Weak Galerkin Spectral Element Methods for Elliptic Eigenvalue Problems: Lower Bound Approximation and Superconvergence

李会元

中国科学院软件研究所 (ISCAS)

潘佳佳

上海理工大学 (USST)

Email: huiyuan@iscas.ac.cn

Numerical Methods for Spectral Problems: Theory and Applications 2024

- Backgrounds and preliminaries
 - Backgrounds
 - Discrete weak gradients
- Weak Galerkin spectral element method and its implementation
 - Problems and WGSEM approximation schemes
 - Well-posedness constraints and the baseline of convergence orders
- Solution Lower bound approximation and superconvergence
 - Lower bounds and superconvergence for smooth problems
 - Lower bounds and superconvergence for nonsmooth problems
 - Extended study for WGSEM wtih quadrilateral meshes

Backgrounds

History

- h-version: abundant literature
 - first proposed by Junping Wang and Xiu Ye in 2011
 - in primal formulation, without stabilizer, regular triangular or tetrahedral meshes
 - applied for various PDEs
 - Helmholtz equations [12], Maxwell equations [14], Stokes equations [19], Navier-Stokes equations [8], biharmonic equations [11], parabolic equations [6], etc..
 - typical polynomial space triplets
 - $(\mathbb{P}_n(K), \mathbb{P}_{n+1}(e), \mathbb{P}_{n+1}(K)^d)$ [18, 5, 3, 29, 1]
 - $(\mathbb{P}_n(K), \mathbb{P}_n(e), \mathbb{P}_j(K)^d)$ with j > n [22, 17, 2]
 - $(\mathbb{P}_n(K), \mathbb{P}_{n-1}(e), \mathbb{P}_{n-1}(K)^d)$ [21, 27, 4, 7, 13]
 - $(\mathbb{P}_n(K), \mathbb{P}_n(e), \mathbb{P}_{n-1}(K)^d)$ [15, 9, 10]
- p- and hp-version: little attention
 - hp hybridizable method (Zhimin Zhang etc)
 - weak Galerkin spectral element method (WGSEM) [16].
- flexible choices of approximation spaces

Objections

- space triplets for well-posedness
- properties of well-posed WGSEM for PDE eigenvalues
 - lower and upper bound approximation
 - super convergence

Lower bound and super convergence

- lower bound approximation of weak Galerkin finite element methods for eigenvalue problems with the specific space triplet $(\mathbb{P}_n(K), \mathbb{P}_{n-1}(e), \mathbb{P}_{n-1}(K)^2)$ has been studied [21, 27, 28, 26, 4],
- super-convergence for PDE source problems with certain space triplets [18, 7, 20, 3, 23, 24, 29, 17, 25]

Spectral weak gradients

Definition

Let $\mathcal{H}_N(K)$ be a finite space satisfying that $\mathcal{H}_N(K) \subset H^1(K)^2$. The discrete gradient of any weak function $v \in W(K)$ is defined as the unique $\nabla_N v \in \mathcal{H}_N(K)$ satisfying

$$(\nabla_N v, \mathbf{q})_K = -(v_0, \nabla \cdot \mathbf{q})_K + (v_b, \mathbf{q} \cdot \mathbf{n})_{\partial K}, \quad \mathbf{q} \in \mathcal{H}_N(K).$$
 (1)

• assume that $v_0 \in H^1(K)$, then

$$(\nabla_N v, \mathbf{q})_K = (\nabla v_0, \mathbf{q})_K + (v_b - v_0, \mathbf{q} \cdot \mathbf{n})_{\partial K}, \quad \mathbf{q} \in \mathcal{H}_N(K).$$
 (2)

• define L^2 -orthogonal projection $\Pi_N:L^2(K)^2 o \mathcal{H}_N(K)$ such that

$$(\Pi_N \mathbf{p} - \mathbf{p}, \mathbf{q})_K = 0, \quad \forall \mathbf{q} \in \mathcal{H}_N(K).$$
(3)

• suppose $\{\psi_i\}_{i=1}^{N_v}$ be the L^2 -orthonormal basis of $\mathcal{H}_N(K)$ and denote

$$\hat{f}_i = (v_b - v_0, \psi_i \cdot \boldsymbol{n})_{\partial K}, \qquad 1 \le i \le N_v.$$

it then follows that

$$\nabla_N v = \Pi_N(\nabla v_0) + \sum_{i=1}^{N_v} \hat{f}_i \psi_i.$$

Elements with general SM characteristics

- let $\hat{K} \in \mathbb{R}^2$ be a reference polygon whose boundary $\partial \hat{K}$ consists of several edges of \hat{K} , K be a physical element such that there is a one-to-one onto mapping $F_K : \hat{K} \to \bar{K}$.
- $\hat{K}=\hat{T}$ or \hat{Q} , the reference triangle or the reference square is of greatest interest.
- For K being an arbitrary triangle with three vertices $(x_i,y_i)^{\rm t}, i=1,2,3$, there is a one-to-one affine mapping $\Phi_K: \bar{\hat{T}} \to \bar{K}$ such that

$$\begin{pmatrix} x \\ y \end{pmatrix} = \Phi_K \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \hat{x} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \hat{y} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} + (1 - \hat{x} - \hat{y}) \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}. \tag{4}$$

• For K being a quadrilateral with four vertices $(x_i,y_i)^{\rm t}, i=1,2,3,4$, there is a one-to-one bilinear mapping $\Phi_K: \hat{\bar{Q}} \to \bar{K}$ such that

$$\begin{pmatrix} x \\ y \end{pmatrix} = \Phi_K \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \frac{(1-\hat{x})(1-\hat{y})}{4} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \frac{(1+\hat{x})(1-\hat{y})}{4} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} + \frac{(1+\hat{x})(1+\hat{y})}{4} \begin{pmatrix} x_3 \\ y_3 \end{pmatrix} + \frac{(1-\hat{x})(1+\hat{y})}{4} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix}.$$
(5)

4 D > 4 B > 4 B > 4 B >

Spectral gradients on the reference domain \hat{K}

ullet polynomial spaces for weak gradients on \hat{K} :

$$\begin{split} \mathcal{H}_N(\hat{K}) &= \mathbb{P}_N(\hat{T})^2 \quad \text{if} \quad \hat{K} = \hat{T}, \\ \mathcal{H}_N(\hat{K}) &= \mathbb{Q}_N(\hat{Q})^2 \quad (\text{resp. } \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q})) \text{ if} \quad \hat{K} = \hat{Q}. \end{split}$$

ullet polynomial space for weak functions on \hat{K} :

$$W_{n,m}(\hat{K}) = \{ v = \{ v_0, v_b \} : v_0 \in \mathcal{P}_n(\hat{K}), v_b \in X_m(\partial \hat{K}) \},$$

where

$$\mathcal{P}_n(\hat{K}) = \mathbb{P}_n(\hat{T})$$
 if $\hat{K} = \hat{T}$, and $\mathcal{P}_n(\hat{K}) = \mathbb{Q}_n(\hat{Q})$ if $\hat{K} = \hat{Q}$, $X_m(\partial \hat{K}) = \{v : v \in \mathbb{P}_m(\hat{e}) \text{ for any edge } \hat{e} \text{ of } \hat{K}\}.$

Spectral gradient on a triangle or a convex quadrilateral ${\it K}$

spectral approximation space of weak functions

$$W_{n,m}(K) = \{ \{v_0, v_b\} : v_0 \in \mathcal{P}_n(K), v_b \in X_m(\partial K) \},$$

where

$$\begin{split} \mathcal{P}_n(K) &= \{\hat{w} \circ \Phi_K^{-1} : \hat{w} \in \mathcal{P}_n(\hat{K})\}, \\ X_m(\partial K) &= \{v : v \in \mathbb{P}_m(e) \text{ for any edge } e \text{ of } K\}. \end{split}$$

approximation space of spectral weak gradients

mapped polynomial space

$$\mathcal{H}_N(K) = \mathcal{H}_N^I(K) := \{ \hat{\mathbf{q}} \circ \Phi_K^{-1} \text{ for } \hat{\mathbf{q}} \in \mathcal{H}_N(\hat{K}) \}. \tag{I}$$

• rational space defined by Piola transform (in a framework of de Rham complex)

$$\mathcal{H}_N(K) = \mathcal{H}_N^{II}(K) := \{ \mathbf{q} : \mathbf{q} = J_K^{-1} F_K \hat{\mathbf{q}} \circ \Phi_K^{-1} \text{ for } \hat{\mathbf{q}} \in \mathcal{H}_N(\hat{K}) \}. \tag{II}$$

 $\bullet \ \mathcal{H}_N^{II}(Q) \subseteq \{(J_K^{-1}\hat{v}) \circ \Phi_K^{-1}: \hat{v} \in \mathbb{Q}_N(\hat{Q})^2\} \ \text{for} \ \mathcal{H}_N(\hat{Q}) = \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q}).$

《四》《圖》《意》《意》

Spectral gradients

Properties for spectral gradients in $\mathcal{H}_N^{II}(K)$

- $(\nabla_N u, \boldsymbol{v})_K = (\hat{\nabla}_N \hat{u}, \hat{\boldsymbol{v}})_{\hat{K}}$ for $\boldsymbol{v} \in \mathcal{H}_N^{II}(K)$
- $\nabla_N v = \Pi_N(F_K^{-\mathsf{t}} \hat{\nabla}_N \hat{v} \circ \phi_K^{-1})$
- $\nabla_N v = F_K^{-\mathrm{t}} \hat{\nabla}_N \hat{v} \circ \phi_K^{-1}$ and $\mathcal{H}_N^{II}(K) = \mathcal{P}_N(K)^2 = \mathcal{H}_N^I(K)$ for any triangle or parallelogram K with $\mathcal{H}_N(\hat{K}) = \mathcal{P}_N(\hat{K})^2$.

Lemma (Nullity of spectral gradient on K)

Suppose $v \in W_{n,m}(K)$ with $\nabla_N v = 0$ on K. Then v_0 is constant on K and $v_b = v_0|_{\partial K}$ if and only if

- (i) $n \leq N-1$ and $m \leq N$ for K=T and $\mathcal{H}_N(\hat{K})=\mathbb{P}_N(\hat{T})^2$;
- (ii) $n \leq N-1$ and $m \leq N$ for K=Q and $\mathcal{H}_N(\hat{K})=\mathbb{Q}_N(\hat{Q})^2$;
- $\text{(iii)} \ \ n \leq N-1 \ \text{and} \ m \leq N-1 \ \text{for} \ K=Q \ \text{and} \ \mathcal{H}_N(\hat{K}) = \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q}).$
 - $\bullet \ \ \mathsf{hold} \ \ \mathsf{both} \ \ \mathsf{for} \ \ \mathcal{H}_N^I(K) \ \ \mathsf{and} \ \mathcal{H}_N^{II}(K).$

Problem

model elliptic eigenvalue problem:

$$\begin{cases} -\Delta u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
 (6)

where Ω is a polygonal domain in \mathbb{R}^2 .

• The classical variational form: to find $u \in H^1_0(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$a(u,v) := (\nabla u, \nabla v) = \lambda(u,v), \quad v \in H_0^1(\Omega), \tag{7}$$

Meshes for brevity

Meshes

 $\mathcal{T}_h = \{T_k\}_{k=1}^{N_h}$: triangular and/or (convex) quadrilateral elements.

Assumptions

A1. \mathcal{T}_h is shape regular in the sense that the condition number of the Jacobian is bounded for all elements,

$$||F_K(\hat{x}, \hat{y})|| ||F_K^{-1}(\hat{x}, \hat{y})|| \le C, \quad \forall K \in \mathcal{T}_h, \ (\hat{x}, \hat{y}) \in \hat{K}.$$

- ullet \mathcal{E}_h : the set of all edges in \mathcal{T}_h
- $\mathcal{E}_h^0 = \mathcal{E}_h \backslash \partial \Omega$: the set of all interior edges.

Approximation scheme

Approximation spaces

• The weak Galerkin-spectral element approximation space on \mathcal{T}_h ,

$$V_{\delta} := \left\{ v = \{ v_0, v_b \} : \{ v_0, v_b \} |_{K} \in W_{n,m}(K) \text{ for all } K \in \mathcal{T}_h \right\},$$

$$V_{\delta}^0 := \left\{ v : v \in V_{\delta}, \ v_b |_{\partial K \cap \partial \Omega} = 0 \text{ for all } K \in \mathcal{T}_h \right\},$$
(8)

where $\delta = \delta(h, n, m, N)$.

bilinear forms on V_{δ}^{0}

$$s(v,w) := \rho \sum_{K \in \mathcal{T}_h} h_K^{\varepsilon - 1} \frac{n^2}{n^2} (v_0 - v_b, w_0 - w_b)_{\partial K}, \quad \rho \ge 0, \ 0 \le \varepsilon < 1,$$
$$a_{\delta}(v,w) := \sum_{K \in \mathcal{T}_h} (\nabla_N v, \nabla_N w)_T + s(v,w), \qquad v, w \in V_{\delta}^0.$$

Remark

$$||u||_{\partial K} \le Ch^{-1/2}n||u||_K, \quad u \in \mathbb{P}_n(K).$$

Approximation scheme and well-posedness constraints

Weak Galerkin spectral element approximation scheme

to find $\lambda_\delta \in \mathbb{R}$ and $u_\delta = \{u_{\delta,0}, u_{\delta,b}\} \in V^0_\delta$ such that

$$a_{\delta}(u_{\delta}, v) = \lambda_{\delta}(u_{\delta,0}, v_{0}), \quad v \in V_{\delta}^{0},$$
 (9)

Well-posedness constraints on (n, m, N) for $\rho = 0$

- (i) $n \leq N-1$ and $m \leq N$ for any triangular/quadrilateral mesh \mathcal{T}_h with $\mathcal{H}_N(K) = \mathcal{P}_N(K)^2$;
- (ii) $n \leq N-1$ and $m \leq N-1$ for any quadrilateral mesh \mathcal{T}_h with $\mathcal{H}_N(K) = \{ \mathbf{q} = J_K^{-1} F_K \hat{\mathbf{q}} \circ \Phi_K^{-1} : \hat{\mathbf{q}} \in \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q}) \}.$

Well-posedness constraints on (n, m, N) for $\rho > 0$

- (i) n < N+1 for any triangular mesh \mathcal{T}_h with $\mathcal{H}_N(K) = \mathcal{P}_N(K)^2$;
- (ii) $n \leq N$ for any quadrilateral mesh \mathcal{T}_h with $\mathcal{H}_N(K) = \mathcal{P}_N(K)^2$;
- (iii) $n \leq N-1$ for any quadrilateral mesh \mathcal{T}_h with $\mathcal{H}_N(K) = \{ \boldsymbol{q} = J_K^{-1} F_K \hat{\mathbf{q}} \circ \Phi_K^{-1} : \ \hat{\mathbf{q}} \in \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q}) \}.$

A convergence theorem for the polynomial degree triplet (N, N, N)

Theorem ($\epsilon = 0, \, \rho > 0$)

• Suppose that $u_k \in H^s(\Omega)$ for any $u_k \in E(\lambda_k)$, then for $j = k, k+1, \dots, k+q-1$,

$$|\lambda_k - \lambda_{j,\delta}| \le Ch^{2\mu - 2} N^{3 - 2s} \sup_{u_k \in E(\lambda_k)} ||u_k||_s^2 \quad \text{with} \quad \mu = \min\{N + 1, s\}.$$
 (10)

• Let $u_{j,\delta}$ be an eigenfunction corresponding to $\lambda_{j,\delta}$ for $j=k,k+1,\cdots,k+q-1$ with $\|u_{j,\delta}\|_V=1$, then

$$\inf_{u \in E(\lambda_k)} \|u - u_{j,\delta}\|_{V} \le Ch^{\mu - 1} N^{3/2 - s} \sup_{u_k \in E(\lambda_k)} \|u_k\|_{s}.$$
(11)

• Let u_k be a eigenfunction corresponding to λ_k with $\|u_k\|_V=1$, then there exist a function $v_\delta\in \mathrm{span}\{u_{k,\delta},\cdots,u_{k+q-1,\delta}\}$ with $\|v_\delta\|_V=1$ such that

$$||u_k - v_\delta||_V \le Ch^{\mu - 1} N^{3/2 - s} \sup_{u_k \in E(\lambda_k)} ||u_k||_s.$$
(12)

Convergence order baseline

Baseline order of convergence for eigenvalues

$$\mathcal{O}(h^{2\min(n,m,N+1,s)-2\varepsilon}) \text{ if } \rho>0, 0\leq \varepsilon<1, \text{ or } \mathcal{O}(h^{2\min(n,m,N+1,s)}) \text{ if } \rho=0, \qquad \text{(13)}$$

Qualitative analysis for rules of thumbs

main objects

- lower bound approximation of eigenvalues
- superconvergence of numerical eigenvalues

main settings

- $\mathcal{H}_N(K) = \mathcal{P}_N(K)^2$, full polynomial space of degree $\leq N$, without Piola transforms
- well-posedness constraints on (n, m, N) for $\rho = 0$
 - (i) $n \leq N-1$ and $m \leq N \, {\rm for \ any \ triangular/quadrilateral \ mesh}$
- ullet well-posedness constraints on (n,m,N) for ho>0
 - (i) $n \le N+1$ for any triangular mesh
 - (ii) $n \leq N$ for any quadrilateral mesh

lower/upper approximation

• $(\lambda,u)\in\mathbb{R}^+ imes H^1_0(\Omega)$ with $\|u\|=1$, and $(\lambda_\delta,u_\delta)\in\mathbb{R}^+ imes V^0_\delta$ with $\|u_{\delta,0}\|_\Omega=1$

for any $v=\{v_0,v_b\}\in V^0_\delta$ with arbitrary polynomial degrees n and m

$$\lambda - \lambda_{\delta} = \sum_{K \in \mathcal{T}_{h}} \|\nabla u - \nabla_{N} u_{\delta}\|_{K}^{2} + s_{\rho}(u_{\delta} - v, u_{\delta} - v) + 2 \sum_{K \in \mathcal{T}_{h}} (\nabla u - \nabla_{N} v, \nabla_{N} u_{\delta})_{K}$$
$$- \lambda_{\delta} \sum_{K \in \mathcal{T}_{h}} \|u_{\delta,0} - v_{0}\|_{K}^{2} - \lambda_{\delta} \sum_{K \in \mathcal{T}_{h}} (\|u_{\delta,0}\|_{K}^{2} - \|v_{0}\|_{K}^{2}) - s_{\rho}(v, v)$$
$$:= I_{1} + I_{2} + I_{3} - \lambda_{\delta} I_{4} - \lambda_{\delta} I_{5} - I_{6}$$

- taking $v\big|_K = \big\{\Pi_n^0(u\big|_K), \Pi_m^b(u\big|_{\partial K})\big\}, \ \Pi_n^0, \ \Pi_m^b$ are the L^2 -orthogonal projections onto $\mathcal{P}_n(K), \ X_m(\partial K)$
- $I_3=0$ if $N-1\leq n\leq N+1$ and $m\geq N$ on triangular meshes

lower bound approximation on triangular meshes:

• $n=N,N+1,\ m\geq N,\ 0\leq \varepsilon <1$ in the case of a small $\rho>0$

	Lower box	und approximation
Mesh type	(n, m, N)	Remarks
quadrilateral	· -	$\it h ext{-}$ and/or $\it p ext{-}$ version methods with appropriate
triangular	$n = N$, $N+1$, $m \ge N$	$\rho > 0$
ulangulai	n=N+1, m=N	h-version method with $ ho=1$ [21, 27, 28, 26]

superconvergence

- ullet Π_N are the L^2 -orthogonal projections onto $\mathcal{H}_N(K)$
- $\bullet (\Pi_{\delta} u)|_{K} = \{\Pi_{n}^{0}(u|_{K}), \Pi_{m}^{b}(u|_{\partial K})\}$

if $n \geq N-1$ and $m \geq N$ for K being a triangular element

$$\nabla_N((\Pi_\delta u)\big|_K) = \Pi_N(\nabla u\big|_K), \quad \forall u \in H^1(\Omega).$$

$$(\nabla_N(\Pi_{\delta}u), \mathbf{q})_K = -(\Pi_n^0 u, \nabla \cdot \mathbf{q})_K + (\Pi_m^b u, \mathbf{q} \cdot \mathbf{n})_{\partial K} = -(u, \nabla \cdot \mathbf{q})_K + (u, \mathbf{q} \cdot \mathbf{n})_{\partial K}$$
$$= (\nabla u, \mathbf{q})_K = (\Pi_N(\nabla u), \mathbf{q})_K$$

if $n \geq N-1$ and $m \geq N-1$ for any quadrilateral K

$$\nabla_N^*((\Pi_\delta u)\big|_K) = \Pi_N(\nabla u\big|_K), \quad \forall u \in H^1(K).$$

super-convergence: higher than the convergence order baseline $\mathcal{O}(h^{2n-2\varepsilon})$

- n=N-1, m=N in the case of $\rho=0$
- or n=N-1, m>N+1, or n=N, m>N in the case of $0<\rho\ll 1$

	Su	perconvergence
Mesh type	n, m	Remarks
quadrilateral	$n=N,\ m\geq N$	h-version (resp. p-version) methods with appropriate penalty terms for eigenfunctions smooth enough (resp. with limited regularity)
	$n=N-1, \ m\geq N+1$	<i>h</i> -version methods with appropriate penalty terms for eigenfunctions smooth enough on rectangular meshes
triangular	$n=N,\ m\geq N$ or $n=N-1,\ m\geq N+1$	h-version methods with appropriate penalty term
urangulai	n = N - 1, m = N	h-version method without any penalty terms

Remark

Using Piola transforms under the de Rham complex for more superconvergence cases

Case ((N, N, N) and $\rho > 0$ with triangular or quadrilateral meshes)

h-version:

 $\rho = 0.01$: lower bound; superconvergence

ho=1: upper bound; no superconvergence (baseline: $\mathcal{O}(h^{2N})$)

p-version: difficult to observe owing to the exponential orders of convergence

take N=1 for example

_ h	h h	0.088		0.0	0.044 0.022		2	0.011		0.006	
"	۱ ۱	error	order	error	order	error	order	error	order	error	order
λ	1	0.306	_	0.005	5.87	2.690e-4	4.28	1.467e-5	4.20	5.334e-7	4.78
λ	2	24.96	-	0.149	7.39	0.005	4.80	2.892e-4	4.20	1.493e-5	4.28
λ	3	54.50	_	1.226	5.47	0.021	5.88	0.001	4.28	5.867e-5	4.20
λ	4	74.22	_	6.697	3.47	0.044	7.26	0.002	4.34	1.196e-4	4.17

Table: $\lambda_i - \lambda_{i,\delta}, i=1,2,3,4$ versus h for $\rho=0.01$ with N=1 and $\varepsilon=0$ for triangular meshes.

h	0.088		0.044		0.022		0.011		0.006	
"	error	order	error	order	error	order	error	order	error	order
λ_1	-0.011	_	-0.003	1.94	-7.333e-4	1.99	-1.838e-4	2.00	-4.597e-5	2.00
λ_2	-0.044	_	-0.013	1.81	-0.003	1.96	-8.254e-4	1.99	-2.067e-4	2.00
λ_3	-0.149	_	-0.045	1.74	-0.012	1.94	-0.003	1.99	-7.350e-4	2.00
λ_4	-0.180	_	-0.060	1.58	-0.016	1.91	-0.004	1.98	-0.001	1.99

Table: $\lambda_i - \lambda_{i,\delta}, i=1,2,3,4$ versus h for $\rho=1$ with N=1 and $\varepsilon=0$ for triangular meshes.

コト 4 @ ト 4 き ト 4 き ト · き · かへで

h	0.120		0.063		0.031		0.016		0.008	
"	error	order	error	order	error	order	error	order	error	order
λ_1	6.212	_	0.003	12.0	1.258e-4	4.36	6.380e-6	4.35	1.305e-7	5.72
λ_2	35.78	_	0.334	7.21	0.005	6.15	2.393e-4	4.34	1.223e-5	4.37
λ_3	64.96	_	29.00	1.24	0.010	11.6	4.905e-4	4.33	2.501e-5	4.37
λ_4	84.70	_	47.38	0.90	0.063	9.54	0.003	4.54	1.543e-4	4.28

Table: $\lambda_i-\lambda_{i,\delta}, i=1,2,3,4$ versus h for $\rho=0.01$ with N=1, $\varepsilon=0$ for quadrilateral meshes .

	h	0.1	0.127		0.063		0.031		0.016		3
	11	error	order	error	order	error	order	error	order	error	order
Г	λ_1	-0.007	_	-0.002	1.85	-4.877e-4	1.97	-1.218e-4	2.05	-3.054e-5	2.01
Г	λ_2	-0.039	_	-0.014	1.42	-0.004	1.91	-9.518e-4	2.03	-2.392e-4	2.01
Г	λ_3	-0.082	_	-0.029	1.48	-0.008	1.89	-0.002	2.03	-4.878e-4	2.01
Г	λ_4	-0.017	_	-0.057	-1.75	-0.017	1.73	-0.004	2.00	-0.001	2.00

Table: $\lambda_i - \lambda_{i,\delta}, i=1,2,3,4$ versus h for $\rho=1$ with N=1 and $\varepsilon=0$ for quadrilateral meshes.

Case ((N-1,N+1,N) and $\rho>0$ with triangular or rectangular meshes)

h-version:

ho = 0.0001: upper bound; superconvergence

 $\rho=1$: upper bound; no superconvergence (baseline: $\mathcal{O}(h^{2N-2})$)

Figure: $|\lambda_i-\lambda_{i,\delta}|, i=1,2,3,4$ versus h with $\rho=0.0001, \, \varepsilon=0$ for N=2 (left) and N=3 (right) on triangular meshes.

Figure: $|\lambda_i-\lambda_{i,\delta}|,\,i=1,2,3,4$ versus h with $\rho=0.0001,\,\varepsilon=0$ on rectangular meshes for N=2 (left) and N=3 (right).

Case ((N-1,N-1,N)) and $\rho=0$ with triangular or quadrilateral meshes)

h-version: upper bound; no superconvergence

N = 2

Figure: $|\lambda_i - \lambda_{i,\delta}|$, i=1,2,3,4 versus h in log-log scale for $\rho=0$ with N=2 (left) and N=3 (right) for triangular meshes.

Case ((N-1, N-1, N)) and $\rho = 0$ with rectangular meshes)

h-version: upper bound; superconvergence $(\mathcal{O}(h^{2N}))$ vs. baseline $\mathcal{O}(h^{2N-2})$

Figure: $|\lambda_i - \lambda_{i,\delta}|$, i = 1, 2, 3, 4 versus h with n = N - 1, m = N - 1, $\rho = 0$ for N = 2 (left) and N = 3 (right) on rectangular meshes with $\mathcal{H}_N(\hat{K}) = \mathbb{Q}_N(\hat{Q})^2$.

Case ((N-1,N,N) and $\rho=0$ with triangular or rectangular meshes)

h-version: upper bound; superconvergence ($\mathcal{O}(h^{2N})$ vs. $\mathcal{O}(h^{2N-2})$)

Figure: $|\lambda_i-\lambda_{i,\delta}|,\,i=1,2,3,4,$ versus h with $n=N-1,\,m=N,\,\rho=0$ for N=2 (left) and N=3 (right) on triangular meshes of the square.

10⁰

 $\rho = 0, N = 2$

Figure: $|\lambda_i-\lambda_{i,\delta}|, i=1,2,3,4$ versus h with $n=N-1,\ m=N,\ \rho=0$ for N=2 (left) and N=3 (right) on rectangular meshes with $\mathcal{H}_N(\hat{K})=\mathbb{Q}_N(\hat{Q})^2$.

			well-posedness	lower bound	superconvergence
$\rho = 0$	T	\mathbb{P}_N^2	$n \le N-1, m \le N$		n = N-1, m = N
$\rho = 0$	Q	\mathbb{Q}_N^2	$n \le N-1, m \le N$		
	T	\mathbb{P}^2_N	$n \le N+1$	$n = N, m \ge N$	$n = N, m \ge N$
$\rho > 0$	1	1 ¹¹ N	$n \leq N + 1$	$n = N + 1, m \ge N$	$n = N-1, m \ge N+1$
$\rho > 0$	Q	\mathbb{Q}_N^2	$n \leq N$	$n = N, m \ge N$	$n = N, m \ge N$
	R	\mathbb{Q}_N^2	$n \leq N$	$n = N, m \ge N$	$n = N - 1, m \ge N + 1$

Single ridge rectangular waveguide $\Omega = [-1, 1]^2 \setminus ([-\frac{1}{2}, \frac{1}{2}] \times [0, 1])$

- u_1 : singularity of type $r^{2/3}$
- $\mathcal{O}(h^{4/3})$ in general for h-version
- $\mathcal{O}(N^{-8/3})$ for p-version

$$\lambda_1 = 12.053240106029265988, \quad \lambda_2 = 18.796375554640384564,$$

$$\lambda_3 = 30.157720368619479245, \quad \lambda_4 = 39.626151901149341938,$$

• the eighth eigenvalue is explicitly formulated as $\lambda_8 = 5\pi^2$.

Figure: Left: quadrilateral meshes of the square $\Omega = [0,1]^2$ with mesh size h = 0.475; Right: rectangular meshes of the single ridge rectangular waveguide $\Omega = [-1,1]^2 \setminus \left([-\frac{1}{2},\frac{1}{2}] \times [0,1]\right)$ with mesh size h = 0.559.

	0.070		0.035		0.017		0.009		0.004	
h		order		order		order		order		order
$\lambda_1 - \lambda_{1,\delta}$	0.075	_	0.006	3.73	0.002	1.74	6.443e-4	1.40	2.532e-4	1.35
$\lambda_2 - \lambda_{2,\delta}$	2.683	_	0.012	7.81	0.004	1.49	0.002	1.36	6.564e-4	1.34
$\lambda_3 - \lambda_{3,\delta}$	14.02	_	0.020	9.44	0.006	1.69	0.002	1.38	9.511e-4	1.34
$\lambda_4 - \lambda_{4,\delta}$	23.49	_	0.185	6.99	0.013	3.87	0.004	1.80	0.001	1.40
$\lambda_8 - \lambda_{8,\delta}$	33.20	_	0.019	10.74	8.654e-4	4.49	4.887e-5	4.15	2.589e-6	4.24
	0.280		0.140		0.070		0.035		0.017	
h		order		order		order		order		order
$\lambda_1 - \lambda_{1,\delta}$	3.898	_	0.006	9.30	0.002	1.41	9.121e-4	1.35	3.597e-4	1.34
$\lambda_2 - \lambda_{2,\delta}$	10.64	-	0.015	9.43	0.006	1.36	0.002	1.34	9.317e-4	1.34
$\lambda_3 - \lambda_{3,\delta}$	22.00	_	4.939	2.16	0.009	9.18	0.003	1.33	0.001	1.33
$\lambda_4 - \lambda_{4,\delta}$	31.47	_	14.40	1.13	0.013	10.14	0.005	1.39	0.002	1.33
$\lambda_8 - \lambda_{8,\delta}$	35.47	_	24.12	0.56	2.453e-5	19.9	3.108e-7	6.30	4.191e-9	6.21

Table: Lower bound approximation and convergence rates of $\lambda_{i,\delta}$, i=1,2,3,4,8, in h-version methods with $n=N,\ m=N,\ \rho=0.01,\ \varepsilon=0$ on rectangular meshes of the single ridge rectangular waveguide. Top: N=1; Bottom: N=2.

	4		8		16		32		48	
N		order		order		order		order		order
$\lambda_1 - \lambda_{1,\delta}$	0.008	_	0.002	2.45	2.731e-4	2.50	4.642e-5	2.56	1.653e-5	2.55
$\lambda_2 - \lambda_{2,\delta}$	6.131	_	0.004	10.6	7.071e-4	2.49	1.205e-4	2.55	4.296e-5	2.54
$\lambda_3 - \lambda_{3,\delta}$	17.49	_	0.006	11.6	0.001	2.48	1.748e-4	2.54	6.242e-5	2.54
$\lambda_4 - \lambda_{4,\delta}$	20.85		0.008	11.3	0.001	2.48	2.503e-4	2.55	8.934e-5	2.54
N		4		5		6	7		8	3
$\lambda_8 - \lambda_{8,\delta}$	i	26.38		9.747	6.	485	2.970	e-12	1.563	3e-13

Table: Lower bound approximation of $\lambda_{i,\delta}, i=1,2,3,4,8$, and convergence rates in p-version methods with $n=N,\ m=N,\ \rho=0.01,\ \varepsilon=0$ on rectangular meshes with h=0.559 of the single ridge rectangular waveguide.

Case ((N, N, N) via Piola transform and $\rho > 0$ with quadrilateral meshes)

h-version: no superconvergence

 $\rho = 0.1$: lower bound;

ho=1: upper bound;

h	0.121		0.063		0.032		0.016		0.008	
"	error	order	error	order	error	order	error	order	error	order
λ_1	0.009	_	0.002	2.47	4.283e-4	2.12	1.045e-4	2.03	2.620e-5	2.01
λ_2	0.186	_	0.019	3.43	0.003	2.55	7.316e-4	2.19	1.762e-4	2.07
λ_3	0.407	-	0.043	3.38	0.008	2.54	0.002	2.12	4.207e-4	2.07
λ_4	2.644	-	0.135	4.48	0.017	3.07	0.003	2.43	7.077e-4	2.13

Table: $\lambda_i - \lambda_{i,\delta}, i=1,2,3,4$ versus h for $\rho=0.1$ with N=1 and $\varepsilon=0$ for quadrilateral meshes.

T _h	.	0.240		0.124		0.063		0.031		0.016	
"	<u> </u>	error	order	error	order	error	order	error	order	error	order
λ	1	-0.042	_	-0.012	1.92	-3.029e-3	2.00	-7.426e-4	2.03	-1.842e-4	2.07
λ	2	-0.150	_	-0.089	0.79	-0.024	1.93	-5.996e-3	1.98	-1.506e-3	2.05
λ	3	-0.341	_	-0.175	1.01	-0.047	1.93	-0.012	2.00	-2.947e-3	2.05
λ	4	0.273	_	-0.360	-0.42	-0.108	1.75	-0.028	1.93	-7.231e-3	2.04

Table: $\lambda_i - \lambda_{i,\delta}, i = 1,2,3,4$ versus h for $\rho = 1$ with N = 1 and $\varepsilon = 0$ for quadrilateral meshes.

Case ((N-1,N-1,N) via Piola transform and $\rho=0$ with quadrilateral meshes)

h-version: upper bound; no superconvergence

Figure: $|\lambda_i-\lambda_{i,\delta}|, i=1,2,3,4$ versus h in log-log scale for $\rho=0$ with N=2 (left) and N=3 (right) on quadrilateral meshes.

Case ((N-1,N-1,N) using Piola transform and $\mathcal{H}_N(\hat{K}) = \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q})$, $\rho=0$ with quadrilateral meshes (De Rham complex constrained))

h-version: upper bound; superconvergence

Figure: $|\lambda_i - \lambda_{i,\delta}|$, i = 1, 2, 3, 4 versus h in log-log scale for $\rho = 0$ with N = 2 (left) and N = 3 (right) for quadrilateral meshes with $\mathcal{H}_N(\hat{K}) = \mathbb{Q}_{N,N-1}(\hat{Q}) \times \mathbb{Q}_{N-1,N}(\hat{Q})$.

A. Al-Taweel and X. Wang.

The lowest-order stabilizer free weak Galerkin finite element method. Applied Numerical Mathematics, 157:434-445, 2020.

A. Al-Taweel and X. Wang.

A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Applied Numerical Mathematics, 150:444-451, 2020.

A. Al-Taweel, X. Wang, X. Ye, and S. Zhang

A stabilizer free weak Galerkin element method with supercloseness of order two

C. Carstensen, Q. Zhai, and R. Zhang.

A skeletal finite element method can compute lower eigenvalue bounds.

SIAM J. Numer. Anal., 58(1):109-124, 2020.

Y. Feng, Z. Guan, H. Xie, and C. Zhou,

Augmented subspace scheme for eigenvalue problem by weak Galerkin finite element method.

F. Gao and L. Mu.

On L^2 error estimate for weak Galerkin finite element methods for parabolic problems.

J. Comput. Math., 32(2):195-204, 2014.

A. Harris and S. Harris.

X. Liu. J. Li. and Z. Chen.

Superconvergence of weak Galerkin finite element approximation for second order elliptic problems by L^2 -projections.

Applied Mathematics and Computation, 227:610-621, 2014.

A weak Galerkin finite element method for the Navier-Stokes equations.

Journal of Computational and Applied Mathematics, 333:442-457. 2018.

Y. Liu, G. Wang, M. Wu, and Y. Nie.

A recovery-based a posteriori error estimator of the weak Galerkin finite element method for elliptic problems.

Journal of Computational and Applied Mathematics, 406:113926.

L. Mu.

2019.

Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. Journal of Computational and Applied Mathematics, 361:413-425.

L. Mu, J. Wang, Y. Wang, and X. Ye.

A weak Galerkin mixed finite element method for biharmonic equations

Numerical Solution of Partial Differential Equations: Theory. Algorithms, and Their Applications, pages 247-277, 2013.

L. Mu. J. Wang, and X. Ye.

A new weak Galerkin finite element method for the Helmholtz equation.

IMA Journal of Numerical Analysis, 35(3):1228-1255, 2014.

L. Mu, J. Wang, and X. Ye.

A weak Galerkin finite element method with polynomial reduction. Journal of Computational and Applied Mathematics, 285:45-58.

L. Mu, J. Wang, X. Ye, and S. Zhang

A weak Galerkin finite element method for the Maxwell equations. Journal of Scientific Computing, 65(1):363-386, 2015.

L. Mu. X. Ye. and J. Wang.

Lower bound approximation and superconvergence

Int. J. Numer. Anal. Model., 12:31-53, 2015.

A penalized weak Galerkin spectral element method for second order elliptic equations.

Journal of Computational and Applied Mathematics, 386:113-228.

J. Wang, X. Wang, X. Ye, S. Zhang, and P. Zhu

Two-order superconvergence for a weak Galerkin method on rectangular and cuboid grids.

Numerical Methods for Partial Differential Equations. 39(1):744-758, 2023,

J. Wang and X. Ye.

A weak Galerkin finite element method for second-order elliptic problems.

Journal of Computational and Applied Mathematics, 241:103-115,

J. Wang and X. Ye.

A weak Galerkin finite element method for the Stokes equations. Advances in Computational Mathematics, 42(1):155-174, 2016.

R. Wang, R. Zhang, X. Zhang, and Z. Zhang.

Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin methods. Numerical Methods for Partial Differential Equations.

34(1):317-335, 2018,

H. Xie, Q. Zhai, and R. Zhang,

The weak Galerkin method for eigenvalue problems. arXiv preprint arXiv:1508.05304, 2015.

X. Ye and S. Zhang.

A stabilizer-free weak Galerkin finite element method on polytopal meshes.

Journal of Computational and Applied Mathematics, 371:112699.

Extended study for WGSEM with quadrilateral meshes

X. Ye and S. Zhang.

A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II. Journal of Computational and Applied Mathematics, 394:113525.

X. Ye and S. Zhang.

A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III.

Journal of Computational and Applied Mathematics, 394:113538.

X. Ye and S. Zhang.

Order two superconvergence of the CDG finite elements on triangular and tetrahedral meshes.

CSIAM Transactions on Applied Mathematics, 4(2):256-274, 2023.

Q. Zhai, H. Xie, R. Zhang, and Z. Zhang,

Q. Zhai, H. Xie, R. Zhang, and Z. Zhang,

Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem. Journal of Scientific Computing, 79:914-934, 2019.

The weak Galerkin method for elliptic eigenvalue problems. Commun. Comput. Phys., 26(1):160-191, 2019.

Q. Zhai and R. Zhang.

Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes.

Discrete and Continuous Dynamical Systems Series B, 24(1):403-413, 2019.

P. Zhu and S. Xie.

Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems.

Applied Numerical Mathematics, 172:300-314, 2022.

Conclusion

- WG is studied in the framework of SEM in the two-dimensional settings
 - flexible choices of approximation spaces
 - lower bound approximation
 - super convergence
- an alternative high-order approach for solving PDEs

Thank you!