通用串行总线设备分类定

义

对于视

频设备:MPEG-2 TS有

效载荷

修订版1.1 2005年6

月1日,

贡献者

<u>уни</u>	
阿卜杜勒·伊斯梅尔R.	英特尔公司
田边昭洋	佳能公司
阿利森·希克斯	德州仪器(TI)
阿南德Ganesh神	微软公司
安迪·霍奇森	意法半导体
Anshuman Saxena先生	德州仪器(TI)
李贝特朗	微软公司
嫦娥李	凌阳科技有限公司
大卫·瘿瘤	微软公司
埃里克Luttmann	赛普拉斯半导体公司
费尔南多·乌尔维纳	苹果电脑公司
海尔特克纳彭	飞利浦电子
热罗Mudry	罗技公司
小林弘	微软公司
让 - 米歇尔·查尔顿	罗技公司
杰夫·朱	微软公司
肯一郎Ayaki	富士
三夫仁井田	佳能公司
朽木信夫	三洋电机有限公司
奥利维尔Lechenne	罗技公司
保罗·萨克尔	意法半导体
雷米齐默尔曼	罗技公司
真一Hatae	佳能公司
史蒂夫·米勒	意法半导体
Tachio小野	佳能公司
佐藤隆	飞利浦电子
平田洋一	松下电器产业有限公司
· · · · · · · · · · · · · · · · · · ·	

©2001,2002,2003,2004,2005年USB实施者论坛 版权所有。

知识产权免责声明

本规范是"为是"无担保概包括对任何特定目的的适销的担保,健身,或任何其它担保由此产生的任何建议,规范或 范例。

一个许可本授权复制和分发该规范仅供内部使用。任何其他许可,明示或暗示,诉讼或其他方式向任何其他知识 产权的授权或此旨在。

本规格书的作者不承担任何责任,包括法律责任侵权的专利权,与执行本说明书中信息的。本规格书的作者也不保证或表示这样的实现方式(S)将不会侵犯这些权利。

所有产品名称均为商标,注册商标,或者其各自所有者的服务标志。

修订历史版本

	日期	描述
1.0	2003年9月4日	初始发行
1.1	6月1日 sт , 2005年	地址数据包抖动。更新第2章,第3.1.1和3.2节(RR0024)
		在MPEG-2 TS有效负载的步幅数据的基于流的格式(RR0041)地址标识(RR0062)延迟优化已删除" 术语和缩略语 " 部分

MPEG-2 TS有效载荷:用于视频设备的USB设备类定义

目录

1 介绍	1
1.1目的	1
1.2范围	1
1.3相关文档	1
2个视频类的专用信息	2
2.1压缩类	2
2.2流头	2
2.3有效载荷数据	3
2.4应用程序分组定时信息3	3
3有效载荷的专用信息	5
3.1描述符	5
3.1.1 MPEG-2 TS格式描述符	5
3.1.1.1 MPEG-2 TS格式描述符,而不跨越	5
3.1.1.2 MPEG-2 TS格式描述符与APT	6
3.1.1.3 MPEG-2 TS格式描述符使用应用程序特定步幅数据 6	
3.2视频样本	6
4个实例	7
4.1 同步转让	7
4.2 等时传输OUT	8
4.3批量转让	9
4.4批量传输OUT	10

MPEG-2 TS有效载荷:用于视频设备的USB设备类定义

表格清单

对于MPEG-2 TS格式表2-1头定义	2
表2-2应用MPEG-2 TS格式分组定时定义	4
表3-1 MPEG-2 TS格式描述符	五
表3-2 MPEG-2 TS格式描述符不跨越	五
表3-3 MPEG-2 TS格式描述符与APT	6
表3-4 MPEG-2 TS格式描述符使用应用程序特定步幅	6

图一览

图4-1实施例的MPEG-2 TS同步传输,IN端点	7
图4-2实施例的MPEG-2 TS同步传输,OUT端点	8
图4-3实施例的MPEG-2 TS批量传输,IN端点	9
图4-4实施例的MPEG-2 TS批量传输,OUT端点	10

1 介绍

1.1 目的

本文档定义了MPEG-2 TS(传输流)格式的有效载荷为符合器件 对于视频设备USB设备类定义 文件。

1.2 范围

有效载荷格式和相关联的报头信息是由该文献完全指明的。这包括:

- USB视频类流头
- 具体的有效载荷头
- 负载格式

1.3 相关文件

USB规范修订版2.0,2000年4月27日, www.usb.org

对于视频设备USB设备类的定义,www.usb.org

MPEG-2 TS包的定义应符合ISO / IEC 13818系列ISO / IEC 13818-1规定: 信息技术 - 运动图像及其伴音信息的

通用编码:第1部分:系统

ISO / IEC 13818-2: 信息技术 - 运动图像及其伴音信息的通用编码第2部分:视频

ISO / IEC 13818-3: 信息技术 - 运动图像及其伴音信息的通用编码:第3部分:音频

ISO / IEC 13818-9: 信息技术 - 运动图像及其伴音信息的通用编码:第9部分:扩展系统解码器实时接口

错ETS 300 468 , 数字广播系统电视,声音和数据服务 - 规范数字视频广播(DVB)系统的服务信息(SI)

2 视频类特定信息

2.1 压缩类

在ISO / IEC JTC1 / SC29 WG11(也被称为MPEG委员会)制定的MPEG-2标准(ISO / IEC 13818); 该文件描述了分组方案通过USB传输MPEG-2 TS流。

ISO / IEC标准术语贯穿本说明书中使用; 读者应咨询在1.3节所列的原引用,"相关文档", 这些术语的定义。

2.2 流头

本节介绍用于MPEG-2 TS净荷格式将流报头。USB视频类头定义为MPEG-2 TS格式。

对于MPEG-2 TS格式表2-1头定义

HLE		报》	长长度		
BFH [0]	EOH <u>呃</u> \$TI	RES	S SCR PTS	EOF	FID

HLE

大小:1个字节,值:以字节单元号

头长度字段指定报头的长度,以字节为单位。应将这一字段设置为2。

BFH [0]

大小:1个字节,值:位域FID:帧

ID

当的D0位 bmFramingInfo 视频探头的字段和提交控制被设置时,该字段被用于指示特定的编解码段,使得该值将在整个特定的编解码器段保持恒定,则在下一个段的开始切换。否则,此字段将被忽略,并应设置为零。有关详细信息,请参见

4.3.1.1"视频探头,并承诺控制"的 对于视频设备USB设备类定义 规范。

EOF: 帧尾

当的D1的位 bmFramingInfo 视频探头的字段和提交控制被设置时,该字段被用于指示一个特定的编解码器段的端部。否则,此字段将被忽略,并应设置为零。有关详细信息,请参阅第4.3.1.1"视频探头,并承诺控制"的视频设备的通用串行总线设备类定义。

PTS:呈现时间戳 该位应设置为零。 SCR:源时钟参考 该位应设置为零。

RES:保留。 该位应设置为零。

STI:静止图像 该位应设置为零。

错误:错误位

该位置1时,表示在流设备的错误。

EOH: 报头的结束 该位应设置为1。

2.3 有效载荷数据

有效载荷数据块由一个或多个MPEG-2 TS包(TSP的)的。每个TSP可以通过附加的数据相伴,这取决于设备和应用要求。一种这样的用途该附加数据的是进行应用信息包时序(APT)的信息。见

2.4"应用程序数据包的定时信息"为APT的描述。如果没有附加数据,有效载荷数据块长度应是188个字节的整数倍。具有附加数据,有效载荷数据块长度应是188个+ n字节,其中n是从所导出的整数倍 迈 在MPEG-2 TS格式描述符的信息。见第3.1.1节"MPEG-2 TS格式描述符"为一个描述 迈 机制。

同步传输,空的(微)帧允许被如果,由于定时的考虑,有效载荷数据是没有准备好(微)帧来传送。仅由有效 载荷报头的有效载荷传输被禁止。有效载荷总传送长度(有效载荷报头和有效载荷数据,组合的)必须保持在端 点被配置为发送的最大数据包大小的限制范围内。

对于批量传输,传输长度仅受实施限制和期望的延迟特性的限制。

2.4 应用程序分组定时信息

有些解码器实现可以有超过高速USB端点数据包传输过程中引入的数据包抖动应对(±125 μ S),而有些则不能。 也有一些系统可能需要一个无抖动的流,独立于它的解码器能力的。因此,本说明书中定义了包括与当它在高速 (HS)USB端点传送的每个MPEG-2 TS包的应用包定时(APT)信息的方法。APT的信息支持流中除去数据包抖 动的。不支持通过全速(FS)USB端点的APT方法。 USB主机应支持MPEG-2 TS包的双向传输,有或无APT的信息,在该设备的决定。设备不需要支持APT方法。对于OTG场景中,如果一个装置需要APT信息,两个设备都必须支持以互操作的APT法。设备指示是否经由它们的格式描述符使用APT法,如在3.1.1节"MPEG-2 TS格式描述符"所定义。如果一个设备能够具有和不APT信息进行操作的,应当提供在至少两个描述符格式(一个用于APT,和一个用于非APT)。

在APT方法中,每个MPEG-2 TS包,由APT信息的前面,定义如下:

钽 对MPEG-2 TS格式BLE 2-2应用程序分组定时定义

APT [0]

保留[31:25] Microframe_count [24:12] Microframe_offset [11:0]

APT [0]保留:

该字段为7位长,并应被忽略。

Microframe count :

这个字段是13位长,计数125 μ S个循环(USB微帧)。在此字段的值应在到达7999后绕回到零。

Microframe_offset :

此字段是12位长,并计数27MHz的时钟滴答。在此字段中的值应当在每一微帧边界或达到3374.在之后被重置 为零 *Microframe_count* 和 *Microframe_offset* 字段共同指示当相应的分组被从源应用程序到UVC(USB视频类)层传递的时间。

APT的方法假设源和宿UVC层之间微帧相同步。目前应是一个固定的之间的偏移 microframe_count 在水槽值和一个在源并应流的过程中保持恒定。信宿UVC层应直到其相关联的APT的值匹配本地每个MPEG-2 TS分组存储在缓冲器(microframe_count: microframe_offset)值加上一个实现相关的恒定值。当地的初始化(microframe_count: microframe_count: microframe_offset)值和所述常数值是依赖于实现的。这些值将被初始化,以便流的过程中,不会发生该缓冲区溢和下溢。

3 有效载荷特定信息

3.1 叙

3.1.1 MPEG-2 TS格式描述符

在MPEG-2 TS格式描述符定义了一个特定的MPEG-2 TS流的特性。对应于USB IN或OUT端点,并且它属于接口,终端支持一个或多个格式的定义。

MPEG-2 TS格式描述符中有没有伴随帧描述符。一个MPEG-2 TS格式描述符包括一种机制,允许在开始时,端**加入0或更多字节的额外的信息,或两者开始和结束时,每个188字节的TS分组的。这被统称为 步幅。 步幅的数**据的格式是应用程序和设备相关的,但通过一个全局唯一标识符(GUID)被识别。此规范定义一种这样的格式中,对于应用信息包时序(APT)的滑架。对于APT说明,请参见2.4节"应用程序分组定时信息"。MPEG-2 TS格式描述符在表3-1所定义。

表3-1 MPFG-2 TS格式描述符

	扱う-1 IVIFEU-A	- 1010 z	OID (C. 15
抵消	领域	大小值	描述
0	bLength	1	这个描述符数字节大小:23
1	bDescriptorType	1	恒CS_INTERFACE描述符类型
2	bDescriptorSubtype	1	恒VS_FORMAT_MPEG2TS描述
			亚型
3	bFormatIndex	1	数 该格式描述符的指数
4	bDataOffset	1	号偏移至TSP分组内的MPEG-2
			TS传输步幅,以字节为单位。
五	bPacketLength	1	TSP包号码长度,以字节为单位
			(典型地188)。
6	bStrideLength	1	MPEG-2 T\$传输的号码长度
			步幅。
7	guidStrideFormat	16 GU	ID全局唯一标识符
			表示步幅的数据的格式(如果有的话)。设置
			为零,如果没有跨越的数据,或者如果步幅的
			数据由应用程序被忽略。

3.1.1.1 MPEG-2 TS格式描述符不跨越

如果没有与TS包相关联的步幅数据, bDataOffset,bPacketLength,bStrideLength, 和 guidStrideFormat 如表3-2所示应具有的值。

表3-2 MPEG-2 TS格式描述符不跨越

领域	值
bDataOffset	0

bPacketLength	188
bStrideLength	188
quidStrideFormat	0000000-0000-0000-0000-000000000000

3.1.1.2 MPEG-2 TS格式描述符与APT

如果与TS分组相关联的步幅数据是用于的APT信息滑架,

bDataOffset , bPacketLength , bStrideLength , 和 guidStrideFormat 如表3-3所示应具有的值。

表3-3 MPEG-2 TS格式描述符与APT

领域	值
bDataOffset	4
bPacketLength	188
bStrideLength	192
guidStrideFormat	AE73111F-B352-4E3E-8B4E-CE827BAAE8EE

3.1.1.3 MPEG-2 TS格式描述符使用应用程序特定步幅数据

如果与TS分组相关联的步幅数据是应用程序特定的, bDataOffset,bPacketLength, bStrideLength, 和 guidStrideFormat 如表3-4所示应具有的值。

表3-4 MPEG-2 TS格式描述符使用应用程序特定步幅

领域	值			
bDataOffset	偏移到TSP分组的MPEG-2 TS传输跨度内,以字节为单位。			
bPacketLength	TSP分组的长度,以字节为单位(通常为188)。			
bStrideLength	MPEG-2 TS传输步幅长度(通常 bDataOffset + bPacketLength, 假设TS 包数据如下额外的数据)。			
guidStrideFormat	全局唯一标识符表示步幅数据的格式。的价值 guidStrideFormat 该应用程序 设备之间的双方同意。该GUID应使用可公开获得的GUID生成器生成。注意: 如果步幅数据包括,但通过应用程序或设备被忽略,此值应为:00000000-00 00-0000-0000-00000000000			

3.2 视频样本

本规范的范围是基于ISO / IEC 13818系列。视频样品的信息,诸如宽高比,图像位置,音频采样的量化,音频通道数,等等,被描述为在ISO / IEC 13818系列的轮廓。因此,此信息没有被包括在该MPEG-2 TS有效载荷规范。

4 例子

4.1 同步转让

下面的示例示出了从所述装置接收同步传输时有效负载转移,令牌和数据包之间的关系。该示例示出的高速,高带宽的传输,但是这仅是说明性的,MPEG-2 TS有效载荷格式的不是一个要求。实际带宽使用将根据该装置的要求而变化。基地传输速率(一个TSP(188Bytes)/有效载荷)在MPEG-2 TS是12.032 Mbps的。

图4-1实施例的MPEG-2 TS同步传输,IN端点

4.2 等时传输OUT

下面的示例示出了有效载荷传输,令牌和发送同步传输到该设备时的数据包之间的关系。该示例示出的高速,高带宽传输,但是这仅是说明性的,MPEG-2 TS有效载荷格式的不是一个要求。实际带宽使用将根据该装置的要求而变化。

图4-2实施例的MPEG-2 TS同步传输,OUT端点

4.3 批量转让

下面的示例示出了有效载荷传输,令牌和从设备接收批量传输当MPEG-2 TS有效载荷格式的数据包之间的关系。握手包未清楚显示的缘故。

图4-3实施例的MPEG-2 TS批量传输,IN端点

4.4 批量传输OUT

下面的示例示出了有效载荷传输,令牌和发送批量传输到该设备时,MPEG-2 TS有效载荷格式的数据包之间的关系。握手包未清楚显示的缘故。

图4-4实施例的MPEG-2 TS批量传输,OUT端点