A lineáris erőtörvény vizsgálata és a rugóállandó meghatározása

Mérés adatai:

A mérést végezte: Kósz Bertalan Álmos P2OPH0

Mérés időpontja: 2019.11.29 Jegyzőkönyv leadása: 2019.12.06

Mérés célja:

A spirálrugók esetében feltételezett lineáris összefüggés ellenőrzése, az x kitérés és a rá ható F terhelés között, illetve a kettő közötti D arányossági tényező, rugóállandó meghatározása.

Mérőeszközök:

- Mérőállvány
- Mérőszalag
- Rugók
- Súlyok
- Stopperóra

A mérés rövid leírása:

A mérés elején a rugó terheletlen hosszát mérjük meg, a felső helyzetjelző segítségével. Miután ez megvan, ráakasztunk egy súlyt és lemérjük a megnyúlás mértékét. Ennek segítségével és a

$$F = D \cdot x$$

képlettel megállapíthatjuk a D rugóállandót. A megnyúlást összesen 6 külömböző súllyal mérjük meg, 50-300g tartományban. A megnyúlás mellett lemérjük a külömböző súlyokkal a kis kitérésű rezgések periódusidejét is, mivel ebből

is megállapíthatjuk a rugó
állandót, illetve igazolhatjuk a lineáris erőtörvényt. Eh
hez a $\,$

$$T = 2\pi \sqrt{\frac{\mu}{D}}$$

képletet fogjuk használni.

$$\eta = \epsilon \cdot D - m_{eff}$$

Ahol $\eta=m$ és $\epsilon=\frac{T^2}{4\pi^2}$. Ebben az alakban írva láthatjuk, hogy az η és ϵ lineáris összefüggését kell igazolnunk. A periódusidőt úgy mérjük, hogy egyszerre 10 periódust mérünk le, hogy ezzel csökkentsük a mérési hibát, továbbá minden súlyhoz tartozó (10) periódusidőt is háromszor mérjük le.

Mérési adatok:

Első rugó

Terhelés nélküli hossz: $x_0 = 43.5cm$

m[g]	x[cm]	$\Delta x[cm]$	$10T_1[s]$	$10T_2[s]$	$10\mathrm{T}_3[s]$	$T_{\acute{a}tl}[s]$	$\epsilon[s^2]$
50	38.3	5.2	4.72	4.72	4.78	0.474	0.00569
100	33	10.5	6.63	6.56	6.59	0.659	0.011
150	27.5	16	8.13	8.06	7.97	0.805	0.0164
200	22.3	21.2	9.41	9.28	9.25	0.931	0.0219
250	17	26.5	10.4	10.5	10.25	1.038	0.0273
300	11.6	31.3	11.31	11.22	11.25	1.126	0.0321

Második rugó

Terhelés nélküli hossz: $x_0 = 43cm$

m[g]	x[cm]	$\Delta x[cm]$	$10T_1[s]$	$10T_2[s]$	$10\mathrm{T}_3[s]$	$T_{\acute{a}tl}[s]$	$\epsilon[s^2]$
50	41.4	1.6	2.41	2.47	2.4	0.242	0.00148
100	39.8	3.2	3.75	3.76	3.74	0.375	0.00356
150	38.2	4.8	4.57	4.56	4.6	0.457	0.00529
200	36.5	6.5	5.15	5.28	5.16	0.519	0.00682
250	34.7	8.3	5.88	5.84	5.9	0.587	0.00872
300	33	10	6.38	6.35	6.38	0.637	0.0103

Kiértékelés és hibaszámítás:

Először az első rugóra vizsgáljuk meg a nyugalmi kitérés és ráhelyezett súlyok összefüggését. A rugóra ható erőt kiszámolhatjuk az F=mg képlettel, ahol m a rugóra akasztott súlyok tömege és $g=9.81\frac{m}{s^2}$ Az így kiszámolt erőt a kitérés függvényében ábrázolom és egyenest illesztek rá, ezzel kiszámolva a D rugóállandót. Táblázat az adatokról:

x[m]	F[N]
0	0
0.052	0.4905
0.105	0.981
0.16	1.4715
0.212	1.962
0.265	2.4525
0.313	2.943

Az adatokat Gnuplottal ábrázoltam:

Az illesztett egyenes egyenlete

$$F = D_1 \cdot x$$

és a fittelés eredménye $D_1=9.328\pm0.06312$ A téglalap módszeres hibaszámításhoz táblázatba foglaljuk a mérési pontok eltérését az illesztett egyeneshez képest.

F[N]	$F_{ill}[N]$	$\Delta F[N]$
0	0	0
0.4905	0.4815	0.009
0.981	0.9758	0.0052
1.4715	1.4888	-0.0173
1.962	1.9738	-0.0118
2.4525	2.4684	-0.0159
2.943	2.916	0.027

A második rugó direkciós ereje a sztatikus mérés alapján:

$$D_1 = 9.32 \pm 0.06 \frac{N}{m}$$

A relatív hiba:

$$\left| \frac{\Delta D_1}{D_1} \right| = \frac{0.06}{9.32} \approx 0.6\%$$

Most elvégezzük ezeket a számolásokat a második rugóval is.

x[m]	F[N]
0	0
0.016	0.4905
0.032	0.981
0.048	1.4715
0.065	1.962
0.083	2.4525
0.1	2.943

Ezek az adatok Gnuplottal ábrázolva:

A fittelt egyenes most is $F=D_2\cdot x$, a fittelés eredménye pedig $D_2=29.821\pm0.1927$ Megint hibát számítok a téglalap módszerrel. Ennek a táblázata:

F[N]	$F_{ill}[N]$	$\Delta F[N]$
0	0	0
0.4905	0.4737	0.0168
0.981	0.9507	0.0303
1.4715	1.4277	0.0438
1.962	1.9348	0.0272
2.4525	2.4718	-0.0193
2.943	2.9789	-0.0359

A második rugó direkciós ereje a sztatikus mérés alapján:

$$D_2 = 29.82 \pm 0.19 \frac{N}{m}$$

A relatív hiba:

$$\left| \frac{\Delta D_2}{D_2} \right| = \frac{0.19}{29.82} \approx 0.6\%$$

A következőkben a dinamikai mérés során megmért ϵ illetve m adatainkat fogjuk ábrázolni illetve arra egyenest illesztve kiszámolni a D rugóállandót. Korábban kiszámoltuk, hogy

$$m = \epsilon \cdot D - m_{eff}$$

ebből az egyenletből tudjuk azt is, hogy ahol az egyenes metszi az m tengelyt, ott megkapjuk a mérés során használt rugó tömegét.

Az adatpárjaink:

m[kg]	$\epsilon[s^2]$
0	0
0.05	0.00569
0.1	0.011
0.15	0.0164
0.2	0.0219
0.25	0.0273
0.3	0.0321

Az adatokra illesztett egyenes:

Az illesztett egyenes egyenlete:

$$m = \epsilon \cdot D - m_{eff}$$

a fittelés eredménye: $D=9.3852\pm0.0887$ és
 $m_{eff}=0.0038$ Tudjuk, hogy a rugó tömegét a

$$m = \frac{m_{eff}}{3}$$

képlettel kapjuk meg. Ezt használva az első rugó tömege:

$$m_1 = \frac{0.0038}{3} \approx 1.266g$$

A téglalap módszerrel való hibabecsléshez táblázatba foglaljuk a mért értékek és illesztett egyenes közötti eltéréseket.

m[kg]	$m_{ill}[kg]$	$\Delta m[kg]$
0.05	0.04953	0.00047
0.1	0.09934	0.00066
0.15	0.1499	0.0001
0.2	0.20158	-0.00158
0.25	0.2522	-0.0022
0.3	0.2973	0.0027

A rugóállandó a dinamikai mérés alapján:

$$D = 9.38 \pm 0.08 \frac{N}{m}$$

A relatív hiba:

$$\left| \frac{\Delta D_1}{D_1} \right| = \frac{0.08}{9.38} \approx 0.08\%$$

A második rugó dinamikai számításaihoz tartozó adatpárok:

m[kg]	$\epsilon[s^2]$
0	0
0.05	0.00148
0.1	0.00356
0.15	0.00529
0.2	0.00682
0.25	0.00872
0.3	0.0103

Az adatunk Gnuplottal ábrázolva és egyenest illesztve rá:

Ennek az egyenesnek az egyenlete:

$$m = \epsilon \cdot D - m_{eff}$$

a fittelés eredménye: $D=28.586\pm0.6033$ és $m_{eff}=0.002$ A rugó tömege ekkor

$$m2 = \frac{0.002}{3} \approx 0.66g$$

A téglalap módszerrel való hibabecsléshez táblázatba foglaljuk a mért értékek és illesztett egyenes közötti eltéréseket.

m[kg]	$m_{ill}[kg]$	$\Delta m[kg]$
0.05	0.04519	0.00481
0.1	0.1044	-0.0044
0.15	0.1539	-0.0039
0.2	0.1976	0.0024
0.25	0.2519	-0.0019
0.3	0.2971	0.0029

A rugóállandó a dinamikai mérés alapján:

$$D = 28.586 \pm 0.6033 \frac{N}{m}$$

A relatív hiba:

$$\left|\frac{\Delta D_1}{D_1}\right| = \frac{0.6}{28.586} \approx 2\%$$

Hibaforrások:

• Sztatikus mérésnél hibás leolvasás

- Emberi reakcióidő
- Túl gyors rezgés, ami miatt neheze nvolt követhető
- Túl nagy kitérés
- Oldalirányú kitérés

Diszkusszió

A méréseink pontosak voltak, hibahatáron belül igazoltuk a lineáris erőtörvényt. A kétfajta mérés eredményi is hibahatáron belül megegyeznek. A sztatikus mérés spontosabb eredményeket hozott, tudtunk volna még növelni a dinamikai méréünk pontosságán, ha több periódust mérünk, de ekkor bezavarhat az adatainkba a csillapodás, esetleg többször elvégezhettük volna a 10 periódus mérését.