Введение в теорию графов.

Определение. Ориентированным графом G называется пара (V, E), где V — конечное множество вершин графа, а E — некоторое подмножество множества $V \times V$ или бинарное отношение на V. Элементы E называют ребрами (дугами). Для ребра $e = (u, v) \in E$ вершина u называется началом e, а вершина v — концом e, говорят, что ребро e ведет из u в v.

Пример.

В нашем курсе мы ограничимся рассмотрением графов, не содержащих ребер вида (u,u), называемых $nemne \ddot{u}$.

Утверждение. Пусть ориентированный граф имеет n различных вершин. Тогда существует $2^{n(n-1)}$ различных графов с n вершинами.

Утверждение. Пусть ориентированный граф G=(V, E) имеет n различных вершин и m дуг. Тогда существует $C_{n(n-1)}^m$ различных графов.

Определение. Графы (V_1, E_1) и (V_2, E_2) называются изоморфными, если существует взаимно-однозначная функция $f: V_1 \to V_2$, такая, что дуга (u,v) принадлежит E_1 тогда и только тогда когда дуга (f(u),f(v)) принадлежит E_2 . Будем говорить, что f реализуем изоморфизм графов.

Утверждение. Изоморфизм графов есть отношение эквивалентности.

Определение. Геометрический ориентированный граф G — это пара G=(V, E), где V — непустое конечное множество точек трехмерного пространства, а E — множество направленных простых кривых, удовлетворяющих следующим условиям:

- 1. каждая кривая множества E содержит ровно две точки множества V, которые являются ее граничными точками;
- 2. кривые множества E не имеют общих точек, за исключением точек из множества V.

Очевидно, что любой абстрактный граф изоморфен некоторому геометрическому графу.

Различные внешне геометрические графы могут быть изоморфны.

 K_4

 G_2

Решение задачи об изоморфизме даже при маленьких размерностях затруднительно.

Утверждение. Существует n! Различных взаимно-однозначных отображений вершин n-вершинного графа.

Пример. Обозначим $\varphi(n,m)$ количество неизоморфных ориентированных графов с n вершинами и m дугами.

$$\varphi(n,0)=1$$
, $\varphi(n,1)=1$, $\varphi(3,2)=4$.

Все неизоморфные графы для третьего случая приведены на рисунке.

Определение. В ориентированном графе *полустепенью исхода* $\delta^+(v)$ *вершины* v называется число исходящих из нее ребер, а *полустепенью* $3axo\partial a$ $\delta^-(v)$ — число входящих в вершину v ребер.

Утверждение. В ориентированном графе G=(V, E) $\sum_{v \in V} \delta^+(v) = \sum_{v \in V} \delta^-(v) = |E|$.

Необходимое условие изоморфизма.

Утверждение. Пусть ориентированные графы (V_1, E_1) и (V_2, E_2) изоморфны и функция $f: V_1 \to V_2$ реализует изоморфизм. Тогда для $\forall v \in V_1$ $\delta^-(v) = \delta^-(f(v))$ и $\delta^+(v) = \delta^+(f(v))$.

Следствие. Для изоморфных графов (V_1, E_1) и (V_2, E_2) множества пар значений $\{(\delta^-(v), \delta^+(v))/v \in V_1\}$ и $\{(\delta^-(v), \delta^+(v))/v \in V_2\}$ должны совпадать.

Пример. Приведенные на рисунке графы имеют совпадающие наборы пар полустепеней захода и исхода, но не изоморфны.

Способы задания графов.

Пусть орграф G=(V, E) имеет n различных вершин и m дуг

Матрицей инцидентности называется $n \times m$ матрица I, в которой $i_{ve}=1$ если v начало дуги e, $i_{ve}=-1$ если v конец дуги e и равно 0 в остальных случаях.

Матрицей смежности называется $n \times n$ матрица A, в которой a_{vu} =1 если $(v,u) \in E$ и равно 0 в противном случае.

Списком смежности вершины v называется список вершин u, таких что $(v,u) \in E$.

Определение. *Маршрут* в графе G — это такая последовательность $R = v_0, e_1, v_1, e_2, \ldots, e_s, v_s$ вершин и ребер в G, что ребро e_i соединяет вершины v_i и v_{i+1} при всех $0 \le i \le s-1$. Если $v_0 \ne v_s$, то говорят, что R соединяет вершины v_0 и v_s ; если к тому же все вершины в R различны, то он называется *путем*. Количество ребер в пути называется *длиной пути*.

Можно использовать сокращенную запись для маршрута и пути $R = v_0, v_1, \ldots, v_s$.

Утверждение. Из любого маршрута соединяющего вершины v_0 и v_n можно выделить путь соединяющего вершины v_0 и v_n .

Определение. Орграф G называется *сильно связным*, если каждая пара его вершин соединена путем (или, что равносильно, маршрутом).

В отличие от изоморфизма, связность графа проверяется достаточно легко.

Определение. Маршрут R, в котором $v_0 = v_n$, называется *замкнутым*, а если при этом он не имеет других повторяющихся вершин, то называется *циклом*.

Утверждение. Из любого замкнутого маршрута можно выделить цикл.

Неориентированный граф

Определение. Неориентированным графом G называется пара (V, E), где V — конечное множество вершин графа, а E — некоторое подмножество неупорядоченных пар вершин из V. Элементы E называют pefpamu.

Неупорядоченный граф можно рассматривать как ориентированный граф в котором множество E вместе с каждой дугой содержит встречную дугу. Если это не оговаривается особо, то обычно под графом подразумевается неориентированный граф. Ребра графа изображают отрезком или ненаправленной кривой.

Пример.

Утверждение. Пусть неориентированный граф имеет n различных вершин. Тогда существует $2^{C_n^2}$ различных графов с n вершинами.

Утверждение. Пусть неориентированный граф G=(V, E) имеет n различных вершин и m дуг. Тогда существует $C_{C_n}^m$ различных графов.

Определение. Ребро (u, v) и вершина v инцидентны. Степенью d(v) вершины v называется число инцидентных ей ребер.

Лемма. (Лемма о рукопожатиях). Сумма степеней вершин любого графа G равна удвоенному числу его ребер

$$\sum_{v \in V} d(v) = 2|E(G)|.$$

Следствие. (теорема Эйлера о нечетных вершинах). Количество вершин графа с нечётной степенью всегда чётно.

Определение. Вершина v называется изолированной, если d(v) = 0, и висячей, если d(v) = 1.

Определение. Последовательность $R = v_0$, e_1 , v_1 , e_2 , . . . , e_s , v_s вершин и ребер в G таких, что $v_0 \neq v_s$, ребро e_i соединяет вершины v_i и v_{i+1} при всех $0 \leq i \leq s-1$ и все вершины различны, называется *путем*.

Определение. Последовательность $R = v_0$, e_1 , v_1 , e_2 , . . . , e_s , v_s вершин и ребер в G таких, что $v_0 = v_s$, ребро e_i соединяет вершины v_i и v_{i+1} при всех $0 \le i \le s - 1$ и все вершины и ребра различны, называется *циклом*.

Замечание. Длина минимального цикла в неориентированном графе 3.

Лемма. Если в графе есть хотя бы одно ребро, но нет изолированных и висячих вершин, то в нем есть цикл.

Части графов

Определение. Граф $G_1=(V_1, E_1)$ называется подграфом графа G=(V, E), если $V_1 \subset V$ и $E \subset \{(u,v) \in E/u, v \in V_1\}$.

Определение. Граф $G_1=(V_1,E_1)$ называется подграфом графа G=(V,E) порожденным множеством V_1 , если $V_1 \subset V$ и $E=\{(u,v)\in E/u,v\in V_1\}$.

Определение. Операция удаления ребра е преобразует граф G=(V, E) в подграф $G=(V, E\setminus \{e\})$.

Определение. Операция удаления вершины v преобразует граф G=(V,E) в подграф $G=(V\setminus\{v\},E\setminus\{(v,u)/\forall u\in V\}).$

Определение. Граф G называется center c

k-связные графы.

Определение. Реберной связностью $\lambda(G)$ графа G называется наименьшее число ребер, после удаления которых граф становится несвязным. Говорят, что граф G рёберно k-связен, если $\lambda(G) \ge k$.

Определение. Вершинной связностью k(G) графа G называется наименьшее число вершин, после удаления которых граф становится несвязным или одновершинным.

Говорят, что граф G k-связен, если k $(G) \ge k$.

Утверждение. (необходимое условие k-связности). Если граф G k-связен (рёберно k-связен), то для любой вершины v $d(v) \ge k$.

Пример. Условие не является достаточным.

Теорема. Для любого графа G λ $(G) \ge k(G)$.

Необходимое условие изоморфизма неориентированных графов.

Утверждение. Для изоморфных графов (V_1, E_1) и (V_2, E_2) множества $\{d(v)/v \in V_1\}$ и $\{d(v)/v \in V_2\}$ должны совпадать.

Задача изоморфизма подграфа.

Пусть даны графы G=(V, E) и $G_1=(V_1, E_1)$. Существует ли подграф графа G изоморфный графу G_1 .

Определение. Граф на n вершинах называется полным графом или $\kappa n u + \kappa n u$, если любые две вершины соединены ребром. Обозначается K_n .

Задача о клике.

Существует ли подграф графа G изоморфный K_n .

ределение. Множество $V_1 \subset V$ называется независимым в графе G=(V,E), если для любых вершин u и v из V_1 $(u,v) \notin E$.

Задача о независимом множестве.

Существует ли подграф графа G изоморфный вырожденному графу на n вершинах.

Определение. Граф $\overline{G} = (V, \overline{E})$ называется дополнением к графу G = (V, E), если $\overline{E} \cap E = \emptyset$ и $(V, \overline{E} \cup E)$ полный граф.

Утверждение. Клика графа G=(V, E) является независимым множеством графа $\overline{G}=(V, \overline{E})$.