Secure Convertible Authenticated Encryption Scheme Based on RSA

p, q: two large primes and N = pq; $ed :\equiv 1 \pmod{\phi(N)}$; $\{p_i, q_i, d_i\} : U_i$'s private key; $\{e_i, N_i\} : U_i$'s public key;

 $h(\cdot)$: a one-way hash function which generates a k-length output;

Authenticated ciphertext generation (ACG) (By the signer U_s)	Choose $c \in \{0, 1\}^k$; Compute $r = Mc^c \mod N_v$; $t = c^{e_v} \mod N_v$; $s = (h(M, c))^{d_s} \mod N_s$; Send the authenticated ciphertext (s, r, t) to U_v .
Signature recovery and verification (SRV) (By the verifier U_{ν})	Compute $c = t^{d_v} \mod N_v$; Recover $M = rc^{-c} \mod N_v$; Verify $s^{e_s} = h(M, c) (\mod N_s)$.
Signature conversion (SC) (By the verifier U_v)	U_v releases (M, s, c) ; Anyone can verify $s^{e_s} = h(M, c) (\text{mod } N_s).$