Introduction to ChIP-seq

Overview, alignment, peaks, and motifs

What is ChIP-seq?

- A tool for studying gene regulation: promoters, enhancers, and repressors
- Assay profiling protein binding (chromatin immunoprecipitation) to DNA (sequencing)
- Transcription factor binding and histone modifier interactions to DNA

DNA hierarchy

ChIP-seq protocol

A. Crosslink and fractionate chromatin*

B. ChIP: Enriched DNA binding sites*

F. Denature and amplify to produce final product for sequencing

a Chromatin as accessibility barrier Gene regulation **b** Active enhancer c Active promoter Enhancer Core promoter d Closed or poised enhancer e Primed enhancer Enhancer f Latent enhancer Stimulus Enhancer DNA-binding proteins: TFs, CTCF, repressors H3K27ac H3K4me1 DNA binding TFs motifs H3K4me3 H3K27me3 and polymerases

Workflow

Data types

- 1. Sequence: FASTA, FASTQ
- 2. Alignment: SAM, BAM
- Genomic features: BED, Wiggle, GTF, GFF

BED file format

- 1. Chr: name of the chromosome
- 2. Start: starting position of the feature (0-base)
- 3. End: ending position of the feature

(optional columns 4-6)

- 4. Name: name for the BED line
- 5. Score: quality score (sometimes omitted in place of something else)
- 6. Strand: "+" (sense), "-" (antisense), "." (NA)

(optional columns 7-12)

Alignment

 Bowtie2 and bwa are both suitable methods

- **Local Alignment**

Global Alignment

- Like before, we have to construct an index
- Can perform local or global alignment

Quality control

Non-redundant fraction (NRF)

[zemke@n7420 flashscratch]\$ bowtie2 -q -p 4 -k 1 --local mso_k18_chip.fastq > dmso_k18_chip.sam
42714660 reads; of these:
 42714660 (100.00%) were unpaired; of these:
 980458 (2.30%) aligned 0 times
 41734202 (97.70%) aligned exactly 1 time
 0 (0.00%) aligned >1 times
97.70% overall alignment rate

How many reads were mapped uniquely?

Fraction of reads in peaks (FRiP)

 How many reads were in significant regions of the genome? (can use a reference set)

Peak calling

- We want to identify regions of the genome where many aligned reads are located
- MACS2 fits Poisson models to the background and tests if some prospectipeak region follows a separate Poisson model
- Duplicates need to be removed prior to peak calling otherwise false signals will be identified

Differential peaks

Peaks that are unique to some set may be associated with specific motifs

	H3K27ac (enhancer)	H3K4me3 (repressor)
treatment	A / input	C / input
control	B / input	D / input

Motif enrichment

 Can compare peak set with a background peak set or use a reference genome

HOMER

 Significantly enriched if fraction of sequences in input matching motif is significantly different from fraction of sequences in background

Additional resources

https://genome.ucsc.edu/FAQ/FAQformat.html