ENGR 3421:Robotics I

Robotic Vision

A Robot Needs to See

A Robot Needs to See

Robotic Vision

Digital Image Creation

Digital Image Color Channels

CCD
Photon to Electron
Conversion (Analog)

CIS
Photon to Voltage
Conversion (Digital)

Digital Image Representations

Pixel Intensity

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	94	50	2	109	249	215
187	196	235	75	1	81	47	۰	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	76	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	76	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	256	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Pixel values

0	50	100	150	200	255
		1			

Pixel Localization

Grayscale Image

Chapter 23, The scientist and engineer's guide to digital signal processing

Color Image

Color Channels

Image Resolution

Image File Formats

		web, screen print					
image format	colour model	transparency	destination	remarks			
JPG	RGB			generational degradation			
TIFF	RGB / CMYK	1		layered images, image stacks			
GIF	RGB	1		limited colour, animated images			
PNG	RGB	1		lossless compression			
				@ IlluScienti			
file format	colour model	transparency	destination	remarks			
svg	RGB	1		interactive, scriptable			
EPS	RGB / CMYK	1		PostScript document			
PDF	RGB / CMYK	1		includes PostScript, platform independent			

Image Processing

Pixel-level Image Processing

High-level Image Processing

Raspberry Pi Camera

OpenCV is open source, contains over 2500 algorithms, and is operated by the non-profit Open Source Vision Foundation.

pip install opencv-python --break-system-packages

OpenCV Video Capture

```
import cv2 as cv
from picamera2 import Picamera2
# SETUP
cam = Picamera2()
config = cam.create_still_configuration()
cam.configure(config)
cam.start()
# L00P
while True:
    im = cam.capture_array()
    im_rgb = cv.cvtColor(im, cv.COLOR_BGR2RGB)
    im_resize = cv.resize(im_rqb, (800, 600))
    cv.imshow("Camera", im_resize)
    if cv.waitKey(1) == ord('q'):
        break
```

ArUco Marker Detection

OpenCV ArUco Resources

- Official Tutorial (C++): https://docs.opencv.org/4.x/d5/dae/tutorial-aruco-detection.html
- Pyimagesearch Tutorial: https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opency-and-python/
- Video Tutorial: https://youtu.be/cIVZRuVdv1o

Generate ArUco Markers

```
import numpy as np
import cv2
aruco_dict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_4X4_50) # get ArUco
dictionary
aruco_arr = np.zeros((300, 300, 1), dtype=np.uint8) # create an array to save
marker
for i in range(9): # generate 9 markers
    cv2.aruco.drawMarker(aruco_dict, i, 300, aruco_arr, 1)
    cv2.imwrite('aruco/4x4_' + str(i) + '.jpg', aruco_arr)
```


Detect ArUco Markers

```
import cv2 as cv
from picamera2 import Picamera2
import numpy as np
# SETUP
cam = Picamera2()
config = cam.create_still_configuration()
cam.configure(config)
cam.start()
aruco_dict = cv.aruco.Dictionary_get(cv.aruco.DICT_4X4_50) # aruco dictionary
aruco_params = cv.aruco.DetectorParameters_create()
# L00P
while True:
   if cv.waitKey(1) == ord('q'):
       break
    im = cam.capture_array()
   im_rqb = cv.cvtColor(im, cv.COLOR_BGR2RGB)
   im_resize = cv.resize(im_rgb, (400, 300))
   corners, ids, reject_candidates = cv.aruco.detectMarkers(
       im resize.
       aruco_dict,
       parameters=aruco_params,
   top_left_coords = corners[0][0][0].astype(int)
   bot_right_coords = corners[0][0][2].astype(int)
    print(corners, ids)
   image = cv.rectangle(im_resize, top_left_coords, bot_right_coords, (0, 255, 0), 2)
   cv.imshow("Camera", image)
```