1.	MAB-RSA

1.1. Fragen: Die Formeln lauten							
zum Verschlüsseln:			zum Entschlüss	zum Entschlüsseln:			
zum Signieren:		_ zum Verifiziere	zum Verifizieren:				
1.2. Aufgabe 1: d berechnen							
Gegeben: e= 1 Allgemein: Es Im Speziellen:	gilt: e*d ≡	1 mod phi	(n)				
Antwort : (Zahl Entspechend de wenn der ggT(_	r linearen	Kongruenz	ist eine Gleichung d	er obigen Form nur da	nn für d lösbar,		
Weiters liefert der erweiterte Euklidische Algorithmus zum ggT() eine Linearkombination der folgenden Art: $ggT() = k^* + d^*$							
			en eukl. Algorithmus		1		
ggT berechnen	division	modulo	Linearkombination	Rest			
ggT(60,17)							
				rückwärts einsetzen			
				rackwarts chisetzen			
				I.			
				k= d=			
Um d positiv zu erhalten, kann man -wegen der Restklasse mod 60- zu d 1*60 oder 2*60 addieren.							
Somit ist d= eine Lösung. Probe: (17*) mod 60 = 1							
John List u = _		Cilie L	osung. Probe: (1	,	00 – I		

Informatik 1/2

1.3. Aufgabe2: Ver/Entschlüsseln, Signieren/Verifizieren

Zeigen Sie das RSA Verfahren, indem Sie den Text ADE in der Tabelle unten -unter Verwendung der folg. Schlüsseln- ver/entschlüsseln bzw. signieren/verifizieren. Um hier einfacher rechnen zu können, verwenden Sie folg. Kodierung der Zeichen: $(A \rightarrow 1, B \rightarrow 2, ...)$

(**5**, **91**) = (**e**,**n**) **public key** http://web2.0rechner.de/

(29, 91) = (d,n) private Key

m (Buchst.)	A	D	E
m (kodiert)	1		
c (verschlüsselt)			
c=			
s (signiert)			
s=			
m (verifizieren)			
m= s			
m (entschlüsseln)			
m= c			

1.4. Aufgabe: Alice:verschlüsselt→ Bob: signiert → Ted:verifiziert

- 1. Alice schickt einen verschlüsselten Text an Bob.
- 2. Bob entschlüsselt diesen Text und sendet ihn signiert an Ted.
- 3. Ted verifiziert den Text.

Aufgabe: Tragen Sie unten jeweils ein, was wer zu tun hat.

Alice: verschlüsselt →	Bob: signiert →	Ted: verifiziert

Informatik 2/2