Distribution Theory and Applications — Example Sheet 1

Lucas Riedstra

...

Question 1. Construct a non-zero element of $\mathcal{D}(\mathbb{R})$ that vanishes outside (0,1). Construct a non-zero of $\mathcal{D}(\mathbb{R}^n)$ that vanishes outside the ball $B_{\varepsilon} = \{x \in \mathbb{R}^n : ||x|| < \varepsilon\}$.

Proof. It is well-known that the function

$$\varphi \colon \mathbb{R} \to \mathbb{R} \colon x \mapsto \begin{cases} 0 & \text{if } x \leqslant 0; \\ e^{-1/x} & \text{if } x > 0, \end{cases}$$

is smooth and vanishes outside $(0, \infty)$. The function $\psi(x) := \varphi(x)\varphi(1-x)$ is therefore also smooth and vanishes outside (0, 1).

Since ψ vanishes outside (0,1), the function $\psi(x/\varepsilon)$ vanishes outside $(0,\varepsilon)$, and therefore the function $\mathbf{x} \mapsto \psi(\|\mathbf{x}\|/\varepsilon)$ vanishes outside B_{ε} .

Question 2. Given $\varphi \in \mathcal{D}(X)$, Taylor's theorem gives

$$\varphi(x+h) = \sum_{|\alpha| \le N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h).$$

Prove that $\operatorname{supp}(R_N)$ is contained in some fixed compact $K \subseteq X$ for |h| sufficiently small. Show also that $\partial^{\alpha} R_N = o(|h|^N)$ uniformly in x for each multi-index α , i.e. prove

$$\lim_{|h| \to 0} \frac{\sup_{x} \left| \partial^{\alpha} R_{N}(x, h) \right|}{\left| h \right|^{N}} = 0$$

for each multi-index α .

Hint: you may find it convenient to use the following form of the remainder

$$R_N(x,h) = \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_0^1 (1-t)^N (\partial^{\alpha} \varphi)(x+th) dt,$$

and note that $(N+1)! \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} = (h_1 + \dots + h_n)^{N+1}$.

Solution. Since $\varphi \in \mathcal{D}(X)$, we know that supp $\varphi \subseteq \overline{B_N}$ for some $N \in \mathbb{N}$. Now, suppose ||h|| < 1, then

$$\varphi(x+h) \neq 0 \implies ||x+h|| \leqslant N \implies ||x|| \leqslant ||x+h|| + ||h|| \leqslant N+1,$$

so if we define $\psi_h(x) = \varphi(x+h)$ then we know that supp $\varphi_h \subseteq \overline{B_{N+1}}$.

By Taylor's theorem, we have

$$\varphi(x+h) = \sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h),$$

and since $\sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x)$ vanishes for $x \notin \overline{B_N}$, it is clear that $\operatorname{supp}(R_N(\cdot, h))$ must also be contained in $\overline{B_{N+1}}$ (again, for $||h|| \leq 1$). This shows that $\operatorname{supp}(R_N)$ is contained in $\overline{B_{N+1}}$ for |h| sufficiently small.

Now let β be a multi-index and define $C := \frac{1}{N!} \max_{|\alpha|=N+1, x \in \mathbb{R}^n} \left| (\partial^{\alpha+\beta}) \varphi(x) \right|$ (note that C exists and is finite since all partial derivatives of φ have compact support), then we have

$$\begin{aligned} \left| \partial^{\beta} R_{N}(x,h) \right| &= \left| \partial^{\beta} \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\stackrel{\star}{=} \left| \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha+\beta} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\leqslant \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} \left| \left(\partial^{\alpha+\beta} \varphi \right)(x+th) \right| \, \mathrm{d}t \\ &\leqslant \left[\max_{|\alpha|=N+1, x \in \mathbb{R}^{n}} \left| \left(\partial^{\alpha+\beta} \right) \varphi(x) \right| \right] \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \\ &\leqslant C(N+1)! \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} = C(|h_{1}| + \dots + |h_{n}|)^{N+1}. \end{aligned}$$

Since this upper bound does not depend on x, we also have

$$\sup_{x} \left| \partial^{\beta} R_{N}(x,h) \right| \leq C(|h_{1}| + \dots + |h_{n}|)^{N+1}$$

and we conclude that

$$\frac{\sup_{x} \left| \partial^{\beta} R_{N}(x,h) \right|}{\left\| h \right\|^{N}} \leqslant \frac{C(|h_{1}| + \dots + |h_{n}|)^{N+1}}{\left\| h \right\|^{N}} \leqslant \frac{CN^{N+1} \left\| h \right\|^{N+1}}{\left\| h \right\|^{N}} = CN^{N+1} \left\| h \right\| \to 0,$$

and therefore that $\partial^{\beta} R_N(x,h) = o(\|h\|^n)$ for all multi-indices β .