– Представљање целих бројева –

Увод

- § Преглед бројних система
- § Представљање ненегативних целих бројева
- **§ Конверзија**
- § Представљање целих бројева
- **§ Аритметика целих бројева**

Програмирање 1, ЕТФ — 2011 1/21 Програмирање 1, ЕТФ — 2011

Преглед бројних система

§ Цифарска репрезентација

- Вектор цифара $x=(X_{n-1},X_{n-2},...X_i,...X_1,X_0)=X_{n-1}X_{n-2}...X_i...X_1X_0$
- § Бројни систем је одређен следећим елементима:
 - Скупом (нумеричких) вредности цифара $X_i \in D_i \\ \mid D_i \mid$
 - Правила интерпретације

$$(X_{n-1}, X_{n-2}, ..., X_1, X_0) \rightarrow x$$

нередундантни (пресликавање 1:1) редундантни Преглед бројних система

§ Тежински бројни системи (позициони код)

2/21

$$x = \sum_{i=0}^{n-1} X_i \cdot W_i$$

§ Вектор тежина

$$W = (W_{n-1}, ...W_1, W_0)$$

§ Вектор основа

$$R=(R_{n-1}, ...R_1, R_0)$$

$$W_0 = 1, (\forall i : 1 \le i \le n-1) \mid W_i = W_{i-1} \cdot R_{i-1}$$

$$W_0 = 1, (\forall i : 1 \le i \le n-1) \mid W_i = \prod_{i=0}^{i-1} R_i$$

Класификација бројних система

§ Према вектору основе

• Фиксна основа => W=(rⁿ⁻¹, rⁿ⁻², ..., r² , r¹, 1) $x = \sum_{i=1}^{n-1} X_i \cdot r^i$

$$X - \sum_{i=0}^{\infty} A_i$$
 7

• Мешовита основа

нпр. представљање времена R=(24, 60, 60) => W=(3600, 60, 1)

§ Према скупу вредности цифара

• Канонички системи

$$D_i \in \{0,1,...,R_{i-1}\}$$

• Неканонички системи пример: Римски бројеви

Бројни системи

§ Конвенционални бројни системи са основом г

- Фиксна позитивна основа г
- Канонички скуп вредности

§ Најчешче коришћени системи:

• r=10, D={0,1,2,3,4,5,6,7,8,9}

- децимални

• r=2, $D=\{0,1\}$

- бинарни

r=8,

D={0,1,2,3,4,5,6,7}

- октални

• r=16,

 $D=\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

- хексадецимални

Програмирање 1, ЕТФ - 2011

5/21

Програмирање 1, ЕТФ - 2011

6/21

Ненегативни цели бројеви

§ Терминологија: Cardinal, Unsigned

§ Број различитих ненегативних целих бројева K=2ⁿ

- § Скуп кардиналаних бројева T={0, 1, 2, ..., maxcardinal}
- \S maxcardinal = $2^n 1$

Алгоритми конверзије

§ Из система са основом r у децимални

$$x = \sum_{i=0}^{n-1} X_i \cdot r^i = (\dots(X_{n-1} \cdot r + X_{n-2}) \cdot r + \dots + X_1) \cdot r + X_0$$

• HIP. $11001101_{(2)} = 205_{(10)}$?

$$\downarrow 1 = 1$$

$$1*2 + 1 = 3$$

$$6*2 + 0 = 12$$

•
$$11001101_{(2)} = 1*2^7 + 1*2^6 + 0*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*1 = 205$$

Алгоритми конверзије

§ Из децималног у систем са основом г

$$x = \sum_{i=0}^{n-1} X_i \cdot r^i = (\dots(X_{n-1} \cdot r + X_{n-2}) \cdot r + \dots + X_1) \cdot r + X_0$$

• HILD. $272_{(10)} = 100010000_{(2)}$?

Програмирање 1, ЕТФ – 2011 9/21

Алгоритми конверзије

§ Конверзија из бинарног у октални

пример: 1100101000₍₂₎ → X₍₈₎? (n=10)
 За представљање 8 различитих вредности довољно 3 бита
 ⇒групише се по 3 бита почевши од бита најмање тежине
 ⇒свака група представља једну окталну цифру
 ⇒број бита није дељив са 3→додају се водећи бити вредности 0
 1100101000 ₍₂₎ → 001 100 101 000₍₂₎ → 1450₍₈₎

§ Конверзија из бинарног у хексадецимални

- пример: $1100101000_{(2)} \rightarrow X_{(16)}$? (n=10) \Rightarrow групише се по 4 бита почевши од бита најмање тежине $1100101000_{(2)} \rightarrow 0011\ 0010\ 1000_{(2)} \rightarrow 328_{(16)}$
- § Пажња!!
 - конверзија 1101110₍₂₎ → X₍₁₆₎ (n=7): 6E
 - конверзија 01101110₍₂₎ →X₍₁₆₎ (n=8): 6E

Програмирање 1, ЕТФ — 2011 10/21

Алгоритми конверзије

§ Конверзија из окталног у бинарни

- пример: 126₍₈₎ →X₍₂₎? (n=7)
 ⇒свака цифра представља групу од три бита
 ⇒задржава се п бита најмање тежине (тзв. "доњи" бити)
 126₍₈₎ → <u>00</u>1 010 110₍₂₎ → 1010110₍₂₎
- § Конверзија из хексадецималног у бинарни
 - пример: $4FA_{(16)} \rightarrow X_{(2)}$? (n=11) \Rightarrow свака цифра представља групу од четири бита $4FA_{(16)} \rightarrow \mathbf{0}$ 100 1111 $1010_{(2)} \rightarrow 10011111010_{(2)}$
- **§ Конверзија октални** → хексадецимални
 - не може директно, 16 није степен 8
 - најједноставније: конвертовати најпре у бинарни
- § Питање: зашто програмери славе ноћ вештица (31. октобар) 25. децембра?

Цели бројеви

§ Терминологија: Integer

- § Број различитих ненегативних целих бројева K=2ⁿ
- § Скуп целих бројева T={minint, ..., -1, 0, 1, ..., maxint}
- § maxint = $2^{n-1} 1$
- § minint = -2^{n-1}

Одређивање комплемента двојке

§ Негативни бројеви се представљају

-|z|: (2ⁿ - |z|) п - дужина кодне речи

§ Практичан алгоритам

- (1) Комплементирају се сви бити (одреди се тзв. *комплемент јединице* или *комплемент највише цифре*)
- (2) На добијени комплемент јединице дода се 1

§ Једноставнији алгоритам

- (1) Почевши од цифре најмање тежине прескоче се све нуле и прва јединица и тако се број подели на два дела нпр. 00010|100
- (2) У левом делу се све 1 замене са 0 и обрнуто, а десни део остаје непромењен нпр. 11101|100

Пример

$$\S n = 4$$
 $x = 3_{(10)} = 0011_{(2)}$
 $y = -3_{(10)} = 1101_{(2)}?$

- § Алгоритам 1
 - (1) 0011 => 1100
 - (2) 1100 + 1 = 1101
- § Алгоритам 2
 - (1) 001 | 1
 - (2) 110 | 1 => 1101

Програмирање 1, ЕТФ — 2011

Програмирање 1, ЕТФ — 2011 14/21

Аритметика целих бројева

§ Пример 1

n = 4

x = +7 : 0111

y = +1:0001

x+y : 1000 = -8?

пренос: 0111

§ Пример 2

n = 4

x = -8 : 1000

v = -8 : 1000

x+y : 0000 = 0?

пренос: 1000

Задатак 1

- § Садржај десетобитне меморијске локације је: 2A6₍₁₆₎. Ако је у посматраној меморисјкој локацији смештен цео број (integer) представљен у комплементу двојке, колика је децимална вредност посматраног целог броја?
- § Решење:

$$x = 2A6_{(16)} = 1010100110_{(2)} < 0$$

$$-x = 0101011010_{(2)} = 346_{(10)} = > x = -346_{(10)}$$

13/21

Задатак 2

§ На рачунару који има меморијску реч ширине 14 бита извршава се операција: Y:=maxint+X. Ако је пре операције садржај меморијске локације Х: $2A6C_{(16)}$ колика је децимална вредност резултата Ү након извршене операције?

§ Решење:

maxint =
$$01111111111111_{(2)} = 1FFF_{(16)}$$

$$X = 10101001101100_{(2)} = 2A6C_{(16)} < 0$$

$$Y = 00101001101011_{(2)} = 0A6B_{(16)} > 0$$

$$Y=0A6B_{(16)}=(10*16+6)*16+11=2667_{(10)}$$

Програмирање 1, ЕТФ - 2011

17/21

Задатак 3

§ Цели бројеви A, B і C приказани су у другом комплементу на ширини од 8 bita. Нека је <u>вредност</u> броја A=105₁₀, а <u>бинарна</u> представа броја В у меморији се може записати као 75₁₆. Ако је потребно израчунати израз А:= A-B+C, који је услов неопходан и довољан да би се обезбедило да при рачунању не дође до прекорачења? Напомена: Прво се врши одузимање, да сабирање.

C) C≤104₁₀

§ Решење

$$maxint = 127$$
, $minint = -128$

Да не би дошло до прекорачења, збир након додавања С не сме да буде већи од 127 и мањи од -128

18/21

Задатак 4

§ Посматра се рачунар који ради са 9-битним бројевима представљеним у комплементу двојке. Која се вредност добије када се на овом рачунару израчуна израз (A-B)-(C-D)? Вредности операнада A і B су 217₁₀ и -F1₁₆, представе операнада С и D су 115₁₆ и 011000101₂.

C) 101111010₂

§ Решење: тражи се вредност резултата па ради лакшег рачунања, све вредности ће бити приказане у декадном систему. Приметити да приликом израчунавања израза долази до прекорачења али то није од интереса у задатку.

$$A = 217$$
, $B = -241$, $C = -235$, $D = 197$

Коначан резултат: -134

Зашто С) није тачно решење?

Зато што је то вредност 378

Задаци за самосталну вежбу

- § У неком рачунару цели бројеви се представљају у 10-битним локацијама у другом (потпуном) комплементу. У којем од наведених случајева ће приликом сабирања целих бројева I и J доћи до прекорачења?
 - А) Садржај локације у коју је смештено I је 3FA₁₆, а локације у коју је смештено J је 1FF₁₆
 - В) Вредност броја И је -202, а вредност броја Ј је -310 у декадном бројном систему.
 - (C) Вредност броја I је 110, а вредност броја J је 423 у декадном бројном систему.
- § На рачунару који има меморијску реч ширине 14 бита изврши се операција: Y:=minint-X. Ако је пре операције садржај меморијске локације X, која садржи 14-битни цео број, једнак 2А6С₁₆, колика је децимална вредност целобројног резултата Ү након извршене операције?
 - (A) -2668
- B) 2668
- C) **2667**

Задаци за самосталну вежбу

- § Уколико је садржај локације у коју је смештен највећи цео број MAXINT приказан у другом комплементу на неком рачунару 7FFF₁₆, како онда на том рачунару изгледа приказ броја који се добија као збир MININT и броја чији је приказ 03F0₁₆?
 - A) 1000 0011 1111 0001₂
 - B) 101 740₈
 - C) 43F0₁₆
- § Два броја приказана су у другом комплементу на дужини од 8 бита. Вредност броја А износи -99, а бинарни садржај локације у којој се налази други број Б је 11001011. Колика је вредност разлике A-B?
 - A) **104**
- B**) -47**
- (C) -46

Програмирање 1, ЕТФ — 2011 21/21