Report for Smith's proof of Fermat's Last Theorem

Daniel Son

In page 2, from equations 7-10, Smith implicitly assumes that both $z_{y+1,k}$ and $z_{y,k+1}$ are both in \mathbb{Z} . In order to reach the conclusion $\alpha = \beta$, he assumes $z_{k,y} + \alpha, z_{k,y} + \beta \in \mathbb{Z}$. Thus, what Smith has proved is that there are no solutions to the system

$$(y+1)^n + k^n = x^n$$
$$y^n + (k+1)^n = x^n$$

Moreover, the implication of $\alpha=\beta$ is absurd. If the assumption holds, $z_{y+1,k}=z_{y,k}$. Note that $z_{y+1,k}\neq z_{y,k}$. This can verified by computing z directly. We have an explicit formula for $z_{y,k}$.

$$z_{y,k} = \sqrt[n]{y^n + k^n}$$

Compare $z_{10,4}$ and $z_{11,4}$ for n=5

And clearly the two values do not match.

4