Отчет по лабораторной работе №7: Эффективность рекламы

дисциплина: Математическое моделирование

Швец С, НФИбд-03-18

Содержание

1	Введение	4
	1.1 Цель работы	4
	1.2 Задачи	
2	Терминология. Условные обозначения	5
	2.1 Описание модели эффективности рекламы	. 5
3	Выполнение лабораторной работы	8
	3.1 Формулировка задачи:	. 8
	3.2 Решение	. 8
	3.3 Построенные графики	. 11
4	Вывод	13

List of Figures

2.1	График решения уравнения модели Мальтуса	6
2.2	График логистической кривой	7
3.1	График распространения информации о товаре с учетом платной	
	рекламы и сарафанного радио. $\alpha 1 = 0.81, \alpha 2 = 0.0003$	11
3.2	График распространения информации о товаре с учетом платной	
	рекламы и сарафанного радио. $\alpha 1 = 0.00008, \alpha 2 = 0.8$	12
3.3		
	рекламы и сарафанного радио, точка максимальной скорости	
	распространения. $\alpha 1 = 0.8 sin(t), \alpha 2 = 0.8 cos(t))$	12

1 Введение

1.1 Цель работы

Построить математическую модели для выбора правильной стратегии при решении задачи об эффективности рекламы.

1.2 Задачи

Можно выделить три основные задачи данной лабораторной работы: 1. Изучить теоретическую часть модели эффективности рекламы. 2. Реализовать частные случаи модели.

2 Терминология. Условные обозначения

2.1 Описание модели эффективности рекламы

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

 $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

При $a_1(t)>>a_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис. 2.1):

Figure 2.1: График решения уравнения модели Мальтуса

В обратном случае, при $a_1(t) << a_2(t)$ получаем уравнение логистической кривой (рис. 2.2):

Figure 2.2: График логистической кривой

3 Выполнение лабораторной работы

3.1 Формулировка задачи:

Вариант 7

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

```
\begin{split} &1.\,\frac{dn}{dt}=(0.81+0.0003n(t))(N-n(t))\\ &2.\,\frac{dn}{dt}=(0.00008+0.8n(t))(N-n(t))\\ &3.\,\frac{dn}{dt}=(0.8sin(8t)+0.8cos(t)n(t))(N-n(t)) \end{split}
```

При этом объем аудитории N=888, в начальный момент о товаре знает 18 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3.2 Решение

```
Kod на Julia:
using Plots
using DifferentialEquations
theme(:wong)

N = 888;
x0 = 18;
```

```
g(t) = 0.81;
v(t) = 0.0003;
fun(x,p,t) = (g(t)+v(t)*x)*(N-x)
tspan = (0,10);
pr = ODEProblem(fun, x0, tspan);
sol = solve(pr, timeseries_steps = 0.1);
pl1 = plot(sol,
label = false)
savefig(pl1,"11.png")
g(t) = 0.00008
v(t) = 0.8
fun2(x,p,t) = (g(t)+v(t)*x)*(N-x)
tspan = (0,0.1);
pr2 = ODEProblem(fun2, x0, tspan);
sol2 = solve(pr2, timeseries_steps = 0.1);
pl2 = plot(sol2,
label = false)
savefig(pl2,"22.png")
```

```
n = length(sol2.u)
    J = length(sol2.u[1])
    U = zeros(n, J)
    for i in 1:n, j in 1:J
        U[i,j] = sol2.u[i][j]
    end
a = 0;
b = -1;
for i in 1:(n-2)
    if U[i+1] - U[i] > a
        a = U[i+1] - U[i];
       b = i;
    end
end
sol2.t[b]
sol2.u[b]
g(t) = 0.8*sin(8t)
v(t)=0.8*cos(t)
fun3(x,p,t) = (g(t)+v(t)*x)*(N-x)
tspan = (0,2);
pr3 = ODEProblem(fun3, x0, tspan);
```

```
sol3 = solve(pr3, timeseries_steps = 0.1);
pl3 = plot(sol3,
label = false)
savefig(pl3,"33.png")
```

3.3 Построенные графики

Первый случай (рис. 3.1):

Figure 3.1: График распространения информации о товаре с учетом платной рекламы и сарафанного радио. $\alpha 1 = 0.81, \alpha 2 = 0.0003$

Второй случай (рис. 3.2):

Figure 3.2: График распространения информации о товаре с учетом платной рекламы и сарафанного радио. $\alpha 1 = 0.00008, \alpha 2 = 0.8$

Точка максимального распостранения рекламы достигается при t=0.0075, u=421.881

Третий случай (рис. 3.3):

Figure 3.3: График распространения информации о товаре с учетом платной рекламы и сарафанного радио, точка максимальной скорости распространения. $\alpha 1 = 0.8 sin(t)$, $\alpha 2 = 0.8 cos(t)$

4 Вывод

Мы усвоили основные приципы модели эффективности рекламы, а также провели реализацию данной модели.