

ARJUNA NEET BATCH

Todays goal

VECTOR-2

LECTURE - 18

· Angle 6/w vector

. Type of vector

· Component of Vector

- magnitude of vector

ANGLE BETWEEN VECTOR

Angle between two vector is a smaller Angle of the two angle when they are placed head to head or tail to tail,

•

(a)

(b)

(d)

•

TYPE OF VECTOR

1. Equal Vector:

Having same magnitude and direction of same nature.

2. Parallel vector :

Having same direction but magnitude may or may not equal.

2. - ve vector S

Having same magnitude but opposite direction.

3. Zero vector/null vector:

Ly have zero magnitude is called zero vector

(ret)
lelocity = om/s

met force = ON

4. Coplanar vector:

Vector are in same plane

5. Unit vector :

A Veelor Which have unit magnitude and represent direction.

$$A = A \hat{A}$$
Jiretion
$$A = A = A$$

$$A = A$$

$$A$$

Which of the following represents a unit vector?

(c)
$$\frac{A}{A}$$

$$(b)$$
 $\frac{\vec{A}}{|\vec{A}|}$

$$(d) \frac{|\vec{A}|}{|\vec{A}|}$$

$$\hat{A} = \overline{A}$$

$$= \overline{A}$$

$$|\overline{A}|$$

A vector is added to an equal and opposite vector of similar nature, forms

PW

- (a) Unit vector
- (e) Null vector

- direction
- b) Position vector
- (d) Displacement vector

Orthogonal vectors 6.

7. Con-current vectors

Vector exactly acting at a point.

COMPONENT OF VECTOR

vector of deal Razaul
vector of Break orth

effect

(os9 =

Find... Velocity of object along a-axis.

Myo Ms J U= (30 i + 40 j) = 70

Find

$$F_{y} = F(330)^{\circ}$$

$$= 5\sqrt{3}\hat{J}$$

$$F_{z} = F(330) = 5\hat{l}$$

Magnitude of Vector

$$(D^2 + (D^2)^2$$
 $Ax^2 + Ay^2 = A^2 [sin 0 + ay 0]$

Ax

$$A = \sqrt{A_{\chi^2} + A_{\gamma^2}}$$

FIGG!

A-Ax+Ay2

Find magnitude of vector:

(i)
$$\vec{A} = 2\hat{\imath} + 3\hat{\jmath}$$

(ii)
$$(\vec{A} = 3\hat{\iota} + 4\hat{\jmath})$$

(iv)
$$\vec{A} = \hat{\iota} - \hat{\jmath} + \hat{k}$$

(v)
$$\vec{A} = \hat{\imath} + \hat{k} + 2\hat{\jmath}$$

(iii)
$$\vec{A} = 8\hat{\imath} + 6\hat{\jmath} + 10\hat{k}$$

$$Soi^{M}$$
 (i) $A = \sqrt{A_{N}^{2} + A_{1}^{2}}$ (ii) $A = \sqrt{9 + 16}$ = $\sqrt{25}$

$$=\sqrt{(2)^2+(3)^2}$$

(ii)
$$A = \sqrt{9+16}$$

= $\sqrt{25}$
= 5

(iii)
$$A = \sqrt{64+36+100}$$

= $\sqrt{200}$
= $10\sqrt{2}$

(iv)
$$A = \sqrt{(2)^2 + (-1)^2 + (1)^2}$$

= $\sqrt{3}$

(v)
$$A = \sqrt{(2)^2 + (1)^2 + 4}$$

= $\sqrt{6}$

The vector \overrightarrow{OA} where 0 is origin is given by $\overrightarrow{OA} = 2\hat{\imath} + 2\hat{\jmath}$. Now its is rotated by 45° anticlockwise about 0. what will be the new vector?

(a)
$$2\sqrt{2}\hat{j}$$

(c) 2î

(b)
$$2\hat{j}$$

(d) $2\sqrt{2} \hat{\imath}$

$$+amo = \frac{(OA)_{y}}{(OA)_{z}}$$

tan 0 = 1

Basic Properties of Vector

PW

Multiplication of vector with scalar:

$$\overrightarrow{A} = 2i$$

$$Find 3\overrightarrow{A} = 3(2i)$$

$$= 6i$$

Not Passille

$$\frac{1}{2}$$
 = $\frac{2i}{2}$: i

$$\frac{1}{7} + 3$$

Addition of two vector :

$$\overrightarrow{A} = 2\overrightarrow{i} + 3\overrightarrow{j}$$
 $\overrightarrow{B} = 3\overrightarrow{i} - \overrightarrow{j}$

find
$$\vec{A} + \vec{B}' = 7!$$

 $\vec{A} + \vec{B}' = 2\vec{i} + 3\hat{j} + 3\vec{i} - \hat{j}$
 $\vec{A} + \vec{B}' = 5\vec{i} + 2\hat{j}$

 \vec{A} is a vector of magnitude 2.7 units due east. What is the magnitude and direction of vector $(4\vec{A}?)$

- (a) 4 Units due east
- (c) 2.7 Units due east

- (b) 4 Units due west
- 10.8 Units due east

$$|\vec{A}| = 2.7 \text{ unit}$$

$$\hat{A} = \text{east}$$

Unit vector does not have any

Direction /

(b) Magnitude (Uni+ magni)

(d) All of these

$$A = 10 \text{ m/s} i$$

The magnitude of $\hat{i} + \hat{j}$ is

(b) 0

(d) 4

A vector multiplied by the number 0, results into (A) + hen Vector became

(c) \vec{A} (c) \vec{A}

If $\vec{P} + \vec{Q} = \vec{0}$ then which of the following is necessarily true?

(a)
$$\vec{P} = \vec{0}$$

$$\vec{O} = \vec{O}$$

$$(b) \vec{P} = -\vec{Q}$$

(d)
$$\vec{P} = \vec{Q}$$

$$\frac{1}{P} + Q = 0$$

The displacement of a particle from a point having position vector $2\hat{\imath} + 4\hat{\imath}$ to another point having position vector $5\hat{\imath} + 1\hat{\imath}$ is

(a) 3 units

b) $3\sqrt{2}$ unites

(c) 5 units

(d) $5\sqrt{3}$ units

initial

Position recto

final Position.

displacment =
$$\overline{x_f} - \overline{x_i}$$

= $(5i+1\hat{j}) - (2i+4\hat{j})$
= $3i-3\hat{j}$ magnitude $(3\sqrt{2})$

Three forces given by vectors $2\hat{i} + 2\hat{j}$, $2\hat{i} - 2\hat{j}$ and $-4\hat{i}$ are acting together on a point object at rest. The object moves along the direction

(a) x-axis

(b) *y*-axis

(c) z-axis

(d) Object does not move

$$F_{med} = \vec{F_1} + \vec{F_2} + \vec{F_3}$$

$$= (2i) + 2j + (2i) - 2j - (4i)$$

$$= 0$$

A body moves 6 m north, 8m east and 10 m vertically upwards, the resultant displacement of body from its initial position is

(a)
$$10\sqrt{2m}$$

(c)
$$\frac{10}{\sqrt{2}}$$
 m

TRIANGLE LAW OF VECTOR ADDITION

To add two vector \vec{A} and \vec{B} shift any of two such that tail of B at the head of \vec{A} then sum of \vec{A} and \vec{B} is \vec{R} . Which is from tail of A to head of \vec{B} .

THANK YOU ©

