

argument name	argument type	description	default
++ies_parameter_ensemble(<par_en>)</par_en>	string	CSV file (or binary file) containing the parameter ensemble. Must contain a header that includes (at least) all adjustable parameter and an index of unique identifiers	None, resulting in a parameter ensemble of size <num_reals>being drawn using the multivariate normal distribution defined by the initial parameter values and the prior parameter covariance matrix</num_reals>
$++ ies_observation_ensemble(<\!obs_en\!>)$	string	CSV file (or binary file) containing the observation ensemble. Must contain a header that includes (at least) all non-zero weight observations and an index of unique identifiers	None, resulting in an observation ensemble of size <num_reals>being drawn using the multivariate normal distribution defined by the observed values and covariance matrix implied by the observation weights</num_reals>
++ies_num_reals(<num_reals>)</num_reals>	integer	number of realizations to draw to form the parameter and observation ensem- bles	50
++ies_restart_obs_en(<restart_obs_en>)</restart_obs_en>	string	CSV file (or binary file) containing the simulated outputs from evaluating the parameter ensemble (running the model once for each parameter realization). Must contain a header that includes (at least) all non-zero weight observations and an index of unique identifiers (must be commensurate with <obs_en>if specified).</obs_en>	None, resulting in the parameter ensemble being evaluated during the initialization phase
		Continued on next page	

argument name	argument type	description	default	
++ies_bad_phi(<bad_phi>)</bad_phi>	float	defines maximum acceptable objective function value. During each parameter ensemble evaluation, realizations yield- ing an objective function larger than <bad_phi> will be dropped</bad_phi>		
$++ ies_lambda_mults(< lambda_mults>)$	comma-separated list of floats	multiplied by the current value of lambda to yield multiple values of lambda to test during an upgrade cal- culation.	1.0	
++ies_initial_lambda(<init_lambda>)</init_lambda>	float	initial value of lambda	$10^{floor(log_{10}\frac{\mu\phi}{2.0*nobs})}$	
++ies_subset_size(<subset_size>)</subset_size>	integer	number of realizations to evaluate during testing of multiple lambdas	1e6	
++ies_reg_factor(<reg_factor>)</reg_factor>	float in $(0.0,1.0)$	regularization factor as a fraction of the measurement objective function; can be used to enforce more regularization (if desired).	0.0	
++ies_use_approx(<use_approx>)</use_approx>	"true" or "false"	flag to use the approximate upgrade cal- culation formula. Testing has shown the approx solution to be effective in most settings	"false"	
		Continued on next page		

argument name	argument type	description	default
++ies_use_prior_scaling(<use_prior_scaling>)</use_prior_scaling>	"true" or "false"	flag to use Σ_{θ} in the calculation of Δ_{par} . Testing has shown prior scaling can be important for finding optimal solutions for large-scale problems but can hamper the progress of smaller problems	"false"
++parcov_filename(<filename>)</filename>	string	ASCII or binary file containing the prior parameter covariance matrix $(\mathbf{\Sigma}_{ heta})$	if not specified and if $<$ par_en $>$ is specified and use_empirical_prior is "true", a diagonal Σ_{θ} is constructed from the empirical variances implied in the parameter ensemble. Otherwise, a diagonal Σ_{θ} is constructed using the parameter bounds, assuming these define the 95% confidence range
++ies_use_empirical_prior(<use_empirical_prior>)</use_empirical_prior>	"true" or "false"	flag to construct Σ_{θ} as a diagonal matrix with parameter variances calculated from the ensemble in par_en. If true, <par_en>must have been passed</par_en>	"false"
++ies_verbose_level (<verbose_level>)</verbose_level>	0,1,2,3	integer flag for the level of output produce by pestpp-ies. If 3, all intermediate matrices are saved to ASCII files, which can require considerable storage	1
		Continued on next page	

argument name	argument type	description	default
++ies_add_bases(<add_bases>)</add_bases>	"true" or "false"	flag to augment Θ and \mathbf{D}_{obs} with the initial (prior minimum error variance) parameter values and noiseless observation values, respectively. The added realization is "base"; this argument is ignored if a "base" realization exists	"true"
++ies_enforce_bounds(<enforce_bounds>)</enforce_bounds>	"true" or "false"	flag to flag to enforce parameter bounds listed in pest control file during realiza- tion draws and upgrade calculations	"true"
++ies_save_binary(<save_binary>)</save_binary>	"true" or "false"	If "true", save output files to pest-style binary files; if "false", save output files to CSV files	"false"
++par_sigma_range(<par_sigma_range>)</par_sigma_range>	non-negative float	the number of standard deviations spanned by the parameter bounds, used in construction of a diagonal Σ_{θ}	4.0
++ies_accept_phi_fac(<accept_phi_fac>)</accept_phi_fac>	float $>= 1.0$	During lambda testing, if a parameter ensemble yields a $\mu_{\phi} < \mu_{\phi,last}$ * accept_phi_fac, it is accepted. Otherwise, it is not accepted. This factor is also used when evaluating subset ensemble results.	1.05
$++ies_lambda_inc_fac(< lambda_inc_fac>)$	float >1.0	factor to increase current λ by if ϕ is not acceptable	10.0
		Continued on next page	

argument name	argument type	description	default
$++ies_lambda_dec_fac(< lambda_dec_fac >)$	float <1.0	factor to decrease best λ by if ϕ is ac-	0.75
$++ {\rm ies_save_lambda_en} (< {\rm save_lambda_en} >)$	bool	ceptable flag to save upgrade ensembles each iteration	false
$++ lambda_scale_fac(< lambda_scale_fac>)$	list of comma- separated floats >0.0	line search factors to apply to each λ upgrade matrix	1.0

Algorithm 1: pestpp-ies initialization workflow

```
Data: Given: pest control file
 1 read noptmax from pest control file
 2 read parameter and observation information from pest control file
 3 read optional inputs: parameter_ensemble, observation_ensemble,
      restart\_obseravtion\_ensemble,\ parcov\_filename,\ num\_reals,
      use_prior_scaling, use_approx, init_lambda, lambda_mults, subset_size,
      add_bases, use_empirical_prior from '++' arguments
 4 build \Sigma_{\epsilon} from observation weights
 5 if parcov_filename then
        load \Sigma_{\theta} from parcov_filename
 7 else
       build \Sigma_{\theta} from parameter bounds
 9 end
10 if parameter_ensemble then
         load \Theta from file parameter_ensemble
11
         if use_empirical_prior then
12
             construct diagonal \Sigma_{\theta} from \Theta
13
14 else
         draw \Theta of size num_reals using initial parameter values and \Sigma_{\theta}
15
16 end
17 if observation\_ensemble then
         load \mathbf{D}_{\mathrm{obs}} from file observation_ensemble
19 else
         draw \mathbf{D}_{\mathrm{obs}} of size num_reals using observation values and \mathbf{\Sigma}_{\epsilon}
\mathbf{20}
21 end
22 if add_bases then
23
         add initial parameter values to \Theta
         add observation values to \mathbf{D}_{obs}
24
       noptmax = 0 then
25 if
         calculate mean parameter vector \overline{\boldsymbol{\Theta}}
26
         add \overline{\Theta} to the run queue
27
         make model runs
28
         process run queue \rightarrow \overline{\mathbf{D}}_{sim}
29
         exit
30
зі \mathbf{\Theta}^0 = \mathbf{\Theta}
32 if restart_observation_ensemble then
         load \mathbf{D}_{\mathrm{sim}} from file restart_observation_ensemble
33
34 else
         add \Theta to run queue
35
         make model runs
36
         procee run queue \rightarrow \mathbf{D}_{sim}
37
зэ \lambda = init\_lambda
   calculate objective function statistics: \mathbf{D}_{sim}, \mathbf{D}_{obs} \to \mu_{\phi,last}, \sigma_{\phi,last}
41 if use_approx is False then
         if use_prior_scaling then
42
              oldsymbol{\Delta}_{\mathrm{par}} = oldsymbol{\Sigma}_{	heta}^{-rac{1}{2}} (oldsymbol{\Theta}^0 - \overline{oldsymbol{\Theta}}^0)
43
44
           oldsymbol{\Delta}_{\mathrm{par}} = oldsymbol{\Theta}^0 - \overline{oldsymbol{\Theta}}^0
45
46
         \mathbf{U}, \mathbf{s}, \mathbf{V^t} \leftarrow \mathbf{\Delta}_{par}^0
47
         \mathbf{A}_m = \mathbf{U}\mathbf{s}^{-1}
48
```

Algorithm 2: pestpp-ies iteration workflow

```
iter = 0
 2 while iter < noptmax do
           if use_prior_scaling then
                oldsymbol{\Delta}_{\mathrm{par}} = oldsymbol{\Sigma}_{	heta}^{-rac{1}{2}}(oldsymbol{\Theta} - \overline{oldsymbol{\Theta}})
 4
 5
            oldsymbol{\Delta}_{\mathrm{par}} = oldsymbol{\Theta} - \overline{oldsymbol{\Theta}}
 6
           end
 7
           oldsymbol{\Delta}_{	ext{sim}} = oldsymbol{\Sigma}_{\epsilon}^{-rac{1}{2}} (\mathbf{D}_{	ext{sim}} - \overline{\mathbf{D}}_{	ext{sim}})
 8
           oldsymbol{U}, s, oldsymbol{V}^T \leftarrow oldsymbol{\Delta}_{	ext{sim}}
 9
           for \lambda_m in lambda\_mults do
10
                 \lambda_i = \lambda * \lambda_m
11
                 oldsymbol{\Theta}_{\lambda_i} = 	exttt{upgrade\_calculation}(\lambda_i)
12
                keep \Theta_{\lambda_i}
13
           end
14
           if subset_size < num_reals then
15
16
                 add first subset_size realizations from each \Theta_{\lambda_i} to the run queue
                 (e.g., add \Theta_{\lambda_i}[: subset\_size] realizations to the run queue)
17
           else
18
19
                add \Theta_{\lambda_i} to the run queue
           end
20
           make model runs
21
           for each \Theta_{\lambda_i} do
22
                 process run queue \rightarrow \mathbf{D}_{sim,\lambda_i}
23
                 calculate objective function statistics \mathbf{D}_{sim,\lambda_i}, \mathbf{D}_{obs} \to \mu_{\phi,\lambda_i}, \sigma_{\phi,\lambda_i}
\mathbf{24}
25
                 if \mu_{\phi,\lambda_i} < \mu_{\phi,best} then
                       \lambda_{best} = \lambda_i
26
27
                       \mu_{\phi,\lambda_{best}} = \mu_{\phi,\lambda_i}
           end
28
           if subset_size < num_reals then
29
30
                 if \mu_{\phi,\lambda_{best}} > \mu_{\phi,best} * accept\_phi\_fac then
                       increase lambda: \lambda = \lambda * lambda\_inc\_fac
31
                       continue // skip running the rest of the ensemble
32
33
                 add last (num\_reals - subset\_size) realizations of \Theta_{\lambda_{best}} to run
                  queue
                 make model runs
34
                proces run queue \rightarrow \mathbf{D}_{sim,\lambda_{best}}[num\_reals - subset\_size:]
35
           calcuate objective function statistics \mathbf{D}_{sim,\lambda_{best}}, \mathbf{D}_{obs} \to \mu_{\phi,\lambda_i}, \sigma_{\phi,\lambda_i}
36
           if \mu_{\phi,best} < (\mu_{\phi,last} * accept\_phi\_fac) then
37
                 update parameter ensemble: \Theta = \Theta_{\lambda_{best}}
38
                 update observation ensemble: \mathbf{D}_{sim} = \mathbf{D}_{sim,\lambda_{best}}
39
                 if \sigma_{best} < \sigma_{last} then
40
                      update lambda: \lambda = lambda\_dec\_fac * \lambda_{i,best}
41
42
                \mu_{\phi,last}, \sigma_{\phi,last} = \mu_{\phi,best}, \sigma_{\phi,best}
           else
43
                increase lambda: \lambda = \lambda * lambda\_inc\_fac
44
45
           end
           iter += 1
46
47 end
```

Algorithm 3: pestpp-ies upgrade calculation workflow

```
1 Given: \lambda_i
  2 \mathbf{I}_s = (\lambda_i + \mathbf{s}^2)^{-1}
  з \mathbf{X}_1 = \mathbf{U}^T \mathbf{\Sigma}_{\epsilon}^{-\frac{1}{2}} (\mathbf{D}_{sim} - \mathbf{D}_{obs})
  \mathbf{4} \ \mathbf{X}_2 = \mathbf{I}_s \mathbf{X}_1
  \mathbf{x}_3 = \mathbf{v}_{\mathbf{x}}
  {f 6} if use\_prior\_scaling then
                \mathbf{upgrade}_1 = \mathbf{\Sigma}_{	heta}^{-\frac{1}{2}} \mathbf{\Delta}_{par} \mathbf{X}_3
  s else
         \mathbf{upgrade}_1 = \mathbf{\Delta}_{par} \mathbf{X}_3
  9
10 end
11 if iter > 1 and use_approx is False then
                \mathbf{X}_4 = \mathbf{A}_m^T \mathbf{\Sigma}_{\theta}^{-\frac{1}{2}} (\mathbf{\Theta} - \mathbf{\Theta}^0) \\ \mathbf{X}_5 = \mathbf{A}_m \mathbf{X}_4
12
13
                \mathbf{X}_6 = \mathbf{\Delta}_{par}^T \mathbf{X}_5
\mathbf{X}_7 = \mathbf{V} \mathbf{I}_s \mathbf{V}^T \mathbf{X}_6
14
15
                if use_prior_scaling then
16
                        \mathbf{upgrade}_2 = \mathbf{\Sigma}_{	heta}^{-rac{1}{2}} \mathbf{\Delta}_{par} \mathbf{X}_7
17
18
                {f else}
                 \mathbf{upgrade}_2 = \mathbf{\Delta}_{par} \mathbf{X}_7
\mathbf{19}
20
21 \Theta_{\lambda_i} = \Theta + \mathbf{upgrade}_1 + \mathbf{upgrade}_2
22 return \Theta_{\lambda_i}
```

Quantity	Definition
$oldsymbol{\Sigma}_{ heta}$	prior parameter covariance matrix
$oldsymbol{\Sigma}_{\epsilon}$	observation noise covariance matrix
Θ	current parameter ensemble
$\mathbf{\Theta}^0$	initial parameter ensemble
\mathbf{D}_{obs}	observation ensemble (ensemble of observation values with realizations of measurement noise)
\mathbf{D}_{sim}	simulated observation ensemble (e.g., ensemble of simulated equivalents to observations resulting from evaluating
λ	current value of Marquardt lambda
λ_m	lambda multiplier value
λ_i	value of lambda to test, product of $\lambda * \lambda_m$
μ_{ϕ}	mean value of objective function values, function of both \mathbf{D}_{sim} and \mathbf{D}_{obs}
	standard deviation of objective function values, function of both \mathbf{D}_{sim} and \mathbf{D}_{obs}
$rac{\sigma_{\phi}}{oldsymbol{\Theta}}$	mean parameter value vector
$oldsymbol{\Delta}_{par}$	ensemble (matrix) of differences of parameter values from mean parameter values
$\overline{\mathbf{D}}_{sim}^{'}$	mean simulated observation value vector
$oldsymbol{\Delta}_{sim}$	ensemble (matrix) of differences of simulated observation values from mean simulated observation values