ESTUDIO PARA LA LOCALIZACION ESPACIAL DE UN PROYECTO

Luisa L. Lazzari - Emilio A. M. Machado - Rodolfo H. Pérez

El objetivo del presente trabajo es determinar la mejor ubicación para la construcción de un Centro Comercial, con supermercado mayorista y minorista. Es decir analizar las alternativas de localización.

Se han tenido en cuenta para la determinación del objetivo elementos condicionantes, algunos de los cuales son borrosos, los que llevan a considerar tres índices que permiten definir tres subconjuntos borrosos: posibilidad de compra de cada población, infraestructura de cada localidad y accesibilidad de cada una de ellas al Centro proyectado, cuya ubicación se desea determinar.

Se analizan dos casos para el cálculo de la accesibilidad: a) las localidades consideradas tienen vías de comunicación homogéneas y b) las localidades consideradas no tienen vías de comunicación homogéneas. En este último caso se define una matriz de transitabilidad.

Se proponen dos alternativas para obtener la localidad óptima donde llevar a cabo el proyecto considerado. La metodología propuesta se puede generalizar y emplearse en el análisis de localización de diversos tipos de proyectos.

0 - INTRODUCCION

El objetivo del presente trabajo es determinar la mejor ubicación para la construcción de un Centro Comercial y Cultural, con supermercado mayorista y minorista. Es decir analizar las alternativas de localización.

Se han tenido en cuenta para la determinación del objetivo los siguientes elementos condicionantes:

- a) Delimitación del territorio en el cual se debe ubicar.
- b) Determinación de los principales mercados internos en función de:
 - centros de población;
 - red de comunicaciones;
 - transportes;
 - distancias relativas entre centros de población.

- c) Costos de producción de insumos y productos.
- d) Costos de transporte de insumos y productos.
- e) Localización de la producción interna.
- f) Localización de la mano de obra.
- g) Localización del público asistente.
- h) Redes y servicios existentes y proyectados.

La valuación de dichos elementos, ponderada de acuerdo a su importancia relativa, permite, previa homogeneización mediante la construcción de índices adecuados, la determinación en forma secuencial de la zona más conveniente a los fines requeridos.

Como primer criterio de selección se estableció el siguiente: la existencia suficiente de población activa y el grado de concentración de servicios. En consecuencia se descartaron todas las poblaciones de menos de 2500 habitantes.

1 - DESCRIPCION DEL PROYECTO

Consideremos un ejemplo hipotético, en el cual la zona elegida es una ciudad c₁ y sus alrededores. Esta ciudad es un importante centro industrial y comercial del interior del país, cuya población, sin contar la de la zona rural que la rodea es de 212 000 habitantes. Es necesario realizar un análisis para decidir el lugar exacto donde se erigirán las instalaciones necesarias para el Centro que se desea construir.

MAPA DE LA CIUDAD C1 Y SU ZONA DE INFLUENCIA

En el mapa se observa que la ciudad c_1 está rodeada de pequeñas poblaciones, en la TABLA I figuran las distancias a $c_1\,$ y la cantidad de habitantes de cada localidad.

NUCLEO URBANO	DISTANCIA A LA	POBLACION
	CIUDAD c_1	
	(en km)	
C 2	40	25 000
c ₃	5	3 000
C4	7	2 500
C 5	40	6 000
C 6	12	2 500
C 7	8	15 000
C8	35	15 000

TABLA I

La población total de la zona de influencia de la ciudad c_1 es de 69000 habitantes.

Los núcleos urbanos que rodean a la ciudad c₁ constituyen una parte importante (24,5%) de la población tomada conjuntamente con la de esta ciudad.

Estas pequeñas comunidades no tienen en su mayoría vida propia y por lo tanto dependen de c₁ para las posibilidades de trabajo, compras, diversión, educación, etc.

Se observa también que las fábricas están instaladas en la periferia de la ciudad c_1 . La conexión ferroviaria de c_1 con el resto del país es buena, así como las rutas que la vinculan.

La zona norte presenta algunos inconvenientes para la radicación del proyecto ya que la densidad de la población es mayor por lo que no hay disponibles grandes terrenos como los que se necesitan para el Centro que se desea construir.

La zona sur presenta las siguientes ventajas:

- a) Hay mayor disponibilidad de terrenos y son más baratos.
- b) Mayor proximidad a los grandes mercados del país.

2 - POSIBILIDAD DE COMPRA E INFRAESTRUCTURA

Mediante la consulta a expertos se determinó un índice de "posibilidad de compra" de cada localidad, teniendo en cuenta el poder adquisitivo de la población, la cantidad y el tipo de los comercios existentes, la cantidad de habitantes y el crecimiento demográfico.

Considerando el conjunto referencial $L = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8\}$ cuyos elementos son todas las localidades de la región considerada, podemos definir el subconjunto borroso \widetilde{C} , que está indicando la "posibilidad de compra" de cada localidad:

X	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8
$\mu_{\widetilde{C}}(x)$.7	.7	.8	.7	.9	.6	.7	.2

Las localidades seleccionadas están provistas de la infraestructura necesaria, con el fin de minimizar las inversiones y además están comunicadas entre sí por rutas o líneas de ferrocarril. Para valorar las condiciones de infraestructura existente se elaboró, también por medio de la consulta a expertos, un índice representativo de cada núcleo poblacional, siendo necesario ponderar la importancia relativa de cada uno de los factores.

Los elementos evaluados fueron: 1) Distancia a red de energía eléctrica; 2) Existencia de agua; 3) Existencia de gas; 4) Distancia a rutas transitables. Con este criterio los expertos confeccionaron el subconjunto borroso \widetilde{I} (infraestructura), también incluido en E, adjudicándole el valor 1 al óptimo para la instalación del Centro y 0 en el caso de imposibilidad total.

X								C8
$\mu_{\widetilde{I}}(x)$.8	.6	.9	.8	.4	.7	.8	.2

Si fuera necesario se puede aplicar la metodología Delphi para obtener la opinión agregada de los expertos consultados.

3 - ACCESIBILIDAD

Sin lugar a dudas un factor de gran importancia en este proyecto es el grado de accesibilidad del personal que trabajará en el Centro y del público que concurrirá al mismo. Para ello se construirá la matriz de accesibilidad.

Se define como accesibilidad de una localidad c_i hacia otra localidad c_j al cociente entre la población de c_i y la distancia entre c_i y c_j .

$$a_{ij} = \frac{p_i}{d_{ij}} \quad (I)$$

aij : accesibilidad de la localidad ci hacia la cj

pi : población de la localidad ci

d_{ij}: distancia entre las poblaciones c_i y c_j.

Este concepto concuerda con la noción de que a mayor población corresponde mayor posibilidad de ocurrencia de viajes y a mayor distancia, menor posibilidad de ocurrencia de viajes.

Se define como accesibilidad de c_i hacia c_i al total de la población de c_i , ya que todos los habitantes pueden concurrir a un lugar situado en la misma ciudad.

La accesibilidad total de una localidad c_i , se obtiene sumando todos los valores de accesibilidad hacia c_i , es decir de la columna correspondiente a la localidad c_i .

MATRIZ DE DISTANCIAS

D	C 1	C 2	C 3	C4	C 5	C 6	C 7	C 8
c_1	0	40	5	7	40	12	8	35
C 2	40	0	32	34	89	58,5	55	82,5
C 3	5	32	0	2	48	28,5	25	52,5
C4	7	34	2	0	50	30,5	27	54,5
C 5	40	89	48	50	0	23	35	69
C 6	12	58,5	28,5	30,5	23	0	12	46
C7	8	55	25	27	35	12	0	34
C8	35	82,5	52,5	54,5	69	46	34	0

TABLA II

Estas distancias están dadas en km , teniendo en cuenta el camino más corto de una ciudad a otra. Se entiende que las localidades que se consideran están unidas por rutas transitables.

Para continuar con el análisis del problema distinguiremos dos casos diferentes, a saber:

3 - 1 - LAS LOCALIDADES CONSIDERADAS TIENEN VIAS DE COMUNICACION HOMOGENEAS

Las vías de comunicación serán por ejemplo las rutas y su densidad de tránsito y líneas ferroviarias similares. En el modelo considerado se supone que se construye la ruta de circunvalación que figura en el mapa.

La siguiente matriz se realiza resolviendo las operaciones según la fórmula (I), con los datos que figuran en las TABLAS I Y II:

Α C_1 C_2 **C**3 C4 **C**5 **C**6 **C**7 **C**8 212 000 5 300 42 400 30 285 5 300 17 666 26 500 6 057 \mathbf{c}_1 25 000 781 427 735 281 454 303 \mathbf{c}_2 625 94 3 000 1 500 105 120 600 63 57 Сз 357 73 1 250 2 500 50 82 93 46 **C**4 150 67 125 120 6 000 261 171 87 **C**5 208 43 88 82 109 2 500 208 54 C6 1 875 273 600 555 428 1 250 15 000 441 **C**7 428 182 286 275 217 326 441 15 000 C₈ TOTAL 216 243 31 032 48 530 36 052 12 448 22 617 42 987 22 045

MATRIZ DE ACCESIBILIDAD ABSOLUTA

TABLA III

Observamos en la última fila la accesibilidad total de cada localidad.

Se denomina accesibilidad relativa de la localidad c_i a la c_j , al cociente entre la accesibilidad absoluta de la localidad c_i a la c_j y la accesibilidad absoluta total de la localidad c_i :

$$b_{i_j} = \frac{a_{ij}}{\sum_{i=1}^{i=8} a_{i_j}}$$
 (II)

Con los valores obtenidos construimos la matriz de accesibilidad relativa o de acceso de público de cada localidad vecina:

MATRIZ DE ACCESIBILIDAD RELATIVA

\widetilde{R}	C 1	C 2	C 3	C4	C 5	C 6	C 7	C 8
C 1	.9803	.1707	.8736	.8400	.4257	.7810	.6164	.2747
c_2	.0028	.8056	.0160	.0203	.0225	.0188	.0105	.0137
C 3	.0027	.0030	.0618	.0416	.0050	.0046	.0027	.0025
C 4	.0016	.0023	.0257	.0693	.0040	.0036	.0021	.0020
C 5	.0006	.0021	.0026	.0033	.4820	.0115	.0039	.0039
C 6	.0009	.0013	.0018	.0022	.0087	.1105	.0048	.0024
C 7	.0086	.0087	.0123	.0153	.0343	.0552	.3489	.0200
c ₈	.0019	.0058	.0058	.0076	.0174	.0144	.0102	.6804

TABLA IV

Observamos que \widetilde{R} resulta ser una relación borrosa incluida en L x L (subconjunto borroso de L x L, [3])

$$\widetilde{R} \subset L \times L$$

Definiremos ahora la densidad de la población para cada localidad, como el cociente entre la población de la localidad c_j y la suma total de la población de toda la zona considerada:

$$x_{j} = \frac{p_{j}}{\sum_{j=1}^{j=8} p_{j}} \quad \text{(III)}$$

Siendo p_j la población correspondiente a la localidad c_j

j	C 1	C 2	C 3	C4	C 5	C 6	C 7	C 8
хį	.7544	.0889	.0106	.0088	.0213	.0088	.0533	.0533

Para obtener la localidad de mejor accesibilidad debemos comparar b_{ij} (accesibilidad relativa de la localidad c_i a la c_j) con x_j (densidad de población de la localidad c_j).

Aplicamos el método planteado en [1], según el cual será óptima la localidad que haga mínima la expresión:

$$\sum_{i=1}^{j=8} (b_{ij} - x_j)^2 = \delta_i \quad \text{(IV)}$$

Realizando las operaciones, se obtiene:

	$(b_{i1}-x_1)^2$	$(b_{i2}-x_2)^2$	$(b_{i3}-x_3)^2$	$(b_{i4}-x_4)^2$	$(b_{i5}-x_5)^2$	$(b_{i6}-x_6)^2$	$(b_{i7}-x_7)^2$	$(b_{i8}-x_8)^2$
c_1	.0510	.0067	.7448	.6908	.1636	.5963	.3170	.0490
C 2	.5648	.5136	.0000	.0001	.0000	.0001	.0018	.0016
Сз	.5650	.0074	.0026	.0011	.0003	.0000	.0026	.0026
C4	.5667	.0075	.0002	.0037	.0003	.0000	.0026	.0026
C 5	.5681	.0075	.0001	.0000	.2122	.0000	.0024	.0024
C 6	.5677	.0077	.0001	.0000	.0002	.0103	.0024	.0026
C7	.5562	.0064	.0000	.0000	.0002	.0022	.0874	.0011
C 8	.5662	.0069	.0000	.0000	.0000	.0000	.0019	.3932

TABLA V

Sumando los elementos de cada fila de la TABLA V:

i	C ₁	c_2	C3	C4	C5	C6	C7	C8
δi	2.619	1.082	.5811	.5833	.7927	.5905	.6532	.9681

Se normalizan los valores obtenidos dividiendo a cada uno de ellos por el máximo, a los efectos de $\,$ que verifiquen : $\,$ 0 \leq $\,$ 0 $^{'}$ $\,$ 1

х	C 1	C2	C 3	C4	C 5	C 6	C 7	C 8
δ_i / max δ_i	1	.4131	.2218	.2227	.3026	.2254	.2494	.3696

Calculando el complemento del conjunto anterior obtenemos otro subconjunto borroso de E, que llamaremos subconjunto de "accesibilidad de cada localidad" e indicaremos \widetilde{A} :

				C4	C 5	C 6	C 7	C 8
$\mu_{\widetilde{A}}(x)$	0	.5869	.7782	.7773	.6974	.7746	.7506	.6304

La última operación realizada es a los efectos de homogeneizar la información disponible, de este modo la localidad de mayor accesibilidad es c_3 , le sigue c_4 etc.

3 - 2 - LAS LOCALIDADES CONSIDERADAS NO TIENEN VIAS DE COMUNICACION HOMOGENEAS

En este caso debe construirse una "matriz de transitabilidad", en la cual se evaluará en el intervalo [0,1] y usando el sistema endecadario, el tipo de vías de comunicación que unen a las poblaciones entre sí.

Se tendrá en cuenta el tipo, estado y cantidad de rutas, así como la densidad de tránsito y las vías ferroviarias.

Se entiende que la matriz puede variar en el caso en que se modifiquen las condiciones consideradas para su construcción.

En las localidades pequeñas y con buenos caminos internos se considera que la transitabilidad de la localidad con respecto a si misma es 1, en cambio en los casos de poblaciones más grandes (con mayor cantidad de habitantes) la transitabilidad es menor que 1, ya que los caminos internos están más transitados y además el Centro a construir podrá ubicarse en distintos lugares de la ciudad y no será homogénea la transitabilidad para todos los habitantes, excepto el caso en que el proyecto se localice en el centro geográfico de la ciudad, lo que es poco posible porque dificultaría el acceso de público proveniente de las otras localidades y tampoco se dispone de terrenos suficientemente extensos para la instalación del Centro proyectado.

MATRIZ DE TRANSITABILIDAD

$\widetilde{\mathrm{T}}$	c_1	\mathbf{c}_2	C 3	C4	C5	C 6	C ₇	C8
C 1	.7	.9	.9	.9	1	.8	.6	. 7
C 2	.9	.8	.6	.5	.7	.7	.6	.7
C 3	.9	.6	1	1	.8	.7	.6	.7
C4	.9	.5	1	1	.8	.7	.6	.7
C 5	1	.7	.8	.8	1	.8	.7	.7
C 6	.8	.7	.7	.7	.8	1	.7	.6
C 7	.6	.6	.6	.6	.7	.7	.8	.6
C 8	.7	.7	.7	.7	.7	.6	.6	.8

TABLA VI

Observamos que \widetilde{T} resulta ser también una relación borrosa incluida en L x L [3]

$$\widetilde{T} \, \subset \, L \, x \, L$$

Consideremos el producto algebraico de las relaciones $\,\widetilde{R}\,$ y $\,\widetilde{T}\,$

$$\mu_{\widetilde{R},\widetilde{T}} = \mu_{\widetilde{R}}(x,y) \cdot \mu_{\widetilde{T}}(x,y) \quad [3]$$

El resultado es la relación borrosa $\,\widetilde{R}\,$. $\,\widetilde{T}\,$ incluida en L x L

Obtenemos de este modo una nueva matriz de "accesibilidad relativa" donde se ha tenido en cuenta la transitabilidad:

MATRIZ DE ACCESIBILIDAD RELATIVA

$\widetilde{\mathrm{R}}$,	C 1	C 2	C 3	C4	C 5	C 6	C 7	C8
C 1	.6862	.1536	.7862	.7560	.4257	.6248	.3698	.1922
C2	.0025	.6444	.0096	.0101	.0157	.0131	.0063	.0095
C 3	.0024	.0018	.0618	.0416	.0040	.0032	.0016	.0017
C4	.0014	.0011	.0257	.0693	.0032	.0025	.0012	.0014
C 5	.0006	.0014	.0020	.0026	.4820	.0092	.0027	.0027
C 6	.0007	.0009	.0012	.0015	.0069	.1105	.0033	.0014
C 7	.0051	.0052	.0073	.0091	.0240	.0386	.2791	.0120
C8	.0013	.0040	.0040	.0053	.0121	.0086	.0061	.5443

TABLA VII

A partir de la tabla VII se procede de igual forma que en 3-1-

Se calcula el cuadrado de la diferencia entre la accesibilidad relativa de la localidad i a la j y la densidad de población de la localidad j :

	$(b_{i1}-x_1)^2$	$(b_{i2}-x_2)^2$	$(b_{i3}-x_3)^2$	$(b_{i4}-x_4)^2$	$(b_{i5}-x_5)^2$	$(b_{i6}-x_6)^2$	$(b_{i7}-x_7)^2$	$(b_{i8}-x_8)^2$
C 1	.0046	.0041	.6015	.5583	.1635	.3794	.1001	.0192
C 2	.5653	.3085	.0000	.0000	.0000	.0000	.0022	.0019
C 3	.5655	.0075	.0026	.0010	.0002	.0000	.0026	.0026
C4	.5670	.0077	.0002	.0036	.0003	.0000	.0027	.0026
C 5	.5682	.0076	.0000	.0000	.2122	.0000	.0025	.0025
C 6	.5680	.0077	.0000	.0000	.0002	.0103	.0025	.0026
C 7	.5614	.0070	.0000	.0000	.0000	.0008	.0509	.0017
C 8	.5671	.0072	.0000	.0000	.0000	.0000	.0022	.2410

TABLA VIII

Se suman los elementos de cada fila de la TABLA VIII:

i	C 1	C 2	C 3	C4	C 5	C 6	C 7	C8
δi	1.8307	.8779	.5820	.5841	.7930	.5913	.6218	.8175

Se normalizan los valores obtenidos:

	X	C1	C 2	C 3	C4	C 5	C 6	C 7	C 8
δ _i /	max	1	.4795	.3179	.3190	.4331	.3229	.3396	.4465

Se calcula el complemento del subconjunto anterior y se obtiene el subconjunto borroso \widetilde{A} de E, de "accesibilidad de cada localidad":

						C 6		
$\mu_{\widetilde{A}}(x)$	0	.5205	.6821	.6810	.5669	.6771	.6604	.5535

Se observa que la localidad de mayor accesibilidad es c₃, le siguen c₄, c₆, c₇, c₅, c₈, c₂ y c₁. Es decir que los resultados obtenidos muestran que en este caso no se modifica el orden obtenido para la accesibilidad en el caso 3-1 en que se consideró a todas las localidades con vías de comunicación homogénea, lo que no quiere decir que esto suceda siempre, ya que depende de los valores consignados en la "matriz de transitabilidad" (tabla VI).

4 - ELECCION DE LA LOCALIDAD OPTIMA

4 - 1 - LAS LOCALIDADES CONSIDERADAS TIENEN VIAS DE COMUNICACION HOMOGENEAS

Vamos a presentar dos formas posibles de obtener la solución al problema planteado.

4 - 1 - 1 - ALTERNATIVA 1

Se obtiene la intersección de los subconjuntos borrosos [3] \widetilde{C} , \widetilde{I} y \widetilde{A} :

$$\widetilde{C} \cap \widetilde{I} \cap \widetilde{A} /$$

х	c_1	c_2	C3	C4	C 5	C ₆	C 7	C8
$\mu(x)$	0	.5869	.7782	.7	.4	.6	.7	.2

Podemos observar que con esta metodología resulta óptima la localidad c_3 , luego la c_4 que es equivalente a la c_7 , continúan la c_6 , la c_2 , la c_5 , la c_8 y por último la c_1 .

Hemos ordenado tomando el máximo del mínimo de los tres índices empleados, es decir que la cualidad dominante determina el orden establecido.

4 - 1 - 2 - ALTERNATIVA 2

Calculamos el producto algebraico de los tres subconjuntos borrosos, esta operación ha sido definida por Zimmemann (Fuzzy set Theory and its Applications, pag. 29, 1990) de la siguiente manera:

Dados dos subconjuntos borrosos $\widetilde{A}\,y\,\widetilde{B}\,$ incluidos en un mismo referencial E

$$\widetilde{A}.\widetilde{B} = \left\{ \left(x ; \mu_{\widetilde{A}}(x).\mu_{\widetilde{B}}(x)\right) / x \in E \right\}$$

Obtenemos \widetilde{C} . \widetilde{I} . \widetilde{A} /

x	C 1	C 2	C 3	C4	C 5	C 6	C 7	C8
$\mu(x)$	0	.2464	.5603	.4352	.2510	.3253	.4203	.0252

Observamos ahora que empleando esta alternativa los resultados obtenidos son similares a los anteriores, la localidad óptima resulta ser nuevamente c_3 , le sigue c_4 , luego c_7 (aquí no es equivalente a c_4), c_6 , c_5 , c_2 , c_8 y por último la c_1 .

Es nuestra opinión que esta segunda alternativa es más adecuada para la resolución del problema , ya que realiza una combinación ponderada de los tres aspectos tenidos en cuenta para la localización del proyecto considerado, los cuales como ya se ha mencionado son: la posibilidad de compra de la población, la infraestructura de la ciudad y la accesibilidad de cada localidad.

4 - 2 - LAS LOCALIDADES CONSIDERADAS NO TIENEN VIAS DE COMUNICACION HOMOGENEA

4 - 2 - 1 - ALTERNATIVA 1

Se obtiene la intersección de los subconjuntos borrosos \widetilde{C} , \widetilde{I} y \widetilde{A} :

$$\widetilde{C}\, \cap\, \widetilde{I}\, \cap\, \widetilde{A}\, /$$

1									
	X	C 1	C 2	C 3	C4	C 5	C 6	C 7	C 8
	u(x)	0	.5205	.6821	.6810	.4	.6	.6604	.2

Podemos observar que con esta metodología resulta óptima la localidad c_3 , luego la c_4 , continúan la c_7 , la c_6 , la c_2 , la c_5 , la c_8 y por último la c_1 .

4 - 2 - 2 - ALTERNATIVA 2

Calculamos el producto algebraico de los tres subconjuntos borrosos.

Obtenemos \widetilde{C} . \widetilde{I} . \widetilde{A} /

x	C 1	C 2	C 3	C4	C 5	C 6	C 7	C8
$\mu(x)$	0	.2186	.4911	.3813	.2040	.2843	.3698	.0221

Observamos ahora que empleando esta alternativa los resultados obtenidos son iguales , en este caso, a los anteriores, la localidad óptima resulta ser nuevamente c_3 , le sigue c_4 , luego c_7 , c_6 , c_2 , c_5 , c_8 y por último la c_1 .

5 - CONCLUSIONES

- i) Consideramos que la metodología propuesta es adecuada para el análisis de todo tipo de problema de localización espacial de proyectos ya sean privados o públicos, industriales, comerciales, de salud (por ejemplo hospitales o centros asistenciales de primeros auxilios), de educación y cultura (por ejemplo escuelas rurales, universidades, museos) etc.
- ii) Si en el análisis de un problema surgieran otros aspectos a considerar, además de los incluidos en el presente trabajo o bien en lugar de los considerados en el mismo, la metodología planteada sigue siendo válida y adecuada. Sólo será necesario definir correctamente los índices a tener en cuenta. Queda claro que la "accesibilidad" siempre deberá ser incluida, cualquiera sea el proyecto estudiado.
- iii) Para complementar este trabajo deberá realizarse también un análisis de:
- Proyecto y realización de la obra (Pert borroso).
- Estimación de las inversiones necesarias para llevarla a cabo.
- Financiación del Provecto.
- Efectos de la realización de la misma (culturales, sociales, laborales, económicos).

Dichos análisis podrán realizarse aplicando técnicas fuzzy.

7 - BIBLIOGRAFIA

- [1] Cignoli A., Betoled C., Machado E. A. M. y otros. "Estudio para la localización y proyecto de un parque industrial en la Provincia de Tucumán". Edición del Consejo Federal de Inversiones, Buenos Aires, 1967.
- [2] Boggia L., Machado E. A. M. "Acerca de la localización de parques industriales. Metodología en computadoras". Revista de la Facultad de Ciencias Económicas. Universidad Nacional de La Plata, Argentina, 1970.
- [3] Kaufmann A. "Introducción a la teoría de los subconjuntos borrosos". Tomo I . CECSA, México, 1982.
- [4] Klir J., Yuan Bo. "Fuzzy Sets and Fuzzy Logic. Theory and Applications". Prentice-Hall International, USA, 1995.
- [5] Lazzari L., Machado E., Perez R. "Matemática Borrosa. Facultad de Ciencias Económicas. Universidad de Buenos Aires, 1994.
- [6] Zimmermann H. "Fuzzy set theory and its applications". Kluwer Academic Publishers, Boston, London, 1991.