Глава 2. Лексический анализ

2.8. Конечные автоматы с є-переходами

Недетерминированный КА $M = (K, T, \delta, k_0, F)$ имеет ε -переходы, если функция δ определена на множестве $K \times (T \cup \{\varepsilon\})$, т. е. $\delta: K \times (T \cup \{\varepsilon\}) \to 2^K$, где $2^K - \delta$ булеан множества K (множество всех подмножеств множества K, мощность булеана равна $2^{|K|}$).

Пример такого автомата для регулярного выражения $(ab \mid c^*)(a \mid bc)^*a$ представлен на рис. 2.14.

Рис. 2.14. КА с є-переходами

Наличие ε-перехода вносит недетерминированность в функционирование КА, поскольку автомат может переходить из состояния в состояние без чтения входного символа.

Пусть состояния $k, k' \in K$ такие, что $k' \in \delta$ (k, ϵ), тогда говорят, что состояние k' ϵ -достижимо из состояния k и записывают $k \xrightarrow{\epsilon} k'$. Таким образом, автомат может в любой момент перейти из состояния k в состояние k' без чтения входного символа. Рассмотрим более широкое понятие ϵ -достижимости, а именно $k \xrightarrow{*} k'$, т. е. k' ϵ -достижимо из k, если существует путь по графу автомата от вершины k до k', состоящий из дуг, помеченных символом ϵ и длиной ≥ 0 .

Обозначим через R(k) множество всех состояний, которые ϵ -достижимы из состояния k, что формально записывается как

$$R(k) = \{ k' \mid k \xrightarrow{\epsilon} k' \}.$$

Следует обратить внимание на то, что $k \in R(k)$.

Расширим это определение для подмножества $M \subseteq K$ состояний следующим образом: $R(M) = \bigcup_{k \in M} R(k)$.

Для автомата на рис. 2.14 имеем
$$R(1) = \{1, 3, 4\}, \qquad R(4) = \{4\},$$
 $R(2) = \{2\}, \qquad R(5) = \{5\},$ $R(3) = \{3, 4\}, \qquad R(6) = \{6\},$ $R(\{1, 3\}) = R(1) \cup R(3) = \{1, 3, 4\}.$

Рассмотрим, как влияет на функционирование автомата наличие ε -переходов. Для состояния 1 имеем $\delta(1,a)=\{2\}$, т. е. при чтении входного символа a автомат должен перейти из состояния 1 в состояние 2. Однако поскольку имеются ε -переходы из состояния 1 в состояние 3, а из состояния 3 в состояние 4, автомат без обработки входного символа мог перейти в любое из этих состояний. Пусть автомат находится в состоянии 4, тогда чтение символа a может перевести автомат в состояние 4 или 6. Таким образом, при чтении символа a автомат может перейти из состояния 1 в состояние 2, 4 или 6.

Обозначим через t(k, a) множество состояний, которые могут быть достигнуты из состояния k после чтения входного символа a. Формально оно определяется следующим образом:

$$t(k, \varepsilon) = R(k);$$
 $t(k, a) = \bigcup_{k' \in R(k)} R(\delta(k', a))$ для всех $k \in K$, $a \in T$.

Например, для нашего автомата имеем

$$t(1, \varepsilon) = R(1) = \{1, 3, 4\};$$

$$t(1, a) = \bigcup_{k' \in \{1, 3, 4\}} R(\delta(k', a)) = R(\{2\}) \cup R(\emptyset) \cup R(\{4, 6\}) = \{2\} \cup \{4\} \cup \{6\} = \{2, 4, 6\};$$

$$t(1, b) = \bigcup_{k' \in \{1, 3, 4\}} R(\delta(k', b)) = R(\emptyset) \cup R(\emptyset) \cup R(\{5\}) = \{5\};$$

$$t(1, c) = \bigcup_{k' \in \{1, 3, 4\}} R(\delta(k', c)) = R(\emptyset) \cup R(\{3\}) \cup R(\emptyset) = \{3, 4\}.$$

Тогда правило построения НКА без ε -переходов $M' = (K, T, \delta', k_0, F')$, эквивалентного НКА с ε -переходами $M = (K, T, \delta, k_0, F)$, заключается в следующем:

$$\delta'(k, a) = t(k, a)$$
 для всех $k \in K$, $a \in T$;

 $F' = F \cup \{k \in K \mid R(k) \cap F \neq \emptyset\}$, т. е. к множеству конечных состояний добавляются состояния k, для которых в их множества ϵ -достижимых состояний R(k) входят конечные состояния исходного автомата.

Построим автомат без є-переходов, эквивалентный автомату на рис. 2.14. Это удобно делать по таблице переходов автомата (табл. 2.1, для выделения конечное состояние заключено в квадратные скобки).

Таблица 2.1 Таблица переходов НКА, дополненная строкой для R(k)

Вход	Состояния (К)					
(T)	1	2	3	4	5	[6]
а	{2}	Ø	Ø	{4, 6}	Ø	Ø
b	Ø	{4}	Ø	{5}	Ø	Ø
С	Ø	Ø	{3}	Ø	{4}	Ø
3	{3}	Ø	{4}	Ø	Ø	Ø
R(k)	$\{1, 3, 4\}$	{2}	{3, 4}	{4}	{5}	{[6]}

Множества R(k) можно легко вычислить транзитивно по строке ε . Например, при вычислении R(1) само состояние 1 сразу включается в это множество. В строке ε для состояния 1 имеем состояние 3, которое добавляется в R(1). В строке ε для состояния 3 имеем состояние 4, которое также добавляется в R(1). В строке ε для состояния 4 содержится \emptyset , следовательно, процесс вычисления $R(1) = \{1, 3, 4\}$ завершен.

После вычисления множеств R(k) для всех состояний $k \in K$ можно легко вычислить множества t(k,a). Рассмотрим состояние k. Сначала для каждого состояния из R(k) по таблице переходов определяется множество состояний, в которые может перейти автомат при чтении символа a. Затем выполняется объединение всех множеств R(k), содержащихся в столбцах, соответствующих найденным состояниям. В результате будет получено множество t(k,a). Рассмотрим вычисление множеств t(k,a) на примере состояния 1 при чтении символа c, т. е. вычислим t(1,c). Поскольку $R(1) = \{1,3,4\}$, согласно определению

$$t(1, c) = R(\delta(1, c)) \cup R(\delta(3, c)) \cup R(\delta(4, c)).$$

По таблице переходов определяем $\delta(1, c) = \emptyset$, $\delta(3, c) = \{3\}$, $\delta(4, c) = \emptyset$, следовательно,

$$t(1, c) = R(\emptyset) \cup R(\{3\}) \cup R(\emptyset) = \{3, 4\}.$$

Процесс построения автомата без ε -переходов завершается после вычисления функции переходов t(k,a) для всех $k \in K$, $a \in T$ и уточнения множества конечных состояний.

Функция переходов КА без є-переходов, эквивалентного конечному автомату с є-переходами с рис. 2.14, представлена в табл. 2.2, а граф автомата — на рис. 2.15.

Таблица 2.2. Таблица переходов автомата без є-переходов

Вход	Состояния (К)					
(T)	1	2	3	4	5	[6]
a	$\{2, 4, 6\}$	Ø	{4, 6}	{4, 6}	Ø	Ø
b	{5}	{4}	{5}	{5}	Ø	Ø
С	{3, 4}	Ø	{3, 4}	Ø	{4}	Ø

Рис. 2.15. ΚΑ без ε-переходов

После исключения из НКА є-переходов автомат в общем случае остается недетерминированным. Поскольку использование НКА в качестве распознавателя приводит к существенным потерям времени при лексическом анализе, на следующем этапе необходимо преобразовать его в эквивалентный ДКА.

Для сложных регулярных выражений построенный ДКА может оказаться не минимальным. Поэтому завершающим этапом является минимизация ДКА.

2.9. Минимизация конечного автомата

При построении ДКА выгодно, чтобы автомат имел как можно меньше состояний. Для произвольного ДКА можно построить эквивалентный автомат с наименьшим числом состояний (возможно, им будет исходный автомат). Процедуру построения такого автомата называют минимизацией КА, а сам автомат – минимальным КА.

Для простоты будем рассматривать только ДКА, имеющие полную функцию переходов. Если исходный ДКА имеет неполную функцию переходов, то, добавив новое фиктивное состояние, можно определить новый эквивалентный ДКА с полной функцией переходов.

Автомату без выхода можно поставить в соответствие автомат Мура, у которого дуги, ведущие в конечные состояния, помечаются 1, а все остальные -0. Тогда задача сводится к задаче минимизации автоматов Мура.

Другой путь — минимизация непосредственно автомата без выхода. Пусть $M = (K, T, \delta, k_0, F)$ — ДКА с полной функцией переходов, принимающий язык L. Рассмотрим построение минимального ДКА M_L исходя только из языка L.

Минимизация заключается в последовательном разбиении множества состояний на непересекающиеся подмножества неразличимых состояний до тех пор, пока такое разбиение возможно.

Определим на множестве K отношения D_0 , D_1 , D_2 , ... следующим образом: kD_0k' (состояния k и k' различимы по строке длины 0) тогда и только тогда, когда $k \in F$ и $k' \notin F$ или $k \notin F$ и $k' \in F$.

Пусть i > 0, kD_ik' (состояния k и k' различимы по строке длины $\leq i$) тогда и только тогда, когда $kD_{i-1}k'$, т. е. существует $a \in T$, такое, что $\delta(k,a)D_{i-1}\delta(k',a)$. Говорят, что состояние k различимо от состояния k', если существует такое $i \geq 0$, что kD_ik' . Другими словами, kD_ik' тогда и только тогда, когда существует такая строка x, $|x| \leq i$, что либо $\delta(k,x) \in F$ и $\delta(k',x) \notin F$, либо $\delta(k,x) \notin F$ и $\delta(k',x) \in F$.

Чтобы вычислить отношение D, необходимо последовательно вычислить отношения D_0, D_1, D_2, \ldots , и если в процессе этих вычислений на некотором шаге r окажется, что $D_{r+1} = D_r$, то это будет означать, что итерационный процесс окончен и $D = D_r$.

Если m = |K|, то существует только $(m^2 - m)$ пар (k_i, k_j) , где $i \neq j$. В худшем случае всякое D_{i+1} отличается от D_i двумя такими парами, тогда $D = D_r$, где $r < (m^2 - m)/2$, т. е. процесс всегда конечен. В результате будут найдены все неразличимые состояния автомата, которые образуют множество состояний минимального автомата M_L .

Пусть $K' \subset K$ — одно из множеств неразличимых состояний. функция переходов автомата M_L определяется следующим образом: $\delta_L(K',a) = K''$, где K'' — множество неразличимых состояний, содержащее состояние $\delta(k,a)$ для всех $k \in K'$. Тогда начальным состоянием автомата M_L является множество неразличимых состояний, содержащее начальное состояние исходного автомата M. Конечными состояниями автомата M_L являются те множества неразличимых состояний, которые содержат конечные состояния автомата M.

Рассмотрим пример минимизации ДКА, граф переходов которого приведен на рис. 2.16.

Рис. 2.16. Граф переходов минимизируемого ДКА

Отношение D_i можно представить в виде булевой матрицы размером 5×5 , в которой значение элемента (j,k) равно T (true), если jD_ik , и равно F (false) противном случае. Поскольку отношение D_i симметрично и никогда не выполняется отношение kD_ik (элементы главной диагонали всегда равны F), для построения матрицы достаточно определить только те элементы, которые находятся над главной диагональю.

Последовательность матриц, соответствующих отношениям D_0 , D_1 , будет следующей:

D_0	1	2	3	4	5
1		F	T	F	T
2			T	F	T
3				T	F
4					T
5					

D_1	1	2	3	4	5
1		T	T	F	T
2			T	T	T
3				T	F
4					T
5					

Например, элемент (1, 2) равен F, поскольку оба состояния 1 и 2 не являются конечными (неразличимы по строке длины 0), элемент (1, 3) равен T, поскольку состояние 1 не является конечным, а состояние 3 — конечное (различимы по строке длины 0), т. е. $1D_03$. Аналогично определяются остальные значения элементов матрицы для отношения D_0 .

Для отношения D_1 имеем $1D_12$, поскольку $\delta(1,b)D_0\delta(2,b)$, и $2D_14$, поскольку $\delta(2,b)D_0\delta(4,b)$.

Отношение D_2 будет полностью совпадать с отношением D_1 , т. е. процесс минимизации завершен. В результате имеем, что состояния 1 и 4 неразличимы между собой, а также состояния 3 и 5 также неразличимы. Таким образом, выполнено разбиение множества состояний на непересекающиеся подмножества неразличимых состояний: $\{1,4\},\{2\},\{3,5\}$. Начальным состоянием минимального автомата будет состояние $\{1,4\}$ (содержит начальное состояние 1 исходного автомата), конечным состоянием будет $\{3,5\}$ (содержат конечные состояния 3 и 5 исходного автомата). Переобозначим эти состояния через 1,2 и 3 соответственно.

Тогда граф переходов полученного минимального ДКА примет вид, приведенный на рис. 2.17.

Рис. 2.17. Минимальный ДКА