Quiz 6

Name: Time: March 22, 2016

Instructions: Please fill in the solutions in the space provided for the questions highlighted in red.

Consider the language $L_{01}=\{0^k1^k\,|\,k\geq 0\}$. Consider the following grammar $G_{01}=(V,\Sigma,R,S)$, where $V=\{S\},\,\Sigma=\{0,1\}$, the rules $R=\{S\to\epsilon\,|\,00S11\,|\,000S111\}$.

We will prove that all the words derived from the grammar belong to the language L_{01} . We will prove that by showing that the statement S(i) below holds for all i.

S(i): If $S \Rightarrow^* w$ in i steps, then $w \in L_{01}$.

If S(i) holds for all i, then note that we have shown that all words derived by the grammar are in L_{01} , because if a word is derivable in the grammar then it is derivable in some i steps, hence, by S(i), $w \in L_{01}$.

We will show that S(i) holds for all i by induction on i.

1. Base Case i = 1: What is S(1)?

Show that S(1) holds. (Hint: What ws are derivable in 1 step? Do they belong to L_{01} ?)

2. Induction step: Prove that if S(i) holds for $1 \le i \le n$, then S(n+1) holds.

(Hint: Let $S \Rightarrow^* w$ in n+1 steps. What are the different ways in which you can split the derivation $S \Rightarrow^* w$ into sub-derivations of length less than or equal to n? Note that since n is at least 1, $S \Rightarrow \epsilon$ is not a derivation of n+1 steps.)