## Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

21 de junho de 2016





## Plano de Aula

- Pensamento
- 2 Revisão
  - Método da Diagonalização
- O Método da Diagonalização





### Sumário

- Pensamento
- 2 Revisão
  - Método da Diagonalização
- 3 O Método da Diagonalização





### Pensamento







### Pensamento



#### Frase

Young man, in mathematics you don't understand things.
You just get used to them.

### Quem?

John von Neumann (1903-1957) Cientista da computação húngaro/americano.





### Sumário

- Pensamento
- 2 Revisão
  - Método da Diagonalização
- 3 O Método da Diagonalização





#### Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja,  $f(a) \neq f(b)$  sempre que  $a \neq b$ ).

### Função Sobrejetora

Uma função f é **sobrejetora** se ela atinge todo elemento de B (ou seja, se para todo  $b \in B$  existir um  $a \in A$  tal que f(a) = b).





### Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência  $f:A\to B$ , todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

### Tamanho de conjuntos

Dois conjuntos A e B são de **mesmo tamanho** se existe uma correspondência de A para B.





### Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

#### $\mathbb{N}$ e P têm o mesmo tamanho

- É possível encontrar uma correspondência entre  $\mathbb N$  e P;
- $f: \mathbb{N} \to A$  em que f(n) = 2n;





| n | f(n) |
|---|------|
| 1 | 2    |
| 2 | 4    |
| 3 | 6    |
| : | ÷    |

Figura: Visualização de f através de uma tabela.





### Considerações

- Pode parecer contra-intuitivo, pois  $P \subseteq \mathbb{N}$ ;
- Mas é possível fazer a correspondência entre os conjuntos;
- Logo, declaramos que esses conjuntos têm o mesmo tamanho.

### Conjunto Contável

Um conjunto A é **contável** se é finito ou se tem o mesmo tamanho de  $\mathbb{N}$ .





### Exemplo 2

Seja  $\mathcal{Q}=\{m/n\mid m,n\in\mathbb{N}\}$  o conjunto dos racionais positivos.

### Q é contável (curiosamente)

Logo  $\mathcal Q$  é finito ou tem o mesmo tamanho de  $\mathbb N.$ 







**FIGURA 4.16** Uma correspondência de  $\mathcal{N}$  e  $\mathcal{Q}$ 





#### Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;
- Cantor provou que R é incontável introduzindo o método da diagonalização.

#### Teorema 4.17

 $\mathbb{R}$  é incontável.





### Sumário

- Pensamento
- 2 Revisão
  - Método da Diagonalização
- O Método da Diagonalização





Teorema 4.17

 $\mathbb{R}$  é incontável.





#### Teorema 4.17

 $\mathbb{R}$  é incontável.

#### Ideia da Prova

- De forma a mostrar que  $\mathbb R$  é incontável, mostramos que nenhuma correspondência existe entre  $\mathbb N$  e  $\mathbb R$ .
  - Supomos, a princípio, que a correspondência f existe.
  - Logo após, apresentamos um valor  $x \in \mathbb{R}$  que não está emparelhado com valor algum em  $\mathbb{N}$  (o que indica um absurdo).





| n | f(n)     |
|---|----------|
| 1 | 3,14159  |
| 2 | 55,55555 |
| 3 | 0,12345  |
| 4 | 0,50000  |
| : | i:       |

**Figura:** Suposta correspondência f entre  $\mathbb N$  e  $\mathbb R$ .





Figura: Construção de x a partir da correspondência f.





### Considerações

Apenas deve-se ter o cuidado de escolher dígitos para x diferentes de 0 e 9, devido ao fato de

$$3,999...=4,000...$$





### Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.





#### Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

#### Ideia da Prova

- Observar que o conjunto de todas as máquinas de Turing é contável;
- ② Observar que o conjunto de todas as linguagens é incontável.
- Como há mais linguagens do que máquinas de Turing, então algumas linguagens não podem ser Turing-reconhecíveis.





### O conjunto de todas as máquinas de Turing é contável

- Σ\* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);
- O conjunto C de todas as máquinas de Turing pode ser representado por um conjunto de cadeias (M);
- É possível enumerar C;
- Logo C é contável.





### O conjunto de todas as linguagens é incontável

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências característica;
- A função f: L → B
   (em que f(A) é igual à sequência característica de A)
   é uma correspondência;
- Logo, como B é incontável, L é incontável.





**Figura:** Construção de  $\mathcal{X}A$  a partir da correspondência  $\Sigma^*$ .





#### Exercício

Mostrar que o problema da parada é indecidível.





## Decidibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

21 de junho de 2016



