SF2943 Time Series Analysis

TS 6

KTH Royal Institute of Technology titing@kth.se

May 14, 2018

Overview

- Introduction to the Data
- 2 Preprocessing
- Model Analysis and Evaluation
- Forecast
- Conclusion

TS 6 (KTH) Part 1(a) May 14, 2018 2 / 12

Original Data

The dataset contains the measurements for CO_2 -concentration in the atmosphere of Mauna Loa, Hawaii from 1965 to 1980.

Figure: *CO*₂ (ppm) mauna loa, 1965-1980

Model Assumption

We assume the ts follows the classical additive model:

$$Y_t = T_t + S_t + X_t$$

where T_t is the trend , S_t is the seasonality , and X_t is the stationary component.

By applying a differencing operator with lag d = 12, because S_t has a period d = 12, we can obtain:

$$Y_t - Y_{t-d} = (1 - B^d)Y_t = T_t - T_{t-d} + X_t - X_{t-d}$$

Now the polynomial trend term $T_t - T_{t-d}$ can be eliminated by applying a power of the differencing operator.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かくで

TS 6 (KTH) Part 1(a) May 14, 2018 4 / 12

Preprocessed Time Series

After the differencing, we get the preprocessed time series \hat{x}_t . Then we use the Augmented Dickey-Fuller test to check the stationarity of the series.

Preprocessed Time Series (function adf.test)

The result of the ADF test can sufficiently reject the null hypothesis of a unit root at level 0.05.

Model Analysis

The ACF value is signicant when lag = 12, which implies a seasonal ARMA model may be suitable.

TS 6 (KTH) Part 1(a) May 14, 2018 7 / 12

Final Model

Function auto.arima(): $(1,0,1) \times (0,0,1)_{12}$ (Smallest AICC Value)

Combining the pre-differencing procedure $(1 - B)(1 - B^{12})Y_t$, our final model is SARIMA model with parameters $(1, 1, 1) \times (0, 1, 1)_{12}$.

With maximum likelihood method, the coefficients for the final model are estimated as:

Coefficients	Estimate	Standard error
ar ₁	0.3714	0.1746
ma ₁	-0.6709	0.1378
sma ₁	-0.8293	0.0871

TS 6 (KTH) Part 1(a) May 14, 2018 8 / 12

Model Evaluation (function tsdiag)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Forecasts from ARIMA(1,1,1)(0,1,1)[12]

Conclusion

From the graph of the original CO_2 data, we can see that the additive model seems applicable.

We eliminate the trend and seasonality of the original data with differencing method.

We use a SARIMA model to characterize the stationary component with the help of *auto.arima()*.

The tests (tsdiag) of the residuals show that our model has achieved preferable results.

TS 6 (KTH) Part 1(a) May 14, 2018 12 / 12