EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the Privacy Policy.

	urse > Week 8 > Compr > Quiz 8	
_	uiz 8 oblem 1	
1/1 բ	point (graded) stering refers to which of the following?	
	Grouping similar data points together	
	Assigning data points to some mean value	
	Excluding outliers from the data set	
	Finding commonalities between groups of data points	
~		
S	Submit	
0	Answers are displayed within the problem	

1/1 point (graded)

When does the k-means algorithm terminate?

igcirc After n iterations, where n is defined by the user		
After the average distance from each point to its mean is minimized		
After no additional updates are made in grouping data points		
After each point has been assigned to a mean value		
Submit		
Answers are displayed within the problem		
Problem 3 1/1 point (graded) What does the value k represent in the k -means algorithm?		
The number of iterations that the algorithm will run		
The number of clusters we want our solution to have		
The number of data points that will be clustered		
The number of data points that can be assigned to each cluster		
Submit Submit		
Answers are displayed within the problem		

Problem 4

1/1 point (graded)

Suppose we use clustering to come up with a representation for images. If there are k clusters, each image is represented by first extracting a large collection of image patches from it, and then using these to map the image to a k-dimensional vector. What is the i'th coordinate of this vector?

The number of image patches that were associated with the i'th cluster
The fraction of image patches that were associated with the i'th cluster
The i'th coordinate of the i'th cluster center
\bigcirc A cumulative sum, over all k -means iterations, of the number of image patches associated with the i'th cluster
✓
Submit
Answers are displayed within the problem
Problem 5
1/1 point (graded) True or false: in the streaming model of computation, the dataset used for clustering is required to be small enough to fit in main memory.
True
■ False
✓
Submit

Answers are displayed within the problem		
Problem 6		
1/1 point (graded) The EM algorithm stands for expectation maximization algorithm and it will find what kind o solution?		
O Local maximum		
Global maximum		
✓		
Submit		
Answers are displayed within the problem		
Problem 7		
1/1 point (graded) Which of the following values are updated with each iteration of the EM algorithm?		
igcap number of clusters, k		
\checkmark cluster mixing weights, i.e. π_j		
\checkmark cluster means, i.e. μ_j		
\checkmark cluster covariance matrices, i.e. Σ_j		
✓		
Submit		

Problem	8
first groupii	eded) e: Using the single linkage algorithm, the tree is built in a top down manner by ng all of the data points together, then dividing the data points into two or more d then further subdividing those clusters.
True	
False	
~	
Submit	
• Answe	ers are displayed within the problem
Problem	9
/1 point (gra	nded) he complete linkage algorithm differ from the single linkage algorithm?
\sim	lete linkage algorithm can only group up to two clusters together while single e algorithm can group multiple clusters
Comp	lete linkage generates fewer clusters than single linkage
	lete linkage merges clusters based on maximum distance (between those rs) while single linkage merges clusters based on minimum distance
Comp	lete linkage builds the tree in a bottom up manner, while single linkage builds

Submit

1 Answers are displayed within the problem

© All Rights Reserved