Linears and Conics

1 Linear

1. If the two lines

$$\mathbf{L}_1: \mathbf{x} = 5, \frac{y}{3-\alpha} = \frac{z}{-2}$$

$$\mathbf{L}_1: \mathbf{x} = 2, \frac{y}{-1} = \frac{z}{z-\alpha}$$

are perpendicular, then the value of α

- (a) $\frac{2}{3}$
- (b) 3
- (c) 4
- (d) $\frac{7}{3}$
- 2. Find the shortest distance between the following lines and hence write whether the lines are intersecting or not.

$$\frac{x-1}{2} = \frac{y+1}{3} = z$$
, $\frac{x+1}{5} = \frac{y-2}{1}$, $z = 2$

OR

Find the equation of the plane through the line of intersection of the planes $\overrightarrow{r} \cdot (\hat{i} + 3\hat{j}) + 6 = 0$ and $\overrightarrow{r} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$, which is at a unit distance from the origin.

- 3. If segment of the line intercepted between the co-ordinate-axes is bisected at the point M(2,3), then the equation of this line is
 - (a) 2x + 3y = 13
 - (b) x + y = 5

(c)
$$2x + y = 7$$

(d)
$$3x + 2y = 12$$

- 4. The equation of a line through $(2, \hat{a}4)$ and parallel to x-axis is ______.
- 5. Find the equation of the median through vertex A of the triangle ABC, having vertices A(2, 5), $B(\hat{a}4, 9)$ and $C(\hat{a}2, \hat{a}1)$.
- 6. Solve the system of linear equations, using matrix method :

$$7x + 2y = 11$$

$$4x - y = 2$$

Conic

1. The point at which the normal to the curve $y = x + \frac{1}{x}$, x > 0 is perpendicular to the line $3x\hat{a}4y\hat{a}7 = 0is$:

a)
$$(2, \frac{5}{2})$$

b)
$$(\pm 2, \frac{5}{2})$$

c)
$$(-\frac{1}{2}, \frac{5}{2})$$

b)
$$(\pm 2, \frac{5}{2})$$

d) $(\frac{1}{2}, \frac{5}{2})$

2. The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y-axis

$$a)(0,\pm 4)$$

$$b)(\pm 4,0)$$

c)
$$(\pm 3.0)$$

d)
$$(0,\pm 3)$$

3. For which value of m is the line y = mx + 1 a tangent to the curve $y^2 = 4x$? a) $\frac{1}{2}$ b) 1