Networking Internals for the SQL Server Professional

Anthony E. Nocentino aen@centinosystems.com

Anthony E. Nocentino

- Consultant and Trainer
- Founder and President of Centino Systems
 - Specialize in system architecture and performance
 - Masters Computer Science (almost a PhD)
 - Microsoft MVP Data Platform 2017
 - Friend of Redgate 2015-2017
- email: aen@centinosystems.com
- Twitter: @nocentino
- Blog: www.centinosystems.com/blog
- · Pluralsight Author: www.pluralsight.com

Overview

- Network Topologies and the OSI model
- Ethernet
- Internet Protocol
- Transmission Control Protocol
- DEMOS!
- SQL Server performance problems
- SQL Server availability problems

Key Concepts

- Throughput
- Latency
- Reliability

Network Topologies

OSI Model

Layer	Description	Transfer Unit	Example	
Application	Actual application	Application Data	Browser	
Presentation	Translation of data for the application layer	Application Data	HTML, CSS	
Session	Application level socket	HTTP, SSH		
Transport	Data segmentation and delivery	Segment	TCP, UDP	
Network	Addressing and routing	Packet	IP, routers, computers	
Data link	Encoding between end stations, and access control	Frame	Ethernet encoding switches	
Physical	The actual wire	bits (0101010)	Ethernet NICs, hubs, modems	

How Data Moves Through a Network... Encapsulation

Encapsulation!

Layer 2 - Data Link

- Ethernet
- Responsible for encoding and transmitting frames on the LAN
- MAC Address uniquely identifies an end station
- MTU Total length of frame payload. Not fragment-able

- Very high bandwidth, very low latency
- Devices at this layer switches, network interfaces

Ethernet Frame

Destination MAC	Source MAC	Туре	Payload	CRC
6 bytes	6 bytes	2 byte:	s 46-1500 bytes	4 bytes

Layer 2 - Data Link

- Things to look out for
 - No link
 - Speed or duplex mismatch
 - CPU Saturation on switches

Layer 3 - Network

- Internet Protocol (IP)
- Responsible for addressing and routing between networks
- Packet Addressing information and layer 4 data
- Devices at this layer routers, firewalls...and your machines

Internet Protocol

- Connects networks
- Connectionless
- Source, destination are defined but the network determines the path
- Routers forward packets
- Routers and hosts define routing tables that define what to do with the packet
- Routers connect networks, generally with higher latency, lower bandwidth connections
- arp binds layer 2 MAC to layer 3 IP

IP Routing Decision Process

- Check the destination address in the IP header
- Compare that with the network mask to determine if the destination is on a remote network
- If it's local deliver it on the directly connected interface
- If it's not local, look up a specific route in the local routing table
- If it's not local and not in the routing tables, send it to the default route

IP Packet Header

Internet Protocol

- Things to look out for
 - Routing issues
 - Time to live TTL
 - Bad network masks
 - Dropped packets

- Misplaced resources
- Routers are choke points
 - Bandwidth or CPU constrained
- Name Resolution Latency

Layer 4 - Transmission Control Protocol

- Responsible for segmentation, ordering of data and reliable delivery
- Segment
 - Application data is broken into segments, IP use used to transport the segment to the destination host
- Sockets and Ports
 - Uniquely defines a connection
 - source IP + source port + destination IP + destination port
- Devices at this layer
 - Operating systems, application aware firewalls, load balancers and WAN optimizers

TCP's Killer Performance Optimization

- Positive acknowledgement of each segment
- ACK'ing every segment is slow, because latency!
- Bandwidth and latency are tightly correlated
- Congestion control
 - Congestion Window if the number of unacknowledged segments is too high, the sender will reduce the window
- Flow control
 - Sliding Window more than one segment in transport at a point in time. Managed by the receiver

TCP Connection Establishment -Three Way Handshake

Establishes Initial Sequence Numbers
Critical to ordered, reliable delivery in both
directions

TCP

- Things to look out for
 - Latency at any layer
 - Dropped Packets
 - OS Queuing
 - Firewalls
 - Row by agonizing row (RBAR)

Data Encapsulation

Demos

- Wireshark
- · Layer 2
 - arp
- · Layer 3
 - · tracert
 - Time to live (TTL)

- · Layer 4
- netstat
 - Established connections
 - Connections blocked by firewalls
- Measuring bandwidth
 - iperf
 - Impact of network latency
 - Impact of reliability issues

The Big Reveal!

- Why did I tell you about all these fundamental concepts?
 - Throughput, latency and reliability are everything
 - They determine how much data you move and how fast
 - With the demos, you should be able to isolate a network bottleneck or anomaly
 - If you're suffering from a network performance or reliability issue...
 - It WILL impact your SQL Server's performance
 - It WILL impact your SQL Server's availability

Performance Problems

- Application Performance (pretty much anything that accesses your SQL Server over the network)
 - ASYNC NETWORK IO
- Network based disk IO
 - · iSCSI/NFS
 - Disk Latency Issues or even IO errors
 - Slow Systems
 - Locking/Blocking
 - Intermittent database errors

Availability Problems

- Availability Group Latency
 - HADR_SYNC_COMMIT
 - HADR SYNCHRONIZING THROTTLE
 - HADR_TRANSPORT_FLOW_CONTROL
- Mirroring, Log Shipping
- Backups
 - BACKUPIO
- Restores!

What do you need to do?

- Capacity planning have you planned for the throughput and latency requirements of your application.
 - Baselining and Benchmarking
 - Ensure IO intense or latency sensitive resources are close to each other on properly sized interconnects
- Test!

Key Takeaways

- Knowing networking fundamentals are key to isolating performance or reliability issues
 - Use the OSI layers as your troubleshooting methodology
 - With the demos, you should be able to isolate a network bottleneck or anomaly
- SQL Server will suffer is network performance and reliability are questionable
- Benchmark and baseline your systems, so you know what's normal and what's not normal

Additional Resources

- · Pluralsight
 - LFCE Advanced Linux Networking
 - Internet Protocol, Routing, TCP Internals and Troubleshooting!
- · Blog
 - Understanding Network Latency and Impact on Availability Group Replication
 - http://bit.ly/2l83AKu

Need more data or help?

http://www.centinosystems.com/blog/talks/

Links to resources

Demos

Presentation

aen@centinosystems.com @nocentino www.centinosystems.com

Solving tough business challenges with technical innovation

Questions?

Thank You!

