国家精品课程/国家精品资源共享课程/国家级精品教材 国家级十一(二)五规划教材/教育部自动化专业教学指导委员会牵头规划系列教材

控制系统仿真与CAD 第十一章 分数阶控制基础

分数阶微积分计算

Computations in Fractional Calculus

主讲: 薛定宇教授

分数阶微积分的数值计算

- 原函数或其采样点已知时
 - ▶用 Grunwald—Letnikov 定义直接计算
 - ➤ Grunwald—Letnikov 定义下高精度数值求解
 - ➤ Caputo 定义的高精度数值解
- > 原函数未知时
 - ▶通过高阶整数阶滤波器去模拟分数阶微积分行为
 - ➤Oustaloup 滤波器逼近 Grunwald—Letnikov 微积分
 - ▶ Caputo 微积分的滤波器逼近

(A)

用Grünwald-Letnikov定义求解分数阶微分

> 数学描述

$$a\mathcal{D}_{t}^{\alpha}f(t) = \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{j=0}^{[(t-a)/h]} (-1)^{j} {\alpha \choose j} f(t-jh)$$

$$\approx \frac{1}{h^{\alpha}} \sum_{j=0}^{[(t-a)/h]} w_{j}^{(\alpha)} f(t-jh)$$

> 其中

$$w_0^{(\alpha)} = 1, w_j^{(\alpha)} = \left(1 - \frac{\alpha + 1}{j}\right) w_{j-1}^{(\alpha)}, j = 1, 2, \dots$$

分数阶微分数值计算

> 数学描述

$$a\mathcal{D}_{t}^{\alpha}f(t) \approx \frac{1}{h^{\alpha}} \sum_{j=0}^{[(t-a)/h]} w_{j}^{(\alpha)}f(t-jh)$$

$$w_{0}^{(\alpha)} = 1, w_{j}^{(\alpha)} = \left(1 - \frac{\alpha+1}{j}\right) w_{j-1}^{(\alpha)}, j = 1, 2, \cdots$$

➤ 构造一个MATLAB函数 o(h)

```
function dy=glfdiff(y,t,gam)
h=t(2)-t(1); dy(1)=0; y=y(:); t=t(:); w=1;
for j=2:length(t), w(j)=w(j-1)*(1-(gam+1)/(j-1)); end
for i=2:length(t), dy(i)=w(1:i)*[y(i:-1:1)]/h^gam; end
```

 \triangleright 函数调用格式 $y_1 = glfdiff(y,t,\gamma)$

高精度分数阶微积分数值计算

- ➤ 高精度Grunwald—Letnikov微积分的数值计算
 - ▶算法精度 $o(h^p)$
 - ightharpoonupMATLAB函数 $[y_1,t] = glfdiff9(y,t,\gamma,p)$
- > Caputo微积分的高精度数值计算

$$y_1 = \text{caputo9}(y, t, \alpha, p)$$

- ➤ 代码下载——FOTF工具箱
 - http://cn.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox

例11-2常数的微积分

- > 阶跃函数的导数和积分是什么?
- > 整数阶的积分与微分
- > 对不同的阶次

```
>> t=0:0.01:1.5;
gam=[-1 -0.5 0.3 0.5 0.7];
y=ones(size(t)); dy=[];
for a=gam, dy=[dy; glfdiff(y,t,a)]; end
plot(t,dy)
```

(A)

Caputo微积分定义的数值计算的精度评价

- ➤ 计算指数函数exp(-t) 的0.6阶Caputo导数 (h=0.01)
 - **解析解** $y_0(t) = {}^{\mathbf{C}}_{0} \mathcal{D}_t^{\alpha} e^{-t} = \lambda^q t^{\gamma} \mathcal{E}_{1,\gamma+1}(\lambda t) = -t^{0.4} \mathcal{E}_{1,1.4}(-t)$
 - $m{y} = \mathtt{ml_func}([\alpha, \beta], z)$ $\mathcal{E}_{\alpha, \beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$

▶MATLAB直接求解

>> t0=0.5:0.5:5; q=1; gam=q-0.6; y0=-t0.^0.4.*ml_func([1,1.4],-t0,0,eps); t=0:0.01:5; y=exp(-t); ii=[51:50:501]; T=t0'; for p=1:6, y1=caputo9(y,t,0.6,p); T=[T [y1(ii)-y0']]; end

数值微分计算的精度演示

➤ 选择步长 h=0.01

time	p = 1	p=2	p=3	p=4	p=5	p=6
0.5	-0.0018	1.19×10^{-5}	-8.89×10^{-8}	7.07×10^{-10}	-5.85×10^{-12}	4×10^{-14}
1	-0.00172	1.15×10^{-5}	-8.59×10^{-8}	6.85×10^{-10}	-5.69×10^{-12}	4×10^{-14}
1.5	-0.00151	1.01×10^{-5}	-7.52×10^{-8}	6.00×10^{-10}	-4.99×10^{-12}	4×10^{-14}
2	-0.00129	8.61×10^{-6}	-6.45×10^{-8}	5.15×10^{-10}	-4.28×10^{-12}	5×10^{-14}
2.5	-0.0011	7.39×10^{-6}	-5.53×10^{-8}	4.41×10^{-10}	-3.7×10^{-12}	1×10^{-14}
3	-0.00096	6.40×10^{-6}	-4.78×10^{-8}	3.82×10^{-10}	-3.25×10^{-12}	2×10^{-14}
3.5	-0.00084	5.61×10^{-6}	-4.20×10^{-8}	3.35×10^{-10}	-2.96×10^{-12}	1.4×10^{-13}
4	-0.00075	4.99×10^{-6}	-3.73×10^{-8}	2.98×10^{-10}	-2.92×10^{-12}	1×10^{-14}
4.5	-0.00068	4.50×10^{-6}	-3.37×10^{-8}	2.68×10^{-10}	-2.72×10^{-12}	4.7×10^{-13}
5	-0.00062	4.11×10^{-6}	-3.07×10^{-8}	2.45×10^{-10}	-3.41×10^{-12}	5.3×10^{-13}

大步长的计算

▶ 大步长 h=0.1

time	p = 4	p = 5	p = 6	p = 7	p = 8	p = 9
0.5	4.53×10^{-6}	-1.98×10^{-7}	-3.07×10^{-9}	-8.17×10^{-11}	-2.97×10^{-12}	-1.3×10^{-13}
1	5.98×10^{-6}	-4.73×10^{-7}	3.74×10^{-8}	-2.91×10^{-9}	2.48×10^{-10}	-2.03×10^{-11}
1.5	5.51×10^{-6}	-4.47×10^{-7}	3.73×10^{-8}	-3.12×10^{-9}	2.48×10^{-10}	-2.10×10^{-11}
2	4.77×10^{-6}	-3.90×10^{-7}	3.28×10^{-8}	-2.85×10^{-9}	2.53×10^{-10}	-1.63×10^{-11}
2.5	4.08×10^{-6}	-3.34×10^{-7}	2.81×10^{-8}	-2.45×10^{-9}	2.50×10^{-10}	-4.51×10^{-11}
3	3.51×10^{-6}	-2.87×10^{-7}	2.41×10^{-8}	-2.06×10^{-9}	1.52×10^{-10}	-6.34×10^{-12}
3.5	3.05×10^{-6}	-2.48×10^{-7}	2.08×10^{-8}	-1.76×10^{-9}	4.49×10^{-11}	2.35×10^{-10}
4	2.69×10^{-6}	-2.18×10^{-7}	1.82×10^{-8}	-1.55×10^{-9}	2.27×10^{-10}	-6.05×10^{-10}
4.5	2.40×10^{-6}	-1.95×10^{-7}	1.62×10^{-8}	-1.39×10^{-9}	4.94×10^{-10}	-1.91×10^{-9}
5	2.17×10^{-6}	-1.76×10^{-7}	1.46×10^{-8}	-1.26×10^{-9}	-2.17×10^{-10}	1.14×10^{-8}

事先未知函数的分数阶导数

- > 可以考虑采用高阶整数阶滤波器逼近分数阶算子
- ➤ 分数阶微分环节的频域响应(Bode图)
- > 可以考虑引入整数阶滤波器去逼近
 - >渐近线逼近,实际逼近效果会更好

Oustaloup滤波算法

- ➤ 如果函数 f(t) 的表达式不是事先已知
- > 连续滤波器传递函数模型: Oustaloup算法
 - \blacktriangleright 感兴趣区间 $(\omega_{\rm b}, \omega_{\rm h})$

$$G_{\rm f}(s) = K \prod_{k=1}^{N} \frac{s + \omega_k'}{s + \omega_k}$$

$$\omega_{k}' = \omega_{b} \omega_{u}^{(2k-1-\gamma)/N}, \ \omega_{k} = \omega_{b} \omega_{u}^{(2k-1+\gamma)/N}, \ K = \omega_{h}^{\gamma},$$
$$\omega_{u} = \sqrt{\omega_{h}/\omega_{b}}$$

A

Oustaloup 滤波器设计

》数学表示 $G_{\rm f}(s) = K \prod_{k=1}^{N} \frac{s + \omega_k'}{s + \omega_k}$ $\omega_{\rm u} = \sqrt{\omega_{\rm h}/\omega_{\rm b}}$

$$\omega_k' = \omega_b \omega_u^{(2k-1-\gamma)/N}, \ \omega_k = \omega_b \omega_u^{(2k-1+\gamma)/N}, \ K = \omega_h^{\gamma},$$

➤ 构造MATLAB函数,设计连续滤波器

```
function G=ousta_fod(gam,N,wb,wh)
k=1:N; wu=sqrt(wh/wb);
wkp=wb*wu.^((2*k-1-gam)/N); wk=wb*wu.^((2*k-1+gam)/N);
G=zpk(-wkp,-wk,wh^gam); G=tf(G);
```

 \triangleright 函数调用格式 $G = \text{ousta_fod}(\gamma, N, \omega_b, \omega_h)$

例11-4 由滤波器计算微分

- > 逐数 $f(t) = e^{-t}\sin(3t+1)$
- \triangleright 感兴趣频率区间 $\omega_{\rm b}=0.01, \omega_{\rm h}=1000~{\rm rad/sec}$
- ▶ 分数阶阶次 0.5,5阶滤波器
- ➤ MATLAB求解语句:
 - >> G=ousta_fod(0.5,5,0.01,1000), bode(G)
- > 绘制分数阶微分曲线:
 - >> t=0:0.001:pi; y=exp(-t).*sin(3*t+1); y1=lsim(G,y,t); y2=glfdiff(y,t,0.5); plot(t,y1,t,y2)

(A)

非零初值Caputo微积分的Oustaloup 滤波器逼近

- ➤ 标准Oustaloup滤波器可以用于RL微积分逼近
- ▶ 直接方法构造Caputo微分器较麻烦,不宜采用
- ▶ 非零初值信号的Caputo微积分逼近可以根据两个定理
 - ▶定理1 RL积分器

$${}^{\mathrm{C}}_{t_0} \mathscr{D}_t^{\gamma} y(t) = {}^{\mathrm{RL}}_{t_0} \mathscr{D}_t^{-(\lceil \gamma \rceil - \gamma)} \left[y^{(\lceil \gamma \rceil)}(t) \right] \qquad {}^{\mathrm{C}}_{t_0} \mathscr{D}_t^{2.3} y(t) = {}^{\mathrm{RL}}_{t_0} \mathscr{D}_t^{-0.7} \left[y'''(t) \right]$$

▶定理2 RL微分器

$$\operatorname{RL}_{t_0} \mathscr{D}_t^{\lceil \gamma \rceil - \gamma} \left[\operatorname{C}_{t_0} \mathscr{D}_t^{\gamma} y(t) \right] = y^{(\lceil \gamma \rceil)}(t) \qquad \operatorname{RL}_{t_0} \mathscr{D}_t^{0.7} \left[\operatorname{C}_{t_0} \mathscr{D}_t^{2.3} y(t) \right] = y'''(t)$$

分数阶微积分计算小结

- > 如果信号的采样点已知
 - ➤ Riemann-Liouville glfdiff, glfdiff9
 - ➤Caputo微积分 caputo9
- > 如果信号未知
 - ➤Oustaloup滤波器
 - **▶**Caputo微积分的Oustaloup滤波器实现

