Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1,5+3\cdot(1-0,5)=1,5+3\cdot0,5=$	3p
	=1,5+1,5=3	2p
2.	f(0)=5	2p
	f(1) = 4, deci $f(0) - f(1) = 5 - 4 = 1$	3p
3.	3x - 8 = 1	3p
	x=3, care convine	2p
4.	Mulțimea A are 5 elemente, deci sunt 5 cazuri posibile	2p
	Numerele n , din mulțimea A , pentru care $2n \ge 9$ sunt 5 , 7 și 9 , deci sunt 3 cazuri	
	favorabile, de unde obținem $p = \frac{3}{5}$	3 p
5.	$AC = \sqrt{10}$	2p
	$BC = \sqrt{10}$, deci triunghiul ABC este isoscel	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} \Rightarrow 50 = \frac{AB \cdot 5}{2}$	3p
	$AB = \frac{2 \cdot 50}{5} = 20$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot (-1) =$	3р
	=1+1=2	2p
b)	$3A(2) + A(6) = \begin{pmatrix} 6 & 3 \\ -6 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 1 \\ -6 & -4 \end{pmatrix} = \begin{pmatrix} 12 & 4 \\ -12 & -4 \end{pmatrix} =$	3 p
	$=4\begin{pmatrix}3&1\\-3&-1\end{pmatrix}=4A(3)$	2p
c)	$A(x) \cdot A(x) = \begin{pmatrix} x^2 - x & 2 \\ -2x & x^2 - 5x + 4 \end{pmatrix}$, pentru orice număr real x	2p
	$\begin{pmatrix} x^2 - x & 2 \\ -2x & x^2 - 5x + 4 \end{pmatrix} = \begin{pmatrix} 2x & 2 \\ -2x & 4 - 2x \end{pmatrix}, \text{ de unde obținem } x = 0 \text{ sau } x = 3$	3р
2.a)	$1*1=1\cdot 1+2\cdot 1-1-1=$	3 p
	=1+2-1-1=1	2 p
b)	x*2=4x-3, pentru orice număr real x	3 p
	4x-3=x, de unde obținem $x=1$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic,

c)	$(1-x)*x = -x^2 - 2x - 1 + 2 =$	3 p
	$=-(x+1)^2+2 \le 2$, pentru orice număr real x	2p

SUBIECTUL al III-lea

	` .	,
1.a)	$f'(x) = 2 - 2e^{-x} = 2 - \frac{2}{e^x} =$	3p
	$=\frac{2e^{x}-2}{e^{x}}=\frac{2(e^{x}-1)}{e^{x}}, x \in \mathbb{R}$	2p
b)	f(0)=1, f'(0)=0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 1$	3 p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x + \frac{2}{e^x} - 1}{x} = \lim_{x \to +\infty} \left(2 + \frac{2}{xe^x} - \frac{1}{x}\right) = 2, \text{ deci } m = 2$	3p
	$\lim_{x \to +\infty} \left(f(x) - 2x \right) = \lim_{x \to +\infty} \left(\frac{2}{e^x} - 1 \right) = -1, \text{ deci } n = -1$	2p
2.a)	$\int_{1}^{2} (f(x) - 3x) dx = \int_{1}^{2} 4x^{3} dx = x^{4} \Big _{1}^{2} = 16 - 1 = 15$	3p 2p
b)	$\int_{2}^{5} \frac{1}{f(x) - 4x^{3} + 3} dx = \frac{1}{3} \int_{2}^{5} \frac{1}{x + 1} dx = \frac{1}{3} \ln(x + 1) \Big _{2}^{5} =$	3p
	$= \frac{1}{3} (\ln 6 - \ln 3) = \frac{1}{3} \ln 2$	2p
c)	$g(x) = 5x^2 + 3$, $x \in [1, 2]$, deci $\mathcal{V} = \pi \int_{1}^{2} (25x^4 + 30x^2 + 9) dx = \pi (5x^5 + 10x^3 + 9x) \Big _{1}^{2} = 234\pi$	3p
	$f(3) = 4 \cdot 3^3 + 3 \cdot 3 = 117$, deci $\mathcal{V} = 2\pi f(3)$	2p

(30 de puncte)