CIS 635 Knowledge Discovery & Data Mining

Course Review Week

Our Plan

Background diagnostics + Python (DS focused)

Vector space

Proximity or distance metric

- L1/Manhattan distance
- L2/Euclidean distance.
- Cosine distances

kNN model:

- Distance based
- Can be applied to both Regression and Classification tasks

Probability (measuring uncertainty)
Probability distributions

Introduction to Data Mining + KDD Process

- Process of extracting and discovering patterns in large datasets
- Involves methods: ML, Statistics, DBMS
- Interdisciplinary field: CS, Statistics
- Overall goal:
 - Extracting information from dataset
 - Transform into a comprehensive structure for further use
- Data mining is the analysis step of
 - o The **KDD**
 - Aside from raw analysis, it also involves
 - Database and data management aspects
 - Data preprocessing
 - Modeling and inference considerations
 - Evaluation and metrics
 - Post processing of discovered structures and visualizations

Knowledge Discovery Process (KDP) Models

Academic Research Models

- Introduced in the mid 1990s
- Several models available
- Suggested steps are similar

9 steps: Fayyard et al KDP model:

- 1) Understanding the application domain
- 2) Creating a target dataset
- 3) Data cleaning and preprocessing
- 4) Data reduction and projection
- 5) Choosing the data mining task
- 6) Choosing the algorithm
- 7) Data mining
 -) Interpreting mined patterns
- 9) Consolidating discovered patterns

Knowledge Discovery Process (KDP) Models

Industrial Models

- Business understanding
- Data Understanding
- Data preparation
- Modeling
- Evaluation
- Deployment

Data Mining - A Knowledge Discovery Approach by Cis Pedrycz, and Swiniarski

The CRISP-DM KD process model (source: http://www.crisp-dm.org/).

Data modalities!

Structured Data

Un + Semi structured Data

- Generally organized in tables and collected through filling forms (manual or online)
- Stored in databases/spread -sheets mainly
- Also popular the .csv file format
- Opening a bank account
- University registration
- Gmail
- Amazon account
- Your health profile

Kaggle loan approval dataset

- Opening a bank account University registration
- Gmail, Azure, and/or Amazon account
- Your immigration, health, social media **profile**

Kaggle loan approval dataset

- There also other formats, or you can convert them to
- Some are stand alone, while others are sequences and/or series
- Software generated logs
- Genomics data
- Stock prices
- Your CC history
- Weather data
- Google maps

- There also other formats, or you car convert them to
- Software generated logs
- Some are stand alone, white others are sequences and/or series
- Genomics data
- Stock prices
- Your CC history
- Weather data
- Google maps

Un/Semi Structured data

- Free forms
- Stored in data lake/warehouses mainly
- Languages: sequence of strings (semantics)
- Audio: Language + Acoustics; Music
- Image: Visual representation of the world
- Video: Sequence of images
- Some are sequence, while others are stand alone
- Social media data (emotions, vives)

Un/Semi Structured data

- Free form:
- Stored in data lake mainly?
- Languages: sequence of strings
- Audio: Language + Acoustics: Musi
- Image: Visual representation of the worl
- Video: Sequence of image

- Some are sequences, while others are stand alone
- Social media data (emotions vives)

Un/Semi Structured data

- Free forms
- Stored in data lake mainly?
- Languages: sequence of string
- Audio: Language + Acoustics; Musi
- Image: Visual representation of the world
- Video: Sequence of image:

- Some are sequence, while others are stand alone
- Social media data (discussions, messages, emotions, vives)

Python (DS focused)

matpletlib

Data Processing

Visualization

Prog. env: Google Colab (is a Jupyter Notebook)

- Google Colab(oratory) is a Python based Jupyter Notebook.
- Jupyter Notebook is an open source client-server based programming environment
- Interactive programming experience (multi-language support) in the form of **documents**
- Easy markdown and visualization capabilities
- Cell based execution workflow. Documents contain both executable code and markdown texts/links/figures etc.
- **IPython** is the predecessor and **Jupyterlab** (next generation Notebook interface) is the successor.

Retail

Indexing

- Records (rows, columns)

Date time data type

Data aggregations

How to bring information from multiple

Tables/dataframes

- Joins (inner, left, right, outer) joins

```
sales['Date'] = pd.to_datetime(sales.Date, format="%d/%m/%Y")

sales['Year'] = sales.Date.dt.year
sales['Month'] = sales.Date.dt.month
sales['Week'] = sales.Date.dt.isocalendar().week
```

Retail

Indexing

- Records (rows, columns)

Date time data type

Data aggregations

How to bring information from multiple

Tables/dataframes

- Joins (inner, left, right, outer) joins

```
sales['Date'] = pd.to_datetime(sales.Date, format="%d/%m/%Y")

sales['Year'] = sales.Date.dt.year
sales['Month'] = sales.Date.dt.month
sales['Week'] = sales.Date.dt.isocalendar().week
```


Indexing

- Records (rows, columns)

Date time data type

Data aggregations (smoothing)

How to bring information from multiple

Tables/dataframes

Joins (inner, left, right, outer)

Table/Dataframe joins

Assignment 1

- 1. [3x2 points] For each dimension $d \in [2^2, 2^4, ..., 2^{10}]$, sample 100 random points from corresponding vector spaces (sample code to generate random samples is provided below), and
 - Record the l2, l1, and the cosine distances between all pairs (of points); then
 - Fit three normal/Gaussian distributions, one for each distance metric. Also, share the mean (μ) and the standard distribution (σ) parameters of each distribution that you have learned.
 - Plot these normal/Gaussian distributions using your preferred visualization package(s).

normal/Gaussian distribution: $p(x) \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Sample code (to generate n = 100 random samples from a d = 4 dimensional vector space):

import numpy as np d, n = 4, 100 sample.data = np.random.randn(n, d)

2. [3x1 points] Probability:

We provide you a set **male** and **female** student names, extracted from the NLTK corpus, in two different files below:

female names file:

https://raw.githubusercontent.com/mdkamrulhasan/data_mining_kdd/refs/heads/main/data/miscellaneous/female_nltk.csv

male names file:

https://raw.githubusercontent.com/mdkamrulhasan/data_mining_kdd/refs/heads/main/data/miscellaneous/male nltk.csv

We ask you to:

Assignment 1

- (a) Estimate the probability of female-student names starting with "M".
- (b) Estimate the log-probability of male-student names starting with "F".
- (c) Estimate the log-probability of female or male-student names starting with "Z".

Note: For each of the above estimates, provide your results up to three (3) decimal points only.

3. [11 points] Climate Change Data Exploration:

Below, you are given links to some critical climate change related data in two different files.

climate distortion data file:

https://raw.githubusercontent.com/mdkamrulhasan/data_mining_kdd/refs/heads/main/data/climate-change/ climate distortion.csv

country-region data file:

https://raw.githubusercontent.com/mdkamrulhasan/data_mining_kdd/refs/heads/main/data/climate-change/ country_region.csv

We ask you to answer following queries (each question is followed by it's corresponding score.)

- (a) In how many columns, you detected NULL values in any of these data files? Impute those NULL values using your preferred method/logic? (1)
- (b) How many unique Region(s) were recorded for USA? (1)
- (c) Which country had the most and the least amount of "CO2.Emissions_MT" before and after 2000? What are these corresponding numbers? (2)
- (d) What was the coolest date in the USA (based on the entire historical data recorded)? (1)
- (e) What Crop_Type from the "Midwest(U)" and the "Northeast(U)" Regions together in the USA had the highest historical economic impact ("Economic_Impact_Million_USD")? (2)
- (f) What was the yearly average precipitation ('Total_Precipitation_mm') in USA? Display these yearly average precipitation values through a graph. (2)
- (g) Which of the following variable pairs has the highest and the lowest associations? If you find a tie, pick one from those. (2)
 - Average_Temperature_C,
 - · Total_Precipitation_mm,
 - CO2_Emissions_MT.
 - · Extreme_Weather_Events,

 - Pesticide_Use_KG_per_HA. • Fertilizer_Use_KG_per_HA,
 - · Soil_Health_Index.
 - Economic_Impact_Million_USD

Midterm (EDA)

Question 1	3 points
Which year had the highest overall average temperature (not the highest temperature on a	specific day in any year)?
(A) 2013	Correct answer
(B) 2015	
© 2017	
(b) 2019	
Question 2	2 points
How many years of climate data available?	
(A) 30	
(B) 35	Correct answer
© 40	
(D) 45	

Midterm (EDA)

Predictive modeling

Predictive modeling

Assignment 2

From 678 (compressed + aligned)

kNN Linear Regression Decision Tree Meta learners Random Forest Regressor Boosting Regressor Support Vector Regressor (SVRs)

- kNN
- Logistic Regression
- Decision Tree
- Meta Learners
 - Random Forest Classifier
 - Boosting Classifiers
- Support Vector Classifiers (SVCs)
- Naive Bayes

Classification

Unsupervised

- Clustering algorithms
 - k-means: Centroid Based
 - k-modes: Mode Based (categorical)
 - Hierarchical clustering: Distance connectivity based
 - o GMM: Distribution based
 - DBSCAN: Density Based
- How to choose the optimal number of clusters.

Clustering

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)

Linear Dimensionality Reduction

Model generalization

- Universal concepts (applies to all models)
 - Cross validation
 - HP optimization

Universal concepts

- Overfitting
- Underfitting

Overfitting vs Under fitting

K-fold-cross validation

Valid configuration:

Training on first two folds, and validate on the last fold

Invalid configuration:

Training on first fold, and validate on the last two.

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Course Wrap up + Final Exams

Course wrap-up
Final exam

QA

Key concepts!

Data modalities!

Tabular data

Structured Data

Language data

Un + Semi structured Data

Exploratory Data Analysis (EDA)

Retail:

Indexing

- Records (rows, columns)

Date time data type

Data aggregations

How to bring information from multiple

Tables/dataframes

- Joins (inner, left, right, outer) joins

