

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addeas: COMMISSIONER POR PATENTS PO Box 1430 Alexandra, Virginia 22313-1450 www.webjo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/686,741	10/17/2003	Joseph Wayne Norton	101610.55984US	8292
23911 CROWELL &	7590 07/20/2010 MORING LLP		EXAM	IINER
INTELLECTUAL PROPERTY GROUP		SWEARINGEN, JEFFREY R		
P.O. BOX 143 WASHINGTO	00 N, DC 20044-4300		ART UNIT	PAPER NUMBER
	,		2445	
			MAIL DATE	DELIVERY MODE
			07/20/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

1	
2	
3	RECORD OF ORAL HEARING
4	UNITED STATES PATENT AND TRADEMARK OFFICE
5	
6	
7	BEFORE THE BOARD OF PATENT APPEALS
8	AND INTERFERENCES
9	
10	
11	Ex parte JOSEPH WAYNE NORTON,
12	GARY HAYATO OGASAWARA, JONAN SCHWARTZ,
13	DAVID STONE, and MICHAEL MAN-HAK TSO
14 15	
16	Appeal 2009-012381
17	Application 10/686,741
18	Technology Center 2400
19	reciniology center 2400
20	
21	Oral Hearing Held: June 22, 2010
22	
23	
24	Before KENNETH W. HAIRSTON, THOMAS S. HAHN and
25	BRADLEY W. BAUMEISTER, Administrative Patent Judges.
26	,
27	
28	ON BEHALF OF THE APPELLANT:
29	ON DESIRES OF THE PROPERTY.
30	
31	STEPHEN W. PALAN, ESQ.
	, ,
32	Crowell & Moring, LLP
33	1001 Pennsylvania Avenue, N.W.
34	Washington, D.C. 20004
35	(202) 624-2710

1	The above-entitled matter came on for hearing on Tuesday,
2	June 22, 2010, commencing at 9:59 a.m., at the U.S. Patent and Trademark
3	Office, 600 Dulany Street, 9th Floor, Alexandria, Virginia, before Kevin E.
4	Carr, Notary Public.
5	THE CLERK: Calendar No. 54, Appeal No. 2009-012381, Mr.
6	Palan.
7	JUDGE HAIRSTON: Okay.
8	Counselor, do you have a business card?
9	MR. PALAN: I actually do.
10	JUDGE HAIRSTON: For the record. Thank you.
11	The reference we're going to discuss today is B-o-y-l-e.
12	You may begin.
13	MR. PALAN: Good morning. My name is Stephen Palan. I
14	represent the Appellant in this matter.
15	What we'd like to do is first provide a brief overview of the
16	Invention, a brief overview of Boyle. And then jump into the heart of the
17	argument.
18	What I'd like to point out, with respect to the argument itself,
19	was while preparing for the hearing yesterday, I believe that the
20	interpretation, what we thought was the way the Examiner was interpreting
21	the reference in the Examiner's Answer may not have been what he intended.
22	And I believe we now understand what he intended in his
23	interpretation of the reference.
24	So with that, I'll start off with an overview of the invention.
25	The invention involves message storage and retrieval that's both
26	scaleable and fault tolerant. Previous systems would either involve a single

24

function.

	Application 10/686,/41
1	server or multiple servers, and in the case of multiple servers, would require
2	human intervention for load balancing and fault tolerance.
3	So for example, in a prior system, if a server became
4	overloaded, having either too many messages being stored on it, or too much
5	access to the server, to do load balancing, you would have to copy an entire
6	mailbox from one server to the next.
7	So in that case, that mailbox would be unavailable during the
8	copying operation. And if the mailbox is large, it could take a very long
9	time.
10	What our invention is about is using what we call "addressing
11	functions." And the addressing functions correspond to the topology of the
12	network.
13	So before I provide an example, just to be clear, as the network
14	topology changes, new addressing functions are used.
15	In our invention, the most recent addressing function is used for
16	message storage, whereas a plurality of addressing functions are used for
17	message retrieval.
18	And it will become a bit more clear, once I jump into the
19	example. So referring back to the example of load balancing a mailbox.
20	Instead of moving a mailbox and making it unavailable, with
21	our invention what we could do is redirect newer messages to a different
22	node, a different server, you know, by adding the server, which would
23	change the topology of the network, which would be a new addressing

1	So as messages come in for this person, the most recent
2	addressing function would be used, which would push the newest messages
3	to the newest server.
4	However, now you have messages on two servers. So as in ou
5	claims, you're using multiple addressing functions to retrieve messages.
6	So when you go to retrieve, you would use the most recent,
7	plus, you know, at least one other addressing function. And it would point
8	to two different nodes.
9	So then you could access the messages stored on both nodes.
10	To avoid the addressing functions from living eternally, they
11	can have expiration periods associated with them.
12	So if messages can only be stored on a server, for example, for
13	30 days, an addressing function can have a 30-day expiration period.
14	So that, you know, once the messages are deleted from the old
15	server under the 30-day time period, that addressing function would expire.
16	And then if you went to retrieve, you would only be looking to
17	the newer node that stores the messages.
18	So moving on to what Boyle discloses, what Boyle's about, is
19	reducing the amount of network load on a narrow-band channel for
20	retrieving information that may be updated on a relatively regular schedule.
21	So what Boyle discusses is, instead of sending the updated
22	content to the mobile device, what you do is you send notifications to the
23	mobile device that content has been updated.
24	So if you look at Figure 2 of Boyle, what you do is the web
25	server device 202 would have a list of URLs and an associated subscriber

26

addressing functions.

	Application 10/686,/41
1	identification, which you can see in Figure 5, which has the subscriber ID
2	associated with a number of URLs.
3	So as the information corresponding to a URL is updated, the
4	web server device would send a notification to the link server device 114.
5	Link server device 114 would then send the notification over
6	the narrow-band channel to the client device 106. That could produce an
7	alert to the user.
8	Now the user wants to, it's not automatic, but when the user
9	wants this updated content, the user would then request it by using the
10	wide-band channel, which is better able to handle the larger amount of
11	information as the content itself, compared to the notification.
12	And so that would be pushed through the wide-band channel,
13	back to the web server device, which would provide the updated content.
14	Now to get a bit more specific, because what it appears from
15	looking at the Examiner's Answer again, if we look at our Claim 1, what it
16	appears is that for Claim 1, the Examiner actually is only focusing on the
17	notification component of Boyle over the narrow-band channel, and that the
18	Examiner is reading the device identification as the addressing functions.
19	And the reason why I've come to that conclusion is really if you
20	look at page 9 of the Examiner's Answer, under numbered paragraph 1, the
21	second paragraph under there, the Examiner talks about "using the
22	narrow-band or wide-band channel is determined by both a device ID and a
23	subscriber ID."
24	Both the device ID and the subscriber ID are used to establish
25	the connection. And then he quotes our language about plurality of

1	Since our claim requires the use of both a subscriber ID and a
2	plurality of addressing functions, it seems that the subscriber ID of Boyle is
3	being interpreted as our claim subscriber ID.
4	And the device ID of Boyle is being interpreted as the
5	addressing functions.
6	Are there any questions on that? I'm sorry to
7	JUDGE BAUMEISTER: That was my take on it.
8	MR. PALAN: Okay. Okay.
9	So then the question is, is whether, when that interpretation is
10	applied to the claim, whether that holds up.
11	And our position, of course, is no.
12	First of all, our plurality of addressing functions, as discussed
13	earlier, correspond to a topology of the network at a particular point in time
14	The device ID does not.
15	The device ID identifies the device. The Examiner tries to
16	equate the fact that the notifications that are sent are maintained in a
17	notification queue, and as it's delivered, that is taken out.
18	The device is still on the network. Whether it's in the queue or
19	not, the device is still in the network. The topology of the network does not
20	change, depending upon whether the device corresponding to the device ID
21	has received or has not received that notification over the narrow band
22	channel.
23	So it's not related to the topology of the network. It doesn't
24	correspond to the topology of the network at a particular moment of time, a
25	our claim requires.

	Application 10/686,741
1	Another thing is, is the addressing function itself. That term,
2	"addressing function." The claim doesn't say "an address," which a device
3	ID would be. It's an addressing function, which we believe one skilled in the
4	art would interpret as a function used for addressing, not just an address, but
5	as we describe using a hashing function as the addressing function.
6	But it would have to be some type of mathematical function,
7	not just an address itself.
8	So we think that if the device ID was read as the addressing
9	function, that would be weeding out the term "function" from the claim.
10	JUDGE BAUMEISTER: Do you think the Examiner was,
11	albeit a little sloppy, by saying a device ID, if you're accessing a device ID,
12	you're implicitly using some sort of function to access it or address it, or read
13	it and that there's a function associated with discussing it?
14	MR. PALAN: I think that goes to another distinction is we
15	calculate using the addressing function, so again it brings in this idea of a
16	mathematical calculation, whereas what you're describing would really be a
17	determination.
18	And if we look at Figure 2, I can break it down a little bit better,
19	is the web server device, it understands it stores subscriber IDs. Because all
20	it cares about is who subscribes a certain URL.
21	The link server device is actually the one that, because it's
22	sending the information over the air interface, is the one that would actually

include the device ID, subscriber ID mapping.

So really when the link server device receives a notification from the web server device, it would receive a subscriber ID, because the

26 web server device only knows subscriber IDs.

23

24

25

1	It would then just look it up in a look-up table. So it would
2	really just be a determination, not a calculation using an addressing function.
3	JUDGE BAUMEISTER: If I may ask, what does it mean to
4	calculate a plurality of nodes?
5	MR. PALAN: I think it's a bit awkward, the way that it's
6	phrased. But I think the concept was to get across this idea of a
7	mathematical calculation, compared to just a determination.
8	So you're really determining by calculating. What you're doing
9	is the result of the calculation is something that can be used to identify the
10	destination nodes.
11	JUDGE BAUMEISTER: Okay. Because my reading of the
12	claim tell me if I'm wrong was what it was trying to say is: First you're
13	trying to identify what nodes are present or determine the topology.
14	So I was reading calculating a plurality of destination nodes to
15	be synonymous with either identifying a plurality of destination nodes or
16	determining a plurality of destination nodes.
17	MR. PALAN: Well, I think it could be either, but it's done
18	through a calculation using an addressing function a combination of the
19	subscriber ID and the addressing function.
20	So I think because the next step is querying what you've
21	identified. But I don't think that you can read it as just a pure determination,
22	you know, a pure look-up table determination, like you would with "Here's a
23	subscriber ID, which device ID corresponds to it? Let me now send it over."
24	I think that's what they're trying to get across with the word,
25	calculating, that there is this mathematical calculation performed, and not
26	just a pure determination.

1	JUDGE BAUMEISTER: So can you give me an example?
2	You know, I guess this isn't my area. This addressing function when you're
3	doing a hash, how does that exactly work when you look out and you see
4	there's X number of nodes, and then you're hashing that and somehow
5	determining from that number, you
6	MR. PALAN: The example provided in the specification,
7	which I don't think is claimed, is actually using the MS ISDN, the mobile
8	station identifier, modulo the number of nodes in the network.
9	In that calculation, what that does is you're basically dividing
10	the mobile station identification number by the number of nodes in the
11	network, which will then produce a remainder. That remainder is the result
12	of the calculation in the particular hash function disclosed in the
13	specification.
14	So that remainder would then be used as an index in a table to
15	look up the IP address. So if the remainder is 4, you look for the fourth
16	index in this table. That will tell you the IP address of the node storing the
17	message, or the node to which the message should be stored.
18	JUDGE BAUMEISTER: Okay. So the destination nodes
19	doesn't necessarily have to be based on location, then? It's just whatever
20	order it's in?
21	MR. PALAN: Yes, yes. You know, yes.
22	JUDGE BAUMEISTER: Okay.
23	MR. PALAN: Simple answer.
24	(Laughter.)

1	Another distinction, I think, is the way this because this
2	Claim 1 talks about actually the message retrieval component, and not the
3	message storage component of the invention.
4	So we are calculating a plurality of destination nodes, using a
5	subscriber identification and a plurality of addressing functions. And, you
6	know, what we talked about in the example earlier, and how that would be
7	used.
8	So it's a subscriber ID in a plurality of addressing functions;
9	whereas if you were to accept the Examiner's interpretation that the
10	subscriber ID is the subscriber ID and the device ID is the addressing
11	function, you would not identify a plurality node, using a subscriber
12	identification in a plurality of device IDs.
13	That disclosure is just not in Boyle. You know, you would use
14	the subscriber ID'd item by the device ID. You would then send that out to
15	the destination wireless device.
16	And then the other distinction, of course, is the calculating
17	versus determining distinction.
18	Another distinction, going back to, you know, the Examiner's
19	reading the sending of the notification over the narrow band channel and the
20	confirmation response from the mobile device as being the transaction that's
21	covered here.
22	And so the Examiner's reading I believe the confirmation
23	message as you know, whether's it's the topology of the network.
24	But our claim requires querying the destination nodes for a
25	message; whereas the sending of the content notification update in Boyle is
26	not querying the client device for a message.

1	The fact that there is a confirmation sent is not a querying for a
2	message. That confirmation is sent automatically. The notification isn't
3	saying, "Give me a confirmation." That's just what happens in that
4	short-message system technology.
5	Are there any other questions on Claim 1?
6	JUDGE BAUMEISTER: I guess one thing that would clear it
7	up real easily and short-cut a lot of the ambiguity:
8	Would you be willing to acknowledge that in your specification
9	that you're using the term, "node," and you had mentioned that, you know,
10	it's intended to be a server on the network?
11	And the Examiner is reading node to be the mobile unit, the
12	terminal unit, or using the language of your specification, "destination user
13	device."
14	And it seems from your spec that you are making a distinction,
15	saying: In the past we'd store messages on destination user devices. That
16	has problems, so instead we're storing them on these nodes.
17	So would you be willing to admit that as used in your
18	specification, a node is distinguishable from a terminal or a destination user
19	device?
20	MR. PALAN: Yes. I'm not sure that I'd be willing to say that a
21	node is necessarily a server. Because there's different ways the nodes are
22	used in the network, and not every node in the network is necessarily storing
23	a message.
24	JUDGE BAUMEISTER: But a node is not a terminal
25	MR. PALAN: End user device.
26	JUDGE BAUMEISTER: Yeah.

Appeal 2009-012381 Application 10/686,741

1	MR. PALAN: Yes, correct.
2	JUDGE BAUMEISTER: Okay.
3	That's the only question I have.
4	JUDGE HAIRSTON: Any questions?
5	JUDGE HAHN: I have none.
6	MR. PALAN: Okay.
7	And I just wanted to walk through some of the, under this new
8	understanding of the Examiner's rejection to some of the other dependent
9	claims.
10	For example, I think we addressed this a bit in the Examiner's
11	Answer. So it may be a bit duplicative. But Claims 4 and 5 both require,
12	you know, "and in addition to the node is the wireless handset."
13	And so if the client device, which in Boyle is some type of
14	wireless device, if that's a node, then what is a wireless handset in Boyle,
15	which goes to your point?
16	And then similarly, under the interpretation that the device IDs
17	are the addressing functions, for example, in Claims 10, 18, and 30, we have
18	that we're expiring one or more of the addressing functions, based on a
19	message of validity.
20	Device IDs are not themselves expired. The Examiner cites to
21	column 16, lines 11 through 13, which talk about, you know, if you're trying
22	to send out a portion of a notification to a client device, and you're not
23	successful after a number of tries, using a time-out value to stop sending it.
24	Which makes sense, because you're wasting wireless resources.
25	But although it's not explicit in that portion of Boyle, from
26	other portions of Boyle, it appears that it would just maintain that in the

24

25

	Application 10/686,741
1	queue list, so that once the client device becomes available again for
2	example, it is turned power back on then it would go through the
3	wide-band channel to get the notifications.
4	And that turning on is described I think in oh, I'm sorry, that's
5	discussed in column 12, lines 22 through 37, where it talks about a device
6	being out of coverage, and therefore you'd store the notification until it
7	actually comes back within coverage.
8	Which I think is probably a very common short message system
9	protocol, so that you aren't continually sending out notices to someone that's
10	not responded.
11	For, you know, again with Claims 11, 19, and 31, we have an
12	expiring of the addressing function, the device IDs are not expired under
13	that, the theory put forth by the Examiner of timeout.
14	Instead, it appears that it would probably be stored in a queue
15	for later delivery to the mobile device.
16	And then with Claims 13 and 33, we would talk about the
17	addressing functions being hash functions. We don't define the particular
18	hash functions as we do in the specification.
19	And here the Examiner says: Well, the messages are encrypted
20	between the link server and the mobile device. I think there are two issues
21	with that.
22	I believe that all cryptography methods are not necessarily hash
23	functions.

either an express or inherent disclosure, because there's no express

And since we have an anticipation rejection, which requires

JUDGE HAIRSTON: You answered mine.

Whereupon, at 10:23 a.m. the proceedings were concluded.

Thank you, Counselor.

MR. PALAN: Well, thank you.

15

16 17

18 19