## Measurement-Based Quantum Computing

Utku Birkan, Advisor: Sadi Turgut

otka birkan, Advisor. Sadi Targa

February 9, 2022

# Unitary Evolution & Measurement



Figure 1: An Example Quantum Circuit

1

# Unitary Evolution & Measurement



Figure 2: An Example Quantum Circuit

# Unitary Evolution & Measurement

### **Unitary Evolution**

- Deterministic
- Reversible
- Intuitive (somewhat)

#### Measurement

- Probabilistic
- Irreversible

## Measurement-Based Quantum Computer

#### Two componets:

- 1. Cluster: Holds the qubits. Substrate for universal computation.
- 2. Measurement Device: Governs the program execution.

## The Cluster: Graph States



### A graph has:

- 1. A set of vertices  $V = \{1, 2, \dots, N\}$ . Represents qubits
- 2. A set of edges connecting some of the vertices  $E \subseteq [V]^2$  where |E| = M. Represents entanglement patterns.

5

## The Cluster: Graph States



#### A graph has:

- 1. A set of vertices  $V = \{1, 2, \dots, N\}$ . Represents qubits
- 2. A set of edges connecting some of the vertices  $E \subseteq [V]^2$  where |E| = M. Represents entanglement patterns.
- Prepare each qubit in |+>, apply
  CZ if they are entangled.

5

# Simulating Circuits with MBQC

- Prove that MBQC is universal
- Reuse existing algorithms and code

## Simulating Circuits with MBQC



Figure 3: Unitary Gate Simulation Diagram

- Simulate universal gate set CNOT =  $\sigma_x$  and  $R(\alpha, \beta, \gamma)$ .
- Fix by products after each gate simulation

# Simulating Unitary Rotation

Single qubit measurements on basis

$$\mathcal{B}(\varphi) = \left\{ \frac{|0\rangle + e^{i\varphi}|1\rangle}{2}, \frac{|0\rangle - e^{i\varphi}|1\rangle}{2} \right\}$$

that simulate

$$\sigma_x^s HP(\varphi) = \sigma_x^s J(\varphi),$$

MBQC implements

$$\underbrace{\sigma_x^{s_2+s_4}\sigma_z^{s_1+s_3}}_{U_{\Sigma,R}}\underbrace{J(0)J(\gamma)J(\beta)J(\alpha)}_{R(\alpha,\beta,\gamma)}$$

through 4 adaptive measurements.



## Simulating CNOT



- Apply  $\sigma_x$  measurements on red vertices.
- MBQC implements

$$U'_{\mathrm{CNOT}} = U_{\Sigma,\mathrm{CNOT}} U_{\mathrm{CNOT}}$$

with a by-product

$$U_{\Sigma,\mathrm{CNOT}} = \left(\sigma_x^{\scriptscriptstyle (3)}\right)^{s_2} \left(\sigma_z^{\scriptscriptstyle (3)}\right)^{s_1} \left(\sigma_z^{\scriptscriptstyle (4)}\right)^{s_1}$$

through 4 adaptive measurements.

### Additional Patterns

• Measuring a wire of qubits on  $\sigma_x$  basis propagates the information on first qubit to last.



- Measuring a qubit on  $\sigma_z$  basis removes its connection with the cluster



### Classical Simulation

• Well known frameworks like Qiskit, Cirq etc. lack MBQC simulators.

### Classical Simulation

- Well known frameworks like Qiskit, Cirq etc. lack MBQC simulators.
- Experimental Paddle Quantum backend available.

### Classical Simulation of Deutsch's Problem

- Takes binary functions  $f: \{0,1\} \rightarrow \{0,1\}$
- Constant, balanced function classification.
- $\mathcal{O}(1)$  complexity.

### Classical Simulation of Deutsch's Problem



Figure 4: Quantum cicruit implementing Deutsch's algorithm

### Classical Simulation of Deutsch's Problem

| Туре     | Function        | Oracle Unitary           |
|----------|-----------------|--------------------------|
| Constant | f(x) = 0        | I                        |
| Constant | f(x) = 1        | $\sigma_x^1$             |
| Balanced | f(x) = x        | CNOT                     |
| Balanced | $f(x) = \neg x$ | $\sigma_x^1 \text{CNOT}$ |

Table 1: Deutsch's algorithm unitary oracle implementations

### Results

- We discussed a novel model for quantum computation
- Investigate graph states
- Proposed an abstract machine that works by the MBQC principles
- Showed that MBQC is universal
- Small scale verification using classical a simulation