Inference and filtering

Model-based inquiry

Boarding School outbreak

Boarding School*, England
Jan 1978

What is R₀ for this epidemic?

Model-based inquiry

which model?

Likelihood for Mechanistic Models

- "Hidden Markov" models, "State Space" models or "Partially Observed Markov Processes" (POMPs)
- Distinguish between "process" and "observation"

Known
$$P(x_t|x_{t-1}), P(y_t|x_t)$$

Properties of Maximum Likelihood Estimators

- Consistency biases disappear with increasing data
- Efficiency with large amount of data, MLE has smallest uncertainty of any estimator
- Natural scale 2 units of log-likelihood per degree of freedom corresponds (roughly) to "statistical significance"

Likelihood ratio testing

- Given two (nested) models, it has been shown (by Samuel Wilkes) that quantity -2 log (Θ₁/Θ) is χ2 distributed
- If comparing models that differ by 1 parameter, can test if log-likelihoods differ by $\chi 2(1)/2 \sim 2$

Properties of Maximum Likelihood Estimators

- Consistency biases disappear with increasing data
- Efficiency with large amount of data, MLE has smallest uncertainty of any estimator
- Natural scale 2 units of log-likelihood per degree of freedom corresponds (roughly) to "statistical significance"
- Caveats
 - sometimes, don't have enough data
 - likelihood can be hard to compute

Likelihood & estimation

- Assume we have data, y, and model state, x (both are vectors containing state variables). Model predictions generated using set of parameters, θ
- Transmission dynamics subject to
 - "process noise": heterogeneity among individuals, random differences in timing of discrete events (environmental and demographic stochasticity)
 - <u>"observation noise"</u>: random errors made in measurement process itself

Likelihood & estimation

- If we ignore process noise, then model is deterministic and all variability attributed to measurement error
- Observation errors assumed to be sequentially independent
- Maximizing likelihood in this context is called 'trajectory matching'

Deterministic likelihood

- In absence of process noise, state of system at time t, x_t , is known function
- So, likelihood is just product of (independent) probability of "observing" each data point y_t

$$\mathcal{L}(\theta) = P(y_{1:T}|\theta) = \prod_{t=1}^{I} P(y_t|x_t,\theta)$$

$$ll(\theta) = log\mathcal{L}(\theta) = \sum_{t=1}^{I} log(P(y_t|x_t, \theta))$$

Deterministic likelihood

• If we assume measurement errors are normally distributed, with mean μ and variance σ^2 then

$$ll(\theta) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - x_t)^2$$
 =SSE/n

Model estimation: Influenza outbreak

Maximum Likelihood Estimates:

- 1. β = 1.96 (per day)
- 2. $1/\gamma = 2.1 \text{ days}$
- 3. R₀ ~ 4.15

Recall 2 log-likelihood units indicate significant difference

Can use likelihood profiles to put confidence intervals on estimates

β=1.96 (1.90,2.04) γ=0.47 (0.43,0.50)

Likelihood estimation

Likelihood for Stochastic Models

 We know transmission is stochastic, so how to compute likelihood now?

$$\mathcal{L}(\theta) = P(y_{1:T}|\theta)$$

$$= \sum_{x_1} \sum_{x_2} \dots \sum_{x_T} \prod_{t=1}^T P(y_t|x_t, \theta) P(x_t|x_{t-1}, \theta)$$

Can use Monte Carlo methods to approximate likelihood

Monte Carlo theorem

• If a_1 , a_2 , ..., $a_n \sim p$ (where p is some pdf) and iid, and b_i (i=1,...,N) be independent and distributed according to p then

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N f(b_i)$$

is a Monte Carlo estimator of E(f(a))

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^{N} f(b) \approx E[f(a)] = \int f(a)p(a)da$$

Monte Carlo approximation

- Use stochastic model to produce N trajectories each of length T. Call these $x_{t,k}$ (k=1,...,N)
- Compute likelihood for each trajectory

$$\mathcal{L}_{k}(\theta) = \prod_{t=1}^{T} P(y_{t}|x_{t,k}, \theta) P(x_{t,k}|x_{t-1,k}, \theta)$$

By Monte Carlo theorem,

$$\mathcal{L}(\theta) \approx \frac{1}{N} \sum_{k} \frac{\mathcal{L}_k(\theta)}{w_k}$$

Monte Carlo approximation

$$\mathcal{L}(\theta) \approx \frac{1}{N} \sum_{k} \frac{\mathcal{L}_k(\theta)}{w_k}$$

- Here, w_k represents probability of proposing each trajectory k
- Simple choice for w_k : $w_k = \prod_{t=1}^{n} P(x_{t,k}|x_{t-1,k},\theta)$

Recall:
$$\mathcal{L}_k(\theta) = \prod_{t=1} P(y_t|x_{t,k},\theta)P(x_{t,k}|x_{t-1,k},\theta)$$

$$= \frac{1}{N} \sum_{k=1}^{N} \frac{\prod_{t=1}^{T} P(y_t|x_{t,k}, \theta) P(x_{t,k}|x_{t-1,k}, \theta)}{\prod_{t=1}^{T} P(x_{t,k}|x_{t-1,k}, \theta)}$$

Monte Carlo approximation

$$= \frac{1}{N} \sum_{k=1}^{N} \frac{\prod_{t=1}^{T} P(y_t | x_{t,k}, \theta) P(x_{t,k} | x_{t-1,k}, \theta)}{\prod_{t=1}^{T} P(x_{t,k} | x_{t-1,k}, \theta)}$$
$$= \frac{1}{N} \sum_{k=1}^{N} \prod_{t=1}^{T} P(y_t | x_{t,k}, \theta)$$

 This means, we generate trajectories by simulation, then simply compute likelihood of data for each trajectory and average

Stochastic epidemics

Stochastic epidemics

Estimated log-likelihood based on 5000 simulations: -63 \pm 16 Error in estimate is very high \Rightarrow estimate is imprecise

What's the problem?

- Too many trajectories don't pass near data
- Also, when trajectory diverges from data, it almost never comes back
- Due to fact that we are proposing trajectories unconditional on the data
- Problem will get worse with longer data sets

Importance Sampling

• If a_1 , a_2 , ..., $a_n \sim p$ (where p is some pdf) and iid, and b_i (i=1,...,n) be independent and distributed according to p then

$$\hat{\mu}_n = \frac{1}{n} \sum_i f(b_i)$$

is a Monte Carlo estimator of E(f(a))

• What if it's difficult to sample directly from distribution of *a*?

Importance Sampling

- What if we generate random samples from another (easier to simulate) distribution and make suitable correction?
- Wish to compute E(f(a)), where $a \sim p$ but difficult/impossible to sample from p
- Suppose q is a probability distribution that is easy to simulate (called proposal distribution)
- Now, notice that

$$E(f(b)) = \int f(a)p(a)da = \int f(a)\frac{p(a)}{q(a)}q(a)da$$

Importance Sampling

From Monte Carlo theorem

$$E(f(b)) \approx \frac{1}{N} \sum_{i} f(c_i) \frac{p(c_i)}{q(c_i)}$$

where c_i are iid random variables drawn from q

• Let $w_i = p(c_i)/q(c_i)$ be importance weights, then

$$E(f(b)) \approx \frac{\sum_{i} w_{i} f(c_{i})}{\sum_{i} w_{i}}$$

The particle filter

Let's factorize likelihood differently (=more efficiently)

$$\mathcal{L}(\theta) = P(y_{1:T}|\theta) = \prod_{t=1}^{T} P(y_t|y_{1:t-1}, \theta)$$
$$= \prod_{t=1}^{T} \sum_{x_t} P(y_t|x_t, \theta) P(x_t|y_{1:t-1})$$

Markov property

$$P(x_t|y_{1:t-1},\theta) = \sum_{x_{t-1}} P(x_t|x_{t-1},\theta) P(x_{t-1}|y_{1:t-1},\theta)$$

The particle filter

$$P(x_t|y_{1:t-1},\theta) = \sum_{x_{t-1}} P(x_t|x_{t-1},\theta) P(x_{t-1}|y_{1:t-1},\theta)$$

Prediction distribution

Filtering distribution

Baye's Theorem

$$P(x_{t-1}|y_{1:t-1},\theta) = P(x_t|y_t, y_{1:t-1},\theta)$$

$$= \frac{P(y_t|x_t,\theta)P(x_t|y_{1:t-1},\theta)}{\sum_{x_t} P(y_t|x_t,\theta)P(x_t|y_{1:t-1},\theta)}$$

Particle filter to compute likelihood

Generate
$$x_{t,k}^F$$
 from $P(x_t|y_{1:t},\theta)$ and $x_{t,k}^P$ from $P(x_t|y_{1:t-1},\theta)$

- Draw $x_{t,k}^P$ by one-step simulation from $x_{t-1,k}^F$
- Generate $x_{t,k}^F$ by resampling according to $P(y_t|x_t,\theta)$
- Monte Carlo theorem tell us conditional likelihood is

$$\mathcal{L}_t(\theta) = P(y_t|y_{t-1}, \theta) = \sum_{x_t} P(y_t|x_t, \theta) P(x_t|y_{1:t-1}, \theta)$$

$$\approx \frac{1}{N} \sum_{t} P(y_t | x_{t,k}^P, \theta)$$

Particle filter to compute likelihood

Can iterate procedure through data, alternatively simulating and sampling until t=T

The full log-Likelihood is then approximately

$$\log(\mathcal{L}(\theta)) = \sum_{t} \log(\mathcal{L}_{t}(\theta))$$

Particle filter: Matlab code

```
X0 = [S0 I0 C0 R0]'; % initial conditions
Np = 5000; % number of particles
particles = repmat(X0,I,Np); % initialize particles
```

>> particles = repmat(X0,1,10)

763	763	763	763	763	763	763	763	763	763	← Susceptibles
I						I				← Infectious
0	0	0	0	0	0	0	0	0	0	← Convalescent
0	0	0	0	0	0	0	0	0	0	← Recovered

Particle filter: Matlab code

```
X0 = [S0 \ I0 \ C0 \ R0]';
                              % initial conditions
N_p = 5000;
                              % number of particles
particles = repmat(X0,I,Np); % initialize particles
Y = data:
                              % set data vector
for k = 1:N
                              % step through data
   % advance particles according to state process model
   particles = SICR simulateState(t(k),t(k+1),particles,beta/popsize,gamma,delta);
  % compute weights according to measurement model
  weights = nbinpdf(Y(k),nbr, I./(I+particles(3,:)/nbr));
  % compute conditional log likelihood
  ell(k) = log(mean(weights));
  % resample particles to update filtering distribution
   particles = particles(:,randsample(Np,Np,true,weights));
end
logL = sum(ell);
                                                                                 30
```

The particle filter in action

The particle filter in action

Effect of particle number

Likelihood surface

Prediction means

The particle filter

Model comparison.

	detSIR	detSICR	stochSICR
R_0 IP (da) CP (da)	3.71 2.00 —		
logLik	-72.80		

Further, ...

- 1. Include uncertainty in initial conditions
 - We took I(0) = 1. Instead could estimate I(0) together with β and γ (now have 1 fewer data points)
- 2. Explicit observation model
 - Assumed here measurement errors negative binomially distributed
- 3. What is appropriate model?
 - SEIR model? (latent period before becoming infectious)
 - SEICR model? ("confinement to bed")
 - Time varying parameters? (e.g. action taken to control spread)

Further, ...

- 4. Optimization
 - The 'particle filter' allow us to calculate likelihood how we optimize it?
- 5. Can we simultaneously estimate numerous parameters?
 - More complex models have more parameters... estimate all from 14 data points? ⇒ identifiability
- 6. More complex models are more flexible, so tend to fit better
 - How do we determine if increased fit justifies increased complexity? ⇒ information criteria