# Vienna Ab Initio Package – Crash course

3rd Lecture - 16/09/21

Dr. Federico Dattila fdattila@iciq.es





# Structure of the course

| Day /<br>September                     | Hours /<br>Madrid time | Location | Topic                                                           |  |  |  |
|----------------------------------------|------------------------|----------|-----------------------------------------------------------------|--|--|--|
| - 41                                   |                        |          |                                                                 |  |  |  |
| Monday 6 <sup>th</sup>                 | 10:00-12:00            | E4 /     | Introduction + Handson 1                                        |  |  |  |
|                                        |                        | Zoom     | (molecules; frequencies; molecular dynamics)                    |  |  |  |
| Tuesday 7 <sup>th</sup>                | 12:00-13:00            | E4 /     | Tutorial Handson 1                                              |  |  |  |
| ,                                      |                        | Zoom     |                                                                 |  |  |  |
| Wednesday                              | 10:00-12:00            | E4 /     | Correction exercises 1 + Handson 2 (bulk optimization and       |  |  |  |
| 8 <sup>th</sup>                        |                        | Zoom     | electronic properties) + Instructions for python / bash project |  |  |  |
| Thursday 9 <sup>th</sup>               | 10:00-11:00            | E3 /     | Tutorial Handson 2                                              |  |  |  |
|                                        |                        | Zoom     |                                                                 |  |  |  |
|                                        |                        |          |                                                                 |  |  |  |
| Friday 10 <sup>th</sup> /<br>Wednesday | Python / bash project  |          |                                                                 |  |  |  |
| 15 <sup>th</sup>                       |                        |          |                                                                 |  |  |  |
| TI 1 1 ofh                             | 10.00.12.00            | T.4. /   |                                                                 |  |  |  |
| Thursday 16 <sup>th</sup>              | 10:00-12:00            | E4 /     | Correction exercises 2 and python / bash project + Handson 3    |  |  |  |
|                                        |                        | Zoom     | (surface optimization and electronic properties)                |  |  |  |
| Friday 17 <sup>th</sup>                | 10:00-11:00            | E4 /     | Tutorial Handson 3                                              |  |  |  |
|                                        |                        | Zoom     |                                                                 |  |  |  |
| Monday 20 <sup>th</sup>                | 10:00-12:00            | E4 /     | Correction exercises 3 + Handson 4                              |  |  |  |
|                                        |                        | Zoom     | (magnetic properties and Hubbard correction)                    |  |  |  |
| Tuesday 21st                           | 10:00-11:00            | E4 /     | Tutorial Handson 4                                              |  |  |  |
|                                        |                        | Zoom     |                                                                 |  |  |  |
| Wednesday                              | 10:00-11:00            | E4 /     | Correction exercises 4                                          |  |  |  |
| 22 <sup>nd</sup>                       |                        | Zoom     |                                                                 |  |  |  |

## **Materials**

- Materials available on OneDrive;
- All lectures and tutorials will be registered and later available on OneDrive;
- Detailed explanation online. The current course gives only an introduction!
- Save the link to the VASP manual online: <a href="https://www.vasp.at/wiki/index.php/The\_VASP\_Manual">https://www.vasp.at/wiki/index.php/The\_VASP\_Manual</a>

# Today's class

- 1. Few tips
- 2. Update on status of python / bash project;
- 3. Correction of exercises of Handson 2;
- 4. Lecture 3 and instructions for Handson 3.

#### Based on:

- <u>1\_optionic</u> (ionic optimization)
- <u>2\_optelectron</u> (electronic optimization)

#### Further materials:

• <u>3 performance</u> (install and compile VASP)

#### Related handson session:

(3) Surface optimization and electronic properties

# 1<sup>st</sup> tip: Take it easy!

Can you walk 1000 km?

# 1<sup>st</sup> tip: Take it easy!

Can you walk 1000 km?



2.4 km × 2 times × 230 working days = 1100 km

# 1st tip: Take it easy!

Can you walk 1000 km?



2.4 km × 2 times × 230 working days = 1100 km

Your Ph.D. / Research project

- Understand properly the basics;
- Read the state-of-the-art;
- Plan your simulations;
- •
- •
- Submit simulations / Write paper.

# 2<sup>nd</sup> tip: Master degree vs Ph.D. degree

# Master degree

- Established knowledge;
- Exercises: application of this established knowledge;
- Correction of exercises because there is already a defined solution.

## Ph.D. degree

- New science;
- Exercises: try to apply your knowledge to solve the puzzle of this new science;
- Update (correction) on the status of the exercises since there is not yet a solution. You need to find your own and this takes time!

# Python / Bash projects – How is it going?

Maryam / Santiago – Python

 Cut surface facets from bulk (input: POSCAR: output: POSCAR\_xyz)

In case you finish the first (or it is too complex):

Calculate the surface energy γ for a facet in J m<sup>-2</sup> or eV Å<sup>-2</sup> (input: POSCAR surface/bulk, OUTCAR surface/bulk; output: the value of γ)

Enric / Sichen - bash

- Order a surface and fix bulk layer (input: POSCAR; output: POSCAR);
- Generate k-points mesh (input: POSCAR; output: KPOINTS);

In case you finish the first two:

 Add a molecule on top of an ordered POSCAR (input: CONTCAR; output: POSCAR)

```
fdattila@tekla2:~/00-vasp-course/scripting> for i in bash python ; do echo $i ; cd $i ; ls ; cd .. ; done bash add-mol k-gen ordtor python get-surface-energy slab-gen
```

Question:

What is the most stable crystal structure of Si? Does your prediction agree with experiments?

#### Question:

What is the most stable crystal structure of Si? Does your prediction agree with experiments?

Silicon, 14Si

| Crystal structure | Atom per unit cell | Energy / eV | Energy per<br>atom / eV |
|-------------------|--------------------|-------------|-------------------------|
| fcc Si            | 2                  | -4.9        | -2.4                    |
| Diamond Si        | 2                  | -10.8       | -5.4                    |
| Beta-tin Si       | 2                  | -10.2       | <b>-</b> 5.1            |



### Question:

From the density of states, do you consider Si and Ni metals or semiconductors? Motivate the answer.

### Question:

From the density of states, do you consider Si and Ni metals or semiconductors? Motivate the answer.





#### Question:



From the density of states, do you consider Si and Ni metals or semiconductors? Motivate the answer.

#### Diamond Si: Semiconductor



#### Ni fcc: Metal



# Ionic optimization algorithms



# Full DIIS algorithm – IBRION = 1



# Conjugate gradient algorithm – IBRION = 2



# Damped molecular dynamics – IBRION = 3





#### Exercises

- 3 1 Ni100clean rel
- 3\_2\_Ni100clean\_LDOS
- 3\_3\_Ni100clean\_BAND
- 3\_4\_Ni111clean\_rel
- 3\_5\_COonNi111\_rel
- 3\_6\_Ni111clean\_400eV
- 3 7 COonNi111 LDOS
- 3\_8\_COonNi111\_freq

### Investigations

- Most stable surface facets → most abundant in the experimental system
- Comparison with experimental surface energy;
- Bandgap;
- Density of states;
- Adsorption energy.
- Vibrational frequencies;

## Ionic optimization of the surface

- 3\_1\_Ni100clean\_rel
- 3\_4\_Ni111clean\_rel

$$\gamma = \frac{1}{A} \left\{ \frac{1}{2} \left[ E_{\text{unrel}} - n \cdot (E_{\text{bulk}}) \right] + \Delta E_{\text{rel}} \right\}$$

$$A = \text{Area} = a_x \times b_y$$
 $E_{\text{unrel}} = \text{energy of the first ionic step}$ 
 $(grep "energy w" OUTCAR | head -n 1)$ 
 $E_{\text{rel}} = \text{energy of the last ionic step}$ 
 $(grep "energy w" OUTCAR | tail -n 1)$ 
 $\Delta E_{\text{rel}} = E_{\text{rel}} - E_{\text{unrel}}$ 
 $E_{\text{bulk}} = \text{energy of the bulk crystal structure (2_7_fccNi_opt)}$ 
 $n = \text{number of unit cell in the surface}$ 

#### Question:

Define the surface energies for Ni(100) and Ni(111). Which is the most stable crystalline facet between Ni(100) and Ni(111)? Compare with experimental values. Which facet is the most abundant on a Ni nanoparticle? Check paper below to answer.

Ref. 1: Top. Catal. 2013, 56, 1262–1272

### Electronic properties

- 3\_2\_Ni100clean\_LDOS
- 3\_3\_Ni100clean\_BAND

- Use the CONTCAR from 3\_1\_Ni100clean\_rel as POSCAR;
- For 3\_3\_Ni100clean\_BAND use the CHGCAR from 3\_1\_Ni100clean\_rel and adapt the INCAR accordingly



Adsorption energy for CO

- 3 5 COonNi111 rel
- 3\_6\_Ni111clean\_400eV



#### Question:

How much is CO adsorption energy ( $E_{ads}$ ) on Ni(111)? Compare with experimental values (Thermal desorption spectroscopy)

#### **Exercises**

- 3 7 COonNi111 LDOS
- 3\_8\_COonNi111\_freq

- Use the CONTCAR from 3\_5\_COonNi111\_rel as POSCAR;
- For 3\_8\_COonNi111\_freq fix the coordinates accordingly

```
Ni - (111) + CO on-top
   3.53000000000000
                                                   0.0000000000000000
     0.7071067800000000
                            0.0000000000000000
    -0.3535533900000000
                            0.6123724000000000
                                                   0.0000000000000000
     0.0000000000000000
                            0.0000000000000000
                                                   5.1961523999999999
   Νi
             0
Selective dynamics
Direct
  0.0000000000000000
                       0.0000000000000000
                                           0.0000000000000000
  0.3333333300000021
                       0.6666666699999979
                                           0.11111111100000031
  0.66666666999999979
                      0.3333333300000021
                                           0.2222222199999999
 -0.0000000000000000
                      0.00000000000000000
                                           0.3330387119385086
  0.3333333300000021
                       0.66666666999999979
                                           0.4445350284187818
  0.3333333300000021
                       0.66666666999999979
                                           0.5402086464236896
  0.3333333300000021
                       0.66666666999999979
                                           0.6031625865481731
```

#### Question:

List Ni-CO vibrational frequencies and compare with experimental values.

#### Questions:

- 1. Define the surface energies for Ni(100) and Ni(111). Which is the most stable crystalline facet between Ni(100) and Ni(111)? Compare with experimental values. Which facet is the most abundant on a Ni nanoparticle?
- 2. How much is CO adsorption energy ( $E_{ads}$ ) on Ni(111)? Compare with experimental values (Thermal desorption spectroscopy)
- 3. List Ni-CO vibrational frequencies and compare with experimental values.

# Handson 3 – copy the exercises (<u>supercomputer</u>)

- Enter the virtual machine (password: guest1\$) or AnyDesk;
- Open a terminal: Ctrl + Alt + t
- Enter teklahome (from ICIQ workstation): ssh tekla2.iciq.es
- From outside ICIQ: enable Betelgeuse tunnel and then enter teklahome ssh -p2004 -X <u>yourusername@betelgeuse.iciq.es</u> ssh tekla2.iciq.es
- Make a directory handson and a subdirectory 3 mkdir handson; mkdir handson/3
- Copy the exercises from my teklahome to yours
   cp -r /home/fdattila/00-vasp-course/handson3/\* ~/handson/3
- Enter the folder and check to have successfully copied the files cd handson/3; ls –lt; cd ../..

## Handson 3 – check the exercises

#### Check the VASP input (<u>supercomputer</u> / <u>locally</u>)

- Enter each simulation and check INCAR / KPOINTS
   cd handson/3; cd simulation-folder; vi INCAR; cd ...; cd .../...
- Use the <u>VASP manual</u> to understand properly all the tag of the INCAR.

# Handson 3 – submit simulation (supercomputer)

- Create a bin directory and copy the rungen file
   mkdir /home/yourusername/bin; cp -r /home/fdattila/bin/rungen ~/bin/.
   Only for Maryam!
- Check the file with the <u>vi</u> editor. Change all the fdattila to <u>yourusername</u> through the editor vi ~/bin/rungen;
- Alternatively, replace all the fdattila in rungen with yourusername automatically sed –i "s/fdattila/yourusername/g" ~/bin/rungen
- Enter the handson/3 folder and create a run.sh file in each simulation to be run (e.g. 3\_1\_O\_atom) cd handson/3/simulation-folder; ~/bin/rungen name-of-sim 4 4 5.3.5; sed –i "s/vasp\_std/vasp/g" run.sh; cd ../../..
- Enter the handson folder, check that you have INCAR, KPOINTS, POTCAR, POSCAR and run.sh, submit the simulation.
   cd handson/3/simulation-folder; qsub run.sh; cd ../../..

**Tip**: consider iterating the creation of run.sh file and the submission of each simulation with the for command. E.g. *cd handson/3*; *for i in 3\_\**; *do cd \$i*; *action-to-be-performed*; *cd ..*; *done*; *cd ../..* 

# Handson 3 – check the VASP output (locally)

- Only if you access through virtual machine. Run the commands tunnel1 and tunnel2 in 2 terminals tunnel1 yourusername (terminal 1) tunnel2 yourusername (terminal 2)
- Open a new terminal and enter the teklahome folder cd ~/teklahome
- Enter a simulation and check the structure through the p4v utility cd handson/3; cd simulation-folder; p4v vasprun.xml; cd ..; cd ../..