# Numerical Mathematics Lab session 4

Stefan Evanghelides (s2895323) and Frank te Nijenhuis (S2462575)

May 22, 2018

# 1 Preparation

#### 1.1 Iterative Methods

2. Having  $x^{(k+1)} = x^{(k)} + \alpha_k P^{-1}(b - Ax^{(k)})$ , we can subtract x in both sides to obtain a relation between  $e^{(k+1)}$  and  $e^{(k)}$ :

$$\begin{split} e^{(k+1)} &= e^{(k)} + \alpha^{(k)} P^{-1} (b - Ax^{(k)}) \Leftrightarrow \\ e^{(k+1)} &= e^{(k)} + \alpha^{(k)} P^{-1} (b - A(x^{(k)} - x + x)) \Leftrightarrow \\ e^{(k+1)} &= e^{(k)} + \alpha^{(k)} P^{-1} (b - Ax - A(x^{(k)} - x)) \Leftrightarrow \\ e^{(k+1)} &= e^{(k)} + \alpha^{(k)} P^{-1} (-A(x^{(k)} - x)) \Leftrightarrow \\ e^{(k+1)} &= e^{(k)} - \alpha^{(k)} P^{-1} A e^{(k)} \Leftrightarrow \\ e^{(k+1)} &= (I - \alpha^{(k)} P^{-1} A) e^{(k)} \Leftrightarrow \\ e^{(k+1)} &= B_{\alpha_k} e^{(k)} \end{split}$$

3. A is real symmetric and positive definite matrix. The A-norm is defined as follows

$$||e^{(k)}||_A = \sqrt{(e^{(k)})^T A e^{(k)}}$$

6.

(a) 
$$\beta_{\alpha_{opt}} = 1 - \alpha_{opt}\lambda_{min} = 1 - \frac{2}{\lambda_{min} + \lambda_{max}}\lambda_{min} = \frac{\lambda_{min} + \lambda_{max}}{\lambda_{min} + \lambda_{max}} - \frac{2\lambda_{min}}{\lambda_{min} + \lambda_{max}} = \frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}}$$

(b) We start by the definition of the residual  $r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + \alpha_k P^{-1}r^{(k)})$ 

We know that P = I, so we obtain  $r^{(k+1)} = b - Ax^{(k)} - \alpha_k Ar^{(k)}$ 

Then we can add and subtract  $r^{(k)}$ :  $r^{(k+1)} = b - Ax^{(k)} - r^{(k)} + r^{(k)} - \alpha_k Ar^{(k)}$ 

The first 3 terms on the right side of the equation are 0, because  $r^{(k)} = b - Ax^{(k)}$ , obtaining:

$$r^{(k+1)} = (I - \alpha_k A)r^{(k)} \Rightarrow r^{(k+1)} = B_{\alpha}r^{(k)}$$

Having proven the above, we can apply the 2-norm, obtaining

$$||r^{(k+1)}||_2 = ||B_{\alpha}r^{(k)}||_2 \le ||B_{\alpha}||_2 \cdot ||r^{(k)}||_2$$

We have to prove  $||B_{\alpha}||_2 \leq \rho(B_{\alpha})$ . We know from equation 5.29 that  $||Aw|| \leq \lambda_{max}||w||, \forall w \in \mathbb{R}^n$ 

Having  $A = B_{\alpha}$  and  $w = r^{(k)}$ , we can infer that  $||B_{\alpha}r^{(k)}||_2 \leq \lambda_{max} \cdot ||r^{(k)}||_2$ 

We also know that by definition  $\rho(B_{\alpha}) = \lambda_{max}$  and therefore  $||r^{(k+1)}||_2 \le \rho(B_{\alpha}) \cdot ||r^{(k)}||_2$ 

(c) Knowing that  $||r^{(k+1)}||_2 \le \lambda_{max}||r^{(k)}||_2$  we can infer that  $||r^{(k)}||_2 \le \lambda_{max}^k||r^{(0)}||_2$ 

So,  $\lambda_{max}^k \ge \frac{||r^{(k)}||_2}{||r^{(0)}||_2}$ . The equality is achieved when  $k = k_{min}$ , therefore we obtain:

$$\lambda^{k_{min}} = \frac{||r^{(k)}||_2}{||r^{(0)}||_2} \Rightarrow k_{min} = \frac{\log(\frac{||r^{(k)}||_2}{||r^{(0)}||_2})}{\log(\lambda)}$$

We now have to prove that  $||r^{(k)}||_2 = \epsilon ||b||_2$ 

### 1.2 Power Iteration

- 2.  $\lambda^{(k)} \to \lambda_1$  when the matrix A has one eigenvalue  $(\lambda_1)$  strictly greater than the other eigenvalues (so A must be a generic matrix), and the vectors  $x^{(0)}$  and  $x_1$  should NOT be orthogonal.
- 3. In the case of a generic matrix, the convergence rate is  $||y^k (y^{k^H}x_1)x_1|| \le C|\frac{\lambda_2}{\lambda_1}|^k$ . In the case of a Hermitian matrix, it is proportional to  $||y^k (y^{k^H}x_1)x_1|| \le C|\frac{\lambda_2}{\lambda_1}|^{2k}$  Since A is Hermitian, it is diagonalizable. In this case, the convergence rate is  $\le C\frac{|\lambda_2|}{|\lambda_1|}^k$ .

# 2 Lab Experiments

# 2.1 Iterative Methods

Running the program yields the following results:



Figure 1: Convergence using different values for P and  $\alpha_k$ 



Figure 2: Solution surface for the Poisson problem

### 2.2 Power iteration

Running the program yields the following results



Figure 3: Relative error of the lambda approximation



Figure 4: Lambda approximation for each iteration

## 3 Discussion

Running the following commands

```
Q = gallery('poisson', 100);
whos Q
fullQ = full(Q);
whos fullQ
```

Yield the following output

| Name  | Size        | Bytes     | Class  | Attributes |
|-------|-------------|-----------|--------|------------|
| Q     | 10000x10000 | 873608    | double | sparse     |
|       |             |           |        |            |
| Name  | Size        | Bytes     | Class  | Attributes |
| full0 | 10000×10000 | 800000000 | double |            |

This clearly shows that having a sparse matrix utilizes nearly 100 time less space than the full matrix.

#### 3.1 Iterative methods

- 1. The optimal value for  $\alpha_k$  in (2) minimizes the spectral radius for  $\rho(B_\alpha)$ . When using the Gauss-Seidel preconditioner we cannot find this optimal  $\alpha_k$  because there is not a single iteration matrix  $B_\alpha$ , since it is constantly being updated during the calculation.
- 2. One of the conditions for  $||\cdot||_A$  to be a norm is for its value to always be greater than or equal to zero. This only happens when  $\mathbf{e}^T A \mathbf{e} \geq 0$ ,  $\forall \mathbf{e} \in \mathbb{R}^n$ , that is, when A is positive semidefinite. Therefore, minimizing this quantity only makes sense when using a positive semidefinite A.
- 3. Apart from minimizing the A norm, we can also minimize the 2-norm in the residual.
- If A has full rank this means that it is invertible. The product of two invertible matrices,  $A^TA$ , is also invertible. Furthermore,  $A^TA$  is symmetric,  $(AA^T)^T = (A^T)^TA^T = AA^T$ , and this tells us that its eigenvalues are real. Therefore,  $||\mathbf{e}||_{A^TA} \ge 0, \forall \mathbf{e} \in \mathbb{R}^n$  is a norm.
- 4. Since we know that  $\lambda_{min} + \lambda_{max} = 8$ , we know that  $\alpha_{opt} = \frac{2}{8} = \frac{1}{4}$ . A general iterative method is of the form  $x^{k+1} = x^k + \alpha_k P^{-1} r^k$

The preconditioner we are handed by iterCompare for the Jacobi method is equal to 4I. Its inverse is therefore  $\frac{1}{4}I$ , such that the update step of the Jacobi method with  $\alpha=1$  is the same as the method using no preconditioner P=I and an  $\alpha_{opt}=\frac{1}{4}$  when substituting in the general formula.

5. We have

$$[\rho(B)]^{k_{min}} \le \epsilon$$

with  $tol = \epsilon = 10^{-12}$ . Now we perform the MATLAB command  $P_{jacobi} = A - diag(diag(A))$ ;, which gives us the desired preconditioner. The script find\_k\_min calculates  $k_{min} = 13$ , a theoretical bound which is much lower than the value of 639, so they do not coincide.

6.

#### 3.2 Power iteration

- 1. Since  $\alpha_k$  is constant, then the matrix  $B = I \alpha P^{-1}A$  will stay constant, meaning that the approximation of the solution for k iteration will be  $x^{(k)} = B^k x^{(0)}$ .
- 2. The convergence factor is 1. It agrees with the theory because the relative error is proportional to the  $\left|\frac{\lambda_2}{\lambda_1}\right|^k$ , so the loglog plot will appear (nearly) linear.
- 3. If no component is in the direction of  $x_1$ , then  $y^{(k)}$  does not converge, so  $\lambda^{(k)}$  will not converge. In practice, this is highly unlikely, because of the round-off errors.