

A Simple and Efficient Universal Reversible Turing Machine

Holger Bock Axelsen Robert Glück

DIKU, Dept. of Computer Science, University of Copenhagen www.diku.dk/~funkstar

LATA 2011, May 31, Tarragona

Overview

- Reversible Turing machines
- Universality for RTMs
- A first principles URTM

The setting: Turing machines

[Picture credit: Tom Dunne, American Scientist, March-April 2002]

Turing machines

Definition (Turing machine)

A TM T is a tuple $(Q, \Sigma, \delta, b, q_s, q_f)$ where Q is a finite set of states, Σ is a finite set of tape symbols, $b \in \Sigma$ is the blank symbol,

$$\delta \subseteq (Q \times [(\Sigma \times \Sigma) \cup \{\leftarrow, \downarrow, \rightarrow\}] \times Q)$$

is a partial relation defining the transition relation, $q_s \in Q$ is the starting state, and $q_f \in Q$ is the final state. There must be no transitions leading out of q_f nor into q_s .

Triple format for transition rules

$$\delta \subseteq (Q \times [(\Sigma \times \Sigma) \cup \{\leftarrow, \downarrow, \rightarrow\}] \times Q)$$

The form of a triple format rule in δ is either:

- a symbol rule (q,(s,s'),q') where $s,s' \in \Sigma$, or
- a move rule (q, d, q') where $d \in \{\leftarrow, \downarrow, \rightarrow\}$.

(Triples can be converted to the usual quintuples, and vice versa. We use it for convenience.)

Reversible Turing machines (RTMs)

Intuition: RTMs are those where each configuration has a *unique* successor and predecessor configuration.

Definition (Reversible Turing machine)

A TM *T* is *reversible* iff it is (locally) forward and backward deterministic.

Local backward determinism: Examples

- (q, (a, b), p) and (q, (a, c), p) respects bwd determinism.
- (q, (a, b), p) and (r, (c, b), p) breaks bwd determinism.
- (q, (a, b), p) and (r, \rightarrow, p) breaks bwd determinism.

Local forward/backward determinism

Definition (Local forward determinism)

A TM T is local forward deterministic iff for any distinct pair of triples $(q_1, a_1, q_1') \in \delta$ and $(q_2, a_2, q_2') \in \delta$, if $q_1 = q_2$ then $a_1 = (s_1, s_1')$ and $a_2 = (s_2, s_2')$, and $s_1 \neq s_2$.

Definition (Local backward determinism)

A TM T is local backward deterministic iff for any distinct pair of triples $(q_1, a_1, q_1') \in \delta$ and $(q_2, a_2, q_2') \in \delta$, if $q_1' = q_2'$ then $a_1 = (s_1, s_1')$ and $a_2 = (s_2, s_2')$, and $s_1' \neq s_2'$.

RTM computability

Some important results:

- RTMs compute *injective functions*, only.
- All injective computable function are computable with RTMs.
- 1-tape, 3-symbol RTMs are sufficient.
- RTMs can be easily inverted.

Classical universality

A universal TM U is defined as a *self-interpreter* for Turing machines:

$$\llbracket U \rrbracket (\ulcorner T \urcorner, x) = \llbracket T \rrbracket (x) .$$

Here, $\lceil T \rceil \in \Sigma^*$ is a Gödel number representing some TM T.

Problem: Does *not* work for RTMs - [U] is non-injective.

RTM-universality

An RTM-universal TM U_R is defined by

$$\llbracket U_R \rrbracket (\ulcorner T \urcorner, x) = (\ulcorner T \urcorner, \llbracket T \rrbracket (x)) .$$

where $\lceil T \rceil \in \Sigma^*$ is a Gödel number representing some RTM T.

 $\llbracket U_R \rrbracket$ is injective and computable \Rightarrow computable by some RTM.

Why a first-principles approach?

Pioneering work by Bennett, Morita rely on *reversible simulations* of irreversible machines. Asymptotically *very* costly: As much space as time!

The URTM we give has better complexity: (Program dependent) constant factor slowdown, same space as interpreted program.

URTM overview

Scope:

• Interprets 1-tape, 3-symbol RTMs $(T = \{Q, \{b, 0, 1\}, \delta, b, q_s, q_f\}).$

Structure:

- Work tape: Identical to T's tape.
- Program tape: Contains the program $\lceil T \rceil$.
- State tape: Encoding of T's internal state, q_c .

Program encoding $\lceil T \rceil$

A program is a string $\lceil T \rceil$ over $\Sigma = \{b, 0, 1, B, S, M, \#\}$. $\lceil T \rceil$ lists the rules δ of T, with q_s rule first, q_f rule last.

$$trans(q,(s,s'),q') = S#e(q)#e(s)e(s')#(e(q'))^R#S$$

 $trans(q,d,q') = M#e(q)#e(d)#(e(q'))^R#M$

 $e:Q o\{0,1\}^{\lceil\log|Q|\rceil}$ is an injective binary encoding of states.

$$e(s) = egin{cases} {
m B} & ext{if } s = b \ s & ext{otherwise} \end{cases} \qquad e(d) = egin{cases} {
m 10} & ext{if } d = \leftarrow \ {
m BB} & ext{if } d = \downarrow \ {
m 01} & ext{if } d = \rightarrow \end{cases}$$

Program encoding, example

Problem: Lots of irreversibilities in control flow.

Use enclosing S,M to join paths after rule tests.

Works because q_s is only visited once.

String comparison

A key functionality we need to implement is string comparison.

Assume a 2-tape structure

- $\#s_1 \cdots s_n \#$
- $\#t_1 \cdot \cdot \cdot t_n \#$

with tape heads on the *leftmost* #.

From internal state q, we want to pass over the strings, ending in internal state $q_{=}$ if the strings match, and in internal state q_{\neq} if they don't, with the tape heads in either case on the rightmost #.

Irreversibility at state q (and probably p).

Reversible string comparison of ${}^{\#s_1 \cdots s_n \#}_{\#t_1 \cdots t_n \#}$

Inverse string comparison of $\frac{\#s_1 \cdots s_n \#}{\#t_1 \cdots t_n \#} = \text{join}$

Testing a symbol rule (q, (s, s'), q')

Must resolve the join in control flow.

Testing a symbol rule (q, (s, s'), q')

This assertion works for all *T*. Still irreversible...

Testing a symbol rule (q, (s, s'), q')

Only works because T is reversible!

Move rule is analogous to symbol rule. Write/clear are subparts of apply rule. Rewind is a subpart of string comparison.

Bonus: Inverse interpretation

URTM can work as a (reversible) *inverse interpreter* with no extra overhead. A reversible inverse interpreter is a program *rinvint* s.t.

$$[\![rinvint]\!](p,y) = (p,x) \text{ iff } [\![p]\!](x) = y$$

We intentionally designed the program encoding s.t.

$$\Gamma T^{\neg R} = \Gamma T^{-1}$$

Let *R* perform string reversal. (Linear time using 2 tapes.)

$$\llbracket R \circ U \circ R \rrbracket (\ulcorner T \urcorner, y) = (\ulcorner T \urcorner, \llbracket T^{-1} \rrbracket (y))$$

Conclusion

First URTM with

- Constant factor slowdown (proportional to $length(T^{\neg}).)$
- No space overhead (unlike all previous approaches.)
- Inverse interpretation for free.

The RTMs can simulate themselves efficiently.

