Pulmonary Vascular Properties in a Human Model of Acute Lung Injury Measured using DCE-MRI

Dr Tanuj Puri

Newcastle Magnetic Resonance Centre

Introduction

3] Zambon & Vincent. Chest, 2008

^[1] Rubenfed et al. N Engl J, 2005

^{2]} Brun-Buisson et al. Intensive Care Med, 2004

Introduction

Acute Lung Injury (ALI)

^[1] Rubenfed et al. N Engl J, 2005

^{2]} Brun-Buisson et al. Intensive Care Med, 200

^[3] Zambon & Vincent. Chest, 2008

Introduction

- Lipopolysaccharide (LPS)
 - human model of ALI
 - induces pulmonary immune response (increased Ktr/Ve?)
 - to investigate processes underlying ALI
 - to develop treatment strategies
- Invasive techniques
 - Bronchoscopy, FDG-PET
- Need for non-invasive imaging biomarkers
 - DCE-MRI: K' ? , Ve ?
 - AIM: to measure changes in lung vascular properties (K^{tr}, Ve)
 due to LPS-inhalation using DCE-MRI

Study design

• Ethics: **16** subjects (**8** control, **8** LPS)

Ongoing recruitment: healthy, non-smokers, no respiratory disease

Study design

Image acquisition

- Scanner: 1.5 Tesla SIEMENS
- Sequence: Spoiled Gradient echo (free breathing)
- Transmit, receive: body, 4-surface coil
- Baseline T1: 2°, 5°, 10°, 19°
- DCE scan
 - Gd, saline, injection: 0.2 mMol/kg, 20 ml, 4 ml/sec
 - FA, TR, TE, Frames: 19°, 3.14, 0.91 ms, 140 frames
 - Spatial, temporal resolution: 2.74 x 2.74 x 5mm, 3.9 sec

Data analysis pipeline

Mathematical modelling

Extended Kety model

Extended Kety model

T1o	Semi-automated	Circular ROI
SNR	4-8	2-4
COV	3.7 %	6.8 %

Data analysis tool (MATLAB)

Lung permeability map

Results

Hypothesis:

LPS induces changes in K** (vascular permeability) & Ve (alveolar fluid content) that can be detected with DCE-MRI

Results

Summary

- Our hypothesis
 - LPS-induces changes in K^{tr}, Ve that can be detected with DCE-MRI
- Naish et al. 2008
 - Higher K^{tr} in smoker lungs than in non-smokers using DCE-MRI
- Used for clinical trials of novel drugs for ALI
- If no significant differences are observed then the precision errors of K^{tr}, Ve in the lung will be reported

Acknowledgements

- Co-authors
 - Sarah Wiscombe: Subject recruitment and ethics
 - Sally Marshall: Funding
 - John Simpson: Clinical oversight of the project
 - Josephine Naish: Advice on image acquisition and analysis
 - Pete Thelwall: Data acquisition and project coordination
- Staff
 - Freeman Hospital, Newcastle Magnetic Resonance Centre
 - Colleagues in Tyne room and Millennium room
- This work was funded by the NIHR Newcastle Biomedical Research Centre

tanuj.puri@newcastle.ac.uk tanujpuri82@gmail.com

