6.4 [Computational] Freeze-in of particle species. An interesting alternative to the usual freeze-un production of relic particles, notably dark matter, is the freeze-in mechanism (reviewed in Bernal et al., 2017). Here, unlike in

the standard freezeout scenario, the dark-matter particle was never in thermal equilibrium. Rather, the dark-matter particle χ is produced from the decay of some heavier, Standard-Model particle σ , so that $\sigma \to \chi \chi$ and $\delta n_{\chi} = -2\delta n_{\sigma}$. The interaction is characterized by a very small rate $\Gamma \equiv \Gamma_{\sigma \to \chi \chi}$ which, unlike

in the freezeout scenario, does not depend on the number density (i.e., it is some constant, possibly related to the mass of particles σ). For small enough Γ , the number density of dark-matter particles χ increases, then flattens off when the number density of σ particles becomes Boltzmann-suppressed $(n_{\sigma} \propto e^{-m_{\sigma}/T} \ll 1)$. You will now demonstrate and briefly investigate the feasibility of this scenario.

(a) For the freeze-in scenario, the Boltzmann equation reads

$$\frac{1}{a^3} \frac{d(na^3)}{dt} = 2\Gamma h(t) n_{\sigma, eq}(t),$$

where you can take $h(x) \simeq x/(x+2)$ in terms of our usual time variable $x \equiv m_{\sigma}/T$ below. Note that the density entering on the left-hand side is that of decay-product particles χ $(n \equiv n_{\chi})$, while the equilibrium density on the right-hand side is that of the decaying particles σ . And, as mentioned above, Γ is time independent.

Starting from this equation and using a derivation similar to that in the freezeout scenario that goes from Eq. (6.12) to Eq. (6.14), demonstrate that the equivalent of the latter equation in the freeze-in picture is

$$\frac{dY}{dx} = \lambda_1 x h(x) Y_{\text{eq}}(x),$$

where λ_1 is some constant. *Hint:* Because I am not asking that you derive λ_1 in terms of Γ and the Hubble parameter at $m_{\sigma} = T$, all you need to do is track the x-dependence.

(b) Plot Y(x) for $\lambda_1 = 10^{-6}, 10^{-8}, 10^{-10}$. Take a smallish initial value, say $Y(x_0) = 10^{-20}$. For the curves to look nice, start integrating at $x_0 = 0.01$, but plot only from x = 0.1 to x = 100. As in Problem 6.3, it may be easier to integrate $d \ln Y/d \ln x$. Also plot $Y_{eq}(x)$, thus again mimicking Fig. 6.1. (c) Comparing the figure you generated in part (b) and Fig. 6.1: what is the key difference between the freezeout and freeze-in scenarios as the annihilation/decay rate Γ increases? Explain this qualitatively.