UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 3

1. Demuestre que si $e \in E$, entonces $c(G) \le c(G - e) \le c(G) + 1$.

Demostración: Dado que c corresponde a la función que devuelve la cantidad de componentes conexas, analicemos dos casos posibles:

- Si "e" no es un puente:

$$c(G - e) = c(G) \tag{1}$$

pues sabemos que si una arista no es puente, al borrarla, G no cambia en número de componentes conexas y así

$$c(G) \le c(G - e) \tag{2}$$

pues de la dicotomia de ≤, cumple con la igualdad. Luego hacemos notar que

$$c(G) < c(G) + 1 \tag{3}$$

$$\Rightarrow c(G) \le c(G) + 1 \tag{4}$$

de 1 y 4 se sigue

$$c(G - e) \le c(G) + 1 \tag{5}$$

de 5 y 2 tenemos

$$c(G) \le c(G - e) \le c(G) + 1$$

- Si "e" es un puente:

$$c(G) < c(G - e) \tag{6}$$

por la definición de arista como puente. Así

$$c(G) \le c(G - e) \tag{7}$$

pues de la dicotomia se cumple con <. Además sabemos que el número de componentes conexas aumenta exactamente en 1 (porque estamos trabjando con gráficas simples) en G-e, de lo anterior se sigue que

$$c(G-e) = c(G) + 1 \tag{8}$$

$$\Rightarrow c(G - e) < c(G) + 1 \tag{9}$$

de 7 y 9 se sigue

$$c(G) \le c(G - e) \le c(G) + 1$$

De lo anterior concluimos que $c(G) \le c(G - e) \le c(G) + 1$. QED

2. Una gráfica es escindible completa si su conjunto de vértices admite una partición (S, K) de tal forma que S es un conjunto independiente, K es un clan, y cada vértice en S es adyacente a cada vértice en K. Demuestre que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida.

Demostración: Sea $C_4 = (x_0, x_1, x_2, x_3, x_0)$ y $\overline{P_3} = \{y_0, y_1, y_2\}$, tal que $y_0y_2 \in E_G$ e $y_0y_1, y_1y_2 \notin E_G^{-1}$, con $x_i, y_j \in V_G$ $(0 \le i \le 3, 0 \le j \le 2)$. Nótese que los x_i 's e y_j 's no pueden estar contenidos en una misma parte, esto es, C_4 y $\overline{P_3}$ no están contenidos en S, pues ningún vértice en S es adyacente, y de igual manera no están contenidos en K, pues para cualesquiera S o S es tiene a S e

Para este ejercicio analizaremos dos posibles casos:

- ⇒) Procedamos por reducción al absurdo.
 - ·) Si G es escendible completa, entonces C_4 es subgráfica inducida de G. Supongamos, sin pérdida de generalidad, que $x_0 \in S$ y $x_1 \in K$ (caso contrario, $x_1 \in S$ y x_0 no sería adyacente a $x_1!!$), luego, si $x_2 \in S$ entonces $x_3 \in K$ (caso contrario, $x_3 \in S$ y x_2 no sería adyacente a $x_3!!$), así $x_1x_3 \in E_G!!$ (pues $x_1, x_3 \in K$) por definición de K (clan). Si $x_2 \in K$, entonces $x_3 \in S$ (caso contrario, $x_3 \in K$ y $x_1x_3 \in E_G!!$), pero x_0 no es adyacente a $x_3!!$ ($x_0, x_3 \in S$) y he aquí una contradicción de suponer a C_4 como subgráfica inducida de G. Por tanto, se concluye que C_4 no está contenida como subgráfica inducida en G.
 - ··) Si G es escendible completa, entonces $\overline{P_3}$ es subgráfica inducida de G. Supongamos, sin pérdida de generalidad, que $y_0 \in S$ entonces $y_1 \in S$ ($y_0y_1 \notin E_G$), luego $y_2 \in S!!$ ($y_1y_2 \notin E_G$), pero no todos los y_i 's pueden estar en S. Si $y_0 \in K$, entonces $y_1 \in S$ o $y_1 \in K$ implican que y_0 es adyacente a $y_1!!$ pero $y_0y_1 \notin E_G$ y he aquí una contradicción de suponer a $\overline{P_3}$ como subgráfica inducida de G. Por tanto, se concluye que $\overline{P_3}$ no está contenida como subgráfica inducida en G.
- \Leftarrow) Para este caso analicemos a todas las gráficas no isomorfas que no son $\overline{P_3}$ con 3 vértices y no son C_4 con 4 vértices.

Con 3 vértices:

 $G_1 \circ \longrightarrow \circ \longrightarrow \circ \qquad G_2 \circ$

Propongamos la partición (S, K) en G.

¹Esto sin perder generalidad.

Notar que H_2 , H_3 , H_4 , H_5 , H_6 , y H_8 contienen como subgráficas inducidas a $\overline{P_3}$, luego sólo H_1 , H_7 , H_9 , y H_{10} junto a G_1 , G_2 , y G_3 son subgráficas inducidas de G_1 y podemos hacer el siguiente análisis

- 1) G_2 y H_1 están contenidas como subgráficas inducidas en S.
- 2) G_1 tiene los 2 vértices de grado 1 en S y el único vértice de grado 2 está en K.
- 3) G_3 y H_{10} están en K.
- 4) H_7 tiene a su único vértice de grado 3 en K y el resto de sus vértices está en S.
- 5) H_9 tiene a sus 2 vértices de grado 2 en S y al resto en K.

Con base a lo anterior podemos sugerir que K es un clan y S es independiente, y ambos subconjuntos de V_G , con esto tenemos que G es escindible. Por (2), (4) y

- (5) vemos que es necesario que haya aristas entre vértices de S y K, como (1) y
- (3) no restringen la condición anterior, entonces se puede considerar a escindible completa.

De los casos anterior concluimos que una gráfica es escindible completa si y sólo si no contiene a C_4 ni a $\overline{P_3}$ como subgráfica inducida. QED

3. (a) Demuestre que si $|E| > {|V|-1 \choose 2}$, entonces G es conexa.

Demostración: Si $|E_G| = {|V|-1 \choose 2}$, entonces hay dos posibilidades:

- G es conexa, entonces G + e con $e \in E_G$, cumple

$$|E_{G+e}| = {|V|-1 \choose 2} + 1$$

> ${|V|-1 \choose 2}$

Además e no es ni lazo ni arista multiple, pues sabemos de resultados vistos en clase que una gráfica es completa si $|E|=\binom{|V|}{2}$ y como

$$\binom{|V|}{2} \neq \binom{|V|-1}{2}$$

pues

$$\binom{|V|}{2} = \frac{n \cdot (n-1)}{2}$$

у

$$\binom{|V|-1}{2} = \frac{(n-1)\cdot(n-2)}{2}$$

luego

y de hecho

$$\binom{|V|}{2} > \binom{|V|-1}{2}$$

así se justifica que e no sea ni lazo, ni arista multiple. De lo anterior se sigue que G+e es una gráfica simple que además es conexa, pues G ya es conexa.

- G no es conexa, entonces existe un vértice aislado x, pues

y sabemos por resultados vistos en clases que hay $\binom{|V_G|}{2}$ aristas en una gráfica completa y un vértice puede relacionarse a lo más con $|V_G|-1$ vértices (pues estamos trabajando con gráficas simples), nótese que de lo anterior se infiere que G-x es conexa 2 , así G+e (con $e \in E_G$)

$$|E_{G+e}| = {|V|-1 \choose 2} + 1$$

 $> {|V|-1 \choose 2}$

es conexa, pues como no hay lazos y no hay aristas múltiples en G, tenemos que la nueva arista esta comprendida entre x y algún otro vértice en V_{G-x} por lo que habrá una xy-trayectoria para $y \in E_G$.

De lo anterior concluimos que $|E_G| > {|V|-1 \choose 2} \Rightarrow G$ es conexa. QED

(b) Para |V| > 1 encuentre una gráfica inconexa con $|E| = {|V|-1 \choose 2}$. **Solución:** Si $|V_G| = 2$, como $2 > 1 \Rightarrow |V_G| > 1$, luego la gráfica que tiene como vértices a u y v, y además

$$|E_G| = {2-1 \choose 2}$$

$$= {(2-1) \cdot (2-2) \over 2}$$

$$= 0$$

A continuación se muestra la gráfica mencionada:

$$G_1$$

$$\begin{matrix} u & & v \\ \mathsf{O} & & \mathsf{O} \end{matrix}$$

Así observemos que la gráfica anterior es inconexa.

²pues $|E_{G-x}| = {|V_G| \choose 2}$

4. (a) Demuestre que si $\delta > \lfloor \frac{|V|}{2} \rfloor - 1$, entonces G es conexa.

Demostración: Para este inciso procedemos por inducción sobre V_G . Sea G una gráfica con $|V_G|=1$, así $\delta=\lfloor\frac{1}{2}\rfloor=0$, *i.e.*

v

donde $E_G=\varnothing$. Luego supongamos como hipótesis inductiva que para una cantidad n de vértices, el que se cumpla $\delta=\lfloor\frac{|V|}{2}\rfloor$ implica que G es conexa. A continuación veamos que pasa con G+x, con $x\in V_{G+x}$, así G cumple con $\delta=\lfloor\frac{|V|}{2}\rfloor$, de lo anterior se sigue que x es vecino de al menos $\lfloor\frac{|V|}{2}\rfloor$ vértices en G (notar que G es, de hecho, una subgráfica inducida por vértices de G+x), como G era conexa por hipótesis inductiva se sigue que G+x es conexa. QED

(b) Para |V| par encuentre una gráfica ($\lfloor \frac{|V|}{2} \rfloor - 1$)-regular e inconexa.

Solución: Con |V|=4 tenemos

$$\lfloor \frac{4}{2} \rfloor - 1 = 2 - 1$$
$$= 1$$

G

Así la gráfica es 1-regular e inconexa.

5. Demuestre que si D no tiene lazos y $\delta^+ \geq 1$, entonces D contiene un ciclo dirigido de longitud al menos $\delta^+ + 1$.

Demostración: Para este ejercicio procedamos por inducción en V, así cuando $\delta^+=1$ y |V|=2, tendremos

Ahora supongamos que hay un ciclo C de al menos longitud $\delta^+ + 1$, con $\delta^+ > 1$, para n(n > 1) vértices en D y además D no tiene lazos. Luego para $|V_D| = n + 1$, donde llamaremos x al vértice extra, analicemos dos casos extremos:

- Si x tiene una sóla incidencia, entonces $\delta^+=1$ y como $\mathcal{L}(C)>1$, tenemos que existe un ciclo de al menos δ^++1 y en este caso es estrictamente mayor. De lo anterior terminamos.
- Si para cada vértice $u_i(1 < i \ge |V_D| 1)$ en G hay una arista que "salga" de u_i e incida en x, tenemos que δ^+ no se modifica. Ahora notemos que en partícular hay al menos u_i, u_{i+1} tales que existe una $u_i u_{i+1}$ -trayectoria en C (notar que u_i y u_{i+1} son vecinos), luego como existe $e_1 = u_i x$ y $e_2 = u_{i+1} x$, con e_1 y e_2 en E_D , entonces tenemos un nuevo ciclo que es de al menos $\mathcal{L}(C) + 1$ de longitud, así como $\mathcal{L}(C) \ge \delta^+ + 1$, tenemos que el nuevo ciclo es de al menos longitud $\delta^+ + 1$.

Del análisis anterior concluimos que el enunciado se cumple.

QED

Puntos Extra

- 1. Demuestre que el número de $v_i v_j$ -caminos de longitud k en G es $(A^k)_{ij}$ donde A es la matriz de adyacencia de G.
- 2. Sea G una gráfica bipartita de grado máximo k. Demuestre que existe una gráfica bipartita k-regular, H, que contiene a G como subgráfica inducida.