40 Functional Equations

1 Favorites

- 1. $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(n+1) > f(f(n)) for all $n \in \mathbb{N}$
- 2. Find a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that, f(f(n)) = 2n for all $n \in \mathbb{N}$
- 3. $f: \mathbb{N} \longrightarrow \mathbb{N}$, $f(m)^2 + f(n) \mid (m^2 + n)^2$ for all $m, n \in \mathbb{N}$
- 4. $f: \mathbb{N} \longrightarrow \mathbb{N}$, f(f(a) + f(b)) = a + b 1 for all $a, b \in \mathbb{N}$
- 5. $f: \mathbb{N} \longrightarrow \mathbb{N}$, for all $a, b \in \mathbb{N}$ there exists a non-degenerate triangle with side length a, f(b), f(b+f(a)-1).
- 6. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$, such that g(x) = x [x]. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that, g(f(x+y)) = g(f(x)) + g(f(y)) for all $x, y \in \mathbb{R}$.
- 7. $f: \mathbb{R} \longrightarrow \mathbb{R}$, (f(x) + f(z))(f(y) + f(t)) = f(xy zt) + f(xt yz) for all $x, y, z, t \in \mathbb{R}$.
- 8. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, f continuous, $f(x) + f(y) = f\left(\frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y}\right)$ for all $x, y \in \mathbb{R}_+$.
- 9. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x+y) = \max\{f(x), y\} + \min\{f(y), x\} \text{ for all } x, y \in \mathbb{R}.$
- 10. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x-f(y)) = f(f(y)) + xf(y) + f(x) 1 \text{ for all } x, y \in \mathbb{R}.$
- 11. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) \ge e^x$ for all $x \in \mathbb{R}$ and $f(x+y) \ge f(x)f(y)$ for all $x, y \in \mathbb{R}$.
- 12. Prove that there are no functions f, g such that, $f(g(x)) = x^2$ and $g(f(x)) = x^3$ for all $x \in \mathbb{R}$.
- 13. Does there exist any continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that, $f(x) \in \mathbb{Q} \Longleftrightarrow x \notin \mathbb{Q}$?
- 14. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \ f\left(yf\left(\frac{x}{y}\right)\right) = \frac{x^4}{f(y)} \text{ for all } x, y \in \mathbb{R}_+.$
- 15. $f: \mathbb{R} \longrightarrow \mathbb{R}, |f(x) f(y)| \le (x y)^2 \text{ for all } x, y \in \mathbb{R}.$
- 16. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x+f(y)) = y+f(x) for all $x, y \in \mathbb{R}$ and the set $\left\{ \frac{x}{f(x)} \mid x \in \mathbb{R} \right\}$ is finite.
- 17. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$, $f(x)f(y) = y^{\alpha}f(\frac{x}{2}) + x^{\beta}f(\frac{y}{2})$ for some constant $\alpha, \beta \in R$ and for all $x, y \in \mathbb{R}_+$
- 18. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}, x f(y) y f(x) = f\left(\frac{x}{y}\right) \text{ for all } x, y \in \mathbb{R}_+$
- 19. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(f(x) y^2) = f(x)^2 2f(x)y^2 + f(f(y))$ for all $x, y \in \mathbb{R}$
- 20. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(f(x) + y) = x f(1 + xy) \text{ for all } x, y \in \mathbb{R}$
- 21. $f: \mathbb{R} \longrightarrow \mathbb{R}, f\left(\frac{x+f(x)}{2} + y + f(2z)\right) = 2x f(x) + f(f(y)) + 2f(z)$ for all $x, y, z \in \mathbb{R}$
- 22. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f surjective and strictly increasing, f(f(x)) = f(x) + 12x for all $x \in \mathbb{R}$
- 23. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x+y^2) \ge (y+1)f(x)^2$ for all $x, y \in \mathbb{R}$
- 24. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(y)f(xf(y)) = f(xy)$ for all $x, y \in \mathbb{R}$
- 25. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) f(y) \le |x-y|$ for all $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$
- 26. $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x+y) \le y f(x) + f(f(x))$, Prove that f(x) = 0 for all $x \le 0$
- 27. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f((x+1)f(y)) = y(f(x)+1) for all $x, y \in \mathbb{R}$
- 28. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x+y) \ge f(x) + y f(f(x))$ for all $x, y \in \mathbb{R}_+$
- 29. $f: \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+, x f(x, y) f(y, \frac{1}{x}) = y f(y, x)$ for all $x, y \in \mathbb{R}_+$
- 30. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x)^2 \ge f(x+y)(f(x)+y)$ for all $x, y \in \mathbb{R}_+$
- 31. $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(xy)(f(x) f(y)) = f(x)f(y)(x-y) for all $x, y \in \mathbb{R}$

2 Section 2

- 32. Prove that there doesn't exist any function $f: \mathbb{R} \longrightarrow \mathbb{R}$, such that,
 - f(1) = 1
 - $\exists M \in \mathbb{R}_+ \text{ s.t. } |f(x)| \leq M \ \forall x \in \mathbb{R}$
 - $f\left(x + \frac{1}{x^2}\right) = f(x) + f\left(\frac{1}{x}\right)^2$ for all $x \in \mathbb{R}$
- 33. $f: \mathbb{R}_0 \longrightarrow \mathbb{R}$ and $f(x) \leq \int_0^x f(t) dt$ for all $x \geq 0$. Prove that, f(x) = 0 for all $x \geq 0$
- 34. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \ f(x+y^n+f(x)) = f(x)$, $\frac{f(x)+x^n}{f(y)+y^n} \in \mathbb{Q}$ for all $x, y \in \mathbb{R}_+$
- 35. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, f(x+y^n+f(x)) = f(x)$ for all $x, y \in \mathbb{R}_+$

2 Most Favorites

- 1. Find all functions $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, $f(x f(y)) = f(x + y^n) + f(y + f(y))$ for all $x, y \in \mathbb{R}_+$ and a fixed positive integer $n \ge 2$.
- 2. Find all continuous functions $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, f(xf(y) + yf(x)) = f(f(xy)) for all $x, y \in \mathbb{R}_+$
- 3. f is a function such that $f'(x) = \frac{x^2 f(x)^2}{x^2(f(x)^2 + 1)}$ for all x > 1. Prove that, $\lim_{x \to \infty} f(x) = \infty$
- 4. Is there any strictly increasing function $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, such that, f'(x) = f(f(x))?
- 5. $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ such that,
 - $f(x) = x \text{ if } x \le e$
 - $f(x) = x f(\ln x)$ if x > e

Prove that $\sum_{n=1}^{\infty} \frac{1}{f(x)}$ diverges.

Dhananjoy Biswas ebappa1971@gmail.com