SBML Model Report

Model name: "Wang2009 - PI3K Ras Crosstalk"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Jason M Haugh² at January 21st 2010 at 1:25 p.m. and last time modified at February 14th 2014 at 11:33 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	19
events	0	constraints	0
reactions	13	function definitions	0
global parameters	45	unit definitions	0
rules	6	initial assignments	0

Model Notes

This model is from the article:

PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk.

¹EMBL-EBI, viji@ebi.ac.uk

²Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA, jason_haugh@ncsu.edu

Wang CC, Cirit M, Haugh JM Mol. Syst. Biol. 2009;5:246. 19225459,

Abstract:

Although it is appreciated that canonical signal-transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross-talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross-talk mechanisms in the platelet-derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3-kinase (PI3K) and Ras/extracellular signal-regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross-talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K-dependent and -independent modes of Ras/Erk activation.

This model is parameterized with the median of the estimated parameters given in the supplementary material of the original publication's (doi: 10.1038/msb.2009.4) supplement on pages 8 and 9.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2010 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell		0000290	3	1	litre	Z	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4

4 Species

This model contains 19 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
sumrc1		cell	$\text{mol} \cdot l^{-1}$		\Box
r		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
c1		cell	$\operatorname{mol} \cdot 1^{-1}$		
c2		cell	$\text{mol} \cdot 1^{-1}$		
ePI3K		cell	$\text{mol} \cdot 1^{-1}$		\Box
m3PI		cell	$\text{mol} \cdot 1^{-1}$		\Box
eGEF		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
mRas		cell	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
x1		cell	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
x2		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
У		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
ур		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
урр		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
Z		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
zp		cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
zpp		cell	$\text{mol} \cdot 1^{-1}$		
fGEF		cell	$\text{mol} \cdot 1^{-1}$		
W		cell	$\text{mol} \cdot 1^{-1}$		
eph		cell	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 45 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
L		0000188	1.000		\checkmark
KDL		0000282	1.500		$\overline{\mathbf{Z}}$
kxRO		0000009	0.300		$\overline{\mathbf{Z}}$
kminusx		0000009	0.007		$ \overline{\checkmark} $
ke		0000009	0.200		$ \overline{\checkmark} $
kt		0000009	0.005		
alphaPI3K		0000002	80.000		
kappaPI3K		0000282	0.300		$ \overline{\checkmark} $
k3PI		0000002	1.000		$ \overline{\checkmark} $
KGR		0000337	495.000		
KGP		0000337	5.090		
kRas		0000009	1.000		
Gamma		0000002	0.100		
kdx1		0000009	0.745		
kdx2		0000009	2.850		
Kx2		0000002	6.770		
VmaxOVERK	Mx11	0000002	1.180		
KMx11		0000027	30.300		
VmaxOVERK	Mx21	0000002	0.405		
KMx21		0000027	13.700		
VmaxOVERK	Myph1	0000002	1.650		
KMyph1		0000027	23.000		\checkmark
VmaxOVERK	Mx12	0000002	3.450		
KMx12		0000027	18.600		
VmaxOVERK	Mx22	0000002	1.090		
KMx22		0000027	9.590		
VmaxOVERK	Myph2	0000002	4.200		
KMyph2		0000027	7.990		
VmaxOVERK	My1	0000002	6.570		
KMy1		0000027	9.910		
VmaxOVERK	Mzph1	0000002	0.167		
KMzph1		0000027	8.270		
VmaxOVERK	My2	0000002	31.900		
KMy2		0000027	8.810		
VmaxOVERK	Mzph2	0000002	0.228		
KMzph2		0000027	31.500		
kFBf		0000002	0.976		\square

Id	Name	SBO	Value	Unit	Constant
Zf		0000002	0.272		
n		0000190	1.030		$\overline{\mathbf{Z}}$
Kf		0000009	3.760		
kdw		0000009	0.033		$\overline{\mathbf{Z}}$
kFBph		0000009	2.340		
Wph		0000009	0.385		
p		0000190	1.980		$\overline{\mathbf{Z}}$
Kph		0000009	4.640		\mathbf{Z}

6 Rules

This is an overview of six rules.

6.1 Rule r

Rule r is an assignment rule for species r:

$$r = \frac{KDL \cdot [sumrc1]}{KDL + L}$$
 (1)

6.2 Rule c1

Rule c1 is an assignment rule for species c1:

$$c1 = \frac{L \cdot [sumrc1]}{KDL + L}$$
 (2)

6.3 Rule ePI3K

Rule ePI3K is an assignment rule for species ePI3K:

$$\begin{aligned} & \text{ePI3K} \\ &= \frac{1 + \text{kappaPI3K} + 2 \cdot \text{alphaPI3K} \cdot [\text{c2}] - \left(\left(1 + \text{kappaPI3K} + 2 \cdot \text{alphaPI3K} \cdot [\text{c2}] \right)^2 - 8 \cdot \text{alphaPI3K} \cdot [\text{c2}] \right)^{0.5}}{2} \end{aligned}$$

6.4 Rule eGEF

Rule eGEF is an assignment rule for species eGEF:

$$eGEF = \frac{KGR \cdot [c2] + KGP \cdot [m3PI]}{1 + KGR \cdot [c2] + KGP \cdot [m3PI]} \cdot [fGEF] \tag{4}$$

6.5 Rule yp

Rule yp is an assignment rule for species yp:

$$yp = 1 - [y] - [ypp]$$
 (5)

6.6 Rule zp

Rule zp is an assignment rule for species zp:

$$zp = 1 - [z] - [zpp]$$
 (6)

7 Reactions

This model contains 13 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	sumrc10DE		$\emptyset \xrightarrow{c2, c1} $ sumrc1	
2	c20DE		$\emptyset \stackrel{\text{c1}}{\rightleftharpoons} \text{c2}$	
3	m3PIODE		$\emptyset \stackrel{\text{ePI3K}}{=} \text{m3PI}$	
4	mRasODE		$\emptyset \stackrel{\text{eGEF}}{\longleftarrow} mRas$	
5	x10DE		$\emptyset \stackrel{\text{mRas, y, yp}}{\longleftarrow} x1$	
6	x20DE		$\emptyset \stackrel{\text{m3PI, y, yp}}{=} x2$	
7	yODE		$\emptyset \xrightarrow{\text{yp, ypp, x1, x2}} y$	
8	уррODE		$\emptyset \xrightarrow{x1, yp, y, x2, z, zp} ypp$	
9	zODE		$\emptyset \stackrel{\text{eph, zp, zpp, ypp}}{\longleftarrow} z$	
10	zpp0DE		$\emptyset \xrightarrow{\text{ypp, zp, z, eph}} \text{zpp}$	
11	fGEFODE		$\emptyset \stackrel{\text{zpp}}{=} \text{fGEF}$	
12	wODE		$\emptyset \stackrel{\text{zpp}}{=\!\!\!\!=\!\!\!\!=\!\!\!\!\!=} w$	
13	ephODE		$\emptyset \stackrel{W}{\rightleftharpoons} eph$	

7.1 Reaction sumrc10DE

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \stackrel{c2, c1}{\longleftarrow} sumrc1 \tag{7}$$

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
c2		
c1		

Product

Table 7: Properties of each product.

Id	Name	SBO
sumrc1		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \operatorname{kt} \cdot (1 - [\operatorname{sumrc1}]) + 2 \cdot (\operatorname{kminusx} \cdot [\operatorname{c2}] - \operatorname{kxR0} \cdot [\operatorname{c1}]^2)$$
(8)

7.2 Reaction c20DE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \stackrel{c1}{\rightleftharpoons} c2 \tag{9}$$

Modifier

Table 8: Properties of each modifier.

Id	Name	SBO
c1		

Product

Table 9: Properties of each product.

Id	Name	SBO
c2		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = kxR0 \cdot [c1]^2 - (kminusx + ke) \cdot [c2]$$
(10)

7.3 Reaction m3PIODE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \stackrel{\text{ePI3K}}{\longleftarrow} \text{m3PI} \tag{11}$$

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
ePI3K		

Product

Table 11: Properties of each product.

Id	Name	SBO
m3PI		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = k3PI \cdot ([ePI3K] - [m3PI]) \tag{12}$$

7.4 Reaction mRasODE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \stackrel{\text{eGEF}}{=} \text{mRas}$$
 (13)

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
eGEF		

Product

Table 13: Properties of each product.

Id	Name	SBO
mRas		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = kRas \cdot ((1 + Gamma) \cdot [eGEF] - (1 + Gamma \cdot [eGEF]) \cdot [mRas])$$
 (14)

7.5 Reaction x10DE

This is a reversible reaction of no reactant forming one product influenced by three modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRas, y, yp}} x1 \tag{15}$$

Modifiers

Table 14: Properties of each modifier.

Id	Name	SBO
mRas		
У		
ур		

Product

Table 15: Properties of each product.

Id	Name	SBO
x1		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{kdx} 1 \cdot \left([\text{mRas}] - \frac{[\text{x1}]}{1 + \frac{[\text{y}]}{\text{KMx}11} + \frac{[\text{yp}]}{\text{KMx}12}} \right)$$
 (16)

7.6 Reaction x20DE

This is a reversible reaction of no reactant forming one product influenced by three modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{m3PI, y, yp}} x2 \tag{17}$$

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
m3PI		
У		
ур		

Product

Table 17: Properties of each product.

Id	Name	SBO
x2		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = kdx2 \cdot \left(\frac{(1 + Kx2) \cdot [m3PI]}{1 + Kx2 \cdot [m3PI]} - \frac{[x2]}{1 + \frac{[y]}{KMx21} + \frac{[yp]}{KMx22}} \right)$$
(18)

7.7 Reaction yODE

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \stackrel{\text{yp, ypp, x1, x2}}{\longleftarrow} y \tag{19}$$

Modifiers

Table 18: Properties of each modifier.

Id	Name	SBO
ур урр х1 х2		

Product

Table 19: Properties of each product.

Id	Name	SBO
У		

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = \frac{V maxOVERKMyph1 \cdot [yp]}{1 + \frac{[yp]}{KMyph1} + \frac{[ypp]}{KMyph2}} - \frac{V maxOVERKMx11 \cdot [x1] \cdot [y]}{1 + \frac{[y]}{KMx11} + \frac{[yp]}{KMx12}} - \frac{V maxOVERKMx21 \cdot [x2] \cdot [y]}{1 + \frac{[y]}{KMx21} + \frac{[yp]}{KMx22}}$$

$$(20)$$

7.8 Reaction ypp0DE

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

$$\emptyset \xrightarrow{x1, yp, y, x2, z, zp} ypp \tag{21}$$

Modifiers

Table 20: Properties of each modifier.

Id	Name	SBO
x1		
ур		
У		
x2		
Z		
zp		

Product

Table 21: Properties of each product.

Id	Name	SBO
урр		

Kinetic Law

Derived unit contains undeclared units

$$v_{8} = \frac{V maxOVERKMx12 \cdot [x1] \cdot [yp]}{1 + \frac{[y]}{KMx11} + \frac{[yp]}{KMx12}} + \frac{V maxOVERKMx22 \cdot [x2] \cdot [yp]}{1 + \frac{[y]}{KMx21} + \frac{[yp]}{KMx22}}$$

$$- \frac{V maxOVERKMyph2 \cdot [ypp]}{\left(1 + \frac{[z]}{KMy1} + \frac{[zp]}{KMy2}\right) \cdot \left(1 + \frac{[yp]}{KMyph1}\right) + \frac{[ypp]}{KMyph2}}$$

$$(22)$$

7.9 Reaction **zODE**

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \stackrel{\text{eph, zp, zpp, ypp}}{\longleftarrow} z \tag{23}$$

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
eph		
zp		
zpp		
урр		

Product

Table 23: Properties of each product.

Id	Name	SBO
z		

Kinetic Law

Derived unit contains undeclared units

$$\nu_{9} = \frac{VmaxOVERKMzph1 \cdot [eph] \cdot [zp]}{1 + \frac{[zp]}{KMzph1} + \frac{[zpp]}{KMzph2}} - \frac{VmaxOVERKMy1 \cdot [ypp] \cdot [z]}{1 + \frac{[z]}{KMy1} + \frac{[zp]}{KMy2}}$$
(24)

7.10 Reaction zpp0DE

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{ypp, zp, z, eph}} \text{zpp}$$
 (25)

Modifiers

Table 24: Properties of each modifier.

Id	Name	SBO
урр zp		
Z		
eph		

Product

Table 25: Properties of each product.

Id	Name	SBO
zpp		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \frac{\text{VmaxOVERKMy2} \cdot [\text{ypp}] \cdot [\text{zp}]}{1 + \frac{[\text{z}]}{\text{KMy1}} + \frac{[\text{zp}]}{\text{KMy2}}} - \frac{\text{VmaxOVERKMzph2} \cdot [\text{eph}] \cdot [\text{zpp}]}{1 + \frac{[\text{zp}]}{\text{KMzph1}} + \frac{[\text{zpp}]}{\text{KMzph2}}}$$
(26)

7.11 Reaction fGEFODE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \rightleftharpoons fGEF$$
 (27)

Modifier

Table 26: Properties of each modifier.

Id	Name	SBO
zpp		

Product

Table 27: Properties of each product.

Id	Name	SBO
fGEF		·

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = kFBf \cdot \left(\frac{1 - [fGEF]}{Kf} - \frac{[zpp]^n}{Zf^n + [zpp]^n} \cdot [fGEF]\right)$$
 (28)

7.12 Reaction wODE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \stackrel{\text{zpp}}{=\!\!\!\!=\!\!\!\!=} w$$
 (29)

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
zpp		·

Product

Table 29: Properties of each product.

Id	Name	SBO
W		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{kdw} \cdot ([\text{zpp}] - [\text{w}]) \tag{30}$$

7.13 Reaction ephODE

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Reaction equation

$$\emptyset \stackrel{\text{W}}{\rightleftharpoons} \text{eph}$$
 (31)

Modifier

Table 30: Properties of each modifier.

Id	Name	SBO
W		

Product

Table 31: Properties of each product.

Id	Name	SBO
eph		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = kFBph \cdot \left(\frac{[w]^p}{Wph^p + [w]^p} - \frac{[eph] - 1}{Kph}\right)$$
(32)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species sumrc1

SBO:0000296 macromolecular complex

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in sumrc10DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{sumrc1} = v_1 \tag{33}$$

8.2 Species r

SBO:0000245 macromolecule

Involved in rule r

One rule which determines this species' quantity.

8.3 Species c1

SBO:0000296 macromolecular complex

Involved in rule c1

This species takes part in two reactions (as a modifier in sumrc10DE, c20DE) and is also involved in one rule which determines this species' quantity.

8.4 Species c2

SBO:0000420 multimer of macromolecules

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in c20DE and as a modifier in sumrc10DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}c2 = v_2 \tag{34}$$

8.5 Species ePI3K

SBO:0000245 macromolecule

Involved in rule ePI3K

This species takes part in one reaction (as a modifier in m3PIODE) and is also involved in one rule which determines this species' quantity.

8.6 Species m3PI

SBO:0000236 physical entity representation

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in m3PIODE and as a modifier in x20DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{m}3\mathrm{PI} = v_3 \tag{35}$$

8.7 Species eGEF

Involved in rule eGEF

This species takes part in one reaction (as a modifier in mRasODE) and is also involved in one rule which determines this species' quantity.

8.8 Species mRas

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in mRasODE and as a modifier in x10DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mRas} = v_4 \tag{36}$$

8.9 Species x1

SBO:0000014 enzyme

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in x10DE and as a modifier in y0DE, ypp0DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\mathbf{1} = \mathbf{v}_5 \tag{37}$$

8.10 Species x2

SBO:0000014 enzyme

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a product in x20DE and as a modifier in y0DE, ypp0DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}x2 = v_6 \tag{38}$$

8.11 Species y

SBO:0000245 macromolecule

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in yODE and as a modifier in x10DE, x20DE, yppODE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y} = v_7 \tag{39}$$

8.12 Species yp

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule yp

This species takes part in four reactions (as a modifier in x10DE, x20DE, y0DE, ypp0DE) and is also involved in one rule which determines this species' quantity.

8.13 Species ypp

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in ypp0DE and as a modifier in y0DE, z0DE, zpp0DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ypp} = v_8 \tag{40}$$

8.14 Species z

SBO:0000245 macromolecule

Initial concentration $1 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a product in zODE and as a modifier in yppODE, zppODE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{z} = \mathbf{v}_9 \tag{41}$$

8.15 Species zp

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

Involved in rule zp

This species takes part in three reactions (as a modifier in yppODE, zODE, zppODE) and is also involved in one rule which determines this species' quantity.

8.16 Species zpp

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in zpp0DE and as a modifier in z0DE, fGEF0DE, w0DE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{zpp} = v_{10} \tag{42}$$

8.17 Species fGEF

SBO:0000245 macromolecule

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in fGEFODE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{fGEF} = v_{11} \tag{43}$$

8.18 Species w

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a product in wODE and as a modifier in ephODE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{w} = v_{12} \tag{44}$$

8.19 Species eph

SBO:0000245 macromolecule

Initial concentration $1 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a product in ephODE and as a modifier in zODE, zppODE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{eph} = v_{13} \tag{45}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:0000002** quantitative systems description parameter: A numerical value that defines certain characteristics of systems or system functions. It may be part of a calculation, but its value is not determined by the form of the equation itself, and may be arbitrarily assigned
- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- **SBO:0000014 enzyme:** A protein that catalyzes a chemical reaction. The word comes from en "a" or "i") and simo "leave" or "yeas")
- **SBO:0000027** Michaelis constant: Substrate concentration at which the velocity of reaction is half its maximum. Michaelis constant is an experimental parameter. According to the underlying molecular mechanism it can be interpreted differently in terms of microscopic constants
- **SBO:0000188 number of biochemical items:** A number of objects of the same type, identical or different, involved in a biochemical event
- **SBO:0000190 Hill coefficient:** Empirical parameter created by Archibald Vivian Hill to describe the cooperative binding of oxygen on hemoglobine (Hill (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii)
- **SBO:0000236 physical entity representation:** Representation of an entity that may participate in an interaction, a process or relationship of significance.
- **SBO:0000245** macromolecule: Molecular entity mainly built-up by the repetition of pseudo-identical units. CHEBI:3383
- **SBO:0000282 dissociation constant:** Equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions. The dissociation constant is usually denoted Kd and is the inverse of the affinity constant.

- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000296** macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals
- **SBO:0000337 association constant:** Equilibrium constant that measures the propensity of two objects to assemble (associate) reversibly into a larger component. The association constant is usually denoted Ka and is the inverse of the dissociation constant.
- **SBO:0000420** multimer of macromolecules: Non-covalent association between several macromolecule

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany