УДК 547.432.3

ФТОРСОДЕРЖАЩИЕ В-ДИКЕТОНЫ

К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский

Рассмотрены методы синтеза, кето-енольная таутомерия, химические превращения (включая образование гетероциклов), а также применение фторсодержащих β-дикетонов. Обсуждено влияние введения фторсодержащих заместителей на свойства β-дикетонов. Библиография — 292 ссылки.

ОГЛАВЛЕНИЕ

I.	Введение									325
11.	Методы синтеза									325
111.	Строение и енолизация									328
IV.	Кислотно-основные свойства									331
_V.	Химические превращения									333
VI.	Применение		_	_			_			347

і. ВВЕДЕНИЕ

β-Дикетоны и их металлхелаты широко применяются в промышленности и в лабораторной практике как экстрагенты и аналитические реагенты РЗЭ, шифт-реагенты, биологически активные вещества, катализаторы различных реакций. Благодаря наличию двух карбонильных групп и склонности к енолизации они открывают возможности исследования кето-енольной таутомерии и двойственной реакционной способности, изучения природы внутримолекулярной водородной связи, а также получения различных гетероциклических соединений. Фторсодержащие β-дикетоны во многих случаях превосходят по своим полезным свойствам нефторированные аналоги (экстракция, ГЖХ хелатов, биологическая активность) и обладают рядом особенностей, обусловленных присутствием атомов фтора в молекуле.

В настоящее время в литературе накоплен весьма обширный материал, касающийся получения, химии и возможностей применения полифторированных β-дикетонов и гетероциклов на их основе, однако обобщений по этому вопросу нет, за исключением обзора 1, охватывающего литературу до 1968 г. и в значительной мере посвященного металлхелатам фторсодержащих β-дикетонов. Данные по металлхелатам фторированных β-дикетонов приводятся также в обзоре 2, а по применению нефторированных β-дикетонатов металлов — в работах 3, 4. В настоящем обзоре обобщен литературный материал по синтезу, кето-енольной таутомерии, наиболее характерным синтетическим превращениям и практически полезным свойствам (включая биологическую активность) полифторированных β-дикетонов. В обзоре охвачена литература по 1979 г. включительно.

П. МЕТОДЫ СИНТЕЗА

Наиболее распространенным и универсальным методом получения полифторированных β-дикетонов является конденсация Кляйзена 5, 6; исходными соединениями служат сложные эфиры полифторкарбоновых

кислот и метилкетоны, а конденсирующими агентами — алкоголяты натрия $^{7,\,8}$, амид натрия $^{9,\,10}$, гидрид натрия 11 , трехфтористый бор 12 . Чаще всего конденсацию проводят в безводном диэтиловом эфире $^{5,\,6}$, но иногда применяют бензол 13 , диметоксиэтан 14 , диметилсульфоксид 11 , уксусную кислоту 12 . В зависимости от растворителя, конденсирующего агента и природы карбонильного и метиленового компонента выходы колеблются в пределах от 20 до 80%.

$$R^{F}-C \bigvee_{OR'}^{O} + R-C-CH_{3} \rightarrow R^{F}-C-CH_{2}-C-R$$

$$0 \qquad 0$$
(I)

Этим способом синтезированы β-дикетоны с одним фторированным заместителем: $R^{F} = CH_{2}F^{12, 15}$, $CCl_{2}F^{16}$, CHF_{2}^{17} , $CClF_{2}^{18}$, $CF_{2}OCF_{3}^{19, 20}$, $CF_{2}CFCF_{2}CF_{2}CF_{2}O^{19, 20}$, $CF_{3}^{7, 8}$, $C_{2}F_{4}H^{21}$, $C_{2}F_{5}^{18}$, $C_{3}F_{7}^{22}$, $C_{4}F_{8}H^{17}$, $C_{4}F_{9}^{23}$, $C_{5}F_{11}^{24}$, $C_{7}F_{15}^{24, 26}$, $C_{8}F_{17}^{27}$, $C_{6}H_{3}XF$ ($X=CH_{3}$, Cl, OH, CF_{3}) $^{9, 10, 28}$, $C_{6}H_{4}CF_{3}^{29}$, $C_{6}F_{5}^{11}$ (при этом второй заместитель R — алкил, арил или гетарил). Так же получены дикетоны с двумя фторированными заместителями: $R^{F}=R=CF_{3}^{7, 15, 30}$, HCF_{2}^{31} , $HC_{2}F_{4}^{31}$, $C_{7}F_{15}^{24, 25}$, $C_{6}F_{5}^{11}$; $R^{F}=CF_{3}$, $R=HCF_{2}^{31}$, $C_{2}F_{5}^{32}$, $C_{3}F_{7}^{32}$, $C_{7}F_{15}^{25}$,

Известен ряд других методов получения полифторированных β -дикетонов. Кнунянц с сотр. ³⁴ описали синтез β -дикетонов, содержащих трифторметильную группу; синтез проводится путем отщепления дифторнитрометана от β -оксикетонов, полученных конденсацией нитропентафторацетона с метилкетонами.

$$O_2NCF_2-C-CH_3 \xrightarrow{H_3C} O_2NCF_2 \xrightarrow{F_3C} C \xrightarrow{CH_2} C-R \xrightarrow{K_3CO_3} F_3C-C \xrightarrow{CH} C-R$$

$$\begin{array}{c} F_3C \quad CF_3 \\ C \\ \parallel \\ C \\ \parallel \\ O \end{array} + \begin{array}{c} F_3C \\ F_3C \end{array} C = C \stackrel{CH_2}{\longrightarrow} C = O \xrightarrow{ZnCl_2} \rightarrow \end{array}$$

$$(II)$$

Фокин и Узун ³⁶ показали, что при взаимодействии β-нитротетрафторэтилнитрита с ацетоном или ацетофеноном образуется до 40% соответствующего β-дикетона (I), $R^F = CF_2NO_2$; $R = CH_3$, C_6H_5 . Установлено ³⁷, что О-силилзамещенные енолы (IV) ацилируются ангидридами галогенкарбоновых кислот по концевому sp^2 -гибридизованному атому углерода; при этом образуется до 43% соответствующего β-дикетона.

$$(CH_3)_3SiO C = CH_2 + (Cl_3C)_2O \rightarrow GO$$

$$(IV)$$

$$F_3C CCl_3$$

$$O O$$

$$H$$

В работе ³⁸ предложен интересный и перспективный для синтеза труднодоступных β-дикетонов метод, заключающийся во взаимодействии фторолефинов с фторангидридами кислот под давлением в присутствии пятифтористой сурьмы. Авторы ³⁸ полагают, что первоначально в реакции образуется кетон, который затем взаимодействует с фторангидридом по схеме кислотно-катализируемой конденсации Кляйзена.

Кнунянцу с сотр. 39 удалось синтезировать β -дикетоны с фторированным заместителем в α -положении обработкой мезомерных фторкарбанионов ангидридами перфторкарбоновых кислот.

Гептафторацетилацетон синтезирован недавно действием аммиака на *транс*-перфторпентен-2 с последующим гидролизом образующегося первоначально β-аминовинилимина ⁴⁰.

$$CF_3 - CF = CF - CF_2 - CF_3 \xrightarrow{NH_3} \xrightarrow{S_0 \oplus up} \xrightarrow{F_3 C} \xrightarrow{F_3$$

Использование конденсации Кляйзена ^{11, 33} для получения β-дикетонов с пентафторфенильными заместителями зачастую приводит к обра-

зованию хромонов и флавонов $^{41, 42}$ из-за легкости вытеснения *орто*-атома фтора в пентафторбензоильном радикале нуклеофилами. Поэтому для синтеза таких дикетонов разработан ряд специфических методов $^{11, 42}$. Так, авторы работы 42 синтезировали декафтордибензоилметан (ДФБМ), пентафтордибензоилметан (ПФБМ) и 1,4-бис (пентафторфенил) бутандион-1,3, ацилированием пентафторбензоилуксусного эфира хлорангидридами пентафторбензойной, бензойной и пентафторфенилуксусной кислот соответственно, с последующим гидролизом и декарбоксилированием под действием концентрированной серной кислоты. Ими же впервые получен перфтордибензоилметан фторированием натриевой соли ДФБМ перхлорилфторидом 43 . Хотя ДФБМ образуется и при действии пентафторфенилмеди на дихлорангидрид малоновой кислоты в абсолютном эфире (выход 20%) 11 , но труднодоступность пентафторфенилмеди и низкий выход ДФБМ ограничивают использование этого метода. Это же соединение синтезировано конденсацией хлорангидрида пентафторбензойной кислоты с винилацетатом в присутствии хлористого алюминия (выход 34%) 11 .

$$H_{2}C = C \xrightarrow{H} + C_{6}F_{5}C \xrightarrow{O} \xrightarrow{AlCl_{3}} + C_{6}F_{5}C \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} + C_{6}F_{5}C \xrightarrow{O} \xrightarrow{O} + C_{6}F_{5}C \xrightarrow{O} + C_{6}F$$

С выходом 25% ПФБМ получается при взаимодействии α -морфолиностирола с хлорангидридом пентафторбензойной кислоты в безводном диоксане ¹¹. Попытка распространить метод на получение ДФБМ оказалась безуспешной.

Для выделения и очистки β -дикетоны перегоняют $^{8, 19, 20}$ или переводят в хелаты меди, которые затем перекристаллизовывают из органических растворителей и разлагают серной кислотой 22 или сероводородом 7 . Для получения хелатов высокой чистоты используют вакуумную сублимацию 25 .

III. СТРОЕНИЕ И ЕНОЛИЗАЦИЯ

 β -Дикетоны представляют собой прототропную систему, которая может существовать в виде трех таутомерных форм (A)—(B), для двух из которых ((Б) и (В)) возможна пространственная $\mu uc - \tau panc$ -изомерия (Б') и (В'). Однако рядом исследований показано 44, что нециклические β -дикетоны существуют только в таутомерных формах (A)—(B).

Введение электроноакцепторных фторсодержащих групп значительно изменяет распределение электронной плотности в молекуле β -дикетона, что оказывает влияние на кето-енольное равновесие. Действительно, еще в 1953 г. установлена (с помощью бромирования) более высокая степень енолизации полифторированных β -дикетонов по сравнению с нефторированными, на основании ИК-спектров высказано предположение о существовании их в *цис*-форме (Б)—(В) с внутримолекулярной водородной связью (ВМВС) ²³. В дальнейшем это предположение было подтверждено данными ИК- ^{33, 45–49}, УФ- ^{33, 45, 50, 51} и ПМР-спектроскопии ^{44, 52, 53}.

Исследование спектров ПМР жидких β -дикетонов показало, что увеличение содержания фтора приводит к сдвигу кето-енольного равновесия в сторону енола (табл. 1), и при наличии четырех или более атомов фтора в молекуле енолизация становится полной ^{12, 17, 20, 54}. Это хорошо согласуется с данными по енолизации эфиров фторсодержащих β -кето-кислот ⁵⁵ и связано с высокой электроноакцепторностью фторалкильных группировок ^{46, 56}. Интересно, что 3-трифторметил-1,1,1,5,5,5-гексафтор-пентандион-2,4, содержащий три CF_3 -группы, не енолизован и полностью существует в дикето-форме ³⁹, хотя его нефторированный аналог енолизован на 30% ⁵⁷. Влияние растворителя на кето-енольное равновесие и на химические сдвиги протонов трифторацетилацетона ($T\Phi AA$) и гексафторацетилацетона ($T\Phi AA$) и сследовано в работе ⁵⁸.

Высокая электроноакцепторность фторалкильных заместителей проявляется также в ослаблении силы ВМВС во фторсодержащих β-дике-

Содержание енольной формы в полифторированных β -дикетонах R^1 —CO— CH_2 —CO— R^2 по данным ПМР для чистых жидкостей при 33—35° C

R1	R²	Содержание енола, %	δ _{ОН} , м. ∂.	Ссылки
CH ₃ H ₂ CF HCF ₂ CF ₃ HCF ₂ CF ₂ HCF ₂ CF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₅ CF ₃	81 87* 95—97 97 100 100	15,6 14,7 13,6 14,1 14,86 12,98 13,0	52 12 17 54 13 31 54

^{*} При 26°С.

тонах по сравнению с нефторированными. Так, установлено 59 , что сигнал протона группы О—Н смещается в сильное поле при переходе от ацетилацетона (АА) к ТФАА и ГФАА, а также от бензоилацетона (БА) к трифторбензоилацетону (ТФБА); по мнению авторов 59 , это свидетельствует об ослаблении ВМВС. Аналогичная зависимость найдена 60 для β -дикетонов ряда селенофена. Авторы 61 на примере ГФАА предлагают оценивать силу ВМВС на основании корреляции химических сдвигов протонов и изотопного эффекта при замене протона ОН-группы на дейтерий для одних и тех же систем с водородной связью; однако подобных исследований такого рода по фторсодержащим β -дикетонам нет.

Несимметричные полифторированные в-дикетоны с фторалкильным заместителем только у одной карбонильной группы являются удобными объектами для изучения положения протона в цис-енольной форме с ВМВС (изучение енол-енольного равновесия); однако и здесь проведенные исследования ограничиваются в основном нефторированными дикарбонильными соединениями. Так, на основании анализа величин химических сдвигов енольных протонов в ПМР-спектрах пара-замещенных БА сделан вывод 62 о том, что доля енольной формы с протоном у кислорода, связанного с фенильным кольцом, увеличивается с ростом электроноакцепторности пара-заместителя в кольце. Это подтверждается и данными 63, где аналогичный вывод о преимущественном направлении енолизации β-дикетонов по кислороду, связанному с более электроноакцепторным заместителем, сделан на основании исследования спектров ЯМР 17О. Изящным подтверждением указанного направления енолизации для несимметричных полифторированных β-дикетонов явились результаты работы 64, в которой методом ЯМР 13С изучено влияние природы растворителя на химические сдвиги ядер углерода обоих карбонильных групп в АА, дибензоилметане (ДБМ), ТФАА и салициловом альдегиде; при этом установлено, что в случае ТФАА енолизуется карбонильная группа, связанная с трифторметильной группой.

На основании исследования спектров ЯМР ¹³С енольных форм фторсодержащих и углеводородных β-дикетонов сделан вывод об отсутствии в них енол-енольной таутомерии, а наблюдаемые изменения в химических сдвигах ядер углерода объяснены перераспределением электронной плотности в хелатном кольце с ВМВС ⁶⁵. Тем не менее те же авторы ⁶⁶ предложили метод определения положения протона в хелате с ВМВС по спектрам ЯМР ¹³С металлхелатных соединений; в более ранней работе ⁶⁷ указывается на наличие двух равноценных потенциальных ям для

мостикового атома водорода в ГФАА.

Убедительным подтверждением существования внутрихелатной таутомерии в β-дикетонах является обнаруженное недавно одновременное присутствие енольной и ентиольной форм в охлажденных до —70° С рас-

творах фторсодержащих монотио-β-дикетонов 68.

Молекулярное строение. Определение молекулярной геометрии енольных форм ТФАА 69 и ГФАА 70 методом дифракции электронов в газовой фазе и рентгенографическое исследование кристаллического и молекулярного строения БА 71 , n-нитро—БА 72 и ДБМ 73 также не дают однозначного ответа на вопрос о положении протона в енольных таутомерах (рисунок). По мнению авторов 69,70 , экспериментально найденные значения расстояний между двумя атомами кислорода лучше согласуются с симметричной формой (аналогичный вывод сделан в работе 72); в то же время в работах 71,73 указывается на несимметричное строение молекул БА и ДБМ.

Недавно методом рентгеновской фотоэлектронной спектроскопии найдены две полосы ионизации O(1) различающиеся на 1,5 96, и уста-

новлено, что AA и ГФАА существуют в виде двух таутомерных форм (Б) и (В), причем барьер взаимного перехода через енольную форму с симметричным расположением протона низок ⁷⁴. Для ГФАА этот вывод подтвержден ⁶¹ исследованием спектров ЯМР ¹Н и ЯМР ²Н.

Распределение электронной плотности. Расчет распределения электронной плотности для енольных форм полифторированных β -дикетонов методом ППДП проведен в работах $^{75-77}$. Для ТФАА обнаружена повышенная электронная плотность на карбонильном атоме углерода, связанном с фторированным заместителем $^{75, 76}$. Исследова-

Длины связей (в Å) и углы (в градусах) для молекул БА 71 и ТФАА 69

ние влияния строения фторалкильного заместителя на распределение электронной плотности показало 77 , что это распределение мало зависит от положения протона в енольной форме β -дикетонов.

IV. КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА

В зависимости от кислотности среды β-дикетоны проявляют свойства кислот или оснований, отщепляя или присоединяя протон. В водных средах полифторалкилсодержащие β-дикетоны являются на 2—3 порядка более сильными кислотами, чем соответствующие нефторированные аналоги. Это показано определением их констант ионизации в ряде водноорганических систем (50% диоксан — вода 78, 75% диоксан — вода 79, 80,

ТАБЛИЦА 2

Константы ионизации	полифторированных	В-ликетонов	R1-C0-CH ₂ -C0-R ²
NUNCIANIDA NUNDAUNN	πονική το μπροσαπποιχ	P-MUKCIONOB	K

46% ацетон — вода 81 , 80% метанол — вода 20 , 5% этанол — вода 31 , в диметилформамиде 82) и в воде $^{83-85}$ и наглядно иллюстрируется данными 85 по измерению р K_{α} *м*- и *n*-замещенных бензоилтрифторацетонов.

Влияние строения фторированного заместителя на константы кислотной диссоциации полифтор- β -дикетонов в растворах иллюстрирует табл. 2. Однако даже наименьшее из имеющихся в литературе значений р K_a для Г Φ AA, равное 4,6 %, плохо согласуется с величинами р K_a других β -дикетонов и, по всей вероятности, характеризует кислотность дигидрата Г Φ A-1,1,1,5,5,5-гексафторпентан-2,2,4,4-тетраола, который чрезвычайно легко образуется при соприкосновении Г Φ AA с водой (см. гл. V). Найдена 31 линейная зависимость р K_a от σ *-констант Тафта заместителей R при постоянном R^F которая не наблюдается при изменении R^F и сохранении постоянного R; при этом установлено, что кислотность полифторированных β -дикетонов увеличивается с увеличением длипы цепи R^F от CF_3 до $(CF_2)_4$ H.

Нефторированные β-дикетоны в сильно кислых растворах образуют как моно- (в 96%-ной H_2SO_4), так и дикатионы (HFSbF₅ в SO_2)^{86,87}; полифторалкилсодержащие β-дикетоны в этих же условиях подвергаются только монопротонированию ^{87,88}.

Константа основности р K_b теноилтрифторацетона (ТТФА) в серной кислоте оказалась равной —5,2 при спектрофотометрическом и —5,3 при потенциометрическом определении ⁸⁹.

V. ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ

1. Реакции карбонильных групп

В случае полифторированных β-дикетонов наибольшая часть синтетических исследований связана с изучением реакций карбонильных групп с нуклеофилами, так как именно эти реакции открывают путь к различным производным β-дикетонов и позволяют получить широкий круг соединений, включая азагетероциклы с фторсодержащими заместителями в гетерокольце, многие из которых проявляют высокую биологическую активность.

а) Взаимодействие с гидроксилсодержащими соединениями

Взаимодействие полифторированных β-дикетонов с гидроксилсодержащими нуклеофилами (водой и спиртами) изучено мало, хотя и представляет интерес, поскольку β-дикетоны довольно широко применяются как экстрагенты катионов металлов из водных сред ⁹⁰.

В щелочной среде полифторированные β -дикетоны расщепляются подобно углеводородным аналогам 94 , причем дикетоны с одним полифторалкильным заместителем образуют соль полифторкарбоновой кислоты и метилкетон 92 .

Это свидетельствует о направлении нуклеофильной атаки на карбонильный углерод, связанный с фторированным заместителем. Замена одного из атомов фтора трифторметильной группы на нитрогруппу еще более облегчает гидролитическое расщепление, и 1-нитро-1,1-дифторпентандион распадается просто при кипячении с водой ³⁶.

Тем не менее несимметричные полифторированные β -дикетоны, не содержащие в молекуле групп NO_2 , при обычных условиях в кислой или нейтральной среде не подвергаются гидролитическому расщеплению, а подобно другим галогенсодержащим карбонильным соединениям ⁹⁴ образуют геминальные аддукты. Так, при растворении $TT\Phi A$ в двухфазной системе бензол — вода обнаружено ⁹⁵, что в бензольном растворе дикетон в значительной степени (на 12%) гидратирован. Эти данные подтверждаются аномально низким (2%) содержанием енольной формы $TT\Phi A$ в водном растворе, что авторы ⁹⁶ связывают с образованием гидрата (V), сдвигающим равновесие дикетон — енол в сторону дикетоформы и далее в сторону гидрата.

В серии работ ^{97–99} исследованием спектров ЯМР ¹⁹ и ЯМР ¹Н ряда трифторметилсодержащих β-дикетонов показано, что обратимое присоединение воды или спирта идет по одному из карбонилов. Определены константы равновесия и теплоты образования аддуктов. На основании изучения равновесия между исходными формами трифторацетоуксусного эфира (кето-формой и енольной формой) и соответствующими гидратами и полукеталями сделан вывод о том, что вода взаимодействует исключительно с кетонной формой ¹⁰⁰. Скорость этого взаимодействия превышает скорость кето-енольного превращения. Показано ¹⁰¹, что склонность фторсодержащих β-дикетонов к образованию геминальных

аддуктов уменьшается при замене одной CF_3 -группы в $\Gamma\Phi AA$ на α -тиенильную ($TT\Phi A$), фенильную ($ET\Phi A$) или метильную ($T\Phi AA$).

$$F_3C-C$$
 CH
 $C-R+R^1OH \Rightarrow F_3C-C-CH_2-C-R$
 OH
 OR^1
 OR^1
 OR^1
 OR^1
 OR^2
 OR^3
 OR^3

В случае ГФАА, содержащего две трифторметильные группы, присоединение воды или спирта идет по обеим корбонильным группам, причем образующиеся геминальные аддукты (VI) (тетраолы и бис-полукетали) оказываются геминальные аддукты (VI) (тетраолы и бис-полукетали) оказываются геминальные всвободном виде $^{30, \, 102, \, 103}$. Реакция ГФАА с этиленгликолем приводит к 5,7-диокси-5,7-бис (трифторметил) диоксепану (VII) 104 .

$$F_{3}C-C \xrightarrow{CH_{2}} C-CF_{2} \xrightarrow{2ROH} F_{3}C-C-CH_{2}-CF_{2}$$

$$O \qquad O \qquad OH \qquad OH \qquad (VI)$$

$$F_{3}C \qquad CH_{2}-CH_{2} \qquad (VII)$$

$$CH_{2}-CH_{2} \qquad (VII)$$

Равновесие в реакции $\Gamma\Phi AA$ с водой сильно сдвинуто в сторону аддукта, и в эфирном растворе содержится лишь незначительное количество енольной формы ³⁰, а отрыв обеих молекул воды требует длительного кипячения над P_2O_5 .

Интересно, что увеличение длины хотя бы одного из двух фторалкильных заместителей в β -дикетонах (аналогах $\Gamma\Phi AA$) резко снижает устойчивость дигидратов. Так, например, кристаллический аддукт воды с дикетоном, включающим группы CF_3 , и C_3F_7 -1,1,1,5,5,6,6,7,7-декафторгептандионом-2,4 устойчив лишь при —25° C, а при нагревании до комнатной температуры разлагается, отщепляя воду 32 , хотя в случае β -дикетона с CF_3 - и C_2F_5 -группами подобный аддукт вполне устойчив. В то же время устойчивый дигидрат образуется при сохранении в молекуле одной трифторметильной группы и замене другой трифторметильной группы на дифторметильный радикал — HCF_2 — $C(OH)_2$ — CH_2 — $C(OH)_2$ — CF_3 31 .

б) Взаимодействие с сероводородом

Взаимодействие β-дикетонов с сероводородом в присутствии основного 105, 106 или кислого 107, 108 катализаторов приводит к замене одного или обоих атомов кислорода в карбонильных группах на серу. Исследование этой реакции применительно к полифторсодержащим β-дикетонам показало необходимость увеличения концентрации катализатора (безводного хлористого водорода) с ростом электроноакцепторности заместителей у карбонильных групп, что объясняется 108 необходимостью смещения кето-енольного равновесия в сторону реакционноспособной дикето-формы. В настоящее время этим путем получен ряд монотио-β-

дикетонов с различными фторалкильными (CF $_3$ $^{108-113}$, HCF $_2$ CF $_2$ 114 , C $_2$ F $_5$ $^{110, \ 113}$, C $_3$ F $_7$ $^{113, \ 115}$) и углеводородными радикалами.

С помощью масс-спектрометрии установлено, что конденсация происходит по карбонильной группе, связанной с наименее электроноакцепторным заместителем $^{108, \ 116}$. На основании этого высказано предположение 117 , что атакующей частицей в реакции β -дикетонов с сероводородом является H_3S^+ , а реакция носит электрофильный характер. Более вероятной представляется схема, включающая предварительное протонирование карбонильной группы и нуклеофильную атаку сероводородом 118 .

Замена кислорода второй карбонильной группы на серу с образованием дитио-β-дикетонов возможна, однако эти соединения малоустойчи вы и легко димеризуются 119, 120. Попытки синтеза дитиогексафторацетилацетона и его хелатов оказались безуспешными 121, 122. В работах 121, 122 сообщается лишь о получении и спектральном исследовании никелевых и кобальтовых хелатов дитиотрифторацетилацетона и дитиотрифторбензоилацетона при пропускании сероводорода в концентрированные растворы β-дикетонов и солей соответствующих металлов в абсолютном спирте, насыщенном хлористым водородом; выходы составляют 15—30%. Схема реакции, предложенная в работе 122, включает образование монотио-β-дикетона, который затем координируется с металлом, так что последующее осернение идет как бы на матрице. По всей вероятности, эта реакция оказывается возможной благодаря присутствию хлористого водорода, предотвращающего образование сульфида металла и необратимое разрушение металлхелата сероводородом.

$$F_3C \longrightarrow R \xrightarrow{H_2S, H^+} F_3C \longrightarrow R \xrightarrow{H_2S, H^+} F_3C \longrightarrow R$$

$$R=CH_3, C_6H_5; M=Ni, Co$$

в) Реакции с аминосоединениями

Взаимодействие полифторированных β-дикетонов с амином, в зависимости от природы последнего, условий реакции и строения заместителей у карбонильных групп, может проходить по одной или по обеим карбонильным группам молекулы β-дикетона (а иногда и по α-атому углерода) с образованием β-аминовинилкетонов (β-АВК), а также различных насыщенных или ароматических гетероциклов.

Реакции с аммиаком и первичными аминами. Прикипячении растворов полифторированных β-дикетонов с аммиаком или первичными аминами в условиях кислотного катализа или без него образуются β-ABK (VIII) ^{29, 123–127}, причем в случае несимметричных β-дикетонов с одним фторалкильным заместителем в конденсацию вступает карбонил, связанный с нефторированным заместителем. Это установлено синтезом изомерных β-ABK (IX), с аминогруппой у фторалкильного заместителя ¹²⁸ и подтверждено масс-спектрометрически ¹²⁷.

$$R^{F}$$
 R^{I} $R^{$

Аналогичные реакции эфиров фторсодержащих β-кетокислот проходят по кетонному карбонилу, связанному с фторированным радикалом 129, 130.

Конденсация обеих карбонильных групп полифторированных β-дикетонов со свободными моноаминами с образованием фторсодержащих β-дииминов неизвестна, однако при обработке щелочного раствора ТФАА гексааммиакатом платины получен β-дииминатат платины с выходом 40% ^{131, 132}. По мнению авторов ^{131, 132}, реакция является перспективным методом синтеза β-аминовинилкетиминов, однако выделение лиганда в свободном виде ими не описано. На наш взгляд, более простым и надежным методом получения фторсодержащих β-аминовинилкетиминов может служить взаимодействие перфторолефинов с аммиаком ⁴⁰.

При взаимодействии полифторсодержащих β-дикетонов с полиалкиленполиаминами в конденсацию, как правило, вступает по одной карбонильной группе от двух молекул дикетона и обе концевые аминогруппы молекулы полиалкиленполиамина; при этом с хорошими выходами образуются соответствующие бис (β-дикето) алкилендиимины (X) ^{133–140}.

$$\begin{split} Z = & \text{CH}_2\text{CH}_2^{133,134,136,138}, \text{ CH}_2\text{CH (CH}_3)^{134}, \\ & \text{CH}_2\text{CH}_2\text{CH}_2^{135,136,138}, \text{ CH}_3\text{CHCHCH}_3^{137}, \\ & \text{(CH}_2)_2\text{NH (CH}_2)_2\text{NH (CH}_2)_2^{139}, \text{ (CH}_2)_2\text{NH (CH}_2)_{-\frac{140}{2}} \end{split}$$

В последнее время интерес к этим соединениям возрос в связи с обнаружением у них свойств, удовлетворяющих многим требованиям газовой хроматографии хелатов металлов $^{136-138}$. Мономерное строение бис (β -дикето) алкилендииминов подтверждено определением их молекулярных весов 139 и образованием индивидуальных металлхелатных соединений $^{134, 137, 138}$. Направление нуклеофильной атаки в случае несимметричных β -дикетонов по карбонилу, связанному с нефторированным заместителем, установлено определением дипольных моментов $^{134, 135}$ и

масс-спектрометрией $^{93, \ 141}$ самих соединений, а также рентгеноструктурным анализом их хелатов с Ni (II) 142 . На основании такого направления атаки высказано предположение об индуцировании электроноакцепторной CF_3 -группой большего $\delta+$ заряда на удаленном карбониле, чем на карбониле, связанном с этой группой 142 .

Вопрос о таутомерном строении соединений остается спорным: авторы ¹³⁴, ¹³⁵ склоняются к иминоенольному строению, тогда как в работах ⁹³, ¹³⁹ на основании ПМР-спектров и дипольных моментов предпочтение отдается енаминокетонной форме, что представляется более правильным

Описаны лишь отдельные случаи образования циклических соединений в этой реакции. Так, при взаимодействии ТФАА с триэтилентетрамином в присутствии ионов никеля получено соединение (XI) 143, а в работе 144 сообщается о получении дигидродиазепина (XII).

$$F_{3}C$$

$$R$$

$$CH_{2} \rightarrow CH_{2}$$

$$NH$$

$$NH_{2}$$

$$NH$$

$$NH_{2}$$

$$NH$$

$$NH_{3}$$

$$CH_{2} \rightarrow CH_{2}$$

$$NH$$

$$NH_{3}$$

$$CH_{3} \rightarrow CH_{3}$$

$$NH$$

$$NH_{3}$$

$$R \rightarrow CH_{3}$$

$$R \rightarrow CH_{2} \rightarrow CH_{2}$$

$$NH_{3} \rightarrow CH_{3} \rightarrow CH_{2}$$

$$R \rightarrow CH_{2} \rightarrow CH_{2}$$

$$R \rightarrow CH_{3} \rightarrow CH_{3} \rightarrow CH_{2} \rightarrow CH_{2}$$

$$R \rightarrow CH_{3} \rightarrow$$

Конденсация эфиров фторсодержащих β-кетокислот с этилендиамином в зависимости от условий приводит либо к смеси замещенного 2,3-дигидро-1,4-диазепинона-5 и имидазолидина в различных соотношениях, либо только к имидазолидину 129, 145.

10 Успехи химии, № 2

Реакции с гидразинами и гидроксиламином. Подобно углеводородным аналогам 146 , полифторсодержащие β -дикетоны при комнатной температуре 147 или при нагревании с гидразинами образуют пиразолы $^{93, \, 148-153}$, среди которых запатентованы соединения, обладающие противовоспалительной и анальгетической активностью $^{147, \, 148}$, высокоактивные гербициды 150 , препараты для лечения гипергликемии 152 , термостойкие теплоносители и поверхностно-активные вещества (ПАВ) 153 . Взаимодействие бис- β -дикетонов с гидразинами протекает аналогичным образом и приводит к бис-пиразолам 93 .

В отличие от этого, ГФАА при взаимодействии с гидразингидратом в спирте (при 5° C) образует 3,5-бис (трифторметил) - 3,5-диоксипиразолидин (XIII) 154, который только при нагревании отщепляет две молеку-

лы воды и переходит в пиразол.

Для симметричных полифторированных β -дикетонов с большими фторалифатическими радикалами ¹⁵³, а также с фторированными радикалами, содержащими ω -водородный атом ⁹³, образование пиразолидинов в этой реакции не наблюдалось; это согласуется с реакционной способностью симметричных полифторированных β -дикетонов по отношению к гидроксилсодержащим нуклеофилам.

Своеобразно ведут себя в реакциях с гидразинами β-дикетоны с перфторфенильными заместителями: не содержащий α-атом водорода перфтордибензоилметан при взаимодействии с фенилгидразином при 0° С дает смесь β-кетогидразона (XIV) и неустойчивого пиразолидина (XV), кипячение которого в спирте, наряду с частичным размыканием цикла и переходом в (XIV), приводит к отщеплению одной молекулы воды и образованию пиразолина (XVI) 155. С гидразин-гидратом образуется пиразолидин (XVII) в виде аддукта с молекулой гидразина.

Енолизующиеся полифторароматические β -дикетоны при комнатной температуре с гидразином образуют соли, и лишь при кипячении — пиразолы. Однако при нагревании с ацетатами гидразинов, в зависимости от природы α -заместителя в β -дикетоне и строения гидразина, они образуют либо пиразолы, либо флавоны (XVIII) путем внутримолекулярного отщепления *орто*-атома фтора от пентафторфенильного кольца ¹⁵⁶.

Подобная реакция образования флавонов внутримолекулярной циклизацией β -дикетонов с нефторированным фенильным заместителем проходит только при нагревании в присутствии минеральной кислоты и требует обязательного наличия оксигруппы в *орто*-положении фенильного кольца ¹⁶⁷, ¹⁵⁸.

 $R = C_6H_5$; $R = CH_8$

OH

$$R = CH_3^{158}, CF_3^{159}$$
 $R = CH_3^{158}, CF_3^{159}$

Взаимодействие β -дикетонов с гидроксиламином, как показали недавние исследования механизма реакции методом ЯМР на примере AA, включает несколько стадий и в конечном итоге приводит к изоксазолам $(XX)^{159,\,160}$.

В случае полифторсодержащих β -дикетонов промежуточный 5-окси- Δ^2 -изоксазолин типа (XIX) оказывается настолько устойчивым, что может быть выделен в свободном виде, а для перехода от него к изоксазолу необходимо нагревание с полифосфорной кислотой $^{161, \ 162}$. Это еще раз демонстрирует стабилизацию интермедиатов нуклеофильного присоединения фторалкильными остатками.

$$\begin{array}{c|c} CH_3-C-CH_2-C-CH_3+NH_2OH \stackrel{\frown}{=} CH_3-C-CH_3 \stackrel{\frown}{=} CH_3 \stackrel{$$

Фторалкилсодержащие изоксазолы запатентованы в качестве высокотемпературных теплоносителей и ΠAB^{161} , а также в качестве веществ, снижающих содержание сахара в крови 163 .

Реакции с производными мочевины и о-фенилендиамином. Сплавление ТФАА с гуанидинкарбонатом 149, а также нагревание спиртовых растворов ТФАА с гуанидинкарбонатом 164 или гидрохлоридом О-метилизомочевины 175 приводит к 2-амино- или 2-оксипиримидинам с трифторметильной группой в гетерокольце, из которых получены трифторметилсодержащие сульфамиды — аналоги известных нефторированных препаратов сульфаметазина и сульфисамидина 164. Синтез этих соединений в одну стадию кипячением ТФАА с арилсульфонилгуанидинами запатентован 166. В том же патенте сообщается об их более высокой биологической активности по сравнению с углеводородными аналогами. Показано 167, что в кислой среде механизм реакции включает кислотно-катализируемую атаку мочевины на кето-енол с последующей циклизацией.

$$F_3C$$
 CH_3
 $C = NH_3$
 CH_3
 CH_3

Хотя образование замещенных 1,5-бенздиазепинов из *о*-фенилендиамина (ОФД) и β-дикетонов, не содержащих фтора, описано еще в 1907 г. 168, исследование взаимодействия фторсодержащих β-дикетонов с

ОФД начато лишь в последние годы. Установлено ¹⁶⁹, что при конденсации фторалкилсодержащих β-дикетонов с ОФД наряду с 1,5-бензиазепинами образуется, в зависимости от природы заместителей в β-дикетоне, от 3 до 25% незамкнутого β-аминовинилкетона. Рекомендуется применение полученных 1,5-бенздиазепинов с фторалкильным заместителем в гетерокольце в качестве ПАВ и теплоносителей ¹⁷⁰. Обнаружено ⁹³, что бенздиазепины успешно получаются только из β-дикетонов с одним фторалкильным заместителем, тогда как β-дикетоны с двумя фторалкильными заместителями при обычных условиях конденсации с ОФД ¹⁶⁸ дают соли, а при кипячении в спирте в присутствии уксусной кислоты — 2-фторалкилбензимидазолы ⁹³. Такое протекание реакции связано, по всей вероятности, с повышенной реакционной способностью С=N-связи, соседней с фторалкильным заместителем, что приводит к атаке свободной аминогруппы по этой связи, а не по карбонилу.

$$R^{F}$$

$$N = R^{F}$$

$$R = Alk, Ar$$

$$R = R^{F} = CF_{2}, (CF_{2}) \circ H$$

Реакции с аминосоединениями, содержащими подвижный α -атом водорода. Под действием основных реагентов 171, 172, серной 173, полифосфорной 174, 175 и фосфорной 176—178 кислот, а также при нагревании 179 полифторированные β -дикетоны легко конденсируются с аминосоединениями, содержащими подвижный водород в α -положении, с образованием пиридинового цикла.

$$R^F$$
 R^F R^F

Реакция представляет интерес с точки зрения введения фторсодержащих заместителей в пиридиновое кольцо и получения потенциальных биологически активных соединений. Так, синтезированный из цианацетамида

X = CH, Y = H; X = N, Y = NH₂

и ТФАА замещенный γ -трифторметилпиридон был использован для получения трифторметильных аналогов витамина B_6^{171} , пиразолопиридины с γ -фторфенильным заместителем запатентованы как противовоспалительные препараты 174 , а нафтиридины, полученные из фторсодержащих β -дикетонов и 2,6-диаминопиридина, запатентованы как соединения, обладающие гипотензивным и бронхорасширяющим действием $^{175, 177, 178}$. Аналогичная циклизация с эфирами фторсодержащих β -кетокислот приводит к γ -пиридонам 180 , на основе которых получены трифторметильные аналоги хинина и хинидина. Описано образование трифторметилсодержащих пиразоло[1,5-d]пиримидинов при конденсации ТФАА с 2-аминопиримидином 181 . Полученные соединения являются депрессантами центральной нервной системы.

г) Реакции с другими нуклеофилами

Взаимодействием спиртового раствора $TT\Phi A$ с селеноводородом в токе азота в присутствии безводного хлористого водорода получен селенотеноилтрифторацетон ¹⁸². Место нуклеофильной атаки не установлено, но по аналогии с сероводородом ¹⁰⁸ предполагается ¹⁸², что замещается кислород карбонильной группы, связанной с нефторированным заместителем (см. также гл. V).

В отличие от нефторированных аналогов 183 фторалкилсодержащие β -дикетоны легко образуют циклоаддукты с изонитрилами в отсутствие катализаторов 184 , что авторы связывают с их практически полной енолизацией. Строение продукта реакции (XXI) и, следовательно, направление нуклеофильной атаки * по карбонилу, связанному с фторалкильным заместителем, установлено методом \mathfrak{AMP} 19 F и кислотным гидролизом циклоаддукта.

Взаимодействие фторсодержащих β -дикетонов с гидрид-ионом приводит к восстановлению как карбонильной группы, так и двойной С = Ссвязи енола с образованием диолов ¹⁸⁵.

Таким образом, полифторированные β-дикетоны легко взаимодействуют с нуклеофилами, образуя геминальные аддукты или продукты конденсации. Необычное направление нуклеофильной атаки на карбонильный атом углерода, связанный с менее электроноакцепторным заместителем, можно объяснить либо первоначальным протонированием карбонильной группы, связанной с нефторированным заместителем, либо представив реакцию как ряд равновесных стадий, в которых участвуют промежуточные и конечные продукты 127:

^{*} Авторы 184 не исключают и возможности 1,4-циклоприсоединения.

$$F_{3}C \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} + \ddot{B}H_{2} \xrightarrow{F_{3}C} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{-H_{2}O} \xrightarrow{F_{3}C} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{H_{2}O} \xrightarrow{F_{3}C} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{H_{2}O} \xrightarrow{F_{3}C} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{H_{2}O} \xrightarrow{C} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{C} CH$$

Образование аддукта (XXII) более вероятно, чем аддукта (XXIII), однако первый не склонен к отщеплению, и реакция практически останавливается на стадии его образования. Аддукт (XXIII) легко отщепляет либо присоединенную молекулу нуклеофила, переходя в исходный β-дикетон, либо молекулу воды, образуя продукт конденсации; в случае большого избытка реагента равновесие сдвигается в сторону продукта конденсации. В щелочной среде происходит необратимое расщепление молекулы β-дикетона по С—С-связи.

2. Прочие реакции

а) Электрофильные реакции

Взаимодействие фторсодержащих β -дикетонов с электрофильными реагентами изучено меньше, чем с нуклеофильными, вероятно, из-за меньшей практической и синтетической значимости образующихся соединений. Однако имеющиеся данные позволяют подчеркнуть некоторые особенности, обусловленные присутствием фторсодержащих заместителей. Так, например, в условиях, характерных для введения нитрогруппы в α -положение ДБМ, его фторированный аналог не нитруется, а при действии более концентрированной HNO₃ образуется трикетон, вполне устойчивый на воздухе 42 .

$$F_{\mathbf{5}}C_{\mathbf{6}} \xrightarrow{C_{\mathbf{6}}F_{\mathbf{5}}} \xrightarrow{HNO_{\mathbf{5}}} F_{\mathbf{5}}C_{\mathbf{6}} \xrightarrow{C_{\mathbf{6}}F_{\mathbf{5}}} C_{\mathbf{6}}F_{\mathbf{5}}$$

Аналогичная реакция наблюдается для пентафторбензоилуксусного эфира при действии двуокиси селена 186.

Фторсодержащие заместители затрудняют также бромирование и нитрование β -дикетонатов хрома и меди. Это связано как с уменьшением нуклеофильности α -положения, так и со снижением устойчивости самих металлхелатов ^{187, 188}.

Двойственная реакционная способность фторсодержащих β-дикетонов и их енолят-ионов изучена крайне слабо. Установлено, что при обработке натриевой соли ДФБМ ацетилхлоридом образуется исключительно О-ацетилпроизводное 43. Взаимодействие БТФА с диацетоксииод-

бензолом приводит к С-ацилированию 189.

$$R^{F} \xrightarrow{\text{I) Na, 2) CH_{3}C} \stackrel{\text{O}}{\underset{\text{C}_{1}}{\bigcirc}}} \xrightarrow{R^{F}} R^{R} = R^{F} = C_{6}F_{5}$$

$$CH_{3} \xrightarrow{\text{O}} C$$

$$CH_{3} \xrightarrow{\text{C}_{6}H_{5}I(OCCH_{3})_{2}} \xrightarrow{\text{R}^{F}} R^{F} = R^{F} = C_{6}F_{5}$$

$$R^{F} = R^{F} = C_{6}F_{5}$$

$$R^{F} = C_{6}F_{5}$$

$$R^{F} = C_{6}F_{5}$$

$$R^{F} = C_{6}F_{5}$$

$$R^{F} = C_{6}F_{5}$$

Алкилирование $TT\Phi A$ ксантгидролом и тиоксантгидролом в уксусной кислоте идет по α -атому углерода ¹⁹⁰ и не отличается от подобной реакции нефторированных аналогов.

$$R^F = CF_3$$
, $X = 0$, S

При взаимодействии ТФБА с карбонилцианидом О-алкилирование также не идет, а образуется с количественным выходом малоустойчивый продукт С-алкилирования (XXIV) 191.

$$F_{3}C \xrightarrow{H} C_{6}H_{5} + CN \xrightarrow{C} CN \xrightarrow{0^{\circ}C, 9\phi ap} F_{3}C \xrightarrow{C} C_{6}H_{5}$$

$$(XXIV)$$

В то же время 1-нитро-1,1-дифторпентандион-2,4 метилируется диазометаном по О- и α-С-атомам, превращаясь в 5-нитро-5,5-дифтор-4-метокси-3-метилпент-3-ен-2-он (XXV) ³⁶; это еще один пример двойственной реакционной способности фторсодержащих β-дикетонов.

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline O_2NCF_2 & CH_3 & CH_3 \\ \hline O & O & O \\ \hline \\ CH_3 & (XXV) & \end{array}$$

Попытка распространить на фторсодержащие β-дикетоны обычную для нефторированных аналогов реакцию получения селенониевых илидов при действии дихлоридов селенолана привела к селенониевым солям (XXVII) ¹⁹². По мнению авторов, это связано с расщеплением первоначально образующегося селенониевого производного дикетона (XXVI). Неустойчивость последнего обусловлена большим положительным зарядом на карбонильном углероде, связанном с трифторметильной группой, за счет индуктивного эффекта групп CF₃ и Se⁺. Селенониевые илиды (XXVIII) удалось получить только из селеноксидов и бензоил- или теноилтрифторацетона в присутствии дициклогексилкарбодиимида ¹⁹².

Описана конденсация α-метиленовой группы фторированных β-дикетонов с полиметиновыми соединениями, содержащими концевую альдегидную группу; образующиеся при этом вещества запатентованы как фильтрующие красители для фотографических и текстильных материалов ¹⁹³. В случае трифторацетоуксусного эфира конденсация с водными растворами альдегидов приводит к тетрагидропиранам (XXIX), содержащим фторалкильные заместители в гетерокольце ¹⁹⁴.

$$F_3C$$
 OC_2H_5 $OC_2H_$

Нагревание $T\Phi AA$ с тионилхлоридом приводит к замене оксигруппы на хлор с образованием 1,1,1,5,5,5-гексафтор-2-хлорпентанона-1 195, 196.

б) Радикальные реакции

Имеется лишь несколько примеров радикальных реакций фторсодержащих β -дикетонов. Хлорирование ТФАА на свету приводит к 1,1,1-трифтор-3,3-дихлорпентандиону-2,4 (XXX) ²³.

При бромировании ДФБМ бромом образуется только монобромпроизводное, хотя в этих же условиях для нефторированного аналога может

быть получено как моно-, так и дибромпроизводное 42.

$$F_{\delta}C_{\delta} \xrightarrow{H} C_{\delta}F_{\delta} \xrightarrow{Br_{\delta}} F_{\delta}C_{\delta} \xrightarrow{Br} C_{\delta}F_{\delta}$$

Методом ЭПР показано, что трифторнитрозометан присоединяется по α -положению ТФАА и ГФАА с образованием нитроксидных и иминоксильных радикалов ¹⁹⁷. Облучение ГФАА ультрафиолетом приводит к выбросу НF и к циклизации в 2,2-дифтор-2,3-дигидро-5-трифторметилфуранон-3 (XXXI) ¹⁹⁸.

$$F_3C$$
 CF_3
 $-hF,h\nu$
 F_3C
 O
 F
 $(XXXI)$

в) Фторирование

В работе ⁴³ показано, что Na-соль ДФБМ (XXXII) фторируется перхлорилфторидом по α -атому углерода с образованием перфтордибензоилметана (XXXIV). Это согласуется с данными ^{199–201} о взаимодействии нефторированных β -дикетонов с перхлорилфторидом и объясняется ^{43, 199} более высокой кислотностью дикетона (XXXIII) по сравнению с ДФБМ, приводящей к металлированию его Na-солью (XXXII) и к дальнейшему исчерпывающему фторированию.

$$F_5C_6 \xrightarrow{F} C_6F_5$$

$$(XXXII)$$

$$F_5C_6 \xrightarrow{F} C_6F_5$$

$$(XXXIII)$$

$$F_5C_6 \xrightarrow{F} C_6F_5$$

$$(XXXIII)$$

$$(XXXIII)$$

$$F_5C_6 \xrightarrow{F} C_6F_5$$

$$(XXXIII)$$

Введение только одного атома фтора к α -атому углерода осуществлено 43 фторированием α -бромдекафтордибензоилметана с последующим дебромированием, а также фторированием Na-соли $\mathit{бuc}$ (пентафторбензил) уксусного эфира и кислотным расщеплением образующегося продукта 100%-ной серной кислотой. Возможный механизм фторирования СH-активных соединений перхлорилфторидом обсуждается в книге 202 .

Фторирование элементарным фтором описано только для медных и никелевых хелатов гексафторацетилацетона; при этом авторам удалось с 5%-ным выходом выделить перфтор-3,5-диметил-1,2-диоксолан 203 .

$$\begin{array}{c|c} F_3C & CF_3 \\ O & O \\ Ni/2 & \xrightarrow{F_2/N_2 \\ -20^{\circ}C} \end{array} \xrightarrow{F_3C} \begin{array}{c} CF_2 \\ CF_2 \\ O-O \end{array} \xrightarrow{CF_3} CF_3$$

VI. ПРИМЕНЕНИЕ

1. Экстракция и экстракционно-фотометрическое определение металлов

Присутствие фторсодержащих радикалов отражается и на применении β-дикетонов, позволяя выделить новые области применения или улучшая свойства для использования в известных областях.

Так, кислотность полифторированных β -дикетонов на 2-3 порядка превышает кислотность нефторированных аналогов $^{204,\ 205}$, что позволяет проводить экстракцию легко гидролизуемых β -дикетонатов металлов из значительно более кислых растворов 30 . Обзор исследований по экстракционным свойствам $TT\Phi A$ и фуроилтрифторацетона, наиболее подробно изученных в этом плане, дан в монографии 30 , а синергизм $TT\Phi A$ с различными соединениями обсужден в обзоре 206 .

В публикациях последних лет большее внимание уделяется изучению экстракции металлов с помощью ТТФА в присутствии третичных аминов ^{207–214} и соединений фосфора ^{215–217}, а также применению ТТФА для экстракционно-фотометрического определения элементов ^{218–222}. Другие полифторированные β-дикетоны применяются в экстракции и спектрофотометрическом определении ионов металлов реже ^{223–225}, хотя винилфенилперфторалкилпропандионы запатентованы как мономеры для получения полимеров, способных к экстракции ионов металлов из сильнокислых сред ²²⁶, а β-дикетоны, содержащие наряду с перфторалкильным и пентафторфенильный заместитель — как экстрагенты для извлечения ванадия из сильнокислых сред ^{26, 227}.

2. ГЖХ-разделение и определение катионов металлов

Фторсодержащие заместители повышают летучесть β -дикетонатов металлов, что позволяет осуществлять их газохроматографическое разделение и определение при значительно более низких температурах 228 и с применением электронозахватных детекторов; таким образом повышается чувствительность и селективность анализа 229 . Вопросы применения полифторированных β -дикетонов в ΓXX катионов металлов рассмотрены в монографии 228 , а достижения последних лет — в обзорах $^{229-234}$.

3. Биологическая активность фторсодержащих β-дикетонов

Известно несколько видов биологической активности нефторированных β -дикетонов. Сообщается о противовирусной активности α -замещенных β -дикетонов и ее взаимосвязи со строением $^{235-239}$, об антиаллергическом действии α -цианпроизводных 240 , об угнетении центральной нервной системы и расслабляющем действии α -амино- β -дикарбонильных соединений на мышцы 241 . Обнаружено слабое противоопухолевое действие β -дикетонов запатентованы в качестве инсектицидов 242 . Производные β -дикетонов запатентованы в качестве инсектицидов 243 и гербицидов 244 . Имеется мало данных о биологической активности полифторированных β -дикетонов. Сообщается об инсектицидном действии производных δ -Т δ А и бензофуроилтрифторацетона 246 .

Известно также действие ТТФА на ферменты. Показано, что ТТФА ингибирует окисление сукцинатов ^{247–248}, а также снижает активность цитохромредуктазы ^{249–262} и малатдегидрогеназы ²⁶³. Механизм действия ТТФА на ферменты не выяснен, но предполагается, что ТТФА взаимодействует не с самими ферментами, а с компонентами дыхательной цепи, и ингибирующее действие связывается со способностью ТТФА образовывать комплексы с железом ²⁵¹. Отличия в действии ТТФА на различные

ферменты связаны скорее всего не с различиями в их структуре, а с различиями в строении мембран 262 , причем ингибирование в митохондриях растительных объектов выражено слабее, чем в митохондриях животных 264 . Относительно других β -дикетонов известно лишь, что AA и BA предотвращают термическую инактивацию ферментов 265 , а фуроилтрифторацетон ингибирует перенос электронов при окислении ферроцианида в митохондриях 266 .

4. Другие области применения

Помимо широкого применения для разделения и определения катионов металлов, полифторированные β -дикетоны имеют и другие, менее известные области применения. Установлено, например, что ТТФА замедляет коррозию цилиндров двигателей 267 ; ГФАА рекомендован в качестве добавки, предотвращающей гелеобразование в прядильных растворах полимеров 268 .

Ряд фторсодержащих β-дикетонов запатентован в качестве соединений, придающих бумаге водоотталкивающие свойства ³⁵. 4,4,4-Трифтор-1-(2-нафтил) бутандион-1,3 запатентован как добавка, увеличивающая светочувствительность светополимеризуемых смесей ²⁶⁹, а ТТФА используется в мембранах ион-специфичных электродов, в частности для ионов Ca²⁺²⁷⁰⁻²⁷¹, а также для импрегнирования электродных мембран, предназначенных для определения ониевых ионов ²⁷².

* *

Анализ современного состояния исследований в области химии, свойств и применения фторсодержащих β -дикетонов позволяет заключить, что при хорошо разработанных методах их получения, а также при наличии у них ряда важных в прикладном и теоретическом отношении свойств, до настоящего времени остаются малоизученными многие вопросы. Представляет интерес исследование взаимодействия фторсодержащих β -дикетонов с электрофильными реагентами (алкилирование, ацилирование, реакции с фторолефинами, оксиранами, тииранами), расширение исследований нуклеофильных реакций, получение количественных данных о влиянии введения атомов фтора на свойства и реакционную способность β -дикетонов, а также изучение механизмов реакций. Перспективными представляются работы по изучению и сравнительной оценке биологической активности фторсодержащих β -дикетонов и гетероциклов на их основе.

За время подготовки рукописи к печати в литературе появилось сообщение о синтезе пентафторбензоилацетона (I), $R_F = C_0 F_5$, $R = C H_3$ конденсацией пентафторацетофенона с его енолят-анионом, причем на основании расщепления сигнала винильного протона на *орто*-атомах фтора, авторы предполагают енолизацию полученного соединения по карбонилу, связанному с нефторированным заместителем 273 . Методом фото-электронной спектроскопии подтверждено существование енолов симметричных β -дикетонов в μuc -форме с несимметричной водородной связью и установлено, что величина верхнего предела барьера интерконверсии C_s -форм через C_{2v} -форму составляет 6 ккал/моль 274 . Рассчитаны потенциалы ионизации и электронные спектры $T\Phi AA$ и $\Gamma\Phi AA^{275}$. Методом ЯМР 1 H 19 F и 13 C установлено, что при взаимодействии несимметричных фторсодержащих β -дикетонов со спиртами преимущественно образуются аддукты по карбонилу, связанному с фторированным заместителем 276 ; этим подтверждается описанная выше схема взаимодействия β -дикето-

нов с нуклеофилами (см. стр. 00). Из фторсодержащих бис-β-дикетонов ²⁷⁷ впервые получены пиразоло-β-дикетоны и установлена их высокая каталитическая активность в реакциях образования полиуретанов. Ряд работ, опубликованных за это время, посвящен взаимодействию полифторированных β-дикарбонильных соединений с мочевиной ²⁷⁸ и ее производными ²⁷⁹⁻²⁸¹, а также конденсация их с аминосоединениями, содержащими подвижный H-атом в α -положении: аминопиразолоном 282 , аминоциклогексаном 283 , аминопиразолом 284 , замещенным аминодигидроиндолом ²⁸⁵. Полученный в последнем случае 7-оксо-1,2,3,3,8-пентаметил-5-трифторметил-2,3,7,8-тетрагидро-1Н-пирроло3,2-d-хинолин ван в качестве источника сине-зеленого лазерного излучения 285. Установлено образование у-трифторметилзамещенного пиридона при конденсации ТФАА с малондинитрилом 286. Исследовано полярографическое восстановление полифторированных β-дикетонов ²⁸⁷. Значительное число работ посвящено применению полифторированных β-дикетонов в экстракции катионов металлов 288-292.

ЛИТЕРАТУРА

P. Mashak, M. T. Glenn, J. Savory, Fluorine Chem. Rev., 6, 43 (1973).
 K. S. Joshi, V. N. Pathak, Coord. Chem. Rev., 22, 37 (1977).

3. Дж. Харвуд, Промышленное применение металлоорганических соединений, «Химия», Л., 1970, стр. 284.

4. H. Lamphrey, Ann. N. Y. Acad. Sci., 88, 519 (1960).

5. A. Geuther, Arch. Pharm., 106, 97 (1863).

- 6. L. Claisen, Ber., 20, 655 (1887) цит. по кн. К. В. Вацуро, Г. Л. Мищенко, Именные реакции в органической химин, «Химия», М., 1976, стр. 212.
 7. A. L. Henne, M. S. Newman, L. L. Quill, R. A. Stamiforth, J. Am. Chem. Soc., 69,
- 1819 (1947)

- 8 J. C. Reid, M. Calvin, Tam me, 72, 2948 (1950).

 9 K. C. Joshi, V. N. Pathak, Indian J. Chem., 10, 485 (1972).

 10 K. C. Joshi, V. N. Pathak, S. Bhargava, J. Inorg. Nucl. Chem., 39, 803 (1977).

 11 R. Filler, J. S. Rao, A. Biezais, F. N. Miller, V. D. Beancaire, J. Org. Chem., 35, 930

- (1970).
 12. Ĵ. Р. Fackler, F. A. Cotton, J. Chem. Soc., 1960, 1435.
 13. М. Гудлицкий, Химия органических соединений фтора, ГНТИ, М., 1961, стр. 203.
 14. R. Belcher, A. W. Dudeney, W. L. Stephen, J. Inorg. Nucl. Chem., 31, 625 (1969).
 15. R. N. Haszeldine, W. K. Musgrave, F. Smith, L. W. Turton, J. Chem. Soc., 1951, 609.
 16. R. A. Moore, R. Levine, J. Org. Chem., 29, 1883 (1964).
 17. К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, Ж. орг. химин, 13, 49 (1977).
 18. R. А. Мооге, R. Levine, J. Org. Chem., 29, 1439 (1964).
 19. К. Н. Бильдинов, С. С. Петренко, С. В. Соколов, П. А. Юфа, Ю. А. Фиалков, Л. М. Ягупольский, Авт. свид. СССР № 523076 (1973); Бюлл. изобр., 1976, № 28. 60. № 28, 60.
- . 20. Ю. А. Фиалков, П. А. Юфа, А. Г. Горюшко, И. К. Давиденко, Л. М. Ягупольский, Ж. орг. химии, 11, 1066 (1975). 21. В. И. Салоутин, К. И. Пашкевич, И. Я. Постовский, ЖВХО им. Д. И. Менделеева,
- 21, 238 (1976).

- 22. L. B. Barkley, R. Levine, J. Am. Chem. Soc., 73, 4625 (1951).
 23. J. D. Park, H. A. Brown, J. R. Lacher, Там же, 75, 4752 (1953).
 24. C. Massyn, R. Pastor, A. Cambon, Bull. soc. chim. France, 18, 975 (1974).
 25. A. E. Pedler, R. C. Smith, J. C. Tatlow, J. Fluorine Chem., 1, 433 (1972).
 26. M. F. Lucid, Пат. США 3764274 (1973); РЖХим, 1974, 16Л132.
 27. M. F. Lucid, Пат. США 3700416 (1972); РЖХим, 1973, 17Л91.

- 28. К. С. Joshi, V. N. Pathak, J. Chem. Soc., Perkin Trans. I, 1973, 57.
 29. S. Unio, K. Kariyone, Пат. США 3487089 (1969): РЖХИМ, 1970, 24Н321.
 30. В. G. Shultz, Е. М. Larsen, J. Am. Chem. Soc., 71, 3250 (1949).
 31. К. И. Пашкевич, В. И. Салоутин, Л. Г. Егорова, И. Я. Постовский, Ж. общ. химии,
- 49, 212 (1979). 32. W. G. Scribner, B. H. Smith, R. W. Moshier, R. E. Scievers, J. Org. Chem., 35, 1696 (1970)

- 33. S. F. Engel, C. C. Chappelow, J. Chem. Eng. Data, 16, 381 (1971). 34. Л. А. Симонян, Н. П. Гамбарян, И. Л. Кнунянц, ЖВХО им. Д. И. Менделеева, 11, 467 (1966).
- .35. D. England, Пат. США 3336339 (1967); С. А., 68, Р68482 (1968).

- 36. А. В. Фокин, А. Т. Узун, Ж. общ. химии, 39, 1340 (1969).
- 37. Е. П. Крамарова, Ю. И. Бауков, И. Ф. Луценко, Там же, 45, 478 (1975).
- 38. Г. Г. Беленький, Л. С. Герман, Изв. АН СССР, сер. хим., 1974, 942. 39. И. Л. Кнунянц, Е. М. Рохлин, А. Ю. Волконский, Э. П. Лурье, Симп. «Синтез. свойства и применение фторсодержащих кетонов и дикетонов», Тезисы докл., Свердловск, 1979, стр. 27.
- 40. И. Н. Кротович, М. А. Курыкин, Ю. Н. Студнев, Л. С. Герман, А. В. Фокин, Там же, стр. 29.
- 41. Н. Н. Ворожцов, В. А. Бархаш, А. Т. Прудченко, Т. И. Хоменко, ПАН СССР. *164*, 1046 (1965)

- 104, 1040 (1900).
 42. С. А. Осадчий, В. А. Бархаш, Ж. орг. химин, 6, 1627, (1970).
 43. С. А. Осадчий, В. А. Бархаш, Изв. АН СССР, сер. хим., 1970, 1409.
 44. А. И. Кольцов, Г. М. Хейфец, Успехн химин, 40, 1646 (1971).
 45. Г. А. Домрачев, О. Н. Вылегжанина, Ж. общ. химин, 38, 2473 (1968).
 46. Z. Joshida, H. Ogoshi, Tetrahedron, 26, 4691 (1970).
- 47. H. Ogoshi, K. Nakamoto, J. Chem. Phys., 45, 4114 (1966).

- 48. M. Jaqub, R. D. Koob, M. L. Morris, J. Inorg. Nucl. Chem., 33, 1944 (1971).
 49. G. M. Mines, H. Thompson, Proc. Roy. Soc. London, Ser. A, 342, 327 (1975).
 50. K. Sato, K. Arakawa, J. Chem. Soc. Japan, Pure Chem. Sect., 89, 1110 (1968).
 51. C. Shibata, T. Takeuchi, M. Jamazaki, J. Niwa, J. Chem. Soc. Japan, Chem. and Ind., 1978, 489.
- 52. Дж. Попл, В. Шнейдер, Г. Бернстейн, Спектры ЯМР высокого разрешения, ИЛ, M., 1962.
- 53. Дж. Эмсли, Дж. Финей, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения,

- 53. Дж. Эмсли, Дж. Финеи, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения, «Мир», М., 1969, т. 1.
 54. J. P. Burdett, M. T. Rogers, J. Am. Chem. Soc., 86, 2105 (1964).
 55. R. Filler, S. M. Nagwi, J. Org. Chem., 26, 2571 (1961).
 56. R. L. Lintvedt, H. F. Holtzklaw, J. Am. Chem. Soc., 88, 2713 (1966).
 57. О. Я. Нейланд, С. В. Калнинь, в кн. Строение и таутомерные превращения β-ди-карбонильных соединений, ред. Э. Ю. Гудориниеце, С. А. Гиллер, Э. Я. Грен, О. Я. Нейланд, Я. П. Страдынь, «Зинатне», Рига, 1977, стр. 36.
 58. М. Т. Rogers, I. I. Burdett, Canad. I. Chem. 43, 1516 (1965).

- 58. M. T. Rogers, J. L. Burdett, Canad. J. Chem., 43, 1516 (1965). 59. D. C. Nonhebel, Tetrahedron, 24, 1869 (1968). 60. Л. Н. Курковская, Н. Н. Шапетько, Н. Н. Магдесиева, Теор. эксперим. химия, 8, 688 (1972). 61. G. Gunnarsson, H. Wennerstron, W. Egan, S. Forsen, Chem. Phys. Letters, 38, 96
- 62. В. А. Гиндин, Е. Е. Емелина, Б. А. Ершов, Г. Клозе, А. И. Кольцов, Н. Н. Шапетько, Ж. орг. химии, 5, 1890 (1969). 63. M. Gorodetsky, Z. Luz, J. Mazur, J. Am. Chem. Soc., 89, 1183 (1967). 64. J. Niwa, M. Yamazaki, T. Takeuchi, Chem. Letters, 1975, 707.

- J. Niwa, M. Yamazaki, T. Takeuchi, Chem. Letters, 1975, 707.
 N. N. Shapet'ko, S. S. Berestova, G. Lukovkin, Ju. S. Bogachev, Org. Magn. Reson., 7, 237 (1975).
 Н. Н. Шепетько, С. С. Берестова, В. Г. Медведева, А. П. Сколдинов, Ю. С. Андрейчиков, ДАН СССР, 234, 876 (1977).
 Е. Г. Попов, Д. Н. Шигорин, Н. Н. Шапетько, А. П. Сколдинов, Г. А. Гольдер, Ж. физ химии, 39, 2726 (1965).
 В. А. Гиндин, К. И. Пашкевич, А. Л. Никольский, Б. А. Ершов, А. И. Кольцов, И. А. Юсупов, И. Я. Постовский, Ж. орг. химин, 15, 1773 (1979).
 А. L. Andreassen, S. H. Bauer, J. Mol. Structure, 12, 381, (1972).
 А. L. Andreassen, D. Zebelman, S. H. Bauer, J. Am. Chem. Soc. 93, 1148 (1971).
- 70. A. L. Andreassen, D. Zebelman, S. H. Bauer, J. Am. Chem. Soc., 93, 1148 (1971).
- 71. D. Semmingsen, Acta Chem. Scand., 26, 143 (1972)

- 72. R. D. G. Jones, J. Chem. Soc., Perkin Trans. II, 1976, 513.
 73. D. E. Williams, Acta Crystallogr., 21, 340 (1966).
 74. R. S. Brown, J. Am. Chem. Soc., 99, 5497 (1977).
 75. H. Nakanishi, H. Morita, S. Nagahura, Bull. Chem. Soc. Japan, 51, 1723 (1978).
 76. M. S. Gordon, R. D. Koob, J. Am. Chem. Soc., 95, 5863 (1973).
- 77. Е. А. Должикова, В. П. Жуков, К. И. Пашкевич, В. А. Губанов, Симп. «Синтез, свойства и применение фторсодержащих кетонов и дикетонов», Свердловск, 1979,

- 78. M. Calvin, K. W. Wilson, J. Am. Chem. Soc., 67, 2003 (1945).
 79. L. G. G. Van-Uitert, W. C. Fernelius, B. E. Douglas, Там же, 75, 457 (1953).
 80. G. Ng, D. E. Goldberg, J. Inorg. Nucl. Chem., 29, 707 (1967).
 81. K. Bowden, G. Tanner, D. Tuck, Canad. J. Chem., 50, 2622 (1972).
 82. А. Л. Курц, П. И. Демьянов, И. П. Белецкая, О. А. Реутов, Вестн. МГУ, сер. хим., *15*, 597 (1974)
- E. L. Belford, A. E. Martell, M. Calvin, J. Inorg. Nucl. Chem., 2, 11 (1956).
 J. R. Jones, S. P. Patel, J. Am. Chem. Soc., 96, 574 (1974).
 J. R. Jones, S. P. Patel, J. Chem. Soc., Perkin Trans. II, 1975, 1231.

- M. Brower, Chem. Communs, 1967, 515.
 D. M. Brower, Rec. trav. chim. Pays-Bas, 87, 225 (1968).
 G. A. Olah, C. U. Pittman, J. Am. Chem. Soc., 88, 3310 (1966).
 K. F. Fouche, J. Inorg. Nucl. Chem., 32, 3369 (1970).

- 90. И. Стары, Экстракция хелатов, «Мир», М., 1966, стр. 81.
 91. R. G. Pearson, E. A. Mayerle, J. Am. Chem. Soc., 73, 926 (1951).
 92. E. H. Cook, R. W. Taft, Там же, 74, 6103 (1952).
 93. К. И. Пашкевич, В. И. Салоутин, А. Н. Фомин, В. В. Беренблит, В. С. Плашкин, И. Я. Постовский, ЖВХО им. Менделеева, 26, 179 (1981). К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, ЖВХО им. Менделеева, 26, 179 (1981). К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, ЖВХО им. Менделеева, 26, 179 (1981). К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, КВХО им. Менделеева, 26, 179 (1981). К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, КВХО им. Менделеева, 26, 179 (1981). лоутин, И. Я. Постовский, Изв. АН СССР, сер. хим., 1980, 1172.
- 94. Р. Белл, в кн. Новые проблемы физической органической химии, ред. И. П. Белецкая, «Мир», М., 1969, стр. 236.

- 95. E. L. King, W. H. Rias, J. Am. Chem. Soc., 73, 1806 (1951).
 96. R. W. Taft, E. H. Cook, Там же, 81, 46 (1959).
 97. J. Kodama, K. Sato, K. Arakawa, J. Chem. Soc. Japan, Pure Chem. Sect., 87, 1092

- 98. K. Sato, J. Kodama, K. Arakawa, Tam me, 88, 968 (1967).
 99. K. Sato, H. Ochi, K. Arakawa, Bull. Chem. Soc. Japan, 42, 1747 (1969).
 100. E. Camps, J. Coll, A. Messehuer, A. Roca, Tetrahedron, 33, 1637 (1977).
 101. S. M. Wang, N. C. Li, J. Inorg. Nucl. Chem., 31, 755 (1969).
 102. K. Sato, J. Kodama, K. Arakawa, J. Chem. Soc. Japan, Pure Chem. Sect., 87, 821

- 103. K. Sato, O. Kammori, Bull. Chem. Soc. Japan, 42, 2778 (1969).
 104. K. Sato, K. Arakawa, J. Chem. Soc. Japan, Pure Chem. Sect., 88, 470 (1967).
 105. R. Mayer, G. Hiller, M. Nitzschke, J. Jentzsch, Angew. Chem. Int. Ed., 2, 370 (1963).

- R. Mayer, G. Hitler, M. Nitzschke, J. Jentzsch, Angew. Chem. Int. Ed., 2, 370 (1) 106. R. Mayer, G. Hitler, M. Nitzschke, J. Jentzsch, Angew. Chem., 75, 1011 (1963).
 S. H. H. Chaston, S. E. Livingstone, Proc. Chem. Soc., 1964, 111.
 S. H. H. Chaston, S. E. Livingstone, T. N. Lockyer, V. A. Pickles, J. S. Shan Austral. J. Chem., 18, 673 (1965).
 R. K. J. Ho, S. E. Livingstone, Tam We, 21, 1781 (1968).
 C. S. Saba, T. R. Sweet, Anal. Chim. Acta, 69, 478 (1974).
 M. Das, S. E. Livingstone, Austral. J. Chem., 27, 1177 (1974).
 S. F. Livingstone, N. Saha, Tam We, 28, 1249 (1975). V. A. Pickles, J. S. Shannon,

- 112. S. E. Livingstone, N. Saha, Там же, 28, 1249 (1975). 113. R. Belcher, W. I. Stephen, I. J. Thomson, P. S. Uden, J. Inorg. Nucl. Chem., 34, 1017
- 114. А. Л. Никольский, К. И. Пашкевич, И. Я. Постовский, Изв. АН СССР, сер. хим.,

- 1977, 1666.
 115. R. C. Burton, T. R. Sweet, Anal. Chim. Acta, 64, 273 (1973).
 116. S. E. Livingstone, D. S. Moore, Austral. J. Chem., 29, 283 (1976).
 117. E. W. Berg, K. P. Reed, Anal. Chim. Acta, 36, 372 (1966).
 118. J. P. Guenas, Doc. Thesis, Universite de Nantes; S. E. Livingstone, Coord. Chem. Rev., 7, 59 (1971).

- Rev., 7, 39 (1911).

 19. E. Fromm, P. Ziersch, Ber., 39, 3599 (1906).

 120. A. Fregga, A. Brändström, Ark. Kemi, I, 197 (1949).

 121. A. Ouchi, M. Nakatani, J. Takahashi, Bull. Chem. Soc. Japan, 41, 2044 (1968).

 122. C. G. Barrachlough, R. L. Martin, I. M. Stewart, Austral. J. Chem., 22, 891 (1969).

 123. J. C. Lockhart, W. J. Mossop, Chem. Communs, 1971, 61.

 124. F. Waigert, J. Fluorine Chem., I, 445 (1972).

- 125. S. K. Agarwal, J. P. Tandon, J. Inorg. Nucl. Chem., 37, 949 (1975). 126. В. И. Филякова, К. И. Пашкевич, И. Я. Постовский, ЖВХО им. Д. И. Менделеева, 23, 709 (1978).
- 23, 709 (1978).

 127. К. И. Пашкевич, В. И. Филякова, Ю. Н. Шейнкер О. С., Анисимова, И. Я. Постовский, Е. Ф. Кулешова, Изв. АН СССР, сер. хим., 1979, 2087.

 128. К. И. Пашкевич, А. Я. Айзикович, ДАН СССР, 244, 618 (1979).

 129. G. М. J. Slusarczuk, М. М. Jonllie, J. Org. Chem., 36, 37 (1971).

 130. С. И. Якимович, В. А. Хрусталев, Ж. орг. химии, 12, 949 (1976).

 131. І. Р. Evans, G. W. Everett, А. М. Sargeson, Chem. Communs, 1975, 139.

 132. І. Р. Evans, G. W. Everett, А. М. Sargeson, J. Am. Chem. Soc., 98, 8041 (1976),

 133. Р. J. McCarthy, R. J. Hovey, К. Ueno, А. Е. Martell, Там же, 77, 5820 (1955).

 134. Р. J. McCarthy, А. Е. Martell, Там же, 78, 264 (1956).

 135. R. J. Hovey, А. Е. Martell, Там же, 82, 364 (1960).

 136. R. Belcher, M. Pravica, W. Stephen, P. S. Uden, Chem. Communs, 1971, 41.

 137. P. S. Uden, K. Blessel, Inorg. Chem., 12, 352 (1973).

- 137. P. S. Uden, K. Blessel, Inorg. Chem., 12, 352 (1973).
 138. R. Belcher, K. Blessel, T. Cardwell, M. Pravica, W. I. Stephen, P. S. Uden, J. Inorg. Nucl. Chem., 35, 1127 (1973).

- 139. S. C. Cummings, R. E. Sievers, Inorg. Chem., 11, 1482 (1972). 140. W. N. Wallis, S. C. Cummings, Там же, 13, 988 (1974). 141. S. E. Livingstone, J. H. Maayfield, Austral. J. Chem., 28, 1517 (1975). 142. R. P. Scaringe, D. J. Hondson, Inorg. Chem., 15, 1193 (1976).

143. S. C. Cummings, R. E. Sievers, J. Am. Chem. Soc., 92, 215 (1970).
144. S. Dilly, M. Patsalides, J. Chromatogr., 134, 477 (1977).
145. M. M. Jonllie, G. M. Slusarzuk, A. S. Dey, P. V. Venulo, R. H. Yocum, J. Inorg. Nucl. Chem., 32, 4103 (1967).

Т. Джейкобс, в кн. Гетероциклические соединения, т. 5, ред. Л. Элдерфилд, ИЛ, М., 1961, стр. 42.

147. A. Wagner, Пат. США 3200128 (1965); С. А., 63, 13272 (1965). 148. E. W. Bousquet, Пат. США 3308130 (1967); РЖхим, 1968, 19H355. 149. T. Nishiwaki, Bull. Chem. Soc. Japan, 42, 3024 (1969).

150. В. L. Walfworth, E. Klingsberg, Пат. США 3882142 (1975); РЖХим, 1976, 80455.
151. А. Д. Синегибская, К. И. Пашкевич, В. И. Салоутин, Н. А. Клюев, Е. Х. Данк, Х. гетероцикл. соед., 1978, 555.
152. М. Wolf, Пат. США 3284464 (1966); РЖХим., 1975, 150101.
153. А. Cambon, С. Massyn, Франц. заявка № 2230637 (1974); РЖХим, 1976, 5Н217.
154. S. Trofimenko, Пат. США 3681381 (1972); РЖХим, 11, С439.

155. С. А. Осадчий, В. А. Бархаш, Изв. АН СССР, сер. хим., 1971, 1825. 156. С. А. Осадчий, В. А. Бархаш, Ж. орг. химин, 7, 1215 (1971). 157. V. K. Ahluvalia, Indian J. Chem., 15B, 240 (1977).

158. W. B. Whalley, J. Chem. Soc., 1951, 3235. 159. M. Cosivera, K. W. Woo, Tetrahedron Letters, 1976, 3109. 160. M. Cosivera, K. W. Woo, J. Am. Chem. Soc., 98, 7366 (1976). 161. A. Cambon, F. Yeanneaux, C. Massyn, Франц. заявка № 2230664 (1974); РЖХим., 1976, 3P576.

1976, 34376.
162. A. Cambon, C. Massyn, J. Fluorine Chem., 5, 67 (1975).
163. V. J. Bayer, S. R. Safir, Пат. США № 3598829 (1971); РЖХим, 1972, 10Н275.
164. M. G. Biressi, M. Carissimi, F. Ravenna, Gazz. chim. ital., 95, 1293 (1965).
165. A. Kreutzberg, U. H. Tesch, Chem. Ber., 109, 3255 (1976).
166. P. Донори, Й. Танака, Т. Найто, Японск. пат. 12425 (1967); РЖХим, 1968, 17Н386.

167. A. R. Butter, E. Leitch, J. Chem. Soc., Perkin Trans. II, 1976, 832.
168. J. Thiele, G. Steimig, Ber., 40, 955 (1907).
169. R. E. Pastor, C. A. Giovannoni, A. R. Cambon, Europ. J. Med. Chem., 9, 175 (1974).
170. A. Cambon, C. Giovannoni, R. Paspor, J. Riess, Франц. заявка № 2230640 (1974); РЖХим, 1976, 5Р511. 171. J. L. Greene, J. A. Montgomery, J. Med. Chem., 6, 294 (1963). 172. S. Portnoy, J. Org. Chem., 30, 3377 (1965).

172. S. Portnoy, J. Org. Chem., 30, 3317 (1905).
173. C. Temple, J. D. Rose, J. A. Montgomery, J. Med. Chem., 17, 615 (1974).
174. J. U. Markillie, Пат. США 3403158 (1968); 1969, 20H412.
175. H. W. R. Williams, C. S. Rooney, Канад. пат. 966134 (1975); РЖхим, 1976, 8О170.
176. E. Eichler, C. S. Rooney, H. W. R. Williams, J. Heterocycl. Chem., 13, 41 (1976).
177. H. W. R. Williams, C. S. Rooney, Пат. США 3962262 (1976); С. А., 86, 5433 (1977).
178. H. W. R. Williams, C. S. Rooney, Пат. США 4031103 (1977); С. А., 87, 117836

(1977).
179. E. Eichler, C. S. Rooney, H. W. R. Williams, J. Heterocycl. Chem., 13, 43 (1976).
180. G. Grethe, M. R. Uskokovic, Пат. США 3953453 (1976); РЖхим., 1977, 20162.
181. W. E. Kirkpatrick, T. Okabe, I. W. Hillyard, K. R. Robins, A. T. Dren, T. Novinson, J. Med. Chem., 20, 386 (1977).
182. T. Honjo, Chem. Letters, 1974, 481.
183. T. Saegusa, J. Murase, Y. Ito, Bull. Chem. Soc. Japan, 45, 1884 (1972).
184. П. А. Симонан, Э. А. Аверисан, З. В. Сафронова, Н. П. Гамбарян. Изв. АН СССР.

184. Л. А. Симонян, Э. А. Аветисян, З. В. Сафронова, Н. П. Гамбарян, Изв. АН СССР, сер. хим., 1977, 2061. 185. G. Swaelens, M. Anteunis, D. Tavernier, Bull. Soc. chim. Belg. 79, 441 (1970).

186. А. Г. Прудченко, Г. С. Щеголева, В. А. Бархаш, Н. Н. Ворожцов, Ж. общ. химии, 37, 2487 (1967). 187. K. S. Joshi, V. N. Pathak, J. Chem. Soc., Perkin Trans. I, 1973, 57.

188. И. Я. Постовский, К. И. Пашкевич, В. И. Салоутин, Тезисы докл. Всесоюзн. конф. «Синтез и исследование неорганических соединений в неводных средах», Ростов-на-

Дону, 1976, ч. II, стр. 53. 189. F. Mizukami, M. Ando, T. Tanaka, J. Imamura, Bull. Chem. Soc. Japan, 51, 335

(1978). 190. E. Sawicki, V. T. Oliverio, J. Org. Chem., 21, 183 (1956). 191. K. Kasiolek, M. T. Leplawy, Synthesis, 1977, 778. 192. H. H. Магдесиева, Р. А. Кянджециан, В. М. Астафуров, Ж. орг. химии, 11, 508 (1975)

193. R. F. Coles, I. H. Skoog, Пат. США 3933914 (1976); РЖХим, 1976, 19Н238. 194. A. S. Dey, M. M. Joullie, J. Org. Chem., 30, 3237 (1965). 195. E. Bayer, H. P. Müller, Tetrahedron Letters, 1971, 533. 196. E. Bayer, H. P. Müller, R. Sievers, Analyt. Chem., 43, 2112 (1971).

197. B. L. Booth, D. J. Edge, R. N. Edge, R. N. Haszeldine, R. G. G. Holmes, J. Chem. Soc., Perkin Trans. II, 1977, 7.

- 198. J. E. Bassett, E. Whittle, Int. J. Chem. Kinet., 8, 859 (1976).
- 199. C. E. Inman, R. E. Oesterling, E. A. Tyezkowski, J. Am. Chem. Soc., 80, 6533 (1958). 200. S. A. Fuqua, R. M. Silverstein, Chem. and Ind. (London), 1963, 1591. 201. S. A. Fuqua, R. M. Silverstein, J. Org. Chem., 29, 395 (1964).

- 202. У. Шеппард, К. Шартс, Органическая химия фтора, «Мир», М., 1972, стр. 115.
- 203. R. L. Talbott, J. Org. Chem., 30, 1429 (1965). 204. L. G. Van-Uitert, W. C. Fernelius, B. E. Douglas, J. Am. Chem. Soc., 75, 455 (1953). 205. L. G. Van-Uitert, W. C. Fernelius, Tam жe, 75, 3862 (1953).
- 206. C. Madic, Chim. Anal., 54, 102 (1972).
- 207. H. Kawamoto, H. Akaiwa, J. Inorg. Nucl. Chem., 31, 1141 (1969). 208. A. Hideo, K. Hiroshi, S. Takashi, J. Chem. Soc. Japan, Pure Chem. Sect., 91, 980 (1970).

- (1970).
 209. U. Onishi, K. Sekine, Z. anal. Chem., 262, 216 (1972).
 210. E. F. Kassierer, A. S. Kertes, J. Inorg. Nucl. Chem., 34, 3221 (1972).
 211. Z. Newman, P. Klotz, Inorg. Chem., 11, 2150 (1972).
 212. R. Fohriung, H. Specher, Z. anal. Chem., 264, 378 (1973).
 213. B. Kuznik, L. Genov, G. Georgiev, Monatsh. Chem., 106, 1543 (1975).
 214. T. Tooru, O. Kunio, K. Tomihito, Bull. Chem. Soc. Japan, 49, 2108 (1976).
 215. E. B. Jocobs, W. R. Walker, Austral. J. Chem., 23, 2413 (1970).
 216. K. Akiba, T. Ishikawa, N. Suzuki, J. Inorg. Nucl. Chem., 33, 4161 (1971).
 217. В. С. Путилина, Р. И. Фадеева, И. П. Алимарин, Вестн. МГУ (химия), (1973) 120 (1973)
- 218. À. K. De Syedur Rahaman, Analyt. Chem., 35, 1095 (1963).
- 219. H. Onishi, I. Toita, Talanta, II, 1357 (1964). 220. J. Gerard, W. J. Holland, A. E. Veel, J. Boric, Microchim. Acta, 4, 724 (1969).
- 221. K. R. Solanke, S. M. Knopkar, Talanta, 21, 245 (1974). 222. M. Jauniaux, M. De Meyer, Bull. Soc. chim. Belg., 84, 565 (1975).

- 222. М. Лиинийх, М. De Meyer, Bull. Soc. Chiff. Belg., 84, 565 (1975).
 223. J. Gross, C. Keller, J. Inorg. Nucl. Chem., 34, 725 (1972).
 224. Y. Komatsu, H. Honda, T. Sckine, J. Inorg. Nucl. Chem., 38, 1861 (1976).
 225. F. G. Seeley, W. U. Baldwin, Пат. США 3793433 (1974); РЖХим., 1975, 1ЛЗ1.
 226. T. R. Norton, Пат. США 3362935 (1968); РЖХим., 1969, 6С289.
 227. M. F. Lucid, Пат. США 3647712 (1970); С. А., 77, 8563 (1972).
- 228. Р. Мошьер, Р. Сиверс, Газовая хроматография хелатов металлов, «Мир», М., 1967.
- 229. Д. Н. Соколов, Ж. аналит. химин, 27, 993 (1972).
- 230. L. F. Druding, G. B. Kaufmann, Coord. Chem. Rev., 3, 409 (1968). 231. R. E. Sievers, в кн. Coordination Chemistry, ed. S. Kirschner, Plenum Press, N. Y.,
- 1969, р. 270. 232. А. А. Жуховицкий, В. Г. Гуля, Д. Н. Соколов, Б. И. Анваер, ЖВХО им. Д. И. Менделеева, 16, 565 (1971). 233. В. А. Комаров, Ж. аналит. химин, 31, 366 (1976).

- В. А. Комаров, Ж. аналит. химин, 31, 366 (1976).
 Д. Н. Соколов, Успехи химин, 46, 740 (1977).
 J. С. Collins, Пат. США 3829475 (1974); РЖХим., 1975, 11О419.
 G. D. Diana, U. J. Salvador, E. S. Zalay, R. E. Johnson, J. C. Collins, D. Johnson, W. B. Hinshaw, R. R. Lorenz, W. H. Thielking, J. Med. Chem., 20, 750 (1977).
 G. D. Diana, U. J. Salvador, E. S. Zalay, P. M. Carabateas, G. L. Williams, J. C. Collins, F. Pancic, Там же, 20, 757 (1977).
 G. D. Diana, P. M. Carabateas, U. J. Salvador, G. L. Williams, E. S. Zalay, F. Pancic, B. A. Steinberg, J. C. Collins, Там же, 21, 689 (1978).
 G. D. Diana, P. M. Carabateas, R. E. Johnson, G. L. Williams, F. Pancic, J. C. Collins, Там же, 21, 889 (1978).
 D. R. Backle, B. U. Cantello, H. Smith, B. A. Spicer, Там же, 20, 265 (1977).
 T. J. Schwan, Пат. США 3946075 (1975); С. А., 84, 164450 (1976).
 A. Furst, W. C. Culting, R. H. Dreisbach, Stanford Med. Bull., 12, 190 (1954); С. А., 49, 515 (1955).

- 49, 515 (1955).
- 243. D. Hainut, I. P. Demoute, Франц. заявка № 2278671 (1976); С. А., 85, 93862 (1976). 244. E. A. S. Lacroyx, S. A. Duke, Брит. пат. 1380438 (1975); С. А., 83, 109802 (1975). 245. U. H. A. Lindberg, G. H. Yeoman, Пат. ФРГ 2134000 (1972); С. А., 76, 140221
- (1972)

- 246. E. L. Clark, Пат. США 3636214 (1972); С. А., 76, 136872 (1972). 247. P. A. Whittaker, E. R. Redjearn, Biochem. J., 88, 15 (1963). 248. P. A. Piper, M. B. Thorn, Там жс, 94, 35 (1965). 249. M. L. Baginsky, V. Hateļi, Biochem. Biophys. Res. Communs, 32, 945 (1968). 250. М. Е. Тееter, М. L. Baginsky, V. Hateļi, Biochim. Biophys. Acta, 172, 331 (1969). 251. В. А. Яковлев, И. З. Мицова, Биохимия, 35, 675 (1970).
- 252. S. Streichman, Y. Avi-Dor, Biochim. Biophys. Acta, 216, 262 (1970). 253. S. Luciani, FEBS Letters, 12, 213 (1971).
- 254. S. Luciani, Arch. Intern. Pharmacodyn. Ther., 196, 168 (1972); C. A., 77, 97178 (1972).
- 255. A. N. Tucker, T. Y. Lillich, Antimicrob. Agents. Chemoter., 6, 572 (1974).
- 256. R. Ulvik, J. Romslo, FEBS Letters, 59, 180 (1975).

257. P. S. Movery, B. A. C. Ackrell, T. P. Singer, G. A. White, G. D. Thorn, Biochem. Biophys. Res. Communs, 71, 354 (1976).

258. P. R. Rich, A. L. Moore, Biochem. J., 162, 205 (1977).

- S. Takemou, T. E. King, Science, 144, 852 (1964).
 B. D. Nelson, B. Norling, B. Persson, L. Ernster, Biochem. Biophys. Res. Communs. 44, 1321 (1971).

261. B. D. Nelson, B. Norling, B. Persson, L. Ernster, Там же, 44, 1312 (1971). 262. K. Staron, Z. Kaniuga, FEBS Letters, 45, 1 (1974).

- 263. M. Gutman, E. Hartstein, Tam жe, 49, 170 (1974). 264. T. Schewe, Ch. Hiebsch, P. M. Garsia, S. Rapoport, Acta Biol. Med. Ger., 32, 419

- 1. Schewe, Ch. Heusch, F. M. Garsta, G. Rapoport, Reta Sch. Rea. (1974).
 265. A. P. Autor, I. Fridovich, J. Biol. Chem., 245, 5214 (1970).
 266. H. I. Harmon, F. L. Crane, Biochem. Biophys. Res. Communs, 55, 169 (1973).
 267. C. V. King, E. Hillner, J. Electrochem. Soc., 101, 79 (1954).
 268. B. Davis, D. L. Nedly, Пат. США 3506620 (1970); РЖХим., 1971, 9С1091.
 269. C. T. L. Chang, Пат. ФРГ 2055157 (1971); С. А., 75, 82435 (1971).
 270. R. Bloch, A. Shatkay, H. A. Saroff, Biophys. J., 7, 865 (1967).
 271. E. Loebel, M. Shporer, O. Kedem, R. Bloch, Изр. пат. 39996 (1975); С. А., 83, 123302 (1975).

- 272. R. Sholer, W. Simon, Helv. Chim. Acta, 55, 1801 (1972). 273. О. В. Захарова, В. М. Власов, Г. Г. Якобсон, Ж. орг. химии, 15, 2169 (1979). 274. R. S. Brown, A. Tse, T. Nakashima, R. C. Hoddon, J. Am. Chem. Soc., 101, 3157 (1979)

- 275. H. A. Kuska, D. H. Beebe, Spectrochem. Letters, 11, 817 (1978). 276. K. И. Пашкевич, В. И. Салоутин, А. Н. Фомин, М. И. Кодесс, И. Я. Постовский,
- ДАН СССР, 255, 1140 (1980). 277. К. И. Пашкевич, В. И. Салоутин, И. Я. Постовский, ДАН СССР, 234, 600 (1977).

278. S. Dilly, K. Robards, Austral. J. Chem., 31, 1833 (1978)

- A. Krantzberger, G. Riss, J. Fluor. Chem., 14, 131 (1979).
 A. Krantzberger, G. Riss, Chem. Ing., 103, 267 (1979).
 A. Krantzberger, S. Leyke-Rohling, Arch. Pharm., 312, 486 (1979).
 J. Van Haverbeke, A. Maquestian, J. J. Vanden Eynde, J. Heterocycl. Chem., 16, 773-(1979).
- 283. A. Maquestian, J. Van Haverbeke, J. J. Vanden Eynde, N. de Pauw, Bull. Soc. Chim-

285. R. Maquestan, J. Van Haberbeke, J. J. Vanden Lynde, N. de Palw, Bull. Soc. Chim-Belg., 88, 671 (1979).
284. K. S. Joshi, V. N. Pathak, U. Carg, J. Heterocycl. Chem., 16, 1141 (1979).
285. R. A. Henry, R. P. Peter, Пат. США 4026898 (1976); С. А., 86, 31010 (1977).
286. R. Balicki, P. Nantka-Namirski, Polon. J. Chem., 53, 1515 (1979).
287. K. И. Пашкевич, В. А. Шаповалов, В. И. Салоутин, В. Д. Безуглый, И. Я. Постовский Ж. Оби, хими, 50, 1855 (1980). ский, Ж. общ. химии, 50, 1855 (1980). 288. J. Hala, Chem. listy, 73, 225 (1979).

- 289. S. M. Hasany, I. Hanif, J. Radioanal. Chem., 47, 47 (1978). 290. Ю. А. Золотов, В. П. Ионов, Н. Ю. Чичерина, Ж. неорг. химии, 23, 2783 (1978). 291. В. П. Ионов, Н. Ю. Чичерина, Там же, 24, 465 (1979).

292. I. Yennier, H. Specker, Fresenius Z. Anal. Chem., 296, 140 (1979).

Институт химии Уральского

научного центра АН СССР, Свердловск