

ArmoredSoftware: Trusting the Cloud Commons

Dr. Perry Alexander, Dr. Andy Gill, Dr. Prasad Kulkarni
ITTC - The University of Kansas
Ed Bishop, Ciro Pinto-Coelho
Southern Cross Engineering

Background Projects

- Trusted Research Platform (DoD with Galois)
 - modeling SVP architecture and access control
 - capturing system design
- Verified TPM (Battelle)
 - verified substantial TPM 1.2 subset
 - verified simple attestation and migration protocols
- Verified vTPM (DoD with Kestrel)
 - verifying SVP vTPM infrastructure
 - capturing SVP vTPM system design
- ACHILLES (DARPA with Adventium Labs)
 - imagining malice in embedded systems
 - assessing and appraising runtime environment and applications

Clouds and Trust

- The promises of "the cloud" are substantial
 - reduced hardware and software costs
 - reduced resource consumption
 - improved availability and reliability
- The promises of "the cloud" complicate assurance
 - not under the desk
 - ambiguous and changing runtime environment
 - unknown and unknowable actors in the same environment
- Is trust possible in "the cloud" environment?
 - unambiguous identification
 - confirmation of uninhibited execution
 - direct or trusted indirect observation of good behavior

How Might ArmoredSoftware Help?

- Estimating likelihood of client software or host system compromise
- Appraising cloud applications without sacrificing anonymity or performance
- Guiding migration from untrusted to trusted infrastructure
- Implementing mission specific appraisal monitoring multiple applications
- Aggregating trust information from cloud components to enhance decision making
- Providing architectural support ensuring long-term cloud-based resource availability

Ultimate Goal

Provide new capabilities that help overcome barriers to cloud acceptance by industry and government, specifically DoD

ArmoredSoftware Features

- Establishes trust among cloud components
 - trust among cohorts of processes
 - trust among processes and environment
- Promotes informed decision making
 - data confidentiality can be confirmed
 - execution and data integrity can be confirmed
- Autonomous run-time response and reconfiguration
 - responds to attack, failure, reconfiguration, and repair
 - response varies based on measurement
- Lightweight integration with existing cloud
 - targeting Xen, OpenStack, and Linux
 - user-space measurement and attestation

Based on Remote Attestation

- Appraiser requests a quote
 - specifies what information is needed
 - includes a nonce for freshness
- Remote system gathers evidence
 - measures executing software
 - gathers historical evidence
- Remote system generates quote
 - evidence describing system
 - the original nonce
 - cryptographic signature
- Appraiser assesses quote
 - correct boot process
 - correct parts
 - evidence integrity and identity

Armor Component Architecture

- Focused on user-space applications
- Protects the application from the cloud infrastructure and environment
- Provides attestations to cloud infrastructure and environment
- High-assurance, lightweight infrastructure
- Influenced by the Trusted Research Platform and Principles of Remote

Attestation in ArmoredSoftware

An appraiser requests an attestation from a target and assesses trustworthiness based on received quote and evidence.

A target responds to an attestation request by gathering evidence, generating a cryptographic quote, and returning quote and evidence.

Measurement

- Gathers information
 - Configuration and boot information
 - Runtime information
- Armor measures and is measured
 - measures itself and its application for others
 - requests measurements from environment
- Target classes include:
 - Hosted languages (Java)
 - Compiled code (C,C++)
 - Operational environment

Measurement

Detecting Evidence of Malice

Attestation Protocol Selection

Attestation Protocol Execution

Attestation

- Responds to attestation requests
 - receives attestation requests
 - obtains measurement information
 - high-integrity response
- Armor reports on its state
 - application boot and runtime state
 - armor boot and runtime state
- Protocols implement responses
 - invokes measurement
 - vTPM provides assurance
 - vTPM manages measurements
 - complex interactions among Armor elements and environment

Attestation

Appraisal

- Assesses environment
 - sends attestation requests
 - determines measurement integrity
 - calculates salient properties
- Armor appraises its environment
 - requests information
 - assesses information
 - determines response as appropriate
- Responses include
 - information reporting
 - migration
 - reconfiguration in the current environment

TPM Inside

- Provides and Protects Roots of Trust
 - Storage Root Key (SRK) root of trust for storage
 - Endorsement Key (EK) root of trust for reporting
- Quote generation
 - high integrity quotes ({|RS|}_{AIK}⁻¹, SML, {|n,PCR_{0-m}|}_{AIK}⁻¹)
 - high integrity evidence (<E,n>, {|#E,PCR,n|}_{AIK}-1)
- Sealing data to state
 - {D,PCR}_K will not decrypt unless PCRs = current PCRs
 - data is safe even in the presence of malicious machine
- Binding data to TPMs and machines
 - ({K⁻¹}_{SRK},K) {D}_K cannot be decrypted unless SRK is installed
 - ({J⁻¹}_K,J) {D}_j cannot be decrypted unless K and SRK are installed

vTPM & Trust Infrastructure

- Focus on light and mobile
 - easy migration among cloud infrastructure
 - lightweight, minimal implementation
 - decentralized, lightweight construction
- Abstract DSL for Trust
 - specifies high-level (v)TPM-based protocols
 - abstracts communication details and components
 - interpretable and verifiable with precise semantics
- Appropriately verified core infrastructure
 - vTPM ecosystem including creation and management
 - protocol execution across VMs
- Moving towards automated synthesis

Research & Development Plan

- Develop measurement capabilities
 - hosted languages measurers (Java)
 - traditional languages measurers (C, C++)
 - environment measurers (Xen,OS)
- Develop attestation capabilities
 - attestation protocols
 - protocol instantiation
- Develop appraisal framework
 - flexible, user configurable appraisal protocols
 - establishment of Armor trustworthiness
- Develop lightweight, mobile vTPM infrastructure
 - vTPM management with support for mobile roots of trust
 - appropriately strong argument for correctness

Research & Development Plan

- Automated synthesis and verification
 - DSL for protocol specification
 - synthesis of executable components
 - artifact verification across components
- Demonstrations
 - initially simple demonstration applications demonstrating
 - cloud-based "big data" environment demonstration
 - federated trust demonstrations
 - demonstrations as discovered/directed
- Scale up and roll out
 - full integration with Xen, OpenStack, Linux
 - installation management and packaging

Current Status

- Experimental environment up and running
 - eight node development cloud Xen, OpenStack
 - five node experimental cloud Xen, OpenStack
- Simple measurement prototyping
 - gathering information from hosted language execution
 - triggered by external attestation agent
- Inter-VM communication techniques established
 - using Cloud Haskell on industry standard mechanisms
 - TCP/IP based communication and shared page communication
 - integrating XSM into development infrastructure
- Planning initial demonstrations Fall 2014

Outreach

- Talking with potential commercial users
 - Cisco OpenStack integration
 - Google Trust infrastructure
 - BATS Trust infrastructure
- Application examples
 - cloud-based data enclave
 - migration from danger
 - what are good use cases for secure cloud?

Contacts

- Perry Alexander alex@ittc.ku.edu
- website http://armoredsoftware.github.io
- sources http://github.com/armoredsoftware

References

- G Coker, J Guttman, P Loscocco, A Herzog, J Millen, J Ramsdell, A Segall, J Sheehy, B Sniffen, "Principles of Remote Attestation" in *International* Journal of Information Security, 2012
- TRP Research Team, TRP Design White Paper Version 0.1.9, available upon request
- P Barham, B Dragovic, K Fraser, S Hand, T Harris, A Ho, R Neugebauer, I Pragg, A Warfield, "Xen and the Art of Virtualization", Proceedings of the ACM Symposium on Operating Systems Principles (SOSP'03), Boldon Landing, NY, 2013
- V Haldar, D Chandra and M Franz, "Semantic remote attestation: a virtual machine directed approach to trusted computing," Proceedings of the 3rd Conference on Virtual Machine Research and Technology Symposium, USENIX Association, 2004
- A Martin, *The Ten-Page Introduction to Trusted Computing*, 2008, <<u>http://www.cs.ox.ac.uk/files/1873/RR-08-11.PDF</u>>

People

Institutions

- KU Information and Telecommunication Technology Center
- Southern Cross Engineering

KU People

- Dr. Perry Alexander, PI
- Dr. Prasad Kulkarni, Dr. Andy Gill, Co-PI
- Leon Searl, Technical Staff
- Justin Dawson, Jason Gevargizian, Adam Petz, Paul Kline, students

Southern Cross Engineering People

- Edward Bishop, Ciro-Coelho

