Relación de ejercicios del tema 3

Topología II. Doble Grado en Matemáticas e Ingeniería Informática

Curso 2021/2022

Profesor: Rafael López Camino

Actualización: 15/12/2021, hora: 22:48:38

1. Llamamos una triangulación de una superficie compacta a una presentación poligonal del tipo $< A \mid T_1, \ldots, T_n >$, donde T_k está formada exactamente por tres letras. Hallar triangulaciones de \mathbb{S}^2 , \mathbb{T} , \mathbb{K} y \mathbb{P}^2 . Lo mismo de $3\mathbb{P}^2$.

- 2. Estudiar la orientabilidad de $S_1 \sharp S_2$ en términos de S_1 y S_2 .
- 3. Sea S una superficie compacta. Probar que $\chi(S) \geq -2$ si y sólo si tiene una presentación poligonal P/\sim donde P es un octógono.
- 4. ¿Cuáles son las superficies compactas con característica de Euler -4?
- 5. Clasificar las superficies:
 - (a) $a_1 a_2 \dots, a_n a_1^{-1} a_2^{-1} \dots a_n^{-1}$.
 - (b) $a_1 a_2 \dots, a_n a_1^{-1} a_2^{-1} \dots a_{n-1}^{-1} a_n$.
 - (c) $a_1^{-1}a_2\ldots,a_na_1^{-1}a_2^{-1}\ldots a_n^{-1}$.
 - (d) $a_1^{-1}a_2\ldots,a_na_1^{-1}a_2^{-1}\ldots a_{n-1}^{-1}a_n$.
- 6. Hallar todas las superficies compactas S_1 y S_2 tales que $S_1 \sharp S_2$ sea $4\mathbb{P}^2$.
- 7. Hallar todas las superficies compactas S_1 y S_2 tales que $S_1\sharp S_2$ sea $4\mathbb{T}.$
- 8. Hallar todas las superficies compactas S_1 y S_2 tales que $S_1 \sharp S_2$ sea \mathbb{P}^2 .
- 9. Clasificar las superficies $S_1 \equiv abacb^{-1}c^{-1}, \, S_2 \equiv abca^{-1}b^{-1}c^{-1}$ y su suma conexa.
- 10. Clasificar las superficies $S_1 \equiv d^{-1}abadcb^{-1}c^{-1}, \ S_2 \equiv abca^{-1}b^{-1}c$ y su suma conexa.
- 11. Mediante operaciones poligonales, clasificar $S \equiv abacb^{-1}c^{-1}$.
- 12. Hallar las superficies compactas S tales que $\chi(S) \leq 7$ y que $\mathrm{Ab}(\pi_1(S)) = \mathbb{Z}_2 \times \mathbb{Z}^7$.

1

- 13. Un poliedro regular en \mathbb{R}^3 es un subconjunto $P \subset \mathbb{R}^3$ dado por la unión de una cantidad finita de polígonos cerrados regulares (llamados caras de P) tal que:
 - (a) todas las caras tienen el mismo número de lados,
 - (b) a cada vértice llegan el mismo número de aristas,
 - (c) $P \cong \mathbb{S}^2$.

Probar la fórmula de Euler dada por L-A+V=2, donde L es el número de lados, A el de aristas y V el de vértices. Deducir que hay solamente 5 poliedros regulares: tetraedros, octaedros, icosaedros, cubos y dodecaedros.

- 14. Sea $S \equiv ab^{-1}c da^{-1}ebc^{-1}$, donde es una letra a rellenar. Calcularla para que S sea homeomorfa a: $2\mathbb{T}$; $4\mathbb{P}^2$; $Ab(\pi_1(S)) = \mathbb{Z}_2 \times \mathbb{Z}^4$.
- 15. Estudiar si las siguientes superficies compactas son homeomorfas entre sí: $S_1 \equiv abcdad^{-1}cb^{-1}$; $\chi(S_2) \geq 0$ y $\pi_1(S_2)$ no es abeliano; $\pi_1(S_3) = \langle a, b, c : acbcba^{-1} \rangle$.
- 16. Clasificar
 - (a) $S = \langle a, b, c, d, e, f | abc, bde, c^{-1}df, e^{-1}fa \rangle$.
 - (b) $S = \langle a, b, c, d, e \mid abcd, aded, bcde \rangle$.
 - $\text{(c)} \ \ S = < a,b,c,d,e,f \ | \ abcd,b^{-1}c^{-1}d^{-1}ec^{-1}, afdfe >.$
 - (d) $S = \langle a, b, c, d, e, f | abef, cd^{-1}ab^{-1}, c^{-1}e^{-1}fd \rangle$.
- 17. Estudiar para qué valores de n y m, tenemos $n\mathbb{K} \cong n\mathbb{T}\sharp m\mathbb{P}^2$.
- 18. Probar que si a \mathbb{S}^2 le quitados 2n discos disjuntos y pegar n asas disjuntas $C_i \cong \mathbb{S}^1 \times [a, b]$ por cada par de componentes del borde, la superficie es $n\mathbb{T}$.
- 19. Probar que si a \mathbb{S}^2 le quitados n discos disjuntos y pegar n cintas de Möbius \mathbb{M}_i por cada circunferencia del borde, la superficie es $n\mathbb{P}^2$.
- 20. Hallar una superficie compacta S con $\chi(S)=0$ y una presentación poligonal del tipo aWbW'a.
- 21. Probar que toda superficie compacta y conexa es homeomorfa a una de las siguientes: $n\mathbb{T}\sharp\mathbb{S}^2,\ n\mathbb{T}\sharp\mathbb{K}$ o $n\mathbb{T}\sharp\mathbb{P}^2.$