

Beer & Diaper: An Impossible Correlation

Summer Internship 2019

01 Company Cognifront

02 Domain

Machine Learning

O3 Time Span
6th June – 21st June

Why do we need Machine Learning?

Human Expertise does not exist.

eg. Navigating on Mars

Solution Changes in Time.

eg. Routing on Computer Networks

Improving Sales.

eg. Market Basket Analysis

Machine Learning?

Relation Between Al, ML & Deep Learning

Artificial Intelligence

Machine Learning

Deep Learning

Linear Regression

 Linear Regression is a linear approach to modeling the relationship between a dependent and one or more independent variable.

• Types:

- Simple Linear Regression.
- Multiple Linear Regression.

Simple Linear Regression

Salary Prediction on basis of work Experience

Multiple Linear Regression

USA Housing price prediction

Accuracy: 90% Accuracy: 93%

Logistic Regression

- It is an Classification Algorithm.
- Logistic Regression is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick.
- Uses Sigmoid Function for finding probability.

$$f(x) = \frac{1}{1 + e^{-(x)}}$$

• Logistic Regression

Titanic Survival
 Classification

Framingham Heart Study

Accuracy: 84%

Accuracy: 82%

Decision Tree Classifier

- A decision tree is a decision support tool that uses a tree-like graph or model of decisions.
- A decision tree is a flowchart-like structure in which -
 - Internal Node : Test.
 - Branch: Outcome of the test.
 - Leaf Node : Class label.

Player will play Tennis or not?

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Decision Tree

- Decision Tree Classifier
- Diabetes Prediction

Accuracy: 70%

Note: Accuracy can be increased up to 80% if SVM is used instead of Decision Tree classifier

Random Forest Classifier

- Random forests method operates by constructing a multiple decision trees at training time and outputting the mean prediction (regression) of the individual trees.
- It uses multiple Decision Trees as well as Bagging Method, hence very time consuming (depending on processing power)

Detecting whether an URL is spam or not

- Random Forest Classifier
- Predicting whether Mushroom is Edible or Poisonous.

Accuracy: 100%

Hierarchical clustering

- hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters.
- Strategies for hierarchical clustering generally fall into two types:
 - Agglomerative (Bottom Up Approach)
 - Divisive (Top Down)

- Hierarchical Clustering
- Clustering of customers on the basis of Annual Income and Spending Score

K means clustering

k-means clustering aims to partition n
 observations into k clusters in which each
 observation belongs to the cluster with the
 nearest mean, serving as a prototype of the
 cluster.

- K means Clustering
- Customer clustering based on brand loyalty score and price sensitivity score

Day Wise Summary

Date	Syllabus Covered		
6 th June	Inauguration, Introduction to Machine Learning		
7 th June	Data types & Output Formatting in Python		
8 th June	Flow Control and Matrices		
10 th June	Set Operations and Functions		
11 th June	Modules, File Operations, NumPy Library and Operations		
12 th June	Pandas Library and operations		
13 th June	Operations on Dataframes		
14 th June	MatPlotLib, Seaborne, EDA		
15 th June	Statistics and Linear Regression		
17 th June	Logistic Regression		
18 th June	Decision Tree Classifier		
19 th June	Random Forest & Clustering		
20 th June	ANN, Certificate Distribution		