Discriminative Learning of Sum-Product Networks

Robert Gens Pedro Domingos

SPN Review

Discriminative Training

Experiments

SPN Review

Discriminative Training

Experiments

Graphical Models

SPNs perform fast, exact inference on high treewidth models

Deep Architectures

SPNs have full probabilistic semantics and tractable inference over many layers

Discriminative Learning

SPNs combine features with fast, exact inference over high treewidth models

Discriminative Training

Experiments

A Univariate Distribution Is an SPN.

A Product of SPNs over Disjoint Variables Is an SPN.

A Weighted Sum of SPNs over the Same Variables Is an SPN.

P(X=0) ?

P(X=0) ?

P(X=0) ?

$$\max_{y} P(X=0, Y=y) = 0.12$$

Special Cases of SPNs

- Junction trees
- Hierarchical mixture models
- Non-recursive probabilistic context-free grammars
- Models with context-specific independence
- Models with determinism
- Other high-treewidth models

Compactly Representable Probability Distributions

Learning SPNs

Update	Soft Inference (Marginals)	Hard Inference (MAP States)
Gen. EM		
Gen. Gradient		
Disc. Gradient		

Poon & Domingos, UAI 2011

SPN Review

Discriminative Training

Experiments

 $P(\mathbf{Y}|\mathbf{X})$

Y Query

H Hidden

X Evidence

H Hidden

Y Query

X Evidence

Discriminative Training

$$\nabla \log P(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})} =$$

Problem with Backpropagation

Hard Inference Overcomes Gradient Diffusion

Soft Inference (Marginals)

Hard Inference (MAP States)

Reasons to Use Hard Inference

- To overcome gradient diffusion
- When goal is to predict most probable structure
- For speed or tractability

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$\nabla \log \max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x}) - \nabla \log \max_{\mathbf{y}', \mathbf{h}} P(\mathbf{y}', \mathbf{h}, \mathbf{x})$$

Correct label

Best guess

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$\nabla \log \max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x}) - \nabla \log \max_{\mathbf{y}', \mathbf{h}} P(\mathbf{y}', \mathbf{h}, \mathbf{x})$$

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

$$abla \log \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$$
 – $abla \log \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

 $\max_{\mathbf{h}} P(\mathbf{y}, \mathbf{h}, \mathbf{x})$

 $\max_{\mathbf{y}',\mathbf{h}} P(\mathbf{y}',\mathbf{h},\mathbf{x})$

$$\nabla \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \nabla \log \frac{\tilde{P}(\mathbf{y},\mathbf{x})}{\tilde{P}(\mathbf{x})} =$$

w/ correct _ # w/ model label guess

$$\frac{\partial}{\partial w_i} \log \tilde{P}(\mathbf{y}|\mathbf{x}) = \frac{\Delta c_i}{w_i}$$

Learning SPNs: Summary

Update	Soft Inference (Marginals)	Hard Inference (MAP States)
Gen. EM	$\Delta w_i \propto w_i \frac{\partial S}{\partial S_k}$	$\Delta w_i = c_i$
Gen. Gradient	$\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$	$\Delta w_i = \eta \frac{c_i}{w_i}$
Disc. Gradient	$\Delta w_i = \eta \left(\frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k} \right)$	$\Delta w_i = \frac{\eta}{w_i} (c_i - c_i)$

Learning SPNs: Summary

Update	Soft Inference (Marginals)	Hard Inference (MAP States)
Gen. EM	$\Delta w_i \propto w_i rac{\partial S}{\partial S_k}$	$\Delta w_i = c_i$
Gen. Gradient	$\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$	$\Delta w_i = \eta \frac{c_i}{w_i}$
Disc. Gradient	$\Delta w_i = \eta (\frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k})$	$\Delta w_i = \frac{\eta}{w_i} (c_i - c_i)$

Learning SPNs: Summary

Update	Soft Inference (Marginals)	Hard Inference (MAP States)
Gen. EM	$\Delta w_i \propto w_i \frac{\partial S}{\partial S_k}$	$\Delta w_i = c_i$
Gen. Gradient	$\Delta w_i = \eta \frac{\partial S}{\partial S_k} S_i$	$\Delta w_i = \eta \frac{c_i}{w_i}$
Disc. Gradient	true label exp. label $\Delta w_i = \eta \left(\frac{S_i}{S} \frac{\partial S}{\partial S_k} - \frac{S_i}{S} \frac{\partial S}{\partial S_k} \right)$	$\Delta w_i = \frac{\eta}{w_i} (c_i - c_i)$

SPN Review

Discriminative Training

Experiments

Image Classification

CIFAR-10

32x32px 50k train 10k test

STL-10

96x96px 5k train }
8k test 100k unlabeled

Feature Extraction

Coates et al., AISTATS 2011

SPN Architecture

CIFAR-10 Results

CIFAR-10 Results

CIFAR-10 Results

STL-10 results

Future Work

- Max-margin SPNs
- Learning SPN structure
- Applying discriminative SPNs to structured prediction
- Approximate inference using SPNs

Summary

- Discriminative SPNs combine the advantages of
 - Tractable inference
 - Deep architectures
 - Discriminative learning
- Hard gradient combats diffusion in deep models
- Discriminative SPNs outperform SVMs and deep models on image classification benchmarks