 4)>,
  <a line in ProjectiveSpace(3, 4)> ]
gap> planes := List(tangents,x->Filtered(Planes(x),y->not y in hyp));;
gap> points2 := Union(planes);;
gap> points3 := [hyp];
[ <a plane in ProjectiveSpace(3, 4)> ]
gap> linesa := Union(List(0,x->Filtered(Lines(x),y->not y in hyp)));;
gap> linesb := Set(0);;
gap> pts := Union(points1,points2,points3);;
gap> lns := Union(linesa,linesb);;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(pts,lns,inc,stab,\^);
```

```
<generalised quadrangle of order [ 4, 4 ]>
gap> time;
50
```

12.3 Attributes and operations for generalised polygons

All operations described in this section are applicable on objects in the category IsGeneralisedPolygon.

12.3.1 Order

```
\triangleright Order(gp) (attribute)
```

Returns: a pair of positive integers

This method returns the parameters (s,t) of the generalised polygon gp. That is, s+1 is the number of points on any line of gp, and t+1 is the number of lines incident with any point of gp.

```
gap> gp := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> Order(gp);
[ 8, 2 ]
gap> gp := HermitianPolarSpace(4,25);
H(4, 5^2)
gap> Order(gp);
[ 25, 125 ]
gap> gp := EGQByqClan(LinearqClan(3));
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> Order(gp);
[ 9, 3 ]
```

12.3.2 IncidenceGraphAttr

```
▷ IncidenceGraphAttr(gp)
```

(attribute)

This attribute is declared for objects in IsGeneralisedPolygon. It is a mutable attribute and can be accessed by the operation IncidenceGraph.

12.3.3 IncidenceGraph

```
\triangleright IncidenceGraph(gp)
```

(operation)

Returns: a graph

The argument gp is a generalised polygon. This operation returns the incidence graph of gp. If gp is constructed using GeneralisedPolygonByBlocks, GeneralisedPolygonByElements or GeneralisedPolygonByIncidenceMatrix, an incidence graph is computed to check the input, and is stored as an attribute. For the particular generalised polygons available in FinInG, there is no

precomputed incidence graph. Note that computing an incidence graph may require some time, especially when the *gp* has no collineation group computed. Therefore, this operation will return an error when *gp* has no collineation group computed. As CollineationGroup is an attribute for objects in IsGeneralisedPolygon, the user should compute the collineation group and then reissue the command to compute the incidence graph.

We should also point out that this method returns a *mutable* attribute of *gp*, so that acquired information about the incidence graph can be added. For example, the automorphism group of the incidence graph may be computed and stored as a record component after the incidence graph is stored as an attribute of *gp*. Normally, attributes of GAP objects are immutable.

Note that the factor 2 as difference in the order of the collineation group of Q(4,4) and the order of the automorphism group of its incidence graph is easily explained by the fact that the Q(4,4) is self dual.

```
_ Example .
gap> blocks := [
     [1, 2, 3, 4, 5], [1, 6, 7, 8, 9], [1, 10, 11, 12, 13],
     [ 1, 14, 15, 16, 17 ], [ 1, 18, 19, 20, 21 ], [ 2, 6, 10, 14, 18 ],
    [2, 7, 11, 15, 19], [2, 8, 12, 16, 20], [2, 9, 13, 17, 21],
     [3, 6, 11, 16, 21], [3, 7, 10, 17, 20], [3, 8, 13, 14, 19],
     [3, 9, 12, 15, 18], [4, 6, 12, 17, 19], [4, 7, 13, 16, 18],
     [4, 8, 10, 15, 21], [4, 9, 11, 14, 20], [5, 6, 13, 15, 20],
     [5, 7, 12, 14, 21], [5, 8, 11, 17, 18], [5, 9, 10, 16, 19]];;
gap> gp := GeneralisedPolygonByBlocks( blocks );
projective plane order 4>
gap> incgraph := IncidenceGraph( gp );;
gap> Diameter( incgraph );
gap> Girth( incgraph );
gap> VertexDegrees( incgraph );
[5]
gap> aut := AutGroupGraph( incgraph );
<permutation group with 9 generators>
gap> DisplayCompositionSeries(aut);
G (9 gens, size 241920)
 |Z(2)|
S (5 gens, size 120960)
 |Z(2)|
S (5 gens, size 60480)
IZ(3)
S (4 gens, size 20160)
| A(2,4) = L(3,4)
1 (0 gens, size 1)
gap> gp := ParabolicQuadric(4,4);
Q(4, 4)
gap> incgraph := IncidenceGraph( gp );;
Error, No collineation group computed. Please compute collineation group before compu
ting incidence graph, n called from
<function "unknown">( <arguments> )
called from read-eval loop at line 24 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

12.3.4 IncidenceMatrixOfGeneralisedPolygon

▷ IncidenceMatrixOfGeneralisedPolygon(gp)

(attribute)

Returns: a matrix

This method returns the incidence matrix of the generalised polygon via the operation CollapsedAdjacencyMat in the GRAPE package. The rows of the matrix correspond to the points of gp, and the columns correspond to the lines. Note that since this operation relies on IncidenceGraph, for some generalised polygons, it is necessary to compute a collineation group first.

```
Example
gap> gp := SymplecticSpace(3,2);
W(3, 2)
gap> CollineationGroup(gp);
PGammaSp(4,2)
gap> mat := IncidenceMatrixOfGeneralisedPolygon(gp);
#I Computing incidence graph of generalised polygon...
[[1,0,1,0,0,0,0,1,0,0,0,0,],
  [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
  [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
  [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
  [0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
  [0,0,1,0,0,1,0,0,1,0,0,1,0,0,0],
  [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
  [0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0],
  [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0],
  [0,0,0,0,0,1,0,0,0,0,1,0,1],
  [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1],
  [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]
```

12.3.5 CollineationGroup

```
▷ CollineationGroup(gp)
```

(attribute)

Returns: a group

This attribute returns the full collineation group of the generalised polygon gp. For some particular generalised polygons, a (subgroup) of the full collineation group can be computed ef-

ficiently without computing the incidence graph of gp: the full collineation group of classical generalised quadrangles and classical generalised hexagons; and an elation group with relation to a base-point of an elation generalised quadrangle. For generalised polygons constructed by the operations GeneralisedPolygonByBlocks, GeneralisedPolygonByElements or GeneralisedPolygonByIncidenceMatrix, the full collineation group is computed using the full automorphism group of the underlying incidence graph, the latter being computed by the package GRAPE.

The collineation groups computed for classical generalised quadrangles and classical generalised hexagons are collineation groups in the sense of FinInG, and come equipped with a NiceMonomorphism. The collineation groups computed in all other cases are permutations groups, acting on the vertices of the underlying incidence graph.

Note that the computation of the automorphism group of the underlying graph can be time consuming, also if the complete collineation group of the generalised polygon has been used as an argument in e.g. GeneralisedPolygonByElements.

The first example illustrates that CollineationGroup is naturally applicable to all classical generalised Polygons.

```
_ Example -
gap > gp := PG(2,2);
ProjectiveSpace(2, 2)
gap> CollineationGroup(gp);
The FinInG collineation group PGL(3,2)
gap> gp := EllipticQuadric(5,4);
Q-(5, 4)
gap> CollineationGroup(gp);
PGamma0-(6,4)
gap> gp := TwistedTrialityHexagon(3^3);
T(27, 3)
gap> CollineationGroup(gp);
#I Computing nice monomorphism...
#I Found permutation domain...
3D_4(27)
gap> time;
40691
```

The second example illustrates the computation of collineation groups of generalised polygons constructed using different objects.

```
_ Example .
gap> mat := [[1, 1, 0, 0, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0],
>
          [1, 0, 1, 0, 0, 0, 1], [0, 1, 1, 1, 0, 0, 0],
>
          [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
          [0,0,1,0,1,1,0];
[[1, 1, 0, 0, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1],
  [0, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
  [0,0,1,0,1,1,0]]
gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
ctive plane order 2>
gap> group := CollineationGroup(gp);
Group([(3,4)(5,7)(9,10)(13,14), (3,7)(4,5)(11,12)(13,14), (2,3)(6,7)(8,9))
(12,13), (2,6)(4,5)(11,13)(12,14), (1,2)(4,7)(9,11)(10,12)
gap> gp := EGQByqClan(FisherqClan(3));
```

213

```
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> group := CollineationGroup(gp);
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
<permutation group of size 26127360 with 8 generators>
gap> Order(group);
26127360
gap> Random(group);
(1,75,27,191,96,50,9,110,88,53,63,154,115,213,229,19,236,226,49,143,16,266,58,
245,11,270,57,44)(2,181,116,225,262,223,17)(3,33,187,149,108,120,177,164,167,
261,198,26,196,276,52,73,94,222,101,176,32,39,43,89,31,280,65,71)(4,250,173,
112,246,38,142,138,54,208,69,243,197,42,269,242,125,8,134,265,67,206,20,13,29,
182,205,36) (5,109,129,82,210,277,185,56,104,114,90,68,61,228,132,235,78,257,
10,238,145,184,241,170,153,263,45,179)(6,159,230,106,147,91,22,137,256,113,
117,180,7,133,279,100,55,156,168,86,122,131,12,35,273,264,254,152)(14,62,66,
268,51,233,253,218,172,130,144,25,169,83,234,127,171,221,34,190,21,46,272,224,
239,267,60,98) (15,40,278,128,160,215,87,178,203,166,247,119,209,84,255,271,
232,81,193,252,92,95,111,201,107,140,135,258)([...])
gap> q := 4;
gap> conic := ParabolicQuadric(2,q);
Q(2, 4)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 4)>
gap> conic := ParabolicQuadric(2,q);
Q(2, 4)
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 4)>
gap> hyperoval := Union(List(Points(conic)),[nucleus]);
[ \langle a \text{ point in ProjectiveSpace}(2, 4) \rangle, \langle a \text{ point in } \mathbb{Q}(2, 4) \rangle,
  <a point in Q(2, 4)>, <a point in Q(2, 4)>, <a point in Q(2, 4)>,
  <a point in Q(2, 4) > ]
gap > pg := PG(3,q);
ProjectiveSpace(3, 4)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> 0 := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
  <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
  <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)> ]
gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(0,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 3, 5 ]>
gap> coll := CollineationGroup(gp);
<permutation group of size 138240 with 8 generators>
```

```
gap> Order(coll);
138240
gap> Random(coll);
(1,29,60,40)(2,42,4,10,3,61,59,19,57,51,58,8)(5,21,17,25,52,13,64,48,44,36,9,56)(6,34,41,55,50,45,63,27,20,14,11,24)(7,53,18,46,12,35,62,16,43,23,49,26)(15,32,47,31,28,39,54,37,22,38,33,30)(65,74,83,111,66,117,149,104,70,151,142,78)(67,135,139,136,68,109,98,125,69,95,120,137)(71,92,73,128,77,106,141,105,145,150,88,155)(72,121,158,160,76,143,119,103,138,152,134,84)(75,153,133,107,115,122,118,85,154,116,147,91)(79,110,101,159,126,90,157,81,112,100,89,108)(80,99,97,86,156,129,144,94,127,114,148,82)(87,132,102,131,123,130,124,96,93,113,146,140)
```

In the third example, the use of an precomputed automorphism group is illustrated. It speeds up the construction of the underlying graph and the computation of the automorphism group of the underlying graph. However, as is also illustrated in the example, despite that the precomputed automorphism group of the generalised polygon is actually the full collineation group, still some time is needed to compute the automorphism group of the underlying graph. The timings after both CollineationGroup commands are wrong. This is because GRAPE relies on an external binary to computed the automorphism group of a graph. The generalised quadrangle in this example is known as $T_2^*(O)$.

```
_ Example _
gap> q := 8;
gap> conic := ParabolicQuadric(2,q);
gap> nucleus := NucleusOfParabolicQuadric(conic);
<a point in ProjectiveSpace(2, 8)>
gap> hyperoval := Union(List(Points(conic)),[nucleus]);
[ \langle a \text{ point in ProjectiveSpace}(2, 8) \rangle, \langle a \text{ point in } Q(2, 8) \rangle,
  <a point in Q(2, 8)>, <a point in Q(2, 8)>, <a point in Q(2, 8)>,
  <a point in Q(2, 8)>, <a point in Q(2, 8)>, <a point in Q(2, 8)>,
  <a point in Q(2, 8)>, <a point in Q(2, 8)> ]
gap > pg := PG(3,q);
ProjectiveSpace(3, 8)
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 8)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
8)> to <All elements of ProjectiveSpace(3, 8)>>
gap> 0 := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
  <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
  <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
  <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)>,
  <a point in ProjectiveSpace(3, 8)>, <a point in ProjectiveSpace(3, 8)> ]
gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(0,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 7, 9 ]>
```

```
gap> time;
17466
gap> coll := CollineationGroup(gp);
<permutation group of size 5419008 with 9 generators>
gap> time;
69
gap> group := CollineationGroup(pg);
The FinInG collineation group PGammaL(4,8)
gap> stab := FiningSetwiseStabiliser(group,0);
#I Computing adjusted stabilizer chain...
ctive collineation group with 11 generators>
gap> time;
2045
gap> gp := GeneralisedPolygonByElements(points,lines,inc,stab,\^);
<generalised quadrangle of order [ 7, 9 ]>
gap> time;
394
gap> coll := CollineationGroup(gp);
<permutation group of size 5419008 with 9 generators>
gap> time;
62
gap> Order(coll);
5419008
gap> Order(stab);
5419008
```

12.3.6 CollineationAction

▷ CollineationAction(group)

(attribute)

Returns: a function

group is a collineation group of a generalised polygon, computed using CollineationGroup. The collineation group of classical generalised polygons will be a collineation group in the sense of FinInG. The natural action is OnProjectiveSubspaces. The collineation group of any other generalised polygons will be a permutation group. The result of CollineationAction for such a group is a function with input a pair (x,g) where x is an element of the generalised polygon, and g is a collineation of the generalised polygon, so an element of group. The example illustrates the use in the generalised quadrangle.

216

```
gap> hyp := HyperplaneByDualCoordinates(pg,[1,0,0,0]*Z(q)^0);
<a plane in ProjectiveSpace(3, 4)>
gap> em := NaturalEmbeddingBySubspace(PG(2,q),pg,hyp);
<geometry morphism from <All elements of ProjectiveSpace(2,</pre>
4)> to <All elements of ProjectiveSpace(3, 4)>>
gap> 0 := List(hyperoval,x->x^em);
[ <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
    <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)>,
    <a point in ProjectiveSpace(3, 4)>, <a point in ProjectiveSpace(3, 4)> ]
gap> points := Set(Filtered(Points(pg),x->not x in hyp));;
gap> lines := Union(List(0,x->Filtered(Lines(x),y->not y in hyp)));;
gap> inc := \*;
<Operation "*">
gap> gp := GeneralisedPolygonByElements(points,lines,inc);
<generalised quadrangle of order [ 3, 5 ]>
gap> coll := CollineationGroup(gp);
<permutation group of size 138240 with 8 generators>
gap> act := CollineationAction(coll);
function(el, g) ... end
gap> g := Random(coll);
(1,37,45,63,27,19)(2,53,13,64,11,51)(3,33,38,61,31,28)(4,49,6,62,15,60)(5,46,61,37,45,63,27,19)(2,53,13,64,11,51)(3,33,38,61,31,28)(4,49,6,62,15,60)(5,46,11,51)(3,33,38,61,31,28)(4,49,6,62,15,60)(5,46,11,51)(3,33,38,61,31,28)(4,49,6,62,15,60)(5,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6,46,11,51)(6
47,59,20,17) (7,42,40,57,24,26) (8,58) (9,55) (10,39,41,56,25,23) (12,35,34,54,29,
32) (14,48,43,52,18,21) (16,44,36,50,22,30) (65,132,90,157,89,105) (66,68,131,143,
119,103) (67,135,76,123,130,106) (69,133,112,100,81,107) (70,134,150,88,155,
104) (71,99,79,144,93,149) (72,153,95,120,73,122) (74,125,115,128,140,87) (75,121,
136,117,113,91) (77,124,98,83,147,146) (78,145,84,118,85,142) (80,92,137,141,108,
97) (82,86,116,111,138,101) (94,127,126,102,109,96) (110,152,151,154,156,
129) (114, 160, 139, 158, 148, 159)
gap> 1 := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 5 ]>>
gap> act(1,g);
<a line in <generalised quadrangle of order [ 3, 5 ]>>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 5 ]>>
gap> act(p,g);
<a point in <generalised quadrangle of order [ 3, 5 ]>>
gap> stab := Stabilizer(coll,p,act);
<permutation group of size 2160 with 3 generators>
gap> List(Orbits(stab,List(Points(gp)),act),x->Length(x));
[ 45, 18, 1 ]
gap> List(Orbits(stab,List(Lines(gp)),act),x->Length(x));
[ 90, 6 ]
```

12.3.7 BlockDesignOfGeneralisedPolygon

▷ BlockDesignOfGeneralisedPolygon(gp)

(attribute)

Returns: a block design

This method allows one to use the GAP package DESIGN to analyse a generalised polygon, so the user must first load this package. The argument gp is a generalised polygon, and if it has a collineation group, the block design is computed with this extra information and thus the resulting design is easier

to work with. Likewise, if gp is an elation generalised quadrangle and it has an elation group, then we use the elation group's action to efficiently compute the block design. We should also point out that this method returns a *mutable* attribute of gp, so that acquired information about the block design can be added. For example, the automorphism group of the block design may be computed after the design is stored as an attribute of gp. Normally, attributes of GAP objects are immutable.

```
_ Example
gap> LoadPackage("design");
Loading DESIGN 1.6 (The Design Package for GAP)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/~leonard/).
Homepage: http://www.designtheory.org/software/gap_design/
gap> gh := SplitCayleyHexagon(2);
H(2)
gap> CollineationGroup(gh);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
G_{2}(2)
gap> des := BlockDesignOfGeneralisedPolygon(gh);
rec( autSubgroup := <permutation group with 3 generators>,
 blocks := [[1, 29, 52], [1, 34, 36], [1, 37, 48], [2, 13, 60],
      [2, 44, 53], [2, 45, 52], [3, 17, 35], [3, 22, 51],
      [3, 23, 48], [4, 16, 57], [4, 19, 36], [4, 54, 56],
      [5, 22, 63], [5, 31, 57], [5, 49, 52], [6, 7, 60],
      [6, 28, 57], [6, 35, 43], [7, 26, 27], [7, 33, 34],
      [8, 9, 53], [8, 22, 33], [8, 38, 56], [9, 25, 61],
      [ 9, 28, 37 ], [ 10, 18, 53 ], [ 10, 32, 35 ], [ 10, 36, 62 ],
      [ 11, 12, 63 ], [ 11, 26, 54 ], [ 11, 37, 42 ], [ 12, 41, 43 ],
      [ 12, 44, 50 ], [ 13, 15, 42 ], [ 13, 19, 51 ], [ 14, 15, 31 ],
      [ 14, 17, 61 ], [ 14, 34, 50 ], [ 15, 20, 38 ], [ 16, 23, 44 ],
      [ 16, 40, 59 ], [ 17, 45, 54 ], [ 18, 24, 26 ], [ 18, 30, 31 ],
      [ 19, 25, 41 ], [ 20, 21, 62 ], [ 20, 23, 27 ], [ 21, 28, 55 ],
      [ 21, 39, 45 ], [ 24, 29, 59 ], [ 24, 51, 55 ], [ 25, 27, 49 ],
      [ 29, 38, 43 ], [ 30, 39, 41 ], [ 30, 46, 48 ], [ 32, 40, 42 ],
      [ 32, 47, 49 ], [ 33, 39, 40 ], [ 46, 47, 56 ], [ 46, 58, 60 ],
      [ 47, 50, 55 ], [ 58, 59, 61 ], [ 58, 62, 63 ] ], isBlockDesign := true,
  v := 63)
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> clan := List( f, t -> t*id );;
gap> clan := qClan(clan,f);
<q-clan over GF(3)>
gap> egq := EGQByqClan( clan );
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> HasElationGroup( egq );
gap> design := BlockDesignOfGeneralisedPolygon( egq );;
#I Computing orbits on lines of gen. polygon...
```

```
#I Computing block design of generalised polygon...
gap> aut := AutGroupBlockDesign( design );
<permutation group with 6 generators>
gap> NrBlockDesignPoints( design );
280
gap> NrBlockDesignBlocks( design );
112
gap> DisplayCompositionSeries(aut);
G (6 gens, size 26127360)
   | Z(2)
S (5 gens, size 13063680)
   | Z(2)
S (5 gens, size 6531840)
   | Z(2)
S (4 gens, size 3265920)
   | 2A(3,3) = U(4,3) ~ 2D(3,3) = O-(6,3)
1 (0 gens, size 1)
```

12.4 Elements of generalised polygons

12.4.1 Collections of elements of generalised polygons

```
\triangleright ElementsOfIncidencStructure(gp, i) (attribute) \triangleright Points(gp) (attribute) \triangleright Lines(gp) (attribute)
```

Returns: a collection of elements of a generalised polygon

gp is any generalised polygon, i is a natural number, necessarily 1 or 2. ElementsOfIncidenceStructure returns the elements of type i of gp, Points and Lines are the usual shortcuts.

12.4.2 Size

```
▷ Size(els) (operation)
```

Returns: a number

els is a collection of elements of a generalised polygon. This operation returns the number of element in els.

12.4.3 Creating elements from objects and retrieving objects from elements

```
▷ ObjectToElement(gp, obj) (operation)
▷ ObjectToElement(gp, type, obj) (operation)
▷ UnderlyingObject(el) (operation)
```

Returns: a collection of elements of a generalised polygon

To create elements in gp (of type type), one of the versions of ObjectToElement can be used. It is checked whether obj represents an element (of type type). To retrieve an underlying object of an element e1, UnderlyingObject can be used.

```
_ Example .
gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
          [1, 0, 1, 0, 0, 0, 1], [0, 1, 1, 1, 0, 0, 0],
          [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
          [0,0,1,0,1,1,0];
[[1, 1, 0, 0, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1],
  [0, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
  [0,0,1,0,1,1,0]]
gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
ctive plane order 2>
gap> p := Random(Points(gp));
<a point in <pre>ctive plane order 2>>
gap> UnderlyingObject(p);
gap> 1 := Random(Lines(gp));
gap> UnderlyingObject(1);
[4,6,7]
gap> ObjectToElement(gp,1,4);
<a point in <pre>ctive plane order 2>>
gap> ObjectToElement(gp,2,5);
Error, <obj> does not represent a line of <gp> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 18 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> ObjectToElement(gp,2,[1,2,3]);
Error, <obj> does not represent a line of <gp> called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 18 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> ObjectToElement(gp,[1,2,6]);
<a line in <pre>ctive plane order 2>>
```

12.4.4 Incidence

```
\triangleright IsIncident(v, w) (operation) \triangleright \*(v, w)
```

Returns: true or false

Let v and w be two elements of a generalised polygon. It is checked if the ambient geometry of the two elements are identical, and true is returned if and only if the two elements are incident in their ambient geometry.

12.4.5 Span

```
Span(v, w) (operation)
Returns: a line of a generalised polygon or fail
```

Let v and w be two elements of a generalised polygon. It is checked if the ambient geometries of the two elements are identical, and if the two elements are points. If v and w are incidence with a common line, this line is returned. Otherwise fail is returned. For generalised polygons constructed with GeneralisedPolygonByBlocks, GeneralisedPolygonByElements an GeneralisedPolygonByInidenceMatrix, the underlying graph is used. Note that the behaviour of Span is different for elements of generalised polygons that belong to IsLieGeometry, see 4.2.16.

```
Example
gap> mat := [ [ 1, 1, 0, 0, 0, 1, 0 ], [ 1, 0, 0, 1, 1, 0, 0 ],
           [1, 0, 1, 0, 0, 0, 1], [0, 1, 1, 1, 0, 0, 0],
>
           [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
           [0,0,1,0,1,1,0];
[[1, 1, 0, 0, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 0, 1],
  [0, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
  [0,0,1,0,1,1,0]]
gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
ctive plane order 2>
gap> p := Random(Points(gp));
<a point in <projective plane order 2>>
gap> q := Random(Points(gp));
<a point in <pre>ctive plane order 2>>
gap> Span(p,q);
<a line in <pre> projective plane order 2>>
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> gp := GeneralisedPolygonByElements(Set(Points(ps)),Set(Lines(ps)),\*);
<generalised quadrangle of order [ 3, 3 ]>
gap> p := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 3 ]>>
gap> q := Random(Points(gp));
<a point in <generalised quadrangle of order [ 3, 3 ]>>
gap> Span(p,q);
#I <x> and <y> do not span a line of gp
fail
```

12.4.6 Meet

Meet(v, w)
 (operation)

Returns: a point of a generalised polygon or fail

Let v and w be two elements of a generalised polygon. It is checked if the ambient geometries of the two elements are identical, and if the two elements are lines. If v and w are incidence with a common point, this point is returned. Otherwise fail is returned. For generalised polygons constructed with GeneralisedPolygonByBlocks, GeneralisedPolygonByElements an GeneralisedPolygonByInidenceMatrix, the underlying graph is used. Note that the behavior of Meet is different for elements of generalised polygons that belong to IsLieGeometry, see 4.2.17

```
[0, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 1, 1],
  [0,0,1,0,1,1,0]]
gap> gp := GeneralisedPolygonByIncidenceMatrix(mat);
projective plane order 2>
gap> 1 := Random(Lines(gp));
<a line in <pre> projective plane order 2>>
gap> m := Random(Lines(gp));
<a line in <pre>ctive plane order 2>>
gap> Meet(1,m);
<a point in <pre>ctive plane order 2>>
gap> ps := ParabolicQuadric(4,3);
Q(4, 3)
gap> gp := GeneralisedPolygonByElements(Set(Points(ps)),Set(Lines(ps)),\*);
<generalised quadrangle of order [ 3, 3 ]>
gap> 1 := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 3 ]>>
gap> m := Random(Lines(gp));
<a line in <generalised quadrangle of order [ 3, 3 ]>>
gap> Meet(1,m);
#I <x> and <y> do meet in a common point of gp
fail
```

12.4.7 Shadow elements

```
▷ ShadowOfElement(geo, v, j) (operation)

▷ Points(el) (operation)

▷ Lines(el) (operation)

▷ ElementsIncidentWithElementOfIncidenceStructure(el, i) (operation)
```

Returns: A collection of elements

geo is a generalised polygon, v must be an element of geo, j is an integer equal to 1 or 2, since geo is a rank two geometry. The operation ShadowOfElement returns the collection of elements of geo of type j, incident with the element v. The operations Points and Lines with argument are the usual shortcuts to ShadowOfElement with j respectively equal to 1, 2. The operation ElementsIncidentWithElementOfIncidenceStructure is the usual shortcut to ShadowOfElement.

12.4.8 DistanceBetweenElements

 \triangleright DistanceBetweenElements(v, w)

(operation)

Returns: a number

Let v and w be two elements of a generalised polygon. It is checked if the ambient geometry of the two elements are identical, and the distance between the two elements in the incidence graph of their ambient geometry is returned.

```
_ Example _
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
              Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3])];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> p := Random(Points(egq));
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> q := Random(Points(egq));
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> DistanceBetweenElements(p,q);
gap> gh := SplitCayleyHexagon(3);
H(3)
gap> 1 := Random(Lines(gh));
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
#I Found permutation domain...
<a line in H(3)>
gap> m := First(Lines(gh),x->DistanceBetweenElements(1,x)=6);
<a line in H(3)>
```

12.5 The classical generalised hexagons

12.5.1 Trialities of the hyperbolic quadric and generalised hexagons

Consider the hyperbolic quadric $Q^+(7,q)$. This is a polar space of rank 4. It is well known that its generators fall into two systems. Each system contains exactly $(q^3+q^2+q+1)(q^2+q+1)$ generators, which is equal to the number of points of $Q^+(7,q)$. Generators from the same system meet each other in an empty subspace or in a line, Generators from a different system meet each other in a point or a plane. One defines the rank 4 geometry $\Omega(7,q)$ as follows. The 0-points are the points of $Q^+(7,q)$, the 1-points are the generators of the first system, the 2-points are the generators of the second system, and the lines are the lines of $Q^+(7,q)$. The incidence is the natural incidence of the underlying projective space. Denote the set of *i*-points as $P^{(i)}$, i=0,1,2.

A triality of $\Omega(7,q)$ is a map $\tau: P^{(i)} \to P^{(i+1)}$ (where i+1 is computed modulo 3) preserving the incidence and for which $\tau^3 = 1$. Note that the image of a line under τ is determined by the image of the points incident with the line.

An *i*-point is absolute with respect to a fixed triality if it is incident with its image under the triality. Consequently, a line is absolute with if it is fixed by the triality.

A generalised hexagon can be constructed as geometry of absolute points of one kind and absolute lines with relation to a fixed triality. Note that not all trialities yield (thick) generalised quadrangles. There are different types of trialities, for some of them the absolute geometry is degenerate.

The triality used in FinInG to construct the classical generalised hexagons is fixed. It is described explicitly in [VM98]. To describe the triality, a trilinear form expressing the incidence between *i*-points of $\Omega(7,q)$ is used. Given the fact that, because of the existence of a triality, the role of the 0, 1 and 2 points are the same, each of the 1 and 2 points can be labelled the same way as the 0-points, which are effectively labelled by 8-tuples $(x_0, \ldots, x_7) \in V(8,q) = V$ where each 8-tuples represents a projective point of $Q^+(7,q)$.

Consider the hyperbolic quadric determined by the quadratic form $X_0X_4 + X_1X_5 + X_2X_6 + X_3X_7$. Consider the trilinear map T,

$$T(x,y,z) = \begin{vmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ z_0 & z_1 & z_2 \end{vmatrix} + \begin{vmatrix} x_4 & x_5 & x_6 \\ y_4 & y_5 & y_6 \\ z_4 & z_5 & z_6 \end{vmatrix} + x_3(z_0y_4 + z_1y_5 + z_2y_6) + x_7(y_0z_4 + y_1z_5 + y_2z_6) + x_7(y_0z_4 + y_1z_5 + y_1z_6 + y$$

$$y_3(x_0z_4+x_1z_5+x_2z_6)+y_7(z_0x_4+z_1x_5+z_2x_6)+z_3(y_0x_4+y_1x_5+y_2x_6)+z_7(x_0y_4+x_1y_5+x_2y_6)-x_3y_3z_3-x_7y_7z_7.$$

Now a pair $(x,y) \in V \times V$ represents an incident 0-1 pair of points if and only if T(x,y,z) vanishes in the variable z, and similarly for any cyclic permutation of the letters x,y,z. So given a 1-point y, T(x,y,z) = 0, where z is a variable, and x is an unknown, gives a set of equations representing a generator of $Q^+(7,q)$ this is the generator of $Q^+(7,q)$ represented by y as label of a 1-point.

Let σ be an automorphism of GF(q) of order 3, or the identity. Consider the map $\tau_{\sigma}: P^{(i)} \to P^{(i+1)}$ $(x_i) \mapsto (x_i^{\sigma}), \ j=0...7$.

This map clearly preserves T(x,y,z), so preserves the incidence, and has order three, so it is a triality of $\Omega(7,q)$. We call an element p absolute with respect to a triality τ if and only if pIp^{τ} . Consequently, a line is absolute if and only if it is fixed by the triality. Denote the set of i-points that are absolute with respect to the triality as $P_{\rm abs}^{(i)}$, and the set of absolute lines with respect to the triality as $L_{\rm abs}$. Then a famous theorem of Tits ([Tit59]) says that for the triality τ_{σ} , the point-line

This above description of the triality and the associated generalised hexagons, contains sufficient analytical information to implement the split Cayley hexagon and the twisted triality hexagon in an efficient way. The user is allowed to choose a representation for the ambient polar space. For $q=2^h$ the polar spaces Q(6,q) and W(5,q) are isomorphic. Consequently, the user may choose W(5,q) as ambient polar space for the split Cayley hexagon of even order. This embedding in W(5,q) is called the perfect symplectic embedding of the split Cayley hexagon. Finally, [VM98] contains an explicit description of the generators of the collineation groups of both generalised hexagons.

12.5.2 IsLieGeometry

```
    ▷ IsLieGeometry (Category)
```

Recall that the classical generalised hexagons are constructed as an object in IsLieGeometry. This makes most operations described in the appropriate chapters on Lie geometries, projective spaces and polar spaces applicable.

12.5.3 SplitCayleyHexagon

```
    ▷ SplitCayleyHexagon(q) (operation)
    ▷ SplitCayleyHexagon(f) (operation)
    ▷ SplitCayleyHexagon(ps) (operation)
    Returns: a generalised hexagon
```

```
gap> hexagon := SplitCayleyHexagon( 3 );
H(3)
gap> AmbientPolarSpace(hexagon);
Q(6, 3): -x_1*x_5-x_2*x_6-x_3*x_7+x_4^2=0
gap> ps := ParabolicQuadric(6,3);
Q(6, 3)
gap> hexagon := SplitCayleyHexagon( ps );
H(3) in Q(6, 3)
gap> AmbientPolarSpace(hexagon);
Q(6, 3)
gap> hexagon := SplitCayleyHexagon( 4 );
H(4)
gap> AmbientPolarSpace(hexagon);
W(5, 4): x1*y4+x2*y5+x3*y6+x4*y1+x5*y2+x6*y3=0
```

```
gap> ps := ParabolicQuadric(6,4);
Q(6, 4)
gap> hexagon := SplitCayleyHexagon( ps );
H(4) in Q(6, 4)
gap> AmbientPolarSpace(hexagon);
Q(6, 4)
```

12.5.4 TwistedTrialityHexagon

```
▷ TwistedTrialityHexagon(q) (operation)

▷ TwistedTrialityHexagon(f) (operation)

▷ TwistedTrialityHexagon(ps) (operation)

Returns: a generalised hexagon
```

```
gap> hexagon := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> AmbientPolarSpace(hexagon);
<polar space in ProjectiveSpace(
  7,GF(2^3)): x_1*x_5+x_2*x_6+x_3*x_7+x_4*x_8=0 >
  gap> ps := HyperbolicQuadric(7,2^3);
Q+(7, 8)
gap> hexagon := TwistedTrialityHexagon(ps);
T(8, 2) in Q+(7, 8)
gap> AmbientPolarSpace(hexagon);
Q+(7, 8)
```

12.5.5 vector spaceToElement

```
▷ vector spaceToElement(gh, vec)
```

(operation)

Returns: an element of a classical generalized hexagon

The argument *vec* is one vector or a list of vectors from the underlying vector space of *gh*. This operation checks whether *vec* represents a point or a line of *gh*. Note that vectors and matrices in different representations are allowed as argument.

226

```
<function "unknown">( <arguments> )
  called from read-eval loop at line 14 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
```

12.5.6 ObjectToElement

▷ ObjectToElement(gh, obj)

(operation)

Returns: an element of a classical generalized hexagon

The argument obj is one vector or a list of vectors from the underlying vector space of gh. This operation checks whether obj represents a point or a line of gh. Note that vectors and matrices in different representations are allowed as argument.

```
Example .
 gap> mat := IdentityMat(8,GF(5^3));
 < mutable compressed matrix 8x8 over GF(125) >
gap> form := BilinearFormByMatrix(mat,GF(5^3));
 < bilinear form >
gap> ps := PolarSpace(form);
 <polar space in ProjectiveSpace(</pre>
7,GF(5^3)): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2=0 > 0
 gap> gh := TwistedTrialityHexagon(ps);
T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2
gap> vec := [Z(5)^0, Z(5^3)^5, Z(5^3)^9, Z(5^3)^10, Z(5^3)^8, Z(5^3)^3, Z(5^3)^7, Z(5^3)^7, Z(5^3)^8, Z(
                      Z(5^3)^115;
 [Z(5)^0, Z(5^3)^5, Z(5^3)^9, Z(5^3)^107, Z(5^3)^8, Z(5^3)^3, Z(5^3)^73,
               Z(5^3)^115
 gap> p := ObjectToElement(gh,vec);
 <a point in T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2
gap> vec := [[Z(5)^0, 0*Z(5), Z(5^3)^76, Z(5^3)^117, Z(5^3)^80, Z(5^3)^19, Z(5^3)^48,
                                                             Z(5^3)^100 ],
                                [ 0*Z(5), Z(5)^0, Z(5^3)^115, Z(5^3)^14, Z(5^3)^40, Z(5^3)^67, Z(5^3)^123, Z(5^3)^67, Z(5^3)^123, Z(5^3)^67, Z(5^3)^67,
                                                              Z(5^3)^3];
 [ [Z(5)^0, 0*Z(5), Z(5^3)^76, Z(5^3)^117, Z(5^3)^80, Z(5^3)^19, Z(5^3)^48,
                                              Z(5^3)^100 ],
                 [ 0*Z(5), Z(5)^0, Z(5^3)^115, Z(5^3)^14, Z(5^3)^40, Z(5^3)^67, Z(5^3)^123, Z(5^3)^67, Z(5^3)^123, Z(5^3)^67, Z(5^5)^67, Z(5^5)^67,
                                              Z(5^3)^3
gap> line := ObjectToElement(gh,vec);
 <a line in T(125, 5) in Q+(7, 125): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+x_5^2+
x_8^2>
```

12.5.7 UnderlyingObject

▷ UnderlyingObject(gh, obj)
Returns: a vector or a matrix

(operation)

12.5.8 \in

Returns: true or false

```
__ Example
gap> ps := HyperbolicQuadric(7,5^3);
Q+(7, 125)
gap> gh := TwistedTrialityHexagon(ps);
T(125, 5) in Q+(7, 125)
gap> repeat
> p := Random(Points(ps));
> until p in gh;
gap> time;
18399
gap> p in gh;
true
gap> q := ElementToElement(gh,p);
<a point in T(125, 5) in Q+(7, 125)>
gap> 1 := Random(Lines(p));
<a line in Q+(7, 125)>
gap> 1 in gh;
false
gap> List(Lines(q),x->x in gh);
[ true, true, true, true, true ]
```

12.5.9 Span and meet of elements

```
ho Span(x, y) (operation) 
ho Meet(x, y)
```

Returns: a subspace of a projective space

x and y are two elements of a classical generalised hexagon. The operation Span returns the projective line spanned by x and y. The operation Meet returns the intersection of the elements x and y. Note that the classical generalised hexagons are Lie geometries, so their elements belong to a subcategory of IsSubspaceOfProjectiveSpace. Therefore, the operations Span and Meet behave as described in 7.5.2 and 7.5.3.

```
gap> ps := SymplecticSpace(5,8);
W(5, 8)
gap> gh := SplitCayleyHexagon(ps);
H(8) in W(5, 8)
gap> vec := [ Z(2)^0, Z(2^3)^6, Z(2^3)^5, Z(2^3)^6, Z(2)^0, Z(2^3) ];
[ Z(2)^0, Z(2^3)^6, Z(2^3)^5, Z(2^3)^6, Z(2)^0, Z(2^3) ]
gap> p := VectorSpaceToElement(gh,vec);
<a point in H(8) in W(5, 8)>
gap> vec := [ Z(2)^0, Z(2^3)^2, Z(2^3)^2, Z(2^3)^3, Z(2^3)^3, Z(2^3)^5, Z(2^3)^5 ];
[ Z(2)^0, Z(2^3)^2, Z(2^3), Z(2^3)^3, Z(2^3)^5, Z(2^3)^5 ]
gap> q := VectorSpaceToElement(gh,vec);
<a point in H(8) in W(5, 8)>
gap> span := Span(p,q);
<a line in ProjectiveSpace(5, 8)>
```

```
gap> ElementToElement(gh,span);
<a line in H(8) in W(5, 8)>
gap> vec := [ [Z(2)^0, 0*Z(2), Z(2^3)^6, Z(2)^0, 0*Z(2), Z(2^3) ],
> [ 0*Z(2), Z(2)^0, Z(2^3)^6, Z(2^3)^4, Z(2^3)^4, 0*Z(2) ] ];
[ [ Z(2)^0, 0*Z(2), Z(2^3)^6, Z(2)^0, 0*Z(2), Z(2^3) ],
  [ 0*Z(2), Z(2)^0, Z(2^3)^6, Z(2^3)^4, Z(2^3)^4, 0*Z(2) ] ]
gap> 1 := VectorSpaceToElement(gh,vec);
<a line in H(8) in W(5, 8)>
gap> vec := [ [Z(2)^0, 0*Z(2), Z(2)^0, Z(2^3), 0*Z(2), Z(2^3) ],
> [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2^3)^2, Z(2^3)^4, Z(2^3)^4 ] ];
[ [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2^3), 0*Z(2), Z(2^3) ],
  [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2^3)^2, Z(2^3)^4, Z(2^3)^4 ] ]
gap> m := VectorSpaceToElement(gh,vec);
<a line in H(8) in W(5, 8)>
gap> Meet(1,m);
< empty subspace >
gap> DistanceBetweenElements(1,m);
```

12.5.10 CollineationGroup

▷ CollineationGroup(gh)

(attribute)

Returns: a group of collineations

gh is a classical generalised hexagon. This attribute returns the full collineation group, equipped with a nice monomorphism.

```
_ Example _
gap> mat := IdentityMat(7,GF(9));
< mutable compressed matrix 7x7 over GF(9) >
gap> form := BilinearFormByMatrix(mat,GF(9));
< bilinear form >
gap> ps := PolarSpace(form);
<polar space in ProjectiveSpace(</pre>
6,GF(3^2): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2=0 >
gap> gh := SplitCayleyHexagon(ps);
H(9) in Q(6, 9): x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2
gap> group := CollineationGroup(gh);
#I for Split Cayley Hexagon
#I Computing nice monomorphism...
{\tt \#I} Found permutation domain...
cprojective collineation group with 18 generators>
gap> time;
19602
gap> HasNiceMonomorphism(group);
gap> gh := TwistedTrialityHexagon(2^3);
T(8, 2)
gap> group := CollineationGroup(gh);
#I Computing nice monomorphism...
#I Found permutation domain...
3D_4(8)
```

12.6 Elation generalised quadrangles

12.6.1 Elation generalised quadrangles and Kantor families

Suppose S = (P,B,I) is a generalised quadrangle of order (s,t) for which there exists a point p and a group of collineations G fixing p and each line through p, with the extra property that G acts regularly on the points not collinear with p. Then S is called an *elation generalised quadrangle* with base-point p and elation group G, and G has order s^2t . Let g be a fixed point of g, not collinear with g. Denote the g the unique point-line pair g such that g the unique point-line pair g such that g as the subgroups g as the subgroups of g fixing the lines g and define the groups g as the subgroups of g fixing the point g and the set g and the set g and each g such that g and each g such that g such that g subgroups of g fixing the point g subgroups of g fixing the point g subgroups of g such that g subgroups of g such that g subgroups of g subgroups are satisfied.

```
(K1) S_i S_j \cap S_k = \{1\}, for distinct i, j, k.
(K2) S_i \cap S_i^* = \{1\}, for distinct i, j.
```

The pair (J, J^*) is called a 4-gonal family or Kantor family in G.

Remarkably, each Kantor family in a group of order s^2t gives rise to an elation generalised quadrangle. Kantor families and elation generalised quadrangles are equivalent objects, and one of the motivations to study Kantor families in groups was to find examples of non-classical elation generalised quadrangles.

Given a group G, together with a Kantor family (J,J^*) , a generalised quadrangle is defined as follows.

The points are of three types:

- (i) points of type 1 are the elements of G;
- (ii) points of type 2 are the right cosets $S^*g, s^* \in J^*$
- (iii) the unique point of type (iii) is the symbol (∞) .

The lines are of two types:

- (a) lines of type (a) are the right cosets Sg, $S \in J$;
- (b) Lines of type (b) are the symbols $[S], S \in J$.

Incidence is defined as follows. A point g of type (i) is incident with each line $Sg, S \in J$ of type (a). A point of type (ii) S^*g is incident the line [S] of type (b) and the t lines of type (a) for which $Sh \subset S^*g$. Finally, the unique point of type (iii) is incident with the lines of type (b), and there are no further incidences.

It is shown, see e.g. the standard work in this field of Payne and Thas [PT84], that this point-line geometry is a generalised quadrangle of order (s,t).

FinInG provides functions to construct elation generalised quadrangles directly from a Kantor family. The constructed generalised quadrangles are generalised polygons in the sense of FinInG, i.e. all generic operations described in Sections 12.3 and 12.4.

12.6.2 Categories

```
▷ IsEGQByKantorFamily (Category)

▷ IsElementOfKantorFamily (Category)
```

IsEGQByKantorFamily is a subcategory of IsElationGQ. It contains all elations generalised quadrangles that are constructed from a Kantor family. IsElementOfKantorFamily is a subcategory of IsElementOfGeneralisedPolygon. It contains the elements from generalised quadrangles in the category IsEGQByKantorFamily.

12.6.3 Kantor families

There is no specific way to construct a Kantor family in FinlnG. However, given a group *G* and two collections of subgroups, IsKantorFamily will check whether the input satisfies the conditions of a Kantor family. If so, the input can be used directly for the operation EGQByKantorFamily.

12.6.4 EGQByKantorFamily

Let g be a group and f and fstar two collections of subgroups, satisfying the conditions of a Kantor family. This operation returns the corresponding elation generalised quadrangle. Note that this operation $does \ not$ check if the input satisfies the conditions to be a Kantor family, it only checks whether the group f[i] is a subgroup of the group fstar[i]. In the example below, the use of IsKantorFamily is also demonstrated, and some categories are displayed.

```
_ Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
              Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3])];;
gap> IsKantorFamily( g, flist1, flist2 );
#I Checking tangency condition...
#I Checking triple condition...
true
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> CategoriesOfObject(egq);
[ "IsIncidenceStructure", "IsIncidenceGeometry", "IsGeneralisedPolygon",
  "IsGeneralisedQuadrangle", "IsElationGQ", "IsElationGQByKantorFamily"]
gap> p := Random(Points(egq));
<a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> CategoriesOfObject(p);
[ "IsElementOfIncidenceStructure", "IsElementOfIncidenceGeometry",
  "IsElementOfGeneralisedPolygon", "IsElementOfKantorFamily" ]
```

12.6.5 Representation of elements and underlying objects

```
▷ ObjectToElement(egq, t, obj) (operation)
▷ ObjectToElement(egq, obj) (operation)
```

```
▷ BasePointOfEGQ(egq) (operation)

▷ UnderlyingObject(el) (operation)
```

For technical reasons, the underlying objects of the elements of an elation generalised quadrangle constructed from a Kantor family, are not exactly the mathematical objects from the definition. However, these technicalities are almost completely hidden for the user, except for the representation of lines of type (b), which are represented in FinInG by the elements of the collection J^* (instead of the elements of the collection J). This change from the original definition has no mathematical implications, since there is a bijective correspondence between the elements of J^* and J. Notice also that it is only possible to obtain the base-point of an elation generalised quadrangle constructed from a Kantor family through calling the attribute BasePointOfEGQ.

```
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
              Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3])];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> h := Random(g);
f1*f2^2
gap> p := ObjectToElement(egq,h);
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> coset := RightCoset(flist1[1],h);
RightCoset(Group( [ f1 ] ),f1*f2^2)
gap> 1 := ObjectToElement(egq,coset);
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> p * 1;
true
gap> S := flist2[2];
<pc group of size 9 with 2 generators>
gap> m := ObjectToElement(egq,S);
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> q := BasePointOfEGQ(egq);
<a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> m * q;
true
gap> lines := List(Lines(p));
[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]
gap> pts1 := List(Points(m));
[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]
gap> pts2 := List(Points(1));
[ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]
```

```
gap> List(pts2,x->UnderlyingObject(x));
[ f2^2, f1*f2^2, f1^2*f2^2, RightCoset(Group( [ f1, f2^2*f3 ] ),f3^2) ]
gap> UnderlyingObject(q);
0
```

12.6.6 Elation group and natural action on elements

```
ightharpoonup(egq) (attribute)

ightharpoonup(egq) (function)

ightharpoonup(egq) (function)

ightharpoonup(egq) (attribute)
```

The attribute ElationGroup is naturally set upon creation of an elation generalised quadrangle from a Kantor family. The elements of the elation group act "naturally" on the elements of the elation generalised quadrangle. This natural action is implemented in the action function OnKantorFamily. When g is the elation group of an elation generalised quadrangle constructed from a Kantor family, the attribute CollineationAction will return the action function OnKantorFamily. The action function makes use of generic GAP operations possible, as is demonstrated in the example.

```
Example
gap> g := ElementaryAbelianGroup(27);
<pc group of size 27 with 3 generators>
gap> flist1 := [ Group(g.1), Group(g.2), Group(g.3), Group(g.1*g.2*g.3) ];;
gap> flist2 := [ Group([g.1, g.2^2*g.3]), Group([g.2, g.1^2*g.3 ]),
              Group([g.3, g.1^2*g.2]), Group([g.1^2*g.2, g.1^2*g.3])];;
gap> egq := EGQByKantorFamily(g, flist1, flist2);
<EGQ of order [ 3, 3 ] and basepoint 0>
gap> group := ElationGroup(egq);
<pc group of size 27 with 3 generators>
gap> CollineationAction(group) = OnKantorFamily;
gap> 1 := ObjectToElement(egq,RightCoset(flist1[1],One(g)));
<a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>
gap> stab := Stabilizer(group,1,OnKantorFamily);
Group([ f1 ])
gap> pts := List(Points(egq));
[ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
```

GAP 4 Package FinInG 233

```
<a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]
gap> Orbits(group,pts,OnKantorFamily);
[ [ <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
     <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
```

```
[ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a point of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a point of class 3 of <EGQ of order [ 3, 3 ] and basepoint 0>> ] ]
gap> lines := List(Lines(egq));
[ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
 <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
```

```
<a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
  <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ]
gap> Orbits(group,lines,OnKantorFamily);
[ [ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>>,
      <a line of class 1 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ],
  [ <a line of class 2 of <EGQ of order [ 3, 3 ] and basepoint 0>> ] ]
```

12.6.7 Kantor families, q-clans, and elation generalised quadrangles

Let $C = \{A_i : i = 1 \dots q\}$ be a set of q distinct upper triangle 2×2 matrices over the finite field GF(q). Then C is called a q-clan if $A_r - A_t$ is anisotropic for $r \neq t$.

```
Define G = \{(\alpha, c, \beta) : \alpha, \beta \in GF(q)^2, c \in GF(q)\}, and define the binary operator \times as (\alpha, c, \beta) \times (\alpha', c', \beta') = (\alpha + \alpha', c + c' + \beta \cdot \alpha'^T, \beta + \beta'). Then G, \times is a group with center Z(G) = \{(0, c, 0) : (\alpha', c', \beta') \in GF(q)\}.
```

 $c \in GF(q)$ }. Consider a q-clan $C = \{A_i : i = 1 \dots q\}$, define $K_i = A_i + A_i^T$. Now define the following subgroups of G

```
A(i) = \{(\alpha, \alpha A_t, \alpha K_t) : \alpha \in GF(q)^2, i = 1 \dots q\} \text{ and } A(\infty) = (0, 0, \gamma) : \gamma \in GF(q)^2\}, and A^*(i) = \{(\alpha, b, \alpha K_t) : \alpha \in GF(q)^2, b \in GF(q), i = 1 \dots q\} \text{ and } A^*(\infty) = \{(0, b, \gamma) : \gamma \in GF(q)^2, b \in GF(q)\}
```

```
Define J = \{A(i) : i = 1 \dots q\} \cup \{A(\infty)\} and J^* = \{A^*(i) : i = 1 \dots q\} \cup \{A^*(\infty)\}
```

A combination of results of Payne and Kantor yield the famous theorem that (J,J^*) is a Kantor family in G if and only if C is a q-clan. FinlnG provides functionality to construct q-clans and to construct the corresponding Kantor family. As such, elation generalised quadrangles can directly constructed from q-clans.

12.6.8 qClan

 \triangleright qClan(list, f) (operation)

Returns: a q-clan.

Given a list list of $2 \times$ matrices over the field f, it is checked if the matrices in the list satisfy the condition to constitute a q-clan over f. If so, the q-clan is returned.

12.6.9 Particular q-clans

```
▷ LinearqClan(q) (operation)
```

 ${} \hspace{0.2cm} \triangleright \hspace{0.2cm} \texttt{FisherThasWalkerKantorBettenqClan}\hspace{0.1cm} (q) \hspace{1.2cm} (\texttt{operation})$

ightharpoonup KantorMonomialqClan(q) (operation)

 \triangleright KantorKnuthqClan(q) (operation)

ightharpoonup FisherqClan(q) (operation)

Returns: a q-clan

Some famous q-clans are built in. We refer to ... for more information on these.

12.6.10 KantorFamilyByqClan

▷ KantorFamilyByqClan(clan)

(operation)

Returns: A Kantor family.

The Kantor family constructed from a q-clan will be a matrix group together with the corresponding collections J and J^* .

12.6.11 EGQByqClan

▷ EGQByqClan(clan)

(operation)

Returns: An elation generalised quadrangle constructed from a q-clan.

Given a q-clan clan, the operation KantorFamilyByqClan will be used to construct the Kantor family from clan, followed by the construction of the elation generalised quadrangle using the operation EGQByKantorFamily. The first example shows also the use of qClan, and shows that a linear q-clan yields a classical generalised quadrangle.

```
gap> f := GF(3);
GF(3)
gap> id := IdentityMat(2, f);;
gap> list := List( f, t -> t * id );;
```

```
gap> clan := qClan(list,f);
<q-clan over GF(3)>
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> incgraph := IncidenceGraph(egq);;
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
gap> group := AutomorphismGroup(incgraph);
<permutation group with 6 generators>
gap> Order(group);
26127360
gap> Order(CollineationGroup(HermitianPolarSpace(3,9)));
26127360
gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 81, 9 ] and basepoint 0>
gap> clan := FisherThasWalkerKantorBettenqClan(11);
<q-clan over GF(11)>
```

12.6.12 BLT-sets, flocks, q-clans, and elation generalised quadrangles

A *flock* is a partition of the points of a quadratic cone in PG(3,q) minus its vertex into conics. Each conic is determined by a plane, and each plane is determined uniquely by a triple of elements of the field GF(q). So a flock is determined by q such triples. Remarkably, as was shown by J.A. Thas, the conditions for these triples to constitute a flock, are exactly the same conditions for these triples to constitute q upper triangle matrices making a q-clan over GF(q). Hence, q-clans and flocks, and thus flocks and elation generalised quadrangles, are equivalent objects.

The quadratic cone can be embedded as a hyperplane section into the parabolic quadric Q(4,q). L. Bader, G. Lunardon and J.A. Thas observed that a set of q points of Q(4,q) can be constructed from the q planes determining the flock, and this set of points satisfies certain geometric conditions. Such a set is called a *BLT-set*. Dually, a BLT-set corresponds to a set of lines of W(3,q). Furthermore, from this BLT-set of lines, it is possible to construct directly an elation generalised quadrangle from carefully selecting points and lines from the symplectic space W(5,q). This construction is called the Knarr construction.

Consider the symplectic polar space W(5,q) and choose a point $P \in W(5,q)$. Its tangent space is a 4-dimensional space F. Embed W(3,q) in a solid of F not on the point p, and let L be the set of BLT lines. Each line spans with p a plane of W(5,q), call these q planes the BLT-planes. Now we can define the points an lines of the elation generalised quadrangle as follows.

Points of type (i) are the points of $W(5,q) \setminus F$, points of type (ii) are the lines of each BLT-plane not on p and the unique point of type (iii) is the point p. Lines of type (a) are the planes of W(5,q) meeting a BLT-plane in a line. Note that no plane of W(5,q) meeting two BLT planes in a line can exist. Lines of type (b) are the BLT-planes. Incidence is the natural incidence (so the incidence inherited) from the polar space W(5,q), and this geometry is a elation generalised quadrangle with base-point p and of order (q^2,q) .

FinInG provides functions to construct elation generalised quadrangles using this model from

BLT-sets, and provides a function to compute a BLT set from a q-clan directly. The advantage of constructing a elation generalised from elements of Lie geometries is the availability of the underlying projective groups and their action on elements of Lie geometries.

12.6.13 IsEGQByBLTSet

```
▷ IsEGQByBLTSet (Category)
```

IsEGQByBLTSet is a subcategory of IsElationGQ. It contains all elations generalised quadrangles that are constructed from a BLT set.

12.6.14 BLTSetByqClan

▷ BLTSetByqClan(clan)

(operation)

Returns: A BLT-set.

The BLT-set is a set of points of the parabolic quadric in PG(4,q) with particular equation $2X_1x_5 + 2X_2X_4 + w^{(q+1)/2} = 0$, where w is a primitive element of the underlying field of clan.

```
Example
gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
  <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]
gap> clan := FisherThasWalkerKantorBettengClan(11);
<q-clan over GF(11)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0> ]
```

12.6.15 EGQByBLTSet

▷ EGQByBLTSet(blt)

(operation)

Returns: An elation generalised quadrangle.

b1t is a BLT-set, this operation returns an elation generalised quadrangle constructed as described above consisting of elements of W(5,q). Notice in the example that computing the full collineation group of the GQ constructed directly from the q-clan (hence a group coset geometry) is substantially slower than computing the full collineation group of the GQ constructed from the BLT-set.

```
_ Example
gap> clan := LinearqClan(3);
<q-clan over GF(3)>
gap> bltset := BLTSetByqClan( clan);
[ <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>,
  <a point in Q(4, 3): -x_1*x_5-x_2*x_4+x_3^2=0>]
gap> egq := EGQByBLTSet( bltset );
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 9, 3 ] and basepoint in W(5, 3) >
gap> p := BasePointOfEGQ(egq);
<a point in <EGQ of order [9,3] and basepoint in W(5,3) >>
gap> UnderlyingObject(p);
<a point in W(5, 3)>
gap> 1 := Random(Lines(egq));
<a line in <EGQ of order [ 9, 3 ] and basepoint in W(5, 3) >>
gap> UnderlyingObject(1);
\langle a plane in W(5, 3) \rangle
gap> group := ElationGroup(egq);
ctive collineation group with 5 generators>
gap> Order(group);
243
gap> CollineationGroup(egq);
#I Using elation group to enumerate elements
#I Using elation group to enumerate elements
#I Computing incidence graph of generalised polygon...
#I Using elation of the collineation group...
#I Using elation group to enumerate elements
<permutation group of size 26127360 with 7 generators>
gap> time;
147
gap> egq := EGQByqClan(clan);
#I Computed Kantor family. Now computing EGQ...
<EGQ of order [ 9, 3 ] and basepoint 0>
gap> CollineationGroup(egq);
#I Computing incidence graph of generalised polygon...
\mbox{\tt\#I} Using elation of the collineation group...
<permutation group of size 26127360 with 6 generators>
gap> time;
1139
```

12.6.16 DefiningPlanesOfEGQByBLTSet

```
\triangleright DefiningPlanesOfEGQByBLTSet(egq)
```

(attribute)

For an elation generalised quadrangle in the category IsEGQByBLTSet (constructed from a BLT-set), the planes of the polar space W(5,q), as described in the introduction, determine the generalised quadrangle completely. This attribute returns these q planes of W(5,q).

```
Example .
gap> clan := KantorKnuthqClan(9);
<q-clan over GF(3^2)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0>,
  <a point in Q(4, 9): -x_1*x_5-x_2*x_4+Z(3^2)^5*x_3^2=0> ]
gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 81, 9 ] and basepoint in W(5, 9 ) >
gap> DefiningPlanesOfEGQByBLTSet(egg);
[ \langlea plane in W(5, 9)\rangle, \langlea plane in W(5, 9)\rangle, \langlea plane in W(5, 9)\rangle,
  <a plane in W(5, 9)>, <a plane in W(5, 9)>, <a plane in W(5, 9)>,
  <a plane in W(5, 9)>, <a plane in W(5, 9)>, <a plane in W(5, 9)>,
  <a plane in W(5, 9) > ]
```

12.6.17 Representation of elements and underlying objects

```
▷ ObjectToElement(egq, t, obj)

▷ ObjectToElement(egq, obj)

▷ UnderlyingObject(el)

(operation)

(operation)
```

The underlying objects of the elements of an elation generalised quadrangle in the category IsEGQByBLTSet are elements of the polar space W(5,q) in its standard representation. These elements can be used as underlying object to construct elements of egq. The example also demonstrates the use of DistanceBetweenElements.

241

```
<a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0>,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0,
  <a point in Q(4, 11): Z(11)*x_1*x_5+Z(11)*x_2*x_4+Z(11)^6*x_3^2=0> ]
gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 121, 11 ] and basepoint in W(5, 11) >
gap> planes := DefiningPlanesOfEGQByBLTSet(egq);
[ \langlea plane in W(5, 11)\rangle, \langlea plane in W(5, 11)\rangle, \langlea plane in W(5, 11)\rangle,
  <a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)>,
  <a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)>,
  <a plane in W(5, 11)>, <a plane in W(5, 11)>, <a plane in W(5, 11)> ]
gap> p := BasePointOfEGQ(egq);
<a point in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> up := UnderlyingObject(p);
<a point in W(5, 11)>
gap> ps := SymplecticSpace(5,11);
W(5, 11)
gap> uq := VectorSpaceToElement(ps,[1,1,0,0,0,0]*Z(11)^0);
<a point in W(5, 11)>
gap> q := ObjectToElement(egq,1,uq);
<a point in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11 ) >>
gap> DistanceBetweenElements(p,q);
gap> 1 := ObjectToElement(egq,2,planes[1]);
<a line in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11) >>
gap> DistanceBetweenElements(p,1);
gap> DistanceBetweenElements(q,1);
gap> um := VectorSpaceToElement(ps,[[1,0,0,0,1,1],[0,1,0,9,1,0],[0,0,1,9,9,9]]*Z(1|1)^0);
<a plane in W(5, 11)>
gap> m := ObjectToElement(egq,2,um);
<a line in <EGQ of order [ 121, 11 ] and basepoint in W(5, 11) >>
gap> DistanceBetweenElements(p,m);
gap> DistanceBetweenElements(q,m);
gap> DistanceBetweenElements(1,m);
```

12.6.18 CollineationSubgroup

```
▷ CollineationSubgroup(egq)
```

(attribute)

For an elation generalised quadrangle in the category IsEGQByBLTSet (constructed from a BLT

set), the planes of the polar space W(5,q), as described in the introduction, determine the generalised quadrangle completely. The setwise stabiliser of these planes in the collineation group of W(5,q) is a subgroup of the completely collineation group of the elation generalised quadrangle, and can be computed much faster than the complete collineation group. This attribute returns this setwise stabiliser. The returned group is equipped with the CollineationACtion attribute. If CollineationSubgroup is computed, this group will be used instead of the elation group to compute the incidence graph.

```
Example
gap> clan := FisherThasWalkerKantorBettenqClan(5);
<q-clan over GF(5)>
gap> blt := BLTSetByqClan(clan);
[ <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
  <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0,
  <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0>,
  <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0,
  <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0,
  <a point in Q(4, 5): Z(5)*x_1*x_5+Z(5)*x_2*x_4+Z(5)^3*x_3^2=0> ]
gap> egq := EGQByBLTSet(blt);
#I Now embedding dual BLT-set into W(5,q)...
#I Computing elation group...
<EGQ of order [ 25, 5 ] and basepoint in W(5, 5) >
gap> coll := CollineationSubgroup(egq);
#I Computing adjusted stabilizer chain...
projective collineation group with 13 generators>
gap> Order(coll);
9000000
gap> act := CollineationAction(coll);
function(el, x) ... end
gap> orbs := Orbits(coll,Points(egq),act);;
#I Using elation group to enumerate elements
gap> List(orbs,x->Length(x));
[ 1, 3125, 150 ]
gap> el := ElationGroup(egq);
cprojective collineation group with 5 generators>
gap> orbs := Orbits(el,Points(egq),act);;
#I Using elation group to enumerate elements
gap> List(orbs,x->Length(x));
[ 1, 3125, 25, 25, 25, 25, 25, 25]
```

Chapter 13

Coset Geometries and Diagrams

This part of FinInG depends on GRAPE.

13.1 Coset Geometries

Suppose we have an *incidence geometry* Γ (as defined in chapter 3), together with a group G of automorphisms of Γ such that G is transitive on the set of *chambers* of Γ (also defined in chapter 3). This implies that G is also transitive on the set of all elements of any chosen type i. If we consider a chamber $\{c_1, c_2, ..., c_n\}$ such that c_i is of type i, we can look at the stabilizer G_i of c_i in G. The subgroups G_i are called *parabolic subgroups* of Γ . For a type i, transitivity of G on the elements of type i gives a correspondence between the cosets of the stabilizer G_i and the elements of type i in Γ . Two elements of Γ are incident if and only if the corresponding cosets have a nonempty intersection.

We now use the above observation to define an incidence structure from a group G together with a set of subgroups $\{G_1, G_2, ..., G_n\}$. The type set is $\{1, 2, ..., n\}$. By definition the elements of type i are the (right) cosets of the subgroup G_i . Two cosets are incident if and only if their intersection is not empty. This is an incidence structure which is not necessarily a geometry (see Chapter 3 for definitions). In order to check whether a coset incidence structure is indeed a geometry you can use the command IsFlagTransitiveGeometry which (in case it returns true) guarantees that the argument is a geometry.

13.1.1 IsCosetGeometry

▷ IsCosetGeometry (Category)

This category is a subcategory of IsIncidenceGeometry, and contains all coset geometries.

13.1.2 CosetGeometry

```
▷ CosetGeometry(G, 1)
```

(operation)

Returns: the coset incidence structure defined by the list 1 of subgroups of the group G.

G must be a group and 1 is a list of subgroups of G. The subgroups in 1 will be the *parabolic* subgroups of the coset incidence structure whose rank equals the length of 1.

```
gap> g:=SymmetricGroup(5);
Sym([1 .. 5])
```

```
gap> g1:=Stabilizer(g,[1,2],OnSets);
Group([ (4,5), (3,5), (1,2)(4,5) ])
gap> g2:=Stabilizer(g,[1,2,3],OnSets);
Group([ (4,5), (2,3), (1,2,3) ])
gap> cg:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )
gap> p:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>
gap> q:=Random(ElementsOfIncidenceStructure(cg,2));
<element of type 2 of CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )>
gap> IsIncident(p,q);
false
gap> IsIncident(p,p);
true
gap> ParabolicSubgroups(cg);
[Group([(4,5), (3,5), (1,2)(4,5)]), Group([(4,5), (2,3), (1,2,3)])]
gap> Rank(cg) = Size(last);
true
gap> BorelSubgroup(cg);
Group([ (1,2), (4,5) ])
gap> AmbientGroup(cg);
Sym([1..5])
```

13.1.3 IsIncident

▷ IsIncident(ele1, ele2)

(operation)

Returns: true if and only if ele1 and ele2 are incident ele1 and ele2 must be two elements in the same coset geometry.

13.1.4 ParabolicSubgroups

▷ ParabolicSubgroups(cg)

(operation)

Returns: the list of parabolic subgroups defining the coset geometry cg

13.1.5 AmbientGroup

▷ AmbientGroup(cg)

(operation)

Returns: the group used to define the coset geometry *cg cg* must be a coset geometry.

13.1.6 Borelsubgroup

▷ Borelsubgroup(cg)

(operation)

Returns: the Borel subgroup of de geometry cg

The Borel subgroup is equal to the stabilizer of a chamber. It corresponds to the intersection of all parabolic subgroups.

13.1.7 RandomElement

▶ RandomElement (cg)
 Returns: a random element of cg
 cg must be a coset geometry.

(operation)

13.1.8 RandomFlag

RandomFlag(cg)Returns: a random flag of cgcg must be a coset geometry.

(operation)

13.1.9 RandomChamber

RandomChamber (cg)
 Returns: a random chamber of cg
 cg must be a coset geometry.

(operation)

```
____ Example _
gap> g:=SymmetricGroup(5);
Sym([1..5])
gap> g1:=Stabilizer(g,[1,2],OnSets);
Group([(4,5), (3,5), (1,2)(4,5)])
gap> g2:=Stabilizer(g,[[1,2],[3,4]],OnSetsSets);
Group([(1,2), (3,4), (1,3)(2,4)])
gap> cg:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) )
gap> RandomElement(cg);
<element of type 1 of CosetGeometry( SymmetricGroup([1..5]))>
gap> Display(last);
RightCoset(Group([(4,5), (3,5), (1,2)(4,5)]),(1,4,2,5,3))
gap> RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,</pre>
[ Group( [ (4,5), (3,5), (1,2)(4,5) ] ),
  Group([(1,2), (3,4), (1,3)(2,4)])))>>
gap> flg:=RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,</pre>
[ Group( [(4,5), (3,5), (1,2)(4,5)] ),
  Group( [(1,2), (3,4), (1,3)(2,4)]) ) >>
gap> Type(flg);
[1]
gap> flg2:=RandomFlag(cg);
<Flag of coset geometry < CosetGeometry( SymmetricGroup( [ 1 .. 5 ] ) ,</pre>
[ Group( [(4,5), (3,5), (1,2)(4,5)] ),
  Group( [(1,2), (3,4), (1,3)(2,4)]) ) >>
gap> Type(flg2);
[2]
gap> IsChamberOfIncidenceStructure(flg2);
false
gap> IsChamberOfIncidenceStructure(flg);
false
gap> Display(flg2);
```

13.1.10 IsFlagTransitiveGeometry

▷ IsFlagTransitiveGeometry(cg)

(operation)

Returns: true if and only if the group G defining cg acts flag-transitively. cg must be a coset geometry.

The group G used to define cg acts naturally on the elements of cg by right translation: a coset G_ig is mapped to $G_i(gx)$ by an element $x \in G$. This test can be quite time consuming. You can bind the attribute IsFlagTransitiveGeometry if you are sure the coset geometry is indeed flag-transitive.

```
___ Example
gap> g:=SymmetricGroup(4);
Sym([1..4])
gap> g1:=Subgroup(g,[(1,2,3)]);
Group([(1,2,3)])
gap> g2:=Subgroup(g,[(1,4)]);
Group([ (1,4) ])
gap> g3:=Subgroup(g,[(1,2,3,4)]);
Group([(1,2,3,4)])
gap> cg:=CosetGeometry(g,[g1,g2,g3]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg);
gap> cg2:=CosetGeometry(g,[g1,g2]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg2);
true
```

13.1.11 OnCosetGeometryElement

▷ OnCosetGeometryElement(ele, g)

(operation)

Returns: the image of the CosetGeometryElement ele under the action of g The group element g must belong to AmbientGroup(AmbientGeometry(ele)).

13.1.12 \^

Returns: an element of a coset geometry

This is an operation which returns the image of ele, an element of a coset incidence structure, under g, an element of AmbientGroup(AmbientGeometry(ele)).

13.1.13 \^

Returns: a flag of a coset geometry

This is an operation which returns the image of flg, a flag of a coset incidence structure, under g, an element of AmbientGroup(AmbientGeometry(flg)).

13.1.14 IsFirmGeometry

```
▷ IsFirmGeometry(cg)
```

(operation)

Returns: true if and only if *cg* is firm.

An incidence geometry is said to be *firm* if every non-maximal flag is contained in at least two chambers. *cg* must be a coset geometry.

13.1.15 IsThickGeometry

▷ IsThickGeometry(cg)

(operation)

Returns: true if and only if cg is thick.

An incidence geometry is said to be *thick* if every non-maximal flag is contained in at least three chambers. *cg* must be a coset geometry.

13.1.16 IsThinGeometry

▷ IsThinGeometry(cg)

(operation)

Returns: true if and only if cg is thin.

An incidence geometry is said to be *thin* if every rank one residue contains exactly 2 elements. This means that every comaximal flag is contained in exactly 2 chambers. *cg* must be a coset geometry.

```
gap> g:=SymmetricGroup(8);;
gap> pabs:=[];;
gap> pabs[1]:=Stabilizer(g,1);; pabs[2]:=Stabilizer(g,2);;
gap> pabs[3]:=Stabilizer(g,3);;
gap> pabs[4]:=Stabilizer(g,[1,2,3,4],0nSets);;
gap> pabs[5]:=Stabilizer(g,[1,2,3,4,5],0nSets);;
gap> pabs[6]:=Stabilizer(g,6);; pabs[7]:=Stabilizer(g,7);;
gap> cg:=CosetGeometry(g,pabs);
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(cg);
true
gap> IsThinGeometry(cg);
true
gap> IsThinGeometry(cg);
false
```

```
gap> truncation:=CosetGeometry(g,pabs{[1..5]});
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(truncation);
true
gap> IsThinGeometry(truncation);
false
gap> IsThickGeometry(truncation);
false
gap> truncation2:=CosetGeometry(g,pabs{[4,5]});
CosetGeometry( SymmetricGroup( [ 1 .. 8 ] ) )
gap> IsFirmGeometry(truncation2);
true
gap> IsThinGeometry(truncation2);
false
gap> IsThickGeometry(truncation2);
true
```

13.1.17 IsConnected

▷ IsConnected(cg)

(operation)

Returns: true if and only if cg is connected.

A geometry is *connected* if and only if its incidence graph is connected. *cg* must be a coset geometry.

13.1.18 IsResiduallyConnected

▷ IsResiduallyConnected(cg)

(operation)

Returns: true if and only if *cg* is residually connected.

A geometry is *residually connected* if the incidence graphs of all its residues of rank at least 2 are connected. *cg* must be a coset geometry.

This test is quite time consuming. You can bind the attribute IsResiduallyConnected if you are sure the coset geometry is indeed residually connected.

```
\_ Example \_
gap> ps:=HyperbolicQuadric(7,2);
Q+(7, 2)
gap> g:=IsometryGroup(ps);;
gap> reps:=RepresentativesOfElements(ps);
[ \langlea point in Q+(7, 2)\rangle, \langlea line in Q+(7, 2)\rangle, \langlea plane in Q+(7, 2)\rangle,
  <a solid in Q+(7, 2)> ]
gap> solids:=Orbit(g,reps[4]);;
gap> ps:=HyperbolicQuadric(7,2);
Q+(7, 2)
gap> g:=IsometryGroup(ps);;
gap> reps:=RepresentativesOfElements(ps);
[ \langlea point in Q+(7, 2)\rangle, \langlea line in Q+(7, 2)\rangle, \langlea plane in Q+(7, 2)\rangle,
  <a solid in Q+(7, 2)> ]
gap> h:=DerivedSubgroup(g);; # to get greek and latin solids
gap> orbs:=FiningOrbits(h,Solids(ps));;
50%..100%..gap> List(orbs, Size);
```

```
[ 135, 135 ]
gap> Filtered(orbs[2], s -> ProjectiveDimension(Meet(orbs[1][1],s))=2); # to
[ \langlea solid in Q+\langle7, 2\rangle>, \langlea solid in Q+\langle7, 2\rangle>, \langlea solid in Q+\langle7, 2\rangle>,
   <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
   <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
   <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>,
   <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)>, <a solid in Q+(7, 2)> ]
gap> #find a latin incident with the greek which is orbs[1][1]
gap> # Now we have a chamber
gap> goodreps:=[reps[1],reps[2],orbs[1][1],last[1]];
[ \langlea point in \mathbb{Q}+(7, 2)\rangle, \langlea line in \mathbb{Q}+(7, 2)\rangle, \langlea solid in \mathbb{Q}+(7, 2)\rangle,
   <a solid in Q+(7, 2)> ]
gap> pabs:=List(goodreps, r -> FiningStabiliser(h,r));
[ <projective collineation group of size 1290240 with 2 generators>,
   cprojective collineation group of size 1290240 with 2 generators>,
   cprojective collineation group of size 1290240 with 4 generators> ]
gap> cos:=CosetGeometry(h,pabs);
CosetGeometry( Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),8,[
       [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
       [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
       [\ 0*Z(2),\ Z(2)^0,\ Z(2)^0,\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ Z(2)^0\ ],
       [\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ Z(2)^0,\ Z(2)^0,\ 0*Z(2),\ 0*Z(2),\ 0*Z(2)]
       [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
       [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
       [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
       [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
       ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
       1),8,[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
       [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
       [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
       [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
       [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0],
       [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
       [0*Z(2), 0*Z(2), 0*Z
       [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
        ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
       1),8,[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
       [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
       [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
       [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
       [\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ 0*Z(2),\ Z(2)^0,\ 0*Z(2),\ 0*Z(2),\ 0*Z(2)]
       [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
       [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
       [ \ Z(2)^0, \ 0*Z(2), \ 0*Z(2), \ 0*Z(2), \ Z(2)^0, \ 0*Z(2), \ 0*Z(2), \ Z(2)^0
        ],]),IdentityMapping(GF(2)))]))
gap> IsConnected(cos);
gap> IsResiduallyConnected(cos);
true
gap> time;
```

419960

13.1.19 StandardFlagOfCosetGeometry

(operation)

Returns: standard chamber of cg

The standard chamber just consists of all parabolic subgroups (i.e. the trivial cosets of these subgroups). The object returned is a FlagOfIncidenceStructure. *cg* must be a coset geometry.

13.1.20 FlagToStandardFlag

▷ FlagToStandardFlag(cg, f1)

(operation)

Returns: element of the defining group of cg which maps f1 to the standard chamber of cg. f1 must be a chamber given as a list of cosets of the parabolic subgroups of cg.

```
Example
gap> L:=SimpleLieAlgebra("D",8,Rationals);
<Lie algebra of dimension 120 over Rationals>
gap> rs:=RootSystem(L);
<root system of rank 8>
gap> w:=WeylGroup(rs);
<matrix group with 8 generators>
gap> gens:=GeneratorsOfGroup(w);;
gap> pabs:=List(gens, g -> Group(Difference(gens, [g])));
[ <matrix group with 7 generators>, <matrix group with 7 generators>,
  <matrix group with 7 generators>, <matrix group with 7 generators>,
  <matrix group with 7 generators>, <matrix group with 7 generators>,
  <matrix group with 7 generators>, <matrix group with 7 generators> ]
gap> g:=Group(gens);
<matrix group with 8 generators>
gap> cg:=CosetGeometry(g,pabs);;
gap> cham:=RandomChamber(cg);; # Time of last command: 23945 ms
gap> FlagToStandardFlag(cg,cham); # Time of last command: 1720 ms
[ [ 0, 0, 0, 0, 1, -1, 0, 0 ], [ 0, 0, 0, 1, 0, -1, 0, 0 ],
  [0, 0, 0, 1, 0, 0, -1, -1], [1, -1, 0, 1, 0, 0, -1, -1],
  [0, -1, 0, 1, 0, 0, -1, -1], [0, -1, 0, 1, 0, 0, 0, -2],
  [0, -1, 1, 0, 0, 0, 0, -1], [0, -1, 0, 1, 0, 0, 0, -1]
gap> cham^last = StandardFlagOfCosetGeometry(cg); # Time of last command:1005 ms
true
```

13.1.21 CanonicalResidueOfFlag

▷ CanonicalResidueOfFlag(cg, fl)

(operation)

Returns: coset geometry isomorphic to residue of f1 in cg

cg must be a coset incidence structure and f1 must be a flag in that incidence structure. The returned coset incidence structure for a flag $\{G_{i_1}g_{i_1}, G_{i_2}g_{i_2}, \ldots, G_{i_k}g_{i_k}\}$ is the coset incidence structure defined by the group $H := \bigcap_{j=1}^k G_{i_j}$ and parabolic subgroups $G_j \cap H$ for j not in the type set $\{i_1, i_2, \ldots, i_k\}$ of f1.

13.1.22 ResidueOfFlag

▷ ResidueOfFlag(f1)

(operation)

Returns: the residue of f1 in AmbientGeometry(f1).

This is a CosetGeometry method for the ResidueOfFlag operation given in Chapter 3. Note that the related operation CanonicalResidueOfFlag takes *two* arguments.

```
Example
gap> pg:=SymplecticSpace(5,2);
W(5, 2)
gap> pi:=Random(Planes(pg));
<a plane in W(5, 2)>
gap> 1:=Random(Lines(pi));
<a line in W(5, 2)>
gap> p:=Random(Points(1));
<a point in W(5, 2)>
gap> g:=CollineationGroup(pg);
PGammaSp(6,2)
gap> g1:=Stabilizer(g,p);
cprojective collineation group of size 23040 with 3 generators>
gap> g2:=Stabilizer(g,1);
cprojective collineation group of size 4608 with 4 generators>
gap> g3:=Stabilizer(g,pi);
cprojective collineation group of size 10752 with 3 generators>
gap> cg:=CosetGeometry(g, [g1,g2,g3]);
CosetGeometry( PGammaSp(6,2) )
gap> RandomFlag(cg); # Time of last command: 10745 ms
<Flag of coset geometry < CosetGeometry( PGammaSp(6,2) ,</pre>
  Group(
    [ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
        [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0,
        [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
        [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
        [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
        [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
        [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)
         ],]),IdentityMapping(GF(2))),
      ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
        [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
        [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
        [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
        [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
        [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
        [Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)]
        ],]),IdentityMapping(GF(2))),
      ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
        [Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0],
        [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
        [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
        [0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)],
        [0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
        [Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)
        ],]),IdentityMapping(GF(2)))]),
```

```
Group(
  [ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
      [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
      [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
      [0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],
      [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ],
      [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
       ],]),IdentityMapping(GF(2))),
    ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0],
      [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ],
      [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)],
      [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
      [Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0],
      [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
       ],]),IdentityMapping(GF(2))),
    ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0],
      [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
      [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ],
      [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ],
      [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
      [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ]
       ],]),IdentityMapping(GF(2))),
    ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
      [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0,
      [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
      [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ],
      [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
      [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
       ],]),IdentityMapping(GF(2)))]),
Group(
  [ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
      [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
      [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
      [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
      [\ 0*Z(2)\ ,\ 0*Z(2)\ ,\ 0*Z(2)\ ,\ 0*Z(2)\ ,\ 0*Z(2)\ ,\ Z(2)^0\ ]\ ,
      [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
       ],]),IdentityMapping(GF(2))),
    ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0],
      [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
      [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
      [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
      [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ],
      [0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]
       ],]),IdentityMapping(GF(2))),
    ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
      [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
```

```
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ],
        [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ],
        [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
        [Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
        [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)
         ],]),IdentityMapping( GF(2) )) ] ) >>
gap> Type(last);
[ ]
gap> ResidueOfFlag(last2);
CosetGeometry( PGammaSp(6,2) )
gap> Rank(last);
gap> NrElementsOfIncidenceStructure(last2,1);
gap> flg:=RandomFlag(cg);;
gap> can:=CanonicalResidueOfFlag(cg,flg);
CosetGeometry( Group( ... ) )
gap> Type(flg);
[1, 2]
gap> Rank(can);
gap> res:=ResidueOfFlag(flg);
CosetGeometry( Group(
[ ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,1),6,[
    [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ],
    [ Z(2)^0, Z(2)^0, Z(2)^0, O*Z(2), Z(2)^0, Z(2)^0,
    [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
    [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0,
    [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
    [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)
    ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
    1),6,[[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
    [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
    [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
    [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
    [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ],
    [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0
    ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
    1),6,[[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],
    [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
    [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0,
    [0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
    [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
    [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]
    ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
    1),6,[[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],
    [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0,
    [0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2)],
    [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0,
    [Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0],
    [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2)
    ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
```

```
1),6,[[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],
    [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0,
    [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],
    [0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],
    [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
    [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
    ],]),IdentityMapping(GF(2))), ProjElWithFrob(NewMatrix(IsCMatRep,GF(2,
    1),6,[[ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ],
    [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ],
    [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ],
    [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],
    [Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],
    [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)
    ],]),IdentityMapping(GF(2)))]))
gap> IsIsomorphicIncidenceStructureWithNauty(res,can);
#I Using NiceMonomorphism...
#I Using NiceMonomorphism...
true
```

13.1.23 IncidenceGraph

▷ IncidenceGraph(cg)

(operation)

Returns: incidence graph of cg.

cg must be a coset geometry. The graph returned is a GRAPE object. All GRAPE functionality can now be used to analyse cg via its incidence graph.

13.1.24 Rk2GeoGonality

▷ Rk2GeoGonality(cg)

(operation)

Returns: the gonality (i.e. half the girth) of the incidence graph of *cg*. *cg* must be a coset geometry of rank 2.

13.1.25 Rk2GeoDiameter

▷ Rk2GeoDiameter(cg, type)

(operation)

Returns: the point (or line) diameter.

cg must be a coset geometry of rank 2. type must be either 1 or 2. This function computes the point diameter of cg when type is 1 and the line diameter when type is 2.

13.1.26 GeometryOfRank2Residue

▷ GeometryOfRank2Residue(resi)

(operation)

Returns: the geometry of the Rank2Residue object resi.

The rank 2 residues of a geometry are fundamental when dealing with diagrams. Therefore they are kept in an attribute as (a list of) objects of type Rank2Residue. The present operation just extracts the residue as a coset geometry from such a Rank2Residue object.

13.1.27 Rank2Parameters

▷ Rank2Parameters(cg)

(operation)

Returns: a list of length 3.

cg must be a coset geometry of rank 2. This function computes the gonality, point and line diameter of cg. These appear as a list in the first entry of the returned list. The second entry contains a list of length 2 with the point order and the total number of points (i.e. elements of type 1) in the geometry. The last entry contains the line order and the number of lines (i.e. elements of type 2).

The following example illustrates Rank2Parameters. It uses AtlasRep to fetch the second Janko group, also known as the Hall-Janko group. Beware that AtlasRep needs special write permissions on some systems. The constructed geometry has gonality 6 and both diameters equal to 8. It is known as the *Cohen-Tits near octagon*.

```
gap> LoadPackage("atlasrep");
true
gap> j2:=AtlasGroup("J2"); #Uses AtlasRep package
<permutation group of size 604800 with 2 generators>
gap> max3:=AtlasSubgroup(j2,3); #member of 3rd ATLAS class of max. subgps
<permutation group of size 1920 with 2 generators>
gap> max4:=AtlasSubgroup(j2,4); #member of 4th ATLAS class of max. subgps
<permutation group of size 1152 with 2 generators>
gap> conj3:=ConjugacyClassSubgroups(j2,max3);;
gap> g1:=First(conj3, c -> Size(Intersection(c,max4))=384);;
gap> g2:=max4;;
gap> cg:=CosetGeometry(j2,[g1,g2]);;
gap> Rank2Parameters(cg);
[ [ 6, 8, 8 ], [ 2, 315 ], [ 4, 525 ] ]
```

13.2 Automorphisms, Correlations and Isomorphisms

An *automorphism* of an incidence structure Γ is a permutation of the element set of Γ such that incidence is preserved and types are fixed (i.e. the type of the image of an element coincides with the type of that element). One way to compute the (full) automorphism group of Γ is to compute its incidence graph and then use the available nauty machinery to obtain the group.

13.2.1 AutGroupIncidenceStructureWithNauty

(operation)

Returns: permutation group isomorphic to the full automorphism group of cg.

The group is computed with nauty, which is part of GRAPE but has to be compiled on your system before use. The group returned is a permutation group acting on the set [1..Sum(TypesOfElementsOfIncidenceStructure(cg), t -> NrElementsOfIncidenceStructure(cg,t))], which is exactly the vertex set of IncidenceGraph(cg). At the moment the action of the automorphism group on cg is not provided but it can be recovered from the knowledge that the vertex set of IncidenceGraph(cg) first contains all elements of type 1 in cg, then all elements of type 2, etc. or, better still, with the GRAPE command VertexNames (see example below).

13.2.2 CorGroupIncidenceStructureWithNauty

▷ CorGroupIncidenceStructureWithNauty(cg)

(operation)

Returns: permutation group isomorphic to the full automorphism group of cg.

The group is computed with nauty, which is part of GRAPE but has to be compiled on your system before use. The group returned is a permutation group acting on the set [1..Sum(TypesOfElementsOfIncidenceStructure(cg), t -> NrElementsOfIncidenceStructure(cg,t))], which is exactly the vertex set of IncidenceGraph(cg). At the moment the action of the automorphism group on cg is not provided but it can be recovered from the knowledge that the vertex set of IncidenceGraph(cg) first contains all elements of type 1 in cg, then all elements of type 2, etc. or with the GRAPE command VertexNames.

```
_ Example _
gap> g := PSL(2,11);;
gap> g1 := Group([ (1,2,3)(4,8,12)(5,10,9)(6,11,7),
> (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)]);;
gap> g2 := Group([(1,2,7)(3,9,4)(5,11,10)(6,8,12),
> (1,2)(3,4)(5,12)(6,11)(7,10)(8,9)]);;
gap> g3 := Group([ (1,2,11)(3,8,7)(4,9,5)(6,10,12),
> (1,2)(3,12)(4,11)(5,10)(6,9)(7,8)]);;
gap> g4 := Group([(1,2,11)(3,8,7)(4,9,5)(6,10,12),
> (1,2)(3,10)(4,9)(5,8)(6,7)(11,12)]);;
gap> cg:=CosetGeometry(g,[g1,g2,g3,g4]);
CosetGeometry( Group( [ (3,11, 9, 7, 5)(4,12,10, 8, 6),
  (1, 2, 8)(3, 7, 9)(4,10, 5)(6,12,11)])
gap> aut:=AutGroupIncidenceStructureWithNauty(cg);
<permutation group with 4 generators>
gap> StructureDescription(aut);
"PSL(2,11)"
gap> cor:=CorGroupIncidenceStructureWithNauty(cg);
<permutation group with 5 generators>
gap> StructureDescription(cor);
"C2 x PSL(2,11)"
gap> incgrph:=IncidenceGraph(cg);;
gap> names:=VertexNames(incgrph);;
gap> g:=Random(aut);
32,26,27,24,30) (34,44,38,41,42,35,43,39,40,36,37)
gap> e:=RandomElement(cg);
<element of type 3 of CosetGeometry( Group(</pre>
[ (3,11, 9, 7, 5)(4,12,10, 8, 6), (1, 2, 8)(3, 7, 9)(4,10, 5)(6,12,11)
] ) )>
gap> pos:=Position(names, e);
gap> names[pos^g];
<element of type 3 of CosetGeometry( Group(</pre>
[ (3,11, 9, 7, 5)(4,12,10, 8, 6), (1, 2, 8)(3, 7, 9)(4,10, 5)(6,12,11) 
1))>
```

13.2.3 IsIsomorphicIncidenceStructureWithNauty

(operation)

Returns: true iff cg1 and cg2 are isomorphic.

We use nauty, which is part of GRAPE but has to be compiled on your system before use. Isomorphism is tested (with nauty) after converting the coset geometries cg1 and cg2 to coloured graphs.

```
_ Example
gap> g:=SymmetricGroup(4); g1:=Subgroup(g,[(1,2,3)]);
Sym([1..4])
Group([ (1,2,3) ])
gap > g2 := Subgroup(g, [(1,4)]); g3 := Subgroup(g, [(1,2,3,4)]);
Group([ (1,4) ])
Group([(1,2,3,4)])
gap> cg:=CosetGeometry(g,[g1,g2,g3]);
CosetGeometry( SymmetricGroup( [ 1 .. 4 ] ) )
gap> IsFlagTransitiveGeometry(cg);
false
gap> aut:=AutGroupIncidenceStructureWithNauty(cg);
<permutation group with 4 generators>
gap> Size(aut);
48
gap> Size(g);
gap> newg1:=Stabilizer(aut, 1);
Group([(5,7)(6,8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26), (3,6))
(4,5)(9,18)(10,16)(12,20)(13,17)(15,19)(21,22)(24,26)])
gap> newg2:=Stabilizer(aut, NrElementsOfIncidenceStructure(cg,1) + 1);
Group([(5,7)(6,8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26), (1,3))
(2,4)(5,6)(7,8)(10,11)(12,15)(13,16)(14,17)(18,19)(21,25)(22,24)(23,26)
gap> newg3:=Stabilizer(aut, NrElementsOfIncidenceStructure(cg,1) +
                         NrElementsOfIncidenceStructure(cg,2) + 1);
Group([(1,3)(2,4)(5,8)(6,7)(10,12)(11,15)(14,19)(17,18)(22,24), (3,8)(4,7))
(9,14)(10,17)(11,20)(13,15)(16,19)(22,25)(23,24)
gap> newcg:=CosetGeometry(aut, [newg1, newg2, newg3]);
CosetGeometry( Group(
[ (5, 7)(6, 8)(10,15)(11,12)(13,16)(14,18)(17,19)(21,25)(23,26),
  (3, 6)(4, 5)(9,18)(10,16)(12,20)(13,17)(15,19)(21,22)(24,26),
  (1, 2)(3, 4)(5, 6)(7, 8)(9,20)(10,17)(11,14)(12,18)(13,16)(15,19)
    (21,26)(22,24)(23,25), (1,3)(2,4)(5,6)(7,8)(10,11)(12,15)(13,16)
    (14,17)(18,19)(21,25)(22,24)(23,26) ) )
gap> IsFlagTransitiveGeometry(newcg);
true
gap> IsIsomorphicIncidenceStructureWithNauty(cg, newcg);
```

13.3 Diagrams

The *diagram* of a flag-transitive incidence geometry is a schematic description of the structure of the geometry. It is based on the collection of rank 2 residues of the geometry.

Technically, the diagram is added to a CosetGeometry object as a mutable attribute. Also the list of rank 2 residues of the geometry is added as an attribute once these have been computed. This is done with the operations Rank2Residues (to add the attribute) and MakeRank2Residue (to actually compute the residues). These operations are not for everyday use and hence remain undocumented.

Since the geometry is flag-transitive, all chambers are equivalent. Let's fix a chamber $C = \{c_1, c_2, \ldots, c_n\}$, with c_i of type i. For each subset $\{i, j\}$ of size two in $I = \{1, 2, \ldots, n\}$ we take the residue of the flag $C \setminus \{c_i, c_j\}$. Flag transitivity ensures that *all* residues of type $\{i, j\}$ are isomorphic to each other. For each such residue, the structure is described by some parameters: the gonality and the point and line diameters. For each type i, we also define the i-order to be one less than the number of elements of type i in the residue of a(ny) flag of type $I \setminus \{i\}$. All this information is depicted in a diagram which is basically a labelled graph with vertex set I and edges whenever the point diameter, the line diameter and the gonality are all greater than 2.

13.3.1 DiagramOfGeometry

▷ DiagramOfGeometry(Gamma)

(operation)

Returns: the diagram of the geometry Gamma

Gamma must be a flag-transitive coset geometry.

The flag-transitivity is not tested by this operation because such a test can be time consuming. The command IsFlagTransitiveGeometry can be used to check flag-transitivity if needed.

13.3.2 GeometryOfDiagram

▷ GeometryOfDiagram(diag)

(operation)

Returns: the geometry of which *diag* is the diagram *diag* must be a diagram object.

13.3.3 DrawDiagram

▷ DrawDiagram(diag, filename)

(operation)

▷ DrawDiagram(diag, filename, vertexverbosity)

(operation)

▷ DrawDiagram(diag, filename, vertexverbosity, edgeverbosity)

(operation)

Returns: does not return anything but writes a file filename.ps

diag must be a diagram. Writes a file filename.ps in the current directory with a pictorial version of the diagram. This command uses the graphviz package which is available from http://www.graphviz.org.

In case graphviz is not available on your system, you will get an friendly error message and a file filename.dot will be written. You can then compile this file later or ask a friend to help you. By default the diagram provides for each type i the i-order and the number of elements of type i. This behaviour can be changed by providing a vertexverbosity level. A value 2 results in no label under the vertices and a value 1 gives only the i-order. Any other positive integer value yields the default behaviour. The default labels for the edges of the diagram use the standard convention that a [g,dp,dl]-gon with all three parameters equal is labelled only with the number g. Putting edgeverbosity equal to 2 puts no labels at all. This yields the so called "basic diagram" of the geometry. With edgeverbosity equal to any integer greater than 2 all labels contain girth and both diameters.

We illustrate the diagram feature with Neumaier's A₈-geometry. The affine space of dimension 3 over the field with two elements is denoted by AG(3,2). If we fix a plane Π in PG(3,2), the structure induced on the 8 points not in Π by the lines and planes of PG(3,2) is isomorphic to AG(3,2). Since every two points of AG(3,2) define a line, the collinearity graph of AG(3,2) (that is the graph whose vertices are the points of AG(3,2) and in which two vertices are adjacent whenever they are collinear) is the complete graph K_8 on 8 vertices. Given two copies of the complete graph on 8 vertices, one can label the vertices of each of them with the numbers from 1 to 8. These labelings are always equivalent when the two copies are seen as graphs, but not if they are understood as models of the affine space. The reason is that an affine space has parallel lines and to be affinely equivalent, the labelings must be such that edges which were parallel in the first labeling remain parallel in the second labeling. In fact there are 15 affinely nonequivalent ways to label the vertices of K_8 . The affine space has 14 planes of 4 points and there are 70 subsets of 4 elements in the vertex set of K_8 . Each time we label K_8 , there are 14 of the 70 sets of 4 elements which become planes of AG(3,2). The remaining 4-subsets will be called *nonplanes* for that labeling. A well-known rank 4 geometry discovered by Neumaier in 1984 can be described using these concepts. This geometry is quite important since its residue of cotype 1 is the famous A_7 -geometry which is known to be the only flag-transitive locally classical C_3 geometry which is not a polar space (see Aschbacher1984 for details). The Neumaier geometry can be constructed as follows. The elements of types 1 and 2 are the vertices and edges of the complete graph K_8 , the elements of type 3 are the 4-subsets of the vertex set of K_8 and the elements of type 4 are the 15 nonequivalent labelings of K_8 . Incidences are mostly the natural ones. A 4-subset is incident with a labeling of K_8 if it is the set of points of a nonplane in the model of AG(3,2) defined by the labeling.

```
_ Example -
Alt([1..8])
gap> pabs:= [
   Group([(2,4,6), (1,3,2)(4,8)(6,7)]),
   Group([(1,6,7,8,4), (2,5)(3,4)]),
   Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7),
> (1,2)(4,5), (3,7)(6,8)]),
   Group([(1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
        (1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8)])];
[ Group([(2,4,6), (1,3,2)(4,8)(6,7)]), Group([(1,6,7,8,4), (2,5)(3,4)]),
  Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2))
  (4,5), (3,7)(6,8)]), Group([(1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)
  (5,7), (1,5)(2,4)(3,7)(6,8), (1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8)])
gap> cg:=CosetGeometry(g,pabs);
CosetGeometry( AlternatingGroup( [ 1 .. 8 ] ) )
gap> diag:=DiagramOfGeometry(cg);
< Diagram of CosetGeometry( AlternatingGroup([1..8]),</pre>
[ Group( [(2,4,6), (1,3,2)(4,8)(6,7)] ),
  Group( [(1,6,7,8,4), (2,5)(3,4)]),
 Group([(3,6)(7,8), (2,4,5), (1,5)(2,4), (2,4)(6,7), (6,8,7), (1,2)(4,5),
      (3,7)(6,8)]),
 Group( [ (1,7,8,4)(2,5,3,6), (1,3)(2,6)(4,8)(5,7), (1,5)(2,4)(3,7)(6,8),
      (1,8)(2,7)(3,4)(5,6), (1,3)(2,6)(4,7)(5,8) ] ) ) >
gap> DrawDiagram(diag, "neuma8");
gap> #Exec("gv neuma8.ps");
gap> point:=Random(ElementsOfIncidenceStructure(cg,1));
<element of type 1 of CosetGeometry( AlternatingGroup( [ 1 .. 8 ] ) )>
gap> residue:=ResidueOfFlag(FlagOfIncidenceStructure(cg,[point]));
```

```
CosetGeometry( Group( [ (3,5,7), (1,7)(2,4,3)(5,8) ] ) )
gap> diagc3:=DiagramOfGeometry(residue);
< Diagram of CosetGeometry( Group( [ (3,5,7), (1,7)(2,4,3)(5,8) ] ) ,
  [ Group( [ (4,5,8), (1,4,5), (1,7,8), (1,8,4,2,7) ] ),
    Group( [ (1,8)(4,7), (2,5,3), (1,7)(2,3), (1,7,8), (1,4)(7,8) ] ),
    Group( [ (1,5,4,3)(7,8), (2,4)(5,8) ] ) ] ) >
gap> DrawDiagram(diagc3, "a7geo");
gap> #Exec("gv a7geo.ps");
```

The produced diagrams are included here: Neumaier's A_8

The A_7 geometry:

On a UNIX system we can start an external viewer ("gv" or ghostview in this case) from within GAP with the Exec command.

13.3.4 DrawDiagramWithNeato

 ${\tt \triangleright \ DrawDiagramWithNeato}(\textit{diag, filename})$

(operation)

Returns: does not return anything but writes a file filename.ps

diag must be a diagram. Writes a file filename.ps in the current directory with a pictorial version of the diagram.

This command uses a "spring tension" algorithm to draw the diagram diag with straight edges. For some diagrams this looks better than the result of DrawDiagram. However this algorithm does not print the vertex labels.

This command uses the graphviz package which is available from http://www.graphviz.org. In case graphviz is not available on your system, you will get an friendly error message and a file filename.dot will be written. You can then compile this file later or ask a friend to help you. An E_6 geometry for comparison: on the left hand side we have the output of DrawDiagram and on the right

hand side we see the result of DrawDiagramWithNeato

Chapter 14

Subgeometries of projective spaces

Let S = (P, L, I) be a point-line incidence geometry. In case S is a projective space over a finite field, it is clear that every line (and every subspace as well) can be identified with the set of points incident with it. Furthermore, the incidence relation I is then symmetrised containment. To define a subgeometry mathematically, we follow [Dem97]. Let $P' \subset P$ and let L' be a set of subsets of P', such that every $l' \in L'$ is a subset of exactly one line $l \in L$. If S' = (P', L', I) is a projective space again, then we call S' a *subgeometry* of S. Note that in general the subspaces of S' will be subsets of subspaces of S.

A typical example of a subgeometry is a Baer subplane of a projective plane. In this example, with S' the Baer subplane of the projective plane S, one could say that a point of S' is indeed a point of S, but a line of S', is not a line of S. If one considers a line of S' as a set of points of S', then a line of S' is a subset of the set of points on a line of S. Another example is the subgeometry of a projective space induced by a subspace π . In this example, clearly, the set of elements of the induced subgeometry can, mathematically, be considered as a subset of the set of elements of S.

The same considerations apply for classical polar spaces. These consideration have implications for the behaviour of certain operations in FinInG, e.g. when computing the span and meet of different elements.

Using geometry morphisms, and more particular a function like NaturalEmbeddingBySubField, one can deal in an indirect way with subgeometries. However, using NaturalEmbeddingBySubField is not flexible, and typical problems such as considering a subgeometry determined by a user chosen frame and a subfield, cannot be handled easily. Therefore FinlnG provides some functions to naturally construct subgeometries of projective spaces.

A subgeometry in a projective space is completely determined by a frame of the projective space and a subfield of the base field of the projective space. The *standard frame* in an *n*-dimensional projective space PG(n,q) is the set of n+2 points represented by $(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1),(1,1,\ldots,1)$. The subgeometry determined by the standard frame will be called *canonical*. Note that different frames may determine the same subgeometry (over a fixed subfield).

For a given subfield $GF(q') \subset GF(q)$, the canonical subgeometry determined by the standard frame in PG(n,q) is mathematically spoken the image of the FinInG geometry morphism NaturalEmbeddingBySubField of the projective space PG(n,q'). The coordinates of the points of the subgeometry will be exclusively over the subfield GF(q'), as are the coordinates of the vectors after normalizing defining any subspace of the subgeometry. Clearly, the Frobenius automorphism which maps x to $x^{q'}$ fixes all elements of the subgeometry.

For an arbitrary frame of PG(n,q) and a subfield GF(q'), there exists a natural collineation of

PG(n,q) which fixes the subgeometry pointwise. This collineation is the conjugation of the Frobenius automorphism by the unique collineation mapping the defining frame of the subgeometry to the standard frame of PG(n,q), i.e. the frame defining the canonical subgeometry over GF(q'). Upon construction of a subgeometry, both collineations will be computed, and are of use when dealing with the full collineation group of a subgeometry. As for any incidence geometry in FinInG, operations to compute this collineation group as well as particular action functions for subgeometries are provided.

Subgeometries of projective spaces are constructed in a subcategory of IsProjectiveSpace, as such, all operations applicable to projective spaces, are naturally applicable to subgeometries. Subspaces of subgeometries are constructed in a subcategory of IsSubspaceOfProjectiveSpace. Hence, operations applicable to subspaces of projective spaces, are naturally applicable to subspaces of subgeometries.

14.1 Particular Categories

14.1.1 IsSubgeometryOfProjectiveSpace

▷ IsSubgeometryOfProjectiveSpace

(Category)

This category is a subcategory of IsProjectiveSpace, and contains all subgeometries of projective spaces. Note that mathematically, a subspace of a projective space is also a subgeometry. However, in FinInG, subspaces of a projective space are constructed in a category that is not a subcategory of IsProjectiveSpace. Since IsSubgeometryOfProjectiveSpace is a subcategory of IsProjectiveSpace, all operations applicable to projective spaces, are naturally applicable to subgeometries of projective spaces.

14.1.2 Categories for elements and collections of elements

```
    ▷ IsSubspaceOfSubgeometryOfProjectiveSpace
    ▷ IsSubspacesOfSubgeometryOfProjectiveSpace
    (Category)
    (Category)
```

A subspace of a subgeometry belongs to the category IsSubspaceOfSubgeometryOfProjectiveSpace.

14.2 Subgeometries of projective spaces

14.2.1 Canonical Subgeometry Of Projective Space

Returns: a subgeometry of pg

This operation returns the subgeometry of pg induced by the standard frame over the subfield subfield. Alternatively, a prime power q can be used as the order of the subfield. It is checked whether the user specified subfield is indeed a subfield of the base field of pg. If the subfield equals the base field of pg, the projective space pg is returned.

```
gap> pg := PG(2,25);
ProjectiveSpace(2, 25)
```

14.2.2 RandomFrameOfProjectiveSpace

▷ RandomFrameOfProjectiveSpace(pg)

(operation)

Returns: a set of points of pg, being a frame. Note that the returned object is also a set in the GAP sense, i.e. an ordered list without duplicates.

```
gap> pg := PG(1,5^5);
ProjectiveSpace(1, 3125)
gap> frame := RandomFrameOfProjectiveSpace(pg);
[ <a point in ProjectiveSpace(1, 3125)>, <a point in ProjectiveSpace(1, 3125)> ]
gap> Length(frame);
3
gap> pg := PG(6,2^2);
ProjectiveSpace(6, 4)
gap> frame := RandomFrameOfProjectiveSpace(pg);
[ <a point in ProjectiveSpace(6, 4)>, <a point in ProjectiveSpace(6, 4)> ]
gap> Length(frame);
```

14.2.3 IsFrameOfProjectiveSpace

```
▷ IsFrameOfProjectiveSpace(list)
```

(operation)

Returns: true or false

When list is a list of points of a projective space, this operation returns true if and only if list constitutes a frame of the projective space. It is checked as well whether all points in list belong to the same projective space.

```
gap> pg := PG(1,7^3);
ProjectiveSpace(1, 343)
gap> p1 := VectorSpaceToElement(pg,[1,1]*Z(7)^0);
```

267

```
<a point in ProjectiveSpace(1, 343)>
gap> p2 := VectorSpaceToElement(pg,[1,2]*Z(7)^0);
<a point in ProjectiveSpace(1, 343)>
gap> p3 := VectorSpaceToElement(pg,[1,3]*Z(7)^0);
<a point in ProjectiveSpace(1, 343)>
gap> IsFrameOfProjectiveSpace([p1,p2,p3]);
true
```

14.2.4 SubgeometryOfProjectiveSpaceByFrame

```
▷ SubgeometryOfProjectiveSpaceByFrame(pg, list, field) (operation)
▷ SubgeometryOfProjectiveSpaceByFrame(pg, list, q) (operation)

Returns: a subgeometry of pg
```

The argument pg is a projective space which is not a subgeometry itself, the argument list is a list of points of pg defining a frame of pg, and finally the argument field is a subfield of the base field of pg. Alternatively, the argument q is the order of a subfield of the base field of pg. This method returns the subgeometry defined by the frame in list and the subfield field of the subfield GF(q). This method checks whether the subfield field or the field GF(q) is really a subfield of the base field of pg and whether the list of points in list is a frame of pg. Note also that it is currently not possible to construct subgeometries recursively, so pg may not be a subgeometry itself. If the specified subfield equals the base field of pg, then the projective space pg itself is returned.

14.3 Basic operations

14.3.1 Underlying vector space and ambient projective space

```
▷ UnderlyingVectorSpace(sub) (operation)

▷ AmbientSpace(sub) (operation)
```

Let P be a projective space over the field F. Let sub be a subgeometry of P over the subfield F'. The underlying vector space of sub is defined as the underlying vector space of P (which is a vector space over the field F). The ambient space of a subgeometry sub is the projective space P.

```
_{-} Example
gap > pg := PG(2,5^6);
ProjectiveSpace(2, 15625)
gap> sub1 := CanonicalSubgeometryOfProjectiveSpace(pg,5);
Subgeometry PG(2, 5) of ProjectiveSpace(2, 15625)
gap> UnderlyingVectorSpace(pg);
(GF(5^6)^3)
gap> UnderlyingVectorSpace(sub1);
(GF(5^6)^3)
gap> AmbientSpace(sub1);
ProjectiveSpace(2, 15625)
gap> sub2 := CanonicalSubgeometryOfProjectiveSpace(pg,5^3);
Subgeometry PG(2, 125) of ProjectiveSpace(2, 15625)
gap> AmbientSpace(sub2);
ProjectiveSpace(2, 15625)
gap> UnderlyingVectorSpace(sub2);
(GF(5^6)^3)
gap> frame := RandomFrameOfProjectiveSpace(pg);
[ <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)> ]
gap> sub3 := SubgeometryOfProjectiveSpaceByFrame(pg,frame,5^2);
Subgeometry PG(2, 25) of ProjectiveSpace(2, 15625)
gap> AmbientSpace(sub3);
ProjectiveSpace(2, 15625)
gap> UnderlyingVectorSpace(sub3);
(GF(5^6)^3)
```

14.3.2 DefiningFrameOfSubgeometry

▷ DefiningFrameOfSubgeometry(sub)

(attribute)

Returns: a set of projective points

This attribute returns a frame of the ambient space of sub defining it. Note that different frames might define the same subgeometry, but the frame used to constructed sub is stored at construction, and it is exactly this stored object that is returned by this attribute. The returned object is a set of points, and it is also a set in the GAP sense, i.e. an ordered list without duplicates.

14.3.3 Projective dimension and rank

```
ightharpoonup ProjectiveDimension(sub) (operation)

ightharpoonup Dimension(sub) (operation)

ightharpoonup Rank(sub) (operation)
```

Returns: an integer

If sub is a subgeometry of a projective space, then it is a projective space itself. Therefore, these three operations return the projective dimension of sub, see also 4.1.3.

```
gap> pg := PG(7,8^2);
ProjectiveSpace(7, 64)
gap> sub := CanonicalSubgeometryOfProjectiveSpace(pg,8);
Subgeometry PG(7, 8) of ProjectiveSpace(7, 64)
gap> ProjectiveDimension(sub);
7
gap> Dimension(sub);
7
gap> Rank(sub);
7
```

14.3.4 Underlying algebraic structures

```
▷ UnderlyingVectorSpace(sub) (operation)

▷ BaseField(sub) (operation)

▷ SubfieldOfSubgeometry(sub) (operation)
```

Returns: the first operation returns a vector space, the second and third operations return a finite field

The operations UnderlyingVectorSpace and BaseField are defined for projective spaces, see 4.1.5 and 4.1.4. For a subgeometry of a projective space sub with ambient space ps, these operations return UnderlyingVectorSpace(ps), BaseField(ps) respectively. The operation SubfieldOfSubgeometry returns the subfield over which sub is defined.

```
Example
gap > pg := PG(3,3^6);
ProjectiveSpace(3, 729)
gap> sub1 := CanonicalSubgeometryOfProjectiveSpace(pg,3^3);
Subgeometry PG(3, 27) of ProjectiveSpace(3, 729)
gap> BaseField(sub1);
GF(3^6)
gap> UnderlyingVectorSpace(sub1);
(GF(3^6)^4)
gap> SubfieldOfSubgeometry(sub1);
GF(3<sup>3</sup>)
gap> sub2 := CanonicalSubgeometryOfProjectiveSpace(pg,3^2);
Subgeometry PG(3, 9) of ProjectiveSpace(3, 729)
gap> BaseField(sub2);
GF(3<sup>6</sup>)
gap> UnderlyingVectorSpace(sub2);
(GF(3^6)^4)
gap> SubfieldOfSubgeometry(sub2);
GF(3<sup>2</sup>)
```

14.3.5 CollineationFixingSubgeometry

▷ CollineationFixingSubgeometry(sub)

(attribute)

Returns: a collineation of the ambient space of sub

Let GF(q) be the field over which sub is defined, this is a subfield of $GF(q^t)$ over which the ambient projective space P is defined. It is well known that there exists a collineation of P of order t, fixing all elements of sub, which is returned by this operation. This collineation is the collineation induced by the Frobenius map $x \mapsto x^q$, conjugated by the collineation of P mapping the subgeometry sub to the canonical subgeometry of P over GF(q). In case of a quadratic field extension (i.e. t=2), this collineation is known in the literature as the Baer involution of the subgeometry.

```
gap> pg := PG(2,7^3);
ProjectiveSpace(2, 343)
gap> sub := CanonicalSubgeometryOfProjectiveSpace(pg,GF(7));
Subgeometry PG(2, 7) of ProjectiveSpace(2, 343)
gap> coll := CollineationFixingSubgeometry(sub);
< a collineation: <cmat 3x3 over GF(7,3)>, F^7>
gap> Order(coll);
3
```

14.4 Constructing elements of a subgeometry

14.4.1 VectorSpaceToElement

```
▷ VectorSpaceToElement(sub, v)
```

(operation)

Returns: a subspace of a subgeometry

sub is a subgeometry of a projective space, and v is either a row vector (for points) or a matrix (for higher dimensional subspaces). In the case that v is a matrix, the rows represent generators for

the subspace. An exceptional case is when v is the zero-vector, in which case the trivial subspace is returned. This method checks whether v determines an element of sub.

```
gap > pg := PG(2,5^6);
ProjectiveSpace(2, 15625)
gap> vecs := [ [Z(5)^0, Z(5^6)^13972, Z(5^6)^11653],
> [ Z(5)^0, Z(5^6)^9384, Z(5^6)^1372 ],
> [ Z(5)^0, Z(5^6)^14447, Z(5^6)^15032 ],
> [ Z(5)^0, Z(5^6)^8784, Z(5^6)^10360 ] ];;
gap> frame := List(vecs,x->VectorSpaceToElement(pg,x));
[ <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)>,
  <a point in ProjectiveSpace(2, 15625)> ]
gap> sub := SubgeometryOfProjectiveSpaceByFrame(pg,frame,5^3);
Subgeometry PG(2, 125) of ProjectiveSpace(2, 15625)
gap> VectorSpaceToElement(sub,[0,0,0]*Z(5)^0);
< empty subspace >
gap> vec := [Z(5)^0, Z(5^6)^8584, Z(5^6)^13650];
[ Z(5)^0, Z(5^6)^8584, Z(5^6)^13650 ]
gap> VectorSpaceToElement(sub, vec);
<a point in Subgeometry PG(2, 125) of ProjectiveSpace(2, 15625)>
gap> vec := [ [ Z(5)^0, 0*Z(5), Z(5^6)^5740 ], [ 0*Z(5), Z(5)^0, Z(5^6)^15250 ] ];
[ [Z(5)^0, 0*Z(5), Z(5^6)^5740 ], [0*Z(5), Z(5)^0, Z(5^6)^15250 ] ]
gap> VectorSpaceToElement(sub, vec);
Error, <obj> does not determine an element in <sub> called from
VectorSpaceToElementForSubgeometries( geom, v
 ) at ./pkg/fining/lib/subgeometries.gi:400 called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 19 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> vec := [[Z(5)^0, 0*Z(5), Z(5^6)^8268], [0*Z(5), Z(5)^0, Z(5^6)^1472]];
[ [ Z(5)^0, 0*Z(5), Z(5^6)^8268 ], [ 0*Z(5), Z(5)^0, Z(5^6)^1472 ] ]
gap> VectorSpaceToElement(sub, vec);
<a line in Subgeometry PG(2, 125) of ProjectiveSpace(2, 15625)>
gap> VectorSpaceToElement(sub, vecs);
Subgeometry PG(2, 125) of ProjectiveSpace(2, 15625)
```

14.4.2 ExtendElementOfSubgeometry

▷ ExtendElementOfSubgeometry(el)

(operation)

Returns: a subspace of a projective space

The argument e1 is an element of a subgeometry P' with ambient projective space P. The projective space is defined over a field F, the subgeometry P' is defined over a subfield F' of F. The underlying vector space of e1 is a vector space over F' generated by a set S of vectors. This operation returns the element of P, corresponding to the vector space over F generated by the vectors in S. Note that the set S can be obtained using UnderlyingObject, see 3.2.2.

```
gap> pg := PG(3,5^5);
```

```
ProjectiveSpace(3, 3125)
gap> frame := RandomFrameOfProjectiveSpace(pg);
[ <a point in ProjectiveSpace(3, 3125)>, <a point in ProjectiveSpace(3, 3125)>
    , <a point in ProjectiveSpace(3, 3125)>,
  <a point in ProjectiveSpace(3, 3125)>,
  <a point in ProjectiveSpace(3, 3125)> ]
gap> sub := SubgeometryOfProjectiveSpaceByFrame(pg,frame,5);
Subgeometry PG(3, 5) of ProjectiveSpace(3, 3125)
gap> p := Random(Points(sub));
<a point in Subgeometry PG(3, 5) of ProjectiveSpace(3, 3125)>
gap> 1 := Random(Lines(p));
<a line in Subgeometry PG(3, 5) of ProjectiveSpace(3, 3125)>
gap> p * 1;
true
gap> q := ExtendElementOfSubgeometry(p);
<a point in ProjectiveSpace(3, 3125)>
gap > q * 1;
Error, <x> and <y> do not belong to the same geometry called from
x in y at ./pkg/fining/lib/projectivespace.gi:1658 called from
IsIncident( b, a ) at ./pkg/fining/lib/geometry.gi:439 called from
<function "unknown">( <arguments> )
 called from read-eval loop at line 15 of *stdin*
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> quit;
gap> m := ExtendElementOfSubgeometry(1);
<a line in ProjectiveSpace(3, 3125)>
gap> q*m;
true
gap> UnderlyingObject(q) = UnderlyingObject(p);
true
gap> UnderlyingObject(1) = UnderlyingObject(m);
true
```

14.4.3 AmbientGeometry

▷ AmbientGeometry(el)

(operation)

Returns: an incidence geometry

For el an element of a subgeometry P, which is also a projective space, this operation returns P.

14.4.4 Flags

```
▷ FlagOfIncidenceStructure(sub, els) (operation)
▷ IsEmptyFlag(flag) (operation)
▷ IsChamberOfIncidenceStructure(flag) (operation)
```

Returns: true or false

These operations are defined for projective spaces and so they are also applicable to subgeometries.

14.5 Groups and actions

Let P' be a subgeometry of P. Although one could argue that any semilinear map inducing a collineation preserving P' can be called a collineation of P', this would cause problems with the nice monomorphism functionality, since such a collineation does not necessarily have a faithful action on the subgeometry. For this reason, we decided to define the collineation group of the subgeometry P' as the collineation group of the projective space isomorphic to P' conjugated by the collineation of P mapping P' on the canonical subgeometry of P over the same field as P'. Similarly, the projectivity group, respectively the special projectivity group, of P' is defined as the conjugate of the projectivity group, respectively special projectivity group, of the projective space isomorphic to P'.

14.5.1 Groups of collineations

▷ CollineationGroup(sub)

(operation)

▷ ProjectivityGroup(sub)

(operation)

▷ SpecialProjectivityGroup(sub)

(operation)

Returns: a group of collineations

Appendix A

The structure of FinInG

A.1 The different components

FinInG consists of the following components: geometry, liegeometry, group, projectivespace, correlations, polarspace/morphisms, enumerators, diagram, varieties, affinespace/affinegroup, gpolygons, and orbits-stabilisers. Each of these components corresponds with a *component.gd* and *component.gi* file. The file *component.gi* will be dependent on *component.gd* and all previously loaded *.gd* files, *component1/component2* means that both *component1.gi* and *component2.gi* depend on the declarations in both *component1.gd* and *component2.gd*.

A.2 The complete inventory

A.2.1 Declarations

```
Example
Operations
geometry.gd: operations
O: IncidenceStructure: [IsList, IsFunction, IsFunction, IsList]
O: ResidueOfFlag: [IsFlagOfIncidenceStructure]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure, IsPosInt]
O: ElementsOfIncidenceStructure: [IsIncidenceStructure, IsString]
0: NrElementsOfIncidenceStructure: [IsIncidenceStructure, IsPosInt]
0: NrElementsOfIncidenceStructure: [IsIncidenceStructure, IsString]
O: IncidenceGraph: [IsIncidenceStructure]
O: Points: [IsIncidenceStructure]
O: Lines: [IsIncidenceStructure]
O: Planes: [IsIncidenceStructure]
0: Solids: [IsIncidenceStructure]
0: FlagOfIncidenceStructure: [IsIncidenceStructure, IsElementOfIncidenceStructureCollection]
0: FlagOfIncidenceStructure: [IsIncidenceStructure, IsListandIsEmpty]
0: ChamberOfIncidenceStructure: [IsElementOfIncidenceStructureCollection]
O: ElementsOfFlag: [IsFlagOfIncidenceStructure]
0: IsIncident: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
0: IsIncident: [IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure]
0: IsIncident: [IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure]
```

```
0: ShadowOfElement: [IsElementOfIncidenceStructure, IsPosInt]
O: IsCollinear: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsElementOfIncidenceStr
0: Span: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
0: Meet: [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure]
0: Type: [IsElementOfIncidenceStructureandIsElementOfIncidenceStructureRep]
0: Type: [IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructureRep]
0: Type: [IsFlagOfIncidenceStructureandIsFlagOfIncidenceStructureRep]
0: Wrap: [IsIncidenceStructure, IsPosInt, IsObject]
0: Unwrap: [IsElementOfIncidenceStructure]
O: ObjectToElement: [IsIncidenceStructure, IsPosInt, IsObject]
0: ObjectToElement: [IsIncidenceStructure, IsObject]
0: UnderlyingObject: [IsElementOfIncidenceStructure]
0: ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsPosInt]
0: ShadowOfElement: [IsIncidenceStructure, IsElementOfIncidenceStructure, IsString]
0: ShadowOfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsPosInt]
O: ShadowOfFlag: [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString]
0: ShadowOfFlag: [IsIncidenceStructure, IsList, IsPosInt]
0: ShadowOfFlag: [IsIncidenceStructure, IsList, IsString]
O: ElementsIncidentWithElementOfIncidenceStructure: [IsElementOfIncidenceStructure, IsPosInt]
0: Points: [IsElementOfIncidenceStructure]
0: Lines: [IsElementOfIncidenceStructure]
0: Planes: [IsElementOfIncidenceStructure]
0: Solids: [IsElementOfIncidenceStructure]
0: Hyperplanes: [IsElementOfIncidenceStructure]
O: Points: [IsIncidenceStructure, IsElementOfIncidenceStructure]
0: Lines: [IsIncidenceStructure, IsElementOfIncidenceStructure]
0: Planes: [IsIncidenceStructure, IsElementOfIncidenceStructure]
0: Solids: [IsIncidenceStructure, IsElementOfIncidenceStructure]
O: Hyperplanes: [IsIncidenceStructure, IsElementOfIncidenceStructure]
liegeometry.gd: operations
0: UnderlyingVectorSpace: [IsLieGeometry]
0: UnderlyingVectorSpace: [IsElementOfLieGeometry]
0: UnderlyingVectorSpace: [IsFlagOfLieGeometry]
0: VectorSpaceToElement: [IsLieGeometry, IsRowVector]
0: VectorSpaceToElement: [IsLieGeometry, Is8BitVectorRep]
0: VectorSpaceToElement: [IsLieGeometry, IsPlistRep]
0: VectorSpaceToElement: [IsLieGeometry, Is8BitMatrixRep]
0: VectorSpaceToElement: [IsLieGeometry, IsGF2MatrixRep]
O: VectorSpaceToElement: [IsLieGeometry, IsCVecRep]
O: VectorSpaceToElement: [IsLieGeometry, IsCMatRep]
0: EmptySubspace: [IsLieGeometry]
0: RandomSubspace: [IsVectorSpace, IsInt]
O: IsIncident: [IsEmptySubspace, IsElementOfLieGeometry]
0: IsIncident: [IsElementOfLieGeometry, IsEmptySubspace]
0: IsIncident: [IsEmptySubspace, IsLieGeometry]
O: IsIncident: [IsLieGeometry, IsEmptySubspace]
0: IsIncident: [IsEmptySubspace, IsEmptySubspace]
0: Span: [IsEmptySubspace, IsElementOfLieGeometry]
O: Span: [IsElementOfLieGeometry, IsEmptySubspace]
```

0: Span: [IsEmptySubspace, IsLieGeometry]

GAP 4 Package FinInG 276

```
O: Span: [IsLieGeometry, IsEmptySubspace]
0: Span: [IsEmptySubspace, IsEmptySubspace]
0: Span: [IsList]
0: Meet: [IsEmptySubspace, IsElementOfLieGeometry]
0: Meet: [IsElementOfLieGeometry, IsEmptySubspace]
0: Meet: [IsEmptySubspace, IsLieGeometry]
O: Meet: [IsLieGeometry, IsEmptySubspace]
0: Meet: [IsEmptySubspace, IsEmptySubspace]
0: ElementToElement: [IsLieGeometry, IsElementOfLieGeometry]
0: ConvertElement: [IsLieGeometry, IsElementOfLieGeometry]
0: ConvertElementNC: [IsLieGeometry, IsElementOfLieGeometry]
group.gd: operations
O: FindBasePointCandidates: [IsGroup, IsRecord, IsInt]
O: FindBasePointCandidates: [IsGroup, IsRecord, IsInt, IsObject]
0: ProjEl: [IsMatrixandIsFFECollColl]
0: ProjEls: [IsList]
O: Projectivity: [IsList, IsField]
O: Projectivity: [IsProjectiveSpace, IsMatrix]
O: ProjElWithFrob: [IsMatrixandIsFFECollColl, IsMapping]
O: ProjElWithFrob: [IsMatrixandIsFFECollColl, IsMapping, IsField]
0: ProjElsWithFrob: [IsList]
O: ProjElsWithFrob: [IsList, IsField]
0: CollineationOfProjectiveSpace: [IsList, IsField]
O: CollineationOfProjectiveSpace: [IsList, IsMapping, IsField]
O: CollineationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix]
O: CollineationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping]
O: CollineationOfProjectiveSpace: [IsProjectiveSpace, IsMapping]
O: Collineation: [IsProjectiveSpace, IsMatrix]
O: Collineation: [IsProjectiveSpace, IsMatrix, IsMapping]
O: ProjectiveSemilinearMap: [IsList, IsMapping, IsField]
O: ProjectivityByImageOfStandardFrameNC: [IsProjectiveSpace, IsList]
O: MatrixOfCollineation: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRep]
0: MatrixOfCollineation: [IsProjGrpElandIsProjGrpElRep]
\hbox{\tt 0: FieldAutomorphism: [IsProjGrpElWithFrobandIsProjGrpElWithFrobRep]}\\
O: ActionOnAllProjPoints: [IsProjectiveGroupWithFrob]
O: SetAsNiceMono: [IsProjectiveGroupWithFrob, IsGroupHomomorphism]
O: CanonicalGramMatrix: [IsString, IsPosInt, IsField]
O: CanonicalQuadraticForm: [IsString, IsPosInt, IsField]
0: SOdesargues: [IsInt, IsPosInt, IsFieldandIsFinite]
O: GOdesargues: [IsInt, IsPosInt, IsFieldandIsFinite]
O: SUdesargues: [IsPosInt, IsFieldandIsFinite]
0: GUdesargues: [IsPosInt, IsFieldandIsFinite]
0: Spdesargues: [IsPosInt, IsFieldandIsFinite]
0: GeneralSymplecticGroup: [IsPosInt, IsFieldandIsFinite]
0: GSpdesargues: [IsPosInt, IsFieldandIsFinite]
0: DeltaOminus: [IsPosInt, IsFieldandIsFinite]
0: DeltaOplus: [IsPosInt, IsFieldandIsFinite]
0: GammaOminus: [IsPosInt, IsFieldandIsFinite]
0: Gamma0: [IsPosInt, IsFieldandIsFinite]
0: GammaOplus: [IsPosInt, IsFieldandIsFinite]
```

GAP 4 Package FinInG 277

```
O: GammaU: [IsPosInt, IsFieldandIsFinite]
O: GammaSp: [IsPosInt, IsFieldandIsFinite]
projectivespace.gd: operations
O: ProjectiveSpace: [IsInt, IsField]
O: ProjectiveSpace: [IsInt, IsPosInt]
O: IsIncident: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
0: IsIncident: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
0: IsIncident: [IsProjectiveSpace, IsProjectiveSpace]
O: Hyperplanes: [IsProjectiveSpace]
0: BaerSublineOnThreePoints:
                                                                        [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace,
O: BaerSubplaneOnQuadrangle:
                                                                         [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace,
0: RandomSubspace: [IsProjectiveSpace, IsInt]
O: RandomSubspace: [IsSubspaceOfProjectiveSpace, IsInt]
0: RandomSubspace: [IsProjectiveSpace]
0: Span: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
0: Span: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
O: Span: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool]
O: Span: [IsList, IsBool]
0: Meet: [IsSubspaceOfProjectiveSpace, IsProjectiveSpace]
0: Meet: [IsProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: Meet: [IsList]
O: DualCoordinatesOfHyperplane: [IsSubspaceOfProjectiveSpace]
O: HyperplaneByDualCoordinates: [IsProjectiveSpace, IsList]
0: ComplementSpace: [IsVectorSpace, IsFFECollColl]
O: ElationOfProjectiveSpace: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSub
O: ProjectiveElationGroup: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
0: ProjectiveElationGroup: [IsSubspaceOfProjectiveSpace]
O: HomologyOfProjectiveSpace: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace
O: ProjectiveHomologyGroup: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
0: SingerCycleMat: [IsInt, IsInt]
O: SingerCycleCollineation: [IsInt, IsInt]
correlations.gd: operations
0: StandardDualityOfProjectiveSpace: [IsProjectiveSpace]
0: IdentityMappingOfElementsOfProjectiveSpace: [IsProjectiveSpace]
O: ActionOnAllPointsHyperplanes: [IsProjGroupWithFrobWithPSIsom]
O: ProjElWithFrobWithPSIsom: [IsMatrix and IsFFECollColl, IsMapping,
                                                                                                                                                                              IsField]
O: ProjElWithFrobWithPSIsom:
                                                                            [IsMatrix and IsFFECollColl, IsMapping,
                                                                                                                                                                              IsField,
                                                                                                                                                                                                           IsStandardI
0: ProjElWithFrobWithPSIsom:
                                                                            [IsMatrix and IsFFECollColl, IsMapping,
                                                                                                                                                                              IsField,
                                                                                                                                                                                                           IsGeneralMa
O: ProjElsWithFrobWithPSIsom: [IsList, IsField]
                                                                                     [IsProjGroupWithFrobWithPSIsom, IsGroupHomomorphism]
O: SetAsNiceMono:
0: CorrelationOfProjectiveSpace: [IsList, IsField]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField]
O: CorrelationOfProjectiveSpace: [IsList, IsField, IsStandardDualityOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsField, IsIdentityMappingOfElementsOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField, IsStandardDualityOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsList, IsMapping, IsField, IsIdentityMappingOfElementsOfProjectiveSpace]
O: CorrelationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping, IsStandardDualityOfProj
```

O: CorrelationOfProjectiveSpace: [IsProjectiveSpace, IsMatrix, IsMapping, IsIdentityMappingOfElem

O: Correlation: [IsProjectiveSpace, IsMatrix, IsMapping, IsStandardDualityOfProjectiveSpace]

```
O: Correlation: [IsProjectiveSpace, IsMatrix, IsMapping, IsIdentityMappingOfElementsOfProjectiveSpace, IsMatrix, IsMapping, IsMatrix, IsMat
O: MatrixOfCorrelation: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]
O: FieldAutomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]
\hbox{\tt 0: ProjectiveSpaceIsomorphism: [IsProjGrpElWithFrobWithPSIsomandIsProjGrpElWithFrobWithPSIsomRep]}\\
0: PolarityOfProjectiveSpaceOp: [IsForm]
0: PolarityOfProjectiveSpace: [IsForm]
O: PolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
O: PolarityOfProjectiveSpace: [IsMatrix, IsFrobeniusAutomorphism, IsFieldandIsFinite]
O: HermitianPolarityOfProjectiveSpace: [IsMatrix, IsFieldandIsFinite]
0: PolarityOfProjectiveSpace: [IsClassicalPolarSpace]
0: BaseField: [IsPolarityOfProjectiveSpace]
O: IsAbsoluteElement: [IsElementOfIncidenceStructure, IsPolarityOfProjectiveSpace]
0: GeometryOfAbsolutePoints: [IsPolarityOfProjectiveSpace]
0: AbsolutePoints: [IsPolarityOfProjectiveSpace]
0: PolarSpace: [IsPolarityOfProjectiveSpace]
polarspace.gd: operations
O: PolarSpaceStandard: [IsForm, IsBool]
O: PolarSpace: [IsForm, IsField, IsGroup, IsFunction]
O: PolarSpace: [IsForm]
0: PolarMap: [IsClassicalPolarSpace]
0: TangentSpace: [IsSubspaceOfClassicalPolarSpace]
O: TangentSpace: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
0: Pole: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
O: TypeOfSubspace: [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace]
O: CanonicalOrbitRepresentativeForSubspaces: [IsString, IsPosInt, IsField]
0: RandomSubspace: [IsClassicalPolarSpace, IsPosInt]
O: NumberOfTotallySingularSubspaces: [IsClassicalPolarSpace, IsPosInt]
0: EllipticQuadric: [IsPosInt, IsField]
0: EllipticQuadric: [IsPosInt, IsPosInt]
0: SymplecticSpace: [IsPosInt, IsField]
0: SymplecticSpace: [IsPosInt, IsPosInt]
0: ParabolicQuadric: [IsPosInt, IsField]
0: ParabolicQuadric: [IsPosInt, IsPosInt]
0: HyperbolicQuadric: [IsPosInt, IsField]
0: HyperbolicQuadric: [IsPosInt, IsPosInt]
0: HermitianPolarSpace: [IsPosInt, IsField]
0: HermitianPolarSpace: [IsPosInt, IsPosInt]
O: CanonicalPolarSpace: [IsClassicalPolarSpace]
0: StandardPolarSpace: [IsClassicalPolarSpace]
O: Span: [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace, IsBool]
morphisms.gd: operations
                                                                               [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceSt
0: GeometryMorphismByFunction:
0: GeometryMorphismByFunction:
                                                                                [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceSt
0: GeometryMorphismByFunction:
                                                                                [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceSt
O: IsomorphismPolarSpacesProjectionFromNucleus: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsClassicalPolarSpa
O: IsomorphismPolarSpacesNC: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool]
                                                                                                                         [ IsClassicalPolarSpace, IsClassicalPolarSpace
0: IsomorphismPolarSpacesNC:
```

```
[ IsClassicalPolarSpace, IsClassicalPolarSpace,
0: IsomorphismPolarSpaces:
0: IsomorphismPolarSpaces:
                                                [ IsClassicalPolarSpace, IsClassicalPolarSpace ]
                                                    [ IsLieGeometry, IsLieGeometry, IsSubspace(
O: NaturalEmbeddingBySubspace:
0: NaturalEmbeddingBySubspaceNC:
                                                      [ IsLieGeometry, IsLieGeometry, IsSubspace
0: NaturalProjectionBySubspace:
                                                     [ IsClassicalPolarSpace, IsSubspaceOfClassi
0: NaturalProjectionBySubspace:
                                                     [ IsProjectiveSpace, IsSubspaceOfProjective
                                                        [ IsClassicalPolarSpace, IsSubspaceOfClass
0: NaturalProjectionBySubspaceNC:
O: NaturalProjectionBySubspaceNC:
                                                        [ IsProjectiveSpace, IsSubspaceOfProjecti
0: ShrinkMat: [IsBasis, IsMatrix]
O: ShrinkMat: [IsField, IsField, IsVector]
O: ShrinkVec: [IsField, IsField, IsVector]
O: ShrinkVec: [IsField, IsField, IsVector, IsBasis]
O: BlownUpProjectiveSpace: [IsBasis, IsProjectiveSpace]
O: BlownUpProjectiveSpaceBySubfield: [IsField, IsProjectiveSpace]
O: BlownUpSubspaceOfProjectiveSpace: [IsBasis, IsSubspaceOfProjectiveSpace]
O: BlownUpSubspaceOfProjectiveSpaceBySubfield: [IsField, IsSubspaceOfProjectiveSpace]
O: IsDesarguesianSpreadElement: [IsBasis, IsSubspaceOfProjectiveSpace]
O: IsBlownUpSubspaceOfProjectiveSpace: [IsBasis, IsSubspaceOfProjectiveSpace]
O: NaturalEmbeddingByFieldReduction:
                                                          [ IsProjectiveSpace,
                                                                                 IsField,
                                                                                           IsBasis
O: NaturalEmbeddingByFieldReduction:
                                                          [ IsProjectiveSpace,
                                                                                 IsField ]
O: NaturalEmbeddingByFieldReduction:
                                                          [ IsProjectiveSpace,
                                                                                 Is Projective Space
                                                          [ IsProjectiveSpace,
O: NaturalEmbeddingByFieldReduction:
                                                                                 Is Projective Space
O: BilinearFormFieldReduction: [IsBilinearForm, IsField, IsFFE, IsBasis]
O: QuadraticFormFieldReduction: [IsQuadraticForm, IsField, IsFFE, IsBasis]
O: HermitianFormFieldReduction: [IsHermitianForm, IsField, IsFFE, IsBasis]
O: BilinearFormFieldReduction: [IsBilinearForm, IsField, IsFFE]
O: QuadraticFormFieldReduction: [IsQuadraticForm, IsField, IsFFE]
O: HermitianFormFieldReduction: [IsHermitianForm, IsField, IsFFE]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBasis, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBasis]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsFFE]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool]
O: NaturalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsClassicalPolarSpace]
O: CanonicalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsField, IsBool]
O: CanonicalEmbeddingByFieldReduction: [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool]
0: NaturalEmbeddingBySubfield:
                                                    [ IsProjectiveSpace, IsProjectiveSpace ]
O: NaturalEmbeddingBySubfield: [IsClassicalPolarSpace, IsClassicalPolarSpace,
                                                                                  IsBool ]
O: NaturalEmbeddingBySubfield:
                                                    [ IsClassicalPolarSpace, IsClassicalPolarSpace,
0: PluckerCoordinates: [IsMatrix]
O: InversePluckerCoordinates: [IsVector]
0: PluckerCoordinates: [IsSubspaceOfProjectiveSpace]
O: KleinCorrespondence: [IsField, IsBool]
O: KleinCorrespondence: [IsField]
O: KleinCorrespondence: [IsPosInt, IsBool]
0: KleinCorrespondence: [IsPosInt]
O: KleinCorrespondence: [IsClassicalPolarSpace, IsBool]
0: KleinCorrespondence: [IsClassicalPolarSpace]
O: KleinCorrespondenceExtended: [IsField, IsBool]
O: KleinCorrespondenceExtended: [IsField]
```

```
O: KleinCorrespondenceExtended: [IsPosInt, IsBool]
0: KleinCorrespondenceExtended: [IsPosInt]
O: KleinCorrespondenceExtended: [IsClassicalPolarSpace, IsBool]
0: KleinCorrespondenceExtended: [IsClassicalPolarSpace]
O: NaturalDualitySymplectic: [IsClassicalGQ, IsClassicalGQ, IsBool, IsBool]
O: NaturalDualityHermitian: [IsClassicalGQ, IsClassicalGQ, IsBool, IsBool]
O: SelfDualitySymplectic: [IsClassicalGQ, IsBool]
O: SelfDualityParabolic: [IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ, IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ, IsClassicalGQ]
O: NaturalDuality: [IsClassicalGQ, IsBool]
O: NaturalDuality: [IsClassicalGQ]
O: SelfDuality: [IsClassicalGQ, IsBool]
O: SelfDuality: [IsClassicalGQ]
O: ProjectiveCompletion: [IsAffineSpace]
enumerators.gd: operations
O: AntonEnumerator: [IsSubspacesOfClassicalPolarSpace]
0: EnumeratorByOrbit: [IsSubspacesOfClassicalPolarSpace]
diagram.gd: operations
0: CosetGeometry: [IsGroup, IsHomogeneousList]
0: ParabolicSubgroups: [IsCosetGeometry]
0: AmbientGroup: [IsCosetGeometry]
0: FlagToStandardFlag: [IsCosetGeometry, IsFlagOfCosetGeometry]
0: ResidueOfFlag: [IsFlagOfCosetGeometry]
O: CanonicalResidueOfFlag: [IsCosetGeometry, IsFlagOfCosetGeometry]
0: RandomElement: [IsCosetGeometry]
0: RandomFlag: [IsCosetGeometry]
0: RandomChamber: [IsCosetGeometry]
0: AutGroupIncidenceStructureWithNauty: [IsCosetGeometry]
0: CorGroupIncidenceStructureWithNauty: [IsCosetGeometry]
O: IsIsomorphicIncidenceStructureWithNauty: [IsCosetGeometry, IsCosetGeometry]
0: Rk2GeoDiameter: [IsCosetGeometry, IsPosInt]
0: Rk2GeoGonality: [IsCosetGeometry]
0: GeometryOfRank2Residue: [IsRank2Residue]
0: GeometryFromLabelledGraph: [IsObjectandIS_REC]
0: Rank2Residues: [IsIncidenceGeometry]
O: MakeRank2Residue: [IsRank2Residue]
varieties.gd: operations
0: AlgebraicVariety: [IsProjectiveSpace, IsList]
0: AlgebraicVariety: [IsAffineSpace, IsList]
O: AlgebraicVariety: [IsProjectiveSpace, IsPolynomialRing, IsList]
O: AlgebraicVariety: [IsAffineSpace, IsPolynomialRing, IsList]
0: PointsOfAlgebraicVariety: [IsAlgebraicVariety]
0: Points: [IsAlgebraicVariety]
O: ProjectiveVariety: [IsProjectiveSpace, IsPolynomialRing, IsList]
O: ProjectiveVariety: [IsProjectiveSpace, IsList]
```

```
0: HermitianVariety: [IsPosInt, IsPosInt]
O: HermitianVariety: [IsProjectiveSpace, IsPolynomialRing, IsPolynomial]
O: HermitianVariety: [IsProjectiveSpace, IsPolynomial]
0: QuadraticVariety: [IsPosInt, IsField]
0: QuadraticVariety: [IsPosInt, IsField, IsString]
0: QuadraticVariety: [IsPosInt, IsPosInt]
O: QuadraticVariety: [IsPosInt, IsPosInt, IsString]
O: QuadraticVariety: [IsProjectiveSpace, IsPolynomialRing, IsPolynomial]
O: QuadraticVariety: [IsProjectiveSpace, IsPolynomial]
0: PolarSpace: [IsProjectiveVariety]
O: AffineVariety: [IsAffineSpace, IsPolynomialRing, IsList]
0: AffineVariety: [IsAffineSpace, IsList]
0: SegreMap: [IsHomogeneousList]
O: SegreMap: [IsHomogeneousList, IsField]
0: SegreVariety: [IsHomogeneousList]
O: SegreVariety: [IsHomogeneousList, IsField]
0: PointsOfSegreVariety: [IsSegreVariety]
0: SegreMap: [IsSegreVariety]
0: SegreMap: [IsProjectiveSpace, IsProjectiveSpace]
0: SegreMap: [IsPosInt, IsPosInt, IsField]
O: SegreMap: [IsPosInt, IsPosInt, IsPosInt]
0: SegreVariety: [IsProjectiveSpace, IsProjectiveSpace]
0: SegreVariety: [IsPosInt, IsPosInt, IsField]
0: SegreVariety: [IsPosInt, IsPosInt, IsPosInt]
O: VeroneseMap: [IsProjectiveSpace]
O: VeroneseMap: [IsPosInt, IsField]
0: VeroneseMap: [IsPosInt, IsPosInt]
O: VeroneseVariety: [IsProjectiveSpace]
O: VeroneseVariety: [IsPosInt, IsField]
O: VeroneseVariety: [IsPosInt, IsPosInt]
0: PointsOfVeroneseVariety: [IsVeroneseVariety]
0: VeroneseMap: [IsVeroneseVariety]
0: GrassmannCoordinates: [IsSubspaceOfProjectiveSpace]
0: GrassmannMap: [IsPosInt, IsProjectiveSpace]
0: GrassmannMap: [IsPosInt, IsPosInt, IsPosInt]
0: GrassmannMap: [IsSubspacesOfProjectiveSpace]
0: GrassmannMap: [IsGrassmannVariety]
0: GrassmannVariety: [IsPosInt, IsProjectiveSpace]
O: GrassmannVariety: [IsPosInt, IsPosInt, IsField]
0: GrassmannVariety: [IsPosInt, IsPosInt, IsPosInt]
O: GrassmannVariety: [IsSubspacesOfProjectiveSpace]
0: PointsOfGrassmannVariety: [IsGrassmannVariety]
O: ConicOnFivePoints: [IsHomogeneousListand
                                                                          IsSubspaceOfProjectiveSp
affinespace.gd: operations
0: VectorSpaceTransversal: [IsVectorSpace, IsFFECollColl]
O: VectorSpaceTransversalElement: [IsVectorSpace, IsFFECollColl, IsVector]
O: AffineSpace: [IsPosInt, IsField]
O: AffineSpace: [IsPosInt, IsPosInt]
```

O: HermitianVariety: [IsPosInt, IsField]

O: Hyperplanes: [IsAffineSpace]

```
O: AffineSubspace: [IsAffineSpace, IsRowVector]
O: AffineSubspace: [IsAffineSpace, IsCVecRep]
O: AffineSubspace: [IsAffineSpace, IsRowVector, IsPlistRep]
0: AffineSubspace: [IsAffineSpace, IsRowVector, Is8BitMatrixRep]
O: AffineSubspace: [IsAffineSpace, IsRowVector, IsGF2MatrixRep]
O: AffineSubspace: [IsAffineSpace, IsCVecRep, IsCMatRep]
O: RandomSubspace: [IsAffineSpace, IsInt]
O: IsParallel: [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace]
0: UnderlyingVectorSpace: [IsAffineSpace]
O: ParallelClass: [IsAffineSpace, IsSubspaceOfAffineSpace]
0: ParallelClass: [IsSubspaceOfAffineSpace]
affinegroup.gd: operations
gpolygons.gd: operations
O: GeneralisedPolygonByBlocks: [IsHomogeneousList]
0: GeneralisedPolygonByIncidenceMatrix: [IsMatrix]
O: GeneralisedPolygonByElements: [IsSet, IsSet, IsFunction]
O: GeneralisedPolygonByElements: [IsSet, IsSet, IsFunction, IsGroup, IsFunction]
O: DistanceBetweenElements: [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon]
O: DistanceBetweenElements: [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: BlockDesignOfGeneralisedPolygon: [IsGeneralisedPolygon]
0: SplitCayleyHexagon: [IsFieldandIsFinite]
0: SplitCayleyHexagon: [IsPosInt]
0: SplitCayleyHexagon: [IsClassicalPolarSpace]
0: TwistedTrialityHexagon: [IsFieldandIsFinite]
0: TwistedTrialityHexagon: [IsPosInt]
0: TwistedTrialityHexagon: [IsClassicalPolarSpace]
0: G2fining: [IsPosInt, IsFieldandIsFinite]
0: 3D4fining: [IsFieldandIsFinite]
O: IsKantorFamily: [IsGroup, IsList, IsList]
O: EGQByKantorFamily: [IsGroup, IsList, IsList]
O: Wrap: [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject]
O: IsAnisotropic: [IsFFECollColl, IsFieldandIsFinite]
0: IsqClan: [IsFFECollCollColl, IsFieldandIsFinite]
O: qClan: [IsFFECollCollColl, IsField]
0: LinearqClan: [IsPosInt]
0: FisherThasWalkerKantorBettengClan: [IsPosInt]
0: KantorMonomialqClan: [IsPosInt]
0: KantorKnuthqClan: [IsPosInt]
0: FisherqClan: [IsPosInt]
0: BLTSetByqClan: [IsqClanObjandIsqClanRep]
0: KantorFamilyByqClan: [IsqClanObjandIsqClanRep]
0: EGQByqClan: [IsqClanObjandIsqClanRep]
O: EGQByBLTSet: [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace]
O: EGQByBLTSet: [IsList]
0: FlockGQByqClan: [IsqClanObj]
```

$_$ Example $_$ Attributes geometry.gd: attributes A: IsChamberOfIncidenceStructure: IsFlagOfIncidenceStructure A: IsEmptyFlag: IsFlagOfIncidenceStructure A: RankAttr: IsIncidenceStructure A: RankAttr: IsFlagOfIncidenceStructure ${\tt A: TypesOfElementsOfIncidenceStructure: IsIncidenceStructure}$ ${\tt A: TypesOfElementsOfIncidenceStructurePlural: IsIncidenceStructure}$ A: CollineationGroup: IsIncidenceStructure A: CorrelationCollineationGroup: IsIncidenceStructure A: CollineationAction: IsIncidenceStructure A: CorrelationAction: IsIncidenceStructure A: RepresentativesOfElements: IsIncidenceStructure A: AmbientGeometry: IsIncidenceStructure A: AmbientGeometry: IsFlagOfIncidenceStructure A: Size: IsFlagOfIncidenceStructure A: AmbientGeometry: IsElementOfIncidenceStructureandIsElementOfIncidenceStructureRep A: AmbientGeometry: IsElementsOfIncidenceStructureandIsElementsOfIncidenceStructureRep A: AmbientGeometry: IsAllElementsOfIncidenceStructure A: CollineationAction: IsGroup liegeometry.gd: attributes A: AmbientSpace: IsLieGeometry A: AmbientSpace: IsElementOfLieGeometry A: ProjectiveDimension: IsLieGeometry A: ProjectiveDimension: IsElementOfLieGeometry A: ProjectiveDimension: IsEmptySubspace A: Dimension: IsLieGeometry group.gd: attributes A: Dimension: IsProjectiveGroupWithFrob projectivespace.gd: attributes A: ProjectivityGroup: IsProjectiveSpace A: SpecialProjectivityGroup: IsProjectiveSpace A: Dimension: IsSubspaceOfProjectiveSpace A: Dimension: IsEmpty A: Coordinates: IsSubspaceOfProjectiveSpace A: CoordinatesOfHyperplane: IsSubspaceOfProjectiveSpace A: EquationOfHyperplane: IsSubspaceOfProjectiveSpace A: StandardFrame: IsProjectiveSpace A: StandardFrame: IsSubspaceOfProjectiveSpace correlations.gd: attributes A: Dimension: IsProjGroupWithFrobWithPSIsom A: GramMatrix: IsPolarityOfProjectiveSpace

```
A: CompanionAutomorphism: IsPolarityOfProjectiveSpace
A: SesquilinearForm: IsPolarityOfProjectiveSpace
polarspace.gd: attributes
A: SesquilinearForm: IsClassicalPolarSpace
A: QuadraticForm: IsClassicalPolarSpace
A: AmbientSpace: IsClassicalPolarSpace
A: SimilarityGroup: IsClassicalPolarSpace
A: IsometryGroup: IsClassicalPolarSpace
A: SpecialIsometryGroup: IsClassicalPolarSpace
A: IsomorphismCanonicalPolarSpace: IsClassicalPolarSpace
\hbox{\tt A: IsomorphismCanonicalPolarSpaceWithIntertwiner: IsClassicalPolarSpace}
A: IsCanonicalPolarSpace: IsClassicalPolarSpace
A: PolarSpaceType: IsClassicalPolarSpace
A: CompanionAutomorphism: IsClassicalPolarSpace
A: ClassicalGroupInfo: IsClassicalPolarSpace
A: EquationForPolarSpace: IsClassicalPolarSpace
A: NucleusOfParabolicQuadric: IsClassicalPolarSpace
morphisms.gd: attributes
A: Intertwiner: IsGeometryMorphism
enumerators.gd: attributes
diagram.gd: attributes
A: DiagramOfGeometry: IsIncidenceGeometry
A: IsFlagTransitiveGeometry: IsIncidenceGeometry
A: IsResiduallyConnected: IsIncidenceGeometry
A: IsConnected: IsIncidenceGeometry
A: IsFirmGeometry: IsIncidenceGeometry
A: IsThinGeometry: IsIncidenceGeometry
A: IsThickGeometry: IsIncidenceGeometry
A: BorelSubgroup: IsCosetGeometry
A: StandardFlagOfCosetGeometry: IsCosetGeometry
A: Rank2Parameters: IsCosetGeometry
A: OrderVertex: IsVertexOfDiagram
A: NrElementsVertex: IsVertexOfDiagram
A: StabiliserVertex: IsVertexOfDiagram
A: ResidueLabelForEdge: IsEdgeOfDiagram
A: GirthEdge: IsEdgeOfDiagram
A: PointDiamEdge: IsEdgeOfDiagram
A: LineDiamEdge: IsEdgeOfDiagram
A: ParametersEdge: IsEdgeOfDiagram
A: GeometryOfDiagram: IsDiagram
varieties.gd: attributes
```

A: DefiningListOfPolynomials: IsAlgebraicVariety

A: AmbientSpace: IsAlgebraicVariety
A: SesquilinearForm: IsHermitianVariety
A: QuadraticForm: IsQuadraticVariety

A: Source: IsGeometryMap
A: Range: IsGeometryMap

affinespace.gd: attributes

A: Dimension: IsAffineSpace
A: AmbientSpace: IsAffineSpace

A: AmbientSpace: IsSubspaceOfAffineSpace

affinegroup.gd: attributes

A: AffineGroup: IsAffineSpace

gpolygons.gd: attributes

A: Order: IsGeneralisedPolygon

A: IncidenceMatrixOfGeneralisedPolygon: IsGeneralisedPolygon

A: AmbientPolarSpace: IsGeneralisedHexagon

A: ElationGroup: IsElationGQ
A: BasePointOfEGQ: IsElationGQ
A: IsLinearqClan: IsqClanObj

A: DefiningPlanesOfEGQByBLTSet: IsElationGQByBLTSet

A: CollineationSubgroup: IsElationGQByBLTSet

__ Example _

Properties

geometry.gd: properties

P: IsConfiguration: IsIncidenceStructure P: IsConstellation: IsIncidenceStructure

liegeometry.gd: properties

group.gd: properties

P: IsProjectivity: IsProjGrpEl

P: IsProjectivity: IsProjGrpElWithFrob P: IsStrictlySemilinear: IsProjGrpEl

P: IsStrictlySemilinear: IsProjGrpElWithFrob

P: IsCollineation: IsProjGrpEl

 ${\tt P: IsCollineation: IsProjGrpElWithFrob}\\$

P: IsProjectivityGroup: IsProjectiveGroupWithFrob
P: IsCollineationGroup: IsProjectiveGroupWithFrob
P: CanComputeActionOnPoints: IsProjectiveGroupWithFrob

projectivespace.gd: properties

```
correlations.gd: properties
P: IsCorrelation: IsProjGrpElWithFrobWithPSIsom
P: IsCorrelation: IsProjGrpElWithFrob
P: IsCorrelation: IsProjGrpEl
P: CanComputeActionOnPoints: IsProjGroupWithFrobWithPSIsom
P: IsProjectivity: IsProjGrpElWithFrobWithPSIsom
P: IsStrictlySemilinear: IsProjGrpElWithFrobWithPSIsom
P: IsCollineation: IsProjGrpElWithFrobWithPSIsom
P: IsProjectivityGroup: IsProjGroupWithFrobWithPSIsom
{\tt P: IsCollineationGroup: IsProjGroupWithFrobWithPSIsom}\\
P: IsHermitianPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsSymplecticPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsOrthogonalPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
P: IsPseudoPolarityOfProjectiveSpace: IsPolarityOfProjectiveSpace
polarspace.gd: properties
P: IsEllipticQuadric: IsClassicalPolarSpace
P: IsSymplecticSpace: IsClassicalPolarSpace
P: IsParabolicQuadric: IsClassicalPolarSpace
P: IsHyperbolicQuadric: IsClassicalPolarSpace
P: IsHermitianPolarSpace: IsClassicalPolarSpace
P: IsStandardPolarSpace: IsClassicalPolarSpace
morphisms.gd: properties
enumerators.gd: properties
diagram.gd: properties
varieties.gd: properties
P: IsStandardHermitianVariety: IsHermitianVariety
P: IsStandardQuadraticVariety: IsQuadraticVariety
affinespace.gd: properties
affinegroup.gd: properties
gpolygons.gd: properties
P: HasGraphWithUnderlyingObjectsAsVertices: IsGeneralisedPolygon
```

A.2.2 Functions/Methods

```
Example
Functions
geometry.gi: global functions
F: HashFuncForElements
F: HashFuncForSetElements
liegeometry.gi: global functions
group.gi: global functions
F: MakeAllProjectivePoints
F: IsFiningScalarMatrix
F: OnProjPoints
F: OnProjPointsWithFrob
F: OnProjSubspacesNoFrob
F: OnProjSubspacesWithFrob
F: NiceMonomorphismByOrbit
F: NiceMonomorphismByDomain
projectivespace.gi: global functions
F: OnProjSubspaces
F: OnSetsProjSubspaces
correlations.gi: global functions
F: OnProjPointsWithFrobWithPSIsom
F: OnProjSubspacesWithFrobWithPSIsom
F: OnProjSubspacesExtended
polarspace.gi: global functions
morphisms.gi: global functions
enumerators.gi: global functions
F: PositionNonZeroFromRight
F: FG_pos
F: FG_ffenumber
F: FG_alpha_power
F: FG_log_alpha
F: FG_beta_power
F: FG_log_beta
F \colon \ FG\_norm\_one\_element
F \colon \ FG\_index\_of\_norm\_one\_element
F: PG_element_normalize
F: FG_evaluate_hyperbolic_quadratic_form
```

```
F: FG_evaluate_hermitian_form
F: FG_nb_pts_Nbar
F: FG_nb_pts_S
F: FG_nb_pts_N
F: FG_nb_pts_N1
F: FG_nb_pts_Sbar
F: FG_herm_nb_pts_N
F: FG_herm_nb_pts_S
F: FG_herm_nb_pts_N1
F: FG_herm_nb_pts_Sbar
F: FG_N1_unrank
F: FG_S_unrank
F: FG_Sbar_unrank
F: FG_Nbar_unrank
F: FG_N_unrank
F: FG_herm_N_unrank
F: FG_herm_N_rank
F: FG_herm_S_unrank
F: FG_herm_S_rank
F: FG_herm_N1_unrank
F: FG_herm_N1_rank
F: FG_herm_Sbar_unrank
F: FG_herm_Sbar_rank
F: FG_S_rank
F: FG_N_rank
F: FG_N1_rank
F: FG_Sbar_rank
F: FG_Nbar_rank
F: QElementNumber
F: QplusElementNumber
F: QminusElementNumber
F: QNumberElement
F: QplusNumberElement
F: QminusNumberElement
F: HermElementNumber
F: HermNumberElement
F: FG_specialresidual
F: FG_enum_orthogonal
F: FG_enum_hermitian
F: FG_enum_symplectic
diagram.gi: global functions
F: OnCosetGeometryElement
F: DrawDiagram
F: DrawDiagramWithNeato
F: Drawing_Diagram
varieties.gi: global functions
```

affinespace.gi: global functions

289

```
affinegroup.gi: global functions

F: OnAffinePoints
F: OnAffineNotPoints
F: OnAffineSubspaces

gpolygons.gi: global functions

F: SplitCayleyPointToPlane5
F: SplitCayleyPointToPlane
F: ZeroPointToOnePointsSpaceByTriality
F: TwistedTrialityHexagonPointToPlaneByTwoTimesTriality
F: OnKantorFamily

orbits-stabilisers.gi: global functions
```

```
\_ Example \_
Methods
geometry.gi: methods
M: IncidenceStructure, [ IsList, IsFunction, IsFunction, IsList ],
M: Rank, [IsIncidenceStructure],
M: IncidenceGraph, [IsIncidenceStructure],
M: ElementsOfIncidenceStructure, [IsIncidenceStructure, IsPosInt],
M: ElementsOfIncidenceStructure, [IsIncidenceStructure, IsString],
M: Iterator, [ IsElementsOfIncidenceStructure ],
M: Enumerator, [ IsElementsOfIncidenceStructure ],
M: NrElementsOfIncidenceStructure, [IsIncidenceStructure, IsString],
M: NrElementsOfIncidenceStructure, [IsIncidenceStructure, IsPosInt],
M: ChooseHashFunction, [ IsElementOfIncidenceStructure, IsPosInt ],
M: ChooseHashFunction, [ CategoryCollections(IsElementOfIncidenceStructure), IsPos[Int ],
M: AmbientGeometry, [ IsElementsOfIncidenceStructure and IsElementsOfIncidenceStructureRep ],
M: AmbientGeometry, [ IsAllElementsOfIncidenceStructure ],
M: Type, [IsElementsOfIncidenceStructure and IsElementsOfIncidenceStructureRep],
M: Wrap, [IsIncidenceStructure, IsPosInt, IsObject],
M: Unwrap, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
M: UnderlyingObject, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
M: ObjectToElement, [ IsIncidenceStructure, IsPosInt, IsObject ],
M: AmbientGeometry, [IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep],
M: Intersection2, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: Type, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: \=, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \<, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \*, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: IsIncident, [IsElementOfIncidenceStructure, IsElementOfIncidenceStructure],
M: FlagOfIncidenceStructure, [IsIncidenceStructure, IsElementOfIncidenceStructureCollection],
M: FlagOfIncidenceStructure, [ IsIncidenceStructure, IsList and IsEmpty ],
```

290

```
M: IsChamberOfIncidenceStructure, [IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep
M: AmbientGeometry, [IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep],
M: ElementsOfFlag, [IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep],
M: Size, [IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep],
M: Rank, [ IsFlagOfIncidenceStructure ],
M: Type, [ IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep ],
M: ResidueOfFlag, [ IsFlagOfIncidenceStructure ],
M: \=, [ IsFlagOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: \<, [ IsFlagOfIncidenceStructure, IsFlagOfIncidenceStructure ],</pre>
M: \<, [ IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure ],</pre>
M: \<, [ IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: IsIncident, [IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure],
M: IsIncident, [IsFlagOfIncidenceStructure, IsElementOfIncidenceStructure],
M: \in, [ IsElementOfIncidenceStructure, IsFlagOfIncidenceStructure ],
M: ShadowOfElement, [IsIncidenceStructure, IsElementOfIncidenceStructure, IsPosInt],
M: ShadowOfElement, [IsIncidenceStructure, IsElementOfIncidenceStructure, IsString],
M: ElementsIncidentWithElementOfIncidenceStructure, [ IsElementOfIncidenceStructure, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsFlagOfIncidenceStructure, IsString],
M: ShadowOfFlag, [IsIncidenceStructure, IsList, IsPosInt],
M: ShadowOfFlag, [IsIncidenceStructure, IsList, IsString],
M: Iterator, [ IsShadowElementsOfIncidenceStructure ],
M: ViewObj, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: ViewObj, [IsFlagOfIncidenceStructure and IsFlagOfIncidenceStructureRep],
M: PrintObj, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: Display, [ IsElementOfIncidenceStructure and IsElementOfIncidenceStructureRep ],
M: ViewObj, [ IsAllElementsOfIncidenceStructure ],
M: PrintObj, [ IsAllElementsOfIncidenceStructure ],
M: ViewObj, [ IsShadowElementsOfIncidenceStructure ],
M: ViewObj, [ IsElementsOfIncidenceStructure ],
M: PrintObj, [ IsElementsOfIncidenceStructure ],
M: ViewObj, [ IsIncidenceStructure ],
M: PrintObj, [ IsIncidenceStructure ],
M: Display, [ IsIncidenceStructure ],
M: IsConfiguration, [ IsIncidenceStructure],
M: IsConstellation, [IsIncidenceStructure],
liegeometry.gi: methods
M: UnderlyingVectorSpace, [ IsLieGeometry],
M: ProjectiveDimension, [ IsLieGeometry ],
M: Dimension, [ IsLieGeometry ],
M: BaseField, [ IsLieGeometry ],
M: Wrap, [IsLieGeometry, IsPosInt, IsObject],
M: UnderlyingObject, [IsElementOfLieGeometry],
M: AmbientSpace, [IsElementOfLieGeometry],
M: ViewObj, [ IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep ],
M: PrintObj, [ IsAllElementsOfLieGeometry and IsAllElementsOfLieGeometryRep ],
M: ViewObj, [IsElementsOfLieGeometry and IsElementsOfLieGeometryRep],
M: PrintObj, [IsElementsOfLieGeometry and IsElementsOfLieGeometryRep],
M: Points, [IsLieGeometry],
M: Lines, [IsLieGeometry],
```

```
M: Planes, [IsLieGeometry],
M: Solids, [IsLieGeometry],
M: EmptySubspace, [IsLieGeometry],
M: BaseField, [IsEmptySubspace and IsEmptySubspaceRep],
M: ViewObj, InstallMethod(ViewObj,[IsEmptySubspace],
M: PrintObj, InstallMethod(PrintObj,[IsEmptySubspace],
M: Display, InstallMethod(Display, [IsEmptySubspace],
M: \=, [IsEmptySubspace, IsEmptySubspace],
M: \in, [ IsEmptySubspace, IsEmptySubspace ],
M: \in, [ IsEmptySubspace, IsElementOfLieGeometry ],
M: \in, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: \in, [ IsEmptySubspace, IsLieGeometry ],
M: Span, [ IsEmptySubspace, IsElementOfLieGeometry ],
M: Span, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: Span, [IsEmptySubspace, IsEmptySubspace],
M: Meet, [ IsEmptySubspace, IsElementOfLieGeometry ],
M: Meet, [ IsElementOfLieGeometry, IsEmptySubspace ],
M: Meet, [IsEmptySubspace, IsEmptySubspace],
M: Points, [ IsElementOfLieGeometry ],
M: Points, [IsLieGeometry, IsElementOfLieGeometry],
M: Lines, [ IsElementOfLieGeometry ],
M: Lines, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Planes, [ IsElementOfLieGeometry ],
M: Planes, [ IsLieGeometry, IsElementOfLieGeometry ],
M: Solids, InstallMethod(Solids,[IsElementOfLieGeometry],
M: Solids, [IsLieGeometry, IsElementOfLieGeometry],
M: Hyperplanes, [ IsElementOfLieGeometry ],
M: Hyperplanes, [ IsLieGeometry, IsElementOfLieGeometry ],
M: ViewObj, [ IsShadowElementsOfLieGeometry and IsShadowElementsOfLieGeometryRep ],
M: \in, [IsElementOfLieGeometry, IsElementOfLieGeometry],
M: Random, [ IsSubspacesVectorSpace ],
M: RandomSubspace, [IsVectorSpace,IsInt],
M: ElementToElement, [IsLieGeometry, IsElementOfLieGeometry],
M: ObjectToElement, [IsLieGeometry, IsPosInt, IsObject],
M: ObjectToElement, [IsLieGeometry, IsObject],
group.gi: methods
M: ProjEl, [IsMatrix and IsFFECollColl],
M: ProjEls, [IsList],
M: Projectivity, InstallMethod(Projectivity, [IsMatrixandIsFFECollColl, IsField],
M: Projectivity, InstallMethod(Projectivity, [IsCMatRepandIsFFECollColl, IsField],
M: Projectivity, InstallMethod(Projectivity, [IsProjectiveSpace, IsMatrix],
M: Projectivity, InstallMethod(Projectivity, [IsProjectiveSpace, IsCMatRep],
M: IsProjectivity, InstallMethod(IsProjectivity,[IsProjGrpEl],
M: IsProjectivity, InstallMethod(IsProjectivity, [IsProjGrpElWithFrob],
M: IsStrictlySemilinear, InstallMethod(IsStrictlySemilinear,[IsProjGrpEl],
M: IsStrictlySemilinear, InstallMethod(IsStrictlySemilinear,[IsProjGrpElWithFrob],
M: IsCollineation, InstallMethod(IsCollineation,[IsProjGrpEl],
M: IsCollineation, InstallMethod(IsCollineation, [IsProjGrpElWithFrob],
M: IsProjectivityGroup, InstallMethod(IsProjectivityGroup,[IsProjectiveGroupWithFrob],
M: IsCollineationGroup, InstallMethod(IsCollineationGroup,[IsProjectiveGroupWithFrob],
```

```
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, #changed 19/3/14 to cmat. IsRingHomomorphism and
M: ProjElWithFrob, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWit
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, #changed 19/3/14. IsRingHomomorphism and IsMulti
M: ProjElWithFrob, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicativeElementWi
M: ProjElsWithFrob, [IsList, IsField],
M: ProjElsWithFrob, [IsList],
M: CollineationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField],
M: CollineationOfProjectiveSpace, InstallMethod(CollineationOfProjectiveSpace,[IsProjectiveSpace,
M: CollineationOfProjectiveSpace, InstallMethod(CollineationOfProjectiveSpace, [IsProjectiveSpace,
M: CollineationOfProjectiveSpace, InstallMethod(CollineationOfProjectiveSpace,[IsProjectiveSpace,
M: Collineation, InstallMethod(Collineation, [IsProjectiveSpace, IsMatrix],
M: Collineation, InstallMethod(Collineation, [IsProjectiveSpace, IsMatrix, IsMapping],
M: CollineationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultipli
M: ProjectiveSemilinearMap, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ProjectivityByImageOfStandardFrameNC, InstallMethod(ProjectivityByImageOfStandardFrameNC, [IsPr
M: MatrixOfCollineation, InstallMethod(MatrixOfCollineation, [IsProjGrpElandIsProjGrpElRep],
M: MatrixOfCollineation, InstallMethod(MatrixOfCollineation, [IsProjGrpElWithFrobandIsProjGrpElWit
M: FieldAutomorphism, InstallMethod(FieldAutomorphism, [IsProjGrpElWithFrobandIsProjGrpElWithFrobF
M: Representative, [IsProjGrpEl and IsProjGrpElRep],
M: BaseField, [IsProjGrpEl and IsProjGrpElRep],
M: Representative, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: BaseField, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: ViewObj, [IsProjGrpEl and IsProjGrpElRep],
M: Display, [IsProjGrpEl and IsProjGrpElRep],
M: PrintObj, [IsProjGrpEl and IsProjGrpElRep],
M: ViewObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: Display, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: PrintObj, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: \=, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
M: \<, [IsProjGrpEl, IsProjGrpEl],</pre>
M: \=, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and IsProjGrpElWithFr
M: \<, [IsProjGrpElWithFrob, IsProjGrpElWithFrob],</pre>
M: Order, [IsProjGrpEl and IsProjGrpElRep],
M: Order, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: IsOne, [IsProjGrpEl and IsProjGrpElRep],
M: IsOne, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: DegreeFFE, [IsProjGrpEl and IsProjGrpElRep],
M: DegreeFFE, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: Characteristic, [IsProjGrpEl and IsProjGrpElRep],
M: Characteristic, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: \*, [IsProjGrpEl and IsProjGrpElRep, IsProjGrpEl and IsProjGrpElRep],
M: InverseSameMutability, [IsProjGrpEl and IsProjGrpElRep],
M: InverseMutable, [IsProjGrpEl and IsProjGrpElRep],
M: OneImmutable, [IsProjGrpEl and IsProjGrpElRep],
M: OneSameMutability, [IsProjGrpEl and IsProjGrpElRep],
M: \^, [ IsVector and IsFFECollection and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsCVecRep and IsFFECollection and IsMutable, IsFrobeniusAutomorphism ],
{\tt M: \ \ \ [\ Is Vector\ and\ Is FFE Collection,\ Is Frobenius Automorphism\ ],}
M: \^, [ IsCVecRep and IsFFECollection, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and IsMutable, IsMapping and IsOne ],
M: \^, [ IsCVecRep and IsFFECollection and IsMutable, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsFrobeniusAutomorphism ],
```

```
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep and IsMutable, IsFrobeniusAutomorphism ]
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsFrobeniusAutomorphism ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep and IsMutable, IsFrobeniusAutomorphism
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsMapping and IsOne ],
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl, IsFrobeniusAutomorphism ],
M: \^, [ IsCMatRep and IsFFECollColl, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsCMatRep and IsFFECollColl and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl, IsMapping and IsOne ],
M: \^, [ IsCMatRep and IsFFECollColl and IsMutable, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl, IsMapping and IsOne ],
M: \^, [ IsCMatRep and IsFFECollColl , IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep, IsFrobeniusAutomorphism ]
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and IsGF2MatrixRep and IsMutable, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep and IsMutable, IsFrobeniusAutomorphism ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsMapping and IsOne ],
M: \^, [ IsMatrix and IsFFECollColl and Is8BitMatrixRep and IsMutable, IsMapping and IsOne ],
M: \*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrob and IsProjGrpElWithFrob
M: InverseSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: InverseMutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: OneImmutable, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: OneSameMutability, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep],
M: ViewObj, [IsProjectiveGroupWithFrob],
M: ViewObj, [IsProjectiveGroupWithFrob and IsTrivial],
M: ViewObj, [IsProjectiveGroupWithFrob and HasGeneratorsOfGroup],
M: ViewObj, [IsProjectiveGroupWithFrob and HasSize],
M: ViewObj, [IsProjectiveGroupWithFrob and HasGeneratorsOfGroup and HasSize],
M: BaseField, [IsProjectiveGroupWithFrob],
M: Dimension, [IsProjectiveGroupWithFrob],
M: OneImmutable, # was [IsGroup and IsProjectiveGroupWithFrob], I think might be
M: CanComputeActionOnPoints, [IsProjectiveGroupWithFrob],
M: ActionOnAllProjPoints, [ IsProjectiveGroupWithFrob ],
M: SetAsNiceMono, [IsProjectiveGroupWithFrob, IsGroupHomomorphism and IsInjective],
M: NiceMonomorphism, [IsProjectivityGroup and CanComputeActionOnPoints and IsHandledByNiceMonomorphism,
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism],
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and CanComputeActionOnPoints and IsHandledByNiceM
M: NiceMonomorphism, [IsProjectiveGroupWithFrob and IsHandledByNiceMonomorphism], 50,
M: FindBasePointCandidates, [IsProjectivityGroup,IsRecord,IsInt],
M: FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt],
M: FindBasePointCandidates, [IsProjectiveGroupWithFrob,IsRecord,IsInt,IsObject],
M: CanonicalGramMatrix, [IsString, IsPosInt, IsField],
M: CanonicalQuadraticForm, [IsString, IsPosInt, IsField],
M: SOdesargues, [IsInt, IsPosInt, IsField and IsFinite],
M: GOdesargues, InstallMethod(GOdesargues, [IsInt, IsPosInt, IsFieldandIsFinite],
M: SUdesargues, InstallMethod(SUdesargues,[IsPosInt,IsFieldandIsFinite],
M: GUdesargues, InstallMethod(GUdesargues, [IsPosInt, IsFieldandIsFinite],
```

```
M: Spdesargues, InstallMethod(Spdesargues, [IsPosInt, IsFieldandIsFinite],
M: GeneralSymplecticGroup, InstallMethod(GeneralSymplecticGroup, [IsPosInt,IsFieldandIsFinite],
M: GSpdesargues, InstallMethod(GSpdesargues, [IsPosInt, IsFieldandIsFinite],
M: GammaSp, InstallMethod(GammaSp,[IsPosInt,IsFieldandIsFinite],
M: DeltaOminus, InstallMethod(DeltaOminus, [IsPosInt, IsFieldandIsFinite],
M: GammaOminus, InstallMethod(GammaOminus, [IsPosInt, IsFieldandIsFinite],
M: GammaO, InstallMethod(GammaO, [IsPosInt, IsFieldandIsFinite],
M: DeltaOplus, InstallMethod(DeltaOplus, [IsPosInt, IsFieldandIsFinite],
M: GammaOplus, InstallMethod(GammaOplus, [IsPosInt, IsFieldandIsFinite],
M: GammaU, InstallMethod(GammaU, [IsPosInt, IsFieldandIsFinite],
projectivespace.gi: methods
M: Wrap, [IsProjectiveSpace, IsPosInt, IsObject],
M: ProjectiveSpace, [ IsInt, IsField ],
M: ProjectiveSpace, [ IsInt, IsPosInt ],
\verb|M: ViewObj, InstallMethod(ViewObj, [IsProjectiveSpaceandIsProjectiveSpaceRep]|,\\
M: ViewString, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: PrintObj, InstallMethod(PrintObj, [IsProjectiveSpaceandIsProjectiveSpaceRep],
M: Display, InstallMethod(Display, [IsProjectiveSpaceandIsProjectiveSpaceRep],
M: \=, [IsProjectiveSpace, IsProjectiveSpace],
M: Rank, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: BaseField, [IsSubspaceOfProjectiveSpace],
M: StandardFrame, [IsProjectiveSpace],
M: RepresentativesOfElements, "for a projective space", [IsProjectiveSpace],
M: Hyperplanes, [ IsProjectiveSpace ],
M: TypesOfElementsOfIncidenceStructure, "for a projective space", [IsProjectiveSpace],
M: TypesOfElementsOfIncidenceStructurePlural, [IsProjectiveSpace],
M: ElementsOfIncidenceStructure, [IsProjectiveSpace, IsPosInt],
M: ElementsOfIncidenceStructure, [IsProjectiveSpace],
M: \=, [ IsAllSubspacesOfProjectiveSpace, IsAllSubspacesOfProjectiveSpace ],
M: Size, [IsSubspacesOfProjectiveSpace and IsSubspacesOfProjectiveSpaceRep],
M: \in, [IsElementOfIncidenceStructure, IsElementsOfIncidenceStructure], 1*SUM_FLAGS+3,
M: \in, [IsElementOfIncidenceStructure, IsAllElementsOfIncidenceStructure], 1*SUM_FLAGS+3,
M: VectorSpaceToElement, [IsProjectiveSpace, IsCMatRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsPlistRep and IsMatrix],
M: VectorSpaceToElement, [IsProjectiveSpace, IsGF2MatrixRep],
M: VectorSpaceToElement, [IsProjectiveSpace, Is8BitMatrixRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsCVecRep],
M: VectorSpaceToElement, [IsProjectiveSpace, IsRowVector],
M: VectorSpaceToElement, [IsProjectiveSpace, Is8BitVectorRep],
M: UnderlyingVectorSpace, [IsSubspaceOfProjectiveSpace],
M: ProjectiveDimension, [ IsSubspaceOfProjectiveSpace ],
M: Dimension, [ IsSubspaceOfProjectiveSpace ],
M: StandardFrame, [IsSubspaceOfProjectiveSpace],
M: Coordinates, [IsSubspaceOfProjectiveSpace],
M: DualCoordinatesOfHyperplane, [IsSubspaceOfProjectiveSpace],
M: HyperplaneByDualCoordinates, [IsProjectiveSpace,IsList],
M: EquationOfHyperplane, [IsSubspaceOfProjectiveSpace],
M: Span, [ IsEmptySubspace, IsProjectiveSpace ],
M: Span, [IsProjectiveSpace, IsEmptySubspace],
M: Meet, [ IsEmptySubspace, IsProjectiveSpace ],
```

```
M: Meet, [ IsProjectiveSpace, IsEmptySubspace ],
M: ShadowOfElement, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace, IsPosInt],
M: Size, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspacesOfProjectiveSpaceRep],
M: CollineationGroup, [ IsProjectiveSpace and IsProjectiveSpaceRep ],
M: ProjectivityGroup, [ IsProjectiveSpace ],
M: SpecialProjectivityGroup, [ IsProjectiveSpace ],
M: \^, [IsElementOfIncidenceStructure, IsProjGrpElWithFrob],
M: \^, [IsElementOfIncidenceStructure, IsProjGrpElWithFrobWithPSIsom],
M: AsList, [IsSubspacesOfProjectiveSpace],
M: Iterator, [IsSubspacesOfProjectiveSpace],
M: FlagOfIncidenceStructure, [IsProjectiveSpace, IsSubspaceOfProjectiveSpaceCollection],
M: FlagOfIncidenceStructure, [ IsProjectiveSpace, IsList and IsEmpty ],
M: UnderlyingVectorSpace, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
M: PrintObj, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
M: Display, [IsFlagOfProjectiveSpace and IsFlagOfIncidenceStructureRep],
M: ShadowOfFlag, [IsProjectiveSpace, IsFlagOfProjectiveSpace, IsPosInt],
M: Iterator, [IsShadowSubspacesOfProjectiveSpace and IsShadowSubspacesOfProjectiveSpaceRep],
M: \in, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: \in, [ IsProjectiveSpace, IsEmptySubspace ],
M: \in, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: \in, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: IsIncident, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],
M: Span, [IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollection],
M: Span, [ IsList ],
M: Span, [IsList, IsBool],
M: Meet, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Meet, [IsSubspaceOfProjectiveSpace, IsProjectiveSpace],
M: Meet, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: Meet, [ IsHomogeneousList and IsSubspaceOfProjectiveSpaceCollection],
M: Meet, [ IsList ],
M: RandomSubspace, [IsProjectiveSpace,IsInt],
M: RandomSubspace, [IsSubspaceOfProjectiveSpace,IsInt],
M: RandomSubspace, [IsProjectiveSpace],
M: Random, [ IsSubspacesOfProjectiveSpace ],
M: Random, [ IsAllSubspacesOfProjectiveSpace ],
M: Random, [IsShadowSubspacesOfProjectiveSpace],
M: BaerSublineOnThreePoints, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubs
M: BaerSubplaneOnQuadrangle, InstallMethod(BaerSubplaneOnQuadrangle, [IsSubspaceOfProjectiveSpace,
M: ComplementSpace, [IsVectorSpace, IsFFECollColl],
M: ElationOfProjectiveSpace, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubs
M: ProjectiveElationGroup, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: ProjectiveElationGroup, [ IsSubspaceOfProjectiveSpace ],
M: HomologyOfProjectiveSpace, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, IsSubspace, 
M: ProjectiveHomologyGroup, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: SingerCycleMat, InstallMethod(SingerCycleMat,[IsInt,IsInt],
M: SingerCycleCollineation, InstallMethod(SingerCycleCollineation,[IsInt,IsInt],
M: IncidenceGraph, [ IsProjectiveSpace ],
```

```
correlations.gi: methods
M: IdentityMappingOfElementsOfProjectiveSpace, [IsProjectiveSpace],
M: StandardDualityOfProjectiveSpace, [IsProjectiveSpace],
{\tt M: IsCollineation, InstallMethod(IsCollineation, [IsProjGrpElWithFrobWithPSIsom],}\\
M: IsCorrelation, InstallMethod(IsCorrelation, [IsProjGrpElWithFrobWithPSIsom],
M: IsCorrelation, InstallMethod(IsCorrelation,[IsProjGrpElWithFrob],
M: IsCorrelation, InstallMethod(IsCorrelation,[IsProjGrpEl],
M: IsProjectivity, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: IsStrictlySemilinear, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: IsProjectivityGroup, InstallMethod(IsProjectivityGroup,[IsProjGroupWithFrobWithPSIsom],
M: IsCollineationGroup, InstallMethod(IsCollineationGroup,[IsProjGroupWithFrobWithPSIsom],
M: ViewObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: Display, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: PrintObj, [IsStandardDualityOfProjectiveSpace and IsSPMappingByFunctionWithInverseRep],
M: \*, [IsStandardDualityOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \*, [IsStandardDualityOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: \*, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace,
M: \^, [ IsProjectiveSpaceIsomorphism, IsZeroCyc ],
M: \=, [IsStandardDualityOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \=, [IsStandardDualityOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace],
M: \=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsStandardDualityOfProjectiveSpace],
M: \=, [IsIdentityMappingOfElementsOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ProjElWithFrobWithPSIsom, [IsCMatRep and IsFFECollColl, IsRingHomomorphism and |IsMultiplicativ
M: ProjElWithFrobWithPSIsom, [IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplicative
M: ViewObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: Display, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: PrintObj, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep]
M: Representative, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: BaseField, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: BaseField, [IsProjGroupWithFrobWithPSIsom],
M: \=, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrobWi
M: IsOne, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: OneImmutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: OneImmutable, [IsGroup and IsProjGrpElWithFrobWithPSIsom],
M: OneSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \^, [ IsCVecRep and IsFFECollection, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsVector and IsFFECollection, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsVector and IsFFECollection and IsGF2VectorRep, IsIdentityMappingOfElementsOfProjective
M: \^, [ IsVector and IsFFECollection and Is8BitVectorRep, IsIdentityMappingOfElementsOfProjectiv
M: \^, [ IsCMatRep and IsFFECollColl, IsStandardDualityOfProjectiveSpace ],
M: \^, [ IsMatrix and IsFFECollColl, IsStandardDualityOfProjectiveSpace ],
M: \^, [ IsCMatRep and IsFFECollColl, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsMatrix and IsFFECollColl, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsSubspaceOfProjectiveSpace, IsIdentityMappingOfElementsOfProjectiveSpace ],
M: \^, [ IsSubspaceOfProjectiveSpace, IsStandardDualityOfProjectiveSpace ],
M: \*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrobWi
```

```
M: \<, [IsProjGrpElWithFrobWithPSIsom, IsProjGrpElWithFrobWithPSIsom],
M: InverseSameMutability, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: InverseMutable, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep],
M: \*, [IsProjGrpElWithFrob and IsProjGrpElWithFrobRep, IsProjGrpElWithFrobWithPSIsom and IsProjG
M: \*, [IsProjGrpElWithFrobWithPSIsom and IsProjGrpElWithFrobWithPSIsomRep, IsProjGrpElWithFrob a
M: ProjElsWithFrobWithPSIsom, [IsList, IsField],
M: CorrelationCollineationGroup, [IsProjectiveSpace and IsProjectiveSpaceRep],
M: CorrelationOfProjectiveSpace, [IsMatrix and IsFFECollColl, IsField],
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplic
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField, IsStandardDualityOfProjectiveSpace, IsMatrix and IsFFECollColl, IsFfecollColl, IsField, IsMatrix and IsFFECollColl, Isffecol
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsField, IsIdentityMappingOfElement
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplic
M: CorrelationOfProjectiveSpace, [ IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiplic
M: CorrelationOfProjectiveSpace, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorph
M: CorrelationOfProjectiveSpace, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorph
M: Correlation, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultiple
M: Correlation, [ IsProjectiveSpace, IsMatrix and IsFFECollColl, IsRingHomomorphism and IsMultipl
M: MatrixOfCorrelation, InstallMethod(MatrixOfCorrelation, [IsProjGrpElWithFrobWithPSIsomand IsPro
M: FieldAutomorphism, InstallMethod(FieldAutomorphism, [IsProjGrpElWithFrobWithPSIsomand IsProjGrp
M: ProjectiveSpaceIsomorphism, InstallMethod(ProjectiveSpaceIsomorphism, [IsProjGrpElWithFrobWithF
M: Embedding, [IsProjectiveGroupWithFrob, IsProjGroupWithFrobWithPSIsom],
M: Dimension, [IsProjGroupWithFrobWithPSIsom],
M: ActionOnAllPointsHyperplanes, [ IsProjGroupWithFrobWithPSIsom ],
{\tt M: CanComputeActionOnPoints, [IsProjGroupWithFrobWithPSIsom],}\\
M: SetAsNiceMono, [IsProjGroupWithFrobWithPSIsom, IsGroupHomomorphism and IsInjective],
M: NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and CanComputeActionOnPoints and IsHandledByN
M: NiceMonomorphism, [IsProjGroupWithFrobWithPSIsom and IsHandledByNiceMonomorphism], 50,
M: ViewObj, [IsProjGroupWithFrobWithPSIsom],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and IsTrivial],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasSize],
M: ViewObj, [IsProjGroupWithFrobWithPSIsom and HasGeneratorsOfGroup and HasSize],
M: PolarityOfProjectiveSpaceOp, [IsSesquilinearForm and IsFormRep],
M: ViewObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
\verb|M: PrintObj, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep]|,\\
M: Display, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: PolarityOfProjectiveSpace, [IsSesquilinearForm and IsFormRep],
M: PolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],
M: PolarityOfProjectiveSpace, [IsMatrix, IsFrobeniusAutomorphism, IsField and IsFinite],
M: HermitianPolarityOfProjectiveSpace, [IsMatrix,IsField and IsFinite],
M: GramMatrix, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: BaseField, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: CompanionAutomorphism, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: SesquilinearForm, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpaceRep],
M: IsHermitianPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveS
M: IsOrthogonalPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjective
M: IsSymplecticPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjective
M: IsPseudoPolarityOfProjectiveSpace, [IsPolarityOfProjectiveSpace and IsPolarityOfProjectiveSpace
M: \^, [ IsSubspaceOfProjectiveSpace, IsPolarityOfProjectiveSpace],
polarspace.gi: methods
```

```
M: Wrap, [IsClassicalPolarSpace, IsPosInt, IsObject],
M: PolarSpace, [ IsSesquilinearForm, IsField, IsGroup, IsFunction ],
M: PolarSpaceStandard, [ IsSesquilinearForm, IsBool ],
M: PolarSpaceStandard, [ IsQuadraticForm, IsBool ],
M: PolarSpace, [ IsSesquilinearForm ],
M: PolarSpace, [ IsQuadraticForm ],
M: PolarSpace, [ IsHermitianForm ],
M: CanonicalOrbitRepresentativeForSubspaces, [IsString, IsPosInt, IsField],
M: EllipticQuadric, [ IsPosInt, IsField ],
M: EllipticQuadric, [ IsPosInt, IsPosInt ],
M: SymplecticSpace, [ IsPosInt, IsField ],
M: SymplecticSpace, [ IsPosInt, IsPosInt ],
M: ParabolicQuadric, [ IsPosInt, IsField ],
M: ParabolicQuadric, [ IsPosInt, IsPosInt ],
M: HyperbolicQuadric, [ IsPosInt, IsField ],
M: HyperbolicQuadric, [ IsPosInt, IsPosInt ],
M: HermitianPolarSpace, [ IsPosInt, IsField ],
M: HermitianPolarSpace, [ IsPosInt, IsPosInt ],
M: StandardPolarSpace, [IsClassicalPolarSpace],
{\tt M: IsCanonicalPolarSpace, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],}
M: CanonicalPolarSpace, [ IsClassicalPolarSpace ],
M: QuadraticForm, [ IsClassicalPolarSpace ],
M: PolarSpaceType, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: CompanionAutomorphism, [ IsClassicalPolarSpace ],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: ViewObj, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric and IsStar
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric and IsS
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace and IsStar
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace and IsS
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric and IsSta
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric and Is
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],
{\tt M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],}
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric and IsSt
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric and I
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace],
M: ViewObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace and IsS
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace and
M: ViewString, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace],
M: PrintObj, InstallMethod(PrintObj, [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
M: Display, InstallMethod(Display, [IsClassicalPolarSpaceandIsClassicalPolarSpaceRep],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsEllipticQuadric],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
```

```
M: Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsSymplecticSpace],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],
M: Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsParabolicQuadric],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
M: Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHyperbolicQuadric],
M: PrintObj, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace],
M: Display, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep and IsHermitianPolarSpace],
M: IsomorphismCanonicalPolarSpace, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: IsomorphismCanonicalPolarSpaceWithIntertwiner, [ IsClassicalPolarSpace and IsClassicalPolarSpa
M: RankAttr, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: TypesOfElementsOfIncidenceStructure, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: TypesOfElementsOfIncidenceStructurePlural, [IsClassicalPolarSpace],
M: Order, [ IsClassicalPolarSpace and IsClassicalPolarSpaceRep ],
M: RepresentativesOfElements, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: QUO, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfClassicalPolarSpace],
M: Size, [IsSubspacesOfClassicalPolarSpace],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsCMatRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsCVecRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsPlistRep and IsMatrix],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsGF2MatrixRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitMatrixRep],
M: VectorSpaceToElement, [IsClassicalPolarSpace, IsRowVector],
M: VectorSpaceToElement, [IsClassicalPolarSpace, Is8BitVectorRep],
{\tt M: \ \ [IsElementOfIncidenceStructure, \ IsClassicalPolarSpace],}
M: Span, [IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace, IsBool],
M: Meet, [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],
M: ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsPosInt],
M: ElementsOfIncidenceStructure, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: NumberOfTotallySingularSubspaces, [IsClassicalPolarSpace, IsPosInt],
M: TypeOfSubspace, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: FlagOfIncidenceStructure, [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpaceCollection],
M: FlagOfIncidenceStructure, [ IsClassicalPolarSpace, IsList and IsEmpty ],
M: ViewObj, [IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep],
M: PrintObj, [ IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep ],
M: Display, [IsFlagOfClassicalPolarSpace and IsFlagOfIncidenceStructureRep],
M: RandomSubspace, [IsClassicalPolarSpace, IsPosInt],
M: Random, [ IsSubspacesOfClassicalPolarSpace ],
M: Iterator, [IsSubspacesOfClassicalPolarSpace],
M: ShadowOfElement, [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace, IsPosInt],
M: Iterator, [ IsShadowSubspacesOfClassicalPolarSpace ],
M: Size, [IsShadowSubspacesOfClassicalPolarSpace andIsShadowSubspacesOfClassicalPolarSpaceRep],
M: IsCollinear, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep, IsSubspaceOfProjectiveSpace,
M: PolarityOfProjectiveSpace, [IsClassicalPolarSpace],
M: PolarSpace, [ IsPolarityOfProjectiveSpace ],
M: GeometryOfAbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: AbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: AbsolutePoints, [ IsPolarityOfProjectiveSpace ],
M: PolarMap, [IsClassicalPolarSpace],
M: CollineationGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: SpecialIsometryGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: IsometryGroup, [IsClassicalPolarSpace and IsClassicalPolarSpaceRep],
M: SimilarityGroup, InstallMethod(SimilarityGroup,[IsClassicalPolarSpaceandIsClass|icalPolarSpaceF
```

```
M: IsParabolicQuadric, [IsClassicalPolarSpace],
M: IsParabolicQuadric, [IsClassicalPolarSpace],
M: IsHyperbolicQuadric, [IsClassicalPolarSpace],
M: IsHyperbolicQuadric, [IsClassicalPolarSpace],
M: IsEllipticQuadric, [IsClassicalPolarSpace],
M: IsEllipticQuadric, [IsClassicalPolarSpace],
M: IsSymplecticSpace, [IsClassicalPolarSpace],
M: IsHermitianPolarSpace, [IsClassicalPolarSpace],
M: DefiningListOfPolynomials, [IsProjectiveVariety and IsClassicalPolarSpace and IsClassicalPolar
{\tt M: NucleusOfParabolicQuadric, [IsClassicalPolarSpace],}\\
M: TangentSpace, [ IsSubspaceOfClassicalPolarSpace ],
M: TangentSpace, [ IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace ],
M: Pole, [IsClassicalPolarSpace, IsSubspaceOfProjectiveSpace],
M: IncidenceGraph, [ IsClassicalPolarSpace ],
morphisms.gi: methods
M: GeometryMorphismByFunction, [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure,
M: GeometryMorphismByFunction, [ IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure,
M: GeometryMorphismByFunction, [IsAnyElementsOfIncidenceStructure, IsAnyElementsOfIncidenceStructure,
M: ViewObj, [ IsGeometryMorphism ],
M: PrintObj, [ IsGeometryMorphism ],
M: Display, [ IsGeometryMorphism ],
{\tt M: ViewObj, [IsGeometryMorphism and IsMappingByFunctionWithInverseRep],}\\
M: ViewObj, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: PrintObj, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: Display, [ IsGeometryMorphism and IsMappingByFunctionRep ],
M: ImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],
M: \^, [IsElementOfIncidenceStructure, IsGeometryMorphism],
M: ImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],
M: PreImageElm, [IsGeometryMorphism, IsElementOfIncidenceStructure],
{\tt M: PreImagesSet, [IsGeometryMorphism, IsElementOfIncidenceStructureCollection],}
M: NaturalEmbeddingBySubspace, [IsProjectiveSpace, IsProjectiveSpace, IsSubspaceOfProjectiveSpace
M: NaturalEmbeddingBySubspaceNC, [IsProjectiveSpace, IsProjectiveSpace, IsSubspaceOfProjectiveSpace, IsProjectiveSpace, IsProje
M: NaturalEmbeddingBySubspace, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsSubspaceOfProjection
M: NaturalEmbeddingBySubspaceNC, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsSubspaceOfProj
M: IsomorphismPolarSpaces, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool],
\verb|M: IsomorphismPolarSpaces, [IsClassicalPolarSpace, IsClassicalPolarSpace]|,\\
M: IsomorphismPolarSpacesNC, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool],
M: IsomorphismPolarSpacesNC, [IsClassicalPolarSpace, IsClassicalPolarSpace],
M: ShrinkMat, [ IsBasis, IsMatrix ],
M: ShrinkMat, [ IsField, IsField, IsMatrix ],
M: ShrinkVec, [ IsField, IsField, IsVector ],
M: ShrinkVec, [ IsField, IsField, IsVector, IsBasis ],
M: BlownUpProjectiveSpace, [ IsBasis, IsProjectiveSpace ],
M: BlownUpProjectiveSpaceBySubfield, [IsField, IsProjectiveSpace],
M: BlownUpSubspaceOfProjectiveSpace, [IsBasis, IsSubspaceOfProjectiveSpace],
M: BlownUpSubspaceOfProjectiveSpaceBySubfield, [IsField, IsSubspaceOfProjectiveSpace],
M: IsDesarguesianSpreadElement, [IsBasis, IsSubspaceOfProjectiveSpace],
M: IsBlownUpSubspaceOfProjectiveSpace, [IsBasis, IsSubspaceOfProjectiveSpace],
M: NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsField, IsBasis],
M: NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsField],
```

```
M: NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsProjectiveSpace, IsBasis],
M: NaturalEmbeddingByFieldReduction, [IsProjectiveSpace, IsProjectiveSpace],
M: BilinearFormFieldReduction, [IsBilinearForm, IsField, IsFFE, IsBasis],
M: BilinearFormFieldReduction, [ IsBilinearForm, IsField, IsFFE ],
M: QuadraticFormFieldReduction, [ IsQuadraticForm, IsField, IsFFE, IsBasis ],
M: QuadraticFormFieldReduction, [ IsQuadraticForm, IsField, IsFFE ],
M: HermitianFormFieldReduction, [ IsHermitianForm, IsField, IsFFE, IsBasis ],
M: HermitianFormFieldReduction, [ IsHermitianForm, IsField, IsFFE ],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBasis, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBasis],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsFFE],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsField],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpace],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool],
M: NaturalEmbeddingByFieldReduction, [IsClassicalPolarSpace, IsClassicalPolarSpace],
M: NaturalEmbeddingBySubfield, [IsProjectiveSpace, IsProjectiveSpace],
M: NaturalEmbeddingBySubfield, [IsClassicalPolarSpace, IsClassicalPolarSpace, IsBool],
M: NaturalEmbeddingBySubfield, [IsClassicalPolarSpace, IsClassicalPolarSpace],
M: NaturalProjectionBySubspace, [ IsProjectiveSpace, IsSubspaceOfProjectiveSpace ]
M: NaturalProjectionBySubspaceNC, [IsProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: QUO, [ IsProjectiveSpace and IsProjectiveSpaceRep, IsSubspaceOfProjectiveSpace],
M: NaturalProjectionBySubspace, [IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],
M: NaturalProjectionBySubspaceNC, [IsClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],
M: PluckerCoordinates, [ IsMatrix ],
M: InversePluckerCoordinates, [ IsVector ],
M: PluckerCoordinates, [ IsSubspaceOfProjectiveSpace ],
M: KleinCorrespondence, [ IsField, IsBool ],
M: KleinCorrespondence, [ IsPosInt ],
M: KleinCorrespondence, [ IsPosInt, IsBool ],
M: KleinCorrespondence, [ IsField ],
M: KleinCorrespondence, [ IsClassicalPolarSpace, IsBool ],
M: KleinCorrespondence, [ IsClassicalPolarSpace ],
M: KleinCorrespondenceExtended, [ IsField, IsBool ],
M: KleinCorrespondenceExtended, [ IsPosInt ],
M: KleinCorrespondenceExtended, [ IsClassicalPolarSpace, IsBool ],
M: KleinCorrespondenceExtended, [ IsClassicalPolarSpace ],
M: NaturalDualitySymplectic, [ IsClassicalGQ, IsClassicalGQ, IsBool, IsBool ],
M: NaturalDualityHermitian, [IsClassicalGQ, IsClassicalGQ, IsBool, IsBool],
M: NaturalDuality, [ IsClassicalGQ, IsClassicalGQ, IsBool ],
M: NaturalDuality, [ IsClassicalGQ, IsClassicalGQ ],
M: NaturalDuality, [ IsClassicalGQ, IsBool ],
M: NaturalDuality, [ IsClassicalGQ ],
M: IsomorphismPolarSpacesProjectionFromNucleus, [IsClassicalPolarSpace, IsClassicalPolarSpace, I
M: SelfDualitySymplectic, [ IsClassicalGQ, IsBool ],
M: SelfDualityParabolic, [ IsClassicalGQ, IsBool ],
M: SelfDuality, [ IsClassicalGQ, IsBool ],
M: SelfDuality, [ IsClassicalGQ ],
enumerators.gi: methods
```

```
M: AntonEnumerator, [IsSubspacesOfClassicalPolarSpace],
M: EnumeratorByOrbit, [ IsSubspacesOfClassicalPolarSpace ],
M: AsList, [IsSubspacesOfClassicalPolarSpace],
M: AsSortedList, [IsSubspacesOfClassicalPolarSpace],
M: AsSSortedList, [IsSubspacesOfClassicalPolarSpace],
M: Enumerator, [ IsSubspacesOfClassicalPolarSpace ],
M: Enumerator, [IsShadowSubspacesOfClassicalPolarSpace and IsShadowSubspacesOfClassicalPolarSpace
diagram.gi: methods
M: CosetGeometry, InstallMethod(CosetGeometry, "forgroupsandlistofsubgroups", [IsGroup, IsHomogeneou
M: Rank2Residues, InstallMethod(Rank2Residues, [IsIncidenceGeometry],
M: MakeRank2Residue, InstallMethod(MakeRank2Residue,[IsRank2Residue],
M: \^, [IsElementOfCosetGeometry, IsMultiplicativeElementWithInverse],
\verb|M: \verb|^|, [IsFlagOfCosetGeometry, IsMultiplicativeElementWithInverse]|, \\
M: FlagOfIncidenceStructure, [ IsCosetGeometry, IsElementOfIncidenceStructureCollection ],
M: FlagOfIncidenceStructure, [ IsCosetGeometry, IsList and IsEmpty ],
M: \=, InstallOtherMethod(\=,[IsCosetGeometry,IsCosetGeometry],
M: ElementsOfIncidenceStructure, InstallMethod(ElementsOfIncidenceStructure, [IsCosetGeometry, IsPo
M: ElementsOfIncidenceStructure, [IsCosetGeometry],
M: RandomElement, [IsCosetGeometry],
M: RandomChamber, [IsCosetGeometry],
M: RandomFlag, [IsCosetGeometry],
M: Random, [IsAllElementsOfCosetGeometry],
M: Size, InstallMethod(Size,[IsElementsOfCosetGeometry],
M: Wrap, [IsCosetGeometry, IsPosInt, IsObject],
M: Iterator, [IsElementsOfCosetGeometry],
M: IsIncident, [IsElementOfCosetGeometry, IsElementOfCosetGeometry],
M: ParabolicSubgroups, [ IsCosetGeometry ], cg -> cg!.parabolics );
M: AmbientGroup, [ IsCosetGeometry ], cg -> cg!.group );
M: BorelSubgroup, [ IsCosetGeometry ], cg -> Intersection(cg!.parabolics) );
M: IsFlagTransitiveGeometry, [ IsCosetGeometry ],
M: IsFirmGeometry, [ IsCosetGeometry ],
M: IsThinGeometry, [ IsCosetGeometry ],
M: IsThickGeometry, [ IsCosetGeometry ],
M: IsConnected, [ IsCosetGeometry ],
M: IsResiduallyConnected, [ IsCosetGeometry ],
M: StandardFlagOfCosetGeometry, [ IsCosetGeometry ],
{\tt M: FlagToStandardFlag, [IsCosetGeometry, IsFlagOfCosetGeometry],}\\
M: CanonicalResidueOfFlag, [ IsCosetGeometry, IsFlagOfCosetGeometry ],
M: ResidueOfFlag, [ IsFlagOfCosetGeometry ],
M: IncidenceGraph, InstallMethod(IncidenceGraph, [IsCosetGeometryandIsHandledByNiceMonomorphism],
M: IncidenceGraph, InstallMethod(IncidenceGraph,[IsCosetGeometry],
{\tt M: AutGroupIncidenceStructureWithNauty, [ IsCosetGeometry ],}\\
M: CorGroupIncidenceStructureWithNauty, [ IsCosetGeometry ],
M: IsIsomorphicIncidenceStructureWithNauty, [ IsCosetGeometry, IsCosetGeometry ],
M: ViewObj, [ IsDiagram and IsDiagramRep ],
M: ViewObj, [ IsDiagram and IsDiagramRep and HasGeometryOfDiagram],
M: ViewObj, [ IsCosetGeometry and IsCosetGeometryRep ],
M: ViewObj, [ IsFlagOfCosetGeometry ],
M: PrintObj, [ IsFlagOfCosetGeometry ],
M: PrintObj, [ IsCosetGeometry and IsCosetGeometryRep ],
```

```
M: ViewObj, [ IsElementsOfCosetGeometry and IsElementsOfCosetGeometryRep ],
M: PrintObj, InstallMethod(PrintObj, "forcosetgeometry", [IsElementsOfCosetGeometryand IsElementsOf
M: ViewObj, InstallMethod(ViewObj, "forcosetgeometry", [IsElementOfCosetGeometry],
M: PrintObj, InstallMethod(PrintObj, "forelementofcosetgeometry", [IsElementOfCosetGeometry],
M: ViewObj, InstallMethod(ViewObj, "forvertexofdiagram", [IsVertexOfDiagramandIsVertexOfDiagramRep]
M: PrintObj, InstallMethod(PrintObj, "forvertexofdiagram", [IsVertexOfDiagramandIsVertexOfDiagramRe
M: ViewObj, InstallMethod(ViewObj, "foredgeofdiagram", [IsEdgeOfDiagramandIsEdgeOfDiagramRep],
M: PrintObj, InstallMethod(PrintObj, "foredgeofdiagram", [IsEdgeOfDiagramandIsEdgeOfDiagramRep],
M: ViewObj, InstallMethod(ViewObj, "forrank2residue", [IsRank2ResidueandIsRank2ResidueRep],
M: PrintObj, InstallMethod(PrintObj, "forrank2residue", [IsRank2ResidueandIsRank2ResidueRep],
M: \=, InstallMethod(\=,[IsVertexOfDiagramandIsVertexOfDiagramRep, IsVertexOfDiagram and IsVertex
M: \=, InstallMethod(\=,[IsEdgeOfDiagramandIsEdgeOfDiagramRep, IsEdgeOfDiagram and IsEdgeOfDiagram
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry, "forflag-transitivecosetgeometry", [IsCoset@
M: Display, InstallMethod(Display, [IsDiagramandIsDiagramRep],
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry, "foraprojectivespace", [IsProjectiveSpace],
M: Rk2GeoDiameter, InstallMethod(Rk2GeoDiameter, "foracosetgeometry", [IsCosetGeometry, IsPosInt],
M: Rk2GeoGonality, InstallMethod(Rk2GeoGonality, "foracosetgeometry", [IsCosetGeometry],
M: GeometryOfRank2Residue, InstallMethod(GeometryOfRank2Residue, "forarank2residue", [IsRank2Residue
M: Rank2Parameters, InstallMethod(Rank2Parameters, "foracosetgeometryofrank2", [IsCosetGeometry],
M: \<, [ IsElementOfCosetGeometry and IsElementOfCosetGeometryRep, IsElementOfCosetGeometry and I
M: DiagramOfGeometry, InstallMethod(DiagramOfGeometry, [IsClassicalPolarSpace],
varieties.gi: methods
M: AlgebraicVariety, [ IsProjectiveSpace, IsPolynomialRing, IsList ],
M: AlgebraicVariety, [ IsProjectiveSpace, IsList ],
M: AlgebraicVariety, [ IsAffineSpace, IsPolynomialRing, IsList ],
M: AlgebraicVariety, [ IsAffineSpace, IsList ],
M: ProjectiveVariety, [ IsProjectiveSpace, IsPolynomialRing, IsList ],
M: ProjectiveVariety, [ IsProjectiveSpace, IsList ],
M: ViewObj, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: PrintObj, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: Display, [ IsProjectiveVariety and IsProjectiveVarietyRep ],
M: HermitianVariety, [IsPosInt, IsField],
M: HermitianVariety, [IsPosInt, IsPosInt],
M: HermitianVariety, [IsProjectiveSpace, IsPolynomialRing, IsPolynomial],
M: HermitianVariety, [IsProjectiveSpace, IsPolynomial],
M: ViewObj, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: PrintObj, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: Display, [ IsHermitianVariety and IsHermitianVarietyRep ],
M: QuadraticVariety, [IsProjectiveSpace,IsPolynomialRing, IsPolynomial],
M: QuadraticVariety, [IsProjectiveSpace, IsPolynomial],
M: QuadraticVariety, [IsPosInt, IsField, IsString],
M: QuadraticVariety, [IsPosInt, IsField],
M: QuadraticVariety, [IsPosInt, IsPosInt],
M: QuadraticVariety, [IsPosInt, IsPosInt, IsString],
M: ViewObj, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: PrintObj, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: Display, [ IsQuadraticVariety and IsQuadraticVarietyRep ],
M: PolarSpace, [IsProjectiveVariety and IsProjectiveVarietyRep],
M: AffineVariety, [ IsAffineSpace, IsPolynomialRing, IsList ],
M: AffineVariety, [ IsAffineSpace, IsList ],
```

```
M: AlgebraicVariety, [ IsAffineSpace, IsList ],
M: ViewObj, [ IsAffineVariety and IsAffineVarietyRep ],
M: PrintObj, [ IsAffineVariety and IsAffineVarietyRep ],
M: Display, [ IsAffineVariety and IsAffineVarietyRep ],
M: \in, [IsElementOfIncidenceStructure, IsAlgebraicVariety],
M: PointsOfAlgebraicVariety, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: ViewObj, [ IsPointsOfAlgebraicVariety and IsPointsOfAlgebraicVarietyRep ],
M: PrintObj, [ IsPointsOfAlgebraicVariety and IsPointsOfAlgebraicVarietyRep ],
M: Points, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: \in, [IsElementOfIncidenceStructure, IsPointsOfAlgebraicVariety], 1*SUM_FLAGS+3,
M: Iterator, [IsPointsOfAlgebraicVariety],
M: Enumerator, [IsPointsOfAlgebraicVariety],
M: AmbientSpace, [IsAlgebraicVariety and IsAlgebraicVarietyRep],
M: SegreMap, [ IsHomogeneousList ],
M: SegreMap, [IsHomogeneousList, IsField],
M: SegreMap, [IsProjectiveSpace, IsProjectiveSpace],
M: SegreMap, [ IsPosInt, IsPosInt, IsField ],
M: SegreMap, [ IsPosInt, IsPosInt, IsPosInt ],
M: Source, [IsSegreMap],
M: ViewObj, [ IsSegreMap and IsSegreMapRep ],
M: PrintObj, [ IsSegreMap and IsSegreMapRep ],
M: SegreVariety, [IsHomogeneousList],
M: SegreVariety, [IsHomogeneousList, IsField],
M: SegreVariety, [IsProjectiveSpace, IsProjectiveSpace],
M: SegreVariety, [ IsPosInt, IsPosInt, IsField ],
M: SegreVariety, [ IsPosInt, IsPosInt, IsPosInt ],
M: ViewObj, [ IsSegreVariety and IsSegreVarietyRep ],
M: PrintObj, [ IsSegreVariety and IsSegreVarietyRep ],
M: SegreMap, [IsSegreVariety],
M: PointsOfSegreVariety, [IsSegreVariety and IsSegreVarietyRep],
M: ViewObj, [IsPointsOfSegreVariety and IsPointsOfSegreVarietyRep],
M: Points, [IsSegreVariety and IsSegreVarietyRep],
M: Iterator, [IsPointsOfSegreVariety],
M: Enumerator, [IsPointsOfSegreVariety],
M: Size, [IsPointsOfSegreVariety],
M: ImageElm, [IsSegreMap, IsList],
M: \^, [IsList, IsSegreMap],
M: ImagesSet, [IsSegreMap, IsList],
M: VeroneseMap, [IsProjectiveSpace],
M: ViewObj, [ IsVeroneseMap and IsVeroneseMapRep ],
M: PrintObj, [ IsVeroneseMap and IsVeroneseMapRep ],
M: VeroneseVariety, [IsProjectiveSpace],
M: VeroneseVariety, [ IsPosInt, IsField ],
M: VeroneseVariety, [ IsPosInt, IsPosInt ],
M: ViewObj, [ IsVeroneseVariety and IsVeroneseVarietyRep ],
M: PrintObj, [ IsVeroneseVariety and IsVeroneseVarietyRep ],
M: VeroneseMap, [IsVeroneseVariety],
M: PointsOfVeroneseVariety, [IsVeroneseVariety and IsVeroneseVarietyRep],
M: ViewObj, [IsPointsOfVeroneseVariety and IsPointsOfVeroneseVarietyRep],
M: Points, [IsVeroneseVariety and IsVeroneseVarietyRep],
M: Iterator, [IsPointsOfVeroneseVariety],
M: Enumerator, [IsPointsOfVeroneseVariety],
```

```
M: Size, [IsPointsOfVeroneseVariety],
M: ImageElm, [IsGeometryMap, IsElementOfIncidenceStructure],
M: \^, [IsElementOfIncidenceStructure, IsGeometryMap],
M: ImagesSet, [IsGeometryMap, IsElementOfIncidenceStructureCollection],
M: Source, [ IsGeometryMap ],
M: Range, [ IsGeometryMap ],
M: GrassmannCoordinates, [ IsSubspaceOfProjectiveSpace ],
M: GrassmannMap, [ IsPosInt, IsProjectiveSpace ],
M: GrassmannMap, [ IsPosInt, IsPosInt, IsPosInt ],
M: GrassmannMap, [ IsSubspacesOfProjectiveSpace ],
M: ViewObj, [ IsGrassmannMap and IsGrassmannMapRep ],
M: PrintObj, [ IsGrassmannMap and IsGrassmannMapRep ],
M: GrassmannVariety, [ IsPosInt, IsProjectiveSpace ],
M: GrassmannVariety, [ IsSubspacesOfProjectiveSpace ],
M: ViewObj, [IsGrassmannVariety and IsGrassmannVarietyRep],
M: PrintObj, [ IsGrassmannVariety and IsGrassmannVarietyRep ],
M: GrassmannMap, [IsGrassmannVariety],
M: PointsOfGrassmannVariety, [IsGrassmannVariety and IsGrassmannVarietyRep],
M: ViewObj, [IsPointsOfGrassmannVariety and IsPointsOfGrassmannVarietyRep],
M: Points, [IsGrassmannVariety and IsGrassmannVarietyRep],
M: Iterator, [IsPointsOfGrassmannVariety],
M: Enumerator, [IsPointsOfGrassmannVariety],
M: Size, [IsPointsOfGrassmannVariety],
affinespace.gi: methods
M: AffineSpace, [ IsPosInt, IsField ],
M: AffineSpace, [ IsPosInt, IsPosInt ],
M: ViewObj, InstallMethod(ViewObj,[IsAffineSpaceandIsAffineSpaceRep],
M: PrintObj, InstallMethod(PrintObj, [IsAffineSpaceandIsAffineSpaceRep],
M: \=, [IsAffineSpace, IsAffineSpace],
M: Dimension, [ IsAffineSpace and IsAffineSpaceRep ],
M: UnderlyingVectorSpace, [ IsAffineSpace and IsAffineSpaceRep ],
M: AmbientSpace, [IsSubspaceOfAffineSpace],
M: BaseField, [IsAffineSpace and IsAffineSpaceRep],
M: BaseField, [IsSubspaceOfAffineSpace],
M: TypesOfElementsOfIncidenceStructure, [IsAffineSpace],
M: TypesOfElementsOfIncidenceStructurePlural, [IsAffineSpace],
M: VectorSpaceTransversalElement, [IsVectorSpace, IsFFECollColl, IsVector],
M: VectorSpaceTransversal, [IsVectorSpace, IsFFECollColl],
M: ViewObj, [ IsVectorSpaceTransversal and IsVectorSpaceTransversalRep ],
M: PrintObj, [ IsVectorSpaceTransversal and IsVectorSpaceTransversalRep ],
M: Wrap, [IsAffineSpace, IsPosInt, IsObject],
M: ViewObj, [IsSubspacesOfAffineSpace and IsSubspacesOfAffineSpaceRep],
M: PrintObj, [IsSubspacesOfAffineSpace and IsAllSubspacesOfProjectiveSpaceRep],
M: Display, [ IsSubspaceOfAffineSpace ],
M: AffineSubspace, [IsAffineSpace, IsRowVector, IsPlistRep and IsMatrix],
M: AffineSubspace, [IsAffineSpace, IsRowVector],
M: AffineSubspace, [IsAffineSpace, IsCVecRep],
M: AffineSubspace, [IsAffineSpace, IsRowVector, Is8BitMatrixRep],
M: AffineSubspace, [IsAffineSpace, IsRowVector, IsGF2MatrixRep],
M: AffineSubspace, [IsAffineSpace, IsCVecRep, IsCMatRep],
```

```
M: ObjectToElement, [ IsAffineSpace, IsList],
M: ObjectToElement, [ IsAffineSpace, IsPosInt, IsList],
M: RandomSubspace, [ IsAffineSpace, IsInt ],
M: Random, [IsSubspacesOfAffineSpace],
M: ElementsOfIncidenceStructure, [IsAffineSpace],
M: ElementsOfIncidenceStructure, [ IsAffineSpace, IsPosInt],
M: Points, [IsAffineSpace],
M: Lines, [IsAffineSpace],
M: Planes, [IsAffineSpace],
M: Solids, [IsAffineSpace],
M: Hyperplanes, [IsAffineSpace],
M: Size, [IsSubspacesOfAffineSpace],
M: FlagOfIncidenceStructure, [ IsAffineSpace, IsSubspaceOfAffineSpaceCollection ],
M: FlagOfIncidenceStructure, [ IsAffineSpace, IsList and IsEmpty ],
M: ViewObj, [IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep],
{\tt M: PrintObj, [IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep],}\\
M: Display, [IsFlagOfAffineSpace and IsFlagOfIncidenceStructureRep],
M: Enumerator, [ IsVectorSpaceTransversal ],
M: Enumerator, [ IsSubspacesOfAffineSpace ],
M: Iterator, [IsSubspacesOfAffineSpace],
M: \in, [IsSubspaceOfAffineSpace, IsAffineSpace],
M: \in, [ IsAffineSpace, IsSubspaceOfAffineSpace ],
M: \in, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: IsIncident, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: Span, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: Meet, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: IsParallel, [IsSubspaceOfAffineSpace, IsSubspaceOfAffineSpace],
M: ProjectiveCompletion, [ IsAffineSpace ],
M: ShadowOfElement, [IsAffineSpace, IsSubspaceOfAffineSpace, IsPosInt],
M: ShadowOfFlag, [IsAffineSpace, IsFlagOfIncidenceStructure, IsPosInt],
M: ParallelClass, [IsAffineSpace, IsSubspaceOfAffineSpace],
M: ParallelClass, [ IsSubspaceOfAffineSpace ],
M: Iterator, [IsParallelClassOfAffineSpace and IsParallelClassOfAffineSpaceRep ],
M: Size, [IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: Iterator, [IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: ViewObj, [ IsShadowSubspacesOfAffineSpace and IsShadowSubspacesOfAffineSpaceRep ],
M: ViewObj, [IsParallelClassOfAffineSpace and IsParallelClassOfAffineSpaceRep],
M: Points, InstallMethod(Points, [IsSubspaceOfAffineSpace],
M: Points, InstallMethod(Points, [IsAffineSpace, IsSubspaceOfAffineSpace],
M: Lines, InstallMethod(Lines,[IsSubspaceOfAffineSpace],
M: Lines, InstallMethod(Lines, [IsAffineSpace, IsSubspaceOfAffineSpace],
M: Planes, InstallMethod(Planes, [IsSubspaceOfAffineSpace],
M: Planes, InstallMethod(Planes, [IsAffineSpace, IsSubspaceOfAffineSpace],
M: Solids, InstallMethod(Solids,[IsSubspaceOfAffineSpace],
M: Solids, InstallMethod(Solids,[IsAffineSpace,IsSubspaceOfAffineSpace],
M: IncidenceGraph, [ IsAffineSpace ],
affinegroup.gi: methods
M: AffineGroup, [ IsAffineSpace ],
M: CollineationGroup, [ IsAffineSpace ],
M: \^, [IsSubspaceOfAffineSpace, IsProjGrpElWithFrob],
```

```
gpolygons.gi: methods
M: GeneralisedPolygonByBlocks, [ IsHomogeneousList ],
M: GeneralisedPolygonByIncidenceMatrix, [ IsMatrix ],
M: GeneralisedPolygonByElements, [ IsSet, IsSet, IsFunction ],
M: GeneralisedPolygonByElements, [ IsSet, IsFunction, IsGroup, IsFunction ],
M: ViewObj, [ IsProjectivePlaneCategory and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedQuadrangle and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedHexagon and IsGeneralisedPolygonRep],
M: ViewObj, [IsGeneralisedOctagon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: ViewObj, [ IsWeakGeneralisedPolygon and IsGeneralisedPolygonRep],
M: Order, [ IsWeakGeneralisedPolygon ],
M: UnderlyingObject, [ IsElementOfGeneralisedPolygon ],
M: ObjectToElement, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt, IsObject],
M: ObjectToElement, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsObject],
M: ElementsOfIncidenceStructure, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt],
M: ElementsOfIncidenceStructure, [IsWeakGeneralisedPolygon and IsGeneralisedPolygonRep, IsPosInt]
M: Points, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: Lines, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: ViewObj, [IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep],
M: PrintObj, [IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep],
M: Size, [IsElementsOfGeneralisedPolygon],
M: Iterator, [IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep],
M: Iterator, [IsShadowElementsOfGeneralisedPolygon and IsShadowElementsOfGeneralisedPolygonRep],
M: Random, [IsElementsOfGeneralisedPolygon and IsElementsOfGeneralisedPolygonRep],
M: IsIncident, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon],
\verb|M: Span, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon]|,\\
M: Meet, [ IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon ],
M: Wrap, [IsGeneralisedPolygon, IsPosInt, IsObject],
M: TypesOfElementsOfIncidenceStructurePlural, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep
M: ShadowOfElement, [IsGeneralisedPolygon and IsGeneralisedPolygonRep, IsElementOfGeneralisedPolygon
M: ViewObj, [IsShadowElementsOfGeneralisedPolygon and IsShadowElementsOfGeneralisedPolygonRep],
M: Points, [ IsElementOfGeneralisedPolygon ],
M: Lines, [ IsElementOfGeneralisedPolygon ],
M: DistanceBetweenElements, [IsElementOfGeneralisedPolygon, IsElementOfGeneralisedPolygon],
M: IncidenceGraph, [IsGeneralisedPolygon],
{\tt M: Incidence Matrix Of General ised Polygon, [Is General ised Polygon],}\\
M: CollineationGroup, [ IsGeneralisedPolygon and IsGeneralisedPolygonRep ],
M: BlockDesignOfGeneralisedPolygon, [IsGeneralisedPolygon and IsGeneralisedPolygonRep],
M: DistanceBetweenElements, [ IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace ],
M: IncidenceGraph, [IsDesarguesianPlane],
M: DistanceBetweenElements, [IsSubspaceOfClassicalPolarSpace, IsSubspaceOfClassicalPolarSpace],
M: IncidenceGraph, [ IsClassicalGQ ],
M: Wrap, [IsClassicalGeneralisedHexagon, IsPosInt, IsObject],
M: SplitCayleyHexagon, [ IsField and IsFinite ],
M: SplitCayleyHexagon, [ IsPosInt ],
M: SplitCayleyHexagon, [ IsClassicalPolarSpace ],
M: TwistedTrialityHexagon, [ IsField and IsFinite ],
M: TwistedTrialityHexagon, [ IsPosInt ],
M: TwistedTrialityHexagon, [ IsClassicalPolarSpace ],
```

```
M: Display, [ IsGeneralisedHexagon and IsLieGeometry ],
M: G2fining, [ IsPosInt, IsField and IsFinite ],
M: 3D4fining, [ IsField and IsFinite ],
M: CollineationGroup, [ IsClassicalGeneralisedHexagon],
M: IncidenceGraph, [IsClassicalGeneralisedHexagon and IsGeneralisedPolygonRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsCVecRep],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsRowVector ],
{\tt M: VectorSpaceToElement, [IsClassicalGeneralisedHexagon, Is8BitVectorRep],}
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsPlistRep and IsMatrix],
M: VectorSpaceToElement, [ IsClassicalGeneralisedHexagon, IsGF2MatrixRep],
M: VectorSpaceToElement, [IsClassicalGeneralisedHexagon, Is8BitMatrixRep],
M: VectorSpaceToElement, [IsClassicalGeneralisedHexagon, IsCMatRep],
M: \in, [ IsElementOfIncidenceStructure, IsClassicalGeneralisedHexagon ],
M: ObjectToElement, [ IsClassicalGeneralisedHexagon, IsObject],
M: ViewObj, [ IsElementOfKantorFamily ],
M: PrintObj, [ IsElementOfKantorFamily ],
M: Wrap, [IsElationGQByKantorFamily, IsPosInt, IsPosInt, IsObject],
M: \=, [IsElementOfKantorFamily, IsElementOfKantorFamily],
M: \<, [IsElementOfKantorFamily, IsElementOfKantorFamily],
M: IsKantorFamily, [IsGroup, IsList, IsList],
M: EGQByKantorFamily, [IsGroup, IsList, IsList],
M: Display, [ IsElationGQByKantorFamily ],
M: UnderlyingObject, [ IsElementOfKantorFamily ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsPosInt, IsRightCoset ],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsRightCoset ],
M: ObjectToElement, [IsElationGQByKantorFamily, IsPosInt, IsMultiplicativeElementWithInverse],
M: ObjectToElement, [IsElationGQByKantorFamily, IsMultiplicativeElementWithInverse],
M: ObjectToElement, [IsElationGQByKantorFamily, IsPosInt, IsMagmaWithInverses],
M: ObjectToElement, [ IsElationGQByKantorFamily, IsMagmaWithInverses ],
M: IsAnisotropic, [IsFFECollColl, IsField and IsFinite],
M: IsqClan, [ IsFFECollCollColl, IsField and IsFinite],
M: qClan, [IsFFECollCollColl, IsField],
M: ViewObj, [ IsqClanObj and IsqClanRep ],
M: PrintObj, [ IsqClanObj and IsqClanRep ],
M: AsList, [IsqClanObj and IsqClanRep],
M: AsSet, [IsqClanObj and IsqClanRep],
M: BaseField, [IsqClanObj and IsqClanRep],
M: IsLinearqClan, [ IsqClanObj ],
M: LinearqClan, [ IsPosInt ],
M: FisherThasWalkerKantorBettenqClan, [ IsPosInt ],
M: KantorMonomialqClan, [IsPosInt],
M: KantorKnuthqClan, [ IsPosInt ],
M: FisherqClan, [ IsPosInt ],
M: KantorFamilyByqClan, [ IsqClanObj and IsqClanRep ],
M: EGQByqClan, [ IsqClanObj and IsqClanRep ],
M: IncidenceGraph, [ IsElationGQ and IsGeneralisedPolygonRep ],
M: BLTSetByqClan, [ IsqClanObj and IsqClanRep ],
M: EGQByBLTSet, [IsList, IsSubspaceOfProjectiveSpace, IsSubspaceOfProjectiveSpace],
M: EGQByBLTSet, [ IsList ],
M: Display, [ IsElationGQByBLTSet ],
M: DefiningPlanesOfEGQByBLTSet, [ IsElationGQByBLTSet ],
M: ObjectToElement, [IsElationGQByBLTSet, IsPosInt, IsSubspaceOfClassicalPolarSpace],
```

309

```
M: ObjectToElement, [IsElationGQByBLTSet, IsSubspaceOfClassicalPolarSpace],
M: CollineationSubgroup, [ IsElationGQByBLTSet ],
M: FlockGQByqClan, InstallMethod(FlockGQByqClan,[IsqClanObj],
orbits-stabilisers.gi: methods
M: FiningOrbit, [IsProjectiveGroupWithFrob, IsElementOfIncidenceStructure, IsFunction],
{\tt M: FiningOrbit, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace],}\\
M: FiningOrbit, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace],
M: FiningOrbit, [ IsProjectiveGroupWithFrob, CategoryCollections(IsElementOfIncidenceStructure),
M: FiningOrbit, [IsProjectiveGroupWithFrob, CategoryCollections(IsElementOfIncidenceStructure)]
M: FiningOrbits, [ IsGroup, IsHomogeneousList, IsFunction],
M: FiningOrbitsDomain, [ IsGroup, IsElementsOfIncidenceGeometry, IsFunction ],
M: FiningOrbits, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpaceCollection and IsHomoger
M: FiningOrbits, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpaceCollection and IsHomogeneous
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsSubspacesOfProjectiveSpace ],
M: FiningOrbits, [IsProjectiveGroupWithFrob, IsSubspacesOfAffineSpace],
M: FiningOrbits, [ IsProjectiveGroupWithFrob, IsShadowSubspacesOfProjectiveSpace]
M: FiningOrbits, [IsProjectiveGroupWithFrob, IsShadowSubspacesOfAffineSpace],
M: FiningOrbits, [IsProjectiveGroupWithFrob, IsShadowSubspacesOfClassicalPolarSpace],
{\tt M: FiningOrbits, [IsProjectiveGroupWithFrob, IsParallelClassOfAffineSpace],}\\
M: FiningElementStabiliserOp, [IsGroup, IsElementOfIncidenceStructure, IsFunction],
{\tt M: FiningStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace],}\\
{\tt M: FiningStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace],}\\
{\tt M: FiningStabiliserOrb, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpace],}
M: FiningStabiliserOrb, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpace],
M: FiningSetwiseStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfProjectiveSpaceCollection and
M: FiningSetwiseStabiliser, [IsProjectiveGroupWithFrob, IsSubspaceOfAffineSpaceCollection and IsP
M: FiningStabiliserPerm, InstallMethod(FiningStabiliserPerm, [IsProjectiveGroupWithFrob,IsElementCompany of the company of the
M: FiningStabiliserPerm2, [IsProjectiveGroupWithFrob, IsElementOfIncidenceStructure],
M: FixedSubspaces, [IsProjectiveGroupWithFrob, IsProjectiveSpace],
M: ProjectiveStabiliserGroupOfSubspace, [IsSubspaceOfProjectiveSpace],
M: StabiliserGroupOfSubspace, [IsSubspaceOfProjectiveSpace],
M: SpecialProjectiveStabiliserGroupOfSubspace, [IsSubspaceOfProjectiveSpace],
```

Appendix B

The finite classical groups in FinInG

B.1 Standard forms used to produce the finite classical groups.

An overview of operations is given that produce gram matrices to construct standard forms. The notion *standard form* is explained in Section 7.2, in the context of canonical and standard polar spaces.

B.1.1 CanonicalGramMatrix

▷ CanonicalGramMatrix(type, d, f)

(operation)

Returns: a Gram matrix usable as input to construct a sesquilinear form

The arguments d and f are the vector dimension and the finite field respectively. The argument type is either "symplectic", "hermitian", "hyperbolic", "elliptic" or "parabolic".

If type equals "symplectic", the Gram matrix is

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 0 \end{pmatrix}.$$

If type equals "hermitian", the Gram matrix is the identity matrix of dimension d over the field f = GF(q)

If type equals "hyperbolic", the Gram matrix is

$$\begin{pmatrix} 0 & a & 0 & 0 & \dots & 0 & 0 \\ a & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & a & \dots & 0 & 0 \\ 0 & 0 & a & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & a \\ 0 & 0 & 0 & 0 & \dots & a & 0 \end{pmatrix}.$$

with $a = \frac{p+1}{2}$ if $p+1 \equiv 0 \mod 4, q = p^h$ and a = 1 otherwise.

If type equals "elliptic", the Gram matrix is

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & t & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & a & \dots & 0 & 0 \\ 0 & 0 & a & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & a \\ 0 & 0 & 0 & 0 & \dots & a & 0 \end{pmatrix}.$$

with t the primitive root of GF(q) if $q \equiv 1 \mod 4$ or $q \equiv 2 \mod 4$, and t = 1 otherwise; and $a = \frac{p+1}{2}$ if $p+1 \equiv 0 \mod 4$, $q = p^h$ and a = 1 otherwise.

If type equals "parabolic", the Gram matrix is

$$\begin{pmatrix} t & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & a & \dots & 0 & 0 \\ 0 & a & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & a \\ 0 & 0 & 0 & \dots & a & 0 \end{pmatrix}.$$

with t the primitive root of GF(p) and $a = t^{\frac{p+1}{2}}$ if $q \equiv 5 \mod 8$ or $q \equiv 7 \mod 8$, and t = a = 1 otherwise.

There is no error message when asking for a hyperbolic, elliptic or parabolic type if the characteristic of the field f is even. In such a case, a matrix is returned, which is of course not suitable to create a bilinear form that corresponds with an orthogonal polar space. For this reason, CanonicalGramMatrix is not a operation designed for the user.

B.1.2 CanonicalQuadraticForm

▷ CanonicalQuadraticForm(type, d, f)

(operation)

Returns: a Gram matrix usable as input to construct a quadratic form

The arguments d and f are the vector dimension and the finite field respectively. The argument type is either "hyperbolic", "elliptic" or "parabolic". The matrix returned can be used to construct a quadratic form.

If type equals "hyperbolic", the Gram matrix returned will result in the quadratic form $x_1x_2 + x_3x_4 + ... + x_{d-1}x_d$

If type equals "elliptic", the Gram matrix returned will result in the quadratic form $x_1^2 + x_1x_2 + vx_2^2 + x_3x_4 + \ldots + x_{d-1}x_d$ with $v = \alpha^i$, with \alpha the primitive element of the multiplicative group of GF(q), which is in GAP Z(q), and i the first number in $[0,1,\ldots,q-2]$ for which x^2+x+v is irreducible over GF(q).

If type equals "parabolic", the Gram matrix returned will result in the quadratic form $x_1^2 + x_2x_3 + \dots + x_{d-1}x_d$

This function is intended to be used only when the characteristic of f is two, but there is no error message is this is not the case. For this reason, CanonicalQuadraticForm is not an operation designed for the user.

B.2 Direct commands to construct the projective classical groups in FinInG

As explained in Chapter 7, Section 7.7, we have assumed that the user asks for the projective classical groups in an indirect way, i.e. as a (subgroup) of the collineation group of a classical polar space. However, shortcuts to these groups exist. More information on the notations can be found in Section 7.7.

B.2.1 SOdesargues

▷ SOdesargues(e, d, f)

(operation)

Returns: the special isometry group of a canonical orthogonal polar space

The argument e determines the type of the orthogonal polar space, i.e. -1,0,1 for an elliptic, hyperbolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on SO, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> SOdesargues(-1,6,GF(9));
PSO(-1,6,9)
gap> SOdesargues(0,7,GF(11));
PSO(0,7,11)
gap> SOdesargues(1,8,GF(16));
PSO(1,8,16)
```

B.2.2 GOdesargues

▷ GOdesargues(e, d, f)

(operation)

Returns: the isometry group of a canonical orthogonal polar space

The argument e determines the type of the orthogonal polar space, i.e. -1,0,1 for an elliptic, hyperbolic, parabolic orthogonal space, respectively. The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on GO, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> GOdesargues(-1,6,GF(9));
PGO(-1,6,9)
gap> GOdesargues(0,7,GF(11));
PGO(0,7,11)
gap> GOdesargues(1,8,GF(16));
PGO(1,8,16)
Example
```

B.2.3 SUdesargues

▷ SUdesargues(d, f)

(operation)

Returns: the special isometry group of a canonical hermitian polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on SU, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> SUdesargues(4,GF(9));
PSU(4,3^2)
```

B.2.4 GUdesargues

▷ GUdesargues(d, f)

(operation)

Returns: the isometry/similarity group of a canonical hermitian polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> GUdesargues(4,GF(9));
PGU(4,3^2)
```

B.2.5 Spdesargues

▷ Spdesargues(d, f)

(operation)

Returns: the (special) isometry group of a canonical symplectic polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> Spdesargues(6,GF(11));
PSp(6,11)
```

B.2.6 GeneralSymplecticGroup

▷ GeneralSymplecticGroup(d, f)

(operation)

Returns: the isometry group of a canonical symplectic form

The argument d is the dimension of the underlying vector space, f is the finite field. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> GeneralSymplecticGroup(6,GF(7));
GSp(6,7)
```

B.2.7 GSpdesargues

▷ GSpdesargues(d, f)

(operation)

Returns: the similarity group of a canonical symplectic polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on Sp, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form

```
gap> GSpdesargues(4,GF(9));
PGSp(4,9)
```

B.2.8 GammaSp

 \triangleright GammaSp(d, f) (operation)

Returns: the collineation group of a canonical symplectic polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on GeneralSymplecticGroup, and adds the frobenius automorphism.

```
gap> GammaSp(4,GF(9));
PGammaSp(4,9)
```

B.2.9 DeltaOminus

▷ DeltaOminus(d, f)

(operation)

Returns: the similarity group of a canonical elliptic orthogonal polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on GOdesargues, and computes the generators to be added.

```
gap> DeltaOminus(6,GF(7));
PDeltaO-(6,7)
```

B.2.10 DeltaOplus

▷ DeltaOplus(d, f)

(operation)

Returns: the similarity group of a canonical hyperbolic orthogonal polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on GOdesargues, and computes the generators to be added.

```
gap> DeltaOplus(8,GF(7));
PDeltaO+(8,7)
```

B.2.11 GammaOminus

▷ GammaOminus(d, f)

(operation)

Returns: the collineation group of a canonical elliptic orthogonal polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on DeltaOminus, and computes the generators to be added.

```
gap> GammaOminus(4,GF(25));
PGammaO-(4,25)
```

B.2.12 GammaO

ightharpoonup GammaO(d, f) (operation)

Returns: the collineation group of a canonical parabolic orthogonal polar space

The argument *d* is the dimension of the underlying vector space, *f* is the finite field. The method relies on GO, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form. Furthermore, the generators to be added are computed.

```
gap> GammaO(5,GF(49));
PGammaO(5,49)
```

B.2.13 GammaOplus

▷ GammaOplus(d, f)

(operation)

Returns: the collineation group of a canonical hyperbolic orthogonal polar space

The argument d is the dimension of the underlying vector space, f is the finite field. The method relies on DeltaOplus, and computes the generators to be added.

```
gap> GammaOplus(6,GF(64));
PGammaO+(6,64)
```

B.2.14 GammaU

ightharpoonup GammaU(d, f) (operation)

Returns: the collineation group of a canonical hermitian variety

The argument *d* is the dimension of the underlying vector space, *f* is the finite field. The method relies on GU, a GAP command returning the appropriate matrix group. Internally, the invariant form is asked, and the base change to our canonical form is obtained using the package form. Furthermore, the generators to be added are computed.

```
gap> GammaU(4,GF(81));
PGammaU(4,9^2)
```

B.2.15 G2fining

▷ G2fining(d, f)

(operation)

Returns: the Chevalley group G_2(q)

This group is the group of projectivities stabilising the split Cayley hexagon embedded in the parabolic quadric $Q(6,q): X_0X_4 + X_1X_5 + X_2X_6 = X_3^2$. f must be a finite field and d must be 5 or 6.

When d is 5, F must be a field of even order, and then the returned group consists of projectivities of W(5,q). The generators of this group are described explicitly in [VM98], Appendix D. A correction can be found in [Off00]. However, also this source contains a mistake.

B.2.16 3D4fining

 \triangleright 3D4fining(f) (operation)

Returns: the Chevalley group 3D4(q)

The argument f must be a field of order q^3 This group is the group of collineations stabilising the twisted triality hexagon embedded in the hyperbolic quadric Q + (7,q): $X_0X_4 + X_1X_5 + X_2X_6 + X_3X_7$ The generators of this group are described explicitly in [VM98], Appendix D.

B.3 Basis of the collineation groups

The GenSS uses a function FindBasePointCandidates taking a group as one of the arguments. From a geometrical point of view, it is straightforward to construct a basis for a collineation group for the action on projective points.

B.3.1 FindBasePointCandidates

▷ FindBasePointCandidates(g, opt, i, parentS)

(operation)

Returns: a record

The returned record contains the base points for the action, and some other fields. The information in the other fields is determined from the arguments opt and i. More information on these details can be found in the manual of GenSS.

Variations on this version of BasePointCandidates are found in FinInG used in previous versions of GenSS. These variations are already or will become obsolete in the (near) future.

Appendix C

Low level functions for morphisms

C.1 Field reduction and vector spaces

C.1.1 ShrinkVec

```
> ShrinkVec(f1, f2, v, basis)
> ShrinkVec(f1, f2, v)
Returns: a vector

(operation)
```

The argument f2 is a subfield of f1 and v is vector in a vector space V over f2. The second flavour Returns return the vector of length d/t, where d = dim(V), and t = [f1:f2]. The first flavour uses the natural basis Basis (AsVectorSpace(f2,f1)). It is not checked whether f2 is a subfield of

f1, but it is checked whether the length of v is a multiple of the degree of the field extension.

C.1.2 ShrinkMat

```
▷ ShrinkMat(basis, matrix) (operation)
▷ ShrinkMat(f1, f2, matrix) (operation)
```

Returns: a matrix

Let K be the field GF(q) and let L be the field $GF(q^t)$. Assume that B is a basis for L as K vector space. Let A=(a_{ij}) be a matrix over L. The result of BlownUpMat(B,A) is the matrix $M=(m_{ij})$, where each entry $a=a_{ij}$ is replaced by the $t\times t$ matrix M_a , representing the linear map $x\mapsto ax$ with respect to the basis B. This means that if $B=\{b_1,b_2,\ldots,b_t\}$, then row j is the row of the t coefficients of ab_j with respect to the basis B. The operation ShrinkMat implements the converse of BlownUpMat. It is checked if the input is a blown up matrix as follows. Let A be a $tm\times tn$ matrix. For each $t\times t$ block, say M, we need to check that the set $\{b_i^{-1}\sum_{j=1}^t m_{ij}b_j: i\in\{1,..,t\}\}$. has size one, since the unique element in that case is the element $a\in L$ represented as a linear map by M with respect to the basis B.

The first flavour of this operation requires a given basis as first argument. The second flavour requires a field f1 and a subfield f2 as first two arguments and calls the first flavour with Basis(AsVectorSpace(f2,f1)) as basis. It is not checked whether f2 is a subfield of f1.

C.1.3 BlownUpProjectiveSpace

⊳ BlownUpProjectiveSpace(basis, pg1) (operation)
Returns: a projective space

Let basis be a basis of the field $GF(q^t)$ that is an extension of the base field of the r-1 dimensional projective space pg1. This operation returns the rt-1 dimensional projective space over GF(q). The basis itself is only used to determine the field $GF(q^t)$.

C.1.4 BlownUpProjectiveSpaceBySubfield

▷ BlownUpProjectiveSpaceBySubfield(subfield, pg)

(operation)

Returns: a projective space

Blows up a projective space pg with respect to the standard basis of the base field of pg over the subfield.

C.1.5 BlownUpSubspaceOfProjectiveSpace

▷ BlownUpSubspaceOfProjectiveSpace(basis, subspace)

(operation)

▷ BlownUpSubspaceOfProjectiveSpace(basis, space)

(operation)

Returns: a subspace of a projective space

The first flavour blows up a *subspace* of a projective space with respect to the *basis* using field reduction and returns a subspace of the projective space obtained from blowing up the ambient projective space of *subspace* with respect to *basis* using field reduction. This operation relies on BlownUpMat.

C.1.6 BlownUpSubspaceOfProjectiveSpaceBySubfield

 ${\tt \triangleright BlownUpSubspaceOfProjectiveSpaceBySubfield} (subfield, \ subspace) \\$

(operation)

Returns: a subspace of a projective space

Blows up a *subspace* of a projective space with respect to the standard basis of the base field of *subspace* over the *subfield*, using field reduction and returns it a subspace of the projective space obtained from blowing up the ambient projective space of *subspace* over the subfield.

C.1.7 IsDesarguesianSpreadElement

▷ IsDesarguesianSpreadElement(basis, subspace)

(operation)

Returns: true or false

Checks wether the *subspace* is a subspace which is obtained from a blowing up a projective point using field reduction with respect to *basis*.

C.2 Field reduction and forms

The embedding of polar spaces by field reduction is explained in detail in Section 10.5.3, and relies on the following three operations.

C.2.1 QuadraticFormFieldReduction

▷ QuadraticFormFieldReduction(qf1, f2, alpha, basis)

(operation)

(operation)

Returns: a quadratic form

Let f be quadratic form determining a polar space over the field L This operation returns the quadratic form $T_{\alpha} \circ f \circ \Phi^{-1}$ over a subfield K of L, as explained in Section 10.5.3.

C.2.2 BilinearFormFieldReduction

```
▷ BilinearFormFieldReduction(bil11, f2, alpha, basis) (operation)
▷ BilinearFormFieldReduction(bil11, f2, alpha) (operation)
```

Returns: a bilinear form

Let f be bilinear form determining a polar space over the field L This operation returns the bilinear form $T_{\alpha} \circ f \circ \Phi^{-1}$ over a subfield K of L, as explained in Section 10.5.3.

C.2.3 HermitianFormFieldReduction

```
▷ HermitianFormFieldReduction(hf1, f2, alpha, basis) (operation)
▷ HermitianFormFieldReduction(hf1, f2, alpha) (operation)
```

Returns: a hermitian form

Let f be bilinear form determining a polar space over the field L This operation returns the hermitian form $T_{\alpha} \circ f \circ \Phi^{-1}$ over a subfield K of L, as explained in Section 10.5.3.

C.3 Low level functions

C.3.1 PluckerCoordinates

```
▷ PluckerCoordinates(matrix) (operation)
▷ InversePluckerCoordinates(vector) (operation)
```

The first operation can also take a matrix representing a line of PG(3,q) as argument. No checks are performed in this case. It returns the plucker coordinates of the argument as list of finite field elements. The second operation is the inverse of the first. No check is performed whether the argument represents a point of the correct hyperbolic quadric. Both operations are to be used internally only.

C.3.2 IsomorphismPolarSpacesProjectionFromNucleus

```
▷ IsomorphismPolarSpacesProjectionFromNucleus(quadric, w, boolean) (operation)
```

This operation returns the isomorphism between a parabolic quadric and a symplectic polar space. Although it is checked whether the base field and rank of both polar spaces are equal, this operation is meant for internal use only. This operation is called by the operation IsomorphismPolarSpaces.

C.3.3 IsomorphismPolarSpacesNC

```
▷ IsomorphismPolarSpacesNC(ps1, ps2) (operation)
▷ IsomorphismPolarSpacesNC(ps1, ps2, boolean) (operation)
```

IsomorphismPolarSpacesNC is the version of IsomorphismPolarSpaces where no checks are built in, and which is only applicable when the two polar spaces are equivalent. As no checks are built in, this operation is to be used internally only.

C.3.4 NaturalEmbeddingBySubspaceNC

▷ NaturalEmbeddingBySubspaceNC(geom1, geom2, v)

(operation)

 $\label{thm:check} The \quad operation \quad {\tt NaturalEmbeddingBySubspaceNC} \quad is \quad the \quad ``no \quad check" \quad version \quad of \\ {\tt NaturalEmbeddingBySubspace}.$

C.3.5 NaturalProjectionBySubspaceNC

 \triangleright NaturalProjectionBySubspaceNC(ps, v)

(operation)

 $\label{thm:check} The \quad operation \quad {\tt NaturalEmbeddingBySubspaceNC} \quad is \quad the \quad ``no \quad check" \quad version \quad of \\ {\tt NaturalEmbeddingBySubspace}.$

References

- [BC13] Francis Buekenhout and Arjeh M. Cohen. Diagram geometry, volume 57 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2013. Related to classical groups and buildings. 41
- [BS74] Francis Buekenhout and Ernest Shult. On the foundations of polar geometry. *Geometriae Dedicata*, 3:155–170, 1974. 117
- [Cam00a] Peter J. Cameron. *Classical Groups*. Online notes, http://www.maths.qmul.ac.uk/~pjc/class_gps/, 2000. 103
- [Cam00b] Peter J. Cameron. *Projective and Polar Spaces*. Online notes, http://www.maths.qmul.ac.uk/~pjc/pps/, 2000. 118
- [Dem97] Peter Dembowski. *Finite geometries*. Classics in Mathematics. Springer-Verlag, Berlin, 1997. Reprint of the 1968 original. 264
- [Gil08] Nick Gill. Polar spaces and embeddings of classical groups. *to appear in New Zealand J. Math.*, 2008. 185
- [HT91] J. W. P. Hirschfeld and J. A. Thas. *General Galois geometries*. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications. 71, 109, 118
- [KL90] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups, volume 129 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990. 20, 109, 119, 184
- [LVdV13] Michel Lavrauw and Geertrui Van de Voorde. Field reduction and linear sets in finite geometry. *to appear in AMS Contemp. Math*, 2013. 180, 185
- [Off00] Alan Offer. Spreads and Ovoids of the Split Cayley Hexagon. PhD thesis, The university of Adelaide, 2000. 316
- [PT84] S. E. Payne and J. A. Thas. *Finite generalized quadrangles*, volume 110 of *Research Notes in Mathematics*. Pitman (Advanced Publishing Program), Boston, MA, 1984. 229
- [Tit59] Jacques Tits. Sur la trialité et certains groupes qui s'en déduisent. *Inst. Hautes Études Sci. Publ. Math.*, (2):13–60, 1959. 223, 224

- [Tit74] Jacques Tits. *Buildings of spherical type and finite BN-pairs*. Springer-Verlag, Berlin, 1974. Lecture Notes in Mathematics, Vol. 386. 117
- [Vel59] F. D. Veldkamp. Polar geometry. I, II, III, IV, V. *Nederl. Akad. Wetensch. Proc. Ser. A* 62; 63 = Indag. Math. 21 (1959), 512-551, 22:207–212, 1959. 117
- [VM98] Hendrik Van Maldeghem. *Generalized polygons*. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1998. [2011 reprint of the 1998 original] [MR1725957]. 223, 224, 316
- [VY65a] Oswald Veblen and John Wesley Young. *Projective geometry. Vol. 1.* Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1965. 71, 157
- [VY65b] Oswald Veblen and John Wesley Young. *Projective geometry. Vol. 2 (by Oswald Veblen)*. Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1965. 71, 157

Index

FinInG, 7 *, 51, 76, 131, 161, 219 \^, 101, 136, 168, 199, 247 \in, 68, 76, 131, 161, 193, 227 3D4fining, 316	CanonicalPolarSpace, 125 CanonicalQuadraticForm, 311 CanonicalResidueOfFlag, 250 CanonicalSubgeometryOfProjectiveSpace, 265
AbsolutePoints, 115 Action, 153 ActionHomomorphism, 153 ActionOnAllProjPoints, 102 AffineGroup, 167 AffineSpace, 158 AffineSubspace, 159 AffineVariety, 198 AG, 158 AlgebraicVariety, 191, 193, 198 AmbientGeometry, 51, 55, 272	Collineation, 92 CollineationAction, 215, 232 CollineationFixingSubgeometry, 270 CollineationGroup, 98, 141, 168, 211, 228, 273 CollineationOfProjectiveSpace, 92 CollineationSubgroup, 241 CompanionAutomorphism, 112 ComplementSpace, 169 Coordinates, 77, 131 CorGroupIncidenceStructureWithNauty,
AmbientGroup, 244 AmbientSpace, 66, 73, 78, 125, 131, 159, 162, 192, 267 AsList, 63, 86, 143 AutGroupIncidenceStructureWithNauty, 255	256 Correlation, 93 CorrelationCollineationGroup, 99 CorrelationOfProjectiveSpace, 93 CosetGeometry, 243
BaseField, 72, 78, 95, 100, 112, 127, 158, 162, 269 BasePointOfEGQ, 231 BilinearFormFieldReduction, 319 BlockDesignOfGeneralisedPolygon, 216 BlownUpProjectiveSpace, 317 BlownUpProjectiveSpaceBySubfield, 318 BlownUpSubspaceOfProjectiveSpace, 181, 318	DefiningFrameOfSubgeometry, 268 DefiningListOfPolynomials, 192 DefiningPlanesOfEGQByBLTSet, 240 DeltaOminus, 314 DeltaOplus, 314 DiagramOfGeometry, 258 Dimension, 72, 100, 126, 130, 158, 269 DistanceBetweenElements, 222 DrawDiagram, 258 DrawDiagramWithNeato, 262 DualCoordinatesOfHyperplane, 77
BlownUpSubspaceOfProjectiveSpaceBy- Subfield, 318 BLTSetByqClan, 238 Borelsubgroup, 244 CanComputeActionOnPoints, 108 CanonicalGramMatrix, 310	EGQByBLTSet, 239 EGQByKantorFamily, 230 EGQByqClan, 236 ElationGroup, 232 ElationOfProjectiveSpace, 104

ElementsIncidentWithElementOf-	GrassmannMap, 202
IncidenceStructure, 57, 84, 138,	GrassmannVariety, 202
221	GSpdesargues, 313
ElementsOfFlag, 53	GUdesargues, 313
ElementsOfIncidenceStructure, 49, 50, 75,	
130, 160	HermitianFormFieldReduction, 319
ElementsOfIncidencStructure, 218	HermitianPolarityOfProjectiveSpace, 110
ElementToElement, 70	HermitianPolarSpace, 121
EllipticQuadric, 123	HermitianVariety, 194
Embed, 70	HomographyGroup, 97
Embedding, 100	HomologyOfProjectiveSpace, 105
EmptySubspace, 74, 129	HyperbolicQuadric, 122
Enumerator, 60, 86, 142, 166	HyperplaneByDualCoordinates, 78
EquationOfHyperplane, 78	Hyperplanes, 69, 75, 85, 160
EvaluateForm, 136	IdentityMappingOfElementsOfProjective-
ExtendElementOfSubgeometry, 271	Space, 93
FieldAutemorphism 06	ImageElm, 198
FieldAutomorphism, 96	ImagesSet, 198
FindBasePointCandidates, 316	IncidenceGraph, 44, 209, 254
FINING, 107	IncidenceGraphAttr, 209
FiningOrbit, 144	IncidenceMatrixOfGeneralisedPolygon,
FiningOrbits, 145	211
FiningOrbitsDomain, 146	IncidenceStructure, 42
FiningSetwiseStabiliser, 150	Intertwiner, 171
FiningStabiliser, 147	InversePluckerCoordinates, 319
FiningStabiliserOrb, 148	IsAffineSpace, 43, 157
FisherqClan, 236	IsCanonicalPolarSpace, 124
FisherThasWalkerKantorBettenqClan, 236	IsChamberOfIncidenceStructure, 53, 83,
FlagOfIncidenceStructure, 52, 82, 272	272
FlagToStandardFlag, 250	IsClassicalGeneralisedHexagon, 205
G2fining, 315	IsClassicalGQ, 205
GammaO, 315	IsClassicalPolarSpace, 65, 117
GammaOminus, 314	IsCollinear, 133
GammaOplus, 315	IsCollineation, 90
GammaSp, 314	IsCollineationGroup, 99
GammaU, 315	IsConnected, 248
GeneralisedPolygonByBlocks, 206	IsCorrelation, 91
GeneralisedPolygonByElements, 207	IsCorrelationCollineation, 91
GeneralisedPolygonByIncidenceMatrix,	IsCosetGeometry, 43, 243
206	IsDesarguesianPlane, 205
GeneralSymplecticGroup, 313	IsDesarguesianSpreadElement, 318
GeometryOfAbsolutePoints, 114	IsEGQByBLTSet, 238
GeometryOfDiagram, 258	IsEGQByKantorFamily, 229
GeometryOfRank2Residue, 254	IsElationGQ, 205
GOdesargues, 312	IsElementOfAffineSpace, 46
GramMatrix, 112	IsElementOfCosetGeometry, 46
·	

IsElementUfGeneralisedPolygon, 46	IsProjGrpE1, 88
IsElementOfIncidenceGeometry, 46	IsProjGrpElRep, 89
IsElementOfIncidenceStructure, 46	IsProjGrpElWithFrob, 88
IsElementOfKantorFamily, 229	IsProjGrpElWithFrobRep, 89
IsElementOfLieGeometry, 46	IsProjGrpElWithFrobWithPSIsom, 88, 91
IsElementsOfAffineSpace, 48	IsProjGrpElWithFrobWithPSIsomRep, 89
IsElementsOfCosetGeometry, 48	IsPseudoPolarityOfProjectiveSpace, 114
IsElementsOfIncidenceGeometry, 48	IsResiduallyConnected, 248
IsElementsOfIncidenceStructure, 48	IsStrictlySemilinear, 90
IsElementsOfLieGeometry, 48	IsSubgeometryOfProjectiveSpace, 265
IsEllipticQuadric, 127	IsSubspaceOfClassicalPolarSpace, 46
IsEmptyFlag, 53, 82, 272	IsSubspaceOfProjectiveSpace, 46
IsEmptySubspace, 67	IsSubspaceOfSubgeometryOfProjective-
IsFirmGeometry, 247	Space, 265
IsFlagTransitiveGeometry, 246	IsSubspacesOfClassicalPolarSpace, 49
IsFrameOfProjectiveSpace, 266	IsSubspacesOfProjectiveSpace, 48
IsGeneralisedHexagon, 204	IsSubspacesOfSubgeometryOfProjective-
IsGeneralisedOctagon, 204	Space, 265
IsGeneralisedPolygon, 43, 204	IsSymplecticPolarityOfProjectiveSpace,
IsGeneralisedPolygonRep, 204	113
IsGeneralisedQuadrangle, 204	IsThickGeometry, 247
IsGeometryMorphism, 170	IsThinGeometry, 247
<pre>IsHermitianPolarityOfProjectiveSpace,</pre>	IsVectorSpaceTransversal, 169
113	IsWeakGeneralisedPolygon, 205
IsHyperbolicQuadric, 127	Iterator, 59, 85, 143, 165, 193
IsIncidenceGeometry, 42	
IsIncidenceStructure, 42	KantorFamilyByqClan, 236
IsIncident, 51, 55, 76, 131, 161, 219, 244	KantorKnuthqClan, 236
IsIsomorphicIncidenceStructureWith-	KantorMonomialqClan, 236
Nauty, 257	KleinCorrespondence, 174, 175
IsKantorFamily, 230	KleinCorrespondenceExtended, 175
IsLieGeometry, 43, 224	LinearqClan, 236
Isometry, 139	Lines, 50, 58, 75, 85, 160, 218, 221
IsometryGroup, 140	List, 60, 86, 142
IsomorphismPolarSpaces, 172	1150, 00, 00, 142
<pre>IsomorphismPolarSpacesNC, 319</pre>	MatrixOfCollineation, 95
IsomorphismPolarSpacesProjectionFrom-	MatrixOfCorrelation, 95
Nucleus, 319	Meet, 81, 133, 163, 220, 227
IsOrthogonalPolarityOfProjectiveSpace,	
113	NaturalDuality, 176
IsParabolicQuadric, 128	NaturalEmbeddingByFieldReduction, 181
IsParallel, 163	186, 187
${\tt IsProjectivePlaneCategory, 204}$	NaturalEmbeddingBySubField, 179, 184
IsProjectiveSpace, 65,71	NaturalEmbeddingBySubspace, 179, 183
IsProjectivity, 89	NaturalEmbeddingBySubspaceNC, 320
IsProjectivityGroup, 99	NaturalProjectionBySubspace, 189
	NaturalProjectionBySubspaceNC, 320

NiceMonomorphism, 107, 154	QuadraticVariety, 195
NiceMonomorphismByDomain, 108	
NiceMonomorphismByOrbit, 108	Random, 51, 79
NiceObject, 107, 154	RandomChamber, 245
${\tt NrElementsOfIncidenceStructure}, 50$	RandomElement, 245
01: 17 77 1 40 210 226 220 240	RandomFlag, 245
ObjectToElement, 48, 218, 226, 230, 240	RandomFrameOfProjectiveSpace, 266
OnAffineSpaces, 168	RandomSubspace, 80
OnCosetGeometryElement, 246	Range, 198
OnKantorFamily, 232	Rank, 44, 54, 72, 126, 158, 269
OnProjSubspaces, 101, 153	Rank2Parameters, 255
OnProjSubspacesExtended, 103, 153	RankAttr, 44
OnSetsProjSubspaces, 153	Representative, 94
Order, 97, 209	ResidueOfFlag, 57, 251
Danish ali after design 199	Rk2GeoDiameter, 254
ParabolicQuadric, 122	Rk2GeoGonality, 254
ParabolicSubgroups, 244	G W 100
ParallelClass, 164	SegreMap, 199
PG, 71	SegreVariety, 199
Planes, 50, 58, 75, 85, 160	SelfDuality, 177
PluckerCoordinates, 173, 319	Semi-similarity, 139
Points, 50, 58, 75, 85, 160, 192, 199, 201, 202,	SesquilinearForm, 111, 197
218, 221	SetParent, 155
PointsOfAlgebraicVariety, 192	ShadowOfElement, 56, 83, 137, 164, 221
PointsOfGrassmannVariety, 202	ShadowOfFlag, 57, 84, 165
PointsOfSegreVariety, 199	ShrinkMat, 317
PointsOfVeroneseVariety, 201	ShrinkVec, 317
PolarityOfProjectiveSpace, 110, 111, 134	Similarity, 139
PolarSpace, 115, 118, 197	SimilarityGroup, 141
Pole, 136	Size, 54, 218
ProjectiveCompletion, 190	SOdesargues, 312
ProjectiveDimension, 66, 72, 74, 126, 130,	Solids, 50, 58, 75, 85, 160
269	Source, 198, 200, 202, 203
ProjectiveElationGroup, 104	Span, 80, 132, 162, 219, 227
ProjectiveHomologyGroup, 106	Spdesargues, 313
ProjectiveSemilinearMap, 93	SpecialHomographyGroup, 98
ProjectiveSpace, 71	SpecialIsometryGroup, 140
ProjectiveSpaceIsomorphism, 96	SpecialProjectiveStabiliserGroupOf-
ProjectiveStabiliserGroupOfSubspace,	Subspace, 152
152	SpecialProjectivityGroup, 98, 273
ProjectiveVariety, 193	SplitCayleyHexagon, 224
Projectivity, 91	StabiliserGroupOfSubspace, 151
ProjectivityGroup, 97, 273	StandardDualityOfProjectiveSpace, 93
•	StandardFlagOfCosetGeometry, 250
qClan, 236	StandardFrame, 77
QuadraticForm, 196	StandardPolarSpace, 125
QuadraticFormFieldReduction, 318	SubfieldOfSubgeometry, 269

```
{\tt SubgeometryOfProjectiveSpaceByFrame,}
       267
SUdesargues, 312
SymplecticSpace, 121
TangentSpace, 135
TwistedTrialityHexagon, 225
Type, 48, 55
TypeOfSubspace, 135
{\tt TypesOfElementsOfIncidenceStructure,\,43}
{\tt TypesOfElementsOfIncidenceStructure-}
       Plural, 43
UnderlyingObject, 46, 68, 218, 226, 231, 240
UnderlyingVectorSpace, 66, 72, 125, 159,
        267, 269
vector spaceToElement, 225
VectorSpaceToElement, 67, 73, 129, 270
VectorSpaceTransversal, 169
VectorSpaceTransversalElement, 169
VeroneseMap, 201
VeroneseVariety, 200, 201
```