F.E. (Semester – I) (Revised in 2007-08) Examination, Nov./Dec. 2015 APPLIED MATHEMATICS – I

Duration: 3 Hours Total Marks: 100

Instructions: 1) Attempt any five questions, at least one from each Module.

2) Assume suitable data, if necessary.

MODULE-I

1. a) Evaluate
$$\int_{0}^{\infty} \frac{e^{-x^3}}{\sqrt{x}} dx \cdot \int_{0}^{\infty} x^4 e^{-x^6} dx$$
.

b) Prove that
$$\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = B(m, n)$$
.

c) Evaluate
$$\int_{5}^{9} \sqrt[4]{(x-5)(9-x)dx}$$
.

- d) Prove that error function is an odd function.
- 2. a) Test the convergence of the following series.

$$i) \sum_{n=2}^{\infty} \frac{1}{(\log n)^n}.$$

ii)
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{2^n}$$
.

iii)
$$\frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots + to \infty$$
.

b) Find the interval of convergence of the following series.

$$\frac{X}{1^2} - \frac{X^2}{3^2} + \frac{X^3}{5^2} - \frac{X^4}{7^2} + \dots$$

MODULE - II

3. a) Use De Moivre's Theorem and solve $x^7 - 1 = 0$.

6

b) If $\cos(\theta + i\phi) = r(\cos\alpha + i\sin\alpha)$, prove that $\phi = \frac{1}{2}\log\frac{\sin(\theta - \alpha)}{\sin(\theta + \alpha)}$.

8

c) If $\frac{(1+i)^{x+iy}}{(1-i)^{x-iy}} = a + ib$ then corresponding the principle values only show that

 $\tan^{-1}(b/a) = \frac{\pi x}{2} + y \log 2.$

6

4. a) Determine the analytic function whose real part is log $\sqrt{\chi^2 + y^2}$.

6

b) Show that the function $u = e^{-2xy} \sin(x^2 - y^2)$ is harmonic. Find the conjugate harmonic function.

6

c) Show that $i^i = \cos \theta + i \sin \theta$; $\theta = \left(2n + \frac{1}{2}\right)\pi e^{-\left(2n + \frac{1}{2}\right)\pi}$.

8

MODULE - III

5. a) If $y = e^{p \sin^{-1} x}$, prove that, $(1 - x^2)y_{n+2} - (2n+1)x y_{n+1} - (n^2 + p^2)y_n = 0$.

7

b) Expand log(1 + cos x) in powers of x. Find the first 5 terms.

6

c) Use Taylor's theorem to expand $\tan^{-1} x$ in powers of $\left(x - \frac{\pi}{4}\right)$.

. .

6. a) Evaluate:

12

i) $\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$

ii) $\lim_{x\to 0} \log_{\sin x} \sin 2x$

iii) $\lim_{x\to 0} (a^x + x)^{\frac{1}{x}}$

 $\lim_{x\to 0} (a + x)^x$

b) If $z(x, y) = \phi(u, v)$ where u = Ix + my, v = Iy - mx then show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \left(I^2 + m^2 \right) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right).$$

8

MODULE-IV

7. a) Form the partial differential equations by eliminating constants

i)
$$2z = (ax + y)^2 + b$$

ii)
$$(x - h)^2 + (y - k)^2 + z^2 = a^2$$
.

b) Form the partial differential equations by eliminating functions $f(x^2 + y^2 + z^2, x + y + z) = 0$.

6

c) Solve $z^2(p^2 + q^2 + 1) = 1$.

8

6

8. a) If $u = \sec^{-1}\left[\frac{\sqrt{x} - 2\sqrt{y}}{y^3\sqrt{x}}\right]$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

b) Find the point on the plane x + 2y + z = 5 that is closest to the point P(0, 3, 4).

6

c) Use the method of Lagrange's Multipliers to find the point on the curve $x y^2 = 54$ nearest to the origin.

0