

A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis

ongyu Sun 1,2 $\,$ Qiuhong Ke 2 $\,$ Yongcai Wang 1 $\,$ Wang Chen 1 $\,$ Kang Yang 1 $\,$ Deying Li 1 $\,$ Jianfei Cai 2

¹Department of Computer Scicence, Renmin University of China, China Department of Data Science & Al, Monash University, Australia

Motivation

- **Problem:** Prompt learning on large 3D models often boosts point cloud recognition performance but harms generalization.
- Objective: To enhance downstream 3D tasks without compromising generalization by introducing a regulation framework for prompt learning on large 3D models.

Figure 1. Motivation of our research: to promote the performances on downstream 3D tasks while maintaining good generalization of large 3D models.

Highlights

- A Regulation Framework: A plug-and-play framework with constraints (mutual agreement, text diversity, and model ensemble) to align prompt learning with general knowledge, improving both specific task performance and generalization.
- Three New Benchmarks: Created three benchmarks—base-to-new, cross-dataset, and few-shot—to test 3D domain generalization comprehensively.
- Stunning Results: Consistently increased accuracy across various models and datasets, showing superior generalization and robustness to corrupted data.

Methodology

Our framework proposes three regulation constraints: Mutual Agreement Constraint (MAC), Text Diversity Constraint (TDC), Model Ensemble Constraint (MEC)

Figure 2. The overall architecture of our point regulation constraint framework, Point-PRC.

Prompt Templates to LLMs

Question Answering	Question Answering	Caption Generation	Making Sentences
What does a(n) {class} point cloud look like?	What are the identifying features of a(n) {class} point cloud?	Please describe a(n) {class} point cloud with details	Make a meaningful sentence with the following words: {class}, point cloud

Figure 3. Illustration of diverse questions to LLMs, including GPT-3.5, GPT-4 and PointLLM.

Comparison with Related Work

Methodology

- Prior Approaches: Focus on task-specific improvement on specific tasks for small-size point encoders but lack systematic design for generalization in large 3D models.
- Our Contribution: First framework to integrate regulatory constraints in prompt learning for large 3D models, offering substantial generalization gains over baseline methods in 3DDG.

Evaluation Benchmarks

- Prior Benchmarks: Limited scale and scope, e.g., only \sim 10 classes shared between the source and the target domain in PointDA ans Sim-to-Real.
- Our Contribution: Designed diverse and challenging benchmarks, which contain up to 216 classes, to evaluate the generalization ability of large multi-modal 3D models

New 3DDG Benchmarks

Base-to-New Class Generalization Benchmark

- Feature: Tests adaptability from familiar to unseen classes within the same dataset.
- **Description:** The model is trained on a set of base classes and evaluated on unseen new classes in five point cloud datasets (e.g., S-PB_T50_RS, ShapeNetCoreV2).
- Purpose: Measures the ability to generalize without direct exposure to new classes during training.

Cross-Dataset Generalization Benchmark

- Feature: Assesses transferability across different datasets and includes out-of-distribution (OOD) generalization and robustness to data corruption.
- **Description:** The model learns from a source dataset (e.g., ShapeNetV2) and is tested on entirely different target datasets. It's also evaluated on corrupted data to test robustness.
- Purpose: Evaluates resilience to domain shifts, different 3D object sets, and common noise/corruptions in real-world point cloud data.

Few-Shot Generalization Benchmark

- Feature: Tests model performance with limited labeled examples.
- **Description:** Models are trained with very few samples per class (e.g., 1, 2, 4, 8, or 16 shots) and tested on a full test set.
- Purpose: Demonstrates the capability to generalize in low-data regimes, crucial for applications with limited labeled data.

Experiments

Base-to-new generalization.

(a) Average over 5 datasets			(b) ModelNet40			(c) S-PB_T50_RS					
Method	Base	New	НМ	Method	Base	New	НМ	Method	Base	New	HM
P-CLIP [76]	75.66	23.45	35.80	P-CLIP [76]	93.23	20.22	33.23	P-CLIP [76]	61.25	19.87	30.01 39.20
P-CLIP2 [90]	74.11	37.84	50.10	P-CLIP2 [90]	93.98	45.21	61.05	P-CLIP2 [90]	56.84	29.92	
ULIP [71]	77.32	49.01	59.99	ULIP [71]	92.80	50.07	65.05	ULIP [71]	56.73	25.80	35.47
+ RC (Ours)	82.19	61.93	70.64	+ RC (Ours)	95.03	55.27	69.89	+ RC (Ours)	64.20	49.17	55.69
ULIP-2 [72]	77.91	67.91	72.57	ULIP-2 [72]	91.77	56.47	69.92	ULIP-2 [72]	66.40	66.47	66.43
+ RC (Ours)	83.18	76.10	79.48	+ RC (Ours)	95.30	64.83	77.1 7	+ RC (Ours)	73.67	74.27	73.97
(d	(d) S-OBJ_BG (e) S-OBJ_ONLY (f) ShapeN		napeNe	tCoreV	′2						

				_		
1 ethod	Base	New	НМ		Method	Base
P-CLIP [76] P-CLIP2 [90]	72.82 70.07	23.00 35.08	34.96 46.75		P-CLIP [76] P-CLIP2 [90]	76.23 71.40
JLIP [71] •RC(Ours)	73.20 79.47	47.17 55.20	57.37 65.15		ULIP [71] + RC (Ours)	74.13 79.23
JLIP-2 [72]	77.00 80.10	83.27 88.93	80.01 84.28		ULIP-2 [72] + RC (Ours)	78.60 83.60

	(1) Shaper tereore v2							
I	Method	Base	New	HM				
7	P-CLIP [76]	74.78	33.92	46.61				
4	P-CLIP2 [90]	78.27	34.58	47.97				
9	ULIP [71]	89.73	71.20	79.40				
7	+ RC (Ours)	93.03	84.10	88.34				
2	ULIP-2 [72]	75.80	57.07	65.38				
3	+ RC (Ours)	83.23	71.37	76.85				

Figure 4. Base-to-new generalization comparison for representative large 3D models based on prompt learning.

Cross-dataset generalization.

Method	Source		Ava				
	ShapeNetV2	ModelNet40	S-PB_T50_RS	S-OBJ_BG	S-OBJ_ONLY	Omni3D	Avg.
P-CLIP [76]	67.41(0.09)	33.20(1.86)	15.51(0.58)	18.59(1.40)	22.89(2.32)	0.48(0.17)	22.55(1.54)
P-CLIP2 [90]	68.93(1.43)	54.73(1.48)	39.53(4.22)	34.30 (1.28)	25.63 (1.16)	8.63(2.52)	32.56(2.13)
+ RC (Ours)	69.80 (2.86)	55.37 (1.78)	39.77 (0.45)	34.20(0.54)	24.50(1.26)	10.20 (0.40)	32.81 (0.89)
ULIP [71]	87.33(0.95)	56.17(1.15)	26.83(2.15)	39.43(2.17)	43.53(1.32)	6.37(0.90)	34.47(1.54)
+ RC (Ours)	90.43 (0.86)	58.00 (0.57)	28.43 (0.68)	40.33 (0.71)	46.33 (1.54)	8.20 (0.50)	36.26 (0.80)
ULIP-2 [72]	76.70(1.37)	65.27(0.66)	40.07(0.34)	53.80(1.78)	48.53(1.72)	17.27(0.54)	44.99(1.01)
+RC(Ours)	76.70 (1.59)	72.10 (0.93)	46.77 (2.43)	59.03 (3.02)	56.27 (0.97)	21.80 (0.49)	51.19 (1.57)

Figure 5. Comparison of OOD generalization in cross-dataset benchmark.

Few-shot generalization.

