Analysing employee details in company ABC

Out[1]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0	PG	25	2023-02-06 00:00:00	180	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99	SF	25	2023-06-06 00:00:00	235	Marquette	6796117.0
2	John Holland	Boston Celtics	30	SG	27	2023-05-06 00:00:00	205	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28	SG	22	2023-05-06 00:00:00	185	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8	PF	29	2023-10-06 00:00:00	231	NaN	5000000.0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 458 entries, 0 to 457
Data columns (total 9 columns):

	,	,	
#	Column	Non-Null Count	Dtype
0	Name	458 non-null	object
1	Team	458 non-null	object
2	Number	458 non-null	int64
3	Position	458 non-null	object
4	Age	458 non-null	int64
5	Height	458 non-null	object
6	Weight	458 non-null	int64
7	College	374 non-null	object
8	Salary	447 non-null	float64

dtypes: float64(1), int64(3), object(5)

memory usage: 32.3+ KB

Data Preprocessing

In [30]: #changing value of column Height as per requirement

df['Height'] = np.random.randint(150,190, df.shape[0])
 df.head(10)

Į.		. ,								
Out[30]:		Name	Team	Number	Position	Age	Height	Weight	College	Salary
	0	Avery Bradley	Boston Celtics	0	PG	25	172	180	Texas	7730337.0
	1	Jae Crowder	Boston Celtics	99	SF	25	158	235	Marquette	6796117.0
	2	John Holland	Boston Celtics	30	SG	27	174	205	Boston University	NaN
	3	R.J. Hunter	Boston Celtics	28	SG	22	178	185	Georgia State	1148640.0
	4	Jonas Jerebko	Boston Celtics	8	PF	29	180	231	NaN	5000000.0
	5	Amir Johnson	Boston Celtics	90	PF	29	154	240	NaN	12000000.0
	6	Jordan Mickey	Boston Celtics	55	PF	21	155	235	LSU	1170960.0
	7	Kelly Olynyk	Boston Celtics	41	С	25	184	238	Gonzaga	2165160.0
	8	Terry Rozier	Boston Celtics	12	PG	22	180	190	Louisville	1824360.0
	9	Marcus Smart	Boston Celtics	36	PG	22	183	220	Oklahoma State	3431040.0

In [32]: # dropping unwanted columns
df = df.drop(['Number', 'Height', 'Weight'], axis = 1)
df.head()

Out[32]:		Name	Team	Position	Age	College	Salary
	0	Avery Bradley	Boston Celtics	PG	25	Texas	7730337.0
	1	Jae Crowder	Boston Celtics	SF	25	Marquette	6796117.0
	2	John Holland	Boston Celtics	SG	27	Boston University	NaN
	3	R.J. Hunter	Boston Celtics	SG	22	Georgia State	1148640.0
	4	Jonas Jerebko	Boston Celtics	PF	29	NaN	5000000.0

```
In [33]: #replacing NaN salary values
df['Salary'] = df['Salary'].fillna(0)
df.head()
```

Out[33]:		Name	Team	Position	Age	College	Salary
	0	Avery Bradley	Boston Celtics	PG	25	Texas	7730337.0
	1	Jae Crowder	Boston Celtics	SF	25	Marquette	6796117.0
	2	John Holland	Boston Celtics	SG	27	Boston University	0.0
	3	R.J. Hunter	Boston Celtics	SG	22	Georgia State	1148640.0

Statistical Analysis

Out[3]:

Jonas Jerebko Boston Celtics

In [3]:	df.describe()	
---------	---------------	--

PF

29

NaN 5000000.0

1	ar.aes	cribe()			
		Number	Age	Weight	Salary
	count	458.000000	458.000000	458.000000	4.470000e+02
	mean	17.713974	26.934498	221.543668	4.833970e+06
	std	15.966837	4.400128	26.343200	5.226620e+06
	min	0.000000	19.000000	161.000000	3.088800e+04
	25%	5.000000	24.000000	200.000000	1.025210e+06
	50%	13.000000	26.000000	220.000000	2.836186e+06
	75%	25.000000	30.000000	240.000000	6.500000e+06
	max	99.000000	40.000000	307.000000	2.500000e+07

1. Finding number of employees in each Team and the percentage splitting with respect to the total employees.

```
In [2]: M import plotly.express as px

#categorizing employees based on team
team_count = df['Team'].value_counts()
emp = team_count.values.tolist()
team = team_count.index.tolist()

#plotting the values in a pie chart
fig = px.pie(values=emp, names=team, title = 'Employees per team', )
fig.show()
```

Employees per team

2. Classifying employees with respect to positions

```
In [16]: # #categorizing employees based on position
    pos_split = df['Position'].value_counts()

#setting size of the plot
    plt.figure(figsize = (5,3))
#creatin plot, assigning x axis, y axis and title values
    sns.barplot(x = pos_split.index, y = pos_split.values)
    plt.xlabel("Position")
    plt.ylabel("No of Employees")
    plt.title("Employees in different positions")
#displaying the plot
    plt.show()
```


Most employees are in SG

3. Classifying according to age group

```
In [3]: #categorizing based on age
    age_counts = df['Age'].value_counts()

#plotting age and count
    fig = px.bar(age_counts, title="Age of employees")
    fig.update_layout(xaxis_title = "Age", yaxis_title = "No of employees", tit
    fig.show()
```

Age of employees

Most employees are in the age 24

4. Highest paid Team and Position

The team and position with maximum salary are: Los Angeles Lakers and SF Maximum salary is 25000000.0

5. Correlation between age and salary

The correlation value shows that there is a weak relation between age and salary

The representation is as below

Top 5 colleges from where employees are hired

```
In [25]: #categorizing based on college and taking the top 5 values
top_colg = df['College'].value_counts().head(5)
plt.figure(figsize=(5,3))
plt.bar(top_colg.index, top_colg.values, color='orange', width=0.4)
plt.xlabel('College')
plt.ylabel('Count')
plt.title("Top 5 colleges")
plt.show()
```


In []: 🔰