# New Exploratory Tools for Extremal Dependence: $\chi$ and Annual Extremal Networks

Dan Cooley & Whitney Huang

Joint work with SAMSI Networks and Extremes working group

Colorado State University & Clemson University

Session on Climate Networks and Extremes, July, 30, 2019





#### Outline of the talk

- Motivation and Background
  - ▶ 2017 Atlantic hurricane season and rainfall extremes
  - To develop climate network methods for exploring extremal dependence
- χ and Annual Extremal Networks
  - An empirical and its bias-corrected estimator of  $\chi$  network
  - The use of annual extremal network to explore the year-to-year variation of extremal dependence
- Gulf Coast Extreme Rainfall Application



## 2017 Atlantic hurricane season



**Source:** NOAA/NASA

### Motivation

We would like to explore the spatial dependence of hurricane seasons rainfall extremes at the Gulf Coast and surrounding area.

- A standard treatment of the data from these three storms would likely treat them as independent events, due to their temporal lag and spatial distance.
- However, it is largely acknowledged that these storms are related, arising from conditions in 2017 conducive to tropical cyclone formation and intensication
- We seek to use an climate network-type approach to explore the extremal depedence of rainfall extremes

#### Climates network for extremes

- A climate network [Tsonis and Roebber 2004] consists of **nodes** (stations or grid cells) and **edges**. Two nodes are connected by an edge depending on the degree of statistical dependence between the corresponding pairs of time series
- Most studies use correlation to construct climate networks ⇒ may fail to capture tail dependence structure (see next slide for an illustration)
- We use the upper tail dependence  $(\chi)$  as the measure of the tail dependence between a pair of annual maxima series

# Characterizing (bivariate) tail dependence

Let  $\mathbf{X} = (X_1, X_2)$  be a bivariate random vector with marginal CDF  $F_1$ ,  $F_2$ 

**Upper tail dependence**:  $\chi = \lim_{u \to 1^-} \chi(u)$ , where

$$\chi(u) = \mathbb{P}(F_2(X_2) > u | F_1(X_1) > u)$$

⇒ the probability of one variable being extreme given that the other is extreme



# An empirical estimator of $\chi$ network

**Input:**  $\{m_{i,j}\}$ : annual maximum series (in year  $i=1,\cdots,n_j$ ) at locations  $j\in\mathcal{S}$  and a threshold  $\chi_{\min}$ .

1. Compute the empirical distribution function of  ${\it M}_{\it j}$ 

$$u_{i,j} = \frac{\mathsf{Rank}_j(m_{i,j})}{n_j + 1}$$

2. Compute the **F-madogram** (Cooley et al. 2006):

$$\hat{\nu}_{jj'} = \frac{1}{2} \frac{1}{n_{j,j'}} \sum_{i=1}^{n_{j,j'}} |u_{i,j} - u_{i,j'}|, \quad j, j' \in \mathcal{S}$$



## $\chi$ network estimation cont'd

3. Compute the **extremal coefficient** (Smith, 1990):

$$\hat{\theta}_{jj'} = \frac{1 + 2\hat{\nu}_{jj'}}{1 - 2\hat{\nu}_{jj'}}, \quad j, j' \in \mathcal{S}$$

**4**. Compute  $\chi$ :

$$\hat{\chi}_{jj'} = 2 - \hat{\theta}_{jj'}, \quad j, j' \in \mathcal{S}$$

5. Connect the pairs s.t.  $\hat{\chi}_{jj'} > \chi_{\min}$ 

**Output:** The  $\chi$  network G = (V, E) for the given threshold  $\chi_{\min}$ .



## An simulation study

- We simulate 100 realizations from a Brown–Resnick max–stable process, each with 50 "annual maxima" at 100 locations
- $\blacktriangleright$  We apply our empirical estimator to obtain estimated  $\chi$  networks
- We evaluate the estimator's performance using some network statistics:
  - # of edges
  - ► True positive rate: TPR =  $\frac{\#\{(j,j'):\hat{\chi}_{jj'}>\chi_{\min} \text{ and } \chi_{jj'}>\chi_{\min}\}}{\#\{(j,j'):\chi_{jj'}>\chi_{\min}\}}$
  - Positive predictive value: PPV =  $\frac{\#\{(j,j'):\hat{\chi}_{jj'}>\chi_{\min} \text{ and } \chi_{jj'}>\chi_{\min}\}}{\#\{(j,j'):\hat{\chi}_{jj'}>\chi_{\min}\}}$

## The number of edges is overestimated ©



## Understanding the network bias

Although  $\{\hat{\chi}_{jj'}\}$  appear unbiased, it is the act of thresholding which introduces the bias



We could exploit the spatial structure of  $\{\hat{\chi}_{jj'}\}$  to spatially regularize the network estimation

#### Network bias correction

$$\tilde{\chi}_{jj'} = \lambda_{jj'} \hat{\chi}_{jj'} + (1 - \lambda_{jj'}) \hat{\chi}(h_{jj'}), \quad j, j' = 1, \dots, d.$$

•  $\hat{\chi}_{jj'}$ : empirical estimate;  $\hat{\chi}(h_{jj'}) \sim \mathsf{N}(\hat{\chi}(h_{jj'}), \tau^2(h_{jj'}))$ : spatial "prior"

$$\lambda_{jj'} = \tau_{jj'}^2 / (\tau_{jj'}^2 + \sigma_{jj'}^{2*}), \text{ where } \sigma_{jj'}^{2*} = \text{se}(\hat{\chi}_{jj'})$$



## $\chi$ network for Gulf Coast rainfall extremes

- 339 GHCN weather stations in TX, LA, MS, AL, FL, GA
- ▶ Hurricane season maxima (June Oct.) from 1949 to 2017



#### Bias-corrected network estimate



## Bias-corrected network estimate cont'd



#### Annual extremal Network

- ► For each hurricane season, we connect the pairs where their EDFs of the season maximum exceed 0.95 (i.e., 20-year event)
- We study how the inter-annual variability of the numbers of the "long distance" (e.g., 1000km apart) extremal pairs might be explained by some meteorological variable (e.g., SST)



# Relating the number of long distance extremal connections to SST

log ratio:  $\log \frac{\# \text{ long distance extremal connections}}{\# \text{ all long distance pairs}}$ 

- lm: log ratio =  $\alpha_0 + \alpha_1 SST + \varepsilon$ .
- glm:  $\mathbb{E}[\log(\mu)|SST] = \beta_0 + \beta_1 SST$ .



## Summary

- ightharpoonup We develop the  $\chi$  and annual extremal networks for exploring dependence structure of extreme values
- We identify the issue of network bias and we propose a bias correction method by exploiting the spatial dependence structure
- These tools allow us to quickly explore the extremal dependence structure and could provide some guidance on how to proceed the following confirmatory analysis

#### More details can be found in:



Huang, W. K., Cooley, D. S., Ebert-Uphoff, I., Chen, C., Chatterjee, S.B.

New Exploratory Tools for Extremal Dependence:  $\chi$  Networks and Annual Extremal Networks.

Journal of Agricultural, Biological, and Environmental Statistics, 1–18, 2019