Dataset

使用動物園的資料集,裡面包含不同動物的各種特徵ex:腳的數量、有無尾巴等等

Model

目標是分類,所以使用KNN、SVM、Random Forest當模型

Test and Score

三種模型表現都很好,精確率、召回率都高於90%

Model	AUC	CA	F1	Prec	Recall	мсс
kNN	0.997	0.931	0.920	0.925	0.931	0.910
Random Forest	0.990	0.931).928	0.936	0.931	0.910
SVM	0.991	0.941	0.937	0.945	0.941	0.922

Confusion Matrix

透過混淆矩陣可以看出只有KNN能完美分類amphibian,只有SVM能完美分類invertebrate,但KNN 誤認成reptile的數量比其他兩個模型多,SVM對insect的分類能力沒有其他兩個模型好,每個模型 各有優勢。

		Predicted							
		amphibian	bird	fish	insect	invertebrate	mammal	reptile	Σ
	amphibian	4	0	0	0	0	0	0	4
	bird	0	20	0	0	0	0	0	20
	fish	0	0	13	0	0	0	0	13
Actua	insect	0	0	0	8	0	0	0	8
PG	invertebrate	0	0	0	2	7	0	1	10
	mammal	0	0	0	0	0	41	0	41
	reptile	1	1	2	0	0	0	1	5
	Σ	5	21	15	10	7	41	2	101

KNN

		Predicted							
		amphibian	bird	fish	insect	invertebrate	mammal	reptile	Σ
	amphibian	2	0	0	0	0	0	2	4
	bird	0	20	0	0	0	0	0	20
	fish	0	0	13	0	0	0	0	13
Actual	insect	0	0	0	3	0	0	0	8
Ş	invertebrate	0	0	O	3	7	0	0	10
	mammal	0	0	0	0	0	41	0	41
	reptile	1	0	1	0	0	0	3	5
	Σ	3	20	14	11	7	41	5	101

Random Forest

		Predicted							
		amphibian	bird	fish	insect	invertebrate	mammal	reptile	Σ
	amphibian	2	0	0	0	0	0	2	4
	bird	0	20	0	0	0	0	С	20
	fish	0	0	13	0	0	0	С	13
Actual	insect	0	0	0	6	2	0	С	8
Act	invertebrate	0	0	0	0	10	0	О	10
	mammal	0	0	0	0	0	41	C	41
	reptile	0	0	1	0	0	1	3	5
	Σ	2	20	14	6	12	42	5	101

SVM