Codeforces Problem 1763D

Problem. We call a permutation *bitonic* if all the elements increase until a certain index k, where $2 \le k \le n - 1$, and then decrease until the end.

Count modulo $10^9 + 7$ the number of bitonic permutations of length n such that $B_i = x$ and $B_j = y$, where i < j and $x \neq y$.

Solution. Given the definition of a bitonic permutation, we are motivated to go casewise on k when counting. Notice that since the elements increase up to k and decrease afterwards, B_k must be equal to the maximum value, n.

Observation. Without the for B_i and B_j , the number of total bitonic permutations A on n numbers is given by

$$A = \sum_{k=2}^{n-1} {n-1 \choose k-1} = 2^{n-1} - 2.$$

This works because we must set $B_k = n$, giving us n-1 elements left to choose from. We can then choose any k-1 of the remaining elements because there is only one way to increasingly sort each choice, and the choice of k-1 elements uniquely determines the decreasing elements.

With this idea in mind, we can start looking at the constrained problem. There are two main cases that we have to consider:

• Either $B_i = x = n$ or $B_j = y = n$. Having this condition forces k to be either i or j. This case is actually easier, however, as we only have to consider one value. Consulting the following diagram,

•
$$i-1$$
 $B_i = B_k$ $j-i-1$ B_j $n-j$

•
$$i-1$$
 B_i $j-i-1$ $B_j = B_k$ $n-j$

we see that the answers for each case respectively should be

$$\binom{n-y-1}{j-i-1}\binom{y-1}{n-j}$$
, and $\binom{n-x-1}{j-i-1}\binom{x-1}{i-1}$,

since we must handle the sorting condition and since choosing two of the sections uniquely determines the choice of the third.

• Otherwise we must go casewise on all possible values of k. In particular, though, we can group these cases of k into three further cases: k < i, i < k < j, and k > j.

We shall now tackle these cases:

• Case k < i. We must have that x > y, and we have the following diagram:

For this case, it's clear to see that the answer is

$$\binom{n-x-1}{i-k-1}\binom{x-y-1}{j-i-1}\binom{y-1}{n-j}.$$

• Case i < k < j. We have the following diagram:

$$\bullet \longmapsto B_i \longmapsto B_i \longmapsto B_k \longmapsto B_j \longmapsto B_j \longmapsto \Phi$$

This case is slightly more complicated, as there is an overlap of elements in the inner two sections. With a bit of thinking, we see that the condition $n - \min\{x,y\} - 1 \ge j - i - 2$ must hold (otherwise there is no possible permutation). For convenience, we shall say that WLOG x < y, simplifying the condition to $n - x - 1 \ge j - i - 2$.

We shall first place the elements in range y+1 to n-1. We must choose j-k-1 of them to place in the third interval, leaving the others to be uniquely placed in the second interval. We shall then choose the remaining k-i-1-(n-y-1-(j-k-1))=j-i-1+y-n numbers out of the y-x-1 we have. All that is left is to choose the first interval out of simplicity, which then uniquely determines the fourth.

Thus, if x < y, the answer is

$$\binom{n-y-1}{j-k-1}\binom{y-x-1}{j-i-1+y-n}\binom{x-1}{i-1},$$

and if x > y, the answer is

$$\binom{n-x-1}{k-i-1}$$
 $\binom{x-y-1}{j-i-1+x-n}$ $\binom{y-1}{n-j}$.

- Case k>j. We must have that x< y, and we have the following diagram:

•
$$i-1$$
 B_i $j-i-1$ B_j $k-j-1$ B_k $n-k$ •

It is also apparent for this case that the answer is

$$\binom{n-y-1}{k-j-1} \binom{y-x-1}{j-i-1} \binom{x-1}{i-1}.$$