第一章:

- 1. 1 (a)、(b)模拟量; (c)、(d)数字量
- 1. 2 107 16.1111 38.8 55.3125 1471.8889 348.2188

1. 3

十进制	二进制	八进制	十六进制
1.234	1.0011	1.1676	1.3BE7
73.4	1001001.0110	111.3146	49.6666
2014.8	11111011110.1100	3736.6314	7DE.CCCC

1. 4 R>4 R>3 R=5

1. 5 (1) 1010010

(2) 11100 (3) 1323

(4) 401

(5)

F5C6 (6) 5144

1. 6 n=10(m-1)/3; 10 位

1. 7

真值	原码	反码	补码
+1111	01111	01111	01111
-1111	11111	10000	10001
+0000	00000	00000	00000
-0000	10000	11111	00000
+1010	01010	01010	01010
-1010	11010	10101	10110

1. 8 (1) -10111 (2) -01000 (3) -01001 (4) +00000 (5) +11111

(6)

+10000

1. 9 原码: +1.101000=01.101000

反码: 0.1010000 补码: 0.1010001

1.	10

真值	原码	反码	补码
11/64	0.0010110	0.0010110	0.0010110
13/128	0.0001101	0.0001101	0.0001101
15/256			
-11/64	1.0010110	1.1101001	1.1101010
-13/128	1.0001101	1.1110010	1.1110011
-15/256			

1. 11 BCD 码加法: (1)如果任何两个对应位 BCD 数相加的结果向高一位无进位,若得到的 结果小于或等于 9,则该不需修正;若得到的结果大于 9 且小于 16 时,该位进行加 6 修正。(2) 如果任何两个对应位 BCD 数相加的结果向高一位有进位时(即结果大于或等于 16, 注意不是 修正时的进位),该位进行加6修正。(3)低位修正结果使高位大于9时,高位进行加6修正。

BCD 码减法: 两个组合 BCD 码进行减法运算时,当低位向高位有借位时,由于"借一作十 六"与"借一作十"的差别,将比正确的结果多6,所以有借位时,可采用"减6修正法"来修正.两个 BCD 码进行加减时,先按二进制加减指令进行运算,再对结果用 BCD 调整指令进行调整,就可得 到正确的十进制运算结果。

1. 12

$$(1010111.01110101)_{BCD} = (57.75)_{10} = (1011010.01110101)_{\frac{1}{373}\frac{BP}{4}}$$

= $(10111101.11011011)_{2421} = (111001.11)_{2} = (1110100.01000111)_{gray}$

1. 13

	奇校验	偶校验
10101010	1	0
11111110	0	1

- 1. 14 不正确 $S_3S_2S_1 = 100$, 所以正确海明码为 0101101
- 1. 15 成立,详见课本 21 页
- 1. 16 可以
- 1. 17

$$(1) \overline{F} = (\overline{A} + \overline{B}) (A\overline{B} + \overline{C}D\overline{E})$$

$$F' = (A + B) (\overline{A}B + CDE)$$

$$(2) \overline{F} = \overline{A} (\overline{B} + C) + A (D + \overline{E})$$

$$F' = A (B + \overline{C}) + \overline{A} (D + \overline{E})$$

$$(3) \overline{F} = \overline{A} e B e 0 = \overline{A} e \overline{B}$$

$$F' = A e \overline{B} e 0 = A e B$$

1. 18

(1)
$$\angle \overline{D} \underline{D} = (A + B)(B + C)(C + A) = (AB + AC + BB + BC)(C + A)$$

$$= (AB + AC + B * 1 + BC)(C + A) = [(A + 1)B + AC + BC](C + A)$$

$$= [(C + 1)B + AC](C + A) = (B + AC)(C + A)$$

$$= BC + ACC + AB + AAC = BC + AC + AB + AC$$

$$= AB + BC + CA = \angle \overline{D} \underline{D}$$
(2) $\angle \overline{D} \underline{D} = (X\overline{Y} + \overline{X}\overline{Y}) \oplus Z = (X\overline{Y} + \overline{X}\overline{Y})\overline{Z} + (\overline{X}\overline{Y} + \overline{X}\overline{Y})gZ$

$$= X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{g}\overline{X}\overline{Y}gZ$$

$$= X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z$$

$$\angle \overline{D} \underline{D} = X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z$$

$$\angle \overline{D} \underline{D} = X\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z}$$

$$= \overline{X}(\overline{Y}Z + Y\overline{Z}) + Xg\overline{y}\overline{Z}g\overline{y}\overline{Z}$$

$$= \overline{X}(\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{$$

1. 20

(1)
$$F = \sum m^4(3, 4, 5, 6, 7, 11) = \pi M^4(0, 1, 2, 8, 9, 10, 12, 13, 14, 15)$$

(2)
$$F = \sum m^4(4, 6, 7, 10, 11, 14, 15) = \pi M^4(0, 1, 2, 3, 5, 8, 9, 12, 13)$$

(3)
$$F = \sum m^4(0, 1, 2, 3, 4, 7, 9, 10, 12, 13, 14, 15) = \pi M^4(5, 6, 8, 11)$$

1. 21 提示: 做卡诺图,根据卡诺图中0和1的变量组合确定

1. 22

$$(1) F = \overline{ABC} + BC + \overline{BCD} = (B + \overline{C})(B + C + D)(\overline{A} + \overline{B} + C)$$

$$(2) F = AB + B\overline{C} = B \left(A + \overline{C}\right)$$

$$(3) F = B\overline{C}\overline{D} + \overline{AC}D + BCD + ABC$$

$$= \left(B + \overline{C}\right) \left(B + C + D\right) \left(\overline{A} + C + \overline{D}\right) \left(A + \overline{C} + D\right)$$

$$(4) F = \overline{D} + \overline{BC} + \overline{ABC} = (B + C + \overline{D}) (\overline{B} + \overline{C} + \overline{D}) (\overline{A} + C + \overline{D})$$

1. 23

(1)
$$F = \overline{ACBC} \overline{gABBC}$$

(2)
$$F = \overline{AABC} g \overline{BABC}$$

$$(3) F = \overline{C AB} g \overline{B AB}$$

$$(4) F = \overline{\overline{ABC}}$$

1. 24

由卡诺图化简得:

$$F = AB\overline{C} + \overline{A}BC = B(A\overline{C} + \overline{A}C) = B(A \oplus C) = AB \oplus BC$$

 $\mathbb{Z}F = WX \oplus YZ$

$$\beta F U W = A, X = Y = B, Z = C$$

1. 25

1. 26

1. 27 多射极晶体管技术是 TTL 逻辑门实现的核心技术。工作原理: TTL 中,晶体管除了作为一个电压控制的开关,还可以作为放大器工作。当基极电压变化时,晶体管能把后面的晶体管电压放大,加快后面的晶体管打开和关闭的速度,实现更快的门电路。TTL 电路的主要优点是能够很方便的将不同的电路连接且即连在一起,形成更复杂的逻辑。

1. 28

1. 29

CMOS 由 PMOS 管和 NMOS 管并联组成,并用一对互补的控制信号控制。PMOS 管在传送逻辑"1"电压方面表现很好,在传送逻辑"0"方面表现差;而 NMOS 管则正好相反,它传

送逻辑 "0"表现很好,传送逻辑 "1"则表现很差。CMOS 用一对互补的控制信号控制。当信号 CONTROL 有效时,则传输门传送逻辑 "1"和逻辑 "0"都很出色。因为信号 CONTROL 为逻辑 1 时,NMOS 导通,此时 CONTROL 为逻辑 0 使 PMOS 也导通;而当信号 CONTROL 为逻辑 0 时,此时 CONTROL 为逻辑 1,PMOS 管和 NMOS 管都将被切断连接。

1. 30 按照制造工艺集成电路的工艺可以分为 CMOS 电路和 TTL 电路两种类型。按规模可分为小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路和巨大规模集成电路五种。其使用特性主要有负载能力、延迟特性、功耗特性和空脚处理 4 种。

第二章

2. 1

曲图得:

$$F_1 = \overline{A \oplus B}, F_2 = F_1 \oplus C$$

则波形图如下:

2. 2

$$A_1 = \overline{B_1}$$

$$A_2 = B_2$$

$$A_4 = B_2 \oplus B_4$$

$$A_8 = \overline{B_2 + B_4 + B_8}$$

结论: B₈B₄B₉B₁是BCD码, A₈A₄A₉A₁是B₈B₄B₉B₁对9的变补

2. 3

Z = D

 $Y = C \oplus D$

 $X = B \oplus (C + Y) = B \oplus (C + C \oplus D) = B \oplus (C + D)$

 $W = A \oplus (B + C + D)$

结论: 16 变补器。

2. 4

$$(1) F = AB + AC + BC = (A + B)(A + C)(B + C)$$

(2)
$$F = \overline{AB} + A\overline{C} + \overline{BCBCF} = A\overline{B} + B\overline{C} + \overline{AC}$$

2. 5

$$(1) F = \sum m^3(0, 3, 5, 6, 9, 12, 15)$$

$$(2) F = \sum m^3(3, 5, 6, 9, 10, 12)$$

(3)
$$F = \sum m^3 (1, 2, 4, 8)$$

2. 6

2. 7 根据题目要求得逻辑图如下:

2. 8 令 8421 码为 ABCD, 2421 码为 WXYZ,则

$$W = A + BC + BD$$

$$X = A + BC + B\overline{D}$$

$$Y = A + \overline{BC} + B\overline{CD}$$

$$Z = D$$

2. 9 令典型格雷码为 ABCD, 二进制码为 WXYZ, 则

$$W = A$$

$$X = A \oplus B$$

$$Y = A \oplus B \oplus C$$

$$Z = A \oplus \oplus B \oplus C \oplus D$$

2. 10 全加器在两数相加时需要考虑来自低位的进位数。设全加器的三个输入分别为 $A_iB_iC_{i-1}$, 相加产生的和及进位分别为 $S_i\mathcal{P}C_i$ 。则可列出全加器逻辑功能的真值表,由真

值表作卡诺图并化简得:
$$S_i = \overline{A_iB_i}C_{i-1} + \overline{A_iB_i}\overline{C}_{i-1} + A_i\overline{B_i}\overline{C}_{i-1} + A_iB_iC_{i-1}$$

$$C_i = A_iB_i + A_iC_{i-1} + B_iC_{i-1}$$

题目要求为与或非门,则可对S,和C,两次求反,得:

$$\begin{split} S_i &= \overline{\overline{S_i}} = \overline{\overline{A_i}} \overline{B_i} \overline{C_{i-1}} + \overline{A_i} \overline{B_i} \overline{C_{i-1}} + A_i \overline{B_i} \overline{C_{i-1}} + A_i B_i \overline{C_{i-1}} \\ C_i &= \overline{\overline{C_i}} &= \overline{A_i} \overline{B_i} + A_i \overline{C_{i-1}} + B_i \overline{C_{i-1}} \end{split}$$

2. 11

(1) BC=11 时,
$$F = A + A$$
,存在静态 1 险象

(2) ACD=000 时,
$$F=Bg\overline{B}$$
,存在静态 0 险象 ABD=011 时, $F=Cg\overline{C}$,存在静态 0 险象

ABC=010 时,
$$F = DgD$$
,存在静态 0 险象

2. 12

(1)
$$F = AC + \overline{ABC} + \overline{ABD} + \overline{ACD} + BCD$$

(2)
$$F = A\overline{C} + BCD + ABD$$

2. 13

(1)

(3)

(4) Y, Y_{i} Y, Y Y_2 & & G Y_{2} Y, Y_4 C --- A Y, *Y*₅ Y, D *Y*₆ Υ, Υ.,

2. 14 用 A、B、C 分别表示被加数、加数和来自地位的进位,F 和 G 表示"和"及"进位",则由题 2.10 可知 F=ABC+ABC+ABC, ABC+ABC, 图略。

- 2. 15
- 2. 16
- 2.17 略
- 2. 18 (1) $F = \sum m^3(3,5)$ (2) $F = \sum m^3(1,3,4,5,6,7)$ 图略
- 2. 19
- (1) $用D_3D_2D_1D_0表示余3码$, $用Y_3Y_2Y_1Y_0表示8421码$,

$$M/Y_3Y_2Y_1Y_0 = D_3D_2D_1D_0 - 0011$$

$$= D_3 D_2 D_1 D_0 + (-0011) ?$$

$$= D_3 D_2 D_1 D_0 + 1101$$

(2) 用ABCD表示2421码,WXYZ表示余3码,则

$$W=A,Z=D,X=\overline{ABC}+\overline{BCD}+BCD+\overline{AC}$$
 $Y=\overline{AB}+\overline{ACD}+\overline{ACD}+\overline{ACD}$ 电路图略。

2. 20 已知 8421BCD 中以 0000~1001 表示 0~9 共 10 个一位数,且 BCD 码中不允许出现 1010~1111 这 6 个代码。二位 BCD 码相加时,可能产生仅为,且可能产生 20 种不同的和代码,其中不超过 9 的 10 种代码不需要校正,而超过 9 的 10 种代码均需要进行矫正,同时还产生进位。则可列出一位 8421BCD 码相加之和的校正表

	未校正的 BCD 码和						校正的 BCD 码和					
十进制数		C_4	S_3	S_2	S_1	S_0		C*,	S_3 '	S_2 '	S_1 ,	S_0 '
0			0	0	0	0			0	0	0	0
1			0	0	0	1			0	0	0	1
2	不		0	0	1	0			0	0	1	0
3	不需		0	0	1	1			0	0	1	1
4	而 要		0	1	0	0			0	1	0	0
5	女校		0	1	0	1			0	1	0	1
6	正		0	1	1	0			0	1	1	0
7	TE.		0	1	1	1			0	1	1	1
8			1	0	0	0			1	0	0	0
9			1	0	0	1			1	0	0	1
10	需		1	0	1	0		1	0	0	0	0
11	要		1	0	1	1	\Rightarrow	1	0	0	0	1
12			1	1	0	0	C'.	1	0	0	1	0
13			1	1	0	1	C 4	1	0	0	1	1
14			1	1	1	0		1	0	1	0	0
15	校		1	1	1	1		1	0	1	0	1
16	Œ	1	0	0	0	0		1	0	1	1	0

17	1	0	0	0	1	1	0	1	1	1
18	1	0	0	1	0	1	1	0	0	0
19	1	0	0	1	1	1	1	0	0	1

从表中可以看出,对于和大于等于 10 (1010) 的数都需要进行加 6 (0110) 校正,而且还要产生一个进位 C_4 ,则 C_4 的表达式为

 $C_4' = S_3\overline{S_2}S_1\overline{S_0} + S_3\overline{S_2}S_1S_0 + S_3S_2\overline{S_1}S_0 + S_3S_2\overline{S_1}S_0 + S_3S_2\overline{S_1}S_0 + C_4 = S_3S_1 + S_3S_2 + C_4$ 按上式可得进位 C_4' 的逻辑电路,则电路图如下:

第三章

3.1 激励函数表达式: $J = K = \overline{AC + BC}$ JK 触发器次态方程式: $Q^{n+1} = J\overline{Q} + \overline{KQ}$ 波形图如下:

3.2 激励函数表达式: $D = \overline{Q}D_1$

3.3 激励方程:

$$\begin{array}{lll} D_2 \ = \ \left(Q_1 \ \oplus \ Q_0 \right) \oplus \ \overline{Q_1 \ + \ Q_2} \ = \ Q_1 \overline{Q_0} \ + \ Q_2 \overline{Q_1} Q_0 \ + \ \overline{Q_2} \overline{Q_1} \overline{Q_0} \\ \\ D_1 \ = \ Q_2 \\ D_0 \ = \ Q_1 \end{array}$$

$Q_{2}Q_{1}Q_{0}$	$Q_2^{\ n+1}$	Q_1^{n+1}	Q_0^{n+1}
000	1	0	0
001	0	0	0
010	1	0	1
011	0	0	1
100	0	1	0
101	1	1	0
110	1	1	1
111	0	1	1

Q	Q^{n+1}
Α	E
В	Α
С	F
D	В

E	С
F	G
G	н
Н	D

- 3.4 (b)
- 3. 5 从电路图可得: 电路的输出仅与现态有关,与输入无关。因此,属于 Moore 型。 (1)列出激励函数及输出函数表达式:

$$\begin{split} J_0 &= x \cdot \overrightarrow{y} \\ K_0 &= x \cdot \overrightarrow{y} + y \cdot Q_1 \\ J_1 &= x \cdot Q_0 + y \\ K_1 &= y \cdot \overline{Q_0} + x \cdot \overline{y} \cdot Q_0 \\ Z &= Q_1 \cdot Q_0 + \overline{Q_1} \cdot \overline{Q_0} \end{split}$$

(2) 列出状态变量的次态方程:

$$\begin{split} &Q_0^{\,n+1} \,=\, J_0 \,\cdot\, \overline{Q_0} \,+\, \overline{K_0} \,\cdot\, Q_0 \\ &=\, x \,\cdot\, \overline{y} \,\cdot\, \overline{Q_0} \,+\, \overline{x} \,\cdot\, \overline{y} \,\cdot\, Q_0 \,+\, \overline{x} \,\cdot\, \overline{Q_1} \,\cdot\, Q_0 \,+\, y \,\cdot\, \overline{Q_1} \,\cdot\, Q_0 \\ &Q_1^{\,n+1} \,=\, J_1 \,\cdot\, \overline{Q_1} \,+\, \overline{K_1} \,\cdot\, Q_1 \\ &=\, x \,\cdot\, \overline{Q_1} \,\cdot\, Q_0 \,+\, y \,\cdot\, \overline{Q_1} \,+\, \overline{x} \,\cdot\, \overline{y} \,\cdot\, Q_1 \,+\, \overline{y} \,\cdot\, Q_1 \,\cdot\, \overline{Q_0} \,+\, y \,\cdot\, Q_1 \,\cdot\, Q_0 \,+\, \overline{x} \,\cdot\, Q_1 \,\cdot\, Q_0 \end{split}$$

(3) 列二进制状态表

Q_1Q_0	00	01	10	11
00	00	10	01	10
01	01	11	10	11
10	10	00	11	00
11	11	10	00	10

(4) 列状态/输出表: 设定 00=A, 01=B, 10=C, 11=D

xy s	00	01	10	11	Z
Α	Α	С	В	С	1
В	В	D	С	D	0
С	С	Α	D	Α	0
D	D	С	Α	С	1

(5) 画状态图

(6) 电路特性说明: 电路有 4 个状态,状态指甲呢转换由输入 x、y 控制。当 xy=00 时,在时钟脉冲作用下,原状态保持不变: 当 xy=10 时,在时钟脉冲作用下,状态在 A \rightarrow B \rightarrow C \rightarrow D \rightarrow A 中循环,并且在 A、D 状态时输出 1: 当 xy=01、11 时,状态转换顺序与起始状态有关,若起始状态为 A 或 C,则状态在 A、C 之间循环,若起始状态为 B,则状态将是 B \rightarrow D \rightarrow C \rightarrow A,以后在 A、C 之间循环。

3. 6 激励方程和输出函数如下:

$$D_1 = \overline{Q_1}, D_2 = Q_1 \oplus Q_2, F = Q_1 \cdot Q_2$$

状态图:

则可知:该电路是一个模 4 循环计数器,每当完成一次循环计数就输出一次 1。 3.7 激励方程如下:

$$\begin{split} EN_1 &= Y, \, EN_2 \, = \, \overline{X}YQ_1 \\ Q_1^{\,n+1} &= EN_1 \, \cdot \, \overline{Q_1} \, + \, \overline{EN_1} \, \cdot \, Q_1 \, = \, Y\, \overline{Q_1} \, + \, \overline{Y}Q_1 \\ Q_2^{\,n+1} &= EN_2 \, \cdot \, \overline{Q_2} \, + \, \overline{EN_2} \, \cdot \, Q_2 \, = \, \overline{X}Y\, \overline{Q_2}Q_1 \, + \, XQ_2 \, + \, \overline{Y}Q_2 \, + \, Q_2\, \overline{Q_1} \\ Z &= \, X\, \overline{Q_2} \end{split}$$

Q_2Q_1 XY	00	01	10	11
A 00	00/0	01/1	01/0	00/0
B 01	01/1	10/1	00/0	01/0
C 10	11/0	00/0	10/0	11/0
D 11	10/0	11/0	11/0	10/0

当 Y=0 时,系统不变化;当 Y=1 时,若 X=0,是模 4 加 1 计数器:若 X=1,系统在 A-B,C-D 之间循环。

- 3.8课本有答案

用/LD 端实现从 1100 到 0011 的跳跃,则电路图如下:

3.10 0111~0000 减 1 计数; 1000~1111 加 1 计数则该电路为模 16 计数器

- 3. 11
- 3, 12
- 3. 13
- (1) 作原始状态图得

作原始状态表,并化简为最小状态表

X Q ⁿ	0	1
Α	A/0	B/0

X Q"	0	1
Α	A/0	B/0
В	C/0	B/0
С	A/0	B/1

В	C/0	B/0
С	A/0	D/1
D	B/0	C/0

所以状态图为

(2) 作原始状态图得

作原始状态表, 并化简为最小状态表

Q ⁿ	0	1
Α	A/0	B/0
В	C/0	B/0
С	A/0	D/1
D	B/0	C/0

O 1

A A/0 B/0

B C/0 B/0

C A/0 B/1

所以状态图为

3. 14 最大等效类为 (A,D), (B,C), (E), 设 (A,D), (B,C), (E) 分别为 A', B', C', 则 最小化状态表为

X ₂ X ₁	00	01	11
A'	A'/1	B'/0	C'/1
B'	A'/0	C'/0	B'/1
C'	A'/1	B'/0	B'/1

3.15 最大相容类为 (1, 3, 4), (2, 5, 6), 设 (1, 3, 4), (2, 5, 6) 分别为 A, B, 则最小化状态表为:

<i>X</i> ₂ <i>X</i> ₁ , y	00	01	11	10
Α	A/0	A/0	B/1	A/0
В	B/1	A/0	B/1	B/0

3. 16 根据题目给定的状态表,进行化简,得已知状态表为最小化状态表,则列出二进制状态表得:

Q_2Q_1	0	1	Z
00	01	10	0
01	11	01	0
11	01	00	0
10	01	11	1

(1) 用 D 触发器,确定激励函数及输出函数表达式:

Q_2Q_1	0	1
00	0	1
01	1	0
11	0	0
10	0	1

Q_2Q_1	0	1
00	0	1
01	1	0
11	0	0
10	0	1

D1

所以 $D_2=x\overline{Q_1}+\overline{x}\overline{Q_2}Q_1$, $D_1=x+\overline{Q_2}Q_1+Q_2\overline{Q_1}$, $Z=Q_2\overline{Q_1}$

(2) 用 JK 触发器,确定激励函数及输出函数表达式:

Q_2Q_1	0	1
00	0	1
01	1	0
11	d	d
10	d	d

Q_2Q_1	0	1
00	d	d
01	d	d
11	1	1
10	1	0

J2 K2

Q_2Q_1	0	1
00	1	0
01	d	d
11	d	d
10	d	d
	J1	

Q_2Q_1	0	1
00	d	d
01	0	0
11	0	1
10	d	d

K1

$$\begin{array}{lll} \widetilde{\text{PTUJ}}_2 = \overset{-}{x} Q_1 + \overset{-}{x} \overset{-}{Q_1}, \, K_2 = Q_1 + \overset{-}{x} \\ J_1 = \overset{-}{x} + Q_2, \, K_2 = x Q_2 \\ Z = Q_2 \overset{-}{Q_1} \end{array}$$

(3)用T触发器,确定激励函数及输出函

Q_2Q_1	0	1			
00	0	1			
01	1	0			
11	1	1			
10	1	0			
	T2				

Q_2Q_1	0	1
00	1	0
01	0	0
11	0	1
10	1	1
	T1	

数

所以 $T_2 = x\overline{Q_2Q_1} + xQ_1 + xQ_2 + Q_2Q_1, T_1 = x\overline{Q_1} + xQ_2, Z = Q_2\overline{Q_1}$

3. 17 电路图如下:

3. 18 设计步骤如下:

(1) 建立原始状态表:设初态 S_0 收到1个"0",并且用 S_i 表示收到第i个"1",则可得到 Melay 型原始状态图及原始状态表,见图(a),(b)

- (2) 状态化简: 作隐含表 (c),从隐含表可得到最大等效类 (S_0),(S_1),(S_2),(S_3 , S_4),设 (S_0),(S_1),(S_2),(S_3 , S_4) 分别为 A、B、C、D,由此可得到最小化状态表 (d)
- (3)状态分配: 根据三个规则计算得总改善效果: $E_{AB}=1$, $E_{AC}=1$, $E_{AD}=2$, $E_{CD}=2$ 。 根据作品能够改善效果大小的状态相邻图 (e) 和状态分配方案 (f)。

(4) 选择 D 触发器得:
$$D_1 = xy_1 + xy_0$$
, $D_0 = xy_1$, $Z = xy_1y_0$

(6) 讨论:在激励函数及输出函数卡诺图中没有无关项d出现,因此不会出现挂起状态。 3. 19 分别用 000~100 表示 5 进制计数器中的 5 个状态,设当 x=1 时,加 1 计数,当 x=0 时,减 1 计数;则可直接得到二进制状态表。此表无需化简和状态分配,根据状态表可画出各激励函数的卡诺图。

考虑多输出函数的公用与项情况,可得到激励函数的逻辑表达式:

$$\begin{split} J_2 &= \overline{xQ_1Q_0} + xQ_1Q_0, \, K_2 = 1 \\ J_1 &= \overline{xQ_2} + x, \, K_1 = \overline{xQ_1Q_0} + x \\ J_0 &= \overline{Q_1Q_0} + \overline{xQ_2} + x\overline{Q_2}, \, K_0 = 1 \end{split}$$

X	0	1
$Q_2Q_1Q_0$		
000	100	001
001	000	010
010	001	011
011	010	100
100	011	000

二进制状态表

AQ_2 Q_2Q_1	00	01	11	10
00	1	d	d	0
01	0	ď	d	0
11	0	ď	d	1
10	0	d	d	0

Q_2 Q_2	00	01	11	10
00	d	1	1	d
01	d	d	ď	d
11	d	d	d	d
10	d	d	d	d

J2

Q_2 Q_2Q_1	00	01	11	10
00	0	1	0	0
01	0	d	d	1
11	d	ď	d	d
10	d	d	d	d
·	J1			

Q_2 Q_2Q_1	00	01	11	10
00	d	d	ď	d
01	d	d	d	d
11	0	d	d	1
10	1	d	d	0
		K1		

Q_2 Q_2Q_1	00	01	11	10
00	0	1	0	1
01	d	ď	d	d
11	d	d	d	d
10	1	d	d	1
_	.10			

Q_2 Q_2Q_1	00	01	11	10
00	d	d	d	d
01	1	d	d	1
11	1	d	d	1
10	d	ď	d	d

K0

根据逻辑表达式化电路图:

3. 20

3. 21 (1) 列出输出函数和控制函数表达式:

$$\begin{array}{l} D_{1} \ = \ \overline{y_{1}}, \, D_{2} \ = \ \overline{y_{1}}, \, CLK_{1} \ = \ xy_{1} + \ xy_{2} \\ CLK_{2} \ = \ xy_{2} + \ x\overline{y_{1}}, \, Z \ = \ xy_{1}y_{2} \end{array}$$

(2) 列出状态真值表及次态真值表

现态	输入	组合电路输	组合电路输出				
$y_{2}y_{1}$	x	CLK_2	CLK ₁	D_2	D_1	Z	$y_2^{n+1}y_1^{n+1}$