Name:			******	•••••
Roll No. : .			• • • • • • • •	
Invigilator'	s Signature :	* .		
	CS/E	3.Tech(EE), 2009	/SEM	I-5/CS-513/2009-10
SYST	TEM PROG			D OPERATING
Time Alloti	ted: 3 Hours			Full Marks: 70
	The figures in	the margin i	ndica	te full marks.
Candidat	es are required	i to give their	ansu	vers in their own words
		as far as pr		
	(Multiple	GROUP - Choice Ty		estions)
1. Choo	se the correct	alternatives	for th	
				$10 \times 1 = 10$
i)	A thread is a			
•	a) task		b)	process
	e) program		d)	light-weight process.
ii) V	What is not a f	function of th	ne loa	der ?
8	a) Relocation	1	b)	Allocation
(c) Loading		d)	Translation.
55906				[Turn over

	_					
iii)	On	Once a program is compiled, it can be loaded for				
	exe	cution				
	a)	only from comp	iler generat	ed starting address		
	b)	anywhere in ma	in memory			
	c)	user needs to s	pecify mem	ory address		
	d) ,	from address 'O	' in main m	emory.		
iv)	The	system call to st	art a new p	rocess is		
	a)	exec	b)	fork		
	c)	init	d)	none of these.		
v)	8085 microprocessor supports					
	a)	8-bit	b)	4-bit		
	c)	32-bit	d)	16-bit.		
vi)	Wh	ich of the followi	ng remarks	about assembler is are		
	true	e ?				
	a)	Translates mne	emonic ins	tructions into machine		
	b)	design of an as	ssembler is	independent of source		
•	c)	Both (a) & (b)				
	d)	none of these.				
55906	Tongon (**)		2			

5

vi) M	Memory protection is normally provided by			
	a)	compiler			
	b)	user program			
	c)	operating system medules			
•	d)	processor.			
vi	ii) A	critical section is a program segment			
•	a)	which should run in a certain specified amount of time			
	b)	which avoids deadlocks			
	c)	where shared resources are accessed			
	d)	which must be enclosed by a pair of semaphores operations, P and V .			
ix)	W	hich of the following provides an interface from user			
	to	operating system?			
	a)	Kernel b) Shell			
	c)	Microkernel d) Monolithic kernel.			
x)	Ag	ing is considered to be a solution for			
	a)	deadlock b) external fragmentation			
	c)	thrashing d) starvation.			
5906	•	3 [Turn over			

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. What is the difference between a compiler and interpreter? Explain briefly the working of microprocessor. b) Write down the four necessary conditions of deadlock. Define the following terms: Turnaround time a) b) Rotational latency Thrashing. c) What are the functions of operating system? b) What is device driver? What are the disadvantages of an absolute loading scheme? b) What do you understand by spooling?

Give an example of a monolithic kernel operating

55906

system.

c)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Explain the working of a two-pass assembler. Mention is advantages and disadvantages.
 - b) Given memory partitions of 100 K, 500 K, 200 K, 300 K and 600 K (in order). How would each of the first-fit, best-fit and worst-fit algorithms place processes of size 212 K, 417K, 112 K and 426 K (in order)? Which algorithm makes the most efficient use of memory?
 - c) What is the difference between internal and external fragmentation? 6+6+3
- 8. a) How does a relocating loader work?
 - b) What are logical address and physical addresses?
 - c) What is busy waiting? What are the ways to avoid it?
 - d) For what type of operation is Direct Memory Access

 (DMA) useful ? Justify your answer. 5 + 3 + 4 + 3

55906

5

Turn over

9. a) Consider the following snapshot of a system:

P ₀ 0012 0012 1	ailable
	B C D
D 1000 1850	520
$P_1 \qquad 1000 \qquad 1750$	
P ₂ 1354 2356	
P ₃ 0632 0652	
P ₄ 0014 0656	

Answer the following questions using Banker's algorithm.

- i) What is the content of the matrix need?
- ii) Is the system in a safe state?
- iii) If a request from process p_1 arrives for (0, 4, 2, 0), can the request be granted immediately?
- b) Consider a disk queue with requests for I/O to block on cylinders in the following order:

98, 183, 37, 122, 120, 17, 65, 67. (The disk head is intially at cylinder 53) SCAN and C-SCAN disk scheduling algorithm. Compare with respect to the above request.

(2+3+3)+7

55906

10. a) Consider the following set of processes:

Process	CPU Burst-time	Priority	Arrival Time
P_{1}	10	3	0
P_2	1	1	0
		(highest)	
P_3	2	3	1
P_4	1	4	3
		(Lowest)	
P_{5}	5	2	6

Draw the Gantt chart using FCFS, SJF (both preemptive and non-preemptive), RR (ts=3) & preemptive priority scheduling. Calculate average waiting time in each case.

b) What do you mean by Process State? Explain with proper diagram.

c) What is PCB?

- 8 + 5 + 2
- 11. a) What is effective access time? A paging system with the page table is stored in main memory.
 - if memory reference takes 200 ns, 200 how long does a paged memory reference take?
 - ii) If we add TLBs and 75% hit is successful, what is the effective memory reference time? (Assume that finding page-table entry in the TLBs take zero time, if the entry is there).
 - b) What is compaction? What are its drawbacks?
 - c) Mention the advantages and disadvantages of demand paging. (1+2+3)+4+5

55906

7