

CONCEITO

IEC (International Eletrotechnical Commission)

Sistema eletrônico, operando digitalmente, projetado para uso em ambiente industrial, que usa uma memória programável para armazenagem interna de instruções orientadas para o usuário na implementação de funções específicas, tais como lógica, sequencial, temporização, contagem e aritmética, para controlar, através de entradas e saídas digitais ou analógicas, vários tipos de máquinas ou processos.

O Controlador programável e seus periféricos associados são projetados para serem facilmente integráveis em um sistema de controle industrial e facilmente usados em todas as funções previstas.

HISTÓRIA

O CLP nasceu praticamente dentro da indústria automobilística americana, especificamente na Hydronic Division da General Motors, em 1968, devido a grande dificuldade de mudar a lógica de controle de painéis de comando a cada mudança na linha de montagem. Tais mudanças implicavam em altos gastos de tempo e dinheiro.

Desde o seu aparecimento, até hoje, muita coisa evoluiu nos controladores lógicos, como a variedade de tipos de entradas e saídas, o aumento da velocidade de processamento, a inclusão de blocos lógicos complexos para tratamento das entradas e saídas e principalmente o modo de programação e a interface com o usuário.

VANTAGENS DO USO DE CLP

- Ocupam menor espaço;
- Requerem menor potência elétrica;
- Podem ser reutilizados;
- São programáveis, permitindo alterar os parâmetros de controle;
- Apresentam maior confiabilidade;
- Manutenção mais fácil e rápida;
- Oferecem maior flexibilidade;
- Apresentam interface de comunicação com outros CLPs e computadores de controle;
- Permitem maior rapidez na elaboração do projeto do sistema.

ARQUITETURA DE UM CLP

SEQUÊNCIA DE OPERAÇÃO DE UM CLP

Ciclo de Varredura (Scan)

MÓDULOS OU INTERFACES

Entradas

São circuitos utilizados para adequar eletricamente os sinais de entrada para que possa ser processado pela CPU do CLP.

Divididas em Digitais e Analógicas.

Saídas

Os Módulos ou Interfaces de Saída adequam eletricamente os sinais vindos do microprocessador para que possamos atuar nos circuitos controlados.

Divididas em Digitais e Analógicas.

MÓDULOS OU INTERFACES

Entradas Digitais

São entradas que possuem apenas dois estados possíveis: LIGADO ou DESLIGADO. Operando em CC (Tipo P / N) ou CA (24 Vca / 110 Vca / 220 Vca).

Sensores

Chave Nível

Pressostatos

Termostatos

MÓDULOS OU INTERFACES

Saídas Digitais

São saídas que possuem apenas dois estados possíveis: LIGADO ou DESLIGADO. Operando em CC (Tipo P / N), CA (24 Vca / 110 Vca / 220 Vca) ou a Reles.

Reles

Contatores

Reles Estado Sólido

Válvulas/Solenoídes

MÓDULOS OU INTERFACES

Entradas Analógias

São entradas que possibilitam o CLP manipular valores analógicas que variam de forma "análoga" a uma grandeza física. Operando em nas faixas mais usuais de 0 a 10Vcc, 0 a 20 mA ou 4 a 20 mA.

Pressão

Taco Gerador

Temperatura

Umidade

MÓDULOS OU INTERFACES

Saídas Analógias

Os módulos ou interfaces de saída analógicas convertem valores numéricos processados pelo CLP, em sinais elétricos que variam de forma "análoga" a uma grandeza física. Operando em nas faixas mais usuais de 0 a 10Vcc, 0 a 20 mA ou 4 a 20 mA.

Válvulas Proporcionais

Inversor Frequência

Conversor CC

