Northeastern University, Boston, MA

College of Engineering

Department of Civil and Environmental Engineering

CIVE 7381: Transportation Demand Forecasting and Model Estimation

Problem Set 3

From: Nathan David Obeng-Amoako (NUID: 002607282)

To: Professor Haris Koutsopoulos

Submitted on: Friday, October $25\mathrm{th}$

Table of Contents

List of Figures	iii
List of Tables	iii
List of Equations	iii
List of Abbreviations	iv
Problems	v
Solution to Problem 1	9
Statistical Summaries and Descriptive Statistics	9
Models Development	13
Models Tested	14
Coefficients of Determination (R ²)	14
Predicted vs. Actual	15
T-statistics	16
Verification of Initial Hypotheses	16
Solution to Problem 2	17
Trip Distribution Methods	17
Average Factor Method	17
Biproportional Fitting Method	19
Friction Factor Matrix	20
Average Travel Time	21
Gravity Model	21
Average Trip Time Against Beta	22
Problem 3	24
Friction Factors	24
Gravity Model	24
Appendix	26

List of Figures

Figure 1: Boxplots of the Relevant Features	11
Figure 2: Histograms of the Relevant Features	12
Figure 3: Correlation Heatmap	13
Figure 4: Predicted vs. Actual	15
Figure 5: Gravity Model Results	22
Figure 6: Average Trip Time against Beta	23
Figure 7: Formula to Update Attractions for Gravity Model	25
List of Tables	
Table 1: Coefficients of Determination Results	14
List of Equations	
List of Equations	
Equation 1: Average Travel Time	21
Equation 2: Gravity Model	
List of DataFrames	
DataFrame 1: Descriptive Statistics of Relevant Features	<u></u>
DataFrame 2: Check for Missing Values	
DataFrame 3: Friction Factor Matrix	
DataFrame 4: Zone-to-Zone Trips after Iteration 1	
DataFrama 5: Zona-to-Zona Trips after Iteration 2	

List of Abbreviations

OLS = Ordinary Least Squares

 ${\rm RMSEE} = {\rm root\ mean\ square\ error}$

TAZ = traffic analysis zone

Problems

Department of Civil and Environmental Engineering 400 Snell Engineering 360 Huntington Ave. Boston, MA 02115

CIVE 7381 Transportation Demand Problem Set #4 Due: Monday, October 28, 2024

Problem 1

The file Boston_TAZ_Data.xlsx (Canvas, under PS 4) contains data from more than 2,720 TAZs (traffic analysis zones) in the Boston Metropolitan area. For each zone you have data on the total number of HBW trips **attracted** in the zone, in addition to land use information related to the zone. You will use the data to develop, using linear regression, a model that predicts the trips/day attracted by the zone.

- a) Briefly discuss the cause/effect relationships you think are relevant for modeling trip attractions.
- b) Present relevant statistical summaries and descriptive statistics on the data provided. Check for the presence of outliers. Also detect any other issues with the data.
- c) Experiment with different linear regression models that can predict the number of trips attracted in each zone. You can use any software you are familiar with (excel, R, python, SAS, etc.) Report the results of your best model. Explain your choice by evaluating and validating each model, based on various statistical tests discussed in class (coefficient of determination, t-statistics, F-statistic confidence interval). Also discuss and interpret the model specification and the impact of the various parameters. Use scatter plots and other visual tools to illustrate your model performance (e.g., scatter plots of actual vs model predicted values).
- d) Do the data and model results support the relationships you propose in a)?

The data file contains the following variables that can be used for the specification of your model. Use the variables as is or transform them to capture the effects that you think are important.

ID: ID of each TAZ

HBW_a: number of home-based work trip attractions in the TAZ

Total_Emp: total employment Srv_Emp: service employment Ret_Emp: retail employment Bas_Emp: basic employment

K12_Emp: K12 private and public school employment

Coll_Emp: College employment **HH:** number of households in the TAZ

Problem 2

An initial (seed) trip matrix is available. The trip matrix is symmetric and shown below. The table also shows the total (target) number of trips produced or attracted in each zone for the future planning year.

		Orig	in O) ma	Target		
From\To	1	2	3	4	5	6	Row Total (Productions)
1	5	40	120	30	50	60	800
2		5	52	55	60	100	400
3			10	25	90	30	400
4				10	15	45	200
5					15	55	500
6						20	700
Target Column Total (Attractions)	200	600	400	300	1000	500	3000

- a. Using the above seed trip matrix estimate the 6x6 trip matrix for the target year. Iterate until it converges to an F value (target/predicted for each zone productions and attractions) between 0.90 to 1.10 (but no more than 3 iterations). Keep track of each row's and column's factor. Report your results for two different approaches and compare the two outputs:
 - i. Average factor
 - ii. Biproportional fitting IPF)
- b. The travel time between the various zones is given below. Find the matrix of basic friction values for each zonal pair, using an exponential friction function, $f(t_{ij}) = \exp(\beta t_{ij})$, with parameter $\beta = -0.05$.

	Travel Times (min)									
From\To	1	2	3	4	5	6				
1	10	25	37	40	40	50				
2	25	10	52	35	30	40				
3	37	52	10	55	40	50				
4	40	35	55	10	25	37				
5	40	30	40	25	10	25				
6	50	40	50	37	25	10				

- c. With the final trip distribution (OD matrix) found in question a) part i) above, calculate the average travel time (HINT: it should be a weighted average).
- d. Apply the gravity model **once** (no balancing) for different values of the parameter β (assuming the productions, attractions, travel times and friction function given earlier). Assume that β values vary from -0.02 to -0.12 in increments of 0.02. Plot the average trip time against the corresponding value of the parameter β . Comment on the relationship.

e. Assume that the planning authority has estimated that the true average trip time is 26 minutes. Based on the results from part d) above, choose the value of the parameter β that is the most appropriate.

Problem 3

A small area is divided into 6 zones. The travel times t_{ij} between the zones are given in the table below (the travel times are symmetric):

Zone	1	2	3	4	5	6
1		10	17	16	12	22
2			7	6	15	12
3				13	8	5
4					21	9
5						13
6						

The target productions and attractions for each zone are given below:

Zone	P's	A's
1	1000	100
2	1500	500
3	100	100 500 3000 500 50
4	200	500
5	1700	50
6	780	1130
Total	5280	5280

a. Find the friction factors for each OD pair assuming that the friction function is given by:

$$f(t_{ij}) = \frac{1}{t_{ij}^2}$$

b. Find the zone to zone trip flows using the gravity model. Use the iterative updating of attractions and repeated application of the gravity model (discussed in class) to find the target trip interchanges (do not use the bi-proportional method to balance the attractions and productions). Perform no more than 2 iterations. You may use the practical considerations discussed in class to approximate the intrazonal travel times.

Solution to Problem 1

Likely Predictor Variables

First of all, land use plays a critical role in trip attraction. An industrial area is expected to attract less trips than a commercial area with a bunch of retail establishments because the latter attracts a bunch of consumer trips. The employment dynamics (types and density) of the area may also impact trip attraction. For instance, areas with high concentration of service and retail employment can attract more trips. Moreover, the transportation accessibility of the area can impact trip attraction. For example, if there's no public transportation in the area and there are inadequate bicycle facilities, then, most likely, only people who are privileged to own a car will be attracted to the area. Lastly, temporal factors like time of day or even season of year can impact trip attraction rates. Other factors like household size and density may also affect trip attraction rates.

Statistical Summaries and Descriptive Statistics

Descriptive statistics of the relevant features in the dataset are shown in *DataFrame 1*.

DataFrame 1: Descriptive Statistics of Relevant Features

From DataFrame 2, there are no missing data in the dataset.

DataFrame 2: Check for Missing Values

The boxplots in Figure 1 show the distribution of the data in the relevant columns. From the figure, it can be seen that all the employment variables, viz. Total_Emp, Srv_Emp, Ret_Emp, Bas_Emp, K12_Emp, and Coll_Emp are very highly positively skewed, which means that most of the TAZs have a relatively low number of employments while a few of them (like the Central Business Districts) have a very high concentration of jobs. It is also observed that HBW_a is also highly positively skewed (perhaps, as a result). The number of households per TAZ (HH) is approximately symmetric even though it has a few outliers at the right tail. I choose not to delete the outliers as they may represent genuine, valuable information rather than errors or noise. I don't want to lose meaningful data. Also, I tested and found out that deleting them, based on the chosen criterion, will rather screw things up (e.g., with half of the data being lost) or will have very insignificant impact on the results.

Figure 1: Boxplots of the Relevant Features

Figure 2 shows the histogram of the relevant columns, and this provided me with additional insights on the distribution of the data.

Figure 2: Histograms of the Relevant Features

Models Development

The heatmap to visualize the correlation matrix is illustrated in Figure 3.

Figure 3: Correlation Heatmap

I tested a variety of models but will focus on the top three best performers. The models with interaction terms did not improve performance, so I decided to exclude them. For instance, I examined several interaction terms derived from Total_Emp and Srv_Emp, which show strong multicollinearity (R = 0.90). However, these models did not yield better results, prompting me to prioritize a more parsimonious approach.

Models Tested

Model 1 was created using all the predictor variables. Model 2 included only those predictor variables with a correlation of at least 0.5 with the response variable (rounded to one place of decimal). Model 3 focused solely on the variable Total_Emp, which shows a very strong correlation with the response variable (0.98) according to the correlation matrix.

Model 1:
$$HBW_a = \beta_0 + \beta_1 \times Total_Emp + \beta_2 \times Srv_Emp + \beta_3 \times Ret_Emp + \beta_4 \times Bas_Emp + \beta_5 \times K12_Emp + \beta_6 \times Coll_Emp + \beta_7 \times HH + \varepsilon$$

Model 2:
$$HBW_a = \beta_0 + \beta_1 \times Total_Emp + \beta_2 \times Srv_Emp + \beta_3 \times Ret_Emp + \beta_4 \times Bas_Emp + \varepsilon$$

Model 3:
$$HBW_a = \beta_0 + \beta_1 \times Total_Emp + \varepsilon$$

Coefficients of Determination (R²)

Table 1 shows a summary of the Coefficients of Determination results for all the three models. The full results are shown in the **Appendix**.

Table 1: Coefficients of Determination Results

	Model 1	Model 2	Model 3
\mathbb{R}^2	0.995	0.995	0.965
Corrected R ²	0.995	0.995	0.965

Based on the R² results, I prefer Model 2 over Model 1, as both models explain roughly 99.5% of the variance in the dependent variable, HBW_a. However, Model 2 is more parsimonious and Model 1 may be overfitting. Model 3 is performing relatively poorly.

Predicted vs. Actual

Figure 4 illustrates the relationship between predicted and actual values of the response variable for each of the top three models.

Figure 4: Predicted vs. Actual

Northeastern University Civil and Environmental Engineering

As expected, Model 3 exhibits the highest RMSE (from Figure 4). Model 1 has a slightly lower RMSE than Model 2, but this difference is negligible and does not provide sufficient reason to prefer Model 1 over Model 2. Additionally, Model 1 may be at risk of overfitting.

T-statistics

Based on the t-statistics values (**Appendix**), it can be concluded that the additional variables in Model 1 are not contributing that much to the model. They're only making it complex in a sense.

For the various reasons stated above, I nominate Model 2 as the chosen model!

Verification of Initial Hypotheses

For the most part, YES, the data and model results support the proposed relationships.

Solution to Problem 2

Trip Distribution Methods

Average Factor Method

The average factor method adjusts a trip matrix by calculating row and column factors based on the ratio of target productions and attractions to total current trips. It iteratively updates the matrix by applying the average of these factors until the predicted trips converge closely to the targets.

Results after first iteration

	1	2	3	4	5	6	Predicted Pi	Target P	Fi
1	8.2	90.9	230.8	64.3	153.3	127.1	305.0	800.0	2.622951
2	38.8	8	65.1	81.1	143.7	144.7	312.0	400.0	1.282051
3	112.7	81.8	12.2	36.1	212.9	42.5	327.0	400.0	1.223242
4	26.5	83.4	29.2	13.9	34.6	61.3	180.0	200.0	1.111111
5	60.3	110.3	134	25.7	39.5	92.6	285.0	500.0	1.754386
6	87.4	209.1	52.2	88.3	158.6	38.7	310.0	700.0	2.258065
Predicted Aj	305.0	312.0	327.0	180.0	285.0	310.0	nan	nan	nan
Target A	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Fj	0.655738	1.923077	1.223242	1.666667	3.508772	1.612903	nan	nan	nan

Results after second iteration

	1	2	3	4	5	6	Predicted Pi	Target P	Fi
1	7.3	100.7	225	69.3	194.1	138	674.6	800.0	1.185885
2	27.7	7.4	51.9	73	156.5	131.5	481.5	400.0	0.830792
3	79	74.9	9.6	32	228.8	38.1	498.4	400.0	0.802597
4	18.6	76.4	22.9	12.3	37.2	54.8	249.0	200.0	0.803372
5	50.6	116.4	123.6	26.3	47.9	95.7	462.3	500.0	1.081544
6	74.4	222.8	48.8	91.5	194.3	40.4	634.3	700.0	1.103588
Predicted Aj	333.9	583.6	523.5	309.4	742.7	507.0	nan	nan	nan
Target A	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Fj	0.599051	1.028174	0.764039	0.969584	1.346495	0.986259	nan	nan	nan

Results after third iteration

	1	2	3	4	5	6	Predicted Pi	Target P	Fi
1	6.8	105.3	215.9	71.9	218.7	144.4	734.4	800.0	1.089298
2	23.1	7.1	44.7	68.5	160.9	124.6	448.1	400.0	0.892728
3	64.8	69.9	8.1	29.6	232.2	35.5	462.3	400.0	0.865148
4	15.6	72.7	19.8	11.6	38.4	52.2	222.3	200.0	0.899824
5	47.1	121.5	118.4	27.2	53.9	100	460.6	500.0	1.085470
6	67.6	227.7	45.6	92.7	214.3	41.3	672.3	700.0	1.041243
Predicted Aj	257.7	598.6	481.8	304.5	858.8	498.6	nan	nan	nan
Target A	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Fj	0.776203	1.002338	0.830227	0.985176	1.164386	1.002801	nan	nan	nan

Final Trip Matrix (Rounded After Iteration 3)

	1	2	3	4	5	6
1	7	105	216	72	219	144
2	23	7	45	69	161	125
3	65	70	8	30	232	36
4	16	73	20	12	38	52
5	47	121	118	27	54	100
6	68	228	46	93	214	41

Notes:

The convergence criteria were not quite met even after the third iteration. However, I experimented and found out that the criteria will be met after the fifth iteration.

Biproportional Fitting Method

The biproportional method, also known as the Iterative Proportional Fitting (IPF) method, adjusts a trip matrix to match specified row and column totals through iterative proportional adjustments. This technique iteratively modifies the entries of the matrix until the row and column sums converge to their respective target values, maintaining proportional relationships between the data.

Results after first iteration

	1	2	3	4	5	6	Predicted Pi	Target P	Fi
1	5.6	111	194.6	74	270.2	153.1	808.6	800.0	0.989420
2	21.9	6.8	41.2	66.3	158.5	124.7	419.5	400.0	0.953527
3	62.8	67.3	7.6	28.8	226.8	35.7	428.9	400.0	0.932533
4	14.3	64.7	17.2	10.5	34.3	48.6	189.5	200.0	1.055301
5	37.5	111.4	97.6	24.8	54.2	93.9	419.3	500.0	1.192347
6	57.9	238.9	41.9	95.6	255.9	43.9	734.2	700.0	0.953483
Predicted Aj	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Target A	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Fj	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	nan	nan	nan

Results after second iteration

	1	2	3	4	5	6	Predicted Pi	Target P	Fi
1	5.5	108.4	186.3	74.5	274.2	148.8	797.9	800.0	1.002693
2	20.9	6.4	38	64.3	155	116.9	401.5	400.0	0.996206
3	58.5	61.9	6.8	27.3	217	32.7	404.3	400.0	0.989421
4	15	67.3	17.5	11.2	37.2	50.4	198.8	200.0	1.006252
5	44.7	131.1	112.6	30	66.3	110	494.7	500.0	1.010619
6	55.2	224.8	38.6	92.7	250.3	41.2	702.8	700.0	0.995953
Predicted Aj	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Target A	200.0	600.0	400.0	300.0	1000.0	500.0	nan	nan	nan
Fj	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	nan	nan	nan

Final Trip Matrix (Rounded After Iteration 2)

	1	2	3	4	5	6
1	6	108	186	74	274	149
2	21	6	38	64	155	117
3	59	62	7	27	217	33
4	15	67	18	11	37	50
5	45	131	113	30	66	110
6	55	225	39	93	250	41

Notes:

Amazingly, the convergence criteria were met after the second iteration so I didn't even bother to do the third iteration. It's interesting to me how the IPF method is much more efficient than the average factor method. Since they both take just about the same efforts to develop, I guess I'm not ever using the average factor method in real-life application.

Friction Factor Matrix

$$f(t_{ij}) = \exp(\beta t_{ij})$$
, with $\beta = -0.05$

	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Zone 1	0.606531	0.286505	0.157237	0.135335	0.135335	0.082085
Zone 2	0.286505	0.606531	0.074274	0.173774	0.223130	0.135335
Zone 3	0.157237	0.074274	0.606531	0.063928	0.135335	0.082085
Zone 4	0.135335	0.173774	0.063928	0.606531	0.286505	0.157237
Zone 5	0.135335	0.223130	0.135335	0.286505	0.606531	0.286505
Zone 6	0.082085	0.135335	0.082085	0.157237	0.286505	0.606531

Average Travel Time

The average (weighted) travel time calculated using Equation 1 is 36.26 minutes.

$$ext{AWTT} = rac{\sum_{i=1}^{n} \sum_{j=1}^{m} (F_{ij} imes T_{ij})}{\sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij}}$$

Equation 1: Average Travel Time

Where:

AWTT = average weighted travel time

 F_{ij} = friction factor from Zone i to Zone j

 T_{ij} = number of trips from Zone i to Zone j

m, n = dimensions of the matrices

Gravity Model

The gravity model applied for the trip distribution; is shown in Equation 2.

$$T_{ij} = rac{P_i A_j F_{ij}}{\sum_j P_i A_j F_{ij}}$$

Equation 2: Gravity Model

Where:

 P_i = total productions at Zone i

 A_j = total attractions at Zone j

 F_{ij} = friction factor from Zone i to Zone j

 T_{ij} = number of trips from Zone i to Zone j

The gravity model results for each specified value of β is shown in Figure 5.

Figure 5: Gravity Model Results

Average Trip Time Against Beta

The plot of average trip time against the corresponding value of β is shown in Figure 6. Amongst the chosen β values, the travel time is closest to 26 minutes for $\beta = -0.02$. Looking at the trend, it can be assumed that even bigger values of β can result in a travel time that's even much closer to 26 minutes.

Figure 6: Average Trip Time against Beta

Problem 3

Friction Factors

The friction factor matrix is displayed in **DataFrame 3**. The intrazonal travel time was taken to be half of the average travel time to the nearest zone, which explains why the leading diagonal doesn't have zeros.

DataFrame 3: Friction Factor Matrix

Gravity Model

The first iteration for the zone-to-zone trip flows using the gravity model (Equation 2) is shown in DataFrame 4.

DataFrame 4: Zone-to-Zone Trips after Iteration 1

For the second iteration, the attractions were updated using the formula in the screenshot illustrated in Figure 7 (taken from the Professor's notes).

Figure 7: Formula to Update Attractions for Gravity Model

The second iteration for the zone-to-zone trip flows is shown in DataFrame 5.

	1	2	3	4	5	6	Total Pi
1	93.659000	128.167000	511.029000	116.888000	7.638000	142.619000	1000.000000
2	6.080000	369.765000	782.597000	215.824000	1.269000	124.466000	1500.000000
3	0.030000	0.974000	87.991000	0.659000	0.064000	10.282000	100.000000
4	0.338000	13.141000	32.255000	122.720000	0.092000	31.454000	200.000000
5	9.448000	33.097000	1340.774000	39.424000	39.941000	237.316000	1700.000000
6	0.217000	3.985000	264.489000	16.540000	0.291000	494.478000	780.000000
Total Aj	109.771000	549.128000	3019.135000	512.056000	49.295000	1040.615000	0.000000

DataFrame 5: Zone-to-Zone Trips after Iteration 2

Appendix

MODEL 1 – USING ALL VARIABLES

=========			egres =====	======	=========		
Dep. Variab	le:	НВ	W_a	R-squa	red:		0.995
Model:			0LS	Adj. R	-squared:		0.995
Method:		Least Squa	res	F-stat	istic:		7.438e+04
Date:	Fr	i, 25 Oct 2	024	Prob (F-statistic)	:	0.00
Time:		18:37	:15	Log-Li	kelihood:		-16430.
No. Observat	ions:	2	727	AIC:			3.288e+04
Df Residuals	6:	2	719	BIC:			3.292e+04
Df Model:			7				
Covariance 1	Гуре:	nonrob	ust				
	coef	std err	=====	t	P> t	[0.025	0.975]
const	-9 . 6 2 97	4.784	-2	.013	0.044	-19.011	-0.248
Total_Emp	0.0091	0.012	0	.788	0.431	-0.014	0.032
Srv_Emp	1.1134	0.011	97	.505	0.000	1.091	1.136
Ret_Emp	1.5163	0.014	111	.185	0.000	1.490	1.543
Bas_Emp	1.3266	0.012	108	.562	0.000	1.303	1.351
K12_Emp	0.0168	0.024	0	.707	0.480	-0.030	0.064
Coll_Emp	-0.0226	0.008	_	.815	0.005	-0.038	-0.007
HH	0.0068	0.005	1	.379	0.168	-0.003	0.017
======= Omnibus:		973.	===== 274	Durbin	 -Watson:		 2.067
Prob(Omnibus):		0.	0.000				70391.086
Skew: 0.808		808	•			0.00	
Kurtosis:	27.	837	Cond.	No.		4.54e+03	

MODEL 2 – USING HIGH CORRELATION VARIABLES

Model 2: Using high correlation variables OLS Regression Results							
Don Vaniahl			=====	.=====		======	0.005
Dep. Variabl	.e:	H	BW_a				0.995
Model: Method:		Loost Caus	OLS	_	R-squared:		0.995
	Г	Least Squa				_	1.297e+05
Date:	FI	_			(F-statistic)	•	0.00
Time:			7:15	_	ikelihood:		-16436.
No. Observat		_	2727	AIC:			3.288e+04
Df Residuals	:	2	2722	BIC:			3.291e+04
Df Model:			4				
Covariance T	ype:	nonrol	oust				
=======	coef	std err		t	P> t	[0.025	0.975]
const	-3.4909	2.542	-1	.373	0.170	-8.475	1.493
Total_Emp	0.0108	0.012	6	.928	0.353	-0.012	0.033
Srv_Emp	1.1091	0.011	97	.590	0.000	1.087	1.131
Ret_Emp	1.5138	0.013	112	.426	0.000	1.487	1.540
Bas_Emp	1.3246	0.012	108	.940	0.000	1.301	1.348
Omnibus:	Omnibus: 1001.025				n-Watson:	======	2.060
Prob(Omnibus	:):		000				72902.994
Skew:	,			Prob(JB):			0.00
Kurtosis:					Cond. No.		2.37e+03
========			=====		========		

MODEL 3 – USING ONLY TOTAL EMPLOYMENT

Model 3: Using only Total Employment							
		0LS	Regre ====	ssion Re	sults 		
Dep. Variable	:	Н	BW_a	R-squa	red:		0.965
Model:			0LS	Adj. R	-squared:		0.965
Method:		Least Squ	ares	F-stat	istic:		7.546e+04
Date:		Fri, 25 Oct	2024	Prob (F-statistic)	:	0.00
Time:		18:3	7:15	Log-Li	kelihood:		-19025.
No. Observation	ons:		2727	AIC:			3.805e+04
Df Residuals:			2725	BIC:			3.807e+04
Df Model:			1				
Covariance Ty	pe:	nonro	bust				
=========	coef	std err	=====	t	P> t	[0.025	0.975]
const	48.7753	6.300		7.742	0.000	36.422	61.129
Total_Emp	1.2130	0.004	27	4.708	0.000	1.204	1.222
Omnibus:	Omnibus:		3394.282		======================================		1.886
Prob(Omnibus):		0	0.000		Jarque-Bera (JB):		887193.468
Skew:		6	6.426		Prob(JB):		0.00
Kurtosis:		90	.424	Cond.	Cond. No.		1.81e+03
========	======		=====	======		======	