

PL1167

Single chip low power consumption and high performance

2.4GHz wireless radio frequency transceiver chip

Chip overview:

PL1167 is a world-wide ISM frequency converter working at 2.4~2.5GHz.

It is a single-chip low-power high-performance 2.4GHz wireless radio frequency transceiver chip.

The single-chip wireless transceiver integrates modules such as frequency synthesizer, power amplifier, crystal oscillator, and modem.

Output power, channel selection and protocol can be flexibly configured through SPI or I2C interface.

Supports functions such as frequency hopping and received signal strength detection, anti-interference performance.

Strong, can adapt to various complex environments and achieve excellent performance.

Built-in address, FEC and CRC check functions.

Built-in auto-answer and auto-resend functions.

The maximum transmit power of the chip can reach 5.5dBm, and the receiving sensitivity can reach -88dBm.

Built-in power management function, the standby current can be reduced to close to 1uA in power-down mode and standby mode.

Pin layout diagram:

Main features: Low

power consumption and high performance 2.4GHz wireless

frequency transceiver chip Wireless

speed: 1Mbps Built-in

hardware link layer Built-in received signal strength
detection circuit supports automatic response and
automatic retransmission functions Built-in address and FEC
and CRC check functions Very short channel Switching time, can
be used for frequency hopping. Use microstrip line
inductor and double-layer PCB board. Low
operating voltage: 1.9~3.6V. Package type: TSSOP16/
SOP16. TSSOP16/SOP16 can support SPI and I2C

application:

Wireless mouse, keyboard, game console joystick, wireless data

communication, wireless

access contro

wireless networking

security system,

remote control

device, remote

sensing survey, smart

sports equipment,

smart home, industrial

sensor, industrial and commercial short-range communication

IP phone, cordless phone toy

1 Overview

PL1167 is a single-chip low-power high-performance 2.4GHz wireless radio frequency transceiver chip working in the 2.4–2.5GHz world-wide ISM frequency hand

The single-chip wireless transceiver integrates modules such as frequency synthesizer, power amplifier, crystal oscillator, and modem.

Output power, channel selection and protocol can be flexibly configured through SPI or I2C interface.

Supports functions such as frequency hopping and received signal strength detection, anti-

It has strong interference performance and can adapt to various complex environments and achieve excellent performance.

Built-in address, FEC and CRC check functions.

Built-in auto-answer and auto-resend functions.

The maximum transmit power of the chip can reach 5.5dBm, and the receiving sensitivity can reach -88dBm.

Built-in power management function, the standby current can be reduced to close to 1uA in power-down mode and standby mode.

2 features

Low power consumption and high performance 2.4GHz wireless radio

frequency transceiver chip Wireless

speed: 1Mbps Built-in hardware

link layer Built-in received signal strength detection

circuit Supports automatic response and automatic

retransmission functions Built-in address and FEC and CRC check functions

Extremely short channel switching time, can be used for

frequency hopping. Use microstrip line inductor and

double-layer PCB board. Low operating

voltage: 1.9~3.6V. Package type: TSSOP16/SOP16.

TSSOP16/SOP16 can support SPI and I2C interfaces.

3Quick reference data

Parameters	numerical value	unit
Minimum operating voltage	1.9	IN
Maximum transmit power	5.5	dBm
Data transfer rate Transmit	1	Mbps
mode power consumption @0dBm	16	mA
Receive mode power	17	mA
consumption Operating	-40 to +105	ÿ
temperature range	-88	dBm
Receive sensitivity Power consumption in power-down mode	1	uA

4 pin distribution diagram

TSSOP16/SOP16 pin distribution diagram is as follows:

5 pin description

Pin na	ime type desc	ription	
1	ASSS	power supply	Ground (0V)
2	N/C	hanging in the air	Leave unconnected
3	POINTS	Digital output transmit/re	ceive packet status indication bit
4	RSTB	Digital input reset pin, a	ctive low level
5	DVSS	power supply	Ground (0V)
6	SCSB	Digital input SPI: SPI int	erface slave mode enable signal, active low level
			Wake up the chip from SLEEP mode
			I2C: Wake up the chip from SLEEP mode
7	SCK/SCL digital input SC	K: SPI interface clock inpu	ıt .
			SCL: I2C interface clock input
8	SDI/A4	Digital input SDI: SPI int	erface data input
			A4: I2C interface address bit 4
9	SDO/SDA digital output		SDO: SPI interface data output (three-state when invalid)
		Numeric I/O	SDA: I2C interface data input and output I/O digital
10 MODE		input interface mode sel	ection:
			VSS: Select SPI interface
			VCC: Select I2C interface
11	VCC	power supply	Power supply (3.3V)
12 VDDO		power supply	1.8V internal LDO output, external capacitor
13 XOUT		Analog output crystal os	cillator output
14	ASK FOR	Analog input crystal osc	illator input
15	ANTB	antenna	Antenna interface
16	ON	antenna	Antenna interface

6Structure block diagram

7maximum ratings

parameter	symbol	scope	unit
VCC supply voltage	VCC	-0.3 to +3.6	IN
VDDO supply voltage input	VDDO	-0.3 to +2.5	IN
voltage output	COME	-0.3 to (VCC+0.3) -0.3	IN
voltage operating	VOUT	to (VCC+0.3)	
temperature	TOP	-40 to +105	ÿ
storage temperature	TST	-40 to +125	ÿ

Note: Exceeding the maximum rating may damage the device; chip functional characteristics beyond the recommended operating range cannot be guaranteed; working under Maximum rated conditions may affect device stability.

8Electrical Characteristics

(VCC=+3 $V\ddot{y}VSS=0V\ddot{y}TA=\ddot{y}40$ to + \ddot{y} 105 \ddot{y})

Symbol paramet	ers (conditions)	Description	Minimum Typ	icalMaxir	numUnit	
	working conditions					
VCC	VCC supply voltage		1.9	3.3	3.6	IN
TOP working ter	nperature		-40		105	ÿ
	Digital input pin	-				
HIV	High level input voltage		0.8VCC		1.2VCC	IN
VIL low level inp	ut voltage		0		0.2VCC	IN
	Digital output pin					•
VOH high level	output voltage		0.8VCC		VCC	IN
VOL low level or	tput voltage		0		0.2VCC	IN
	General RF conditions					
,	Working		2402		2480	MHz
frequency band fOP fXTAL				12		MHz
crystal oscillator	frequency ÿf1M frequency offset @1Mbps			280		KHz
RGFSK data tra	nsfer rate			1		Mbps
FCHANNELcha	nnel spacing			1		MHz
	launch operation					
PRF maximum	putput power			0	5.5	dBm
PRFC RF powe	r control range		18	20	22	dB
PRF1 first adjac	ent channel transmit power				-20	dBm
PRF2 second a	tjacent channel transmit power				-50	dBm
IVCC_H power of	onsumption at high gain			16		mA
IVCC_L low gai	n power reception			12		mA
	operation					
IVCC receiving	power			17		mA
consumptionRX	SENS receiving sensitivity at 0.1% BER			-88		dBm

9 SPI interface

9.1 SPI interface description

The PL1167 transceiver chip provides a simple MCU interface SPI mode. The chip's SPI interface only supports slave mode.

The SPI interface contains 7 related signals, as shown in the following table:

Pin description	
RSTB	Reset pin, active low level
MODE	Mode selection, when it is 0, select SPI mode.
SCSB	SPI interface slave mode enable signal, active low level
	Wake up the chip from SLEEP mode
SCK	SPI interface clock input
SDI	SPI interface data input
SDO	SPI interface data output
POINTS	Transmit/receive packet status indication bit

9.2 SPI command format

Note: The SPI bus establishes data on the rising edge of SCK and samples data on the falling edge.

Symbol Minimun	n Typical Maxi	mum Descript	ion	
TSSH	250ns			Time interval between two SPI commands
TSSF,TSSR	41.5ns			SCSB and SCK time interval
TA2D	*1			Address and data time interval
TH2L	*1			High and low byte data time interval
TR2R	*1			Time interval between two register data
TSCK	83ns			SCK clock cycle

Note: *1 —When reading FIFO data, at least 450ns waiting time is required; for other registers, T3min = 41.5ns.

10 I2C interface

10.1 I2C interface description

Pin	describe	
RSTB	Reset pin, active low level	
MODE	Mode selection, when it is 1, select I2C mode	
SCSB	Wake up the chip from SLEEP mode	
SCL	I2C interface clock input	
SDA	I2C data input and output I/O	
A4	I2C interface address bit 4	

10.2 I2C support features

I2C slave mode selection	Support or not
Standard mode – 100 kbps	yes
Fast mode – 400 kbps	yes
Enhanced Fast Mode – 1000 kbps	yes
High speed mode – 3200 kbps	no
clock stretching	no
10-bit slave address	no
Broadcast address	no
software reset	no
Device ID	no

10.3 I2C command format

10.4 I2C device address

A6	A5 A4 A	3 A2 A1			A0	R/W
0	1	A4 Pin 1	0	0	0	Read=1
						Write=0

11 control register

For the latest recommended control register values, please refer to the "User Manual", please contact Juyuanwei to obtain it.

12Typical applications

13 packages

TSSOP16 package

TSSOP16 package size

SYMBOL	MILLIMETER			
SYMBOL	MIN	MAX		
A		1.20		
A1	0.05	0.15		
A2	0.90	1.05		
A3	0.39	0.49		
b	0.20	0.30		
b1	0.19	0.25		
с	0.13	0.19		
c1	0.12	0.14		
D	4.86	5.06		
Е	6.20	6.60		
e	0.65	SBSC		
L	0.45 0.7			
L1	1.00BSC			
θ	0	8°		

SOP16 package

SOP16 package size

14 version revision history

Version nur	nber revision date re	evision content
1.0	2012/07/10 First draft	
1.1	2016/11/07	Officially released version: TSSOP16/SOP16 1) 9.2 SPI command format adds SPI instructions 2) 10.3 I2C command format correction 3) Corrected fOP: 2402~2480
1.2	2018/07/11 operating temperature parameters	

15 things to note

In order to continuously improve the reliability, functionality or design of the product, Juyuanwei reserves the right to update and modify the product at any time without prior notice to customers.

Customers please confirm that they are using the latest complete version of the instructions before placing an order.