Decoding/ Machine learning

@kordinglab

Shameless plug: Please read 10 simple rules for structuring papers

Outline

- 0) Why decoding/ML
- I) Overfitting
- II) Crossvalidation
- III) Regularization
- IV) RNNs ftw
- V) Which methods to use and when

O: ML is getting popular in biomedical science

A) Solve engineering problems

Encoding: Cure blindness

B) Understand data

Example: MVPA

From: Mahmoudi et al

C) Provide a benchmark

Being better than another model does not make a model true.

See Jonas and Kording, Could a neuroscientist understand a microprocessor 2017

How to think of GLMs

D) Model for brain

Systems Neuroscience

Machine Learning

Anatomy:

Architecture:

Plasticity Rules:

Learning Rules:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{x_i}; \mathbf{w})$$

Tutorial

Always simulate data first

- Big things, whole organisms
- Medium things, groups of connected neurons
- Small things, say linear generators

Big: organism

Is neuroscience on the right path?

What is understanding?

- Fix whatever is wrong
- Simulate it
- Marr levels
 - Computational
 - Algorithmic
 - Mechanistic

MOS 6502

Courtesy http://visual6502.org

How it actually works

Multi scale

1-bit Adder

logic gate primitives

AND gate

I/V for single gate

AND gate (silicon)

3 Behaviors

a. Donkey Kong (DK)

b. Space Invaders (SI)

c. Pitfall (PF)

Lesion studies

Lesions which impact single behavior

"Spike data"

Tuning curves

LFPs and power law spectra

Granger causality

a. Donkey Kong

b. Space Invaders

c. Pitfall

Whole chip

Nonnegative matrix factorization finds something

Medium: Simulate a trivial causal system

$$x_{t+1} = Ax_t + \epsilon$$

Where

$$\epsilon \sim \mathcal{N}(0,\Sigma)$$

$$\Sigma = diag(nL)$$

Choose A: sparse binary (p=.1), largest SV=.99

Delayed Correlation vs Causation

0) Simulate neural activities

CODE

1) Overfitting

CODE

2) Crossvalidation

(2) Wrong way of assessing Quality e.g. bad crossvalidation

Cheating works

Massive overconfidence

Literature review

Cheating helps

No one cares

Relatedly: Wrong way of comparing e.g. personal baselines

Variance explained

Personal vs group baselines

Machine learning often does not help

User lift

Dataset	Problem	Model	Avg. Personal Baseline Error	Avg. Personal Model Error	Avg. User Lift (Error)	p-value
SL—Stress	binary	Log.Reg.	29.19%	29.09%	0.10	.481
FaF—Happiness	binary	SVM(rbf)	16.51%	18.67%	-2.17	.967
FaF—Stress	binary	SVM(rbf)	25.17%	23.35%	1.82	.240
SL—Stress	regression	Elastic Net	0.75	0.78	-0.03	.988
FaF—Happiness	regression	Elastic Net	0.81	0.83	-0.02	.999
FaF—Stress	regression	Elastic Net	1.10	1.13	-0.03	1.000

https://doi.org/10.1371/journal.pone.0184604.t001

Literature review

Machine learning often does not help

Does ML even help?

Let us talk about train/validation/test

CODE

3) Regularization

Blackboard

Code

4) With RNNs

Naive Bayes

CODE

Now lets take some time to go through the python version

5) Comparison on real data

Glaser, Choudhury, Perich, Miller, Kording

Dealing with time

Non-recurrent decoders

Recurrent decoders

Decoding (Neurons-> movement)

Finding generalizes

CODE

```
#Use one-hot coding for y
if y_train.ndim==1:
    y_train=np_utils.to_categorical(y_train.astype(int))
elif y_train.shape[1]==1:
   y_train=np_utils.to_categorical(y_train.astype(int))
model=Sequential() #Declare model
#Add recurrent layer
#### MAKE RELU ACTIVATION BELOW LIKE IN REGRESSION????? ####
model.add(SimpleRNN(self.units, input_shape=(X_train.shape[1], X_train.shape[2]), dropout_W=self.dropout, dropout_U=self.dr
if self.dropout!=0: model.add(Dropout(self.dropout)) #Dropout some units (recurrent layer output units)
#Add dense connections to output layer
model.add(Dense(y_train.shape[1]))
model.add(Activation('softplus'))
#Fit model (and set fitting parameters)
model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy']) #Set loss function and optimize
model.fit(X_train,y_train,nb_epoch=self.num_epochs,verbose=self.verbose) #Fit the model
self.model=model
```

A post-rant

Tic Tac Toe

255,168 distinct games!

Compressable

Go

Probably no way to compactly describe it

They are all real. Replicable from Go grand master to Go grandmaster.

The brain?

- Can play world class Go
 - as a (semi)hobby
- Recognize images
 - without convolution
- Dance

CS approaches to estimate compressibility

- Distillation
- Complexity calculations
- Back of the envelope calculations

Distillation

from mc.ai

Factor 10-100 on MNIST, imaginet

e.g. Ba and Caruana, Zhu et al 2018

Can we compress NNs?

- MNIST -> soft decision trees
 - BAD
- imagenet

Complexity calculations

Many distinct ideas.

- e.g. Find which images in a training set do not help
 - Count how many do

Back of the envelope

- 10 bits/s
- pi*10^8 seconds/a
- 30 years

- 10^11 bits
- 10^6 bits/book -> 10^5 books

H(DNA)<<H(World)

- DNA: 2*3*10^9 nucleotides
 - mostly non-nervous system
 - of nervous system possibly much non-computational
 - very non-compressed
- Nurture >> Nature

Ok. So what if the brain is not compressible?

Tuning curves

No generalization

The dinosaur

And in the end

Causality missing, the interesting things missing

Connectomics

$$p(network) = p^{M}(1-p)^{\binom{n}{2}-M}$$

Dynamical systems

Monkey N-array

Brain not low-d, low-d description not understanding, causality missing

Neurons/ anatomy

Human Brain Anatomy

Markram style cell atlas

Learning centric

Human Brain Anatomy

Learning Dynamics

Anatomy (Googlenet)

Objective function (softmax)

$$P(y = j \mid \mathbf{x}) = \frac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

Optimizer (SGD)

$$Q(w) = \frac{1}{n} \sum_{i=1}^{n} Q_i(w)$$

$$w := w - \eta \nabla Q(w) = w - \eta \sum_{i=1}^{n} \nabla Q_i(w) / n$$