VE370 RC (Midterm)

Pipeline & Data hazards

Li Shi 2020.10.17

Key concept 1: 3 types of microarchitecture

• Single cycle

Multi cycle

Pipeline

Microarchitecture	CPI	cycle time
Single-cycle unpipelined	1	long
Pipelined	1	short
Multi-cycle, unpipelined control	>1	short

Class exercise 1: Signals in pipelined CPU

- We have 5 instructions in the pipeline.
- Currently the first lw instruction is at WB stage.
- Find the values on the following wires.
- (See next slide)

Key concept 2: 3 types of hazards

- Structural hazards
 - lw \$1, 0(\$2) and lw \$3, 0(\$4)
 - Execute 2 instructions at the same time (so-called superscalar processor), but there is only one read/write port in data memory
 - Simple 5-stage MIPS pipeline has no structural hazards
- Data hazards
 - add \$1, \$2, \$3
 - add \$4, \$1, \$5
- Control hazards (not covered so far)
 - add \$1, \$2, \$3
 - beq \$4, \$5, ...
 - add \$6, \$7, \$8

Key concept 3: Data hazard

- Data hazards occur when one instruction depends on a data value produced by a preceding instruction still in the pipeline
- Approaches to resolving data hazards
 - Schedule: Programmer explicitly avoids scheduling instructions that would create data hazards
 - Stall: Hardware includes control logic that freezes earlier stages until preceding instruction has finished producing data value
 - Bypass: Hardware datapath allows values to be sent to an earlier stage before preceding instruction has left the pipeline

Key concept 3: Data hazard

- Two kinds of data hazard
 - Solvable by Bypassing or Forwarding Unit
 - Unsolvable, and insert nops
- (We can also avoid hazards and stalls by arranging the code when compiling)

hop 是forwards 无法解决的。

Key concept 4: Forwarding unit

2 important formulas (No need to memorize. Try to understand!)

EX hazard 182 hazard

- if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd == ID/EX.RegisterRs)) MUX select signal ForwardA = 10
- if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd == ID/EX.RegisterRt)) MUX select signal ForwardB = 10

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRs)

MEM hazard (not EX hazard)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs)))

ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRt) and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt)))

ForwardB = 01

Class exercise 2: Signals in forwarding unit

- We have 5 instructions in the pipeline.
- Currently the first add instruction is at WB stage.
- Find the values on the following wires.
- (See next slide)

```
WB: add $1, $1, $2

MEM: add $1, $1, $3

EX: add $1, $1, $4

ID: nop

IF: nop
```


Notes

- No calculator. No cheating paper.
- Necessary information will be given in the exam.

- If necessary, you could read the textbook by yourself.
 - Computer Organization and Design: The Hardware/Software Interface