Week 7, Lecture 14 - Gaussian Mixture Models

Aaron Meyer

Outline

- Administrative Issues
- Gaussian mixtures
- ► Implementation

Based on slides from David Sontag.

Gaussian mixtures

The Evils of "Hard Assignments"?

- Clusters may overlap
- ► Some clusters may be "wider" than others
- ▶ Distances can be deceiving!

Probabilistic Clustering

- ► Try a probabilistic model!
 - Allows overlaps, clusters of different size, etc.
- ► Can tell a *generative story* for data
 - $ightharpoonup P(X \mid Y)P(Y)$
- Challenge: we need to estimate model parameters without labeled Ys

Υ	X ₁	X ₂
??	0.1	2.1
??	0.5	-1.1
??	0.0	3.0
??	-0.1	-2.0
??	0.2	1.5

The General GMM assumption

- ightharpoonup P(Y): There are k components
- $ightharpoonup P(X \mid Y)$: Each component generates data from a multivariate Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is sampled from a generative process:

- 1. Choose component i with probability P(y=i)
- 2. Generate datapoint $N(m_i, \Sigma_i)$

What Model Should We Use?

- Depends on X.
- ▶ If we know which points are in a cluster, then we can define the best distribution for it.
 - Multinomial over clusters Y
 - ightharpoonup (Independent) Gaussian for each X_i given Y

$$p(Y_i = y_k) = \theta_k$$

$$P(X_i = x \mid Y = y_k) = N(x \mid \mu_{ik}, \sigma_{ik})$$

Could we make fewer assumptions?

- \blacktriangleright What if the X_i co-vary?
- What if there are multiple peaks?
- Gaussian Mixture Models!
 - ightharpoonup P(Y) still multinormal
 - ► $P(\mathbf{X} \mid Y)$ is a multivariate Gaussian distribution:

$$P(X = x_j \mid Y = i) = N(x_j, \mu_i, \Sigma_i)$$

$$P(X = \mathbf{x}_{j}) = \frac{1}{(2\pi)^{m/2} \|\Sigma\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{j})^{T} \Sigma_{j}^{-1}(\mathbf{x}_{j} - \mu_{j})\right]$$

$\Sigma \propto identity matrix$

$$P(X=\mathbf{x}_{j}) = \frac{1}{(2\pi)^{m/2} \|\mathbf{\Sigma}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu)^{T} \mathbf{\Sigma}_{i}^{-1}(\mathbf{x}_{j} - \mu)\right]$$

$$x_{2}$$

$$x_{1}$$

Σ = diagonal matrix X_i are independent *ala* Gaussian NB

$$P(X = \mathbf{x}_{j}) = \frac{1}{(2\pi)^{m/2} \|\Sigma\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu)^{T} \Sigma_{i}^{-1}(\mathbf{x}_{j} - \mu)\right]$$

Σ = arbitrary (semidefinite) matrix:

- specifies rotation (change of basis)
- eigenvalues specify relative elongation

Mixtures of Gaussians (1)

Old Faithful Data Set

Duration of Last Eruption

Mixtures of Gaussians (1)

Old Faithful Data Set

Mixtures of Gaussians (2)

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

Mixtures of Gaussians (3)

Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

ML estimation in **supervised** setting

Univariate Gaussian

$$\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- Mixture of Multivariate Gaussians
 - ML estimate for each of the Multivariate Gaussians is given by:

$$\mu_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} x_{n}$$
 $\Sigma_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} \left(\mathbf{x}_{j} - \mu_{ML}^{k} \right) \left(\mathbf{x}_{j} - \mu_{ML}^{k} \right)^{T}$

Just sums over x generated from the k'th Gaussian

But what if unobserved data?

- ► MLE:
 - ightharpoonup arg $\max_{\theta} \prod_{i} P(y_i, x_j)$
 - \triangleright θ : all model parameters
 - eg, class probs, means, and variances
- ▶ But we don't know y_i 's!
- Maximize marginal likelihood:

How do we optimize? Closed Form?

► Maximize marginal likelihood:

$$\arg \max_{\theta} \prod_{j} P(x_j) = \arg \max \prod_{j} \sum_{k=1}^{K} P(Y_j = k, x_j)$$

- Almost always a hard problem!
 - Usually no closed form solution
 - ightharpoonup Even when IgP(X,Y) is convex, IgP(X) generally isn't...
 - For all but the simplest P(X), we will have to do gradient ascent, in a big messy space with lots of local optima...

Learning general mixtures of Gaussians

$$P(y = k \mid \mathbf{x}_j) \propto \frac{1}{(2\pi)^{m/2} \|\boldsymbol{\Sigma}_k\|^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{x}_j - \boldsymbol{\mu}_k\right)^T \boldsymbol{\Sigma}_k^{-1} \left(\mathbf{x}_j - \boldsymbol{\mu}_k\right)\right] P(y = k)$$

· Marginal likelihood:

$$\begin{split} \prod_{j=1}^{m} P(\mathbf{x}_{j}) &= \prod_{j=1}^{m} \sum_{k=1}^{K} P(\mathbf{x}_{j}, y = k) \\ &= \prod_{j=1}^{m} \sum_{k=1}^{K} \frac{1}{(2\pi)^{m/2} \|\Sigma_{k}\|^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{x}_{j} - \mu_{k}\right)^{T} \Sigma_{k}^{-1} \left(\mathbf{x}_{j} - \mu_{k}\right)\right] P(y = k) \end{split}$$

- ▶ Need to differentiate and solve for μ_k , \sum_k , and P(Y=k) for k=1..K
- There will be no closed form solution, gradient is complex, lots of local optimum
- ▶ Wouldn't it be nice if there was a better way!?!

EM

Expectation Maximization

The EM Algorithm

- A clever method for maximizing marginal likelihood:

 - A type of gradient ascent that can be easy to implement
 e.g. no line search, learning rates, etc.
- Alternate between two steps:
 - Compute an expectation
 - Compute a maximization
- Not magic: still optimizing a non-convex function with lots of local optima
 - The computations are just easier (often, significantly so!)

EM: Two Easy Steps

Objective:
$$argmax_{\theta} Ig\prod_{j} \sum_{k=1}^{K} P(Y_{j}=k, x_{j} \mid \theta) = \sum_{j} Ig \sum_{k=1}^{K} P(Y_{j}=k, x_{j} \mid \theta)$$

Data: $\{x_j \mid j=1 ... n\}$

Notation a bit inconsistent Parameters = θ = λ

- E-step: Compute expectations to "fill in" missing y values according to current parameters, θ
 - For all examples j and values k for Y_j , compute: $P(Y_j=k \mid x_j, \theta)$
- M-step: Re-estimate the parameters with "weighted" MLE estimates
 - Set $\theta = \operatorname{argmax}_{\theta} \sum_{j} \sum_{k} P(Y_{j}=k \mid x_{j}, \theta) \log P(Y_{j}=k, x_{j} \mid \theta)$

Especially useful when the E and M steps have closed form solutions!!!

EM algorithm: Pictorial View

Simple example: learn means only!

Consider:

- 1D data
- Mixture of k=2 Gaussians
- Variances fixed to σ=1
- Distribution over classes is uniform
- Just need to estimate μ_1 and μ_2

EM for GMMs: only learning means

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \, \mu_1^{(t)}, \, \mu_2^{(t)} \, ... \, \mu_K^{(t)} \, \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

E.M. for General GMMs

 $p_k^{(t)}$ is shorthand for estimate of P(y=k) on t'th iteration

Iterate: On the t'th iteration let our estimates be t'th iteration

$$\lambda_t = \{\, \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \ldots \, \mu_K{}^{(t)}, \, \sum_1{}^{(t)}, \, \sum_2{}^{(t)} \ldots \, \sum_K{}^{(t)}, \, p_1{}^{(t)}, \, p_2{}^{(t)} \ldots \, \overline{p_K{}^{(t)} \,\}}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P(Y_j = k | x_j, \lambda_t) \propto p_k^{(t)} p(x_j | \mu_k^{(t)}, \Sigma_k^{(t)})$$
Just evaluate a Gaussian at x_j

M-step

Compute weighted MLE for $\boldsymbol{\mu}$ given expected classes above

$$\mu_{k}^{(t+1)} = \frac{\displaystyle\sum_{j} P\left(Y_{j} = k \middle| x_{j}, \lambda_{t}\right) x_{j}}{\displaystyle\sum_{j} P\left(Y_{j} = k \middle| x_{j}, \lambda_{t}\right)} \qquad \Sigma_{k}^{(t+1)} = \frac{\displaystyle\sum_{j} P\left(Y_{j} = k \middle| x_{j}, \lambda_{t}\right) \left[x_{j} - \mu_{k}^{(t+1)}\right] \left[x_{j} - \mu_{k}^{(t+1)}\right]^{T}}{\displaystyle\sum_{j} P\left(Y_{j} = k \middle| x_{j}, \lambda_{t}\right)} \\ p_{k}^{(t+1)} = \frac{\displaystyle\sum_{j} P\left(Y_{j} = k \middle| x_{j}, \lambda_{t}\right)}{m} = \# \text{training examples}$$

Gaussian Mixture Example: Start

After First Iteration

After 2nd Iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = [\mu_1^{(t)}, \mu_2^{(t)}, \dots \mu_3^{(t)}]$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

 $\mu_{k} = \frac{\delta(Y_{j} = k, x_{j}) x_{j}}{\sum_{j=1}^{m} \delta(Y_{j} = k, x_{j})}$

$$\sum_{j=1}^{m} P(Y_j = k | \mathbf{x}_j)$$

Equivalent to k-means clustering algorithm!!!

Implementation

sklearn.mixture.GaussianMixture implements GMMs within sklearn.

- ► GaussianMixture creates the class
 - n_components indicates the number of Gaussians to use.
 - covariance_type is type of covariance
 - ► full
 - spherical
 - diag
 - tied means all components share the same covariance matrix
 - max_iter is EM iterations to use
- Functions
 - M.fit(X) fits using the EM algorithm
 - M.predict_proba(X) is the posterior probability of each component given the data
 - M.predict(X) predict the class labels of each data point

Further Reading

- ▶ sklearn.mixture.GaussianMixture
- ▶ Python Data Science Handbook: GMMs