LECTURER: PROF. McDonald Scribe: Dmitrii Avdiukhin

4.1 Terminology

Definition 4.1. A convex optimization problem (program)

$$\begin{cases} \min_{x \in D} f(x) \\ subject \ to \quad g_i(x) \le 0 \ \forall i \in [1:m] \ , \\ Ax = b \end{cases}$$

where f, g_i are convex and $S = \text{dom } f \cap \text{dom } g_i$.

In this definition:

- f criteria or objective function.
- g_i inequality constraints.
- x is a feasible point if it satisfies the conditions, namely $x \in D$, $g_i(x) \le 0$, and Ax = b.
- min f over feasible points points optimal value f^* .
- If x is feasible and $f(x) = f^*$ then x is an *optimum* (solution, minimizer).
- Feasible x is a local optimum if $\exists R > 0$ such that $\forall y \in V_R(x) \ f(x) \leq f(y)$.
- If x is feasible and $f(x) \leq f^* + \varepsilon$ then x is ε -suboptimal.
- If x is feasible and $g_k(x) = 0$ then g_k is active at x (otherwise inactive).

Properties:

- Solution set X_{opt} is convex.
- If f is strictly convex then the solution is unique.
- For convex optimization problems all local optima are global.
- The set of feasible points is convex.

Example 4.2. Lasso. $\min_{\beta} \|y - X\beta\|_2^2$ subject to $\|\beta\|_1 \leq s$.

- $g_1(\beta) = \|\beta\|_1 s$ convex, no equality constraints.
- X is $p \times n$ matrix
 - If $n \ge p$ and X is full rank then $\nabla^2 f(\cdot) = 2X^\mathsf{T} X$ is positive definite matrix. The function is strictly convex, therefore the solution is unique.
 - If p > n then $\exists \beta \neq 0$ such that $X\beta = 0 \implies$ multiple solutions.