Diffi-Hellman key exchange

ElGamal encryption

Розробила: старший викладач кафедри ПМА Бай Ю.П.

Алгоритми асиметричного шифрування є достатньо затратними за ресурсам і часом. На практиці для шифрування даних використовуються симетричні алгоритми, а розсилка ключів здійснюється з використанням алгоритмів асиметричного шифрування з відкритим ключем одержувача даних.

Симетричне шифрування

Передбачає використання **однакових ключів** для шифрування і розшифрування

- DES
- Triple-DES
- GOST 28147-89
- Rijndael

Асиметричне шифрування

> Алгоритм використовує **різні ключі** для шифрування і розшифрування

- RSA
- Diffie-Hellman
- El Gamal
- Eliptic-curve Cryptography

Асиметричне шифрування

Для шифрування і розшифрування використовуються два різні ключі

Властивості асиметричних алгоритмів

Ключі: *Public key – KU*

Private key – KR

- 1) Легко обчислити (KU, KR)
- Легко зашифрувати повідомлення, використовуючи відкритий ключ: С = Е_{кп}(М)
- 3) Легко розшифрувати повідомлення, використовуючи закритий ключ: $M = D_{\kappa R}(C)$
- 4) Складно, знаючи відкритий ключ, знайти закритий ключ: $KU \nrightarrow KR$
- 5) Складно, знаючи зашифроване повідомлення та відкритий ключ, знайти початкове повідомлення: *(C,KU)* → *M*

Задача є обчислювально **"легкою"**, якщо її складність пропорційна \mathbf{n}^a , де n — довжина входу (n^a — поліном степеня a) .

Задача ϵ обчислювально **"складною"**, якщо її складність пропорційна **2** n , де n — довжина входу.

Всі алгоритми з відкритим ключем засновані на використанні так званих **односторонніх функцій**.

Алгоритм Діффі-Хеллмана (1976)

Whitfield Diffie

Martin Hellman

Математичне підґрунтя D-H

В основі алгоритму Діффі-Хеллмана полягає складність задачі дискретного логарифмування

$$a^{x} = b \rightarrow x = log_{a}(b)$$

 $a^{x} (mod p) = b \rightarrow x = ?$

Приклад: $3^4 \mod 17 = 13$ (3, 17 -відкриті, 4 -закрите число)

Нехай дано: $3^x \mod 17 = 13$. Як знайти x?

$$3^1 = 3$$
 $3^2 = 9$ $3^3 = 10$ $3^4 = 13$ $3^5 = 5$...

Назад складно! Маємо **односторонню функцію:** $F(x) = g^x \pmod{p}$

Схема алгоритму Діффі-Хеллмана

$$f(x) = g^x \bmod p$$

	Alice		Bob	
1	Обирає і публікує прості числа g, p (частини відкритого ключа)	{3, 17}		
2	Обирає секретний ключ <i>а</i>	4	Обирає секретний ключ b	6
3	Обчислює і публікує $A=g^a \mod p$	A=13	Обчислює і публікує $B=g^b \mod p$	B=15
4	Обчислює $K = B^a \mod p$	16	Обчислює $K = A^b \mod p$	16

Доведення рівності ключів

 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$

Шифрування Ель-Гамаля (1985)

У 1985 році опублікував статтю під назвою «Криптосистема з відкритим ключем і схема цифрового підпису на основі дискретних логарифмів»

В основі алгоритму Ель-Гамаля полягає складність задачі дискретного логарифмування

Taher El-Gamal

Схема Ель-Гамаля

- Генерація ключа: прості числа р, g та ціле число х : g < p-1, х < p-1
- $y = g^x \mod p$
- $\{g, p, y\}$ відкритий ключ, $\{x\}$ закритий ключ

Шифрування

- *М* відкритий текст
- k випадкове число, взаємно просте з (p-1)
- $a = g^k \mod p$, $b = (y^k \cdot M) \mod p$
- *C* = {a, b} шифротекст

Розшифрування

 $M = (b \cdot a^{p-1-x}) \mod p$