

Principle of Physics

Lab 1: Sonometer Experiment

Table of Contents

- Objective
- Equipment/ Material
- Theoretical Analysis
- Experiment Procedure
- Observation
- Conclusion

Objective

Deduce the frequency of multiple tuning forks.

Plot a graph to illustrate the correlation between the frequency f and the wire length *l*.

Find the relationship between the frequency f and length of a specific wire *l* while maintaining constant tension.

Theoritical Analysis

$$f = \frac{1}{2 l} \sqrt{\frac{T}{m}}$$

- *f*: vibration frequency (Hz)
- *l*: string length (m)
- T: applied tension (N)
- m: string mass per unit length (kg/m)

$$T = M * g$$

- M: total mass of weights & hanger (kg)
- g: acceleration of gravity (m/sec²)

Experiment Procedure

Position the sonometer on a table.

Apply an appropriate load to the hanger to stretch the wire.

Attach an inverted V-shaped paper rider to the middle of the wire.

Vibrate the tuning fork and touch its lower end to the sonometer. The wire vibrates & the paper falls.

Observation: Constant tension on the wire, T= 2.5 kg

No.	Tuning Fork Frequency (Hz)	Resonant Length of the Wire			
		Length decreasing $l_1(\mathit{cm})$	Length increasing $l_2(cm)$	Mean $l = \frac{l_1 + l_2}{2}$	1/l (cm ⁻¹)
1	60				
2	90				
3	120				

Conclusion

Conclusion

The square of the length against tension forms a linear relationship, revealing that tension is directly proportional to the square of the resonant length.

Thank You

