

Licence 1ère année, MATHÉMATIQUES ET CALCUL 1 (MC1)

Interrogation 2: Logique, ensembles, fonctions et Complexes

Exercice 1. ($\approx 3.5 \text{ pts}$)

1. Soit $f: \mathbb{R} \to \mathbb{R}$. Rappeler les définitions d'injectivité, surjectivité et bijectivité, ainsi que leurs négations.

2. Soit
$$A = \{\pi, \sqrt{3}, 10\}$$
 et $B = \{0, 1\}$

- a) Est-il possible de construire une surjection de *A* vers *B*? Si oui, construire une telle surjection. Si non, donner une courte justification.
- b) Est-il possible de construire une injection de *A* vers *B* ? Si oui, construire une telle injection. Si non, donner une courte justification.

Correction.

1. Injectivité: $\forall (x, x') \in \mathbb{R} \times \mathbb{R}, x = x' \Longrightarrow f(x) = f(x')$

Négation injectivité : $\exists (x, x') \in \mathbb{R} \times \mathbb{R}, x \neq x' \text{ et } f(x) = f(x')$

Surjectivité : $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$

Négation surjectivité : $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y \neq f(x)$

Bijectivité : $\forall y \in \mathbb{R}, \exists ! x \in \mathbb{R}, y = f(x)$

Négation bijectivité : $\exists y \in \mathbb{R}, (\forall x \in \mathbb{R}, f(x) \neq y) \lor (\exists x, x' \in \mathbb{R}, x \neq x' \text{ et } f(x) = f(x') = y)$

- 2. a) Oui, on peut construire une surjection définie par $f(\pi) = f(\sqrt{3}) = 0$ et f(10) = 1.
 - b) Non, on ne peut pas construire une telle injection car Card(A) > Card(B)

Exercice 2. (≈ 5.5 pts)

- 1. Donner la partie réelle, la partie imaginaire, le conjugué et le module des complexes suivants
 - a) $z_1 = -6i 2$
 - b) $z_2 = 9$
 - c) $z_3 = i(2+3i)$
 - d) $z_4 = 3i$
- 2. Donner le module et un argument des complexes suivants.
 - a) $z_1 = 2e^{i\frac{\pi}{4}} \times 3e^{i\frac{\pi}{2}}$
 - b) $z_2 = i^{34}$
 - c) $z_3 = e^{e^{i\beta}}$ avec $\beta \in \mathbb{R}$

Correction.

1. a)
$$\operatorname{Re}(z_1) = -2$$
, $\operatorname{Im}(z_1) = -6$, $\overline{z_1} = 6i - 2$, $|z_1| = \sqrt{40} = 2\sqrt{10}$

b) Re(
$$z_2$$
) = 9, Im(z_2) = 0, $\bar{z_2}$ = 9, $|z_2|$ = 9

c)
$$\operatorname{Re}(z_3) = -3$$
, $\operatorname{Im}(z_3) = 2$, $\overline{z_3} = -2i - 3$, $|z_3| = \sqrt{13}$

d)
$$Re(z_4) = 0$$
, $Im(z_4) = 3$, $\bar{z_4} = -3i$, $|z_4| = 3$

2. a)
$$|z_1| = 6$$
, $\arg(z_1) = \frac{3\pi}{4}$

b)
$$|z_2| = 1$$
, $arg(z_2) = \pi$

c)
$$|z_3| = e^{\cos(\beta)}$$
, $\arg(z_3) = \sin(\beta)$

Exercice 3. ($\approx 2 \text{ pts}$)

- 1. Mettre sous forme algébrique $z_1 = \frac{2-i}{1+i}$
- 2. Mettre sous forme exponentielle $z_2 = 1 i$

Correction.

$$z_1 = \frac{2-i}{1+i}$$

$$= \frac{(2-i)(1-i)}{(1+i)(1-i)}$$

$$= \frac{2-2i-i+i^2}{1^2+1^2}$$

$$= \frac{1-3i}{2}$$

$$z_{2} = 1 - i$$

$$= \sqrt{2} \left(\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$$

$$= \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right)$$

$$= \sqrt{2} e^{-i \frac{\pi}{4}}$$