

BIG DATA PROCESSING

Machine Learning Pipeline with Spark

Data Pipeline with Spark

Data Preprocessing

- DataCleaning
- DataExtraction
- Select relevant features

Model Selection and Training

- Selection of model
- Train with preprocessed data

Model Evaluations

- Measure the performance
- Report the outcome

Data Preprocessing

- Data cleaning transforming and preparing raw data
- Use for each type of machine learning tasks

Feature Transformation

• Feature Transformers

- Tokenizer
- <u>StopWordsRemover</u>
- nn-gram
- Binarizer
- PCA
- <u>StringIndexer</u>
- IndexToString
- StandardScaler

Tokenization

Tokenizer

Split text into induvial words of tokens

- from pyspark.ml.feature import Tokenizer
- tokenizer = Tokenizer(inputCol=sentence, outputCol=words)
- tokenized = tokenizer.transform(DataFrame)

"Hi I love you → "Hi "I "love "you

Stop words remover

- StopWordsRemover
- Remove a few words (a,an, the, I, or your specified stop word)

from pyspark.ml.feature import StopWordsRemover

remover = StopWordsRemover(inputCol=raw, outputCol=filtered) remover.transform(sentenceData).show(truncate=False)

Principal Component Analysis

PCA

- Identifies small set of features to explain variance
- Transforms high-dimensional data to lower dimensional data using new components

Binarization

- Binarize based on treshole
- from pyspark.ml.feature import Binarizer
- binarizer = Binarizer(threshold=0.5, inputCol=input, outputCol=bin)
- binarizedDF = binarizer.transform(DataFrame)

Principal Component Analysis

from pyspark.ml.feature import PCA

pca = PCA(k=3, inputCol=features, outputCol=pcaFeatures)

model = pca.fit(df)

result = model.transform(df).select(pcaFeatures)

Feature Transformation (Scaling)

- Normalizer
- StandardScaler
- RobustScaler
- MinMaxScaler
- MaxAbsScaler

Data Scaling

StandardScaler

- Mean =0
- Std =1

MinMaxScaler

- Transform data to range 0-1
- X_std = (X X.min(axis=0)) / (X.max(axis=0) X.min(axis=0))

MaxAbsScaler

- Transform data to range [-1, 1]
- Divide by maximum absolute value

Step for scaling

- Import
 - from pyspark.ml.feature import StandardScaler
- Create Scaler
 - scaler = StandardScaler(inputCol=features, outputCol=scaledFeatures)
- # Compute summary statistics by
 - scalerModel = scaler.fit(dataFrame)
- # Scaling each feature.
 - scaledData = scalerModel.transform(dataFrame)

Feature Extraction

• TF-IDF

- Identify the important words using <u>Term frequency-inverse document</u> <u>frequency</u>
- Reflect the importance of a term to a document
- Represent each word by number of occurrence

Word2Vec

Represent words in text as a Vector

Convert Categories to numeric

- StringIndexer
 - Categories to number

One-hot encoding

Label Encoding

Food Name	String Indexer	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Example

```
Try by yourself Example \rightarrow Feature_Extraction_and_Transformation_using_Spark.ipynb
```


Data set for model selection

 For not so small data set, obtaining the resulting performance is usually by spitting to 3 data sets.

Training data

For training the data, from the selected parameters/model

Validating data

- For finding the RIGHT parameters/model.
- E.g. If it's linear /non linear mode

Testing data

- For performance evaluation from the unseen data
- The model will no longer changed
- This step will only try to obtain the ERROR

Training set

Training data

- For training the data, from the **selected** parameters/model
- Train the model to create the best sets

Validating date

- For finding the **RIGHT parameters/model**.
 - Normally split from training data

Data validation

Evaluating Training data

Validating your data

Testing your performance of the chosen model

The holdout Technique

- Split dataset into two groups
 - Train
 - Validation

Train

Validation

Advantage:

- Simple and easy
- Good for big enough data
- Fast

Disadvantage:

It can be biased

ML Pipeline with Spark

Combine all steps together

Handles multiple steps

Organize and automate routine tasks for deployment proces

Example of using pipelines

- Define Stages (steps)
 - vectorAssembler=VectorAssembler(inputcol= input, outputCol="features)
 - scaler= StandardScaler(Inputcols= "features, outputCol="scaled_features)
 - Ir= LineraRegression(featureCol= "scaled _features)
- Create Pipeline

pyspark,ml. import Pipeline

Pipeline=Pipeline(stages[vectorAssembler, scaler, lr])

Parameter Tuning

Create parameter

Model Selection and Data Tuning

Create a paramter

```
val = TrainValidationSplit(estimator=pipeline,
  estimatorParamMaps=paramGrid, # Define parameter Grid
  evaluator=RegressionEvaluator(), # Define evaluator
  trainRation=.8) # use 80% for training
```


Model Selection and Data Tuning

crossval = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, # Define parameter Grid

evaluator=BinaryClassificationEvaluator(), # Define evaluator

numFolds=3) # use 3+ folds in practice

Parameter grid

```
paramGrid = ParamGridBuilder() \
.addGrid(lr.fitIntercept, [False, True]) \
.addGrid(lr.maxIter, [5, 10,20]) \
.build()
```

Add grid for each stage in the pipeline

Evaluator

- RegressionEvaluator
- rmse (default): root mean squared error
- mse: mean squared error
- r2: R² metric
- mae: mean absolute error
- var: explained variance
- BinaryClassificationEvaluator
 - Area under Curve ROC(default), Area under Curve (PR)
- MultilabelClassificationEvaluator
- f1 (default), accuracy
- weightedPrecision, weightedRecall, weightedTruePositiveRate, weightedFalsePositiveRate, weightedFMeasure
- truePositiveRateByLabel, falsePositiveRateByLabel, precisionByLabel, recallByLabel, fMeasureByLabel

Model Persistence

To save the model for future use (deployment)

Save the whole pipeline

• cvModel.bestModel.save("./model store")

Save the prediction pipeline

• cvModel.bestModel.stages[2].save("./model store")

Load the model

• loaded_model = PipelineModel.load("./model_store/")