МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Инженерная математика»

М. А. Гундина Н. А. Кондратьева

ПРИКЛАДНАЯ МАТЕМАТИКА. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ДАННЫХ

Учебно-методическое пособие для студентов специальности 1-38 80 01 «Приборостроение»

Рекомендовано учебно-методическим объединением по образованию в области приборостроения

> Минск БНТУ 2021

УДК 51-7+004.925(075.8) ББК 22.1я7 Г94

Репензенты:

канд. физ.-мат. наук, доцент кафедры «Строительные технологии и конструкции» УО «Белорусский государственный университет транспорта» Ю. В. Захарчук; канд. физ.-мат. наук, доцент кафедры теоретической и прикладной механики УО «Белорусский государственный университет» Д. Е. Мармыш

Гундина, М. А.

Г94 Прикладная математика. Графическое представление данных : учебно-методическое пособие для студентов специальности 1-38 80 01 «Приборостроение» / М. А. Гундина, Н. А. Кондратьева. – Минск : БНТУ, 2021. – 45 с.

ISBN 978-985-583-317-9

Учебно-методическое пособие предназначено для студентов II ступени обучения приборостроительного факультета БНТУ, изучающих дисциплину «Прикладная математика». В пособии приведены материалы для организации системы непрерывного освоения знаний по дисциплине «Прикладная математика» по разделам «Элементы теории погрешностей», «Аппроксимация функций», «Численное решение дифференциальных уравнений» и др.

Приведенный комплекс задач для проведения лабораторных работ разработан с учетом рекомендаций кафедры «Инженерная математика» приборостроительного факультета Белорусского национального технического университета и согласуется с требованиями к уровню подготовки специалистов.

УДК 51-7+004.925(075.8) ББК 22.1я7

ISBN 978-985-583-317-9

© Гундина М. А., Кондратьева Н. А., 2021

© Белорусский национальный технический университет, 2021

ВВЕДЕНИЕ

Учебно-методическое пособие «Прикладная математика. Графическое представление данных» предназначено для проведения лабораторных работ со студентами II ступени обучения специальности 1-38 80 01 «Приборостроение» приборостроительного факультета Белорусского национального технического университета по дисциплине «Прикладная математика».

Данное учебно-методическое пособие включает основные темы, необходимые для формирования соответствующей компетенции специалиста, из разделов «Элементы теории погрешностей», «Аппроксимация функций», «Численное решение дифференциальных уравнений», «Машинное обучение» и других разделов. Этими знаниями необходимо овладеть обучающимся в течение учебного семестра для дальнейшего успешного усвоения материала по смежным дисциплинам, а также для написания магистерской диссерации с привлечением компьютерных возможностей, математических расчетов и моделирования.

Темы, которые охватывает данное пособие, соответствуют действующей учебной программе по дисциплине «Прикладная математика» для приборостроительного факультета Белорусского национального технического университета.

Авторами учебно-методического пособия преследовалась цель повышения уровня усвоения учебного материала, самостоятельности студента при подготовке к зачету по данной дисциплине, реализация основных принципов дидактики: доступности и системности образовательного процесса.

Тщательный подбор материала позволяет осуществить первичное закрепление материала, а также систематизировать знания учащихся и сформировать навыки построения математических моделей с учетом возникающих погрешностей.

На протяжении трех десятилетий компьютерная система Mathematica представляет собой мощнейшую систему для проведения расчетов миллионов изобретателей, педагогов, студентов и других пользователей по всему миру.

Благодаря энергичному развитию и стабильному представлению система не имеет себе равных в диапазоне измерений и уникальна в своей организации рабочего процесса для технических инженерных расчетов.

Система *Wolfram Alfa* представляет собой базу знаний и набор вычислительных алгоритмов. Основное ее направление это – обработка естественного языка для предоставления ответа на запрос.

Существование тесных взаимосвязей между различными разделами математики — самая удивительная и прекрасная сторона предмета. Опыт прошедших столетий показывает, что развитие прикладной математики было обусловлено не столько техническим прогрессом, сколько неожиданными открытиями взаимосвязей данной науки с различными областями.

Целью освоения дисциплины «Прикладная математика» является изучение комплекса прикладных вопросов. Эти вопросы связаны с ознакомлением с классическими аналитическими и численными методами решения и анализа задач математической физики, изучением современных методов анализа данных. В результате освоения данной дисциплины будут сформированы компетенции по применению необходимого математического аппарата для совершенствования инженерно-технической деятельности предприятий и организаций. Будут сформированы навыки рационального анализа физических явлений и процессов, имеющих место в различных устройствах, приборах и конструкциях, навыки математического исследования прикладных вопросов и умения перевести производственную задачу на математический язык.

В данном пособии рассмотрены основные задачи, касающиеся методов аппроксимации и статистической обработки экспериментальных данных; численного решения задачи Коши и краевых задач для обыкновенных дифференциальных

уравнений; решения типовых дифференциальных уравнений в частных производных; решения типовых нелинейных уравнений и основные численные методы интегрирования. Эти методы позволяют овладеть приемами обработки экспериментальных данных; методами анализа полученных численнографических результатов; математическим аппаратом, необходимым для изучения других фундаментальных дисциплин; методами построения и решения математических и информационных моделей в рамках своей специальности.

Лабораторная работа № 1 ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ДАННЫХ

Рассмотрим набор базовых функций, с помощью которых можно графически представить данные:

Функция	Пример применения	Результат
Plot	$Plot[If[x<0,Sin[x],Cos[x]] \ \{x,0,Pi\}]$	0.5 1.0 1.5 2.0 2.5 3.0

Задача 1.1. Построить график функции

Вариант	Условие
1	$y(x) = \frac{e^x}{\sqrt[3]{x^2 + 5}}$
2	$y(x) = \frac{\ln(x)}{x}$
3	$y(x) = \ln \frac{x}{\sqrt{1 - x^2}}$ $y(x) = \frac{1 - 2x^2}{\sqrt[3]{x}}$
4	$y(x) = \frac{1 - 2x^2}{\sqrt[3]{x}}$
5	$y(x) = \left x + \frac{4}{x+2} \right $
6	$y = \ln \frac{1+x}{2-x}$
7	$y(x) = \frac{1 - 2x}{x^2 - x + 2}$ $y(x) = x + \log_2(x^2 + 1)$
8	$y(x) = x + \log_2(x^2 + 1)$

Задача 1.2. Построить в одной системе координат графики функций

Вариант	Условие		
1	$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right],$ $y_1(x) = \frac{7}{2+x^2},$ $y_2(x) = (3+x)\sin(x)$		
2	$x \in [1; 9],$ $y_1(x) = \frac{3 - x^2}{x + 2},$ $y_2(x) = 2x - \lg(x) + 1, 2$		
3	$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right],$ $y_1(x) = x - \cos(x),$ $y_2(x) = x - 2x^2$		
4	$x \in [-2, 2],$ $y_1(x) = x \sin(x),$ $y_2(x) = \frac{1}{3x}$ $x \in [-5, 5],$		
5	$x \in [-5, 5],$ $y_1(x) = \frac{1}{e^x + e^{-x}},$ $y_2(x) = \sin(x^2 + 5)$		
6	$x \in [-4\pi; 4\pi],$ $y_1(x) = \operatorname{tg}(x),$ $y_2(x) = \operatorname{ctg}(x)$		

Вариант	Условие	
7	$x \in [-3; 3],$ $y_1(x) = x^2 + 2x + 4,$ $y_2(x) = 3\sin(x) + 7 $	
8	$x \in [-3; 3],$ $y_1(x) = 2x^2 + 7x + 4.$ $y_2(x) = 3\sin(x) + 7 $	

Задача 1.3. В полярной системе координат построить график ρ

Вариант	Условие
1	$\rho = a \sin k \varphi, \ a = 1/2, \ k = 3$
2	$\rho = \frac{\alpha}{\varphi^2}, \alpha = 3$
3	$\rho = 2a\cos\varphi, \ a = 3$
4	$\rho = a \sin k \varphi, \ a = 2, \ k = 5/3$
5	$\rho = a\varphi - l, \ l \ge 0, \ a = 4, \ l = 1$
6	$\rho = \frac{a}{\cos \varphi} - \operatorname{atg}\varphi, \ a = 1$
7	$\rho = a \sin \frac{\varphi}{2}, \ a = 3$
8	$\rho = 2r(1 - \cos \varphi), r = 3$

Задача 1.4. С помощью манипулятора построить динамическое представление поверхности

Вариант	Условие	
1	$cos(tx)sin(ty),$ $x, y = -\pi\pi$	
2	$xy\sin(txy), x, y = -\pi\pi$	
3	$\cos(ty)\sin(tx)\sin(\cos(t)),$ $x, y = 12$	
4	$\cos(ty)\sin(2x),$ $x, y = 12$	
5	$\sin(txy)(x-4),$ $x, y = -\pi\pi$	
6	$2\sin(tx) - \cos(ty),$ x, y = 12	
7	$(\sin(x-y) + \sin(xy))(\cos(t-2)),$ $x, y = -\pi\pi$	
8	$\sin(x^2 - 2y^2 + t), x, y = -11$	

Задача 1.5. Построить график функции f(x)

Вариант	Условие	
1	$f(x) = \begin{cases} \sqrt{1+x^2}, & x \le 0, \\ \frac{1+x}{1+\sqrt[3]{1+e^{-0.2x}}}, & x > 0 \end{cases}$	

Вариант	Условие		
2	$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right],$ $f(x) = \begin{cases} \frac{3 + \sin^2(2x)}{1 + \cos^2(x)}, & x \le 0, \\ 2\sqrt{1 + 2x}, & x > 0 \end{cases}$		
3	$f(x) = \begin{cases} 2\sqrt{1+2x}, & x > 0 \\ x \in [-1,4;1,4], \\ \sqrt[4]{1+x^2}, & x \le 0, \\ \sin^2(x) + \frac{1+x}{1+\cos^2(x)}, & x > 0 \end{cases}$		
4	$f(x) = \begin{cases} \frac{1+x^3}{\sqrt{1+x^6}}, & x \le 0, \\ 4x + \frac{\cos^2(x)}{1+x}, & x > 0 \end{cases}$		
5	$f(x) = \begin{cases} \frac{\sqrt{1+x^2}}{2 x }, & x < 0, \\ \frac{1}{2+\cos^3(x)}, & x \ge 0 \end{cases}$		
6	$f(x) = \begin{cases} \frac{\sqrt{1+ x }}{2+ x }, & x \le 0, \\ \frac{1+x}{2+\cos^5(x)}, & x > 0 \end{cases}$		

Вариант	Условие	
7	$f(x) = \begin{cases} \frac{1+x}{\sqrt{1+x^6}}, & x \le 0, \\ 4x + \frac{tg^2(x) + \sin(2x)}{1+x}, & x > 0 \end{cases}$ $x \in [-2; 1, 7],$ $\sqrt{1+2x^2 - \sin^2(x)}, & x \le 0,$	
8	$f(x) = \begin{cases} \sqrt{1 + 2x^2 - \sin^2(x)}, & x \le 0, \\ \frac{2 + x}{\sqrt[3]{2 + e^{-0.1x}}}, & x > 0 \end{cases}$	

Контрольные вопросы

- 1. Какая встроенная функция позволяет построить график функции в декартовой системе координат?
 - 2. Каким образом задается модуль функции?
- 3. Как можно задать десятичный и натуральный логарифм в системе Wolfram Mathematica?

- 1. Титульный лист.
- 2. Текст программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 2 ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ

Любое число, которое выдает эксперимент, — это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности.

Погрешность – это отклонение результата измерения от истинного значения измеряемой величины.

Специалист в расчетах предъявляет численный результат измерения и указывает все сопутствующие погрешности. Численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, не имеет смысла.

Рассмотрим основные типы погрешностей:

- статистическая (погрешность данных);
- систематическая (погрешность метода);
- теоретическая погрешности (погрешность модели).

Часто исследования носят выборочный характер, при котором наиболее важным основанием является возможность распространения полученных результатов и выводов на всю генеральную совокупность. В таком случае сплошное исследование нецелесообразно. Обеспечение этой нецелесообразности — вопрос о репрезентативности выборки, т. е. достаточной количественной и качественной представительности генеральной совокупности в выборке.

Условиями соблюдения репрезентативности выборки являются:

- 1) равная возможность каждого члена генеральной сово-купности попасть в выборку;
 - 2) проведение отбора независимо от изучаемого признака;
- 3) произведение отбора из однородных совокупностей (по возможности);
 - 4) величина выборки должна быть достаточно большой.

Далее возникает вопрос: как определить достаточный объем выборки? Приведем пример определения объема выборочной совокупности. В ходе подготовки к проведению исследования на основании теоретических посылок были выделены характеристики и признаки, подлежащие изучению.

Пример расчета оптимального объема в системе Wolfram Mathematica:

$$list=\{1,1,1,1,1,1,1,1,2,3,4,3,4,4,3,2,2,0,0,4,6\}$$
 $Length[list]$
 $s=StandardDeviation[list]//N$
 $p=0.99$
 $t=Solve[1/2. Erf[x1/Sqrt[2.]]==p/2,x1][[1,1,2]]//Quiet;$
 $delta=0.1$
 $n=50000$
 $n1=Round[t t s s n/(1. delta delta n+t t s s)].$

Для количественной характеристики этой меры используют понятие абсолютной и относительной погрешности.

Пусть x — точное и неизвестное значение величины, а x^* — известное приближенное значение. Абсолютная погрешность принимает вид:

$$\Delta x = \left| x - x^* \right|.$$

В качестве абсолютной погрешности результатов измерений часто принимают половину цены деления измерительного прибора:

$$x \approx x^* \pm \Delta x$$
.

Абсолютная погрешность $\Delta x = 0,05$ мм при x = 100 мм соответствует достаточно высокой точности изменений, а при

 $x=1\,$ мм — низкой. Этого недостатка лишено понятие относительной погрешности. Поэтому для более наглядной характеристики точности приближенного значения используют относительную погрешность, которая определяется как отношение абсолютной погрешности к модулю приближенного числа x^*

$$\delta x^* = \frac{\Delta x}{\left|x^*\right|}.$$

При вычислениях с приближенными числами важной задачей является оценка степени влияния погрешностей исходных данных на точность окончательного результата.

В частности, при вычислении значений функций, аргументами которых являются приближенные числа, возникает вопрос о погрешности вычисляемых значений.

Определение величины погрешности результата по известным погрешностям исходных данных составляет прямую задачу теории погрешностей.

Пусть
$$y = f(x_1, x_2, ..., x_n)$$
.

Тогда абсолютная погрешность функции принимает вид:

$$\Delta y = \sum_{i=1}^{n} \Delta x_i^k \frac{\partial}{\partial x_i} f(x_1^*, x_2^*, ..., x_n^*).$$

Задача 2.1. Для определения среднего возраста N студентов факультета необходимо провести выборочное обследование методом случайного бесповторного отбора. Предварительно установлено, что среднее квадратическое отклонение возраста студентов равно s годам. Сколько студентов нужно выбрать, чтобы с вероятностью 0,95 средняя ошибка выборки не превышала Δ лет?

Вариант	N	S	Δ
1	1000	2	1
2	2000	3	2
3	2311	5	2
4	1234	4	1
5	3421	3	2
6	2345	2	4
7	6785	1	3
8	4324	3	2
9	3456	4	1
10	4132	5	2
11	1111	4	1
12	1237	2	2
13	8765	2	3
14	4567	3	4
15	6523	4	3
16	3476	5	2
17	6665	3	1

Задача 2.2. Перевести значение яркости пикселя в оттенок серого можно по следующей формуле:

$$F(R, G, B) = 0.3 R + 0.59 G + 0.11 B$$

Величина	Значение	Абсолютная погрешность
R	0, <i>NN</i>	0,1 <i>N</i>
G	0,1 <i>N</i>	$0,\!0N$
В	0,N2	0,1

N — номер варианта.

Найти абсолютную и относительную погрешность функции F.

Указания к выполнению:

$$F[R_,G_,B_]:=0.3\ R+0.59\ G+0.11\ B$$
 $dfR=D[F[R,G,B],R]$
 $dfG=D[F[R,G,B],G]$
 $dfB=D[F[R,G,B],B]$
 $dr=0.2;dg=0.3;db=0.1;$
 $dF=dfR\ dr+dfG\ dg+dfB\ db.$

Задача 2.3. Записать закон Гука для материала, заданного для варианта.

Вариант	Материал	Вариант	Материал
1	Алюминий	11	Паутина
2	Бетон	12	Резина
3	Вольфрам	13	Свинец
4	Гранит	14	Сталь
5	Железо	15	Стекло
6	Капрон	16	Хлопок
7	Кирпичная кладка	17	Чугун
8	Лед	18	Шелковая нить
9	Мрамор	19	Шерсть
10	Органическое стекло	20	Эбонит

Считая, что коэффициент жесткости задан точно, найти абсолютную и относительную погрешность силы упругости для удлинения, соответствующего варианту.

Вариант	Удлинение, мм	Абсолют- ная по- грешность	Вариант	Удлинение, мм	Абсолют- ная по- грешность
1	1	0,5	11	4	0,5
2	2	0,2	12	3	0,2
3	3	0,5	13	2	0,3

Вариант	Удлинение, мм	Абсолют- ная по- грешность	Вариант	Удлинение, мм	Абсолют- ная по- грешность	
4	5	0,4	14	1	0,5	
5	3	0,6	15	3	0,7	
6	2	0,1	16	4	0,4	
7	1	0,2	17	5	0,3	
8	7	0,4	18	7	0,2	
9	6	0,5	19	8	0,1	
10	4	0,3	20	8	0,1	

Контрольные вопросы

- 1. Что такое абсолютная погрешность величины?
- 2. Что является мерой точности результата?
- 3. Каким образом можно найти относительную погрешность функции?

- 1. Титульный лист.
- 2. Основные определения.
- 3. Текст программы.
- 4. Ответы на контрольные вопросы.

Лабораторная работа № 3 ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ

Задача интерполяции состоит в нахождении приближенных значений табличной функции при аргументах X, не совпадающих с узловыми значениями аргумента, путем вычисления значений функции f(x).

Если $x \in [x_0, x_n]$, то нахождение приближенного значения функции f(x) называется интерполяцией, если $x \notin [x_0, x_n]$, то процесс называют экстраполяцией.

Пример построения интерполяционной функции:

Итерполяционный полином Лагранжа может быть представлен следующим образом:

$$L_n(x) = \sum_{i=0}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

Пример реализации в Wolfram Mathematica:

InterpolatingPolynomial[
$$\{1,4,9,16\},x$$
] Expand[%] Plot[%, $\{x,-1,1\}$].

Задача 3.1. Изобразить график интерполяционной функции для заданного массива значений

	Вариант 1					Вариант 2					
X	0	0,4	1	1,5	2,1	X	9,5	5,8	4,0	1,3	3,4
Вариант 3					Вариант 4						
X	2	4	6	8	9	X	-2	-1	0	1	2
		Вари	ант 5			Вариант 6					
X	1	1,5	2	2,5	3	X	6,1	0,8	0,3	1,2	0,4
		Вари	ант 7			Вариант 8					
X	5,6	4,8	9,6	5,0	5,3	X	3,7	1,5	9,3	0,4	6,5
	Вариант 9					Вариант 10					
X	2	4	5	6	8	X	-2	0	1	2	4

Задача 3.2. Изобразить график интерполяционного полинома для заданного массива значений

	Вариант 1							Вари	ант 2		
X	0	0,4	0,1	1,5	2,1	X	9,3	5,8	4,0	1,3	3,4
Вариант 3							Вари	ант 4			
X	2	4	6	8	9	X	-2,3	-1	4,2	1	2
Вариант 5					Вариант 6						
X	1	-2,5	2	2,5	5	X	6,1	0,8	0,3	1,2	0,4
		Вари	ант 7			Вариант 8					
X	5,6	2,8	9,6	5,0	2,3	X	3,7	5,5	3,3	0,4	6,5
Вариант 9					Вариант 10						
X	2	4	5	6,4	8	X	-2	2,7	1	2	4

Задача 3.3. Пусть f(x) некоторая функция. Необходимо построить интерполяционный полином Лагранжа. Найти значения полинома Лагранжа для значений x: 1/4, 1/3. Определить абсолютную погрешность вычислений

F	Bариант 1 $f(x) = Cos(x)$					Bариант $2 f(x) = Sin(x+3)$					
X	0	0,4	0,1	1,5	2,1	X	9,3	5,8	4,0	1,3	3,4
Bариант 3 $f(x) = Sin(x)$					Вариант $4 f(x) = Sin(3x - 2)$						
X	2	4	6	8	9	X	-2,3	-1	0,2	1	2
Bариант $5 f(x) = Cos(x) + 2$				Bариант 6 $f(x) = 3Sin(x)$							
X	1	2,5	2	2,5	5	X	6,1	0,8	0,3	1,2	0,4
Ba	риант	r 7 f(x)	$\mathbf{c}(\mathbf{c}) = \mathbf{C}(\mathbf{c})$	os(x –	- 2)	Bариант $8 f(x) = Sin(x) - 8$					
X	5,6	2,8	9,6	5,0	2,3	X	3,7	5,5	3,3	0,4	6,5
В	Bариант $9 f(x) = Cos(5x)$			Bариант $10 f(x) = Sin(x+3)$							
X	2	4	5	6,4	8	X	-2	2,0	1	2	4

Для того чтобы избежать высокой степени полинома, отрезок интерполяции разбивают на несколько частей, и на каждом частичном интервале строят самостоятельный локальный полином невысокой степени.

Кусочно-линейная интерполяция предусматривает построение на каждом интервале аппроксимации отрезком прямой.

Кусочно-квадратичная интерполяция предусматривает построение аппроксимации на интервале, содержащем три точки, в виде параболы.

Существенным недостатком кусочной интерполяции является то, что в точках стыка разных интерполяционных полиномов оказывается разрывной их первая производная.

Этот недостаток устраняется при использовании особого вида локальной интерполяции – интерполяции сплайнами.

Сплайн – это функция, которая на каждом частичном интервале представляется полиномом некоторой степени, и на всем отрезке непрерывна вместе с несколькими своими производными.

На интервале $[x_{i-1}, x_i]$ кубический сплайн можно представить в виде:

$$s_i(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3$$
.

Условия сшивания соседних сплайнов в узловых точках:

1) равенство значений сплайнов и аппроксимируемой функции в узлах:

$$s_i(x_{i-1}) = y_{i-1},$$

$$s_i(x_i) = y_i;$$

2) непрерывность первой и второй производной сплайнов в узлах:

$$s_i'(x_i) = s_{i+1}'(x_i),$$

$$s_i''(x_i) = s_{i+1}''(x_i).$$

Дополнительное условие – нулевая кривизна сплайна в граничных точках:

Show[Graphics[{Red,Point[pts],Green,Line[pts]},Axes->True],ParametricPlot[f[t],{t,0,1}]].

Задача 3.4. Изобразить график функции, заданной таблицей значений. Построить кусочно-линейную и сплайн интерполяцию функций

	Вариант 1							Вари	ант 2		
X	0	0,4	1	1,5	2,1	X	9,5	5,8	4,0	1,3	3,4
Y	6,7	7,1	7,6	8,1	8,5	Y	1,5	0,1	-1,3	-2,1	-1,6
Вариант 3							Вари	ант 4			
X	2	4	6	8	9	X	-2	-1	0	1	2
Y	-0,8	-1,5	-2	-3	-3,7	Y	2,3	2,8	3,6	4	4,7
	Вариант 5					Вариант 6					
X	1	1,5	2	2,5	3	X	6,1	0,8	0,3	1,2	0,4
Y	0,3	0,8	1,3	1,9	2,5	Y	0	-2,0	-3,3	-1,8	-2,9
		Вари	ант 7			Вариант 8					
X	5,6	4,8	9,6	5,0	5,3	X	3,7	1,5	9,3	0,4	6,5
Y	-0,4	-1,6	1,3	0,2	-0,1	Y	-1,7	-2,0	2,2	-3,2	0,9
	Вариант 9					Вариант 10					
X	2	4	5	6	8	X	-2	0	1	2	4
Y	-1	5	8,5	12	18	Y	0,5	1	1,5	2	3

Контрольные вопросы

- 1. Чем интерполяция отличается от экстраполяции?
- 2. Что такое сплайн?
- 3. Что такое аппроксимация функции?

- 1. Титульный лист.
- 2. Текст программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 4 ЭЛЕМЕНТЫ РЕГРЕССИОННОГО АНАЛИЗА

Пусть в ходе эксперимента по изучению зависимости между величинами Y и X путем изменений была получена таблица значений:

X	x_0		x_n
Y	\mathcal{Y}_0	• • •	\mathcal{Y}_n

Задача состоит в том, чтобы найти формулу y = f(x), приближенно выражающую эту зависимость.

Процесс построения эмпирической формулы для установленной из опыта функциональной зависимости распадается на два этапа: сначала выбирается вид формулы и уже после этого определяются численные значения параметров, для которых приближение оказывается наилучшим.

Составим сумму квадратов отклонений для всех табличных точек:

$$Q = \sum_{i} (\varphi(x_i, c_0, c_1, ..., c_m) - y_i)^2,$$

где $c_0, c_1, ..., c_m$ будут определяться из условия минимума функции Q. В этом заключается основная идея метода наименьших квадратов.

Пример. Построение графиков нелинейных зависимостей для исходных данных, заданных таблично.

data=
$$\{\{0,1\},\{1,0\},\{3,2\},\{5,4\}\};$$

line = Fit[data, $\{1,x\},x$]
parabola = Fit[data, $\{1,x,x^2\},x$]

 $Show[ListPlot[data, PlotStyle->Red], Plot[\{line, parabola\}, \{x, 0, 5\}]]\\ Table[Prime[x], \{x, 20\}]$

 $FindFit[\%,a \ x \ Log[b+c \ x], \{a,b,c\},x] \\ data=\{\{0,1\},\{1,0\},\{3,2\},\{5,4\},\ \{6,4\},\{7,5\}\}; \\ nlm=NonlinearModelFit[data,Log[a+b \ x^2],\{a,b\},x] \\ Show[ListPlot[data],Plot[nlm[x],\{x,0,7\}],Frame->True] \\ nlm["FitResiduals"] \\ ListPlot[\%,Filling->Axis] \\ nlm["RSquared"]$

Задача 4.1. Известна длительность прорастания всходов кукурузы. Выбрать нелинейную аналитическую зависимость для исходных данных, заданных таблично. Построить график остатков

Год	Длительность произрастания, суток
1981	19
1982	22
1983	21
1986	13
1987	14
1988	18
1989	20
1990	10
1991	26
1992	18
1993	9
1994	11
1995	11
1996	18
1997	18
1998	11
1999	11
2000	7
2001	11
2002	15

Задача 4.2. Выбрать нелинейную аналитическую зависимость для исходных данных, заданных таблично. Построить график остатков

		Вари	ант 1					Вари	ант 2		
X	0	1	2	4	6	X	1	2	3	4	5
Y	6	7,2	9,4	11	15	Y	3,2	4,2	2,7	0,7	1,2
Вариант 3							Вари	ант 4			
X	0	1	3	6	8	X	4,1	5	8,1	10	12
Y	3,2	4,3	5,4	8,3	9	Y	4	8	10	14	16
	Вариант 5					Вариант 6					
X	1,4	1,5	1,8	2	2,4	X	0	0,4	1	1,5	2,1
Y	2	1,9	2,3	2,6	3	Y	6,7	7,1	7,6	8,1	8,6
		Вари	ант 7					Вари	ант 8		
X	0,3	0,9	1,5	2	2,2	X	1	4	9	16	25
Y	0,2	0,4	0,3	0,5	0,8	Y	0,1	3	8,1	1,9	23,9
	Вариант 9					Вариант 10					
X	-2	0	1	2	3	X	-3	-2	-1	0	1
Y	4,7	1	1,2	3,1	-5	Y	1,2	0,8	0,4	0	0,1

Контрольные вопросы

- 1. Что такое регрессия?
- 2. Каким образом оценивается построенная регрессия?
- 3. Какие есть встроенные функции, позволяющие строить регрессию в системе Wolfram Mathematica?

- 1. Титульный лист.
- 2. Тест программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 5 РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СИСТЕМЕ WOLFRAM

Дифференциальные уравнения широко используются для математического моделирования процессов и явлений: движение космических объектов, процесс химических реакций; динамика биологических популяций в природе, модели экономического развития.

В общем случае обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y = y(x). И их можно записать в виде:

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Если дополнительные условия задаются в одной точке:

$$y(x_0) = y_{0,0}, \ y'(x_0) = y_{1,0}, \dots, \ y^{(n-1)}(x_0) = y_{n-1,0},$$

тогда такая задача называется задачей Коши.

Методы решения обыкновенных дифференциальных уравнений: аналитические; приближенные; численные.

Пример. Нахождение аналитического решения дифференциального уравнения:

DSolve[
$$\{y'[x]+y[x]==5 \text{ Sin}[x]\},y[x],x$$
].

Нахождение численного решения дифференциального уравнения:

$$s=NDSolve[\{y'[x]==y[x]Cos[x+y[x]],y[0]==1\},y,\{x,0,30\}]\\ Plot[Evaluate[y[x]/.s],\{x,0,30\},PlotRange->All].$$

Решение системы уравнений:

DSolve[
$$\{y'[x]==x^2y[x],z'[x]==5z[x]\},\{y,z\},x$$
].

Решение задачи Коши:

DSolve[
$$\{y'[x] == y[x](1-y[x]/27),y[0]==a\},y,x]//Quiet.$$

График решения при разных значениях параметра:

Plot[Evaluate[
$$y[x]/.\%/.\{\{a->1/13\},\{a->1/2\},\{a->4\}\}\}],\{x,0,18\}].$$

Задача 5.1. Найти аналитические решения данных уравнений

Вариант	Условие
1	a) $x \cdot y' - 2 \cdot y = 2 \cdot x^4$; 6) $(2x + 1) \cdot y' = 4x + 2y$
2	a) $y' + y \cdot tgx = \frac{1}{\cos x}$; 6) $x^2 \cdot y' + x \cdot y = -1$
3	a) $(2x + 1) \cdot y' = 4x + 2y;$ b) $y = x \cdot (y' - x \cdot \cos x)$
4	a) $(x \cdot y + e^x) \cdot dx - x \cdot dy = 0;$ 6) $x \cdot (x - 1) \cdot y' + y = x^2 \cdot (2x - 1)$
5	a) $x^2 \cdot y' + x \cdot y = -1$; 6) $x \cdot y' + x^2 + x \cdot y - y = 0$
6	a) $y = x \cdot (y' - x \cdot \cos x);$ 6) $(1 + x^2) \cdot y' - 2 \cdot x \cdot y = (1 + x^2)^2$
7	a) $x \cdot (x-1) \cdot y' + y = x^2 \cdot (2x-1);$ 6) $3 \cdot y' + y = y^{-2}$
8	a) $x \cdot y' + x^2 + x \cdot y - y = 0$; b) $x \cdot y' - 2 \cdot x \cdot y = 3 \cdot y^2$

Задача 5.2. Решить задачи Коши, представить графически Задачи Коши (*N* – номер варианта):

Дифференциальное уравнение	Начальное условие
$y' + N \cdot y = \sin(x)$	y(0) = 2
$y' = 0,04 \cdot y$	y(0) = N
$y' = -N \cdot y$	y(0) = 100
$y' = 4 - N \cdot x$	y(0) = 2
$y' = -\frac{x}{N \cdot y}$	y(0) = 20

Задача 5.3. Построить график численного решения

Задачи Коши (N – номер варианта):

Дифференциальное уравнение	Начальное условие
$Ny''(x) + \sin(y(x) + N)y(x) = 0$	y(0) = N, y'(0) = 0

Контрольные вопросы

- 1. Что такое задача Коши?
- 2. Какие численные методы решения ДУ существуют?
- 3. Каким образом решается ДУ в системе Wolfram Mathematica?

- 1. Титульный лист.
- 2. Текст программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 6 ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

К исследованию такого уравнения приводит рассмотрение задач об электрических и магнитных полях, о стационарном тепловом поле, задач гидродинамики.

Решение уравнения Пуассона будем искать в некоторой ограниченной области:

$$\Omega = \{0 \le x \le q_1, 0 \le y \le q_2\}.$$

Изменяя независимые переменные х и у.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y).$$

Граничные условия:

$$u(0, y) = \mu_1(y), \ u(a, y) = \mu_2(y),$$

$$u(x,0) = \mu_3(x), \ u(x,b) = \mu_4(x).$$

Пример реализации в системе Mathematica:

$$NDSolve[\{D[u[x,y],x,x]+D[u[x,y],y,y]==0,u[0,y]==0,u[1,y]==5,\\ u[x,0]==9,u[x,1]==45\},u,\{x,0,1\},\{y,0,1\}]\\ ContourPlot[Evaluate[u[x,y]/.%],\{x,0,1\},\{y,0,1\},PlotRange->All].$$

Задача 6.1. Задано распределение температуры в квадратной пластине с начальными условиями (N – номер варианта)

Граничные условия	T
X=0	0
X=1	N
Y = 0	100(x - N)
Y=1	100x - N

Представить распределение графически.

Рассмотрим уравнение вида

$$u_{t^2} - a^2 u_{x^2} = f(x,t),$$

уравнение малых поперечных колебаний математической струны.

Для корректной постановки задач рассмотрим два рода задач: задачи Коши и краевые задачи.

Формулировка задачи Коши: нужно найти решение данного уравнения для t > 0, $x \in \Omega$ (здесь Ω — ограниченная область с гладкой границей) при начальных условиях:

$$\begin{cases} u \big|_{t=0} = \varphi(x_i), \\ u_t \big|_{t=0} = \psi(x_i). \end{cases}$$

Физически условия соответствуют заданию начальных отклонений и начальных скоростей точек струны.

Формулировка краевой задачи: нужно найти функцию u(x, t), удовлетворяющую уравнению, начальным условиям, а также одной из следующих групп краевых условий:

$$u|_{x=0} = g_1(t), \quad u|_{x=l} = g_2(t).$$

Они означают, что задана начальная скорость на концах струны.

$$u_x|_{x=0} = g_1(t), \quad u_x|_{x=l} = g_2(t).$$

Они означают, что по концам струны приложены определенные силы

$$(u_x + \alpha(t)u)|_{x=0} = g_1(t), \quad (u_x + \beta(t)u)|_{x=l} = g_2(t).$$

Они означают что, на концах струны присутствуют и упругие силы.

В математической физике под струной понимают гибкую, упругую нить. Натяжения, возникающие в струне в любой момент времени, направлены по касательной к ее профилю. Пусть струна длины 1 в начальный момент направлена по отрезку оси от 0 до 1. Предположим, что концы струны закреплены в точках x = 0 и x = 1. Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя положение, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, что струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени. Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси ОХ и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией u(x, t), которая дает величину перемещения точек струны с абсциссой x в момент t.

Пример реализации:

```
\label{eq:weqn=D[u[x,t],{t,2}]==D[u[x,t],{x,2}];} ic=\{u[x,0]==E^(-x^2), Derivative[0,1][u][x,0]==1\};\\ sol=DSolve[\{weqn,ic\},u,\{x,t\}];\\ Plot3D[Evaluate[u[x,t]/.sol[[1]]],\{x,0,12\},\{t,0,10\},PlotRange->All,PlotPoints->120]
```


$$\begin{split} Grid[Partition[Table[Plot[Evaluate[u[x,t]/.sol[[1]]],\{x,0,20\},\\ PlotRange->&All],\{t,0,12\}],3], ItemSize->&10] \end{split}$$

Задача 6.2. Построить график численного решения при разных значениях x и t

Вариант	Условие задачи
1	$u_{tt} = u_{xx},$ $u(0,x) = x, \ u_t(0,x) = 0.$
2	$u_{tt} = u_{xx},$ $u(0,x) = 0, \ u_t(0,x) = x^3$
3	$u_{tt} = u_{xx},$ $u(0,x) = 0, \ u_t(0,x) = x$

Вариант	Условие задачи
4	$u_{tt} = u_{xx},$ $u(0,x) = \cos x, \ u_t(0,x) = x$
5	$u_{tt} = u_{xx},$ $u(0,x) = 2\cos x, \ u_t(0,x) = x$
6	$u_{tt} = u_{xx},$ $u(0,x) = \cos x, \ u_t(0,x) = x^3$
7	$u_{tt} = u_{xx}$, u $(0,x) = 2\cos x$, $u_t(0,x) = x^3$
8	$u_{tt} = u_{xx},$ $u(0,x) = \cos x, \ u_t(0,x) = 0$

Задача 6.3. Построить график численного решения при разных значениях x и t

Вариант	Условие задачи
1	$u_{tt} = u_{xx} + x(x-1),$
	$u(0,x) = x, \ u_t(0,x) = 0$
2	$u_{tt} = u_{xx} + 2x(x-1),$
	$u(0,x) = 0, \ u_t(0,x) = 0$
3	$u_{tt} = u_{xx} + x(x-1),$
	$u(0,x) = 0, \ u_t(0,x) = x$
_	$u_{tt} = u_{xx} + 2x(x-1),$
4	$u(0,x) = 0, \ u_t(0,x) = x^3$

Вариант	Условие задачи
5	$u_{tt} = u_{xx} + \sin x,$ $u(0,x) = 0, \ u_t(0,x) = 0$
6	$u_{tt} = u_{xx} + \sin x,$ $u(0,x) = 0, \ u_t(0,x) = x$
7	$u_{tt} = u_{xx} + \sin x,$ $u(0,x) = 0, \ u_t(0,x) = x^3$
8	$u_{tt} = u_{xx} + 2\sin x,$ $u(0,x) = 0, \ u_t(0,x) = 0$

Контрольные вопросы

- 1. Каким образом записывается уравнение Лапласа?
- 2. Какой вид имеет уравнение Пуассона?
- 3. Какие встроенные функции позволяют решать ДУ в частных производных в системе Wolfram Mathematica?

- 1. Титульный лист.
- 2. Текст программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 7 ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПРИКЛАДНОЙ МАТЕМАТИКИ

Машинное обучение в Mathematica может использоваться для автоматизации задач, требующих человеческое суждение (медицинский диагноз, контроль качества, анализ эмоций); принятия решений на основе крупномасштабных данных (прогнозирование продаж, потребительские модели); для разработки эффективных приближенных алгоритмов нового поколения (приближенные вычисления); автоматической идентификации элементов в большом наборе данных (классификация изображений, фильтрация входящих сообщений на электронную почту); создания встроенных интеллектуальных систем; автоматизации задач оценки (локации, анкетных данных); синтеза речи, передачи выражения лица и голоса и многое другое.

Пример построения класса компьютерных героев. Вызов функции для текущего изображения Image11.

legendary=Classify[<|
"Griffin"->{Image1, Image2, Image3, Image4, Image5},
"Centaur"->{Image6, Image7, Image8, Image9, Image10},
"Dragon"->{Image11, Image12, Image13, Image14, Image15},
"Unicorn"->{Image16, Image17, Image18, Image19, Image20}|>]
legendary[Image11].

Задача 7.1. Обучить систему Mathematica выполнению следующих заданий

Вариант	Задание
1	Распознавание дорожных знаков
2	Распознавание настроения

Вариант	Задание
3	Распознавание почерка
4	Распознавание животного
5	Распознавание пола
6	Распознавание возраста
7	Распознавание бракованного изделия
8	Распознавание птиц

Контрольные вопросы

- 1. Что обозначает понятие нейронная сеть?
- 2. Опишите принцип организации машинного обучения в сисистеме Wolfram Mathematica?

- 1. Титульный лист.
- 2. Текст программы.
- 3. Ответы на контрольные вопросы.

Лабораторная работа № 8 КРИПТОСИСТЕМЫ

Рассмотрим основные исторические криптосистемы защиты информации от несанкционированного доступа. Шифр Цезаря входит в класс шифров, называемых «подстановка» или «простая замена». Это такой шифр, в котором каждой букве алфавита соответствует буква, цифра, символ или какаянибудь их комбинация.

Пример. Сообщение об одержанной победе выглядело так. YHQLYLGLYLFL (ЛАТ.)

ТУЛЫИОЦЕЛЖЗОТСДЗЖЛО (РУС.)

Пришел, увидел, победил.

Пример реализации расшифровки в Wolfram Mathematica

StringReplace ["негжугх ёлтсхзрцкю угезр фцппз нгхзхсе",

Ізаменить в строке

 $\{"r" > "a", "д" > "6", "e" > "в", "e" > "r", "ж" > "д", "з" > "e", "и" > "e", "й" > "x", "к" > "з", "л" > "и", "м" > "й", "н" > "к", "о" > "л", "п" > "м", "р" > "н", "с" > "о", "т" > "л", "у" > "р", "ф" > "с", "х" > "л", "ц" > "у", "ч" > "д", "ы" > "$

Первое известное применение тайнописи в России относится к XIII в. Эту систему называли «тарабарской грамотой». В этой системе согласные буквы заменяются по схеме:

Б	В	Γ	Д	Ж	3	К	Л	M	Н
Щ	Ш	Ч	Ц	X	Φ	T	C	P	П

При шифровании буквы, расположенные на одной вертикали, переходят одна в другую. Остальные буквы остаются без изменения

StringReplace ["негжугх ёлтсхзрцкю угезр фцппз нгхзхсе",

Ізаменить в строке

{"б"->"щ", "в"->"ш^{*}", "г"->"ч", "д"->"ц", "ж"->"х", "з"->"ф", "к"->"т", "л"->"с", "м"->"р", "н"->"п", "щ"->"б", "ш"->" в ", "ч"->"г", "ц"->"д", "х"->"ж", "ф"->"з", "т"->"к", "с"->"л", "р"->"м", "п"->"н"}] квадрат гипотенузы равен сумме квадратов катетов

К классу «перестановка» относится шифр «маршрутная транспозиция» и его вариант «постолбцовая транспозиция». В данный прямоугольник вписывается сообщение по строкам. Шифрованный текст найдем, если будем выписывать буквы в порядке следования столбцов.

- Задача 8.1. Расшифровать криптограмму Цезаря.
- Задача 8.2. Перевести текст с тарабарской грамоты.
- Задача 8.3. Расшифровать постолбцовый вариант маршрутной транспозиции.

Вариант 1

- 1. ефвигв жлччзузрщлуцзпгв чцрищлв рзтузуюерг
- 2. пе нсюй ш тосоцед, нмичоцикля шоцы паникьля
- 3. ксеевоетн жедтоопис йртьбсв о, уыенл гдт

Вариант 2

- 1. рлъхс рз езърс теж оцрем
- 2. ноц сехагий тарепь и шоца пе кегек
- 3. Оелекчо окдклицоо ап к ароню

Вариант 3

- 1. ефз, ъхс текргзхфв, лпззх ълфос, лдс рзескпейре рл тервхя рлъзес, рл текргхя дзк рзес
 - 2. щеф кмуца пе шысошивь и мыщту иф нмуца
 - 3. Зосн вылымтийоцсо е есм лекзсзсея

Вариант 4

- 1. ефз лфнцффхег хвесхзбх н пцкюнз; ефз ргцнл н пгхзпгхлнз
- 2. щыс щы сел, лосошьи нмисекяк.
- 3. Заеууе еаоаи с гтдв в емвнпа, асрнтт

Вариант 5

- 1. ср фхго тсахсп, жов пгхзпгхлнг ц рзес рз шегхгос чгрхгклл
- 2. тко пе лахас цемеша, кору пе сехакь ш кепи
- 3. Ваау со оо г-е сгднлу нвту

Вариант 6

- 1. тсах жсойзр елжзхя хс, ъзес рз елжвх жуцелз
- 2. цшахцы ш чоц секо пе щышаек
- 3. Вю рюгу тлу вр м с нпв о р ататудонуиееуядвокд, оюойет

Вариант 7

- 1. пзшгрлнг зфхя угм пгхзпгхлъзфнлш ргцн
- 2. секор пе нминалевь, фирой пе нмипелевь
- 3. Нпеои нео ртаи лкм, в

Вариант 8

- 1. е пгхзпгхлнз рзх флпесосе жов рзвфрюш пюфозм
- 2. тко шелпой пе нмосехик, шель чоц щуцек лык
- 3. Нпеои нео ртаи лкм, в

- 1. Титульный лист.
- 2. Текст программы.

Лабораторная работа № 9 РАБОТА СО СПИСКАМИ

Некоторые функции, используемые для работы со списками:

MemberQ[s, form] — принадлежность элемента списку s.

Position[s, form] — номер элемента в списке s.

Part[s, i] — выбор i-го элемента списка s.

Select[s, crit] – выбор элементов списка s по критерию crit.

MatrixForm[s] – вывод списка в матричной форме.

TableForm[s] — вывод списка в табличной форме.

Sort[s] — сортировка списка.

Transpose[m] — транспонирование матрицы.

Union[s] — объединение списков.

First[s] – первый элемент списка.

Last[s] – последний элемент списка.

Delete[s, i] – удаление i-й элемент списка s.

ReplacePart[s, x, i] - i-й элемент списка s заменяется на x.

c * v (или c [Space] v) – умножение v на c.

IdentityMatrix[n] — формирование единичной матрицы n-го порядка.

DiagonalMatrix[] — формирование диагональной матрицы n-го порядка.

Inverse[m] — обратная матрица.

Det[m] — определитель матрицы m.

Задача 9.1. Сформировать списки

```
s1=\{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10\};

s2=\{1,2,3,4,5,6,7,8,9,10\};

s3=\{u,v,x,6,5,13,1,\cos(v),a,\pi,\ln(x)\};

s4=\{2,1,3,3,2,1,1,2,3,1,4,5,1,4\};

s5=\{1,2,3\};

s6=\{4,5,6\};

s7=\{0\}.
```

Задача 9.2. Вывести 1-й, 7-й и последний элементы списка *s*1.

Задача 9.3. Вставить x на 8-е место в списке s1.

Задача 9.4. Удалить 5-й элемент списка s1.

Задача 9.5. Заменить 3-й элемент списка s2 на x.

Задача 9.6. Отсортировать список s3 и s4 по возрастанию.

Задача 9.7. Сложить и умножить списки s5 и s6.

Задача 9.8. Вычислить Sin[s7].

Задача 9.9. Сформировать матрицы с помощью встроенных функций

$$e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} d1 & 0 & 0 \\ 0 & d2 & 0 \\ 0 & 0 & d3 \end{pmatrix}.$$

Построить аналогичные матрицы 30-го порядка.

Задача 9.10. Сформировать матрицу.

$$e = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Создать ее аналог для 50-го порядка.

Задача 9.11. Вывести сумму элементов 29-ой строки.

- 1. Титульный лист.
- 2. Текст программы.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бугров, Я. С. Высшая математика: в 3 т. Т. 2: Дифференциальное и интегральное исчисление / Я. С. Бугров, С. М. Никольский. М.: Дрофа, 2004. 288 с.
- 2. Бугров, Я. С. Высшая математика: в 3 т. Т. 3: Дифференциальные уравнения, кратные интегралы. Ряды. Функции комплексного переменного / Я. С. Бугров, С. М. Никольский. М.: Дрофа, 2004. 512 с.
- 3. Краснов, М. Л. Обыкновенные дифференциальные уравнения. Задачи и примеры с подробными решениями / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. М.: Едиториал УРСС, 2002.-256 с.
- 4. Кудрявцев, Л. Д. Курс математического анализа / Л. Д. Кудрявцев. М.: Дрофа, 2003. 704 с.
- 5. Пискунов, И. С. Дифференциальное и интегральное исчисление: в 2 т. / И. С. Пискунов. М., 1996. 416 с.
- 6. Гусак, А. А. Справочник по высшей математике / А. А. Гусак, Г. М. Гусак, Е. А. Бричкова. Мн.: БГУ, 1999. 640 с.
- 7. Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. Москва: ОНИКС Мир и образование, 2003. Ч. 2. 416 с.
- 8. Кузнецова, Л. А. Сборник заданий по высшей математике / Л. А. Кузнецова. – М.: Высш. шк., 2005.
- 9. Конспект лекций по математике для студентов инженерно-технических специальностей : в 4 ч. / И. Г. Латышева [и др.] Электрон. дан. Минск, БНТУ, 2007. Ч. 3.

СОДЕРЖАНИЕ

Введение	3
Лабораторная работа № 1. Графическое	
представление данных	6
Лабораторная работа № 2. Погрешность измерения	13
Лабораторная работа № 3. Интерполяция функций	19
Лабораторная работа № 4. Элементы	
регрессионного анализа	24
Лабораторная работа № 5. Решение	
дифференциальных уравнений в системе Wolfram	27
Лабораторная работа № 6. Численное решение	
дифференциальных уравнений в частных производных	30
Лабораторная работа № 7. Применение нейронных	
сетей для решения задач прикладной математики	37
Лабораторная работа № 8. Криптосистемы	39
Лабораторная работа № 9. Работа со списками	42
Список рекомендуемой литературы	44

Учебное излание

ГУНДИНА Мария Анатольевна КОНДРАТЬЕВА Наталья Анатольевна

ПРИКЛАДНАЯ МАТЕМАТИКА. ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ДАННЫХ

Учебно-методическое пособие для студентов специальности 1-38 80 01 «Приборостроение»

Редактор *Е. В. Герасименко* Компьютерная верстка *Е. А. Беспанской*

Подписано в печать 21.04.2021. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 2,67. Уч.-изд. л. 2,09. Тираж 100. Заказ 119.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.