

# **PLENARY EXERCISES - TMA4145**

Week 40, Wednesday 04. October 2023

#### **Problem 1**

Let (X, d) be a metric space, and let  $A_1, \ldots A_n$  be subsets of X.

1. Show that

$$\bigcup_{i=1}^n \overline{A_i} = \overline{\bigcup_{i=1}^n A_i}.$$

#### Hint:

- **1.**  $\overline{A}$  is the smallest closed subset which contains A?
- **2.**  $\overline{A}$  contains A and all its limit points.
- 3. What do we know of the subsequences of convergent sequences?

1

#### **Problem 2**

Consider the linear map  $T:C([0,1]) \to \mathbb{R}$  given By

$$Tf=f\left(\frac{1}{2}\right).$$

- **1.** Is  $T:(C([0,1]),d_{\infty})\to (\mathbb{R},|\cdot|)$  continuous?
- **2.** Is  $T:(C([0,1]),d_1)\rightarrow (\mathbb{R},|\cdot|)$  continuous?

#### Hint:

- 1.  $d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$ .
- **2.**  $d_1(f,g) = \int_0^1 |f(x) g(x)| dx$ .
- **3.** *T* is continuous if for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $Tg \in B_{\varepsilon}(Tf)$  whenever  $g \in B_{\delta}(f)$ .

### **Problem 3**

Let (X, d) be a metric space, and let  $\{x_n\}_{n=1}^{\infty}$  be a Cauchy sequence.

**1.** Show that the sequence  $\{x_n\}_{n=1}^{\infty}$  is bounded.

#### Hint:

- **1.** A subset  $A \subset X$  is called bounded if there exists a constant M > 0 such that  $\sup_{x,y \in A} d(x,y) \le M$ .
- **2.** We need to show that  $d(x_n, x_m) \leq M$  for all  $n, m \in \mathbb{N}$  and some M > 0.
- **3.** Start by writing the definition of a Cauchy Sequence.

## Problem 4 - Old exam problem

Consider the metric space  $(\mathbb{R}, d)$  with the metric

$$d(x,y)=\frac{|x-y|}{|x-y|+1}.$$

**1.** Is this a complete metric space?

#### Hint:

- **1.** You do not have to prove that d is a metric on  $\mathbb{R}$
- **2.** What upper bounds do we have on *d*?
- **3.** We are interested in small values of  $\varepsilon$  for convergence of limits.