

# Winning Space Race with Data Science

Alejandro

04/04/2023



#### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

#### **Executive Summary**

- Summary of methodologies
  - Data Gathering through web scraping and the SpaceX API;
  - Initial Data Exploration (EDA), encompassing data manipulation, data visualization, and interactive visual analytics
  - Machine Learning Predictions.
- Summary of all results
  - Valuable data was successfully obtained from public sources;
  - EDA enabled the identification of the most relevant features for predicting successful launches;
  - Machine Learning Predictions revealed the optimal model for determining crucial factors to guide this opportunity most effectively, using all gathered data.

#### Introduction

Project background and context

The goal is to assess the potential of new company Space Y in competing with Space X.

Desired outcomes:

The most effective method for estimating total launch costs by forecasting successful first-stage rocket landings;

The ideal location for conducting launches.



## Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data from Space X was sourced from two places:
    - Space X API (https://api.spacexdata.com/v4/rockets/)
    - WebScraping(https://en.wikipedia.org/wiki/List of Falcon/ 9/ and Falcon Heavy launches)
- Perform data wrangling
  - The collected data was enhanced by generating a landing outcome label based on outcome data following feature summarization and analysis
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - The collected data was enhanced by generating a landing outcome label based on outcome data following feature summarization and analysis

#### **Data Collection**

- Data sets were gathered from the Space X API (https://api.spacexdata.com/v4/rockets/)
- And Wikipedia
   (https://en.wikipedia.org/wiki/List\_of\_Falcon/\_9/\_and\_Falcon\_Heavy\_launches)
   using web scraping techniques.

#### Data Collection - SpaceX API

 This API was employed following the adjacent flowchart, and the data was then stored.

 https://github.com/DNAlex11/spacexstudy/blob/f6011fc7319f021df95945751f 607cd24ae4fac2/Data%20Collection%20A Pl.ipynb



## Data Collection - Scraping

- Data from SpaceX launches can also be obtained from Wikipedia
- Data are downloaded from Wikipedia according to the flowchart and then put into our dataset.

 https://github.com/DNAlex11/spacexstudy/blob/f6011fc7319f021df95945751f607cd24 ae4fac2/Data%20Collection%20with%20Web%20 Scraping.ipynb



## **Data Wrangling**

- Initially, some Preliminary Data Analysis (EDA) was conducted on the dataset.
- Next, summaries of launches per site, occurrences of each orbit, and occurrences of mission outcomes per orbit type were determined.
- Lastly, the landing outcome label was generated from the Outcome column.



 https://github.com/DNAlex11/spacexstudy/blob/f6011fc7319f021df95945751f607cd24ae4fac2/Data%20Wrangling.i pynb

#### **EDA** with Data Visualization

- Scatterplots and barplots were utilized to examine data, displaying the relationship between pairs of features:
  - Payload Mass X Flight Number, Launch Site X Flight Number, Launch Site X Payload Mass,
     Orbit and Flight Number, Payload and Orbit

 Add the GitHub URL of your completed EDA with data visualization notebook, as an external reference and peer-review purpose

#### EDA with SQL

The following SQL queries were executed:

- Unique launch site names in the space mission;
- Top 5 launch sites with names starting with 'CCA';
- Total payload mass carried by NASA-launched boosters (CRS);
- Average payload mass carried by the F9 v1.1 booster version;
- Date of the first successful ground pad landing outcome;
- Names of boosters with drone ship successes and payload masses between 4000 and 6000 kg;
- Total number of successful and failed mission outcomes;
- Names of booster versions carrying the maximum payload mass;
- Failed drone ship landing outcomes, their booster versions, and launch site names in 2015; and
- Ranking of landing outcome counts (e.g., Failure (drone ship) or Success (ground pad)) between 2010-06-04 and 2017-03-20.
- https://github.com/DNAlex11/spacex-study/blob/f6011fc7319f021df95945751f607cd24ae4fac2/EDA.ipynb

## Build an Interactive Map with Folium

- Folium Maps employed markers, circles, lines, and marker clusters
  - Markers represent points like launch sites
  - Circles highlight areas around specific coordinates, such as NASA Johnson Space Center
  - Marker clusters indicate groups of events at each coordinate, like launches at a launch site
  - Lines denote distances between two coordinates.

• https://github.com/DNAlex11/spacex-study/blob/f6011fc7319f021df95945751f607cd24ae4fac2/Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

## Build a Dashboard with Plotly Dash

- The following charts and plots were employed to visualize data
  - Launch site percentages
  - Payload range
- This combination facilitated a quick analysis of the relationship between payloads and launch sites, aiding in identifying the optimal launch location based on payloads.

 https://github.com/DNAlex11/spacexstudy/blob/f6011fc7319f021df95945751f607cd24ae4fac2/spacex\_dash\_a pp.py

## Predictive Analysis (Classification)

• Four classification models were evaluated: logistic regression, support vector machine, decision tree, and k-nearest neighbors.



 https://github.com/DNAlex11/spacexstudy/blob/f6011fc7319f021df95945751f607cd24ae4fac2/SpaceX\_Machin e%20Learning%20Prediction\_Part\_5.ipynb

#### Results

- Preliminary data analysis findings:
  - Space X utilizes 4 distinct launch sites;
  - Initial launches were conducted for Space X itself and NASA;
  - The average payload of the F9 v1.1 booster is 2,928 kg;
  - The first successful landing outcome occurred in 2015, five years after the first launch;
  - Several Falcon 9 booster versions successfully landed on drone ships with payloads above the average;
  - Nearly 100% of mission outcomes were successful;
  - Two booster versions failed to land on drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
  - The number of successful landing outcomes increased over the years.



## Flight Number vs. Launch Site



- Based on the plot above, it can be observed that the current best launch site is CCAFS SLC 40, where most recent launches have been successful;
- VAFB SLC 4E ranks second, followed by KSC LC 39A in third place;
- The overall success rate has improved over time.

#### Payload vs. Launch Site



- Payloads above 9,000 kg (approximately the weight of a school bus) exhibit a high success rate;
- Payloads exceeding 12,000 kg seem feasible only at CCAFS SLC 40 and KSC LC 39A launch sites.

## Success Rate vs. Orbit Type

- The highest success rates are associated with orbits:
  - ES-L1
  - GEO
  - HEO
  - SSO.
- •Next in line are:
  - VLEO (over 80%)
  - LFO (over 70%)



## Flight Number vs. Orbit Type



- Success rate seems to have improved over time for all orbits;
- The VLEO orbit appears to be a new business opportunity due to its recent increase in frequency

## Payload vs. Orbit Type



- There doesn't seem to be a correlation between payload and success rate for GTO orbit;
- ISS orbit has the broadest payload range and a solid success rate;
- Only a few launches target SO and GEO orbits.

## Launch Success Yearly Trend



• The success rate began to rise in 2013 and continued through 2020;

• The first three years seem to have been a period of adjustments and technological advancements.

#### All Launch Site Names

- The data reveals four launch sites:
  - CCAFS LC-40
  - CCAFS SLC-40
  - KSC LC-39A
  - VAFB SLC-4E
- These are acquired by selecting unique instances of "launch\_site" values from the dataset.

## Launch Site Names Begin with 'CCA'

Find 5 records where launch sites begin with `CCA`

| Date       | Time UTC | Booster<br>Version | Launch Site | Payload                                                                | Payload<br>Mass kg | Orbit     | Customer           | Mission<br>Outcome | Landing<br>Outcome     |
|------------|----------|--------------------|-------------|------------------------------------------------------------------------|--------------------|-----------|--------------------|--------------------|------------------------|
| 2010-06-04 | 18:45:00 | F9 v1.0 B0003      | CCAFS LC-40 | Dragon Spacecraft<br>Qualification Unit                                | 0                  | LEO       | SpaceX             | Success            | Failure<br>(parachute) |
| 2010-12-08 | 15:43:00 | F9 v1.0 B0004      | CCAFS LC-40 | Dragon demo flight<br>C1, two CubeSats,<br>barrel of Brouere<br>cheese | 0                  | LEO (ISS) | NASA (COTS)<br>NRO | Success            | Failure<br>(parachute) |
| 2012-05-22 | 07:44:00 | F9 v1.0 B0005      | CCAFS LC-40 | Dragon demo flight<br>C2                                               | 525                | LEO (ISS) | NASA (COTS)        | Success            | No attempt             |
| 2012-10-08 | 00:35:00 | F9 v1.0 B0006      | CCAFS LC-40 | SpaceX CRS-1                                                           | 500                | LEO (ISS) | NASA (CRS)         | Success            | No attempt             |
| 2013-03-01 | 15:10:00 | F9 v1.0 B0007      | CCAFS LC-40 | SpaceX CRS-2                                                           | 677                | LEO (ISS) | NASA (CRS)         | Success            | No attemp              |

• In this query, we can see five examples of Cape Canaveral launches.

## **Total Payload Mass**

- Calculate the total payload carried by boosters from NASA
  - Total Payload (kg)
  - 111.268
- The total payload calculated is obtained by adding all payloads with codes containing 'CRS,' which corresponds to NASA.

## Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1

```
Avg Payload (kg)
2.928
```

• By filtering data for the booster version F9 v1.1 and calculating the average payload mass, we get the value of 2,928 kg.

## First Successful Ground Landing Date

Find the dates of the first successful landing outcome on ground pad

• Min Date 2015-12-22

• By filtering data for successful ground landing outcomes and finding the earliest date, we identify the first occurrence on December 22, 2015.

#### Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
  - Booster Version
  - F9 FT B1021.2
  - F9 FT B1031.2
  - F9 FT B1022
  - F9 FT B1026

 Selecting distinct booster versions based on the filters, the following four results are obtained.

#### Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

| Mission Outcome                  | Occurrences |  |  |
|----------------------------------|-------------|--|--|
| Success                          | 99          |  |  |
| Success (payload status unclear) | 1           |  |  |
| Failure (in flight)              | 1           |  |  |

• Grouping mission outcomes and counting records for each group produces the summary below.

## **Boosters Carried Maximum Payload**

• List the names of the booster which have carried the maximum payload mass

| Booster Version () |  |  |
|--------------------|--|--|
| F9 B5 B1048.4      |  |  |
| F9 B5 B1048.5      |  |  |
| F9 B5 B1049.4      |  |  |
| F9 B5 B1049.5      |  |  |
| F9 B5 B1049.7      |  |  |
| F9 B5 B1051.3      |  |  |

| <b>Booster Version</b> |  |  |
|------------------------|--|--|
| F9 B5 B1051.4          |  |  |
| F9 B5 B1051.6          |  |  |
| F9 B5 B1056.4          |  |  |
| F9 B5 B1058.3          |  |  |
| F9 B5 B1060.2          |  |  |
| F9 B5 B1060.3          |  |  |

• The following boosters have carried the maximum payload mass recorded in the dataset.

#### 2015 Launch Records

• List the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015

| <b>Booster Version</b> | Launch Site |  |  |
|------------------------|-------------|--|--|
| F9 v1.1 B1012          | CCAFS LC-40 |  |  |
| F9 v1.1 B1015          | CCAFS LC-40 |  |  |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

| Landing Outcome        | Occurrences |
|------------------------|-------------|
| No attempt             | 10          |
| Failure (drone ship)   | 5           |
| Success (drone ship)   | 5           |
| Controlled (ocean)     | 3           |
| Success (ground pad)   | 3           |
| Failure (parachute)    | 2           |
| Uncontrolled (ocean)   | 2           |
| Precluded (drone ship) | 1           |

• We see that 'No attempt' has 10 occurrences



#### Launch sites



• Launch sites are typically situated near the sea, likely for safety reasons, but also remain in proximity to roads and railroads.

#### Launch Outcomes



- An example of launch outcomes at the KSC LC-39A site
- Green markers represent successful launches, while red ones indicate failures.

#### Launch site characteristics



• The KSC LC-39A launch site exhibits good logistical aspects, being close to railroads and roads while remaining relatively distant from populated areas.



#### Launch Success



• The location from which launches are conducted appears to be a crucial factor in mission success.

#### KSC LC-39A Success Ratio



• Almost 77% of launches are successful

#### Payload vs Launch Outcome



• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.



## **Classification Accuracy**

• Four classification models were tested, and their accuracies are plotted here

• All models yield the same test accuracy, roughly 84%



#### **Confusion Matrix**

• The model misclassifies half of the landings that didn't actually land



#### Conclusions

- From this study we can deduct:
  - Launches above 7,000 kg are less risky
  - The optimal launch site is KSC LC-39A
  - Decision Tree Classifier can be utilized to predict successful landings and enhance profits
  - While most mission outcomes are successful, successful landing outcomes appear to improve over time due to advancements in processes and rocket technology
  - Various data sources were examined, with conclusions being refined throughout the process.

## **Appendix**

