Лабораторная работа №5

Системы счисления в Excel.

Задачи

- 1. Ознакомиться с понятием электронная таблица.
- 2. Ознакомиться с технологией решения задач с использованием встроенных функций для работы с системами счисления.
- 3. Получить практические навыки работы со системами счисления.

Справочные материалы

- 1. https://support.office.com/ru-ru/excel
- 2. Встроенная справка MS Excel

Программное обеспечение

- 1. MS Excel или другой редактор электронных таблиц.
- 2. Интернет браузер.

Задание на лабораторную работу

- 1. Согласовать с преподавателем вариант задания.
- 2. Ознакомиться с алгоритмами перевода чисел в различные системы счисления.
- 3. Выполнить задания согласно варианту.

Отчет

1. Файл «Работа_5_вар№_ФИО.xls», возможен формат *.xlsx, содержащий результаты выполнения всех пунктов лабораторной работы согласно варианту (Приложение A).

Отчет предоставляется в электронном виде одним документом.

1. Переведите указанные в таблице числа в системы счисления с основаниями 2, 8, 10, 16, используя стандартные функции Microsoft Excel.

2	8	10	16
A			
	В		
		С	
			D

- 2. Переведите указанные числа в систему счисления с основанием \mathbf{E} : 31_{10} , 102_{10} , 89_{10} . При переводе необходимо реализовать алгоритм деления с остатком на основание системы счисления.
- 3. Переведите указанные числа в десятичную систему счисления: 3214_F, 634A_G. Перевод необходимо осуществить двумя способами: с помощью алгоритма умножения на основание системы счисления, с помощью стандартных функций Microsoft Excel.
- 4. Выполните сложение двоичных чисел **H**+**I** двумя способами: реализация сложения «столбиком» в двоичной системе счисления (разбить на разряды), реализация сложения с помощью стандартных функций Microsoft Excel.
- 5. Выполните перевод указанных двоичных чисел в систему счисления с основанием 4 с помощью «таблицы перевода»: J_2 , K_2 .

0	00
1	01
2	10
3	11

- 6. Выведите все целые числа из диапазона [\mathbf{L}_5 ; \mathbf{M}_7], в записи которых предпоследний бит равен 1.
- 7. Выведите все битовые вектора длины N, содержащие четное число единиц, в записи которых последний бит равен 1.

Приложение А. Варианты заданий

Номер варианта определяется согласно порядковому номеру студента в группе.

Вариант	A	В	C	D	E	F	G	H	I	J	K	L	M	N
1	1101010	7566	604	25D	5	9	11	1011001	10001011	1001000	10111000	324	1264	9
2	1010010	3575	680	43F	5	9	12	1010110	11000000	1111100	10111001	343	1260	8
3	1011010	4400	719	9B3	6	5	13	1110100	11001100	1101110	11010110	404	1315	7
4	1111101	6313	547	37E	6	5	14	1011001	11110110	1010110	10111001	333	1303	8
5	1000001	6370	693	A0F	7	8	15	1000001	10011010	1011010	10111101	340	1310	9
6	1110111	2526	730	3F2	7	8	16	1001000	11101101	1101011	11100000	402	1305	8
7	1110001	5541	788	216	8	7	17	1101011	11101010	1111010	11010111	332	1312	7
8	1101011	6435	542	20B	8	7	18	1010001	10110011	1101110	10011011	403	1262	8
9	1010101	3034	600	1E0	9	6	19	1011101	10001011	1011110	10100000	341	1313	9
10	1000111	1046	632	561	9	6	20	1101110	10100010	1111001	11001110	334	1301	8