# Statistical and dynamical models of Spatio-temporal Processes

Adway Mitra

25 January 2021

# Geo-statistical Equation

- $X(s,t) = \mu(s,t) + \eta(s,t) + \epsilon(s,t)$
- $\blacktriangleright$   $\mu(s,t)$ : local mean, spatially or temporally stationery
- $ightharpoonup \eta(s,t)$ : dynamic process model containing spatial or temporal correlations
- $ightharpoonup \epsilon(s,t)$ : random noise

# Hierarchical model for Spatio-temporal Process

- Hierarchical model: Data model + Process model + Parameter model
- Parameter model: parameter values sampled from a prior distribution
- Process model: describes the process (including spatio-temporal dynamics) based on the parameters
- Data model: describes the observations, in terms of the process
- ightharpoonup Z(s,t) is the description of the process (latent variable)
- $\triangleright$  X(s,t) are the observations

# Template of a hierarchical model

$$\times \overline{(i'_f)} = \overline{d(s(i'_f)') \lambda(i'_f)}$$

 $heta \sim p(\eta)$  [Parameter Model]  $Z(s,t) \sim f(\theta)$  [Process Model]

 $X(s,t) \sim g(Z,Y)$  [Data/observation Model]; Y: co-variates

- Simulation/forward problem: Generate X by sampling in order
- Inverse problem: estimate  $Z, \theta$  from X, Y using Bayes Theorem
- ► How to choose p, f, g?

Designer's chice



Spatial Process

Data Model:  $X(s) \sim N(\overline{u(s)} + \overline{u(s)}, \sigma)$ 

lackbox Data Model:  $X(s) \sim \mathcal{N}(\overline{\mu(s)} + \overline{\eta(s)}, \underline{\sigma})$ 

Observations at each time-point is a realization from this model

$$\eta(s) = A\overline{Z(s)} + B\overline{Y(s)}$$

ightharpoonup  $\epsilon$  is managed by  $\sigma$ 

- $\blacktriangleright \mu(s), Z(s)$ : contains covariance between different locations
- Y are co-variates which are extraneous to the model
- ► A, B represent transformation coefficients



$$X = \begin{bmatrix} X(1) \\ X(2) \end{bmatrix} \begin{bmatrix} M \\ M \\ X(3) \end{bmatrix}$$

- ightharpoonup Data Model:  $\overline{X} \sim \mathcal{N}$
- $\eta = AZ + BY$   $X, \mu, \eta, Z, Y \text{ are vectors of length } S$
- ► A, B are transformation matrices
- Vectorization allows the influence of other locations
- ▶ If A, B diagonal matrices: back to the previous model

#### Interpretation

- $\blacktriangleright$   $\mu$ : local effect (eg. all locations have local mean temperature)
- ➤ Z: global effect (eg. during a heat wave, temperatures at all locations are affected by different degrees)
- A: transfer the effect of heat wave on the local observations
- ➤ Y: covariates (eg. humidity, rainfall etc)
- B: effect of co-variates (eg. role of humidity on temperature)

### **Temporal Process**

- ▶ Data Model:  $X(t) \sim \mathcal{N}(\mu(t) + \eta(t), \sigma)$
- $\blacktriangleright$   $\mu(t), Z(t)$ : contains covariance between different time-points
- Y are co-variates which are extraneous to the model
- ► A, B represent transformation matrices

### Interpretation

- $\triangleright$   $\mu$ : seasonal component (eg. all months have seasonal mean temperature)
- Z: trend component (eg. a heat wave that lasts for a few days, global warming)

#### Gaussian Process



- Consider a (finite or infinite) set of random variables  $X_1$ ,  $X_2$ , ...
- ► Consider any random finite subset  $\{X_{i1}, X_{i2}, \dots, X_{iN}\}$
- ▶ Then we have  $(X_{i1}, X_{i2}, \dots, X_{iN}) \sim \mathcal{N}(\mu, \Sigma)$
- $\blacktriangleright \mu(s)$ : mean function (a function of s)
- $ightharpoonup \Sigma(s,s')$ : covariance function (a function of ||s-s'||)