MINI-TESTE 3

Universidade Federal de Jataí (UFJ) Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

05 de junho de 2019

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro minitestes (MT), uma prova final (PF), exercícios em formato de *Quizzes* (QZ) e questões conceituais (QC) aplicadas em sala de aula pelo método de Instrução pelos Colegas;
- \bullet A média final (MF) será calculada assim como se segue

$$\begin{split} MF &= MIN(10,S) \\ S &= [(\sum_{i=1}^4 max(MT_i,SMT_i) + PF].0, 2 + QC + QZ \end{split}$$

em que

- S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Demonstrações.

Nome:

Terceiro Teste

- 1. (5,0 pt) [Alencar 9.3] Indicar a Regra de Inferência que justifica a validade dos seguintes argumentos:
 - (a) $p \to q \vdash (p \to q) \lor \sim r$ Regra da Adição
 - (b) $p \to q, q \to \sim r \vdash p \to \sim r$ Regra do Silogismo Hipotético
 - (c) $p \to q \lor r \vdash p \to p \land (q \lor r)$ Regra da Absorção
 - (d) $3 < 5 \vdash 3 < 5 \lor 3 < 2$ Regra da Adição
 - (e) $x < 0 \ \lor \ x = 1, \, x \neq 1 \ \vdash \ x < 0$ Regra do Silogismo Disjuntivo
- 2. (5,0 pt) Verificar que são **válidos** os seguintes argumentos, por meio de **regras de inferência**.
 - (a) (2.0 pt) [Alencar 11.8(c)]

$$p \wedge q, p \rightarrow r, q \rightarrow s \vdash r \wedge s$$

- (1) $p \wedge q$
- (2) $p \rightarrow r$
- $(3) q \rightarrow s$
- (4) p SIMP (1)
- (5) q SIMP (1)
- (6) r MP (2), (4)
- (7) s MP (3), (5)
- (6) $r \wedge s$ CONJ (6), (7)
- (b) (3,0 pt) [Alencar 11.15(d)]

$$p \lor q, q \to r, p \to s, \sim s \vdash r \land (p \lor q)$$

- $(1) p \vee q$
- $(2) q \rightarrow r$
- $(3) p \rightarrow s$
- $(4) \sim s$
- (5) $\sim p$ MT (3), (4)
- (6) q SD (1), (5)
- (7) r MP (2), (6)
- (8) $r \wedge (p \vee q)$ CONJ (7), (1)

Regras de Inferência

- Regra da Adição (AD) (i) $p \vdash p \lor q$ (ii) $p \vdash q \lor p$
- Regra da Simplificação (SIMP) (i) $p \land q \vdash p$ (ii) $p \land q \vdash q$
- Regra da Conjunção (CONJ) (i) $p, q \vdash p \land q$ (ii) $p, q \vdash q \land p$
- Regra da Absorção (ABS) $p \to q \vdash p \to (p \land q)$
- Regra Modus Ponens (MP) $p \to q, p \vdash q$
- Regra Modus Tollens (MT) $p \to q, \sim q \vdash \sim p$
- Regra do Silogismo Disjuntivo (SD) (i) $p \lor q$, $\sim p \vdash q$ (ii) $p \lor q$, $\sim q \vdash p$
- Regra do Silogismo Hipotético (SH) $p \to q, \, q \to r \vdash p \to r$
- Regra do Dilema Construtivo (DC) $p \to q, r \to s, p \lor r \vdash q \lor s$
- Regra do Dilema Destrutivo (DD) $p \to q, \, r \to s, \, \sim q \, \vee \sim s \, \vdash \sim p \, \vee \sim r$