Hands-on Machine Learning

Dimensionality Reduction

The Curse of Dimensionality

Many machine learning problems involve thousands or even millions of features for each training instance.

- > Not only do all these features make training extremely slow, but they can also make it much harder to find a good solution.
 - > This problem is often referred to as the *curse of dimensionality*.

Dimensionality Reduction

> It is possible to reduce the number of features considerably, turning an intractable problem into a tractable one.

3

Pros and Cons of Dimensionality Reduction

- > Advantages:
 - Speed up training
 - May filter out some noise and unnecessary details and result in higher performance in some cases
 - > Extremely useful for data visualization
 - Reduced overfitting
- Disadvantages:
 - > Information loss and slightly worse performance
 - More complex pipelines
 - > Interpretability challenges

Main Approaches for Dimensionality Reduction

5

Projection

- > In most real-world problems, training instances are *not* spread out uniformly across all dimensions.
 - > Many features are almost constant.
 - > Others are highly correlated.
- > All training instances lie within (or close to) a much lower-dimensional subspace of the high-dimensional space.

Manifold Learning

- > In many cases the subspace may twist and turn.
- > Simply projecting onto a plane (e.g., by dropping x_3) would squash different layers of the Swiss roll together.
- > We want to unroll the Swiss roll to obtain the 2D dataset.

Manifold Learning

Manifold Learning

- ➤ In simple terms, a 2D manifold is a 2D shape that can be bent and twisted in a higher-dimensional space.
 - ➤ The Swiss roll is an example of a 2D manifold.
- \triangleright A d-dimensional manifold is a part of an n-dimensional space (d < n) that locally resembles a d-dimensional hyperplane.
- Many dimensionality reduction algorithms work by modeling the manifold on which the training instances lie;
 - > This is called *manifold learning*.
- Manifold assumption: most real-world high-dimensional datasets lie close to a much lower-dimensional manifold.

9

Example

- Consider the MNIST dataset: all handwritten digit images have some similarities.
 - They are made of connected lines, the borders are white, and they are more or less centered.
- ➤ If you randomly generated images, only a tiny fraction of them would look like handwritten digits.
 - > The degrees of freedom available to you if you try to create a digit image are dramatically lower than the degrees of freedom you have if you are allowed to generate any image you want.
- > These constraints tend to squeeze the dataset into a lower-dimensional manifold.

11

2. Principal Component Analysis

Principal Component Analysis

- Principal component analysis (PCA) is the most popular dimensionality reduction algorithm.
- First it identifies the hyperplane that lies closest to the data, and then it projects the data onto it.
- > How to choose the right hyperplane?
 - Select the axis that preserves the maximum amount of variance

13

Preserving the Variance

Select the axis that preserves the maximum amount of variance, as it will lose less information than the other projections

Principal Components

PCA identifies the axis that accounts for the largest amount of variance in the training set (c_1) , then a second axis, orthogonal to the first one (c_2) , that accounts for the largest amount of the remaining variance.

The i-th axis is called the i-th principal component (PC) of the data.

15

Principal Components

Finding Principal Components

We can use *singular value decomposition* (SVD) that decompose the training set matrix X into the matrix multiplication of three matrices $U \Sigma V^T$, where V contains the unit vectors that define all the principal components:

 $\mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & | \end{pmatrix}$

You can reduce the dimensionality of the dataset down to d dimensions by projecting it onto the hyperplane defined by the first d principal components: $X_{d-\text{proj}} = X W_d$

17

PCA in Scikit-Learn

- Scikit-Learn's PCA class uses SVD to implement PCA.
- The following code applies PCA to reduce the dimensionality of the dataset down to two dimensions:

```
from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X2D = pca.fit_transform(X)
```

 \succ After fitting the PCA transformer, its <code>components_</code> attribute holds the transpose of W_d : it contains one row for each of the first d principal components.

Explained Variance Ratio

The explained variance ratio of each principal component, available via the explained_variance_ratio_ variable, indicates the proportion of the dataset's variance that lies along each principal component.

```
pca.explained_variance_ratio_
array([0.7578477 , 0.15186921])
```

19

Choosing the Right Number of Dimensions

Choose the number of dimensions that add up to a sufficiently large portion of the variance—say, 95%.

```
from sklearn.datasets import fetch_openm1

mnist = fetch_openml('mnist_784', as_frame=False)
X_train, y_train = mnist.data[:60_000], mnist.target[:60_000]
X_test, y_test = mnist.data[60_000:], mnist.target[60_000:]

pca = PCA()
pca.fit(X_train)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1 # d equals 154
```

You could then set n_components=d and run PCA again.

Choosing the Right Number of Dimensions

▶ Instead of specifying the number of principal components you want to preserve, you can set n_components to be a float between 0.0 and 1.0, indicating the ratio of variance you wish to preserve:

```
pca = PCA(n_components=0.95)
X_reduced = pca.fit_transform(X_train)

pca.n_components_

154
```

21

Choosing the Right Number of Dimensions

➤ Plot the explained variance as a function of the number of dimensions, there will usually be an elbow in the curve, where the explained variance stops growing fast:

Choosing the Right Number of Dimensions

➤ If you are using dimensionality reduction as a preprocessing step for a supervised learning task, then you can tune the number of dimensions as you would any other hyperparameter.

23

PCA for Compression

- > After dimensionality reduction, the training set takes up less space.
 - ➤ E.g. MNIST dataset after PCA is less than 20% of its original size, and we only lost 5% of its variance!
- ➤ It is possible to decompress the reduced dataset by applying the inverse transformation of the PCA projection.
- ➤ The mean squared distance between the original data and the reconstructed data (compressed and then decompressed) is called the reconstruction error.
- Use the inverse_transform() method to decompress:

```
X_recovered = pca.inverse_transform(X_reduced)
```

PCA for Compression

25

Randomized PCA

- \triangleright If you set the svd_solver hyperparameter to "randomized", Scikit-Learn uses a stochastic algorithm called *randomized PCA* that quickly finds an *approximation* of the first d principal components.
- > Its computational complexity is $O(m \times d^2) + O(d^3)$, instead of $O(m \times n^2) + O(n^3)$ for the full SVD approach.
 - \triangleright Much faster than full SVD when d is much smaller than n.

```
moderate = PCA(n_components=154, svd_solver="randomized", random_state=42)
    X_reduced = rnd_pca.fit_transform(X_train)
```

By default, svd_solver is actually set to "auto": Scikit-Learn uses the randomized PCA algorithm automatically if $\max(m,n) > 500$ and n components is an integer smaller than 80% of $\min(m,n)$.

Incremental PCA

- PCA requires the whole training set to fit in memory.
- > Incremental PCA (IPCA) algorithms have been developed that allow you to split the training set into mini-batches and feed these in one mini-batch at a time.
 - ➤ This is useful for large training sets and for applying PCA online.

```
from sklearn.decomposition import IncrementalPCA
n_batches = 100
inc_pca = IncrementalPCA(n_components=154)
for X_batch in np.array_split(X_train, n_batches):
    inc_pca.partial_fit(X_batch)

X_reduced = inc_pca.transform(X_train)
```

27

Random Projection

Random Projection

- For very high-dimensional datasets, PCA can be too slow.
 - Even if you use randomized PCA, its computational complexity is still $O(m \times d^2) + O(d^3)$, so the target number of dimensions d must not be too large.
- > If you are dealing with a dataset with tens of thousands of features or more (e.g., images), you should consider using random projection instead.
- > The random projection algorithm projects the data to a lower dimensional space using a random linear projection.
 - Very likely to preserve the distance according to a lemma by Johnson and Lindenstrauss.

29

Random Projection

 \gt Johnson and Lindenstrauss showed the minimum number of dimensions to preserve in order to ensure—with high probability—that distances won't change by more than a given tolerance ε is:

$$d \ge 4 \log(m) / (\frac{1}{2} \varepsilon^2 - \frac{1}{3} \varepsilon^3)$$

```
from sklearn.random_projection import johnson_lindenstrauss_min_dim

m, ε = 5_000, 0.1

d = johnson_lindenstrauss_min_dim(m, eps=ε)

d

7300
```

Random Projection

Generate a random matrix P of shape [d,n], where each item is sampled randomly from a Gaussian distribution with mean 0 and variance 1/d, and use it to project a dataset from n dimensions down to d:

```
to d:

n = 20_000

np.random.seed(42)

P = np.random.randn(d, n) / np.sqrt(d) # std dev = square root of variance

X = np.random.randn(m, n) # generate a fake dataset

X_reduced = X @ P.T
```

Scikit-Learn offers a GaussianRandomProjection class to do this:

```
from sklearn.random_projection import GaussianRandomProjection
gaussian_rnd_proj = GaussianRandomProjection(eps=ε, random_state=42)
X_reduced = gaussian_rnd_proj.fit_transform(X) # same result as above
```

31

Sparse Random Projection

- > Scikit-Learn also provides SparseRandomProjection.
 - > The main difference is that the random matrix is sparse.
- This means it uses much less memory: about 25 MB instead of almost 1.2 GB in the previous example!
 - And much faster, both to generate the random matrix and to reduce dimensionality: about 50% faster in this case.
- > If the input is sparse, the transformation keeps it sparse.
- ➤ It enjoys the same distance-preserving property, and the quality of the dimensionality reduction is comparable.
- ➤ In short, it's usually preferable to use this transformer instead of the first one, especially for large or sparse datasets.

4. Locally Linear Embeddi<u>ng</u>

33

Locally Linear Embedding

- > Locally linear embedding (LLE) is a nonlinear dimensionality reduction (NLDR) technique that uses manifold learning.
- ➤ LLE:
 - 1. measures how each training instance linearly relates to its nearest neighbors
 - 2. looks for a low-dimensional representation of the training set where these local relationships are best preserved.
- > This approach makes it particularly good at unrolling twisted manifolds, especially when there is not too much noise.

LLE in Scikit-Learn

> The following code makes a Swiss roll, then uses Scikit-Learn's LocallyLinearEmbedding class to unroll it:

```
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding

X_swiss, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)
lle = LocallyLinearEmbedding(n_components=2, n_neighbors=10, random_state=42)

X_unrolled = lle.fit_transform(X_swiss)
```

Complexity of LLE

- $ightharpoonup O(m \log(m) n \log(k))$ for finding the k-nearest neighbors.
- $\triangleright O(mnk^3)$ for optimizing the weights
- $> O(dm^2)$ for constructing the low-dimensional representations.
 - \succ The m^2 in the last term makes this algorithm scale poorly to very large datasets.
- LLE is significantly more complex than projection-based techniques.
 - > It can construct better low-dimensional representations, especially if the data is nonlinear.

Other Dimensionality Reduction Techniques

- sklearn.manifold.MDS: Multidimensional scaling (MDS) reduces dimensionality while trying to preserve the distances between the instances.
 - Random projection does that for high-dimensional data, but it doesn't work well on low-dimensional data.
- sklearn.manifold.Isomap: Isomap creates a graph by connecting each instance to its nearest neighbors, then reduces dimensionality while trying to preserve the geodesic distances between the instances.
 - > The geodesic distance between two nodes in a graph is the number of nodes on the shortest path between these nodes.

37

Other Dimensionality Reduction Techniques

- sklearn.manifold.TSNE: t-distributed stochastic neighbor embedding (t-SNE) reduces dimensionality while trying to keep similar instances close and dissimilar instances apart.
 - > It is mostly used for visualization, in particular to visualize clusters of instances in high-dimensional space.
- sklearn.discriminant_analysis.LinearDiscriminantAnalysis
 Linear discriminant analysis (LDA) is a classification algorithm that, during training, learns the most discriminative axes between classes.
 - ➤ These axes can then be used to define a hyperplane onto which to project the data.
 - > The projection will keep classes as far apart as possible.

Other Dimensionality Reduction Techniques

