Mathematics

Zhang En-Yao

August 11, 2024

Contents

1 Pairs		5	
	1.1	Unordered, Ordered Pairs	5
	1.2	Relation	7

4 CONTENTS

Chapter 1

Pairs

1.1 Unordered, Ordered Pairs

Notion. Summary

Sets define ordered and unordered pairs. Ordered pairs contain coordinates. Coordinates define equivalent.

Definition. Unordered Pair

 $\{a,b\}$ is a set whose elements are exactly a and b.

Definition. Ordered Pair

Ordered pair of a and b is denoted by (a, b).

Definition. Coordinate

a is the first coordinate of the pair, b is the second coordinate.

Definition.

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Definition.

For two different sets α and β , $(a,b) = \{\{a,\alpha\}, \{b,\beta\}\}.$

Note. An alternative definition of ordered pairs.

(a,b)=(a',b') if and only if a=a' and b=b'.

Proof. Obviously.

Proposition 1.1.1.1.

Two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Proof. Obviously.

Note. Ordered pair should be defined in such a way that two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Proposition 1.1.1.2.

 $(a,b) \neq (b,a)$ if $a \neq b$.

Proof. Obviously.

Proposition 1.1.1.3.

If $a \neq b$, (a, b) has two elements, a *singleton* $\{a\}$ and an *unordered pair* $\{a, b\}$. We find the *first coordinate* by looking at the element of $\{a\}$. The *second coordinate* is then the other element of $\{a, b\}$. If a = b, then $(a, a) = \{\{a\}\}$ has only one element.

Proof. Obviously.

Note. If $a \neq b$, (a,b) has two elements, a singleton $\{a\}$ and an unordered pair $\{a,b\}$. The first coordinate is the element of $\{a\}$; the second coordinate is the other element of $\{a,b\}$.

Definition. One-Tuples

(a) = a.

Definition. Ordered Triples

(a, b, c) = ((a, b), c).

1.2. RELATION 7 Definition. Ordered Quadruples (a,b,c,d) = (((a,b),c),d).

Property 1.1.1. $(a,b) \in \mathcal{P}(\mathcal{P}(\{a,b\}))$. More generally, if $a \in A$ and $b \in A$, then $(a,b) \in \mathcal{P}(\mathcal{P}(\{a,b\}))$. *Proof.* Obviously. \Box **Property 1.1.2.** $a, b \in \bigcup (a,b)$.

Property 1.1.3. (a,b), (a,b,c), and (a,b,c,d) exist for all a,b,c, and d.Proof. Obviously.

Property 1.1.4. If (a, b) = (b, a), then a = b.

Property 1.1.5. (a,b,c)=(a',b',c') implies $a=a',\,b=b',\,$ and $c=c'.\,$ (a,b,c,d)=(a',b',c',d') implies $a=a',\,b=b',\,c=c',\,$ and d=d'.

1.2 Relation

Proof. Obviously.

Proof. Obviously.

Notion. Summary Undering.

Definition. Binary Relation

A set A is a binary relation if all elements of R are ordered pairs, i.e., if for any $z \in R$ there exist x and y such that z = (x, y). A binary relation A is in A if and only if $R \subseteq A^2$

Note. Relations between objects of two sorts called binary relations.

Note. A binary relation is determined by specifying all ordered pairs of objects in that relation; it does not matter by what property the set of these ordered pairs is described.

Definition. Inverse

Let R be a binary relation. The inverse of R is the set

$$R^{-1} = \{ z \mid z = (x, y) \land \exists x, y ((y, x) \in R) \}.$$

Definition. Domain

Let A be a binary relation. The set of all x which are in relation A with some y is called the domain of R and denoted by dom R.

Note. dom R is the set of all first coordinates of ordered pairs in R.

Definition. Range

Let A be a binary relation. The set of all y such that, for some x, x is in relation R with y is called the range of A, denoted by ran R.

Note. ran R is the set of all second coordinates of ordered pairs in R.

Definition. Field

Let A be a binary relation. The set $\operatorname{dom} R \cup \operatorname{ran} R$ is called the field of R and is denoted by field R. If field $R \subseteq X$, we say that R is a relation in X or that R is a relation between elements of X.

Proposition 1.2.0.1.

Both $\operatorname{dom} R$ and $\operatorname{ran} R$ exist for any relation R.

Proof. Obviously.

Definition. Image

The image of A under R is the set of all y from the range of R related in R to some element of A; it is denoted by R[A].

1.2. RELATION 9

Definition. Inverse Image

The inverse image of B under R is the set of all x from the domain of R related in R to some element of B; it is denoted by $R^{-1}[A]$.

Proposition 1.2.0.2.

 $dom R = ran R^{-1}.$

Proof. Obviously

Proposition 1.2.0.3.

The inverse image of B under R is equal to the image of B under R^{-1} .

Proof. Obviously

Definition. Composition

Let R and S be binary relations. The composition of R and S is the relation.

$$S \circ R = \{ (x, z) \mid \exists y ((x, y) \in R \land (y, z) \in S) \}.$$

Note. $(x,z) \in S \circ R$ means that for some $y, (x,y) \in R$ and $(y,z) \in S$.

Definition. Cartesian Product

Let A and B be sets. The set of all ordered pairs whose first coordinate is from A and whose second coordinate is from B is called the cartesian product of A and B and denoted $A \times B$.

Note. $A \times B$ is a relation in which every element of A is related to every element of B.

Proposition 1.2.0.4.

 $A \times B$ exists.

Proof.
$$A \times B = \{ w \in \mathcal{P}(\mathcal{P}(\{a,b\})) \mid w = (a,b) \land \exists a,b (a \in A \land b \in B) \}.$$

Proposition 1.2.0.5.

$$(A \times B) \times C = A \times B \times C.$$

Proof. Obviously.

Note. $A \times B \times C = \{ (a, b, c) \mid a \in A \land b \in B \land c \in C \}.$

Definition. Unary Relation

A unary relation is any set. A unary relation in A is any subset of A.

Definition. Ternary Relation

A ternary relation is a set of unordered triples. More explicitly, S is a ternary relation if for every $u \in S$, there exist x, y, and z such that u = (x, y, z). If $S \subseteq A^3$, we say that S is a ternary relation in A.

Definition. Membership Relation

The membership relation on A is defined by

$$\in_A = \{ (a, b) \mid a, b \in A \land a \in b \}.$$

Definition. Identity Relation

The identity relation on A is defined by

$$Id_A = \{ (a, b) \mid a, b \in A \land a = b \}.$$