555

$$V_2 = -M \frac{\Delta I_1}{\Delta T} \, \sharp \mathfrak{I}$$

二次側の起電力 V_2 は1次側の電流 I_1 を時間で微分したものに比例する。

$$0 \le t \le 1[ms]$$
 のとき、
$$\frac{\Delta l_1}{\Delta t} = \frac{2}{1 \times 10^{-3}} = 2 \times 10^3 [A/s]$$
 なので、
$$V_2 = -0.5 \cdot 2 \times 10^3$$

$$= -1 \times 10^3 V$$

$$1 \le t \le 2[ms]$$
 のとき、
$$\frac{\Delta l_1}{\Delta t} = \frac{0}{1 \times 10^{-3}} = 0[A/s]$$
 なので、
$$V_2 = -0.5 \cdot 0$$
 = 0V

$$2 \le t \le 3[ms]$$
 のとき、 $\frac{\Delta I_1}{\Delta t} = \frac{-4}{1 \times 10^{-3}} = -4 \times 10^3 [A/s]$ なので、 $V_2 = -0.5 \cdot (-4 \times 10^3)$ $= 2 \cdot 10^3 V$

$$3 \le t \le 4[ms]$$
 のとき、
$$\frac{\Delta I_1}{\Delta t} = \frac{0}{1 \times 10^{-3}} = 0[A/s]$$
 なので、
$$V_2 = -0.5 \cdot 0$$
 = $0V$

$$4 \le t \le 6[ms]$$
 のとき、
$$\frac{\Delta I_1}{\Delta t} = \frac{4}{2 \times 10^{-3}} = 2 \times 10^3 [A/s]$$
 なので、
$$V_2 = -0.5 \cdot (2 \times 10^3)$$

$$= -1 \times 10^3 V$$

となる。

※グラフは解答参照。