

	Relative_Compactness	Surface_Area	Wall_Area	Roof_Area	Overall_Height	Orientation	Glazing_Area	${\tt Glazing_Area_Distribution}$	Heating_Load	Cooling_Load
0	0.98	514.5	294.0	110.25	7.0	2	0.0	0	15.55	21.33
1	0.98	514.5	294.0	110.25	7.0	3	0.0	0	15.55	21.33
2	0.98	514.5	294.0	110.25	7.0	4	0.0	0	15.55	21.33
3	0.98	514.5	294.0	110.25	7.0	5	0.0	0	15.55	21.33
4	0.90	563.5	318.5	122.50	7.0	2	0.0	0	20.84	28.28

Dataset Information

- Relative Compactness Ratio of cooling/heating volume to surface area
- Surface Area (m²)
- Wall Area (m²)
- Roof Area (m²)
- Overall Height (m, 3.5 = 1 Storey, 7.0 = 2 Storey)
- Orientation (details in Labels)
- Glazing Area (0%, 10%, 25%, 40% of floor area) with glass component
- Glazing Area Distribution (details in Labels)
- Heating Load (kWh)
- Cooling Load (kWh)

Column Relationship

Column Relationship

Column Relationship

Data Classification

- Use get dummies method to separate those labels
- Set Cooling Load and Heating Load as ycool and yheat, and the rest as X

Model Build

Cooling

```
In [22]: r2c_score = CXGB.score(X_test,yc_test)
print(f'{r2c_score*100}%')
```

98.51856217190276%

In [23]: print(f'Mean Absolute Error: {metrics.mean_absolute_error(yc_test, yc_pred)}')
 print(f'Mean Squared Error: {metrics.mean_squared_error(yc_test, yc_pred)}')
 print(f'Root Mean Squared Error: {np.sqrt(metrics.mean_squared_error(yc_test, yc_pred))}')

Mean Absolute Error: 0.07064996228063408 Mean Squared Error: 0.015159172688821942 Root Mean Squared Error: 0.12312259211380315

Model Build

Heating

```
In [27]: r2h_score = HXGB.score(X_test,yh_test)
print(f'{r2h_score*100}%')
```

99.82505792928691%

```
In [28]: print(f'Mean Absolute Error: {metrics.mean_absolute_error(yh_test, yh_pred)}')
    print(f'Mean Squared Error: {metrics.mean_squared_error(yh_test, yh_pred)}')
    print(f'Root Mean Squared Error: {np.sqrt(metrics.mean_squared_error(yh_test, yh_pred))}')
```

Mean Absolute Error: 0.02999238941504229 Mean Squared Error: 0.0017997990903303271 Root Mean Squared Error: 0.042424039061955514

Application interface Energy Efficiency Prediction 3 Prediction Result ① 127.0.0.1:5000 ← → C ① 127.0.0.1:5000/result Relative Compactness (%) Cooling Load: 32.56kWh Heating Load: 28.86kWh Surface Area (m2) Back Wall Area (m2) Roof Area (m2) No. of Storey O 1 Storey O 2 Storey Orientation O East O South O West O North Not Glazed Glazing Area ○ 10% ○ 25% ○ 40% Glazing Direction O Uniform O Eastward O Southward O Westward O Northward Get result

Source

Dataset

https://www.kaggle.com/datasets/ujjwalchowdhury/energy-efficiency-dataset?resource=download&select=energy_efficiency_data.csv

Labels

https://www.kaggle.com/code/winternguyen/modeling-energy-efficiency-residential-building/notebook