## Física Teórica 3 – 1er. cuatrimestre de 2012

## Primer parcial (14/5)

**Problema 1**. Un gas está contenido en un recipiente con un pequeño orificio que lo conecta con la atmósfera. La probabilidad por unidad de tiempo de que una partícula en el recipiente escape a la atmósfera a través del orificio es  $n/\Omega$ . La probabilidad por unidad de tiempo de que una partícula ingrese al recipiente es  $\rho$ .

- (a) Escriba la ecuación maestra para la probabilidad  $p_n(t)$  de encontrar n partículas en el recipiente.
- (b) Escriba la ecuación diferencial para la función generatriz F(z,t). Verifique que la solución puede escribirse en la forma  $F(z,t)=e^{\alpha z}f\left((1-z)e^{-t/\Omega}\right)$ , y encuentre  $\alpha$ .
- (c) Encuentre F(z,t) y  $p_n(t)$  si la condición inicial es que en t=0 hay 0 partículas en el recipiente.
- (d) Encuentre la probabilidad  $(p_{eq})_n$  y el número medio de partículas  $n_{eq}$  en el equilibrio.

**Problema 2**. Un gas monoatómico está contenido en una caja cúbica de volumen 2V, como muestra la figura. Una mitad de la caja está a potencial cero y la otra a potencial  $W = \epsilon$ . Se pide encontrar, en función de la temperatura, del volumen y del número total de partículas:

i) El potencial químico. ii) La cantidad de partículas en cada mitad de la caja. iii) La energía total.

**Problema 3**. Un fluido de partículas que interactúan con un potencial repulsivo puede ser modelado como un "gas reticular" del modo siguiente: considere un recipiente dividido en N celdas, cada una de volumen v, comparable al volumen de una partícula. Una celda desocupada o una ocupada por una sola partícula tienen ambas energía cero. Una celda ocupada por 2 partículas tiene energía  $\epsilon$ , y ninguna celda puede estar ocupada por más de 2 partículas. Usando el ensamble gran canónico encuentre la energía media por celda, la concentración de partículas c (número de partículas dividido por n0) y la presión n0 en términos de la temperatura y del potencial químico. Encuentre expresiones aproximadas para la energía media por celda y para la presión en términos de n0 y n2 en los límites en que n3 es muy pequeña y muy cercana a su máximo valor.



Problema 1



Problema 2

## Preguntas.

1. Sea la ecuación de Boltzmann

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \int d^3 \mathbf{v}_1' d^3 \mathbf{v}' d^3 \mathbf{v}_1 |f' f_1' - f f_1| |\mathbf{v} - \mathbf{v}_1| \sigma.$$

- (a) ¿Cuál es la condición de equilibrio para f?
- (b) ¿Qué forma tendrá la f de equilibrio?
- 2. Sea un sistema de dos niveles  $\epsilon_1$  y  $\epsilon_2$  con  $\epsilon_2 > \epsilon_1$ . Sean N partículas distinguibles.
  - (a) Bosqueje la curva S(E).
  - (b) Bosqueje la curva T(E).
- 3. ¿Cómo es posible que en el caso canónico el peso estadístico esté dado por  $\exp\left[-\beta H(p,q)\right]$  y sin embargo el valor de E más probable no necesariamente sea E=0.
- 4. Sea una cadena de Markov discreta. ¿Cuáles son las propiedades de Q?