Groupe IPESUP Année 2022-2023

Examen n°1

(Temps: 4 heures)

1. La présentation, la lisibilité, l'orthographe, **la qualité de la rédaction et la précision des raisonne- ments** entreront pour une part importante dans l'appréciation des copies. Autrement dit, toute rédaction
"fumeuse" ou toute justification bancale n'apportera qu'une faible quantité de points.

- 2. Les étudiants sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Les réponses doivent toutes être soigneusement justifiées
- 3. Les calculatrices sont interdites.

Groupe IPESUP Année 2022-2023

Exercice 1. Autour de la suite de Fibonacci

On définit la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par $F_0=0, F_1=1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ F_{n+2} = F_{n+1} + F_n$$

- 1. Déterminer la liste des 10 premiers nombres de Fibonacci (de F_1 à F_{10}).
- 2. Montrer que : $\forall n \in \mathbb{N}, n \geq 6 \Rightarrow F_n > n$. Que peut-on en déduire pour la suite $(F_n)_{n\in\mathbb{N}}$?
- 3. Montrer que : $\forall n \in \mathbb{N}, n \geq 2 \Rightarrow F_n < F_{n+1} \leq 2F_n$.
- 4. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k = F_{n+2} 1$
- 5. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n F_k^2 = F_n F_{n+1}$
- 6. Montrer que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^{2n-1} F_k F_{k+1} = F_{2n}^2$
- 7. Montrer que : $\forall n \in \mathbb{N}^*, F_{2n} = F_{n+1}^2 F_{n-1}^2$ et $F_{2n+1} = F_{n+1}^2 + F_n^2$.
- 8. Montrer que : $\forall n \in \mathbb{N}^*$, $\sum_{k=0}^n \binom{2n-k}{k} = F_{2n+1}$ et $\sum_{k=0}^n \binom{2n+1-k}{k} = F_{2n+2}$
- 9. Montrer que si l'on pose : $\varphi = \frac{1+\sqrt{5}}{2}$: $\forall n \in \mathbb{N}^*, F_{n-1} + \varphi F_n = \varphi^n$.
- 10. Montrer que si l'on pose : $\overline{\varphi} = \frac{1 \sqrt{5}}{2}$: $\forall n \in \mathbb{N}, F_n = \frac{\varphi^n \overline{\varphi}^n}{\varphi \overline{\varphi}}$.

Exercice 2. Des petites questions

1. Soit $A,\,B$ et C trois parties d'un ensemble E

- (a) Montrer que $A \cup B = A \cap C \iff B \subset A \subset C$ (3 pto) 2 \Rightarrow (b) Montrer que $B \subset A \iff \forall X \in \mathcal{P}(E), (A \cap X) \cup B = A \cap (X \cup B)$
- 2. Résoudre l'équation suivante :

$$\sqrt{x+1} - \sqrt{2x+3} = 1$$
 (3 ph)

- (a) Montrer que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ peut s'écrire comme la somme d'une fonction polynomiale $\begin{pmatrix} 1 & 1 \end{pmatrix}$ de degré au plus 2 et d'une fonction s'annulant en -1, 0 et 1. Y a-t-il unicité? $\begin{pmatrix} 1 & 1 \end{pmatrix}$
 - (b) Montrer que toute fonction continue $f:[0,1] \longrightarrow \mathbb{R}$ est la somme d'une fonction linéaire $(x \longmapsto ax)$ et d'une fonction d'intégrale nulle sur [0,1] . Y a-t-il unicité ?
- 4. Démontrer que si vous rangez (n+1) paires de chaussettes dans n tiroirs distincts, alors il y a au moins un tiroir contenant au moins 2 paires de chaussettes.
- 5. (a) Montrer qu'il existe une infinité de nombres premiers.
 - (b) Montrer qu'il existe une infinité de nombres premiers de la forme 4k + 3. (3)
 - (c) Montrer qu'il existe une infinité de nombres premiers de la forme 6k + 5.

Exercice 3. \mathbb{N} et \mathbb{N}^2 sont en bijection

- 1. Construire une bijection entre \mathbb{N} et \mathbb{N}^* (3)
- 2. Construire une bijection entre \mathbb{N} et $3\mathbb{N} = \{n \in \mathbb{N}, 3 \text{ divise } n\}$ (3)
- 3. Construire une bijection entre \mathbb{N} et \mathbb{Z} (4)
- 4. Le but de cette question est de montrer qu'il existe une bijection entre \mathbb{N} et \mathbb{N}^2 . Soit $f:\mathbb{N}\longrightarrow\mathbb{N}^2$ l'application définie de la manière suivante :

$$\forall k \in \mathbb{N}, \forall n \in [[\frac{k(k+1)}{2}, \frac{(k+1)(k+2)}{2} - 1]], f(n) = \left(n - \frac{k(k+1)}{2}, k - n + \frac{k(k+1)}{2}\right)$$

Groupe IPESUP Année 2022-2023

- (a) Calculer f(i) pour tout i compris entre 0 et 10 et les tracer sur un quadrillage.
- (b) Montrer que f est bien définie sur \mathbb{N} (autrement dit, tout entier n dans \mathbb{N} a une image et il n'y a pas plusieurs images possibles pour n) [3 μ]
- (c) Montrer que f est injective (5) (d) En résolvant l'équation f(n)=(p,q) pour $(p,q)\in\mathbb{Z}^2$, montrer que f est surjective. Indication :
- (e) Conclure (245)

Exercice 4. Existe t-il une bijection entre E et $\mathcal{P}(E)$?

Soit E un ensemble. On rappelle que $\mathcal{P}(E)$ est l'ensemble des sous-ensembles de E. Par exemple, si $E = \{1, 2, 3\}, \mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$. C'est donc un ensemble d'ensembles.

- 1. Démontrer qu'il existe une surjection de $\mathcal{P}(E)$ sur E
- 2. Soit $f: E \longrightarrow \mathcal{P}(E)$ une application et $A = \{x \in E | x \notin f(x)\}$. Prouver que $A \notin f(E)$ Indication: On pourra raisonner par l'absurde en considérant un antécédent x de A et en discutant selon que $x \in A$ ou $x \notin A$.
- que $x \in A$ ou $x \notin A$.

 3. Est-ce qu'il peut exister une bijection entre E et $\mathcal{P}(E)$?