HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference

DAC 2025

汇报人: 姚昌硕

2025年9月11日

背景知识: MoE (Mixture of Experts)

- 背景知识: MoE
 - Decoder-only结构
 - MoE
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
- Idea

- 主流的LLM结构: Decoder-only
 - Masked Self-Attention
 - FFN (Feed Forward Network)
- 这种结构存在的问题:
 - FFN占整个模型计算量比例较大
- MoE的目的:
 - 让FFN变得"稀疏",减少被激活 参数的数量,从而减少计算量

图1: Decoder-only模型结构

背景知识: MoE (Mixture of Experts)

- 背景知识: MoE
 - Decoder-only结构
 - MoE
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
- Idea

- 专家 (Experts)
 - 多个小型FFN
 - 仅被选中的专家激活计算
- 路由网络 (Router)
 - 一个小型FFN
 - 为每个输入Token动态选择 专家
- MoE层输出:
 - 被激活专家输出的加权求和

图2: MoE Layer结构

相关工作: CPU-GPU混合推理

- 背景知识
- 相关工作
 - GPU按需加载
 - CPU-GPU混合计算
 - 存在的问题
- 研究动机和发现
- 系统设计
- 实验
- Idea

- •研究背景:显存(VRAM)稀缺,无法将所有参数同时驻留在GPU上
- 方法1: 卸载到系统内存(RAM), 按需加载到VRAM
 - 缺点(1): GPU需要等待PCIe传输
 - 缺点②: CPU闲置

图3: Execution timeline (按需加载)

相关工作: CPU-GPU混合推理

- 背景知识
- 相关工作
 - GPU按需加载
 - CPU-GPU混合计算
 - 存在的问题
- 研究动机和发现
- 系统设计
- 实验
- Idea

- 方法2: 引入CPU计算
 - 思路:将常用权重存放在VRAM,不常用权重存放在RAM
 - 相关工作: PowerInfer / Fiddler / kTransformers
 - 缓存卸载方法: 基于以往统计信息
 - LFU (Least Frequently Used) / LRU (Least Recently Used)

图4: Execution timeline (CPU-GPU混合)

相关工作: CPU-GPU混合推理

- 背景知识
- 相关工作
 - GPU按需加载
 - CPU-GPU混合计算
 - 存在的问题
- 研究动机和发现
- 系统设计
- 实验
- Idea

- 存在的问题:
 - MoE中LFU / LRU并不能有效预测每个专家的激活
 - CPU-GPU负载不均衡,导致推理效率低

激活频率

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性
- 系统设计
- 实验
- Idea

•特性1: 更高的不稳定性(激活更加随机)

神经元(或专家)的比例

图5: 不同模型中的神经元(或专家)累计激活频率

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性
- 系统设计
- 实验
- Idea

- 发现:
 - ① 具有更高激活分数的专家更有可能在下一次迭代中被重用
 - ② 模型在相邻层之间表现出激活值的高度相似性

图6: 不同专家在下次迭代中被重用的概率

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性

激活分数:

- 系统设计
- 实验
- Idea

• 发现:

• ① 具有更高**激活分数**的专家更有可能在下一次**迭代**中被重用

图7: 激活分数

图8: 自回归生成

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性
- 系统设计
- 实验
- Idea

- 发现:
 - ① 具有更高激活分数的专家更有可能在下一次迭代中被重用

- 个人理解: 一段文本语义/上下文的连续性
 - 语义很少会因为尾部新增一个token而发生突变,
 - 而是随着token逐步生成而发生连续、平稳的变化。

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性
- 系统设计
- 实验
- Idea

- 发现:
 - ② 模型在相邻层之间表现出激活值的高度相似性

- 原因分析: 残差连接的存在
 - 残差连接通常会使得层间的激活值分布更加相似。

图9: Decoder Block结构

研究动机: CPU/GPU计算特性

- 背景知识
- 相关工作
- 研究动机和发现
 - 专家激活规律
 - CPU/GPU计算特性
- 系统设计
- 实验
- Idea

- •特性2: CPU/GPU不同的计算特性
- CPU:
 - 第一个专家计算较慢, 后续效率变高。
 - 随着负载增加,计算时间线性增长。
- GPU:
 - 随着专家数量的增加, 计算时间线性增长。
 - 随着负载增加,计算时间相对稳定。

图10: CPU vs. GPU 运行时间 随专家数量的变化 (固定负载)

图11: CPU vs. GPU 运行时间 随工作负载的变化

系统设计

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
 - 混合调度策略
 - 预取机制
 - VRAM缓存管理
- 实验
- Idea

- ① 混合调度策略
- ② 预取机制
- ③ VRAM缓存管理

图12: HybriMoE系统设计

系统设计: ①混合调度策略

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
 - 混合调度策略
 - 预取机制
 - VRAM缓存管理
- 实验
- Idea

- (1) 混合调度策略: 基于优先级规则的动态调度
 - 创建两个队列:
 - GPU队列: 存放当前已缓存至VRAM的专家,负载降序(高负载优先)
 - CPU队列: 存放未缓存的专家, 负载升序(低负载优先)
 - 优先级规则:
 - GPU计算: 从GPU队列头部取任务(最高负载)。
 - CPU计算:从CPU队列头部取任务(最低负载)。
 - PCIe传输: 从CPU队列尾部取任务 (最高负载) → 传输到GPU缓存

系统设计: ② 预取机制

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
 - 混合调度策略
 - 预取机制
 - VRAM缓存管理
- 实验
- Idea

- ② 预取机制
 - 原理: 利用相邻层激活值的相似性
 - 预测未来的激活:
 - 取层i的Router的输入,作为层i+1的Router的近似估计
 - 将其输入层i+1的Router,得到层i+1的专家激活情况(即可以被预取的专家)
 - 使用模拟计算收益:
 - 将候选专家加入GPU队列,用混合调度算法模拟计算时间

系统设计: ③ VRAM缓存管理

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
 - 混合调度策略
 - 预取机制
 - VRAM缓存管理
- 实验
- Idea

- •③ VRAM缓存管理
 - 原理: 更高激活分数的专家更有可能在下一次迭代中被重用
 - 提出: MRS (Minus Recent Score) 的缓存替换策略
 - 卸载分数最低的专家
 - 分数的更新

保留原始分数最高的K 个专家,其余专家s=0

系统设计: 小结

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
 - 混合调度策略
 - 预取机制
 - VRAM缓存管理
- 实验
- Idea

特性	系统设计	
CPU在处理连续小规模的专家时,效率 会比较高。GPU更适合处理高负载的专 家。	混合调度策略: 尽量将小负载的专家放在CPU上, 大负载的专家放在GPU上执行。	
模型在相邻层之间表现出激活值的高度相似性	预取机制: 使用本层激活值作为后续几层的近似, 估计各专家的预取收益	
具有更高激活分数的专家更有可能在下一次迭代中被重用	VRAM缓存管理: 基于专家历史累积的激活分数来估计未 来被重用的概率,卸载分数低的专家	

实验:实验设置

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
 - 字验设置
 - 端到端性能
 - · 缓存策略有效性分析
- Idea

- 硬件:
 - 1 * NVIDIA RTX A6000 (48GB VRAM)
 - 1 * Intel Xeon Gold 5220R (限制使用10核心来模拟算力限制)
- LLM模型:
 - 少量专家: Mixtral-8x7B (8专家, 2激活)
 - 大量专家: Qwen2-57B-A14B (64专家, 8激活, 1共享) / DeepSeek-V2-Lite (64专家, 6激活, 2共享)
- •对比方法:
 - Ilama.cpp: 通用的CPU-GPU混合推理框架。采用的是静态的层映射策略。
 - AdapMoE: 当前GPU进行MoE推理的SOTA,具备自适应的预取和缓存,但不利用CPU计算。
 - kTransformers: 当前CPU-GPU混合MoE推理的SOTA, 根据专家使用频率决定缓存位置。
- 评估指标:
 - Prefill阶段: TTFT (Time To First Token)
 - Decode阶段: TBT (Time Between Tokens)

实验:端到端性能

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- **实**验
 - 实验设置
 - 端到端性能
 - 缓存策略有效性分析
- Idea

• 在不同输入长度(32,128,512,1024 tokens)和不同GPU缓存容量(25%,50%,75%)下,对Prefill和Decode阶段进行测试。

Fig. 7. Prefill stage performance comparison across different input lengths and cache ratios, highlighting relative speedups against kTransformers.

实验:消融实验

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
 - 实验设置
 - 端到端性能
 - 缓存策略有效性分析
- Idea

- 消融实验配置: Qwen2模型、25%缓存容量
- 结论: 三个方法都对加速有贡献, 并且混合调度的贡献最大

TABLE III
MOE INFERENCE SPEEDUP BREAKDOWN OF PROPOSED TECHNIQUES.

	Technique	Latency(s)	Speedup
Prefill	Baseline	1.47	
	Baseline+Scheduling	1.17	$1.26 \times$
	Baseline+Prefetching	1.39	$1.06 \times$
	All	1.13	1.31×
Decode	Baseline	0.21	
	Baseline+Scheduling	0.14	$1.46 \times$
	Baseline+Prefetching	0.18	$1.15 \times$
	Baseline+Caching	0.15	$1.38 \times$
	All	0.11	1.86×

实验:缓存策略有效性分析

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
 - 实验设置
 - 端到端性能
 - 缓存策略有效性分析
- Idea

- 对比本文提出的MRS缓存策略和传统的LRU策略的缓存命中率
- 结论:
 - 在不同缓存专家百分比下,MRS优于LRU
 - 缓存专家百分比越低(即使用VRAM越少), MRS优势越大

Idea

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
- Idea

• 基于此: 在此之上, 顺势思维

- 针对本文没有讨论的问题进行细化:
 - 为什么预取考虑3层
 - MRS计算得分是否应当考虑计算代价
 - 对PCIE传输时间为恒定值的假设是否可以细化
 - 能否优化当前固定的调度优先级(比如使用强化学习)
 - 能否扩展到多机情形

Idea

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
- Idea

- 与此类似:与此平行,发散思维
- 借鉴本文发现规律的思路:
 - MoE专家的激活模式在全局统计上是高度不稳定的,无规律可循。而作者

从两个维度进行分解:

- 时间维度: 在相邻的推理迭代之间的相关性
- 结构维度: 相邻的网络层之间的相关性

图5: 不同模型中的神经元(或专家)累计激活频率

启发: 找不到规律时,将其分解到更细粒度的维度(如时间、空间、层级等),去观察其"局部"或"相邻"单元之间的关联性和连续性。

Idea

- 背景知识
- 相关工作
- 研究动机和发现
- 系统设计
- 实验
- Idea

• 由此需要: 在此之下, 逆向思维

- 在训练中,专家的激活规律是可以被引导的(比如当前常用的专家负载均衡)
- 能否基于本文的结论,反向指导MoE模型的设计和训练,使得其 专家的激活更加具有规律,提升推理性能

- 比如:
 - 增加时间局部损失(鼓励专家在相邻Token上复用)
 - 增加空间局部损失 (鼓励专家在相邻层上复用)

请各位老师和同学批评指正

汇报人: 姚昌硕

2025年9月11日