Given !

 $\theta_1 = 20^{\circ}$ $\theta_2 = 10^{\circ}$ W = 6001b

Find , T, , Tz

Solution:

$$\Sigma f_{x}$$
: $-T_{1} \cos \theta_{1} + T_{2} \cos \theta_{2} = 0$
 Σf_{y} : $-W + T_{1} \sin \theta_{1} + T_{2} \sin \theta_{2} = 0$

$$T_1$$
 T_2 k $-\cos\theta_1$ $\cos\theta_2$ U $\sin\theta_1$ $\sin\theta_2$ W

Find! a)
$$M_A$$
 of $F_1 = 60N$
b) M_A of $F_2 = 40N$
c) M_A of $F_3 = 50N$
d) M_A of $F_4 = 100N$

Solution:

c)
$$M_A = \Gamma_L \cdot F_3$$

 $M_A = 0 N \cdot m$

Given :

Find: Mp morrent at P

Solution:

$$M_{\phi} = F_{\chi} F$$

$$= (F_{\chi})_{\chi} (F_{\chi} + F_{\chi})_{\chi} + F_{\chi} + F_{\chi}$$

$$= + r F_{\chi} + F_{\chi}$$

$$= 0.2m \cdot 20,000 \, \text{N} \cdot \sin 50^{\circ}$$