<u>Home</u> Physics Electricity Resistors Essential Pre-Uni Physics C4.5

Essential Pre-Uni Physics C4.5

Figure 1: Circuit diagram

Part A Current in (J)

What is the current in (J)?

Part B Voltage across (K)

What is the voltage across (K)?

Part C Current in (L)

What is the current in (L)?

Part D Voltage across (M)

What is the voltage across (M)?

<u>Home</u> Physics Electricity Resistors Essential Pre-Uni Physics C1.8

Essential Pre-Uni Physics C1.8

Conventional domestic 13~A sockets are connected with copper cables with a cross sectional area of $2.5~mm^2$. Copper has a resistivity of $1.5~\times~10^{-8}~\Omega~m$. What is the resistance of 20~m of cable to 2 significant figures?

Home Physics Electricity Internal Resistance Essential Pre-Uni Physics C6.3

Essential Pre-Uni Physics C6.3

A small battery is powering a powerful lamp. The terminal p.d. is $11.3\,V$, and the current flowing is $10.2\,A$. Assuming that the battery has an internal resistance of $2.4\,\Omega$, calculate the e.m.f. of the battery.

<u>Home</u> Physics Electricity Resistors Essential Pre-Uni Physics C5.8

Essential Pre-Uni Physics C5.8

GCSE			A Level		
С	С	С	С	С	С

A thermistor has a resistance of $800\,\Omega$ at a temperature of $16\,^{\circ}\mathrm{C}$. It is wired in series with a fixed resistor and a $9.0\,\mathrm{V}$ battery. A high-resistance voltmeter is connected to give a 'temperature' reading.

[Note: For this thermistor the resistance decreases as the temperature increases.]

Part A	Connecting the voltmeter
•	If the voltage reading is to go up when the temperature increases, should the voltmeter be connected in rallel with the thermistor or the fixed resistor?
	Fixed resistor
	Thermistor
Part B	Resistance of the fixed resistor
	If the voltmeter needs to read $3.0\mathrm{V}$ when the temperature is $16^{\circ}\mathrm{C}$, what is the resistance of the fixed sistor to 2 significant figures?

<u>Home</u> Physics Electricity Charge & Current Essential Pre-Uni Physics C2.2

Essential Pre-Uni Physics C2.2

Data:

• Magnitude of the charge on the electron = $1.60 \times 10^{-19} \, \text{C}$

How many electrons flow past a point each second in a 5.0 mA electron beam?

<u>Home</u> Physics Electricity Resistors Essential Pre-Uni Physics C5.5

Essential Pre-Uni Physics C5.5

Figure 1: Circuit diagram

What is the voltage across the lower resistor in this circuit to 2 significant figures?

Home Physics Electricity Charge & Current Essential Pre-Uni Physics C3.5

Essential Pre-Uni Physics C3.5

Data: Magnitude of the charge on the electron = $1.60 \times 10^{-19} \ C$

How long does it take for a current of $6.0\,\mathrm{A}$ to deliver $1.5\times10^{17}\,\mathrm{Cu}^{2^+}$ ions in a solution? Assume these ions are the only charged particles moving.

<u>Home</u> Physics Electricity Resistors Essential Pre-Uni Physics C1.2

Essential Pre-Uni Physics C1.2

Figure 1: Two different resistor arrangements	
Part A Combination (C)	
What is the resistance of combination (C)? Answer to 2 significant figures.	
Part B Combination (D)	
What is the resistance of combination (D)? Answer to 2 significant figures.	