Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждения высшего образования «Национальный исследовательский технологический университет «МИСиС» Кафедра бизнес-информатики и систем управления производством

Отчет по лабораторной работе №1 на тему:

«Моделирование линейных динамических систем»

по дисциплине «Математическое моделирование»

Направление подготовки: 01.03.04 Прикладная математика

Выполнил:	Проверил:
Парчиев_Р.Б	<u>Добриборщ Д.Э.</u>
<u>БПМ-19-2</u> <u>(группа)</u> 19.11.2021	(оценка)
	(дата проверки)
Полпись:	Подпись:

Цель работы — ознакомиться с основами Simulink, среды графического моделирования, моделирования и создания прототипов, широко используемой в промышленности. **Задача** — получить математическую модель для физической системы физической системы, получить структурную схему моделирования для результирующих дифференциальных уравнений, а также получить реакцию системы на единичный скачок и исследовать влияние демпфирования на реакцию системы.

1. Моделирование механической системы масса-пружина

Рассмотрим простую механическую систему, состоящую из массы, пружины и демпинга, показанную на рис. 1 (слева). На рисунке M - масса, B - коэффициент демпфирования, K - жесткость пружины, f(t) - внешняя сила, а x(t) - перемещение массы. На движение массы влияют три силы (и инерция), а именно приложенная сила, демпфирующая сила и сила пружины, как показано на диаграмме свободного тела на рис. 1 (справа). Применяя Второй закон Ньютона, получим уравнение движения:

$$M\ddot{x}(t) + B\dot{x}(t) + kx = f(t)$$
, (1)

Задание 1.1. Применив преобразование Лапласа (с нулевыми начальными условиями) найдите передаточную функцию модели:

$$G(s) = \frac{X(s)}{F(s)}, (2)$$

Имеем нулевые начальные условия:

$$x(0) = 0, \dot{x}(0) = 0, \ddot{x}(0) = 0$$

$$x(t) \to X(s)$$

$$\dot{x}(t) \to SX(s) - x(0) = SX(s)$$

$$\ddot{x}(t) \to S^2X(s) - sx(0) - \dot{x}(0) = S^2X(s)$$

$$MS^2X(s) + BSX(s) + kX(s) = F(s)$$

$$X(s)(MS^2 + Bs + k) = F(s)$$

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{MS^2 + Bs + k}$$

Рисунок 1. Механическая система масса-пружина.

Задание 1.2. Перепишите уравнение (1) в форму вход-состояние-выход.

$$M\ddot{x}(t) + B\dot{x}(t) + kx(t) = f(t) \mid *\frac{1}{M},$$
 при $M \neq 0$, так как M – масса.
$$\ddot{x}(t) + \frac{B}{M}\dot{x}(t) + \frac{k}{M}x(t) = \frac{f(t)}{M}$$

$$A = \begin{bmatrix} -\frac{B}{M} & 1 \\ -\frac{k}{M} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix};$$

Задание 1.3. Составьте структурную схему моделирования, опираясь на уравнение (1) и результат, полученный в Задании 2.

Рисунок 2. Структурная схема.

Задание 1.4. Для системы, находящейся в состоянии покоя, в момент времени t = 0 прикладывается постоянная сила f(t) = 32 H. Рассматриваемая система имеет массу 2 кг и жесткость пружины 32 кг / c2. Коэффициент демпфирования В можно отрегулировать для получения желаемого отклика. Выполните моделирование в пакете MATLAB/Simulink (Scilab).

Рисунок 3. Зависимость скорости от перемещения (положения) системы.

Рисунок 4. График изменения положения груза во времени.

2. Моделирование математического маятника

Рассмотрим простой маятник, показанный на рис. 5, где на шарнире висит груз массой М кг. Жесткий стержень длиной 1 метр. Стержень достаточно легкий, поэтому его массой можно пренебречь. Стержень смещен на угол θ радиан от положения равновесия. Предположим, что в системе действует вязкое трение с коэффициентом демпфирования B кг-с/м. Тангенциальная скорость массы равна $1\dot{\theta}$. Тангенциальные силы, действующие для восстановления равновесия маятника, равны

$$F_T = -mg \sin \theta - Bl\dot{\theta}, (3)$$

где g – ускорение свободного падения.

Рисунок 5. Механическая система: математический маятник.

Аналогично, Разделу 1, используя закон Ньютона, получим

$$FT = ml\ddot{\theta}.$$
 (4)

Объединив выражения (3)–(4) нетрудно получить уравнение движения маятника

$$\ddot{\theta} + \frac{B}{m}\dot{\theta} + \frac{g}{l}\sin(\theta) = 0. (5)$$

Заметим, что выражение (5) является нелинейным в силу слагаемого $sin(\theta)$.

Задание 2.1. Перепишите уравнение (5) в форму вход-состояние-выход.

 $sin(\theta) = \theta$ — По первому замечательному пределу

Перепишем уравнение (5):

$$\ddot{\theta} + \frac{B}{m}\dot{\theta} + \frac{g}{l}\theta = 0.$$

$$A = \begin{bmatrix} -\frac{B}{m} & 1 \\ -\frac{g}{d} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix};$$

Задание 2.2. Составьте структурную схему моделирования, опираясь на уравнение (1) и результат, полученный ранее.

Рисунок 6. Структурная схема моделирования

Задание 2.3. Выполните моделирование в пакете MATLAB/Simulink (Scilab). Исходные данные. Масса смещена от положения равновесия на 0.5 радиана в момент времени t=0. Масса m=0.5 кг, длина стержня l=0.6 м а ускорение свободного падения - 9,81 м / c2. Будем рассматривать два случая коэффициента трения:

1. B =0.05 $\kappa \Gamma^* c/M$:

Рисунок 7. Зависимость угловой скорости от смещения.

Рисунок 8. Зависимость смещения от времени.

Рисунок 7. Зависимость угловой скорости от времени.

2. B =0.4 $\kappa \Gamma^* c/M$:

Рисунок 8. Зависимость угловой скорости от смещения.

Рисунок 9. Зависимость смещения от времени.

Рисунок 10. Зависимость угловой скорости от времени.

Вывод: продвинулся в изучении программного обеспечения Simulink, понял, как работать на базовом уровне со средами графического моделирования, моделирования и создания прототипов, широко используемых в промышленности.