Package 'gmum.r'

April 28, 2015

1 '							
Type Package							
Title Package with models proposed by GMUM at Jagiellonian University							
Version 1.0							
Date 2014-02-25							
Author Stanislaw Jastrzebski, Marcin Data, Karol Jurek, Igor Sieradzki, Konrad Talik, Piotr Kowenzowski, Mateusz Bruno-Kaminski, Maciej Zgliczynski, Michal Pletty, Wojciech Czarnecki							
Maintainer Stanislaw Jastrzebski <grimghil@gmail.com></grimghil@gmail.com>							
Description More about what it does (maybe more than one line)							
License MIT							
Depends MASS (>= 7.3), Matrix, Rcpp (>= 0.11.0), RcppArmadillo(>= 0.4.600.0), ggplot2(>= 1.0.0), BH, igraph							
LinkingTo Rcpp, RcppArmadillo, BH							
NeedsCompilation yes							
Suggests testthat, SparseM							
R topics documented:							
plot.svm 2 predict.svm.gmum 2 print.svm 3 summary.svm 3 SVM 4							
Index							

2 predict.svm.gmum

Description

Plots trained svm data and models disciriminative

Usage

```
plot(svm)
```

Arguments

2	x	trained svm object
2	X	optional new data points to be predicted and plotted in one of the following formats: data.frame, data.matrix; default: NULL
1	node	which plotting mode to use as string, available are:
		• 'normal' - default mode, plots data in cols argument and a linear decision boundry in available
		• 'pca' - preforms PCA decomposition and draws data in a subspace of first 2 dimensions from the PCA
		 'contour' - countour plot for non-linear kernels
	cols	data dimensions to be plotted as vector of length 2, default: c(1,2)
	radius	radius of the plotted data points as float, default: 3
I	radius.max	maximum radius of data points can be plotted, when model is trained with example weights as float, default: 10
pr	edict.svm.gmum	Predict

Description

Returns predicted classes or distance to discriminative for provided test examples.

Usage

```
predict(svm, x)
```

Arguments

object Trained SVM object.

unlabeled data, in one of the following formats: data.frame, data.matrix, SparseM::matrix.csr, Matrix::Matrix, slam::simple_triplet_matrix decision.function

> if TRUE returns SVMs decision function (distance of a point from discriminant) instead of predicted labels, default: FALSE

print.svm 3

print.svm

print

Description

Prints short summary of the SVM object and its parameters.

Usage

print(svm)

Arguments

object

SVM object

Format

NULL

summary.svm

summary

Description

Prints short summary of a trained model.

Usage

summary(svm)

Arguments

svm

SVM object

4 SVM

SVM

Description

Create and train SVM model object.

Usage

```
SVM(x, ...)
```

Arguments

8	
X	training data without labels in one of the following formats: data.frame, data.matrix, SparseM::matrix.csr, Matrix::Matrix, slam::simple_triplet_matrix
У	labels in one of the followinf formts: factor, vector. Recommended type is factor
data	can be passed instead of x , y pair with formula to mark the labels column, supported formats are: data.frame, data.matrix
formula	can be passed with data instead of x , y pair, formula needs to point to lables column, for example: target $^{\sim}$.
core	Support Vector Machine library to use in traning, available are: 'libsvm', 'svmlight'; default: 'libsvm'
kernel	kernel type as string, available are: 'linear', 'poly', 'rbf', 'sigmoid'; default: 'linear'
	• linear: $x'*w$
	• poly: $(gamma*x'*w+coef0)^{degree}$
	• rbf: $exp(-gamma * x - w ^2)$
	• sigmoid: $tanh(gamma*x'*w+coef0)$
prep	preprocess method as string, available are: 'none', '2e'; default: 'none'. For more information on 2eSVM see: http://www.sciencedirect.com/science/article/pii/S0957417414004138
С	cost/complexity parameter, default: 1
gamma	parameter for poly, rbf and sigmoid kernels, default: 1/n_features
coef0	for poly and sigmoid kernels, default: 0
degree	for poly kernel, default: 3
cache_size	cache memory size in MB, default: 100
tol	tolerance of termination criterion, default: 1e-3
max.iter	depending on library:
	• libsvm: number of iterations after which the training porcess is killed (it can end earlier is desired tolerance is met), default: 1e6

SVM 5

 symlight: number of iterations after which if there is no progress traning is killed, default: -1 (no limit)

transductive.learning

option got SVM model to deduce missing labels from the dataset, default: FALSE NOTE: this feature is only available with symlight library, missing labels are marked as 'TR', if none are found and transductive to TRUE, label 0 will be interpreted as missing

transductive.posratio

fraction of unlabeled examples to be classified into the positive class as float from [0,1], default: the ratio of positive and negative examples in the training data

class.weights named vector with weight fir each class, default: NULL example.weights

vector of the same length as training data with weights for each training example, default: NULL NOTE: this feature is only supported with symlight library

class.type multiclass algorithm type as string, available are: 'one.versus.all', 'one.versus.one';

default: 'one.versus.one'

verbosity how verbose should the process be, as integer from [1, 6], default: 4

Value

SVM model object

Examples

```
# train SVM from data in x and labels in y
svm <- SVM(x, y, core="libsvm", kernel="linear", C=1)</pre>
# train SVM using a dataset with both data and lables and a formula pointing to labels
formula <- target ~ .
svm <- SVM(formula, data, core="svmlight", kernel="rbf", gamma=1e3)</pre>
# train a model with 2eSVM algorithm
data(svm_breast_cancer_dataset)
ds <- svm.breastcancer.dataset</pre>
svm.2e <- SVM(x=ds[,-1], y=ds[,1], core="libsvm", kernel="linear", prep = "2e", C=10);</pre>
# more at <link to the 2e sample>
# train SVM on a multiclass data set
data(iris)
# with "one vs rest" strategy
svm.ova <- SVM(Species ~ ., data=iris, class.type="one.versus.all", verbosity=0)</pre>
# or with "one vs one" strategy
svm.ovo <- SVM(x=iris[,1:4], y=iris[,5], class.type="one.versus.one", verbosity=0)</pre>
# we can use symlights sample weighting feature, suppose we have weights vector
# with a weight for every sample in the traning data
weighted.svm <- SVM(formula=y~., data=df, core="svmlight", kernel="rbf", C=1.0,
                    gamma=0.5, example.weights=weights)
```

6 SVM

```
# svmlight alows us to determine missing labels from a dataset
# suppose we have a labels y with missing labels marked as zeros
svm.transduction <- SVM(x, y, transductive.learning=TRUE, core="svmlight")</pre>
```

for more in-depth examples visit <link to samples on the website>

Index

```
*Topic datasets
print.svm, 3
plot.svm, 2
predict.svm.gmum, 2
print.svm, 3
summary.svm, 3
SVM, 4
```