O modelo estatístico de uma regressão linear múltipla

• Temos uma regressão linear múltipla quando admitimos que o valor da variável dependente (Y) é função linear de duas ou mais variáveis explanatórias $(X_1, X_2, ...)$.

O modelo estatístico de uma regressão linear múltipla com k variáveis explanatórias
 é:

$$Y_{j} = \alpha + \beta_{1}X_{1j} + \beta_{2}X_{2j} + ... + \beta_{k}X_{kj} + \mu_{j}, j = 1,...,n$$
 observações

ou

$$Y_j = \alpha + \sum_{i=1}^k \beta_i X_{ij} + \mu_j$$
, $i = 1,...,k$ regressores

• Utilizando notação matricial o modelo fica $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mu}$

$$\mathbf{y}_{(n,1)} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \qquad \mathbf{X}_{(n,k+1)} = \begin{pmatrix} 1 & X_{11} & X_{21} & \cdots & X_{k1} \\ 1 & X_{12} & X_{22} & \cdots & X_{k2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1n} & X_{2n} & \cdots & X_{kn} \end{pmatrix} \qquad \mathbf{\beta}_{(k+1,1)} = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta \end{pmatrix} \qquad \mathbf{\mu}_{(n,1)} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}$$

• O modelo estimado é $\hat{\mathbf{y}} = \mathbf{X}\mathbf{b}$, em que $\hat{\mathbf{y}} = \begin{bmatrix} Y_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix}$ $\mathbf{b}_{(k+1,1)} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

Pressupostos do modelo

- $\mathbf{H.1}$ a variável dependente é (Y) função linear das variáveis explanatórias;
- **H.2** as variáveis explanatórias não guardam correlação com o termo de erro do modelo: $cov(X_{ij}, \mu_j) = 0$;
- $\mathbf{H.3} E(\mu_i) = 0$, ou seja, $E(\mathbf{\mu}) = \mathbf{0}$, em que $\mathbf{0}$ representa um vetor de zeros;
- **H.4** $V(\mu_i) = E(\mu_i^2) = \sigma^2$ = constante, ou seja, os erros são homocedásticos;
- **H.5** $-\cot(\mu_j, \mu_h) = E\{\mu_j E(\mu_j) [\mu_h E(\mu_h)]\} = E(\mu_j \mu_h) = 0$ para $j \neq h$, isto é, os erros são não-correlacionados entre si;
- **H.6** os erros têm distribuição normal.

- Além disso, como (k+1) é o número de parâmetros a serem estimados $(\alpha, \beta_1,...,\beta_k)$, devemos ter n > k+1.
- Combinando H.4 e H.5 temos

$$E(\mathbf{\mu}\mathbf{\mu}') = E\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} \underbrace{(\mu_1 \quad \mu_2 \quad \cdots \quad \mu_n)}_{(1,n)} = E\begin{bmatrix} \mu_1^2 \quad \mu_1\mu_2 \quad \cdots \quad \mu_1\mu_n \\ \mu_2\mu_1 \quad \mu_2^2 \quad \cdots \quad \mu_2\mu_n \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ \mu_n\mu_1 \quad \mu_n\mu_2 \quad \cdots \quad \mu_n^2 \end{bmatrix} = \begin{bmatrix} \sigma^2 \quad 0 \quad \cdots \quad 0 \\ 0 \quad \sigma^2 \quad \cdots \quad 0 \\ \vdots \quad \vdots \quad \ddots \quad \vdots \\ 0 \quad 0 \quad \cdots \quad \sigma^2 \end{bmatrix} = \mathbf{I}\sigma^2$$

H.1, H.2 e H.3 são necessárias para demonstrar que os estimadores de mínimos quadrados são não tendenciosos. H.1 a H.5 permitem demonstrar que tais estimadores são estimadores lineares não tendenciosos de variância mínima. H.6 é necessária para realizar testes de hipóteses e para construir intervalos de confiança para os parâmetros.

Estimativa dos parâmetros segundo o método dos mínimos quadrados

• Seja **b** o vetor das estimativas dos parâmetros, **e** o vetor de desvios e $\hat{\mathbf{y}}$ o vetor de valores estimados de Y, isto é:

$$\mathbf{b}_{(k+1,1)} = \begin{pmatrix} a \\ b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix} \qquad \mathbf{e}_{(n,1)} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} \qquad \mathbf{\hat{y}}_{(n,1)} = \begin{pmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{pmatrix}$$

- Temos $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}} = \mathbf{y} \mathbf{X}\mathbf{b}$
- A soma dos quadrados dos desvios é dada por

$$Z = \sum_{j=1}^{n} e_{j}^{2}$$
 (medida agregada dos desvios para as *n* observações da amostra)

$$Z = \mathbf{e}'\mathbf{e}$$
 ou seja,
$$\underbrace{\begin{pmatrix} e_1 & e_2 & \cdots & e_n \end{pmatrix}}_{(1,n)} \underbrace{\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}}_{j=1} = \sum_{j=1}^n e_j^2$$

Substituindo e = y - Xb

$$Z = \underbrace{\left(\mathbf{y} - \mathbf{X}\mathbf{b}\right)'}_{\mathbf{y}} \underbrace{\left(\mathbf{y} - \mathbf{X}\mathbf{b}\right)}_{\mathbf{y}}$$

Das propriedades da transposta: (AB)' = B'A'

$$Z = (\mathbf{y'} - \mathbf{b'X'})(\mathbf{y} - \mathbf{Xb})$$

$$Z = \mathbf{y'y} - \mathbf{y'Xb} - \mathbf{b'X'y} + \mathbf{b'X'Xb}$$

$$(1,1) \quad (1,1)$$

As matrizes **y'Xb** e **b'X'y** são iguais, pois uma é a transposta da outra e cada uma tem apenas um elemento. Então:

$$Z = \mathbf{y}'\mathbf{y} - 2\mathbf{b}'\mathbf{X}'\mathbf{y} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}$$

O método dos mínimos quadrados consiste em adotar como estimativas dos parâmetros os valores que minimizam a soma dos quadrados dos desvios.

A função Z apresenta ponto de mínimo para os valores de \mathbf{b} que tornem sua diferencial identicamente nula, isto \acute{e} :

$$dZ = -2(d\mathbf{b}')\mathbf{X}'\mathbf{y} + (d\mathbf{b}')\mathbf{X}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}(d\mathbf{b}) = 0$$

Como $(d\mathbf{b}')\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{b}'\mathbf{X}'\mathbf{X}(d\mathbf{b})$, por serem matrizes com apenas um elemento e uma ser a transposta da outra, segue-se que

$$-2(d\mathbf{b}')\mathbf{X}'\mathbf{y} + 2(d\mathbf{b}')\mathbf{X}'\mathbf{X}\mathbf{b} = 0$$

$$(d\mathbf{b}')(\mathbf{X}'\mathbf{X}\mathbf{b} - \mathbf{X}'\mathbf{y}) = 0$$

Portanto, a diferencial de Z será identicamente nula para

$$X'Xb = X'y$$

Desde que $\mathbf{X}'\mathbf{X}$ seja não singular (ou seja, tenha determinante não nulo), existe a matriz inversa $(\mathbf{X}'\mathbf{X})^{-1}$.

Pré-multiplicando os dois membros de $\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{y}$ por $(\mathbf{X}'\mathbf{X})^{-1}$, obtemos

$$\underbrace{\left(\mathbf{X'X}\right)^{-1}\mathbf{X'X}}_{\mathbf{I}}\mathbf{b} = \left(\mathbf{X'X}\right)^{-1}\mathbf{X'y}$$

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

em que

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} n & \sum_{j=1}^{n} X_{1j} & \sum_{j=1}^{n} X_{2j} & \cdots & \sum_{j=1}^{n} X_{kj} \\ \sum_{j=1}^{n} X_{1j} & \sum_{j=1}^{n} X_{1j}^{2} & \sum_{j=1}^{n} X_{1j} X_{2j} & \cdots & \sum_{j=1}^{n} X_{1j} X_{kj} \\ \sum_{j=1}^{n} X_{2j} & \sum_{j=1}^{n} X_{2j} X_{1j} & \sum_{j=1}^{n} X_{2j}^{2} & \cdots & \sum_{j=1}^{n} X_{2j} X_{kj} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} X_{kj} & \sum_{j=1}^{n} X_{kj} X_{1j} & \sum_{j=1}^{n} X_{kj} X_{2j} & \cdots & \sum_{j=1}^{n} X_{k}^{2} \end{pmatrix} e \mathbf{X}'\mathbf{y} = \begin{pmatrix} \sum_{j=1}^{n} Y_{j} \\ \sum_{j=1}^{n} X_{1j} Y_{j} \\ \sum_{j=1}^{n} X_{2j} Y_{j} \\ \vdots \\ \sum_{j=1}^{n} X_{kj} Y_{j} \end{pmatrix}$$

Exemplo

São dados os valores de X_1 , X_2 e Y da tabela a seguir:

X_1	X_2	Y
0	0	-1
0	2	3
0	4	5
0	6	5
2	0	4
2	2	10
2	4	12
2	6	10

Admite-se que as variáveis estão relacionadas de acordo com o modelo $Y_j = \alpha + \beta_1 X_{1j} + \beta_2 X_{2j} + \mu_j$, em que os μ_j são variáveis aleatórias independentes, homocedásticas, com média zero e distribuição normal.

Determine as estimativas dos parâmetros da regressão linear múltipla de Y em relação a X_1 e X_2 .

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \mu$$

ou

$$y = X\beta + \mu\,,$$

em que

$$\mathbf{y} = \begin{pmatrix} -1\\3\\5\\5\\4\\10\\12\\10 \end{pmatrix} \qquad \mathbf{X}_{(8,3)} = \begin{pmatrix} 1 & 0 & 0\\1 & 0 & 2\\1 & 0 & 4\\1 & 0 & 6\\1 & 2 & 0\\1 & 2 & 2\\1 & 2 & 4\\1 & 2 & 6 \end{pmatrix}$$

$$\mathbf{\beta} = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

$$\mathbf{\mu}_{3,1} = \begin{pmatrix} \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_5 \\ \mu_6 \\ \mu_7 \\ \mu_8 \end{pmatrix}$$

Estimativa dos parâmetros:
$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\ 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 4 \\ 1 & 0 & 6 \\ 1 & 2 & 0 \\ 1 & 2 & 2 \\ 1 & 2 & 4 \\ 1 & 2 & 6 \end{pmatrix} = \begin{bmatrix} 8 & 8 & 24 \\ 8 & 16 & 24 \end{bmatrix} = \begin{pmatrix} n & \sum X_1 & \sum X_2 \\ \sum X_1 & \sum X_2 & \sum X_1 X_2 \end{pmatrix}$$

$$\mathbf{X'X} = \underbrace{\begin{pmatrix} 8 & 8 & 24 \\ 8 & 16 & 24 \\ 24 & 24 & 112 \end{pmatrix}}_{(3,3)} = \underbrace{\begin{pmatrix} n & \sum X_1 & \sum X_2 \\ \sum X_1 & \sum X_1^2 & \sum X_1 X_2 \\ \sum X_2 & \sum X_2 X_1 & \sum X_2^2 \end{pmatrix}}_{(3,3)}$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} 0.475 & -0.125 & -0.075 \\ -0.125 & 0.125 & 0 \\ -0.075 & 0 & 0.025 \end{pmatrix}$$

$$\mathbf{X}'\mathbf{y} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\ 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 \end{pmatrix}}_{(3,8)} \underbrace{\begin{pmatrix} -1 \\ 3 \\ 5 \\ 5 \\ 4 \\ 10 \\ 12 \\ 10 \end{pmatrix}}_{(8,1)} = \begin{pmatrix} 48 \\ 72 \\ 184 \end{pmatrix} = \underbrace{\begin{pmatrix} \sum Y \\ \sum X_1 Y \\ \sum X_2 Y \end{pmatrix}}_{(8,1)}$$

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \begin{pmatrix} 0.475 & -0.125 & -0.075 \\ -0.125 & 0.125 & 0 \\ -0.075 & 0 & 0.025 \end{pmatrix} \begin{pmatrix} 48 \\ 72 \\ 184 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$$
 $\therefore \hat{Y} = 3X_1 + X_2$

Dicas para inverter matriz:

- inversa de matriz 2x2;
- inversa de matriz diagonal;
- calculadoras on-line: http://www.mathportal.org/calculators/matrices-calculators/matrix-calculator.php

Análise de variância da regressão linear múltipla

Causas de variação	Graus de liberdade	Soma de quadrados
Regressão	k	$\mathbf{b'X'y} - \frac{\left(\sum_{j=1}^{n} Y_{j}\right)^{2}}{n}$
Resíduo	n-k-1	y ' y - b ' X ' y
Total	n-1	$\mathbf{y'y} - \frac{\left(\sum_{j=1}^{n} Y_{j}\right)^{2}}{n}$

em que

k =número de regressores

n =tamanho da amostra

Exemplo

Faça a análise de variância da regressão com 5% de significância.

Causas de Variação	Graus de liberdade (gl)	Soma de Quadrados (SQ)	Quadrados Médios (QM)
Regressão	k = 2	$\mathbf{b'X'y} - \frac{\left(\sum Y\right)^2}{n}$	$\frac{\mathbf{b'X'y} - \frac{\left(\sum Y\right)^2}{n}}{2}$
Resíduo	n-k-1=5	y'y-b'X'y	$\frac{\mathbf{y}'\mathbf{y} - \mathbf{b}'\mathbf{X}'\mathbf{y}}{5}$
Total	n-1=7	$\mathbf{y'y} - \frac{\left(\sum Y\right)^2}{n}$	

$$\mathbf{b'X'y} = \begin{pmatrix} 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} 48 \\ 72 \\ 184 \end{pmatrix} = 400$$

$$\mathbf{b'X'y} = \begin{pmatrix} 0 & 3 & 1 \\ 184 \end{pmatrix} = 400$$

$$\mathbf{y'y} = \begin{pmatrix} -1 & 3 & 5 & 5 & 4 & 10 & 12 & 10 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 5 \\ 4 \\ 10 \\ 12 \\ 10 \end{pmatrix} = 420$$

$$\sum Y = 48$$

Causas de Variação	Graus de liberdade (gl)	Soma de Quadrados (SQ)	Quadrados Médios (QM)
Regressão	2	$400 - \left(\frac{48^2}{8}\right) = 112$	56
Resíduo	5	20	4
Total	7	$420 - \left(\frac{48^2}{8}\right) = 132$	

Coeficiente de determinação do modelo

$$R^2 = \frac{SQ \text{ Regressão}}{SQ \text{ Total}} = \frac{112}{132} = 84,85\%$$
 "84,85% das variações observadas em Y são explicadas pela regressão"

Teste F

$$\begin{cases} H_0: \beta_1 = \beta_2 = 0 \\ H_A: \beta_1 \text{ e/ou } \beta_2 \neq 0 \end{cases} \text{ ao } ns = 5\%$$

$$F_{calc} = \frac{\text{QM Regressão}}{\text{QM Resíduos}} = \frac{56}{4} = 14$$

 $F_0 = ?$

	1	2	3	4	5	6	7	8	9
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49

Como $F_{calc} \ge F_0$, rejeita-se H_0 .

Aplicação

O tamanho das escolas tem efeito sobre o desempenho dos estudantes? Estudantes de escolas menores saem-se melhor do que aqueles de escolas maiores?

Arquivo 'meap93.gdt' traz uma amostra de 408 escolas de ensino médio em Michigan em 1993.

math10 = % de aprovados no teste de matemática

 $enroll = n^{\circ}$ de estudantes matriculados (~ tamanho da escola)

Problema: como **isolar** o efeito do tamanho da escola (~ número de alunos) sobre o desempenho dos estudantes?

É preciso **controlar** todos os outros fatores que afetam o desempenho dos estudantes.

```
salary = salário anual médio dos professores (~ qualidade do professor)
```

 $staff = n^{\circ}$ de funcionários por mil estudantes (~ atenção recebida pelos estudantes)

...

Modelo: MQO, usando as observações 1-408 Variável dependente: math10

	Coeficiente Erro Padrão	razão-t	p-valor	
const	0,425914 6,05623	0,0703	0,94397	
enroll	-0,000253017 0,000215152	-1,1760	0,24029	
staff	0,0529116 0,0396184	1,3355	0,18245	
<mark>salary</mark>	0,000598902 0,000119156	5,0262	<0,00001	***

Média var. dependente	24,10686	D.P. var. dependente	10,49361
Soma resíd. quadrados	41961,94	E.P. da regressão	10,19148
<mark>R-quadrado</mark>	0,063709	R-quadrado ajustado	0,056756
F(3, 404)	9,163212	P-valor(F)	7,05e-06
Log da verossimilhança	-1524,110	Critério de Akaike	3056,220
Critério de Schwarz	3072,265	Critério Hannan-Quinn	3062,569

Por que obtivemos um R² de apenas 6,37%?