1

ANALOG 12.8 8

EE23BTECH11054 - Sai Krishna Shanigarapu*

Question 8:

Suppose that the electric field amplitude of an electromagnetic wave is $E_0 = 120$ N/C and that its frequency is f = 50.0 MHz.

- (a) Determine, B_0, ω, k and λ
- (b) Find expressions for E and B

Solution (a):

Table 1

Input Parameters			
Symbol	Description value		
f	frequency of source		
E_0	Electric 120 N/C field amplitude		
С	speed of light	3 x 10 ⁸ m/s	
e ₂ , e ₃	Standard basis unit vectors	$ \mathbf{e}_2 = \mathbf{e}_3 = 1$	

General representation of electric and magnetic field is:

$$\mathbf{E} = E_0 \sin(kx - \omega t)\mathbf{e}_2 \tag{1}$$

$$\mathbf{B} = B_0 \sin(kx - \omega t)\mathbf{e_3} \tag{2}$$

Magnitude of magnetic field strength is given as:

$$B_0 = \frac{E_0}{c} = \frac{120}{3x10^8} = 400nT \tag{3}$$

Angular frequency of source is given as:

$$\omega = 2\pi f = 3.14x 10^8 rad/s \tag{4}$$

Propagation constant is given as:

$$k = \frac{\omega}{c} = 1.05 rad/m \tag{5}$$

Wavelength of the wave is given as:

$$\lambda = \frac{c}{f} = \frac{3x10^8}{50x10^6} = 6.0m\tag{6}$$

Solution (b)

Suppose the wave is propagating in the positive x direction. Then, the electric field vector will be in the positive y direction and the magnetic field vector will be in the positive z direction. This is because all three vectors are mutually perpendicular.

The standard basis vectors in Cartesian coordinates are denoted as e_1 (unit vector along the x-axis), e_2 (unit vector along the y-axis) and e_3 (unit vector along the z axis. The component of vectors \mathbf{E} and \mathbf{B} in terms of these basis vectors can be expressed as follows.

Equation of the Electric field vector is given as: $\mathbf{E} = E_0 \sin(kx - \omega t)\mathbf{e_2}$

$$\mathbf{E} = 120 \sin[1.05x - 3.1 \times 10^{8}t]\mathbf{e}_{2}$$
 (7)

Magnetic field vector is given as:

$$\mathbf{B} = B_0 \sin(kx - \omega t)\mathbf{e_3}$$

$$\mathbf{B} = (4 \times 10^{-7})\sin[1.05x - 3.14 \times 10^{8}t]\mathbf{e}_{3}$$
 (8)

Table 2

Output parameters			
Symbol	Description	value	
B_0	Magnetic field strength	400nT	
ω	Angular fre- quency	3.14 x 10 ⁸ m/s	
k	Propagation con- stant	1.05rad/s	
λ	Wavelength	6.0m	
E	Electric field vector	120 $\sin[1.05x - 3.1 \times 10^8 t]\mathbf{e_2}$	
В	Magnetic field vector	$(4 \times 10^{-7})\sin[1.05x - 3.14 \times 10^{8}t]\mathbf{e}_{3}$	

Graphs of E and B

