ECE2-Colle 17

09/02/21

1 Cours

1.1 Intégration

Intégration sur un segment (rappels) : existence de primitives d'une fonction continue sur un intervalle, intégrale d'une fonction continue sur un segment, propriétés de l'intégrale, extension aux fonctions continues par morceaux. Techniques de calcul : primitives usuelles, intégration par parties, changement de variable.

Intégrale impropre en $\pm \infty$: définition d'intégrale impropre d'une fonction continue sur $[a, +\infty[$ ou $]-\infty, b]$ (définition de convergence/ divergence); exemples de référence : critère de convergence des intégrales de Riemann en $+\infty$, convergence de $\int_0^{+\infty} e^{-\lambda t} dt$ avec $\lambda > 0$.

Intégrale impropre en un point fini : définition d'intégrale impropre d'une fonction continue sur [a,b[ou]a,b[(définition de convergence/ divergence); exemples de référence : critère de convergence des intégrales de Riemann en 0^+ , convergence de $\int_0^1 \ln(t) dt$.

Extension au cas des fonctions ayant un nombre fini de discontinuités: intégrale doublement impropre : définition d'intégrale impropre d'une fonction continue sur]a,b[(définition de convergence/ divergence), extension aux fonctions ayant un nombre fini de discontinuités sur]a,b[, propriétés de l'intégrale (linéarité, positivité, relation de Chasles).

Intégrales de fonctions positives : convergence des intégrales de fonctions continues positives, critère de comparaison pour les intégrales de fonctions continues positives, critère de négligeabilité et d'équivalence pour les intégrales de fonctions continues positives.

Convergence absolue : définition de la convergence absolue, une intégrale absolument convergente est convergente.

1.2 Compléments sur les variables aléatoires réelles

Rappels et compléments sur les variables aléatoires à densité : définition de variable aléatoire à densité, définition d'une densité. Expression de la fonction de répartition à partir d'une densité, régularité de la fonction de répartition. Caractérisation des fonctions de répartition des variables à densité. Caractérisation des densités.

2 Méthodes à maîtriser

- Savoir calculer une intégrale sur un segment avec une intégration par parties, un changement de variable, une primitive.
- Appliquer les techniques ci-dessus à l'étude d'intégrales impropres.
- Savoir étudier une intégrale plusieurs fois impropre.
- Savoir déterminer la nature d'une intégrale impropre d'une fonction continue positive en utilisant les critères de comparaison, négligeabilité, équivalence.
- Savoir déterminer la nature d'une intégrale impropre d'une fonction de signe quelconque en étudiant la convergence absolue.
- Savoir justifier qu'une variable aléatoire est/n'est pas à densité. Le cas échéant, déterminer une densité.
- Savoir montrer qu'une fonction donnée est la fonction de répartition d'une variable à densité. Savoir montrer qu'une fonction donnée est une densité d'une variable à densité.

3 Questions de cours

- Primitives usuelles, intégrales impropres de référence.
- Définition d'une intégrale impropre convergente/divergente.
- Critères de comparaison pour les intégrales de fonctions continues positives.