

Special class

DS: Short Notes

By: Vishvadeep Gothi

VISHVADEEP GOTHI

- * Computer science Head, Unacademy Brands
- * Top Educator (#3 for CS) on unacademy plus for GATE/ESE
- * ME IISc Bangalore
- * MTech Bits Pilani (Data Science)
- * GATE AIR-19 (in 4th year), 682 (in 3rd year), 119 440
- * 9 Years of GATE/ESE teaching experience (Gateforum, THE GateAcademy, ACE Academy)
- * 13 Years of teaching experience
- * 1 year Industry experience for Software Development

VDEEPLIVE

TO GET

MAX DISCOUNTON

mxn

Array

- Loc(A[i]) = Base + w * (i LB)
- 2-D array RMO: Loc(A[i][j]) = Base + w * [(i LBi) * n + (j LBj)]
- 2-D array CMO: Loc(A[i][j]) = Base + w * [(j LBj) * m + (i LBi)]

Operation	Comparisons	Space	2-1-C
Find Minimum	N-1	1	0 (n
Find Maximum	N-1	1	0(n)
Find Min Max Both (N is even)	1.5N - 2	N	0 (h)
Find Min Max Both (N is odd)	[1.5N] - 2	N	a (n)
Find Second Minimum	$N + \log n - 2$	N	$\theta(n)$
Find Second Maximum	$N + \log n - 2$	N	A(n)

- Linear Search: O(n)
- Binary Search: O(log n) array should be Sarted

Linked List

Insertion (Singly)	Complexity	
1. At beginning	Constant	
2. After a given node	Constant	
3. Before a given node	O(n)	
4. At the end	Theta(n)	
5. At the end (last node add. given)	Constant	
6. In a sorted list	O(n)	

Insertion in Circular List (Singly)	Complexity
1. At beginning	O(n)
2. After a given node	Constant
3. Before a given node	O(n)
4. At the end	Theta(n)
5. At the end (last node add. given)	Constant
6. In a sorted list	O(n)

Linked List

Deletion (Singly)	Complexity
1. At beginning	Constant
2. After a given node	Constant
3. Before a given node	O(n)
4. At the end	Theta(n)
5. At the end (last node add. given)	Theta(n)
6. In a sorted list	O(n)
7. Of a given node	O(n)

Linked List

Insertion in Doubly List	Complexity
1. At beginning	Constant
2. After a given node	Constant
3. Before a given node	Constant
4. At the end	Theta(n)
5. At the end (last node add. given)	Constant
6. In a sorted list	Comstant o (n)

Deletion in Doubly List	Complexity
1. At beginning	Constant
2. After a given node	Constant
3. Before a given node	Constant
4. At the end	Theta(n)
5. At the end (last node add. given)	Constant
6. Of a given node	Constant

Queue & Stack

- Queue using array: Enqueue() & Dequeue in constant time
- Queue using linked list with 2 pointers(first & last)
 - Enqueue() & Dequeue in constant time with insertion a last and deletion from front

Double Ended Queue	Enqueue	Dequeue
Input Restricted	Rear	Both
Output Restricted	Both	Front

- Stack Using Array: PUSH & POP in constant time
- Stack using linked list: PUSH & POP in constant time (with both from starting)
- Valid stack permutations = $\frac{2nc}{n+1} = \frac{2n!}{n! + n! + n!}$
- Invalid stack permutations = $n! \frac{n}{n+1}$
- Two stacks in single array: Overflow condition: top1 = top2 1

Tree

- Binary tree
 - $| = |_1 + |_2$
 - $L = I_2 + 1$
 - $N = 2*I_2 + I_1 + 1$
 - n3 = nodes with degree 3, n1 = nodes with degree 1 height h = $2^{h+1} 1$ H (T) = 0 with 1 hole • n3 = n1 - 2
 - Max nodes with height $h = 2^{h+1} 1$
 - Min nodes with height h = h + 1
 - Max nodes at level $L = 2^{L}$
 - Min nodes at level L = 1
 - Number of BT with n unlabeled nodes = $\frac{n}{n}$ $_{2nc}$ n+1
 - Number of BT with n distinct keys = $-\frac{n}{n}*n!$ n+1
- First Symbol of preorder is root
- Last Symbol of postorder is root

Tree

- Reverse of Converse Preorder is conventional Postorder
- Reverse of Converse Postorder is conventional Preorder
- Reverse of Converse Inorder is conventional Inorder
- Preorder and Postorder can provide unique tree if all internal nodes have maximum allowed children; otherwise inorder is required to get unique tree
- CBT: Max nodes with height h = 2^{h+1} 1
- CBT: Min nodes with height h = 2^h
- Array representation of tree:
 - Root at index 1
 - Left child of node at index i = 2i
 - Left child of node at index i = 2i+1
 - Parent of node at index $i = \lfloor i/2 \rfloor$

Tree

- Full BT (2-Tree)
 - L = I+1
 - N = 2I + 1
 - N = 2L 1
 - N is always odd
- K- tree (every internal nodes has k children)
 - L = (k-1)I + 1
- BST:
 - Inorder is sorted sequence in ascending order
 - If preorder given then insert keys from first to last and construct tree
 - If postorder given then insert keys from last to first and construct tree
 - Number of BST with n distinct keys = $\frac{n}{n+1}$

ı	Д	Q
	J	J

)	لمما	lan	a	BST	
X				•	

BST:

Case	Searching, Insertion & Deletion	
_	O(h)	
Average	O(log n)	
Worst	O(n)	

AVL	Tree		
	0 (Wyn) 0 (Gn)	h	= log h

AVL Deletion:

Case	Rotation
RO	LL
R1	LL
R-1	LR
LO	RR
L1	RL
L-1	RR

$$h_{min}(h) = 0$$
 h_{-2}
 h_{-1}
 h_{-2}
 h_{-1}
 h_{-1}
 h_{-1}

- Min height of an AVL tree with n nodes = $\lfloor \log_2 n \rfloor$
- Max height of an AVL tree with n nodes $\approx 1.44 \log_2 n$

Graph & Hashing

Traversal	Adjacency Matrix	Adjacency List
BFS	O(V ²)	O(V + E)
DFS	O(V ²)	O(V + E)

- Disadvantages of open addressing: (Closed hashing)
 - 1. Collided records require more probes
 - 2. Deletion not possible
 - 3. Overflow problem
- Advantages of chaining:
 - Collided records require less probes.
 - 2. Deletion possible
 - 3. No overflow problem
- Load Factor = $\frac{Total\ Keys}{Total\ Slots}$

• Space Utilization=
$$\frac{Occupied\ Slots}{Total\ Slots}$$

Graph & Hashing

Advantages: Chaining

- 1. Simple to implement.
- 2. Hash table never fills up, we can always add more elements to the chain.
- 3. Less sensitive to the hash function or load factors.
- It is mostly used when it is unknown how many and how frequently keys may be inserted or deleted.

Disadvantages: Chotining

- 1. Cache performance of chaining is not good as keys are stored using a linked list. Open addressing provides better cache performance as everything is stored in the same table.
- 2. Wastage of Space (Some Parts of hash table are never used)
- 3. If the chain becomes long, then search time can become O(n) in the worst case.
- 4. Uses extra space for links.

4:45PM -> (0A

Happy Learning.!

