CS188 Spring 2013 Section 9: Machine Learning

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 5. The critics are not perfect; here are five data points including the critics' scores and the performance of the movie:

Movie Name	A	В	Profit?
Pellet Power	1	1	No
Ghosts!	3	2	Yes
Pac is Bac	4	5	No
Not a Pizza	3	4	Yes
Endless Maze	2	3	Yes

Training Data

First, you would like to examine the linear separability of the data. Plot the data on the 2D plane below; label profitable movies with + and non-profitable movies with - and determine if the data are linearly separable.

Now you first decide to use a perceptron to classify your data. This problem will use the multi-class formulation even though there are only two classes. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_0 = 1$, $f_1 =$ score given by A and $f_2 =$ score given by B.

1. You want to train the perceptron on the training data in Table 1. The initial weights are given below:

Profit	Weights	Weights after 1st update
Yes	[-1, 0, 0]	
No	[1, 0, 0]	

- (i) Which is the first training instance at which you update your weights?
- (ii) In the table above, write the updated weights after the first update.
- 2. More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Some scenarios are given on the next page. Circle those scenarios for which a perceptron using the features above can indeed perfectly classify the data.

- (i) Your reviewers are awesome: if the total of their scores is more than 8, then the movie will definitely be a success and otherwise it will fail.
- (ii) Your reviewers are art critics. Your movie will succeed if and only if each reviewer gives either a score of 2 or a score of 3.
- (iii) Your reviewers have weird but different tastes. Your movie will succeed if and only if both reviewers agree.

You decide to use a different set of features. Consider the following feature space:

 $f_0 = 1$ (The bias feature) $f_{1A} = 1$ if score given by A is 1, 0 otherwise $f_{1B} = 1$ if score given by B is 1, 0 otherwise $f_{2A} = 1$ if score given by A is 2, 0 otherwise $f_{2B} = 1$ if score given by B is 2, 0 otherwise ... $f_{5B} = 1$ if score given by B is 5, 0 otherwise

- 3. Consider again the three scenarios in part 2. Using a perceptron with the new features, which of the three scenarios can be perfectly classified? Circle your answer(s) below:
 - (i) Your reviewers are awesome: if the total of their scores is more than 8, then the movie will definitely be a success, and otherwise it will fail.
 - (ii) Your reviewers are art critics. Your movie will succeed if and only if each reviewer gives either a score of 2 or a score of 3.
 - (iii) Your reviewers have weird but different tastes. Your movie will succeed if and only if both reviewers agree.

You have just heard of naive Bayes and you want to use a naive Bayes classifier. You use the scores given by the reviewers as the features of the naive Bayes classifier, i.e., the random variables in your naive Bayes model are A and B, each with a domain of $\{1, 2, \ldots, 5\}$, and Profit with a domain of Yes and No.

- 4. Draw the Bayes net corresponding to the naive Bayes model on the back of this page.
- 5. List the types of the conditional probability tables you need to estimate along with their sizes (e.g., $P(X \mid Y)$ has 24 entries).

Probability	Size

6. Your nephew is taking the CS188 class at Berkeley. He claims that the naive Bayes classifier you just built is actually a linear classifier in the feature space used for part 3. In other words, the decision boundary of the naive Bayes classifier is a hyperplane in this feature space. For the positive class, what is the weight of the feature f_{3B} in terms of the parameters of the naive Bayes model? You can answer in symbols, but be precise. (Hint: Consider the log of the probability.)