Nek Sharan

CONTACT Information 3200 Canyon Rd, Apt 4102 Los Alamos, NM 87544 USA *Phone:* (217) 419-1197 *E-mail:* nsharan@lanl.gov

RESEARCH Interests Numerical methods for partial differential equations, turbulent flows, large-eddy simulations, combustion, overset-grid/AMR methods, high-performance computing

EDUCATION

University of Illinois at Urbana-Champaign, USA

Ph.D., Aerospace Engineering, December 2016

- Dissertation Topic: "Time-stable high-order finite difference methods for overset grids"
- Advisors: Daniel J. Bodony & Carlos Pantano
- GPA: 4.0/4.0

Indian Institute of Technology Bombay, India

M. Tech & B. Tech (Dual Degree), Aerospace Engineering, August 2011

- Dissertation Topic: "Numerical Simulation of Axisymmetric Jets"
- Advisor: Avijit Chatterjee
- GPA: 8.9/10.0

Honors and Awards CTO Pathfinder Award for exceptional innovation leadership at Procter & Gamble Co. (P&G), 2012

IIT Bombay Heritage Fund Scholarship for exemplary academic performance in years 2006-07, 2008-09 and 2009-10

Undergraduate Research Opportunity (UROP) for a cademic excellence and research skills (awarded to 5 out of 600 students) in 2008

Certificate of Merit (national top 1%) in Indian National Physics Olympiad (INPhO) 2006

Science & Technology Merit Certificate (national top 0.1%) in All India Secondary School Examination (AISSE) 2004

ACADEMIC EXPERIENCE

Los Alamos National Laboratory, USA

Postdoctoral Research Associate

April 2019 - Present

- Developed high-order, conservative, and energy-stable cut-cell method for direct numerical simulation (DNS) of fluid-structure interactions in high-Reynolds-number turbulent flows
- Diverse linear and non-linear numerical tests conducted to ascertain the accuracy, stabiliy, and conservation properties of the new method
- Programming the developed method in a 3D parallel compressible-flow solver to simulate shock-particle interactions

California Institute of Technology, USA

Postdoctoral Scholar

October 2016 - April 2019

- Performed turbulent-jet DNS and LES to study multicomponent species diffusion in high-pressure reacting flows encountered in diesel, gas turbine, and liquid rocket engines
- Developed finite-volume/-difference schemes to ensure passive and active scalar boundedness with uniform high-order accuracy and conservation in large-eddy simulations (LES)
- Programmed the developed method in a 3D parallel incompressible-flow LES solver
- Optimized reactant mixing in turbulent shear flows by exploiting mixing sensitivity to initial perturbation modes and boundary conditions

Guest Lecturer

April 2018 - June 2018

Delivered multiple guest lectures on turbulence modeling for practical applications

• Ae239b Turbulence

University of Illinois at Urbana-Champaign, USA

Graduate Research Assistant

August 2012 - September 2016

- Developed a provably time-stable overset-grid/AMR method for fluid-flow simulations
- Programmed a parallel compressible-flow solver using C++ and MPI to assess accuracy and stability of the developed overset method
- Performed an overset-grid LES of flow over a cosine-shaped (FAITH) hill using Lagrangian dynamic eddy-viscosity model
- Simulated a Mach 1.3 NASA supersonic nozzle jet DNS using overset grids to predict the acoustic field from a turbulent-jet flow

Teaching Assistant

January 2016 - May 2016

Duties included holding office hours every week, conducting tutorials on scientific programming, preparing homeworks, and grading.

• AE410 Computational Aerodynamics

Indian Institute of Technology Bombay, India

Research Assistant

July 2010 - July 2011

- Parallelized, using a hybrid OpenMP and MPI approach, an in-house axisymmetric LES solver
- Performed underexpanded and overexpanded supersonic-jet simulations to determine the jet screech frequency
- Developed an axisymmetric compressible-flow solver in Python and optimized its performance using Cython to achieve an execution time equivalent to the in-house C code

Teaching Assistant

July 2010 - April 2011

Duties included organizing classroom lessons, activities and presentations; assigning homeworks, projects, and grading.

- AE310 Engineering Design Optimization
- AE207 Introduction to Engineering Design

FH Aachen - Aachen University of Applied Sciences, Germany

Assistant Engineer

May 2009 - July 2009

- Modeled a H_2 combustion chamber with direct injection fuel system and a fully variable electric valve train system
- Generated a dynamic mesh in *Gambit* to represent moving piston and valve components
- Performed an in-cylinder fluid flow and partially-premixed combustion simulation using Fluent
- Investigated combustion chamber temperature and the amount of NO_x, CO and CO₂ in exhaust

Publications

- N. Sharan and J. R. Bellan. Numerical study of high-pressure turbulent jets using direct simulation. *Journal of Fluid Mechanics* (Under review).
- **N. Sharan**, P. T. Brady and D. Livescu. Time-stable strong boundary conditions in finite-difference schemes for hyperbolic systems. *Journal of Computational Physics* (Under review).
- N. Sharan, G. Matheou and P. E. Dimotakis. Turbulent shear-layer mixing: initial conditions, and direct-numerical and large-eddy simulations. *Journal of Fluid Mechanics*, 877 (2019): 35-81.
- N. Sharan, G. Matheou and P. E. Dimotakis. Mixing, scalar boundedness, and numerical dissipation in large-eddy simulations. *Journal of Computational Physics*, 369 (2018): 148-172.

- N. Sharan, C. Pantano and D. J. Bodony. Time-stable overset grid method for hyperbolic problems using summation-by-parts operator. *Journal of Computational Physics*, 361 (2018): 199-230.
- **N. Sharan**. Time-stable high-order finite difference methods for overset grids. *Doctoral Dissertation*, University of Illinois at Urbana-Champaign, 2016.

Conference Proceedings

- N. Sharan and J. R. Bellan. Turbulent mixing in supercritical jets: effect of compressibility factor and inflow condition, AIAA Paper 2020-1156, AIAA Scitech 2020 Forum.
- **N. Sharan**, P. T. Brady and D. Livescu. Stable and conservative boundary treatment for difference methods, with application to cut-cell discretizations, AIAA Paper 2020-0807, AIAA Scitech 2020 Forum.
- N. Sharan and J. R. Bellan. Numerical aspects for physically accurate Direct Numerical Simulations of turbulent jets, AIAA Paper 2019-2011, AIAA Scitech 2019 Forum.
- N. Sharan, C. Pantano and D. J. Bodony. Energy stable overset grid methods for hyperbolic problems. AIAA Paper 2014-2924, 7th AIAA Theoretical Fluid Mechanics Conference.
- N. Sharan and D. J. Bodony. High-order provably stable overset grid methods for block-structured adaptive mesh refinement. AIAA Paper 2013-2872, 21st AIAA Computational Fluid Dynamics Conference.
- N. Sharan and A. Chatterjee. Parallel Computation of Axisymmetric Jets. *Proceedings of the Python for Education and Scientific Computing (SciPy.in) 2010.*

Talks

- "Free-shear flow mixing computations: initial conditions, scalar boundedness and subgrid-scale effects", GALCIT Colloquium, California Institute of Technology, Pasadena, May 2020
- "High-order energy-stable boundary treatment for finite-difference cut-cell method", 72nd American Physical Society Division of Fluid Dynamics (APS DFD) Annual Meeting, Seattle, November 2019
- "Direct numerical simulation of high-pressure mixing in turbulent jets", 11^{th} US National Combustion Meeting, Pasadena, March 2019
- "Stable, high-order methods for overset grids and turbulent mixing in large-eddy simulations", Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Los Alamos, November 2018 (Invited)
- "Low-dissipation methods for overset/AMR grids and scalar boundedness in turbulent mixing simulations", Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, October 2018 (Invited)
- "Effects of numerical dissipation and unphysical excursions on scalar-mixing estimates in large-eddy simulations", 70^{th} American Physical Society Division of Fluid Dynamics (APS DFD) Annual Meeting, Denver, November 2017
- "Time-stable and conservative high-order finite difference methods for overset grids", UIUC AE Department Seminar, Urbana, April 2016.
- "High-order provably stable overset grid methods for hyperbolic problems, with application to the Euler equations", 68^{th} American Physical Society Division of Fluid Dynamics (APS DFD) Annual Meeting, Boston, November 2015

"Stable interface treatment in overset grid methods", 67th American Physical Society Division of Fluid Dynamics (APS DFD) Annual Meeting, San Francisco, November 2014.

"Intermittent Communication in Parallel Computation", 23rd International Conference on Parallel Computational Fluid Dynamics, Barcelona, May 2011.

"Axisymmetric Navier Stokes solver using Python and Cython", 12^{th} Annual CFD Symposium, IISc Bangalore, August 2010.

Industry Experience

Procter & Gamble Co. (P&G), Bengaluru, India

Pack(ag)ing Analyst, Modeling & Simulation Group

August 2011 - July 2012

Developed CFD and FEA models to simulate manufacturing process and packaging of consumer goods at production plants. Other projects included assessment of different nozzle designs for a new bottle-filling line, and automation of existing work processes for a faster turnaround time.

Jet Airways (India) Ltd., Mumbai, India

Management Trainee, Engineering Materials Department December 2008 - January 2009 Programmed a Visual Basic for Applications (VBA) tool to ensure a 95% service level of reusable aircraft parts. Developed an automated system for planning and scheduling of maintenance work for aircraft fleet, which saved 12 man-hours weekly.

SERVICES AND LEADERSHIP ROLES

- Reviewer for AIAA Journal (AIAA), Journal of Applied Acoustics (Elsevier), Journal of Hydroenvironment Research (Elsevier), Sensors (MDPI Open Access), Energies (MDPI Open Access)
- Organizer for Caltech K-12 Outreach Activities (2016–Present)
 - Conducted introductory workshops on Linux at Southern California Linux Expo (SCaLE-16x) 2018, Pasadena, CA
 - Engaged K-12 students in STEM research through events like Caltech Science for March, TeachWeek etc.
- Work-Culture Team Lead at Procter & Gamble Co. (P&G), India (2011–2012)
 - Partnered with local NGOs to conduct classes and trips for less-privileged children
- Institute Student Mentor at IIT Bombay, India (2009–2011)
 - Advised five students to help them overcome multiple backlogs through comprehensive course planning
 - Guided 24 freshmen to ensure their smooth transition into campus life
- Teaching Associate for National Social Service (NSS) at IIT Bombay, India (2006–2011)
 - Taught Mathematics, Science, and English classes to disadvantaged school children
 - Visited rural areas to conduct computer literacy sessions

Computer Skills

- Languages: C/C++, Fortran, Python, MATLAB, Visual Basic for Applications(VBA), Unix Shell Scripting, MPI and OpenMP parallel processing libraries, Git version control
- Softwares: Mathematica, ANSYS Fluent/Gambit, ABAQUS, LS-Dyna, HyperMesh, AcuSolve, VisIt, Tecplot, EnSight, LATEX
- Operating Systems: Unix/Linux, Windows, Mac OS X