Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: CATULAY, WESLIE JEE

Section: CPE22S2

Performed on: 6/20/2024

Submitted on: 6/22/2024

Submitted to: Engr. Roman M. Richard

6.1 Intended Learning Outcome

1. Use pandas and numpy data analysis tools.

2. Demonstrate how to analyze data using numpy and pandas

6.2 Resources:

Personal Computer

Jupyter Notebook

Internet Connection

6.3 Supplementary Activities:

Exercise 1

Run the given code below for exercises 1 and 2, perform the given tasks without using any Python modules.

```
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]
```

Using the data generated above, calculate the following statistics without importing anything from the statistics module in the standard library (https://docs.python.org/3/library/statistics.html) and then confirm your results match up to those that are obtained when using the statistics module (where possible):

- Mean
- Median
- Mode (hint: check out the Counter in the collections module of the standard library at https://docs.python.org/3/library/collections.html#collections.Counter)
- Sample variance
- Sample standard deviation

```
# Getting the Mean
def mean(salaries):
  return sum(salaries)/len(salaries)
print(f"This is the Mean: {mean(salaries)}")
→ This is the Mean: 585690.0
# Getting the Median
def median(salaries):
 SalarSort = sorted(salaries)
 Med = len(SalarSort) // 2
 if len(SalarSort) % 2 == 0:
     Median = (SalarSort[Med - 1] + SalarSort[Med]) / 2
 else:
     Median = SalarSort[Med]
 return Median
print(f"This the Median: {median(salaries)}")
This the Median: 589000.0
```

```
#Getting the Mode
def mode(salaries):
 ModeNum = \{\}
 for i in salaries:
   ModeNum[i] = ModeNum.get(i, 0) + 1
 maxVal = max(ModeNum.values())
 Mode_Items = [ i for i, count in ModeNum.items() if count == maxVal ]
 Frequency = maxVal
 return Mode_Items, Frequency
print(f"This is the Frequency: {mode(salaries)}")
This is the Frequency: ([477000.0], 3)
# Getting the Sample Variance
def sampleVar(salaries):
 var = len(salaries)
 Mean = mean(salaries)
  sample_var = sum((i - Mean)**2 for i in salaries)/(var - 1)
 return sample_var
print(f"This is the Sample Variance: {sampleVar(salaries)}")
This is the Sample Variance: 70664054444.44444
# Getting the Standard Deviation
def stanDev(salaries):
 Dev = sampleVar(salaries)
 SD = Dev ** 0.5
 return SD
print(f"This is the Standard Deviation: {stanDev(salaries)}")
This is the Standard Deviation: 265827.11382484
```

Exercise 2

Using the same data, calculate the following statistics using the functions in the statistics module where appropriate:

- Range
- Coefficient of variation Interquartile range
- · Quartile coefficient of dispersion

```
# Getting the Range
def Range(salaries):
 haba = max(salaries) - min(salaries)
 return haba
print(f"This is the Range: {Range(salaries)}")
This is the Range: 995000.0
# Getting the Coefficcient of variation Interquartile range
def Coef_IR(salaries):
 M = mean(salaries)
 SDV = stanDev(salaries)
 coef = SDV/M
 import statistics as st
 AQ1 = st.quantiles(salaries, n=4)[0]
 AQ2 = st.quantiles(salaries, n=4)[2]
 IR = AQ2 - AQ1
 return coef, IR
print(f"This is the answer for both Coefficient of variation & Interquartile range: {Coef_]
    This is the answer for both Coefficient of variation & Interquartile range: (0.45386998
```

```
# Getting Quartile coefficient of dispersion

def QCD(salaries):
    import statistics as st
    AQ1 = st.quantiles(salaries, n=4)[0]
    AQ2 = st.quantiles(salaries, n=4)[2]

    IR = AQ2 - AQ1
    Med = median(salaries)

    QuCD = IR/Med

    return QuCD
QuCoefDis = QCD(salaries)
print(f"This is the Quartile coefficient of dispersion: {QCD(salaries)}")

    This is the Quartile coefficient of dispersion: 0.716044142614601
```

Exercise 3: Pandas for Data Analysis

Load the diabetes.csv file. Convert the diabetes.csv into dataframe Perform the following tasks in the diabetes dataframe:

- 1. Identify the column names.
- 2. Identify the data types of the data.
- 3. Display the total number of records.
- 4. Display the first 20 records.
- 5. Display the last 20 records.
- 6. Change the Outcome column to Diagnosis.
- 7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes".
- 8. Create a new dataframe "withDiabetes" that gathers data with diabetes.
- 9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes.
- 10. Create a new dataframe "Pedia" that gathers data with age 0 to 19.
- 11. Create a new dataframe "Adult" that gathers data with age greater than 19.
- 12. Use numpy to get the average age and glucose value.
- 13. Use numpy to get the median age and glucose value.

- 14. Use numpy to get the middle values of glucose and age.
- 15. Use numpy to get the standard deviation of the skinthickness.

```
# Data Analysis
```

```
import pandas as pd
import numpy as np
filepath ='/content/diabetes.csv'
DA = pd.read_csv(filepath)
```

DA

$\overline{\Rightarrow}$		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	768 rd	ws × 9 columns	3					

◀

```
# Identifying Columns
```

```
columns = DA.columns
print(f"This the Columns names::::: {columns}")
```

```
This the Columns names:::: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThick' 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'], dtype='object')
```

Identifying data types fo data

dataTypes = DA.dtypes
print(dataTypes)

→ Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 int64 Age Outcome int64 dtype: object

Total Records

TotalRecords = DA.shape[0]
print(f"This is the Total Records: {TotalRecords}")

This is the Total Records: 768

First 20 Records

DA[:20]

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeF
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
5	5	116	74	0	0	25.6	
6	3	78	50	32	88	31.0	
7	10	115	0	0	0	35.3	
8	2	197	70	45	543	30.5	
9	8	125	96	0	0	0.0	
10	4	110	92	0	0	37.6	
11	10	168	74	0	0	38.0	
12	10	139	80	0	0	27.1	
13	1	189	60	23	846	30.1	
14	5	166	72	19	175	25.8	
15	7	100	0	0	0	30.0	
16	0	118	84	47	230	45.8	
17	7	107	74	0	0	29.6	
18	1	103	30	38	83	43.3	
19	1	115	70	30	96	34.6	>
4							,

Last 20 records

DA[749:]

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
749	6	162	62	0	0	24.3	
750	4	136	70	0	0	31.2	
751	1	121	78	39	74	39.0	
752	3	108	62	24	0	26.0	
753	0	181	88	44	510	43.3	
754	8	154	78	32	0	32.4	
755	1	128	88	39	110	36.5	
756	7	137	90	41	0	32.0	
757	0	123	72	0	0	36.3	
758	1	106	76	0	0	37.5	
759	6	190	92	0	0	35.5	
760	2	88	58	26	16	28.4	
761	9	170	74	31	0	44.0	
762	9	89	62	0	0	22.5	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	
4							>

[#] Change the Outcome column to Diagnosis
DA.rename(columns={'Outcome':'Diagnosis'}, inplace=True)

DA

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	768 rd	ows × 9 columns	S					>

Next steps:

DA

Generate code with DA

View recommended plots

Create a new column Classification that display "Diabetes" if the value of outcome is 1 , DA['Classification'] = np.where(DA['Diagnosis']==1, 'Diabetes', 'No Diabetes')

Next steps: Generate code with DA View recommended plots

Create a new dataframe "withDiabetes" that gathers data with diabetes

withDiabetes = DA[DA['Classification']=='Diabetes']
withDiabetes

→		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
	0	6	148	72	35	0	33.6	
	2	8	183	64	0	0	23.3	
	4	0	137	40	35	168	43.1	
	6	3	78	50	32	88	31.0	
	8	2	197	70	45	543	30.5	
	755	1	128	88	39	110	36.5	
	757	0	123	72	0	0	36.3	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	
	766	1	126	60	0	0	30.1	
	268 rc	ows × 10 column	ns					

Next steps: Generate code with withDiabetes View recommended plots

Create a new dataframe "noDiabetes" thats gathers data with no diabetes

noDiabetes = DA[DA['Classification']=='No Diabetes']
noDiabetes

```
Next

Generate code with noDiabetes

Next

Create a new dataframe "Pedia" that gathers data with age 0 to 19

Pedia = DA[DA['Age'] <= 19 ]

Pedia
```

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunc