INTERMEDIATE TRIGONOMETRY

OUR COLLEGE PUBLICATIONS

By Das & Mukherjee

- 1, INTERMEDIATE STATICS (14th Edition)
- 2. INTERMEDIATE DYNAMICS (14th Edition)
- 3. HIGHER TRIGONOMETRY (19th Edition)
- 4. INTEGRAL CALCULUS (21st Edition)
- 5. DIFFERENTIAL CALCULUS (17th Edition)
- 6. A SHORT COURSE OF COMPLEX VARIABLES
 & HIGHER TRIGONOMETRY (3rd Edition)
- 7. ANALYTICAL DYNAMICS

OF A PARTICLE (3rd Edition)

8. ELEMENTS OF CO-ORDINATE AND SOLID GEOMETRY (4th Edition)

By Ganguli & Mukherjee

- 9. INTERMEDIATE ALGEBRA (28rd Edition)
- 10. PRE-UNIVERSITY ALGEBRA (5th Edition)

 By Drs. J. G. Chakravarti & P. R. Ghosh
- 11. HIGHER ALGEBRA
- 12. VECTOR ANALYSIS (Pass & Hons.)

By S. Mukherjee & N. Das

- 18. KEY TO INTER./P. U. TRIGONOMETRY
- 14. KEY TO STATICS & DYNAMICS
- 15. KEY TO HIGHER TRIGONOMETRY
- 16. KEY TO DIFFERENTIAL CALCULUS
- 17. KEY TO COMPLEX VARIABLES & HIGHER TRIG.

By P. K. Das

- 18. KEY TO ANALYTICAL DYNAMICS OF A PARTICLE
 By Pain & Pain
- 19. KEY TO HIGHER ALGEBRA
- **20. KEY TO INTERMEDIATE ALGEBRA**
- 21. KEY TO PRE-UNIVERSITY ALGEBRA
- 22. KEY TO INTEGRAL CALCULUS

INTERMEDIATE TRIGONOMETRY

BY

B. C. DAS, M. Sc.
PROFESSOR OF MATHEMATICS, PRESIDENCY COLLEGE,
CALCUTTA: (RETD.),
EX-LECTURES IN APPLIED MATHEMATICS, CALCUTTA UNIVERSITY

AND

B. N. MUKHERJEE, M. A.

Premohand Roychand Scholer

PROFESSOR OF MATHEMATICS,
SCOTTISH CHUNCH COLLEGE, CALCUTTA (ENTD.)

U. N. DHUR & SONS PRIVATE LTD.

BOOK-SELLERS & PUBLISHERS

15. BANKIM CHATTERIEE STREET, CALCUTTA 12

Rs. 750 only

Published by

DWIJENDRANATH DHUR, LL.B.

For U. N. DHUR & SONS PRIVATE LTD.,

15. Bankim Chatterjee Street, Calcutta 12

25TH EDITION-1948

Printed by

Printed by

BASU, B. A.,

San Basu Printing Works,

Basu Printing Works,

Basu Printing Works,

PREFACE TO THE FIRST EDITION

THIS book, as its name indicates, is meant to be a textbook for the Intermediate students of Indian Universities, especially the University of Calcutta. Regarding the subject-matter, we have tried to make the exposition clear and concise, without going into unnecessary details. A good number of examples have been worked out by way of illustrations, and examples set have been carefully selected.

Important formulæ and results have been given at the beginning of the book for reference. Calcutta University questions of recent years are given at the end, to give the students an idea of the standard of the examination.

It is hoped that the book will meet the requirements of those for whom it is intended and we shall deem our labours amply rewarded if the students find the book useful to them.

The book had to be hurried through to the press practically within the period of a fortnight, and we must thank the authorities and officers of the K. P. Basu Printing Works, Calcutta, who, in spite of their various preoccupations had the kindness to complete the printing in such a short period of time.

Any criticism, correction and suggestion towards improvement will be thankfully received.

B. C. D. B. N. M.

CONTENTS

			PAGE
Measurement of angles	· · ·		1
Trigonometrical ratios	•••	•••	15
Trigonometrical ratios	s of some standard	l	
angles	•••	•••	29
Trigonometrical ratios	of angles associat	bed	
with a given angle	θ	•••	37
Simple practical applic	eations of		
Trigonometry	•••		52
Compound angles	•••	•••	60
Transformations of Pro	oducts and Sums	•••	71
Multiple angles	•••	• • •	7 6
Sub-multiple angles	•••	•••	82
Trigonometrical Identi	ities	•••	88
Trigonometrical Equat	ions and general		
values	•••	•••	98
Inverse Circular Func	tions	•••	112
Miscellaneous Example	s I	•••	122
Logarithms	•••	•••	124
Properties of triangles	•••	•••	145
Solution of triangles	•••	•••	169
Miscellaneous Example	es II	•••	186
Graphs of Trigonometr	rical Functions	•••	189
	Trigonometrical ratios angles Trigonometrical ratios with a given angle Simple practical applic Trigonometry Compound angles Transformations of Pre Multiple angles Sub-multiple angles Trigonometrical Identi Trigonometrical Equat values Inverse Circular Funct Miscellaneous Example Logarithms Properties of triangles Solution of triangles Miscellaneous Example	Trigonometrical ratios Trigonometrical ratios of some standard angles Trigonometrical ratios of angles associated with a given angle θ Simple practical applications of Trigonometry Compound angles Transformations of Products and Sums Multiple angles Sub-multiple angles Trigonometrical Identities Trigonometrical Equations and general values Inverse Circular Functions Miscellaneous Examples I Logarithms Properties of triangles Miscellaneous Examples	Trigonometrical ratios Trigonometrical ratios of some standard angles Trigonometrical ratios of angles associated with a given angle θ Simple practical applications of Trigonometry Compound angles Transformations of Products and Sums Multiple angles Sub-multiple angles Trigonometrical Identities Trigonometrical Equations and general values Inverse Circular Functions Miscellaneous Examples I Properties of triangles Miscellaneous Examples I Miscellaneous Examples I Miscellaneous Examples I

CHAP.	•				PAGE
XVII.	Miscellaneous Theorems and Examples			•••	. 215
	SEC. A-Heights an	d Distance	s	•••	215
	Sec. B-Summation	n of Series	•••	•••	225
	SEC. C-Elimination	n		•••	233
	Appendix	•••	•••	•••	23 8
	Miscellaneous Exam	ples III		•••	251
	Answers	•••	•••		25 8
	University Papers		•••	•••	268
	Mathematical Table	g			i-xxii

TRIGONOMETRY SYLLABUS OF THE CALCUTTA UNIVERSITY

FOR

I. A. & I. Sc. EXAMINATIONS

Measurement of angles.

Trigonometrical ratios.

Applications of algebraic signs; angles of any magnitude.

Graphs of Trigonometrical ratios.

Elementary Trigonometrical formulæ and their applications.

Logarithmic sines, cosines etc.

Relations between the sides and angles of a triangle.

Practical solutions of triangles with applications.

Elementary cases of Inverse Functions.

GREEK LETTERS USED IN THE BOOK

a (Alpha)	θ (Theta)
β (Beta)	π (Pai)
γ (Gamma)	φ (Phai)
δ (Delta)	ψ (Pai).

△ (Delta)

Note. The notation C. U. used at the end of any example means that the example was set in the Intermediate Examination of the Calcutta University.

IMPORTANT FORMULÆ AND RESULTS

- A radian = 57° 17′ 44'8" nearly. I.
 - 1 degree = '01745 radians nearly.
 - 2 right angles = $180^{\circ} = \pi$ radians.
 - $\pi = \frac{92}{7} = 3.1416$ approximately.
 - Radian measure of an angle at the centre of a circle
 - subtending arc radius
- $\sin^2\theta + \cos^2\theta = 1$ II.
 - $\begin{array}{l}
 \sin^2\theta + \cos^2\theta = 1; \\
 \sec^2\theta = 1 + \tan^2\theta; \\
 \csc^2\theta = 1 + \cot^2\theta,
 \end{array}
 \qquad
 \begin{array}{l}
 \frac{\sin\theta}{\cos\theta} = \tan\theta. \\
 \frac{\cos\theta}{\sin\theta} = \cot\theta.$
- II. $\sin 0^{\circ} = 0$: $\cos 0^{\circ} = 1$: $\tan 0^{\circ} = 0$.
 - $\sin 30^\circ = \frac{1}{2}$; $\cos 30^\circ = \frac{\sqrt{3}}{2}$; $\tan 30^\circ = \frac{1}{\sqrt{3}}$
 - $\sin 45^{\circ} = \frac{1}{\sqrt{2}};$ $\cos 45^{\circ} = \frac{1}{\sqrt{2}};$ $\tan 45^{\circ} = 1.$
 - $\sin 60^\circ = \frac{\sqrt{3}}{2}$; $\cos 60^\circ = \frac{1}{2}$; $\tan 60^\circ = \sqrt{3}$

 - $\sin 90^{\circ} = 1$; $\cos 90^{\circ} = 0$; $\tan 90^{\circ} = \infty$. $\sin 15^{\circ} = \frac{\sqrt{3} 1}{2\sqrt{2}}$; $\cos 15^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$; $\tan 15^{\circ} = 2 \sqrt{3}$.
 - $\sin 75^\circ = \frac{\sqrt{3+1}}{2\sqrt{2}}; \quad \cos 75^\circ = \frac{\sqrt{3-1}}{2\sqrt{2}}; \tan 75^\circ = 2 + \sqrt{3}.$
 - $\sin 18^\circ = \frac{1}{4}(\sqrt{5} 1); \cos 36^\circ = \frac{1}{4}(\sqrt{5} + 1).$
 - $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$; $\cos 120^{\circ} = -\frac{1}{2}$.
 - $\sin 180^{\circ} = 0$; $\cos 180^{\circ} = -1$; $\tan 180^{\circ} = 0$.
 - $\cos 270^{\circ} = 0: \quad \tan 270^{\circ} = \infty.$ $\sin 270^{\circ} = -1$:
 - $\cos 360^{\circ} 1$: $\tan 360^{\circ} 0$. sin 360°-0:

IV.
$$\sin (-\theta) = -\sin \theta$$
; $\cos (-\theta) = \cos \theta$; $\tan (-\theta) = -\tan \theta$
 $\sin (90^{\circ} - \theta) = \cos \theta$; $\sin (90^{\circ} + \theta) = \cos \theta$.
 $\cos (90^{\circ} - \theta) = \sin \theta$; $\cos (90^{\circ} + \theta) = -\sin \theta$.
 $\tan (90^{\circ} - \theta) = \cot \theta$; $\tan (90^{\circ} + \theta) = -\cot \theta$.
 $\sin (180^{\circ} - \theta) = \sin \theta$; $\sin (180^{\circ} + \theta) = -\sin \theta$.
 $\cos (180^{\circ} - \theta) = -\cos \theta$; $\cos (180^{\circ} + \theta) = -\cos \theta$.
 $\tan (180^{\circ} - \theta) = -\tan \theta$; $\tan 180^{\circ} + \theta = -\cos \theta$.
 $\tan (180^{\circ} - \theta) = -\tan \theta$; $\tan 180^{\circ} + \theta = -\cos \theta$.
 $\tan (180^{\circ} - \theta) = -\tan \theta$; $\tan 180^{\circ} + \theta = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\tan \theta$; $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\tan \theta$; $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\tan \theta$; $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\cos \theta$; $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\cos \theta$; $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} - \theta) = -\cos \theta$; $\cot (180^{\circ} + \theta) = -\sin \theta$.
 $\cot (180^{\circ} - \theta) = -\cos \theta$; $\cot (180^{\circ} + \theta) = -\sin \theta$.
 $\cot (180^{\circ} - \theta) = -\cos \theta$; $\cot (180^{\circ} + \theta) = -\sin \theta$.
 $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} + \theta) = -\sin \theta$.
 $\cot (180^{\circ} + \theta) = -\cos \theta$.
 $\cot (180^{\circ} + \theta) = -\sin \theta$.
 $\cot (180^{\circ} + \theta) = -\cos \theta$.

 $\sin C - \sin D = 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2}$

$$\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$$

$$\cos C - \cos D = 2 \sin \frac{C+D}{2} \sin \frac{D-C}{2}.$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 1 - 2 \sin^2 A = 2 \cos^2 A - 1$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}; \cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$1 - \cos 2A = 2 \sin^2 A$$

$$1 + \cos 2A = 2 \cos^2 A$$

$$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}.$$

IX. $\sin 3A = 3 \sin A - 4 \sin^3 A$, $\cos 3A = 4 \cos^3 A - 3 \cos A$, $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$.

VIII.

X.
$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$

 $\cos \theta = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} = 2 \cos^2 \frac{\theta}{2} - 1 = 1 - 2 \sin^2 \frac{\theta}{2}$
 $\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$
 $\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$; $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$

$$1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$$

$$1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}$$

$$\frac{1 - \cos \theta}{1 + \cos \theta} = \tan^2 \frac{\theta}{2}$$

XI. If $\sin \theta = \sin \alpha$, then $\theta = n\pi + (-1)^n \alpha$.

If $\cos \theta = \cos a$, then $\theta = 2n\pi \pm a$.

If $\tan \theta = \tan \alpha$, then $\theta = n\pi + \alpha$.

If $\sin \theta = 0$, or, $\tan \theta = 0$, $\theta = n\pi$.

If $\cos \theta = 0$, or, $\cot \theta = 0$, $\theta = (2n+1)\frac{\pi}{9}$.

If $\sin \theta = 1$, $\theta = (4m+1)\frac{\pi}{2}$; if $\sin \theta = -1$, $\theta = (4m-1)\frac{\pi}{2}$

If $\cos \theta = 1$, $\theta = 2m\pi$; if $\cos \theta = -1$, $\theta = (2m+1)\pi$.

XII. $\sin^{-1}x + \cos^{-1}x = \frac{1}{2}\pi$

 $\tan^{-1}x + \cot^{-1}x = \frac{1}{2}\pi$

 $\sec^{-1}x + \csc^{-1}x = \frac{1}{2}\pi$

 $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$

 $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x+y+z-xyz}{1-yz-zx-xy}$

 $\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}\{x \sqrt{1-y^2} \pm y \sqrt{1-x^2}\}.$

 $\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}\{xy \mp \sqrt{1-x^2}, \sqrt{1-y^2}\}.$

XIII. $\log_a mn = \log_a m + \log_a n$

 $\log_a \frac{m}{n} = \log_a m - \log_a n \; ; \; \log_a m^n = n \log_a m \; ;$

 $\log_a m = \log_b m \times \log_a b ; \log_a 1 = 0 ; \log_a a = 1.$

XIV.
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$;
 $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$;
 $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$;

$$a = b \cos C + c \cos B,$$

$$b = c \cos A + a \cos C,$$

$$c = a \cos B + b \cos A.$$

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\cos A = \sqrt{\frac{s(s-a)}{bc}}$$

$$\tan A = \frac{2}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$\sin A = \frac{2}{2c} \sqrt{s(s-a)(s-b)(s-c)} = \frac{2A}{bc}$$

$$\sin B = \frac{2}{ca} \sqrt{s(s-a)(s-b)(s-c)} = \frac{2A}{ca}$$

$$\sin C = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)} = \frac{2A}{ab}.$$

$$\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$$

$$= \sqrt{s(s-a)(s-b)(s-c)}, \text{ where } 2s = a+b+c$$

$$= \frac{abc}{4R}.$$

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4A}.$$

$$r = \frac{A}{s} = 4R \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$$

$$= (s-a) \tan \frac{1}{3}A = (s-b) \tan \frac{1}{3}B = (s-c) \tan \frac{1}{2}C.$$

$$r_1 = \frac{A}{s-a} = 4R \cos \frac{1}{2}A \sin \frac{1}{2}B \cos \frac{1}{2}C$$

$$= s \tan \frac{1}{2}B.$$

$$r_2 = \frac{A}{s-b} = 4R \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C$$

 $=s \tan \frac{1}{2}C$.

IMPORTANT RESULTS

- 1. If A+B+C=n, then
- (i) $\sin A + \sin B + \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$.
- $X(ii) \cos A + \cos B + \cos C = 1 + 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$.
- (iii) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.
- (iv) $\sin 2A + \sin 2B + \sin 2C 4 \sin A \sin B \sin C$.
 - (v) $\cos 2A + \cos 2B + \cos 2C$ = $-4 \cos A \cos B \cos C - 1$.
- (vi) $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$.
- (vii) cot $B \cot C + \cot C \cot A + \cot A \cot B = 1$.
- (viii) $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$ = $1 + 4 \sin \frac{B + C}{4} \sin \frac{C + A}{4} \sin \frac{A + B}{4}$.
 - (ix) $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$ = $4 \cos \frac{B+C}{4} \cos \frac{C+A}{4} \cos \frac{A+B}{4}$.
 - (x) $\tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} + \tan \frac{A}{2} \cdot \tan \frac{B}{2} = 1$.
 - (xi) $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$
- 2. $Lt \frac{\sin \theta}{\theta \to 0} = 1$; $Lt \cos \theta = 1$, $Lt \frac{\tan \theta}{\theta \to 0} = 1$.
- 3. Area of a circle of radius $r = \pi r^2$.

Perimeter of a circle of radius $r = 2\pi r$.

INTERMEDIATE TRIGONOMETRY

→-[-※-[-**→**

CHAPTER I

MEASUREMENT OF ANGLES

1. TRIGONOMETRY, as indicated by its very name, originally meant a subject which dealt with the methods of measurements of triangles. At present its scope has widened, and now it means a subject which deals with the measurements relating to any angle, not necessarily an angle of a triangle.

2. Angles in Trigonometry.

In Geometry, angles are supposed to be formed by the intersection of two straight lines and are always restricted to lie between 0° and 360°, being acute, obtuse or reflex. Moreover, they are always positive, negative angles having no meaning. In Trigonometry however, the idea of an angle is much more general.

An angle in Trigonometry is supposed to be formed by the revolution of a straight line which starts from an initial position coinciding with one arm, and traces out the angle by its revolution about one extremity until it reaches the final position coinciding with the other arm.

For instance, the angle XOP is formed by the revolution of a line which starts from the initial position OX, and revolving in the anti-clockwise direction, traces out the angle XOP which is acute. The same line again, starting from OX and revolving in the anti-clockwise direction may make a complete revolution and further move up to the position OQ. The angle formed in this case is more than

five right angles. Now revolutions may be clockwise or anti-clockwise. It is conventional to consider angles formed by the anti-clockwise revolution of the revolving line to be positive. Angles formed by clockwise revolutions of the

revolving line will then be considered negative angles. For example, the angle XOR measured in the clockwise direction from the initial position OX is a negative angle.

Thus, angles in Trigonometry may be of any magnitude and may be positive as well as negative.

OX being the initial position of the revolving line, produce XO to X', and let YOY' be the perpendicular line. The whole plane is thus divided into four quadrants, the first being XOY, the second YOX', the third X'OY', and the fourth Y'OX. If we contemplate an angle say $+920^{\circ}$ to be traced out by the revolving line, the line must have completed two complete revolutions, thereby describing $2 \times 360^{\circ} = 720^{\circ}$, and have further traced out an angle 200° , so that the final position of the revolving line is in the third quadrant. Similarly, if we consider an angle -1354° , the final position of the revolving line is in the first quadrant, for $-1354^{\circ} = -360^{\circ} \times 3 - 274^{\circ}$.

It should be noted that if two angles differ by complete multiples of 360°, the starting line being the same, the final

positions of the revolving line will be coincident for the two angles. For example, the angles 255° and -105° will have the final positions of the revolving line same, if both start from the same initial position.

3. Units of measurement of angles.

We should now define the different systems of units used for the measurement of angles. In defining a unit however, a standard angle, which has no reference to any particular system of unit, should form the basis, and such a standard angle is a right angle. A right angle is defined in books on Geometry to be an angle which any straight line standing on another makes with it, when the two adjacent angles formed are equal to one another. A right angle is always the same everywhere, and it thus forms a suitable basis to start with, in defining the different systems of units of measurement of angles.

There are three systems of units used in Trigonometry for measurement of angles, viz.

- (i) Sexagesimal unit.
- (ii) Centesimal unit.
- (iii) Circular unit.

Sexagesimal* System. In this system, a right angle is divided into 90 equal parts, each being called a degree. A degree is again divided into 60 sexagesimal minutes, and each minute is further subdivided into 60 sexagesimal seconds, so that

- 1 rt. angle = 90° (degrees)
- 1° = 60' (sexagesimal minutes)
- 1' = 60" (sexagesimal seconds)

^{*} So called, since the subdivisions are mostly by sixtieth parts. It is also called the Common or the English System.

Centesimal † System. In this system, the subdivisions of a right angle are as follows:

1 rt. angle = 100² (grades)

1² = 100' (centesimal minutes)

1' = 100" (centesimal seconds)

Note. It may be noted that 1' (centesimal minute) is not the same as 1' (sexagesimal minute), the former being $\frac{1}{100 \times 100}$ of a right angle and the latter being $\frac{1}{90 \times 60}$ of a right angle, so that the first is \$\frac{3}{5}\$th part of the secend. Similarly, 1" is less than 1", being only $\frac{3}{2}$ 50 th part of it.

The connection between the two systems of units may be effected through a right angle, remembering that 1 right angle $-90^{\circ} - 100^{\circ}$, so that $9^{\circ} - 10^{\circ}$. Any angle in the first system may be reduced to degrees, and then multiplied by $\frac{1}{10}$ will be reduced to grades. Similarly, an angle in the second system may be changed to the first.

We shall presently deal with the third system, namely the circular system.

4. Theorem. In all circles, the circumference bears a constant ratio to its diameter.

Take any two circles of any radii, and place them with a common centre O. In one, let ABCD... be an inscribed regular polygon of n sides. Let A', B', C',... be the points of intersection of the radii OA, OB, OC,... with the other circle. It is easily seen that A'B'C'... is also a regular polygon of n sides, inscribed in the second circle. Now OA = OB, as also OA' = OB', so that in the triangles OAB, OA'B',

[†] So called, because the subdivisions are by hundredths. It is also called the French System.

OA:OA'=OB:OB', and angle O is common. The two triangles are therefore similar. Hence AB:A'B'=OA:OA'.

Thus,

perimeter of polygon ABCD...perimeter of polygon $A'B'C'D'... = \frac{n \cdot AB}{n \cdot A'B'} = \frac{OA}{OA'}$.

This being true, whatever the number of sides n may be, making n infinitely large, the perimeters of the polygons can be made practically coincident with the circumferences of the corresponding circles, and thus we deduce that

circumference of the circle ABCD... OA.

i.e. = $\frac{\text{radius of circle } ABC...}{\text{radius of circle } A'B'C'...}$

Thus circumference of any circle: its radius is the same for all circles. As diameter is twice the radius, we deduce that the circumference of any circle bears a constant ratio to its diameter.

This constant ratio is denoted by the Greek letter π . Its actual value has been determined by methods which are outside the scope of the present book, by some mathematicians

to more than 500 places of decimals. An approximate value commonly used is $\frac{2}{3}$. A more accurate value is $\frac{2}{3}$.

Expressed in decimal, the value is nearly 3'14159...

Hence, if r be the radius of a circle, d its diameter, the circumference = $\pi d = 2\pi r$.

where $\pi = 3.14159 \dots = \frac{2.2}{7}$ roughly.

5. Circular Unit or Radian Measure.

In any circle, if we take an arc whose length is equal to the radius of the circle, the angle which this arc subtends at the centre is called a *radian*, and is written as 1°.

We shall now show that with reference to whichever circle it may be defined, a radian is a constant angle, and hence it may be used as a suitable unit for measurement of angles, which is known as the circular unit.

Theorem I. A radian is a constant angle.

Let AB be an arc of any circle with centre O, whose length is equal to its radius OA. By definition, $\angle AOB = 1$ radian. Since angles at the centre of a circle are proportional to the arcs which subtend them, and the whole angle

round O subtended by the complete circumference being known from Geometry to be 4 right angles, we get

$$\angle AOB$$
 arc AB radius 4 right angles whole circumference circumference

i.e.,
$$\frac{1}{4} \frac{\text{radian}}{\text{rt. } \angle^s} = \frac{r}{2\pi r} = \frac{1}{2\pi}$$
, r being the radius.

Hence, 1 radian =
$$\frac{2}{\pi}$$
 rt. angle.

... a radian is a constant angle. (* being constant)

Note. We thus see that whatever be the radius of the circle with reference to which a radian is defined, its magnitude is the same.

From above, π radians = 180°.

.:. 1 radian =
$$\frac{180^{\circ}}{\pi} = \frac{180}{3.14159} = 57.29577$$
 degrees = $57^{\circ}17'44'8''$ nearly.

... 1 degree = '0174533 radians nearly.

In higher mathematics so far as theoretical investigations are concerned, as a matter of convenience, angles are usually measured in the circular unit, i.s. in radians. In this connection we may state the following theorem:

Theorem II. The measure of any angle in radians is expressed by the ratio of the arc of any circle subtending that angle at its centre, to the radius.

Let XOP be any angle.

With centre O and any radius OA draw a circle, and let AQ be the arc which subtends the angle XOP at the centre O. Let AB be the arc whose length is equal to the radius OA, so that, by definition, $\angle AOB$ is one radian.

Now from Geometry, angles at the centre of a circle are proportional to the arcs which subtend them.

INTERMEDIATE TRIGONOMETRY

Hence,
$$\angle XOP = \frac{\text{arc } AQ}{\text{arc } AB} = \frac{\text{arc } AQ}{\text{radius } OA}$$
,

or, $\frac{\angle XOP}{1 \text{ radian}} = \frac{\text{arc } AQ}{\text{radius } OA}$

i.e. $\angle XOP = \frac{\text{arc } AQ}{\text{radius } OA}$ of a radian.

Thus if θ be the radian-measure of the $\angle XOP$, s be the length of the arc AQ, and r the radius of the circle, then

$$\theta = \frac{s}{r}$$
 or, $s = r\theta$.

Note. In higher mathematics, when an angle is expressed in radian measure, the unit is generally implied and not expressed, so that, when the measure of an angle is given without the unit being mentioned, we should always understand it to be in radians. For example, 'an angle is $\frac{\pi}{2}$ ' means that the angle is $\frac{\pi}{2}$ radians, which converted to degrees is 90° i.e. one right angle.

6. In working out examples, the relations between the three systems of units should be carefully remembered, namely

1 rt.
$$\angle -90^{\circ} - 100^{t} = \frac{\pi}{2}$$
 radians,
 $\pi^{\circ} = 180^{\circ}$.

whence.

Ex. 1. Express

(i) 63°22' 40'8" in centesimal measure

and (ii) 203g 58' 73" in radians.

Here (i) 63° 22′ 40′8″ =
$$63\frac{189}{500}$$
 deg. = $\frac{3}{5}\frac{1689}{500} \times \frac{1}{90}$ rt. \angle
= $\frac{3}{5}\frac{1689}{500} \times \frac{1}{90} \times 100$ grades = $\frac{3}{5}\frac{2}{50}$ grades = 70^{8} 42′.

(ii) 203^g 58' 73" = 203'5873 grades
= 2'035873 rt.
$$\angle$$
 = 2'035873 $\times \frac{\pi}{2}$ radians
= 1'0179365 π radians.

Ex. 2. Two angles of a triangle are 72° 53′ 51″, and 41g 22′ 50″ respectively. Find the third angle in radians.

41° 22' 50" = 41°2250 grades
=
$$\frac{41°225 \times 9}{10}$$
 degrees [9° = 10°]
= 37'1025 degrees
= 37° 6′ 9″.

The sum of the two given angles is therefore

The sum of the three angles of a triangle being 180°, the third angle is

$$180^{\circ} - 110^{\circ} = 70^{\circ} = 70 \times \frac{\pi}{180} \text{ radians } [\pi^{\circ} = 180^{\circ}]$$

= $\frac{7\pi}{18} \text{ radians.}$

Ex. 8. Divide $\frac{n}{4}$ radians into two parts such that the number of sexagesimal minutes in one may be to the number of centesimal seconds in the other part as 27:2500.

We have
$$\frac{\pi}{4}$$
 radians $=\frac{\pi}{4} \times \frac{2}{\pi}$ rt. $\angle = \frac{1}{2}$ rt. \angle .

Let x be the number of centesimal seconds in the second part, so that $\frac{\pi}{2}\frac{\pi}{100}x$ is the number of sexagesimal minutes in the first part.

Now
$$x'' = \frac{x}{100 \times 100} \times 100$$
 rt. \angle
and $\frac{27}{2500} x' = \frac{27x}{2500 \times 60 \times 90}$ rt. $\angle = \frac{x}{500000}$ rt. \angle
 $\therefore \frac{x}{1000000} + \frac{x}{500000} = \frac{1}{2}$,
whence $x = \frac{500000}{3}$.
Thus, second part is $\frac{500000}{3} = \frac{500000}{3 \times 100 \times 100}$ rt. \angle

 $\frac{1}{2}$ rt. \angle i.e. 45°, the first part is 30°. The two parts are therefore 30° and 15°.

Ex. 4. The angles of a quadrilateral are in A.P., and the number of grades in the least angle is to the number of radians in the greatest as $100:\pi$. Find the angles in degrees.

= $\frac{1}{6}$ rt. \angle = 15°, and as the sum of the two parts is

Let the angles, expressed in degrees, be a, $a + \beta$, $a + 2\beta$ and $a + 3\beta$ respectively. Then

$$a+a+\beta+a+2\beta+a+3\beta=360,$$

i.e. $2a+3\beta=180.$ ··· (i)

Again the least angle, $a^{\circ} = \frac{10}{3}a^{\circ}$

and the greatest angle $(\alpha + 3\beta)^{\circ} = (\alpha + 3\beta) \frac{\pi^{\circ}}{180}$

and so from the given condition,

$$\frac{10}{9} a/(a+3\beta) \frac{\pi}{180} = 100/\pi,$$
or, $\frac{2a}{a+3\beta} = 1$, whence $a = 3\beta$.

.. using (i),
$$3a = 180$$
, or, $a = 60$ and $\beta = \frac{a}{3} = 20$.
Thus the angles are 60° , 80° , 100° and 120° .

Ex. 5. At what distance does a man, $5\frac{1}{2}$ ft. in height, subtend an angle of 15"?

AB being the man subtending an angle 15" at O, let OA be r ft.

As the angle AOB is very small, so that AB is very small compared to AO, we may assume the small length AB to be practically a small arc of a circle whose centre is O. Now the measure of an angle in radians is the ratio of the arc which subtends it at the centre to the radius.

[Sec Art. 5.]

$$\frac{15}{60 \times 60} \times \frac{\pi}{180} = \frac{5\frac{1}{4}}{r},$$
or, $r = \frac{11}{2} \times \frac{180 \times 60 \times 60}{15 \times \pi}$ ft.
$$= \frac{11}{2} \times \frac{180 \times 60 \times 60 \times 7}{15 \times 22} \times \frac{1}{3 \times 1760} \text{ miles approx.}$$

$$= 14.32 \text{ miles nearly.}$$

Examples I

1. Indicate the final position of a revolving line which has traced out the angle

(i)
$$1122^{\circ}$$
; (ii) $-810^{\circ} 29'$;
(iii) $-617^{g} 51' 5''$; (iv) $\frac{18\pi}{5}$ radians.

- Express (i) 55° 12′ 36" in centesimal measure;
 (ii) 195^g 35′ 24" in degrees, minutes and secs.
- 3. How many radians are there in (i) $50^{g} 75^{\circ} 50^{\circ}$; (ii) $18^{\circ} 33' 45''$?
- 4. Express in each system of angular measurement, the angle between the minute hand and the hour hand of a clock at a quarter to twelve.
- 5. If x^{β} be taken as the unit angle, and the angles 600° and 16° expressed in that unit be a and β respectively, find the relation between a and β .
- 6. The difference of two angles is 1°; the circular measure of their sum is 1; find the circular measure of the smaller angle.
- 7. Two angles are in the ratio 2:3, and the difference of their measure in grades and in degrees respectively is $2\frac{1}{8}$; find the angles in degrees.
- 8. An angle is the excess of D° M' over G° m'. Find the ratio of this angle to a right angle.
- 9. The circular measure of a certain angle is equal to the ratio of the number of degrees in it to the number of centesimal minutes; find the magnitude of the angle in degrees.
- 10. With two units of angular measurement differing by 10°, the measures of an angle are as 3:2; determine the units.
- 11. If an angle standing upon an arc of length 'l' at the centre of a circle of radius 'r' be taken as unit, and three angles D° , G^{g} , and C circular units expressed in that unit be x, y, z respectively, show that

$$x:y:z=\frac{D\pi}{18}:\frac{G\pi}{20}:10C.$$

- 12. Three angles are in G. P. The number of grades in the greatest angle is to the number of circular units in the least as 800 to π , and the sum of the three angles is 126°. Find the angles in grades.
- 13. Divide 54° in three parts, such that the circular measure of the first exceeds that of the second by $\frac{\pi}{10}$ and the sum of the second and third is 30 grades.
- 14. Find at what times between 7 and 8 o'clock the angle between the two hands of a clock is (i) 60°, (ii) 155°.
- 15. The angles of a triangle are in A.P., and the number of radians in the greatest is to the number of grades in the least as π : 40. Find the angles in degrees.
- 16. In each of two triangles the angles are in G. P.; the least angle of one of them is three times the least angle in the other, and the sum of the greatest angles is 240°. Find the circular measure of the angles.
- 17. One angle of a quadrilateral is $\frac{3}{4}$ of another and the two other angles are $66\frac{3}{3}$ grades and $\frac{3\pi}{4}$ radians. Express the angles in degrees.
- 18. The angles of a polygon (which has no reflex angle) are in A. P. The least angle is $\frac{2\pi}{3}$ radians and the common difference is 5°. Find the number of sides.
- 19. The number of sides of two regular polygons are as m:n, and the number of degrees in an angle of the first is to the number of grades in an angle of the second as p:q. Determine the number of sides in each polygon.
- 20. An arc of 50s in one circle equals one of 60° in another; find the radian measure of an angle subtended at the centre of the first circle by an arc equal to the radius of the second.

- 21. Two regular figures are such that the number of degrees in an angle of one is to the number of degrees in an angle of the other as the number of sides in the first is to the number of sides in the second. The sum of the number of sides of the two figures being 9, determine the number of sides of each.
- 22. The wheel of a railway carriage is 4 ft. in diameter and makes 6 revolutions in a second; how fast is the train going?
- 23. The earth revolves round the sun in a circular orbit of radius 92700000 miles once a year. Find its velocity in miles per hour. If the apparent angular diameter of the sun observed from the earth be 32′, find also the linear radius of the sun.
- 24. A tower subtends an angle of 10' when the observer is at a distance of 6 miles; find its height.
- 25. Find the radius of the earth, if an angle of 1° is subtended at its centre by an arc joining two places on it distant 69'1 miles.
- 26. A horse is tied to a post by a rope 27 feet long. If the horse moves along the circumference of a circle always keeping the rope tight, find how far the horse will have gone when the rope has traced out an angle of 70°. $(\pi = \frac{2\pi}{3})$.
- 27. A man running along a circular track at the rate of 10 miles per hour, traverses in 36 seconds, an arc which subtends 56° at the centre. Find the diameter of the circle. $(n = \frac{2\pi}{3})$.
- 28. An arc of 30° in one circle is double an arc in a second circle the radius of which is three times the radius of the first. Show that the arc of the second circle subtends 5° at its centre.

CHAPTER II

TRIGONOMETRICAL RATIOS

7. Trigonometrical ratios defined.*

Let θ be the measure of an angle XOP which may be supposed to be traced out by a revolving line starting from the initial position OX. From any point P on its other arm, draw a perpendicular PN on OX (produced if necessary, as in the second figure). A right-angled triangle is thereby formed. The trigonometrical ratios of the angle θ are defined as follows:—

Sine of the angle θ , written as $\sin \theta = \frac{PN}{OP}$

i.e. opposite side

Cosine of θ , written as $\cos \theta = \frac{ON}{OP}$

i.e. adjacent side

^{*}For alternative definitions, see Appendix.

Tangent of
$$\theta$$
, written as $\tan \theta = \frac{PN}{ON}$

i.e. opposite side adjacent side

Cosecant of
$$\theta$$
, written as cosec $\theta = \frac{OP}{PN}$

i.e. hypotenuse opposite side

Secant of
$$\theta$$
, written as sec $\theta = \frac{OP}{ON}$

i.e. hypotenuse adjacent side

Cotangent of
$$\theta$$
, written as cot $\theta = \frac{ON}{PN}$

i.e. adjacent side opposite side

In addition to these, we define two less important ratios of the angle θ which are sometimes used, as follows:—

Versed sine of angle θ , written as vers $\theta = 1 - \cos \theta$

Coversed sine of angle θ , written as covers $\theta = 1 - \sin \theta$

8. Signs of Trigonometrical ratios.

XOP being any angle, traced out by a revolving line which starts from OX, it has already been mentioned in the last Chapter that the plane may be divided into four quadrants by the two perpendicular lines XOX' and YOY'.

It is conventional, as in graphs, to consider distances measured along OX and OY as positive, and along OX' and OY' as negative. The distance measured along OP, the final position of the revolving line corresponding to the angle XOP, in whichever quadrant it may lie, is however always considered positive.

With this convention, if OP lies in the first quadrant as in Fig. (i) of the last article, the sides PN, ON and OP of the right-angled triangle OPN are all positive. Hence all the Trigonometrical ratios are positive. If OP lies in the third quadrant as in Fig. (ii), ON and PN are both negative, but OP is positive. Hence from the definitions of the Trigonometrical ratios, $\sin XOP \left(= \frac{PN}{OP} \right)$ is negative, $\cos XOP \left(= \frac{ON}{OP} \right)$ is negative, $\tan XOP \left(= \frac{PN}{ON} \right)$ negative quantity is positive etc.

In this way, according to the final position of the revolving line (starting position being OX), we can determine the signs of the Trigonometrical ratios of the angle XOP whether this angle traced out is positive or negative. If OP is in the first quadrant, the ratios are all positive. If OP falls in the second quadrant, sine and cosecant (which is evidently the reciprocal of sine), are positive; all the other ratios are negative. If OP be in the third quadrant, tangent and cotangent (which are reciprocals to each other) are positive; all the others are negative. In the fourth quadrant, cosine and secant are positive, others are negative. A symbolical figure will help the memory in this case, namely, that according to the position of OP,

The positiveness of sine, cosine and tangent also implies the positiveness of their reciprocals, namely, cosecant, secant and cotangent respectively.

9. Constancy of Trigonometrical ratios.

So long as an angle remains the same, its Trigonometrical ratios are unique.

Let XOP (= 0) be any angle, and let PN and P'N' be drawn perpendiculars upon OX from any two points P and P' on OP. The two right-angled triangles OPN and OP'N' are similar. Hence $\sin \theta$, whether we take it as $\frac{PN}{OP}$ or $\frac{P'N'}{OP'}$ is the same. If the angle be XOP_1 , when OP_1 is not in the first quadrant, the right-angled triangles P_1N_1O and $P'_1N'_1O$ are not only similar but also have their corresponding sides of the same sign. Hence the Trigonometrical ratios of the angle XOP_1 , whether defined from the triangle P_1N_1O or from $P'_1N'_1O$ are the same in magnitude as well as in sign. Thus for any given angle, the Trigonometrical ratios are unique.

Note. In case of a positive acute angle like XOP, we might take any point Q on OX as well, and draw QM perpendicular upon OP, and define $\sin XOP$ to be opposite side i.e. $\frac{QM}{OQ}$, $\cos XOP$ to be $\frac{OM}{OQ}$ etc. Now the two triangles QOM and PON are easily seen to be similar and both have their sides all positive; so that $\frac{QM}{OQ} = \frac{PN}{OP}, \frac{OM}{OQ} = \frac{ON}{OP}$ etc. Hence the Trigonometrical ratios of the angle XOP, even if defined from triangle QOM, will have the same values.

It may also be noted that for angles of any magnitude, positive or negative, any of the two arms may be supposed to be coincident with OX, and then the magnitude and sign of the angle will fix up the position of the other arm, and thereby will make the Trigonometrical ratios unique.

10. Fundamental relations between the Trigonometrical ratios of any angle.

From the very definitions given in Art. 7 of the Trigonometrical ratios of any angle XOP ($-\theta$) of whatever magnitude and sign, we at once derive the following relations:

$$\cos \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$
and since $\sin \theta = \frac{PN}{OP}$, $\cos \theta = \frac{ON}{OP}$, $\tan \theta = \frac{PN}{ON}$,
$$\cot \theta = \frac{ON}{PN}$$
, we get
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
.

Again, since in the right-angled triangle OPN,

$$OP^2 = PN^2 + ON^2,$$

dividing by OP^2 , ON^2 and PN^2 respectively, we get

$$\left(\frac{PN}{OP}\right)^2 + \left(\frac{ON}{OP}\right)^2 = 1 \qquad \cdots \qquad \cdots \qquad (i)$$

$$\left(\frac{OP}{ON}\right)^2 = \left(\frac{PN}{ON}\right)^2 + 1 \qquad \cdots \qquad \cdots \qquad (ii)$$

From the definition of the Trigonometrical ratios, (i) gives

$$(\sin \theta)^2 + (\cos \theta)^2 = 1$$

Now it is usual to write $(\sin \theta)^2$ in the form $\sin^2 \theta$ and so for other ratios. The relation then reduces to the form $\sin^2 \theta + \cos^2 \theta = 1$.

Similarly, (ii) and (iii) give respectively

$$\sec^2\theta = 1 + \tan^2\theta$$
$$\csc^2\theta = 1 + \cot^2\theta.$$

These formulæ are also used in the forms

$$\sin^2\theta = 1 - \cos^2\theta, \cos^2\theta = 1 - \sin^2\theta,$$

$$\sec^2\theta - \tan^2\theta = 1, \tan^2\theta = \sec^2\theta - 1, \text{ etc.}$$

Note. The fundamental formulæ derived in this article are very important, and are true for all values of θ whatever its magnitude and sign may be. For example, if we take $\frac{\theta}{2}$ in place of θ , we are simply taking a different angle for which the same relations are true, so that $\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} = 1$, etc.

11. Conversions of Trigonometrical ratios.

With the help of the formulæ of the previous article, we can express any Trigonometrical ratio of an angle in terms of any other ratio for the same angle; hence if the value of any Trigonometrical ratio of an angle be given, we can find the value of any other ratio.

Ex. 1. Express sin 0 in terms of cot θ .

From the formulæ cosec
$$\theta = \frac{1}{\sin \theta}$$

and $\csc^2 \theta = 1 + \cot^2 \theta$,
we get $\sin \theta = \frac{1}{\csc \theta} = \frac{1}{\pm \sqrt{1 + \cot^2 \theta}}$.

Ex. 2. Express cosec θ in terms of sec θ .

$$\cos \theta = \pm \sqrt{1 + \cot^2 \theta} = \pm \sqrt{1 + \frac{1}{\tan^2 \theta}}$$

$$= \pm \sqrt{\frac{\tan^2 \theta + 1}{\tan^2 \theta}} = \pm \sqrt{\frac{\sec^2 \theta - 1}{\sec^2 \theta - 1}} = \frac{\pm \sec \theta}{\sqrt{\sec^2 \theta - 1}}$$

Ex. 3. If $\cos A = \frac{1}{1} \frac{2}{3}$, find $\tan A$.

We have
$$\tan A = \frac{\sin A}{\cos A} = \frac{+\sqrt{1 - \cos^2 A}}{\cos A}$$

= $\frac{\pm \sqrt{1 - \frac{1 + 4}{1 + 3}}}{\frac{1 + 2}{1 + 3}} = \pm \frac{5}{12}$.

A more practical method in such cases is however to construct a right-angled triangle with the numerator and denominator as the two suitable sides, as shown below.

Ex. 4. If sec
$$A = \frac{41}{9}$$
, find cot A.

Let APN be a triangle right-angled at N in which the hypotenuse AP = 41, AN = 9, so that sec $NAP = \frac{AP}{4N} = \frac{41}{9}$.

Thus
$$/NAP = A$$
.

Now
$$PN^2 = AP^2 - AN^2 = 41^2 - 9^2$$

= 40^2 ,

so that $PN = \pm 40$.

$$\cot A = \cot NAP = \frac{AN}{PN} = \pm \frac{9}{40}.$$

12. Restrictions on the magnitudes of Trigonometrical ratios.

From the relation $\sin^2\theta + \cos^2\theta = 1$, since $\sin^2\theta$ and $\cos^2\theta$ being square quantities are both positive, it is evident that neither $\sin^2\theta$ nor $\cos^2\theta$ can exceed 1, for if $\sin^2\theta$, for example, be greater than 1, $\cos^2\theta$ (which is a square quantity) becomes negative, which is impossible. Thus $\sin\theta$ as well as $\cos\theta$ must have numerical values not exceeding 1; in other words, both $\sin\theta$ and $\cos\theta$ must lie between +1 and -1 whatever the magnitude of θ may be. Any value numerically greater than 1, like -2 or +3'1 must be impossible for $\sin\theta$ or $\cos\theta$.

sec θ and cosec θ therefore, being reciprocals of $\cos \theta$ and $\sin \theta$ respectively, can never be numerically less than 1.

tan θ and cot θ however, can have any numerical value greater than 1 or less than 1 according to the value of θ .

13. A few examples on the applications of the fundamental formulæ are given below.

Ex. 1. Prove that
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$$
.

$$[C. U. 1937.]$$

$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \sqrt{\frac{(1+\cos\theta)^2}{1-\cos^2\theta}} = \sqrt{\frac{(1+\cos\theta)^2}{\sin^2\theta}}$$

$$= \frac{1+\cos\theta}{\sin\theta} = \frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} = \csc\theta + \cot\theta.$$

Ex. 2. Prove that

$$\frac{1}{\sec A + \tan A} \frac{1}{\cos A} \frac{1}{\cos A} \frac{1}{\sec A - \tan A}$$
We have
$$\frac{1}{\sec A + \tan A} + \frac{1}{\sec A - \tan A}$$

$$\frac{\sec A - \tan A + \sec A + \tan A}{(\sec A + \tan A)(\sec A - \tan A)} \frac{2 \sec A}{\sec^2 A - \tan^2 A}$$

$$= 2 \sec A = \frac{2}{\cos A} \frac{1}{\cos A} + \frac{1}{\cos A}$$

Hence by transposition.

$$\frac{1}{\sec A + \tan A} = \frac{1}{\cos A} = \frac{1}{\cos A} = \frac{1}{\sec A - \tan A}$$

Ex. 3. Prove that $\frac{1+2 \sin \theta \cos \theta}{(\sin \theta + \cos \theta)(\cot \theta + \tan \theta)} \\
-\sin \theta \cos \theta (\sin \theta + \cos \theta).$

We have
$$\frac{1+2 \sin \theta \cos \theta}{(\sin \theta + \cos \theta)(\cot \theta + \tan \theta)}$$
$$= \frac{(\sin^2 \theta + \cos^2 \theta) + 2 \sin \theta \cos \theta}{(\sin \theta + \cos \theta) \left(\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}\right)}$$
$$= \frac{(\sin \theta + \cos \theta)^2}{(\sin \theta + \cos \theta) \left(\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}\right)}$$
$$= (\sin \theta + \cos \theta) \sin \theta \cos \theta$$
$$= \sin \theta \cos \theta (\sin \theta + \cos \theta).$$

Ex. 4. If $15 \sin^2 \theta + 2 \cos \theta = 7$, find $\tan \theta$.

Here $15(1-\cos^2\theta) + 2\cos\theta = 7$,

whence $15 \cos^2 \theta - 2 \cos \theta - 8 = 0$,

or, $(5 \cos \theta - 4)(3 \cos \theta + 2) = 0$; $\therefore \cos \theta = \frac{4}{8}$, or, $-\frac{2}{3}$.

Case (i) when $\cos \theta = \frac{4}{5}$,

$$\sin^{9}\theta = 1 - \cos^{2}\theta = 1 - \frac{16}{25} = \frac{9}{25}$$
. ... $\sin \theta = \pm \frac{3}{5}$,

and so $\tan \theta = \frac{\sin \theta}{\cos \theta} = \pm \frac{3}{4}$.

Case (ii) when $\cos \theta = -\frac{2}{3}$,

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{1}{6} - \frac{5}{9}$$
. $\sin \theta = \pm \frac{\sqrt{5}}{3}$.
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \pm \frac{\sqrt{5}}{9}$.

Examples II

Prove the following identities (Ex. 1 to 24):—

1.
$$\frac{\sin A + \cos A}{\sec A + \csc A} = \sin A \cos A.$$

$$\sim 2$$
. cot θ + tan θ = sec θ cosec θ .

$$\sqrt{3}. \quad \frac{1}{1+\tan A} = \frac{\cot A}{1+\cot A}.$$

$$A. \quad \csc^6 A - \cot^6 A = 1 + 3 \csc^2 A \cot^2 A.$$

$$\sqrt{5}. \quad \cos^6 A + \sin^6 A = 1 - 3 \sin^2 A \cos^2 A.$$

$$6. \quad \frac{1}{\cos^2 A} - \frac{1}{\csc^2 A - 1} = 1.$$

8.
$$\sec^4 A + \tan^4 A = 1 + 2 \sec^2 A \tan^2 A$$
.

9.
$$\frac{1+3\cos\theta-4\cos^3\theta}{1-\cos\theta}=(1+2\cos\theta)^2$$
.

10.
$$(\cot \theta + \csc \theta)^2 = \frac{1 + \cos \theta}{1 - \cos \theta}$$

11.
$$\frac{1+\tan^2\theta}{1+\cot^2\theta} = \left(\frac{1-\tan\theta}{1-\cot\theta}\right)^2.$$

12.
$$\frac{\tan^2 a - \cot^2 a}{1 + \cot^2 a} = \frac{\sin^2 a - \cos^2 a}{\cos^2 a}.$$

13.
$$1 + \tan \theta + \sec \theta = \frac{2}{1 + \cot \theta - \csc \theta}$$

14.
$$\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}.$$

15
$$\frac{\sin A - 2 \sin^8 A}{2 \cos^8 A - \cos A} = \tan A$$
.

16.
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} - \sec\theta = \sec\theta - \sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$$

$$\frac{1}{1}$$

$$\frac{\operatorname{cosec} A + \cot A}{\operatorname{cosec} A - \cot A} = \frac{\sin^2 A}{(1 - \cos A)^2}$$

18.
$$(1 + \sin A + \cos A)^2 = 2(1 + \sin A)(1 + \cos A)$$
.

19.
$$\frac{\sec \theta + \tan \theta}{\csc \theta + \cot \theta} - \frac{\sec \theta - \tan \theta}{\csc \theta - \cot \theta} = 2(\sec \theta - \csc \theta).$$

20.
$$\frac{1}{1+\sin^2\theta} + \frac{1}{1+\csc^2\theta} = 1$$
.

21.
$$\frac{\sin^3 a + \cos^3 a}{\sin a + \cos a} + \frac{\sin^3 a - \cos^3 a}{\sin a - \cos a} = 2.$$

22.
$$\frac{\tan \theta}{\sec \theta - 1} - \frac{\sin \theta}{1 + \cos \theta} = 2 \cot \theta.$$

23.
$$\frac{\cos \theta + \cos \phi}{\sin \theta - \sin \phi} \frac{\sin \theta + \sin \phi}{\cos \phi - \cos \theta}$$

24.
$$1+4 \operatorname{cosec}^2 \theta \cot^2 \theta = (\operatorname{cosec}^2 \theta + \cot^2 \theta)^2$$
.

- 25. Express $1-2 \sin \theta \cos \theta$ as a perfect square.
- 26. Express $2 \sec^2 \theta \sec^4 \theta 2 \csc^2 \theta + \csc^4 \theta$ in rms of $\tan \theta$.
- 27. Prove that $(\sin a \cos \beta + \cos a \sin \beta)(\sin a \cos \beta \cos a \sin \beta)$ $= \sin^2 a \sin^2 \beta.$
- 28. If $\sin A + \sin^2 A = 1$, then $\cos^2 A + \cos^4 A = 1$.
- 29. (i) If $\sin \theta \cos \theta = 0$, prove that $\sec \theta = \pm \sqrt{2}$.
 - (ii) If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$, show that $\tan \theta = \pm \frac{1}{\sqrt{3}}$.
 - (iii) If $3 \sin \theta + 4 \cos \theta = 5$ show that $\sin \theta = \frac{8}{5}$.

30. If
$$\tan \theta + \sec \theta = x$$
, show that $\sin \theta = \frac{x^2 - 1}{x^2 + 1}$.

31. If
$$\tan \theta = \frac{a}{b}$$
, find the value of $\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta}$

- 32. If $1 + 4x^2 = 4x \sec A$, prove that $\sec A + \tan A = 2x \text{ or } 1/2x$.
- 33. Express sin α in terms of sec α , and sec θ in terms of cot θ .
- 34. Given $\sin \theta = \frac{3}{5}$, $\cos \phi = \frac{1}{12}$, where θ and ϕ are acute angles, find the value of $\frac{\tan \theta \tan \phi}{1 + \tan \theta \tan \phi}$.
 - 35. If $\cos a + \sin a = \sqrt{2} \cos a$, prove that $\cos a \sin a = \sqrt{2} \sin a$.
 - 36. If $\tan A = \frac{1}{\sqrt{3}}$, find $\frac{\csc^2 A \sec^2 A}{\csc^2 A + \sec^2 A}$.
 - 37. If $1 + \sin^2 A = 3 \sin A \cos A$, find tan A.
 - 38. If $\tan \theta + \sin \theta = m$, $\tan \theta \sin \theta = n$, prove that $m^2 n^2 = 4\sqrt{mn}$.
 - 39. If $(a^2 b^2) \sin \theta + 2ab \cos \theta = a^2 + b^2$, find $\tan \theta$ and $\csc \theta$.
 - 40. If $\tan \theta = \frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$, prove that $\sqrt{2} \cos \theta = \sin \alpha + \cos \alpha$.
 - 41. Given $\tan^2\theta = 1 e^2$, show that $\sec \theta + \tan^3 \theta \csc \theta = (2 e^2)^{\frac{5}{2}}$.
 - 42. If x and y are two unequal real quantities, show that the equations (i) $\sin^2\theta = \frac{(x+y)^2}{4xy}$ and (ii) $\cos\theta = x + \frac{1}{x}$ are both impossible.
 - 43. Eliminate 6 between
 - (i) $x = a \cos \theta$, $y = b \sin \theta$.
 - (ii) $x = c (\sec \theta + \tan \theta), y = c (\sec \theta \tan \theta).$
 - (iii) $a \cos \theta + b \sin \theta + c = 0$, $a' \cos \theta + b' \sin \theta + c' = 0$.
 - (vi) $a \tan^2 \theta + b \tan \theta + c = a' \cot^2 \theta + b' \cot \theta + c' = 0$.

Examples II(A)

Prove the following indentities (Ex. 1 to 18):—

1.
$$\frac{\tan^3 a}{1 + \tan^2 a} + \frac{\cot^3 a}{1 + \cot^2 a} = \frac{1 - 2\sin^2 a \cos^2 a}{\sin a \cos a}.$$

2.
$$(\tan \theta + \cot \theta + \sec \theta)(\tan \theta + \cot \theta - \sec \theta) = \csc^2 \theta$$
.

3.
$$\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta) = \sec \theta + \csc \theta$$
. [C. U. 1935.]

4.
$$(1 + \sin a - \cos a)^2 + (1 - \sin a + \cos a)^2$$

= $4(1 - \sin a \cos a)$.

5.
$$\sin^6 a + \sin^4 a \cos^2 a - \sin^2 a \cos^4 a - \cos^6 a$$

= $\sin^2 a - \cos^2 a$.

6.
$$3(\sin \theta + \cos \theta) - 2(\sin^3 \theta + \cos^3 \theta) = (\sin \theta + \cos \theta)^3$$
.

7.
$$\frac{1}{\cos \theta - \cot \theta} - \frac{1}{\sin \theta} = \frac{1}{\sin \theta} - \frac{1}{\csc \theta + \cot \theta}.$$

8.
$$\frac{\cos x}{\sin x + \cos y} + \frac{\cos y}{\sin y - \cos x} = \frac{\cos x}{\sin x - \cos y} + \frac{\cos y}{\sin y + \cos x}$$

9.
$$(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = \tan^2 \theta + \cot^2 \theta + 7$$
.

10.
$$(\sec \theta - \cos \theta)(\csc \theta - \sin \theta)(\tan \theta + \cot \theta) = 1$$
.

11.
$$\frac{1 + (\cos c x \tan y)^2}{1 + (\cos c x \tan y)^2} = \frac{1 + (\cot x \sin y)^2}{1 + (\cot x \sin y)^2}.$$

12.
$$\sec^5 a \csc^3 a - 3 \sec a \csc a = \tan^5 a + \cot^5 a$$
.

13.
$$\sin^6 A - \cos^6 A = (\sin A + \cos A)(\sin A - \cos A)$$

 $\times (1 + \sin A \cos A)(1 - \sin A \cos A).$

14.
$$\frac{\tan \alpha}{(1 + \tan^2 a)^2} + \frac{\cot \alpha}{(1 + \cot^2 a)^2} = \sin \alpha \cos \alpha.$$

15.
$$\sin^2\theta \tan \theta - \cos^2\theta \cot \theta + \sec \theta \csc \theta = 2 \tan \theta$$
.

16.
$$\frac{\cos^2 A - \sin^2 A}{\sin A \cos^2 A - \cos A \sin^2 A} = \csc A + \sec A.$$

17.
$$\frac{\tan^{3} A + \cot^{2} A}{\tan^{3} A - \cot^{2} A} = \frac{\sin^{4} A + \cos^{4} A}{\sin^{2} A - \cos^{2} A}$$

- 18. $(\sin \alpha \cos \beta \cos \alpha \sin \beta)^2 + (\cos \alpha \cos \beta + \sin \alpha \sin \beta)^2 = 1$.
- 19. If $\cos^2 A \sin^2 A = \tan^2 B$, then $\cos^2 B - \sin^2 B = \tan^2 A$.
- 20. If $\sin^4 x + \sin^2 x = 1$, then $\tan^4 x \tan^2 x = 1$.
- 21. Show that the difference between $3 \sin^4 \theta 2 \sin^6 \theta$ and $2 \cos^6 \theta 3 \cos^4 \theta$ is the same for all values of θ .

22. If
$$x = \frac{1 + \sin \theta}{\cos \theta}$$
, show that $\frac{1}{x} = \frac{1 - \sin \theta}{\cos \theta}$.

- 23. If $\tan^2 A = 1 + 2 \tan^2 B$, show that $\cos^2 B = 2 \cos^2 A$.
- 24. If $\sin \alpha + \cos \alpha = 1$, then $\sin \alpha \cos \alpha = \pm 1$.
- 25. If $a \cos \theta b \sin \theta = c$, then show that $a \sin \theta + b \cos \theta = \pm \sqrt{a^2 + b^2 c^2}$.
- 26. If $(1 + \sin x)(1 + \sin y)(1 + \sin z)$ = $(1 - \sin x)(1 - \sin y)(1 - \sin z)$,
 - prove that each is equal to $\pm \cos x \cos y \cos z$.
- 27. If $x \sin^3 a + y \cos^3 a = \sin a \cos a$, and $x \sin a y \cos a = 0$, then $x^2 + y^2 = 1$. [C. U. 1937.]
- 28. If $\sin A = \frac{\sin x + \sin y}{1 + \sin x \sin y}$, show that

$$\cos A = \pm \frac{\cos x \cos y}{1 + \sin x \sin y}.$$

- 29. (i) If $\sin \alpha + \csc \alpha = 2$, then $\sin^n \alpha + \csc^n \alpha = 2$.
 - (ii) If $\sec \alpha = \sec \beta \sec \gamma + \tan \beta \tan \gamma$. then $\sec \beta = \sec \gamma \sec \alpha \pm \tan \gamma \tan \alpha$.
- 30. If $\frac{\cos^4 x}{\cos^2 y} + \frac{\sin^4 x}{\sin^2 y} = 1$, then $\frac{\cos^4 y}{\cos^3 x} + \frac{\sin^4 y}{\sin^3 x} = 1$.

CHAPTER III

TRIGONOMETRICAL RATIOS OF SOME STANDARD ANGLES

14. Ratios of 30°.

Let the angle XOP, which may be supposed to be traced out by a revolving line starting from OX, be 30° . Let PN be drawn perpendicular upon OX from any point P on OP. The angle OPN is then 60° .

Produce PN to Q, making NQ = NP. Join OQ. The triangles PON and QON are easily seen to be equal in all respects, and so $\angle OQN = \angle OPN = 60^{\circ}$. Hence the triangle OPQ is equilateral, and so OP = PQ = double of PN.

Hence in the above figure if PN=a, then OP=2a and so $ON=\sqrt{OP^2-PN^2}=\sqrt{4a^2-a^2}=\sqrt{3}a$. The sides ON, PN, and OP are all positive in this case, since the angle is acute.

$$\sin 30^{\circ} = \sin PON = \frac{PN}{OP} = \frac{a}{2a} = \frac{1}{2}$$
 $\cos 30^{\circ} = \frac{ON}{OP} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}$

tan 30° =
$$\frac{PN}{ON} = \frac{1}{\sqrt{3}}$$

cot 30° = $\frac{ON}{PN} = \sqrt{3}$
cosec 30° = $\frac{1}{\sin 30^\circ} = 2$
sec 30° = $\frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}$.

15. Ratios of 45°.

Let $\angle XOP = 45^{\circ}$. PN is perpendicular on OX. In the right-angled triangle PON, $\angle PON = 45^{\circ}$.

Therefore, $\angle OPN$ is also 45° and so ON = PN = a suppose. Then $OP = \sqrt{ON^2 + PN^2} = \sqrt{a^2 + a^2} = a\sqrt{2}$.

Hence

$$\sin 45^{\circ} = \frac{PN}{OP} = \frac{1}{\sqrt{2}}$$

$$\cos 45^{\circ} = \frac{ON}{OP} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = \frac{PN}{ON} = 1$$

$$\sec 45^{\circ} = \csc 45^{\circ} = \sqrt{2}, \cot 45^{\circ} = 1.$$

16. Ratios of 60°.

Let $\angle XOP = 60^{\circ}$. Now PN being perpendicular upon OX, along NX cut off NQ = ON. Join PQ. Then the two triangles OPN and QPN are easily seen to be congruent. Hence $\angle PQN = \angle PON = 60^{\circ}$. Thus the triangle POQ is equilateral, and so OP = OQ = double of ON.

If ON=a, then OP=2a and hence $PN=\sqrt{OP^2-ON^2}=a\sqrt{3}$.

Then
$$\sin 60^{\circ} = \frac{PN}{OP} = \frac{\sqrt{3}}{2}$$

 $\cos 60^{\circ} = \frac{ON}{OP} = \frac{1}{2}$
 $\tan 60^{\circ} = \frac{PN}{ON} = \sqrt{3}$
 $\cot 60^{\circ} = \frac{1}{\sqrt{3}}$, $\sec 60^{\circ} = 2$, $\csc 60^{\circ} = \frac{2}{\sqrt{3}}$

Note. It may be noted from the values of the ratios, that $\sin 60^{\circ} = \cos 30^{\circ}$, $\cos 60^{\circ} = \sin 30^{\circ}$, $\tan 60^{\circ} = \cot 30^{\circ}$, $\cot 60^{\circ} = \tan 30^{\circ}$, $\sec 60^{\circ} = \csc 30^{\circ}$, $\csc 60^{\circ} = \sec 30^{\circ}$. It will be proved more generally, in the next chapter, that for any two complementary angles sine of one is the cosine of the other and *vice-versa*, tangent of one is the cotangent of the other, and secant of one is the cosecant of the other. The angle 45° being its own complement, therefore, it should have its sine and cosine equal to one another, as is actually seen to be the case.

17. Ratios of 90°.

Let XOP be an acute angle very nearly 90° . PN being perpendicular upon OX, ON is extremely small, and as $\angle XOP$ approaches more and more to 90° , ON becomes smaller and smaller. The length OP may however remain finite, and PN and OP will approach each other more and more closely. Ultimately when $\angle XOP$ becomes 90° , OP and PN coincide, and ON becomes zero ultimately. Hence

the ratio PN/OP becomes 1 and ON/OP becomes zero.

Thus
$$\sin 90^{\circ} = \frac{PN}{OP} \text{ in the limit} = 1$$

$$\cos 90^{\circ} = \frac{ON}{OP} \text{ in the limit} = 0$$

$$\tan 90^{\circ} = \frac{PN}{ON} \text{ in the limit} = \infty * \text{ (infinity)}$$
(since $ON \to 0$, whereas PN remains finite)
$$\cot 90^{\circ} = \frac{\cos 90^{\circ}}{\sin 90^{\circ}} = \frac{0}{1} = 0$$

 $\csc 90^{\circ} = 1$, $\sec 90^{\circ} = OP/ON$ in the limit = ∞ *.

It should be noted that in determining $\tan 90^\circ$, we may start with an angle XOP, slightly greater than 90° (i.e. in the second quadrant), and make it approach 90° . Then ON will be negative and $\to 0$, whereas PN is positive. Accordingly we may also write $\tan 90^\circ = -\infty$. (Thus strictly speaking, we should write $\tan 90^\circ = +\infty$.) Similar remarks apply for sec 90° , $\cot 0^\circ$, $\csc 0^\circ$.

^{*} The symbol ∞ is used to denote a quantity which exceeds any positive number, however large, and does not represent a definite number.

18. Ratios of 0°.

Let $\angle XOP$ be an infinitely small positive angle, and let PN be perpendicular on OX.

Then PN is infinitely small, whereas OP is finite. Now if $\angle XOP$ be taken less and less and ultimately becomes less than any quantity we can assign, we denote it by zero, and in this case PN practically vanishes, whereas OP and ON remaining finite, coincide. Hence the ratio PN/OP becomes ultimately zero, and ON/OP becomes 1.

Hence,
$$\sin 0^{\circ} = \frac{PN}{OP} \text{ in the limit} = 0$$

$$\cos 0^{\circ} = \frac{ON}{OP} \text{ in the limit} = 1$$

$$\tan 0^{\circ} = \frac{\sin 0^{\circ}}{\cos 0^{\circ}} = \frac{0}{1} = 0$$

$$\cot 0^{\circ} = \frac{ON}{PN} \text{ in the limit} = \infty^{*},$$

$$\csc 0^{\circ} = \frac{OP}{PN} \text{ in the limit} = \infty^{*},$$

$$\sec 0^{\circ} = \frac{1}{\cos 0^{\circ}} = \frac{1}{1} = 1.$$

Note. Note that 0° and 90° being complementary, $\sin 0^\circ = \cos 90^\circ = 0$, $\cos 0^\circ = \sin 90^\circ = 1$, etc.

19. As the ratios of the standard angles 0°, 30°, 45°, 60° and 90° are very often used, they should be remembered very

^{*} See foot note of Art. 17.

carefully. The first three ratios are given in the tabulated form below. The other three are reciprocals to these.

angle	sine	cosine	tangent
0° or 0°	0	1	0
30° or $\frac{\pi}{6}$	1 2	√3 2	$\frac{1}{\sqrt{3}}$
45° or $\frac{\pi}{4}$	$rac{1}{ar{\mathcal{J}}2}$	$rac{1}{\sqrt{2}}$	1
60° or $\frac{\pi}{3}$	√3 2	J 2	√3
90° or $\frac{\pi}{2}$	1	0	± ∞

Note. The following device may be of use in remembering the sines and cosines of standard angles. The sines of the angles 0°, 30°, 45°, 60°, 90° are respectively the square roots of the fractions

and cosines of these angles are the square roots from right to left.

20. Examples worked out.

Ex. 1. If
$$\theta = 30^\circ$$
, verify that $\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$.

Hence
$$\cos 2\theta = \cos 60^\circ = \frac{1}{2}$$
. Also $\tan \theta = \tan 30^\circ = \frac{1}{\sqrt{3}}$.

$$\therefore \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} - \frac{1 - \frac{1}{8}}{1 + \frac{1}{8}} - \frac{1}{2} \cdot \text{ Hence cos } 2\theta - \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

The right-hand side, on substitution of the values,

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} - \frac{1}{4} = \frac{1}{2} = \sin 30^{\circ}.$$

Hence the result.

Ex. 3. Solve for θ , where θ is a positive acute angle, given cosec θ cot $\theta = 2\sqrt{3}$.

From the given equation, $\frac{1}{\sin \theta} \frac{\cos \theta}{\sin \theta} = 2\sqrt{3}$,

or,
$$\cos \theta = 2 \sqrt{3} \cdot \sin^2 \theta = 2 \sqrt{3} (1 - \cos^2 \theta)$$
,

whence, $2\sqrt{3}\cos^2\theta + \cos\theta - 2\sqrt{3} = 0$

giving
$$\cos \theta = \frac{-1 + \sqrt{1 + 48}}{4\sqrt{3}} = \frac{-1 + 7}{4\sqrt{3}}$$
.

Since θ is a positive acute angle, $\cos \theta$ is positive, and so rejecting the negative value,

$$\cos \theta = \frac{6}{4\sqrt{3}} - \frac{\sqrt{3}}{2} - \cos 30^{\circ}$$
. $\therefore \theta = 30^{\circ} i.e., \frac{\pi}{6}$

Examples III

Verify the results (Ex. 1 to 6):-

1.
$$1-2\sin^2 30^\circ = 2\cos^2 30^\circ - 1 = \cos 60^\circ$$
.

2.
$$\frac{2 \tan 30^{\circ}}{1 - \tan^2 30^{\circ}} = \sqrt{3}$$
.

$$\cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \sin\frac{\pi}{4}\cos\frac{\pi}{6} + \cos\frac{\pi}{4}\sin\frac{\pi}{6}$$

4. (i)
$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(ii)
$$\cos A = \cos^2 B - \sin^2 B$$
,
where $A = 60^\circ$, $B = 30^\circ$.

5.
$$\sin 3A = 3 \sin A - 4 \sin^3 A$$
, where $A = \frac{\pi}{6}$.

6.
$$\csc^2 45^\circ \cdot \sec^2 30^\circ (\sin^3 30^\circ + 4 \cot^2 45^\circ - \sec^2 60^\circ) = \frac{1}{8}$$
.

7. If
$$\tan^2 \frac{\pi}{4} - \cos^2 \frac{\pi}{3} = x \sin \frac{\pi}{4} \cos \frac{\pi}{4} \tan \frac{\pi}{3}$$
, find x.

- 8. If θ be a positive acute angle, find θ , when
 - (i) $2 \sin^2 \theta 3 \cos \theta$;
 - (ii) $\tan \theta + \cot \theta = 2$:
 - (iii) $\csc^2\theta + 5 = 3\sqrt{3} \cot \theta$:
 - (iv) $\sin \theta + \cos \theta = \sqrt{2}$;
 - (v) $2(\cos^2\theta \sin^2\theta) = 1$;
 - (vi) $6 \sin^2 \theta 11 \sin \theta + 4 = 0$;

(vii)
$$\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$$

- 9. Given θ and ϕ to be positive acute angles, and $\tan (\theta + \phi) = \sqrt{3}$, $\tan (\theta \phi) = 1$, determine θ and ϕ .
 - 10. Find a and β (a and β being positive acute angles), if $\sin (2a \beta) = 1$, and $\cos (a + \beta) = \frac{1}{2}$.
 - 11. Find A, B, C (A, B, C being positive acute angles), if $\sin (B+C-A)=1$, $\cos (C+A-B)=1$, and $\tan (A+B-C)=1$.
 - and tan(A+B-C)=1.

12.

Find the numerical values of :--

- (i) $\cot^3 \frac{\pi}{6} 2 \cos^2 \frac{\pi}{3} \frac{3}{4} \sec^2 \frac{\pi}{4} 4 \sec^3 \frac{\pi}{6}$;
- (ii) $3 \tan^2 45^\circ \sin^2 60^\circ \frac{1}{2} \cot^2 30^\circ + \frac{1}{8} \sec^2 45^\circ$.

CHAPTER IV

TRIGONOMETRICAL RATIOS OF ANGLES ASSOCIATED WITH A GIVEN ANGLE $oldsymbol{ heta}$

21. Ratios of the angle $(-\theta)$ in terms of those of θ , 0 having any magnitude.

Let the $\angle XOP$ be θ and the $\angle XOQ$ described clockwisely be $-\theta$. From any point P on OP draw PN perpendicular to OX [or OX' as in Figs. (ii) and (iii)], and produce it to meet OQ at Q say.

Now $\angle XOP$ (measured anti-clockwisely) being equal to $\angle XOQ$ (measured clockwisely), $\angle PON = \angle QON$ in magnitude in all the figures, and therefore the two rt-angled triangles PON and QON are congruent. The corresponding sides are therefore equal in magnitude. Considering the signs of these sides according to the usual convention, we get in all the figures,

$$QN = -PN$$
, and $OQ = OP$

(both OP and OQ being always considered positive).

Hence, from definition,

$$\sin (-\theta) = \frac{QN}{OQ} = \frac{-PN}{OP} = -\sin \theta$$

$$\cos (-\theta) = \frac{ON}{OQ} = \frac{ON}{OP} = \cos \theta$$

$$\tan (-\theta) = \frac{QN}{ON} = \frac{-PN}{ON} = -\tan \theta$$

and the reciprocals of these give,

cosec
$$(-\theta) = -\csc \theta$$
,
sec $(-\theta) = \sec \theta$,
cot $(-\theta) = -\cot \theta$.

22. Ratios of (90° - 6).

Let the $\angle XOP$ traced out by a revolving line be θ , and let another revolving line, starting from OX trace out the angle $XOY = 90^{\circ}$ and then revolve back, tracing out $\angle YOQ = \theta$ in the clockwise direction, so that $\angle XOQ = 90^{\circ} - \theta$.

Take two equal lengths OP and OQ along OP and OQ respectively, and draw PN and QM perpendiculars on OX.

If OP be in the first or third quadrant as in Fig. (i) and Fig. (iii), OQ also lies in the same quadrant. If OF lies in the second quadrant as in Fig. (ii), OQ lies in the fourth quadrant; and if OP lies in the fourth, OQ lies in the

second, as in Fig. (iv). Now, $\angle XOP$ being equal to $\angle YOQ$ in magnitude, $\angle PON = \angle OQM$, and since OP = OQ, the

two rt.-angled triangles PON, OQM are congruent. The corresponding sides are therefore equal in magnitude. Considering signs as well, we get in all the figures,

$$QM = ON$$
, $OM = PN$, $OQ = OP$.

Hence, from definition,

$$\sin (90^{\circ} - \theta) - \sin \angle XOQ - \frac{QM}{OQ} - \frac{ON}{OP} - \cos \theta$$

$$\cos (90^{\circ} - \theta) - \frac{OM}{OQ} - \frac{PN}{OP} - \sin \theta$$

$$\tan (90^{\circ} - \theta) - \frac{QM}{OM} - \frac{ON}{PN} - \cot \theta$$

The reciprocals of these are

$$cosec (90^{\circ} - \theta) = sec \theta,$$

$$\sec (90^{\circ} - \theta) = \csc \theta,$$

$$\cot (90^{\circ} - \theta) = \tan \theta.$$

Obs. The angle $(90^{\circ}-\theta)$ is the complement of θ , and we derive the result that for a pair of complementary angles, sine of one is the cosine of the other and vice versa, tangent of one is the cotangent of the other and secant of one is the cosecant of the other. This was verified in the last chapter in connection with the complementary pairs 30° and 60°, as also 0° and 90°.

23. Ratios of $(90^{\circ} + 6)$.

Let a revolving line, starting from OX, trace out an $\angle XOP = \theta$, and further trace out an $\angle POQ = 90^\circ$, so that $\angle XOQ = 90^\circ + \theta$.

Cut off OP = OQ along OP and OQ respectively and let PN, QM be perpendiculars on OX (produced where necessary).

Now OQ being perpendicular to OP, the $\angle PON$ = the complement of $\angle QOM = \angle OQM$ in magnitude, and since OP = OQ, the two right-angled triangles OPN and OQM are congruent. The corresponding sides are therefore equal. Considering signs as well, we get, for all the figures,

$$QM = ON$$
, $OM = -PN$, $OQ = OP$.

Hence from definition.

$$\sin (90^{\circ} + \theta) - \sin XOQ - \frac{QM}{OQ} - \frac{ON}{OP} - \cos \theta$$

$$\cos (90^{\circ} + \theta) = \frac{OM}{OQ} - \frac{PN}{OP} - \sin \theta$$

$$\tan (90^{\circ} + \theta) = \frac{QM}{OM} - \frac{ON}{PN} - \cot \theta$$

and considering their reciprocals,

cosec
$$(90^{\circ} + \theta) = \sec \theta$$
,
sec $(90^{\circ} + \theta) = -\csc \theta$,
cot $(90^{\circ} + \theta) = -\tan \theta$.

24. Ratios of (180° - 6).

Fig. (i)

Fig. (ii)

Let $\angle XOP = \theta$ be traced out by a revolving line, and let another revolving line, starting from OX, trace out an angle 180° coming up to OX' and then revolve back and describe an angle $X'OQ = \theta$, so that $\angle XOQ = 180^{\circ} - \theta$.

Two figures are given here, one with OP in the first quadrant and another with OP in the third quadrant. The two other figures may easily be drawn by the students.

Now cut off OP = OQ, and draw PN and QM perpendiculars on OX (or OX' as the case may be). Then $\angle PON = \angle QOM$ in magnitude, and OP = OQ. Hence the right-angled triangles PON and QOM are congruent, and so have their corresponding sides equal in magnitude. Taking into consideration the signs, we get for all the figures,

$$QM = PN$$
, $OM = -ON$, $OQ = OP$.

Hence for all values of θ ,

$$\sin (180^{\circ} - \theta) = \sin XOQ = \frac{QM}{OQ} = \frac{PN}{OP} = \sin \theta$$

$$\cos (180^{\circ} - \theta) = \frac{OM}{OQ} = \frac{-ON}{OP} = -\cos \theta$$

$$\tan (180^{\circ} - \theta) = \frac{QM}{OM} = \frac{PN}{-ON} = -\tan \theta$$

and so taking reciprocals,

cosec
$$(180^{\circ} - \theta) = \text{cosec } \theta$$
,
sec $(180^{\circ} - \theta) = -\text{sec } \theta$,
cot $(180^{\circ} - \theta) = -\text{cot } \theta$.

Note. The first two formulæ may be expressed in the form "sines of supplementary angles are equal, and cosines of supplementary angles are equal in magnitude but opposite in sign."

25. Ratios of (180°+6).

Let a revolving line starting from OX, trace out an angle $XOP = \theta$, and further trace out an angle $POQ = 180^{\circ}$, so that $\angle XOQ = 180^{\circ} + \theta$.

OP and OQ are then in one straight line.

Cut off OP = OQ, and draw PN and QM perpendiculars on XOX'.

Two figures are given here with OP in the first and fourth quadrants, and the other two may be similarly drawn.

Now POQ being a straight line in this case, $\angle PON = \angle QOM$ in magnitude. Also, OP = OQ. Hence the right-angled triangles PON and QOM are congruent and have their corresponding sides equal in magnitude. Considering signs, we get in all cases,

$$QM = -PN$$
, $OM = -ON$, $OQ = OP$.

Thus for all values of θ ,

$$\sin (180^{\circ} + \theta) = \sin XOQ = \frac{QM}{OQ} - \frac{-PN}{OP} - \sin \theta$$

$$\cos (180^{\circ} + \theta) = \frac{OM}{OQ} - \frac{-ON}{OP} = -\cos \theta$$

$$\tan (180^{\circ} + \theta) = \frac{QM}{OM} - \frac{-PN}{ON} = \frac{PN}{ON} - \tan \theta$$

and so.

cosec
$$(180^{\circ} + \theta) = - \operatorname{cosec} \theta$$
,
sec $(180^{\circ} + \theta) = - \operatorname{sec} \theta$,
cot $(180^{\circ} + \theta) = \operatorname{cot} \theta$.

26. Ratios of $(270^{\circ} - \theta)$.

Let $\angle XOP = \theta$ be traced out by a revolving line, and let another revolving line trace out an angle $XOY' = 270^{\circ}$, thereby coming up to the position OY', and then revolve back, tracing out an angle $Y'OQ = \theta$, so that $\angle XOQ = 270^{\circ} - \theta$.

Two figures are given here with OP in the first and third quadrants. The other two may be drawn similarly.

Cut off OP = OQ and draw PN, QM perpendiculars on XOX'.

Since $\angle XOP = \angle Y'OQ$ in magnitude, we easily derive that $\angle PON = \angle OQM$ in magnitude. Also OP = OQ. Hence the two right-angled triangles OPN and OQM are congruent. Considering signs, we get for all the figures,

$$QM = -ON$$
, $OM = -PN$, $OQ = OP$.

Hence, for all values of θ ,

$$\sin (270^{\circ} - \theta) = \sin \angle XOQ = \frac{QM}{OQ} = \frac{-ON}{OP} = -\cos \theta$$

$$\cos (270^{\circ} - \theta) = \frac{OM}{OQ} = \frac{-PN}{OP} = -\sin \theta$$

$$\tan (270^{\circ} - \theta) = \frac{QM}{OM} = \frac{-ON}{-PN} = \frac{ON}{PN} = \cot \theta;$$

and thus,

cosec
$$(270^{\circ} - \theta) = -\sec \theta$$
,
sec $(270^{\circ} - \theta) = -\csc \theta$,
cot $(270^{\circ} - \theta) = \tan \theta$.

27. Ratios of $(270^{\circ} + \theta)$.

We may proceed geometrically as in the previous cases. Otherwise we may proceed as follows:

$$\sin (270^{\circ} + \theta) = \sin (180^{\circ} + 90^{\circ} + \theta) = -\sin (90^{\circ} + \theta) [\text{ from § 25} \\ -\cos \theta & \dots & [\text{ from § 28} \\ \cos (270^{\circ} + \theta) = \cos (180^{\circ} + 90^{\circ} + \theta) = -\cos (90^{\circ} + \theta) \\ = -(-\sin \theta) = \sin \theta \\ \tan (270^{\circ} + \theta) = \frac{\sin (270^{\circ} + \theta)}{\cos (270^{\circ} + \theta)} = \frac{-\cos \theta}{\sin \theta} = -\cot \theta;$$
and hence,
$$\csc (270^{\circ} + \theta) = -\sec \theta,$$

sec
$$(270^{\circ} + \theta) = -\sec \theta$$
,
sec $(270^{\circ} + \theta) = \csc \theta$,
cot $(270^{\circ} + \theta) = -\tan \theta$.

Note. The ratios of $180^{\circ} - \theta$, $180^{\circ} + \theta$, $270^{\circ} - \theta$ can also be similarly deduced from the formulæ for ratios of $90^{\circ} + \theta$.

28. Ratios of $(360^{\circ} - \theta)$, $(360^{\circ} + \theta)$ and $(n.360^{\circ} \pm \theta)$.

It has already been remarked in Art. 2, Chapter I, that angles which differ by complete multiples of 360°, i.e. by an exact number of complete revolutions, have the final positions of the revolving lines coincident, if the initial lines are

the same. Hence all the trigonometrical ratios of two such angles must be identical in magnitude as well as in sign.

Thus trigonometrical ratios of $360^{\circ} - \theta$ must be same as those of $-\theta$. Hence,

$$\sin (360^{\circ} - \theta) = \sin (-\theta) = -\sin \theta$$

$$\cos (360^{\circ} - \theta) = \cos (-\theta) = \cos \theta$$

$$\tan (360^{\circ} - \theta) = \tan (-\theta) = -\tan \theta, \text{ etc.}$$

Trigonometrical ratios of $360^{\circ} + \theta$, or of $360^{\circ} \times n \pm \theta$, where n is an integer, positive or negative, must similarly be same as those of θ , or of $\pm \theta$.

Thus in determining trigonometrical ratios of angles, complete multiples of 360° (i.e., 2π) may be always added or subtracted.

29. All the above results may, for easy remembrance, be summed up in a simple rule.

If θ be associated with an even multiple of 90° by a + or - sign, $(e.g., 180^{\circ} - \theta, 180^{\circ} + \theta, 360^{\circ} - \theta, 360^{\circ} + \theta, \text{ etc.})$, the ratio is not altered in form $(\iota e$, sine remains sine, cosine remains cosine, etc.). To determine the sign, assuming θ to be acute, find out the quadrant in which the associated angle lies, and determine the sign according to the rule "all, sin, tan. cos".

If θ be associated with an odd multiple of 90° by a + or - sign, $(c.g., 90^{\circ} - \theta, 90^{\circ} + \theta, 270^{\circ} - \theta, 270^{\circ} + \theta, \text{etc.})$, the ratio is altered (sine becomes cosine, cosine becomes sine, tangent becomes cotangent, etc.). Moreover, the sign of the result is determined as in the previous paragraph.

Example. Consider formulæ for $tan(270^{\circ} - \theta)$ and $sec(180^{\circ} + \theta)$.

 $270^{\circ} - \theta = 3.90^{\circ'} - \theta$ (multiple of 90° is odd).

Hence the ratio will be altered, tan changing into cot. Moreover, θ being assumed acute (whether it actually is so or not, it does not matter), $270^{\circ} - \theta$ falls in the third quadrant, where tan is positive.

Hence, $\tan (270^{\circ} - \theta) = + \cot \theta$.

 $180^{\circ} + \theta$ has got θ associated with even multiple of 90° . Hence the ratio does not alter in form, see remaining sec. Also, $180^{\circ} + \theta$ falls in the third quadrant, if θ be assumed acute, where see (by the rule "all, sin, tan, cos") is negative.

Hence, $\sec (180^{\circ} + \theta) = -\sec \theta$.

N. B. The angle " $-\theta$ " may be written as $0.360^{\circ} - \theta$, and 0 may be considered even in applying the above rule.

Thus, θ being supposed acute, $-\theta$ falls in the fourth quadrant, where cos and sec only are positive. The form of the ratio not changing in this case, $\sin(-\theta) = -\sin\theta$, $\cos(-\theta) = +\cos\theta$, etc.

30. Special angles (outside the first quadrant).

In Art. 24, putting $\theta = 60^{\circ}$, 45°, 30° and 0° respectively we can deduce the following results:

$$\sin 120^{\circ} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}; \qquad \cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}.$$

$$\sin 135^{\circ} = \sin 45^{\circ} = \frac{1}{\sqrt{2}}; \qquad \cos 135^{\circ} = -\cos 45^{\circ} = -\frac{1}{\sqrt{2}}.$$

$$\sin 150^{\circ} = \sin 30^{\circ} = \frac{1}{2}; \qquad \cos 150^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}.$$

$$\sin 180^{\circ} = \sin 0^{\circ} = 0; \qquad \cos 180^{\circ} = -\cos 0^{\circ} = -1.$$
And similarly from Arts. 27 and 28, putting $\theta = 0$,
$$\sin 270^{\circ} = -\cos 0^{\circ} = -1; \cos 270^{\circ} = \sin 0^{\circ} = 0.$$

$$\sin 860^{\circ} = \sin 0^{\circ} = 0; \qquad \cos 360^{\circ} = \cos 0^{\circ} = 1.$$

From the above, we get,

tan 180°=0; tan 270°=- 0; tan 360°=0.

Examples worked out.

Ex. 1. Find the value of $\cot (-1575^{\circ})$.

$$\cot (-1575^{\circ}) = -\cot (1575^{\circ}) = -\cot (4 \times 360^{\circ} + 135^{\circ})$$
$$= -\cot (135^{\circ}) = -\cot (180^{\circ} - 45^{\circ})$$
$$= \cot 45^{\circ} = 1.$$

Ex. 2. Find the value of cot θ - tan θ , where $\theta = \frac{17\pi}{3}$.

 $\frac{17\pi}{3} = 6\pi - \frac{\pi}{3}$, and omitting complete multiples of 360° i.e., of 2π , whereby trigonometrical ratios are not altered, we get,

$$\cot \frac{17\pi}{3} = \cot \left(-\frac{\pi}{3}\right) = -\cot \frac{\pi}{3} = -\cot 60^{\circ} = -\frac{1}{\sqrt{3}}.$$

$$\tan \frac{17\pi}{3} = \tan \left(-\frac{\pi}{3}\right) = -\tan \frac{\pi}{3} = -\tan 60^{\circ} = -\sqrt{3}.$$

$$\therefore \cot \theta - \tan \theta = -\frac{1}{\sqrt{3}} + \sqrt{3} = \frac{3-1}{\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}.$$

Ex. 3. Prove that

$$sin (420^{\circ}) cos (390^{\circ}) + cos (-300^{\circ}) sin (-330^{\circ}) = 1.$$

L. H. side = sin (360° + 60°) cos (360° + 30°)
+ cos (-360° + 60°) sin (-360° + 30°)
= sin 60° cos 30° + cos 60° sin 30°
=
$$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1$$
.

Ex. 4. Express cot (-1358°) in terms of the ratio of a positive angle less than 45° .

$$\cot (-1358^{\circ}) = \cot (-4 \times 360^{\circ} + 82^{\circ})$$
$$= \cot 82^{\circ} = \cot (90^{\circ} - 8^{\circ})$$
$$= \tan 8^{\circ}.$$

Note. Ratios of angles of any magnitude and sign can always be expressed in terms of a ratio of a positive angle less than 45°.

Ex. 5. Express

$$\frac{\cos (90^{\circ}+0) \sec (-\theta) \tan (180^{\circ}-\theta)}{\sec (360^{\circ}+\theta) \sin (160^{\circ}+\theta) \cot (90^{\circ}-\theta)} \text{ in its simplest}$$
 form.

The given expression

$$= \frac{-\sin \theta}{\sec \theta} \cdot (-\tan \theta)$$

$$\sec \theta \cdot (-\sin \theta) \cdot \tan \theta$$

$$= -1.$$

Examples IV

- 1. Write down the values of $\sin 150^{\circ}$, $\cot 840^{\circ}$, $\csc (-660^{\circ})$ and $\tan (-1125^{\circ})$.
 - 2. Find the values of $\sin\left(-\frac{11\pi}{4}\right)$, $\csc\left(\frac{16\pi}{3}\right)$, $\tan\left(\frac{3\pi}{2} + \frac{\pi}{3}\right)$ and $\cos\left(\frac{5\pi}{2} \frac{19\pi}{3}\right)$.
- 3. Evaluate $\sin \left(-1230^{\circ}\right) \cos \left\{\left(2n+1\right)\tau + \frac{\pi}{3}\right\}$ where n is a negative integer.
- 4. Find the value of $\sin \left\{ n\pi + (-1)^n \frac{\pi}{3} \right\}$, where *n* is any integer.
 - 5. Find all the values of

(i)
$$\tan \left\{ \frac{n\pi}{2} + (-1)^n \frac{\pi}{4} \right\}$$
;

(ii) cosec
$$\left\{\frac{n\pi}{2} + (-1)^n \frac{\pi}{6}\right\}$$

where n is any integer.

6. Show that $\cos\left(2m\pi\pm\frac{\pi}{3}\right)$ and $\tan\left(m\pi\pm\frac{\pi}{6}\right)$ have one value each for all integral values of m.

- 7. Prove that, n being any integer
 - (i) $\cos (n\pi + a) = (-1)^n \cos a$:
 - (ii) $\tan (n\pi a) = -\tan a$.
- 8. Prove that
 - (i) $\cos \theta = -\cos (\theta 180^\circ)$;
 - (ii) $\tan \theta = -\cot (\theta \frac{3}{2}\pi)$.
- 9. Prove that
 - (i) $\sin (780^\circ) \cos (390^\circ) \sin (330^\circ) \cos (-300^\circ) = 1$;
 - (ii) $\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ} = 0$;
 - (iii) $\frac{\sin 250^{\circ} + \tan 290^{\circ}}{\cot 200^{\circ} + \cos 340^{\circ}} = -1$.
- 10. Simplify

$$\sin^3(\pi+\theta)$$
 $\tan(2\pi-\theta)$ $\sec^2(\pi-\theta)$
 $\cos^2(\frac{1}{2}\pi+\theta)$ $\csc^2\theta$ $\sin(\pi-\theta)$

and determine its value when $\theta = 225^{\circ}$.

11. Prove that

$$\sin \left(\frac{1}{2}\pi + \theta\right) \cos \left(\pi - \theta\right) \cot \left(\frac{9}{2}\pi + \theta\right)$$

$$= \sin \left(\frac{1}{2}\pi - \theta\right) \sin \left(\frac{3}{2}\pi - \theta\right) \cot \left(\frac{1}{2}\pi + \theta\right).$$

- 12. Evaluate
 - (i) $\sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4}$
 - (ii) $\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$
 - (iii) $\sin x + \sin (\pi + x) + \sin (2\pi + x) + \cdots$ to n terms.
- 13. If $\tan \theta = \frac{\pi}{12}$ and $\cos \theta$ is negative, find the value of $\frac{\sin \theta + \cos (-\theta)}{\sec (-\theta) + \tan \theta}$
- 14. An angle θ lies between 180° and 270°, and cosec θ = - $\frac{7}{4}$. Find cot θ .

- 15. Express in terms of ratios of positive angles less than 45°;
 - (i) $\cot (-1054^{\circ})$;
- (ii) sin (1145°);
- (iii) sec (-1491°);
- (iv) $\cos \frac{35\pi}{9}$.
- 16. Find the value of 0 when,
 - (i) $\tan \theta = -\sqrt{3}$ and θ lies between 270° and 360° ;
 - (ii) $\cos \theta = -\frac{1}{2}$, and $450^{\circ} < \theta < 540^{\circ}$.
- 17. Solve for θ , giving all the possible values, when $0^{\circ} < \theta < 360^{\circ}$:
 - (i) $\cos \theta + \sqrt{3} \sin \theta = 2$;

' C. U. 1936.]

- (ii) $2 \sin^2 \theta + 3 \cos \theta = 0$:
- (iii) $3(\sec^2\theta + \tan^2\theta) = 5$;
- (iv) $\cot \theta + \tan \theta = 2 \sec \theta$;
- (v) $1-2\sin\theta-2\cos\theta+\cot\theta=0$.
- 18. If A, B, C be angles of a triangle, show that $\sin (A+B) \cos C = \cos (A+B) + \sin C$.
- 19. If A, B, C be angles of a triangle, show that $\tan (B+C) + \tan (C+A) + \tan (A+B) = 1.$ $\tan (\pi A) + \tan (2\pi B) + \tan (3\pi C) = 1.$
- 20. If A, B, C, D be the angles of a quadrilateral, show that

$$\cos \frac{1}{2}(A+C) + \cos \frac{1}{2}(B+D) = 0.$$

If the quadrilateral be cyclic, then $\cos A + \cos B + \cos C + \cos D = 0$.

CHAPTER V

١

SIMPLE PRACTICAL APPLICATIONS OF TRIGONOMETRY

31. One of the most important applications of Trigonometry is in the determination of heights and distances of distant objects which are not directly measurable, by observations of angles subtended by those objects at the eye of the observer. These angles may be measured by instruments known as Sextants, or Theodolites or by other angle-measuring instruments. Thus Trigonometry plays a very important part in land survey. It is also extensively used by Astronomers in determining the distances of the heavenly bodies like the sun, moon and stars.

Two angles are very often used in the practical applications of Trigonometry, and they are defined as follows:—

If a horizontal line OX be drawn through O, the eye of an observer, the angle which the line joining O to a point P above OX makes with OX is called the Angle of Elevation or altitude of P as seen from O.

If Q be below the horizontal line OX, the angle XOQ measured below OX is called the **Angle of Depression** of Q as seen from O.

32. Illustrative Examples.

Ex. 1. From a distance of 40 feet from the foot of a palm tree in a horizontal field, the angle of elevation of the top of the tree is observed to be 60°. Find the height of the tree.

Let h ft. be the height of the tree PN, and $\angle NOP$, the angle of elevation of P as seen from O, where ON = 40 ft., is 60° .

Then
$$\frac{h}{40} = \tan PON = \tan 60^{\circ} = \sqrt{3}$$
;
 $h = 40 \sqrt{3} \text{ ft.} = 69^{\circ}28.....\text{ft.}$

Ex. 2. From one bank of a river, the top of a building just on the opposite bank is observed to have an elevation of 45°. On receding 50 ft. from the bank, perpendicular to its edge, the angle of elevation becomes 30°. Find the breadth of the river, and the height of the building.

AQ being the breadth of the river, PQ the height of the building, $\angle PAQ = 45^{\circ}$. Also AB being 50 ft., $\angle PBQ = 30^{\circ}$.

Now,
$$\frac{BQ}{PQ} = \cot 30^\circ$$
, $\frac{AQ}{PQ} = \cot 45^\circ$.

Hence, subtracting, $\frac{AB}{PQ} = \cot 30^{\circ} - \cot 45^{\circ}$,

or,
$$\frac{50}{PQ} = \sqrt{3} - 1$$
;
 $\therefore PQ = \frac{50}{\sqrt{3} - 1} = \frac{50(\sqrt{3} + 1)}{2} = 68.3$ ft. nearly.
Also $\frac{AQ}{PQ} = \cot 45^{\circ} = 1$; $\therefore AQ = PQ = 68.3$ ft.

Thus, the breadth of the river and the height of the building are both 68'3 ft. nearly.

Ex. 3. The angles of depression and elevation of the top of a tower 50 ft. high from the top and bottom of a second tower are 60° and 20° respectively. Find the height of the second tower to the nearest foot. [Given cot 20° = 2.747.]

PQ is the second tower, and $\angle XPA = 60^{\circ}$, $\angle BQA = 20^{\circ}$, AB = 50 ft., AC is parallel to BQ or PX, so that $\angle PAC$ — the alternate angle $XPA = 60^{\circ}$.

Now
$$QB = \cot 20^{\circ}$$
; $\therefore QB = AB \cot 20^{\circ}$.

Also $PC = \tan PAC = \tan 60^{\circ}$;
 $PC = CA \tan 60^{\circ} = QB \tan 60^{\circ}$
 $= AB \cot 20^{\circ} \tan 60^{\circ}$.

.. height
$$PQ = PC + CQ = PC + AB$$

= AB (cot 20° tan 60° + 1)
= $50(2.747 \times \sqrt{3} + 1)$.
= $287.8...$ ft. = 288 ft. nearly

Ex. 4. The elevation of a hill from a place P due East of it is 45°, and at a place Q due South of P, the elevation is 30°. If the distance PQ be 400 yds., find the height of the hill.

A is the top of the hill, B is the point vertically below it on the ground. BP is due East, PQ is due South, so that BPQ is a right angle. Also ABP and ABQ are both right angles.

Now
$$\frac{BQ}{AB} = \cot AQB = \cot 30^{\circ} = \sqrt{3}$$
,
and $\frac{BP}{AB} = \cot APB = \cot 45^{\circ} = 1$.

Hence, $BQ = AB \sqrt{3}$, BP = AB,

and
$$PQ^2 = BQ^2 - BP^2 = AB^2(3-1) = 2AB^2$$
.

...
$$AB = \frac{PQ}{\sqrt{2}} = \frac{PQ}{2}$$
. $\sqrt{2} = 200 \sqrt{2} = 283$ yds. nearly.

Examples V

- 1. From the top of a tower by the sea side, 100 feet high, it was observed that the angle of depression of the bottom of a ship at anchor was 30°. Find the distance of the ship from the bottom of the tower.
- 2. Two straight roads, which cross one another, meet a river with a straight course at angles 60° and 30° respectively. If it be 5 miles by the longer of the two roads, from the crossing to the river, how far is it by the shorter? If there be a foot-path, which goes the shortest way from the crossing to the river, what is the distance by it?
- 3. Two poles are of equal height; a person standing midway between the line joining their bases observes the

elevations of the poles to be 30°. After walking 40 feet towards one of them, he observes that the same pole now subtends an angle of 60°. Find their height and the distance between them.

- 4. A straight palm tree 60 feet high, is broken by the wind but not completely separated, and its upper part meets the ground at an angle of 30°. Find the distance of the point where the top of the tree meets the ground, from the root, and also the height at which the tree is broken.
- 5. Two posts are 120 ft. apart, and the height of one is double that of the other. From the middle point of the line joining their feet, an observer finds the angular elevations of their tops to be complementary. Find the height of the shorter post.
- 6. The Bally bridge subtends an angle of 45° at a given point at the edge of the river; 800 yds. higher up, it subtends an angle of 30°. The course of the river here is straight and perpendicular to the bridge. Find the length of the bridge.
- 7. The height of a house subtends a right angle at an opposite window, the top being 60° above a horizontal straight line through the window; find the height of the house, taking the breadth of the street to be 30 feet.
- 8. From an aeroplane vertically over a straight road, the angles of depression of two consecutive milestones are observed to be 45° and 60°; find the height of the aeroplane.
- 9. From a ship sailing due South-East at the rate of 5 miles an hour, a light-house is observed to be 30° North of East, and after 4 hours, it is seen due North; find the distance of the light-house from the final position of the ship.
- 10. The shadow of a tower standing on a level plane is found to be 40 feet longer when the sun's altitude is 45° than when it is 60°. Find the height of the tower.

- 11. From the lower window of a house the angular elevation of a church-steeple is found to be 45° and from a window 20 feet above, the elevation is 30°. How far is the church from the house?
- 12. A light-house facing East sends out a fan-shaped beam of light extending from S. E. to N. E. An observer sailing due North, after meeting the light continues to see it for $10\sqrt{2}$ minutes. When leaving the fan of light, the ship is 10 miles from the light-house. Find the speed of the ship.
- 13. A pole 100 ft. high stands vertically at the centre of a horizontal equilateral triangle, each side of which subtends an angle of 60° at the top of the pole. Find the side of the triangle.
- 14. Two chimneys are of equal height. A person standing between them in the line joining their bases observes the elevation of the nearer one to be 60°. After walking 80 feet in a direction at right angles to the line joining their bases, he observes the elevations of the two to be 45° and 30° respectively. Find the height and the distance between them.
- 15. At the foot of a mountain the elevation of its summit is 45°; after ascending 1 mile towards the mountain up an incline of 30°, the elevation changes to 60°. Find the height of the mountain.
- 16. From a station, two light-houses A and B are seen in directions North and 30° East of North respectively; if A were one-third as far off as it really is, it would appear due West of B. If the distance of B from the station be 10 miles, find the distance of B from A.
- 17. A person walking along a straight road observes a tall tree standing in front of a tower, both being on the road before him. The elevation of the top of the tower is 45°, and of the top of the tree 30°; on advancing 100 feet he finds the tower and the tree to have the same elevation 60°; supposing the height of the eye of the man to be 5 feet, find the height of the tower and of the tree.

- 18. A man on the top of a rock rising on a seashore, observes a boat coming towards it at an angle of depression 30°; 10 minutes later the angle of depression is 60°. The height of the rock being 4000 feet, find the speed of the boat in miles per hour.
- 19. A person walking along a straight level road observes the elevation of the top of a hill to be 60° when he is nearest the hill, and after walking 200 yards in a direction perpendicular to the direction of the hill from this point, observes the elevation to be 30°. Find the approximate height of the hill.
- 20. A square tower stands on a horizontal plane. From a point in this plane, only three of its upper corners are visible, and their angles of elevation are 45°, 60°, 45°. Find the ratio of the height of the tower to its breadth.
- 21. Two wheels, the sum of whose radii is 10 feet, are placed flatly on a table with their centres at a distance of 20 ft. An endless string, quite stretched, is partly wrapped round the wheels and crosses itself between them. Show that the length of the string is nearly 76.5 feet.
- 22. On a still day, from a station A an airship is observed due north at an elevation of 60° , while from a station B it is observed due east at an elevation of 45° . At this instant of observation, a parachute message is dropped from the airship, and the observer at A has to walk a mile to reach the message. Find the distance between the two stations.
- 23. From the foot of a column the angle of elevation of the top of a tower is 45° and from the top of the column the angle of depression of the bottom of the tower is 30°. A man walks 10 ft. from the bottom of the column towards the tower and notices the angle of elevation of its top to be 60°. Find the height of the column.

CHAPTER VI COMPOUND ANGLES

33. To prove that

$$\sin (A+B) = \sin A \cos B + \cos A \sin B$$

 $\cos (A+B) = \cos A \cos B - \sin A \sin B$

when A and B are positive and acute and $(A+B) < 90^{\circ}$.

Let a revolving line starting from the position OX trace out an angle XOY = A and then revolving further, trace out an angle YOZ = B: then $\angle XOZ = A + B$.

In OZ, the bounding line of the compound angle A+B, take any point P and draw PQ and PR perpendicular to OX and OY respectively; also draw RS and RT perpendicular to OX and PQ respectively.

From the right-angled $\triangle POQ$,

$$\sin (A+B) = \frac{PQ}{OP} = \frac{QT + TP}{OP} = \frac{RS + PT}{OP} = \frac{RS}{OP} + \frac{PT}{OP}$$

$$= \frac{RS}{OR} \cdot \frac{OR}{OP} + \frac{PT}{PR} \cdot \frac{PR}{OP}$$

$$= \sin A \cos B + \cos TPR \cdot \sin B.$$

Now, $\angle TPR = 90^{\circ} - \angle TRP = \angle TRO = \angle ROS = A$.

$$\therefore \sin (A+B) = \sin A \cos B + \cos A \sin B.$$

Again,

$$\cos (A+B) = \frac{OQ}{OP} = \frac{OS - QS}{OP} = \frac{OS - TR}{OP} = \frac{OS}{OP} - \frac{TR}{OP}$$

$$= \frac{OS}{OR} \cdot \frac{OR}{OP} - \frac{TR}{PR} \cdot \frac{PR}{OP}$$

$$= \cos A \cos B - \sin TPR \cdot \sin B$$

$$= \cos A \cos B - \sin A \sin B \cdot \frac{PR}{OP} \cdot \frac{PR}{$$

34. To prove that

$$\sin (A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos (A - B) = \cos A \cos B + \sin A \sin B,$$

when A and B are positive and acute, and A > B.

Let a revolving line start from the position OX and trace out an angle XOY = A and then revolving back trace out an angle YOZ = B; then $\angle XOZ = A - B$.

In OZ, the bounding line of the compound angle A-B, take any point P, and draw PQ and PR perpendicular to OX and OY respectively; and draw RS and RT perpendicular to OX and QP produced respectively.

From the right-angled $\triangle POQ$,

$$\sin (A - B) = \frac{PQ}{OP} = \frac{TQ - PT}{OP} = \frac{RS - PT}{OP} = \frac{RS}{OP} - \frac{PT}{OP}$$

$$= \frac{RS \cdot OR}{OR} - \frac{PT \cdot PR}{PR \cdot OP}$$

$$= \sin A \cos B - \cos TPR \cdot \sin B.$$
But $\angle TPR = 90^{\circ} - \angle TRP = \angle YRT = \angle YOX = A.$

$$\therefore \sin (A - B) = \sin A \cos B - \cos A \sin B.$$
Again,
$$\cos (A - B) = \frac{OQ}{OP} = \frac{OS + SQ}{OP} = \frac{OS + RT}{OP} = \frac{OS}{OP} + \frac{RT}{OP}$$

$$= \frac{OS}{OR} \cdot \frac{OR}{OP} + \frac{RT}{RP} \cdot \frac{OP}{OP}$$

$$= \cos A \cos B + \sin TPR \cdot \sin B.$$

Obs. In the above Geometrical proofs, it is assumed that the angles A, B, A+B are all less than a right angle and that A-B is positive. If the angles are not so restricted, the same method of proof (there being some modifications in the figures) will apply, due attention being paid to the signs of the quantities involved.*

 $=\cos A\cos B + \sin A\sin B$.

Thus the above four formulæ are perfectly general.

The expansions $\sin (A \pm B)$ and $\cos (A \pm B)$ are generally called the "Addition Formula or Addition and Subtraction Theorems".

Note 2. Assuming the truth of the above formulæ for acute angles, they can be shown to be true for angles of any magnitude, as follows:

Let us consider $\sin (A+B)$.

Let A and B be acute and $A+B < 90^{\circ}$.

Let
$$A_1 = 90^{\circ} + A$$
; $B_1 = B$.

Now,
$$\sin (A_1 + B_1) = \sin \{(90^\circ + A) + B\} = \sin \{90^\circ + (A + B)\}$$

= $\cos (.1 + B) = \cos A \cos B - \sin A \sin B$, [by Art. 33.]
= $\sin (90^\circ + A) \cos B + \cos (90^\circ + A) \sin B$
= $\sin A_1 \cos B_1 + \cos A_1 \sin B_1$.

^{*}See Appendix, Art. 2-4. Also for alternative proofs of Arts. 33 and 84, see Appendix, Art. 10.

Again, let
$$A_1 = -A$$
, $B_2 = B$.
Then $\sin (A_2 + B_2) = \sin (-A + B) = -\sin (A - B)$

$$= -\sin A \cos B + \cos A \sin B, \quad [by Art. 34.]$$

$$= \sin (-A) \cos B + \cos (-A) \sin B$$

$$= \sin A_2 \cos B_2 + \cos A_3 \sin B_3.$$

Thus, the above formula remains true if any of the two angles is either increased by 90°, or has its sign changed.

In the same way it may be shown that the other three formular for $\cos (A+B)$, $\sin (A-B)$ and $\cos (A-B)$ will continue to hold good unchanged in form, if any of the two angles be either increased by 90° or has its sign changed.

Now starting from positive acute-angled values of A and B, combining the two processes of increasing one of the angles by 90° , and reversing the sign of any one, we can arrive at values of A and B of any magnitude, positive or negative, and the four formulae will still hold good.

Thus the formulae for $\sin (A \pm B)$ and $\cos (A \pm B)$ are perfectly general.

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$
$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$
$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

 $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$ and $\cos 15^\circ = \cos (45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ$; therefore substituting the values of $\sin 45^\circ$, $\cos 45^\circ$ etc. as before, we get

$$\sin 15^\circ = \frac{\sqrt{3-1}}{2\sqrt{2}}$$
 and $\cos 15^\circ = \frac{\sqrt{3+1}}{2\sqrt{2}}$.

Note. The values of sin 15° and cos 15° can also be deduced from the fact that

$$\sin 15^{\circ} = \sin (90^{\circ} - 75^{\circ}) = \cos 75^{\circ}$$

and $\cos 15^{\circ} = \cos (90^{\circ} - 75^{\circ}) = \sin 75^{\circ}$.

Ex. 2. Show that

(i)
$$\sin (A+B) \sin (A-B) = \sin^2 A - \sin^2 B$$

= $\cos^2 B - \cos^2 A$.

(ii)
$$\cos(A+B) \cos(A-B) = \cos^2 A - \sin^2 B$$

= $\cos^2 B - \sin^2 A$.

- (i) Left side
 - $= (\sin A \cos B + \cos A \sin B)(\sin A \cos B \cos A \sin B)$
 - $=\sin^2 A \cos^2 B \cos^2 A \sin^2 B$
 - $-\sin^2 A (1-\sin^2 B) (1-\sin^2 A) \sin^2 B$
 - $=\sin^2 A \sin^2 B$
 - $= (1 \cos^2 A) (1 \cos^2 B) = \cos^2 B \cos^2 A.$
- (ii) Left side
 - $=(\cos A \cos B \sin A \sin B)(\cos A \cos B + \sin A \sin B)$
 - $=\cos^2 A \cos^2 B \sin^2 A \sin^2 B$
 - $=\cos^2 A (1-\sin^2 B) (1-\cos^2 A) \sin^2 B$
 - $=\cos^2 A \sin^2 B$
 - $= (1 \sin^2 A) (1 \cos^2 B) = \cos^2 R \sin^2 A.$

Note. The results of Ex. 1 and Ex. 2 are very useful and should be carefully remembered.

36. To prove that

(i)
$$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

(ii)
$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

we have

$$\tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

Now dividing the numerator and denominator by $\cos A \cos B$, we have

$$\tan (A+B) = \frac{\sin A \cos B + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Again,

$$\tan (A-B) = \frac{\sin (A-B)}{\cos (A-B)} = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$$

Now, dividing the numerator and denominator by $\cos A \cos B$, we have, as before,

$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$

37. To prove that

(i)
$$\cot (A+B) = \frac{\cot A}{\cot B} \frac{\cot B-1}{\cot A}$$

(ii)
$$\cot (A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

$$\cot (A+B) = \frac{\cos (A+B)}{\sin (A+B)} = \frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}$$

Now, dividing the numerator and denominator by $\sin A \sin B$, we have,

$$\cot (A+B) \cdot \frac{\cos A \cos B}{\sin A \sin B} - \frac{\sin A \sin B}{\sin A \sin B}$$

$$\frac{\sin A \cos B}{\sin A \sin B} + \frac{\cos A \sin B}{\sin A \sin B}$$

$$\frac{\cot A \cot B - 1}{\cot B + \cot A}$$

$$\cot (A - B) = \frac{\cos (A - B)}{\sin (A - B)} = \frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B - \cos A \sin B}$$

Now, dividing the numerator and denominator by $\sin A \sin B$, we have, as before,

$$\cot (A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}.$$

38. Ex. 1. Find the values of tan 75° and tan 15°.

$$\tan 75^{\circ} = \tan (45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}$$
$$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{3 - 1}$$
$$= \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}.$$

$$\tan 15^{\circ} = \tan (45^{\circ} - 30^{\circ}) = \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

$$= \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)}$$

$$= \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.$$

Ex. 2. Show that

(i)
$$tan(45^{\circ} + A) = \frac{1 + tan A}{1 - tan A}$$
.

(ii)
$$\tan (45^{\circ} - A) = \frac{1 - \tan A}{1 + \tan A}$$

(i) Left side =
$$\frac{\tan 45^{\circ} + \tan A}{1 - \tan 45^{\circ} \tan A} = \frac{1 + \tan A}{1 - \tan A}$$
.

(ii) This result follows similarly.

cot
$$2A + \tan A = \csc 2A$$
. [C. U. 1947.]

Left side =
$$\frac{\cos 2A}{\sin 2A} + \frac{\sin A}{\cos A} + \frac{\cos 2A}{\sin 2A} \cos A$$

 $\frac{\sin 2A}{\sin 2A} \cos A$

39. To find the expansions of

(i)
$$\sin (A+B+C)$$

(ii)
$$cos(A+B+C)$$

(i)
$$\sin (A+B+C)$$

$$= \sin \{(A+B) + C\}$$

$$= \sin (A + B) \cos C + \cos (A + B) \sin C$$

$$= (\sin A \cos B + \cos A \sin B) \cos C$$

$$+(\cos A \cos B - \sin A \sin B) \sin C$$

 $= \sin A \cos B \cos C + \sin B \cos C \cos A$ $+ \sin C \cos A \cos B - \sin A \sin B \sin C.$

Note 1. The expansion of $\sin (A+B+C)$ can be easily put in the form

 $\cos A \cos B \cos C (\tan A + \tan B + \tan C - \tan A \tan B \tan C).$

(ii)
$$\cos (A + B + C)$$

$$=\cos\left\{ (A+B)+C\right\}$$

$$=\cos(A+B)\cos C-\sin(A+B)\sin C$$

$$=(\cos A \cos B - \sin A \sin B) \cos C$$

 $-(\sin A \cos B + \cos A \sin B) \sin C$

$$-\cos A \cos B \cos C - \cos A \sin B \sin C$$

$$-\cos B \sin C \sin A - \cos C \sin A \sin B$$
.

Note 2. The expansion of $\cos{(A+B+\dot{C})}$ can be easily put in the form

 $\cos A \cos B \cos C (1 - \tan B \tan C - \tan C \tan A - \tan A \tan B)$,

(iii)
$$\tan (A+B+C)$$

$$= \tan \{(A+B)+C\}$$

$$= \tan (A+B) + \tan C$$

$$1 - \tan (A+B) \tan C$$

$$= \frac{\tan A + \tan B}{1 - \tan A + \tan B} + \tan C$$

$$1 - \frac{\tan A + \tan B}{1 - \tan A + \tan B} \tan C$$

= tan A+tan B+tan C-tan A tan B tan C 1-tan B tan C-tan C tan A-tan A tan B

Note 3. The expansion of $\tan (A+B+C)$ can also be obtained thus.

$$\tan (A+B+C) = \frac{\sin (A+B+C)}{\cos (A+B+C)}.$$

Now, write down the expansions of $\sin (A+B+C)$ and $\cos (A+B+C)$ and divide the numerator and denominator by $\cos A \cos B \cos C$ or simply write down the expansions of $\sin (A+B+C)$ and $\cos (A+B+C)$ as given in Notes 1 and 2.

Obs. Formulæ for the Trigonometrical functions of the sum of four, five or more angles can be similarly obtained.

Examples VI

Show that
$$(Ex. \ 1 \ to \ 20):$$

1. (i) $\sin (A - B) = \frac{6}{16}$ and $\cos (A + B) = \frac{5}{16}$, if A and B are acute and if $\sin A = \frac{5}{16}$, $\cos B = \frac{10}{16}$.

(ii) $\cos 68^{\circ} \ 20' \cos 8^{\circ} \ 20' + \cos 81^{\circ} \ 40' \cos 21^{\circ} \ 40' = \frac{1}{2}$.

(iii) $\sec (x - y) = \frac{5}{16}$, if $\sec x = \frac{17}{18}$, $\csc y = \frac{5}{16}$.

2. (i) $\sin A \sin (B - C) + \sin B \sin (C - A) + \sin C \sin (A - B) = 0$.

(ii) $\cos A \sin (B - C) + \cos B \sin (C - A) + \cos C \sin (A - B) = 0$.

(iii)
$$\sin (B+C) \sin (B-C) + \sin (C+A) \sin (C-A) + \sin (A+B) \sin (A-B) = 0$$

$$\sin (\alpha - \theta) \sin (\beta - \gamma) + \sin (\beta - \theta) \sin (\gamma - \alpha) + \sin (\gamma - \theta) \sin (\alpha - \beta) = 0,$$

3.
$$\cos (60^{\circ} - A) \cos (30^{\circ} - B) - \sin (60^{\circ} - A) \sin (30^{\circ} - B)$$

= $\sin (A + B)$.

4. (i)
$$\sin (n+1)x \cos (n-1)x - \cos (n+1)x \sin (n-1)x$$

 $-\sin 2x$.
(ii) $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$

$$= \sin 4\theta \cos \theta - \cos 4\theta \sin \theta.$$

5.
$$\frac{\sin B}{\sin A} = \frac{\sin (2A+B)}{\sin A} - 2\cos (A+B)$$
.

7.
$$\frac{\sin (B-C)}{\sin B \sin C} + \frac{\sin (C-A)}{\sin C \sin A} + \frac{\sin (A-B)}{\sin A \sin B} = 0.$$

•8. •
$$\tan (A+B) \tan (A-B) = \frac{\sin^2 A - \sin^2 B}{\cos^2 A - \sin^2 B}$$

•9.
$$\tan^2 A - \tan^2 B = \frac{\sin (A+B) \sin (A-B)}{\cos^2 A \cos^2 B}$$

10. (i)
$$\frac{\tan (\alpha + \beta) - \tan \alpha}{1 + \tan (\alpha + \beta) \tan \alpha} = \tan \beta$$
.

(ii) If
$$A+B+C=\pi$$
 and $\cos A=\cos B$ $\cos C$, show that $\tan A=\tan B+\tan C$. { C. U. 1942.}

- 11. $1 + \tan 2\theta \tan \theta = \sec 2\theta$.
- 12. $\cot \theta \cot 2\theta = \csc 2\theta$.
- 13. $\tan 20^{\circ} + \tan 25^{\circ} + \tan 25^{\circ} \tan 20^{\circ} = 1$.

14. (i)
$$\tan (45^{\circ} + A) = \frac{\cos A + \sin A}{\cos A - \sin A}$$

/ (ii)
$$\sqrt{2} \sin (45^{\circ} + A) = \sin A + \cos A$$
.

15.
$$\frac{\cos 8^{\circ} + \sin 8^{\circ}}{\cos 8^{\circ} - \sin 8^{\circ}} = \tan 53^{\circ}$$
. = $+ \cos (45^{\circ} + 8^{\circ})$

16.
$$\tan (45^{\circ} + A) \tan (45^{\circ} - A) = 1$$
.

$$\tan (A + B) + \tan (A - B) = \frac{\sin 2A}{\cos^2 A - \sin^2 B}$$

$$\frac{\sin (x+y)}{\sin (x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}.$$

.19.
$$\cot (45^{\circ} + x) = \frac{\cot x - 1}{\cot x + 1} = \frac{\cos x - \sin x}{\cos x + \sin x}$$

, 20.
$$\sec(x+y) = \frac{\sec x \sec y}{1-\tan x \tan y}.$$

- 21. Find the expansions of $\sin (A-B+C)$ and $\tan (A-B-C)$.
- 22. Express cot (A + B + C) in terms of cot A, cot B, cot C.
- 23. (i) If $a \cos (x+a) = b \cos (x-a)$, prove that $(a+b) \tan x = (a-b) \cot a$.
 - (ii) If $\sin a \sin \beta \cos a \cos \beta + 1 = 0$, show that $1 + \cot a \tan \beta = 0$. [C. U. 1939.]
- $f''(iii) \text{ If } A+B+C=\pi \text{ and } \cos A=\cos B \cos C,$ then $\cot B \cot C=\frac{1}{2}$.
- 24. If $\tan \theta = \frac{a \sin x + b \sin y}{a \cos x + b \cos y}$ then $a \sin (\theta - x) + b \sin (\theta - y) = 0$.
- 25. An angle θ is divided into two parts α , β such that tan α : tan $\beta = x : y$; prove that

$$\sin (\alpha - \beta) = \frac{x - y}{x + y} \sin \theta.$$

26. If $\cos (\beta - \gamma) + \cos (\gamma - a) + \cos (a - \beta) = -\frac{3}{3}$, show that $\Sigma \cos a = 0$ and $\Sigma \sin a = 0$.

CHAPTER VII

TRANSFORMATION OF PRODUCTS AND SUMS

40. Transformation of products into sums or differences.

We have from Arts. 33 and 34. $\sin A \cos B + \cos A \sin B = \sin (A + B)$ (1) $\sin A \cos B = \cos A \sin B = \sin (A - B)$. (2) Adding (1) and (2), we get $2 \sin A \cos B = \sin (A + B) + \sin (A - B), \dots$ (3)Subtracting (2) from (1), we get $2\cos A\sin B = \sin (A+B) - \sin (A-B). \dots$ Again, from Arts. 33 and 34, we have, $\cos A \cos B - \sin A \sin B = \cos (A + B)$ (5) $\cos A \cos B + \sin A \sin B = \cos (A - B)$. (6)Adding (5) and (6), we get $2\cos A\cos B = \cos (A+B) + \cos (A-B)...$ (7)Subtracting (5) from (6), we get $2 \sin A \sin B = \cos (A - B) - \cos (A + B)$ Thus, we have the following formulæ for transforming a product of two sines and cosines into the sum or the difference of two sines or two cosines. $2 \sin A \cos B = \sin (A+B) + \sin (A-B)$. **(I)**

 $2 \cos A \sin B = \sin (A+B) - \sin (A-B)$.

 $2\cos A\cos B = \cos (A+B) + \cos (A-B)$.

 $2 \sin A \sin B = \cos (A-B) - \cos (A+B)$.

(II)

(III)

(IV)

41. Transformation of sums or differences into products.

Let
$$A+B=C$$
, and $A-B=D$
then, $A=\frac{C+D}{2}$ and $B=\frac{C-D}{2}$.

Making these substitutions for A and B in the results (3), (4), (7), (8) of Art. 40 and noting that the relation (8) can be written as

$$\cos (A + B) - \cos (A - B) = -2 \sin A \sin B$$

= 2 \sin A \sin (-B),

we have the following four formulæ for transforming the sum or the difference of two sines only or two cosines only into a product of sines and cosines.

$$\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2} \qquad \dots \qquad (I)$$

$$\sin C - \sin D = 2 \cos \frac{C+D}{a} \sin \frac{C-D}{2} \qquad \dots \quad (II)$$

$$\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2} \qquad \dots \quad (III)$$

$$\cos C - \cos D = 2 \sin \frac{C+D}{2} \sin \frac{D-C}{2} \qquad ... \quad (IV)$$

Note. The following concise verbal statement of the above four formulæ is sometimes very convenient.

- (i) sine + sine = 2 sin (sum). cos (diff.).
- (ii) $sine sine = 2 \cos (\frac{1}{2} \text{ sum})$. $sin (\frac{1}{2} \text{ diff.})$.
- (iii) $cos + cos = 2 cos (\frac{1}{2} sum)$. $cos (\frac{1}{2} diff.)$.
- (iv) $\cos \cos = 2 \sin (\frac{1}{2} \text{ sum})$. $\sin (\frac{1}{2} \text{ diff. reversed})$.

42. Ex. 1. Prove that

- (i) $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$.
- (ii) $\cos 80^{\circ} + \cos 40^{\circ} \cos 20^{\circ} = 0$.

(i) Left side =
$$\frac{1}{2} \cdot \cos 20^{\circ} (2 \cos 40^{\circ} \cos 80^{\circ})$$

= $\frac{1}{2} \cos 20^{\circ} (\cos 120^{\circ} + \cos 40^{\circ})$
= $\frac{1}{2} \cos 20^{\circ} (-\frac{1}{2} + \cos 40^{\circ})$
= $-\frac{1}{2} \cos 20^{\circ} + \frac{1}{2} \cos 20^{\circ} \cos 40^{\circ}$
= $-\frac{1}{4} \cos 20^{\circ} + \frac{1}{4} (\cos 60^{\circ} + \cos 20^{\circ})$
= $-\frac{1}{4} \cos 20^{\circ} + \frac{1}{4} (\frac{1}{2} + \cos 20^{\circ})$
= $\frac{1}{8} \cdot \cos 20^{\circ} + \frac{1}{4} (\frac{1}{2} + \cos 20^{\circ})$

(ii) Left side =
$$(\cos 80^{\circ} + \cos 40^{\circ}) - \cos 20^{\circ}$$

= $2 \cos 60^{\circ} \cos 20^{\circ} - \cos 20^{\circ}$
= $2.\frac{1}{2}.\cos 20^{\circ} - \cos 20^{\circ} = 0$.

Ex. 2. Show that

$$\frac{\sin\theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos\theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta.$$

Numerator =
$$(\sin 5\theta + \sin \theta) + (\sin 4\theta + \sin 2\theta)$$

= $2 \sin 3\theta \cos 2\theta + 2 \sin 3\theta \cos \theta$
= $2 \sin 3\theta (\cos 2\theta + \cos \theta)$:

Denominator = $(\cos 5\theta + \cos \theta) + (\cos 4\theta + \cos 2\theta)$ = $2 \cos 3\theta \cos 2\theta + 2 \cos 3\theta \cos \theta$

$$=2\cos 3\theta (\cos 2\theta + \cos \theta).$$

$$\therefore \text{ Left side} = \frac{2 \sin 3\theta (\cos 2\theta + \cos \theta)}{2 \cos 3\theta (\cos 2\theta + \cos \theta)} = \frac{\sin 3\theta}{\cos 3\theta} = \tan 3\theta.$$

Ex. 3. Express 4 cos A cos B cos C as the sum of four cosines.

Ex. 4. Express as the product of three sines
$$\sin (B+C-A) + \sin (C+A-B) + \sin (A+B-C) - \sin (A+B+C)$$
.

Grouping together the first two terms and grouping together the last two terms, the given expression

$$= 2 \sin C \cos (B-A) + 2 \cos (A+B) \sin (-C)$$

$$= 2 \sin C \{\cos (B-A) - \cos (A+B)\}$$

$$-2 \sin C (2 \sin B \sin A)$$

=
$$4 \sin A \sin B \sin C$$
.

Examples VII

Prove that (Ex. 1 to 17):

1.
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \frac{A + B}{2} \cot \frac{A - B}{2}$$

2.
$$\frac{\cos A + \cos B}{\cos A - \cos B} = \cot \frac{A+B}{2} \cot \frac{A-B}{2}$$

3.
$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0.$$

4.
$$\sin \theta \sin (60^{\circ} - \theta) \sin (60^{\circ} + \theta) = \frac{1}{4} \sin 3\theta$$
.

5.
$$\cos \theta \cos (60^{\circ} - \theta) \cos (60^{\circ} + \theta) = \frac{1}{4} \cos 3\theta$$
.

6.
$$(\sin 3a + \sin a) \sin a + (\cos 3a - \cos a) \cos a = 0$$
.

7.
$$\cos (A-D) \sin (B-C) + \cos (B-D) \sin (C-A) + \cos (C-D) \sin (A-B) = 0$$

8.
$$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{18}$$
.

9.
$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{18}$$

10.
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}.$$

11.
$$\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \frac{A + B}{2}$$

12.
$$\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta.$$

78.
$$\frac{\sin 2A + \sin 5A - \sin A}{\cos 2A + \cos 5A + \cos A} = \tan 2A$$
.

$$\frac{\sin (\alpha + \beta) - 2 \sin \alpha + \sin (\alpha - \beta)}{\cos (\alpha + \beta) - 2 \cos \alpha + \cos (\alpha - \beta)} = \tan \alpha.$$

15.
$$\frac{\cos 7a + \cos 3a - \cos 5a - \cos a}{\sin 7a - \sin 3a - \sin 5a + \sin a} = \cot 2a.$$

16.
$$\sin 2A + \sin 2B + \sin 2C - \sin 2(A + B + C)$$

= 4 $\sin (B + C) \sin (C + A) \sin (A + B)$.

/17.
$$\cos A + \cos B + \cos C + \cos (A + B + C)$$

= $4 \cos \frac{B + C}{2} \cos \frac{C + A}{2} \cos \frac{A + B}{2}$.

- 18 If $\sin x = k \sin y$, prove that $\tan \frac{1}{2}(x-y) = \frac{k-1}{k+1} \tan \frac{1}{2}(x+y)$.
- 19. If $\cos x + \cos y = \frac{1}{3}$ and $\sin x + \sin y = \frac{1}{4}$, prove that $\tan \frac{1}{2}(x+y) = \frac{3}{4}$.
 - 20. If $x \cos a + y \sin a = k x \cos \beta + y \sin \beta$, prove that $x \qquad y \qquad k \\
 \cos \frac{1}{2}(a+\beta) = \sin \frac{1}{2}(a+\beta) = \cos \frac{1}{2}(a-\beta)$
 - 21. If $\sin \theta + \sin \phi = a$, $\cos \theta + \cos \phi = b$, prove that $\tan \frac{\theta \phi}{2} = \pm \sqrt{\frac{4 a^2 b^2}{a^2 + b^2}}.$
 - 22. Prove that $\frac{\cos 10^{\circ} \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \tan 35^{\circ}$.

[Note that $\sin \theta = \cos (90^{\circ} - \theta)$ and $\cos \theta = \sin (90^{\circ} \pm \theta)$.]

- 23. If cosec $A + \sec A = \csc B + \sec B$, then $\tan A \tan B = \cot \frac{1}{2}(A + B)$. [P. U. 1936.]
- /24. Prove that $\left(\frac{\cos' A + \cos B}{\sin A \sin B}\right)^{n} + \left(\frac{\sin A + \sin B}{\cos A \cos B}\right)^{n} = 2 \cot^{n} \frac{A B}{2}$ or zero, according as n is even or odd. [P, U. 1933.]

Obs. By a method similar to that of the previous article the Trigonometrical ratios of any higher multiple of A can be expressed in terms of those of A.

45. Ex. 1. Express sin 2A and cos 2A in terms of tan A. [C. U. 1931.]

$$\sin 2A = 2 \sin A \cos A = 2 \frac{\sin A}{\cos A} \cdot \cos^2 A$$

$$= 2 \tan A \frac{1}{\sec^2 A} = \frac{2 \tan A}{1 + \tan^2 A}.$$

$$\cos 2A = \cos^2 A - \sin^2 A = \cos^2 A - \cos^2 A \cdot \frac{\sin^2 A}{\cos^2 A}$$

$$= \cos^2 A \left(1 - \frac{\sin^2 A}{\cos^2 A}\right) = \frac{1}{\sec^2 A} (1 - \tan^2 A)$$

$$= \frac{1 - \tan^2 A}{1 + \tan^2 A}.$$

Ex. 2. Express cos 4A in terms of cos A.

Putting
$$\theta = 2A$$
, $\cos 4A = \cos 2\theta = 2 \cos^2 \theta - 1$
= $2(\cos 2A)^2 - 1$
= $2(2 \cos^2 A - 1)^2 - 1$
= $8 \cos^4 A - 8 \cos^2 A + 1$.

Ex. 3. Show that $\frac{1 - tan^2(45^\circ - A)}{1 + tan^2(45^\circ - A)} = \sin 2A$.

Let $\theta = 45^{\circ} - A$; then

Left side =
$$\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}$$
$$= \cos^2 \theta - \sin^2 \theta = \cos 2\theta$$
$$= \cos (90^\circ - 2A) = \sin 2A.$$

Examples VIII

Prove the following identities (Ex. 1 to 25)

1.
$$\frac{\sin 2A}{1 + \cos 2A} = \tan A.$$

$$2. \quad \frac{\sin 2A}{1-\cos 2A} = \cot A.$$

3.
$$\cot A - \tan A = 2 \cot 2A$$
.

4. (i)
$$(2 \cos \theta + 1)(2 \cos \theta - 1) = 2 \cos 2\theta + 1$$
.

(ii)
$$\tan \theta(1 + \sec 2\theta) = \tan 2\theta$$
.

5.
$$\cot A - \tan A = \cos 2A$$
.
6. $\tan A + \cot A = 2 \csc 2A$.

6.
$$\tan A + \cot A = 2 \csc 2A$$
.

7.
$$\cos^4\theta - \sin^4\theta = \cos 2\theta.$$

77.
$$\cos^4 \theta - \sin^4 \theta = \cos 2\theta$$
.
8. $\cos^6 \theta - \sin^6 \theta = \cos 2\theta (1 - \frac{1}{4} \sin^2 2\theta)$.
9. $\cos^6 \theta + \sin^6 \theta = \frac{1}{4} (1 + 3 \cos^2 2\theta)$.

9.
$$\cos^6 \theta + \sin^6 \theta = \frac{1}{4}(1 + 3 \cos^2 2\theta)$$

$$10. \quad \frac{\sin^2 a - \sin^2 \beta}{\sin a \cos a - \sin \beta \cos \beta} = \tan (a + \beta).$$

(11.6)
$$\frac{1-\cos 2\theta + \sin 2\theta}{1+\cos 2\theta + \sin 2\theta} = \tan \theta$$
. [C. U. 1933.

(ii)
$$\frac{\sin a - \sqrt{1 + \sin 2a}}{\cos a - \sqrt{1 + \sin 2a}} = \cot a$$
, [a being positive and

cute, and the square root being taken with positive sign.]

12.
$$\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} - \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = 2 \tan 2\theta.$$

13. (i)
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$$
.

(ii)
$$\frac{\sin 4\theta}{\cos 2\theta} \frac{1 - \cos 2\theta}{1 - \cos 4\theta} = \tan \theta.$$

$$(ii) \frac{\cos A - \sin A}{\cos A + \sin A} - \sec 2A - \tan 2A.$$

$$(ii) \frac{\cos^{3}\theta + \sin^{3}\theta}{\cos \theta + \sin \theta} = 1 - \frac{1}{3} \sin 2\theta.$$

$$\bullet \text{ (ii) } \frac{\cos^{8}\theta + \sin^{8}\theta}{\cos\theta + \sin\theta} = 1 - \frac{1}{2}\sin 2\theta.$$

15.
$$\cos^8 A \cos 3A + \sin^8 A \sin 3A = \cos^8 2A$$
.

16. (i)
$$4(\cos^3 10^\circ + \sin^3 20^\circ) = 3(\cos 10^\circ + \sin 20^\circ)$$
.

(ii)
$$\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$$
.

9.4.17. $\tan 3\theta - \tan 2\theta - \tan \theta = \tan 3\theta \tan 2\theta \tan \theta$.

.18.
$$\frac{\cot A}{\cot A - \cot 3A} - \frac{\tan A}{\tan 3A - \tan A} = 1.$$

19.
$$\frac{1}{\tan 3\theta - \tan \theta} = \frac{1}{\cot 3\theta - \cot \theta} = \cot 2\theta.$$

20.
$$\sin 8\theta = 8 \sin \theta \cos \theta \cos 2\theta \cos 4\theta$$
.

-21.-(i)
$$\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$$
.

(ii)
$$\sin 5\theta = 16 \sin^5 \theta - 20 \sin^5 \theta + 5 \sin \theta$$
.

22. (i)
$$\cot 3\theta = \frac{\cot^3 \theta - 3 \cot \theta}{3 \cot^2 \theta - 1}$$
.

(ii)
$$\tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^3 \theta + \tan^4 \theta}$$

$$v = 23.$$
 (i) $\cos (120^{\circ} - A) + \cos A + \cos (120^{\circ} + A) = 0.$

(ii)
$$\cos^2(A - 120^\circ) + \cos^2 A + \cos^2(A + 120^\circ) = \frac{8}{2}$$
.

24.
$$\frac{2\cos 2^n\theta + 1}{2\cos \theta + 1} = (2\cos \theta - 1)(2\cos 2\theta - 1)(2\cos 2^2\theta - 1)$$

.....(2 cos
$$2^{n-1}\theta - 1$$
).

[Use
$$(2 \cos \theta + 1)(2 \cos \theta - 1) = 2 \cos 2\theta + 1$$
.]

25.
$$\frac{\tan 2^n \theta}{\tan \theta} = (1 + \sec 2\theta)(1 + \sec 2^3\theta)(1 + \sec 2^3\theta)...$$
 $(1 + \sec 2^n\theta)$...

[Use
$$tan \theta(1 + sec 2\theta) = tan 2\theta$$
.]

26. If
$$\theta = \frac{\pi}{2^n + 1}$$
, prove that $2^n \cos \theta \cos 2\theta \cos 2^\theta \cdots \cos 2^{n-1}\theta = 1$.

- 27. (i) If $\tan x = b/a$, find the value of $a \cos 2x + b \sin 2x$.
 - (ii) If $\tan^2 x + 2 \tan x \tan 2y = \tan^2 y + 2 \tan y \tan 2x$, prove that each side = 1, or else, $\tan x = \pm \tan y$.
 - 28. If $\tan^2 \theta = 1 + 2 \tan^2 \phi$, show that $\cos 2\phi = 1 + 2 \cos 2\theta$.
 - 29. (i) If 2 tan a=3 tan β , prove that

$$\tan (a-\beta) = \frac{\sin 2\beta}{5-\cos 2\beta}$$
 [C. U. 1946.]

(ii) If
$$\frac{\tan (\alpha + \beta - \gamma)}{\tan (\alpha - \beta + \gamma)} = \frac{\tan \gamma}{\tan \beta}$$
, show that

either, $\sin (\beta - \gamma) = 0$, or, $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$.

- 30. If a and β are acute angles and $\cos 2a = \frac{3 \cos 2\beta 1}{3 \cos 2\beta}$, show that $\tan a = \sqrt{2} \tan \beta$. [C. U. 1941.]
 - 31. If $\cos \theta = \frac{1}{2}(a+a^{-1})$, show that
 - (i) $\cos 2\theta = \frac{1}{2}(a^2 + a^{-2})$:
 - (ii) $\cos 3\theta = \frac{1}{2}(a^3 + a^{-3}).$

Show that (Ex. 32 to 36) :-

- 32. $\sin^4 \theta = \frac{8}{8} \frac{1}{2} \cos 2\theta + \frac{1}{8} \cos 4\theta$.
- 33. $\cos^{6}\theta + \sin^{6}\theta = 1 \sin^{2}2\theta + \frac{1}{8}\sin^{4}2\theta$.
- 34. $\tan {n \choose 4} + A + \tan {n \choose 4} + A = 2 \sec 2A$.
- **35.** $\cos^3 \theta \frac{\sin 3\theta}{3} + \sin^3 \theta \frac{\cos 3\theta}{3} = \frac{\sin 4\theta}{4}$.
- 36. $\cos 4x \cos 4y$ = $8(\cos x - \cos y)(\cos x + \cos y)(\cos x - \sin y)$ $\times (\cos x + \sin y)$.

CHAPTER IX

SUBMULTIPLE ANGLES

46. From the usual formulæ for multiple angles, namely $\sin 2A = 2 \sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$ $1 + \cos 2A = 2 \cos^2 A$; $1 - \cos 2A = 2 \sin^2 A$ $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$ $\sin 3A = 3 \sin A - 4 \sin^3 A$ $\cos 3A = 4 \cos^3 A - 3 \cos A$ $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$

putting $A = \frac{1}{2}\theta$ and $\frac{1}{3}\theta$ respectively, we derive the following formulæ for submultiple angles.

$$\sin \theta = 2 \sin \frac{1}{2}\theta \cos \frac{1}{2}\theta$$

$$\cos \theta = \cos^2 \frac{1}{2}\theta - \sin^2 \frac{1}{2}\theta = 2\cos^2 \frac{1}{2}\theta - 1 = 1 - 2 \sin^2 \frac{1}{2}\theta$$

$$1 + \cos \theta = 2 \cos^2 \frac{1}{2}\theta ; 1 - \cos \theta = 2 \sin^2 \frac{1}{2}\theta$$

$$\tan \theta = \frac{2 \tan \frac{1}{2}\theta}{1 - \tan^2 \frac{1}{2}\theta}$$

$$\sin \theta = 3 \sin \frac{1}{3}\theta - 4 \sin^3 \frac{1}{3}\theta$$

$$\cos \theta = 4 \cos^3 \frac{1}{2}\theta - 3 \cos \frac{1}{3}\theta$$

$$\tan \theta = \frac{3 \tan \frac{1}{2}\theta - \tan^3 \frac{1}{3}\theta}{1 - 3 \tan^2 \frac{1}{3}\theta}$$

47. Values of $\sin \frac{1}{2}\theta$ and $\cos \frac{1}{2}\theta$ in terms of $\cos \theta$.

From $\cos \theta = 2 \cos^2 \frac{1}{2}\theta - 1 = 1 - 2 \sin^2 \frac{1}{2}\theta$, we at once deduce

$$\sin \frac{1}{2}\theta = \pm \sqrt{\frac{1}{2}(1 - \cos \theta)}$$

 $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{1}{2}(1 + \cos \theta)}$

48. Ambiguity of signs explained.

When $\cos \theta$ is given and not θ , θ and consequently $\frac{1}{2}\theta$ has a series of values as will be explained in Chapter XI. Thus $\frac{1}{2}\theta$ may lie in any quadrant and $\sin \frac{1}{2}\theta$ and $\cos \frac{1}{2}\theta$ will then have corresponding signs.

If the quadrant in which $\frac{1}{2}\theta$ lies be known, for example, when θ is given along with $\cos \theta$, there is no ambiguity in choosing the proper signs of $\cos \frac{1}{2}\theta$ and $\sin \frac{1}{2}\theta$, as shown in the following example.

Ex. 1. Find sin 221° and cos 221°.

$$\sin 22\frac{1}{2}^{\circ} = + \sqrt{\frac{1}{2}(1 - \cos 45^{\circ})} = \sqrt{\frac{1}{2}(1 - \frac{1}{\sqrt{2}})} = \frac{1}{2}\sqrt{2} - \sqrt{2}$$

$$\cos 22\frac{1}{2}^{\circ} = + \sqrt{\frac{1}{2}(1 + \cos 45^{\circ})} = \sqrt{\frac{1}{2}(1 + \frac{1}{\sqrt{2}})} = \frac{1}{2}\sqrt{2} + \sqrt{2}.$$

49. Values of $\sin \theta$ and $\cos \theta$ in terms of $\sin \theta$.

We know that
$$\sin \theta = 2 \sin \frac{1}{2}\theta \cos \frac{1}{2}\theta$$
 and $1 = \cos^2 \frac{1}{2}\theta + \sin^2 \frac{1}{2}\theta$.

Therefore, $1 + \sin \theta = (\cos \frac{1}{2}\theta + \sin \frac{1}{2}\theta)^2$ and $1 - \sin \theta = (\cos \frac{1}{2}\theta - \sin \frac{1}{2}\theta)^2$.

Hence, $\cos \frac{1}{2}\theta + \sin \frac{1}{2}\theta = \pm \sqrt{1 + \sin \theta}$ $\cos \frac{1}{2}\theta - \sin \frac{1}{2}\theta = \pm \sqrt{1 - \sin \theta}$.

Thus, $\cos \frac{1}{2}\theta = \pm \frac{1}{2}\sqrt{1 + \sin \theta + \frac{1}{2}\sqrt{1 - \sin \theta}}$ and $\sin \frac{1}{2}\theta = \pm \frac{1}{2}\sqrt{1 + \sin \theta + \frac{1}{2}\sqrt{1 - \sin \theta}}$

50. Ambiguity of signs explained.

As before, when $\sin \theta$ is given, and not θ , θ has a series of values for the given value of $\sin \theta$ as will be explained in Chapter XI; $\frac{1}{2}\theta$ may therefore lie in any one of two possible quadrants.

$$\cos \frac{1}{2}\theta + \sin \frac{1}{2}\theta = \sqrt{2} \sin \left(\frac{1}{4}\pi + \frac{1}{2}\theta\right)$$

and
$$\cos \frac{1}{2}\theta - \sin \frac{1}{2}\theta = \sqrt{2} \sin \left(\frac{1}{4}\pi - \frac{1}{2}\theta\right)$$

will have their signs determined accordingly.

Thus, $\sin \frac{1}{2}\theta$ and $\cos \frac{1}{2}\theta$ will be definitely known.

Ex. 1. Find sin 15° and cos 15°.

We have,
$$\cos 15^{\circ} + \sin 15^{\circ} = + \sqrt{1 + \sin 30^{\circ}} = \sqrt{1 + \frac{1}{2}}$$

 $\cos 15^{\circ} - \sin 15^{\circ} = + \sqrt{1 - \sin 30^{\circ}} = \sqrt{1 - \frac{1}{2}}$.

[$\cos 15^{\circ} - \sin 15^{\circ} = \sqrt{2} \sin (\frac{1}{4}\pi - 15^{\circ})$ and is clearly positive.]

Thus,
$$\cos 15^{\circ} = \frac{1}{2} (\sqrt{\frac{8}{2}} + \sqrt{\frac{1}{2}}) = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

 $\sin 15^{\circ} = \frac{1}{2} (\sqrt{\frac{8}{2}} - \sqrt{\frac{1}{2}}) = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$

51. $\tan \frac{1}{2}\theta$ in terms of $\tan \theta$.

From the formula, $\tan \theta = \frac{2 \tan \frac{1}{2}\theta}{1 - \tan^2 \frac{1}{2}\theta}$, i.e. $\tan \theta \tan^2 \frac{1}{2}\theta + 2 \tan \frac{1}{2}\theta - \tan \theta = 0$, we easily deduce

$$\tan \frac{1}{2}\theta = \frac{-1 + \sqrt{1 + \tan^2 \theta}}{\tan \theta}.$$

The reason of the ambiguity is similar to those of the previous cases.

52. Ratios of \$\frac{1}{2}\theta\$ from those of \$\theta\$.

By resolving the cubic equation

$$\sin \theta = 3 \sin \frac{1}{3}\theta - 4 \sin^3 \frac{1}{3}\theta \qquad \cdots \qquad (1)$$

we get $\sin \frac{1}{3}\theta$, if $\sin \theta$ be known.

Similarly, by solving the cubic equations $\cos \theta = 4 \cos^3 \frac{1}{3}\theta - 3 \cos \frac{1}{3}\theta \qquad \cdots \qquad (2)$

and
$$\tan \theta = \frac{3 \tan \frac{1}{3}\theta - \tan^3 \frac{1}{3}\theta}{1 - 3 \tan^2 \frac{1}{3}\theta}$$
 ... (3)

we derive values of $\cos \frac{1}{3}\theta$ from those of $\cos \theta$, and of $\tan \frac{1}{3}\theta$ from those of $\tan \theta$ respectively.

53. Ratios of 18° and 36°.

Let
$$\theta = 18^{\circ}$$
; then $5\theta = 90^{\circ}$; $\therefore 2\theta = 90^{\circ} - 3\theta$.

$$\therefore \sin 2\theta = \cos 3\theta \text{ or } 2 \sin \theta \cos \theta = \cos \theta (4 \cos^2 \theta - 3).$$

As
$$\cos \theta$$
 (i.e. $\cos 18^{\circ}$) is not zero, we have $2 \sin \theta = 4 \cos^2 \theta - 3 = 1 - 4 \sin^2 \theta$,

or,
$$4 \sin^2 \theta + 2 \sin \theta - 1 = 0$$
.

$$\sin \theta = \frac{-2 \pm \sqrt{4 + 16}}{8} = \frac{(\pm \sqrt{5 - 1})}{4}.$$

Now, as θ here is a positive acute angle, therefore, rejecting the negative value, we get

$$\sin 18^{\circ} = \frac{1}{4}(\sqrt{5} - 1).$$

 $\cos 18^{\circ} = + \sqrt{1 - \sin^{2}18^{\circ}} = \frac{1}{4}(\sqrt{10 + 2\sqrt{5}}).$
 $\cos 36^{\circ} = 1 - 2 \sin^{\circ}18^{\circ} = \frac{1}{4}(\sqrt{5} + 1).$
 $\sin 36^{\circ} = \sqrt{1 - \cos^{2}36^{\circ}} = \frac{1}{4}(\sqrt{10 - 2\sqrt{5}}).$

Note. Since 54° and 36° are complementary and 72° and 18° are complementary, from the above values we easily get the trigonometrical ratios of 54° and 72° .

54. Ratios of 3° and multiples of 3°.

$$\sin 3^{\circ} = \sin (18^{\circ} - 15^{\circ}) = \sin 18^{\circ} \cos 15^{\circ} - \cos 18^{\circ} \sin 15^{\circ}$$

= $\frac{1}{16}(\sqrt{5} - 1)(\sqrt{6} + \sqrt{2}) - \frac{1}{8}(\sqrt{3} - 1)(\sqrt{5} + \sqrt{5}),$

on substituting the values of sin 18°, cos 15° etc.

Similarly.

$$\cos 3^{\circ} = \frac{1}{8}(\sqrt{3} + 1)(\sqrt{5} + \sqrt{5}) + \frac{1}{16}(\sqrt{6} - \sqrt{2})(\sqrt{5} - 1).$$

From a knowledge of the ratios of 3°, 15°, 18°, 30°, 36° and 45°, we can deduce the ratios for all angles which

are multiples of 3°, (for, $6^{\circ}=36^{\circ}-30^{\circ}$; $9^{\circ}=45^{\circ}-36^{\circ}$; $12^{\circ}=30^{\circ}-18^{\circ}$; $21^{\circ}=36^{\circ}-15^{\circ}$; etc.). For angles greater than 45°, the ratics may be deduced from those of their complements which are less than 45°.

Ex. Show that

$$\sin x = 2^n \cos \frac{x}{2} \cos \frac{x}{2^n} \cos \frac{x}{2^n} \cdot \dots \cdot \cos \frac{x}{2^n} \sin \frac{x}{2^n}$$

We have,
$$\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$

$$\sin \frac{x}{2} = 2 \sin \frac{x}{2^2} \cos \frac{x}{2^2}$$

$$\sin\frac{x}{2^3} = 2\sin\frac{x}{2^3}\cos\frac{x}{2^3}.$$

Similarly, $\sin \frac{x}{2^{n-1}} = 2 \sin \frac{x}{2^n} \cos \frac{x}{2^n}$

Hence, $\sin x = 2^n \cos \frac{x}{2} \cos \frac{x}{2^n} \cos \frac{x}{2^n} \cdot \dots \cdot \cos \frac{x}{2^n} \sin \frac{x}{2^n}$

Examples IX

Prove that (Ex. 1 to 14):-

-1.
$$\frac{1-\cos A}{\sin A} = \tan \frac{A}{2}$$
 2.
$$\frac{1+\cos A}{\sin A} = \cot \frac{A}{2}$$

3.
$$\left(\sin\frac{A}{2}\pm\cos\frac{A}{2}\right)^2=1\pm\sin A$$
.

4.
$$\sec \theta + \tan \theta = \tan (\frac{1}{4}\pi + \frac{1}{2}\theta)$$
. [C. U. 1939.]

5. (i)
$$\frac{1+\sin \theta - \cos \theta}{1+\sin \theta + \cos \theta} = \tan \frac{\theta}{2}$$
.

(ii)
$$\frac{\sin \frac{1}{2}a - \sqrt{1 + \sin a}}{\cos \frac{1}{2}a - \sqrt{1 + \sin a}} = \cot \frac{a}{2}$$
, where $0 < a < \pi$, and the square root is taken with positive sign.

6. (i)
$$\frac{1+\sin x}{1-\sin x} = \tan^2\left(\frac{\pi}{4} + \frac{x}{2}\right)$$
.

(ii)
$$\frac{2 \sin \theta - \sin 2\theta}{2 \sin \theta + \sin 2\theta} = \tan^2 \frac{1}{2}\theta.$$

7. (i)
$$\frac{1 + \tan \frac{1}{2}A}{1 - \tan \frac{1}{2}A} = \frac{1 + \sin A}{\cos A}$$
.

(ii) cot $\beta = \frac{1}{2}(\cot \frac{1}{2}\beta - \tan \frac{1}{2}\beta)$.

8. (i)
$$\frac{\sin 2\theta}{1 + \cos 2\theta} \cdot \frac{\cos \theta}{1 + \cos \theta} = \tan \frac{\theta}{2}$$
.

(ii) $8 \sin^4 \frac{1}{2}\theta - 8 \sin^2 \frac{1}{2}\theta + 1 = \cos 2\theta$.

9.
$$\sin \theta = \frac{2 \tan \frac{1}{2} \theta}{1 + \tan^2 \frac{1}{2} \theta}$$
 10. $\cos \theta = \frac{1 - \tan^2 \frac{1}{2} \theta}{1 + \tan^2 \frac{1}{2} \theta}$

- 11. $(\cos x + \cos y)^2 + (\sin x + \sin y)^2 = 4 \cos^2 \frac{1}{2}(x y)$
- 12. $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ} = 1$. $\tan 7\frac{1}{2}^{\circ} = \sqrt{6} \sqrt{3} + \sqrt{2} 2$.
- 14. $2 \cos \frac{1}{16\pi} = \sqrt{2+\sqrt{2}+\sqrt{2}}$
- 15. (i) If $\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \cdot \tan \frac{\phi}{2}$, show that

$$\cos \phi = \frac{\cos \theta - e}{1 - e \cos \theta}.$$

- (ii) If $\tan \theta = \frac{\sin a \sin \beta}{\cos a + \cos \beta}$, show that one of the values of $\tan \frac{1}{2}\theta$ is $\tan \frac{1}{2}a \tan \frac{1}{2}\beta$.
- 16. If $\sin a + \sin \beta = a$ and $\cos a + \cos \beta = b$, find the value of $\cos (a + \beta)$.
- 17. (i) Prove that $2 \sin \frac{1}{2}A = \pm \sqrt{1 + \sin A} \pm \sqrt{1 \sin A}$. and determine which are the correct signs when $270^{\circ} > A > 180^{\circ}$. [B. H. U. I. 1931.]
 - (ii) If $\theta = 240^{\circ}$, is the following statement correct? $2 \sin \frac{1}{2}\theta = \sqrt{1+\sin \theta} - \sqrt{1-\sin \theta}$

If not, how must it be modified?

18. If $A = 320^\circ$, prove that $\tan \frac{A}{2} = \frac{-1 + \sqrt{1 + \tan^2 A}}{\tan A}.$

CHAPTER X

TRIGONOMETRICAL IDENTITIES

55. Many interesting identities involving functions of three or more angles can be established when there exists a relation among the angles. The most important of these identities are those in which the three angles are connected by the relation that their sum is equal to two right angles. In establishing this latter kind of identities, it will be necessary to make frequent use of the properties of supplementary and complementary angles.

Thus, since,
$$A + B + C = \pi$$
,
 $\therefore B + C = \pi - A$.
 $\therefore \sin (B + C) = \sin (\pi - A) = \sin A$.
Similarly, $\sin (C + A) = \sin B$; $\sin (A + B) = \sin C$.
Again, $\cos (B + C) = \cos (\pi - A) = -\cos A$.
Similarly, $\cos (C + A) = -\cos B$; $\cos (A + B) = -\cos C$.
 $\tan (B + C) = \tan (\pi - A) = -\tan A$.
Similarly, $\tan (C + A) = -\tan B$; $\tan (A + B) = -\tan C$.
Again, since, $\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2}$,
 $\therefore \sin \left(\frac{B}{2} + \frac{C}{2}\right) = \sin \left(\frac{\pi}{2} - \frac{A}{2}\right) = \cos \frac{C}{2}$.
Similarly, $\sin \left(\frac{C}{2} + \frac{A}{2}\right) = \cos \frac{B}{2}$;
 $\sin \left(\frac{A}{2} + \frac{B}{2}\right) = \cos \frac{C}{2}$.
Again, $\cos \left(\frac{B}{2} + \frac{C}{2}\right) = \cos \left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin \frac{A}{2}$

 $\begin{bmatrix} \cdot \cdot \cdot A + B + C = \pi \end{bmatrix}$

Similarly,
$$\cos \left(\frac{C}{2} + \frac{A}{2}\right) = \sin \frac{B}{2}$$
;
 $\cos \left(\frac{A}{2} + \frac{B}{2}\right) = \sin \frac{C}{2}$
 $\tan \left(\frac{B}{2} + \frac{C}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{A}{2}\right) = \cot \frac{A}{2}$.
Similarly, $\tan \left(\frac{C}{2} + \frac{A}{2}\right) = \cot \frac{B}{2}$;
 $\tan \left(\frac{A}{2} + \frac{B}{2}\right) = \cot \frac{C}{2}$.
56. Ex. 1. If A+B+C= π , prove that
 $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.
[C. U. 1930, '33, '35.]
Left side = $(\sin 2A + \sin 2B) + \sin 2C$
= $2 \sin (A + B) \cos (A - B) + 2 \sin C \cos C$
= $2 \sin C \cos (A - B) + 2 \sin C \cos C$
= $2 \sin C \left[\cos (A - B) + \cos C\right]$
= $2 \sin C \left[\cos (A - B) + \cos (A + B)\right]$
= $2 \sin C \sin A \sin B$
= $4 \sin A \sin B \sin C$.
Ex. 2. If A+B+C= π , prove that
 $\cos 2A + \cos 2B + \cos 2C = -4 \cos A \cos B \cos C - 1$.
Left side = $(\cos 2A + \cos 2B) + \cos 2C$
= $2 \cos (A + B) \cos (A - B) + 2 \cos^2 C - 1$
= $-2 \cos C \cos (A - B) + \cos C - 1$
= $-2 \cos C \cos (A - B) - \cos C - 1$
= $-2 \cos C \left[\cos (A - B) - \cos C\right] - 1$
= $-2 \cos C \left[\cos (A - B) - \cos C\right] - 1$
= $-2 \cos C \left[\cos (A - B) - \cos (A + B)\right] - 1$

 $= -2 \cos C.2 \cos A \cos B - 1$ = -4 \cos A \cos B \cos C - 1.

Ex. 3. If
$$A+B+C=\pi$$
, prove that

$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

[C. U. 1910, '29.]

Left side =
$$(\sin A + \sin B) + \sin C$$

$$= 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$$

$$= 2 \cos \frac{C}{2} \cos \frac{A - B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$$

$$\left[\cdot \cdot \cdot \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \cdot \right]$$

$$=2\cos\frac{C}{2}\left\{\cos\frac{A-B}{2}+\sin\frac{C}{2}\right\}$$

$$=2\cos\frac{C}{2}\left[\cos\frac{A-B}{2}+\cos\frac{A+B}{2}\right]$$

$$\left[\cdot \cdot \cdot \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \cdot \right]$$

$$= 2 \cos \frac{C}{2} \cdot 2 \cos \frac{A}{2} \cos \frac{B}{2}$$

$$= 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

Ex. 4. If $A+B+C=\pi$, prove that

 $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

Left side =
$$(\cos A + \cos B) + \cos C$$

$$= 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} + 1 - 2 \sin^2 \frac{C}{2}$$

$$= 2 \sin \frac{C}{2} \cos \frac{A-B}{2} - 2 \sin^2 \frac{C}{2} + 1$$

$$\left[: : \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \right]$$

$$= 2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin \frac{C}{2} \right] + 1$$

$$= 2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2} \right] + 1$$

$$\left[\because \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} \right]$$

$$= 2 \sin \frac{C}{2} \cdot 2 \sin \frac{A}{2} \sin \frac{B}{2} + 1$$

$$= 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

Ex. 5. If $A+B+C=\pi$, prove that

tan A+tan B+tan C=tan A tan B tan C.

Since,
$$B+C=\pi-A,$$

$$\therefore \tan (B+C)=\tan (\pi-A).$$

$$\therefore \frac{\tan B+\tan C}{1-\tan B \tan C}=-\tan A,$$
i.e.
$$\tan B+\tan C=-\tan A(1-\tan B \tan C)$$

$$=-\tan A+\tan A \tan B \tan C.$$

... $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.

VOtherwise:

$$\tan (A+B+C) = \tan \pi = 0.$$

$$\therefore \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan B \tan C - \tan C \tan A - \tan A \tan B} = 0.$$

Since the fraction is zero, numerator must be zero.

:.
$$\tan A + \tan B + \tan C - \tan A \tan B \tan C = 0$$
,

i.e. $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.

Ex. 6. If $A+B+C=\pi$, prove that

$$\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1.$$

[C. U. 1936. '39.]

Since,
$$A + B + C = \pi$$
, $\therefore \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2}$.

$$\therefore \tan \left(\frac{B}{2} + \frac{C}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{A}{2}\right),$$

$$\therefore \frac{\tan \frac{B}{2} + \tan \frac{C}{2}}{1 - \tan \frac{B}{2} \tan \frac{C}{2}} = \cot \frac{A}{2} = \frac{1}{\tan \frac{A}{2}}$$
or, $\tan \frac{A}{2} \left(\tan \frac{B}{2} + \tan \frac{C}{2}\right) = 1 - \tan \frac{B}{2} \tan \frac{C}{2}$.

On simplification, the required result follows.

Otherwise :

Now the value of the fraction being zero, its numerator must be zero.

$$\therefore 1 - \tan \frac{R}{2} \tan \frac{C}{2} \quad \tan \frac{C}{2} \tan \frac{A}{2} - \tan \frac{A}{2} \tan \frac{B}{2} = 0,$$

whence the required result follows.

Ex. 7. If
$$A+B+C=\pi$$
, prove that

$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}.$$
Right side = $2 \cos \frac{\pi - A}{4} \left[2 \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4} \right]$
= $2 \cos \frac{\pi - A}{4} \left[\cos \frac{2\pi - (B + C)}{4} + \cos \frac{B - C}{4} \right]$
= $2 \cos \frac{\pi - A}{4} \left[\cos \frac{\pi + A}{4} + \cos \frac{B - C}{4} \right]$

[::
$$2\pi - (B+C) = \pi + \pi - (B+C) = \pi + A$$
, since, $A+B+C=\pi$.]

$$= 2 \cos \frac{\pi - A}{4} \cos \frac{\pi + A}{4} + 2 \cos \frac{\pi - A}{4} \cos \frac{B - C}{4}$$

$$= \left(\cos \frac{\pi}{2} + \cos \frac{A}{2}\right) + 2 \cos \frac{B + C}{4} \cos \frac{B - C}{4}$$

$$= \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

Note. Since
$$\cos \frac{1}{4}(\pi - A) = \sin \left\{ \frac{1}{2}\pi - \frac{1}{4}(\pi - A) \right\} = \sin \frac{1}{4}(\pi + A)$$

and $\cos \frac{1}{4}(\pi - A) = \cos \frac{1}{4}(A + B + C - A) = \cos \frac{1}{4}(B + C)$.

... we have also,
$$\cos \frac{1}{2}A + \cos \frac{1}{2}B + \cos \frac{1}{2}C$$

= $4 \sin \frac{1}{4}(\pi + A) \sin \frac{1}{4}(\pi + B) \sin \frac{1}{4}(\pi + C)$
= $4 \cos \frac{1}{4}(B + C) \cos \frac{1}{4}(C + A) \cos \frac{1}{4}(A + B)$.

Ex. 8. If $A+B+C=\pi$, prove that

$$\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1.$$

[C. U. 1932, '37, '47.]

$$\cos^2 A + \cos^2 B + \cos^2 C$$

$$=\frac{1}{2}(2\cos^2 A + 2\cos^2 B) + \cos^2 C$$

$$= \frac{1}{2}(1 + \cos 2A + 1 + \cos 2B) + \cos^2 C$$

$$=1+\frac{1}{2}(\cos 2A+\cos 2B)+\cos^2 C$$

$$= 1 + \cos(A + B) \cos(A - B) + \cos C \cos C$$

$$= 1 - \cos C \cos (A - B) - \cos C \cos (A + B)$$

$$[: : A + B = \pi - C,]$$

$$= 1 - \cos C [\cos (A - B) + \cos (A + B)]$$

$$=1-\cos C [2\cos A\cos B]$$

$$=1-2\cos A\cos B\cos C$$

whence the required result follows.

VEx. 9. Show that

$$\tan (\beta - \gamma) + \tan (\gamma - \alpha) + \tan (\alpha - \beta)$$

$$= \tan (\beta - \gamma) \tan (\gamma - \alpha) \tan (\alpha - \beta).$$

Let
$$A = \beta - \gamma$$
, $B = \gamma - \alpha$, $C = \alpha - \beta$;
then $A + B + C = \beta - \gamma + \gamma - \alpha + \alpha - \beta = 0$

$$\therefore \tan (A+B+C)=\tan 0=0.$$

$$\therefore$$
 tan $A + \tan B + \tan C = \tan A \tan B \tan C$.

Now, substituting the values for A, B, C, the required result follows.

Ex. 10. If
$$x + y + z = xyz$$
, prove that

$$x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y^2)=4xyz.$$

Putting $x = \tan \alpha$, $y = \tan \beta$, $z = \tan \gamma$, in the given relation, we have

 $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$.

... by transposition,

$$\tan \alpha (1 - \tan \beta \tan \gamma) = -(\tan \beta + \tan \gamma),$$

i.e.
$$\tan \alpha = -\frac{\tan \beta + \tan \gamma}{1 - \tan \beta \tan \gamma} = -\tan (\beta + \gamma)$$
.

$$\therefore a = \pi - (\beta + \gamma), \quad \therefore a + \beta + \gamma = \pi, \quad \therefore 2\alpha + 2\beta + 2\gamma = 2\pi,$$

$$\therefore \tan (2\alpha + 2\beta + 2\gamma) = \tan 2\pi = 0.$$

Therefore, as in Ex. 5, above,

$$\tan 2\alpha + \tan 2\beta + \tan 2\gamma = \tan 2\alpha \tan 2\beta \tan 2\gamma$$
.

Now, expressing $\tan 2a$, $\tan 2\beta$, $\tan 2\gamma$ in terms of $\tan a$, $\tan \beta$, $\tan \gamma$, and substituting x, y, z, for them, we get,

$$\frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{8xyz}{(1-x^2)(1-y^2)(1-z^2)}.$$

On simplification, the required result follows.

Examples X

If
$$A+B+C=\pi$$
, prove that $(Ex. 1 \text{ to } 16):$

$$\sqrt{1}$$
. $\sin A + \sin B - \sin C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$.

2.
$$\cot B \cot C + \cot C \cot A + \cot A \cot B = 1$$
.

3.
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

4. $\tan 2A + \tan 2B + \tan 2C - \tan 2A \tan 2B \tan 2C$.

5.
$$(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)$$

= cosec A cosec B cosec C.

6.
$$\cot \frac{B + \cot C}{\tan B + \tan C} + \cot \frac{C + \cot A}{\tan A} + \cot \frac{A + \cot B}{\tan A + \tan B} = 1.$$

7.
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$

= $1 + 4 \sin \frac{\pi - A}{4} \sin \frac{\pi - B}{4} \sin \frac{\pi - C}{4}$
= $1 + 4 \sin \frac{B + C}{4} \sin \frac{C + A}{4} \sin \frac{A + B}{4}$.

8. $\cos^2 2A + \cos^2 2B + \cos^2 2C$ = 1 + 2 \cos 2A \cos 2B \cos 2C.

9.
$$\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2 \cos A \cos B \cos C$$
.

10.
$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

11.
$$\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B} = 2.$$

[C. U. 1949.]

12.
$$\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

13.
$$\sin (B + C - A) + \sin (C + A - B) + \sin (A + B - C)$$

-4 sin A sin B sin C.

14.
$$\sin (B+2C) + \sin (C+2A) + \sin (A+2B)$$

= $4 \sin \frac{B-C}{2} \sin \frac{C-A}{2} \sin \frac{A-B}{2}$.

15.
$$\cos^2 A + \cos^2 B + 2 \cos A \cos B \cos C = \sin^2 C$$
.

16.
$$\cos \frac{A}{2} \cos \frac{B-C}{2} + \cos \frac{B}{2} \cos \frac{C-A}{2} + \cos \frac{C}{2} \cos \frac{A-B}{2}$$

= $\sin A + \sin B + \sin C$

17. If
$$\alpha + \beta + \gamma = \frac{1}{2}\pi$$
, prove that

 $(i) \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \sin \gamma = 1.$

[C. U. 1943.]

- (ii) $\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta = 1$.
- 18. If A, B, C, D are the angles of a quadrilateral, prove that
 - (i) $\frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D}$

= $\tan A \tan B \tan C \tan D$.

- (ii) $\cos A + \cos B + \cos C + \cos D$ = $4 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(B+C) \cos \frac{1}{2}(C+A)$.
- 19. Show that
 - (i) $\cos^2(\beta \gamma) + \cos^2(\gamma a) + \cos^2(a \beta)$ = $1 + 2 \cos(\beta - \gamma) \cos(\gamma - a) \cos(a - \beta)$.
 - (ii) $\sin^2 a + \sin^2 \beta + 2 \sin a \sin \beta \cos (a + \beta) = \sin^2 (a + \beta)$.
 - (iii) $\cos^2 \theta + \cos^2 (\alpha + \theta) 2 \cos \alpha \cos \theta \cos (\alpha + \theta)$ is independent of θ .
- 20. (i) $a + \beta = \gamma$, show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 + 2 \cos \alpha \cos \beta \cos \gamma$.

[C. U. 1940.]

- (ii) If $a + \beta + \gamma = 2\pi$, show that $\cos^2 a + \cos^2 \beta + \cos^2 \gamma 2 \cos a \cos \beta \cos \gamma = 1.$
- 21. If $\cos (A+B) \sin (C+D) = \cos (A-B) \sin (C-D)$, show that

 $\cot A \cot B \cot C = \cot D$.

22. If A+B+C=2S, prove that

(i)
$$\sin (S-A) + \sin (S-B) + \sin (S-C) - \sin S$$

= $4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$.

(ii) $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C - 1$ = $4 \cos S \cos (S - A) \cos (S - B) \cos (S - C)$.

23. If
$$A+B+C=n\pi$$
 (n being zero or an integer),
 $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.

24. Show that, if
$$\alpha + \beta + \gamma = \pi$$
,
 $\tan (\beta + \gamma - \alpha) + \tan (\gamma + \alpha - \beta) + \tan (\alpha + \beta - \gamma)$
 $= \tan (\beta + \gamma - \alpha) \tan (\gamma + \alpha - \beta) \tan (\alpha + \beta - \gamma)$.

- 25. If $A+B+C=\pi$, prove that
 - (i) $\sin A \cos B \cos C + \sin B \cos C \cos A$ + $\sin C \cos A \cos B = \sin A \sin B \sin C$
 - (ii) $\cos A \sin B \sin C + \cos B \sin C \sin A$ + $\cos C \sin A \sin B = 1 + \cos A \cos B \cos C$.
 - (iii) $\sin 5A + \sin 5B + \sin 5C$

$$=4\cos\frac{5A}{2}\cos\frac{5B}{2}\cos\frac{5C}{2}.$$

- (iv) $(\tan A + \tan B + \tan C)(\cot A + \cot B + \cot C)$ = 1 + sec A sec B sec C.
- **26.** If $\cos A + \cos B + \cos C = 0$, show that $\cos 3A + \cos 3B + \cos 3C = 12 \cos A \cos B \cos C$. [Write $\cos 3A = 4 \cos^2 A 3 \cos A$, etc.]
 - 27. If $x + y + z = \frac{1}{2}\pi$, prove that $\cos (x y z) + \cos (y z x) + \cos (z x y) 4 \cos x \cos y \cos z = 0$.
 - 28. Show that $\sin (y-z) + \sin (z-x) + \sin (x-y) + 4 \sin \frac{y-z}{2} \sin \frac{z-x}{2} \sin \frac{x-y}{2} = 0.$
 - 29. If x + y + z = 0, show that $\cot (z + x y) \cot (x + y z) + \cot (x + y z) \cot (y + z x) + \cot (y + z x) \cot (z + x y) = 1$.
 - 30. If x + y + z = xyz, prove that $\frac{3x x^3}{1 3x^2} + \frac{3y y^3}{1 3y^2} + \frac{3z z^3}{1 3z^2} \frac{3x x^3}{1 3x^2} \cdot \frac{3y y^3}{1 3y^2} \cdot \frac{3z z^3}{1 3z^3}$

CHAPTER XI

TRIGONOMETRICAL EQUATIONS AND GENERAL VALUES

- 57. It will be apparent from Chapter IV that there are infinitely many angles, the trigonometrical ratios of which have a given value. For example, if $\sin\theta = \frac{1}{2}$, one value of θ (the smallest positive value) is known to be 30°. Now sines of supplementary angles are equal. Hence $\sin 150^\circ$ being equal to $\sin 30^\circ$ is also $\frac{1}{2}$. Again angles differing from 30° or 150° by complete multiples of 360° will have their sines (in fact all ratios) the same. Thus sine of each of the angles 30°, 150°, 390°, 510°, -330°, -210°, etc. is equal
- to $\frac{1}{3}$. Similarly, if $\cos \theta$ be given, equal to $\frac{1}{\sqrt{2}}$ say, θ may have any of the values $+45^{\circ}$, $+315^{\circ}$, $+405^{\circ}$, -315° , -45° , etc.; or else if $\tan \theta = \sqrt{3}$, θ may have any of the values 60° , 240° , 420° , -300° , etc.

It is very convenient for the solution of trigonometrical equations, as also for other purposes, to obtain a general expression in a compact form embracing all angles, the trigonometrical ratios of which have a given value.

58. General expression of all angles, one of whose trigonometrical ratios is zero.

If the sine of an angle be zero, from definition, the length of the perpendicular from any point of one of its arms upon another is zero, so that the two arms must be in the same straight line. Evidently, therefore, such angles must be some multiple of π , odd or even.

Thus, if $\sin \theta = 0$, then $\theta = n\pi$,

n being zero, or any integer, positive or negative.

When the cosine of an angle is zero, the projection of any length along one arm upon another is zero, and so the two arms must be at right angles to one another. The angles must therefore be evidently either $\frac{\pi}{2}$ or $\frac{3\pi}{2}$ or differ from these by complete revolutions; in other words, the angle may be any odd multiple of $\frac{\pi}{2}$.

Thus, if
$$\cos \theta = 0$$
, then $\theta = (2n+1)\frac{\pi}{2}$.

n being zero, or any integer, positive or negative.

Again if $\tan \theta = 0$, then its numerator $\sin \theta$ is also zero; and so $\theta = n\pi$.

Similarly if $\cot \theta = 0$, then $\cos \theta = 0$

and so
$$\theta = (2n+1)\frac{\pi}{2}$$
.

Note. The ratios coses θ or see θ can never be zero, for they can never be numerically less than unity.

59. General expression of angles having the same sine (or cosecant).

Let a be any angle positive or negative such that its sine is equal to a given quantity k (numerically not greater than 1); for fixing up the idea, and for the sake of convenience in practice, the smallest positive angle having its sine for the given quantity k is taken as a. Let θ be any other angle whose sine is equal to k.

Then
$$\sin \theta - \sin a$$
,
or, $\sin \theta - \sin a = 0$,
or, $2 \sin \frac{1}{2}(\theta - a) \cos \frac{1}{2}(\theta + a) = 0$.
 \therefore either $\sin \frac{1}{2}(\theta - a) = 0$,
i.e. $\frac{1}{2}(\theta - a) = \text{any multiple of } n = mn$, ... (1)

or, else cos $\frac{1}{2}(\theta + a) = 0$,

i.e.
$$\frac{1}{2}(\theta + a) = \text{any odd multiple of } \frac{\pi}{2} = (2m + 1)\frac{\pi}{2} \dots$$
 (2)

From (1),
$$\theta - a = 2m\pi$$
, i.e. $\theta = a + 2m\pi$ (3)

From (2),
$$\theta + a = (2m+1)\pi$$
, i.e. $\theta = -a + (2m+1)\pi$... (4)

Combining (3) and (4),
$$\theta = (-1)^n a + n\pi \quad ... \quad (5)$$

where n is zero, or any integer, positive or negative, odd or even.

If cosec $\theta = \csc \alpha$, then $\sin \theta = \sin \alpha$; hence all angles having the same cosecant as that of α are also given by expression (5).

Thus all angles having the same sine or cosecant as that of a are given by $2n\pi + a$ and $(2n+1)\pi - a$,

or,
$$n\pi + (-1)^n\alpha$$
,

n being zero, or any integer, positive or negative.

60. General expression of angles having the same cosine (or secant).

Let a be the smallest positive angle such that its cosine is equal to a given quantity k (numerically ≥ 1); and let θ be any other angle whose cosine is equal to k.

Then, $\cos \theta = \cos a$,

or,
$$\cos a - \cos \theta = 0$$
.

2
$$\sin \frac{1}{2}(\theta + a) \sin \frac{1}{2}(\theta - a) = 0$$
.

$$\therefore \text{ either sin } \frac{1}{2}(\theta + a) = 0,$$

i.e.
$$\frac{1}{2}(\theta + a) = \text{any multiple of } \pi = n\pi$$
 ... (1)

or else, $\sin \frac{1}{2}(\theta - a) = 0$,

i.e.
$$\frac{1}{2}(\theta - a) = \text{any multiple of } n = nn$$
. (2)

From (1),
$$\theta + a = 2n\pi$$
, or $\theta = 2n\pi - a$. (3)

From (2),
$$\theta - \alpha = 2n\pi$$
, or $\theta = 2n\pi + \alpha$ (4)

From (3) and (4), we have $\theta = 2n\pi \pm a$, ... (5) where n is zero, or any integer, positive or negative.

It is also evident as in the previous case that all angles having the same secant as that of a are also included in the expression (5).

Hence, all angles having the same cosine or secant as that of a are given by

$$2n\pi \pm \alpha$$

n being zero, or any integer, positive or negative.

Then

Note. As in Art. 59, instead of taking the smallest positive angle, we might take α to be any one angle having for its cosine the given quantity k. The general value of θ satisfying $\cos \theta = \cos \alpha$ as obtained above, would not be affected at all.

61. General expression of all angles having the same tangent (or cotangent).

Let a be the smallest positive angle such that its tangent is equal to a given quantity k; and let θ be any other angle whose tangent is equal to k.

$$\tan \theta = \tan \alpha,$$
or,
$$\frac{\sin \theta}{\cos \theta} - \frac{\sin \alpha}{\cos \alpha} = 0,$$
or,
$$\frac{\sin \theta \cos \alpha - \cos \theta}{\cos \alpha} \sin \alpha = 0,$$
or,
$$\frac{\sin (\theta - \alpha)}{\cos \theta \cos \alpha} = 0.$$
or,
$$\frac{\sin (\theta - \alpha)}{\cos \theta \cos \alpha} = 0.$$

$$\therefore \sin (\theta - \alpha) = 0,$$
i.e.
$$\theta - \alpha = \text{any multiple of } \alpha = \pi \alpha.$$

$$\therefore \theta = \alpha + \pi \pi.$$
 (1)

The factor $\frac{1}{\cos \theta}$ cos α cannot be zero, for cosine of an angle cannot have an infinitely large value.

It is also evident as in the previous case that all angles having the same cotangent as that of α are given by the expression (1).

Hence, all angles having the same tangent or cotangent as that of a are given by

$$n\pi + \alpha$$

n being zero, or any integer, positive or negative.

Note. The remark below Art. 60 is applicable here viso.

62. Special cases.

From Art. 59, considering both cases when n is odd or even, it may be easily seen that

if
$$\sin \theta = 1 = \sin \frac{\pi}{2}$$
, $\theta = 2n\pi + \frac{\pi}{2} = (4n+1)\frac{\pi}{2}$

and if
$$\sin \theta = -1 = \sin \left(-\frac{\pi}{2}\right)$$
, $\theta = 2n\pi - \frac{\pi}{2} = (4n-1)\frac{\pi}{2}$

or,
$$=(4k+3)\frac{\pi}{2}$$

where n (or k=n-1) is zero, or any integer, positive or negative.

Similarly from Art. 60, it may be seen that

if
$$\cos \theta = 1$$
, $\theta = 2n\pi$

and if
$$\cos \theta = -1$$
, $\theta = (2n+1)\pi$

n being zero, or any integer, positive or negative.

These are the usual forms in which the above special cases are used in practice.

63. Geometrical Treatment.

(i) Geometrical construction of an angle whose sine (or cosecant) is given, and to obtain a general expression of all such angles.

Let the sine of an angle he given equal to 'a'.

Taking the perpendicular lines XOX' and YOY' for reference, draw a circle of unit radius with centre O.

Measure off ON=a along OY (or along OY' if a be negative). Through N draw a straight line PNQ parallel to XOX' meeting the circle at P and Q.

Then $\angle POX = a$ say, is one of the required angles, for $\sin a = \sin OPN = \frac{ON}{OP} = \frac{a}{1} = a$.

Another angle with the same sine, as is apparent from the figure, is $\angle QOX = \pi - a$ (or $3\pi - a$ if a = ON be negative, which is trigonometrically the same as $\pi - a$).

'a' being given in magnitude and sign, the position of N on YOY' is fixed and thus in one revolution, i.e., from 0 to

 2π there are, as is clear from the figure, only two angles a and $\pi - a$ having the given sine.*

Now the addition or subtraction of any multiple of 2π makes no difference in the values of the trigonometrical ratios of an angle (See Art. 28).

Hence all the angles having the same sine as that of a are contained in the formulæ $2m\pi + a$ and $2m\pi + \pi - a$ i.e., $(2m+1)\pi - a$, where m is zero, or any integer, positive or negative. Both the sets of angles are evidently included in the formula $n\pi + (-1)^n a$, n being zero, or any integer, positive or negative.

(ii) Angles with given cosine (or secant).

Let the given cosine be 'a'. As before, measure off ON=a along OX (or along OX' if 'a' be negative), and through N draw PNQ parallel to YOY' to meet the circle with centre O, and radius unity, at P and Q.

*In the same quadrant there cannot be two distinct angles (without being coterminals), having the same sine, for the corresponding triangles will then be congruent. Let $\angle POX = \alpha$. Then α is a required angle. Also from the figure, the only angles in the first four quadrants which have the given cosine are α and $2\pi - \alpha$.

Adding or subtracting multiples of 2π to these, all the angles having the same cosine as that of a are given by $2m\pi + a$ or $2m\pi + 2\pi - a$, both of which are included in the formula $2n\pi \pm a$, n being zero, or any integer, positive or negative.

(iii) Angles with given tangent (or cotangent).

Let 'a' be the given tangent. Along OX or OX' measure off ON of unit length, and then measure off NP perpendicular to it of length whose numerical value is 'a'. If 'a' be positive, both ON and NP will be positive, or both will be negative, and so the $\angle XOP$ will be either in the first or in the third quadrant. If 'a' be negative, the angle will be either in the second or in the fourth quadrant. In any case, there are only two angles, within one revolution, i.e., from 0 to 2π as is apparent from the figure, with the given tangent.*

*The ratio PN: ON being given, and the included angle PNO being right, the triangle PNO constructed remains always similar to itself and so in the same quadrant the $\angle PON$ of the triangle is unique.

One of the angles being a, the other is evidently (from the figure) n+a. Adding or subtracting multiples of 2n, all the angles having the same tangent as that of a are given by 2mn+a or 2mn+n+a both of which are included in the formula nn+a where n is zero, or any integer, positive or negative, odd or even.

Ex. 1. Solve
$$2(\cos^2\theta - \sin^2\theta) = 1$$
.

The given equation can be written as

$$2\cos 2\theta = 1$$
. $\cos 2\theta = \frac{1}{2} = \cos \frac{1}{3}\pi$.

$$\therefore 20 = 2n\pi \pm \frac{1}{6}\pi.$$
 $\therefore 0 = n\pi \pm \frac{1}{6}\pi.$

Note. It may be observed that a trigonometrical equation can be solved in several ways; and the results though different in forms will give the same series of angles. To illustrate this we work out the above example in another way.

The equation can also be written in the form

$$2(\cos^2\theta - 1 + \cos^2\theta) = 1$$
, or, $4\cos^2\theta = 3$.

$$\therefore \cos \theta = \pm \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}, \text{ or, } \cos \frac{5\pi}{6}.$$

$$\therefore \quad \theta = 2m\pi \pm \frac{\pi}{6}, \quad \text{or, } 2m\pi \pm \frac{5\pi}{6}.$$

Now
$$2m\pi \pm \frac{5\pi}{6} = (2m+1)\pi - \frac{\pi}{6}$$
 or, $(2m-1)\pi + \frac{\pi}{6}$.

All the four sets of solutions, m being any integer, can be included in the expression $n\pi + \frac{1}{6}\pi$, in which form the result has already been obtained by the previous process.

Ex. 2. Solve $4 \cos^2 x + 6 \sin^2 x = 5$.

The equation can be written as

$$4 \cos^2 x + 6 \sin^2 x = 5(\sin^2 x + \cos^2 x).$$

$$\sin^2 x = \cos^2 x$$
, or, $\tan^2 x = 1$.

$$\therefore \tan x = \pm 1. \quad \therefore x = n\pi \pm 1\pi.$$

Note. Equations of the form a cos²x+b sin²x=c can be easily solved by the above method, or by expressing sine in terms of cosine or cosine in terms of sine.

Ex. 3. Solve
$$2 \sin^2 x + \sin^2 2x = 2$$
. [C. U. 1940.]

The given equation can be written as $2(1-\sin^2 x)-\sin^2 2x=0$, or, $2\cos^2 x-4\sin^2 x\cos^2 x=0$.

or.
$$2\cos^2 x(1-2\sin^2 x)=0$$
, or, $\cos^2 x\cos 2x=0$.
.: either $\cos x=0$, i.e., $x=n\pi+\frac{1}{2}\pi$, $(2x+1)^{\frac{n}{2}}$.
or, $\cos 2x=0$, i.e., $2x=2n\pi+\frac{1}{2}\pi$. .: $x=n\pi+\frac{1}{4}\pi$.

Ex. 4. Solve
$$\cos \theta - \sin \theta = \frac{1}{\sqrt{2}}$$
.

Dividing both sides of the equation by $\sqrt{1^2 + 1^2}$ i.e., $\sqrt{2}$, we have

$$\cos \theta \cdot \frac{1}{\sqrt{2}} - \sin \theta \cdot \frac{1}{\sqrt{2}} = \frac{1}{2}$$
i.e., $\cos \theta \cos \frac{1}{4}\pi - \sin \theta \sin \frac{1}{4}\pi = \frac{1}{2}$.

$$\therefore \cos (\theta + \frac{1}{4}\pi) = \cos \frac{1}{3}\pi. \quad \therefore \quad \theta + \frac{1}{4}\pi = 2n\pi \pm \frac{1}{3}\pi.$$

$$\therefore \quad \theta = 2n\pi + \frac{1}{3}\pi\pi, \quad \text{or.} \quad 2n\pi - \frac{7}{5}\pi\pi.$$

Note. Extraneous solutions.

In general, as pointed out in Ex. 1 above, the same trigonometrical equation may be solved by different methods, and the forms of the result we arrive at, though apparently different in some cases, are ultimately equivalent. In some cases, however, we may be tempted to solve a trigonometrical equation by methods which have flaws in them, leading to solutions which include in addition to the correct solutions, some extraneous solutions which do not satisfy the given equation. The given equation which is of the type $a\cos\theta + b\sin\theta = c$ is an example. We proceed to demonstrate it as follows:

Here
$$\cos \theta - \frac{1}{\sqrt{2}} = \sin \theta$$
.

 $\therefore \cos^2 \theta - \sqrt{2} \cos \theta + \frac{1}{2} = \sin^2 \theta = 1 - \cos^2 \theta,$ whence $2 \cos^2 \theta - \sqrt{2} \cos \theta - \frac{1}{2} = 0.$

$$\therefore \cos \theta = \frac{\sqrt{2} \pm \sqrt{2} + 4}{4} = \frac{1 + \sqrt{3}}{2\sqrt{2}} = \cos \frac{\pi}{12} \quad \text{or} \quad \cos \frac{7\pi}{12}.$$

$$\theta = 2n\pi \pm \frac{1}{10}\pi, \text{ or } 2n\pi \pm \frac{1}{10}\pi.$$

But it can be easily seen on substitution that

 $2n\pi - \frac{1}{12}\pi$ and $2n\pi + \frac{1}{12}\pi$ do not satisfy the given equation. The error in the method lies in squaring the equation as we have done; for the squared equation includes the equation $\cos \theta - \frac{1}{\sqrt{2}} = -\sin \theta$ i.e., $\cos \theta + \sin \theta = \frac{1}{\sqrt{2}}$ of which the solutions are $2n\pi - \frac{1}{12}\pi$ and $2n\pi + \frac{1}{12}\pi$.

Equations of this type are therefore best solved as in the next example, and not by squaring.

Thus while solving any trigonometrical equation it is always advisable to verify the roots obtained; for thereby extraneous roots, if any, can be easily detected.

Ex. 5. Solve
$$a \cos \theta + b \sin \theta = c$$
. $(c > \sqrt{a^2 + b^2})$.

Put $a=r\cos a$, $b=r\sin a$, choosing the smallest positive value of a, keeping r positive.

Then
$$r = \sqrt{a^2 + b^2}$$
 and $\sin a = \frac{b}{\sqrt{a^2 + b^2}}$

and
$$\cos a = \frac{a}{\sqrt{a^2 + b^2}}$$
.

The signs of a and b will determine the quadrant in which a lies, and a and b being given, r and a are definitely known.

The equation now becomes,

$$r\cos\left(\theta-a\right)=c,$$

or,
$$\cos (\theta - a) = \frac{c}{\sqrt{a^2 + b^2}} = \cos \beta$$
,

where β is the smallest positive angle whose cosine is $\int_{a}^{c} a^{2} + b^{2}$, and a, b, c being known, β is also known.

Hence
$$\theta - \alpha = 2n\pi \pm \beta$$
, or, $\theta = 2n\pi + \alpha \pm \beta$.

Note. An angle which is introduced in a trigonometrical work to facilitate calculations is called a subsidiary angle. Thus a and β are here subsidiary angles.

Ex. 6. Solve $4 \cos x + 5 \sin x = 5$, given $\tan 51^{\circ} 21' = \frac{5}{4}$. Dividing both sides of the given equation by $\sqrt{4^2 + 5^2}$ i.e. by $\sqrt{41}$, we get

$$\frac{4}{\sqrt{41}}\cos x + \frac{5}{\sqrt{41}}\sin x = \frac{5}{\sqrt{41}}$$
 ... (1)

Since, tan 51° 21' = 4.

$$\therefore \sin 51^{\circ} 21' = \frac{5}{\sqrt{41}} \cos 51^{\circ} 21' = \frac{4}{\sqrt{41}}$$

.. (1) reduces to
$$\cos x \cos 51^{\circ} 21' + \sin x \sin 51^{\circ} 21' - \sin 51^{\circ} 21'$$
, or, $\cos (x - 51^{\circ} 21') - \sin 51^{\circ} 21' - \cos 38^{\circ} 39'$.

$$\therefore$$
 $x-51^{\circ} 21' = 2n\pi \pm 38^{\circ} 39'$.

$$x = 2n\pi + 90^{\circ}$$
, or, $2n\pi + 12^{\circ} 42'$.

Ex. 7. (i) Solve $2 \sin^2 x + \sin^2 2x = 2$ for $-\pi < x < \pi$.

From Ex. 3 above, we see that
$$x = n\pi + \frac{1}{2}\pi$$
 ... (1)

or,
$$x = n\pi \pm \frac{1}{4}\pi$$
. ... (2)

Putting n=0, -1 in (1), we get $x=\frac{1}{2}\tau$, $-\frac{1}{2}\pi$, which lie in the given interval. Putting n=0, 1, -1 in (2), we get $x=\pm\frac{1}{4}\pi$, $\frac{3}{4}\pi$, $-\frac{3}{4}\pi$ which also lie in the given interval.

Hence the required values of x are $\pm \frac{1}{2}\pi$, $\pm \frac{1}{2}\pi$, $\pm \frac{1}{4}\pi$.

(ii) Solve $\cos \theta + \sqrt{3} \sin \theta = 2$

for
$$-2\pi < \theta < 2\pi$$
 and $3\pi < \theta < 5\pi$.

Dividing both sides of the equation by $\sqrt{1+3}$ i.e., 2, we have

$$\cos \theta \cdot \frac{1}{2} + \sin \theta \cdot \frac{\sqrt{3}}{2} = 1,$$

i.e., $\cos \theta .\cos \frac{1}{2}\pi + \sin \theta .\sin \frac{1}{2}\pi = 1$,

i.e., $\cos (\theta - \frac{1}{3}\pi) = 1$.

$$\theta = \frac{1}{3}\pi = 2n\pi$$
, i.e., $\theta = 2n\pi + \frac{1}{3}\pi$.

Putting n=0, -1, we get $\theta = \frac{1}{3}\pi$, $-\frac{5}{3}\pi$ which lie in the 1st interval.

Again putting n=1, 2, we get $\theta = \frac{7}{3}\pi$, $-\frac{1}{3}\pi$, which lie in the 2nd interval.

Ex. 8. Solve $\tan ax = \cot bx$.

Here, $\tan ax = \cot bx = \tan (\frac{1}{2}\pi - bx)$.

$$\therefore ax = n\pi + \frac{1}{2}\pi - bx,$$

$$\therefore \quad x = \frac{2n+1}{a+b} \cdot \frac{\pi}{2}.$$

Examples XI

Solve the following equations (Ex. 1 to 23):—

- 1. $\cot^2 x + \csc^2 x = 3$.
- 2. (i) $2\cos^2\theta + 4\sin^2\theta = 3$.

(ii)
$$\tan^2\theta = 3 \csc^2\theta - 1$$
.

[C. U. 1939.]

- 3. $\tan x \cot x = \csc x$.
- 4. $\cot x \cot 2x = 2$.
- 5. $2 \sin \theta \tan \theta + 1 = \tan \theta + 2 \sin \theta$.
- 6. $\sin 5\theta + \sin \theta = \sin 3\theta$.
- 7. $\sin m\theta + \sin n\theta = 0$.
- 8. $\cos x + \cos 3x + \cos 5x + \cos 7x = 0$.
- 9. $\cot 2x = \cos x + \sin x$.
- 10. $\sin x + \cos x = \sqrt{2}$, for $-\pi < x < \pi$.
- 11. $\sin 2x \tan x + 1 = \sin 2x + \tan x$.
- $\mathbf{A12.} \quad \cot x \tan x = 2.$

13. $\sin x + \sqrt{3} \cos x = \sqrt{2}$.

[C. U. 1938, 47,]

- '14. $2 \sin x \sin 3x = 1$.
 - 15. $\sin \theta + 2 \cos \theta = 1$.

[C. U. 1933.]

- 16. $\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x$.
- 17. $\tan (\frac{1}{4}\pi + \theta) + \tan (\frac{1}{4}\pi \theta) = 4$. [C. U. 1949.]

- 18. $\tan x + \tan 2x + \tan x \tan 2x = 1$. [C. U. 1941, '45,]
- 19. $\cos \theta + \sqrt{3} \sin \theta = \sqrt{2}$.

[C. U. 1944.]

- 20. $\sqrt{3} \cos x + \sin x = 1$, for $-2\pi < x < 2\pi$.
- 21. $\cos 2x = \cos x \sin x$.
- 22. $2 \cot x + \sin x = 2 \csc x$.

23. $\cos x + \sin x = \cos 2x + \sin 2x$. [C. U. 1943.]

- Solve $2 \sin^2 x + \sin x = 3$; and find all the angles 24. stween 0° and 1000° which satisfy it.
- 25. Find the solution of the equations (general solution not required)

 $\tan x + \tan y = 2$

 $2\cos x\cos y = 1$.

26 If $\tan ax - \tan bx = 0$, show that the values of x form a series in A. P.

27. Solve

- (i) $\cos 3x + \cos 2x + \cos x = 0$. [C. U. 1942, '46.]
- (ii) $\cos 9x \cos 7x = \cos 5x \cos 3x$, $-\frac{1}{2}x < x < \frac{1}{2}x$.
- (iii) $\tan x + \tan 2x + \tan 3x = 0$. [A. I. 1941.]
- (iv) $\cos x \sin x = \cos a + \sin a$. [B. H. U. 1938,]
 - (v) $\cos^8 x \cos x \sin x \sin^8 x = 1$.
- (vi) $\cos 6x + \cos 4x = \sin 3x + \sin x$.

$$\underbrace{\text{(vii)}}_{\sin 2x} \sin \frac{a}{2x} + \frac{\cos a}{\cos 2x} = 2.$$

- 28. Solve 5 cos $\theta + 2 \sin \theta = 2$, given tan 68° $12' = 2\frac{1}{2}$.
- 29. Find those pairs of solutions of the following equations which correspond to positive solutions less than 2π of each individual equation:—
 - (i) $\sin (a \beta) = 0$; $\sin (a + \beta) = 1$.
 - (ii) $\sin (\alpha \beta) = \cos (\alpha + \beta) = \frac{1}{2}$.
- **30.** If $\sin A = \sin B$, $\cos A = \cos B$, prove that either A and B are equal or they differ by some multiple of four right angles. [C. U. 1935]
- 31. Show that the three equations $\sin^2 \theta = \sin^2 a$, $\cos^2 \theta = \cos^2 a$, $\tan^2 \theta = \tan^2 a$ are all identical and the solution is always $n\pi \pm a$.
- 32. Show that the same two series of angles are given by the equations

$$x + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{6}$$
 and $x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$.

CHAPTER XII

INVERSE CIRCULAR FUNCTIONS

64. The equation $\sin \theta = x$ means that θ is an angle whose sine is x. It is often convenient to express this statement inversely by writing $\theta = \sin^{-1}x$. Thus the symbol $\sin^{-1}x$ denotes an angle whose sine is x. Hence $\sin^{-1}x$ is an angle, whereas $\sin \theta$ is a number. The two relations $\sin \theta = x$ and $\theta = \sin^{-1}x$ are identical; if one is given the other follows. The symbol $\sin^{-1}x$ is usually read as "sine inverse x". Sometimes it is also denoted by arc $\sin x$.

Note. $\sin^{-1}x$ must not be confused with $(\sin x)^{-1}$ i.e. $\frac{1}{\sin x}$

65. We know that if θ be any one angle whose sine is equal to x, then sines of all the angles given by $n\pi + (-1)^n\theta$ are equal to x. Hence, $\sin^{-1}x$ has got an infinite number of values, and as such, $\sin^{-1}x$ is a multiple-valued function.

Hence the general value of $\sin^{-1}x = n\pi + (-1)^n \sin^{-1}x$ where on the right-hand side $\sin^{-1}x$ stands for any particular angle whose sine is x.

Similarly, the general value of

$$\cos^{-1}x = 2n\pi + \cos^{-1}x$$

and of $tan^{-1}x = n\pi + tan^{-1}x$.

The smallest numerical value, either positive or negative, of θ is called the *principal value* of $\sin^{-1}x$. Thus, the principal value of $\sin^{-1}\frac{1}{2}$ is 30°. If corresponding to the same ratio, there are two numerically equal angles, one positive and the other negative, it is customary to take the positive angle as the principal value; thus the principal value of $\cos^{-1}\frac{1}{2}$ is 60°, and not (-60°) although $\cos(-60^\circ)=\frac{1}{2}$.

In all numerical examples, the principal value is generally taken,

cos⁻¹x, tan⁻¹x, cosec⁻¹x, sec⁻¹x, cot⁻¹x have similar significance and all properties as those of sin⁻¹x. These expressions are called **Inverse Circular Functions**.

66. If $\sin \theta = x$, then $\theta = \sin^{-1} x$, i.e. $\theta = \sin^{-1} \sin \theta$.

Similarly, $\theta = \cos^{-1} \cos \theta = \tan^{-1} \tan \theta$; etc.

Again, if $\theta = \sin^{-1}x$, $\sin \theta = x$, i.e. $\sin \sin^{-1}x = x$.

Similarly, $\cos \cos^{-1}x = x$; $\tan \tan^{-1}x = x$; etc.

Also, we have

$$\csc^{-1}x = \sin^{-1}\frac{1}{x}$$
; $\cot^{-1}x = \tan^{-1}\frac{1}{x}$; $\sec^{-1}x = \cos^{-1}\frac{1}{x}$

Let $\csc^{-1}x = 0$; then $\csc \theta = x$.

$$\therefore \sin \theta = \frac{1}{\cos \theta} = \frac{1}{x}.$$

Hence $\theta = \sin^{-1} \frac{1}{x}$, and therefore $\csc^{-1} x = \sin^{-1} \frac{1}{x}$.

In the same way we have, $\csc^{-1} \frac{1}{x} = \sin^{-1} x$.

The other relations follow similarly.

67. As all the trigonometrical ratios can be expressed in terms of any one, similarly, all the inverse trigonometrical ratios can be expressed in terms of any one inverse ratio.

Thus, let $\sin^{-1}x = \theta$; then $\sin \theta = x$.

$$\therefore \cos \theta = \sqrt{1-x^2} ; \tan \theta = \frac{x}{\sqrt{1-x^2}} ; \cot \theta = \frac{\sqrt{1-x^2}}{x} ;$$

$$\sec \theta = \frac{1}{\sqrt{1-x^2}} \text{ and } \csc \theta = \frac{1}{x}.$$

$$\theta = \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} = \tan^{-1} \frac{x}{\sqrt{1 - x^2}}$$

$$= \cot^{-1} \frac{\sqrt{1 - x^2}}{x} = \sec^{-1} \frac{1}{\sqrt{1 - x^2}} = \csc^{-1} \frac{1}{x}.$$

To prove that

(i)
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$
.

(ii)
$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$
.

(iii)
$$\csc^{-1}x + \sec^{-1}x = \frac{\pi}{2}$$

(i) Let $\sin^{-1}x = 0$; then $\sin \theta = x$.

Now, $\sin \theta = \cos (\frac{1}{2}\pi - \theta)$.

 $\therefore \cos(\frac{1}{2}\pi - \theta) = x \text{ and hence } \cos^{-1}x = \frac{1}{2}\pi - \theta.$

Therefore, $\sin^{-1} x + \cos^{-1} x = \theta + \frac{1}{2}\pi - \theta = \frac{1}{2}\pi$.

(ii) Let $\tan^{-1}x = \theta$; then $\tan \theta = x$.

Now, tan $\theta = \cot(\frac{1}{2}\pi - \theta)$.

$$\therefore \cot (\frac{1}{2}\pi - \theta) = x. \quad \therefore \cot^{-1} x = \frac{1}{2}\pi - \theta.$$

$$\therefore \tan^{-1}x + \cot^{-1}x = 0 + \frac{1}{2}\pi - 0 = \frac{1}{2}\pi.$$

(iii) Let $\csc^{-1}x = \theta$; then $\csc \theta = x$.

Now, cosec $\theta = \sec(\frac{1}{2}\pi - \theta)$.

..
$$\sec(\frac{1}{2}\pi - \theta) = x$$
. $\sec^{-1}x = \frac{1}{2}\pi - \theta$.

...
$$\csc^{-1}x + \sec^{-1}x = \theta + \frac{1}{2}\pi - \theta = \frac{1}{2}\pi$$
.

69. To prove that

(i)
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$

(ii)
$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$$

Let $\tan^{-1}x = a$; and $\tan^{-1}y = \beta$;

then $\tan \alpha = x$; and $\tan \beta = y$.

Now,
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} - \frac{x + y}{1 - xy}$$

$$\therefore a+\beta=\tan^{-1}\frac{x+y}{1-xy}$$

i.e.
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$$

Again,
$$\tan (a-\beta) = \frac{\tan a - \tan \beta}{1 + \tan a \tan \beta} = \frac{x - y}{1 + xy}$$
.

$$\therefore \quad a-\beta=\tan^{-1}\frac{x-y}{1+xy},$$

i.e.
$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x - y}{1 + xy}$$

Note. It can be easily proved as above that

$$\cot^{-1}x \pm \cot^{-1}y = \cot^{-1}\frac{xy+1}{y\pm x}.$$

70. To prove that

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\frac{x+y+z-xyz}{1-yz-zx-xy}$$

Let
$$\tan^{-1}x = \alpha$$
; $\tan^{-1}y = \beta$; $\tan^{-1}z = \gamma$.

$$\therefore \tan \alpha = x, \quad \tan \beta = y, \quad \tan \gamma = z.$$

Now, tan $(\alpha + \beta + \gamma)$

$$= \frac{\tan a + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - \tan \beta \tan \gamma - \tan \gamma \tan \alpha - \tan \alpha \tan \beta}$$

$$= \frac{x + y + z - xyz}{1 - yz - zx - xy}$$

Hence,
$$a + \beta + \gamma = \tan^{-1} \frac{x + y + z - xyz}{1 - yz - zx - xy}$$

Since, $a + \beta + \gamma = \tan^{-1}x + \tan^{-1}y + \tan^{-1}z$, the required result follows.

Note. This relation can also be deduced by applying twice the formula of Art. 69. Thus,

Left side =
$$(\tan^{-1}x + \tan^{-1}y) + \tan^{-1}z$$

= $\tan^{-1}\frac{x+y}{1-xy} + \tan^{-2}z$; now again apply Art. 69.

71. In fact for most of the formulæ involving ordinary circular functions, corresponding relations connecting the inverse circular functions can be easily deduced. In addition to those given above, some are illustrated in the following examples.

Ex. 1. Show that

(i)
$$\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}\{x \sqrt{1-y^2} \pm y \sqrt{1-x^2}\}.$$

(ii)
$$\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}\{xy \mp \sqrt{(1-x^2)(1-y^2)}\}.$$

(i) Let
$$\sin^{-1}x = a$$
. $\therefore \sin a = x$ and $\cos a = \sqrt{1-x^2}$;

also let $\sin^{-1} y = \beta$. \therefore sin $\beta = y$ and cos $\beta = \sqrt{1 - y^2}$.

Now,
$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

= $x \sqrt{1 - y^2 \pm y} \sqrt{1 - x^2}$.

$$\therefore a \pm \beta = \sin^{-1}\{x \sqrt{1-y^2} \pm y \sqrt{1-x^2}\}.$$

Since, $a \pm \beta = \sin^{-1}x \pm \sin^{-1}y$, the required result follows.

(ii) These relations follow similarly from the value of $\cos (a \pm \beta)$.

Ex. 2. Show that

(i)
$$2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1-x^2})$$
.

(ii)
$$2 \cos^{-1} x = \cos^{-1} (2x^2 - 1)$$
.

(iii)
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$$

(i) Let $\sin^{-1} x = a$. $\therefore \sin a = x$, $\cos a = \sqrt{1-x^2}$.

Now, $\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2x \sqrt{1-x^2}$.

$$2a = \sin^{-1}(2x\sqrt{1-x^2}).$$

Since, $a = \sin^{-1} x$, the required result follows.

(ii) & (iii). These relations follow similarly from the corresponding values of cos 2a in terms of cos a and tan 2a in terms of tan a. [See Art. 43]

Note. The above three relations can also be deduced by putting x for y in the values of $\sin^{-1}x + \sin^{-1}y$, $\cos^{-1}x + \cos^{-1}y$ and $\tan^{-1}x + \tan^{-1}y$.

Ex. 3. Show that

(i)
$$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$$
.

(ii)
$$3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x)$$
.

(iii)
$$3 \tan^{-1} x = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}$$
. [C. U. 1938.]

(i) Let $\sin^{-1} x = \theta$; then $\sin \theta = x$.

Now,
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta = 3x - 4x^3$$
.
30, i.e. $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$.

Note. The result of (iii) may also be deduced by putting y=z=x in the formula of Art. 70.

Ex. 4. Show that

$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2} = \tan^{-1} \frac{2x}{1-x^2}.$$
Let
$$\tan^{-1} x = \theta, \quad \therefore \tan \theta = x.$$
Since,
$$\sin 2\theta = \frac{2 \tan \theta}{1+\tan^2 \theta} = \frac{2x}{1+x^2}, \quad [Art. \ 45, Ex. \ I.]$$

$$\therefore \qquad 2\theta \ i.e. \ 2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}.$$
Since,
$$\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1-x^2}{1+x^2}.$$

the remaining relations follow similarly.

and $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} = \frac{2x}{1 - x^2}$

Ex. 5. Show that

$$tan^{-1}\frac{a-b}{1+ab}+tan^{-1}\frac{b-c}{1+bc}+tan^{-1}\frac{c-a}{1+ca}=0.$$

1st term of left side = $\tan^{-1}a - \tan^{-1}b$ [By Art. 69 (11)]

2nd
$$\cdots$$
 $= \tan^{-1}b - \tan^{-1}c$.

$$3rd \cdots \cdots = tan^{-1}c - tan^{-1}a$$

Hence, adding up the three terms, the required result follows.

Ex. 6. Show that

$$2 \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{4}{4}\frac{2}{3}$$
.

Since,
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$$
, [See Ex. 1.]

$$\therefore 2 \tan^{-1} \frac{1}{b} = \tan^{-1} \frac{\frac{2}{5}}{1 - \frac{1}{5^2}} = \tan^{-1} \frac{1}{18}.$$

.. Left side =
$$\tan^{-1}\frac{h}{12} + \tan^{-1}\frac{1}{4} = \tan^{-1}\frac{h}{12} + \frac{1}{4} = \tan^{-1}\frac{h}{4}$$
.

Ex. 7. Solve

$$\sin^{-1}\frac{2a}{1+a^2} + \sin^{-1}\frac{9b}{1+b^2} - 2 \tan^{-1}x.$$

[C. U. 1917.]

Since,
$$\sin^{-1} \frac{2x}{1+x^2} = 2 \tan^{-1} x$$
. [See Ex. 4.]

... Left side =
$$2 \tan^{-1} a + 2 \tan^{-1} b$$
.

: the equation reduces to
$$2 \tan^{-1} x = 2 \tan^{-1} a + 2 \tan^{-1} b.$$

$$\therefore \tan^{-1}x = \tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}.$$

$$x = \frac{a \pm b}{1 + ab}.$$

Ex. 8. Solve

$$tan^{-1}\frac{x-1}{x-2} + tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$$

Left side =
$$\tan^{-1} \frac{x-1}{x-2} + \frac{x+1}{x+2} = \tan^{-1} \frac{x^2-4}{-3}$$
.

:. the equation reduces to

$$\tan^{-1} \frac{2x^2 - 4}{-3} = \frac{\pi}{4} = \tan^{-1} 1.$$

$$\therefore \frac{2x^2 - 4}{-3} = 1 \text{ or, } 2x^2 = 1 \text{ or, } x = \pm \frac{1}{\sqrt{2}}.$$

Examples XII

Prove (Ex. 1 to 17) that :-

$$\int (ii) \tan^{-1} x + \tan^{-1} \frac{2x}{1 - x^2} = \tan^{-1} \frac{3x - x^3}{1 - 3x^2}.$$

$$\sim (iii) \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8} + \tan^{-1} \frac{1}{18} = \cot^{-1} 3.$$

2.
$$\tan^{-1}\frac{1}{4} + \cot^{-1}\frac{2}{7} = \tan^{-1}\frac{1}{2}$$
.

3.
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$

= $2(\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3})$.

4(i)
$$\tan^{-1} x + \cot^{-1} (x+1) = \tan^{-1} (x^2 + x + 1)$$
.

(ii)
$$\tan^{-1} \frac{1}{p+q} + \tan^{-1} \frac{q}{p^2 + pq + 1} = \tan^{-1} \frac{1}{p}$$

5.
$$\tan^{-1}a - \tan^{-1}c = \tan^{-1}\frac{a-h}{1+ab} + \tan^{-1}\frac{b-c}{1+bc}$$

6.
$$\tan^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$$
.

7.
$$\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3} = \frac{1}{4}\pi$$
.

8.
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{4} = \frac{1}{4}\pi$$
.

[O. U. 1937.]

9. (i)
$$\sin (2 \sin^{-1} x) = 2x \sqrt{1-x^2}$$
.

$$\gamma(ii) \{\cos (\sin^{-1}x)\}^2 = \{\sin (\cos^{-1}x)\}^2.$$

10.
$$\cos^{-1}x = 2\sin^{-1}\sqrt{\frac{1-x}{2}} = 2\cos^{-1}\sqrt{\frac{1+x}{2}}$$

11.
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \frac{1-x}{1+x}$$
 [C. U. 1943.]

12.
$$\sin^{-1} \sqrt{\frac{x-b}{a-b}} = \cos^{-1} \sqrt{\frac{a-x}{a-b}} = \tan^{-1} \sqrt{\frac{x-b}{a-x}}$$

13.
$$\tan^{-1} \frac{a-b}{1+ab} + \tan^{-1} \frac{b-c}{1+bc} + \tan^{-1} \frac{c-a}{1+ca}$$

= $\tan^{-1} \frac{a^2-b^2}{1+a^2b^2} + \tan^{-1} \frac{b^2-c^2}{1+b^2c^2} + \tan^{-1} \frac{c^2-a^2}{1+c^2a^2}$

14.
$$\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3) = 15$$
.

15.
$$\cot^{-1}(\tan 2x) + \cot^{-1}(-\tan 3x) = x$$
.

16.
$$\sin^{-1}\frac{4}{3} + \sin^{-1}\frac{6}{13} + \sin^{-1}\frac{16}{35} = \frac{1}{3}\pi$$
. [C. U. 1941.]

17.
$$4(\cot^{-1} 3 + \csc^{-1} \sqrt{5}) = \pi$$
. [C. U. 1939.]

18. If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$
, show that $x + y + z = xyz$.

19. If
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \frac{1}{2}\pi$$
, show that $yz + zx + xy = 1$.

20. If
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$$
, show that $x^3 + y^3 + z^2 + 2xyz = 1$.

21. If
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$$
, show that
$$x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz.$$

22. Find the values of

(i)
$$\sin (\sin^{-1} \frac{i}{2} + \cos^{-1} \frac{1}{2})$$
. [C. U. 1935.]
(ii) $\tan (\tan^{-1} a + \cot^{-1} a)$.

(iii)
$$\tan \left(\frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} + \frac{1}{2} \cos^{-1} \frac{1-y^2}{1+y^2}\right)$$

- 23. If $\tan^{-1}y = 4 \tan^{-1}x$, find y as an algebraic function of x.
- 24. If $\tan^{-1}x$, $\tan^{-1}y$, $\tan^{-1}z$ are in A.P., find out the algebraic relation between x, y, z. If in addition, x, y, z are also in A.P., prove that x = y = z. $[y \neq 0, 1, \text{ or } -1]$
 - 25. Solve the following equations:

$$y(i) \tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1} \frac{a}{3}i$$
.

(ii)
$$\tan^{-1} \frac{2x}{1-x^2} = \sin^{-1} \frac{2a}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2}$$

• (iii) tan $(\cos^{-1}x) = \sin(\tan^{-1}2)$.

(iv)
$$\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2} \tan^{-1}x$$
.

$$\sqrt{(v)} \tan^{-1} \frac{x-1}{x+1} + \tan^{-1} \frac{2x-1}{2x+1} = \tan^{-1} \frac{23}{36}$$

(vi)
$$\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}$$

(vii)
$$\sin^{-1}x + \sin^{-1}(1-x) = \cos^{-1}x$$

(viii)
$$\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$$
.

(ix)
$$\tan^{-1} \frac{2x}{1-x^2} + \cot^{-1} \frac{1-x^2}{2x} = \frac{\pi}{3}$$
.

(x)
$$\cot^{-1}(x-1) + \cot^{-1}(x-2) + \cot^{-1}(x-3) = 0$$
.

26. Show that

(i)
$$\cot^{-1} \frac{xy+1}{x-y} + \cot^{-1} \frac{yz+1}{y-z} + \cot^{-1} \frac{zx+1}{z-x} = 0$$
.

(ii)
$$\tan (\tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$$

= $\cot (\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$.

(iii)
$$\tan^{-1}(\cot x) + \cot^{-1}(\tan x) = \pi - 2x$$
.

Miscellaneous Examples I

- 1. If $3 \sin \theta + 4 \cos \theta = 5$, show that $\tan \theta = \frac{8}{4}$.
- 2. If $a^2 \sec^2 x b^2 \tan^2 x = c^2$, find cosec x.
- 3. If $x = r \cos \theta \cos \phi$, $y = r \cos \theta \sin \phi$, $z = r \sin \theta$, show that $x^2 + y^2 + z^2 = r^2$.
 - 4. If $\sin \theta = \frac{x-y}{x+y}$, show that $\tan \left(\frac{\pi}{4} \frac{\theta}{2}\right) = \pm \sqrt{\frac{y}{x}}$.
 - 5. If $x = r \sin (\theta + 45^{\circ})$ and $y = r \sin (\theta 45^{\circ})$, then $x^2 + y^2 = r^2$.
 - 6. If $\cos (\alpha + \beta) \sin (\gamma + \beta) = \cos (\alpha \beta) \sin (\gamma \theta)$, then $\tan \theta = \tan \alpha \tan \beta \tan \gamma$.

Show that (Ex. 7 to 9) :-

- 7. $(\cos x \cos y)^2 + (\sin x \sin y)^2 = 4 \sin^2 \frac{x y}{2}$
- 8. $\sin A + \sin B + \sin C \sin (A + B + C)$ = $4 \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C+A}{2}$.
- 9. $4 \sin \frac{A+B+C}{2} \sin \frac{B+C-A}{2} \sin \frac{C+A-B}{2} \sin \frac{A+B-C}{2}$ = $1 - \cos^2 A - \cos^2 B - \cos^2 C + 2 \cos A \cos B \cos C$.
- 10. If $\tan \beta = \frac{2 \sin \alpha \sin \gamma}{\sin (\alpha + \gamma)}$, then $\tan \alpha$, $\tan \beta$, $\tan \gamma$ are in harmonical progression.
 - 11. If $a + \beta + \gamma = (2n + 1)_{2}^{\pi}$, then
 - (i) $\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta = 1$.
 - (ii) $\sin 2a + \sin 2\beta + \sin 2\gamma = \pm 4 \cos a \cos \beta \cos \gamma$.
 - 12. If the angles A, B, C be in A. P., then

$$\frac{\sin A - \sin C}{\cos C - \cos A} = \frac{\cos B}{\sin B}$$

- 13. If $\csc 2A + \csc 2B + \csc 2C = 0$, show that $\tan A + \tan B + \tan C + \cot A + \cot B + \cot C = 0$.
- 14. If $\tan a = \frac{a \sin \beta}{1 a \cos \beta}$ and $\tan \beta = \frac{b \sin a}{1 b \cos a}$,

then $\frac{\sin a}{\sin b} = \frac{a}{b}$.

- 15. Show that $\tan \theta + 2 \tan 2\theta + 4 \tan 4\theta + 8 \cot 8\theta = \cot \theta$.
- 16. If $\cos (\theta \psi) \cos \phi = \cos (\theta \phi + \psi)$, then $\tan \theta$, $\tan \phi$, $\tan \psi$ are in harmonical progression.
- 17. If $1 + \cos(y z) \cos(z x) \cos(x y) = 0$, show that either (y z), or (z x), or (x y) is an odd multiple of π .
 - 18. If $\sin \theta + \sin \phi = \sqrt{3} (\cos \phi \cos \theta)$, show that $\sin 3\theta + \sin 3\phi = 0$.
 - 19. Eliminate a and β from a $\sin a + \sin \beta = a$, $\cos a + \cos \beta = b$, $\cos (a \beta) c$.
 - 20. If $A + C + C = \pi$, prove that
 - (i) $\tan B \tan C + \tan C \tan A + \tan A \tan B$ = 1 + sec A sec B sec C.
 - (ii) $\cot A + \cot B + \cot C = \cot A \cot B \cot C$ + $\cot A \csc B \csc C$
 - 21. If $A+B+C=\pi$, and if $\sin^2 A + \sin^2 B + \sin^2 C = \sin B \sin C + \sin C \sin A + \sin A \sin B$, then A=B=C.
- 22. If A, B, C be the angles of a triangle, and if $\cot A + \cot B + \cot C = \sqrt{3}$, show that the triangle is equilateral.
- 23. If $\sec ax + \sec bx = 0$, show that the values of x form two series in A. P.

CHAPTER XIII

LOGARITHMS

72. Definition of Logarithm.

Logarithm of a number with respect to a given base is the index of the power to which the base is to be raised in order to give the number.

Mathematically if $a^x = N$, then 'x' is the power to which 'a' (which is called the base) is raised to give 'N'. Hence by definition, 'x' is the logarithm of 'N' with respect to the base 'a', and it is usually written as $x = log_a N$.

As a numerical example, $\log_2 8 = 3$, for $2^3 = 8$ i.e. 3 is the power to which 2 is to be raised to give 8. Again, since $3^4 = 81$, $4 = \log_3 81$.

Any result involving indices can be expressed as a result in logarithm, and vice versa.

For example.

if
$$p^q = r$$
, then, $q = \log_p r$.
If $m^n = z^k$, then $n = \log_m (z^k)$
or $k = \log_z (m^n)$.

Similarly, if
$$\log_y x = z$$
,
then $y^z = x$.

It should be noted that the logarithm of the same number with respect to different bases will be different; for example, to get the same number 64, we must raise 2 to the power 6, whereas we are to raise 4 to the power 3 and 8 to the power 2 only; hence $\log_2 64 = 6$, $\log_4 64 = 3$, $\log_8 64 = 2$.

Thus so long as the base is not stated, logarithm of a number has no meaning.

73. Special Cases.

We know from Algebra that if a be any real finite quantity, other than zero, then $a^0 = 1$.

Hence, $\log_a 1 = 0$; in other words,

(i) logarithm of 1 with respect to any finite quantity (other than zero) as base, is zero.

Again, a being any quantity, $a^1 = a$.

Hence, $1 = \log_a a$. In other words,

(ii) logarithm of any number with respect to itself as base is unity.

Note 1. If $a^x = 0$, then $x = -\infty$ if a > 1, and $x = +\infty$ if a < 1.

Thus, we have $\log_a 0 = \mp \infty$ according as a > or < 1. Hence, logarithm of zero to a base greater than unity is minus infinity, and to a base less than unity is plus infinity.

Note 2. Since the equation $a^r = -n$ (a and n being real positive quantities), cannot be satisfied by any real value of x, whether positive or negative, provided we consider the principal value only of a^x ,

therefore, logarithm of a negative quantity (in a system of logarithms whose base is a real positive quantity) must be imaginary.

74. Fundamental formulæ in logarithms.

From the definition it is clear that logarithms are but indices in another form. Hence corresponding to the three fundamental results in the theory of indices in Algebra, namely that if a, x, y be any real quantities,

- (i) $a^x \times a^y = a^{x+y}$.
- (ii) $a^{x} + a^{y} = a^{x-y}$ and
- (iii) $(a^x)^y = a^{xy}$,

we get three fundamental laws of logarithms which are given below.

^{*}See a treatise on Higher Trigonometry.

(i) $\log_a (m \times n) = \log_a m + \log_a n$

in other words, logarithm of the product of two quantities is equal to the sum of their logarithms taken separately, base remaining the same always.

Proof. Put
$$\log_a m = x$$
, $\log_a n = y$ and $\log_a (m \times n) = z$

then from definition.

$$a^x = m$$
, $a^y = n$ and $a^z = m \times n = a^x \times a^y = a^{x+y}$.

so that, z = x + y.

Replacing values,

$$\log_a(mn) = \log_a m + \log_a n.$$

Cor. $\log_a (m.n.p...) = \log_a m + \log_a n + \log_a p + \cdots$

(ii)
$$\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$$

in other words, logarithm of the quotient of two numbers is equal to the difference of their logarithms (logarithm of the numerator minus logarithm of the denominator).

Proof. Put
$$\log_a m = x$$
, $\log_a n = y$
and $\log_a \binom{m}{n} = z$.

Then from definition,

$$a^x = m$$
, $a^y = n$
and $a^z = \frac{m}{v} = \frac{a^x}{a^y} = a^{x-y}$

so that

$$z = x - y$$

or replacing values.

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n.$$

(iii) $\log_a (m)^n = n \log_a m$.

Or, logarithm of a power of a number is the product of the power and the logarithm of the number.

Proof. Put $\log_a m = x$, and $\log_a (m)^n = z$.

Then by definition,

$$a^x = m$$
 and
 $a^z = (m)^n = (a^x)^n = a^{nx}$.
 \vdots $z = nx$.

or replacing values.

$$\log_a (m)^n = n \log_a m.$$

Ex. 1. Reduce to a simple form $\log_a \frac{x^p y^q}{z^s}$.

$$\log_a \frac{x^p y^q}{z^s} = \log_a (x^p y^q) - \log_a (z^s)$$

$$= \log_a x^p + \log_a y^q - \log_a z^s$$

$$= p \log_a x + q \log_a y - s \log_a z.$$

Ex. 2. Simplify log 10 3/82.

$$\log_{10} \sqrt[3]{\frac{25}{88}} = \log_{10} \left(\frac{5^2}{8.11}\right)^{\frac{1}{3}} = \frac{1}{3} \log_{10} \frac{5^2}{2^3.11}$$

$$= \frac{1}{3} \log_{10} \frac{10^2}{2^5.11}$$

$$= \frac{1}{3} [\log_{10} 10^2 - \log_{10} (2^5.11)]$$

$$= \frac{1}{3} [2 \log_{10} 10 - (\log_{10} 2^5 + \log_{10} 11)]$$

$$= \frac{1}{3} [2 - 5 \log_{10} 2 - \log_{10} 11].$$

75. Change of base.

There is a fourth standard formula whereby logarithms of numbers with respect to one base being given, those with respect to a different base may be obtained. The formula is

$$\log_a m = \log_b m \times \log_a b$$

Proof. Put $\log_a m = x$, $\log_b m = y$ and $\log_a b = z$.

Then from definition.

$$a^x = m, b^y = m, a^z = b.$$

Hence,
$$a^x = m = b^y = (a^z)^y = a^{yz}$$
,

or,
$$x = yz$$
.

Replacing values,

$$\log_a m = \log_b m \times \log_a b$$
.

Cor. 1. In the above result, put m=a. Then remembering that $\log_a a=1$, we get

$$\log_b a \times \log_a b = 1.$$

Since the above relation is very important, we add here an independent proof of it.

Let $\log_b a = x$, and $\log_a b = y$.

Then $b^x = a$ and $a^y = b$.

$$\therefore \quad a=b^x=(a^y)^x=a^{xy}. \qquad \qquad \therefore \quad xy=1,$$

i.e. $\log_b a \times \log_a b = 1$,

or,
$$\log_b a = \frac{1}{\log_a b}$$

Cor. 2. The result of the above article may be written with the help of Cor. 1, in the form

$$\log_a m = \log_b m/\log_b a$$
.

Thus if logarithms of both m and a with respect to b be known, logarithm of m with respect to a is obtained.

76. Common system of logarithms.

For all practical purposes, wherever logarithms are used for numerical calculations, the base is invariably taken as 10. Logarithms of numbers with respect to the base 10 are referred to as the Common system of logarithms. The advantage of the common system of logarithms for practical applications will be clear presently, from the article 77, Theorems I & II.

Note. In higher mathematics, for theoretical investigations, another quantity 'e' (defined in books of Algebra), whose value is nearly 2'718..., is used as the base of logarithms, and logarithms to this base c are called Napierian logarithms.

With the help of the logarithmic series established in books on Algebra, Napierian logarithms of numbers are tabulated. The factor $\frac{1}{\log_2 10}$ which is known as the modulus of the common system, applied to the Napierian logarithms will convert them to common logarithms (See Art. 75). Thus a table of common logarithms is prepared.

Henceforth we shall proceed with the consideration of the common system of logarithms, and the base being understood to be 10, will not be written.

77. Characteristic and Mantissa of common logarithms.

It is only in very few cases that the logarithm of a number is integral. In most cases, however, the logarithm of a number is partly integral and partly fractional (or decimal).

Def. The integral portion of the logarithm of a number is called the *characteristic*, and the decimal portion is called the *mantissa*.

In case the logarithm of a number is negative, and partly integral and partly decimal, the decimal portion, ie, the mantissa is always kept positive by altering the integral part ie, the characteristic suitably. Thus the mantissa part of the logarithm of a number is always positive. For instance, if the logarithm of a number is -23, we write it as -3+7 and call -3 as the characteristic and -7 (and not -3) as the mantissa. -3+7 is often abbreviated in the form 3.7.

Theorem I. The characteristic of the common logarithm of (i) any number greater than I is positive, and numerically one less than the number of digits in the integral part of the quantity whose logarithm is sought; and (ii) of any positive* number less than I, is negative, and numerically one greater than the number of zeroes immediately after the decimal point in the quantity whose logarithm is wanted.

(i) Let the number be greater than unity.

Any number, say 7'209, which consists of 1 digit only in its integral part, lies between 1 and 10.

Now $10^{\circ} = 1$ and $10^{1} = 10$.

Hence if $10^x = 7.209$, clearly x must be greater than 0 and less than 1.

Thus log 7'209, must lie between 0 and 1, i.e., of the form 0'..., having its characteristic 0.

Similarly, numbers of the type 53'0528, which consists of 2 digits in their integral parts, must lie between 10 and 100, i.e., between 10¹ and 10².

Hence the index to which 10 should be raised to give 53'0528 must be greater than 1 and less than 2, i.e., log 53'0528 must be of the form 1'... having the characteristic 1.

log 10 is 1, and 10 also falls in this category of two digits.

In the same way, a number which has n digits in its integral part lies between 10^{n-1} (which also has n digits) and 10^n (which has n+1 digits). Thus the logarithm of such numbers must lie between n-1 and n, i.e. (n-1) + some positive proper fraction. Hence the characteristic in such cases is n-1.

Hence the result.

*Logarithms of negative numbers are easily seen to be imaginary, for there is no real power, positive, or negative, to which 10 may be raised to give a negative result. [See Note 2. Art. 73.]

(ii) Let the number be positive, and less than 1 (i.e. between 0 and 1).

We notice that

$$10^{\circ} = 1$$

$$10^{-1} = \frac{1}{10}$$

$$10^{-2} = \frac{1}{1000}$$

$$10^{-3} = \frac{1}{1000}$$

$$10^{-4} = \frac{1}{10000}$$
etc. etc. etc.

Now a number less than 1, with no zero immediately after the decimal point, like 3015, must be greater than 1 and less than 1; hence the power to which 10 must be raised to give such a number must lie between -1 and 0, i.e., =-1+a positive proper fraction. Hence such numbers have the characteristic of their logarithms =-1.

A decimal number with one zero immediately after the decimal point, like '078005, lies between '01 and '1 which are respectively equal to 10^{-2} and 10^{-1} .

Hence if $10^x = 078005$, x must lie between -1 and -2 i.e., x is of the form -1...... Writing the decimal part of x positively, in the form $-2+\cdots$, we notice that the integral part of x i.e., the characteristic of the logarithm of 078005 is -2.

Similarly the logarithms of numbers between '01 and '001 (i.e., 10^{-2} and 10^{-3}) which must have two zeroes after the decimal point, lie between -2 and -3 i.e., are of the form -2······ = -3 +·····, and so the characteristic in such cases is -3,

and so on.

Hence the result.

Theorem II. All numbers, formed of the same digits in the same order, differing only in the positions of their decimal points, have the mantissæ of their logarithms same.

This will be clear from an example. Let us take the numbers 835107, 835107000, 835107, '835107, '000835107 and 8351'07.

Now
$$\log 835107000 = \log (835107 \times 1000)$$

 $= \log 835107 + \log 1000$
 $= \log 835107 + 3$.
Again, $\log 83'5107 = \log \frac{835107}{10000}$
 $= \log 835107 - \log 10000$
 $= \log 835107 - 4$.
 $\log 835107 = \log \frac{835107}{1000000} = \log 835107 - 6$.
 $\log 000835107 = \log \frac{835107}{100} = \log 835107 - 9$.
 $\log 8351'07 = \log \frac{835107}{100} = \log 835107 - 2$.

Thus the logarithms of all the numbers here differ from the logarithm of 835107 by a whole number in each case and so must have their decimal parts i.e., their mantisses the same as that of log 835107.

In fact, numbers formed of the same digits in the same order differing only in the position of their decimal points, must have their ratios equal to an integral power of 10 and so must have their logarithms differing only by a whole number.

Hence the result.

The two theorems above given show that (i) the characteristic of the logarithm of a number can be found by a simple glance at the number and (ii) that for the mantissa part of the logarithm of a number, we need only take into

account the digits of which the number is formed, without taking any notice of the position of the decimal point in it.

In logarithmic tables, only the mantissæ of the logarithms of numbers are therefore given.

These constitute the special advantages of the common system of logarithms.

78. Examples worked out.

$$\log \sqrt[4]{5.10/2}$$
, and find its value, given $\log 2 = 30103$ and $\log 3 = 4771213$.

The given exp. =
$$\log \frac{.5^{\frac{1}{4}} \cdot 2^{\frac{1}{10}}}{(18.2^{\frac{1}{2}})^{\frac{3}{3}}}$$

= $\log \frac{10^{\frac{1}{4}} \cdot 2^{\frac{1}{5}}}{2^{\frac{1}{4}} \cdot (2 \cdot 3^{\frac{2}{3}} \cdot 2^{\frac{1}{2}})^{\frac{1}{3}}} = \log \frac{10^{\frac{1}{4}} \cdot 2^{\frac{1}{5}}}{2^{\frac{1}{4}} \cdot 2^{\frac{1}{3}} \cdot 3^{\frac{3}{3}}} = \log 10^{\frac{1}{4}} - \log (2^{\frac{1}{2} \cdot \frac{3}{3}} \times 3^{\frac{3}{2}})$
= $\frac{1}{4} \log 10 - (\log 2^{\frac{1}{2} \cdot \frac{3}{6}} + \log 3^{\frac{3}{6}})$
= $\frac{1}{4} \log 10 - \frac{1}{10} \log 2 - \frac{3}{6} \log 3$

and its value is

$$\frac{1}{4}.1 - \frac{1}{2}\frac{8}{6}(30103) - \frac{2}{3}(4771213)$$

$$= 25 - 1956695 - 3180809$$

$$= -1 + 7362496$$

$$= \overline{1}.7362496.$$

Note. $\log 5 = \log \frac{1}{2} = \log 10 - \log 2 = 1 - \log 2$ and hence $\log 5$ is deducible from $\log 2$.

Ex. 2. Prove that

7
$$\log \frac{10}{6} - 2 \log \frac{25}{32} + 3 \log \frac{61}{60} = \log 2$$
.

The left-hand expression

$$= \log {\binom{1_0^{-1}}{3^{-1}}}^7 - \log {\binom{\frac{2}{3}\frac{5}{4}}{2}}^2 + \log {\binom{\frac{8}{3}}{80}}^8$$

$$= \log {\binom{\frac{1}{9}}{3^{-1}}}^7 \times {\binom{\frac{8}{10}}{3^{-1}}}^8$$

$$= \log {\binom{\frac{1}{9}}{3^{-1}}}^7 \times {\binom{\frac{3}{4}}{10 \times 2^8}}^3 \times {\binom{\frac{3 \times 2^8 \times 2^9}{10^2}}}^3$$

$$= \log {\binom{\frac{1}{9}}{3^{-1}}}^7 \times {\frac{3^{-2}}{10^3 \times 2^9}} \times {\frac{3^2 \times 2^{10}}{10^4}}^2$$

$$= \log {\binom{\frac{1}{9}}{3^{-1}}}^7 \times {\frac{3^{-2}}{10^3 \times 2^9}} \times {\frac{3^2 \times 2^{10}}{10^4}}^2$$

$$= \log 2.$$

Alternative method :

Left side

=
$$7(\log 10 - \log 9) - 2(\log 25 - \log 24) + 3(\log 81 - \log 80)$$

= $7\{\log (5 \times 2) - \log 3^2\} - 2\{\log 5^2 - \log (3 \times 2^3)\}$
+ $3\{\log 3^4 - \log (5 \times 2^4)\}$
= $7\{\log 5 + \log 2 - 2 \log 3\} - 2\{2 \log 5 - \log 3 - 3 \log 2\}$
+ $3\{4 \log 3 - \log 5 - 4 \log 2\}$

 $=\log 2.$

Ex. 3. Find the number of digits in 4^{15} , having given $\log 2 = 30103$.

We have

$$\log 4^{15} = \log 2^{90} = 30 \log 2$$

= $30 \times 30103 = 90309$.

Hence since the characteristic of log 4¹⁵ is 9, 4¹⁵ must consist of 10 digits.

Ex. 4. Find approximately the 7^{th} root of 35'28, having given log 2='30103, log 3='4771213, log 7='8450980 and log 1197'342=3'0782184.

Let
$$x = (35^{\circ}28)^{\frac{1}{4}} = \left(\frac{7^{\circ} \times 3^{\circ} \times 2^{\circ}}{10^{\circ}}\right)^{\frac{1}{4}}$$

then $\log x = \frac{1}{7}[2 \log 7 + 2 \log 3 + 3 \log 2 - 2 \log 10]$
 $= \frac{1}{7}[2 \times 8450980 + 2 \times 4771213 + 3 \times 30103 - 2]$
 $= 0782184$ nearly.

Now log 1197'342 = 3'0782184.

log 1'197342 = '0782184, having characteristic 0, but mantissa same as that of log 1197'342.

Hence x=1.197342 approximately.

Ex. 5. Obtain an approximate numerical solution of $2^x \cdot 3^{2x} = 100$, having given $\log 2 = 30103$, $\log 3 = 47712$.

We have

$$2^{x} \cdot 3^{2x} = 10^{2}.$$

$$\therefore \log (2^{x} \cdot 3^{2x}) = \log 10^{2},$$
i.e., $x \log 2 + 2x \log 3 = 2 \log 10 = 2.$

$$\therefore x = \frac{2}{\log 2 + 2 \log 3} = \frac{2}{30103 + 2 \times 47712}$$

$$= 15933 \text{ nearly.}$$

Note. Equations of this type are called Exponential equations.

Examples XIII (a)

[Use the values: log 2='30103, log 3='4771213, log 7='8450980 when required]

- 1. Find the logarithm of (i) 1728 to the base $2\sqrt{3}$ (ii) $\cos^3 a$ to the base sec a.
 - 2. Find log .0110000.
 - 3. Show that $\log_{10} 2$ lies between $\frac{1}{3}$ and $\frac{1}{4}$

[C. U. I. 1926.]

- 4. Prove that
 - (i) $\log_a m \times \log_b n = \log_b m \times \log_a n$.
 - (ii) $\log_2 \log_2 \log_2 16 = 1$.
- 5.) If $\log_e m + \log_e n = \log_e (m+n)$, find m as a simple function of n.
- 6. Prove that if a series of numbers be in G.P., their logarithms are in A.P.

7. Prove that

$$2 \log a + 2 \log a^2 + 2 \log a^3 + \dots + 2 \log a^n$$

= $n(n+1) \log a$.

- 8. If x is positive and less than unity, show that $\log (1+x) + \log (1+x^2) + \log (1+x^4) + \log (1+x^8) + \cdots$ to $\infty = -\log (1-x)$.
 - 9. Simplify
 - (i) $\log_2 \sqrt{6 + \log_2 \sqrt{\frac{2}{3}}}$.
 - (ii) $\frac{\log \sqrt{27} + \log 8 \log \sqrt{1000}}{\log 12}$.
 - 10. Find $\log (00225)^{\frac{1}{3}}$ and $\log (\frac{5}{72})^{-\frac{1}{8}}$.
 - 11. Prove that
 - (i) $\log_a b \times \log_b c \times \log_c a = 1$.
 - (ii) $\log_a x = \log_b x \times \log_c b \times \log_d c \dots \times \log_n m \times \log_a n$.
 - 12. Show that
 - (i) $7 \log_{15}^{16} + 5 \log_{24}^{25} + 3 \log_{80}^{81} = \log_{15}^{8}$.
 - (ii) $7 \log_{\frac{1}{6}}^{\frac{1}{6}} + 6 \log_{\frac{8}{3}} + 5 \log_{\frac{8}{5}}^{2} + \log_{\frac{8}{5}}^{2} = \log_{\frac{8}{5}}^{2}$.
 - Extract the fifth root of 84 having given log 2425505 = 6 3848559.
 - 14. Calculate $(0020736)^{\frac{1}{7}}$, having given $\log 41369 4.6166750$.
 - 15. Simplify

(i)
$$\log \sqrt[7]{\frac{8^{\frac{1}{8}} \times 14^{\frac{1}{8}}}{\sqrt{72} \times \sqrt[5]{60}}}$$

(ii)
$$\sqrt[8]{\frac{7\cdot 2\times 6\cdot 3}{62\cdot 5}}$$
, having given log 898665 = 5'9535977.

- 16. Find the value of $64\{1-(1^{\circ}05)^{-2^{\circ}}\}$, having given $\log 24121 = 4^{\circ}392394$.
- 17. Find the number of digits in (i) 2⁴⁰, (ii) 3¹¹, (iii) (540)⁹.
- 18. Find the number of zeroes after the decimal point before the first significant digit in the expressions

(i)
$$(024)^{15}$$
, (ii) $(\frac{1}{405})^{3}$, (iii) $(0259)^{50}$.

19. Solve the equations

(i)
$$3^x = 2$$
. (ii) $3^{x-4} = 7$.

(iii) $5^{6x} + 7^{x+2} = 3^{2x-3}$.

(iv)
$$2^x = 3^y$$

 $2^{y+1} = 3^{x-1}$ (v) $7^{x+y} \times 3^{2x+y} = 9$
 $3^{x-y} + 2^{x-2y} = 3^x$

- 20. (i) If $\log (x^2y^3) = a$, $\log \left(\frac{x}{y}\right) = b$, find $\log x$ and $\log y$.
 - (ii) If $a^2 + b^2 = 7ab$, show that $\log \{\frac{1}{3}(a+b)\} = \frac{1}{2}(\log a + \log b)$.

21. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 show that $x^x y^y z^z = 1$.

- 22. Why is $\log (1+2+3) = \log 1 + \log 2 + \log 3$?
- 23. If a, b, c,... he in G.P., show that $\log_a x$, $\log_b x$, $\log_c x$ are in H.P.
- 24. If $xy^{l-1} = a$, $xy^{m-1} = b$, $xy^{m-1} = c$, prove that $(m-n) \log a + (n-l) \log b + (l-m) \log c = 0$.
- 25. If $\frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z}$, show that $y^{x}z^{y} = z^{x}x^{z} = x^{y}y^{x}$.

79. Tables of Logarithms and Trigonometrical ratios.

Several mathematical tables correct up to five places of decimals are given at the end of the book. An explanation of the tables is given below.

Table I gives the common logarithm of all numbers from 1 to 10000, i.e., those which consist of 4 digits or less. The tabulated quantities are the mantisse only, correct to five places, with the decimal point dropped. The characteristic is to be supplied according to the rule given in Art. 77. The main body of the table gives logarithms (mantissa part) of numbers of 3 digits, and the mean difference table at the side supplies the increment in the mantissa due to the fourth digit. This increment is written, in order to save space, giving the significant digits only, which are to be supplied with the necessary number of zeroes to make up 5 places (here the table being a five figure table). Thus '00024 will be written as 24 only in the difference table. As an example, to find log 2'697, we notice from the table that the mantissa for log 269 is '42975, and along the same row, the difference table gives 115 under the heading 7. This means that for 7 in the fourth place of the number (i.e., for the number 2697) the increment in the mantissa will be '00115. Hence log 2697 will have its mantissa '42975 + '00115 = '43090. Again log 2'697 has the same mantissa, but its characteristic is 0. Thus log 2 697 = 0.43090.

Table II gives ordinary sines and cosines (usually referred to as natural sines aud cosines) of all angles from 0° to 90° at intervals of 1', sines being given from the left side of the top towards the right and downwards, and cosines being given from the right side of the bottom towards the left and upwards. The table is arranged in such a way that the sine of any angle given is the same as the cosine of exactly the complementary angle, and it is on this arrangement that a single table serves as a sine as well as a cosine table. The main portion of the table gives sines or cosines of angles at interval of 10', and the difference

table at the side gives changes in the value of the sine or cosine for changes in minutes in the angles. It should be remembered that as an angle increases from 0° to 90°, its sine increases from 0 to 1 whereas its cosine decreases from 1 to 0. Hence the changes given in the difference table are to be added in case of sines and subtracted in case of cosines for the increased number of minutes in the angle. Moreover, as in Table I, the numbers in the difference table are to be made up to five places of decimals by supplying the requisite number of zeroes before it. For example, using the table, sin 53° 23' = 80212 + '00052 = '80264' and cos 29° 42' = '86892 - '00029 = '86863.

Table III similarly gives natural tangents and cotangents of angles from 0° to 90°, obtained at intervals of 1' with the help of the difference table. The quantities in the difference table, being made up into five figures, are to be added in case of tangents and subtracted in case of cotangents for increased number of minutes in the angle.

Table IV gives logarithmic sines and logarithmic cosines of all angles from 0° to 90° at intervals of 1' (with the aid of the difference table). Logarithmic sine of angle θ , written as L sin θ means $10 + \log \sin \theta$, and similarly logarithmic cosine of θ , written as L cos θ means $10 + \log \cos \theta$. In taking logarithms of trigonometrical ratios of angles, it may be noted that sines and cosines of angles are numerically less than unity, and tangents of angles between 0° and 45° as also cotangents of angles between 45° and 90° are less than unity. Hence logarithms of these quantities are negative. To avoid using negative values in the tables, logarithms of trigonometrical ratios are always tabulated after adding 10 to them. Thus the table gives L sin θ and L cos θ (and not log sin θ and log cos θ).

Table V gives logarithmic tangents (i.e. $L \tan \theta = 10 + \log \tan \theta$) and logarithmic cotangents (i.e. $L \cot \theta = 10 + \log \cot \theta$) of all angles from 0° to 90°, obtained at intervals of 1' with the aid of the difference table.

80. Principle of Proportional Parts.

Suppose we find from table I the logarithms of the two numbers 6257 and 6258, and we want to find the logarithm of 6257 $^{\circ}$ 6; or that we find from table III, tan 53 $^{\circ}$ 23 $^{\prime}$ and tan 53 $^{\circ}$ 24 $^{\prime}$, but we want to find tan 53 $^{\circ}$ 23 $^{\prime}$ 20 $^{\prime\prime}$; or similarly, from table IV, we get L cos 37 $^{\circ}$ 42 $^{\prime}$ and L cos 37 $^{\circ}$ 43 $^{\prime}$ but we want to find L cos 37 $^{\circ}$ 42 $^{\prime}$ 48 $^{\prime\prime}$; how are we to proceed?

In order to meet such cases, the 'Principle of Proportional Parts' may be used. The principle may be stated as follows:

If the value of a quantity depending on a variable quantity x be tabulated for different values of x at regular small intervals, then in most cases, for a very small change in x (which is called the argument) the corresponding small change in the tabulated quantity, (called the function of the argument) is proportional to the change in x.

We shall assume the truth of this principle; for a strict proof of it, with the proper restrictions under which it is true, depends on the use of Calculus. For the tables with which we are concerned, it is true for all practical purposes.

The application of the principle is illustrated in the following examples:

Ex. 1. Given log 63374 = 4'8019111 and log 63375 = 4'8019180, find log 63'3743 and find the number whose logarithm is \(\bar{2}\)'8019136.

Here log 69375 = 4'8019180 and log 63374 = 4'8019111 Hence for an increase of 1 in the number, the increment in the logarithm is '0000069. (This is usually spoken as 'diff. for 1 is 69')

Therefore by the Principle of Proportional Parts, increase in the logarithm for an increase of 3 in the number is

Hence
$$\log 63374^{\circ}3 = 48019111 + 0000021$$

= 4'8019132.

 $\log 63^{\circ}3743 = 1^{\circ}8019132.$

Again, 4'8019136 lies between 4'8019111 and 4'8019180, the difference from the former being '0000025. Hence 4'8019136 is the logarithm of a number lying between 63374 and 63375, say logarithm of 63374 + x.

Then diff. for 1 being 69 (i.e., 6000009) and diff. for x being 25, (i.e., 60000025), by the Principle of Proportional Parts, we have

69: 25::1:
$$x$$

or, $x = \frac{2}{3} = \frac{5}{3} = \frac{1}{3} = \frac{1}{3}$

Hence $\log 63374^{\circ}36 \cdots = 4^{\circ}8019136$.

The required number whose logarithm is $\overline{2}$ '8019136, having the same mantissa, must be formed of the same digits arranged in the same order, and its characteristic being -2, the number must be $06337436\cdots$

Ex. 2. (i) Given L sin
$$37^{\circ} 43' 50'' = 9.7867152$$
L sin $37^{\circ} 44' = 9.7867424$,
find L sin $37^{\circ} 43' 56''$.

(ii) Given L tan 79° 51′ 40″ = 10.7475657 L tan 79° 51′ 50″ = 10.7476872, find the angle whose L tan is 10.7476532.

[C. U. 1921,]

In (i) diff. (in the value of $L \sin$) for 10" (diff. in angle) = 272 (i.e., '0000272)

hence diff. for $6'' = \frac{6}{10} \times 272 = 163.2$ i.e., '00001632 and so $L \sin 37^{\circ} 43' 56'' = 9.7867152 + 0000163 = 9.7867315.$

In (ii) the angle whose L tan is 19'7476532 evidently lies between 79° 51′ 40″ and 79° 51′ 50″.

Let the angle be 79° 51' 40'' + x''.

Now diff. (in the value of L tan) for 10" (diff. in angle) = 1215 (i.e., '0001215)

and diff. for x'' = 875

(i.e., '0000875, being 10'7476532 - 10'7475657)

 $\therefore \frac{x}{10} = \frac{875}{1215}$ or x = 7.2 nearly.

Thus the required angle is 79° 51′ 47"2.

Ex. 3. Given $\cos 58^{\circ} 17' = 5257191$ and diff. for 1' = 2474, find $\cos 58^{\circ} 17' 20''$.

Here diff, for 1' i.e., 60'' = 2474.

 \therefore diff. for $20'' = \frac{20}{100} \times 2474 = 825$ (nearly).

As for increasing angle, cosine diminishes,

... cos 58° 17′ 20″ = '5257191 - '0000825 = '5256366.

Examples XIII(b)

- Given log 18'906 = 1'2765997
 and log 18'907 = 1'2766226,
 find log 1890'635.
- 2. Given $\log 69714 = 4.8433200$ $\log 69715 = 4.8433262$, find $\log (.000697145)^{\frac{1}{6}}$.

11

- 3. Given log 37602 = 4'5752109 log 37601 = 4'5751994, find the number whose logarithm is 1'5752086.
- 4. Given $\log 3 = 4771213$ $\log 74008 = 48692787$ diff. for 1' = 59, find $('09)^{\frac{1}{8}}$.
- 5. Given cos 32° 16′ = '8455726

 and cos 32° 17′ = '8454172,
 find the value of cos 32° 16′ 24″

 and find the angle whose cosine is '8455176.
- 6. Find tan 38° 24′ 37′5″ having given tan 38° 24′ = '7925902 and tan 38° 25′ = '7930640.
- Given L sin 44° 17' = 9'8439842
 and L sin 44° 18' = 9 8441137,
 find L sin 44° 17' 33". Deduce the value of L cosec 44° 17' 33".
- 8. Given $I \sin 36^{\circ} 24' = 9'7733614$ $L \sin 36^{\circ} 25' = 9'7735327$,
 find the angle whose $L \sin is 9'7734642$.
- 9. If $L \cot 53^{\circ} 13' = 9.8736937$
- *L* cot 53° 14′ = 9'8734302, find θ where *L* cot θ = 9'8734523.
- 10. Given L tan 22° 37′ = 9.6197205

diff. for 1'=3557,

find the value of $L \tan 22^{\circ} 37' 22''$ and the angle whose $L \tan is 9'6195283$.

11. Prove that. 0 being any acute angle,

$$L \sin \theta + L \csc \theta = L \cos \theta + L \sec \theta$$
$$= L \tan \theta + L \cot \theta = 20.$$

- 12. Given $L \cos 36^{\circ} 40' = 9'9042411$, find $L \sec 36^{\circ} 40'$.
- 13. Given $L \cos 34^{\circ} 44' = 9.9147729$ $L \cos 34^{\circ} 45' = 9.9146852$, find the value of $L \cos 34^{\circ} 44' 27''$.
- 14. Given $L \sin 36^{\circ} 40' = 9.7760897$ $L \cos 36^{\circ} 40' = 9.9042411,$ find $L \tan 36^{\circ} 40'.$
- 15. Prove that the difference of tabular logarithms of any two ratios is equal to the difference of the logarithms of those two ratios.
 - 16. If $\sin \theta =$ 'S, find θ given $\log 2 = 3010300$ $L \sin 53^{\circ} 7' = 99030136$ $L \sec 3652' = 100968916.$
 - 17. Find the value of

 sin 34° 17′ × cos 77° 23′

 tan 27° 12′

given L sin 12° 37′ = 9'3398 L cos 55° 43′ = 9'750′ L tan 62° 48′ = 10'28 and log 23'94 = 1'379

CHAPTER NIV

PROPERTIES OF TRIANGLES

- 81. In a triangle ABC, there are six parts, the three sides and the three angles. It is usual to denote the angles of the triangle by A, B, C and the corresponding opposite sides by a, b, c. The six parts are not independent of one another. The various relations existing among them are deduced in the following articles.
 - 82. In any triangle, prove that

Let ABC be any triangle. From A draw AD perpendicular to BC or BC produced if necessary [Fig. (ii).]

[In Fig. (i), C is an acute angle, in Fig. (ii), C is an obtuse angle in Fig. (iii), C is a right angle.]

From $\triangle ABD$, $AD = AB \sin ABD = c \sin B$.

From $\triangle ACD$, $AD = AC \sin ACD = b \sin C$ [Fig. (i).]

or,
$$= b \sin (\pi - C) [Fig.(ii)]$$

$$\therefore b \sin C = c \sin B, i.e., \sin B = \frac{c}{\sin C}$$

Similarly, by drawing a perpendicular from B upon CA.

we have
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
.

In Fig. (iii), C is a right angle;

$$\therefore \sin A = \frac{a}{c}; \sin B = \frac{b}{c}; \sin C = 1.$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = c = \frac{c}{\sin C}.$$

Honce, in all cases,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad \cdots (1)$$

Thus, in any triangle,

the sides are proportional to the sines of the opposite angles.

An alternative method of proof :

Let O be the centre and R be the radius of the circle circumscribing the triangle ABC.

Join BO and produce it to meet the circumference in D. Join CD. The $\angle BCD$ is then a right angle.

From
$$\triangle BCD$$
, $\sin BDC = \frac{BC}{BD} = \frac{a}{2R}$.

But $\angle BDC = \angle A$, being in the same segment.

$$\therefore \frac{a}{2R} = \sin A, \text{ or, } \frac{a}{\sin A} = 2R.$$

Similarly, by joining AO and producing it to meet the circumference in E, and joining CE, BE, it can be shown that

$$\sin B = 2R \text{ and } \frac{c}{\sin C} = 2R.$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R. \qquad \cdots (2)$$

Note 1. If angle A be obtuse, A and D fall on opposite sides of BC and ABCD being cyclic, $\sin BDC = \sin (150^{\circ} - A) = \sin A$, and the same result follows. In case A is a right angle, evidently $2R = a = a/\sin A$, and we get the same result.

Note 2. It follows from the relation (2) that

$$a=2R\sin A, b=2R\sin B, c=2R\sin C$$
,

$$\sin\beta = \frac{a}{2R}, \sin R - \frac{b}{2R}, \sin C = \frac{c}{2R}.$$

83. In any triangle, to prove that

$$a^2 = b^2 + c^2 - 2bc \cos A$$
, or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$.
 $b^2 = c^2 + a^2 - 2ca \cos B$, or $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$.
 $c^2 = a^2 + b^2 - 2ab \cos C$, or $\cos C = \frac{a^2 + b^2 - c^2}{2ca}$.

Take the figures of Art. 82.

First, let C be an acute angle [Fig. (i)]; then from Geometry,

$$AB^2 = BC^2 + CA^2 - 2BC.CD.$$

Now, from $\triangle ACD$, $CD = AC \cos C = b \cos C$.

$$c^2 = a^2 + b^2 - 2ab \cos C$$
.

Next, let the angle C be an obtuse angle $\{Fig. (ii)\}$; then from Geometry.

$$AB^2 = BC^2 + CA^2 + 2BC.CD.$$

Now, from
$$\triangle ACD$$
, $CD = AC \cos ACD$
= $b \cos (\pi - C) = -b \cos C$.

$$c^2 = a^2 + b^2 - 2ab \cos C$$
.

Lastly, let C be a right angle [Fig. (iii)]; then from Geometry.

$$AB^2 = BC^2 + CA^2$$
,
i.e., $c^2 = a^2 + b^2 = a^2 + b^2 - 2ab \cos C$.
 $\cos C = \cos 90^\circ = 0$.

Hence, for all values of C, we have

$$c^{2} = a^{2} + b^{2} - 2ab \cos C,$$

$$\therefore \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}.$$

Similarly, the other two relations can be established.

Obs. This theorem expresses the cosines of the angles of a triangle in terms of the sides.

84. In any triangle, to prove that

$$a = b \cos C + c \cos B$$
.

$$b = c \cos A + a \cos C$$
.

Take the figures of Art. 82.

In Fig. (i), where C is an acute angle.

$$BC = BD + CD$$

$$=AB\cos ABD + AC\cos ACD$$
.

$$\therefore a = c \cos B + b \cos C$$
.

In Fig. (ii), where C is an obtuse angle,

$$BC = BD - CD$$

$$= AB \cos ABD - AC \cos ACD$$

$$=c\cos B-b\cos (180^{\circ}-C)$$

$$=c\cos B+b\cos C.$$

In Fig. (iii), where C is a right angle, $BC = AB \cos B$.

$$\therefore a = c \cos B = c \cos B + b \cos C.$$

$$[\because \cos C = \cos 90^{\circ} = 0.]$$

Thus in all cases,

$$a=b\cos C+c\cos B$$
.

Similarly, the other two relations can be established.

85. From Art. 83 and note of Art. 82, it follows that

$$\tan A = \frac{\sin A}{\cos A} = \frac{2R}{b^2 + c^2 - a^2} = \frac{abc}{R} \cdot \frac{1}{b^2 + c^2 - a^2}.$$

Similarly,
$$\tan B = \frac{abc}{R} \cdot \frac{1}{c^2 + a^2 - b^2};$$

 $\tan C = \frac{abc}{R} \cdot \frac{1}{a^2 + b^2 - c^2}.$

86. Trigonometrical ratios of half angles of a triangle in terms of the sides.

We have,
$$2\sin^2\frac{A}{2} = 1 - \cos A = 1 - \frac{h^2 + c^2 - a^2}{2hc}$$

$$= \frac{2hc - b^2 - c^2 + a^2}{2hc} = \frac{a^2 - (h^2 - 2hc + c^2)}{2bc}$$

$$= \frac{a^2 - (b - c)^2}{2bc} = \frac{(a - b + c)(a + b - c)}{2hc}.$$

Let s denote the semi-perimeter of the triangle;

then
$$2s = a + b + c$$
.
Now, $a - b + c = a + b + c - 2b = 2s - 2b = 2(s - b)$, $a + b - c = a + b + c - 2c = 2s - 2c = 2(s - c)$.
Hence, $2\sin^2\frac{A}{2} = \frac{2(s - b)(s - c)}{2bc}$
i.e., $\sin^2\frac{A}{2} = \frac{(s - b)(s - c)}{bc}$
 $\sin\frac{A}{2} = \sqrt{\frac{(s - b)(s - c)}{bc}}$

The positive value of the square root must be taken; for A, being an angle of a triangle, is less than 180° ; and hence $\frac{1}{2}A < 90^{\circ}$ and consequently, $\sin \frac{1}{2}A$ must always be positive.

Again,
$$2\cos^2\frac{A}{2} = 1 + \cos A$$

$$= 1 + \frac{b^2 + c^2 - a^2}{2bc} = \frac{2bc + b^2 + c^2 - a^2}{2bc}$$

$$= \frac{(b + c)^2 - a^2}{2bc} = \frac{(b + c + a)(b + c - a)}{2bc}.$$
Now, $b + c - a = a + b + c - 2a = 2s - 2a = 2(s - a).$

$$\therefore 2\cos^2\frac{A}{2} = \frac{2s \cdot 2(s - a)}{2bc}, i.e., \cos^2\frac{A}{2} = \frac{s(s - a)}{bc}.$$

$$\therefore \cos\frac{A}{2} = \sqrt{\frac{s(s - a)}{bc}}.$$

Here also the positive value of the square root must be taken, for $\frac{1}{2}A$ being less than 90°, $\cos \frac{1}{2}A$ is always positive.

Again,
$$\tan \frac{A}{2} = \sin \frac{A}{2} + \cos \frac{A}{2}$$

$$= \sqrt{\frac{(s-b)(s-c)}{bc}} + \sqrt{\frac{s(s-a)}{bc}}$$

$$= \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

Similarly, the trigonometrical ratios of $\frac{B}{2}$, $\frac{C}{2}$ can be obtained in terms of the sides.

Note. Without assuming the values of $\sin \frac{1}{2}A$, $\cos \frac{1}{2}A$, the value of $\tan \frac{1}{2}A$ can be obtained by substituting the values of $\cos A$ in terms of the sides from Art. 83 in the relation $\tan \frac{1}{2}A = \frac{1-\cos A}{1+\cos A}$ and then extracting the square root after simplification.

Thus, we have

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}} \cdots (1)$$

$$\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}} \cdots (2)$$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \cdots (2)$$

$$\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}} \cdots (2)$$

$$\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \cdots (3)$$

$$\tan \frac{A}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} \cdots (3)$$

$$\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \cdots (3)$$

87. Sine of an angle of a triangle in terms of the sides.

$$\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}$$

$$= 2 \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{s(s-a)}{bc}} \cdot [Art. 86].$$

$$\therefore \sin A = \frac{2}{bc} \sqrt{\frac{s(s-a)(s-b)(s-c)}{bc}}.$$
Similarly, $\sin B = \frac{2}{ca} \sqrt{\frac{s(s-a)(s-b)(s-c)}{bc}}.$

 $\sqrt{s(s-a)(s-b)(s-c)}$, being the expression for the area of the triangle [See Art. 88], is usually denoted by the Greek letter Δ . Hence, the above formula may be written as

$$\sin A = \frac{2\triangle}{bc}$$
, $\sin B = \frac{2\triangle}{ca}$, $\sin C = \frac{2\triangle}{ab}$.

88. Area of a triangle.

Let ABC be a triangle and let \triangle denote its area. Draw AD perpendicular to BC; then from $\triangle ACD$,

$$AD = AC \sin C = b \sin C$$
.

Now,
$$\Delta = \frac{1}{2}BC.AD. = \frac{1}{2}ab \sin C.$$

Similarly, by drawing perpendicular from B and C to the opposite sides, it can be shown that

$$\Delta = \frac{1}{2}bc \sin A - \frac{1}{2}ac \sin B$$
.

Otherwise,
$$\triangle = \frac{1}{2}ab \sin C$$

 $= \frac{1}{2}ac \sin B \left[\therefore b \sin C = c \sin B \right]$
 $= \frac{1}{2}bc \sin A \left[\therefore a \sin B = b \sin A \right]$

Thus, $\triangle = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$.. (i) = $\frac{1}{2}$ (product of two sides) × sine of included angle.

Again,
$$\triangle = \frac{1}{2}bc \sin A = bc \sin \frac{A}{2} \cos \frac{A}{2}$$

$$= bc \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-a)}{bc}}$$

$$= \sqrt{s(s-a)(s-b)(s-c)} \cdots \cdots (ii)$$

Substituting in the expression $s = \frac{1}{2}(a + b + c)$, we get

$$\Delta = \frac{1}{2} \sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}$$

= $\frac{1}{4} \{ 2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4 \}^{\frac{1}{2}} \cdots$ (iii)

Again,

$$\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}bc \cdot \frac{a}{2R} \left[Art. 8c \right] = \frac{abc}{4R} \cdot \cdots \text{ (iv)}$$

Note. In some text books, S is used to denote the area of a triangle; but to avoid confusion between S and s in writing, the symbol Δ is preferable.

tan
$$\frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
.

We have, in any triangle,

$$\frac{b}{c} = \sin \frac{B}{C}$$

$$\frac{b-c}{b+c} = \frac{\sin B - \sin C}{\sin B + \sin C} = \frac{2 \cos \frac{B+C}{2} \cdot \sin \frac{B-C}{2}}{2 \sin \frac{B+C}{2} \cdot \cos \frac{B-C}{2}}$$

$$= \cot \frac{B+C}{2} \tan \frac{B-C}{2}$$

$$= \tan \frac{A}{2} \tan \frac{B-C}{2} \left[\therefore \frac{A}{2} + \frac{B+C}{2} = 90^{\circ} \right]$$

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \frac{1}{\tan A} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

Similarly,

$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}; \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}.$$

90. The three sets of formulæ in Arts. 82,83, 84 have been established directly from the figures. These three sets,

however, are not independent, for, from any one set, the other two sets can be deduced.

For example, let us deduce the formulæ of Art. 83 from those of Art. 84.

By Art. 84,
$$a = b \cos C + c \cos B$$

 $b = c \cos A + a \cos C$
 $c = a \cos B + b \cos A$.

Multiplying these in succession by a, b and c, and subtracting the first result from the sum of the other two, we have,

$$b^{2} + c^{2} - a^{2} = b(c \cos A + a \cos C) + c(a \cos B + b \cos A)$$

$$-a(b \cos C + c \cos B) = 2bc \cos A.$$

$$\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}; \text{ similarly for } \cos B, \cos C.$$

Note. For other cases, see Appendix.

91. In working out identities which involve both the sides and angles of a triangle, it is sometimes convenient to express the sides in terms of the angles, or the angles in terms of the sides.

Also, it is sometimes found convenient to express the values of $\tan\frac{A}{2}$, $\tan\frac{B}{2}$, $\tan\frac{C}{2}$ in a form in which the denominator is constant and numerator is free from radical. Thus, multiplying the numerator and the denominator of the value of $\tan\frac{A}{2}$ by $\sqrt{(s-b)(s-c)}$ and noting that

$$\frac{\sqrt{s(s-a)(s-b)(s-c)} = \triangle, \text{ we have}}{\tan \frac{A}{2} = \frac{(s-b)(s-c)}{\triangle}; \text{ similarly, } \tan \frac{B}{2} = \frac{(s-c)(s-a)}{\triangle}; \\
\tan \frac{C}{2} = \frac{(s-a)(s-b)}{\triangle}.$$

Again, multiplying the numerator and the denominator of the value of cot $\frac{A}{2}$ by $\sqrt{s(s-a)}$, we have

$$\cot \frac{A}{2} = \frac{s(s-a)}{\triangle}.$$

Similarly, $\cot \frac{B}{2} = \frac{s(s-b)}{\Delta}$; $\cot \frac{C}{2} = \frac{s(s-c)}{\Delta}$.

Ex. 1. Show that in any triangle

$$a(\sin B - \sin C) + b'\sin C - \sin A) + c(\sin A - \sin B) = 0.$$

Left side = $(a \sin B - b \sin A) + (b \sin C - c \sin B)$

$$+(c \sin A - a \sin C)$$

= 0 + 0 + 0 [: by Act. 82,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
]

Ex. 2. Show that in any triangle

$$a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0.$$

$$a = 2R \sin A \{by Art. \delta 2\} = 2R \sin (B+C), [::A+B+C=\pi]$$

... 1st term of left side =
$$2R \sin (B+C) \sin (B-C)$$

= $2R (\sin^2 B - \sin^2 C)$

Similarly, 2nd term =
$$2R (\sin^2 C - \sin^2 A)$$

3rd term = $2R (\sin^2 A - \sin^2 B)$,

Now, adding together the three terms, the required result follows.

Ex. 3. In any triangle, prove that

$$(b-c) \cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0.$$

Substituting the values of $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$, as given in Art. 91 we have, the left side

$$= (b-c) \cdot \frac{s(s-a)}{\triangle} + (c-a) \cdot \frac{s(s-b)}{\triangle} + (a-b) \cdot \frac{s(s-c)}{\triangle}$$

$$\cdot \frac{s}{\triangle} \Big[(b-c)(s-a) + (c-a)(s-b) + (a-b)(s-c) \Big]$$

$$= \frac{s}{\triangle} \cdot 0 = 0.$$

Ex. 4. If the cosines of two of the angles of a triangle are inversely proportional to the opposite sides, show that the triangle is either isosceles or right-angled.

We have, by the question,

$$\frac{\cos A}{\cos B} = \frac{b}{a} = \frac{\sin B}{\sin A}.$$
 [by Art. 62.]

- \therefore sin $A \cos A = \sin B \cos B$ or $\sin 2A = \sin 2B$.
- $\therefore \sin 2A \sin 2B = 0.$
- \therefore 2 cos (A + B) sin (A B) = 0.
- :. either $\cos (A + B) = 0$, i.e., $(A + B) = 90^{\circ}$.
- :. the triangle is right-angled;

or,
$$\sin (A - B) = 0$$
, i.e., $A - B = 0$, i.e., $A = B$.

- ... the triangle is isosceles.
- Ex. 5. If the sides of a triangle are in A.P., show that $\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$ are also in A.P.

$$\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$$
 are in A. P.,

if
$$\cot \frac{B}{2} - \cot \frac{A}{2} = \cot \frac{C}{2} - \cot \frac{B}{2}$$
.

i.e., if
$$\frac{s(s-b)}{\triangle} - \frac{s(s-a)}{\triangle} = \frac{s(s-c)}{\triangle} - \frac{s(s-b)}{\triangle}$$
i.e., if
$$(s-b) - (s-a) = (s-c) - (s-b)$$
i.e., if
$$a-b=b-c$$

i.e., if a, b, c are in A.P.

Ex. 6. Show that
$$b^2 \sin 2C + c^2 \sin 2B = 4\triangle$$
.

Left side =
$$b^2.2 \sin C \cos C + c^2.2 \sin B \cos B$$

= $2b \sin C.b \cos C + 2c \sin B.c \cos B$
 $= 2b \sin C(b \cos C + c \cos B)$
[$\therefore c \sin B = b \sin C$]
= $2ab \sin C$ [$by Art. 84$]
= $4.\frac{1}{2}ab \sin C = 4\Delta$. [$by Art. 88$]

Examples XIV(a)

In any triangle, prove that
$$(Ex. \ 1 \ to \ 21):$$

1. $\sin \frac{B-C}{2} = \frac{b-c}{a} \cos \frac{A}{2}$.

2. $\cos \frac{B-C}{2} = \frac{b+c}{a} \sin \frac{A}{2}$.

3. $(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$.

4. $\frac{a+b}{a+b} = \tan \frac{A+B}{2} \cot \frac{A-B}{2}$.

5. $a^2+b^2+c^2=2(bc\cos A+ca\cos B+ab\cos C)$.

6. $(b+c-a)\tan \frac{A}{2} = (c+a-b)\tan \frac{B}{2} = (a+b-c)\tan \frac{C}{2}$.

7.
$$\frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2}$$

8.
$$a^2(\sin^2 B - \sin^2 C) + b^2(\sin^2 C - \sin^2 A) + c^2(\sin^2 A - \sin^2 B) = 0.$$

9.
$$a^{2}(\cos^{2}B - \cos^{2}C) + b^{2}(\cos^{2}C - \cos^{2}A) + c^{2}(\cos^{2}A - \cos^{2}B) = 0.$$

10.
$$\frac{a^2 \sin{(B-C)}}{\sin{B} + \sin{C}} + \frac{b^2 \sin{(C-A)}}{\sin{C} + \sin{A}} + \frac{c^2 \sin{(A-B)}}{\sin{A} + \sin{B}} = 0.$$

11.
$$a \sin \frac{A}{2} \sin \frac{B-C}{2} + b \sin \frac{B}{2} \sin \frac{C-A}{2} + c \sin \frac{C}{2} \sin \frac{A-B}{2} = 0.$$

12.
$$\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0.$$

13.
$$a^3 \sin (B-C) + b^3 \sin (C-A) + c^3 \sin (A-B) = 0$$
.

14.
$$a^3 \cos (B-C) + b^3 \cos (C-A) + c^3 \cos (A-B) = 3abc$$
.

15.
$$\frac{a^2 \sin (B-C)}{\sin A} + \frac{b^2 \sin (C-A)}{\sin B} + \frac{c^2 \sin (A-B)}{\sin C} = 0.$$

16.
$$(b^2-c^2) \cot A + (c^2-a^2) \cot B + (a^2-b^2) \cot C = 0$$
.

17.
$$\frac{h^2 - c^2}{\cos B + \cos C} + \frac{c^2 - a^2}{\cos C + \cos A} + \frac{a^2 - b^2}{\cos A + \cos B} = 0.$$

18.
$$(s-a \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \tan \frac{C}{2}$$

19.
$$\frac{b-c}{a}\cos^2\frac{A}{2} + \frac{c-a}{b}\cos^2\frac{B}{2} + \frac{a-b}{c}\cos^2\frac{C}{2} = 0.$$

20.
$$bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} = s^2$$
.

21.
$$\frac{1}{a} \cos^2 \frac{A}{2} + \frac{1}{b} \cos^2 \frac{B}{2} + \frac{1}{c} \cos^2 \frac{C}{2} - \frac{s^2}{abc}$$

22. If A be 60°, show that
$$b+c-2a\cos\frac{B-C}{2}$$
.

- 23. Show that a triangle having its sides equal to 3, 5, 7 is an obtuse-angled triangle and determine the obtuse angle.
 - 24. Given (a+b+c)(b+c-a)=3bc, find A.
 - 25. If $c^4 2(a^2 + h^2)c^2 + a^4 + a^2h^2 + b^4 = 0$, prove that $C = 60^\circ$, or, 120°.
 - 26. If $a^4 + b^4 + c^4 = 2c^2(a^2 + b^2)$, prove that $C = 45^\circ$, or, 135°.
- 27. The sides of a triangle are 2x + 3, $x^2 + 3x + 3$, $x^2 + 2x$; show that the greatest angle is 120° .
 - 28. If $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ show that $C = 60^{\circ}$.
 - 29. If a=2b and A=3B, find the angles of the triangle.
- 30. If the cosines of two of the angles of a triangle are proportional to the opposite sides, show that the triangle is isosceles.
 - 31. If $\cos A = \frac{\sin R}{2 \sin C}$ show that the triangle is isosceles.
- 32. If $(a^2 + b^2) \sin (A B) = (a^2 v^2) \sin (A + B)$, prove that the triangle is either isosceles or right-angled. 33. If $\cos A + 2 \cos C : \cos A + 2 \cos B = \sin B : \sin C$,
- 33. If $\cos A + 2 \cos C : \cos A + 2 \cos B = \sin B : \sin C$, prove that the triangle is either isosceles or right-angled.
- 34. If a^2 , b^2 , c^2 be in A.P., prove that cot A, cot B, cot C are also in A P.
- 35) If $a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} = \frac{3b}{2}$, show that the sides of the triangle are in A.P.
- 36 If $\sin A : \sin C = \sin (A B) : \sin (B C)$, show that a^2 , b^2 , c^2 are in A.P.

- 37. If a, b, c are in A.P., show that $\cos A \cot \frac{1}{2}A$, $\cos B \cot \frac{1}{2}B$, $\cos C \cot \frac{1}{2}C$ are in A.P. [$\cos A \cot \frac{1}{2}A = (1-2\sin^2\frac{1}{2}A) \cot \frac{1}{2}A = \cot \frac{1}{2}A \sin A$.]
- 38. Assuming $\Delta = \frac{1}{2}bc \sin A$ and using the value of $\cos A$ in terms of sides, show that

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}.$$

39. Find the area of the triangle whose sides are

$$\frac{y}{z} + \frac{z}{x}, \frac{z}{x} + \frac{x}{y}, \frac{x}{y} + \frac{y}{z}.$$

40. In a triangle, if a=13, b=14, c=15, find its area.

Prove that in any triangle:

41.
$$\frac{a^2 - b^2}{2} \sin \frac{A \sin B}{\sin (A - B)} = \Delta$$
.

- 42. $4\triangle (\cot A + \cot B + \cot C) = a^2 + b^2 + c^2$.
- 43. $a \cos A + b \cos B + c \cos C = 4R \sin A \sin B \sin C$.
- 44. $a \sin B \sin C + b \sin C \sin A + c \sin A \sin B = \frac{3\Delta}{R}$
- 45 $(a \sin A + b \sin B + c \sin C)^2$ = $(a^2 + b^2 + c^2)(\sin^2 A + \sin^2 B + \sin^2 C)$.
- 46. $\frac{\cos B \cos C}{bc} + \frac{\cos C \cos A}{ca} + \frac{\cos A \cos B}{ab} = \frac{1}{4R^2}.$

[Use Σ cot B cot C=1; ex. 2, Ex. X.]

47.
$$\frac{b^2-c^2}{a}\cos A + \frac{c^2-a^2}{b}\cos B + \frac{a^2-b^2}{c}\cos C = 0.$$

48.
$$\frac{\cos A}{a} + \frac{a}{bc} = \frac{\cos B}{b} + \frac{b}{ca} = \frac{\cos C}{c} + \frac{c}{ab}$$

49. $4\triangle = a^2 \cot A + b^2 \cot B + c^2 \cot C$.

50.
$$\left(\frac{a^2}{\sin A} + \frac{b^2}{\sin B} + \frac{c^2}{\sin C}\right) \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} - \Delta.$$

Circum-radius of a triangle.

From Art. 82, we have

$$\frac{\mathbf{a}}{\sin \mathbf{A}} - \frac{\mathbf{b}}{\sin \mathbf{B}} - \frac{\mathbf{c}}{\sin \mathbf{C}} \cdot 2\mathbf{R}. \qquad \cdots \quad (i)$$

again,
$$R = \frac{a}{2} \sin A = \frac{abc}{2bc} \sin A = \frac{abc}{4\Delta}$$
 · · · · (ii)

93. In-radius of a triangle.

Let I be the centre and r the radius of the circle inscribed in the triangle ABC; let D, E, Fbe the points of contact of the in-circle with the sides BC, CA, AB respectively.

Then, ID = IE = IF = r. Join IA. IB. IC.

$$\Delta ABC = \Delta IBC + \Delta ICA + \Delta IAB$$

$$= \frac{1}{2}BC.ID + \frac{1}{2}CA.IE + \frac{1}{2}AB.IF$$

$$= \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr$$

$$= \frac{1}{2}r(a+b+c) = rs.$$
hus, $\Delta = rs.$

Thus.

$$\mathbf{r} = \frac{\triangle}{\mathbf{s}}$$
 ... (i)

Again,
$$a = BC = BD + DC$$

= $r \cot \frac{1}{2}B + r \cot \frac{1}{2}C$, from \triangle^s IBD , ICD ,
= $r \left[\frac{\cos \frac{1}{2}B}{\sin \frac{1}{2}B} + \frac{\cos \frac{1}{2}C}{\sin \frac{1}{2}C} \right]$
= $r \left[\frac{\cos \frac{1}{2}B}{\sin \frac{1}{2}C} + \frac{\sin \frac{1}{2}B}{\sin \frac{1}{2}C} \cos \frac{1}{2}C \right]$
= $r \frac{\sin (\frac{1}{2}B + \frac{1}{2}C)}{\sin \frac{1}{2}B \sin \frac{1}{2}C} - r \frac{\cos \frac{1}{2}A}{\sin \frac{1}{2}B \sin \frac{1}{2}C}$

[:
$$\frac{1}{2}A + \frac{1}{2}B + \frac{1}{2}C = 90^{\circ}$$
, ... $\sin(\frac{1}{2}B + \frac{1}{2}C) = \sin(90^{\circ} - \frac{1}{2}A) = \cos\frac{1}{2}A$.]

$$\therefore r = a \sin \frac{1}{2}B \sin \frac{1}{2}C \sec \frac{1}{2}A = a \frac{\sin \frac{1}{2}B \sin \frac{1}{2}C}{\cos \frac{1}{2}A}.$$

Since by Art. 92 (i), $a = 2R \sin A = 4R \sin \frac{1}{2}A \cos \frac{1}{2}A$.

$$r = 4R \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$$
. ... (ii)

Since, from the figure, AF = AE, BD = BF, CD = CE and since the sum of these six quantities is equal to the perimeter,

$$AF + BD + CD = \text{semi-perimeter} = s$$
,

i.e.,
$$AF+BC$$
, or, $AF+a=s$.

$$\therefore AF = s - a = AE.$$

Similarly, BF = s - b = BD; CE = s - c = CD.

From $\triangle AIF$, IF = AF tan IAF.

Similarly,
$$\mathbf{r} = (\mathbf{s} - \mathbf{a}) \tan \frac{1}{2} \mathbf{A}$$
.
Similarly, $\mathbf{r} = (\mathbf{s} - \mathbf{b}) \tan \frac{1}{2} \mathbf{B}$, ... (iii)
and $\mathbf{r} = (\mathbf{s} - \mathbf{c}) \tan \frac{1}{2} \mathbf{C}$.

Note. Distances of the In-centre from the vertices.

From $\triangle AIF$, IA = IF cosec IAF. $\therefore IA = r$ cosec $\frac{1}{2}A$ Similarly, IB = r cosec $\frac{1}{2}B$ and IC = r cosec $\frac{1}{2}C$.

94. Ex-radii of a triangle.

Let I_1 be the centre and r_1 the radius of the escribed circle (opposite to the angle A) of the $\triangle ABC$; let D, E, F be the points of contact of the circle with the sides BC, and AC and AB produced.

Let r_2 , r_3 denote the radii of the escribed circles opposite to the angles B and C respectively.

Putting
$$a = 2R \sin A = 4R \sin \frac{1}{2}A \cos \frac{1}{2}A$$
,
 $r_1 = 4R \sin \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$.
Similarly, $r_2 = 4R \cos \frac{1}{2}A \sin \frac{1}{2}B \cos \frac{1}{2}C$,
and $r_2 = 4R \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C$. (ii)

Again,
$$AE = AC + CE = b + CD$$
 [$CE = CD$] and $AF = AB + BF = c + BD$ [$BF = BD$]

But
$$AE = AF$$
; therefore, by addition, we get $2AE = b + c + BD + CD = b + c + a = 2s$.

$$AE = s.$$

Again, from $\triangle AI_1E$, $I_1E = AE \tan I_1AE$.

Similarly,
$$r_1 = s \tan \frac{1}{2}A$$
.
Similarly, $r_2 = s \tan \frac{1}{2}B$, $r_3 = s \tan \frac{1}{2}C$.

Note. Distances of Ex-centres from the vertices.

From
$$\triangle AI_1F$$
, $I_1A = I_1F$ cosec I_1AF .

$$I_1 A = r_1 \operatorname{cosec} \frac{1}{2} A$$

$$= 4R \cos \frac{1}{2} B \cos \frac{1}{2} C. \qquad [by formula (ii)]$$

From $\triangle BI_1F$, $I_1B=I_1F$ cosec I_1BF .

$$\therefore I_1B=r_1 \sec \frac{1}{2}B \ [\therefore \angle I_1BF=\{0^\circ-\frac{1}{2}B\}]$$

Similarly, $I_1C=r_1 \sec \frac{1}{2}C$.

In the same way, $I_2B=r_2$ cosec $\frac{1}{2}B$, $I_3C=r_3$ cosec $\frac{1}{2}C$.

Ex. 1. Prove that
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$$
.

By formula (i), Art. 94,

left side =
$$\frac{s-a}{\triangle} + \frac{s-b}{\triangle} + \frac{s-c}{\triangle}$$

= $\frac{3s-(a+b+c)}{\triangle} = \frac{3s-2s}{\triangle} = \frac{s}{\triangle} = \frac{1}{r}$.

Ex. 2. Prove that $4 \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C = \frac{8}{R}$.

Left side = 4.
$$\sqrt{\frac{s(s-a)}{bc}}$$
. $\sqrt{\frac{s(s-b)}{ca}}$. $\sqrt{\frac{s(s-c)}{ab}}$
= $\frac{4s}{abc}$. $\sqrt{s(s-a)(s-b)(s-c)}$
= $\frac{4s}{abc}$. $\Delta = s \cdot \frac{4\Delta}{abc} = \frac{s}{R}$ by formula (ii), Art. 92.

Ex. 3. Show that

$$bc - r_2 r_3 = ca - r_3 r_1 = ab - r_1 r_2.$$

$$r_1 = r_2 = r_3$$

$$r_2 r_3 = (s - b)(s - c) = s(s - a).$$

$$bc - r_2 r_3 = \frac{1}{4} [4bc - 2s(2s - 2a)]$$

$$= \frac{1}{4} [4bc - (a + b + c)(b + c - a)]$$

$$= \frac{1}{4} [4bc + a^2 - (b + c)^2] = \frac{1}{4} [a^2 - (b - c)^2]$$

$$= \frac{1}{4} [(a + b - c)(a - b + c)] = (s - b)(s - c).$$

$$bc - r_2 r_3 = \frac{(s - b)(s - c)}{r_1} = \frac{(s - a)(s - b)(s - c)}{\Delta}$$

$$= \frac{\Delta}{r_1}$$

Similarly the other ratios are equal to the same quantity.

Ex. 4. Prove that in any triangle

$$r_1 + r_2 + r_3 - r = 4R.$$
Left side = $\left(\frac{\triangle}{s-a} + \frac{\triangle}{s-b}\right) + \left(\frac{\triangle}{s-c} - \frac{\triangle}{s}\right)$
= $\triangle \cdot \frac{2s - (a+b)}{(s-a)(s-b)} + \triangle \cdot \frac{c}{s(s-c)}$
= $\triangle c \left[\frac{1}{(s-a)(s-b)} + \frac{1}{s(s-c)}\right] \left[\because 2s = a+b+c.\right]$
= $\triangle c \left[\frac{s(s-c) + (s-a)(s-b)}{s(s-a)(s-b)(s-c)}\right]$

Now, Numerator =
$$2s^2 - s(a+b+c) + ab$$

= $2s^2 - s \cdot 2s + ab = ab$.

Denominator = Δ^2 .

$$\therefore$$
 Left side = $\frac{abc}{\Delta} = 4R$.

Ex. 5. If $r_1 = r_2 + r_3 + r$, prove that the triangle is right-angled.

From the given relation, we have

$$r_1 - r = r_2 + r_8$$
or,
$$\frac{\triangle}{s - a} - \frac{\triangle}{s} = \frac{\triangle}{s - b} + \frac{\triangle}{s - c},$$
or,
$$\frac{\triangle \cdot a}{s(s - a)} = \frac{\triangle \cdot a}{(s - b)(s - c)}.$$

$$\therefore s(s - a) = (s - b)(s - c).$$

$$\therefore \tan^2 \frac{1}{2}A = \frac{(s - b)(s - c)}{s(s - a)} = 1. \quad \therefore \tan^{\frac{1}{2}}A = 1.$$

$$\therefore \frac{1}{2}A = 45^{\circ}. \qquad \therefore A = 90^{\circ}.$$

Note. Although we get tan $\frac{1}{2}A = \pm 1$, we reject the negative value because $\frac{1}{2}A$ is an acute angle.

Examples XIV(b)

Prove that in any triangle (Ex. 1 to 14):-

1.
$$\sin A + \sin B + \sin C = \frac{s}{R}$$

2.
$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$
.
[Use $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$.]

8.
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$
.

$$4. r_2r_3 + r_8r_1 + r_1r_2 = s^2.$$

- 5. $r = R (\cos A + \cos B + \cos C 1)$.
- 6. $r_1 = R (\cos B + \cos C \cos A + 1)$. [Use $\cos B + \cos C - \cos A = -1 + 4 \sin \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$]
- 7. $a \cos B \cos C + b \cos C \cos A + c \cos A \cos B = \frac{\triangle}{R}$
- 8. $a \cot A + b \cot B + c \cot C = 2(R + r)$. $\left[a \cot A = \frac{a}{\sin A} \cdot \cos A = 2R \cos A. \quad Ther use Fx. 2. \right]$
- 9. $R = \frac{1}{4} \frac{(r_2 + r_3)(r_4 + r_1)(r_1 + r_2)}{r_2r_3 + r_3r_1 + r_1r_2}$
- 10. $\triangle = \sqrt{rr_1r_2r_3} = r^2 \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C$.
- 11. $\left(\frac{1}{r} \frac{1}{r_1}\right)\left(\frac{1}{r} \frac{1}{r_2}\right)\left(\frac{1}{r} \frac{1}{r_3}\right) = \frac{4R}{r^2s^2} = \frac{16R}{r^2(a+b+c)^2}$ [A. I. 1938.]
- 12. $\left(\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)^2 = \frac{4}{r} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)$
- 13. $r_1(r_2 + r_5)$ cosec $A = r_2(r_3 + r_1)$ cosec $B = r_3(r_1 + r_2)$ cosec C.
- 14. $\frac{bc}{r_1} + \frac{ca}{r_2} + \frac{ab}{r_3} = 2R \left\{ \frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b} + \frac{a}{c} + \frac{b}{c} 3 \right\}$
- 15. In a triangle a = 13, b = 14, c = 15; find r and R.
- 16. If a, b, c are in A.P., show that r_1, r_2, r_3 are in H.P.
- 17. If in a triangle 3R = 4r, show that $4(\cos A + \cos B + \cos C) = 7$.
- 18. If the diameter of an ex-circle be equal to the perimeter of the triangle, show that the triangle is right-angled.

[Use
$$r_1 = s \tan \frac{1}{2}A$$
.]

- 19. If $\left(1 \frac{r_1}{r_2}\right)\left(1 \frac{r_1}{r_3}\right) = 2$, show that the triangle must be right-angled.
- 20. If $8R^2 = a^2 + b^2 + c^2$, show that the triangle is right-angled.
- 21. If S be the area of the in-circle and S_1 , S_2 , S_3 the areas of the escribed circles, then

$$\frac{1}{\sqrt{S}} = \frac{1}{\sqrt{S_1}} + \frac{1}{\sqrt{S_2}} + \frac{1}{\sqrt{S_3}}.$$

- 22. In any triangle, prove that the area of the in-circle is to the area of the triangle as π : cot $\frac{1}{2}A$ cot $\frac{1}{2}B$ cot $\frac{1}{2}C$.
- 23. If p_1 , p_2 , p_3 are the perpendiculars from the angular points of a triangle to the opposite sides, show that

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}.$$

24. If x, y, z be the lengths of the perpendiculars from the circum-centre on the sides BC, CA, AB of the triangle ABC, prove that

$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{4xyz}.$$

25. If x, y, z are respectively equal to IA, IB, IC, and a, β , γ are respectively equal to I_1A , I_2B , I_3C , show that

(i)
$$\frac{xyz}{abc} = \frac{\tau}{s}$$
 (ii) $\frac{x}{a} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$

(iii)
$$\frac{bc}{a^2} + \frac{ca}{\beta^2} + \frac{ab}{\gamma^2} = 1$$
. (iv) $ax^2 + by^2 + cz^2 = abc$.

[Use Notes of Arts. 93 and 94.]

CHAPTER XV

SOLUTION OF TRIANGLES

- 95. In a triangle, there are six parts, the three sides and the three angles. These are not independent, but are connected by the relations between the sides and angles of the triangle, which have been established in Chapter XIV. In fact, if three of the parts are given, the remaining three can, in general, be determined, and the corresponding triangle completely known. The cases that can arise are the following:
 - (1) three sides may be given
 - (2) three angles may be given
- (3) two sides and the included angle may be given
 - (4) two angles and one side may be given
 - (5) two sides and an opposite angle may be given.

We shall discuss these cases one by one.

96. Three sides given.

Let the three sides a, b, c of a triangle ABC be given. Now, provided the sum of any two of these given sides is greater than the third, the triangle ABC with the three given sides can be geometrically constructed and the triangle is unique; in other words, its angles are definite. To determine any angle A say, we may use the rigorous formula,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc},$$

and thereby determine $\cos A$, and then from the cosine-table find out the angle with this cosine. It is clear that the angle, being an angle of a triangle, lies between 0 and π and within this range an angle with a given cosine has got only one value. Thus the angle is definitely known.

Here we want to make one point clear. Though the formula used is rigorous, the cosine-table, by means of which we determine the angle with a given cosine, gives only approximate values. Now it is a principle proved in books on higher mathematics (with the aid of calculus), that when an angle is determined by using an approximate table, the best result is obtained by using the Logarithmic tangent-table, and an angle determined from its L tan, using a four-figure table is more accurate than that determined by using even a seven-figure sine-table or cosine-table. If a suitable tangent formula is avaiable therefore, we should make use of it.

Hence, for practical purposes, in this case, to determine A, we use the formula

$$\tan \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
where $s = \frac{1}{2}(a+b+c)$, which is known.

Taking logarithm, and adding 10, we get the value of L tan $\frac{1}{2}A$ and therefore A is known.

Similarly B and C are determined.

In case $\tan \frac{1}{2}A$ happens to be equal to the tangent of a standard angle, $\frac{1}{2}A$ is at once known and the use of logarithm is not wanted.

Ex. The sides of a triangle are 2, 3, 4. Find the greatest angle, having given

$$\log 2 - 30103$$
, $\log 3 = 4771213$
 $L \tan 55^{\circ} 14' = 10'1108395$, $L \tan 52^{\circ} 15' = 10'1111004$.

Here
$$s = \frac{2+3+4}{2} = \frac{9}{2}$$
.

The greatest side 4 being denoted by 'a', the greatest angle A (which is opposite to the greatest side) is given by

$$\tan \frac{1}{2}A = \sqrt{\frac{(\frac{9}{2} - 2)(\frac{9}{2} - 3)}{\frac{9}{2}(\frac{9}{2} - 4)}} = \sqrt{\frac{5.3}{9.1}} = \sqrt{\frac{10}{2.3}}.$$

... L tan
$$\frac{1}{3}A = 10 + \frac{1}{2}(\log 10 - \log 2 - \log 3)$$

= $10 + \frac{1}{2}(1 - 30103 - 4771213)$
= $10^{\circ}1109244$.

Now $L \tan \frac{1}{2}A$ lies between $L \tan 52^{\circ}14'$ and $L \tan 52^{\circ}15'$.

Hence, \$4 lies between 52° 14' and 52° 15'.

Let
$$\frac{1}{4}A = 52^{\circ} 14' x''$$
.

Then diff. for x'' is '0000849.

and diff, for 1' i.e. 60" is '0002609.

Hence,
$$\frac{x}{60} = \frac{849}{2609}$$
, or, $x = \frac{60 \times 849}{2609} = 19.5$ nearly.

Hence,
$$\frac{1}{2}A = 52^{\circ} 14' 19'' 5$$
,
or, $A = 104^{\circ} 28' 39''$ nearly.

97. Three angles given.

In this case the triangle cannot be solved, for there are innumerable triangles with the same three angles. All

these triangles, being equiangular, are similar, and the ratio of their sides can be determined from the formula,

or, $a:b:c=\sin A:\sin B:\sin C$.

Ex. The angles of a triangle are in the ratio 2:3:7. Prove that the sides are in the ratio of $\sqrt{2}:2:(\sqrt{3}+1)$.

The angles being in the ratio of 2:3:7, and their sum being 180°, the angles are evidently 30°, 45° and 105° respectively. Hence the ratio of the sides will be

sin 30°: sin 45°: sin 105° i.e., $\frac{1}{2}$: $\frac{1}{\sqrt{2}}$: $\frac{\sqrt{3}+1}{2\sqrt{2}}$ or, $\sqrt{2}$: 2: $(\sqrt{3}+1)$.

Examples XV(a)

- 1. The sides of a triangle are 24, 22, 14; find the least angle, given $L \tan 17^{\circ} 33' = 9.500042$, diff. for 1' = 439.
- 2. The sides of a triangle are 50, 36 and 28; find the greatest angle, having given

$$\log 19 = 1.2787536$$
,

 $\log 29 = 1.4623980$

 $L \tan 51^{\circ} 0' = 10'0916308$, $L \tan 51^{\circ} 1' = 10'0918891$.

3. The sides of a triangle are 9, 10 and 11; find the angle opposite to the side 10, given

L tan 29° 30′ = 9'7526420, L tan 29° 29′ = 9'7523472 log 2 = '30103. [C. U. 1943.]

4. The sides of a triangle are 2, 3, 4. Find all the angles correctly to degrees and minutes by the help of mathematical tables.

5. (i) The sides of a triangle are 15, 19, 24; find the greatest angle of the triangle.

Given log
$$5.7 = .75587$$
, $L \cos 88^{\circ} 59' = 8.24903$
diff. for $1' = 718$. [C. U. 1936.]

(ii) Find the greatest angle in degrees, minutes and seconds in a triangle whose sides are 5, 6, 7, having given log 6 = '7781513

 $L \cos 39^{\circ} 14' = 9.8890644$, diff. for 60'' = .0001032.

- 6. (i) The sides of a triangle are 7, 8, 9; solve the triangle.

 [C. U. 1938.]
- (ii) If a=32, b=40, c=66, determine the greatest angle. [C. U. 1945.]

[Use Mathematical Tables]

- 7. Given $a = \sqrt{6}$, b = 2, $c = \sqrt{3} 1$; solve the triangle.
- 8. Given a=2, $b=\sqrt{2}$, $c=\sqrt{3}+1$; solve the triangle.
- 9. If a = 7, b = 5, c = 8, solve the triangle. Given $\cos 38^{\circ} 11' = \frac{1}{14}$.
- 10. If $a = 3 + \sqrt{3}$, $b = 2\sqrt{3}$, $c = \sqrt{3}$, solve the triangle.
- 11. The angles of a triangle are 105°, 60° and 15°; find the ratio of the sides.
 - 12. If $A = 45^{\circ}$, $B = 60^{\circ}$, show that $c : a = \sqrt{3+1} : 2$.
- 13. The angles of a triangle are as 1:2:7; find the ratio of the greatest side to the least side.
 - 14. If $\cos A = \frac{4}{8}$, $\cos B = \frac{8}{5}$, find a : b : c.
- 15. If the angles adjacent to the base of a triangle are $22\frac{1}{2}$ ° and $112\frac{1}{2}$ °, show that the altitude is half the base.
- 16. If the sides of a triangle are 4, 5, 6, show that the greatest angle is double the least.

98. Two sides and the included angle given.

Let the two sides b, c and the included angle A of a triangle ABC be given. It is easy to construct the triangle geometrically, and there will be only one definite triangle with the given parts. To find the other angles B and C, we notice that

$$B+C=180^{\circ}-A$$
,
i.e., $\frac{B+C}{2}=90^{\circ}-\frac{A}{2}$.

Again,

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

$$L \tan \frac{B-C}{2} = 10 + \log \left(\frac{b-c}{b+c} \cot \frac{A}{2}\right)$$

$$= \log \left(\frac{b-c}{b+c}\right) + L \cot \frac{A}{2}$$

b, c and A being given, the right-hand side is known and thus $L \tan \frac{B-C}{2}$ is known, whence $\frac{B-C}{2}$ is known.

Now $\frac{B+C}{2}$ and $\frac{B-C}{2}$ being both known, by addition and subtraction, we get B and C respectively.

The reason of using tangent formula to determine B = C is already explained in Art. 96.

When B and C are known, the third side a is easily obtained from

Ex. In a triangle, $b = 2^{\circ}25$, $c = 1^{\circ}75$, $A = 54^{\circ}$, find B and C, having given

$$log 2 = 301030,$$
 $L tan 63^{\circ} = 10.292934$ $L tan 13^{\circ} 47' = 9.389724,$ $L tan 13^{\circ} 48' = 9.390270$ [$C. U. 1931.$]

Here.

$$\frac{B+C}{2} = 90^{\circ} - \frac{A}{2} = 90^{\circ} - 27^{\circ} = 63^{\circ}. \quad \cdots \quad (i)$$

Again,

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \frac{5}{4} \cot 27^{\circ}$$

$$= \frac{1}{6} \tan 63^{\circ}.$$

$$\therefore L \tan^{\frac{B-C}{2}} = L \tan 63^{\circ} - 3 \log 2$$

$$= 10.292834 - 903090$$

$$= 9.389744.$$

Now $L \tan 13^{\circ} 47' = 9^{\circ} 389724$

and $L \tan 13^{\circ} 48' = 9^{\circ} 390270$.

Hence, $\frac{B-C}{2}$ being 13° 47′ x''

we get, diff. for x'' = 000020 and diff. for 1' i.e., 60'' = 000546.

 $\therefore \frac{x}{60} = \frac{20}{546}$ or, $x = \frac{20 \times 60}{546} = 2.2$ nearly.

Hence, $\frac{B-C}{2} = 13^{\circ} 47' 2'' 2$ nearly.

Combining with (i), $B = 76^{\circ} 47' 2'' \cdot 2$ and $C = 49^{\circ} 12' 57'' \cdot 8$.

99. Two angles and a side given.

Let any side a of a triangle ABC, and any two of its angles be given. The sum of the three angles being 180°, the third angle is also known. To find the other two sides b and c, we use the formula

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Ex. In at riangle ABC, $A = 38^{\circ} 20'$, $B = 45^{\circ}$ and b = 64ft. Find c, having given log 2 = 30103, L sin $83^{\circ} 20' = 999705$ and log $99896 = \overline{2}95374$.

Here,

$$C = 180^{\circ} - (A + B)$$

= $180^{\circ} - 83^{\circ} 20'$.

Now.

$$\frac{c}{\sin C} = \frac{b}{\sin B},$$

or,
$$\frac{c}{\sin (180^{\circ} - 83^{\circ} 20')} = \frac{64}{\sin 45^{\circ}} = \frac{64}{1/\sqrt{2}} = 64 \sqrt{2}.$$
$$\therefore c = 2^{\frac{13}{2}} \sin 83^{\circ} 20'.$$

$$\therefore \log c = \frac{18}{2} \log 2 + L \sin 83^{\circ} 20' - 10$$
$$= \frac{18}{3} (30103) + 9.99705 - 10 = 1.95374.$$

Thus $\log c$ has the same mantissa as \log '089896, but has its characteristic 1. Hence, c = 89.896 feet.

Examples XV(b)

1. Two sides of a triangle are 3 and 5 feet and the included angle is 120°; find the other angles, having given log 4'8 = '6812412

L tan 8°
$$12' = 9'1586706$$
, diff. for $60'' = 8940$.

[C. U. 1949.]

- If b=1300, c=1400 and A=60°, find B and C.
 Given log 3='4771213,
 L tan 3° 40'=8'8067422, diff. for 10"=3306.
- 3. If a=21, b=11, $C=34^{\circ}$ 42' 30", find A and B. Given $\log 2=30103$, and L tan 72° 38' 45"=10.50515.
- 4. If the sides a and b are in the ratio 7:3 and the included angle C is 60°, find A and B, given

$$\log 2 = 3010300$$
 $\log 3 = 4771213$
 $L \tan 34^{\circ} 42' = 98403776$, diff. for $1' = 2699$.

5. Two sides of a plane triangle are 14 and 11 and the included angle is 60° . Find the remaining angles, having given L tan 11° 44′ = 9'3174299, L tan 11° 45′ = 9'3180640.

[C. U. 1922.]

6. (i) Two sides of a triangle are 80 and 100 ft, and the included angle is 60°. Find the other angles.

[C. U. 1946.]

- (ii) If a=5, b=3, $C=70^{\circ}$ 30', find the remaining angles.
- (iii) If a = 39 9, b = 43 2, C = 38° 14′, solve the triangle.

 [Use Mathematical Tables]
- 7. (i) In a plane triangle, b = 540, c = 420 and $A = 52^{\circ}$ 6'; find B and C, having given

 $L \tan 26^{\circ} 3' = 9.6891430$.

L tan 14° 20' = 9'4074189, L tan 14° 21' = 9'4079453. [C. U. 1934.]

- (ii) Given a = 70, b = 35, $C = 36^{\circ}$ 52' 12", $\log 3 = 0.4771213$, $L \cot 18^{\circ}$ 26' 6" = 10.4771213. Calculate the other two angles A and B. [C. U. 1935, '37.]
 - 8. If $a = 2\sqrt{6}$, $c = 6 2\sqrt{3}$, $B = 75^{\circ}$, solve the triangle.
- 9. Two sides of a triangle are $\sqrt{3} + 1$ and $\sqrt{3} 1$ and the included angle is 60° ; solve the triangle.
 - 10. (i) If a=2, $b=1+\sqrt{3}$, $C=60^{\circ}$, solve the triangle.
 - (ii) If a = 2, b = 4, $C = 60^{\circ}$, find A and B.
- 11. If a = 19, $B = 52^{\circ}$ 28' and $C = 93^{\circ}$ 40', find b, having given $\log 27038 = 4.4319746$; $\log 19 = 1.2787536$;

log 27037 = 4'4319585;

 $L \sin 52^{\circ}28' = 9'8992727$, $L \sin 33^{\circ}52' = 9'7460595$.

- 12. If B=45°, O=10° and a=200 ft., find b, having given log 2='30103, L sin 55°=9'9133645 log 1726'4=3'2371414, log 1726'5=3'2371666.
- 13. If A=41° 13′ 22″, B=71° 19′ 5″, and a=55, find b, given log 55=1'7403627, log 79063=4'8979775

 L sin 41° 13′ 22″=9'8188779

 L sin 71° 19′ 5″=9'9764927.
- 14. (i) If $B = 70^{\circ} 20'$, $C = 78^{\circ} 10'$, a = 102, solve the triangle.
 - (ii) If a = 39, $A = 81^{\circ} 35'$, $B = 27^{\circ} 55'$, solve the triangle.
 - (iii) If $A = 37^{\circ} 15'$, $B = 72^{\circ} 5'$, $a = 75^{\circ} 2$, find b and c.

 [Mathematical tables should be used]
 - 15. If $A = 75^{\circ}$, $B = 30^{\circ}$, $b = \sqrt{8}$, solve the triangle.
 - 16. If $A = 30^{\circ}$, $B = 45^{\circ}$, b = 2, solve the triangle.
- 17. In a triangle in which each base angle is double of the third angle, the base is 2; solve the triangle.
 - 18. Given $a = \sqrt{57}$, $A = 60^{\circ}$, $\Delta = 2\sqrt{3}$, find b and c.
 - 100. Two sides and an opposite angle given.

Let the two sides b and c in a triangle ABC, and the angle B opposite to the side b be given.

In this case, we get the angle C from the formula,

$$\frac{\sin C}{c} = \frac{\sin B}{b} \text{ or, } \sin C = \frac{c \sin B}{b}.$$

Now three cases may arise, namely,

(i) $c \sin B > b$. In this case $\sin C$ is greater than 1, and so C cannot be obtained. In fact in this case no triangle is possible.

(ii) $c \sin B = b$. Here $\sin C$ becomes 1 and therefore $C = 90^{\circ}$. Thus $A = 90^{\circ} - B$. We thus get a right-angled triangle with right angle at C, and the side α will be obtained from

$$c^2 = a^2 + b^2$$
, or, $a = \sqrt{c^2 - b^2}$.

(iii) c sin B < b. In this case sin C is less than 1, and hence C can be determined. Now sines of supplementary angles are known to be equal, and an angle of a triangle may be acute or obtuse. We therefore get two supplementary values of C having the same value for sin C. Three subcases now arise:</p>

Sub-case A. If of the two given sides, b > c, then B > C and therefore the obtuse value of C becomes inadmissible, for otherwise B is also obtuse and two angles B and C of the triangle become both obtuse. Thus the only admissible solution is the acute value of C Now B and C being both known, A is obtained from $A + B + C = 180^{\circ}$. The side a will be known from

Thus the triangle is uniquely solved.

Sub-case B. If b=c, then B=C, and here also the obtuse value of C is inadmissible; with the acute value of C the triangle is uniquely solved exactly as in the above case.

Sub-case C. If b < c, then B < C, so that C may be either acute or obtuse. Both the supplementary values of C being admissible now, there will be two possible triangles with the three given parts b, c, B. Corresponding to each value of C, the value of C is determined from C = 180°, and then C is obtained from the formula,

$$\frac{a}{\sin A} = \frac{b}{\sin B} \text{ or, } \frac{c}{\sin C}.$$

As there are two solutions of the triangle in this case, each equally admissible, this sub-case in the solution of a

triangle in which b, c, B are given and b > c sin B but < c, is referred to as the Ambiguous Case in the solution of triangles.

We may sum up the result as follows:

When in a triangle, b, c, B are given,

- (i) if $b < c \sin B$, no triangle is possible;
- (ii) if b = c sin B, we get a definite right-angled triangle as solution :
- (iii) if b > c and therefore necessarily $> c \sin B$, we get one definite solution having C acute;
- (iv) if b=c and therefore necessarily $> c \sin B$, we get one definite solution having C acute.
- (v) if b > c sin B but < c, there are two solutions, and this case is the ambiguous case.

101. Geometrical treatment of the Ambiguous Case.

To make the ideas clear, we proceed to construct geometrically the triangle in which two sides and an opposite angle, viz., b, c and B are given.

Let ABX be the given angle B, and along one arm of it, take BA = c. Let AN be the perpendicular from A on BX. Then $\frac{AN}{AB} = \sin B$, so that $AN = AB \sin B = c \sin B$.

With centre A and radius b draw a circle.

Case (i). If $b < c \sin B$, i.e., < AN, the circle does not meet the side BX at all and no triangle is therefore obtained. See fig. (i).

Case (ii). If $b=c\sin B$, i.e., =AN, the circle touches the side BX at C coincident with N, as in fig (ii). Hence a right-angled triangle is formed, in which the sides AB, AC and the angle B have the given values c, b, B. Thus ABC is the required triangle.

Case (iii). If b > c, i.e., > AB, the circle cuts BX at two points C and C' on opposite sides of B as in fig. (iii). The triangle ABC', though it has the sides AB, AC equal to the given quantities c and b, has the angle B not equal to the given angle, but equal to its supplement. Hence it is not the solution required. In this case the triangle ABC is the only solution.

Case (iv). If b=c, i.e., =AB, the point C' of the above case coincides with B, and only one triangle ABC is obtained as the required solution.

Case (v). If $b > c \sin B$, i.e., > AN but less than c (or AB), the circle cuts BX at two points C_1 and C_2 on the same side of B as in fig. (iv). Both the triangles ABC_1 and ABC_2 have the same three given parts and both are possible solutions. This is therefore the Ambiguous case.

Note. By considering the equation $b^2 = c^2 + a^2 - 2ca \cos B$

in which b, c, B are given, we may first of all determine a, instead of trying to determine C.

Considering the equation as a quadratic in a, viz.,

$$a^2-2c\cos B$$
, $a+c^2-b^2=0$,

and by solving it, we get

$$a = c \cos B \pm \sqrt{b^2 - c^2 \sin^2 B}$$
.

- (i) If $b < c \sin B$, $b^2 c^2 \sin^2 B$ is negative and thus the two values of a are imaginary. (No solution)
- (ii) If $b=c\sin B$, $b^2-c^2\sin^2 B=0$ and thus the two values of a are real and coincident.

(one solution; one triangle right-angled at C, since $b = c \sin B$)

- (ii) If $b > c \sin B$, $b^2 c^2 \sin^2 B$ is positive, so two values of a are real and distinct, but they are not always admissible.
- (a) When b > c, { i.e., $b^2 > c^2 (\sin^2 B + \cos^2 B)$ }, $b^2 c^2 \sin^2 B > c^2 \cos^2 B$, i.e., $\sqrt{b^2 c^2 \sin^2 B} > c \cos B$ and hence one value of a is positive and the other negative. (one solution)
- (b) When b=c, $b^2-c^2\sin^2 B=c^2-c^2\sin^2 B=c^2\cos^2 B$ and hence one value of a is zero. (one solution)
- (c) When b < c, i.e., $b^2 < c^2 (\sin^2 B + \cos^2 B)$, $b^2 c^2 \sin^2 B < c^2 \cos^2 B$, i.e., $\sqrt{b^2 c^2 \sin^2 B} < c \cos B$.

So both the values of a are real and positive. (two solutions)

This is known as the algebraical discussion of the ambiguous case.

An example illustrating the algebraic method is added below.

Ex. 1. In a triangle, b = 15 ft., c = 10 ft., $B = 60^{\circ}$. Find a and A having given $\sin 84^{\circ} 44' = 99578$.

We have
$$b^2 = c^2 + a^2 - 2ca \cos B$$
, giving here $225 = 100 + a^2 - 20a \cos 60^\circ$; or, $a^2 - 10a - 125 = 0$ whence $a = 5 + 5 \sqrt{6}$.

Rejecting the negative value for a as inadmissible, the only possible value of $a=5(\sqrt{6}+1)$ ft. There is thus one solution and there is no ambiguity. In fact this is case (iii) of the previous article.

Again,
$$\sin A = \frac{a}{b} \sin B = \frac{5(\sqrt{6+1}) \cdot \sqrt{3}}{15} = \frac{3\sqrt{2+\sqrt{3}}}{6}$$
$$= \frac{3\times1.41421\cdots+1.73205}{6} = .99578\cdots$$
so $A = 84^{\circ} \cdot 44'$.

Ex. 2. In a triangle, $a = 73^{\circ}4$, $b = 64^{\circ}9$ and $B = 48^{\circ}13'25''$; find A having given

$$log 734 = 2.8656961, log 649 = 2.8122447$$
 $L sin 48^{\circ} 13' 25'' = 9.8725936$
 $L sin 57^{\circ} 30' = 9.9260292$ (diff. for 1' = 804)

Is the case ambiguous?

Here

$$\sin A = \frac{a \sin B}{b} = \frac{734}{649} \sin 48^{\circ} 13' 25''.$$

$$\therefore L \sin A = \log 734 - \log 649 + L \sin 48^{\circ} 13' 25''$$

$$= 2.8656961 - 2.8122447 + 9.8725936$$

Now diff. of this from $L \sin 57^{\circ} 30' = 158$ (i.e., '0000158) and diff. for 1' (or 60'') = 804 (i.e., '0000804).

Hence,
$$A = 57^{\circ} 30' x''$$
 where $\frac{x}{60} = \frac{158}{804}$ whence $x = 11'8$ nearly.

= 9.9260450.

Thus $A = 57^{\circ}$ 30' 11'8" or its supplement 122° 29' 48'2" which has also the same sine, and so the same L sine.

Now in this case a > b and so A > B and thus both values of A are admissible. The case, is therefore, the ambiguous case and will have two solutions.

Examples XV(c)

1. Given (i)
$$A = 30^{\circ}$$
, $a = 6$, $b = 4$.

(ii)
$$A = 60^{\circ}$$
, $a = 7$, $b = 8$.

(iii)
$$A = 45^{\circ}$$
, $a = 2$, $b = 8$.

(iv)
$$A = 30^{\circ}$$
, $a = 3$, $b = 6$.

Find in which case the solution is ambiguous, in which case there is one solution, and in which case there is no solution.

- 2. (i) If b=2, $c=\sqrt{3}+1$ and $B=45^{\circ}$, solve the triangle.
 - (ii) If a = 3, $b = 3\sqrt{3}$, $A = 30^{\circ}$, find B.
- 3. If a = 2, $b = \sqrt{6}$, $B = 60^{\circ}$, solve the triangle.
- 4. If a = 2, b = 5, $A = 30^{\circ}$, solve the triangle.
- 5. If b, c, B are given and if b < c, show that $(a_1 - a_2)^2 + (a_1 + a_2)^2 \tan^2 B = 4b^2$

 a_1 and a_2 being the two possible values of π .

In the ambiguous case, given a, b and A, prove that the difference between the two values of c is

$$2\sqrt{a^2-b^2}\sin^2 A.$$

If a, b, Λ are given and if c_1 , c_2 are the values of the third side in the ambiguous case, prove that if $c_1 > c_2$

(i)
$$c_1 - c_2 = 2a \cos B$$
. [B. H. U. I. 1928.]

(ii) $c_1^2 + c_2^2 - 2c_1c_2 \cos 2A = 4a^2 \cos^2 A$.

[B. H. U. I. 1935; Pat. I. 1936.]

(iii)
$$\cos \frac{C_1 - C_9}{2} = \frac{b \sin A}{a}$$
. [A. I. 1941.]

8. If b=16, c=25 and $B=33^{\circ}15'$, find the other angles : given

$$L \sin 33^{\circ} 15' = 9.7390129$$
, $\log 2 = 30103$.

- 9. If a=5, b=4, $A=45^{\circ}$, find B and C; given $\log 2 = 30103$, $L \sin 34^{\circ} 27' = 9.75257$.
- 10. If a = 30, b = 300, find A in order that B may be a right angle, having given that

 $L \sin 5^{\circ} 44' = 8.9995595$, diff. for 1' = 12565.

11. If a = 16, c = 25 and $C = 60^{\circ}$, find the other angles. Given

$$\log 2 = 30103$$
, $\log 3 = 4771213$
 $L \sin 33^{\circ} 39' = 9.7436024$, diff. for $1' = 1897$.

12. If b = 165, c = 258, and $B = 35^{\circ} 10'$, find the angles A and C.

Given
$$\log 1.65 = .21749$$
, $\log 2.58 = .41162$
 $L \sin 35^{\circ} 10' = 9.76039$, $L \sin 64^{\circ} 14' = 9.95452$.

- 13. If 2b=3a and $\tan^2 A = \frac{3}{5}$, prove that there are two values of the third side, one of which is double the other.
- 14. If A_1 , B_1 and A_2 , B_2 are the angles of the two triangles in the ambiguous case, then

$$\frac{\sin A_1}{\sin B_1} + \frac{\sin A_2}{\sin B_2} = 2 \cos C.$$

15. Show that in the case that admits of two solutions the two values of C satisfy the equation

$$\frac{(a+b)^2}{1+\cos C} + \frac{(b-a)^2}{1-\cos C} = \frac{2a^2}{\sin^2 A}. \quad [B. H. U. I. 1942.]$$

16. If $\log b + 10 = \log c + L \sin B$, can the triangle be ambiguous?

Miscellaneous Examples II

In any triangle ABC, prove that (Ex. 1 to 8):—

1.
$$\frac{1}{a} \cos A + \frac{1}{b} \cos B + \frac{1}{c} \cos C = \frac{a^2 + b^2 + c^2}{2abc}$$

2.
$$(b^2 + c^2 - a^2) \tan A = (c^2 + a^2 - b^2) \tan B$$

= $(a^2 + b^2 - c^2) \tan C$.

3.
$$b^2 + c^2 - 2bc \cos(A + 60^\circ) = c^2 + a^2 - 2ca \cos(B + 60^\circ)$$

= $a^2 + b^2 - 2ab \cos(C + 60^\circ)$.

4.
$$(\cot \frac{1}{2}A - \tan \frac{1}{2}B - \tan \frac{1}{2}C)^{\frac{1}{2}}$$

$$+ (\cot \frac{1}{2}B - \tan \frac{1}{2}C - \tan \frac{1}{2}A)^{\frac{1}{2}} + (\cot \frac{1}{2}C - \tan \frac{1}{2}A - \tan \frac{1}{2}B)^{\frac{1}{2}}$$

$$= (\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C)^{\frac{1}{2}}.$$

5.
$$a \sin (B-C) \cos (B+C-A) + b \sin (C-A)$$

 $\times \cos (C+A-B) + c \sin (A-B) \cos (A+B-C) = 0$

6.
$$\frac{a \sin A + b \sin B + c \sin C}{a \cos A + b \cos B + c \cos C} = \frac{R}{abc} (a^2 + b^2 + c^2).$$

7.
$$(b+c-2a) \sin \frac{1}{2}A \sin \frac{1}{2}(B-C)$$

 $+(c+a-2b) \sin \frac{1}{2}B \sin \frac{1}{2}(C-A)$
 $+(a+b-2c) \sin \frac{1}{2}C \sin \frac{1}{2}(A-B) = 0.$

8.
$$a \cos A \cos 2A + b \cos B \cos 2B + c \cos C \cos 2C + 4 \cos A \cos B \cos C (a \cos A + b \cos B + c \cos C) = 0$$
.

- 9. If in a triangle, a^2 , b^3 , c^2 are in A.P., show that tan A, tan B, tan C are in H. P.
- 10. If in a triangle, $\sin A$, $\sin B$, $\sin C$ are in H. P., show that $1-\cos A$, $1-\cos B$, $1-\cos C$ are in H.P.
- 11. Determine the triangle whose sides are three consecutive terms in the series of natural numbers and whose largest angle is double the least.

- 12. If in a triangle, $\cos 3A + \cos 3B + \cos 3C = 1$, show that one angle must be 120°.
- 13. If in a triangle, $\sin A$, $\sin B$, $\sin C$ be in A. P., show that $\tan \frac{1}{2}A \tan \frac{1}{2}C = \frac{1}{3}$.
- 14. If a=5, b=7 and $A=30^{\circ}$, find B in degrees and minutes, having given

$$\sin 44^{\circ} = 0.6947$$
, $\sin 45^{\circ} = 0.7071$.

- 15. In the ambiguous case, the area of one of the triangles is n times that of the other; show that if b be the greater of the given sides and c the less, $\frac{b}{c}$ is less than $\frac{n+1}{n-1}$.
- 16. In the ambiguous case, show that the circum-circles of the two triangles are equal.
 - 17. Prove that

(i)
$$\tan^{-1}\left(\frac{x\cos\phi}{1-x\sin\phi}\right) - \tan^{-1}\left(\frac{x-\sin\phi}{\cos\phi}\right) = \phi$$
.

(ii)
$$\tan^{-1} \frac{t_1 - t_2}{1 + t_1 t_2} + \tan^{-1} \frac{t_2 - t_3}{1 + t_2 t_3} + \dots + \tan^{-1} \frac{t_{n-1} - t_n}{1 + t_{n-1} t_n} = \tan^{-1} t_1 - \tan^{-1} t_n.$$

- 18. If the sum of four angles be 180°, prove that the sum of the products of their cosines taken two and two together is equal to the sum of the products of their sines taken similarly.
 - 19. Prove that $\cos^2 A + \cos^2 \left(A + \frac{\pi}{3}\right) + \cos^2 \left(A \frac{\pi}{3}\right) = \frac{3}{2}$.
- 20. In a triangle ABC, if $\tan \frac{A}{2} \cdot \tan \frac{B}{2} \cdot \tan \frac{C}{2}$ be in Arithmetical progression, then $\cos A$, $\cos B$, $\cos C$ are also in Arithmetical progression.

21. Give in general terms the solutions of the following equation:

$$\tan (x+b) \tan (x+c) + \tan (x+c) \tan (x+a) + \tan (x+a) \tan (x+b) = 1.$$

22. If $A + B + C = 180^{\circ}$, prove that

$$\left(1 + \tan\frac{A}{4}\right)\left(1 + \tan\frac{B}{4}\right)\left(1 + \tan\frac{C}{4}\right)$$

$$= 2\left(1 + \tan\frac{A}{4} \tan\frac{B}{4} \tan\frac{C}{4}\right).$$

23. Prove that

$$\sin^2 x + \sin^2 y + \sin^2 z + \sin^2 (x + y + z)$$

$$= 2 - 2 \cos (x + y) \cos (y + z) \cos (z + x).$$

24. Solve the following equation:

$$\tan x + \tan \left(x + \frac{\pi}{3}\right) + \tan \left(x + \frac{2\pi}{3}\right) = 3.$$

[Left side reduces to 3 tan 3x.]

25. Prove that in a triangle ABC,

$$\Delta = \frac{(a+b+c)^2}{4\left(\cot\frac{A}{2} + \cot\frac{C}{2}\right)}$$

26. Prove that

$$\log \sin 8x = 3 \log 2 + \log \sin x + \log \cos x + \log \cos 2x + \log \cos 4x.$$

27. Show that in any triangle ABC,

$$\log \tan \frac{A}{2} = \frac{1}{2} [\log (s-b) + \log (s-c) - \log s - \log (s-a)].$$

28. Prove that (i) $x^{\log y} = y^{\log x}$.

(ii)
$$x^{\log y - \log z} \times y^{\log z - \log x} \times z^{\log x - \log y} = 1$$
.

- 29. In any right-angled triangle ABC, C being the right-angle, show that $R+r=\frac{1}{2}(a+b)$.
- 30. Show how to solve a triangle having given the three perpendiculars from the vertices on the opposite sides.

CHAPTER XVI

GRAPHS OF TRIGONOMETRICAL FUNCTIONS

102. Changes in the Trigonometrical ratios of an angle as the angle increases from 0° to 360°.

Suppose an angle traced out by a revolving line starting from OX, changes gradually from 0° to 360°.

Take a circle with centre O of any radius. It is clear that in determining the trigonometrical ratios of an angle XOP_1 in its different positions, we can keep the hypotenuse OP_1 always the same, equal to the radius of the circle.

(i) Changes in sine.

When the angle N_1OP_1 (= θ say) is zero, its sine is zero. As the angle increases from 0° to 90°, the hypotenuse OP_1 remaining the same, the opposite side P_1N_1 is positive and gradually increases, as is evident by comparing the triangles N_1OP_1 and N_2OP_2 .

Hence, $\sin \theta = \frac{P_1 N_1}{OP_1}$ gradually increases, until when $\theta = 90^{\circ}$, $P_2 N_{sf}$ and OP_3 both coincide with OY and $\sin \theta$ attains its greatest value 1.

As θ still further increases, from 90° to 180°, the hypotenuse OP_s retains the same value, but P_sN_s remaining positive, now gradually diminishes from OY to zero, and so $\sin \theta$ diminishes from 1 to 0. In the third quadrant, as θ increases from 180° to 270°, $P_{\bullet}N_{\bullet}$ is negative and numerically increases from zero to OY', the hypotenuse remaining always positive and unaltered. Sin θ is therefore negative and numerically increases from 0 to 1; in other words, it diminishes gradually from 0 to -1. In the fourth quadrant, as θ increases from 270° to 360°, P_sN_s remaining negative numerically diminishes from OY' to 0, and $\sin \theta$ therefore remaining negative numerically diminishes from 1 to 0; in other words, it increases from -1 to 0. The results are therefore as follows:

In the first quadrant, as θ increases from 0° to 90°, $\sin \theta$ increases from 0 to 1.

In the second quadrant, as θ increases from 90° to 180°, $\sin \theta$ diminishes from 1 to 0.

In the third quadrant, as θ increases from 180° to 270°, $\sin \theta$ diminishes from 0 to -1.

In the fourth quadrant, as θ increases from 270° to 360°, $\sin \theta$ increases from -1 to 0.

(ii) Changes in cosine.

In the first quadrant as the angle XOP_1 increases, ON_1 diminishes, from the value of OX at $\theta = 0^{\circ}$ to the value 0 at $\theta = 90^{\circ}$, and is always positive.

In the second quadrant, as θ goes on increasing from 90° to 180°, ON_a increases numerically from 0 to OX' but is

negative. In the third quadrant, ON_4 remains negative, but diminishes numerically from OX' to 0. In the fourth quadrant, ON_5 is positive and increases from 0 to OX again.

The hypotenuse remains always positive and is equal to OX or OX' in magnitude.

We thus come to the conclusions:

As θ increases from 0° to 90°,

 $\cos \theta$ diminishes from 1 to 0.

As θ increases from 90° to 180° ,

 $\cos \theta$ diminishes from 0 to -1.

As θ increases from 180° to 270° ,

 $\cos \theta$ increases from -1 to 0.

As θ increases from 270° to 360°,

cos 0 increases from 0 to 1.

(iii) Changes in tangent.

As θ goes on increasing from 0° to 90° in the first quadrant, P_1N_1 increases from 0 to OY and simultaneously ON_1 decreases from OX to 0, both remaining positive; hence $\tan \theta = \frac{P_1N_1}{ON_1}$ increases from the value $\frac{0}{OX} = 0$ to $\frac{ON}{0} = \infty$.

In the second quadrant, P_3N_3 diminishes from OY to 0 while ON_3 , becoming negative, numerically increases from 0 to OX'. Hence, $\tan \theta = \frac{P_3N_3}{ON_3}$ is negative but numerically diminishes from ∞ to 0, i.e. increases from $-\infty$ to 0.

Immediately before 90°, $\tan \theta$ is positive and very large, while immediately after 90°, $\tan \theta$ is negative and numerically very large. In fact, here, as θ passes through the value 90° from the first to the second quadrant, there is a

sudden break or discontinuity in the value of $\tan \theta$, which suddenly passes from a very large positive value to a very large negative value, *i.e.* from the positive to the negative side in passing through infinity.

In the third quadrant, both P_4N_4 and ON_4 are negative and P_4N_4 increases numerically from 0 to OY' while ON_4 decreases numerically from OX' to 0. Hence, $\tan \theta = \frac{P_4N_4}{ON_4}$ is positive, and increases from 0 to ∞ .

In the fourth quadrant, P_5N_5 is negative and numerically diminishes from OY' to 0 while ON_5 is positive and increases from 0 to OX. Hence, $\tan\theta = \frac{P_5N_5}{ON_5}$ is negative and numerically diminishes from ∞ to 0 *i.e.*, increases from $-\infty$ to 0.

In passing through 270°, there is another discontinuity, $\tan \theta$ suddenly passing from the positive to the negative side through infinity.

The results are therefore as follows:

As θ increases from 0° to 90°, tan θ increases from 0 to ∞ As θ passes through 90°, tan θ suddenly changes from $+\infty$ to $-\infty$

As θ increases from 90° to 180°, tan θ increases from $-\infty$ to 0

As θ increases from 180° to 270°, tan θ increases from 0 to ∞

As θ passes through 270°, tan θ suddenly changes from $+\infty$ to $-\infty$

As θ increases from 270° to 360°, tan θ increases from $-\infty$ to 0.

(iv) Changes in cotangent.

From the changes in the value of the tangent, the changes in $\cot \theta = \frac{1}{\tan \theta}$ are traced as follows:

θ increasing from 0° to 90°, cot θ diminishes from ∞ to 0

 θ increasing from 90° to 180°, cot θ diminishes from 0 to $-\infty$

As θ passes through 180°, there is a sudden change in $\cot \theta$ from $-\infty$ to $+\infty$

θ increasing from 180° to 270°, cot θ diminishes from

∞ to + 0

θ increasing from 270° to 360°, cot θ diminishes from

0 to - -

As θ passes through 360°, cot θ again suddenly changes from $-\infty$ to $+\infty$.

(v)|Changes in secant.

For sec $\theta = \frac{1}{\cos \theta}$, the results are as follows:

From 0° to 90° for θ , sec θ increases from 1 to ∞ . Here there is a sudden change from $+\infty$ to $-\infty$. Then from 90° to 180°, sec θ increases from $-\infty$ to -1. From 180° to 270°, sec θ diminishes from -1 to $-\infty$. Here again there is a sudden change from $-\infty$ to $+\infty$. Then from 270° to 360°, sec θ diminishes from ∞ to 1.

(vi) Changes in cosecant.

For cosec $\theta = \frac{1}{\sin \theta}$, the results are as follows:

From 0° to 90°, cosec θ diminishes from ∞ to 1. From 90° to 180°, cosec θ increases from 1 to ∞ . Here cosec θ suddenly changes from $+\infty$ to $-\infty$. Then from 180° to 270°, cosec & increases from

 $-\infty$ to -1.

From 270° to 360°, cosec θ diminishes from -1 to $-\infty$. As θ passes through 360°, cosec θ again suddenly

changes from $-\infty$ to $+\infty$.

Note. As θ increases by complete multiples of 2π (i.e., 360°) we know that all the Trigonometrical ratios remain unaltered. Hence after 360°, as θ goes on increasing, the same series of values for the ratios are repeated over and over again for each complete revolution of the revolving line. The trigonometrical ratios are therefore all of them **periodic functions** having the same **period** 2π ,* after each of which, the same cycle of values is repeated.

The changes traced out above, of the trigonometrical ratios, may be much more clearly demonstrated to the eye from a study of their graphs.

103. Graphs of Trigonometrical Functions.

Just like algebraic functions, trigonometrical functions (i.e., $\sin x$, $\cos x$, $\sin^2 2x + \tan \frac{x}{2}$, etc.) may be conveniently represented by means of graphs, showing their changes with the change in the values of the angles.

The method is the same as for graphs in Algebra. Two straight lines XOX' and YOY', intersecting at right angles are taken as axes of co-ordinates. Along the x-axis, the angles are represented on a suitably chosen scale, positive angles along OX, and negative angles along OX'. Along the y-axis, the values of the trigonometrical functions corresponding to the angles are represented on a suitably chosen scale, positive values being measured upwards (along OY), and negative values downwards (along OY'). Thus the abscissa and ordinate of a point stand respectively for an angle and its trigonometrical function.

^{*}tan θ and cot θ have a period π .

Plotting a number of points in this way and joining them free-hand, we get the required graph of a given trigonometrical function.

104. Graph of sin x or sine-graph.

Let $y = \sin x$.

Using the table of natural sines, the corresponding values of x and y are tabulated corresponding to the values of x differing by 10° (the values of y being correct up to two places of decimals) as follows:—

æ	-90°	-80°	-70°	- 60°	- 50° -	-40°	- 30°	- 20°	– 10°	0°
y or sin x	- 1	98	94	- '87	77	04	• 50	- '34	- 17	0

æ	10°	20°	80°	40°	50°	60~	70°	80°	90°	1 0 0°	110°	120°	etc.
y or sin x	17	•34	•50	.64	.77	·87	.94	.98	1	.98	.94	.87	eto.

Now let the scale be so chosen that 1 small division along OX represents 10°, and 10 small divisions along OY represent unity.*

The points corresponding to the tabulated values are plotted on the graph paper according to the scale chosen and joined free-hand.

The graph is as shown on the next page (drawn here between the range $x = -180^{\circ}$ to $x = +360^{\circ}$).

*According to the graph paper supplied and the range within which the graph is to be drawn, the scale should be suitably chosen in each individual case separately.

Sine-Graph

Note 1. In the table of natural sines, sines of angles from 0° to 90° only are available. With the help of the formulæ $\sin (-\theta) = -\sin \theta$, $\sin (180^{\circ} + \theta) = -\sin \theta$ etc. of Chapter IV, however, the tabulation for $\sin \theta$ shown above, outside the range of 0° to 90° , is effected.

Similar is the case of tabulation for other graphs in the following pages.

Note 2. Peculiarities of the sine-graph.

From the figure, the following features will be apparent:—(i) The graph is continuous, and wavy in form; (ii) The maximum value of $\sin x$ is +1 and the minimum value is -1, these values being attained for values of x which are odd multiples of 90° ; (ii) $\sin x$ is 0 at the origin and at points for which x is an even multiple of 90° i.s., any multiple of 180° ; (iii) that $\sin\left(\frac{\pi}{2}-x\right)=\sin\left(\frac{\pi}{2}+x\right)$, $\sin(\pi-x)=\sin x$, $\sin(-x)=-\sin x$, $\sin(\pi+x)=-\sin x$ etc.; (v) since $\sin(2\pi\pi+x)=\sin x$, the portion between 0 to 2π is repeated over and over again on either side.

105. Graph of cos x or cosine graph.

Let $y = \cos x$.

Using the table of natural cosines (see Note 1 of the previous Article), the corresponding values of x and y are tabulated at intervals of 10° for x as follows:—

æ	-90°	-80°	– 70°	- 60°	- 50°	-40°	- 30°	- 20°	-10°
y or cos x	0	.17	*34	.20	.64	.77	.87	•94	-98

æ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	etc.
y or cos æ	1	.98	·94	·87	.77	·64	.50	*84	•17	0	- · 17	- '84	etc.

Cosine-graph

Now choosing the scale such that 1 small division along OX represents 10°, and 10 small divisions along OY represent unity, the points corresponding to the above tabulated values are plotted and joined free-hand.

We then get the required graph, which is shown on the annexed page (shown here between the range $-\pi$ to $+2\pi$ of x).

Note. It is apparent from the figure, that the cosine-graph is exactly the same as the sine-graph only shifted whole-sale backwards (to the left) through a space of 90°.

This is due to the fact that $\sin (90^{\circ} + x) = \cos x$, or $\sin x = \cos (x - 90^{\circ})$ so that the ordinate in the sine-graph corresponding to any value of x=the ordinate of the cosine-graph corresponding to a value of x which is 90° less than before.

106. Graph of tan x or tangent-graph.

Let $y = \tan x$.

Using the table of natural tangents, the corresponding values of x and y are tabulated at intervals of 10° of x as follows:—

æ	-20°	- 10°	0° 1	.0°	20° 30	0° 40°	50°	60°	70°	80°	90°	100°	etc.	-
y or tan x	36	- 18	0	18	.36	84	1.19	1.78	2.75	5.67	∞	- 5·67	etc.	1

Now choosing the scale such that 1 small division along OX represents 10°, and 3 small divisions along OY represent unity, the points corresponding to the above tabulated values are plotted and joined free-hand.

The graph is as shown on the next page (shown here between the range $-\pi$ to $+2\pi$ for x).

Tangent-Graph

Note. Peculiarities of the tangent-graph.

From the figure, the following points will be apparent: (i) That the curve is not continuous, but consists of separate branches or portions, the points of discontinuities being the values of x corresponding to the odd multiples of $\frac{\pi}{2}$. (ii) As x passes through these points from the left to the right, the value of $\tan x$ suddenly changes from very large positive values on the left to very large negative values on the right. (iii) The lines parallel to y-axis corresponding to the odd multiple of $\frac{\pi}{2}$ are continuously approached by the graph on either side, but never actually met. Such lines are called asymptotes to the curve. (iv) Since $\tan (n\pi + x) = \tan x$, each branch, is simply a repetition of the branch from $-\frac{\pi}{2}$ to $+\frac{\pi}{2}$.

107. Graph of cot x or cotangent-graph.

As before the values of x and y ($=\cot x$) are tabulated, and with the same scale as in the tangent-graph the points are plotted and joined free-hand.

The graph is shown on the next page (between $x = -\pi$ to $x = +2\pi$).

This graph also, like the tangent-graph, is discontinuous, the points of discontinuity being x=0 and $x=n\pi$. The portion between x=0 and $x=\pi$ is repeated over and over again on either side, as is consequent from the formula $\cot (n\pi + x) = \cot x$.

108. Graph of cosec x or cosecant-graph.

The corresponding values of x and y are tabulated at intervals of 10° of x as follows:—

æ	-20°	-10°	0°	10°	20°	30°	etc.	80°	90°	100°	110°	etc.
y or cosec x	-2.92	-5.76	∞	5.76	2.92	2	etc.	1.03	1	1.03	1.06	etc.

Cotangent-Graph

Cosecant-Graph

[If the table of natural cosecants be not available, the table of natural sines may be used and the values of cosec x

 $=\frac{1}{\sin x}$ may be calculated for different values of x.

The scale is so choosen that 1 small division along OX represents 10°, and 3 small divisions along OY represent unity.

The tabulated points are now plotted and joined free-
hand.

The graph is shown on the previous page (between the range $x = -\pi$ to $x = 2\pi$).

Note. This graph also consists of detached branches, the points of discontinuity being x=0 and $x=n\pi$. The value of y never lies between ± 1 , being always greater than 1 or less than -1. The lines $x=n\pi$ are asymptotes. The portion between x=0 to $x=2\pi$ is repeated on either side, over and over again.

109. Graph of sec x or secant-graph.

The corresponding values of x and y ($-\sec x$) are tabulated as in the case of conscant graph, by making use of the table of cosines, if a table of secants be not available.

With the same scale as in the cosecant-graph, the tabulated points have been plotted and joined free-hand.

The graph is shown in the adjoining page (between the range $x = -\pi$ to $x = 2\pi$).

Note. It is apparent from the figure that the secant-graph is exactly the same as the cosecant-graph, only shifted backwards (to the left) through a space of 90°.

This is due to the fact that cosec $(90^{\circ} + x) = \sec x$. [See note below Art. 105.]

Secant-Graph

110. Graphs of other Trigonometrical Expressions.

Graphs of other Trigonometrical functions may be obtained in a similar manner.

We illustrate this by an example.

Ex. Draw the graph of $y = \sin x + \cos x$ between the range x = 0 to $x = 2\pi$, and find from the graph the values of x for which (i) y = 0, (ii) y is maximum, (iii) y is minimum.

[C. U. 1934.]

From the table of natural sines and cosines, corresponding to each value of x, the values of $\sin x$ and $\cos x$ may be separately obtained and then added to give y; or else we may write $y = \sin x + \cos x = \sqrt{2} (\sin x \cos \frac{1}{2}\pi + \cos x \sin \frac{1}{2}\pi) = \sqrt{2} \sin (x + \frac{1}{2}\pi)$, and corresponding to any value of x, $\sin (x + \frac{1}{2}\pi)$ may be deduced from the sine-table, and this multiplied by $\sqrt{2}$ (=1'414) will give y.

The corresponding values of x and y are tabulated at intervals of 10° of x, between the interval x=0 to $x=2\pi$ as follows:—

x	O.	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
y	1	1.12	1.27	1.37	1.41	1.41	1.87	1.54	1.12	1	.81

æ	110°	1200	180°	140°	150°	160°	170°	180°	190°	200°
y	•59	-87	·13	- '18	- '37	29	81	-1	-1.12	-1.27

Graph of $\sin x + \cos x$

æ	210°	220°	290°	240°	250°	260°	270°	280°
y	- 1.97	-1.41	-1.41	-1.37	- 1. 27	- 1.12	-1	81
æ	290°	300°	310°	320°	330°	340°	350°	360°
y	29	-:37	13	•13	.87	.59	.81	1

The scale is chosen so that 1 small division along OX represents 10°, and 10 small divisions along OY represent unity.

The tabulated points are now plotted and joined. The graph is as shown on the previous page.

From the graph we find that (i) y = 0 when $x = 135^{\circ}$ and $x = 315^{\circ}$, (ii) y is maximum when $x = 45^{\circ}$, (iii) y is minimum when $x = 225^{\circ}$.

111. Graphical Solution of Equations.

Trigonometrical equations, just like algebraic equations, may be solved graphically. In fact in many practical cases particularly where the solutions are not obtained in terms of the standard angles, the graphical method of solution is the only one which is found convenient and is actually adopted. The method is illustrated by the following examples.

Ex. 1. Solve graphically the equation $2 \sin^2 x = \cos 2x$, giving only those solutions of x which lie between $-\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

[C. U. 1938, '46, '48.]

We draw two graphs, namely
$$y = 2 \sin^2 x \ (= 1 - \cos 2x)$$
 and $y = \cos 2x$

by tabulating the corresponding values of x and y for the two cases separately, making use of the table of natural

Graphical solution of $2 \sin^{9} x = \cos 2x$

cosines, for the range $x = -\frac{\pi}{2}$ to $x = \frac{3\pi}{2}$, at intervals of 10° or 15° of x.

With the same scale, namely, 1 small division along OX representing 10°, and 10 small divisions along OY representing unity, we plot the tabulated values for the two cases in the same graph paper, and joining them, we get the two graphs, as shown in the adjoining page.

We find that the two graphs intersect, and thus have the same abscisse and ordinates at the points for which

$$x = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}.$$

Thus $2 \sin^2 x = \cos 2x$ is satisfied for the values of x given by

$$x = -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \text{ and } \frac{7\pi}{6}$$

which are the required solutions within the range

$$-\frac{\pi}{2}$$
 to $\frac{3\pi}{2}$.

Ex. 2. Solve graphically the equation $\tan x = 2x$ between x=0 and $x=\frac{\pi}{2}$. [C. U. 1939.]

Here, x is supposed to be measured in radians.

First of all we draw separately the two graphs, namely

$$y=2x$$
 ··· (i)

and $y = \tan x$... (ii)

GRAPHS

Graphical solution of $\tan x = 2x$.

The corresponding values of x and y within the range x=0 and $x=\frac{\pi}{2}$ are tabulated in case (i) as follows:

æ (in radians)	0	7 6	# 3	# 2
y (i.e. $2x$) (numerical value)	0	1.05	2.10	3.15

and in case (ii) as follows:

x (in radians)	0	7 18	2 * 18	3 * 18	4π 18	5 π 18	6# 18	7π 18	8# 18	# 2
y (i.e. tan x) (numerical value)	0	•18	.36	.57	·84	1.19	1.73	2.75	5'67	∞

Now choosing the same scale, namely 5 small divisions along OX to represent $\frac{\pi}{18}$ radians, and 10 small divisions along OY to represent unity, we plot the tabulated points for the two cases in the same graph paper and joining them we get the two graphs within the range x=0 and $x=\frac{\pi}{2}$, as shown in the adjoining page.

We find that the two graphs intersect at the point given by x=0 and also at the point corresponding to 33'5 small divisions along OX, which, from our chosen scale, represents $x=\frac{33'5}{5}\times\frac{\pi}{18}$ radians = 1'17 radians (approximately).

Hence the given equation $\tan x = 2x$ is satisfied between x = 0 and $x = \frac{\pi}{2}$ by the values of x, namely x = 0 and x = 1.17 (approximately), which are the required solutions in radians.

Examples XVI

- 1. Draw the graphs of
 - (i) $\sin 3x$ between $x=0^{\circ}$ to $x=180^{\circ}$.
 - (ii) $\tan \frac{3}{2}x$ between $x = -\frac{1}{2}\pi$ to $x = \pi$.
 - (iii) $\sin \theta \cos \theta$ between $\theta = -\pi$ to $\theta = +\pi$.
 - (iv) $\frac{1}{\cos^2\theta \sin^2\theta}$ between $\theta = -\frac{\pi}{2}$ to $+\frac{\pi}{2}$.
 - (v) $\cos (\pi \sin x)$ between x=0 to $x=\frac{1}{2}\pi$.
 - (vi) $\sin \theta \sqrt{3} \cos \theta$ between $\theta = 0$ to $\theta = \pi$.
 - (vii) $\frac{1}{2}$ cosec $\frac{1}{2}x$ between x=0 to $x=2\pi$.
- 2. (i) Trace the changes in the sign of $\cos \theta \sin \theta$ as θ changes from 0° to 360°. Verify your conclusions by a graph.
- (ii) Trace the changes in sign and magnitude of $\frac{2 \sin \theta \sin 2\theta}{2 \sin \theta + \sin 2\theta}$. [B. H. U. 1931.]
- 3. Draw the graph of $y = \sin(x + \frac{1}{2}\pi)$ between the limits $x = -\pi$ and $x = +\pi$.
- 4. Draw the graphs of $\sin \theta$ and $\cos \theta$ between $\theta = 0$ and $\theta = \pi$. Find the points where the graphs intersect.

[C. U. 1936, '46.]

5. Construct the graphs of $\tan x$ and $\cos x$ between 0 and $\frac{1}{2}\pi$ for x, making a tabulation of the values of y dividing the interval into 9 equal parts.

If $\tan x = \cos x$, find approximately the value of x from the above two graphs. [C. U. 1943.]

6. Obtain graphically a solution of the equation $\tan x = 1$, between x = 0 and $x = \frac{1}{2}\pi$. [C. U. 1937.]

[Draw the graphs of $y = \tan x$ and y = 1.]

- 7. Draw the graph of $\cos x \sin 2x$ for values of x lying between 0° and 90° and hence obtain the least value of $\cos x \sin 2x$ in this range.
 - 8. Solve graphically the equations:
 - (i) $x \tan x = 0$, between x = 0 and $x = \frac{1}{2}\pi$.

[C. U. 1945.]

- (ii) $5 \sin \theta + 2 \cos \theta = 5$, between $\theta = 0^{\circ}$ to $\theta = 270^{\circ}$.
- [Draw the graphs of y=5 sin $\theta+2$ cos θ and y=5 and find the common points.] [C. U. 1947.]
- (iii) cot $\theta \tan \theta = 2$, between $\theta = 0$ to $\theta = \pi$.
- (iv) cosec $x = \cot x + \sqrt{3}$, between x = 0 to $x = \pi$.
- (v) $\cos x = \sin 2x + \frac{1}{2}$, between $x = -\frac{1}{2}\pi$ to $x = +\frac{1}{2}\pi$.
- (vi) $5 \tan x = 2x$, between 0 and 2π .
- (vii) $2 \sin x + x 3 = 0$.
- (viii) $x^2 = \cos x$.
 - (ix) $x = \cos^9 x$.

[Draw the graphs of $y = \cos 2x$ and y = 2x - 1.]

- 9. Represent by a graph the displacement given by $s=2 \sin t + \sin 3t$.
- 10. Show graphically that the equation $2 \sin x + \cos 2x = \frac{1}{2}x$ has only three real roots.
 - 11. Sketch the graphs of :

y=x, $y=\sin x$, $y=\tan x$ in $(-\frac{1}{2}\pi, \frac{1}{2}\pi)$. From the nature of graphs near the origin, can you suggest any relation among them at the origin? [C. U. 1952.]

CHAPTER XVII

MISCELLANEOUS THEOREMS AND EXAMPLES

Sec. A

HARDER PROBLEMS ON HEIGHTS AND DISTANCES

- 112. Some simple practical applications of Trigonometry, dealing with easy problems on determination of heights and distances, have already been discussed in Chapter V. The problems in the present section are of a more general character, requiring for their solutions, the general relations between the sides and angles of a triangle, as also some geometrical skill.
- 113. To find the height and the distance of an inaccessible object standing on a horizontal plane.

Let CD be the object, which is observed from a point A on a horizontal ground, α being the observed elevation of its top C. Let A be the required height CD and A the required distance AD of the object from A.

Case I. If possible, measure off any suitable distance AB(-c) from A directly towards the object, and from B let the observed elevation of C be β .

Then from fig. (i),

$$c = AD - BD = h \cot \alpha - h \cot \beta$$
$$h \left(\frac{\cos \alpha}{\sin \alpha} - \frac{\cos \beta}{\sin \beta} \right) = \frac{h \sin (\beta - \alpha)}{\sin \alpha \sin \beta}.$$

 $\therefore h = c \sin \alpha \sin \beta \csc (\beta - \alpha).$

Also $d = AD = h \cot a = c \cos a \sin \beta \csc (\beta - a)$.

Note. Each of the above expressions for h and d is in a suitable form for logarithmic computation.

Case II. If however it is not convenient to measure the length AB directly towards the object, we may proceed as follows:

Measure off the length AB(=c) in any suitable direction from A. From A let the observed elevation of C be a as before. The angles CAB and CBA are also observed from A and B respectively. Let these be θ and ϕ .

We get from fig. (ii) in this case,

in
$$\triangle ABC$$
, $\frac{AC}{\sin \phi} = \frac{AB}{\sin C}$
i.e., $\frac{c}{\sin (180^{\circ} - \theta - \phi)} = \frac{c}{\sin (\theta + \phi)}$

 $\therefore AC = c \sin \phi \csc (\theta + \phi).$

$$\therefore h = AC \sin \alpha = c \sin \alpha \sin \phi \csc (\theta + \phi)$$

and $d = AD = AC \cos a = c \cos a \sin \phi \csc (\theta + \phi)$.

Note. Here also, the expressions for h and d are suitable for calculation by logarithm.

114. To find the distance between two visible but inaccessible objects.

Let P and Q be the objects whose distance apart is required.

Take two suitable points A and B for observation, the distance between which is measured, say c.

At A, measure the angles PAQ, PAB, and QAB (the second observation being unnecessary if all the four points P, A, B, Q are in the same plane, for in that case, $\angle PAB = \angle PAQ + \angle QAB$). Let these be θ , α and β respectively.

At B measure the angles PBA and QBA, and let them be γ and δ .

From
$$\triangle PAB$$
, $\frac{PA}{\sin \gamma} = \frac{c}{\sin (180^{\circ} - a - \gamma)} = \frac{c}{\sin (a + \gamma)}$, whence, $PA = c \sin \gamma \csc (a + \gamma)$.

Similarly, from $\triangle QAB$,

$$QA = c \sin \delta \csc (\beta + \delta)$$
.

Lastly, from $\triangle PAQ$,

$$PQ^2 = PA^2 + QA^2 - 2PA.QA. \cos \theta.$$

Thus PQ is determined.

- 115. Some more illustrative examples of harder problems on heights and distances are worked out below.
- Ex. 1. A flag staff is fixed on the top of a tower standing on a horizontal plane. An observer walking directly towards the foot of the tower, observes the angle subtended

by the flagstaff from two positions on his path to be the same namely θ . The distance between these two positions is d, and the angle subtended by the tower at his first position is a. Find the height of the tower, and the length of the flagstaff.

Let CD be the tower, PC the flagstaff, whose heights required are h and l respectively. A and B are the points of observation.

 \therefore $\angle PAC = \angle PBC = \theta$, the points P, A, B, C are concyclic.

Now
$$d = AD - BD = h \cot a - h \cot (CBD)$$

$$= h \left\{\cot a - \tan (\theta + a)\right\}$$

$$= h \left\{\frac{\cos a}{\sin a} - \frac{\sin (\theta + a)}{\cos (\theta + a)}\right\} = h \frac{\cos (\theta + 2a)}{\sin a \cos (\theta + a)}.$$

 $\therefore \quad h = d \sin a \cos (\theta + a) \sec (\theta + 2a).$

Again, from $\triangle APC$,

$$\frac{l}{\sin \theta} = \frac{AC}{\sin APC} = \frac{h}{\sin a \cos (\theta + a)} = \frac{d}{\cos (\theta + 2a)}.$$

 $\therefore \quad l = d \sin \theta \sec (\theta + 2a).$

Ex. 2. A man walking towards a building, on which a flagstaff is fixed, observes the angle subtended by the flagstaff to be greatest, when he is at a distance d from the building. If θ be the observed greatest angle, find the length of the flagstaff, and the height of the building.

Let QB be the building, and PQ the flagstaff. It is easily seen from Geometry that the point of contact A of a circle through P and Q touching the path of the observer on the ground, is the point at which the angle subtended by PQ is greatest.

Thus
$$\angle QAB = \angle APQ = a$$
 say.

Then, $\angle PAB + \angle APB = 90^{\circ}$,
or, $\theta + 2a = 90^{\circ}$ (i)

Now, $PQ = PB - QB = d \tan (\theta + a) - d \tan a$

$$= d \begin{cases} \frac{\sin (\theta + a)}{\cos (\theta + a)} - \frac{\sin a}{\cos a} \end{cases}$$

$$= d \frac{\sin \theta}{\cos (\theta + a) \cos a} = \frac{2d \sin \theta}{\cos (\theta + 2a) + \cos \theta}$$

$$= 2d \tan \theta. \quad [from (i)]$$
Also, $QB = d \tan a = d \tan \left(\frac{\pi}{4} - \frac{\theta}{9}\right)$.

Ex. 8. The angle of elevation of a light at the top of a distant tower from a point 12 ft. above a lake is 24°55', and the angle of depression of its reflection in the lake is 35°5'. Find the height of the tower correct to two decimal places, having given

$$log \ 2 = 30103,$$
 $log \ 3 = 47712$
 $log \ 588 = 2.76938,$ $log \ 589 = 2.77012$
 $Lsin \ 10^{\circ} \ 10' = 9.24677.$

Let L be the light at the top of the tower LM, LRO the ray from L, which reflected in the lake at R, reaches the observer O, so that OR is the direction in which the reflexion is seen, and thus, from the laws of reflexion, $\angle ORA = \angle LRM = \phi$ (say) which is evidently equal to the angle of depression of the reflexion, i.e., 35° 5′.

Let θ denote the angle of elevation of L from O, i.e., 24° 55'.

Now from the figure, in $\triangle ORL$,

$$\frac{RL}{\sin (\theta + \phi)} = \frac{OR}{\sin (\phi - \theta)} = \frac{12}{\sin \phi \sin (\phi - \theta)} \text{ ft.}$$

$$\therefore h = LM - RL \sin \phi - 12 \frac{\sin (\theta + \phi)}{\sin (\phi - \theta)} - 12 \frac{\sin 60^{\circ}}{\sin (10^{\circ} 10')}$$

$$= \frac{6\sqrt{8}}{\sin (10^{\circ} 10')} = \frac{2.9^{\frac{5}{8}}}{\sin (10^{\circ} 10')}.$$

Hence,
$$\log h = \log(2.3^{\frac{3}{2}}) - \log \sin (10^{\circ} 10')$$

= $\log 2 + \frac{3}{2} \log 3 + 10 - L \sin (10^{\circ} 10')$
= $30103 + \frac{3}{2}(47712) + 10 - 9.24677$
= 1.76994 .

From the given data, it is seen that

 $\log h$ lies between $\log 58.8$ and $\log 58.9$.

Hence, if
$$h = 58.8 + x$$
, diff. for '1 = 1.77012 - 1.76938 = .00074,

and diff. for x = 1.76994 - 1.76938 = .00056.

... by the theory of proportional parts,

$$\frac{x}{1} = \frac{56}{74} = 75$$
. : $x = 0.075 = 0.08$ approximately.

Thus, h = 58.88 ft.

Examples XVII (a)

- 1. The angles of elevation of the top of a palm tree standing on horizontal ground, observed from two points A and B, distant 40 and 30 feet from the foot, and in the same straight line with it are found to be complementary. Prove that the height of the tree is nearly 35 feet, and that the angle subtended at the top of the tree by the line AB is $\sin^{-1}\frac{1}{T}$.
- 2. The angles of elevation of an aeroplane from two places one mile apart and from a point half way between them are found to 60°, 30° and 45° respectively. Show that the height of the aeroplane is $440\sqrt{6}$ yards.
- 3. A building with ten storeys, each of equal height x ft., stands on one side of a wide street, and from a point

on the other side of the street directly opposite the building, it is observed that the three uppermost storeys together and the two lowest storeys together subtend equal angles. Show that the width of the street is $x\sqrt{140}$ ft.

- 4. A two storeyed building has the height of its lower storey 12 ft. and that of the upper storey 13 ft. Find at what distance the two storeys subtend equal angles to an observer's eye at a height 5 feet from the ground.
- 5. A vertical rod is erected in a horizontal rectangular field ABCD. The angular elevation of its top from A, B, C, D are α , β , γ , δ . Show that

$$\cot^2 \alpha - \cot^2 \beta = \cot^2 \delta - \cot^2 \gamma.$$

6. The angles of elevation of a bird flying in a horizontal straight line, from a fixed point at four successive observations are α , β , γ , δ , the observations being taken at equal intervals of time. Assuming that the speed of the bird is uniform, show that

$$\cot^2 \alpha - \cot^2 \delta = 3(\cot^2 \beta - \cot^2 \gamma).$$

7. A man on a hill observes that three towers on a horizontal plane subtend equal angles at his eye and that the angles of depression of their bases are α , β , γ . If α , b, c are the heights of the towers, prove that

$$\frac{\sin (\beta - \gamma)}{a \sin a} + \frac{\sin (\gamma - a)}{b \sin \beta} + \frac{\sin (\alpha - \beta)}{o \sin \gamma} = 0.$$

8. A gun is fired from a fort F at a distance d from a station O, and from two stations A and B in a straight line with O and distant a and b respectively from O, the intervals between seeing the flash and hearing the report are t and t'. Show that the velocity of sound is

$$\sqrt{\frac{(d^2-ab)(a-b)}{at'^2-bt^2}}.$$

9. A person observes the elevation of the top of a telegraph post which is E. S. E. of him to be 45°, and at noon, the extremity of its shadow is to the N. E. of him; if the length of the shadow be x, shew that the height of the post is $x\sqrt{2-\sqrt{2}}$.

10. A straight tree on the horizontal ground leans towards the North; at two points due South and distant a, b respectively from the foot, the angular elevations of the top of the tree are a and β . Show that the inclination of the tree to the horizon is

$$\tan^{-1}\left(\frac{a-b}{a\cot\beta-b\cot\alpha}\right).$$

11. An observer on a carriage moving with a speed V along a straight road observes in one position that two distant trees are in the same line with him which is inclined at an angle θ to the road. After a time t, he observes that the trees subtend their greatest angle ϕ ; show that the distance between the trees is

$$2Vt \sin \theta \sin \phi/(\cos \theta + \cos \phi)$$
.

12. A train travelling on one of two straight intersecting railways subtends at a certain station on the other line, angles a and β , when the front of the first carriage and the end of the last carriage reach the junction respectively. Show that the angle of intersection of the two lines is

$$\tan^{-1}\frac{2\sin\alpha\sin\beta}{\sin(\alpha\sim\beta))}.$$

13. Two vessels are sailing in parallel directions, and at one instant the bearing of one from the other is a° N. of E. After an hour's sailing the bearing of the first from the second is β ° N. of E., and after another hour the bearing is γ ° N. of E. Show that the vessels are sailing in a direction θ ° N. of E., where

$$\sin (\alpha - \theta) \sin (\gamma - \beta) = \sin (\beta - \alpha) \sin (\gamma - \theta)$$
.

14. A rod of given length can turn in a vertical plane passing through the sun, one end being fixed on the ground; if the longest shadow it can cast is 3½ times the length of the rod, calculate the altitude of the sun, having given

$$\log 3 = 47712$$
, $L \cos 72^{\circ} 32' 30'' = 947712$.

15. A ship sailing N. E. is, at a particular moment, in a line with two light-houses, one of which is situated 5 miles

due N. of the other. In 3 minutes and also in 21 minutes the light-houses are found to subtend a right angle at the ship. Prove that the ship is sailing at the rate of 10 miles an hour, and that the light-houses subtend their greatest angle at the ship at the end of $3\sqrt{7}$ minutes.

- 16. A parachute was observed in the N. E. at the elevation 45° ; ten minutes afterwards it was found to be due N. at an elevation $22\frac{1}{2}^{\circ}$. The parachute was descending at the rate of 6 miles per hour, and was all along drifted uniformly towards the west by the wind. Show that wind blows at the rate of 6 miles per hour.
- 17. A person wishing to determine the height of a distant temple observes the elevation of its top from a point on the horizontal ground through its base to be 30°. On walking a distance $80 \sqrt{3}$ ft. in a certain direction, he finds the elevation of the top to be the same as before, and then on walking a distance 80 ft. at right angles to the former direction, the elevation is found to be 45°. Show that the height of the temple is 80 ft.
- 18. The shadow of a telegraph post is observed to be half the known height of the post, and sometime afterwards it is equal to the known height; how much will the sun have gone down in the interval, given

 $\log 2 = 30103$, $T_1 \tan 63^{\circ} 26' = 10'3009994$ and diff. for 1' = 3159?

19. The side of a hill faces due S, and is inclined to the horizon at an angle a. A straight railway upon it is inclined at an angle β to the horizon; show that the bearing of the railway is

 \cos^{-1} (cot a tan β) E. of N.

20. A spherical time-ball of diameter d at the top of a tower subtends an angle 2a at a point on the ground from which the elevation of its centre is θ ; prove that the height of the centre of the ball above the ground is $\frac{1}{2}d\sin\theta$ cosec a.

Sec. B-SUMMATION OF FINITE SERIES

116. Method of Difference.

When the rth term of a trigonometrical series can be expressed as the difference of two quantities, one of which is the same function of r as the other is of (r+1), the sum of the series may be readily found as illustrated in the Examples 1 and 2 below.

Ex. 1. Find the sum of the series.

(i)
$$cosec \theta + cosec 2\theta + cosec 2^2\theta + \cdots + cosec 2^{n-1}\theta$$
.

(ii)
$$\frac{\sin x}{\sin 2x \sin 3x} + \frac{\sin x}{\sin 3x \sin 4x} + \frac{\sin x}{\sin 4x \sin 5x} + \cdots$$

$$+ \cdots to n terms.$$

(i) We have
$$\csc \theta = \frac{1}{\sin \theta} = \frac{\sin \frac{1}{2}\theta}{\sin \frac{1}{2}\theta \sin \theta}$$

$$= \frac{\sin (\theta - \frac{1}{2}\theta)}{\sin \frac{1}{2}\theta \sin \theta}$$

$$= \frac{\sin \theta \cos \frac{1}{2}\theta - \cos \theta \sin \frac{1}{2}\theta}{\sin \frac{1}{2}\theta \sin \theta}$$

$$= \cot \frac{1}{2}\theta - \cot \theta.$$

Thus, $\csc \theta = \cot \frac{1}{2}\theta - \cot \theta$. Similarly, $\csc 2\theta = \cot \theta - \cot 2\theta$.

 $\csc 2^{2}\theta = \cot 2\theta - \cot 2^{2}\theta$

cosec
$$2^{n-1}\theta = \cot 2^{n-2}\theta - \cot 2^{n-1}\theta$$
.
by addition, the required sum
$$= \cot \frac{1}{2}\theta - \cot 2^{n-1}\theta.$$

(ii) Here, 7th term

$$= \frac{\sin x}{\sin (r+1)x \sin (r+2)x}$$

$$= \frac{\sin \{(r+2) - (r+1)\}x}{\sin (r+1)x \sin (r+2)x}$$

$$= \frac{\sin (r+2)x \cos (r+1)x - \cos (r+2)x \sin (r+1)x}{\sin (r+1)x \sin (r+2)x}$$

$$= \cot (r+1)x - \cot (r+2)x.$$

Putting r=1, 2, 3,...n and adding, the sum of the required series would be found to be

$$\cot 2x - \cot (n+2)x.$$

Ex. 2. Find the sum of the series

$$tan^{-1}\frac{x}{1+1.2x^2}+tan^{-1}\frac{x}{1+2.3x^2}+\cdots$$

 $+tan^{-1}\frac{x}{1+n(n+1)x^2}$

Here,
$$r$$
th term = $\tan^{-1} \frac{x}{1 + r(r+1)x^2}$
= $\tan^{-1} \frac{(r+1)x - rx}{1 + (r+1)x \cdot rx}$
= $\tan^{-1} (r+1)x - \tan^{-1} rx$.
putting $r = 1, 2, 3, \dots, n$, we have

$$\tan^{-1}\frac{x}{1+1.2x^2} = \tan^{-1}2x - \tan^{--}x$$

$$\tan^{-1}\frac{x}{1+2.3x^2} = \tan^{-1}3x - \tan^{-1}2x$$

$$\tan^{-1}\frac{x}{1+n(n+1)x^2}=\tan^{-1}(n+1)x-\tan^{-1}nx.$$

by addition, the required sum $= \tan^{-1}(n+1)x - \tan^{-1}x.$

- 117. Sometimes the rth term of a series, when multiplied by a factor, can be expressed as the difference of two quantities one of which is the same function of r as the other is of (r+1). It is illustrated in the following two cases.
 - (I) Sum of sines of n angles in A. P.

Let the angles in A.P. be a, $a + \beta$, $a + 2\beta$,... $\{a + (n-1)\beta\}$, the first term being a, and the common difference, β .

Let S denote the sum of the series.

$$\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \cdots + \sin \{\alpha + (n-1)\beta\}.$$

Multiplying each term of the above series by $2 \sin (half difference)$, i.e., by $2 \sin \frac{1}{2}\beta$, we have,

$$2 \sin \alpha \sin \frac{1}{2}\beta = \cos \left(\alpha - \frac{1}{2}\beta\right) - \cos \left(\alpha + \frac{1}{2}\beta\right)$$

$$2 \sin (\alpha + \beta) \sin \frac{1}{2}\beta = \cos (\alpha + \frac{1}{2}\beta) - \cos (\alpha + \frac{3}{2}\beta)$$

$$2 \sin \left(\alpha + 2\beta\right) \sin \frac{1}{2}\beta = \cos \left(\alpha + \frac{8}{2}\beta\right) - \cos \left(\alpha + \frac{5}{2}\beta\right)$$

$$2 \sin \{a + (n-1)\beta\} \sin \frac{1}{2}\beta$$

$$= \cos \left(a + \frac{2n-3}{2}\beta\right) - \cos \left(a + \frac{2n-1}{2}\beta\right)$$

Adding vertically, we have

$$2 \sin \frac{1}{2}\beta.S = \cos \left(a - \frac{\beta}{2}\right) - \cos \left(a + \frac{2n - 1}{2}\beta\right)$$
$$= 2 \sin \left(a + \frac{n - 1}{2}\beta\right) \sin \frac{n\beta}{2}.$$

$$S = \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \cdot \sin \left(\alpha + \frac{n-1}{2}\beta\right).$$

Cor. Putting $\beta = a$, we get $\sin a + \sin 2a + \sin 3a + \cdots + \sin na$

$$=\frac{\sin\frac{n\alpha}{2}}{\sin\frac{\alpha}{2}}\sin\frac{n+1}{2}\alpha.$$

(ii) Sum of cosines of n angles in A.P.

As before, let S denote the sum of the series $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \cdots + \cos \{\alpha + (n-1)\beta\}.$

Multiplying each term of the above series by 2 sin (half difference), we have,

$$2\cos a \cdot \sin \frac{1}{2}\beta = \sin \left(a + \frac{1}{2}\beta\right) - \sin \left(a - \frac{1}{2}\beta\right)$$

$$2\cos{(a+\beta)}\cdot\sin{\frac{1}{2}\beta} = \sin{(a+\frac{3}{2}\beta)} - \sin{(a+\frac{1}{2}\beta)}$$

$$2\cos(\alpha+2\beta).\sin\frac{1}{2}\beta = \sin(\alpha+\frac{5}{2}\beta) - \sin(\alpha+\frac{8}{2}\beta)$$

2 cos
$$\{a + (n-1)\beta\}$$
, sin $\frac{1}{2}\beta$
= sin $\left(a + \frac{2n-1}{2}\beta\right)$ - sin $\left(a + \frac{2n-3}{2}\beta\right)$.

Adding vertically, we have

$$2 \sin \frac{1}{2}\beta.S = \sin \left(a + \frac{2n-1}{2}\beta\right) - \sin \left(a - \frac{\beta}{2}\right)$$
$$= 2 \cos \left(a + \frac{n-1}{2}\beta\right) \sin \frac{n\beta}{2}.$$

$$S = \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \cdot \cos \left(\alpha + \frac{n-1}{2}\beta\right)$$

Cor. Putting $\beta = a$, we get

$$\cos a + \cos 2a + \cos 3a + \cdots + \cos na = \frac{\sin \frac{na}{2}}{\sin \frac{a}{2}} \cdot \cos \frac{n+1}{2}a.$$

Note. The sum of the cosine series may be deduced from that of the sine series by writing $a + \frac{\pi}{0}$ for a.

As an aid to memory, the two formulæ of this article may be expressed in language as follows:

since,
$$\alpha + \frac{n-1}{2}\beta = \frac{\alpha + \alpha + (n-1)\beta}{2}$$
,

... Sum of sines of n angles in A.P.

$$= \frac{\sin \frac{n.diff.}{2}}{\sin \frac{diff.}{2}} \sin \frac{\text{first angle + last angle}}{2}.$$

Sum of cosines of n angles in A.P.

$$= \frac{\sin \frac{n.diff.}{2}}{\sin \frac{diff.}{2}} \cos \frac{\text{first angle + last angle}}{2}$$

Note. From the above formulæ, it is clear that if $\sin \frac{n\beta}{2} = 0$, then the sum of the sine series as also the sum of the cosine series is zero.

Now, if
$$\sin \frac{n\beta}{2} = 0$$
, then $\frac{n\beta}{2} = k\pi$ or $\beta = \frac{2k\pi}{n}$, where k is an integer.

Thus, the sum of the sines and the sum of the cosines of n angles in A. P. are each equal to zero when the common difference of the angles is an even multiple of $\frac{\pi}{n}$.

Ex. 1. Find the sum of n terms of the series $\sin \alpha - \sin (\alpha + \beta) + \sin (\alpha + 2\beta) - \cdots$

Since, $\sin (\pi + \theta) = -\sin \theta$; $\sin (2\pi + \theta) = \sin \theta$ etc.

:. the series is equal to

$$\sin \alpha + \sin (\pi + \alpha + \beta) + \sin (2\pi + \alpha + 2\beta) + \cdots$$

i.e., equal to a series in which the common difference of the angles is $\beta + \pi$ and the last angle is $\alpha + (n-1)(\beta + \pi)$.

$$S = \frac{\sin \frac{n(\beta + \pi)}{2}}{\sin \frac{\beta + \pi}{2}} \sin \left\{ a + \frac{(n-1)(\beta + \pi)}{2} \right\}.$$

Ex. 2. Find the sum of the series $\sin^2 \theta + \sin^2 2\theta + \sin^2 3\theta + \dots + \sin^2 n\theta.$

Since, $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$; $\sin^2 2\theta = \frac{1}{2}(1 - \cos 4\theta)$; &c.

.. the given series

$$= \frac{1}{2}(1 - \cos 2\theta) + \frac{1}{2}(1 - \cos 4\theta) + \dots + \frac{1}{2}(1 - \cos 2n\theta)$$

$$= \frac{n}{2} - \frac{1}{2}(\cos 2\theta + \cos 4\theta + \dots + \cos 2n\theta)$$

$$= \frac{n}{2} - \frac{1}{2} \frac{\sin n\theta}{\sin \theta} \cos (n+1)\theta. \quad [by Art. 117]$$

Ex. 3. Sum the series

$$\cos a + 2 \cos (a + \beta) + 3 \cos (a + 2\beta) + \cdots \cdots + n \cos \{a + (n - 1)\beta\}.$$

Let u_r denote the rth term and S denote the sum of the given series.

Now,
$$2 \cos \beta . u_r = 2 \cos \beta . r \cos \{\alpha + (r-1)\beta\}$$

= $r[\cos (\alpha + r\beta) + \cos \{\alpha + (r-2)\beta\}].$

... putting r=1, 2, 3, ..., n and adding together,

we get $2 \cos \beta . S$.

Now, subtract $2 \cos \beta . S$ from 2S; then

$$2S(1-\cos\beta) = (n+1)\cos\{a+(n-1)\beta\} - \cos(a-\beta) - n\cos(a+n\beta).$$

Then, dividing by $2(1-\cos\beta)$, S, the sum of the required series would be obtained.

Note. Similarly the sum of the series

 $\sin \alpha + 2 \sin (\alpha + \beta) + 3 \sin (\alpha + 2\beta) + \cdots + n \sin (\alpha + (n-1)\beta)$ would be obtained.

Examples XVII(b)

Sum the following series to n terms:

1.
$$\sin a + \sin \left(a - \frac{\pi}{n}\right) + \sin \left(a - \frac{2\pi}{n}\right) + \cdots$$

2.
$$\cos a + \cos \left(a + \frac{2\pi}{n}\right) + \cos \left(a + \frac{4\pi}{n}\right) + \cdots$$

3.
$$\sin \alpha - \sin 2\alpha + \sin 3\alpha - \cdots$$

4.
$$\cos^2\theta + \cos^22\theta + \cos^23\theta + \cdots$$

5.
$$\sin^8 a + \sin^8 3a + \sin^3 5a + \cdots$$

6.
$$\sin^2 \theta - \sin^2 2\theta + \sin^2 3\theta - \sin^2 4\theta + \cdots$$

7.
$$\sin^4 a + \sin^4 2a + \sin^4 3a + \cdots$$

8.
$$\cos \theta - \sin 2\theta - \cos 3\theta + \sin 4\theta + \cos 5\theta - \sin 6\theta - \cdots$$

9.
$$\sin a \sin 2a + \sin 2a \sin 3a + \sin 3a \sin 4a + \cdots$$

10.
$$\cos a \cos 3a + \cos 3a \cos 5a + \cos 5a \cos 7a + \cdots$$

Find the sum of the following series:

11.
$$\cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \cos \frac{5\pi}{19} + \dots + \cos \frac{17\pi}{19}$$

12.
$$\sin 5^{\circ} + \sin 77^{\circ} + \sin 149^{\circ} + \dots + \sin 293^{\circ}$$
.

13.
$$\sin \frac{2\pi}{n} + \sin \frac{4\pi}{n} + \sin \frac{6\pi}{n} + \dots + \sin \frac{2n\pi}{n}$$

14.
$$\sin n\alpha + \sin (n-1)\alpha + \sin (n-2)\alpha + \cdots$$
 to $2n$ terms.

15. Prove that

(i)
$$\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \cdots + \cos n \text{ terms}}{\cos \theta + \cos 3\theta + \cos 5\theta + \cdots + \cos n \text{ terms}} = \tan n\theta.$$

(ii)
$$\sin^2 a + \sin^2 \left(a + \frac{2\pi}{n}\right) + \sin^2 \left(a + \frac{4\pi}{n}\right) + \cdots$$
 to n terms $-\frac{1}{2}n$.

Sum to n terms:

16. sec a sec
$$2a + \sec 2a$$
 sec $3a + \sec 3a$ sec $4a + \cdots$

17.
$$\frac{1}{\sin \theta \sin 2\theta} + \frac{1}{\sin 2\theta \sin 3\theta} + \frac{1}{\sin 3\theta \sin 4\theta} + \cdots$$

18.
$$\frac{1}{\cos a + \cos 3a} + \frac{1}{\cos a + \cos 5a} + \frac{1}{\cos a + \cos 7a}$$

19.
$$\cot \theta \cot 2\theta + \cot 2\theta \cot 3\theta + \cot 3\theta \cot 4\theta + \cdots$$

20.
$$\tan a + 2 \tan 2a + 4 \tan 4a + 8 \tan 8a + \cdots$$

[$\tan a = \cot a - 2 \cot 2a$]

21.
$$\sin 2\theta \sin^2 \frac{2\theta}{2} + \sin 3\theta \sin^2 \frac{3\theta}{2} + \sin 4\theta \sin^2 \frac{4\theta}{2} + \cdots$$

22.
$$\frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 3^2x} + \frac{\sin 3^2x}{\cos 3^3x} + \cdots$$

[
$$1st term = \frac{1}{2}(tan 3x - tan x)$$
]

23.
$$\tan^{-1} \frac{1}{1+1+1^2} + \tan^{-1} \frac{1}{1+2+2^2} + \tan^{-1} \frac{1}{1+3+3^2} + \cdots$$

24.
$$\tan^{-1}\frac{2}{1+1.3}+\tan^{-1}\frac{2}{1+3.5}+\tan^{-1}\frac{2}{1+5.7}+$$

25.
$$\cot^{-1}(2.1^2) + \cot^{-1}(2.2^2) + \cot^{-1}(2.3^2) + \cdots$$

26.
$$\tan x + \frac{1}{2} \tan \frac{1}{2} x + \frac{1}{2^2} \tan \frac{1}{2^n} x + \cdots$$

27.
$$\cos x \cos 2x \cos 3x + \cos 2x \cos 3x \cos 4x + \cdots$$

28.
$$\cos \theta + 2 \cos 2\theta + 3 \cos 3\theta + \cdots + n \cos n\theta$$
.

(i)
$$\sin a + \sin 2a + \sin 3a + \cdots$$
 to *n* terms

and (ii)
$$\sin a + \sin 3a + \sin 5a + \cdots$$
 to n terms

and hence deduce respectively the sums of the series

- (a) $1+2+3+\cdots$ to *n* terms
- and (b) $1+3+4+\cdots$ to *n* terms.
 - 30. Sum the series

 $\tan x \tan 2x + \tan 2x \tan 3x + \cdots + \tan nx \tan (n+1)x$ and hence deduce the sum of the series

$$1.2 + 2.3 + \cdots + n(n+1)$$
.

- 31. If β be the exterior angle of a regular polygon of n sides, show that
 - (i) $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \cdots$ to n terms = 0.
 - (ii) $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \cdots$ to n terms = 0.
- 32. A regular polygon of n sides is inscribed in a circle of radius a; prove that
- (i) the sum of the lengths of the perpendiculars drawn from the angular points upon any diameter is zero;
- (ii) the sum of the lengths of the lines joining any one vertex to each of the other vertices is $2a \cot \frac{\pi}{2a}$.

Sec. C-ELIMINATION

118. The elimination of trigonometrical functions from given equations is a very important and common mathematical problem. There are no set rules to effect the elimination. The form of the equations will often suggest special methods, and in addition to the usual algebraical artifices, we shall always have at our disposal the identical relations subsisting among the trigonometrical functions.

The following examples will illustrate some useful methods of elimination.

Ex. 1. Eliminate θ between the equations

$$a \cos \theta + b \sin \theta + c = 0$$

 $a' \cos \theta + b' \sin \theta + c' = 0$

From the given equations, we have, by cross-multiplication,

$$\frac{\cos \theta}{bc' - b'c} = \frac{\sin \theta}{ca' - c'a} = \frac{1}{ab' - a'b}$$

$$\therefore \cos \theta = \frac{bc' - b'c}{ab' - a'b}, \text{ and } \sin \theta = \frac{ca' - c'a}{ab' - a'b}$$

Squaring and adding, we get

$$(bc'-b'c)^2+(ca'-c'a)^2=(ab'-a'b)^2$$

as the required eliminant.

Ex. 2. Eliminate θ from the equations

$$x \sin \theta + y \cos \theta = 2a \sin 2\theta$$
$$x \cos \theta - y \sin \theta = a \cos 2\theta.$$

Solving as simultaneous equations in x and y, we have

$$x = a(\cos 2\theta \cos \theta + 2 \sin 2\theta \sin \theta)$$

$$= a[\cos (2\theta - \theta) + \sin 2\theta \sin \theta]$$

$$= a(\cos \theta + 2 \sin^2 \theta \cos \theta),$$

$$y = a(2 \sin 2\theta \cos \theta - \cos 2\theta \sin \theta)$$

$$= a(\sin \theta + \sin 2\theta \cos \theta) = a(\sin \theta + 2 \sin \theta \cos^2 \theta).$$

$$\therefore x + y = a(\sin \theta + \cos \theta)(1 + 2\sin \theta \cos \theta)$$
$$= a(\sin \theta + \cos \theta)(\sin \theta + \cos \theta)^{2} = a(\cos \theta + \sin \theta)^{2}.$$

Similarly,

$$x-y=a(\cos\theta-\sin\theta)(1-2\sin\theta\cos\theta)$$
$$=a(\cos\theta-\sin\theta)^{8}.$$

$$\therefore a^{\frac{1}{3}}(\cos \theta + \sin \theta) = (x + y)^{\frac{1}{3}} \qquad \cdots (i)$$

$$a^{\frac{1}{3}}(\cos \theta - \sin \theta) = (x - y)^{\frac{1}{3}} \qquad \cdots (ii)$$

Hence, squaring and adding (i) and (ii), we have,

$$(x+y)^{\frac{2}{8}} + (x-y)^{\frac{2}{8}} = 2a^{\frac{2}{8}}$$

as the required eliminant.

Ex. 3. Eliminate x and y from the equations $a \sin^2 x + b \cos^2 x = c$, $b \sin^2 y + a \cos^2 y = d$, $a \tan x = b \tan y$.

From the first equation, we have

$$a \sin^2 x + b \cos^2 x = c (\sin^2 x + \cos^2 x).$$

...
$$(a-c) \sin^2 x = (c-b) \cos^2 x$$
.

$$\therefore \tan^2 x = \frac{c-b}{a-c}.$$

From the second equation, we have similarly $b \sin^2 y + a \cos^2 y = d (\sin^2 y + \cos^2 y)$.

$$\therefore \tan^2 y = \frac{d-a}{b-d}.$$

From the third equation,

$$a^2 \tan^2 x = b^2 \tan^2 y.$$

$$\therefore \frac{a^2(c-b)}{a-c} = \frac{b^2(d-a)}{b-d}.$$

This, when simplified, reduces to

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c} + \frac{1}{d}$$
 the required eliminant.

Examples XVII(c)

Eliminate θ from the following pair of equations

1.
$$\cot \theta (1 + \sin \theta) = 4a$$
.
 $\cot \theta (1 - \sin \theta) = 4b$.

2.
$$x = a \cos \theta + b \cos 2\theta$$

 $y = a \sin \theta + b \sin 2\theta$.

3.
$$x = \tan \theta + \tan 2\theta$$

 $y = \cot \theta + \cot 2\theta$.

4.
$$a \sin \theta + b \cos \theta = 1$$
.
 $a \csc \theta - b \sec \theta = 1$.

5.
$$x = \sin \theta + \cos \theta \sin 2\theta$$

 $y = \cos \theta + \sin \theta \sin 2\theta$.

6.
$$x + a = a (2 \cos \theta - \cos 2\theta)$$

 $y = a (2 \sin \theta - \sin 2\theta)$.

7.
$$x=3 \sin \theta - \sin 3\theta$$

 $y=\cos 3\theta + 3 \cos \theta$.

8.
$$x = \cot \theta + \tan \theta$$

 $y = \sec \theta - \cos \theta$.

9.
$$x \sin \theta - y \cos \theta = \sqrt{x^2 + y^2}$$

 $\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2} = \frac{1}{x^2 + y^2}$

10.
$$\frac{x}{a} = \cos \theta + \cos 2\theta$$
$$\frac{y}{b} = \sin \theta + \sin 2\theta.$$

ELIMINATION

11.
$$\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2$$
$$\frac{ax \sin \theta}{\cos^2 \theta} + \frac{by \cos \theta}{\sin^2 \theta} = 0.$$

12.
$$\frac{x}{a} \cos \theta - \frac{y}{b} \sin \theta = \cos 2\theta$$
$$\frac{x}{a} \sin \theta + \frac{y}{b} \cos \theta = 2 \sin 2\theta.$$

13.
$$x = \csc \theta - \sin \theta$$

 $y = \sec \theta - \cos \theta$.

14.
$$\sin \theta + \cos \theta = a$$

 $\sin^{8} \theta + \cos^{8} \theta = b$.

15.
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$
$$x\sin\theta - y\cos\theta = (a^2\sin^2\theta + b^2\cos^2\theta)^2$$

Eliminate θ and ϕ from the following equations (Ex. 16-19):—

16.
$$\sin \theta + \sin \phi = x$$
, $\cos \theta + \cos \phi = y$, $\theta - \phi = a$.

17.
$$\tan \theta + \tan \phi = a$$
, $\cot \theta + \cot \phi = b$, $\theta + \phi = a$.

18.
$$a \sin^2 \theta + b \cos^2 \theta = a \cos^2 \phi + b \sin^2 \phi = 1$$
,
 $a \tan \theta = b \tan \phi$.

19.
$$\sin \theta + \sin \phi = a$$
, $\cos \theta + \cos \phi = b$, $\sin 2\theta + \sin 2\phi = 2c$.

20. If
$$(a+b) \tan (\theta - \phi) = (a-b) \tan (\theta + \phi)$$
 and $a \cos 2\phi + b \cos 2\theta = c$, show that $a^2 - b^2 + c^2 = 2ac \cos 2\phi$.

APPENDIX

1. To prove that

$$\sin \theta < \theta < \tan \theta$$

where 8 is the circular measure of any positive acute angle.

Let AOP be a positive acute angle whose radian measure is θ , and let QOA be an equal angle on the other side of OA. With centre O and any radius, a circle is drawn cutting OP, OA, OQ at P, A, Q respectively. PQ is joined cutting OA at N. The triangles OPN and OQN are easily seen to be congruent, so that PN = QN and PNQ is perpendicular to OA. The tangent PT to the circle at P cutting OA at T, $\angle OPT$ is a right angle. TQ being joined, the triangles OPT and OQT are easily proved to be congruent, so that TP = TQ.

The figure is thus symmetrical about OA.

Then, from the figure,

$$\sin \theta = \frac{PN}{OP} = \frac{1}{2} \cdot \frac{PQ}{OP}$$

$$\theta = \frac{\text{arc } PA}{OP} = \frac{1}{2} \cdot \frac{\text{arc } PAQ}{OP}$$

$$\tan \theta = \frac{PT}{OP} = \frac{1}{2} \cdot \frac{PT + QT}{OP}$$

Now we may take it as axiomatic that the straight line PQ is less than the curved arc PAQ, and that the curved arc PAQ which always bends the same way, being within the triangle PTQ, is less than PT+TQ.

Hence, since PQ < arc PAQ < PT + QT,

we have, on dividing throughout by 2OP $\sin \theta < \theta < \tan \theta$.

Alternative method :

Let ABC be a circle whose centre is O and radius r.

Let $AOB = \theta$ radians.

Draw BT the tangent at B to meet OA produced at T; then $BT = r \tan \theta$.

We know that if the angle of a sector of a circle of radius r is θ radians, its area $= \frac{1}{2}r^2\theta$.

Now from the figure it is obvious that

$$\triangle OAB < \text{sector } OAB < \triangle OBT$$

$$\therefore \frac{1}{2}r^2\sin\theta < \frac{1}{2}r^2\theta < \frac{1}{2}r.r\tan\theta,$$

i.e.,
$$\sin \theta < \theta < \tan \theta$$
.

Cor. If now θ becomes infinitely small, we can prove

$$\operatorname{Lt}_{\theta \to 0}^{\frac{\sin \theta}{\theta}} = 1,$$

$$\underset{\theta\to 0}{\text{Lt cos }\theta=1,}$$

and Lt
$$\frac{\tan \theta}{\theta} = 1$$
.

For, since, $\sin \theta < \theta < \tan \theta$, we get, by dividing by $\sin \theta$.

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

This is true, however small θ may be, provided it is positive. When θ becomes infinitely small, OP and ON practically come into coincidence, so that

$$\cos \theta = \frac{ON}{OP}$$
 ultimately becomes 1.

Hence, $Lt \cos \theta = 1$.

In that case $\frac{1}{\cos \theta}$ also tends to the value 1. But $\frac{\theta}{\sin \theta}$ always lies between 1 and $\frac{1}{\cos \theta}$ which ultimately come into coincidence, and so $\frac{\theta}{\sin \theta}$ also ultimately coincides with 1.

Thus $\frac{\sin \theta}{\theta} = 1$ in the limit.

Again, from

 $\sin \theta < \theta < \tan \theta$.

We get by dividing by $\tan \theta$,

$$\cos\theta < \frac{\theta}{\tan\theta} < 1$$

and as $\theta \to 0$, $\cos \theta \to 1$ and $\frac{\theta}{\tan \theta}$ always lying between $\cos \theta$ and 1 which come into coincidence, $\frac{\theta}{\tan \theta} = 1$ in the limit, and so $Lt \frac{\tan \theta}{\theta \to 0} = 1$.

Hence, the results.

2. Formulæ for sin (A+B) and cos (A+B) where A and B are of any magnitude. (Generalization of Art. 33.)

In Article 33, formulæ for $\sin (A+B)$ and $\cos (A+B)$ were deduced geometrically with a figure in which A and B were acute and (A+B) less than 90°. We now prove them in a more general case.

Let a revolving line, starting from OX, trace out an angle XOZ = A and further trace out an angle ZOP = B, so that the total angle traced out is (A + B). From any point P on the final position of the revolving line, PN and PT are drawn perpendiculars to OX and OZ (produced if necessary, as in the above figure), and from T perpendiculars TM and TR are drawn on OX and PN (produced if necessary),

In the figure above, $\angle POT = B - 180^{\circ}$, and since PN and PT are perpendiculars to OX and OZ respectively, $\angle TPR = \angle TON = 180^{\circ} - \angle XOZ$ i.e., $180^{\circ} - A$.

In considering $\sin (A+B)$ and $\cos (A+B)$ from the triangle NOP, it is to be noted that PN is negative and ON and OP are positive.

If we consider only the positive magnitudes of the sides of the acute-angled triangle OTM, PTR and OPT, then PN with its proper sign may be written as $-(T\dot{M}-PR)$, and ON with its proper sign may be written as OM+TR.

Now, from the figure,

$$\sin (A+B) = \frac{PN}{OP} - \frac{TM - PR}{OP}$$

$$= -\frac{TM}{OT} \cdot \frac{OT}{OP} + \frac{PR}{PT} \cdot \frac{PT}{OP}$$

$$= -\sin TOM \cos POT + \cos TPR \sin POT$$

$$= -\sin (180^{\circ} - A) \cos (B - 180^{\circ})$$

$$+ \cos (180^{\circ} - A) \sin (B - 180^{\circ})$$

$$= -\sin A(-\cos B) + (-\cos A)(-\sin B)$$

$$= \sin A \cos B + \cos A \sin B$$

Again,

$$\cos (A+B) = \frac{ON}{OP} = \frac{OM + RT}{OP}$$

$$= \frac{OM}{OT} \cdot \frac{OT}{OP} + \frac{RT}{PT} \cdot \frac{PT}{OP}$$

$$= \cos TOM \cos POT + \sin TPR \sin POT$$

$$= \cos (180^{\circ} - A) \cos (B - 180^{\circ})$$

$$+ \sin (180^{\circ} - A) \sin (B - 180^{\circ})$$

$$= (-\cos A)(-\cos B) + \sin A(-\sin B)$$

$$= \cos A \cos B - \sin A \sin B.$$

3. Formulæ for sin (A - B) and cos (A - B) in a more general case. (Generalization of Art. 34.)

Here XOZ measured counter-clockwise is A and ZOP measured clockwise has magnitude B so that XOP measured

clockwise is A-B. From P, PN and PT are drawn perpendiculars on OX and OZ (produced in this figure), and from T, TM and TR are drawn perpendiculars on OX and PN.

In the present figure, magnitudes of the acute angles TOM and POT are $180^{\circ} - A$ and $B - 180^{\circ}$ respectively, and noting that PNOT is a cyclic quadrilateral ($\angle {}^{\circ}N$ and T being right angles), $\angle RPT = \angle TOM = 180^{\circ} - A$ in magnitude.

Now, we see that in considering $\sin (A - B)$ and $\cos (A - B)$ from the triangle NOP, PN and ON are of negative sign.

Hence,

$$\sin (A - B) = \frac{PN}{OP}$$

$$= -\frac{MT + PR}{OP},$$

where the magnitudes of MT, PR, etc. only are considered,

=
$$-\frac{MT}{OT}\frac{OT}{OP} - \frac{PR}{PT}\frac{PT}{OP}$$

= $-\sin TOM \cos POT - \cos RPT \sin POT$
= $-\sin (180^{\circ} - A) \cos (B - 180^{\circ})$
 $-\cos (180^{\circ} - A) \sin (B - 180^{\circ})$
= $-\sin A(-\cos B) - (-\cos A)(-\sin B)$
= $\sin A \cos B - \cos A \sin B$

Similarly,

$$\cos (A - B) = \frac{ON}{OP} \qquad [\text{ where } ON \text{ is taken with proper sign }]$$

$$= -\frac{RT - OM}{OP} \qquad [\text{ where magnitudes only of } RT, OM \text{ etc. are considered }]$$

$$= -\frac{RT}{PT} \cdot \frac{PT}{OP} + \frac{OM}{OT} \cdot \frac{OT}{OP}$$

$$= -\sin RPT \sin POT + \cos TOM \cos POT$$

$$= -\sin (180^{\circ} - A) \sin (B - 180^{\circ})$$

$$+ \cos (180^{\circ} - A) \cos (B - 180^{\circ})$$

$$= -\sin A (-\sin B) + (-\cos A)(-\cos B)$$
$$= \cos A \cos B + \sin A \sin B.$$

4. A few particular cases of $sin(A \pm B)$, $cos(A \pm B)$.

Case I. In the case A and B are both acute and $(A+B) > 90^{\circ}$.

Construction same as in Art. 33. Here Q, the foot of the perpendicular will fall on XO produced.

$$\angle TPR = 90^{\circ} - \angle TRP = \angle TRO = \angle ROS = A.$$

$$\sin (A + B) = \sin XOP$$

$$= \frac{PQ}{OP} = \frac{QT + TP}{OP}$$

$$= \frac{RS + PT}{OP} = \frac{RS}{OP} + \frac{PT}{OP}$$

$$= \frac{RS}{OR} \cdot \frac{OP}{OP} + \frac{PT}{OP}$$

$$= \sin A \cos B + \cos TPR \sin B.$$

$$= \sin A \cos B + \cos A \sin B.$$

$$cos (A+B) = cos XOP = -\frac{OQ}{OP}$$
 [Magnitude of OQ being considered]
$$= -\frac{SQ - SO}{OP} = \frac{OS}{OP} - \frac{SQ}{OP} = \frac{OS}{OP} - \frac{TR}{OP}$$

$$= \frac{OS}{OR}, \frac{OR}{OP} - \frac{TR}{PR}, \frac{PR}{OP}$$

$$= \cos A \cos B - \sin TPR \sin B$$

$$= \cos A \cos B - \sin A \sin B.$$

Case II. In the case A is obtuse and B is acute, but $(A+B) < 180^{\circ}$.

Construction same as in Art. 33.

Here
$$\angle TPR = 180^{\circ} - \angle RPQ = \angle ROQ = 180^{\circ} - A$$
.

sin
$$TPR = \sin A$$
; cos $TPR = -\cos A$.

$$\sin (A+B) = \sin XOP = \frac{PQ}{OP} = \frac{OT - PT}{OP} = \frac{RS - PT}{OP}$$

$$= \frac{RS}{OP} - \frac{PT}{OP} = \frac{RS}{OP} \cdot \frac{OR}{OP} - \frac{PT}{PR} \cdot \frac{PR}{OP}$$

$$= \sin A \cos B - \cos TPR \sin B$$

$$= \sin A \cos B + \cos A \sin B.$$

$$\cos (A + B) = \cos XOP = -\frac{OQ}{OP} \qquad \begin{array}{c} [\text{Magnitude of } OQ \text{ being} \\ \text{considered} \] \\ = -\frac{OS + SQ}{OP} = -\frac{OS}{OP} - \frac{SQ}{OP} \\ = -\frac{OS}{OR} \frac{OR}{OP} - \frac{TR}{PR} \frac{PR}{OP} \\ = \cos A \cos B - \sin TPR \sin B \\ = \cos A \cos B - \sin A \sin B. \end{array}$$

INTERMEDIATE TRIGONOMETRY

Case III. In the case A and B are both obtuse and (A-B) is acute.

Construction same as in Art. 34.

Here $\angle TPR = \angle ROS = 180^{\circ} - A$.

$$\sin (A - B) = \sin POQ$$

$$= \frac{PQ}{OP} = \frac{PT - RS}{OP}$$

$$= \frac{PT}{OP} - \frac{RS}{OP} = \frac{PT \cdot PR}{PR \cdot OP} - \frac{RS}{OR} \cdot \frac{OR}{OP}$$

$$= \cos TPR \sin POR - \sin ROS \cos POR$$

$$= \cos (180^{\circ} - A) \sin (180^{\circ} - B)$$

$$- \sin (180^{\circ} - A) \cos (180^{\circ} - B)$$

$$= - \cos A \sin B - \sin A (- \cos B)$$

$$= \sin A \cos B - \cos A \sin B.$$

$$\cos (A - B) = \cos POQ$$

$$= \frac{OQ}{OP} = \frac{OS + SQ}{OP} = \frac{OS + BT}{OP} = \frac{OS}{OP} + \frac{RT}{OP}$$

$$= \frac{OS}{OR} \cdot \frac{OR}{OP} + \frac{RT}{PR} \cdot \frac{PR}{OP}$$

$$= \cos ROS \cdot \cos POR + \sin TPR \cdot \sin POR$$

$$= \cos (180^{\circ} - A) \cos (180^{\circ} - B)$$

$$+ \sin (180^{\circ} - A) \sin (180^{\circ} - B)$$

$$= (-\cos A)(-\cos B) + \sin A \sin B$$

$$= \cos A \cos B + \sin A \sin B.$$

Note. Other particular cases of the above four formulæ can easily be proved exactly in the same way by drawing the corresponding figures in each case and making the same constructions as in Arts. 33 and 34 for (A+B) and (A-B) respectively.

5. An alternative method of proof for $\sin (A \pm B)$, $\cos (A \pm B)$. See Arts. 33, 34]

Let $\angle XOY = A$: $\angle YOZ = B$; in Fig. (i), $\angle XOZ$ =A+B ($<90^{\circ}$): in Fig. (ii), $\angle XOZ=A-B$ (A>B) [A and B being positive and acute].

Through any point P on OY, the common arm of two angles, draw a straight line MN perpendicular to OY. meeting OX in M and OZ in N.

Then
$$\triangle MON = \triangle MOP \pm \triangle NOP$$

 $\therefore \frac{1}{2}OM.ON \sin(A \pm B) = \frac{1}{2}OM.OP \sin A \pm \frac{1}{2}ON.OP \sin B$
[$Art. 88(i)$]
 $\therefore \sin(A \pm B) = \sin A.\frac{OP}{ON} \pm \frac{OP}{OM} \sin B$
 $= \sin A \cos B \pm \cos A \sin B$
 $\cos(A \pm B) = \cos MON = \frac{OM^2 + ON^2 - MN^2}{2OM.ON}$ [$Art. 83$]
 $= \frac{(OP^2 + PM^2) + (OP^2 + PN^2) - (MP \pm PN)^2}{2OM.ON}$

 $\wedge MON = \wedge MOP + \wedge NOP$

$$= \frac{OP^2 \mp MP.PN}{OM ON}$$

$$= \frac{OP OP}{OM ON} \mp \frac{MP.PN}{OM ON}$$

$$= \cos A \cos B \mp \sin A \sin B.$$

6. Geometrical proof of the expansion of tan (A + B).

The figure and the construction are the same as in Art. 33.

$$\tan (A+B) = \frac{PQ}{OQ} = \frac{RS + PT}{OS - TR}$$

$$= \frac{\frac{RS + PT}{OS}}{1 - \frac{TR}{OS}} = \frac{\frac{RS + PT}{OS}}{1 - \frac{TR}{TP}\frac{TP}{OS}}$$

Now,
$$\frac{RS}{OS}$$
 = tan A and $\frac{TR}{TP}$ = tan TPR = tan A .

The triangles ROS, TPR are similar.

$$\therefore \frac{TP}{OS} = \frac{PR}{OR} = \tan B.$$

$$\therefore \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$

Note. Similarly the expansion of $\tan (A-B)$ can be proved geometrically from the figure and construction of Art. 34.

7. Geometrical proof of the formulæ for 2A.

Let XPY be a semi-circle, XY the diameter and C the centre.

Draw PN perpendicular to XY.

Let
$$\angle PXY = A$$
; then $\angle PCY = 2A$.
 $\angle NPY = 90^{\circ} - \angle PYN = \angle PXY = A$.
 $\sin 2A = \frac{PN}{CP} = \frac{2PN}{2OP} = \frac{2PN}{XY} = \frac{PN}{XY} \frac{XP}{XY}$

$$= 2 \sin PXN. \cos PXY = 2 \sin A \cos A.$$
 $\cos 2A = \frac{CN}{CP} = \frac{2CN}{2CP} = \frac{2CN}{XY} = \frac{CN + CN}{XY}$

$$= \frac{(XN - XC) + (CY - YN)}{XY} = \frac{XN - YN}{XY}$$

$$= \frac{XN \cdot XP}{XP} = \frac{YN \cdot PY}{XY}$$

$$= \cos A \cdot \cos A - \sin A \cdot \sin A$$

$$= \cos^2 A - \sin^2 A.$$

$$\tan 2A = \frac{PN}{CN} = \frac{2PN}{2ON} = \frac{2PN}{XN - YN}$$

$$= \frac{2\frac{PN}{XN}}{1 - \frac{Y}{XN}} = \frac{2\frac{PN}{XN}}{1 - \frac{Y}{N} \cdot \frac{PN}{N}}$$

$$= \frac{2 \tan A}{1 - \tan A \cdot \tan A} = \frac{2 \tan A}{1 - \tan^2 A}$$

8. Trigonometrical Ratios of Generalised angle defined by Projections.

Let XOX' and YOY' be a pair of rectangular axes intersecting at the point O and let an angle θ , of any magnitude (positive or negative) be generated by the revolution of OP from its initial position OX to its present position. Then the trigonometrical ratios of the generalised angle θ are defined as follows

$$\sin \theta = \frac{\text{projection of } OP \text{ on } y\text{-axis}}{OP}$$

$$\cos \theta = \frac{\text{projection of } OP \text{ on } x\text{-axis}}{OP}$$

$$\tan \theta = \frac{\text{projection of } OP \text{ on } y\text{-axis}}{\text{projection of } OP \text{ on } x\text{-axis}}$$

$$\csc \theta = \frac{OP}{\text{projection of } OP \text{ on } y\text{-axis}}$$

$$\cot \theta = \frac{OP}{\text{projection of } OP \text{ on } x\text{-axis}}$$

$$\cot \theta = \frac{OP}{\text{projection of } OP \text{ on } x\text{-axis}}$$

$$\cot \theta = \frac{OP}{\text{projection of } OP \text{ on } x\text{-axis}}$$

In the above definitions, projection means algebraic projection; that is, we should consider not only the magnitude but also the sign of the projection; and with the usual convention the projection would be considered positive if they are along OX and OY and considered negative if they are along OX' and OY'. By convention, OP is always considered positive. From these definitions, the signs of the trigonometrical ratios can be easily determined according to the position of OP in one or other of the four quadrants. In the above figures, the positions of OP in two quadrants only (1st and 3rd) are shown.

Note 1. From the above definitions, it is clear that if OX be a fixed line, and if, l be the length of any straight line OP inclined at an angle θ to OX, then the projection of OP along OX is l cos θ , whatever be the magnitude of the angle θ .

Note 2. The Addition and Subtraction Theorems for generalised angles can also be proved by the method of projection.

9. Two important Trigonometrical relations.

If D be any point in the base BC of a triangle ABC, and if AD divides BC into two parts m and n (BD-m, CD-n) and the angle A into two parts a and β ($\angle BAD = a$, $\angle CAD = \beta$), and if the angle ADB be θ , then

- (i) $(m+n) \cot \theta = n \cot \beta m \cot \alpha$
- (ii) $(m+n) \cot \theta = m \cot C n \cot B$.

We have

$$m = \frac{BD}{DC} = \frac{BD}{AD} \frac{AD}{DC} = \frac{\sin BAD}{\sin ABD} \frac{ACD}{\sin DAC}$$

$$= \frac{\sin a}{\sin (\theta + a)} \frac{\sin (\theta - \beta)}{\sin \beta} \left[\begin{array}{c} \ddots & \angle ABD = \pi - (a + \theta), \\ \angle ACD = \theta - \beta, \end{array} \right]$$

$$= \frac{\sin a}{\sin \beta} \frac{\sin \theta}{\sin \theta} \cos \beta - \cos \theta \sin \beta,$$

$$\frac{\sin \alpha}{\sin \beta} \frac{\sin \theta}{\sin \theta} \cos \alpha + \cos \theta \sin \alpha.$$

Dividing the numerator and the denominator by $\sin \alpha \sin \beta \sin \theta$, we have

$$\frac{m}{n} = \frac{\cot \beta - \cot \theta}{\cot \alpha + \cot \theta}$$

$$\therefore (m+n) \cot \theta = n \cot \beta - m \cot \alpha.$$

Again,

$$\frac{m}{n} = \frac{\sin BAD \sin ACD}{\sin ABD \sin DAC}$$

$$= \frac{\sin (\theta + B)}{\sin B} \cdot \frac{\sin C}{\sin (\theta - C)} \qquad \left[\begin{array}{c} \therefore \angle BAD = \pi - (\theta + B). \\ \angle DAC = \theta - C. \end{array} \right]$$

$$= \frac{\sin C \left(\sin \theta \cos B + \cos \theta \sin B \right)}{\sin B \left(\sin \theta \cos C - \cos \theta \sin C \right)}$$

Dividing the numerator and the denominator by

 $\sin B \sin C \sin \theta$, we have

$$\begin{array}{ccc}
m & \cot B + \cot \theta \\
n & \cot C - \cot \theta
\end{array}$$

 $\therefore (m+n) \cot \theta = m \cot C - n \cot B.$

10. Note of Art. 90.

Let us denote the formulæ of Arts. 82, 83, 84 by (I), (II), (III). We have seen in Art. 90, that (II) can be deduced from (III). We shall now show how any one of these can be deduced from any other of the rest.

To deduce (I) from (III).

Substituting value of b from the second relation of Art. 84 in the first.

$$a = (c \cos A + a \cos C) \cos C + c \cos B.$$

$$\therefore a(1 - \cos^{3} C) = c(\cos A \cos C + \cos B)$$

$$= c(\cos A \cos C - \cos (A + C))$$

$$[\because A + B + C = \pi]$$

 $\therefore a \sin^2 C = c \sin A \sin C. \quad \therefore a/\sin A = c/\sin C.$

Similarly substituting the value of c in the first relation, we get

 $a/\sin A = b/\sin B$. Hence etc.

To deduce (II) and (III) from (I)

(i) Putting each of the ratios of Art. 82 equal to k, we get

$$a = k \sin A; b = k \sin B; c = k \sin C.$$

$$b^{2} + c^{2} - a^{2} = k^{2} (\sin^{2} B + \sin^{2} C - \sin^{2} A)$$

$$2bc \qquad k^{2} \cdot 2 \sin B \sin C$$

$$= \sin^{2} B + \sin (C + A) \sin (C - A)$$

$$2 \sin B \sin C$$

$$= \frac{\sin B \{\sin B + \sin (C - A)\}}{2 \sin B \sin C}$$

$$[\because \sin (C + A) = \sin (\pi - B) = \sin B \}$$

$$= \frac{\sin B \{\sin (C + A) + \sin (C - A)\}}{2 \sin B \sin C}$$

$$= \frac{2 \sin B \sin C \cos A}{2 \sin B \sin C} = \cos A.$$

(ii)
$$b \cos C + c \cos B = k (\sin B \cos C + \sin C \cos B)$$

= $k \sin (B + C) = k \sin A$
= a .

 $[:: A+B+C=\pi]$

To deduce (I) and (III) from (II)

(i)
$$\sin^2 A = 1 - \cos^2 A$$

$$= 1 - \left(\frac{b^2 + c^2 - a^2}{2bc}\right)^2 - \frac{4b^2c^2 - (b^2 + c^2 - a^2)^2}{4b^3c^2}$$

$$= \frac{(2bc + b^2 + c^2 - a^2)(2bc - b^2 - c^2 + a^2)}{4b^3c^2}$$

$$= \frac{(a + b + c)(b + c - a)(c + a - b)(a + b - c)}{4b^3c^3}$$

$$= \frac{K}{4b^3c^3} \text{ say.}$$

$$\therefore \frac{\sin^2 A}{a^3} = \frac{K}{4a^2b^2c^2};$$

similarly, $\frac{\sin^3 B}{b^3}$ and $\frac{\sin^2 C}{c^3}$ each $=\frac{K}{4a^3b^3c^3}$.

$$\therefore \frac{\sin^2 A}{a^2} = \frac{\sin^2 B}{b^2} = \frac{\sin^2 C}{c^2}; \text{ hence etc.}$$

(ii) Adding 2nd and 3rd relations of the formulæ of Art. 83, we get

$$b^2 + c^2 = b^2 + c^2 + 2a^2 - 2ca \cos B - 2ab \cos C.$$

Now transposing and dividing by 2a, we get $a = b \cos C + c \cos B$: etc.

Miscellaneous Examples III

- 1. The angles of a triangle are as 4:5:6. Express them in circular measure.
- 2. The angles of a triangle are in A. P. and the greatest is double the least; express the angles in degrees, and in radians.
- 3. The number of degrees in one of the acute angles of a right-angled triangle is three-tenths of the number of grades in the other; determine the angles in degrees.
- 4. Compare the areas of two circles in which the circumference of one is equal to an arc of 60° of the other.
- 5. A railway train is travelling on a curve of half-a-mile radius at the rate of 20 miles an hour; through what angle has it turned in 10 seconds?
- 6. An arc of a circle whose radius is 7 inches, subtends an angle of 15° 39′ 7″; what angle will an arc of the same length subtend in a circle whose radius is 2 inches?

Prove the following identities (Ex. 7 to 22):—

- 7. $\sin^2\theta \tan \theta + \cos^2\theta \cot \theta + 2 \sin \theta \cos \theta = \tan \theta + \cot \theta$.
- 8. $\sin^2\theta(1+\cot^2\theta)+\cos^2\theta(1+\tan^2\theta)=2$.
- 9. $(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 \sin \theta}$ [C. U. 1934.]
- 10. $2(\sin^6\theta + \cos^6\theta) 3(\sin^4\theta + \cos^4\theta) + 1 = 0$.
- 11. $\frac{\tan x \cot y}{\tan y \cot x} = \tan x \cot y.$
- 12. $(\sin x \cos y + \cos x \sin y)^2$ $+(\cos x \cos y - \sin x \sin y)^2 - 1$.

13.
$$\sin^4 x + \cos^4 x = 1 - 2 \sin^2 x \cos^2 x$$
.

14.
$$\sin^8 x - \cos^8 x = (\sin^9 x - \cos^9 x)(1 - 2\sin^9 x \cos^9 x)$$
.

15.
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
.

16.
$$(1 + \sec \theta + \tan \theta)(1 - \sec \theta + \tan \theta) = 2 \tan \theta$$
.

17.
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} = \sin \theta + \cos \theta.$$

18.
$$(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2$$
.

19.
$$\cot^2 x \cdot \frac{\sec x - 1}{1 + \sin x} + \sec^2 x \cdot \frac{\sin x - 1}{1 + \sec x} = 0$$
.

20.
$$(\sin x + \cos x)(\tan x + \cot x) = \sec x + \csc x$$
.

21.
$$(\sin \theta + \sec \theta)^2 + (\cos \theta + \csc \theta)^2 = (1 + \sec \theta \csc \theta)^2$$
.

22.
$$\frac{1-\sin\theta\cos\theta}{\cos\theta(\sec\theta-\csc\theta)\sin^2\theta-\cos^2\theta}=\sin\theta.$$

23. If
$$a\cos^2 x + b\sin^2 x = c$$
, show that $\tan x = \pm \sqrt{\frac{c-a}{b-c}}$.

24. If cosec
$$A + \operatorname{cosec} B + \operatorname{cosec} C = 0$$
, show that $(\Sigma \sin A)^2 = \Sigma \sin^2 A$.

25. If
$$x = a \cos \theta + b \sin \theta$$
 and $y = a \sin \theta - b \cos \theta$, show that $x^2 + y^2 = a^2 + b^2$.

26. Express
$$\frac{\sin x}{\cos^2 x} + \frac{\cos x}{\sin^2 x}$$
 in terms of t , where t stands for $\tan x$.

27. If $\sin A = \frac{1}{2}$ and $\tan B = \sqrt{3}$, find the value of $\sin A \cos B + \cos A \sin B$.

28. If
$$\cos \theta = \frac{4}{5}$$
, find the value of $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$

29. If 5 tan $\theta = 4$, find the value of 5 sin $\theta = 3$ cos θ

$$\frac{5\sin\theta-3\cos\theta}{\sin\theta+2\cos\theta}$$

30. If
$$\frac{\sin x}{\sin y} = \sqrt{2}$$
, $\frac{\tan x}{\tan y} = \sqrt{3}$,

find x and y (given x and y acute angles).

31. Which of the statements is possible and which impossible, x, y and z being unequal real quantities?

(i)
$$\csc \theta = \frac{x^2 + y^2}{2xy}$$
. (ii) $\sec \theta = \frac{x^2 - y^3}{x^2 + y^2}$.

(iii)
$$\sin \theta = \frac{x^2 + y^2 + z^2}{yz + zx + xy}$$
.

32. Eliminate θ from the equations

(i)
$$\sin \theta + \cos \theta = a$$
, $\sin \theta - \cos \theta = b$.

(ii)
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$
, $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1$.

(iii)
$$x = a \cos^3 \theta$$
, $y = b \sin^3 \theta$.

(33) If $k \tan \theta = \tan k\theta$, prove that

$$\frac{\sin^2 k\theta}{\sin^2 \theta} = \frac{k^2}{1 + (k^2 - 1)\sin^2 \theta}.$$

34. If $\sec x \sec y + \tan x \tan y = \sec z$, then, $\sec x \tan y + \tan x \sec y = \pm \tan z$.

35. Show that
$$\left(\frac{1+\cot 60^{\circ}}{1-\cot 60^{\circ}}\right)^{2} = \frac{1+\cos 30^{\circ}}{1-\cos 30^{\circ}}$$

36. If
$$\tan x = \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$$
, prove that

$$\sin x = \frac{1}{\sqrt{2}} (\sin \theta - \cos \theta)$$

- 87. Show that the product of $\sin x (1 + \sin x) + \cos x (1 + \cos x)$ and $\sin x (1 \sin x) + \cos x (1 \cos x)$ is equal to $2 \sin x \cos x$.
- \$8. Find the height of a chimney when it is found that on walking towards it 250 feet, in a horizontal line through its base, the angular elevation changes from 45° to 75°.

- 39. The length of a kite string is 250 yards, and the angle of elevation of the kite is 30°. Find the height of the kite.
- 40. The angle of elevation of the top of a temple at a distance 300 feet is 30°; find its height.
- 41. Find the angle of elevation of the sun when the shadow of a pole 60 feet high, is $20 \sqrt{3}$ yards long.
- 42. The angles of elevation of a tower at two places due east of it and 200 feet apart are 45° and 30°; find the height of the tower.
- 43. An aeroplane leaves the earth at the point X and rises at a uniform speed. At the end of 15 seconds, an observer stationed at a distance of 660 feet from X, finds the angular elevation of the aeroplane to be 45°; at what rate in miles per hour is the aeroplane rising?
- 44. A ladder 45 feet long just reaches the top of a wall. The ladder makes an angle of 60° with the wall. Find the height of the wall and the distance of the foot of the ladder from the wall.
 - 45. If $\cos A = \frac{4}{5}$, $\cos B = \frac{3}{5}$, find the values of $\sin (A + B)$ and $\cos (A B)$.
 - 46. If $\tan A = \frac{5}{18}$ and $\tan B = \frac{9}{40}$, find the values of $\sin (A B)$ and $\cos (A B)$.
 - 47. If $\tan A = \frac{m+n}{m-n}$, and $\tan B = \frac{m-n}{m+n}$, find $\tan (A-B)$.
 - 48. If $\tan (x+y) = \frac{3}{8}$ and $\tan x = \frac{5}{8}$, find $\tan y$.
 - **49.** If $\cos \theta = \frac{3}{5}$, find $\sin 2\theta$, $\tan 2\theta$, $\cos \frac{\theta}{2}$.
- 50. If $\cos x = \frac{\pi}{3}$, $\cos y = \frac{\pi}{3}$ (x and y being positive acute angles), find the value of $\cos \frac{1}{2}(x-y)$.

- 51. If $\sin A = \frac{1}{\sqrt{2}}$, $\sin B = \frac{1}{\sqrt{3}}$, find the value of $\tan \frac{1}{2}(A+B) \cot \frac{1}{2}(A-B)$.
- 52. If $\sec x = \frac{17}{8}$, cosec $y = \frac{5}{4}$, find $\sec (x + y)$.
- 53. Prove that $\frac{2 \cos 8\theta + 1}{2 \cos \theta + 1} = (2 \cos \theta 1)(2 \cos 2\theta 1)(2 \cos 4\theta 1).$
- 54. Show that $a \cos \theta + b \sin \theta = \sqrt{a^2 + b^2} \cos (\theta a)$, where $\tan a = b/a$.
- 55. If $\sin^4 x + \cos^4 x = 1$, prove that x is zero or a multiple of $\frac{1}{2}\pi$.
 - 56. If $\sqrt{2} \cos A = \cos B + \cos^3 B$, and $\sqrt{2} \sin A = \sin B - \sin^3 B$, than $\sin (A - B) = \pm \frac{1}{3}$.
 - 57. Prove that $\cos^2(\alpha-\beta) \sin^2(\alpha+\beta) = \cos 2\alpha \cos 2\beta$.
 - 58. Show that $\sin 18^\circ + \cos 18^\circ = \sqrt{2} \cos 27^\circ$.
 - 59. Show that whatever be the value of θ , $\sin^2(\theta + a) + \sin^2(\theta + \beta) 2\cos(a + \beta)\sin(\theta + a)\sin(\theta + \beta)$ is independent of θ .
 - 60. Show that

(i)
$$\frac{\sin \alpha}{\sin (\alpha - \beta) \sin (\alpha - \gamma)} + \frac{\sin \beta}{\sin (\beta - \gamma) \sin (\beta - \alpha)} + \frac{\sin \gamma}{\sin (\gamma - \alpha) \sin (\gamma - \beta)} = 0.$$

(ii)
$$\tan (\beta + \gamma - 2a) + \tan (\gamma + a - 2\beta) + \tan (a + \beta - 2\gamma)$$

 $= \tan (\beta + \gamma - 2a) \tan (\gamma + a - 2\beta) \tan (a + \beta - 2\gamma).$

- 61. If $\tan \frac{1}{2}\theta = \tan^3 \frac{1}{6}\phi$ and $\tan \phi = 2 \tan \alpha$, show that $\theta + \phi = 2\alpha$.
- 62. (i) If $\tan^2 x = 2 \tan^2 y + 1$, then $\cos 2x + \sin^2 y = 0$.
 - (ii) If $\cos A = \tan B$, $\cos B = \tan C$, $\cos C = \tan A$, prove that $\sin A = \sin B = \sin C$.
- 63. Show that $\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 60^\circ$.
- 64. If $a+\beta+\gamma=0$, prove that $\cos a + \cos \beta + \cos \gamma = 4 \cos \frac{a}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} 1.$
- 65. If in any triangle, $\tan \phi = \frac{a-b}{a+b} \cot \frac{1}{2}C$, prove that $c = (a+b) \sin \frac{1}{2}C \sec \phi$.
- 66. If $\cos \theta = \frac{a \cos \phi b}{a b \cos \phi}$, then $\frac{\tan \frac{\theta}{2}}{\sqrt{a + b}} = \frac{\tan \frac{\phi}{2}}{\sqrt{a b}}$.
- 67. If $\alpha + \beta + \gamma = \frac{1}{2}\pi$, prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \sin \gamma = 1$.
- 68. If $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$, show that one of the quantities $A \pm B \pm C$ is an odd multiple of π .
 - 69. Show that sec $x = \frac{2}{\sqrt{2 + \sqrt{2 + 2 \cos 4x}}}$
 - 70. If $a \sin (\theta + a) = b \sin (\theta + \beta)$, prove that $\cot \theta = \frac{a \cos a b \cos \beta}{b \sin \beta a \sin \alpha}$
 - 71. If $\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 n \sin^2 \alpha}$, show that $\tan (\alpha \beta) = (1 n) \tan \alpha$.

In any triangle, prove that (Ex. 72 to 77):

72.
$$\frac{\cos A}{c \cos B + b \cos C} + \frac{\cos B}{a \cos C + c \cos A} + \frac{\cos C}{b \cos A + a \cos B} - \frac{a^2 + b^2 + c^2}{2abc}$$

73.
$$\frac{\tan\frac{A}{2}}{(a-b)(a-c)} + \frac{\tan\frac{B}{2}}{(b-c)(b-a)} + \frac{\tan\frac{C}{2}}{(c-a)(c-b)} = \frac{1}{\Delta}.$$

74.
$$\sin 3A \sin (B-C) + \sin 3B \sin (C-A) + \sin 3C \sin (A-B) = 0.$$

75.
$$\cot B + \frac{\cos C}{\sin B \cos A} = \cot C + \frac{\cos B}{\sin C \cos A}$$

76.
$$c = (a - b) \sec \theta$$
, where $\tan \theta = \frac{2\sqrt{ab}}{a - b} \sin \frac{C}{2}$.

77.
$$a (\cos B \cos C + \cos A) = b(\cos C \cos A + \cos B)$$

= $c(\cos A \cos B + \cos C)$.

78. If in a triangle,
$$c(a+b)\cos\frac{B}{2} = b(a+c)\cos\frac{C}{2}$$
 show that the triangle is isosceles.

79. If in a triangle, a, b, c be in A. P. and the greatest angle exceeds the least by 90°, prove that

$$a:b:c=\sqrt{7}-1:\sqrt{7}:\sqrt{7}+1$$

- 80. In the solution of triangles there can be no ambiguity except when an angle is determined by the sine or cosecant, and in no case whatever, when the triangle has one right angle; prove this.

 [Cambridge.]
 - 81. If $\sin (\pi \cos \theta) = \cos (\pi \sin \theta)$, prove that $\cos \left(\theta \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}.$
- 82. If $\sin (\pi \cot \theta) = \cos (\pi \tan \theta)$, prove that either cosec 20 or cot 20 is equal to n+1, n being an integer.

83. If a and β be the different values of θ which satisfy the equation $a \cos \theta + b \sin \theta = c$, prove that

$$\sin (a+\beta) = \frac{2ab}{a^2 + b^2}.$$

- 84. Find all the values of θ which satisfy the equation $\sin \theta + \sin 2\theta + \sin 3\theta = 1 + \cos \theta + \cos 2\theta$.
- 85. Prove that in any triangle,

$$\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$$

- 86. If $r:R:r_1=2:5:12$, show that the triangle is right-angled.
- 87. If the angle of elevation of a cloud observed from a point at a height h above the surface of a lake be ϕ and the angle of depression of its image in the lake be θ , prove that the height of the cloud above the lake is $h \frac{\sin (\theta + \phi)}{\sin (\theta \phi)}$, assuming that the image is vertically as much below the surface as the cloud is above it.

- 88. The elevation of a tower due north of a station at A is a and at a station B due west of A is β . Prove that its altitude is $\frac{AB}{\sqrt{\sin^2 a \sin^2 \beta}}$. [B. H. U. I. 1934.]
- 89. A man walks along a straight road and observes that the greatest angle subtended by two objects is a; from the point where this greatest angle is subtended, he walks a distance c along the road and finds that the two objects are now in a straight line which makes an angle β with the road. Prove that the distance between the objects is $c \sin a \sin \beta \sec \frac{a+\beta}{2} \sec \frac{a-\beta}{2}$. [B. H. U. I. 1936.]
- 90. On the bank of a river is a column 200 ft. high supporting a statue 30 ft. high. To an observer on the opposite bank with his eye on the level of the ground the statue subtends an angle equal to that subtended by a man 6 ft. high standing at the base of the column; determine the breadth of the river.

 [B. H. U. I. 1941.]

ANSWERS

Examples I. [Pages 11-14]

6. $\frac{1}{2}\left(1-\frac{\pi}{180}\right)$. 7. 6° and 9°. 8. $\frac{1}{50}\left(D+\frac{M}{60}\right)-\frac{1}{100}\left(G+\frac{m}{100}\right)$.

(11) third quadrant;(1v) fourth quadrant.

(11) 175° 49′ 1″ 776.

(1i) 333 T.

5. $a: \beta = 5\pi : 24$.

10. 20° and 30°. 12. 20°. 40°. 80°.

14. (1) At 28,4 min. and 48 min. past 7;

1. (i) first quadrant ;

2. (i) 61° 84° 44° 4; 8. (i) '259775= .

9. The nearly 18. 27°, 9°, 18°.

(iii) second quadrant .

4. 82° 30' : 91° 66' 6''6 . 11x.

```
(ii) At 7-10. 15. 20°, 60°, 100°. 16. \frac{\pi}{7}, \frac{2\pi}{7}, \frac{4\pi}{7}; \frac{4\pi}{91}, \frac{4\pi}{91}.
17. 45°, 60°, 120°, 135°.
                                                                        18. 9.
19. mx and nx where x = \frac{2(10pm - 9qn)}{mn(10p - 9q)}
                                                                        20. 3.
21. 3 and 6.
                                            22. 51'41 miles per hour (nearly).
      66444 miles per hour (nearly); 431445 miles (nearly).
24. 76'8 ft. (nearly). 25. 3959 miles (nearly). 26. 33 ft. 27. 360 yds.
                       Examples II. [ Pages 24-26 ]
                                      26. \frac{1}{4\pi^{4}\theta} - \tan^{4}\theta. 81. \frac{a^{4} - b^{2}}{4\pi^{4} + b^{2}}.
25. (\sin \theta - \cos \theta)^2.
38. \pm \sqrt{\sec^2 \alpha - 1}; \pm \sqrt{1 + \cot^2 \theta}. 34. 15. 36. 1. 37. 1 or 1.
89. a^4-b^4; a^4+b^4.
                                           48. (i) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; (ii) xy = c^2;
   (iii) (bc'-b'c)^2 + (ca'-c'a)^2 = (ab'-a'b)^2.
   (iv) (a'b-b'c)(ab'-bc')=(aa-cc')^{2}.
```

Examples III. [Pages 35-86]

7. $\frac{\sqrt{5}}{2}$ 8. (i) 60°; (ii) 45°; (iii) 30° (There is another angle which is not one of the standard angles).

(iv) 45°; (v) 80°; (vi) 80°; (vii) 80°.

9. $\theta = 52\frac{1}{2}^{\circ}$, $\phi = 7\frac{1}{2}^{\circ}$. (VI) 30; (VII) 30

11. $A=22\frac{1}{2}^{\circ}$, $B=67\frac{1}{2}^{\circ}$, $C=45^{\circ}$. 12. (i) $-\frac{1}{3}^{\circ}$; (ii) 1.

Examples IV. [Pages 49-51]

1.
$$\frac{1}{2}$$
; $-\frac{1}{\sqrt{3}}$; $-\frac{2}{\sqrt{8}}$; -1. 2. $-\frac{1}{\sqrt{2}}$; $-\frac{2}{\sqrt{8}}$; $-\frac{1}{\sqrt{8}}$; $\frac{\sqrt{8}}{2}$. 8. 0.

4. $\frac{\sqrt{3}}{2}$. 5. (i) 1; (ii) ± 2 , $\pm \frac{2}{\sqrt{3}}$. 10. $\tan^2 \theta$; 1. 12. (i) 2.

(ii) 1. (iii) $\sin x$ or 0 according as n is odd or even. 18. $\frac{4}{2}$.

14. $\frac{\sqrt{40}}{3}$. 15. (i) cot 26°; (ii) cos 25°; (iii) cosec 39°; (iv) cos $\frac{\pi}{9}$.

16. (i) 300°; (ii) 480°. 17. (i) 60°; (ii) 120°, 240°; (iii) 30°, 150°, 210°, 380°; (iv) 30°, 150°; (v) 30°, 185°, 150°, 315°.

Examples V. [Pages 56-59]

1. 100 \(3 \) ft. 2. 2'89... miles; 2\(\frac{1}{2} \) miles. 3. 20 \(\sqrt{3} \) ft.; 120 ft.

4. 20 \(3 \) ft.; 20 ft. . 5. 30 \(\sqrt{2} \) ft. 6. 400(\(\sqrt{3} + 1 \) yds.

7. 40 $\sqrt{3}$ ft. 8. $\frac{1}{2}(3 \pm \sqrt{3})$ miles. 9. 22.8 miles nearly.

10. 94'64 ft. nearly. 11. 47'82 ft. nearly. 12. 60 miles per hour.

18. 50 √6 ft. 14. 40 √6 ft.; 40 √2(√7+1) ft. 15. ⅓(√3+1) miles. 16. 5 √13 miles.

17. 241.6... ft.; 91.6... ft. 18. 5.25... miles per hour.

19. 367.38 ft. 20. $\frac{1}{2}\sqrt{6}(\sqrt{5}+1)$.

22. 2 miles. 28. 18.66 ft.

Examples VI. [Pages 68-70]

21. $\sin A \cos B \cos C - \sin B \cos C \cos A + \sin C \cos A \cos B$

 $+\sin A \sin B \sin C$;

tan A-tan B-tan C-tan A tan B tan C 1+tan A tan B+tan A tan C-tan B tan C

22. cot A cot B cot C-cot A-cot B-cot C cot B cot C+cot C cot A+cot A cot B-1

Examples VIII. [Pages 79-81]

27. a.

Examples IX. [Pages 86-87]

16.
$$\frac{b^2 - a^2}{b^2 + a^2}$$
 17. (i) $2 \sin \frac{1}{2} A = \sqrt{1 + \sin A} + \sqrt{1 - \sin A}$;

(ii) No; $2 \sin \frac{1}{2}\theta = \sqrt{1 + \sin \theta} + \sqrt{1 - \sin \theta}$.

Examples XI. [Pages 110-111]

1.
$$n\pi \pm \frac{\pi}{4}$$
, i.e. $(2k+1)\frac{\pi}{4}$. 2. (i) $n\pi \pm \frac{\pi}{4}$; (ii) $n\pi \pm \frac{\pi}{8}$.

$$\frac{3. \quad 2n\pi \pm \frac{\pi}{3}, \quad (2k+1)\pi.$$

4.
$$\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$
.

5.
$$n\pi + \frac{\pi}{4}$$
, or, $n\pi + (-1)^n \frac{\pi}{6}$. 6. $\frac{n\pi}{3}$, or, $n\pi \pm \frac{\pi}{6}$.

7.
$$\frac{r\pi}{m+(-1)^r n}$$
 8. $(2n+1)\frac{\pi}{2}$, or, $(2n+1)\frac{\pi}{4}$, or, $(2n+1)\frac{\pi}{8}$

9.
$$n\pi - \frac{\pi}{4}$$
, or, $\frac{n\pi}{2} + (-1)^n \frac{a}{2}$, where $\sin a = \frac{\sqrt{5} - 1}{2}$.

11.
$$n\pi + \frac{\pi}{4}$$
 12. $(4n+1)\frac{\pi}{8}$ 13. $2n\pi + \frac{5\pi}{12}$ or, $2n\pi - \frac{\pi}{12}$

14.
$$(2n+1)\frac{\pi}{4}$$
, or, $n\pi \pm \frac{\pi}{6}$. 15. $2n\pi + \frac{\pi}{2}$, or, $2n\pi - \beta$, where β is a positive acute angle whose sine is $\frac{\pi}{6}$. 16. $\frac{1}{6}n\pi$. 17. $n\pi \pm \frac{1}{6}\pi$.

18.
$$(4n+1)\frac{\pi}{12}$$
. 19. $2n\pi+\frac{\pi}{12}\pi$, or $2n\pi+\frac{\pi}{12}\pi$. 20. $-\frac{\pi}{12}\pi$, $-\frac{1}{6}\pi$, $\frac{1}{2}\pi$, $\frac{1}{6}\pi$. $\frac{1}{2}(n\pi+\alpha)$, where $\tan \alpha = 2$. 22. $2n\pi$. 23. $2n\pi$, $\frac{1}{6}(4n+1)\pi$. $\frac{1}{6}.90^{\circ}$, 450° , 810° . 25. $\frac{1}{4}\pi$, $\frac{1}{4}\pi$. $\frac{1}{4}\pi$. (i) $\frac{1}{2}n\pi+\frac{1}{4}\pi$; $2n\pi+\frac{1}{3}\pi$.

(ii)
$$0, \pm \frac{\pi}{12}, \pm \frac{\pi}{6}, \pm \frac{\pi}{4}$$
 · (iii) $\frac{n\pi}{3}$; $n\pi \pm \tan^{-1} \frac{1}{\sqrt{2}}$ · (iv) $2n\pi - a, \frac{4n-1}{2}\pi + a$.

(v)
$$2n\pi$$
, or, $2n\pi - \frac{1}{2}\pi$. (vi) $(2n+1)\frac{\pi}{12}, \frac{4n+1}{14}\pi, \frac{4n-1}{6}\pi$.

(vii)
$$n\pi + \frac{a}{2}$$
; $(2n+1)\frac{\pi}{6} - \frac{a}{6}$. 28. $n\pi + (-1)^n 21^0 48' - 68^0 12'$.

29, (i)
$$\alpha = \beta = \frac{1}{4}\pi$$
; or, $\alpha = \frac{3}{4}\pi$, $\beta = -\frac{1}{4}\pi$.

(ii)
$$\alpha = \frac{1}{4}\pi$$
, $\beta = \frac{1}{4}\pi$; or, $\alpha = \frac{1}{4}\pi$, $\beta = \frac{1}{4}\pi$;

or,
$$\alpha = \frac{1}{2}\pi$$
, $\beta = \frac{1}{12}\pi$; or, $\alpha = \frac{7}{12}\pi$, $\beta = -\frac{1}{4}\pi$.

Examples XII. [Pages 119-121]

32. (i) 1; (ii)
$$\infty$$
; (iii) $\frac{x+y}{1-xy}$. **23.** $y = \frac{4x(1-x^2)}{1-6x^4+x^4}$.

24.
$$(x-y)(1+yz)=(y-z)(1+xy)$$
. 25. (i) $\frac{1}{2}$, or, -8 ; (ii) $\frac{a-b}{1+ab}$;

(iii)
$$\pm \frac{\sqrt{5}}{3}$$
; (iv) $\pm \frac{1}{\sqrt{3}}$; (v) $\frac{1}{5}$, or, $-\frac{1}{5}$; (vi) $\pm \frac{1}{15} \sqrt{21}$;

(vii) 0, or,
$$\frac{1}{2}$$
; (viii) 0, $\pm \frac{1}{2}$; (ix) $2 - \sqrt{3}$; (x) $\frac{6 + \sqrt{6}}{8}$.

Miscellaneous Examples I. [Pages 122-128]

2.
$$\pm \sqrt{\frac{b^2-c^2}{a^2-c^2}}$$
 19. $a^2+b^2=2(1+c)$.

Examples XIII(a). [Pages 135-137]

1. (i) 6; (ii) -3. 2. -2. 5.
$$\frac{n}{n-1}$$
. 9. (i) 1; (ii) $1\frac{1}{2}$.

10.
$$\overline{1}$$
'1173942, '3861209. **13.** 2'425805. **14.** '41869.

19. (i)
$$\frac{\log 2}{1 - \log 3}$$
 i.e. '63.....; (ii) $\frac{4 + \log 3}{1 - \log 3}$ i.e. 5'77...

19. (i)
$$\frac{\log 2}{\log 3}$$
 i.e. '63.....; (ii) $4 + \frac{\log 7}{\log 3}$ i.e. 5'77...

(iii)
$$\frac{2 \log 7 - 3 \log 3}{6 \log 5 - \log 7 - 2 \log 3}$$
; i.e. 108...

(iv)
$$x = \frac{\log 3}{\log 3 - \log 2} = 2.71$$
 nearly, $y = \frac{\log 2}{\log 3 - \log 2} = 1.71$ nearly;

(v)
$$\frac{2b(2a-b)}{5ab+3ac-2b^2-bc}$$
 and $\frac{2ab}{5ab+3ac-2b^2-bc}$, where $a = \log 2$, $b = \log 3$, $c = \log 7$.

20. (i)
$$\log x = \frac{a+3b}{5}$$
, $\log y = \frac{a-2b}{5}$

Examples XIII(b), [Pages 142-144]

16.
$$\theta = 50^{\circ}$$
 7' 48" nearly. 17. '2394.

28.
$$120^{\circ}$$
. 24. $A = 60^{\circ}$. 29. $A = 90^{\circ}$, $B = 30^{\circ}$, $C = 60^{\circ}$.

89.
$$\sqrt{\frac{y}{s} + \frac{s}{x} + \frac{x}{y}}$$
 40. 84.

Examples XIV(b). [Pages 166-168]

Examples XV(a). [Pages 172-173]

- 1. 35° 5′ 49″. 2. 102° 1′ 28″. 3. 58° 59′ 89″.
- 4. 104° 80′; 46° 86′; 28° 54′. 5. (i) 88° 59′ 40.9″.
 - (ii) 78° 27′ 46.86″. 6. (i) 48° 11′ 23″; 58° 24′ 48″; 78° 23′ 54″.
 - (ii) $182^{\circ} 84' 24''$. 7. $A=120^{\circ}, B=45^{\circ}, C=15^{\circ}$.
- 8. $A=45^{\circ}$, $B=30^{\circ}$, $C=105^{\circ}$. 9. $A=60^{\circ}$, $B=38^{\circ}$ 11', $C=81^{\circ}$ 49'.
- 10. $A = 105^{\circ}$, $B = 45^{\circ}$, $C = 80^{\circ}$. 11. $(\sqrt{3} + 1) : \sqrt{6} : (\sqrt{3} 1)$.
- 18. $\sqrt{5}+1: \sqrt{5}-1$. 14. 3:4:5.

Examples XV(b). [Pages 176-178]

- 1. B=88° 12′ 48″, C=21° 47′ 12″.
- 2. $B=56^{\circ}$ 19' 46'8", $C=63^{\circ}$ 40' 13'7".
- 3. A=117° 38' 45", B=27° 88' 45".
- 4. $A = 94^{\circ} 42' 54''$, $B = 25^{\circ} 17' 6''$.
- 5. $B=71^{\circ} 44' 29'5''$, $C=48^{\circ} 15' 30'5''$.
- 6. (i) 70° 58′ 36″; 49° 6′ 14″. (ii) 74° 18′ 50″, 35° 16′ 10″.
 - (iii) $A = 64^{\circ} 21'$, $B = 77^{\circ} 25'$, c = 27.39.
- 7. (i) B=78° 17′ 39.6″, C=49° 36′ 20.4″.
 - (ii) 116° 33′ 54″; 26° 33′ 54″.
- 8. $A=B=75^{\circ}$, $C=30^{\circ}$, $b=2\sqrt{6}$. 9. $\sqrt{6}$, 15°, 105°.
- 10. (i) $A = 45^{\circ}$, $B = 75^{\circ}$, $c = \sqrt{6}$. (ii) $A = 80^{\circ}$, $B = 90^{\circ}$.
- 11. 27'0875. 12. 172'6496 ft. 18. 79'063.
- 14. (i) $A=31^{\circ}\ 20'$, b=185, c=192.
 - (ii) b=18.46, c=87.16, $C=70^{\circ} 30'$. (iii) b=118.9, c=117.2.
- 15. $C = 75^{\circ}$, $a = c = 2 \sqrt{3} + 2$. 16. $C = 105^{\circ}$, $a = \sqrt{2}$, $c = \sqrt{3} + 1$. 17. 72° , 72° , 36° ; each side = $\sqrt{5} + 1$. 18. 8.1.
- 11. 12, 12, 50 , each side No+1. 18. 6, 1.

Examples XV(c). [Pages 184-185]

- 1. (i) One solution; (ii) Ambiguous; two solutions;
- (iii) No solution; (iv) One solution (right-angled triangle).
- 2. (i) $C = 75^{\circ}$, $A = 60^{\circ}$, $a = \sqrt{6}$ (ii) 60° , or, 120° . or $C = 105^{\circ}$, $A = 30^{\circ}$, $a = \sqrt{2}$
- 8. $A=45^{\circ}$, $C=75^{\circ}$, $c=\sqrt{3}+1$. (no ambiguity). 4. Impossible.
 - 8. $C = 58^{\circ} \ 56' \ 56' \ 3''$ $A = 87^{\circ} \ 48' \ 3'7''$ or, $A = 25^{\circ} \ 41' \ 56' \ 3''$
 - 9. B=84° 27', C=100° 83'.
- 10. A=5° 44' 21". 11. A=33° 39' 84", B=86° 20' 26".
- 12. A=80° 86', C=64° 14'; or, A=29° 4', C=115° 46'.

Miscellaneous Examples II. [Pages 186-188]

21.
$$\frac{1}{3}\{n\pi + \frac{1}{2}\pi - (a+b+c)\}$$
. 24. $\frac{1}{3}(n\pi + \frac{1}{2}\pi)$.

Examples XVI. [Pages 213-214]

4.
$$\theta = \frac{1}{2}\pi$$
. 5. $x = 38^{\circ}$ 10' nearly. 6. $\frac{1}{2}\pi$. 7. -'37 nearly.

8. (i)
$$x=0$$
; (ii) $46^{\circ} 25'$ (nearly) and 90° ; (iii) $22\frac{1}{2}^{\circ}$ and $112\frac{1}{2}^{\circ}$;

(iv)
$$\frac{2}{3}\pi$$
; (v) 14° nearly; (vi) 1.19, 2.72, 4.92.

(vii) 1'16, 3'28, 4'95. (viii)
$$\pm$$
'82. (ix) '64.

Examples XVII(a). Pages 221-224]

Examples XVII(b), [Pages 281-283]

1.
$$-\cos\left(\alpha+\frac{\pi}{2n}\right)/\sin\frac{\pi}{2n}$$
. 2. 0.

8.
$$\frac{\sin \{a + \frac{1}{2}(n-1)(a+\pi)\} \sin \frac{1}{2}n(a+\pi)}{\sin \frac{1}{2}(a+\pi)}$$

4.
$$\frac{n}{2} + \frac{\sin n\theta}{2 \sin \theta} \cos (n+1)\theta$$
. 5. $\frac{1}{4} \left(\frac{8 \sin^2 n\alpha}{\sin \alpha} - \frac{\sin^2 3n\alpha}{\sin 9\alpha} \right)$.

6.
$$(-1)^{n-1} \frac{\sin n\theta \sin (n+1)\theta}{2 \cos \theta}$$
.

7.
$$\frac{3}{8}n - \frac{1}{2}\frac{\sin na}{\sin a}\cos(n+1)a + \frac{1}{8}\frac{\sin 2na}{\sin 2a}\cos 2(n+1)a$$
.

8.
$$\cos \{\theta + \frac{1}{2}(n-1)(\theta + \frac{1}{2}\pi)\}\frac{\sin \frac{1}{2}n(\theta + \frac{1}{2}\pi)}{\sin \frac{1}{2}(\theta + \frac{1}{2}\pi)}$$

9.
$$\frac{1}{4 \sin a} \{ (n+1) \sin 2a - \sin 2(n+1)a \}$$

10.
$$\frac{n}{2}\cos 2a + \frac{\cos 2(n+1)a \sin 2na}{2\sin 2a}$$
. 11. $\frac{1}{2}$.

17. cosec
$$\theta$$
 {cot θ - cot $(n+1)\theta$ }. 18. $\frac{1}{2}$ cosec α {tan $(n+1)\alpha$ - tan α }.

12. 0.

19.
$$\cot \theta \{\cot \theta - \cot (n+1)\theta\} - n$$
. 20. $\cot \alpha - 2^n \cot 2^n \alpha$.

21.
$$\frac{1}{2} \cdot \frac{\sin \frac{1}{2}n\theta}{\sin \frac{1}{2}\theta} \sin \frac{1}{2}(n+3)\theta - \frac{1}{4} \cdot \frac{\sin n\theta}{\sin \theta} \sin (n+3)\theta.$$

22.
$$\frac{1}{2}(\tan 8^n x - \tan x)$$
. 23. $\tan^{-1} \frac{n}{2+n}$. 24. $\tan^{-1} \frac{n}{n+1}$.

25.
$$\tan^{-1} \frac{n}{n+1}$$
. 26. $\frac{1}{2^{n-1}} \cot \frac{x}{2^{n-1}} - 2 \cot 2x$.

27.
$$\frac{1}{4} \left[\frac{\sin \frac{1}{2}nx}{\sin \frac{1}{2}x} \cos \frac{1}{2}(n+3)x(1+2\cos 2x) + \frac{\sin \frac{1}{2}nx}{\sin \frac{1}{2}x} \cos \frac{1}{2}(n+3)x \right]$$

28.
$$\frac{(n+1)\cos n\theta - n\cos (n+1)\theta - 1}{2(1-\cos \theta)}$$
 29.(a) $\frac{1}{2}n(n+1)$; (b) n° .

80. $\cot x \tan (n+1)x - (n+1)$; $\frac{1}{3}n(n+1)(n+2)$.

Examples XVII (c). [Pages 236-237]

1.
$$(a^2-b^2)^2=ab$$
. 2. $a^2\{(x+b)^2+y^2\}=(x^2+y^2-b^2)^2$.

3.
$$(x+3y)^2 = xy^2(x+2y)$$
.
4. $a^2+b^2=1+b^2-b^4$.

5.
$$(x+y)^{\frac{3}{3}} + (x-y)^{\frac{3}{3}} = 2$$
.
6. $(x^2+y^2+2ax)^2 = 4a^2(x^2+y^2)$.

7.
$$x^{\frac{2}{3}} + y^{\frac{3}{3}} = 4^{\frac{3}{3}}$$
. 8. $x^{\frac{4}{3}}y^{\frac{3}{3}} - x^{\frac{3}{3}}y^{\frac{4}{3}} = 1$. 9. $\frac{x^{\frac{3}{3}} + y^{\frac{3}{3}}}{b^{\frac{3}{3}} + a^{\frac{3}{3}}} = 1$.

10.
$$\frac{2x}{a} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) \left(\frac{x^4}{a^2} + \frac{y^2}{b^2} - 3\right)$$
. 11. $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 - b^2)^{\frac{2}{3}}$.

12.
$$\left(\frac{x}{a} + \frac{y}{b}\right)^{\frac{3}{3}} + \left(\frac{x}{a} - \frac{y}{b}\right)^{\frac{3}{3}} = 2.$$
 13. $x^{\frac{3}{3}}y^{\frac{3}{3}}(x^{\frac{3}{3}} + y^{\frac{3}{3}}) = 1.$

14.
$$8a-2b=a^3$$
. 15. $\frac{x^2+y^3}{a}=a+b$. 16. $x^2+y^2-2\cos a=2$.

17.
$$ab=(b-a) \tan a$$
. 18. $a+b=2ab$. 19. $(ab-c)(a^2+b^2)=2ab$.

Miscellaneous Examples III. [Pages 253-260]

1.
$$\frac{1}{15}\pi$$
, $\frac{1}{3}\pi$, $\frac{2}{5}\pi$. 2. 40°, 60°, 80° $\frac{2}{3}\pi$, $\frac{1}{3}\pi$, $\frac{4}{5}\pi$. 3. 90°, $22\frac{1}{2}$ °, $67\frac{1}{2}$ °.

26.
$$\frac{(t^2+1)(t^4+1)}{t^3}$$
. 27. 1. 28. $\frac{7}{35}$. 29. $\frac{5}{16}$.

30.
$$x=\frac{1}{2}\pi$$
, $y=\frac{1}{6}\pi$. 31. (i) Possible; (ii) Impossible; (iii) Impossible.

82. (i)
$$a^2 + b^2 = 2$$
; (ii) $\frac{x^4}{a^3} + \frac{y^2}{b^2} = 2$; (iii) $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$.

46.
$$\frac{2n}{503}$$
, $\frac{2n}{53}$. 47. $\frac{2mn}{m^2-n^2}$. 48. $-\frac{2}{33}$. 49. $\frac{2}{35}$, $-\frac{2}{4}$, $\frac{1}{5}\sqrt{5}$.

84.
$$(2n+1)\frac{\pi}{2}$$
 or, $(2n+1)\pi \pm \frac{\pi}{8}$ or, $n\pi + (-1)^n \frac{\pi}{6}$ 90. 107.2 ft.

CALCUTTA UNIVERSITY QUESTIONS

(b) If $\alpha + \beta + \gamma = \pi$, prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma = 1.$$

[See Ex. 8, Art. 56.] 2. (a) $\sin^{-1} \frac{2a}{1+a^2} + \sin^{-1} \frac{2b}{1+b^2} = 2 \tan^{-1} x$,

show that
$$x = \frac{a+b}{1-ab}$$
. [See Ex. 7, Art. 71.]

- (b) Solve $\sin \theta + \sqrt{3} \cos \theta = \sqrt{2}$. [See Ex. 13, Examples XI.]
- 3. (a) In a plane triangle, establish geometrically

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

discussing separately the cases (i) when A is acute and (ii) when A is obtuse.

[See Art. 83.]

(b) If $B=45^{\circ}$, $C=10^{\circ}$ and a=200 ft., find b, having given that $\log 2=30103$, L sin $55^{\circ}=9.9138645$

log 1726'4=3'2371414, log 1726'5=3'2371666.

[See Ex. 12, Examples XV(b).]

- 4. Solve graphically the equation $5 \sin \theta + 2 \cos \theta = 5$ between $\theta = 0^{\circ}$ to $\theta = 270^{\circ}$. [See Ex. 8(ii), Examples XVI.]
 - 1. (a) Prove geometrically that

$$cos(A+B) = cos A cos B - sin A sin B.$$
 [See Art. 33.]

 \checkmark (b) If $A+B+C=\pi$, prove that

$$\cos^{2}\frac{A}{2} + \cos^{2}\frac{B}{2} + \cos^{2}\frac{C}{2} = 2\left(1 + \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)$$

- 2. (a) Show that $\tan^{-1}(\frac{1}{2}\tan 2A) + \tan^{-1}(\cot A) + \tan^{-1}(\cot^2 A) = 0$.
 - (b) Solve $\tan x + \tan 2x + \tan x \tan 2x = 1$. [See Ex. 18, p. 110.]
- 3. (a) In a plane triangle, prove that

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$
 [See Art. 86.]

(b) The sides of a triangle are 7, 8, 9; determine the greatest angle,

[See Ex. 6(i), Examples XV(a).]

4. Solve graphically the equation $2 \sin^2 x = \cos 2x$ between

$$x = -\frac{\pi}{2}$$
 and $x = \frac{8\pi}{2}$. [See Ex. 1, Art. 111.]

1. (a) Prove geometrically that

$$\sin (A-B) = \sin A \cos B - \cos A \sin B$$
,

when A and B are positive and acute and A > B. [See Art. 34.]

(b) If $A+B+C=\pi$, prove that

$$\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B} = 2.$$

[See Ex. 11, p. 95.]

 $\sqrt{2}$. (a) Show that $\tan^{-1} \frac{1}{a+b} + \tan^{-1} \frac{b}{a^2 + ab + 1} = \tan^{-1} \frac{1}{a}$.

- (b) Solve $\tan \left(\frac{\pi}{4} + \theta\right) + \tan \left(\frac{\pi}{4} \theta\right) = 4$. [See Ex. 17, p. 110.]
- 3. (a) In a plane triangle, prove that

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$
 [See Art. 89.]

- (b) Two sides of a triangle are 3 and 5 feet, and the included angle is 120°; find the other angles. [See Ex. 1, p. 176.]
- 4. Solve graphically the equation $\cot \theta \tan \theta = 2$ between $\theta = 0$ to $\theta = \pi$. [See Ex. 8(iii), p. 214.]
- 1. Prove geometrically $\cos (A-B) = \cos A \cos B + \sin A \sin B$, where the angles A, B, A-B are all positive and lie in the first quadrant. [See Art. 34.]

Show that
$$\cos \frac{\phi - \theta}{2} - \sin \theta \sin \frac{\phi + \theta}{2} = \cos \theta \cos \frac{\phi + \theta}{2}$$
.

Find sin 18°.

[See Art. 58.]

2. For a triangle ABC, establish the formula

$$\sin A = \frac{2}{bc} \{s(s-a)(s-b)(s-c)\}^{\frac{1}{2}}$$

where s is the semi-perimeter of the triangle.

See Art. 87.]

Corresponding to the inequality a+b>c concerning the sides of a triangle, can you prove $\sin A + \sin B > \sin C$?

3. A person walks one mile bearing an angle θ_1 with a fixed lirection, and then another mile bearing θ_2 with the same direction, find (a) final distance from the starting point and (b) final bearing.

Show that

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}s = \tan^{-1}\frac{x+y+s-xys}{1-us-sx-xv}$$
 [See Art. 70.]

4. Solve $4 \sin \theta \cos \theta = 1 - 2 \sin \theta + 2 \cos \theta$ in the interval $0 < \theta < \tau$.

Draw the graph of 3 sin $x+4\cos x$. What is its maximum value?

1. Establish geometrically the formula $\sin (A-B) = \sin A \cos B - \cos A \sin B$.

where A, B, A-B are positive and lie in the first quadrant.

[See Art. 34]

PQR is a triangle and S is the projection of P on QR produced. If $\angle PQS = 30^{\circ}$, $\angle PRS = 45^{\circ}$, and QR = 2 ft, find RS.

2. Given $A+B+C=\pi$, show that

(i)
$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$
;
[See Art. 56 Ex. 5]
(ii) if $A = \tan^{-1} 2$, $B = \tan^{-1} 3$, then $C = \pi/4$.

In any triangle ABC, prove that

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$
 [See Art. 89]

If $b = \sqrt{3}$, c = 1 and $A = 80^{\circ}$, solve the triangle.

4. (i) What is meant by saying that the trigonometrical ratios are neriodic functions? What values of x would indicate the end of the period beginning from x=0 of sin x and sin πx ?

[See Art. 102 Note]

Sketch a period of the tangent-graph, $y = \tan x$, including $x = \pi/2$, and discuss the behaviour of the graph near $x=\pi/2$.

[See Art. 106 and Note]

- (ii) Solve the equation $\sin 4\theta = \cos 3\theta + \sin 2\theta$ in $0 < \theta < \pi$.
- 1. (a) Define a radian. What is the length of an arc of a circle of radius r which subtends an angle of θ radians at the centre? In a diagram with acute angle θ justify that $\theta > \sin \theta$.

[See Art. 5 and Appendix Art. 21]

(b) If A, B are positive and A+B is acute, establish geometrically $\cos (A+B) = \cos A \cos B - \sin A \sin B.$ [See Art. 33]

2. (a) If $A+B+C=180^{\circ}$, show that

 $1+4\sin\frac{A}{a}\sin\frac{B}{a}\sin\frac{C}{a}=\cos A+\cos B+\cos C.$ [See Art. 56 Ex. 4] (b) Prove that

$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

[See Ex. 4 of Examples XII]

3. (a) Assuming the formula of the type

$$c^2 = a^2 + b^2 - 2ab \cos C$$
.

deduce that the area of the triangle ABC is given by

$$\{s(s-a)(s-b)(s-c)\}^{\frac{1}{2}}$$

(b) From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be a and β . Show that the height in miles of the aeroplane above the road is given by

$$\tan \alpha \tan \beta$$

 $\tan \alpha + \tan \beta$

- 4. (a) Sketch the graphs of y=x, $y=\sin x$ and $y=\tan x$ in the range between $-\pi/2$ and $+\pi/2$ with reference to the same axes in x and y. From the nature of the graphs near the origin can you suggest any relation among them at the origin?
 - (b) Solve $\cos \theta \sin \theta = 1/\sqrt{2}$ in $-\pi < \theta < +\pi$.
 - 1. (a) Find the relation between a degree and a radian.
 - (b) Assuming A and B to be positive and A+B to be acute, Prove that $\sin (A+B) = \sin A \cos B + \cos A \sin B$.

[See Art. 33]

2. (a) Show that $\cos A + \cos (120^{\circ} + A) + \cos (120^{\circ} - A) = 0$.

[Sec Ex. 23(i) of Examples VIII]

(b) If $A+B+C=180^{\circ}$, show that

$$\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$$
.

See Art. 56 Ex. 1]

3. (a) Prove that, in a triangle,

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$
 [See Art. 82]

- (b) A spherical balloon whose radius is r ft. subtends at an observer's eye an angle a, when the angular elevation of its centre is β . Determine the height of the centre of the balloon.
 - 4. (a) Draw the graphs of $y = \cos x$ and $y = \sec x$, from x = 0 to $x = 2\pi$.

[See Art. 105 and 109]

(b) Solve the equation sin $2\theta = \cos \theta$.

PATNA UNIVERSITY QUESTIONS

- 1. (a) Obtain $\tan (A+B+O)$ in terms of $\tan A$, $\tan B$, and $\tan C$.
- (b) Show that if an angle a be divided into two parts, such that the ratio of the tangents of the parts is λ , then the difference x between the parts is given by

$$\sin x = \frac{\lambda - 1}{\lambda + 1} \sin a.$$

2. (a) If $A+B+C=180^{\circ}$, prove that

$$\sin^{\frac{A}{2}} + \sin^{\frac{A}{2}} + \sin^{\frac{A}{2}} + \sin^{\frac{A}{2}} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

- (b) Show that $\cos 7^{\circ} 30' = \frac{1}{4}(-1 + \sqrt{2} + \sqrt{3}), \sqrt{2} + \sqrt{2}$.
- 3. (a) Prove that

$$\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n = 2 \cot^n \frac{A - B}{2}$$

when n is even, and is zero when n is odd.

- (b) Draw the graph of $y = \sec x$ from 0 to 2π .
- 4. Prove that in a triangle,

$$\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$

Find the greatest angle in a triangle whose sides are 5, 6, 7 ft. respectively, having given

$$L \cos 39^{\circ} 14' = 9.8890644$$
, diff. for $60'' = .0001032$.

5. A railway curve in the shape of a quadrant of a circle, has n telegraph posts at its ends and at equal distances along the curve. A man stationed at a point P on one of the extreme radii produced sees the pth and qth posts from the end nearest him in a straight line. Show that the radius of the curve is

$$\frac{a}{2}\cos(p+q)\phi$$
.cosec $p\phi$.cosec $q\phi$.

where $\phi = \frac{\pi}{4(n-1)}$, and a is the distance of P from the nearest end of the curve.

- 1. (a) Find sin 3A in terms of sin A.
- (b) Show that the equation $\sec^2\theta = \frac{4xy}{(x+y)^2}$ is only possible when x=y.
 - 2. (a) If $A+B=90^{\circ}$, find the greatest value of cos $A \cos B$.
 - (b) Prove that

$$\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8} = \frac{3}{2}.$$

- **3.** (b) If $A+B+C=180^{\circ}$, prove that $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.
- (b) In a triangle ABC, if $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ be in A.P., then show that $\cos A$, $\cos B$, $\cos C$ are also in A.P.
- 4. (a) "If b, c and B be given, then solution of the triangle may be ambiguous." Discuss this statement in detail.
 - (b) Draw the graph of $y = \tan x$ between $-\pi$ and π .
- 5. The elevation of a tower due North at a station A is a, and at a station B due West of A is β .

Prove that the altitude is

$$AB$$
. $\sin a \sin \beta$
 $\sqrt{\sin^3 a - \sin^3 \beta}$

- 1. (a) The angles of a triangle are in A.P., and the number of degrees in the least is to the number of radians in the greatest as 60 to #; find the angles in degrees.
 - (b) Trace the graph of $\sin x$ from $x = -\pi$ to $x = \pi$.
 - 2. (a) Prove that $\cos^2 A \cdot \cos 3A + \sin^3 A \cdot \sin 3A = \cos^2 2A$.
 - (b) If a and β are two distinct angles satisfying the equation

 $a \cos \theta + b \sin \theta = c$, show that $\sin (a+\beta) = \frac{2ab}{a^2 + b^2}$.

- 3. (a) Prove that in any triangle, $2bc \cos A = b^a + c^a a^a$.
 - (b) In a triangle, prove that

$$a^2 \cos (B-C)+b^2 \cos (C-A)+c^2 \cos (A-B)=3abc.$$

4. If the angles of a triangle be in A.P. and the lengths of the greatest and least sides be 24 and 16 feet respectively, find the length of the third side and the angles, given $\log 2 = 80103$, $\log 3 = 4771218$ and L tan 19° 6' = 9'5894287, diff. for 1'=4084.

- 5. (a) If $a+\beta+\gamma=\frac{1}{2}\pi$, prove that $\tan \beta \tan \gamma + \tan \gamma + \tan \alpha + \tan \alpha = 1$.
- (b) A tower stands in a field whose shape is that of an equilateral triangle and whose side is 80 feet. It subtends angles at the three corners whose tangents are respectively $\sqrt{3}+1$, $\sqrt{2}$, $\sqrt{3}$. Find its height.
- 1. (a) Prove that $\sin (A+B) = \sin A \cos B + \cos A \sin B$, when A and A+B are both obtuse.
 - (b) Prove that $\sin^3 A + \sin^3 (120^\circ + A) + \sin^3 (240^\circ + A) = -\frac{2}{3} \sin 3A$.
 - 2. (a) If $A+B+C=180^{\circ}$, prove that $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = 1+4 \sin \frac{\pi A}{4} \sin \frac{\pi B}{4} \sin \frac{\pi C}{4}$.
 - (b) Prove that in a triangle, $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$.
 - 3. (a) Solve $\sin 7x \sin x = \sin 3x$.
- (b) The angles of a polygon (which has no re-entrant angle) are in A.P. The least angle is $\frac{2\pi}{3}$ radians and the common difference is 5°. Find the number of sides.
- 4. (a) If a, b, A are given and if c_1 , c_2 are the two values of the third side in the ambiguous case, prove that if $c_1 > c_2$, $c_1 c_2 = 2a \cos B$.
 - (b) Draw the graph of $y = \cos x$ between $x = -\pi$ and $x = \pi$.
- 5. Two towers stand on a horizontal plane and their distance apart is 120 ft. A person standing successively at the bases observes that the angular elevation of one is double that of the other, but when half way between them, their elevations appear to be complementary. Show that the heights are 90 ft. and 40 ft. respectively.
 - 1. (a) Find the value of sin 18°.
 - (b) If $\tan \frac{\theta}{2} = \left(\frac{1+c}{1-c}\right)^{\frac{1}{2}} \tan \frac{\phi}{2}$, prove that $\cos \theta = \frac{\cos \phi c}{1-c \cos \phi}$
- 2. Prove that in a triangle ABC, $\frac{c}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$, and deduce that $a \sin \left(\frac{A}{2} + B\right) = (b + c) \sin \frac{A}{2}$.

8. (a) If $A+B+C=\pi$, prove that

$$\sin^2 A - \sin^2 B + \sin^2 C = 2 \sin A \cos B \sin C.$$

- (b) Trace the graph of $\cos x$ between $x=90^{\circ}$ and $x=360^{\circ}$, and find from the graph the value of cos 160° approximately.
- 4. At each end of a horizontal base of length 2a it is found that the angular height of a certain peak is θ and that at the middle point it is ϕ . Prove that the vertical height of the peak is

$$a \sin \theta \sin \phi$$

$$\sqrt{\sin (\phi + \theta) \sin (\phi - \theta)}$$

- 5. (a) Prove that $\log_n n = \log_n n \times \log_n a$.
- (b) In a triangle ABC, a:b=7:3, and $C=60^\circ$; find A and B, having given log 2= 3010300, log 3= 4771213; L tan 34° 42'= 9.8403776, difference for 1' = 2699.
- 1. (a) Prove that $\cos(A-B) = \cos A \cos B + \sin A \sin B$, where A is obtuse and A - B is acute.
 - (b) If $\tan \theta = \sec 2a$, prove that $\sin 2\theta = \frac{1 \tan^4 a}{1 + \tan^4 a}$
 - 2. In any triangle ABC, prove that (i) $\tan \frac{B-C}{a} = \frac{b-c}{b-c} \cot \frac{A}{a}$.
 - (ii) $\sin (B+2C) + \sin (C+2A) + \sin (A+2B)$ $=4\sin\frac{1}{2}(B-C)\sin\frac{1}{2}(C-A)\sin\frac{1}{2}(A-B).$

= 4 sin
$$\frac{1}{2}(B-C)$$
 sin $\frac{1}{2}(C-A)$ sin $\frac{1}{2}(A-B)$.

- 3. (a) Express the cosine of an angle of a triangle in terms of its sides.
 - (b) In a triangle ABC, prove that

$$(b+c-a)\left(\cot\frac{B}{2}+\cot\frac{C}{2}\right)=2a\cot\frac{A}{2}.$$

- 4. (a) Trace the graph of $\sin x$ between x=0 and $x=2\pi$ and find from the graph the angles whose sine is '7.
- (b) In a triangle ABC, if $B=45^{\circ}$, $C=10^{\circ}$ and a=200 ft., find b, having given $\log 2 = 30103$, $L \sin 55^{\circ} = 9.9133645$, $\log 172.64 =$ 2.2371414, log 172.65 = 2.2371666.
- 5. An object is observed from three points A, B, C, lying in a horizontal straight line which passes directly underneath the object; the angular elevation at B is twice that at A, and at C is three times that at A; if AB=a, BC=b, show that the height of the object is

$$\frac{a}{2b}\sqrt{\left\{(a+b)(3b-a)\right\}}.$$

- 1. (a) Draw the graph of $y = \cos x$ for values of x varying from -x to x.
 - (b) If $A + B + C = 180^{\circ}$, show that

$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1 = 4 \sin \frac{\pi - A}{4} \sin \frac{\pi - B}{4} \sin \frac{\pi - C}{4}$$

- 2. (a) If $\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 n \sin^2 \alpha}$, show that $\tan (\alpha \beta) = (1 n) \tan \alpha$.
 - (h) Find a value of θ satisfying the equation $\cos 3\theta + \cos 2\theta + \cos \theta = 0$.
- 3. (a) In any triangle, prove that $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$.
- (b) If in any triangle $a\cos^2\frac{C}{2} + c\cos^2\frac{A}{2} = \frac{3b}{2}$, show that the sides of the triangle are in Arithmetical Progression.
- 4. The sides b and c of a triangle and the angle B are given. If $b > c \sin B$ but < c, discuss the solution of the triangle.

If a_1 and a_2 are the values of the third side in the two solutions, prove that

$$a_1^2 + a_2^2 - 2a_1a_2 \cos 2B = 4b^2 \cos^2 B$$
.

5. The angles of elevation of a bird flying in a horizontal straight line from a fixed point at four successive observations are a, β , γ , δ , the observations being taken at equal intervals of time. Assuming the speed of the bird to be uniform, show that

$$\cot^2 a - \cot^2 \delta = 3(\cot^2 \beta - \cot^2 \gamma).$$

- 1. (a) Draw the graph of $y = \tan x$ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- (b) Is it possible to find a value of θ if see $\theta = \frac{x^2 y^2}{x^2 + y^2}$, x and y being two real and unequal numbers? Justify your answer.
 - 2. (a) Find the value of sin 18°.
 - (b) If $\frac{\tan{(A-B)}}{\tan{A}} + \frac{\sin^2{C}}{\sin^2{A}} = 1$, prove that $\tan{A} \tan{B} = \tan^2{C}$.
 - 3. In any triangle, prove that
 - (i) $c^2 = a^2 + b^2 2ab \cos C$.
 - (ii) $a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0$.

- 4. In a triangle, b=2.25, c=1.75, $A=54^{\circ}$. Find B and C, having given log 2=301030, L tan $63^{\circ}=10.292834$, L tan 13° 47'=9.889724 and L tan 13° 48'=9.390270.
- 5. A man walking towards a building on which a flagstaff is fixed, observes the angle subtended by the flagstaff to be greatest when he is at a distance d from the building. If θ be the observed greatest angle, find the length of the flagstaff and the height of the building.
 - 1. (a) Given $\sec \theta + \tan \theta = u$, express $\tan \theta$ in terms of u.
- (b) Find all the values of θ lying between 0° and 360° which satisfy the equation

$$\sec^2\frac{\theta}{2} = 2\sqrt{2}\,\tan\frac{\theta}{2}.$$

- 2. (a) Draw the graph of $y = \tan x$ from $-\pi$ to π .
 - (b) If $A+B+C=\pi$, prove that

$$\cos \frac{A}{2} + \cos \frac{B}{2} - \cos \frac{C}{2} = 4 \cos \frac{\pi + A}{4} \cos \frac{\pi + B}{4} \cos \frac{\pi - C}{4}.$$

- 8. (a) Prove that the value of $\frac{\cot A}{1+\cot A} \times \frac{\cot (45^{\circ} A)}{1+\cot (45^{\circ} A)}$ is the same for all values of A.
 - (b) Show that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{10}$.
 - 4. (a) Discuss the ambiguous case in the solution of triangles.
 - (b) If a triangle is such that 2b=a+c, prove that

$$2\cot\frac{B}{2} = \cot\frac{A}{2} + \cot\frac{C}{2}.$$

- 5. Two points A and B of a straight horizontal road are at a distance of 400 feet apart. A vertical pole 100 feet high is at equal distances from A and B, and the angle subtended by AB at the foot of the pole (which is in the same horizontal plane as the road) is 60° . Find (a) the distance from the road to the foot of the pole, and (b) the cosine of the angle subtended by AB at the top of the pole.
- 1. (a) If $\sin \alpha = -\frac{4}{5}$, and α lies between 180° and 270°, find the values of $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$.
- (b) If $\cos \theta = \frac{\cos \alpha \cos \beta}{1 \cos \alpha \cos \beta}$, prove that one value of $\tan \frac{\theta}{2}$ is $\tan \frac{\alpha}{2} \cot \frac{\beta}{2}$.

- 2. (a) Find the values of θ lying between 0° and 360° satisfying the equation $\tan^{2}\theta + \cot^{2}\theta = 2$.
 - (b) If $A+B+C=180^{\circ}$, prove that

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

- 3. A person walking along a straight road observes that the greatest angle which two objects subtends is α . From the spot where this is the case he walks a distance c and the objects now appear as one, their direction making an angle β with the road. Shew that the distance between the objects is $\frac{2c\sin\alpha\sin\beta}{\cos\alpha+\cos\beta}$.
- 4. (a) Find the value of $\tan \frac{A}{2}$ in terms of the sides of the triangle, adopting the usual notation.
 - (b) In any triangle, prove that

$$(b-c)\cos\frac{A}{2}=a\sin\frac{B-C}{2}.$$

- 5. Pick out, giving reasons, the ambiguous case out of the following and solve it.
 - (i) $A = 30^{\circ}$, c = 250 ft., a = 125 ft.
 - (ii) $A = 30^{\circ}$, c = 250 ft., a = 200 ft.,

given $\log 2 = 30103$, $\log 6.03893 = 7809601$.

 $L \sin 38^{\circ} 41' = 9.7958800$ and $L \sin 8^{\circ} 41' = 9.1789001$.

- 1. (a) Show that $\cos^3 A \cos 3A + \sin^3 A \sin 3A = \cos^3 2A$.
- (b) If $x \sin^2 \theta + y \cos^2 \theta = \sin \theta \cos \theta$, and $x \sin \theta y \cos \theta = 0$, show that $x^2 + y^2 = 1$.
 - 2. (a) Establish the formula

$$\cos B - \cos A = 2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}.$$

- (b) Prove that $\cos^2 A + \cos^2 B + \cos^2 C 2 \cos A \cos B \cos C = 1$, if A + B = C.
 - 8. (a) Prove that in a triangle, $\cos \frac{A}{2} = \sqrt{\overline{s(s-a)}}$,

(b)
$$\frac{a^2 \sin (B-C)}{\sin B + \sin C} + \frac{b^2 \sin (C-A)}{\sin C + \sin A} + \frac{c^2 \sin (A-B)}{\sin A + \sin B} = 0.$$

- 4. (a) Draw the graph of $y = \sin x + \cos x$ as x ranges from 0 to π .
- (b) Prove that $\cot A + \cot B + \cot C = \cot A \cot B \cot C$, if $A+B+C=\frac{1}{2}\pi$.

- 5. (a) Prove that $\log_b n = \log_a n \times \log_b a$.
- (b) To determine the breadth AB of a canal an observer places himself at C in the straight line AB produced through B, and then walks 100 yards at right angles to this line. He then finds that AB and BC subtend angles 15° and 25° at his eyes. Find the breadth of the canal, given $L\cos 25^{\circ} = 9.9572757$; $L\cos 40^{\circ} = 9.8842540$; $L\cos 75^{\circ} = 9.4129962$; $\log 37279 = 4.5714643$; $\log 3728 = 3.5714759$.
 - 1. (a) Evaluate sin 18°.
 - (b) If $\sec (\phi + a) + \sec (\phi a) = 2 \sec \phi$, prove that

$$\cos\phi = \sqrt{2}\,\cos\frac{\alpha}{2}\,.$$

2. (a) If $A+B+C=\pi$, prove that

$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$$

- (b) Draw the graph of $y = \tan x$ from x = 0 to $x = 2\pi$.
- 8. In a triangle ABC, prove that

(i)
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
.

- (ii) cot A, cot B, cot C are in A. P., if a2, b2, c2 are in A. P.
- 4. Two sides of a triangle are in the ratio of 9 to 7, and the included angle is 64° 12'; find the other angles, having given $\log 2 = 3010300$. L $\tan 57^{\circ} 54' = 10^{\circ}2025255$, L $\tan 11^{\circ} 16' = 9^{\circ}2998216$, L $\tan 11^{\circ} 17' = 9^{\circ}2999804$.
- 5. A flagstaff PN stands vertically on level ground. A base XY is measured at right angles to XN, the points X, Y, N being in the same horizontal plane, and the angles PXN and PYN are found to be α and β respectively. Prove that the height of the flagstaff is

$$\frac{\sin \alpha \sin \beta}{\sqrt{\sin (\alpha - \beta)} \sin (\alpha + \beta)} \cdot XY.$$

- 1. (a) Obtain cot 3A in terms of cot A.
 - (b) Prove that

$$\cot A + \cot (60^{\circ} + A) + \cot (120^{\circ} + A) = 3 \cot 3A$$
.

2. (a) Prove geometrically that

$$\cos (180^{\circ} + A) = -\cos A$$
, for all values of A.

(b) Solve

sin 34+sin 24+sin 4=0, where A lies between 0 and 2w.

3. In a triangle ABC, prove that

(i)
$$\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$
.

(ii)
$$(b-c) \cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0$$
.

- 4. The sides of a triangle are 4, 5, 6; find B having given $\log 2 = 30103$, $L \cot 27^{\circ} 53' = 9.9464040$, diff. for 1' = 0000669.
- 5. (a) The elevation of a steeple at a place due south of it is 45°, and at another place due west of the former place the elevation is 30°. If the distance between the two places be a, find the height of the steeple.
 - (b) Draw the graph of $y = \cot x$ from x = 0 to $x = \pi$.

1. (a) If
$$\frac{x}{\tan (\theta + \alpha)} = \frac{y}{\tan (\theta + \beta)} = \frac{z}{\tan (\theta + \gamma)}$$
, prove that
$$\frac{x + y}{x - y} \sin^2(\alpha - \beta) + \frac{y + z}{y - z} \sin^2(\beta - \gamma) + \frac{z + x}{z - x} \sin^2(\gamma - \alpha) = 0.$$

- (b) Prove that $\cot A + \cot (60^{\circ} + A) + \cot (120^{\circ} + A) = 3 \cot 3A$.
- 2. (a) If $A+B+C=180^{\circ}$ and $\sin\left(A+\frac{C}{2}\right)=n\sin\frac{C}{2}$, show that $\tan\frac{A}{2}\tan\frac{B}{2}=\frac{n-1}{n+1}$.

(b) If
$$A+B+C=180^{\circ}$$
, prove that $\sin^2 A + \sin^2 B + \sin^2 C - 2 \cos A \cos B \cos C = 2$.

3. In a triangle, prove that

(i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
.

(ii)
$$(b^2-c^2) \cot A + (c^2-a^2) \cot B + (a^2-b^2) \cot C = 0$$
.

- 4. (a) Draw the graph of $y = \sin x$ from x = 0 to $x = \pi$, and from the graph find the angles whose sine is 7.
- (b) If a=70, b=35, $C=36^{\circ}$ 52' 12", find the other angles having given log 3=4771213, L cot 18° 26' 6"=10.4771213.
- 5. A flagstaff is on the top of a tower which stands on a level plane. At a certain point in the plane the tower subtends an angle α , and the flagstaff an angle β . At another point 'a' ft, nearer the base of the tower, the flagstaff again subtends the angle β . Show that the height of the tower is $\frac{a \tan \alpha}{1 \tan \alpha \tan (\alpha + \beta)}$.

INTERMEDIATE EXAMINATION PAPERS

U. P.

ALLAHABAD

1. Show that
$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$
 and $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$

If
$$\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\phi}{2}$$
, show that $\cos \phi = \frac{\cos \theta - e}{1-e \cos \theta}$.

- 2. (a) Solve the equation $\tan \theta + \tan 2\theta + \tan 3\theta = 0$.
- (b) Show that $\frac{\cos 6\theta + 6 \cos 4\theta + 15 \cos 2\theta + 10}{\cos 5\theta + 5 \cos 3\theta + 10 \cos \theta}$ can be reduced to the simple form 2 cos θ .
- 3. Show that, in a triangle ABC, the distance of the ortho-centre from the side BC is $2R \cos B \cos C$, R being the radius of the circumcircle.

Establish $4R \sin A \sin B \sin C = a \cos A + b \cos B + c \cos C$.

4. Prove that in a triangle, $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$.

Find the greatest angle of the triangle whose sides are 5, 6 and 7, having given

$$log_{10}$$
 6 = '7781518
 L cos 39° 14' = 9'8890644
diff. for 60" = '0001032.

5. The elevation of a tower due north of a point A is θ and at a point B due west of A is ϕ . Show that its altitude is

$$\frac{AB\sin\theta\sin\phi}{\sqrt{\sin^2\theta-\sin^2\phi}}$$

1. Prove that $\sin (\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$, when θ and ϕ are both acute angles.

Show that if an angle a be divided into two parts so that the ratio of the tangents of the parts is λ , the difference x between the parts is given by

$$\sin x = \frac{\lambda - 1}{\lambda + 1} \sin a.$$

- 2. Determine the height of a mountain if the elevation of its top at unknown distance from the base is 28° ; and at a distance 8 miles 77 yards further off from the mountain along the same line, the angle of elevation is 16° . Given $\log 1.6071 = 2060$, $L \sin 16^{\circ} = 9.4403$, $L \sin 28^{\circ} = 9.6716$. $L \sin 12^{\circ} = 9.3179$.
 - 8. Solve completely the following equations :-
 - (i) $\cot \frac{1}{2}x \cot x = \csc \frac{1}{2}$. (ii) $2 \sin^2 x + \sin^2 2x = 2$.
 - 4. Show that
 - (i) $\cos \alpha + \cos \beta + \cos \gamma + \cos (\alpha + \beta + \gamma)$ = $4 \cos \frac{\alpha + \beta}{2} \cos \frac{\beta + \gamma}{2} \cos \frac{\gamma + \alpha}{2}$.
 - (ii) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$, when $A + B + C = \pi$.
 - 5. Establish the following relations in a triangle:
 - (i) $a \cot A + b \cot B + c \cot C = 2R + 2r$. (ii) $r_1 + r_2 + r_3 = r + 4R$.
 - 1. Prove that in any triangle ABC,

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

2. (a) Show that in a triangle ABC,

$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

(b) Prove that in a triangle ABC,

$$r_1+r_2=c\cot\frac{C}{2}.$$

where r_1 and r_2 are the radii of the two escribed circles opposite to A and B respectively.

- 8. (a) Find the value of sin 15°.
 - (b) Find the number of digits in 13¹² × 2ⁿ, given log 2= 30103 and log 3= 4771213.
- 4. (a) What is the angle of elevation of the sun when the length of the shadow of a pole is $\sqrt{3}$ times the height of the pole?
 - (b) Prove that the radian is a constant angle.
- 5. If (a-b)(s-c)=(b-c)(s-a), show that the radii of the escribed circles of the triangle are in A.P., where a, b, c are the lengths of the sides of the triangle and s is semi-perimeter.
- 6. If K is a point in the side AB of a triangle ABC such that AK : KB = m : n, and if θ be the $\angle CKB$, show that

$$(m+n) \cot \theta = n \cot A - m \cot B$$
.

- 7. (a) If $\tan \theta = k$, find $\tan 5\theta$.
 - (b) Solve $\sin 9\theta = \sin \theta$.
- 8. In a triangle, a=10, A=51° 31′ 40″, B=76°; find b, given log 12396=4.0932816, log 12397=4.0933166, L sin 76°=9.9869041, L sin 51° 30′=9.8935444, L sin 51° 31′=9.8936448.
- 1. Prove that
 - (a) $\frac{\sin (A+3B) \sin (3A+B)}{\sin 2A + \sin 2B} = 2 \cos (A$
 - (b) $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}\frac{3}{5}$.
- 2. Solve the following equation, giving the general solution $\cos \theta \sin 3\theta = \cos 2\theta$.
- 3. A hillside is a plane sloping at 30° to the horizontal. For climbing the hill there is a straight road inclined at an angle of 45° to a line of the greatest slope. Find the tangent of the angle which the road makes with the horizontal.
 - 4. (a) If $\tan A + \sin A = m$ and $\tan A \sin A = n$, prove that $m^2 n^2 = 4 \sqrt{(mn)}$.
 - (b) Prove that

$$\cos \tan^{-1} \sin \cot^{-1} x = \left(\frac{x^2 + 1}{x^2 + 2}\right)^{\frac{1}{2}}.$$

- 5. (a) State, without proof, the formulæ which you would use in solving a triangle when two sides and the included angle are known.
- (b) A landmark A is observed from two points B, C, 4400 yds. apart. The angle ABC is found to be 68° and the angle ACB 72°. Find the distance of the landmark from B.
 - [Given log $4^{\circ}4 = 0^{\circ}6435$, log $6^{\circ}51 = 0^{\circ}8136$, $L \sin 72^{\circ} = 9^{\circ}9782$, log cosec $40^{\circ} = 0^{\circ}1919$.]
- 6. (a) Find an expression for the radius of the circumscribed circle of a triangle.
- (b) If r_1 , r_4 , r_5 are the radii of the escribed circles of the triangle ABC opposite A, B, C respectively, and r is the radius of the inscribed circle, prove that

$$rr_1/r_2r_4 = \tan^2 \frac{1}{2} A$$
.

1. State the value of $\cos (90^{\circ} + \theta)$, and prove the truth of your statement. $(\theta < 90^{\circ})$.

What sign has $\sin \theta + \cos \theta$ when $\theta = 100^{\circ}$? Give reasons.

2. Prove that $\sin A + \sin B = 2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$. Simplify

$$\sin A + \sin 3A + \sin 5A + \sin 7A$$

$$\cos A + \cos 3A + \cos 5A + \cos 7A$$

3. (a) An angle x is divided into two parts a, β such that

$$\frac{\tan a}{\tan \beta} = \frac{a}{b}.$$

Prove that

$$\sin (a-\beta) = \frac{a-b}{a+b} \sin x.$$

- (b) Eliminate θ between the pair of equations: $x=2\cos\theta$, $y=3\cos(\theta-30^{\circ})$.
- 4. (a) Find the general solution of the equation $\cos 2\theta + \sin 2\theta = 1$.
 - (b) If $A+B+C=180^{\circ}$, prove that $\sin^{\circ}A+\sin^{\circ}B+\sin^{\circ}C=2+2\cos A\cos B\cos C$.
- 5. At each end of a base of length 2a the elevation of the top of a mountain is B, and at the middle point of the base the elevation is A. Prove that the height of the mountain is

$$\frac{a \sin A \sin B}{\sqrt{\sin (A+B) \sin (A-B)}}$$

6. If AG bisects the angle A of a triangle ABC, and G lies on BC, find the length of AG.

In the triangle ABC, D is the foot of the perpendicular from A on BC and A' is the middle point of BC. If AD=h, AA'=m, and BC=a, prove that

$$\cot A = (4m^2 - a^2)/4ah$$
.

1. Prove that in a triangle ABC.

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

2. (a) Show that

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$
 and $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$

(b) If 2 tan A=3 tan B, show that

$$\tan (A-B) = \frac{\sin 2B}{5-\cos 2B}.$$

- 3. (a) Prove that $\sin 15^\circ = (\sqrt{3} 1)/2 \sqrt{2}$.
 - (b) Solve the equation

$$\sin \theta + \cos \theta = \sqrt{2}.$$

4. Prove that $\log_b a = \log_e a / \log_e b$.

If $x = \log_{2a} a$, $y = \log_{2a} 2a$ and $s = \log_{4a} 3a$, prove that xyz + 1 = 2yz.

5. Prove that in any triangle,

(i)
$$\frac{b^2-c^2}{a^2} \sin 2A + \frac{c^2-a^2}{b^2} \sin 2B + \frac{a^2-b^2}{c^2} \sin 2C = 0$$
.

(ii) $(r_1-r)(r_2-r)(r_3-r)=4r^2R$,

where the letters have their usual meanings.

6. (a) If
$$\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\phi}{2}$$
, prove that

$$\cos\phi = \frac{\cos\theta - e}{1 - e\cos\theta}.$$

- (b) Eliminate θ between the equations $x = \sin (\theta + a), y = \cos (\theta \beta).$
- 7. (a) Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{1}{4}\pi$.
- (b) Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 28°, and at a distance 8 miles 77 yards further off from the mountain along the same line, the elevation is 16°, given

 $\log 1.6071 = .2060$, L $\sin 12^{\circ} = 9.3179$.

L sin $16^{\circ} = 9.4403$ and L sin $28^{\circ} = 9.6716$.

8. Prove that the square of the distance between the circum-centre and the in-centre of any triangle is $R^a - 2Rr$, in the usual notation.

If the circum-centre lies on the in-circle, prove that

$$\cos A + \cos B + \cos C = \sqrt{2}.$$

1. Show that $\cos 36^{\circ} = \frac{\sqrt{5}+1}{4}$.

- 2. In any triangle, prove that
 - (i) $2bc \cos A = b^2 + c^2 a^2$.
 - (ii) $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.
- 3. (a) Prove the identity

$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}} = \tan\theta + \sec\theta.$$

- (b) If $\tan A + \sin A = m$ and $\tan A \sin A = n$, show that $m^2 n^2 = 4\sqrt{mn}$.
- 4. (a) Solve the equation $\tan \theta + \tan 2\theta + \tan 3\theta = 0$.
 - (b) If $\tan \theta = \frac{1}{7}$ and $\tan \phi = \frac{1}{3}$, show that $\cos 2\theta = \sin 4\phi$
- 5. (a) Eliminate θ between the pair of equations $x = 2 \cos \theta$, $y = 3 \cos (\theta 30^{\circ})$.
- (b) If K is a point in the side AB of a triangle ABC such that AK: KB=m:n, and θ be the angle CKB, show that

$$(m+n) \cot \theta = n \cot A - m \cot B$$
.

- 6. (a) The angle of elevation of the top of a pole is 15° from a point on the ground. On walking 100 feet towards the pole, the angle is found to be 30°. Find the height of the pole.
 - (b) Prove that $\cos \tan^{-1} \sin \cot^{-1} x = \left(\frac{x^2+1}{x^2+2}\right)^{\frac{1}{2}}$,
- 7. (a) Show that the radius of the circle circumscribing a regular polygon of n sides, equal to a, is given by

$$R = \frac{1}{2} a \operatorname{cosec} \frac{\pi}{n} .$$

- (b) If the area of a triangle is 96 and the radii of its escribed circles are 8, 12, 24 respectively, calculate the length of the sides.
- 1. (a) If A is an angle between 90° and 180° and if $\sin A = 8$, find $\tan \frac{A}{3}$.
 - (b) If $A+B+C=\pi$, prove that $\sin A - \sin B + \sin C = 4 \sin \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
 - 2. (a) Prove geometrically the formula $\cos (A+B) = \cos A \cos B \sin A \sin B$.

- (b) Show that $\sin^2 24^\circ \sin^2 6^\circ = \frac{\sqrt{5}-1}{8}$.
- 3. (a) How would you solve a triangle having given two sides and the included angle?
- (b) In a triangle ABC, b=14, c=11, $A=60^{\circ}$; find B, having given

L tan 11° 44′ 29″ =
$$9.31774$$
 log 2 = 30103 , log 3 = 47712 .

4. Show that

(a)
$$\sqrt{rr_1r_2r_3} = S = r^2 \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

(b)
$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$

where the symbols have their usual meanings.

- 5. (a) A spherical balloon of radius r feet subtends at an observer's eye an angle a, when the angular elevation of its centre is β . Find the height of the centre of the balloon.
- (b) Trace the changes in the sign and magnitude of $\cos A \sin A$ as A changes from 0 to 2π .
 - 6. (a) Prove that $\cos A \sqrt{3} \sin A = 2 \cos \left(A + \frac{\pi}{3}\right)$;

hence find the maximum value of

$$\cos A - \sqrt{3} \sin A$$
.

(b) Solve the equation

$$7 \sin^2 x + 3 \cos^2 x = 4$$
.

- (c) If $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$, shew that $A \pm B \pm C$ is an odd multiple of π .
- 7. (a) Prove geometrically that

$$\tan A > A > \sin A.$$

(b) Shew by means of trigonometrical formulæ that if x+y+s=xys, then

$$\frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{2x}{1-x^2} \cdot \frac{2y}{1-y^2} \cdot \frac{2z}{1-z^2}$$

1. (a) Prove geometrically the formula

$$\sin (A+B) = \sin A \cos B + \cos A \sin B$$
.

(b) Solve the equation $\sqrt{3} \sin \theta - \cos \theta = \sqrt{2}$.

2. (a) In a triangle ABC, prove that

$$a \sin\left(\frac{A}{2} + B\right) = (b+c) \sin\frac{A}{2}.$$

(b) Find the value of

$$2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$$

- 3. (a) Obtain an expression for the radius of an inscribed circle of a triangle.
- (b) If r_1 , r_2 , r_3 be the radii of escribed circles and r the radius of inscribed circle of a triangle ABC, prove that

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2} + \frac{1}{r_2} + \frac{1}{r_2} = \frac{a^2 + b^2 + c^2}{S^2},$$

where S stands for the area of the triangle ABC.

4. (a) If $\sin \theta = \sin \alpha$, shew that all the values of θ are included in the expression

 $n\pi + (-1)^n a$.

- (b) If $\cos (A-B)=\frac{1}{2}$, and $\sin (A+B)=\frac{1}{2}$, find the smallest positive values of A and B, and also their most general values.
- 5. (a) In an ambiguous case of the solution of a triangle, if a, b, and A are given, prove that the difference between the two values of c is $2\sqrt{a^2-b^2}\sin^2 A$.
- (b) Solve the triangle ABC, having given a=100, $c=100 \sqrt{2}$, and $A=30^{\circ}$.
- 6. (a) In a triangle ABC, if a^2 , b^2 , c^2 are in A.P., show that $\tan A$, $\tan B$, $\tan C$ are in H.P.

(b) If
$$\frac{a \cos A \sec B - x}{a \sin (A + B)} = \frac{y - b \sin A \sec B}{b \cos (A + B)} = \tan B$$
,
prove that $\frac{x^2}{a + b} + \frac{y^2}{b + b} = 1$.

- 7. (a) Prove the rule which determines the characteristic of the logarithm (to base 10) of a number less than unity.
- (b) Find the smallest integral power α, of 7, which makes 7^a greater than 10^{so}.

$$(\log 7 = *8451)$$

- (c) Find the number of digits in 3°°, having given log 8 = 4771218.
 - 1. (a) Deduce the signs of
 - (i) sin A, (ii) cos A for all values of A between 0 and 2w.

(b) Prove that

$$\sin (A-C) + 2 \sin A + \sin (A+C) = \sin A$$

$$\sin (B-C) + 2 \sin B + \sin (B-C) = \sin B$$

2. (a) Prove geometrically the formula

$$\cos (A-B) = \cos A \cos B + \sin A \sin B$$
.

(b) Solve the equation

$$\sin \frac{n+1}{2}\theta = \sin \frac{n-1}{2}\theta + \sin \theta.$$

- 3. In a triangle ABC, prove that
 - (i) $\cot B \cot C + \cot C \cot A + \cot A \cot B = 1$.
 - (ii) $\sin (B+C-A) + \sin (C+A-B) + \sin (A+B-C)$

 $=4 \sin A \sin B \sin C$.

4. In a triangle ABC, prove that

(i)
$$(r_1+r_2)$$
 $\tan \frac{C}{2} = (r_3-r) \cot \frac{C}{2} = c$.

- (ii) if $8R^2 = a^2 + b^2 + c^2$, then the triangle is a right-angled triangle.
- 5. The sides of a triangle are 32, 40 and 66 feet; find the angle opposite the greatest side, having given that

$$\log 207 = 2.3159703$$
,

 $\log 1073 = 3.0305997$,

 $L \cot 66^{\circ} 18' = 9.6424341,$

difference for 1' = 3431.

6. (a) In a triangle ABC, prove that if

$$\cos A = \frac{\sin B}{2 \sin C}$$

then the triangle is isosceles.

(b) If $\theta = \frac{\pi}{2^n + 1}$, prove that

 $2^n \cos \theta \cos 2\theta \cos 2^2\theta \cdots \cos 2^{n-1} \theta = 1$.

7. A man notices two objects in a straight line due west. After walking a distance c due north, he observes that the objects subtend an angle a at his eye; and, after walking a further distance c due north, an angle β . Show that the distance between the objects is

BENARES HINDU UNIVERSITY QUESTIONS

1. Define a radian, and show that if θ be the circular measure on an angle subtended at the centre of a circle of radius r by an arowhose length is l, $\theta = \frac{l}{r}$.

Two circles, the sum of whose radii is 'a', are placed in the same plane, with their centres at a distance '2a', and an endless string, quite strotched, partly surrounds the circles and crosses itself between them. Show that the length of the string is $(4\pi + 2\sqrt{3})a$.

2. Prove that

(i)
$$1 - \frac{\sin^2 a}{1 + \cot a} - \frac{\cos^2 a}{1 + \tan a} = \sin a \cos a$$
.

- (ii) $\tan 70^\circ = 2 \tan 50^\circ + \tan 20^\circ$.
- (iii) $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \cos C$, where $A + B + C = 180^\circ$.
- 3. (a) Solve completely $\cos \theta \sin 3\theta = \cos 2\theta$.
 - (b) If $\sin^{-1} a + \sin^{-1} \beta + \sin^{-1} \gamma = \pi$, show that $a \sqrt{1 - a^2 + \beta} \sqrt{1 - \beta^2 + \gamma} \sqrt{1 - \gamma^2} = 2a\beta\gamma$.
- 4. In any triangle, prove that

(i)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
; (ii) $\cos A = \frac{b^2 + c^2 - c^2}{2bc}$.

If $\cos B = \frac{\sin A}{2 \sin C}$, show that the triangle is isosceles.

- 5. The perpendiculars from the angles of a triangle on the opposite sides meet at O, and OA=x, OB=y, OC=z. Show that $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xvz}$.
- 6. A tower stood at the foot of an inclined plane whose inclination to the horizon was 9°. A line 100 ft. in length was measured straight up the incline from the foot of the tower, and at the end of this line the tower subtended an angle of 54°. Find the height of the tower, having given

 $\log 2 \approx 30103$, $\log 114.4123 = 2.0584726$, and $L \sin 54^\circ = 9.9079576$.

- 1. (a) Prove the following identities :-
 - (i) $\cos^6 A + \sin^6 A = 1 3 \sin^4 A \cos^4 A$.

(ii)
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} = \sin \theta + \cos \theta$$
.

(b) If 2 tan
$$a = 3 \tan \beta$$
, prove that $\tan (a - \beta) = \frac{\sin \beta}{5 - \cos 2\beta}$

2. In any triangle, prove that
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
.

Two sides of a triangle are 540 and 420 yards long respectively and include an angle of 52° 6′. Find the remaining angles, given that $\log 2 = 30103$, $L \tan 26° 8′ = 9.6891430$, $L \tan 14° 20′ = 9.4074189$, $L \tan 14° 21′ = 9.4079453$.

3. (a) Solve the equation
$$\sin (\theta - \phi) = \frac{1}{2}$$
, and $\cos (\theta + \phi) = \frac{1}{2}$.

(b) Prove that (i)
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$
.

(ii)
$$\sin \cot^{-1} \cos \tan^{-1} x = \sqrt{\frac{x^{3} + 1}{x^{2} + 2}}$$

4. (a) Prove geometrically the identity

$$\cos (A-B) = \cos A \cos B + \sin A \sin B$$
.

(b) In any triangle ABC, prove that

$$a^{2}\sin (B-C) + b^{2}\sin (C-A) + \frac{c^{2}\sin (A-B)}{\sin A + \sin A} = 0.$$

- 5. An object is observed at three points A, B, C lying in a horizontal straight line which passes directly underneath the object. The angular elevation at B is twice that at A, and at C three times that at A; AB=a, BC=b. Show that the height of the object is $\frac{a}{2b}\sqrt{(a+b)(3b-a)}$.
- 6. If r_1 , r_2 , r_3 be the radii of the three escribed circles, and $\left(1-\frac{r_1}{r_2}\right)\left(1-\frac{r_3}{r_3}\right)=2$, show that the triangle must be right-angled.
 - 1. (i) Show that $\frac{1}{\sec A \tan A} = \sec A + \tan A$.
 - (ii) If $\cos \theta \sin \theta = \sqrt{2} \sin \theta$, prove that $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$.
 - (iii) Prove that $\sin (A+B) \sin (A-B) = \sin^a A \sin^a B$.
 - 2. Prove that
 - (i) $\tan 3A \tan 2A \tan A = \tan 3A \tan 2A \tan A$.

(ii)
$$\cos^4 \frac{\pi}{8} + \cos^4 \frac{8\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{9}{2}$$
.

- 3. (i) Find the value of sin 18°.
 - (ii) If $A+B+C=180^{\circ}$, prove that

$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$
.

- 4. Solve any of the following equations :-
 - (i) $\sin 5\theta \cos 3\theta = \sin 9\theta \cos 7\theta$.
 - (ii) $\tan \theta + \tan 2\theta + \tan 3\theta = 0$.
 - (iii) $\sin \theta + \cos \theta = \sqrt{2}$.
- 5. (i) Discuss the ambiguous case in the solution of triangles.
- (ii) In a $\triangle ABC$, if a=5, b=4, and $A=45^{\circ}$, find the other angles, having given

$$\log 2 = 30103$$

 $L \sin 34^{\circ} 26' = 9.7523919$

and $L \sin 34^{\circ} 27' = 9.7525761$.

- 6. (i) Find the radius of the circumscribed circle about a given triangle in terms of its sides and its area.
 - (ii) Prove that $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2lkr}$

where a, b, c are the sides of a $\triangle ABC$, R and r are respectively the radii of its circumscribed and inscribed circles.

- 1. (a) Prove that $\sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A \tan A$.
- (b) What is the angle of elevation of the sun when the length of the shadow of a pole is \$\sqrt{3}\$ times the height of the pole?
 - 2. (a) Prove that $\cos (A-B) = \cos A \cos B + \sin A \sin B$.
 - (b) Prove that $\frac{\sin (A-B)}{\cos A \cos B} + \frac{\sin (B-C)}{\cos B \cos C} + \frac{\sin (C-A)}{\cos C \cos A} = 0$.
 - 8. (a) Prove that $\sec 8A 1 = \tan 8A$. $\cot 4A 1 = \tan 2A$.
 - (b) Prove that 16 $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15} = 1$.
 - 4. Solve :---
 - (i) $\tan^2 \theta (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 0$.
 - (ii) $\sqrt{3}\cos\theta + \sin\theta = \sqrt{2}$.
 - 5. (a) Prove that $\log_a m = \log_b m \times \log_a b$.
- (b) In a triangle ABC, if a=21, b=11 and $C=34^{\circ}$ 42' 30", find A and B, given

$$\log 2 = .30103$$

and L tan 72° 38' 45"=10.50515.

6. (a) Prove that $\frac{1}{x} + \frac{1}{x} + \frac{1}{x} - \frac{1}{x} = 0$,

where r_1 , r_2 , r_3 are the radii of the escribed circles and r the radius of the incircle of a triangle.

(b) Prove that
$$\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{16}{65}$$

- 1. (a) Prove that $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$.
 - (b) 2 cosec $2A = \tan A + \cot A$.
- 2. (a) Prove that $\sin (A-B) = \sin A \cos B \cos A \sin B$.
 - (b) $\sin 10^{\circ} + \sin 20^{\circ} + \sin 40^{\circ} + \sin 50^{\circ} = \sin 70^{\circ} + \sin 80^{\circ}$.
- 8. (a) Prove that $\tan 3A \tan 2A \tan A = \tan 3A \tan 2A \tan A$.
 - (b) If $A+B+C=180^{\circ}$, prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.
- 4. Solve :--
 - (a) $\cos 3x + \cos 2x + \cos x = 0$.
 - (b) $\sin \theta + \cos \theta = \frac{1}{\sqrt{2}}$.
- 5. (a) In any triangle, prove that

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}.$$

(b) If in a triangle, b=14, c=11, and $A=60^{\circ}$, find B and C given that

L tan 11° 44'=9'3174299.

L tan 11° 45′=9'3180640.

6. (a) Prove that $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$

where R and r are the radii of the circum-circle and the in-circle respectively of the ΔABC .

(b) Prove that
$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$$
.

1. Prove that the circumference of a circle is equal to π times the diameter.

Examine the following statement :-

 $^{\prime}\pi=180^{\circ}$; therefore the circumference of a circle is 180 times the diameter'.

The angles of a triangle are in A. P., and the number of degrees in the least is to the circular measure of the greatest as $60:\pi$; find the angles.

- 2. (i) Prove that $\frac{1}{\sec \theta \tan \theta} \frac{1}{\cos \theta} = \frac{1}{\cos \theta} \frac{1}{\sec \theta + \tan \theta}$
 - (ii) $\tan 7A \tan 4A \tan 3A = \tan 7A \tan 4A \tan 3A$.
 - (iii) $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \sin C$, given $A + B + C = \pi$.
- 3. Solve any two of the following :--
 - (i) $\sin 4\theta = \sin \theta$.
 - (ii) $3\cos\theta + \sqrt{3}\sin\theta = \sqrt{6}$.
 - (iii) $\cos^2\theta \sin\theta \frac{1}{4} = 0$.
- 4. In any triangle, prove that
 - (i) $a=b \cos C + c \cos B$.
 - (ii) $\frac{a}{\sin A} = \frac{b}{\sin B}$.

Prove that $2a-b=2c\cos B$, given angle $C=60^{\circ}$.

5. Prove $r = \frac{S}{s}$ and state the corresponding results for the three escribed circles of the triangle, in the usual notation.

Prove that
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$$
 and $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{2Rr}$.

6. Explain clearly what you mean by inverse trigonometrical functions and their principal values.

Prove that $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2} = 1$ and $\sin \csc^{-1} \cot \tan^{-1} x = x$.

7. A man on a boat moving direct towards a tower observes that at a certain point, the angular height of the tower is 10°. After advancing 50 yards nearer the tower, the elevation is observed to be 15°. Find the height of the tower above the water level; given

$$L \sin 15^{\circ} = 9.4129962,$$

 $L \cos 5^{\circ} = 9.9983442$
 $\log 25.783 = 1.4113834$
and $\log 25.784 = 1.4113503.$

- 1. (a) If $\tan \theta + \sin \theta = a$ and $\tan \theta \sin \theta = b$, then prove that $a^2 b^2 = 4\sqrt{ab}$.
 - (b) Show that $1 \frac{\sin^2 \theta}{1 + \cot \theta} \frac{\cos^2 \theta}{1 + \tan \theta} = \sin \theta \cos \theta$.
 - 2. (a) In a triangle ABC, prove that

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
, where $2s=a+b+c$.

(b) The sides of a triangle are 130 ft., 123 ft, and 77 ft. Find the greatest angle, having given

$$\log 2 = 3010300$$

 $L \tan 38^{\circ} 39' = 9.9029376$, $L \tan 38^{\circ} 40' = 9.9031966$.

3. (a) In any triangle ABC, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

(b) If in a triangle ABC,

$$\cos A = \frac{\sin B}{2 \sin C}$$

prove that the triangle is isosceles.

- 4. (a) Solve the equation $\sqrt{3}\cos\theta + \sin\theta = \sqrt{2}$.
 - (b) Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$.
- 5. (a) In any triangle ABC, prove that

(i)
$$\sin (B+2C)+\sin (C+2A)+\sin (A+2B)$$

$$=4\sin\frac{B-C}{2}\sin\frac{C-A}{2}\sin\frac{A-B}{2}.$$

(ii)
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$$

where the symbols have their usual meanings.

6. In the same horizontal plane there are two inaccessible points P and Q and two stations S and T at each of which PQ is observed to subtend an angle a. PT subtends at S an angle β and QS subtends at T an angle γ . Prove that

$$PQ = ST. \frac{\sin a}{\sin (\beta + \gamma - a)}.$$

1. (a) If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, prove that

$$x\sqrt{1-y^2}+y\sqrt{1-x^2}=1.$$

- (b) Prove that the radian is a constant angle, and find its value in degrees, minutes and seconds.
 - 2. (a) If $A + B + C = 180^{\circ}$, prove that

$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$$

(b) In any triangle, prove that

$$\frac{(r_1+r_2)(r_2+r_3)(r_3+r_1)}{r_2r_3+r_3r_1+r_3r_4}=4R,$$

where the symbols have their usual meaning.

- 3. (a) Discuss the ambiguous case in the solution of triangles.
- (b) In a triangle ABC, if a=5, b=4 and $A=45^{\circ}$, find the other angles having given

$$\log 2 = 30103$$
;
 $L \sin 34^{\circ} 26' = 9.7523919$;
 $L \sin 34^{\circ} 27' = 9.7525761$.

- 4. Prove that
 - (i) $\tan 70^\circ = 2 \tan 50^\circ + \tan 20^\circ$.
 - (ii) $\cos a \cos (60^{\circ} a) \cos (60^{\circ} + a) = \frac{1}{2} \cos 3a$.
- (iii) $\sin (\alpha + \beta + \gamma) + \sin (\alpha + \beta \gamma) + \sin (\alpha \beta + \gamma)$ = 4 $\sin \alpha \cos \beta \cos \gamma$,

provided
$$a = \beta + \gamma$$
.

- 5. Solve the following equations :-
 - (a) $\tan (\pi \cot \theta) = \cot (\pi \tan \theta)$.
 - (b) $\tan \theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}$.
- 6. An object is observed at three points A, B, C lying in a horizontal straight line which passes directly undernoath the object. The angular elevation at B is twice that at A and at C it is three times that at A; AB=a, BC=b. Show that the height of the object is

$$\frac{a}{2b}\sqrt{(a+b)(3b-a)}$$
.

- 1. (a) Establish $\cos (A+B) = \cos A \cos B \sin A \sin B$.
 - (b) Prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$.
- 2. (a) Show that $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

for any triangle ABC, each letter being used in its usual significance.

- (b) The sides of a triangle are 2, 3 and 4; find the greatest angle, having given $\log 2 = 30103$, $\log 3 = 4771213$, $L \tan 52^{\circ} 14' = 10.1103395$, $L \tan 52^{\circ} 15' = 10.1111004$.
 - 8. (a) Prove the following :-

$$\tan A + \sec A - 1 = 1 + \sin A$$

$$\tan A - \sec A + 1 = \cos A$$

- (b) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$, if $A + B + C = \pi$.
- 4. (a) Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1}3 = 45^{\circ}$.
- (b) The angles of a triangle are in A.P. and the number of radians in the least angle is to the number of degrees in the mean angle as 1:120. Find the angles in radians.
 - 5. (a) Solve $\sqrt{3} \cos \theta + \sin \theta = \sqrt{2}$.
- (b) A square tower stands upon a horizontal plane. From a point in this plane, from which three of its upper corners are visible,

their angular elevations are respectively 45° , 60° and 45° . Show that the height of the tower is to the breadth of one of its sides as $\sqrt{6}(\sqrt{5}+1)$ to 4.

1. Establish the following identities :-

(i)
$$\frac{1}{\csc A - \cot A} = \frac{1}{\sin A} = \frac{1}{\csc A + \cot A}$$

•(ii) $\sin 65^{\circ} + \cos 65^{\circ} = \sqrt{2} \cos 20^{\circ}$.

(iii)
$$\tan \frac{A+B}{2} + \tan \frac{A-B}{2} = \frac{2 \sin A}{\cos A + \cos B}$$
.

2. If R be the radius of the circle circumscribing the triangle ABC and p_1, p_2, p_3 be the perpendiculars from the centre on the sides of the triangle, prove that

(i)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
,

(ii)
$$\frac{a}{p_1} + \frac{b}{p_2} + \frac{c}{p_3} = \frac{abc}{4 p_1 p_2 p_3}$$
.

3. In a triangle ABC calculate the sine of A/2 in terms of the lengths of the sides and hence find the greatest angle of the triangle in which a=74, b=26 and c=60, given that

- 4. Solve the equations
 - (i) $\cos \theta \sin 3\theta = \cos 2\theta$.
 - (ii) $\tan \theta + \tan 2\theta + \tan 3\theta = 0$.
- 5. The elevation of a lower at a place P due east of it is θ ; and at Q due north of P, the elevation is ϕ . Show that the height of the tower is

$$PQ$$
, $\sin \theta \sin \phi$
 $\sqrt{\sin (\theta + \phi)} \sin (\theta - \phi)$

6.-(a) Prove that

$$\tan^{-1}a + \tan^{-1}b = \tan^{-1}\frac{a+b}{1-ab}$$

(b) Expand the determinant

and hence or otherwise prove that in a triangle ABC

$$a \sin (B-C) + b \sin (C-A) + c \sin (A-B) = 0.$$

TABLES OF LOGARITHMS, NATURAL SINES, NATURAL TANGENTS, LOGARITHMIC SINES, LOGARITHMIC TANGENTS ETC.

TABLE I LOGARITHMS OF NUMBERS

	mamaa	arw		
ீ	878 840 818 290	2222212	191 182 174 160	153 148 187 187
∞	331 302 278 258 250	224 210 199 188 178	170 162 154 148	136 131 122 123
88 F	256 243 226 210	196 174 164 156	148 141 135 130 124	69168
ere G	248 227 209 193 180	168 158 149 134	121 121 116 116 107	28828
Differences 5 6 7	208 190 175 162 150	140 132 124 117	106 101 93 89	88 10 16 16
Mean	166 152 120 120	112 105 99 98	85 81 77 74 71	88823
ີຄ	1125 105 105 90	84 77 70 70 70	45 62 63 63 63 64	26444
CI	85588	55 53 54 74 45	42 40 33 34 36 36	488888
	488888	888888	13 13 18 18	16 15 15
6	03743 07555 11059 24301 17319	20140 22789 25285 27646 29885	32015 34044 35984 37840 39620	41330 42975 44560 46090
00	03342 07188 10721 13988 17026	19866 22531 25042 27416 29667	31806 33846 35793 37658	41162 42813 44404 45939
£~	02938 06819 10880 13672 16732	19590 22272 24797 27184 29447	31597 33646 35603 37475 39270	42651 42651 44248 45788
9	02531 06446 10037 13354 16435	19312 22011 24551 26951 29226	31387 33445 35411 37291 39094	42488 42488 44091 45637
10	02119 06070 09591 13033	19093 21748 24504 26717 29203	31175 33244 35218 37107 38917	42325 43325 43933 45484 46989
4	01703 05690 09342 12710 15836	18752 21484 24055 26483 28780	30963 83041 85025 36922 38739	40488 42160 43775 45332 4635
∞	01284 05308 08991 12385 15534	18469 21219 23805 26245 28556	90750 32838 34830 36736 38561	40812 41996 43616 45179 46687
O1	00860 04922 08636 12057 15229	18184 20952 23553 26007 28330	80585 82634 84635 96549 86549	40140 41830 43457 45035 46538
-	00432 04532 08279 11727 14922	17898 20683 23300 25768 28103	80320 32428 34439 96361 88202	11664 41664 43297 44871 46389
	00000 04139 07918 11394 14613	17609 20412 23045 25527 27875	80108 8222 34243 86178 88021	39794 41497 48186 44716 46940
	2222	22229	22222	RRARK

47712 47837 48001 48144 48387 48459 4857 4857 48714 48565 48976 14 29 48 57 73 86 100 114 129 428 42478 48001 48144 48387 48486 81488 14986 50480 51048 51186 51382 14986 50480 51048 51186 51382 14986 51485 51485 51485 51487 51789 13 27 40 64 67 80 94 107 131 131 14 120 1417 1418 1418 1418 1418 1418 1418 1418	82883	28288	34344	32233	2222	
47857 48001 48144 48387 48450 48573 48714 48855 48926 5110 5104 18 25 68 81 87 110 114 18055 18050 51055 51188 51323 149560 50106 50443 50370 13 27 69 94 107 110 114 18055 50950 51055 51188 51323 149560 51055 51188 51323 149560 51055 51188 51323 149560 51055 51188 51323 51455 51455 51455 51459 18 24 9 5 5 6 78 99 4107 110 114 18050 50950 51055 5118 51825 55020 13 24 9 5 6 5 78 9 104 10 10 10 10 10 10 10 10 10 10 10 10 10	47712 49136 60615 61851 58148	54407 55630 56830 67978 69106	60206 61278 63825 63347 64345	65321 66276 67210 68124 69020	69897 70757 71600 72428 7 823 9	0
48001 48144 48387 48450 48673 48714 48855 48926 114 12 14 12 14 12 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	47857 49276 50651 51983 58276	54531 55751 56937 58092 59218				-
48144 4837 48450 48674 48855 48976 14 28 42 55 69 83 97 110 184 18650 51065 61085 61	49415 49415 50786 52114 53408	54654 55871 57054 58206 59329				CF
48487 48490 48674 48875 48976 14 29 48 57 78 86 100 114 14 149885 18982 1100 114 149888 11920 50106 50248 50379 14 28 42 55 69 81 97 110 114 114 114 114 114 114 114 114 114	,					80
48480 48672 48714 48865 48926 14 29 48 57 73 86 100 114 14 18815 48931 49980 50106 50348 50379 14 28 42 55 69 83 97 110 14 15 1180 15 120 15 1	4. 4. 40 40 40				to to to to to	-
48572 48714 48855 48956 114 29 48 57 73 86 100 114 114 13926 50106 50248 50379 14 28 42 55 69 83 97 110 114 114 13926 50106 50248 50379 13 26 39 52 55 69 83 97 110 114 114 114 114 114 114 114 114 114	48430 49831 51186 52504 53782	55023 56229 57403 58546 59660		65801 66745 67669 68574 69461	70329 71181 72016 72835 73640	20
48714 48855 48976 14 29 48 57 73 86 100 114 18 10 10 10 10 10 10 10 10 10 10 10 10 10						9
48655 48976 14 29 48 57 73 86 100 114 118 110 114 118 116 114 116 </td <td></td> <td></td> <td></td> <td></td> <td>to to to to to</td> <td>4</td>					to to to to to	4
48926 14 29 48 57 73 86 100 114 1 500 114 1 500 114 1 500 114 1 500 114 1 500 114 1 500 114 1						8
29 48 57 73 86 100 114 13 27 40 55 69 83 97 110 13 26 39 55 65 67 80 94 107 110				66181 67117 68034 68931 69810		6
42 57 72 86 100 114 1 42 55 69 83 97 110 110 110 110 110 110 110 110 110 11	13 13 13 13 13	222211	19999	00000	0.00000	-
57 73 86 100 114 155 65 69 89 94 100 110 155 65 77 89 94 100 110 <	56 23 38 39 39 39 39 39 39 39 39 39 39 39 39 39	44888	######################################	19 18 18 18	17 17 16 16	C4
69 88 97 110 116 116 116 116 116 116 116 116 116	8 4 4 6 8	34 35 34 33 34	33 33 30 30	22 22 24 25 27 26	25.55 25.55	တ
86 100 114 1 80 99 110 110 110 110 110 110 110 110 110	50 22 45 55 57	04444 04444	83 44 1 83 64 1	8847 8847 886	# # 85 85 85 80 80 85 85 80 80 85 85	4
100 114 1 94 110 110 110 110 110 110 110 110 110 11	88 63 8	52 23 25 25 25 25 25 25 25 25 25 25 25 25 25	450 51 50 40 50	8444	33313	70
1114 1110 1100 1100 1100 1100 1100 1100	_		28 28 28	5555		9
нання нава		888 77 77	82133	52225		-
						œ

LOGARITHMS OF NUMBERS

					İ								1		1	1	1	1	Ī
	0	-	Ġ	60	4	10	9	7	80	6	-	C4	N S	Mean	Differences 5 6 7	renc 6	- 4es	80	6
:8	74036				1	74429		1	,	,	∞	16	83	33	88	14	52	63	. 6
358	74819 75587	74896	74974 75740	75051 75815	75128 75891	75205 75967	75282 76042	75358 76118	75435 76193	75511 76268	ထထ	12	88	30 30	38 38	46 45	53	88	2 3
88	76343					76716 77452						15	2 2	88	37	45	52 51	59 58	67
85	77815					78883	78247					14	22	83	88	£ 45	20	57	88
88:	79239	80008 80008	79379 80072	79449	79518 80209	79588 80277	79657 80346	79727	79796 80482	79865 80550		144	ដេដ	228	38 2	42	48	55	88
\$	90618	-	_	-	~	80956	81023		~	~	~	13	8	27	34	4	47	54	8 ·
88	81291 81954	81358			~ ~	81624 82282					<u></u>	13	88	56 26	88 88	39	46 46	53	59
82	82607 63251	82672 83315	82737 83378	82802 83442	82866 83506	82930 33569	82995	83059 83696	831 23 83759	83187 83822	99	13 13	19 19	32 32	32	88	34	20 22	2 28
8	E3865	83948	_	-	_	84198			_		9	13	19	22	31	37	4	දු	8
85	85126 85126	84572 85187	84634 85248	84696 85309	85370	84819 85431	54880 85491	84942	85003 85612	85065 85673	99	12	18 18	25	30	37 36	£3 24	49	55 55
EE	85783 86888		85854 86451	~ ~					~ ~		ဖ ဖ	222	18	7 1 75	සු ස	38	42	48	2 2
2	86923	~	87040	~					_		9	2	8	83	8	35	41	47	62

23,133	82822	88488	85885	88288	T
87506 88081 88649 89209 89763	20309 90849 91381 91908 92428	92942 93450 93952 94448 94989	95424 95904 96379 96348 97313	93227 93227 98677 99123 99564	0
87564 88138 88705 89265 89865	90363 90902 91434 91960 92480	92993 93500 94002 94498 94988	95479 95952 96426 96895 97359	97818 99272 98722 99167 99607	-
87622 88195 88762 89321 89873	90417 90956 91487 92012 92531	93044 93551 94052 94547 95036	95521 95999 96473 96942 97405	97864 98318 98767 99211 99651	C4
87679 88252 88818 89376 89977	90472 91009 91540 92065 92583	93095 93601 94101 94596 95085	95569 96047 96520 96988 97451	97909 98363 98311 99255 99695	60
87737 88309 88874 89432 89983	90526 91062 91593 92117 92634	93146 93651 94151 94645 95134	95617 96095 96567 97035	97955 98408 98856 99300 99739	-
87795 88366 88930 89487 90037	90580 91116 91645 92169 92686	93197 93702 94201 94694 95183	95665 96142 96614 97081 97543	99000 98453 98900 99344 99783	10
87852 88423 88986 89542 90091	90634 91169 91698 92221	93247 93752 94250 94743 95231	95713 96190 96661 97128	98046 98498 98945 99388	9
89480 89480 89043 89597 90146	90687 91222 91751 92273 92788	93298 93802 94300 94792 95279	95761 96237 96708 97174 97635	98091 98543 98989 99432 99870	7
87967 88586 89098 89653 90200	90741 91275 91803 92324 92840	93349 93552 94349 94841 95328	95809 96284 96755 97220 97681	98137 98588 99034 99476	80
88024 88593 89154 89708 90255	90795 91328 91855 92376 92891	93399 94399 94399 94590 95376	95856 1 96332 5 96802 97267	98152 95632 1 99678 1 99520 1 99957	6
00000	פיטימיטים	מטמטט	ממשממ	25444	-
22222	=====	22222	50000	00000	cq
17 17 17	16 16 16 15	12 12 12 13	7777 7	44888	တ
8 8 8 8 8	82222	128888	. 13 13 18 18	18 18 14 17	4
25 25 27 27 27	26 26 26 26	22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	44488	22223	2
3 4 4 8 8 8	32225	88888	88889	26 27 77 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	9
66888	888	38.55.5	488888	821128	-
8 9 3 4 4	55555	#4488	8888	88888	
22222	84 4 7 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9	34444	88888	11448	6

TABLE II NATURAL SINES

	ó	.00000 0. .01745 . .03490 . .05234 .	08716 0 .10453 .12187 .13917 .15643	17965 0 19081 20791 22495 34192	25862 27564 29237 30503
1					
1	,21	02036 02036 03781 05524 07266	109005 10742 12476 14205 15931	1.17651 1.19366 1.21076 1.22778	.26163 .27843 .29515
	20,	0.00582 .02327 .04071 .05814	0.09295 .11031 .12764 .14493 .16218	0.17937 .19652 .21360 .23062	0.26443 .28123 .29793 .31454
	30,	0.00873 .02613 .04363 .06105	0.09585 11320 13053 14781 16505	0.18224 .19937 .21644 .23345	0.26724 -28402 -30071
NA	,07	0.01164 .02908 .04653 .06395	0.09874 .11609 .13341 .15069	0.18509 .2022 .21928 .23627 .25320	0.27604 .28680 .30348 .32006
MAIURAL	50,	0.01454 .03199 .04943 .06685	0.10164 .11898 .13629 .15356	0.18795 .20507 .22212 .23910	0.27284 .28959 .30625 .3282
SINES	,09	0.01745 .03490 .05234 .06976 .08716	0.10453 .12187 .13917 .15643	0.19061 .20791 .22495 .24192 .25882	0.27564 .29237 .30902
		සුසුසුස	******	3 4344	488
Į.	,	ଅଷ୍ଟ୍ରଷ୍ଟ	88888	88888	8888
Ì	, 24	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55 55 57 57	57 57 57 56	55 55 55 55
	, ,	87 87 87 87 87	86 86 86 86	88 85 85	88 84 1 88 83 1
1	Mean 3' 4' 5	116 116 116 116	116 115 115 115	3114 4113 113 113	2112
1	5' 6' 7'	145 145 145 145 145	145 145 145 144 144	1453 1453 1453 1411 1411	140 139 139
- 1	ffere 6	175 175 175 174 174	174 173 173	172 171 170 169	168 167 166
- 1	7,	203	202 202 202 203 203 203 203 203 203 203	201 200 199 198 197	196 195 194
1	00	1	3 232 2 232 2 230 1 230	1 229 0 228 9 227 7 226	5 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 1	Ġ	233 265 233 265 233 265 232 265 232 267	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 25 25 25 25 25 25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25 25 25 25 25 25 2

0.85293 0.28565 0.35837 3.85537 38905 39073 3.40143 40408 40574 41734 41998 42363 441734 41998 42363 44880 45140 45339 44880 45140 45339 44880 45140 45339 46433 46630 46947 47371 48226 45481 52404 52426 5293 53375 52426 5293 53375 52426 5293 53376 52426 5293 53376 52426 5293 65480 65676 65293 65480 66697 66913 66880 66697 66913 66880 66697 66913 66880 66697 66913 66880 66697 66913	0.24748 0.85031 0.85938 0.85656 0.85637 69° 27 96879 9.8656 9.8521 9.7191 9.7461 68° 27 98978 9.8657 4.6408 4.0578 66° 27 98068 9.8976 4.1784 4.1998 4.2962 27 98078 9.8173 4.1898 4.2962 27 9.8078 9.44620 4.4189 4.2962 26 9.8177 4.1171 4.1893 4.6690 4.6947 66° 9.8289 4.9242 4.1996 4.2936 66° 27 9.8289 4.9242 4.1997 4.8926 6000 6694 66° 9.8078 4.8926 4.9483 4.6690 4.6481 61° 86° 9.8080 4.9148 4.9148 4.9148 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600	0.64748 0.95631 0.95938 0.93565 0.95837 0.9637 0.96391 0.95637 0.96301 0.95637 0.96301 0.95637 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96301 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 0.96302 <th< th=""><th>0.44748 0.85031 0.85293 0.95565 0.95837 689 27 55 89 98879 9.8650 9.85657 9.8650 9.8657 9.867 9.865 27 55 89 9.75461 689 27 55 89 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 <t< th=""><th>0-84748 0-85031 0-85865 0-85837 0-85665 0-85837 0-8560 0-8561 0-8566 0-85631 0-8566 0-85631 0-8566 0-8621 0-85631 0-85631 0-85631 0-85631 0-85631 0-85631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86</th><th>0-84748 0-85031 0-85936 0-85656 0-83587 699 27 55 81 109 137 98879 -86660 -86931 -97191 -87461 689 27 55 10 108 186 98879 -88657 -86050 -86931 -97191 -87461 689 27 54 11 108 186 44304 -41784 -41098 -40667 660 27 58 10 10 185 44304 -41869 -41784 -41998 -42862 660 27 58 10 10 185 44859 -44620 -44890 -45140 -45897 662 27 68 10 11 17 44859 -44850 -45146 -45846 660 -46847 68 27 71 18 189 44859 -49455 -49456 -49446 67000 66 25 77 18 18 55400 -55460 -46847 67 67 67 67 67 67 67</th></t<><th>0-84748 0-86291 0-85293 0-85687 0-86937 0-86793 0-86793 0-86793 0-86793 0-8679 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 <th< th=""><th>0.44746 0.95031 0.35593 0.35565 0.35837 699 27 56 81 109 137 164 191 9.6879 3.8966 0.35597 677 77 58 81 108 186 163 190 3.9960 3.8978 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4304 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4359 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630</th></th<></th></th></th<>	0.44748 0.85031 0.85293 0.95565 0.95837 689 27 55 89 98879 9.8650 9.85657 9.8650 9.8657 9.867 9.865 27 55 89 9.75461 689 27 55 89 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75461 989 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 9.75462 <t< th=""><th>0-84748 0-85031 0-85865 0-85837 0-85665 0-85837 0-8560 0-8561 0-8566 0-85631 0-8566 0-85631 0-8566 0-8621 0-85631 0-85631 0-85631 0-85631 0-85631 0-85631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86</th><th>0-84748 0-85031 0-85936 0-85656 0-83587 699 27 55 81 109 137 98879 -86660 -86931 -97191 -87461 689 27 55 10 108 186 98879 -88657 -86050 -86931 -97191 -87461 689 27 54 11 108 186 44304 -41784 -41098 -40667 660 27 58 10 10 185 44304 -41869 -41784 -41998 -42862 660 27 58 10 10 185 44859 -44620 -44890 -45140 -45897 662 27 68 10 11 17 44859 -44850 -45146 -45846 660 -46847 68 27 71 18 189 44859 -49455 -49456 -49446 67000 66 25 77 18 18 55400 -55460 -46847 67 67 67 67 67 67 67</th></t<> <th>0-84748 0-86291 0-85293 0-85687 0-86937 0-86793 0-86793 0-86793 0-86793 0-8679 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 <th< th=""><th>0.44746 0.95031 0.35593 0.35565 0.35837 699 27 56 81 109 137 164 191 9.6879 3.8966 0.35597 677 77 58 81 108 186 163 190 3.9960 3.8978 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4304 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4359 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630</th></th<></th>	0-84748 0-85031 0-85865 0-85837 0-85665 0-85837 0-8560 0-8561 0-8566 0-85631 0-8566 0-85631 0-8566 0-8621 0-85631 0-85631 0-85631 0-85631 0-85631 0-85631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86631 0-86	0-84748 0-85031 0-85936 0-85656 0-83587 699 27 55 81 109 137 98879 -86660 -86931 -97191 -87461 689 27 55 10 108 186 98879 -88657 -86050 -86931 -97191 -87461 689 27 54 11 108 186 44304 -41784 -41098 -40667 660 27 58 10 10 185 44304 -41869 -41784 -41998 -42862 660 27 58 10 10 185 44859 -44620 -44890 -45140 -45897 662 27 68 10 11 17 44859 -44850 -45146 -45846 660 -46847 68 27 71 18 189 44859 -49455 -49456 -49446 67000 66 25 77 18 18 55400 -55460 -46847 67 67 67 67 67 67 67	0-84748 0-86291 0-85293 0-85687 0-86937 0-86793 0-86793 0-86793 0-86793 0-8679 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 0-86793 <th< th=""><th>0.44746 0.95031 0.35593 0.35565 0.35837 699 27 56 81 109 137 164 191 9.6879 3.8966 0.35597 677 77 58 81 108 186 163 190 3.9960 3.8978 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4304 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4359 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630</th></th<>	0.44746 0.95031 0.35593 0.35565 0.35837 699 27 56 81 109 137 164 191 9.6879 3.8966 0.35597 677 77 58 81 108 186 163 190 3.9960 3.8978 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4304 4.1469 4.1734 4.1998 4.2962 660 27 53 80 107 134 160 187 4.4359 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630 4.4630
0.85293 0.28565 0.35837 385537 389073 340144 40408 40574 41734 41998 42362 44680 45140 45399 44680 45140 45399 44680 45140 45399 44680 45140 45399 46843 46843 6690 52408 5000 52408 5249 5000 53975 54220 54464 55375 54220 54464 55375 54220 54464 55376 55299 56376 56399 66890 08519 65508 61107 61337 61566 65466 065866 66508 66880 06586 66508 66880 06586 66508	0.95999 0.35565 0.35837 69° 27 0.85921 0.35595 0.35637 69° 27 0.85521 0.35791 0.35741 68° 27 0.4143 0.4585 0.45897 64° 27 0.42313 0.43575 0.42887 64° 26 0.42813 0.43575 0.42887 64° 26 0.44850 0.45140 0.45399 63° 26 0.44850 0.45140 0.45399 63° 26 0.44850 0.45140 0.45399 63° 26 0.44850 0.45140 0.51504 63° 26 0.54197 0.51254 0.51504 65° 26 0.5397 0.51254 0.51504 65° 26 0.5397 0.5239 0.5279 64° 24 0.5397 0.5539 0.5579 64° 24 0.5397 0.5539 0.5579 64° 24 0.55397 0.5539 0.5579 64° 24 0.55397 0.5539 0.5579 64° 24 0.55398 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25 0.5539 0.5539 0.5579 65° 25° 25° 25° 25° 25° 25° 25° 25° 25° 2	0.98999 0.95656 0.95897 699 27 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.85293 0.35565 0.35837 69° 27 55 89 10.85821 87131 87	0.98993 0.98598 0.98589 0.98589 0.98599 0.98599 0.98593 <t< th=""><th>0.95293 0.95565 0.95837 699 27 55 81 109 137 81 81 81 81 81 81 81 81 81 81 81 81 81</th><th>0.95993 0.35565 0.36937 69° 27 56 89 109 137 164 0.96993 0.35665 0.36837 68° 27 54 81 108 136 165 0.40143 490408 40674 66° 27 58 80 107 134 160 1.4134 420408 42362 65° 27 53 80 107 134 160 1.4134 41998 42363 65° 27 53 80 107 134 160 1.4186 45140 45399 65° 27 53 80 105 131 157 1.4186 45140 45399 63° 26 52 79 105 131 157 1.4186 45140 4638 56000 60° 25 78 104 130 156 1.4187 45148 50000 60° 25 77 102 131 157 156 1.4189 45148 50000 60° 25 77 102 131 157 156 1.4189 46630 46847 68° 50 74 99 124 149 1.4189 5670 56 57 44 97 122 146 156 1.4189 5689 57 54 49 124 14</th><th>0.95293 0.95565 0.95837 699 27 55 81 109 137 164 191 186 186 186 187 188 189 187 184 191 187 184 189 186 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 187 184 189 187 187 184 189 187 187 184 189 187 187 184 189 187 187 184 187 187 187 187 187 187 187 187 187 187</th></t<>	0.95293 0.95565 0.95837 699 27 55 81 109 137 81 81 81 81 81 81 81 81 81 81 81 81 81	0.95993 0.35565 0.36937 69° 27 56 89 109 137 164 0.96993 0.35665 0.36837 68° 27 54 81 108 136 165 0.40143 490408 40674 66° 27 58 80 107 134 160 1.4134 420408 42362 65° 27 53 80 107 134 160 1.4134 41998 42363 65° 27 53 80 107 134 160 1.4186 45140 45399 65° 27 53 80 105 131 157 1.4186 45140 45399 63° 26 52 79 105 131 157 1.4186 45140 4638 56000 60° 25 78 104 130 156 1.4187 45148 50000 60° 25 77 102 131 157 156 1.4189 45148 50000 60° 25 77 102 131 157 156 1.4189 46630 46847 68° 50 74 99 124 149 1.4189 5670 56 57 44 97 122 146 156 1.4189 5689 57 54 49 124 14	0.95293 0.95565 0.95837 699 27 55 81 109 137 164 191 186 186 186 187 188 189 187 184 191 187 184 189 186 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 184 189 187 187 184 189 187 187 184 189 187 187 184 189 187 187 184 189 187 187 184 187 187 187 187 187 187 187 187 187 187
0.35565 0.35587 1.48406 4.0573 1.40406 4.0574 1.41998 4.2262 1.41998 4.2262 1.45140 4.5399 1.45140 4.5399 1.45140 6.5399 1.45140 6.5399 1.45140 6.5399 1.45140 6.5399 1.45145 6.5399 1.55678 6.5399 1.56689 6.539	0.95565 0.95837 69° 27 0.97191 0.97461 68° 27 0.40408 42262 65° 27 0.40508 42262 65° 27 0.40508 42262 65° 27 0.40508 42262 65° 27 0.40508 42262 65° 26 0.40508 644887 64° 26 0.40508 644887 64° 26 0.40508 62697 65° 26 0.40508 62697 65° 26 0.40508 62697 65° 26 0.50508 62697 65° 26 0.50508 62697 65° 26 0.50508 60182 65° 26° 26° 26° 26° 26° 26° 26° 26° 26° 26	0.35565 0.35837 689 27 55 6 7 8 8 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0.35565 0.35837 68° 27 55 88 11 38805 375451 68° 27 54 811 188805 40674 68° 27 55 80 11 4.0408 42862 66° 27 53 80 11 4.0408 42862 66° 27 53 80 11 4.0408 42862 66° 27 53 80 11 4.0408 42862 66° 27 53 80 11 4.0408 42862 66° 27 53 80 11 4.0408 42862 66° 26 52 76 11 4.0508 66° 26 52 77 11 4.0508 66° 25 50 74 11 4.0508 67° 25 50 75° 25 11 4.0508 67° 25 50 75° 25 25 25 25 25 25 25 25 25 25 25 2	0.95565 0.95837 69° 27 55 83 109 109 109 109 109 109 109 109 109 109	0.35565 0.95837 69° 27 55 83 109 137 131 138 136 137 131 138 136 137 131 131 131 131 131 131 131 131 131	0.35565 0.35837 69° 27 55 89 109 137 164 89 108 185 163 185 189 185 189 185 189 185 189 185 189 185 189 185 189 189 185 189 189 189 185 189 189 189 189 189 189 189 189 189 189	0.93565 0.93687 689 27 55 89 109 187 164 191 188 189 189 189 189 189 189 189 189
0.35837 37461 39078 40674 42362 45399 46397 46399 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60182 60183	0.55637 0.5563	0.95637 66. 27 55. 39. 42. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45	0.35837 68° 27 55 82 1	0.35837 68° 27 55 83 109 0.97461 68° 27 54 81 108 0.9073 66° 27 54 81 108 0.40674 66° 27 53 80 107 0.42837 64° 26 52 79 105 0.42837 64° 26 52 79 105 0.42837 64° 26 52 79 105 0.42837 64° 26 52 79 105 0.42837 64° 26 52 79 105 0.51504 58° 26 52 77 103 0.51504 58° 26 50 74 99 0.52919 56° 24 19 73 97 0.55919 56° 24 19 73 97 0.51505 55° 24 18 72 96 0.52018 55° 24 18 72 96 0.52018 55° 24 18 72 96 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 97 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 73 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 24 18 55° 37 95 0.52018 55° 25° 35° 35° 35° 35° 35° 35° 35° 35° 35° 3	0.35837 69° 27 55 83 109 137 138 139 1397 1397 1397 1397 1397 139 1397 1397	0.95837 69° 27 55 82 109 137 164 199 197 164 199 199 199 165 199 199 199 199 199 199 199 199 199 19	0.35637 68° 27 55 83 109 137 164 191 197461 68° 27 54 81 108 136 163 190 137 66 1407 136 160 136 160 136 140 137 65 140 136 160 137 65 140 136 160 137 65 140 137 159 156 151 140 157 159 150 150 150 150 150 150 150 150 150 150
	**************************************	\$669986 \$6898 \$69988 \$699886 \$69988 \$69988 \$699886 \$699886 \$699886 \$699886 \$699886 \$699886 \$699886 \$69	68° 27 55 82 11 16 88° 27 55 82 11 16 88° 28 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88 65 89 11 16 88° 88° 88° 88° 88° 88° 88° 88° 88° 88	66. 27 55 82 109 66. 27 54 81 108 66. 27 54 81 108 66. 27 55 82 109 67. 27 55 80 107 67. 26 52 79 106 67. 26 52 79 106 67. 26 52 79 106 67. 26 52 79 106 67. 26 52 79 106 67. 26 52 79 107 67. 26 52 79 107 67. 26 52 79 107 67. 26 52 79 107 67. 26 52 79 107 67. 26 52 79 107 67. 27 52 89 74 99 67. 28 44 77 19 67. 28 46 67 99 67. 28 46 6	68° 27 55 83 109 137 65° 27 55 83 109 138 66° 27 55 81 108 136 65° 27 55 80 106 135 65° 27 55 80 106 135 65° 27 55 80 106 138 65° 27 55 80 106 138 65° 26 52 77 103 129 61° 26 51 77 102 128 55° 25 50 75 100 125 55° 25° 25° 25° 25° 25° 25° 25° 25° 2	68° 27 56 89 109 137 164 68° 27 54 81 108 136 165 66° 27 53 80 107 134 160 66° 27 53 80 107 134 160 66° 27 53 80 107 134 160 68° 27 53 80 107 134 160 68° 27 53 80 107 134 160 68° 26 52 79 105 131 157 68° 26 52 77 103 139 155 61° 26 57 7 103 139 155 57° 26 57 7 103 139 155 58° 25 50 75 100 125 150 58° 25 50 75 100 128 134 58° 25 50 75 100 124 149 58° 25 50 75 100 124 149 58° 25 50 75 100 124 149 58° 25 48 77 19 51 119 149 58° 28 47 71 95 119 149 58° 29 46 70 92 114 137 50° 29 46 60 91 114 137 50° 29 46 60 91 114 137 50° 29 46 60 91 114 139 68° 20 46 60 91 114 139 68° 21 48 65 87 109 131 68° 21 48 65 87 109 131 68° 21 48 65 87 109 131	68° 27 55 83 109 137 164 191 68° 27 54 81 108 186 163 190 68° 27 54 81 108 186 163 190 187 65° 27 55 80 107 134 160 187 65° 27 55 80 106 133 159 186 65° 27 53 80 106 133 159 186 65° 27 51 80 106 131 157 184 65° 26 52 79 105 131 157 184 65° 26 52 77 103 129 155 191 650° 26 51 77 103 129 155 191 77 102 128 134 179 157 157 157 157 157 157 157 157 157 157
ද්දේද්ද නිස්සිස් ස්ස්ස්ස් ප්රස්ස්ස්	2000	2	27 55 89 27 54 811 27 55 89 27 53 80 27 53 80 28 55 27 28 55 27 28 55 17 29 55 17 20	27 56 82 109 27 54 81 108 27 55 80 109 27 55 80 109 27 53 80 109 27 53 80 107 28 52 73 108 28 52 73 108 28 52 74 108 28 55 77 108 28 56 77 109 28 56 77 109 28 56 77 99 28 57 71 95 28 56 78 99 28 57 71 95 28 56 78 99 28 56 78 99 28 56 78 99 28 56 78 99 28 56 78 99 28 56 78 99 28 56 78 99 28 56 78 99 28 56 89 91 28 56 89 91 28 56 89 91 28 56 89 91 28 56 89 89 28 56 88 88 28 56 88 88	27 56 82 109 187 27 54 81 108 186 27 55 80 107 184 27 55 80 106 185 27 53 80 107 184 27 53 80 106 185 26 52 79 106 181 26 52 77 103 129 26 57 77 103 129 26 57 77 103 129 26 57 77 103 129 26 57 77 103 129 26 50 74 99 124 25 50 74 99 124 25 49 74 98 123 24 47 71 95 119 24 47 71 95 119 24 46 77 95 119 25 45 67 99 114 22 45 67 99 114 22 45 68 91 114 22 45 68 91 114 22 45 68 81 113 21 43 64 86 87 109 21 42 63 81 106	27 56 89 109 137 164 27 54 81 108 136 165 27 53 80 107 134 160 27 53 80 106 133 159 169 26 52 79 105 131 157 26 52 77 102 128 154 26 57 71 102 128 154 26 57 77 102 128 154 26 57 77 102 128 154 26 57 77 102 128 154 27 50 75 100 125 160 28 49 74 98 123 147 24 49 77 99 124 149 24 47 71 95 119 148 25 46 68 91 114 137 27 46 68 81 11 138 27 48 66 88 111 138	27 55 89 109 137 164 191 27 54 81 108 186 163 190 187 54 81 108 186 163 190 187 55 80 107 184 100 187 55 80 107 184 100 187 27 53 80 107 184 108 186 163 189 186 52 78 104 180 156 183 26 52 77 108 129 155 181 70 26 55 77 108 129 155 181 70 25 50 74 99 124 149 174 25 50 74 99 124 149 174 25 49 73 97 129 145 166 24 47 71 95 119 149 166 28 46 68 91 114 137 159 22 45 67 99 114 187 189 184 66 89 111 133 155 22 44 65 87 109 131 183 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 111 133 155 21 43 64 86 81 104 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 137 148 114 148 114 147 148 114 147 148 114 147 148 114 147 148 114 147 148 114 147 148 114 147 148 147 148 147 148 147 148 147 147 147 147 147 147 147 147 147 147
		77 77 77 77 77 77 77 77 77 77 77 77 77	55 55 55 55 55 55 55 55 55 55 55 55 55	55 82 109 554 81 108 553 80 107 553 80 107 553 80 106 552 78 108 552 77 103 551 77 103 5	56 89 109 137 54 81 108 138 53 80 107 134 53 80 106 138 53 80 106 138 52 70 106 139 52 77 103 129 50 74 99 124 49 77 195 119 47 71 95 119 46 66 89 111 44 66 88 111 44 65 87 109 42 63 88 106 42 63 88 106	56 89 109 187 164 55 80 107 184 160 53 80 107 184 160 53 80 106 183 159 52 79 105 131 187 52 77 103 129 155 51 77 103 129 155 51 77 103 129 155 50 75 100 125 150 50 75 100 125 150 50 75 100 125 150 48 72 96 129 144 47 71 95 119 143 46 70 92 111 187 46 66 89 111 183 44 66 88 111 183 44 65 87 109 131 42 53 84 106 131	56 88 109 137 164 191 54 81 108 136 161 188 54 81 108 186 161 188 58 80 106 183 150 186 53 80 106 183 159 186 52 77 108 189 156 182 52 77 108 159 177 181 178 179 50 75 100 126 10 176 197 179 179 179 179 179 179 179 179 179 189 189 189 179 179 179 160 189 160 187 160 189 189 160 189 189 160 189 189 189 189 189 189 189 189 189 189 189 189 189 189

NATTIRAL COSINES

NATURAL SINES

	\$\$\$\$\$\$	*******	e e e e e	*******
ò	0.70711 71934 78135 74314 75471	0.76604 .77715 .78801 .79864 .80902	0.81915 82904 88867 84805 84805	0.96608 .87468 .85296 .89101
10,	0.70916 .72136 .73383 .74509	0.76791 .77897 .78980 .80038	0.82082 .83066 .84925 .84959	0.86748 .87603 .88431 .89232
20,	0.71121 .73337 .73531 .74703	0.76977 .78079 .79158 .80212	0.82248 .83228 .84182 .85112	0.86892 .87743 .88566 .89863
30,	0.71325 .7253; .73728 .74896 .76041	0.77162 .78261 .79335 .80386	0.82413 .83389 .84389 .85264	0.87036 .8701 .88493 .89493
4 0,	0.71529 .72737 .73924 .75088 .76229	0.77347 .78442 .79512 .80558	0.82577 .83549 .84495 .85416	0.87178 .88020 .88835 .89628
,02	0.71732 .72937 .74120 .75280	0.77531 .78622 .79688 .80730	0.82741 .83708 .84650 .85567 .86457	0.87321 .88158 .88968 .89752
,09	0.71934 .73135 .74314 .75471	0.77715 .78801 .79864 .80902	0.82904 .83867 .84805 .85717	0.87462 .88295 .89101
	43344	ૹ૾ૹ૾ૹ૽ૹ૽ૹ૽	83888	ន់ដំន់នំ
Ä	88855	18 18 17 17	15 15 15 15	4 455
Ç4	1408888	9 9 9 9 9 8 8	322	25 25 25 25 25 25 25 25 25 25 25 25 25 2
ින	528865	55 53 53	84 44 74 44 46 44	84468
Mean 3' 4'	882 778 76 77	772 712 69	66 63 63 69	F 70 44 03
Differences 5' 6' 7'	102 102 96 96 96	93 83 84 85	82 78 76	72 69 67 65
ffer 6,	120 120 118 116 113		882428	888
7,7	143 135 135			
_ ∞	163			
١.	3 184 0 180 7 177 4 173			

l	2
ı	Z
	80
ŀ	ಶ
	3
	2
	5
	X

998888 99718 99718 99718 99718 994559 9618 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787 97787	9866. 9866. 9666.	
283 265 268 268 268 268 268 268 268 268 268 268	00000 9866 9866 9866	8
920773 9227 9227 9227 9227 9226 9226 9226 97700 97700 97802	99878	20,
93906.0 917.0 917.0 917.0 938.0 938.0 947.4 947.4 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	. 99896 . 99998 . 99998	70
0.90909 93849 93849 93849 94894 95379 95389 97090 97090 97090 98800 98800 98800 98800 98800 98800 98800 98800 98800 98800	96666. 99666.	30,
91116.0 91822 91826 98149 98149 96149 96149 97896 9789	.0566. 1066. 1066.	, 08
98266. 98266. 17466. 98686. 17466. 98686. 17466. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876. 9876.	.99949 .99979 1.00000	10,
92050 92050 92718 92718 92718 92718 92718 95106 95106 96136 96139 97437	. 99339 1.00000	ò
ಇಜ್ಞಾತ್ರ ಇವ್ವದ್ಧನ್ನ ಕ್ಷಪ್ಪನ ಅಭ್ಯಕ್ಷಣ್ಣ ಈ	ර්ස්ති	
111110 OCC 000 P P P P P P P P P P P P P P P P P	3 A	7
4822222 100 111111111111111111111111111111	44 500	Ç4
8888888 8888888 8888888 8888888 8888888	0.44	' 55
9 11312110 1138833 1138833 1138833 1138833 11388333 11388333 113883333 113883333 113883333 113883333 113883333	- w	-4
660 660 660 660 660 660 660 660 660 660	-10	oí
14 17 25 33 38 41 44 47 47 57 57 58 66 67 57 57 57 57 57 57 57 57 57 57 57 57 57	3 8	ó,
418223 34444 12 80223 11 802233 11 4412 10 80 80 80 80 80 80 80 80 80 80 80 80 80	ည္	è
988888 8400 8888888 8700 871 8888888 871 871 871 871 871 871 871	10	œ
01100 000 000 000 000 000 000 000 000 0	21 21	ó

TABLE III NATURAL TANGENTS

001164 001456 001746 004592 004949 005949 00	90' 40' 50' 60' 0.00682 0.00673 0.01164 0.01455 0.01746 89' 0.4075 0.02619 0.0210 0.02401 0.03492 86' 0.4075 0.0436 0.0406 0.0406 0.0406 0.05492 86' 0.0407 0.0436 0.0416 0.0406 0.0406 0.0406 0.05494 86' 0.05824 0.0616 0.06163 0.06106 0.06106 0.06700 0.06793 86' 1.1009 1.1394 1.1698 1.1698 1.1276 86' 1.1009 1.1394 1.1698 1.14943 1.276 83' 1.14945 1.6543 1.1533 1.1638 81' 1.16435 1.1673 1.1733 1.1638 81' 1.16438 0.1853 0.1936 0.19438 79' 2.0042 2.0945 2.0953 0.19438 79'	90° 40° 50° 60° 1′ 9′ 0°00689 0°00673 0°01164 0°01455 0°0746 89° 29 58 0°00689 0°02619 0°02910 0°03491 88° 29 58 0°07076 0°0436 0°04919 0°0541 87° 29 58 0°07076 0°0436 0°04919 0°0591 88° 29 58 0°07578 0°07679 0°05928 0°10216 0°0749 86° 29 58 0°07938 0°06629 0°05928 0°10216 0°10510 84° 29 59 11089 11394 11688 11983 12278 82° 59 59 14648 14945 12643 17633 17633 17633 80° 50 16435 16734 0°1533 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°1933 0°19	90° 40° 50° 60° 1′ 3′ 3′ 0°00682 0°00673 0°01164 0°01455 0°01746 89° 29 58 77 79 70	90 40 50 60 1' 2' 3' 4' 0°00632 0°00673 0°01164 0°01455 0°01746 89° 29 58 7116 0°00632 0°02619 0°3201 0°3492 88° 29 58 7116 0°04036 0°04019 0°3201 0°3492 88° 29 58 7116 0°04036 0°4658 0°4658 0°4949 665 29 58 7116 0°05034 0°670 0°6793 86° 29 58 7116 0°07578 0°0767 0°6163 0°670 0°6793 86° 29 58 8117 0°07578 0°0767 0°6163 0°670 0°6793 86° 29 58 8118 11089 11894 11668 11993 14054 82° 59 89 118 11649 16448 17638 17638 17638 81° 90 90 90	90° 40° 50° 60° 1′ 2′ 3′ 4′ 0°00682 0°00673 0°01164 0°01455 0°01746 89° 29 58 77 116 0°00682 0°03619 0°0201 0°03492 88° 29 58 77 116 0°0757 0°03619 0°0494 0°05201 0°0499 60° 29 58 71 16 0°0757 0°0316 0°0494 0°0499 0°0494 87° 29 58 71 16 0°07578 0°07870 0°05163 0°0790 0°07993 87° 29 58 81 17 0°07578 0°07670 0°0749 86° 29 58 81 17 81 11 11099 11894 11698 11993 12278 83° 59 89 118 116495 116495 11638 11638 11638 11638 11638 11638 11638	90° 40° 50° 60° 1′ 2′ 3′ 4′ 5′ 6′ 6′ 1′ 2′ 3′ 4′ 5′ 6′ <th< th=""><th>90° 40° 50° 60° 1′ 2′ 3′ 4′ 5′ 6′ 7′ 0°00682 0°00673 0°01164 0°01455 0°01746 89° 29 58 7′ 5′ 6′ 7′ 0°00682 0°02619 0°03201 0°03492 88° 29 58 7116 146 175 204 0°0707 0°4366 0°6700 0°5241 87° 29 58 7116 146 175 204 0°07578 0°6116 0°6408 0°6700 0°5291 86° 29 58 7116 146 175 204 0°0532 0°6700 0°6700 0°6700 0°6793 86° 29 58 711 146 175 204 0°05336 0°09629 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700</th></th<>	90° 40° 50° 60° 1′ 2′ 3′ 4′ 5′ 6′ 7′ 0°00682 0°00673 0°01164 0°01455 0°01746 89° 29 58 7′ 5′ 6′ 7′ 0°00682 0°02619 0°03201 0°03492 88° 29 58 7116 146 175 204 0°0707 0°4366 0°6700 0°5241 87° 29 58 7116 146 175 204 0°07578 0°6116 0°6408 0°6700 0°5291 86° 29 58 7116 146 175 204 0°0532 0°6700 0°6700 0°6700 0°6793 86° 29 58 711 146 175 204 0°05336 0°09629 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700 0°6700
001164 001456 001746 004658 004949 005201 005498 00500 005998 006105 005998 006105 006	0.01164 0.01455 0.01746 89° 0.0210 0.03201 0.03492 88° 0.0408 0.04949 0.05201 0.03492 88° 0.0408 0.0408 0.0610	40' 50' 60' 1' 9' 0'01164 0'01455 0'01746 89° 29 58 0'04658 0'03201 0'03492 88° 29 58 0'04658 0'04943 0'05491 87° 29 58 0'04658 0'04943 0'05241 87° 29 58 0'04668 0'0470 0'0593 86° 29 58 0'06163 0'0570 0'0593 86° 29 58 0'06163 0'0670 0'06749 86° 29 58 0'06163 0'0670 0'06749 86° 29 58 11688 11983 112278 82° 29 59 116943 17633 80° 50 50 11703 17833 17633 80° 60 0'048 0'059 0'059 50 60 0'049 0'19436 0'19436 10'19436 10'19436 10'19436	40 50 60 1' 3' 3' 0.01164 0.01455 0.01746 89° 29 58 87 0.02910 0.03201 0.03492 88° 29 58 87 0.04658 0.6349 88° 29 58 87 0.04658 0.6349 86° 29 58 87 0.04658 0.6700 0.0599 86° 29 58 87 0.0468 0.6700 0.0599 86° 29 58 89 0.05163 0.10216 0.10510 84° 29 59 88 11688 11688 11683 17283 81° 89 59 89 117033 17633 80° 90 90 90 90 90 0.18635 0.1936 0.19438 77° 80° 61 91	40	40	40 50 60 1' 2' 3' 4' 0.01164 0.01455 0.01746 89° 29 58 7116 0.02910 0.03201 0.03492 88° 29 58 7116 0.04658 0.04949 0.05241 87° 29 58 7116 0.04658 0.04930 0.05241 87° 29 58 7116 0.04658 0.04700 0.05930 86° 29 58 7116 0.06408 0.06700 0.05930 86° 29 58 8117 0.063163 0.06700 0.05930 86° 29 58 8117 0.06932 0.19216 0.10510 84° 29 59 88 118 1.1548 1.1933 1.12078 83° 59 59 8118 1.1638 1.17633 1.1633 1.1633 1.1633 9 69 90 10 0.04932 0.19336 </th <th>40' 50' 60' 1' 2' 3' 4' 5' 6' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7'</th>	40' 50' 60' 1' 2' 3' 4' 5' 6' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7'
50' 60' 0.01455 0.01746 0.0301 0.03492 0.04949 0.05341 0.04949 0.05341 0.04949 0.05341 0.04949 0.05341 0.04949 0.05341 0.04949 0.05341 0.10316 0.10510 0.10316 0.10438 0.19438 0.19438 0.19436 0.19438	60' 60' 60' 60' 60' 60' 60' 60' 60' 60'	50' 60' 1' 9' 0.01455 0.01746 89° 29 58 0.03201 0.03493 86° 29 58 0.04949 0.6241 87° 29 58 0.04949 0.6241 87° 29 58 0.04946 0.6293 86° 29 58 0.04556 0.06749 85° 29 58 1.1976 1.1278 82° 29 59 1.15540 1.1654 82° 30 60 1.17333 1.1633 80° 90 60 1.7733 1.7633 80° 90 60 2.20952 2.1256 78° 80 61 3.2781 2.3067 77° 81 61	50' 60' 1' 2' 3' 0.01455 0.01746 89° 29 58 87 0.02949 0.05491 88° 29 58 87 0.04949 0.0541 87° 29 58 87 0.04949 0.05201 87° 29 58 87 0.04945 0.05749 85° 29 58 88 1 0.0456 0.05749 85° 29 58 88 1 0.070216 0.10510 84° 29 59 88 1 1.1753 1.12878 83° 29 59 88 1 1.1783 1.1633 80° 60 90 1 0.19438 78° 80 60 90 2 0.20952 2.1256 78° 80 61 92 3 0.61 91 92 80 61 92	50 60 1 2' 8' 4' 1 2' 8' 4' 4' 1 0.01455 0.01746 89° 29 58 87 116 1 0.02941 0.9392 88° 29 58 87 116 2 0.04943 0.05241 87° 29 58 87 116 3 0.04943 0.05241 87° 29 58 87 116 4 0.04945 0.0579 86° 29 58 81 17 5 0.04956 0.0679 86° 29 58 81 17 116 6 0.0216 0.0549 86° 29 59 88 118 <td>50 60 1′ 2′ 3′ 4′ 0.01455 0.01456 0.01456 0.01456 0.01456 0.01456 0.01456 0.01466<!--</td--><td>50 60 1′ 2′ 3′ 4′ 0.01455 0.01456 0.01746 89° 29 58 7116 0.0201 0.0392 88° 29 58 7116 0.04949 0.05241 87° 29 58 7116 0.0470 0.0593 86° 29 58 7116 0.0470 0.0593 86° 29 58 8117 0.0456 0.0670 0.0673 86° 29 58 8117 0.10216 0.10510 84° 29 59 88 118 1.1983 1.1278 83° 29 59 818 18 1.1783 1.1634 87° 29 59 8118 116 1.1783 1.7633 80° 90 60 90 120 2.0952 2.1256 78° 90 1121 29 1121 2.2781 2.3053 2.1286 18</td><td>50 60/ 1' 2' 3' 4' 5' 6' 7' 0.01455 0.01746 89° 29 58 87 116 146 175 204 0.04949 0.05491 88° 29 58 87 116 146 175 204 0.04949 0.05201 0.05491 87° 29 58 87 116 146 175 204 0.04949 0.05241 87° 29 58 8117 146 175 204 0.05700 0.05938 86° 29 58 8117 146 175 204 0.0701 84° 29 58 8117 146 175 204 11983 12278 83° 29 58 8118 147 176 206 17833 17633 80° 80 90 180 150 179 209 17383 80° 80</td></td>	50 60 1′ 2′ 3′ 4′ 0.01455 0.01456 0.01456 0.01456 0.01456 0.01456 0.01456 0.01466 </td <td>50 60 1′ 2′ 3′ 4′ 0.01455 0.01456 0.01746 89° 29 58 7116 0.0201 0.0392 88° 29 58 7116 0.04949 0.05241 87° 29 58 7116 0.0470 0.0593 86° 29 58 7116 0.0470 0.0593 86° 29 58 8117 0.0456 0.0670 0.0673 86° 29 58 8117 0.10216 0.10510 84° 29 59 88 118 1.1983 1.1278 83° 29 59 818 18 1.1783 1.1634 87° 29 59 8118 116 1.1783 1.7633 80° 90 60 90 120 2.0952 2.1256 78° 90 1121 29 1121 2.2781 2.3053 2.1286 18</td> <td>50 60/ 1' 2' 3' 4' 5' 6' 7' 0.01455 0.01746 89° 29 58 87 116 146 175 204 0.04949 0.05491 88° 29 58 87 116 146 175 204 0.04949 0.05201 0.05491 87° 29 58 87 116 146 175 204 0.04949 0.05241 87° 29 58 8117 146 175 204 0.05700 0.05938 86° 29 58 8117 146 175 204 0.0701 84° 29 58 8117 146 175 204 11983 12278 83° 29 58 8118 147 176 206 17833 17633 80° 80 90 180 150 179 209 17383 80° 80</td>	50 60 1′ 2′ 3′ 4′ 0.01455 0.01456 0.01746 89° 29 58 7116 0.0201 0.0392 88° 29 58 7116 0.04949 0.05241 87° 29 58 7116 0.0470 0.0593 86° 29 58 7116 0.0470 0.0593 86° 29 58 8117 0.0456 0.0670 0.0673 86° 29 58 8117 0.10216 0.10510 84° 29 59 88 118 1.1983 1.1278 83° 29 59 818 18 1.1783 1.1634 87° 29 59 8118 116 1.1783 1.7633 80° 90 60 90 120 2.0952 2.1256 78° 90 1121 29 1121 2.2781 2.3053 2.1286 18	50 60/ 1' 2' 3' 4' 5' 6' 7' 0.01455 0.01746 89° 29 58 87 116 146 175 204 0.04949 0.05491 88° 29 58 87 116 146 175 204 0.04949 0.05201 0.05491 87° 29 58 87 116 146 175 204 0.04949 0.05241 87° 29 58 8117 146 175 204 0.05700 0.05938 86° 29 58 8117 146 175 204 0.0701 84° 29 58 8117 146 175 204 11983 12278 83° 29 58 8118 147 176 206 17833 17633 80° 80 90 180 150 179 209 17383 80° 80
60' 001746 003492 005241 006903 006749 010510 112276 114054 115838 117633 0119438	0.01746 88° 0.03492 88° 0.05241 87° 0.06993 88° 0.06749 85° 0.010510 84° 0.12278 83° 0.1258 81° 0.19438 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19448 77° 0.19488 77° 0.19488 77° 0.19488 77° 0.19488 77° 0.19488 77° 0.1948	0.01746 889 29 58 0.05241 877 29 58 0.05241 877 29 58 0.05241 877 29 58 0.05241 877 29 58 0.05241 877 29 58 0.05241 878 80 59 0.05241 878 80 59 0.05241 878 80 60 0.19438 779 80 60 0.19438 779 80 60 0.19438 779 80 60 0.29267 777 81 61	0.01746 89° 29 58 87 0.03492 88° 29 58 87 0.05241 87° 29 58 87 0.05241 87° 29 58 87 0.05998 86° 29 58 88 0.010510 84° 29 59 58 87 12278 83° 29 59 88 1.14054 82° 30 59 89 1.1533 80° 30 60 90 0.19438 79° 80 61 91 2.2356 77° 81 61 92	0.01746 89° 29 58 87 116 0.03492 88° 29 58 87 116 0.05949 88° 29 58 87 116 0.0599 86° 29 58 87 116 0.0599 86° 29 58 88 117 0.10510 84° 29 59 88 118 114054 82° 29 59 88 118 114054 82° 30 59 89 118 11633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 121256 78° 30 61 91 121 121 121 121 121 121 121 121 121	0.01746 89° 29 58 87 116 0.05492 88° 29 58 87 116 0.05492 88° 29 58 87 116 0.0593 86° 29 58 87 116 0.0593 86° 29 58 88 117 0.0510 84° 29 59 88 118 114054 82° 29 59 88 118 114054 82° 29 59 89 118 11583 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30 60 90 120 17633 80° 30° 30° 30° 30° 30° 30° 30° 30° 30° 3	60' 1' 2' 3' 4' 0.01746 89° 29 58 87 116 0.05241 87° 29 58 87 116 0.05993 86° 29 58 87 116 0.06993 86° 29 58 87 116 0.06993 86° 29 58 87 116 0.010510 84° 29 59 88 117 1.12278 83° 29 59 88 118 1.14054 82° 30 59 89 118 1.15838 81° 30 69 90 120 1.7633 80° 30 60 90 120 2.2256 78° 30 61 91 121 2.23087 77° 81 61 92 122	60' 1' 2' 3' 4' 5' 6' 7' 0'03499 88° 29 58 87 116 146 175 204 0'03499 86° 29 58 87 116 146 175 204 0'05993 86° 29 58 87 116 146 175 204 0'05993 86° 29 58 87 116 146 175 204 0'05993 86° 29 58 81 17 146 175 204 0'05993 86° 29 58 88 117 146 175 204 12278 83° 29 59 88 118 147 176 206 14054 82° 30 59 89 118 147 176 206 14054 82° 30 59 89 118 148 178 207 17633 80° 80 60 90 120 151 181 209 171256 77° 80 61 91 121 152 182 212 23087 77° 81 61 92 122 153 183 214
	1123 & & & & & & & & & & & & & & & & & & &	24	1, 2, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	86° 29 58 87 116 87° 29 58 87 116 87° 29 58 87 116 87° 29 58 87 116 88° 29 58 87 116 88° 29 58 87 116 88° 29 58 88 117 88° 29 59 88 118 88° 29 59 88 118 88° 80 59 89 119 80° 80 60 90 120 77° 80 60 90 120 77° 80 61 91 121 77° 81 60 91 121	2, 3, 4, 4, 889, 29, 58, 87, 116, 886, 29, 58, 87, 116, 886, 29, 58, 87, 116, 886, 29, 58, 87, 116, 886, 29, 58, 88, 117, 882, 29, 59, 88, 118, 882, 29, 59, 88, 118, 882, 30, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 89, 118, 80, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59	2, 3, 4, 4, 4, 88, 29, 29, 58, 87, 116, 88, 29, 58, 87, 116, 88, 29, 58, 87, 116, 88, 29, 58, 88, 117, 88, 29, 59, 88, 118, 82, 29, 59, 88, 118, 82, 30, 59, 89, 118, 80, 30, 60, 90, 120, 778, 80, 61, 91, 121, 77, 81, 61, 92, 122, 77, 81, 61, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92	1' 2' 3' 4' 5' 6' 7' 289° 29 58 87 116 146 175 204 58 87 29 58 87 116 146 175 204 58 87 29 58 87 116 146 175 204 58 88 29 58 88 117 146 175 204 58 88 29 59 88 117 146 175 204 58 88 29 59 88 118 147 176 206 58 29 59 88 118 147 176 206 58 29 59 89 118 147 176 206 58 29 59 69 119 149 178 209 59 69 119 149 178 209 59 69 119 149 178 209 59 69 119 149 178 209 59 69 119 149 178 209 59 69 120 150 150 19 209 209 209 209 209 209 209 209 209 20
3434 8588 88488	, , , , , , , , , , , , , , , , , , , ,	11 22 23 23 23 23 23 23 23 23 23 23 23 23	1, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	29 58 87 116 29 59 88 117 29 59 88 118 29 59 88 118 30 59 89 118 30 60 90 120 80 60 90 120 80 61 91 121 81 62 92 123 81 63 92 123	1, 2, 8, 4, 2, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	1, 2, 3, 4, 2, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	Moan Differences 1, 2' 3' 4' 5' 6' 7' 29 58 87 116 146 175 204 29 58 87 116 146 175 204 29 58 87 116 146 175 204 29 58 87 116 146 175 204 29 58 81 117 146 175 204 29 59 88 117 146 175 204 29 59 88 118 147 176 206 29 59 88 118 147 176 206 29 59 89 118 147 176 206 29 59 99 118 147 176 206 30 60 90 120 151 181 211 30 60 90 120 151 181 211 31 62 92 123 154 183 218 31 63 92 123 154 183 218
	1	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 25 55 55 55 55 55 55 55 55 55 55 55 55 5	27 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2, 4, 4, 58 87 116 58 87 116 58 87 116 58 87 116 58 88 117 59 88 118 59 88 118 59 89 119 60 90 120 61 91 121 61 92 123	2, 3, 4, and	27 3' 4' 5' 6' 7' 58 87 116 146 175 204 58 87 116 146 175 204 58 87 116 146 175 204 58 88 117 146 175 204 58 88 117 146 175 204 59 88 118 147 176 204 59 89 118 147 176 206 59 89 118 147 176 206 59 89 118 149 178 206 60 90 120 151 181 211 61 91 121 152 182 213 61 92 123 153 188 214 62 92 123 154 185 216

ζ	į	2	
Ē	÷		
Ž	į		
CHARLE CAR	i		
į	1	2	
ì	Ī	į	
•	¢	Ć	
¢		ì	
¢)	
þ		ì	
4	į	ť	
C	١	d	
Ė		2	
TA COLUMN TO A P.			
i	d	ď	
٠		ŕ	

KREEK	a B B B B B B B B B B B B B B B B B B B	zzánis	RRARR	£\$\$\$\$	
0.38397 .88386 .40408 .42447 .44523	0.46691 .48778 .50953 .58171 .56431	0.57735 .60086 .62487 .64941 .67451	0.70091 .72654 .75355 .78199	0.88910 .86929 .90040 .99252	36
0.867£7 .98721 .40741 .42791	0.46985 .49184 .51820 .53545	0.58124 .60489 .62892 .65855	0.70455 .73100 .75819 .78598 .81461	0.84407 87441 90569 98797 97183	200
.89065 .41081 .43186 .45222	0.47341 .49495 .51688 .53920 .56194	0.58518 .60581 .63299 .65771	0.70891 .73547 .76372 .79070	0.84906 .94945 .94845	7 0
0.37388 .39391 .41421 .43481	0.47698 .49858 .52057 .54296	0.58905 .61280 .63707 .66189	0.71329 .73996 .76733 .79544	0.85408 .88473 .91638 .94896	86
0.37720 .39727 .41763 .48828 .45924	0.48055 .50232 .52427 .54673	0.59297 .61681 .64117 .66608	0.71769 .74447 .77196 .80020	0.85912 .88992 .92170 .95451	%
0.38053 .40065 .42105 .44175 .46277	0.48414 -50587 -52798 -55051 -57348	0.59691 .62083 .64528 .67028	0.72211 .74900 .77661 .80498	0.66419 .89515 .92709 .96008	10,
0.38386 .40403 .42447 .44523 .46631	0.48773 .50953 .53171 .55431	0.60086 .62487 .64941 .67451	0.72654 .75355 .78129 .80978	0.86923 .90040 .93252 .96569 1.00000	ò
88988	<u> </u>	88288	ಶ್ವಜ್ಞಜ್ಞ	3323	
33 44 48 58	88 88 88 88	864444	44444	22.22.22	-
38838	74 74 75 77	8.88.48	88888	10000	če
82888	111111111111111111111111111111111111111	118 118 129 129 129 129 129 129 129 129 129 129	135 11 135 11 139 11 143 11	151 2 156 2 172 2 2 172 2 2	3,
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	143 1 145 1 146 1 151 1	157 160 2 164 2 171 2	196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	201 2 208 2 214 2 221 2	-4
1686 170 173 176 176 176 176 176 176 176 176	152 25 25 25 25 25 25 25 25 25 25 25 25 2	2000 2000 2000 2000 2000 2000 2000	22.22.23.24.22.23.23.23.23.23.23.23.23.23.23.23.23.	252 260 260 260 260 260 260 260 260 260 26	, 20
2002 11000 10000 1	222 22 226 22 230 24	240 24 245 25 251 25	263 36 270 33 277 35 298 35	302 30 311 34 321 37 332 36 343 46	.9
232 265 236 269 239 273 242 277 246 281	255 255 255 255 255 255 255 255 255 255	224 33 286 33 298 33 300 33	324 37 324 37 342 35	352 4(363 41) 375 45 400 44	, S
	286 296 307 307	313 320 327 342	351 350 370 391	402 415 429 442 457	

NATURAL TANGENTS

0, 10,	46° 1.00000 1.00584 46° 07387 04158 48° 07387 07864 48° 11061 11713 48° 11061 11713	51. 38490 24227 38490 24227 37994 287638 38511 57899 38511 57899 38511 57899 38518 5	56° 49150 56° 49150 56° 5987 54973 56° 50083 61074 56° 5088 67590	60° 1.7437 1.7437 (61° 1.8040 1.8165 (63° 1.9626 1.9768 (64° 64° 64° 65° 65° 65° 65° 65° 65° 65° 65° 65° 65
, 20,	68 1.01170 58 04766 64 08496 13 12369 15 16398	82 1.20593 87 24969 64 29541 11 34323 84 39336	03 1.44598 90 .50133 774 .55966 774 .62125 30 .68643	37 1.7556 65 1.8291 40 1.9074 68 1.9912 55 2.0609
30,	1.01761 .05378 .09131 .13029	1.21310 .25717 .90823 .35142	1.45501 .51084 .56969 .63185	1.7675 1.8418 1.9210 2.0057
,0 7	1.02355 .05994 .09770 .13694	f.22031 .26471 .31110 .35968 .41061	1.46411 .52043 .57981 .64256	1.7796 1.8546 1.9347 2.0204 2.1123
20,	1.02952 .06613 .10414 .14363	1.22758 .27230 .31904 .36800 .41934	1.47330 .53010 .59002 .65337	1.7917 1.8676 1.9486 2.0353
,09	1.03553 4 .07287 .11061 4 .15087 4	1.23490 3 27994 3 32704 3 37638 3	1.48256 53987 60033 66428 373205	1.8040 1.8807 1.9626 2.0503 2.1445
	48345	88388	82888	88288
1,	66 66 66 66 66 66	72 73 75 86 86 86	91 1 96 1 101 5 107 5	12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15
čq	118 1 123 1 127 1 132 1	144 2 150 2 164 2 172 2	181 2 191 2 201 3 213 3 226 3	42222
Mean 3' 4'	178 237 184 246 191 255 199 265 807 276	216 288 225 300 285 314 247 329 259 345	272 36 287 36 302 40 320 42	88 4 4 4 8 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
n Di	17 296 16 307 15 319 15 332 16 345	8 360 0 376 4 392 9 411 5 431	363 453 382 478 103 504 126 538 151 565	511 6 54 6 58 7
Differences 5' 6' 7'	6 355 7 368 9 382 2 397 5 413	0 431 6 451 2 471 1 493	3 544 8 573 4 604 3 639 5 677	50 72 54 77 58 82 73 88
7,	2 414 2 446 7 463 8 482	1 526 1 526 1 549 3 576 7 603	634 1 705 1 790	28 88 84 102 102 102 102 102 102 102 102 102 102
œ	474 491 510 530 552	575 501 628 658 658	725 764 808 852 903	801 108 118 118 118 118 118 118 118 118
9,	593 553 573 596 620	647 676 707 740 776	816 860 907 959 1016	108 115 122 131

ANGENTS
黑
9
z
~
COL
0
C
_
AL
-
6
ATO
•
7

TABLE III	I J	NATURAL	TANGENTS		
152 165 179 195 213	235 250 225 366 366	418 481 559 669 788		,a p	6
135 146 174 190	209 231 289 326	871 427 497 586 701	very rapidly tabulated.	angle of x'very nearly	ò
118 128 152 166	183 202 225 253 285	325 374 435 513	very tabu		1,
101 110 1130 142	157 174 193 216 244	278 320 373 439 526		small -x' is by x.	. 9
85 100 110 110	131 145 161 181 204	232 267 311 366 438	change annot be	f a g	20
68 80 95	110 110 147 163	185 214 248 293 350		The cotangent of the tangent of 90 ual to 34377 divid	.4
51 55 60 65 76	78 97 108 122	139 180 180 263 263	differences that they c	tange ngen 1437	.g.
34 37 40 43	52 58 72 72 81	93 107 1124 115 115	e dií so th	e co le ta lto d	ČQ1
17 18 20 22 24	26 29 32 36 41	46 62 83 83 83 83 83	The here so	The cotangent of a small or the tangent of $00^0 - x^i$ is equal to 3437.7 divided by x .	1,
ង់ង់ង់ង់ង	5,67,89	11232	ಭಿತ್ರಸ್ಥಿತಿ	ರೆಗೆ ಜಿಳ್ಳ ಾ	Ť
2.2460 2.3559 2.4751 2.6051	242 777 709 874 821	4.3315 4.3315 4.7046 5.1446 5 6713	154 144 301	5588.	
999999	2.9042 3.0777 3.2709 3.4874 3.7321	4 4 4 0 0 0 6 5 4 0	6.3138 7.1154 8.1443 9.5144	14°301 19 081 28°636 57°290 + ∞	0,
.2236 .3369 .4545 .5826 .7228	1.8770 1.0475 1.2371 1.4495 1.6891	3.9617 1.2747 1.6382 5.0658	61970 6'9682 7'9530 9'2553	13.727 18.075 26.432 49.104 343.77	91
C4 C4 C4 C4	64 55 55 55	(3 dt 21 42 42		13 26 26 343 343	
2.2113 2.3183 2.4342 2.5605 2.6985	2.8502 3.0178 3.2041 3.4124 3.6470	8.9136 4.2193 4.5736 4.0894 5.4845	6.0844 6.8263 7.7704 9.0098 10.713	13.197 17.169 24.542 42.964 171.89	. 50,
2.1943 2.2998 2.4142 2.5386 2.6746	2.8239 2.9887 3.1716 3.3759 3.6059	3.8667 1.1653 1.5107 1.9152 5.3955	5.9758 6.6913 7.5958 8.7769 10.385	12.706 16.350 22.904 89 185 114.59	30,
		00 41 41 41 40	-	12. 22. 38 114	1
2.1775 2.2817 2.3945 2.5172 2.6511	2.7980 2.9600 3.1397 3.3402 3.5656	3.8208 4.1126 4.4494 4.8430 5.3093	5.8708 6.5606 7.4287 8.5555 10.078	12.251 15.605 21.470 34.368 85.940	40,
1.2637 1.3637 1.3750 1.4960 1.6279	17725 19319 19054 19052	1.0611 1.3897 1.7729 5.2257	5.4349 5.4349 7.2687 7.3450	11.826 14.924 20.206 31.242 68.750	20,
01 01 01 01 01	က် လ လံ ကိ က	क च च च के	ದಿಯಿನವನ	11888	
2.1445 2.2460 2.8559 2.4751 2.6051	2.7475 2.9042 8.0777 8.2709 8.4874	3.7321 4.0108 4.3315 4.7046 5.1446	5.6713 6.3139 7.1154 8.1443 9.5144	11.430 14.301 19.061 28.636 57.290 + ∞	200
88288	2222 2323	44144	£38828	8 88 388	\Box

TABLE IV LOGARITHMIC SINES

	\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	ထ်လင်းတယ် လိတ် က် ဖိတ်	51227 6	*****
ó	8.54282 8.54282 8.71880 8.64858	8.94030 9.01923 9.08589 9.14356 9.19483	23967 28060 31788 35209 38368	41300 44034 46594 48996 51364
10′	7.46373 8.30879 8.57757 8.74236 8.86128	8.95450 9.03109 9.09606 9.15245 9.20223	9.24677 -28706 -32378 -35752	9-41768 -44472 -47006 -49986 -51269
20,	7.76475 8.36673 8.60973 8.76451 8.87829	8.96825 9.04262 9.10599 9.16116 9.20999	9.25376 .29340 .32960 .36289	9.42232 .44905 .47411 .49768
30,	7.94084 8.41792 8.63968 8.78568 8.89464	8.98157 9.05386 9.11570 9.16970 9.21761	9.26063 .29966 .38534 .36819 .39860	9.42690 .45334 .47814 .50148
,0 1	S.06578 8.46366 8.66769 8.80585 8.91040	8.99450 9.06481 9.12519 9.17807 9.22509	9.26739 .30582 .34100 .37341	9.43148 .45758 .48219 .50523
20,	8.16268 8.50504 8.69400 8.82513 8.92561	9.00704 9.07548 9.13447 9.18628 9.23244	9.27405 .31189 .34658 .37858	9.43591 .46178 .48607 .50896
,09	8.24186 8.54282 8.71880 8.84358 8.94030	9.01923 9.08589 9.14356 9.19433 9.23967	9.28060 .31788 .35209 .38368	9.44084 .46594 .46998 .51264
	జిజినిజిజి	828828	38438	27434
1, 2,	Differences very tabulation is is angles of x log $\cos (90^{\circ} - x)$	96 16 76 11	68 18 62 18 57 11 49 8	34 C C C C C C C C C C C C C C C C C C C
có	Differences vary so rapidly tabulation is impossible. angles of x minutes $\log \log \cos(90^{\circ}-x') = \log x+4^{\circ}$	192 289 169 254 151 227	136 204 124 186 114 171 105 158 98 147	91 137 85 128 80 120 76 113 71 107
Mean 4'	is in	3 384 1 338 7 302	272 5 248 1 228 8 210 7 195	7 182 8 171 0 160 3 151 7 143
	vary so i impossi minutes x') = $\log x$	480 423 378	341 310 285 263 263	228 213 201 189 179
Differences 5' 6' 7'	rapid lble. s $\log x + 4$	576 507 453	409 373 342 316 293	273 256 241 227 227
-1, 88 -1, 98	rapidly here that ible. For smalls so log sin x' or x x +4-46373.	672 7 592 6	435 435 4368 435 435 435 435 435 435 435 435 435 435	319 8 299 8 281 8 264 8
6	49 8	768 94 676 71 604 64	245 6 497 5 421 4 891 4	364 4: 341 33 321 392 3
	at or	364 161 880	513 559 513 473 440	410 384 361 340 321

				•	
204 275 262 250	201 201 201 201	198 185 178 172 165	159 154 149 143 138	133 129 120 1150	9
255 254 255 255 255 255 255 255 255 255	212 203 194 186 179	179 165 159 158 147	142 137 127 123 123	1118	œ
225 225 204 195	186 178 170 156 156	52452	108 1118	9899	7,
203 193 174 166	150 140 134 134 134	129 1134 115 115	8885	48888	જ
169 153 146 139	133 127 117 117	103 103 96 98 98	18888	4 5884	2,
136 128 123 116	106 102 93 89	88 65 7 7	71 88 88 88 88	59 55 53 51	7
28.88	8525	68 59 55	53 50 48 48	44448	90
68 64 61 58 58	53 51 47 45	43 34 34 34 34	33 33 35	88888	òq
200000000000000000000000000000000000000	7 2 3 3 3 3	22822	11 11 16 15	15 14 13 13 13	74
88388	\$\$\$\$\$\$	ಜಿಜಿಷಜಿಜಿ	ಕ್ಷಣ್ಣಜ್ಞ	3323	
88848	#8455	## # ####	23462	425E4	
9.55488 -57356 -59188 -60931 -62595	9.64184 .65705 .67161 .68557	9-71184 72421 -73611 -74756 -75855	9.76922 77946 78934 79887	9.81694 .82561 .83378 .84177	O,
248348	18888	8118 118 118 178	747 778 778 381	549 242 046 822	10,
9.55105 .57044 .58883 .60646	9.63924 66923 68326 7.68326	9-70973 -72218 -72416 -74568	9.76747 7777 7787 7978 8065¢	9-81540 -89410 -89245 -84046 -84895	1
88 52 84 80 84 80 84	282288	119 119 179 196	20022	106 106 106 106 106	
9.54769 .56727 .58586 .60359	9.63663 .65204 .66683 .68098	9.70761 -72014 -73219 -74379	9.76579 .77609 .79579	9-81402 -82269 -83106 -83914 -84694	20,
130,708	253 141 134 134	547 809 922 1189 313	335 153 115 351	254 126 968 968 781 566	30′
9.54488 56408 58284 60070	9.6339; .6495; .66441 .6786;	9.70547 .71809 .73029 .74189	9.76398 .77488 .78448 .79411	9.81251 .82126 .82968 .83781 .84566	8
938 778 178 194	193 193 10	332 502 503 533 128	218 269 280 280 256	91106 91983 92830 93648 94437	704
9-54093 -56086 -57978 -59778	9.63133 .64693 .66197 .67638	9-70339 -71602 -72823 -73997	9.76219 7.7267 7.8287 7.92567	28. 28. 28.	
12 68 69 11	988 988 187 187	115 893 805 943	093 095 043	957 691 513 908	, 20,
9.58751 .55761 .57666 .59484 .61214	9.6286. .64445 .65959 .67396	9.70116 71398 7369 73806	9.76039 77095 78118 79095 80043	9-80957 -81839 -82691 -83513 -84308	
1188 188 188 188	595 102 151 151	79421 74731 74756	76929 77946 78934 79887	**************************************	36
9.53405 .55433 .57358 .59188	9-62594 -64184 -65704 -67161	8444	87: 87: 87:	* * * * * * * *	
ង្គង់ន្ងង	rrigh	a a a a a a a a a a a a a a a a a a a	संसंसं		1

LOGARITHMIC SINES

9.84949 9.85074 9.85204 9.85314 9.85418 9.84033 9.85815 9.85936 9.86763 9.86176 9.8413 9.85815 9.85936 9.86763 9.86176 9.8107 97.221 97.834 97.846 97.851 9.8425 9.88531 9.89536 9.88741 9.88514 9.89425 9.88531 9.89546 9.89141 9.88541 9.9035 9.90349 9.90318 90043 9.9036 9.91426 9.91512 9.9159 9.9158 9.91836 9.91427 9.91512 9.9159 9.9158 9.91850 9.91426 9.9159 9.9158 9.9168 9.91850 9.92627 9.9158 9.9168 9.9168 9.93860 9.93893 9.93893 9.93804 9.93804 9.93877 9.91648 9.91648 9.91648 9.91648 9.93877 9.91648 9.93804 9.93804 9.93804		٥	10,	20,	30,	40,	20,	,09		,,	c	Ä"	Mean 2'	Differences	renc	S 2.		à
986413 986244 986245 986244 986245 986246 986176 986418 98630 98105 98176 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186 98186	946	97070	o iocom	000				00000	1	' '		' ;		. ;	, ;	. :	- 1	, ;
981778 988531 978956 988105 988212 98105 988212 988531 978956 988105 988531 978956 988105 98814 988155 98825	386	85693	. 85815	92638.	9.85324 .86056	9.85448 .86176	76798.	.86413	48	222	3 24 5	38	3 8 4	200	466	5 76		3 8
988425 9'88531 6'88636 9'88741 9'88844 9'88644 9'89050 9'89153 8'89354 8'89354 8'89354 8'89354 8'89354 8'89354 8'89455 8'8945 8'89455 8'8945 8'8945 8'8945 8'8945 8'8945 8'8945 8'8945 8'8945 8'9035 9	\$\$.87107 .87778	.87221 .87221	.87334 .87396	.87446 .88105	.87557 .88212	.83319	.87778 .88425	\$ \$ \$	722	2 22 23	3 34	45	24	825	182		8 8 8
90730 90424 90424 90410	3888	9 88425 -89050 -89653	9.88531	9.88636 .89254 .89849	9.88741 .89354 .89947	9.88844 89455 90048	9.88948 .89554 .90139	9.89050 .89653 .90235	ส์ส์ส์ส์	222	20 19	31 29	45 39 39	500	288	£ 5 8		888
99.91836 9.91435 9.91509 9.91686 9.91686 9.91686 9.91686 9.9227 9.9211 9.92194 9.9227 9.9211 9.92194 9.9227 9.9268 9.9269 9.9268 9.9269	Z	.90735 90796	.90330 .90387	.30424 .90978	.90218 .91059	00010	.90704 .91241	.90796 .91386	88	6 6	18	24	37	4 5 5	54	සි සි		<u> </u>
93869 93810 93869 93821 9387 93821 9387 938382 998753 93882 998753 93882 998753 93883 998753 93883 99883 99383 99883	38	9.91836	9.91425	9.91512	9.91599	9.91686	9.91772 .92277	9.91857	¥ķ	ဇ လ	17	26	35. 44	44	22	61 59		70 67
6. 17076. 6. 02806. 6. 03806. 6. 03706. 6. 03706. 6. 038	zů Ž	.92842 .92842 .93807	.92441 .92921 .93382	.92522 .92999 .93457	.926 0 8 .9 3 077 .9353 2	.92688 .93154 .93606	.92763 .93230 .98680	.928 <u>42</u> .93307 .93753	ล็ล่ห็	ထထထ	16 16	23 23	31 30 30	41 39 37	45 45	57 55 52		888
00000 00000 00000 00000 00000	828	9.98753 .94153 .94598	9.93826 -94252 -94660	9.98898	9.93970	9.94041	9.94112	9.94182	ส์ห์ห์	to to to	41 42 5	222	26 7 29	0 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	£4 1 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50 48 40 40		22 22

מ
Ζ,
_
92
S
ར
~
0
_
3
= 1
•
=
_
•
-
X
Ų

96073 990 997 9940 9971 9980 9971 9980 9971 9980 9971 9980 9976 9980 9980 9980 9980 9980 9980 9980 998	
888888888888888888888888888888888888888	
961139 96767 97063 197063 197063 197061 197061 197061 19707	200
9.95599 9.96508 9.97830 9.97830 9.97836 9.98561 9.98561 9.998763 9.998763 9.998763 9.998763 9.998763 9.998763 9.998763 9.998763 9.998763	40,
96869 97159	30,
96514 96514 96514 97206 97788 97788 97788 98813 998426 998426 99946 99946 99978 99978 99978 99986 99986 99986 99986	30,
96666 97253 996666 98021 98021 98248 98248 98248 99176 99176 99176 99176 99176 99176 99176 99176 99176 99176 99176 99176	10,
96403 97117 97016 97259 97256 97821 97821 97821 97821 97921 9776 9756 9757 9756 9757 9757 9757 9757	,0
<u> </u>	
നെനാന ചെച്ചെടെ തധയയെ ലെയയിലെ ല ലല ാ	H
11010 0000r record 44000 88441	čq
<u>ರಹಿಸಿತ ಪಟ್ಟಿಸಿಗೆ ರ</u> ಂಥದಾರ ಹಹ್ಮೂತ ಜವವು	රේ
82881 81184 821100 80F02 4081	`
88884 81881 154111 110000 0 0 408	'n
88888	ور ور
88888 88888 88888 819911 111110	ì-
4444988 38 38 38 38 38 50 50 50 50 50 50 50 50 50 50 50 50 50	òo

TABLE V LOGARITHMIC TANGENTS.

,	**************************************	ස්ත්රය හි ස්ත්රයේ ක්ර	######################################	erier
o,	- 00 524192 571940 571940 584464	3.94195 3.09169 3.08914 3.14780 3.19971	94632 98747 92747 96336	.45750 .45750 .48534 .51176 .53697
10′	7.46873 8.30888 8.57788 8.74292 8.86243	8-95627 9-03361 9-0994 9-15688 9-20782	9.25365 .29535 .89365 .36903	9.43308 .46224 .49934 .51606
20	7.76476 8.36689 8.61009 8.76525 8.87953	8-97013 9-04528 9-10956 9-16577	9.26086 -30195 -33974 -37476 -40742	9.43806 .46694 .49430 .52031
30,	7.94086 8.41807 8.64009 8.78649 8.89598	8.98358 9.05666 9.11943 9.17450	9.26797 .30846 .34576 .39035	9.44299 .47160 .52452 .54915
,0 1	8.06581 8.46385 8.66816 8.80674 8.91185	8.99662 9.06775 9.12909 9.18306 9.23130	9.27496 .31489 .35170 .38589	9.44787 .47622 .50311 .52870 .55315
20,	8.16273 8.50527 8.69453 8.82610 8.92716	9.00930 9.07858 9.13854 9.19146	9.28186 .32122 .35757 .39136	9.45271 .48080 .50746 .53285
,09	8.24192 8.54308 8.71940 8.84464 8.94195	9.02162 9.08314 9.14780 9.19971 9.24632	9.28865 -32747 -36336 -39677 -42805	9.45750 .48534 .51178 .53697
	සුසුසුස	૱ૹૹૹ	યુર્વનું વુલ	\$255°
1,	tabi Fo	98 1 87 1 78 1	52 52 11 22 22 11 22 22 11 22 22 11 22 22 11 22 22	33433
čŧ	fferer ulatic r sr tan z	195 28 173 28 155 28	129 129 120 120 121 121 121 131	88888
Mean 3' 4'	Differences vary so rapidly is abulation is impossible. For small angles of x log tan x' or log cot $(90^{\circ} - x')$ = -100° m = -100° m.	293 391 260 346 283 310	212 282 194 259 179 239 167 222 156 208	147 196 139 186 132 176 126 168 121 160
	ary sampos angle	1 488 6 433 0 388	2 354 9 323 2 299 8 261	6 245 6 232 6 220 8 210 0 201
Differences 5' 6' 7'	o rap sible ss o (90°	8 586 3 519 8 466	4 420 3 388 9 359 8 334 1 313	5 294 2 278 0 264 1 241
T'	rapidly here that ible, of x minute (90° - x ') = $\log x + 4.46373$.	664 606 543	494 3 453 419 1 389 3 865	2348 3255 294 294 281
ò	here that ::ninutes) .4.46373.	782 692 621	564 518 478 445 417	392 371 352 321
ô.	that ntes 73.	879 779 698	635 538 500 469	442 418 396 378 362

SIN
NGE
COL
A C
E
AR
200

- ma					, 	_
347 388 388 388 398 398	298 284 277 271 265	88884	232 241	22.23	9	
208 277 268	266 253 246 246 246 368	22232	112000	20000	œ	
255 255 255 255 255 255 255 255 255 255	221 221 201 201 201 201	198 198 198 198 198	82 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	179 171 171 171	ĩ-	
231 212 208 201 201	195 185 171	173 165 165 165 165	160 158 157 157 155	154 153 152 152 152	œ	
198 185 179 178 168	163 158 154 151 147	144 142 139 137 136	134 131 130 129	128 127 127 127	ò	
154 148 143 138 134	130 123 123 120 118	118 113 113 110 108	107 106 104 103	102 102 102 103 103 103 103 103 103 103 103 103 103	-	
116 107 104 101	98 90 88 88	85 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80 78 77	77 76 76 76	œ	
77 74 72 69 67	88888	55 55 54 54	46666	51 51 51 51	òs	
88 88 84 84	88288	22888 23888	26 26 26 26	888888	7-1	
දීෂ්ප්ෂිෂි	2 88828	సిజీచేజీజీ	ಕ್ಷಣ್ಣಜ್ಞಜ್ಞ	3 \$ \$ \$ \$		
9.58418 .60641 .62785 .64858	9.68818 -70717 -72567 -74375	9.77877 -79579 -81252 -82899 -84623	9.86126 .87711 .89231 .90337	9-93916 -95444 -96966 -98484 10-00000	ď	TACION S
9.58039 .60276 .62433 .64517	9.68497 .70404 .72263 .74077	977591 79297 80975 82626 84254	9.85860 .87448 .89020 .90578	9.93661 .95190 .96712 .98231	10,	
9.57658 .59909 .62079 .64175	9.68174 .70089 .71955 .73777	9.77303 .79015 .80697 .82352 .83984	9.85594 .87185 .88759 .90320	9.93406 .94935 .96159 .97978	200	A TO THIRTY
9.57274 .59540 .61722 .65870	9.67850 .69774 .71648 .73476	9.77015 .78732 .80419 .82078	9.86327 .86921 .88498 .90061	9.93150 .94681 .96205 .97725	30,	100
9.56887 .59168 .61364 .63484	9.67524 .69457 .71839 .73175	9.76725 .78448 .80140 .81808	9.85059 .86656 .88236 .89801	9.92894 .94426 .95952 .97472	*00	
9.56498 .58794 .61004 .63135	9.67196 .69138 .71028 .72872	9.76435 .78168 .79960 .81528	9.84791 .86392 .87974 .89541	9.92638 -94171 -95698 -97219	,09	
9.56107 .58418 .60641 .63785	9.66867 .68818 .70717 .72567	9.76144 .77877 .79579 .81262	9.84523 .86126 .87711 .89281	9.92881 .98916 .95444 .96966 .98484	98	
r r r r r r r r r	8 8 8 8 8 8 8	*****	a a a a a a a a a a a a a a a a a a a	***		

LOGARITHMIC TANGENTS

	`			·
9,	228 228 228 230 230	232 234 236 238 241	244 247 251 255 260	265 271 277 284 293
òo	202 202 20 204 203 20	200 200 200 212 200 4	217 220 228 228 227	253 253 260
99 L-	177 177 176 176	180 182 183 188 188	190 195 198 203	206 211 216 221 228
ence 9	152 152 152 153	155 156 157 158 160	162 165 170 170	177 181 185 190 195
Differences 5' 6' 7	127 127 127 127 128	129 130 131 132 134	136 137 139 142 144	147 151 154 158 163
Mean 3' 4'	55555	100	1112 1113 1116	118 120 126 130
% ₹	76 76 77 77	77 78 79 80	83 84 85 87	988 989 989 98
Č4	22222	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	54 55 57 58	88888
` ~	882288 882288	26 26 26 27	27 28 28 29	33 33 33 33
	48829	ૹ૾ૹ૾૽તૺૹ૽ૹ૽	ૹૢૡૢૹૢૹૣ	88288
, 2	10.01516 .03034 .04556 .06084	10.09163 10719 12289 13874 15477	10 17101 18748 20421 22123	10.25625 .27433 .29283 .31182
20,	10.01263 .02781 .04302 .05829	10.08905 10459 12026 13609	10.16829 .18472 .20140 .21837 .23565	10.25327 .27128 .28972 .30862
40,	10.01011 .02528 .04048 .05574 .07106	10.08647 10199 11764 13344 14941	10.16558 18197 19860 19852 21552	10.25031 .26825 .28661 .30543
30,	10.00758 .02275 .03795 .05819	10.08390 .09939 .11502 .13079	10.16287 .17923 .19581 .21268	10.24786 .26524 .28352 .30226
20,	10.00505 .02022 .03541 .05065	10.08132 .09680 .11241 .12815 .14406	10.16016 .17648 .19303 .20985	10°24442 °26228 °28045 °29911 °31826
10,	10.00253 .01769 .08288 .04810	10.07875 .09422 .10980 .12552 .14140	10.15746 .17374 .19025 .20708	10°24148 °25928 °27738 °29596
ò	10.00000 .01516 .08054 .04656	10.07619 .09163 .10719 .19289 .18874	10.15477 17.101 18748 20421 22123	10 28856 25625 27483 29283 31162
·	eriee	25252	28228	28828

10.83133 10.33468 10.33796 10.34465 10.3465 10.34503 10.35142 286 10.34130 10.34465 10.34165 10.34565 10.34503 10.3456		•				
10.39463 10.39796 10.34180 10.94465 10.34803 10.35142 24	302 322 333 347	362 378 396 418	469 500 588 588 588 588	698 779 879	hat	6
10°39463 10°39796 10°34180 10°34465 10°38499 22° 35 69 104 138 173 208 23 37 37 14 111 148 185 229 22 22 39 37 44 111 148 185 229 22 22 39 37 44 111 148 185 229 23 23 37 14 111 148 185 229 22 22 39 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 111 148 185 229 23 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 148 185 229 37 14 11 18 18 185 229 37 14 11 18 18 18 18 18 18 18 18 18 18 18 18	268 277 286 296 308	821 336 852 371 392	417 445 478 518 564	621 692 782	ore t	οσ
10°33463 10°33796 10°34180 10°34465 10°38463 10°35142 348 35483 38582 38170 38516 38586 337215 283 37757 37791 38275 38383 41206 41582 20°3871 40091 40091 40092 41582 341206 41582 30°39744 40091 40092 42726 43113 43502 43893 30°3959 20°39744 40091 42284 64048 10°4584 10°4584 10°4584 10°4589 10°4590 10°4589 10°4590 10°4789	235 242 251 259 270	281 294 308 325 343	365 389 419 453	543 606 684		1
10.93469 10.33796 10.34180 10.94465 10.34803 10.35142 34, 375415 32, 375415 3757 375415 3754	201 208 214 223 231	241 252 264 264 278	313 334 359 388 420	466 519 586	rpidl ble.	9
10.93469 10.33796 10.34180 10.94465 10.34803 10.35142 34, 375415 32, 375415 3757 375415 3754	168 173 179 185 193	201 201 220 245	261 278 299 323 354	388 433 485	so re possi	à
10°33463 10°33796 10°34180 10°34465 10°38463 10°35142 348 35483 38582 38170 38516 38586 337215 283 37757 37791 38275 38383 41206 41582 20°3871 40091 40091 40092 41582 341206 41582 30°39744 40091 40092 42726 43113 43502 43893 30°3959 20°39744 40091 42284 64048 10°4584 10°4584 10°4584 10°4589 10°4590 10°4589 10°4590 10°4789	134 138 143 148 154	168 168 176 186	550 50 50 50 50 50 50 50 50 50 50 50 50	310 346 391	vary s imj	, 4
10°33463 10°33796 10°34180 10°34465 10°38463 10°35142 348 35483 38582 38170 38516 38586 337215 283 37757 37791 38275 38383 41206 41582 20°3871 40091 40091 40092 41582 341206 41582 30°39744 40091 40092 42726 43113 43502 43893 30°3959 20°39744 40091 42284 64048 10°4584 10°4584 10°4584 10°4589 10°4590 10°4589 10°4590 10°4789	101 104 111 111 116	121 126 132 139	156 157 179 194 212	233 293 293	nees ion i	ò
10°33463 10°33796 10°34180 10°34465 10°38463 10°35142 348 35483 38582 38170 38516 38586 337215 283 37757 37791 38275 38383 41206 41582 20°3871 40091 40091 40092 41582 341206 41582 30°39744 40091 40092 42726 43113 43502 43893 30°3959 20°39744 40091 42284 64048 10°4584 10°4584 10°4584 10°4589 10°4590 10°4589 10°4590 10°4789	69 72 77	98 88 89 98 88 88	104 1120 141	155 173 195	ffer	ĵor
10°33463 10°33796 10°34180 10°34465 10°34803 10°35148 28582 38582 38517 36516 36516 36865 37415 2873 41061 44060 46083 46083 41066 41589 28734 46091 4046091 404609 40683 406892 41206 41589 28734 46091 474685 10°45086 10°45086 10°4428 10°44685 10°45085 10°4508 10°4428 10°44685 10°45085 10°4508 10°4428 10°44685 10°45085 10°45085 10°45085 10°4609 10°4428 10°44685 10°45085 10°45085 10°45085 10°45085 10°45085 10°46085	85 88 88 89 88 88	32434	28882	87 89 98	ta Di	1,
10.33463 10.33796 10.34180 10.34465 10.34508 35826 368170 36516 36865 39874 40091 40460 40832 41206 41961 42942 42726 43113 43502 41206 41961 42942 42726 43113 43502 41206 41961 42942 42726 42113 43502 4206 4261715 42626 626	ង្គង្គង្គង្គ	ಜಿಜಿ ದೆಜಿಜೆ	ははなばれ	ಬೆಲೆ-ತೆಹೆಪಿ	ಕ್ಷಣ್ಣ ಇಳ್ಳಿ	
10.33468 10.33796 10.34180 10.34465 10.3468 35.848 3	37215 37215 39359 41582 43893	746303 -48822 -51466 -54250	0.60323 .63664 .67253 .71135	91086 91086 97898 1.05805	1.15536 1.28060 1.45692 1.75808	O'
10°33468					11111111	
10°33468 10°33796 10°34190 35488 35825 36170 3754 40460 41961 42342 42736 10°44288 10°44685 10°45085 477130 447548 49254 49689 50128 51920 55313 55701 10°5702 10°5703 10°5703 10°5703 10°5703 10°5703 10°5704	10.3486 .3686 .4126 .4356	10.4588 .4838 .5101 .5377	10.5976 .6309 .7046	10.792] .843] .900: .966: 11.043]	11.137(11.257(11.422) 11.6911 12.5365	10,
10.39463 10.34796 10.34180 35483 35825 38170 39774 40091 36276 41960 41961 42342 42726 41962 41962 41962 41963 419	10.34465 .36516 .38636 .40832 .43113	10.45488 .47969 .50570 .53306	10.59258 .62524 .66026 .69805	10 78422 83423 89044 95472 11 02987	11.12047 11.23475 11.38991 11.63311 12.23524	30,
35488 35488 37267 39724 41961 46718 46718 56284 66284	10°34130 °36170 °88278 °40460 °42726	10'45085 '47548 '50128 '52840 '55701	10.58734 .61965 .65424 .69154 .73203		11.10402 11.21351 11.35991 11.55193 12.05914	30,
	10.33796 .85825 .87921 .40091	10.44685 .47130 .49689 .52378	10.58216 .61411 .64830 .68511	10.76870 .81694 .87091 .93225 11.00338	11.08815 11.19326 11.33184 11.58615 11.93419	40,
∞+1.0596.0 1.12596.0	10.33468 .35483 .37567 .39724 .41961	10.44288 .46715 .49254 .51920	10.57703 .60864 .64243 .67878	10.76113 .80854 .86146 .92142	11.07284 11.17390 11.80547 11.49473 11.83727	, 20
	10.33133 .35142 .97215 .89359	10.43893 .46303 .48822 .51466	10.57195 .60323 .63664 .67253	10.75368 .80029 .85220 .91086	11.05805 11.15536 11.28060 11.45693 11.75808 + ∞	8 0′
8 क्रिक्रें के क्रिक्रें के स्थापन क्रिक्रें क्रिक्रें क्रिक्रें	88288	1 23333	वंत्रंत्रंत्रं	<u> </u>	8 කිකිස්කිකි	

LOGARITHMIC COTANGENTS

XXII USEFUL CONSTANTS AND LOGARITHMS

SOME USEFUL CONSTANTS

One radian = 57° 17' 45" nearly = 206265° ; log $206265 = 5^{\circ}3144255$.

$$\pi = 3.14159265.$$
 $\frac{1}{\pi} = 0.31830989.$

$$\sqrt{2} = 1.4142135...$$
 $\sqrt{3} = 1.7320508...$

$$\sqrt{5} = 2.2360679...$$
 $\sqrt{6} = 2.4494897...$

$$\sqrt{7} - 2.6457513...$$
 $\sqrt{8} = 2.8284271...$

 $\sqrt{10} = 3.1622776...$

SOME USEFUL LOGARITHMS

$$\log 2 = 30103$$
 $\log 3 = 47712$

$$\log 5 = 69897$$
 $\log 7 = 84510$