学号	姓名	论文规范性(10)	问题分析与调研 (30)	方案创新性 (20)	实验结果分析与讨论(40)	结课论文总成绩 (100)
21301016	索昊	6	22	15	33	76

实验方法描述过于简单;缺乏详细结果分析

计算机图形学课程设计(论文)

基于 Koch 曲线的分形图形绘制

Drawing fractal graphics based on Koch curves

学院: 软件学院

专业: 软件工程

学生姓名: 索昊

学 号: ____21301016

指导教师: ____吴雨婷

北京交通大学

2024年6月

摘要

分形理论是近二十年发展起来的一门新兴理论,其发展至今已经成功融入多个领域的实际应用。但由于其复杂性与无规则性,很难通过手工绘制的方式获取分形图形。借由其自相似性的特性,使用计算机通过递归的算法称为绘制分形图形的有利方法。除去使用基本的分形理论进行分形图形绘制以外,科学家和图形工作者使用计算机总结出了很多分形图形的绘制方法。本文主要基于Koch 曲线的方法进行了分形图形的绘制,并根据递归深度对绘制图形进行对比。

关键词:分形理论,计算机图形学,Koch曲线,OpenGL

目录

摘	摘要				
1.	引言	. 4			
2.	相关工作介绍	4			
	方法描述				
4.	实验设置	. 4			
	4. 1 GLAD	5			
	4. 2 GLFW	5			
	4. 3 GLM				
	4. 4 GLUT	5			
5.	实验过程与结果	5			
	5.1 实验过程概要				
	5.2 实验结果	6			
6.	结论	. 7			
参	考文献	. 8			

1. 引言

世界上的图形千变万化,大部分图形都是结构复杂的,结构简单规整的图形很少,除了三角形,四边形等用欧氏几何可以绘制出来的,大部分很难通过手工绘制的方法获得,分形图形是其中的一种。现在随着计算机的发展和算力的提升,这类图形逐渐可以通过计算机进行绘制。

自分形几何诞生以来,科学家和图形工作者已经用计算机绘制了许多分形图形,如 Cantor 集; Koch 曲线; Sierpinski 集; Julia 集 Mandelbrot 集等,还有一些根据分形理论生成的图形。分型学的应用也十分广泛。

本文将以以分形理论作为理论基础,借助 OpenGL 作为计算机绘制图形的基本攻击,以 Koch 曲线作为分形图形的绘制方法进行分形图形绘制。本文根据递归深度对绘制的结果进行区分,并且对各类图形进行对比。

2. 相关工作介绍

分形理论是近二十年才发展起来的一门新的理论,其发展至今,已在自然科学领域,社会科学领域取得显著成果。有关分形学的国际会议有增无减。

分形理论越来越多地被应用到计算机图形学的领域。计算机不断提升的算力,为非规整形状的图形绘制提供了有利工具。借助计算机生成分形图形,从少数数据生成复杂的自然景物图形,是我们在仿真模拟方面前进了一大步[1]。虽然分形具有无规则性和复杂性,但自相似性是分形理论的基础,所以可以借助一些算法在计算机上生成分形图形,如分形的递归算法、分形的字符串的替换算法、分形的迭代算法、分形的逃逸时间算法^[2]等。除去借助基本的分形理论进行图形绘制,Cantor 集、Koch 曲线、Sierpinski 集、Julia 集、Mandelbrot 集、牛顿法迭代分形、L-system 分形等都是经典的分形图形。

3. 方法描述

Koch 曲线是典型的分形曲线,其构造过程是通过反复使用生成元的相似图形,来取代每一直线段,其构造过程也决定了计算机上绘制该曲线的递归算法,即函数自己调用自己的过程^[3]。

具体来说,曲线的生成元为图 3.1 所展示的图形。曲线由第一折线段反复迭代成缩小比例为 1/3 的生成元而成。只要约定好迭代层数,之后反复迭代,就可以得到期望的曲线。

图 3.1 Koch 曲线生成元

4. 实验设置

此次实验是使用C++ OpenGL 库进行分形图形绘制。实验环境主要需要配置 OpenGL 相关的实验环境。

4. 1 GLAD

GLAD 是继 GL3W, GLEW 之后,当前最新的用来访问 OpenGL 规范接口的第三方库。简单来说,GLAD 主要用来调用 OpenGL 的各种方法。是使用 OpenGL 进行图形绘制的基本依赖。

4.2 GLFW

GLFW(Graphics Library Framework 图形库框架)是配合 OpenGL 使用的轻量级工具程序库。主要用于创建并管理窗口和 OpenGL 上下文,同时提供了处理手柄、键盘、鼠标输入的功能。

4.3 GLM

GLM (OpenGL Mathematics) 是一个专门针对 OpenGL 和图形学的数学库,旨在提供各种数学函数和数学结构,以便于在图形编程中进行数学计算。

4. 4 GLUT

GLUT(OpenGL Utility Toolkit)是一个用于创建窗口和处理用户输入的库,旨在简化 OpenGL 应用程序的开发过程。它提供了一组简单易用的函数。通过 GLUT 开发者可以快速搭建起一个基本的 OpenGL 应用程序框架而无需关注底层的窗口管理和时间处理细节。

5. 实验过程与结果

此次实验中主要使用本文第四部分所描述的环境进行基于Koch 曲线的分形图形绘制。5.1 主要叙述实验过程与部分代码实现。5.2 主要进行实验结果的展示。

5.1 实验过程概要

根据第三部分对于Koch 曲线原理的说明,实验首先需要进行的是定义基本元。实验中首先绘制一个正三角形,如图 5.1。

图 5.1 实验初始图形

在此次实验中,绘制分形的基本方法是使用递归算法。在计算机程序设计中,递归是指一个过程直接或间接地调用其自身的一种算法[31]。此次实验中使用直接调用自身的方法设计递归算法,如图 5.2。绘制逻辑是:分别在正三角形的三条边上进行基于Koch 曲线方法的绘制。方法 dividLine 中使用Depth 参数进行递归深度的控制,如图 5.1 所示。

```
void dividLine(aPoint a, aPoint b, int Depth)
{
   if (Depth == 0)
   {
        // Mint=AMI
        float vertices[] = {
            a.x, s.y, s.z, 1.0f, 1.0f, 1.0f,
            b.x, b.y, b.z, 0.0f, 0.0f, 0.0f,
        };
        glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_DYNAMIC_DRAN);
        glDrawArrays(GL_LIMES, 0, 2);
   }
   else
   {
        aPoint v1 = mix(a, b, 1.0f / 3.0f);
        aPoint v3 = mix(a, b, 2.0f / 3.0f);
        aPoint v2 = caculatev2(v1, v3);
        // #414.MIMI
        dividLine(a, v1, Depth - 1);
        dividLine(v2, v3, Depth - 1);
        dividLine(v3, b, Depth - 1);
    }
}
```

图 5.2 分形图形绘制的递归算法

5.2 实验结果

此次实验中,一共有深度为0,1,5,10四幅图片被绘制,如图5.3所示。

图 5.3 (左上) 深度为 0 的分形绘制 (右上) 深度为 1 的分形图绘制 (左下) 深度为 5 的分形图绘制 (右下) 深度为 10 的分形图绘制

6. 结论

根据第二小节对Koch 曲线原理的介绍可知,分形图形的绘制是通过初始图形中的每一条线段进行。此次实验中所设置的初始图形为正三角形,如图 5.3 左上。深度为 1 时展现了Koch 图形绘制的基本原理。如图 5.3 右上所示,图形在初始正三角行的基础上,在每一条边的基础上添加了基本元的相似图形,最终形成一个类六芒星的图形。由于原始图形是一个正多边形,当递归深度加深时,图形逐渐趋于雪花形状,如图 5.3 左下与图 5.3 右下所示。由于计算机硬件性能限制,深度为 10 的图形绘制并不清晰,且绘制后性能出现明显下降。

参考文献

- [1]郭冬梅、孙兰凤等.分形几何在计算机图形学中的应用.机械设计,2001 (2),28~30
- [2]徐淑平、李春明. 分形图的生成算法研究. 微机发展, 2005, 15 (9): 4~6
- [3] Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: Freeman, 1982