

WHAT IS CLAIMED IS:

1. A cathode ray tube comprising:
an inside surface having a designated curvature;
a central portion having a transmission rate of 45-75%; and
an outside surface being substantially flat with a flatness ratio (F) satisfying a mat

hematical formula of $F = \frac{Ro}{Sd \times 1.767}$, where Ro denotes a diagonal curvature radius of t
he outside surface and Sd denotes a diagonal length of an effective surface of the pane
l; the flatness ratio (F) of the outside surface is greater than 21; and a thickness at the c
entral portion of the panel, CFT, a thickness of a vertical axis end, Tv, and a thickness o
f a diagonal end, Td, satisfy conditions of $1.4 < Td/CFT < 2.0$ and $0.93 < Tv/Td < 1.00$.

- 2.

The cathode ray tube according to claim 1, wherein a condition of $0.146 < OAH/S.
d < 0.170$, where OAH denotes a length of a skirt portion of the panel and Sd denotes th
e diagonal length of the effective surface.

3. A cathode ray tube comprising:

a central portion having a transmission rate of 45-75%;

an outside surface being substantially flat with a flatness ratio (F) satisfying a mat
hematical formula of $F=Ro/(Sd \times 1.767)$, where Ro denotes a diagonal curvature radius o
f the outside surface and Sd denotes a diagonal length of an effective surface of the pa
nel, and the flatness ratio (F) of the outside surface is greater than 21; and

an inside surface having a designated curvature, in which a diagonal curvature ra
dius of the inside surface, Rd, a vertical curvature radius of the inside surface, Rv, and
a horizontal curvature radius of the inside surface, Rh, satisfy conditions of $Rv < Rd < Rh$
and $1.0 < Rh/Rd < 1.9$ and $0.3 < Rv/Rd < 0.9$.

4.

The cathode ray tube according to claim 3, wherein a condition of $0.146 < OAH/S_d < 0.170$ is satisfied, where OAH denotes a length of a skirt portion of the panel and S_d denotes the diagonal length of the effective surface.