- 1. Carothers 16.4 [Sakti]
- 2. Carothers 16.12 [Mason]
- **3.** Carothers 16.16 (Solution by Lander Ver Hoef)

If
$$m^*(E) = 0$$
, show that $m^*(E \cup A) = m^*(A) = m^*(A \setminus E)$ for any A .

Solution:

Suppose we have some set E such that $m^*(E) = 0$, and let A be any subset of \mathbb{R} . Observe that $A \subseteq A \cup E$, so $m^*(A) \le m^*(A \cup E)$. But $m^*(A \cup E) \le m^*(A) + m^*(E) = m^*(A) + 0$, so $m^*(A) = m^*(A \cup E)$.

Similarly, $A \setminus E \subseteq A$, so $m^*(A \setminus E) \le m^*(A)$, and $A \subseteq (A \setminus E) \cup E$, so $m^*(A) \le m^*(A \setminus E) + m^*(E) = m^*(A \setminus E)$. Thus, $m^*(A) = m^*(A \setminus E)$.

4. Carothers 16.22 [Jody]: Let $E = \bigcup_{n=1}^{\infty} E_n$. Show that $m^*(E) = 0$ if and only if $m^*(E_n) = 0$ for every n.

Solution:

Since m^* is countably subadditive, then if $m^*(E_n) = 0$ for every n we have that $m^*(E) \le \sum_{n=1}^{\infty} \ell(E_n) = 0$. Since $m^*(A) \ge 0$ for all $A \subseteq \mathbb{R}$ then $m^*(E) \le 0$ implies $m^*(E) = 0$. Now suppose $m^*(E) = 0$. Note for each E_n that $m^*(E_n) \le m^*(E) = 0$, which implies $m^*(E_n) = 0$.

5. [Carothers 16.24] (Solution by Max Heldman)

Given $E \subseteq \mathbb{R}$, there is a G_{δ} -set G so that $m^*(G) = m^*(E)$.

Solution:

By Exercise 16.12, $m^*(E) = \inf\{m^*(U) : U \text{ is open and } E \subseteq U\}$. Hence there is a sequence of open sets (U_n) so that $E \subseteq U_n$ for each n and $\lim_{n\to\infty} m^*(U_n) = m^*(E)$. Take $U = \bigcap_{n=1}^{\infty} U_n$, and observe that $E \subseteq U$, so $m^*(E) \le m^*(U)$. Moreover, for every $\epsilon > 0$ there exists $n \in \mathbb{N}$ so that $0 \le m^*(U_n) - m^*(E) < \epsilon$. But since $U \subseteq U_n$, $m^*(U) \le m^*(U_n)$, which implies

$$0 \le m^*(U) - m^*(E) \le m^*(U_n) - m^*(E) < \epsilon.$$

Hence $m^*(U) = m^*(E)$.

6. Carothers 16.25 (Solution by Lander Ver Hoef)

Suppose that $m^*(E) > 0$. Given $0 < \alpha < 1$, show that there exists an open interval I such that $m^*(E \cap I) > \alpha m^*(I)$. [Hint: It is enough to consider the case $m^*(E) < \infty$. Now suppose that the conclusion fails.]

Solution:

Let $E_n = E \cap [-n, n]$. Observe that as n goes to infinity, $m^*(E_n)$ goes to $m^*(E)$, so there exists an n such that $m^*(E_n) > 0$, but $m^*(E_n) \le 2n < \infty$, and $E_n \subseteq E$. Thus, if we can find an interval I that satisfies the condition for E_n , that same interval will satisfy the condition for E. Thus, we may consider only sets with finite outer measure.

So, suppose $0 < m^*(E) < \infty$. Choose α such that $0 < \alpha < 1$. Suppose to produce a contradiction that for all open intervals I,

$$m^*(E \cap I) \leq \alpha m^*(I)$$
.

Let $\varepsilon > 0$ such that $m^*(E) + \varepsilon < \frac{1}{\alpha} m^*(E)$. Then there exists a measuring cover $\{I_k\}$ such that

$$\sum_{k=1}^{\infty} m^*(I_k) < m^*(E) + \varepsilon < \frac{1}{\alpha} m^*(E).$$

That is, $m^*(E) > \alpha \sum_{k=1}^{\infty} m^*(I_k)$.

Next, note that because *E* is a subset of $\bigcup_{k=1}^{\infty} I_k$,

$$m^*(E) = m^*\left(E \cap \bigcup_{k=1}^{\infty} I_k\right) = m^*\left(\bigcup_{k=1}^{\infty} E \cap I_k\right) \leq \sum_{k=1}^{\infty} m^*(E \cap I_k),$$

by countable subadditivity. But then, by our hypothesis,

$$\sum_{k=1}^{\infty} m^*(E \cap I_k) \leq \sum_{k=1}^{\infty} \alpha m^*(I_k) = \alpha \sum_{k=1}^{\infty} m^*(I_k) < m^*(E).$$

Thus, $m^*(E) < m^*(E)$, which is a contradiction.

- 7. Carothers 16.28 [Mason]
- 8. Carothers 16.40 [Sakti]
- 9. [Carothers 16.42] (Solution by Max Heldman)

Suppose *E* is measurable with m(E) = 1. Then

a) There is a measurable set $F \subseteq E$ such that m(F) = 1/2.

Solution:

Define $f : \mathbb{R}^+ \to \mathbb{R}$ by $f(x) = m([-x, x] \cap E)$. Let $\epsilon > 0$, and suppose $x, y \in \mathbb{R}^+$ with x > y. Then

$$|f(x) - f(y)| = m([-x, x] \cap E) - m([-y, y] \cap E)$$

$$= m(([-x, x] \setminus [-y, y]) \cap E) + m([-y, y] \cap E) - m([-y, y] \cap E)$$

$$\leq m([-x, -y)) + m((y, x])$$

$$= 2|x - y|.$$

Hence f is Lipschitz continuous. Since f(0) = 0, by the Intermediate Value Theorem we need only show that there exists $b \in \mathbb{R}^+$ so that $f(b) \ge 1/2$.

For each $n \in \mathbb{N}$, let $E_n = [-n, n] \cap E$, and observe that $\bigcup_{n=1}^{\infty} E_n = E$. The E_n are nested, so $\lim_{n\to\infty} m(E_n) = m(E) = 1$. But $f(n) = m(E_n)$ for each $n \in \mathbb{N}$, so there exists $n \in \mathbb{N}$ so that f(n) > 1/2.

b) There is a closed set F, consisting entirely of irrationals, so that $F \subseteq E$ and m(F) = 1/2.

Solution:

Let $A = E \setminus \mathbb{Q}$. Since $m(\mathbb{Q}) = 0$, m(A) = m(E) = 1. Since A is measurable, there exists a sequence (V_n) of closed sets so that $V_n \subseteq A$ and $m(V_n) \to m(A) = 1$. In particular, there is a closed set $V \subseteq A$ so that m(V) > 1/2. By (a), there exists $x \in \mathbb{R}$ so that $F = V \cap [-x, x]$ has measure 1/2. Since F is an intersection of closed sets, F is closed, and F consists of only irrationals since $F \subseteq A \subseteq \mathbb{Q}^c$.

c) There is a compact set F with empty interior so that $F \subseteq E$ and m(F) = 1/2.

Solution:

The set $F \subseteq E$ produced in part (**b**) is closed, bounded (and therefore compact) and has an empty interior (since it contains only irrationals), and m(F) = 1/2.

10. Carothers 16.44 [Jody]: Let E be a measurable set with m(E) > 0. Prove that $E - E = \{x - y : x, y \in E\}$ contains an interval centered at 0.

Solution:

Since m(E) > 0 then by Exercise 16.25 there exists an open interval I such that $m(E \cap I) > 3m(I)/4$. Let $x \in \mathbb{R}$ so that |x| < m(I)/2. Then x shifts I by no more than m(I)/2, which implies $m((I + x)\backslash I) \le m(I)/2$. Observe

$$m(I \cup (I+x)) = m(((I+x)\setminus I) \cup I) = m((I+x)\setminus I) + m(I) \le m(I)/2 + m(I) = 3m(I)/2.$$

Suppose E and E + x are disjoint. Since $E \cap I \subseteq E$ and $(E \cap I) + x \subseteq E + x$ then $E \cap I$ and $(E \cap I) + x$ are disjoint. Moreover $(E \cap I) \cup (E \cap I) + x \subseteq I \cup (I + x)$, thus monotonicity of m implies

$$m((E \cap I) \cup (E \cap I) + x) \leq m(I \cup (I + x)) \leq 3m(I)/2.$$

Since $E \cap I$ and $(E \cap I) + x$ are disjoint then

$$m((E\cap I)\cup (E\cap I)+x)=m(E\cap I)+m((E\cap I)+x)=2m(E\cap I),$$

which implies $m(E \cap I) \le 3m(I)/4$, a contradiction of $3m(I)/4 < m(E \cap I)$. So there exists $y \in (E + x) \cap E$. That is, $y \in E$ and y = x + z for some $z \in E$, which implies $x = y - z \in E - E$. Hence for all |R| < m(I)/2 we have that $(-|R|, |R|) \subset E - E$.

- 11. Carothers 16.45 (Solution by former 641 student TJ Barry) Let $f: X \to Y$ be any function.
 - a) If \mathcal{B} is a σ -algebra of subsets of Y, prove that $\mathcal{A} = \{f^{-1}(B) : B \in \mathcal{B}\}$ is a σ -algebra of subsets of X.
 - b) If A is a σ -algebra of subsets of X, prove that $\mathcal{B} = \{B : f^{-1}(B) \in A\}$ is a σ -algebra of subsets of Y.

Solution, part a:

Let $A \in \mathcal{A}$ be arbitrary. Note, $A = f^{-1}(B)$ for some $B \in \mathcal{B}$. Hence,

$$A^{c} = (f^{-1}(B))^{c} = f^{-1}(B^{c}).$$

Since \mathcal{B} is a σ -algebra, $\mathcal{B}^c \in \mathcal{B}$, and hence $\mathcal{A}^c \in \mathcal{A}$.

Similarly, let $\{A_i\}_{i\in I}$ be a countable collection of subsets of \mathcal{A} . Then for each i, $A_i = f^{-1}(B_i)$ for some $B_i \in \mathcal{B}$. Hence,

$$\bigcup_{i\in I}A_i=\bigcup_{i\in I}f^{-1}(B_i)=f^{-1}\left(\bigcup_{i\in I}B_i\right).$$

Since \mathcal{B} is a σ -algebra, $\bigcup_{i \in I} B_i \in \mathcal{B}$, and hence $\bigcup_{i \in I} A_i \in \mathcal{A}$.

Thus, \mathcal{A} is closed under complements and countable unions. By De Morgan's laws we also find that \mathcal{A} is closed under countable intersections. Therefore, we conclude that \mathcal{A} is a σ -algebra.

Solution, part b:

Let $B \in \mathcal{B}$ be arbitrary. Note, $f^{-1}(B^c) = (f^{-1}(B))^c$. Since $f^{-1}(B) \in \mathcal{A}$ and \mathcal{A} is a σ -algebra, $(f^{-1}(B))^c \in \mathcal{A}$. Thus, $f^{-1}(B^c) \in \mathcal{A}$, and hence $B^c \in \mathcal{B}$.

Now, let $\{B_i\}_{i\in I}$ be a countable collection of subsets of \mathcal{B} . Then $f^{-1}(B_i) \in \mathcal{A}$ for each $i \in I$, and hence $\bigcup_{i\in I} f^{-1}(B_i) \in \mathcal{A}$. But $\bigcup_{i\in I} f^{-1}(B_i) = f^{-1}(\bigcup_{i\in I} B_i)$, so we have $f^{-1}(\bigcup_{i\in I} B_i) \in \mathcal{A}$, and hence $\bigcup_{i\in I} B_i \in \mathcal{B}$.

Thus, \mathcal{B} is closed under complements and countable unions. By De Morgan's laws we can easily show that \mathcal{B} is closed under countable intersections. Therefore, we conclude that \mathcal{B} is a σ -algebra.

12. Carothers 16.53 (Solution by David Maxwell)

Show that \mathcal{B} is generated by each of the following:

- (i) The open intervals $\mathcal{E}_1 = \{(a, b) : a < b\}$.
- (ii) The closed intervals $\mathcal{E}_2 = \{[a, b] : a < b\}$.
- (iii) The half-open intervals $\mathcal{E}_3 = \{(a, b], [a, b) : a < b\}$.
- (iv) The open rays $\mathcal{E}_4 = \{(a, \infty), (-\infty, b)\} : a, b \in \mathbb{R}\}.$
- (iv) The closed rays $\mathcal{E}_5 = \{[a, \infty), (-\infty, b]) : a, b \in \mathbb{R}\}.$

Solution:

Note that each \mathcal{E}_k is a collection of Borel sets. This is certainly true for \mathcal{E}_1 , \mathcal{E}_2 \mathcal{E}_4 , and \mathcal{E}_5 since these are collections of open or closed sets. Every half open interval (a, b] or [a, b) is a G_δ set (being the intersection $\bigcap_n (a - 1/n, b)$ and $\bigcap_n (a, b + 1/n)$) respectively). Hence

the elements of \mathcal{E}_3 are Borel sets as well. Hence for each k, \mathcal{B} is a σ -algebra containing \mathcal{E}_k and therefore

$$\sigma(\mathcal{E}_k) \subseteq \mathcal{B}$$
.

Let $\mathcal{F} = \{(a, \infty) : a \in \mathbb{R}\}$. We will show that that $\sigma(\mathcal{F}) = \mathcal{B}$, and that $\mathcal{F} \subseteq \sigma(\mathcal{E}_k)$ for every k. Having done this, we can conclude that

$$\mathcal{B} = \sigma(\mathcal{F}) \subseteq \sigma(\mathcal{E}_k)$$

for each k and hence $\sigma(\mathcal{E}_k) = \mathcal{B}$.

Suppose U is an open set. Then U is a countable union of open intervals. To show that $U \in \sigma(\mathcal{F})$, it is enough to show that any open interval is in $\sigma(\mathcal{F})$. But $\sigma(\mathcal{F})$ contains, by taking complements, any closed ray $(-\infty,b]$) and by taking finite intersections any half open interval (a,b]. Now by taking countable unions of sets of the form (a,b-1/n] we have $\sigma(\mathcal{F})$ contains any bounded open intervals (a,b). But any unbounded open interval can be written as a countable union of open intervals. Hence $\sigma(\mathcal{F})$ contains the open intervals and hence the open sets. Since \mathcal{B} is the smallest such σ -algebra, $\mathcal{B} \subseteq \sigma(\mathcal{F})$. But the elements of \mathcal{F} are Borel sets, so $\sigma(\mathcal{F}) \subseteq \mathcal{B}$. Hence $\mathcal{B} = \sigma(\mathcal{F})$).

Let $a \in \mathbb{R}$ and let $I = (a, \infty)$. We will show that $I \in \sigma(\mathcal{E}_k)$ for each k and hence $\mathcal{F} \subseteq \sigma(\mathcal{E}_k)$. Notice

$$I = \bigcup_{n \in \mathbb{N}} (a, a + n)$$

$$I = \bigcup_{n \in \mathbb{N}} [a + 1/n, a + n]$$

$$I = \bigcup_{n \in \mathbb{N}} (a, a + n]$$

$$I = (a, \infty)$$

$$I = \bigcup_{n \in \mathbb{N}} [a + 1/n, \infty).$$

In each case we have exhibited I as an element or countable union of elements of each \mathcal{E}_k . So $I \in \sigma(\mathcal{E}_k)$ for each k.