CHALMERS

DIT045 H17 Requirements and User Experience

Lecture 12: Usability Testing & Field Studies

Jennifer Horkoff Email: jenho@chalmers.se

INTERACTION DESIGN

Evaluation: Usability Testing and Field Studies

USABILITY TESTING - WHAT

- Asking users to perform various tasks with the interface.
 - E.g. add a course, buy a product, post a message, review a timeline etc., etc.
- Observing how they perform:
 - How fast they perform it? (efficiency)
 - How often they succeed? (effectiveness)
 - Are they confused, lost, dissatisfied etc. at any point?
 - What do they think afterwards?
- Analyze Results and revise Interface, e.g.:
 - If it takes too long to locate a button, make it more salient.
 - If user doesn't know what to do at a given point in time, add e.g. constraints.

USABILITY TESTING - HOW

- Select a number of representative users.
 - Called participants or subjects.
 - Normally 5-10 users.
- Define a number of typical interaction tasks.
- Invite participants to the lab.
- Acquire informed consent to participate.
- Have them perform each of the tasks.
 - Usually < 30 minutes to avoid fatigue effects.
- Take performance measurements.

USABILITY TESTING - HOW

- In the beginning: May or may not guide the user thought the screens.
 - No, if learnability is something to be measured.
 - Yes, if system is by its nature too complex to be learned without help.
- During: ask users to perform tasks in order to achieve specified goals.
 - "Please find course ITEC3230 Fall 2018 and enrol it."
 - "Pick-up the Atlas MP3 Player 5GB, add it to cart and go to check-out."
 - "Find who has responded to your post."
 - "Find which photos of yours have been tagged."
- During: measure usability indicators (next slide)

USABILITY TESTING – WHAT TO MEASURE (1/2)

• Quantitative Data:

- Time to complete a task.
 - Measure of efficiency.
- Time to complete a task after a specified time away from the product.
 - Measure of memorability.
- Number and type of errors per task.
 - Measure of safety or effectiveness.
- Number of errors per unit of time.
 - Measure of safety or effectiveness.
- Number of navigations to online help or manuals.
 - Measure of learnability.
- Time to figure out what to do.
 - Measure of learnability.
- Number of users making a particular error.
 - Measure of safety or effectiveness.
- Number of users completing task successfully.
 - Measure of safety or effectiveness.

USABILITY TESTING – WHAT TO MEASURE (2/2)

- Qualitative Data:
 - Body language and facial expressions.
 - Expressions of frustration, dissatisfaction, confusion, hesitation.
 - Articulated comments
 - User is probably talking while using the system, expressing dissatisfaction, difficulty, confusion, lack of understanding.
- Use video camera to record both the face of the participants and the interface he/she is using.
- Voice-record user's comments while performing the tasks.
- Must have acquired written-signed consent beforehand to do all that!

7

USABILITY TESTING – AFTER THE TASKS

- Administer questionnaire to assess other parameters.
 - Overall experience and satisfaction level.
 - Perceived ease of use/intuitiveness/quality.
 - Suggestions for improvement.
 - Priorities for addressing issues.
 - •
- Questions can be
 - closed-ended (= quantitative analysis)
 - open-ended (= qualitative analysis)
- Use a standard usability assessment questionnaire.
 - SUS, SUMI, PSSUQ, UMUX

THE SYSTEM USABILITY SCALE (SUS)

- Very popular in the industry.
 - About 43% usage.
- Simple and quick.
- Two versions:
 - Standard¹ (alternating positive and negative-tone questions)
 - Positive^{2,3} (only positive).
- 10 Likert style questions
 - Responses from 1 (strongly disagree) to 5 (strongly agree)
 - For neutral it is 3.
- Overall SUS score calculation:
 - Positive items (for standard and positive format): score 1.
 - Negative items (for standard format): 5 score.

^[2] J. Sauro and J. R. Lewis, When designing usability questionnaires does it hurt to be positive? CHI 2011

THE SYSTEM USABILITY SCALE (SUS)

1	I think that I would like to use this system frequently.		
2	I found the system unnecessarily complex.		
3	I thought the system was easy to use.		
4	I think that I would need to support of a technical person to be able to use this system.		
5	I found that the various functions in this system were well integrated.		
6	I thought there was too much inconsistency in this system.		
7	I would imagine that most people would learn to use this system very quickly.		
8	I found the system very cumbersome to use.		
8	I felt very confident using the system.		
10	I needed to learn a lot of things before I could get going with this system.		

SUS SCORING

	Question	Response	Score
1	I think that I would like to use this system frequently.	Agree (4)	3 (4-1)
2	I found the system unnecessarily complex.	Disagree (2)	3 (5-2)
3	I thought the system was easy to use.	Disagree (2)	1 (2-1)
4	I think that I would need to support of a technical person to be able to use this system.	Strongly Agree (5)	0 (5-5)
5	I found that the various functions in this system were well integrated.	Agree (4)	3 (4-1)
6	I thought there was too much inconsistency in this system.	Agree (4)	1 (5-4)
7	I would imagine that most people would learn to use this system very quickly.	Strongly Disagree (1)	0 (1-1)
8	I found the system very cumbersome to use.	Strongly Disagree (1)	4 (5-1)
8	I felt very confident using the system.	Agree (4)	3 (4-1)
10	I needed to learn a lot of things before I could get going with this system.	Neutral (3)	2 (3-1)
	TOTAL		20 * 2.5 = 50%

SUS CURVED SCALE

SUS Score Range	Grade	Percentile Range
84.1 – 100	A+	96 – 100
80.8 - 84.0	Α	90 – 95
78.9 – 80.7	A-	85 – 89
77.2 – 78.8	B+	80 – 84
74.1 – 77.1	В	70 – 79
72.6 – 74.0	B-	65 – 69
71.1 – 72.5	C+	60 – 64
65.0 – 71.0	С	41 – 59
62.7 - 64.9	C-	35 – 40
51.7 – 62.6	D	15 – 34
00.0 - 51.6	F	0 –14

USABILITY TESTING — SUMMARY OF DATA COLLECTED

- Performance data during the task.
 - Logged by the interface (e.g. clicks, keypresses)
 - Video-recorded and processed afterwards.
- Experience data during the task.
 - Voice/video recordings of participant and the interface.
- Experience data after the task.
 - Questionnaire and/or discussion with the analyst in the end.

USABILITY TESTING - DATA ANALYSIS

- Performance data during the task.
 - Identify possible efficiency, safety, effectiveness, learnability, memorability issues.
- Experience data during the task.
 - Explain/identify/contextualize performance issues.
 - Assess user experience.
- Experience data after the task.
 - Assess user experience.
 - Elicit attitudes.
 - Elicit priorities.

USABILITY LAB WITH OBSERVERS WATCHING A USER & ASSISTANT

PORTABLE EQUIPMENT FOR USE IN THE FIELD

http://www.id-book.com

USABILITY EXPERIMENTS

- When you have to compare two candidate interfaces.
 - E.g. an old and a new one.
- There is a need for generalization for a larger class of systems (e.g. interested in statistical significance)
- Larger and representative sample sizes.
- More rigorous control of other influencing factors.

WHAT ARE EXPERIMENTS?

18

EXPERIMENTS - GOAL

- Establish whether the response can be actually attributed to one of the possible influencing factors.
 - I.e. say: "it was because of ABC factor that we observed XYZ response."
- In usability experiments we want to say:
 - "it was because of the interface design that a user took less time to complete a task (and not because e.g. the user was smarter)"

EXPERIMENTS - EXAMPLE

- Assume that I produce the HeadPill®, which, I claim, cures headache.
 - Would you believe me and go buy the HeadPill?
 - What proof do you need in order to believe me?
- Assume that I give the pill to a participant.
- The participant comes back after a few hours and says he was cured!
- •Are you convinced?

EXPERIMENTS - EXAMPLE

21

EXPERIMENTS - EXAMPLE

- The pill may have cured the headache...
- ... but it may have also been the apple that cured the headache...
- ... or the 1 litre of water that the participant drank...
- ... or the fact that he took a nap.
- So: we cannot attribute the response (that the headache was cured) to the pill.
- We need to rule out all other factors.
 - How??
 - By controlling for them.

EXPERIMENTS - TECHNIQUE

- Take 2 groups of participants A and B, all with headache.
- Participants in A eat an apple, drink 1lt of water, take a nap, listen to relaxed music and take the pill.
- Participants in B eat an apple, drink 1lt of water, take a nap, listen to relaxed music but do not take the pill.
- I.e. you control for apples, water, sleep, relaxed music.
- If A are cured and B are not cured:
 - You know it must have been the pill.
 - All else was equal for A and B! There is no other explanation.
 (*)

EXPERIMENTS - TERMINOLOGY

Independent Variable.

- The influencing factor you are tweaking in order to see if it has an effect to the dependent variable.
- It is up to you to tweak it, that's why it is "independent".
- Example: whether or not to take the pill.

Dependent Variable.

- The response/effect you are wondering if it should be attributed to the independent variable.
- Example: whether headache goes away.

Confounding factors.

- Other influencing factors that, if left uncontrolled, they won't let you prove the connection.
- Example: eating the apples, drinking the water, sleeping, etc.

Experimental Condition.

 The state of the independent variable at a given phase of the experiment.

USABILITY EXPERIMENTS

- Same logic like any experiment.
- Used to compare two interfaces A (e.g. an existing) and B (a redesigned one).
- Have some subjects use A and some subjects use B.
- Keep all else equal:
 - The time of the day, the amount of sleep subjects had, the environment, the keyboard/mouse, the age/skill of the subjects.
- Observe: do subjects who use B perform better (e.g. faster) than those who used A?
 - If yes, and everything else is held equal (= is controlled for) then it is probably because of B being a better design that we observe the better performance.

USABILITY EXPERIMENTS

Opendent Variable:

 How long does it take to perform a given task (e.g. enrol a course?)

Independent Variable

Use System A or System B

Confounding factors

 The time of the day, the amount of sleep participants had, the environment, etc.

Experimental Condition.

 Whether the given task is performed using System A or System B.

SAMPLES AND INDIVIDUAL DIFFERENCES

- You want to test if a coin is fair.
- How many times do you toss it?
 - One time?
 - Two times?
 - More times?
- Clearly the more times the better. A bigger sample (of coin tosses) is more "representative" of the population of all possible coin tosses.
- The same logic applies to participants.
- Participants have different characteristics and capabilities:
 - Visual and motor skills, cognitive skills, attention levels, culture, background, education...
 - They have slept different amounts of time, eaten or not before they came to your experiment, may or may not be having a bad day, may or may not be stressed/distracted about something etc...
- Solution: choose many of them to level out these individual differences.

Assigning Participants to Experiments

 When comparing interface A with interface B we need to decide which participants will use A and which participants will use B.

Interface A

Interface B

EXPERIMENTAL DESIGNS

- Different participants ("between subjects")
 - single group of participants is allocated randomly to the experimental conditions.
- Same participants ("within subjects") all participants appear in both conditions. (counterbalancing to neutralize the learning effect)
- Matched participants participants are matched in pairs, e.g., based on expertise, gender, etc.

DIFFERENT PARTICIPANTS – BETWEEN SUBJECTS

Interface A

Interface B

DIFFERENT PARTICIPANTS – BETWEEN SUBJECTS

Through randomly distributing to conditions, when the sample is large enough, individual differences are unlikely to group together.

31

DIFFERENT PARTICIPANTS – BETWEEN SUBJECTS

SAME PARTICIPANTS - WITHIN SUBJECTS

Interface A

Interface B

SAME PARTICIPANTS - WITHIN SUBJECTS

SAME PARTICIPANTS - WITHIN SUBJECTS

Stage 2:
everybody uses
interface B

Interface A

SAME PARTICIPANTS – WITHIN SUBJECTS: ISSUE

Learning Effect / Order effect

- When participants use interface A they familiarize themselves with it and the experimental process.
- They are more likely to perform better using Interface B just because of this.
- Thus ordering becomes a confounding factor.
- Differences in the responses may not be due to the quality of the interface but the sequence in which it was tested.

Solution:

- Counterbalancing.
- Split participants: half do A → B, and half do B → A.
- Learning effects still exist but cancel out.
 - (Assuming they are symmetric)

Interface A

Interface B

MATCHED PARTICIPANTS

Interface A

Interface B

MATCHED PARTICIPANTS

Like between subjects, but not leave it to randomness.

MATCHED PARTICIPANTS

Like between subjects, but not leave it to randomness. That might be challenging.

USABILITY EXPERIMENT - EXAMPLE

- You have two course enrolment interfaces: the Old one and the New one.
- You claim that the New one allows users to enrol courses much faster than the Old one.
- Design an experimental study that could support or refute your claim.
- Specify:
 - Independent Variables
 - Dependent Variables
 - Nuisance Variables / Confounding Factors
 - Experimental Conditions (what participants actually do)
- o How do you split participants for:
 - Between Subjects?
 - Within Subjects?
 - Matched Participants?

DIFFERENT, SAME, MATCHED PARTICIPANT DESIGN

Design	Advantages	Disadvantages
Different	No order effects	Many subjects & individual differences a problem
Same	Few individuals, no individual differences	Counter-balancing needed because of ordering effects
Matched	Same as different participants but individual differences reduced	Cannot be sure of perfect matching on all differences

USABILITY TESTING VS. RESEARCH

Usability testing

- Improve products
- Few participants
- Results inform design
- Usually not completely replicable
- Conditions controlled as much as possible
- Procedure planned
- Results reported to developers

Experiments for research

- Discover knowledge
- Many participants
- Results validated statistically
- Must be replicable
- Strongly controlled conditions
- Experimental design
- Scientific reported to scientific community

FIELD STUDIES

- Field studies are done in natural settings.
- The aim is to understand what users do naturally and how technology impacts them.
- Field studies can be used in product design to:
 - identify opportunities for new technology;
 - determine design requirements;
 - decide how best to introduce new technology;
 - evaluate technology in use.

FIELD STUDIES

- Good for understanding appropriation:
 - Understanding how users, integrate and adopt technology to their needs, desires and culture.
- OData collection:
 - Notes, pictures, recordings
 - Video
 - Logging (and often prompting)
- o Analysis:
 - Qualitative analysis of various types. (e.g. activity theory)

KEY POINTS

- Testing is a central part of usability testing.
- Usability testing is done in controlled conditions.
- Usability testing is an adapted form of experimentation.
- Experiments aim to test hypotheses by manipulating certain variables while keeping others constant.
- The experimenter controls the independent variable(s) but not the dependent variable(s).
- There are three types of experimental design: differentparticipants, same-participants, & matched participants.
- Field studies are done in natural environments.
- Typically observation and interviews are used to collect field studies data