Ciencias de la Computación I Principio del Palomar

Eduardo Contrera Schneider

Universidad de la Frontera

29 de agosto de 2016

- ¶ Función
- 2 Inyectividad
- Sobreyectividad
- 4 El principio del Palomar

Funciones

Empecemos por recordar qué es una función.

Función

Sea A y B dos conjuntos no vacíos. Una **función** f de A en B, que se denota con $f:A\to B$, es una relación de A en B en la que cada elemento de A aparece exactamente una vez como la primera componente de un par ordenado en la relación.

Con frecuencia escribimos f(a) = b cuando (a, b) es un par ordenado en la función f, donde b se conoce como la imagen de a por f y a es la preimagen de b.

En ciencias de la computación hay funciones interesantes.

- La función parte entera o función suelo.
- La función techo.
- La función truncar.

Dominio y Codominio

Sea $f:A\to B$ una función. Se dice que A es el dominio de f y B es el codominio de f. El subconjunto de B formado por aquellos elementos que aparecen como segundas componentes de los pares ordenados de f se conoce como la imagen de f y se denota también como f(A) ya que es el conjunto de imágenes de los elementos de A mediante f.

De manera general, sean A,B conjuntos no vacíos con |A|=m, |B|=n. En consecuencia, si $A=\{a_1,a_2,...,a_m\}$ y $B=\{b_1,b_2,...,b_n\}$, entonces una función típica $f:A\to B$ puede escribirse como $\{(a_1,x_1),(a_2,x_2),...,(a_m,x_m)\}$. Podemos seleccionar cualquiera de los n elementos de B como x_1 y después hacer lo mismo con x_2 . Continuamos este proceso de selección hasta que finalmente seleccionamos uno de los n elementos de B como x_m . De esta forma, utilizando la regla del producto, existen $n^m=|B|^{|A|}$ funciones de A en B.

Inyectividad

Función Inyectiva

Una función $f:A\to B$ se denomina uno a uno, o inyectiva, si cada elemento de B aparece como máximo una vez como la imagen de un elemento de A.

Si $f:A\to B$ es inyectiva, con A,B finito, debemos tener que $|A|\le |B|$. Para conjuntos arbitrarios A,B, si $f:A\to B$ es uno a uno, entonces para $a_1,a_2\in A, \ f(a_1)=f(a_2)\Rightarrow a_1=a_2$. Claro ejemplo es la función $f:\mathbb{R}\to\mathbb{R}$ tal que f(x)=3x+7.

Si $A=\{a_1,a_2,...,a_m\}$ y $B=\{b_1,b_2,...,b_n\}$ y $m\leq n$, una función inyectiva $f:A\to B$ tiene la forma $\{(a_1,x_1),(a_2,x_2),...,(a_m,x_m)\}$, donde existen n opciones para x_1 (es decir, cualquier elemento de B), n-1 opciones para x_2 , n-2 opciones para x_3 , y así sucesivamente, hasta terminar con n-(m-1) opciones para x_m . Por la regla del producto, el número de funciones inyectivas de A en B es

$$n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!}=P(n,m)$$

Teorema

Sea $f: A \rightarrow B$ con $A_1, A_2 \subseteq A$. Entonces

- $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$

Restricción

Si $f:A\to B$ y $A_1\subseteq A$, entonces $f|_{A_1}:A_1\to B$ es la restricción de f a A_1 , donde $f|_{A_1}(a)=f(a), \forall a\in A_1$.

Extensión

Sea $f: A_1 \to B$ y $A_1 \subseteq A$. Si $g: A \to B$ y $g(a) = f(a), \forall a \in A_1$, entonces g es una extensión de f a A.

Sobreyectividad

Función Sobreyectiva

Una función $f:A\to B$ es sobre, o sobreyectiva, si f(A)=B; es decir, si para todo $b\in B$ existe al menos un $a\in A$ tal que f(a)=b.

Si A, B son conjuntos finitos, entonces para que exista una función sobre $f: A \to B$ debemos tener que $|A| \ge |B|$. El conteo de tales funciones no tan fácil como las anteriores, y por tanto, dejaremos argumentos para más adelante.

La cantidad de funciones sobreyectivas de A en B con |A|=m y |B|=n es

$$\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

Ejemplo

Si $A = \{a, b, c, d\}$ y $B = \{1, 2, 3\}$, entonces existen 36 funciones sobreyectivas de A en B

El resultado anterior da pie a resolver el problema de contar las maneras de distribuir 4 objetos en 3 recipientes idénticos sin que ninguno quede vacío. Esto se hace en términos de funciones sobreyectivas. El único detalle a tener en cuenta es que este resultado es acorde a cuando los recipientes son distinguibles. No obstante, las maneras de ordenar n recipientes de manera lineal es n!.

Número de Stirling de segundo tipo

El número de formas en que podemos distribuir los m objetos distintos en n recipientes idénticos, sin que quede ninguno vacío, es

$$\frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

Esta suma se denota como S(n,m) y se denomina número de Striling del segundo tipo. Observemos que si $|A|=m\geq n=|B|$, existen $n!\cdot S(n,m)$ funciones sobreyectivas de A en B.

Pensemos ahora en lo siguiente: ¿De cuántas maneras puede escribirse el entero positivo 30030 como multiplicación de dos números? No es difícil establecer que se puede hacer de 31 maneras diferentes.

El principio del Palomar

Ahora enunciaremos un principio que parece obvio pero que es bastante útil.

El principio del palomar

Si m palomas ocupan n nidos y m > n, entonces al menos un nido tiene dos o más palomas descansando en él.

La aplicación de este enunciada queda más claro con ejemplos.

Ejemplos

- En una oficina en la que trabajan 13 empleados, existen al menos dos que cumplen años durante el mismo mes.
- Juan regresa de la lavandería con 12 pares de calcetines (cada par de distinto color) en una bolsa. Al sacarlos de la bolsa aleatoriamente, tendrá que sacar a lo más 13 calcetines para obtener un par.

Ejemplos

- Cualquier subconjunto de tamaño seis del conjunto $S = \{1,2,3,...,9\}$ debe contener dos elementos cuya suma es 10.
- ¿Cuántas veces debemos tirar un solo dado para obtener el mismo resultado al menos dos veces? ¿al menos tres veces? ¿al menos n veces, con $n \ge 4$?
- Un auditorio tiene capacidad para 800 personas. ¿Cuántas asientos deben ocuparse para garantizar que al menos dos personas en el auditorio tienen las mismas iniciales del nombre y el primer apellido?
- Dados 8 libros de Pascal, 17 de FORTRAN, 12 de COBOL, 6 de APL Y 20 de BASIC, se deben seleccionar al menos 42 libros para asegurarnos de tener 10 libros que tratan sobre el mismo lenguaje de programación.