Likelihood Ratio Test

Jeffrey Wu

2023-08-16

FILTER TO ONE AGE GROUP AND ONE CAUSE OF DEATH: 75-84 yr old / CLRD

Convert λ which is population weighted rate to θ

Let $\lambda = \text{death rate per } 100,000 \text{ people and let } \theta = \frac{\lambda N}{100000} \text{ (one per county)}$

Write likelihood for one county each month then sum over all months

Truncated Poisson:

$$\begin{split} P(X=0) &= \frac{\theta^0 e^{-\theta}}{0!} = e^{-\theta} \\ P(1 \le X \le 10) &= P(X \in TC) = \sum_{x=1}^{10} \frac{\theta^x e^{-\theta}}{x!} = e^{-\theta} p(\theta) \\ P(X=x) &= \frac{\theta^x e^{-\theta}}{x!} forx \ge 11 \end{split}$$

Combine these together to get the likelihood for our truncated Poisson distribution

$$l(\vec{x_c}) = \Pi_{y=1}^6 \Pi_{m=1}^{12} (e^{-\theta})^{I(x_{cym}=0)} (p(\theta)e^{-\theta})^{I(x_{cym} \in TC)} (\frac{\theta^{x_{cym}}e^{-\theta}}{x_{cum}!})^{I(x_{cym} \geq 11)}$$

Calculate log likelihood:

Truncated ZIP

$$P(X = 0) = w + (1 - w)e^{-\theta}$$

$$P(1 \le X \le 10) = P(X \in TC) = (1 - w) \sum_{x=1}^{10} \frac{\theta^x e^{-\theta}}{x!} = (1 - w)e^{-\theta}p(\theta)$$

$$P(X = x) = (1 - w)\frac{\theta^x e^{-\theta}}{x!} for x \ge 11$$

Combine these together to get the likelihood for our truncated Poisson distribution

```
\begin{split} &l(\vec{x_c}) = \Pi_{g=1}^6 \Pi_{m=1}^{12} (w + (1-w)e^{-\theta})^{I(x_{cym}=0)} ((1-w)e^{-\theta}p(\theta))^{I(x_{cym}\in TC)} ((1-w)^{\frac{\theta^*e^{-\theta}}{x_{cym}!}})^{I(x_{cym}\geq 11)} \\ &\text{Calculate log likelihood:} \\ &logl(\vec{x}) = \sum_{y=1}^6 \sum_{m=1}^{12} [log(w + (1-w)e^{-\theta}) * I(x_{cym} = 0) + log(log(1-w) + log(p(\theta_c)) - \theta) * I(x_{cym} \in TC) + (log(1-w) + x_{cym}log\theta_c - log(x_{cym}!)) * I(x_{cym} \geq 11)] \\ &\#Define \ log \ likelihood \ of \ truncated \ ZIP \\ &\mod 2l_1 = function(x, \text{theta,w}) \{ \\ &v = 1:10 \\ &\text{ptheta} = \text{sum}(\ (\text{theta^v}) \ / \ (\text{gamma}(\text{v+1}))\ ) \\ &11 = 0 \\ &\text{for}(\text{i in 1:length}(\text{x})) \{ \\ &v = log(1-w) + log(\text{ptheta}) - \text{theta}) * (x[\text{i}] = 0) \\ &v = log(1-w) + x[\text{i}] * log(\text{theta}) - \text{theta}) * (x[\text{i}] > 11) \ \# no \ need \ for \ constant \ term \ log(x[\text{i}]!) \\ &11 = 11 + (\text{value1} + \text{value2} + \text{value3}) \} \\ &\text{return}(11) \} \end{split}
```

LRT function for Truncated Poisson vs ZIP

Load data:

Define this LRT into a function:

Our hypotheses for these LRTs are:

H0: standard Poisson model is appropriate fit for the mortality dataset

HA: a zero-inflated Poisson model is a better fit for the mortality dataset than the standard Poisson model

```
ws = seq(0.01,0.99,length.out=100)
#agegroups are of the form: Less than 1 year , 55 - 64 years , 85 years and over
#cause can take values: Chronic lower respiratory diseases OR Influenza and pneumonia

PoissonLRT = function(dataset, agegroup = "55 - 64 years",cause = "Chronic lower respiratory diseases",
    x = dataset %>% filter(Age == agegroup, Cause_of_Death == cause) %>% filter(County == county) %>% arr
    x = x$Total_Deaths
    maxval = max(x)
    if(maxval == 0){maxval = 1}

thetas = seq(0.001,maxval,length.out=100)

###Find maximum likelihood for model 1

result1 = matrix(0,nrow=length(thetas),ncol=2)
    count = 0

for (theta in thetas){
        count = count+1
```

```
result1[count,] = c(theta, model1_ll(x,theta))
  }
  result1 = data.frame(result1)
  colnames(result1) = c("theta","ll1")
  idx1 = which(result1$111 == max(result1$111))
 111 = result1[idx1,]$111
  ###Find maximum likelihood for model 2
  result2 = matrix(0,nrow=length(thetas)*length(ws),ncol=3)
  count = 0
  for (theta in thetas){
   for (w in ws){
      count = count+1
      result2[count,] = c(theta, w , model2_11(x,theta,w))
   }
  }
  result2 = data.frame(result2)
  colnames(result2) = c("theta", "w", "112")
  idx2 = which(result2$112 == max(result2$112))
 112 = result2[idx2,]$112
  ###Perform LRT
  TS = 2*(112 - 111) #distributed chi-sq df1
  pvalue = 1-pchisq(TS,df = 1)
  decision = (pvalue < alpha)</pre>
 result_vec = c(county,round(as.numeric(result1$theta[idx1]),2),
                 round(as.numeric(111),2),round(as.numeric(result2$theta[idx2]),2),
                 round(as.numeric(112),2),round(as.numeric(TS),2),
                 round(as.numeric(pvalue),2),decision) #TRUE means reject HO
 return(result_vec)
}
test = PoissonLRT(dataset = mortality2,county = "Alpine")
```

PERFORM LRT FOR EVERY COUNTY

```
LRT_results = matrix(NA,nrow = 58, ncol = 8)
counties = unique(mortality2$County)

for (i in 1:58){
   LRT_results[i,] = PoissonLRT(mortality2,agegroup = "75 - 84 years",county = counties[i])
}
```

##		County Theta	Model 1	Likeli	nood Model	1 Theta l	Model 2
##	1	Alameda	10.51		623.6	1	10.51
##	2	Alpine	0.03		-5.6	1	1.3
##	3	Amador	0.64		-47.6	5	1.27
##	4	Butte	3.45		-5.7	5	5
##	5	Calaveras	0.76		-47.6	5	1.39
##	6	Colusa	0.15		-28.5	6	0.46
##	7	Contra Costa	9.76		493.2	9	9.76
##	8	Del Norte	0.55		-46.9	5	1.03
##	9	El Dorado	2.03		-26.7	2	2.18
##	10	Fresno	9.55		472.5	9	9.55
##		Likelihood Model 2	Part Sta	atistic	p-value Re	ject HO?	
##	1	622.92	?	-1.39	1	FALSE	
##	2	-5.23	}	0.76	0.38	FALSE	
##	3	-47.65)	0.02	0.9	FALSE	
##	4	-3.45	•	4.6	0.03	TRUE	
##	5	-47.65	•	0.01	0.94	FALSE	
##	6	-28.55	•	0.01	0.93	FALSE	
##	7	492.6	;	-1.39	1	FALSE	
##	8	-46.95	•	0	0.99	FALSE	
##	9	-26.72	?	0	1	FALSE	
##	10	471.9)	-1.39	1	FALSE	

WHICHEVER MODEL WINS COMPARE WITH MODEL 3 (TRUNCATED ZIP MODEL FOR EACH QUARTER)

To maximize likelihood here, just call model2_ll 4x with the subsetted quarterly datasets and get 4 max lls -> add those 4 max ll values together to get ll3