Comprehensive Mass and Energy Balance Model for a Forced Ventilated Polyhouse

Highly Experienced Researcher (Agricultural Engineering, Environmental Physics, Control Systems)

March 31, 2025

1 Introduction and Objectives

Purpose

This document details a dynamic mass and energy balance model developed to predict the internal air temperature $(T_{\rm in})$ and relative humidity $(RH_{\rm in})$ within a typical single-span polyhouse equipped with a forced ventilation system (fan and evaporative cooling pad).

Intended Use

- To gain a fundamental understanding of the complex interactions governing the polyhouse microclimate dynamics.
- To simulate and evaluate the performance of the fan-and-pad cooling system under varying external weather conditions.
- To assess the impact of design parameters (materials, dimensions) and operational strategies on the internal environment.
- To provide a robust simulation tool for optimizing environmental conditions for specific crop requirements.
- To serve as a foundation for the future development and testing of advanced climate control algorithms.

Importance

Maintaining optimal temperature and humidity is critical for maximizing crop yield, quality, and resource-use efficiency while minimizing disease prevalence in protected cultivation. Polyhouses in many regions face significant challenges from high solar radiation and ambient temperatures, necessitating effective cooling strategies like fan-and-pad systems. Understanding the dynamics is key to effective management.

Scope

- Included: Dynamic balances of water vapor (humidity) and thermal energy (temperature) for the internal polyhouse air. Major heat and mass transfer processes: solar radiation transmission, longwave radiation exchange, convection, conduction (through cover), ventilation (forced), transpiration (crop), evaporation (soil/pad), condensation (cover).
- Excluded: Carbon dioxide (CO₂) balance, detailed multi-layer soil heat/water transport, complex airflow patterns (Computational Fluid Dynamics CFD), structural analysis, nutrient dynamics, detailed physiological crop growth modeling (uses simplified representation), air infiltration/leakage (assumed negligible compared to forced ventilation when active).

Simplifying Assumptions

- The internal polyhouse air is considered well-mixed (uniform temperature and humidity).
- One-dimensional heat transfer through the polyhouse cover.
- Uniform surface temperatures for the cover, crop canopy, and soil (within each element).
- Thermal properties of materials are constant.
- The thermal mass of the polyhouse frame (GI structure) is negligible compared to air, soil, and crop.
- Evaporative cooling pad efficiency is constant or a simple function of airflow/water flow.
- Soil surface evaporation is simplified based on potential evaporation and surface wetness.
- Transpiration is modeled using a simplified approach suitable for greenhouse conditions.
- Condensation forms as a film; droplet effects are neglected.

2 Polyhouse System Description

Geometry

- Type: Single-span, gable roof.
- Dimensions: Length $(L) = 8 \,\mathrm{m}$, Width $(W) = 5 \,\mathrm{m}$, Side Wall Height $(H_{\mathrm{side}}) = 3 \,\mathrm{m}$.
- Roof Angle (β): Assumed 26.5°. Ridge height $H_{\text{ridge}} \approx 4.25 \,\text{m}$.
- Ground Area (A_q) : $L \times W = 40 \,\mathrm{m}^2$.
- Cover Surface Area (A_c) : Approximately 129 m². (Exact value depends on detailed geometry).
- Volume (V): Approximately $145 \,\mathrm{m}^3$. Orientation: Assume Length $(8 \,\mathrm{m}) runs East West$.

Construction Materials

- Cover: 200 µm UV-stabilized Polyethylene (PE) film.
 - Solar Transmittance $(\tau_{\rm sol})$: ≈ 0.85 .
 - Longwave Emissivity (ϵ_c): ≈ 0.88 .
 - Solar Absorptance ($\alpha_{\text{sol},c}$): ≈ 0.10 .
 - Solar Reflectance $(\rho_{\text{sol},c})$: ≈ 0.05 .
 - Thermal Conductivity (k_c): $\approx 0.33 \, \text{W/(m \cdot K)}$ (convection/radiation dominate).
- Frame: Galvanized Iron (GI) pipes. Thermal mass assumed negligible.

Ventilation System

- Type: Forced ventilation with evaporative cooling pad.
- Fan: One exhaust fan (1 m x 1 m box, 36 inch / 0.914 m blade) on 5 m end wall. Rated flow $\approx 15\,000\,\mathrm{m}^3/\mathrm{h}$ to $20\,000\,\mathrm{m}^3/\mathrm{h}$ (4.2-5.6 m³/s). Actual flow Q_{vent} depends on pressure drop.
- Cooling Pad: Opposite 5 m wall. Assumed dimensions: W=5 m, H=1.5 m. Cellulose pad (15 cm thick). Efficiency $\eta_{\rm pad}\approx 0.70-0.85$.

Internal Components

- Crop: Generic canopy, full ground cover ($f_{\text{crop_cover}} = 1$). Leaf Area Index (LAI) = $3 \,\text{m}^2/\text{m}^2$. Albedo $\alpha_{\text{crop}} \approx 0.25$. Emissivity $\epsilon_{\text{crop}} \approx 0.95$.
- Soil/Floor: Bare soil/ground cover. Albedo $\alpha_{\rm soil} \approx 0.15$. Emissivity $\epsilon_{\rm soil} \approx 0.94$.
- Irrigation System: Drip irrigation. Influences soil moisture and transpiration.

3 Model Development: Mass Balance (Humidity)

The rate of change of water vapor mass in the polyhouse air volume (V) is given by the balance of vapor fluxes (assuming constant air density ρ_a for the derivative):

$$\rho_a V \frac{dW_{\rm in}}{dt} = \dot{m}_{\rm Tr} + \dot{m}_{\rm Evap, soil} - \dot{m}_{\rm Cond} + Q_{\rm vent} \rho_a (W_{\rm pad} - W_{\rm in}) \quad [kg_{\rm w}/s]$$
 (1)

Where:

- ρ_a : Density of moist air inside ($\approx 1.2 \, \mathrm{kg_{da}/m^3}$).
- V: Polyhouse air volume (m^3).
- $W_{\rm in}$: Absolute humidity ratio of internal air $(kg_{\rm w}/kg_{\rm da})$.
- t: Time (s).

 $\dot{m}_{\rm Tr}$ (Crop Transpiration) [kg_w/s]: Using a simplified Penman-Monteith type model:

$$\dot{m}_{\text{Tr}} = \frac{\Delta \cdot R_{n,\text{crop}} \cdot LAI \cdot A_g + \rho_a c_{p,\text{air}} \cdot \text{VPD}_{\text{in}} / r_{a,\text{crop}}}{\lambda \left(\Delta + \gamma (1 + r_s / r_{a,\text{crop}})\right)}$$
(2)

Where: $\Delta = \text{slope}$ of saturation vapor pressure curve (kPa/K), $R_{n,\text{crop}} = \text{net}$ radiation on crop (W/m²), LAI = leaf area index, $A_g = \text{ground}$ area (m²), $c_{p,\text{air}} = \text{specific}$ heat of air ($\approx 1010 \, \text{J/(kg} \cdot \text{K)}$), VPD_{in} = vapor pressure deficit inside (kPa), $r_{a,\text{crop}} = \text{aerodynamic}$ resistance ($\approx 100 - 300 \, \text{s/m}$), $\lambda = \text{latent}$ heat of vaporization ($\approx 2.45 \times 10^6 \, \text{J/kg}$), $\gamma = \text{psychrometric}$ constant ($\approx 0.066 \, \text{kPa/K}$), $r_s = \text{canopy}$ stomatal resistance ($\approx 50 - 500 \, \text{s/m}$).

 $\dot{m}_{\text{Evap,soil}}$ (Soil Evaporation) [kg_w/s]:

$$\dot{m}_{\text{Evap,soil}} = f_{\text{wet}} \cdot \frac{\Delta \cdot R_{n,\text{soil}} \cdot A_g + \rho_a c_{p,\text{air}} \cdot \text{VPD}_{\text{in}} / r_{a,\text{soil}}}{\lambda(\Delta + \gamma)}$$
(3)

Where: $f_{\text{wet}} = \text{fraction of wet soil surface (0 to 1)}$, $R_{n,\text{soil}} = \text{net radiation on soil (W/m}^2)$, $r_{a,\text{soil}} = \text{aerodynamic resistance near soil (s/m)}$.

 $\dot{m}_{\mathbf{Cond}}$ (Condensation) [kg_w/s]: Occurs if the inside air is saturated relative to the cover temperature ($T_{\mathbf{cover}}$):

$$\dot{m}_{\rm Cond} = h_m A_c (W_{\rm in} - W_{\rm sat}(T_{\rm cover}))$$
 if $W_{\rm in} > W_{\rm sat}(T_{\rm cover})$, else 0 (4)

Where: $h_m = \text{convective mass transfer coefficient } (\approx h_{c,\text{in}}/c_{p,\text{air}}, \text{kg/(m}^2 \cdot \text{s})), A_c = \text{cover surface area } (\text{m}^2), W_{\text{sat}}(T_{\text{cover}}) = \text{saturation humidity ratio at } T_{\text{cover}} (\text{kg}_{\text{w}}/\text{kg}_{\text{da}}).$

 $Q_{\text{vent}}\rho_a(W_{\text{pad}} - W_{\text{in}})$ (Ventilation Mass Flux) [kg_w/s]: Net water vapor advected by ventilation. $Q_{\text{vent}} = \text{ventilation rate (m}^3/\text{s)}, W_{\text{pad}} = \text{humidity ratio of air leaving the pad (kg_w/kg_{da})}.$

4 Model Development: Energy Balance (Temperature)

The energy balance for the internal air volume, tracking the rate of change of enthalpy:

$$\rho_a V c_{p,\text{air}} \frac{dT_{\text{in}}}{dt} = Q_{\text{conv,surfaces}} + Q_{\text{vent,sens}} + Q_{\text{equip}} - Q_{\text{latent,phasechange}} \quad [W]$$
 (5)

Where:

- $c_{p,air}$: Specific heat capacity of moist air ($\approx 1010 \, \mathrm{J/(kg \cdot K)}$).
- $T_{\rm in}$: Internal air temperature (K or C). Use K for radiation terms.

Q_{conv,surfaces} (Convective Heat Exchange with Surfaces) [W]:

$$\begin{split} Q_{\text{conv,surfaces}} &= Q_{\text{conv,cover}} + Q_{\text{conv,crop}} + Q_{\text{conv,floor}} \\ Q_{\text{conv,cover}} &= h_{c,\text{in}} A_c (T_{\text{cover}} - T_{\text{in}}) \\ Q_{\text{conv,crop}} &= h_{c,\text{crop}} LAIA_g (T_{\text{crop}} - T_{\text{in}}) \\ Q_{\text{conv,floor}} &= h_{c,\text{floor}} A_g (T_{\text{floor}} - T_{\text{in}}) \end{split}$$

Where: $h_{c,...}$ = convective heat transfer coefficients ($\approx 2 \text{ W/(m}^2 \cdot \text{K})$ to $10 \text{ W/(m}^2 \cdot \text{K})$), T_{cover} , T_{crop} , T_{floor} = surface temperatures (K or C).

 $Q_{\text{vent,sens}}$ (Sensible Heat Transfer by Ventilation) [W]: Includes cooling effect from the pad:

$$Q_{\text{vent,sens}} = Q_{\text{vent}} \rho_a c_{p,\text{air}} (T_{\text{pad}} - T_{\text{in}})$$
(6)

Where: T_{pad} = temperature of air leaving the pad (K or C).

 Q_{equip} (Sensible Heat from Equipment) [W]: Primarily from the fan motor.

$$Q_{\text{equip}} = \text{Fan Power} \cdot (1 - \text{Motor Efficiency}) \cdot \text{Duty Cycle}$$

Q_{latent,phasechange} (Energy Consumption by Phase Change) [W]: Latent heat consumed by evaporation/transpiration within the main volume:

$$Q_{\text{latent,phasechange}} = \lambda (\dot{m}_{\text{Tr}} + \dot{m}_{\text{Evap,soil}})$$
 (7)

Note: Latent heat effect of the pad is included in T_{pad} .

Implicit Terms (Handled via Surface Temperatures):

- Solar Radiation (I_{sol}): Transmitted radiation ($\tau_{sol}I_{sol}$) absorbed by cover ($\alpha_{sol,c}$), crop (α_{crop}), and soil (α_{soil}), heating these surfaces.
- Longwave Radiation (LW): Exchange between internal surfaces (cover, crop, soil) and between the cover and the external environment (sky, ground), influencing surface temperatures (T_{cover}, T_{crop}, T_{floor}).

5 Auxiliary Equations and Relationships

Psychrometric Relationships

- Saturation Vapor Pressure (e_{sat} , kPa): e.g., $e_{\text{sat}}(T) = 0.6108 \exp\left(\frac{17.27T}{T+237.3}\right)$ (T in C).
- Actual Vapor Pressure $(e_a, \text{ kPa})$: $e_a = RH \cdot e_{\text{sat}}(T)/100$.
- Absolute Humidity $(W, \text{kg}_{\text{w}}/\text{kg}_{\text{da}})$: $W = 0.622 \cdot e_a/(P_{\text{atm}} e_a)$. $P_{\text{atm}} \approx 101.3 \, \text{kPa}$.
- Relative Humidity (RH, %): $RH = 100 \cdot e_a/e_{\text{sat}}(T)$.
- Wet-Bulb Temperature (T_{wb}) : Requires iterative solution or psychrometric chart/calculator.
- Dew Point Temperature (T_{dp}) : $T_{dp} = \frac{237.3 \cdot \ln(e_a/0.6108)}{17.27 \ln(e_a/0.6108)}$
- Psychrometric Constant (γ , kPa/K): $\gamma = c_{p,air}P_{atm}/(0.622\lambda)$.
- Slope of Sat. Vapor Pressure Curve (Δ , kPa/K): $\Delta = \frac{de_{\text{sat}}}{dT}$.

Ventilation and Pad Model

- Ventilation Rate $(Q_{\text{vent}}, \text{ m}^3/\text{s})$: Assume constant when ON (e.g., $4.5 \,\text{m}^3/\text{s}$) or use fan curve $f(P_{\text{static}})$.
- Pad Efficiency (η_{pad}) : Constant (≈ 0.75) or f(Airflow, ...).
- Pad Outlet Temperature (T_{pad}) : $T_{pad} = T_{out} \eta_{pad}(T_{out} T_{wb,out})$. $(T_{wb,out})$ is outside air wet-bulb temp).
- Pad Outlet Humidity (W_{pad}) : $W_{\text{pad}} \approx W_{\text{out}} + \eta_{\text{pad}}(W_{\text{sat}}(T_{\text{wb,out}}) W_{\text{out}})$.

Radiation Calculations

- Net Radiation (R_n) : Sum of absorbed shortwave (solar) and net longwave for each surface. $R_n = (1 \alpha)I_{\text{sol,inc}} + \epsilon(L_{\text{inc}} L_{\text{emitted}}).$
- Solar Radiation on Surfaces: Partition transmitted solar radiation ($\tau_{\text{sol}}I_{\text{sol}}$) between crop and soil (e.g., Beer's Law based on LAI). Account for angles.
- Longwave Radiation ($L = \epsilon \sigma T^4$): Calculate exchange between internal surfaces (using view factors F_{ij}) and between cover and external (sky $L_{\rm sky}$, ground $L_{\rm ground}$). Sky radiation depends on $T_{\rm sky}$, $\epsilon_{\rm sky}$. $\sigma = 5.67 \times 10^{-8} \, {\rm W/(m^2 \cdot K^4)}$.

Heat Transfer Coefficients

- External Convection $(h_{c,\text{out}}, \text{W}/(\text{m}^2 \cdot \text{K}))$: Function of wind speed v_{wind} (m/s). E.g., $h_{c,\text{out}} \approx 2.8 + 3.0v_{\text{wind}}$.
- Internal Convection $(h_{c,\text{in}}, h_{c,\text{crop}}, h_{c,\text{floor}})$: Assumed constant $(\approx 5 \,\text{W}/(\text{m}^2 \cdot \text{K}))$ or linked to internal air speed (influenced by Q_{vent}).
- Overall Heat Transfer Coefficient (U_{cover}): Often $\approx 5 8 \,\text{W/(m}^2 \cdot \text{K})$ for single film, considering convection and radiation.

Surface Temperature Approximations (if not solving full balance)

Surface temperatures $(T_{\text{cover}}, T_{\text{crop}}, T_{\text{floor}})$ ideally come from their own dynamic energy balances. Simpler models might relate them algebraically to T_{in} , T_{out} , and radiation. E.g., $T_{\text{crop}} \approx T_{\text{in}}$.

6 Model Parameters and Input Data

Parameters

- Geometric: $L, W, H_{\text{side}}, \beta, A_q, A_c, V$. (Values Section 2).
- Material (Cover): $\tau_{\text{sol}} (\approx 0.85)$, $\alpha_{\text{sol},c} (\approx 0.10)$, $\rho_{\text{sol},c} (\approx 0.05)$, $\epsilon_c (\approx 0.88)$.
- Material (Crop): LAI (≈ 3), α_{crop} (≈ 0.25), ϵ_{crop} (≈ 0.95), r_s parameters, $r_{a,\text{crop}}$ ($\approx 200 \, \text{s/m}$).
- Material (Soil): $\alpha_{\text{soil}} (\approx 0.15)$, $\epsilon_{\text{soil}} (\approx 0.94)$, $f_{\text{wet}} (\approx 0.1)$, $r_{a,\text{soil}} (\approx 250 \,\text{s/m})$.
- Ventilation: $Q_{\text{vent,rated}} (\approx 4.5 \,\text{m}^3/\text{s}), \, \eta_{\text{pad}} (\approx 0.75).$
- Thermal/Physical: $\rho_a (\approx 1.2 \,\mathrm{kg_{da}/m^3}), \ c_{p,\mathrm{air}} (\approx 1010 \,\mathrm{J/(kg \cdot K)}), \ \lambda (\approx 2.45 \times 10^6 \,\mathrm{J/kg}), \ \sigma (5.67 \times 10^{-8} \,\mathrm{W/(m^2 \cdot K^4)}), \ P_{\mathrm{atm}} (\approx 101.3 \,\mathrm{kPa}).$
- Heat Transfer: $h_{c,\text{in}}, h_{c,\text{crop}}, h_{c,\text{floor}} (\approx 5 \text{ W}/(\text{m}^2 \cdot \text{K})), h_{c,\text{out}} \text{ parameters (e.g., 2.8, 3.0)}.$

Input Data (Time Series)

- Outside Air Temperature (T_{out}, C) .
- Outside Relative Humidity $(RH_{\text{out}}, \%)$ or Dew Point $(T_{\text{dp,out}}, C)$.
- Global Solar Radiation ($I_{\text{sol,global}}$, W/m²).
- Diffuse Solar Radiation $(I_{\text{sol,diffuse}}, W/m^2)$ (Optional).
- Wind Speed $(v_{\text{wind}}, \text{m/s})$.
- Wind Direction (Optional).
- Cloud Cover (Optional).
- Control System State (Fan ON/OFF, Pad Pump ON/OFF).

7 Model Output and Analysis

Primary Outputs

- Time series of Internal Air Temperature $(T_{\rm in}, C)$.
- Time series of Internal Relative Humidity $(RH_{\rm in}, \%)$ or Absolute Humidity $(W_{\rm in}, kg_{\rm w}/kg_{\rm da})$.

Secondary Outputs

- Time series of $T_{\text{cover}}, T_{\text{crop}}, T_{\text{floor}}$ (C).
- Time series of energy balance terms $(Q_{\text{conv}}, Q_{\text{vent,sens}}, \text{ etc.}, W)$.
- Time series of mass balance terms ($\dot{m}_{\rm Tr}$, $\dot{m}_{\rm Evap}$, etc., kg_w/s).
- Ventilation rate $(Q_{\text{vent}}, \text{m}^3/\text{s})$.
- Pad outlet conditions (T_{pad}, W_{pad}) .
- Vapor Pressure Deficit (VPD_{in}, kPa).

Analysis Applications

- \bullet Evaluate $T_{\rm in}/RH_{\rm in}$ profiles against crop optima.
- Perform sensitivity analysis on design and operational parameters.
- Assess effectiveness of control strategies (setpoints, schedules).
- Compare different polyhouse designs or materials hypothetically.
- Identify periods of potential crop stress (temperature, humidity extremes).

8 Model Limitations and Future Work

Limitations

- Assumes well-mixed internal air (no spatial gradients).
- Uses simplified or approximated surface temperature calculations.
- Simplified models for crop transpiration (r_s) and soil evaporation (f_{wet}) .
- Neglects air infiltration/leakage (can be significant).
- Simplified condensation model (filmwise, no droplet effects).
- Assumes static parameters (properties, efficiencies).

Future Work

- Develop multi-node model (separate balances for cover, crop, soil layers).
- Integrate or couple with CFD for spatial climate details.
- Incorporate a dynamic physiological crop model.
- $\bullet\,$ Add a CO2 mass balance model.
- Explicitly model advanced control algorithms and actuators.
- Add an air infiltration module based on wind and temperature difference.
- Include a model for fogging systems if applicable.
- Calibrate and validate the model against experimental data.