UFO-ViT: High Performance Linear Transformer without Softmax

School of Industrial and Management Engineering, Korea University

Young Jae Lee

Contents

- * Research Purpose
- UFO-ViT
- Experiments
- Conclusion

Research Purpose

- ❖ UFO-ViT: High Performance Linear Vision Transformer without Softmax (arXiv, 2021)
 - Kakao에서 연구하였고 2021년 11월 05일 기준으로 0회 인용

UFO-ViT: High Performance Linear Vision Transformer without Softmax

Jeong-geun Song Kakao Enterprise

po.ai@kakaoenterprise.com

PREPRINT

Abstract

Vision transformers have become one of the most important models for computer vision tasks. While they outperform earlier convolutional networks, the complexity quadratic to N is one of the major drawbacks when using traditional self-attention algorithms. Here we propose the UFO-ViT(Unit Force Operated Vision Trnasformer), novel method to reduce the computations of self-attention by eliminating some non-linearity. Modifying few of lines from self-attention, UFO-ViT achieves linear complexity without the degradation of performance. The proposed models outperform most transformer-based models on image classification and dense prediction tasks through most capacity regime.

Research Purpose

- UFO-ViT: High Performance Linear Vision Transformer without Softmax (arXiv, 2021)
 - Vision Transformer에서 기존 Self-Attention의 연산 복잡도와 Data-Efficiency를 향상시키기 위한 방법을 제안
 - ✓ Matrix Multiplication을 사용하기 위해 Softmax 연산을 제거
 - ✓ Linear Complexity의 Self-Attention 연산을 위한 Xnorm 제안(Constraint)
 - Unit Hypersphere 상에서 Feature들 간의 관계를 추출하도록 함

- Overview of UFO-ViT Module
 - Convolutional Layers, UFO Module, Simple Feed-Forward MLP Layer, Residual Connection으로 구성
- Patch Embedding with Convolutions
 - ✓ Linear Projection 대신 합성곱 Patch Embedding Layers를 차용
- Positional Encoding
 - ✓ 학습 가능한 매개변수로 Positional Encoding 사용
- Multi-Headed Attention
- Local Patch Interaction
 - ✓ 3 × 3 Depth-wise Convolution 사용
- Feed-Forward Network
- Class Attention
 - ✓ Spatial Information을 모으기 위한 CLS Token 예측

UFO Module

- 기존 Self-Attention 연산에서는 Softmax의 비선형성으로 인하여 분리가 불가능함
- 제안하는 방법은 K^TV 를 먼저 계산하기 위해 Softmax 연산을 제거(간단한 Constraint 포함)
 - ✓ Cross-Normalization or Xnorm
 - \checkmark 간단한 L_2 -norm이지만 공간 차원 K^TV 와 채널 차원 Q가 있어 Cross-Normalization으로도 부름
 - ✓ 연산 법칙으로 K^TV 를 먼저 계산한 후에 Q를 곱함
 - \checkmark γ : 학습가능한 파라미터 /h: embedding 차원 수

XNorm

기존 Self-Attention

$$A(\mathbf{x}) = \sigma(QK^T/\sqrt{d_k})V \tag{1}$$

$$Q = \mathbf{x}W_Q, K = \mathbf{x}W_K, V = \mathbf{x}W_V \tag{2}$$

$$A(\mathbf{x}) = XN_{\text{dim}=\text{filter}}(Q)(XN_{\text{dim}=\text{space}}(K^TV))$$
 (3)

$$XN(\mathbf{a}) := \frac{\gamma \mathbf{a}}{\sqrt{\sum_{i=0}^{h} ||\mathbf{a}||^2}}$$
(4)

$$V = xW_V \longrightarrow K = xW_K \longrightarrow XNorm$$

$$Q = xW_Q \longrightarrow XNorm$$

UFO Module

- 연산 법칙으로 K^TV 를 먼저 계산한 후에 Q를 곱함
- 위 연산으로 O(hNd) Complexity를 가지며 N에 Linear함

Module Type	Complexity
ViT[10]	$O(N^2d)$
Linformer[40]	O(kNd)
Efficient Attention[31]	O(hNd)
Axial[20]	$O(N\sqrt{Nd})$
XCiT[12]	$O(Nd^2)$
UFO-ViT	O(hNd)

❖ XNorm

- Softmax 연산을 XNorm으로 대체
 - ✓ Key와 Value 계산(5)
 - ✓ $K^T V$ 와 Q 에 Xnorm 적용(7,8) 및 Attention Operator 계산(6)
 - ✓ Projection Weight Scales를 Weight Sum에 의해 계산(9)

$$[K^T V]_{ij} = \sum_{k=1}^{n} K_{ik}^T V_{kj}$$
 (5)

$$A(\mathbf{x}) = \begin{bmatrix} \hat{q}_0 \cdot \hat{k}_0 & \hat{q}_0 \cdot \hat{k}_1 & \cdots & \hat{q}_0 \cdot \hat{k}_h \\ \hat{q}_1 \cdot \hat{k}_0 & \hat{q}_1 \cdot \hat{k}_1 & \cdots & \hat{q}_1 \cdot \hat{k}_h \\ \vdots & \vdots & \ddots & \vdots \\ \hat{q}_N \cdot \hat{k}_0 & \hat{q}_N \cdot \hat{k}_1 & \cdots & \hat{q}_N \cdot \hat{k}_h \end{bmatrix}$$
(6)

$$\hat{q}_i = XN[(Q_{i0}, Q_{i1}, \cdots, Q_{ih})]$$
 (7)

$$\hat{k}_i = XN[([K^TV]_{0i}, [K^TV]_{1i}, \cdots, [K^TV]_{hi})]$$
 (8)

$$[W_{\text{proj}}A(\mathbf{x})]_{ij} = \sum_{m=1}^{h} w_{mj}\hat{q}_i \cdot \hat{k}_j$$
 (9)

Experiments

Image Classification Metric

- Top-1 Accuracy: Softmax의 Output에서 제일 높은 수치를 가지는 값이 정답일 경우에 대한 지표
- Float Point Operations Per Second (FLOPs): 컴퓨터의 성능을 표현하는 지표
- Parameters: Model의 Weight 또는 Parameter 수

Object Detection Metric

• Average Precision (AP): IoU 계산 결과 값이 0.5 이상이면 True Positive (TP), 0.5 미만이면 False Positive (FP)로 판단하고 검출 결과들 중 옳게 검출한 비율을 의미(정확도)

Experiments

Image Classification Results

❖ ImageNet-1K Dataset

Hyperparam	Model	Value
	UFO-ViT-S, L, XL	5e-4
learning rate	UFO-ViT-M	4e-4
	UFO-ViT-B	3.5e-4
	UFO-ViT-S, L	0.05
weight decay[27]	UFO-ViT-M, XL	0.07
	UFO-ViT-B	0.09
drop path[21]	UFO-ViT-S, L	0.1
	UFO-ViT-M, XL	0.15
	UFO-ViT-B	0.2
grad clip[28]	UFO-ViT-S/L	1.0
	UFO-ViT-M, XL	0.7
	UFO-ViT-B	0.5

Table 3: **Hyperparameters for image classification.** All the other hyperparameters are same as DeiT[37].

Method	Top-1 Acc. (%)
Baseline(Linear Embed+XNorm)	81.8
$XNorm \rightarrow LN[1], GN[43]$	Failed
$XNorm \rightarrow Learnable p-Norm$	81.8
XNorm → Single L2Norm	Failed
Linear Embed[10] \rightarrow Conv Embed	82.0
+Tuned Hyperparameter	82.8

Table 4: **Ablation study on ImageNet1k classification.** The results of ablation study on UFO-ViT-M. Note that single L2Norm means applying L2Norm to only one of query and key-value interaction. The learnable parameter p of p-norm is initialized by 2.

M - 1-1	Top-1	D	Params	FLOPs	
Model	Acc	Res	(M)	(G)	
RegNetY-1.6G[30]	78.0	224	11	1.6	
DeiT-Ti[37]	72.2	224	5	1.3	
XCiT-T12/16[12]	77.1	224	26	1.2	
UFO-ViT-T	78.3	224	10	1.9	
ResNet-50[17]	75.3	224	26	3.8	
RegNetY-4G[30]	80.0	224	21	4.0	
DeiT-S[37]	79.8	224	22	4.6	
Swin-T[26]	81.3	224	29	4.5	
XCiT-S12/16[12]	82.0	224	26	4.8	
UFO-ViT-S	81.8	224	21	3.7	
ResNet-101[17]	75.3	224	47	7.6	
RegNetY-8G[30]	81.7	224	39	8.0	
Swin-S[26]	83.0	224	50	8.7	
XCiT-S24/16[12]	82.6	224	48	9.1	
UFO-ViT-M	82.8	224	37	7.0	
RegNetY-16G[30]	82.9	224	84	16.0	
DeiT-B[37]	81.8	224	86	17.5	
Swin-B[26]	83.5	224	88	15.4	
XCiT-S12/8[12]	83.4	224	26	18.9	
UFO-ViT-L	83.1	224	21	14.3	
EfficientNet-B7[34]	84.3	600	66	37.0	
XCiT-S24/8[12]	83.9	224	48	36.0	
UFO-ViT-XL	83.9	224	37	27.4	

Table 5: Comparison with the state of the art models. Note that the properties of the other models are taken from original papers.

Experiments

Object Detection Results

Object Detection on COCO

Figure 6: Visualized UFO-module outputs. UFO schemes cannot be visualized like traditional $N \times N$ self-attention maps. Instead, we visualize tensor length map of UFO-module output from UFO-ViT-M pretrained on ImageNet1k. All maps are extracted from first layer which gathers most of spatial information. This map is scaled at (0,1). Red means the value is close to 1.

Backbone	Params (M)	AP^b	AP^b_{50}	AP^b_{75}	AP^m	AP_{50}^m	AP^m_{75}
ResNet50[17]	44.2	41.0	61.7	44.9	37.1	58.4	40.1
PVT-Small[41]	44.1	43.0	65.3	46.9	39.9	62.5	42.8
Swin-T[26]	47.8	46.0	68.1	50.3	41.6	65.1	44.9
XCiT-S12/16[12]	44.3	45.3	67.0	49.5	40.8	64.0	43.8
UFO-ViT-S	39.7	44.6	66.7	48.7	40.4	63.6	42.9
ResNet101[17]	63.2	42.8	63.2	47.1	39.2	60.1	41.3
PVT-Medium[41]	63.9	44.2	66.0	48.2	40.5	63.1	43.5
Swin-S[26]	69.0	48.5	70.2	53.5	43.3	67.3	46.6
XCiT-S24/16[12]	65.8	46.5	68.0	50.9	41.8	65.2	45.0
UFO-ViT-M	56.4	46.0	68.2	50.0	41.0	64.6	43.7
ResNeXt101-64[45]	101.9	44.4	64.9	48.8	39.7	61.9	42.6
PVT-Large[41]	81.0	44.5	66.0	48.3	40.7	63.4	43.7
XCiT-M24/16[12]	101.1	46.7	68.2	51.1	42.0	65.6	44.9
UFO-ViT-B	82.4	45.8	67.4	50.1	41.2	64.5	44.1

Table 6: Object detection performance on the COCO val2017.

Conclusion

- ❖ Softmax 제거 및 행렬 연산 법칙을 사용하여 Self-Attention가 Linear Complexity를 가지도록 UFO-ViT를 제안
- ❖ 굉장히 간단한 방법으로 ViT에서 발생하는 Complexity와 Data-Efficiency를 해결
- ❖ Image Classification과 Object Detection Task에서 우수한 성능 달성
 - 후기: 최근 Self-Attention의 연산 복잡도를 줄이기 위해 다양한 방법론들이 제시되어 왔고 Data-Efficiency 문제와 함께 해결하였음. 연구 트렌드에 맞게 매우 간단한 연산 방법으로 Complexity 와 Efficiency를 해결하는 부분이 인상 깊었음. 코드도 공개가 되어있었다면 이해하기가 쉬웠을 듯!

Reference

• Song, J. G. (2021). UFO-ViT: High Performance Linear Vision Transformer without Softmax. arXiv preprint arXiv:2109.14382.

Thank you