FUNDAÇÃO ESCOLA DE COMÉRCIO ÁLVARES PENTEADO - FECAP

Bacharelado em Ciência da Computação Projeto Interdisciplinar - Segundo Semestre

Estudantes:

- André dos Santos Gregório RA: 24026489
- Guilherme Reis Fogolin de Godoy RA: 24026241
- Lucas Moreira de Godoy RA: 24026298
- Pedro Henrique Nascimento Lemos RA: 23025380
- Yan Ramos Cezareto RA: 24026005

Turma: 2NACOMP_S

Interligação do ABRACESP com a disciplina de Cálculo II

Fórmula:

Se N(t) é a função que representa o número de cadastros ao longo do tempo ou conforme as categorias, a fórmula para encontrar máximos e mínimos seria baseada na derivada da função: f'(t) = dN(t) / dt

Para identificar os pontos onde a função N(t) tem máximos ou mínimos, devemos igualar a derivada a zero: f'(t) = 0

Ou seja, quando a taxa de variação no número de cadastros em relação ao tempo t é zero, temos um ponto de máximo ou mínimo.

Aplicação com gráficos através do Google Sheets

- [1] Coleta de Dados: No Google Sheets terá colunas com as categorias e outra com os cadastros. A ideia, portanto, é modelar como o número de cadastros varia e aplicar o conceito de derivada para encontrar os pontos de máximos e mínimos.
- [2] Implementação no Google Sheets: Lidando com cadastros em função do tempo, pode-se calcular a variação dos cadastros entre períodos consecutivos:
- **2.1.** Para cada **ponto ti**, calcula-se a diferença de cadastros em relação ao tempo anterior: $\Delta N = N(ti + 1) N(ti)$. O que resultará em uma aproximação da derivada.
- [3] Identificando Máximos e Mínimos: Pela análise das variações, observamos os pontos máximos e mínimos dos períodos.
 - **3.1.** Se $\Delta N > 0$, significa que o número de cadastros está crescendo;
 - **3.2.** Se Se $\Delta N < 0$, significa que o número de cadastros está decrescendo;
 - 3.3. Se ΔN muda de positivo para negativo, há um ponto de máximo;
 - **3.4.** Se ΔN muda de negativo para positivo, há um ponto de mínimo.
 - [4] Fórmula geral: $\Delta N = N(ti + 1) N(ti)$, com isso há
 - **4.1.** $\Delta N_{i-1} > 0$ e Ni < 0, há um ponto de máximo em ti;
 - **4.2.** $\Delta N_{i-1} < 0$ e Ni > 0, há um ponto de mínimo em ti.

[5] Aplicação fictícia:

- **5.1.** Relação do número de cadastros ao longo dos meses do ano.
- **5.2.** Reunião em tabelas dos resultados obtidos.

Meses - 2024	Cadastros
Janeiro	10
Fevereiro	5
Março	40
Abril	50
Maio	40
Junho	85
Julho	100
Agosto	95
Setembro	130
Outubro	145
Novembro	125
Dezembro	175

5.3. Importação dos dados para um gráfico de linha.

5.4. Avaliação dos pontos máximos e mínimos e interpretação dos resultados:

Entre fevereiro e janeiro: $\Delta N = 05 - 10 = -05$. Mudança de positivo para negativo, portanto, fevereiro é um **ponto de mínimo** e os cadastros estão decrescendo.

Entre março e fevereiro: $\Delta N = 40 - 05 = +35$. Mudança de negativo para positivo, portanto, março é um **ponto de máximo** e os cadastros estão crescendo.

Entre abril e março: $\Delta N = 50 - 40 = +10$. O número de cadastros está crescendo.

Entre maio e abril: $\Delta N = 40 - 50 = -10$. Mudança de positivo para negativo, portanto, maio é um **ponto de mínimo** e os cadastros estão decrescendo.

Entre junho e maio: $\Delta N = 85 - 40 = +45$. O número de cadastros está crescendo.

Entre julho e junho: $\Delta N = 100 - 85 = +15$. O número de cadastros está crescendo.

Entre agosto e julho: $\Delta N = 95 - 100 = -05$. Mudança de positivo para negativo, portanto, agosto é um **ponto de mínimo** e os cadastros estão decrescendo.

Entre setembro e agosto: $\Delta N = 130 - 95 = +35$. Mudança de negativo para positivo, portanto, setembro é um **ponto de máximo** e os cadastros estão crescendo.

Entre outubro e setembro: $\Delta N = 145 - 130 = +15$. O número de cadastros está crescendo.

Entre novembro e outubro: $\Delta N = 125 - 145 = -20$. Mudança de positivo para negativo, portanto, novembro é um **ponto de mínimo** e os cadastros estão decrescendo.

Entre dezembro e novembro: $\Delta N = 175 - 125 = +50$. Mudança de negativo para positivo, portanto, dezembro é um **ponto de máximo** e os cadastros estão crescendo.

[6] Interpretação dos resultados:

Fevereiro, Maio, Agosto e Novembro são os pontos de mínimo. Nesses meses, ocorre uma redução nos cadastros, o que indica períodos de menor interesse ou outros fatores que poderiam estar diminuindo o número de cadastros.

Março, Setembro e Dezembro são os pontos de máximo. Estes meses representam os picos de cadastros, mostrando que há um aumento considerável após cada um dos períodos de queda.

[7] Extração da fórmula:

Com base nos dados analisados, é possível a aproximação da fórmula da função, fazendo, assim, uma previsão dos cadastros com base no tempo.

$$f(x) = 14,72x - 12,35$$

Em que "x" representa os meses do ano, seguindo a sua ordem do calendário, ou seja, janeiro = 1, fevereiro = 2 e assim por diante.

[8] Teorema de Taylor:

O Teorema de Taylor pode ser útil quando precisa-se fazer uma estimativa de valores. O conceito se baseia na ideia de expandir uma função conhecida em torno de um ponto específico, permitindo estimar valores próximos a esse ponto. A série de Taylor representa a função como uma soma de termos que envolvem as derivadas da função avaliadas no ponto escolhido.

Para uma função f(x) e um ponto a, o Teorema é:

$$f(x) \approx f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^n(a)}{n!}(x - a)^n$$

Dessa forma, aplicamos o Teorema para prever, por exemplo, o valor para janeiro do próximo (ou seja, x = 13). Para tal, é preciso expandir a função f(x) = 14,72x - 12,35 em torno de dezembro, em que x = 12.

Como a função em questão é linear sua derivada segunda e todas as derivadas superiores são zero, simplificando a série para apenas os dois primeiros termos:

$$f(12) \approx f(12) + f'(12)(x - 12)$$

 $f(12) \approx (14,72 * 12) - 12,35) + (14,72)(13 - 12)$
 $f(12) \approx (176,64 - 12,35) + 14,72(1)$
 $f(12) \approx f(164,29) + 14,72$
 $f(12) \approx 179$

À vista disso, seguindo as previsões do Teorema de Taylor, o número de cadastros em janeiro do próximo ano em questão será de 179, aumento de 4 serviços em comparação com o mês anterior. Além disso, é importante ressaltar que os números sofrem inúmeras variações. Os crescimentos e decrescimentos não são proporcionais. Portanto, já há uma perda de precisão ao estimar a fórmula que define o gráfico, bem como ao expandir os valores através da Série de Taylor.