Exam 20 December

Due Dec 20 at 5pm Points 30 Questions 30

Available Dec 20 at 4pm - Dec 20 at 5:05pm about 1 hour T

Time Limit 50 Minutes

Instructions

Notation: _ denotes the blank symbol in questions on configurations

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	48 minutes	21 out of 30

! Correct answers are hidden.

Score for this quiz: **21** out of 30 Submitted Dec 20 at 4:49pm This attempt took 48 minutes.

Question 1	1 / 1 pts
$f(n)=3log_8n$, $g(n)=5log_2n$. Claim1: $f(n)=\Omega(g(n))$.	
Claim 2: $g(n)=\Omega(f(n))$. Which one of the 2 claims holds?	
Claim 1 only	
Claim 2 only	
both claims hold	
onone of the two claims holds	

Question 2 0 / 1 pts

Let f and g be $N - R_0^+$ functions. Suppose, that the limit of the sequence f/g does not exists (as n -> +infinitity).

Which of the following statements follows from this assumption?

1st statement: $f(n) = \Omega(g(n))$ does not hold.

2nd statement: $g(n) = \Omega(f(n))$ does not hold.

Only the 1st statement follows.

Only the 2nd statement follows.

Both statements follow.

Incorrect

Question 3 0 / 1 pts

Let M = (Q, Σ , Γ , δ , q_0 , q_a , q_r) be a 2-tape Turing machine. Which one is the starting configuration for input word abb?

 $(q_0,\lambda,abb,\lambda,_)$

(q₀,abb,_)

 \bigcirc (q₀, λ , abb, λ , λ)

 \bigcirc (q₀,abb, λ)

Question 4 1 / 1 pts

Which one of the following two words can be a configuration of one-tape Turing machine $M=(\{q_0,q_1,q_2\},\,\{a,b\},\,\Gamma,\,\delta,\,q_0\,,\,q_a\,,\,q_r)$?

q₁aab or aabq₁?

q ₁ aab only		
○ aabq ₁ only		
oboth of the two we	ords	
onone of the two w	vords	

Let M be a nondeterministic Turing machine and let |- and |-* denote its one-step and multi-step transition relation, respectively.. Which one of the following statements holds? 1st statement: If K is a configuration of M then K |-* K holds. 2nd statement: If K and K' are configurations of M and K |- K' holds, then K |-* K' holds as well. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold.

Question 6 1 / 1 pts

Suppose, that L can be decided by an f(n)=2nlog₂n time bounded deterministic Turing machine.

Which one of the following statments follows from this assumption?

1st statement: L is in P.

2nd statement: L is not in P.

Only the 1st statement follows.
Only the 2nd statement follows.
Both statements follow.
None of the two statements follows.

Incorrect

Question 7 0 / 1 pts

Suppose, that L can be decided by an $f(n)=3^n+2n^2$ time bounded deterministic Turing machine.

Which one of the following statments follows from this assumption?

1st statement: L is in P.

2nd statement: L is not in P.

- Only the 1st statement follows.
- Only the 2nd statement follows.
- Both statements follow.
- None of the two statements follows.

Only the 2nd statement holds.

Both statements hold.
None of the two statements holds.

Suppose, that L can be decided by an f(n)=2n+3log₂n time bounded deterministic Turing machine. Which one of the following statments follows from this assumption? 1st statement: L is in P. 2nd statement: L is in NP. Only the 1st statement follows. Only the 2nd statement follows. Both statements follow. None of the two statements follows.

Incorrect

Question 10 0 / 1 pts

Which one of the following statements can be stated as being TRUE?

1st statement: Let M be a nondeterministic Turing machine of $f(n)=n^3$ time complexity. Then there exist a deterministic Turing machine of $O(n^7)$ time complexity equivalent with M.

2nd statement: Let M be a deterministic 2-tape Turing machine of $f(n)=n^3$ time complexity. Then there exist a deterministic 1-tape Turing machine of $O(n^7)$ time complexity equivalent with M.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.

None of the two statements holds.

Incorrect

Question 11 0 / 1 pts

Which one of the following statements can not be stated as being TRUE?

For every deterministic Turing machine there exist an equivalent nondeterministic one.

For every nondeterministic Turing machine there exist an equivalent deterministic one.

For every deterministic 3-tape Turing machine of polynomial time complexity there exists an equivalent deterministic 2-tape Turing machine of polynomial time complexity.

For every nondeterministic Turing machine of polynomial time complexity there exists an equivalent deterministic Turing machine of polynomial time complexity.

Incorrect

Question 12 0 / 1 pts

Which one of the following two statements holds?

1st statement: No bijection exists between $\{L \mid L\subseteq \{0,1\}^*\}$ and the set of Turing machines of input alphabet $\{0,1\}$.

2nd statement: No bijection exists between $\{0,1\}^*$ and the set of real numbers of the [0,1] interval.

Only the 1st statement holds.

Only the 2nd statement holds.

Both statements hold.
None of the two statements holds.

Question 13
1/1 pts

Which one of the following statements holds?
1st statement: Every language is recognizable by a Turing machine.
2nd statement: RE ⊂ R
Only the 1st statement holds.
Only the 2nd statement holds.
Both statements hold.
None of the two statements holds.

Question 14	1 / 1 pts
Which one of the following statements holds? 1st statement: The complement language of L _{diag} is undecidable. 2nd statement: L _{diag} is reducible to a Turing-recognizable language.	e.
Only the 1st statement holds.	
Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

2021/12/20 下午4:49

Question 15	1 / 1 pts	
Which one of the following statements can be stated being TRUE?	•	
1st statement: The language of satisfiable conjunctive normal forms of propositional logic is in P.		
2nd statement: The language of satisfiable formulas of first order lo	ogic is not	
Only the 1st statement.		
Only the 2nd statement.		
O Both statements.		
O None of the two statements.		

Incorrect

Question 16 0 / 1 pts

Consider a first order logic including a predicate symbol q and a function symbol f, both of arity 2.

Which one of the following is a string representation of a first order formula? (x and y are variables)

- 1. ∀yf(y,y)
- 2. $q(x,y) \lor q(f(x,y))$
 - only the 1st one
 - only the 2nd one
 - both
 - onone of them

Question 17

1 / 1 pts

Let $D=\{(u,v),(w,x),(y,z)\}\ (u,v,w,x,y,z\in\Sigma^+)$ be an instance of the Post Correspondence Problem. (There are 3 dominos, the first one has u at the top and v at the bottom, the second one has w at the top and x at the bottom, the third one has y at the top and z at the bottom.)

Which one of the following statements holds?

1. If uwuu=vxvv then D has a solution.

2. All solutions of D is a sequence of at most 3 dominos.

	Only the	1st statement	holds.
--	----------	---------------	--------

- Only the 2nd statement holds.
- Both statements hold.
- None of the 2 statement holds.

Question 18 1 / 1 pts

Which one of the following statements holds?

1st statement: According to Rice's Theorem it is undecidable whether a Turing machine recognizes the language {01,11,101}.

2nd statement: According to Rice's Theorem it is undecidable whether a Turing machine recognizes a recursively enumerable language.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Question 19 1 / 1 pts

Which one of the following languages is not in NP?

REACHABILITY	
VALIDITYPRED	
O 2SAT	
O INDEPENDENT SET	

Question 20
1 / 1 pts

Which one of the following formulas is a 3CNF?
1. ((¬p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬r ∨ ¬s)) ∨ (q ∧ r ∧ s)
2. (¬p ∨ q) ∧ (¬r ∨ ¬q)
(p,q,r,s are atomic variables)
only the 1st one
only the 2nd one
both
none of them

Question 21	1 / 1 pts
Which one of the following statements holds? 1st statement: If 2-COLORING is in P, then P=NP.	
2nd statement: If VERTEX COVER is in P, then P=NP. Only the 1st statement holds.	
Only the 2nd statement holds.	
Both statements hold.	

None of the two statements holds.

Question 22	1 / 1 pts	
Let G be a simple undirected graph of 20 vertices.		
Which one of the following statements holds?		
1st statement: If G ha a vertex cover of size 8 then G has an independent set of size 12.		
2nd statement: If G has an independent set of size 12, then G has a clique of size 8.		
Only the 1st statement holds.		
Only the 2nd statement holds.		
Both statements hold.		
None of the two statements holds.		

Question 23	1 / 1 pts
Which one of the following statements holds? 1st statement: If $L_1 \le_p L_2$ then $L_1 \le L_2$.	ment of Lo
2nd statement: If $L_1 \le_p L_2$ then the complement of $L_1 \le_p$ the complete \square Only the 1st statement holds.	ment of L2.
Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

Question 24	1 / 1 pts
Which one of the following statements can be stated being TRUE? 1st statement: All NP-intermediate problems are in PSPACE. 2nd statement: GRAPH ISOMORPHISM is an NP-intermediate pro-	
Only the 1st statement.	
Only the 2nd statement.	
O Both statements.	
None of the two statements.	

Question 25	1 / 1 pts
Which one of the following statements holds? 1st statement: coNP ⊆ R. 2nd statement: Time complexity class coNP is the complement of complexity class NP.	time
Only the 1st statement holds.	
Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

Question 26 1 / 1 pts

Which one of the following statements holds?

1st statement: REACHABILITY can be decided by a nondeterministic Turing machine in polynomial time.

tement: REACHABILITY is recursively enumerable.
Only the 1st statement holds.
Only the 2nd statement holds.
Both statements hold.
None of the two statements holds.

Question 27 1/1 pts Which one of the following statements can be stated being TRUE? 1st statement: TIME(n²)⊆NSPACE(n²) 2nd statement: SPACE(n²)⊆NTIME(n²) Only the 1st statement. Only the 2nd statement. Both statements. None of the two statements.

Which one of the following statements holds? 1st statement: Every type 2 language (according to Chomsky's hierarchy) can be recognized by a linear bounded automaton. 2nd statement: Every language which can be recognized by a linear bounded automaton is a type 2 language. Only the 1st statement holds.

Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

Incorrect

Question 29 0 / 1 pts

Which one of the following statements holds?

1st statement: Every language L, that can be generated by a type 1 grammar (according to Chomsky's classification) can be recognized by a nondeterministic Turing machine.

2nd statement:Every language L, that can be recognized by a nondeterministic Turing machine can be generated by a type 1 grammar.

Only	tho	1 c+	statement	
OHIV	แเษ	151	Statement	

Only	the	2nd	statement.

Both statements.

None of the two statements.

Question 30 1 / 1 pts

Which one of the following statements can be stated being TRUE?

1st statement: Every PSPACE-complete language is in NPSPACE.

2nd statement: 3SAT is PSPACE-complete.

Only	the	1st	state	ement.
	นเบ	ıoı	State	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Only the 2nd statement.

Both statements.

Exam 20 December: 2021/22/1 IP-18fSZEA2E 1 - Fundamentals of theory of computation	Ш
None of the statements.	

Quiz Score: 21 out of 30

2021/12/20 下午4:49