MATLAB EXPO 2017

From Simulink to AUTOSAR: Enabling AUTOSAR Code Generation with Model-Based Design

Durvesh Kulkarni

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component
- Getting Started Resources

What is AUTOSAR?

AUTOSAR® (AUTomotive Open System ARchitecture) is an open and standardized automotive software architecture

AUTOSAR Standards

Adaptive Platform **AUTOSAR Runtime Environment for Adaptive Applications** Adaptive AUTOSAR Services API API Time Execution Management Management Software Security Configuration Diagnostics Management Management Persistency Operating system Logging and Platform Health Hardware Communication Management Traceing Acceleration Management Bootloader Adaptive AUTOSARP sis V1 was released in March 2017

AUTOSAR Adoption

AUTOSAR Members

AUTOSAR Support from Embedded Coder and Simulink

MATLAB EXPO 2017

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component
- Getting Started Resources

Simulink Approach to AUTOSAR

Available via web download

Simulink and Embedded Coder + AUTOSAR Support package for Embedded Coder

No separate
AUTOSAR
Blockset needed

MATLAB EXPO 2017

AUTOSAR Schema Versions

Seamless support for AUTOSAR Releases

- Import detects AUTOSAR 2.x 4.x release from ARXML file
- User selects AUTOSAR release from configuration set options for code generation and ARXML export

Generate XML file for schema version	4.2
Maximum SHORT-NAME length: 32	2.1
■ Use AUTOSAR compiler abstraction	3.1
Support root-level matrix I/O using	3.2 4.0
	4.1
	4.2

MATLAB Release	AUTOSAR Release
R2015b, R2016a/b, R2017a	2.1, 3.0, 3.1, <u>3.2</u> (Rev 3.2.2), 4.0, 4.1, <u>4.2</u> (Rev 4.2.1, 4.2.2)
R2014b, R2015a	2.1, 3.0, 3.1, 3.2, 4.0, <u>4.1</u> (Rev 4.1.1)
R2012a/b, R2013a/b, R2014a	2.1, 3.0, 3.1, 3.2, <u>4.0</u> (Rev 4.0.2)
R2011b	2.0, 2.1, 3.0, 3.1, 3.2
R2010a/b, R2011a	2.0, 2.1, 3.0, 3.1
R2009a/b	2.0, 2.1, 3.0
R2008a/b	2.0, 2.1

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component
- Getting Started Resources

Model AUTOSAR Components

Periodic & Asynchronous

Multi-Rate & Asynchronous

Modeling AUTOSAR Communication

- Ports in a AUTOSAR software component allow for communication
- Categories of ports based on direction
 - Require port
 - Provide port

- AtomicComponents
 - - ReceiverPorts
 - SenderPorts
 - SenderReceiverPorts
 - ModeReceiverPorts
 - ModeSenderPorts
 - ClientPorts
 - ServerPorts
 - NvReceiverPorts
 - NvSenderPorts
 - NvSenderReceiverPorts
 - ParameterReceiverPorts
 - TriggerReceiverPorts
 - Runnables
 - ™ IRV
 - Parameters
- S-R Interfaces
 - ▶ 🖦 Input
 - Output
 - M-S Interfaces
 - C-S Interfaces
 - NV Interfaces
 - Parameter Interfaces
 - Trigger Interfaces
 - CompuMethods
 - XML Options

Supported Events for a Runnable

Each Runnable should have at least one event attached

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component
- Getting Started Resources

Bottom-Up Workflow (Starting from Simulink)

Using MATLAB for automating common tasks

```
%% Setup AUTOSAR Configuration programmatically
model = 'Average VehicleSpeed Calculation';
% Modify AUTOSAR Properties
autosarProps = autosar.api.getAUTOSARProperties (model);
set(autosarProps, 'Input', 'IsService', true);
set(autosarProps, 'XmlOptions', 'ArxmlFilePackaging','SingleFile');
% Modify Simulink Mapping to AUTOSAR
slMap = autosar.api.getSimulinkMapping(model);
mapInport(slMap, 'Input', 'Input', 'Input', 'ExplicitReceive');
mapOutport(slMap, 'Output', 'Output', 'Output', 'ExplicitSend');
```


Top-Down Workflow (Starting from SWC Description)

Top Down Workflow

AUTOSAR Authoring Tool

Top Down Workflow

Starts with Authoring Tool, then user exports ARXML files from Authoring tool.

User can then either import the ARXML files into a new Simulink Skeleton model or Update an existing Simulink Model.

ARXML Files

Import as new Simulink model

Update existing Simulink model

MATLAB EXPO 2017

Updating Existing Models from ARXML

V1.arxml

Updated to V2.arxml

Update Existing Models from ARXML

```
%cleanup
       bdclose('all');
       clear:
       open system('ASWC'); & Model needs to be open in order to perform update Model Command
       %Import ARXML Files
       importerObj = arxml.importer('rtwdemo autosar multirunnables v2.arxml')
       %Update existing model
10
       importerObj.updateModel('ASWC')
```


MATLAB EXPO 2017

AUTOSAR Update Report for ASWC

Software component /pkg/swc/ASWC Original model saved as: ASWC_backup

This report details the updates applied to Simulink model ASWC based on differences between the imported arxml and the existing AUTOSAR configuration contained in the model. A backup of the original model has been saved to ASWC_backup (compare models). The report also recommends manual model changes.

Simulink

Automatic Model Changes

Automatic Workspace Changes

Required Manual Model Changes

Optional Manual Workspace Changes

AUTOSAR

Automatic AUTOSAR Element Changes

Added ConstantSpecification /pkg/dt/Ground/Defaultinit/value_Single

Added FloatingPoint/pkg/dt/Single

Updated Type reference of In/Data /pkg/swc/ASWC/IB/IRV4 from /pkg/dt/Double to /pkg/dt/Single

Round-Trip Workflow

AUTOSAR Authoring Tool

ARXML Import using Vector DaVinci

Verification with Software- and Processor-In-The-Loop (PIL)

- Support for SIL/PIL with AUTOSAR target
- Profile code and measure execution time on target
- Develop a custom PIL target for AUTOSAR using the toolchain build approach

MISRA C:2012 for AUTOSAR target

100% Compliance with MISRA C:2012 Mandatory and Required rules

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component
- Getting Started Resources

Startup, Reset, and Shutdown Modeling

AUTOSAR Startup, Reset, and Shutdown Modeling

New Simulink blocks for Initialize Function and Terminate Function

- You can map each Simulink initialize, reset, or terminate entry-point function to an AUTOSAR runnable
- All modeling styles are supported
 - Flexibility to use either Rate-Based or Export function modeling style
- Less wiring is required
- Can perform SIL

>> rtwdemo_autosar_swc

Basic Software (BSW) Access

AUTOSAR Basic Software (BSW) block library

Simulate BSW including Diagnostic Event Manager (DEM) and NVRAM Manager (NvM)

- Out of the box solution for calls to AUTOSAR BSW services
 - Drag and drop DEM/NvM blocks for Basic Software simulation
 - Everything is preconfigured

>> rtwdemo_autosar_nvm_emulation

Power Up Power Down AUTOSAR NvM Emulation

- Initialize, Reset & Terminate Blocks can be effectively used to model Start Up and Shut Down functionalities.
- System Level Modelling of AUTOSAR Components & Services Basic Software blocks can be used.

J-MAAB Type B Support

R2017a

AUTOSAR J-MAAB Type B Modeling

R2016b adds support for JMAAB type beta modelling in AUTOSAR models

- This model shows the implementation leveraging periodic and asynchronous rates (sample times).
- Asynchronous function-call runnable at the top level of the model interacts with a periodic rate-based runnable.
- Model type B (β) Places function layers above scheduling layers.

» rtwdemo autosar swc fcncalls

Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)

AUTOSAR ModeSenderPorts and ModeSwitchPoints

Modeling of AUTOSAR Mode-Switch (M-S) communication

- Ability to model application mode manager components, including AUTOSAR mode sender ports.
- Mode sender ports output a mode switch to connected mode user components.

Variability inside a Software Component

Variants in AUTOSAR component modeling

Create variants for Ports and Runnables

- Import Variation Points on Ports and Runnables into Simulink
- Model using Variant Source and Variant Sink blocks
- Validate variant conditions on blocks match designed behavior from imported ARXML files

Agenda

Introduction to AUTOSAR

- Simulink approach to AUTOSAR
- Overview of Modeling SWCs & Modeling Styles

AUTOSAR Design Workflows

Bottom Up, Top Down & Round Trip

Advanced Topics – Top 5

- Startup, Reset, and Shutdown Modeling
- Basic Software (BSW) Access
- J-MAAB Type B Architecture
- Mode Management (ModeSenderPorts, ModeSwitchPoints, ...)
- Variability inside a Software Component

Getting Started Resources

AUTOSAR Training Module

Contact Us How To Buy Log In

Products Solutions Academia Support Community Events Company

MATLAB and Simulink Training

Overview Course Offerings Course Schedule Online Training Training At Your Facility Certification More

Course Schedule

Prerequisites

Simulink® for System and Algorithm Modeling (or Simulink for Automotive System Design or Simulink for Aerospace System Design) and Embedded Coder® for Production Code Generation. Knowledge of C programming language and the AUTOSAR standard.

See detailed course outline.

Code Generation for AUTOSAR Software Components

This one-day course discusses AUTOSAR-compliant modeling and code generation using the Embedded Coder Support Package for AUTOSAR Standard. Workflows for top-down and bottom-up software development approaches are discussed in the context of Model-Based Design. This course is intended for automotive industry software developers and systems engineers who use Embedded Coder for automatic C/C++ code generation. Topics include:

- Generating Simulink models from existing ARXML system descriptions
- · Configuring Simulink models for AUTOSAR compliant code generation
- Configuring AUTOSAR communication elements in a Simulink model
- · Modeling AUTOSAR events in Simulink
- · Creating calibration parameters

Products Solutions

Academia

Support

Community

Events

Company

MATLAB and Simulink Consulting Services

Search MathWorks.com

Q

Why Choose MathWorks Consulting

Getting Started

Proven Solutions

Customer Success Stories

Meet Our Team

Questions?

» Contact Consulting

Meet Our Team

Kirsty van Ryneveld is a consultant engineer who focuses on data analysis software development, and application deployment.

Why Choose MathWorks Consulting?

Working with MathWorks Consulting gives you the advantage of their years of project work, industry backgrounds, and deep MATLAB and Simulink know-

Proven Solutions

MathWorks Consulting Services delivers reliable and effective solutions to solve your engineering challenges. Explore how MathWorks consultants work with you on a strategic level, understanding your

"MathWorks Consultants were wellqualified, professional, and fast. They understood not only the technical issues but also the business goals, which is essential when working on a core business system. We

And one last thing ... AUTOSAR – Antagonizing the "German Coast Guard" Effect

Speaker Details

Email: <u>Durvesh.Kulkarni@mathworks.in</u>

LinkedIn: https://www.linkedin.com/in/durvesh-

kulkarni-17402527/

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.