CSC 370

Data Modelling

Major topics

- Entity-Relationship diagrams
- Weak entity sets
- Converting E/R diagrams to relations
- UML-related diagramming
- Object Description Language (ODL)

Entity-Relationship Model: Introduction

- E/R diagramming model allows us to visually represent database-schema designs
 - We show structure, not dynamic behavior
 - Can denote some constraints
 - For those without background in databases,
 somewhat easier to understand proposed designs
- Resulting designs are called entityrelationship diagrams (or E/R diagrams)
- We must also later convert E/R diagrams into relations

Some motivation

- Design can be difficult...
 - and consequences of getting the design wrong can be serious.
- The client may assert that they know what they want in a database...
 - ... but they don't know precisely what should be in it.
 - nor do they exactly understand the nuances of how the data is related
- Sketching out key components is one effective way to design and develop an actual database

Vocabulary

Entity

- a thing or object
- often is something which has an identity

Entity Set

- collection of similar entities
- quite similar to the notion of "instances of a class" in Java

Attribute

- property of an entity
- all entities belong to the same entity set will have the same number and type of attributes
- simple values (i.e., not structs, lists, sets, etc.)

E/R diagrams

- There are a few "dialects" of E/R diagrams
- We will use the one where:
 - entity set = rectangle
 - attribute = oval
 - relationships = diamond
- Even if the actual symbols change, reasoning about E/R diagrams is the same from dialect to dialect

Example

- Entity set Beers has two attributes, name and manf (manufacturer).
- Each Beers entity has values for these two attributes, e.g. ("Blue", "Labatt's")
 - values are not shown in the diagram

Relationships

- We connect two or more entity sets via a relationship
- Relationship:
 - Diamond
 - Lines connect the diamond to each of the entity sets involved in the relationship
 - No strict rule regarding the placement of entities in the relationship.
 - Convention: Lay out entities from left to right, top to bottom (i.e., to help with "reading" of the diagram)...
 - but this is not always possible.

Example: Relationships

Pub(s) sell some beers.

Patron(s) like some beers.

Patron(s) frequent some pubs.

Relationship Set

- The value of a entity set at any one time is the set of entities that belong to it
 - In our example: value of Pub is the set of all pubs in our database
- The value of a relationship is a relationship set
 - This is a set of tuples with one component for each related entity set.

Example: relationship set

- For the relationship named Sells, we might have a relationship set as shown here.
- Note:
 - We're making some big assumptions here about how we identify individual entities!

pub	beer	
Cheers	Blue	
Cheers	Blue Buck	
Cheers	Stella Artois	
Parched Programmer	Blue	
Parched Programmer	Amnesiac	
Parched Programmer	Chimay Blue	

Multiway Relationships

- We do to have a relationship set that connects more than two entity sets
- Example: Suppose that patrons will only imbibe (i.e., drink) certain beers at certain pubs.
 - Our three existing relationships Like, Sells, and
 Frequents all of them binary cannot allow us to model this.
 - However, a three-way relationship named
 Preferences could begin to let us do this.

Example: Three-way Relationship

Example: relationship set for Preferences

pub	patron	beer
Cheers	Cliff	Blue
Parched Programmer	Cliff	Blue Buck
Parched Programmer	Cliff	Stella Artois
Cheers	Norm	Blue
Cheers	Norm	Amnesiac
Cheers	Bill G	Coors Light
Parched Programmer	Bill G	Bud Light

Note: Although we can now express this three-way relationship, we have not constrained data as originally suggested (i.e., right now "Bill G" could still like "Bud Light" at "Cheers"). We'll bolt on this constraint shortly.