

Documentation

Description of the model of the

SMA Sunny Central solar inverters and

SMA Sunny Central Storage battery inverters

for EMT studies in PSCAD

Please consider the environment before you print this document.

Model Revision 10.00.13.06 Document Revision 10.11 Nov. 14, 2023

Note

The inverter model "SC xxxx" described in this document replaces all former revisions of PSCAD models of the solar inverter line Sunny Central and battery inverter line Sunny Central Storage.

Models of other inverter types are not affected and are not covered by SC xxxx.

The following PSCAD versions are currently supported:

version 5.X (version 4.6 is still working but not recommended. Libraries are available on request)

Please contact SMA if models for other simulation platforms are required. Currently, SMA supports

- DIgSILENT PowerFactory (rms and EMT models)
- Siemens Power Technologies International PSS®E (rms models)
- General Electric International PSLF (rms models)
- Manitoba HVDC Research Centre PSCAD® (EMT model)
- PGSTech EMTP® (EMT model)
- ATP (EMT model)

Document history

Document version		Description
9.0	C.Hardt	New model release
9.2	C.Hardt	New model release
9.3	C.Hardt	New model release
9.6	C.Hardt	Model parameters
9.7	C.Hardt	New model release, model parameters
9.8	V.Sakschewski	DC coupling dynamic response improvements and model
		parameters
9.9	C.Hardt	New model release
10.0	V.Sakschewski	New firmware release
10.1	V.Sakschewski	DC Amp Control modus added → Electrolizer capability
10.2	V.Sakschewski	Further DC coupling dynamic response improvement
10.3	V.Sakschewski	new grid codes added
10.4	V.Sakschewski	Changes regarding 9.00.37.09
10.5	V.Sakschewski	Changes regarding 9.02.05.01
10.6	V.Sakschewski	Update Disclaimer
10.7	V.Sakschewski	Improvements for GF81 compiler
10.8	V.Sakschewski	First revision for Release 10 firmware
10.9	Ch. Hardt	DC limits added; PSCAD5 and DLL support
10.11	Ch. Hardt	MPPT parameters added

Model history

Model version	Description
9.00.00.00	Pre release R9 for GridForming studies
	- GridForming "Virtual impedance" mode updates
	- GridForming "Virtual inertia"
9.00.05.03	Country code fix (WGra, VArGra)
9.00.05.05	Internal interface work for logfile, config file (necessary
	due to support of EMTP)
9.00.13.04	R9 pre release version:
	Gridforming: parameter renamings, overcurrent functions,
	inertia,
	GridFollowing: optimized FRT entry and exit strategies
9.00.15.01	Snapshot fixed
9.00.22.02	Parameters for "VCtl_PkLimBlkPwm"
9.00.24.00	GriForm_Frt_VirtImpDlTm
9.00.26.00	Q(v) voltage initialization options
9.00.26.01	DC coupling dynamic response improvements
9.00.27.01	Fixes to precharge handling
9.00.27.02	Default parameter loading fix for "SCS 3950 UP"
	(Rating parameters were loaded for "SCS 3950 UP-XT-
	US")
9.00.28.00	Priorization in DC coupling
9.00.33.01	Further improvements regarding DC coupling
9.00.33.02	DC Amp Control modus added → Electrolizer capability
9.00.37.01	Further DC coupling dynamic response improvement
9.00.37.05	new grid codes added:
	US IEEE1547:2018
	US IEEE1547:2018 SCS
	US IEEE1547:2018 + NERC
	US IEEE1547:2018 + NERC SCS
	ES TED749
	GB G99
	PT Portaria 73
9.00.37.09	Start ramp "WGraStr" is deactivated as default for simula-
	tion
9.02.05.01	Modifications for DC Link voltage instability
9.02.05.03	Compatibility with GF81
10.00.13.06	R10 prerelease

Model validity

This model is valid for inverters with firmware version from v10.00.13.

The inverter model "SC xxxx" described in this document is only intended for simulation of the SMA Sunny Central and Sunny Central Storage inverters listed below.

PV inverter	Storage inverter
SC 1850-EV-US	SCS 1900
SC 2000-EV-US	SCS 1900-US
SC 2000-US	SCS 2200
SC 2200	SCS 2200-US
SC 2200-US	SCS 2300 UP-XT
SC 2475	SCS 2300 UP-XT-US
SC 2500-EV	SCS 2400 UP-XT
SC 2500-EV-US	SCS 2400 UP-XT-US
SC 2660 UP	SCS 2475
SC 2660 UP-US	SCS 2475-US
SC 2750-EV	SCS 2500-EV
SC 2750-EV-US	SCS 2500-EV-US
SC 2800 UP	SCS 2530 UP-XT
SC 2800 UP-US	SCS 2530 UP-XT-US
SC 2930 UP	SCS 2630 UP-XT
SC 2930 UP-US	SCS 2630 UP-XT-US
SC 3000-EV	SCS 2750-EV
SC 3060 UP	SCS 2750-EV-US
SC 3060 UP-US	SCS 2900
SC 4000 UP	SCS 2900-US
SC 4000 UP-US	SCS 2900-US
SC 4200 UP	SCS 3000-EV
SC 4200 UP-US	SCS 3450 UP
SC 4400 UP	SCS 3450 UP-US
SC 4400 UP-US	SCS 3450 UP-XT
SC 4600 UP	SCS 3450 UP-XT-US
SC 4600 UP-US	SCS 3600 UP
	SCS 3600 UP-US
	SCS 3600 UP-XT
	SCS 3600 UP-XT-US
	SCS 3800 UP
	SCS 3800 UP-US
	SCS 3800 UP-XT
	SCS 3800 UP-XT-US
	SCS 3950 UP
	SCS 3950 UP-US
	SCS 3950 UP-XT
	SCS 3950 UP-XT-US

Contents

1		Installatio	on requirements	8
2		Model v	alidity	10
3		Model c	onfiguration	11
	3.1	Mod	el parameters	14
	3.2	Runtii	me Parameter Update (RTUpd)	37
	3.3	Trans	former parameters	38
	3.4	PPC I	oarameters	38
	3.5	Powe	er Plant Manager / Hybrid Controller parameters	38
	3.6	Runti	me Messages	39
4		Special i	nverter functions for dynamic simulation	40
	4.1	Activ	e power control	40
		4.1.1	Over Frequency-dependent active power P(f) - PV inverters	40
		4.1.2	Under Frequency-dependent active power P(f) - PV inverters	40
	4.2	Reac	tive power control	41
		4.2.1	Reactive power provision by power factor set-point	41
		4.2.2	Reactive power provision by Q set-point	42
		4.2.3	Voltage-dependent reactive power Q(U)	42
	4.3	Dyna	ımic grid support	42
		4.3.2	Dynamic grid support "limited/partial"	43
		4.3.3	Dynamic grid support "Momentary Cessation"	43
	4.4	Deco	oupling protection	43
		4.4.1	Voltage decoupling protection	43
		4.4.2	Frequency decoupling protection	44
		4.4.3	PLL freeze logic	45
	4.5	Powe	er as a function of frequency, PV inverters – new functionality	45
		4.5.1	Power as a function of frequency, battery inverters - new functionality	45
	4.6	DC c	urrent and voltage limitation for SCS inverters	47
5		Model s	tart-up	49

Descrip	Debug Interface			
6	Debug Interface	51		
7	Disclaimer	54		

1 Installation requirements

The model can run with GFortran or Intel Visual Fortran compiler. To the best of our knowledge, the Intel Fortran compiler has a speed advantage over the GFortran compiler coming with PSCAD5. We tested the model with Intel Visual Fortran 11 and higher.

The model has only been tested on Windows 10 64 bit machines.

The model package includes files listed in the table below.

SC_xxxx_VX_X_XX_PV_PPC.pscx	Demo case containing the inverters and a simple Power Plant Controller (PPC)
SMA_Workspace.pswx	PSCAD workspace file for the Demo case
SC_Lib.pslx	PSCAD library file containing the switched SC/SCS inverter model – inverter IGBT bridge modelled
SCAvg_Lib.pslx	PSCAD library file containing the averaged SC/SCS inverter model – inverter IGBT bridge averaged with voltage sources
DLL_x64/SMASC_K_[version].dll	Dynamic linked library for 64 bit
DLL_x86/SMASC_K_[version].dll	Dynamic linked library for 32 bit
DLL_x64/ SMASC_K_[version].f90	Fortran dll interface file
DLL_x86/ SMASC_K_[version].f90	Fortran dll interface file
Default.txt	Example configuration file
CfgFile[1200].txt	Up to 200 different user configuration files can be used with the model – not provided in the package
SMA_Tools.pslx	PSCAD library containing helpful function blocks (e.g. for setting of the grid parameters)

All these files must be placed in the working directory of PSCAD and the Dll files and f90 files have to be included under "Resources" on either the model case or in the library (recommended).

Since there is a common request in many markets to migrate to dynamic link libraries (.dll files) SMA switched to this integration method for PSCAD5. The DLL files can be included in PSCAD5 and be used with Intel Fortran as well as GFortran8.1.

Static libraries are still generated by SMA and are only available on request.

To be able to detect which compiler is used the following feature of PSCAD MUST be turned on:

Do not try to start the PSCAD project from a network drive. Please put it on your hard disk drive.

2 Model validity

The model described in this document is intended for EMT type simulations of electrical energy systems deploying equipment from SMA Solar Technology AG.

In dynamic simulations the simulation step width must not be greater than 16.66667 µs. In general, 1.666667 or 16.66667 µs are good choices for the simulation step width and other values should not be chosen.

The model should only be used for simulation of phenomena occurring on the AC side of the inverter. It should not be used for simulations of the DC side, e.g. the connection of different photovoltaic modules to the equipment. It should also not be used for simulations of different weather conditions or irradiation effects or any other long-term phenomena.

3 Model configuration

The demo model "SC_xxxx_VX_X_XX_PV_PPC.pscx" contains one Sunny Central UP that consist of a SC solar inverter and LV transformer. This system is scaled with a scaling element to 25 times the power class of the selected inverter on the MV side. The Point of Connection (POC) on HV side is controlled with a Power Plant Manager / HybridController (PPM/HyCon).

To select the required inverter type, right click on the inverter symbol and select "Edit Parameters...". Changing from one inverter type to another requires adaptation of the DC voltage (PV array or battery) and the MV transformer (power rating, voltage level) according to the inverter's data sheet. Refer to inverter data sheet for more details.

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCADSMA Solar Technology AG

User can also set the parameter (configuration) file for each inverter in the model.

Filenumber	Filename in the model directory				
0	Default.txt				
1	CfgFile 1.txt*				
2	CfgFile2.txt*				
3	CfgFile3.txt*				
200	CfgFile200.txt*				

^{*}The configuration files can be created by copying the "Default.txt" file and changing the content.

Please note the 'Default.txt' file contains example inverter settings not the actual default values in given firmware version.

If no configuration file is found the model runs with default inverter parameters in the given firmware version.

Beginning with version 8 of the model it is possible to load specific country parameter sets as in the real inverter (e.g. US IEEE 1574 and more). The model prints these parameters and their default values either on the PSCAD runtime console or into a logging file in case "Enable file logging" is set to 1. The content of this file or parts of it can be transferred into the user specific config file and used as a starting point for changing project specific parameters.

The following figure gives an overview on the parameter loading sequence.

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCADSMA Solar Technology AG

In case the simulation is started from a snapshot file (only possible with Intel Fortran compilers!!) the model reloads the project specific config file in the first timestep. Changes to the content or even changing the number of the file to load will affect the parameterization.

To simulate the storage SCS inverter the correct SCS inverter type must be selected via the "Edit Parameters...." menu and the DC source changed to represent the battery. Example of what the DC side may look like in this scenario is shown below.

For extracting the DEBUG_PCU and MEAS_PCU use the "SC DEBUG" scope block from the SC_Lib.pslx. Description of the available DEBUG signals is in Chapter 6.

"Input from DPS" and "Output to DPS" are needed for data exchange between the SMA DC/DC converter and the SMA Sunny Central PV inverter.

3.1 Model parameters

This section provides example parameters settings as provided in the example config file. Project specific parameter settings must be selected via studies.

Please note:

- Each inverter type has a set of default parameters for each firmware version. The parameters below and in example config file are just example settings and are NOT the default inverter/firmware parameters.
- Parameter values are not selected for any specific inverter type settings should be crosschecked with inverter's datasheet to ensure the values are within the inverter's capability, e.g. the voltage/frequency protection times and levels.
- Most of the parameter names reflect the parameter names of the real inverter. In the real device the "_" is replaced by ".".
- Model specific parameters that are not present in real inverter are marked as such.
- Most of the non-binary parameters can only have 2 decimal places unless otherwise stated –
 if more resolution is required please check with SMA.

	Parameter	Description	Unit	Range	Example setting
		External set-po Setpoint interface: 1: WSpt (pu) 2: VArSpt (pu) 3: PFSpt 4: VolSpt (pu) 5: HzSpt (Hz) 6: SCSOpCmd 381:Stop 21415:Inverter Standby 21416:Power control 21417:DC voltage 21418:DC Amp control 21521:Gridforming P/f and Q/V droop 22321:Gridforming P/f droop and voltage 2322:GridForming P/f droop and voltage	Setpoint interface: 1: WSpt (pu) 2: VArSpt (pu) 3: PFSpt 4: VolSpt (pu) 5: HzSpt (Hz) 6: SCSOpCmd 381:Stop 21415:Inverter Standby 21416:Power control 21417:DC voltage 21418:DC Amp control 21521:Gridforming P/f and Q/V droop 22321:GridForming angle inertia and Q/V Droop 22322:GridForming P/f droop and voltage Inertia 22323:GridForming angle inertia and voltage inertia 7: WSptMin (pu) 8: BatWSptMax (pu) 9: BatWSptMax (pu) 9: BatWSptMin (pu) 10: DCAmpSpt (A) 11: DCVolSpt (V) 12: RTUpd_UID 13: RTUpd_Value 14: ErrClr		Example sening
1	WSpt	Active power set-point (from park	p.u. WRtg	-1 1	1
2	VArSpt	controller or grid operator) Reactive power set-point (from park controller or grid operator)	p.u. VArRtg	-1 1	0
3	PFSpt	Power factor set-point (from grid operator)		-1 1	1

4	VolSpt	AC Voltage set-poi	nt (from grid op-	p.u. VolRtg	0.0 1.1	1	
5	HzSpt	AC frequency set-point		Hz	45-65	50Hz/60Hz	
6	SCSOpCmd	Operation Comma	ınd, used to define	e behavior of bo	rior of battery inverters		
	(for SCS inverters)	Input needs to be activated via config file parameter "UseSCSOpCmd"					
		381	Stop				
		21415	Inverter Standb	у			
		21416	Power control				
		21417	DC voltage con	itrol			
		21418	DC Amp contro	I			
		21521	GridForming Fre	equency Droop	and Voltage	Droop	
		22321	GridForming Ar	ngle Inertia and	Voltage Droc	рр	
		22322	GridForming Fre	equency Droop	and Voltage	Inertia	
		22323	GridForming Ar	Angle Inertia and Voltage Inertia			
7	WSptMin	Minimum active po	•	p.u. WRtg	-1 1		
8	BatWSptMax	Maximum power s tery inverters when used	·	p.u. WRtg	-5 5	Value can be lower/higher than +- 1.0pu since DC coupled power can exceed WRtg	
9	BatWSptMin	Minimum power set point for battery inverters when DC coupling is used		p.u. WRtg	-5 5	Value can be lower/higher than +- 1.0pu since DC coupled power can exceed WRtg	
1	DCAmpSpt	DC current set poir	nt	А	-10000 10000		
1	VolSpt	DC voltage setoint		٧			
1	RTUpd_UID	Runtime parameter update					
2		Unique Identifier of parameter					
		(See chapter)					
1	RTUpd_Value	Runtime parameter update					
3		Value to set (See c	hapter 3.2)		_		

1	ErrClr	Clear inverter errors. Changing the			
4		counter to a different value acknowledges errors			
			I		
	Parameter	Description	Unit	Range	Initial setting in exam- ple config file
	if the Rtg parameters are com	General inverter parar mented out with the # the value corresponding to t		ected via invert	er mask in the model is used
	VARtg	Nominal apparent power	kVA		Depends on inverter type
	WRtg	Nominal active power	kW		Depends on inverter type
	VArRtg	Nominal reactive power	kVAr		Depends on inverter type
	VolRtg	Nominal voltage	V		Depends on inverter type
	AmpRtg	Nominal current	А		Depends on inverter type
	HzRtg	Nominal grid frequency	Hz	45 65	50
	VADrtPriMod	Priority of power injection			VADRTPRIMOD_ VAR
		VADRTPRIMOD_ VAR = reactive,			
		VADRTPRIMOD_W = active			
	GriMng_InvVArMod	Generation of reactive power set- point by inverter			GRIMNG_INVVARMOD _OFF
		GRIMNG_INVVARMOD_OFF =			
		reactive power set-point = 0,			
		GRIMNG_INVVARMOD_VARCT LVOL = VArCt Vol /Q(U), inverter			
		level voltage control			
	VArOpMod	Activation of external set-point for reactive power			VAR_MOD_CNST
		VAR_MOD_NONE = reactive power set-point = 0,			
		VAR_MOD_CNST = external reactive power set-point,			
		VAR_MOD_PF_CNST = external power factor set-point			

		1		Τ .
VArExlSpt_RefMod	Reactive power external setpoint, reference mode			VAREXLSPTREFMOD_VA RRTG
	VAREXLSPTREFMOD_VARRTG = VArRtg as reference			
	VAREXLSPTREFMOD_VARTG = VARtg as reference			
InvCtlMod	Inverter Control Mode for Firm- ware			INVCTLMOD_GRIFEED_ MPP
	INVCTLMOD_GRIFEED_MPP = PV Inverter			
	INVCTLMOD_BAT = Battery Inverter (SCS)			
	INVCTLMOD_GRIFEED_DCLVOL CNST = constant DC link voltage			
Dyn	amic grid support/Fault Ride Through (FRT) parameters	s (LVRT + HVR	rT)
Frt_Mod	SPT_FRT_DISABLE = no support,			SPT_FRT_MOD_FULL
	SPT_FRT_MOD_FULL = reactive current support (active current if possible),			
	SPT_FRT_PARTIAL = gate block- ing,			
	SPT_FRT_MOD_AMPDCNST = active current constant,			
	SPT_FRT_MOD_LOAMP = reduce current to 0 (momentary cessation)			
	SPT_FRT_MOD_AMPDMAX = re- active current support (active cur- rent if possible) -> maximize active current even higher than prefault active current value			
Frt_LoGra1	Gradient starting from reference voltage 1 (LVRT). 2 decimal places only for all FRT gradients.	p.u. AmpRtg/p.u. VolRtg	0 2	0

T			2 2	
Frt_LoGra2	Gradient starting from reference voltage 2 (LVRT)	p.u. AmpRtg/p.u. VolRtg	0 2	2
Frt_LoGra3	Gradient starting from reference voltage 3 (LVRT)	p.u. AmpRtg/p.u. VolRtg	0 2	2
Frt_HiGra1	Gradient starting from reference voltage 1 (HVRT)	p.u. AmpRtg/p.u. VolRtg	0 2	0
Frt_HiGra2	Gradient starting from reference voltage 2 (HVRT)	p.u. AmpRtg/p.u. VolRtg	0 2	2
Frt_HiGra3	Gradient starting from reference voltage 3 (HVRT)	p.u. AmpRtg/p.u. VolRtg	0 2	2
Frt_LoVolRef1	Reference voltage points for LVRT, have to be monotonically decreasing. Only 2 decimal places for all reference voltages are possible.	p.u. VolRtg	0 1	1
Frt_LoVolRef2	Reference voltage points for LVRT, have to be monotonically decreas- ing	p.u. VolRtg	01	0.9
Frt_LoVolRef3	Reference voltage points for LVRT, have to be monotonically decreas- ing	p.u. VolRtg	0 1	0
Frt_HiVolRef1	Reference voltage points for HVRT, have to be monotonically increasing	p.u. VolRtg	1 2	1
Frt_HiVolRef2	Reference voltage points for HVRT, have to be monotonically increasing	p.u. VolRtg	1 2	1.1
Frt_HiVolRef3	Reference voltage points for HVRT, have to be monotonically increasing	p.u. VolRtg	1 2	2
Frt_LoDb	Dead band limits for LVRT - activa- tion of FRT if voltage leaves LVRT - HVRT deadband. 2 decimal	p.u. VolRtg	0 1	0.9

	places for FRT deadband parameters.			
Frt_HiDb	Dead band limits for HVRT – activation of FRT if voltage leaves LVRT – HVRT deadband	p.u. VolRtg	1 1.5	1.1
Frt_HystEna	Enable FRT deadband hysteresis SWITCH_STT_DISABLE = hysteresis disabled SWITCH_STT_ENABLE = hysteresis enabled			SWITCH_STT_DISABLE
Frt_LoDbHyst	Band limit for LVRT, deactivation of FRT if voltage enters band	p.u. VolRtg		0.9
Frt_HiDbHyst	Band limit for HVRT, deactivation of FRT if voltage enters band	p.u. VolRtg		1.1
Frt_VolDFilTm	Time constant positive sequence voltage adaption	s	0 600	1, reduced due to short term simulation
Frt_VolFilMod	Reference voltage in case of FRT FRTVOLFILMOD_PT1 = voltage adaption via parameter Frt_VolD- FilTm, FRTVOLFILMOD_VOLRTG= volt- age rating			FRTVOLFILMOD_PT1
Frt_WaitTmHi	Hvrt delay time	S	0.2 20	0.5
Frt_WaitTmLo	Lvrt delay time	S	0.2 20	0.5
Frt_WaitTm (only for backwards compatibility, pls. don't use anymore)	Hvrt/Lvrt delay time - when this parameter in set both Frt_WaitT-mHi and Frt_WaitTmLo are set to this value.	S	0.2 20	0.5
Frt_AmpDGra	Active current gradient after voltage recovery	p.u./s	0.115	0.5 NER: >10
Frt_AmpQGra	Maximum reactive current increase after FRT	p.u. AmpDQRtg/ s	0.001 1000	0.02

Frt_AmpDLim	Maximum total active current dur- ing FRT	ри	0.1 2.0	2.0 (values >1.0 turn limit function to off)
Frt_AmpQLim	Maximum total reactive current during FRT	ри	0.1 2.0	2.0 (values >1.0 turn limit function to off)
Frt_AmpQFilTm	Filter time constant for reactive current, set to 1 for simulation of FRT	S	0600	1
Frt_VolDFilTm	Filter time constant for reference voltage averaging, set to 1 for simulation of FRT	s	0600	1
Frt_VolDFilBlkTm	FRT: maximum blocking time of the voltage adjustment filter during FRT	s	01000	40
	ROCOF protec	tion		
HzCtl_DifMaxTm	Waiting time of the maximum permissible alteration rate	ms	010000 00	1000
HzCtl_DifMax	Maximum permissible alteration rate	Hz/s	050	50
Active	power depending on frequency - SC F - if PPC is present this functionality is us			ality.
GriMng_HzFilTm	Time constant frequency filter WCtlHz, WCtlLoHz	s	0.1 5	0.1
WCtlHzMod	Activation of WCtlHz-function for overfrequency, SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABLE
WCtlHz_DrgIndMod	Activation drag indicator for when the frequency is decreasing from overfrequency event SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABLE
WCtlHz_RefMod	WCTLHZREFMOD_W = current active power,			WCTLHZREFMOD_W

	WCTLHZREFMOD_WNOM = nominal active power, WCTLHZREFMOD_VANOM = nominal apparent power			
WCtlHz_Hz1	Start frequency first area of characteristic. 3 decimal places are possible for frequencies.in this function.	Hz	0 65	50.2
WCtlHz_Hz2	Start frequency second area of characteristic	Hz	0 65	65
WCtlHz_Hz3	Start frequency third area of characteristic	Hz	0 65	65
WCtlHz_Hz4	Start frequency fourth area of characteristic	Hz	0 65	65
WCtlHz_HzGra1	Power gradient first frequency area	p.u. Wref*/Hz	0 10	0.4
WCtlHz_HzGra2	Power gradient second frequency area	p.u. Wref*/Hz	0 10	0
WCtlHz_HzGra3	Power gradient third frequency area	p.u. Wref*/Hz	0 10	0
WCtlHz_HzStopMin	Lower limit stop band	Hz	0 65	0
WCtlHz_HzStopMax	Upper limit stop band	Hz	0 65	50.05
WCtlHz_HzStopTm	Stop band - minimum dwell time of frequency (measurement value)	ms	0 1000000	0
WCtlHz_ WGraPosEna	Activation positive gradient for active power set-point 0 = inactive, 1 = active	1	0/1	0
WCtlHz_ WGraNegEna	Activation negative gradient for active power set-point 0 = inactive, 1 = active	1	0/1	0
WCtlHz_WGraPos	Positive gradient active power set- point	p.u. WRtg/s	0 10	1

WCtlHz_WGraNeg	Negative gradient active power set-point	p.u. WRtg/s	0 10	1
WCtlHz_HzQtlIntv	Quantization interval measure- ment value frequency	Hz	0 0.1	0
WCtlHz_CfgMod	WCTLHZCONFIGMOD_HZGRA = setting gradients, WCTLHZCONFIGMOD_W = set- ting power values			WCTLHZCONFIGMOD_ HZGRA
WCtlHz_W2	Active power at start of second area	p.u. WRef*	0 1	0
WCtlHz_W3	Active power at start of third area	p.u. WRef*	0 1	0
WCtlHz_W4	Active power at start of fourth area	p.u. WRef*	0 1	0
WCtlHz_EnaTm	Waiting time for activation (On delay)	ms	0 1000000	0
WCtlLoHzMod	Activation of WCtlLoHz-function for underfrequency, SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABLE
WCtlLoHz_DrgIndEna	Activation drag indicator for when the frequency is increasing SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABLE
WCtlLoHz_RefMod	WCTLHZREFMOD_W = current active power, WCTLHZREFMOD_WNOM = nominal active power, WCTLHZREFMOD_VANOM = nominal apparent power			WCTLHZREFMOD_W
WCtlLoHz_Hz1	Start frequency first area of characteristic	Hz	0 65	49.8
WCtlLoHz_Hz2	Start frequency second area of characteristic	Hz	0 65	45
WCtlLoHz_Hz3	Start frequency third area of characteristic	Hz	0 65	45

WCtlLoHz_Hz4	Start frequency fourth area of characteristic	Hz	0 65	45
WCtlLoHz_HzGra1	Power gradient first frequency area	p.∪. Wref*/Hz	0 10	0.4
WCtlLoHz_HzGra2	Power gradient second frequency area	p.∪. Wref*/Hz	0 10	0
WCtlLoHz_HzGra3	Power gradient third frequency area	p.∪. Wref*/Hz	0 10	0
WCtlLoHz_HzStopMin	Lower limit stop band	Hz	0 65	49.95
WCtlLoHz_HzStopMax	Upper limit stop band	Hz	0 65	65
WCtlLoHz_HzStopTm	Stop band - minimum dwell time of frequency (measurement value)	ms	0 1000000	0
WCtlLoHz_ WGraPosEna	Activation positive gradient for active power set-point 0 = inactive, 1 = active	1	0/1	1
WCtlLoHz_ WGraNegEna	Activation negative gradient for active power set-point 0 = inactive, 1 = active	1	0/1	1
WCtlLoHz_WGraPos	Positive gradient active power set- point	p.u. WRtg/s	0 10	10
WCtlLoHz_WGraNeg	Negative gradient active power set-point	p.u. WRtg/s	0 10	10
WCtlLoHz_HzQtlIntv	Quantization interval measure- ment value frequency	Hz	0 0.1	0
WCtlLoHz_CfgMod	WCTLHZCONFIGMOD_HZGRA = setting gradients, WCTLHZCONFIGMOD_W = set- ting power values			WCTLHZCONFIGMOD_ HZGRA
WCtlLoHz_W2	Active power at start of second area	p.u. WRef*	0 1	0
WCtlLoHz_W3	Active power at start of third area	p.u. WRef*	0 1	0

WCtlLoHz_W4	Active power at start of fourth	p.u. WRef*	0 1	0
* \\(\rangle \) \(\rangle \) \(\	area			
	/CtlLoHz_RefMod and can be VARtg, WRtg or insta			
Active power as a funct	ion of frequency – SC PV inverters. N - if PPC is present this functionality is us	·		and other standards
WCtlHzLoHiMod	Activation of frequency-dependent active power control in case of over-/un-derfrequency SWITCH_STT_DISABLE = not activated SWITCH_STT_ENABLE = activated			SWITCH_STT_DISABLE
WCtlHzLoHi_DrgIndOvEna	In case of overfrequency: activation of behavior when frequency is decreasing SWITCH_STT_DISABLE = not activated SWITCH_STT_ENABLE = activated			SWITCH_STT_DISABLE
WCtlHzLoHi_DrgIndUnEna	In case of underfrequency: activation pf behavior when frequency is increasing SWITCH_STT_DISABLE = not activated SWITCH_STT_ENABLE = activated			SWITCH_STT_DISABLE
WCtlHzloHi_HzOv1	Overfrequency: cut off frequency of the 1st radio spectrum	Hz	070	50.02
WCtlHzloHi_HzOv2	Overfrequency: cut off frequency of the 2nd radio spectrum	Hz	070	65
WCtlHzLoHi_HzOv3	Overfrequency: cut off frequency of the 3rd radio spectrum	Hz	070	65
WCtlHzLoHi_HzOvGra1	Overfrequency: gradient of the 1st radio spectrum	%/Hz	-10000	-40
WCtlHzLoHi_HzOvGra2	Overfrequency: gradient of the 2nd radio spectrum	%/Hz	-10000	0
WCtlHzLoHi_HzOvGra3	Overfrequency: gradient of the 3rd radio spectrum	%/Hz	-10000	0
WCtlHzLoHi_HzStopMax	Upper cutoff frequency of the return area	Hz	070	50.2
WCtlHzLoHi_HzStopMin	Lower cut off frequency of the return area	Hz	070	49.8
WCtlHzLoHi_HzStopTm	Minimum period that the power frequency must remain in the return area	s	01000	0
WCtlHzloHi_HzUn1	Underfrequency: cutoff frequency of the 1st radio spectrum	Hz	070	49.8
WCtlHzloHi_HzUn2	Underfrequency: cutoff frequency of the 2nd radio spectrum	Hz	070	45
WCtlHzLoHi_HzUn3	Underfrequency: cutoff frequency of the 3rd radio spectrum	Hz	070	45

WCtlHzLoHi_HzUnGra1	Underfrequency: gradient of the 1st radio spectrum	%/Hz	-10000	-40
WCtlHzLoHi_HzUnGra2	Underfrequency: gradient of the 2nd radio spectrum	%/Hz	-10000	0
WCtlHzLoHi_HzUnGra3	Underfrequency: gradient of the 3rd radio spectrum	%/Hz	-10000	0
WCtlHzLoHi_OvGraWRefMod	Overfrequency: Active power reference for the gradient, WCTLHZLOHI_WREFMOD_WNOM, WCTLHZLOHI_WREFMOD_WSNPTMAX			WCTLHZLOHI_WREFMOD_W NOM
WCtlHzLoHi_UnGraWRefMod	Underfrequency: Active power reference for the gradient, WCTLHZLOHI_WREFMOD_WNOM, WCTLHZLOHI_WREFMOD_WSNPTMAX			WCTLHZLOHI_WREFMOD_W NOM
WCtlHzLoHi_WGra	Gradient for the active power setpoint	%/minute	060000 0	9
WCtlHzLoHi_WSptDl	Minimum duration outside of normal frequency range until start of WCtlHzLoHi	ms	0500	0
WCtlHzLoHi_WSptFilTm	Filter time constant (3*tau)	S	0.0011	0.001
Active	power as a function of frequency (WC	CtlHzBat) - SCS	battery inver	ters
Active WCtlHzBatMod	P(f) function activation in battery inverter	CtlHzBat) – SCS	battery inver	ters SWITCH_STT_DISABLE
	P(f) function activation in battery	CtlHzBat) – SCS	S battery inver	
	P(f) function activation in battery inverter SWITCH_STT_ENABLE = acti-	CtlHzBat) - SCS	S battery inver	
	P(f) function activation in battery inverter SWITCH_STT_ENABLE = activated SWITCH_STT_DISABLE = deac-	CtlHzBat) – SCS	S battery inver	
WCtlHzBatMod	P(f) function activation in battery inverter SWITCH_STT_ENABLE = activated SWITCH_STT_DISABLE = deactivated Active power droop point 1 on			SWITCH_STT_DISABLE
WCtlHzBatMod WCtlHzBat_Hz1	P(f) function activation in battery inverter SWITCH_STT_ENABLE = activated SWITCH_STT_DISABLE = deactivated Active power droop point 1 on Hz-axis Active power droop point 2 on	Hz	070	SWITCH_STT_DISABLE 44.0
WCtlHzBatMod WCtlHzBat_Hz1 WCtlHzBat_Hz2	P(f) function activation in battery inverter SWITCH_STT_ENABLE = activated SWITCH_STT_DISABLE = deactivated Active power droop point 1 on Hz-axis Active power droop point 2 on Hz-axis Active power droop point 3 on	Hz	070	SWITCH_STT_DISABLE 44.0 46.0

MCILL D. L. L. Z	A P. L. C.			F2.0
WCtlHzBat_Hz6	Active power droop point 6 on Hz-axis	Hz	070	52.0
WCtlHzBat_Hz7	Active power droop point 7 on Hz-axis	Hz	070	54.0
WCtlHzBat_Hz8	Active power droop point 8 on		0	56.0
	Hz-axis	Hz	070	
WCtlHzBat_W1	Active power droop point 1 on W-	p.u.		1.0
	axis	WRtg	-11	
WCtlHzBat_W2	Active power droop point 2 on W-	p.u.		0.7
	axis	WRtg	-11	
WCtlHzBat_W3	Battery operation: Active power	p.u.		0.2
	droop point 3 on W-axis	WRtg	-11	
WCtlHzBat_W4	Active power droop point 4 on W-	p.u.		0.0
	axis	WRtg	-11	
WCtlHzBat_W5	Active power droop point 5 on W-	p.u.		0.0
	axis	WRtg	-11	
WCtlHzBat_W6	Active power droop point 6 on W-	p.u.		-0.2
	axis	WRtg	-11	
WCtlHzBat_W7	Active power droop point 7 on W-	p.u.		-0.7
	axis	WRtg	-11	
WCtlHzBat_W8	Active power droop point 8 on W-	p.u.		-1.0
	axis	WRtg	-11	
	Parameters power gradient for	irradiation incre	ease	
AmpGra	Gradient for current increase dur-	p.u.	>0 100	0.1
	ing irradiance increase	AmpRtg/s		
AmpGraMod	Activation of gradient for irradia-			SWITCH_STT_DISABLE
	tion increase			
	SWITCH_STT_ENABLE = active			
	SWITCH_STT_DISABLE = inactive			
	Parameters for reactive p	ower gradient		
VArGraMod	Activation reactive power gradient			SWITCH_STT_ENABLE
	SWITCH_STT_ENABLE = active			
	SWITCH_STT_DISABLE = inactive			
VArGra	Gradient reactive power set-point	p.u. VARtg/s	0 2	0.2
		1	=	

	Parameters for active po	wer gradient		
WGraStr	Gradient for start	p.u. VARtg/s		
WGraMod	Activation active power gradient SWITCH_STT_ENABLE = active SWITCH_STT_DISABLE = inactive			SWITCH_STT_ENABLE
WGra	Gradient active power set-point	p.u. VARtg/s	0 10	1
DcAmpSptGra	Gradient dc current set-point SCSOpCmd: 21418	A/s		500
	Over/under frequency	protection		
HzCtl_OpMaxNom	Upper frequency limit for connection. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	Hz	45 65	50.5
HzCtl_OpMinNom	Lower frequency limit for connection. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	Hz	45 65	49.3
HzCtl_OpMaxNom- Recon	Upper frequency limit for connection after grid fault. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	Hz	45 65	50.5
HzCtl_OpMinNomRecon	Lower frequency limit for connection after grid fault. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	Hz	45 65	49.3

HzCtl_CorrTm	Correction of the internal delay of	ms		NER, AR-41XX: 0
	the measurement algorithms, all HzCtl_ protection times are cor- rected by the given time			IEEE1 <i>547</i> : -55
HzCtl_Hi1Lim	Upper frequency limit stage 1. 2	Hz	45 65	51
	decimal places only for all limits.			
HzCtl_Hi1LimTm	Waiting time upper limit stage 1	ms	0	1000
112611_11112	Training line oppor lining stage 1	1113	1000000	1000
HzCtl_Hi2Lim	Upper frequency limit stage 2	Hz	45 65	55
HzCtl_Hi2LimTm	Waiting time upper limit stage 2	ms	0	10000
			1000000	
HzCtl_Hi3Lim	Upper frequency limit stage 3	Hz	45 65	55
HzCtl_Hi3LimTm	Waiting time upper limit stage 3	ms	0	10000
			1000000	
HzCtl_Hi4Lim	Upper frequency limit stage 4	Hz	45 65	55
HzCtl_Hi4LimTm	Waiting time upper limit stage 4	ms	0	10000
			1000000	
HzCtl_Hi5Lim	Upper frequency limit stage 5	Hz	45 65	55
HzCtl_Hi5LimTm	Waiting time upper limit stage 5	ms	0	10000
			1000000	
HzCtl_Hi6Lim	Upper frequency limit stage 6	Hz	45 65	55
HzCtl_Hi6LimTm	Waiting time upper limit stage 6	ms	0	10000
			1000000	
HzCtl_Lo1Lim	Lower frequency limit stage 1	Hz	45 65	49
HzCtl_Lo1LimTm	Waiting time upper limit stage 1	ms	0	1000
			1000000	
HzCtl_Lo2Lim	Lower frequency limit stage 2	Hz	45 65	45
HzCtl_Lo2LimTm	Waiting time upper limit stage 2	ms	0	10000
			1000000	
HzCtl_Lo3Lim	Lower frequency limit stage 3	Hz	45 65	45
HzCtl_Lo3LimTm	Waiting time upper limit stage 3	ms	0	10000
			1000000	
HzCtl_Lo4Lim	Lower frequency limit stage 4	Hz	45 65	45

HzCtl_Lo4LimTm	Waiting time upper limit stage 4	ms	0 1000000	10000
HzCtl_Lo5Lim	Lower frequency limit stage 5	Hz	45 65	45
HzCtl_Lo5LimTm	Waiting time upper limit stage 5	ms	0 1000000	10000
HzCtl_Lo6Lim	Lower frequency limit stage 6	Hz	45 65	45
HzCtl_Lo6LimTm	Waiting time upper limit stage 6	ms	0 1000000	10000
	Over/under voltage p	protection		
VCtl_OpMaxNom	Upper voltage limit for connection. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	p.u. VolRtg	0 2	1.10
VCtl_OpMinNom	Lower voltage limit for connection. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	p.u. VolRtg	0 2	0.90
VCtl_OpMaxNomRecon	Upper voltage limit for connection after grid fault. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	p.u. VolRtg	0 2	1.10
VCtl_OpMinNomRecon	Lower voltage limit for connection after grid fault. Grid code dependent. This parameter in real inverter will be changed to a grid code dependent value during commissioning. PSCAD model does not have to be amended.	p.u. VolRtg	0 2	0.90
VCtl_CorrTm	Correction of the internal delay of the measurement algorithms, all	ms		NER, AR-41XX: C

IEEE1547: -33			VCtl_ protection times are corrected by the given time	
1.2	0 2	p.u. VolRtg	Upper voltage limit stage 1. 2 decimal places only for all limits.	VCtl_Hi1Lim
10000	0 1000000	ms	Waiting time upper limit stage 1	VCtl_Hi1LimTm
1.3	0 2	p.u. VolRtg	Upper voltage limit stage 2	VCtl_Hi2Lim
16000	0 1000000	ms	Waiting time upper limit stage 2	VCtl_Hi2LimTm
1.35	0 2	p.u. VolRtg	Upper voltage limit stage 3	VCtl_Hi3Lim
10000	0 1000000	ms	Waiting time upper limit stage 3	VCtl_Hi3LimTm
2	0 2	p.u. VolRtg	Upper voltage limit stage 4	VCtl_Hi4Lim
10000	0 1000000	ms	Waiting time upper limit stage 4	VCtl_Hi4LimTm
2	0 2	p.u. VolRtg	Upper voltage limit stage 5	VCtl_Hi5Lim
10000	0 1000000	ms	Waiting time upper limit stage 5	VCtl_Hi5LimTm
0.8	0 2	p.u. VolRtg	Lower voltage limit stage 1	VCtl_Lo1Lim
10000	0 1000000	ms	Waiting time lower limit stage 1	VCtl_Lo1LimTm
0.45	0 2	p.u. VolRtg	Lower voltage limit stage 2	VCtl_Lo2Lim
16000	0 1000000	ms	Waiting time lower limit stage 2	VCtl_Lo2LimTm
0	0 2	p.u. VolRtg	Lower voltage limit stage 3	VCtl_Lo3Lim
10000	0 1000000	ms	Waiting time lower limit stage 3	VCtl_Lo3LimTm
0	0 2	p.u. VolRtg	Lower voltage limit stage 4	VCtl_Lo4Lim
10000	0 1000000	ms	Waiting time lower limit stage 4	VCtl_Lo4LimTm
0	0 2	p.u. VolRtg	Lower voltage limit stage 5	VCtl_Lo5Lim
10000	0 1000000	ms	Waiting time lower limit stage 5	VCtl_Lo5LimTm

VCtl_PkLim	Instantaneous voltage protection	p.u.	01.5	1.5
_		VolRtg		
VCtl_PkLimTm	Instantaneous voltage protection time → 6=1 ms	In 6kHz steps	01000	18
VCtl_PkLimBlkPwm_Ena	Instantaneous voltage protection for blocking pulses, activation SWITCH_STT_ENABLE = active SWITCH_STT_DISABLE = inactive			SWITCH_STT_DISABLE
VCtl_PkLimBlkPwm_BlkOffDlTm	Instantaneous voltage protection for blocking pulses, time delay for the reactivation of pulses → 6=1 ms	In 6kHz steps		300
VCtl_PkLimBlkPwm_PkLimAct	Instantaneous voltage protection for blocking pulses, limit for activation	p.u. VolRtg		1.3
VCtl_PkLimBlkPwm_PkLimActTm	Instantaneous voltage protection for blocking pulses, time delay for activation → 6=1 ms	In 6kHz steps		6
VCtl_PkLimBlkPwm_PkLimDeact	Instantaneous voltage protection for blocking pulses, limit for deactivation	p.u. VolRtg		0.5
VCtl_PkLimBlkPwm_PkLimDeactTm	Instantaneous voltage protection for blocking pulses, time delay for deactivation → 6=1 ms	In 6kHz steps		6
	Reactive power control depending	on voltage VA	rCtlVol	
VArCtlVol_LoVolRef1HiVolRef1	Voltage reference value 1	p.u. VolRtg	0 2	1
VArCt Vol_LoVAr1HiVAr1	AC voltage-dependent reactive power control: Reactive power at reference point 1	p.u. VolRtg	-1 1	0
VArCtlVol_LoVolRef2	Voltage reference value 2 (below value 1). 3 decimal places possible for reference values.	p.u. VolRtg	0 2	0.95
VArCtlVol_LoVolRef3	Voltage reference value 3 (below value 1)	p.u. VolRtg	0 2	0
VArCtlVol_HiVolRef2	Voltage reference value 2 (over value 1)	p.u. VolRtg	0 2	1.05

VArCtlVol_HiVolRef3	Voltage reference value 3 (over value 1)	p.u. VolRtg	0 2	2
VArCtlVol_LoGra 1	Gradient 1, starting at reference value 1. 2 decimal places possible for gradients.	p.u. VARtg/p.u. VolRtg	0 100	5
VArCtlVol_HiGra1	Gradient 1, starting at reference value 1	p.u. VARtg/p.u. VolRtg	0 100	5
VArCtlVol_LoGra2	Gradient 2	p.u. VARtg/p.u. VolRtg	0 100	5
VArCtlVol_HiGra2	Gradient 2	p.u. VARtg/p.u. VolRtg	0 100	5
VArCtlVol_LoGra3	Gradient 3	p.u. VARtg/p.u. VolRtg	0 100	0
VArCtlVol_HiGra3	Gradient 3	p.u. VARtg/p.u. VolRtg	0 100	0
VArCtlVol_VArSptFilTm	Filter time constant for reactive power	S	0 1000	0.5
VArCtlVol_VolNomSptMod	Selector for the voltage setpoint: VOLNOMSPTMOD_VOLNOMSPT = Setpoint VOLNOMSPTMOD_INVMS_VOLPSNOM = Filtered measurement value and initialize with "VArCtlVol_VolNomSptInit" VOLNOMSPTMOD_INVMS_VOLPSNOM_IN ITMEAS = Filtered measurement value and initialize with measured terminal voltage			VOLNOMSPTMOD_INVMS_VOLPSN OM
VArCtlVol_VolNomSptInit	voltage setpoint at initialization	pu	02	1.0
VArCtlVol_VolFilTm	Filter time constant voltage measurement	p.u. VolRtg	0 1000	0.5
VArCtlVol_VolPsNomHiLim	AC voltage-dependent reactive power control: upper limit for feedback voltage	p.u. VolRtg	12	1.1

	VArCtlVol_VolPsNomLoLim	AC voltage-dependent reactive power control: lower limit for feedback voltage	p.u. VolRtg	01	0.9
		Active Islanding De	etection		
	Aid_Mod	Activation			SWITCH_STT_DISABLE
		SWITCH_STT_ENABLE = active			
		SWITCH_STT_DISABLE = inactive			
		Phase Loss Detection (for YNd transfe	ormers only, N g	rounded)	
	Pld_Mod	Activation			SWITCH_STT_DISABLE
		SWITCH_STT_ENABLE = active			
		SWITCH_STT_DISABLE = inactive			
	Grid	Forming, Inertia and battery (Suni	ny Central Sto	rage inverte	rs)
Fo	or more information on the G	ridForming and Inertia mode conta mation docume		ve a personal	copy of the technical infor-
	UseSCSOpCmd	Activate the external input SCSOpCmd for battery inverters in the PSCAD model		0/1	0
	GriForm_Mod	Activation of Grid-Forming-function (only if UseSCSOpCmd = 0)			SWITCH_STT_DISABLE
		SWITCH_STT_DISABLE = inactive,			
		SWITCH_STT_ENABLE = active			
	Bsc_InvStrMod	Start mode (precharge) of the inverter		0/1	0
		0: Start from AC side			
		1: Start from DC side (e.g. Black-start)			
	GriForm_AcCtl_DrpVol	Reactive Current - Voltage Droop	%V / AmpRtg (q- axis current)	0 1	0.05
	GriForm_AcCtl_DrpHz	Active Current - Frequency Droop	Hz / AmpRtg (d- axis current)	-1010	-1
	GriForm_AcCtl_InertiaH-zDmp	Inertia: Voltage frequency damp- ing gain of voltage angle inertia control	Hz/pu	-1010	-1

	GriForm_AcCtl_InertiaH-zFwdDmp	Inertia: Voltage frequency feed-forward damping gain of voltage angle inertia control	None	01	0
	GriForm_AcCtl_InertiaH- zFbFilTm	Inertia: Frequency feedback time constant of voltage angle inertia control	S	01e5	0
	GriForm_AcCtl_Iner- tiaThetaWCtlEna	Inertia: Enable active power inertia control SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABLE
	GriForm_AcCtl_Iner- tiaThetaH	Inertia: Voltage angle inertia constant H_theta = 0.5 * (dP/Snom) / (RoCoF/Fnom)	S	1e-31e5	2.5
	GriForm.AcCtl.Iner- tiaThetaFwdDmp	Inertia: Voltage angle feed-forward damping gain of voltage angle inertia control	None	-55	-0.12
	GriForm_AcCtl_Iner- tiaVolVArCtlEna	Inertia: Enable reactive power inertia control SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active			SWITCH_STT_DISABL
	GriForm_AcCtl_Iner- tiaVolH	Inertia: Voltage magnitude inertia constant H_vol = 0.5 * (dQ/Snom) / (RoCoV/Vnom)	S	1e-31e5	1.5
	GriForm_AcCtl_Iner- tiaVolFwdDmp	Inertia: Voltage magnitude feed- forward damping gain of voltage magnitude inertia control	None	01	0
	GriForm_AcCtl_Iner- tiaVolFbDmpFilTm	Inertia: Voltage feedback time constant of voltage magnitude inertia control	S	01e5	0
0	GriForm_AcCtl_Iner- tiaVolDmp	Inertia: Voltage magnitude damp- ing gain of voltage magnitude in- ertia control	None	01	0.03
	GriForm_DcCtl_AmpKi	Limiting controller, DC Current, Integral amplification		01000	5
	GriForm_DcCtl_AmpKp	Limiting controller, DC Current, Proportional amplification		01000	0
	GriForm_DcCtl_VolKi	Limiting controller, DC Voltage,		01000	30

	Integral amplification			
GriForm_DcCtl_VolKp	Limiting controller, DC Voltage,		01000	(
	Proportional amplification			
GriForm_AcCtl_AmpDQLimKi	Limiting controller, AC Current and		0100	4.5
	AC Power, Integral amplification			
GriForm_AcCtl_AmpDQLimKp	Limiting controller, AC Current and		0100	0.12
	AC Power, Proportional amplifica-			
GriForm_Frt_VirtImpLimTm	The maximum duration of the	ms	010000	5000
	software protection phase (Virtual		00	
	Impedance mode)			
GriForm.Frt.AMaxNom	Maximum short circuit current	ри	01.2	1.0
	during software protection phase			(Depends on application
				and inverter type
·	PLL parameter pe changed without consultation and written pe		The below is pr	ovided for information only.
None of these parameters can b	·		The below is pr	
ll_GriMon_HzGraLim	PLL grid monitoring, maximum rate of change of frequency PLL inverter side, maximum rate of	ermission from SMA	The below is pr	ovided for information only.
PII_GriMon_HzGraLim	PLL grid monitoring, maximum rate of change of frequency	ermission from SMA Hz/s	The below is pr	40
PII_GriMon_HzGraLim PII_Inv_HzGraLim PII_Inv_DmpRto	PLL grid monitoring, maximum rate of change of frequency PLL inverter side, maximum rate of change of frequency PLL inverter side, controller attenu-	ermission from SMA Hz/s	The below is pr	40
PII_GriMon_HzGraLim PII_Inv_HzGraLim PII_Inv_DmpRto PII_GriMon_DmpRto	PLL grid monitoring, maximum rate of change of frequency PLL inverter side, maximum rate of change of frequency PLL inverter side, controller attenuation time constant PLL grid monitoring, controller at-	ermission from SMA Hz/s	The below is pr	1.
·	PLL grid monitoring, maximum rate of change of frequency PLL inverter side, maximum rate of change of frequency PLL inverter side, controller attenuation time constant PLL grid monitoring, controller attenuation PLL inverter side, voltage threshold for the transition from Normal to	Hz/s Hz/s	The below is pr	1.3

PII_GriMon_HzFilOff2On_Vol	PLL grid monitoring, voltage threshold for the transition from Normal to Hz_Freeze_On (freeze limit)	p.u. VolRtg		0.3
Pll_GriMon_HzFilWt2On_Vol	PLL grid monitoring, voltage threshold for the transition from Wait to Hz_Freeze_On (freeze limit)	p.u. VolRtg		0.6
PII_GriMon_HzFilOn2Wt_Vol	PLL grid monitoring, voltage threshold for the transition from Hz_Freeze_On to Wait (unfreeze limit)	p.u. VolRtg		0.7
Pll_Inv_On2Srch_NomSum	PLL inverter side, moving average threshold of the voltage for the transition from On to Search		01000	120
PII_Gri- Mon_On2Srch_NomSum	PLL grid monitoring, moving average threshold of the voltage for the transition from On to Search		01000	100
	Battery limits for Sunny Ce	entral Storage		
	•			
BatCtl_DcVolDynMax	Upper dynamic battery voltage limit: inverter reduces power to maintain limit	V	02000	1450
BatCtl_DcVolDynMin	Lower dynamic battery voltage limit: inverter reduces power to maintain limit	V	02000	650
BatCtl_DcAmpDynMax	Dynamic battery current discharge limit: inverter reduces power to maintain limit	А	010000	10000
BatCtl_DcAmpDynMin	Dynamic battery current charge limit: inverter reduces power to maintain limit	А	-100000	-10000
BatCtl_DcVolOpMax	Upper operational battery voltage limit: inverter trips after time has expired	V	02000	1600
BatCtl_DcVolOpMin	Lower operational battery voltage limit: inverter trips after time BatCtl_DcVolOpLimTm has expired	V	02000	500

BatCtl_DcVolOpLimTm	Operational battery voltage limit	ms	01E6	50
time				
BatCtl_DcAmpOpMax	Upper operational battery current discharge limit: inverter trips after BatCtl_DcAmpOpLimTm time has expired	A	010000	5000
BatCtl_DcAmpOpMin	Lower operational battery current charge limit: inverter trips after time BatCtl_DcAmpOpLimTm has expired	A	-100000	-5000
BatCtl_DcAmpOpLimTm	Operational battery current limit time	ms	01E6	50

3.2 Runtime Parameter Update (RTUpd)

The model supports update of some control parameters during the runtime of a simulation. To do so a key/value pair has to be written to the RTUpd channels of the setpoint interface.

IMPORTANT: Only one parameter can be updated at each call of the SCK_Lib (typically 166.66667µs). So, it must be ensured that the RTUpd input signals are held constant for at least one call of the inverter controls. After the call the next parameter can be updated.

Currently the following parameters can be changed:

Channel name	RTUpd_UID
GriForm_AcCtl_InertiaThetaH	8909
GriForm_AcCtl_InertiaHzDmp	9194
GriForm_AcCtl_InertiaVolH	8917
GriForm_AcCtl_InertiaVolDmp	9200
GriForm_AcCtl_DrpHz	7576
GriForm_AcCtl_DrpVol	7577
BatCtl_DcVolDynMax	7272
BatCtl_DcVolDynMin	7273
BatCtl_DcAmpDynMax	7274

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCADSMA Solar Technology AG

BatCtl_DcAmpDynMin	7275
BatCtl_DcVolOpMax	7305
BatCtl_DcVolOpMin	7306
BatCtl_DcVolOpLimTm	7706
BatCtl_DcAmpOpMax	7307
BatCtl_DcAmpOpMin	7308
BatCtl_DcAmpOpLimTm	7708

Example:

To change the dynamic voltage limit "BatCtl_DcVolDynMax" of a SCS battery inverter to e.g. 1300V set the RTUpd_UID to "7272" in combination with a RTUpd_Value of "1300" and hold it constant for at least one call of the inverter control library (200µs should be a safe time span). To change another parameter simply set a new RTUpd_Value and change the RTUpd_UID to that parameter. The RTUpd function only updates a parameter to RTUpd_Value on detection of a change of the RTUpd_UID. It does not copy the value permanently.

In the command window or log file the change is reported with the simulation time stamp and the new value:

2.000 RT-Update: BatCtl_DcVolDynMax: 1300.000
2.000 RT-Update: BatCtl_DcVolOpMax: 1450.000
2.001 RT-Update: BatCtl_DcAmpOpMax: 3000.000

3.3 Transformer parameters

Model users should amend the LV voltage of the inverter transformer to match the nominal inverter AC voltage level in V. Please refer to inverter's datasheet for information on the nominal AC voltage.

3.4 PPC parameters

For the Power Plant Controller (PPC) model parameters please refer to the PPC PSCAD model documentation.

3.5 Power Plant Manager / Hybrid Controller parameters

For the Power Plant Manager / Hybrid Controller (PPM/HYCON) model parameters please refer to the HYCON PSCAD model documentation.

3.6 Runtime Messages

During the start of the simulation the parameters are loaded from the config file and displayed in the PSCAD "Runtime Messages" window or a log file in the temporary simulation folder.

```
EMTDC(tm) Version 4.60 R#93051001
Time Summary: Start Date: 05-14-2018
Time Summary: Start Time: 14:51:37
At start of SMA SCK CInterface...
Number of bytes used for storing internal state data: 30584
This is: 7646 Integer state variables...
* S M A Solar Technology AG *
   , 2018
Version: 05.01.08.00
   External state buffer
Init done
Set Defaults done
Model: SCS 2200 1100V
Set Model done
The current working directory is C:\Users\fuetterer\Documents\GIT\EMT_Models\kodiak\kodiak\PSCAD\Ca
Opening CfgFile2.txt
Configuration File: SCxxxx
VARtg: 2200.00
WRtg: 2200.00
```

4 Special inverter functions for dynamic simulation

4.1 Active power control

4.1.1 Over Frequency-dependent active power P(f) - PV inverters

Activation: WCtlHzMod

Description: This function provides frequency-dependent active power reduction in case of frequencies greater than the system frequency. The function can be parameterized in two ways: using gradients or using active power set-points. The type of parameterization can be chosen by changing parameter WCt-lHz_CfgMod. Furthermore, it is possible to activate gradients for set-point changes resulting from the P(f) characteristic. This limits the speed of power changes.

4.1.2 Under Frequency-dependent active power P(f) - PV inverters

Activation: WCtlLoHzMod

Description: This function provides frequency-dependent active power increase in case of frequencies lower than the system frequency. This means it is allowed to overwrite external and internal curtailments except technical limits. The function can be parameterized in two ways: using gradients or using active power set-points. The type of parameterization can be chosen by changing parameter WCtlHz_CfgMod. Furthermore, it is possible to activate gradients for set-point changes resulting from the P(f) characteristic. This limits the speed of power changes.

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCADSMA Solar Technology AG

4.2 Reactive power control

The reactive power set-point is generated as sum of an externally provided set-point (0, VArSpt or PFSpt) and an internally calculated set-point (0 or Q(U)) as shown here:

4.2.1 Reactive power provision by power factor set-point

Activation: VArOpMod = VAR_MOD_PF_CNST

Description: This function provides reactive power depending on a user-defined power factor. If GriMng_InvVArMod<> GRIMNG_INVVARMOD_OFF an additional reactive power set-point generated by the inverter may be added to the manually provided set-point.

4.2.2 Reactive power provision by Q set-point

Activation: VArOpMod = VAR_MOD_CNST

Description: This function provides reactive power depending on a user-defined reactive power set-point. If GriMng_InvVArMod <> GRIMNG_INVVARMOD_OFF an additional reactive power set-point generated by the inverter may be add to the manually provided set-point.

4.2.3 Voltage-dependent reactive power Q(U)

Activation: GriMng_InvVArMod = GRIMNG_INVVARMOD_VARCTLVOL

Description: This function provides reactive power provision as a function of voltage *U*. The external set point VolNomSpt allows an AC voltage control which will shift the characteristic.

4.3 Dynamic grid support

4.3.1.1 Dynamic grid support "full"

Activation: Frt_Mod = SPT_FRT_MOD_FULL

Description: If the AC Voltage leaves a defined dead band (Frt_HiDb, Frt_LoDb), the inverter

will support the grid with reactive current. Active current will be reduced if necessary.

4.3.2 Dynamic grid support "limited/partial"

Frt_Mod = SPT_FRT_MOD_PARTIAL **Activation:**

Description: The inverter is not tripped in case of voltage dips but disables feed-in of active and/or reactive power. After recurrence of the voltage the inverter resumes feed-in according to the parameterization before the voltage dip.

4.3.3 Dynamic grid support "Momentary Cessation"

Frt_Mod = SPT_FRT_MOD_LOAMP **Activation:**

Description: The inverter is not tripped in case of voltage dips but tries to feed-in less current (<

0.1 p.u.)

Decoupling protection

4.4.1 Voltage decoupling protection

There are five overvoltage and five undervoltage trip points each with a distinct time de-**Description:** lay.

4.4.2 Frequency decoupling protection

Description: There are six over frequency and six underfrequency trip points each with a distinct time delay.

4.4.3 PLL freeze logic

No changes to these parameters are possible without permission from SMA.

4.5 Power as a function of frequency, PV inverters – new functionality

This is a new functionality introduced for compliance with standard AR-41XX and other standards.

More details on the function will be included in the next document revision.

4.5.1 Power as a function of frequency, battery inverters – new functionality

This is a P(f) functionality for battery inverters.

	WCtlHzBatMod	Activation of WCtlHzBat-function SWITCH_STT_DISABLE = inactive, SWITCH_STT_ENABLE = active		SWITCH	H_STT_DISABLE
	WCtlHzBat.Hzn	Grid frequency at support point n	Hz	n	value
		for the frequency-dependent active power control		1	44
		power commen		2	46
				3	48
				4	49.5
				5	50.5
				6	52
				7	54
				8	56
	WCtlHzBat.Wn	Additional active power setpoint	ри	n	value
		at support point n		1	1.0
				2	0.7
				3	0.2

		4	0.0
		5	0.0
		6	-0.2
		7	-0.7
		8	-1.0

4.6 DC current and voltage limitation for SCS inverters

To dynamically keep the DC current and voltage within given ranges respective controllers have been implemented. The parameters are split according to the corresponding GridForming control modes. The battery limits can be set in the real inverter via the inverters Modbus interface (see chapter "Battery Communication" in the Technical Information document "Modbus Interface or Sunny Central Storage"). In the EMT model the limits can be configured via the config file as well as the "Runtime Parameter Update" feature (see chapter 3.2)

The following parameters can be used to fine-tune the PI control loops in case required.

	GridForming with droops	GridForming with inertia
DC current limitation		
proportional gain	GriForm_DcCtl_AmpKp (0)	GriForm_DcCtl_InertiaAmpKp (0)
integral gain	GriForm_DcCtl_AmpKi (5)	GriForm_DcCtl_InertiaAmpKi (20)
DC voltage limitation		
proportional gain	GriForm_DcCtl_VolKp (0)	GriForm_DcCtl_InertiaVolKp (0)
integral gain	GriForm_DcCtl_VolKi (30)	GriForm_DcCtl_InertiaVolKi (60)

5 Model start-up

The inverter model needs a certain amount of time for initialization and ramp-up. Please give the model time for this start-up procedure and wait until the steady-state has been reached before applying any changes to inverter setpoints or network conditions.

The PPC model also requires to reach a steady-state for the simulation to run correctly.

Fast start option:

In some simulation studies, it is required that the simulation model achieves a nearly steady state condition within 3 seconds.

The steady state time depends among others on:

- Inverter ramp settings (ramp gradients)
- PPC PI-controller settings
- PPC ramp settings and control mode selected
- Network and grid specific parameters.

If the system conditions are changed by e.g. adding a transformer, line or a passive element, the system time response is changed as well.

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCAD......SMA Solar Technology AG

The "Fast start option" in the inverter model allows the inverter to ignore the ramp parameter WGra and VArGra for the startup time specified allowing the model to initialize faster. After the startup procedure the WGra and VArGra parameters with the values from the parameter file will be considered.

To access the fast start up settings right click on inverter block and select "Edit Parameters...".

6 Debug Interface

To analyze the behavior of the inverter the internal signals of the inverter can be plotted. The relevant signals can be extracted from the inverter mask.

The array DEBUG_PCU contains all relevant control signals e.g. dq components from current controller and from the PLL.

The array MEAS_PCU contains all physical measurement signals e.g. delta instantaneous voltage on the inverter terminal and stack currents from the inverter.

The following table gives an overview and explanation if all relevant signals.

DEBUG_PCU						
in- dex	name	name description				
1	Cpu2SubStt	operation mode state				
		97 = normal operation, 99 = FRT State				
2	ErrBits	error bits register				
3	AmpPsD	sensed current d component (positive sequence)	ри			
4	AmpPsQ	sensed current q component (positive sequence)	ри			
		< 0: inverter is lagging. Voltage is increasing on inverter terminal				
		> 0: inverter is leading. Voltage is decreasing on inverter terminal				
5	AmpPsDSpt	reference current d component (positive sequence)	ри			
6	AmpPsQSpt	reference current q component (positive sequence)	ри			
7	AmpNsD	sensed current d component (negative sequence)	ри			
8	AmpNsQ	sensed current q component (negative sequence)	ри			
9	AmpNsDSpt	reference current d component (negative sequence)	pu			
10	AmpNsQSpt	reference current q component (negative sequence)	pu			
11	MsPIICnv_Hz	Frequency from PLL	Hz			
12	MsPIICnv_VoIPsD	voltage d component from PLL (positive sequence)	ри			
13	MsPIICnv_VoIPsQ	voltage q component from PLL (positive sequence)	ри			

14	MsPIICnv_VoINsD	voltage d component from PLL (negative sequence)	pu
15	MsPllCnv_VolNsQ	voltage d component from PLL (negative sequence)	ри
16	CtlSignals_VolPsD	reference voltage d component (positive sequence)	pu
17	CtlSignals_VolPsQ	reference voltage q component (positive sequence)	pu
18	MsMM_AccVolMonCheb	sense delta voltage	
19	MsPIIMM_PIIOpStt	PLL operation state	
20	IPC_CPU2_Error_GriErr1	Grid Error Flag 1	
21	IPC_CPU2_Error_GriErr2	Grid Error Flag 2	
22	IPC_CPU2_Fast_MppStt	MPP State	
23	IPC_CPU2_Fast_Mpp_PvVolSpt	MPP voltage set point	٧
24	IPC_CPU2_Fast_DrtStt	Derating state	
25	SimDeltT	Delta simulation time	S
26	MsPIIMM_VoIPsD	voltage d component from MeasPLL (positive sequence)	Pu
27	MsPIIMM_VoIPsQ	voltage q component from MeasPLL (positive sequence)	pu
28	MsPllMM_VolPsDNotFil	voltage d component from MeasPLL (positive sequence) – not filtered	Pu
29	MsPllMM_VolPsQNotFil	voltage q component from MeasPLL (positive sequence) – not filtered	pu
30	MsPllMM_Hz	frequency from MeasPLL	Hz
31	Aid_HzHPFilOut	AID: Filtered signal after High Pass	
32	PLDOut	PLD output	
33	MsPIICnv_Vol_PsD	voltage d component from PLL (positive sequence)	
34	MsPllCnv_VolPsQNomSum10ms	nominal sum of the q component from PLL (positive sequence	
	•	•	

MEAS_	MEAS_PCU					
in- dex	name	description	unit			
1-3	ExtVtg	sensed delta voltage at inverter terminal	kV			
4-6	CnvVtg	sensed delta voltage at capacitor of inverter filter	kV			

Description of the model of the SMA SC xxxx solar inverters for EMT studies in PSCAD......SMA Solar Technology AG

7-9	StackCur	sensed stack currents	kA
10-	CnvCurABC	sensed output current at inverter terminal	kA
12			
13	CnvPAC	sensed active power at inverter terminal	MW
14	CnvQAC	sensed reactive power at inverter terminal	MVAr
15	PVVtg	sensed PV Generator voltage	kV
16	lpv	sensed PV Current	kA
17	DCLinkVtg	sensed DC Link voltage	kV

7 Disclaimer

This document and the associated models have been prepared to facilitate the simulation of the response of SMA Sunny Central and Sunny Central Storage inverters to grid and parameter disturbances. The modeling data presented here is intended to produce simulation results that closely approximate the response of the inverters to these disturbances, and do not necessarily represent the physical implementation of the inverter or plant control algorithms.

SMA Sunny Central (Storage) inverter EMT models usability for DC fault analysis

SMA Sunny Central (Storage) EMT models are designed to perform AC network stability analysis and accordingly all relevant details of the inverter hardware and software are rep-resented with the necessary level of detail.

Inverter DC quantities can impact AC operation and therefore must be considered. However, simplifications in that context are acceptable and even beneficial regarding model usability and simulation performance. One example would be aggregation of multiple PV strings to a single PV generator model. Consequently, further details like e. g. single PV string/battery fuses are not modelled, and accordingly detailed analysis of DC faults may lead to incorrect conclusions and should not be performed. If for any reason that would be a matter of interest, case specific consultation with SMA is recommended.

Applicability of parameters

The SMA PSCAD model is not able to check if values entered in the parameter configuration files are within the allowed range of the real inverter software and thus can be set during commissioning. Please refer to the SC/SCS Operating manual (Chapter "Instantaneous Values and Parameters") to check the range.