2023-10-03

$$H' = H_0 + [H_2, S_1] + \frac{1}{2} \left[\underbrace{[H_7, S_1]}_{-H_2}, S_1 \right]$$

$$= H_0 + \frac{1}{2} [H_1, S_1] \quad \text{à l'ordre 2}$$

$$H' = H_x = \hbar \omega_r a^{\dagger} a + \hbar \left(\frac{\omega_q}{2} + \chi \right) + \hbar \chi a^{\dagger} a \sigma_z$$

$$= \hbar \left(\omega_r + \sigma_z \right) a^{\dagger} a + \hbar \left(\frac{\omega_r}{2} + \chi \right) \sigma_z$$

Le qubit déplace la fréquence de résonance du résonateur de $\pm \chi$

Critère plus précis pour que la transformation de SW doit valide.

$$\begin{split} \|V\| &= \max_{|\psi\rangle} \|V|\psi\rangle\| = \max_{|\psi\rangle} \left| \langle \psi | \, \tilde{V}^\dagger V | \psi \rangle \right| < \frac{\Delta_{\min}}{2} \\ \Delta_{\min} &= \Delta \qquad |\psi\rangle = |n\sigma\rangle \\ \|V\| &= g \, (n+\sigma)^{\frac{1}{2}} \ll \frac{\Delta}{2} \\ \|V\| &= g (n+\sigma)^{\frac{1}{2}} \ll \frac{\Delta}{2} \end{split}$$

On veut donc

$$n \ll n_{\rm crit}^{\sigma} \equiv \left(\frac{\Delta}{2g}\right)^2 - \sigma$$

Nonbre de petit photons: n_{crit}

vrai petit paramètre $\frac{n}{n_{\text{crit}}}$

4.3.3 Régime dispersif transmon

$$H = \frac{q_{r^2}}{2c} + \frac{\phi_r}{2L} + \underbrace{4Z_c n_q - E_J \cos \varphi_q}_{H_q} + 2\beta \frac{q_r}{c} n_q$$

avec
$$\beta = \frac{c_g}{c_I}$$

$$H_g = \hbar \sum_{k=0}^{\infty} \omega_k \, |k\rangle\langle k|$$

$$H = \hbar \omega_r a^{\dagger} a + \hbar \sum_k \omega_k |k\rangle\langle k| + i\hbar \sum_{k,k'} g_{k,k'} \left(a^{\dagger} - a \right) |k\rangle\langle k'|$$

avec

$$g_{k,k'} = \frac{2e\beta}{\hbar} \sqrt{\frac{\hbar\omega_0}{2c}} n_{k,k'}$$

où
$$n_{k,k'} = \langle k | \, n_q \, | k \rangle \qquad g_{k,k'} = g_{k,k'}^* = g_{k',k}$$