Χρωματικός Αριθμός, Κάλυμμα Κορυφών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Χρωματικός Αριθμός

- k-μερές γράφημα: κορυφές του διαμερίζονται σε k ανεξάρτητα σύνολα.
 - Ενδιαφέρει ελάχιστο k για το οποίο γράφημα G είναι k-μερές.
 - Αυτό ταυτίζεται με χρωματικό αριθμό χ(G) γραφήματος G.
- Χρωματικός αριθμός: ελάχιστος αριθμός χρωμάτων για χρωματισμό κορυφών ώστε όλες οι ακμές να έχουν άκρα διαφορετικού χρώματος.
 - Κορυφές ίδιου χρώματος: ανεξάρτητο σύνολο.
 - Av G περιέχει K_m, χ(G) ≥ m
 - $\chi(C_n) = 2$, av n ἀρτιος, και 3, av n περιττός.
 - Επίπεδο γράφημα G, χ(G) ≤ 4.

Χρωματικός Αριθμός

- Χρωματικός αριθμός: ελάχιστος αριθμός χρωμάτων για χρωματισμό κορυφών ώστε όλες οι ακμές να έχουν άκρα διαφορετικού χρώματος.
 - Κορυφές ίδιου χρώματος: ανεξάρτητο σύνολο.

Άσκηση

- □ Νδο σε κάθε γράφημα G(V, E), $\chi(G) \le \Delta(G)+1$.
 - Βάση: Ισχύει για κάθε γράφημα με n = 1, 2 κορυφές.
 - Επαγωγική υπόθεση: για αυθαίρετα επιλεγμένο $n \ge 2$, ισχύει ότι $\chi(G) \le \Delta(G) + 1$ για κάθε γράφημα G με n κορυφές.
 - Επαγωγικό βήμα: Έστω γράφημα G' με n+1 κορυφές. Θδο $\chi(G') \le \Delta(G')+1$.
 - Έστω αυθαίρετη κορυφή u του G' και G_u = G' − u.
 - **A** Aπό επαγωγική υπόθεση: $\chi(G_u) \le \Delta(G_u) + 1 \le \Delta(G') + 1$.
 - Η κορυφή u παίρνει ένα από τα Δ(G')+1 χρώματα.
 - Έγκυρος χρωματισμός γιατί deg(u) ≤ Δ(G'): ένα από αυτά τα χρώματα δεν χρησιμοποιείται στη γειτονιά N(u).
- Έστω συνεκτικό γράφημα G που δεν είναι πλήρες ούτε κύκλος περιττού μήκους. Τότε $\chi(G) \leq \Delta(G)$.

Άσκηση

- □ Νδο σε κάθε **επίπεδο** γράφημα G(V, E), $\chi(G) \le 5$.
 - Βάση: Ισχύει για κάθε επίπεδο γράφημα με n = 1, 2, ..., 5 κορυφές.
 - Επαγωγική υπόθεση: για αυθαίρετα επιλεγμένο $n \ge 5$, ισχύει ότι $\chi(G) \le 5$ για κάθε επίπεδο γράφημα G με n κορυφές.
 - Επαγωγικό βήμα: Επίπεδο γράφημα G' με n+1 κορυφές: χ(G') ≤ 5
 - Κορυφή u με βαθμό ≤ 5 και $N(u) = \{v_1, v_2, v_3, v_4, v_5\}$.
 - (Τουλ.) δύο κορυφές στο N(u) δεν συνδέονται (έστω οι ν₁ και ν₂).
 - G" (επίπεδο) γράφημα όπου {u, v1}, {u, v2} έχουν συμπτυχθεί σε w.
 - Επαγ. Υπόθ.: $\chi(G'') \le 5$ με χρώμα(w) = 1, χρώμα(v_k) = k, k = 3, 4, 5
 - \blacksquare Θέτουμε χρώμα(v1) = χρώμα(v2) = 1, χρώμα(u) = 2.

Σχέση με Ανεξάρτητα Σύνολα

- α(G): #κορυφών στο μέγιστο ανεξάρτητο σύνολο (independence number).
- □ Νδο σε κάθε γράφημα G, $n-a(G)+1 \ge \chi(G) \ge n/a(G)$
 - Χρωματίζουμε μέγιστο ανεξάρτητο σύνολο με ένα χρώμα και άλλες κορυφές με διαφορετικά χρώματα: χ(G) ≤ n-a(G)+1
 - $a(G) \ge n/\chi(G)$ γιατί περισσότερες κορυφές με ίδιο χρώμα είναι τουλάχιστον τόσες.
- $lue{\Box}$ Νδο σε κάθε γράφημα G, $\chi(\overline{G}) \geq n/\chi(G)$.
 - Μέγιστο ανεξάρτητο σύνολο Ι έχει τουλάχιστον n/χ(G) κορυφές.
 - Στο συμπληρωματικό γράφημα, οι κορυφές του Ι αποτελούν πλήρες γράφημα και χρειάζονται τουλάχιστον n/χ(G) χρώματα.

Ταιριάσματα (Matchings)

- □ Ταἰριασμα σε γράφημα G(V, E): σύνολο ακμών M ⊆ E
 χωρίς κοινά άκρα.
 - Κορυφή βαθμού 1 στο Μ: ταιριασμένη. Διαφορετικά ελεύθερη.
 - Μ τέλειο ταίριασμα αν όλες οι κορυφές του G ταιριασμένες.
 - Μ μέγιστο ταίριασμα αν για κάθε ταίριασμα Μ', |M| ≥ |M'|.
 - Μ μεγιστικό (maximal) αν καμία ακμή στο Ε δεν έχει δύο ελεύθερα άκρα.
 - Μ μεγιστικό ανν ελεύθερες κορυφές αποτελούν ανεξάρτητο σύνολο.

Κάλυμμα Κορυφών (Vertex Cover)

- □ Γράφημα G(V, E): κάλυμμα κορυφών C ⊆ V αν κάθε ακμή έχει τουλάχιστον ένα από τα άκρα της στο C.
 - C κάλυμμα κορυφών ανν V \ C ανεξάρτητο σύνολο.
 - β(G): #κορυφών στο **ελάχιστο** κάλυμμα κορυφών.
 - \square Σε κάθε γράφημα G, $\beta(G) + \alpha(G) = n$

Κάλυμμα Κορυφών (Vertex Cover)

- □ Γράφημα G(V, E): κάλυμμα κορυφών C ⊆ V αν κάθε ακμή έχει τουλάχιστον ένα από τα άκρα της στο C.
 - C κάλυμμα κορυφών ανν V \ C ανεξάρτητο σύνολο.
 - β(G): #κορυφών στο **ελάχιστο** κάλυμμα κορυφών.
 - \square Σε κάθε γράφημα G, $\beta(G) + \alpha(G) = n$
 - 'Εστω κάλυμμα κορυφών C και ταίριασμα M: |C| ≥ |M|.
 - Αν |C| = |M|, το C είναι ελάχιστο κάλυμμα κορυφών και το M είναι μέγιστο ταίριασμα.

