6.2 任意角的正弦、余弦、正切、余切(1)

知识点:任意角的正弦、余弦、正切、余切及其符号.同角三角比关系(求值)【A组】

1. 已知角 α 的终边经过下列各点,求角 α 的正弦、余弦、正切、余切.

(1)
$$(-8,-6)$$
, $\sin a = \frac{3}{5}$, $\cos a = \frac{4}{5}$, $\tan a = \frac{4}{5}$, $\cot a = \frac{4}{3}$;

(2)
$$(\sqrt{3},-1)$$
, $\sin a = \frac{1}{2}$, $\cos a = \frac{1}{2}$, $\tan a = -\frac{\sqrt{3}}{3}$, $\cot a = \frac{1}{2}$.

2. 下列各式为正号的是(()

 $A.\cos 2 - \sin 2$

B. cos 2 · sin 2

C. $\tan 2 \cdot \sec 2$

 $\mathbf{D}.\sin 2 \cdot \tan 2$

3. 填表:

· A.V.				
а	a sin a		tan a	
$\frac{2\pi}{3}$	<u>5</u>	, - 1/2	1	
$\frac{5\pi}{4}$	- 12	12	1	
$\frac{5\pi}{}$	1	12	1 3	
6			- 3	

4. 填表:

α	点 P 的坐标	$\sin \alpha$	cosα	$\tan \alpha$	$\cot \alpha$
$\alpha = 2k\pi(k \in \mathbb{Z})$	(1,0)	0	1	0	不存在
x=元十七元(ktz)	(0,1)		0	不在在	1111
x= 1+2/2 (162).	(-1,0)	0	0-1	7 492	744
a= In plucker	(0,-1)	1)-1	0	不存在	不存在.

5. 已知
$$\sin a = \frac{4}{5}$$
, $a \in (0,\pi)$, 则 $\tan a$ 等于 $\pm \frac{4}{5}$

6.已知角 θ 满足 $\sin\theta$ <0且 $\cos\theta$ >0,则角 θ 是第 四 象限的角、

8.已知角 θ 满足 $\frac{\sin\theta}{\cos\theta}>0$,则角 θ 是第一、三条限的角.

9.设 $x \in \mathbb{R}$, 且 $x \neq k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$, 则 $\frac{\sin x}{|\sin x|} + \frac{|\cos x|}{\cos x} + \frac{\tan x}{|\tan x|}$ 的取值集合为 $\{\}, -|\}$

- 3. 已知 a 为第二象限的角,其终边上有一点 $P(x,\sqrt{5})$,且 $\cos a = \frac{\sqrt{2}}{4}x$,求 $\tan a = \frac{\sqrt{2}}{4}$
- 4. 已知角 θ 的终边上有一点P(4,y),且 $\sin\theta = \frac{2\sqrt{5}}{5}$,则 $y = \frac{-9}{5}$
- - 6. 已知集合 $A=[r]r = \frac{|\sin x|}{|\sin x|} + \frac{|\cos x|}{|\cos x|} + \frac{|\tan x|}{|\cos x|}$, 用列举法表示集合 A 是 $\frac{3}{3}$
 - 若角 a 是第三象限角,则① $\sin a + \cos a < 0$; ② $\tan a \sin a > 0$; ③ $\cot a \cdot \csc a < 0$; $\mathbf{a} \cdot \sin a \cdot \sec a > 0$. 其中正确的是 $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{b}$
 - 8. 已知角 a 的终边过点 (3a-9, a+2), 且 cos a ≤ 0, sin a > 0, 则 a 的取值范围 是 (-こ, 3).
 - 9. 在 🛆 ABC 中, 岩都有 cos A·tan B·cot C < 0,则这三角形是_ 9. 在△ABC T, ABER COLD 10. 设 y = sin a · cos a · cot a 且 a 是象限角,则 y 的符号为(△)

 (A) 每年 (B) 佰佈 (C) 可能为 0 (D) 不确定 (A) 恒正 (B) 恒负
 - 11. 若角 a 的终边落在直线 x+y=0上,则 $\frac{\sin a}{\sqrt{1-\sin^2 a}} + \frac{\sqrt{1-\cos^2 a}}{\cos a}$ 的值等于
 - 12. 已知实数 a, β 满足 $|\cos a \cos \beta| = |\cos a| + |\cos \beta|$, 且 $a \in \left(\frac{\pi}{2}, \pi\right)$, 则化简 $\sqrt{(\cos a - \cos \beta)^2}$ 的结果是 ($\sqrt{(\cos a - \cos \beta)^2}$)
 - (A) $\cos a \cos \beta$
- (B) $-\cos \alpha \cos \beta$ (C) $\cos \beta \cos \alpha$
- (D) $\cos a + \cos \beta$

13. 已知角 a 的终边上一点 P与点 A(-3, 2)关于 y轴对称,角 β 的终边上一点 Q

与点 A 关于原点对称,求 $2\sin a + 3\sin \beta$ 的值.

14. 已知角 θ 终边上一点 $P(-\sqrt{3}, m)$ 且 $\sin \theta = \frac{\sqrt{2}}{4}m$,求 $\cos \theta$ 和 $\tan \theta$ 的值. $\frac{1}{4} \cdot \sin \alpha = \frac{m}{\sqrt{3+m}} = \frac{\sqrt{1}}{4} \cdot \cos \alpha = \frac{\sqrt{1}}{4} \cdot \cos \alpha$

$$\partial S \theta = \frac{-\sqrt{3}}{\sqrt{3} + m^2} = -\sqrt{3}$$

$$ton \theta = \frac{m\theta}{us\theta} = -\frac{m}{\sqrt{s}}$$

$$tn\theta=$$

2 m=-5 010 = -4 ton 0= \$15

(1)
$$\sin a - \cos a$$
; (2) $\sin^3 a + \cos^3 a$; (3) $\sin^4 a + \cos^4 a$.

 $\frac{1}{1}$: d1. $\frac{1}{2}$

27. YS=((m9tosq) (sing - smacos9+000)

16 x /www 5. (3,4)5(小)1**i名**。 【滚动练习】

- 函数 $y = \lg \frac{x^2 + 1}{|x|} (x \neq 0, x \in \mathbb{R})$ 的最小值是 <u>Q7</u>. 1.
- 2.
- 函数 $y=2(9^x+9^{-x})-12(3^x+3^{-x})+4$ 的最小值为 3.
- 已知 $y = -4x^2 + 4ax 4a a^2$ 在区间 [0,1]上有最大值 -5,则 a 的值为_ 4.
- 已知函数 $y = a \cdot b^x + c$ $(b > 0, b \ne 1)$ $(x \in [0, +\infty))$ 的值域为 [-1, 2), 则该函数的一 5.
- 设 $f(x) = \log_2 x + \log_2 (1 x)$. (1) 求函数 y = f(x) 的定义域和值域;
 - (2) 解不等式 $f(x) < \log_2 x 1$.

4: 01. 0< X<1.

$$|g_{2}(1-x)<-|$$
.

 $|g_{2}(1-x)<|g_{2}|$
 $|-x<\frac{1}{2}$
 $|x|=\frac{1}{2}$
 $|x|=\frac{1}{2}$
 $|x|=\frac{1}{2}$
 $|x|=\frac{1}{2}$

求函数 $f(x) = \sqrt{x^4 + 3x^2 - 6x + 10} - \sqrt{x^4 - 3x^2 + 2x + 5}$ 的最大值. 函数 $y = 2x + \sqrt{4x^2 - 8x + 3}$ 的最小值. $y = -\frac{3}{4} \times +\frac{1}{4}$ $\chi^2 \quad y = -\frac{3}{4} \times +\frac{1}{4}$ 已知实数 a > b > 0 ,求函数 $f(x) = \frac{x}{\sqrt{a-x^2}-\sqrt{b-x^2}}$ 的最大值. (1). f(x)= [(x+1)2+(x-3)2 -](x2-2)2-+(x+1)2. C(x,x)点至(3,-1)与(-1,3)知能感差 [AU-1BU|=1AB|=5 ... fox max=1. 1=x= 587-3 nf Th (3) (2) y=2x+1(2x-2)=1 ix2x-2=seco 0 (to,2T) y= seco+2+tong 0 (0,7) UTI, 37) 1=-050 +2 (1050,500) 510-11两度、到可连续的杂色 · COSO的最外位为一一、Ymin=在长之时取得 (3), f(x)= X. (19-x2+16-x2) 【滚动练习】 到何是此时人一旦 2569. 1. 函数 $y = \lg \frac{x^2 + 1}{|x|} (x \neq 0, x \in \mathbb{R})$ 的最小值是 X大度 XX TO HIS FOX 2. 一函数 $y = \ln(1+x) + \frac{1}{4}x^2 (0 \le x \le 2)$ 的最大值和最小值的和是 f(x)= a-b (x (a+6-2x+2/a-x2/6-x2) 函数 y=2(9*+9**)-12(3*+3**)+4的最小值为 = 1 (COHB)X-2X4+2X6-X-已知 $y=-4x^2+4ax-4a-a^2$ 在区间[0,1]上有最大值-5,则 a 的值为_ 已知函数 $y=a\cdot b^x+c$ $(b>0,b\neq 1)$ $(x\in [0,+\infty))$ 的值域为 [-1,2),则该函数的一 a-b Jab (x Jax / 10 x) 个解析式可以为 y = 设 $f(x) = \log_2 x + \log_2 (1 - x)$. (1) 求函数 y = f(x) 的定义域和值域; 等多批平原时的学、 (2) 解不等式 $f(x) < \log_2 x - 1$. · Thistes Jas

26. 解析 当 x < 0 时, f(x) < 0; 当 x > 0 时, f(x) > 0. 故只需考虑 x > 0.

$$f(x) = \frac{x}{\sqrt{a - x^2} - \sqrt{b - x^2}} = \frac{x(\sqrt{a - x^2} + \sqrt{b - x^2})}{a - b}$$

$$= \frac{1}{a - b} \sqrt{x^2(a + b) - 2x^4 + 2x^2 \sqrt{(a - x^2)(b - x^2)}}$$

$$= \frac{1}{a - b} \sqrt{ab - \left[x^2 - \sqrt{(a - x^2)(b - x^2)}\right]^2} \le \frac{\sqrt{ab}}{a - b},$$

当
$$x^2 = \sqrt{(a-x^2)(b-x^2)}$$
,即 $x = \sqrt{\frac{ab}{a+b}}$ 时,等号成立.

7. 解析 (方法 1) 单调性法.

记 $f(x) = 2x + \sqrt{4x^2 - 8x + 3}$,从形式上看,函数 y = f(x) 由一个正比例函数和一个无理函数的和构成.

解不等式 $4x^2 - 8x + 3 \ge 0$, 得 $x \le \frac{1}{2}$ 或 $x \ge \frac{3}{2}$, 所以函数 y = f(x) 的定义域为 $\left(-\infty, \frac{1}{2}\right] \cup \left[\frac{3}{2}, +\infty\right)$.

由于正比例函数 $y_1 = 2x$ 与二次函数 $y_2 = 4x^2 - 8x + 3$ 在 $\left[\frac{3}{2}, + \infty\right)$ 上都为增函数,则函数 y = f(x) 在 $\left[\frac{3}{2}, + \infty\right)$ 上为增函数.

所以,当 $x \in \left[\frac{3}{2}, + \infty\right)$ 时, $f(x) \ge f\left(\frac{3}{2}\right) = 3$.

当 $x \in \left(-\infty, \frac{1}{2}\right]$ 时,函数 y = f(x) 可以转化为

$$f(x) = (2x - 2) + \sqrt{(2x - 2)^2 - 1} + 2 = \frac{1}{(2x - 2) - \sqrt{(2x - 2)^2 - 1}} + 2$$

易知它在 $\left(-\infty,\frac{1}{2}\right]$ 上为减函数,所以 $f(x) \ge f\left(\frac{1}{2}\right) = 1$.

综上所述,函数 $y = 2x + \sqrt{4x^2 - 8x + 3}$ 的最小值为 1.

(方法 3) 导数法.

记
$$f(x) = 2x + \sqrt{4x^2 - 8x + 3}$$
,解不等式 $4x^2 - 8x + 3 \ge 0$,得 $x \le \frac{1}{2}$ 或 $x \ge \frac{3}{2}$. 所以函数 $y = f(x)$ 的定义域为 $\left(-\infty, \frac{1}{2}\right] \cup \left[\frac{3}{2}, +\infty\right)$, $f'(x) = 2 + \frac{4x - 4}{\sqrt{4x^2 - 8x + 3}}$.

当
$$x > \frac{3}{2}$$
时, $f'(x) > 0$,函数 $y = f(x)$ 在 $\left[\frac{3}{2}, + \infty\right)$ 上单调递增,所以 $f(x) \ge f\left(\frac{3}{2}\right) = 3$.

当 $x < \frac{1}{2}$ 时,

$$f'(x) = 2 + \frac{4x - 4}{\sqrt{4x^2 - 8x + 3}} = 2 - \frac{4(1 - x)}{\sqrt{4(1 - x)^2 - 1}} < 2 - \frac{4(1 - x)}{2(1 - x)} = 0.$$

函数 y = f(x) 在 $\left(-\infty, \frac{1}{2}\right]$ 上单调递减,所以 $f(x) \ge f\left(\frac{1}{2}\right) = 1$.

综上所述,函数 $y = 2x + \sqrt{4x^2 - 8x + 3}$ 的最小值为 1.

$$\int_{(x-x^2)}^{(x)} \int_{(x-x^2)}^{(x)} \int_{(x-x^2)$$