A.8 Conic Sections and Quadric Surfaces

A conic section is the curve of intersection of a cone and a plane that does not pass through the vertex of the cone. This is illustrated in the figures below.

An equivalent ¹

(and often used) definition is that a conic section is the set of all points in the xy-plane that obey Q(x,y)=0 with

$$Q(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$$

being a polynomial of degree two ²

- . By rotating and translating our coordinate system the equation of the conic section can be brought into one of the forms $^{\rm 3}$
 - $\alpha x^2 + \beta y^2 = \gamma$ with $\alpha, \beta, \gamma > 0$, which is an ellipse (or a circle),
 - $\alpha x^2 \beta y^2 = \gamma$ with $\alpha, \beta > 0$, $\gamma \neq 0$, which is a hyperbola,
 - $x^2=\delta y$, with $\delta
 eq 0$ which is a parabola.

The three dimensional analogs of conic sections, surfaces in three dimensions given by quadratic equations, are called quadrics. An example is the sphere $x^2+y^2+z^2=1$.

Here are some tables giving all of the quadric surfaces.

name		elliptic cylinder	parabolic cylinder	hyperbolic cylinder	sphere
equation in standard forr	n	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y=ax^2$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$x^2 + y^2 + z^2 = r^2$
x=constant cross-section		two lines	one line	two lines	circle
y =constant cross-section		two lines	two lines	two lines	circle

Figure A.8.1. Table of conic sections

Figure A.8.2. Table of quadric surfaces-1

name	hyperboloid of one sheet	hyperboloid of two sheets	hyperbolic paraboloid
equation in standard form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} =$	$-1\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}$
$x={\sf constant}$ cross-section	hyperbola	hyperbola	parabola

Figure A.8.3. Table of quadric surfaces-2

Feedback

