CO-2 - Probability Session-08:

Session Topic: Continuous Random Variables: Uniform, Exponential and Normal Random Variables

Probability, Statistics and Queueing Theory (Course code: 21MT2103RA)

CO#2 (Probability)

- Continuous Random Variables: Uniform, Exponential and Normal Random Variables
 - Expectation of a Random Variable : Discrete and Continuous

 Case
 - Expectation of a Function of a Random Variable
 - Higher Order Moments, Variance, Standard Deviation
 - Jointly Distributed Random Variables
 - Joint Distribution Functions, Independent Random Variables

Continuous Random Variables

X is a **continuous** random variable if X can have values in an **interval** on the real number line.

Examples of continuous random variables

Description	Range of X
C, the temperature in Celsius of water	(0,100)
B, the amount of time I wait for the next bus (in hours)	(0,∞)

Notation: X name of a random variable

x the value of X after a random experiment

Probability Density Function: definition

The **probability density function** (pdf) gives the probability of a continuous random variable X having values in a short **interval** around a given value x.

If f(x) is the probability density function of a continuous random variable X, then the probability of X having values in an interval [a,b] is given by

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

$$f(x)$$

Probability Density Function: properties

Properties of a **probability density function**:

$$f(x) \geq 0$$

2.
$$\int_{-\infty}^{f(x)} f(x) \, \mathrm{d}x = 1$$

source: http://www.alextsun.com/files/Prob_Stat_for_CS_Book.pdf

Probability Density Function (pdf)

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f(x) dx = 0$$

The probability of a continuous random variable X taking a **particular** value y is 0, even though the value of the probability density function is nonzero at y.

6

Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of a continuous random variable is defined as x

$$F(x) = \int_{-\infty}^{x} f(x) \ dx$$

where f(x) is the probability density function of the continuous random variable. It can be shown that

$$P(a \le X \le b) = F(b) - F(a)$$

Notation:

f(x) probability density function of a continuous random variable

F(x) cumulative distribution function

Continuous Random Variables: Uniform, Exponential and Normal Random Variables

1. Uniform distribution: pdf

A continuous random variable X is said to have a Uniform distribution over the interval [a,b], shown as $X \sim U[a,b]$, if its pdf, f(x), is as follows:

$$\left\{egin{array}{ll} rac{1}{b-a} & ext{for } x \in [a,b] \ 0 & ext{otherwise} \end{array}
ight.$$

X is equally likely to be take on any value in [a, b]. The graph of f(x) is shown below.

Uniform distribution: CDF

The CDF, F(x), of a uniform random variable is shown below:

$$\left\{egin{array}{ll} 0 & ext{for } x < a \ rac{x-a}{b-a} & ext{for } x \in [a,b] \ 1 & ext{for } x > b \end{array}
ight.$$

The graph of F(x) is shown below:

2. Exponential distribution: pdf

A continuous random variable X is said to have a said to have an exponential distribution with parameter $\lambda>0$, shown as $X\sim Exponential(\lambda)$, if its pdf is given by

$$f_X(x) = egin{cases} \lambda e^{-\lambda x} & x > 0 \ 0 & ext{otherwise} \end{cases}$$

Graphs of pdfs of exponential distributions with different parameters.

Exponential distribution: CDF

The CDF of exponential random variable (for x > 0) is given by

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}.$$

c.d.f. of $F(x) = 1 - e^{-x}$ for exponential r.v. $\mathcal{E}(1)$

Exponential distribution: memoryless property

Exponential distribution is often used to model the time elapsed between events.

An important fact about the exponential distribution it that it has the

$$P(X \ge x + z \mid X \ge z) = \frac{P(X \ge x + z)}{P(X \ge z)} = \frac{e^{-\lambda(x+z)}}{e^{-\lambda z}} = e^{-\lambda x} = P(X \ge x).$$

If X were the life of something, such as 'how long this phone call to my mother will last', the memoryless property says that after we have been talking for 5 minutes, the distribution of the remaining duration of the call is just the same as it was at the start. This is close to what happens in real life.

3. Normal distribution

The normal distribution (or Gaussian distribution) with parameters μ and σ^2 has the following probability density function:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

To indicate that X has this distribution we write $X \sim N \ (\mu, \, \sigma^2 \,)$.

The parameter μ is the **mean** of the distribution, and σ^2 is the **variance**. The positive square root of variance, σ , is called the **standard deviation**. σ is a measure of the spread of data around the mean.

Standard Normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty.$$

is the probability density function of $X \sim N (\mu, \sigma^2)$. When $\mu = 0$, and $\sigma = 1$, the distribution is called the **standard normal distribution**. The graph of the probability density function of $X \sim N (0, 1)$ is shown below:

Normal distribution: pdfs with varying parameter values

Normal distribution:

pdfs

CDFs

Note: CDF $(x = \mu) = 0.5$

References

* Section 4.1, 4.2 of TS1: Alex Tsun, Probability & Statistics with Applications to Computing (Available at:

http://www.alextsun.com/files/Prob_Stat_for_CS_Book.pdf)

*

https://www.probabilitycourse.com/chapter4/4_1_0_continuous_random_vars_dist_ributions.php

- * Chapter VII of TP1: William Feller, An Introduction to Probability Theory and Its Applications: Volume 1, Third Edition, 1968 by John Wiley & Sons, Inc.
- * Richard Weber's course on Probability, http://www.statslab.cam.ac.uk/~rrw1/prob/prob-weber.pdf

Video:

https://www.youtube.com/watch?v=-5sOBWV0qH8&list=PLeB45KifGiuHesi4PALNZSYZFhViVGQJK&index=19