PRÁTICA 01 - INTRODUÇÃO AOS CIRCUITOS DIGITAIS

Voltar à home Próxima Aula

OBJETIVOS

- Estabelecer um primeiro contato com os equipamentos do laboratório;
- Medir experimentalmente as grandezas elétricas, resistividade, tensão e corrente;

PARTE 1 - USO DO MULTÍMETRO

Multímetro é um equipamento que permite a medição de diversas grandezas elétricas, como tensão e corrente (contínua e alternada), resistência elétrica, capacitância e continuidade de circuitos. É possível alternar entre grandezas a serem medidas utilizando sua CHAVE SELETORA.

A seguir é mostrada a ilustração de um manual de multímetro. O procedimento para realização das leituras pode ser estendido a qualquer marca:

A. Medidas de Tensão DC

Figura 2

Advertência

Para evitar ferimentos pessoais ou danos ao instrumento a partir de choques elétricos, por favor não tente medir tensões maiores que 600V DC / AC RMS.

Posicione a chave rotativa em uma das faixas **V=** (200mV, 2000mV, 20V, 200V ou 600V).

C. Medidas de Resistência

Advertência

Para evitar danos ao instrumento ou ao dispositivo em teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes da medida de resistência.

Figura 4

Posicione a chave rotativa em umas faixas Ω (200 Ω , 2000 Ω , 20k Ω , 200k Ω , 2000k Ω).

Nota

• As pontas de prova podem adicionar 0.1Ω a 0.2Ω de erro na medida de resistência.

PARTE 2 - USO DO PROTOBOARD

Protoboard, também conhecida como Matriz de Contatos, nada mais é que uma placa com contatos metálicos interligados, de acordo com um padrão que o usuário deve conhecer. Observe a figura a seguir:

Uma Protoboard pode ser dividida em TRES partes:

- As duas linhas (+ e -) da parte inferior e superior possuem seus orifícios interligados, ou seja, todos os orifícios da linha + são interligados entre si e todos os orifícios da linha - são interligados entre si;
- As colunas A, B, C, D e E possuem interligações são entre as colunas de uma mesma linha, ou seja, a coluna 1A, 1B, 1C, 1D e 1E possuem os orifícios interligados, assim como a coluna 2A, 2B, 2C, 2D e 2E possuem seus orifícios interligados, porém não há interligação entre os orifícios das linhas 1 e 2 e assim por diante;
- As colunas F, G, H, I e J possuem interligações entre as colunas de uma mesma linha, ou seja, a coluna 1F, 1G, 1H, 1I e 1J possuem os orifícios interligados, assim como a coluna 2F, 2G, 2H, 2I e 2J possuem seus orifícios interligados, porém não há interligação entre os orifícios das linhas 1 e 2 e assim por diante. Vale ressaltar que a coluna 1-ABCDE não se conecta com a coluna 1-FGHIJ e vice versa.

O padrão das interligações de contatos metálicos que o usuário deve conhecer pode ser assim demonstrado:

PARTE 3 - MONTAGEM DE CIRCUITOS

Serão entregues 4 resistores, os quais serão indicados por R1, R2, R3 e R4. Com os resistores em mãos, monte no protoboard, o circuito, como segue abaixo:

Figura 1 - Circuito a ser montado

Utilizando a tabela de códigos de cores, determine o valor de resistividade em Ohms de cada resistor:

- R1 = ____ Ω
- R2 = ____ Ω
- R3 = ____ Ω
- R4 = ____ Ω

Utilizando as fórmulas de cálculo de resistores, calcule qual a resistividade entre os pontos indicados no circuito:

Resistência em paralelo $R_p=rac{R_a imes R_b}{R_a+R_b}$ Resistência em Série $R_s=R_a+R_b$

- $R(A H) = ____ \Omega$
- $R(B-C) = \underline{\hspace{1cm}} \Omega$
- $R(C-D) = \underline{\hspace{1cm}} \Omega$
- $R(B D) = ____ \Omega$
- $R(E F) = \underline{\hspace{1cm}} \Omega$
- $R(F-G) = \underline{\hspace{1cm}} \Omega$
- $R(E-G) = \underline{\hspace{1cm}} \Omega$

As resistências nos pontos (B--C), (C--D), (E--F) e (F--G) tem o mesmo valor da resistência de R1, R2, R3 e R4, respectivamente? Por que isso acontece?

Utilizando o multímetro, realize a medição da resistência elétrica nos seguintes pontos:

- $R(A H) = ____ \Omega$
- $R(C D) = ____ \Omega$
- $R(B D) = ____ \Omega$
- $R(E F) = \underline{\hspace{1cm}} \Omega$
- $R(F-G) = \Omega$
- $R(E G) = ____ \Omega$

Conecte a fonte de alimentação aos pontos A (positivo) e H (negativo) do circuito apresentado na figura 1. Ajuste-a para suprir 5 volts. Utilize a primeira lei de Ohm (V = R x I) para calcular a diferença de potencial elétrico (tensão) entre os pontos indicados:

- V(A H) = _____Ω
- $V(C D) = \underline{\hspace{1cm}} \Omega$
- $V(B D) = \underline{\hspace{1cm}} \Omega$
- $V(E-F) = \underline{\hspace{1cm}} \Omega$
- V(E G) = _____Ω

Anexo: Tabela de cores de resistor

COR	1ª BANDA	2ª BANDA	3ª BANDA	MULTIPLICADOR	TOLERANCIA	
PRETO	0	0	0	1Ω		
MARROM	1	1	1 1 1 S	10Ω	±1%	(F)
VERMELHO	2	2	2	100Ω	±2%	(G)
LARANJA	3	3	3	1ΚΩ		
AMARELO	4	4	4	10ΚΩ		
VERDE	5	5	5	100ΚΩ	±0,5%	(D)
AZUL	6	6	6	1ΜΩ	±0,25%	(C)
VIOLETA	7	.7	7.	10ΜΩ	±0,1%	(B)
CINZA	8	8	8		±0,05%	
BRANCO	9	9	9	www.feiradecie	ncias.con	ı.br
DOURADO		r :		0,1	±5%	(J)
PRATEADO				0,01	±10%	(K)

