MA2 Přehled

January 12, 2024

1 Neurčitý integrál

Primitivní funkce

Nechť f je funkce definovaná na intervalu (a,b), kde $-\infty \le a \le b \le \infty$. Funkci F splňující

$$F'(x) = f(x), \forall x \in (a, b)$$

nazýváme **primitivní funkcí** k funkci f na intervalu (a, b).

Věta o jednoznačnosti primitivní funkce

Nechť F je primitivní funkcí k funkci f na intervalu (a,b). Pak G je primitivní funkcí k funkci f na intervalu (a,b) právě tehdy, když existuje konstanta $C \in \mathbb{R}$ taková, že

$$G(x) = F(x) + C, \forall x \in (a, b)$$

Neurčitý integrál

Nechť k funkci f existuje primitivní funkce na intervalu (a,b). Množinu všech primitivních funkcí k funkci f na (a,b) nazýváme **neurčitým integrálem** a značíme jej $\int f$ nebo $\int f(x)dx$

Postačující podmínka pro existenci primitivní funkce

Nechť funkce f je spojitá na intervalu (a,b). Pak má funkce f na tomto intervalu primitivní funkci.

Linearita primitivní funkce

Nechť F, resp. G, je primitivní funkce k funkci f, resp. g, na intervalu (a,b) a nechť $\alpha \in \mathbb{R}$. Pak

- F+G je primitivní funkcí k funkci f+g na intervalu (a,b).
- αF je primitivní funkcí k funkci αf na intervalu (a,b).

Integrace per partes

Nechť funkce f je diferencovatelná na intervalu (a,b) a G je primitivní funkce k funkci g na intervalu (a,b) a konečně nechť existuje primitivní funkce k funkci f'G. Potom existuje primitivní funkce k funkci fg a platí

$$\int fg = fG - \int f'G$$

První věta o substituci

Nechť pro funkce fa φ platí

- 1. f má primitivní funkci F na intervalu (a,b),
- 2. φ je na intervalu (α, β) diferencovatelná,
- 3. $\varphi((\alpha, \beta) \subset (a, b))$.

Pak funkce $f(\varphi(x))\cdot\varphi'(x)$ má primitivní funkci na intervalu (α,β) a platí

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)) + C$$

kde C je integrační konstanta.

Druhá věta o substituci

Nechť f je definována na intervalu (a,b) a nechť φ je bijekce intervalu (α,β) na (a,b) s nenulovou konečnou derivací. Pak platí

$$\int f(\varphi(t))\varphi'(x)dt = G(t) + C \Rightarrow \int f(x)dx = G(\varphi^{-1}(x)) + C$$

kde ${\cal C}$ je integrační konstanta.

2 Určitý integrál

Dělení intervalu

Buď dán interval $\langle a,b\rangle$. Konečnou množinu

$$\sigma = \{x_0, x_1, \dots, x_n\}$$

takovou, že

$$a = x_0 < x_1 < \dots < x_n = b$$

nazýváme **dělením intervalu** $\langle a,b \rangle$. Bodům $x_k,\ k=1,2,\ldots,n-1$, říkáme **dělící body intervalu** $\langle a,b \rangle$. Intervalu $\langle x_{k-1},x_k \rangle$ říkáme **částečný interval** intervalu $\langle a,b \rangle$ při dělení σ . Číslo:

$$\nu(\sigma) \equiv \max\{\Delta_k \mid k = 1, 2, ..., n\}, \text{ kde } \Delta_k \equiv x_k - x_{k-1}, \ k = 1, 2, ..., n,$$

nazýváme **normou dělení** σ .

Ekvidistantní dělení

Pro interval $\langle a, b \rangle$ a $n \in \mathbb{N}$ položme $\Delta \equiv \frac{b-a}{n}$ a

$$x_i \equiv a + i \cdot \Delta, \quad i = 0, 1, \dots, n.$$

Tedy

$$\sigma = \{a, a + \Delta, a + 2\Delta, \dots, a + (n-1)\Delta, b\}.$$

Dolní a horní součet funkce při dělení σ

Buď te funkce f definovaná a omezená na intervalu $J = \langle a, b \rangle$ a $\sigma = \{x_0, x_1, \dots, x_n\}$ dělení intervalu J. Součty

$$S(\sigma, f) \equiv \sum_{i=1}^{n} \Delta_{i} \sup_{\langle x_{i-1}, x_{i} \rangle} f,$$

$$s(\sigma, f) \equiv \sum_{i=1}^{n} \Delta_{i} \inf_{\langle x_{i-1}, x_{i} \rangle} f$$

nazýváme horním součtem funkce a dolním součtem funkce f při dělení σ .

Dolní a horní integrál

Pro funkci f definovanou a omezenou na uzavřeném intervalu $J=\langle a,b\rangle$ pomocí dolních a horních součtů definujeme čísla

$$\overline{\int_a^b} f(x) dx \equiv \inf\{S(\sigma, f) \mid \sigma \text{ dělení } J\},\,$$

$$\int_a^b f(x) \, dx \equiv \sup \{ s(\sigma, f) \mid \sigma \text{ dělení } J \}.$$

a nazýváme je horním integrálem, resp. dolním integrálem, funkce f na intervalu J.

Riemannův určitý integrál

Mějme funkci f definovanou a omezenou na uzavřeném intervalu J. Pokud pro její dolní a horní integrál na intervalu J platí

$$\overline{\int_a^b} f(x) \, dx = \int_a^b f(x) \, dx \in \mathbb{R},$$

pak jejich společnou hodnotu nazýváme Riemannovým integrálem funkce f na intervalu J a toto číslo značíme symboly

$$\int_a^b f$$
, případně $\int_a^b f(x) dx$.

Normální posloupnost dělení

Posloupnost dělení σ_n nazveme **normální**, pokud pro její normy platí

$$\lim_{n\to\infty}\nu(\sigma_n)=0.$$

Postačující podmínka pro existenci Riemannova integrálu

Buď f spojitá funkce na intervalu $\langle a,b\rangle$. Potom existuje její Riemannův integrál na intervalu $\langle a,b\rangle$.

Pokud je navíc (σ_n) normální posloupnost dělení intervalu $\langle a,b\rangle,$ potom limity

$$\lim_{n\to\infty} s(\sigma_n, f) \quad a \quad \lim_{n\to\infty} S(\sigma_n, f)$$

existují, a jsou rovny Riemannově integrálu funkce f na intervalu $\langle a, b \rangle$.

Integrální součet

Pro funkci f spojitou na uzavřeném intervalu $\langle a,b\rangle$ a dělení $\sigma=\{x_0,\,x_1,\ldots,\,x_n\}$, kde $x_0=a$ a $x_n=b$, tohoto intervalu definujeme **integrální součet** funkce f při dělení σ

$$\mathcal{J}(\sigma, f) = \sum_{i=1}^{n} f(\alpha_i) \Delta_i,$$

kde α_i patří do intervalu $\langle x_{i-1}, x_i \rangle$, $i = 1, 2, \dots, n$.

Aditivita integrálu

Nechť f a g jsou spojité funkce na intervalu $\langle a, b \rangle$. Potom pro Riemannův integrál funkce f + g, která je také automaticky spojitá na intervalu $\langle a, b \rangle$, platí

$$\int_{a}^{b} (f+g)(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Multiplikativita integrálu

Nechť f je spojitá na intervalu $\langle a,b\rangle$ a $c\in\mathbb{R}$ je konstanta. Potom pro Riemannův integrál funkce cf platí

$$\int_a^b (cf)(x) \, dx = c \int_a^b f(x) \, dx.$$

Aditivita integrálu v mezích

Riemannův integrál funkce f na intervalu $\langle a,b\rangle$ existuje, právě když pro každé $c\in(a,b)$ existují Riemannovy integrály funkce f na intervalech $\langle a,c\rangle$ a $\langle c,b\rangle$. V takovém případě navíc platí

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Nerovnosti mezi integrály

Nechť jsou f a g spojité funkce na intervalu $\langle a,b\rangle$ a nechť platí nerovnost $f(x)\leq g(x)$ pro všechna $x\in\langle a,b\rangle$. Potom pro jejich Riemannovy integrály platí

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

Newtonova formule

Funkce f je spojitá na intervalu $\langle a, b \rangle$ s primitivní funkcí F, Pak platí:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: [F(x)]_{a}^{b}$$

Per partes pro určitý integrál

Funkce f a g jsou spojité na $\langle a,b\rangle$, f má spojitou derivaci na intervalu $\langle a,b\rangle$ a G je primitivní funkcí k g na intervalu $\langle a,b\rangle$. Potom:

$$\int_{a}^{b} f(x)g(x)dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x)dx$$

Věta o substituci v určitém integrálu

Nechť pro funkce f a φ platí

- 1. φ a její derivace φ' jsou spojité na $\langle \alpha, \beta \rangle$,
- 2. f je spojitá na $\varphi(\langle \alpha, \beta \rangle)$.

Potom pro Riemannův integrál platí

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Integrace na symetrickém intervalu

Nechť f je funkce spojitá na uvažovaných intervalech.

- 1. Je-li f sudá funkce na $\langle -a,a\rangle,$ pak $\int_{-a}^a f(x)dx=2\int_0^a f(x)dx.$
- 2. Je-li f lichá funkce na $\langle -a,a\rangle$, pak $\int_{-a}^a f(x)dx=0$.
- 3. Je-li f periodická na $\mathbb R$ s periodou T, pak pro každé $a,b\in\mathbb R$ platí $\int_a^{a+T}f(x)dx=\int_b^{b+T}f(x)dx.$

Zobecněný Riemannův integrál

Nechť f je funkce definovaná na intervalu (a,b) pro nějaké $a \in \mathbb{R}$ a $b \in (a,+\infty) \cup \{+\infty\}$, která má Riemannův integrál na intervalu (a,c) pro každé $c \in (a,b)$. Pokud existuje konečná limita

$$\lim_{c \to b_{-}} \int_{a}^{c} f(x) \, dx,$$

pak její hodnotu značíme

$$\int_a^b f(x) \, dx,$$

nazýváme zobecněným Riemannovým integrálem funkce f na intervalu (a,b) a říkáme, že integrál $\int_a^b f(x)\,dx$ konverguje.

Absolutně konvergentní zobecněný Riemannův integrál na \mathbb{R}

Buď f spojitá funkce definovaná na \mathbb{R} . Pokud existuje konečná limita

$$\lim_{c \to +\infty} \int_{-c}^{c} |f(x)| \, dx,$$

pak tuto její hodnotu značíme

$$\int_{-\infty}^{+\infty} |f(x)| \, dx$$

a o f říkáme, že má **absolutně konvergentní zobecněný Riemannův integrál** na \mathbb{R} . Pokud má funkce absolutně konvergentní zobecněný Riemannův integrál na \mathbb{R} , pak i limita

$$\lim_{c \to +\infty} \int_{-c}^{c} f(x) \, dx$$

existuje a značíme ji

$$\int_{-\infty}^{+\infty} f(x) \, dx.$$

Tuto hodnotu pak nazýváme zobecněným Riemannovým integrálem fna $\mathbb R$

3 Číselné řady

Definice číselné řady

Formální výraz tvaru

$$\sum_{k=n_0}^{\infty} a_k = a_{n_0} + a_{n_0+1} + a_{n_0+2} + \cdots,$$

kde $(a_k)_{k=n_0}^{\infty}$ je zadaná číselná posloupnost, nazýváme **číselnou řadou**. Pokud je **posloupnost částečných součtů** $(s_n)_{n=n_0}^{\infty}$ definovaná předpisem

$$s_n \equiv \sum_{k=n_0}^n a_k, \quad n \in \mathbb{N}_0, n \ge n_0,$$

konvergentní, nazýváme příslušnou řadu také konvergentní. V opačném případě o ní mluvíme jako o divergentní číselné řadě. Součtem konvergentní řady $\sum_{k=n_0}^{\infty} a_k$ nazýváme hodnotu limity $\lim_{n\to\infty} s_n$.

Nutná podmínka konvergence

Pokud řada $\sum_{k=0}^{\infty} a_k$ konverguje, potom pro limitu jejích sčítanců platí $\lim_{k\to\infty} a_k = 0$.

Bolzanovo-Cauchyovo kritérium pro řady

 Řada $\sum_{k=0}^\infty a_k$ konverguje právě tehdy, když pro každ
é $\epsilon>0$ existuje $n_0\in\mathbb{R}$ tak, že pro každé přirozen
é $n\geq n_0$ a $p\in\mathbb{N}$ platí

$$|a_n + a_{n+1} + \dots + a_{n+p}| < \epsilon.$$

Absolutní konvergence

Číselnou řadu $\sum_{k=0}^{\infty}a_k$ nazýváme **absolutně konvergentní**, pokud číselná řada $\sum_{k=0}^{\infty}|a_k|$ konverguje.

O vztahu absolutní konvergence a konvergence

Pokud řada absolutně konverguje, potom tato řada konverguje.

Leibnizovo kritérium

Buď $(a_k)_{k=0}^{\infty}$ monotónní posloupnost konvergující k nule. Potom je řada

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

konvergentní.

Srovnávací kritérium

Buďte $\sum_{k=0}^\infty a_k$ a $\sum_{k=0}^\infty b_k$ číselné řady. Potom platí následující dvě tvrzení.

- 1. Nechť existuje $k_0 \in \mathbb{N}$ takové, že pro každé $k \in \mathbb{N}$ větší než k_0 platí nerovnosti $0 \le |a_k| \le b_k$ a nechť řada $\sum_{k=0}^{\infty} b_k$ konverguje. Potom řada $\sum_{k=0}^{\infty} a_k$ absolutně konverguje.
- 2. Nechť existuje $k_0 \in \mathbb{N}$ takové, že pro každé $k \in \mathbb{N}$ větší nebo rovno než k_0 platí nerovnosti $0 \le a_k \le b_k$ a $\sum_{k=0}^{\infty} a_k$ diverguje. Potom i řada $\sum_{k=0}^{\infty} b_k$ diverguje.

D'Alembertovo kritérium

Nechť $a_k > 0$ pro každé $k \in \mathbb{N}_0$. Pokud

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} > 1,$$

potom řada $\sum_{k=0}^{\infty} a_k$ diverguje. Pokud ovšem

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1,$$

potom řada $\sum_{k=0}^{\infty} a_k$ konverguje.

O odhadu posloupnosti částečných součtů

Nechť f je spojitá funkce na $(1, +\infty)$ a $n \in \mathbb{N}$. Je-li f klesající, pak platí

$$f(n) + \int_{1}^{n} f(x) dx \le \sum_{k=1}^{n} f(k) \le f(1) + \int_{1}^{n} f(x) dx.$$

Je-li f rostoucí, pak platí

$$f(1) + \int_{1}^{n} f(x) dx \le \sum_{k=1}^{n} f(k) \le f(n) + \int_{1}^{n} f(x) dx.$$

Integrální kritérium

Buď $\sum_{n=1}^{\infty}a_n$ číselná řada s kladnými členy taková, že existuje spojitá a monotónní funkce definovaná na $(1,+\infty)$ taková, že $f(n)=a_n$ pro každé n. Potom

- Pokud (zobecněný Riemannův) integrál $\int_1^\infty f(x)\,\mathrm{d}x$ konverguje, pak číselná řada $\sum_{n=1}^\infty a_n$ konverguje.
- Pokud integrál $\int_1^\infty f(x)\,\mathrm{d}x$ diverguje, pak číselná řada $\sum_{n=1}^\infty a_n$ diverguje.

Exponenciální funkce a Eulerovo číslo

Zobrazení, které každému $x \in \mathbb{R}$ přiřazuje součet konvergentní řady

$$\sum_{k=0}^{\infty} \frac{x^k}{k!},$$

nazýváme **exponenciální funkcí**. Její funkční hodnotu v bodě x značíme symbolem e^x . Platí tedy

$$e^x \equiv \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad x \in \mathbb{R}.$$

Základní vlastnosti exponenciální funkce

Exponenciální funkce oplývá následujícími vlastnostmi:

- 1. $e^0 = 1$,
- 2. pro všechna $x, y \in \mathbb{R}$ platí $e^{x+y} = e^x e^y$,
- 3. pro všechna $x \in \mathbb{R}$ platí $e^x > 0$ a dále $e^{-x} = \frac{1}{e^x}$,
- 4. exponenciála je ostře rostoucí funkce, pro všechna $x,y \in \mathbb{R}$ splňující nerovnost x < y platí nerovnost $e^x < e^y$.

Eulerovo číslo

Eulerovo číslo definujeme pomocí exponenciální funkce předpisem

$$e \equiv e^1 = \sum_{k=0}^{\infty} \frac{1}{k!}.$$

Eulerovo číslo je iracionální.

Přirozený logaritmus

Existuje tedy inverzní funkce k exponenciále, která je také ostře rostoucí a zobrazuje $(0, +\infty)$ na \mathbb{R} . Tuto funkci nazýváme **přirozeným logaritmem** a značíme symbolem ln.

Vlastnosti přirozeného logaritmu

Přirozený logaritmus ln oplývá následujícími vlastnostmi:

- 1. pro každé $x \in \mathbb{R}$ platí $\ln e^x = x$ a pro každé $x \in (0, +\infty)$ platí
- $2. e^{\ln x} = x,$
- 3. $\ln e = 1 \text{ a } \ln 1 = 0$,
- 4. pro $x, y \in (0, +\infty)$ platí $\ln(xy) = \ln x + \ln y$.

Obecná mocnina

Pro $a \in (0, +\infty)$ a $x \in \mathbb{R}$ definujeme

$$a^x \equiv e^{x \ln a}.$$

Vlastnosti obecné mocniny

Pro a,b>0 platí

- $1. \ a^{x+y} = a^x a^y,$
- $2. \ \left(a^x\right)^y = a^{xy},$
- $3. \ (ab)^x = a^x b^x.$

pro libovolná $x, y \in \mathbb{R}$.

4 Taylorovy polynomy

Polynom

Reálnou funkci reálné proměnné $p: \mathbb{R} \to \mathbb{R}$ nazveme **polynomem**, právě když existuje nezáporné celé číslo $n \in \mathbb{N}_0$ a reálná čísla $a_0, \ldots, a_n \in \mathbb{R}$ taková, že rovnost

$$p(x) = \sum_{k=0}^{n} a_k x^k$$

platí pro všechna reálná $x \in \mathbb{R}$.

Taylorův polynom

Nechť reálná funkce reálné proměnné fmá v bodě $a \in \mathbb{R}$ konečnou n-touderivaci. Polynom

$$T_{n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

nazýváme n-tým Taylorovým polynomem funkce f v bodě a

Věta o vlastnostech Taylorova polynomu

Nechť reálná funkce reálné proměnné f má v bodě $a \in \mathbb{R}$ konečnou n-tou derivaci. Potom Taylorův polynom $T_{n,a}$ existuje a je to jediný polynom stupně nejvýše n takový, že

$$T_{n,a}^{(k)}(a)=f^{(k)}(a)$$
pro každé $k=0,1,\ldots,n.$

Taylorův vzorec a Taylorův zbytek

Nechť funkce f má v bodě a konečnou n-tou derivaci. Pro všechna přípustná x položme $R_{n,a}(x) \equiv f(x) - T_{n,a}(x)$. Potom vztah

$$f(x) = T_{n,a}(x) + R_{n,a}(x)$$

nazýváme **Taylorovým vzorcem** a $R_{n,a}$ nazýváme n-tým zbytkem v Taylorově vzorci.

Věta o zbytku v Taylorově vzorci

Nechť funkce f má v jistém okolí U_a bodu a spojitou n-tou derivaci. Pak pro zbytek v Taylorově vzorci platí

$$\lim_{x \to a} \frac{R_{n,a}(x)}{(x-a)^n} = 0.$$

Věta o nejlepší aproximaci

Nechť funkce f má v jistém okolí bodu 0 konečnou n-tou derivaci a nechť Q je polynom stupně nejvýše n, různý od Taylorova polynomu T_n funkce f v bodě 0. Potom existuje okolí U_0 bodu 0 takové, že

$$|f(x) - T_n(x)| < |f(x) - Q(x)|$$
 pro každé $x \in U_0 \setminus \{0\}$.

Taylorova věta

Nechť existuje okolí U_a bodu a takové, že funkce f v něm má konečnou (n+1)-ní derivaci. Pak zbytek v Taylorově vzorci $f(x)=T_{n,a}(x)+R_{n,a}(x)$ lze pro každé $x\in U_a$ zapsat ve tvaru

$$R_{n,a}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1},$$

kde číslo ξ závisí na x a n a leží uvnitř intervalu s krajními body x a a. Tento tvar zbytku nazýváme **Lagrangeův**.

Mocninná řada

Nechť je dána posloupnost $(a_k)_{k=0}^{\infty}$ a číslo $c \in \mathbb{R}$. Číselnou řadu

$$\sum_{k=0}^{\infty} a_k (x-c)^k,$$

závisející na reálném parametru x, nazýváme **mocninnou řadou se středem v bodě** c.

Taylorova řada

Nechť reálná funkce reálné proměnné f má v bodě $c \in \mathbb{R}$ konečné derivace všech řádů. Mocninnou řadu

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

potom nazýváme Taylorovou řadou funkce f v bodě c.

Věta o poloměru konvergence

Pokud existuje limita

$$L := \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|,$$

potom klademe

$$R := \begin{cases} \frac{1}{L}, & L > 0, \\ +\infty, & L = 0, \\ 0, & L = +\infty \end{cases}$$

a tvrdíme, že mocninná řada

$$\sum_{k=0}^{\infty} a_k (x-c)^k$$

konverguje absolutně pro $x \in (c-R,c+R)$ a diverguje pro |c-x| > R.

Cauchyho-Hadamardova věta

Ke každé mocninné řadě tvaru

$$\sum_{k=0}^{\infty} a_k x^k.$$

existuje $R \in \langle 0, +\infty \rangle$ takové, že řada absolutně konverguje pro|x| < Ra diverguje pro|x| > R.

5 Lineární rekurentní rovnice

Definice LRR

Lineární rekurentní rovnice řádu $k \in \mathbb{N}$ (zkráceně LRR) je rovnice tvaru

$$x_{n+k} + c_{k-1,n} \cdot x_{n+k-1} + \dots + c_{1,n} \cdot x_{n+1} + c_{0,n} \cdot x_n = b_n, \quad n \in \mathbb{Z}, \ n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$ a $(c_{i,n})_{n=n_0}^{\infty}$, $i=0,1,\ldots,k-1$, (tzv. koeficienty rovnice) a $(b_n)_{n=n_0}^{\infty}$ (tzv. pravá strana rovnice) jsou zadané posloupnosti a posloupnost $(c_{0,n})_{n=n_0}^{\infty}$ není nulová posloupnost. Jestliže $b_n=0$ pro každé $n\geq n_0$, pak se příslušná rovnice nazývá **homogenní**. **Přidruženou homogenní rovnicí** k originální rovnici nazýváme LRR se stejnými koeficienty a nulovou pravou stranou $(b_n=0)$ pro každé $n\geq n_0$).

Řešení LRR

Nechť je dána lineární rekurentní rovnice řádu $k \in \mathbb{N}$,

$$x_{n+k} + c_{k-1,n}x_{n+k-1} + \dots + c_{1,n}x_{n+1} + c_{0,n}x_n = b_n, \quad n \in \mathbb{Z}, \ n \ge n_0.$$

Jejím **řešením** nazveme libovolnou posloupnost $(x_n)_{n=n_0}^{\infty}$ takovou, že dosazením jejích členů do rovnice dostaneme pravdivé rovnosti pro každé celočíselné $n \geq n_0$.

Počáteční podmínky

Nechť je dána lineární rekurentní rovnice řádu $k \in \mathbb{N}$,

$$x_{n+k} + c_{k-1,n}x_{n+k-1} + \dots + c_{1,n}x_{n+1} + c_{0,n}x_n = b_n, \quad n \in \mathbb{Z}, \ n \ge n_0.$$

Počátečními podmínkami pro tuto rovnici nazveme libovolnou soustavu rovností $x_{n_0}=A_0,\,x_{n_0+1}=A_1,\,...,\,x_{n_0+k-1}=A_{k-1},$ pro zadané hodnoty $A_0,\,...\,,A_{k-1}\in\mathbb{R}$

Věta o existenci a jednoznačnosti řešení LRR

Platí dvě následující tvrzení.

- 1. Každá lineární rekurentní rovnice má **nějaké** řešení.
- 2. Je-li dána lineární rekurentní rovnice řádu $k \in \mathbb{N}$ s předepsanými počátečními podmínkami, pak existuje **právě jedno** řešení této rovnice splňující tyto počáteční podmínky.

Princip superpozice

Uvažme dvě LRR k-tého řádu s ne nutně shodnými pravými stranami,

$$x_{n+k} + \sum_{i=0}^{k-1} c_{i,n} x_{n+i} = \mathbf{b_n},$$

$$x_{n+k} + \sum_{i=0}^{k-1} c_{i,n} x_{n+i} = \tilde{\boldsymbol{b}}_n,$$

pro $n \in \mathbb{Z}$, $n \geq n_0$. Je-li $(X_n)_{n=n_0}^{\infty}$ řešení první rovnice a $(Y_n)_{n=n_0}^{\infty}$ řešení druhé rovnice, potom pro libovolnou konstantu α je posloupnost $(X_n + \alpha Y_n)_{n=n_0}^{\infty}$ řešením LRR

$$x_{n+k} + \sum_{i=0}^{k-1} c_{i,n} x_{n+i} = b_n + \alpha \tilde{b}_n, \quad n \ge n_0.$$

Věta o struktuře množiny řešení LRR

Mějme LRR řádu $k \in \mathbb{N}$ tvaru

$$x_{n+k} + \sum_{i=0}^{k-1} c_{i,n} x_{n+i} = b_n, \quad n \in \mathbb{Z}, \ n \ge n_0,$$

a označme množinu všech jejích řešení symbolem S a množinu všech řešení přidružené homogenní rovnice symbolem S_0 . Potom platí následující tvrzení:

- 1. Množina S_0 je vektorový prostor dimenze k.
- 2. Množina S je tvaru $S=(\tilde{x}_n)_{n=n_0}^\infty+S_0$, kde $(\tilde{x}_n)_{n=n_0}^\infty$ je (partikulární) řešení rovnice.

LRR s konstantními koeficienty

Lineární rekurentní rovnice řádu $k\in\mathbb{N}$ s konstantními koeficienty je lineární rekurentní rovnice řádu k tvaru

$$x_{n+k} + c_{k-1} \cdot x_{n+k-1} + \dots + c_1 \cdot x_{n+1} + c_0 \cdot x_n = b_n, \quad n \in \mathbb{Z}, \ n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$ a $c_i \in \mathbb{R}$, $i = 0, 1, \dots, k-1$, $c_0 \neq 0$, jsou zadané konstanty a $(b_n)_{n=n_0}^{\infty}$ je zadaná posloupnost.

Charakteristický polynom LRR s konstantními koeficienty

Charakteristickým polynomem LRRsKK nazýváme polynom stupně k tvaru

$$p(\lambda) = \lambda^k + c_{k-1}\lambda^{k-1} + \dots + c_1\lambda + c_0.$$

Kořeny tohoto polynomu se nazývají **charakteristická (nebo vlastní) čísla** LRRsKK.

Konstrukce řešení homogenní LRR pomocí charakteristického čísla

Jestliže λ je charakteristickým číslem homogenní LRR s konstantními koeficienty řádu $k\in\mathbb{N}$

$$x_{n+k} + c_{k-1}x_{n+k-1} + \dots + c_1x_{n+1} + c_0x_n = 0, \quad n \ge n_0,$$

pak posloupnost $(\lambda^n)_{n=n_0}^{\infty}$ je jejím řešením.

Řešení homogenní LRR s konstantními koeficienty, jednoduchá charakteristická čísla

Uvažujme homogenní LRR s konstantními koeficienty řádu $k \in \mathbb{N}$

$$x_{n+k} + c_{k-1}x_{n+k-1} + \dots + c_1x_{n+1} + c_0x_n = 0, \quad n \ge n_0.$$

Jestliže má k vzájemně různých charakteristických čísel λ_i , $i \in \hat{k}$, pak soubor posloupností $(\lambda_i^n)_{n=n_0}^{\infty}$, $i \in \hat{k}$, tvoří bázi S_0 , tedy libovolné řešení $(x_n)_{n=n_0}^{\infty} \in S_0$ je tvaru

$$x_n = \alpha_1 \lambda_1^n + \dots + \alpha_k \lambda_k^n, \quad n \ge n_0,$$

pro nějaké konstanty $\alpha_1, \ldots, \alpha_k$.

Konstrukce řešení homogenní LRR pomocí charakteristického čísla vyšší násobnosti

Jestliže λ je charakteristickým číslem homogenní LRR řádu $k\in\mathbb{N}$ s konstantními koeficienty

$$x_{n+k} + c_{k-1}x_{n+k-1} + \dots + c_1x_{n+1} + c_0x_n = 0, \quad n \ge n_0,$$

a jeho násobnost je m, pak posloupnosti $(\lambda^n)_{n=n_0}^{\infty}$, $(n\lambda^n)_{n=n_0}^{\infty}$, ..., $(n^{m-1}\lambda^n)_{n=n_0}^{\infty}$ jsou jejím řešením a tvoří LN soubor.

Konstrukce prostoru všech řešení homogenní LRR

Uvažujme homogenní LRR řádu $k \in \mathbb{N}$ s konstantními koeficienty

$$x_{n+k} + c_{k-1}x_{n+k-1} + \dots + c_1x_{n+1} + c_0x_n = 0, \quad n \ge n_0.$$

Jestliže má K vzájemně různých charakteristických čísel $\lambda_i,\ i\in\hat K,$ každé s násobností $m_i\in\hat K,$ pak soubor posloupností

$$\left((\lambda_1^n)_{n=n_0}^{\infty}, \ (n\lambda_1^n)_{n=n_0}^{\infty}, \ \dots, (n^{m_1-1}\lambda_1^n)_{n=n_0}^{\infty}, \ \dots, \right)$$
 (1)

$$(\lambda_K^n)_{n=n_0}^{\infty}, (n\lambda_K^n)_{n=n_0}^{\infty}, \dots, (n^{m_K-1}\lambda_K^n)_{n=n_0}^{\infty})$$
 (2)

tvoří bázi S_0 .

Shrnutí konstrukce množiny všech řešení homogenní LRR

Uvažme LRR k-tého řádu s konstantními koeficienty a nulovou pravou stranou. Bázi \mathcal{B} podprostoru S_0 konstruujeme v následujících krocích:

- 1. Sestavme charakteristický polynom $p(\lambda)$ a nalezněme jeho kořeny.
- 2. Za každé reálné charakteristické číslo λ přidáme do \mathcal{B} posloupnost $(\lambda^n)_{n=n_0}^{\infty}$.
- 3. Za každé reálné charakteristické číslo λ násobnosti m>1 přidáme do \mathcal{B} posloupnosti $(n\lambda^n)_{n=n_0}^{\infty}, \ldots, (n^{m-1}\lambda^n)_{n=n_0}^{\infty}$.
- 4. Za každá dvě komplexně sdružená charakteristická čísla $\lambda = r(\cos \varphi \pm i \sin \varphi)$, která nejsou reálná, přidáme do souboru \mathcal{B} dvě reálné posloupnosti $(r^n \cos n\varphi)_{n=n_0}^{\infty}$ a $(r^n \sin n\varphi)_{n=n_0}^{\infty}$.
- 5. Za každá dvě komplexně sdružená charakteristická čísla $\lambda = r(\cos \varphi \pm i \sin \varphi)$, která nejsou reálná a mají násobnost m>1, přidáme do souboru $\mathcal B$ reálné posloupnosti $(nr^n\cos n\varphi)_{n=n_0}^\infty,\ldots,\,(n^{m-1}r^n\cos n\varphi)_{n=n_0}^\infty$ a dále $(nr^n\sin n\varphi)_{n=n_0}^\infty,\ldots,\,(n^{m-1}r^n\sin n\varphi)_{n=n_0}^\infty$.

Kvazipolynom

Řekneme, že posloupnost $(b_n)_{n=n_0}^{\infty}$ je **kvazipolynom**, jestliže existuje $\lambda \in \mathbb{R}$ a polynom P(x) takový, že $b_n = P(n)\lambda^n$ pro všechna přirozená $n \ge n_0$.

Partikulární řešení LRR s kvazipolynomiální pravou stranou

Uvažujme nehomogenní LRR řádu $k \in \mathbb{N}$ s konstantními koeficienty

$$x_{n+k} + c_{k-1}x_{n+k-1} + \dots + c_1x_{n+1} + c_0x_n = b_n, \quad n \ge n_0,$$

a nechť $(b_n)_{n=n_0}^{\infty}$ je kvazipolynom, tj. $b_n = P(n)\lambda^n$, $n \ge n_0$, pro nějaký polynom P(x) a číslo $\lambda \in \mathbb{R}$. Definujme $m \in \mathbb{N}_0$ následujícím způsobem:

- \bullet pokud je λ charakteristické číslo uvažované LRR, pak nechť m je jeho násobnost,
- \bullet jinak nechť m je nula.

Potom existuje polynom Q(x) stupně stejného jako P(x) takový, že posloupnost

$$\left(n^m Q(n)\lambda^n\right)_{n=n_0}^{\infty}$$

je řešením uvažované LRR.

Mistrovská metoda

Nechť $a \geq 1$ a b > 1jsou reálné konstanty, fkladná funkce jedné proměnné. Uvažujme rekurentní rovnici

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n),$$

kde $\frac{n}{b}$ v argumentu může znamenat i $\lceil \frac{n}{b} \rceil$ nebo $\lfloor \frac{n}{b} \rfloor.$ Potom (všechny vztahy myšleny pro $n \to \infty)$:

- 1. Pokud $f(n) = \mathcal{O}(n^{\log_b(a) \varepsilon})$ pro nějaké $\varepsilon > 0$, potom $T(n) = \Theta(n^{\log_b(a)})$.
- 2. Pokud $f(n) = \Theta(n^{\log_b(a)})$, pak $T(n) = \Theta(n^{\log_b(a)} \cdot \ln(n))$.
- 3. Pokud $f(n)=\Omega(n^{\log_b(a)+\varepsilon})$ pro nějaké $\varepsilon>0$ a pokud existuje $d\in(0,1)$ a $n_0\in\mathbb{N}$ takové, že

$$af\left(\frac{n}{b}\right) \leq d \cdot f(n), \quad \text{pro každé } n \geq n_0,$$
pak $T(n) = \Theta(f(n)).$

6 Funkce více proměnných

Euklidovská norma a vzdálenost

Euklidovskou normu vektoru $\mathbf{x} \in \mathbb{R}^n$ definujeme předpisem

$$\|\mathbf{x}\| \equiv \sqrt{\sum_{j=1}^{n} x_j^2} \,.$$

Euklidovskou vzdálenost dvou bodů $\mathbf{x} \in \mathbb{R}^n$ a $\mathbf{y} \in \mathbb{R}^n$ pak představuje číslo

$$d(\mathbf{x}, \mathbf{y}) \equiv \|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}.$$

Okolí bodu a $\in \mathbb{R}^n$

Mějme bod $\mathbf{a} \in \mathbb{R}^n$ a poloměr $\epsilon > 0$. Potom **okolím bodu a o poloměru** ϵ nazýváme množinu všech bodů $\mathbf{x} \in \mathbb{R}^n$, jejichž vzdálenost od bodu \mathbf{a} je menší než ϵ a značíme ho $U_{\mathbf{a}}(\epsilon)$. Tj. podrobně rozepsáno

$$U_{\mathbf{a}}(\epsilon) \equiv \left\{ \mathbf{x} \in \mathbb{R}^n \,\middle|\, d(\mathbf{x}, \mathbf{a}) < \epsilon \right\} \subset \mathbb{R}^n.$$

Hromadný bod množiny $M \subset \mathbb{R}^n$

Bod $\mathbf{a} \in \mathbb{R}^n$ nazýváme **hromadným bodem množiny** $M \subset \mathbb{R}^n$, právě když v každém okolí bodu \mathbf{a} leží bod množiny M různý od \mathbf{a} .

Vnitřní bod množiny

O bodu $\mathbf{a} \in M \subset \mathbb{R}^n$ řekneme, že je vnitřním bodem množiny M, právě když existuje okolí $U_{\mathbf{a}}$ bodu \mathbf{a} takové, že $U_{\mathbf{a}} \subset M$.

Otevřená množina

O množině $M \subset \mathbb{R}^n$ řekneme, že je **otevřená**, právě když pro každý bod $\mathbf{a} \in M$ existuje okolí $U_{\mathbf{a}}$ bodu \mathbf{a} takové, že $U_{\mathbf{a}} \subset M$.

Limita vektorové posloupnosti

Řekneme, že posloupnost $(\mathbf{x}_k)_{k=1}^{\infty}$ vektorů $\mathbf{x}_k \in \mathbb{R}^n$ má **limitu** (případně **konverguje k**) $\mathbf{a} \in \mathbb{R}^n$, právě když pro každé okolí $U_{\mathbf{a}}$ bodu \mathbf{a} existuje $N \in \mathbb{N}$ takové, že pro každé přirozené k > N platí $\mathbf{x}_k \in U_{\mathbf{a}}$. Tento fakt značíme $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{a}$.

Konvergence a vzdálenost

Pro vektorovou posloupnost $(\mathbf{x}_k)_{k=1}^{\infty}$ platí $\lim_{k\to\infty} \mathbf{x}_k = \mathbf{a}$, právě když $\lim_{k\to\infty} \|\mathbf{x}_k - \mathbf{a}\| = 0$ (tato druhá limita je obyčejná limita z BI-MA1).

Konvergence po složkách

Uvažme posloupnost $(\mathbf{x}_k)_{k=1}^{\infty}$. Potom platí následující ekvivalence: $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{a}$, právě když pro každé $j \in \hat{n}$ platí $\lim_{k \to \infty} (\mathbf{x}_k)_j = \mathbf{a}_j.$

Limita součtu a skalárního násobku posloupností

Mějme dvě vektorové posloupnosti $(\mathbf{x}_k)_{k=1}^{\infty}$ a $(\mathbf{y}_k)_{k=1}^{\infty}$ splňující $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{a}$ a $\lim_{k\to\infty}\mathbf{y}_k=\mathbf{b}\ \mathrm{a}\ \alpha\in\mathbb{R}.\ \mathrm{Potom}$

$$\lim_{k \to \infty} (\mathbf{x}_k + \mathbf{y}_k) = \mathbf{a} + \mathbf{b},$$

$$\lim_{k \to \infty} (\alpha \mathbf{x}_k) = \alpha \mathbf{a}.$$
(3)

$$\lim_{k \to \infty} (\alpha \mathbf{x}_k) = \alpha \mathbf{a}. \tag{4}$$

Limita (vektorové) funkce více proměnných

Mějme funkci n reálných proměnných $F: D_F \to \mathbb{R}^m, D_F \subset \mathbb{R}^n$, a hromadný bod a množiny D_F .

Potom funkce F má v bodě a limitu $\mathbf{b} \in \mathbf{R}^m$, právě když pro každé okolí $U_{\mathbf{b}}$ bodu \mathbf{b} existuje okolí $U_{\mathbf{a}}$ bodu \mathbf{a} takové, že kdykoliv $\mathbf{x} \in (U_{\mathbf{a}} \cap D_F) \setminus \{\mathbf{a}\}$ pak platí $F(\mathbf{x}) \in U_{\mathbf{b}}$.

Symbolicky tuto situaci zapisujeme opět jako

$$\lim_{\mathbf{x} \to \mathbf{a}} F(\mathbf{x}) = \mathbf{b}.$$

Pokud m=1, pak ještě pro $\alpha\in\{+\infty,-\infty\}$ klademe $\lim_{\mathbf{x}\to\mathbf{a}}F(\mathbf{x})=\alpha$ kdykoliv

$$(\forall U_{\alpha})(\exists U_{\mathbf{a}})(\forall \mathbf{x} \in \mathbb{R}^n)(x \in (U_{\mathbf{a}} \cap D_F) \setminus \{\mathbf{a}\} \Rightarrow F(\mathbf{x}) \in U_{\alpha}).$$

Limita zúžení

Mějme vektorovou funkci $F: D_F \to \mathbb{R}^m, D_F \subset \mathbb{R}^n$ a hromadný bod **a** definičního oboru funkce F v němž existuje limita

$$\lim_{\mathbf{x}\to\mathbf{a}}F(\mathbf{x})=\mathbf{b}\in\mathbb{R}^m.$$

Potom i pro $F|_M$ zúžení funkce F na množinu M, která má ${\bf a}$ jako hromadný bod, platí

$$\lim_{\mathbf{x}\to\mathbf{a}}(F|_M)(\mathbf{x})=\mathbf{b}\in\mathbb{R}^m.$$

Limita vektorové funkce a limity jejích složek

Mějme (vektorovou) funkci $F: D_F \to \mathbb{R}^m, D_F \subset \mathbb{R}^n$, hromadný bod $\mathbf{a} \in \mathbb{R}^n$ množiny D_F a bod $\mathbf{b} \in \mathbb{R}^m$. Potom platí

• $\lim_{\mathbf{x} \to \mathbf{a}} F(\mathbf{x}) = \mathbf{b}$, právě když $\lim_{\mathbf{x} \to \mathbf{a}} \|F(\mathbf{x}) - \mathbf{b}\| = 0$.

 \bullet Označme složky F jako

$$F(\mathbf{x}) = (F_1(\mathbf{x}), \cdots, F_m(\mathbf{x}))^T, \quad x \in D_F.$$

Pak $\lim_{\mathbf{x} \to \mathbf{a}} F(\mathbf{x}) = \mathbf{b}$, právě když $\lim_{\mathbf{x} \to \mathbf{a}} F_j(\mathbf{x}) = b_j$ pro každé $j \in \hat{m}$.

Věta o limitě součtu, násobku

Mějme dvě vektorové funkce $F: D_F \to \mathbb{R}^m, D_F \subset \mathbb{R}^n, G: D_G \to \mathbb{R}^m, D_G \subset \mathbb{R}^n$, bod $\mathbf{a} \in \mathbb{R}^n$, který je hromadným bodem množiny $D_F \cap D_G$ a $\alpha \in \mathbb{R}$. Potom pokud existují limity $\lim_{\mathbf{x} \to \mathbf{a}} F(\mathbf{x}) = \mathbf{b} \in \mathbb{R}^m$ a $\lim_{\mathbf{x} \to \mathbf{a}} G(\mathbf{x}) = \mathbf{c} \in \mathbb{R}^m$, potom platí

$$\lim_{\mathbf{x} \to \mathbf{a}} \big(F(\mathbf{x}) + G(\mathbf{x}) \big) = \mathbf{b} + \mathbf{c} \quad \text{a} \quad \lim_{\mathbf{x} \to \mathbf{a}} \alpha F(\mathbf{x}) = \alpha \mathbf{b}.$$

Věta o limitě součinu a podílu

Mějme dvě funkce $f: D_f \to \mathbb{R}$, $D_f \subset \mathbb{R}^n$, $g: D_g \to \mathbb{R}$, $D_g \subset \mathbb{R}^n$, bod $\mathbf{a} \in \mathbb{R}^n$, který je hromadným bodem množiny $D_f \cap D_g$. Potom pokud existují limity $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = b \in \mathbb{R}$ a $\lim_{\mathbf{x} \to \mathbf{a}} g(\mathbf{x}) = c \in \mathbb{R}$, potom platí

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) \cdot g(\mathbf{x}) = b \cdot c \quad \text{a} \quad \lim_{\mathbf{x} \to \mathbf{a}} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{b}{c}, \text{ pokud } c \neq 0.$$

Spojitost (vektorové) funkce

Mějme (vektorovou) funkci $F:A\to\mathbb{R}^m,\ A\subset\mathbb{R}^n$, a bod $\mathbf{a}\in D_F$, který je hromadným bodem množiny D_F .

Funkce F je spojitá v bodě a, právě když

$$\lim_{\mathbf{x} \to \mathbf{a}} F(\mathbf{x}) = F(\mathbf{a}).$$

Funkci F nazveme **spojitou** (resp. spojitou na množině M), právě když je spojitá v každém bodě svého definičního oboru (resp. v každém bodě množiny M).

Spojitost součtu, násobku, součinu a podílu

Mějme dvě vektorové funkce $F:D_F\to\mathbb{R}^m,\ D_F\subset\mathbb{R}^n,\ G:D_G\to\mathbb{R}^m,$ $D_G\subset\mathbb{R}^n,$ bod $\mathbf{a}\in\mathbb{R}^n,$ který je hromadným bodem množiny $D_F\cap D_G$ a $\alpha\in\mathbb{R}.$ Předpokládejme, že F i G jsou spojité v bodě $\mathbf{a}.$ Potom

- F + G je spojitá v \mathbf{a} ,
- αF je spojitá v **a**.

Pokud je m = 1, pak

- $F \cdot G$ je spojitá v **a**,
- $\frac{F}{G}$ je spojitá v **a** v případě kdy $G(\mathbf{a}) \neq 0$.

D_f v k-tém faktoru

Buďte $f: D_f \to \mathbb{R}$, $D_f \subset \mathbb{R}$, reálná funkce jedné reálné proměnné, $n \in \mathbb{N}$ a $k \in \hat{n}$. Definujme funkci $(D_f \vee k$ -tém faktoru)

$$g(\mathbf{x}) \equiv f(x_k)$$
, pro $\mathbf{x} \in D_g \equiv \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{k-1} \times D_f \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-k}$.

Je-li f spojitá, pak i g je spojitá.

Věta o spojitosti složené (vektorové) funkce

Mějme (vektorové) funkce $g: D_g \to \mathbb{R}^m$, $D_g \subset \mathbb{R}^n$ a $f: D_f \to \mathbb{R}^k$, $D_f \subset \mathbb{R}^m$. Dále předpokládejme, že g je spojitá v $\mathbf{a} \in D_g$ a f je spojitá a definovaná na okolí $g(\mathbf{a})$. Potom je $f \circ g$ spojitá v bodě \mathbf{a} .

Parciální derivace (v bodě)

Mějme reálnou funkci n reálných proměnných $f:D_f\to\mathbb{R},\ D_f\subset\mathbb{R}^n,$ definovanou na okolí bodu $\mathbf{a}\in D_f$ a $j\in\hat{n}.$

Existuje-li limita

$$\lim_{h\to 0}\frac{f(\mathbf{a}+h\mathbf{e}_j)-f(\mathbf{a})}{h},$$

pak její hodnotu nazýváme parciální derivací funkce f v bodě a podle j-té proměnné a značíme ji $\frac{\partial f}{\partial x_j}(\mathbf{a})$, případně $\partial_{x_j} f(\mathbf{a})$.

Označme M jako množinu všech vnitřních bodů a množiny D_f , v kterých existuje limita (předchozí limita). Potom funkci přiřazující hodnotu $\frac{\partial f}{\partial x_j}(\mathbf{a})$ každému $\mathbf{a} \in M \subset \mathbb{R}^n$ nazýváme **parciální derivací funkce** f **podle** j**-té proměnné** a značíme ji

$$\frac{\partial f}{\partial x_j}$$
, případně $\partial_{x_j} f$.

Gradient

Mějme reálnou funkci n reálných proměnných $f:D_f\to\mathbb{R},\ D_f\subset\mathbb{R}^n$ mající všechny parciální derivace v bodě $\mathbf{a}\in D_f$. Potom řádkový vektor

$$\left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \frac{\partial f}{\partial x_2}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right) \in \mathbb{R}^{1,n}$$

nazýváme $\mathbf{gradientem}$ funkce f \mathbf{v} $\mathbf{bodě}$ \mathbf{a} a používáme pro něj značení

$$\nabla f(\mathbf{a})$$
 nebo grad $f(\mathbf{a})$.

Derivace (vektorové) funkce

Mějme zobrazení $F: D_F \to \mathbb{R}^m, D_F \subset \mathbb{R}^n$, definované na okolí bodu **a**. Derivací zobrazení F v bodě **a** nazýváme matici $DF(\mathbf{a}) \in \mathbb{R}^{m,n}$ splňující

$$\lim_{\mathbf{x} \to \mathbf{a}} \frac{\|F(\mathbf{x}) - F(\mathbf{a}) - DF(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})\|}{\|\mathbf{x} - \mathbf{a}\|} = 0.$$

Složky matice $DF(\mathbf{a})$ a její jednoznačnost

Pokud má zobrazení $F: D_f \to \mathbb{R}^m$, $D_f \subset \mathbb{R}^n$, definované na okolí bodu **a**, derivaci $DF(\mathbf{a}) \in \mathbb{R}^{m,n}$ v bodě **a**, potom

$$DF(\mathbf{a}) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1}(\mathbf{a}) & \frac{\partial F_1}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial F_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial F_2}{\partial x_1}(\mathbf{a}) & \frac{\partial F_2}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial F_2}{\partial x_n}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1}(\mathbf{a}) & \frac{\partial F_m}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial F_m}{\partial x_n}(\mathbf{a}) \end{pmatrix}.$$

Odtud ihned také plyne, že je tato matice dána jednoznačně, existuje-li.

Hessova matice

Na derivaci, resp. gradient, funkce $f:D_f\to\mathbb{R},\,D_f\subset\mathbb{R}^n$, lze nahlížet jako na zobrazení $Df:A\to\mathbb{R}^n,\,A\subset D_f$, jeho derivací v bodě $\mathbf{a}\in A$ je pak matice typu $\mathbb{R}^{n,n}$, kterou nazýváme **Hessovou maticí** a značíme $\nabla^2 f(\mathbf{a})$. Pokud existuje, pak platí

$$\nabla^2 f(\mathbf{a}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{a}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_2^2}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{a}) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{a}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\mathbf{a}) \end{pmatrix}.$$

Derivace složené funkce

Mějme zobrazení $F: D_F \to \mathbb{R}^k$, $D_F \subset \mathbb{R}^m$ a $G: D_G \to \mathbb{R}^m$, $D_G \subset \mathbb{R}^n$ a bod $\mathbf{a} \in D_G$ takové, že existují $DG(\mathbf{a})$ a $DF(G(\mathbf{a}))$. Potom existuje i derivace složeného zobrazení $F \circ G$ v bodě \mathbf{a} a platí

$$D(F \circ G)(\mathbf{a}) = DF(G(\mathbf{a})) \cdot DG(\mathbf{a}).$$

Derivace ve směru

Nechť $f:D_f\to\mathbb{R},\,D_f\subset\mathbb{R}^n$ má derivaci v bodě $\mathbf{a}\in D_f$. Buď v vektor délky 1.

Potom existuje limita (tzv. derivace funkce f ve směru v v bodě a)

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) \equiv \partial_{\mathbf{v}} f(\mathbf{a}) \equiv \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a})}{h}$$

a je rovna $\langle \nabla f(\mathbf{a})^T \mid \mathbf{v} \rangle$.

7 Kvadratické formy

Kvadratická forma

Funkci $q: \mathbb{R}^n \to \mathbb{R}$ nazýváme **kvadratickou formou**, právě když existuje symetrická matice $\mathbf{M} \in \mathbb{R}^{n,n}$ splňující

$$q(\mathbf{x}) = \sum_{j,k=1}^{n} \mathbf{M}_{j,k} x_j x_k, \quad \text{pro každé } \mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n.$$

Typy definitnosti kvadratických forem

Kvadratickou formu $q:\mathbb{R}^n\to\mathbb{R}$ nazveme

- pozitivně definitní (PD), právě když $q(\mathbf{x}) > 0$ pro každé nenulové $\mathbf{x} \in \mathbb{R}^n$.
- pozitivně semidefinitní (PSD), právě když $q(\mathbf{x}) \geq 0$ pro každé $\mathbf{x} \in \mathbb{R}^n$.
- indefinitní (ID), právě když existují vektory $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ splňující $q(\mathbf{x}) > 0$ a $q(\mathbf{y}) < 0$.
- negativně semidefinitní (NSD), právě když $q(\mathbf{x}) \leq 0$ pro každé $\mathbf{x} \in \mathbb{R}^n$.
- negativně definitní (ND), právě když $q(\mathbf{x}) < 0$ pro každé nenulové $\mathbf{x} \in \mathbb{R}^n$.

Stejnou terminologii budeme používat i pro symetrické matice \mathbf{M} : symetrická matice \mathbf{M} je typu T, právě když forma $\mathbf{x}^T \mathbf{M} \mathbf{x}$ je typu T.

Diagonalizace symetrické reálné matice

Symetrická reálná matice je diagonalizovatelná a všechna její vlastní čísla jsou reálná. Vlastní vektory příslušející různým vlastním číslům jsou vzájemně ortogonální.

Vztah definitností a vlastních čísel

Kvadratická forma $q(\mathbf{x}) = \mathbf{x}^T \mathbf{M} \mathbf{x}$ je

- PD, právě když všechna vlastní čísla matice M jsou kladná.
- PSD, právě když všechna vlastní čísla matice M jsou nezáporná.
- ID, právě když má matice M kladné i záporné vlastní číslo.
- NSD, právě když všechna vlastní čísla matice M jsou nekladná.
- $\bullet\,$ ND, právě když všechna vlastní čísla matice ${\bf M}$ jsou záporná.

Typy definitností a úprava na čtverce

Předpokládejme, že předchozí postup úspěšně proběhl a máme tedy $q(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$, vyjádřeno ve tvaru

$$q(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j ((\mathbf{P}\mathbf{x})_j)^2,$$

kde $1 \le k \le n, \ \mathbf{P} \in \mathbb{R}^{k,n}$ má hodnost k (plyne z postupné eliminace proměnných) a $\alpha_j \ne 0, \ j \in \hat{k}$. Potom platí:

- Pokud k = n a $\alpha_j > 0$ pro všechna $j \in \hat{k}$, potom je q PD.
- Pokud k = n a $\alpha_i < 0$ pro všechna $j \in \hat{k}$, potom je q ND.
- Pokud k < n a $\alpha_i > 0$ pro všechna $j \in \hat{k}$, potom je q PSD (ale ne PD).
- Pokud k < n a $\alpha_i < 0$ pro všechna $j \in \hat{k}$, potom je q NSD (ale ne ND).
- Pokud existují $j, \ell \in \hat{k}$ taková, že $\alpha_i > 0$ a $\alpha_\ell < 0$, potom je q ID.

Sylvesterovo kritérium

Kvadratická forma $q(\mathbf{x}) = \mathbf{x}^T \mathbf{M} \mathbf{x}$, kde $\mathbf{M} \in \mathbb{R}^{n,n}$ je symetrická matice, je

- PD, právě když pro každé $k \in \hat{n}$ platí det $\mathbf{M}_k > 0$.
- ND, právě když pro každé $k \in \hat{n}$ platí $(-1)^k \det \mathbf{M}_k > 0$.

Obecné Sylvestrovo kritérium

Nechť $\mathbf{M} \in \mathbb{R}^{n,n}$ je symetrická matice. Potom

- 1. M je PD, právě když det $\mathbf{M}_{\{k+1,...,n\}} > 0$ pro každé přirozené k splňující 0 < k < n.
- 2. M je ND, právě když $(-1)^k \det \mathbf{M}_{\{k+1,...,n\}} > 0$ pro každé přirozené k splňující $0 < k \le n$,
- 3. M je PSD, právě když det $\mathbf{M}_I \geq 0$ pro všechna $I \subseteq \hat{n}$.
- 4. M je NSD, právě když $(-1)^{n-\#I} \det \mathbf{M}_I \geq 0$ pro všechna $I \subsetneq \hat{n}$.
- 5. **M** je ID, právě když det $\mathbf{M}_I < 0$ pro nějaké $I \subsetneq \hat{n}$, kde n #I je sudé, nebo det $\mathbf{M}_I < 0$ a det $\mathbf{M}_J > 0$ pro nějaké $I, J \subsetneq \hat{n}$, kde n #I a n #J jsou lichá.

8 Extrémy funkcí více proměnných

Definice extrému funkce více proměnných

Mějme funkci $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, a bod $\mathbf{a} \in D_f$. Funkce f má v bodě \mathbf{a}

- ostré lokální minimum, právě když existuje okolí $U_{\mathbf{a}}$ bodu a takové, že pro všechna $\mathbf{x} \in U_{\mathbf{a}} \cap D_f$ různá od a platí $f(\mathbf{x}) > f(\mathbf{a})$.
- ostré lokální maximum, právě když existuje okolí $U_{\mathbf{a}}$ bodu a takové, že pro všechna $\mathbf{x} \in U_{\mathbf{a}} \cap D_f$ různá od a platí $f(\mathbf{x}) < f(\mathbf{a})$.
- lokální minimum, právě když existuje okolí $U_{\mathbf{a}}$ bodu **a** takové, že pro všechna $\mathbf{x} \in U_{\mathbf{a}} \cap D_f$ platí $f(\mathbf{x}) \geq f(\mathbf{a})$.
- lokální maximum, právě když existuje okolí $U_{\mathbf{a}}$ bodu a takové, že pro všechna $\mathbf{x} \in U_{\mathbf{a}} \cap D_f$ platí $f(\mathbf{x}) \leq f(\mathbf{a})$.

Hodnota tohoto extrému je ve všech případech rovna $f(\mathbf{a})$. Souhrnně budeme mluvit o (ostrém) lokálním extrému.

Nutná podmínka existence lokálního extrému I: parciální derivace

Mějme funkci $f: D_f \to \mathbb{R}$, $D_f \subset \mathbb{R}^n$, mající v bodě **a** lokální extrém (klidně ostrý) a $j \in \hat{n}$. Potom parciální derivace funkce f v bodě **a** podle j-té proměnné je rovna nule nebo neexistuje.

Nutná podmínka existence lokálního extrému I: gradient

Mějme funkci $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, mající v bodě **a** (ostrý) lokální extrém a mající parciální derivace v bodě **a** podle všech proměnných. Potom $\nabla f(\mathbf{a}) = \theta$.

Stacionární bod

Mějme funkci $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$. Bod $\mathbf{a} \in D_f$ splňující $\nabla f(\mathbf{a}) = \theta$ nazýváme **stacionárním bodem**. **Kritickým bodem** nazýváme bod, kde neexistuje gradient nebo je stacionární.

Nutná podmínka existence lokálního extrému II

Nechť funkce $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, má spojité všechny druhé parciální derivace na okolí bodu **a** a nechť má v tomto bodě lokální minimum (resp. maximum), potom je Hessova matice $\nabla^2 f(\mathbf{a})$ PSD (resp. NSD).

Postačující podmínka existence lokálního extrému

Mějme funkci $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}^n$, mající spojité všechny třetí parciální derivace na okolí bodu **a** a nechť jsou splněny následující dvě podmínky

- 1. $\nabla f(\mathbf{a}) = \theta$,
- 2. $\nabla^2 f(\mathbf{a})$ je PD (resp. ND).

Potom má funkce f v bodě ${\bf a}$ ostré lokální minimum (resp. maximum). Pokud platí první podmínka a Hessova matice $\nabla^2 f({\bf a})$ je ID, pak tato funkce v bodě ${\bf a}$ lokální extrém nemá.

9 Vícerozměrná integrace

Množiny typu 1 a 2

O množině $D \subset \mathbb{R}^2$ řekneme, že

• je **typu 1**, právě když existuje interval $J=\langle a,b\rangle$ a dvě spojité funkce φ_1 a φ_2 definované na J a splňující $\varphi_1(x)\leq \varphi_2(x)$ pro všechna $x\in J$ tak, že

$$D = \{(x, y) \in \mathbb{R}^2 \mid x \in J \land \varphi_1(x) \le y \le \varphi_2(x)\}.$$

• je **typu 2**, právě když existuje interval $J = \langle a, b \rangle$ a dvě spojité funkce ψ_1 a ψ_2 definované na J a splňující $\psi_1(y) \leq \psi_2(y)$ pro všechna $y \in J$ tak, že

$$D = \{(x, y) \in \mathbb{R}^2 \mid y \in J \land \psi_1(y) \le x \le \psi_2(y)\}.$$

Postačující podmínka existence vícerozměrného integrálu

Nechť D je hyperkvádr nebo množina typu 1 nebo 2 a f spojitá funkce na D. Potom je funkce f Riemannovsky integrabilní na množině D.

Fubini pro hyperkvádr

Buď f Riemannovsky integrabilní na obdélníku $D = \langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle$. Pokud existuje jeden z integrálů

$$\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x, y) \, dy \right) dx \quad \text{nebo} \quad \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x, y) \, dx \right) dy$$

potom je roven Riemannově integrálu

$$\int_D f(x,y) \, dx dy.$$

Integrace funkcí se separovanými proměnnými

Pokud integrujeme spojitou funkci tvaru $f(x,y)=g(x)\cdot h(y)$ na obdélníku $D=\langle a_1,b_1\rangle \times \langle a_2,b_2\rangle$, pak

$$\int_{D} f(x,y) \, dx dy = \int_{a_1}^{b_1} g(x) \, dx \cdot \int_{a_2}^{b_2} h(y) \, dy.$$

Fubini pro množiny typu 1 nebo 2

Buď f spojitá na množině D typu 1 nebo 2. Potom

1. pro množinu
$$D$$
 typu 1 platí $\int_D f(x,y) dx dy = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy \right) dx$,

2. pro množinu
$$D$$
 typu 2 platí $\int_D f(x,y) dx dy = \int_a^b \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$.

10 Tabulky

Tabulka integrálů

Integrál	Výsledek	Podmínka
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C$	$x \in \mathbb{R}, n \in \mathbb{N}_0$
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C$	$x \in \mathbb{R} \smallsetminus \{0\}, n \in \mathbb{Z}, n \le -2$
$\int x^{\alpha} dx$	$\frac{x^{\alpha+1}}{\alpha+1} + C$	$x\in(0,+\infty),\alpha\notin\mathbb{Z}$
$\int \frac{1}{x} dx$	$\ln x + C$	$x \in (-\infty, 0), x \in (0, +\infty)$
$\int_{a}^{b} a^{x} dx$	$\frac{a^x}{\ln a} + C$	$x \in \mathbb{R}, a > 0, a \neq 1$
$\int \sin(x) dx$	$-\cos(x) + C$	$x \in \mathbb{R}$
$\int \cos(x) dx$	$\sin(x) + C$	$x \in \mathbb{R}$
$\int \frac{1}{\cos^2(x)} dx$	$\tan(x) + C$	$x \in \left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right), k \in \mathbb{Z}$
$\int \frac{1}{\sin^2(x)} dx$	$-\cot(x) + C$	$x \in (k\pi, \pi + k\pi), k \in \mathbb{Z}$
$\int \frac{1}{\sqrt{1-x^2}} dx$	$\arcsin(x) + C$	$x \in (-1,1)$
$\int \frac{1}{1+x^2} dx$	$\arctan(x) + C$	$x \in \mathbb{R}$

Důležité limity posloupností

Limita	Výsledek	Podmínka
$\lim_{n\to\infty} c$	c	$c \in \mathbb{R}$
$\lim_{n\to\infty} n^a$	$\begin{cases} +\infty & a > 0, \\ 1 & a = 0, \\ 0, & a < 0. \end{cases}$	$a \in \mathbb{R}$
$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k}$	+∞	
$\lim_{n\to\infty} \sqrt[n]{n}$	1	
$\lim_{n\to\infty} \sqrt[n]{c}$	1	$c \in (0, +\infty)$
$\lim_{n\to\infty} \sqrt[n]{n!}$	$+\infty$	
$\lim_{n\to\infty} a^n$	$\begin{cases} 1, & a = 1, \\ +\infty, & a > 1, \\ \text{neexistuje}, & a \le -1. \end{cases}$	$a \in \mathbb{R}$
	neexistuje, $a \leq -1$.	
$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$	e	

Důležité limity

Limita	Hodnota	Podmínky
$\lim_{x \to a} c$	c	$c \in \mathbb{R}, \ a \in \overline{\mathbb{R}}$
$\lim_{x \to a} x$	a	$a \in \overline{\mathbb{R}}$
$\lim_{x \to a \pm} \frac{1}{(x-a)^k}$	$\begin{cases} \pm \infty, & k \text{ lichá}, \\ +\infty, & k \text{ sudá}. \end{cases}$	$a \in \mathbb{R}, k \in \mathbb{N}$
$\lim_{x \to a} x $	a	$a \in \overline{\mathbb{R}}$
$\lim_{x \to 0\pm} \operatorname{sgn}(x)$	±1	
$\lim_{x \to a} \sqrt[k]{x}$	$\sqrt[k]{a}$	lichá $k \in \mathbb{N}, \ a \in \overline{\mathbb{R}}$
$\lim_{x \to a} \sqrt[k]{x}$	$\sqrt[k]{a}$	sudá $k \in \mathbb{N}, a \in (0, +\infty) \cup \{+\infty\}$
$\lim P(x)$	P(a)	$a \in \mathbb{R}$, polynom P
$\lim_{x \to 0} \frac{e^x - 1}{x}$	1	
$\lim_{x \to 0} \frac{\ln(1+x)}{x}$	1	
$\lim_{x \to 0} \frac{\sin(x)}{x}$	1	
$\lim_{x \to a} \sin(x)$	$\sin(a)$	$a \in \mathbb{R}$
$\lim_{x \to a} \cos(x)$	$\cos(a)$	$a \in \mathbb{R}$
$\lim_{x \to a} e^x$	e^a	$a \in \mathbb{R}$
$\lim_{x \to +\infty} e^x$	$+\infty$	
$\lim_{x \to -\infty} e^x$	0	
$\lim_{x \to a} \ln(x)$	$\ln(a)$	$a \in (0, +\infty)$
$\lim_{x \to +\infty} \ln(x)$	$+\infty$	
$\lim_{x \to 0+} \ln(x)$	$-\infty$	
$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x$	e	
$\lim_{x \to \pm \infty} \left(1 + \frac{\alpha}{x} \right)^x$	e^{α}	$\alpha \in \mathbb{R}$

Derivace elementárních funkcí

f(x)	f'(x)	Podmínky
x^n	nx^{n-1}	$x \in \mathbb{R}, n \in \mathbb{N}_0$
x^n	nx^{n-1}	$x \in \mathbb{R} \setminus \{0\}, n = -1, -2, \dots$
e^x	e^x	$x \in \mathbb{R}$
a^x	$a^x \ln a$	$x \in \mathbb{R}, a > 0$
$\ln(x)$	$\frac{1}{x}$	x > 0
$\sin(x)$	$\cos(x)$	$x \in \mathbb{R}$
$\cos(x)$	$-\sin(x)$	$x \in \mathbb{R}$
tan(x)	$\frac{1}{\cos^2(x)}$	$x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
$\cot(x)$	$-\frac{1}{\sin^2(x)}$	$x \neq k\pi, \ k \in \mathbb{Z}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x \in (-1, 1)$
$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$	$x \in (-1,1)$
$\arctan(x)$	$\frac{1}{1+x^2}$	$x \in \mathbb{R}$
$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$	$x \in \mathbb{R}$