Índice

0.1.	Diseño Propuesto	4
	0.1.1. Análisis de realimentación negativa	4
	0.1.2. Bloques del Regulador	4
	0.1.3. Elemento de Referencia	4
	0.1.4. Amplificador de Error y Pre-regulador	4
	0.1.5. Circuito de Detección	4
	0.1.6. Transistor de Paso	4
0.2.	Protección por Corto-circuito	ļ
	0.2.1. Protección lineal	ļ
	0.2.2. Protección foldback	(
0.3.	Análisis de Componentes	,
	0.3.1. Amplificador Operacional	,
	0.3.2. Transistores de Paso	8
	0.3.3. Componentes de Protección	8
	0.3.4. Diodo de Referencia	8
	0.3.5. Fuentes de Alimentación	8
0.4.	Análisis de Potencia	Ç
	0.4.1. Amplificador Operacional	Ç
	0.4.2. Transistores	Ç
	0.4.3. Diodos y Resistencias	Ç
0.5.	Simulaciones	Ç
	0.5.1. Análisis Transitorio en Regulación	Ç
	0.5.2. Respuesta en Frecuencia	Ç
	0.5.3. Curva de Foldback	Ç
	0.5.4. Potencias	Ç
0.6	Conglusiones	(

0.1. Diseño Propuesto

En la siguiente instancia se realiza una fuente de tensión regulada, la cual se ajusta a las especificaciones de:

$$0V \le V_o \le 9V \qquad \land \qquad I_{o-Max} = 2.5A \tag{1}$$

Se optó por un diseño que muestre tensión y sume corriente, siendo el diseño elegido para la fuente el presentado a continuación.

Figura 1: Circuito regulador de tensión propuesto.

Dicho circuito puede ser separado en 5 bloques fundamentales:

- Amplificador error
- Transistor de paso
- Elemento de referencia
- Circuito de detección
- Circuito de protección

0.1.1. Análisis de realimentación negativa

La teoría de la realimentación negativa plantea que dado un sistema a lazo cerrado ideal, con un número impar de inversiones de fase, la ganancia de este puede aproximarse como la inversa del factor de realimentación si la ganancia de lazo en módulo es mucho mayor a la unidad, es decir

$$P.E. = \frac{A}{1+f \cdot A} = \frac{1}{f} \cdot \frac{|T|}{1+|T|}$$
 (2)

donde A es la respuesta a lazo abierto, f el factor de realimentación y T es la ganancia de lazo. Se puede observar que bajo las condiciones descritas anteriormente, se tiene entonces que

$$P.E. \approx \frac{1}{f}$$
 (3)

Figura 2: Lazo de realimentación negativa.

En el circuito realizado puede observarse un lazo de realimentación negativa el cual posee una inversión de fase producida por el amplificador operacional detallado en la Figura (2). También es de interés observar los siguientes puntos:

- Por tierra virtual, el opamp trabaja para mantener la tensión nula en su terminal negativo.
- El diodo zener consume la corriente necesaria para mantener la caída de tensión sobre este fija.
- El lazo de realimentación trata de fijar una tensión a la salida de la fuente regulada.

Teniendo en cuenta dichos aspectos, es de notar que la fuente realiza un muestreo de tensión a la salida mediante la resistencia R_1 , la cual inyecta una corriente proporcional a la dicha, realizándose una suma de corrientes en el nodo del terminal negativo del amplificador operacional, siendo la referencia la corriente fija proporcionada por la resistencia R_2 .

En resumidas cuentas, el parámetro estabilizado del sistema es

$$P.E. = \frac{V_o}{I_N} = -\frac{V_o \cdot R_2}{|V_z|} = \frac{1}{f} \cdot \frac{|T|}{1 + |T|}$$
(4)

Luego, se puede demostrar que la ganancia f se puede aproximar como la razón entre el parámetro que se suma en el lazo y el parámetro que se muestrea, cuando la tensión en el nodo del terminal negativo del opamp es cero, obteniendo así

$$f \approx -\frac{1}{R_1} \tag{5}$$

Si se considera que la ganancia de lazo en módulo es mucho mayor que la unidad dado que se utiliza un opamp como amplificador, se obtiene finalmente que

$$V_o = |V_z| \cdot \frac{R_2}{R_1} \tag{6}$$

0.1.2. Bloques del Regulador

0.1.3. Elemento de Referencia

El elemento de referencia (o también llamado entrada o generador en un circuito de realimentación negativa) proporciona la tensión de entrada al sistema, la cual comparte nodo con el amplificador error y el circuito de detección, como se mencionó anteriormente.

En cuanto al funcionamiento, el zener está polarizado por V^- y R_Z . Esta etapa del sistema s prácticamente independiente del resto del circuito, y además debe ser altamente estable, es por ello que se utiliza $R_Z > Zr_Z$ para evitar variaciones de V_Z , es decir, de la tensión de referencia, con respecto a V^- .

Figura 3: Circuito de transistor de paso.

0.1.4. Amplificador de Error y Pre-regulador

0.1.5. Circuito de Detección

0.1.6. Transistor de Paso

El transistor de paso se encarga de llevar a cabo las correcciones detectadas por el circuito de deteccion y amplificadas por el amplificador de error, así proveyendo de la corriente necesaria para mantener la diferencia de potencial fija a la salida. Este bloque se puede implementar con un par Darlington integrado, el cual tiene una gran ganancia de corriente, pero en este caso se implementa con un Darlington discreto, el cual debe soportar una corriente y potencia elevada, lo cual se profundiza más adelante en el informe. Por estas razones, se optó por utilizar dos transistores en paralelo para el segundo transistor del par, con la idea de dividir la carga de la siguiente manera:

Figura 4: Circuito de transistor de paso.

siendo Q_2 y Q_3 transistores de potencia. Por otro lado, la función de R_5 es obtener una corriente de colector de Q_1 razonable.

0.2. Protección por Corto-circuito

Implementar una protección de cortocircuito es una sección fundamental en el diseño de una fuente de tensión debido que uno desconoce con que cargas va a ser utilizado el circuito, en caso de que el usuario en contra-indicación de las especificaciones del equipo utilize una carga menor a la mínima, el circuito no sufra un daño irreversible. Para la protección de cortocircuito se evaluaron 2 alternativas:

0.2.1. Protección lineal

La implementación de una protección lineal resulta ser la mas sencilla debido a la facilidad de cálculo y que utiliza pocos componentes, como se ve a continuación:

Figura 5: Circuito de Protección lineal.

El cálculo para la resistencia $R_a = \frac{V_{be}}{I_{o-Max}}$. Esta protección limita la corriente de salida del regulador haciendola constante. Esto es asi debido a que el trasistor de proteccion sensa la tensión sobre la resistencia R_a y al superar cierto valor $V_a = R_a \cdot I_{o-Max}$ el transistor pasa a modo activo directo, quitandole corriente de la base al transistor de paso. Si bien la protección lineal es de sencilla implementación cuenta con la siguiente característica:

Figura 6: Característica de la Protección lineal.

Donde I_{max} corresponde a la máxima corriente que uno define para el circuito e I_{damage} es la corriente bajo la cual el circuito sufrirá un daño irreversible.

Se puede notar que en el peor caso $(V_o = 0)$ sería máxima tanto la corriente de salída como la caida de potencial sobre el transistor de paso, haciendo que por consecuente sea máxima la disipación de potencia sobre este, lo cual es un problema.

0.2.2. Protección foldback

La protección de Foldback es una variación de la lineal, la cual cuenta con 2 resistencias adicionales conectadas de la siguiente manera:

Figura 7: Circuito de Protección Foldback.

Si se desea resolver para I_{o-Max} bastará con recorrer la malla:

$$-I_{o-Max} \cdot R_a + V_{be} - (V_b - V_a) = 0 (7)$$

$$V_b = V_a \cdot \frac{R_c}{R_c + R_b} \tag{8}$$

$$-I_{o-Max} \cdot R_a + V_{be} + V_a \cdot (1 - \frac{R_c}{R_c + R_b}) = 0$$
(9)

$$-I_{o-Max} \cdot R_a + V_{be} + (I_{o-Max} \cdot R_a + V_o) \cdot \frac{R_b}{R_c + R_b} = 0$$
 (10)

lo cual despejando para I_{o-Max} queda:

$$I_{o-Max} = \frac{V_o \cdot R_b + V_{be} \cdot (R_b + R_c)}{R_a \cdot R_c} \tag{11}$$

De aquí se puede ver que la corriente caerá en función de la tensión de salida hasta establecerse en una corriente fija para la carga nula denominada I_{sc} la tiene un valor de.

$$I_{sc} = V_{be} \cdot \frac{R_b + R_c}{R_a \cdot R_c} \tag{12}$$

Luego graficando la curva se obtiene:

Figura 8: Característica de la Protección foldback.

Se puede apreciar también la razón de su nombre dado que la curva de la corriente se "dobla" sobre si misma. Si bien armar esta fuente resulta en una mayor cantidad de componentes, el hecho de que reduzca la corriente de paso al tener una carga nula, y que por ello reduzca la potencia consumida es un factor no menor. por esta razón esta fue la protección elegida a utilizar.

Solo a modo ilustrativo se grafica ambas curvas de las protecciones.

Figura 9: Característica de la Protección foldback y lineal.

0.3. Análisis de Componentes

0.3.1. Amplificador Operacional

En la elección del amplificador operacional, se tuvieron en cuenta diversos componentes, como se ve a continuación en el siguiente cuadro comparativo:

Amplificador Operacional	GBP [Mhz]	$\mathbf{SR}[rac{\mathbf{V}}{\mu\mathbf{s}}]$	$\mathbf{Z_{in}}[\Omega]$	$\mathbf{Z_{out}}[\Omega]$	$I_{ m bias}[A]$	$I_{off}[A]$	$V_{\mathrm{off}}[\mathrm{mV}]$	THD
TL082	3	13	1T	-	30p	5p	3	0.003%
LM324	1	0.3	-	-	45n	5n	2	-
LM833	10	5	-	37	300n	10n	0.3	0.002%
LF356	2.5	12	1T	-	20p	50p	3	-
OP284	4.25	4	-	210	60n	2n	125m	$\leq 0.005 \%$
LM741	1.5	0.5	2M	75	80n	20n	2	-
NE5534	10	13	100k	0.3	500n	20n	0.5	-

Tabla 1: Comparación de operacionales.

También es notable que de todos los integrados el **OP284** es rail to rail, lo cual es de gran utilidad, si se desea obtener un valor de V_1 inferior, luego teniendo en cuenta el GBP, las corrientes de bias, la tension de offset, se optó por utilizar el OP284.

0.3.2. Transistores de Paso

0.3.3. Componentes de Protección

Para la elección de estos componentes, se tuvo en cuenta la ecuación (11) para la cual dado que se cuenta con dos grados de libertad se fijó R_a a un valor fijo, así la potencia disipada en corto-circuito no es de un valor muy elevado, luego se fijó R_c lo cual definió inequivocamente R_b , también para el cálculo de estos valores se tuvo en cuenta que la máxima corriente (2.5A) sería suministrada únicamente cuando se regule a la tensión máxima, y la pendiente de la curva de foldback fue seleccionada para que cuando baje la tensión de regulación aun tenga una corriente de salida máxima apreciable, teniendo en cuenta esto, quedan los valores

$$R_a = 0.56\Omega$$
 $R_b = 680\Omega$ $R_c = 10k\Omega$ $I_{o-Max} = 2.5A$ $I_{sc} = 1.34A$ (13)

Donde el valor de I_{sc} queda fijo por la ecuación (12).

0.3.4. Diodo de Referencia

El diodo zener elegido fue el BZX84B6V2L debido a la estabilidad que cuenta para la V_z y su reducida corriente de zener.

Es primordial que el diodo se encuentre bien polarizado para proveer una referencia estable, para ello se fijó una corriente de zener de $I_z = 5.5mA$, sabiendo que $V_z = 6.2V$ y utilizando la ecuación (??) se llega a un valor $R_Z = 120\Omega^1$

0.3.5. Fuentes de Alimentación

En la elección de la fuente de alimentación se buscó el $V1_{min}$ tal que el sistema regule, para esto simplemente se pidió que el transistor de paso no se encuentre saturado en regulación, en otras palabras:

$$V1_{min} = Vce_{sat} + Vo_{reg} = 1.4V + 9V = 10.4V$$
(14)

Luego, dado que este es el mínimo absoluto, se dejará cierto margen de error, para la tensión de saturación del transistor, al igual que para variaciones en la tensión de linea, las cuales puedan saturar alguno de los transistores, por lo cual se eligió un valor de V1 = 14V.

Finalmente para V_2 se fijó un valor que sea levemente mayor a la V_z del diodo elegido, tal que se encuentre polarizado correctamente.

 $^{^{1}}$ El valor de V_{2} será justificado en la siguiente sección

0.4. Análisis de Potencia

0.4.1. Amplificador Operacional

0.4.2. Transistores

- Transistor.pdf - Transistor.pdf

Figura 10: Circuito térmico para el cálculo de disipador del transistor.

$$\frac{T_j - T_a}{R_{\theta jc} + R_{\theta cs} + R_{\theta sa}} = P \tag{15}$$

Asumiendo una temperatura ambiente de $40^{\circ}C$; una temperatura máxima de juntura en funcionamiento de $140^{\circ}C$, $20^{\circ}C$ menor a la especificada por el fabricante; la $R_{\theta jc}$ también especificada, de $3.125\frac{^{\circ}C}{W}$; el uso de una grasa siliconada de 0.002 pulgadas de espesor con una resistencia térmica de $204\frac{^{\circ}C.inch}{W}$, y área estándar de un empaquetado de TO-220 de $0.41 \cdot 0.59inch^2$, obteniendo una $R_{\theta cs}$ de $1.6866\frac{^{\circ}C}{W}$; y finalmente una potencia disipada de 9.6W, levemente mayor a la máxima disipada; se obtiene

$$R_{\theta sa} = 4.57 \frac{^{\circ}C}{W} \tag{16}$$

0.4.3. Diodos y Resistencias

0.5. Simulaciones

- 0.5.1. Análisis Transitorio en Regulación
- 0.5.2. Respuesta en Frecuencia
- 0.5.3. Curva de Foldback
- 0.5.4. Potencias

0.6. Conclusiones

En la siguiente sección, se busca elaborar una fuente regulada de tensión que cumpla con una salida que varíe entre $0\ V\ y\ 9\ V$, con una corriente de salida máxima de $2.5\ A$. Dado que la tensión mínima debe ser nula, se implementó un regulador serie que utiliza un lazo de realimentación negativa que muestrea tensión y suma corriente, siendo así el circuito resultante el presentado a continuación.

Figura 11: Circuito regulador de tensión.

En la Figura (11) se puede observar en distintos colores las diferentes etapas del sistema, siendo en azul el amplificador error, en verde el transistor de paso, en rojo el elemento de referencia, en violeta el circuito de detección y en naranja el circuito de protección.

$$\frac{V^{-} - V_Z}{R_Z} + I_Z = \frac{V_Z}{R_9} \tag{17}$$

$$V_{B1max} = V_{Oreg} + V_{Ra} + 1.4 V = 9 V + 1.25 V + 1.4 V = 11.65$$
(18)

$$V_{2min} = 11.65 \ V + 1.5 \ V = 13.15 \ V \tag{19}$$

$$R_{Lmin} = \frac{V_{Omax}}{I_{Omax}} = 3.6 \ \Omega \tag{20}$$

$$R_{Lmax} = \infty (21)$$

$$V_{Lmin} = R_Z \cdot \left(\frac{V_Z}{R_2} + I_z\right) + V_Z \tag{22}$$

El pre-regulador cumple la función de brindar corriente (habría que desarrollar un poco más). Para el caso presente, se observa que el amplificador operacional puede llegar hasta temperaturas de 125 ^{o}C son problema. Asumiendo una temperatura ambiente de 40 ^{o}C , la potencia máxima disipada por operacional es de 0.7 W.

- Opamp.pdf - Opamp.pdf

Figura 12: Circuito equivalente de potencias con $R_{\theta a-j}=103~\frac{^{o}C}{W}.$

Es por ello que se analiza la potencia tanto en regulación como fuera de esta. Durante la primer etapa, la tensión de salida V_O es estable pero la corriente es cada vez mayor. A pesar de esto, la potencia disipada por el opamp se mantiene menor a la máxima. Por otro lado, con el circuito fodlback activado, la tensión decae, haciendo que también decaiga la potencia del amplificador, manteniendola por debajo del máximo.

Figura 13: Curvas de potencia consumida.