Examen session 1 – Calculabilité (SIN6U05L)

2 heures, documents non-autorisés.

Ce sujet comporte 2 pages et 5 exercices.

Le barème est donné à titre indicatif.

Exercice 1. *Notions de base (6 points)*

Compléter les phrases suivantes.

- 1. Un langage L est récursif si et seulement si...
- **2.** Un langage L est récursivement énumérable si et seulement si...

Questions diverses.

- 3. Dans la définition des machines de Turing, pourquoi impose-t-on que $B \in \Gamma \setminus \Sigma$? (avec B le symbole blanc, Γ l'alphabet de ruban, et Σ l'alphabet d'entrée)
- **4.** Soient L_1 et L_2 deux langages. Montrer que si $L_1 \leq_m^T L_2$ et L_2 est récursif, alors L_1 est récursif.
- 5. Parmi les deux affirmations suivantes, laquelle est correcte?
 - (a) Si L est récursif, alors L est récursivement énumérable.
 - **(b)** Si *L* est récursivement énumérable, alors *L* est récursif.
- 6. Donner un exemple de langage non récursivement énumérable, différent de $L_{\bar{u}}$. † Car cette réponse est donnée dans le rappel de l'Exercice 3. Tout langage différent de $L_{\bar{u}}$ convient.
- 7. Donner si possible un exemple de langage non récursivement énumérable mais récursif.
- 8. Donner si possible un exemple de langage non récursif mais récursivement énumérable.

Exercice 2. *Machine de Turing (5 points)*

1. Dessiner l'automate d'une machine de Turing qui reconnaît le langage suivant et qui s'arrête toujours :

$$L_1 = \{w_1 w_2 \dots w_n \in \{a, b\}^* \mid n \ge 2, \text{ et } n \equiv 0 \mod 3, \text{ et } w_{n-1} = a\}$$

(rappel: $n \equiv a \mod b \iff \exists k \in \mathbb{N} : n = kb + a$).

- **2.** Donner l'exécution (la séquence des descriptions instantanées des configurations, telle que $q_0aab \vdash bq_1ab \vdash bbq_2b \vdash bbaq_3B \vdash \dots$) de la machine que vous avez définie en question 1 sur l'entrée abbaab.
- **3.** Peut-on déduire de la question 1 que L_1 est :
 - (a) récursif?
 - (b) récursivement énumérable?

Exercice 3.

Réduction many-one Turing (5 points)

Rappel : $L_{\bar{u}} = \{\langle M \rangle \# w \mid M \text{ n'accepte pas } w \}$ n'est pas récursivement énumérable.

1. Montrer que $L_{\bar{u}} \leq_m^T L_2$, avec

$$L_2 = \{ \langle M \rangle \# w \mid M(w) \uparrow \}$$

(rappel : $M(w) \uparrow$ signifie que M ne s'arrête pas quand on la lance sur l'entrée w).

2. Pourquoi peut-on en déduire que L_2 n'est pas récursif?

Exercice 4.

Théorème de Rice (4 points)

- 1. Qu'est-ce qu'une propriété non triviale?
- 2. Donner un exemple de propriété triviale.
- 3. Cette propriété (celle de votre réponse à la question 2) est-elle intéressante?
- 4. Donner un exemple de propriété non triviale.
- **5.** Que dit le théorème de Rice de cette propriété (celle de votre réponse à la question 4)? Répondre en complétant la phrase suivante : Il n'existe pas de machine de Turing qui prenne en entrée...

Exercice 5.

Bonus (5 points)

1. Montrer que $L_2 \leq_m^T L_{\infty}$, avec

$$L_{\infty} = \{ \langle M \rangle \mid M(w) \uparrow \text{ pour tout } w \in \Sigma^* \}.$$

2. Que dire de $L_{\infty} \leq_m^T L_2$?