

Vibration serviceability of floor systems

TRAFIKVERKET
SWEDISH TRANSPORT ADMINISTRATION

2020-02-04

Johan Jonsson

Outline

Vibration serviceability

Vibration source

Vibration path

Receiver

Performance evaluation

Design criteria – for what?

Strength

safety

Deflection

function, appearance, surface material,
 secondary structures etc. <u>But not for vibration!</u>

Vibration

– discomfort / annoyance / safety

Noise

– discomfort / annoyance

What is vibration serviceability?

The two "limit states":

Ultimate limit state (ULS)

make sure that the structure does not collapse

Serviceability limit state (SLS)

structural performance when in use

If you exceed SLS, then you exceed the structural specification!

The first step towards the assesement of vibration serviceability of a civil engineering structure of whatever kind is to identify and characterise the following three factors:

- the vibration source
- the transmission path, i.e. mass, stiffness and damping properties of the structure
- the receiver

A Pavic, Editoral, Structures & Buildings, 159, October, 2006

Two definitions

<u>Vibration</u> - caused by somebody or something other than a person who is disturbed by them

<u>Springiness</u> – a disturbing sensation due to the deflection and vibration at the point of application of footstep by one and the same person

The vibration sorce

People – Machinery Traffic

Impulsive force

Harmonic force

The vibration sorce

People – Machinery Traffic

Single person force measurement - general shape

Wheeler, 1982

Frequency intervals

Matsumoto et al., 1972

Wheeler, 1982

Fotstep force generated by people

Contact force due to each Foot generated by a person walking

Adding contributions of both feet gives resultant footstep force due to walking person

Ohlsson, 1982

Dynamic forces from walking people

Impact – steady-state
Frequency components
Magnitude

| Tharmonics | 100000 | 10000 | 10000 | 10000 | 10000 | 10000 | 1

Eriksson, 1994

Force modelling

Continuous walking force

Eriksson, 1994

Single step force

Ohlsson, 1982

Force modelling

Time domain

$$F(t) = P\left(1 + \sum_{n=1}^{N} \alpha_n \sin\left(n2\pi f t + \phi_n\right)\right)$$

Force models for walking

Lower frequency

Forced motion with resonant character

Higher frequency

Force modelling

Pedestrian density & correlation

after Oeding

- Syncronisation
- one, small group, stream
- Impact on modal mass

The transmission path

Floor vibration

Typical design of steel/concrete floors

Typical design of timber floors

Similarities?

Single degree of freedom system

the transmission path, *i.e.* mass, stiffness and damping properties of the structure

Theory on black board

Theory

Single degree of freedom system

F = F(t)

m = mass

k = spring

c = viscous damping

x = x(t) displacement

The equation of motion:

$$F(t) = m\frac{d^2x(t)}{dt^2} + c\frac{dx(t)}{dt} + kx(t)$$

Solution:

$$x(t) = \hat{x}e^{j\omega t} \rightarrow \frac{dx(t)}{dt} = j\omega \hat{x}e^{j\omega t} \quad \frac{d^2x(t)}{dt^2} = -\omega^2 \hat{x}e^{j\omega t}$$

$$\left|\hat{x}\right| = \frac{\hat{F}}{k\sqrt{\left(1-\beta^2\right)^2 + \left(2\xi\beta\right)^2}}$$

$$\beta = \frac{\omega}{\omega_0} \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$\xi = \frac{c}{c_{cr}} \qquad c_{cr} = 2\sqrt{km}$$

Time-history responses for single degree of freedom system

Dynamic amplification factor, D

D is the ratio of the vibration amplitude to the static displacement

Theory (cont'd)

Dynamic amplification factor
$$D = \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}$$

$$\beta \approx 1 \Rightarrow D \approx \frac{1}{2\xi}$$

$$\xi = 0.04 \rightarrow D = 12.5 !!$$

$$D_{\text{max}} = \frac{1}{2\xi\sqrt{1-\xi^2}}$$
 for $\beta = \sqrt{1-2\xi^2}$

It can be shown: and $\xi \leq \frac{1}{\sqrt{2}}$

Usually $\xi^2 << 1$

Beam, simply supported

MDOF, Modal analysis

Resonance Vibration modes

Resonance frequency, f_n Modal mass, M_n Modal stiffness, K_n Mode shape, $(\phi_n(x,y))$ Modal damping, C_n Modal damping ratio, $\zeta_n = C_n/C_{cr}$

Isotropic plate

Isotropic plates

The resonance frequencies for rectangular isotropic plates simply supported along all four edges can be written as

$$f_{mn} = \frac{\pi}{2} \sqrt{\frac{D}{gL^4}} \left[m^2 + n^2 \left(\frac{L}{B} \right)^2 \right]$$
 (A1)

where m and n refer to the associated normal modes in accordance with the figure overleaf. For a unit width of the plate, the plate stiffness $D = Et^3/12 \ (1-v^2)$ is approximately equal to EI.

Values of the expression $(m^2 + n^2 (L/B)^2)$ are tabulated below for some low values of m and n.

Resonance No	L/B	1.0	0.5	0.25	0.10
f ₁₁		2.00	1.25	1.06	1.01
f ₁₂		5.00	2,00	1.25	1.04
f ₁₃		10.00	3,25	1.56	1.09
f ₁₄		17.00	5.00	2.00	1.16
f ₁₅		26,00	7.25	2.56	1.25
f ₂₁		5.00	4.25	4.06	4.01
f ₂₂		8.00	5.00	4.25	4.04
f ₂₃		13.00	6.25	4.56	4.09
20					

Orthotropic plate

Typical mode shapes for a rectangular joisted floor / plate simply-supported (ss) on all edges

Typical mode shapes for a rectangular joisted timber floor / plate supported on two edges

The reciever

People

Vibration evaluation?

How to quantify the vibration level?

peak-to-peak: typically used when a
max stress level

peak value: for transients, no information about vibration duration

mean value: of no interest

RMS value: relates to the vibration energy content

Human perception

Perception of motion:

0.05 – 1.0Hz balance, motion sickness

1.0 – 8.0 Hz global body resonances

8.0 - 80 Hz complex reaction

Level of perception: 5 mm/s² @ 8Hz

Vibrations in the audible frequency range: (16 Hz –20 kHz)

Human perception of vibrations

Discomfort due to vibration

Depends on: **Amplitude** Frequency **Duration** Activity and "motivat of recipient ...and is strongly subjective!

Design for statics, check for dynamics or vice versa?

Low-frequency and high-frequency floors

Low-frequency floors

Lowest natural frequency below 8-10 Hz

Harmonic force components worst

Weight (normally) sufficient for impulsive part

High-frequency floors

Lowest natural frequency higher than 8-10 Hz

Normally smaller spans

Impulsive part of force most important in combination with damping

Evaluation of high-frequency (light-weight) systems

Criteria:

Deflection

Springiness

Vibration

Important parameters:

Stiffness

Mass

Edges

Transverse stiffness

Damping

Structural flexibility

Fig. 1.1 Footstep force as a function of frequency due to a walking person

Fig. 1.2 Mobility. The peaks mark the resonance frequencies

Fig. 1.3 The resulting vibration velocity

Design criteria – high-frequency light weight floors

EN1995-1-1, ch 7

Deflection criterion
Impulse response criterion

(Based on Springiness and human-induced floor vibration, Swedish Council for Building Research, D12:1988)

The assessment method

Static criterion:
Deflection under 1 kN
point load ~1.5 mm

Impulse response criterion:

 $h'_{max} < 100^{(f_1\zeta-1)} \text{ m/(Ns}^2)$

Acceptable impulse response

$$h'_{max} = v < b^{(f_1 \zeta - 1)} \text{ m/(Ns}^2)$$
 $f_1 \zeta = \sigma_0$
 $\zeta = 1\% \text{ (EN1995-1-1, 7.3.1)}$
 $v = \frac{4(0.4 + 0.6 n_{40})}{mb\ell + 200}$

⇒ higher velocity acceptable if respons decays faster

(see also EN1995-1-1,7.3.3)

Calculation of impulse response h'_{max}

The initial velocity at the point of application of the load (x_0, y_0) can be written as

$$w'_{\text{max}} = F \cdot t \cdot \sum_{n=1}^{\infty} \frac{\underline{\Phi}_{n}^{\epsilon}(x_{0}, y_{0})}{m_{n}} \quad [m/s]$$
 (4.1)

The initial response due to an idealised unit impulse at the point (x_0, y_0) is thus

$$h'_{max} = \sum_{n=1}^{\infty} \frac{\Phi_n^{2}(x_0, y_0)}{m_n} \left[\frac{m/s}{Ns} \right]$$
 (4.2)

It has been shown that the impact loads caused by footsteps mainly excite natural frequencies < 40 Hz, and it is therefore proposed that summation should be confined to normal modes $n \leq N_{40}$:

$$h'_{max} = \sum_{n=1}^{N_{40}} \frac{\Phi_n^2(x_0, y_0)}{m_n} \qquad \left[\frac{m/5}{Ns}\right] \tag{4.3}$$

In the general case, the following operations are then required for calculation of h' max:

- Calculation of natural frequencies and associated normal modes and modal masses for resonances < 40 Hz.</p>
- . Identification of the most 'flexible' point (x_0,y_0) which gives the highest value of h' max.
- . Calculation of h' max.

For floor constructions simply supported at all edges, first may be considered to be critical, and for this reason x_o = L/2 (midspan), see Appendix A. Further, each and every one of the modal masses m_n can be approximately put equal to one quarter of the mass of the floor construction

$$m_1 = m_2 = \dots = m_n = gBL/4$$
 [kg]

(4.4)

The most flexible point

on condition that ϕ_n max = 1 (normalising). For this case, Equation (4.3) can be simplified to read

$$h'_{max} = \frac{4}{9BL} \cdot \begin{pmatrix} N_{40} \\ \sum_{n=1}^{2} \Phi_n^2 \end{pmatrix}_{max} \left[\frac{m/s}{Ns} \right]$$
 (4.5)

The maximum value of the summation has been approximately calculated in Appendix B and is \approx 0.4 + 0.6 N_{40} . We can then write

$$h'_{max} = \frac{4 \cdot (0.4 + 0.6 N_{40})}{gBL} \left[\frac{m/s}{Ns} \right]$$
 (4.6)

where N_{40} can be read off the charts in Appendix A.

$$h'_{max} = \frac{4 \cdot (0,4 + 0,6 N_{40})}{gBL + 200} \left[\frac{m/s}{Ns} \right]$$

EN1995-1-1: $N_{40} = (((40/f_1)^2 - 1) * (b/I)^4 * (EI)_I/(EI)_b)^{0.25}$

Evaluation of low-frequency floors / pedestrian bridges

Important parameters:

Resonance frequencies
Vibration modes (mass)
Force model
Annoyance criteria

- Raw floo
- Finished floor (not furnished)
- Furnished floor (complaint)
- Furnished floor (damped after complaint)
- AISC/CISC & ATC vertical direction
- BS6472, ISO2631-2 & SCI-special office vertical direction
- DIN4150 any direction
- Danish Environmental Guidelines any direction

Design criteria

AISC Design Guide 11 (Murray et al), 1997

SCI Design Guide (Wyatt), 1989

Sètra – for pedestrian bridges

Coderelated acceptance levels (acceleration)

Fig. 1. Comparison of some recommended acceleration limits for the design of pedestrian bridges

service d'Études techniques des routes et autoroutes

october 2006

Technical guide

Footbridges

Assessment of vibrational behaviour of footbridges under pedestrian loading

General approach – pedestrian bridges

Practical approach

Sètra & BS EN

Classification of bridge for pedestrian density and comfort level

Equivalent No of persons as design load applied on structure

Steady state response

EN 1995-2

Simple approach, three cases

Comfort level: 0.7 m/s2

Based on fib, bulletin 32

Simply supported beam

from Sètra document

Is calculation necessary?

Eurocode 2 (Ref. [4])	1.6 Hz and 2.4 Hz and, where specified, between 2.5 Hz and 5 Hz.
Eurocode 5 (Ref. [5])	Between 0 and 5 Hz
Appendix 2 of Eurocode 0	<5 Hz
BS 5400 (Ref. [6])	<5 Hz
Regulations in Japan (Ref. [30])	1.5 Hz – 2.3 Hz
ISO/DIS standard 10137 (Ref. [28])	1.7 Hz – 2.3 Hz
CEB 209 Bulletin	1.65 – 2.35 Hz
Bachmann (Ref. [59])	1.6 – 2.4 Hz

Sètra example

Class	Density d of the crowd
III	0.5 pedestrians/m ²
II	0.8 pedestrians/m ²

Direction	Load per m ²
Vertical (v)	$d \times (280\text{N}) \times \cos(2\pi f_{\nu} t) \times 10.8 \times (\xi/n)^{1/2} \times \psi$

$$a = \frac{2q}{\pi m \xi} \qquad q = d \cdot 280 \cdot 10.8 \sqrt{\frac{\xi}{n}} \cdot \psi$$

ξ = modal dampingm = mass per metern = number of persons on bridge

To conclude:

Design for dynamics and check for statics.

Use simple models when possible.

Thank you for listening!

contact

johan.jonsson@trafikverket.se

