PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-045272

(43) Date of publication of application: 14.02.1995

(51)Int.Cl.

H01M 4/06 H01M 4/50

(21)Application number: 05-189499

(71)Applicant: TOSHIBA BATTERY CO LTD

(22)Date of filing:

30.07.1993

(72)Inventor: KOBAYASHI KAZUNARI

HIKATA SEIICHI

MAEDA MUTSUHIRO MIYASAKA KOJIRO

(54) MANGANESE DRY BATTERY

(57)Abstract:

PURPOSE: To attain low public pollution by controlling Ni, Co and Cr to a specific limit amount or less, of impurities contained in a positive electrode compound, and containing bismuth of specific amount or more in a negative electrode zinc alloy, so as to suppress corrosion of the negative electrode alloy. CONSTITUTION: A positive electrode compound 1 is prepared by using manganese dioxide as an active material mixed with pulverized carbon, electrolyte, etc. As this compound 1, a sum of contents of Ni. Co. Cr. contained as impurities, is set to 0.25wt.% or less relating to the weight of manganese dioxide which is a positive electrode active material. A zinc alloy negative electrode 2 contains bismuth of amount exceeding 0.01wt.%. In this way, corrosion resistance of the negative electrode containing no lead is improved.

LEGAL STATUS

[Date of request for examination]

24.09.1996

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3105115

[Date of registration]

01.09.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平7-45272

(43)公開日 平成7年(1995)2月14日

(51) Int.Cl.6

識別配号

FΙ

技術表示箇所

H01M 4/06

Ε

Т

4/50

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号	特願平5-189499	(71) 出願人 000003539
		東芝電池株式会社
(22)出願日	平成5年(1993)7月30日	東京都品川区南品川3丁目4番10号
		(72)発明者 小林 一成
		東京都品川区南品川3丁目4番10号 東芝
		電池株式会社内
		(72)発明者 日方 誠一
		東京都品川区南品川3丁目4番10号 東芝
		電池株式会社内
		(72)発明者 前田 睦宏
		東京都品川区南品川3丁目4番10号 東芝
		電池株式会社内
		(74)代理人 弁理士 津国 肇 (外1名)
		最終質に続く

(54) 【発明の名称】 マンガン乾電池

(57)【要約】

【構成】 正極合剤中のニッケル、コバルト及び銅の含 有量の合計が、該合剤中の二酸化マンガンの量に対して 0. 25重量%以下であり;亜鉛合金負極が0.01重 量%を越えるビスマスを含有することを特徴とするマン ガン乾電池。

【効果】 鉛を含有しない亜鉛合金負極を用いて、従来 の鉛添加亜鉛合金負極を用いたマンガン乾電池と同等の 腐食防止効果を示し、したがって同等の性能、特に使用 寿命を示す低公害マンガン乾電池が得られる。

2

【特許請求の範囲】

【請求項1】 (1) 正極活物質として二酸化マンガンを含む正極合剤、(2) 亜鉛合金負極及び(3) セパレータを備えたマンガン乾電池において、(1) の正極合剤中のニッケル、コバルト及び銅の含有量の合計が、該合剤中の二酸化マンガンの量に対して0. 25重量%以下であり;(2) の亜鉛合金負極が0.01重量%を越えるビスマスを含有することを特徴とするマンガン乾電池。

1

【請求項2】 (3) のセパレータの表面にビスマス化 10 合物が存在する請求項1 記載のマンガン乾電池。

【請求項3】 (3) のセパレータの表面にカチオン界面活性剤が存在する請求項1記載のマンガン乾電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はマンガン乾電池に関し、 さらに詳しくは、正極活物質として二酸化マンガン、負極として亜鉛合金を用いるマンガン乾電池において、該 亜鉛合金に鉛を添加しなくても、腐食に対して鉛添加亜 鉛合金と同等の抵抗性を有する、低公害マンガン乾電池 に関する。

[0002]

【従来の技術】マンガン乾電池の金属容器を兼ねる負極 缶として、亜鉛合金は古くから用いられてきた。負極缶 には、その内容物である電解液や正極活物質による腐食 に対して耐食性を付与する目的で、0.005重量%を 越える量、代表的には0.1~0.5重量%の鉛を添加 した亜鉛合金が用いられてきた。

【0003】このようにして負極缶に含まれる鉛は、微量ではあるが人体に有害であり、その流通・消費量が多くなるにつれて、産業廃棄物や家庭廃棄物に混入して廃棄される鉛による環境汚染を防止する必要が生じてきた。

【0004】その対策として、マンガン乾電池の負極缶に、鉛を添加しない亜鉛合金の使用が強く望まれている。しかしながら、マンガン乾電池の負極材料として評価した場合、鉛を添加しない負極缶は鉛添加負極缶と比較して、電池内の電解液及び正極合剤によって腐食を受け易く、長期間貯蔵後の電池性能が大幅に劣り、特に天然二酸化マンガンを使用した電池の場合は、それが顕著 40であった。

[0005]

【発明が解決しようとする課題】本発明は、このような 鉛無添加負極缶が抱える腐食の問題を解決し、特に天然 二酸化マンガンを使用した場合においても、電池の長期 間使用後における性能劣化を防ぎ、鉛添加負極缶を使用 した電池に比較して遜色のない性能を示す、低公害マン ガン乾電池を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明者らは、上記の課 50

題を解決するために検討を重ねた結果、このような負極 合金の腐食が、正極合剤中に含まれる不純物のうち、特 にニッケル、コバルト及び銅の存在量を特定の限界量以 下に制御し、かつ負極亜鉛合金中に特定量を越えるビス マスを含有させることによって、抑制できることを見出 して、本発明を完成するに至った。

【0007】すなわち、本発明のマンガン乾電池は、

(1) 正極活物質として二酸化マンガンを含む正極合剤、(2) 亜鉛合金負極及び(3) セパレータを備えたマンガン乾電池において、(1) の正極合剤中のニッケル、コバルト及び銅の含有量の合計が、該合剤中の二酸化マンガンの量に対して0.25重量%以下であり;

(2) の亜鉛合金負極が 0. 01重量%を越えるビスマスを含有することを特徴とする。

【0008】本発明に用いられる(1)の正極合剤は、 活物質として二酸化マンガンを用い、微粉末カーボン及 び電解液などと混和して調製される。本発明において特 徴的なことは、正極合剤として、不純物として含有され るニッケル、コバルト及び銅の含有量の合計が、元素と して、該正極合剤に含まれる正極活物質である二酸化マ ンガンの量に対して0.25重量%以下、好ましくは 0. 15重量%以下のものを用いることである。この不 純物は、主として原料の二酸化マンガンに由来し、酸化 物、塩化物、水酸化物などの形で正極合剤中に存在する が、その他の化合物の形で存在することもあり、上記の 量は元素としての合計存在量である。また、個々の元素 として、二酸化マンガンに対し、ニッケルが0.10重 量%以下、コバルトが0.10重量%以下、及び銅が 0.05重量%であることが好ましい。これらの元素の 正極合剤中における含有量の合計が二酸化マンガンに対 して0.25重量%を越えると、亜鉛合金負極の腐食及 びそれに伴う水素ガスの発生が大きい。

【0009】二酸化マンガンとしては、天然二酸化マンガン、電解二酸化マンガン、化学合成二酸化マンガンのいずれかを用いることもできるが、経済的に入手が容易でありながら、鉛を添加しない亜鉛合金負極に対して腐食をもたらすことの大きい天然二酸化マンガンにおいて、本発明の効果は特に顕著である。

【0010】本発明の第2の特徴は、(2)の亜鉛合金 負極が0.01重量%を越える量、好ましくは0.05 ~0.8重量%のビスマスを含有することであり、この ことによって、前述の(1)の正極合剤中のニッケル、 コバルト及び銅の含有量を特定量以下に抑えることと相 まって、鉛を含有しない負極の耐食性を向上させること ができる。亜鉛合金負極中のビスマスの量が0.01重 量%以下では、該亜鉛合金負極中に鉛を含有しない限り 満足する結果が得られず、負極の腐食及びそれに伴う水 素ガスの発生が大きい。また、0.8重量%を越えて添 加しても、添加量に見合う効果が期待できない。このよ うな亜鉛合金負極は、例えば負極缶のような形状で用い られる。

【0011】(3)のセパレータは、(1)の正極合剤と(2)の亜鉛合金負極とが直接に接触しないように、(1)と(2)の間に介在する。基材としてはクラフト

(1) と(2) の間に介任する。基材としてはクラフト 紙が一般的である。また、必要に応じて、ポリビニルア ルコール、デンプン及び/又はデンプン誘導体などを含む糊剤を表面に塗布してもよい。

【0012】本発明においては、前述の(1)の正極合剤中の不純物の量、ならびに(2)の亜鉛合金中のビスマスの量に加えて、(3)のセパレータの表面に、ビスマス化合物及び/又はカチオン界面活性剤が存在することによって、負極の腐食を抑制する効果を、さらに向上させることができる。このようなビスマス化合物及び/又はカチオン界面活性剤は、前述の糊剤の成分として糊剤に添加し、該糊剤をセパレータ基材に塗布してもよいし、別途、水溶液としてセパレータ基材に含浸又は塗布してもよく、スプレー化して塗布してもよい。

【0013】このようなセパレータの表面に存在するビスマス化合物としては、酸化ビスマス、水酸化ビスマス、水酸化ビスマス、塩化ビスマス、オキシ塩化ビスマス、フッ化ビスマス、硫化ビスマス、硫酸ビスマス及び硝酸ビスマスが例示され、酸化ビスマスが好ましい。セパレータの表面に存在するビスマス化合物の量は、負極の腐食を抑制する効果の点で、 $0.05\sim0.2\,\mathrm{mg/cm}^2$ がさらに好ましい。 $0.05\sim0.2\,\mathrm{mg/cm}^2$ がさらに好ましい。 $0.02\,\mathrm{mg/cm}^2$ 未満では、ビスマス化合物の存在による腐食抑制効果の向上は顕著でなく、 $0.6\,\mathrm{mg/cm}^2$ を越えると、腐食抑制効果はあるものの、電池の内部抵抗を上昇させる原因となる。

【0014】カチオン界面活性剤としては、第四級アン モニウム塩型、ピリジニウム塩型、イミダゾリン第四級 塩型、イソキノリニウム塩型、アミン塩型、第四級ホス ホニウム塩型が例示され、第四級アンモニウム塩型が好 ましい。第四級アンモニウム塩型カチオン界面活性剤と しては、ドデシルトリメチルアンモニウムクロリド、テ トラデシルトリメチルアンモニウムクロリド、ヘキサデ シルトリメチルアンモニウムクロリド、オクタデシルト リメチルアンモニウムクロリド及びベヘニルトリメチル アンモニウムクロリド、ならびにこれらの混合物、例え ば天然油脂に由来する牛脂アルキルトリメチルアンモニ 40 ウムクロリド、ヤシ油アルキルトリメチルアンモニウム クロリドのような1個の長鎖アルキル基を有するモノア ルキル系; テトラデシルベンジルジメチルアンモニウム クロリド、オクタデシルベンジルジメチルアンモニウム クロリド、牛脂アルキルベンジルジメチルアンモニウム クロリド、ヤシ油アルキルベンジルジメチルアンモニウ ムクロリドのような1個の長鎖アルキル基と1個のベン ジル基を有するモノアルキルベンジル系;ジドデシルジ メチルアンモニウムクロリド、ジステアリルジメチルア

4

クロリドのような2個の長鎖アルキル基又は長鎖アルケニル基を有するジアルキル系が例示され、モノアルキル系又はモノアルキルベンジル系が好ましく、モノアルキル系が特に好ましい。

【0015】セパレータの表面に存在するカチオン界面活性剤の量は、負極の腐食を抑制する効果の点で、0.005~0.1 mg/cm²の範囲が好ましく、0.005~0.02 mg/cm²がさらに好ましい。0.005 mg/cm²未満では、カチオン界面活性剤の存在による腐食抑制効果の向上は顕著でなく、0.1 mg/cm²を越えると、腐食抑制効果はあるものの、電圧劣化や重負荷放電における電池の性能劣化の原因となる。

【0016】セパレータの表面に、ビスマス化合物とカチオン界面活性剤が共存すると、それぞれが単独に存在する場合よりもさらに顕著な腐食抑制効果を示す。

[0017]

【発明の効果】本発明によって、環境を汚染する鉛を含有しない亜鉛合金負極を用いて、従来の鉛添加亜鉛合金 負極を用いた場合と同等の腐食防止効果を示し、したがって同等の性能、特に同等の使用寿命を示す低公害マンガン乾電池が得られる。

[0018]

【実施例】以下、本発明を実施例及び比較例によって説明する。これらの例において、部は重量部を表す。本発明は、これらの実施例によって限定されるべきではない。

【0019】実施例1~21

正極合剤の調製

天然二酸化マンガン60部とアセチレンブラック10部とを良く混合し、これに塩化亜鉛25重量%及び塩化アンモニウム2重量%を含む水溶液である電解液49部を加えて均一に混合することにより、正極合剤を調製した。用いた二酸化マンガン中のニッケル、コバルト及び銅の含有量は、高周波誘導結合型プラズマ発光分析の結果、表1に示すとおりであった。なお、ここに用いたアセチレンブラック、塩化亜鉛及び塩化アンモニウム中には、正極合剤中のニッケル、コバルト及び銅の含有量に影響を及ぼす程のこれらの金属元素を含んでいなかった。

【0020】負極缶の作製

一方、電気精錬した純度 9 9. 9 9 重量%以上の亜鉛地金に、表 1 に示す量のビスマスを添加して溶融し、合金試料を得た。この合金を圧延し、打ち抜いて亜鉛合金ペレットを得た。リン片状黒鉛とホウ酸の混合物を潤滑剤として用い、上記ペレットを、衝撃押出し法によってR20型負極缶に加工した。

【0021】セパレータの作製

ジル基を有するモノアルキルベンジル系;ジドデシルジ クラフト紙を基材とするセパレータを、次のようにして メチルアンモニウムクロリド、ジステアリルジメチルア 作製した。すなわち、ポリビニルアルコール、デンプ ンモニウムクロリド、ジオレイルジメチルアンモニウム 50 ン、及びポリオキシエチレン(15)ノニルフェニルエ

ーテルの水溶液からなる糊剤ペーストを調製し、さら に、実施例12以外には、表1に記載された量の酸化ビ スマス及び/又はオクタデシルトリメチルアンモニウム クロリドがクラフト紙に塗布される量の、酸化ビスマス 及び/又はオクタデシルトリメチルアンモニウムクロリ ドをこれに配合して均一に混合し、糊剤試料を得た。こ の糊剤試料をクラフト紙に塗布し、乾燥して、セパレー タを作製した。

【0022】マンガン乾電池の作製

パレータ3を用い、さらにこの種のマンガン乾電池に通 常用いられる炭素棒4、封口体5、正極端子板6、負極 端子板7、絶縁チューブ8及び外装缶9を用いて、図1 に示すR20型マンガン乾電池を作製した。これらの乾 電池を用いて、評価A、B及びCを行った。

【0023】評価A:300Ω連続放電(n=3) 上記によって作製した電池を、20℃に90日間貯蔵し た後、20℃の恒温槽中で300Ω連続放電させ、0. * * 9 Vに達するまでの持続時間を測定した。また、その放 電中の内部抵抗の最大値を、併せて測定した。

【0024】評価B:2Ω連続放電(n=3)

上記によって作製した電池を、20°Cの恒温槽中で2Ω 連続放電させ、0.9 Vに達するまでの持続時間を測定

【0025】評価C:2Ω連続放電終了後のガス発生量 (n = 3)

評価Bの連続放電を終了した電池を、流動パラフィンを 上記のようにして得られた正極合剤1、負極缶2及びセ 10 満たした倒置メスシリンダー内に入れて密閉し、20℃ の一定温度に15日間貯蔵して、電池より発生したガス をシリンダー内の上部に集積した。集積したガスの量 を、メスシリンダーの目盛りによって測定した。

【0026】評価結果

以上の評価A、B及びCの結果を第1表にまとめた。

[0027]

【表1】

第1表

実施	二酸化マンガン中 の含有量(重量%)			負極缶中の Bi含有量	セパレータへの付着量 (mg/cm²)		300Q連続放電		2Ω連続放電	ガ ス 発生量	
例					-	T	持続時間	内部抵抗	持続時間		
No.	Ni	Со	Cu	(重量%)	Bi ₂ O ₃	界面活性剤・	(h)	(Ω)	(h)	(m1)	
1	0.10	0.10	0.05	0.015	0.02	_	59.6	2.7	205. 4	110	
2	0.10	0.10	0.05	0.015	0.2	-	64.9	2.8	205. 1	101	
3	0.10	0.10	0.05	0.015	0.6	_	67.6	3.1	205. 3	97	
4	0.10	0.10	0.05	0.015	_	0.005	60.7	3.0	204. 2	108	
5	0.10	0.10	0.05	0.015	-	0.10	64.3	2.9	202.0	102	
6	0.10	0.10	0.05	0.015	0.6	. 0.10	69.7	3.0	202.1	94	
7	0.10	0.10	0.05	0.1	-		70.5	2.6	200.6	93	
8	0.10	0.10	0.05	0.1	0.02	_	72. 1	2.5	201.2	. 91	
9	0.10	0.10	0.05	0.1	0.6	_	74.5	2.7	201.3	88	
1 0	0.10	0.10	0.05	0.1	-	0.005	72.7	2. 5	201.0	90	
1 1	0.10	0.10	0.05	0.1		0.10	75.3	2.4	200. 2	87	

(注) * カチオン界面活性剤、オクタデシルトリメチルアンモニウムクロリド

[0028]

【表 2】

第1表(つづき)

20-20-00-00-00-00-00-00-00-00-00-00-00-0												
二酸化マンガン中の今有量(重量%)			負極缶中の セパレータへの付着量 Ri今有量 (mg/cm²)		300Ω連続放電		2 Q連続放電	ガス発生量				
		Cu	(重量%)			持続時間 (h)	内部抵抗 (Ω)	持続時間 (h)	(ml)			
0.10	0.10	0.05	0.20	_	_	80.9	2.3	200.7	81			
0.10	0.10	0.05	0.20	0.02	_	83.0	2.0	201. 1	79			
0.10	0.10	0.05	0.20	0.6	_	88.6	2. 2	200. 9	74			
0.10	0.10	0.05	0.20	_	0.005	85.0	2. 2	200. 1	77			
0.10	0.10	0.05	0. 20	-	0.10	88.4	2.0	199. 2	74			
0.10	0.10	0.05	0.20	0.6	0.10	95.0	2.4	199.0	69			
0.05	0.05	0.05	0.015	0.02	-	64. 2	2.6	204.1	102			
0.05	0.05	0.05	0.015	0.6	_	70.5	2.9	204.0	23			
0.05	0.05	0.05	0.015	-	0.005	64.9	2.8	202.1	101			
0.05	0.05	0.05	0.015	-	0.10	68.2	2.7	201.7	95			
	の含す Ni 0.10 0.10 0.10 0.10 0.10 0.05 0.05	の含有量(型 Ni Co 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05	の含有量 (重量%) Ni Co Cu 0.10 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	の含有量(重量%) Bi含有量 Ni Co Cu (重量%) 0.10 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.10 0.10 0.05 0.20 0.05 0.05 0.05 0.20 0.05 0.05 0.05 0.015 0.05 0.05 0.015 0.015 0.05 0.05 0.05 0.015 0.05 0.05 0.05 0.015 0.05 0.05 0.015 0.015	の含有量(重量%) Bi含有量 Ni Co Cu (重量%) BieO3 0.10 0.10 0.05 0.20 - 0.10 0.10 0.05 0.20 0.02 0.10 0.10 0.05 0.20 0.6 0.10 0.10 0.05 0.20 - 0.10 0.10 0.05 0.20 - 0.10 0.10 0.05 0.20 - 0.10 0.10 0.05 0.20 0.6 0.05 0.05 0.015 0.02 0.05 0.05 0.015 0.6 0.05 0.05 0.015 0.6 0.05 0.05 0.015 0.6 0.05 0.05 0.015 -	の含有量(重量%) Bi含有量 (mg/cm²) Ni Co Cu (重量%) Bi₂O ₃ 界面活性剤* 0.10 0.10 0.05 0.20 - - 0.10 0.10 0.05 0.20 0.02 - 0.10 0.10 0.05 0.20 0.6 - 0.10 0.10 0.05 0.20 - 0.005 0.10 0.10 0.05 0.20 - 0.10 0.10 0.10 0.05 0.20 - 0.10 0.05 0.05 0.20 0.6 0.10 0.05 0.05 0.015 0.02 - 0.05 0.05 0.015 0.6 - 0.05 0.05 0.015 0.6 - 0.05 0.05 0.015 - 0.005	の含有量(重量%) Bi含有量 (mg/cm²) 持続時間(h) Ni Co Cu (重量%) Bi₂O₃ 界面活性剤* 持続時間(h) 0.10 0.10 0.05 0.20 - - 80.9 0.10 0.10 0.05 0.20 0.02 - 83.0 0.10 0.10 0.05 0.20 - 0.005 85.0 0.10 0.10 0.05 0.20 - 0.10 88.4 0.10 0.10 0.05 0.20 - 0.10 88.4 0.10 0.10 0.05 0.20 - 0.10 95.0 0.05 0.05 0.015 0.02 - 64.2 0.05 0.05 0.015 0.6 - 70.5 0.05 0.05 0.015 - 0.005 64.9	の含有量(重量%) Bi含有量 (mg/cn²) 持続時間 (h) 内部抵抗 (Ω) Ni Co Cu (重量%) Bi₂O₃ 界面活性剤* 持続時間 (h) 内部抵抗 (Ω) 0.10 0.10 0.05 0.20 — — 80.9 2.3 0.10 0.10 0.05 0.20 — — 83.0 2.0 0.10 0.10 0.05 0.20 — 0.005 85.0 2.2 0.10 0.10 0.05 0.20 — 0.10 88.4 2.0 0.10 0.10 0.05 0.20 — 0.10 95.0 2.4 0.05 0.05 0.05 0.015 0.02 — 64.2 2.6 0.05 0.05 0.015 0.6 — 70.5 2.9 0.05 0.05 0.015 0.015 — 0.005 64.9 2.8	の含有量(重量%) Bi含有量 (mg/cm²) 持続時間(h) 内部抵抗(Ω) 持続時間(h) 持続時間(Ω) 0.10 0.10 0.05 0.20 0.02 - - - 80.9 2.3 200.7 201.1 0.10 0.10 0.05 0.20 0.02 - 83.0 2.0 201.1 201.1 0.10 0.10 0.05 0.20 - 0.6 - 88.6 2.2 200.9 0.10 0.10 0.05 0.20 - 0.005 85.0 2.2 200.1 0.10 0.10 0.05 0.20 - 0.10 88.4 2.0 199.2 0.10 0.10 0.05 0.20 - 0.10 95.0 2.4 199.0 0.05 0.05 0.05 0.05 0.05 0.015 0.06 - 0.02 - 64.2 2.6 204.1 0.05 0.05 0.05 0.05 0.015 0.015 0.06 - 0.005 0.05 2.9 204.0 0.05 0.05 0.05 0.05 0.015 0.015 - 0.005 0.005 0.015 0.015 - 0.005 0.005 0.005 0.015 -			

* カチオン界面活性剤、オクタデシルトリメチルアンモニウムクロリド

【0029】比較例1~4

二酸化マンガンとして、ニッケル、コバルト及び銅の含 有量の合計が本発明の範囲を超えた天然二酸化マンガン を用いたほかは、実施例1~21と同様にしてマンガン 乾電池を作製し、同様に評価した。二酸化マンガン中の ニッケル、コバルト及び銅の含有量、亜鉛合金負極中の* * ビスマスの含有量、セパレータ表面のビスマス化合物及 びカチオン界面活性剤の量、ならびに評価結果を第2表 にまとめた。

[0030]

【表3】

比較	二酸化 の含和		ガン中 負極缶中の 重量%) Bi含有量		セパレータへの付着量 (mg/cm²)		300Ω連続放電		2Ω連続放電	ガ ス発生量
例 No.	Ni	Со	Cu	(重量%)	Bi ₂ O ₃	界面活性剤*	持続時間 内部抵抗 (h) (Ω)		持続時間 (h)	(m1)
1	0.10	0.10	0.10	0. 20	0.6	0.10	58.0	3. 2	201.1	113
2	0.10	0.10	0.10	0.20	0.8	0.10	61.2	4.2	199. 4	107
3	0.15	0.10	0.05	0.20	0.6	0.10	62.9	2.9	198.7	104
4	0.10	0.15	0.05	0. 20	0.6	0.10	54.1	3.5	199. 1	121

(注) * カチオン界面活性剤、オクタデシルトリメチルアンモニウムクロリド

【0031】この結果から明らかなように、ニッケル、 コバルト及び銅の含有量の合計が本発明の範囲を越える 正極合剤を用いたマンガン乾電池は、本発明のマンガン 乾電池に比べて、300Ω又は2Ωの連続放電試験の結 果が劣っている。

【0032】比較例5~8

負極缶として、鉛を0.17重量%含有する従来の鉛含 有亜鉛合金を用い、二酸化マンガンとして、ニッケル、 コバルト及び銅の含有量の合計が本発明の範囲内である (比較例5) 又は範囲を越えた(比較例6~8) 天然二 50 酸化マンガンを用い、セパレータに塗布する糊剤にビス マス化合物、カチオン界面活性剤を添加しなかったもの を用いた以外は、実施例1~21と同様にしてマンガン 乾電池を作製し、同様に評価した。二酸化マンガン中の ニッケル、コバルト及び銅の含有量、亜鉛合金負極中の ビスマスの含有量、ならびに評価結果を第3表にまとめ

[0033]

【表 4 】

10

第3表

比		ヒマンカ		負極缶中の Pb含有量	300Ω	連続放電	2 Q連続放電	ガス発生量
較 例 No.	Ni Ni	量 (I	E重為/	(重量%)	持続時間 (h)	特間 内部抵抗 持続 (Ω) (h		(ml)
5	0.10	0.10	0.05	0.17	68.3	2.7	201.4	96
6	0.10	0.10	0.10	0.17	67.0	2.8	200.1	101
7	0.15	0.10	0.05	0.17	68.0	2.7	200.7	97
8	0.10	0.15	0.05	0.17	66.9	2.9	197.4	102

【0034】第1表に示された評価結果を第3表の結果と比較すると、本発明のマンガン乾電池は、負極缶に鉛を含有していないにもかかわらず、鉛含有亜鉛合金を負極缶として用いた従来のマンガン乾電池と同等の放電特性を有することがわかる。

【図面の簡単な説明】

【図1】マンガン乾電池の断面図である。

【符号の説明】

1 正極合剤

* 2 負極缶

3 セパレータ

4 炭素棒

5 封口体

6 正極端子板

7 負極端子板

20 8 絶縁チューブ

9 外装缶

*

[図1]

フロントページの続き

(72) 発明者 宮坂 幸次郎

東京都品川区南品川3丁目4番10号 東芝電池株式会社内

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第1区分 【発行日】平成9年(1997)6月20日

【公開番号】特開平7-45272 【公開日】平成7年(1995)2月14日 【年通号数】公開特許公報7-453 【出願番号】特願平5-189499 【国際特許分類第6版】

HO1M 4/06

4/50

[FI]

H01M 4/06

E 9351-4K

T 9351-4K

4/50

8520-4K

【手続補正書】

【提出日】平成8年9月24日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項1】 (1) 正極活物質として二酸化マンガンを含む正極合剤、(2) 亜鉛合金負極及び(3) セパレータを備えたマンガン乾電池において、(1) の正極合剤中のニッケル、コバルト及び銅の含有量の合計が、該合剤中の二酸化マンガンの量に対して0.25重量%以下であり;(2)の亜鉛合金負極が、電気製錬した純度99.99重量%以上の亜鉛に、0.01重量%を越えるビスマスを配合したことを特徴とするマンガン乾電池。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0007

【補正方法】変更

【補正内容】

【0007】すなわち、本発明のマンガン乾電池は、

(1) 正極活物質として二酸化マンガンを含む正極合 剤、(2) 亜鉛合金負極及び(3) セパレータを備えた マンガン乾電池において、(1) の正極合剤中のニッケ ル、コバルト及び銅の含有量の合計が、該合剤中の二酸 化マンガンの量に対して0.25重量%以下であり;

(2) の亜鉛合金負極が<u>電気精錬した純度99.99</u> <u>重量%以上の亜鉛に</u>0.01<u>重量%を越えるビスマスを配合した</u>ことを特徴とする。