Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Tröltzsch

 $\begin{array}{c} {\rm WS}~05/06 \\ {\rm 20.~Februar}~2006 \end{array}$

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	;· ·			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine St u	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1:				•	-	
Korrektur						
	1	2	3	4	5	\sum

1. Aufgabe 8 Punkte

Skizzieren Sie folgende Mengen und entscheiden Sie mit Begründung, ob sie offen, abgeschlossen und/oder kompakt sind. Geben Sie die jeweilige Menge der Randpunkte an.

a)
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 2y^2 \le 4, \ x < 100\},\$$

b)
$$B = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 < 4\}.$$

2. Aufgabe 7 Punkte

Für die Folge $(b_n)_{n\in\mathbb{N}}$ gelte $\lim_{n\to\infty}b_n=3$. Für welche $x\in\mathbb{R}$ konvergiert folgende Potenzreihe?

$$\sum_{n=0}^{\infty} (-1)^n b_n (x-2)^n$$

3. Aufgabe 6 Punkte

Gegeben sei die 2π -periodische Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = |x|, x \in]-\pi,\pi]$. Die Fourierreihe von f lautet: $\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos((2n-1)x)}{(2n-1)^2}$.

- a) Skizzieren Sie f. Für welche $x \in \mathbb{R}$ konvergiert die Fourierreihe gegen f? (Begründen Sie Ihre Antwort!)
- b) Zeige: $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.

4. Aufgabe 10 Punkte

Gegeben sei die Kurve $\vec{\gamma}:[0,2\pi]\to\mathbb{R}^3$ mit $\vec{\gamma}(t)=\begin{pmatrix}2\cos(t)\\3\sin(t)\\0\end{pmatrix}$ und das Vektorfeld $\vec{v}:\mathbb{R}^3\to\mathbb{R}^3,\ \vec{v}(x,y,z)=\begin{pmatrix}x^5y^6+z\\x^6y^5-z\\z^2\end{pmatrix}$. Berechne $\int\limits_{\vec{\gamma}}\vec{v}\cdot\vec{ds}$. Hinweis: Satz von Stokes.

5. Aufgabe 9 Punkte

Berechnen Sie das Kurvenintegral $\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}$ mit

$$\vec{v}(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}, \qquad \vec{\gamma}(t) = \begin{pmatrix} t\cos^2(\pi - t) \\ t^2\sin^3 t \\ \sqrt{t(\pi - t)} \end{pmatrix} \quad \text{mit } 0 \le t \le \pi \ .$$

Hinweis: Untersuchen Sie, ob \vec{v} ein Potentialfeld ist.