SRM Institute of Science and Technology Ramapuram Campus.

Department of Mathematics

Assignment - 2

Sub. Code: 18MAB102T Date: 28.05.2021
Sub. Title: Advanced Calculus and Complex Analysis Max. Marks: 10
Year: I Year B. Tech. (Common to all Branches) Semester: II

Date of Submission: on or before 31.05.2021

Unit 2

Vector Calculus

1. Find the unit normal vector to the surface $x^2 + y^2 + z^2 = 1$ at the point (1, 1, 1).

- 2. Find the directional derivative of $\varphi=x^2+y^2+4x\,y\,z$ at the point (1, 2 , 2) in the direction $2\vec{i}-2\vec{j}+\vec{k}$.
- 3. Find 'a' such that $\vec{F} = (3x 2y + z)\vec{i} + (4x + ay z)\vec{j} + (x y + 2z)\vec{k}$ is solenoidal.
- 4. Find the constants a, b, c so that $\vec{F} = (axy + bz^3)\vec{i} + (3x^2 cz)\vec{j} + (3xz^2 y)\vec{k}$ is irrotational.
- 5. Using Gauss divergence theorem, evaluate $\iiint_V \nabla \bullet \vec{F} \, dV \text{ where } \vec{F} = 4 \, x \, z \, \vec{i} y^2 \, \vec{j} + y \, z \, \vec{k}$ taken over the cube bounded by the planes $x = 0, \, x = 1, \, y = 0, \, y = 1, \, z = 0, \, z = 1.$

* * * * *