COSC 341 - Tutorial 3, Solutions

1. Show that the set of even natural numbers is countable.

Let $EN = \{n | n \in \mathbb{N}, n \text{ is even}\}$ denote the set of even natural numbers and let $f : \mathbb{N} \to EN$ be a function from \mathbb{N} to EN with f(n) = 2n. For proving that EN is countable we will prove that f is bijective:

(a) injectivity:

Let
$$f(n) = f(m) \in EN$$

 $\Rightarrow 2n = f(n) = f(m) = 2m$
 $\Rightarrow n = m$
 \Rightarrow f is injective

(b) surjectivity:

Let $m\in EN$ be an arbitrary element of EN and let $n=\frac{m}{2}\in\mathbb{N}$ $\Rightarrow f(n)=f(\frac{m}{2})=m$ \Rightarrow f is surjective

2. Show that the set of even integers is countable.

Let EZ denote the set of even integers and let $f: \mathbb{N} \to EZ$ with

$$f(n) = \begin{cases} n & \text{if } n \text{ is even} \\ -n - 1 & \text{if } n \text{ is odd} \end{cases}$$

For proving that EZ is countable we will prove that f is bijective:

(a) injectivity:

Let
$$f(n) = f(m) \in EZ$$
 be an arbitrary element of EZ \Rightarrow It is either $f(n) = f(m) \ge 0$ or $f(n) = f(m) < 0$
If $f(n) = f(m) \ge 0$
 $\Rightarrow n = f(n) = f(m) = m$
 $\Rightarrow n = m$
If $f(n) = f(m) < 0$
 $\Rightarrow -n - 1 = f(n) = f(m) = -m - 1$
 $\Rightarrow n = m$
 \Rightarrow f is injective

(b) surjectivity:

Let
$$z \in EZ$$

If $z \ge 0 \Rightarrow$ For $x = z \in \mathbb{N}$ it holds $f(x) = f(z) = z$
If $z < 0 \Rightarrow$ For $x = -z - 1 \in \mathbb{N}$ it holds $f(x) = f(-z - 1) = z$
 \Rightarrow f is surjective

3. Show that the set $\{f|f:\mathbb{N}\to\mathbb{N}\}$ of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Suppose to the contrary that $\{f|f:\mathbb{N}\to\mathbb{N}\}$ is countable. List each function as f_0,f_1,\ldots

	0	1	2	3	
f_0	$f_0(0)$	$f_0(1)$ $f_1(1)$	$f_0(2)$	$f_0(3)$	
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$	$f_1(3)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	• • •
:	:	:	:	:	٠

Now define the function $f: \mathbb{N} \to \mathbb{N}$ by:

$$f(n) = f_n(n) + 1$$

By the definition of f it is different to every function in our list. Therefore our list does not include all possible functions which contradicts our assumption that $\{f|f:\mathbb{N}\to\mathbb{N}\}$ is countable. Therefore $\{f|f:\mathbb{N}\to\mathbb{N}\}$ must be uncountable.

4. Show that the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} is uncountable.

As with all diagonal arguments, we argue by contradiction. Suppose, contrary to what we want to prove, that $\mathcal{P}(\mathbb{N})$ were countable. In that case we could list all subsets of \mathbb{N} as:

$$A_0, A_1, A_4, \dots$$

Now we define a set $A = \{i | i \in \mathbb{N}, i \notin A_i\} \subseteq \mathbb{N}$. There is no k for which $A = A_k$. If there was such a k, it would either be

$$k \in A \Rightarrow k \notin A_k = A$$
 (by the definition of A) \Rightarrow contradiction or $k \notin A \Rightarrow k \in A = A_k$ (by the definition of A) \Rightarrow contradiction

So our list of subsets was not complete as we claimed it was, and hence no such list can exist.

5. Show that, for any set A, $|A| < |\mathcal{P}(A)|$.

 $|A| < |\mathcal{P}(A)|$ means that there is an injective, but no surjective function form A to $\mathcal{P}(A)$. An example for an injective function from A to $\mathcal{P}(A)$ is $g: A \to \mathcal{P}(A)$ with $g(a) = \{a\}$. Now we need to prove that there is no surjective function from A to $\mathcal{P}(A)$. We do this by contradiction: Suppose that we had a surjective function $f: A \to \mathcal{P}(A)$. We reach a contradiction by defining a set $B \subseteq A$ not in the range of f. Define:

$$B = \{a \in A : a \notin f(a)\} \subseteq A$$

Now we need to show that it is a contradiction for B to be in the range of f. To see this, suppose that B = f(b). Now we ask "Is b an element of B"? If so, then by the definition of B, $b \notin f(b)$ i.e. $b \notin B$. A contradiction. If not, then since $b \notin f(b)$, we should have $b \in B$. Another contradiction. Both possibilities lead to contradictions, so no such function can exist.

Homework

1. Show that the set of total functions from $\mathbb N$ to $\{0,1\}$ is uncountable.

As with all diagonal arguments, we argue by contradiction. Suppose, contrary to what we want to prove, that the set of total functions from \mathbb{N} to $\{0,1\}$ were countable. In that case we could list all these functions as:

$$f_0, f_1, f_2, \dots$$

Now we define a function $g: \mathbb{N} \to \{0,1\}$ that does not appear in the list (achieving our contradiction). We simply set, for each $i \in \mathbb{N}$:

$$g(i) = 1 - f_i(i)$$

(so if $f_i(i) = 1$, g(i) = 0 and vice versa). Thus, for any i, g disagrees with f_i at at least one point (namely i) and possibly many others, i.e. $g \neq f_i$ for any i. So our list of functions was *not* complete as we claimed it was, and hence no such list can exist.

2. We can define the set \mathbb{N} of natural numbers as:

$$0 \in \mathbb{N}$$

If $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$

We call this a *recursive* definition. Give recursive definitions of:

(a) The set of even natural numbers $EN = \{2n | n \in \mathbb{N}\}\$

$$0 \in EN$$

If $n \in EN$, then $n + 2 \in EN$

(b) The set $P = \{1, 2, 4, 8, 16, \ldots\}$ of powers of 2 within \mathbb{N}

$$1 \in P$$

If $n \in P$, then $n + n \in P$