2.1

由题意得
$$A \in \mathcal{R}^{m \times n}$$
,因此 A 可表示为 $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_m \end{pmatrix}$,其中 $\alpha_1, \alpha_2, \dots, \alpha_m \in \mathcal{R}^n$.

由 r(A) = m 知 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性无关.

假设 m > n,即 $m \ge n+1$,则由 n+1 个 n 维向量必线性相关可知 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性相关. 这与 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性无关相矛盾. 因此 $m \le n$

2.6

令
$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & -2 & 0 & -1 \end{pmatrix}$$
,由于 $A \to \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & -3 & -2 & -2 \end{pmatrix}$,故 $r(A) = 2$.
$$\widetilde{A} = [A; b] = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 1 & -2 & 0 & 1 & -2 \end{pmatrix}$$
,由于 $\widetilde{A} \to \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & -3 & -2 & -2 & -3 \end{pmatrix}$,故 $r(A, b) = 2$
因此,这一线性方程组有解.
$$\widehat{T} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & -2 & 1 & 1 \end{bmatrix}$$
,则有 $\begin{bmatrix} x_1 \\ x_2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$,则有 $\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$,可有 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$,可有 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{4}{3}d_3 - \frac{1}{3}d_4 \\ 1 - \frac{2}{3}d_3 - \frac{2}{3}d_4 \\ 1 - \frac{2}{3}d_3 - \frac{2}{$

优化理论作业1