Topic 5: Interdisciplinary Problems and Python Scripting

Lecture 5-1: Forest Fire Models

Friday April 9, 2010

Contents

1	Fore	est fire model	1
	1.1	Initializing the forest	2
	1.2	Local update rule	2
	1.3	OpenGL Forest File Program	3

1 Forest fire model

The forest fire model of Bak, Chen and Tang [Bak-1990] is a simple *probabilistic* cellular automaton with complex behavior that mimics the spreading of fires in a forest.

The forest is modeled as a square region of side L with a regular lattice of L^2 cells or sites which represent trees. A cell can have three states:

- 1. A living tree, which is colored green.
- 2. A tree on fire, which is colored yellow.
- 3. A dead tree, which is colored black.

1.1 Initializing the forest

At time t = 0, the forest is populated using two parameters:

- Each cell has a tree with probability p_t , i.e., generate a random number r in the unit interval 0 < r < 1, and color the site green if $r < p_t$, or black otherwise.
- If the cell has a tree (if $r < p_t$ in the previous step) then set the tree on fire with probability p_f , i.e., generate a uniform deviate r' and color the tree yellow if $r' < p_f$.

1 FOREST FIRE MODEL 1.2 Local update rule

1.2 Local update rule

At time t, each cell in the forest will be in one of three states, green, yellow, or black. The forest at time t+1 is determined by the following rules:

- 1. If a tree is green, check its four nearest neighbors. If any neighbor is yellow (on fire), then the tree catches fire and is colored yellow.
- 2. If a tree is yellow (on fire), then it dies and is colored black.
- 3. If a tree is dead (black), then a new tree is grown with probability p, i.e., generate a uniform deviate r and color the cell green if r < p.

Note that rules 1 and 2 are *deterministic*, but rule 3 is *probabilistic*: this model is therefore a *probabilistic* cellular automaton.

1.3 OpenGL Forest File Program

The program fire.cpp implements the model using OpenGL graphics.

Recall that the dynamics of the model depends on one parameter, namely the probability p for growing new trees from dead stumps. The system is more or less independent of the starting configuration. Bak et al. found the following results for this model:

• The system is characterized by a *correlation length*

$$\xi(p) \sim \frac{1}{p^{\nu}} \;,$$

where $\nu \approx 1.0$ in this 2-dimensional model. (Bak et al. also studied the system in 3 dimensions.)

- If the correlation length is larger than the linear size of the system

$$\xi(p) > L$$
,

then the fires die out in a time $\sim L$. The growth of of new trees from dead stumps is not large enough to sustain the fires.

- If the correlation length is smaller than the linear size of the system

$$\xi(p) < L$$
,

then the fires are sustained: the system reaches a critical steady state in which the growth of new trees feeds the fires with sufficient fuel to keep them burning for ever.

• The distribution of fires in the critical state is a *fractal*, i.e., an object with fractional dimension. In the 2-dimensional model, they found that the fractal dimension of the fire fronts $D \simeq 1.0$, i.e., the fronts are approximately linear; but in 3 dimensions, they found $D \simeq 2.5$, i.e., intermediate between a surface (D=2) and a volume (D=3) distribution.

There are many variations on the simple forest fire cellular automaton model, which show interesting behavior.

This Java Applet implements a model with 7 different states and 8 probabilities.

REFERENCES

References

[Bak-1990] P. Bak, K. Chen and C. Tang, "A forest-fire model and some thoughts on turbulence", Phys. Lett. A **147**, 297-300 (1990), http://dx.doi.org/10.1016/0375-9601(90)90451-S

- [Bak-1987] P. Bak, C. Tang and K. Wiesenfeld, "Self-organized criticality: An explanation of the 1/f noise", Phys. Rev. Lett. **59**, 381 (1987), http://doi.org/10.1103/PhysRevLett.59.381.
- [Bak-1988] P. Bak, C. Tang and K. Wiesenfeld, "Self-organized criticality", Phys. Rev. A 38, 364 (1988), http://doi.org/10.1103/PhysRevA.38.364.
- [W-CA] Wikipedia: Cellular automaton, http://en.wikipedia.org/wiki/Cellular_automaton.