$$\vec{M} = \overrightarrow{OA} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 1 \\ 3 & 2 & -4 \end{vmatrix} = 2\vec{i} + 11\vec{j} + 7\vec{k} = (2, 11, 7),$$
$$\vec{M} = \sqrt{4 + 121 + 49} = \sqrt{174}.$$

Завдання для самостійної роботи

1. Дано: $|\vec{a}|=10,\, |\vec{b}|=2,\, \vec{a}\cdot\vec{b}=12.$ Обчислити $|\vec{a}\times\vec{b}|.$

 $Bi∂nosi∂υ: |\vec{a} \times \vec{b}| = 16.$

2. Обчислити площу паралелограма, побудованого на векторах $\vec{a}=\vec{m}-2\vec{n}$ і $\vec{b}=2\vec{m}+3\vec{n},$ якщо $|\vec{m}|=|\vec{n}|=1,$ $(\vec{m},\hat{\vec{n}})=\frac{\pi}{6}.$

 $Bi\partial noвi\partial b: S = 3, 5.$

3. Силу $\vec{F}=(2,2,9)$ прикладено до точки A(4,2,-3). Обчислити величину та напрямні косинуси момента \vec{M} цієї сили відносно точки B(2,4,0).

Bi∂nosi∂ь: $|\vec{M}| = 28$, $\cos \alpha = 3/7$, $\cos \beta = 6/7$, $\cos \gamma = -2/7$.

2.8. Мішаний добуток векторів

Мішаним добутком $\vec{a}\,\vec{b}\,\vec{c}$ впорядкованої трійки векторів $\vec{a},\,\vec{b}$ і \vec{c} називається число, яке дорівнює векторному добутку $\vec{a}\times\vec{b},$ помноженому скалярно на вектор \vec{c} :

$$\vec{a}\,\vec{b}\,\vec{c} = (\vec{a}\times\vec{b})\cdot\vec{c}.\tag{2.29}$$

Перерахуємо основні властивості мішаного добутку векторів:

- 1. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c});$
- 2. $\vec{a} \, \vec{b} \, \vec{c} = \vec{b} \, \vec{c} \, \vec{a} = \vec{c} \, \vec{a} \, \vec{b} = -\vec{b} \, \vec{a} \, \vec{c} = -\vec{c} \, \vec{b} \, \vec{a} = -\vec{a} \, \vec{c} \, \vec{b};$
- 3. геометричний зміст мішаного добутку полягає в наступному:

$$\vec{a}\,\vec{b}\,\vec{c} = \pm V,\tag{2.30}$$

де V – об'єм паралелепіпеда, побудованого на цих векторах, взятий зі знаком "+", якщо трійка векторів \vec{a} , \vec{b} , \vec{c} – права, або зі знаком "-", якщо вона ліва (див. рис. 2.8); об'єм відповідної піраміди

$$V_{\text{mip}} = \pm \frac{1}{6} \, \vec{a} \, \vec{b} \, \vec{c}; \tag{2.31}$$

4. необхідна і достатня умова компланарності або лінійної залежності векторів $\vec{a},\,\vec{b},\,\vec{c}$ виражається рівністю

$$\vec{a}\,\vec{b}\,\vec{c} = 0. \tag{2.32}$$

Якщо вектори \vec{a} , \vec{b} , \vec{c} задано своїми координатами: $\vec{a}=(a_x,a_y,a_z),\ \vec{b}=(b_x,b_y,b_z),\ \vec{c}=(c_x,c_y,c_z),$ то їх мішаний добуток визначається за формулою

$$\vec{a}\,\vec{b}\,\vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}. \tag{2.33}$$

Приклад 2.16. Дано вектори $\vec{a}=(7,6,1), \ \vec{b}=(4,0,3), \ \vec{c}=(3,6,4).$ Необхідно встановити, чи компланарні дані вектори, у випадку їх некомпланарності з'ясувати, яку трійку (праву чи ліву) вони утворюють, і обчислити об'єм побудованої на них піраміди.

Розв'язок.

Обчислимо

$$\vec{a}\,\vec{b}\,\vec{c} = \left| \begin{array}{ccc} 7 & 6 & 1 \\ 4 & 0 & 3 \\ 3 & 6 & 4 \end{array} \right| = -144.$$

Із значення мішаного добутку випливає, що вектори некомпланарні, утворюють ліву трійку і об'єм піраміди рівний $V=\frac{1}{6}\cdot 144=24.$

Завдання для самостійної роботи

1. Знайти об'єм паралеленінеда, побудованого на векторах $\vec{a}=(2\vec{i}+\vec{j}+3\vec{k}),\ \vec{b}=(3\vec{i}+\vec{j}+2\vec{k})$ і $\vec{c}=(\vec{i}+3\vec{j}+\vec{k}).$

 $Bi\partial noвi\partial b$: V=13.

2. Вектори $\vec{a}, \vec{b}, \vec{c}$, що утворюють праву трійку, взаємно перпендикулярні. Знаючи, що $|\vec{a}|=4, \, |\vec{b}|=2, \, |\vec{c}|=3,$ обчислити $\vec{a}\,\vec{b}\,\vec{c}$.

 $Bi∂no εi∂ν: \vec{a} \vec{b} \vec{c} = 24.$

3. ЕЛЕМЕНТИ АНАЛІТИЧНОЇ ГЕОМЕТРІЇ

3.1. Лінії на площині та їх рівняння

Рівняння

$$F(x,y) = 0 (3.1)$$

називається **рівнянням лінії** l, яка задана на площині відносно деякої системи координат, якщо це рівняння задовольняють координати x,y кожної точки, що лежить на лінії l, і не задовольняють координати x,y жодної точки, яка не лежить на цій лінії.

3.2. Пряма на площині. Різні види рівнянь прямої на площині

Пряма на площині геометрично може бути задана різними способами. Відповідно різним способам задання прямої відповідають у прямокутній системі координат різні види її рівнянь.

1. Рівняння прямої, що проходить через точку $M_0(x_0,y_0)$, паралельно вектору $\vec{s}=(m,n)$. Нехай M(x,y) — довільна точка прямої (рис. 3.1), тоді $\overline{M_0M}\parallel\vec{s}$ і пряма лінія на площині може бути задана векторним рівнянням у параметричній формі

Рис. 3.1.

$$\vec{r}(t) = \vec{r}_0 + \vec{s}t,\tag{3.2}$$

 \vec{s} — напрямний вектор прямої l, \vec{r}_0 — радіус-вектор фіксованої точки $M_0(x_0,y_0)$ на прямій, $\vec{r}(t)$ — радіус-вектор довільної точки на прямій, t — скалярний параметр.

Прирівнюючи відповідні координати векторів \vec{r} та $\vec{r_0} + \vec{st}$ за формулою (3.2), маємо

$$x = x_0 + mt, \quad y = y_0 + nt,$$
 (3.3)

звідки

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}. (3.4)$$

Рівняння (3.3) називаються **параметричними рівняннями прямої**, рівняння (3.4) — її **канонічним рівнянням**.

Приклад 3.1. Сила $\vec{F} = (3, -1)$ прикладена до точки $M_0(-1, 2)$. Записати рівняння прямої, вздовж якої напрямлена ця сила.

Розв'язок.

Записуемо рівняння прямої, що проходить через задану точку M_0 , паралельно до заданого вектора \vec{F}

$$\frac{x+1}{3} = \frac{y-2}{-1}$$

або

$$3y + x - 5 = 0.$$

2. Якщо в рівнянні (3.4) ввести позначення $\frac{n}{m}=k,\ y_0-\frac{n}{m}x_0=b,\ {\rm то}$ дістанемо

$$y = kx + b. (3.5)$$

Відношення $k=\frac{n}{m}=\mathrm{tg}\alpha,$ де α – кут, утворений прямою з додатнім на-

Рис. 3.2.

прямом осі Ox (рис. 3.2), називається **кутовим коефіцієнтом прямої**, а величина $b = y_0 - \frac{n}{m}x_0$ є ординатою точки перетину прямої з віссю Oy. Рівняння (3.5), називається **рівнянням прямої з кутовим коефіцієнтом**.

Приклад 3.2. Записати рівняння прямої, що проходить через точку A(4,-2) під кутом 135° до додатного напрямку осі Ox.

Розв'язок.

Знаходимо $\operatorname{tg} 135^\circ = -1$ та обчислюємо $b = y_0 - \operatorname{tg} 135^\circ \cdot x_0 = -2 + 4 = 2$. Тоді рівняння прямої набуває вигляду y = -x + 2 = 2 - x.

Якщо пряма має кутовий коефіцієнт k і проходить через задану точку $M_0(x_0, y_0)$, то її рівняння має вигляд:

$$y - y_0 = k(x - x_0). (3.6)$$

3. Рівняння прямої, яка проходить через дві задані точки $M_1(x_1,y_1)$ та $M_2(x_2,y_2)$, дістанемо з рівняння прямої, що проходить через точку M_1 і має напрямний вектор $\vec{s} = \overrightarrow{M_1M_2} = (x_2-x_1,y_2-y_1)$:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}. (3.7)$$

Приклад 3.3. Скласти рівняння прямої, що проходить через точки A(-5,4), B(3,-2).

Розв'язок.

Маємо

$$\frac{x+5}{3+5} = \frac{y-4}{-2-4}$$
 as $\frac{x+5}{8} = \frac{y-4}{-6}$.

Рис. 3.3.

4. Якщо пряма проходить через точки A(a,0) та B(0,b), тобто відтинає на осях відрізки a та b (рис. 3.3), то з рівняння (3.7) маємо

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}$$
 as $\frac{x}{a} + \frac{y}{b} = 1.$ (3.8)

Рівняння (3.8) називається рівнянням прямої, у відрізках на осях.

Приклад 3.4. Скласти рівняння прямої, що проходить через точку A(2,-1) та відтинає на півосі Оу відрізок, вдвічі більший ніж на додатній півосі Ох.

Розв'язок.

Hexaŭ дана пряма на додатній півосі <math>Ox відтинає відрізок a, a на півосі Oy — відрізок b=2a. Тоді рівняння прямої у відрізках на осях має вигляд

$$\frac{x}{a} + \frac{y}{2a} = 1.$$

Якщо точка A(2,-1) лежить цій на прямій, то її координати повинні задовільняти дане рівняння

$$\frac{2}{a} + \frac{-1}{2a} = 1.$$

Звідки знаходимо значення $a=\frac{3}{2}$. Тоді рівняння прямої остаточно набуває вигляду

$$\frac{2x}{3} + \frac{y}{3} = 1$$
 abo $2x + y = 3$.

5. Розглянемо рівняння прямої, яка проходить через задану точку $M_1(x_1, y_1)$ перпендикулярно до заданого ненульового вектора $\vec{n} = (A, B)$. Візьмемо на прямій l довільну точку (рис. 3.4) M(x, y) і введемо вектор

Рис. 3.4.

 $\overrightarrow{M_1M} = (x - x_1, y - y_1)$. Оскільки вектори \vec{n} і $\overrightarrow{M_1M}$ перпендикулярні, то їх скалярний добуток дорівнює нулю, тобто

$$A(x - x_1) + B(y - y_1) = 0. (3.9)$$

Рівняння (3.9) називається рівнянням прямої, яка проходить через задану точку перпендикулярно до заданого вектора. Вектор $\vec{n} = (A, B)$ називається нормальним вектором прямої.

Приклад 3.5. Записати рівняння прямої заданої точкою M(-1,2) і нормальним вектором $\vec{n} = (2,2)$.

Розв'язок.

Відповідно до формули (3.9) маємо:

$$2(x+1) + 2(y-2) = 0$$

або

$$x + y - 1 = 0.$$

6. Рівняння виду

$$Ax + By + C = 0 (3.10)$$

називається **загальним рівнянням прямої**. Коефіцієнти A і B при x і y загального рівняння є координатами її нормального вектора.

Особливі випадки:

а) при C=0 $y=-\frac{A}{R}x$ – пряма проходить через початок системи координат;

б) при
$$B=0$$
 $x=-\frac{C}{A}=a$ — пряма паралельна осі $Oy;$ в) при $A=0$ $y=-\frac{C}{B}=b$ — пряма паралельна осі $Ox;$

в) при
$$A=0$$
 $y=-\frac{\widetilde{C}}{B}=b$ – пряма паралельна осі $Ox;$

г) при
$$B = C = 0$$
 $Ax = 0$, $x = 0$ – вісь Oy ;

д) при
$$A = C = 0$$
 $By = 0$, $y = 0$ – вісь Ox .

Приклад 3.6. Точка A(-2,3) лежить на прямій, перпендикулярній до прямої 2x - 3y + 8 = 0. Записати рівняння цієї прямої.

Розв'язок.

Із загального рівняння прямої 2x - 3y + 8 = 0 знаходимо координати $\vec{i}\vec{i}$ нормального вектора $\vec{n}=(2,-3)$. Пряма, рівняння якої ми шукаємо, перпендикулярна до прямої 2x - 3y + 8 = 0, а отже паралельна вектору $\vec{n} = (2, -3)$. Тоді записуємо рівняння прямої, що проходить через точку A(-2,3) і має напрямний вектор $\vec{s} = (2,-3)$:

$$\frac{x+2}{2} = \frac{y-3}{-3}.$$

Можемо привести його до загального вигляду

$$3x + 2y = 0.$$

Завдання для самостійної роботи

1. Записати рівняння прямої, що проходить через точку A(3,1) перпендикулярно до прямої BC, якщо B(2,5), C(1,0).

 $Bi\partial no si\partial v$: x + 5y - 8 = 0.

2. Записати рівняння прямої, що проходить через точку A(-2,1) паралельно до прямої MN, якщо M(-3, -2), N(1, 6).

 $Bi\partial no e i\partial b$: 2x - y + 5 = 0.

3.3. Кут між двома прямими. Умови паралельності і перпендикулярності двох прямих

1. Кут φ , який відраховується проти годинникової стрілки від прямої l_1 до прямої l_2 (див. рис. 3.5), заданих рівняннями $y=k_1x+b_1$ і $y=k_2x+b_2$, визначається формулою

$$tg\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}. (3.11)$$

Рис. 3.5.

Якщо прямі паралельні, то $\varphi=0$ і $\mathrm{tg}\varphi=0$. Отже, умовою паралельності двох прямих є рівність їх кутових коефіцієнтів

$$k_1 = k_2.$$
 (3.12)

Якщо прямі l_1 і l_2 перпендикулярні, то $\varphi = 90^\circ$ і $tg\varphi$ не існує. Таким чином умова перпендикулярності має вигляд:

$$k_1 k_2 + 1 = 0$$
 afo $k_2 = -\frac{1}{k_1}$. (3.13)

Приклад 3.7. Точка P(-2,3) лежить на прямій, що перпендикулярна до прямої 2x - 3y + 8 = 0. Записати рівняння цієї прямої.

Розв'язок.

Так як шукана пряма перпендикулярна заданій, то згідно (3.13) її кутовий коефіцієнт k_2 має бути обернений за абсолютною величиною і протилежний за знаком до кутового коефіцієнта заданої прямої k_1 :

$$k_2 = -\frac{1}{k_1}.$$

Знайдемо кутовий коефіцієнт заданої прямої. Для цього перепишемо її рівняння у вигляді

$$y = \frac{2}{3}x + \frac{8}{3}.$$

Звідки знаходимо:

$$k_1 = -\frac{A}{B} = \frac{2}{3}.$$

За умовою перпендикулярності:

$$k_2 = -\frac{1}{k_1} = -\frac{1}{\frac{2}{3}} = -\frac{3}{2}.$$

Знаходимо рівняння шуканої прямої за формулою (3.6):

$$y - y_0 = k(x - x_0),$$

$$y - 3 = -\frac{3}{2}(x + 2),$$

$$2(y - 3) = -3(x + 2),$$

$$2y - 6 = -3x - 6,$$

$$3x + 2y = 0.$$

Отже, шукане рівняння прямої: 3x + 2y = 0.

2. Нехай прямі l_1 і l_2 задано канонічними рівняннями

$$\frac{x - x_1}{m_1} = \frac{y - y_1}{n_1}; \quad \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2}.$$
 (3.14)

Оскільки вектори $\vec{s}_1 = (m_1, n_1)$ і $\vec{s}_2 = (m_2, n_2)$ є напрямними векторами прямих і кут $\varphi = (\vec{s}_1, \vec{s}_2)$, то маємо

$$\cos \varphi = \frac{\vec{s}_1 \cdot \vec{s}_2}{|\vec{s}_1||\vec{s}_2|} = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}}.$$
 (3.15)

Якщо прямі l_1 і l_2 паралельні, то вектори $\vec{s_1}$ і $\vec{s_2}$ теж паралельні, тому їх координати пропорційні, тобто

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} \tag{3.16}$$

— умова паралельності двох прямих. Якщо прямі l_1 і l_2 перпендикулярні, то вектори \vec{s}_1 і \vec{s}_2 теж перпендикулярні і їх скалярний добуток дорівнює нулю

$$m_1 m_2 + n_1 n_2 = 0 (3.17)$$

- умова перпендикулярності двох прямих.

Приклад 3.8. Знайти кути трикутника, вершини якого A(1,-1), B(3,5), C(-7,11) (див. рис. 3.6).

Розв'язок.

Cкористаємося рівнянням прямої, що проходить через дві задані точки (3.7):

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Для знаходження рівняння сторони AB підставимо координати точок A(1,-1) та B(3,5) в рівняння (3.7):

$$\frac{x-1}{3-1} = \frac{y+1}{5+1} \Rightarrow \frac{x-1}{2} = \frac{y+1}{6} \Rightarrow \frac{x-1}{1} = \frac{y+1}{3}.$$

Рис. 3.6.

Для знаходження рівняння сторони AC беремо точки A(1,-1) та $C(-7,11),\ mo\partial i$

$$\frac{x-1}{-7-1} = \frac{y+1}{11+1} \Rightarrow \frac{x-1}{-8} = \frac{y+1}{12} \Rightarrow \frac{x-1}{-2} = \frac{y+1}{3}.$$

Pівняння сторони BC знаходимо, використовуючи точки B(3,5) та C(-7,11)

$$\frac{x-3}{-7-3} = \frac{y-5}{11-5} \Rightarrow \frac{x-3}{-10} = \frac{y-5}{6} \Rightarrow \frac{x-3}{-5} = \frac{y-5}{3}.$$

З одержаних рівнянь сторін трикутника можемо визначити координати їх напрямних векторів і за формулою (3.15) знайти кути між ними. Зокрема, $\vec{s}_{AB} = (1,3)$, $\vec{s}_{AC} = (-2,3)$, $\vec{s}_{BC} = (-5,3)$ і

$$\cos \angle A = \frac{m_{AB}m_{AC} + n_{AB}n_{AC}}{\sqrt{m_{AB}^2 + n_{AB}^2}\sqrt{m_{AC}^2 + n_{AC}^2}} = \frac{1 \cdot (-2) + 3 \cdot 3}{\sqrt{1^2 + 3^2}\sqrt{(-2)^2 + 3^2}} = \frac{7}{\sqrt{130}},$$

$$\angle A = \arccos \frac{7}{\sqrt{130}} \approx 52^{\circ};$$

$$\cos \angle (AB \hat{\,} BC) = \frac{m_{AB}m_{BC} + n_{AB}n_{BC}}{\sqrt{m_{AB}^2 + n_{AB}^2} \sqrt{m_{BC}^2 + n_{BC}^2}} = \frac{1 \cdot (-5) + 3 \cdot 3}{\sqrt{1^2 + 3^2} \sqrt{(-5)^2 + 3^2}} = \frac{2}{\sqrt{85}},$$

$$\cos \angle B = \cos(\pi - \angle (AB \hat{\,} BC)) = -\cos \angle (AB \hat{\,} BC) = -\frac{2}{\sqrt{85}},$$

$$\angle B = \arccos\left(-\frac{2}{\sqrt{85}}\right) \approx 103^{\circ};$$

$$\cos \angle C = \frac{m_{AC}m_{BC} + n_{AC}n_{BC}}{\sqrt{m_{AC}^2 + n_{AC}^2}\sqrt{m_{BC}^2 + n_{BC}^2}} = \frac{(-2)\cdot(-5) + 3\cdot3}{\sqrt{(-2)^2 + 3^2}\sqrt{(-5)^2 + 3^2}} = \frac{19}{\sqrt{442}},$$

$$\angle C = \arccos\frac{19}{\sqrt{442}} \approx 25^{\circ}.$$

3. Нехай тепер прямі l_1 та l_2 задані загальними рівняннями $A_1x + B_1y + C_1 = 0$ і $A_2x + B_2y + C_2 = 0$. Тоді кут φ між ними дорівнює куту між їхніми нормальними векторами $\vec{n}_1 = (A_1, B_1)$ і $\vec{n}_2 = (A_2, B_2)$. Аналогічно дістанемо

1) формулу для косинуса кута φ між прямими

$$\cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}};$$
(3.18)

2) умову паралельності прямих

$$\frac{A_1}{A_2} = \frac{B_1}{B_2};\tag{3.19}$$

3) умову перпендикулярності прямих

$$A_1 A_2 + B_1 B_2 = 0. (3.20)$$

Координати точки перетину прямих заданих рівняннями $A_1x+B_1y+C_1=0$ і $A_2x+B_2y+C_2=0$ визначаються шляхом розв'язання системи цих рівнянь:

$$A_1x + B_1y + C_1 = 0, A_2x + B_2y + C_2 = 0.$$
 (3.21)

Приклад 3.9. Знайти кути та площу трикутника, сторони якого задано рівняннями: 5x - 2y - 11 = 0, x + 2y + 5 = 0, x - 2y + 1 = 0.

Побудуемо заданий трикутник (див. рис. 3.7) і позначимо його вершини буквами A, B, C. Рівняння сторони AB е x-2y+1=0. Координати нормального вектора прямої AB рівні $\vec{n}_{AB}=(1,-2)$. Рівняння сторони BC е x+2y+5=0, координати нормального вектора BC рівні $\vec{n}_{BC}=(1,2)$. Рівняння сторони AC е 5x-2y-11=0, координати нормального вектора AC рівні $\vec{n}_{AC}=(5,-2)$. Кути трикутника знаходимо за формулою (3.18). Зокрема,

$$\cos \angle A = \frac{A_{AB}A_{AC} + B_{AB}B_{AC}}{\sqrt{A_{AB}^2 + B_{AB}^2} \sqrt{A_{AC}^2 + B_{AC}^2}} = \frac{1 \cdot 5 + (-2) \cdot (-2)}{\sqrt{1^2 + (-2)^2} \sqrt{5^2 + (-2)^2}} = \frac{9}{\sqrt{145}},$$

$$\angle A = \arccos \frac{9}{\sqrt{145}} \approx 42^{\circ}.$$

Рис. 3.7.

Kym між прямими BC і AB (див. рис. 3.7 та взаємне розташування BC і AB) рівний

$$\cos \varphi = \frac{A_{AB}A_{BC} + B_{AB}B_{BC}}{\sqrt{A_{AB}^2 + B_{AB}^2}\sqrt{A_{BC}^2 + B_{BC}^2}} = \frac{1 \cdot 1 + (-2) \cdot 2}{\sqrt{1^2 + (-2)^2}\sqrt{1^2 + 2^2}} = -\frac{3}{5},$$

тому

$$\cos \angle B = \cos(\pi - \varphi) = -\cos\varphi = \frac{3}{5},$$

 $\angle B = \arccos\frac{3}{5} \approx 53^{\circ}.$

$$\cos \angle C = \frac{A_{AC}A_{BC} + B_{AC}B_{BC}}{\sqrt{A_{AC}^2 + B_{AC}^2}\sqrt{A_{BC}^2 + B_{BC}^2}} = \frac{5 \cdot 1 + (-2) \cdot 2}{\sqrt{5^2 + (-2)^2}\sqrt{1^2 + 2^2}} = \frac{1}{\sqrt{145}},$$

$$\angle C = \arccos \frac{1}{\sqrt{145}} \approx 85^{\circ}.$$

Для того, щоб знайти площу трикутника, необхідно визначити координати його вершин. Точки A, B i C ми знайдемо розв'язавши системи рівнянь (3.21) прямих що перетинаються.

Розв'яжемо систему:

$$\begin{cases} x - 2y + 1 = 0, \\ 5x - 2y - 11 = 0. \end{cases}$$

За формулами Крамера маємо:

$$\triangle = \begin{vmatrix} 1 & -2 \\ 5 & -2 \end{vmatrix} = 8, \quad \triangle_x = \begin{vmatrix} -1 & -2 \\ 11 & -2 \end{vmatrix} = 24, \quad \triangle_y = \begin{vmatrix} 1 & -1 \\ 5 & 11 \end{vmatrix} = 16,$$

$$x = \frac{\triangle_x}{\triangle} = \frac{24}{8} = 3, \quad y = \frac{\triangle_y}{\triangle} = \frac{16}{8} = 2.$$

Отримуемо точку A(3,2).

Розв'язуемо систему:

$$\begin{cases} x - 2y + 1 = 0, \\ x + 2y + 5 = 0. \end{cases}$$

Аналогічно

$$\triangle = \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} = 4, \quad \triangle_x = \begin{vmatrix} -1 & -2 \\ -5 & 2 \end{vmatrix} = -12, \quad \triangle_y = \begin{vmatrix} 1 & -1 \\ 1 & -5 \end{vmatrix} = -4,$$
$$x = \frac{-12}{4} = -3, \quad y = \frac{-4}{4} = -1.$$

Отримуемо точку B(-3,-1).

Розв'язуемо систему:

$$\begin{cases}
5x - 2y - 11 = 0, \\
x + 2y + 5 = 0.
\end{cases}$$

Знаходимо

$$\triangle = \begin{vmatrix} 5 & -2 \\ 1 & 2 \end{vmatrix} = 12, \quad \triangle_x = \begin{vmatrix} 11 & -2 \\ -5 & 2 \end{vmatrix} = 12, \quad \triangle_y = \begin{vmatrix} 5 & 11 \\ 1 & -5 \end{vmatrix} = -36,$$
$$x = \frac{12}{12} = 1, \quad y = \frac{-36}{12} = -3.$$

Отримуемо точку C(1, -3).

Площу трикутника знайдемо за формулою (2.27):

$$\begin{split} S_{ABC} &= \frac{1}{2} \left| x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right|; \\ S_{ABC} &= \frac{1}{2} \left| 3 (-1 - (-3)) - 3 (-3 - 2) + 1 (2 - (-1)) \right| = \frac{1}{2} \left(6 + 15 + 3 \right) = \\ &= \frac{24}{2} = 12 \ \kappa e. \ o \partial. \end{split}$$

Відстань від точки $M_0(x_0,y_0)$ до прямої Ax+By+C=0 знаходять за формулою

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}. (3.22)$$

Число d завжди додатне, тому що це відстань. Відхиленням δ точки $M_0(x_0, y_0)$ від прямої Ax + By + C = 0 називається додатне число $\delta = d$, якщо точки M_0 і початок координат O(0, 0) лежать по різні сторони від

прямої, і від'ємне число $\delta = -d$, якщо точки M_0 і O(0,0) лежать по один бік від неї. З формули (3.22) випливає, що відхилення

$$\delta = \frac{Ax_0 + By_0 + C}{\pm \sqrt{A^2 + B^2}},\tag{3.23}$$

де знак знаменника має бути протилежний до знака C.

Приклад 3.10. Знайти відстань між двома паралельними прямими:

$$3x + 4y - 12 = 0,$$

$$3x + 4y + 13 = 0.$$

Розв'язок.

Шукану відстань знайдемо як відстань від довільної точки однієї прямої до другої прямої. Візьмемо на першій прямій довільну точку, наприклад точку з абсцисою x=4, її ордината буде:

$$3 \cdot 4 + 4 \cdot y - 12 = 0; \quad 4y = 0; \quad y = 0.$$

Отже, на першій прямій вибрана точка $M_0(4,0)$. Відстань від точки $M_0(4,0)$ до заданої другої прямої 3x + 4y + 13 = 0 знайдемо за формулою (3.22):

$$d = \frac{|3 \cdot 4 + 4 \cdot 0 + 13|}{\sqrt{3^2 + 4^2}} = \frac{|12 + 0 + 13|}{\sqrt{25}} = \frac{25}{5} = 5 \text{ (лін. од.)}.$$

Приклад 3.11. Задано вершини трикутника A(12,-4), B(0,5), C(-12,-11). Знайти:

- 1) довжини сторін;
- 2) рівняння сторін;
- 3) рівняння висоти, що проведена з вершини В;
- 4) довжину цієї висоти;
- 5) рівняння медіани, що проведена із вершини A;
- 6) точку перетину висоти, що проведена із вершини B, та медіани, що проведена з точки A;
 - 7) рівняння бісектриси кута C;
 - 8) центр ваги трикутника;
 - 9) $\kappa ym C$;
 - 10) площу трикутника.

Розв'язок.

1. Довжини сторін знайдемо за допомогою формули (2.14) для відстані між двома точками :

$$\begin{array}{ll} d &=& \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.\\ d_{AB} &=& \sqrt{(0-12)^2+(5+4)^2}=\sqrt{144+81}=\sqrt{225}=15;\\ d_{BC} &=& \sqrt{(-12-0)^2+(-11-5)^2}=\sqrt{144+256}=\sqrt{400}=20;\\ d_{AC} &=& \sqrt{(-12-12)^2+(-11+4)^2}=\sqrt{576+49}=\sqrt{625}=25. \end{array}$$

Рис. 3.8.

2. Кожна сторона трикутника проходить через дві точки (див. рис. 3.8), тому для знаходження рівнянь сторін використаємо формулу (3.7):

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Знаходимо рівняння сторін:

$$AB: \quad \frac{x-12}{0-12} = \frac{y+4}{5+4} \Rightarrow \frac{x-12}{-12} = \frac{y+4}{9} \Rightarrow \frac{x-12}{-4} = \frac{y+4}{3} \Rightarrow 3x - 36 = -4y - 16 \Rightarrow 3x + 4y - 20 = 0;$$

$$BC: \quad \frac{x-0}{-12-0} = \frac{y-5}{-11-5} \Rightarrow \frac{x}{-12} = \frac{y-5}{-16} \Rightarrow \frac{x}{3} = \frac{y-5}{4} \Rightarrow 3x + 4x = 3y - 15 \Rightarrow 4x - 3y + 15 = 0;$$

$$AC: \quad \frac{x-12}{-12-12} = \frac{y+4}{-11+4} \Rightarrow \frac{x-12}{-24} = \frac{y+4}{-7} \Rightarrow \frac{x-12}{24} = \frac{y+4}{7} \Rightarrow 3x + 24y + 26x + 34y + 26x + 36x + 36x$$

3. Щоб скласти рівняння висоти, яка проведена із точки B на сторону AC, необхідно знати кутовий коефіцієнт висоти.

Спочатку знайдемо кутовий коефіцієнт сторони АС

$$k_1 = -\frac{A}{B} = -\frac{7}{-24} = \frac{7}{24}.$$

3 умови перпендикулярності двох прямих $k_1 \cdot k_2 = -1$ знайдемо кутовий коефіцієнт висоти BD:

$$k_2 = -\frac{1}{k_1} = -\frac{1}{\frac{7}{24}} = -\frac{24}{7}.$$

Складемо рівняння висоти, скориставшись формулою (3.6):

$$y - y_0 = k(x - x_0),$$

$$y - 5 = -\frac{24}{7}(x - 0) \Rightarrow 7y - 35 = -24x \Rightarrow 24x + 7y - 35 = 0.$$

Отэке, шукане рівняння висоти BD: 24x + 7y - 35 = 0.

4. Для знаходження довжини BD використаемо формулу (3.22)

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}},$$

за допомогою якої знайдемо відстань від точки B(0,5) до прямої $AC\ (7x-24y-180=0)$

$$d_{BD} = \frac{|7 \cdot 0 - 24 \cdot 5 - 180|}{\sqrt{7^2 + (-24)^2}} = \frac{|-300|}{\sqrt{49 + 576}} = \frac{300}{25} = 12.$$

5. Для знаходження рівняння медіани AM потрібно знайти координати точки M, яка ділить сторону BC навпіл. За формулами (2.17) (при $\lambda=1$) знаходимо:

$$x_M = \frac{x_B + x_C}{2} = \frac{0 + (-12)}{2} = -6;$$

 $y_M = \frac{y_B + y_C}{2} = \frac{5 + (-11)}{2} = -3.$

Координати точки M(-6, -3).

Pівняння медіани AM знайдемо як рівняння прямої, що проходить через дві точки A(12,-4) та M(-6,-3).

$$\frac{x-12}{-6-12} = \frac{y+4}{-3+4} \Rightarrow \frac{x-12}{-18} = \frac{y+4}{1} \Rightarrow \\ \Rightarrow x-12 = -18y-72 \Rightarrow x+18y+60 = 0.$$

Oтже, шукане рівняння медіани AM: x + 18y + 60 = 0.

6. Щоб знайти координати точки F перетину висоти BD та медіани AM, необхідно розв'язати систему рівнянь цих прямих:

$$24x + 7y - 35 = 0, x + 18y + 60 = 0.$$

Знаходимо

$$\triangle = \begin{vmatrix} 24 & 7 \\ 1 & 18 \end{vmatrix} = 425, \quad \triangle_x = \begin{vmatrix} 35 & 7 \\ -60 & 18 \end{vmatrix} = 1050, \quad \triangle_y = \begin{vmatrix} 24 & 35 \\ 1 & -60 \end{vmatrix} = -1475,$$
$$x = \frac{1050}{425} = \frac{42}{17} \approx 2.47, \quad y = \frac{-1475}{425} = -\frac{59}{17} \approx -3.47.$$

Отримуємо точку перетину F(2.47, -3.47).

7. Для знаходження рівняння бісектриси внутрішнього кута C необхідно знайти координати точки K. За властивістю бісектриси внутрішнього кута трикутника, яка ділить протилежну сторону AB у відношенні $\lambda = \frac{AK}{KB} = \frac{AC}{BC}$, знаходимо $\lambda = \frac{AC}{BC} = \frac{25}{20} = \frac{5}{4}$. Координати точки K знаходимо за формулами (2.17):

$$x = \frac{x_A + \lambda x_B}{1 + \lambda} = \frac{12 + \frac{5}{4} \cdot 0}{1 + \frac{5}{4}} = \frac{12 \cdot 4}{9} = \frac{16}{3},$$
$$y = \frac{y_A + \lambda y_B}{1 + \lambda} = \frac{-4 + \frac{5}{4} \cdot 5}{1 + \frac{5}{4}} = \frac{9}{4} \cdot \frac{4}{9} = 1.$$

Шукана точка $K\left(-\frac{16}{3},1\right)$.

Знаходимо рівняння бісектриси внутрішнього кути C як рівняння прямої, що проходить через дві точки C(-12,-11) та $K\left(-\frac{16}{3},1\right)$:

$$\frac{x+12}{\frac{16}{3}+12} = \frac{y+11}{1+11} \Rightarrow \frac{x+12}{\frac{52}{3}} = \frac{y+11}{12} \Rightarrow \frac{3(x+12)}{13} = \frac{y+11}{3} \Rightarrow \\ \Rightarrow 9x+108 = 13y+143 \Rightarrow 9x-13y-35 = 0.$$

Отже, шукане рівняння бісектриси CK: 9x - 13y - 35 = 0.

8. Центр ваги трикутника Е лежить на перетині його медіан або може бути визначений за формулами:

$$x = \frac{x_A + x_B + x_C}{3}, \quad y = \frac{y_A + y_B + y_C}{3};$$
 $x_E = \frac{12 + 0 - 12}{3} = 0, \quad y_E = \frac{-4 + 5 - 11}{3} = -\frac{10}{3}.$

Шукана точка центру ваги трикутника $E\left(0,-\frac{10}{3}\right)$.

9. Величину кута C знаходимо за формулою (3.11):

$$tg \angle C = \frac{k_{BC} - k_{AC}}{1 + k_{AC}k_{BC}}.$$

3 розв'язаного вище маємо: $k_{AC} = \frac{7}{24}, \ k_{BC} = \frac{4}{3}; \ moдi$

$$\operatorname{tg} \angle C = \frac{\frac{4}{3} - \frac{7}{24}}{1 + \frac{7}{24} \cdot \frac{4}{3}} = \frac{18}{24} = \frac{3}{4}.$$

Величина кута $\angle C = \operatorname{arctg} \frac{3}{4} \approx 37^{\circ}$.

10. Площу трикутника знайдемо за формулою:

$$S = \frac{1}{2} d_{AC} d_{BD};$$

 $S = \frac{1}{2} \cdot 25 \cdot 12 = 25 \cdot 6 = 150.$

Шукана площа S = 150 (кв. од.).

Завдання для самостійної роботи

- 1. Дано вершини трикутника ABC: A(4,3), B(-3,-3), C(2,7). Знайти:
- а) рівняння сторони AB;
- б) рівняння висоти CH;
- в) рівняння медіани AM;
- Γ) точку N перетину медіани AM і висоти CH;
- д) рівняння прямої, що проходить через вершину C паралельно стороні AB.
 - е) відстань від точки C до прямої AB.

 $Bi\partial no вi\partial ь$: а) 6x-7y-3=0, б) 7x+6y-56=0, в) 2x-9y+19=0, г) N(26/5;49/15), д) 6x-7y+37=0, е) $d=40/\sqrt{85}\approx 4,4$.

2. Відомі рівняння сторони AB трикутника ABC 4x+y=12 та його висот BH 5x-4y=12 і AM x+y=6. Знайти рівняння двох інших сторін трикутника ABC.

 $Bi\partial no 6i\partial b$: 7x - 7y - 16 = 0, 4x + 5y - 28 = 0.

3. Знайти рівняння прямої, що знаходиться на відстані 2 від паралельної їй прямої 12x + 5y - 52 = 0.

 $Bi\partial no εi ∂ ε: 12x + 5y - 26 = 0$ aбо 12x + 5y - 78 = 0.

3.4. Площина в просторі

Нехай в прямокутній системі координат Oxyz задано площину Π точкою $M_0(x_0,y_0,z_0)$ і вектором $\vec{n}=(A,B,C)$, перпендикулярним до цієї площини. Виберемо на площині Π довільну точку M(x,y,z). При будь-якому положенні точки M вектори \vec{n} і $\overrightarrow{M_0M}=(x-x_0,y-y_0,z-z_0)$ є взаємно перпендикулярними, тому їх скалярний добуток рівний нулю

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0; (3.24)$$

(3.24) – рівняння площини, що проходить через точку $M_0(x_0, y_0, z_0)$ і має нормальний вектор $\vec{n} = (A, B, C)$.

Або

$$Ax + By + Cz + D = 0 (3.25)$$

де $D = -Ax_0 - By_0 - Cz_0$. Рівняння (3.25) називається **загальним рівнянням площини**. Вектор $\vec{n} = (A, B, C)$ називається **нормальним вектором** площини.

 $D=0,\ Ax+By+Cz=0$ – рівняння площини, що проходить через початок системи координат O(0,0,0);

C=0, Ax+By+D=0 – рівняння площини, паралельної осі Oz;

C = D = 0, Ax + By = 0 – рівняння площини, що проходить через вісь Oz;

 $B=C=0,\,Ax+D=0$ – рівняння площини, паралельної площині Oyz; $x=0,\,y=0,\,z=0$ – рівняння координатних площин.

 Π лощина Π в декартовій системі координат може бути задана також рівняннями:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{3.26}$$

– рівняння площини у відрізках на осях, де a, b, c – величини відрізків, що їх відтинає площина на координатних осях Ox, Oy, Oz відповідно;

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$
(3.27)

– рівняння площини, що проходить через три точки $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$, $M_3(x_3, y_3, z_3)$ (які не лежать на одній прямій).

Приклад 3.12. Скласти рівняння площини:

- 1) що приходить через точку M_1 перпендикулярно до вектора $\overrightarrow{M_1M_2}$, якщо $M_1(3,-1,2)$ і $M_2(4,-2,-1)$.
 - 2) яка паралельна площині Oxz і проходить через точку $M_0(7, -3, 5)$;
 - 3) що проходить через вісь Oz і точку $M_0(-3, 1, -2)$;
- 4) яка паралельна осі Ox і проходить через дві точки $M_1(4,0,-2)$ і $M_2(5,1,7);$

- 5) що приходить через точку C(3,4,-5) паралельно двом векторам $\vec{a}=(3,1,-1)$ і $\vec{b}=(1,-2,1);$
- 6) що приходить через точку $M_0(7,-5,1)$ і відтинає на осях координат рівні додатні відрізки;
- 7) яка відтинає на осях Ox та Oy відрізки $a=3,\ b=-2$ і паралельна до вектора $\vec{s}=(2,1,-1).$

Розв'язок.

1. Скориставшись рівнянням (3.24), можемо записати рівняння площини, яка проходить через точку M_1 перпендиеулярно до вектора $\overline{M_1M_2} = (4-3, (-2)-(-1), -1-2) = (1, -1, -3)$:

$$1(x-3) - 1(y+1) - 3(z-2) = 0$$
 afo $x - y - 3z + 2 = 0$.

Це і є шукане рівняння площини.

2. Знову скористаємося рівнянням (3.24). Якщо дана площина паралельна площині Oxz, то вона має нормальний вектор $\vec{n} = (0, B, 0)$. Тоді рівняння площини, що проходить через точку $M_0(7, -3, 5)$ має вигляд:

$$0(x-7) + B(y+3) + 0(z-5) = 0$$
 abo $B(y+3) = 0$.

 $Ocmamoчно \ ompuмуемо \ piвняння \ nлощини \ y + 3 = 0.$

3. Розглянемо загальне рівняння площини (3.25). Якщо площина проходить через вісь Oz, то вона має нормальний вектор $\vec{n} = (A, B, 0)$ і коефіцієнт D = 0. Враховуючи, що шукана площина проходить через точку $M_0(-3, 1, -2)$, то отримаємо систему рівняння, розв'язавши яку знайдемо її рівняння:

$$\left. \begin{array}{c} Ax + By = 0, \\ -Ax_0 - By_0 = 0, \end{array} \right\} \Rightarrow \left. \begin{array}{c} Ax + By = 0, \\ 3A - B = 0, \end{array} \right\} \Rightarrow Ax + 3Ay = 0, \Rightarrow x + 3y = 0.$$

4. Оскільки площина паралельна до координатної осі Ox, то її нормальний вектор має координати: $\vec{n}=(0,B,C)$. Знайдемо вектор $\overline{M_1M_2}=(5-4,1-0,7-(-2))=(1,1,9)$, який лежить на площині. Вектори \vec{n} і $\overline{M_1M_2}$ взаємно перпендикулярні, тому їхній скалярний добуток дорівнює нулю, тобто

$$\overrightarrow{n}\cdot\overrightarrow{M_1M_2}=0,$$
 $0\cdot 1+1\cdot B+9\cdot C=0,$ звідки знаходимо $B=-9C.$

Запишемо рівняння площини (3.24), що проходить через точку $M_1(4,0,-2)$

$$0 \cdot 4 + B(y - 0) + C(z + 2) = 0$$
 abo $By + C(z + 2) = 0$

i підставимо в нього знайдене значення B=-9C

$$-9Cy + C(z+2) = 0$$
 abo $9y - z - 2 = 0$.

Це і є шукане рівняння площини.

5. Нехай точка M(x,y,z) — довільна точка шуканої площини. Тоді вектор $\overrightarrow{CM} = (x-3, y-4, z+5)$ належить цій площині. За умовою задачі вектори \vec{a} , \vec{b} і \overrightarrow{CM} є компланарними. Через це їх мішаний добуток дорівнює нулю:

 $\left(\overrightarrow{CM} \cdot \vec{a} \cdot \vec{b}\right) = 0$

або

$$\begin{vmatrix} x-3 & y-4 & z+5 \\ 3 & 1 & -1 \\ 1 & -2 & 1 \end{vmatrix} = 0.$$

Обчислюючи визначник, знаходимо шукане рівняння:

$$-x+3-4y+16-7z-35=0$$
 abo $x+4y+7z+16=0$.

6. Скористаємося знову рівнянням (3.24). Одержимо рівняння площини що проходить через задану точку $M_0(7,-5,1)$:

$$A(x-7) + B(y+5) + C(z-1) = 0$$
 abo $Ax + By + Cz - 7A + 5B - C = 0$.

Перепишемо його у вигляді

$$\frac{x}{\frac{1}{A}} + \frac{y}{\frac{1}{B}} + \frac{z}{\frac{1}{C}} = 7A - 5B + C.$$

Для того щоб одержане рівняння перейшло в рівняння площини у відрізках на осях (3.26), необхідно покласти:

$$7A - 5B + C = 1$$
, $a = 1/A$, $b = 1/B$, $c = 1/C$.

За умовою задачі a=b=c, отже A=B=C. Тоді з першого виразу знаходимо A=B=C=1/3 і шукане рівняння площини набуває вигляду

$$\frac{x}{3} + \frac{y}{3} + \frac{x}{3} = 1$$
 as $x + y + z - 3 = 0$.

Зауваження! Якщо необхідно побудувати площину, зручно перейти від загального рівняння площини (3.24) до рівняння площини у відрізках на осях (3.26). Для цього треба перенести у праву частину вільний член і поділити на нього обидві частини рівняння. Знаючи відрізки, які відтинає площина на осях координат, легко побудувати площину. У нашому випадку a = b = c = 1/3 і площину побудовано на рис. 3.9.

Рис. 3.9.

7. Оскільки площина відтинає на осях Ох та Оу відрізки a=3 b=-2, то вона проходить через точки $M_1(3,0,0)$ і $M_2(0,-2,0)$. Візьмемо на площині точку M(x,y,z) і знайдемо вектори $\overline{M_1M}=(x-3,y,z)$ та $\overline{M_1M_2}=(-3,-2,0)$, які належить цій площині. Вектори \vec{s} , $\overline{M_1M}$ і $\overline{M_1M_2}$ е компланарними, тому їх мішаний добуток дорівнює нулю:

$$\begin{vmatrix} x-3 & y & z \\ 2 & 1 & -1 \\ -3 & -2 & 0 \end{vmatrix} = 0.$$

Обчислюючи визначник, знаходимо шукане рівняння:

$$2x - 3y + z - 6 = 0.$$

Завдання для самостійної роботи

- 1. Записати рівняння площини:
- а) що проходить через точку B(2,1,-1) і має напрямний вектор $\vec{n}=(1,-2,3);$
- б) що проходить через точки $M_1(1,1,1)$ і $M_2(2,3,4)$ перпендикулярно до площини 2x-7y+5z+9=0.

 $Bi\partial no e i\partial v$: a) x - 2y + 3z + 3 = 0, 6) 31x + y - 11z - 21 = 0.

2. Скласти рівняння площини, що проходить через точку M(2,-3,5) паралельно площині Oxy.

Bi∂no εi∂ν: z - 5 = 0.

3. Знайти величину відрізків, які відтинає на осях координат площина, що проходить через точку M(-2,7,3) паралельно площині x-4y+5z-1=0.

Bi∂noεi∂υ: a = -15, b = 15/4, c = -3.

4. Скласти рівняння площини, що перпендикулярна до площини 2x-2y+4z-5=0 і відтинає на осях Ox та Oy відрізки $a=-2,\ b=2/3.$

 $Bi\partial no ei\partial b$: x - 3y - 2z + 2 = 0.

3.5. Кут між двома площинами. Умови паралельності і перпендикулярності двох площин

Величину кута φ між площинами $A_1x+B_1y+C_1z+D_1=0$ і $A_2x+B_2y+C_2z+D_2=0$ обчислюють за формулою

$$\cos \varphi = \cos(\vec{n}_1, \vec{n}_2) = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}, \quad (3.28)$$

де $\vec{n}_1 = (A_1, B_1, C_1)$, $\vec{n}_2 = (A_2, B_2, C_2)$ – нормальні вектори даних площин. За допомогою формули (3.28) можна отримати **умову перпендикулярності** даних **площин**:

$$\vec{n}_1 \cdot \vec{n}_2 = 0$$
 also $A_1 A_2 + B_1 B_2 + C_1 C_2 = 0.$ (3.29)

Умова паралельності розглядуваних площин має вигляд

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}. (3.30)$$

Дві площини збігаються, якщо виконуються рівності

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}. (3.31)$$

Приклад 3.13. Знайти косинус кута між площиною, що проходить через точки O(0,0,0), $M_1(1,-1,0)$, $M_2(1,1,1)$, та площиною Oxy.

Розв'язок.

За формулою (3.27) знаходимо рівняння площини, що проходить через точки $O,\ M_1$ та M_2

$$\left| \begin{array}{ccc} x & y & z \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{array} \right| = 0$$

або

$$x + y - 2z = 0.$$

Рівняння координатної площини Оху відоме z = 0. Знаючи нормальні вектори площин $\vec{n_1} = (1, 1, -2)$ і $\vec{n_2} = (0, 0, 1)$ за формулою (3.28) знаходимо

$$\cos \varphi = \frac{1 \cdot 0 + 1 \cdot 0 + (-2) \cdot 1}{\sqrt{1^2 + 1^2 + (-2)^2} \sqrt{0 + 0 + 1^2}} = -\frac{2}{\sqrt{6}}.$$

Відстань від точки $M_0(x_0,y_0,z_0)$ до площини Ax+By+Cz+D=0 визначають за формулою

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}. (3.32)$$

Приклад 3.14. Знайти висоту АН піраміди, заданої своїми вершинами A(-1,2,-1), B(1,0,2), C(0,1,-1), D(2,0,-1).

Розв'язок.

За формулою (3.27) знаходимо рівняння площини, що проходить через точки $B,\ C$ та D

$$\begin{vmatrix} x-1 & y-0 & z-2 \\ -1 & 1 & -3 \\ 1 & 1 & -3 \end{vmatrix} = 0$$

 $зei\partial \kappa u \ 3x + 6y + z - 5 = 0.$

Висоту AH знайдемо як відстань точки A(-1,2,-1) від площини BCD за формулою (3.32):

$$AH = \frac{|3 \cdot (-1) + 6 \cdot 2 + 1 \cdot (-1) - 5|}{\sqrt{3^2 + 6^2 + 1^2}} = \frac{3}{\sqrt{46}}.$$

Завдання для самостійної роботи

- 1. Обчислити кут між площинами x-2y+2z-3=0 і 3x-4y+5=0. $Bi\partial no вi\partial v$: $\cos \varphi=11/15,\ \varphi\approx 42^\circ 51'.$
- 2. Знайти відстань від точки $M(2,0,-\frac{1}{2})$ до площини $4x-4y+2z+17=\ 0.$

 $Bi\partial no e i\partial b$: d=4.

3. Обчислити відстань між паралельними площинами 3x+6y+2z-15=0 і 3x+6y+2z+13=0.

 $Bi\partial noвi\partial b$: d=4.

3.6. Пряма лінія в просторі. Різні види рівнянь прямої в просторі

Залежно від способу задання прямої в просторі можна розглядати різні її рівняння.

1. Нехай пряма проходить через точку $M_0(x_0,y_0,z_0)$ паралельно вектору $\vec{s}=(m,n,p),$ а M(x,y,z) — довільна точка цієї прямої. Якщо $\vec{r_0}$ і \vec{r} —

радіуси-вектори точок M_0 і M (рис. 3.10), то справедлива векторна рівність (аналогічна (3.2))

$$\vec{r}(t) = \vec{r}_0 + \vec{s}t \quad (-\infty < t < +\infty), \tag{3.33}$$

яка випливає з правила додавання векторів. Рівняння (3.33) називається векторно-параметричним рівнянням прямої, \vec{s} – напрямним вектором прямої (3.33), t – параметром.

Рис. 3.10.

2. Із рівняння (3.33) отримуємо три скалярні рівняння:

$$x = x_0 + mt, \quad y = y_0 + nt, \quad z = z_0 + pt,$$
 (3.34)

які називаються параметричними рівняннями прямої.

3. Розв'язуючи рівняння системи (3.34) відносно t та прирівнюючи отримані співвідношення, приходимо до **канонічних рівнянь прямої**:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}. (3.35)$$

Якщо $m=0,\, n\neq 0,\, p\neq 0,\,$ то напрямний вектор \vec{s} перпендикулярний до осі $Ox,\,$ тому рівняння

$$\frac{x - x_0}{0} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

визначає пряму, перпендикулярну до осі Ox. Аналогічно рівняння, в яких лише n=0 або p=0, визначають прямі, перпендикулярні до осі Oy або Oz.

Якщо $m=n=0,\,p\neq 0,$ або $m=p=0,\,n\neq 0,$ або $n=p=0,\,m\neq 0,$ то рівняння (3.35) визначають прямі, відповідно паралельні осям $Oz,\,Oy,\,Ox.$

Приклад 3.15. Скласти рівняння прямої, що проходить через точку $M_0(2,-3,4)$ перпендикулярно до прямих $\frac{x+2}{1}=\frac{y-3}{-1}=\frac{z+1}{1}$ і $\frac{x+4}{2}=\frac{y}{1}=\frac{z-4}{3}$.

Розв'язок.

Задані прямі мають напрямні вектори: $\vec{s}_1 = (1, -1, 1)$ і $\vec{s}_2 = (2, 1, 3)$. Оскільки пряма перпендикулярна до заданих прямих, то за її напрямний вектор можна прийняти векторний добуток $\vec{s}_1 \times \vec{s}_2$:

$$\vec{s} = \vec{s}_1 \times \vec{s}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = (-4, -1, 3).$$

Знаючи напрямний вектор та точку M_0 через яку проходить шукана пряма записуємо $\ddot{i}\ddot{i}$ канонічні рівняння:

$$\frac{x-2}{4} = \frac{y+3}{1} = \frac{z-4}{-3}.$$

4. Рівняння прямої, що проходить через дві задані точки $M_1(x_1,y_1,z_1)$ і $M_2(x_2,y_2,z_2)$ записується у вигляді

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}. (3.36)$$

Приклад 3.16. Скласти канонічні та параметричні рівняння прямої, що проходить через точки $M_1(3,-5,2)$ і $M_2(1,-1,-4)$.

Розв'язок.

За формулою (3.36) знаходимо:

$$\frac{x-3}{1-3} = \frac{y+5}{-1+5} = \frac{z-2}{-4-2} \implies \frac{x-3}{-2} = \frac{y+5}{4} = \frac{z-2}{-6}$$

або $\frac{x-3}{2} = \frac{y+5}{-4} = \frac{z-2}{6}$ – це і є канонічні рівняння шуканої прямої.

Для знаходження параметричних рівнянь цієї прямої скористаємося формулою (3.34) і одержимо:

$$x = 3 + t$$
, $y = -5 - 2t$, $z = 2 + 3t$, $t \in (-\infty, \infty)$.

5. Дві площини, що перетинаються

$$A_1x + B_1y + C_1z + D_1 = 0,
 A_2x + B_2y + C_2z + D_2 = 0,
 \vec{n}_1 = (A_1, B_1, C_1),
 \vec{n}_2 = (A_2, B_2, C_2),
 (3.37)$$

де $\vec{n}_1 \not \mid \vec{n}_2$, однозначно задають пряму. Рівняння (3.37) називаються **загальними рівняннями прямої в просторі**.

Напрямний вектор \vec{s} прямої, заданої рівняннями (3.37), визначається за формулою

$$\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}, \tag{3.38}$$

а для знаходження координат точки $M_0(x_0, y_0, z_0)$ одну з її координат, наприклад $x = x_0$, беруть довільною, а дві інші визначають із системи

$$B_1y + C_1z = -D_1 - A_1x_0, B_2y + C_2z = -D_2 - A_2x_0.$$

Тоді рівняння даної прямої можна записати у канонічному вигляді (3.35).

Приклад 3.17. Пряма задана загальними рівняннями

$$\begin{cases} x - y + 2z + 4 = 0, \\ 3x + y - 5z - 8 = 0. \end{cases}$$

Записати її канонічні рівняння.

Розв'язок.

Знаходимо напрямний вектор прямої

$$\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 3 & 1 & -5 \end{vmatrix} = (3, 11, 4).$$

Поклавши у початковій системі z=0 і додаючи дані рівняння, отримуемо $x=1,\ y=5$. Точка $M_0(1,5,0)$ лежить на даній прямій. Її канонічні рівняння мають вигляд

$$\frac{x-1}{3} = \frac{y-5}{11} = \frac{z}{4}.$$

Завдання для самостійної роботи

- 1. Скласти канонічні рівняння прямої, що проходить через точку $M_0(2,0,-3)$:
 - а) паралельно вектору $\vec{s} = (2, -3, 5);$

б) паралельно прямій
$$\begin{cases} 2x - y + 3z - 11 = 0, \\ 5x + 4y - z + 8 = 0. \end{cases}$$

$$Bi\partial no 6i\partial b$$
: a) $\frac{x-2}{2} = \frac{y}{-3} = \frac{z+3}{5}$, 6) $\frac{x-2}{11} = \frac{y}{-17} = \frac{z+3}{-13}$.

2. Скласти рівняння прямої, що проходить через початок координат паралельно прямій $x=2t+5,\,y=-3t+1,\,z=-7t-4$.

Bidnosidu:
$$\frac{x}{2} = \frac{y}{-3} = \frac{z}{-7}$$
.

3. Скласти канонічні рівняння прямої, що проходить через точку M(1,-5,3) перпендикулярно до прямих $\frac{x}{2}=\frac{y-2}{3}=\frac{z+1}{-1}$ і x=3t+1, y=-t-5, z=2t+3 .

Bi∂nosi∂υ:
$$\frac{x-1}{5} = \frac{y+5}{-7} = \frac{z-3}{-11}$$
.

3.7. Кут між двома прямими в просторі. Умови паралельності і перпендикулярності прямих

Розглянемо випадки взаємного розташування двох прямих в просторі. Дві прямі в просторі можуть бути мимобіжними або перетинаються, або паралельними, або співпадати. У будь-якому випадку вони утворюють деякий кут (між їх напрямними векторами \vec{s}_1 і \vec{s}_2). Якщо прямі задані канонічними рівняннями:

$$\frac{x - x_1}{m_1} = \frac{y - y_1}{n_1} = \frac{z - z_1}{p_1} \quad i \quad \frac{x - x_2}{m_2} = \frac{y - y_2}{n_2} = \frac{z - z_2}{p_2} \tag{3.39}$$

то величина кута φ між ними визначається за формулою

$$\cos \varphi = \frac{\vec{s}_1 \cdot \vec{s}_2}{|\vec{s}_1||\vec{s}_2|} = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \sqrt{m_2^2 + n_2^2 + p_2^2}}.$$
 (3.40)

Тепер можна записати умову перпендикулярності прямих:

$$\vec{s}_1 \cdot \vec{s}_2 = 0$$
 abo $m_1 m_2 + n_1 n_2 + p_1 p_2 = 0.$ (3.41)

Умова паралельності прямих (3.39) має вигляд $\vec{s}_1 \parallel \vec{s}_2 \not \parallel \overrightarrow{M_1 M_2}$ або

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2},\tag{3.42}$$

а умова їх співпадіння — $\vec{s}_1 \parallel \vec{s}_2 \parallel \overrightarrow{M_1 M_2}$, де точки $M_1(x_1, y_1, z_1)$ і $M_2(x_2, y_2, z_2)$ належать прямим (3.39).

Запишемо **необхідну і достатню умову перетину непаралельних прямих** $(\vec{s_1} \not\parallel \vec{s_2})$, заданих рівняннями (3.39):

$$\overrightarrow{M_1 M_2} \cdot \vec{s_1} \cdot \vec{s_2} = 0 \quad \text{afo} \quad \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0.$$
 (3.43)

Якщо умова (3.43) не виконується, то прямі (3.39) – мимобіжні.

Відстань h від точки $M_1(x_1,y_1,z_1)$ до прямої (3.35), що проходить через точку $M_0(x_0,y_0,z_0)$ у напрямі вектора $\vec{s}=(m,n,p)$, обчислюється за формулою

$$h = \frac{|\vec{s} \times \overline{M_0 M_1}|}{|\vec{s}|}.$$
 (3.44)

Розв'язок.

За формулою (3.38) знаходимо напрямні вектори даних прямих:

$$\vec{s}_1 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 0 \\ 2 & 0 & -1 \end{vmatrix} = (1, 2, 2) \quad ma \quad \vec{s}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -2 & 0 \\ 3 & 0 & -1 \end{vmatrix} = (2, 3, 6).$$

Тоді відповідно до (3.40) отримуємо

$$\cos \varphi = \frac{1 \cdot 2 + 2 \cdot 3 + 2 \cdot 6}{\sqrt{1^2 + 2^2 + 2^2} \sqrt{2^2 + 3^2 + 6^2}} = \frac{20}{21}.$$

Приклад 3.19. При якому значенні р прямі

$$\left. \begin{array}{l} x = 2t + 5, \\ y = -t + 2, \\ z = pt - 7 \end{array} \right\} \quad i \quad \begin{array}{l} x + 3y + z + 2 = 0, \\ x - y - 3z - 2 = 0 \end{array} \right\}$$

паралельні?

Розв'язок.

За формулами (3.34) і (3.38) знаходимо напрямні вектори даних прямих:

$$\vec{s}_1 = (2, -1, p)$$
 i $\vec{s}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 3 & 1 \\ 1 & -1 & -3 \end{vmatrix} = (-8, 4, -4).$

З умови (3.42) маемо

$$\frac{2}{-8} = \frac{-1}{4} = \frac{p}{-4}; \quad \frac{p}{-4} = -\frac{1}{4},$$

звідки p=1.

Приклад 3.20. Перевірити чи перетинаються прямі $\frac{x+2}{-1} = \frac{y-3}{2} = \frac{z-4}{3}$ і $\frac{x}{3} = \frac{y+4}{2} = \frac{z-3}{5}$.

Розв'язок.

За умовою задачі перша пряма проходить через точку $M_1(-2,3,4)$ у напрямі вектора $\vec{s_1}=(-1,2,3)$, а друга — через точку $M_2(0,-4,3)$ паралельно до вектора $\vec{s_2}=(3,2,5)$.

Для того щоб встановити чи перетинаються дані прямі необхідно перевірити умову (3.43): $\overrightarrow{M_1M_2} \cdot \vec{s_1} \cdot \vec{s_2} = 0$. Знаходимо мішаний добуток

$$\overrightarrow{M_1 M_2} \cdot \vec{s_1} \cdot \vec{s_2} = \begin{vmatrix} 2 & -7 & -1 \\ -1 & 2 & 3 \\ 3 & 2 & 5 \end{vmatrix} = -82 \neq 0.$$

Оскільки умова (3.43) не виконується, то дані прямі не перетинаються, а, отже, є мимобіжними.

Приклад 3.21. Обчислити відстань між прямими $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z}{2}$ і $\frac{x-7}{3} = \frac{y-1}{4} = \frac{z-3}{2}$.

Розв'язок.

Як випливає з умови задачі перша пряма проходить через точку $M_0(2,-1,0)$ у напрямі вектора $\vec{s}=(3,4,2)$, а друга – через точку $M_1(7,1,3)$. Знаходимо вектор $\overline{M_0M_1}=(5,2,3)$, потім векторний добуток

$$\vec{s} \times \overrightarrow{M_0 M_1} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 4 & 2 \\ 5 & 2 & 3 \end{vmatrix} = (8, 1, -14)$$

та його модуль $|\vec{s} \times \overrightarrow{M_0 M_1}| = \sqrt{8^2 + 1^2 + (-14)^2} = \sqrt{261} = 3\sqrt{29}$.

Відстань від точки M_1 до першої прямої, яка і є відстанню між даними прямими знаходимо за формулою (3.44):

$$h = \frac{|\vec{s} \times \overrightarrow{M_0 M_1}|}{|\vec{s}|} = \frac{3\sqrt{29}}{\sqrt{3^2 + 4^2 + 2^2}} = \frac{3\sqrt{29}}{\sqrt{29}} = 3$$
 лін. од.

Завдання для самостійної роботи

1. Обчислити кут між прямими $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ і 3x + y - 5z = 0, 2x + 3y - 8z + 1 = 0.

Bi∂noei∂υ: $\varphi = \pi/2$.

2. Довести, що пряма $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-1}{-6}$ перпендикулярна до прямої $2x+y-4z+2=0,\ 4x-y-5z+4=0.$ }.

Відповідь: так.

3. Перевірити, чи лежать на одній прямій точки $A(0,0,2),\ B(4,2,5)$ і C(12,6,11).

 $Bi\partial no ei\partial b$: лежать.

3.8. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини

Кутом між прямою і площиною називається кут між прямою l і її ортогональною проекцією на площину l' (рис. 3.11).

Рис. 3.11.

Величина кута φ між прямою $\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p_0}$ і площиною Ax+By+Cz+D=0 обчислюється за формулою

$$|\cos(\vec{n},\hat{\vec{s}})| = \sin\varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2}\sqrt{m^2 + n^2 + p^2}}.$$
 (3.45)