1.3 码制

- 1.3.1 二 十进制编码
- 1.3.2 格雷码
- 1.3.3 ASCII字符编码

1.3 码制

码制:编制代码所要遵循的规则

常见的编码:身份证号码,学生证号码,手机号码

二进制码:将若干个二进制数码(0和1)按一定规则排列起来表示某种特定的信息。

编码(Encoding):用n位二进制数最多可以表示 2^n 个不同的信息,给每个信息规定一个具体的二进制代码的过程。

编码的应用:计算机、电视、遥控和通信等方面。

1.3 码制

二进制代码的位数 (n) ,与需要编码的事件(或信息)的个数 (N) 之间应满足以下关系: $2^{n-1} \le N \le 2^n$???

1.3.1 二-十进制码 (数值编码) (BCD码----- Binary Code Decimal)

- 用4位二进制bit来表示1位十进制数中的0~9十个数字
- 从4位二进制bit16种代码中,选择10种来表示 $0\sim9$ 个数码的方案有 A_{16}^{10} 种。每种方案对应一种BCD码。
- 选择哪种编码方案呢?

1.3 码制——二-十进制码(几种常用的BCD码)

	0000						
	0001						
Γ	0010						
Ī	0011						
	0100						
	0101						
	0110						
	0111						
	1000						
	1001						
	1010	Γ					
Ī	1011						
	1100						
1101							
	1110						
	1111						

	_				_		
BCD码十 进制数码		8421码	2421 码	5421 码		余3码	余3循环码
0		0000	0000	0000		0011	0010
1		0001	0001	0001		0100	0110
2		0010	0010	0010		0101	0111
3		0011	0011	0011		0110	0101
4		0100	0100	0100		0111	0100
5		0101	1011	1000		1000	1100
6		0110	1100	1001		1001	1101
7		0111	1101	1010		1010	1111
8		1000	1110	1011		1011	1110
9		1001	1111	1100		1100	1010

1.3 码制——二-十进制码(BCD码)

(2)各种编码的特点

有权码:编码与所表示的十进制数之间的转算容易

如(10010000)_{8421BCD}=(90)_D

余3码的特点:当两个十进制的和是10时,相应的二进制正好是16,于是可自动产生进位信号,而不需修正。0和9,1和8.....6和4的余3码互为反码,这对在求对于10的补码很方便。

余3码循环码:相邻的两个代码之间仅一位的状态不同。按余3码循环码组成计数器时,每次转换过程只有一个触发器翻转,译码时不会发生竞争-冒险现象。

1.3 码制——二-十进制码(BCD码)

求BCD代码表示的十进制数

对于有权BCD码,可以根据位权展开求得所代表的十进制数。例如:

$$[0111]_{8421BCD} = 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1 = (7)_D$$

$$[1101]_{2421BCD} = 1 \times 2 + 1 \times 4 + 0 \times 2 + 1 \times 1 = (7)_D$$

1.3 码制——二-十进制码(BCD码)

用BCD代码表示十进制数

对于一个多位的十进制数,需要有与十进制位数相同的几组 BCD代码来表示。例如:

1.3 码制——格雷码

• 格雷码是一种无权码。可以是任

意位数。

- 编码特点:任何两个相邻码字之间仅有1位不同,与余3循环码相同。
- 该特点常用于模拟量的转换。当模拟量发生微小变化,格雷码仅仅改变1位,这与其他码同时改变2位或更多的情况相比,更加可靠,且容易检错。

二进制码	格雷码				
$b_3 b_2 b_1 b_0$	$G_3G_2G_1G_0$				
0000	0000				
0001	0001				
0010	0011				
0011	0010				
0100	0110				
0101	0111				
0110	0101				
0111	0100				
1000	1100				
1001	1101				
1010	1111				
1011	1110				
1100	1010				
1101	1011				
1110	1001				
1111	1000				

1.3 码制——ASCII码

- □ ASCII码:美国标准信息交换码。
- □ ASCII码采用7位二进制编码,可以表示128字符。
- □ 可以表示大、小写英文字母、十进制数、标点符号、运算符号、控制符号等,普遍用于计算机的键盘指令输入和数据等。

ASCII码表

$b_3b_2b_1b_0$	$b_6b_5b_4$								
	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	<u>@</u>	P	`	p	
0001	SOH	DC1	!	1	A	Q	a	q	
0010	STX	DC2	"	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	S	
0100	EOT	DC4	\$	4	D	T	d	t	
0101	ENQ	NAK	%	5	Е	U	e	u	
0110	ACK	SYN	&	6	F	V	f	V	
0111	BEL	ETB	,	7	G	W	g	W	
1000	BS	CAN	(8	Н	X	h	X	
1001	HT	EM		9	I	Y	i	y	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\	1		
1101	CR	GS	_	=	M]	m	}	
1110	SO	RS	•	>	N	^	n	~	
1111	SI	US	/	?	О		O	DEL	