Двойная устойчивость, разность разностей

Георгий Калашнов, Ольга Сучкова

25 марта 2020 г.

План на сегодня

Включение confounders в регрессию

Разность разностей

Примеры
Предположения о данных
Примеры в линейной регрессии
Расширения

Table of Contents

Включение confounders в регрессию

Разность разностей
Примеры
Предположения о данных
Примеры в линейной регрессии
Расширения

В прошлые разы мы обсудили

Чтобы получить несмещенную оценку можно

- ► Matching веса 0/1
- ► Blocking: $\frac{N_H}{N_{TH}}$ и $\frac{N_L}{N_{CH}}$
- Weighting: $\frac{1}{e(X)}$ и $\frac{1}{1-e(X)}$

Еще можно можно сделать demeaning

$$m_1(X) = E(Y|X, T = 1)$$

 $m_0(X) = E(Y|X, T = 0)$

$$ATE = \frac{1}{n_1} \sum_{T=1} (Y - m_1(X)) - \frac{1}{n_0} \sum_{T=0} (Y - m_0(X))$$

Это все равно, что оценить регрессию вида

$$Y = X + T + X * T$$

Double Robustness

А еще можно сделать и то и другое (на доске)

Table of Contents

Включение confounders в регрессик

Разность разностей

Примеры
Предположения о данных
Примеры в линейной регрессии
Расширения

Эффект реакции потребителей на экологическую катастрофу

Разница в доходе женщин с ребенком и мужчин с ребенком

B: Men Who Have Children vs Men Who Don't

Source: Henrik Kleven, Camille Landais, and Jakob Egholt Segaard (2018) - Children and Gender Inequality: Evidence from Denmark. NBER Working Paper No. 24219

Обозначения данных и предположения

- ightharpoonup Как обычно, потенциальные исходы: $(Y^0, Y^1, X)_{it}$
- ▶ Переменная воздействия: T_i
- lacktriangle Наблюдаемый $Y = Y^0 + T(t>0)(Y^1-Y^0)$

Предпосылки идентификации:

- ▶ Верно ли, что $(Y^1, Y^0, X) \perp T$?
- ▶ Верно ли, что $(Y^1, Y^0) \perp T | X ?$
- lacktriangle Давайте хотя бы предположим $(\Delta Y^1, \Delta Y^0) \perp T | X$, где $\Delta Y^j = Y^j_{it} (ar Y^j)_{i,t < 0}$

Предпослыка идентификации

Общий тренд условно на Х

$$(\Delta Y^1, \Delta Y^0) \perp T|X$$

В линейной регрессии: примеры

Теперь мы будем оценивать: $Y_{it} - Y_i 0 = \Delta Y_i = \alpha + \tau T_i$ Альтернативно это можно записать как:

Раньше мы всегда оценивали модель: $Y = \alpha + \tau T$

$$Y_{it} = \alpha_0(t=0) + \alpha_1(t=1) + \alpha_2(t=2) + \tau_1(t=1)T_i + \tau_2(t=2)T_i$$

Placebo test

A: Women Who Have Children vs Women Who Don't

Earnings Impact

B: Men Who Have Children vs Men Who Don't Earnings Impact

Source: Henrik Kleven, Camille Landais, and Jakob Egholt Søgaard (2018) - Children and Gender Inequality: Evidence from Denmark. NBER Working Paper No. 24219

Placebo test через регрессию

$$Y_{it} = \alpha_{-2}(t = -2) + \alpha_{-1}(t = -1) + \alpha_{2}(t = 0) + \tau_{-2}(t = -2)T_{i} + \tau_{-1}(t = -1)T_{i}$$

*

Проверить, что $au_{-2} = au_{-1} = 0$

Включение контрольных переменных

Предположим тренды не парралельны, но парралельны условно на X (парралельны для людей с образованием и без образования)

$$Y_{it} = \alpha_0(t = 0) + \alpha_1(t = 1) + \alpha_2(t = 2) +$$

 $+ \tau_1(t = 1)T_i + \tau_2(t = 2)T_i$
 $+ X$

Что если $s \neq t$

$$Y_{it} = \alpha_0(t=0) + \alpha_1(t=1) + \alpha_2(t=2) + \beta_0(s=0) + \beta_1(s=1) + \beta_2(s=2) + \tau_1(t=1)T_i + \tau_2(t=2)T_i$$

*

Difference-in-Difference

A: Women Who Have Children vs Women Who Don't
Earnings Impact

B: Men Who Have Children vs Men Who Don't Earnings Impact

Source: Henrik Kleven, Camille Landais, and Jakob Egholt Segaard (2018) - Children and Gender Inequality: Evidence from Denmark. NBER Working Paper No. 24219