ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO--ETC F/G 20/5 COMPILATION OF DATA RELEVANT TO RARE GAS-RARE GAS AND RARE GAS---ETC(U) DEC 77 E W MCDANIEL, M R FLANNERY, H W ELLIS AD-A053 827 UNCLASSIFIED . DRDMI-H-78-1-VOL-1 NL 1 OF 5 ADA 053827

U.S. ARMY
MISSILE
RESEARCH
AND
DEVELOPMENT
COMMAND

TECHNICAL REPORT H-78-1

COMPILATION OF DATA RELEVANT TO RARE GAS-RARE GAS AND RARE GAS-MONOHALIDE EXCIMER LASERS

VOLUME I

E. W. McDaniel, M. R. Flannery, H. W. Ellis, F. L. Eisele and W. Pope School of Physics Georgia Institute of Technology Atlanta, Georgia 30332

and

T. G. Roberts High Energy Laser Laboratory

December 1977

Approved for public release; distribution unlimited

Redstone Arsenal, Alabama 35809

PREPARED FOR:
High Energy Laser Laboratory
US Army Missile Research and Development Command
Redstone Arsenal, Alabama 35809

DMI FORM 1000, 1 APR 77

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (River Date Entered) REPORT DOCUMENTATION PAGE 1. REPORT NUMBER

READ INSTRUCTIONS BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER H-78-1 TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Technical Pertin COMPILATION OF DATA RELEVANT TO RARE GAS-RARE GAS AND RARE GAS-MONOHALIDE EXCIMER LASERS 6. PERFORMING ORG. REPORT NUMBER VOLUME I

AUTHOR(a) E. W. McDaniel, M. R. Flannery, H. W. Ællis, F. L. /Eisele, W. /Pope and T. G. Roberts

PERFORMING ORGANIZATION NAME AND ADDRESS Commander 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

US Army Missile Research and Development Command Attn: DRDMI-H Redstone Arsenal, Alabama 35809

CONTROLLING OFFICE NAME AND ADDRESS Commander US Army Missile Research and Development Command Attn: DRDMI-TI

Redstone Arsenal, Alabama 35809 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)

DRDMI-H-78-1-VOL-1

December 1977 13. NUMBER OF PAGES

Unclassified

J2. REPORT DATE

427 * 15. SECURITY CLASS. (of this report)

B. CONTRACT OR GRANT NUMBER(+)

15a, DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

* Volume I contains pages 1 through 427; Volume II contains pages 429 through 894.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Lasers, Rare Gas-Rare Gas Excimers, Rare Gas-Monohalide Excimers, Cross Sections, Lifetimes, Reaction Rates, Transport Properties, Particle Collisions, and Potential Energy Curves

20. ALTRACT (Continue on reverse side if necessary and identify by block number)

This report is a compilation of atomic data designed mainly to serve the needs of those engaged in research and development in the field of rare gashalide and rare gas-rare gas excimer lasers. The bulk of the data relates to structural, radiative, and collisional properties of rare gas and halogen atoms and of the ions and molecules that can be formed from them. Two- and threebody collisions involving only heavy particles are covered, as are collisions of electrons and photons with the heavy particles,

DD 1 JAN 73 1473 EDITION OF ! NOV 65 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

429 127

PREFACE

This report is a compilation of atomic data designed mainly to serve the needs of those engaged in research and development in the field of rare gas-halide and rare gas-rare gas excimer lasers. The bulk of the data relates to structural, radiative, and collisional properties of rare gas and halogen atoms, and of the ions and molecules that can be formed from them. Two- and three-body collisions involving only heavy particles are covered, as are collisions of electrons and photons with the heavy particles. Transport data on electrons, ions, and neutrals are included, and the interaction of heavy particles with electric and magnetic fields is considered. The impact of heavy particles, electrons, and photons with surfaces is also included, although such collisions appear not to have been included in excimer laser models to date.

A wealth of good data is at hand on structural and radiative properties of rare gas atoms and on most kinds of collisions involving these atoms in the ground state, and much useful information has recently become available on the structural properties of homonuclear and heteronuclear rare gas molecules. Comparatively little is known about collisions of various kinds of particles with rare gas atoms in excited and ionized states and with rare gas molecules. There is a dearth of data of almost every type on halogen atoms, molecules, and ions, and this fact has prompted us to take two steps. First, we included a few halogen data of old vintage because no newer data were available. Any halogen data (other than of spectroscopic origin) collected before about the mid-1960's should probably be regarded with reserve. Atomic collisions experiments on the halogen have been notoriously difficult until quite recent times, and even now they pose problems. We hope that this report will dramatize the lack of collisional data on the halogens and the rare gas-halide molecules and show where additional research needs to be done. The second step referred to above was to include collisional data on structures outside our area of responsibility if such data were thought to be useful. This step was taken mainly when no data were on hand for the halogen atoms, molecules, or ions. In certain cases, the data presented can be scaled by sound theoretical methods to provide information about the collision partners of interest. In the remaining cases, the user of this document might prefer to use a cross section or reaction rate for an extraneous system rather than rely totally on guesswork if no data are available on the system he is really interested in. A monitory "caveat emptor" may be in order here (if indeed, not a "cave canem").

We began this compilation with only electron beam— and electrical discharge-pumped lasers in mind. Electron collisions at all energies u up to about 10 Mev were included, but heavy particle-heavy particle collisions at energies up to only about 10 eV, this being the highest energy that we could conceive for heavy particles produced in dissociative events or for ions at the values of E/N (or E/p) existing in the lasers. However, we began to notice a few papers describing research

on excimer lasers excited by beams of fast heavy particles, so we expanded our coverage in this direction.

Now for a word about references. At the beginning of many of the main and secondary sections, a list of "general references" appears. These references are mainly books and review articles of general interest. Those marked "D" on the left contain much useful data; those labeled "R" contain a large number of relevant references. Most of these references came from "Bibliography on Sources of Information on Pheneomona of Interest in Gas Laser Research and Development" by E. W. McDaniel, H. W. Ellis, F. L. Eisele, and M. G. Thackston; US Army Missile Command, Redstone Arsenal, Alabama; Technical Report RH-77-1, January 1977 (202 pages).

Many of the tables and graphs presented here were taken directly from "Atomic Data for Controlled Fusion Research", by C. F. Barnett, J. A. Ray, E. Ricci, I. Wilker, E. W. McDaniel, E. W. Thomas, and H. B. Gilbody; Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee (Feb., 1977), Reports ORNL 5206 and 5207 (680 pages). Such graphs can be identified by the notation ORNL - the corresponding tables appear facing the graphs. Other ORNL tables, not paired with graphs, are easily recognizable by the same distinctive format. We are extremely indebted to C. F. Barnett, Director of the Controlled Fusion Atomic Data Center at Oak Ridge, for permission to use his material. Barnett and Wilker also helped us considerably by sending us recent printouts of categorized references.

Our sincere thanks go to E. C. Beaty, John Rumble, and Jean W. Gallagher of the JILA Information Center at the University of Colorado, Boulder, Colo. and to L. J. Kieffer, former Director of the Information Center. They generously provided processed data in more useful form than the original and gave us permission to use any of their graphs and tables. Without the cooperation and assistance of the Oak Ridge and JILA Information Centers, we could not have prepared this document in the allotted time.

Also we are very grateful to T. H. Dunning, Jr., P. J. Hays, and W. R. Wadt, all of LASL (Los Alamos Scientific Laboratory), who have rendered invaluable assistance by providing us with their calculated potential energy curves and other structural properties of the rare-gas halides and rare-gas molecular-ions in advance of publication of their articles.

Others who have helped us considerably by providing data, graphs, and advice are: D.L. Albritton; B. Bederson; M. A. Biondi; C. Cason; R. Celotta; P. J. Chantry; L. Christophorou; J. S. Cohen; A. Mandl; R. W. Crompton; L. G. H. Huxley; D. Howgate; R. Johnsen; M. Krauss; M. Kurepa; W. L. Lineberger; D. C. Lorents; K. McCann; A. V. Phelps; R. Saxon; B. Schneider; R. F. Stebbings; E. W. Thomas; F. K. Truby; W. L. Williams; and S. F. Wong.

A. STRUCTURAL PROPERTIES OF RARE-GAS HALIDE MOLECULES, RARE-GAS EXCIMERS, RARE-GAS MOLECULAR IONS AND RARE-GAS ATOMS

CONTENTS (VOLUME I)

		rage
1.	Calculated Potential Energy Curves For Rare-Gas	. 15
2.	Total Energies of the Covalent and Ionic States of the Rare-Gas Halides (RgF) as a Function of Internuclear Separation	. 41
3.	Spectroscopic Constants for the Ionic States of the Xenon-Halides and Rare-Gas Fluorides (RgF) Spin Orbit Parameters for (RgF)	. 63
4.	Dipole Moments of Covalent and Ionic states and Transition Moments for Ionic-Covalent Transitions in Rare-Gas Fluorides (RgF) and in the Xenon-halides.	. 75
5.	Emission Energies and Wavelengths, Transition Moments, Einstein Coefficients, and Lifetimes for Ionic-Covalent Transitions in Rare-Gas Fluorides (RgF) and Xenon-Halides	
6.	Potential Energy Curves, Spectroscopic Data Absorption Data and Absorption Spectra for the Molecular Ions Het Net, Art, Krt, and Ket.	
7.	Potential Energy Curves and Other Data for Rare-Gas Excimers and for Unlike Pairs of Rare-Gas Atoms	. 155
8.	Radiative Lifetimes of the Rare-Gas Atoms	. 191
9.	Electron Affinities	213
10.	Polarizabilities and Multipole Moments	. 215
HEA	VY PARTICLE-HEAVY PARTICLE COLLISIONS	
1.	Low Energy Heavy Particle-Heavy Particle Collisions	. 225
2.	High Energy Heavy Particle-Heavy Particle Collisions.	. 332

В.

A. STRUCTURAL PROPERTIES OF RARE-GAS HALIDE MOLECULES, RARE-GAS EXCIMERS, RARE-GAS MOLECULAR IONS AND RARE-GAS ATOMS

General References: Rare-Gas Halides, Rare-Gas Excimers (Ions), Rare-Gas Excimers (Neutrals). Rare-Gas Halide Laser and Fluorescent Wavelengths (Table and References).

CONTENTS

	Page
A-1.	Calculated potential energy curves for rare-gas-halides 15
A-2.	Total energies of the covalent and ionic states of the rare-gas halides (RgX) as a function of internuclear separation
A-3.	Spectroscopic constants for the ionic states of the xenon-halides and rare-gas fluorides (RgF); spin-orbit parameters for (RgF)
A-4.	Dipole moments of covalent and ionic states and transition moments for ionic-covalent transitions in rare gas-fluorides (RgF) and in the xenon-halides
A-5.	Emission energies and wavelengths, transition moments, Einstein coefficients and lifetimes for ionic-covalent transitions in rare-gas fluorides (RgF) and xenon-halides
A-6.	Potential-energy curves, spectroscopic data, absorption data and absorption spectra for the molecular ions He ⁺ ₂ , Ne ⁺ ₂ , Ar ⁺ ₂ , Kr ⁺ ₂ and Xe ⁺ ₂
A-7.	Potential energy curves and other data for rare-gas excimers and for unlike pairs of rare-gas atoms 155
A-8.	Radiative lifetimes of the rare-gas atoms 191
A-9.	Electron affinities
A-10.	Polarizabilities and multipole moments 215

A. STRUCTURAL PROPERTIES OF RARE-GAS HALIDE MOLECULES, RARE-GAS EXCIMERS, RARE-GAS MOLECULAR IONS, AND RARE-GAS ATOMS

General References

Rare-Gas Halides:

- 1. T. H. Dunning, Jr., and P. J. Hay, "The low-lying states of the rare-gas fluorides," J. Chem. Phys. (to be published).
- 2. P. J. Hay and T. H. Dunning, Jr., The electronic states of KrF," J. Chem. Phys. 66, 1306 (1977).
- 3. M. Krauss, "The electronic structure of rare-gas halide excimers," J. Chem. Phys. 67, 1712 (1977).
- 4. M. Krauss and B. Liu, "The energy-curve of XeF, $X^2\Sigma^+$, " Chem. Phys. Letts. 44, 257 (1976).
- 5. M. J. Clugston and R. G. Gordon, "Electron-gas model for open-shell-closed-shell interactions. 1. Application to the emission spectra of the diatomic noble-gas halides," J. Chem. Phys. 66, 239 (1977).
- Y. S. Kim and R. G. Gordon, "Ion-ion interaction potentials and their application to the theory of alkali-halide and alkaline earth dihalide molecules," J. Chem. Phys. 60, 4332 (1974).
- 7. J. Berkowitz and W. A. Chupka, "Diatomic ions of noble gas fluorides," Chem. Phys. Letts. 7, 447 (1970).
- 8. M. F. Golde, "Interpretation of the oscillatory spectra of the inert-gas halides," J. Mol. Spectrosc. 58, 261 (1975).
- 9. R. Bonham and N. W. Harris, "Radiative lifetime of the C State of XeF," J. Chem. Phys. 66, 2742 (1977).
- 10. J. Tellinghuisen, J. M. Hoffman, G. C. Tisone and A. K. Harp, "Spectroscopic studies of diatomic noble gas halides: Analysis of spontaneous and stimulated emission from XeO," J. Chem. Phys. 64, 2484 (1976).
- 11. W. R. Wadt and P. J. Hay. "The low-lying states of Ar F," Appl. Phys. Letts. 30, 573 (1977).

Rare-Gas Excimers: Ions

- W. R. Wadt, "The electronic states of Ar₂⁺, Kr₂⁺ and Xe₂⁺. I.
 Potential curves with and without spin-orbit coupling," J. Chem. Phys. (to be published).
- 2. T. L. Gilbert and A. C. Wahl, "Single-configuration wave functions and potential curves for low-lying states of He, Ne, Ar, F, F, Cl, and the ground state of Cl, " J. Chem. Phys. 55, 5247 (1971).
- 3. R. J. Blint, "Spectrum of potential-energy curves for the He system," Phys. Rev. A 14, 2055 (1976).
- 4. R. S. Mulliken, "Rare gas molecule electronic states," Phys. Rev. A 136, 962 (1964).
- 5. J. S. Cohen and B. Schneider, "Ground and excited states of Ne and Ne +. I. Potential curves with and without spin-orbit coupling,"

 J. Chem. Phys. 61, 3230 (1974).
- J. T. Moseley, R. P. Saxon, B. A. Huber, P. C. Cosby, R. Abouaf and M. Tadjeddine, "Photofragment spectroscopy and potential curves of Ar +," J. Chem. Phys. 67, 1659 (1977).
- 7. R. S. Mulliken, "Potential curves of diatomic rare-gas molecules and their ions, with particular reference to Xe," J. Chem. Phys. 52, 5170 (1970).
- 8. W. R. Wadt, D. C. Cartwright and J. S. Cohen, "Theoretical absorption spectra for Ne, +, Ar, +, tin the near ultraviolet," Appl. Phys. Letts. (to be published).
- 9. J. S. Cohen and B. Schneider, "Ground and excited states of Ne and Ne . I. Potential curves with and without spin-orbit coupling,"

 J. Chem. Phys. 61, 3230 (1974).
- 10. B. I. Schneider and J. S. Cohen, "Ground and excited states of Ne and Ne⁺. II. Spectroscopic properties and radiative lifetimes," J. Chem. Phys. 61, 3240 (1974).
- M. E. Schwartz and L. J. Shaad, "Ab initio studies of small molecules using 1s Gaussian basic functions. III. LCGTO SCF MO wave functions

- of the three- and four-electron systems He 2, He , and linear H , H , H , " J. Chem. Phys. 48, 4709 (1968).
- 12. A. A. Wu and F. O. Ellison, "New scaled atoms-in-molecules theory for predicting potential-energy curves. II. Studies of the calibration technique and applications to HeH⁺, HeH, He₂⁺, H₂ and He₂^{*}," J. Chem. Phys. <u>48</u>, 1103 (1968).
- 13. Y. S. Kim and R. G. Gordon, "Ion-rare gas interactions on the repulsive part of the potential curves," J. Chem. Phys. 60, 4323 (1974).
- 14. Y. S. Kim and R. G. Gordon, "Unified theory for the intermolecular forces between closed shell atoms and ions," J. Chem. Phys. 61, 1 (1974).
- 15. B. K. Gupta and F. A. Matsen, "Potential curves for the X $\Sigma_{\mathbf{u}}^{+}$ and the lowest $^{2}\Sigma_{\mathbf{g}}^{+}$ states of the helium molecule ion," J. Chem. Phys. $\underline{47}$, 4866 (1967).

Rare-Gas Excimers: Neutrals

- M. L. Ginter and R. Battino, "Potential-energy curves for the He molecule," J. Chem. Phys. 52, 4469 (1970).
- 2. S. L. Guberman and W. A. Goddard, "Nature of the excited states of He," Phys. Rev. A 12, 1203 (1975).
- J. S. Cohen, "Diabatic-states representation for He* (n >) + He collisions," Phys. Rev. A 13, 86 (1976).
- 4. R. P. Saxon and B. Lin, "Ab initio calculations of the ${}^3\Sigma^+_g$ and ${}^3\Sigma^+_g$ states of singly excited Ar $_2^*$," J. Chem. Phys. <u>64</u>, 3291 (1976).
- 5. K. T. Gillen, R. P. Saxon, D. C. Lorents, G. E. Ice and R. E. Olson, "Elastic scattering measurements of the Ar $_2$ " ($^3\Sigma_a$) well depth," J. Chem. Phys. 64, 1925 (1976).
- J. S. Cohen and B. Schneider, "Ground and excited states of Ne and Ne + 1. Potential curves with and without spin-orbit coupling,"
 J. Chem. Phys. 61, 3230 (1974).

- B. I. Scheider and J. S. Cohen, "Ground and excited states of Ne and Ne⁺₂ II. Spectroscopic properties and radiative lifetimes,"
 J. Chem. Phys. 61, 3240 (1974).
- 8. R. P. Saxon and B. Liu, "Ab-initio calculations of the ${}^3\Sigma_{\bf u}^{\dagger}$ and ${}^3\Sigma_{\bf u}^{\dagger}$ states of singly excited Ar *_2 ," J. Chem. Phys. <u>64</u>, 3291 (1976).
- 9. R. S. Mulliken, "Potential curves of diatomic rare-gas molecules and their ions, with particular reference to Xe," J. Chem. Phys. 52, 5170 (1970).
- J. S. Cohen and R. T. Pack, "Modified statistical method for intermolecular potentials. Combining rules for higher van der Waals coefficients," J. Chem. Phys. 61, 2372 (1974).
- J. Detrich and R. W. Conn, "Interaction potentials for He-HF and Ar-HF using the Gordon-Kim method," J. Chem. Phys. 64, 3091 (1976).
- B. Schneider, "Study of the potential curves of xenon with other rare-gas atoms," J. Chem. Phys. <u>58</u>, 4447 (1973).
- 13. C. S. Ewig, R. Osman and J. R. Van Wager, "The structure of molecular effective potentials in compounds of heavy elements with application to I," J. Chem. Phys. 66, 3557 (1977).
- 14. S. Mukamel and U. Kaldor, "Ab-initio calculation of the He $_2$ A $^1\Sigma_u$ + $^1\Sigma_g^+$ absorption spectrum," Mol. Phys. <u>26</u>, 291 (1973).
- 15. R. W. Bickes, Jr. and R. B. Bernstein, "The SPF-Dunham expansion for the potential well: A regression model for systematic analysis of differential elastic beam scattering cross sections," J. Chem. Phys. 66, 2408 (1977).
- 16. Y. Tanaka and K. Yoshino, "Absorption spectrum of the He molecule in the 510-611 & range," J. Chem. Phys. 50, 3087 (1969).
- 17. Y. Tanaka and K. Yoshino, "Absorption spectrum of the argon molecule in the vacuum-UV region," J. Chem. Phys. 53, 2012 (1970).

Table* A-1
Rare-Gas Halide Laser and Fluorescent Wavelengths

	Ne	Ar	Kr	Xe
F	Fluoresces	Laser	Laser	Laser
	108	193	248	351
	Dissociates	(B)	(C)	(D)
	(A)			
C1	Dissociates	Fluoresces	Laser	Laser
	Cl ₂ (254)	175	222	308
	(E)	Dissociates	(G)	(H)
		(F)		
Br	Dissociates	Dissociates	Fluoresces	Laser
	Br ₂ (290)	Br ₂ (290)	206	282
	(E)	(1)	(J)	(K)
I	Dissociates	Dissociates	Dissociates	Fluoresces
	12 (342)	I ₂ (342)	I ₂ (342)	254
	(E)	(L)	(M)	Dissociates
				(N)

The Wavelengths are in nm. In high density media the dominant emitters and their peak wavelength are listed.

^{*}Taken from D. C. Lorents, "Kinetic processes in rare-gas halide lasers," Invited talk, X International Conference on the Physics of Electronic and Atomic Collisions, Paris, July 1977.

References for Table A-1

- (A) J. K. Rice, A. Kay Hays, and J. R. Woodworth, Appl. Phys. Lett. 31, 31 (1977).
- (B) A. K. Hays, J. M. Hoffman and G. C. Tisone, Chem. Phys. Lett. 39, 353 (1976).
 - J. M. Hoffman, A. K. Hays, and G. C. Tisone, Appl. Phys. Lett. 28, 538 (1976).
 - J. R. Murray and H. T. Powell in Electronic Transition Lasers II, L. E. Wilson,
 - S. N. Suchard and J. I. Steinfeld, eds. (MIT Press, 1977).
 - T. R. Loree, P. B. Scott, and R. C. Sze in Electronic Transition Lasers II,
 - L. E. Wilson, S. N. Suchard and J. I. Steinfeld, eds. (MIT Press, 1977).
- (C) J. J. Ewing and C. A. Brau, Appl. Phys. Lett. 27, 350 (1975). M. L. Bhaumik,
 - R. S. Bradford, Jr., and E. R. Ault, Appl. Phys. Lett. 28, 23 (1976).
 - J. M. Hoffman, A. K. Hayes, and G. C. Tisone, Appl. Phys. Lett. 28, 538 (1976).
 - J. R. Murray and H. T. Powell, Appl. Phys. Lett. 29, 252 (1976).
 D. G. Sutton,
 S. N. Suchard, O. L. Gibb, and C. P. Wang, Appl. Phys. Lett. 28, 522 (1976).
 - J. A. Mangano and J. H. Jacob, Appl. Phys. Lett. 27, 495 (1975).
- (D) C. A. Brau and J. J. Ewing, Appl. Phys. Lett. 27, 435 (1975). J. T. Mangano,
 - J. H. Jacob, M. Rokni, and J. B. Dodge, Appl. Phys. Lett. 29,426 (1976). E. R. Ault, R. S. Bradford, Jr., and M. L. Bhaumik, Appl. Phys. Lett. 27,
 - 413 (1975). R. Burnham, D. Harris, and N. Djeu, Appl Phys. Lett. 28, 86 (1976).
 - J. A. Mangano, J. H. Jacob, and J. B. Dodge, Appl. Phys. Lett. 29, 426 (1976).
 - C. P. Wang, H. Mirels, D. G. Sutton, and S. N. Suchard, Appl. Phys. Lett. 28, 326 (1976).
- (E) Prediction.
- (F) M. V. McCusker, D. C. Lorents, D. L. Huestis, R. M. Hill, H. H. Nakano, and J. A. Margevicius, "New Electronic Transition Laser Systems," Technical Report No. 4A, Contract DAAHO1-74-C-0624, SRI MP76-46, Stanford Research Institute, May 1976. L. A. Gundel, D. W. Setser, M.A.A. Clyne, J. A. Coxon, and W. Nip, J. Chem. Phys. 64, 4390 (1976). R. W. Waynant, Appl. Phys. Lett. 30, 234 (1977). C. H. Chen and M. G. Payne, Appl. Phys. Lett. 28, 219 (1976).
- (G) J. R. Murray and H. T. Powell, Appl. Phys. Lett. 29, 252 (1976). J. R. Murray and H. T. Powell in <u>Electronic Transition Lasers 11</u>, L. E. Wilson, S. N. Suchard and J. I. Steinfeld, eds. (MIT Press, L977). J. G. Eden and S. K. Searles, Appl. Phys. Lett. 29, 356 (1976).
- (H) J. J. Ewing and C. A. Brau, Appl. Phys. Lett. 27, 350 (1975). J. Tellinghuisen,
 A. K. Hays, J. M. Hoffman, and G. C. Tisone, J. Chem. Phys. 64, 2484 (1976).
- M. V. McCusker, D. C. Lorents, D. L. Huestis, R. M. Hill, H. H. Nakano, and J. A. Margevicius, "New Electronic Transition Laser Systems," Technical Report No. 4A, Contract DAAHO1-74-C-0624, SRI MP76-46, Stanford Research Institute, May, 1976. J. H. Kolts and D. W. Setser, J. Appl. Phys. 48, (1977). J. R. Murray, J. C. Swingle, and C. E. Turner, Jr., Appl. Phys. Lett. 28, 530 (1976). J. J. Ewing, J. H. Jacob, J. A. Mangano, and H. A. Brown, Appl. Phys. Lett. 28, 565 (1976).

- (J) R. W. Waynant in NRL Memorandum Report 3482, "ARPA/NRL X-Ray Laser Program," Final Technical Report, Naval Research Laboratory, Washington, D.C.
- (K) S. K. Searles and G. A. Hart, Appl. Phys. Lett. 27, 243 (1975).
- (L) M. V. McCusker, D. C. Lorents, D. L. Huestis, R. M. Hill, H. H. Nakano, and J. A. Margevicius, "New Electronic Transition Laser Systems," Technical Report No. 4A, Contract DAAHO1-74-C-0624, SRI MP76-46, Stanford Research Institute, May 1976. M. V. McCusker, R. M. Hill, D. L. Huestis, D. C. Lorents, R. A. Gutcheck, and H. H. Nakano, Appl. Phys. Lett. 27, 363 (1975).

 J. J. Ewing, and C. A. Brau, Appl. Phys. Lett. 27, 557 (1975).
 - A. K. Hays, J. M. Hoffman and G. C. Tisone, Chem. Phys. Lett. 39, 353 (1976).
- (M) M. V. McCusker, D. C. Lorents, D. L. Huestis, R. M. Hill, H. H. Nakano, and J. A. Margevicius, "New Electronic Transition Laser Systems," Technical Report No. 4A, Contract DAAHO1-74-C-0624, SRI MP76-46, Stanford Research Institute, May 1976.
- (N) J. J. Ewing and C. A. Brau, Appl. Phys. Lett. 27, 557 (1975).
 M. V. McCusker, D. C. Lorents, D. L. Huestis, R. M. Hill, H. H. Nakano, and J. A. Margevicius, "New Electronic Transition Laser Systems," Technical Report No. 4A, Contract DAAHO1-74-C-0624, SRI MP76-46, Stanford Research Institute, May 1976.

A-1. CALCULATED POTENTIAL ENERGY CURVES FOR RARE GAS-HALIDES CONTENTS

		Page
A-1.1.	Calculated potential energy curves for the covalent and ionic states of NeF	18
A-1.2.	Calculated potential energy curves for the ${f c}$ ovalent and ionic states of NeF, with spin-orbit corrections	19
A-1.3.	Calculated potential energy curves for the covalent and ionic states of ArF	20
A-1.4.	Calculated potential energy curves for the covalent and ionic states of ArF, with spin-orbit corrections	21
A-1.5.	Calculated potential energy curves for the covalent and ionic states of KrF	22
A-1.6.	Calculated potential energy curves for the covalent and ionic states of KrF, with spin-orbit corrections	23
A-1.7.	Calculated potential energy curves for the covalent and ionic states of XeF	24
A-1.8.	Calculated potential energy for the covalent and ionic states of XeF, with spin-orbit corrections	25
A-1.9.	Electronic states of XeCl without spin-orbit coupling corrections	26
A-1.10.	Electronic states of XeCl including spin-orbit coupling	27
A-1.11.	Electronic states of XeBr without spin-orbit coupling corrections	28
A-1.12.	Electronic states of XeBr including spin-orbit coupling	29
A-1.13.	Electronic states of XeI without spin-orbit coupling corrections	30
A-1.14.	Electronic states of XeI including spin-orbit coupling	31
A-1.15.	Covalent states of Ar ₂ F	32
A-1.16.	Ionic states of AraF	33

			Page
A-1,17.	Diatomics-in-molecules potential surfaces ionic states of ${\rm Ar}_2{\rm F}$ without spin-orbit .		34
A-1.18.	Diatomics-in-molecules potential surfaces Ar_2F with spin-orbit		35
A-1.19.	Diatomics-in-molecules potential surfaces ionic states of ${\rm Ar}_2{\rm F}$ with spin-orbit		36
A-1.20.	Diatomics-in-molecules potential surfaces spin-orbit		37
A-1.21.	Diatomics-in-molecules potential surfaces with spin-orbit		38
A-1.22.	Comparison of the calculated potential energy for the covalent states of RgF (solid line rare gas-fluorine interaction potential description)	e) with the	
	Leonas (dashed Line)		39

A-1. References:

The figures in (A-1.1) to (A-1.22) are taken from the following sources:

(A-1-1)-(A-1-8) and (A-1-22):

T. H. Dunning, Jr., and P. J. Hay, "The Low-Lying States of the Rare-Gas Fluorides," J. Chem. Phys. (to be published).

(A-1-9)-(A-1-14):

P. J. Hay and T. H. Dunning, Jr., "Electronic States of the Xenon Halides," J. Chem. Phys. (to be published).

(A-1-15)-(A-1-21):

D. L. Huestis and N. E. Schlotter (private communication).

1 2 3 4 6 5 6

Graphical Data. A-1.1. Calculated potential energy curves for the covalent and ionic states of NeF.

Graphical Data. A-1.2. Calculated potential energy curves for the covalent and ionic states of NeF, with spin-orbit corrections.

covalent and ionic states of ArF, with spin-orbit corrections.

Graphical Data. A-1.5. Calculated potential energy curves for the covalent and ionic states of KrF.

Craphical Data. A-1.6. Calculated potential energy curves for the covalent and ionic states of KrF, with spin-orbit corrections.

Graphical Data. A-1.7. Calculated potential energy curves for the covalent and ionic states of XeF.

Graphical Data. A-1.8. Calculated potential energy for the covalent and ionic states of XeF, with spin-orbit corrections.

Graphical Data. A-1.9. Electronic states of XeCl without spin-orbit coupling corrections.

Graphical Data. A-1.10. Electronic states of XeCl including spin-orbit coupling.

Graphical Data A-1.11. Electronic states of XeBr without spin-orbit coupling corrections.

Graphical Data. A-1.12. Electronic states of XeBr including spin-orbit coupling.

Graphical Data. A-1.13. Electronic states of XeI without spin-orbit coupling corrections.

Graphical Data. A-1.14. Electronic states of XeI including spin-orbit coupling.

Graphical Data. A-1.15. Covalent states of Ar2F.

Graphical Data. A-1.16. Ionic states of Ar2F.

Graphical Data. A-1.17. Diatomics-in-molecules potential surfaces for the ionic states of Ar₂F without spin-orbit.

Graphical Data. A-1.18. Diatomics-in-molecules potential surfaces for ${\rm Ar}_2{\rm F}$ with spin-orbit.

Graphical Data. A-1.19. Diatomics-in-molecules potential surfaces for the ionic states of Ar₂F with spin-orbit.

Graphical Data. A-1.20. Diatomics-in-molecules potential surfaces for Kr₂F with spin-orbit.

Graphical Data. A-1.21. Diatomics-in-molecules potential surfaces for Kr₂Cl with spin-orbit.

Graphical Data A-1.22. Comparison of the calculated potential energy curves for the covalent states of RgF (solid line) with the rare gas-fluorine interaction potential determined by Leonas (dashed line).

A-2. TOTAL ENERGIES OF THE COVALENT AND IONIC STATES OF THE RARE-GAS HALIDES (RgX) AS A FUNCTION OF INTERNUCLEAR SEPARATION

CONTENTS

		Page
A-2.1.	Total energies of the covalent and ionic states of NeF	44
A-2.2.	Total energies of the covalent and ionic states of NeF, with spin-orbit corrections	45
A-2.3.	Total energies of the covalent and ionic states of of ArF	46
A-2.4.	Total energies of the covalent and ionic states of ArF, with spin-orbit corrections	47
A-2.5.	Total energies of the covalent and ionic states of KrF	48
A-2.6.	Total energies of the covalent and ionic states of KrF, with spin-orbit corrections	49
A-2.7.	Total energies of the covalent and ionic states of XeF	50
A-2.8.	Total energies of the covalent and ionic states of XeF, with spin-orbit corrections	51
A-2.9.	Characterization of the potential curves of the covalent states of the rare-gas fluorides at the $R_{\mathbf{e}}$'s of the ionic states	52
A-2.10.	Crossing points and energies of the III 1/2 - II 3/2 curve crossings in the rare-gas fluorides	53
A-2.11.	Calculated and experimental separated atom limits for the ionic states of the rare-gas fluorides	54
A-2.12.	Total energies as a function of R for the electronic states of XeCl without spin-orbit corrections	55
A-2.13.	Total energies as a function of R for the electronic states of XeCl with spin-orbit corrections	56
A-2.14.	Total energies as a function of R for the covalent and ionic states of XeBr without spin-orbit corrections	57

		Page
A-2.15.	Total energies as a function of R for the electronic states of XeBr with spin-orbit corrections	58
A-2.16.	Total energies as a function of R for the covalent and ionic states of XeI without spin-orbit corrections	59
A-2.17.	Total energies as a function of R for the electronic states of XeI with spin-orbit corrections	60
A-2.18.	Relative coefficients ($C_{\overline{1}}$) of the 1 2 $\overline{1}$ state in the covalent I 1/2 states of the xenon halides	61
A-2.19.	Relative coefficients (C_{\prod}) of the $2^{\frac{2}{\prod}}$ state in the ionic III 1/2 states of the xenon halides	62

A-2. References

The tables in (A-2.1)-(A-2.19) are taken from the following sources:

(A-2.1)-(A-2.11):

T. H. Dunning, Jr., and P. J. Hay, "The Low-Lying States of the Rare-Gas Fluorides," J. Chem. Phys. (to be published).

(A-2.12)-(A-2.19):

P. J. Hay and T. H. Dunning, Jr., "Electronic States of the Xenon Halides," J. Chem. Phys. (to be published).

Tabular Data A-2.1. Total energies of the covalent and ionic states of NeF. (The energies are in hartrees and are relative to -227. hartrees; the distances are in bohrs).

	Covalent	Covalent States	Ionic States	tates
æ	x^2_{Σ} +	12п	2 ² ² +	$2^{2}\Pi$
2.75	-0.83876	-0.73092	-0.37502	-0.37612
3.00	-0.88963	-0.82411	-0.46587	-0.46617
3.25	-0.91558	-0.87688	-0.51241	-0.51061
3.50	-0.92969	-0.90676	-0.53338	-0.52982
3.75	-0.93719	-0.92366	-0.53987	-0.53520
4.00	-0.94114	-0.93318	-0.53832	-0.53310
4.25	-0.94318	-0.93852	-0.53248	-0.52712
4.50	-0.94421	-0.94151	-0.52447	-0.51925
2.00	-0.94492	-0.94408	-0.50657	-0.50204
6.00	-0.94494	-0.94502	-0.47418	-0.47119
8.00	-0.94474	-0.94496	-0.43143	-0.43012
10.00	-0.94466	-0.94488	-0.40586	-0.40520
12.00	-0.94465	-0.94488	-0.38893	-0.38855
15.00	-0.94465	-0.94488	-0.37210	-0.37191

Tabular Data A-2.2. Total energies of the covalent and ionic states of NeF, with spin-orbit corrections. (The energies are in hartrees and are relative to -227. hartrees; the distances are in bohrs).

0.00		Covalent States	es		Ionic States	
æ	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	년2	$11\frac{1}{2}$	$111\frac{1}{2}$	$11\frac{3}{2}$	$1v_{\overline{2}}^{1}$
2.75	-0.83899	-0.73154	-0.73030	-0.37675	-0.37750	-0.37339
3.00	-0.88927	-0.82472	-0.82348	-0.46724	-0.46755	-0.46381
3.25	-0.91583	-0.87749	-0.87624	-0.51319	-0.51199	-0.50882
3.50	-0.92995	-0.90737	-0.90611	-0.53393	-0.53120	-0.52827
3.75	-0.93747	-0.92427	-0.92299	-0.54033	-0.53658	-0.53374
4.00	-0.94145	-0.93380	-0.93248	-0.53875	-0.53448	-0.53168
4.25	-0.94354	-0.93914	-0.93777	-0.53290	-0.52850	-0.52571
4.50	-0.94464	-0.94212	-0.94069	-0.52490	-0 52063	-0.5.783
2.00	-0.94551	-0.94470	-0.94310	-0.50704	-0.50342	-0.50058
00.9	-0.94574	-0.94564	-0.94384	-0.47479	-0.47257	-0.46958
8.00	-0.94558	-0.94558	-0.94374	-0.43231	-0.43150	-0.42824
10.00	-0.94550	-0.94550	-0.94365	-0.42436	-0.42658	-0.40571
12.00	-0.94549	-0.94549	-0.94365	-0.39006	-0.38994	-0.38643
15.00	-0.94549	-0.94549	-0.94365	-0.37329	-0.37329	-0.36972

Tabular Data A-2.3. Total energies of the covalent and ionic states of ArF. (The energies are in hartrees and are relative to -625. hartrees; the distances are in bohrs).

	COVALENC	Covalent States	Ionic States	tates
~	$x^2\Sigma^+$	$1^2\pi$	$2^{2}_{\Sigma}^{+}$	2^{2}_{Π}
3.25	-1.10251	-0.97809	-0.77623	-0.80534
3.50	-1.13689	-1.05293	-0.85290	-0.87148
4.00	-1.16764	-1.13258	-0.92413	-0.92588
4.25	-1.17412	-1.15201	-0.93613	-0.93303
4.50	-1.17786	-1.16403	-0.93969	-0.93363
4.75	-1.18000	-1.17138	-0.93815	-0.93046
5.00	-1.18119	-1.17585	-0.93370	-0.92530
5.50	-1.18218	-1.18018	-0.92105	-0.91274
9.00	-1.18240	-1.18171	-0.90741	-0.90008
7.00	-1.18231	-1.18236	-0.88331	-0.87812
8.00	-1.18219	-1.18237	-0.86446	-0.86085
10.00	-1.18197	-1.18220	-0.83811	-0.83627
12.00	-1.18192	-1.18215	-0.82079	-0.81973
15.00	-1.18192	-1.18215	-0.80370	-0.80316
20.00	-1.18192	-1.18215	-0.78678	-0.78656

Tabular Data A-2.4. Total energies of the covalent and ionic states of ArF, with spin-orbit corrections. (The energies are in hartrees and are relative to -625. hartrees; the distances are in bohrs).

	1	Covalent States	es	1	Ionic States	-
æ	x_2^{-1}	$\frac{13}{2}$	$11\frac{1}{2}$	$111\frac{1}{2}$	$11\frac{3}{2}$	$IV_{\overline{2}}^{\underline{1}}$
3.25	-1.10274	-0.97870	-0.97747	-0.80374	-0.80775	-0.77589
3.50	-1.13712	-1.05355	-1.05231	-0.87009	-0.87388	-0.85236
4.00	-1.16789	-1.13319	-1.13194	-0.92711	-0.92828	-0.92096
4.25	-1.17438	-1.15262	-1.15136	-0.93758	-0.93543	-0.92963
4.50	-1.17814	-1.16464	-1.16336	-0.94074	-0.93603	-0.93064
4.75	-1.18030	-1.17200	-1.17069	-0.93904	-0.93286	-0.92762
2.00	-1.18154	-1.17646	-1.17511	-0.93455	-0.92770	-0.92251
5.50	-1.18265	-1.18079	-1.17932	-0.92190	-0.91515	-0.90995
00.9	-1.18302	-1.18232	-1.18070	-0.90834	-0.90249	-0.89721
7.00	-1.18310	-1.18298	-1.18118	-0.88445	-0.88052	-0.87503
8.00	-1.18301	-1.18299	-1.18116	-0.86582	-0.86325	-0.85754
10.00	-1.18281	-1.18281	-1.18097	-0.83983	-0.83867	-0.83261
12.00	-1.18276	-1.18276	-1.18092	-0.82271	-0.82213	-0.81587
15.00	-1.18276	-1.18276	-1.18092	-0.80577	-0.80556	-0.79914
20.00	-1.18276	-1.18276	-1.18092	-0.78896	-0.78896	-0.78244

Tabular Data A-2.5. Total energies of the covalent and ionic states of KrF. (The energies are in hartrees and are relative to -2850, hartrees; the distances are in bohrs).

	Covalent	Covalent States	Ionic States	ates
æ	$x^2\Sigma^+$	$1^2\pi$	2 ² ² +	1 ² II
3.25	-1.19536	-1.03749	-0.85987	-0.89942
3.50	-1.24083	-1.12327	-0.95960	-0.99316
3.75	-1.26620	-1.18309	-1.02422	-1.04698
4.00	-1,28015	-1.22372	-1.06412	-1.07612
4.25	-1.28776	-1.25059	-1.08666	-1.09006
4.50	-1.29201	-1.26799	-1.09756	-1.09496
4.75	-1.29442	-1.27909	-1.10083	-1.09447
5.00	-1.29580	-1.28608	-1.09938	-1.09090
5.25	-1.29659	-1.29045	-1.09514	-1.08564
5.50	-1.29702	-1.29317	-1.08932	-1.07954
00.9	-1.29736	-1.29588	-1.07637	-1.06718
7.00	-1.29731	-1.29720	-1.05205	-1.04523
8.00	-1.29715	-1.29730	-1.03279	-1.02795
10.00	-1.29688	-1.29710	-1.00591	-1.00341
12.00	-1.29680	-1.29702	-0.98833	-0.98690
15.00	-1.29679	-1.29702	-0.97107	-0.97034
20.00	-1.29679	-1.29702	-0.95407	-0.95376

Tabular Data A-2.6. Total energies of the covalent and ionic states of KrF, with spin-orbit corrections. (The energies are in hartrees and are relative to -2850, hartrees; the distances are in bohrs).

Si No		Covalent States	ites		Ionic States	
æ	$\frac{x_1}{2}$	$\frac{13}{2}$	$11\frac{1}{2}$	$111\frac{1}{2}$	$11\frac{3}{2}$	$IV_{\overline{2}}^{1}$
3.25	-1.19559	-1.03810	-1.03687	-0.89532	-0.90788	-0.85612
3.50	-1.24106	-1.12389	-1.12265	-0.98973	-1.00163	-0.95519
3.75	-1.26644	-1.18370	1.18246	-1.04541	-1.05545	-1.01794
4.00	-1.28039	-1.22433	-1.23309	-1.07791	-1.08458	-1.05447
4.25	-1.28801	-1.25120	-1.24995	-1.09618	-1.09852	-1.07269
4.50	-1.29226	-1.26861	-1.26735	-1.10500	-1.10343	-1.07968
4.75	-1.29469	-1.27970	-1.27843	-1.10727	-1.0293	-1.08018
2.00	-1.29610	-1.28670	-1.28540	-1.10535	-1.09936	-1.07709
5.25	-1.29692	-1.29107	-1.28973	-1.10089	-1.09410	-1.07203
5.50	-1.29740	-1.29378	-1.29240	-1.09503	-1.08801	-1.06599
00.9	-1.29788	-1.29649	-1.29497	-1.08219	-1.07565	-1.05351
7.00	-1.29805	-1.29781	-1.29607	-1.05838	-1.05369	-1.03105
8.00	-1.29797	-1.29791	-1.29609	-1.03961	-1.03642	-1.01328
10.00	-1.29772	-1.29772	-1.29588	-1.01338	-1.01188	-0.98809
12.00	-1.29764	-1.29764	-1.29579	-0.99612	-0.99536	-0.97126
15.00	-1.29763	-1.29763	-1.29579	-0.97909	-0.97880	-0.95448
20.00	-1.29763	-1.29763	-1.29579	-0.97909	-0.97880	-0.95448

Tabular Data A-2.7. Total energies of the covalent and ionic states of XeF. (The energies are in hartrees and are relative to -7330, hartrees; the distances are in bohrs).

	Covalent States	States	Ionic States	tes
æ	$x^2 \Sigma^+$	1 ² n	2 ² ² +	2 ² п
3.50	-1.14321	-0.99857	-0.84242	-0.88036
3.75	-1.17920	-1.05999	-0.92629	-0.96604
4.00	-1.19788	-1.10526	-0.98420	-1.01694
4.50	-1.21108	-1.16394	-1.04624	-1.05700
4.75	-1.21279	-1.18109	-1.05933	-1.06145
5.00	-1.21351	-1.19269	-1.06480	-1.06092
5.25	-1.21387	-1.20040	-1.06524	-1.05760
5.50	-1.21409	-1.20544	-1.06246	-1.05273
00.9	-1.21431	-1.21081	-1.05197	-1.04101
7.00	-1.21436	-1.21387	-1.02792	-1.01880
8.00	-1.21426	-1.21433	-1.00795	-1.00124
10.00	-1.21411	-1.21432	-0.98011	-0.97654
12.00	-1.21402	-1.21424	-0.96211	-0.96006
15.00	-1.21400	-1.21423	-0.94458	-0.94353
20.00	-1.21400	-1.21423	-0.92742	-0.92698

Tabular Data A-2.8. Total energies of the covalent and ionic states of XeF, with spin-orbit corrections. (The energies are in hartrees and are relative to -7330. hartrees; the distances are in bohrs).

		Covalent States	es		Ionic States	6
			1	1		1
	-K	73	Π_2^1	$111\frac{1}{2}$	$11\frac{3}{2}$	IV_2^1
3.50	-1.14344	-0.99919	-0.99795	-0.87885	-0.89680	-0.82836
3.75	-1.17943	-1.06061	-1.05937	-0.96405	-0.98249	-0.91273
4.00	-1.19812	-1.10588	-1.10464	-1.01699	-1.03338	-0.96858
4.50	-1.21132	-1.16456	-1.16331	-1.06659	-1.07344	-1.02108
4.75	-1.21304	-1.18170	-1.18045	-1.07621	-1.07789	-1.02900
2.00	-1.21377	-1.19331	-1.19204	-1.07971	-1.07736	-1.03045
5.25	-1.21515	-1.20101	-1.19973	-1.07907	-1.07404	-1.02821
5.50	-1.21439	-1.20606	-1.20475	-1.07574	-1.06917	-1.02389
00.9	-1.21470	-1.21142	-1.21002	-1.06494	-1.05745	-1.01248
7.00	-1.21502	-1.21449	-1.21283	-1.04136	-1.03524	-0.98980
8.00	-1.21505	-1.21494	-1.21315	-1.02204	-1.01769	-0.97160
10.00	-1.21495	-1.21494	-1.21310	-0.95511	-0.99298	-0.94598
12.00	-1.21486	-1.21486	-1.21301	-0.97759	-0.97650	-0.92902
15.00	-1.21485	-1.21485	-1.21300	-0.96038	-0.95997	-0.91217
20.00	-1.21485	-1.21485	-1.21300	-0.94342	-0.94342	-0.89541

Tabular Data A+2.9. Characterization of the potential curves of the covalent states of the rare gas fluorides at the R_e 's of the lonic states. (The energies are in eV's; distances are in angetuse).

		- NA-		$\frac{1}{2}$		$11\frac{1}{2}$	
Molecule	Ionic State	ΔE(R)	(3E/3R) _R e	ΔE(R _e)	(3E/3R)Re	ΔE(R _e)	(3E/3R)Re
NeF	m_2^{\perp}	0.19	-1.02	1	1	0.49	-2.38
	$11\frac{3}{2}$	1		0.54	-2.54	•	;
	142	0.20	-1.09	1	1 1	0.52	-2.52
ArF	m_2^1	0.12	-0.58	;	!	97.0	-1.92
	$11\frac{3}{2}$:	ı.	0.61	-2.38	1	;
	142	0.16	-0.72	:	1	0.57	-2.31
KrF	$111\frac{1}{2}$	0.082	-0.40	:	;	0.48	-1.89
	$11\frac{3}{2}$:	:	0.67	-2.40	:	:
	11/2	0.10	-0.48	:	:	0.59	-2.21
XeF	m_2^1	0.025	-0.093	;	:	0.50	-1.75
	$11\frac{3}{2}$;	:	0.78	-2.52	:	:
	11/2	0.033	-0.13	:	:	0.63	-2.14
				-			1

Tabular Data A-2.10. Crossing points and energies of the III 1/2 - II 3/2 curve crossings in the rare gas fluorides. (Units are as indicated).

Molecule	R _C (Å)	E (hartrees)	Energy Relativ	Energy Relative to Minimum of III $\frac{3}{2}$ state II $\frac{3}{2}$ state
NeF	1.62	-227.48439	1.53 ev	1.42 ev
ArP	.: 2.17	-625.93274	0.22	0.099
KrP	2.32	-2851.10196	0.14	0.048
XeF	2.56	-7331.07828	0.043	0.000

Tabular Data A-2.11. Calculated and experimental separated atom limits for the fonic states of the rare gas fluorides. (All quantities in e^{V} 's). (Experimental states have been averaged over spin-orbit components).

Molecule	Separated Atom Limitb Calc Expt	Limit, Expt	Correction to ΔE_{em}
NeF	17.39, 17.41	18.13	+0.73
ArF	12.11, 12.13	12.35	+0.23
KrF	10.69, 10.70	10.76	+0.06
XeF	9.16, 9.18	9.10	+0.07

^aThe first number was calculated from the $^2\Sigma^+$ energies, the second from the $^2\Pi$ energies.

b_Reference

Tabular Data A-2.12. Total energies (relative to -7690. hartrees) as a function of R (in bohr) for the electronic states of XeCl without spin-orbit corrections.

æ	x 22+	1 ² π	2 2½+	2 ² II
4.50	-1.20330	-1.10838	-0.96211	-0.98764
4.75	-1.22621	-1.15439	-1.01030	-1.03026
5.00	-1.24020	-1.18726	-1.04355	-1.05701
5.50	-1.25362	-1.22662	-1.07918	-1.08156
5.75	-1.25661	-1.23776	-1.08673	-1.08533
00.9	-1.25839	-1.24537	-1.08994	-1.08591
6.25	-1.25945	-1.25053	-1.09014	-1.08443
6.50	-1.26007	-1.25400	-1.08835	-1.08167
7.00	-1.26064	-1.25787	-1.08150	-1.07426
8.00	-1.26077	-1.26028	-1.06454	-1.05841
15.00	-1.26035	-1.26058	-1.00158	-1.00055
20.00	-1.26035	-1.26058	-0.98437	-0.98394
				The state of the s

Tabular Data A-2.13. Total energies (relative to -7690, hartree) as a function of R (in bohr) for the electronic states of XeCl with spin-orbit corrections.

z c	1 1/2	1 3/2	11 1/2	111 1/2	11 3/2	IV 1/2
4.50	-1.20357	-1.10838	-1.10701	-0.99026	-1.00408	-0.94392
4.75	-1.22648	-1.15439	-1.15300	-1.03523	-1.04670	-0.98976
2.00	-1.24049	-1.18726	-1.18586	-1.06515	-1.07344	-1.01984
5.50	-1.25398	-1.22662	-1.22516	-1.09616	-1.09799	-1.04901
5.75	-1.25701	-1.23776	-1.23625	-1.10242	-1.10177	-1.05408
6.00	-1.25886	-1.24537	-1.24379	-1.10480	-1.10235	-1.05548
6.25	-1.26001	-1.25053	-1.24886	-1.10451	-1.10087	-1.05450
6.50	-1.26075	-1.25400	-1.25221	-1,10244	-1.09811	-1.05201
7.00	-1.26158	-1.25787	-1.25582	-1.09544	-1.09070	-1.04476
8.00	-1.26212	-1,26028	-1.25781	-1.07878	-1.07485	-1.02859
15.00	-1.26192	-1.26058	-1.25790	-1.01739	-1.01699	-0.96918
20.00	-1.26192	-1.26058	-1.25790	-1.00037	-1.00037	-0.95237

Tabular Data A-2.14.

Total energies (relative to -9800, hartree) as a function of R (in bohr) for the covalent and ionic states of XeBr without spin-orbit corrections.

R	x 2 ₂ +	1 ² II	2 2 _E +	2 ² E
4.50	-4.00233	-3.89332	-3.73870	-3.75980
5.00	-4.06063	-3.99624	-3.84346	-3.85950
5.50	-4.08369	-4.04883	-3.89479	-3.90071
5.75	-4.08914	-4.06412	-3.90788	-3.90965
6.00	-4.09249	-4.07475	-3.91538	-3.91395
6.25	-4.09454	-4.08208	-3.91885	-3.91515
6.50	-4.09580	-4.08709	-3.91947	-3.91428
6.75	-4.09656	-4.09051	-3.91815	-3.91208
7.00	-4.09701	-4.09282	-3.91556	-3.90908
8.00	-4.09749	-4.09660	-3.90054	-3.89461
10.00	-4.09727	-4.09738	-3.87366	-3.87017
20.00	-4.09705	-4.09724	-3.82053	-3.82009
			the same of the sa	-

Tabular Data A-2.15. Total energies (relative to -9800. hartree) as a function of R (in bohr) for the electronic states of XeBr with spin-orbit corrections.

4.50				7/1 111	11 3/2	IV 1/2
	-4.00306	-3.89892	-3.88718	-3.76426	-3.77624	-3.71867
2.00	-4.06170	-4.00184	-3.98976	-3.86633	-3.87594	-3.82107
5.50	-4.08537	-4.05443	-4.04175	-3.91310	-3.91714	-3.86682
5.75	-4.09125	-4.06972	-4.05661	-3.92463	-3.29608	-3.87732
00.9	-4.09509	-4.08034	-4.06674	-3.93105	-3.93039	-3.88271
6.25	-4.09769	-4.08767	-4.07353	-3.93381	-3.93159	-3.88462
6.50	-4.09947	-4.09269	-4.07801	-3.93398	-3.93072	-3.88419
6.75	-4.10071	-4.09610	-4.08095	-3.93241	-3.92852	-3.88225
7.00	-4.10157	-4.09842	-4.08286	-3.92971	-3.92551	-3.87936
8.00	-4.10293	-4.10219	-4.08575	-3.91484	-3.91104	-3.86474
10.00	-4.10304	-4.10298	-4.08622	-3.88869	-3.88661	-3.83958
20.00	-4.10284	-4.10284	-4.08605	-3.83653	-3.83653	-3.78852

Tabular Data A-2.16. Total energies (relative to -14149. hartree) as a function of R (in bohr) for the covalent and ionic states of XeI without spin-orbit corrections.

R	x 2 ₂ +	1 ² π	2 22+	2 2π
2.00	-0.41153	-0.33024	-0.17397	-0.17953
5.50	-0.45650	-0.40876	-0.24921	-0.25397
00:9	-0.47562	-0.44940	-0.28589	-0.28585
6.50	-0.48361	-0.46985	-0.30021	-0.29636
6.75	-0.48562	-0.47577	-0.30232	-0.29729
7.00	-0.48690	-0.47988	-0.30230	-0.29651
7.50	-0.48821	-0.48467	-0.29829	-0.29199
8.00	-0.48867	-0.48693	-0.29175	-0.28573
10.00	-0.48865	-0.48867	-0.26521	-0.26163
15.00	-0.48838	-0.48857	-0.22880	-0.22776
20.00	-0.48837	-0.48856	-0.21145	-0.21102

Tabular Data A-2.17. Total energies (relative to -14149. hartree) as a function of r (in bohr) for the electronic states of XeI with spin-orbit corrections.

æ	1 1/2	1 3/2	11 1/2	111 1/2	11 3/2	IV 1 /2
5.00	-0.41450	-0.34178	-0.31591	-0.19214	-0.19597	-0.14579
5.50	-0.46088	-0.42031	-0.39303	-0.26707	-0.27041	-0.22054
00.9	-0.48186	-0.46094	-0.43179	-0.30202	-0.30228	-0.25415
6.50	-0.49177	-0.48140	-0.45034	-0.31512	-0.31279	-0.26587
6.75	-0.49459	₹0.48731	-0.45544	-0.31689	-0.31372	-0.26716
7.00	-0.49654	-0.49142	-0.45888	-0.31664	-0.31294	-0.26660
7.50	-0.49878	-0.49622	-0.46274	-0.31249	-0.30843	-0.26222
8.00	-0.49979	-0.49848	-0.46446	-0.30603	-0.30217	-0.25589
10.00	-0.50033	-0.50022	-0.46563	-0.28021	-0.27806	-0.23106
15.00	-0.50011	-0.50011	-0.46547	-0.24460	-0.24420	-0.19639
20.00	-0.50010	-0.50010	-0.46547	-0.22745	-0.22745	-0.17945

Tabular Data A-2.18. Relative coefficients (C $_{\parallel}$) of the 1 2 II state in the covalent I 1/2 states of the xenon halides.(The coefficients of the 1 2 2 state are determined by the relation (C $_{\Sigma}$) 2 + (C $_{\parallel}$) 2 = 1).

æ	XeF	XeC1	XeBr	XeI
3.50	0.0059	-	1	1
4.00	0.0072	1	1	1
4.50	0.0181	0.0196	0.0684	1
4.75	1	0.0257	1	1
5.00	0.0400	0.0346	0.1106	0.1679
5.25	0.0604	1	1	1
5.50	0.0905	0.0658	0.1845	0.2484
5.75	1	0.0915	0.2350	1
00.9	0.1893	0.1266	0.2917	0.3478
6.25	1	0.1723	0.3495	!
6.50	1	0.2278	0.4029	0.4385
6.75	1	1	0.4478	0.4735
7.00	0.4432	0.3508	0.4831	0.5009
7.50	1	1	1	0.5369
8.00	0.5443	0.5109	0.5528	0.5561
10.00	0.5748	1	0.5745	0.5755
8	0.5773	0.5773	0.5773	0.5773

Tabular Data. A-2.19. Relative coefficients (C $_{\rm II}$) of the 2 2 II state in the ionic III 1/2 states of the xenon halides. (The coefficients of the 2 $^2\Sigma^+$ state are determined by the relation $(C_r)^2 + (C_{||})^2 = 1$).

æ	XeF	XeC1	XeBr	XeI
3.50	0.8494	1		l.
4.00	0.8577	1	1	1
4.50	0.6687	0.7794	0.7488	1
4.75		0.7404	1	1
5.00	0.5500	0.6904	0.7108	0.6261
5.25	0.5214	1	1	1
5.50	0.5060	0.6000	0.6290	0.6195
5.75	•	0.5696	0.5951	1
00.9	0.4971	0.5489	0.5694	0.5804
6.25	200 AV 100 S	0.5359	0.5515	1
6.50	ł	0.5285	0.5399	0.5503
6.75	ı	1	0.5332	0.5411
7.00	0.5104	0.5244	0.5300	0.5353
7.50	-	•	-	0.5314
8.00	0.5284	0.5327	0.5343	0.5335
10.00	0.5526	ı	0.5531	0.5523
8	0.5774	0.5774	0.5774	C.5774

A-3. SPECTROSCOPIC CONSTANTS FOR THE IONIC STATES OF THE XENON-HALIDES AND RARE-GAS-FLUORIDES (Rgf). SPIN-ORBIT PARAMETERS FOR Rgf.

CONTENTS

		Page
A-3.1.	Calculated spectroscopic constants for the ionic states of the xenon halides without spin-orbit corrections	. 65
A-3.2.	Calculated spectroscopic constants for the ionic states of the xenon halides with spin-orbit corrections	. 66
A-3.3.	Calculated spectroscopic constants for the ionic states of the rare-gas fluorides	. 67
A-3.4.	Calculated spectroscopic constants for the ionic states of $Ne^{20}F^{19}$, with spin-orbit corrections	. 68
A-3.5.	Calculated spectroscopic constants for the ionic states of Ar 6 F 19, with spin-orbit corrections	. 69
A-3.6.	Calculated and experimental spectroscopic constants for the ionic states of Kr84F19, with spin-orbit corrections.	. 70
A-3.7.	Calculated and experimental spectroscopic constants for ionic states of Xe ¹²³ F ¹⁹ , with spin-orbit corrections	. 71
A-3.8.	Comparison of calculated spectroscopic constants of the III 1/2 state of the xenon halides with estimates from analysis of the fluorescence spectra	. 72
A-3.9.	Spin-orbit parameters for fluorine and the rare gas ions.	. 73
A-3.10.	Spin-orbit coupling parameters for the xenon halides	. 74

A-3. References

The tables and figures in (A-3.1)-(A-3.12) are taken from the following sources:

(A-3.1), (A-3.2), (A-3.12):

P. J. Hay and T. H. Dunning, Jr., "Electronic States of the Xenon-Halides," J. Chem. Phys. (to be published).

(A-3.3)-(A-3.7), (A-3.9)-(A-3.11):

T. H. Dunning, Jr., and P. J. Hay, "The Low-Lying States of the Rare-Gas Fluorides," J. Chem. Phys. (to be published).

Tabular Data. A-3.1. Calculated spectroscopic constants for the ionic states of the xenon halides without spin-orbit corrections.

				-			
	Te(eV)	D _e (eV)	R _e (Å)	$k_e(10^{-5}$ dyne/cm)	$\omega_{\rm e}({ m cm}^{-1})$	ω _e x _e (cm ⁻¹) B _e (cm ⁻¹)	B _e (cm ⁻¹)
xe132F19							
22 €	4.04	5.12	2.72	0.95	311.	1.2	0.1368
2 ² II	4.15	5.03	2.56	1.01	321.	2.4	0.1552
Xe ¹³¹ C1 ³⁵							
2 ² 2 ⁺	4.63	4.24	3.25	0.588	.061	0.63	0.05773
122π	4.75	4.13	3.14	0.577	188.	0.85	0.06194
Xe 132 Br 79							
2 ² 2 ⁺	48.4	4.05	3.41	0.528	135.	0.39	0.02940
2 ² π	4.95	3.95	3.31	0.508	132,	0.44	0.03118
Xe 132 127							
2 ² L ⁺	5.06	3.84	3.63	0.445	108.	0.24	0.01974
2 ²	5.20	3.71	3.57	0.425	106.	0.30	0.02047
							1

Tabular Data. A-3.2. Calculated spectroscopic constants for the ionic states of the xenon halides with spin-orbit correction.

\$5 \$4	T _e (eV)	D _e (eV)	R _e (Å)	k _e (10 ⁻⁵) dyne/ cm)	ω _e (cm ⁻¹)	w x (cm 1)	B (cm ⁻¹)
xe132F19							
111 1/2	3.67	5.07	2.68	0.90	303.	1.2	0.1408
11 3/2	3.72	5.03	2.56	1.01	321.	2.4	0.1552
IV 1/2	5.02	5.04	2.62	1.01	321.	2.3	0.1480
xe ¹³² C1 ³⁵							
111 1/2	4.27	4.21	3.22	0.57	188.	99.0	0.05876
11 3/2	4.34	4.14	3.14	0.58	188.	0.85	0.06194
IV 1/2 Xe ¹³² Br ⁷⁹	5.42	4.17	3.18	0.58	189.	0.80	0.06044
111 1/2	4.59	4.02	3.38	0.51	133.	0.39	0.02984
11 3/2	4.66	3.95	3.31	0.51	132.	0.44	0.03118
IV 1/2	5.94	3.98	3.34	0.52	133.	0.44	0,03055
xe132 ₁ 127							
111 1/2	4.98	3.80	3.62	0.436	107.	0.24	0.01992
11 3/2	5.07	3.71	3.57	0.425	106.	0.30	0.02047
IV 1/2	6.34	3.75	3.59	0.430	106.	0.28	0,02023

Tabular Data. A-3.3. Calculated spectroscopic constants for the ionic states of the rare gas fluorides. Units are as indicated.

	01-06							
-	Ne oF15		Ar +0F19		Kr84F19		Xe132F19	
	2 ² E ⁺	2 ² II	2 ² Σ+	22П	2 ² Σ ⁺	22π	22E+	22П
E, hartrees -227.54005	-227.54005	-227.53524	-625.93972	-625.93397	-2851.10086	-2851.09527	-7331.06553	-7331.06170
Te,ev	11.01	11.15	6.59	6.75	5.33	5.49	40.4	4.15
۾	6.38	6.26	5.52	5.37	5.36	5.21	5.12	5.03
R, A	2.01	2.00	2.40	2.33	2.53	2.43	2.72	2.56
ke,10-5 dynes/cm	1.68	1.67	1.17	1.16	1.09	1.09	.95	1.01
e, cm-1	541.	539.	394.	392.	345.	346.	311.	321.
3 X 0	4.2	6.4	2.7	3.1	1.8	2.4	1.2	2.4
Be, cm -1	.4268	.4328	.2281	.2415	.1703	.1845	.1368	.1552
g e	.0048	.0052	.0019	.0021	. 0012	.0014	. 0008	. 0012
								5.2 3.5.2

Tabular Data A-3.4. Calculated spectroscopic constants for the ionic states of $Ne^{20}F^{19}$, with spin-orbit corrections. (Units are as indicated).

	$111\frac{1}{2}$	$II\frac{3}{2}$	$IV_{\overline{2}}^{\underline{1}}$
E, hartrees	-227.54050	-227.53663	-227.53379
T _e , eV	11.02	11.13	11.20
D _e	6.36	6.26	6.28
Re, Å	2.01	2.00	2.00
ke,10 ⁻⁵ dynes/cm	1.68	1.67	1.67
we,cm ⁻¹	541.	539.	539.
e ^x e ,	4.2	4.9	4.9
Be, cm ⁻¹	.4271	.4328	.4324
i _e	.0048	.0052	.0052

Tabular Data. A-3.5. Calculated spectroscopic constants for the ionic states of Ar*0F19, with spin-orbit corrections. (Units are as indicated).

	$\pi r_{\frac{1}{2}}$	112	$IV_{\overline{2}}^{1}$
E ,hartrees	-625.94075	-625.93637	-625.93089
Te,eV	6.58	6.70	6.85
ص ا	5.49	5.37	5.40
R, A	2.39	2.33	2.34
Ke,10-5 dynes/cm	1.16	1.16	1.23
ω, cm-1	390.	392.	402.
e x	2.7	3.1	4.0
B, cm_1	.2290	.2415	.2398
. g	.0015	.0021	.0026

Tabular Data. A-3.6. Calculated and experimental spectroscopic constants for the ionic states of ${\rm Kr}^{84}{\rm F}^{19}$, with spin-orbit corrections. (Units are as indicated).

# 1 m		$111\frac{1}{2}$	$11\frac{3}{2}$	$Iv\frac{1}{2}$
	Calc	"Expt"		
E, hartrees	-2851.10727		-2851.10373	-2851,08054
Te, ev	5.18	5.01	5.28	5.91
	5.31	5.54	5.21	5.25
R, A	2.51	2.27	2.43	2.46
ke,10-5 dynes/cm	1.05		1.09	1.13
ε, cm 1	339.	310.	346.	352.
e x	1.7	1.2	2.4	2.7
B, cm 1	.1730	.212	.1845	.1801
5 0	.0011		.0014	9100.

Reference J. T. Tellinghuisen, A. K. Hays, J. M. Hoffman and G. C. Tisone, J. Chem Phys. 65, 4473 (1976).

Tabular Data. A-3.7. Calculated and experimental spectroscopic constants for ionic states of $Xe^{123}F^{19}$, with spin-orbit corrections. (Units are as indicated).

	III 1/	2	II 3/2	IV 1/2
	Calc	"Expt"a		
E _e , hartrees	-7331.07987		-7331.07814	-7331.03053
T _e , eV	3.67	3.52	3.72	5.02
D _e	5.07		5.03	5.04
R _e , Å	2.68	-	2.56	2.62
k_e , 10^{-5} dynes/cm	.90		1.01	1.01
$\omega_{\rm e}$, cm ⁻¹	303.	308.	321.	321.
ω _e x _e	1.2	1.516	2.4	2.3
B_e, cm^{-1}	.1408		.1552	.1480
α _e	.0008		.0012	.0012

a Reference

J. T. Tellinghuisen, G. C. Tisone, J. M. Hoffman and A. K. Hays, J. Chem. Phys. 64, 4796 (1976).

Tabular Data. A-3.8. Comparison of calculated spectroscopic constants of the III 1/2 state of the xenon halides with estimates from analysis of the fluorescence spectra.

	ω _e (cm	⁻¹)	R _e (Å)	D _e (eV)
49.2	Calc.	Expt ^a	Calc.	Expta	Calc.	Expt
XeF	303	309	2.68	2.49	5.07	5.31
XeC1	188	195	3.22	2.94	4.21	4.53
XeBr	133	120	3.38	2.96	4.02	4.30
XeI	107	112	3.62	3.31	3.80	4.08

^aJ. Tellinghuisen, A. K. Hays, J. M. Hoffman and G. C. Tisone, J. Chem. Phys. <u>65</u>, 4473 (1976).

$\lambda^{\mathbf{a}}$
0.0167
0.0323
0.0592
0.222
0.435

Tabular Data. A-3.9. Spin-orbit parameters for fluorine and the rare gas ions. (The parameters are in eV).

Atom	λ
P	135
Cl	294
Br	1228
I	2534
Xe ⁺	3512

Tabular Data. A-3.10. Spin-orbit coupling parameters (in cm $^{-1}$) for the xenon halides. (λ is defined as $\frac{1}{3}$ [E(2 P_{1/2}) - E(2 P_{3/2})]).

A-4. DIPOLE MOMENTS OF COVALENT AND IONIC STATES AND TRANSITION MOMENTS FOR IONIC-COVALENT TRANSITIONS IN RARE-GAS FLUORIDE (RgF) AND IN THE XENON-HALIDES CONTENTS

		Page
A-4.1.	Calculated dipole moments of the covalent states of the rare gas fluorides	78
A-4.2.	Calculated dipole moments for the covalent states of ArF, KrF and XeF	79
A-4.3.	Calculated dipole moments of the ionic states of the rare gas fluorides	80
A-4.4.	Calculated dipole moments for the ionic states of ArF, KrF and XeF	81
A-4.5.	Calculated transition moments for the ionic-covalent transitions of the rare gas fluorides	82
A-4.6.	Calculated transition moments for the ionic-covalent transitions in ArF, KrF and XeF	83
A-4.7.	Calculated transition moments for the ionic-covalent transitions of NeF, with spin-orbit corrections	84
A-4.8.	Calculated transition moments for the ionic-covalent transitions of ArF, with spin-orbit corrections	85
A-4.9.	Calculated transition moments for the ionic-covalent transitions of ArF, with spin-orbit corrections	86
A-4.10.	Calculated transition moments for the ionic-covalent transitions of XeF, with spin-orbit corrections	87
A-4.11.	Calculated transition moments for the ionic-covalent transitions in KrF, with spin-orbit corrections	88
A-4.12.	Calculated transition moments for the ionic-covalent transitions of KrF, with spin-orbit corrections	89
A-4.13.	Calculated transition moments for the ionic-covalent transitions in XeF, with spin-orbit corrections	90
A-4.14	Dipole moments for the states of the xenon halides .	91
A-4.15.	Calculated dipole moments for the covalent states of the xenon halides without spin-orbit coupling	
	corrections	92

		Page
A-4.16.	Calculated dipole moments for the ionic states of the xenon halides without spin-orbit coupling corrections	. 93
A-4.17.	Calculated transition moments for the ionic-covalent transitions of the xenon halides without spin-orbit corrections	. 94
A-4.18.	Transition moments for the xenon halides	
A-4.19.	Transition moments for the xenon halides	. 96
A-4.20.	Schematic representation of the strongest emission bands in xenon halides	. 97
A-4.21.	Transition moments for the xenon halides	. 98
A-4.22.	Transition moments for the xenon halides	. 99
A-4.23.	Transition moments for the xenon halides	. 100
A-4.24.	Transition moments for the xenon halides	. 101
A-4.25.	Calculated transition moments for the ionic- covalent transitions in XeCl with spin-orbit	100
	coupling included	. 102
A-4.26.	Calculated transition moments for the ionic-covalent transitions in XeBr with spin-orbit coupling included	. 103
A-4.27.	Calculated transition moments for the ionic-covalent transitions in XeI with spin-orbit coupling included.	. 104

A-4. Reference

The tables and figures in (A-4.1)-(A-4.27) are taken from the following sources:

(A-4.1)-(A-4.14):

T. H. Dunning, Jr., and P. J. Hay, "The Low-Lying States of the Rare-Gas Fluorides," J. Chem. Phys. (to be published).

(A-4.15)-(A-4.27):

P. J. Hay and T. H. Dunning, Jr., "Electronic States of the Xenon Halides," J. Chem. Phys. (to be published).

Tabular Data. A-4.1. Calculated dipole moments of the covalent states of the rare gas fluorides. (The moments are in atomic units; the distances are in bohrs).

	NeF		ArF		KrF		XeF	b.
e	x ² E ⁺	1 ² π	x ² ε +	12π	x ² ₂ +	12п	x ² E ⁺	12п
2.75	-0.4556	-0.1412	;	;	:	1		;
3.00	-0.3264	-0.0888	:	:	;	1		•
3.25	•	:	-0.7717	-0.0181	-0.8195	-0.2166	:	1
3.50	-0.1483	-0.0397	-0.6926	0.0301	-0.8965	-0.0863	-0.8787	-0.5771
3.75	-0.0987	-0.0289	•	:	;	:	:	1
00.1	-0.0669	-0.0219	-0.4231	0.0390	-0.7431	0.0576	-1.1357	-0.2153
1.25	!		-0.3042	0.0286	:	:	:	1
.50	-0.0334	-0.0129	-0.2149	0.0173	-0.4411	0.0430	-0.9486	0.0703
1.75		1	-0.1526	0.0074	-0.3187	0.0390	-0.7610	0.0897
00.	-0.0186	-0.0076	-0.1107	-0.0002	-0.2283	0.0253	-0.5708	0.0835
5.25	:	1		:	:	1	-0.4106	0.0691
5.50		1	-0.0638	0600.0-	-0.1225	0.0047	-0.2901	0.0534
9.00	-0.0087	-0.0048	-0.0416	-0.0122	-0.0739	9900*0-	-0.1480	0.0269
7.00	-	1	-0.0240	-0.0134	-0.0381	-0.0148	-0.0545	-0.0010
8.00	-0.0028	-0.0019	-0.0151	-0.0102	-0.0245	-0.0140	-0.0311	-0.0093
10.00	•	•	-0.0031	-0.0014	-0.0064	-0.0029	-0.0113	-0.0047
15.00	-0.0004	-0.0001	-0.0002	0.0001	-0.0005	0.0002	-0.000	0.0003

Graphical Data. A-4.2. Calculated dipole moments for the covalent states of ArF, KrF and XeF.

Tabular A-4-3. Calculated dipole moments of the ionic states of the rare gas fluorides. (The moments are in atomic units; the distances are in bohrs).

	NeF		V	ArF	K	KrF	XeF	
«	2 ² ² +	2 ² π	2 ² ² +	2 ² 11	2 ² E ⁺	2 ² π	2 ² E ⁺	2 ² 11
2.75	-2.0297	-2.5951	1	1	1	1	-1	1
3.00	-2.4396	-2.8499	1	ı	1	!	1	1
3.25	1		-4129	-2.0840	-0.6199	-0.9768	1	1
3.50	-3.1605	-3.3540	-1.9817	-2.6591	-1.1378	-1.7878	-0.2744	-0,1436
3.75	-3.4771	-3.6085	ı	1	1	!	ı	1
4.00	-3.7748	-3.8656	-3.0535	-3.5000	-2.2842	-3.0096	-1.1531	-1.8497
4.25	1	1	-3.5185	-3.8435	1	ŀ	1	1
4.50	-4.3382	-4.3850	-3.9320	-4.1622	-3.3898	-3.8448	-2.3192	-3.2185
4.75	1	1	-4.3029	-4.4652	-3.8706	-4.1998	-2.9375	-3.7000
2.00	-4.8802	-4.9070	-4.6416	-4.7572	-4.3000	-4.5329	-3.5274	-4.1168
5.25	1	1	1	1	1	1	-4.0634	-4.4953
5.50	1	1	-5.2560	-5.3181	-5.0401	-5.1560	-4.5407	-4.8490
9.00	-5.9294	-5.9413	-5.8209	-5.8576	-5.6787	-5.7396	-5.3516	-5.5069
7.00	1	1	-6.8849	-6.9028	-6.8100	-6.8327	-6.6484	-6.6970
8.00	-7.9639	-7.9689	-7.9155	-7.9274	-7.8657	-7.8788	-7.7668	-7.7900
10.00	-9.9771	-9.9800	6976-6-	-9.9531	-9.9172	-9.9233	-9.8630	-9.8743
15.00			-14.9766	-14.9790	-14.9635	-14.9657	-14.9403	-14 . 9445

Graphical Data. A-4.4. Calculated dipole moments for the ionic states of ArF, KrF and XeF.

Tabular Data. A-4.5. Calculated transition moments for the ionic-covalent transitions of the rare gas fluorides. (The moments are in atomic units; the distances are in bohrs).

	NeF		ArF		KrF		XeF	
~	225+-X25+	2211-121	222+-X2E+	2211-1211	22E+-X2E+	22H-12H	222+-X2E+	2211-12
2.75	-0.9974	0.4343						
3.00	-0.9198	0.3364						
3.25			-1.3500	0.8892	-1.2019	1.1110		
3.50	-0.6892	0.1960	-1.3990	0.7159	-1.3742	1.0492	-1.1055	1.1088
3.75	-0.5752	0.1496						
4.00	-04745	0.1145	-1.2656	0.4352	-1.5066	0.6923	-1.5140	1.2452
4.25			-1.1266	0.3392				
4.50	-0.3181	0.0683	-0.9753	0.2655	-1.3332	0.4241	-1.7009	0.8014
4.75			-0.8294	0.2089	-1.1824	0.3341	-1.6650	0.6219
9.00	-0.2121	0.0416	-0.6982	0.1652	-1.0239	0.2648	-1.5513	0.4863
5.25							-1.3913	0.3842
5.50			-0.4885	0.1049	-0.7392	0.1690	-1.2156	0.3061
00.9	-0.0963	0910.0	-0.3418	0.0678	-0.5251	0.1099	-0.8897	0.1982
7.00			-0.1719	0.0295	-0.2679	0.0484	-0.4596	0.0874
8.00	-0.0220	0.0032	-0.0888	0.0134	-0.1402	0.0222	-0.2413	0.0402
10.00	-0.0054	0.000	-0.0242	0.0027	-0.0397	0.0047	-0.0694	0.0088
15.00			-0.0003	0.000	-0.0005	0.0000	-0.0013	0.0001

Graphical Data. A-4.6. Calculated transition moments for the ionic-covalent transitions in ArF, KrF and XeF.

Tabular Data. A-4.7. Calculated transition moments for the ionic-covalent transitions of NeF, with spin-orbit corrections. (The moments are in atomic units; the distances are in bohrs). (Only the z-components are given).

æ	$111\frac{1}{2} \times \frac{1}{2}$	$IV_2^{\underline{1}} - X_2^{\underline{1}}$	$11\frac{3}{2} - 1\frac{3}{2}$	$1v_2^1 - 11_2^1$	$111\frac{1}{2}-11\frac{1}{2}$
2.75	-0.6571	0.6824	0.4343	0.2969	0.3170
3.00	-0.7106	0.5839	0.3364	0.2532	0.2217
3.50	-0.6519	0.2221	0.1960	0.1782	0.0851
3.75	-0.5513	0.1605	0.1496	0.1349	0.0729
4.00	-0.4551	0.1266	0.1145	0.0992	0.0728
4.50	-0.2966	0.0909	0.0683	0.0468	0.0861
5.00	-0.1835	0.0684	0.0416	0.0144	0.0904
00.9	-0.0727	0.0359	0.0160	-0.0055	0.0541
8.00	-00.0158	0.0104	0.0032	-0.0039	0.0130
10.00					

Tabular Data. A-4.8. Calculated transition moments for the ionic-covalent transitions of ArF, with spin-orbit corrections. (The moments are in atomic units; the distances are in bohrs.) Only the z-components are given.

œ	$111\frac{1}{2} - x\frac{1}{2}$	$1v_2^{1} - x_2^{1}$	$11\frac{3}{2} - 1\frac{3}{2}$	$1v_2^1 - 11_2^1$	$111\frac{1}{2}-11\frac{1}{2}$
3.25	-0.1437	1.3423	0.8892	0.0894	0.8848
3.50	-0.2392	1.3784	0.7159	0.1119	0.7072
4.00	-0.9020	0.8873	0.4352	0.2914	0.3245
4.25	-1.0123	0.4929	0.3392	0.2882	0.1834
4.50	-0.9169	0.3279	0.2655	0.2325	0.1397
4.75	-0.7876	0.2497	0.2089	0.1786	0.1306
2.00	-0.6610	0.2049	0.1652	0.1326	0.1354
5.50	-0.4457	0.1529	0.1049	0.0620	0.1544
00.9	-0.2902	0.1166	0.0678	0.0186	0.1524
7.00	-0.1299	0.0653	0.0295	-0.0092	0.0959
8.00	-0.0636	0.0366	0.0134	-0.0105	0.0506
10.00	-0.0109	0.0211	0.0027	0.0094	0.0212

Graphical Data. A-4.9. Calculated transition moments for the ionic-covalent transitions of ArF, with spin-orbit corrections.

Tabular Data. A-4.10. Calculated transition moments for the ionic-covalent transitions of

æ	$111\frac{1}{2} - x_{\frac{1}{2}}$	$1v_2^{1} - x_2^{1}$	$11\frac{3}{2} \cdot 1\frac{3}{2}$	$1v_2^{1} - 11_2^{1}$	गानुगाने
3.50	-0.5776	0.9425	1.1088	0.5794	0.9454
4.00	-0.7706	1.3032	1.2452	0.6307	1.0736
4.50	-1.2546	1.1481	0.8014	0.5751	0.5588
4.75	-1.3240	1.0088	0.6219	0.4716	0.4075
2.00	-1.2838	0.8690	0.4863	0.3716	0.3192
5.25	-1.1729	0.7440	0.3842	0.2834	0.2717
5.50	-1.0301	0.6365	0.3061	0.2073	0.2492
00.9	-0.7393	0.4669	0.1982	0.0851	0.2429
7.00	-0.3344	0.2436	0.0874	-0.0366	0.2152
8.00	-0.0603	0.1256	0.0402	-0.0408	0.1293
10.00	-0.0445	0.0356	0.0088	-0.0160	0.0372

Graphical Data A-4.11.

Calculated transition moments for the ionic-covalent transitions in KrF, with spin-orbit corrections.

Tabular Data A-4.12.

Calculated transition moments for the ionic-covalent transitions of KrF, with spin-orbit corrections. (The moments are in units; the distances are in bohrs). (Only the z-components are given)

~	$111\frac{1}{2} - x_{2}^{\perp}$	$IV_2^1 - x_2^1$	$11\frac{3}{2} \cdot 1\frac{3}{2}$	$1v_2^1 - 11_2^1$	$111\frac{1}{2}-11\frac{1}{2}$
3.25	-0.3661	1.1448	1.1110	0.3375	1.0585
3.50	-0.4841	1.2861	1.0492	0.3656	0.9834
4.00	-0.9581	1.1625	0.6923	0.4264	0.5458
4.50	-1.1117	0.7347	0.4241	0.3309	0.2689
4.75	-1.0220	0.5914	0.3341	0.2604	0.2180
2.00	-0.8965	0.4880	0.2648	0.1960	0.1954
5.50	-0.6376	0.3517	0.1690	0.0905	0.1910
00.9	-0.4292	0.2554	0.1099	0.0184	0.1950
7.00	-0.1900	0.1326	0.0484	-0.0293	0.1399
8.00	-0.0935	0.0697	0.0222	-0.0243	0.0771
10.00	-0.0258	0.0199	0.0047	-0.0092	0.0213

Graphical Data. A-4.13. Calculated transition moments for the ionic-covalent transitions in XeF, with spin-orbit corrections.

Graphical Data. A-4.14.

Tabular Data. A-4.15. Calculated dipole moments for the covalent states of the xenon halides without spin-orbit coupling corrections. (All quantities are in atomic units).

		1 ² L ⁺				12п		
	XeF	XeC1	XeBr	XeI	XeF	XeC1	XeBr	XeI
3.50	-0.8787	1	1	1	-0.5771	1	1	1
4.00	-1.1357	1			-0.2153	1	1	:
4.50	-0.9486	-0.9952	-0.9677	1	0,0703	-0.1233	-0.2674	1
4.75	1	-0.9854	1	1	1	-0.0565	1	1
2.00	-0.5708	-0.9116	-0.9490	-1,0511	0.0835	-0.0144	-0.1203	-0.3957
5.25	-0.4106	1	1	1	0.0691	1	1	1
5.50	-0.2901	-0,6591	-0.7517	-0.9004	0.0534	0.0162	-0.0453	-0.2134
5.75	1	-0.5259	-0.6273	1	1	0.0185	-0.0269	1
00.9	-0.1480	-0.4088	-0.5071	97.0-	0.0269	0.0174	-0.0155	-0.1151
6.25	1	-0.3133	-0.4011	1	1	0.0151	-0.0085	1
6.50	1	-0.2395	-0.3135	-0.4571	1	0.0122	-0.0042	-0.0648
6.75	1	1	-0.2443	-0.3682	1	1	-0.0017	-0.0494
7.00	-0.0545	-0.1434	-0.1911	-0.2950	-0.0010	0.0064	-0.0006	-0.0380
7.50	1	1	!	-0.1899	1	1	ŀ	-0.0226
8.00	-0.0311	-0.0642	-0.0821	-0.1254	-0.0093	0.0036	-0.0028	-0.0135
00.0	-0.0113	•	-0.0304	-0.0392	-0.0047	1	-0.0079	-0.0071

Tabular Data. A-4.16. Calculated dipole moments for the ionic states of the xenon halides without spin-orbit coupling corrections. (All quantities are in atomic units).

~		2 ² L ⁺				2 ² II		
	XeF	XeC1	XeBr	XeI	XeF	XeC1	XeBr	XeI
3.50	-0.2744	•	•	ł	-0.1436	ı	1	1
4.00	-1.1531	1	1	ı	-1.8497		1	1
4.50	-2.3192	-1.5588	-1.5921	1	-3.2185	-2.4287	-2.2722	1
4.75	1	-2.0731	1	1	1	-3.0218	ı	1
2.00	-3.5274	-2.6175	-2.4027	-1.9476	-4.1168	-3.5399	-3.3406	-3.0928
5.25	-4.0634	1	1	1	-4.4953	1	1	1
5.50	-4.5407	-3.7149	-3.4364	-2.8479	-4.8490	-4.4092	-4.2222	-3.9167
5.75	1	-4.2325	-3.9466	1	1	-4.7903	-4.6112	1
00.9	-5.3516	-4.7155	-4.4352	-3.8494	-5.5069	-5.1496	-4.9774	-4.6675
6.25	1	-5.1622	-4.8966	!	ı	-5.4933	-5.3279	. 1
6.50	ŀ	-5.5756	-5.3297	-4.7998	1	-5.8252	-5.6672	-5.3623
6.75	1	1	-5.7364	-5.2402	1		-5.9981	-5.6968
7.00	-6.6484	-6.3210	-6.1197	-5.6577	0269.9-	-6.4613	-6.3217	-6.0259
7.50	1	1	!	-6.4338	1	1	1	-6.6715
8.00	-7.7667	-7.5953	-7.4731	-7.1457	-7.7900	-7.6420	-7.5429	-7.2992
10.00	-9.8629	1	-9.7285	-9.5723	-9.8743	1	-9.7435	-9.6053

Tabular Data. A-4.17. Calculated transition moments for the ionic-covalent transitions of the xenon halides without spin-orbit corrections. (All quantities are in atomic units).

3.50 4.00 4.50	XeF	- 77	7 1			- 11 ₂	1,1	
	1000	XeC1	XeBr	XeI	XeF	XeC1 Xe	XeBr	XeT
	-1.1035	1	1	1	1.1088	1	1	1
	-1.5140	1	•	•	1.2452	1	i	ı
	-1.7009	-1.4684	-1.0758	}	0.8014	1.0090	0.9388	1
	-1.6650	-1.6151	1	1	0.6219	0.8928	1	1
5.00	-1.5513	-1.6887	-1.5818	-1.1405	0.4863	0.7595	0.7893	0.7494
5.25	-1.3913	1	١	1	0.3842	1	1	1
	-1.2156	-1.6343	-1.6358	-1.5036	0.3061	0.5240	0.5780	0.6247
	1	-1.5285	-1.5767	1	1	0.4321	0.4857	1
00.9	-1.8897	-1.3929	-1.4769	-1.5168	0.1982	0.3560	0.4061	0.4713
	1	-1.2445	-1.3519	1	1	0.2935	0.3387	1
6.50	1	-1,0961	-1.2153	-1.3555	1	0.2421	0.2822	0.3418
6.75	1	1	-1.0780	-1.2424	1	1	0.2351	0.2891
7.00	-0.4596	-0.8277	-0.9469	-1.1220	0.0874	0.1655	0.1958	0.2440
7.50	1	1	1	-0.8870	1	1	1	0.1732
8.00	-0.2413	-0.4525	-0.5359	-0.6830	0.0402	0.0787	0.0951	0.1226
10.00	-0.0694	1	-0.1648	-0.2191	0.0088	1	0.0242	0.0316

Graphical Data. A-4.18. $2^2\Sigma^+$ - $1^2\Sigma^+$ transition moments for the xenon halides.

Graphical Data. A-4.19. $2^2\pi$ - $1^2\pi$ transition moments for the xenon halides.

Graphical Data. A-4.20. Schematic representation of the strongest emission bands in xenon halides.

Graphical Data. A-4.21. IV 1/2 - I 1/2 transition moments for the xenon halides.

Graphical Data. A-4.22. III 1/2 - I 1/2 transition moments for the xenon halides.

Graphical Data A-4.23. III 1/2 - II 1/2 transition moments for the xenon halides.

Graphical Data. A-4.24. IV 1/2 - II 1/2 transition moments for the menon halides.

Tabular Data. A-4.25. Calculated transition moments for the ionic-covalent transitions in XeCl with spin-orbit coupling included. (All quantities are in atomic units and only the z-components are given).

æ	111 1/2-1 1/2	IV 1/2-1 1/2	111 1/2-11 1/2	IV 1/2-11 1/2	11 3/2-1 3/2
4.50	-0.9043	1.1567	0.8043	0.6095	1.0090
4.75	-1.0681	1.2110	0.6888	0.5690	0.8928
2.00	-1.2027	1.1843	0.5664	0.5086	0.7595
5.50	-1.2839	1.0061	0.3998	0.3537	0.5240
5.75	-1.2284	0.8995	0.3601	0.2739	0.4321
00.9	-1.1301	0.7962	0.3413	0.1983	0.3560
6.25	-1.0078	0.6997	0.3360	0.1291	0.2935
6.50	-0.8768	0.6110	0.3366	0.0680	0.2421
7.00	-0.6294	0.4559	0.3285	-0.0202	0.1655
8.00	-0.3077	0.2413	0.2317	-0.0659	0.0787

Tabular Data, A-4.26. Calculated transition moments for the ionic-covalent transitions in XeBr with spin-orbit coupling included. (All quantities are in atomic units and only the z-components are given).

æ	111 1/2-1 1/2	IV 1/2-I 1/2	111 1/2-11 1/2	IV 1/2-II 1/2 II 3/2-I 3/2	11 3/2-1 3/2
4.50	-0.6632	0.8462	0.7501	0.5656	0.9388
5.00	-1.0437	1.1789	0.6807	0.4273	0.7893
5.50	-1.1826	1.0943	0.5921	0.2516	0.5780
5.75	-1.1636	1.0038	0.5788	0.1588	0.4857
9.00	-1.0937	0.9018	0.5754	0.0740	0.4061
6.25	-0.9912	0.7973	0.5692	0.0040	0.3387
6.50	-0.8748	0.6963	0.5516	-0.0470	0.2822
6.75	-0.7592	0.6031	0.5205	-0.0796	0.2351
7.00	-0.6528	0.5197	0.4788	-0.0970	0.1958
78.00	-0.3493	0.2830	0.2927	-0.0912	0.0951
10.00	-0.1045	0.0861	0.0899	-0.0359	0.0242

æ	111 1/2 - 1 1/2	- 1 1/2 IV 1/2-1 1/2	111 1/2-11 1/2	TV 1/2-11 1/2	11 3/2-1 3/2
5.00	1761.0-	0.8021	0.6119	0.4560	0.7494
5.50	-1.0471	1.0242	0.6681	0.2435	0.6247
00.9	-1.0629	0.9590	0.6861	0.0535	0.4713
6.50	-0.9346	0.7955	0.6654	-0.0706	0.3418
6.75	-0.8460	0.7073	0.6325	-0.1042	0.2891
7.00	-0.7547	0.6231	0.5878	-0.1225	0.2440
7.50	-0.5845	0.4765	0.4811	-0.1293	0.1732
8.00	-0.4436	0.3606	0.3756	-0.1164	0.1226
10.00	-0.1393	0.1141	0.1194	-0.0480	0.0316

A-5. EMISSION ENERGIES AND WAVELENGTHS, TRANSITION MOMENTS, EINSTEIN COEFFICIENTS AND LIFETIMES FOR IONIC-COVALENT TRANSITIONS IN RARE GAS-FLUORIDES (RgF) AND XENON-HALIDES

CONTENTS

		Pa	age
A-5	trans for t	lated emission energies and wavelengths, and ition moments, Einstein coefficients and lifetimes he ionic-covalent transitions in the rare gas ides	107
A-5	trans lifet xenor	lated emission energies (ΔE) and wavelengths (λ), ition moments (μ), Einstein coefficients (A) and imes (τ) for the ionic-covalent transitions in the halides for electronic states without spin-orbit ing	108
A-5	wavel coeff	lated and experimental emission energies, engths and widths, transition moments, Einstein icients and lifetimes for the ionic-covalent itions in NeF, with spin-orbit corrections	109
A-5	wavel Einst coval	lated and experimental emission energies, engths and widths, and transition moments, ein coefficients and lifetimes for the ionicent transitions in ArF, with spin-orbit ctions	110
A-5	wave: Einst	lated and experimental emission energies, engths and widths, and transition moments, ein coefficients and lifetimes for the ionic-covalent itions in KrF, with spin-orbit corrections	111
A-5	wave: Eins	lated and experimental emission energies, engths and widths, and transition moments, ein coefficients and lifetimes of the ionic-covalent itions in XeF, with spin-orbit corrections	112
A-5	and to	lated and experimental emission energies (ΔE) avelengths (λ), transition moments (μ), Einstein icients (A) and lifetimes (T) for the ionicent transitions in XeCl	113
A-5	wave coef	lated and experimental emission energies (ΔE) and ength (λ), transition moments (μ), Einstein icients (A) and lifetimes (T) for the ionicent transitions in XeBr	114
A-5		lated and experimental emission energies (AE),	115

A-5. References

The tables in (A-5.1)-(A-5.9) are taken from the following sources:

(A-5.1), (A-5.3)-(A-5.6):

T. H. Dunning, Jr., and P. J. Hay, "The Low-Lying States of the Rare-Gas Fluorides," J. Chem. Phys. (to be published).

(A-5.2), (A-5.7)-(A-5.9):

P. J. Hay and T. H. Dunning, Jr., "Electronic States of the Xenon Halides," J. Chem. Phys. (to be published).

Tabular Data. A-5.1. Calculated emission energies and wavelengths, and transition moments, Einstein coefficients and lifetimes for the ionic-covalent transitions in the rare gas fluorides. (All quantities are computed at the R's of the upper states). (Units are as indicated).

Welgerile		An / m/		(4)	1/	
ampardu	Iransition	em (ev)	em (IIII)	(a) n	A(Sec)	(usec)
NeF	222+-X2E+	10.84	114.	1.40	4.12 x 10 ⁸	2.4
	22H-12H	10.61	117.	0.37	2.67×10^7	38.
ArF	225+-X25+	6.49	191.	2.44	2.67 x 10 ⁸	3.7
	2211-1211	6.14	202.	0.74	2.12×10^7	47.
KrF	22E+-X2E+	5.27	235.	2.96	2.11 x 10 ⁸	4.7
	22n-12n	4.82	257.	0.99	1.81 × 10 ⁷	55.
XeF	22E+-X2E+	4.03	307.	3.72	1.49 x 10 ⁸	6.7
	2 ² ∏ −1 ² ∏	3.37	368	1.46	1.33 x 10 ⁷	75.

Tabular Data. A-5.2. Calculated emission energies (ΔE) and wavelengths (λ), transition moments (μ), Einstein coefficients (A) and lifetimes (τ) for the ionic-covalent transitions in the xenon halides for electronic states without spin-orbit coupling.

Molecule	Molecule Transition	ΔE(eV)	γ(nm)	n(D)	A(sec ⁻¹)	T(nsec)
XeF	$2^{2}\Sigma^{+}_{-1}^{2}$	4.03	3077	3.72	1.5×10 ⁸	6.7
	2 2 _{II-1} 2 _{II}	3.37	368.	1.46	1.3×107	75.
XeC1	2 2 2 + -1 2 E+	4.59	270.	3.32	1.8×10 ⁸	5.6
7 5	2 2 1-1 2 T	4.28	290.	96.0	1.2×107	. 49
XeBr	2 2 2 + -1 2 5 +	4.79	259.	3.17	1.8×10 ⁸	5.6
5	2 2 T-1 2 T	4.54	273.	98.0	1.1×107	87.
XeI	2 2 2+-1 2x+	5.00	248.	3.01	1.9x10 ⁸	5.3
	2 2п-1 2п	4.85	256.	0.74	1.0x107	97.

Tabular Data. A-5.3. Calculated and experimental emission energies, wavelengths and widths, transition moments, Einstein coefficients and lifetimes for the ionic-covalent transitions in NeF, with spin-orbit corrections. All quantities computed at the R's of the upper states. Units are as indicated.

			-					
Transition	ΔE.	ΔE _{em} (eV)	em	λ _{em} (nm)	Δλ (nm)	n(D)	A(sec ⁻¹)	τ(nsec)
	Calc	Expt	Calc	Expt				
$111\frac{1}{2} - x_2^{\perp}$	10.83	10.83 11.46 ^a	114.	108.ª	1.4	1.35	3.80 × 10 ⁸	2.6
$1V_2^{\frac{1}{2}} - x_2^{\frac{1}{2}}$	11.02	!	113.	1	1.5	0.39	3.40 × 10 ⁷	29.
$11\frac{3}{2} - 1\frac{3}{2}$	10.59	1	117.	1	3.7	0.37	2.65 x 10 ⁷	38.
$1v_2^1 - 1t_2^1$	10.63		117.	1	3.7	0.33	2.16 × 10 ⁷	46.
$111\frac{1}{2} - 11\frac{1}{2}$	10.48	 	118.	1	3.6	0.18	6.31 × 10 ⁶	158.

Reference: J. K. Rice, A. K. Hays and J. R. Woodworth, Appl. Phys. Letts., 31, 31 (1977).

Tabular Data. A-5.4. Calculated and experimental emission energies, wavelengths and widths, and transition moments, Einstein coefficients and lifetimes for the ionic-covalent transitions in ArF, with spin-orbit corrections. All quantities computed at the Re's of the upper states. Units are as indicated.

11 th		ΔE	ΔE _{em} (eV)	~	λ _{em} (nm)				
6.47 6.41 ^{a,b} 192. 193. ^{a,b} 2.3 2.31 6.70 185 2.7 0.95 6.10 203 11. 0.74 6.23 199 9.9 0.64 6.08 204 8.7 0.35	Transition	Calc	Expt	Calc	Expt	Δλ (nm)	(D) n	A(sec ⁻¹)	τ (nsec)
6.70 185. 2.7 0.95 6.10 203. 11. 0.74 6.23 199. 9.9 0.64 6.08 204. 8.7 0.35	$111\frac{1}{2} - x_2^{\perp}$	6.47	6.41a,b		193.a,b		2.31	2.37 × 10 ⁸	4.2
6.10 203. 11. 0.74 6.23 199. 9.9 0.64 6.08 204. 8.7 0.35	$1v_2^1 - x_2^1$	6.70	1	185.		2.7	0.95	4.46 × 10 ⁷	22.
6.23 199 9.9 0.64 6.08 204 8.7 0.35	$11\frac{3}{2} - 1\frac{3}{2}$		1	203.		11.	0.74	2.07 × 10 ⁷	48.
6.08 204 8.7 0.35	$1v_2^{\perp} - 11_2^{\perp}$	6.23	1	199.	1	6.6	0.64	1.62×10^{7}	62.
	$111\frac{1}{2} - 11\frac{1}{2}$	90.9	1	204.	1	8.7	0.35	4.53 x 10 ⁶	221.

Reference: M. F. Golde and B. A. Thoush, Chem. Phys. Letts., 29, 486 (1974). *Reference: J. G. Goodman and L. E. Brus, J. Chem. Phys. 65, 3808 (1976).

and widths, and transition moments, Einstein coefficients and lifetimes for the ionic-covalent transitions in KrF, with spin-orbit corrections. (All quantities computed at the Re's of the upper states. Units are as indicated). Tabular Data. A-5.5. Calculated and experimental emission energies, wavelengths

	ΔEem	ΔE _{em} (eV)	γ em (nm)	(m	Δλ (nm)		(.(n) A(222-1)	(2000)
ransicion	Calc	Expt	Calc	Expt	Calc	Expt	(a) I	Alsec	(msec)
$III\frac{1}{2} - \frac{1}{\sqrt{2}}$	5.10	5.00ª	243.	248.ª	2.6	2.0a	2.61	1.48 × 10 ⁸ 6.7	6.7
$1v_2^4 - v_2^4$	5.80	5.64b,c	214.	220. ^{b,c}	2.3	1 1	1.64	8.68 x 10 ⁷ 12.	12.
$11\frac{3}{2} - \frac{3}{12}$	4.61	4.51 ^b	269.	275. ^b	19.	1	0.99	1.58 x 10 ⁷ 63.	63.
$1v_2^{1} - 1v_2^{1}$	5.27	;	235.	1	13.	1	0.73	1.30 x 10 ⁷ 77.	77.
$111\frac{1}{2} - 11\frac{1}{2}$	4.65	-	267.		14.	1	0.56	5.14 x 10 ⁶ 195.	.95.

Reference C. A. Brau and J. J. Ewing, J. Chem. Phys. 63, 4640 (1975).
Reference J. R. Murray and H. T. Powell, Appl. Phys. Letts. 29, 352 (1976).
Reference: J. E. Velazco, J. H. Kolts and D. W. Setsen, J. Chem. Phys. 65, 3418 (1976).

and widths, and transition moments, Einstein coefficients and lifetimes of the ionic-covalent transitions in XeF, with spin orbit corrections. (All quantities Tabular Data. A-5.6. Calculated and experimental emission energies, wavelengths computed at the R 's of the upper states. Units are as indicated).

	ΔE em (e	(eV)	λ _{em} (nm)	(H)	i	3	Ţ	τ(nsec)	•
Transition	Calc	Expt	Calc	Expt	VA(nm) µ(D)	n(D)	A(sec)	Calc	Expt
$111\frac{1}{2} - x_{2}^{1}$	3.65	3.52ª	340.	352.ª	1.2	3.20	8.17 × 10 ⁷	12.	16 ^b , 19 ^c , 13 ^d
$1v_2^1 - x_2^1$	4.98	4.70ª,e	249.	264.ª,e	0.85	2.28	1.06 × 10 ⁸	9.5 <40 ^d	_p 04>
$11\frac{3}{2} - 1\frac{3}{2}$	2.94	∿2.75ª,e	422.	422. ~450.ª,e	47.	1.45	8.82 × 10 ⁶	113.	100-150 ^d
$IV_{2}^{\perp} - II_{2}^{\perp}$	4.34	:	286.	;	18.	0.99	1.33 × 10 ⁷	75.	•
$111\frac{1}{2} - 11\frac{1}{2}$	3.13	1	397.	1 1	30.	0.76	2.94 × 10 ⁶	340.	-

Reference: C. A. Brau and J. J. Ewing, J. Chem Phys. 63, 4640 (1975).

^bReference : J. G. Eden and S. K. Searles, Appl. Phys. Letts. 30, 287 (1977).

Reference : R. Burnham and W. W. Harris, J. Chem. Phys. <u>66</u>, 2742 (1977).

Reference : J. J. Ewing, Seventh Winter Colloquium on Quantium Electronics, Park City, Utah, Feb. 1977.

Reference : J. E. Velazco, J. H. Kolts and D. W. Setser, J. Chem. Phys. 65, 3468 (1926).

Tabular Data. A-5.7. Calculated and experimental emission energies (ΔE) and wavelengths (λ), transition moments (μ), Einstein coefficients (A) and lifetimes (τ) for the ionic-covalent transitions in XeCl.

XeCl Transitions	ΔΕ (eV) λ(nm) Calc Expt	λ(nm) Expt	λ (nm) Calc	Expt	n(D)	A(sec ⁻¹)	T(nsec)
III 1/2 - I 1/2	4.20	4.03	295.	308.	2.76	9.3×10 ⁷	11.
IV 1/2 - I 1/2	5.53	5.25	224.	236.	1.94	1.0x10 ⁸	9.6
11 3/2 - 1 3/2	3.76		330.		96.0	8.1x10 ⁶	120.
IV 1/2 - II 1/2	5.13		242.		0.50	5.6×10 ⁶	180.
111 1/2 - 11 1/2	3.83		324.		0.87	6.0×10 ⁶	140.

Tabular Data. A-5.8. Calculated and experimental emission energies (ΔE) and wavelengths(λ), transition moments (μ), Einstein coefficients (A) and lifetimes (τ) for the ionic-covalent transitions in XeBr.

XeBr Transitions	ΔE _m (eV)	7)	γ(nm)		(4)	1,000-1,	7(2000)
	Calc	Expt	Calc	Expt	(ת) א	A(sec)	(nec)
111 1/2 - 1 1/2	4.48	4.40	277.	282.	2.35	8.2×10 ⁷	12.
IV 1/2 - I 1/2	5.81		213.		1.88	1.1x10 ⁸	8.8
11 3/2 - 1 3/2	4.10		302.		0.86	8.4 ×10 ⁶	120.
IV 1/2 - II 1/2	5.17		240.		0.02	1.4x10 ⁴	73. × 10
111 1/2 - 11 1/2	3.86		321.		1.44	2.0×10 ⁷	51.

Tabular Data. A-5.9. Calculated and experimental emission energies (ΔE) and wavelengths(λ), transition moments (μ), Einstein coefficients (A), and lifetimes (τ) for the ionic-covalent transitions in XeI.

						The same of the sa	Street, or other Designation of the last o
Xel Transitions	ΔE (eV)	3	γ (nm)	0	(0)1	A(sec -1)	(2000)
	Calc	Expt	Calc	Expt	(2)	, nac, u	(need)
III 1/2 - I 1/2 4,	4,85	4.90	256.	253.	2.07	8.0×10 ⁷	12.
IV 1/2 - I 1/2 6.	6,19	6.11	200.	203.	1.72	1.2×10 ⁸	8.6
11 3/2 - 1 3/2 4.	4.72	4.25	263.	292.	0.74	9.4×10 ⁶	110.
IV 1/2 - II 1/2 5.	5.13		242.		0.27	1.6x10 ⁶	610.
111 1/2 - 11 1/2 3.	3.80	3.76	326,	330.	1.59	2.3×10 ⁷	44.

A-6.	POTENT	TIAL-ENER	RGY	CURVI	ES, SPECTRO	OSCOP:	IC DATA	A, ABS	ORPTIO	N DATA	AND
ABSOR	PTION	SPECTRA	FOR	THE	MOLECULAR	IONS	He ₂ ⁺ ,	Ne ₂ ⁺ ,	Ar ₂ ⁺ ,	Kr ₂ ⁺ ,	Xe ₂ ⁺
					CONTE	NTS					

		Page
A-6.1.	Tabular Data He2+, Ne2+, Ar2+, F2-, Cl2-, Cl2	121
A-6.2.	Graphical Data. He2+	122
A-6.3.	Tabular Data He2 +	123
A-6.4.	Graphical Data He2 + · · · · · · · · · · · · · · · · · ·	124
A-6.5.	Potential curves for the states of Ne ₂ ⁺	125
A-6.6.	Potential curves of Ne ₂ ⁺ including the effects of spin-orbit coupling	126
A-6.7.	Potential energies of Ne_2^+ before spin-orbit coupling .	127
A-6.8.	Potential energies of Ne ₂ ⁺ including spin-orbit effects	128
A-6.9.	Vibrational levels of Ne ₂ ⁺ state	129
A-6.10.	Graphical Data Ar ₂ + · · · · · · · · · · · · · · · · · ·	130
A-6.11.	Graphical Data Ar ₂ ⁺	131
A-6.12.	Total energies for POL CI Calculations on Ar 2 without spin-orbit coupling	132
A-6.13.	Spectroscopic data for the ground state of Ar 2 with and without spin-orbit coupling	133
A-6.14.	Absorption data for Ar ₂ ⁺ with and without spin-orbit coupling	133
A-6.15.	Total energies for POL CI calculations on Ar 2 with spin-orbit coupling	134
A-6.16.	Comparison of ab initio calculations for the dipole-allowed absorptions in Ar ₂	134
A-6.17.	Comparison of the ab initio calculations on the $2_{\Sigma_{\mathbf{u}}^+}$ state of Ar $_2^+$ without spin-orbit coupling	135
A-6.18.	Graphical Data: Potential curves of Ar2+	136
A-6.19.	Ar ₂ ⁺ potential curves · · · · · · · · · · · · · · · · · · ·	137

		Page
A-6.20.	Graphical Data Kr2	138
A-6.21.	Graphical Data Kr ⁺ ₂	139
A-6.22.	Total energies for POL CI calculations on Kr 2 ⁺ without spin-orbit coupling	140
A-6.23.	Total energies for POL CI calculations in Kr ₂ ⁺ with spin-orbit coupling	141
A-6.24.	Spectroscopic data for the ground state of Kr + with and without spin-orbit coupling	142
A-6.25.	Absorption data for Kr ₂ ⁺ with and without spin- orbit coupling	142
A-6.26.	Graphical Data Xe2 +	143
A-6.27.	Graphical Data Xe2	144
A-6.28.	Total energies for POL CI calculations on Xe 2 without spin-orbit coupling	145
A-6.29.	Total energies for POL CI calculations on Xe 2 with spin-orbit coupling	146
A-6.30.	Spectroscopic data for the ground state of Xe ₂ ⁺ with and without spin-orbit coupling	147
A-6.31.	Absorption data for Xe ₂ with and without spin- orbit coupling	147
A-6.32.	Graphical Data Xe ₂ ⁺	148
A-6.33.	Comparison of theoretical and experimental determinations of the dissociation energy for the I(1/2)u states of Ar ₂ , Kr ₂ , and Xe ₂	149
A-6.34.	The absorption spectra for the $I(1/2)u \rightarrow II(1/2)g$ transition in Ne_2^+ , Ar_2^+ , Kr_2^+ and Xe_2^+ determined from ab initio configuration interaction	5 à L
	calculations	150
A-6.35.	Potential curves for Cl ₂ and Cl ₂	151
A-6.36.	Energy parameters	152
A-6.37.	Energy level difference parameters for He 2 · · · · ·	153
A-6.38.	Energy level difference parameters for Ne2, Ar2, F2, and Cl2	154

A-6. References

The figures and tables in (A-6.1)-(A-6.37) are taken from the following sources:

(A-6.1), (A-6.35)-(A-6.37):

T. L. Gilbert and A. C. Wahl, "Single-Configuration Wave Functions and Potential Curves for Low-Lying States of He2+, Ne2+, Ar2+, F2-, Cl2 and the Ground State of Cl2," J. Chem. Phys. 55, 5247 (1971).

(A-6.2), (A-6.3):

R. J. Blint, "Spectrum of potential-energy curves for the He₂⁺ system,"

Phys. Rev. A <u>14</u>, 2055 (1976).

(A-6.4):

R. S. Mulliken, "Rare Gas and Hydrogen Molecule Electronic States, Noncrossing Rule, and Recombination of Electronic with Rare-Gas and Hydrogen Ions." Phys. Rev. A <u>136</u>, 962 (1964).

(A-6.5)-(A-6.9):

J. S. Cohen and B. Schneider, "Ground and Excited States of Ne₂ and Ne₂⁺. I. Potential curves with and without spin-orbit coupling," J. Chem. Phys. 61, 3230 (1974).

(A-6.10)-(A-6.17), (A-6.20)-(A-6.32), (A-6.33):

W. R. Wadt, "The Electronic States of Ar₂⁺, Kr₂⁺ and Xe₂⁺. I. Potential curves with and without spin-orbit coupling," J. Chem. Phys. <u>68</u>, 402 (1978).

(A-6.18), (A-6.19):

J. T. Moseley, R. P. Saxon, B. A. Huber, P. C. Cosby, R. Abouaf and M. Tadjeddine, "Photofragment spectroscopy and potential curves of Ar₂⁺," J. Chem. Phys. <u>67</u>, 1659 (1977).

(A-6.32):

R. S. Mulliken, "Potential curves of diatomic rare-gas molecules and their ions, with particular reference to Xe_2^* ," J. Chem. Phys. 52, 5170 (1970).

(A-6.34):

W. R. Wadt, D. C. Cartwright and J. S. Cohen, "Theoretical absorption spectra for Ne_2^+ , Ar_2^+ , Kr_2^+ and Xe_2^+ in the near ultraviolet,"

Appl. Phys. Letts. (to be published).

Calculated potential curves for the ground states.

He ₂ +										
R (bohrs)	1.50	1.75	2.00	2.25	2.50	3.00	3.50	4.00	5.00	6.00
U(R)* (eV)	-1.16	-2.38	-2.67	-2.52	-2.18	-1.45	-0.84	-0.48	-0.16	-0.07
Ne ₂ +										
R (bohrs)	2.50	2.80	3.00	3.20	3.50	4.00	5.00			
U(R) • (eV)	+0.79	-1.14	-1.56	-1.65	-1.49	-1.03	-0.39			
Ar ₂ +										
R (bohrs)	3.80	4.00	4.20	4.30	4.50	4.60	4.70	5.00	5.50	
<i>U(R)</i> • (eV)	+0.04	-0.63	-1.00	-1.12	-1.23	-1.25	-1.25	-1.15	-0.89	
F										
R (bohrs)	2.68	3.20	3.60	4.00	4.40	4.80	5.20	5.80	6.60	
U(R)* (eV)	+0.94	-1.10	-1.66	-1.50	-1.24	-0.99	-0.78	-0.55	-0.35	
Cl ₂ -										
R (bohrs)	3.80	4.00	4.50	4.70	5.00	5.10	5.50	6.00	7.00	
U(R)* (eV)	+0.94	+0.04	-1.05	-1.21	-1.28	-1.28	-1.18	-0.98	-0.60	
Cla										
R (bohrs)	3.60	3.756	3.80	3.90	4.20					
U(R) b (eV)	+1.04	+0.91	+0.91	+0.94	+1.30					

• Relative to dissociated system: $U(\infty) = 0$.

• Relative to $E_{\text{Cl}} + E_{\text{Cl}} -: U(\infty) = 3.42 \text{ eV}.$

Ground state potential curve characteristics.

		D. (eV)				
	Calc	Exptl	- R. (bohr) Calc	ω, (cm ⁻¹) Calc	B _e (cm ⁻¹) Calc	ΔE _{LR} • (eV) Calc
He ₁ +	2.67	2.49b (2.33e)	2.0ª	17904	7.4d	1.02
Ne ₁ +	1.65	1.35±0.07° (1.1°)	3.2	660	0.59	1.77
Ars+	1.25	1.6±0.3f (1.4e)	4.6	300	0.139	0.69
F ₁ -	1.66	1.29±0.1	3.6	510	0.50	1.89
Cl ₂ -	1.28	1.26±0.1	5.0	260	0.136	0.78
Cla	0.87	2.51434	3.8	577	0.24	•••

Limiting value of left-right correlation energy for R→∞. See text. * Limiting value of lett-right correlation energy for $A \rightarrow \infty$. See text. b R. E. Olson and C. R. Mueller, J. Chem. Phys. 46, 3810 (1967). This figure is based on the 10 eV scattering data of Lorents and Aberth. The value obtained from scattering at 15 eV is $D_e = 2.34$ eV.

* Mulliken's estimates of the "true" values. See R. S. Mulliken, J. Chem.

Phys. 52, 5170 (1970).

d Experimental values are $R_e = 2.04$, $\omega_e = 1627$, and $B_e = 7.22$. [G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecular (Van Nostrand-Reinhold, 1950).] Reagan et al. [J. Chem. Phys. 32, 304 (1963)] obtain $D_e = 2.30$, $R_e = 2.06$, $\omega_e = 1646$, and $B_e = 6.99$ from a 26-term multiconfiguration calculation.

*J. R. Connor and M. A. Biondi, Phys. Rev. 140, A778 (1965); I..

Frommhold and M. A. Biondi, Phys. Rev. 185, 244 (1969).

^f W. Aberth and D. C. Lorents, Phys. Rev. 144, 109 (1966).

^g W. A. Chupka, J. Berkowitz, and D. Gutman, J. Chem. Phys. 55, 2724 (1971).

A. E. Douglas, C. K. Moeller, and B. P. Stoicheff, Can. J. Phys. 41. 1174 (1963). Experimental values for the other constants are $R_e = 3.756$. ω_0 = 559.71, and B_0 = 0.24407. Cl₁ is the only one of the above systems for which the MO wavefunction does not dissociate to the proper limit.

Tabular Data. A-6.1. He2+, Ne2+, Ar2+, F2-, Cl2-, Cl2.

Spectrum of calculated potential-energy curves for the $^2\Sigma_g^*$ symmetry state. Each curve is labeled with the state of the neutral species at the asymptotic limit. The complementary ionic species in each case is in its ground state. The units are hartrees (= 27.2 eV) and bohr (=0.529 Å).

Spectrum of calculated potential-energy curves for the $^2\Sigma_u{}^{\bullet}$ symmetry state.

Expanded section of the interacting potentialenergy curves

Expanded section of the interacting potentialenergy curves for the $^2\Sigma_{\mu}^{\ \ \ }$ states.

ALSO Potential-energy curves for the $^2\Pi_{g,u}$ states of $\mathrm{He_2}^{\bullet}$.

Symmetries and excitation energies of the lower symmetry states of the $\mathrm{He_2}^*$ molecular collision complex. All energies are in $\mathrm{eV}'s$.

He*(2) + He(1S)	2E,u.	0.0
He*(2S) + He(32S)	L Z	19.82
He*(2S) + He(12S)	·2,0,0	20.61
He*(2S) + He(2P)	'Es Es 'IIg IIg	20.96
He*(2) + He(2P)	12 11. c	21.22
He*(2S) + He(3S)	'E 'E	22.72
He*(25) + He(135)	'2,	22.92

Asymptotic energies of the CI calculations for the $^2\Sigma_g^*$ and $^2\Sigma_g^*$ states of the (He₂)* complex. All energies are in eV.

Neutral excitations Calc. Expt. a A(Expt Calc.)	Calc.	Expt.	A(Expt Calc.
He(¹ S)-He(³ S)	19.41	19.82	9.41
He(1S)-He(12S)	20.22	20.61	0.39
He(1S)-He(3P)	21.34	20.96	-0.38
He('S)-He('P)	21.87	21.22	-0.65
He(1S)-He(2S)	23.66	23.66 22.72	-0.94

Reference C. E. Moore, Atomic Energy Levels, NSRDS-NBS Civ. No.35 (U.S. GPO. Washington, D. C., 1971)

Avoided crossings for the (He₂)* complex for both the ${}^2\Sigma_{\rm s}^2$ and ${}^2\Sigma_{\rm s}^2$ states. V_{ij} for these states is $\frac{1}{8}$ the minimum energy splitting between the states. The critical energy $E_{\rm c}$ is the energy at which the LZS transition probability is 0.37.*

	States			
Initial	Final	Ro (bohr)	V, (eV)	Ec (eV)
		12.		
He(1S)	He (3S)	1.44,	0.73,	0.49.
He(3S)	He(12S)	1.25,	0.07	<103
He(¹ 25)	He(3P)	1.53,	0.12,	0.10
He(12S)	He(3P)	2.70	0.13,	12.79
He(3P)	He('P)	2.17,	0.30,	0.35
He(1P)	He(³ 25)	6.80	0.17	2.75
		12.		
He(3S)	He(12S)	2.440	0.52	20.72.
He(12S)	He(3P)	1.83,	0.36	0.27.
He(12S)	He(3P)	3.73	0.08	0.13
He(3P)	He('P)	1.56	0.45	0.31.
He(3P)	He('P)	2.31,	0.05	407
He(1P)	He(³ 25)	1.925	0.01	<10-¢
He(1P)	He(\$25)	5.94	0.17	1.90

C. W. Bauschlecher, S. V. O'Nell, R. K. Preston and H. F. Schaeffer, J. Chem. Phys. 59, 1286 (1973).

Tabular Data A-6.3. He₂

2

Potential curves of He_2^+ and of some triplet states of He_2 . For the ten lower states shown, which have A core, the curve shapes near their minima and their depths relative to the A curve of He_2^+ are based on experimental data, except for $4p\sigma$ and $4f\sigma$. The absolute depths of all these curves are based on an assumed value of 2.1 eV for the dissociation energy D^+ of the c=0 level of He_2^+ . The forms of the B-core curves, and of the A-core curves at larger R values, have no more than qualitative justification. Circles, for example where A3s intersects $A3d\sigma$, and where A4s intersects $B3p\sigma$ (twice), indicate crossings which, although not so shown, should be avoided according to the noncrossing rule. For every triplet state of He_2 a corresponding singlet state exists, but to avoid confusion these are omitted

Graphical Data A-6.4. He2+

Graphical Data A-6.5. Ne

Potential curves for the states of Ne_2^* formed in the interaction of $Ne^*(2p^5, ^2P)$ with ground-state Ne, not including spin-orbit coupling. Curves for the ungerade states are shown solid and curves for the gerade states are shown dashed.

Graphical Data A-6.6. Potential curves of Ne_2^+ including the effects of spin-orbit coupling.

Tabular Data A-6.7.

Potential energies of Ne $\frac{1}{2}$ before spin-orbit coupling [relative to the separated-atom limit, i.e. $V(R) = E(R) - E(\infty)$].

R[a]		V(R) [a.u.	1	
	$^{2}\Sigma_{\mathbf{u}}^{+}$	² Σ+ g	² n _u	² п
2.5	0.06288	0.50554	0.39732	0.26352
3.0	-0.03906	0.19912	0.11981	0.06015
3.5	-0.04220	0.08791	0.03753	0.00965
4.0	-0.02904	0.04233	0.01219	-0.00132
5.0	-0.01001	0.01117	0.00129	-0.00208
6.0	-0.00308	0.00307	0.00002	-0.00085
7.0	-0.00098	0.00080	-0.00011	-0.00035
8.0	-0.00035	0.00017	-0.00010	-0.00015

Tabular Data A-6.8. Potential energies of N_2^+ including spin-orbit effects. a,b

	V(R) [a.u	• 1	
$(1/2)_{u}(^{2}P_{3/2})$	$\left(1/2\right)_{g}\left(^{2}P_{3/2}\right)$	$(1/2)_{\mathbf{u}}(^{2}\mathbf{P}_{1/2})$	$(1/2)_{g}(^{2}P_{1/2})$
0.06406	0.26588	0.39614	0.50318
-0.03789	0.06250	0.11864	0.19676
-0.04105	0.01199	0.03638	0.08557
-0.02792	9.89x10 ⁻⁴	0.01107	0.04002
-0.00904	6.59×10 ⁻⁵	3.24x10 ⁻⁴	0.00902
-0.00247	7.26×10 ⁻⁴	-5.92x10 ⁻⁴	0.00149
-7.33x10 ⁻⁴	3.24×10 ⁻⁴	-3.59x10 ⁻⁴	1.21x10 ⁻⁴
-2.68x10 ⁻⁴	5.70x10 ⁻⁵	-1.76x10 ⁻⁴	-3.70x10 ⁻⁵
	0.06406 -0.03789 -0.04105 -0.02792 -0.00904 -0.00247 -7.33x10 ⁻⁴	0.06406	-0.03789 0.06250 0.11864 -0.04105 0.01199 0.03638 -0.02792 9.89×10^{-4} 0.01107 -0.00904 6.59×10^{-5} 3.24×10^{-4} -0.00247 7.26×10^{-4} -5.92×10^{-4} -7.33×10^{-4} 3.24×10^{-4} -3.59×10^{-4}

^aThe energy of Ne $^+$ (2 P $_{1/2}$) relative to the ground state Ne(2 P $_{3/2}$) is 0.00356 a.u.

The Ne $_2^+$ (3/2) u,g (2 P $_{3/2}$) potential curves are the same as those listed in Table for Ne $_2^+$ 2 II $_{u,g}$ (2 P).

Tabular Data. A-6.9. Vibrational levels of Ne_2^+ (1/2) $_{\mathrm{u}}^{}(^2\mathrm{P}_{3/2}^-)$ state. The spectrum of Ne_2^+ $^2\Sigma_{\mathrm{u}}^+$ is similar except for the high vibrational states and has one more bound level.

		Ne_{2}^{+} (1/2	2) _u (² P _{3/2})		
v	G[cm ⁻¹]	B _v [cm ⁻¹]	v	G[cm ⁻¹]	B _v [cm ⁻¹]
0	253	0.553	16	7072	0.393
1	756	0.550	17	7363	0.380
2	1253	0.546	18	7636	0.366
3	1744	0.541	19	7891	0.352
4	2231	0.533	20	8127	0.322
5	2713	0.525	21	8345	0.322
6	3188	0.515	22	8543	0.306
7	3652	0.504	23	8721	0.289
8	4101	0.492	24	8878	0.270
9	4534	0.480	25	9015	0.250
10	4950	0.468	26	9130	0.228
11	5348	0.456	27	9223	0.202
12	5729	0.444	28	9292	0.174
13	6091	0.431	29	9342	0.148
14	6436	0.419	30	9375	0.119
15	6763	0.406	31	9394	0.093

$$D_e = 9401 \text{ cm}^{-1}$$
 $R_e = 1.75 \times 10^{-8} \text{ cm}$

Graphical Data A-6.10. Ar 2+

Graphical Data. A-6.11. Ar 2+

Tabular Data A-6.12. Total energies for POL CI calculations on ${\rm Ar}_2^+$ without spin-orbit coupling. Energies are relative to -1052. hartrees.

R	2 _Σ + _u	² II _g	² II _u	$^2\Sigma_{\mathbf{g}}^+$
20.0 a _o	- 1.01585	- 1.01585	- 1.01585	- 1.01585
8.0	- 1.01957	- 1.01676	- 1.01622	- 1.01366
7.0	- 1.02608	- 1.01800	- 1.01584	- 1.00840
6.75	- 1.02874	- 1.01846	- 1.01550	- 1.00605
6.5	- 1.03194	- 1.01895	- 1.01490	- 1.00302
6.25	- 1.03571	- 1.01940	- 1.01390	- 0.99907
6.0	- 1.04004	- 1.01967	- 1.01226	- 0.99388
5.75	- 1.04486	- 1.01956	- 1.00960	- 0.98700
5.5	- 1.04995	- 1.01867	- 1.00534	- 0.97778
5.25	- 1.05492	- 1.01639	- 0.99861	- 0.96531
5.0	- 1.05910	- 1.01173	- 0.98806	- 0.94828
4.75	- 1.06139	- 1.00312	- 0.97167	- 0.92478
4.5	- 1.06003	- 0.98814	- 0.94643	- 0.89212
4.25	- 1.05232	- 0.96316	- 0.90791	- 0.84642
4.0	- 1.03405	- 0.92274	- 0.84961	- 0.78227
3.0	- 0.65613	- 0.37623	- 0.15502	- 0.15449

Tabular Data A-6.13. Spectroscopic data for the ground state of Ar_2^+ with and without spin-orbit coupling.

	D _e (eV)	R _e (Å)	$\omega_{e}(cm^{-1})$	B _e (cm ⁻¹)
$1^2\Sigma_{\mathbf{u}}^+$	1.24	2.48	293	0.137
I(1/2)u	1.19	2.48	293	0.137

Tabular Data A-6.14. Absorption data for Ar_2^+ with and without spin-orbit coupling.

Serio III Company	$\Delta E(eV)$	λ(nm)	M(D)	<u>_f</u>
$1^2 \Sigma_{\mathbf{u}}^{\dagger} \rightarrow 1^2 \Pi_{\mathbf{g}}$	1.66	745	0.09	5.0x10 ⁻⁵
$+ 1^2 \Sigma_{\mathbf{g}}^{+}$	3.89	319	5.26	0.41
I(1/2) _u + I(3/2) _g	1.61	772	0.06	2.4x10 ⁻⁵
+ I(1/2) _g	1.72	720	0.38	9.2x10 ⁻⁴
+ II(1/2) _g	3.89	318	5.22	0.40

The vertical transition energies are calculated at ${\rm R}_{\rm e}$ as are the transition moments (M) and oscillator strengths (f).

Tabular Data A-6.15. Total energies for POL CI calculations on Ar_2^+ with spin-orbit coupling. (Energies are relative to -1052. hartrees).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
8.0	R	I(1/2)u	11(1/2)u	I(3/2)u	I(1/2)g	II(1/2)g	I(3/2)g
7.0 - 1.02680 - 1.01294 - 1.01801 - 1.01693 - 1.00729 - 1.02017 6.75 - 1.02933 - 1.01273 - 1.01767 - 1.01713 - 1.00519 - 1.02063 6.5 - 1.03242 - 1.01224 - 1.01707 - 1.01743 - 1.00236 - 1.02112 6.25 - 1.03609 - 1.01133 - 1.01607 - 1.0177399856 - 1.02157 6.0 - 1.04035 - 1.00977 - 1.01443 - 1.0178899348 - 1.02184 5.75 - 1.04511 - 1.00717 - 1.01177 - 1.0176998669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.0167397753 - 1.02084 5.25 - 1.0550899627 - 1.00078 - 1.0144096511 - 1.01856 5.0 - 1.059229857599023 - 1.0097094812 - 1.01390 4.75 - 1.061499693997384 - 1.0010692465 - 1.00529 4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	20.0 a	- 1.01802	- 1.01150	- 1.01802	- 1.01802	- 1.01150	- 1.01802
6.75 - 1.02933 - 1.01273 - 1.01767 - 1.01713 - 1.00519 - 1.02063 6.5 - 1.03242 - 1.01224 - 1.01707 - 1.01743 - 1.00236 - 1.02112 6.25 - 1.03609 - 1.01133 - 1.01607 - 1.0177399856 - 1.02157 6.0 - 1.04035 - 1.00977 - 1.01443 - 1.0178899348 - 1.02184 5.75 - 1.04511 - 1.00717 - 1.01177 - 1.0176998669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.0167397753 - 1.02084 5.25 - 1.0550899627 - 1.00078 - 1.0144096511 - 1.01856 5.0 - 1.059229857599023 - 1.0097094812 - 1.01390 4.75 - 1.061499693997384 - 1.0010692465 - 1.00529 4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	8.0	- 1.02094	- 1.01267	- 1.01839	- 1.01723	- 1.01101	- 1.01893
6.5 - 1.03242 - 1.01224 - 1.01707 - 1.01743 - 1.00236 - 1.02112 6.25 - 1.03609 - 1.01133 - 1.01607 - 1.0177399856 - 1.02157 6.0 - 1.04035 - 1.00977 - 1.01443 - 1.0178899348 - 1.02184 5.75 - 1.04511 - 1.00717 - 1.01177 - 1.0176998669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.0167397753 - 1.02084 5.25 - 1.0550899627 - 1.00078 - 1.0144096511 - 1.01856 5.0 - 1.059229857599023 - 1.0097094812 - 1.01390 4.75 - 1.061499693997384 - 1.0010692465 - 1.00529 4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	7.0	- 1.02680	- 1.01294	- 1.01801	- 1.01693	- 1.00729	- 1.02017
6.25 - 1.03609 - 1.01133 - 1.01607 - 1.0177399856 - 1.02157 6.0 - 1.04035 - 1.00977 - 1.01443 - 1.0178899348 - 1.02184 5.75 - 1.04511 - 1.00717 - 1.01177 - 1.0176998669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.0167397753 - 1.02084 5.25 - 1.0550899627 - 1.00078 - 1.0144096511 - 1.01856 5.0 - 1.059229857599023 - 1.0097094812 - 1.01390 4.75 - 1.061499693997384 - 1.0010692465 - 1.00529 4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	6.75	- 1.02933	- 1.01273	- 1.01767	- 1.01713	- 1.00519	- 1.02063
6.0 - 1.04035 - 1.00977 - 1.01443 - 1.0178899348 - 1.02184 5.75 - 1.04511 - 1.00717 - 1.01177 - 1.0176998669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.0167397753 - 1.02084 5.25 - 1.0550899627 - 1.00078 - 1.0144096511 - 1.01856 5.0 - 1.059229857599023 - 1.0097094812 - 1.01390 4.75 - 1.061499693997384 - 1.0010692465 - 1.00529 4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	6.5	- 1.03242	- 1.01224	- 1.01707	- 1.01743	- 1.00236	- 1.02112
5.75 - 1.04511 - 1.00717 - 1.01177 - 1.01769 98669 - 1.02173 5.5 - 1.05015 - 1.00296 - 1.00751 - 1.01673 97753 - 1.02084 5.25 - 1.05508 99627 - 1.00078 - 1.01440 96511 - 1.01856 5.0 - 1.05922 98575 99023 - 1.00970 94812 - 1.01390 4.75 - 1.06149 96939 97384 - 1.00106 92465 - 1.00529 4.5 - 1.06011 94417 94860 98606 89201 99031 4.25 - 1.05238 90567 91008 96106 84633 96533 4.0 - 1.03410 84738 85178 92063 78220 92491	6.25	- 1.03609	- 1.01133	- 1.01607	- 1.01773	99856	- 1.02157
5.5 - 1.05015 - 1.00296 - 1.00751 - 1.01673 97753 - 1.02084 5.25 - 1.05508 99627 - 1.00078 - 1.01440 96511 - 1.01856 5.0 - 1.05922 98575 99023 - 1.00970 94812 - 1.01390 4.75 - 1.06149 96939 97384 - 1.00106 92465 - 1.00529 4.5 - 1.06011 94417 94860 98606 89201 99031 4.25 - 1.05238 90567 91008 96106 84633 96533 4.0 - 1.03410 84738 85178 92063 78220 92491	6.0	- 1.04035	- 1.00977	- 1.01443	- 1.01788	99348	- 1.02184
5.25 - 1.05508 99627 - 1.00078 - 1.01440 96511 - 1.01856 5.0 - 1.05922 98575 99023 - 1.00970 94812 - 1.01390 4.75 - 1.06149 96939 97384 - 1.00106 92465 - 1.00529 4.5 - 1.06011 94417 94860 98606 89201 99031 4.25 - 1.05238 90567 91008 96106 84633 96533 4.0 - 1.03410 84738 85178 92063 78220 92491	5.75	- 1.04511	- 1.00717	- 1.01177	- 1.01769	98669	- 1.02173
5.0 -1.05922 98575 99023 -1.00970 94812 -1.01390 4.75 -1.06149 96939 97384 -1.00106 92465 -1.00529 4.5 -1.06011 94417 94860 98606 89201 99031 4.25 -1.05238 90567 91008 96106 84633 96533 4.0 -1.03410 84738 85178 92063 78220 92491	5.5	- 1.05015	- 1.00296	- 1.00751	- 1.01673	97753	- 1.02084
4.75 - 1.06149 96939 97384 - 1.00106 92465 - 1.00529 4.5 - 1.06011 94417 94860 98606 89201 99031 4.25 - 1.05238 90567 91008 96106 84633 96533 4.0 - 1.03410 84738 85178 92063 78220 92491	5.25	- 1.05508	99627	- 1.00078	- 1.01440	96511	- 1.01856
4.5 - 1.060119441794860986068920199031 4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	5.0	- 1.05922	98575	99023	- 1.00970	94812	- 1.01390
4.25 - 1.052389056791008961068463396533 4.0 - 1.034108473885178920637822092491	4.75	- 1.06149	96939	97384	- 1.00106	92465	- 1.00529
4.0 - 1.034108473885178920637822092491	4.5	- 1.06011	94417	94860	98606	89201	99031
	4.25	- 1.05238	90567	91008	96106	84633	96533
3.0656141528215719374091544437840	4.0	- 1.03410	84738	85178	92063	78220	92491
	3.0	65614	15282	15719	37409	15444	37840

Tabular Data A-6.16. Comparison of $\underline{ab\ initio}$ calculations for the dipole-allowed absorptions in Ar_2^+ .

	2 _u +	+ 2Eg	$\frac{^2\Sigma_{\mathbf{u}}^+ + ^2\Pi_{\mathbf{g}}}{}$	
	λ(nm)	M(D)	λ(nm)	M(D)
Stevens	299	5.74	705	0.09
This Work	319	5.26	745	0.09

aReference: W. J. Stevens, M. Gardner and A. Karo (to be published).

Tabular Data A-6.17. Comparison of the ab initio calculations on the $2\frac{r}{L}$ state of Ar $_2^+$ without spin-orbit coupling.

				Th	This Work		
	Gilbert		SCF	F		POL CI	
	Wahla	Stevens	Basis I	Basis IV	1_{Σ^+} orbs	1 71	ss 2 orbs
R (A)	2.46	2.46	2.50	2.49	2.50	2.50	2.50
De (eV)	1.25	1.20	1.17	1.17	1.24	1.21	1.21

Reference: T.L. Gilbert and A. C. Wahl, J. Chem. Phys 55, 5247 b. Reference: W. J. Stevens, M. Gardner and A. Karo (to be published)

(Indicated transitions correspond to 7525 Å)

Graphical Data A-6.18. Potential curves of ${\rm Ar_2}^+$.

Tabular Data A-6.19. Ar + potential curves

R (Å)	² Σ _u (eV)	2 _∏ (eV)	² Σ _g ⁺ (eV)
			(2P asymptote
2.000	0.4513	3,3920	8.3636
2.100	-0.5955	2.5181	6.8974
2.200	-1.0552	1.6671	5.4602
2.300	-1.2333	1.0068	4.2638
2.400	-1.3328	0.5796	3,3716
2.500	-1.3368	0.2807	2,6661
2.600	-1.2886	0.0798	2.1138
2.700	-1.2119	-0.0513	1,6810
2.800	-1.1180	-0.1356	1.3591
2.900	-1.0172	-0.1872	1.1319
3.000	-0.9186	-0.2191	0.9439
3.100	-0.8252	-0.2370	0.7895
3.200	-0.7378	-0.2441	0.6644
3.300	-0.6573	-0.2437	0.5635
3.400	-0.5845	-0.2392	0.4811
3.500	-0.5203	-0.2337	0.4113
3.600	-0.4648	-0.2286	0.3526
3.700	-0.4177	-0.2239	0.3066
3.800	-0.3596	-0.2071	0.2875
3.900	-0.3104	-0.1911	0.2779
4.000	-0.2696	-0.1762	0.2741
4.100	-0.2359	-0.1624	0.2731
4.200	-0.2078	-0.1496	0.2716
4.300	-0.1841	-0.1378	0.2665
4.400	-0.1640	-0.1270	0.2575
4.500	-0.1467	-0.1169	0.2461
4.600	-0.1316	-0.1076	0.2336
4.700	-0.1180	-0.0991	0.2215
4.800	-0.1055	-0.0913	0.2111
4.900	-0.0937	-0.0841	0.2030
5.000	-0.0824	-0.0775	0.1970
5.100	-0.0719	-0.0714	0.1927
5.200	-0.0620	-0.0658	0.1896
5.300	-0.0529	-0.0608	0.1875
5.400	-0.0446	-0.0561	0.1858
5.500	-0.0371	-0.0519	0.1846
5.600	-0.0305	-0.0480	0.1836
5.700	-0.0248	-0.0445	0.1828
5.800	-0.0202	-0.0412	0.1821
5.900	-0.0166	-0.0383	0.1814
6.000	-0.0139	-0.0356	0.1806

Graphical Data A-6.20. Kr₂⁺

Tabular Data A-6.22. Total energies for POL CI calculations on Kr_2^+ without spin-orbit coupling. (Energies are relative to -5503. hartrees)

R	2 _Σ +	2 _∏	2 _{II} u	2 _Σ +
20.0 a	- 0.29392	- 0.29392	- 0.29392	- Ò.29392
8.0	- 0.30201	- 0.29595	- 0.29456	- 0.28924
7.0	- 0.31275	- 0.29791	- 0.29333	- 0.28039
6.75	- 0.31659	- 0.29834	- 0.29227	- 0.27646
6.5	- 0.32085	- 0.29855	- 0.29054	- 0.27136
6.25	- 0.32541	- 0.29830	- 0.28779	- 0.26467
6.0	- 0.33006	- 0.29724	- 0.28350	- 0.25582
5.75	- 0.33440	- 0.29481	- 0.27689	- 0.24402
5.5	- 0.33780	- 0.29013	- 0.26683	- 0.22818
5.25	- 0.33927	- 0.28191	- 0.25166	- 0.20679
5.0	- 0.33729	- 0.26818	- 0.22898	- 0.17776
4.75	- 0.32953	- 0.24605	- 0.19536	- 0.13821
4.25	- 0.28098	- 0.15773	- 0.07343	- 0.00992
3.5	+ 0.00177	+ 0.22596	+ 0.40306	+ 0.41398

Tabular Data A-6.23. Total energies for POL CI calculations in Kr_2^+ with spin-orbit coupling. (Energies are relative to -5503. hartrees.

R	<u>I(1/2)u</u>	II(1/2)u	I(3/2)u	I(1/2)g	II(1/2)g	I(3/2)g
20.0 a _o	30207	27760	30207	30207	27760	30207
8.0	30813	28027	30271	30007	27695	30410
7.0	31693	28098	30148	29752	27262	30606
6.75	32027	28043	30042	29674	26989	30649
6.5	32404	27918	29869	29583	26592	30670
6.25	32815	27689	29594	29459	26022	30645
6.0	33239	27301	29165	29269	25221	30539
5.75	33636	26676	28504	28957	24109	30296
5.5	33944	25702	27498	28434	22581	29828
5.25	34064	24213	25981	27568	20485	29006
5.0	33842	21969	23713	26160	17617	27633
4.75	33045	18627	20351	23921	13689	25420
4.25	28159	06465	08158	15051	00897	16588
3.5	.00144	.41154	.39490	.23338	.41471	.21780

Tabular Data A-6.24. Spectroscopic data for the ground state of Kr_2^+ with and without spin-orbit coupling.

	D _e (eV)	R _e (Å)	$\omega_{e}(cm^{-1})$	$B_e(cm^{-1})$
$1^2 \Sigma_{\mathbf{u}}^+$	1.23	2.77	183	0.0522
I(1/2)u	1.05	2.79	177	0.0518

Tabular Data A-6.25. Absorption data for Kr_2^+ with and without spin-orbit coupling.

445	ΔE(eV)	<u>λ(nm)</u>	M(D)	f
$1^2 \Sigma_{\mathbf{u}}^+ \rightarrow 1^2 \Pi_{\mathbf{g}}$	1.57	790	0.15	1.3x10 ⁻⁴
$\rightarrow 1^2 \Sigma_{\mathbf{g}}^{+}$	3.59	346	5.39	0.40
I(1/2)u + I(3/2)g	1.36	911	0.10	5.6x10 ⁻⁵
→ I(1/2)g	1.75	708	1.55	1.6x10 ⁻²
→ II(1/2)g	3.66	339	5.20	0.38

Graphical Data A-6.26. Xe2+

Tabular Data A-6.28. Total energies for POL CI calculations on Xe_2^+ without spin-orbit coupling. (Energies are relative to -14463. hartrees)

R	2 _Σ +	2 _П	² ∏ _u	² Σ ⁺ g
20.0 a	- 0.18297	- 0.18296	- 0.18296	- 0.18297
10.0	- 0.18666	- 0.18412	- 0.18366	- 0.18161
9.0	- 0.19120	- 0.18513	- 0.18371	- 0.17862
8.0	- 0.20002	- 0.18671	- 0.18269	- 0.17150
7.75	- 0.20305	- 0.18704	- 0.18189	- 0.16847
7.5	- 0.20636	- 0.18721	- 0.18064	- 0.16463
7.25	- 0.20990	- 0.18708	- 0.17871	- 0.15973
7.0	- 0.21353	- 0.18644	- 0.17582	- 0.15342
6.5	- 0.22006	- 0.18222	- 0.16519	- 0.13470
6.25	- 0.22209	- 0.17748	- 0.15600	- 0.1209
6.0	- 0.22238	- 0.16981	- 0.14274	- 0.10287
5.75	- 0.21980	- 0.15783	- 0.12378	- 0.07921
5.5	- 0.21274	- 0.13960	- 0.09684	- 0.04816
5.0	- 0.17478	- 0.07245	- 0.00544	+ 0.04660
4.5	- 0.07427	- 0.06921	+ 0.17314	+ 0.21206

Tabular Data A-6.29. Total energies for POL CI calculations on ${\rm Xe}_2^+$ with spin-orbit coupling. (Energies are relative to -14463. hartrees)

R	<u>I(1/2)u</u>	II(1/2)u	I(3/2)u	I(1/2)g	II(1/2)g	1(3/2)
20.0	19897	15096	19897	19897	15096	19897
10.0	20170	15261	19966	19847	15124	20012
9.0	20495	15395	19971	19699	15075	2011
8.0	21145	15524	19869	19373	14847	2027
7.75	21374	15518	19789	19242	14708	2030
7.5	21627	15472	19664	19078	14505	2032
7.25	21899	15361	19471	18873	14207	2030
7.0	22179	15155	19182	18610	13775	2024
6.5	22666	14257	18119	17803	12288	1982
6.25	22791	13417	17200	17158	11080	1934
6.0	22746	12165	15874	16240	09426	1858
5.75	22419	10337	13978	14915	07188	1738
5.5	21651	07706	11284	12986	04189	1556
5.0	17750	+.01328	02144	06119	+.05135	0884
4.5	07620	+.19107	+.15713	+.08129	+.21597	+.0532

Tabular Data A-6.30. Spectroscopic data for the ground state of Xe_2^+ with and without spin-orbit coupling.

	D _e (eV)	R _e (A)	$\omega_e^{(cm^{-1})}$	$B_e(cm^{-1})$
1 ² E _u ⁺	1.08	3.22	123	0.0246
I(1/2)u	0.79	3.27	112	0.0239

Tabular Data A-6.31. Absorption data for Xe_2^+ with and without spin-orbit coupling.

	ΔE(eV)	λ(nm)	M(D)	f
$1^{2}\Sigma_{\mathbf{u}}^{+} \rightarrow 1^{2}\Pi_{\mathbf{g}}$	1.31	948	0.18	1.6x10 ⁻⁴
$\rightarrow 1^2 \Sigma_g^+$	3.02	410	5.97	0.41
$I(1/2)u \rightarrow I(3/2)g$	0.99	1250	0.12	5.3x10 ⁻⁵
+ I(1/2)g	1.60	775	3.73	8.4x10 ⁻²
→ II(1/2)g	3.31	375	4.87	0.30

Estimated potential curves for Xe₂⁺ ion correlating with lowest states of Xe⁺+Xe, and for lowest states of Xe₂ molecule.

Graphical Data A-6.32. Xe +

Tabular Data A-6.33. Comparison of theoretical and experimental determinations of the dissociation energy for the I(1/2)u states of Ar_2^+ , Kr_2^+ and Xe_2^+ . (Energies are in eV).

		Pho	toionizat	Lon	Rainb	ow Scatte	ering
	This Work	<u>.a</u>	Þ	ء	4	e	£
Ar ₂	1.19	1.23	1.049		1.25	1.34	1.3
Kr ₂ ⁺	1.05	1.15	0.995	1.13		1.21	
Xe ₂ +	0.79	1.03	0.968	0.99	0.97	0.99	

aC.Y. Ng, D. J. Trevor, B. H. Mahan and Y. T. Lee, J. Chem. Phys. <u>66</u>, 446, (1977).

^bM. S. Munson, J. L. Franklin and F. H. Field, J. Phys. Chem. <u>67</u>, 1542, (1963).

^cC. E. Melton and W. H. Hamill, J. Chem. Phys. <u>41</u>, 1469, (1964).

dReference D. C. Lorents, R. E. Olson, and G. M. Conklin, Chem. Phys. Letts. 20, 589, (1973).

Reference H. V. Mittman and H. P. Weise, Z. Naturforsch, 29a, 400, (1974).

f. Arikawa, Mass Spectroscopy 22, 173, (1974).

Graphical Data A-6.34. The absorption spectra for the $I(1/2)_u \rightarrow II(1/2)_g$ transition in Ne₂, Ar₂, Kr₂ and Xe₂ determined from ab initio configuration interaction calculations

Graphical Data A-6.35. Potential curves for Cl2 and Cl2.

Tabular Data A-6.36. Energy parameters

	Asymptotic para	meters.	
Ato	mic parameters fo	r asymptotic in	nteractions
,	a (bohr³)	I (eV)	$\langle r^2 \rangle_{nl} (bohr^2)$
He ⁺	0.281*	54.4031	0.75h
Не	1.40b	24.5811	1.185h
Ne+	•••	41.071	0.982h
Ne	2.663°	21.559f	1.228h
Ar+		27.621	2.860a
Ar	11.08b	15.7551	3.3091
F		17.418	1.543h
F-	5.122d	3.448	2.210h
CI	10.4(σ)• 11.0(π)•	13.01 ^f	4.058h
CI-	20.07d	3.613	5.108h
1	B. Asymptotic exp $U(R) = A_3/R^3 + C$		
	A,	A	Ci
He ₂ +	oʻ	0.70	0.367
Ne ₂ +	0	1.33	
Ar ₂ +	0	5.54	•••
F ₂ - Σ	-0.62		•••
п	+0.31		
Cl₂- ∑	-1.62	5.1	32.5
π	+0.81	5.5	34.4

McGraw-Hill	oj	Physics.	edited	by	E.	U.	Condon	and	H.	Odishaw
McGraw-Hill	. N	ew York.	1967).							

b D. R. Johnston, G. J. Oudermans, and R. H. Cole, J. Chem. Phys. 1310 (1960).

	Potential cur	ves for Cl2.	
	U(R) =	$E_{\text{Cl}_2}(R)$	$U_{BCF}(R)$
	-Eci	2-(m)	$-U_{\text{expti}}(R) + \delta U$
R	SCF b	Exptle	
(bohr)	(hartree)	(hartree)	(hartree)
3.0		0.1744	•••
3.3	•••	0.0741	•••
3.6	0.0381	0.0433	-0.0019
3.756	0.03334	0.0404	0
3.8	0.0332	0.0406	-0.0002
3.9	0.0346	0.0423	-0.0006
4.0		0.0453	•••
4.2	0.0477	0.0542	+0.0006
4.5	•••	0.0703	•••
5.0		0.0952	•••
6.0	•••	0.1219	•••
7.0	•••	0.1296	•••
8.0	•••	0.1316	•••
9.0	•••	0.1328	•••
00		0.1328	•••

^{*} The comparison was adjusted so that the experimental and calculated

$$E_{Clt}(R) - E_{Clt}(R_e) = D[(1 - e^{-a})^2 + cx^3e^{-2a}(1 + bx)].$$

where $x=2\beta(R-R_s)/R_s$, with the constants D=0.09240 hartree. $2\beta=3.9779$, $R_s=3.7564$, c=0.1463 and b=1.054 obtained from the data of A. E. Douglas, C. K. Moeller, and B. P. Stoicheff, Can. J. Phys. 41, 1174

A. Dalgarno and A. Kingston, Proc. Roy. Soc. (London) A259, 424

<sup>1960).

4</sup> J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 870

^{*} From unpublished atomic SCF calculations by T. L. Gilbert. SCF akulations for C1⁻ with comparable basis sets gave $\alpha = 17.7$. SCF calcutions for Cl⁻¹ⁿ gave α_r = 13.6 and α_r = 13.9.

C. E. Moore, Natl. Bur. Std. (U.S.) Circ. 467, Vol. 3 (1958).

R. S. Berry and C. W. Reimann, J. Chem. Phys. 38, 1540 (1963).

P. S. Bagus, Phys. Rev. 139, A619 (1965). Values are for the outermost rupied orbital.

^{&#}x27;All units are hartree bohr". 1 hartree = 2 Ry = 27.212 eV, 1 bohr = 529177 A.

 $A_i = C + \frac{2}{4}\beta$, where β is the quadrupole polarizability. Quadrupole dar rabilities are not available.

curves coincide at R=3.756 bohr by choosing $\delta U=+0.0071$ hartree.

b The limiting SCF value $E_{\rm CH}-(\infty)=2E_{\rm CI}-1/2$ was used. The calculation of $E_{\rm CI}-1/2$ was done with a heteropolar diatomic program which allowed orbital polarization, and gave ECI-1/2 - -459.51018 for an optimized

^(5, 4) basis set.

^e Experimental values were obtained using the Hulbert-Hirschfelder potential function

Tabular Data A-6.37. Energy level difference parameters for He2+

Energy level difference parameters for $\operatorname{He}_{i}^{+}\colon \Im F(R) = \operatorname{E}_{\Sigma_{i}}^{+}(R) - \operatorname{E}_{\Sigma_{i}}^{+}(R) = A \exp(-\alpha R)$.

				Fitting	ర	mparison ^d (%	. (9
Method*	Rangeb	(eV)	(bohr-1)	(%)	50 eV	15 eV	10 eV
SCF	1.5≤R≤3 bohr	128.8	1.237	0.3	11.2	3.1	7.6
SCF	3.0 <r<6 bohr<="" td=""><td>175.1</td><td>1.329</td><td>2.1</td><td>7.8</td><td>6.9</td><td>10.2</td></r<6>	175.1	1.329	2.1	7.8	6.9	10.2
FO	1.5 <r<3 bohr<="" td=""><td>137.8</td><td>1.267</td><td>0.4</td><td>11.2</td><td>3.1</td><td>7.2</td></r<3>	137.8	1.267	0.4	11.2	3.1	7.2
FO	3.0 < R < 6 bohr	133.3	1.251	6.0	12.2	4.5	19.2
MC.	1.5 <r<3 bohr<="" td=""><td>127.4</td><td>1.242</td><td>0.0</td><td>8.7</td><td>1.0</td><td>5.4</td></r<3>	127.4	1.242	0.0	8.7	1.0	5.4
MC.	3.0 <r<6 bohr<="" td=""><td>134.4</td><td>1.261</td><td>4.3</td><td>8.2</td><td>8.0</td><td>14.8</td></r<6>	134.4	1.261	4.3	8.2	8.0	14.8
EXP	50 eV	120.4	1.254	:	0	7.0	6.1
EXP	15 eV	130.5	1.256	:	7.0	0	10.3
EXP.	10 eV	137.0	1.295	:	6.1	10.3	0

SCF: E_A(R) = total SCF energy of molecule—ion. FO: E_A(R) = E_B(R) = Q_a(R), where E_B is the total energy of the closed-shell species and q_b is the orbital energy of the electron removed to form a molecule—ion in the A state. MC: E_b obtained from multiconfiguration calculations. EXP: parameters obtained from elastic differential scattering data.

b The values of the internucient distance for which the fit was made rregiven for the calculated parameters. The incident energy (in the center-demans reference frame) is given for parameters obtained from scattering data.

• Fitting error = $100(n^{-1}\sum_{i=1}^{n} [\{\Delta E_i - A \exp(-\alpha R_i)\}/\Delta E_i\}\eta in$, where ΔE_i are the calculated energy level differences.

d Comparison $= 100((R_b - R_a)^{-1} \int_{Ra}^{Rb} [(A_1/A_2) \exp[-(\alpha_1 - \alpha_2)R] - 1]^2 dR)^{17}.$

where R_a and R_b are the limits of the range and (A_1, α_1) and (A_2, α_1) are the parameters for the two cases compared. The range was taken to 1.5 $\le R \le 6$ bohr for comparison of the experimental parameters at different scattering energies. The columns labeled 30, 15, and 10 eV give comparisons with the experimental parameters for each of these three incident energies. P. N. Reagan, J. C. Browne, and F. A. Matsen, Phys. Rev. 112, 401 (1964) (E_{2a}^{-a}) ; J. C. Browne, J. Chem. Phys. 45, 2107 (1966) (E_{2a}^{-a}) ; J. C. Y. Chen, C.-S. Wang, and K. M. Watson, Phys. Rev. A1, 1140

e R. E. Olson and C. R. Mueller, J. Chem. Phys. 46, 3810 (1967).

Tabular Data A-6.38. Energy level difference parameters for $\mathrm{Ne_2}^+,\ \mathrm{Ar_2}^+,\ \mathrm{F_2}^-,\ \mathrm{amd}\ \mathrm{Cl_2}^-$

Species	Symmetry	Methodh	(bohr)	(eV)	(bohr-1)	(%)
Ne,+	н	SCF	3.0 <r<3.5< td=""><td>231.1</td><td>1.171</td><td>0.05</td></r<3.5<>	231.1	1.171	0.05
		FO	3.0 <r<3.5< td=""><td>238.3</td><td>1.204</td><td>0.03</td></r<3.5<>	238.3	1.204	0.03
		FO	2.5 <r<6.0< td=""><td>249.8</td><td>1.218</td><td>0.7</td></r<6.0<>	249.8	1.218	0.7
		EXP.	1.2≤R≤1.6	240	1.6	70
	=	SCF	3.0 <r<3.5< td=""><td>183.3</td><td>1.531</td><td>0.05</td></r<3.5<>	183.3	1.531	0.05
		FO	3.0 <r<3.5< td=""><td>175.4</td><td>1.532</td><td>0.1</td></r<3.5<>	175.4	1.532	0.1
		FO	2.5 <r<6.0< td=""><td>152.8</td><td>1.485</td><td>2.4</td></r<6.0<>	152.8	1.485	2.4
		EXP.	1.2≤R≤1.6	160	2.0	15
		EXP	1.0 <r<1.8< td=""><td>230</td><td>2.3</td><td>::</td></r<1.8<>	230	2.3	::
		EXP	0.4≤R≤1.5	390	2.4	:
Ars+	N	SCF	4.2 <r<5.0< td=""><td>234.3</td><td>0.865</td><td>0.2</td></r<5.0<>	234.3	0.865	0.2
		FO	4.2 <r<5.0< td=""><td>243.7</td><td>0.883</td><td>0.2</td></r<5.0<>	243.7	0.883	0.2
		FO	3.0 <r<5.0< td=""><td>199.1</td><td>0.838</td><td>1.7</td></r<5.0<>	199.1	0.838	1.7
		EXP	:	:	:	:
	=	SCF	4.2 <r<5.0< td=""><td>206.6</td><td>1.157</td><td>0.1</td></r<5.0<>	206.6	1.157	0.1
		FO	4.2 <r<5.0< td=""><td>. 6.802</td><td>1.160</td><td>0.1</td></r<5.0<>	. 6.802	1.160	0.1
		FO	3.0×R<5.0	218.9	1.170	0.3
		EXP	1.8≤R≤2.7	490	1.8	:
F	N	SCF	3.2≤R≤4.0	132.8	0.924	4.0
	-	SCF	3.2≤R≤4.0	84.2	1.122	0.3
占	H	SCF	3.8≤R≤6.0	136.0	0.712	0.2
	п	SCF	3.8 <r<6.0< td=""><td>93.8</td><td>0.897</td><td>0.7</td></r<6.0<>	93.8	0.897	0.7

* $\Delta E(R) = E_{Z_a} + (R) - E_{Z_a} + (R)$ for Σ states; $\Delta E(R) = E_{Hu}(R) - E_{Hu}(R) - E_{G_a}(R)$ for Π states. * SCF: $E_{A}(R) = \text{total SCF}$ energy of molecule ion, FO: $E_{A}(R) = E_{G_a}(R) - E_{G_a}(R) - E_{G_a}(R)$, where E_{G_a} is the total energy of the closed-shell species and e_{A_a} is the orbital energy of the electron removed to form a molecule-ion in the state λ . EXP: parameters obtained from resonant electron capture data.

* Limiting values of the internuclear distance for which the fit was made.

4 Fitting error = $100(n^{-1}) \left[\frac{1}{(n-1)} \left[\frac{1}{\Delta E_i} - A \exp(-\alpha R_i) \right] / \Delta E_i \right] \eta^{1/4}$.

where ΔE_i are the calculated energy level differences. The entries for experimental values (where given) are the experimental uncertainties. • P. R. Jones, T. L. Batra, and H. A. Ranga, Phys. Rev. Letters 17, 281

(1966).

P. R. Jones, N. W. Eddy, H. P. Gilman, A. K. Jhaveri, and G. Van Dyk, Phys. Rev. 147, 76 (1966).

P. R. Jones, P. Costigan, and G. Van Dyk, Phys. Rev. 129, 211 (1963).

This analysis was carried out under the assumption that the effect of the Z states could be ignored.

A-7. POTENTIAL ENERGY CURVES AND OTHER DATA FOR RARE-GAS EXCIMERS AND FOR UNLIKE PAIRS OF RARE-GAS ATOMS CONTENTS

	Page
A-7.1.	Graphical Data He ₂ · · · · · · · · · · · · · · · · · · ·
A-7.2.	Graphical Data He2 · · · · · · · · · · · · · · · · · · ·
A-7.3.	Graphical Data He_2 potential curves of $^3\Sigma_{\mathbf{g}}^+$ symmetry \cdot . 160
A-7.4.	Graphical Data He_2 potential curves of ${}^3\Sigma_u^+$ symmetry • • • 161
A-7.5.	Graphical Data He ₂ potential curves of $^3\Pi_g$ symmetry. • • 162
A-7.6.	Diabatic and adiabatic He ₂ potential curves of $^{3}\Pi_{u}$ symmetry
A-7.7.	Diabatic and adiabatic He ₂ potential curves of ³ A symmetry
A-7.8.	Potential curves for the excited states of Ne ₂ · · · · · 165
A-7.9.	Potential curves of excited states of Ne $_2$ with Ω =0 · · · 166
A-7.10.	Potential curves of excited states of Ne ₂ with Ω =1 · 167
A-7.11.	Potential curves of excited states of Ne ₂ with Ω =2168
A-7.12.	Ground-state energies of Ne ₂
A-7.13.	Potential energies (relative to the separated-atom limit) of Ne ₂ before spin-orbit coupling
A-7.14.	Potential energies of excited Ne ₂ including spin-orbit effects
A-7.15.	Equilibrium postition, R _e , dissociation energy, D _e ,
	position of potential maximum, R max, height of barrier,
	V_{max} , and $D_{e} + V_{\text{max}}$ for all the true bound states 172
A-7.16.	
A-7.17.	Vibrational levels of Ne ₂ $^{3}\Sigma_{u}^{+}$ · · · · · · · · · · · · · · · · · · ·

		Page
A-7.18.	Vibrational levels and radiative lifetimes for Ne2	
	$^{1}\Sigma_{\mathbf{u}}^{+}$	175
A-7.19.	Vibrational levels and radiative lifetimes for Ne ₂ ¹ u (³ P ₂)	176
A-7.20.	Vibrational levels and radiative lifetimes for Ne $_2$ $0_{u}^{+}(^3P_{_1})$	177
A-7.21.	Calculated dipole transition matrix elements for	
	Ne $_{2}^{1}\Sigma_{u}^{+}$ and $_{u}^{1}$ states, in length and velocity formulations, as a function of R	178
A-7.22.	Comparison of the HF interaction energies from the electron gas model (GKR) and ab initio SCF calculations for Ar, Kr, and Xe2	179
A-7.23.	Comparison of the Hartree-Fock (HF) interaction energy for Ar (1) as determined by the Gordon-Kim-Rae (GKR) electron gas model and ab initio SCF calculations using basic sets I and II.	180
A-7.24.	2 8	
	as determined by the GKR electron gas model and ab initio SCF calculations	181
A-7.25.	Comparison of the HF interaction energy for $Xe_2(^1\Sigma_g^+)$	
	as determined by the GKR electron gas model and ab initio SCF calculation	182
A-7.26.	Potential curves for the ${}^3\Sigma_{\bf g}^{\dagger}$ and ${}^3\Sigma_{\bf u}^{\dagger}$ states of ${\bf Ar}_2^{\star}$	183
A-7.27.	Potential curves of Ar 2	184
A-7.28.	Spectroscopic constants of Ar_2^* for the $^3\Sigma_u^+$ CI calculation.	
A-7.29.	Extrema of the ${}^3\Sigma_{\bf u}^+$ and ${}^3\Sigma_{\bf g}^+$ potential curves of ${\rm Ar_2}^*$	185
A-7.30.	Estimated potential curves for some of the lower excited states (Rydberg states) of Xe	186
A-7.31.	gas pairs	187
A-7.32.	Calculated interatomic potential curves for noble	
A-7.33.	Estimates of the interatomic potential energy for He ₂ , Ar ₂ , Xe ₂ , and He-Xe · · · · · · · · · · · · · · · · · · ·	189

A-7. References

The figures in (A-7.1)-(A-7.33) are taken from the following sources:

(A-7.1)-A-7.2):

M. L. Ginter and R. Battino, "Potential-energy curves for the He₂ molecule," J. Chem. Phys. <u>52</u>, 4469 (1970).

(A-7.3)-(A-7.7):

J. S. Cohen, "Diabatic-states representation for He* (n>3) + He collisions," Phys. Rev. A 13, 86 (1976).

(A-7.8)-(A-7.16):

J. S. Cohen and B. Schneider, "Ground and excited states of Ne₂ and Ne₂ $^+$. I. Potential curves with and without spin-orbit coupling," J. Chem. Phys. <u>61</u>, 3230 (1974).

(A-7.17)-(A-7.21):

B. I Schneider and J. S. Cohen, "Ground and excited states of Ne₂ and Ne₂⁺. II. Spectroscopic properties and radiative lifetimes," J. Chem. Phys. <u>61</u>, 3240 (1974).

(A-7.22)-(A-7.25):

W. R. Wadt, "The Electronic states of Ar_2^+ , Kr_2^+ and Xe_2^+ . I. Potential curves with and without spin-orbit coupling," J. Chem. Phys. (to be published).

(A-7.26)-(A-7.29):

R. P. Saxon and B. Liu, "Ab initio calculations of the $^{3}\Sigma_{g}^{+}$ and $^{3}\Sigma_{u}^{+}$ states of singly excited Ar₂," J. Chem. Phys. <u>64</u>, 3291 (1976).

(A-7.30):

R. S. Mulliken, "Potential curves of diatomic rare-gas molecules and their ions, with particular reference to Xe2*," J. Chem. Phys. 52, 5170 (1970).

(A-7.31)-(A-7.33):

J. S. Cohen and R. T. Pack, "Modified statistical method for intermolecular potentials. Combining rules for higher van der Waals coefficients," J. Chem. Phys. 61, 2372 (1974).

Potential-energy curves (rotationless) for selected electronic states of He₂. Energy in cm⁻¹ is based on N=0, ν =0 of the a³ $\Sigma_{\rm u}$ ⁺ state, while energy in electron volts is based on the lowest level in X² $\Sigma_{\rm u}$ ⁺ of He₂⁺. When practical, the observed vibrational levels are indicated by horizontal lines at the edges of their appropriate curves.

Graphical Data. A-7.1. He2

Potential-energy curves for selected electronic states of LHe: The region 20 000-28 000 cm⁻¹ on an expanded scale. The comments from the caption also apply. The potential curve for $3p^{-1}\Pi_{\sigma}$ has not been presented because of the confusion resulting from overlapping by the curves for the states associated with 3d.

Graphical Data. A-7.2. He2

Diabatic and adiabatic He_2 potential curves of ${}^3\Sigma_{\rm f}^*$ symmetry. The dashed curve, representing the continuum limit, is the ground state of He_2^{+} .

The potential energy is measured relative to the separated-atom energy of He^+ He. The designated separated-atom limits are 2s, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5p, and 5f.

Graphical Data A-7.3. He₂ potential curves of $\frac{3}{8}$ symmetry.

Diabatic and adiabatic He₂ potential curves of ${}^3\Sigma_u^+$ symmetry. The designated separated-atom limits are 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, 5d, and 5g.

Graphical Data A-7.4. He₂ potential curves of ${}^3\Sigma_{\rm u}^+$ symmetry.

Diabatic and adiabatic He_2 potential curves of $^3\Pi_{\pmb{\epsilon}}$ symmetry. The designated separated-atom limits are 3d, 4f, 5f, and 5f.

Graphical Data A-7.5. He2 potential curves at 'I symmetry.

Graphical Data A-7.6. Diabatic and adiabatic He, potential curves of $^3\pi_{\rm u}$ symmetry. (The designated separated-atom limits are 2p, 3p, 3d, 4p, 4d, 5d, and 5g).

Graphical Data A-7.7. Diabatic and adiabatic He, potential curves of $^3\Delta$ symmetry. (The designated separated-atom limits are 3d, 4d, 4f, 5f, and 6f).

Potential curves for the excited states of Ne₂ formed in the interaction of Ne(3s, ^{1,3}P) with ground-state Ne, not including spin-orbit coupling. The zero of the energy scale is the separated-atom limit of ground-state Ne₂.

Graphical Data. A-7.8.

Graphical Data A-7.9. Potential curves of excited states of Ne $_2$ with $\Omega\!=\!0$, including the effects of spin-orbit coupling.

Graphical Data A-7.10. Potential curves of excited states of Ne $_2$ with $\Omega\text{=}1,$ including the effects of spin-orbit coupling.

Graphical Data A-7.11. Potential curves of excited states of Ne₂ with Ω =2, including the effects of spin-orbit coupling.

Tabular Data A-7.12. Ground-state energies of Ne2.

R[a _o]	Present	GW ^b	FSL ^C
2.5	0.3353	0.3305	0.2684
3.0	0.0927	0.0973	0.0931
3.25	0.0488		0.0541
3.5	0.0256	0.0287	0.0305
3.75	0.0134		0.0164
4.0	0.0070	0.0084	0.0083
4.5	0.0018		0.0017
5.0	4.4x10 ⁻⁴	0.0007	2.0x10 ⁻⁴
6.0	0		-1.3x10 ⁻⁴
8.0	-3.1x10 ⁻⁶		-2.9x10 ⁻⁵

All energies in a.u.

bFrom Ref. T. L. Gilbert and A. C. Wahl, J. Chem. Phys. 47, 3425, (1967).

CEvaluated from the exponential - spline - Morse - spline - van der Waals parameters given in J. M. Farrar, T. P. Shafer and Y. T. Lee, in Transport Phenomena, AIP Conference Proceedings No. 11, edited by J. Kestin (AIP, New York, 1973) p. 279.

Tabular Data A-7.13. Potential energies (relative to the separated-atom limit) of Ne₂ before spin-orbit coupling. a

		*						
R[a _o]	1	290 V		V(R) [a.u.	a.u.]			
	3° +	3 _Σ 8+	1 _Σ α	1 _Σ 8+	$^3_{\mathrm{II}}$	3 8	$_{\rm u}^{\rm 1_{II}}$	$^{1}_{ m II}_{ m g}$
2.5	0.07221	0.12457	0.06939	0.14536	0.40036	0.29441	0.39844	0.29355
3.0	-0.00934	0.03639	-0.01217	0.04913	0.13607	0.09084	0.13492	0.09019
3.25	3.25 -0.01701	0.02485	0.02485 -0.01968	0.03793				
3.5	-0.01760	0.02000	-0.02000	0.03362	0.05482	0.03321	0.05389	0.03296
3.75	3.75 -0.01222	0.01992	0.01992 -0.01441	0.03319				
4.0	-0.00543	0.02098	-0.00744	0.03195	0.03139	0.02059	0.03156	0.01981
4.5	0.00204	0.01782	0.00044	0.02391				
5.0	0.00302	0.01214	0.00186	0.01554	0.01059	0.00859	0.01124	0.00795
5.5	0.00318		0.00236					
0.9	0.00257	0.00559	0.00197	0.00701	0.00447	0.00412	0.00512	0.00365
8.0	0.00058	0.00077	0.00033	0.00114	0.00071	690000.0	0.00100	0.00048

The energies of the excited separated-atom states relative to ground-state Ne(1 S) are E(3 P) = 0.61192 a. u. and E(1 P) = 0.61870 a.u.

Tabular Data A-7.14. Potential energies of excited Ne_2 including spin-orbit effects. ^a

R[a]							V(R) [a.u.	1						
	0-(3P2)	$0_u^-(^{3}P_2)$ $0_g^-(^{3}P_2)$	$0_{u}^{+}(^{3}P_{1})$	$ o_{u}^{+}(^{3}p_{1}) \mid o_{u}^{+}(^{3}p_{1}) \mid o_{u}^{-}(^{3}p_{0}) \mid o_{u}^{-}(^{3}p_{0}) \mid o_{u}^{+}(^{1}p_{1}) \mid o_{u}^{+}(^{1}p_{1}) \mid 1_{u}(^{3}p_{2}) \mid 1_{u}(^{3}p_{2}) \mid 1_{u}(^{3}p_{1}) \mid 1_{u}(^{3}p_{1}) \mid 1_{u}(^{1}p_{1}) \mid 1_{u}$	$o_{\mathbf{u}}^{-}(^{3}P_{0})$	$\binom{0^{-}(^{3}P_{0})}{8}$	$\binom{0}{n}\binom{1}{p}$	$0_{\mathbf{g}}^{+(^{1}\mathbf{p}_{1})}$	$1_{\mathbf{u}} \binom{3_{\mathbf{p}_2}}{2}$	$_{\mathbf{g}}^{\left(3_{\mathbf{p}_{2}}\right)}$	$1_{\mathbf{u}} \binom{3_{\mathbf{p}_1}}{1_{\mathbf{p}_1}}$	${}^{1}_{8} {}^{3}_{1}$	$\binom{1}{n} \binom{1}{n}$	18(1b)
2.5	0.07338	0.12573	0.07544	0.15140	0.39919	0.29325	0.39431	0.28837	0.07338	0.12573	0.39937	0.29347 .0.39826	.0.39826	0.29333
3.0	-0.00818	0.03752 -0.	-0.00613	0.05511	0.13491	0.08971	0.13003	0.08486	-0.00818	0.03752	0.13512	0.08992	0.13471	0.08998
3.25	3.25 -0.01586		-0.01366						-0.01586					
3.5	3.5 -0.01646	0.02101 -0.	-0.01398	0.03324	0.03324 0.05368	0.03222	0.04880	0.03359	-0.01646	0.02104	0.05388	0.03235	0.05368	0.03280
3.75	3.75 -0.01109		-0.00842						-0.01109					
4.0	-0.00432	0.02084 -0	-0.00147	0.02089	0.03084	0.02073	0.02598	0.03165	-0.00432	0.02077	0.03104	0.02072	0.03136	0.01989
4.5	0.00307		0.00630						0.00309					
5.0	0.00389	0.01009	0.00720	0.00883	0.00972	0.01064	0.00525	0.01530	0.00396	0.00931	0.00981	0.01108	0.01108	0.00829
5.5	0.00378		0.00566						0.00390					
0.9	0.00302	0.00495	0.00421	0.00426	0.00426 0.00402	0.00476	0.00224	0.00687	0.00315	0.00461	0.00398	0.00398 0.00499 0.00503	0.00503	0.00376
8.0	0.00062	0.00674	0.00068	0.00072	99000.0	0.00072	0.00036	0.00111	0.00064	0.00073	0.00067	0.00071	0.00097	0.00050
								/						

The energies of the excited separated-atom states relative to ground-state Ne(1 S) are as follows: $E(^{3}P_{2}) = 0.61074$ a.u., $E(^{3}P_{1}) = 0.61265$ a.u., $E(^{3}P_{0}) = 0.61428$ a.u., and $E(^{4}P_{1}) = 0.61916$ a.u.

Tabular Data A-7.15. Equilibrium postition, $R_{\rm e}$, dissociation energy, $D_{\rm e}$, position of potential maximum, $R_{\rm max}$, height of barrier, $V_{\rm max}$, and $D_{\rm e} + V_{\rm max}$ for all the true bound states (excluding states bound by dispersion forces only).

State	R _e [a _o]	D _e [eV]	R _{max} [a _o]	V _{max} [eV]	De+Vmax[eV]
$Ne_2^* {}^{3}\Sigma_u^+ ({}^{3}P)$	3.39	0.499	5.4	0.087	0.586
$Ne_2^{\star 1}\Sigma_u^+$ (1P)	3.38	0.567	5.5	0.064	0.631
$Ne_2^* 0_u^- (^3P_2)$	3.39	0.467	4.9	0.107	0.573
Ne ₂ 1 _u (³ P ₂)	3.39	0.467	4.9	0.108	0.575
$Ne_2^* O_u^+ (^3P_1)$	3.38	0.403	4.8	0.198	0.601
$Ne_{2}^{*} O_{u}^{+} (^{1}P_{1})$	∿5.1	0.016	∿5.5	~0.060	
$Ne_2^{+2}\Sigma_u^{+}(^2P)$	3.30	1.20	-	, -	
$Ne_2^+ (1/2)_u (^2P_{3/2})$	3.30	1.17	-	-	

Tabular Data A-7.16.

(a) Polarizibilities of ^{1,3}P_J states of atomic neon; α_{adj} has been adjusted by a one-electron sum rule.

State	$\alpha[10^{-24}\text{cm}^3]$	^α adj	αexp
$Ne(^1S_0)$		Album Inc	0.3946 ^a
$Ne({}^{1}S_{0})$ $Ne({}^{3}P_{2})$	23.3	28.3	27.6 ^b
$Ne(^{3}P_{1})$	25.3	29.2	
$Ne(^{3}P_{0})$	28.8	29.2	
$Ne(^{1}P_{1})$	31.2	33.4	

^aRef: R. R. Teachout and R. T. Pack, At. Data <u>3</u>, 195 (1971)

^bRef: E. J. Robinson, J. Levine, and B. Bederson, Phys. Rev <u>146</u>, 95 (1966).

(b) Matrix of van der Waals C₆ coefficients (in a.u.) determined using adjusted polarizibilities.

¹ s ₀	³ _{P2}	³ _{P1}	³ P ₀	¹ _{P1}
-7.98ª				
-52.7	-1980			
-53.5	-2027	-2075		
-53.5	-2027	-2075	-2075	
-57.4	-2240	-2294	-2294	-2538

^aA value -6.55 ± 0.87 is given by G. Starkschall and R. G. Gordon, J. Chem. Phys. 54, 663 (1971).

Tabular Data A-7.17. Vibrational levels of Ne $_2$ ³ $\Sigma_{\bf u}^+$. (Franck-Condon overlaps with the vibrational levels of the ground state are also given). (The levels below the dashed line are resonant states above the dissociation limit).

	_1	1	Franck-Con	ndon Factors
v	G[cm ⁻¹]	B _v [cm ⁻¹]	v→0	v+1
0	285	0.523	3.2×10^{-17}	3.7 x 10 ⁻¹
1	843	0.521	1.5×10^{-15}	1.7×10^{-1}
2	1373	0.520	3.7×10^{-14}	4.2 x 10 ⁻¹
3	1870	0.521	6.1×10^{-13}	6.9 x 10
4	2333	0.521	8.1×10^{-12}	9.1 x 10
5	2769	0.518	9.7×10^{-11}	1.1 x 10
6	3183	0.508	1.2×10^{-9}	1.3 x 10
7	3576	0.492	1.5×10^{-8}	1.6 x 10
8	3943	0.473	2.3×10^{-7}	2.4 x 10
9	4274	0.448	4.9 x 10 ⁻⁶	4.8 x 10
LO	4553	0.406	3.3×10^{-4}	2.6 x 10

$$D_e = 4020 \text{ cm}^{-1}$$
 $V_{\text{max}} = 700 \text{ cm}^{-1}$
 $R_e = 1.79 \times 10^{-8} \text{ cm}$

Tabular Data A-7.18. Vibrational levels and radiative lifetimes for Ne $_2$ $^1\Sigma_{\rm u}^+$. (The levels below the dashed line are resonant states).

	Ne ₂	1 _E +	
v	G[cm ⁻¹]	B _v [cm ⁻¹]	τ[10 ⁻⁹ s
0	288	0.526	2.8
1	850	0.523	2.7
2	1382	0.523	2.6
3	1881	0.525	2.6
4	2348	0.525	2.5
5	2789	0.522	2.4
6	3212	0.512	2.3
7	3618	0.497	2.2
8	3999	0.479	2.0
9	4350	0.458	1.9
10	4660	0.428	1.7
11	4905	0.375	1.5
12	5044	0.217	

 $D_e = 4562 \text{ cm}^{-1}$ $V_{\text{max}} = 531 \text{ cm}^{-1}$ $R_e = 1.79 \times 10^{-8} \text{cm}$

Ne $_2$ u(3P_2). (The levels below the dashed line are resonant states). The vibrational levels of the nonallowed $^0_{\rm u}(^3P_2)$ state are very similar. Tabular Data A-7.19. Vibrational levels and radiative lifetimes for

	$Ne_2^{-1}u(^3p_2)$	P ₂)	
Þ	G[cm ⁻¹]	$B_{\mathbf{v}}[cm^{-1}]$	τ[10 ⁻⁶]
0	285	0.523	11.9
1	843	0.520	10.2
2	1372	0.520	8.8
3	1869	0.520	7.7
4	2332	0.520	9.9
5	2767	0.517	5.6
9	3181	0.507	4.5
7	3572	0.492	3.5
&	3938	0.472	2.6
6	4267	0.446	1.8
10	4541	0.401	1.0

 $D_{e} = 3768 \text{ cm}^{-1}$ $V_{max} = 873 \text{ cm}^{-1}$ $R_{e} = 1.79 \times 10^{-8} \text{ cm}$

Tabular Data A-7.20. Vibrational levels and radiative lifetimes for Ne $_2$ $_{\rm u}^+(^3p_1)$ (The levels below the dashed line are resonant states).

		$Ne_2 O_u^+ (^3P_1)$		
>	G[cm ⁻¹]		$B_v[cm^{-1}]$	τ[10-8]
0	285	٠	0.523	2.8
1	843		0.520	2.7
2	1372		0.520	2.6
3	1869		0.520	2.6
4	2332		0.520	2.5
2	2767		0.517	2.4
9	3180		0.507	2.3
7	3572		0.492	2.2
«	7505		0 472	
			777.0	0.1
6	4266		0.446	1.9
10	4538		0.399	1.7

$$D_e = 3768 \text{ cm}^{-1}$$
 $V_{max} = 863 \text{ cm}^{-1}$
 $R_e = 1.79 \times 10^{-8} \text{ cm}$

Tabular Data A-7-21. Calculated dipole transition matrix elements a for Ne $^2\Sigma_u^+$ and $^1\pi_u^-$ states, in length and velocity formulations, as a function of R.

R[a _o]	$1_{\Sigma^+} \rightarrow 1_{\Sigma^+}$	$\frac{1_{\Sigma}}{8}$	$\frac{1}{\pi} + \frac{1}{2}$	+ 28
	γ̈́n	a ^b	a n	مٰد
2.5	0.280	0.322	0.362	0.267
3.0	0.292	0.310	0.356	0.302
3.5	0.318	0.317	0.360	0.314
4.0	0.357	0.347	0.384	0.344
5.0	0.414	0.402	0.418	0.399
0.9	0.429	0.417	0.428	0.418
8.0	0.430	0.418	0.425	0.415
12.0	0.426	0.413	0.421	0.410

a In atomic units

Tabular Data. A-7.22. Comparison of the HF interaction energies from the electron gas model (GKR) and ab initio SCF calculations for Ar_2 , Kr_2 , and Xe_2 (Energies in hartrees).

		Ar ₂		Kr ₂	X	ie ₂
R	GKR	SCF a	GKR	SCF b	GKR	SCF C
10.0 a _o	0.00000		- 0.00001		- 0.00003	- 0.00002
9.0	0.00000		- 0.00000		0.00007	0.00004
8.0	0.00005	- 0.00002	0.00018	- 0.00003	0.00089	0.00098
7.5	0.00017		0.00057		0.00225	0.00270
7.0	0.00051	0.00011	0.00155	0.00092	0.00520	0.00663
6.5.	0.00143	0.00070	0.00393	0.00314	0.01148	0.01524
6.0	0.00374	0.00260	0.00942	0.00877	0.02415	0.03369
5.5	0.00941	0.00782	0.02166	0.02214	0.04892	0.07218
5.0	0.02282	0.02128	0.04808	0.05315	0.09622	0.15030
4.5	0.05348	0.05497	0.10358		0.18660	0.30552
4.0	0.12065	0.13619	0.21811		0.36518	
3.5	0.26097		0.45544	0.60040	0.74174	
3.0	0.53999	0.74097	0.95468		1.57240	

^aEnergies relative to - 1053.52988 hartrees.

^bEnergies relative to - 5503.75962 hartrees.

^CEnergies relative to -14463.59405 hartrees.

Graphical Data. A-7.23. Comparison of the Hartree-Fock (HF) interaction energy for ${\rm Ar_2}(^1\Sigma^+)$ as determined by the Gordon-Kim-Rae (GKR) electron gas model and <u>ab initio</u> SCF calculations using basis sets I and II.

Graphical Data. A-7.24. Comparison of the Hr interaction energy for Kr_2 ($^1\Sigma_g^+$) as determined by the GKR electron gas model and <u>ab initio</u> SCF calculations.

Graphical Data. A-7.25. Comparison of the HF interaction energy for $Xe_2(^1\Sigma_g^+)$ as determined by the GKR electron gas model and ab initio SCF calculation.

Graphical Data A-7.26. Potential curves for the $^3\Sigma^+_u$ and $^3\Sigma^+_u$ states of Ar_2^\star . - - - MCSCF approximation, — CI approximation, . . . Morse functional form chosen to reproduce the spectrosopic constants of the CI curve. are points calculated by Stevens without spin-orbit coupling. Each curve has been plotted with respect to its own asymptote.

Tabular Data A-7.27. Potential curves of Ar_2^* in atomic units.

	3,	E g	3	ξu
R(a _o)	MCSCF ^a	cıp	MCSCFa	c1c
2.0			2.746363	2.711900
2.5	1.040676	0.985107	0.970236	0.950265
3.0	0.385776	0.345613	0.338772	0.320080
3.5	0.130266	0.112572	0.092801	0.077563
3.6			0.066686	0.052162
3.7	•••		0.045655	0.031956
3.75	0.071201	0.060077		
3.8	•••		0.028902	0.016125
4.0	0.037454	0.028884	0.005550	-0.005763
4.25	0.019713	0.012596	-0.010055	-0.019757
4.4	0.014018	0.007517	-0.014580	-0.023405
4.55	0.010775	0.004905	-0.016693	-0.024813
4.7	0.009210	0.003947	-0.017131	-0.024535
4.85	0.008730	0.004044		
5.0	0.008879	0.004780	-0.015083	-0.021215
5.5	0.010303	0.007896	-0.008901	-0.013261
5.75	0.010432	0.008639		
6.0	0.010028	0.008644	-0.003757	-0.006778
6.25	0.009250	0.008118		
6.5	0.008276	0.007297	-0.000740	-0.002819
7.0	0.006234	0.005430	0.000662	-0.000796
8.0	0.003074	0.002491	0.001132	0.000344
9.0	0.001334	0.000918	0.000709	0.000234
10.0	0.000499	0.000207		
12.0	-0.000010	-0.000147	-0.000027	-0.000164
00	0.0	0.0	0.0	0.0

^aAsymptotic energy =-1053.208106.

b_{Asymptotic} energy =-1053.23082921.

^CAsymptotic energy =-1053.23082620.

Tabular Data. A-7.28. Spectroscopic constants of ${\rm Ar}_2^{*}$ for the $^3\Sigma_u^+$ CI calculation.

V	G _v (cm ⁻¹)	B _v (cm ⁻¹)	D _v (cm ⁻¹)
0	0.000	0.142	1.406 (-7)
1	283.848	0.141	1.422 (-7)
2	563.150	0.139	1.492 (-7)
3	835.733	0.138	1.573 (-7)
4	1100.930	0.136	1.555 (-7)
5	1360.854	0.135	1.517 (-7)

^aPower of 10 in parentheses.

Tabular Data. A-7.29. Extrema of the ${}^3\Sigma^+_u$ and ${}^3\Sigma^+_g$ potential curves of Ar $_2$

	R(a _o)	V (a.u.)
3 ₂ + minimum		
MCSCF	4.67	-0.01715
CI	4.59	-0.02488
³ Σ ⁺ _g minimum		
MCSCF	4.88	0.00872
CI	4.76	0.00389
3 _Σ + maximum		
MCSCF	5.68	0.01045
CI	5.87	0.00872

Graphical Data. A-7.30. Estimated potential curves for some of the lower excited states (Rydberg states) of Xe_2 .

Tabular Data. A-7.31.

Calculated interatomic potential curves for the noble gas pairs. At the bottom the calculated properties are compared to the results obtained in recent low-energy crossed molecular beam experiments (in parentheses).

,0			V(R) (a. u.	•			
	He-He	He-Ne	He-Ar	He-Kr	не-хе	Ne-Ne	Ne-Ar
0.5	0.3476E+1	0.1331E+2	0, 2023E + 2	0.3300E+2	0.4698E+2	0.5532E+2	0.8651E+2
1.0	0.9189	0.2947E+1	0.4328E+1	0.6595E+1	0.8579E+1	0.1075E+2	0.1630E+2
1.5	0.3271	0.9699	0, 1402E +1	0.1966E+1	0.2554E+1	0.3258E+1	0.4665E+1
2.0	0, 1195	0.3354	0.5720	0.7341	0.9294	0.1070E+1	0.1776E+1
2.5	0.4257E-1	0.1132	0.2451	0.3124	0,4002	0.3438	0,7411
3.0	0.1447E-1	0.3637E-1	0,1006	0.1336	0, 1827	0,1054	0.2964
3.5	0.4684E-2	0.1114E-1	0.3957E-1	0.5626E-1	0.8460E-1	0.3123E-1	0.1147
4.0	0.1402E-2	0.3123E-2	0.1453E-1	0, 2230E - 1	0.3728E-1	0.8611E-2	0.4167E-1
4.5	0.3686E-3	0.7384E-3	0.4895E-2	0.8214E-2	0.1545E-1	0.2071E-2	0.1414E-1
5.0	0.7190E-4	0.1016E - 3	0.1429E-2	0.2711E-2	0.5915E-2	0.3334E-3	0.4328E-2
5.5	-0.5628E-5	-0.4120E-4	0.2925E-3	0.7189E-3	0.2006E-2	-0.6320E-4	0.1070E-2
6.0	-0.2020E-4	-0.5726E-4	-0.2603E-4	0.7842E-4	0.5263E - 3	-0.1188E-3	0.1012E-3
6.5	-0.1822E-4	-0.4523E-4	-0.9375E-4	-0.8952E-4	0,3343E-4	-0.9733E-4	-0.1427E-3
7.0	-0.1345E-4	-0.3142E-4	-0.8836E-4	-0.1117E-3	-0.1022E-3	-0.6819E-4	-0.1664E-3
7.5	-0.9365E-5	-0.2108E-4	-0.6741E-4	-0.9282E-4	-0.1170E-3	-0.4580E-4	-0.1345E-3
8.0	-0.6438E-5	-0.1415E-4	-0.4798E-4	-0.6851E-4	-0.9745E-4	-0.3070E-4	-0.9805E-4
8.5	-0.4456E-5	-0.9636E-5	-0.3344E-4	-0.4845E-4	-0.7299E-4	-0.2086E-4	-0.6912E-4
0.6	-0.3128E-5	-0.6694E-5	-0.2334E-4	-0.3390E-4	-0.5250E-4	-0.1447E-4	-0.4850E-4
9.5	-0.2234E-5	-0.4748E-5	-0.1647E-4	-0.2384E-4	-0.3732E-4	-0.1024E-4	-0.3432E-4
10.0	-0.1623E-5	-0.3435E-5	-0.1181E-4	-0.1699E-4	-0.2661E-4	-0.7401E-5	-0.2464E-4
10.5	-0.1199E-5	-0.2529E-5	-0.8621E-5	-0.1232E-4	-0.1919E-4	-0.5445E-5	-0.1799E-4.
11.0	-0.8988E-6	-0.1893E -5	-0.6399E-5	-0.9084E-5	-0.1407E-4	-0.4071E-5	-0.1335E-4
11.5	-0.6831E-6	-0.1437E-5	-0.4824E-5	-0.6813E-5	-0.1049E-4	-0.3089E-5	-0.1006E-4
12.0	-0.5256E-6	-0.1105E-5	-0.3689E-5	-0.5189E-5	-0.7943E-5	-0.2374E-5	-0.7693E-5
R_(a)	6.10	5.90	6.64	6.91	7.37	5.98	6.84
	(2.60)♣	(6.07)	(69.9)	(4.09)	(7.84)	(5.88)	(6.48)°
E(a. u.)	0.204E - 4 (0.349E - 4)*	0.579E-4 (0.453E-4)	0.960E-4 (0.766E-4)	0.112E - 3 (0.782E - 4)	0.118E-3 (0.798E-4)	0.119E-3 (0.135E-3)*	0.169E-3 (0.228E-3) ^c
(00)	5.43	5.26 (5.16)	5.92 (5.84) ^b	6.15	6.57	5.35	6.13

^cC. Y. Ng, Y. T. Lee, and J. A. Barker, preprint 1974.
^dJ. M. Parson, T. P. Schafer, P. E. Siska, F. P. Tully, Y. C. Wong, and Y. T. Lee, J. Chem. Phys. 53, 3755 (1970).

Tabular Data. A-7.32.

			V(K)(a. u.)	1. u.)			
Ne-Kr	Ne-Xe	Ar-Ar	Ar-Kr	Ar-Xe	Kr-Kr	Kr-Xe	Xe-Xe
0.1484E+3	0.2058E+3	0.1437E+3	0.2464E+3	0.3435E+3	0, 4379E+3	0.6072E+3	0.8451E+3
0.2583E+2	0.3428E+2	0.2647E+2	0.4042E+2	0.5714E+2	0,6562E+2	.0.9096E+2	0.1266E+3
0.6975E+1	0.9241E+1	0.7884E+1	0, 1167E+2	9. 1523E + 2	0.1684E+2	0.2310E+2	0.3179E + 2
0.2356E+1	0.3074E+1	0.2648E+1	0.4014E+1	0.5199E+1	0, 5859E + 1	0.7559E+1	0.1008E+2
0.9567	0.1238E+1	0, 1082E +1	0, 1528E+1	0.1974E+1	0.2237E+1	0.2917E+1	0.3766E+1
0,3991	0.5457	0.4875	0.6402	0.8010	0.8914	0.1154E+1	0.1461E+1
0,1664	0.2508	0,2279	0.2989	0.3809	0.4072	0.5300	0.6632
0.6577E-1	0,1102	0,1003	0,1361	0, 1836	0.1867	0.2500	0.3127
0.2453E-1	0.4603E-1	0.4109E-1	0.5888E-1	0.8618E-1	0.8341E-1	0.1179	0.1509
0.8481E-2	0.1811E-1	0.1538E-1	0.2365E-1	0.3818E-1	0.3527E-1	0.5372E-1	0.7221E-1
0.2585E-2	0.6592E-2	0.4976E-2	0.8468E-2	0.1549E-1	0.1362E-1	0.2287E-1	0.3292E-1
0. 5826E - 3	0.2105E-2	0.1128E-2	0.2391E-2	0.5403E-2	0.4415E-2	0.8617E-2	0.1360E - 1
-0.2266E-4	0.4930E-3	-0,9633E-4	0.2236E - 3	0.1291E-2	0.8443E-3	0.2470E-2	0.4590E - 2
-0.1676E-3	-0.3379E-4	-0.3900E-3	-0.3950E-3	-0.1622E-3	-0.3300E-3	0.1019E-3	0.7428E - 3
-0.1664E-3	-0.1653E-3	-0.3915E-3	-0.4900E-3	-0.5389E-3	-0.5894E-3	-0.6023E-3	-0.6042E -3
-0.1313E-3	-0.1682E-3	-0.3153E-3	-0.4251E-3	-0.5604E-3	-0.5622E-3	-0.7184E-3	-0.9284E-3
-0.9598E-4	-0.1364E-3	-0.2344E-3	-0.3278E-3	-0.4687E-3	-0.4535E-3	-0.6349E-3	-0.8913E-3
-0.6839E-4	-0.1022E-3	-0.1690E-3	-0.2409E-3	-0.3599E-3	-0.3416E-3	-0.5025E-3	-0.7392E-3
-0.4862E-4	-0.7441E-4	-0.1210E-3	-0.1739E-3	-0.2663E-3	-0.2500E-3	-0.3784E-3	-0.5732E-3
-0.3487E-4	-0.5380E-4	-0.8703E-4	-0.1254E -3	-0.1943E-3	-0.1813E-3	-0.2787E-3	-0.4297E-3
-0.2536E-4	-0.3916E-4	-0.6331E-4	-0.9112E-4	-0.1418E-3	-0.1319E-3	-0.2042E-3	-0.3181E-3
-0.1875E-4	-0.2891E-4	-0.4670E-4	-0.6702E-4	-0.1043E-3	-0.9689E-4	-0.1504E-3	-0.2355E-3
-0.1408E-4	-0.2164E-4	-0.3497E-4	-0.5000E-4	-0.7765E-4	-0.7208E-4	-0.1118E-3	-0.1753E-3
-0.1073E-4	-0.1643E-4	-0.2656E-4	-0.3784E-4	-0.5856E-4	-0.5436E-4	-0.8409E-4	-0.1317E-3
7.22	7.74	7.23	7.45	7.78	7.66	7.94	8.14
(6.77)	(4.09)	(7.11)*	(7.18)4	(7.75)	(T. T7)*		(8.41)*
0.175E-3 (0.236E-3)	0,175E-3 (0,236E-3)*	0.409E-3 (0.446E-3)*	0.491E-3 (0.546E-3) ⁴	0.574E-3 (0.601E-3) ^d	0.599E -3	0.721E-3	0.941E-3 (0.874E-3)*
6.47	6.95	6.43	6.61	6.91	6.79	7.05	7.21

Estimates of the He₂ interatomic potential energy.

The solid line is the experimentally inferred potential of Ref. A-7.

30s the short-dashed line the unmodified GK potential, and the long-dashed line the present result. Hartree atomic units are used,

Estimates of the Ar₂ interatomic potential energy.

Estimates of the Xe, interacomic potential energy.

Estimates of the He-Xe interatomic potential. The solid line is the experimentally inferred potential of A-7.31.

Graphical Data. A-7.33.

A-8. RADIATIVE LIFETIMES OF THE RARE-GAS ATOMS CONTENTS

																				Page
A-8.1.	Lifetime	measur	ements	of	He				•											194
A-8.2.	Lifetime	measur	ements	of	Не			•	•											195
A-8.3.	Lifetime	measur	ements	of	Не				•											196
A-8.4.	Lifetime	measur	ements	of	He	•										•			•	197
A-8.5.	Lifetime	measur	ements	of	Ne														•	198
A-8.6.	Lifetime	measur	ements	of	Ne			•										•	•	200
A-8.7.	Lifetime	measur	ements	of	Ne	•	•			•									•	201
A-8.8.	Lifetime	measur	ements	of	Ar											•				202
A-8.9.	Lifetime	measur	ements	of	Ar															203
A-8.10.	Lifetime	measur	ements	of	Kr											•				204
A-8.11.	Lifetime	measur	ements	of	Xel	,	Хe	II												205
A-8.12.	Lifetime	measur	ements	of	XeI	,	Xe	II			•									207
A-8.13.	Radiativ	e lifet	ime of	Ar	(4 _F	٠,	4p	1)												208
A-8.14.	Radiative	lifet	ime of	Kr	(5p	,	5p	')						•			•			209
A-8.15.	Lifetimes	and os	scillat	or	str	en	gt	hs	f	or	,3	P ₁	-	1	So	i	n	Kr		
	and Xe			٠.	•		•	•	•	•	•	•	•	•		•	•	•	•	211
A-8.16.	Molecular	xenon	fluore	esce	ence	1	if	et	im	es										212

A-8 Reference

Radiative Lifetimes of the Rare-Gas Atoms

Tabulations and references for transition probabilities of the rare-gas atoms can be found in the following six important references, and are therefore not reproduced here.

- W. L. Wiese, M. W. Smith and B. M. Glennon, "Atomic transition probabilities. Volume 1. Hydrogen through neon," Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 4, 157 pages (May 1966).
- W. L. Wiese, M. W. Smith and B. M. Miles, "Atomic transition probabilities. Volume 2. Sodium through calcium," Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 22, 306 pages (Oct 1969).
- 3. B. M. Miles and W. L. Wiese, "Bibliography on atomic transition probabilities (January 1916 through June 1971), Nat. Bur. Stand. (U.S.), Spec. Publ. 320, (Feb. 1970).
- 4. J. R. Fuhr and W. L. Wiese, "Bibliography on atomic transition probabilities (July 1969 through June 1971), Nat. Bur. Stand. (U.S.), Spec. Publ. 320, Suppl. 1 (Sept. 1971).
- 5. J. R. Fuhr and W. L. Wiese, "Bibliography on atomic transition probabilities (July 1971 through June 1973), Nat. Bur. Stand. (U.S.), Spec. Publ. 320, Suppl. 2 (Nov. 1973).
- 6. B. J. Millar, J. R. Fuhr and G. A. Martin, "Bibliography on atomic transition probabilities (July 1973 through June 1977), (to be published 1978).

The tables of lifetimes in (A-8.1)-(A-8.12) are taken from the following more recent sources.

(A-8.1)-(A-8.4):

H. H. Bukow, G. Heine and M. Reinke, "Lifetime measurements on atomic states of HeI," J. Phys. B: Atom. Molec. Phys. $\underline{10}$, 2347 (1977).

(A-8.5)-(A-8.6):

- P. F. Gruzdev and A. $_5$ V. Loginov, "Neon, radiative lifetimes for the levels of the $_2$ p ms, $_2$ p $_5$ np, $_2$ p $_5$ nd (m=3-6, n=3-5) and $_2$ p $_5$ 4f configurations," Opt. Spectrosc. 35, 1 (1973).
- N. V. Afanaseva and P. F. Gruzdev, "Lifetimes of ns and np levels of a neon atom," Opt. Spectrosc. 38, 211 (1975).
- N. V. Afanaseva and P. F. Gruzdev, "Lifetimes of nd and nf levels of the neon atom," Opt. Spectrosc. 38, 583 (1975).

(A-8.7):

- A. V. Loginov and P. F. Gruzdev, "Neon transition probabilities. 1. Transitions $2p^53p-2p^5ns$ (n=3-6)," Opt. Spectrosc. 37, 467 (1974).
- P. F. Gruzdev and A. V. Loginov, "Neon transition probabilities. Part 2: $2p^54p-2p^5ns$ (n=3-6) transitions," Opt. Spectrosc. 39, 464 (1975).

(A-8.8)-(A-8.9):

- P. F. Gruzdev and A. V. Loginov, "Radiation lifetimes of the argon atom," Opt. Spectrosc. 38, 234 (1975).
- N. V. Afanaseva and P. F. Gruzdev, "Lifetimes of the ns and np levels of the argon atom," Opt. Spectrosc. 38, 450 (1975).

(A-8.10):

P. F. Gruzdev and A. V. Loginov, "Radiation lifetimes of levels of the KrI atom," Opt. Spectrosc. 38, 611 (1975).

(A-8.11):

A. V. Loginov and P. F. Gruzdev, "Radiation lifetimes of xenon levels," Opt. Spectrosc. 41, 104 (1976).

(A-8.13):

V. P. Samilov, Yu. M. Smirnov and G. S. Starikova, "Transition probabilities and cross sections for excitation of Xe II," Opt. Spectrosc. 38, 707 (1975).

Tabular Data A-8.1.

Lifetimes of He states (n = 3, 4 and 5). The wavelength of the observed transition is given in the first column. Theoretical lifetimes are calculated from the work of Wiese et al (1966). The table is divided into two parts, (a) singlet states and (b) triplet states. A list of references for the sources quoted is given after the table.

(a) Singlet states.

				Lifetime	e (ns)			
Wave- length (nm)	State	Theory	δτ (%)	This work	δτ (%)	Other authors	δτ (%)	Source
728-1	31S	55·2 ± 1·7	3	50·3 ± 2·3	4.6	54·1 ± 0·6	1.1	KB 63
						55 ± 6	11	BKM 65
						60 ± 3 ·	5	OV 68
						55.9 ± 2	3.6	TF 75
504-7	41S	89·8 ± 4·0	4.5	77.9 ± 3.5	4.5	87 ± 1.5	1.7	KB 63
						84 ± 9	11	BKM 65
						97 ± 2	2.1	PH 65
						83 ± 5	6.0	BK 67
						75 ± 4	5.3	OV 68.
						89 ± 3	3.4	JF 70
						87 ± 1.5	1.7	CBHG 70
						75 ± 1	1.3	IR 71
						88 ± 1	1.1	KOSB 73
						89 ± 3	3.4	TF 75
143-7	51S	150 ± 12	8.2	109 ± 16	15	133 ± 18	13	KB 63
						141		BKM 65
						144 ± 3	2.1	PH 65
						115 ± 5	4.3	OV 68
						118 ± 8	6.8	AJS 69
						145 ± 6	4-1	KOSB 73
						160 ± 3	1.9	TF 75
501-5	31P	1.725 ± 0.017	1.0	1.70 ± 0.04	2.3	≤15		BD 59
						72° ± 1	14	PH 65
						66 ± 7	11	BK 67
						9 ± 1	11	OV 68
						60 ± 20	33	AJS 69
						1.78 ± 0.10	5.6	MB 69
						1.73 ± 0.11	6.3	BL 71
						1.80 ± 0.1	5.6	CDDG 71
						1.72 ± 0.1	5.8	KKC 75
						1.74 ± 0.02	1.15	ACLMS 76
						1.7225 ± 0.0046	0.27	ACLMM 76

Tabular Data A-8.2.

Lifetime measurements of He 1

(a) Singlet states (continued).

Wave-				Lifetim	e (ns)			
length (nm)	State	Theory	δτ (%)	This work	δτ (° ;)	Other authors	δτ (%)	Source
396-4	4¹P	3.92 ± 0.11	2.9	4·05 ± 0·12	3.0	11 ± 1 3·7 ± 0·4 4·02 ± 0·1	9·1 10·8 2·5	FNPP 63 MB 69 ACLMS 76
667-8	31D	15-67 ± 0-47	3-0	15·2 ± 0·5	3-3	16·5 ± 2 16·5 ± 1 16 ± 4 18 ± 5 16 ± 2 16 ± 1 12 ± 3 20·5 ± 0·9 15·5 ± 5 13·4 ± 0·5 20·3 ± 3 15·8 ± 0·1 17·5 ± 2 20·5 ± 1	12 6·1 25 28 12 6·2 25 4·4 32 3·7 15 0·63 12 5	DPPB 60 FNPP 63 KB 63 FHJC 64 PH 65 OV 68 D 69 DW 69 AJS 69 IR 71 CBD 72 B 72 KKC 73 TF 75
492-1	41D.	36·6 ± 1·2	3.4	32.9 ± 2.3	7	391 ± 2 30 ± 5 38 ± 1 35 ± 4 47 ± 5 39 ± 5 30 ± 2 41 ± 5 38 ± 2 38 ± 5 34 ± 1 33.6 ± 3 39.2 ± 0.8 38.4 ± 2.1 33 ± 7 41 ± 3	5·1 17 2·6 11 11 13 6·7 12 5·3 13 2·9 7·9 7·3 8·9 2 5·5 521 7·3	DPPB 60 KB 63 FNPP 63 FHJC 64 PH 65 BK 67 OV 68 D 69 DW 69 AJS 69 CBHG 70 MBBBLBB 70 JF 70 CBD 72 B 72 BJ 73 KKC 73 TF 75
438-7	5¹D	≤72·0 ± 2·3	3-3	63·5 ± 5·7	9-0	49·1 ± 2 46 ± 3 79 ± 6 63 ± 9 49 ± 5 68·0 ± 7 46 ± 3 66 ± 4 71·9 ± 1·8 74·4 ± 5 80 ± 40 52 ± 6 56 ± 10	4:1 6:5 7:6 14 10 10 10 6:5 6:1 2:5 6:7 50 11	DPPB 60 KB 63 PH 65 BK 67 OV 68 D 69 DW 69 AJS 69 MBBBLBB 70 B 72 CBD 72 KKC 73 YHM 73 TF 75
	4ºF	72·5 ± 7·2	10	80 ± 6	7.5	_		

Tabular	Data	A-8.3.	Triplet	states	of	He.

				Lifetim	e (ns)			
Wave- length (nm)	State	Theory	δτ (%)	This work	δτ (%)	Other authors	δτ (%)	Source
706-5	33S	36·0 ± 1·1	3	35·1 ± 1·3	3-7	40·8 ± 0·8 47 ± 3 57 ± 1	2 6·4 1·8	KB 63 OV 68 TF 75
471-3	4 ³ S	58·4 ± 4·2	7-3	62·0 ± 2·7	4-4	67.5 ± 1 77.5 ± 4 59 ± 6 64.5 ± 4 68 ± 1 65 ± 4 69 ± 3 63.5 ± 1.2 59.2 ± 0.6 62 ± 3	1·5 5·2 10 6·2 1·5 6·2 4·3 1·9 1	HWR 56 BD 59 FHJC 64 BKM 65 PH 65 BK 67 OV 68 IR 71 KOSB 73 TF 75
412-1	535	111·0 ± 6·7	6·1	100 ± 15	15	113 ± 4 99 ± 6 106 ± 5 111 ± 1 120 ± 20	3·5 6·1 4·6 0·9 17	PH 65 BK 67 OV 68 KOSB 73 TF 75
388-9	3 ³ P	94·71 ± 0·90	0.95	89 ± 5	5-6	115 ± 5 106 ± 5 95·8 ± 60 91 ± 8 115 ± 2 100 ± 3 115 ± 5 89 ± 5 93 ± 12 122 ± 5 111 ± 5 98 ± 4·3 89 ± 10 122 ± 5	4·3 4·7 63 8·8 1·7 3 4·3 5·6 13 4·3 4·5 4·4 11	HWR 56 BD 59 DPPB 60 FHJC 64 PH 65 BK 67 OV 68 D 69 MBBBLBB 70 JF 70 CBHG 70 B 72 S 72 TF 75
587-6	33D	14·16 ± 0·42	3	14·25 ± 0·34	2.4	10 ± 5 25 ± 5 13 ± 3 15 ± 2 13 ± 2 17 ± 3 13·3 ± 1·5 14 ± 3 13·4 ± 0·5 19·4 ± 0·5	50 20 23 13 15 18 11 2 3-7 2-6	HWR 56 FHJC 64 DGJ 65 PH 65 OV 68 D 69 MBBBLBB 70 CBHG 70 IR 71 TF 75
447-1	4³D	31·5 ± 1·0	3-2	32·1 ± 1·3	4	29 ± 3 37 ± 6 23 ± 2 42 ± 4 27 ± 3 32 ± 1 35.5 ± 1.2 28 ± 10	10 16 8·7 9·5 11 3·1 3·4 36	DGJ 65 PH 65 OV 68 D 69 MBBBLBB 70 CBHG 70 B 72 TF 75
402-6	53D	≤60·9 ± 1·9	3	57-2 ± 2-3	4	42 ± 5 35 ± 3 59 ± 8 55 ± 5 132	12 8·6 14 6·1	DGJ 65 OV 68 D 69 MBBBLBB 70 TF 75
	43F	71.9 ± 7.2	10	71·6 ± 3	. 4-2			

ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO--ETC F/G 20/5 COMPILATION OF DATA RELEVANT TO RARE GAS-RARE GAS AND RARE GAS---ETC(U) DEC 77 E W MCDANIEL, M R FLANNERY, H W ELLIS DRDMI-H-78-1-VOL-1 NL AD-A053 827 UNCLASSIFIED 3 OF 5 ADA 053827 謎 11 11

Tabular Data A-8.4.

Lifetime measurements of He 1

References.

ACLMM 76	Astner G. Curtis L J. Liljeby L. Mannervik S and Martinson 1 1976 Proc 8th Conf. European Group for Atomic Spectroscopy, Oxford Paper 71: and 1976 Z. Phys. A 279 1-6
ACLMS 76	Astner G, Curtis L J, Liljeby L, Martinson I and Stoner J O 1976 Beam-Foi
110 (0	Spectroscopy vol 1, ed A Sellin and D J Pegg (New York: Plenum) pp 183-90
AJS 69	Allen L, Jones D G C and Schofield D G 1969 J. Opt. Soc. Am. 59 842-7
AW 74	Anderson M T and Weinhold F 1974 Phys. Rev. A 9 118-28
B 72	Buchhaupt K 1972 Z. Naturf. 27a 572-9
BD 59	Bennet R G and Dalby F W 1959 J. Chem. Phys. 31 434-41
BJ 73	Bachmann W and Janke W 1973 Z. Naturf. 28a 1821-7
BK 67	Bridgett K A and King T A 1967 Proc. Phys. Soc. 92 75-8
BKM 65	Bennet W R, Kindlman P J and Mercer G N 1965 Appl. Opt. Suppl. 2 34-57
BL 71	Burger J M and Lurio A 1971 Phys. Rev. A 3 64-75
CBD 72	Chien C W T, Bardsley R E and Dalby F W 1972 Can. J. Phys. 50 116-8
CDDG 71	Carré M, Desesquelles J, Dufay M and Gaillard M L 1971 Phys. Rev. Lett 27 1407-9
CBHG 70	Chin-Bing S A, Head C E and Green A E 1970 Am. J. Phys. 38 352-9
D 69	Descoubes J P 1969 Physics of One- and Two-Electron Atoms ed F Bopp and H Kleinpoppen (Amsterdam: North-Holland) pp 341-7
DGJ 65	Descomps B and Galeron-Julienne C 1965 C.R. Acad. Sci., Paris 261 916-8
DPPB 60	Descomps B, Pebay-Peyroula J C and Brossel J 1960 C.R. Acad. Sci., Paris 251 941-3
DW 69	Drtil W 1969 Z. Naturf. 24a 350-8
FHJC 64	Fowler R G, Holzberlein T M, Jacobson C H and Corrigan S J B 1964 Proc Phys. Soc. A 84 539-43
FNPP 63	Faure A, Nedelec O and Pebay-Peyroula J C 1963 C.R. Acad. Sci., Paris 256 5088-90
HWR 56	Heron S, McWhirter R W P and Rhoderick E H 1956 Proc. R. Soc. A 234 565-83
IR 71	Imhof R E and Read F H 1971 J. Phys. B: Atom. Molec. Phys. 4 450-60
JF 70	Johnson A.W and Fowler R G 1970 J. Chem. Phys. 53 65-72
KB 63	Kindiman P J and Bennet W R 1963 Bull. Am. Phys. Soc. 8 87
KKC 73	Kazantsev S A, Kisling A and Chaika M P 1973 Opt. Spectrosc. 34 714-5
KO 65	Korolyov F A and Odintsov V I 1965 Opt. Spectrosc. 18 547-50
KOSB 73	Kvater G S, Oginets O V, Smirnov V B and Bagaef S A 1973 Opt. Spectrosc 35 226-7
MB 69	Martinson I and Bickel W S 1969 Phys. Lett. 30A 524-5
MBBBLBB 70	Martinson I, Bickel W S, Bromander J, Berry H G, Lundin L, Buchta R and Bergstrom I 1970 J. Opt. Soc. Am. 60 352-3
OV 68	Osherovich A L and Verolainen Ya F 1968 Opt. Spectrosc. 24 81-4
PH 65	Pendleton W R and Hughes R H 1965 Phys. Rev. 138 A683-7
TF 75	Thompson R T and Fowler R G 1975 J. Quant. Spectrosc. Radiat. Transfer 15 1017-24
S 72	Schöck W 1972 Z. Naturf. 27a 1731-40
WSG 66	Wiese W L, Smith M W and Glennon B M 1966 Atomic Transition Probabilities vol 1, NSRDS-NBS 4 (Washington, DC: NBS)
YHM 73	Yellin J, Hadeishi T and Michel M C 1973 Phys. Rev. Lett. 30 417-9

ૹૹ૽૽ૹ૽ૹ૽૽૽ૼ૽ૹ૽ૹૹૹ૱૱૱ૡૡ૽૽ૼ૱૱૱૱૱૱૱૱૱૱ૹૹ૽ૹૹૹૹ૽ૹ૽ૹૺઌ૽૽ઌ૽ૺઌ૽ૺઌૺઌ

A-8.5. Tabular Data

Radiative lifetimes (in nsec) of atomic neon levels

Levels accord-ing to Paschen

××

٥	
H	
=	
=	
Z	
=	5
ኌ	=
7	5
2	5
5	0
8	=
2	=
2	=
Z	2
5	7
8	3
	2
š	7
Ξ	-
ō	=
	2
2	4
ě	2p3 nf (n = 5-8) of the neon atom calculated in Il coupling
-	ĕ
2	=
_	2
8	=
š	5
Ξ	~
=	00
š	.1
ĕ	-
Ξ	
岩	5
≝	-
Lifetimes (in usec) for levels of the configurations 2p' nd (n = 6	=
	2
	~

7	5	3	5	Level	11.
64 [1/2]5	15	Sr [7;2],	140	94 3/2 \$	787
11/21	71.6	5/ 17/216	140	94 (3/2)	256
(7/2)	722	5/ (5/2),	142	94 5/2	835
17/2 3	230	5/ 5/2	142	94 5/2	88
(3/2)	218	6/ [3/2],	235	94' (5/2)	818
3/21	73.5	6/ [3/2].	335	94" 5/2	830
(5/2)	235	6/ 19/21	231	94' [3/2]	863
64 [5/2]	922	6/ 19/21	231	94' [3/2]	2
64' 15/21°	230	6/ [5/2],	242	77 (3/2),	371
84' [5/2]	234	6/[5/2]	241	7/ [3/2],	371
64' [3/2]	873	6/ [7/2],	244	7/ [9/2]	374
64' (3/2)	74.4	6/17/21	245	7/ 19/21	374
74 [1/2]8	330	6, 17/21,	240	7/ 15/21,	382
11/21	108	6/ [7/2]	240	7/ 15/21.	379
74 [7/2]	362	6, [5,2]s	242	7/ [7/2],	384
74 17/219	371	6/ [5/2],	242	711721.	382
74 (3/2)	355	84[1/2]8	808	71. [7/2],	378
74 [3/2]	110	84 11/21	51	71 [7/2],	378
74 15/21	380	84 [7/2]	559	75 5/2 ,	381
74 5/21	381	84 [7/2]\$	571	7, [5/2],	381
74' [5/2]	373	84 [3/2]2	248	8/ 13/21,	551
14' [5/2]	378	8d [3/2]f	174	8/ [3/2],	551
14' [3/2]9	383	84 [5/2]§	583	8/ 19/214	256
13/21	111	84 [5/2]8	585	8/ 19/21	558
3/21.	137	84' [5/2]	573	8/ 15/21,	288
3/21.	137	84" [5/2]	280	8/ 15/21.	295
5/19/21.	130	84' [3/2]	238	8/17/21.	999
5/19/21.	139	84' [3/2]	174	8/ [7/2],	895
54 15/21.	142	94 11/218	735	8/ 17/21.	195
5/15/21.	141	11/2/L	152	8/ [7/2]	795
5/17/21.	163	94 [7/2]	803	87 [5/2].	*
7/21.	143	94 17/218	818	84' 15/21.	3

TOA: One-configuration approximation

TM: Many-configuration approximation

Ti : Calculated with coulomb transition integrals.

Calculated with Hartree-Fock transition integrals

IC : Intermediate coupling

Ji : Ji-convoling scheme

Tabular Data A-8.5. (concluded)

Lifetimes (in nsec) of ns levels of Ne.

Level	'ic	'n	Lovel	111
3. [3/2]	1.		7. [3/2]	283
3. 13/219	24.4	2.75	7. [3/1]	64.
34 11/218			70' [1/2]0	292
3# 11/215	1.80	5.34	70' [1/2]	106
4. 13/212	39.4	39.8	8. 13/210	460
4. [3/2]?	11.0	8.04	80 13/219	107
40' [1/2]\$	47.2	45.9	86' [1/2]8	476
40' [1/2]?	8.68	13.9	84' [1/2]	175
5# 13/219	79.0	82.3	9. [3/2]	777
5. 13/219	21.4	19.0	9. [3/2]9	153
56' 11/212	104	88.7	90' [1/2]2	800
50' 11/219	24.9	31.5	90' 1/2 1	256
6. [3/2]	146	160	10. [3/2]	1011
6. 13/219	40.4	36.7	100 13/219	218
6. [1/2]2	201	168	100' [1/2]2	1034
6. [1/2]	50.5	60.4	. 100' [1/2]	360

Lifetimes (in nsec) of np levels of Ne.

Level	r _{IC}	'n	Level '	131
3p [1/2]; 3p [5/2]; 3p [5/2]; 3p [5/2]; 3p [3/2]; 3p [3/2]; 3p [3/2]; 3p [3/2]; 3p [1/2]; 3p [1/2]; 3p [1/2]; 4p [5/2]; 4p [5/2]; 4p [3/2]; 4p [3/2]; 4p [3/2]; 4p [1/2]; 4p [1/2]; 4p [1/2]; 5p [3/2]; 5p [3/2]; 5p [1/2]; 5p [3/2]; 5p [1/2]; 5p [3/2]; 5p [1/2]; 5p [3/2]; 5p [1/2]; 5p [3/2]; 5p [3/	26.2 19.7 21.2 20.5 20.9 16.4 18.8 17.7 16.3 14.8 161 127 103 127 103 127 103 188.7 487 487 487 487 487 487 488 332 408 210 210 210 210 210 210 210 210 210 210	26.6 19.8 20.6 19.3 17.6 16.9 19.8 20.1 15.1 14.5 120 127 119 108 95.7 127 127 127 127 127 127 127 127 127 12	6p 1/2 1 6p 5/2 2 6p 5/2 2 6p 5/2 2 6p 3/2 1 6p 3/2 1 6p 3/2 1 6p 1/2 2 6p 1/2 2 6p 1/2 2 7p 1/2 2 7p 1/2 2 7p 5/2 2 7p 1/2 2 8p 3/2 1 8p 3/2 1 8p 3/2 1 8p 3/2 1 8p 3/2 2 8p 3/2 2 8p 1/2 2	1083 962 1025 978 913 744 992 1012 1026 847 1999 1816 1884 1818 1716 1415 1415 1415 1816 1818 3714 383 3714 383 373 333 333 377 384 384 384 384 384 384 384 384 384 384

Tabular Data A-8.6.

ns 2p*ns. 2p*md (n = 3-5, m = 3, 4) of Ne.
¥
0
4
w
=
S.
4
-
=
Ě
20
ź
-
0
of the configuration
3
5
9
£
9
Ş
5
2
ec) for level
2
5
×
-
a

1	1.51		15	2	1	1	1	1	1	1	1	1	157
Fac	131		E	4	1	1	1	1	1	1	1	1	4
4	2,5 2,5 1,5 1,5		16	1	1	1	1	1	1	1	8	1	1
Level	ส์ส์ส์	of Ne,	15	80.4	1	1	ı	1	1	951	ı	1	51.4
4	23.1	n = 3-5)	10	2	1	1	1	1	1	1	1	1	63.5
Level	3.5	s 2psnp (Lovel	36.	1	1	.1	1	1	e e	3P.	1	3.
7	7.78	guration	14	1	29.3	25.6	18.8	1	18.8	1	21.1	18.0	14.9
Lens	4.5	the confi	13	3	30.5	27.8	20.2	28.9	25.4	18.7	28.2	18.7	14.4
9	871	evels of	12	1	19.5	28.4	1	2	28.2	28.2	28.0	1	3
5	1.86	sec) for	7	*	2	×	n	2		n	2	8	=
4	31.7	b) $r_{\rm exp}$ (in nsec) for levels of the configurations $2p^4np$ (n = 3-5) Of Ne.	11	1	,	,	1	4	1	1	1	1	1
3	20.8	9	10	1	2.5	24.3	20.3	a	n	18.9	n	10.5	14.7
2	81		6	34.8	18.4	19.8	19.9	18.7	17.6	19.9	1.61	18.8	16.4
1	81		8	2	2	=	2	2	12.5	10.5	2	9	•
3	55		3	ž	#	*	*	*	*	4	ž	ě	£

(References to above table)

1 Washington, D.C., 1949), vol. 1, p. 467. A. Phelps, Phys. Rev. 100, 1230 (1955).

2 F. Korolev, V. Odintsov, and E. Fursova, Opt. Spektrosk. 16, 555 (1964) [Opt. Spectrosc. 16, 304 (1964)].

3 E. Lewis, Proc. Phys. Soc. London 92, 817 (1967). 4 G. Lawrence and H. Liszt, Phys. Rev. 178, 122 (1969). 5 J. Geiger, Phys. Lett. A33, 351 (1970).

7A. Osherovich and Ya. Verolainen, Opt. Spektrosk. 22, 329 (1967) [Opt. Spectrosc. 22, 181 (1967)]. 6 J. Jongh and J. Eck, Physica 51, 104 (1971).

(1928); R. Ludenburg, Rev. Mod. Phys. 5, 243 (1933). 9W. Bennet and P. Kindlmann, Phys. Rev. 149, 38 (1966). 10J. Klose, Astrophys. J. 141, 814 (1965); Phys. Rev. 141 4. Koplerman and R. Ladenburg, Z. Phys. 48, 26

181 (1966).

11 D. Rosenberger and J. Thumb, Z. Naturforsch. 21a. 175 (1966).

12 I. Bakosh and I. Sigetti, Opt. Spektrosk. 23, 478 (1967)

[Opt. Spectrosc. 23, 255 (1967)].

1 3 A. Denic, J. Desesquelles, and M. Dufay. Compt. Rend.
266B, 1016 (1968).

14 G. Assousa, I.. Brown, and W. Ford, J. Opt. Soc. Am.

60, 1311 (1970). J. Hesser, Phys. Rev. 174, 68 (1968).

15 E. Kotlikov, G. Todorov, and M. Chaika, Opt. Spek-trosk. 30, 185 (1971) [Opt. Spectrosc. 30, 99 (1971)].

Tabular Data A-8.7.

1 (4 + 6)

10 0.27 0.053 18 1.027 0.053 18 1.027 0.015 18 1.027 0.015 18 1.02 1.124 19 0.027 0.020 19 0.027 0.020 19 0.027 0.020 19 0.027 0.020 19 0.027 0.010 19 0.027 0.010 19 0.027 0.010 19 0.03 10		*	A (39 - 20)		A (46 3p)	A (Se - 3p)	- 36)	A (60 - 39)			A (14 . 3.)		114.001	A Ch	A (\$ - 1p)	A (Se + 6)
1.54 7.54							Experi-			Transition			I		T	
1. 1. 1. 1. 1. 1. 1. 1.		2000	-			2	ment [S S C S C S C S C S C S C S C S C S C S		A	Paper	Page 1	Murphy	Paper	Musphy	Paper
24. 22.5 10.00 1.3 0.	3p' [1/5 lo - ns' [1/5]]	75.6	9.02	73.0	0.92	0.33	0.255	0.15							-	1
24.8 25.8 24.6 1.35 1.30 0.400	- ne (Age	0.78	0.90	1.3	0.24	0.19	1	0.41		11. 210 - ns 11 ZF	1.81	×. =	7.710	0.27	0.263	0.13
6.55 6.00 6.00 0.00 0.00 0.00 0.00 0.00	3p' [1/2]1 - no' [1/2]	24.8	2.5	24.4	4.56	2.	1.30	0.61		17 C 18 C	0.00	£.	0.667	0.015	0.013	a.uts
1.2 1.2 0.00 0.000 0	#-/sl.eu -	17.2	14.1	17.3		1	1	0.90		11. 41 - 45 1. 2 ;	0.92	3.57	3.518	1,12	1.134	0.38
13.2 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.25	11/6 em -	6.55	5.12	6.2	0.004	0.038	1	0.028		12,11 sh -	0.65	2.09	1.799	99.	1.462	67.0
1.0 1.0	- ne (3/16	13.2	10.2	12.2	0.61	27	1	0.1		10000	2.2	0.042	0.0	0,012	0.102	0.4413
1.0 1.0	361/49-10, 1/41	0.42	. O. 3.	-	12.0	N. 0	0.345	0.18		40 [1/2] - 20/ [1 20	2.2	0.00	100.0	0,027	0.026	0.n16
21. 17.3 17.2 17.4 17.1 17.2 17.2 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3	Hill 84 -	9.6	8.3	20.0	3	***	1 5	6.19		- As 13 21	0.074	7 35	7 001	3 2	0.107	0.04
13.6 13.2 13.6 13.6 0.45 0.25	194 - ne 1941 de	3:0	3 5	200	2.10	0.00	2.33	0.000		4p 3 2 - ns' 1,2	9 3	5	5 765	3.5	7 871	
214 21.7 25.6 2.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	13.15	13.6	11.2	10.7			1	0.19		- ns (3-2)?	0.75	0.33	0.260	0.00	0.00	
2.5 2.5 11.5 2.5 11.5 2.5 0.	30' 13' L RE' 11' L	24.4	21.7	25.6	2.90	0.60	0.639	0.29		- ns (3;2)g	6000	0.14	0.176	600 O	0.011	0.00
0.75 0.70 1.11 0.55 — 0.27	- ns' []/.[]	6.12	23.4	23.5	11.5	3.50	1	1.61			0.51	2.00	1.762	0,67	0.595	0.22
3.50 3.40 3.50 0.003 0.003 0.0004 0.0004 0.0004 0.0000 0.000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000	- 11: 13:16	97.0	0.70		1.11	0.52	1	0.27		- ns [1,2]	1.20	4.N3	3.941	3.53	3.495	1.22
19.5. 17.4 21.1 21.2 2.2 0.00 0.00 0.27 0.07 0.07 0.07 0.0	- ns 1%!	3.90	3.49	3.9	0.21	0.073	1	0.0		- ns (3, 2)	0.15	0.001	0.002	0.00	O.URS	0.cm5
4.08 4.24 4.9 3.57 1.47 - 0.57	3613/1 - 112 11/11 361dC	19.5	17.4	21.1	3.73	0.0	0.619	0.21		- 40 13 2 12 12 12 12 12 12 12 12 12 12 12 12 1	0.00	0.028	0.050	0.0	0.m2	0.00
2.3 2.5 2.6 3.70 1.22 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	117/cl eu -	4.66	4.24	4.9	3.87	1.47	1	0.71		19:01 - 40 (1/2)	0.24	0.14	0.137	180.0	0.083	0.013
11.8 10.6 15.4 6.22 5.53 1.54 6.22 1.39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.9	23.5	9.72	2.7	7.7	, !	20.0		Harelan I	2,5	2.6	1.73	3.8	0.882	0.30
16.8 31.6 22.9 5.63 1.34 — 0.099 7.16 6.01 25.0 0.55 0.17 — 0.099 7.16 6.01 25.0 0.55 0.17 — 0.099 7.16 6.01 25.0 0.55 0.17 — 0.099 7.16 6.01 25.0 0.55 0.17 — 0.099 7.16 6.01 25.0 0.55 0.17 — 0.099 7.16 6.01 25.0 0.55 0.17 1.00 0.14 33.9 2.00 1.22 0.25 0.24 0.29 0.20 0.20 0.24 7.18 6.01 2.22 0.20 0.20 0.20 0.20 0.20 0.20 0	36 (4 th - 40 1/4) de	2.0	8:5		17.0	1	9	100		40 [3.2] ne' [1/2]?	-	0.055		2	00.00	
7.16 6.01 9.5 0.55 0.17 0.009 7.16 6.01 9.5 0.55 0.17 0.20 0.14 3.19 3.19 4.5 0.20 0.20 0.14 3.20 3.21 4.5 0.20 0.20 0.14 3.20 3.21 4.5 0.20 0.20 0.14 3.20 3.22 0.30 1.11 1.07 0.15 3.20 3.20 0.30 1.11 1.07 0.15 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 0.30 0.30 0.30 3.20 3.20 0.30 0.30 0.30 3.20 3.20 0.30 0.30 0.30 3.20 3.20 0.30 0.30 0.30 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 0.30 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 0.30 0.30 0.30 3.20 3.20 3.20 3.20 3.20 3.20 0.30 3.20 3.20 3.20 3.20 3.20 3.20 0.30 3.20 3.20 3.20 3.20 3.20 3.20 3.20 0.30 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	01-1-1 SW -	6.5	30.0	200	20.00	2	1	2 2			200	0.068	990 0	0 12	0.177	0 037
3.16 3.21 4.5 0.19 0.24 0.200 0.14 3.16 22.5 22.4 10.9 2.200 0.24 3.18 13.0 13.2		7 46			3	10	1	0.079	4	- ns [3,2];		4.89	4.573	3	1.38.4	5
23.6 22.8 25.4 10.9 2.80 — 1.28	30 1414 - ns' (11.18	3.16	3.21	4.5	0.10	0.24	0.200	0.14		- 45 [3 2]	0.33	1.1	1.075	0.15	0.151	0.057
18.8 18.0 14.8 2.82 0.86 — 0.38 Sec. 3	10/6 au -	33.9	29.8	2.4	6.01	2.80	1	1.2		40 15,210 - ms' [1,2]	0.33	0.027	0.012	0.015	0.017	O.Or.
56.3 30.6 - 13.4 2.57 - 1.76 - 1.76 - 1.76 - 1.76 - 1.76 - 1.76 - 1.76 - 1.76 - 1.76 -	- ns' [8/3]	18.8	18.0	14.6	2.82	98.0	1	0.38		- ns [3/2]]	98.0	3.82	3.577	2.27	2.105	0.74
Calculated Experiment Calculated Calculated Experiment Calculated	3p [4,2]3 - ns [4,2]3	56.3	9.0	1	13.4	3.87	1	1.78		- us, [3.2]	19.0	1.93	1.948	35.0	0.556	0.19
Of the mean atom A Cheristics of transitions (10 ⁶ sec ⁻¹) 3p[15] 1 - fis (n = 3-6) of the mean atom A Cheristics of transitions (10 ⁶ sec ⁻¹) 3p[15] 1 - fis (n = 3-6) of the mean atom A Cheristics of transitions (10 ⁶ sec ⁻¹) 3p[15] 1 - fis (n = 3-6) Of the mean atom A Cheristics of transitions (10 ⁶ sec ⁻¹) 3p[15] 1 - fis (n = 3-6) Colections Experiment Calculus Calculu					-					46 [3/2] - ne [3/2]	2.04	90.9	5.744	2.69	2.582	0.91
Of the neon atom A Cherish - She Cataloned Experiment Cataloned C										11/21 - 40 11/21	0.00	0.039	0.036	9 90	25.0	0.069
Colembra	4	- Parkillet	and from	eiting	(106 000	2) 3nft	1	1 3 K		- Re [3.2]	200	0.77	0.750	97.0	0.459	0.12
A Chirulanted Experiment Calculated Calculated Experiment Calculated Calculat	in the spectrum	of the ne	on atom		-	1				- 413,21g	1.49	3.71	3.488	8.	1.140	0.35
Calculated Experiment Calculated Calculated Experiment Calculated Calculated System Calculated Calculated System Calculated Calculated System Calculated C		v	Cap 14/4 - 2	T	A (46 3p)	A (to-	386	A(8-30)				-				1
0.12 0.12 0.12 - 1.57 0.96 0.40 0.283 0.22 0.20 2.65 2.31 2.42 3.8 3.57 2.40 0.86 0.70 - 0.37 0.25	Transitions	S	<u>a</u>		Calculated	Calculate	Experi-	Calculated	¹ J. M. Bridges and	W. L. Wiese, Phys	. Rev. A	12, 28	16			
0.12 0.12 0.12 — 1.57 0.90 0.40 0.40 0.253 0.23 0.30 2.25 2.31 2.42 3.8 3.57 2.40 0.58 0.70 — 0.37 0.32		-	는	12	11 11	1 11		= -	² R. D. Bengtson a	nd M. H. Miller. J.	Opt. Sc	oc. Am	60. 10	93 (19	70)	
7,28 2.65 2.31 2.42 3.8 3.97 2.40 0.86 0.70 - 0.37 0.32	3p Plats - no' Plat	0.12	0.12 0.12	-	0.98	0.40 0.4	0.283	0.23 0.30		D Holmer Dhus	Don A	771 0	1000			
	22/d .ou -	2.8	2.30 2.42	3.8	3.93 2.40	0.88 0.7	1	0.37 0.32	ó	. R. nolines, rnys.	NEV. A	0, 101	(17/2)			

0.13 0.144 0.144 0.144 0.144 0.144 0.105 0.003 0.002 0.003 0.003 0.003 0.004 0.005 0.004 0.005 0.004 0.005

- 11 | 28.8 | 28.0 | 28.3 | 20.6 | 8.30 | 8.30 | 1.30 | - | 0.61 | 0.35 | P. W. Murphy, J. Opt. Soc. Am. 58, 1200 (1968).

taken from:

"Neon Transition Probabilities 1. Transitions $2p^53p-2p^5$ ns(n = 6), A. V. Loginov and P. F. Gruzdev, Opt Spectrosc. 37, 467 (1974) Table 3 from: "Neon Transition Probabilities, Part 2: $2p^54p-2p^5$ ns(n = 3-6) transitions, P. F. Gruzdev and A. V. Loginov, Opt Spectrosc. 39, 464 (1975).

_	7.	862	56.5	305	93.6	480	8	689	25									и.	25.25.25.25.25.25.25.25.25.25.25.25.25.2
	Teva	8e [3/s]g	85 (3/2)	80. 11.018	80' l'/sli	95 [3/2]	98 18/81	92, 1,/16	90' '/ail							8, 01 x)	!		666666666666666666
-	и.	2.50	4.72	46.2	1.50	54.4	13.1	87.8	17.2	99.5	28.8	52	32.5	681	-	Lifetimes of np levels of Ar atom (X 10 'sec)	_	M.	<u> </u>
- conbine		8.85	2.30	43.6	9.79	43.5	11.0	84.7	\$.8	84.5	23.3	155	98.6	33		s of np level	te coupling	a.	¥\$
Later mediate coupling	. 44	7.84	2.03	39.4	8.46	39.3	9.5	0.77	17.6	7.97	24.5	15	33.2	#		Lifetime	Intermediate coupli	*	**************************************
	ļ	Ma/e] 04	10/1. 1. 10 Kg	Se 19/e19	Se 9/s	5e' P/all	5e' P/s#	60 9/219	6e [º/s]!	60' f1/s ff	6s' p'/sfi	70 (°/a)	7.10/0107	7s, [1/s]	•				######################################

1	,	44444444444444444444444444444444444444
٥	3	# # # # # # # # # # # # # # # # # # #
	•	### ### ### ### ### ### ### ### #### ####
	*	22.5.4.4.4.2.5.4.5.4.5.4.5.4.5.4.5.4.5.4
1		งร่วงสมมาสถาสถาสถาสถาสถาสถาสถาสถาสถาสถาสถาสถาสถา
		444 444 444 413 413 413 413 413 413 413
8	3	25.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
	•	310 311 311 311 311 311 311 311 311 311
		201 201 201 201 201 201 201 201 201 201

Tabular Data

Radiation lifetimes (in nec) of the levels of the argon

r : From summation over transition probabilities obtained from dipole-length formula.

t, : From summation over transition probabilities obtained from dipole-velocity formula.

Try: Geometric mean of Try and Try. Many-configuration approximation ToA: One-configuration approximation

Tabular Data A-8.9.

Values of rexper. (nsec) for levels of the argon atom

Lool	'exper.	Level	'exper.
11.00	8.60 1 2 2.15 1 2 2.15 1 2 2.15 1 2 2.15 1 2.15 1 2.15 1 2.15 2.15	25, 24, 3pt, 3pt, 3pt, 3pt, 3pt, 3pt, 3pt, 4ds	17.5 [*] 1 10.1 [*] 1 188 [*] 5 166 [*] 45 [*] 5 ; 149 [*] 150 [*] 5 ; 149 [*] 150 [*] 5 ; 124 [*] 150 [*] 5 ; 174 [*] 150 [*] 5 ; 174 [*] 150 [*] 5 ; 174 [*] 150 [*] 5 ;

References in Table:

- 1. G. Lawrence, Phys. Rev. 175,40 (1968).
- 2. D. Landman, Phys. Rev. 173,33 (1968).
- 3. Ya. Verolainen and A. Osherovich, Opt. Spectros. 25,258 (1968).
- 4. J. Klose, J. Opt. Soc. Am. 57,1242 (1967).
- 5. J. Klose, J. Opt. Soc. Am. <u>58</u>,1509 (1968).

Table taken from "Radiation lifetimes of levels of the argon atom," Opt. Spectros. 38,234 P. F. Gruzdev and A. V. Loginov (1975).

Tabular Data A-8.10.

Lifetimes of levels in the Kr l atom (in nsec)

		TSC					*SC		
Level	Tr.	Trv	74	1 TMC	Level	T _Z	*rv	**	MC
14	3.38	3.79	4.26	3.61	407	528	522	476	420
14	3.22	3.61	4.06	3.45	1999	596	588	538	553
2p.	27.4	35.5	46.0	29.7	44	624	625	579	512
2p.	20.7	26.8	34.7	25.0	44!	1.70	1.83	1.97	1.35
20.	20.7	30.9	40.1	25.9 29.5	34	82.2	92.0	103	89.4
2p, 2p,	20.9	27.1	35.1	29.7	34.	17.4	20.3	23.7	10.1
2p.	18.1	23.4	30.3	26.3	34	81.4	91.0	102	87.4
2p.	16.8	21.8	30.3	18.9	34, 4X,	25.0	29.1	33.7	
20.	21.6	28.0	36.4	28.8	4X.	23.8	30.1	37.9	37.3
2p.	21.2	27.5	35.6	26.9	42.	34.2	43.1	54.2	42.0
2p.	19.3	25.0	32.4	28.6	47, 47,	30.8	38.9	48.9	40.5
2p1 3d4	17.2	22.3	28.9	19.0	41	27.4	34.6	43.6	39.3
3de	134	108	24.6	118	47,	30.8	38.9	48.9	41.0
3d.	37.5	37.3	36.8	44.5	47. 4V.	41.2	51.9	65.2	44.5
3de	125	109	95.2	114	4W,	35.7	45.0	56.6	42.8
d.	113	98.4	85.8	100	4W.	36.5	46.0	57.8	43.3
de	114	99.6	86.9	116	4V.	28.9	36.5	46.1	40.3
34,	1.23	1.30	1.38	1.87	45.	39.0	49.7	62.9	43.9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	103	90.1	78.6	89.8	45, 4V,	29.5	37.3	47.0	41.3
34)	102	88.6	77.2	87.9	***	31.9	40.2	50.6	299
36]	104	90.8	79.2	98.0	4p10	173	206	242	246
1.	111	96.5	84.1	101	4p.	175	234	243	251
,	0.84	0.89	0.95	102	Ap.	221	261	305	218
	41.9	47.3	53.3	47.5	4P4	185	218	256	213
-	7.75	9.04	10.5	17.7	4p.	262	304	349	1000
4	41.5	46.8	52.8	52.6	404	185	218	255	242 220 215
4	10.6	12.3	52.8 14.4	02.0	4p,	184	216	255 252	220
2	84.6	104	127	122	4Pa	171	201	234 238	215
P10	80.6	98.4	119	107	401	184	211	238	
Pe	91.1	111	135	117	56.	556	669	786	425
Pı	95.1	115	139	109	5di	129	143	1 157	172
Da	79.8	96.8	117	99.7	5d1	569	669	762	686
Pe Pe	92.5	111	131	54.1	KEKKKKKK	544	628	699	619
PA	8C.8	106	128	113	54,	555	646	726	425
Ps	84.4	103	124	105	54	2.91	3.15	3.41	2.37
P.	80.2	97.3	117	108	56	540	609	659	536
PI	83.2	99.3	117	52.7	54	583	597	640	551
4	80G	873	870	203	567	514	578	624	352
4	86.3	92.7	98.6		50%	542	618	677	663
000000000000000000000000000000000000000	739	760	723	515	50	544	628	638	612
4	639	635	596	467	5ei	3.57	3.86	4.17	1.05
d,	674	678	633	310	44	151	167	15	106
4.	1.81	1.95	2.09	1.68	44.	33.2	38.8	45.4	15.2
9	564	540	484	471	44	150	166	183	97.4
ď,	542	514	457	528	-	48.5	56.3	65.3	

 τ_{r} : obtained from transition probabilities calculated using dipolelength formula.

 $\tau_{\rm V}$: obtained from transition probabilities calculated using dipole-velocity formula.

 $\tau_{rv} = (\tau_r \tau_v) \frac{1}{2}$, geometric mean.

SC: single-configuration approximation.

MC: multiple-configuration approximation.

Reference: "Radiation lifetimes of levels of the Kr I atom"
P. F. Grugder and A. L. Loginov, Opt. Spectros. 38,611 (1975).

Tabular Data A-8.11.

Level radiation lifetimes (in asec) of the spectrum

		704					Ton		1
Level		'm	•	Tena	Level	*	***		1 me
1	2	,	4		1	2	,		5
124	4.06	4.59	5.18	4.16	44""	97.2	102	90.1	93.4
14	3.64	4.11	4.65	4.29	4	1.04	1.14	1.22	1.19
2P10	29.7	43.5	63.6	32.5	44	105	120	129	96.5
2p.	28.6	41.8	61.1	39.5	44	106	120	125	118
2p.	22.0	32.2	47.1	29.9	34,	92.3	102	113	108
20-	24.6	36.0	52.6	41.5	3,	19.4	23.1	27.5	66.0
2p.	19.2	28.1	41.2	34.5	34	87.6	96.7	106	91.6
20.	29.5	29.9	43.7	24.5	34,	24.7	29.3	34.5	61.0
20.	17.5	25.4	36.8	39.2	4/8 D.	14.8	19.0	24.2	30.9
2p4 2p3	16.5	24.0	34.4	26.5	4/2D.	25.9	33.1	42.0	34.5
20	14.9	21.6	30.8	31.9		23.9	30.4		
2p ₁ 2p ₁ 3d ₀	14.1	20.0	27.5	18.4	411G4	19.1		38.6	32.8
371	8490	5765	3910		41°G.	22.8	24.5	31.1	32.4
34				2670	4foFs		29.1	36.9	34.1
3d, 3d,	56.3	60.5	64.7	1	4/1D:	35.8	45.7	58.0	37.4
34	2910	1980	1340	2410	4/2F.	28.8	36.7	46.5	34.7
3d.	1240	841	571	899	4/0F4	30.8	39.2	49.7	36.0
3d,	1610	1093	742	1559	4/3D.	19.8	25.4	32.3	33.0
3d,	0.83	0.89	0.96	1.69	4/3F2	25.8	34.1	44.0	37.0
34,	661	449	305	452	41ºG,	20.7	26.5	33.7	32.7
3d 3d 3d 3d 3d	513	348	237	343	41°G.	24.8	31.7	40.3	34.3
301	384	261	177	206	4P10	196	221	243	249
36	0.30	0.32	0.35	€ 55	4P.	241	276	307	322
36	806	547	372	547	4Pe	204	232	259	335
3:"	634	431	292	316	4p7	276	321	364	147
25,	48.5	54.2	60.6	54.2	4pe	224	256	292	239
28.	8.85	10.5	12.5	12.1	4p.	369	452	540	1 -
2.	46.4	51.9	58.1	52.3	4p4	188	201	206	155
24	11.0	13.0	15.4	-	4p3	204	225	239	142
3pre	89.6	107	125	69.2	402	170	184	190	91.2
3p.	107	130	156	108	4P1	115	108	96.5	_
30.	88.5	107	128	147	5d.	118	141	164	139
3p ₀ 3p ₇	112	139	169	-	5d	74.8	87.1	99.0	100
3p.	90.7	111	135	100	54	128	152	473	143
3p.	118	153	194	1 .00	54	122	145	163	168
3p.	88.1	94.0	83.5	99.0	5d2	128	152	168	170
3p,	88.8	98.6	93.9	82.4	5d,	2.41	2.70	3.00	1 110
300	76.4	80.3	69.6	62.5	54:	126	150	170	1 186
200	61.3	47.6	28.0	25.0	54,	130	153	166	162
3p1	110	129	153	77.5	341	120	138		
4.3		61.0	69.6		50			147	126
6d,	53.4	137		79.5	5e 5e 5e	2.62 122	2.92	3.23	1
104	116	126	161	93.9	581	122	144	161	133
dd.	107			103	38,	126	148	161	143
d,	112	132	154	88.2	400	156	175	196	115
d,	1.30	1.44	1.58		44.	36.0	43.1	51.4	33.4
id'	109	127	147	127		118	141	164	86.9
100	109	126	143	170	44	74.9	87.1	99.0	-

 τ_{R} = dipole-length approximation

 τ_{V} = dipole-velocity approximation $\tau_{RV} = (\tau_{R} \tau_{V})^{\frac{1}{2}}$ geometric mean

Reference: "Radiation lifetimes of xenon levels" A. V. Loginov and P. F. Gruzdev: Opt. Spectros. 41, 104 (1976)

Tabular Data A-8.11. (Concluded)

Comparison of Toale and Tom for the levels of the

xenon atom.

		Tcelc	(nsec)		
Level	r, p(present	τ _Π (Ref.4)	τ, (Ref.11)	7 (Ref.11)	Texp (nsec)
154 22P0 22P0 22P0 22P0 22P0 22P0 32P0 33P0 33	4.59 4.11 32.2 36.0 28.1 29.9 25.4 24.0 107 130 107 139 111 153 232 321 452 1980 87.1	33.0 35.0 27.1 27.0 28.7 28.0 24.8 23.0 155 140 115 125 112 118 550	24.7 29.0 27.4 24.7 37.2 26.3 23.9 27.2	34.4 35.2 31.7 32.3 48.8 35.6 36.1 35.0	3.31 [*], 3.70 [*], 4.22 [*], 3.51 [*], 4.20 [*], 3.51 [*], 4.20 [*], 3.51 [*], 4.20 [*], 3.51 [*], 4.20 [*], 3.51 [*], 4.20 [*], 3.51 [*], 4.61 [*], 3.51 [

References

¹V. P. Malakhov, Izv. Vyssh. Ucheb. Zaved. Fiz. 1, 180 (1965).

²D. Anderson, Phys. Rev. A 137, 21 (1965).

³G. I. Chashchina and E. Ya. Shreider, Opt. Spektrosk. 20, 283 (1966) [Opt. Spectrosc. '20, 511 (1966)].

⁴L. Allen, D. Jones, and D. Schofield, J. Opt. Soc. Am. 59, 842 (1969).

⁵Ya. F. Verolainen and A. L. Osherovich, Opt. Spektrosk. 27, 31 (1969) [Opt. Spectrosc. 27, 14 (1969)].

K. Chenevier, C. R. Acad. Sci. Ser. B 268, 1179 (1969).
 M. Griffin and J. W. Hutcherson, J. Opt. Soc. Am. 59, 1607 (1969).

⁸C. J. Chen and R. H. Garstang, J. Quant. Spectrosc. Radiat. Transfer 10, 1347 (1970).

W. Wieme and P. Mortier, Physica 65, 198 (1972).

16X. Husson and J. Margerie, Opt. Commun. 5, 139 (1972).

11 M. Aymar, Physica 57, 178 (1972).

12M. Chenevier and P. Moskowitz, J. Phys. 35, 401 (1974).

¹³E. Jimenez, J. Campos, and C. Sunchez del Rio, J. Opt. Soc. Am. 64, 1009 (1974).

¹⁴P. F. Gruzdev and A. V. Loginov, Opt. Spektrosk, 34, 611, 812 (1973); 35, 3, 994 (1973); 36, 1232 (1974) [Opt. Spec-

trosc. 34, 352, 469 (1973); 35, 1, 578 (1973); 36, 719 (1974)].

¹⁵P. O. Bogdanovich and R. I. Karaziya, State List of Algorithms and Programs, P-000083 (1971).

¹⁶P. F. Gruzdev and A. V. Loginov, in Theory of Atoms and Atomic Spectra (Latv. GU, Riga, 1974), Vol. 1, 75.

17L. Brillouin, Actual. Sci. et Ind. No. 159 (1934).
 18C. E. Moore, Atomic Energy Levels. NBS Circ. 467 (1958),
 Vol. 3.

¹⁹D. Bates and A. Damgaard, Philos. Trans. R. Soc. Longon, Ser. A: 242, 101 (1949).

Tabular Data A-8.12.

Transition probabilities and excitation cross sections of Xe II

A(A)			Qk	Ecasc.	9k
	Our i dats	Ref.	cm ¹)	Qix	(10.m
6278	0.079	1 93	1 169 7	0.445	34.14
5292	0.082	1.77	1	0.445	
4675	0.029	0.118	184.9	1.25	46.13
	100000000000000000000000000000000000000		,		
4844	0.127	1.56	82.3	0.188	66.88
6597	0.15	-	1		
4884 3763	0.172	_	147	0.190	118.96
6513	0.058	-	1		
		0.058	217.6	0.557	96.6
4524	0.0233	0.20			,
6599	0.049	-	196.5	0.348	128.11
4532	0.0135	-	1		
		-	1		
4769	0.0123		1 200.0	_	
4823	0.049	-	69.9	-	-
5971	0.0556	-	1		
-		_	63.4	0.625	23.82
3721	0.0184	-	1		
4209	0.283	-	13.2	-	-
			23.1		
		_	,		
4585	0.0424	-	38.8	-	-
4331	0.337	-	14.7	-	-
4415	0.072	-	35.4	0.667	11.8
			1 27		
0-011-	C. V. C. 7	-		Ba La II	
	6051 5292 4675 4603 5473 4844 6597 4884 3763 6513 6115 5260 4524 6599 4532 6271 5700 4769 4823 5971 4616 3507 3721 4208 4180 4208 5339 4585 4331	6051 0.090 5292 0.082 4675 0.029 4675 0.029 4675 0.029 4673 0.122 5473 0.040 4844 0.127 6597 0.15 4884 0.172 3763 0.068 6513 0.068 6513 0.068 6513 0.068 6513 0.068 6513 0.068 6513 0.083 6529 0.049 4532 0.0135 6271 0.076 5700 0.0383 4769 0.0135 6271 0.076 5700 0.0383 4769 0.0135 6271 0.076 5700 0.0383 4769 0.0135 6271 0.076 5700 0.0383 4769 0.0135 5339 0.049 5971 0.0556 4816 0.0264 3507 0.0135 5339 0.138 4208 0.135 5339 0.288 4180 0.135 5339 0.283 4208 0.135 5339 0.283 4405 0.0424 4331 0.337 4415 0.072 4114 0.0293	6051 0.080 1.93 5292 0.082 1.77 4675 0.029 0.118 4603 0.122 0.49 5473 0.040 0.61 4844 0.127 1.66 6597 0.15 — 4884 0.172 3763 0.0064 — 6513 0.068 — 6115 0.083 — 5260 0.056 0.058 4524 0.0233 0.20 6599 0.049 — 4532 0.0135 — 6271 0.076 — 5700 0.0383 — 4769 0.0123 — 4465 0.0264 — 3507 0.0135 — 4816 0.0264 — 3507 0.0135 — 4823 0.049 — 5971 0.0556 — 4816 0.0264 — 3507 0.0135 — 4823 0.049 — 5971 0.0556 — 4816 0.0264 — 3507 0.0135 — 5270 0.0135 — 5271 0.0135 — 5271 0.0135 — 5271 0.0135 — 5271 0.0135 — 5271 0.0383 — 4769 0.0133 — 4769 0.0135 — 5339 0.0135 — 5339 0.0135 — 5339 0.0135 — 5339 0.238 — 4405 0.135 — 5339 0.238 — 4415 0.072 — 4114 0.0293 — 3367 0.21 —	6051 0.090 1.93 169.7 5292 0.082 1.77 167.5 0.029 0.118 184.9 4675 0.029 0.118 184.9 184.9 5473 0.040 0.61 484.9 184.9 5473 0.040 0.61 484.9 184.9 5473 0.040 0.61 484.9 147<	6051 0.090 1.93 169.7 0.445 5292 0.082 1.77 169.7 0.445 4675 0.029 0.118 184.9 1.25 5473 0.040 0.61 82.3 0.188 6597 0.15 - 147 0.190 6597 0.15 - 147 0.190 6513 0.068 - 147 0.190 6513 0.058 - 147 0.190 6513 0.058 - 147 0.190 6513 0.068 - 147 0.190 6513 0.068 - 147 0.190 6513 0.068 - 147 0.190 6513 0.083 - 147 0.557 6526 0.056 0.058 - 156.5 0.348 6571 0.0749 - 69.9 - - 5971 0.0656 -

Reference:

V.P. Podbiralina, Yu. M. Simionov and N.V. Stegnova, Opt. Spectros. 34, 467 (1973).

Reference:

"Transition Probabilities and Cross Sections for Excitation of Xe II". V.P. Samoilow, Yu. M. Smionov and G.S. Starikova, Opt. Spectos. 38, 707 (1975).

Tabular Data A-8.13.

ARGON 4P, 4P' LEVELS

		8	RADIATIVE LIFETIMES	9	
Level	CHANG, Setser	(בורה (ב)	(NSEC) KLOZE (E)	SHUMAKER ET AL (E)	GRANDIN ET AL (E)
2P1. 4P' [1/2] 0	1	22.6	21	19.5	ı
2P1. 4P' [1/2]1	26.5	25.7	25	24.2	1
203. 40' [3/2]2	17.72	27.6	56	24.9	22 F
2P4. 4P' [3/2] 1	33.2	29.0	ĸ	26.5	37.0
2P5, 4P [1/2]0	1	22.8	1	21.6	1
2P6. 4P [3/2]2	26.6	26.9	1	24.4	33.4
207. 40 [3/2]1	29.8	28.7	1	24.8	32.9
2P8, 4P [5/2]2	32.8	31.4	1	26.8	1.
2Pg. 4P [5/2] 3	30.1	28.6	1	25.3	36.5
2P10- 4P [1/2]1	41.7	43.3	1	32.4	1

Tabular Data A-8.14.

S
回
LEVELS
-
3
•
2
S
Z
2
KRYPTON
>
2
×

RADIATIVE LIFETIMES (NSEC)

LANDHAN, DOBRIN (E)	1	1 de 1 de 1		10 NE		30.2	93 (C)) bas	28.1	1
Murphy (T)	24.2	28.8	26.3	30.3	23.4	25.4	29.9	33.6	28.5	40.0
(ברר (ב)	24.2	28.8	26.2	30.4	23.4	25.2	29.9	33.8	28.5	40.0
CHANG, SETSER	1	26.9	26.7	1	1	25.4	26.5	25.2	28.7	1
LEVEL	2°1. 5°' [1/2]0	282. 58' [3/2]2	203. 50' [1/2]1	2P4. 5P' [3/2]1	2P5. SP [1/2]0	2P6. 5P [3/2]2	2P7. SP [3/2]1	2Pg. 5P [5/2]2	2Pg. SP [5/2]3	2P10. SP[1/2]1

T: Theory, E: Experiment

(This refers to both A-8.13. and A-8.14)

References

- R.S.F. Chang and D.W. Setser, (to be published).
- R.A. Lilly, J. Opt. Soc. Amer. 66, 245 (1976).
- J.Z. Klose, J. Opt. Soc. Amer. 57, 1242 (1967).
- J.B. Skumaker, Jr., and C.H. Popenone, J. Opt. Soc. Amer. 57, 8 (1967).
- J.P. Grandin, D. Lecler and J. Margarie, Acad. Sci. Paris C.R., A and B, 272, 929 (1971).
- P.W. Murphy, J. Opt. Soc. Amer 58, 1200 (1968).
- D.A. Landman and R. Dobrin, Phys. Rev. A 8, 1868 (1973).

Tabular Data A-8.15.

Table 1 * Compilation of lifetimes and oscillator strengths for the two transitions 3P1 - 1S0 and 1P1 - 1S0 in krypton

³ τ (ns)	3f(1263 A)	1 _τ (ns)	1f(1165 A)	Method	Ref.
4.14	0.166			resonance imprisonment	[1]
4.32 ± 0.33	0.159 ± 0.01	4.52 ± 0.35	0.135 ± 0.01	total absorption	[2]
3.3 ± 0.8	0.21 ± 0.05	2.9 ± 0.7	0.21 ± 0.05	linear absorption	[3]
3.37 ± 0.33	0.204 ± 0.020	3.32 ± 0.36	0.184 ± 0.020	optical line broadening	[4]
3.67 ± 0.12	0.187 ± 0.006	3.16 ± 0.15	0.193 ± 0.009	total absorption	[5]
4.0 ± 0.8	0.173 ± 0.035	3.5 ± 0.7	0.173 ± 0.035	electron energy loss	[6]
4.0 1 0.0	0.175 1 0.055	4.2 ± 0.4	0.142 ± 0.015	self-absorption	[7]
3.18 ± 0.12	0.208 ± 0.006	3.11 ± 0.12	0.197 ± 0.006	resonance fluorescence	[8]
	0.138	4.49	0.136	nonrelativistic Hartree-Fock	[9]
4.98	0.20	3.05	0.20	intermediate coupling calculation	[10]
3.43 3.61	0.190	3.45	0.177	multiple configuration approximation	[11]

Table 2 * Compilation of lifetimes and oscillator strengths for the two transitions ³P₁ → ¹S₀ and ¹P₁ → ¹S₀ in xenon

³ τ (ns)	³ f (1470 A)	1 τ (ns)	¹ f (1296 A)	Method	Ref.
3.79 ± 0.12	0.256 ± 0.008	3.17 ± 0.19	0.238 ± 0.015	zero field level crossing	[12]
3.5 ± 0.6	0.28 ± 0.05	3.3 ± 0.7	0.23 ± 0.05	linear absorption	[13]
3.74 ± 0.25	0.260 ± 0.20	2.80 ± 0.20	0.270 ± 0.020	total absorption	[14]
		3.89 ± 0.10	0.194 ± 0.005	total absorption	[5]
3.73 ± 0.75	0.260 ± 0.052	4.0 ± 0.8	0.190 ± 0.038	electron energy loss	[4]
3.57	0.272	3.99	0.189	low-energy electron impact	[15]
4.6 ± 0.5	0.213 ± 0.020	4.2 ± 0.9	0.180 ± 0.040	resonance imprisonment	[16]
5.31	0.183	4.47	0.169	low-energy electron impact	[17]
3.46 ± 0.09	0.263 ± 0.007	3.44 ± 0.07	0.229 ± 0.007	resonance fluorescence	[8]
5.00	0.194	5.13	0.147	nonrelativistic Hartree-Fock	[9]
3.47	0.28	3.02	0.25	intermediate coupling calculation	[10]
4.58	0.212	3.99	0.189	nonrelativistic Hartree-Fock	[18]

- [1] R. Turner, Phys. Rev. <u>140</u> (1965) A426.
- [2] P.G. Wilkinson, J. Quant. Spectry. Radiative Transfer 5 (1965) 503.
- [3] G. I. Chashchina and E. Ya. Shreider, Opt. Spectry. 22 (1967) 284.
- [4] J. M. Vaughan, Phys. Rev. 166 (1968) 13.
- [5] P. M. Griffin and J. W. Hutcherson, J. Opt. Soc. Am. 59 (1969) 1607.
- [6] J. Geiger, Phys. Letters 33A (1970) 351.
- [7] J. P. deJongh and J. van Eck, Physica 51 (1971) 104.
- [8] E. Matthias, R. A. Rosenberg, E. D. Poliakoff, M. G. White, S.-T. Lee and D. A. Shirley, Chem. Phys. Letts. <u>52</u> (1977) 239.
 J. D. Dow and R. S. Knox, Phys. Rev. <u>152</u> (1966) 50.
- [10] P. F. Gruzdev, Opt. Spectry. 22 (1967) 170.
- [11] P. F. Gruzdev and A. V. Loginov, Opt. Spectry. 38 (1975) 611.
- [12] D. K. Anderson, Phys. Rev. <u>137</u> (1965) A21.
- [13] G. I. Chashchina and E. Ya. Shreider, Opt. Spectry. 20 (1966) 283.
- [14] P. G. Wilkinson, J. Quant. Spectry. Radiative Transfer 6 (1966) 823.
- [15] K. T. Lu, Phys. Rev. A 4 (1971) 579.
- [16] W. Wieme and P. Mortier, Physica 65 (1973) 198.
- [17] A. Delage and J. D. Carette, Phys. Rev. A 14 (1976) 1345.
- [18] Y. K. Kim, M. Inokuti, G. E. Chamberlain and S. R. Mielczarek, Phys. Rev. Letters 21 (1968) 1146.

^{*} Taken from reference 8.

Tabular Data A-8.16. Molecular xenon fluorescence lifetimes reported in the literature.

State	Ref.[1]	Ref.[2]	Ref.[3]	Ref.[4]	Ref.[5]	Ref.[6]	Ref.[7]
$(^3\Sigma_{\mathbf{u}}^+)$ 1u		16	96			99	46-60
$(^1\Sigma^+_{\mathbf{u}})0^+_{\mathbf{u}}$		4	5.5	16			1.8-3
$(^3\Sigma_{\mathbf{g}}^+)1\mathbf{g}$	500				200		%150a)
$(^{1}\Sigma_{g}^{+})0_{g}^{+}$							%500a)

a) These values correspond to the overall decay rates in nanoseconds.

References

- [1] R. Boucique and P. Mortier, J. Phys. D 3 (1970) 1905.
- [2] H.A. Koehler, L.J. Ferderber, D.L. Redhead and P.J. Ebert, Phys. Rev. A 9 (1973) 768
- [3] J.W. Keto, R.E. Claeson, Jr. and G.K. Walters, Phys. Rev. Letters 33 (1974) 1365.
- [4] D.J. Bradley, M.H.R. Hutchinson and H. Koetser, Opt. Commun. 7 (1973) 187.
- [5] A.W. Johnson and J.B. Gerardo, J. Chem. Phys. 59 (1973) 1738.
- [6] P.K. Leichner, K.F. Palmer, J.D. Cook and M. Thieneman, Phys. Rev. A 13 (1976) 1787.
- [7] M. Ghelfenstein, R. López-Delgado and H. Szwarc, Chem. Phys. Letters 49 (1977) 312.

Assignments for the four fluorescence components in xenon vapor (ref. 8)

[8] M. Ghelfenstein, H. Szwarc and R. Lopez-Delgado, Chem. Phys. Letts 52 (1977) 238.

* Taken from ref. 8.

A-9. ELECTRON AFFINITIES

CONTENTS	Page
Tabular Data A-9.1. (as listed below)	214a
The Electron Affinity of He	
The Electron Affinity of Ne	
The Electron Affinity of Ar	
The Electron Affinity of Kr	
The Electron Affinity of Xe	
CHARLES TO THE REST OF THE PARTY OF THE PART	
The Electron Affinity of F	
The Electron Affinity of Cl	
The Electron Affinity of Br	
The Electron Affinity of I	
The Electron Affinity of F ₂	
The Electron Affinity of Cl ₂	
The Electron Affinity of Br ₂	
The Electron Affinity of I2	
The Electron Affinity of IBr	
The Electron Affinity of ICL	
cher so (1911). Pag metricul contrato de General Specialista de la contrato de la contrato de la contrato de l	
Tabular Data A-9.2. Molecular xenon fluorescence lifetimes reported in the literature	214ъ

Tabular Data. A-9.1. Electron Affinities (in eV)

	-		
Не	<	0	
Ne	<	0	
Ar	<	0	Recommended values from Table 10 in the critical
Kr	<	0	review: H. Hotop and W.C. Lineberger, "Binding
Xe	<	0	Energies in Atomic Negative Ions," Jour. Phys. Chem
F		3.399 (3)	Ref. Data 4, 539-576 (1975).
C1		3.615 (4)	
Br		3.364 (4)	
I		3.061 (4)	
F ₂		3.08 ± 0.1	per son various assertions and and
C1 ₂		2.38 ± 0.1	W.A. Chupka, J. Berkowitz, and D. Gutman,
Br ₂		2.51 ± 0.1	J. Chem. Phys. <u>55</u> , 2724 (1971).
12		2.58 ± 0.1	
IBr		2.7 ± 0.2 eV	COLUMN TO THE THE DESCRIPTION OF THE PARTY.
IC1		1.43	J. Jortner and U. Sokolov, Nature 190, 1003 (1961).

For discussions of the difference between electron affinities and vertical detachment energies for molecules, see H.S.W. Massey, "Negative Ions,"(Third Edition) Cambridge Univ. Press, Cambridge (1976), pg. 166 and E.W. McDaniel, "Collision Phenomena in Ionized Gases," Wiley, New York (1964), pg. 379.

Tabular Data A-9.2.
Molecular xenon fluorescence lifetimes reported in the literature

State	Ref.[1]	Ref.[2]	Ref.[3]	Ref.[4]	Ref.[5]	Ref.[6]	Ref.[7]
(³ Σ _u ⁺)1u		16	96			99	46-60
$(^{1}\Sigma_{\mathbf{u}}^{+})0_{\mathbf{u}}^{+}$		4	5.5	16			1.8-3
$(3\Sigma_g^+)1g$	500				200		%150a)
$(^{1}\Sigma_{\mathbf{g}}^{+})0_{\mathbf{g}}^{+}$							%500 ^a)

a) These values correspond to the overall decay rates in nanoseconds.

Excimer	Mean Lifetimes (10-6 secs)	Reference
Ar2*	3.7	[1]
	2.8	[9]
$a(^3\Sigma_{ij})1u$	3.2	[3]
$a(^3\Sigma_u^{})1u_{*}$ $A(^1\Sigma_u^{}+)0_u^{}+$	4.2 10-3	[3]
Kr ₂ *	1.7	[1]

References

- [1] R. Boucique and P. Mortier, J. Phys. D 3 (1970) 1905.
- [2] H.A. Koehler, L.J. Ferderber, D.L. Redhead and P.J. Ebert, Phys. Rev. A 9 (1973) 768
- [3] J.W. Keto, R.E. Claeson, Jr. and G.K. Walters, Phys. Rev. Letters 33 (1974) 1365.
- [4] D.J. Bradley, M.H.R. Hutchinson and H. Koetser, Opt. Commun. 7 (1973) 187.
- [5] A.W. Johnson and J.B. Gerardo, J. Chem. Phys. 59 (1973) 1738.
- [6] P.K. Leichner, K.F. Palmer, J.D. Cook and M. Thieneman, Phys. Rev. A 13 (1976) 1787.
- [7] M. Ghelfenstein, R. López-Delgado and H. Szwarc, Chem. Phys. Letters 49 (1977) 312.

Assignments for the four fluorescence components in xenon vapor (ref. 8)

- [8] M. Ghelfenstein, H. Szwarc and R. López-Delgado, Chem. Phys. Letts 52 (1977) 238.
- [9] N. Thonnard and G.S. Hurst, Phys. Rev. A 5 (1972) 1110.

^{*} Taken from ref. 8.

A-10. POLARIZABILITIES AND MULTIPOLE MOMENTS CONTENTS

		Page
A-10.1.	Recommended values for the polarizabilities of ground state atoms	216
A-10.2.	Measured values of the polarizabilities α_{zz} (m _J =1) and α_{zz} (m _J =2) of the ³ P, metastable noble	
	gas atoms	216
A-10.3.	Polarizabilities of Atoms	217
A-10.4.	Computed dynamic polarizabilities for He	217
A-10.5.	Computed dynamic polarizability for Ne	218
A-10.6.	Dynamic polarizability for the 2 $^{1}\mathrm{S}$ state of He for frequencies up to the second excitation energy	219
A-10.7.	Dynamic polarizability for the 2 $^3\mathrm{S}$ state of He for frequencies up to the second excitation energy	219
A-10.8.	Polarizability of Atomic Ions	220
A-10.9.	Polarizabilities for molecules	221
A-10.10	Dipole and quadrupole moments	221

Tabulated Data A-10.1. Recommended values for the polarizabilities of ground state atoms in units of $10^{-24} \, \mathrm{cm}^3$.

Atom.	Average Polarizabi	lity
Не	0.204956	
F	0.557	
Ne	0.395	From T.M. Miller and B. Bederson, "Atomic and Molecular Polarizabilities-A Review
C1	2.18	of Recent Advances," in "Advances in Atomic
Ar	1.64	and Molecular Physics" (D.R. Bates and B. Bederson, Eds.), Vol. 13, Academic Press.
Br	2.7	New York (1977).
Kr	2.48	
I	3.9	and his contraction to a secret, and region of a
Xe	4.04	

Tabulated Data A-10.2. Measured values of the polarizabilities $\alpha_{zz}(m_J^{=1})$ and $\alpha_{zz}(m_J^{=2})$ of the 3P_2 metastable noble gas atoms in units of $10^{-24} {\rm cm}^3$).

Ne*	$\alpha_{zz}^{(1)}$	28.4	± 0.6
	a _{zz} (2)	26.7	± 0.5
Ar*	α _{zz} (1)	49.5	± 1.0
	$\alpha_{zz}^{(2)}$	44.7	± 0.9
Kr*	α _{zz} (1)	52.7	± 1.0
	α _{zz} (2)	46.8	± 0.9
xe*	α _{zz} (1)	66.6	± 1.3
	a zz (2)		
Data from R.W. T.M. Miller, a	Molof,	H.L. ederso	Schwartz,
Rev. A. 10, 11 of the review	31 (197 by Mill	4). (S er and	ee pages 43-4

D.A. Crosby and J.C. Zorn, Phys. 16, 488 (1977).

Tabulated Data A-10.3. Polarizabilities of Atoms.

Atom	Quadrupole Polarizability o _q (8 ⁵)	Dipole Hyperpolarizability γ (10 ⁻³⁸ e.s.u.)
Не	0.101	1.82*
Ne	0.370	
Ar	2.19	
H	0.622	
Li	60.0	
Na	74.8	
K	212	
Rb	261	
Cs	441	
Be	9.1	

The above values are from "The Mobility and Diffusion of Ions in Gases" by E. W. McDaniel and E. A. Mason, Wiley, N.Y., (1973), Appendix II except for *"The Numerical Determination of Dipole Hyperpolarizabilities", R. F. Stewart, Mol. Phys. 27 (No. 3) pp. 779-783 (1974).

Tabulated Data A-10.4. Computed dynamic polarizabilities for He.

Frequency	Wavelength	Dynamic polarizability
(a.u.)	(Å)	(a.u.)
0.00	•	1.322
0.02	3629	1.344
0.04	1814	1.417
0.06	1210	1.562
0.08	907	1.842
0.10	726	2.482
0.120	605	5.841
0.1269	571.8	2555.06
0.128	567	-21.245

Above from "Fully Coupled Hartree-Fock calculations of the Refractive Index, Dynamic Polarizability, and Verdet Coefficients of He, Be, and Ne", V.G. Kaveeschwar, K. T. Chung; and R.P. Hurst, Phys. Rev. 172, No. 35,pp. 35-44 (1968). Note: the above values should be increased by 5% to obtain approximate experimental values.

Tabulated Data A-10.5. Computed dynamic polarizability for Ne.

frequency	Wavelength	Dynamic Polarizability	
(a.u)	(Å)	(a.u.)	
0.0	6	2.3820	
0.01	7257	2.3901	
0.02	3629	2.4150	
0.03	2419	2.4581	
0.04	1814	2.5227	
0.05	1451	2.6249	
0.06	1209	2.7408	
0.07	1037	2.9194	
0.08	907	3.1815	
0.09	806	3.6009	
0.10	726	4.4069	
0.11	660	6.9338	
0.112	648	8.3794	
0.114	637	11.2165	
0.116	626	19.5271	
0.118	615	832.1	
0.120	605	-144.5059	

From Kaveeschwar, Chung, and Hurst (1968)
NOTE: The above values should be increased by 10% to obtain approximate experimental values.

Tabular Data A-10.6. Dynamic polarizability for the $2^1\mathrm{S}$ state of He for frequencies up to the second excitation energy (in a_0^3).

		Variational	Estimates	
ω x 10 ²	Rigorous bounds	Lower	Upper	
0.0	316.24 ±0.78	315.61	316.83	
0.50	320.63 ±0.79	319.99	321.23	
1.00	334.59 ±0.83	333.91	335.21	
1.50	360.75 ±0.90	360.10	361.53	
2.00	405.65 ±1.03	404.79	406.43	
2.50	483.34 ±1.25	482.29	484.29	
3.00	632.82 ±1.70	631.39	634.10	
3.50	1003.93 ±2.82	1001.53	1006.08	
4.00	3199.13 ±10.27	3190.16	3207.18	
5.00	-724.20 ±5.89	-729.45	-718.73	
6.00	-281.32 ±2.14	-283.14	-279.41	
7.00	-157.82 ±1.56	-159.14	-156.44	
8.00	-100.11 ±1.55	-101.47	-98.72	
9.00	-65.71 ±2.03	-67.54	-63.84	
10.00	-39.91 ±3.79	-43.49	-36.31	
10.90	-11.93 ±11.88	-23.54	-0.81	
11.25	10.98 ±25.63	-14.34	36.19	
11.90	1193.00 ±1192	1.86	2377.10	

Above from Glover and Weinhold (1977)

Tabular Data A-10.7. Dynamic polarizability for the 2^3 S state of He for frequencies up to the second excitation energy (in a_0^3).

		Variational	Estimates	
w x 10 ²	Rigorous bounds	Lower	Upper	
0.0	803.31±6.61	800.21	806.67	
0.2	809.68±6.68	806.55	813.08	
0.4	829.46±6.87	826.20	832.95	
0.6	864.74±7.22	861.27	868.41	
0.8	919.68±7.77	915.88	923.64	
1.0	1011.91±8.60	997.60	1006.29	
1.2	1125.63±9.84	1120.56	1130.67	
1.4	1319.56±11.81	1313.29	1325.65	
1.6	1650.45±15.22	1642.07	1658.34	
1.8	2314.75±22.18	2302.02	2326.39	
2.0	4246.89±43.32	4220.63	4270.31	
2.2	64873.00±1339	63787.22	65895.77	
2.5	-2707.52±93.61	-2785.33	-2626.37	
3.5	-477.48±13.19	-486.11	-468.03	
4.5	-208.08±8.77	-213.65	-201.94	
5.5	-106.35±8.39	-111.93	-100.22	
6.5	-50.04±10.41	-57.65	-41.83	
7.5	-4.78±17.98	-19.64	10.82	
8.5	78.79±64.32	18.41	140.00	

Above from "Dynamic Polarizabilities of metastable 2^{1,3}S excited states of He and Li⁺, with rigorous upper and lower bounds" R.M. Glover and F. Weinhold, J. Chem. Phys. 66,No. 1, pp. 185-190 (1977).

Tabular Data A-10.8. Polarizability of atomic ions.

	Dipole Polarizability
Ion	$\alpha (\mathring{A}^3)$
Li ⁺	0.0285
Na ⁺	0.158 *
K ⁺	0.85 *
Rb ⁺	1.41 *
Cs ⁺	2.42 *
He ⁺	0.0417
Ne ⁺	0.21
Ar ⁺	1.07 **
н+	0
o ⁺	0.49
He ⁺⁺	0
Ne	0.15
Ar	1.04 **
Be ⁺⁺	0.0076
Mg ⁺⁺	0.082
Ca ⁺⁺	0.73
н_	30.5
0	3.2
F ⁻	1.38 *
c1 ⁻	3.94 *
Br -	5.22 *
r ⁻	7.81 *

Above from the book by McDaniel and Mason (1973) except for *"Empirical Free Ion Polarizabilities of the Alkali Metal, Alkaline Earth Metal, and Halide Ions", H. Coker, J. Phys. Chem. 80, No. 19, p. 2078 (1976) and **"The Static Polarizability of Argon Ions", P. Meier, R. J. Sandeman, and M. Andrews, J. Phys. B 7, No. 11, p. L-339 (1974).

Tabular Data A-10.9. Polarizabilities for molecules.

Quadrupole Moment (10-26esu)*

Dipoie Moment (10⁻¹⁸esu)²

Molecule

+0.662 -1.52 -0.39

+0.88 +6.14

00000

Grond Grond

-2.5 -1.8

0.112 0.153

88

+2.6

1.82 1.08 0.82 0.44

HC HB HI

+ + 4

~ ±1

1.85

H₂O H₂S

-4.3 -3.0 ±4.4

0.167 1.63

CO₂ SO₂ NO₂

Dipole and quadrupole moments.

Tabular Data A-10.10.

" Nelson, Lide, and Maryott (1967).

b Stogryn and Stogryn (1966).

From the book by McDaniel and Mason (1973).

^a Victor and Dalgarno (1969).

^b Hirschfelder, Curtiss, and Bird (1964), p. 950.

^c Maryott and Buckley (1953).

^d Langhoff, Gordon, and Karplus (1971)

* Muenter (1972).

B. HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

CONTENTS

		Page
в-1.	Low Energy Heavy Particle - Heavy Particle Collisions .	225
B-2.	High Energy Heavy Particle - Heavy Particle Collisions.	332

B. HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

General References

- G. Bekefi, Principles of Laser Plasmas, (John Wiley and Sons, New York, 1976).
- 2. J. L. Franklin, <u>Ion Molecule Reactions</u>, Vol. 1, 2 (Plenum Press, New York, 1972).
- J. B. Hasted, <u>Physics of Atomic Collisions</u>, Second Edition, (American Elsevier Publishing Co., Inc., New York, 1972).
- 4. A. C. Lloyd, Int. J. Chem. Kinetics 3, 42 (1971).
- 5. H. S. W. Massey, E. H. S. Burhop and H. B. Gilbody, <u>Electronic and Ionic Impact Phenomena</u>, Vol. III, Second Edition, (Oxford University Press, 1971).
- H. H. Nakano, R. M. Hill, P. C. Lorents, D. L. Huestis, and M. V. McCusker, S.R.I. No. MP76-99, Final Technical Report, New Electronic-Transition Laser Systems, Part I, Contract DAAHO1-74-C-0524, December 1976.
- 7. A. V. Phelps, Ion-Atom Reactions in Rare Gases, JILA Data Memo No. 1 (University of Colorado, May 2, 1977).
- W. P. West, T. B. Cook, F. B. Dunning, R. D. Rundel, and R. F. Stebbings, J. Chem. Phys. 63, 1237 (1975).
- 9. Zamir, Szoke, and Osgood, J. Chem. Phys. 65, 4885 (1976).
- 10. C. K. Rhodes, (Ed.) Excimer Lasers, Springer-Verlag, (Berlin, 1978).

B-1. LOW ENERGY HEAVY PARTICLE - HEAVY PARTICLE COLLISIONS

CONTENTS

		Page
	Table of Reactions	226
B-1.1 through B-1.14	Atomic noble on atomic noble	227-40
B-1.15 B-1.16	Diatomic noble (homogeneous) on atomic noble	241-42
B-1.17 B-1.18	Diatomic noble (homogeneous) on diatomic noble (homogeneous) Diatomic noble (nonhomogeneous) on atomic noble	243-44
B-1.19	Atomic noble on atomic noble on atomic noble	245
B-1.20	Diatomic noble on atomic noble on atomic noble	246
B-1.21	Atomic noble on atomic halogen	247
B-1.22	Atomic noble on diatomic halogen (homogeneous)	248
B-1.23	Atomic noble on halide	249
B-1.24	Atomic noble on halogen on halogen and Atomic noble on halogen on halide	250
B-1.25	Atomic noble on halide on halide, Atomic halogen on diatomic halogen (homogeneous and nonhomogeneous), Atomic halogen on halides	251
B-1.26	Diatomic halogen on diatomic halogen	252
B-1.27	Diatomic halogen on halide	253
B-1.27	(a) Atomic halogen on atomic halogen on atomic halogen	254
B-1.27	(b) Atomic halogen on atomic halogen on diatomic halogen	255
B-1.27	(c) Atomic halogen on diatomic halogen on diatomic halogen	256
B-1.27	(d)	257
B-1.28	Equations cited in table of reactions	259-60
	Tables and Graphs cited in table of reactions	261-322

Table of Reactions

Reaction rates (k) and cross sections (σ) as a function of collision energy (E), temperature (T), and relative velocity (v).

All the graphs in Section B-1 and the tables on the opposing pages were prepared by the JILA Information Center for inclusion in this volume. We are indebted to Jean Gallagher and John Rumble for their invaluable assistance.

Entries such as "Eqn. 39" (that appears on line 3 of page 229-B-1.3) refer to numbered equations displayed on pages 259 and 260-B-1.28.

Entries such as "Table, Graph 8" (that appears on line 3 of page 227-B-1.1) refer to the table and graph section which begins on page 262-B-1.29 and extends to page 322-B-1.89.

References such as appear in the extreme right-hand column of page 227-B-1.1 are given at the end of Section B-1 immediately after page 323-B-1.89.

Entries that contain the superscript "a" as in 300°K^a, that appears on line 12 of page 227-B-1.1), refer to footnotes that appear on page 253-B-1.27.

Tabular Data B-1.1.

	Rea	Reaction	Temperature,	Cross Section Refe	Reference
			or Energy	Reaction Rate	
He + He	+	Total Scattering	1700 m/s	35A2	87
He(21S) + He	+	Quenching	300°K	3 × 10-48 ²	16
не(2 ³ S ₁) + не	+	Total Scattering	1000-3500m/s	Table, Graph 8	15
	+	$He(2^3s_1) + He$ (elastic)	1000-3500m/s	90% of values in Table, Graph 8	15
He ³ (2 ³ S ₁) + He ³ +	+	$He^3 + He^3(2^3S_1)$	4-500 ⁰ K	Table, Graph 9	13
не(2 ³ S) + не	+	He(2 ³ P) + He	8.65eV C.M.	1.428	4
He(2 ³ S)+He(2 ³ S) +	+	He+ + He(11S)+e	300°K	90Å ²	=
He(2 ³ S)+He(2 ³ S) +	+	Не ⁺ +Не(1 ¹ S) + е	520 ⁰ K	120.08 ²	12
не ³ (2 ³ Р _о)+не ³	+	не ³ (2 ³ р ₁₊₂)+не ³	300°K	68 ± 3Å ²	2
He(3 ¹ S)+He	+	He ⁺ + e	300 ⁰ K	<0.18 ²	4
He(3 ³ S)+He	+	He2 + e	300 ⁰ K	<0.01R ²	4
не(3 ¹ P)+не	+	He(3 ¹ S) + He	300°K	4.5±.03R ²	8
не(3 ¹ Р)+не	+	He + Bp (3 ¹ P)	300 ⁰ K	32.5±1Å ²	2
не(3 ¹ Р)+не	+	не(3 ¹ D) +Не	82 ⁰ K	11±2 R ²	1
не(3 ¹ Р)+не	+	He(3 ¹ 0) + He	214 ⁰ K	13±8Ř²	-
не(3 ¹ р)+не	+	не(3 ¹ D)+не	296 ⁰ K	16±3Ų	-
не(3 ¹ Р)+не	+	He2 + e	300°K	3.1±182	4
не(3 ³ Р)+не	+	не(3 ¹ S)+Не	300 ⁰ K	2.9±.3Ų	3

Tabular Data B-1.2.

	Reaction	lon	Temperature,	Cross Section	Reference
			Energy	Reaction Rate	
не(3 ³ Р)+не	+	не(3 ¹ р) + не	300°K	3 ± .382	2
He(3 ³ P)+He	+	He(3 ¹ D) + He	300°K €	.067 ± .005Å2	e
не(3 ³ Р)+Не	+	He ₂ + e	300°K	1.6 ± .1Å2	4
не(3 ¹ D)+не	+	He(3 ¹ S) + He	300°K €	< .04 N ²	m
He(3 ¹ D)+He	+	не(3 ¹ P) + Не	300°K	10.6 ± .782	2
не(3 ¹ D)+не	+	не(3 ³ D) + Не	300°K ●	<.02Å ²	e
не(3 ¹ D)+не	+	He ₂ + e	300°K	20 ± 4A ²	•
не(3 ³ D)+Не	+	He(3 ¹ S) + He	300°K	<.018 ²	е
не(3 ³ D)+Не	+	не(3 ¹ P) + Не	300°K	.62 ± .05Å ²	2
не(3 ³ D)+не	+	He2 + e	300°K	4.5 ± .5Å ²	4
не(3 ³ D)+не	+	He ₂ + e	450°K	26A ²	S
He(4'P)+He	+	не(4 ¹ D) + Не	300°K	2.8Å ²	7
He(4 ¹ P)+He	+	He(4 ³ D) + He	300°K	2.282	7
He(4 ¹ P)+He	+	He(4 ³ F) + He	300°K	.9582	7
He(4 ³ P)+He	+	He(4 ³ S) + He	у ₀ 009	3.5 ± .382	9
He(4 ³ P) + He	+	He(4 ³ D) + He	9 ₀ 009	9.9 ± 2.482	9
He(4 ³ P)+He	+	He(4 ¹ S, ¹ P, ¹ D) + He	600 ⁰ K	<.2A ²	9

Tabular Data B-1.3.

	Reaction	ion	Temperature, Cross Section Velocity or or Energy Reaction Rate	Cross Section or Reaction Rate	Reference
He + He	+	Total Cross Section	4eV Lab. E	38.2A ²	58
He + He	+	Total Cross Section	10eV Lab. E	33.7 R ²	28
He ⁺ +He	+	He + He +	1-90eV Lab. E	Eqn. 39	17
не ⁺ (2S)+Не	+	Total Quenching	0.23eV Lab. E 52.08 ²	52.0A ²	ω
не ⁺ (2S)+Не	+	He ⁺ +He	400°K ^a	30.3A ²	6
He ⁺ (2S)+He	+	He + He + e	400°K ^a	14.08 ²	G)

Tabular Data B-1.4.

	9		Temperature, Velocity or Fnergy	Cross Section or Reaction Rate	Reference
¥ + %	+	Total Cross Section	.8-2.5km/s	Table, Graph 14	27
He(2 ¹ S)+Ne	+	He +Ne(3s)	77-400 °K	Eqn. 1	20
He(2 ¹ S)+Ne	+	He + Ne(4s ₁)	300°K	1.582	88
He(2 ¹ S)+Ne	+	He+Ne(4d _A)	300 ⁰ K	. 93Å ²	88
He(215,235)+N	e 38 3p	33p,) +. HeNe +e	.lev c. M.	.12+60% A2	19
He(2 ¹ S) + Ne	+	He+Ne +e	300°K	4.182	74
He(3S1)+Ne	+	Total Cross Section	2093m/s	12082	56
He(2 ³ S) + Ne	+	Quenching	300~900 _K	Table, Graph 6	21
He(2 ³ S)+Ne	+	He + Ne(2s)	77 ⁰ -400 ⁰ K	Eqn. 2	20
He(2 ³ S)+Ne	+	He(2 ³ S)+Ne + He+Ne +e	300°K	.28A ²	74
He(3 ¹ P)+Ne	•	He(1 ¹ S)+N _e +e HeNe +e	600°K +200	27.6 ⁺⁴ .59 ²	82
He(23P,)+Ne	•	He+Ne(4s ₅)	300°K	0.8582	88
He(2 ³ P _a)+Ne	+	He+Ne(4d ₃)	300°K	0.32A ²	88
He(23P,)+Ne	+	He+Ne(5d ₅)	300°K	1.582	88
He +Ne	+	He+Ne+	295 ⁰ K	k<10 ⁻¹³ cm ³ /s	22

Tabular Data B-1.5.

			Temperature,	Cross Section	
	Reaction	ion	or Energy	Reaction Rate	Reference
He + Ar	+	Total Cross Section	450-1400m/s	Table, Graph 3	06
He + Ar	+	Elastic Cross Section	800-2500m/s	Table, Graph 13	27
He(2 ¹ S)+Ar	+	HeAr te	У ₀ 009	.982	29
He(2 ¹ S)+Ar	+	He+Ar +e	300°K	9.0Å ²	75,78,74
He(21S)+Ar	+	He+Ar +e	Х ₀ 009	21.882	53
He(2 ³ S)+Ar	+	Total Scattering	1000-3500m/s	Table, Graph 15	31
He(235)+Ar	+	Quenching	300°K-900°K	Table, Graph 5	21
He(235)+Ar	+	HeAr te	У ₀ 009	2.0Å ²	53
He(235)+Ar	+	He+Ar +e	300°K	7.3±1.82	74,75,33,79,76,77,78
He(2 ³ S)+Ar	+	He+Ar +e	У ₀ 009	14.982	29
Не(3 ¹ Р)+Ar	•	He(1 ¹ S)+Ar ⁺ +e HeAr ⁺ +e	600°K+200 -100	55.6 + 10.6 ° 2	18
He +Ar	+	He+Ar ⁺	295 ⁰ K	k<10 ⁻¹³ cm ³ /sec	22
He (2s) + AF	+	Deexcitation	.23eV Lab. E	156.082	80

Tabular Data B-1.6.

			Temperature,	Cross Section	
	Reaction	ton	or Energy	Reaction Rate	Reference
He+Kr	+	Total Cross Section	300-1400m/s	Table, Graph 2	06
He+Kr	+	Total Elastic	800-2500m/s	Table, Graph 12	27
He(2 ¹ S)+Kr	+	He+Kr +e	300°K	9.0A ²	32
He(2 ¹ S)+Kr	+	Total Ion Production	У ₀ 009	33.4Å	29
He(2 ³ S)+Kr	+	Total (97% Elastic)	1000-3000m/s	Table, Graph 10	31
He(2 ³ S)+Kr	+	He+Kr+e	300°K	9.2Å ²	33,76,78,79
He(2 ³ S)+Kr	+	Total Ion Production	у ₀ 009	19.182	53
Не(3 ¹ р)+Кг	•	He+Kr ⁺ +e HeKr+e	+200 600 ⁰ K ₋ 100	49.5 - 4.8 Å	18
He + Kr	+	He+Kr+	300°Kª	< 10 ⁻¹¹ cm ³ /s	122
He ⁺ (25) + Kr	+	Deexcitation	.23eV Lab. E	199.0Å ²	80
					a a
He+Xe	+	Total Scattering	300-1400m/s	Table, Graph 1	8
He+Xe	+	Elastic Scattering	800-2500m/s	Table, Graph 11	72
He(2 ¹ S)+Xe	•	Deexcitation	300 ⁰ K	103 ± 200% A ²	33
He(2 ¹ S)+Xe	+	Tetal Ion Preduction	У ₀ 009	34.1+15%A2	53

Tabular Data B-1.7.

			Temperature, Velocity	Cross Section or	
	Reaction	tion	or Energy	Reaction Rate	Reference
He(2 ¹ S)+Xe	+	He+Xe+ e	300 ⁰ K	12+38	32
Не(3 ¹ P)+хе	+	He + Xe + e HeXe + e	600°K +200 -100	73.0 +12.942 -8.8	18
He(2 ³ S) +Xe	+	Quenching	300°-900°K	Table, Graph 4	21
He(2 ³ S)+Xe	+	Total Ion Production	У ₀ 009	20.0+15%82	53
He(2 ³ S)+Xe	+	He+Xe ⁺ +e	300 ₀ K	12.282	74,76,78,79
He + Xe	+	He+Xe ⁺	300°Kª	k = 7 ± 40% x 10-12 m3/s	123
He (20) + Xe	+	Deexcitation	.23eV Lab.E	273.08 ²	80
Ne(2s ₂)+He	+	Ne(2s ₃)+He	350°K	1.84.382	52
Ne(2p4)+He	+	Quenching	300°K	7.2+3A ²	23
Ne(3s2)+He	+	Quenching	300 ⁰ K	14.9±28 ²	23
Ne(3p _o)+He	+	Ne(3p1,2) + He	300°K	k=8X10 ⁻¹⁵ cm ³ /s	88
Ne(3P1)+He	+	Ne(3P2)+He	3000K	k=1.9x10 ⁻¹⁴ cm ³ /s	68
Ne(3P2)+He	+	Total Cross Section	1605m/s	123Å ²	92
Ne(3P2)+He	+	Depolarization	300°K	.430±0.0228 ²	24
Ne(2s,)+Ne	+	Ne(2s3)+Ne	350 ⁰ K	2.34.382	52
7	+	Ne+Ne(2s ₃)			

Tabular Data B-1.8.

Re	Reaction	uo	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ne(3P0.2)+Ne	•	Total Cross Section	300 ⁰ K	153+10%82	38
Ne(3po)+Ne	+	Ne(³ P ₁)+Ne	300°K	k=5x10 ⁻¹⁵ cm ³ /s	68
Ne(3Po)+Ne	+	Ne(3P2)+Ne	300°K	k=5x10 ⁻¹⁵ cm ³ /s	68
Ne(3p1)+Ne	+	Ne(3P2)+Ne	300°K	$k=4.2x10^{-14}cm^3/s$	88
Ne(3p2)+Ne	+	Total Cross Section	1173m/s	143R ²	56
Ne(3P2)+Ne	+	Depolarization	300 ⁰ K	16.64.882	24
22Ne++20Ne	+	22 _{Ne} +20 _{Ne} +	.04-3eV Lab E	Graph 28	39
Ne+Ar	1	Total Cross Section	300 ⁰ K	15482	40
Ne(3P0.2)+Ar	+	Total Cross Section	300 ⁰ K	278+10%R ²	38
Ne(3p,2)+Ar	+	NeAr +e	435°K	4.6+15%R ²	53
Ne(3p,2)+Ar	+	Ne+Ar +e	340°K	6.082	75,80,81,82
Ne(3P0.2)+Ar	+	Ne+Ar +e	435°K	10.1±15%A ²	29
Ne(3 _{p0,2})+Ar + Ratio: 5:1	+ : 5:1 of	Ionization (PI, AI) of $^{3}P_{2}$: $^{3}P_{0}$.01-500eV C. M.	Table, Graph 22	58

Tabular Data B-1.9.

			Temperature, Velocity	Cross Section or	
	Reaction	ion	or Energy	Reaction Rate	Reference
Ne(3P2)+Ar	+	Total Cross Section	1115m/s	398A ²	56
Ne +Ar	+	Ne+Ar	.1-4eV	Table, Graph 17	41
Ne(3P0.2)+Kr	•	NeKr +e	435°K	5.3+20%A	53
Ne(3p0,2)+Kr	+	Ne+Kr +e	435°K	12.3±20%A	59
Ne +kr	+	Ne ⁺ (Production)	.5-100eV C.M.	Table, Graph 18	42
Ne +kr	+	Kr ⁺ (Production)	.5-100eV C. M.	Table, Graph 19	42
Ne + Kr	+ +	Kr+(Production)	.5-100eV C.M.	Table, Graph 24	42
Ne + Xe	+	Xe ⁺ +He	300 ⁰ K ^A	<5x10 ⁻¹³ cm ³ /s	123
Ne (3P0,2) + Xe	÷	Ne + Xe + e	435°K	11.3Ų	53
Ar(³ P ₂)+He		Depolarization	300°K	6.2Å ²	24

Tabular Data B-1.10.

	Reac	Reaction	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar(³ P ₂)+Ne	•	Depolarization	300°K	26±28 ²	24
Ar+Ar	•	Elastic Cross Section	150-4000m/s	Table,Graph 7	. 84
Ar+Ar	+	Ar +Ar	7000°K	$k=2.99\times10^{-22}$ cm $^3/s$	46
			8000 ⁰ K	$k=3240.0x10^{-22}cm^3/s$	
			3 ₀ 0006	$k=208.0\times10^{-22}$ cm $^3/s$	
			10000°K	$k=940.0\times10^{-22}$ cm $^3/s$	
			11000 ⁰ K	k= 32.40x16 ²² cm ³ /s	
			12000 ⁰ k	$k=9470.0x10^{-22}cm^3/s$	
Ar(1s3)+Ar	+	Deexcitation	300 ⁰ k	$k=10\pm1.3\times10^{-20}$ cm ³ /s	44
Ar(1s5)+Ar	+	Deexcitation	300°K	$k=1.8\pm0.5\times10^{-20}$ cm ³ /s	45
Ar(32)+Ar	+	Depolarization	300°K	100+782	24
Ar*+Ar	+	Ar2+e	340°K	K=1.7X10 ⁻⁹ cm ³ /s	83
Ar*+Ar	+	Ar ₂ +e	500 ⁰ K	$k = .32 \times 10^{-9} \text{cm}^3/\text{s}$	83
Ar *+Ar*	+	Ar + Arte	300°Kª	k=5x10 ⁻¹⁰ cm ³ /s	43

Tabular Data B-1.11.

	Reaction	ion	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar +Ar	+	Ar +e+Ar	7000 ⁰ K	$k=4.0x10^{-14}cm^3/s$	46
			8000°K	k=11.0x10 ⁻¹⁴ cm ³ /s	
			Э00006	$k=23.6\times10^{-14}$ cm $^3/s$	
			10000 ⁰ k	k=43.5×10 ⁻¹⁴ cm ³ /s	
			11000 ⁰ k	$k=70.6\times10^{-14}$ cm $^3/s$	
			12000 ⁰ K	k=110.0x10 ⁻¹⁴ cm ³ /s	
Ar +Ar	+	Ar+Ar+	.1-5eV Lab. E	Table, Graph 16	84
Ar++Ar	+	ArtAr+	1-50ev Lab. E	Eqn. 40	17
Ar + (2px)+Ar	+	Ar + (2p3)+Ar	296 ⁰ K	k=2×10 ⁻¹⁶ cm ³ /s	47
Ar(3P2,0) + Kr +	† '	7 Elastic Cross Section	60.6meV C.M.	792+27082	49
Ratio 5:1 of 3	P2: 3P0		70.9meV C.M.	792+2908 ²	
			110.0meV C.M.	532 <u>+</u> 260Å ²	
			156.0meV C.M.	435±160Å ²	
Ar(3Po)+Kr	+	Kr(5p[½] ₀)+Ar	300°K	$k=3.4\times10^{-15}$ cm 3 /s	20
Ar(3po)+Kr	•	Products	300°K	$k=2.3x10^{-12}cm^3/s$	20
Ar(3P2)+Kr	+	$Kr(5P[\frac{3}{2}]_1) + Ar$	300°K	k=0.65×10 ⁻¹² cm ³ /s	20
Ar(3p2)+Kr	+	Kr(5P[2]2)+Ar	300°K	k=5.5x10 ⁻¹² cm³/s	20

Tabular Data B-1.12.

	Reaction	tion	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar*+Kr	+	Ar+Kr*	40-200meV C.M.	Table, Graph 23	49
a X		Total	300 ₀ K	685A ²	53
Ar(3p,)+xe	•	Depolarization	300°K	127R ²	24
Ar*+Xe	٠	Ar+Xe*	300°K	2300R ²	51
1		•			
Kr. +Ne	+	Ne (Production)	.23-14eV C.H.	Table, Graph 26	74
Kr ⁺ +Ne	•	Kr ⁺ (Production)	.5-15eV C.M.	Table, Graph 25	42
Kr(5P[3]1)+Ar +	+	Kr(5P[3]2)+Ar	300 ⁰ k	k=0.39×10 ⁻¹¹ cm ³ /s	99

Tabular Data B-1.13.

			Temperature,	Cross Section	
	Reaction	ion	Velocity or Energy	or Reaction Rate	Reference
Kr(5P[3]1)+Ar	+	Kr(5p[\frac{5}{2}]_2)+Ar	300 ⁰ K	k=2.5x10 ⁻¹¹ cm ³ /s	20
Kr(5P[3]1)+Ar	+	Kr(5p[\frac{5}{9}]_3)+Ar	300°K	k=4.2x10 ⁻¹¹ cm ³ /s	20
Kr(5p[3]2)+Ar	+	Kr(5p[3])+Ar	300°K	$k=1.4\times10^{-11}$ cm $^{3}/s$	20
Kr(1s ₂)+Kr	+	Krtkr	300 ⁰ K	k=9.0x10 ⁻¹⁵ cm ³ /s	99
Kr(1s _E)+Kr	+	Kr+Kr	300 ⁰ K	k=2.2x10-15m3/s	55
Kr(10,)+Kr	+	Depolarization	292 ⁰ K	44982	. 94
Kr(302)+Kr	+	Depolarization	292 ⁰ K	4798 ²	54
Kr++Kr	+	Kr+Kr+	.04-3eV C.M.	100±15A ²	57
Kr(5s [3])+Xe	+	Quenching.	У ₀ 009	10082	69
Kr(5s 1/2)+Xe	+	$Kr+Xe(6p[\frac{1}{2}]_0)$	500°K	37Å*	65
Kr(5s 1 1/2)+xe	•	Kr+Xe(6p 131,)	300°K	10+4R ²	69

Tabular Data B-1.14.

	Reaction	:ion	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
хе(³ р ₂)+не		Depolarization	300°K	15±18²	24
Xe(³ P ₂)+Ne	•	Depolarization	300°K	38±2Ų	24
xe(³ P ₁)+Ar	•	Xe(³ P ₂)+Ar	300°k²	k=1.5±.3x10 ⁻¹⁴ cm ³ /s	25
xe(3p2)+Ar	•	Xe+Ar	300 ⁰ K. ^a	k=3.2+0.7x10-16cm ³ /s	52
Xe(3P2)+Ar	•	xe(³ P ₁)+Ar	300°K a	k=8.3±1.5x10 ⁻¹⁷ cm ³ /s	52
xe(3p2)+Ar	+	Depolarization	300 ⁰ K	61±4R ²	24

Tabular Data B-1.15.

Reaction Xe + Xe + + E	Temperature, Velocity or Energy 4000 ⁰ -9000 ⁰ k	Cross Section or Reaction Rate Eqn.3	Reference 60
$xe(^3p_2) + xe + Depolarization$	300 ₀ K	190+1682	24
xe+xe + xe+xe+	1-70eV Lab E	Table, Graph 21	61
Xe + Xe + Xe + Xe + E	300°K ●	$k = 5 \times 10^{-10} \text{ cm}^3/\text{s}$	98
Xe +Xe + Xe +Xe+e	300°K	$k = 5 \times 10^{-10} \text{ cm}^3/\text{s}$	98
$Xe^+ + He^*_2$ + $2He + Xe^{+*}$ $He_2(3p^{-3}\pi_g, J=8) + He^- + He_2(3p^{-3}\pi_g, J=7) + He^-$	600m/s Xe vel 300 ⁰ k ^a	400R ² k=2.4X10 ⁻¹¹ cm ³ /s	98 89
He ⁺ +Ne + Ne ⁺ +2He He ⁺ 2+Ar + Ar ⁺ +2He	200°K 200°K	k=5.x10 ⁻¹⁰ cm ³ /s k=2.2x10 ⁻¹⁰ cm ³ /s	34

Tabular Data B-1.16.

		Temperature,	Cross Section	
Reaction		Velocity or Energy	or Reaction Rate	Reference
He2 + Kr +	Kr ⁺ + 2He	200 ⁰ K	k=1.85x10 ⁻¹¹ cm ³ /s	35
Ne2 +Ar +	Ar+2Ne	200 ^o K	k<5x10-14cm3/s	35
Ne2+Kr +	Kr ⁺ +2Ne	300°K	k<1x10-13cm ³ /s	111
Ne2 + Xe +	Xe +2Ne	300°K	k<10-13cm3/s	111
Ar2 + Kr +	Kr *2Ar	300°K	$k=8.0+.2\times10^{-11}$ cm ³ /s	85
Ah2+Kr +	Kr ⁺ +2Ar	300°K	k=6x10 ⁻¹⁰ cm ³ /s	117
Ar2+Kr +	Kr +2Ar	200 ⁰ K	k=7.5x10 ⁻¹⁰ cm ³ /s	35
$Ar_2^*(^{1}\Sigma_u)+Xe +$	Xe(¹ P ₁)Production	300°K	k=4.39±0.05×10 ⁻¹⁰ cm ³ /s	52
Ar2(32,)+Xe +	$Ar_2^*(^3L_u)+Xe + Xe(^3P_1)$ Production	300°K	780Å ^{2b}	63
Kr2+Kr +	Vibrational Relaxation	300°K	0.014+0.0007*2	99
Kr2(12,)+Xe +	Xe(³ P ₁)Production	300°K	780R ² b	63
Kr2(32,)+Xe +	Xe(³ P ₁)Production	300°K	1008 ^{2b}	63
Kr2+Xe +	KrXe+Kr	300°K ^a	k210-10cm3/s	64
Xe ₂ +Xe +	Quenching	300°K	0.033±0.01382	62
Xe2 +Xe +	Xe *+2Xe	300°K ■	10 ⁻¹¹ cm ³ /s	98
		-		

Tabular Data B-1.17.

		Temperature,	Oross Section	
Reaction	wo	or Energy	Reaction Rate	Reference
Ar2+Ar2 +	Ar2+2Ar+e	300°K	k=5x10 ⁻¹⁰ cm ³ /s	43
xe2+xe2 +	Xe ⁺ +2Xe+e Xe ⁺ +3Xe+e	300°K	k=3.5±1.4×10 ⁻¹⁰ cm ³ /s	62
xe2 +xe2 +	Xe2+2Xe+e	300°K ■	5x10 ⁻¹⁰ cm ³ /s	98
HeNe +Ne +	Ne2+He Ne2+He	200 ⁰ k 300 ⁰ k	k=1.4x10 ⁻¹⁰ cm ³ /s k=3x10 ⁻¹¹ cm ³ /s	35
HEAr +Ar	• Ar +He+Ar	330°K	310-2082	124
HeAr +Ar	+ Ar2+He	330 ⁰ K	33±6A ²	124
HeKr +Kr	+ Kr+Kr+He	330 ⁰ K	470±308 ²	124
HeKr +Kr	+ Kr2+He	330 ⁰ K	15+382	124
NeAr +Ar	+ Ar +Ne+Ar	330°K	210+1582	124
NeAr +Ar	+ Ar2+Ne	330 ₀ K	23±5Å ²	124
NeKr +Kr	+ Kr+Kr+Ne	330 ⁰ K	310+2082	124
NeKr +Kr	→ Kr ⁺ ₂ +Ne	330°K	11±382	124

Tabular Data B-1.18.

Reac	Reaction	Temperature, Velocity or Energy	Cross Section Or Reaction Rate	Reference
ArKr +Ar +	$Kr^*(5p[\frac{1}{2}]_0)+2Ar$	300°K	k=1.0x10 ⁻¹⁸ cm ³ /s	90
ArKr+Kr +	Kr2+Ar	300 ⁰ K	k=1+1×10-10cm ³ /s	88
ArKr+Kr +	Kr++Ar	200 ⁰ K	k=3.2x10 ⁻¹⁰ cm ³ /s	35
KrXe+Xe +	Xe2+Kr	300°Kª	k ₂ 10 ⁻¹⁰ cm ³ /s	49

Tabular Data B-1.19.

		Temperature, Velocity	cross section or	
Reaction		or Energy	Reaction Rate	Reference
He(³ S ₁)+2He +	не ₂ (3 _{ги})+не	279 ⁰ K	k=2.2x10 ⁻³⁴ cm ⁶ /s	19
He(3S1)+2He +	$He_2(^3\Sigma_{\mathbf{U}})$ +He	366 ⁰ K	$k=4.27 \times 10^{-34} \text{cm}^6/\text{s}$	19
He +2He +	He2+He	300°K	$k=10.8\times10^{-32}$ cm ⁶ /s	99
Ne +2He +	(HeNe)+He	300°K	$k=2.1\times10^{-32}$ cm ⁶ /s	37
Ne +Ne+He +	Ne ⁺ +He (HeNe) ⁺ +Ne	300°K	k=3.0x10 ⁻³¹ cm ⁶ /s	37
Ne +2Ne +	Ne2+Ne	300 ₀ K	$k=4.4\pm0.4\times10^{-32}$ cm ⁶ /s	70
0.00				
Ar +Ar+He +	Ar. + He	80°K	k=1.6x10 ⁻³⁰ cm ⁶ /s	r
Ar +Ar+He +	Ar ₂ +He	300 ⁰ K	k=1.3x10 ⁻³¹ cm ⁶ /s	ת
Ar +Ar+He +	ArHe +Ar	300 ⁰ K	$k=7.5x10^{-32}$ cm ⁶ /s	99
Ar +Ar+Ne +	(ArNe) +Ar	300°K	$k=25\times10^{-32}$ cm ⁶ /s	99
Ar +2Ar +	Ar2+Ar	300°K	$k=3x10^{-33}$ cm ⁶ /s	43
Ar+(2P3)+2Ar + Ar2+Ar	Ar2+Ar	195 ⁰ K	k=3.0+.2x10 ⁻³¹ cm ⁶ /s	47
Ar+(2p3)+2Ar + Ar2+Ar	Ar2+Ar	296 ⁰ K	k=2.3x10 ⁻³¹ cm ⁶ /s	47

Tabular Data B-1.20.

Reaction	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar +2Ar + Ar +Ar	300°K	$k=2.5x10^{-31}cm^6/s$	43
Ar*(3p,)+Kr+Ar+ Arkr +Ar	300°K	$k=2.5x10^{-30}$ cm ⁶ /s	20
Kr +2Ar + Ark +Ar	300 ⁰ K ^a	$k=1+1\times10^{-32}$ cm ⁶ /s	82
Kr(1e ₃)+2Kr + Kr ₂ +Kr	300 ⁰ K	$k=53.6x10^{-33}cm^6/s$	99
	300 ⁰ K	$k=38\times10^{-33}$ cm ⁶ /s	55
Kr+Kr+Kr + Kr2+Kr	300 ⁰ K	k=2.4+13x10-31cm6/s	73
	300°K ^a	$k=1.4\pm0.3\times10^{-32}$ cm ⁶ /s	72
t	300°K ^a	$k=2.1+.2\times10^{-31}$ cm ⁶ /s	25
xe*(3P2)+xe+Ar+ xe2(1u)+Ar	300°Kª	$k=2.15\pm0.25\times10^{-32}$ cm ⁶ /s	. 52
$xe^{(3p_{1,2})+2xe^{-xk_2(1,3^+_{L_0})+xe}$	300°Kª	$k=5.0+1.4x10^{-32}cm^6/s$	72
Xe +2Xe + Xe2+Xe	300°K*	2.5x10-31cm6/s	98
xe +2xe + xe +xe	300 ⁰ K [♣]	$10^{-31} \text{cm}^6/\text{s}$	98
He+He+Ne + Ne+3He	300°K	$k=2+2\times10^{-30}$ cm ⁶ /s	69
Hethethr + Ar +3He	300°K	$k=24\pm6\times10^{-30}$ cm ⁶ /s	69
Ar+Ar+He + Ar+He	80°K	k=5.5x10 ⁻³¹ cm ⁶ /s	נו

Tabular Data B-1.21.

			Temperature	Cross Section	
Rea	Reaction		Velocity, or Energy	or Reaction Rate	Reference
Ne+C1_	+	C)+Ne+e	7-15eV C.M.	Graph 27.	91
Ar+F"	+	F+Ar+e	4000-6200 ⁰ K	Eqn. 4	92
Ar+C1	+	Ar+C1+e	3500° - 5000°K	Eqn. 5	93
Ar+Br-	+	ArtBrte	3500° - 5000°K	Eqn. 6	93
Ar+1-	+	Ar+I+e	3500° - 5000°K	Eqn. 7	93
He+C1,	+	2C1+He	1700-2800 ⁰ K	Eqn. 8	96
He+1,*	+	Quenching	293 ⁰ K	1.34R ²	118
Ne+F,	+	F+F+Ne	1422-2670 ⁰ K	Table 29	96
Ne+1,*	+	Quenching	293 ⁰ K	5.22A ²	118
Ar+F2	+	F+F+ Ar	1130-2617*K	Table, Graph 20	96
Ar+C1,	+	2C1+Ar	1700-2800 ⁰ K	Eqn. 9	96
Ar(3p_)+C12 +		Ar+C1+C1(2px)	300°K	k=1.2x10 ⁻¹¹ cm ³ /s	96
Ar(3P0)+C12 +		$Ar+C1+C1(^{2}p_{\underline{3}})$	300°K	k=8.0x10 ⁻¹¹ cm ³ /s	96
Ar(3p0,2)+C12 +		2 Ar+C1+C1(⁴ P _½)	300°K	k=4.4×10 ⁻¹² cm ³ /s	96

Tabular Data B-1.22.

Rea	Reaction		Temperature, Velocity, or Energy	Cross Section or Reaction Rate	Reference
Ar(3p0,2)+C12	+	Ar+C1+C1(4 P ₃)	300°K	k=7.88x10 ⁻¹¹ cm ³ /s	96
Ar(3P2)+C12	+	Quenching	300°K	$k=71+14\times10^{-1}cm^3/s$	96
Ar(3P2)+C12	+	Arc1+c1	300°K	k=21x10 ⁻¹¹ cm ³ /s	96
Ar(3P2)+C12	+	Ar+c12	300 ^o k	k=1.8×10 ⁻¹¹ cm ³ /s	96
Ar(3P2)+C12	+	Ar+C1+C1(4P5)	300°K	k=2.70x10 ⁻¹¹ cm ³ /s	96
Ar(3P2)+C12	+	Ar+C1 ⁺ +e	300°K	$k \le 22 \times 10^{-11} \text{cm}^3/\text{s}$	96
Ar+Br2	+	Br+Br+Ar	1310 ⁰ -2225 ⁰ K	Table 34	97
Ar(3P2,0)+Br2	+	Total Quenching	300°K	k=66.0x10 ⁻¹¹ cm ³ /s	96
Ar(3P2,0)+Br2	+	Ar8r48r	300°K	k=.52x10 ⁻¹¹ cm ³ /s	96
Ar(3P2,0)+Br2	+	Ar+Br+Br(5s'' 2s,)	300°K	$k=6.0\times10^{-11}$ cm $^{3}/s$	96
Ar(3p2,0)+Br2	+	Ar+Br+Br(5s 2pz)	300°K	k=3.1×10 ⁻¹¹ cm ³ /s	96
Ar(3p2,0)+Br2	+	Ar+Br+Br(5s $\frac{2p_2}{3}$	300°K	k=5.2x10 ⁻¹¹ cm ³ /s	96
Ar(3p2,0)+Br2	+	Ar+Br+Br(5s 4px)	300°K	k=3.0X10 ⁻¹¹ cm ³ /s	96
Ar(3P2,0)+Br2	+	Ar+Br+Br(5s 4 P ₃)	300 ⁰ K	k=26.4×10 ⁻¹¹ cm ³ /s	96

Tabular Data B-1.23.

Re	Reaction	Temperature, Velocity or Energy	Cross Section or Reaction Rate	Reference
Ar(3P2,0)+Br2	+ Ar+Br+Br(5s 4p ₅)	300°K	k=21.1x10 ⁻¹¹ cm ³ /s	96
Ar+1,*	- Quesching	293 ⁰ K	5.1182	118
Kr+1,*		293 ⁰ K	7.44R ²	118
Xe+12	+ Quenching	293 ⁰ K	10.62Å ²	118
He (20) + CC1	+ Deexcitation	.23eV Lab. E	420.0Å ²	8
Ar+CF,	+ CF+F+Ar	2600-3700 ⁰ K	Eqn. 10	86
Ar+CF ₃	+ CF2+F+Ar	1700-3000 ⁰ K	Eqn. 11	86
Ar+CF4	+ CF3+F+Ar	1700-3000 ^K	Eqn. 12	86
Ar+C2F6	+ CF3+CF3+Ar	1700-3000 ⁰ K	Eqn. 13	86
Ar(3P2)+CC14	+ Quenching	300°K	k=10x10 ⁻¹⁰ cm ³ /s	66
Ar+CF31	+ CF3+1+Ar	1700-3000 ⁰ K	Eqn. 14	88

Tabular Data B-1.24.

			Temperature,	Cross Section	
•	Reaction		velocity, or Energy	Reaction Rate	Reference
He+C1+C1	+	C1 ₂ +He	313 ⁰ K	$k=4.18\times10^{-33}$ cm ⁶ /s	100
He+Br+Br	+	Br₂+He	300-1275 ⁰ K	Eqn. 15	101
He+I+I	+	12+Не	206-1173 ⁰ K	Eqn. 16	102
He+I+I	+	12+Не	1400°K	k=4.95 x 10 ⁻³⁴ cm ⁶ / ₈	103
Ne+Br+Br	+	Br ₂ +Ne	300-1275 ⁰ K	Eqn. 17	101
Ne+I+I	+	I ₂ +Ne	293 ⁰ K	$k = .92 \times 10^{-32} \text{cm}^6/\text{s}$	104
Ar+F+F	+	F2+Ar	1650 ⁰ -2700 ⁰ K	Eqn. 18	86
Ar+C1+C1	+	C1 ₂ +Ar	1738 ⁰ -2475 ⁰ K	Table 31	36
Ar+Br+Br	+	Br2+Ar	300-1275 ⁰ K	Eqn. 19	101
Ar+Br+Br	+	Br2+Ar	1600-3000 ⁰ K	Eqn. 20	901
Ar+Br2+Br	+	Br3 +Ar	300°K	$k=1.9\times10^{-28}$ cm $^{6}/s$	107
Ar+I+I	+	I2+Ar	206-1173 ⁰ K	Eqn. 21	102
Kr+Br+Br	+	Br2+Kr	300-1275 ⁰ K	Eqn. 22	101
Kr+I+I	+	I ₂ +Kr	293 ⁰ K	$k=2.25\times10^{-32}$ cm $^{6}/s$	104
Xe+Br+Br	+	Br ₂ +Xe	300-1273 ⁰ K	Eqn. 23	108
Xe+I+I	+	I ₂ +xe	206-1173 ⁰ K	Eqn. 24	102
ArtF+CF	+	CF2+Ar	2600-3700 ⁰ K	Eqn. 25	86
Ar+F+CF2	+	CF ₃ +Ar	1700-3000 ⁰ K	Eqn. 26	86

Tabular Data B-1.25.

	Reaction	Temperature, Velocity, or Energy	Cross Section or Reaction Rate	Reference
Ar+F+CF3	+ CF4+Ar	1700-3000 ⁰ K	Eqn. 27	86
Ar+CF3+CF3	+ C2F6+Ar	1700-3000°K	Eqn. 28	86
(mpf(s) + 1	-	300°€	Table, Graph 35	125
(noble) + F +	- + (noble) → [(noble) ₂ F]* + (noble)	300°K	Table, Graph 36	126
1975	4 - C - C - C - C - C - C - C - C - C -	X980K	k=1.20+0.15×10 ⁻¹⁰ cm ³ /s	109
CI+BrCI		298 ⁰ K	$k=1.45\pm0.20\times10^{-11}$ cm $^3/s$	109
C1+IC1	7 + 12+1	298 ⁰ K	$k=8.0+1.0\times10^{-12}$ cm $^3/s$	109
Br+F,	brf+F	296°-418°K.	Eqn. 29	011
ı Dit	+ BrC1+1	298 ⁰ K	$k=3.0\pm0.8\times10^{-14}$ cm ³ /s	109
Br+IBr	+ Br ₂ +I	298 ⁰ K	$k=3.5\pm0.6\times10^{-11}$ cm ³ /s	109
I(5p ⁵ 2 _{p₁})+I ₂	, + I+I,	300°K	$k=3.6\pm0.3\times10^{-11}$ cm ³ /s	911
1(² p ₃)+1 ₂ (8 ³		880°K	120±45Å ²	Ξ
5				
F+CF ₃	+ CF2+F2	Roughly 2000 ⁰ K	Eqn. 30	86
F+CF4	+ CF3+F2	Roughly 2000 ⁰ K	Eqn. 31	86

Tabular Data B-1.26.

		Temperature,	Cross Section	
Reaction		Velocity, or Energy	or Reaction Rate	Reference
F2+C12 +	2C1F	350-400°K	Eqn. 32	112
C12+C12 +	201+012	1700-2800 ⁰ k	Eqn. 38	96
C12+*C12 +	*c12_+c12	0.3eV Lab. E	$k=1.5 \times 10^{-10} \text{cm}^3/\text{S}$	113
C12+*C12 +	c1 ³ +c1	0.3eV Lab. E	k=8.4x10 ⁻¹³ cm ³ /s	113
C12_+Br2 +	Br2_+Cl2	0.3eV Lab. E	k=1,8x10 ⁻¹⁰ cm ³ /s	113
C12_+Br2 +	Br2c1-tc1	0.3eV Lab. E	k=3.8×10 ⁻¹¹ cm ³ /s	113
C12_+Br2 +	BrC1 ⁺ (?)	0.3eV Lab. E	k=1.6x10 ⁻¹¹ cm ³ /s	113
C12_+Br2 +	BrCl ₂ ⁺ Br	0.3eV Lab. E	k=1.0x10 ⁻¹¹ cm ³ /s	113
C12-+12 +	I2-+C12	0.3eV Lab. E	k=7.7x10 ⁻¹¹ cm ³ /s	113
C12-12 +	1+2-11	0.3eV Lab. E	k=3.0×10 ⁻¹¹ cm ³ /s	113
C12-12 +	101-+(?)	0.3eV Lab. E	k=3.0x10 ⁻¹¹ cm ³ /s	113
C12-12 +	12c1-+c1	0.3eV Lab. E	k=5.5x10 ⁻¹¹ cm ³ /s	113
Br2+Br2 +	28r+Br ₂	1010 ⁰ k-1610 ⁰ k	Table 33	26
Br2(B 310u +)+Br2+	Quenching	300 ⁰ K ^a	Table 32	121
12-+612 +	C12 ⁻⁺¹ 2	0.3eV Lab. E	k=2.0x10 ⁻¹¹ cm ³ /s	113
12-+C12 +	112 + 61	0.3eV Lab. E	k=3.0x10 ⁻¹¹ cm ³ /s	113
12-+612 +	(1,1-(1)	0.3eV Lab. E	k=2.4×10 ⁻¹¹ cm³/s	113

Tabular Data B-1.27.

			Temperature,	Cross Section	
	Reaction	ю	or Energy	Reaction Rate	Reference
12_+C12	+	+ C121-11	0.3eV Lab E.	k=2.8x10 ⁻¹¹ cm ³ /s	113
12 +12	+	Quenching	293 ⁰ K	65.6A ²	118
12-+12	+	13 ⁷ +1	0.3eV Lab. E	k=1.1x10 ⁻¹⁰ cm ³ /s	113
F2+CF2	+	CF3+F	Roughly 2000 ⁰ K	Eqn. 33	86
F2+CF3	+	CF4+F	Roughly 2000 ⁰ K	Eqn. 34	86
BrtBrtBr	+	Br ₂ +Br	300°-2985°K	Eqn. 35	101
C1+C1+C12	+	2012	195-490 ⁰ K	Table 30	95
Br+Br+Br ₂	+	Br2+Br2	3000-3000 ⁰ K	Eqn. 36	115
1+1+12	+	12+12	300-1173 ⁰ K	Eqn. 37	102
Br-+Br2+Br2	+	Br3 +Br2	296 ⁰ K	$k=2.9\times10^{-29}$ cm ⁶ /s	911

FOOTNOTES

- a. These temperatures are in doubt since they were not found in the reference.
- b. These values may be high. See J. Chem. Physics 66 1590 (1977).

Tabular Data B-1.27a.

Re	Reaction	Temperature	Reaction Rate	Reference
			(cm ³ /s)	
Xe* + F ₂	+ XeF* + F	300 ⁰ K	7.5×10^{-10}	127
Xe* + OF ₂ +	+ XeF* + (?)	300 ⁰ K	5.7×10^{-10}	127
Xe* + NF ₃ +	+ XeF* + (?)	300 ⁰ K	9 x 10 ⁻¹¹	127
Xe* + NOF	+ XeF* + (?)	300 ⁰ K	3.9 × 10 ⁻¹⁰	127
$Xe* + C1_2 +$	+ XeC1* + C1	300°K	7.2×10^{-10}	127
Xe* + HC1 +	→ XeC1* + H	300 ⁰ K	5.6×10^{-10}	127
Xe* + Br ₂ +	→ XeBr* + Br	300°K	6.0×10^{-10}	127
Kr* + F2	+ KrF* + F	300°K	7.2×10^{-10}	127
		300°K	5.2×10^{-10}	128
Kr* + OF2	+ KrF* + (?)	300°K	5.3×10^{-10}	127
Kr* + NF3	+ KrF* + (?)	300°K	8.9 x 10 ⁻¹¹	127
Kr* + NOF	+ KrF* + (?)	300°K	4.7×10^{-10}	127
Kr* + Cl ₂	+ KrC1* + C1	300°K	7.3×10^{-10}	127
Ar* + F ₂	+ ArF* + F	300°K	7.5 x 10 ⁻¹⁰	127

The following reactions were added in proof. We wish to thank Dr. C. A. Brau for permission to use these data which will appear in the chapter entitled "Rare Gas Halide Lasers" in the forthcoming book Excimer Lasers, C. K. Rhodes (Ed.) Springer-Verlag, (Berlin, 1978).

Tabular Data B-1.27b.

Reaction	Temperature	Reaction Rate	Reference
		(cm ³ /s)	
	300°K	9×10^{-10}	127
$Ar* + Cl_2 + ArCl* + Cl$	300°K	7.1×10^{-10}	127
$Ar_2^* + F_2 + ArF^* + Ar + F$	300°K	3×10^{-10}	129
	300°K	5.1×10^{-10}	128
Kr ₂ * + F ₂ + KrF* + Kr + F	300°K	4.2×10^{-10}	130
	300°K	4.0×10^{-10}	128
$Kr_2^+ + Xe + Xe^+ + 2 Kr$	300°K	2×10^{-10}	131
		Reaction Rate (cm ⁶ /s)	
Xe* + 2Ar + (ArXe)* + Ar	300°K	1×10^{-33}	132
	300°K	7×10^{-34}	133
Kr + Kr + He + Kr ₂ + He	300°K	6.1×10^{-32}	134
$Xe^+ + Xe^- + He^- \times Xe_2^+ + He^-$	300°K	1.1×10^{-31}	134

	Tabular Data R-1.27c.	76.	
Reaction	Temperature	Lifetime x Reaction Rate	Reference
		(cm ³)	
ArF* + F ₂ + products	300°K	7.6×10^{-18}	135
	300°K	7.3×10^{-18}	128
KrF* + F ₂ + products	300°K	5.2×10^{-18}	136
	300°K	5.1×10^{-18}	137
XeF* + F ₂ + products	300°K	5.3×10^{-18}	138
XeF* + NF ₃ + products	300°K	2.4×10^{-19}	138
XeF* + Xe + products	300°K	4.6×10^{-19}	138
XeF* + Ar + products	300°K	1.3×10^{-20}	139
	300°K	2.6×10^{-20}	138
ArF* + Ar + products	300°K	3.6×10^{-20}	135
KrF* + Kr + products	300°K	$\leq 1 \times 10^{-20}$	140
Ar ₂ F* + F ₂ + products	300°K	3.8×10^{-17}	128
ArF* + Kr + KrF* + Ar	300°K	6.1×10^{-18}	135
ArF* + Xe + XeF* + Ar	300°K	1.8×10^{-17}	135
Kr ₂ F* + F ₂ + products	300°K	7.8×10^{-17}	128

Tabular Data B-1.27d.

Reaction	Temperature	Lifetime x Reaction Rate (cm ⁶)	Reference
$ArF* + 2 Ar \rightarrow Ar_2F* + Ar$	300°K	1.6×10^{-39}	135
	300°K	2.0×10^{-39}	128
KrF* + 2 Kr + Kr ₂ F* + Kr	300°K	4.2×10^{-39}	136
	300°K	4.5×10^{-39}	141
	300 ⁰ K	2.6×10^{-39}	137
KrF* + 2 Ar + ArKrF* + Ar	300°K	5.2×10^{-40}	142
	300°K	8.1×10^{-40}	141
KrF* + Kr + Ar + Kr ₂ F* + Ar	300°K	4.2×10^{-39}	142
XeF* + 2 Ar + products	300°K	2.4×10^{-40}	139
XeF* + Xe + Ar + products	300°K	4.8×10^{-39}	139

Equations

Reaction rates as a function of temperature

Equations Cited in Table of Reactions B-1.28.

- 1. k=2.1x10⁻¹⁰EXP(-475.7/T)cm³/s
- 2. $k=3.3x10^{-11}EXP(-591.8/T)cm^3/s$
- 3. $k=5.94\times10^{-10}T^{\frac{1}{2}}EXP(-18570/T)cm^{3}/s$
- 4. $k=1.2\times10^{-11}$ EXP(-40000/T)cm³/s
- 5. $k=1.2\times10^{-10}$ EXP(-42000/T)cm³/s
- 6. $k=9.3x10^{-11} EXP(-39000/T)cm^3/s$
- 7. $k=7.0x10^{-11} EXP(-35500/T) cm^3/s$
- 8. $k=6.58\times10^{-11}$ EXP(-24427/T)cm³/s
- 9. $k=4.40\times10^{-11}$ EXP(-23819/T)cm³/s
- 10. $k=6.98\times10^2(T)^{-2.85}$ EXP(-53395/T)cm³/s
- 11. $k=2.61\times10^{25}(T)^{-9.04} EXP(-46471/T)cm^3/s$
- 12. $k=1.02x10^{11}(T)^{-4.64} EXP(-61667/T)cm^3/s$
- 13. $k=1.40\times10^{-3}(T)^{0.5}EXP(-38535/T)cm^3/s$
- 14. $k=3.77\times10^6(T)^{-4.0}EXP(-28907/T)cm^3/s$
- 15. $\log k(1) = (9.066 \pm 0.0) (1.261 \pm 0.043) \log (T/300)$
- 16. $\log k(1) = (1.716 \log (T/300) + 0.994 \log^2 (T/300))$
- 17. $\log k(1) = 10^{-2} sec^{-1} = (9.17 + 0.024) (1.423 + 0.057) \log (T/300)$
- 13. $k=4.03x10^{-37}EXP(6103/T)cm^6/s$
- 19. $\log k(1) = (2.287 \pm 0.125) \log(T/300) + (1.154 \pm 0.194) \log^2(T/300)$
- 20. logk(liters²mole⁻²sec⁻¹)=8.251+0.002)-(1.36+0.29)log(T/2300)
- 21. $\log k(1) = 2 \log^{-2} \log^{-1} = 9.439 2.418 \log(T/300) + 1.911 \log^{2}(T/300)$
- 22. $logk(liters^2mole^{-2}sec^{-1})=9.489+0.021)-(2.77+0.179)log(T/300)+(1.473+0.298)log^2(T/300)$
- 23. $\log k(1) = (2.183 \pm 0.314) \log^2(T/300)$
- 24. $\log k(1) = r^2 = 1.652 2.787 \log(T/300) + 1.678 \log^2(T/300)$

Equations Cited in Table of Reactions (Concluded) B-1.28

- 25. $k=1.81\times10^{-21}(T)^{-2.85}cm^6/s$
- 26. $k=4.11\times10^{-2}(T)^{-9.04}EXP(-1152/T)cm^6/s$
- 27. $k=2.70x10^{-16}(T)^{-4.64}EXP(-1435/T)cm^6/s$
- 28. $k=1.97x10^{-30}T^{0.5} cm^{6}/s$
- 29. $k=1.31x10^{-13}EXP(-2154/T)cm^3/s$
- 30. $k=1.66\times10^{-12}T^{0.5}EXP(-28007/T)cm^3/s$
- 31. $k=1.66\times10^{-12}T^{0.5}EXP(-43134/T)cm^3/s$
- 32. k=2.76x10¹⁰EXP(-19800/R)(1.mo1.-1) min-1
- 33. $k=3.29x10^{-13}T^{0.5}EXP(-1068/T)cm^3/s$
- 34. $k=3.60\times10^{-14}T^{0.5}EXP(-1458/T)cm^3/s$
- 35. $\log k(1) = (12.22 + 2.00) (4.3 + 0.62) \log (T/300)$
- 36. $\log k(1) = (8.952 \pm 0.002) (2.70 \pm 0.32) \log (T/1545)$
- 37. $\log k(1) = 2 \cos^{-1}(1) = 12.122 5.844 \log(T/300) + 2.163 \log^2(T/300)$
- 38. $k=3.04x10^{-10}$ EXP(-23819/T)cm³/s
- 39. σ³=5.5-0.58 ln E (E=1-70eV)
- 40. σ³2=6.9-0.25 ln E (E=1-50eV)

Tables and Graphs Cited in Table of Reactions

Reaction rates (k) and cross sections (σ) as a function of collision energy (E), temperature (T), and relative velocity (ν).

Tabular Data B-1.29.

Table 1 He+Xe → Total Scattering

Table I	THE TOTAL SCALLE		
v(cm/s) (x10000) 3.03 3.13 3.18 3.29 3.47 3.54 4.72 4.72 4.72 4.72 4.72 4.72 4.73 5.47 6.30	«(Ų) 441.84 426.66 406.24 387.36 379.16 354.36 342.57 329.86 329.04 309.18 299.58 299.28 283.95 278.37 275.18 273.80 273.21 272.83 273.25 274.29 276.53 283.80 283.80 283.80 285.60	v(cm/s) (x10000) 6.63 6.95 7.69 7.69 7.83 7.99 9.38 10.50 10.94 11.79 12.69 13.43 14.17 14.63 15.05	286.68 286.51 285.62 284.30 281.58 274.39 270.66 274.39 270.66 257.77 252.79 247.38 241.20 235.34 228.06 221.39 215.61 209.66 204.03 197.69 190.18 182.75

Tabular Data B-1.31.

Table 2 He+Kr → Total Cross Section

v(cm/s) (x10000)	&(²)	v(cm/s) (x10000)	σ(⁸²)
2.92 3.02 3.14 3.27 3.40 3.52 3.69 3.69 4.23 4.44 4.62 4.82 5.00 5.14	270.91 265.30 259.94 255.77 251.67 249.01 246.62 245.86 245.63 247.47 250.43 253.58 253.58 258.04 263.30 267.85	7.18 7.56 7.85 8.21 8.56 8.84 9.16 9.47 9.83 10.12 10.48 10.81 11.09 11.45 11.76	268.89 263.05 258.00 251.65 244.93 239.26 232.85 227.47 220.59 215.17 209.17 209.17 209.17 209.17 209.17
5.28 5.46 5.68 5.86 6.06 6.31 6.62 6.91	272.49 276.35 280.12 281.18 281.97 279.52 277.71 272.99	12.14 12.55 12.94 13.27 13.55 13.96 14.34	179.57 172.60 167.12 162.14 158.30 153.16 148.39

Tabular Data B-1.33.

Table3	He+Ar → Total Cros	s Section	
v(cm/s) (x10000)	σ(²)	v(cm/s) (x10000)	σ(Å ²)
4.56 4.70 4.84 5.20 5.40 5.66 5.93 6.45 7.09 7.40 7.83	287.67 280.59 273.21 265.66 258.79 252.85 246.83 241.81 238.08 233.99 229.42 224.52 220.02 213.05	8.18 8.51 8.81 9.08 9.45 9.81 10.13 10.44 10.87 11.38 11.74 12.30 12.76	207.66 201.80 196.65 192.37 185.53 179.70 175.17 170.55 164.85 157.30 152.44 145.83 140.94

Tabular Data B-1.35.

Table 4 $He(2^3S)+Xe \rightarrow Quenching$

T(OK)	$K(10^{-10} cm^3/s)$	T(OK)	$K(10^{-10} \text{cm}^3/\text{s})$
286 385 319 335 349 361 380 402 416 432 444 461 486 496 517 544	1.34 1.42 1.49 1.57 1.65 1.71 1.83 1.94 2.03 2.12 2.20 2.31 2.43 2.52 2.66 2.77	563 586 629 629 650 672 672 741 770 787 814 854 872 893	2.88 3.10 3.12 3.31 3.42 3.56 4.79 4.18 4.18 4.25

Tabular Data B-1.37.

Table 5 $He(2^3S)+Ar \rightarrow Quenching$

T(K ^O)	$K(10^{-11} cm^3/s)$	T(K ^o)	$K(10^{-11} cm^3/s)$
289	7.10	590	20.34
311 326	7.71 8.23	616 635	21.80 23.06
346	8.87	653	23.99
366	9.56	667	24.76
385 406	10.37 11.29	688	25.88
439	12.25	714 735	27.17 28.26
448	13.09	753	29.05
464	13.81	777	30.14
481 496	14.67 15.42	801 827	31.10 32.43
513	16.23	845	33.03
535	17.42	863	33.69
555 572	18.48 19.40	983 900	34.13 34.49

Tabular Data B-1.39.

Table 6 He(2^3 S)+Ne \rightarrow Quenching

T(K ^O)	K(10 ⁻¹¹ cm ³ /s)	T(K ^O)	K(10 ⁻¹¹ cm ³ /s)
7(K°) 290 301 309 318 326 335 343 352 361 374 388 399 412 424 435 446	K(10 ⁻¹¹ cm ³ /s) 0.343 0.384 0.419 0.457 0.503 0.540 0.588 0.630 0.691 0.772 0.955 1.049 1.141 1.234 1.347	T(K°) 551 567 582 595 614 630 646 680 695 712 727 744 756 771 788	K(10 ⁻¹¹ cm ³ /s) 2.354 2.530 2.687 2.836 3.039 3.232 3.429 3.608 3.852 4.033 4.244 4.695 4.870 5.092 5.289
460 472 486 501 519 535	1.477 1.610 1.756 1.917 2.082 2.222	807 825 847 866 882 903	5.580 5.811 6.100 6.303 6.487 6.711

Tabular Data B-1.41.

Table 7 Ar+Ar → Total Elastic Cross Section

σ(100Å ²)	v(cm/s) (x10000)	σ(100Å ²)
8.60	8.74	4.09
8.06	10.73	3.91 3.76
7.78 7.50		3.62 3.48
7.17	14.24	3.34
6.62	16.47	3.14
6.36 6.17	19.28	3.04 2.93
5.92 5.79	20.88 23.85	2.83
5.48	25.18	2.62
5.07	30.10	2.41
4.81 4.59	32.25 35.17	2.34
4.39 4.23	37.68 40.33	2.21
	8.60 8.31 8.06 7.50 7.17 6.62 6.36 6.17 5.70 5.70 5.70 5.70 4.81 4.59	6(100Ų) (x10000) 8.60 8.74 8.31 9.84 8.96 10.73 7.78 11.78 7.50 12.86 7.17 14.24 6.87 15.29 6.62 16.47 6.36 17.83 6.17 19.28 5.92 20.88 5.70 23.05 5.48 25.18 5.30 27.57 5.07 30.10 4.81 32.25 4.39 37.68

Graphical Data B-1.42.

Tabular Data B-1.43.

Table 8 $He(2^3S_1)+He \rightarrow Total Scattering$

v(m/s)	σ(²)	v(m/s)	σ(Å ²)
1140	139.6	2272	130.6
1177	139.1	2345	130.2
1233	138.6	2415	129.9
1277	138.2	2494	129.6
1327	137.7	2554	129.3
1393 1460	137.1 136.6	2633	128.9
1543	135.9	2695 2765	128.6 128.4
1605	135.4	2824	128.1
1671	134.9	2885	127.9
1750	134.3	2938	127.7
1805	133.9	2995	127.4
1862	133.4	3046	127.3
1944	132.9	3102	127.0
2019	132.3	3160	126.6
2083 2152	131.9 131.4	3232 3274	126.4 126.2
2217	130.9	3319	126.0
E	10012	3313	120.0

Tabular Data B-1.45.

Table 9 $He^{3}(2^{3}S_{1})+He^{3} \rightarrow He^{3}+He^{3}(2^{3}S_{1})$

T(K ^O)	σ(Å ²)	T(K ⁰)	σ(Å ²)
8.2	0.075	238.3	3.300
18.4	0.067 0.116	246.3 258.7	3.440 3.612
42.5	0.184	269.1	3.770
53.5 62.0	0.281 0.376	278.8 290.7	3.928 4.097
69.6	0.475	301.8	4.238
76.1 86.1	0.568 0.706	312.8 322.0	4.376 4.493
95.4	0.833	333.2	4.637
102.9	0.949 1.072	345.4 358.1	4.772 4.903
119.0	1.196	372.4	5.009
127.3	1.346	387.9 401.2	5.130 5.222
149.4	1.753	416.9	5.307
157.9	1.923	431.1	5.369
168.1	2.116 2.301	448.8 464.9	5.454 5.507
187.0	2.474	480.2	5.559
196.7	2.675	493.7 507.1	5.582 5.590
220.6	3.005	519.4	5.602
230.2	3.149	530.9	5.613

Tabular Data B-1.47.

 $He(2^3S)+Kr \rightarrow Total (97\% Elastic)$

v(m/s)	σ(R ²)	v(m/s)	σ(Å ²)
980	532.6	1716	442.0
987 998	526.2 519.5	1762 1826	445.8
1009	512.8	1877	453.1
1022	505.7	1918	454.8
1038	497.5	1969	456.1
1058 1077	490.0 481.7	2015 2059	456.3 456.1
1097	474.5	2117	454.9
1118	467.8	2174	453.2
1147	459.1	2236	451.4
1175 1207	451.5 442.7	2288 2337	449.9
1235	436.4	2393	445.5
1272	429.7	2457	442.2
1321	421.3	2521	439.0
1356 1398	416.4 413.1	2582 2650	435.2 430.6
1436	412.0	2711	426.3
1475	412.9	2772	422.3
1519	416.0	2830	418.4
1545 1573	421.1 426.9	2888 2925	413.6
1618	432.7	2976	406.8
1660	437.3		

Tabular Data B-1.49.

Table 11 He+Xe → Elastic Scattering

v(km/s)	σ(Å ²)	v(km/s)	σ(Å ²)
0.81	247.77	1.33	150.90
0.82	241.82	1.37	146.78
0.84	235.74	1.43	141.89
0.87	229.30 222.91	1.47 1.52	138.48
0.92	216.20	1.57	131.16
0.94	209.47	1.62	128.01
0.97	203.86	1.68	124.24
0.99	198.96	1.75	120.03
1.02	193.85	1.82	116.09
1.05	187.81	1.90	112.35
1.09	182.16 176.69	1.99 2.07	109.22
1.17	171.67	2.17	103.22
1.20	166.03	2.25	100.28
1.25	160.22	2.35	97.27
1.29	155.14	2.44	95.10

Tabular Data B-1.51.

Table 12 He+Kr → Total Elastic

v(km/s)	σ(Å ²)	v(km/s)	σ(²)
0.81 0.83 0.85 0.88 0.91 0.94 0.97 1.01 1.05 1.11	190.43 185.21 180.24 175.10 166.95 161.55 155.79 150.06 143.33 136.19 130.89	1.43 1.50 1.56 1.64 1.71 1.77 1.85 1.92 2.03 2.15 2.23	107.50 103.32 99.92 96.41 93.34 90.42 87.74 85.48 82.53 80.13 78.24
1.21 1.26 1.31 1.37	125.37 120.55 115.80 110.91	2.35 2.43 2.53	76.09 74.60 73.46

Tabular Data B-1.53.

Table 13 He+Ar→Elastic Cross Section

Tubic 10	TIC TAI TETUSOTO OTOSS SECUTOR		
v(km/s)	σ(Å ²)	v(km/s)	σ(Å ²)
0.81	148.60	1.41	87.28
0.84	144.12	1.46	84.41
0.86	140.81	1.52	82.14
0.88	136.64	1.57	80.12
0.90	132.82	1.63	78.24
0.93	128.67	1.70	76.95
0.95	124.80	1.78	74.01
0.99	120.01	1.84	72.15
1.03	115.15	1.92	70.41
1.07	111.11	2.02	68.33
1.11	107.27	2.14	66.38
1.17	102.63	2.23	64.89
1.22	98.47	2.32	63.36
1.26	95.94	2.42	62.16
1.31	92.63	2.52	60.97
1.35	90.24		

Relative velocity (km/s) Graph 13 Ha+Ar + Elastic Cross Section

Graphical Data B-1.54.

Tabular Data B-1.55.

Table 14 He+Ne → Total Cross Section

v(km/s)	σ(R ²)	v(km/s)	σ(²)
9.90	66.69	1.42	47.67
0.92	64.75	1.48	47.05
0.94	62.66	1.55	46.18
0.97	61.22	1.64	45.38
1.00	59.31	1.71	44.69
1.02	57.69	1.80	43.94
1.06	55.82	1.88	43.35
1.10	54.14	1.95	42.86
1.15	52.51	2.04	42.35
1.21	51.05	2.12	41.90
1.25	50.24	2.19	41.48
1.31	49.23	2.26	40.99
1.36	48.37	2.35	40.59

Tabular Data B-1.57.

. Table 15 $He(2^3s)+Ar + Total$ Scattering

-
(m/s)
^1
m
~
_
M
**
4
•
~
-
_
•

Tabular Data B-1.59.

Table 16 Ar +Ar → Ar +Ar +

E(eV)	σ ¹ 2(A)	E(eV)	σ ¹ 2(Å)
0.160	8.18	1.076	7.32
0.173	8.15	1.240	7.26
0.192	8.11	1.392	7.21
0.215	8.07	1.562	7.16
0.239	8.02	1.778	7.08
0.264	7.97	1.944	7.06
0.310	7.88	2.161	7.00
0.344	7.84	2.416	6.94
0.390	7.79	2.713	6.91
8.446	7.73	3.064	6.86
0.517	7.66	3.461	6.79
0.599	7.58	3.958	6.74
0.665	7.54	4.470	6.69
0.763	7.45	4.998	6.63
0.833	7.44	5.500	6.59
0.934	7.38	5.992	6.57

ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO-ETC F/G 20/5 COMPILATION OF DATA RELEVANT TO RARE GAS-RARE GAS AND RARE GAS--ETC(U) DEC 77 E W MCDANIEL, M R FLANNERY, H W ELLIS AD-A053 827 UNCLASSIFIED . DRDMI-H-78-1-VOL-1 NL 4 of 5 ADA 053827

Tabular Data B-1.61.

Table 17 Ne+Ar → Ne+Ar+

Table 17	NE TAL 7 NETAL		
E(eV)	σ(10 ⁻² Å ²)	E(eV)	'σ(10 ⁻² Å ²)
0.091 0.093 0.095 0.098 0.102 0.108 0.117 0.124 0.130 0.139 0.148 0.159 0.168 0.180	0.18 0.21 0.24 0.29 0.35 0.41 0.48 0.56 0.69 0.80 0.96 1.11 1.34 1.57 1.87	0.277 0.313 0.344 0.381 0.433 0.479 0.531 0.602 0.673 0.769 0.870 1.009 1.199 1.417 1.691	4.71 5.71 6.56 7.55 8.92 10.06 11.40 12.91 14.49 16.07 17.78 19.82 21.78 23.74 25.55
0.192 0.205 0.217 0.231	2.26 2.62 3.03 3.44	1.979 2.282 2.721 3.163	26.82 27.95 29.09 29.69
0.251	4.01	3.642	30.43

Tabular Data B-1.63.

Table 18 $Ne^{++}+Kr \rightarrow Ne^{+}(Production)$

E(eV)	σ(Å ²)	E(eV)	σ(Å ²)
0.71	7.38	31.14	5.62
8.97	6.45	33.08	5.73
1.23	5.40 4.70	35.05 36.62	5.79 5.87
1.95	3.96	38.90	5.86
2.46	3.49	41.17	5.89
3.08	3.32	42.92	5.87
3.73 4.63	3.21 3.18	44.69 47.22	5.88 5.83
6.06	3.21	49.21	5.85
7.36	3.34	51.38	5.87
9.04	3.54	53.15	5.87
10.78 12.44	3.75 3.96	55.79 58.10	5.88 5.90
13.98	4.13	60.60	5.89
15.72	4.32	62.76	5.91
17.63	4.54	64.98	5.91
19.65 21.62	4.74	68.10 70.30	5.92 5.91
24.23	5.16	72.09	5.91
25.86	5.32	73.89	5.97
27.40	5.41	75.86	5.93
29.15	5.51	78.64	5.95

Tabular Data B-1.65.

Table 19 $Ne^{++}+Kr \rightarrow Kr^{+}(Production)$

lable 19	Ne +Kr → Kr (Pr	oduction)	
E(eV)	σ(Å ²)	E(eV)	σ(A ²)
E(eV) 0.75 0.81 1.04 1.38 1.76 2.58 3.48 5.97 8.61 13.11 16.29 19.46 22.90 28.51	0(%²) 20.09 17.43 15.35 13.08 13.28 13.28 14.28 14.28 14.16 14.10	E(eV) 39.21 41.03 42.89 44.46 45.89 48.05 50.38 52.80 54.65 56.76 59.62 63.55 67.01 69.00 71.11 72.68	4.48 4.64 4.86 4.86 4.86 5.17 5.57 5.58 5.59 5.59 5.59 6.05
31.57 33.43 35.48 37.05	4.08 4.12 4.16 4.26	74.87 77.96 79.62	6.05 6.09 6.07

Tabular Data B-1.67.

Table 20 Ar+ $F_2 \rightarrow F+F+Ar$

10 ⁴ /T (K ⁻¹)	Log K (cm ³ mol ⁻¹ s ⁻¹)	10 ⁴ /τ (κ ⁻¹)	Log K (cm ³ mo1 ⁻¹ s ⁻¹)
3.83	10.27	6.36 6.48	8.70 8.63
4.02 4.15 4.24	10.14 10.06 10.01	6.60 6.72 6.87	8.55 8.48 8.38
4.38 4.50 4.61	9.93 9.86 9.80	7.00 7.12 7.26	8.30 8.23
4.74	9.72 9.63	7.37 7.54	8.14 8.08 7.98
5.02 5.13 5.26	9.54 9.46 9.38	7.67 7.81 7.93	7.89 7.79 7.71
5.38	9.31 9.22	8.06 8.15	7.63 7.57
5.65 5.79 5.92	9.14 9.06 8.97	8.26 8.39 8.50	7.51 7.43 7.37
6.00	8.92 8.85	8.62 8.73	7.29 7.23
6.24	8.78	8.85	7.15

Tabular Data B-1.69.

Table 21 $Xe^+ + Xe \rightarrow Xe + Xe^+$

E(eV)	σ ¹ 2(A)	E(eV)	σ ¹ 2(R)
1.28	8.39	8.56	7.97
1.46	8.37	10.05	7.94
1.62	8.34	11.15	7.92
1.79	8.32	12.63	7.88
1.98	8.30	14.36	7.86
2.19	8.28	16.48	7.83
2.57	8.24	18.84	7.80
2.95	8.21	22.43	7.76
3.34	8.18	25.58	7.73
3.75	8.15	30.12	7.69
4.16	8.13	35.14	7.67
4.86	8.10	39.57	7.64
5.58	8.07	47.99	7.59
6.45	8.04	54.81	7.57
7.43	8.01	62.15	7.54

Tabular Data B-1.71.

Table 22 Ne(${}^{3}P_{0,2}$)+Ar \rightarrow Total Ionization (Ratio: 5:1 of ${}^{3}P_{2}$. ${}^{3}P_{0}$)

E(eV)	σ(⁸²)	E(eV)	σ(²)
0.0085	49.29	1.1996	21.37
0.0103 0.0122	47.29 45.65	1.5769 2.1366	20.55
0.0147	43.80	2.9011	19.18
0.0170 0.0203	42.01 40.80	4.0041 5.1168	18.05 17.22
0.0251	38.99	7.0760	16.30
0.0303 0.0378	37.64 36.27	9.2087	15.52
0.0476	34.73	11.8399 14.6768	14.72
0.0585	33.40	19.6913	13.26
0.0724	32.51 31.52	26.0485 35.4468	12.35 11.57
0.1139	30.37	47.9488	10.69
0.1444	29.09 27.86	62.7992 91.5767	9.75 8.69
0.2344	27.13	128.4913	7.85
0.3062 0.3897	26.20 25.10	167.5973 223.5452	7.22 6.57
0.5133	24.14	292.7673	6.03
0.6998 0.9015	23.23	370.4369 456.5480	5.58 5.15
0.7013	22.00	470.740	2.12

Tabular Data B-1.73.

Table 23 Ar			
E(meV)	σ(Å ²)	E(meV)	σ(²)
26.0 27.7 29.3 30.9 33.2 35.6 38.1 40.3 42.7 45.9 49.2 52.6 57.3 62.4 66.8	0.63 1.26 1.90 2.49 3.12 3.74 4.35 4.90 5.41 5.93 6.72 7.12 7.51 7.82 8.14	77.5 81.3 87.4 93.9 101.0 107.5 114.2 119.6 126.0 132.1 139.4 146.0 151.8 160.7 165.5 170.4	8.45 8.69 8.99 9.20 9.43 9.62 9.94 10.07 10.18 10.44 10.51 10.64 10.68 10.72

Tabular Data B-1.75.

Table 24 Ne⁺⁺+Kr → Kr⁺⁺ (Production)

E(eV)	σ(β ²)	E(eV)	σ(A ²)
9.58	7.88	33.90	2.14
1.09	6.60	38.09	2.13
1.70	5.44	39.98	2.12
2.37	4.64	42.12	2.10
3.03	3.87	44.92	2.08
4.09	3.23	47.55	2.07
5.82 7.53	2.70 2.42	50.18 53.31	2.07
9.89	2.28	55.96	2.05 2.03
13.01	2.26	59.17	2.03
15.89	2.23	61.80	2.00
18.77	2.21	64.43	2.00
21.18	2.21	66.38	1.99
23.87	2.18	69.56	1.97
26.69	2.18	72.00	1.96
28.83	2.17	74.17	1.95
31.49	2.15	76.44	1.94

Tabular Data B-1.77.

Table 25 Kr ++ Ne + Kr (Production)

Table 25					
E(eV)	σ(Å ²)	E(eV)	σ(Å ²)		
9.40 9.53 9.74 9.98 1.80 1.80 1.80 2.74 4.96 5.51 7.21	10.86 9.61 8.69 8.03 7.71 7.64 7.59 7.56 7.56 7.57 7.42 7.41 7.40 7.37	7.83 8.37 8.76 9.43 9.90 10.35 10.99 11.55 11.96 12.43 13.52 14.39 14.84 15.24	7.37 7.36 7.31 7.34 7.30 7.25 7.21 7.18 7.19 7.16 7.14 7.15 7.14 7.14		

Tabular Data B-1.79.

Table 26 $Kr^{++}+Ne \rightarrow Ne^{+}(Production)$

E(eV)	σ(Å ²)	E(eV)	σ(²)
0.23	18.44	5.56	1.67
0.28	13.18	5.97	1.69
0.34	9.83	6.40	1.73
0.49	8.12 6.68	7.10 7.69	1.79
9.61	5.69	8.29	1.91
0.72	4.89	8.72	1.92
0.93	4.03	9.21	1.97
1.12	3.29	9.69	2.01
1.32	2.80 2.44	10.20	2.05
1.86	2.11	10.78 11.24	2.15
2.22	1.89	11.69	2.20
2.71	1.74	12.14	2.26
3.22	1.67	12.59	2.27
3.79	1.63	13.02	2.33
4.57	1.62 1.65	13.58	2.37
5.07	1.63		

Graphical Data B-1.81.

Graphical Data B-1.82.

Tabular Data B-1.83.

Ne+F₂ + F+F+Ne

T(OK)	$Log k(cm^3mole^{-1}S^{-1})$	
2670	10.146	
2645	10.146	
2645	10.230	
2575	10.114	
2460	10.079	
2355	9.929	
2145	9.756	
2090	9.491	
2040	9.663	
1802	9.12	
1770	8.77	
1695	8.49	
1653	8.63	
1631	8.39	
1567	8.21	
1522	8.19	
1422	7.84	

C1+C1+C1₂ + 2C1₂

T(OK)	Log k(cm ⁶ mole ⁻² sec ⁻¹	
195	16.90 ± 0.10	
298	16.30 ± 0.04	
361	16.06 ± 0.05	
474	15.85 ± 0.09	
490	15.81 ± 0.11	

Ar+C1+C1 + C12+Ar

T(OK)	$\log k(cm^6mole^{-2}sec^{-1})$	
1738	14.33	
1794	14.28	
1860	14.26	
1964	14.16	
2061	14.09	
2217	14.08	
2324	14.00	
2475	13.99	

Tabular Data B-1.84.

$$Br_2(B^3 \pi_{ou}^+) + Br_2 \rightarrow Quenching$$

Source of Excitation (Å)	States Excited V	Quenching Cross Section (^{Q2})
6260	1,3,5	56 ± 16
6140	3,6,7	58 ± 8
6025	5,7,9	77 ± 4
5970	6,8,10	116 ± 21
5874	9,11,13	72 ± 7
5738	11,13,16	115 ± 11
5615	14,17,19	73 ± 7
5496	17,20,23	97 ± 46
5411	20,23,27	167 ± 40
5325	23,27,30	47 ± 13
5225	27,31	137 ± 13
5221	27 ∿ 31	81 ± 7
5131	31 ∿ 40	162 ± 35

 $Br_2+Br_2 \rightarrow 2Br+Br_2$

T(OK)	k(cm ³ mole ⁻¹ sec ⁻¹)
1010	1.7x10 ⁷
1050	2.1x10 ²
1100	1.8x10 ²
1220	4.6x10 ²
1240	9.7x107
1245	4.8x10°
1320	1.5x108
1370	3.0x108
1390	4.5x108
1425	3.2x10°
1445	2.9x10°
1550	6.4x108
1610	1.3x10 ⁹

Tabular Data B-1.85.

Ar+Br₂ + Br+Br+Ar

T(OK)	k(cm ³ mole ⁻¹ sec ⁻¹)	
1310	9.7x10 ⁷	
1330	8.1x10°	
1380	2.9x10 ⁸	
1425	9.7x10°	
1520	3.7x10°	
1580	5 0x10	
1750	1.7x109 1.3x109	
1840	1.3x10 ⁹	
1840	7.2x10 ⁹	
1965	5.3x10g	
2050	7.2x109 5.3x109 6.5x109 6.5x1010	
2080	6.5x10 ₁₀	
2225	1.2x10 ¹⁰	

Tabular Data B-1.86.

Three-body recombination rates α (cm 3 sec $^{-1}$) for the processes X^+ + F^- + X + XF^+ + X, (X=He, Ne, Ar, Kr, Xe) as a function of gas-density N at 300 K.

N/N_L^{\dagger}	He	Ñе	Ar	Kr	Χε (10 ⁻⁶
0.1	.390	.354	.554	.647	.743
0.2	.753	.673	1.018	1.164	1.311
0.4	1.413	1.233	1.755	1.922	2.076
0.6	2.004	1.708	2.289	2.388	2.457
0.8	2.540	2.112	2.658	2.631	2.575
1.0	3.029	2.454	2.891	2.715	2.538
1.2	3.478	2.741	3.019	2.697	2.422
1.4	3.891	2.977	3.066	2.618	2.274
1.6	4.270	3.168	3.056	2.507	2.119
1.8	4.618	3.318	3.007	2.383	1.970
2.0	4.936	3.431	2.932	2.255	1.831
2.2	5.226	3.513	2.842	2.131	1.705
2.4	5.490	3.568	2.743	2.013	1.591
2.6	5.727	3.599	2.641	1.902	1.489
2.8	5.941	3.611	2.539	1.799	1.397
3.0	6.131	3.606	2.438	1.705	1.315
4	6.774	3.424	1.996	1.335	1.009
5	7.015	3.128	1.664	1.087	.814
6	6.989	2.824	1.416	.914	.681
7	6.799	2.546	1.228	.787	.584
8	6.522	2.303	1.082	.690	.512
9	6.205	2.094	.966	.614	.455
10	5.877	1.915	.872	.553	.410
20	3.478	1.001	.439	.277	.205
30	2.378	.671	.293	.185	.137
40	1.795	.504	.220	.139	.102
50	1.439	.403	.176	.111	.082

 $^{^{\}dagger}N_{L}$ is Loschmidt's number (2.60 x 10^{19} cm⁻³)

Tabular Data B-1.88.

Three-body recombination rates α (10⁻⁶ cm³ sec⁻¹) for the processes $X_2^+ + F^- + X + [X_2F]^{\pm} + X$, (X = He,Ne,Ar,Kr,Xe) as a function of gas-density N at 300 K

n/n _L *	Не	Ne	Ar	Kr	Xe
0.1	0.251	0.279	0.524	0.591	0.711
0.2	0.486	0.533	0.962	1.068	1.258
0.4	0.918	0.984	1.658	1.787	2.012
0.6	1.309	1.373	2.169	2.259	2.419
0.8	1.669	1.712	2.532	2.539	2.578
1.0	2.002	2.007	2.774	2.674	2.580
1.2	2.312	2.264	2.919	2.706	2.496
1.4	2.602	2.486	2.989	2.671	2.370
1.6	2.875	2.677	3.003	2.595	2.230
1.8	3.131	2.838	2.977	2.497	2.088
2.0	3.373	2.973	2.924	2.388	1.953
2.2	3.600	3.084	2.852	2.277	1.828
2.4	3.813	3.173	2.769	2.166	1.713
2.6	4.014	3.243	2.680	2.060	1.608
2.8	4.202	3.295	2.588	1.959	1.513
3.0	4.378	3.332	2.496	1.865	1.427
3.5	4.767	3.369	2.274	1.655	1.246
4.0	5.090	3.347	2.074	1.481	1,103
4.5	5.351	3.285	1.897	1.336	0.987
5	5.556	3.198	1.743	1.215	0.892
6	5.822	2.986	1.491	1.025	0.748
7	5.930	2.760	1.297	0.885	0.643
8	5.924	2.545	1.146	0.777	0.563
9	5.836	2.347	1.024	0.692	0.501
10	5.695	2.170	0.925	0.624	0.451
20	3.854	1.179	0.467	0.313	0.226
30	2.717	0.794	0.311	0.209	0.105
40	2.070	0.597	0.234	0.156	0.113
50	1.665	0.478	0.187	0.125	0.090

 $^{^{}a}N_{L}$ is Loschmidt's number (2.69 10^{-19} cm $^{-3}$), the number density at STP.

B-1 REFERENCES

- 1. W. Hunter and T. Leinhardt, J. Chem. Phys. 58, 941 (1973).
- 2. H.F. Wellenstein and W.W. Robertson, J. Chem. Phys. <u>56</u>, 1411 (1972).
- 3. H.F. Wellenstein and W.W. Robertson, J. Chem. Phys. <u>56</u>, 1072 (1972)
- 4. H.F. Wellenstein and W.W. Robertson, J. Chem. Phys. <u>56</u>, 1077 (1972).
- F. Robben, Phys. Rev. A <u>5</u>, 1516 (1972).
- 6. R.L. Abrams and G.J. Wolga, Phys. Rev. Lett. 19, 1411 (1967).
- 7. J. Bakos and J. Szigeti, J. Phys. B 1, 115 (1968).
- 8. M.H. Prior and E.C. Wang, Phys. Rev. A 9 2383 (1974).
- 9. E. Lipworth and R. Novick, Phys. Rev. 108, 1434 (1957).
- 10. L.D. Schearer, Phys. Rev. 160, 76 (1967).
- 11. P. Miller, J. Verdeyen, and B. Cherrington, Phys. Rev. A. 4, 692 (1971).
- 12. W.B. Hurt, J. Chem. Phys. 45, 2713 (1966).
- 13. F. Colegrove, L. Schearer, G. Walters, Phys. Rev. 135, 353 (1964).
- R. Olson, R. Morgenstern, D. Lorents, J. Browne, and L. Lenamon, Phys. Rev. A <u>8</u>, 2387 (1973).
- 15. E. Rothe, R. Neynaber, S. Trujillo, J. Chem. Phys. <u>42</u>, 3310 (1965).
- 16. A.V. Phelps, Phys. Rev. 99, 1307 (1955).
- 17. P. Mahadevan and G. Magnuson, Phys. Rev. 171, 103 (1968).
- 18. S. Kubota, C. Davies, and T. King, Phys. Rev. A 11, 1200 (1975).
- 19. R.H. Neynaber and G.D. Magnuson, Phys. Rev. A 12, 891 (1975).
- 20. C. Jones, F. Niles, and W. Robertson, J. Applied Phys. 40, 3967 (1969).
- 21. Lindinger, Schmeltekopf, and Fehsenfeld, J. Chem. Phys. 61, 2890 (1974).
- 22. R. Johnsen, M. Leu, and M. Biondi, Phys. Rev. A 8, 1808 (1973).
- 23. R. Arrathoon and D. Sealer, Phys. Rev. A 4, 815 (1971).
- 24. L.D. Schearer, Phys. Rev. <u>188</u>, 505 (1969).

- 25. J.H. Parks and A. Javan, Phys. Rev. 139, 1351 (1965).
- 26. E. Rothe and R. Neynaber, J. Chem. Phys. 42, 3306 (1965).
- 27. F. Pirani and F. Vecchiocattivi, J. Chem. Phys. 66, 372 (1977).
- 28. W. Cramer and J. Simons, J. Chem. Phys. 26, 1272 (1957).
- W.P. West, T.B. Cook, F.B. Dunning, R.D. Rundel, and R.F. Stebbings, J. Chem. Phys. <u>63</u>, 1237 (1975).
- 30. J.B. Hasted, J. App. Phys. 30, 22 (1959).
- 31. E. Rothe, R. Neynaber, and S. Trujillo, J. Chem. Phys. 42, 3310 (1965).
- 32. W. Sholette and E. Muschlitz, J. Chem. Phys. 36, 3368 (1962).
- 33. E.E. Benton, E.E. Ferguson, F.A. Matsen, and W.W. Robertson, Phys. Rev. 128, 206 (1962).
- 34. F.W. Lee, C.B. Collins, and R.A. Waller, J. Chem. Phys. 65, 1605 (1976).
- 35. D. Bohme, N. Adams, M. Mosesman, D. Dunkin, and E. Ferguson, J. Chem. Phys. 52, 5094 (1970).
- 36. R. Shuker, Y. Binur, and A. Szoke, Phys. Rev. A 12, 515 (1975).
- 37. G. Veatch, H. Oskam, Phys. Rev. A2, 1422 (1970).
- 38. J.B. Hasted, J. App. Phys. 30, 22 (1959).
- 39. Y. Kaneko, N. Kobayashi, and I. Kanomata, J. Phys. Soc. Japan 27, 992(1969).
- 40. R.W. Landorf and C.R. Mueller, Phys. Lett. 19, 658 (1966).
- 41. Y. Kaneko, L. Megill, and J. Hasted, J. Chem. Phys. 45, 3741 (1966).
- 42. W.B. Maier II, J. Chem. Phys. <u>60</u>, 3588 (1974).
- 43. Zamir, Szoke, and Osgood, J. Chem. Phys. <u>65</u>, 4885 (1976).
- 44. E. Ellis and N.D. Twiddy, J. Phys. B. 2, 1376 (1969).
- 45. E. Ellis and N.D. Twiddy, J. Phys. B 2, 1376 (1969).
- 46. T.I. McLaren, and R.M. Hobson, Phys. of Fluids 11, 2162 (1968).
- 47. W.F. Liu and D.C. Conway, J. Chem. Phys. <u>62</u>, 3070 (1975).
- 48. B. Baratz and R.P. Andres, J. Chem. Phys. <u>52</u>, 6145 (1970).

- 49. D.H. Winicur, J.L. Fraites, and J. Bently, J. Chem. Phys. 64, 1724 (1976).
- 50. L.G. Piper, D.W. Setser, and M.A.A. Clyne, J. Chem. Phys. 63, 5018 (1975).
- 51. A. Gedanken, Jortner, B. Raz, and A. Szoke, J. Chem. Phys. 57, 3456(1972).
- 52. R. Gleason, T. Bonifield, J. Keto, and G. Walters, J. Chem. Phys. <u>66</u>, 1589 (1977).
- 53. E. Rothe, L. Marino, R. Neynaber, P. Rol, and S. Trujillo, Phys. Rev. <u>126</u>, 598 (1962).
- 54. D. Landman and R. Dobrin, Phys. Rev. A 8, 1868 (1973).
- 55. D. Smith and R. Turner, Can. J. Phys. 41, 1949 (1963).
- 56. R. Ku, J. Verdeyen, and J. Eden and B. Cherrington, Phys. Rev. A 8, 3123 (1973)
- 57. N. Kobayashi and Y. Kaneko, J. Phys. Soc. Japan 34, 496 (1973).
- 58. R. Neynaber and G. Magnuson, Phys. Rev. A 11, 865 (1975).
- 59. J. Phys. B 9, L211 (1976).
- 60. D. Hacker and H. Bloomberg, J. Chem. Phys. 39, 3263 (1963).
- 61. L. Squires and T. Baer, J. Chem. Phys. 65, 4001 (1976).
- 62. A. Johnson and J. Gerardo, J. Chem. Phys. 59, 1738 (1973).
- 63. O. Cheshnovsky, B. Raz, and J. Jortner, J. Chem. Phys. 59, 3301 (1973).
- 64. P. Kebarle, R. Haynes, S. Searles, J. Chem. Phys. <u>47</u>, 1684 (1967).
- 65. R. Turner and H. Riccius, J. Chem. Phys. 48, 4351 (1968).
- 66. B. Mahan, J. Chem. Phys. 43, 3080 (1965).
- 67. K. Ludlum, L. Larson, and J. Caffrey, J. Chem. Phys. 46, 127 (1967).
- 68. C. Collins and B. Johnson, J. Chem. Phys. 57, 5317 (1972).
- F.W. Lee, G.B. Collins, and R.A. Waller, J. Chem. Phys. <u>65</u>, 1605 (1976).
- 70. A. Vitols, H. Oskam, Phys. Rev. A 5, 2618 (1972).
- 71. J.L. Franklin, <u>Ion Molecule Reactions</u>, Vol. 1, P. 328 (Plenum Press, New York, (1972).
- 72. J. Rice and A. Johnson, J. Chem. Phys. <u>63</u>, 5235 (1975).
- 73. C. Tracy and H. Oskam, J. Chem. Phys. <u>65</u>, 3387 (1976).

- 74. J.B. Hasted, <u>Physics of Atomic Collisions</u>, Second Edition, p. 683 (American Elsevier Publishing Co., Inc. New York, 1972).
- 75. D.A. MacLennan, Phys. Rev. 148 218 (1966)
- 76. W.P. Sholette and E.E. Muschlitz, Jr., J. Chem. Phys. 36 3368 (1962).
- 77. R. Arrathoon, J. Chem. Phys. 60 1187 (1974).
- 78. J.L. Franklin, Ion Molecule Reactions, Vol. 2, p. 630 (Plenum Press, New York, 1972)
- Int. Conf. on Phenomena in Ionized Gases, Eds. G. Nusa, I. Ghico, A. Popescu, L. Nastase, p. 27 (1969).
- 80. A.V. Phelps and J.P. Molnar Phys. Rev., 89, 1202 (1953).
- 81. M.A. Biondi, Phys. Rev. 88 660 (1952).
- 82. T.G. Schut and J.A. Smit, Physica 10, 440 (1943).
- 83. J.L. Franklin, <u>Ion Molecule Reactions</u>, Vol. 2, p. 610 (Plenum Press, New York, 1972).
- 84. J.L. Franklin, <u>Ion Molecule Reactions</u>, Vol. 1, p. 183 (Plenum Press, New York, 1972).
- 85. H.H. Nakano, R.M. Hill, P.C. Lorents, D.L. Huestis, and M.V. McCusker, S.R.I. No. MP76-99, Final Technical Report, New Electronic-Transition Laser Systems, Part I, Contract DAAHO1-74-C-0524, December 1976.
- 86. G. Bekefi, <u>Principles of Laser Plasmas</u>, p. 385 (John Wiley and Sons, New York, 1976).
- 87. H.S.W. Massey, E.H.S. Burhop and H.B. Gilbody, <u>Electronic and Ionic Impact Phenomena</u>, Vol. III, Second Edition, p. 1413 (Oxford University Press, 1971).
- 88. H.S.W. Massey, E.H.S. Burhop and H.B. Gilbody, <u>Electronic and Ionic Impact Phenomena</u>, Vol. III, Second Edition, P. 1799 (Oxford University Press, 1971).
- 89. H.S.W. Massey, E.H. Burhop and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol. III, Second Edition, p. 1793 (Oxford University Press, 1971).
- 90. H.S. W. Massey, E.H.S. Burhop and H.B. Gilbody, <u>Electronic and Ionic Impact Phenomena</u>, Vol. III, Second Edition, P. 1414 (Oxford University Press, 1971).
- 91. R.L. Champion and L.D. Doverspike, Phys. Rev. A 13, 609 (1976).
- 92. A. Mandl, B. Kivel and E.W. Evans, J. Chem. Phys. 53 2363 (1970).
- 93. A. Mandl, J. Chem. Phys. <u>64</u> 903 (1976).

- 94. R.J. Santoro, G.J. Diebold and G.J. Goldsmith, J. Chem. Phys. 67 881 (1977).
- 95. A.C. Lloyd, Int. J. Chem. Kinetics 3 39 (1971).
- L.A. Gundel, D.W. Selser, M.A.A. Clyne, J.A. Coxon and W. Nip, J. Chem. Phys. <u>64</u> 4390 (1976).
- 97. H.B. Palmer and D.F. Hornig, J. Chem. Physics 26 98 (1957).
- 98. A.P. Modica and S.J. Sillers, J. Chem. Phys., 48 3283 (1968).
- 99. M. Bourene and J. Le Calve, J. Chem. Phys., 58 1452 (1973).
- 100. L.W. Bader and E.A. Ogryzlo, Nature 201 491 (1964).
- 101. J.K.K. Ip and George Burns, J. Chem. Phys. 51 3414 (1969).
- 102. J.K.K. Ip and George Burns. J. Chem. Phys. <u>56</u> 3155 (1972).
- 103. F. Britton, N. Davidson, W. Gehman and G. Schott, J. Chem. Phys. 25 804 (1956).
- M.I. Christie, A. J. Harrison, R.G.W. Norrish and G. Porter, Proc. Royal Society of London, 231 446 (1955).
- 105. A. E. Lloyd, Int. J. Chem. Kinetics, 3 41 (1971).
- 106. R.G. Macdonald and George Burns, J. Chem. Phys. 66 3598 (1977).
- 107. G.D. Sides, T.O. Tiernan, R.J. Hanraham, J. Chem. Phys. 65 1966 (1976).
- 108. S.K. Chang, A.G. Clarke, and G. Burns, J. Chem. Phys. <u>54</u> 1835 (1971).
- 109. M.A.A. Clyne and H.W. Cruse, J. Chem. Soc. F. II 68 1377 (1972).
- 110. L.W. Stratton and M. Kaufman J. Chem. Phys., 66 4963 (1977).
- 111. A.N. Schweid and J.I. Steinfeld, J. Chem. Phys. 58 844 (1973).
- 112. E.A. Fletcher and B.E. Dahneke J. Am. Chem. Soc. 91 1603 (1969).
- 113. B.M. Hughes, C. Lifshitz and T.O. Tiernan J. Chem. Phys., 59 3162 (1973).
- 114. A.C. Lloyd, Int. J. Chem. Kinetics 3 41 (1971).
- 115. R.G. Macdonald, G. Burns and R.K. Boyd, J.Chem. Phys. <u>66</u> 3598 (1977).
- 116. Frank K. Truby, Phys. Rev. A 4 114 (1971).

- 117. R. Johnsen, University of Pittsburgh 1977, (Private communication).
- 118. R.B. Kurzel and J.I. Steinfeld, J. Chem. Phys. 53 3293 (1970).
- 119. D.H. Burde and R.A. McFarlane, J. Chem. Phys. 64 1850 (1976).
- 120. T.K.Y. Yeung, Proc. Phys. Soc. 71 341 (1957).
- 121. G. Capelle, K. Sakurai, and H.P. Broida, J. Chem. Phys. <u>54</u> 1728 (1971).
- 122. R.C. Bolden, R.S. Hemsworth, M.J. Shaw, and N.D. Twiddy, J. Phys. B <u>3</u> 45 (1970).
- 123. R.S. Hemsworth, R.C. Boden, M.J. Shaw, and N.D. Twiddy, Chem. Phys. Lett. 5 237 (1970).
- 124. H.L. Kramer, J.A. Herce, and E.E. Muschlitz, J. Chem. Phys. <u>56</u> 4166 (1972).
- 125. M.R. Flannery, T.P. Yang, Ionic Recombination of Rare-Gas Atomic Ions X⁺ with F⁻ in a Dense-Gas X (Submitted Applied Physics Letters, 1977).
- 126. M.R. Flannery, T.P. Yang, Ionic Recombination of Rare-Gas Molecular Ions X⁺₂ with F⁻ in a Dense-Gas X (Submitted to Applied Physics Letters, 1978).
- 127. J.E. Velazco, et al., J. Chem. Phys. 65, 3468 (1976).
- 128. C.H. Chen, M.G. Payne and J.P. Judish, private communication.
- 129. H.H. Nakano, et al., Stanford Research Institute Report MP 76-99, Stanford Research Institute, Menlo Park, California 94025, December 1976 (unpublished).
- W. Hughes, 7th Winter Colloquium on High Power Visible Lasers, Park City, Utah, February 16-18, 1977.
- 131. P. Kebarle, et al., J. Chem. Phys. 47, 1684 (1967).
- J. H. Kolts and D. W. Setser, 7th Winter Colloquium on High Power Visible Lasers, Park City, Utah, February 16-18, 1977.
- 133. P.K. Keichner, et al., submitted to Phys. Rev. A.
- 134. C.L. Chen, Phys. Rev. 131, 2250 (1963).
- 135. M. Rokni, et al, Appl. Phys. Lett. 31, 79 (1977).
- 136. J.A. Mangano, et al., 5th Conference on Chemical and Molecular Lasers, St. Louis, Missouri, April 18-20, 1977.

- 137. G.P. Quigley and W.M. Hughes, to be submitted to Appl. Phys. Lett. Lifetime is 9.0 ns.
- 138. H.C. Brashears, et al., 7th Winter Colloquium on High Power Visible Lasers, Park City, Utah, February 16-18, 1977.
- 139. M. Rokni, et al., Appl. Phys. Lett. <u>30</u>, 458 (1977).
- 140. M. Rokni, et al., 7th Winter Colloquium on High Power Visible Lasers, Park City, Utan, February 16-18, 1977.
- 141. V.H. Shui, Appl. Phys. Lett. <u>31</u>, 50 (1976). Lifetime assumed to be 9 ns.
- 142. J.A. Mangano, et al., Appl. Phys. Lett. 31, 28 (1977).

B-2. HIGH ENERGY HEAVY PARTICLE-HEAVY PARTICLE COLLISIONS

General References

- C.F. Barnett, J.A. Ray, E. Ricci, I. Wilker, E.W. McDaniel, E.W. Thomas and H.B. Gilbody, "Atomic Data for Controlled Fusion Research," Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Report ORNL 5206. (Feb., 1977).
- R.C. Dehmel, H.K. Chan, and H.H. Fleishmann, Atomic Data 5, 231 (1973).
- L.W. Muller and F.J. DeHeer Physica 48, 345 (1970).
- E.W. Thomas, Excitation in Heavy Particle Collisions, (Wiley, New York, 1972).

B-2. HIGH ENERGY HEAVY PARTICLE-HEAVY PARTICLE COLLISIONS

CONTENTS

		Page
	H _n /He ^m Collisions	
B-2.1 through B-2.14	Excitation by Heavy Particles	336-49
B-2.15 B-2.16	Electron Capture Cross Sections	350-51
B-2.17 through B-2.32	Ionization and Stripping by Heavy Particles	352-67
B-2.33 B-2.34	Positive-Negative Ion Neutralization Cross Section	368-69
	He ⁿ /He Collisions	
B-2.35 through B-2.38	Excitation by Heavy Particles	370-73
B-2.39 through B-2.42	Electron Capture Cross Section	374-77
B-2.43 through B-2.56	Ionization and Stripping by Heavy Particles	378-91
	H ⁿ /Ne, Ar Collisions	
B-2.57 B-2.58	Excitation by Heavy Particles	392-93
B-2.59 through B-2.62	Electron Capture Cross Sections	394-97
B-2.63 B-2.64	Ionization and Stripping by Heavy Particles (see also B-2.27)	398-99
B-2.65 through B-2.69	H ⁿ /Kr Collisions	401-05

		Page
B-2.70 through B-2.73	H ⁿ /Xe Collisions	406-09
B-2.74 through B-2.80	He ⁿ /Kr Collisions	410-16
B-2.78 through B-2.82		414-18
B-2.83 B-2.84	H, He/ halogens and halogen compounds	419-20
B-2.85 through B-2.90	He ⁺ / noble → photon production	421-26
B-2.91	He +/He plus impurities-effect of impurities on ionization	427

 ${\rm H}^{\rm n}$, ${\rm He}^{\rm m}/{\rm He}$, Ne, Ar Collisions

Tables and the corresponding graphs for hydrogen and helium ions and atoms incident on helium, neon, and $\mathop{\rm argon}\nolimits$

Tabular Data B-2.1.

Excitation Cross Sections for the Reactions H° + $He \rightarrow H^{\circ}$ + He ($4^{1}S$, $4^{1}P$, $4^{3}S$, $4^{3}P$)

Energy (keV)	Cross Sections for Excited States nl (cm ²)						
	<u>4¹S</u>	<u>4¹P</u>	4 ³ s	43 _P			
1.0 E 01 1.5 E 01 2.0 E 01 2.5 E 01 3.0 E 01 3.5 E 01	1.30 E-19 1.63 E-19 1.85 E-19 1.96 E-19 1.82 E-19 1.58 E-19	2.60 E-20 7.90 E-20 1.25 E-19 1.47 E-19 1.86 E-19 2.12 E-19	1.50 E-19 3.32 E-19 4.07 E-19 3.88 E-19 3.43 E-19 3.13 E-19	3.64 E-19 4.71 E-19 3.68 E-19 2.50 E-19 1.71 E-19 1.25 E-19			

References:

J. Van Eck, F. J. de Heer, and J. Kistemaker, Physica 30, 1171 (1964), as revised by J. Van den Bos; (private communication from F. J. de Heer).

Notes:

Some data above 75 keV impact energy have been taken for D^+ impact. These indicate that D^+ behaves the same as H^+ ions of the same energy.

Excitation Cross Sections for the Reactions H° + $He \rightarrow H^{\circ}$ + $He (4^{1}S, 4^{1}P, 4^{3}S, 4^{3}P)$

Graphical Data B-2.2.

Tabular Data B-2.3.

Excitation Cross Sections for Reactions

 $H^- + He \rightarrow H(2s,2p) + He + e$

Energy (keV)	Cross Sections (cm	
	2 p	28
5.0 E 00		2.80 E-17
6.0 E 00	5.44 E-17	2.74 E-17
7.0 E 00	5.12 E-17	2.68 E-17
8.0 E 00	4.80 E-17	2.64 E-17
9.0 E 00	4.36 E-17	2.62 E-17
1.0 E 01	4.00 E-17	2.57 E-17
1.5 E 01	3.14 E-17	2.45 E-17
2.0 E 01	2.87 E-17	2.36 E-17
2.5 E 01	2.68 E-17	2.28 E-17
3.0 E 01	2.57 E-17	2.24 E-17
3.5 E 01	2.52 E-17	2.16 E-17
3.8 E 01	2.52 E-17	2.14 E-17

Reference:

A. L. Orbeli, E. P. Andreev, V. A. Ankudinov, and V. M. Dukel'ski, Soviet Phys.-JETP 31, 1044 (1970).

Notes:

These cross sections are for emission of Lyman-alpha radiation and were quoted as equal to the level excitation cross sections on the (unsubstantiated) assumption that cascade could be neglected.

Accuracy:

Systematic error < 40%. Random error < 15%.

Excitation Cross Sections for Reactions

339

Tabular Data B-2.5.
Excitation Cross Sections for the Reactions

H + He + H(2s, 3s, 2p, 3p, 3d)) +	He
--------------------------------	-----	----

Energy (keV)	Cro	ss Sections for State (cm²)	n£
	3s	3p	3d
1.0 E 01	1.3 E-18		1.2 E-18
1.5 E 01	1.0 E-18	1.0 E-18	8.8 E-19
2.0 E 01	9.2 E-19	9.7 E-19	5.5 E-19
3.0 E 01	7.8 E-19	7.8 E-19	4.2 E-19
3.5 E 01	8.2 E-19	8.0 E-19	4.6 E-19
	_2s	20	
1.0 E 00	5.2 E-18	5.4 E-17	
2.0 E 00	7.3 E-18	4.6 E-17	
5.0 E 00	7.7 E-18	3.3 E-17	
7.0 E 00	7.0 E-18	2.6 E-17	
1.0 E 01	5.5 E-18	2.0 E-17	
2.0 E 01	4.4 E-18	1.0 E-17	
5.0 E 01	3.5 E-18	4.8 E-18	
7.0 E 01	2.8 E-18	4.5 E-18	
1.0 E 02	2.1 E-18	4.3 E-18	
2.0 E 02	1.4 E-18	3.2 E-18	
5.0 E 02	7.4 E-19	2.1 E-18	
7.0 E 02	5.2 E-19	1.7 E-18	
1.0 E 03	3.7 E-19	1.3 E-18	

H + He + H(2s) + He: E.W. Thomas and I. Sauers, Eighth International Conference on the Physics of Electronic & Atomic Collisions: Abstract of Papers, p.166, Beograde Institute of Physics Publishing Co. Beograd (1973). R.H. Hughes and Song-Sik Choe Phys. Rev. A $\underline{5}$, 1758 (1972). H. Levy, Phys. Rev. $\underline{185}$, 7 (1969).

H + He + H(3s,3p,3d) + He: R.H. Hughes, H.M. Petefish, and H. Kisner, Phys. Rev. A 5, 2103 (1972).

H + He + H(2p) + He: R.H. Hughes and Song-Sik Choe, Phys. Rev. A 5, 656 (1972). J.H. Birely and R.J. McNeal, Phys. Rev. A 5, 257 (1972). H. Levy, Phys. Rev. 185, 7 (1969).

Notes:

For H(2s) and H(2p) formation, we have used a theoretical calculation by Levy at energies of 100 keV and greater.

Accuracy:

Systematic error < 50%. Random error < 10%.

Excitation Cross Sections for the Reactions

$$H + He \rightarrow H(2s, 3s, 2p, 3p, 3d) + He$$

Graphical Data B-2.6.

Tabular Data B-2.7.

Excitation Cross Sections by Electron Capture for the Reactions $H^{+} + He \rightarrow H(2p,3p,3d) + He^{+}$

Energy (keV)	Cross Sec	tions for Excited S	tate nl
	<u>2p</u>	<u>3p</u>	<u>3a</u>
2.5 E-01	4.7 E-19		
3.0 E-01	4.6 E-19		
5.0 E-01	4.8 E-19		
7.0 E-01	5.2 E-19		
1.0 E 00	6.2 E-19		
1.5 E 00	7.8 E-19		
2.0 E Q0	9.3 E-19		
3.0 E 00	1.2 E-18		
4.0 E 00	1.4 E-18		
5.0 E 00	1.6 E-18		
6.0 Z 00	1.7 E-18		
7.0 E 00	1.9 E-18		
8.0 E 00	2.1 E-18		
9.0 E 00	2.2 E-18		
1.0 E 31	2.4 E-18	3.6 E-19	1.3 E-1
1.5 E 01	3.2 E-18	4.5 E-19	1.9 E-1
2.0 E 01	3.6 E-18	6.0 E-19	1.9 E-1
3.0 E 01	3.3 E-18	7.0 E-19	1.6 E-1
4.0 E 01	2.5 E-18	4.7 E-19	1.2 E-1
5.0 E 01	1.7 E-18	2.6 E-19	1.0 E-1
6.0 E 01	1.3 E-18	1.7 E-19	8.0 E-2
7.0 E 01	1.0 E-18	1.0 E-19	6.5 E-2
8.0 E 01	7.9 E-19	7.0 E-20	5.2 E-2
9.0 E 01	6.4 E-19	5.0 E-20	4.2 E-2
1.0 E 02	5.4 E-19	3.7 E-20	3.7 E-2
1.5 E 02	2.8 E-19	9.4 E-21	
2.0 E 02		3.0 E-21	
3.0 E 02		3.4 E-22	

H⁺ + He + H(2p) + He⁺: p. Pretzer, B. Van Zyl, and R. Geballe, Proceedings of the Third International Conference on the Physics of Electronic and Atomic Collisions: Abstract of Papers, p.618, North Holland Publishing Co., Amsterdam (1963).

 H^+ + He + H(3p) + He⁺: R.H. Hughes, C.A. Stigers, B.M. Doughty, and E.D. Stokes, Phys. Rev. A 1, 1424 (1970); J.C. Ford and E.W. Thomas, Phys. Rev. A 5, 1694 (1972) (normalized to work of Hughes et al.).

 H^+ + He + H(3d) + He⁺: R.H. Hughes, C.A. Stigers, B.M. Doughty, and E.D. Stokes, Phys. Rev. A $\underline{1}$, 1424 (1970).

Notes

In all cases these cross sections have been deduced on the (unsubstantiated) assumption that cascade into the relevant levels can be neglected.

Accuracy:

Systematic error < 50%. Random error < 15%.

Excitation Cross Sections by Electron Capture for the Reactions H^+ + He \rightarrow H(2p,3p,3d) + He⁺

Graphical Data B-2.8.

Tabular Data B-2.9.
Excitation Cross Sections by Electron Capture for the Reactions

4									1
H'	+	He	+	H(25	.3s	,4s)	+	He

Energy (keV)	Cross Se	ctions for Excited S (cm ²)	tate nl
	<u>2s</u>	<u>3s</u>	45
4.0 E 00 5.0 E 00 6.0 E 00 7.0 E 00 8.0 E 00 9.0 E 00 1.0 E 01 1.5 E 01 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01	6.5 E-20 1.5 E-19 2.7 E-19 4.2 E-19 5.4 E-19 6.1 E-19 6.7 E-19 9.2 E-19 1.6 E-18 4.7 E-18 7.4 E-18 8.0 E-18 7.0 E-18 6.0 E-18	1.6 E-19 2.3 E-19 2.8 E-19 3.3 E-19 3.7 E-19 4.0 E-19 6.2 E-19 8.0 E-19 1.4 E-18 1.8 E-18 1.7 E-18 1.4 E-18 1.2 E-18	4.1 E-20 5.0 E-20 6.1 E-20 7.2 E-20 8.3 E-20 9.3 E-20 1.4 E-19 2.0 E-19 3.4 E-19 5.6 E-19 6.8 E-19
7.0 E 01 8.0 E 01 9.0 E 01 1.0 E 02 1.5 E 02 2.0 E 02 3.0 E 02 4.0 E 02 5.0 E 02 6.0 E 02 7.0 E 02	4.8 E-18 4.0 E-18 3.2 E-18 1.3 E-18 5.6 E-19	1.2 E-16 1.1 E-18 9.0 E-19 8.0 E-19 3.8 E-19 1.6 E-19 3.5 E-20 1.0 E-20 5.4 E-21 3.0 E-21 1.9 E-21	6.1 E-19 5.0 E-19 3.9 E-19 3.0 E-19

H⁺ + He + H(2s) + He⁺: R.H. Hughes, E.D. Stokes, Song-Sik Choe, and T.J. King, Phys. Rev. A <u>4</u>, 1453 (1971); R.L. Fitzwilson and E.W. Thomas, Phys. Rev. A <u>3</u>, 1305 (1971) (normalized to Hughes et al.); G. Ryding, A.B. Wittkower, and H.B. Gilbody, Proc. Phys. Soc., London <u>89</u>, 547 (1966).

 H^+ + He + H(3s) + He⁺: R.H. Hughes, C.A. Stigers, B.M. Doughty, and E.D. Stokes, Phys. Rev. A <u>1</u>, 1424 (1970); R.J. Conrads, T.W. Nichols, J.C. Ford, and E.W. Thomas, Phys. Rev. <u>7</u>, 1928 (1973).

 H^+ + He + H(4s) + He $^+$: R.H. Hughes, H.R. Dawson, and B.M. Doughty, Phys. Rev. <u>164</u>, 166 (1967).

Notes

In all cases the cross sections have been deduced on the (unsubstantiated) assumption that cascade into relevant levels can be neglected.

Accuracy:

Systematic error < 50%. Random error < 15%.

Excitation Cross Sections by Electron Capture for the Reactions H^+ + He + H(2s,3s,4s) + He $^+$

Graphical Data B-2.10.

Tabular Data B-2.11.

Excitation Cross Sections for the Reactions $H^+ + He \rightarrow H^+ + He (4^1S, 4^1P, 4^1D)$

Energy (keV)	Cross Se	ctions for Excited S (cm²)	tates nl
	<u>4¹s</u>	<u>4¹P</u>	<u>4¹D</u>
1.0 E 00 2.0 E 00 3.0 E 00 4.0 E 00 5.0 E 00 7.0 E 01 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01 1.0 E 02 2.0 E 02 3.0 E 02 4.0 E 02 5.0 E 02 7.0 E 02	2.8 E-22 1.2 E-21 2.0 E-21 2.2 E-21 4.6 E-21 3.9 E-20 8.6 E-20 1.6 E-19 4.1 E-19 4.8 E-19 4.8 E-19 4.4 E-19 3.4 E-19 1.8 E-19 1.8 E-19 1.2 E-19 8.8 E-20 7.0 E-20 5.0 E-20	1.2 E-19 3.2 E-19 3.7 E-19 4.5 E-19 5.8 E-19 8.0 E-19 9.6 E-19 9.2 E-19 7.3 E-19 6.1 E-19 5.3 E-19 4.3 E-19	2.3 E-21 3.6 E-21 6.9 E-21 1.8 E-20 7.5 E-20 1.4 E-19 1.3 E-19 1.5 E-19 1.5 E-19 1.3 E-19 6.6 E-20 4.3 E-20 3.1 E-20 2.5 E-20 1.8 E-20
1.0 E 03	3.7 E-20	3.3 E-19	1.3 E-20

References:

J. Van den Bos, G. J. Winter, and F. J. de Heer, Physica 40, 357 (1968); A. Scharmann and K. H. Schartner, Z. Physik 228, 254 (1969) (these data were published as relative cross sections only; shown here normalized to the works of Van de Bos, et al. at 140 keV).

Notes:

Excitation of triplet states by proton impact is formally forbidden because electron spin is not conserved. There are no reliable measurements that indicate this rule to be violated.

Accuracy: Systematic error < 9%. Random error < 5%.

Excitation Cross Sections for the Reactions $H^+ + He \rightarrow H^+ + He (4^1S, 4^1P, 4^1D)$

Graphical Data B-2.12.

Tabular Data B-2.13.

Cross Sections for Formation of H Atoms in High Excited States by H^+ Impact on H_2 , He, N_2 , O_2

Energy (keV)	Coefficients $\sigma(n) \times n^3$ (see note 18) (cm ²)					
	H ₂	He	$\frac{N_2}{2}$	02		
1.5 E 01 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01 6.0 E 01 7.0 E 01 8.0 E 01 1.0 E 02 1.5 E 02 1.8 E 02	2.4 E-16 3.3 E-16 3.0 E-16 2.1 E-16 1.4 E-16 9.3 E-17 6.7 E-17 3.5 E-17 9.3 E-18 4.0 E-18	5.0 E-17 8.3 E-17 1.2 E-16 1.1 E-16 8.9 E-17 7.3 E-17 5.7 E-17 4.6 E-17 2.9 E-17	3.2 E-16 3.9 E-16 3.9 E-16 3.6 E-16 3.1 E-16 2.4 E-16 2.0 E-16 1.3 E-16 6.0 E-17	4.2 E-16 5.0 E-16 4.5 E-16 3.7 E-16 3.1 E-16 2.6 E-16 2.3 E-16 1.7 E-16		

References:

 H^+ + (H₂,He) \rightarrow H(n) + (H₂⁺,He⁺): R.N. Il'lin, V.A. Oparin, E.S. Solov'ev, and N.V. Fedorenko, Soviet Phys-JETP Lett. 2, 197 (1965).

 H^+ + $(N_2, O_2) \rightarrow H(n) + (N_2^+, O_2^+)$: R. Le Doucen, J.M. Lenormand, and J. Guidini, Le Journal de Phys. 31, 965 (1970).

Notes:

These data are for formation of all states having a given principal quantum number n. It is known that the cross section $\sigma(n)$ for formation of such a state is proportional to n^{-3} . It is conventional to determine the coefficient $\sigma(n) \times n^3$, and it is this coefficient that is given here.

The data presented here have been measured for states ranging between 10 and 15.

Accuracy:

Systematic error < 10%. Random error < 10%.

Cross Sections for Formation of H Atoms in High Excited States by H^+ Impact on H_2 , He, N_2 , O_2

Graphical Data B-2.14.

Tabular Data B-2.15.

Electron Capture Cross Sections for H⁺ and H°

Passing Through Helium

Energy (keV)	Cross Sections (cm ²)		
	σ10	σ1-1	σ ₀ -1
	H ⁺ +He→H°	H ⁺ +He→H ⁻	H°+He+H-
2.0 E-01	1.5 E-18		
5.0 E-01	2.9 E-18		
1.0 E 00	5.2 E-18	1.6 E-21	
2.0 E 00	1.0 E-17	4.7 E-21	5.4 E-19
5.0 E 00	3.1 E-17	2.3 E-20	2.3 E-18
1.0 E 01	1.0 E-16	1.0 E-19	4.8 E-18
2.0 E 01	2.1 E-16	3.5 E-19	6.6 E-18
5.0 E 01	1.1 E-16	5.0 E-19	4.7 E-18
1.0 E 02	3.0 E-17	3.3 E-20	1.3 E-18
2.0 E 02	3.3 E-18	1.0 E-21	2.3 E-19
5.0 E 02	8.3 E-20		1.0 E-20
1.0 E 03	3.6 E-21		
2.0 E 03	1.1 E-22		
5.0 E 03	8.5 E-25		
1.0 E 04	1.4 E-26		

H⁺+He→H°: V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov. Phys.-Tech. Phys. 14, 109 (1969); S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958); C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958); K. H. Berkner, S. N. Kaplan, G. A. Paulikas, and R. V. Pyle, Phys. Rev. 140, A729 (1965); L. Colli, F. Cristofori, G. E. Frigerio, and P. G. Stone, Phys. Letters 3, 62 (1962); F. J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1766 (1966); J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. (London) 227A, 466 (1954); J. Desesquelles, G. D. Cao, and M. Dufay, Compt. Rend. 262B, 1329 (1966); U. Schryber, Hel. Phy. Act. A40, 1023 (1962); P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956); L. H. Toburen and M. Y. Nakai, Phys. Rev. 177, 191 (1969); L. M. Welsh, K. H. Berkner, S. N. Kaplan, and R. V. Pyle, Phys. Rev. 158, 85 (1967); J. F. Williams, Phys. Rev. 157, 97 (1967).

H⁺+He→H⁻: V. F. Kozlov and S. A. Bonder, Sov. Phys.-JETP 23, 195 (1966); Ya. M. Fogel, Sov. Phys.-Usp. 3, 390 (1960); U. Schryber, Hel. Phy. Act. A40, 1023 (1967); L. H. Toburen and M. Y. Nakai, Phys. Rev. 177, 191 (1969); J. F. Williams, Phys. Rev. 150, 7 (1966).

H +He+H: Ya. M. Fogel, V. A. Ankudinov, D. V. Pilipenko, and N. V. Topolia, Sov. Phys.-JETP 34, 400 (1958); P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956); U. Schryber, Hel. Phy. Act. A40, 1023 (1967).

Electron Capture Cross Sections for H⁺ and H° Passing Through Helium

Accuracy:

σ10 ± 25%

 $\sigma_{1-1} E > 10 \text{ keV} \pm 25\%$; E > 10 keV ± 60%

σ₀₋₁ ± 25%

Notes:

Berkner, et al., results for D in He has been plotted at E/2.

Graphical Data B-2.16.

Tabular Data B-2.17.

Cross Sections for the Production of Positive Charges in ${\rm H_2}$ and ${\rm He}$ by ${\rm H}^{\dagger}$

Energy (keV)	Cross Sections (cm ²)	
	H ₂	He
1.5 E 02 2.0 E 02 4.0 E 02 6.0 E 02 8.0 E 02 1.0 E 03 2.0 E 03 3.0 E 03	1.77 E-16 1.40 E-16 7.59 E-17 5.37 E-17 4.18 E-17 3.44 E-17 1.91 E-17 1.35 E-17	8.66 E-17 6.99 E-17 4.16 E-17 3.08 E-17 2.48 E-17 2.09 E-17 1.24 E-17 9.29 E-18

References:

E.W. McDaniel, J.W. Hooper, D.W. Martin, and D.S. Harmer, Proc. Fifth Int. Conf. on Ionization Phenomena in Gases (Munich, 1961) North-Holland Publishing Co. (Amsterdam) Vol. 1, 60 (1962); L.I. Pivovar and Yu. Z. Levchenko, Sov. Phys.-JETP 25, 27 (1967).

Cross Sections for the Production of Positive Charges in ${\rm H_2}$ and ${\rm He}$ by ${\rm H}^{\dagger}$

Tabular Data B-2.19.

Cross Sections for Production of Free Electrons in H₂ and He by Protons

Energy (keV)	Cross Sections (cm²)	
	Н2	Не
1.0 E 00	2.81 E-17	
2.0 E 00	4.18 E-17	
4.0 E 00	6.19 E-17	
6.0 E 00	7.96 E-17	
8.0 E 00	9.29 E-17	
1.0 E 01	1.05 E-16	2.18 E-17
2.0 E 01	1.55 E-16	3.60 E-17
4.0 E 01	2.27 E-16	6.08 E-17
6.0 E 01	2.57 E-16	8.23 E-17
8.0 E 01	2.47 E-16	9.52 E-17
1.0 E 02	2.26 E-16	9.87 E-17
2.0 E 02	1.36 E-16	7.01 E-17
4.0 E 02	7.48 E-17	4.15 E-17
6.0 E 02	5.30 E-17	3.04 E-17
8.0 E 02	4.20 E-17	2.47 E-17
1.0 E 03	3.35 E-17	2.09 E-17
2.0 E 03	1.84 E-17	1.23 E-17
3.0 E 03	1.30 E-17	9.00 E-18

References:

H⁺ + H₂: J.W. Hooper, E.W. McDaniel, D.W. Martin, and D.S. Harmer, Phys. Rev. 121, 1123 (1961); L.I. Pivovar and Yu. Z. Levchenko, Soviet Phys.-JETP 25, 27 (1967); Yu. S. Gordeev and M.N. Panov, Soviet Phys.-Tech. Phys. 9, 656 (1964); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Soviet Phys.-JETP 15, 459 (1962); F.J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1766 (1966); V.V. Afrosimov, R.N. Il'in, and N.V. Fedorenko, Soviet Phys.-JETP 7, 968 (1958); F. Schwirzke, Z. Phys. 157, 510 (1960); Ya. M. Fogel, L.I. Krupnik, and B.G. Safronov, Soviet Phys.-JETP 1, 415 (1955); H.B. Gilbody and A.R. Lee, Proc. Phys. Soc. A-274, 365 (1963); M.E. Rudd, C.A. Sautter, and C.L. Bailey, Phys. Rev. 151, 20 (1966).

H⁺ + He: E.W. McDaniel, J.W. Hooper, D.W. Martin, and D.S. Harmer, Proc. Fifth Int. Conf. on Ionization Phenomena in Gases (Munich, 1961)
North-Holland Publishing Co. (Amsterdam) Vol. 1, 60 (1962); L.I. Pivovar and Yu. Z. Levchenko, Soviet Phys.-JETP 25, 27 (1967); F.J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1766 (1966); H.B. Gilbody and A.R. Lee, Proc. Roy. Soc. A-274, 365 (1963); N.V. Fedorenko, V.V. Afrosimov, R.N. Il'in, and E.S. Solov'ev, Proc. Fourth Int. Conf. on Ionization Phenomena in Gases (Uppsala, 1959), North Holland Publishing Co. (Amsterdam) Vol. 1, IA-47 (1960).

Accuracy: + 25%.

Cross Sections for Production of Free Electrons in H_2 and He by Protons

Graphical Data B-2.20.

Tabular Data B-2.21.

Total Apparent Cross Section for the Production of Slow Positive Ions by H^O Atoms Incident on H₂ and He

Energy (keV)	H ₂ Cross Section (cm ²)	He Cross Section (cm^2)
1.5 E 02	9.15 E-17	4.00 E-17
P.O E 02	8.01 E-17	3.80 E-17
3.0 E 02	6.20 E-17	3.15 E-17
₽.0 E 02	4.99 E-17	2.61 E-17

H2: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969). He: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969). Accuracy:

+ 20%.

Total Apparent Cross Section for the Production of Slow Positive Ions by ${\rm H}^{\rm O}$ Atoms Incident on ${\rm H}_2$ and ${\rm He}$

Graphical Data B-2.22.

Tabular Data B-2.23. Total Cross Section for the Production of Free Electrons by ${ t H}^{ t O}$ Atoms in ${ t H}_2$ and ${ t H}_2$

Energy (keV)	Cross Sections (cm ²)	
	н ₂	Не
1.5 E 02	1.91 E-16	1.08 E-16
2.0 E 02	1.67 E-16	1.04 E-16
2.5 E 02	1.35 E-16	9.00 E-17
3.0 E 02	1,12 E-16	8.00 E-17
3.3 E 02	1.00 E-16	7.50 E-17

H2: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969).

He: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969).

Accuracy:

± 20%.

Total Cross Section for the Production of Free Electrons by ${\rm H}^{\rm O}$ Atoms in ${\rm H}_2$ and ${\rm He}$

Graphical Data B-2.24.

Tabular Data B-2.25.

Cross Sections for Electron Loss or Stripping

for	Metastable	H(2s)	Atoms	in	H ₂	and	He	
-----	------------	-------	-------	----	----------------	-----	----	--

Energy (keV)	Cross Sections (cm ²)		
	H ₂	He	
5.0 E 00	2.5 E-16	2.9 E-16	
1.0 E 01	2.9 E-16	3.4 E-16	
1.5 E 01	3.5 E-16	3.2 E-16	
2.0 E 01	3.9 E-16	3.1 E-16	
4.0 E 01	4.5 E-16	2.3 E-16	
5.0 E 01	4.5 E-16	2.0 E-16	
1.0 E 02	3.2 E-16	1.3 E-16	
2.0 E 02	2.0 E-16	7.7 E-17	
4.0 E 02	1.0 E-16	5.5 E-17	
5.0 E 02	8.0 E-17	5.0 E-17	

References:

H(2s) + H₂: H.B. Gilbody, R. Browning, R.M. Reynolds, and G.I. Riddell, J. Phys. B <u>4</u>, 94 (1971); H.B. Gilbody and J.L. Corr, J. Phys. B <u>7</u>, 1953 (1974).

H(2s) + He: H.B. Gilbody, R. Browning, R.M. Reynolds, and G.I. Riddell, J. Phys. B 4, 94 (1971); R.H. Hughes and S.S. Choe, Phys. Rev. A 6, 1413 (1972); H.B. Gilbody and J.L. Corr, J. Phys. B 7, 1953 (1974).

Accuracy:

+ 20%

Tabular Data B-2.27.

Cross Sections for Electron Stripping

H Atoms in He and Ne

Energy (keV)	Cross Sections (cm ²)		
	<u>Не</u>	Ne	
4.2 E 00	1.22 E-16	6.67 E-17	
6.0 E 00	1.44 E-16	8.91 E-17	
8.0 E 00	1.49 E-16	1.09 E-16	
1.0 E 01	1.47 E-16	1.23 E-16	
2.0 E 01	1.35 E-16	1.69 E-16	
5.0 E 01	1.23 E-16	2.00 E-16	
8.0 E 01	9.70 E-17	1.99 E-16	
1.0 E 02	9.18 F-17	1.94 E-16	
2.0 E 02	5.76 E-17	1.62 E-16	
5.0 E 02	2.56 E-17		
8.0 E 02	1.63 E-17		
1.0 E 03	1.33 E-17		
2.0 E 03	7.05 E-18		
5.0 E 03	2.58 E-18		
8.0 E 03	1.98 E-18		
1.0 E 04	1.60 E-18		
1.5 E 04	1.13 E-18		

References:

H + He: C.F. Barnett and H.K. Reynolds, Phys. Rev. 109, 355 (1958); P.M. Stier and C.F. Barnett, Phys. Rev. 103, 896 (1956); G.W. McClure, Phys. Rev. 134, A-1226 (1964); L.H. Toburen, M.Y. Nakai, and R.A. Langley, Phys. Rev. 171, 114 (1968); J.F. Williams, Phys. Rev. 157, 97 (1967); K.H. Berkner, S.N. Kaplan, and R.V. Pyle, Phys. Rev. 134, A-1461 (1964); L.M. Welsh, K.H. Berkner, S.N. Kaplan, and R.V. Pyle, Phys. Rev. 158, 85 (1967).

H + Ne: P.M. Stier and C.F. Barnett, Phys. Rev. 103, 896 (1956).

Accuracy:

+ 20%.

Cross Sections for Electron Stripping

Graphical Data B-2.28.

363

Tabular Data B-2.29.

Cross sections for one electron loss or stripping for Hin H₂ and He

Energy (keV)	Cross Sections (cm ²)		
•	H ₂	Не	
	_	1 (= 1	
2.0 E-01	7.5 E-16	4.6 E-16	
5.0 E-01	1.0 E-15	5.2 E-16	
1.0 E 00	1.1 E-15	5.8 E-16	
2.0 E 00	1.2 E-15	6.1 E-16	
5.0 E 00	1.2 E-15	6.0 E-16	
1.0 E 01	1.0 E-15	5.4 E-16	
2.0 E 01	8.7 E-16	4.4 E-16	
5.0 E 01	6.0 E-16	3.2 E-16	
1.0 E 02	4.0 E-16	2.2 E-16	
2.0 E 02	2.6 E-16	1.5 E-16	
5.0 E 02	1.3 E-17	7.3 E-17	
1.0 E 03	7.2 E-17	4.0 E-17	
2.0 E 03	3.3 E-17	2.2 E-17	
5.0 E 03	1.2 E-17	9.0 E-18	
1.0 E 04	5.5 E-18	4.7 E-18	
1.7 E 04	2.7 E-18		

H + H₂: J.F. Williams, Phys. Rev. 154, 9 (1967); P.M. Stier and C.F. Barnett, Phys. Rev. 103, 896 (1956); P.H. Rose, R.J. Connor, and R.P. Bastide, Bull. Am. Phys. Soc. II-3, 40 (1958); G.I. Dimov and V.G. Dudnikov, Sov. Phys.-Tech. Phys. 11, 919 (1967); K.H. Berkner, S.N. Kaplan, and R.V. Pyle, Phys. Rev. 134, A1461 (1964); R. Smythe and J.W. Toevs, Phys. Rev. 139, A-15 (1965); H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973); J.S. Risley and R. Geballe, Phys. Rev. A 9, 2485 (1974); F.R. Simpson and H.B. Gilbody, J. Phys. B 5, 1959 (1972).

H + He: J.F. Williams, Phys. Rev. <u>154</u>, 9 (1967); G.I. Dimov and V.G. Dudnikov, Sov. Phys.-Tech. Phys. <u>11</u>, 919 (1967); P.M. Stier and C.F. Barnett, Phys. Rev. <u>103</u>, 896 (1956); K.H. Berkner, S.N. Kaplan, and R.V. Pyle, Phys. Rev. <u>134</u>, A-1461 (1964); F.R. Simpson and H.B. Gilbody, J. Phys. B <u>5</u>, 1959 (1972); J.S. Risley and R. Geballe, Phys. Rev. A <u>9</u>, 2485 (1974); H. Tawara and A. Russek, Rev. Mod. Phys. <u>45</u>, 178 (1973).

Accuracy: + 25%.

Note:

For total detachment cross sections $(\sigma_{-10} + 2\sigma_{-11})$ see J.S. Risley and R. Geballe, Phys. Rev. A $\underline{9}$, 2485 (1974); J.S. Risley, Phys. Rev. A $\underline{10}$, 731 (1974); J.B. Hasted and R.A. Smith, Proc. Roy. Soc. (Lond.) $\underline{A235}$, 349 (1956); J.B.H. Stedeford and J.B. Hasted, Proc. Roy. Soc. (Lond.) $\underline{A227}$, 466 (1955); E.E. Muschlitz, Jr., T.L. Bailey, and J.H. Simons, J. Chem. Phys. $\underline{24}$, 1202 (1956) and J. Chem. Phys. $\underline{26}$, 711 (1957).

Tabular Data B-2.33.

Cross Sections for the Two-Body Recombination of He with H Ions and of He with D Ions

Barycentric Energy (eV)	Recombination (cm ²	
	He + D	He ⁺ + H ⁻
1.0 E 00	1.00 E-13	
2.0 E 00	7.36 E-14	
3.0 E 00	6.14 E-14	
5.0 E 00	5.09 E-14	
1.0 E 01	3.88 E-14	
2.0 E 01	2.98 E-14	
3.0 E 01	2.59 E-14	
5.0 E 01	2.18 E-14	
1.0 E 02	1.78 E-14	
2.0 E 02	1.53 E-14	
3.0 E 02	1.42 E-14	1.44 E-1
5.0 E 02	1.25 E-14	1.23 E-1
9.0 E 02		1.09 E-1
1.5 E 03		9.06 E-1
2.0 E 03		9.27 E-1
4.0 E 03		4.42 E-1
6.0 E 03		1.93 E-1

He + H : T.D. Gailey and M.F.A. Harrison, J. Phys. B 3, 1098 (1970).

He + D: R.E. Olson, J.R. Peterson, and J.T. Moseley, J. Chem. Phys. 53, 3391 (1970).

Accuracy:

The total error is believed not to exceed + 35%.

Tabular Data B-2.35.

Excitation Cross Sections for the Reactions

 $\text{He}^+ + \text{He}^+ + \text{He}^+ + \text{He}^+ (4^1\text{S}, 4^1\text{P}, 4^1\text{D})$

Energy (keV)	Cross	Sections for Excited Sta (cm ²)	ate nl
	<u>4¹s</u>	<u>4¹P</u>	<u>4¹D</u>
5.0 E 00 6.0 E 00 8.0 E 00 1.0 E 01 1.5 E 01 2.0 E 01 3.0 E 01 4.0 E 01 5.0 E 01 6.0 E 01 7.0 E 01 8.0 E 01 1.0 E 02	2.2 E-20 2.6 E-20 3.7 E-20 4.9 E-20 3.5 E-20 4.0 E-20 4.9 E-20 7.8 E-20 9.9 E-20 8.7 E-20 7.2 E-20 6.8 E-20 6.6 E-20	3.0 E-19 3.0 E-19 2.6 E-19 3.3 E-19 3.0 E-19 2.6 E-19 2.4 E-19 2.2 E-19	5.3 E-20 5.6 E-20 6.5 E-20 7.7 E-20 6.9 E-20 1.1 E-19 2.8 E-19 2.9 E-19 2.0 E-19 1.2 E-19 8.1 E-20 7.3 E-20 6.7 E-20

Reference:

F. J. de Heer and J. Van den Bos, Physica 31, 365 (1965).

Accuracy: Systematic error < 10%. Random error < 5%.

Excitation Cross Sections for the Reactions $\text{He}^+ + \text{He} + \text{He}^+ + \text{He}^+ + \text{He}^+ (4^1\text{S}, 4^1\text{P}, 4^1\text{D})$

Graphical Data B-2.36.

Tabular Data B-2.37. Excitation Cross Sections for the Reactions He⁺ + He + He⁺ + He^{*} (4^3 S, 4^3 P, 4^3 D)

Energy (keV)	Cross Se	ctions for Excited S (cm ²)	State nl
	4 ³ s	4 ³ P	4 ³ D
5.0 E 00	2.2 E-20		
7.5 E 00	4.0 E-20	1.3 E-20	1.3 E-19
1.0 E 01	3.4 E-20	5.8 E-20	1.1 E-19
1.5 E 01	7.0 E-20	1.2 E-19	1.3 E-19
2.0 E 01	3.2 E-20	1.3 E-19	1.6 E-19
3.0 E 01	5.9 E-20	1.4 E-19	3.2 E-19
4.0 E 01	8.2 E-20	2.0 E-19	3.7 E-19
5.0 E 01	9.6 E-20	2.5 E-19	2.2 E-19
6.0 E 01	1.1 E-19	2.6 E-19	1.8 E-19
7.0 E 01	1.4 E-19	2.5 E-19	1.5 E-19
8.0 E 01	1.2 E-19	2.3 E-19	1.1 E-19
9.0 E 01	1.1 E-19	2.0 E-19	8.8 E-20
LO.O E 01	1.1 E-19		7.5 E-20

F. J. de Heer and J. Van den Bos, Physica 31, 365 (1965).

Accuracy: Systematic error < 10%. Random error < 5%.

Graphical Data B-2.38.

Tabular Data B-2.39. Electron capture cross sections for He+ in H2

Energy (keV)	Cross Sections (cm ²)		
	<u>σιο</u> He ⁺ +H ₂ →He°	<u>σ10</u> He +He→He°	
1.0 E-03		2.5 E-15	
2.0 E-03		2.3 E-15	
4.0 E-03		2.1 E-15	
7.0 E-03		1.9 E-15	
1.0 E-02		1.8 E-15	
2.0 E-02		1.6 E-15	
4.0 E-02		1.4 E-15	
7.0 E-02		1.3 E-15	
1.0 E-01	1.2 E-16	1.3 E-15	
2.0 E-01	1.4 E-16	1.2 E-15	
4.0 E-01	1.4 E-16	1.1 E-15	
7.0 E-01	1.3 E-16	9.7 E-16	
1.0 E 00	1.1 E-16	9.1 E-16	
2.0 E 00	7.5 E-17	8.1 E-16	
4.0 E 00	7.0 E-17	7.2 E-16	
7.0 E 00	9.0 E-17	6.3 E-16	
1.0 E 01	1.1 E-16	5.8 E-16	
2.0 E 01	1.7 E-16	4.7 E-16	
4.0 E 01	2.5 E-16	3.5 E-16	
7.0 E 01	2.6 E-16	2.8 E-16	
1.0 E 02	2.1 E-16	2.3 E-16	
2.0 E 02	1.0 E-16	1.3 E-16	
4.0 E 02	2.5 E-17	3.5 E-17	
7.0 E 02	5.5 E-18	7.5 E-18	
1.0 E 03	1.6 E-18	2.8 E-18	
1.6 E 03	3.0 E-19	7.0 E-19	

He +H₂: S. K. Allison, J. Cuevas, P. G. Murphy, Phys. Rev. 102, 1041 (1956); C. F. Barnett and P. M. Stier, Phys. Rev. 109, 385 (1958); H. B. Gilbody, J. B. Hasted, J. V. Ireland, A. R. Lee, E. W. Thomas and A. S. Whiteman, Proc. Roy. Soc. London, A274, 40 (1963); F. J. Delheer, J. Schutten and H. Moustafa, Physics 32, 1793 (1966); L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys. JETP 14, 20 (1962); J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. London A227, 466 (1955); A. B. Wittkower, G. Levy, and H. B. Gilbody, Proc. Phys. Soc. London 91, 862 (1967).

He + He: S. K. Allison, J. Cuevas, F. G. Murphy, Phys. Rev. 102, 1041 (1956); C. F. Barnett and P. M. Stier, Phys. Rev. 109, 385 (1958); N. V. Fedorenko, L. G. Filispenko, and I. P. Flaks, Sov. Phys.-Tech. Phys. 5, 45 (1960); A. Galli, A. Glardini-Guidoni, G. G. Volpi, Nuovo Cimento 26, 845 (1962); F. J. DeHeer, J. Schutten and H. Moustafa, Physica 32, 1793 (1966); H. B. Gilbody, J. B. Hasted, J. V. Ireland, A. R. Lee, E. W. Thomas, and A. S. Whiteman, Proc. Roy. Soc. London A274, 40 (1963); H. B. Gilbody and J. B. Hasted, Proc. Roy. Soc. London A238, 334 (1956); H. G. Hayden and N. G. Utterback, Phys. Rev. 135, A1575 (1964); P. Mahadevan and G. D. Magnuson, Phys. Rev. 171, 103 (1968); L. I. Pivovar, V. M. Tubmev, and M. T. Novikov, Sov. Phys.-JETP 14, 20 (1962); R. F. Potter, J. Chem. Phys. 22, 974 (1954); W. N. Shelton and P. A. Stoycheff, Phys. Rev. A 3, 613 (1971); J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. London A227, 446 (1954).

Accuracy: He +H2: 1 152 He+He: ± 15%

Electron Capture Cross Sections for ${\rm He}^{\mbox{\scriptsize +}}$ in ${\rm H_2}$ and ${\rm He}$

Tabular Data B-2.41.
Electron Capture Cross Sections for He in He

Energy (keV)		Sections m ²)
	σ ₂₀	σ21
	He++He→He°	He ⁺⁺ +He→He
6.0 E-02	4.0 E-16	
1.0 E-01	3.2 E-16	
2.0 E-01	2.6 E-16	
4.0 E-01	2.2 E-16	
7.0 E-01	2.0 E-16	1.3 E-17
1.0 E 00		1.6 E-17
2.0 E 00		2.1 E-17
5.0 E 00		3.2 E-17
7.5 E 00		3.9 E-17
1.0 E 01	1.6 E-16	4.5 E-17
2.0 E 01	1.5 E-16	7.1 E-17
5.0 E 01	1.2 E-16	1.8 E-16
7.5 E 01	1.1 E-16	2.7 E-16
1.0 E 02	9.0 E-17	3.3 E-16
2.0 E 02	4.0 E-17	2.4 E-16
5.0 E 02	5.1 E-18	7.0 E-17
7.5 E 02	9.5 E-19	3.3 E-17
1.0 E 03	2.6 E-19	2.0 E-17
L.4 E 03	3.6 E-20	6.0 E-18
3.0 E 03		3.0 E-19
5.8 E 03		7.3 E-20

He +He +He : V.V. Afrosimov, G.A. Leiko, Yu. A. Mamaev, and M.N. Panov, Sov. Phys.-JETP 40, 661 (1975); S. K. Allison, Phys. Rev. 109, 76 (1958); J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 11, 920 (1975); K. H. Berkner, R. V. Pyle, J. W. Stearns, and J. C. Warren, Phys. Rev. 166, 44 (1968); G. R. Hertel and W. S. Koski, J. Chem. Phys. 40, 3452 (1964); P. Hvelplund, J. Heinemeier, E. H. Pedersen, and F. R. Simpson, 9th Int. Conf. Elect. and Atom. Coll., p. 185, Seattle, Wash. (1975); V. S. Nikolaev, I. S. Dmitriev, L. N. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP 13, 695 (1961); L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Sov. Phys.-JETP 14, 20 (1962); L. I. Pivovar, M. T. Novikov, and V. M. Tubaev, Soc. Phys.-JEPT 15, 1035 (1962); M. B. Shah and H. B. Gilbody, J. Phys. B 7, 256 (1974).

He++He+He*: S. K. Allison, Phys. Rev. 109, 76 (1958); J. E. Bayfield and G. A. Khayrallah, Phys. Rev. A 11, 920 (1975); K. H. Berkner, R. V. Pyle, J. W. Stearns, and J. C. Warren, Phys. Rev. 166, 44 (1968); V. S. Nikolaev, L. N. Fateeva, I. S. Dmitriev, and Ya. A. Teplova, Sov. Phys.-JETP 14, 67 (1962); L. I. Pivovar, M. T. Novikov, and V. M. Tubaev, Soc. Phys.-JETP 15, 1035 (1962); H. Schrey and B. Huber, Z. Phy. A 273, 401 (1975); M. B. Shah and H. B. Gilbody, J. Phys. B 7, 256 (1974).

Accuracy:

He+++He+He+: ± 25%.

He++He+He°: ± 20%.

Electron Capture Cross Sections for He⁺⁺ in He

Tabular Data B-2.43.

Cross Sections for One Electron Loss of He^+ Ions in $H_{\rm O}$ and He

Energy (keV)	Cross Sections (cm ²)		
	H ₂	Не	
2.0 E 01		6.0 E-19	
5.0 E 01		1.9 E-18	
8.0 E 01		3.4 E-18	
1.0 E 02	2.4 E-18	4.4 E-18	
2.0 E 02	1.1 E-17	1.0 E-17	
5.0 E 02	2.0 E-17	2.2 E-17	
8.0 E 02	1.8 E-17	2.3 E-17	
1.0 E 03	1.5 E-17	2.2 E-17	
1.5 E 03	9.6 E-18	1.8 E-17	
2.0 E 03		1.4 E-17	
4.0 E 03		7.7 E-18	
6.0 E 03		5.2 E-18	

References:

He + H₂: S.K. Allison, J. Cuevas, and P.G. Murphy, Phys. Rev. <u>102</u>, 1041 (1956); L.I. Pivovar, V.M. Tubaev, and M.T. Novikov, Sov. Phys. JETP <u>14</u>, 20 (1962); S.K. Allison, Phys. Rev. <u>109</u>, 76 (1958); R.C. Dehmel, H.K. Chau, and H.H. Fleischmann, Atomic Data <u>5</u>, 231 (1973).

He⁺ + He: S.K. Allison, J. Cuevas, and P.G. Murphy, Phys. Rev. 102, 1041 (1956); P.R. Jones, F.P. Ziemba, H.A. Moses, and E. Everhart, Phys. Rev. 113, 182 (1959); N.V. Fedorenko, V.V. Afrosimov, and D.M. Kaminker, Sov. Phys.-Tech. Phys. 1, 1861 (1956); I. S. Dmitriev, V.S. Nikolaev, L.N. Fateeva, and Ya. A. Teplova, Sov. Phys.-JETP 15, 11 (1962); S.K. Allison, Phys. Rev. 109, 76 (1958); L.I. Pivovar, V.M. Tubaev, and M.T. Novikov, Sov. Phys.-JETP 14, 20 (1962); R.C. Dehmel, H.K. Chau, and H.H. Fleischmann, Atomic Data 5, 231 (1973); A.R. Lee and H.B. Gilbody, 3rd Int. Conf. on Phys. of Electronic & Atomic Collisions (London, 1963) North-Holland Publishing Co. (Amsterdam) p. 692 (1964).

Graphical Data B-2.44.
Cross Sections for One Electron Loss

Tabular Data B-2.45.

Cross sections for the production of slow electrons by He⁺ ions in H2 and He.

Energy (keV)	Cross Sections (cm ²)	
	H ₂	He
1.0 E-01	2.2 E-17	2.4 E-17
2.0 E-01	3.7 E-17	2.5 E-17
5.0 E-01	4.1 E-17	2.7 E-17
7.0 E-01	4.0 E-17	2.8 E-17
1.0 E 00	3.9 E-17	2.9 E-17
2.0 E 00	3.9 E-17	3.2 E-17
5.0 E 00	4.0 E-17	3.8 E-17
7.0 E 00	4.0 E-17	4.1 E-17
1.0 E 01	4.0 E-17	4.4 E-17
2.0 E 01	5.0 E-17	5.2 E-17
5.0 E 01	1.2 E-16	7.3 E-17
7.0 E 01	1.7 E-16	8.6 E-17
1.0 E 02	2.4 E-16	1.1 E-16
2.0 E 02	3.5 E-16	1.8 E-16
5.0 E 02	2.8 E-16	1.8 E-16
7.0 E 02	2.4 E-16	1.6 E-16
1.0 E 03	2.1 E-16	1.3 E-16
1.8 E 03	1.5 E-16	9.0 E-1

References:

He + H₂: R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. <u>136</u>, A379 (1964); L.I. Pivovar, Yu. Z. Levchenko, and A.N. Grigor'ev, Sov. Phys.-JETP <u>27</u>, 699 (1968); H.B. Gilbody and J.B. Hasted, Proc. Roy. Soc. <u>A240</u>, 382 (1957); H.B. Gilbody, J.B. Hasted, J.V. Ireland, A.R. Lee, E.W. Thomas, and A.S. Whitman, Proc. Roy. Soc. <u>A274</u>, 40 (1963); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys.-JETP <u>18</u>, 342 (1964); F.J. de Heer, J. Schutten, and H. Moustafa, Physica <u>32</u>, 1793 (1966).

He⁺ + He: F.J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1793 (1966); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys.-JETP 18, 342 (1964); N.V. Fedorenko, V.V. Afrosimov, and D.M. Kaminker, Sov. Phys.-JETP 1, 1861 (1956); H.B. Gilbody, J.B. Hasted, J.V. Ireland, A.R. Lee, E.W. Thomas, and A.S. Whiteman, Proc. Roy. Soc. A274, 40 (1963); H.B. Gilbody and J.B. Hasted, Proc. Roy. Soc. A240, 382 (1957); L.I. Pivovar, Yu. Z. Levchenko, and A.N. Grigor'ev, Sov. Phys.-JETP 27, 699 (1968); R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. 136, A379 (1964).
Accuracy: + 25%.

Graphical Data B-2.46.

Cross Sections for the Production of Slow

Tabular Data B-2.47.
Cross Sections for the Production of Positive

Ions by He+ Ions in Ho and He

Energy (keV)	Cross S	Sections (2)
	H ₂	Не
		- ·
3.0 E 00	1.3 E-16	
5.0 E 00	1.1 E-16	
7.0 E 00	1.2 E-16	
1.0 E 01	1.5 E-16	5.6 E-16
2.0 E 01	2.2 E-16	5.4 E-16
5.0 E 01	4.0 E-16	4.2 E-16
7.0 E 01	4.7 E-16	3.8 E-16
1.0 E 02	5.3 E-16	3.4 E-16
2.0 E 02	4.5 E-16	2.7 E-16
5.0 E 02	2.8 E-16	1.8 E-16
7.0 E 02	2.3 E-16	1.4 E-16
1.0 E 03	1.8 E-16	1.1 E-16
1.8 E 03	1.3 E-16	0.8 E-16

References:

He + H₂: R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. 136, A379 (1964); L.I. Pivovar, Yu. Z. Levchenko, and A.N. Grigor'ev, Sov. Phys. JETP 27, 699 (1968); H.B. Gilbody, J.B. Hasted, J.V. Ireland, A.R. Lee, E.W. Thomas, and A.S. Whiteman, Proc. Roy. Soc. A274, 40 (1963); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys. JETP 18, 342 (1964); F.J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1793 (1966); R. Browning, C.J. Latimer, and H.B. Gilbody, J. Phys. B 2, 534 (1969).

He + He: N.V. Fedorenko, V.V. Afrosimov, and D.M. Kaminker, Sov. Phys.-JETP 1, 1861 (1956); F.J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1793 (1966); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys.-JETP 18, 342 (1964); H.B. Gilbody, J.B. Hasted, J.V. Ireland, A.R. Lee, E.W. Thomas, and A.S. Whiteman, Proc. Roy. Soc. A274, 40 (1963); L.I. Pivovar, Yu. Z. Levchenko, and A.N. Grigor'ev, Sov. Phys.-JETP 27, 699 (1968); R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. 136, A 379 (1964).

Accuracy:

+ 25%.

Cross Sections for the Production of Positive Ions by He Ions in H2 and He Graphical Data B-2.48.

Tabular Data B-2.49.

Cross Sections for Positive Ion Production by He^{++} Ions in H_2 and He

Energy (keV)	Cross Sections (cm ²)	
	H ₂	Не
6.8 E 00	3.1 E-16	
1.0 E 01	4.2 E-16	
2.0 E 01	6.8 E-16	
4.0 E 01	1.2 E-15	
6.0 E 01	1.3 E-15	
8.0 E 01	1.3 E-15	
1.0 E 02	1.3 E-15	
1.5 E 02	1.3 E-15	5.7 E-16
2.0 E 02	1.2 E-15	5.4 E-16
4.0 E 02	8.1 E-16	4.0 E-16
6.0 E 02	6.3 E-16	3.2 E-16
8.0 E 02	5.1 E-16	2.6 E-16
1.0 E 03	4.5 E-16	2.3 E-16

References:

He $^{++}$ + H₂: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. <u>178</u>, 271 (1969); R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. <u>136</u>, A 379 (1964); W.G. Graham, C.J. Latimer, R. Browning, and H.B. Gilbody, J. Phys. B <u>7</u>, L405 (1974).

He + He: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. <u>178</u>, 271 (1969); R.A. Langley, D.W. Martin, D.S. Harmer, J.W. Hooper, and E.W. McDaniel, Phys. Rev. <u>136</u>, A379 (1964).

Accuracy:

+ 20%.

Tabular Data B-2.51.

Cross Sections for the Production of Free Electrons by He^{++} in H_2 and He

Energy (keV)	Cross Sections (cm²)		
	H ₂	Не	
1.8 E 02		1.3 E-16	
2.0 E 02	6.3 E-16	1.5 E-16	
4.0 E 02	6.9 E-16	2.5 E-16	
6.0 E 02	5.9 E-16	2.5 E-16	
8.0 E 02	4.9 E-16	2.3 E-16	
1.0 E 03	4.2 E-16	2.1 E-16	

References:

 \mbox{He}^{++} + \mbox{H}_2 , He: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969).

Accuracy:

+ 20%.

Tabular Data B-2.53.

Cross sections for one and two electron loss for He atoms in ${\rm H}_2$ and ${\rm He}_{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$

e Electron H ₂ 0 E-18 3 E-18 7 E-17	Loss (σ ₀₁) He 2.7 E-18 4.5 E-18 8.0 E-18 2.3 E-17	Two Electron H ₂	Loss (σ_{02}) He
O E-18 3 E-18	2.7 E-18 4.5 E-18 8.0 E-18	H ₂	He
3 E-18	4.5 E-18 8.0 E-18	_	_
3 E-18	4.5 E-18 8.0 E-18		
3 E-18	8.0 E-18		
7 E-17	2.3 E-17		
3 E-17	4.2 E-17		
0 E-17	7.0 E-17		
			3.9 E-1
			5.2 E-
			3.7 E-1
			2.8 E-
			1.3 E-
the second secon		(• 4 E-19	
	0 E-17 0 E-17 2 E-16 1 E-16 4 E-17 2 E-17 1 E-17 8 E-17 0 E-17	0 E-17 9.2 E-17 2 E-16 9.8 E-17 1 E-16 9.0 E-17 4 E-17 7.7 E-17 2 E-17 7.0 E-17 1 E-17 4.3 E-17 8 E-17 2.7 E-17	0 E-17 9.2 E-17 2 E-16 9.8 E-17 2.5 E-18 1 E-16 9.0 E-17 5.0 E-18 4 E-17 7.7 E-17 3.7 E-18 2 E-17 7.0 E-17 2.8 E-18 1 E-17 4.3 E-17 1.1 E-18 8 E-17 2.7 E-17 7.4 E-19

References:

He + H₂: E.H. Pedersen and P. Hvelplund, J. Phys. B 7, 132 (1974); P. Hvelplund and E.H. Pedersen, Phys. Rev. A 9, 2434 (1974); H.B. Gilbody, K.F. Dunn, R. Browning, and C.J. Latimer, J. Phys. B 3, 1105 (1970); C.F. Barnett and P.M. Stier, Phys. Rev. 109, 385 (1958); H. Tawara, J. Phys. Soc. Jap. 31, 871 (1971); S.K. Allison, Rev. Mod. Phys. 30, 1137 (1958); Ya. M. Fogel, V.A. Ankudinov, and D.V. Pilipenko, Sov. Phys.-JETP 11, 18 (1960); H.B. Gilbody, R. Browning, G. Levy, A.I. McIntosh, and K.F. Dunn, J. Phys. B 1, 863 (1968); A.B. Wittkower, G. Levy, and H.B. Gilbody, Proc. Phys. Soc. 91, 862 (1967).

He + He: E.H. Pedersen and P. Hvelplund, J. Phys. B 7, 132 (1974);
P. Hvelplund and E.H. Pedersen, Phys. Rev. A 9, 2434 (1974); C.F. Barnett and P.M. Stier, Phys. Rev. 109, 385 (1958); H. Tawara, J. Phys. Soc. Jap. 31, 236 (1971); S.K. Allison, Rev. Mod. Phys. 30, 1137 (1958); Ya. M. Fogel, V.A. Ankudinov, and D.V. Pilipenko, Sov. Phys. JETP 11, 18 (1960); H.B. Gilbody, K.F. Dunn, R. Browning, and C.J. Latimer, J. Phys. B 3, 1105 (1970); W.L. Williams and F.M. Goldberg, VII Int. Conf. on the Phys. of Electronic & Atomic Collisions, North Holland Publishing Co. Amsterdamm (1971) p. 1087; H.B. Gilbody, R. Browning, G. Levy, A.I. McIntosh, and K.F. Dunn, J. Phys. B 1, 863 (1968); A.B. Wittkower, G. Levy, and H.B. Gilbody, Proc. Phys. Soc. 91, 862 (1967).

Note:

Measurements made before 1970 did not properly take into account the presence of He metastable states.

Accuracy: + 25%.

Cross Sections for One and Two Electron Loss for He Atoms in H₂ and He

Tabular Data B-2.55. Cross Sections for Ionization of ${\rm H}_{\odot}$ and ${\rm He}$ by ${\rm He}$ Atoms

Energy (keV)		Cross Sections (cm ²)	
	·	H ₂	Не
4.6 E-02		2.5 E-20	
5.0 E-02		3.5 E-19	
7.0 E-02		6.0 E-19	
1.0 E-01		2.2 E-18	
2.0 E-01		1.0 E-17	
5.0 E-01		2.9 E-17	
9.0 E-01		4.3 E-17	
3.0 E 00		3.8 E-17	
5.0 E 00		5.0 E-17	
1.0 E 01		7.7 E-17	
2.0 E 01		1.1 E-16	5.0 E-17
5.0 E 01		1.8 F-16	8.4 E-17
1.0 E 02		2.4 E-16	1.3 E-16
2.0 E 02		2.6 E-16	1.4 E-16
5.0 E 02		1.9 E-16	1.1 E-16
1.0 E 03		1.2 E-16	7.3 E-17

He + H₂: N.G. Utterback, Phys. Rev. Letts. 12, 295 (1964); L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys.-JETP 18, 342 (1964); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, 3rd Int. Conf. on Phys. of Electronic & Atomic Collisions (London, 1963) North-Holland Publishing Co. (Amsterdam) p. 692 (1964); R. Browning, C.J. Latimer, and H.B. Gilbody, J. Phys. B 3, 667 (1970).

He + He: L.J. Puckett, G.O. Taylor, and D.W. Martin, Phys. Rev. 178, 271 (1969); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, Sov. Phys.-JETP 18, 342 (1964); E.S. Solov'ev, R.N. Il'in, V.A. Oparin, and N.V. Fedorenko, 3rd Int. Conf. on Phys. of Electronic & Atomic Collisions (London, 1963) North-Holland Publishing Co. (Amsterdam) p. 692 (1964).

Accuracy:

+ 25%.

Graphical Data B-2.56. Cross Sections for Ionization of ${\rm H}_2$ and ${\rm He}$ by ${\rm He}$ Atoms

Tabular Data B-2.57.

Excitation Cross Sections for the Reactions

$$H^+ + Ar + H(2s, 3s) + Ar^+$$

Energy (keV)	Cross Sections for State nl (cm ²)	
). O. F. 00	2 <u>s</u> 4.8 E-18	3 <u>s</u>
4.0 E 00 5.0 E 00	3.7 E-18	3.3 E-18 3.7 E-18
6.0 E 00	4.3 E-18	3.6 E-18
8.0 E 00	6.9 E-18	3.5 E-18
1.0 E 01	1.0 E-17	4.0 E-18
1.5 E 01	2.0 E-17	5.7 E-18
2.0 E 01	2.3 E-17	7.4 E-18
3.0 E 01	2.3 E-17	7.7 E-18
4.0 E 01	2.3 E-17	6.4 E-18
5.0 E 01	2.1 E-17	5.2 E-18
6.0 E 01	1.9 E-17	4.5 E-18
8.0 E 01	1.4 E-17	3.5 E-18
1.0 E 02	9.6 E-18	2.7 E-18
1.5 E 02		1.0 E-18
2.0 E 02		3.5 E-19
3.0 E 02		6.0 E-20
4.0 E 02		1.7 E-20
5.0 E 02		6.0 E-21
6.0 E 02		5.1 E-21
7.0 E 02		4.2 E-21

References:

 H^{\dagger} + Ar \rightarrow H(2s) + Ar † : R.H. Hughes, E.D. Stokes, Song-Sik Choe, and T.J. King Phys. Rev. A $\frac{1}{2}$, 1453 (1971); R.L. Fitzwilson and E.W. Thomas, Phys. Rev. A $\frac{3}{2}$, 1305 (1971) [normalized to Hughes et al.].

 H^+ + Ar \rightarrow H(3s) + Ar $^+$: R.H. Hughes, H.R. Dawson, B.M. Doughty, D.B. Kay, and C.A. Stigers, Phys. Rev. <u>146</u>, 53 (1966); R.J. Conrads, T.W. Nichols, J.C. Ford, and E.W. Thomas, Phys. Rev. A <u>7</u>, 1928 (1973).

Notes:

It is generally found that the cross section for formation of H(ns) at energies above 80 keV decreases as n^{-3} ; this rule may be used to extrapolate to other ns levels.

Some measurements with incident D are available. In general these cross sections are the same as for H projectiles of the same velocity.

Graphical Data B-2.58.

Excitation Cross Sections for the Reactions $H^{+} + Ar + H(2s,3s) + Ar^{+}$

Electron capture cross sections for H+ and H° passing through Ne gas. Tabular Data B-2.59.

Energy (keV)		Cross Sections (cm ²)	
	<u>σ₁₀</u>	<u>00-1</u>	σ_{1}
	H ⁺ +Ne+H°	H°+Ne→H¯	H++Ne→H
4.0 E-01	8.6 E-18		
7.0 E-01	2.1 E-17		
1.0 E 00	3.5 E-17		
2.0 E 00	8.8 E-17	1.7 E-18	4.3 E-20
4.0 E 00	1.8 E-16	6.0 E-18	1.7 E-19
7.0 E 00	2.8 E-16	1.3 E-17	4.4 E-19
1.0 E 01	3.0 E-16	1.5 E-17	7.2 E-19
2.0 E 01	2.3 E-16	1.1 E-17	6.0 E-19
4.0 E 01	1.3 E-16	4.5 E-18	1.5 E-19
7.0 E 01	7.6 E-17		
1.0 E 02	4.7 E-17		
2.0 E 02	1.4 E-17		
4.0 E 02	2.1 E-18		
7.0 E 02	2.6 E-19		
1.0 E 03	5.0 E-20		
2.0 E 03	4.2 E-21		
4.0 E 03	3.2 E-22		

References:

H+Ne+H°: V. V. Afrosimov, R. N. Il'in, and E. S. Solov'ev, Sov. Phys.-Tech. Phys. 5, 661 (1960); S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958); F. J. de Heer, J. Schutten, and H. Moustafa, Physica 32, 1766 (1966); J. B. H. Stedeford and J. B. Hasted, Proc. Roy. Soc. (London) A227, 466 (1955); P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956); U. Schryber, Helv. Phys. Acta 40, 1023 (1967); J. F. Williams and D. N. F. Dunbar, Phys. Rev. 149, 62 (1966).

H°+Ne→H⁻: S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958); P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956); J. F. Williams, Phys. Rev. 153, 116 (1967).

H++Ne+H-: S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958); V. F. Kozlow and S. A. Bondar, Sov. Phys.-JETP 23, 195 (1966); Ya. M. Fogel, R. V. Mitin, V. F. Kozlow, and N. D. Romashko, Sov. Phys.-JETP 8, 390 (1959); J. F. Williams, Phys. Rev. 150, 7 (1966).

Accuracy:

σ10 - ± 20%

 $\sigma_{0-1} - \pm 25\%$

 σ_{1-1} = unreliable data.

Notes:

σ₁₀ has not been measured between 200 keV and 1 MeV.

Electron Capture Cross Sections for H⁺ and H^o

Passing Through Ne Gas

Tabular Data B-2.61.
Electron capture cross sections for H+ and H°
passing through Ar.

Energy (keV)		Cross Sections (cm ²)	
	σ10	σ ₁ -1	σ ₀ -1
	H++Ar+H°	H++Ar→H-	H°+Ar→H-
7.0 E-02	3.2 E-17		
1.0 E-01	5.8 E-17		
2.0 E-01	1.6 E-16		
4.0 E-01	4.0 E-16		
7.0 E-01	7.2 E-16		
1.0 E 00	9.3 E-16		
2.0 E 00	1.3 E-15	8.7 E-19	4.4 E-17
4.0 E 00	1.5 E-15	2.2 E-18	3.6 E-17
7.0 E 00	1.4 E-15	2.3 E-18	2.7 E-17
1.0 E 01	1.2 E-15	1.9 E-18	2.2 E-17
2.0 E 01	8.2 E-16	4.2 E-18	1.2 E-17
4.0 E 01	4.6 E-16	3.2 E-18	6.0 E-18
7.0 E 01	2.3 E-16	6.0 E-18	2.5 E-18
1.0 E 02	1.1 E-16	1.1 E-19	1.3 E-18
2.0 E 02	8.8 E-18	1.5 E-21	2.5 E-19
4.0 E 02	6.3 E-19	5.0 E-23	4.6 E-20
7.0 E 02	1.9 E-19	6.4 E-24	8.4 E-21
1.0 E 03	8.0 E-20	1.7 E-24	6.0 E-21
2.0 E 03	1.1 E-20		
4.0 E 03	7.5 E-22		
7.0 E 03	7.9 E-23		
1.0 E 04	1.9 E-23		
2.0 E 04	1.2 E-24		
4.0 E 04	7.2 E-26		

References:

Neterences

H*+Ar*+H: V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, V. Uroskevich,
Sov. Phys.-Tech. Phys. 12, 512 (1967); V. V. Afrosimov, R. N. Iliñ, E. S.
Solovév, Sov. Phys.-Tech. Phys. 5, 661 (1960); E. Acerbi, M. Castiglioni,
G. Dutto, F. Resmini, G. Succi, and G. Tagliaferri, Nuovo Cimento, 508,
176 (1967); C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958);
K. H. Berkner, S. N. Kaplan, G. A. Paulikas, and R. V. Pyle, Phys. Rev.
140, A729 (1965); L. M. Welsh, K. H. Berkner, S. N. Kaplan, N. Selig, and
R. V. Pyle, Phys. Rev. 158, 85 (1967); P. M. Stier and C. F. Barnett, Phys.
Rev. 103, 896 (1956); Yu. S. Gordeev and M. N. Panov, Sov. Phys.-Tech. Phys.
9, 656 (1964); F. J. de Heer, J. Schutten, and H. Moustafa, Physica 32,
1766 (1966); D. W. Koopman, Phys. Rev. 154, 79 (1967); G. Monnom, Report
**EUN-CEA-FC-762 (1975); U. Schryber, Helv. Phys. Acta 40, 1023 (1967);
L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. 171, 114 (1968);
J. F. Williams and D. N. F. Dunbar, Phys. Rev. 149, 62 (1966); P. M. Stier
and C. F. Barnett, Phys. Rev. 103, 896 (1936).

H+Ar-H: V. V. Afrosimov, Yu. A. Hamsev, M. P. Panov, and V. Uroskevich, Sov. Phys.-Tech. Phys. 12, 512 (1967); Ya. M. Fogel, Sov. Phys.-Usp. 3, 390 (1960); V. V. Afrosimov, R. N. Il'in, and E. S. Solov'ev, Sov. Phys.-Tech. Phys. 5, 661 (1960); U. Schryber, Helv. Phys. Acta 40, 1023 (1967); L. H. Toburen, M. Y. Nakai, and R. A. Langley, Phys. Rev. 177, 191 (1969); J. F. Williams, Phys. Rev. 150, 7 (1966).

H*+Ar+H: T. M. Donahue and F. Hushfar, Phys. Rev. 124, 138 (1961); Ya. M. Fogel, V. A. Ankudinov, D. V. Phipenko, and N. V. Topolia, Sov. Phys.-JETP 7, 400 (1958); U. Schryber, Helv. Phys. Acta 40, 1023 (1967); P. M. Stier and C. F. Barnett, Phys. Rev. 103, 896 (1956); J. F. Williams, Phys. Rev. 153, 117 (1967).

Accuracy:

010 - ± 25%

₫0-1 ± 40%

₫1-1 ± 40%

ST WHIBIT ON

Graphical Data B-2.62.

Electron Capture Cross Sections for H⁺ and H°

Passing Through Ar

Tabular Data B-2.63.

Cross Sections for Single Electron Loss or

Stripping for H in Ar and Ne

Energy (keV)		Sections m ²)
	Ar	Ne
2.0 E 00	6.5 E-16	3.0 E-16
4.0 E 00	8.3 E-16	3.3 E-16
6.0 E 00	9.7 E-16	3.5 E-16
1.0 E 01	1.2 E-15	3.7 E-16
2.0 E 01	1.6 E-15	4.2 E-16
5.0 E 01	1.5 E-15	4.9 E-16
7.0 E 01	1.3 E-15	
1.0 E 02	1.2 E-15	
2.0 E 02	9.0 E-16	
5.0 E 02	6.0 E-16	
7.0 E 02	5.0 E-16	
1.0 E 03	4.0 E-16	
2.0 E 03	2.6 E-16	
5.0 E 03	1.3 E-16	
7.0 E 03	1.0 E-16	
1.0 E 04	7.5 E-17	

References:

HT + Ar: K.H. Berkner, S.N. Kaplan, and R.V. Pyle, Phys. Rev. <u>134</u>, A1461 (1964); J.B. Hasted and J.B.H. Stedeford, Proc. Roy. Soc. (London) <u>A227</u>, 466 (1955); P.M. Stier and C.F. Barnett, Phys. Rev. <u>103</u>, 896 (1956); J.F. Williams, Phys. Rev. <u>154</u>, 9 (1967).

 H^- + Ne: R. Smythe and J.W. Toevs, Phys. Rev. 139, A15 (1965); P.M. Stier and C.F. Barnett, Phys. Rev. 103, 896 (1956); J.F. Williams, Phys. Rev. 154, 9 (1967).

Accuracy:

± 25%

Note:

Berkner, et al., result for H + Ar at 10 MeV were obtained from D + Ar at 20 MeV.

Cross Sections for Single Electron Loss of He $^-$ Ions in H $_2$ and He

Hⁿ, He^m/Kr, Xe, Halides

Tables and graphs for hydrogen and helium ions and atoms incident on krypton, xenon, and halides.

1

H+Kr → Kr ion production

Reference:

E. S. Solov'ev, R. N. Il'in, V. A. Oparin and N. V. Fedorenko, Soviet Physics JETP, 15, 459 (1962).

Reference:

E. S. Solov'ev, R. N. Il'in, V. A. Oparin and N. V. Fedorenko, Soviet Physics JETP, 15, 459 (1962).

Graphical Data B-2.65.

Graphical Data B-2.66.

V. V. Afrosimov, Y. A. Manaev, M. N. Panov, and N. V. Fedorenko, Soviet Physics-Technical Physics 14, 109 (1969).

Reference:

H+Xe + H Production Ref. J.F. Williams, Phys. Rev. 153, 116 (1967).

H+Kr + H Production

Graphical Data B-2.67.

Cross sections for the excitation of the hydrogen atom in the 2s and 2p states and the total excitation cross sections for the n=2 state as functions of the H ion energy during collisions with inert gas atoms. σ_{ol} - stripping cross section of neutral hydrogen atoms.

Ref. A.L. Orbeli, E.P. Andreev, V.A. Ankudinov, and V.M. Dukel'skii Soviet Physics JETP 31, 1044 (1970).

Graphical Data B-2.68.

m,m' = initial, final charge on H n,n' = initial, final charge on Xe 10-14 implies H++Xe + H-+Xe⁴⁺

Reference: V.V. Afrosimov, Y.A. Mamaev, M.N. Panov and N.V. Fedorenko, Soviet Physics JETP 28, 52 (1969).

Graphical Data B-2.70.

Reference: V.V. Afrosimov, Y.A. Mamaev, M.N. Panov and N.V. Fedorenko, Soviet Physics JETP 28, 52 (1969).

Graphical Data B-2.71.

Reference: V.V. Afrosimov, Y.A. Mamaev, M.N. Panov and N.V. Fedorenko, Soviet Physics JETP 28, 52 (1969).

Graphical Data B-2.72.

Reference: V.V. Afrosimov, Y.A. Mamaev, M.N. Panov and N.V. Fedorenko, Soviet Physics JETP 28, 52 (1969).

Graphical Data B-2.73.

 $He^+ + Kr \rightarrow Kr^{n+}$ Production Reference: N. V. Fedorenko and V. V. Afrosimov, Soviet Physics-Technical Physics 1, 1872 (1956).

Reference:

N. V. Fedorenko, V. V. Afrosimov, and D. M. Kaminker, Soviet Physics-Technical Physics $\underline{1}$, 1861 (1956).

Graphical Data B-2.74.

Ref. L.I. Pivovar, Y.Z. Levchenko, and A.N. Grigor'ev Soviet Physics JETP 27, 699 (1968).

Ref. L.I. Pivovar, M.T. Novikov, and V.M. Tubaev, Soviet Physics JETP 15, 1035 (1962). Graphical Data B-2.75.

 ${\rm He}^{2+} + {\rm Kr} \rightarrow {\rm Kr}^{n+}$ Production Cross Sections for ${\rm Kr}^+, {\rm Kr}^{2+}$ and ${\rm Kr}^+$ production. For curve (Total) is the sum of the other 3 curves.

Ref. Z.Z. Latypov, I.P. Flaks, and A.A. Shaporenko, Soviet Physics JETP 30, 29 (1970).

Graphical Data B-2.76.

Reference:

L. I. Pivovar, V. M. Tubaev, and M. T. Novikov, Soviet Physics JETP, 14, 20 (1962).

Graphical Data B-2.77.

He + Kr \rightarrow He⁺ Production He + Xe \rightarrow He Production

Ref. Y.M. Fogel, V.A. Ankudinov, and D.V. Pilipenko, Soviet Physics JETP 11, 18 (1960).

Graphical Data B-2.78.

Ref. Y.M. Fogel, V.A. Ankudinov, and D.V. Pilipenko, Soviet Physics JETP 11, 18 (1960)

Graphical Data B-2.79.

Cross sections for electron capture into singlet and triplet S, P and D states in the case of He+ on Kr.

Cross sections for electron capture into singlet and triplet S, P and D states in the case of He+ on Xe.

Graphical Data B-2.80.

Ref. L. Wolterbeek Muller and F.J. DeHeer, Physica 48,345 (1970) (This reference also contains σ values for 4^1 S, 4^3 S, 5^3 S, 4^4 P, 5^3 P, 4^4 D, 4^3 D, 5^4 D, 5^3 D, 6^3 D production in collisions of

Reference: J.B.H. Stedeford and J.B. Hasted Proc. Royal Soc. (London) 227, 466 (1955).

Graphical Data B-2.81.

E(keV) He^{2+} + $Xe \rightarrow Xe^{n+}$ Production

Cross sections for Xe^{+} , Xe^{2+} and Xe^{3+} production.

Ref. Z.Z. Latypov, I.P. Flaks, and A.A. Shaporenko, Soviet Physics JETP 30, 29 (1970).

Graphical Data B-2.82.

F + He + F Production

Ref. Y.M. Fogel, V.A. Ankudinov, and D.V. Pilipenko, Soviet Physics JETP 11, 18 (1960)

Graphical Data

Tabular Data

H ^m + CC1 ₂ F, E(MeV)	$2 \rightarrow H^{n}$ production $\sigma(A^{2})$	Reaction
.9	13.0 + 18%	
1.1	11.3 ± 18%	H ⁻ +CC1 ₂ F ₂ → H
1.3	8.25 ± 18%	
.9	.73 ± 23%	
1.1	.6 ± 23%	H-+CC12F2 + H+
1.3	.5 ± 23%	144
.9	6.0 ± 30%	
1.1	5.2 ± 30%	H + CC12F2 + H
1.3	3.8 ± 30%	

Ref. G.T. Dimov and V.G. Dudnikov, Soviet Physics-Technical Physics 11, 919 (1967).

Tabular and Graphical Data B-2.83.

Tabular Data B-2.84.

30 keV H incident on CC1₄ and CC1₂F₂
CC1₂F₂

CC1 ₄		CC1 ₂ F ₂	
Secondary Ion Produced	Relative Abundance	Secondary Ion Produced	Relative Abundance
C1 ⁺⁺	0.34	c ⁺⁺	-
cı+	28	F ⁺⁺	-
CC1 ₂ ⁺⁺	-	c ⁺	4.05
CC1 ₂ ⁺	12.5	F ⁺	4.18
cc1 ⁺	15	cc1 ⁺⁺	0.7
cc1 ⁺⁺	_	CF ⁺	17.2
C1 ⁺	1.26	c1 ⁺	18.35
CC1 ₃	38	CC1 ₂ F ₂ ⁺⁺	
CC1 ₄	0.09	CC1++CF ₂ +	40.5
cc1 ⁺ ₄	3.8	cc1 ⁺	
c ⁻	0.28	CF ₂ ⁺	-
C1	99.3	CCl ₂ F ⁺⁺	-
CC1	0.18	CC1F ⁺	12.3
Cl ₂	0.24	cc1 ₂ F ⁺	- 9
CC1 ₂	-	CC1F ₂ +	2.8
		F ₂ +	-
		Cl2 ⁺	-
		CCl ₂ F ₂ ⁺	-
444000	1 2 m 1 m 5	c ⁻	4.1
		F-	74.6
	elitera esta parte de	C1	21.3

Ref. Fogel, Koval, and Levchenko, Soviet Physics JETP 13 8 (1961)

 $\sigma \sim 3 \times 10^{-17} \text{cm}^2$ for 30keV H + CCl + slow negative ion production

Apparent emission cross sections of atomic resonance lines produced by He⁺ incident on Ne, Ar, Kr and Xe at 10⁻³ torr.

Ref. F.J. DeHeer, B.F.J. Luyken, D. Jaecks, and L. Wolterbeek Muller, Physica 41, 588 (1969).

Emission cross sections for $6d\ ^4F_{7/2}-6p\ ^4D_{3/2}^0$ ($\lambda=4330\ \text{Å}$), 7s $^4P_{1/2}-6p\ ^4P_{3/2}^0$ ($\lambda=4296\ \text{Å}$) and 7s' $^2D_{5/2}-6p\ ^2D_{5/2}^0$ ($\lambda=4310\ \text{Å}$) in the case of He⁺ incident on Xe.

Ref. D. Jaecks, F.J. DeHeer, and A. Salop, Physica 36, 606 (1967).

Graphical Data B-2.85.

Emission cross sections for Kr II doublet, doublet prime and quartet lines by

4619
$$\mathring{\mathbf{A}} = 5p \ ^2P_{5/2}^0 - 5s^2 \ P_{3/2}$$

4846 $\mathring{\mathbf{A}} = 5p \ ^2P_{1/2}^0 - 5s^2 \ P_{3/2}$
4633 $\mathring{\mathbf{A}} = 5p' \ ^2P_{5/2}^0 - 5s' \ ^2D_{3/2}$
4088 $\mathring{\mathbf{A}} = 5p' \ ^2D_{5/2}^0 - 5s' \ ^2D_{5/2}$
4057 $\mathring{\mathbf{A}} = 5p' \ ^2P_{1/2}^0 - 5s' \ ^2D_{3/2}$

4057
$$\dot{A} = 5p' \, ^{2}P_{1/2}^{0} - 5s^{4} \, P_{5/2}$$

4355 $\dot{A} = 5p \, ^{4}P_{1/2}^{0} - 5s^{4} \, P_{5/2}$
4832 $\dot{A} = 5p \, ^{4}P_{1/2}^{0} - 5s^{4} \, P_{3/2}$

Ref. D. Jaecks, F.J. DeHeer and A. Salop, Physica 36, 606 (1967).

Graphical Data B-2.86.

Emission cross sections for Xe II doublet prime, doublet double prime and quartet lines produced by He⁺ incident on Xe. All upper levels have a 6p electron

these produced by He² incident on Xe. All upper fevers have a 6p 4877 Å =
$$6p' \, {}^{2}P_{1/2}^{0} - 6s' \, {}^{2}D_{5/2}$$
 3634 Å = $6p' \, {}^{2}P_{3/2}^{0} - 5d' \, {}^{2}D_{5/2}$ 5046 Å = $6p' \, {}^{2}P_{1/2}^{0} - 6s' \, {}^{2}D_{3/2}$ 5292 Å = $6p' \, {}^{2}P_{3/2}^{0} - 6s' \, {}^{2}P_{3/2}$ 5292 Å = $6p' \, {}^{4}P_{5/2}^{0} - 6s' \, {}^{4}P_{5/2}$ 5419 Å = $6p' \, {}^{4}P_{5/2}^{0} - 6s' \, {}^{4}P_{3/2}$ 5260 Å = $6p' \, {}^{2}P_{3/2}^{0} - 6s' \, {}^{2}P_{3/2}$ 4845 Å = $6p' \, {}^{4}P_{1/2}^{0} - 6s' \, {}^{4}P_{5/2}$

Ref. D. Jaecks, F.J. DeHeer and A. Salop, Physica 36, 606 (1967).

Graphical Data B-2.87.

EXCITATION OF Kr AND Xe BY He+ IMPACT

Emission cross sections for Kr II lines produced by He+ incident on Kr.

$$\begin{array}{c} 965 \ \Lambda = 4p^{6} \, ^{2}S_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ 669 \ \Lambda = 4dl' \, ^{2}D_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ 730 \ \Lambda = 4d \, ^{2}F_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ . \ 782 + 784 \ \Lambda = 5s' \, ^{2}D - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ + 4d \, ^{2}D_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ 844 \ \Lambda = 5s \, ^{2}P_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \\ 891 \ \Lambda = 5s \, ^{4}P_{\frac{1}{4}} - 4p^{5} \, ^{2}P_{\frac{1}{4}}0 \end{array}$$

Emission cross sections for Xe II lines produced by He+ incident on Xe.

$$\begin{array}{lll} 1100 \ \dot{\Lambda} &= 5p^6 \ ^2S_4 - 5p^5 \ ^2P_4^0 \\ 977 \ \dot{\Lambda} &= 6s' \ ^2I)_4 - 5p^5 \ ^2I)_4^0 \\ 973 \ \dot{\Lambda} &= 6s \ ^2I)_4 - 5p^5 \ ^2I)_4^0 \\ 1075 \ \dot{\Lambda} &= 6s \ ^4P_4 - 5p^5 \ ^2I)_4^0 \end{array}$$

Ref. F.J. DeHeer, B.F.J. Luyken, D. Jaecks, and L. Wolterbe Muller Physica 41, 588 (1969).

Graphical Data B-2.88.

Tabular Data B-2.89.
EXCITATION OF Kr AND Xe BY He+ IMPACT

Kr II emission cross sections in units 10⁻¹⁷ cm²/atom 2 keV He⁺ impact energy, compared to contribution from cascade

Wavelength (Å)	Transition	Cross section	Wavelength (Å) of measured lines contributing to cascade	Cascade cross section	
844	5s2 P4-s2p5 2P4	0.96	4615, 4846, 4619, 4251,		
865	5s ² P ₄ -s ² p ⁵ ² P ₄	0.47	4185, 6472, 5683, 5024, 4610, 4825, 3151, 3275, 5218, 3200, 5523, 4762, 4680, 3420, 3205	1.02	
869 911	5s 4P ₄ -s ² p ⁵ ² P ₄ 0 5s 4P ₄ -s ² p ⁵ ² P ₄ 0	1.10 0.22*	4766, 4293, 3988, 5309, 5208, 4832, 3754, 3995	1.80	
891 850	5s 4P ₄ -s ² p ⁵ ² P ₄ 0 5s 4P ₄ -s ² p ⁵ ² P ₃ 0	0.57 0.12*	4099, 4651, 4437, 4812, 4432, 5500, 4145	0.32	
782 784 818	5s' 2D ₄ -s ² p ⁵ 2P ₄ 0 5s' 2D ₄ -s ² p ⁵ 2P ₄ 0 5s' 2D ₄ -s ² p ⁵ 2P ₄ 0	0.90 small	4088, 4109, 4577, 4691, 4057, 4422, 4065, 4045, 4633	2.36 1.49	
730	4d 2F4-s2p5 2P40	0.55			
669 965 917	4d' ² D ₄ -s ² p ⁵ ² P ₄ 0 4p ⁶ ² S ₄ -s ² p ⁵ ² P ₄ 0 4p ⁶ ² S ₄ -s ² p ⁵ ² P ₄ 0	1.16 5.0 3.9		small small	

[•] estimated

Xe II emission cross sections in units 10⁻¹⁷ cm²/atom 2 keV He⁺ impact energy, compared to contribution from cascade

Wavelength	Transition	Cross section	Wavelength (Å) of measured lines contributing to cascade	Cascade cross section
973 1084	6s ² P ₄ -s ² p ⁵ ² P ₄ 0	0.85 0.17	5309, 3933, 3509, 4921, 4887, 4920	0.74
926	6s' 2D4-s2b2 2D40	1.40	4617, 4415, 4877	1.60
885 977	6s' 2D ₄ -s ² p ⁵ 2P ₄ 0 6s' 2D ₄ -s ² p ⁵ 2P ₄ 0	0.50 1.27	5046, 5262, 5184, 5971 6270	1.06
1075	6s 41'4-s2p5 21'30	2.11	4845, 4890, 4216, 5293 5339	2.77
1052	6s 41'4-s2p5 21'40	2.0	5419, 4603, 3944, 5372	2.18
1183	6s 4P4-s2p5 2P40	0.25	3762, 5976, 5372	
912	5d 21)4-82p6 21740	1.40		small
1100	5p6 2S4-82p5217,0	28.0		small
1244	5p6 2S4-s2p5 2P40	6.3		

Ref. F.J. DeHeer, B.F.J. Luyken, D. Jaecks, and L. Wolterbeek Muller, Physica 41, 588 (1969).

tare gases in the wavelength range from about 200 to 1200 Å. Note that the cross section for neon has been multiplied by a factor of 50. (b) Kinetic-energy dependence of the cross sections for the production of photons by Hetimpact on the rare gases in the wavelength range 1050 to 3500 Å. Note that the cross sections for argon and neon are multiplied by factors of 5 and 100, respectively.

Ref. M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. Lett. 15, 815 (1965).

Graphical Data B-2.90.

Variation of the ionization rate for alpha particles in helium with concentration of added impurity.

(Alpha particles from polonium source)

Ref. H.S.W. Massey, E.H.S. Burhop and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol. III, Second Edition, P. 1812 (Omford University Press, 1971).

Graphical Data B-2.91.