

## Mini-batch gradient descent



A<sup>CO</sup> = g<sup>CO</sup> (Z<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

W:= W<sup>CO</sup> - ddw<sup>CO</sup>, b<sup>CO</sup> = b<sup>CO</sup> - adb<sup>CO</sup>

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup>CO</sup>) (y<sup>CO</sup>)

Bookprop to compart growths cost J<sup>EO</sup> are a soft (y<sup>CO</sup>) (y<sup></sup>



Understanding mini-batch gradient descent

#### Training with mini batch gradient descent





Andrew Ng



### Choosing your mini-batch size





Optimization 对外计分型 基本 毗急 Algorithms 超外 电上引台

Exponentially weighted averages 2 かねりえばむ

### Temperature in London

$$\theta_1 = 40^{\circ}F \quad 4^{\circ}C \leftarrow \theta_2 = 49^{\circ}F \quad 9^{\circ}C \leftarrow \theta_3 = 45^{\circ}F \leftarrow \vdots \\ \theta_{180} = 60^{\circ}F \quad 8^{\circ}C \leftarrow \theta_{181} = 56^{\circ}F \leftarrow \vdots$$



Andrew Ng

## Exponentially weighted averages





Understanding exponentially weighted averages

#### Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$



Andrew Ng

0.52

Exponentially weighted averages



## Implementing exponentially weighted averages

$$v_0 = 0$$
  $\frac{1}{2}$   $v_1 = \beta v_0 + (1 - \beta) \theta_1$   
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$   
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$ 

$$V_{0} := 0$$
 $V_{0} := 0$ 
 $V_{0} := 0$ 
Andrew Ng
 $V_{0} := 0$ 
 $V_{0}$ 



Bias correction in exponentially weighted average

低滤器.





是侧面的 乳 四叶 对对 > स्थिव कार्र क्रिश्चिक मिर्ट .. HZZ VEHUE

Gradient descent with momentum

断 可对对处心



Andrew Ng

## Implementation details

Van=0, Vab=0

ि : येरोन्डियोग h.p.

On iteration *t*:

Compute dW, db on the current mini-batch  $|\mathcal{A}|_{\mathcal{B}} = |\mathcal{A}|_{\mathcal{A}} = |\mathcal{A}|_{\mathcal{A}} + |\mathcal{A}|_{\mathcal{A}} = |\mathcal{A}|_{\mathcal{A}} +$ 

$$\Rightarrow v_{dW} = \beta v_{dW} + M \beta dW$$

$$\Rightarrow v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}, \ b = \underline{b} - \alpha v_{db}$$

10亿 多型的 网络智慧

Hyperparameters:  $\alpha, \beta$ 

$$\beta = 0.9$$
 21 LE 1/2

Overage on last 10 gradute



#### **RMSprop**





# Adam optimization algorithm

Adam optimization algorithm

### Hyperparameters choice:

$$\rightarrow$$
 d: needs to be tune  
 $\rightarrow$   $\beta_1$ : 0.9  $\rightarrow$  (du)  
 $\rightarrow$   $\beta_2$ : 0.999  $\rightarrow$  (dw<sup>2</sup>)  
 $\rightarrow$   $\lesssim$ : 10<sup>-8</sup>

Adam: Adaptiv momet estimation



**Adam Coates** 



Learning rate decay





Andrew Ng

### Learning rate decay



Andrew Ng

## Other learning rate decay methods



## The problem of local optima

## Local optima in neural networks



## Problem of plateaus



- · Unlikely to get stuck in a bad local optima
- · Plateaus can make learning slow