Name:

Show sufficient work to make very clear your method of solution.

1. Let $X_1, ..., X_n$ be a random sample with a pdf

$$f(x) = \begin{cases} \theta \varphi^{\theta} x^{-(\theta+1)} & x > \varphi \\ 0 & x \le \varphi \end{cases}$$

where $\theta > 0$ and $\varphi > 0$ are fixed parameters.

- (a) Find the pdf of the 1st order statistic, $X_{(1)} = \min_i X_i$.
- (b) When φ is known and θ is unknown, show that the family of pdf's indexed by θ is an exponential family and find a sufficient and complete statistic T for θ .
- (c) When θ is known and φ is unknown, show that the minimum order statistic $X_{(1)}$ is a complete and sufficient statistic for φ .
- (d) Suppose that $\varphi = e^{\theta}$ is unknown. Show that the pair of statistics, T and $X_{(1)}$, is minimal sufficient for θ .
- 2. Let X_n be a random variable having the Poisson(n) distribution, n = 1, 2, ... In the following, the limiting process is with respect to $n \to \infty$.
 - (a) Show that

$$\frac{X_n}{\sqrt{n}} - \sqrt{n}$$
 converges in distribution to $N(0,1)$

(b) For any positive integer k, show that

$$\frac{X_n^k}{n^{k-1/2}} - \sqrt{n}$$
 converges in distribution to $N(0, k^2)$

(c) Define

$$Y_n = \begin{cases} 1 & X_n = 0 \\ X_n & X_n > 0 \end{cases}$$

Show that $Y_n - X_n$ converges in probability to 0.