徐森林,薛春华 编《数学分析》题解

西海岸民工

2024年11月

目录

第一章	数列极限	1
1.1	数列极限的概念	1
	1.1.1 练习题	1
	1.1.2 思考题	6
1.2	数列极限的基本性质	10
	1.2.1 练习题	10
	1.2.2 思考题	15
1.3	实数理论,实数连续性命题	16
	7. TO	16
	1.3.2 思考题	16
1.4	1.3.2 思考题	16
	1.4.1 练习题	16
	1.4.2 思考题	24
1.5	上极限与下极限	27
	1.5.1 练习题	27
	1.5.2 思考题	32
1.6	Stolz 公式	33
	1.6.1 练习题	33
	1.6.2 思考题	35
1.7	复习题 1	36
索引		53
参考文献		53
后 记		55

iv

第一章 数列极限

1.1 数列极限的概念

1.1.1 练习题

- 1. 用数列极限定义证明:
 - (1) $\lim_{n \to +\infty} 0.\underbrace{99\cdots 9}_{n} = 1;$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left[\frac{-\ln \varepsilon}{\ln 10}\right] + 1$, 当 n > N 时,

$$\left|0.\underbrace{99\cdots 9}_{n}-1\right|=\frac{1}{10^{n}}<\varepsilon.$$

由极限的定义知, $\lim_{n\to+\infty} 0. \underbrace{99\cdots 9}_{n} = 1.$

(2) $\lim_{n \to +\infty} \frac{3n+4}{7n-3} = \frac{3}{7};$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left[\frac{6}{\varepsilon}\right] + 1$, 当 n > N 时,

$$\left| \frac{3n+4}{7n-3} - \frac{3}{7} \right| = \frac{37}{7(7n-3)} < \frac{37}{7n} < \frac{6}{n} < \varepsilon$$

由极限定义知, $\lim_{n\to+\infty} \frac{3n+4}{7n-3} = \frac{3}{7}$ 。

(3) $\lim_{n \to +\infty} \frac{5n+6}{n^2-n-1000} = 0;$

证明. 对 $\forall \varepsilon>0$, 取 $N=\max\{50,\left[\frac{12}{\varepsilon}\right]+1\},$ 当 n>N 时, $\frac{1}{2}n^2-n-1000>1$ 且

$$\left| \frac{5n+6}{n^2-n-1000} - 0 \right| < \frac{5n+6}{\frac{1}{2}n^2 + (\frac{1}{2}n^2-n-1000)} < \frac{6n}{\frac{1}{2}n^2} < \frac{12}{n} < \varepsilon$$

由极限定义知, $\lim_{n \to +\infty} \frac{5n+6}{n^2-n-1000} = 0$.

(4) $\lim_{n \to +\infty} \frac{8}{2^n + 5} = 0;$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left\lceil \frac{-\ln \varepsilon}{\ln 2} \right\rceil + 4$, 当 n > N 时,

$$\left| \frac{8}{2^n + 5} - 0 \right| < \frac{8}{2^n} = \frac{1}{2^{n-3}} < \varepsilon$$

由极限定义知 $\lim_{n\to+\infty}\frac{8}{2^n+5}=0$.

(5)
$$\lim_{n \to +\infty} \frac{\sin n!}{n^{1/2}} = 0;$$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left[\frac{1}{\varepsilon^2}\right] + 1$, 当 n > N 时,

$$\left|\frac{\sin n!}{n^{1/2}} - 0\right| < \frac{1}{n^{1/2}} < \varepsilon$$

由极限定义知, $\lim_{n\to+\infty} \frac{\sin n!}{n^{1/2}} = 0$ 。

(6) $\lim_{n \to +\infty} (\sqrt{n+2} - \sqrt{n-2}) = 0;$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \max \left\{ 2, \left[\left(\frac{4}{\varepsilon} \right)^2 \right] + 1 \right\}$, 当 n > N 时,

$$\left|\sqrt{n+2} - \sqrt{n-2}\right| = \frac{4}{\sqrt{n+2} + \sqrt{n-2}} < \frac{4}{\sqrt{n}} < \varepsilon$$

由极限定义知, $\lim_{n\to+\infty} (\sqrt{n+2} - \sqrt{n-2}) = 0$ 。

(7) $\lim_{n \to +\infty} (\sqrt[3]{n+2} - \sqrt[3]{n-2}) = 0;$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \max \left\{ 2, \left[\sqrt{\left(\frac{4}{\varepsilon}\right)^3} \right] \right\}$, 当 n > N 时,

$$\left|\sqrt[3]{n+2} - \sqrt[3]{n-2}\right| = \frac{4}{\sqrt[3]{(n+2)^2} + \sqrt[3]{(n+2)(n-2)} + \sqrt[3]{(n-2)^2}} < \frac{4}{\sqrt[3]{(n+2)^2}} < \varepsilon.$$

由极限定义知, $\lim_{n \to +\infty} (\sqrt[3]{n+2} - \sqrt[3]{n-2}) = 0.$

(8)
$$\lim_{n \to +\infty} \frac{n^{3/2} \arctan n}{1 + n^2} = 0;$$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left[\left(\frac{\pi}{2\varepsilon} \right)^2 \right] + 1$, 当 n > N 时,

$$\left| \frac{n^{3/2} \arctan n}{1 + n^2} \right| < \frac{\frac{\pi}{2} n^{3/2}}{n^2} < \frac{\pi/2}{\sqrt{n}} < \varepsilon$$

由极限定义知, $\lim_{n \to +\infty} \frac{n^{3/2} \arctan n}{1 + n^2} = 0.$

(9) $\lim_{n \to +\infty} a_n = 1$, 其中 $a_n = \begin{cases} \frac{n-1}{n}, n \ \text{为偶数}, \\ \frac{\sqrt{n^2 + n}}{n}, n \ \text{为奇数}; \end{cases}$

证明. 对 $\forall \varepsilon > 0$, 取 $N = \left[\frac{1}{\varepsilon}\right] + 1$, 当 n > N 时,

$$|a_n - 1| < \begin{cases} \frac{1}{n}, n \text{ 为偶数,} \\ \frac{1}{\sqrt{n^2 + n} + n}, n \text{ 为奇数} \end{cases}$$
 $< \frac{1}{n} < \varepsilon$

由极限定义知, $\lim_{n\to+\infty} a_n = 1$.

1.1 数列极限的概念 3

(10) $\lim_{n \to +\infty} (n^3 - 4n - 5) = +\infty.$

证明. 对 $\forall A>0$, 取 $N=\max\left\{5,\left\lceil \sqrt[3]{2A}\right\rceil +1\right\},$ 当 n>N 时, $1-\frac{4}{n^2}-\frac{5}{n^3}>1-\frac{9}{n^2}>\frac{1}{2}$ 且

$$n^3 - 4n - 5 = n^3 \left(1 - \frac{4}{n^2} - \frac{5}{n^3}\right) > \frac{1}{2}n^3 > A$$

由极限定义知, $\lim_{n\to+\infty} (n^3 - 4n - 5) = +\infty$.

2. 设 $\lim_{n\to +\infty} a_n = a$., 证明: $\forall k \in \mathbb{N}$, 有 $\lim_{n\to +\infty} a_{n+k} = a$.

证明. 我们分以下几种情况证明此命题:

- (1) 当 $a \in \mathbb{R}$ 时。由于 $\lim_{\substack{n \to +\infty \\ n \to \infty}} a_n = a$,对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}$,当 n > N 时,有 $|a_n a| < \varepsilon$ 。显然 n + k > n > N,从而 $|a_{n+k} a| < \varepsilon$.即 $\lim_{\substack{n \to +\infty \\ n \to +\infty}} a_{n+k} = a$.
- (2) 当 a 是 $+\infty$ 时。由于 $\lim_{n\to +\infty} a_n = +\infty$,对 $\forall A>0, \exists N\in\mathbb{N}$,当 n>N 时, $a_n>A$. 显然 n+k>n>N,从而 $a_{n+k}>A$. 即 $\lim_{n\to +\infty} a_{n+k} = +\infty$.
- (3) 当 a 是 $-\infty$ 时。由于 $\lim_{n\to +\infty} a_n = -\infty$,对 $\forall A < 0, \exists N \in \mathbb{N}$,当 n > N 时, $a_n < A$. 显然 n+k>n>N,从而 $a_{n+k} < A$. 即 $\lim_{n\to +\infty} a_{n+k} = -\infty$.

3. 设 $\lim_{n\to+\infty} a_n = a$, 证明 $\lim_{n\to+\infty} |a_n| = |a|$: 举例说明, 这个命题的逆命题不真。

证明. 我们只证明 a 是有限实数的情况。当 a 是 $+\infty$ 和 $-\infty$ 时也成立。由极限的定义有: 对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \exists n > N$ 时,

$$|a_n - a| < \varepsilon$$
.

从而

$$||a_n| - |a|| < |a_n - a| < \varepsilon.$$

所以

$$\lim_{n \to +\infty} |a_n| = |a|.$$

如果我们取 $a_n=(-1)^n$,则 $|a_n|=1$,从而 $\lim_{n\to +\infty}|a_n|=|a|$ 。但是很显然 a_n 是发散的。

4. 设 $x_n \le a \le y_n, n \in \mathbb{N}$, 且 $\lim_{n \to +\infty} (y_n - x_n) = 0$ 。证明:

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = a$$

证明. $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } y_n - x_n = |y_n - x_n| < \varepsilon.$ 从而

$$|y_n - a| = y_n - a = y_n - x_n + x_n - a < y_n - x_n < \varepsilon.$$

即 $\lim_{\substack{n \to +\infty \\$ 同理可证}} y_n = a.

$$-\varepsilon < x_n - y_n < x_n - a < 0 < \varepsilon$$
.

$$\lim_{n \to +\infty} x_n = a.$$

5. 设 $\{a_n\}$ 为一个收敛数列。证明:数列 $\{a_n\}$ 中或者有最大的数,或者有最小的数。举出两者都有的例子;再举出只有一个的例子。

证明. 假设 $\lim_{n\to +\infty} a_n = a$,我们分以下几种情况讨论:

- (1) 如果 $a_n = a, \forall n \in \mathbb{N}$. 此时,数列 $\{a_n\}$ 既有最小值也有最大值,且相等
- (2) 如果 $\exists n_0 \in \mathbb{N}$,使得 $a_{n_0} \neq a$. 不妨假设 $a_{n_0} < a$. 对于 $\varepsilon = \frac{a a_{n_0}}{2}$, $\exists N \in \mathbb{N}, N > n_0$ 使得 $a_n a > a \varepsilon = \frac{a + a_{n_0}}{2} > a_{n_0}, \forall n > N$. 取

$$m = \min\{a_1, a_2, \cdots, a_N\}.$$

我们有:

- (a) $m \in \{a_n\}_{n=1}^{+\infty}$,
- (b) $a_n >= m, \forall n$.

即,m 是数列 $\{a_n\}$ 的最小值. 如果 $a_{n_0} > a$. 我们可以证明 $\{a_n\}$ 有最大值。

考虑下列收敛数列:

- (1) 如果 $a_n = \frac{1}{n}$, 则该数列有最大值 $a_n \le a_1 = 1$, 没有最小值。
- (2) 如果 $a_n = -\frac{1}{n}$, 该数列有最小值 $-1 = a_1 <= a_n$, 没有最大值。
- (3) 如果 $a_n = (-1)^n \frac{1}{n}$, 则 $-1 = a_1 <= a_n <= a_2 = \frac{1}{2}$

6. 证明下列数列发散:

 $(1) \{n^{(-1)^n}\}$

证明. 该数列发散, 因为:

$$0 = \lim_{n \to +\infty} (2n - 1)^{(-1)^{2n-1}} \neq \lim_{n \to +\infty} (2n)^{(-1)^{2n}} = +\infty$$

 $(2) \{\cos n\}$

证明. 取两个整数子列 $\{k_n\}$, $\{l_n\}$ 使得

- (a) $k_n \in (2m\pi \frac{\pi}{6}, 2m\pi + \frac{\pi}{6}),$
- (b) $l_n \in (2m\pi + \frac{5\pi}{6}, (2m+1)\pi + \frac{\pi}{6}).$

显然,我们有

- (a) $\cos k_n \in (\frac{\sqrt{3}}{2}, 1], \forall n,$
- (b) $\cos l_n \in [-1, -\frac{\sqrt{3}}{2}), \forall n.$

因此, $\{\cos n\}$ 是发散的。

1.1 数列极限的概念 5

7. 证明: 数列 $\{a_n\}$ 收敛 \Leftrightarrow 三个数列 $\{a_{3k-2}\}, \{a_{3k-1}\}, \{a_{3k}\}$ 都收敛且有相同的极限。

证明. (⇒) 由定理 1.1.2, 收敛数列的子列也收敛, 且极限相同。

(⇐) 假设三个子列的极限都是 a。由极限的定义,对于 $\forall \varepsilon > 0$,

- (1) $\exists N_1 \in \mathbb{N}$, 使得 $|a_{3k-2} a| < \varepsilon, \forall k > N_1$,
- (2) $\exists N_2 \in \mathbb{N}$, 使得 $|a_{3k-1} a| < \varepsilon, \forall k > N_2$,
- (3) $\exists N_3 \in \mathbb{N}$, 使得 $|a_{3k} a| < \varepsilon, \forall k > N_3$ 。

取 $N = 3 \max\{N_1, N_2, N_3\}$, 我们有

$$|a_n - a| < \varepsilon, \forall n > N,$$

$$\lim_{n \to +\infty} a_n = a.$$

注 1. 这个命题对于 $a = +\infty$. $-\infty$, ∞ 也成立。

注 2. 对于 $\forall p \in \mathbb{N}$,

$$\lim_{n \to +\infty} a_n = a \Leftrightarrow \lim_{k \to +\infty} a_{pk-p+1} = \lim_{k \to +\infty} a_{pk-p+2} = \dots = \lim_{k \to +\infty} a_{pk} = a.$$

8. 误
$$\lim_{n\to+\infty}(a_n-a_{n-1})=d$$
。 证明: $\lim_{n\to+\infty}\frac{a_n}{n}=d$ 。

证明.

$$\frac{a_n - a_1}{n} = \frac{(a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1)}{n}.$$

由例 1.1.15 知:

$$\lim_{n \to +\infty} \frac{a_n - a_1}{n} = d.$$

由于 $\lim_{n\to+\infty}\frac{a_1}{n}=0$, 易知

$$\lim_{n \to +\infty} \frac{a_n}{n} = d.$$

9. 设 $\lim_{n\to+\infty} a_n = a$ 。用 $\varepsilon - N$ 法,A - N 法证明:

$$\lim_{n\to +\infty} \frac{a_1+2a_2+\cdots +na_n}{n^2} = \frac{a}{2}, (a\, \not\! a\, \not\! x\, \not\! x\, +\infty, -\infty).$$

证明. 我们只证 a 为实数的情形。其他的情况证明类似。由极限的定义,对于 $\varepsilon > 0$, $\exists N_0 \in \mathbb{N}$, 使得

$$|a_n - a| < \frac{\varepsilon}{3}, \forall n > N_0.$$

$$\begin{split} & \left| \frac{a_1 + 2a_2 + \dots + na_n}{n^2} - \frac{a}{2} \right| \\ & = \left| \frac{(a_1 - a) + 2(a_2 - a) + \dots + n(a_n - a)}{n^2} + \frac{n(n+1)}{2n^2} a - \frac{a}{2} \right| \\ & < \left| \frac{(a_1 - a) + 2(a_2 - a) + \dots + n(a_n - a)}{n^2} \right| + \frac{a}{2n} \\ & < \left| \frac{(a_1 - a) + 2(a_2 - a) + \dots + N_0(a_{N_0} - a)}{n^2} \right| + \frac{(N_0 + 1 + n)(n - N_0)}{2n^2} \frac{\varepsilon}{3} + \frac{a}{2n}. \end{split}$$

6 第一章 数列极限

取 $N_1 \in \mathbb{N}$, 使得

$$\left| \frac{(a_1 - a) + 2(a_2 - a) + \dots + N_0(a_{N_0} - a)}{n^2} \right| < \frac{\varepsilon}{3}, \forall n > N_1.$$

取 $N_2 \in \mathbb{N}$, 使得

$$\frac{a}{2n} < \frac{\varepsilon}{3}, \forall n > N_2.$$

取 $N_3 \in \mathbb{N}$, 使得

$$\frac{(N_0+1+n)(n-N_0)}{2n^2}\frac{\varepsilon}{3}<\frac{\varepsilon}{3}, \forall n>N_3.$$

最后, 取 $N = \max\{N_0, N_1, N_2, N_3\}, \forall n > N$, 我们有

$$\left| \frac{a_1 + 2a_2 + \dots + na_n}{n^2} - \frac{a}{2} \right| < \varepsilon.$$

即

$$\lim_{n \to +\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a}{2}$$

1.1.2 思考题

10. 设 $\lim_{n\to+\infty} a_n = a$, |q| < 1。用 $\varepsilon - N$ 法证明:

$$\lim_{n \to +\infty} (a_n + a_{n-1}q + \dots + a_1q^{n-1}) = \frac{a}{1-q}.$$

证明. 对于 $\forall \varepsilon > 0$,由 $\lim_{n \to +\infty} a_n = a$,则存在整数 M > 0 和 $N_0 \in \mathbb{N}$ 使得

$$|a_n - a| < M, \forall n \in \mathbb{N},$$

$$|a_n - a| < \frac{(1 - |q|)\varepsilon}{3}, \forall n > N_0.$$

我们知道, 当 |q|<1 时, $\lim_{n\to+\infty}q^n=0$ 。于是 $\exists N_1\in\mathbb{N}$ 使得

$$|q^{n-k}| < \max\left\{\frac{1}{3MN_0}, \frac{1-|q|}{3(|a|+1)}\right\} \varepsilon, \forall n > N_1, k = 0, 1, 2, \cdots, N_0.$$

我们现在取 $N = \max\{N_0, N_1\}$ 。对任意的 n > N 时,有

$$\begin{aligned} & \left| (a_n + a_{n-1}q + \dots + a_1q^{n-1}) - \frac{a}{1-q} \right| \\ & = \left| (a_n + a_{n-1}q + \dots + a_1q^{n-1}) - a\frac{1-q^n}{1-q} + \frac{aq^n}{1-q} \right| \\ & < \left| (a_n - a) + (a_{n-1} - a)q + \dots + (a_1 - a)q^{n-1} \right| + \frac{|a||q|^n}{|1-q|} \\ & < \frac{(1-|q|)\varepsilon}{3} (1+|q|+\dots + |q|^{n-N_0}) + \left(MN_0 + \frac{a}{1-|q|} \right) \max \left\{ \frac{1}{3MN_0}, \frac{1-|q|}{3(|a|+1)} \right\} \varepsilon \\ & < \varepsilon. \end{aligned}$$

$$\exists \mathbb{I}, \ \lim_{n \to +\infty} (a_n + a_{n-1}q + \dots + a_1q^{n-1}) = \frac{a}{1-q}.$$

1.1 数列极限的概念 7

11. 设 $\lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$ 。用 $\varepsilon - N$ 法证明:

$$\lim_{n \to +\infty} \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} = ab.$$

证明. 首先我们证明命题在 b=0 时成立。

- (1) 由于 $\{a_n\}$ 收敛,则 $\exists M > 0$ 使得 $|a_n| < M, \forall n \in \mathbb{N}$.
- (2) 对于 $\forall \varepsilon > 0$, 由于 $\{b_n\}$ 收敛到 0, 则 $\exists N_0 \in \mathbb{N}$ 使得 $|b_n| < \frac{\varepsilon}{2M}, \forall n > N_0$.
- (3) 由于 $|a_n| < M$, 对上述的 $\varepsilon > 0$, $\exists N_1 \in \mathbb{N}$ 使得

$$\left| \frac{a_{n-N_0} b_{N_0} + a_{n-N_0+1} b_{N_0-1} + \dots + a_n b_0}{n} \right| < \frac{\varepsilon}{2}.$$

取 $N = \max\{N_0, N_1\}$, 对于上述的 $\varepsilon > 0$, 当 n > N, 有

$$\begin{split} & \left| \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} \right| \\ & < \left| \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-N_0-1} b_{N_0+1}}{n} \right| + \left| \frac{a_{n-N_0} b_{N_0} + a_{n-N_0+1} b_{N_0-1} + \dots + a_n b_0}{n} \right| \\ & < \frac{\varepsilon}{2M} \frac{(n-N_0)M}{n} + \frac{\varepsilon}{2} \\ & < \varepsilon. \end{split}$$

即

$$\lim_{n \to +\infty} \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} = 0.$$

下面证明命颢在 $b \neq 0$ 时也成立。

(1) 由于 $\lim_{n\to+\infty} a_n = a$ 收敛, 则 $\lim_{n\to+\infty} (a_n - a)b = 0$. 由此可知

$$\lim_{n \to +\infty} \frac{(a_0 - a)b + (a_1 - a)b + \dots + (a_{n-1} - a)b + (a_n - a)b}{n} = 0.$$

(2) 由于 $\lim_{n\to+\infty} a_n = a$ 和 $\lim_{n\to+\infty} (b_n - b) = 0$, 则

$$\lim_{n \to +\infty} \frac{a_0(b_n - b) + a_1(b_{n-1} - b) + \dots + a_{n-1}(b_1 - b) + a_n(b_n - b)}{n} = 0.$$

(3)

$$\left| \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} - ab \right|$$

$$= \left| \frac{a_0 (b_n - b) + a_1 (b_{n-1} - b) + \dots + a_n (b_0 - b)}{n} + \frac{(a_0 - a)b + (a_1 - a)b + \dots + (a_n - a)b)}{n} \right|$$

(4) 对于 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, 使得当 n > N 时,

$$\left| \frac{a_0(b_n - b) + a_1(b_{n-1} - b) + \dots + a_n(b_0 - b)}{n} \right| < \frac{\varepsilon}{2},$$

$$\left| \frac{(a_0 - a)b + (a_1 - a)b + \dots + (a_n - a)b}{n} \right| < \frac{\varepsilon}{2}.$$

从而

$$\left| \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} - ab \right| < \varepsilon.$$

即

$$\lim_{n \to +\infty} \frac{a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0}{n} = ab.$$

第一章 数列极限

12. 淡 $\lim_{n \to +\infty} a_n = a$, $b_n \ge 0$ $(n \in \mathbb{N})$, $\lim_{n \to +\infty} (b_1 + b_2 + \dots + b_n) = S$ 。证明: $\lim_{n \to +\infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = aS$.

证明. 我们分以下步骤证明该命题。

(1) 首先我们证明 $\lim_{n\to +\infty} b_n = 0$.

(2)

8

$$|(a_nb_1 + a_{n-1}b_2 + \dots + a_1b_n) - aS|$$

$$= |(a_nb_1 + a_{n-1}b_2 + \dots + a_1b_n) - a(b_1 + b_2 + \dots + b_n) + a(b_1 + b_2 + \dots + b_n - S)|$$

$$< |(a_n - a)b_1 + (a_{n-1} - a)b_2 + \dots + (a_1 - a)b_n| + |a| |(b_1 + b_2 + \dots + b_n) - S|$$

由 $\lim_{n\to+\infty} a_n = a$ 和 $\lim_{n\to+\infty} b_n = 0$ 得知

$$|(a_n-a)b_1+(a_{n-1}-a)b_2+\cdots+(a_1-a)b_n|<\frac{\varepsilon}{2}.$$

由 $\lim_{n\to+\infty}(b_1+b_2+\cdots+b_n)=S$ 可得知

$$|a||(b_1+b_2+\cdots+b_n)-S|<\frac{\varepsilon}{2}.$$

综上,

$$\lim_{n \to +\infty} (a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n) = aS.$$

注 3. 这题里的条件 $b_m \geq 0 (n \in \mathbb{N})$ 不是必须的。只要 $\lim_{n \to +\infty} (|b_1| + |b_2| + \cdots + |b_n|) = S$ 就够了。

注 4. 这题是第 10 题的推广。如果 $b_n = q^{n-1}, 0 < q < 1$, 则

$$\lim_{n \to +\infty} (b_1 + b_2 + \dots + b_n) = \lim_{n \to +\infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q}.$$

由这题的结论,第10题得证。

13. (Toeplitz 定理) 设 $n, k \in \mathbb{N}$, $t_{nk} \geq 0$ 且 $\sum_{k=1}^{n} t_{nk} = 1$, $\lim_{n \to +\infty} t_{nk} = 0$ 。如果 $\lim_{n \to +\infty} a_n = a$, 证明: $\lim_{n \to +\infty} \sum_{k=1}^{n} t_{nk} a_k = a$ 。说明例 1.1.15 为 Toeplitze 定理的特殊情形。

证明. 对于 $\forall \varepsilon > 0$, 我们有:

- $(1) \exists N_0 \in \mathbb{N}, \stackrel{\text{def}}{=} n > N_0 \text{ iff}, |a_n a| < \frac{\varepsilon}{2}.$
- (2) 我们取 $M = \max\{|a_1 a|, |a_2 a|, \dots, |a_{N_0} a|\}.$
- (3) 对于 $l \in \mathbb{N}, 1 \leq l \leq N_0$, 存在 $N_l \in \mathbb{N}$ 使得 $t_{nl} < \frac{\varepsilon}{2N_0 M}, \forall n > N_l$.

1.1 数列极限的概念 9

(4) 取 $N = \max\{N_0, N_1, \dots, N_{N_0}\}$, 当 n > N 时,我们有:

$$\left| \sum_{k=1}^{n} t_{nk} a_k - a \right|$$

$$= \sum_{k=1}^{N_0} t_{nk} |(a_k - a)| + \sum_{k=N_0}^{n} t_{nk} |(a_k - a)|$$

$$< \sum_{k=1}^{N_0} \frac{\varepsilon}{2N_0 M} M + \sum_{k=N_0}^{n} t_{nk} \frac{\varepsilon}{2}$$

$$= \varepsilon$$

所以

$$\lim_{n \to +\infty} \sum_{k=1}^{n} t_{nk} a_k = a.$$

如果我们取 $b_{nk} = \frac{1}{n}$, 则例 1.1.15 就可以由这题得证。

14. 设 a,b,c 为三个给定的实数, 令 $a_0 = a, b_0 = b, c_0 = c$, 并归纳定义

$$\begin{cases} a_n = \frac{b_{n-1} + c_{n-1}}{2}, \\ b_n = \frac{a_{n-1} + c_{n-1}}{2}, & n = 1, 2, \dots \\ c_n = \frac{a_{n-1} + b_{n-1}}{2}, \end{cases}$$

证明: $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \lim_{n \to +\infty} c_n = \frac{a+b+c}{3}$.

证明. 我们通过以下结论去证明该命题:

- (1) $\lim_{n \to +\infty} (a_n + b_n + c_n) = a + b + c$. 这是因为 $a_n + b_n + c_n = a_{n-1} + b_{n-1} + c_{n-1} = \cdots = a + b + c$.
- (2) $\lim_{n \to +\infty} (a_n b_n) = 0$, $\lim_{n \to +\infty} (a_n c_n) = 0$, $\lim_{n \to +\infty} (c_n b_n) = 0$. 这是因为 $a_n b_n = \left(-\frac{1}{2}\right) (a_{n-1} b_{n-1}) = \dots = \left(-\frac{1}{2}\right)^n (a b),$ $a_n c_n = \left(-\frac{1}{2}\right) (a_{n-1} c_{n-1}) = \dots = \left(-\frac{1}{2}\right)^n (a c),$

$$c_n - b_n = \left(-\frac{1}{2}\right)(c_{n-1} - b_{n-1}) = \dots = \left(-\frac{1}{2}\right)^n(c - b).$$

(3)

$$\lim_{n \to +\infty} 3a_n = \lim_{n \to +\infty} (a_n + b_n + c_n + (a_n - b_n) + (a_n - c_n)) = a + b + c,$$

从而,

$$\lim_{n \to +\infty} a_n = \frac{a+b+c}{3}.$$

- (4) 同理可证, $\lim_{n\to+\infty} b_n = \lim_{n\to+\infty} c_n = \frac{a+b+c}{3}$.
- **15.** 设 a_1, a_2 为实数, 令

$$a_n = pa_{n-1} + qa_{n-2}, n = 3, 4, 5, \cdots,$$

其中 p > 0, q > 0, p + q = 1。证明:数列 $\{a_n\}$ 收敛,且 $\lim_{n \to +\infty} a_n = \frac{a_2 + a_1 q}{1 + a}$.

证明. 由递推公式, 我们可以证明

$$a_n - a_{n-1} = (-q)^{n-2} (a_2 - a_1), \forall n \ge 3.$$

由此我们可以得出 a_n 的通项公式

$$a_n = a_2 + \sum_{k=1}^{n-2} (-q)^k (a_2 - a_1) = a_2 - \frac{q + (-q)^{n-1}}{1+q} (a_2 - a_1).$$

从而,

$$\lim_{n \to +\infty} a_n = a_2 - \frac{q}{1+q}(a_2 - a_1) = \frac{a_2 + qa_1}{1+q}.$$

16. 设数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 满足 $a_1>0$, $4\leq b_n\leq 5$, $4\leq c_n\leq 5$,

$$a_n = \frac{\sqrt{b_n^2 + c_n^2}}{b_n + c_n} a_{n-1}$$

证明: $\lim_{n \to +\infty} a_n = 0$.

证明. 由通项公式定义有

$$0 \le a_n \le \frac{5\sqrt{2}}{8} a_{n-1} \le \dots \le \left(\frac{5\sqrt{2}}{8}\right)^{n-1} a_1.$$

曲
$$\frac{5\sqrt{2}}{8}$$
 < 1 知 $\lim_{n\to+\infty} a_n = 0$ 。

1.2 数列极限的基本性质

1.2.1 练习题

1. 应用数列极限的基本性质求下列极限:

(1)
$$\lim_{n \to +\infty} \frac{4n^2 - n + 5}{3n^2 - 2n - 7}$$

解.
$$\lim_{n \to +\infty} \frac{4n^2 - n + 5}{3n^2 - 2n - 7} = \lim_{n \to +\infty} \frac{4 - 1/n + 5/n^2}{3 - 2/n - 7/n^2} = 4/3$$

(2)
$$\lim_{n \to +\infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}}$$

解.
$$\lim_{n \to +\infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \lim_{n \to +\infty} \frac{1 + (-2/3)^n}{3 + (-2)(-2/3)^n} = 1/3$$

$$(3) \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^{\frac{1}{n}}$$

解.
$$1 = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{2}} \le \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^{\frac{1}{n}} \le 1$$
. 于是 $\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^{\frac{1}{n}} = 1$.

(4)
$$\lim_{n \to +\infty} (2\sin^2 n + \cos^2 n)^{\frac{1}{n}}$$

解.
$$1 \le \lim_{n \to +\infty} (2\sin^2 n + \cos^2 n)^{\frac{1}{n}} \le \lim_{n \to +\infty} \sqrt[n]{2} \le 1$$
. 于是 $\lim_{n \to +\infty} (2\sin^2 n + \cos^2 n)^{\frac{1}{n}} = 1$.

(5)
$$\lim_{n \to +\infty} (\arctan n)^{\frac{1}{n}}$$

解.
$$1 \leq \lim_{n \to +\infty} (\arctan n)^{\frac{1}{n}} \leq \lim_{n \to +\infty} \sqrt[n]{\frac{\pi}{2}} \leq 1$$
. 于是 $\lim_{n \to +\infty} (\arctan n)^{\frac{1}{n}} = 1$.

(6)
$$\lim_{n \to +\infty} \frac{1 + a + \dots + a^{n-1}}{1 + b + \dots + b^{n-1}}, |a| < 1, |b| < 1$$

解.
$$\lim_{n \to +\infty} \frac{1+a+\dots+a^{n-1}}{1+b+\dots+b^{n-1}} = \lim_{n \to +\infty} \left(\frac{1-a^n}{1-a}\right) \left(\frac{1-b}{1-b^n}\right) = \frac{1-b}{1-a}.$$

(7)
$$\lim_{n \to +\infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right)$$

M.
$$\lim_{n \to +\infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right) = \lim_{n \to +\infty} \left(1 - \frac{1}{n+1} \right) = 1$$

$$(8) \lim_{n \to +\infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$$

解.
$$\lim_{n \to +\infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \lim_{n \to +\infty} \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{n}\right) = \frac{1}{2}$$

(9)
$$\lim_{n \to +\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n} \right)$$

解. 记

$$S_n = \frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n},$$

则

$$\frac{1}{2}S_n = \frac{1}{2^2} + \frac{3}{2^3} + \dots + \frac{2(n-1)-1}{2^n} + \frac{2n-1}{2^{n+1}}.$$

于是

$$\frac{1}{2}S_n = \frac{1}{2} + \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}\right) - \frac{2n-1}{2^{n+1}}$$
$$= \frac{3}{2} - \frac{1}{2^{n-1}} - \frac{2n-1}{2^{n+1}}$$

从而

$$\lim_{n \to +\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n} \right) = 3.$$

$$(10) \lim_{n \to +\infty} \left(1 - \frac{1}{1+2} \right) \left(1 - \frac{1}{1+2+3} \right) + \dots + \left(1 - \frac{1}{1+2+\dots+n} \right)$$

解.
$$1 - \frac{1}{1+2+\cdots+k} = \frac{(k-1)(k+2)}{k(k+1)}$$
. 从而

$$\left(1 - \frac{1}{1+2}\right) \left(1 - \frac{1}{1+2+3}\right) + \dots + \left(1 - \frac{1}{1+2+\dots+n}\right) \\
= \frac{1 \cdot 4}{2 \cdot 3} \frac{2 \cdot 5}{3 \cdot 4} \cdots \frac{(n-1) \cdot (n+2)}{n \cdot (n+1)}$$

分子的 2n 项的积: 奇数项的积是 (n-1)!, 偶数项的积是 $\frac{1}{2\cdot 3}(n+2)!$.

分母的 2n 项的积:奇数项的积是 n!,偶数项的积是 $\frac{1}{2}(n+1)!$

$$\mathcal{F} \not \in \lim_{n \to +\infty} \left(1 - \frac{1}{1+2} \right) \left(1 - \frac{1}{1+2+3} \right) + \dots + \left(1 - \frac{1}{1+2+\dots+n} \right) = \lim_{n \to +\infty} \frac{n+2}{3n} = \frac{1}{3}.$$

(11)
$$\lim_{n \to +\infty} \left[\frac{1^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{(2n-1)^2}{n^3} \right]$$

解.

$$\sum_{k=1}^{n} (2k-1)^2 = \sum_{k=1}^{2n} k^2 - 4\sum_{k=1}^{n} k^2 = \frac{8n^3 - 2n}{6}.$$

于是

$$\lim_{n \to +\infty} \left[\frac{1^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{(2n-1)^2}{n^3} \right] = \frac{4}{3}.$$

(12)
$$\lim_{n \to +\infty} (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}})$$

M.
$$\lim_{n \to +\infty} (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^{n-1}}) = \lim_{n \to +\infty} \frac{1-x^{2^n}}{1-x} = \frac{1}{1-x}.$$

(13)
$$\lim_{n \to +\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

解.

$$\lim_{n\to +\infty}(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})=\lim_{n\to +\infty}\left(\frac{1}{\sqrt{n+2}+\sqrt{n+1}}-\frac{1}{\sqrt{n+1}+\sqrt{n}}\right)=0.$$

2. 设 $a_n > 0$, $n \in \mathbb{N}$, $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = a$ 。 应用例 1.2.6 证明: $\lim_{n \to +\infty} \sqrt[n]{a_n} = a$.

证明.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \cdot \frac{a_2}{a_1}} \cdot \sqrt[n]{a_1}$$

于是
$$\lim_{n\to+\infty} \sqrt[n]{a_n} = a$$
.

3. 设 $\lim_{n\to +\infty} a_n = a$ 。应用夹逼定理证明: $\lim_{n\to +\infty} \frac{[na_n]}{n} = a$,其中 [x] 表示不超过的最大整数。

证明.

$$a = \lim_{n \to +\infty} \frac{na_n - 1}{n} \le \lim_{n \to +\infty} \frac{[na_n]}{n} \le \lim_{n \to +\infty} \frac{na_n}{n} = a.$$

4. 设 $a_n \neq 0$ 且 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = r > 1$ 。证明: $\lim_{n \to +\infty} a_n = \infty$.

证明. 取 $\varepsilon=\frac{r-1}{2}$. 由极限的定义,存在 $N\in\mathbb{N}$ 使得 $\left|\frac{a_{n+1}}{a_n}\right|>r-\varepsilon=\frac{r+1}{2}>1$. 于是

$$|a_n| > \left(\frac{r+1}{2}\right)^{n_N} |a_N|.$$

$$\lim_{n \to +\infty} a_n = \infty$$
 .

5. (1) 应用数学归纳法或 $\frac{2k-1}{2k} < \frac{2k}{2k+1}$ 证明不等式:

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}.$$

证明. 记
$$S_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}$$
. 利用不等式 $\frac{2k-1}{2k} < \frac{2k}{2k+1}$, 我们有

$$S_n < \frac{2}{3} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2n}{2n+1} = \frac{1}{S_n(2n+1)}.$$

于是 $S_n < \frac{1}{\sqrt{2n+1}}$

(2) 证明: $\lim_{n \to +\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \right) = 0$

证明.

$$0 < \lim_{n \to +\infty} \left(\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \right) \le \lim_{n \to +\infty} \frac{1}{\sqrt{2n+1}} = 0.$$

6. 设 $a_n>0 (n\in\mathbb{N})$ 且 $\lim_{n\to+\infty}a_n=a>0$ 。应用夹逼定理证明: $\lim_{n\to+\infty}\sqrt[n]{a_n}=1$

证明. 由于 $\lim_{n\to+\infty} a_n = a > 0$, 我们有一下结论:

$$\lim_{n \to +\infty} \frac{a_n}{n} = 0, \lim_{n \to +\infty} \frac{\frac{1}{a_n}}{n} = 0.$$

同时,我们有

$$1 = \lim_{n \to +\infty} \left(\frac{1}{\left(1 + 1 + \dots + 1 + \frac{1}{a_n}\right)/n} \right)$$

$$= \left(\frac{1}{\lim_{n \to +\infty} \left(n - 1 + \frac{1}{a_n}\right)/n} \right)$$

$$\leq \lim_{n \to +\infty} \sqrt[n]{a_n} = \lim_{n \to +\infty} \sqrt[n]{(1 \cdot 1 \cdot \dots \cdot 1 \cdot a_n)}$$

$$\leq \lim_{n \to +\infty} \frac{(1 + 1 + \dots + 1 + a_n)}{n}$$

$$= \lim_{n \to +\infty} \frac{(n - 1 + a_n)}{n}$$

$$= 1.$$

7. 证明
$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} k!}{n!} = 1$$
:
$$\left(提示: 1 + \frac{1}{n} \le \frac{\sum_{k=1}^{n} k!}{n!} \le 1 + \frac{2}{n} \right)$$

14 第一章 数列极限

证明.

$$\begin{aligned} 1 + \frac{1}{n} &= \frac{(n-1)! + n!}{n!} \\ &< \frac{\sum\limits_{k=1}^{n} k!}{n!} \\ &< \frac{(n-1)(n-2)! + (n-1)! + n!}{n!} \\ &= 1 + \frac{1}{n} + \frac{n-1}{n \cdot (n-1)} \\ &= 1 + \frac{2}{n} \end{aligned}$$

于是
$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} k!}{n!} = 1$$
。

8. 谈 $\lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$ 。 记

$$S_n = \max\{a_n, b_n\}, \quad T_n = \min\{a_n, b_n\}, \quad n = 1, 2, \dots$$

应用 $\varepsilon - N$ 法 (分a < b, a > b, a = b) 或 $\max\{a_n, b_n\} = \frac{1}{2}(a_n + b_n + |a_n - b_n|$ 与 $\min\{a_n, b_n\} = \frac{1}{2}(a_n + b_n - |a_n - b_n|)$,证明:

(1)
$$\lim_{n \to +\infty} S_n = \max\{a, b\}; \quad (2) \quad \lim_{n \to +\infty} T_n = \min\{a, b\}.$$

证明. 显然我们有

$$\lim_{n \to +\infty} |a_n - b_n| = |a - b|.$$

由此可知:

$$\lim_{n \to +\infty} S_n = \frac{1}{2}(a+b+|a-b|) = \max\{a,b\},$$
$$\lim_{n \to +\infty} T_n = \frac{1}{2}(a+b-|a-b|) = \min\{a,b\}.$$

9. 应用例 1.1.7 与例 1.1.15 证明:

$$\lim_{n \to +\infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1.$$

证明. 取 $a_n = \sqrt[n]{n}$, 显然

$$\lim_{n \to +\infty} a_n = 1.$$

于是

$$\lim_{n \to +\infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = 1.$$

10. 证明:
$$\lim_{n \to +\infty} \left(\sin \frac{\ln 2}{2} + \sin \frac{\ln 3}{3} + \dots + \sin \frac{\ln n}{n} \right) = 1$$

证明. 考虑数列 $\sqrt[n]{n}$. 这个数列在 n=3 是取得最大值且 $\sqrt[n+1]{n+1} < \sqrt[n]{n}$, $\forall n \geq 3$ 。这就是说数列 $\{\sin \frac{\ln n}{n}\}$ 在 n=3 时取得最大值且

$$\sin\frac{\ln(n+1)}{n+1} < \sin\frac{\ln n}{n}, \forall n \ge 3.$$

从而,

$$\left(\sin\frac{\ln 3}{3}\right)^{\frac{1}{n}} < \left(\sin\frac{\ln 2}{2} + \sin\frac{\ln 3}{3} + \dots + \sin\frac{\ln n}{n}\right)^{\frac{1}{n}} < \left((n-1)\sin\frac{\ln 3}{3}\right)^{\frac{1}{n}}.$$

由于

$$\lim_{n \to +\infty} \left(\sin \frac{\ln 3}{3} \right)^{\frac{1}{n}} = 1, \quad \lim_{n \to +\infty} \left((n-1) \sin \frac{\ln 3}{3} \right)^{\frac{1}{n}} = 1,$$

我们有

$$\lim_{n\to +\infty} \left(\sin\frac{\ln 2}{2} + \sin\frac{\ln 3}{3} + \dots + \sin\frac{\ln n}{n}\right) = 1.$$

11. 证明: $\lim_{n \to +\infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} = 2.$

证明.

$$\frac{2n+2}{n+1} = \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{(n+1)^2}} \le \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} \le \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{n^2}} = \frac{2n+2}{n}.$$

由夹逼定理, $\lim_{n \to +\infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} = 2$ 。

1.2.2 思考题

12. 用 p(n) 表示能整除 n 的素数的个数。证明: $\lim_{n\to+\infty}\frac{p(n)}{n}=0$.

证明. 假设 $n = p_1^{m_1} p_2^{m_2} \cdots p_l^{m_l}$, 其中 $p_1 < p_2 < \cdots < p_l$ 是互异的素数, $m_k \ge 1, k = 1, 2, \cdots, l$ 。这里 l = p(n).

$$\ln n = \sum_{k=1}^{l} m_k \ln p_k \ge \sum_{k=1}^{p(n)} \ln 2 = p(n) \ln 2.$$

因此

$$0 \le \frac{p(n)}{n} \le \frac{\ln n}{n \ln 2}.$$

由夹逼定理可知, $\lim_{n\to+\infty} \frac{p(n)}{n} = 0$.

13. 读 $x_n = \sum_{k=1}^n \left(\sqrt{1 + \frac{k}{n^2}} - 1 \right)$ 。证明: $\lim_{n \to +\infty} x_n = \frac{1}{4}$.

证明.

$$\frac{n(n+1)}{2n^2\left(\sqrt{1+\frac{1}{n}}+1\right)} = \frac{1}{\sqrt{1+\frac{1}{n}}+1} \sum_{k=1}^n \frac{k}{n^2}$$

$$< \sum_{k=1}^n \frac{\frac{k}{n^2}}{\sqrt{1+\frac{k}{n^2}}+1}$$

$$= \sum_{k=1}^n \left(\sqrt{1+\frac{k}{n^2}}-1\right)$$

$$< \frac{1}{2} \sum_{k=1}^n \frac{k}{n^2}$$

$$= \frac{n(n+1)}{4n^2}.$$

由夹逼定理可知, $\lim_{n\to+\infty} x_n = \frac{1}{4}$.

1.3 实数理论,实数连续性命题

- 1.3.1 练习题
- 1.3.2 思考题
 - 1.4 Cauchy 收敛准则 (原理), 单调数列的极限,数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$
- 1.4.1 练习题
- 1. 证明下列数列收敛:

$$(1) \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right), n \in \mathbb{N};$$

证明. 记 $S_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \cdots \left(1 - \frac{1}{2^n}\right)$,我们有 $S_{n+1} = S_n \left(1 - \frac{1}{2^{n+1}}\right) < S_n$. 很显然 $S_n > 0, \forall n \in \mathbb{N}$. 由实数连续性命题 (二) 可知, S_n 收敛。

(2)
$$\frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1}, n \in \mathbb{N}.$$

证明. 记 $S_n = \frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1}$. 当 n > 10 时, $\frac{n+9}{2n-1} < 1$. 即 $S_{n+1} < S_n, \forall n \in \mathbb{N}, n > 10$. 另一方面 $S_n > 0, \forall n \in \mathbb{N}$. 由实数连续性命题(二)可知, S_n 收敛。

2. 设 $0 < a_n < 1$ 且 $a_{n+1}(1-a_n) \ge \frac{1}{4}$, $n \in \mathbb{N}$ 。证明: $\{a_n\}$ 收敛,且 $\lim_{n \to +\infty} a_n = \frac{1}{2}$ 。证明. 考虑函数 $f(x) = (1-x)x, x \in (0,1)$,我们有

$$f(x) > 0, f(x) \le \frac{1}{4}, x \in (0, 1).$$

所以 $\frac{a_{n+1}}{a_n} \ge \frac{1}{4(1-a_n)a_n} \ge 1$,即 a_n 是单调递增的函数。由实数连续性命题(二)可知, a_n 收敛。由递推公式可知, $\frac{1}{4} \ge a(1-a) \ge \frac{1}{4}$. 所以 $a = \frac{1}{2}$,即 $\lim_{n \to +\infty} a_n = \frac{1}{2}$ 。

$$1.4$$
 CAUCHY 收敛准则 (原理), 单调数列的极限, 数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ 17

3. 给定两正数 $x_0 = a$ 与 $y_0 = b$, 归纳定义

$$x_n = \sqrt{x_{n-1}y_{n-1}}, \quad y_n = \frac{x_{n-1} + y_{n-1}}{2},$$

 $n=1,2,\cdots$ 。证明:数列 $\{x_n\}$ 与 $\{y_n\}$ 收敛,且 $\lim_{n\to +\infty}x_n=\lim_{n\to +\infty}y_n$,并称此极限为与的算术-几何平均数。

证明. 由算术-几何平均不等式知: $x_n \leq y_n, \forall n \in \mathbb{N}$ 。于是:

$$x_{n+1} = \sqrt{x_n y_n} \ge \sqrt{x_n x_n} = x_n, \quad \forall n = 1, 2, \cdots,$$

$$y_{n+1} = \frac{x_n + y_n}{2} \le \frac{y_n + y_n}{2} = y_n, \quad \forall n = 1, 2, \dots.$$

于是

$$a = x_0 \le x_1 \le \dots \le x_n \le \dots \le y_n \le y_1 \le y_0 = b.$$

令
$$\lim_{n\to+\infty}x_n=A, \lim_{n\to+\infty}y_n=B$$
。 由递推公式可知: $A=\sqrt{AB},$ 从而 $A=B.$

4. $\forall n \in \mathbb{N}$, 用 x_n 表示方程 $x + x^2 + \dots + x^n = 1$ 在闭区间 [0,1] 上的根,求极限 $\lim_{n \to +\infty} x_n$.

解. 设 $f_n(x) = x + x^2 + \cdots + x^n - 1$ 对于给定的 $n \in \mathbb{N}$, $f_n(x)$ 在 [0,1] 是单调增函数,所以 $f_n(x)$ 只会有唯一的根 x_n 。由于

$$f_{n+1}(x_{n+1}) = 0 < f_n(x_n) + x_n^{n+1} = f_{n+1}(x_n),$$

所以

$$x_{n+1} \leq x_n, \forall n \in \mathbb{N}.$$

由实数连续性命题 (二) 可知, $\lim_{n \to +\infty} x_n$ 存在。由于 $\frac{x_n - x_n^{n+1}}{1 - x_n} = 1$ 知, $\lim_{n \to +\infty} x_n = \frac{1}{2}$.

5. 设 c > 0, $x_1 = \sqrt{c}$, $x_2 = \sqrt{c + \sqrt{c}}$, $x_{n+1} = \sqrt{c + x_n}$ 。证明:数列 $\{x_n\}$ 收敛,且 $\lim_{n \to +\infty} x_n = \frac{1 + \sqrt{1 + 4c}}{2}$.

证明. 我们用归纳法证明 $x_n \leq \frac{1+\sqrt{1+4c}}{2}, \forall n \in \mathbb{N}.$

(1)
$$x_1 = \sqrt{c} < \frac{1 + \sqrt{1 + 4c}}{2}$$
.

(2) 假设
$$x_k < \frac{1+\sqrt{1+4c}}{2}$$
。 我们证明 $x_{k+1} < \frac{1+\sqrt{1+4c}}{2}$.

$$\begin{split} x_{k+1} &= \sqrt{c + x_k} \\ &< \sqrt{c + \frac{1 + \sqrt{1 + 4c}}{2}} \\ &= \sqrt{\frac{4c + 2 + 2\sqrt{1 + 4c}}{4}} \\ &= \frac{1 + \sqrt{1 + 4c}}{2}. \end{split}$$

现在考虑函数 $f(x) = c + x - x^2$ 。很显然

$$f(x) > 0, \quad x \in \left(0, \frac{1 + \sqrt{1 + 4c}}{2}\right).$$

于是

$$x_{n+1}^2 - x_n^2 = c + x_n - x_n^2 > 0.$$

即 $\{x_n\}$ 是单调递增的数列。由实数连续性命题(二)可知,数列 $\{x_n\}$ 收敛. 设 $\lim_{n\to +\infty}x_n=a$. 对递归公式取极限得 $a=\sqrt{c+a}$ 。从而

$$\lim_{n \to +\infty} x_n = a = \frac{1 + \sqrt{1 + 4c}}{2}.$$

6. 设 $x_1=c>0$,令 $x_{n+1}=c+\frac{1}{x_n}$, $n\in\mathbb{N}$ 。求极限 $\lim_{n\to+\infty}x_n$.

解. 由递推公式, 我们有

$$x_{n+1} - x_n = \frac{x_{n-1} - x_n}{x_n \cdot x_{n-1}}.$$

下面我们证明:

- $(1) x_{2k-1} < x_{2k+1}, \quad \forall k \in \mathbb{N};$
- $(2) x_{2k} > x_{2(k+1)}, \quad \forall k \in \mathbb{N}.$

$$x_n - x_{n-2} = \frac{x_{n-3} - x_{n-1}}{x_{n-1} \cdot x_{n-3}} = \frac{x_{n-2} - x_{n-4}}{x_{n-1} \cdot x_{n-2} \cdot x_{n-3} \cdot x_{n-4}}.$$

由于 $x_3-x_1=\frac{1}{x_2}>0$,从而知 (1) 成立。由于 $x_4-x_2=\frac{x_1-x_3}{x_1\cdot x_3}<0$,从而知 (2) 成立。另一方面:

$$x_{2k} - x_1 = c + \frac{1}{x_{2k-1}} - c = \frac{1}{x_{2k-1}} > 0, \quad \forall k \in \mathbb{N};$$

$$x_{2k+1} - x_2 = c + \frac{1}{x_{2k}} - c - \frac{1}{x_1} = \frac{x_1 - x_{2k}}{x_1 \cdot x_{2k}} < 0, \quad \forall k \in \mathbb{N}.$$

由实数连续性命题 (二) 可知, 奇数列和偶数列都是收敛子列。假设

$$\lim_{k \to +\infty} x_{2k-1} = a, \lim_{k \to +\infty} x_{2k} = b.$$

由递推公式, 我们有

$$x_{2k+1} = c + \frac{1}{c + \frac{1}{x_{2k-1}}} \Rightarrow a^2 - ac - 1 = 0 \Rightarrow a = \frac{c + \sqrt{c^2 + 4}}{2},$$

$$x_{2k+2} = c + \frac{1}{c + \frac{1}{x_{2k}}} \Rightarrow b^2 - bc - 1 = 0 \Rightarrow b = \frac{c + \sqrt{c^2 + 4}}{2}.$$

即, $\{x_n\}$ 收敛, 且 $\lim_{n \to +\infty} x_n = \frac{c + \sqrt{c^2 + 4}}{2}$.

7. 证明:
$$\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}} = \frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{1+\cdots}}$$

证明. 第一个等式是题 5 的特例: c = 1. 第二个等式是题 6 的特例: c = 1.

$$1.4$$
 CAUCHY 收敛准则 (原理),单调数列的极限,数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ 19

8. 设 c>0, $a_1=\frac{c}{2}$, $a_{n+1}=\frac{c}{2}+\frac{a_n^2}{2}$, $n=1,2,\cdots$ 。证明:

$$\lim_{n \to +\infty} a_n = \begin{cases} 1 - \sqrt{1 - c}, & 0 < c \le 1, \\ +\infty, & c > 1. \end{cases}$$

证明. 当 c > 1 时,由递推公式可知,

$$a_{n+1} \ge 2\sqrt{\frac{c}{2}\frac{a_n^2}{2}} = \sqrt{c}a_n \ge \dots \ge c^{\frac{n}{2}}a_1.$$

所以

$$+\infty \ge \lim_{n \to +\infty} a_n \ge \lim_{n \to +\infty} (c^{\frac{n}{2}}a_1) = +\infty.$$

当 $0 < c \le 1$ 时,我们可以证明数列 $\{a_n\}$ 是单调递增有界。

- (1) $a_1 = \frac{c}{2} < 1 \sqrt{1 c}$.
- (2) 设 $a_k < 1 \sqrt{1-c}$. 下面我们证明 $a_{k+1} \ge a_k$ 且 $a_{k+1} < 1 \sqrt{1-c}$.

$$a_{k+1} = \frac{c}{2} + \frac{a_k^2}{2} < \frac{c}{2} + \frac{1}{2} \left(1 - \sqrt{1 - c} \right)^2 = 1 - \sqrt{1 - c}.$$

考察函数 $f(x) = x^2 - 2x + c$.

$$f(x) > 0, \quad x \in (-\infty, 1 - \sqrt{1 - c}).$$

因此

$$a_{k+1} - a_k = \frac{1}{2}(a_k^2 - 2a_k + c) > 0.$$

即 $\{a_n\}$ 是单调增的数列. 由实数连续性命题 (二) 可知, $\lim_{n\to+\infty}a_n$ 存在。设极限为 a, 则 $a=\frac{c}{2}+\frac{a^2}{2}\Rightarrow a=1-\sqrt{1-c}$.

9. 设数列 $\{a_n\}$ 单调增, $\{b_n\}$ 单调减,且 $\lim_{n\to +\infty}(a_n-b_n)=0$ 。证明: $\{a_n\}$ 与 $\{b_n\}$ 都收敛,且 $\lim_{n\to +\infty}a_n=\lim_{n\to +\infty}b_n$.

证明. 很显然 $\{a_n-b_n\}$ 是单调增。又由于 $\lim_{n\to+\infty}(a_n-b_n)=0$,可知 $a_n\leq b_n, \forall n\in\mathbb{N}$,从而

$$a_1 \le a_2 \le \dots \le a_n \le \dots \le b_n \le \dots \le b_2 \le b_1$$
.

由实数连续性命题 (二) 可知, $\{a_n\}$ 与 $\{b_n\}$ 都收敛. 再由 $\lim_{n\to+\infty}(a_n-b_n)=0$ 知, $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}b_n$ 。

10. 设数列 $\{a_n\}$ 满足: 存在正数 M, $\forall n \in \mathbb{N}$, 有

$$A_n = |a_2 - a_1| + |a_3 - a_2| + |a_n - a_{n-1}| \le M$$

证明: 数列 $\{a_n\}$ 与 $\{A_n\}$ 都收敛。

证明. 很显然数列 $\{A_n\}$ 是单调增有界数列,由实数连续性命题 (二) 可知, $\{A_n\}$ 是收敛的。

$$\{A_n\}$$
收敛 $\Rightarrow \{A_n\}$ 是 Cauchy 列 $\Rightarrow \{a_n\}$ 是 Cauchy 列 $\Rightarrow \{a_n\}$ 收敛.

11. 应用 Cauchy 收敛准则证明下列数列收敛:

(1)
$$x_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \dots + \frac{\cos n!}{n \cdot (n+1)};$$

证明.

$$|a_{n+p} - a_n| = \left| \frac{\cos(n+1)!}{(n+1) \cdot (n+2)} + \dots + \frac{\cos(n+p)!}{(n+p) \cdot (n+p+1)} \right| \le \frac{1}{n+1} - \frac{1}{n+p+1} < \frac{1}{n+1}.$$
即 $\{x_n\}$ 是 Cauchy 列,从而收敛。

(2)
$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2};$$

证明.

$$|x_{n+p}-x_n|=rac{1}{(n+1)^2}+rac{1}{(n+2)^2}+\cdots+rac{1}{(n+p)^2}<rac{1}{n}-rac{1}{n+p}<rac{1}{n}.$$
即 $\{x_n\}$ 是 Cauchy 列,从而收敛。

(3)
$$x_n = \frac{\arctan 1}{1(1 + \cos 1!)} + \frac{\arctan 2}{2(2 + \cos 2!)} + \dots + \frac{\arctan n}{n(n + \cos n!)}$$

证明.

$$|x_{n+p} - x_n| = \left| \frac{\arctan(n+1)}{(n+1)((n+1) + \cos(n+1)!)} + \dots + \frac{\arctan(n+p)}{(n+p)((n+p) + \cos(n+p)!)} \right|$$

$$< \frac{\pi}{2} \left(\frac{1}{n(n+1)} + \dots + \frac{1}{(n+p-1)(n+p)} \right)$$

$$= \frac{\pi}{2} \left(\frac{1}{n} - \frac{1}{n+p} \right)$$

$$< \frac{\pi}{2n}.$$

即 $\{x_n\}$ 是 Cauchy 列, 从而收敛。

12. 应用
$$\lim_{n\to+\infty}\left(1+\frac{1}{n}\right)^n=e$$
 与 $\lim_{n\to+\infty}\left(1-\frac{1}{n}\right)^n=e^{-1}$,求下列极限:

$$(1) \lim_{n \to +\infty} \left(1 + \frac{1}{n-3} \right)^n;$$

解.
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n-3} \right)^n = \lim_{n \to +\infty} \left(1 + \frac{1}{n-3} \right)^{(n-3)\frac{n}{n-3}} = e.$$

$$(2) \lim_{n \to +\infty} \left(1 - \frac{1}{n-2}\right)^n;$$

M.
$$\lim_{n \to +\infty} \left(1 - \frac{1}{n-2} \right)^n = \lim_{n \to +\infty} \left(1 - \frac{1}{n-2} \right)^{(-n+2)\frac{n}{-n+2}} = e^{-1}.$$

(3)
$$\lim_{n \to +\infty} \left(\frac{1+n}{2+n} \right)^n;$$

证明.
$$\lim_{n \to +\infty} \left(\frac{1+n}{2+n} \right)^n = \lim_{n \to +\infty} \left(1 - \frac{1}{2+n} \right)^{(-2-n)\frac{n}{-2-n}} = e^{-1}.$$

$$1.4$$
 CAUCHY 收敛准则 (原理), 单调数列的极限, 数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ 21

(4)
$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n^2} \right)^{4n^2}$$
;

证明.
$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n^2} \right)^{4n^2} = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{2n^2} \right)^{2n^2} \right)^2 = e^2.$$

(5)
$$\lim_{n \to +\infty} \left(1 + \frac{3}{n}\right)^n$$
.

证明.
$$\lim_{n \to +\infty} \left(1 + \frac{3}{n} \right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{3}{n} \right)^{\frac{n}{3}} \right)^3 = e^3.$$

13. $\forall n \in \mathbb{N}$, 证明:

(1)
$$0 < e - \left(1 + \frac{1}{n}\right)^n < \frac{3}{n}$$

证明. 由不等式 $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ 可知:

$$0 < e - \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n}\right)^{n+1} - \left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \frac{1}{n} < \frac{3}{n}.$$

(2)
$$\lim_{n \to +\infty} \left[e - \left(1 + \frac{1}{n} \right)^n \right] = 0.$$

证明. 由 (1) 和夹逼原理,可知
$$\lim_{n\to+\infty}\left[e-\left(1+\frac{1}{n}\right)^n\right]=0$$
。

14. 设 α < 1, 证明:

(1)
$$0 < n^{\alpha} \left[e - \left(1 + \frac{1}{n} \right)^n \right] < \frac{e}{n^{1-\alpha}}.$$

证明. 由不等式 $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ 可知:

$$0 < n^{\alpha} \left[e - \left(1 + \frac{1}{n} \right)^n \right]$$

$$< n^{\alpha} \left[\left(1 + \frac{1}{n} \right)^{n+1} - \left(1 + \frac{1}{n} \right)^n \right]$$

$$= n^{\alpha} \left[\left(1 + \frac{1}{n} \right)^n \frac{1}{n} \right]$$

$$< \frac{e}{n^{1-\alpha}}.$$

(2)
$$\lim_{n \to +\infty} n^{\alpha} \left[e - \left(1 + \frac{1}{n} \right)^n \right] = 0.$$

证明. 由 (1) 和夹逼原理可知,
$$\lim_{n\to+\infty} n^{\alpha} \left[e - \left(1 + \frac{1}{n} \right)^n \right] = 0$$
。

15. (1) 设 $0 < a < b, \forall n \in \mathbb{N}$ 。证明:

$$b^{n+1} - a^{n+1} < (n+1)b^n(b-a),$$

$$a^{n+1} > b^n [(n+1)a - nb];$$

证明.

$$b^{n+1} - a^{n+1} = (b-a)(b^n + b^{n-1}a + \dots + a^n) < (n+1)b^n(b-a).$$

由此式可知:

$$a^{n+1} > b^{n+1} - (n+1)b^n(b-a) = b^n [b - (n+1)b + (n+1)a] = b^n [(n+1)a - nb].$$

(2) 在 (1) 中, 令 $a = 1 + \frac{1}{n+1}$, $b = 1 + \frac{1}{n}$ 推出 $\left(1 + \frac{1}{n}\right)^n$ 为严格增的数列;

证明. 将 $a=1+\frac{1}{n+1}, b=1+\frac{1}{n}$ 代入(1)中的第二式,可知

$$\left(1 + \frac{1}{n+1}\right)^{n+1} > \left(1 + \frac{1}{n}\right)^n \left[(n+1)\left(1 + \frac{1}{n+1}\right) - n\left(1 + \frac{1}{n}\right) \right] = \left(1 + \frac{1}{n}\right)^n.$$

(3) 在 (1) 中,令 a=1, $b=1+\frac{1}{2n}$ 推出当 n 为偶数时,有 $\left(1+\frac{1}{n}\right)^n<4$;由此得到 $\forall n\in\mathbb{N}$,有 $\left(1+\frac{1}{n}\right)^n<4$,即 4 为该数列的上界,从而 $\left(1+\frac{1}{n}\right)^n$ 收敛。

证明. 将 $a=1,b=1+\frac{1}{2n}$ 代入(1)的第二个不等式,我们有:

$$1 \ge \left(1 + \frac{1}{2n}\right)^n \left\lceil (n+1) - n\left(1 + \frac{1}{2n}\right) \right\rceil,$$

即

$$\left(1 + \frac{1}{2n}\right)^n \le 2 \Rightarrow \left(1 + \frac{1}{2n}\right)^{2n} \le 4.$$

由于 $\left(1+\frac{1}{n}\right)^n$ 是单调递增的,我们可知, $\left(1+\frac{1}{n}\right)^n \leq 4, \forall n \in \mathbb{N}.$

16. 应用不等式 $b^{n+1}-a^{n+1}>(n+1)a^n(b-a),\ 0< a< b,\ 证明: 数列 <math>\left(1+\frac{1}{n}\right)^{n+1}$ 是严格单减的,并由此推出 $\left(1+\frac{1}{n}\right)^{n+1}$ 为有界数列。

证明.

$$b^{n+1} - a^{n+1} = (b-a)(b^n + b^{n-1}a + \dots + a^n) > (n+1)a^n(b-a).$$

即

$$b^{n+1} > a^n [(n+1)b - na].$$

$$1.4$$
 CAUCHY 收敛准则 (原理),单调数列的极限,数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ 取 $a = 1 + \frac{1}{n+1}, b = 1 + \frac{1}{n}$,我们有

$$\left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{n+1}\right)^n \left[(n+1)\frac{n+1}{n} - n\frac{n+2}{n+1} \right]$$

$$= \left(1 + \frac{1}{n+1}\right)^n \left(\frac{n^2 + 3n + 1}{n(n+1)}\right)$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \left[\frac{n^2 + 3n + 1}{n(n+1)} \cdot \left(\frac{n+1}{n+2}\right)^2\right]$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \left(\frac{n^3 + 4n^2 + 4n + 1}{n^3 + 4n^2 + 4n}\right)$$

$$> \left(1 + \frac{1}{n+1}\right)^{n+2}$$

由此可见 $\{(1+\frac{1}{n})^{n+1}\}$ 是严格单调减,且有界。

17. 证明: $(1+\frac{1}{n})^{n+1} < \frac{3}{n} + (1+\frac{1}{n})^n, \forall n \in \mathbb{N}.$

证明.

$$\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}-1\right)<\frac{3}{n},\quad\forall n\in\mathbb{N}.$$

18. 设 $\{a_n\}$ 为有界数列。记

$$\overline{a}_n = \sup\{a_n, a_{n+1}, \cdots\}, \quad \underline{a}_n = \inf\{a_n, a_{n+1}, \cdots\}.$$

证明:

 $(1) \ \forall n \in \mathbb{N}, \ \mathbf{f} \ \overline{a}_n \ge \underline{a}_n;$

证明. 这是显然的。 $\bar{a}_n \geq a_n \geq \underline{a}_n, \forall n \in \mathbb{N}$.

(2) $\{\overline{a}_n\}$ 为单调减有界数列; $\{\underline{a}_n\}$ 为单调增有界数列,且 $\forall n, m \in \mathbb{N}$,有 $\overline{a}_n \geq \underline{a}_m$;证明. 由 \overline{a}_n 和 \underline{a}_n 的定义可知,

$$\overline{a}_n = \max\{a_n, \overline{a}_{n+1}\}, \quad \underline{a}_n = \min\{a_n, \underline{a}_{n+1}\}.$$

由此可见 $\{\overline{a}_n\}$ 是单调减, $\{\underline{a}_n\}$ 是单调增,且

$$\underline{a}_1 \leq \underline{a}_2 \leq \cdots \leq \underline{a}_n \cdots \leq \cdots \leq \overline{a}_n \leq \cdots \leq \overline{a}_2 \leq \overline{a}_1.$$

由于数列 $\{a_n\}$ 是有界数列,故 \underline{a}_1 和 \overline{a}_1 都是有界数。命题得证。

(3) 谈 $\overline{a} = \lim_{n \to +\infty} \overline{a}_n$, $\underline{a} = \lim_{n \to +\infty} \underline{a}_n$, 则 $\overline{a} \ge \underline{a}$;

证明. 应用定理 1.2.5, 这个命题就可以得证。

(4) $\{a_n\}$ 收敛 $\Leftrightarrow \overline{a} = \underline{a}$.

证明. (反证法) 假设 $\overline{a} > \underline{a}$. 对于 $\forall \varepsilon > 0, \varepsilon < \frac{\overline{a} - \underline{a}}{3}$, 存在 $N \in \mathbb{N}$, 当 n > N 有

$$\underline{a}_n < \underline{a} + \varepsilon < \underline{a} + \frac{\overline{a} - \underline{a}}{3} < \overline{a} - \frac{\overline{a} - \underline{a}}{3} < \overline{a} - \varepsilon < \overline{a}_n.$$

于是在 $\{a_n\}$ 存在两个子列 $\{a_{k_n}\}$ 和 $\{a_{l_n}\}$ 使得

$$a_{k_n} < \underline{a} + \frac{\overline{a} - \underline{a}}{3} < \overline{a} - \frac{\overline{a} - \underline{a}}{3} < a_{l_n}, \quad \forall n \in \mathbb{N}.$$

从而 $\{a_n\}$ 发散。矛盾。

1.4.2 思考题

19. 设
$$a_1 \ge 0$$
, $a_{n+1} = \frac{3(1+a_n)}{3+a_n}$, $n = 1, 2, \cdots$. 证明: $\{a_n\}$ 收敛, 且 $\lim_{n \to +\infty} a_n = \sqrt{3}$.

证明. 首先我们证明,如果 $a_n < \sqrt{3}$,则 $a_{n+1} > a_n$.如果 $a_n > \sqrt{3}$,则 $a_{n+1} < a_n$.

$$\frac{a_{n+1}}{a_n} = \frac{3 + 3a_n}{3a_n + a_n^2}.$$

于是我们有

(1)
$$a_n < \sqrt{3} \Rightarrow 3 + 3a_n > 3a_n + a_n^2 \Rightarrow a_{n+1} > a_n;$$

(2)
$$a_n > \sqrt{3} \Rightarrow 3 + 3a_n < 3a_n + a_n^2 \Rightarrow a_{n+1} < a_n;$$

(3)
$$a_n = \sqrt{3} \Rightarrow 3 + 3a_n = 3a_n + a_n^2 \Rightarrow a_{n+1} = a_n$$
.

基于以上的计算,不管 a_1 取何值,我们都有

$$\left| a_{n+1} - \sqrt{3} \right| = \left| \frac{3 + 3a_n - 3\sqrt{3} - \sqrt{3}a_n}{a_n + 3} \right| = \left| \frac{(3 - \sqrt{3})(a_n - \sqrt{3})}{a_n + 3} \right| < \left(\frac{3 - \sqrt{3}}{3} \right) \left| a_n - \sqrt{3} \right|.$$

因为
$$\frac{3-\sqrt{3}}{3}$$
 < 1, 所以 $(a_n-\sqrt{3})\to 0 \Rightarrow a_n\to \sqrt{3}$.

20. 读
$$a>0$$
, $x_1>0$, $x_{n+1}=\frac{x_n(x_n^2+3a)}{3x_n^2+a}$, $n=1,2,\cdots$ 。证明: $\{x_n\}$ 收敛, 且 $\lim_{n\to+\infty}x_n=\sqrt{a}$

证明. 这题和上一题类似。我们计算

$$x_{n+1} - x_n = \frac{2x_n(\sqrt{a} - x_n)(\sqrt{a} + x_n)}{3x_n^2 + a},$$

所以:

- (1) 如果 $x_1 \leq \sqrt{a}$, 则 $\{x_n\}$ 是单调增且有上界 \sqrt{a} 的数列;
- (2) 如果 $x_1 > \sqrt{a}$, 则 $\{x_n\}$ 是单调减且有下界 \sqrt{a} 的数列;

无论那种情况发生,由实数连续性命题 (二) 可知, $\{x_n\}$ 收敛,且 $\lim_{n\to+\infty}x_n=\sqrt{a}$ 。对于以上两种情况我们可以分别用数学归纳法讨论:

$$x_2 - x_1 \ge 0 \Rightarrow x_2 \ge x_1 \perp x_2 - \sqrt{a} = \frac{(x_1 - \sqrt{a})^3}{3x_1^2 + a} \le 0 \Rightarrow x_2 \le \sqrt{a}.$$

假设 n = k 时也有 $x_k \ge x_{k-1}$ 且 $x_k \le \sqrt{a}$.

现证
$$n = k + 1$$
 时也有这些。 $x_{k+1} \ge x_k$ 是显然的。 $x_{k+1} - \sqrt{a} = \frac{(x_k - \sqrt{a})^3}{3x_k^2 + a} \le 0 \Rightarrow x_{k+1} \le \sqrt{a}$.

$$1.4$$
 CAUCHY 收敛准则 (原理), 单调数列的极限, 数 $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ 25

$$x_2 - x_1 < 0 \Rightarrow x_2 < x_1 \perp x_2 - \sqrt{a} = \frac{(x_1 - \sqrt{a})^3}{3x_1^2 + a} > 0 \Rightarrow x_2 > \sqrt{a}.$$

假设 n = k 时也有 $x_k < x_{k-1}$ 且 $x_k > \sqrt{a}$.

现证
$$n = k + 1$$
 时也有这些。 $x_{k+1} < x_k$ 是显然的。 $x_{k+1} - \sqrt{a} = \frac{(x_k - \sqrt{a})^3}{3x_k^2 + a} > 0 \Rightarrow x_{k+1} > \sqrt{a}$.

21. 设
$$a>0$$
, $x_1=\sqrt[3]{a}$, $x_n=\sqrt[3]{ax_{n-1}}(n>1)$ 。证明: $\{x_n\}$ 收敛, 且 $\lim_{n\to+\infty}x_n=\sqrt{a}$

证明. 我们只需要证明:

- (1) 如果 $a \ge 1$, 则数列 $\{x_n\}$ 是单调递增,且有上界 \sqrt{a} .
- (2) 如果 a < 1, 则数列 $\{x_n\}$ 是单调递减,且有下界 \sqrt{a} .

无论上述那种情况发生,由实数连续性命题 (二) 可知, $\{x_n\}$ 收敛,且 $\lim_{n\to+\infty}x_n=\sqrt{a}$ 。

$$x_n - x_{n-1} = \frac{x_{n-1}(\sqrt{a} - x_{n-1})(\sqrt{a} + x_{n-1})}{(\sqrt[3]{a}x_{n-1})^2 + \sqrt[3]{a}x_{n-1}x_{n-1} + x_{n-1}^2}.$$

(1): 当 $a \ge 1$ 时:

 $\sqrt[3]{a} \leq \sqrt{a}$.

当
$$n=2$$
 时, $\sqrt{a}-x_1=\sqrt{a}-\sqrt[3]{a}\geq 0 \Rightarrow x_2-x_1\geq 0$ 且 $x_2=\sqrt[3]{ax_1}\leq \sqrt[3]{a\sqrt{a}}=\sqrt{a}$.

假设 n = k 时, $x_k \ge x_{k-1}$ 且 $x_k \le \sqrt{a}$.

由归纳法可得知, n = k + 1 时有, $x_{k+1} \ge x_k$ 且 $x_{k+1} \le \sqrt{a}$.

(2): 当 a < 1 时:

$$\sqrt[3]{a} > \sqrt{a}$$
.

当
$$n=2$$
 时, $\sqrt{a}-x_1=\sqrt{a}-\sqrt[3]{a}<0\Rightarrow x_2-x_1<0$ 且 $x_2=\sqrt[3]{ax_1}>\sqrt[3]{a\sqrt{a}}=\sqrt{a}$.

假设 n = k 时, $x_k < x_{k-1}$ 且 $x_k > \sqrt{a}$.

由归纳法可得知,
$$n = k + 1$$
 时有, $x_{k+1} < x_k$ 且 $x_{k+1} > \sqrt{a}$.

22. 设 $0 < a_1 < b_1 < c_1$ 。 令

$$a_{n+1} = \frac{3}{\frac{1}{a_n} + \frac{1}{b_n} + \frac{1}{c_n}}, \quad b_{n+1} = \sqrt[3]{a_n b_n c_n}, \quad c_{n+1} = \frac{a_n + b_n + c_n}{3}$$

证明: $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 收敛于同一实数。

证明. 由定义可知

$$0 < a_1 < a_n \le b_n \le c_n < c_1, \quad \forall n > 1.$$

于是 $\{a_n\}$ 单调增, $\{c_n\}$ 单调减。由实数连续性命题 (二) 可知,数列 $\{a_n\}$, $\{c_n\}$ 收敛。设 $\lim_{n\to+\infty}a_n=a$, $\lim_{n\to+\infty}c_n=c$ 。 易知,

$$0 < a_1 \le a \le c \le c_1$$
.

因为 $b_n = 3c_{n+1} - a_n - c_n$ 可知, 数列 $\{b_n\}$ 收敛。设 $\lim_{n \to +\infty} b_n = b$ 。显然 $a \le b \le c$,且

$$a = \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}, \quad b = \sqrt[3]{abc}, \quad c = \frac{a+b+c}{3}$$

解方程组可得知 a = b = c.

23. 读 $a_n > 0$, $S_n = a_1 + \dots + a_n$, $T_n = \frac{a_1}{S_1} + \dots + \frac{a_n}{S_n}$, 且 $\lim_{n \to +\infty} S_n = +\infty$ 。证明: $\lim_{n \to +\infty} T_n = +\infty$.

证明. 由于 $S_n \to +\infty$, 我们可以找到一个子列 $\{n_k\}$ 使得

$$\frac{S_{n_{k-1}}}{S_{n_k}} < \frac{1}{2}, \quad \forall k \in \mathbb{N}.$$

现在我们计算 T_{n_k} :

$$\begin{split} T_{n_k} &= \left(\frac{a_1}{S_1} + \cdots \frac{a_{n_1}}{S_{n_1}}\right) + \left(\frac{a_{n_1+1}}{S_{n_1+1}} + \cdots \frac{a_{n_2}}{S_{n_2}}\right) + \cdots + \left(\frac{a_{n_{k-1}+1}}{S_{n_{k-1}+1}} + \cdots \frac{a_{n_k}}{S_{n_k}}\right) \\ &> \left(\frac{a_1}{S_{n_1}} + \cdots \frac{a_{n_1}}{S_{n_1}}\right) + \left(\frac{a_{n_1+1}}{S_{n_2}} + \cdots \frac{a_{n_2}}{S_{n_2}}\right) + \cdots + \left(\frac{a_{n_{k-1}+1}}{S_{n_k}} + \cdots \frac{a_{n_k}}{S_{n_k}}\right) \\ &= \frac{S_{n_1} - 0}{S_{n_1}} + \frac{S_{n_2} - S_1}{S_{n_2}} + \cdots + \frac{S_{n_k} - S_{n_{k-1}}}{S_{n_k}} \\ &> \frac{k}{2}. \end{split}$$

即: $\lim_{k\to +\infty} T_{n_k} = +\infty$. 因为 T_n 是单调增的数列,从而 $\lim_{n\to +\infty} T_n = +\infty$. 命题得证。

24. 读
$$a_1 = 1$$
, $a_{n+1} = \frac{1}{1+a_n}$, $n = 1, 2, \cdots$. 证明: $\lim_{n \to +\infty} a_n = \frac{\sqrt{5}-1}{2}$.

证明. 我们只需证明 $\left| a_n - \frac{\sqrt{5}-1}{2} \right|$ 收敛于 0.

$$\left| a_{n+1} - \frac{\sqrt{5} - 1}{2} \right| = \left| \frac{3 - \sqrt{5} - (\sqrt{5} - 1)a_n}{2(1 + a_n)} \right|$$

$$= \left| \frac{-(\sqrt{5} - 1)\left(a_n - \frac{\sqrt{5} - 1}{2}\right)}{2(1 + a_n)} \right|$$

$$< \left| \frac{\sqrt{5} - 1}{2} \right| \cdot \left| a_n - \frac{\sqrt{5} - 1}{2} \right|.$$

由此可见, $\left\{\left|a_n-\frac{\sqrt{5}-1}{2}\right|\right\}$ 收敛于 0.

25. 设 $a_n \ge 0$, $S_n = \sum_{k=1}^n a_k$ 收敛于 S。证明: $b_n = (1+a_1)(1+a_2)\cdots(1+a_n)$ 收敛。

证明. 很显然, $\{b_n\}$ 是单调增数列。下面我们证明 $\{b_n\}$ 是有界数列。由于 $a_n \geq 0$ 且 $S_n \to S$,则 S_n 是单调增的收敛于 S. 从而

$$\sum_{k=1}^{n} a_k < S, \quad \forall n \in \mathbb{N}.$$

另一方面,

$$b_n \le \left(\frac{1}{n} \sum_{k=1}^n (1 + a_k)\right)^n \le \left(1 + \frac{S}{n}\right)^n.$$

数列 $\left\{ \left(1 + \frac{S}{n}\right)^n \right\}$ 是单调增的,且

$$\lim_{n \to +\infty} \left(1 + \frac{S}{n} \right)^n = e^S.$$

1.5 上极限与下极限

27

于是

$$b_n \leq e^S, \forall n \in \mathbb{N}.$$

由实数连续性命题 (二) 可知,数列 $\{b_n\}$ 是收敛数列。

1.5 上极限与下极限

1.5.1 练习题

1. 求
$$\underline{\lim}_{n\to+\infty} a_n$$
 与 $\overline{\lim}_{n\to+\infty} a_n$:

(1)
$$a_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2};$$

 $\mathbf{M}. \quad \underline{\lim}_{n \to +\infty} a_n = 0, \quad \overline{\lim}_{n \to +\infty} a_n = 1.$

(2)
$$a_n = n^{(-1)^n};$$

M.
$$\lim_{n \to +\infty} a_n = 0$$
, $\overline{\lim}_{n \to +\infty} a_n = +\infty$.

(3)
$$a_n = [1 + 2^{(-1)^n n}]^{\frac{1}{n}};$$

M.
$$\underline{\lim}_{n \to +\infty} a_n = 1$$
, $\overline{\lim}_{n \to +\infty} a_n = 2$.

(4)
$$a_n = \frac{n^2}{1+n^2} \cos \frac{2n\pi}{3};$$

M.
$$\lim_{n \to +\infty} a_n = -\frac{1}{2}$$
, $\overline{\lim}_{n \to +\infty} a_n = 1$.

(5)
$$a_n = \frac{n^2+1}{n^2} \sin \frac{\pi}{n};$$

解·
$$\lim_{n \to +\infty} a_n = 0$$
, $\overline{\lim}_{n \to +\infty} a_n = 0$.

(6)
$$a_n = \sqrt[n]{\left|\cos\frac{n\pi}{3}\right|};$$

M.
$$\lim_{n \to +\infty} a_n = 1$$
, $\overline{\lim}_{n \to +\infty} a_n = 1$.

$$(7) \ a_n = \begin{cases} 0, & n \ \text{为奇数}, \\ \frac{n}{\sqrt[n]{n!}}, & n \ \text{为偶数}. \end{cases}$$

解·
$$\underline{\lim}_{n \to +\infty} a_n = 0$$
, $\overline{\lim}_{n \to +\infty} a_n = e$.

2. 证明下面各式当两端有意义时成立:

$$(1) \quad \underline{\lim}_{n \to +\infty} a_n + \underline{\lim}_{n \to +\infty} b_n \leq \underline{\lim}_{n \to +\infty} (a_n + b_n) \leq \underline{\lim}_{n \to +\infty} a_n + \overline{\lim}_{n \to +\infty} b_n,$$

$$\underline{\lim}_{n \to +\infty} a_n + \overline{\lim}_{n \to +\infty} b_n \leq \overline{\lim}_{n \to +\infty} (a_n + b_n) \leq \overline{\lim}_{n \to +\infty} a_n + \overline{\lim}_{n \to +\infty} b_n$$

证明. 有上,下极限的定义,我们可以得到两个简单的无需证明的事实:对于任何数列 $\{a_n\}$, $\{a_{n_k}\}$ 是一个任意一个子列,则

(a)
$$\lim_{n \to +\infty} a_n \le \lim_{k \to +\infty} a_{n_k}$$

(b)
$$\overline{\lim}_{k \to +\infty} a_{n_k} \le \overline{\lim}_{n \to +\infty} a_n$$

我们取子列 $\{a_{n_k} + b_{n_k}\}$ 使得

$$\lim_{k \to +\infty} (a_{n_k} + b_{n_k}) = \underline{\lim}_{n \to +\infty} (a_n + b_n).$$

再在子列 $\{a_{n_k}\}$ 中取子列 $\{a_{n_{k_l}}\}$ 使得

$$\lim_{l\to +\infty} a_{n_{k_l}} = \underline{\lim}_{k\to +\infty} a_{n_k} \ge \underline{\lim}_{n\to +\infty} a_n.$$

对于子列 $\{b_{n_{k_l}}\}$, 我们会有

$$\lim_{l \to +\infty} b_{n_{k_l}} \ge \underline{\lim}_{k \to +\infty} b_{n_k} \ge \underline{\lim}_{n \to +\infty} b_n.$$

从而

$$\begin{split} & \underbrace{\lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n} \leq \lim_{l \to +\infty} a_{n_{k_l}} + \lim_{l \to +\infty} b_{n_{k_l}} \\ & = \lim_{l \to +\infty} (a_{n_{k_l}} + b_{n_{k_l}}) \\ & = \lim_{k \to +\infty} (a_{n_k} + b_{n_k}) \\ & = \lim_{n \to +\infty} (a_n + b_n). \end{split}$$

取子列 $\{a_{n_k}\}$, 使得

$$\lim_{k \to +\infty} a_{n_k} = \underline{\lim}_{n \to +\infty} a_n.$$

考虑子列 $\{a_{n_k}+b_{n_k}\}$, 在其中取子列 $\{a_{n_{k_l}}+b_{n_{k_l}}\}$, 使得

$$\lim_{l\to +\infty}(a_{n_{k_l}}+b_{n_{k_l}})=\underline{\lim}_{k\to +\infty}(a_{n_k}+b_{n_k})\geq \underline{\lim}_{n\to +\infty}(a_n+b_n).$$

对于同样下标的子列 $\{b_{n_k}\}$, 我们有

$$\lim_{l \to +\infty} b_{n_{k_l}} \le \lim_{k \to +\infty} b_{n_k} \le \lim_{n \to +\infty} b_n.$$

由此可见

$$\frac{\lim_{n \to +\infty} (a_n + b_n)}{\lim_{n \to +\infty} (a_{n_{k_l}} + b_{n_{k_l}})} = \lim_{l \to +\infty} a_{n_{k_l}} + \lim_{l \to +\infty} b_{n_{k_l}}$$

$$\leq \lim_{k \to +\infty} a_{n_k} + \overline{\lim_{n \to +\infty}} b_n$$

$$= \underline{\lim}_{n \to +\infty} a_n + \overline{\lim}_{n \to +\infty} b_n$$

下面我们用类似的办法证明第二式亦成立。取子列 $\{b_{n_k}\}$ 使得

$$\lim_{k \to +\infty} b_{n_k} = \overline{\lim}_{n \to +\infty} b_n.$$

对于相应的 $\{a_{n_k} + b_{n_k}\}$ 可以取子列 $\{a_{n_{k_l}} + b_{n_{k_l}}\}$ 使得

$$\lim_{l \to +\infty} (a_{n_{k_l}} + b_{n_{k_l}}) = \overline{\lim}_{k \to +\infty} (a_{n_k} + b_{n_k}) \le \overline{\lim}_{n \to +\infty} (a_n + b_n).$$

显然

$$\lim_{l \to +\infty} a_{n_{k_l}} \ge \underline{\lim}_{n \to +\infty} a_n.$$

于是

$$\frac{\lim_{n \to +\infty} a_n + \lim_{n \to +\infty} b_n \le \lim_{l \to +\infty} a_{n_{k_l}} + \lim_{l \to +\infty} b_{n_{k_l}}}{\lim_{l \to +\infty} (a_{n_{k_l}} + b_{n_{k_l}})}$$

$$= \lim_{l \to +\infty} (a_{n_{k_l}} + b_{n_{k_l}})$$

$$\le \lim_{n \to +\infty} (a_n + b_n)$$

取子列 $\{a_{n_k} + b_{n_k}\}$, 使得

$$\lim_{k \to +\infty} (a_{n_k} + b_{n_k}) = \overline{\lim}_{n \to +\infty} (a_n + b_n).$$

取子列 $\{b_{n_{k_l}}\}$ 使得

$$\lim_{l \to +\infty} b_{n_{k_l}} = \overline{\lim}_{k \to +\infty} b_{n_k} \le \overline{\lim}_{n \to +\infty} b_n.$$

另一方面

$$\lim_{l\to +\infty} a_{n_{k_l}} \leq \overline{\lim}_{k\to +\infty} a_{n_k} \leq \overline{\lim}_{n\to +\infty} a_n.$$

所以

$$\overline{\lim}_{n \to +\infty} (a_n + b_n) \le \overline{\lim}_{n \to +\infty} a_n + \overline{\lim}_{n \to +\infty} b_n.$$

(2) 设 $\lim_{n\to+\infty}b_n=b$, 则 $\underline{\underline{\lim}}_{n \to +\infty}^{n \to +\infty} (a_n + b_n) = \underline{\underline{\lim}}_{n \to +\infty} a_n + b,$ $\overline{\lim_{n \to +\infty}} (a_n + b_n) = \overline{\lim_{n \to +\infty}} a_n + b$

证明. 这题是上面一题的直接应用。

$$(3) \ \underline{\lim}_{n \to +\infty} (-a_n) = -\overline{\lim}_{n \to +\infty} a_n, \ \overline{\lim}_{n \to +\infty} (-a_n) = -\underline{\lim}_{n \to +\infty} a_n;$$

证明.
$$\inf_{k \ge n} \{-a_k\} = -\sup_{k \ge n} \{a_k\} \Rightarrow \underline{\lim}_{n \to +\infty} (-a_n) = -\overline{\lim}_{n \to +\infty} a_n.$$
 $\sup_{k \ge n} \{-a_k\} = -\inf_{k \ge n} \{a_k\} \Rightarrow \overline{\lim}_{n \to +\infty} (-a_n) = -\underline{\lim}_{n \to +\infty} a_n.$

(4) 设 $\{a_n\}$ 与 $\{b_n\}$ 均为非负数列,则

$$\frac{\lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n \leq \lim_{n \to +\infty} a_n b_n \leq \lim_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty} b_n,}{\lim_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty} b_n \leq \overline{\lim}_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty} b_n;}$$

证明. 我们现证第一式。取子列 $\{a_{n_k}b_{n_k}\}$ 使得

$$\lim_{k \to +\infty} a_{n_k} b_{n_k} = \underline{\lim}_{n \to +\infty} a_n b_n.$$

对于上述的 $\{a_{n_k}\}$, 我们再取子列 $\{a_{n_k}\}$, 使得

$$\lim_{l \to +\infty} a_{n_{k_l}} = \underline{\lim}_{k \to +\infty} a_{n_k} \ge \underline{\lim}_{n \to +\infty} a_n \ge 0.$$

对于 $\{b_{n_{k_l}}\}$, 我们会有

$$\underline{\lim_{l\to +\infty}}\,b_{n_{k_l}}\geq \underline{\lim_{k\to +\infty}}\,b_{n_k}\geq \underline{\lim_{n\to +\infty}}\,b_n\geq 0.$$

所以

$$\frac{\lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n \leq \lim_{l \to +\infty} a_{n_{k_l}} \cdot \lim_{l \to +\infty} b_{n_{k_l}}}{= \lim_{l \to +\infty} a_{n_{k_l}} b_{n_{k_l}}}$$

$$= \lim_{l \to +\infty} a_{n_k} b_{n_k}$$

$$= \lim_{n \to +\infty} a_n b_n$$

取 $\{a_{n_k}\}$ 使得

$$\lim_{k\to +\infty} a_{n_k} = \underline{\lim}_{n\to +\infty} a_n.$$

对于对应的子列 $\{b_{n_k}\}$, 我们再取子列 $\{b_{n_{k_l}}\}$ 使得

$$\lim_{l \to +\infty} b_{n_{k_l}} = \overline{\lim}_{k \to +\infty} b_{n_k} \le \overline{\lim}_{n \to +\infty} b_n.$$

所以

$$\underbrace{\lim_{n \to +\infty} a_n b_n}_{n \to +\infty} \leq \underbrace{\lim_{k \to +\infty} a_{n_k} b_{n_k}}_{k \to +\infty} \\
\leq \underbrace{\lim_{l \to +\infty} a_{n_{k_l}} b_{n_{k_l}}}_{l \to +\infty} \\
= \underbrace{\lim_{l \to +\infty} a_{n_{k_l}} \cdot \lim_{l \to +\infty} b_{n_{k_l}}}_{l \to +\infty} \\
\leq \underbrace{\lim_{n \to +\infty} a_n \cdot \overline{\lim}}_{n \to +\infty} b_n$$

现在我们来证明第二式。取子列 $\{b_{n_k}\}$ 使得

$$\lim_{k \to +\infty} b_{n_k} = \overline{\lim}_{n \to +\infty} b_n.$$

对于相对应的 $\{a_{n_k}\}$, 我们再取子列 $\{a_{n_{k_l}}\}$ 使得

$$\lim_{l \to +\infty} a_{n_{k_l}} = \underline{\lim}_{k \to +\infty} a_{n_k} \ge \underline{\lim}_{n \to +\infty} a_n.$$

所以

$$\underbrace{\lim_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty}}_{n \to +\infty} b_n \le \lim_{l \to +\infty} a_{n_{k_l}} \cdot \lim_{l \to +\infty} b_{n_{k_l}}$$

$$= \lim_{l \to +\infty} a_{n_{k_l}} b_{n_{k_l}}$$

$$\le \overline{\lim}_{k \to +\infty} a_{n_k} b_{n_k}$$

$$\le \overline{\lim}_{n \to +\infty} a_n b_n$$

取子列 $\{a_{n_k}b_{n_k}\}$ 使得

$$\lim_{k \to +\infty} a_{n_k} b_{n_k} = \overline{\lim}_{n \to +\infty} a_n b_n.$$

在 $\{a_{n_k}\}$ 取收敛子列 $\{a_{n_{k_l}}\}$ 使得

$$\lim_{l \to +\infty} a_{n_{k_l}} = \overline{\lim}_{k \to +\infty} a_{n_k} \le \overline{\lim}_{n \to +\infty} a_n.$$

1.5 上极限与下极限

31

另一方面

$$\overline{\lim}_{l \to +\infty} b_{n_{k_l}} \le \overline{\lim}_{k \to +\infty} b_{n_k} \le \overline{\lim}_{n \to +\infty} b_n.$$

所以

$$\begin{split} \overline{\lim}_{n \to +\infty} a_n b_n &= \overline{\lim}_{l \to +\infty} a_{n_{k_l}} b_{n_{k_l}} \\ &\leq \lim_{l \to +\infty} a_{n_{k_l}} \cdot \overline{\lim}_{l \to +\infty} b_{n_{k_l}} \\ &\leq \overline{\lim}_{n \to +\infty} a_n \cdot \overline{\lim}_{n \to +\infty} b_n \end{split}$$

(5) 设 $\{b_n\}$ 非负,且 $\lim_{n\to+\infty}b_n=b$,则 $\lim_{n\to+\infty}a_nb_n=b\lim_{n\to+\infty}a_n, \overline{\lim}_{n\to+\infty}a_nb_n=b\overline{\lim}_{n\to+\infty}a_n;$

证明. 直接用上一题的结论就可以得证。

(6) 设 $a_n > 0 (n \in \mathbb{N}), \underline{\lim}_{n \to +\infty} a_n > 0,$ 则

$$\overline{\lim_{n \to +\infty}} \frac{1}{a_n} = \frac{1}{\underline{\lim_{n \to +\infty}} a_n}.$$

证明. 因为 $a_n > 0, \forall n, 从而$

$$\sup_{k \ge n} \left\{ \frac{1}{a_k} \right\} = \frac{1}{\inf_{k \ge n} \{a_k\}}.$$

由上,下极限的定义,命题得证。

3. 设 $a_n>0 (n\in\mathbb{N})$,且 $\overline{\lim}_{n\to+\infty}a_n\cdot\overline{\lim}_{n\to+\infty}\frac{1}{a_n}=1$,证明:数列 $\{a_n\}$ 收敛。

证明. 由题可知 $\overline{\lim}_{n\to+\infty} a_n > 0$ 。我们可以证明

$$\underline{\lim_{n \to +\infty}} \frac{1}{a_n} = \frac{1}{\overline{\lim_{n \to +\infty}} a_n}.$$

由此可知

$$\underline{\lim_{n\to+\infty}\frac{1}{a_n}}=\overline{\lim_{n\to+\infty}\frac{1}{a_n}}.$$

故 $\left\{\frac{1}{a_n}\right\}$ 是收敛数列。当然 $\left\{a_n\right\}$ 收敛。

4. 设数列 $\{a_n\}, a_n \leq 1, n = 1, 2, \cdots$, 且满足:

$$a_m + a_n - 1 < a_{m+n} < a_m + a_n + 1.$$

证明: (1) $\lim_{n\to+\infty}\frac{a_n}{n}=\omega$, 其中 ω 为有限数; (2) $n\omega-1\leq a_n\leq n\omega+1$.

证明. 先证明 (1).

$$a_1 - \frac{1}{n} < \frac{a_n}{n} < a_1 + \frac{1}{n}.$$

由此得证 (1), 且 $\omega = a_1$ 。 由此 (2) 得证。

5. 设 $a_n \geq 0, n \in \mathbb{N}$ 。证明:

$$\lim_{n \to +\infty} \sqrt[n]{a_n} \le 1 \iff$$
 对任何 $l > 1$,有 $\overline{\lim}_{n \to +\infty} \frac{a_n}{l^n} = 0$.

如果删去"任何"两字,结论如何?

注 5. 这个题目的结论是不对的。比如

$$a_n = \begin{cases} \frac{1}{2^n}, & n$$
是奇数
$$1, & n$$
是偶数

于是

$$\overline{\lim}_{n \to +\infty} \frac{a_n}{l^n} \le \overline{\lim}_{n \to +\infty} \frac{1}{l^n} = 0,$$

但是, $\lim_{n\to+\infty} \sqrt[n]{a_n}$ 不存在。所以下面我们证明:

$$\overline{\lim}_{n \to +\infty} \sqrt[n]{a_n} \le 1 \iff$$
 对任何 $l > 1$,有 $\overline{\lim}_{n \to +\infty} \frac{a_n}{l^n} = 0$.

证明. (\Rightarrow): 对于任何的 l > 1, 取 $\varepsilon = \frac{l-1}{2} > 0$,我们可以找到 N > 0,使得

$$\sqrt[n]{a_n} \le 1 + \frac{l-1}{2} = \frac{l+1}{2} < l, \quad \forall n > N.$$

于是

$$\frac{a_n}{l^n} < \left(\frac{l+1}{2l}\right)^n, \quad \forall n > N.$$

由 $\frac{l+1}{2l} < 1$ 可知,

$$\overline{\lim}_{n \to +\infty} \frac{a_n}{l^n} = 0.$$

(\Leftarrow): 由定义可知,对任意的 l > 1,存在 N > 0, 当 n > N 时有,

$$\frac{a_n}{l^n} < 1 \Rightarrow a_n < l^n \Rightarrow \sqrt[n]{a_n} < l.$$

从而

$$\overline{\lim}_{n \to +\infty} \sqrt[n]{a_n} \le l \Rightarrow \overline{\lim}_{n \to +\infty} \sqrt[n]{a_n} \le 1.$$

如果删去"任何"两字,结论不成立。

1.5.2 思考题

6. 设数列 $\{x_n\}$ 有界,且 $\lim_{n\to+\infty}(x_{n+1}-x_n)=0$,令

$$l = \underline{\lim}_{n \to +\infty} x_n, \quad L = \overline{\lim}_{n \to +\infty} x_n.$$

证明: $\{a \in \mathbb{R} | \text{有子列}x_{n_k} \to a(k \to \infty)\} = [l, L]$. 如果刪去条件 $\lim_{n \to +\infty} (x_{n+1} - x_n) = 0$,结论如何?证明. 对于 $a \in (l, L)$ 和任意的 $\varepsilon < \frac{1}{2} \min\{a - l, L - a\}$,我们有存在 N 使得:

- (1) $\stackrel{\text{def}}{=}$ n > N \bowtie , $-\varepsilon \le a_{n+1} a_n \le \varepsilon$.
- (2) 存在子列 n_k , 使得 $a_{n_k} \leq l + \varepsilon$, $\forall k$
- (3) 存在子列 n_l , 使得 $a_{n_l} \ge L \varepsilon$, $\forall l$

1.6 STOLZ 公式 33

选择子列 n_t , 并且重新标记下标, 使得

$$a_{n_t}$$
 $\begin{cases} \leq l + \varepsilon, & \text{if } t \in \mathbb{Z}, \\ \geq L - \varepsilon, & \text{if } t \in \mathbb{Z}, \end{cases}$

对于任意上述子列的任意两个相邻的数 $a_{n_{2t}}, a_{n_{2t+1}}$,在院数列中一定有至少一个 $a_{n_{t'}}$ 落在区间 $(a-\varepsilon, a+\varepsilon)$. 从而由极限的定义知这个子列收敛到 a. 命题得证。

7. 设
$$0 \le a_{n+m} \le a_n \cdot a_m(n,m=1,2,\cdots)$$
. 证明 $\overline{\lim}_{n \to +\infty} \sqrt[n]{a_n} = \underline{\lim}_{n \to +\infty} \sqrt[n]{a_n}$ 且 $\sqrt[n]{a_n}$ 收敛。

证明. 设 $\overline{\lim}_{n\to+\infty} \sqrt[n]{a_n} = a > b = \underline{\lim}_{n\to+\infty} \sqrt[n]{a_n}$ 取 N>0 使得

$$a_N < b + \frac{a-b}{3}.$$

又取子列 a_{n_k} 使得

$$\overline{\lim}_{k \to +\infty} {}^{n_k} \sqrt{a_{n_k}} = a.$$

当 k 充分大后, $n_k > N$,且 $n_k = m_k N + l$,其中 $l = 0, 1, \dots, N-1$. 于是

$$a_{n_k} \le a_{m_k N} \cdot a_l = a_N^{m_k} \cdot a_l = a_N^{n_k} \cdot \frac{a_l}{a_N^l}.$$

由此可知

$$0 \leq \sqrt[n_k]{a_{n_k}} \leq \sqrt[n_k]{a_N^{n_k}} \sqrt[n_k]{\frac{a_l}{a_N^l}} = a_N \cdot \sqrt[n_k]{\frac{a_l}{a_N^l}}.$$

于是

$$\overline{\lim}_{n \to +\infty} \sqrt[n_k]{a_{n_k}} \le a_N \le b + \frac{a-b}{3} < a.$$

这与 $\{a_{n_k}\}$ 的选择矛盾。从而知 a=b. 命题得证。

1.6 Stolz 公式

1.6.1 练习题

1. 设 $C_n^k = \frac{n!}{k!(n-k)!}$ 为组合数。应用 Stolz 公式证明:

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^n \ln C_n^k}{n^2} = \frac{1}{2}.$$

证明. 我们先计算

$$\ln C_n^k + \ln C_n^{n-k} = 2 \ln n! - 2 \ln k! - 2 \ln (n-k)!, \quad \forall k \le n.$$

所以

$$\sum_{k=0}^{n} \ln C_n^k = n \ln n! - 2 \sum_{k=0}^{n} \ln k!.$$

设
$$x_n = n^2, y_n = \sum_{k=0}^n \ln C_n^k$$
, 于是

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^{n} \ln C_n^k}{n^2} \xrightarrow{\text{Stolz } \triangle \mathbb{R}} \lim_{n \to +\infty} \frac{(n-1) \ln n - \ln n!}{2n-1}$$

$$= \lim_{n \to +\infty} \left(\ln \frac{n}{\sqrt[n]{n!}} \cdot \frac{n}{2n-1} \right) + \lim_{n \to +\infty} \frac{\ln n}{2n-1}$$

$$= \frac{1}{2}.$$

命题得证

2. 应用 Stolz 公式证明:

(1)
$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \sqrt{k}}{n^{\frac{3}{2}}} = \frac{2}{3};$$

证明. 设
$$y_n = \sum_{k=1}^n \sqrt{k}, x_n = n^{\frac{3}{2}}$$
,则

$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \sqrt{k}}{n^{\frac{3}{2}}} \xrightarrow{\text{Stolz } \triangle \mathbb{R}} \lim_{n \to +\infty} \frac{\sqrt{n}}{n^{\frac{3}{2}} - (n-1)^{\frac{3}{2}}}$$

$$= \lim_{n \to +\infty} \frac{\sqrt{n}(\sqrt{n^3} + \sqrt{(n-1)^3})}{n^3 - (n-1)^3}$$

$$= \lim_{n \to +\infty} \frac{n^2 \left(1 + \sqrt{(1 - \frac{1}{n})^3}\right)}{3n^2 - 3n + 1}$$

$$= \frac{2}{3}.$$

(2) $\lim_{n \to +\infty} n \left[\frac{\sum_{k=1}^{n} \sqrt{k}}{n^{\frac{3}{2}}} - \frac{2}{3} \right] = \frac{1}{2}.$

1.6 STOLZ 公式 35

证明. 我们设
$$y_n = 3\sum_{k=1}^n \sqrt{k} - 2n^{\frac{3}{2}}, x_n = 3\sqrt{n}.$$
 于是
$$\frac{y_n - y_{n-1}}{x_n - x_{n-1}} = \frac{3\sqrt{n} - 2n^{\frac{3}{2}} + 2(n-1)^{\frac{3}{2}}}{3(\sqrt{n} - \sqrt{n-1})}$$

$$= \frac{3\sqrt{n}(\sqrt{n^3} + \sqrt{(n-1)^3}) - 6n^2 + 6n - 2}{3(\sqrt{n} - \sqrt{n-1})(\sqrt{n^3} + \sqrt{(n-1)^3})}$$

$$= \frac{3n^2(\sqrt{(1-1/n)^3} - 1) + 6n - 2}{3(\sqrt{n} - \sqrt{n-1})(\sqrt{n^3} + \sqrt{(n-1)^3})}$$

$$= \frac{-9n + 9 - 3/n + (6n - 2)(\sqrt{(1-1/n)^3} + 1)}{3(\sqrt{n} - \sqrt{n-1})(\sqrt{n^3} + \sqrt{(n-1)^3})(\sqrt{(1-1/n)^3} + 1)}$$

$$= \frac{(-9n + 9 - 3/n + (6n - 2)(\sqrt{(1-1/n)^3} + 1))(\sqrt{n} + \sqrt{n-1})}{3(\sqrt{n^3} + \sqrt{(n-1)^3})(\sqrt{(1-1/n)^3} + 1)}$$

$$= \frac{n^{\frac{3}{2}}(-9 + 9/n - 3/n^2 + (6 - 2/n)(\sqrt{(1-1/n)^3} + 1))(1 + \sqrt{1-1/n})}{3n^{\frac{3}{2}}(1 + \sqrt{(1-1/n)^3})(\sqrt{(1-1/n)^3} + 1)}$$

于是:

$$\lim_{n \to +\infty} n \left[\frac{\sum_{k=1}^{n} \sqrt{k}}{n^{\frac{3}{2}}} - \frac{2}{3} \right] \xrightarrow{\text{Stolz } \triangle \mathbb{R}} \lim_{n \to +\infty} \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = \frac{1}{2}.$$

命题得证

1.6.2 思考题

3. 设 $0 < x_1 < 1$, $x_{n+1} = x_n(1-x_n)$, $n = 1, 2, \cdots$. 证明: $\lim_{n \to +\infty} nx_n = 1$. 进而设 $0 < x_1 \le \frac{1}{q}$, 其中 $0 < q \le 1$, 并且 $x_{n+1} = x_n(1-qx_n)$, $n \in \mathbb{N}$. 证明: $\lim_{n \to +\infty} nx_n = \frac{1}{q}$.

证明. 如果我们能证明 $\{x_n\}$ 单调减且 $\lim_{n\to+\infty} x_n = 0$,则

$$\lim_{n \to +\infty} nx_n \xrightarrow{\text{Stolz } \triangle \exists \xi} \lim_{n \to +\infty} \frac{n - (n-1)}{\frac{1}{x_n} - \frac{1}{x_{n-1}}}$$

$$= \lim_{n \to +\infty} \frac{x_{n-1}(1 - qx_{n-1})}{qx_{n-1}}$$

$$= \frac{1}{q}.$$

下面我们证明 $\{x_n\}$ 单调减且 $\lim_{n\to+\infty} x_n = 0$. 由于 $x_n - x_{n-1} = -qx_{n-1}^2, \forall n \in \mathbb{N}$ 可知, $\{x_n\}$ 是单调减的。很明显 $x_n > 0, \forall n \in \mathbb{N}$. 由实数连续性命题 (二) 可知, $\{x_n\}$ 是收敛的。设 $\lim_{n\to+\infty} x_n = a$,则 $a = a(1-qa) \Rightarrow qa^2 = 0 \Rightarrow a = 0$. 命题得证。

4. 由 Toeplitz 定理导出 $\frac{\infty}{\infty}$ 型的 Stolz 公式。

证明. 取

$$t_{nk} = \frac{x_k - x_{k-1}}{x_n - x_0}, \quad \forall k = 1, 2, \dots, n.$$

(1) 由于 $\{x_n\}$ 是单调增数列, $t_{nk} > 0$.

(2) 因为 $\lim_{n \to +\infty} x_n = +\infty$, $\lim_{n \to +\infty} t_{nk} = 0$.

(3)
$$\sum_{k=1}^{n} t_{nk} = \frac{x_n - x_0}{x_n - x_0} = 1.$$

由 Toeplitz 定理可知

$$\begin{split} \lim_{n \to +\infty} \frac{y_n}{x_n} &= \lim_{n \to +\infty} \frac{y_0}{x_n} + \lim_{n \to +\infty} \frac{x_n - x_0}{x_n} \lim_{n \to +\infty} \frac{y_n - y_0}{x_n - x_0} \\ &= \lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{x_{k+1} - x_k}{x_n - x_0} \cdot \frac{y_{k+1} - y_k}{x_{k+1} - x_k} \\ &\lim_{n \to +\infty} \sum_{k=1}^{n-1} t_{nk} \frac{y_{k+1} - y_k}{x_{k+1} - x_k} \\ &\stackrel{\text{Toeplitz } \triangle \overrightarrow{\exists}}{=} \lim_{n \to +\infty} \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = a. \end{split}$$

命题得证。

5. 设数列 $\{a_n\}$ 满足 $\lim_{n\to +\infty} a_n \sum_{i=1}^n a_i^2 = 1$ 。证明: $\lim_{n\to +\infty} \sqrt[3]{3n} a_n = 1$.

证明. 记 $S_n = \sum_{i=1}^n a_i^2$. 我们很容易证明以下结论:

(1)
$$\{S_n\}$$
 是单增的,且 $\lim_{n\to+\infty} S_n = +\infty$

$$(2) \lim_{n \to +\infty} a_n = 0$$

现在计算

$$S_n^3 - S_{n-1}^3 = (S_n - S_{n-1})(S_n^2 + S_n S_{n-1} + S_{n-1}^2)$$

$$= a_n^2 (S_n^2 + S_n (S_n - a_n^2)) + (S_n - a_n^2)^2)$$

$$= 3(a_n S_n)^2 - 3a_n^3 (a_n S_n) + a_n^6$$

从而

$$\lim_{n \to +\infty} \frac{S_n^3}{3n} \xrightarrow{\text{Stolz } \triangle \mathbb{R}} \lim_{n \to +\infty} \frac{S_n^3 - S_{n-1}^3}{3} = 1.$$

于是

$$\lim_{n \to +\infty} \frac{1}{3na_n^3} = \lim_{n \to +\infty} \frac{1}{(a_n S_n)^3} \lim_{n \to +\infty} \frac{S_n^3}{3n} = 1.$$

由此可知 $\lim_{n\to+\infty} \sqrt[3]{3n} a_n = 1$ 。 命题得证。

1.7 复习题 1

1. 谈
$$a_0 = 1, a_{n+1} = a_n + \frac{1}{a_n}, n = 0, 1, 2, \cdots$$
. 证明: $\lim_{n \to +\infty} \frac{a_n}{\sqrt{2n}} = 1$.

证明. 由递归定义,

$$a_{n-1}^2 + 2 < a_{n-1}^2 + \frac{1}{a_{n-1}^2} + 2 < a_n^2, \quad \forall n > 1 \Rightarrow a_n^2 \ge 2 * (n-1) + a_1^2 = 2n - 1.$$

于是

$$0 \le \frac{1}{a_n^2} < \frac{1}{2n-1}, \forall n > 1 \Rightarrow \lim_{n \to +\infty} \frac{1}{a_n^2} = 0.$$

算术平均

$$\lim_{\substack{n \to +\infty}} \frac{\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}}{n} = 0.$$

现在计算

$$\frac{a_n^2}{2n} = \frac{2n-1}{2n} + \frac{\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_{n-1}^2}}{2n}$$
$$= \frac{2n-1}{2n} + \frac{\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_{n-1}^2}}{n-1} \cdot \frac{n-1}{2n}$$

由此可知

$$\lim_{n \to +\infty} \frac{a_n^2}{2n} = 1 \Rightarrow \lim_{n \to +\infty} \frac{a_n}{\sqrt{2n}} = 1.$$

命题得证。

2. 设 $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = 0$, 并且存在常数 K 使得 $\forall n \in \mathbb{N}$, 有

$$|y_1| + |y_2| + \dots + |y_n| \le K.$$

令

$$z_n = x_1 y_n + x_2 y_{n-1} + \dots + x_n y_1, \quad n \in \mathbb{N}.$$

证明: $\lim_{n\to+\infty} z_n = 0$.

证明. 由于 $\lim_{n \to +\infty} x_n = 0$,存在 M > 0 使得 $|a_n| < M, \forall n \in \mathbb{N}$. 对 $\forall \varepsilon > 0$,存在 $N_1 \in \mathbb{N}$,当 $n > N_1$ 时有

$$|x_n| < \frac{\varepsilon}{2K}, \quad \forall n > N_1.$$

设 $s_n = \sum_{k=1}^n |y_k|$. 很显然 $\{s_n\}$ 是一个收敛数列。于是, 存在 $N_2 \in \mathbb{N}$, 当 $n > N_2$ 时有

$$s_n - s_{n-N_1} < \frac{\varepsilon}{2MN_1}.$$

综上,

$$|z_{n}| = |x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{n}y_{1}|$$

$$< |x_{1}y_{n} + x_{2}y_{n-1} + \dots + x_{N_{1}}y_{n-N_{1}+1}| + |x_{N_{1}+1}y_{n-N_{1}} + x_{N_{1}+2}y_{n-N_{1}-1} + \dots + x_{n}y_{1}|$$

$$< MN_{1}(s_{n} - s_{n-N_{1}}) + \frac{\varepsilon}{2K}(|y_{1}| + |y_{2}| + \dots + |y_{n-N_{1}}|)$$

$$< MN_{1}\frac{\varepsilon}{2MN_{1}} + K\frac{\varepsilon}{2K}$$

$$= \varepsilon$$

命题得证。

3. 设数列 $\{a_n\}$ 与 $\{b_n\}$ 满足:

(1)
$$b_n > 0, b_0 + b_1 + \dots + b_n \to +\infty (n \to +\infty);$$

(2)
$$\lim_{n \to +\infty} \frac{a_n}{b_n} = s.$$

应用 Toeplitz 定理证明:

$$\lim_{n\to+\infty}\frac{a_0+a_1+\cdots+a_n}{b_0+b_1+\cdots+b_n}=s.$$

证明. 在这题里我们可以取

$$t_{nk} = \frac{b_k}{b_0 + b_1 + b_2 + \dots + b_n}.$$

(1) $t_{nk} > 0, \forall n > 0, k = 0, 2, \dots, n;$

(2) 给定
$$n, \sum_{k=0}^{n} t_{nk} = 1;$$

(3) 由于 $b_0 + b_1 + \cdots + b_n \to +\infty$ $(n \to +\infty)$, 给定 k, $\lim_{n \to +\infty} t_{nk} = 0$; 于是

$$\frac{a_0 + a_1 + \dots + a_n}{b_0 + b_1 + \dots + b_n} = \sum_{k=0}^n t_{nk} \frac{a_k}{b_k}.$$

由 Toeplitz 定理, 命题可以得证。

4. 设 $p_k > 0, k = 1, 2, \cdots$,且 $\lim_{n \to +\infty} \frac{p_n}{p_1 + p_2 + \cdots + p_n} = 0, \lim_{n \to +\infty} a_n = a$. 证明:

$$\lim_{n \to +\infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} = a.$$

证明. 对于给定的正整数 k > 0,我们可以证明 $\lim_{n \to +\infty} \frac{p_{n-k}}{p_1 + p_2 + \cdots + p_n} = 0$. 这是因为

$$0 \le \frac{p_{n-k}}{p_1 + p_2 + \dots + p_n} < \frac{p_{n-k}}{p_1 + p_2 + \dots + p_{n-k}}.$$

夹逼定理说明 $\lim_{n\to +\infty} \frac{p_{n-k}}{p_1+p_2+\cdots+p_n}=0$ 。 下面我们就可以用极限的定义来证明命题了。对于 $\forall \varepsilon>0$,存在 N_0 ,当 $n>N_0$ 时有

$$|a_n - a| < \frac{\varepsilon}{2}.$$

设 $M = \max\{|a_0 - a|, |a_1 - a|, \dots, |a_{N_0} - a|\}.$

对于每一个 $k, 1 \le k \le N_0$, 存在 N_k , 当 $n > N_k$ 时有,

$$\frac{p_{n-k-1}}{p_1 + p_2 + \dots + p_n} \le \frac{\varepsilon}{2MN_0}.$$

取 $N = \max\{N_0, N_1, \dots, N_{N_0}\},$ 当 n > N 时

$$\left| \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} - a \right| = \left| \frac{p_1 (a_n - a) + p_2 (a_{n-1} - a) + \dots + p_n (a_1 - a)}{p_1 + p_2 + \dots + p_n} \right|$$

$$< \sum_{k=1}^{N_0} \frac{p_{n-k-1} |a_k - a|}{p_1 + p_2 + \dots + p_n} + \frac{p_1 + p_2 + \dots + p_{n-N_0}}{p_1 + p_2 + \dots + p_n} \cdot \frac{\varepsilon}{2}$$

$$< \sum_{k=1}^{N_0} \frac{M\varepsilon}{2MN_0} + \frac{\varepsilon}{2} = \varepsilon.$$

命题得证。

5. 设 $\{a_n\}$ 为单调增的数列,令 $\sigma_n = \frac{a_1 + a_2 + \dots + a_n}{n}$,如果 $\lim_{n \to +\infty} \sigma_n = a$,证明: $\lim_{n \to +\infty} a_n = a$. 若"单调增"的条件删去,结论是否成立。

证明. 存在 N > 0, 当 n > N 时, $\sigma_n < a + 1$. 于是

$$\frac{a_1}{2} + \frac{a_n}{2} < \sigma_{2n} < a + 1.$$

从而

$$a_n < 2\left(a + 1 - \frac{a_1}{2}\right).$$

单调增有上界的数列是收敛数列。即 $\lim_{n\to+\infty}a_n$ 存在。设 $\lim_{n\to+\infty}a_n=b$,由例 1.1.15 可知,

$$b = \lim_{n \to +\infty} \sigma_n = a.$$

如果 $\{a_n\}$ 不是单调增的,结论不成立。例如 $a_n=(-1)^n$, $\sigma_n=0$ 或 $-\frac{1}{n}$. 所以 $\lim_{n\to+\infty}\sigma_n=0$. 但是 $\{a_n\}$ 不收敛。

6. 设 $\{S_n\}$ 为数列, $a_n = S_n - S_{n-1}$, $\sigma_n = \frac{S_0 + S_1 + \dots + S_n}{n+1}$. 如果 $\lim_{n \to +\infty} na_n = 0$ 且 $\{\sigma_n\}$ 收敛,证明 $\{S_n\}$ 也收敛,且 $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sigma_n$.

证明. 我们直接计算

$$\lim_{n \to +\infty} (S_n - \sigma_n) = \lim_{n \to +\infty} \frac{nS_n - S_0 - S_1 - \dots - S_{n-1}}{n+1}$$

$$\frac{\text{Stolz } \triangle \mathbb{R}}{n \to +\infty} \lim_{n \to +\infty} (nS_n - nS_{n-1})$$

$$= \lim_{n \to +\infty} a_n = 0.$$

于是 $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} (S_n - \sigma_n) + \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} \sigma_n$.

7. 设数列 $\{x_n\}$ 满足: $\lim_{n \to +\infty} (x_n - x_{n-2}) = 0$. 证明 $\lim_{n \to +\infty} \frac{x_n - x_{n-1}}{n} = 0$.

证明. 如果我们能证明 $\lim_{n\to+\infty}\frac{\left(-1\right)^n\left(x_n-x_{n-1}\right)}{n}=0$,则命题得证。通过简单的计算,我们有

$$(-1)^n (x_n - x_{n-1}) = \sum_{k=1}^{n-2} (-1)^k (x_{k+2} - x_k) + x_2 - x_1.$$

由于 $\lim_{n \to +\infty} (-1)^n (x_n - x_{n-2}) = 0$, 可知

$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n-2} (-1)^k (x_{k+2} - x_k)}{n-2} = 0.$$

于是

$$\lim_{n \to +\infty} \frac{(-1)^n (x_n - x_{n-1})}{n} = \lim_{n \to +\infty} \frac{\sum_{k=1}^{n-2} (-1)^k (x_{k+2} - x_k)}{n-2} \cdot \lim_{n \to +\infty} \frac{n-2}{n} + \lim_{n \to +\infty} \frac{x_2 - x_1}{n} = 0.$$

8. 设 u_0, u_1, \cdots 为满足 $u_n = \sum_{k=1}^{\infty} u_{n+k}^2 (n=0,1,2,\cdots)$ 的实数列,且 $\sum_{n=1}^{\infty} u_n$ 收敛。证明 $\forall k \in \mathbb{N}$,有 $u_k = 0$.

证明. 由 u_n 的定义可知,

$$u_n \ge u_{n+1} \ge 0, \quad \forall n.$$

记 $S_n = \sum_{k=1}^n u_k$. 由于 $\{S_n\}$ 收敛,则存在 N > 0,使得当 n > N 时 $\sum_{k=n}^\infty u_k < 1$.

$$u_{n+1} \le u_n = \sum_{k=1}^{\infty} u_{n+k}^2$$

$$= u_{n+1} \left(u_{n+1} + \frac{u_{n+2}}{u_{n+1}} u_{n+2} + \cdots \right)$$

$$\le u_{n+1} (u_{n+1} + u_{n+2} + \cdots)$$

$$\le u_{n+1}$$

从而, $u_{N+1}=u_{N+2}=u_{N+3}=\cdots=c$. 由于 $\sum_{k=N+1}^{\infty}u_k<1$ 可知,c=0. 又由 $u_{N+1}=u_{N+2}=u_{N+3}=\cdots=0$,可知 $u_N=u_{N-1}=\cdots=u_1=0$.

9. 设
$$\lim_{n\to+\infty}a_n=a$$
 证明 $\lim_{n\to+\infty}\frac{1}{2^n}\sum_{k=0}^nC_n^ka_k=a$

证明. 取 $t_{nk} = \frac{1}{2^n} C_n^k$, 我们有

(1)
$$t_{nk} > 0 \coprod \sum_{k=0}^{n} t_{nk} = \frac{1}{2^n} (1+1)^n = 1;$$

(2) 很容易验证 $\lim_{n\to+\infty} t_{nk} = 0$. 因为 $2^n = (1+1)^n > C_n^{k+1}$, 从而

$$0 \le t_{nk} \le \frac{C_n^k}{C_n^{k+1}} = \frac{k+1}{n-k}.$$

由夹逼定理, $\lim_{n\to+\infty}t_{nk}=0$ 。

由 Toeplitz 定理知, $\lim_{n\to+\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k = a_\circ$

10. 给定实数 a_0, a_1 , 并令

$$a_n = \frac{a_{n-1} + a_{n-2}}{2}, \quad n = 2, 3, \cdots.$$

证明: 数列 $\{a_n\}$ 收敛, 且 $\lim_{n\to+\infty} a_n = \frac{a_0+2a_1}{3}$

证明. 由递归公式有:

$$a_n - a_{n-1} = \left(-\frac{1}{2}\right)(a_{n-1} - a_{n-2}) = \dots = \left(-\frac{1}{2}\right)^{n-1}(a_1 - a_0).$$

于是:

$$a_n - a_0 = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_1 - a_0)$$

$$= \left(-\frac{1}{2}\right)^{n-1} (a_1 - a_0) + \left(-\frac{1}{2}\right)^{n-2} (a_1 - a_0) + \dots + (a_1 - a_0)$$

$$= \frac{1 - \left(-\frac{1}{2}\right)^n}{1 + \frac{1}{2}} (a_1 - a_0)$$

$$\text{Mfill } \lim_{n \to +\infty} a_n = a_0 + \lim_{n \to +\infty} \left(\frac{1 - \left(-\frac{1}{2} \right)^n}{1 + \frac{1}{2}} (a_1 - a_0) \right) = a_0 + \frac{2}{3} (a_1 - a_0) = \frac{a_0 + 2a_1}{3}.$$

11. 设 x_1, x_2, \cdots, x_n 为任意给定的实数。令

$$x_i^{(1)} = \frac{x_i + x_{i+1}}{2}, \quad i = 1, 2, \dots, n,$$

其中 x_{n+1} 应理解为 x_1 . 归纳定义

$$x_i^{(k)} = \frac{x_i^{(k-1)} + x_{i+1}^{(k-1)}}{2}, \quad i = 1, 2, \cdots, n,$$

 $x_{n+1}^{(k-1)}$ 应理解为 $x_1^{(k-1)}, k=2,3,\cdots$. 证明

$$\lim_{k \to +\infty} x_i^{(k)} = \frac{x_1 + x_2 + \dots + x_n}{n}, \quad \forall i = 1, 2, \dots, n.$$

12. 设 $\{a_n\}$ 为一个数列, 且 $\lim_{n\to +\infty} (a_{n+1}-a_n)=l_o$ 证明:

$$\lim_{n \to +\infty} \frac{a_n}{n} = l; \quad \lim_{n \to +\infty} \frac{\sum_{k=1}^n a_k}{n^2} = \frac{l}{2}.$$

证明.

$$a_n = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_2 - a_1) + a_1.$$

由于 $\lim_{n\to+\infty} (a_{n+1}-a_n)=l$, 易知

$$\lim_{n \to +\infty} \frac{a_n}{n} = l.$$

现在计算

$$\sum_{k=1}^{n} a_k - na_1 = \sum_{k=2}^{n} (a_k - a_1)$$

$$= \sum_{k=2}^{n} \sum_{l=1}^{k-1} (a_{l+1} - a_l)$$

$$= \sum_{l=1}^{n-1} (n-l)(a_{l+1} - a_l)$$

如果取 $t_{nk} = \frac{2(n-k)}{(n-1)n}$,则

(1)
$$t_{nk} \ge 0, \forall n \in \mathbb{N}, k = 1, 2, \dots, n \coprod \sum_{k=1}^{n} t_{nk} = \sum_{k=1}^{n} \frac{2(n-k)}{(n-1)n} = 1;$$

(2) $\lim_{n \to +\infty} t_{nk} = 0$, $\forall k$.

由 Toeplitz 定理可知

$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} a_k - na_1}{(n-1)n} = \lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{2(n-k)}{(n-1)n} \frac{a_{k+1} - a_k}{2} = \lim_{n \to +\infty} \sum_{k=1}^{n-1} t_{nk} \frac{a_{k+1} - a_k}{2} = \frac{l}{2}.$$

从而

$$\lim_{n\to+\infty}\frac{\displaystyle\sum_{k=1}^n a_k}{n^2}=\lim_{n\to+\infty}\frac{\displaystyle\sum_{k=1}^n a_k-na_1}{(n-1)n}\cdot\lim_{n\to+\infty}\frac{(n-1)n}{n^2}+\lim_{n\to+\infty}\frac{a_1}{n}=\frac{l}{2}.$$

命题得证。

13. 设 $x_1 \in [0,1], \forall n \geq 2$, 令

$$x_n = \begin{cases} \frac{1}{2}x_{n-1}, & n \ \text{为偶数}, \\ \frac{1+x_{n-1}}{2}, & n \ \text{为奇数}. \end{cases}$$

证明: $\lim_{n \to +\infty} x_{2k} = \frac{1}{3}$; $\lim_{n \to +\infty} x_{2k+1} = \frac{2}{3}$.

证明. 由递推公式可知

$$\begin{split} x_{2k} &= \frac{1}{2} \left(\frac{1 + x_{2(k-1)}}{2} \right) \\ &= \frac{1}{4} + \frac{1}{4} x_{2(k-1)} \\ &= \sum_{l=1}^{k-1} \left(\frac{1}{4} \right)^l + \left(\frac{1}{4} \right)^{k-1} x_2 \\ &= \frac{1}{3} - \frac{4}{3} \left(\frac{1}{4} \right)^k + \left(\frac{1}{4} \right)^{k-1} x_2. \end{split}$$

因此 $\lim_{n \to +\infty} x_{2k} = \frac{1}{3}$.

$$x_{2k+1} = \frac{1}{2} + \frac{1}{4}x_{2(k-1)+1} = \frac{1}{2}\sum_{l=0}^{k-1} \left(\frac{1}{4}\right)^l + \left(\frac{1}{4}\right)^k x_1 = \frac{2}{3} - \frac{2}{3}\left(\frac{1}{4}\right)^k + \left(\frac{1}{4}\right)^k x_1.$$

因此 $\lim_{n \to +\infty} x_{2k+1} = \frac{2}{3}$.

14. 定初始值 a_0 , 并递推定义

$$a_n = 2^{n-1} - 3a_{n-1}, \quad n = 1, 2, \cdots.$$

求 a_0 的所有可能的值, 使得数列 $\{a_n\}$ 是严格增的。

解. 考虑数列 $\left\{\frac{a_n}{3^n}\right\}$. 显然

$$\begin{aligned} \frac{a_n}{3^n} &= \frac{1}{2} \left(\frac{2}{3}\right)^n - \frac{a_{n-1}}{3^{n-1}} \\ &= \frac{1}{2} \left(\frac{2}{3}\right)^n - \frac{1}{2} \left(\frac{2}{3}\right)^{n-1} + \frac{a_{n-2}}{3^{n-2}} \\ &= \frac{1}{2} \sum_{k=0}^{n-1} (-1)^k \left(\frac{2}{3}\right)^{n-k} + (-1)^n a_0 \\ &= \frac{1}{5} \left[\left(\frac{2}{3}\right)^n + (-1)^n (5a_0 - 1) \right] \end{aligned}$$

于是

$$a_n = \frac{1}{5} [2^n + (-1)^n (5a_0 - 1)3^n].$$

由此

$$a_{2n} - a_{2n-1} = \frac{1}{5} [2^{2n} + (5a_0 - 1)3^{2n} - 2^{2n-1} + (5a_0 - 1)3^{2n-1}]$$

= $\frac{1}{5} [2^{2n-1} + 4(5a_0 - 1)3^{2n-1}].$

只有当 $a_0 \geq \frac{1}{5}$ 时, $a_{2n} > a_{2n-1}$, $\forall n \in \mathbb{N}$.

$$a_{2n-1} - a_{2n-2} = \frac{1}{5} [2^{2n-1} - (5a_0 - 1)3^{2n-1} - 2^{2n-2} - (5a_0 - 1)3^{2n-2}]$$
$$= \frac{1}{5} [2^{2n-2} - 4(5a_0 - 1)3^{2n-2}].$$

只有当 $a_0 \leq \frac{1}{5}$ 时, $a_{2n-1} > a_{2n-2}$, $\forall n \in \mathbb{N}$. 综上,只有 $a_0 = \frac{1}{5}$ 时, $\{a_n\}$ 是严格递增的。

$$\lim_{n \to +\infty} a_n = \begin{cases} 1 - \sqrt{1 - c}, & 0 < c \le 1, \\ +\infty, & c > 1. \end{cases}$$

试问: 当时 $-3 \le c < 0$, 数列 $\{a_n\}$ 的收敛性如何?

证明. 现证 c > 1 的情形:

$$a_n \ge \sqrt{ca_{n-1}^2} = \sqrt{c}a_{n-1} \ge \dots \ge (\sqrt{c})^{n-1}a_1.$$

由于 $\lim_{n\to+\infty} \left(\sqrt{c}\right)^{n-1} = +\infty$, $\lim_{n\to+\infty} a_n = +\infty$. 命题得证。 现在 $c \le 1$ 的情形:

- (1) 考虑函数 $f(x) = x^2 2x + c$ 。 当 $x \in (1 \sqrt{1 c}, 1 + \sqrt{1 c}), f(x) < 0$ 且 $\min_{x \in \mathbb{P}} f(x) = -1 + c$.
- (2) 很显然 $a_1 = \frac{c}{2} \in (1 \sqrt{1 c}, 1 + \sqrt{1 c})$. 于是 $a_2 a_1 = \frac{1}{2}f(a_1) < 0 \Rightarrow a_2 < a_1$. $a_1^2 \in (2 c 2\sqrt{1 c}, 2 c + 2\sqrt{1 c}) \Rightarrow a_2 = \frac{c}{2} + \frac{a_1^2}{2} \in (1 \sqrt{1 c}, 1 + \sqrt{1 c}).$
- (3) 假设 n = k 时, $a_k \le a_{k-1}$ 且 $a_k \in (1 \sqrt{1-c}, 1 + \sqrt{1-c})$. 显然我们有 $a_{k+1} \le a_k, a_{k+1} \in (1 \sqrt{1-c}, 1 + \sqrt{1-c})$.

综上,

$$a_{n+1} \le a_n, \quad a_n \ge 1 - \sqrt{1-c}, \quad \forall n.$$

于是 $\lim_{n \to +\infty} a_n = 1 - \sqrt{1 - c}$. 现考虑 $-3 \le c < 0$ 的情形。

(1) 我们先证明 a_n 是有界的。 $\frac{c}{2} < a_1 = \frac{c}{2} \le 0$. 假设 $\frac{c}{2} \le a_k \le 0$, 则 $0 \le a_k^2 \le \frac{c^2}{4}$ 。从而

$$\frac{c}{2} < \frac{c}{2} + \frac{a_k^2}{2} = a_{k+1} \le \frac{c}{2} + \frac{c^2}{8} = \frac{c}{8}(4 - c) < 0$$

由数学归纳法知, $a_n \in \left[\frac{c}{2}, 0\right], \forall n$.

(2)

$$a_n - a_{n-2} = \frac{1}{2} (a_{n-1} + a_{n-3}) (a_{n-1} - a_{n-3})$$
$$= \frac{1}{4} (a_{n-1} + a_{n-3}) (a_{n-2} + a_{n-4}) (a_{n-2} - a_{n-4})$$

由于 $\frac{1}{4}(a_{n-1}+a_{n-3})(a_{n-2}+a_{n-4})>0$, a_n-a_{n-2} 和 $a_{n-2}-a_{n-4}$ 同号。即 $\{a_{2k-1}|k\geq 1\}$ 和 $\{a_{2k}|k\geq 1\}$ 是单调数列。因为

$$a_3 - a_1 = \frac{c}{2} + \frac{a_2^2}{2} - \frac{c}{2} = \frac{a_2^2}{2} > 0$$

所以 $\{a_{2k-1}|k\leq 1\}$ 是单调递增的。又因为

$$a_4 - a_2 = \frac{a_3 + a_1}{2} (a_3 - a_1) < 0,$$

所以 $\{a_{2k}|k\geq 1\}$ 是单调递减的。

假设当 $k \to +\infty$ 时, $a_{2k-1} \to p$, $a_{2k} \to q$ 。在递推公式两端取极限,我们有

$$p = \frac{c}{2} + \frac{q^2}{2}$$
$$q = \frac{c}{2} + \frac{p^2}{2}$$

两式相减可得

$$p - q = \frac{1}{2}(q - p)(p + q) \Rightarrow (p - q)(p + q + 2) = 0.$$

如果 p-q=0, i.e. p=q, 则 $p=q=1-\sqrt{1-c}$.

如果 p+q+2=0,则将 p=-2-q 代入第一个方程,我们有 $(q+1)^2=-(c+3)$. 所以如果 c>-3,则 $(q+1)^2<0$,从而无解。当 c=-3 时,q=-1,从而 p=q=-1.

16. 数列 $\{u_n\}$ 定义如下: $u_1 = b, u_{n+1} = u_n^2 + (1-2a)u_n + a^2, n \in \mathbb{N}$. 问: a, b 为何值时 $\{u_n\}$ 收敛,并求出其极限值。

解. 由递归定义可知:

$$u_{n+1} - a = (u_n - a)^2 + (u_n - a).$$

记 $v_n=u_n-a$,则 $v_1=b-a$.如果 $\{u_n\}$ 收敛,则 $\{v_n\}$ 收敛且 $\lim_{n\to +\infty}v_n=0$.

- (1) 由于 $v_{n+1} v_n = v_n^2 \ge 0$, $\{v_n\}$ 是单调增的。
- (2) 如果 $\lim_{n\to+\infty} v_n = 0$, 则 $v_n \leq 0, \forall n$.

下面我们用归纳法来证明, 当 $v_1 \le 0, v_1 + 1 \ge 0$ 时, $v_n \le 0$ 且 $v_n + 1 \ge 0 \forall n$.

- (1) 当 n = 1 时,成立。
- (2) 假设 n = k 时, 我们也有 $v_k \le 0$ 且 $v_k + 1 \ge 0$.
- (3) 我们证明 n = k + 1 时也成立。因为

$$v_{k+1} = v_k \cdot (v_k + 1),$$

所以 $v_{k+1} \leq 0$. 另一方面

$$v_{k+1} + 1 = v_k^2 + v_k + 1 = \left(v_k + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4} > 0.$$

由此可见, 当 $b \in [a-1,a]$ 时, $\{u_n\}$ 收敛。

17. 读 $A > 0, 0 < y_0 < A^{-1}, y_{n+1} = y_n(2 - Ay_n), n \in \mathbb{N}$. 证明: $\lim_{n \to +\infty} y_n = A^{-1}$.

证明. 如果我们能证明 $0 < y_n < A^{-1}, \forall n \in \mathbb{N},$ 则

$$\frac{y_{n+1}}{y_n} = 2 - Ay_n \ge 2 - AA^{-1} = 1 \Rightarrow y_{n+1} \ge y_n.$$

从而 $\{y_n\}$ 是单调递增有上界的数列。故收敛,且 $\lim_{n\to+\infty}y_n=A^{-1}$.

下面我们就证明 $y_n < A^{-1}, \forall n \in \mathbb{N}$. 考虑函数 f(x) = x(2 - Ax). 显然该函函数在 $x = A^{-1}$ 是取得最大值。即 $f(x) < A^{-1}, \forall x \in \mathbb{R}$. 由于 $0 < y_1 < A^{-1}$,由归纳法, $0 < y_n < A^{-1}, \forall n \in \mathbb{N}$.

18. 设数列 $\{a_n\}$ 满足 $(2-a_n)a_{n+1}=1$ 。证明: $\lim_{n\to+\infty}a_n=1$ 。

证明. 由于 $(2-a_n)a_{n+1}=1$, 则 $a_n\neq 2$, 从而 $a_1\neq \frac{3}{2}$. 我们现证无论 a_1 取何值,都存在 N 使得 $a_N\leq 1$.

- (1) 如果 $a_1 \le 1$, 取 N = 1, $a_N = a_1 \le 1$
- (2) 如果 $a_1 > \frac{3}{2}$, 则 $a_2 > 2$, $a_3 < 0$. 于是取 N = 3, $a_N = a_3 < 0 \le 1$.
- (3) 如果 $1 < a_1 < \frac{3}{2}$. 记 $a_1 = 1 + h$, 则

$$a_k = 1 + \frac{h}{1 - (k - 1)h}, \quad k = 2, 3 \cdots.$$

取 $k = \left[\frac{1}{h}\right]$, 我们有

$$1 - (k-1)h \ge h > 0, \quad \frac{h}{1 - (k-1)h} \ge \frac{1}{2}.$$

从而取 $N=k+2=\left[\frac{1}{h}\right]$,我们有 $a_{N-2}=a_k\geq \frac{3}{2}, a_N<0\leq 1$.

综上,我们不妨假设 $a_1 \le 1$. 下面我们可以用数学归纳法证明 $\{a_n\}$ 是单调增的,且 $a_n \le 1, \forall n$. 由于

$$a_{n+1} - a_n = \frac{(a_n - 1)^2}{2 - a_n},$$

我们可知当 $a_n < 1$ 时, $a_{n+1} > a_n$. 又因为 $2 - a_n > 1 \rightarrow a_{n+1} \le 1$. 到此我们证明了 $\lim_{n \to +\infty} a_n$ 存在。设 $\lim_{n \to +\infty} a_n = a$,则 (2-a)a = 1. 解方程知 a = 1.

19. 设数列 $\{a_n\}$ 满足不等式 $0 \le a_k \le 100 a_n (n \le k \le 2n, n = 1, 2, \cdots)$,且无穷级数 $\sum_{n=1}^{\infty} a_n$ 收敛。证明 $\lim_{n \to +\infty} n a_n = 0$

证明. 显然 $a_{2n} \leq 100a_n$, $a_{2n} \leq 100a_{n+1}$, \cdots , $a_{2n} \leq 100a_{2n-1}$. 从而

$$0 \le 2na_{2n} \le 200 \sum_{k=n}^{2n-1} a_k.$$

由于 $\sum_{n=1}^{\infty} a_n$ 收敛,知 $\lim_{n\to+\infty} 200 \sum_{k=n}^{2n-1} a_k = 0$. 由夹逼定理知, $\lim_{n\to+\infty} 2na_{2n} = 0$.

同理, $a_{2n-1} \le 100a_n$, $a_{2n-1} \le 100a_{n+1}$, \cdots , $a_{2n-1} \le 100a_{2n-2}$. 将所有的不等式加起来,我们有

$$0 \le (2n-1)a_{2n-1} = a_{2n-1} + 2(n-1)a_{2n-1} \le 2 * 100 \sum_{k=n}^{2n-2} a_k + a_{2n-1} \le 200 \sum_{k=n}^{2n-1} a_k.$$

20. 证明:
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \cdots \left(1 + \frac{n}{n^2} \right) = e^{\frac{1}{2}}$$

证明. 通过简单计算, 我们可以得知

$$\left(1 + \frac{n}{2n^2}\right)^2 \le \left(1 + \frac{k}{n^2}\right) \left(1 + \frac{n - k + 1}{n^2}\right), \quad \forall k \le \frac{n}{2}, k \in \mathbb{N}.$$

由此可见

$$\left(1+\frac{n}{2n^2}\right)^n < \left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right).$$

另一方面

$$\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right) \le \left(\frac{\sum_{k=1}^n \left(1+\frac{k}{n^2}\right)}{n}\right)^n = \left(1+\frac{(n+1)}{2n^2}\right)^n.$$

很显然

$$\lim_{n \to +\infty} \left(1 + \frac{n}{2n^2} \right)^n = e^{\frac{1}{2}},$$

$$\lim_{n \to +\infty} \left(1 + \frac{(n+1)}{2n^2} \right)^n = e^{\frac{1}{2}}.$$

由夹逼定理, 命题得证。

21. 设 $a_1 > b_1 > 0$, 令

$$a_n = \frac{a_{n-1} + b_{n-1}}{2}, \quad b_n = \frac{2a_{n-1}b_{n-1}}{a_{n-1} + b_{n-1}}, \quad n = 2, 3, \dots$$

证明: 数列 $\{a_n\}$ 与 $\{b_n\}$ 都收敛, 且 $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}b_n=\sqrt{a_1b_1}$.

证明. 很显然

$$b_n \le \sqrt{a_{n-1}b_{n-1}} \le a_n, \quad \forall n = 2, 3 \cdots.$$

于是

$$a_n = \frac{a_{n-1} + b_{n-1}}{2} \le \frac{a_{n-1} + a_{n-1}}{2} = a_{n-1},$$

$$b_n - b_{n-1} = \frac{(a_{n-1} - b_{n-1}) \cdot b_{n-1}}{a_{n-1} + b_{n-1}} \ge 0 \Rightarrow b_n \ge b_{n-1}.$$

所以

$$b_1 \le b_2 \le \dots \le b_n \le \dots \le a_n \le \dots \le a_2 \le a_1.$$

由实数连续性命题 (二) 可知, $\lim_{n\to+\infty} a_n$ 和 $\lim_{n\to+\infty} b_n$ 都存在。 设 $\lim_{n\to+\infty} a_n = a$, $\lim_{n\to+\infty} b_n = b$,

误
$$\lim_{n\to+\infty} a_n = a$$
, $\lim_{n\to+\infty} b_n = b$,

$$a_n b_n = a_{n-1} b_{n-1} = \dots = a_1 b_1 \Rightarrow ab = a_1 b_1.$$

 $a_n = \frac{a_{n-1} + b_{n-1}}{2} \Rightarrow a = \frac{a+b}{2} \Rightarrow a = b.$

于是 $a = b = \sqrt{a_1 b_1}$.

22. 当 $n \ge 3$ 时,证明:

$$\sum_{k=0}^{n} \frac{1}{k!} - \frac{3}{2n} < \left(1 + \frac{1}{n}\right)^{n} < \sum_{k=0}^{n} \frac{1}{k!}.$$

证明. 在证明该题之前,我们先证明如下结论:数列 $a_1, a_2, \dots a_n$ 满足 $n \geq 2, a_k \geq -1, k = 1, 2, \dots, n$ 且它们有相同的符号,则

$$\prod_{k=1}^{n} (1 + a_k) \ge 1 + \sum_{k=1}^{n} a_k.$$

我们用归纳法来证明此命题:

(1) 当 n=2 时, $(1+a_1)\cdot(1+a_2)=1+a_1+a_2+a_1a_2\geq 1+a_1+a_2$,命题成立。

(2) 假设
$$n = k$$
 时,命题亦成立,i.e. $\prod_{n=1}^{k} (1 + a_n) \ge 1 + \sum_{n=1}^{k} a_n$.

(3) 下面证明当 n = k + 1 时,命题亦成立。

命题得证。

下面我们用上述命题来证明此题。

$$\left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$$

首先,由 $(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{k-1}{n})<1, \forall k \leq n$,我们可知

$$\left(1 + \frac{1}{n}\right)^n < \sum_{k=0}^n \frac{1}{k!}.$$

右边的不等式的得证。

另一方面,应用上面证明的结论,可知

$$\left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \ge 1 - \sum_{l=1}^{k-1} \frac{l}{n} = 1 - \frac{(k-1)k}{2n}.$$

于是

$$\left(1 + \frac{1}{n}\right)^n \ge \sum_{k=0}^n \frac{1}{k!} - \frac{1}{2n} \sum_{k=0}^{n-2} \frac{1}{k!} > \sum_{k=0}^n \frac{1}{k!} - \frac{3}{2n}$$

左边的不等式得证。

$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k} \right).$$

求
$$\lim_{n \to +\infty} x_n$$
 (其中 $\prod_{k=1}^n$ 表示从 $k=1$ 到 $k=n$ 的连乘积).

解. 我们先计算

$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k} \right)$$

$$= \frac{a_1 + 1}{a_1} \cdot \frac{a_2 + 1}{2(a_1 + 1)} \cdot \frac{a_3 + 1}{3(a_2 + 1)} \cdots \frac{a_n + 1}{n(a_{n-1} + 1)}$$

$$= \frac{a_n + 1}{n!a_1}$$

另一方面

$$a_1 = 1!$$
 $a_2 = 2! \left(1 + \frac{1}{1!}\right)$
 $a_3 = 3! \left(1 + \frac{1}{1!} + \frac{1}{2!}\right)$
...

$$a_n = n! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n-1)!} \right)$$

从而知,

$$a_n + 1 = n! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right).$$

手是: $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}) = e.$

24. 设 $H_n=1+\frac{1}{2}+\cdots+\frac{1}{n},\ n\in\mathbb{N},\$ 用 K_n 表示使得 $H_k\geq n$ 的最小下标,求 $\lim_{n\to+\infty}\frac{K_{n+1}}{K_n}$

解. 我们记 $x_n = H_n - \ln n$, 则 $\lim_{n \to +\infty} x_n = C(Euler 常数)$. 现在我们计算

$$x_{K_{n+1}} - x_{K_n} = \left(\frac{1}{K_n + 1} + \dots + \frac{1}{K_{n+1}}\right) - \ln K_{n+1} + \ln K_n.$$

另一方面

$$1 - \frac{1}{K_n} \le \left(\frac{1}{K_n + 1} + \dots + \frac{1}{K_{n+1}}\right) < 1 + \frac{1}{K_{n+1}}.$$

从而由夹逼定理知

$$0 = \lim_{n \to +\infty} (x_{K_{n+1}} - x_{K_n}) = \lim_{n \to +\infty} (1 - \ln K_{n+1} + \ln K_n).$$

$$\lim_{n\to +\infty} \frac{K_{n+1}}{K_n} = e.$$

25. 读 $y_0 \ge 2, y_n = y_{n-1}^2 - 2(n \in \mathbb{N})$

$$S_n = \frac{1}{y_0} + \frac{1}{y_0 y_1} + \dots + \frac{1}{y_0 y_1 \dots y_n}.$$

证明:
$$\lim_{n \to +\infty} S_n = \frac{y_0 - \sqrt{y_0^2 - 4}}{2}$$
.

证明. 如果
$$y_0 = 2$$
, 则 $y_n = 2$, $\forall n > 0$ 。从而 $S_n = \sum_{k=1}^{n+1} \frac{1}{2^k} = 1 - \frac{1}{2^{n+1}}$. 于是

$$\lim_{n \to +\infty} S_n = 1 = \frac{y_0 - \sqrt{y_0^2 - 4}}{2}.$$

1.7 复习题 1

49

下面证明当 $y_0 > 2$ 时结论亦成立。取 $a = \frac{y_0 - \sqrt{y_0^2 - 4}}{2}$. 简单计算可知

$$y_0 = a + \frac{1}{a}.$$

由此

$$y_1 = y_0^2 - 2 = \left(a + \frac{1}{a}\right)^2 - 2 = a^2 + \frac{1}{a^2}$$

$$y_2 = y_1^2 - 2 = \left(a^2 + \frac{1}{a^2}\right)^2 - 2 = a^4 + \frac{1}{a^4}$$
...
$$y_n = y_{n-1}^2 - 2 = \left(a^{2^{n-1}} + \frac{1}{a^{2^{n-1}}}\right)^2 - 2 = a^{2^n} + \frac{1}{a^{2^n}}$$

于是

$$y_0 y_1 \cdots y_n = \frac{1}{a - \frac{1}{a}} \left[\left(a - \frac{1}{a} \right) \left(a + \frac{1}{a} \right) \left(a^2 + \frac{1}{a^2} \right) \cdots \left(a^{2^n} + \frac{1}{a^{2^n}} \right) \right]$$

$$= \frac{a}{a^2 - 1} \left[\left(a^{2^n} \right)^2 - \left(\frac{1}{a^{2^n}} \right)^2 \right]$$

$$= \frac{a}{a^2 - 1} \frac{a^{2^{n+2}} - 1}{a^{2^{n+1}}}$$

从而

$$\frac{1}{y_0 y_1 \cdots y_n} = \frac{a^2 - 1}{a} \frac{a^{2^{n+1}}}{a^{2^{n+2}} - 1} = \frac{a^2 - 1}{a} \left(\frac{1}{a^{2^{n+1}} - 1} - \frac{1}{a^{2^{n+2}} - 1} \right).$$

由此可知

$$S_n = \frac{a^2 - 1}{a} \left(\frac{1}{a^2 - 1} - \frac{1}{a^{2^{n+2}} - 1} \right).$$

进而
$$\lim_{n \to +\infty} S_n = \frac{a^2 - 1}{a} \left(\frac{1}{a^2 - 1} + 1 \right) = a$$
. 命题得证。

26. 令数列 $\{b_n\}$ 满足

$$b_n = \sum_{k=0}^n \frac{1}{C_n^k}, \quad n = 1, 2, \cdots.$$

证明:
$$(1)$$
 当 $n \ge 2$ 时, $b_n = \frac{n+1}{2n}b_{n-1} + 1$; $(2)\lim_{n \to +\infty} b_n = 2$.

50 第一章 数列极限

证明. (1). 直接计算

$$\frac{n+1}{n}b_{n-1} = \sum_{k=0}^{n-1} \frac{k!(n-1-k)!}{(n-1)!} \cdot \frac{n+1}{n}$$

$$= \sum_{k=0}^{n-1} \frac{k!(n-k)!}{n!} \left(1 + \frac{k+1}{n-k}\right)$$

$$= \sum_{k=0}^{n-1} \frac{k!(n-k)!}{n!} + \sum_{k=1}^{n} \frac{k!(n-k)!}{n!}$$

$$= \sum_{k=0}^{n-1} \frac{k!(n-k)!}{n!} + \frac{n!(n-n)!}{n!} + \sum_{k=1}^{n} \frac{k!(n-k)!}{n!} + \frac{0!(n-0)!}{n!} - 2$$

$$= 2 \cdot \sum_{k=0}^{n} \frac{k!(n-k)!}{n!} - 2$$

$$= 2b_n - 2$$

所以, $b_n = \frac{n+1}{2n}b_{n-1} + 1$ 。

(2) 当 n > 4, 我们有 $b_{n-1} > 2\left(1 + \frac{1}{n-1}\right) = \frac{2n}{n-1}$, 从而

$$\frac{b_n}{b_{n-1}} = \frac{n+1}{2n} + \frac{1}{b_{n-1}} < \frac{n+1}{2n} + \frac{n-1}{2n} = 1.$$

即从 n > 4 起,数列 $\{b_n\}$ 单调递减。另一方面,显然 $b_n \geq 2, \forall n \geq 2$. 由此可知 $\{b_n\}$ 是收敛的。对 (1) 中的等式取极限可知, $\lim_{n \to +\infty} b_n = 2$.

27. 设 $S_n = 1 + 2^2 + 3^3 + \cdots + n^n$. 证明:

$$n^{n} \left[1 + \frac{1}{4(n-1)} \right] < S_{n} < n^{n} \left[1 + \frac{2}{e(n-1)} \right].$$

证明. 提取 n^n 可得

$$S_n = n^n \left[1 + \frac{1}{n^n} + \frac{2^2}{n^n} + \dots + \frac{(n-1)^{n-1}}{n^n} \right].$$

显然

$$\begin{split} \frac{1}{n-1} \left(1 - \frac{1}{n} \right)^n &= \frac{(n-1)^{n-1}}{n^n} \\ &< \frac{1}{n^n} + \frac{2^2}{n^n} + \dots + \frac{(n-1)^{n-1}}{n^n} \\ &< \frac{(n-2)^{n-1}}{n^n} + \frac{(n-1)^{n-1}}{n^n} < \frac{2(n-1)^{n-1}}{n^n} \\ &< \frac{2}{n-1} \left(1 - \frac{1}{n} \right)^n \,. \end{split}$$

我们不难证明 $\{\left(1-\frac{1}{n}\right)^n\}$ 是单调增且 $\lim_{n\to+\infty}\left(1-\frac{1}{n}\right)^n=\frac{1}{e}$. 所以

$$\frac{1}{4} = \left(1 - \frac{1}{2}\right)^2 < \left(1 - \frac{1}{n}\right)^n < \frac{1}{e}.$$

将上述不等式综合起来, 我们就证明了此题。

28. 设 $x_n > 0$. 证明:

1.7 复习题 1 51

(1)
$$\overline{\lim}_{n \to +\infty} \left(\frac{x_1 + x_{n+1}}{x_n} \right)^n \ge e;$$

(2) 上式中的 e 为最佳常数。

证明. (1) $\overline{\lim_{n\to+\infty}}\left(\frac{x_1+x_{n+1}}{x_n}\right)^n\geq e$ 等价于 $\overline{\lim_{n\to+\infty}}\left(\frac{x_1+x_{n+1}}{x_n}\cdot\frac{n}{1+n}\right)^n\geq 1$. 我们用反证法来证明该命题。如果

$$\overline{\lim}_{n \to +\infty} \left(\frac{x_1 + x_{n+1}}{x_n} \cdot \frac{n}{1+n} \right)^n < 1,$$

则存在 N > 0, 当 n > N 时, 我们有

$$\frac{x_1 + x_{n+1}}{x_n} \cdot \frac{n}{1+n} < 1, \forall n > N.$$

于是

$$\frac{x_{N+1}}{N+1} - \frac{x_{N+2}}{N+2} > \frac{x_1}{N+2}$$

$$\frac{x_{N+2}}{N+2} - \frac{x_{N+3}}{N+3} > \frac{x_1}{N+3}$$

$$\frac{x_{n-1}}{n-1} - \frac{x_n}{n} > \frac{x_1}{n}$$

把以上的不等式加起来, 我们有

$$\frac{x_{N+1}}{N+1} > \frac{x_{N+1}}{N+1} - \frac{x_n}{n} > \sum_{k=N+1}^n \frac{x_1}{k} \to +\infty.$$

这显然与 $\frac{x_{N+1}}{N+1}$ 是个有限数矛盾。从而假设不成立,命题得证。

(2) 现证明对于任意的 $\varepsilon > 0$,存在数列 $\{x_n\}$ 使得

$$\overline{\lim}_{n \to +\infty} \left(\frac{x_1 + x_{n+1}}{x_n} \right)^n < e^{1+\varepsilon}.$$

我们取 $x_1 = \frac{\varepsilon}{2}, x_n = n, 则$

$$\overline{\lim}_{n \to +\infty} \left(\frac{x_1 + x_{n+1}}{x_n} \right)^n = \lim_{n \to +\infty} \left(\frac{\frac{\varepsilon}{2} + n + 1}{n} \right)^n = e^{1 + \frac{\varepsilon}{2}} < e^{1 + \varepsilon}.$$

这说明 $e^{1+\varepsilon}$ 不是下确界。命题得证。

29. 设 $a_n > 0$. 证明: $\overline{\lim}_{n \to +\infty} n \left(\frac{1 + a_{n+1}}{a_n} - 1 \right) \ge 1$.

证明. 如果 $\overline{\lim}_{n\to+\infty} n\left(\frac{1+a_{n+1}}{a_n}-1\right) < 1$, 则,存在 N>0, 当 n>N 时有,

$$n\left(\frac{1+a_{n+1}}{a_n}-1\right) < 1 \Rightarrow \frac{a_n}{n} - \frac{a_{n+1}}{n+1} > \frac{1}{n+1}.$$

于是:

$$\frac{a_{N+1}}{N+1} > \frac{a_{N+1}}{N+1} - \frac{a_n}{n} > \sum_{k=N+2}^{n} \frac{1}{k}.$$

当 $n \to +\infty$ 时, $\sum_{k=0}^{n} \frac{1}{k} \to +\infty$. 这与 $\frac{a_{N+1}}{N+1}$ 是个有限数矛盾。从而假设不成立。 **30.** 设 $2a_{n+1}=1+b_n^2, 2b_{n+1}=2a_n-a_n^2, 0 \le b_n \le \frac{1}{2} \le a_n, n=1,2,\cdots$. 证明:数列 $\{a_n\}, \{b_n\}$ 均收敛,并求其极限之值。

证明. 很容易证得: $a_n \leq \frac{5}{8}, \forall n$.

$$a_{n+1} - a_n = \frac{1}{2}(b_n + b_{n-1})(b_n - b_{n-1})$$

$$b_{n+1} - b_n = \frac{1}{2}(2 - a_n - a_{n-1})(a_n - a_{n-1})$$

由此可得

$$|a_{n+1} - a_n| \le \frac{1}{2^2} |a_{n-1} - a_{n-2}|$$

 $|b_{n+1} - b_n| \le \frac{1}{2^2} |b_{n-1} - b_{n-2}|$

取 $A = \max\{|a_2 - a_1|, |a_3 - a_2|\}, B = \max\{|b_2 - b_1|, |b_3 - b_2|\}, 则$

$$|a_n - a_{n-1}| \le \frac{1}{2^{2[\frac{n}{2}] - 2}} A$$
$$|b_n - b_{n-1}| \le \frac{1}{2^{2[\frac{n}{2}] - 2}} B$$

由此可见,数列 $\{a_n\}$ 和 $\{b_n\}$ 都是 Cauchy 列。从而都收敛。

假设
$$\lim_{n\to+\infty} a_n = a$$
, $\lim_{n\to+\infty} b_n = b$, 则

$$2a = 1 + b^2,$$
$$2b = 2a - a^2.$$

解方程组可知, $(b^2 + 2b - 1)(b^2 - 2b + 3) = 0$. 解得 $b = \sqrt{2} - 1$, $a = 2 - \sqrt{2}$.

参考文献

[徐薜] 徐森林,薜春华编著《数学分析》,清华大学出版社,2005.

54 参考文献

后 记