CSCI-630 Found Artificial Intelligence

HW3-2 Solutions

Gautam Gadipudi - gg7148@rit.edu

Question 1:

Submitted as knowledge.pl

Usage:

- Open gprolog console in this directory
- [knowledge].

Then perform following queries:

Question 2:

```
Action(Move(loc1, loc2, r),
 PRECOND: At(loc1, r) \land Room(r) \land Hallway(r) \land Location(loc1) \land Location(loc2)
 EFFECT: \neg At(loc1,r) \land At(loc2,r))
Action(Push(b, loc1, loc2, r),
 PRECOND: At(loc1,r) \land BoxAt(loc1,r) \land Location(loc1) \land Location(loc2) \land Room(r) \land Hallway(r) \land Box(b)
 EFFECT: \neg At(loc1,r) \land At(loc2,r) \land \neg BoxAt(loc1,r) \land BoxAt(loc2,r)
Action(TurnOn(s),
 PRECOND: At(s,r) \land Off(s) \land Switch(s) \land Room(r)
 EFFECT: On(s)
Action(TurnOff(s),
 PRECOND: At(s,r) \land On(s) \land Switch(s) \land Room(r)
 EFFECT: Of f(s)
```

(b)

$$\begin{split} \mathit{Init}(\mathit{At}(\mathit{P}, R_{2}) \land \mathit{BoxAt}(\mathit{B}_{1}, R_{1}) \land \mathit{BoxAt}(\mathit{B}_{2}, R_{1}) \land \mathit{BoxAt}(\mathit{B}_{3}, R_{3}) \\ & \mathit{Robot}(\mathit{P}) \land \mathit{Box}(\mathit{B}_{1}) \land \mathit{Box}(\mathit{B}_{2}) \land \mathit{Box}(\mathit{B}_{3}) \land \mathit{Room}(\mathit{R}_{1}) \\ & \mathit{Room}(\mathit{R}_{2}) \land \mathit{Room}(\mathit{R}_{3})) \end{split}$$

Move(Door, Room1Center, R1),

Push(B₁, Room1Center, Door₁, R₁),

TurnOff(s),

Push(B₁, Door₁, HallwayDoor₁, Hallway),

Push(B₁, HallwayDoor₁, HallwayDoor₃, Hallway),

Push(B₁, HallwayDoor₃, Door₃, Hallway),

TurnOn(s),

Push(B₁, Door₃, Room3Center, R₃)]

The maximum branching factor will be when the robot is in the hallway. Branching factor = 3 * 3 * 2 = 18

When there are k rooms and m boxes, the branching factor will be k * m * 2.