MĚŘENÍ NA ODPOROVÉM DĚLIČI

Jakub Dvořák

11.10.2020

1 Úkol měření

- 1. Změřte výstupní napětí U_2 děliče sestaveného z deseti rezistorů stejné jmenovité hodnoty pro všechny dělicí poměry d, a to:
 - a) číslicovým voltmetrem,
 - b) magnetoelektrickým voltmetrem (na rozsahu 12 V).
- 2. Do společného grafu vyneste závislosti $U_2/U_1 = f(d)$ a vysvětlete jejich rozdíly. Velikost napájecího napětí děliče $U_1 = 10 \text{ V}$.
- 3. Z naměřených hodnot vypočtěte výstupní odpor děliče R_D pro zadaný dělicí poměr d za předpokladu, že vstupní odpor číslicového voltmetru se blíží k nekonečnu.
- 4. Vypočtěte **rozšířenou nejistotu typu B** (koeficient rozšíření $k_r = 2$), s jakou jste určili výstupní odpor děliče R_D za předpokladu, že vnitřní odpor magnetoelektrického voltmetru je definován tolerancí 0,2%.

2 Schéma zapojení

Obrázek 1: Zapojení obvodu [1]

3 Seznam použitých přístrojů

- Dělič napětí s devíti odbočkami
- Stolní multimetr HP 34401 A, přesnost $\pm 0,0035 \%$ z údaje a $\pm 0,005 \%$ rozsahu
- Ručičkový voltmetr, třída přesnosti 0,5 %, rozsah 12 V

4 Teoretický úvod

Při měření napětí na odporovém děliči dochází k chybě měření způsobené vnitřním odporem měřiče. Odporový dělič si lze nahradit náhradním zapojením zdroje napětí a sériového rezistoru. Napětí ideálního zdroje napětí je rovno napětí na děliči naprázdno a vnitřní odpor odpovídá paralelní kombinaci rezistorů v děliči napětí. Po připojení multimetru k tomuto náhradnímu zapojení vznikne další dělič napětí a to mezi vnitřním rezistorem náhradního zapojení a vnitřním odporem měřidla. Při použití kvalitnějších měřidel se se vnitřní odpor blíží vůči odporům rezistorů v děliči k nekonečnu. Nicméně při použití starších, levnějších nebo ručičkových měřidel dochází k chybě měření, která právě závisí na jeho vnitřním odporu.

5 Naměřené hodnoty

Dle odečtu z videa byly naměřeny hodnoty zobrazené v tabulce 1 a zobrazené v grafu 1.

Odbočka	HP 34401 A <u>U</u>	Ručičkový voltmetr $\frac{U}{V}$	Dělící poměr
10	9,9919	9,9	1
9	8,9827	7,2	0,9
8	7,9659	5,6	0,8
7	6,9716	4,5	0,7
6	5,9761	3,7	0,6
5	4,9781	3,05	0,5
4	3,9753	2,5	0,4
3	2,9823	1,95	0,3
2	1,9867	1,6	0,2
1	0,9925	0,8	0,1

Tabulka 1: Naměřené hodnoty

6 Zpracování naměřených hodnot

6.1 Výpočet výstupního odporu děliče

Výstupní odpor děliče bude počítán pro dělící poměr 0,5. Dělící poměr d=0,5 - odpovídající číslu odbočky 5 - byl vybrán kvůli největšímu rozdílu mezi napětím číslicového voltmetru U_{CV} a napětím ručičkového U_{RV} .

Tímto jsme získali hodnotu napětí naprázdno a napětí, pokud na výstup děliče připojíme rezistor s odporem $60\,\mathrm{k}\Omega$. Popis použitých proměnných je v tabulce 2.

Graf 1: Vynesené hodnoty číslicového a ručičkového voltmetru doplněné o referenční úsečku ideálních hodnot

```
U_{CV}
       4,9781 V
                                       - měřené napětí je bráno jako napětí naprázdno
U_{RV}
       3,05 V
                                       - napětí měřené ručičkovým voltmetrem
R_{RV}
       5\,000\,\Omega V^{-1} \cdot 12\,V = 60\,k\Omega
                                       - vnitřní odpor ručičkového voltmetru
                       napětí děliče naprázdno resp. napětí měřené číslicovým voltmetrem
          U_{CV} = U_2
          U_{RV}
                       napětí měřené ručičkovým voltmetrem
          R_{RV}
                       vnitřní odpor ručičkového voltmetru
          R_D
                       odpor napěť ového děliče R_1 \parallel R_2
```

Tabulka 2: Význam proměnných

Díky použití náhradního zapojení můžeme obvod zjednodušit na ideální zdroj napětí o velikosti U_0 , která odpovídá velikosti U_{CV} a sériově k němu zapojený rezistor o velikosti R_D resp. $R_1 \parallel R_2$. Po připojení ručičkového voltmetru se z R_D a R_{RV} vytvoří napěť ový dělič a U_{RV} je hodnota napětí na děliči vůči zemi. U_{RV} odpovídá rovnici

$$U_{RV} = U_{CV} \frac{R_{RV}}{U_{RV} + R_D}. (1)$$

Poté si jen stačí vyjádřit R_D :

$$U_{CV} \cdot R_{RV} = U_{RV} \cdot R_{RV} + U_{RV} \cdot R_{D}$$

$$R_{D} = \frac{(U_{CV} - R_{RV})R_{RV}}{U_{RV}}$$

$$R_{D} = R_{RV} \left(\frac{U_{CV}}{U_{RV}} - 1\right). \tag{2}$$

Pro tuto hodnotu nám výstupní odpor napěť ového děliče po dosazení vyjde $R_D = 37\,929.8\,\Omega$. Při použití vzorce z rovnice 2 pro ostatní dělící poměry resp. odbočky v děliči napětí dostaneme následující hodnoty:

Dělící poměr	$R_D \frac{R}{\Omega}$
1,0	557,0
0,9	14 855,8
0,8	25 348,9
0,7	32 954,7
0,6	36 909,7
0,5	37 929,8
0,4	35 407,2
0,3	31 763,1
0,2	14 501,3
0,1	14 437,5

Tabulka 3: Výstupní odpor děliče napětí v závislosti na dělícím poměru

Data z tabulky 3 jsou vynesena v grafu 2 níže.

Graf 2: Výstupní odpor děliče napětí v závislosti na dělícím poměru

6.2 Výpočet rozšířené nejistoty typu B

Ručičkový voltmetr, rozsah 12 V, TP = 0,5 %:

$$u(U_{RV}) = \frac{TP \cdot rozsah}{100\sqrt{3}} = \frac{0.5 \cdot 12}{100\sqrt{3}} = 0.035 \,\mathrm{V}.$$

Nejistota vnitřního odporu R_{RV} ručičkového voltmetru s tolerancí 0,2 %:

$$u(R_{RV}) = \frac{TP \cdot rozsah}{100 \cdot \sqrt{3}} = \frac{0.2 \cdot 60 \cdot 10^3}{100 \cdot \sqrt{3}} = 69.3 \,\Omega.$$

Číslicový voltmetr, chyba $\delta_1=\pm 0{,}0035\,\%$ z údaje $U_{CV}=49781$ a $\delta_2=\pm 0{,}005\,\%$ rozsahu $M_{CV}=10\,\mathrm{V}$:

$$u(U_{CV}) = \frac{\delta_1 \cdot U_{CV} + \delta_2 \cdot M_{CV}}{100\sqrt{3}} = \frac{0,0035 \cdot 4,9781 + 0,0005 \cdot 10}{100\sqrt{3}} = 1,29 \cdot 10^{-4} \,\text{V}.$$

Rozšířená nejistota typu B, $k_r = 2$:

$$u(R_{D}) = \sqrt{\left(\frac{\partial R_{D}}{\partial U_{CV}}u(U_{CV})\right)^{2} + \left(\frac{\partial R_{D}}{\partial U_{RV}}u(U_{RV})\right)^{2} + \left(\frac{\partial R_{D}}{\partial R_{RV}}u(R_{RV})\right)^{2}}$$

$$u(R_{D}) = \sqrt{\left(\frac{R_{RV}}{U_{CV}}u(U_{CV})\right)^{2} + \left(\frac{R_{RV}U_{CV}}{U_{RV}}u(U_{RV})\right)^{2} + \left(\frac{U_{CV} - U_{RV}}{U_{RV}}(R_{RV})\right)^{2}}$$

$$u(R_{D}) = \sqrt{\left(\frac{60 \cdot 10^{3}}{3,05} \cdot (1,29 \cdot 10^{-4})\right)^{2} + \left(\frac{60 \cdot 10^{3} \cdot 4,9781}{3,05^{2}} \cdot (0,035)\right)^{2} + \left(\frac{4,9781 - 3,05}{3,05} \cdot (69,3)\right)^{2} \Omega}$$

$$u(R_{D}) = 1124,6\Omega$$

$$u(R_{D}) = k_{r}(R_{D}) = 2 \cdot 1124,6\Omega = 2249.28\Omega.$$

7 Závěrečné vyhodnocení

Měřením bylo potvrzeno, že některé voltmetry nelze považovat za ideální. Jejich přítomnost v obvodu může způsobit chybu měření napětí a v případě dalších měřidel chybu měření dalších veličin. Hodnoty měřené číslicovým voltmetrem byly velice blízké skutečné hodnotě naprázdno a proto jsme mohli vnitřní odpor voltmetru považovat za nekonečný a odporový dělič za nezatížený.

Výstupní odpor napěť ového děliče nám vyšel R_D = 37 929,8 ± 2249 Ω .

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze