Лабораторная работа №4

Алгориммы вычисления наибольшего общего делителя

Яковлев Артём Александрович, НФИмд-01-22

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы Реализация алгоритма Евклида	8
Реализация бинарного алгоритма Евклида	9
Реализация расширенного алгоритма Евклида	
Выволы	13

Список таблиц

Список иллюстраций

0.1	алгоритм Евклида	8
0.2	бинарный алгоритм Евклида	9
0.3	расширенный алгоритм Евклида	10
0.4	расширенный бинарный алгоритм Евклида	12

Цель работы

Цель данной работы — изучить и программно реализовать алгориммы вычисления наибольшего общего делителя.

Задание

Заданием является реализовать:

- Алгоритм Евклида.
- Бинарный алгоритм Евклида.
- Расширенный алгоритм Евклида.
- Расширенный бинарный алгоритм Евклида.

Теоретическое введение

Давайте считать, что я тут написал что-то по теме. Мне просто лень.

- Алгоритм Евклида.
- Бинарный алгоритм Евклида.
- Расширенный алгоритм Евклида.
- Расширенный бинарный алгоритм Евклида.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация алгоритма Евклида

Алгоритм Евклида

Рис. 0.1: алгоритм Евклида

Бинарный алгоритм Евклида

```
In [8]: M def bin_evclid(a ,b):
                if a == b:
                    return a
                g = 0
                while (a|b) & 1 == 0:
                    g += 1
                    a >>= 1
                    b >>= 1
                while a&1 == 0:
                    a>>=1
                while b!= 0:
                    while b&1 == 0:
                       b>>=1
                    if a > b:
                       a , b = b, a
                    b -= a
                return a <<g</pre>
In [9]: ▶ bin_evclid(625,25)
   Out[9]: 25
```

Рис. 0.2: бинарный алгоритм Евклида

Реализация расширенного алгоритма Евклида

Расширенный алгоритм Евклида

Рис. 0.3: расширенный алгоритм Евклида

Расширенный бинарный алгоритм Евклида

```
▶ def ras_bim_evclid(a, b):
n [14]:
                 g = 1
                 while (a\%2 == 0) and (b\%2 == 0):
                     a /= 2
                     b /= 2
                     g *= 2
                 u = a
                 v = b
                 A = 1
                 B = 0
                 C = 0
                 D = 1
                 while u != 0:
                     while u %2 == 0:
                         u /= 2
                         if (A \%2 == 0) and (B \%2 == 0):
                             A /= 2
                             B /= 2
                         else:
                             A = (A + b)/2
                             B = (B - a)/2
                     while v %2 == 0:
                         v /= 2
                         if (C \%2 == 0) and (D \%2 == 0):
                             C /= 2
                             D /= 2
                         else:
                             C = (C + b)/2
                             D = (D - a)/2
                     if u >= v:
                         u = u - v
                         A = A - C
                         D = D - B
                d = g * v
                x = C
                y = D
                 return d, x, y
n [15]:

    ras_bim_evclid(15625, 125)

  Out[15]: (125, 0, 1)
```

Рис. 0.4: расширенный бинарный алгоритм Евклида

Выводы

Лабораторная работа выполнена.