UNIDADE III: MEDIDAS DE POSIÇÃO: MEDIDAS SEPARATRIZES

OBJETIVO DA UNIDADE:

- Perceber a necessidade dessas medidas para a interpretação dos dados analisados;
- Identificar medidas separatrizes;
- Calcular as medidas separatrizes e saber interpretá-las.

Muitas vezes torna-se necessário conhecermos outras medidas, além das de Tendência Central. Assim, nesta Unidade estaremos estudando medidas de posição chamadas Separatrizes: Mediana, quartis, decis e percentis.

Mediana é uma medida de posição que é simultaneamente, medida de tendência central e medida separatriz. Por esse motivo a mediana foi estudada na Unidade VI, assim passaremos ao estudo do quartis, posteriormente do decis e percentis.

Já estudamos que a mediana separa a série em duas partes iguais, e que cada parte contém o mesmo número de elementos. Contudo, uma mesma série pode ser dividida em duas ou mais partes que contenham a mesma quantidade de elementos. O nome da medida de posição separatriz será de acordo com a quantidade de partes em que é dividida a série.

- Mediana: divide a série em duas partes iguais (Xm_d);
- Quartis: divide a série em quatro partes iguais (Q₁, Q₂, Q₃);
- Decis: divide a série em 10 partes iguais $(D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9)$;
- Percentis: divide a série em 100 partes iguais (P₁, P₂, P₃, ..., P₉₉).

3.1 Quartis (Q_K)

Nos quartis, a série é dividida em quatro partes iguais. Os elementos separatrizes da serie são Q_1 , Q_2 , e Q_3 .

Q₁: é o primeiro quartil, corresponde à separação dos primeiros 25% de elementos da serie.

 \mathbf{Q}_2 : é o segundo quartil, coincide com a mediana ($\mathbf{Q}_2 = \mathbf{M}_d$).

Q₃: é o terceiro quartil, corresponde à separação dos últimos 25% de elementos da série, ou seja, os 75% dos elementos da série.

Para o cálculo dos quartis utilizam-se técnicas semelhantes àquelas do cálculo da mediana. Consequentemente, podem-se utilizar as mesmas fórmulas do calculo da mediana, levando em

conta que onde houver a expressão $\frac{\sum f_i}{2}$ será substituída por $\frac{K\sum f_i}{4}$, sendo K o número da ordem do quartil, em que K =1 corresponde ao primeiro quartil; K = 2 corresponde ao segundo quartil e K = 3 ao terceiro quartil.

3.1.1 Cálculo do quartil para o rol

1º Passo: Determina-se a posição do Quartil.

$$P_{QK} = \frac{Kn}{4}$$
 (onde $K = 1,2ou3$)

2º Passo: Identifica-se a posição mais próxima do rol.

3º Passo: Verifica-se quem está naquela posição.

Exemplo: Calcule Q_1 , Q_2 e Q_3 para o seguinte conjunto de valores:

Inicialmente precisamos colocar os valores em ordem (rol)

a) Vamos utilizar os passos para o cálculo do 1º quartil:

1º Passo: Determina-se a posição do 1º quartil:

$$P_{\varrho_1} = \frac{1 \cdot 12}{4} = 3 \Rightarrow posição do 1^{\circ} quartil$$

2º Passo: Identificar a posição 3

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

O número que corresponde a 25% do rol é o valor 2

b) Vamos utilæar							x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
1° Passo: Determ	ınpa-se	a p osi	çãµpdo	26° qu	ar y ıl:	8	8	9	10	11	12

$$P_{Q^2} = \frac{2 \cdot 12}{4} = 6 \Rightarrow posição do 2° quartil$$

2º Passo: Identificar a posição 6

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

\boldsymbol{x}_1	x_2	x_3	x_4	x_{5}	x_6	x_7	x_8	x_9	x_{10}	x_{11}	<i>x</i> ₁₂
0	1	2	4	6	7	8	8	9	10	11	12

O número que corresponde a 50% do rol é o valor 7

c) Vamos utilizar os passos para o cálculo do 3° quartil:

1º Passo: Determina-se a posição do 3º quartil:

$$P_{Q^3} = \frac{3 \cdot 12}{4} = 9 \Rightarrow posição do 3° quartil$$

2º Passo: Identificar a posição 9

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

\mathcal{X}_1	x_2	x_3	X_4	x_{5}	x_6	\boldsymbol{x}_7	x_8	x_9	x_{10}	x_{11}	x_{12}
0	1	2	4	6	7	8	8	9	10	11	12

O número que corresponde a 75% do rol é o valor 9

3.1.2 Cálculo do quartil para a tabela sem intervalo de classe

1º Passo: Calcula-se a posição do quartil.

$$P_{QK} = \frac{K \sum f_i}{4} \quad (onde \quad K = 1,2ou3)$$

2° Passo: É necessário inserir a coluna da frequência acumulada, e nela procurar o valor da posição do quartil .

3° Passo: O Valor do quartil será o valor da variável que corresponde àquela classe.

Exemplo: Calcular os valores do Q₁, Q₂e Q₃ da tabela seguinte:

Tabela 3.1 – Números de acidentes /mês no Cruzamento X em CG/07

N° de acidentes / mes	f	fa
0	4	4
1	6	10
2	9	19
3	5	24
4	4	28
	$\sum f = 28$	

a) Vamos calcular inicialmente $Q_{\scriptscriptstyle 1}$

!º Passo: Determinar a posição do 1º quartil (25%)

$$P_{Q1} = \frac{1 \cdot 28}{4} = 7 \Rightarrow posição do 1^{\circ} quartil$$

2º Passo: Procurar na coluna da fa a posição do 7º elemento

3° Passo: A variável que corresponde à posição do 7° elemento é 1 (na segunda classe).

25% da pesquisa mostrou que este cruzamento teve 1 acidente / mês.

b) Vamos calcular o Q₂

!º Passo: Determinar a posição do 2º quartil (50%)

$$P_{Q^2} = \frac{2 \cdot 28}{4} = 14 \Rightarrow posição do 2^\circ quartil$$

2º Passo: Procurar na coluna da fa a posição do 14º elemento

3° Passo: A variável que corresponde à posição do 14° elemento é 2 (na terceira classe).

50% da pesquisa mostrou que este cruzamento teve 2 acidentes / mês.

c) Vamos calcular o Q₃

!º Passo: Determinar a posição do 3º quartil (50%)

$$P_{Q^3} = \frac{3 \cdot 28}{4} = 21 \Rightarrow posição do 3° quartil$$

2º Passo: Procurar na coluna da fa a posição do 21º elemento

3° Passo: A variável que corresponde à posição do 21° elemento é 3 (na quarta classe).

75% da pesquisa mostrou que este cruzamento teve 3 acidentes / mês.

3.1.3 Cálculo do quartil em tabelas com intervalo de classe

Determina-se, inicialmente, a classe que contém o valor quartil a ser calculado. A identificação da classe é feita por meio do termo da ordem calculada pela expressão:

$$P_{QK} = \frac{K \sum f_i}{4} \quad (onde \quad K = 1,2ou3)$$

Essa expressão determina a posição do referente quartil ou classe que contém o quartil. Assim, temos:

$$Q_k = l_{qk} + \left[\frac{K \cdot \sum fi}{4} - F_{ant} \over f_{QK} \right] \cdot a_{Qk}$$

Sendo:

 l_{Qk} = limite inferior da classe do quartil considerado.

 \mathbf{F}_{ant} = frequência acumulada da classe anterior à classe do quartil considerado.

 \mathbf{a}_{OK} = amplitude do intervalo de classe do quartil considerado.

 \mathbf{f}_{QK} = freqüência simples da classe do quartil considerado.

Exemplo:Para o cálculo dos quartis de dados agrupados com intervalos de classe, consideramos a distribuição dos pesos de um grupo de turistas que visita um parque temático em Fortaleza/CE/Julho/06. Será acrescentada uma coluna com os valores da freqüência acumulada.

Tabela 3.2 - Pesos de um grupo de turistas do Parque Temático Fortaleza/CE/Julho/06.

i	Pesos (kg)	Freqüência (f _i)	Freqüência acumulada (Fa)
1	10 - 30	10	10
2	30 - 50	24	34
3	50 - 70	57	91
4	70 - 90	44	135
5	90 - 110	29	164
6	110 - 130	16	180
		$\sum = 180$	

Primeiro, calcula-se a classe a que pertence o quartil Q₁ (k=1), ou seja, a posição:

$$P_{Q_1} = \frac{1 \cdot \sum f_i}{4} = \frac{180}{4} = 45$$

Observando a coluna de frequência acumulada, verificamos que o quadragésimo quinto termo pertence à terceira classe (a frequência acumulada da teceria classe abrange do 35° termo ao 91° termo). Sabendo que a classe do primeiro quartil é a terceira classe, podemos verificar qual o valor numérico do primeiro quartil utilizando a expressão:

$$Q_1 = l_{Q_1} + \left[\frac{1 \sum_{Q_1} f_1}{4} - F_{ant} \right] \cdot a_{Q_1} \qquad \left[\frac{45 - 34}{57} \right] \cdot 20 \cong 53,9 \text{kg}$$

Os cálculos para os quartis Q2 e Q3 processam-se de forma análoga ao cálculo do primeiro quartil.

$$2^{\circ} \text{ quartil} \rightarrow \frac{2\sum f_i}{4} = \frac{2 \times 180}{4} = 90$$
 (o segundo quartil pertence à terceira classe).
$$Q_2 = l_{Q_2} + \left[\frac{2\sum f_i}{4} - F_{ant} \atop f_{Q_2}\right] \bullet a_{Q_2} = 50 + \left[\frac{90 - 34}{57}\right] \cdot 20 \cong 69,7 \text{ kg}$$

$$3^{\circ}$$
 quartil $\rightarrow \frac{3\sum f_i}{4} = \frac{3 \times 180}{4} = 135$ (o terceiro quartil pertence à quarta classe)

$$Q_3 = l_{Q_3} + \left[\frac{3\sum f_i}{4} - F_{ant} \over f_{Q_3} \right] \bullet a_{Q_3} = 70 + \left[\frac{135 - 91}{44} \right] \cdot 20 = 90,0 \text{ kg}$$

Assim temos: $Q_1 = 53.9 \text{ kg}$; $Q_2 = 69.7 \text{ kg}$ e $Q_3 = 90.0 \text{ kg}$ Pratique resolvendo mais alguns exemplos.

1) Determinação dos quartís para o conjunto:

Colocando os valores em ordem (rol), temos

a) Vamos utilizar os passos para o cálculo do 1º quartil:

1º Passo: Determina-se a posição do 1º quartil:

$$P_{Q1} = \frac{1 \cdot 16}{4} = 4 \Rightarrow posição do 1^{\circ} quartil$$

2º Passo: Identificar a posição 4

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

x_1	x_2	x_3	x_4	x_{5}	x_6	x_7	x_8
10	13	14	15	15	16	18	18

x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	x_{16}
19	20	21	22	24	25	27	29

O número que corresponde a 25% do rol é o valor 15

b) Vamos utilizar os passos para o cálculo do 2º quartil:

1º Passo: Determina-se a posição do 2º quartil:

$$P_{Q2} = \frac{2 \cdot 16}{4} = 8 \Rightarrow posição do 2^{\circ} quartil$$

2º Passo: Identificar a posição 8

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

x_1	x_2	x_3	x_4	x_{5}	x_6	x_7	x_8
10	13	14	15	15	16	18	18

	x_9	x_{10}	x_{11}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	x_{16}
I	19	20	21	22	24	25	27	29

O número que corresponde a 50% do rol é o valor 18

c) Vamos utilizar os passos para o cálculo do 3° quartil:

1º Passo: Determina-se a posição do 3º quartil:

$$P_{Q3} = \frac{3.16}{4} = 12 \Rightarrow posição do 3° quartil$$

2º Passo: Identificar a posição 12

3º Passo: Procura-se no rol o valor do número que está na posição identificada.

r	r	r	r	r	r	r	r
λ_1	λ_2	λ_3	x_4	<i>N</i> ₅	1 A 6	7	×8

10 13 14	15 15	16	18	18
--------------	-------	----	----	----

x_9	x_{10}	x_{11}	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆
19	20	21	22	24	25	27	29

O número que corresponde a 75% do rol é o valor 22

2) Calcular os valores do Q₁, Q₂e Q₃ da tabela seguinte:

Tabela 3.3 – Números de faltas de acadêmicos do primeiro semestre.

N° de faltas	f	fa
1	6	8
3	8	14
4	13	27
6	7	34 38
7	4	38
	$\sum f = 38$	

a) Vamos calcular inicialmente Q₁ !° Passo: Determinar a posição do 1° quartil (25%)

$$P_{Q1} = \frac{1 \cdot 38}{4} = 9,5 \Rightarrow posição do 1° quartil$$

2° Passo: Procurar na coluna da fa a posição do 9,5° elemento

3° Passo: A variável que corresponde à posição do 9,5° elemento é 3 (na segunda classe).

25% dos acadêmicos tiveram 3 faltas

b) Vamos calcular o Q₂

!° Passo: Determinar a posição do 2° quartil (50%)

$$P_{Q2} = \frac{2 \cdot 38}{4} = 19 \Rightarrow posição do 2° quartil$$

2º Passo: Procurar na coluna da fa a posição do 19º elemento

3° Passo: A variável que corresponde à posição do 19° elemento é 4 (na terceira classe).

50% dos acadêmicos tiveram 4 faltas.

c) Vamos calcular o Q₃

!º Passo: Determinar a posição do 3° quartil (50%)

$$P_{\mathcal{Q}3} = \frac{3 \cdot 38}{4} = 28,5 \Rightarrow posição do 3° quartil$$

2º Passo: Procurar na coluna da fa a posição do 28,5º elemento

3° Passo: A variável que corresponde à posição do 28,5° elemento é 6 (na quarta classe).

75% dos acadêmicos tiveram 6 faltas.

3 Calcular os valores do Q₁, Q₂e Q₃ da tabela seguinte:

Tabela 3.4 – Pontos obtidos em teste de atenção por candidatos a um emprego.

i	Pontos)	Freqüência (f _i)	Freqüência acumulada (Fa)
1	0 - 40	3	3
2	40 - 80	8	11
3	80 - 120	18	29
4	120 - 160	15	44
5	160 - 200	10	54
	·	$\sum = 54$	

a) Vamos calcular a classe a que pertence o quartil Q₁ (k=1), ou seja, a posição:

$$P_{Q_1} = \frac{1 \cdot \sum f_i}{4} = \frac{54}{4} = 13.5$$

Observando a coluna de frequência acumulada, verificamos que o 13,5° termo pertence à terceira classe (a frequência acumulada da teceria classe abrange do 12° termo ao 29° termo). Sabendo que a classe do primeiro quartil é a terceira classe, podemos verificar qual o valor numérico do primeiro quartil utilizando a expressão:

$$Q_{1} = l_{Q_{1}} + \left[\frac{1\sum f_{1}}{4} - F_{ant}}{f_{Q_{1}}}\right] \cdot a_{Q_{1}} = 80 + \left[\frac{13,5 - 11}{18}\right] \cdot 40 = 85,555555 \Rightarrow Q_{1} = 85,56$$

25% dos candidatos fizeram no máximo 85,56 pontos.

Cálculos para os quartis Q2 e Q3 processamos da mesma forma do cálculo do primeiro quartil.

$$2^{\circ} \text{ quartil} \rightarrow \frac{2\sum f_i}{4} = \frac{2\times 54}{4} = 27$$

$$2^{\circ} \text{ quartil pertence à terceira classe}.$$

$$Q_2 = l_{Q_2} + \left[\frac{2\sum f_i}{4} - F_{ant} \atop f_{Q_2}\right] \bullet a_{Q_2} = 80 + \left[\frac{27 - 11}{18}\right] \cdot 40 = 115,55555 \Rightarrow Q_2 = 115,56$$

50% dos candidatos fizeram no máximo 115,56 pontos.

$$3^{\circ} \text{ quartil} \rightarrow \frac{3\sum f_{i}}{4} = \frac{3\times54}{4} = 40,5$$
 (o terceiro quartil pertence à quarta classe)
$$Q_{3} = l_{Q_{3}} + \left[\frac{3\sum f_{i}}{4} - F_{ant}}{f_{Q_{3}}}\right] \bullet a_{Q_{3}} = 120 + \left[\frac{40,5-29}{15}\right] \cdot 40 = 150,66666 \Rightarrow Q_{3} = 150,67$$

75% dos candidatos fizeram no máximo 150,67 pontos.

Assim temos: $Q_1 = 85,56 \text{ pontos}$ $Q_2 = 115,56 \text{ pontos}$ e $Q_3 = 150,67$

3.2 Decis (D_K)

Nos decis, a série é dividida em 10 partes iguais (D₁, D₂, D₃, ...D₉).

 \mathbf{D}_{i} : é o primeiro decil, corresponde à separação dos primeiros 10 % de elementos da série. \mathbf{D}_{s} : é o quinto decil, coincide com a mediana ($\mathbf{D}_{s} = \mathbf{M}_{d}$).

D₀: é o nono decil, corresponde à separação dos últimos 10% elementos da série.

3.2.1 Calculo do Decil para o rol

Os passos são os mesmos para o cálculo do quartil para o rol Exemplo: Calcular D_1 e D_8 do conjunto dado: $A\{7,12,15,20,2,4,6,18,10,24\}$

Inicialmente vamos colocar o conjunto em ordem crescente:

a) Calcular D₁

1º Passo: determina-se a posição do primeiro Decil.

$$P_{D1} = \frac{1 \cdot n}{10} = \frac{1 \cdot 10}{10} = 1 \, (posição)$$

2º Passo: Procura-se no rol o valor do primeiro elemento;

3° passo: O valor do D_1 =2 que corresponde a 10% do rol

b) Calculo do D₈

1º Passo: determina-se a posição do oitavo Decil.

$$P_{D8} = \frac{8 \cdot n}{10} = \frac{8 \cdot 10}{10} = 8 \text{ (posição)}$$

2º Passo: Procura-se no rol o valor do oitavo elemento;

 3° passo: O valor do $D_8 = 18$ que corresponde a 80% do rol

3.2.2 Cálculo do Decil para tabela sem Intervalo de Classe.

Os procedimentos são os mesmos utilizados para o cálculo dos quartís. Exemplos: Calcular D_3 e D_7 usando a seguinte tabela:

Tabela 3.5 Quantidade de filhos dos funcionários de uma pequena empresa.

filhos	f	fa
0	18	18
1	35	53
2	46	99
3	28	127
4	25	152
5	10	162
6	5	167
7	3	170
	$\sum f = 170$	

a) Cálculo do D₃

1º Passo: Calcula-se a posição do D₃

$$D_3 = \frac{3\sum f}{10} = \frac{3 \cdot 170}{10} = 51 \text{ (posição)}$$

 2° passo: Procura-se a posição do D_3 pela coluna da frequência acumulada, o D_3 está na 2° classe (fa 53)

3º Passo: O valor da variável na segunda classe é 1 filho, que corresponde a 30% da pesquisa.

b) Cálculo do D₃

1º Passo: Calcula-se a posição do D₈

$$D_8 = \frac{8\sum f}{10} = \frac{8 \cdot 170}{10} = 144 \text{ (posição)}$$

 2° passo: Procura-se a posição do D_{8} pela coluna da frequência acumulada, o D_{8} está na 5° classe (fa 152)

3º Passo: O valor da variável na segunda classe é 4 filhos, que corresponde a 80% da pesquisa.

3.2.3 Cálculo do decil para tabela com intervalo de classe

Primeiramente, determina-se a classe que contém o valor do decil a ser calculado pela expressão:

$$\frac{K\sum f_i}{10}$$
 (para K = 1,2,3,...,9)

Esse termo está localizado numa classe que recebe o nome de classe decil. Para o cálculo dos decis, utilizamos técnicas semelhantes às do cálculo dos quartis. Isto é, utilizamos a fórmula:

$$D_{K} = l_{D_{K}} + \left[\frac{k \cdot \sum fi}{10} - F_{ant} \over f_{D_{K}} \right] \bullet a_{DK}$$

Sendo:

 l_{D_K} = limite inferior da classe de decil considerado

 \mathbf{F}_{ant} = frequência acumulada da classe anterior à classe de decil considerado

 \mathbf{h}_{DK} = amplitude do intervalo de classe do decil considerado

 \mathbf{f}_{DK} = freqüência simples da classe do decil considerado

Exemplo: O calculo dos decis será exemplificado com os dados da Tabela 3.6 que organiza as estaturas de adolescentes, colhidas durante o período em que participaram de um acampamento, durante as férias.

Tabela 3.6 - Estaturas dos participantes de um acampamento infantil/Bonito/Julho/06.

i	Estaturas (cm)	Freqüência (f _i)	Freqüência acumulada (F _i)
1	120 - 128	6	6
2	128 - 136	12	18
3	136 - 144	16	34
4	144 - 152	13	47
5	152 - 160	7	54
	•	\sum = 54	

Calculam-se os decis D₁, D₂, ...D₇, ..., de forma semelhante ao cálculo dos quartis.

Primeiro decil (K=1):
$$\frac{1\sum f_i}{10} = \frac{54}{10} = 5.4$$
 (o primeiro decil pertence à primeira classe).

$$D_{1} = l_{D_{1}} + \left[\frac{1 \cdot \sum f_{i}}{10} - F_{ant} \over F_{D_{1}} \right] \bullet a_{D_{1}} = 120 + \left[\frac{5,4-0}{6} \right] \cdot 8 = 127,5 \text{ cm} \rightarrow D_{1} = 127,5 \text{ cm}$$

Segundo decil (K=2): $\frac{2\sum f_i}{10} = \frac{2 \times 54}{10} = 10,8$ (o segundo decil pertence à segunda classe).

$$D_2 = l_{D_2} + \left[\frac{2 \cdot \sum f_i}{10} - F_{ant} \over F_{D_2} \right] \bullet a_{D_2} = 128 + \left[\frac{10.8 - 6}{12} \right] \cdot 8 = 131.2 \text{ cm} \rightarrow D_2 = 131.2 \text{ cm}$$

Dessa forma, podemos calcular os outros decis. Por exemplo, cálculo do sétimo decil (K=7):

$$\frac{7 \cdot \sum f_i}{10} = \frac{7 \times 54}{10} = 37.8$$
 (o sétimo decil pertence à quarta classe)

$$D_{7} = l_{D_{7}} + \left[\frac{7 \cdot \sum f_{i}}{10} - F_{ant} \over F_{D_{7}} \right] \bullet a_{D_{7}} = 144 + \left[\frac{37,8 - 34}{13} \right] \cdot 8 = 146,3 \text{ cm} \rightarrow D_{7} = 146,3 \text{ cm}$$

3.3 Percentis (P_k)

Nos percentis, a série é divida em 100 partes iguais $(P_1, P_2, P_3, ... P_{99})$. P_1 : é o primeiro percentil, corresponde à separação do primeiro 1% de elementos da série. P_{50} : é o qüinquagésimo percentil, coincide com a mediana $(P_{50} = D_5 = Q_2 = M_d)$.

Para o cálculo dos percentis, utilizamos técnicas semelhantes às do cálculo dos quartis e decis. Inicialmente, determina-se a classe que contém o valor percentil a ser calculado pela expressão:

$$\frac{K \cdot \sum f_i}{100}$$
 (K = 1; 2; 3;...; 98; 99)

3.3.1 Cálculo de Percentil para rol

Verificamos que o raciocínio é o mesmo utilizado para o cálculo do Quartil e Decil. Consideremos o exemplo abaixo:

1) Calcular o P_{28} e P_{82} do conjunto $B\{15,2,4,6,10,12,13,7,21,18,20\}$

Devemos inicialmente ordenar os valores:

a) Cálculo do P₂₈

1° Passo: Determinar a posição do
$$P_{28}$$
 $P_{28} = \frac{28 \cdot n}{100} = \frac{28 \cdot 11}{100} = 3,08$

2º Passo: procura-se no rol o valor da posição do 3º elemento;

3° Passo: A variável que corresponde à posição desejada é o número 6

b) Cálculo do P₈₂

1° Passo: Determinar a posição do
$$P_{82}$$
 $P_{28} = \frac{82 \cdot n}{100} = \frac{28 \cdot 11}{100} = 9,02$

2º Passo: procura-se no rol o valor da posição do 9º elemento;

3º Passo: A variável que corresponde à posição desejada é o número 18

3.3.2 Cálculo do Percentil para Tabela sem Intervalo de Classe

O cálculo do Percentil para a tabela sem intervalo de classe é o mesmo que para os cálculos dos Quartís e Decís. Estudemos esses cálculos através do exemplo a seguir:

Exemplo: Calcular P₄₅ e P₉₃ da tabela

Tabela 3.7. Número de quartos/chalés em Bonito/MS/07

Número de quartos/chalés	f	fa
1	15	15
2	30	45
3	20	65
4	12	77
5	10	87
6	8	95
	$\sum f_i = 95$	

a) Calcular P₄₅

1° Passo: Determinar a posição do
$$P_{45}$$
 $P_{45} = \frac{45 \cdot n}{100} = \frac{45 \cdot 95}{100} = 42,75$

- 2º Passo: Procurar a posição do 43 elemento pela coluna da frequência acumulada, podemos observar que o elemento de posição 43 está na segunda classe;
- 3° Passo O valor da variável que corresponde a 45% da pesquisa revelou que os pesquisados preferem até dois quartos por chalé.
- b) Calcular P₉₃

1º Passo: Determinar a posição do
$$P_{93}$$
 $P_{93} = \frac{93 \cdot n}{100} = \frac{93 \cdot 95}{100} = 88,35$

- 2º Passo: Procurar a posição do 88º elemento pela coluna da frequência acumulada, podemos observar que o elemento de posição 88 está na sexta classe;
- 3° Passo O valor da variável que corresponde a 93% da pesquisa revelou que os pesquisados preferem até seis quartos por chalé.

3.3.3 Cálculo para Percentil em Tabelas com Intervalo de Classe

Para o cálculo dos percentís, utilizamos técnicas semelhantes ás do cálculo dos quartís e decís. Inicialmente, determina-se a classe que contém o valor percentil a ser calculado pela expressão:

$$\frac{K \cdot \sum f_i}{100}$$
 (K = 1,2,3,4,...,98,99)

Para obtenção do percentil, utilizamos a fórmula:

$$P_{K} = l_{P_{K}} \left[\frac{K \cdot \sum f_{i}}{100} - F_{ant} \right] \bullet a_{P_{K}}$$

Sendo:

 l_{P_K} = limite inferior da classe do percentil considerado F_{ant} = freqüência acumulada da classe anterior do percentil considerado

 a_{P_K} = amplitude do intervalo de classe do percentil considerado

 f_{P_K} = frequência simples da classe do percentil considerado

Exemplo: Na tabela 3.6 vamos calcular o 46° percentil (K=36) e o 76° percentil (K=76):

Tabela 3.6 - Estaturas dos participantes de um acampamento infantil/Bonito/Julho/06.

i	Estaturas (cm)	Freqüência (f _i)	Freqüência acumulada (F _i)
1	120 - 128	6	6
2	128 - 136	12	18
3	136 - 144	16	34
4	144 - 152	13	47
5	152 - 160	7	54
		$\sum = 54$	

a) Calculo do P₄₆

$$\frac{46 \cdot \sum f_i}{100} = \frac{46 \times 54}{100} = 24,84$$
 (o quadragésimo sexto percentil pertence à terceira classe)

$$P_{46} = l_{P_{46}} + \left[\frac{46 \cdot \sum f_{i}}{100} - F_{ant} \over f_{P46} \right] \cdot a = 136 + \left[\frac{24,84 - 18}{16} \right] \cdot 8 = 139,42cm$$

b) Calculo do P₇₆

$$\frac{76 \cdot \sum f_i}{100} = \frac{76 \cdot 54}{100} = 41,04$$
 (o percentil 76 pertence à quarta classe)

$$P_{76} = l_{P_{46}} + \left[\frac{76 \cdot \sum f_{i}}{100} - F_{ant} \over f_{P_{46}} \right] \cdot a = 144 + \left[\frac{41,04 - 34}{13} \right] \cdot 8 = 148,33cm$$

Lista de exercícios 3.1

Considere o conjunto de valores que representa as idades de um grupo de crianças de uma comunidade: {3,9,2,8,4,6,5,9,10,4,3,5,6,11}

- 1.1 Qual a idade que corresponde a 25% das crianças (Q₁)?
- a) $Q_1 = 3$
- b) $Q_1 = 5$
- c) $Q_1 = 4$
- d) $Q_1 = 6$
- 1.2 Qual a idade que corresponde a 70% das crianças (D₇)?
- a) $D_7 = 6$
- b) $D_7 = 8$
- c) $D_7 = 5$
- d) $D_7 = 9$
- 1.3 Qual a idade que corresponde a 45% das crianças (P₄₅)?

- a) $P_{45} = 4$
- b) $P_{45} = 8$
- c) $P_{45} = 5$
- d) $P_{45} = 6$

Considere a tabela 3.7 que representa os valores economizados por crianças para a compra do presente do dia das mães.

Tabela 3.7 Valores economizados pelas crianças

Valores (R\$)	Num. de crianças(fi)	fa
10	2	
15	6	
20	8	
25	15	
30	13	
35	11	
40	5	
	$\sum fi = 60$	

- 2.1.Qual o valor economizado por 75% das crianças (Q₃)?
- a) $Q_3 = 30$
- b) $Q_3 = 40$
- c) $Q_3 = 35$
- d) $Q_3 = 25$
- 2.2. Qual o valor economizado por 40% das crianças (D₄)?
- a) $D_4 = 25$
- b) $D_4 = 20$
- c) $D_4 = 35$
- d) $D_4 = 30$
- **2.3.** Qual o valor economizado por 92% das crianças (P_{92}) ?
- a) $P_{92} = 35$
- b) $P_{92} = 30$
- c) $P_{92} = 40$
- $d)P_{92} = 38$

Considere a tabela 3.8 que representa os salários de funcionários de uma empresa de reciclagem.

Tabela 3.8 Salários da empresa de reciclagem Coisas &Tal

Salá	rios	funcionários	
500	- 600	3	
600	- 700	8	
700	- 800	12	
800	- 900	17	
900	- 1000	10	
1000	- 1100	8	
1100	- 1200	6	
		$\sum fi = 64$	

- 3.1. Qual o salário de 25% dos funcionários que ganham menos(Q₁)?
- a) $Q_1 = 742,68$
- b) Q₁=741,67
- c) $Q_1 = 678,97$

- d) $Q_1 = 698,85$
- 3.2 Qual o salário de 60% dos funcionários que ganham menos(D6)?
- a) $D_6 = 835,80$
- b) $D_6 = 829,78$
- c) $D_6 = 890,59$
- d) $D_6 = 895,86$
- 3.3. Qual o salário de 90% dos funcionários que ganham menos(P₉₀)?
- a) $P_{90} = 1095,00$
- b) $P_{90} = 1105,00$
- c) $P_{90} = 1085,00$
- $d)P_{90} = 1056,00$

ATIVIDADE 3.1 DA APOSTILA ATUAL