Tecnologias de Rede

Considerações Normativas da TIA/EIA-569B

Diretrizes gerais

- Intensidade de luz no ponto de terminação dos cabos na hardware de conexão de 500 lux.
- Racks e gabinetes com espaços que permitam serviços de manutenção (abertura de portas, remoção de laterais de gabinetes)
- Estruturas dedicadas e independentes considerando as necessidades atuais dos usuários
- Fator de crescimento para que novos segmentos de cabos possam ser lançados
- Sistemas de encaminhamento instalados de acordo com instruções dos fabricantes e projetados de acordo com as características do ambiente.
- Normas aceitam basicamente todos os tipos de encaminhamento desde que os critérios de instalação dos cabos sejam seguidos (raio de curvatura, ocupação, carga etc)

Encaminhamento dos cabos

- Quantidade de cabos instalados em suportes do tipo gancho ou anel deve limitar-se de forma a não causar deformações geométricas dos cabos
- Encaminhamento tipo esteira ou bandeja ocupados no máximo 50% da sua capacidade, considerando o fator de crescimento
- Conduítes fechados devem ser ocupados de acordo com tabelas disponíveis em normas disponíveis e quantidade de cabos que podem ser acomodados nestes depende do diâmetro externo do cabo
- Encaminhamentos no teto devem manter distância mínima das placas do teto (ver normas)
- Manter separação segura dos sistemas de alimentação elétrica visando diminuição dos efeitos da EMI's
- Canaletas aparentes ou as disponíveis nos mobiliários com ocupação inicial de 40% e oferecendo compatibilidade com os requisitos de raios mínimos de curvatura dos cabos; ocupação final não superior a 60% da capacidade, já considerando o fator de crescimento
- Buchas devem ser usadas para proteger os cabos de bordas e superfícies cortantes ao longo o percurso de encaminhamento dos cabos

Infra-estrutura para o cabeamento horizontal

- Meios:
 - Esteiras suspensas
 - Eletrodutos
 - Malha de distribuição de piso
 - Malha de distribuição de teto
 - Pisos falsos
 - Canaletas

Eletrodutos

- Mais usados em instalações embutidas, podendo ser metálico ou não, rígido ou não
 - Taxa de ocupação máxima de 40%
 - Comprimento do duto entre curvas ou caixas de passagem não deve exceder 30 metros
 - Recomenda-se uma caixa de passagem a cada 10 m, para garantir a integridade do cabo durante o lançamento e as atividades de manutenção
 - Utilizar dutos de no mínimo 1" e evitar lances com mais de duas curvas de 90°
 - Devem ser dimensionados considerando 3 cabos para cada WA
 - Raio interno de curva mínimo de 6 vezes o diâmetro do duto. No caso de fibra, raio mínimo de 10 vezes o diâmetro interno do duto.
 - Serviços compartilhados usar dutos com divisão interna
 - Para garantir a taxa de ocupação, atende-se no máximo 3 caixas de tomadas (100x100 mm ou 100x50 mm);

Eletrodutos

ELETRODUTO		NUMERO MÁXIMO DE CABOS									
Diâmetro interno (mm)	Dimensão	Diâmetro do cabo (mm)									
	comercial (polegadas)	3,3	4,6	5,6	6,1	7,4	7,9	9,4	13,5	15,8	17,8
15,8	1/2	1	1	0	0	0	0	0	0	0	0
20,9	3/4	6	5	4	3	2	2	1	0	0	0
26,6	1	8	8	7	6	3	3	2	1	0	0
35,1	1 1/4	16	14	12	10	6	4	3	1	1	1
40,9	1 1/2	20	18	16	15	7	6	4	2	1	1
52,5	2	30	26	22	20	14	12	7	4	3	2
62,7	2 1/2	45	40	36	30	17	14	12	6	3	3
77,9	3	70	60	50	40	20	20	17	7	6	6
90,1	3 1/2	-	-	-	-	-	-	22	12	7	6
102,3	4	-	-	-	-	-	-	30	14	12	7

Categoria **5** ou **5e**

Categoria **6**

Malha de distribuição embutida em piso

- Sistema de distribuição, com dutos de perfil retangular, embutidos no contra piso.
 - taxa de ocupação de 30% dos dutos.
 - flexibilidade para atender a áreas de trabalho, especialmente em grandes salões onde as distâncias entre as paredes dificultam o atendimento com distribuições de perímetro.
 - principal desvantagem está ligada ao custo e ao fato de ser instalada durante a construção antes do contra-piso.

Piso Elevado

- Composto de painéis modulares apoiados em pedestais ajustáveis que variam de 15cm a 30cm de altura e hastes metálicas que são fixadas nos pedestais formando um reticulado aonde são encaixadas as placas.
- embaixo do piso os cabos devem ser encaminhados via eletrocalhas, eletrodutos ou outro sistema específico.
- É possível utilizar sob o piso elevado o conceito de caminhos virtuais, sem o uso de dutos/calhas, desde que todo o sistema de cabeamento esteja organizado e amarrado em forma de chicote, e estrutura elétrica seja blindada e aterrada.

Eletrocalhas

- normalmente utilizadas como alimentadores para levar o cabeamento do armário de telecomunicações para as salas e então utilizar canaletas ou eletrodutos para distribuição nas áreas de trabalho.
- Podem ser ventiladas ou n\u00e3o (ver tipo de cabo)
- Se utilizar a mesma eletrocalha para sinais de comunicação e eletricidade, deve-se colocar uma separação metálica aterrada entre eles.
- Devem ser utilizadas curvas especificas, pré-fabricadas, na dimensão da eletrocalha escolhida, que respeite os raios de curvatura máximos dos cabos dentro das mesmas, evitando a exposição a cantos vivos:
 - UTP 4 pares 4 vezes o diâmetro do cabo;
 - Fibra óptica 10 vezes o diâmetro do cabo.
 - A taxa de ocupação recomendada de 40 % da área útil transversal tendo com o limite máximo 50%. Na tabela abaixo, encontram-se as principais dimensões comerciais.

Eletrocalhas Dimensões comerciais	Diâmetro do cabo (milímetros)			
LarguraXAltura	5,2	6,5		
50x25	20	13		
50x50	40	26		
75x50	60	39		
75x75	92	59		
100x50	80	52		
100x75	120	78		
100x100	160	104		
150x100	245	157		
200x100	327	209		
300x100	190	314		

Esteiras Suspensas (Leito de cabos)

- aplicados principalmente nas salas de telecomunicações ou salas de equipamentos para receber e rotear as grandes quantidades de cabos que chegam nestes espaços.
- permitem um acesso e gerenciamento bastante facilitado, porém não devem ficar em locais abertos por não proteger contra o acesso.
- Os cabos de fibra ópticas devem ser conduzidos separadamente, quando houver compartilhamento do leito com outros tipos de cabos. Para garantir esta separação pode-se utilizar dutos corrugados exclusivos.
- Os cabos devem ser fixados a estrutura preferencialmente com velcros e sempre com atenção para evitar curvaturas de cabos além dos limites permitidos. Caso sejam utilizadas abraçadeiras plásticas na fixação dos cabos devem ser apertadas sem marcá-los.

Canaletas Aparente

- São utilizadas para distribuir os pontos de telecomunicações nas áreas de trabalho, normalmente fixados sobre as paredes.
- Sua capacidade é apresentada por tabelas fornecidas pelo fabricante, que são calculadas com a taxa de ocupação de 40% ou, quando a ocupação já for definitiva, a 60%.
- Verificar o raio mínimo de curvatura dos cabos, quando existirem curvas no trajeto
- Fazem parte do sistema de distribuição as curvas e adaptadores para tomadas de telecomunicações específicos.
- Podem ser metálicas (alumínio ou ferro) ou não-metálicas (normalmente PVC): No caso de canaletas metálicas devese ligar uma de suas extremidades ao sistema de aterramento de telecomunicações do prédio.

Area secção		State					
(D) Diâmetro externo do cabo em "mm"	2,0	3,0	4,0	5,0	6,0	7,0	ão
Área do cabo em mm²	3,1	7,0	12,6	19,6	28,6	38,4	faxa de ocupaç
ÅREA da secção 150 mm² Representa cabos de dâmetros,0mm		Número de cabos por secção					12.0
		8	4	3	2	1	40
		12	7	4	3	2	60

Malha de distribuição pelo teto

- Constituído normalmente por uma malha de eletrocalhas, que através de elementos específicos realiza baixadas através de postes ou eletrodutos, os quais descem do teto até às áreas de trabalho. Todo o cabeamento deve ser protegido e acondicionado.
- Os postes s\(\tilde{a}\) o divididos para acondicionar a parte de eletricidade e comunica\(\tilde{c}\) es possuindo diversos tipos de acabamento para harmonizar com o ambiente.
- Deve-se considerar o uso de canos to tipo Plenum se o caminho também for utilizada para a distribuição do retorno de ar-condicionado sem dutos
- Os elementos de suporte dos encaminhamentos de teto deverão permitir fixação a uma altura mínima de 75 mm acima de eventuais tetos falsos. (ou entre eles)

Sala de telecomunicações

- Não deve ser suportada por teto falso, para facilitar o roteamento de cabos horizontais
- Tamanho mínimo da porta deve ser de 910 mm de largura por 2000 mm de altura e ter sua abertura voltada para fora do TR
- Caso não existam racks, pelo menos uma parede de 2,4 m de altura deve ser forrada com painéis de madeira compensada de 20 mm para fixação de hardware (blocos IDC110, etc), com aplicação de duas demãos de tinta antichama.
- Recomenda-se utilizar a codificação padrão de cores dos dispositivos de conectividade (vide aula anterior)
- Recomenda-se para área menores do que 100 m², utilizar gabinetes de parede. Se a área estiver entre 100 e 500 m², utilizar gabinetes tipo armário (racks)
- Dimensionamento de armários de telecomunicações deve seguir tabela abaixo:

Área atendida (m²)	WA (10 m²)	N⁰ de pontos	Dimensões
100	10	20	Rack de Parede ou Gabinete
100 < 500	11 a 49	22 a 98	Shaft de 2,60 x 0,60, Gabinetes ou Racks
500	50	100	Sala 3,0 x 2,2 m
800	80	160	Sala 3,0 x 2,8 m
1000	100	200	Sala 3,0 x 3,4 m
> 1000			Instalação de uma segunda TC

Sala de telecomunicações

- Devem se fornecidas tomadas de energia estabilizadas para os racks dos equipamentos e tomadas normais para atividades de manutenção, localizadas em intervalos de 1,8m por todo o perímetro da sala;
- O espaço utilizado pelo TR não deve ter distribuição elétrica a não ser aquela direcionada para os equipamentos de telecomunicações
- Proteção contra incêndio;
- Acesso ao ponto principal de aterramento do prédio;
- O sistema de controle ambiental, como pressão positiva, deve funcionar 24 horas por dia, 365 dias por ano com os seguintes valores:

Sala de telecomunicações	Condições
Sem equipamentos ativos	Temperatura: 10 °C a 35 °C Umidade: abaixo de 85%
Com equipamentos ativos	Temperatura: 18 °C a 24 °C Umidade: entre 30% e 55%

Percursos Verticais ou Backbone

- Estrutura vertical composta por dutos, conexões, fendas e bandejas, que suportam e protegem o cabeamento que interliga as salas de telecomunicações, estas com as salas de equipamentos e de entrada, ou ainda as interligações entre edifícios em um campus
- Pode-se utilizar de dutos de passagem (sleevers) ou aberturas (slots), conforme figuras abaixo.
- Para sleevers, dimensão de furação de 4" ou 100 mm para cada 5.000 m² de área servida;
- Norma recomenda mínimo de 2 dutos de 4" de reserva, além dos calculados
- Interligação de TRs dentro do mesmo pavimento, utilizar eletroduto de 3".
- Todos os dutos devem ser protegidos contra fogo

Sala de Equipamentos

- Localização que permita expansões futuras e facilidade de movimentação para os equipamentos de grande porte
- Área de 0,07 m² para cada 10 m² das WAs, com um total não inferior a 14 m²
- Temperatura e unidade controladas assim como nas TRs, além de poeira
- Eletroduto mínimo de 1 ½" disponível para interligação da ER ao ponto central de aterramento do edifício
- Proteção secundária contra voltagem ou pico de corrente para equipamentos eletrônicos conectados a cabos que se estendam entre edifícios (backbone)
- Considerar no projeto: no-break, caminhos de acesso, aterramento, carga do piso, interferências eletromagnéticas e "fire-stopping"
- Dimensões da sala

Nº de WA´s	Dimensões (m2)
até 100	14
101 a 400	37
401 a 800	74
801 a 1200	111

Entrada do Edifício (Entrance Facilities - EF)

- considera-se a chegada do cabo da companhia telefônica, dos cabos provenientes de sistemas de antenas (satélite, microondas), TV a cabo e o cabeamento de backbone vindo dos demais prédios que constituem o campus.
- Deve conter dutos para backbone entre edifícios e prover espaço para entrada e terminação dos cabos que compõem o sistema de backbone
- Localização não sujeita a unidade excessiva e tão próxima quanto possível da entrada principal do edifício
- Não instalar teto falso dentro da EF
- Deve ser providenciado um sistema de proteção e aterramento adequados, para evitar que induções eletromagnéticas ocorridas nos cabos externos venham causar danos pessoais e materiais ao prédio.
- Nos cabos geleados de fibra ou metálico, deve ser providenciada contenção da geléia e a transição para cabos internos não propagantes de chama. Pode-se utilizar caixas de emendas ou DIOs. Cabos deste tipo não podem entrar mais de 15m no prédio, devido às características inflamáveis da mesma.
- A decisão do uso de uma sala ou área aberta deve ser baseada nos critérios de segurança, quantidade, tipo de terminações e equipamentos, dimensões do edifício e localização dentro do mesmo. Para edifícios com áreas maiores que 2.000 m² uma sala fechada é mais adequada.
- Outra consideração importante relacionada a entrada no prédio é a forma como os cabos chegam, podendo ser :
 - Entrada aérea
 - Entrada subterrânea via dutos
 - Entrada subterrânea com cabos diretamente enterrados

Separação de Fontes de Energia Eletromagnéticas (EMI)

A energia elétrica é um dos serviços que normalmente compartilham os mesmo caminhos dos cabos de telecomunicações, e por isso critérios de segurança e performance devem ser seguidos

- Mesmo duto (eletrocalha ou canaleta) devem ser separados por uma barreira (septos) desde que a corrente no circuito elétrico não ultrapasse 20 A e nas tensões nominais de 120/240 V. Corrente maiores seguir tabela abaixo.
- Para reduzir a EMI nos cabos metálicos
 - Fotocopiadoras devem estas numa distância maior que 3 metros da ER
 - Respeitar distância mínima de 120 mm de lâmpadas fluorescentes
 - Distância de no mínimo 3 metros de linhas de força maiores que 480 V
 - Pontos de cross-connects devem ficar a uma distância de 6 metros de painéis de distribuição elétrica e transformadores acima de 480 V

Infra-es	distância para carga			
Condutores elétricos	Condutores U/UTP	maior que 5 KVA		
Dutos não-metálicos	Dutos não-metálicos	610 mm		
Dutos metálicos aterrados	Dutos não-metálicos	305 mm		
Dutos metálicos aterrados	Dutos metálicos aterrados	152 mm		

Exemplos de como não deve ser

Exemplos de como não deve ser

Antes de depois

