# Chipathon 2025 AC3E-Chile team

Power MOSBius - Project proposal

#### Datasheet - Functionality

- Power integrated circuits are a growing topic in the context of energy autonomous and compact electronic systems: IoT, wearables, nanosatellites, etc.
- At AC3E-USM, we have been researching and implementing power management integrated circuits using open source tools for the last 3 years
  - Easy to implement + modular + friendly with older technologies
- Our goal is to implement an educational chip for integrated power electronics
  - Power MOSBius -, with the following features:
    - o Full closed DC-DC buck converter operation test with digital and time-based control
    - Full 3-phase closed DC-DC buck converter operation test with digital and time-based control
    - Full closed DC-DC buck converter differential operation test with digital and time-based control
    - Independent testing of each building block, including: open loop buck operation, VCO characterization and digital circuit testing

Datasheet - Block diagram

 To achieve this goal, the plan is to have a set of building blocks that, through the usage of the MOSbius switch matrix, will allow the implementation and testing of the different features



#### Datasheet - Block diagram (Power Stage)

Regarding complexity, the power stage has 2 transistors for a half bridge DC-DC converter and 10 transistors for each level shifter. Thus, 66 transistors for the 3 power stages involved in the chip. The design for each stage is quite complex due to the efficiency analysis and maximum current expected.

 $V_{DD}=1.8V$ 

 $M_{D10}$ 

 $V_{GND} = 0V$ 

 $\bowtie$   $M_{D2}$ 



DC-DC Buck Converter

#### Datasheet - Block diagram (VCO)

For the ring VCO, each stage will have 8 transistors. Depending on the phases required for the converters, the number stages for the ring will change using the switch matrix. The complexity for this design relays on the central frequency requirement and linearity, which is increases due to the amount of transistor parameters that affect it.



#### Datasheet - Block diagram (PD, NOL)

 For the Phase Detector (PD) and Non-Overlapping (NOL) blocks, the complexity is low due to the usage of standard cells from the GF180 library. Regarding the number transistors, it is unknown at the moment as the standard cells haven't been explored internally.



#### Datasheet - Pinout



#### Datasheet - Pinlist

| Pin# | Pin name | type   | Description                                   |
|------|----------|--------|-----------------------------------------------|
| 1    | VCONT1   | Input  | Voltage-Controlled Oscillator control voltage |
| 2    | VCONT2   | Input  | Voltage-Controlled Oscillator control voltage |
| 3    | VCO1_out | Output | Output of Voltage-Controlled Oscillator       |
| 4    | VCO2_out | Output | Output of Voltage-Controlled Oscillator       |
| 5    | PD_out_1 | Output | Output of Phase Detector                      |
| 6    | PD_out_2 | Output | Output of Phase Detector                      |
| 7    | PD_out_3 | Output | Output of Phase Detector                      |

| Pin # | Pin<br>name  | type   | Description                                           |
|-------|--------------|--------|-------------------------------------------------------|
| 8     | pwm_<br>ext1 | Input  | PWM external input                                    |
| 9     | pwm_<br>ext2 | Input  | PWM external input                                    |
| 10    | pwm_<br>sel  | Input  | PWM mode selection                                    |
| 11    | NOC_<br>p_1  | Output | Non-Overlapping Circuit control signal- positive side |
| 12    | NOC_<br>p_2  | Output | Non-Overlapping Circuit control signal- positive side |
| 13    | NOC_<br>p_3  | Output | Non-Overlapping Circuit control signal- positive side |
| 14    | NOC_<br>n_1  | Output | Non-Overlapping Circuit control signal- negative side |
| 15    | NOC_<br>n_2  | Output | Non-Overlapping Circuit control signal- negative side |
| 16    | NOC_<br>n_3  | Output | Non-Overlapping Circuit control signal- negative side |

#### Datasheet - Pinlist

|       | î        | i      | i                                                            |
|-------|----------|--------|--------------------------------------------------------------|
| Pin # | Pin name | type   | Description                                                  |
| 17    | GD_p     | Output | Gate driver<br>control signal for<br>PMOS (positive<br>side) |
| 18    | GD_p     | Output | Gate driver<br>control signal for<br>PMOS (positive<br>side) |
| 19    | GD_p     | Output | Gate driver<br>control signal for<br>PMOS (positive<br>side) |
| 20    | GD_n     | Output | Gate driver<br>control signal for<br>PMOS (negative<br>side) |
| 21    | GD_n     | Output | Gate driver<br>control signal for<br>PMOS (negative<br>side) |

| Pin# | Pin name | type   | Description                                                  |
|------|----------|--------|--------------------------------------------------------------|
| 22   | GD_n     | Output | Gate driver<br>control signal for<br>PMOS (negative<br>side) |
| 23   | VDD_CTRL | Input  | Power Supply<br>Voltage for<br>PD,NOL and<br>VCO             |
| 24   | VDD_PS   | Input  | Power Supply<br>Voltage for the<br>power stage               |
| 25   | VSS_PS   | Input  | Ground<br>reference for the<br>power stage                   |
| 26   | VOUT     | Output | Output Voltage                                               |
| 27   | CLK      | Input  | Switch matrix<br>Clock inputl                                |
| 28   | EN       | Input  | Switch matrix<br>manual enable                               |
| 29   | DT       | Input  | Switch matrix<br>Data input                                  |

#### Datasheet - Application diagram: three-phase operation



#### Datasheet - Application diagram: single-phase operation



#### Datasheet - Application diagram: differential operation



#### Datasheet - Application diagram: single-block testing

1. Open-loop operation



2. VCO characterisation



3. Testing of digital blocks



#### NOTES ON FPGA:

- Model: Nexys A7 FPGA (used in previous work)
- Why FPGA? Need short dead time values for open-loop op.
- FPGA will also be used for switch matrix control to avoid several boards

13

#### Team members + tasks

- Power stage + gate driver design
  - Maximiliano Jofré + Felipe Rojas
- Switch matrix layout macros
  - Fernanda Quintana + Max Vega
- Digital circuit (phase detector + dead time) design and automated layout
  - Jesus Ávila, Manuel Díaz, Julián Cardozo y Fernando Bonomi
- VCO design, top level simulations and proposal writing
  - Vicente Osorio + Jorge Marín
- Top integration
  - All members

### Week-by-week schedule

| Chipathon<br>plan       | Week | Task group: Power<br>stage + gate driver<br>design | Task group: Switch matrix layout macros      | Task group: Digital circuit (phase detector + dead time) | Task group: VCO<br>design + top level<br>simulations | Task group: Top integration             |
|-------------------------|------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|
|                         | 27   | N/A                                                | * Preliminary layout scripting in Python     | * Preliminary study of sch2gds flow                      | * Proposal writing * First VCO simulations           | * Preliminary block and pin definitions |
|                         | 28   | * PS + GD circuit<br>simulation in GF180           | * Switching matrix specification definition  | * Preliminary study of sch2gds flow                      | * VCO optimization + circuit simulation              | * Improved block and pin definitions    |
| Team<br>Formation       | 29   | * PS + GD circuit<br>simulation in GF180           | * Transmission gate design                   | * Migration of PD + NOL from IHP to GF                   | * VCO optimization + circuit simulation              | * Improved block and pin definitions    |
| and Project<br>Planning | 30   | * Power transistor layout                          | * Transmission gate layout (scripted)        | * Migration of PD + NOL from IHP to GF                   | * VCO + PD + NOL circuit simulation                  | * Pad ring initial floorplan            |
|                         | 31   | * Power transistor layout                          | * Tgate array layout (scripted)              | * VCO cell layout                                        |                                                      | * Pad ring initial floorplan            |
|                         | 32   | * Gate driver layout                               | * Digital switch matrix circuitry definition | * VCO cell layout                                        |                                                      | * Help in top integration               |
| Design and Simulation   | 33   | * Gate driver layout                               | * Digital switch matrix circuitry design     | * VCO top layout                                         |                                                      | * Help in top integration               |

## Week-by-week schedule

|              | 34 | * PS + GD layout          | * Integration of Tgate<br>array + digital circuits | * VCO top layout          |                           | * Help in top integration |
|--------------|----|---------------------------|----------------------------------------------------|---------------------------|---------------------------|---------------------------|
|              | 35 | * PS + GD layout          | * Integration of Tgate<br>array + digital circuits | * Help in top integration | * Help in top integration | * Help in top integration |
|              | 36 | * Help in top integration | * Tgate + digital co-simulation                    | * Help in top integration | * Help in top integration | * Help in top integration |
|              | 37 | * Help in top integration | * Tgate + digital co-simulation                    | * Help in top integration | * Help in top integration | * Help in top integration |
|              | 38 | * Help in top integration | * Help in top integration                          | * Help in top integration | * Help in top integration | * Help in top integration |
| Layout and   | 39 | * Help in top integration | * Help in top integration                          | * Help in top integration | * Help in top integration | * Help in top integration |
| Verification | 40 | * Help in top integration | * Help in top integration                          | * Help in top integration | * Help in top integration | * Help in top integration |