编码器

- 编码器
 - > 编码器对每一个<mark>有效的</mark>输入信号,都确定地产生的一组二 进制代码与之对应;
 - > 编码器是一种多输入多输出组合逻辑电路;
 - \triangleright 通常m个输入信号,需要n位二进制编码,m应不大于 2^n 。

■ 类型

- > 二进制编码器
- > 优先编码器

二进制编码器

- ▶ 用*n*位二进制代码对2ⁿ个信号进行编码。8线—3线编码器
- ✓ 功能表(简化)

		输		入				输		出	
I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	Y_2	Y_1	Y_0	
1	0	0	0	0	0	0	0	0	0	0	
0	1	O	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	O	1	0	0	0	0	0	1	1	
0	0	O	0	1	0	0	0	1	0	0	
0	0	O	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

✓ 表达式

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_0 = I_1 + I_3 + I_5 + I_7$$

✓ 电路图

优先编码器

- > 允许同时有两个以上的有效输入信号;
- ▶输入信号规定了优先顺序,当多个输入信号同时 出现时,只对优先级最高的信号进行编码。

8线—3线 优先编码器 74148

✓ 功能表

			输		λ			- 35					
$\overline{\mathcal{S}}$	\overline{I}_0	\overline{I}_1	\overline{I}_2	\bar{I}_3	\overline{I}_4	\overline{I}_5	\overline{I}_6	Ī ₇	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0	$\overline{Y}_{\mathtt{EX}}$	$ar{Y}_{\!\scriptscriptstyle S}$
1	×	X	×	×	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	\times	\times	\times	\times	\times	X	X	0	0	0	0	0	1
0	\times	\times	\times	\times	\times	×	0	1	0	0	1	0	1
0	\times	\times	×	\times	\times	0	1	1	0	1	0	0	1
0	\times	\times	\times	\times	0	1	1	1	0	1	1	0	1
0	\times	X	\times	0	1	1	1	1	1	0	0	0	1
0	\times	×	0	1	1	1	1	1	1	0	1	0	1
0	\times	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

8线—3线 优先编码器 74148

✓表达式

$$\overline{Y}_{2} = \overline{(I_{4} + I_{5} + I_{6} + I_{7}) \cdot S}$$

$$\overline{Y}_{1} = \overline{(I_{2}\overline{I}_{4}\overline{I}_{5} + I_{3}\overline{I}_{4}\overline{I}_{5} + I_{6} + I_{7}) \cdot S}$$

$$\overline{Y}_{0} = \overline{(I_{1}\overline{I}_{2}\overline{I}_{4}\overline{I}_{6} + I_{3}\overline{I}_{4}\overline{I}_{6} + I_{5}\overline{I}_{6} + I_{7}) \cdot S}$$

- ✓片选输入端
- ✓使能输出端

$$\overline{Y}_{S} = \overline{I}_{0} \cdot \overline{I}_{1} \cdots \overline{I}_{7} \cdot S$$

✓扩展输出端

$$\overline{Y}_{\text{EX}} = \overline{\overline{Y}_{\text{S}} \cdot S} = \overline{(I_0 + I_1 + \cdots I_7) \cdot S}$$

课堂练习

- 1. 电路如图,问:
- ① 当ABCD=0101时,数码管显示什么数字?
- ② 如果ABCD是BCD-5421码的5时,数码管显示什么?
- 2. 请设计ABCDEF的字形译码显示器。(共阴极)

- 3. 用74LS148构成16个输入的优化编码器。
- 4. 某医院有1、2、3、4号病室4间,每室设有呼叫按钮,同时在护士值班室对应地 装有1#、2#、3#、4# 四个指示灯。

现要求: 当1号病室按钮按下时,无论其他病室按钮是否按下,只有1#灯亮。当1号病室按钮没有按下而2号病室按钮按下时,无论3、4号病室按钮是否按下,只有2#灯亮。当1、2号病室按钮都没有按下而3号病室按钮按下时,无论4号病室的按钮是否按下,只有3#灯亮。只有在1、2、3号病室的按钮都没有按下而4号病室按钮按下时,4#灯才亮。试用优先编码器74LS148和门电路(或74LS138)设计满足上述要求的逻辑电路,给出控制四个指示灯状态的高、低电平信号。

4位数值比较器74LS85

$$\begin{split} Y_{(A < B)} &= \overline{A_3} B_3 + (\overline{A_3} \oplus \overline{B_3}) \overline{A_2} B_2 \\ &+ (\overline{A_3} \oplus \overline{B_3}) (\overline{A_2} \oplus \overline{B_2}) \overline{A_1} B_1 \\ &+ (\overline{A_3} \oplus \overline{B_3}) (\overline{A_2} \oplus \overline{B_2}) (\overline{A_1} \oplus \overline{B_1}) \overline{A_0} B_0 \\ &+ (\overline{A_3} \oplus \overline{B_3}) (\overline{A_2} \oplus \overline{B_2}) (\overline{A_1} \oplus \overline{B_1}) (\overline{A_0} \oplus \overline{B_0}) I_{(A < B)} \end{split}$$

$$Y_{(A=B)} = (\overline{A_3 \oplus B_3})(\overline{A_2 \oplus B_2})(\overline{A_1 \oplus B_1})(\overline{A_0 \oplus B_0})I_{(A=B)}$$

$$\begin{split} Y_{\scriptscriptstyle (A>B)} &= A_{\scriptscriptstyle 3} \overline{B}_{\scriptscriptstyle 3} + \overline{A_{\scriptscriptstyle 3} \oplus B_{\scriptscriptstyle 3}} \cdot A_{\scriptscriptstyle 2} \overline{B}_{\scriptscriptstyle 2} \\ &+ \overline{A_{\scriptscriptstyle 3} \oplus B_{\scriptscriptstyle 3}} \cdot \overline{A_{\scriptscriptstyle 2} \oplus B_{\scriptscriptstyle 2}} \cdot A_{\scriptscriptstyle 1} \overline{B}_{\scriptscriptstyle 1} \\ &+ \overline{A_{\scriptscriptstyle 3} \oplus B_{\scriptscriptstyle 3}} \cdot \overline{A_{\scriptscriptstyle 2} \oplus B_{\scriptscriptstyle 2}} \cdot \overline{A_{\scriptscriptstyle 1} \oplus B_{\scriptscriptstyle 1}} \cdot A_{\scriptscriptstyle 0} \overline{B}_{\scriptscriptstyle 0} \\ &+ \overline{A_{\scriptscriptstyle 3} \oplus B_{\scriptscriptstyle 3}} \cdot \overline{A_{\scriptscriptstyle 2} \oplus B_{\scriptscriptstyle 2}} \cdot \overline{A_{\scriptscriptstyle 1} \oplus B_{\scriptscriptstyle 1}} \cdot \overline{A_{\scriptscriptstyle 0} \oplus B_{\scriptscriptstyle 0}} \cdot I_{\scriptscriptstyle A>B} \end{split}$$

