Recurrent Neural Nets

Introduction to NLP

Rahul Mishra

IIIT-Hyderabad March 05, 2024

Sequence Data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger.

Motivating example

Representing Words

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

RNNs

output distribution

$$\hat{m{y}}^{(t)} = \operatorname{softmax}\left(m{U}m{h}^{(t)} + m{b}_2\right) \in \mathbb{R}^{|V|}$$

RNN Advantages:

- Can process any length input
- Computation for step t can (in theory) use information from many steps back
- Model size doesn't increase for longer input context
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $oldsymbol{h}^{(0)}$ is the initial hidden state

word embeddings

$$\boldsymbol{e}^{(t)} = \boldsymbol{E}\boldsymbol{x}^{(t)}$$

words / one-hot vectors $oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

laptops

books

RNN

Idea: We can process a sequence of vectors x by applying a recurrence formula at every time step t

 Note: Same parameters, weights and function used at each step.

Training RNN

Loss function on step t is cross-entropy between predicted probability distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)}$ (one-hot for $x^{(t+1)}$):

$$J^{(t)}(\theta) = CE(\mathbf{y}^{(t)}, \hat{\mathbf{y}}^{(t)}) = -\sum_{w \in V} \mathbf{y}_w^{(t)} \log \hat{\mathbf{y}}_w^{(t)} = -\log \hat{\mathbf{y}}_{\mathbf{x}_{t+1}}^{(t)}$$

Average this to get overall loss

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta) = \frac{1}{T} \sum_{t=1}^{T} -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

Training RNN

Forward Propagation

$$a^{<0>} = \mathbf{0} \qquad a^{<1>} = g_1 \left(W_{aa} a^{<0>} + W_{ax} x^{<1>} + b_a \right) \quad g_1() \leftarrow \tanh/\text{ReLU}$$

$$\hat{y}^{<1>} = g_2 \left(W_{ya} a^{<1>} + b_y \right) \qquad g_2() \leftarrow \text{Sigmoid/Softmax/Linear}$$

$$a^{} = g_1 \left(W_{aa} a^{} + W_{ax} x^{} + b_a \right)$$

$$\hat{y}^{} = g_2 \left(W_{ya} a^{} + b_y \right)$$

Training RNN: Backdrop in RNN

Question: What's the derivative of $J^{(t)}(\theta)$ w.r.t. the repeated weight matrix W_h ?

Answer:
$$\frac{\partial J^{(t)}}{\partial W_h} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial W_h} \Big|_{(i)}$$

"The gradient w.r.t. a repeated weight is the sum of the gradient w.r.t. each time it appears"

Training RNN: Backdrop in RNN

Question: What's the derivative of $J^{(t)}(\theta)$ w.r.t. the repeated weight matrix $m{W}_h$?

Backpropagation Through Time

Backpropagation Through Time

$$\frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} = \left[\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} \Big|_{(i)} \right]$$

Question: How do we calculate this?

Answer: Backpropagate over timesteps *i=t,...,*0, summing gradients as you go. This algorithm is called "backpropagation through time" [Werbos, P.G., 1988, Neural Networks 1, and others]

Generating Text using RNNs

"Sorry," Harry shouted, panicking—"I'll leave those brooms in London, are they?"

"No idea," said Nearly Headless Nick, casting low close by Cedric, carrying the last bit of treacle Charms, from Harry's shoulder, and to answer him the common room perched upon it, four arms held a shining knob from when the spider hadn't felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Vanishing and Exploding Gradient

The cat, that already ate..... was full

The cats, that already ate..... were full

Vanishing Gradient

Vanishing Gradient

chain rule!

chain rule!

Vanishing Gradient

Gradient signal from far away is lost because it's much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

Exploding Gradient

If the gradient becomes too big, then the SGD update step becomes too big:

$$heta^{new} = heta^{old} - \alpha \nabla_{ heta} J(heta)$$

Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
 if $\|\hat{\mathbf{g}}\| \geq threshold$ then
$$\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$$
 end if

Intuition: take a step in the same direction, but a smaller step

Another Problem

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

RNN architecture types

GRU: Gated Recurrent Unit

The cat, which already ate ..., was full.

[Cho et al., 2014. On the properties of neural machine translation: Encoder-decoder approaches]
[Chung et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling]

Full GRU

$$\widetilde{c}^{} = \tanh(W_c[\lceil c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_v = \sigma(W_v[c^{}, x^{}] + b_v)$$

$$\Gamma_v = \sigma(W_v[c^{}, x^{}] + b_v)$$

$$C^{} = \Gamma_u * \widetilde{c}^{} + (1 - \Gamma_u) + c^{}$$

The cat, which ate already, was full.