

problem Srtatement - PREDICT THE BURNED AREA OF FOREST FIRES WITH NEURAL NETWORKS

.1 Import neccessary Libraries

```
In [1]: import pandas as pd
        from matplotlib import pyplot as plt
```

2. Import data

```
In [2]: Fire_forest = pd.read_csv('forestfires.csv')
           Fire_forest
Out[2]:
                               FFMC
                                        DMC
                                                 DC
                                                       ISI temp
                                                                   RH
                                                                        wind
                                                                               rain
                                                                                        monthfeb
                                                                                                    monthjan
                 month
                         day
              0
                           fri
                                 86.2
                                        26.2
                                                94.3
                                                       5.1
                                                              8.2
                                                                   51
                                                                          6.7
                                                                                0.0
                                                                                                            0
                    mar
              1
                                 90.6
                                        35.4
                                              669.1
                                                       6.7
                                                             18.0
                                                                   33
                                                                          0.9
                                                                                0.0
                                                                                                 0
                                                                                                            0
                     oct
                          tue
              2
                     oct
                          sat
                                 90.6
                                        43.7
                                              686.9
                                                       6.7
                                                             14.6
                                                                   33
                                                                          1.3
                                                                                0.0
                                                                                                            0
                                 91.7
                           fri
                                        33.3
                                                77.5
                                                       9.0
                                                             8.3
                                                                   97
                                                                          4.0
                                                                                0.2
                                                                                                            0
                    mar
              4
                                              102.2
                                                                                                            0
                                 89.3
                                        51.3
                                                       9.6
                                                             11.4
                                                                   99
                                                                          1.8
                                                                                0.0
                    mar
                          sun
                                                               ...
            512
                                 81.6
                                        56.7
                                              665.6
                                                       1.9
                                                            27.8
                                                                   32
                                                                          2.7
                                                                                0.0 ...
                                                                                                 0
                                                                                                            0
                    aug
                          sun
            513
                                              665.6
                                                       1.9
                                                            21.9
                                                                   71
                                                                                                            0
                    aug
                                 81.6
                                        56.7
                                                                          5.8
                                                                                0.0
            514
                                 81.6
                                        56.7
                                              665.6
                                                       1.9
                                                            21.2
                                                                   70
                                                                          6.7
                    aug
                          sun
                                                                                0.0
```

3. Data Understanding

sat

tue

94.4

79 5

aug

nov

515

516

```
In [3]: Fire_forest.shape
Out[3]: (517, 31)
```

11.3

146.0 614.7

106 7

3 N

42

31

4.0

45

0.0

0.0

25.6

11 8

0

In [4]: Fire_forest.dtypes

Out[4]:	month	object
	day	object
	FFMC	float64
	DMC	float64
	DC	float64
	ISI	float64
	temp	float64
	RH	int64
	wind	float64
	rain	float64
	area	float64
	dayfri	int64
	daymon	int64
	daysat	int64
	daysun	int64
	daythu	int64
	daytue	int64
	daywed	int64
	monthapr	int64
	monthaug	int64
	monthdec	int64
	monthfeb	int64
	monthjan	int64
	monthjul	int64
	monthjun	int64
	monthmar	int64
	monthmay	int64
	monthnov	int64
	monthoct	int64
	monthsep	int64
	size_category	object
	dtype: object	

In [5]: Fire_forest.isna().sum()

Out[5]: month 0 0 day FFMC 0 DMC 0 DC 0 ISI 0 0 temp RH0 wind 0 rain 0 area 0 dayfri 0 daymon 0 daysat 0 daysun 0 daythu 0 0 daytue daywed 0 monthapr 0 monthaug 0 0 monthdec monthfeb 0 monthjan 0 monthjul monthjun 0 monthmar 0 0 monthmay monthnov 0 0 monthoct monthsep 0 size_category 0

In [7]: Fire_forest.describe()

dtype: int64

Out[7]:

	FFMC	DMC	DC	ISI	temp	RH	wind	
count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	517.00
mean	90.644681	110.872340	547.940039	9.021663	18.889168	44.288201	4.017602	0.02
std	5.520111	64.046482	248.066192	4.559477	5.806625	16.317469	1.791653	0.29
min	18.700000	1.100000	7.900000	0.000000	2.200000	15.000000	0.400000	0.00
25%	90.200000	68.600000	437.700000	6.500000	15.500000	33.000000	2.700000	0.00
50%	91.600000	108.300000	664.200000	8.400000	19.300000	42.000000	4.000000	0.00
75%	92.900000	142.400000	713.900000	10.800000	22.800000	53.000000	4.900000	0.00
max	96.200000	291.300000	860.600000	56.100000	33.300000	100.000000	9.400000	6.40

8 rows × 28 columns

4. Data Preparation

```
In [11]: x = Fire_forest.iloc[:,:11]
```

Out[11]:

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44
513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29
514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16
515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00

517 rows × 11 columns

```
In [22]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
```

```
In [33]: x['month']=le.fit_transform(x['month'])
         x['day']=le.fit_transform(x['day'])
```


In [26]: x

Out[26]:

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	0	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
1	10	5	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
2	10	2	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
3	7	0	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
4	7	3	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
512	1	3	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44
513	1	3	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29
514	1	3	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16
515	1	2	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
516	9	5	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00

517 rows × 11 columns

```
In [27]: x.dtypes
```

Out[27]: month int32 day int32 FFMC float64 DMC float64 DC float64 ISI float64 float64 temp RHint64 wind float64 float64 rain area float64 dtype: object

In [29]: x.shape

Out[29]: (517, 11)

```
In [30]: |y = Fire_forest['size_category']
        У
Out[30]: 0
               small
               small
        1
        2
               small
        3
               small
        4
               small
               . . .
        512
               large
        513
               large
        514
               large
        515
               small
        516
               small
        Name: size_category, Length: 517, dtype: object
In [35]: y = Fire_forest['size_category']=le.fit_transform(Fire_forest['size_category'])
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                         1, 1, 1, 1,
                                    1, 1, 1, 1,
                                                  1, 1, 1,
                                                          1,
                                               1,
                         1, 1, 1, 1, 1, 1, 1, 1,
                                               1, 1, 1, 1, 1,
                            1, 1, 1,
                                    1,
                                       1,
                                          1,
                                             1,
                                               1,
                                                  1, 1, 1,
                                                          1,
                         1, 1, 1, 1, 1, 1, 1, 1,
                                               1, 1, 1, 1, 1,
                            1, 1, 1,
                                    1,
                                       1,
                                          1,
                                             1,
                                               1,
                                                  1, 1, 1, 1,
                                    0,
                               0, 0,
                                       0,
                                             0,
                                                  0, 0, 0, 0,
                                          0,
                                               0,
                                             0,
                         0, 0, 0, 0,
                                    0, 0, 0,
                                               0, 0, 0, 0, 0, 0, 0,
                         0, 0, 0, 0,
                                             0,
                                               0, 0, 0, 0, 0,
                                    0, 0,
                                          0,
                         1, 1, 1, 1, 1, 1, 1,
                                             1,
                                               0, 1, 0, 1, 1, 1,
                                               0, 0, 0, 0, 0, 0,
                            1, 1, 0, 1,
                                          0,
                                             1,
                                       0,
                            0, 1, 0,
                                    0, 1, 1, 1,
                                               1, 1, 1, 1, 1, 1, 1,
                                               0, 0, 1, 1, 1,
                            1, 1, 1,
                         1,
                                    1, 1, 1,
                                             1,
                         1,
                            1, 1, 0,
                                    0, 1,
                                          1, 1,
                                               1,
                                                  1, 0, 1, 0,
                         1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                               0,
                                  0, 1,
                                       0,
                                          0,
                                             0,
                                               0,
                                                  1, 0, 1, 0,
                         0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
                                               1, 0, 1, 0, 1, 1,
                       1,
                          0, 1, 1, 1, 1, 1, 1,
                                             1,
                         0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,
                 1, 1, 1,
               1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
               0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,
```

1, 1, 1, 1, 1, 0, 0, 0, 1, 1], dtype=int64)

```
In [37]: y = pd.DataFrame(y)
```

Out[37]:

```
0
 1
 2
 3
 4
    1
512
    0
513 0
514
    0
515
    1
516
    1
```

517 rows × 1 columns

```
In [38]: y.dtypes
Out[38]: 0
              int64
         dtype: object
In [39]: from sklearn.preprocessing import StandardScaler
         std scalar = StandardScaler()
In [41]: | scaled_x = std_scalar.fit_transform(x)
         scaled x
Out[41]: array([[ 0.28422225, -1.42312073, -0.80595947, ..., 1.49861442,
                 -0.07326831, -0.20201979],
                [0.97087134, 1.17671466, -0.00810203, ..., -1.74175564,
                 -0.07326831, -0.20201979],
                [0.97087134, -0.38318657, -0.00810203, ..., -1.51828184,
                 -0.07326831, -0.20201979],
                [-1.08907592, 0.13678051, -1.64008316, ..., 1.49861442,
                 -0.07326831, -0.02653216],
                [-1.08907592, -0.38318657, 0.68095666, ..., -0.00983371,
                 -0.07326831, -0.20201979],
                [0.74198831, 1.17671466, -2.02087875, ..., 0.26950853,
                 -0.07326831, -0.20201979]])
```



```
In [43]: scaled_x = pd.DataFrame(scaled_x)
         scaled_x
```

Out[43]:

	0	1	2	3	4	5	6	7	
0	0.284222	-1.423121	-0.805959	-1.323326	-1.830477	-0.860946	-1.842640	0.411724	1.4986
1	0.970871	1.176715	-0.008102	-1.179541	0.488891	-0.509688	-0.153278	-0.692456	-1.74175
2	0.970871	-0.383187	-0.008102	-1.049822	0.560715	-0.509688	-0.739383	-0.692456	-1.51828
3	0.284222	-1.423121	0.191362	-1.212361	-1.898266	-0.004756	-1.825402	3.233519	-0.00983
4	0.284222	0.136781	-0.243833	-0.931043	-1.798600	0.126966	-1.291012	3.356206	-1.23894
512	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	1.536084	-0.753800	-0.73612
513	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	0.519019	1.638592	0.99579
514	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	0.398350	1.577248	1.49861
515	-1.089076	-0.383187	0.680957	0.549003	0.269382	0.500176	1.156839	-0.140366	-0.00983
516	0.741988	1.176715	-2.020879	-1.685913	-1.780442	-1.739089	-1.222058	-0.815143	0.26950

517 rows × 11 columns

In [44]: scaled_x.dtypes

Out[44]: 0

- float64
- float64
- 2 float64
- float64 3
- 4 float64
- 5 float64
- float64 6
- 7 float64
- 8 float64
- 9 float64
- float64 10
- dtype: object


```
In [47]: scaled_x['y']=y
Fire_forest = scaled_x
             Fire_forest
```

Out[47]:

	0	1	2	3	4	5	6	7	
0	0.284222	-1.423121	-0.805959	-1.323326	-1.830477	-0.860946	-1.842640	0.411724	1.4986
1	0.970871	1.176715	-0.008102	-1.179541	0.488891	-0.509688	-0.153278	-0.692456	-1.74178
2	0.970871	-0.383187	-0.008102	-1.049822	0.560715	-0.509688	-0.739383	-0.692456	-1.51828
3	0.284222	-1.423121	0.191362	-1.212361	-1.898266	-0.004756	-1.825402	3.233519	-0.00983
4	0.284222	0.136781	-0.243833	-0.931043	-1.798600	0.126966	-1.291012	3.356206	-1.23894
512	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	1.536084	-0.753800	-0.73612
513	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	0.519019	1.638592	0.99579
514	-1.089076	0.136781	-1.640083	-0.846648	0.474768	-1.563460	0.398350	1.577248	1.4986′
515	-1.089076	-0.383187	0.680957	0.549003	0.269382	0.500176	1.156839	-0.140366	-0.00983
516	0.741988	1.176715	-2.020879	-1.685913	-1.780442	-1.739089	-1.222058	-0.815143	0.26950

517 rows × 12 columns

5. Model Building

In [48]: pip install tensorflow

Requirement already satisfied: tensorflow in c:\users\nandini\anaconda3\lib\sit e-packages (2.7.0)Note: you may need to restart the kernel to use updated packa ges.

Requirement already satisfied: libclang>=9.0.1 in c:\users\nandini\anaconda3\li b\site-packages (from tensorflow) (12.0.0)

Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\users\nandini\anaconda 3\lib\site-packages (from tensorflow) (1.41.1)

Requirement already satisfied: h5py>=2.9.0 in c:\users\nandini\anaconda3\lib\si te-packages (from tensorflow) (2.10.0)

Requirement already satisfied: absl-py>=0.4.0 in c:\users\nandini\anaconda3\lib \site-packages (from tensorflow) (1.0.0)

Requirement already satisfied: wheel<1.0,>=0.32.0 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorflow) (0.36.2)

Requirement already satisfied: astunparse>=1.6.0 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorflow) (1.6.3)

Requirement already satisfied: protobuf>=3.9.2 in c:\users\nandini\anaconda3\li b\site-packages (from tensorflow) (3.19.1)

Requirement already satisfied: tensorflow-estimator<2.8,~=2.7.0rc0 in c:\users \nandini\anaconda3\lib\site-packages (from tensorflow) (2.7.0)

Requirement already satisfied: numpy>=1.14.5 in c:\users\nandini\anaconda3\lib \site-packages (from tensorflow) (1.20.1)

Requirement already satisfied: six>=1.12.0 in c:\users\nandini\anaconda3\lib\si te-packages (from tensorflow) (1.15.0)

Requirement already satisfied: tensorboard~=2.6 in c:\users\nandini\anaconda3\l ib\site-packages (from tensorflow) (2.7.0)

Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.21.0 in c:\users \nandini\anaconda3\lib\site-packages (from tensorflow) (0.22.0)

Requirement already satisfied: typing-extensions>=3.6.6 in c:\users\nandini\ana conda3\lib\site-packages (from tensorflow) (3.7.4.3)

Requirement already satisfied: flatbuffers<3.0,>=1.12 in c:\users\nandini\anaco nda3\lib\site-packages (from tensorflow) (2.0)

Requirement already satisfied: gast<0.5.0,>=0.2.1 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorflow) (0.4.0)

Requirement already satisfied: google-pasta>=0.1.1 in c:\users\nandini\anaconda 3\lib\site-packages (from tensorflow) (0.2.0)

Requirement already satisfied: wrapt>=1.11.0 in c:\users\nandini\anaconda3\lib \site-packages (from tensorflow) (1.12.1)

Requirement already satisfied: opt-einsum>=2.3.2 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorflow) (3.3.0)

Requirement already satisfied: keras-preprocessing>=1.1.1 in c:\users\nandini\a naconda3\lib\site-packages (from tensorflow) (1.1.2)

Requirement already satisfied: keras<2.8,>=2.7.0rc0 in c:\users\nandini\anacond a3\lib\site-packages (from tensorflow) (2.7.0)

Requirement already satisfied: termcolor>=1.1.0 in c:\users\nandini\anaconda3\l ib\site-packages (from tensorflow) (1.1.0)

Requirement already satisfied: google-auth<3,>=1.6.3 in c:\users\nandini\anacon da3\lib\site-packages (from tensorboard~=2.6->tensorflow) (2.3.3)

Requirement already satisfied: markdown>=2.6.8 in c:\users\nandini\anaconda3\li b\site-packages (from tensorboard~=2.6->tensorflow) (3.3.5)

Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in c:\users\nan dini\anaconda3\lib\site-packages (from tensorboard~=2.6->tensorflow) (0.4.6)

Requirement already satisfied: setuptools>=41.0.0 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorboard~=2.6->tensorflow) (52.0.0.post20210125)

Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in c:\user

s\nandini\anaconda3\lib\site-packages (from tensorboard~=2.6->tensorflow) (0.6. 1)

Requirement already satisfied: werkzeug>=0.11.15 in c:\users\nandini\anaconda3 \lib\site-packages (from tensorboard~=2.6->tensorflow) (1.0.1)

Requirement already satisfied: requests<3,>=2.21.0 in c:\users\nandini\anaconda 3\lib\site-packages (from tensorboard~=2.6->tensorflow) (2.25.1)

Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in c:\users\nandin i\anaconda3\lib\site-packages (from tensorboard~=2.6->tensorflow) (1.8.0)

Requirement already satisfied: cachetools<5.0,>=2.0.0 in c:\users\nandini\anaco nda3\lib\site-packages (from google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflo w) (4.2.4)

Requirement already satisfied: rsa<5,>=3.1.4 in c:\users\nandini\anaconda3\lib \site-packages (from google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflow) (4.7. 2)

Requirement already satisfied: pyasn1-modules>=0.2.1 in c:\users\nandini\anacon da3\lib\site-packages (from google-auth<3,>=1.6.3->tensorboard~=2.6->tensorflo w) (0.2.8)

Requirement already satisfied: requests-oauthlib>=0.7.0 in c:\users\nandini\ana conda3\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~= 2.6->tensorflow) (1.3.0)

Requirement already satisfied: importlib-metadata>='4.4' in c:\users\nandini\an aconda3\lib\site-packages (from markdown>=2.6.8->tensorboard~=2.6->tensorflow) (3.10.0)

Requirement already satisfied: zipp>=0.5 in c:\users\nandini\anaconda3\lib\site -packages (from importlib-metadata>='4.4'->markdown>=2.6.8->tensorboard~=2.6->t ensorflow) (3.4.1)

Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in c:\users\nandini\anacond a3\lib\site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensor board~=2.6->tensorflow) (0.4.8)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\nandini\anacon da3\lib\site-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow) (1.26.4)

Requirement already satisfied: idna<3,>=2.5 in c:\users\nandini\anaconda3\lib\s ite-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow) (2.10) Requirement already satisfied: chardet<5,>=3.0.2 in c:\users\nandini\anaconda3 \lib\site-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow) (4. 0.0)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\nandini\anaconda3 \lib\site-packages (from requests<3,>=2.21.0->tensorboard~=2.6->tensorflow) (20 20.12.5)

Requirement already satisfied: oauthlib>=3.0.0 in c:\users\nandini\anaconda3\li b\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4. 1->tensorboard~=2.6->tensorflow) (3.1.1)

- In [49]: from tensorflow import keras from keras.models import Sequential from keras.layers import Dense, Activation, Layer, Lambda
- In [54]: from sklearn.model selection import train test split Train,Test = train_test_split(Fire_forest, train_size=0.20, random_state=1)

```
In [75]: x_train = Fire_forest.iloc[0:361,:10]
         y_train = Fire_forest.iloc[0:361,11:]
         x_test = Fire_forest.iloc[361:,:10]
         y test = Fire forest.iloc[361:,11:]
In [76]: x_train.shape, y_train.shape
Out[76]: ((361, 10), (361, 1))
In [77]: x_test.shape, y_test.shape
Out[77]: ((156, 10), (156, 1))
In [79]: |x_train.std()
Out[79]: 0
               0.990589
         1
               0.999119
         2
              0.862874
         3
               0.677631
         4
               0.988629
         5
               1.011203
         6
               0.909068
         7
               0.963580
         8
               1.003026
               0.184780
         dtype: float64
In [80]: x_train.mean()
Out[80]: 0
               0.191021
              -0.050465
         1
         2
              -0.028797
         3
             -0.262395
         4
             -0.039506
         5
             -0.047021
             -0.128877
         7
              -0.093976
         8
              -0.043571
              -0.060152
         dtype: float64
```

```
In [81]: x_test.std()
Out[81]: 0
               0.880209
               0.998666
          1
          2
               1.264832
          3
               1.318163
          4
               1.026341
          5
               0.971341
               1.134854
          7
               1.053960
          8
               0.992053
               1.796734
          dtype: float64
```

6. Model Training

```
In [83]:
       import tensorflow as tf
       model = Sequential()
       model.add(Dense(units = 20, activation = 'relu'))
       model.add(Dense(units = 20, activation = 'tanh'))
       model.add(Dense(units = 20, activation = 'softmax'))
In [85]: | model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['a
In [86]: model.fit(x=x_train,y=y_train, epochs=517)
       y: 0.8670
       Epoch 325/517
       12/12 [============== ] - 0s 3ms/step - loss: 0.3175 - accurac
       y: 0.8670
       Epoch 326/517
       y: 0.8670
       Epoch 327/517
       12/12 [============== ] - 0s 4ms/step - loss: 0.3182 - accurac
       y: 0.8726
       Epoch 328/517
       12/12 [============== ] - 0s 3ms/step - loss: 0.3173 - accurac
       y: 0.8643
       Epoch 329/517
       12/12 [============== ] - 0s 4ms/step - loss: 0.3167 - accurac
       y: 0.8698
       Epoch 330/517
       12/12 [============== ] - 0s 3ms/step - loss: 0.3156 - accurac
       v: 0.8698
```

7. Model Testing

```
In [88]: |y_pred = model.predict(x_test)
         y_pred
```

```
Out[88]: array([[1.91293657e-01, 8.08636844e-01, 9.08430684e-06, ...,
                 9.14217162e-06, 2.78853963e-06, 1.33816536e-06],
                [2.00225087e-03, 9.97994542e-01, 2.09989096e-07, ...,
                 2.24218212e-07, 1.01446915e-07, 6.93924989e-08],
                [1.51753753e-01, 8.48169565e-01, 5.18468414e-06, ...,
                 4.37929839e-06, 3.15870625e-06, 1.80616610e-06],
                [4.85631637e-04, 9.99489903e-01, 7.91676257e-07, ...,
                 1.64577398e-06, 1.64680853e-06, 8.02588033e-07],
                [7.31402636e-01, 2.68293649e-01, 3.33586795e-05, ...,
                 1.77252987e-05, 1.59517258e-05, 5.89966885e-06],
                [6.49711676e-03, 9.93489742e-01, 5.46926287e-07, ...,
                 4.66624726e-07, 7.56469660e-07, 4.33037371e-07]], dtype=float32)
```

```
In [90]: y_pred = pd.DataFrame(y_pred)
         y_pred
```

Out[90]:

	0	1	2	3	4	5	6	7				
0	0.191294	0.808637	9.084307e- 06	2.015402e- 06	2.100445e- 06	2.892260e- 06	1.834352e- 06	1.179939e- 06	3.7			
1	0.002002	0.997995	2.099891e- 07	9.556631e- 08	8.330071e- 08	9.331300e- 08	9.825842e- 08	8.043025e- 08	3.0			
2	0.151754	0.848170	5.184684e- 06	5.364324e- 06	2.700172e- 06	2.002973e- 06	3.428590e- 06	2.877409e- 06	5.0			
3	0.306113	0.693803	6.655445e- 06	4.348084e- 06	4.054340e- 06	2.924922e- 06	4.293060e- 06	2.427266e- 06	5.9			
4	0.198337	0.801599	4.965500e- 06	3.269256e- 06	2.931649e- 06	2.102216e- 06	2.621883e- 06	2.181415e- 06	5.1			
151	0.000482	0.999504	4.741599e- 07	1.248864e- 06	3.026239e- 07	3.365855e- 07	3.716432e- 07	3.009342e- 07	9.3			
152	0.000157	0.999834	2.679266e- 07	4.198523e- 07	2.223715e- 07	2.056934e- 07	1.705131e- 07	2.607273e- 07	1.1			
153	0.000486	0.999490	7.916763e- 07	1.528645e- 06	6.410603e- 07	5.638700e- 07	4.203350e- 07	9.007645e- 07	3.2			
154	0.731403	0.268294	3.335868e- 05	8.958926e- 06	8.900718e- 06	1.060696e- 05	1.602828e- 05	6.045027e- 06	1.2			
155	0.006497	0.993490	5.469263e- 07			2.988962e- 07		4.082693e- 07	8.1			
156 r	156 rows × 20 columns											

8. Model Evaluation

For test data

```
In [91]: Fire_forest_Result = model.evaluate(x_test,y_test)
      Fire_forest_Result
      0.5897
Out[91]: [1.1804752349853516, 0.5897436141967773]
```

For train data

```
Fire_forest_Result = model.evaluate(x_train,y_train)
In [92]:
       Fire_forest_Result
       0.8947
Out[92]: [0.24114875495433807, 0.8947368264198303]
                  :', round(Fire_forest_Result[0],2))
In [98]: print('Loss
       print('Accuracy:',round(Fire_forest_Result[1],2))
       Loss
             : 0.24
       Accuracy: 0.89
```

9. Model Deployment

```
In [100]: model.save('Fire forest.h5')
In [101]: import seaborn as sns
```



```
figure = plt.figure(figsize=(8, 8))
sns.heatmap(y_pred, annot=True,cmap=plt.cm.Blues)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
```


In []: