

FACULDADE DE TECNOLOGIA DE SÃO CAETANO DO SUL

Professor Sérgio Luiz Banin

Curso	Objetivo	Disciplina
Análise e Desenvolvimento de Sistemas	Python Básico e Python para Banco de Dados	Banco de Dados

Comando Condicional

É comum que em um algoritmo seja necessária a tomada de decisões baseadas em valores contidos em variáveis. Por exemplo, considere um algoritmo que tenha duas variáveis inteiras A e B previamente carregadas com algum valor. Caso seja necessário calcular a divisão de A por B e o conteúdo da variável B for zero, ocorrerá um erro, como pode ser visto na figura abaixo. Isto ocorre porque divisões por zero não são permitidas.

```
>>> A = 16
>>> B = 0
>>> R = A / B
Traceback (most recent call last):
   File "<pyshell#2>", line 1, in <module>
      R = A / B
ZeroDivisionError: division by zero
```

No caso deste algoritmo a situação de erro é indesejável, então é preciso tomar o cuidado de se evitá-la. Uma das formas de se conseguir isso é usar o Comando Condicional: if - else.

Ao utilizá-lo será necessário formular uma condição cujo resultado será falso ou verdadeiro e em função desse resultado o programa será escrito de modo a executar diferentes comandos em cada caso. Então pode-se formular a seguinte ideia: "se B for igual a zero, então apresente a mensagem 'Não é possível calcular a divisão', senão (ou seja, B é diferente de zero) calcule e apresente na tela A / B. Agora é preciso escrever isso em Python. Assim, tem-se o exemplo a seguir, onde é feita a leitura das variáveis A e B usando-se o comando input.

Teste esse pequeno programa no Python escrevendo-o na forma de script. Para isso abra o Python e acione o comando do menu: File -> New File e escreva o programa exibido abaixo, salve-o e execute-o.

Caso seja fornecido o valor zero para B, será apresentada a mensagem e caso B seja diferente de zero, então será apresentado o resultado do cálculo. Rode várias vezes esse programa, testando-o com diferentes valores para A e B.

Explicando em detalhes este exemplo

Nas linhas ① e ② é feita a leitura das variáveis A e B de modo que qualquer valor inteiro pode ser inserido para qualquer uma delas.

Na linha ③ há o comando *if* (se) e sua condição. Nesta condição a pergunta que se está fazendo é se o conteúdo de B é igual a zero. Para isso foi usado o operador relacional '==' que avalia se a variável B que está do lado esquerdo contém um valor igual a zero, que está do lado direito. Esta condição será avaliada pelo processador e um resultado será gerado. Esse resultado pode ser falso ou verdadeiro. Caso seja verdadeiro, o programa seguirá para a linha ④ e executará o *print*. Caso seja falso, o programa desviará (pulará) a linha ④ e seguirá para a execução das linhas ⑥ e ⑦, que estão subordinadas ao *else* (senão) da linha ⑤.

Note que nas linhas ③ e ⑤ há um caractere ':' (dois pontos) no final da linha. Em Python é obrigatória a colocação desse caractere no comando if - else, pois é através dele que o interpretador Python identifica o término do cabeçalho do comando e o início dos comandos que lhe estão subordinados.

Essa relação de subordinação é importante na lógica do algoritmo. Neste exemplo a linha 6 está subordinada ao if da linha 3 e as linhas 6 e 7 estão subordinadas ao else da linha 5.

Identação

O interpretador Python identifica a relação de subordinação descrita no parágrafo anterior pelo recuo que há na digitação das linhas do programa. Note que as linhas subordinadas estão digitadas com alguns espaços em branco à esquerda. Isso recebe o nome de identação e, em Python, ela é obrigatória sempre que houver um ou mais comandos subordinados a outro. O else por sua vez não é identado e para que o programa fique correto é preciso que ele fique exatamente no mesmo alinhamento do if ao qual está associado.

Construindo Condições Simples

No exemplo anterior foi construída uma condição que avaliava se um valor contido na variável B era igual a zero ou não. Para isso usou-se a construção B = 0, onde B é uma variável e 0 é um número literal

Generalizando pode-se dizer que condições podem ser escritas da seguinte forma:

{Expressão do lado esquerdo} {operador} {Expressão do lado direito}

Onde:

As expressões em ambos os lados podem ser:

- um literal (geralmente número ou texto)
- uma variável
- uma fórmula (expressão aritmética)
- uma chamada de função (isso será visto mais tarde)

O **operador** é um dos seis operadores relacionais exibidos nesta tabela à direta. Nos caso dos operadores que contém dois caracteres, não é permitido haver espaço em branco entre eles.

==	Igual a	
!=	Diferente de	
<	Menor que	
<=	Menor ou igual a	
>	Maior que	
>=	Maior ou igual a	

Exemplos de condições simples

Condição Interpretação		Elementos envolvidos
A > 0	A maior que zero	Compara variável com literal numérico (0)
X <= Y	X menor ou igual a Y	Compara duas variáveis
X != A + B X é diferente de A + B		Compara variável com o resultado da expressão aritmética
C > 2*(A+B) C é maior que 2(A+B)		Compara variável com o resultado da expressão aritmética
10*A < 100*B 10A é maior que 100B		Compara os resultados de duas expressões aritméticas
S == ""	S igual a string vazio	Compara variável com literal texto vazio
S != "SIM"	S diferente de "SIM"	Compara variável com literal texto não vazio

Exercícios - Lote 1

Considerando os valores fornecidos, avalie cada condição e informe se o resultado é falso (False) ou verdadeiro (True). Faça o teste dessas condições no Shell do Python conforme mostrado na figura.

	Valores	Condição	Resultado
1	Para A = 0 e B = -3	A > B	
2	Para X = 3.7	X <= 10.0	
3	Para A = 3, B = 9 e C = 5	10 * A >= B * C	
4	Para A = 3, B = 6 e C = 5	10 * A >= B * C	
5	Para N = "MORANGO"	N == "BANANA"	
6	Para N = "MORANGO"	N > "BANANA"	

Construindo Condições Compostas

Muitas vezes é preciso combinar duas ou mais condições simples em uma condição composta. Dessa forma, as condições simples vistas anteriormente são a base para a construção das condições compostas. A construção de uma condição composta tem a seguinte forma:

Onde:

As condições 1 e 2 são duas condições simples já vistas

O operador lógico é um dos dois operadores ao lado. Antes de seguir adiante, é preciso saber como avaliar expressões que contenham esses operadores and e or. Para isso estão postas abaixo as tabelas verdades de ambos.

and	Operação lógica E	
or	Operação lógica OU	

Tabela Verdade <i>and</i>					
Para que and resulte verdadeiro ambos, C1					
e C2, devem ser verdadeiros					
C1					
False	False	False			
False True False					
True False Fals					
True True True					

Tabela Verdade <i>ox</i>					
Para que or r	Para que or resulte verdadeiro pelo menos				
um dos dois,	um dos dois, C1 ou C2, deve ser verdadeiro				
C1 C2 C1 or C2					
False	False	False			
False True True					
True	False	True			
True	True	True			

Exemplos de condições compostas

Condição	Interpretação
A > 0 and $B > 0$	O resultado da condição composta será verdadeiro se A e B forem ambos
A > 0 and B > 0	iguais a zero no momento da avaliação
$X \le Y \text{ and } Y != 0$	O resultado da condição composta será verdadeiro somente se X for menor
X \= 1 and 1 := 0	ou igual a Y ao mesmo tempo que Y seja diferente de zero.
X == 0 or X > 2000	O resultado da condição composta será verdadeiro se X for igual a zero ou se
X 0 01 X > 2000	X for maior que 1000

Exercícios - Lote 2

Considerando os valores fornecidos, avalie cada condição composta e informe se o resultado é falso (False) ou verdadeiro (True). Faça o teste dessas condições no Shell do Python.

	Α	В	С	Condição	Resultado
1	10	15	4	A < B and A < C	
2	10	15	4	A < B or A < C	
3	1	9	0	A >= 0 and $B == C$	
4	1	9	9	A >= 0 and $B == C$	
5	1	9	0	A >= 0 or B == C	
6	1	9	9	A >= 0 or B == C	
7	0	0	0	B != 0 and A != C	
8	0	0	25	B != 0 and A != C	
9	0	0	0	B != 0 or A != C	
10	0	0	25	B != 0 or A != C	

Negação

Além dos operadores lógicos and e or, existe também o operador not. Este, no entanto, é diferente dos outros dois. Ele é aplicável apenas a uma condição, da seguinte forma:

Ele tem o efeito de inverter o resultado da Condição à qual é aplicado.

Valores	Condição	Negação	Interpretação
Para A = 0	A == 0 resulta verdadeiro	not (A == 0) resulta falso	Como A é, de fato, igual a zero então a Condição resulta verdadeiro e sua negação será falso.
			(Na prática é o mesmo perguntar se A é diferente de zero)
Para A = 3	A == 0	not (A == 0)	Como A é 3 a Condição resulta em falso e,
	resulta falso	resulta verdadeiro	portanto, sua negação será verdadeiro.

Condições Compostas Mistas

Em uma única condição composta é possível misturar not, and e or. Quando isso ocorre é necessário ter atenção à precedência com que esses operadores são considerados. Existe uma ordem de prioridade a ser respeitada. Essa prioridade segue a seguinte ordem: not primeiro, and em seguida e or por último.

Assim, na avaliação de uma condição composta mista a prioridade acima sempre será seguida. É necessário ter o devido cuidado ao construir condições assim e verificar que a falta de atenção pode levar a erros. Como exemplo veja as duas expressões abaixo e avalie-as para A = 15, B = 9, C = 9

$$B == C \text{ or } A < B \text{ and } A < C$$
 Resultará Verdadeiro
($B == C \text{ or } A < B$) and $A < C$ Resultará Falso

O uso de parênteses serve para alterar a ordem de prioridade na avaliação de expressões lógicas. Uma vez inseridos, os parênteses estabelecem qual (ou quais) parte(s) serão avaliada(s) primeiro.

Exercícios - Lote 3

Considerando os valores fornecidos, avalie cada condição composta e informe se o resultado é falso (False) ou verdadeiro (True). Faça o teste dessas condições no Shell do Python.

	Α	В	С	Condição	Resultado
1	10	15	4	A < B and $A < C $ or $C $!= 0	
2	10	15	4	A < B and $(A < C or C != 0)$	
3	1	9	0	not (A >= 0 and B == C)	
4	1	9	9	Not $(A \ge 0)$ and not $(B == C)$	
5	1	9	0	(A >= 0 or B == C) and B > A	

Comando Condicional Completo

Retomando agora as explicações sobre o comando condicional, abaixo está sua forma completa.

```
if {condição 1}:
    {bloco de comandos 1}
elif {condição 2}:
    {bloco de comandos 2}
elif {condição 3}:
    {bloco de comandos 3}
...
else:
    {bloco de comandos do else}
```

As partes if e else já foram explicadas anteriormente. A parte elif permite que sejam usadas condições adicionais e confere a possibilidade de tomada de decisão entre múltiplas opções.

A execução deste comando inicia pela avaliação da {condição 1} e se ela for verdadeira será executado o {bloco de comandos 1} e pulam-se todos os demais; caso a {condição 1} seja falsa, passa-se para a avaliação da {condição 2} e caso seja verdadeira será executado o {bloco de comando 2} pulando-se os demais, e assim sucessivamente. Ao final, se nenhuma das condições postas for verdadeira, então executa-se o {bloco de comandos do else}.

Não há limites para a quantidade de partes elif a serem usadas, de modo que o programador é livre para usar tantas dessas partes quanto for a necessidade do algoritmo.

E, por fim, é preciso dizer que as partes elif e else são opcionais, de modo que se o programador não precisar incluí-las em seu algoritmo, elas podem simplesmente ser omitidas.

Exemplo

Exercícios

- 1. Escreva um programa que leia um número real X e apresente na tela a mensagem "Maior que zero" caso ocorra X > 0. Se X for menor ou igual a zero não faça nada.
- 2. Escreva um programa que leia dois números inteiros A e B e mostre na tela apenas o menor dos dois.
- 3. Escreva um programa que leia dois números quaisquer e mostre na tela qual é o menor e qual é o maior.
- 4. Escreva um programa que leia um número inteiro e apresente na tela se ele é par ou ímpar (para determinar se um número é par ou ímpar verifique se o resto da divisão dele por 2 é zero ou não. Para isso use o operador % para calcular esse resto).
- 5. Escreva um programa que leia um número inteiro e informe se o mesmo é positivo, zero ou negativo.
- 6. Escreva um programa que leia o nome de um lutador e seu peso. Em seguida informe a categoria a que pertence o lutador, conforme a tabela ao lado (note que a tabela foi criada para efeito deste exercício e não condiz com qualquer categoria de luta). A saída do programa deve exibir na tela um texto no seguinte padrão:

Peso	Categoria
Menor que 65 kg	Pena
Maior ou igual a 65 kg e menor que 72 kg	Leve
Maior ou igual a 72 kg e menor que 79 kg	Ligeiro
Maior ou igual a 79 kg e menor que 86 kg	Meio médio
Maior ou igual a 86 kg e menor que 93 kg	Médio
Maior ou igual a 93 kg e menor que 100 kg	Meio pesado
Maior ou igual a 100 kg	Pesado

Nome fornecido: Pepe Jordão

Peso fornecido: 73.4

Saída exibida na tela: O lutador Pepe Jordão pesa 73.4 kg e se enquadra na categoria Ligeiro

- 7. Escreva um programa que leia três números reais A, B e C que são os coeficientes de uma equação do 2º grau (A.x² + B.x + C = 0). Calcule e apresente na tela as raízes dessa equação, considerando os três casos possíveis: Delta maior que zero (duas raízes reais), Delta igual a zero (uma raiz) e Delta menor que zero (não há raízes reais).
- 8. Escreva um programa que leia três números reais e informe se eles constituem os lados de um triângulo. Em caso afirmativo, informe se o triângulo é equilátero, isósceles ou escaleno. Para que três números formem um triângulo deve ocorrer que a soma dos dois lados menores deve ser maior que o lado maior. Para resolver essa questão será preciso usar os operadores and e or.