

Stereo Vision

16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

What's different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is inversely proportional to ...

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.

$$\frac{b-X}{Z} = \frac{x'}{f}$$

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d = x - x'$$

$$=\frac{bf}{Z}$$

$$\frac{X}{Z} = \frac{x}{f}$$

$$\frac{X}{Z} = \frac{x}{f}$$

$$\frac{x}{Z} = \frac{x}{f}$$
(baseline)

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d=x-x'$$
 inversely proportional to depth $=\frac{bf}{7}$

Real-time stereo sensing

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Subaru Eyesight system

Pre-collision braking

How so you compute depth from a stereo pair?

- 1. Rectify images (make epipolar lines horizontal)
- 2. For each pixel
 - a. Find epipolar line
 - b. Scan line for best match
 - c. Compute depth from disparity

$$\frac{Z}{d} = \frac{bf}{d}$$

It's hard to make the image planes exactly parallel

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

When this relationship holds:

$$R = I$$
 $t = (T, 0, 0)$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold

$$x^T E x' = 0$$

Write out the constraint

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold

$$x^T E x' = 0$$

$$\begin{pmatrix} u & v & 1 \\ -T \\ Tv' \end{pmatrix} = 0$$

Write out the constraint

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold

$$x^T E x' = 0$$

The image of a 3D point will always be on the same horizontal line

$$\begin{pmatrix} u & v & 1 \\ -T \\ Tv' \end{pmatrix} = 0$$

$$Tv = Tv'$$

<mark>always the same</mark>!

What is stereo rectification?

What is stereo rectification?

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3x3 transform), one for each input image reprojection

Stereo Rectification

- Rotate the right camera by R
 (aligns camera coordinate system orientation only)
- Rotate (rectify) the left camera so that the epipole is at infinity
- 3. Rotate (rectify) the right camera so that the epipole is at infinity
- 4. Adjust the scale

Stereo Rectification:

- 1. Compute **E** to get **R**
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by H

Stereo Rectification:

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by H

Stereo Rectification:

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by H

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by H

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by H

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

What can we do after rectification?

Setting the epipole to infinity

(Building \mathbf{R}_{rect} from \mathbf{e})

Let
$$R_{
m rect} = \left[egin{array}{c} m{r}_1^{ op} \ m{r}_2^{ op} \ m{r}_3^{ op} \end{array}
ight]$$
 Given: (using SVD on E) (translation from **E)**

$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$

epipole coincides with translation vector

$$\boldsymbol{r}_3 = \boldsymbol{r}_1 \times \boldsymbol{r}_2$$

orthogonal vector

If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

then
$$R_{
m rect}oldsymbol{e}_1=\left[egin{array}{c} oldsymbol{r}_1^{ op}oldsymbol{e}_1\\ oldsymbol{r}_2^{ op}oldsymbol{e}_1\\ oldsymbol{r}_3^{ op}oldsymbol{e}_1 \end{array}
ight]=\left[egin{array}{c} ?\\ ?\\ ? \end{bmatrix}$$

If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

then
$$R_{ ext{rect}}oldsymbol{e}_1=\left[egin{array}{c} oldsymbol{r}_1^{ op}oldsymbol{e}_1\\ oldsymbol{r}_3^{ op}oldsymbol{e}_1 \end{array}
ight]=\left[egin{array}{c} 1\\0\\0 \end{array}
ight]$$

Where is this point located on the image plane?

If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

then
$$R_{ ext{rect}}oldsymbol{e}_1 = \left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_2^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight] = \left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight]$$

Where is this point located on the image plane?

At x-infinity

Stereo Rectification Algorithm

- 1. Estimate E using the 8 point algorithm (SVD)
- 2. Estimate the epipole e (SVD of E)
- 3. Build \mathbf{R}_{rect} from \mathbf{e}
- 4. Decompose E into R and T
- 5. Set $R_1 = R_{rect}$ and $R_2 = RR_{rect}$
- 6. Rotate each left camera point (warp image) $[x' y' z'] = \mathbf{R}_1 [x y z]$
- 7. Rectified points as $\mathbf{p} = f/z'[x' \ y' \ z']$
- 8. Repeat 6 and 7 for right camera points using \mathbf{R}_2

Stereo Rectification Algorithm

- 1. Estimate E using the 8 point algorithm
- 2. Estimate the epipole **e** (solve **Ee**=0)
- 3. Build R_{rect} from e
- 4. Decompose E into R and T
- 5. Set $\mathbf{R}_1 = \mathbf{R}_{rect}$ and $\mathbf{R}_2 = \mathbf{R}_{rect}$
- 6. Rotate each left camera point x'~ Hx where H = KR₁
 *You may need to alter the focal length (inside K) to keep points within the original image size
- 7. Repeat 6 and 7 for right camera points using \mathbf{R}_2

