Cálculo II - **Trabajo Grupal 2**

Integrantes: Grupo 2, ..., André V, ... Carrera: Ing. Informática - FCyT UMSS

El trabajo plantea resolver la ecuación diferencial propuesta en (Martinez, 2024), descrito a continuación. Así también se simula el comportamiento de una partícula para $t \in [0, 2\pi]$ en GeoGebra (Grupo2, 2024), describiendo los vectores tangente, normal, binormal unitarios (correspondientes al Triedro de Frenet), la curvatura y torsión.

Problema 1: EEDD

Resolver la ecuación diferencial:

$$\frac{d^2r}{dt^2} = (-12\cos(3t)\sin(t) - 20\cos(t)\sin(3t), 3\sin(t), -8\cos^2(2t) + 8\sin^2(2t)) \quad t \in [0, 2\pi] \quad (1)$$

Condición inicial r(0) = (0, 0, 3) y $\frac{dr}{dt}(0) = (6, -3, 0)$

Por tanto, se integró una vez a fin de obtener r'(t) para evaluarla cuando t=0 y obtener el valor de las constantes; iterando este paso por segunda vez para obtener r(t). Las ecuaciones 2-8 describen lo explicado. Para el cálculo, se utilizó la calc. TI-Nspire™ CX II CAS, en su función de ecuaciones differenciales.

$$r''(t) = \begin{cases} x''(t) &= -12\cos(3t)\sin(t) - 20\cos(t)\sin(3t) \\ y''(t) &= 3\sin(t) \\ z''(t) &= -8\cos^2(2t) + 8\sin^2(2t) \end{cases} , \quad t \in [0, 2\pi]$$
 (2)

$$r''(t) = \begin{cases} x''(t) &= -12\cos(3t)\sin(t) - 20\cos(t)\sin(3t) \\ y''(t) &= 3\sin(t) \\ z''(t) &= -8\cos^2(2t) + 8\sin^2(2t)) \end{cases}$$
(2)
$$r'(t) = \begin{cases} x'(t) = \int x''(t)dt = 4\cos(4t) + 2\cos(2t) + C_1 \\ y'(t) = \int y''(t)dt = -3\cos(t) + C_2 \\ z'(t) = \int z''(t)dt = -4\sin(2t)\cos(2t) + C_3 \end{cases}$$
(3)
$$r'(0) = \begin{cases} x'(0) = 6 = 4\cos(4(0)) + 2\cos(2(0)) + C_1 \implies C_1 = 0 \\ y'(0) = -3 = -3\cos(0) + C_2 \implies C_2 = 0 \\ z'(0) = 0 = -4\sin(2(0))\cos(2(0)) + C_3 \implies C_3 = 0 \end{cases}$$
(4)
$$r'(t) = (4\cos(4t) + 2\cos(2t), -3\cos(t), -4\sin(2t)\cos(2t), t \in [0, 2\pi]$$
(5)

$$r'(0) = \begin{cases} x'(0) = 6 = & 4\cos(4(0)) + 2\cos(2(0)) + C_1 \implies C_1 = 0\\ y'(0) = -3 = & -3\cos(0) + C_2 \implies C_2 = 0\\ z'(0) = 0 = & -4\sin(2(0))\cos(2(0)) + C_3 \implies C_3 = 0 \end{cases}$$
(4)

$$r'(t) = (4\cos(4t) + 2\cos(2t), -3\cos(t), -4\sin(2t)\cos(2t)), \quad t \in [0, 2\pi]$$
(5)

$$r(0) = \begin{cases} y'(0) = -3 = & -3\cos(0) + C_2 & \implies C_2 = 0 \\ z'(0) = 0 = & -4\sin(2(0))\cos(2(0)) + C_3 & \implies C_3 = 0 \end{cases}$$

$$r'(t) = (4\cos(4t) + 2\cos(2t), -3\cos(t), -4\sin(2t)\cos(2t)), \quad t \in [0, 2\pi]$$

$$r(t) = \begin{cases} x(t) = \int x'(t)dt = \sin(4t) + \sin(2t) + C_4 \\ y(t) = \int y'(t)dt = & -3\sin(t) + C_5 \\ z(t) = \int z'(t)dt = & \cos^2(2t) + C_6 \end{cases}$$

$$r(0) = \begin{cases} x(0) = 0 = \sin(4(0)) + \sin(2(0)) + C_4 & \implies C_4 = 0 \\ y(0) = 0 = & -3\sin(0) + C_5 & \implies C_5 = 0 \\ z(0) = 3 = & \cos^2(2(0)) + C_6 & \implies C_6 = 2 \end{cases}$$

$$r(t) = (\sin(4t) + \sin(2t), -3\sin(t), \cos^2(2t)) + 2, \quad t \in [0, 2\pi]$$

$$(5)$$

$$r(0) = \begin{cases} x(0) = 0 = & \sin(4(0)) + \sin(2(0)) + C_4 & \Longrightarrow C_4 = 0 \\ y(0) = 0 = & -3\sin(0) + C_5 & \Longrightarrow C_5 = 0 \\ z(0) = 3 = & \cos^2(2(0)) + C_6 & \Longrightarrow C_6 = 2 \end{cases}$$
 (7)

$$r(t) = (\sin(4t) + \sin(2t), -3\sin(t), \cos^2(2t)) + 2, \quad t \in [0, 2\pi]$$
(8)

Con la EEDD ya resuelta se procedió a realizar la animación en GeoGebra.

Para el cálculo de esta curva, que nace a partir de la resolución de la ecuación diferencial planteada,

se procede con los siguientes pasos para calcular y graficar dichos elementos en Geogebra:

• <u>La Curva.</u>- Para la graficación de la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra, respecto a la ec. (8):

$$r(t) = Curva((sen(4t) + sen(2t), -3sen(t), cos^{2}(2t) + 2), t \in [0, 2\pi])$$
(9)

• La 1° derivada de la curva [v(t)].- Para el cálculo y la graficación de la 1° derivada de la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

$$v(t) = Derivada(r(t)) = \begin{cases} x & = 4\cos(4t) + 2\cos(2t) \\ y & = -3\cos(t) \\ z & = 2 * 2\sin(2)(-1)\cos(2t) \end{cases} 0 \le t \le 6.28$$
 (10)

• La 2° Derivada de la Curva [a(t)].- Para el cálculo y la graficación de la 2° derivada de la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra, respecto a la ec. (10):

$$a(t) = Derivada(v(t), 2) \tag{11}$$

Nota: La expresión derivada es demasiado larga para ser expresada en el documento, sin embargo en el archivo de Geogebra, se puede apreciar su cálculo efectuado

• La 3° Derivada de la Curva [c(t)].- Para el cálculo y la graficación de la 2° derivada de la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra, respecto a la ec. (11):

$$c(t) = Derivada(a(t), 3)$$
(12)

Nota: Al igual que la segunda derivada, la tercera derivada es demasiado larga para ser expresada en el documento, sin embargo en el archivo de Geogebra, se puede apreciar su cálculo efectuado

• El Vector Tangente [T].- Para el cálculo y la graficación del vector tangente en relación a la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

Para obtener el cálculo del vector tangente, se toma en cuenta la 1° derivada de la curva, y se calcula la Norma de esta derivada, por medio de la siguiente ecuación:

$$||v(t)|| = \sqrt{v(t)^2}$$
 (13)

Así mismo, con la Norma de la 1° derivada, calculada, procedemos al cálculo del vector Tangente, dado por la siguiente fórmula en Geogebra:

$$T = Vector(\frac{v(t)}{\sqrt{v(t) * v(t)}})$$
(14)

• El Vector Binormal [B] y el Vector Normal [N].- Para el cálculo y la graficación del vector Binormal en relación a la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

Para obtener el cálculo del vector binormal, se toma en cuenta el producto vectorial dado entre la 1° derivada y la 2° derivada de la curva, dividido entre la normal de dicho producto vectorial, elevado al cuadrado, calculado por medio de la siguiente ecuación:

$$B = \frac{v(t) \times a(t)}{||v(t) \times a(t)||^2} \tag{15}$$

Dada la ecuación del producto vectorial entre ambas derivadas, obtendremos el vector binormal, insertando el siguiente código en Geogebra:

$$B = Vector(\frac{v(t) \times a(t)}{\sqrt{(v(t) \times a(t)) * ((v(t) \times a(t))}})$$
(16)

Para el cálculo y la graficación del vector normal en relación a la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

Para obtener el cálculo del vector normal, se toma en cuenta el producto vectorial dado entre los vectores: tangente y binormal, calculado por medio de la siguiente ecuación:

$$N = B \times T \tag{17}$$

• La Curvatura $[\rho]$.- Para el cálculo y la graficación de la curvatura en relación a la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

Para calcular la curvatura que forma el desplazamiento del Triedro de Frenet y demás elementos sobre la función, utilizaremos la norma del producto vectorial entre la 1° y la 2° derivada, dividido entre la norma de la 1° derivada, elevada al cubo, dado que ya tenemos dichos elementos calculados, ingresaremos la fórmula al Geogebra, para el calculo de la curvatura, la cuál es:

$$\rho = \frac{\sqrt{(v(t) \times a(t)) * (v(t) \times a(t))}}{(\sqrt{v(t) * v(t)})^2}$$
(18)

 La Torsión [τ].- Para el cálculo y la graficación de la torsión en relación a la curva dada por el resultado del desarrollo de la ecuación diferencial, insertamos el siguiente código en Geogebra:

Para calcular la torsión que genera el desplazamiento del Triedro de Frenet y demás elementos sobre la función, utilizaremos el producto vectorial entre la 1° y la 2° derivada, multiplicado por la 3° derivada, todo esto a su vez, está dividido entre la norma del producto vectorial entre la 1° y 2° derivada, elevada al cuadrado; dado que ya tenemos dichos elementos calculados, ingresaremos la fórmula al Geogebra, para el calculo de la curvatura,

$$\tau = \frac{(v(t) \times a(t)) * c(t)}{(\sqrt{(v(t) \times a(t))} * (v(t) \times a(t))})^3}$$
(19)

Se detalla una captura de la ejecución con lo explicado preciamente en la Fig. 1.

Figure 1: Imagen sobre la gráfica de la Función, más sus componentes, la animación está disponible en (Grupo2, 2024).

Referencias

Rodriguez A. Fuentes S. Villca A. Grupo2. Animación en geogebra, 2024. URL https://www.geogebra.org/3d/edjgwbc6.

Amilcar Martinez. Trabajo grupal 2. Universidad Mayor de San Simón, September 2024. URL https://drive.google.com/file/d/1xypkS_eN1yLb0B3XNhMtHd2h7gepefCw/edit.