Lernkontrolle (11.03.14)

F=ma und schiefe Ebene

1. Aufgabe

Eine Limousine (Mercedes-Benz E350, Leergewicht 2t) beschleunigt in der Ausführung mit Automatikgetriebe "von 0 auf 100" in 6 Sekunden. Der Fahrer besitzt eine Masse von 80kg.

- a) Was bedeutet "von 0 auf 100"?
- b) Wie groß ist die durchschnittliche Beschleunigung für diesen Vorgang?
- c) Wie groß ist die nötige Kraft, die der Motor entwickeln muss, um das Fahrzeug dementsprechend zu beschleunigen?
- d) Wie kommt diese Kraft "auf die Straße"? Begründe mittels der Newton'schen Axiome.

Der Wagen bremst wieder ab. Nun steigen vier weitere Personen mit einer Masse von jeweils 75kg zu.

- e) Welche Beschleunigung erreicht das Fahrzeug nun?
- f) Wie lange dauert es, bis der Wagen aus dem Stand 100km/h erreicht hat?

2. Aufgabe

Auf einer Straße mit einer Neigung von 30° steht reibungsfrei ein Anhänger mit der Masse 1t.

- a) Fertige eine Skizze der Situation an.
- b) Berechne die Hangabtriebskraft. Erläutere, in welche Richtung sie wirkt.
- c) Berechne die Normalkraft. Erläutere, wo und in welche Richtung diese wirkt.
- d) Der Wagen soll mit a=2m/s² bergauf beschleunigt werden. Welche Kraft ist hierfür nötig?
- e) Welche Kraft wird benötigt, um den Wagen mit einer konstanten Geschwindigkeit bergan zu ziehen?

3. Aufgabe

Clara Fall fährt bei Bruchharsch Ski. Ihre Masse beträgt mit Ausrüstung 70kg. Sobald ein Ski mit einer Kraft von 250N auf die Schneeunterlage drückt, bricht diese ein.

- a) Berechne den Grenzwinkel, bei dem Clara Fall gerade einbricht.
- b) Für welchen Winkelbereich ist das Abfahren auf der Piste damit unkritisch?

4. Aufgabe

Ein Wasserskifahrer wird durch ein Seil, das in horizontaler Richtung mit der Kraft von 400N wirkt, über eine Schanze gezogen (Neigungswinkel 20°).

a) Konstruiere in einer sauberen Skizze diejenigen Komponenten der Zugkraft, die parallel und senkrecht zur schiefen Ebene der Schanze wirken:

