ECE 269 Homework 3

Joseph Bell

November 5, 2019

Problem 1

a)

Given $x, y \in V_{perp}$ and $z \in V$

$$(x+y)z = xz + yz = 0 + 0 = 0$$

Given
$$u \in V_{perp}, v \in V, \alpha \in F$$

$$(\alpha \cdot u)v = \alpha(u \cdot v) = \alpha \cdot 0 = 0$$

Therefore, closed under addition and scalar multiplication, so V_{perp} is a subspace of \mathbb{R}^n

b)

Given $(v_1 \ v_2 \ v_3 \ \dots \ v_k) \in R^{n \times k}, V = Range(A)$ $V^T = (c_1 \ c_2 \ c_3 \ \dots \ c_k)$ s.t. $v_1c_1 + v_2c_2 + v_3c_3 + \dots + v_kc_k = 0$ which is represented in matrix form as:

$$\begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \\ \dots \\ v_k^T \end{pmatrix} \cdot \begin{pmatrix} c_1 & c_2 & c_3 & \dots & c_k \end{pmatrix}$$

One can see that left side matrix is equivalent to A^T and the right side matrix is equivalent to $N(A^T)$

Therefore, $V = A^T$ and $V_{perp} = N(A^T)$

Using $x \in (V_{perp})_{perp}, v \in V, w \in V_{perp}, and x = v + w$

 $x = v + wcomes from the rule that the addition of 2 subspaces in R^n is in R^n$

Then,
$$x \cdot w = 0 = (v + w) \cdot w = vw + ww = 0$$

This results in $||w||^2 = 0$ as vw = 0, $since v \in Vandw \in V_{perp}$. Then, $||w||^2 = \sum_{i=1}^{N} (w_i)^2 = 0$ means that w must equal 0.

This means that x = v + w = v + 0 and therefore, x = v.

Since $v \in V$ this means every points in $(V_{perp})_{perp} \in V$ so $(V_{perp})_{perp} \subseteq V$

Next, using $x \in (V_{perp})_{perp}, v \in V, w \in V_{perp}, and v = w + x$

 $v \cdot w = (w + x) \cdot w = w \cdot w + x \cdot w = w \cdot w + 0 = 0.$

This again means that $||w||^2 = 0$ and $||w||^2 = \sum_{i=1}^{N} (w_i)^2 = 0$. So, w = 0 and then v = 0 + x and therefore, v = x shows that $V \subseteq (V_{perp})_{perp}$

Since $(V_{perp})_{perp} \subseteq V$ and $V \subseteq (V_{perp})_{perp}$

this means that $V = (V_{perp})_{perp}$.

d)

From part b I showed that representing a subspace V as a matrix A one obtains that V = Range(A) and $V_{perp} = N(A^T)$.

Then, following the rule that $rank(A) = n - dim(N(A^T))$ and substituting in V and V_{perp} one obtains $dim(V) = n - dim(V_{perp})$ which can be rearranged to $dim(V) + dim(V_{perp}) = n$

e)

First I will prove uniqueness.

Using $v \in V, w \in W, x_1 and x_2 \in V_{perp}, and y \in W_{perp}$

if $V \subseteq W$ and $w \cdot y = 0$ and using that x is any point in V_{perp} s.t. $v \cdot x = 0$ if $v \cdot x_1 = 0$ and $v \cdot x_2 = 0$ then it follows that $v(x_1 + x_2) = 0$. This shows that $(x_1 + x_2) \in V_{perp}$ which means both x_1 and x_2 must be v_{perp} which we know to be true.

Then, since every value of V is in W it must be true that $v \cdot x + v \cdot y = 0$ which results in v(x+y) = 0. Therefore, $(x+y) \in V_{perp}$ and using the previous rule it must be that both x and $y \in V_{perp}$. Therefore, every point of $W_{perp} \in V_{perp}$ and ultimately $W_{perp} \subseteq V_{perp}$

f)

Let $A_1, A_2 \in V$ and $B_1, B_2 \in V_{perp}$

Then, $X = A_1 + B_1 = A_2 + B_2$ which is rearranged to $A_1 - A_2 = B_1 - B_2$. Since we know $A_1 - A_2 \in V$, $B_1 - B_2 \in V_{perp}$, and that $V \cap V_{perp} = 0$ it must be true that $A_1 - A_2 = B_1 - B_2 = 0$ which then follows that $A_1 = A_2$ and $B_1 = B_2$.

Next is to prove existence.

If $V \in \mathbb{R}^n$, i.e. V is a finite dimensional inner-product space:

Let B_M be an orthonormal basis of M and let B_{M-perp} be an orthonormal basis of M_{perp}

Since $M \cap M_{perp} = 0$, $B_M \cup B_{M-perp}$ forms an orthonormal basis for some new subspace I'll call S. s.t. $S \subseteq V$.

Now, if $S \neq V$ then there must be some other orthonormal basis E s.t. $B_M \cup B_{M-perp} \cup E$ forms an orthonormal basis for V. Since these are or-

thonormal bases it must follow that E is perpendicular to M, which means that $E \subseteq B_{M-perp}$, but this is not possible since these orthonormal bases are independent by definition. Therefore, E = 0 and $V = B_M \cup B_{M-perp}$

Problem 2

Using the theorems that $rank(AB \leq minrank(A), rank(B))$ and that rank(A) + tha $rank(B) - n \le rank(AB)$

It follows that the minimum and maximum rank of AB is 2

Let
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Then AB =
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 which has rank 2

b)

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Then
$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 which has rank 2

Problem 3

 $||U^Tx||^2 = (U^Tx)^TU^Tx = x^TUU^Tx = x^TIx = x^Tx = ||x||^2$. So for the case of square matrices, $||U^Tx|| = ||x||$.

However, if k i n for $U^{n \times k}$ there is a matrix Q that has n-k columns s.t. $[U|Q] \in R^{n \times n}.$

It follows that $||[U|Q]^Tx||^2 = ||\frac{U^T}{Q^T}x||^2 = ||\frac{U^Tx}{Q^Tx}||^2$. Using $||\frac{a}{b}||^2 = ||a||^2 + ||b||^2$ one obtains $||U^Tx||^2 + ||Q^Tx||^2 = ||x||^2$ Since $||Q^Tx||^2 \ge 0$ it follows that $||U^Tx||^2 \le ||x||^2$ and ultimately: $||U^Tx|| \le ||x||$

Problem 4

$$(I - 2uu^T)(I - 2uu^T)^T = (I - 2uu^T)(I - 2uu^T)$$

$$=I-2uu^T-2uu^T+4(uu^T)(uu^T)\\ =I-4uu^T=4uu^Tuu^T=I-4uu^T+4uu^T=I-0=I\\ \text{Therefore, Q is orthogonal.}\\ \mathbf{b})\\ (I-2uu^T)u=u-2uu^Tu=u-2u=-u\\ (I-2uu^T)v=v-2uu^Tv\\ \text{Using }u^Tv=0\\ (I-2uu^T)v=v-0=v\\ \mathbf{c})\\ \text{Since }QQ^T=QQ=I\\ Qy=x\\ \mathbf{d})\\ det(Q)=det(I-2uu^T)=det(I-2u^Tu)=1-2u^Tu=1-2=-1\\ \mathbf{e})\text{ if x is perpendicular to u, then x is just a column or set of columns of y.}\\ I-2uu^T=I\\ 2uu^T=0\\ 2(u^Tu)^T=0\\ \text{Therefore, u}=0.\\ \textbf{Problem 5}\\ \mathbf{a})\\ \mathbf{i})(I-P)^T=I^T-P^T=I-P^T=I-P\\ \mathbf{ii})(I-P)^2=(I-P)(I-P)=I\cdot I-I\cdot P-P\cdot I+P\cdot P\\ =I-P-P+P=I-P\\ \mathbf{b})\\ \mathbf{i})(UU^T)^T=(U^T)\cdot U^T=UU^T\\ \mathbf{ii})(UU^T)^2=(UU^T)(UU^T)=UU^TUU^T=UIU^T=UU^T\\ \mathbf{c}\\ \mathbf{c})\\ \mathbf{i})(A(A^TA)^{-1}A^T)^T=(A^T)^T((A^TA)^{-1})^TA^T=A(A^{-1}(A^T)^{-1}A^T=A(A^TA)^{-1}A^T\\ \mathbf{ii})(A(A^TA)^{-1}A^T)^2=(A(A^TA)^{-1}A^T)(A(A^TA)^{-1}A^T)=AA^{-1}(A^T)^{-1}A^T=A(A^T)^{-1}A^T\\ \mathbf{d})\\ \mathbf{R}(P)\text{ is the span of the columns of P. Need to verify (x-Px) is perpendicular to the columns of P.$$

e)

Must find the matrix P s.t. the columns of u are perpendicular to the error of x - Px

of x - Px.

$$u^{T}(x - Px) = u^{T}x - u^{T}Px = 0$$

$$u^{T}x = u^{T}Px$$

$$u^{T} = u^{T}P$$

$$uu^{T} = uu^{T}P$$

$$uu^{T} = 1 * P$$

$$uu^{T} = P$$