

Search Report

EIC 2800

STIC Database Tracking Number:

To: BROOKE PURINTON

Location: JEF-3B15

Art Unit: 2881

Tuesday, August 26, 2008

Case Serial Number: 10/599555

From: JEFFREY HARRISON

Location: EIC2800

JEF-4B71

Phone: (571)272-2511

jeff.harrison@uspto.gov

Search Notes

Attached are the edited search results and the search histories from EAST, Google, Scirus.com, Dialog nonpatent databases, Dialog Scisearch forward-citation database, CAS/STN Chemical Abstracts database, and DOE Information Bridge.

The search histories are included at the end of this file.

I am unsure if I found helpful documents, with or without the mechanism of quantum entanglement.

I recommend that you browse the first half of the edited search results, approximately through page 50 of this file.

If you would like more searching on this case, or if you have questions or comments, please notify me.

EIC 2800 SEARCH REQUEST

269889

AUG 19 2008

Today's Date

Name Brookie Wintun

AU/Org. 2800 Employee # 85090

Bld.&Rm.# 306, 013 Phone 0 - 5384

Priority App. Filing Date 4/13/2004

Case/App. # 10/399555

Format for Search Results

EMAIL PAPER

If this is an Appeals case, check here

Describe this invention in your own words

Synonyms

Additional Comments

* Please see the search topic
as described in the attached
search request submitted by the
Examiner.

Please submit completed form to your EIC.

STIC USE ONLY

Searcher HARRISON

Phone 22511

Date Completed

8-26-08

DOE Information Bridge
Sources EAST; Google; Sirus.com; CAS/STN; Dialog

Jackson, Diane

AUG 19 2008

269889

From: BROOKE PURINTON [brooke.purinton@uspto.gov]
Sent: Monday, August 18, 2008 5:05 PM
To: STIC-EIC2800
Cc: NPL Feedback
Subject: Search Request, Case/Application No.: 10/599555

Requester: **BROOKE PURINTON (P/2881)**

Art Unit: **GROUP ART UNIT 2881**

Employee Number: **85090**

Office Location: **JEF 0B13**

Phone Number: **(571)270-5384**

Case/Application number: **10/599555**

Priority Filing Date: **April 13, 2004**

Format for Search Results: **Email**

Is this a Board of Appeals case? **No, this is not a Board of Appeals case.**

Describe this invention in your own words:

Using entangled photons to irradiate a nuclear isomer (isomer nuclide) and make the half-life time varying.

Synonyms:

Entangled is also quantum entangled, quantum coupling, quantum entanglement, entanglement. Photons can be gamma rays (as claimed) or x-rays or another type.

Additional comments:

Have looked through East with Derwent, JPO, EPO, IBM on with class and text searches, have found nothing on google scholar.

Attachment: No

nuclear isomer changing half life
time varying

VOLUNTARY SEARCH FEEDBACK

Art Unit _____

App./Serial # _____

Relevant prior art found

- 102 rejection
- 103 rejection
- Cited as being of interest
- Helped better understand invention
- Helped better understand state of the art in technology

Types Foreign Patent(s) Non-Patent Literature

Relevant prior art not found

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining the patentability or understanding of the invention.

COMMENTS (click below to type)

Questions about the scope or the results of the search?

Contact your EIC searcher or EIC Supervisor.

Please submit completed form to your EIC

1207

STIC USE ONLY

Today's Date _____

Additional Notes if applicable (please indicate all actions including emails, phone calls, and individuals assisting):

INTERNATIONAL SEARCH REPORT

page 1 of 2

International Application No

PCT/EP2005/051404

A. CLASSIFICATION OF SUBJECT MATTER
G21K1/00

WO/PCT Related Search Report

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G21K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	COLLINS C B ET AL: "Accelerated emission of gamma rays from the 31-yr isomer of <178>Hf induced by X-ray irradiation" PHYSICAL REVIEW LETTERS APS USA, vol. 82, no. 4, 25 January 1999 (1999-01-25), pages 695-698, XP002304655 ISSN: 0031-9007 the whole document ----- -/-	1-10

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the International search

8 December 2005

Date of mailing of the International search report

14/12/2005

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Capostagno, E

page
1 of 2

INTERNATIONAL SEARCH REPORT

page 2 of 2

International Application No

PCT/EP2005/051404

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	COLLINS C B ET AL: "Evidence for the forced gamma emission from the 31-year isomer of hafnium-178" LASER PHYSICS MAIK NAUKA/INTERPERIODICA PUBLISHING RUSSIA, vol. 9, no. 1, February 1999 (1999-02), pages 8-11, XP008038352 ISSN: 1054-660X the whole document	1,2,10
A	COLLINS C B ET AL: "'gamma! emission from the 31-yr isomer of <178>Hf induced by X-ray irradiation'" PHYSICAL REVIEW C (NUCLEAR PHYSICS) APS THROUGH AIP USA, vol. 61, no. 5, 2000, pages 054305/1-7, XP002304282 ISSN: 0556-2813 page 61, paragraph 1 - page 62, last paragraph	1,2,9
A	KARAMIAN S A ET AL: "Possible ways for triggering the <179m2>Hf isomer" LASER PHYSICS MAIK NAUKA/INTERPERIODICA PUBLISHING RUSSIA, vol. 14, no. 2, February 2004 (2004-02), pages 166-173, XP008038385 ISSN: 1054-660X the whole document	1,2

Page
2 of 2

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N° d'enregistrement
nationalétabli sur la base des dernières revendications
déposées avant le commencement de la rechercheFA 652701
FR 0403905

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
A	COLLINS C B ET AL: "Accelerated emission of gamma rays from the 31-yr isomer of <178>Hf induced by X-ray irradiation" PHYSICAL REVIEW LETTERS APS USA, vol. 82, no. 4, 25 janvier 1999 (1999-01-25), pages 695-698, XP002304655 ISSN: 0031-9007 * le document en entier * -----	1-5, 9	G21G1/00
A	COLLINS C B ET AL: "[gamma] emission from the 31-yr isomer of <178>Hf induced by X-ray irradiation" PHYSICAL REVIEW C (NUCLEAR PHYSICS) APS THROUGH AIP USA, vol. 61, no. 5, 2000, pages 054305/1-7, XP002304282 ISSN: 0556-2813 * page 61, alinéa 1 - page 62, dernier alinéa *	1,2, 9	
A	KARAMIAN S A ET AL: "Possible ways for triggering the <179m2>Hf isomer" LASER PHYSICS MAIK NAUKA/INTERPERIODICA PUBLISHING RUSSIA, vol. 14, no. 2, février 2004 (2004-02), pages 166-173, XP008038385 ISSN: 1054-660X * le document en entier * -----	1,2	DOMAINES TECHNIQUES RECHERCHÉS (Int.Cl.7) G21K
A	COLLINS C B ET AL: "Evidence for the forced gamma emission from the 31-year isomer of hafnium-178" LASER PHYSICS MAIK NAUKA/INTERPERIODICA PUBLISHING RUSSIA, vol. 9, no. 1, février 1999 (1999-02), pages 8-11, XP008038352 ISSN: 1054-660X * le document en entier * -----	1,2	
2	Date d'achèvement de la recherche 9 novembre 2004	Examinateur Capostagno, E	
CATÉGORIE DES DOCUMENTS CITÉS <ul style="list-style-type: none"> X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non écrite P : document interne/laire T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant 			

L145 ANSWER 16 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1999:259595 HCAPLUS

DN 130:343722

TI The experimental realization and investigation of the phenomenon of controlling the spontaneous nuclear gamma-decay and the life-time of gamma-excited nuclei

AU Vysotskii, Vladimir I.; Bugrov, Vladimir P.; Kornilova, Alla A.; Reiman, Sergei I.

CS Radiophysical Faculty, Kiev Shevchenko University, Kiev, 252033, Ukraine

SO Proceedings of the International Conference on the Physics of Nuclear Science and Technology, Hauppauge, N. Y., Oct. 5-8, 1998 (1998), Volume 2, 1739-1743 Publisher: American Nuclear Society, La Grange Park, Ill.

CODEN: 67MSAZ

DT Conference

LA English

AB The paper discusses the expts. on **controlling the probability** of spontaneous gamma-decay and **life-time** of radioactive and excited nuclei. The phenomenon of gamma-decay controlling was exptl. studied by Mossbauer spectroscopy. Expts. have proved the possibility of **changing the life-time** of radioactive and excited nuclei by surrounding them with screen having resonant **absorption** frequency equal to the transition frequency of radioactive and excited nuclei. For the first time in the expts. with gamma source ^{119}mSn and with **gamma absorber** ^{119}Sn we have discovered the **change (increase)** of Mossbauer radiative life-time of excited nucleus by 40 - 80% and total life-time (including non-Mossbauer radiation and electron conversion channels of excited nucleus decay) by 0.4-0.6%. Also for the first time the sign and magnitude of the radiative shift of excited nucleus level ^{119}mSn (nuclear analogy of the electron Lamb shift) by $\Delta\omega_0 \approx -3.1014 \text{ s}^{-1}$ were detected in these expts.

IT **Gamma ray**
 (controlling the spontaneous nuclear **gamma-decay**
 and the **life-time** of **gamma-excited nuclei**)

IT **Radionuclides, processes**
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (controlling the spontaneous nuclear **gamma-decay**
 and the **life-time** of **gamma-excited nuclei**)

IT **Gamma ray lasers**
 (controlling the spontaneous nuclear **gamma-decay**
 and the **life-time** of **gamma-excited nuclei** in
 relation to)

IT **Mossbauer effect**
 (in controlling the spontaneous nuclear **gamma-decay**
 and the **life-time** of **gamma-excited nuclei**)

IT 14314-35-3, **Tin 119**, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (controlling the spontaneous **nuclear gamma-decay** of **isomeric**)

L101 ANSWER 2 OF 3 HCAPLUS COPYRIGHT ACS on STN

AN 1998:429932 HCAPLUS

DN 129:141404

OREF 129:28801a,28804a

TI Induced emission of γ radiation from **isomeric nuclei**

AU Olariu, Silviu; Olariu, Agata

CS Institute of Physics and Nuclear Engineering, Atomic and Nuclear Physics Department, Bucharest, 76900, Rom.

SO Physical Review C: Nuclear Physics (1998), 58(1), 333-336

CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society

DT Journal

LA English

CC 70-1 (Nuclear Phenomena)

AB We study the possibility to influence the lifetime of nuclear isomeric states with the aid of incident fluxes of photons. We assume that a nucleus initially in an **isomeric** state $|i\rangle$ first absorbs an incident photon of energy E_{ni} to reach a higher intermediate state $|n\rangle$ and then the state $|n\rangle$ decays to a lower state $|l\rangle$. In favorable cases the two-step induced emission rates become equal to the natural isomeric decay rates for incident power densities of the order of $10^{10} \text{ W cm}^{-2}$.

IT Gamma ray

(induced emission of γ radiation from **isomeric nuclei**)

IT Nuclear energy level

(**isomer**; lifetime in relation to induced emission of γ radiation)

IT 13966-26-2, Lead 204, processes 13981-54-9, Am 242, processes

13982-23-5, Zinc 69, processes 14092-99-0, Mn 52, processes

14119-13-2, Mo 93, processes 14119-24-5, Os 191, processes 14133-76-7,

Tc 99, processes 14191-71-0, In 115, processes 14265-77-1, Hf 178,

processes 14280-38-7, Bi 201, processes 14391-94-7, Sc 44, processes

14683-23-9, Eu 152, processes 14808-44-7, Tc 96, processes 14914-52-4,

Zinc 71, processes 14914-67-1, Te 119, processes 14998-63-1, Re 186,

processes 15752-86-0, Lead 202, processes 15765-82-9, Rh 102,

processes 15765-86-3, Rb 84, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(induced emission of γ radiation from isomeric)

L145 ANSWER 5 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2004:1033215 HCAPLUS
 DN 142:361834
 TI Induced quantum entanglement of nuclear metastable states of ^{115}In
 AU Van Gent, D. L.
 CS Nuclear Science Center, Louisiana State University, Baton Rouge, USA
 SO Los Alamos National Laboratory, Preprint Archive, Nuclear Experiment
 (2004) 1-8, arXiv:nucl-ex/0411047, 24 Nov 2004
 CODEN: LNNEFO
 URL:
 PB Los Alamos National Laboratory
 DT Preprint
 LA English
 AB Expts. conducted in our laboratory conclusively demonstrated that at least 20% of ^{115}In metastable states become quantum entangled (QE) during gamma photo-excitation processes where a significant fraction of the photo-excitation gamma ($E > 1.02$ MeV) are QE. In addition, it was found that the half-life of ^{115}mIn populations in identical photo-excited indium foils varied as much as 70% depending on whether the 99.999% purity indium foils were photo-excited with a High Intensity ^{60}Co Source (HICS) or a Varian CLINAC (Compact Linear Accelerator) with average energy 2 MeV and maximum energy 6 MeV Bremsstrahlung photo-excitation quanta. Decay kinetics of ^{115}mIn populations in indium foils demonstrate that these metastable states are primarily QE in pairs when photo-excited in the HICS apparatus and at higher orders of entanglement of triplets and possibly quadruplets when photo-excited with the CLINAC. It appears that QE gamma photons can transfer quantum entangled properties to radioactive metastable states.
 IT Gamma ray interactions
 Nuclear level excitation
 Quantum entanglement
 (induced quantum entanglement of nuclear metastable states of indium-115 during gamma photo-excitation processes)
 IT Nuclear energy level
 (isomer, metastable state; induced quantum entanglement of nuclear metastable states of indium-115 during gamma photo-excitation processes)
 IT 378759-77-4, Indium-115m, properties
 RL: PRP (Properties)
 (indium-115m; induced quantum entanglement of nuclear metastable states of indium-115 during gamma photo-excitation processes)

L172 ANSWER 9 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 1976:156524 HCAPLUS
 DN 84:156524
 OREF 84:25395a,25398a
 TI Conversion E3 transition from the isomer level of the uranium-235 (73 eV) nucleus
 AU Grechukhin, D. P.; Soldatov, A. A.
 CS Inst. At. Energ. im. Kurchatova, Moscow, USSR
 SO Yadernaya Fizika (1976), 23(2), 273-81
 CODEN: IDFZA7; ISSN: 0044-0027
 DT Journal
 LA Russian
 CC 70-1 (Nuclear Phenomena)
 AB In framework of the relativistic variant of the Thomas-Fermi-Slater method, by means of numerical integration of Dirac's equations, the probabilities of E3-multipole transitions from the 1st excited state $I_1 = 1/2^+$ ($E_1 = 73$ eV) to the ground state $I_2 = 7/2^-$ ($E_2 = 0$) were calculated for electronic orbits $6s1/2$, $6p1/2$, $6p3/2$, $6d3/2$, $6d5/2$, $5f5/2$, and $5f7/2$. The obtained probabilities allow interpretation of the observed **change** of the **decay** rate for the **isomer** ^{235}U [15117-96-1] at introduction of U atoms into various media as a consequence of an essential rearrangement of the valent configuration of the atomic shell, or, more precisely, as a consequence of change of occupation nos. for atomic orbits $(6d3/2)$ and $(6d5/2)$. However, it is not clear, whether a small change of occupation nos. can take place for orbits $6p1/2$ and $6p3/2$. Based on the observed decay rate (λ) of ^{235}Um as 0.026 min $^{-1}$, matrix elements of the E3 transition were determined for ^{235}U . This element has a scale of a collective transition, estimated by using a model which considers an admixt. of components containing octupole excitations of the core ^{234}U in the states of ^{235}U . The octupole-vibration amplitude of the core ^{234}U , estimated from the probability of the E3 transition of ^{235}U , is in good agreement with quantities of octupole-vibration amplitudes, obtained from data on Coulomb excitation of $|3>$ levels of ^{234}U .
 ST uranium 235 conversion E3 transition; electron internal conversion uranium 235
 IT Electron configuration
 (electron internal conversion in uranium-235 in relation to)
 IT Electron internal conversion
 (in uranium-235, atomic electron configuration in relation to)
 IT 15117-96-1, properties
 RL: PRP (Properties)
 (electron internal conversion in)

L172 ANSWER 4 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 2001:633278 HCAPLUS
 DN 135:248454
 ED Entered STN: 31 Aug 2001
 TI Long-lived **isomeric nuclei** as sources of intense **gamma** bursts
 AU Rivlin, L. A.; Zadernovsky, A. A.; Carroll, J. J.; Agee, F. J.
 SO Proceedings of the International Conference on Lasers (2000), 23rd, 538-544
 CODEN: PICLDV; ISSN: 0190-4132
 PB STS Press
 LA English
 AB We considered a new type of nuclear chain reaction, namely, a reaction of anti-Stokes radiative transitions of long-lived **metastable** isomers, triggered by the quasi-equilibrium blackbody radiation of a dense hot plasma. The relatively high temperature of the plasma is maintained by its partial **absorption** of **gamma** photons emitted by nuclei following their **absorption** of trigger **photons** of lower energy from the plasma. As a result, the energy stored in **metastable** isomeric states is released in a chain reaction and an intense burst of **gamma** photons is emitted. Quant. ests. of this chain reaction are presented.
 ST **isomeric nuclei gamma ray burst**
 source; anti Stokes radiative transition **isomeric nuclei**
gamma source
 IT Plasma
 (dense hot; long-lived **isomeric nuclei** as sources
 of intense **gamma** bursts based on anti-Stokes radiative
 transitions of long-lived **metastable** isomers triggered by
 quasi-equilibrium blackbody radiation of)
 IT Nuclear energy level
 (**isomer**; long-lived **isomeric nuclei** as
 sources of intense **gamma** bursts based on anti-Stokes
 radiative transitions of long-lived **metastable** isomers
 triggered by quasi-equilibrium blackbody radiation of dense hot plasma)
 IT Nuclear transition
 (**isomeric**; long-lived **isomeric nuclei** as
 sources of intense **gamma** bursts based on anti-Stokes
 radiative transitions of long-lived **metastable** isomers
 triggered by quasi-equilibrium blackbody radiation of dense hot plasma)
 IT Blackbody radiation
 (long-lived **isomeric nuclei** as sources of intense
gamma bursts based on anti-Stokes radiative transitions of
 long-lived **metastable** isomers triggered by quasi-equilibrium
 blackbody radiation of dense hot plasma)
 IT Gamma ray
 (source; long-lived **isomeric nuclei** as sources of
 intense **gamma** bursts based on anti-Stokes radiative
 transitions of long-lived **metastable** isomers triggered by
 quasi-equilibrium blackbody radiation of dense hot plasma)
 RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
 (1) Andreev, A; JETP Lett 1999, V69, P371 HCAPLUS
 (2) Becker, W; Phys Lett A 1984, V106, P441
 (3) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (4) Rivlin, L; Quantum Electronics (Moscow) 2000, V30(10) HCAPLUS
 (5) Rivlin, L; Quantum Electronics (Moscow) 2000, V30(6), P551 HCAPLUS

25/9/1 (Item 1 from file: 6)
DIALOG(R) File 6:NTIS
(c) NTIS, Intl Cpyrght All Rights Res. All rts. reserv.

1434259 NTIS Accession Number: DE89006453
Study of Nuclear Fluorescence Excited by Laser Plasma X-Rays: Final Report, 10 September 1984-31 July 1988

Collins, C. B.
Texas Univ. at Dallas, Richardson. Center for Quantum Electronics and Applications.

Corp. Source Codes: 049995003; 9506953
Sponsor: Department of Energy, Washington, DC.

Report No.: DOE/DP/40208-T1

17 Oct 88 24p

Languages: English

Journal Announcement: GRAI8913; NSAl400

Portions of this document are illegible in microfiche products. Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703) 605-6000 (other countries); fax at (703) 321-8547; and email at orders@ntis.fedworld.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA.

NTIS Prices: PC A03/MF A01

Country of Publication: United States

Contract No.: AS08-84DP40208

The ultimate objective of the part of the research conducted under this contract was to demonstrate the feasibility of accelerating the radioactive decay of populations of long-lived isomeric states of nuclear excitation. Such an achievement would represent a substantial step along the path of research which might ultimately lead to a gamma-ray laser. Quantitative modeling has indicated that such a result might be obtained through a type of optical pumping with laser plasma X-rays produced by conventional devices of realistic size. The research necessary to test the overall viability of the concept is being pursued at the Center for Quantum Electronics of the University of Texas at Dallas. The work conducted under this contract was the first step of a type of scaling study that would indicate how close to threshold the medium for a gamma-ray laser could be pumped with existing fusion lasers. Calculations had indicated that if a suitable "ideal" medium can be found, the threshold for a gamma-ray laser would be attained before breakeven in fusion. This first phase of research was focused upon the demonstration of the overall efficiency for the coupling of x-radiation into gamma -ray fluorescence through the absorption by a nuclear ground state population of X-radiation from a laser plasma. As no actual laser shots were ever allocated, only theoretical results are available. 25 refs., 6 figs., 1 tab. (ERA citation 14:015656)

Descriptors: *Gamma Cascades; Lasers; Cross Sections; De-Excitation; Energy-Level Transitions; Feasibility Studies; Fluorescence; Gamma Radiation; Nuclear Cascades; Nuclear Structure; Optical Pumping; Progress Report; Radiative Decay; X-Ray Lasers

Identifiers: *Gamma ray lasers; ERDA/420300; ERDA/653005; NTISDE

Section Headings: 46C (Physics--Optics and Lasers); 46GE (Physics--General)

L145 ANSWER 4 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2005:972543 HCAPLUS

DN 144:261892

TI The use of selected monochromatic **X-rays** to induce a **cascade of gamma** transitions from the 31-year **nuclear isomer** to the 4 second **isomeric** state of Hf-178

AU Zoita, N. C.; Davanloo, F.; Collins, C. B.; Pouvesle, J. M.; Emura, S.; Popescu, I. I.; Kirischuk, V. I.; Strilchuk, N. V.; Uruga, T.; Yoda, Y.

CS Center for Quantum Electronics, University of Texas, Richardson, TX, 75083-0688, USA

SO Journal de Physique IV: Proceedings (2005), 127(7ieme Colloque sur les Sources Coherentes et Incoherentes UV, VUV et X, 2004), 163-168

CODEN: JPICEI; ISSN: 1155-4339

PB EDP Sciences

DT Journal

LA English

AB The Hf-178m2 **nuclear** spin **isomer** stores 2.45 MeV of energy for a **half life** of 31 years. Unperturbed, such nuclei radiate away the stored energy through the emission of **gamma** photons from electromagnetic (EM) transitions occurring within the nuclei. It has been shown that the **irradiation of samples** containing such nuclei with pulsed **X-rays** can accelerate the rate of the EM transitions by relaxing the selection rules upon **changes** of angular momenta. To date, most work has been done with incident **X-ray** energies between 9 and 10 keV, and in such cases the acceleration of the rate of **gamma** emission is immediate. Reported here is a channel for **deexcitation** excited by more energetic **X-rays** that results in a **cascade of gamma** transitions that includes a 4 s statistical time lag. This more protracted release of the energy stored in samples of the Hf-178m2 **nuclear isomers** encourages consideration of potential mech. and thermal applications.

IT Nuclear energy level

(**isomer**; use of selected monochromatic **X-rays** to induce **cascade of gamma** transitions from 31-yr **nuclear isomer** to 4 s **isomeric** state of hafnium-178)

IT Gamma ray

Gamma ray interactions

Nuclear energy level

Nuclear ground state

Nuclear spin

Nuclear transition

X-ray

(use of selected monochromatic **X-rays** to induce **cascade of gamma** transitions from 31-yr **nuclear isomer** to 4 s **isomeric** state of hafnium-178)

IT 378750-90-4, Hafnium-178m, reactions

(hafnium-178m; use of selected monochromatic **X-rays** to induce **cascade of gamma** transitions from 31-yr **nuclear isomer** to 4 s **isomeric** state of hafnium-178)

IT 14265-77-1, Hafnium 178, formation (nonpreparative)

(use of selected monochromatic **X-rays** to induce **cascade of gamma** transitions from 31-yr **nuclear isomer** to 4 s **isomeric** state of hafnium-178)

L15 ANSWER 9 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2001:151621 HCAPLUS
 DN 134:272017
 TI Stimulated **gamma** emission by anti-Stokes transitions of free isomeric nuclei
 AU Zadernovsky, A. A.
 CS Moscow State Institute of Radio Engineering, Electronics, and Automation,
 Moscow, 117454, Russia
 SO Laser Physics (2001), 11(1), 16-22
 CODEN: LAPHEJ; ISSN: 1054-660X
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 AB We examine in detail a way to achieve a pos. gain for stimulated **gamma** radiation based on the recently proposed concept for recoil assisted **gamma**-ray lasing in cooled (monokineticized) beam of free isomeric nuclei. For discussion of anti-Stokes conversion of X-ray radiation into stimulated **gamma** emission of free isomeric nuclei we consider a three level system. A nucleus is initially in the metastable isomeric state from which it can **decay** very slowly to its ground state. Under the influence of a broadband external X-ray radiation we can induce a two step **decay** to the nuclear ground state through an intermediate **short-lived** upper level. These triggering **two-quantum transitions** are accompanied by the **absorption of X-ray photons** with simultaneous emission of spontaneous or stimulated **gamma**-quanta. We present the cross section for the stimulated anti-Stokes resonance scattering with quanta of different multipolarity as well as the gain for stimulated **gamma** radiation in a cooled nuclear beam with spectral-local population inversion. A screening of isotopes has been made in order to pick out the candidates with appropriate arrangement of the nuclear states. Numerical estns. executed for the selected isomers yield the threshold ratio for concentration of isomeric nuclei to overall nuclear concentration in the beam and the pumping threshold spectral **photon** flux d. of X-ray radiation.
 IT X-ray
 (for **gamma** emission by anti-Stokes transitions of free isomeric nuclei)
 IT Gamma ray
 Gamma ray lasers
 Nuclear transition
 (**gamma** emission by anti-Stokes transitions of free isomeric nuclei)
 IT Nuclear energy level
 (isomer; **gamma** emission by anti-Stokes transitions of free isomeric nuclei)
 RE
 (5) Collins, C; Hyperfine Interactions 1997, V107, P3 HCAPLUS
 (6) Collins, C; Laser Phys 1999, V9, P1 HCAPLUS
 (7) Collins, C; Laser Phys 1999, V9, P8 HCAPLUS
 (8) Collins, C; Phys Rev C 1988, V37, P2267 HCAPLUS
 (9) Firestone, R; Table of Isotopes, 8th ed 1998
 (10) Heitler, W; The Quantum Theory of Radiation 1956
 (11) Landau, L; Quantum Mechanics 1974
 (12) Loudon, R; The Quantum Theory of Light 1973
 (13) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS
 (15) Rivlin, L; Quantum Electron 1999, V6, P467

L98 ANSWER 5 OF 5 HCAPLUS COPYRIGHT ACS on STN
 AN 1942:2254 HCAPLUS
 DN 36:2254
 OREF 36:331f-i,332a-c
 TI Chemical effects of the **nuclear isomeric** transitions
 in bromine; evidence for atomic bromine and some of its properties
 AU DeVault, Don; Libby, W. F.
 SO Journal of the American Chemical Society (1941), 63, 3216-24
 CODEN: JACSAT; ISSN: 0002-7863
 DT Journal
 LA Unavailable
 CC 3 (Subatomic Phenomena and Radiochemistry)
 AB This study is an investigation of the chemical processes induced by the **isomeric**
 transition in which the Br80 nucleus changes from its upper state of 4.5-hr.
half-life to the lower one of 18-min. half-life. Certain evidence was obtained
 for the occurrence of atomic Br detectable by its radioactivity and stable for an
 hr. or more because its concentration was very small. The procedure was to allow
 compds. made with 4.5-hr. Br to stand under various conditions for about 2 hrs.
 or more and then to perform chemical sepn. on them. The results indicate that
 the **isomeric** transition from 4.5-hr. to 18-min. **half-life** in Br80 usually induces
 a shower of electrons from the Br atom. If the mol. containing the Br atom is in
 a gaseous state it is decomposed by the resulting large pos. charge on it. The
 ejected 18-min. Br atom is quickly neutralized by electron transfer on collision
 with neutral mols. and ends up as HBr, Br or free Br atoms. The latter form in
 appreciable nos. with long life because of low concentration, appear not to be
 very soluble in water or concentrated H₂SO₄, and do not react readily with
 organic compds. such as EtBr. In liquid phases substitution reactions occur.
 Probably the cage effect keeps the highly charged Br in contact with neighboring
 mols. for a longer time so that they are broken up by the charge and the
 fragments have a chance to combine with the Br. Thus a smaller fraction of the
 18-min. activity becomes water-soluble. Primary recombination or deactivation
 might, of course, occur also. Substitution into CS₂ occurs slightly less often
 than into CCl₄. Alc. or aniline acts to release the 18-min. Br in inorg. form
 either by being attracted by Br atoms undergoing transition and reacting with the
 newly formed organic bromides while they are still activated. This tentative
 picture is based on the following exptl. findings. (1) A portion (roughly 25%)
 of the 18-min. activity ejected from organic compds. in the gas and in the liquid
 will interchange with Br₂ or react with reducing agents, but is not extracted by
 water. (2) Another portion is readily extracted by pure water. (3) The amount
 of 18-min. bromine which goes into or remains in organic form is reduced to a
 min. by gaseous conditions or by adding alc. or aniline to liquids. (4)
 Substitution into CS₂ is observed and into CCl₄ is confirmed. The substitution
 into CCl₄ occurs either from Br or alkyl bromides. (5) The products from the gas
 phase at 21-min. pressure do not show preference for either neg. or pos. charged
 plates. (6) A small dependence of the amount of extraction from BrO₃⁻ on the
 presence of Br⁻ may indicate that an intermediate form is involved there.
 IT Atomic nuclei
 (isomerism of, of Br80)
 IT 183748-02-9, Electron
 (from bromine (radioactive) by internal conversion)
 IT 7726-95-6, Bromine
 (isomers of mass 80, nuclear transitions in)

L36 ANSWER 2 OF 5 HCAPLUS COPYRIGHT ACS on STN
 AN 2001:908021 HCAPLUS
 DN 136:43833
 TI Direct observation and experimental investigation of the process of gamma-decay controlling in quantum nucleonics
 AU Vysotskii, V. I.; Kornilova, A. A.; Sorokin, A. A.; Komisarova, V. A.; Reiman, S. I.; Riasnii, G. K.
 CS Kiev Shevchenko University, Kiev, Ukraine
 SO Conference Proceedings - Italian Physical Society (2000), 70(ICCF8), 225-230
 CODEN: CPISEN; ISSN: 1122-1437
 PB Editrice Compositori
 DT Journal
 LA English
 AB The aims of the present expts. were direct observation and investigation of the controlled gamma-decay of radioactive nuclei by delayed gamma-gamma coincidence method. In the expts. with gamma-source ^{57}Co (Fe^{57*}) and with **gamma-absorber** made of stable ^{57}Fe isotope we have discovered the **change (increase) of radiative lifetime** of the excited nucleus (in relation to resonant Mossbauer gamma-channel of decay) by 10-40% **and total lifetime** (including non-controlled non-Mossbauer gamma-radiation and non-controlled electron conversion channels of excited nucleus decay) **by 1%**.
 IT Nuclear energy level
 (change (increase) of radiative lifetime of the excited nucleus)
 IT Gamma ray
 (gamma-decay controlling in quantum nucleonics in gamma-source ^{57}Co decay)
 IT 14762-69-7, Iron 57, processes
 RL: PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (gamma-decay controlling in quantum nucleonics in gamma-source ^{57}Co decay)
 IT 13981-50-5, Cobalt 57, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (gamma-decay controlling in quantum nucleonics in gamma-source ^{57}Co decay)
 RE
 (1) Vysotskii, V; Hyperfine Interactions 1997, V107, P277 HCAPLUS
 (2) Vysotskii, V; International Conf on the Physics of Nuclear Science and Technology 1998, V2, P1739 HCAPLUS
 (3) Vysotskii, V; Physical Review C 1998, V58, P337 HCAPLUS

L36 ANSWER 1 OF 5 HCPLUS COPYRIGHT ACS on STN
 AN 2004:728399 HCPLUS
 DN 142:226785
 TI Experimental Search for the Effect of Resonant Environment on the Mossbauer **Absorption** of Gamma Rays by 57Fe
 AU Alpatov, V. G.; Bayukov, Yu. D.; Davydov, A. V.; Isaev, Yu. N.; Kartashov, G. R.; Korotkov, M. M.; Reiman, S. I.; Samoylov, V. M.
 CS Institute of Theoretical and Experimental Physics, Moscow, 117218, Russia
 SO JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki) (2004), 80(1), 9-11
 CODEN: JTPLA2; ISSN: 0021-3640
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 AB Due to the virtual photon exchange between atomic nuclei and the field of zero-point electromagnetic oscillations, some nuclei of a given sample are in a virtual excited state with the **lifetime** .apprx..plcnst./E, where E is the energy of nuclear level. For 57Fe nuclei, whose first excited state has an energy of 14.4 keV, this **time** is equal to .apprx.4.6 + 10-20 s. If a thin 57Fe Mossbauer gamma-ray **absorber** is surrounded by a thick screen of the same atoms, the number of virtual excited nuclei in the **absorber** decreases and, at first glance, it should more strongly **absorb** Mossbauer gamma rays emitted by an external source and passing through the **absorber**. The ratio of the intensities of 14.4-keV gamma rays emitted by the 57Fe nuclide and passing through the thin resonant **absorber** is measured in the absence and presence of the resonant screen around the **absorber**. Comparison shows that these ratios measured for the gamma source at rest and in the oscillating state differ by 0.00123 ± 0.00075. This value should be treated as the upper limit for the desired effect under these exptl. conditions.
 IT Gamma ray
 Mossbauer effect
 (effect of resonant environment on the Mossbauer **absorption** of 57Fe Mossbauer gamma-ray)
 IT 14762-69-7, Iron 57, properties
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process)
 (effect of resonant environment on the Mossbauer **absorption** of 57Fe Mossbauer gamma-ray)
 RE
 (1) Vysotskii, V; Hyperfine Interact 1997, V107, P277 HCPLUS
 (2) Vysotskii, V; Laser Phys 2001, V11, P442 HCPLUS
 (3) Vysotskii, V; Phys Rev C 1998, V58, P337 HCPLUS
 (4) Vysotskii, V; Pis'ma Zh Tekh Fiz 1984, V10, P300 HCPLUS
 (5) Vysotskii, V; Sov Tech Phys Lett 1984, V10, P126

L172 ANSWER 6 OF 12 HCAPLUS COPYRIGHT ACS on STN
 AN 2001:151620 HCAPLUS
 DN 134:272016
 ED Entered STN: 02 Mar 2001
 TI On the problem of forced release of nuclear energy of long-lived isomers
 AU Rivlin, L. A.
 CS MIREA Technical University, Moscow, 117454, Russia
 SO Laser Physics (2001), 11(1), 12-15
 CODEN: LAPHEJ; ISSN: 1054-660X
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 CC 70-1 (Nuclear Phenomena)
 Section cross-reference(s): 73
 AB We consider a new type of nuclear chain reaction, namely, a reaction of anti-Stokes radiative transitions of long-lived **metastable** isomers triggered by quasi-equilibrium black body radiation of a dense hot plasma which relatively high temperature is supported in its part by **absorption of gamma-photons** emitted by nuclei. As result the energy stored in **metastable** isomer states is released and an intense burst of gamma-photons is emitted. Quant. ests. are presented.
 ST forced release **nuclear energy isomer**; black body
 radiation
 IT Nuclear energy
 Nuclear transition
 (forced release of nuclear energy of long-lived isomers)
 IT Blackbody radiation
 (forced release of nuclear energy of long-lived isomers by)
 IT **Gamma ray**
 (forced release of nuclear energy of long-lived **isomers** by
 gamma-photons)
 IT **Gamma ray lasers**
 (forced release of nuclear energy of long-lived isomers in relation to)
 IT **Nuclear energy level**
 (isomer; forced release of **nuclear** energy of
 long-lived isomers)
 RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Andreev, A; JETP Lett 1999, V69, P371 HCAPLUS
 (2) Becker, W; Phys Lett A 1984, V106, P441
 (3) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (4) Rivlin, L; Quantum Electron 2000, V30(11) HCAPLUS
 (5) Rivlin, L; Quantum Electron 2000, V30, P551 HCAPLUS

25/9/2
 DIALOG(R)File 2:INSPEC
 (c) Institution of Electrical Engineers. All rts. reserv.

07462248 INSPEC Abstract Number: A2000-04-3110-001
 Title: Spectral analysis for systems of atoms and molecules coupled
 to the **quantized radiation field**
 Author(s): Bach, V.; Frohlich, J.; Sigal, I.M.
 Author Affiliation: Fachbereich Math., Tech. Univ. Berlin, Germany
 Journal: Communications in Mathematical Physics vol.207, no.2 p.
 249-90

Publisher: Springer-Verlag,
 Publication Date: Nov. 1999 Country of Publication: Germany
 CODEN: CMPhAY ISSN: 0010-3616
 SICI: 0010-3616(199911)207:2L.249:SASA;1-U
 Material Identity Number: C060-1999-028
 Language: English Document Type: Journal Paper (JP)

Treatment: Theoretical (T)
Abstract: We consider systems of static nuclei and electrons-atoms
 and molecules-coupled to the **quantized radiation field**.

The interactions between electrons and the soft modes of the quantized
 electromagnetic field are described by minimal coupling, p to $p-eA(x)$,
 where $A(x)$ is the electromagnetic vector potential with an ultraviolet
 cutoff. If the interactions between the electrons and the quantized
 radiation field are turned off, the atom or molecule is assumed to have at
 least one bound state. We prove that, for sufficiently small values of the
 fine structure constant alpha, the interacting system has a ground state
 corresponding to the bottom of its energy spectrum. For an atom, we prove
 that its excited states above the ground state turn into **metastable states**
 whose **life-times** we estimate. Furthermore the energy spectrum
 is absolutely continuous, except, perhaps, in a small interval above the
 ground state energy and around the threshold energies of the atom or
 molecule. (36 Refs)

Subfile: A
 Descriptors: atomic structure; bound states; eigenvalues and
 eigenfunctions; ground states; metastable states; molecular electronic
 states; quantum electrodynamics; resonant states; spectral line breadth

Identifiers: spectral analysis; coupled atoms; coupled molecules;
 quantized radiation field; static nuclei; static electrons; electron
 interactions; soft modes; minimal coupling; electromagnetic vector
 potential; QED; ultraviolet cutoff; bound state; fine structure constant;
 quantum electrodynamics; energy spectrum; excited states; metastable states
 ; lifetimes; absolutely continuous spectrum; ground state energy;
 threshold energies; Hamiltonian; bound soft photons; resonances; coupled
 electronic systems

Class Codes: A3110 (General theory of structure, transitions and
 chemical binding in atoms and molecules); A0365G (Solutions of wave
 equations: bound state in quantum theory); A1220D (Specific calculations
 and limits of quantum electrodynamics); A3150 (Excited states of atoms and
 molecules); A3270J (Atomic line shapes, widths, and shifts)

L15 ANSWER 1 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2005:40353 HCAPLUS
 DN 142:304671
 TI Enhanced nuclear level **decay** in hot dense plasmas
 AU Gosselin, G.; Morel, P.
 CS Departement de Physique Theorique et appliquee, Service de Physique
 Nucleaire, Commissariat a l'energie atomique, Bruyeres-le-Chatel, 91680,
 Fr.
 SO Physical Review C: Nuclear Physics (2004), 70(6),
 064603/1-064603/9
 CODEN: PRVCAN; ISSN: 0556-2813
 PB American Physical Society
 DT Journal
 LA English
 AB A model of nuclear level **decay** in a plasma environment is described. Nuclear **excitation** and **decay** by photon processes, nuclear **excitation** by electron capture and **decay** by internal conversion were taken into account. The electrons in the plasma are described by a relativistic average atom model for the bound electrons and by a relativistic Thomas-Fermi-Dirac model for the free electrons. Nuclear **decay** of an isomeric level may be enhanced through an intermediate level lying above the isomer. An enhanced nuclear **decay rate** may occur for temps. far below the **excitation** energy of the transition to the intermediate level. In most cases, the enhancement factor may reach several decades.
 IT Plasma
 (dense; model enhanced nuclear level **decay** in hot dense plasmas in which bound electrons are described by relativistic average atom model and free electrons are described by relativistic Thomas-Fermi-Dirac model)
 IT Plasma
 (hot; model enhanced nuclear level **decay** in hot dense plasmas in which bound electrons are described by relativistic average atom model and free electrons are described by relativistic Thomas-Fermi-Dirac model)
 IT Nuclear energy level
 (isomer; nuclear **decay** of isomeric level in hot dense plasmas may be enhanced through intermediate level lying above isomer)
 IT Nuclear transition
 (model enhanced nuclear level **decay** in hot dense plasmas in which bound electrons are described by relativistic average atom model and free electrons are described by relativistic Thomas-Fermi-Dirac model)
 RE
 (25) Olariu, S; Phys Rev C 1997, V56, P381 HCAPLUS
 (26) Olariu, S; Phys Rev C 1998, V58, P2560 HCAPLUS
 (27) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS

L15 ANSWER 2 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2003:431382 HCAPLUS
 DN 139:297756
 TI Beam-based production of $^{178m}2\text{Hf}$
 AU Farrell, J. Paul; Dudnikov, V.; Carroll, J. J.; Merkel, G.
 CS Brookhaven Technology Group, Inc., Setauket, NY, USA
 SO Hyperfine Interactions (2003), Volume Date 2002, 143(1-4), 55-61
 CODEN: HYINDN; ISSN: 0304-3843
 PB Kluwer Academic Publishers
 DT Journal
 LA English

AB The production yield for the reaction $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})^{178}\text{Hf}$ was studied using the FN tandem-injected, superconducting LINAC accelerator at SUNY at Stony Brook. The exptl. yield of the ^{178}Hf ground state .**gamma**.-rays was compared with that of ^{180}W as a function of the energy. In this way, the cross section for the production of the incomplete fusion .**gamma**.-rays in ^{178}Hf was evaluated. The population strength of the high-spin states in ^{178}Hf was investigated by coincidence measurements. The high-spin states above 16^{+} were weakly populated, although the low-spin ground state transitions had reasonable cross sections. The maximum cross section for the reaction $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})^{178m}2\text{Hf}$ is not $> 5 \text{ mb}$.

IT **Gamma ray**
 Nuclear energy level
 Nuclear level **excitation**

(beam-based production of $^{178m}2\text{Hf}$ and population of its high-spin states)

IT Heavy ion beams
 Nuclear fusion

(beam-based production of $^{178m}2\text{Hf}$ via $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})$)

IT 12586-31-1, Neutron 12587-46-1, Alpha particle
 RL: NUU (Other use, unclassified); USES (Uses)

(beam-based production of $^{178m}2\text{Hf}$ via $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})$)

IT 7440-41-7, Beryllium9, reactions 15751-45-8, Ytterbium176, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)

(beam-based production of $^{178m}2\text{Hf}$ via $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})$)

IT 14265-77-1P, Hafnium178, preparation
 RL: PNU (Preparation, unclassified); PREP (Preparation)
 (metastable; beam-based production of $^{178m}2\text{Hf}$ via $^{176}\text{Yb}(^{9}\text{Be},\alpha^{3}\text{n})$)

RE

- (1) Ahmad, I; Phys Rev Lett 2001, V87, P072503 MEDLINE
- (2) Baldwin, G; Reviews of Modern Physics 1997, V69, P1085 HCAPLUS
- (3) Chadwick, M; Nucl Sci Eng 1991, V108, P117 HCAPLUS
- (4) Collins, C; Hyp Interact 1997, V107, P3 HCAPLUS
- (5) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
- (6) McDaniel, P; private communication
- (7) Mullins, S; Phys Lett B 1997, V393, P279 HCAPLUS
- (8) Oganessian, Y; J Phys C Nucl Part Phys 1992, V18, P393
- (9) Olariu, S; Phys Rev C 1998, V58, P2560 HCAPLUS

L15 ANSWER 4 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2002:209502 HCAPLUS
 DN 136:222565

TI Search for γ -emission from isomeric nuclei induced by MeV electron beams
 AU Olariu, Silviu; Olariu, Agata; Martin, Diana; Niculescu, Anastase
 CS Tandem Laboratory, National Institute for Physics and Nuclear Engineering, Bucharest, Rom.
 SO Hyperfine Interactions (2002), Volume Date 2001, 135(1-4), 71-81
 CODEN: HYINDN; ISSN: 0304-3843
 PB Kluwer Academic Publishers
 DT Journal
 LA English
 AB We study the nuclear transitions induced by incident electrons having an energy of several MeV's. We measured the cross sections for the **excitation** of isomeric nuclear states by 7.7 MeV electrons. The cross sections were 1.2 μ b for ^{111}mCd , 5.5 μ b for ^{113}mIn and 7.0 μ b for ^{115}mIn . The peak activation **rates** were $1.8 + 10^{-12} \text{ s}^{-1}$ for ^{111}mCd , $8.1 + 10^{-12} \text{ s}^{-1}$ for ^{113}mIn and $1.0 + 10^{-11} \text{ s}^{-1}$ for ^{115}mIn , for a peak power of the electron beam of $1.8 + 10^6 \text{ W cm}^{-2}$. Then we describe for the first time the results of a series of expts. in which samples containing the isomeric nuclei ^{166}mHo and ^{186}mRe have been irradiated with MeV electron beams. An upper limit of 17 mb has been determined for the cross section of electron-induced **γ -emission** from ^{166}mHo and an upper limit of 2.2 mb has been determined for the cross section of electron-induced γ -emission from ^{186}mRe .

IT Nuclear energy level
 (isomer; search for γ -emission from isomeric nuclei induced by MeV electron beams)
 IT Electron collisions
 Nuclear transition
 (nuclear transitions induced by incident electrons)
 IT Electron beams
 Gamma ray
 (search for γ -emission from isomeric nuclei induced by MeV electron beams)
 IT 13967-65-2, Ho 166, processes 14191-71-0, In 115, processes 14336-64-2, Cd 111, processes 14885-78-0, In 113, processes 14998-63-1, Re 186, processes
 RL: PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (nuclear isomeric transitions induced by incident electrons)

RE
 (1) Booth, E; Nucl Phys A 1967, V98, P529
 (2) Eichler, J; Relativistic Atomic Collisions 1995, P47
 (3) Olariu, S; Essay on the gamma ray laser, nucl-ex/9907008
 (4) Olariu, S; Nucl Instrum Meth B 2001, V179, P11 HCAPLUS
 (5) Olariu, S; Phys Rev C 1997, V56, P381 HCAPLUS
 (6) Olariu, S; Phys Rev C 1998, V58, P2560 HCAPLUS
 (7) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS
 (8) Olariu, S; Rev Roum Phys, nucl-ex/9907010 1982, V27, P559 HCAPLUS
 (9) Olariu, S; Romanian Journal of Physics 1999, V44(Supplement), P45
 (10) Olariu, S; nucl-ex 9902011
 (11) Robl, H; Nucl Phys 1956-1957, V2, P641

L15 ANSWER 5 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2002:209500 HCAPLUS
 DN 136:301087
 TI x-ray-driven **gamma** emission
 AU Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.
 CS Center for Photon-Induced Processes, Department of Physics and Astronomy,
 Youngstown State University, Youngstown, OH, 44555, USA
 SO Hyperfine Interactions (2002), Volume Date 2001, 135(1-4), 3-50
 CODEN: HYINDN; ISSN: 0304-3843
 PB Kluwer Academic Publishers
 DT Journal; General Review
 LA English
 AB A review. X-ray-driven **gamma** emission describes processes that may release nuclear energy in a clean way, as bursts of incoherent or coherent **gamma** rays without the production of radioactive byproducts. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 **photons could trigger gamma emission from a long-lived metastable nuclear excited state** of 1 nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these exptl. results have come new proposals for the creation of collective and avalanche-like incoherent **gamma**-ray bursts and even for the ultimate light source, a **gamma**-ray laser. Obviously, many applications would benefit from controlled bursts of **gamma** radiation, whether coherent or not. This paper reviews the exptl. results and concepts for the production of **gamma** rays, driven by externally produced x-rays.
 IT Gamma ray
 Gamma ray lasers
 Nuclear energy
 X-ray
 (x-ray-driven **gamma** emission)
 RE
 (23) Collins, C; Hyp Interact 1997, V107, P141 HCAPLUS
 (24) Collins, C; Hyp Interact 1997, V107, P3 HCAPLUS
 (25) Collins, C; J Appl Phys 1982, V53, P4645 HCAPLUS
 (26) Collins, C; Laser Phys 1999, V9, P1 HCAPLUS
 (27) Collins, C; Phys Rev C 1988, V37, P2267 HCAPLUS
 (28) Collins, C; Phys Rev C 1990, V42, P1813
 (29) Collins, C; Phys Rev C 2000, V61, P054305
 (30) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (70) Olariu, S; Europhys Lett 1997, V37, P177 HCAPLUS
 (71) **Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS**
 (73) Rivlin, L; Hyp Interact 1997, V107, P57 HCAPLUS
 (74) Rivlin, L; Quant Elec (Moscow) 2000, V30, P551 HCAPLUS
 (75) Rivlin, L; Quant Elec (Moscow) 2000, V30, P937 HCAPLUS
 (76) Rivlin, L; Quant Elec (invited paper) 1999, V29, P467 HCAPLUS
 (77) Rivlin, L; Sov J Quant Elec 1992, V22, P471
 (78) Rivlin, L; Soviet Inventor's Certificate No 621265 1961
 (90) Vysotskii, V; Phys Rev C 1998, V58, P337 HCAPLUS
 (95) Zadernovsky, A; Laser Phys 2001, V11, P16 HCAPLUS

L15 ANSWER 6 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2001:568059 HCAPLUS
 DN 135:171551
 TI Search for x-ray induced acceleration of the **decay** of the 31-yr isomer of ¹⁷⁸Hf using synchrotron radiation
 AU Ahmad, I.; Banar, J. C.; Becker, J. A.; Gemmell, D. S.; Kraemer, A.; Mashayekhi, A.; McNabb, D. P.; Miller, G. G.; Moore, E. F.; Pangault, L. N.; Rundberg, R. S.; Schiffer, J. P.; Shastri, S. D.; Wang, T. F.; Wilhelmy, J. B.
 CS Physics Division, Argonne National Laboratory, Argonne, IL, 60439, USA
 SO Physical Review Letters (2001), 87(7), 072503/1-072503/4
 CODEN: PRLTAO; ISSN: 0031-9007
 PB American Physical Society
 DT Journal
 LA English
 AB Enhanced **decay** of the 31-yr isomer of ¹⁷⁸Hf induced by x-ray irradiation has been reported previously. Here we describe an attempt to reproduce this result with an intense "white" x-ray beam from the Advanced **Photon** Source. No induced **decay** was observed. The upper limits for the energy-integrated cross sections for such a process, over the range of energies of 20-60 keV x-rays, are less than $2 + 10^{-27}$ cm² keV, below the previously reported values by more than 5 orders of magnitude; at 8 keV the limit is $5 + 10^{-26}$ cm² keV.
 IT Nuclear energy level
 (isomer; search for x-ray induced acceleration of **decay** of 31-yr isomer of ¹⁷⁸Hf using synchrotron radiation)
 IT X-ray
 X-ray synchrotron radiation
 (search for x-ray induced acceleration of **decay** of 31-yr isomer of ¹⁷⁸Hf using synchrotron radiation)
 IT 14265-77-1, hafnium-178, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (search for x-ray induced acceleration of **decay** of 31-yr isomer of ¹⁷⁸Hf using synchrotron radiation)
 RE
 (1) Anon; Science 1999, V283, P769
 (2) Collins, C; Hyperfine Interact 1997, V107, P3 HCAPLUS
 (3) Collins, C; Laser Phys 1999, V9, P8 HCAPLUS
 (4) Collins, C; Phys At Nucl 2000, V63, P2067 HCAPLUS
 (5) Collins, C; Phys Rev C 2000, V61, P054305
 (6) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (7) DeJus, R; Argonne National Laboratory Report 1993, ANL/APS/TB-3
 (8) DeJus, R; Argonne National Laboratory Report 1994, ANL/APS/TB-17
 (9) Lai, B; Argonne National Laboratory Report 1993, ANL/APS/TB-3
 (10) McNabb, D; Phys Rev Lett 2000, V84, P2542 HCAPLUS
 (11) Mullins, S; Phys Lett B 1997, V393, P297
 (12) Mullins, S; Table of Isotopes 1996
 (13) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS
 (14) Olariu, S; Phys Rev Lett 2000, V84, P2541 HCAPLUS
 (15) Van Klinken, J; Nucl Phys 1980, VA339, P189 HCAPLUS
 (16) von Neumann-Cosell, P; Phys Rev Lett 2000, V84, P2543
 (17) Walker, P; Nature 1999, V399, P35 HCAPLUS

L15 ANSWER 8 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2001:430827 HCAPLUS
 DN 135:98210
 TI Stimulated **gamma** radiation of free isomer nuclei upon anti-Stokes transitions
 AU Zadernovsky, A. A.
 CS Moscow State Institute of Radio Engineering, Electronics, and Automation (Technical University), Moscow, 117454, Russia
 SO Quantum Electronics (2001), 31(1), 90-94
 CODEN: QUELEZ; ISSN: 1063-7818
 PB Turpion Ltd.
 DT Journal
 LA English
 AB The resonance anti-Stokes conversion of broadband x-ray radiation to stimulated **gamma** radiation of free isomer nuclei is considered. The conversion involves the **2-quantum transition from the initial long-lived isomer state** of a nucleus via an intermediate level to the final state located below the isomer state. The quantum-mech. calcn. of the cross section for resonance stimulated anti-Stokes scattering involving quanta of the different multipolarity yields the estimate of the gain of stimulated **gamma** radiation in a nuclear beam with the spectrally local inversion and the estimate of the threshold spectral d. of the x-ray pump radiation flux.
 IT Cooling
 (laser-induced; stimulated **gamma** radiation of free isomer nuclei upon anti-Stokes transitions)
 IT Doppler effect
 Elementary particle magnetic moment
 Gamma ray lasers
 Giant resonance
 Hamiltonian
 Multipole moment
 Nuclear ground state
 Nuclear level **excitation**
 Perturbation theory
 Radiative transition
 X-ray scattering
 (stimulated **gamma** radiation of free isomer nuclei upon anti-Stokes transitions)
 RE
 (1) Adams, C; Prog Quantum Electron 1997, V21, P1 HCAPLUS
 (2) Baklanov, E; Pis'ma Zh Eksp Teor Fiz 1975, V21, P286 HCAPLUS
 (3) Baldwin, G; Rev Mod Phys 1997, V69, P1085 HCAPLUS
 (4) Becker, W; Phys Lett A 1984, V106, P441
 (5) Collins, C; Hyperfine Interact 1997, V107, P3 HCAPLUS
 (6) Collins, C; Laser Physics 1999, V9, P1 HCAPLUS
 (7) Collins, C; Laser Physics 1999, V9, P8 HCAPLUS
 (8) Collins, C; Phys Rev C 1988, V37, P2267 HCAPLUS
 (9) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (14) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS
 (16) Rivlin, L; Kvantovaya Elektron 1999, V26, P122
 (17) Rivlin, L; Kvantovaya Elektron 1999, V27, P189
 (18) Rivlin, L; Quantum Electron 1999, V29, P122 HCAPLUS
 (19) Rivlin, L; Quantum Electron 1999, V29, P467 HCAPLUS

L15 ANSWER 10 OF 14 HCPLUS COPYRIGHT ACS on STN
 AN 2000:479170 HCPLUS
 DN 133:243546
 TI On the cross-sections of nuclear isomer de-excitation
 AU Karamian, S. A.
 CS Joint Institute for Nuclear Research, Dubna, 141980, Russia
 SO Proceedings of the International Conference on Lasers (2000),
 22nd, 36-40
 CODEN: PICLDV; ISSN: 0190-4132
 PB STS Press
 DT Journal
 LA English
 AB The probability of the ^{180}mTa isomer depopulation by external radiation was recently measured in reactions induced by MeV Bremsstrahlung and fast neutrons. Growth of the K-mixing level d. with **excitation** energy is concluded. The **excitation** of nuclear transitions by soft **photons** (x-ray radiation) is currently of interest in view of a γ -ray laser. A modified equation for the cross-section of nuclear isomer depopulation is proposed and applied for understanding recent exptl. results on the stimulated **decay** of the $^{178}\text{m}^2\text{Hf}$ isomer.
 IT Radioactive **decay**
 X-ray
 (cross-sections of nuclear isomer de-excitation)
 IT 14265-77-1, Hafnium-178, properties 15759-29-2, Tantalum-180, properties
 RL: PEP (Physical, engineering or chemical process); PRP (Properties);
 PROC (Process)
 (cross-sections of nuclear isomer de-excitation)
 RE
 (1) Blatt, J; "Theoretical Nuclear Physics", Russian edition 1954, P465
 (2) Collins, C; Hyperfine Interactions 1997, V107, P141 HCPLUS
 (3) Collins, C; Phys Rev 1990, VC42, PR1813
 (4) Collins, C; Phys Rev Lett 1999, V82, P695 HCPLUS
 (5) Karamian, S; Acta Phys Pol 1995, VB26, P375
 (6) Karamian, S; Phys Rev 1998, VC57, P1812
 (7) Karamian, S; Phys Rev 1999, VC59, P755
 (8) Karamian, S; Proc VI Intern School-Seminar on Heavy Ion Physics 1998, P565
 (9) Olariu, S; Phys Rev 1998, VC58, P333

L15 ANSWER 11 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 2000:436089 HCAPLUS
 DN 133:183983
 TI On the cross-sections of nuclear isomer de-excitation
 AU Karamian, S. A.
 CS Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, 141980, Russia
 SO Nuclear Shells-50 Years, International Conference on Nuclear Physics; 49th Meeting on Nuclear Spectroscopy and Nuclear Structure, Dubna, Russian Federation, Apr. 21-24, 1999 (2000), Meeting Date 1999, 417-420. Editor(s): Oganessian, Yuri Ts.; Kalpakchieva, Rumiana. Publisher: World Scientific Publishing Co. Pte. Ltd., Singapore, Singapore.
 CODEN: 69ABKG
 DT Conference
 LA English
 AB The probability of the ^{180}mTa isomer depopulation by external radiation has been recently measured in reactions induced by MeV Bremsstrahlung and fast neutrons. Growth of the K-mixing level d. with **excitation** energy is concluded. The **excitation** of nuclear transitions by soft **photons** (X-ray radiation) is currently of interest in view of a γ -ray laser. A modified equation for the cross-section of nuclear isomer depopulation is proposed and applied for understanding recent exptl. results on the isomer stimulated **decay** of the $^{178}\text{m}^2\text{Hf}$.
 IT Gamma ray lasers
 (cross-sections of ^{180}mTa nuclear isomer de-excitation in relation to)
 IT Nuclear energy level
 (isomer; cross-sections of nuclear isomer de-excitation)
 IT 15759-29-2, Tantalum 180, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (cross-sections of nuclear isomer de-excitation)
 IT 14265-77-1, Hafnium 178, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (isomer stimulated **decay** of the $^{178}\text{m}^2\text{Hf}$)
 RE
 (1) Blatt, J; "Theoretical Nuclear Physics", Russian edition 1954, P465
 (2) Collins, C; Hyperfine Interactions 1997, V107, P141 HCAPLUS
 (3) Collins, C; Phys Rev 1990, VC42, PR1813
 (4) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
 (5) Karamian, S; Acta Phys Pol 1995, VB26, P375
 (6) Karamian, S; Phys Rev 1998, V57, P1812 HCAPLUS
 (7) Karamian, S; Phys Rev 1999, V59, P755 HCAPLUS
 (8) Karamian, S; Proc VI Intern School-Seminar on Heavy Ion Physics, World Scientific, Singapore 1998, P565 HCAPLUS
 (9) Olariu, S; Phys Rev 1998, VC58, P333

L15 ANSWER 12 OF 14 HCAPLUS COPYRIGHT ACS on STN
AN 2000:164534 HCAPLUS
DN 132:199780
TI Comment on "Accelerated Emission of **Gamma** Rays from the 31-yr
Isomer of ^{178}Hf Induced by X-Ray Irradiation"
AU Olariu, Silviu; Olariu, Agata
CS Institute of Physics and Nuclear Engineering Magurele, Bucharest, 76900,
Rom.
SO Physical Review Letters (2000), 84(11), 2541
CODEN: PRLTAO; ISSN: 0031-9007
PB American Physical Society
DT Journal
LA English
AB **A Comment on the Letter by C.B. Collins, et al., Phys.Rev.Lett.82, 695 (1999).**
The authors of the Letter offer a Reply.
IT Gamma ray
Nuclear transition
X-ray
(accelerated emission of gamma rays from the 31-yr isomer of
 ^{178}Hf induced by x-ray irradiation)
IT 14265-77-1, Hafnium 178, processes
RL: PEP (Physical, engineering or chemical process); PROC (Process)
(accelerated emission of gamma rays from the 31-yr isomer of
 ^{178}Hf induced by x-ray irradiation)
RE
(1) Booth, E; Nucl Phys A 1967, V98, P529
(2) Collins, C; Laser Phys 1999, V9, P8 HCAPLUS
(3) Collins, C; Phys Rev Lett 1999, V82, P695 HCAPLUS
(4) Goryachev, B; Sov J Nucl Phys 1976, V23, P609
(5) Goryachev, B; Yad Fiz 1976, V23, P1145 HCAPIUS
(6) Olariu, S; Phys Rev C 1998, V58, P2560 HCAPLUS
(7) Olariu, S; Phys Rev C 1998, V58, P333 HCAPIUS
(8) Olariu, S; Rev Roum Phys, nucl-ex/9907010 1982, V27, P559 HCAPIUS
(9) Olariu, S; nucl-ex/9902011
(10) Olariu, S; nucl-ex/9907008 unpublished

L15 ANSWER 13 OF 14 HCAPLUS COPYRIGHT ACS on STN
 AN 1999:53829 HCAPLUS
 DN 130:187838
 TI Accelerated emission of **gamma** rays from the 31-yr isomer of
¹⁷⁸Hf induced by x-ray irradiation
 AU Collins, C. B.; Davanloo, F.; Iosif, M. C.; Dussart, R.; Hicks, J. M.;
 Karamian, S. A.; Ur, C. A.; Popescu, I. I.; Kirischuk, V. I.; Carroll, J.
 J.; Roberts, H. E.; McDaniel, P.; Crist, C. E.
 CS Center for Quantum Electronics, University of Texas at Dallas, Richardson,
 TX, 75083, USA
 SO **Physical Review Letters** (1999), 82(4), 695-698
 CODEN: PRLTAO; ISSN: 0031-9007
 PB American Physical Society
 DT Journal
 LA English
 AB A sample of 6.3×10^{14} nuclei of the 4-quasiparticle isomer of ¹⁷⁸Hf having a
half-life of 31 yr and **excitation** energy of 2.446 MeV was irradiated with x-ray
 pulses from a device typically used in dental medicine. It was operated at 15 mA
 to produce bremsstrahlung radiation with an end point energy set to be 70 or 90
 keV. Spectra of the isomeric target were taken with a high purity Ge detector.
 Intensities of selected transitions in the normal **decay** cascade of the ¹⁷⁸Hf
 isomer were found to increase by about 4%. Such an accelerated **decay** is
 consistent with an integrated cross section of $1 + 10^{-21} \text{ cm}^2 \text{ keV}$ for the resonant
absorption of x rays to induce **gamma decay**.
 IT X-ray
 (accelerated emission of **gamma** rays from hafnium-178 isomer
 induced by)
 IT Gamma ray
 (accelerated emission of **gamma** rays from hafnium-178 isomer
 induced by x-ray irradiation)
 IT 14265-77-1, Hafnium 178, properties
 RL: PRP (Properties)
 (accelerated emission of **gamma** rays from hafnium-178 isomer
 induced by x-ray irradiation)
 RE
 (1) Browne, E; Nucl Data Sheets 1994, V72, P221 HCAPLUS
 (2) Collins, C; Hyperfine Interact 1997, V107, P141 HCAPLUS
 (3) Collins, C; Hyperfine Interact 1997, V107, P3 HCAPLUS
 (4) Collins, C; J Appl Phys 1982, V53, P4645 HCAPLUS
 (5) Collins, C; Phys Rev C 1988, V37, P2267 HCAPLUS
 (6) Collins, C; Phys Rev C 1990, V42, PR1813 HCAPLUS
 (7) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS
 (8) Singh, B; Nucl Data Sheets 1995, V75, P199 HCAPLUS
 (9) Walker, P; Phys Lett B 1997, V408, P42 HCAPLUS

L15 ANSWER 14 OF 14 HCAPLUS COPYRIGHT ACS on STN

AN 1998:629645 HCAPLUS

DN 129:336449

OREF 129:68473a,68476a

TI Power densities for two-step γ -ray transitions from isomeric states

AU Olariu, Silviu; Olariu, Agata

CS Department of Fundamental Experimental Physics, Institute of Physics and Nuclear Engineering, Magurele, Bucharest, 76900, Rom.

SO Physical Review C: Nuclear Physics (1998), 58(4), 2560-2562

CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society

DT Journal

LA English

AB We have calculated the incident **photon** power d. P2 for which the two-step induced emission **rate** from an isomeric nucleus becomes equal to the natural isomeric **decay rate**. We have analyzed two-step transitions for isomeric nuclei with a half-life greater than 10 min, for which there is an intermediate state of known energy, spin and half-life, for which the intermediate state is connected by a known γ -ray transition to the isomeric state and to at least another intermediate state, and for which the relative intensities of the transitions to lower states are known. For the isomeric nucleus ^{166}mHo , which has a 1200 yr isomeric state at 5.98 keV, we have found a value of $P_2 = 6.3 + 10^7 \text{ W cm}^{-2}$, the intermediate state being the 263.8 keV level. We have found power densities P2 of the order of $10^{10} \text{ W cm}^{-2}$ for several other isomeric nuclei.

IT Gamma ray

Nuclear transition

(power densities for two-step γ -ray transitions from isomeric states)

IT 7440-16-6, Rhodium 103, properties 13965-98-5, Krypton 83, properties 13967-65-2, Holmium 166, properties 13981-24-3, Chlorine 34, properties 13981-38-9, Cobalt 58, properties 13981-59-4, Tin 117, properties 13982-64-4, Strontium 87, properties 14314-35-3, Tin 119, properties 14336-66-4, Cadmium 113, properties 14390-73-9, Tellurium 125, properties 14683-06-8, Tin 121, properties 14683-07-9, Tin 123, properties 14683-10-4, Antimony 124, properties 14683-11-5, Xenon 131, properties 14809-56-4, Technetium 95, properties 14914-66-0, Indium 117, properties 15117-96-1, Uranium 235, properties 15759-35-0, Technetium 97, properties 15761-06-5, Osmium 189, properties RL: PRP (Properties)

(power densities for two-step γ -ray transitions from isomeric states)

RE

(1) Band, I; At Data Nucl Data Tables 1976, V18, P433 HCAPLUS

(2) Firestone, R; Table of Isotopes, 8th ed 1996

(3) Olariu, S; Phys Rev C 1998, V58, P333 HCAPLUS

(4) Rossel, F; At Data Nucl Data Tables 1978, V21, P291

(5) Rossel, F; At Data Nucl Data Tables 1978, V21, P91

L36 ANSWER 3 OF 5 HCPLUS COPYRIGHT ACS on STN
 AN 2001:248487 HCPLUS
 DN 134:332353
 TI Direct observation and experimental investigation of controlled gamma-
decay of Mossbauer radioactive isotopes by the method of delayed
 gamma-gamma coincidence
 AU Vysotskii, V. I.; Kornilova, A. A.; Sorokin, A. A.; Komisarova, V. A.;
 Reiman, S. I.; Riasnii, G. K.
 CS Shevchenko Kiev University, Kiev, Ukraine
 SO Laser Physics (2001), 11(3), 442-447
 CODEN: LAPHEJ; ISSN: 1054-660X
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 AB The aims of the present expts. were direct observation and investigation of the
 controlled gamma-**decay** of radioactive nuclei by delayed gamma-gamma coincidence
 method. In the expts. with gamma-source ^{57}Co ($^{57}\text{Fe}^*$) and with gamma-**absorber**
 made of stable ^{57}Fe isotope we have discovered the change (increase) of radiative
lifetime of excited nucleus (in relation to resonant Mossbauer gamma-channel of
decay) by 10-40% and total **lifetime** (including noncontrolled non-Mossbauer gamma-
 radiation and noncontrolled electron conversion channels of excited nucleus
decay) by 1%.
 IT Gamma ray
 Mossbauer effect
 (controlled gamma-**decay** of Mossbauer radioactive isotopes
 from delayed gamma-gamma coincidence)
 IT Radionuclides, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (controlled gamma-**decay** of Mossbauer radioactive isotopes
 from delayed gamma-gamma coincidence)
 IT Electron internal conversion
 Nuclear energy level
 (increase of radiative **lifetime** of excited nucleus)
 IT 14762-69-7, Iron 57, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (controlled gamma-**decay** of)
 RE
 (1) Vysotskii, V; Hyperfine Interactions 1997, V107, P277 HCPLUS
 (2) Vysotskii, V; International Conf on the Physics of Nuclear Science and
 Technology, Proceedings 1998, V2, P1739 HCPLUS
 (3) Vysotskii, V; Phys Rev C 1998, V58, P337 HCPLUS

L36 ANSWER 4 OF 5 HCAPLUS COPYRIGHT ACS on STN
 AN 1999:336680 HCAPLUS
 DN 131:65297
 TI Alternative explanation of the effect of Mossbauer γ -line narrowing observed in the experiments by V.I. Vysotskii et al.
 AU Davydov, A. V.; Isaev, Yu. N.
 CS ITEP, Bol'shaya Cheremushkinskaya ul., Moscow, 117259, Russia
 SO Laser Physics (1999), 9(2), 522-527
 CODEN: LAPHEJ; ISSN: 1054-660X
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 AB It is shown that, under conditions of the expts. by V.I. Vysotskii et al. [1], the effect of ^{119}Sn Moessbauer γ -line narrowing, which was observed when a resonant screen was brought to the γ -source, may be almost entirely explained by the contribution of γ -rays resonantly scattered by the screen. This explanation does not require the mechanism discussed by the authors of [1], which consists in the influence of the distortion caused by the screen of zero vibrations of electromagnetic vacuum on the half-life of ^{119}Sn excited nuclei. In the case of the γ -source and screen made of CaSnO_3 γ -line narrowing via the contribution of resonantly scattered γ -rays is 0.82-0.72%, depending on the thickness of the resonant detector used. In [1] the value obtained was $0.70 \pm 0.42\%$.
 IT Gamma ray
 Gamma ray detectors
 (Mossbauer γ -line narrowing in calcium tin oxide due to resonant absorber screen scattering)
 IT Mossbauer effect
 (line narrowing in calcium tin oxide due to resonant absorber screen scattering)
 IT 12013-46-6, Calcium tin oxide (CaSnO_3)
 RL: PRP (Properties)
 (Mossbauer γ -line narrowing due to resonant absorber screen scattering)
 IT 18282-10-5, Tin oxide SnO_2
 RL: NUU (Other use, unclassified); PRP (Properties); USES (Uses)
 (Mossbauer γ -line narrowing in calcium tin oxide due to resonant absorber screen scattering)
 IT 14314-35-3, Tin-119, properties
 RL: PRP (Properties)
 (Mossbauer γ -line narrowing in calcium tin oxide due to resonant absorber screen scattering)
 RE
 (1) Vysotskii, V; Phys Rev C 1998, v58, p337 HCAPLUS
 (2) Vysotskii, V; Technical Digest for First International Induced Gamma Emission Workshop IGE'97 1997, P83
 (3) Vysotskii, V; Technical Digest of First International Induced Gamma Emission Workshop IGE'97 1997, P81

L145 ANSWER 48 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1953:54271 HCAPLUS

DN 47:54271

OREF 47:9176h-i,9177a-b

TI Influence of chemical state on the lifetime of a nuclear isomer, technetium^{99m}

AU Bainbridge, Kenneth T.; Goldhaber, M.; Wilson, Elizabeth

CS Brookhaven Natl. Lab., Upton, NY

SO Physical Review (1953), 90, 430-9

CODEN: PHRVAO; ISSN: 0031-899X

DT Journal

LA Unavailable

AB cf. C.A. 46, 6012b. Since **nuclear isomeric** transition can occur by emission of either a **γ -ray** or an internal-conversion electron, the total rate of decay can be expected to **vary** with **change** in electronic environment, such as a difference in chemical state. Differences in the decay constant of the **isomer** Tc^{99m} (6 hrs.) in different chemical combinations were measured by the double ionization chamber balance method. For this **isomer** λ is determined mainly by the internal-conversion probability of a 2-e.kv. transition which is followed promptly by a conveniently measurable 140-e.kv. **γ -ray**. Two compds. of septivalent Tc, were compared: $\lambda(KTcO_4) - \lambda(Tc_2S_7) = 27.0 \pm 1.0 + 10^{-4} \lambda(Tc_2S_7)$; also λ (for the metal electroplated on Ni and reduced in H at 1000° for 1 hr.) - $\lambda(Tc_2S_7) = 3.1 \pm 1.2 + 10^{-4} \lambda(Tc_2S_7)$. Errors are standard deviations. There is evidence for diffusion of Tc into the Ni base and an accompanying **decrease** in $\lambda(Tc)$ of .apprx.2 parts in 104 compared to pure crystalline metal. For the metal λ was measured directly as $0.1148 \pm 0.0005/\text{hr.}$, giving a **half life** of 6.04 ± 0.03 hrs. (limit of error). The methods used for internally checking the data and the operation of the apparatus are illustrated, and the statistics of the measurements are discussed.

IT Atomic **nuclei**

(isomerism of Tc⁹⁹)

IT Radiochemistry

(theories of)

IT **Gamma rays**

(transitions of, electronic environment and)

IT 12039-29-1, Technetium sulfide (Tc₂S₇)

(decay constant of Tc⁹⁹ **isomer** in)

IT 75492-44-3, Potassium pertechnetate, KTcO₄

(decay constant of Tc⁹⁹ **isomer** in electroplated metal, in Tc₂S₇ and in)

IT 14133-76-7, Technetium, **isotope** of mass 99

(effect of chemical state on lifetime of 6-hr.)

IT 183748-02-9, Electron

(internal-conversion, **isomeric** transition by, electronic environment and)

L145 ANSWER 11 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2001:422484 HCAPLUS

DN 135:142965

TI Temperature effect on the **decay periods** of long-lived ^{180}mHf and ^{87}mSr **isomers**

AU Alpatov, V. G.; Bayukov, Yu. D.; Davydov, A. V.; Isaev, Yu. N.; Kartashov, G. R.; Korotkov, M. M.; Samoylov, V. M.

CS State Scientific Center of the Russian Federation Institute for Theoretical and Experimental Physics, Moscow, 117259, Russia

SO JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki) (2001), 73(8), 385-388

CODEN: JTPLA2; ISSN: 0021-3640

PB MAIK Nauka/Interperiodica Publishing

DT Journal

LA English

AB Expts. on measuring the decay periods of long-lived ^{180}mHf and ^{87}mSr **isomers** at room temperature and at 77 K in massive samples of HfO_2 , $\text{Sr}(\text{NO}_3)_2$, and SrCO_3 are reported. The **isomeric nuclear** states were excited by irradiating the samples with neutrons from a Pu-Be source. According to the theory of V.I. Vysotskii et al., the $T_{1/2}$ value must **increase** if a γ -active nucleus is surrounded by many identical ground-state nuclei, because these distort the spectrum of electromagnetic vacuum oscillations near the **nuclear energy level**. As the temperature of the sample **decreases**, γ -ray lines narrow, especially for the low-energy Mossbauer transitions, thereby enhancing the resonance effect on the spectrum of vacuum oscillations. For the ^{180}mHf **isomer**, whose upper γ -transition carries away 57.55 keV, the $T_{1/2}$ value **increased** by $2.99 \pm 0.87\%$ upon sample cooling. For ^{87}mSr , whose decay scheme has no Mossbauer lines, the relative **change** in $T_{1/2}$ was $0.77 \pm 0.53\%$.

IT Gamma ray

Nuclear transition

(temperature effect on decay periods of long-lived ^{87}mSr **isomer** studied in)

IT 13982-64-4, strontium-87, properties 14265-78-2, hafnium-180, properties

RL: PEP (Physical, engineering or chemical process); PRP (Properties);

PROC (Process)

(**metastable**; temperature effect on decay periods of long-lived ^{180}mHf and ^{87}mSr **isomers**)

IT 12055-23-1, Hafnia

RL: PEP (Physical, engineering or chemical process); PRP (Properties);

PROC (Process)

(temperature effect on decay periods of long-lived ^{180}mHf **isomer** studied in)

IT 1633-05-2, Strontium carbonate 10042-76-9, Strontium nitrate

RL: PEP (Physical, engineering or chemical process); PRP (Properties);

PROC (Process)

(temperature effect on decay periods of long-lived ^{87}mSr **isomer** studied in)

68/9/7
 DIALOG(R) File 2:INSPEC
 (c) Institution of Electrical Engineers. All rts. reserv.

08245033 INSPEC Abstract Number: A2002-11-9530-003

Title: Long-lived **isomeric** nuclei as sources of intense gamma bursts

Author(s): Rivlin, L.A.; Zadernovsky, A.A.; Carroll, J.J.; Agee, F.J.

Author Affiliation: Moscow Inst. of Radio Eng., Electron. & Autom., Russia

Conference Title: Proceedings of the International Conference on LASERS

2000 p.538-44

Editor(s): Corcoran, V.J.; Corcoran, T.A.

Publisher: STS Press, McLean, VA, USA

Publication Date: 2001 Country of Publication: USA xiv+972 pp.

Material Identity Number: XX-2000-02853

Conference Title: Proceedings of 2000 International Conference on Lasers

Conference Sponsor: Soc. Opt. & Quantum Electron

Conference Date: 4-8 Dec. 2000 Conference Location: Albuquerque, NM,

Language: English Document Type: Conference Paper (PA)

Treatment: Theoretical (T)

Abstract: We consider a new type of nuclear chain reaction, namely, a reaction of anti-Stokes radiative transitions of long-lived metastable **isomers**, triggered by the quasiequilibrium black body radiation of a dense hot plasma.. The relatively high temperature of the plasma is maintained by its partial absorption of **gamma photons** emitted by nuclei following their **absorption** of trigger photons of lower energy from the plasma. As a result, the energy stored in metastable **isomeric** states is released in a chain reaction and an intense burst of **gamma photons** is emitted. Quantitative estimates of this chain reaction are presented. (5 Refs)

Subfile: A

Descriptors: astrophysical plasma; cosmic ray nuclei; gamma-ray production; gamma-ray sources (astronomical); gamma-ray spectra; **nuclear energy level transitions**; **nuclear isomerism**; nuclear reaction theory; stellar internal processes

Identifiers: long-lived **isomeric** nuclei; intense gamma-ray bursts sources; nuclear chain reaction; antiStokes radiative transitions; quantum nucleonics; quasiequilibrium black body radiation; dense hot plasma; high plasma temperature; **gamma photon absorption**; trigger photons

Class Codes: A9530C (Elementary particle and nuclear processes in astrophysics); A9530Q (Astrophysical hydromagnetics and plasmas); A9870R (Cosmic gamma-ray sources); A9440L (Cosmic ray composition and energy spectra); A2160 (Nuclear-structure models and methods); A2410 (Nuclear reaction and scattering models and methods); A2320L (Nuclear gamma transitions and level energies)

Copyright 2002, IEE

68/9/9

DIALOG(R) File 2:INSPEC

(c) Institution of Electrical Engineers. All rts. reserv.

07906502 INSPEC Abstract Number: A2001-11-2320-004

Title: Stimulated gamma emission by anti-Stokes transitions of free
isomeric nuclei

Author(s): Zadernovsky, A.A.

Author Affiliation: Moscow State Inst. of Radio Eng. & Autom., Russia

Journal: Laser Physics vol.11, no.1 p.16-22

Publisher: MAIK Nauka/Interperiodica Publishing,

Publication Date: Jan. 2001 Country of Publication: Russia

CODEN: LAPHEJ ISSN: 1054-660X

SICI: 1054-660X(200101)11:1L.16:SGEA;1-Z

Material Identity Number: C437-2001-002

Language: English Document Type: Journal Paper (JP)

Treatment: Theoretical (T)

Abstract: We examine in detail a way to achieve a positive gain for stimulated gamma radiation based on the recently proposed concept for recoil assisted gamma-ray lasing in cooled (monokineticized) beam of free **isomeric** nuclei. For discussion of anti-Stokes conversion of X-ray radiation into stimulated gamma emission of free **isomeric** nuclei we consider a three level system. A nucleus is initially in the metastable **isomeric** state from which it can decay very slowly to its ground state. Under the influence of a broadband external X-ray radiation we can induce a two step decay to the nuclear ground state through an intermediate short-lived upper level. These triggering two-quantum transitions are accompanied by the absorption of X-ray photons with simultaneous emission of spontaneous or stimulated gamma-quanta. We present the cross section for the stimulated anti-Stokes resonance scattering with quanta of different multipolarity as well as the gain for stimulated gamma radiation in a cooled nuclear beam with spectral-local population inversion. A screening of isotopes has been made in order to pick out the candidates with appropriate arrangement of the nuclear states. Numerical estimations executed for the selected **isomers** yield the threshold ratio for concentration of **isomeric** nuclei to overall nuclear concentration in the beam and the pumping threshold spectral photon flux density of X-ray radiation. (15 Refs)

Subfile: A

Descriptors: gamma-ray lasers; gamma-ray spectra; internal conversion; laser theory; laser transitions; nuclear energy level lifetimes; nuclear energy level transitions; nuclear isomerism; population inversion; stimulated emission

Identifiers: stimulated gamma emission; anti-Stokes transitions; free **isomeric** nuclei; positive gain; stimulated gamma radiation; recoil assisted gamma-ray lasing; cooled beam; monokineticized beam; anti-Stokes conversion; X-ray radiation; three level system; metastable **isomeric** state; ground state; broadband external X-ray radiation; two step decay; nuclear ground state; intermediate short-lived upper level; triggering two-quantum transitions; X-ray photons; simultaneous emission; stimulated gamma-quanta; spontaneous gamma-quanta; cross section; stimulated anti-Stokes resonance scattering; multipolarity; cooled nuclear beam; spectral-local population inversion; isotopes; screening; nuclear states; numerical estimations; selected **isomers**; threshold ratio; concentration; **isomeric** nuclei; nuclear concentration; pumping threshold; spectral photon flux density

Copyright 2001, IEE

68/9/10

DIALOG(R)File 2:INSPEC

(c) Institution of Electrical Engineers. All rts. reserv.

07067379 INSPEC Abstract Number: A9823-2320-005

Title: Weak magnetic fields in experiments on gamma-resonance excitation
of long-lived ¹⁰⁹/Ag **isomeric** states

Author(s): Davydov, A.V.; Isaev, Yu.N.; Samoilov, V.M.

Author Affiliation: Inst. for Theor. & Exp. Phys., Moscow, Russia

Journal: Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya

Conference Title: Izv. Ross. Akad. Nauk, Ser. Fiz. (Russia) vol.61,
no.11 p.2221-6

Publisher: Allerton Press,

Publication Date: 1997 Country of Publication: Russia

CODEN: IRAFEO ISSN: 0367-6765

SICI: 0367-6765(1997)61:11L.2221;1-N

Material Identity Number: P872-98015

Translated in: Bulletin of the Russian Academy of Sciences. Physics
vol.61, no.11 p.1747-51**Publication Date:** 1997 Country of Publication: USA

CODEN: BRSPEX ISSN: 1062-8738

SICI of Translation: 1062-8738(1997)61:11L.1747:WMFE;1-0

U.S. Copyright Clearance Center Code: 1062-8738/97/\$15.00

Conference Title: Forty-Sixth International Conference on Nuclear
Spectroscopy and Nuclear Structure

Conference Date: June 1996 Conference Location: Moscow, Russia

Language: English Document Type: Conference Paper (PA); Journal Paper
(JP)

Treatment: Theoretical (T)

Abstract: A nonconventional method is proposed for observing the
Mossbauer effect on ¹⁰⁹/Ag nuclei with excitation of a long-lived
isomeric $7/2^{+/-}$ state with the energy 88 keV and average
lifetime 57 s. The method is based on measuring the Mossbauer self-
absorption of gamma quanta in a single-crystal gamma
source and revealing the angular dependence of intensities of the Zeeman
components of the gamma spectrum split by the Earth's magnetic field. Under
these conditions, only identical Zeeman components of the emission and
absorption gamma lines can overlap and thus the total
probability of self-absorption turns out to be proportional to the sum of
Zeeman component intensities squared and depends on the angle between the
field direction and the momentum of the emitted gamma quantum. (12
Refs)

Subfile: A

Descriptors: Mossbauer effect; nuclear collective states; nuclear
energy level transitions; nuclear isomerism; nuclear resonances;
nuclei with mass number 90 to 149; Zeeman effectIdentifiers: weak magnetic fields; gamma-resonance excitation; ¹⁰⁹/Ag long-lived **isomeric** states; Mossbauer effect; long-lived
isomeric $7/2^{+/-}$ state; angular dependence; Zeeman componentsClass Codes: A2320L (Nuclear gamma transitions and level energies); A2760
(Properties of nuclei with 90 <or= A <or= 149); A7680 (Mossbauer effect;
other gamma-ray spectroscopy in condensed matter); A7820L (Magneto-optical
effects (condensed matter)); A7170E (Spin-orbit coupling, Zeeman, Stark and
strain splitting (condensed matter)); A2110R (Collective structure in
nuclear levels); A2430 (Resonance nuclear reactions and scattering)

Copyright 1998, IEE

101/9/6
 DIALOG(R) File 2:INSPEC
 (c) Institution of Electrical Engineers. All rts. reserv.

08256894 INSPEC Abstract Number: A2002-12-7865K-004
 Title: Triggered single photons and **entangled** photons from a
quantum dot microcavity
 Author(s): Pelton, M.; Santori, C.; Solomon, G.S.; Benson, O.; Yamamoto,
 Y.
 Author Affiliation: Edward L. Ginzton Lab., Stanford Univ., CA, USA
 Journal: European Physical Journal D vol.18, no.2 p.179-90
 Publisher: EDP Sciences; Springer-Verlag,
 Publication Date: Feb. 2002 Country of Publication: France
 CODEN: EPJDF6 ISSN: 1434-6060
 SICI: 1434-6060(200202)18:2L.179:TSPE;1-R
 Material Identity Number: G375-2002-003
 Language: English Document Type: Journal Paper (JP)
 Treatment: Experimental (X)

Abstract: Current **quantum** cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs **quantum** dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-**entangled** photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single **quantum** dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. (43 Refs)

Subfile: A
 Descriptors: gallium arsenide; III-V semiconductors; indium compounds;
quantum cryptography; **quantum** optics; semiconductor
quantum dots; spontaneous emission

Identifiers: triggered single photons; **entangled** photons;
quantum dot microcavity; **quantum** cryptography; single-photon
 emitter; transmission rates; secure information; single self-assembled
 InAs/GaAs **quantum** dots; multi-photon probability; triggered
 polarization-**entangled** photon pairs; optical microcavity; spontaneous
 emission rate; single cavity resonance; enhanced spontaneous decay;
 InAs-GaAs

Class Codes: A7865K (Optical properties of II-VI and III-V semiconductors
 (thin films/low-dimensional structures)); A4250 (Quantum optics); A4230Q (Optical communication)

Chemical Indexing:
 InAs-GaAs int - GaAs int - InAs int - As int - Ga int - In int -
 GaAs bin - InAs bin - As bin - Ga bin - In bin (Elements - 2,2,3)

Copyright 2002, IEE

101/9/7

DIALOG(R) File 2:INSPEC

(c) Institution of Electrical Engineers. All rts. reserv.

08208666 INSPEC Abstract Number: A2002-08-7138-004

Title: Polaron coupling in quantum dot molecules

Author(s): Verzelen, O.; Ferreira, R.; Bastard, G.

Author Affiliation: Ecole Normale Supérieure, Lab. de Phys. de la Matière Condensée, Paris, France

Journal: Physical Review B (Condensed Matter and Materials Physics)

vol.64, no.7 p.075315/1-6

Publisher: APS through AIP,

Publication Date: 15 Aug. 2001 Country of Publication: USA

CODEN: PRBMDO ISSN: 0163-1829

SICI: 0163-1829(20010815)64:7L.1:PCQM;1-E

Material Identity Number: J673-2002-012

U.S. Copyright Clearance Center Code: 0163-1829/2001/64(7)/075315(6) /\$20.

00

DOI: 10.1103/PhysRevB.64.075315

Document Number: S0163-1829(01)05431-5

Language: English Document Type: Journal Paper (JP)

Treatment: Theoretical (T)

Abstract: We report on the calculation of polaron energies in InAs quantum dot molecules. Polaron effects are larger in vertical than in lateral molecules. The far infrared absorption associated with molecular polaron transitions is calculated. It may show prominent lines associated with inter dot polaron transitions. We have also calculated the polaron relaxation time to thermodynamical equilibrium when its lifetime is limited by the decay of its phonon component due to crystal anharmonicity. (9 Refs)

Subfile: A

Descriptors: anharmonic lattice modes; III-V semiconductors; indium compounds; infrared spectra; phonon spectra; polarons; semiconductor quantum dots

Identifiers: polaron coupling; quantum dot molecules; polaron energies; InAs; lateral molecules; vertical molecules; far infrared absorption; molecular polaron transitions; inter dot polaron transitions; polaron relaxation time; thermodynamical equilibrium; phonon component; crystal anharmonicity

Class Codes: A7138 (Polarons and electron-phonon interactions); A7320D (Electron states in low-dimensional structures); A7830G (Infrared and Raman spectra in inorganic crystals); A6320R (Anharmonic lattice modes); A6322 (Phonons in low-dimensional structures and small particles); A7320M (Collective excitations (surface states)); A7865K (Optical properties of II-VI and III-V semiconductors (thin films/low-dimensional structures))

Chemical Indexing:

InAs bin - As bin - In bin (Elements - 2)

Copyright 2002, IEE

101/9/8

DIALOG(R) File 2:INSPEC

(c) Institution of Electrical Engineers. All rts. reserv.

08189401 INSPEC Abstract Number: A2002-07-4265G-008, B2002-03-4340G-012

Title: Nonlinearity and response time of 1.55 μ m intersubband absorption in InGaAs/AlAs/AlAsSb coupled quantum wells

Author(s): Akiyama, T.; Georgiev, N.; Mozume, T.; Yoshida, H.; Gopal, A.V.; Wada, O.

Author Affiliation: The Femtosecond Technol. Res. Assoc., Tsukuba, Japan

Conference Title: Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170) p.18-19

Publisher: Opt. Soc. America, Washington, DC, USA

Publication Date: 2001 Country of Publication: USA 604+72 post deadline papers pp.

ISBN: 1 55752 662 1 Material Identity Number: XX-2001-01869

Conference Title: CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest

Conference Sponsor: IEEE/Lasers & Electro-Opt. Soc.; OSA-Opt. Soc. America; Quantum Electron. Division of the Eur. Phys. Soc.; Opt. Soc. Japanese Quantum Electron. Joint Group

Conference Date: 6-11 May 2001 Conference Location: Baltimore, MD, USA

Language: English Document Type: Conference Paper (PA)

Treatment: Experimental (X)

Abstract: Summary form only given. The demand for the optical nonlinear devices which operate around the optical communication wavelengths has been increasing because of their applicability to the time-domain switching, wavelength conversion, and regeneration. Intersubband (ISB) transition is one of the candidates for that use because it is expected to have an ultrafast response. In this paper, we evaluate the nonlinearity and the response time for the first time in 1.55 μ m ISB absorption, which was achieved by InGaAs/AlAs/AlAsSb coupled quantum wells.

Subfile: A B

Descriptors: absorption coefficients; aluminium compounds; gallium arsenide; III-V semiconductors; indium compounds; optical saturable absorption; optical wavelength conversion; quantum well devices; semiconductor quantum wells

Identifiers: coupled quantum wells; optical nonlinear devices; time-domain switching; wavelength conversion; regeneration; intersubband transition; response time; intersubband absorption; conduction band; transmissivity spectrum; absorption saturation; pump-probe measurement; ultrafast decay curve; optical confinement factor; nonlinear absorption coefficient; ultrafast nonlinear devices; 1.55 micron; InGaAs-AlAs-AlAsSb

Class Codes: A4265G (Optical transient phenomena, self-induced transparency, optical saturation and related effects); A4265K (Optical harmonic generation, frequency conversion, parametric oscillation and amplification); A7865K (Optical properties of II-VI and III-V semiconductors (thin films/low-dimensional structures)); B4340G (Optical saturation and related effects); B2530C (Semiconductor superlattices, quantum wells and related structures); B4340K (Optical harmonic generation, frequency conversion, parametric oscillation and amplification)

Chemical Indexing:

InGaAs-AlAs-AlAsSb int - AlAsSb int - InGaAs int - AlAs int - Al int - As int - Ga int - In int - Sb int - AlAsSb ss - InGaAs ss - Al ss - As ss - Ga ss - In ss - Sb ss - AlAs bin - Al bin - As bin (Elements - 3,2,3,5)

101/9/11
 DIALOG(R) File 2:INSPEC
 (c) Institution of Electrical Engineers. All rts. reserv.

07362506 INSPEC Abstract Number: A1999-21-7865K-005
 Title: Optical absorption spectra of a quantum dot in a microcavity
 Author(s): Andrews, J.T.; Sen, P.; Puri, R.R.
 Author Affiliation: Dept. of Appl. Phys., Inst. of Technol. & Sci., Indore, India
 Journal: Journal of Physics: Condensed Matter vol.11, no.32 p. 6287-300

Publisher: IOP Publishing,
 Publication Date: 16 Aug. 1999 Country of Publication: UK

CODEN: JCOMEL ISSN: 0953-8984
 SICI: 0953-8984(19990816)11:32L.6287:OASQ;1-M

Material Identity Number: M789-1999-033
 U.S. Copyright Clearance Center Code: 0953-8984/99/326287+14\$30.00
 Document Number: S0953-8984(99)01321-1

Language: English Document Type: Journal Paper (JP)

Treatment: Theoretical (T)

Abstract: Exact quantum electrodynamical results are obtained for a semiconductor quantum dot placed inside a microcavity of arbitrary photon leakage (K), and radiative (γ) and nonradiative (γ_c) decay rates. Analytical results are obtained for the density matrix elements. The absorption spectra thus obtained for arbitrary values of K , γ and γ_c exhibit the solid-state analogue of the vacuum Rabi splitting when the system decay parameters are much smaller than the quantum dot-cavity-field coupling parameter. Numerical estimates are made for samples of CdS and GaAs quantum dots of dimensions 19 Å and 56 Å, respectively. The results are in qualitative agreement with the experimental observations. (34 Refs)

Subfile: A

Descriptors: cadmium compounds; gallium arsenide; II-VI semiconductors; III-V semiconductors; quantum electrodynamics; semiconductor quantum dots; visible spectra

Identifiers: optical absorption spectra; microcavity; quantum electrodynamical results; semiconductor quantum dot; density matrix elements; vacuum Rabi splitting; QED; CdS; GaAs

Class Codes: A7865K (Optical properties of III-V and II-VI semiconductors (thin films/low-dimensional structures)); A7840G (Visible and ultraviolet spectra of II-VI and III-V semiconductors)

Chemical Indexing:

CdS int - Cd int - S int - CdS bin - Cd bin - S bin (Elements - 2)
 GaAs int - As int - Ga int - GaAs bin - As bin - Ga bin (Elements - 2)
 Copyright 1999, IEE

25/9/2 (Item 1 from file: 103)
DIALOG(R) File 103:Energy SciTec
(c) Contains copyrighted material. All rts. reserv.

01135210 EDB-83-035222

Title: Optimized four-level lasers

Author(s): Jorgensen, C.K.; Collins, C.B.

Affiliation: Geneve, Universite, Geneva, Switzerland

Title: Lasers '80

Conference Title: 3. international conference on lasers and applications

Conference Location: New Orleans, LA, USA Conference Date: 15 Dec 1980

Publisher: STS Press, McLean, VA

Publication Date: 1981

p 343-348

Report Number(s): CONF-801201-

Document Type: Analytic of a Book; Conference literature

Language: English

Journal Announcement: EDB8206

Country of Origin: Switzerland

Country of Publication: United States

Abstract: Although emission should represent the largest possible percentage of the downward transition probabilities of the excited state, highly excited vibrational states of UO₂/(plus 2) or other broad electron transfer bands may serve as the final state. Other unexploited degrees of freedom are transitions from a luminescent level with S(2) of a lanthanine that is antiferromagnetically coupled to other spin quantum number S values, in either crystalline or vitreous oxygen-containing compounds. The same chemical bonding through oxygen bridges also favors energy transfer, pumping E(3).;

Major Descriptors: *STIMULATED EMISSION -- ENERGY LEVELS

Descriptors: ANTIFERROMAGNETISM; CHEMICAL BONDS; ELECTRON TRANSFER; ENERGY CONVERSION; ENERGY TRANSFER; LUMINESCENCE; OPTIMIZATION; OSCILLATIONS; POPULATION INVERSION; URANIUM OXIDES

Broader Terms: ACTINIDE COMPOUNDS; CHALCOGENIDES; CONVERSION; EMISSION; ENERGY-LEVEL TRANSITIONS; MAGNETISM; OXIDES; OXYGEN COMPOUNDS; URANIUM COMPOUNDS

Subject Categories: 420300* -- Engineering -- Lasers -- (-1989)

54/9/4 (Item 4 from file: 8)
DIALOG(R) File 8: Ei Compendex(R)
(c) Elsevier Eng. Info. Inc. All rts. reserv.

09021373 E.I. No: EIP02126890245

Title: Continuous-variable quantum teleportation through lossy channels
Author: Chizhov, A.V.; Knoll, L.; Welsch, D.-G.

Corporate Source: Bogoliubov Lab. of Theoretical Phys. Joint Inst. for Nuclear Research, 141980 Dubna, Moscow Region, Russian Federation

Source: Physical Review A. Atomic, Molecular, and Optical Physics v 65 n 2 February 2002. p 022310/1-022310/9

Publication Year: 2002

CODEN: PLRAAN ISSN: 1050-2947

Language: English

Document Type: JA; (Journal Article) Treatment: T; (Theoretical); X;
(Experimental)

Journal Announcement: 0203W4

Abstract: In continuous-variable single-mode quantum teleportation, it is commonly assumed that Alice and Bob share a strongly squeezed two-mode squeezed vacuum (TMSV). This scheme was analyzed, with emphasis on the absorption losses that are unavoidably associated with the transmission of the two modes over finite distances. In particular, the general formulas derived to the problem of teleporting squeezed states and number state were applied. The results show that the TMSV state as an effectively macroscopic entangled quantum state rapidly decays, and thus proper quantum teleportation is only possible over distances that are much shorter than the absorption length. (Edited abstract) 25 Refs.

Descriptors: *Quantum optics; Light absorption; Optical fibers; Electromagnetic wave propagation; Vacuum; Quantum theory; Coherent light; Light transmission; Low temperature effects; Numerical methods; Probability; Electromagnetic dispersion; Functions

Identifiers: Continuous variable quantum teleportation; Lossy channels; Monochromatic optical field; Squeezed states; Quantum state; Wigner function

Classification Codes:

741.1.2 (Fiber Optics)
741.1 (Light & Optics); 931.1 (Mechanics); 711.1 (Electromagnetic Waves in Different Media); 633.1 (Vacuum Applications); 641.1 (Thermodynamics)
741 (Light, Optics & Optical Devices); 931 (Applied Physics Generally);
711 (Electromagnetic Waves); 633 (Vacuum Technology); 641 (Heat & Mass Transfer; Thermodynamics)
74 (LIGHT & OPTICAL TECHNOLOGY); 93 (ENGINEERING PHYSICS); 71 (ELECTRONICS & COMMUNICATION ENGINEERING); 63 (FLUID FLOW; HYDRAULICS, PNEUMATICS & VACUUM); 64 (HEAT & THERMODYNAMICS)

54/9/5 (Item 5 from file: 8)
DIALOG(R) File 8:Ei Compendex(R)
(c) Elsevier Eng. Info. Inc. All rts. reserv.

08875396 E.I. No: EIP01346622478

Title: Propagation of **entangled** light pulses through dispersing and absorbing channels

Author: Chizhov, A.V.; Schmidt, E.; Knoll, L.; Welsch, D.-G.

Corporate Source: Joint Institute for Nuclear Research Bogoliubov Lab. of Theor. Physics, 141980 Dubna, Moscow Region, Russian Federation

Source: Journal of Optics B: Quantum and Semiclassical Optics v 3 n 3 June 2001. p 77-83

Publication Year: 2001

CODEN: JOBOFD ISSN: 1464-4266

Language: English

Document Type: JA; (Journal Article) Treatment: T; (Theoretical)

Journal Announcement: 0108W4

Abstract: The problem of decorrelation of **entangled** (squeezed-vacuum-type) light pulses of arbitrary shape passing through dispersive and absorbing four-port devices of arbitrary frequency response is studied, applying recently obtained results on quantum-state transformation (L Knoll et al 1999 Phys. Rev. A 59 4716). The fidelity and indices of (quantum) correlation based on the von Neumann entropy are calculated, with special emphasis on the dependence on the mean photon number, the pulse shape and the frequency response of the devices. In particular, it is shown that the quantum correlations can decay very rapidly due to dispersion and absorption, and the degree of degradation intensifies with increasing mean photon number. 36 Refs.

Descriptors: *Quantum theory; Light propagation; Photons;

Light absorption; Electron energy levels; Electromagnetic field effects; Frequency response; Refractive index

Identifiers: Entangled light pulses; Quantum correlation

Classification Codes:

931.4 (Quantum Theory); 741.1 (Light & Optics); 931.3 (Atomic & Molecular Physics); 701.1 (Electricity, Basic Concepts & Phenomena); 701.2 (Magnetism, Basic Concepts & Phenomena)
931 (Applied Physics Generally); 741 (Light, Optics & Optical Devices);
701 (Electricity & Magnetism)
93 (ENGINEERING PHYSICS); 74 (LIGHT & OPTICAL TECHNOLOGY); 70 (ELECTRICAL ENGINEERING, GENERAL)

54/9/10 (Item 4 from file: 103)

DIALOG(R) File 103:Energy SciTec

(c) Contains copyrighted material. All rts. reserv.

04795336 AIP

Title: Coherent Control of an Atomic Collision in a Cavity

Author(s): Osnaghi, S.; Bertet, P.; Auffeves, A.; Maioli, P.; Brune, M.

; Raimond, J. M.; Haroche, S.

Sponsoring Organization: (US)

Publisher: The American Physical Society

Physical Review Letters

Source: Physical Review Letters ; VOL. 87 ; ISSUE: 3 ; DOI:

10.1103/PhysRevLett.87.037902; Othernumber:

PRLTAO000087000003037902000001; 053127PRL; PBD: 16 Jul 2001 ISSN:

0031-9007

Publication Date: 20010716

Report Number(s): NONE

OSTI Number(s): DE40277140

Contract Number (Non-DOE): TRN IM200111%%307

Document Type: JOURNAL ARTICLE

Language: English

Medium/Dimensions: page(s) 037902-037902-4

Country of Publication: United States

Abstract: Following a recent proposal by S.B. Zheng and G.C.

Guo[Phys.Rev.Lett. 85, 2392 (2000)], we report an experiment in which two Rydberg atoms crossing a nonresonant cavity are entangled by coherent energy exchange. The process, mediated by the virtual emission and absorption of a microwave photon, is characterized by a collision mixing angle 4orders of magnitude larger than for atoms colliding in free space with the same impact parameter. The final entangled state is controlled by adjusting the atom-cavity detuning. This procedure, essentially insensitive to thermal fields and to photon decay, opens promising perspectives for complex entanglement manipulations.

Descriptors: ABSORPTION; ATOMS; DECAY; ENERGY TRANSFER; IMPACT

PARAMETER; PHOTONS

Subject Categories: 72 -- PHYSICS OF ELEMENTARY PARTICLES & FIELDS

L70 ANSWER 21 OF 33 HCPLUS COPYRIGHT ACS on STN

AN 1983:8657 HCPLUS

DN 98:8657

OREF 98:1385a,1388a

TI Observation of new spontaneous fission activities from elements 100 to 105

AU Somerville, L. P.

CS Lawrence Berkeley Lab., Berkeley, CA, USA

SO Report (1982), LBL-14050; Order No. DE82013004, 137 pp. Avail.: NTIS

From: Energy Res. Abstr. 1982, 7(19), Abstr. No. 52190

DT Report

LA English

AB Several new spontaneous fission (SF) activities were found. No definite identification could be made for any of the new SF activities; however, **half-lives** and possible assignments to element-104 **isotopes** consistent with several cross **bombardments** include 257Rf(3.8 s, 14% SF), 258Rf(13 ms), 259Rf(.apprx.3 s, 8% SF), 260Rf(.apprx.20 ms), and 262Rf(.apprx.50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (260104) was not observed. A difficulty exists in the interpretation that 260Rf is a .apprx. 20-ms SF activity; in order to be correct, for example, the SF activities with **half-lives** between 14 and 24 ms produced in the reactions 109- to 119-MeV 180 O + ^{248}Cm , 88- to 100-MeV ^{15}N + ^{249}Bk , and 96-MeV 180 O + ^{249}Cf must be other **nuclides** due to their large production cross sections, or the cross sections for production of 260Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible .apprx.1% electron-capture branch in ^{258}Lr (4.5 s) to the SF emitter ^{258}No (1.2 ms) and an upper limit of 0.05% for SF branching in ^{254}No (55 s) were determined. Other measured half-lives from unknown nuclides produced in resp. reactions include .apprx.1.6 s (180 O + ^{248}Cm), indications of a .apprx.47-s SF activity (75-MeV ^{12}C + ^{249}Cf), and 2 or more SF activities with $3 \text{ s} \leq T_{1/2} \leq 60 \text{ s}$ (180 O + ^{249}Bk). If the tentative assignments to even-even element 104 isotopes are correct, there would be a **sudden change in the SF half-life systematics at element 104** which has been predicted **theor.** and attributed to the disappearance of the 2nd hump of the double-humped fission barrier.

IT Heavy-ion beams
(collisions of, production of spontaneous fission activities in)

IT Fission
(spontaneous, production of very heavy nuclei undergoing, in heavy-ion collisions)

IT 14390-96-6, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(berkelium-249 **bombardment** by, production of spontaneous fission activities in)

L98 ANSWER 2 OF 5 HCAPLUS COPYRIGHT ACS on STN

AN 2003:898686 HCAPLUS

DN 140:205825

ED Entered STN: 18 Nov 2003

TI "Forced-gamma emission" studies involving **nuclear isomers**
using fast neutrons and bremsstrahlung x rays

AU Guardala, N. A.; Price, J. L.; Barkyoumb, J. H.; Abbundi, R. J.; Merkel,
G.; Carroll, J. J.

CS NSWC/Carderock Division, Bethesda, MD, 20817-5700, USA

SO AIP Conference Proceedings (2003), 680(Application of Accelerators in
Research and Industry), 279-282
CODEN: APCPCS; ISSN: 0094-243X

PB American Institute of Physics

DT Journal; General Review

LA English

CC 70-0 (Nuclear Phenomena)

AB A review. The authors propose to perform expts. involving **nuclear isomers** to study the **probabilities** and mechanisms of **deexcitation** of the **isomeric** level down to the ground state upon exposure to external radiation such as fast neutrons and bremsstrahlung x-rays. The **isomers** have **half-lives** apprx.1 h to 10 days which is a convenient time scale to measure statistically meaningful **changes** in the specific activities of the **isomeric** state. Also, the selected **isomers** are relatively easy to produce in the laboratory in sufficient quantities so that they can be made in a reasonable time frame and without recourse to any exotic means of production, handling or preparation and without the need for high-purity separated **isotopes** as the feedstock. Probably studies undertaken in this fashion will produce fundamentally valuable information on the factors which govern and influence forced-gamma emission in **nuclear isomers**. This type of information will potentially be very useful in similar studies involving longer-lived **isomers** such as: 178mHf, 242mAm and 108mAg which have the potential to be used in various emerging new technologies in the later part of the 21st Century.

ST review **nuclear isomer** deexcitation neutron
bremsstrahlung x ray

IT Nuclear energy level
(**isomer**; "Forced-gamma emission" studies involving
nuclear isomers using fast neutrons and
bremsstrahlung x-rays)

IT Bremsstrahlung
(x-ray; "Forced-gamma emission" studies involving **nuclear**
isomers using fast neutrons and bremsstrahlung x-rays)

IT 12586-31-1, Neutron
RL: PEP (Physical, engineering or chemical process); PYP (Physical
process); PROC (Process)
("Forced-gamma emission" studies involving **nuclear**
isomers using fast neutrons and bremsstrahlung x-rays)

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

(1) Ahmad, I; Phys Rev Lett 2001, V87, P07253
(2) Belic, D; Phys Rev Lett 2000, V83, P5242
(3) Evans, R; The Atomic Nucleus 1955, P229
(4) Marmier, P; Physics of Nuclei and Particles 1969, V1, P414

L101 ANSWER 1 OF 3 HCPLUS COPYRIGHT ACS on STN
 AN 2005:276977 HCPLUS
 DN 144:285228
 TI Nuclear resonance spectroscopy of the 31-yr isomer of Hf-178
 AU Collins, C. B.; Zoita, N. C.; Davanloo, F.; Yoda, Y.; Uruga, T.; Pouvesle, J. M.; Popescu, I. I.
 CS Center for Quantum Electronics, University of Texas at Dallas, Richardson, TX, 75083-0688, USA
 SO Laser Physics Letters (2005), 2(3), 162-167
 CODEN: LPLABC; ISSN: 1612-2011
 PB Wiley-VCH Verlag GmbH & Co. KGaA
 DT Journal
 LA English
 CC 79-6 (Inorganic Analytical Chemistry)
 Section cross-reference(s): 65, 71
 AB Induced release of the high energy densities stored in **isomeric nuclear** states may be important in the development of ultrashort wavelength lasers. Such a release could compensate the spontaneous power d. radiated from the laser medium at threshold. The most promising candidate for such a role seems to be the 31-yr **isomeric nucleus** of Hf-178 that stores 1.3 GJ/g in the electromagnetic excitation of its constituent protons and neutrons. Successful studies of the induced release of energies from such isomeric states have required an extension of techniques for nuclear resonance spectroscopy using synchrotron radiation (SR) that had previously been applied only to ground state materials. In 2004, monochromatic x-rays from the SPring-8 SR source were used to identify one of the excited nuclear states that mediates the induced decay of the 31-yr isomer of Hf-178. That trigger level was found to lie at 2457.20(22) keV. It was excited when an **isomeric nucleus absorbed an incident x-ray photon**. One branch of its subsequent decay consisted of a strong electromagnetic transition to the ground state of the nucleus. The energy of the γ -photon emitted was equal to the energy of the trigger level. Proximity in energy of that level to the energy of 2446.06 keV stored by the isomer makes it easy to induce a release of the stored energy and encourages prospects for the development of a **gamma ray** laser.
 ST hafnium **isomer nuclear** resonance spectroscopy
 IT Ground state
 Nuclear energy level
 Photon
 X-ray
 (nuclear resonance spectroscopy of 31-yr **isomeric nucleus** of hafnium-178 in electromagnetic excitation of its constituent protons and neutrons)
 IT 14265-77-1, Hafnium-178, processes
 RL: PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process)
 (nuclear resonance spectroscopy of 31-yr **isomeric nucleus** of hafnium-178 in electromagnetic excitation of its constituent protons and neutrons)
 IT 12586-31-1, Neutron 12586-59-3, Proton 14041-52-2, Ytterbium-172, reactions 14733-03-0, Bismuth-214, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (nuclear resonance spectroscopy of 31-yr **isomeric nucleus** of hafnium-178 in electromagnetic excitation of its constituent protons and neutrons)

L101 ANSWER 3 OF 3 HCPLUS COPYRIGHT ACS on STN
 AN 1964:466785 HCPLUS
 DN 61:66785
 OREF 61:11555c-d
 TI The production of long-lived **isomers** by the use of the electron linear accelerator and its application
 AU Kaminishi, Tokishi; Kojima, Chiyo
 CS Govt. Ind. Res. Inst., Nagoya, Japan
 SO Nippon Aisotopu Kaigi Hobunshu (1961), Volume 4, 549-53
 From: Nucl. Sci. Abstr. 17(18), Abstr. No. 29953(1963).
 CODEN: NAKHAC
 DT Report
 LA Unavailable
 CC 12 (Nuclear Phenomena)
 AB A number of natural elements were irradiated with e or converted photons with a 6 m.e.v. e linear accelerator. In this case the type of reaction is (. **gamma**, γ), in which **nuclides absorb** x-rays resonantly and become **isomers**. A water-cooled Pb target is used as an x-ray converter. After the irradiation, the **isomeric nuclide** is determined by measuring its **half-life** and the energy spectrum of the γ -transitions. The production of the following **isomers** is confirmed: 87Srm, 89Ym, 103Rhm, 107Agm + 109Agm, 111Cdm, 113Inm, 115Inm, 117Sn, 135Bam, 137Bam, 179Hfm, 195Ptm, 197Aum, and 199Hgm. The **half-lives** range between the 7 sec. and 14 days.
 IT Gamma rays
 (**nuclear isomer** production by)
 IT 7440-22-4P, Silver
 RL: PREP (Preparation)
 (formation of metastable, by γ -rays)
 IT 7440-16-6P, Rhodium
 RL: PREP (Preparation)
 (formation of 103Rhm, by γ -ray action)
 IT 7440-65-5, Yttrium
 (gamma ray bombardment of 89Y, 89Ym from)
 IT 7440-57-5P, Gold
 RL: PREP (Preparation)
 (photo-production of metastable 197Au)
 IT 13982-64-4P, Strontium, **isotope** of mass 87 14191-71-0P,
 Indium, **isotope** of mass 115 14885-78-0P, Indium,
 isotope of mass 113
 RL: PREP (Preparation)
 (photoproduction of metastable)

L145 ANSWER 6 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2004:456008 HCAPLUS
 DN 142:226735
 TI **Electromagnetic coupling** of the **isomer** and ground state in ^{176}Lu
 AU Stedile, F.; Burnett, J.; Carroll, J. J.; von Carrel, H.; Kaeppler, F.;
 Kneissl, U.; Kohstall, C.; von Neumann-Cosel, P.; Pitz, H. H.; Propri, R.;
 Scheck, M.; Ugorowski, P.; Walter, S.; Wisshak, K.
 CS Institut fuer Strahlenphysik, Universitaet Stuttgart, Stuttgart, Germany
 SO Laser Physics (2004), 14(4), 442-447
 CODEN: LAPHEJ; ISSN: 1054-660X
 PB MAIK Nauka/Interperiodica Publishing
 DT Journal
 LA English
 AB The odd-odd **isotope** ^{176}Lu has a **half-life** of $4.08 + 1010$ **years**, undergoing a β **decay** to ^{176}Hf . Since its formation is unambiguously s-process neutron capture, it long has been viewed as a possible s-process chronometer. However, due to a temperature-dependent coupling between the ground state and an **isomer** at 123 keV in the stellar photon bath, ^{176}Lu might be an s-process thermometer instead. Starting with the astrophys. background, preliminary results from two NRF expts., performed at the 4.3 MeV Stuttgart Dynamitron accelerator, will be reported. Furthermore, first results from photoactivation expts. on ^{176}Lu will be presented.
 IT Timers
 (Lu nucleosynthesis s-process chronometer and thermometer)
 IT Nuclear ground state
 (electromagnetic coupling of the **isomer** and ground state in ^{176}Lu)
 IT Gamma ray interactions
 (electromagnetic **coupling** of the **isomer** and ground state in ^{176}Lu and photoactivation)
 IT Nuclear energy level
 (**isomer**; electromagnetic coupling of the **isomer** and ground state in ^{176}Lu)
 IT Nucleosynthesis
 Thermometers
 (^{176}Lu nucleosynthesis s-process chronometer and thermometer)
 IT 14452-47-2, Lutetium 176, properties 378764-40-0, Lu-176m, properties
 RL: GOC (Geological or astronomical occurrence); GPR (Geological or astronomical process); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); OCCU (Occurrence); PROC (Process)
 (electromagnetic coupling of the **isomer** and ground state in ^{176}Lu and photoactivation)
 RE.CNT 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 7 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2004:284461 HCAPLUS

DN 141:13028

TI 136Ba studied via deep-inelastic collisions: identification of the (vh11/2)10+-2 **isomer**

AU Valiente-Dobon, J. J.; Regan, P. H.; Wheldon, C.; Wu, C. Y.; Yoshinaga, N.; Higashiyama, K.; Smith, J. F.; Cline, D.; Chakrawarthy, R. S.; Chapman, R.; Cromaz, M.; Fallon, P.; Freeman, S. J.; Goergen, A.; Gelletly, W.; Hayes, A.; Hua, H.; Langdown, S. D.; Lee, I. Y.; Liang, X.; Macchiavelli, A. O.; Pearson, C. J.; Podolyak, Zs.; Sletten, G.; Teng, R.; Ward, D.; Warner, D. D.; Yamamoto, A. D.

CS Department of Physics, University of Surrey, Guildford, GU2 7XH, UK

SO Physical Review C: Nuclear Physics (2004), 69(2), 024316/1-024316/13

CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society

DT Journal

LA English

AB A multinucleon transfer reaction between a thin self-supporting 198Pt target and an 850-MeV 136Xe beam was used to populate and study the structure of the N = 80 isotope 136Ba. Making use of time-correlated **gamma-ray** spectroscopy, evidence for an $I\pi = (10+)$ **isomeric** state was found with a measured **half-life** of 91 ± 2 ns. Prompt-delayed correlations also enabled the tentative measurement of the near-yrast states which lie above the **isomer**. Shell-model calcns. suggest that the **isomer** has a structure which can be assigned predominantly as (vh11/2)10+-2. The results are discussed in terms of standard and pair-truncated shell-model calcns., and compared to the even-Z N = 80 isotones ranging from 130Sn to 148Er. A qual. explanation of the observed dramatic **decrease** in the $B(E2: 10+ \rightarrow 8+)$ value for the N = 80 isotones at 136Ba is given in terms of the increasing single-hole energy of the h11/2 neutron configuration as the proton subshell is filled. The angular momentum transfer to the binary fragments in the reaction was also investigated in terms of the average total **γ -ray** fold vs. the scattering angle of the recoils.

IT Nuclear energy level
 (isomer; structure of 136Ba populated in 198Pt + 136Xe collisions, including (vh11/2)10+-2 **isomer** and near-yrast states, and studied using time-correlated **gamma-ray** spectroscopy)

IT Gamma ray
 Nuclear energy level
 Nuclear transition
 (structure of 136Ba populated in 198Pt + 136Xe collisions, including (vh11/2)10+-2 **isomer** and near-yrast states, and studied using time-correlated **gamma-ray** spectroscopy)

IT 15125-64-1, Barium-136, properties
 (structure of 136Ba populated in 198Pt + 136Xe collisions, including (vh11/2)10+-2 **isomer** and near-yrast states, and studied using time-correlated **gamma-ray** spectroscopy)

IT 15751-79-8, Xenon-136, reactions 15756-63-5, Platinum-198, reactions
 (structure of 136Ba populated in 198Pt + 136Xe collisions, including (vh11/2)10+-2 **isomer** and near-yrast states, and studied using time-correlated **gamma-ray** spectroscopy)

L145 ANSWER 8 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 2004:237715 DN 141:13007
 TI Unambiguous identification of three β -decaying **isomers** in ^{70}Cu
 AU Van Roosbroeck, J.; Guenaut, C.; Audi, G.; Beck, D.
 SO Physical Review Letters (2004), 92(11), 112501/1-112501/4
 CODEN: PRLTAO; ISSN: 0031-9007
 LA English
 AB Using resonant laser ionization, β -decay studies, and for the first time mass measurements, three β -decaying states were identified unambiguously in ^{70}Cu . A mass excess of $-62,976.1(1.6)$ keV and a half-life of $44.5(2)$ s for the (6-) ground state were determined. The level energies of the (3-) **isomer** at $101.1(3)$ keV with $T_{1/2} = 33(2)$ s and the 1+ **isomer** at $242.4(3)$ keV with $T_{1/2} = 6.6(2)$ s were confirmed by high-precision mass measurements. The low-lying levels of ^{70}Cu populated in the decay of ^{70}Ni and in transfer reactions compared well with large-scale shell-model calcns., and the wave functions appear to be dominated by one proton-one neutron configurations outside the closed $Z = 28$ shell and $N = 40$ subshell. This does not apply to the 1+ state at 1980 keV which exhibits a particular feeding and deexcitation pattern not reproduced by the shell-model calcns.
 IT Beta decay
 (identification of three β -decaying **isomers** in ^{70}Cu
 using resonant laser ionization, β -decay studies and mass
 measurements and determination of level energies and half-
 lives)
 IT Nuclear energy level
 (isomer; identification of three β -decaying
 isomers in ^{70}Cu using resonant laser ionization, β -decay
 studies and mass measurements and determination of level energies and
 half-lives for)
 IT Nuclear energy level
 (low-lying levels of ^{70}Cu populated in decay of ^{70}Ni and in transfer
 reactions compared with large-scale shell model calcns.)
 IT Nuclear model
 (shell; low-lying levels of ^{70}Cu populated in decay of ^{70}Ni and in
 transfer reactions compared with large-scale shell model calcns.)
 IT 460342-87-4, properties 683752-62-7, properties 683752-86-5,
 properties
 (identification of three β -decaying **isomers** in ^{70}Cu
 using resonant laser ionization, β -decay studies and mass
 measurements and determination of level energy and half-life
 for)
 IT 29675-28-3, Copper-70, properties
 (identification of three β -decaying **isomers** in ^{70}Cu
 using resonant laser ionization, β -decay studies and mass
 measurements and determination of mass excess and half-life
 of ground state)
 IT 36378-25-3, Nickel-70, reactions
 (low-lying levels of ^{70}Cu populated in decay of ^{70}Ni and in transfer
 reactions compared with large-scale shell model calcns.)

L145 ANSWER 9 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 2004:64009 HCAPLUS
 DN 141:29440
 TI Lifetime of a new high-spin **isomer** in 150Dy
 AU Watanabe, H.; Wakabayashi, Y.; Gono, Y.; Fukuchi, T.; Ueno, H.; Sato, W.; Yoshimi, A.; Kameda, D.; Miyoshi, H.; Kishida, T.; Kobayashi, Y.; Morikawa, T.; Motomura, S.; Kashiyama, O.; Saito, K.; Odahara, A.; Asahi, K.
 CS The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, 351-0198, Japan
 SO European Physical Journal A: Hadrons and Nuclei (2004), 19(2), 163-167
 CODEN: EPJAFV; ISSN: 1434-6001
 PB Societa Italiana di Fisica
 DT Journal
 LA English
 AB A new high-spin **isomer** in 150Dy has been observed at an excitation energy of 10.3 MeV by combining the inverse-kinematic reaction induced by a pulsed beam of 132Xe and the γ -ray recoil-shadow technique. The **half-life** of this **isomeric** state has been determined to be $T_{1/2} = 1.6 \pm 0.6$ ns using the conventional centroid-shift method with the $^{141}\text{Pr}(^{160},\text{p}6\text{n})^{150}\text{Dy}$ reaction at 165 MeV. The **mechanism** producing high-spin **isomers** in $N = 83, 84$ isotones is qual. discussed in terms of the difference of the neutron particle-hole configuration between the high-spin **isomer** and the lower-lying state.
 IT Nuclear energy level
 (isomer; lifetime of a new high-spin **isomer** in 150Dy)
 IT Gamma ray
 Nuclear energy level
 (of dysprosium 150)
 IT 15055-17-1, Dysprosium 150, properties
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process)
 (lifetime of a new high-spin **isomer** in 150Dy)
 IT 7440-10-0, Praseodymium, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (new high-spin **isomer** in 150Dy from $^{141}\text{Pr}(^{160},\text{p}6\text{n})^{150}\text{Dy}$ reaction)
 RE.CNT 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 10 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 2003:44444 HCAPLUS
 DN 138:176536
 TI First observation of the $\nu_{9/2}[404]$ orbital in the A .apprx. 100 mass region
 AU Urban, W.; Pinston, J. A.; Rzaca-Urban, T.; Zlomaniec, A.; Simpson, G.; Durell, J. L.; Phillips, W. R.; Smith, A. G.; Varley, B. J.; Ahmad, I.; Schulz, N.
 CS Institute of Experimental Physics, Warsaw University, Warsaw, 00-681, Pol.
 SO European Physical Journal A: Hadrons and Nuclei (2003), 16(1), 11-15
 CODEN: EPJAFV; ISSN: 1434-6001
 PB Springer-Verlag
 DT Journal
 LA English
 AB A new band, populated by the spontaneous fission of ^{248}Cm and studied by means of prompt γ -ray spectroscopy using the EUROGAM2 array, was observed in ^{99}Zr . The 1038.8 keV band head with a half-life $T_{1/2} = 54(10)$ ns is interpreted as a K-isomer, corresponding to the $9/2[404]$ neutron-hole excitation. It is the first observation of this orbital in the mass A .apprx. 100 region. The quadrupole moment, $Q_0 = 3.9(3)$ eb deduced for the new band indicates a large deformation of $\beta = 0.41$, which is produced by a specific shape-coexistence mechanism, known in other regions and now found in the A .apprx. 100 nuclei.
 IT Nuclear energy level
 (isomer; of zirconium 99)
 IT Gamma ray
 Nuclear energy level
 Quadrupole moment
 (of zirconium 99)
 IT 22453-71-0, Zirconium 99, properties
 RL: PRP (Properties)
 (nuclear level and quadrupole moment of)
 RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 12 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2001:303858 HCAPLUS

DN 135:37797

TI Conversion electron measurements of **isomeric** transitions in 130,132Te and 134Xe

AU Genevey, J.; Pinston, J. A.; Foin, C.; Rejmund, M.; Casten, R. F.; Faust, H.; Oberstedt, S.

CS Institut des Sciences Nucleaires IN2P3-CNRS/Universite Joseph Fourier, Grenoble, F-38026, Fr.

SO Physical Review C: Nuclear Physics (2001), 63(5), 054315/1-054315/6

CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society

DT Journal

LA English

AB Microsecond **isomers** in 130,132Te and 134Xe are investigated. These nuclei were produced by thermal neutron induced fission of 239Pu and 241Pu. The detection is based on time correlation between fission fragments selected by the LOHENGRIN spectrometer at ILL (Grenoble) and the γ -rays or conversion electrons from **isomers**. The $10+ \rightarrow 8+$ **isomeric** transition of 132Te and 134Xe was measured for the first time and the **half-life** of the analogous transition in 130Te was remeasured. The systematic behavior of the B(E2) values of this **isomeric** transition is studied in Sn, Te, Xe and Ba **isotopes** close to 132Sn. A simple **mechanism** is proposed to explain the strong increase in the B(E2) strengths from the Sn to the Te isotones.

IT Electron internal conversion

Gamma ray
(conversion electron and **gamma-ray** measurements of microsecond **isomeric** transitions in 130,132Te and 134Xe and **mechanism** proposed for strong increase in B(E2) strengths from Sn to Te isotones)

IT Nuclear energy level

(**isomer**; conversion electron and **gamma-ray** measurements of microsecond **isomeric** transitions in 130,132Te and 134Xe and **mechanism** proposed for strong increase in B(E2) strengths from Sn to Te isotones)

IT Nuclear transition

(**isomeric**; conversion electron and **gamma-ray** measurements of microsecond **isomeric** transitions in 130,132Te and 134Xe and **mechanism** proposed for strong increase in B(E2) strengths from Sn to Te isotones)

IT 14234-28-7, tellurium-132, properties 14390-76-2, tellurium-130, properties 15751-43-6, xenon-134, properties

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)

(conversion electron and **gamma-ray** measurements of microsecond **isomeric** transitions in 130,132Te and 134Xe and **mechanism** proposed for strong increase in B(E2) strengths from Sn to Te isotones)

RE.CNT 19 THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 13 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 2001:151622 HCAPLUS
DN 134:272018
TI Photon cross sections for resonant **deexcitation** of
nuclear isomers as a precursor to a **gamma-**
ray laser
AU Karamian, S. A.; Carroll, J. J.
CS Joint Institute for Nuclear Research, Dubna, 414980, Russia
SO Laser Physics (2001), 11(1), 23-25
CODEN: LAPHEJ; ISSN: 1054-660X
PB MAIK Nauka/Interperiodica Publishing
DT Journal
LA English
AB Integrated cross sections (ICS) for triggered decay of **nuclear isomers** have recently become accessible in exptl. studies that were motivated both by general phys. interest and by applications, such as a possible **gamma-ray** laser. **Theor.** predictions for ICS are reviewed here and an equation is derived based on the Blatt-Weisskopf probability for an electromagnetic transition between two nuclear levels. This formula is effectively equivalent to the recognized Breit-Wigner expression despite their development from essentially different approaches. The results of a recent high-sensitivity experiment on the ^{180}Ta **isomer deexcitation** induced by bremsstrahlung are analyzed in this context. An important parameter of the **deexcitation** branch **probability** is determined now over a wide energy range from 1 to 10 MeV, including previously reported results.
IT Nuclear energy level
(**isomer**; photon cross sections for resonant
deexcitation of **nuclear isomers** as a
precursor to a **gamma-ray** laser)
IT Gamma ray interactions
Gamma ray lasers
Nuclear transition
(photon cross sections for resonant **deexcitation** of
nuclear isomers as a precursor to a **gamma-**
ray laser)
RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 14 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 2001:136150 HCAPLUS
 DN 134:286296

TI Investigation of the $K\pi=8-$ **isomer** in ^{132}Ce
 AU Morek, T.; Srebrny, J.; Droste, Ch.; Kowalczyk, M.; Rzaca-Urban, T.;
 Starosta, K.; Urban, W.; Kaczarowski, R.; Ruchowska, E.; Kisielinski, M.;
 Kordyasz, A.; Kownacki, J.; Palacz, M.; Wesolowski, E.; Gast, W.; Lieder,
 R. M.; Bednarczyk, P.; Meczynski, W.; Styczen, J.
 CS Institute of Experimental Physics, Warsaw University, Warsaw, 00-681, Pol.
 SO Physical Review C: Nuclear Physics (2001), 63(3), 034302/1-034302/6
 CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society
 DT Journal
 LA English

AB The decay of the $K\pi=8-$ **isomer** in ^{132}Ce with an excitation energy of 2340.2 keV has been investigated using the $^{120}\text{Sn}(160,4n)^{132}\text{Ce}$ reaction. A **half-life** of 9.4 ± 0.3 ms was determined. Two new decay paths have been found in the **deexcitation** of this **isomer**. The hindrance factors for the E1, M2, and E3 transitions **deexciting** the **isomer** have been determined. The decay properties of the $8-$ **isomers** in the $N=74$ isotones are discussed. A band mixing **mechanism** involving the ground state and s band seems to be responsible for the behavior of the reduced hindrance factors of the E1 transitions **deexciting** the $K\pi=8-$ **isomers** in these isotones. A K mixing, characteristic of the axially asym. nuclei, may account for the reduced hindrance factors of the E3 transitions to the $5\gamma^+$ states in ^{130}Ba and ^{132}Ce .

IT Nuclear energy level
 (isomer; decay of the $K\pi=8-$ **isomer** in ^{132}Ce with excitation energy of 2340.2 keV has been investigated using $^{120}\text{Sn}(160,4n)^{132}\text{Ce}$ reaction)

IT 12586-31-1, Neutron
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (decay of the $K\pi=8-$ **isomer** in ^{132}Ce with excitation energy of 2340.2 keV has been investigated using $^{120}\text{Sn}(160,4n)^{132}\text{Ce}$ reaction)

IT 15757-92-3, Cerium 132, properties
 RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)
 (decay of the $K\pi=8-$ **isomer** in ^{132}Ce with excitation energy of 2340.2 keV has been investigated using $^{120}\text{Sn}(160,4n)^{132}\text{Ce}$ reaction)

IT 7782-44-7, Oxygen, reactions 14119-17-6, Tin 120, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (decay of the $K\pi=8-$ **isomer** in ^{132}Ce with excitation energy of 2340.2 keV has been investigated using $^{120}\text{Sn}(160,4n)^{132}\text{Ce}$ reaction)

RE.CNT 29 THERE ARE 29 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L145 ANSWER 15 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1999:711009 HCAPLUS
DN 132:16846
TI Concerning two-step optical pumping of a **gamma** laser at the Mossbauer transition
AU Antropov, A. E.; Gruzdev, K. A.; Dubensky, A. P.; Lasarev, V. V.
CS Nauchno-Issled. Inst. Fiz., St.-Petersburg. Gos. Univ., St.Petersburg,
Russia
SO Izvestiya Akademii Nauk, Seriya Fizicheskaya (1999), 63(6), 1203-1208
CODEN: IRAFEO; ISSN: 1026-3489
PB Nauka
DT Journal
LA Russian
AB The authors analyzed the fast step of the 2-step pumping **mechanism** from the point of view of photo-nuclear reactions. At least for **nuclides** with low-lying **isomers** there is a low probability of satisfactory response for the material parameters. Anal. of the spectroscopic information for these nuclides does not conflict with this conclusion, but at the same time allows isolation of some nuclides for exptl. studies of dielec.-excited **isomers** due to resonance **absorption** of hard **x-ray radiation**.
IT Gamma ray lasers
Mossbauer effect
Optical pumping
(two-step optical pumping of **gamma** laser at Mossbauer transition)
IT Radionuclides, properties
RL: PRP (Properties)
(two-step optical pumping of **gamma** laser at Mossbauer transition)

L145 ANSWER 17 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1999:252995 HCAPLUS
DN 130:343626
TI Decay of K-**isomers** studied by the tilted axis cranking
AU Shimizu, Yoshifumi R.; Ohtsubo, Shin-Ichi
CS Department of Physics, Kyushu University, Fukuoka, 812, Japan
SO Perspectives in Heavy Ion Physics, Japan-Italy Joint Symposium '97, 3rd,
Padova, Oct. 13-15, 1997 (1999), Meeting Date 1997, 70-79. Editor(s):
Signorini, Cosimo; Soramel, Francesca; Kishida, Takashi. Publisher: World
Scientific, Singapore, Singapore.
CODEN: 67LVA5
DT Conference; General Review
LA English
AB A review with 11 refs. Recent measurement of direct transitions from K **isomers** to low-K bands revealed that the K-selection rule is severely broken. This problem is studied as a tunneling process by a simple model taking into account 2 different K-violating **mechanisms** corresponding to the γ -softness and the spin-orientation. Previous systematic calcn. including the .gamma .-degrees of freedom explains many of the observed partial **decay** life-times. In this talk the other degrees of freedom were investigated by the tilted axis cranking method, and compared with the result of the γ -degrees of freedom. The height of potential.barrier is much lower in the calcn. of the tilted axis cranking, which indicates the mass parameter for the spin-orientation degrees of freedom is much larger than that for the quadrupole-deformation degrees of freedom.
IT Nuclear model
Nuclear transition
(decay of K-**isomers** studied by tilted axis cranking)
IT Nuclear energy level
(isomer; decay of K-**isomers** studied by tilted axis
cranking)

L145 ANSWER 18 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1999:177510 HCAPLUS

DN 130:302468

TI De-excitation of high spin **isomers** in the
191Pb isotope

AU Lagrange, J. M.; Pautrat, M.; Dionisio, J. S.; Vieu, Ch.; Vanhorenbeeck, J.

CS Institut de Physique Nucléaire, IN2P3-CNRS, Orsay, 91406, Fr.

SO Nuclear Physics A (1999), A648(1,2), 64-72

CODEN: NUPABL; ISSN: 0375-9474

PB Elsevier Science B.V.

DT Journal

LA English

AB The 191Pb **isotope**, produced through different A(b,xn)191Pb reactions, where b stands for nuclei such as 16O, 20Ne, and 31P, was studied. The **half-life** of some excited levels being greater than 10 ns, the recoil catcher method is suitable to look into the **deexcitation γ ray** and conversion electron spectra of these states. The conversion coeffs. were deduced and e--γ and γ-γ coincidence measurements lead to the part of the level scheme **deexciting** these **isomers**. This level scheme is compared to **theor** . predictions obtained through a microscopic calcn. in a three quasi-particle approximation, using a surface delta interaction with a reduced pairing component. The conclusions are very similar to those previously obtained for 193Pb.

IT Nuclear energy level
(**isomer**; nuclear level scheme for **gamma-ray** and conversion electron **deexcitation** of 191Pb high-spin **isomers** populated in 180W(16O,5n), 182W(16O,7n), 176Hf(20Ne,5n) and 165Ho(31P,5n) reactions)

IT Electron internal conversion
Gamma ray
Nuclear transition
(nuclear level scheme for **gamma-ray** and conversion electron **deexcitation** of 191Pb high-spin **isomers** populated in 180W(16O,5n), 182W(16O,7n), 176Hf(20Ne,5n) and 165Ho(31P,5n) reactions)

IT 7440-60-0, Holmium, reactions 7723-14-0D, Phosphorus, ions of phosphorus-31, reactions 7782-44-7D, Oxygen, ions of oxygen-16, reactions 13981-34-5, Neon-20, reactions 14265-79-3, Tungsten-180, reactions 14265-80-6, Tungsten-182, reactions 14452-48-3, Hafnium-176, reactions
RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)
(nuclear level scheme for **gamma-ray** and conversion electron **deexcitation** of 191Pb high-spin **isomers** populated in 180W(16O,5n), 182W(16O,7n), 176Hf(20Ne,5n) and 165Ho(31P,5n) reactions)

IT 51634-69-6, Lead-191, properties
RL: PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)
(nuclear level scheme for **gamma-ray** and conversion electron **deexcitation** of 191Pb high-spin **isomers** populated in 180W(16O,5n), 182W(16O,7n), 176Hf(20Ne,5n) and 165Ho(31P,5n) reactions)

L145 ANSWER 19 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1997:62611 HCPLUS

DN 126:191613

OREF 126:36919a,36922a

TI Oblate deformed **isomers** in N = 83 isotones

AU Ideguchi, E.

CS RIKEN, Japan

SO JAERI-Conf (1996), 96-007(Genken Tandemu Busuta ni yoru Kaku Bunko Kokunai Kyodo Jikken Kenkyukai Hokokushu, 3rd, 1995), 44-48

CODEN: JECNEC

PB Japan Atomic Energy Research Institute

DT Journal

LA Japanese

AB 148Tb was produced by the $^{27}\text{Al}(^{130}\text{Te}, 9\text{n})$ reaction by irradiating a 1.35-mg/cm² Al film with a 7.5-MeV/u ^{130}Te beam to determine the decay mode of the high-spin **isomer** of 148Tb. The 148Tb emitted from the target was separated from the primary beam by a recoil nuclear separator and then captured by a plastic scintillator. The γ -rays emitted were measured using Ge detectors and NaI(Tl) scintillators to measure particle- γ - γ coincidences simultaneously. The excitation energy and the **half life** of the high-spin **isomer** were determined to be 8.620 MeV and $1.310 \pm 0.007 \mu\text{s}$, resp. A **change** in the shape of 148Tb from spherical to oblate was observed. The configuration of the high-spin **isomer** was calculated to be $[\pi h11/22d5/2^- 1, vf7/2h9/2i13/2]27^+$. The mean moment of inertia of N = 83 isotones was investigated by plotting the excitation energy of ^{144}Pm , ^{145}Sm , ^{147}Gd and 148Tb vs. the **function** of $I(I + 1)$ and it was found to be 77-96 MeV-1.

IT Nuclear energy level

(**isomer**; oblate deformed **isomers** in N = 83 isotones)

IT Moment of inertia

(of N = 83 isotones)

IT 7429-90-5, Aluminum, reactions 14390-76-2, Tellurium 130, reactions

RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)

(excitation energy and **half life** of terbium-148)

high-spin oblate **isomer** populated in $^{27}\text{Al}(^{130}\text{Te}, 9\text{n})$ reaction)

IT 29670-02-8, Terbium 148, properties

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process)

(excitation energy and **half life** of terbium-148)

high-spin oblate **isomer** populated in $^{27}\text{Al}(^{130}\text{Te}, 9\text{n})$ reaction)

L145 ANSWER 20 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1994:63692 HCAPLUS

DN 120:63692

OREF 120:11368h,11369a.

TI Intermediate structure in the photoexcitation of selenium-77m,
bromine-79m, and barium-137m

AU Carroll, J. J.; Collins, C. B.; Keyde, K.; Huber, M.; von Neumann-Cosel,
P.; Ponomarev, V. Yu.; Richmond, D. G.; Richter, A.; Schlegel, C.; et al.

CS Cent. Quantum Electron., Univ. Texas, Dallas, Richardson, TX, 75083, USA

SO Physical Review C: Nuclear Physics (1993), 48(5), 2238-45

CODEN: PRVCAN; ISSN: 0556-2813

DT Journal

LA English

AB Continuing the systematic investigation into the photoexcitation of **isomers** over wide mass and energy ranges, the production of ⁷⁷Se, ⁷⁹Brm, and ¹³⁷Bam was studied with the **bremsstrahlung** facility at the superconducting Darmstadt linear accelerator. These **isomers** have **half-lives** on the order of seconds. Excitation **functions** were measured for the (. gamma., gamma') reactions populating the **metastable** states for energies of 2-7 MeV and the important intermediate states were identified. Nuclear structure calcns. with the quasiparticle-phonon model for ⁷⁹Br and the particle- (hole-) core coupling approach for ¹³⁷Ba gave satisfactory descriptions for the strength and position of the dominant mediating levels. Admixts. of fragmented outershell single-particle strength shifted to low energies were identified as essential features of the wave **functions** of those states. Intermediate states in ⁷⁷Se displayed very large strengths compared to other **isomers** in the same mass region, providing further support for the correlation between integrated cross sections and ground state deformations recently discovered in the A = 160-200 mass region. Such an enhancement would considerably improve the feasibility of a **gamma-ray** laser based on the sudden deexcitation of **isomeric** populations in deformed **nuclei**.

IT Gamma ray

(laser, feasibility of)

IT Lasers

(**gamma-ray**, feasibility of)

IT 13981-97-0, Barium-137, properties 14336-94-8, Bromine-79, properties

14681-72-2, Selenium-77, properties

RL: PRP (Properties)

(nuclear **isomeric** level, from **gamma**
scattering)

L145 ANSWER 21 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1993:155751 HCAPLUS

DN 118:155751

OREF 118:26579a,26582a

TI **Isomeric** states in osmium-180

AU Venkova, Ts.; Morek, T.; Marti, G. V.; Schnare, H.; Kraemer-Flecken, A.; Gast, W.; Georgiev, A.; Hebbinghaus, G.; Lieder, R. M.; et al.

CS Inst. Kernphys., Forschungszent. KFA Juelich, Juelich, W-5170, Germany

SO Zeitschrift fuer Physik A: Hadrons and Nuclei (1993), 344(4), 417-23

CODEN: ZPAHEX; ISSN: 0939-7922

DT Journal

LA English

AB Two new **isomers** have been observed in 180Os. A high-K **isomer** with $I, K \geq 20$ and a **half-life** of $T_{1/2} = 12 \pm 4$ ns have been **established**. It **deexcites** via two transitions into the 18^+ level of the **rare** band indicating an unusually small K-hindrance factor. Evidence for an **isomer** with $I, K > 16$ and a **half-life** of $T_{1/2} = 41 \pm 10$ ns was found. A **half-life** of 17 ± 3 ns was measured for the **previously known** 7- state at 1862 keV. The decay scheme of the previously known 7- **isomer** at 1928 keV has been extended and a revised version is presented.

IT **Gamma ray**

(of osmium-180, from heavy-ion reaction)

IT 14683-22-8, Neodymium-150, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(**bombardment** of, by sulfur-36, **isomeric** levels of
osmium-180 from)

IT 14993-35-2, Osmium-180, properties

RL: PRP (Properties)

(**nuclear energy levels** of,
isomeric, from heavy-ion reaction)

L145 ANSWER 22 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1990:168557 HCAPLUS
DN 112:168557
OREF 112:28282h,28283a
TI Study of nuclear fluorescence excited by laser plasma x-rays: final report, 10 September 1984-31 July 1988
AU Collins, C. B.
CS Cent. Quantum Electron., Univ. Texas, Richardson, TX, USA
SO Report (1988), DOE/DP/40208-T1; Order No. DE89006453, 24 pp. Avail.: NTIS From: Energy Res. Abstr. 1989, 14(8), Abstr. No. 15656
DT Report
LA English
AB An attempt was made to demonstrate the feasibility of accelerating the radioactive decay of populations of long-lived **isomeric** states of **nuclear** excitation. Such an achievement would represent a substantial step along the path of research which might ultimately lead to a **γ -ray** laser. Quant. modeling has indicated that such a result might be obtained through a type of optical pumping with laser plasma x-rays produced by conventional devices of realistic size. The results represent the first step of a type of scaling study that would indicate how close to threshold the medium for a **.gamma .-ray** laser could be pumped with existing fusion lasers. Calcns. had indicated that if a suitable "ideal" medium can be found, the threshold for a **γ -ray** laser would be attained before breakeven in fusion. This 1st phase of research was focused upon the demonstration of the overall efficiency for the **coupling** of x-radiation into **γ -ray** fluorescence through the **absorption** by a nuclear ground state population of x-radiation from a laser plasma.
IT X-ray, chemical and physical effects
 (**gamma-ray** lasers excited by, from laser plasma)
IT Gamma ray, chemical and physical effects
 (lasers using, nuclear fluorescence excited by laser plasma x-rays in relation to)
IT Gamma ray
 (coherent, nuclear fluorescence excited by laser plasma x-rays in relation to)

L145 ANSWER 23 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1988:557691 HCAPLUS
DN 109:157691
OREF 109:26085a,26088a
TI Spectroscopic study of short lived, high spin **isomers** through
the recoil method
AU Lagrange, J. M.; Pautrat, M.; Dionisio, J. S.; Vieu, Ch.; Vanhorenbeeck,
J.
CS Inst. Phys. Nucl., Orsay, 91406, Fr.
SO Nuclear Instruments & Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors, and Associated Equipment (1988),
A271(3), 527-42
CODEN: NIMAER; ISSN: 0168-9002
DT Journal
LA English
AB The γ and conversion e **deexcitation** spectra of nuclei, produced through (HI,xn)
reactions, are spoiled by various phenomena, most of them related to the reaction
itself. When, in the **isotopes** studied, one or several **isomers** are present, the
half-life of the higher energy one being .apprx.15 ns or more, then the compound
nucleus recoil method can provide much cleaner spectra. This method is
extensively described and discussed, together with others, more briefly treated,
also meant to reduce the unwanted effects; these techniques may be used either
sep. or combined, depending on the expts. performed. Examples of the results
obtained illustrate the substantial improvements reached.
IT Nuclear energy level
(**isomeric**, in heavy-ion reactions)
IT Nuclear spectrometry
(of short-lived high-spin **isomers**)
IT Heavy-ion beams
(reactions of, spectroscopy of **isomeric** levels excited in)
IT Electron internal conversion
Gamma ray
(spectroscopy, of short-lived high-spin **isomers**)

L145 ANSWER 24 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1986:579479 HCAPLUS

DN 105:179479

OREF 105:28817a,28820a

TI Identification of a 3.2 μ s **isomer** in rubidium-76

AU Hofmann, S.; Zychor, I.; Hessberger, F. P.; Muenzenberg, G.

CS GSI, Darmstadt, D-6100/11, Fed. Rep. Ger.

SO Zeitschrift fuer Physik A: Atomic Nuclei (1986), 325(1), 37-43

CODEN: ZAANEE; ISSN: 0930-1151

DT Journal

LA English

AB Fusion evaporation reactions were investigated to search for short lived **isomeric** states of **nuclei** near the p drip line. The . **gamma-ray** spectra were measured, both singles and in delayed coincidence with evaporation residues implanted into a Si detector after a velocity separation. A short lived activity was measured in the $^{40}\text{Ca} + ^{40}\text{Ca} \rightarrow ^{80}\text{Zr}^*$ reaction at excitation energies between 55 and 79 MeV. A **half-life** of 3.20(10) μ s was determined from delayed coincidences between evaporation residues and **γ rays**. At $E^* = 55$ MeV the cross section is 9 mb. The activity was assigned to an **isomeric** state in ^{76}Rb [25292-38-0] by investigation of excitation **functions**. The **isomer** decays by emission of 4 **γ -rays** with energies of 70.55(5), 101.30(4), 145.11(5), and 246.32(10) keV. A level scheme is proposed assigning to the **isomeric** state an energy of 316.94(7) keV above the ground state. The **isomer** decaying into the low spin 1(-) ground state band is explained from systematics as a band head of a high spin (4+) ($\pi g9/2, vg9/2$) structure. A high hindrance factor of 3 + 106 for e1 radiation compared to a single particle transition is due possibly to a **change** of the core particle structure in the transition.

IT **Gamma ray**

(from rubidium-76, fusion-evaporation reaction in calcium-40-ion bombardment of calcium-40 in relation to)

IT Nuclear fusion

(of calcium-40, with calcium-40, rubidium-76 identification in relation to)

IT 14092-94-5, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(bombardment of, by calcium-40, rubidium-76 identification in relation to)

IT 25292-38-0P, preparation

RL: FORM (Formation, nonpreparative); PREP (Preparation)

(formation of, fusion-evaporation reaction of calcium-40-ion bombardment of calcium-40 in relation to)

IT 14595-41-6P, preparation

RL: FORM (Formation, nonpreparative); PREP (Preparation)

(formation of, in calcium-40-ion bombardment of calcium-40, rubidium-76 identification in relation to)

L145 ANSWER 25 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1982:445474 HCAPLUS
DN 97:45474
OREF 97:7599a,7602a
TI A 150 ms 10+ **isomer** in dysprosium-146
AU Gui, S. Z.; Colombo, G.; Nolte, E.
CS Fachber. Phys., Tech. Univ. Muenchen, Garching, D-8046, Fed. Rep. Ger.
SO Zeitschrift fuer Physik A: Atoms and Nuclei (1975) (1982), 305(4),
297-306
CODEN: ZPAADB; ISSN: 0340-2193
DT Journal
LA English
AB After in- and off-beam γ and conversion e measurements, as γ excitation functions, $\gamma\gamma$ and $e\gamma$ coincidences, pulsed beam techniques and multi spectrum analyses of the residual activities, an **isomer** was tentatively assigned to be a 10+ state in ^{146}Dy [79321-82-7], which decays into 2 7- states by E3 transitions. The half-life of the **isomer** is 150 ± 20 ms. The **isomer** follows the β decay of the previously unknown 3.9-s **isotope** ^{146}Ho . The **mechanism** of the appearance of such an **isomer** is discussed.
IT Electron internal conversion
(in dysprosium-146 **isomer**)
IT Gamma ray
(of dysprosium-146 **isomer**)
IT 79321-82-7, properties
RL: PRP (Properties)
(nuclear energy levels of,
isomeric)

L145 ANSWER 26 OF 50 HCPLUS COPYRIGHT ACS on STN
 AN 1980:136561 HCPLUS
 DN 92:136561
 OREF 92:22125a,22128a
 TI **Gamma**-spectroscopy within the island of high-spin
isomers near N = 82
 AU Borggreen, J.; Bjoernholm, S.; Christensen, O.; Del Zoppo, A.; Herskind,
 B.; Pedersen, J.; Sletten, G.; Folkmann, F.; Simon, R. S.
 CS Niels Bohr Inst., Roskilde, Den.
 SO Zeitschrift fuer Physik A: Atoms and Nuclei (1975) (1980), 294(2), 113-24
 CODEN: ZPAADB; ISSN: 0340-2193
 DT Journal
 LA English
 AB A NaI sum-spectrometer combined with Ge-counters was used to characterize the
 members of the island of high-spin **isomers** near N = 82. On the basis of **half**
lives, total γ - decay energies, and discrete γ -lines, assignments of 22 **isomers**
 are given or confirmed. The **isomers** are localized to the region $82 \leq N \leq 86$ and
 $Z \leq 68$, and the excitation energies **vary** from 3 to 12.2 MeV. An empirical
 relation between spin and excitation energy is presented and on this basis
isomeric spin values up to (33 ± 2) .plcnst. were deduced. The **isomers** are
 thought to be due to strong alignment of 2 to 8 shell-model particles in a
 spherical or possibly weakly oblate potential.
 IT **Gamma ray**
 (from rare earth high-spin **isomers**)
 IT 14952-31-9, properties 15055-18-2, properties 15904-62-8, properties
 18235-35-3, properties 18235-36-4, properties 18235-40-0, properties
 18254-40-5, properties 18254-41-6, properties 25027-01-4, properties
 25731-95-7, properties 28790-59-2, properties 29670-02-8, properties
 32587-33-0, properties 51691-45-3, properties
 RL: PRP (Properties)
 (nuclear energy level of, gamma
 -ray spectroscopy of high-spin **isomeric**)

L145 ANSWER 27 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1979:446855 HCPLUS

DN 91:46855

OREF 91:7495a,7498a

TI On excitation of **isomeric nuclear** states in a crystal
by synchrotron radiation

AU Kagan, Yu.; Afanas'ev, A. M.; Kohn, V. G.

CS I. V. Kurchatov Inst. At. Energy, Moscow, USSR

SO Journal of Physics C: Solid State Physics (1979), 12(3), 615-31

CODEN: JPSOAW; ISSN: 0022-3719

DT Journal

LA English

AB The radiative decay of an **isomeric nuclear** level with a Moessbauer transition in a crystal, after resonance Bragg scattering of a synchrotron radiation pulse, was studied. A time (t) dependence of the form $(\tau_0/t)^2 \exp(-t/\tau_0)$ was found for small deviations, α , from the Bragg angle. This acceleration of the decay was attributed to the formation of nuclear excitons. For large α , the decay remains exponential whereas the intensity **decreases** as $1/\alpha^2$. The frequency distribution of the reflected pulse and the formation of a resonance structure were analyzed. The time evolution of the synchrotron radiation pulse transmitted through a Bragg reflector and resonance **absorber** was derived. An inconsistency between the intensity of the delayed radiation and the frequency distribution indicates that in Moessbauer expts. the intensity must be measured integrated over time except for an **initial** time interval after the pulse and that deviations from the Bragg angle are important.

IT Synchrotron radiation

(Bragg reflection and Moessbauer absorption of, nuclear
exciton in relation to)

IT Nuclear energy level

(excitation of, by Bragg-scattered synchrotron radiation in crystals,
theory of)

IT Moessbauer effect

(of **isomeric nucleus** in crystals, by
Bragg-scattered synchrotron radiation, theory of)

L145 ANSWER 28 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1979:44958 HCAPLUS
DN 90:44958
OREF 90:7121a,7124a
TI New **isomeric** state in bromine-76 with **half-life** 1.49 sec
AU Schmidt-Ott, W. D.; Hautojarvi, A. J.; Schrewe, U. J.
CS II. Phys. Inst., Univ. Goettingen, Goettingen, Fed. Rep. Ger.
SO Zeitschrift fuer Physik A: Atoms and Nuclei (1975) (1978), 289(1), 121-2
CODEN: ZPAADB; ISSN: 0340-2193
DT Journal
LA English
AB In the course of systematic investigation of low-lying nuclear states in the region around N = 40 in the simple shell model a new **isomeric** state in ⁷⁶Br [15765-38-5] at 102.59 ± 0.03 keV was found having a **half-life** of 1.49 ± 0.02 s and spin 4+.
IT **Gamma ray**
 (from bromine-76 **isomer deexcitation**)
IT 15765-38-5, properties
RL: PRP (Properties)
 (**nuclear energy levels of, isomeric**)

L145 ANSWER 29 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 1978:414403 HCAPLUS
 DN 89:14403
 OREF 89:2193a,2196a
 TI Kinetics of stimulated Moessbauer emission in neutron-pumped krypton-83
 AU Baldwin, G. C.; McNeil, L. E.
 CS Los Alamos Sci. Lab., Los Alamos, NM, USA
 SO Report (1977), LA-7004-MS, 41 pp. Avail.: NTIS
 From: Energy Res. Abstr. 1978, 3(7), Abstr. No. 15667
 DT Report
 LA English
 AB Using an idealized kinetic model for a **gamma-ray** laser system pumped by a spatially uniform **delta-function** burst of fast neutrons, a computer study was made of the growth, decay, and attenuation of resonant 9.3-keV recoil-less **gamma** radiation from ⁸³Kr, as a **function** of neutron-burst intensity, **gamma-ray** line-breadth, temperature dilution of Kr in a Be host, and nonresonant **absorption** coefficient of the host. The isomer is formed by neutron capture in a 40-eV resonance, and the 144-ns transition lifetime is short in comparison with the time for neutrons to moderate. The kinetic behavior of this system is therefore determined largely by the time dependence of the neutron spectrum and only slightly by the reciprocal linebreadth of the graser transition. Because the lower state is stable, inversion is rapidly lost, so that, for observable gain, an unrealistically high source intensity is needed. Use of a Be host, which **increases** the Debye temperature, is negated by its parasitic **absorption**. Although this transition is unsuitable for a graser, these findings help to illustrate useful properties of **nuclear isomers** and solid hosts for which stimulated emission might be observable.
 IT Quantum amplification
 (γ-ray)
 IT Lasers
 (Moessbauer emission, in neutron-pumped krypton-83)
 IT Moessbauer effect
 (neutron-pumped stimulated, of krypton-83, kinetics of)
 IT 12586-31-1
 RL: PRP (Properties)
 (krypton-83 stimulated Moessbauer emission pumped by)
 IT 13965-98-5, properties
 RL: PRP (Properties)
 (stimulated Moessbauer emission in neutron-pumped)

L145 ANSWER 30 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1978:127473 HCPLUS

DN 88:127473

OREF 88:19938h,19939a

TI An investigation of short-lived **isomers** in the **nuclei**
niobium-90, -92, molybdenum-99, technetium-98, -100, -101 and
ruthenium-101

AU Bartsch, H.; Huber, K.; Kneissl, U.; Krieger, H.

CS Inst. Kernphys., Univ. Giessen, Giessen, Fed. Rep. Ger.

SO Zeitschrift fuer Physik A: Atoms and Nuclei (1975) (1978), 285(3), 273-81

CODEN: ZPAADB; ISSN: 0340-2193

DT Journal

LA English

AB Short-lived **isomers** in the **nuclei** 90,92Nb, 99Mo, 98,100,101Tc, and 101Ru
populated in photonuclear reactions were studied by pulsed beam techniques.
Energy and **half-life** of the γ -rays deexciting the
isomeric levels were measured by recording energy-time spectra. The delayed γ -
rays and K x-rays were detected by means of an intrinsic Ge-detector of high
resolution. From the measured intensity ratios internal conversion coeffs. were
determined. The multipolarities of the **isomeric** transitions could be deduced in
most cases. A classification of the observed **isomers** was tried on the basis of
the obtained exptl. results and most recent literature data.

IT Electron internal conversion

Gamma ray
(of molybdenum-99 and niobium **isotopes**, excited by
photonuclear reactions)

IT 13982-37-1, properties 14119-15-4, properties 14681-65-3, properties
14913-92-9, properties 14914-61-5, properties 15128-39-9, properties
32025-58-4, properties

RL: PRP (Properties)
(nuclear energy levels of, excited by
photonuclear reactions, short-lived **isomeric**)

L145 ANSWER 31 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1977:590363 HCPLUS

DN 87:190363

OREF 87:29998h,29999a

TI Spectra of γ -rays of some millisecond

isomers obtained in reactions with α -particles

AU Goncharov, K. S.; Kuz'menko, V. A.; Remaev, V. V.

CS Fiz.-Tekh. Inst., Kharkov, USSR

SO Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya (1977), 41(8), 1673-5

CODEN: IANFAY; ISSN: 0367-6765

DT Journal

LA Russian

AB A search for ms **isomers** with the help of a scintillation spectrometer (Goncharov, K.S., et al., 1971) is continued with the more advanced techniques of Ge(Li) spectrometer. The maximum energy of bombarding α -particles is 38 MeV. **Half-lives**, γ -ray energies, branching ratios, and absolute cross sections for the production are given in a table for the following **isomers**: 71Gem (21.5), 75Asm (17.1), 88Ym (14.3), 90Nb^m (6.5), 109Inm (210), 117Tcm (100), 132Xem (8.9), 136Lam (114), 138Cem (8.65), 142Pmm (2.36), 155Gdm (32), 180Wm (5.6), 183Rem (1.02), 194Aum (400), 197Tlm (530), 199Tlm (27.8), 205Pbm (4.7), and 205Pom (60). The values in parentheses are the respective **half-lives** in ms.

IT Gamma ray

(from isomeric level deexcitation)

IT 7440-38-2, properties

RL: PRP (Properties)

(nuclear energy levels of arsenic-75,

lifetime of isomeric)

IT 13982-36-0, properties	14107-52-9, properties	14119-28-9, properties
14155-79-4, properties	14265-79-3, properties	14333-34-7, properties
14374-81-3, properties	14391-71-0, properties	14484-13-0, properties
14681-65-3, properties	14833-35-3, properties	14981-85-2, properties
15064-66-1, properties	15756-89-5, properties	15758-20-0, properties
15758-26-6, properties	16729-76-3, properties	

RL: PRP (Properties)

(nuclear energy levels of, lifetime of

isomeric)

L145 ANSWER 32 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1977:162210 HCAPLUS

DN 86:162210

OREF 86:25405a,25408a

TI Measurements of g-factors of **isomeric** states in fission
fragments

AU Cheifetz, E.; Wolf, A.

CS Dep. Nucl. Phys., Weizmann Inst. Sci., Rehovoth, Israel

SO Report (1976), WIS-Ph-76/15, 19 pp. Avail.: INIS

From: INIS Atomindex 1977, 8(4), Abstr. No. 289008

DT Report

LA English

AB Spontaneous fission of ^{252}Cf [13981-17-4] produces very n-rich **isotopes** falling mainly in 3 interesting regions of the periodic table: (1) the $A = 100-120$, $Z = 38-46$ region for which there is evidence of large deformations; (2) the **isotopes** around the double magic ^{132}Sn where simple configurations coupled to the closed shells $Z = 50$, $N = 82$ prevail; (3) the region with $A = 140-150$, $Z = 54-60$, where there is a **smooth** transition from spherical to deformed nuclei. Many **isomeric** γ -rays with half-lives between 10-3000 ns were found to be emitted by fragments in regions (1) and (2). The γ -factors of **isomeric** states in fission fragments were measured. Two expts. were carried out. In the 1st, angular distributions (with respect to the fission axis) of known **isomeric** γ -rays emitted by stopped fragment were found to be anisotropic, thus showing alignment of the angular momentum. In the 2nd experiment, this alignment was used in a time-different perturbed angular correlation measurement from which g-factors were directly obtained.

IT Fission fragments and products

RL: PRP (Properties)

(nuclear g-factors of **isomeric** states of, from californium-252 spontaneously, determination of)

IT Nuclear g-factor

(of fission fragment **isomeric** state, from californium-252 spontaneously)

IT 13981-17-4, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(fission of, nuclear g-factor determination of **isomeric** states in fragments from spontaneous)

L145 ANSWER 33 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1976:599364 HCAPLUS
DN 85:199364
OREF 85:31743a,31746a
TI The structure of the excited states in rubidium-84
AU Slamkova, K.; Galan, P.; Kristiak, J.
CS Inst. Phys., Slovak Acad. Sci., Bratislava, Czech.
SO Czechoslovak Journal of Physics (1976), B26(10), 1122-6
CODEN: CZYPAO; ISSN: 0011-4626
DT Journal
LA English
AB The intensities of the γ -transitions deexciting the **isomer** 84Rbm [15765-86-3], the **half-life** of the **isomeric** state $T_{1/2} = (20.6 \pm 0.8)$ min and the total internal conversion coefficient of the 216.3-keV γ -transition were determined. The multipolarity of this transition was established as M3 + (79.1 ± 2.7)% E4. The excited states in 84Rb are interpreted on the basis of their spin values and of the partial **half-lives** of γ -transitions as p-n 2-particle configurations of p and n single-particle states 1f5/2, 1g9/2, and 1g9/2, 2p1/2, 1f5/2, resp.
IT Gamma ray
 Nuclear energy level
 (of rubidium-84, **isomeric** transitions)
IT 15765-86-3, properties
RL: PRP (Properties)
 (nuclear energy levels of,
 isomeric transitions)

L145 ANSWER 34 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1976:583364 HCPLUS

DN 85:183364

OREF 85:29245a,29248a

TI Measurement of millisecond **half-lives** of
isomeric levels in some **nuclei**

AU Garg, K. C.; Khurana, C. S.

CS Dep. Phys., Punjabi Univ., Patiala, India

SO Indian Journal of Pure and Applied Physics (1976), 14(9), 738-40

CODEN: IJOPAU; ISSN: 0019-5596

DT Journal

LA English

AB **Half-lives** of 2.7, 14.5, 17, 20, 20.4, 44, and 2230 msec, of **isomeric** levels in 208Bi, 88Y, 75As, 24Na, 71Ge, 114In, and 167Er, resp. were measured, employing on-line irrradn. system. These msec **isomeric** levels are produced by 14.7 MeV n through (n,p), (n, α), (n,n'), and (n,2n) reactions on natural target samples. A γ -ray scintillation detector **coupled** with NTA-512B, 1024 channel analyzer was used to follow the decay of the msec activities. Deflected d beam bursts were used to reduce the long-time background to **initial** count ratios in the decay curves to achieve a better accuracy of measurements.

IT Nuclear energy level

(**isomeric**, lifetime determination of)

IT Gamma ray

(of arsenic-75 and bismuth-208, **isomeric** level lifetime determination with)

IT 12586-31-1

RL: RCT (Reactant); RACT (Reactant or reagent)
(alpha particles and nucleons from bombardment by, of atomic nuclei)

IT 12587-46-1P

RL: PREP (Preparation)
(from neutron bombardment, of aluminum-27)

IT 12586-59-3P

RL: PREP (Preparation)
(from neutron bombardment, of magnesium-24)

IT 7429-90-5, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(neutron bombardment of aluminum-27, α -particles from)

IT 7440-69-9, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(neutron bombardment of bismuth-209, neutrons from)

IT 7440-65-5, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(neutron bombardment of yttrium-89, neutrons from)

IT 13982-21-3, reactions 14191-71-0, reactions 14833-43-3, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(neutron bombardment of, neutrons from)

IT 14280-39-8, reactions

(neutron bombardment of, protons from)

IT 7440-38-2, properties

(**nuclear energy levels** of arsenic-75,
lifetime of **isomeric**)

IT 13981-55-0, properties 13982-04-2, properties 13982-36-0, properties

14145-42-7, properties 14374-81-3, properties 14380-60-0, properties
(**nuclear energy levels** of, lifetime of **isomeric**)

L145 ANSWER 35 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1975:569552 HCAPLUS
 DN 83:169552
 OREF 83:26547a,26550a
 TI Fission fragment **isomers** from spontaneous fission of californium-252
 AU Clark, R. G.; Glendenin, L. E.; Talbert, W. L., Jr.
 CS Dep. Chem., Univ. Maryland, College Park, MD, USA
 SO Phys. Chem. Fission, Proc. IAEA Symp., 3rd (1974), Meeting Date 1973, Volume 2, 221-48 Publisher: UNIPUB, New York, N. Y.
 CODEN: 31FGAP
 DT Conference
 LA English
 AB **Isomeric** levels, populated before beta decay during the **deexcitation** of 252Cf [13981-17-4] fission fragments, were studied by observing the K **x-rays** and **γ -rays** from the **isomeric** decay. A 6-parameter experiment with high-resolution Si(Li) and Ge(Li) detectors measured photon energies from 10-1500 keV and emission times from 1-3000 nsec after the detection of complementary fission fragment pairs by Si-Au surface barrier detectors. The photon intensity was studied as a **function** of fragment mass (computed from the complementary fragment kinetic energies), photon energy and emission time. **Half-life** and fragment mass assignments were made for all **isomeric γ - rays**. A 4-parameter experiment, by using 2 Ge(Li) detectors, observed coincidences between **isomeric γ -rays**, and the coincidence information was combined with the assignments and observed K **x-ray** intensities of the 6-parameter experiment and with other work to assign 130 of the transitions to specific nuclei. Previously reported concns. of the **isomeric γ - ray** intensity around masses 98, 108, and 134 are discussed, along with feeding from **isomeric** levels into ground state rotational bands in the deformed rare-earth region.
 IT **X-ray**
 (K-fluorescence, from fission fragments from spontaneous fission of californium-252)
 IT **Gamma ray**
 (from fission fragments, from spontaneous fission of californium-252)
 IT Fission fragments and products
 Rare earth metals, properties
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (**gamma rays** from, from spontaneous fission of californium-252)
 IT **Nuclear energy level**
 (**isomers**, of fission fragments from spontaneous fission of californium-252)
 IT Fission
 (of californium-252, spontaneous, **gamma-ray** emission in)
 IT 13981-17-4, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (fission of, **gamma rays** from fragments from spontaneous)

L145 ANSWER 36 OF 50 HCAPLUS COPYRIGHT ACS on STN
AN 1975:449537 HCAPLUS
DN 83:49537
OREF 83:7747a,7750a
TI Neutron-deficient gadolinium **isotopes**. Gadolinium-145m1 and gadolinium-145m2
AU Firestone, R. B.; Warner, R. A.; McHarris, Wm. C.; Kelly, W. H.
CS Dep. Chem., Michigan State Univ., East Lansing, MI, USA
SO Physical Review C: Nuclear Physics (1975), 11(5), 1864-6
CODEN: PRVCAN; ISSN: 0556-2813
DT Journal
LA English
AB An **isomer** in 145Gd [23315-89-1] at 27.3 keV is reported with a **half-life** of 11.5 ± 0.3 nsec and an internal conversion coefficient $\alpha L = 16.9 \pm 1.4$. This state is described as substantially the $vd3/2$ single-neutron state which is fed by the 145Cdm2 $vh11/2$ **isomer** and which **deexcites** through the $vs1/2$ ground state. The **isomeric** transition from 145Gdm1 is $99.2 \pm 0.2\%$ M 1 + $0.8 \pm 0.2\%$ E2, indicating a hindrance factor of 100 in the M 1 and an enhancement factor of 40 in the E2 over the single-particle ests. Recent information on the $N = 81$ $11-/2$ **isomers** is presented for 133Te through 147Dy showing the systematic **changes** in exptl. energies and M 4 matrix elements.
IT **Gamma ray**
 (of gadolinium-145, from decay of **isomeric**)
IT **Nuclear energy level**
 (of gadolinium-145, **isomeric**)
IT 14981-86-3, properties
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (**gamma rays** from, from **metastable**
 gadolinium-145 decay)
IT 23315-89-1, properties
 RL: PRP (Properties)
 (**nuclear energy levels of,**
 isomeric)

L145 ANSWER 37 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1973:78262 HCAPLUS

DN 78:78262

OREF 78:12413a,12416a

TI Penetrability of nuclear fission barrier for muonic atoms

AU Blocki, J.; Sujkowski, Z.; Zielinska-Pfabe, M.

CS Inst. Nucl. Res., Swierk, Pol.

SO Physics Letters B (1972), 42(4), 415-18

CODEN: PYLEAJ; ISSN: 0370-2693

DT Journal

LA English

AB The nuclear fission penetrabilities of muonic atoms, 234 , 236 , 238 U and 240 Pu, were calculated as functions of excitation energy by using the simple WKB formula (Nielsen, S. G., 1969). Comparison of the results with the fission penetrabilities of the normal atoms showed: (1) that the nucleus, excited in a radiationless transition of the muon, fissioned immediately with the excitation energy being equal to the energy of muonic atom transition; and (2) that there was a finite **probability of nuclear deexcitation** to an **isomeric state** in the 2nd well at the 2-humped barrier.

IT Fission

(barrier penetrability, of muonic atoms, calcn. of)

IT Energy level

(of μ -mesonic atoms, of plutonium 240 and uranium **isotopes**, fission barrier penetrability and transitions between)

IT 37348-09-7 37348-10-0 37348-11-1 37348-12-2

RL: PRP (Properties)

(fission barrier of, penetrability of, excitation energy in calcn. of)

L145 ANSWER 38 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1972:79544 HCAPLUS

DN 76:79544

OREF 76:12771a,12774a

TI Short-lived activities in fluorine-18, sodium-22, potassium-40, rubidium-85, and molybdenum-92 excited by 14.7 MeV fast neutrons

AU Adam, A.; Horvath, D.; Kiss, A.; Mayr, E.

CS Cent. Res. Inst. Phys., Budapest, Hung.

SO Nuclear Physics A (1972), 180(2), 587-92

CODEN: NUPABL; ISSN: 0375-9474

DT Journal

LA English

AB The production of short-lived **isomeric** states in ¹⁸F, ²²Na, ⁴⁰K, ⁸⁵Rb, and ⁹²Mo was investigated by 14.7-MeV fast n. A combined α -particle and pulsed-beam method was used to measure the time distribution of γ -rays produced in the **deexcitation** process. The spin cut-off factors were obtained from the exptl. cross sections and other known values by means of the Huizenga-Vandenbosch method. **Half-lives** of the **isomeric** levels of the **nuclei** were also deduced.

IT **Gamma ray**

(from fluorine-18 and molybdenum-92, from decay of **isomeric**)

IT **Nuclear energy level**

(**isomers**, excited by neutron bombardment)

IT 12586-31-1

RL: RCT (Reactant); RACT (Réactant or reagent)
(bombardment by, **isomer** excitation in)

IT 13966-00-2, properties 13966-32-0, properties 13981-56-1, properties
13982-12-2, properties 14191-67-4, properties

RL: PRP (Properties)

(nuclear **energy levels** of,
isomeric)

L145 ANSWER 39 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1971:514953 HCAPLUS

DN 75:114953

OREF 75:18143a,18146a

TI Decay of neodymium-152 and the **isomers** of promethium-152

AU Daniels, William R.; Hoffman, Darleane C.

CS Los Alamos Sci. Lab., Univ. California, Los Alamos, NM, USA

SO Physical Review C: Nuclear Physics (1971), [3]4(3), 919-30

CODEN: PRVCAN; ISSN: 0556-2813

DT Journal

LA English

AB The radiations associated with the decay of 11.4-min ^{152}Nd and its 4.1-min ^{152}Pm daughter have been studied with Ge(Li), NaI(Tl), and anthracene detectors in both singles and coincidence configurations. A tentative decay scheme for ^{152}Nd involving allowed β decay to the 4.1-min **isomer** of ^{152}Pm (1^+) ($\log ft = 4.8$) and to an excited 1^+ level 294.6-keV higher ($\log ft = 4.2$) is presented. A new level in ^{152}Sm has been placed at ≈ 1081 keV. The total β -decay energy is nearly the same as the measured β end-point energy, 3.6 ± 0.2 MeV. Evidence is presented for the existence of 2 **previously unreported** high-spin **isomers** of ^{152}Pm having **half-lives** of 7.5 ± 1.0 min and ≈ 18 min. A decay scheme is proposed for the 7.5-min **isomer** ($4\pm$) of ^{152}Pm including 16 known ^{152}Sm levels and new levels at 1081, 1804, and possibly 1941 keV. At least 40% of the β transitions decay to the 1804-keV level with a $\log ft$ of ≈ 5.7 which suggests hindered allowed or 1st-forbidden decay. The observation of a 1.8-MeV β group in coincidence with an intense 1437-keV γ transition which **deexcites** the 1804-keV level establishes the total β -decay energy for 7.5-min ^{152}Pm as 3.6 ± 0.1 MeV. The ≈ 18 -min **isomer** ($\geq 6\pm$) of ^{152}Pm appears to populate a new level at 2172 by keV and possibly the 1941-keV level in ^{152}Sm .

IT Nuclear reaction energy

(for beta-ray decay, of promethium-152)

IT Gamma rays

(from samarium-152, from decay of promethium-152, coincidences with beta rays)

IT Nuclear energy levels

(of samarium-152, from decay of promethium-152)

IT 19305-25-0, reactions

RL: PRP (Properties)

(decay of **isomers** of, **gamma-ray** spectrum in)

IT 19305-26-1, reactions

RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent)
(decay of, **gamma-ray** spectrum in)

IT 12587-47-2, Beta rays

(from neodymium-152 and promethium-152 **isomers**,
nuclear reaction energy for)

IT 14280-32-1, properties

RL: PRP (Properties)
(**nuclear energy levels** of, from
promethium-152 decay)

L145 ANSWER 40 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1971:43515 HCAPLUS

DN 75:43515

OREF 75:6843a,6846a

TI Fission **isomers** and intermediate states in near-barrier fission

AU Bjoernholm, Sven

CS Lawrence Radiat. Lab., Univ. California, Berkeley, CA, USA

SO Proceedings of the Robert A. Welch Foundation Conference on Chemical Research (1970), Volume Date 1969, 13, 447-81

CODEN: PRAWAC; ISSN: 0557-1588

DT Journal

LA English

AB An anal. is made of recent advances in knowledge and understanding of the interplay of a **smoothly varying**, average term describing bulk properties of nuclear matter, and a correction term reflecting individual properties of specific nuclei associated with shell effects, on which is based the prediction of an island of stability of superheavy elements. Information on the height and thickness of the 1st and outer barriers of a 2-humped fission barrier of heavy nuclei at large deformations is derived from spontaneous fission **half-lives** and **γ -ray** decay of shape **isomers** as encountered in fission **isomerism** and resonance fission of the **isotopes** of Th, Np, U, Pu, Am, and Cm. Pertinent exptl. data on fission barriers and liquid-drop quantities, including liquid-drop barrier, liquid-drop energy for ground state shapes, and fissility parameter are illustrated graphically.

IT Fission

(intermediate states and **isomers** in)

IT Nuclear energy levels

(**isomers**, fission in)

IT Nuclear models

(liquid-drop, intermediate states and fission **isomers** in relation to)

L145 ANSWER 41 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1970:420654 HCAPLUS

DN 73:20654

OREF 73:3431a,3434a

TI Evidence for a direct reaction **mechanism** in the production of fission **isomers**

AU Repnow, R.; Metag, V.; Fox, J. D.; Von Brentano, P.

CS Max-Planck-Inst. Kernphys., Heidelberg, Fed. Rep. Ger.

SO Nuclear Physics A (1970), 147(1), 183-92

CODEN: NUPABL; ISSN: 0375-9474

DT Journal

LA English

AB Targets of 233,235,236,238U were bombarded with d and p in the energy range 11-20 MeV. Excitation functions for the production of fission **isomers** were obtained and are interpreted in terms of direct reaction processes. The most probable reactions are (d,px.**gamma**.) and (d,pnxy) leading to **isomers** assigned to 236U and 238U with **half-lives** of 70 nsec and 110 nsec, resp.

IT **Nuclear energy levels**

(**isomers**, fission, of uranium **isotopes**, production
in direct reaction in deuteron and proton bombardment)

IT Fission

(**isomers**, of uranium **isotopes**, production by direct
reaction in deuteron and proton bombardment)

IT 12586-59-3, Protons 12597-73-8, Deuterons

(bombardment by, of uranium **isotopes**, fission **isomer**
production by direct reaction in)

IT 7440-61-1P, reactions

RL: RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(deuteron and proton bombardment of uranium-238, fission **isomer**
production by direct reaction in)

IT 13968-55-3P, reactions 13982-70-2P, reactions 15117-96-1P, reactions

RL: RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
(deuteron and proton bombardment of, fission **isomer**
production by direct reaction in)

L145 ANSWER 42 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1969:62994 HCAPLUS

DN 70:62994

OREF 70:11815a,11818a

TI Experimental studies of barium-136m, xenon-134, xenon-127m, and xenon-125m

AU Winn, Willard G.

CS Cornell Univ., Ithaca, NY, USA

SO U. S. At. Energy Comm. (1968), NYO-3664-6, 166 pp. Avail.: Dep.; CFSTI

From: Nucl. Sci. Abstr. 1968, 22(21), 46768

CODEN: XAERAK

DT Report

LA English

AB The **isomers** 136Bam, 134Xem, 127Xem, and 125Xem were produced by pulsed n irradiation of enriched and natural samples and transported by fast pneumatic transfer to a counting station where γ - and conversion e-spectra were observed by using NaI(Tl), Ge(Li), and Si(Li) detectors. Because of the short **half-lives** of the **isomers** investigated, special techniques were devised to provide fast positioning of the sample for detection. 136Bam($t_{1/2} = 307 \pm 4$ msec.) and 134Xem($t_{1/2} = 290 \pm 17$ msec.) were studied with reference to analogous **isomers** in the $N = 80$ isotones. Each **isomer** decays by a 3 γ -cascade consistent with a $7 - E3 \rightarrow 4+ E2 \rightarrow 2+ E2 \rightarrow 0+$ scheme. Corresponding γ -energies are 168 ± 7 , 1048.6 ± 0.7 , and 819.3 ± 0.7 kev. in 136Bam; and 232.9 ± 1.5 , 879.9 ± 1.4 , and 845.9 ± 1.0 kev. in 134Xem. As 134Xem had not been observed previously, internal conversion studies were performed to establish the multipolarity of the **isomeric** transition. An E3 assignment for the 233-kev. transition results from its measured K/LMNO ratio of 1.83 ± 0.32 coupled with the measured γ -intensities of 62.8 ± 8.0 , 94.4 ± 6.3 , and 100 for the 233-, 880-, and 846-kev. transitions, resp. The conversion e-statistics for the 880- and 846-kev. transitions did not allow definite assignments for these transitions; however, the γ -intensities are consistent with the E2 assignments suggested in Nuclear Data Sheets. A comparison of 136Bam and 134Xem disagrees with other **isomers** of the $N = 80$ isotones shows that most of the levels observed in the **isomeric** decays fit trends suggested by neighboring **isomers**. Only the assumed 4+ state of 134Xem disagrees with such trends; the possibility was therefore considered of a 2nd 4+ state satisfying the level trends and lying near the 7 - **isomeric** level. The γ -spectra, however, do not indicate that the **isomer** decays via this alternative 4+ level, the upper limit for such branching being estimated at 2% of the observed decay mode. The techniques developed for Xe gas samples in the 134Xem expts. were applicable to investigation of other **isomers** in Xe. The **isomers** 127Xem($t_{1/2} = 74$ sec.) and 125Xem($t_{1/2} = 58$ sec.) were studied. Each was observed to decay by a 2. γ -cascade consistent with a $9/2-E3 \rightarrow 3/2+ M1 \rightarrow 1/2+$ scheme. The corresponding γ -energies are 172.5 ± 1 and 125.1 ± 1 kev. in 127Xem, and 142.3 ± 0.5 and 112.1 ± 0.5 kev. in 125Xem. The suggestion in Nuclear Data Sheets that a 75-kev. transition also occurs in the decay of 125Xem was investigated; after examination of various background contributions it was concluded that the 75-kev. peaks in various γ -spectra do not correspond to a nuclear transition. The internal conversion measurements on 125Xem are also consistent with this result: from the assignment of E3 for the 142-kev. transition (determined from $\alpha LMNO = 1.83 \pm 0.22$), the assignment of M1 for the 112-kev. transition (determined from $\alpha K = 0.47 \pm 0.07$), and the assumption that the 75-kev. peak is not a nuclear transition (thus $\alpha K = 0$), the K x-ray intensity observed in the spectrum could be explained. The statistical accuracy of the 127Xem conversion e-lines was not sufficient to make multipolarity assignments; however, the line intensities are consistent with a $9/2-E3 \rightarrow 3/2+ M1 \rightarrow 1/2+$ decay scheme. The $1/2+$ ground state is known for 127Xe and assumed for 125Xe by analogy. The appearance of a $9/2-$ state in this nuclear region is not compatible with shell model predictions and suggests that nuclear deformation may be present. For those **isomers** above which are created by thermal n capture, the thermal n activation cross sections were measured: $\alpha th(136Bam) = 13.9 \pm 0.7$ mb., $\alpha th(127Xem) = 0.23 \pm 0.07$ b., $\alpha th(125Xem) = 18 \pm 4$ b. These measurements were made for comparison with statistical theories for cross section ratios. The resonance integrals were also estimated for these **isomers**.

L145 ANSWER 43 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1966:462598 HCPLUS

DN 65:62598

OREF 65:11650h,11651a-h,11652a-h

TI An 8- **isomeric** state in the 106-neutron nuclei: 180W, 182Os, and 184Pt

AU Burde, J.; Diamond, R. M.; Stephens, F. S.

CS Univ. of California, Berkeley

SO Nuclear Physics (1966), 85(3), 481-503

CODEN: NUPHA7; ISSN: 0029-5582

DT Journal

LA English

AB The decay of a 2-n, 8-, **isomeric** state was observed in 3 nuclei with 106 n. The **half-lives** of these **isomers** are in the region of 1 msec. In each of the isotones 180Wm, 182Osm, and 184Ptm, there were observed 5 prominent transitions. Four of these are the E2 transitions of the 8 → 6 → 4 → 2 → 0 cascade in the ground-state band. The 5th transition is a very hindered E1 that **de-excites** an 8-, 8 **isomeric** level and populates the 8+, 0 level of the ground-state band. Despite the appreciable difference between the properties of these nuclei, as can be seen by comparing the well-developed rotational spectrum of 180W with that of the poor rotor 184Pt, the **isomeric** transitions seem to exhibit a striking similarity. In 184Ptm, the **isomeric** decay also populates other levels. Among them were tentatively identified 2 members of the β-vibrational band. Their position relative to the groundstate band in this transitional-region nucleus is of special interest. 19 references.

IT Energy levels

(**isomeric** 8- state in 106-neutron nuclei)

IT Atomic nuclei

(**isomers**, of 8- in 106-neutron nuclei)

IT Gamma rays

(transitions, from **metastable** states in 106-neutron nuclei)

IT 14265-77-1, Hafnium, **isotope** of mass 178 14265-79-3, Tungsten,

isotope of mass 180 14993-36-3, Osmium, **isotope** of

mass 182 14993-38-5, Platinum, **isotope** of mass 184

15751-45-8, Ytterbium, **isotope** of mass 176

(**nuclear metastable** state of 8- in, and its

γ-decay)

L145 ANSWER 44 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1966:401464 HCAPLUS

DN 65:1464

OREF 65:235e-g

TI Coulomb excitation of electric octupole transitions in ¹¹⁵In nuclei

AU Gangskii, Yu. P.; Lemberg, I. Kh.

CS Phys.-Tech. Inst., Leningrad

SO Yadernaya Fizika (1966), 3(3), 461-4

CODEN: IDFZA7; ISSN: 0044-0027

DT Journal

LA Russian

AB The Coulomb excitation of elec. octupole transitions has been studied hitherto only on even-even nuclei, because the probability of these transitions in odd nuclei is low and the lines of .gamma .-radiation emitted in connection with them are weak. However, these lines can be measured more precisely when formation of an **isomeric** state takes place, because the lifetime of **isomeric** levels is usually rather high and **deexcitation** of octupole transitions from them (on excitation of levels above the **isomeric**) takes place at a time after irradiation at which the intensity of background . gamma.-emission has **decreased**. The Coulomb excitation of those levels of ¹¹⁵In was studied which are **deexcited** to the ground state mainly by a **cascade** effect over a level with an energy of 335 kev. and **half-life** T_{1/2} = 4.5 hrs. that develops in an **isomeric** state of this **nucleus**. The excitation of levels was determined on the basis of the yield of .gamma.-quanta emitted on irradiation of In with a natural isotopic composition (95.8% ¹¹⁵In) with α -particles accelerated to 7.5-11.7 Mev. The exptl. observed relation between this yield at the energy of α -particles could be explained by elec. octupole excitation of 2 groups of levels, the energies of which (0.595 and 0.825 Mev.; 2.06, 2.17, and 2.49 Mev.) were known from earlier spectroscopic work. The excited states for levels of the second group were analogous to collective excited states with characteristics 3- in neighboring even-even **nuclei** (**isotopes** of Cd and Sn).

IT Energy levels

(of indium-115, Coulomb excitation of)

IT Energy levels

(of tellurium-125, lifetime of)

IT Gamma rays

(transitions, in In, Coulomb excitation of elec. octupole)

IT 13966-28-4 13982-08-6 14265-78-2 15741-32-9

(Derived from data in the 7th Collective Formula Index (1962-1966))

IT 7440-74-6P, Indium

RL: PREP (Preparation)

(alpha-ray bombardment of, Coulomb excitation of elec. octupole transitions by, **γ -ray** yield and)

IT 12587-46-1P, Alpha ray

RL: PREP (Preparation)

(indium bombarded by, Coulomb excitation of elec. octupole transitions in, **γ -ray** yield and)

L145 ANSWER 45 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1965:13374 HCAPLUS

DN 62:13374

OREF 62:2428e-g

TI Excitation of isomeric states in 103Rh and 115In by electrons

AU Kruger, P.; Crawford, T. M.; Goldemberg, J.; Barber, W. C.

CS Stanford Univ., Stanford, CA

SO Nuclear Physics (1965), 62(4), 584-92

CODEN: NUPHA7; ISSN: 0029-5582

DT Journal

LA English

AB Yields for the production of the 57-min. isomeric state of 103Rh and for the 4.5-hr. state of 115In were measured both for e and photons of energies between 7 and 18 mev. The e were produced by the Stanford Mark II Linear Accelerator, and the irradiations were made with the "stacked foil" method. The sensitivity of the e/photon yield ratio to the multipole character of the reaction was used to obtain information on the **absorption** process of γ -rays. The results of 103Rh lie somewhat lower than, but approx. parallel to, the **theoretical** results expected for elec. dipole **absorption**. This type of result was observed previously where elec. dipole **absorption** is the dominating **mechanism**. The results for 115In, on the contrary, are more than a factor of 2 higher than expected for dipole **absorption**, indicating that quadrupole or higher multipole transitions have a dominating role. During the experiment the reaction 103Rh(γ , 2p)101Tc was observed. The cross section for this reaction is .apprx.3 orders of magnitude smaller than that for the (γ , γ') reaction.

IT Gamma rays

(absorption or capture of, by 122Te)

IT Gamma rays

(bombardment by, of In and Rh, excitation of nuclear isomeric states in)

IT Energy levels

(of indium-115 and 103Rh, excitation of **isomeric**, by electron or γ -ray bombardment)

IT Energy levels

(of tellurium 122, lifetime of)

IT 183748-02-9, Electron

(bombardment, of In and Rh, excitation of nuclear isomeric states in)

IT 14913-92-9, Technetium, isotope of mass 101

(from Rh by γ -ray action)

IT 12586-59-3, Protons

(from rhodium by γ -ray action)

IT 7440-16-6, Rhodium 7440-74-6, Indium

(nuclear **isomeric** states in, excited by electrons or γ -rays)

L145 ANSWER 46 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 1964:459265 HCAPLUS
 DN 61:59265
 OREF 61:10252b-d
 TI Chemical effects of **nuclear isomeric** transition
 of ^{80}Brm in glassy and polycrystalline alkyl bromides
 AU Hahne, Rolf M. A.; Willard, John E.
 CS Univ. of Wisconsin, Madison
 SO Journal of Physical Chemistry (1964), 68(9), 2582-9
 CODEN: JPCHAX; ISSN: 0022-3654
 DT Journal
 LA Unavailable

AB The chemical fate of ^{80}Br atoms born from the $^{80}\text{Brm} \rightarrow 80\text{Br}$ isomeric transition was determined in glassy and polycryst. PrBr and BuBr under varied conditions of Br_2 concentration, temperature, sample preparation, and parent chemical species of the ^{80}Brm . The organic yields from Br^{80}Brm in polycryst. PrBr are essentially independent of Br_2 concentration over a wide range, supporting other evidence that the Br is present as a homogeneous solution and indicating that the fate of the ^{80}Br is determined very close to the site of birth. Organic yields from Br^{80}Brm in BuBr are higher in the glassy state than in the polycryst. state. In both glassy and polycryst. BuBr the organic yields when the ^{80}Brm is in the form of Bu^{80}Brm are much higher than when it is in the form of Br^{80}Brm . In polycryst. samples they are not appreciably **changed** by the presence of $5 + 10^{-3}$ mole fraction of Br_2 but are significantly reduced by this concentration of Br in glassy samples. The organic yield from 0.01 mole fraction $\text{Br}_2(80\text{Brm})$ in polycryst. n-C₆H₁₄ at 77°K. is **increased** from 3 to 20% by addition of 0.01 mole fraction of PrBr . Electron spin resonance (e.s.r.) observations show that the nature and annealing characteristics of the trapped radicals produced in solid BuBr by γ -irradiation differ for the glassy and polycryst. forms. There is also a substantial difference in the ratios of individual stable products formed by the γ -irradiation of glassy PrBr as compared to the crystalline form.

IT **Gamma rays**
 (alkyl bromide bombarded by, magnetic resonance **absorption**
 of)

IT **Gamma rays**
 (from yttrium-90m)

IT Alkyl bromides
 (hot-atom reactions of ^{80}Brm in neutron-bombarded and magnetic resonance **absorption** of γ -irradiated)

IT Hot-atom chemistry
 (of bromine-80, **metastable**, in neutron-bombarded alkyl bromides)

IT 106-94-5, Propane, 1-bromo-
 (bromine-80m hot-atom reactions in neutron bombarded and magnetic resonance **absorption** of γ -irradiated)

IT 110-54-3, Hexane
 (bromine-80m hot-atom reactions in polycryst.)

IT 109-65-9, Butane, 1-bromo-
 (hot-atom reactions of ^{80}Brm in neutron-bombarded and magnetic resonance **absorption** of γ -irradiated)

IT 7726-95-6, Bromine
 (isotope of mass 80, hot-atom reactions of **metastable**, in neutron-bombarded alkyl bromides)

L145 ANSWER 47 OF 50 HCPLUS COPYRIGHT ACS on STN

AN 1962:29554 HCPLUS

DN 56:29554

OREF 56:5587a-f

TI Photodissociation of complex nuclei at energies between the mesonic threshold and 1150 m.e.v.

AU Roos, Charles E.; Peterson, Vincent Z.

CS Vanderbilt Univ., Nashville, TN

SO Physical Review (1961), 124, 1610-22

CODEN: PHRVAO; ISSN: 0031-899X

DT Journal

LA Unavailable

AB The photodisintegration of complex nuclei by γ - rays up to 1150 m.e.v. was studied by exposing nuclear emulsion to **bremssstrahlung** and observing the photostars produced. Exposures were made at 16 peak energies, 250-1150 m.e.v. Nearly 10,000 photostars were analyzed for star frequency, prong number, angular distribution, and (at 1143 m.e.v.) the visible energy release per star. The **bremssstrahlung** yield of multiprong (≥ 2 -prong) stars increases abruptly as photons capable of producing pions are included. The cross section per photon, derived from the **bremssstrahlung** yield by the photon difference method, is essentially constant at 250 b./nucleon at all energies above 300 m.e.v. A model for photostar production is given which involves photopion production followed by **absorption** or scattering of the pion and recoil nucleon. Exptl. free-nucleon photopion cross sections are used, together with the Monte Carlo calcns. of Metropolis et al., to determine the probability for star formation. Good agreement with both the shape and magnitude of the excitation curve is obtained if nuclear motion is included. Mean and maximum prong number for photostars are the same as for stars produced by pions or protons of equal available energy. The mean free paths in nuclear matter of pions and protons are short, so that photostar yields are a measure of the integrated total photomeson cross section. More than 95% of the multiprong stars made by 1-b.e.v. **bremssstrahlung** are made by photons with energies exceeding that of the pion production threshold of 150 m.e.v. Most of the 1-prong events are produced by photons below 150 m.e.v., and the yield is consistent with giant resonance (γ, p) reactions plus pseudodeuteron photodisintegration, a process with a cross section which **decreases** rapidly as the photon energy increases. Variation of mean prong number with energy and comparison with nuclear **cascade** calcns. suggests that the excitation of the residual nucleus is nearly constant at 100 m.e.v. over a wide range of incident photon energies. The visible energy release per photostar shows a linear dependence on prong number, and more than half of the photon energy is carried away by neutral particles.

IT **Gamma rays**

(interactions, in photographic nuclear emulsion)

IT 7429-91-6P, Dysprosium 7440-15-5P, Rhenium 7440-20-2P, Scandium

7440-27-9P, Terbium 7440-30-4P, Thulium 7440-58-6P, Hafnium

7440-64-4P, Ytterbium 15749-99-2P, Holmium, isotope of mass 171

15766-57-1P, Osmium, isotope of mass 194 51633-90-0P, Mercury, isotope of mass 210

(isotopes of, γ -ray bombardment of,
production of short-lived isomers in)

IT 7440-18-8P, Ruthenium 7440-43-9P, Cadmium

(isotopes of, γ -ray bombardment of,
production of shortlived isomers in)

L145 ANSWER 49 OF 50 HCAPLUS COPYRIGHT ACS on STN
 AN 1947:23614 HCAPLUS
 DN 41:23614
 OREF 41:4712d-h
 TI **Isomeric nuclei**
 AU Trumpy, B.
 CS Geophys. Inst., Bergen, Norway
 SO Bergens Museums Arbok (1944), Volume Date 1943, ((Natural Sci. Sect.), No. 2, Pub. No. 10), 28 pp.
 DT Journal
 LA English
 AB cf. C.A. 37, 2652.8; 38, 6188.1; 40, 6973.2. The **half-life** periods of 38 **isomeric** atomic **nuclei** with stable ground states are tabulated. In most cases several **isomeric nuclei** were found for one and the same atom, and in many cases they must with certainty be ascribed to the same atomic nucleus, as, e.g., with Al and Au which have only one stable **isotope**. This means that several **metastable** states can combine with one and the same stable ground state. The critical excitation energy for one particular element is regularly higher the shorter the lifetime of the **metastable** state. This shows that the different **metastable** states do not combine with the same higher-energy state, and is further in good agreement with the **theoretical** results. For a particular atomic nucleus the energy of the excited **metastable** states increases with **decreasing** lifetime. A more comprehensive energy spectrum of **metastable** states probably exists than that observed in each sep. case. For very short and very long lifetimes the method of investigation fails, in the latter case owing to the slight intensity of the radiation. In these regions of the life periods possibly **metastable** states exist which have escaped observation. For a particular **metastable** state an approx. radiation equilibrium will occur after an irradiation period 4 times as great as the **half-life** period of the **isomeric nucleus** in question. In the equilibrium state as many **isomeric nuclei** are created per time unit as are transformed by radiation. The radiation intensity at equilibrium must be assumed to be a measure of the velocity of formation, i.e. the probability of the creation of a particular **metastable** state. This view may only be applied to the different **metastable** states of one and the same atom, which are all investigated in one particular experiment with the same irradiation and the same counter tube. The radiation intensity **decreases** rapidly within such an **isomeric** series. From this it can be concluded that the probability of the creation of a **metastable** state in an atomic nucleus **decreases** with increasing lifetime. The condition is that the working voltage of the x-ray tube lies sufficiently above the critical excitation energy for all **metastable** states. The results are discussed.
 IT Atomic nuclei
 (isomeric)
 IT Radioactivity
 (of **isomeric nuclei**)

L145 ANSWER 50 OF 50 HCAPLUS COPYRIGHT ACS on STN

AN 1938:38153 HCAPLUS

DN 32:38153

OREF 32:5297b-d

TI Nuclear isomerism of rhodium

AU Reddemann, Hermann

SO Naturwissenschaften (1938), 26, 125

CODEN: NATWAY; ISSN: 0028-1042

DT Journal

LA Unavailable

AB In Rh activated by rapid D-D neutrons the activity of **half life** 40 sec. is about 3 times that of **half life** 4 min. Upon activation in paraffin, i. e., **with slow neutrons**, the ratio **increases** to about 11:1. Coating of the Rh with Cd did not **change** this. Both periods belong to **isomeric nuclei** of Rh104; evidently the relative probability for formation of these **isomers** from the intermediary stage **varies** with the energy of the neutrons captured. Similar results are found with Br: slow and fast neutrons cause a ratio variation from 0.56 to 2 (cf. Soltan and Wertenstein, C. A. 32, 2020.3), although in this case the process is complicated by the possibility of two methods of formation.

IT Atomic nuclei

(neutron-bombarded)

IT 12586-31-1, Neutrons

(absorption or capture of)

IT 7440-43-9, Cadmium

(effect on activity of neutron-bombarded Rh)

IT 12586-31-1, Neutrons

(from deuterium and excitation produced by them)

IT 7726-95-6, Bromine

(isotopes of, by neutron action)

IT 7440-16-6, Rhodium

(neutron-bombarded, and its **nuclear isomerism**)

IT 7782-39-0, Deuterium

(neutrons from)

L172 ANSWER 2 OF 12 HCAPLUS COPYRIGHT ACS on STN
AN 2003:840099 HCAPLUS
DN 139:342423
ED Entered STN: 27 Oct 2003
TI Nuclear isomers and photo nuclear excitation
AU Shizuma, Toshiyuki; Hayakawa, Takehito
CS Advanced Photon Research Center, Kansai Research Establishment, Japan
Atomic Energy Research Institute, Ibaraki, 319-1195, Japan
SO JAERI-Conf (2003), 2003-008(Proceedings of the Fourth Symposium on
Advanced Photon Research, 2003), 252-255
CODEN: JECNEC
PB Japan Atomic Energy Research Institute
DT Journal
LA Japanese
CC 70-1 (Nuclear Phenomena)
AB In the A = 180 region, **isomers** (excited states in **nuclei** with comparatively long **half-lives**) arise due to the symmetry of nuclear shapes around the principal axis. This symmetry is related to the K **quantum** number, and therefore the associated **isomers** are called K **isomers**. Here we report on recent results of nuclear structure studies of high-K **isomers**, and discuss the related physics particularly using high intensity photons such as laser Compton scattering **gamma rays** and laser induced **gamma rays**.
ST nuclear isomer high K structure photoexcitation
IT Nuclear energy level
 Nuclear level excitation
 (isomer; structure studies of high-K nuclear
 isomers excited using high intensity photons such as laser
 Compton scattering **gamma rays** and laser induced
 gamma rays)
IT Gamma ray interactions
Lasers
Nuclear structure
 (structure studies of high-K nuclear **isomers**
 excited using high intensity photons such as laser Compton scattering
 gamma rays and laser induced **gamma**
 rays)

L172 ANSWER 3 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 2003:412981 HCAPLUS
 DN 138:391551
 ED Entered STN: 30 May 2003
 TI **Coupling** of valence particles/holes to 68,70Ni studied via measurements of the B(E2) strength in 67,69,70Ni and 71Cu
 AU Mach, H.; Lewitowicz, M.; Stanoiu, M.; Becker, F.; Blomqvist, J.
 CS ISV, Uppsala University, Nykoping, S-611-82, Swed.
 SO Nuclear Physics A (2003), A719, 213c-216c
 CODEN: NUPABL; ISSN: 0375-9474
 PB Elsevier Science B.V.
 DT Journal
 LA English
 CC 70-1 (Nuclear Phenomena)
 AB We have measured by means of the Advanced Time-Delayed γ . **gamma.**(t) method the **half-lives** of the following levels: 694 keV in 67Ni, 915 keV and 2552 keV in 69Ni, 2677 keV in 70Ni and 2622 keV in 71Cu. Measurements were performed using an array of four small BaF₂ detectors at the LISE spectrometer in GANIL following the fragmentation of 76Ge. It constitutes the first application of such technique to exotic nuclei. A close agreement between the exptl. deduced B(E2) rates and the shell model predictions confirm the model interpretation of the μ s **isomers** in 69,70Ni and 71Cu.
 ST nickel **isotope** level **isomer**; copper 71 level
isomer
 IT **Nuclear transition**
 (B(E2) strength in 67,69,70Ni and 71Cu from nuclear fragmentation of 76Ge)
 IT **Gamma ray**
 Nuclear energy level
 (in 67,69,70Ni and 71Cu from nuclear fragmentation of 76Ge)
 IT **Nuclear energy level**
 (**isomer**; in 67,69,70Ni and 71Cu from nuclear fragmentation of 76Ge)
 IT 14687-41-3, Ge 76, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (B(E2) strength in 67,69,70Ni and 71Cu from nuclear fragmentation of 76Ge)
 IT 15766-16-2, Nickel 67, properties 29675-34-1, Nickel 69, properties
 30017-28-8, Copper 71, properties 36378-25-3, Nickel 70, properties
 (**half-lives** of levels in)
 RE.CNT 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD
 (1) Grawe, H; Nucl Phys A 2002, V704, P211c
 (2) Grawe, H; Proc Workshop on "The beta-decay, from weak interaction to nuclear structure" 1999, P211
 (3) Grzywacz, R; Phys Rev Lett 1998, V81, P766 HCAPLUS
 (4) Ishii, T; Phys Rev Lett 1998, V81, P4100 HCAPLUS
 (5) Mach, H; Nucl Instr and Meth A 1989, V280(49)
 (6) Mach, H; Nucl Phys A 1991, V523, P197
 (7) Moszynski, M; Nucl Instr and Meth A 1989, V277, P407
 (8) Pawlat, T; Nucl Phys A 1994, V574, P623 HCAPLUS

L172 ANSWER 7 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 2000:403324 HCAPLUS

DN 133:95469

ED Entered STN: 19 Jun 2000

TI **Coupling** modes in doubly odd nuclei: The case of 172Ta

AU Hojman, D.; Cardona, M. A.; Davidson, M.; Debray, M. E.; Kreiner, A. J.; Le Blanc, F.; Burlon, A.; Davidson, J.; Levinton, G.; Somacal, H.; Kesque, J. M.; Naab, F.; Ozafran, M.; Stolar, P.; Vazquez, M.; Napoli, D. R.; Bazzacco, D.; Blasi, N.; Lenzi, S. M.; Lo Bianco, G.; Rossi Alvarez, C.

CS Departamento de Fisica, Comision Nacional de Energia Atomica, Buenos Aires, 1429, Argent.

SO Physical Review C: Nuclear Physics (2000), 61(6), 064322/1-064322/21

CODEN: PRVCAN; ISSN: 0556-2813

PB American Physical Society

DT Journal

LA English

CC 70-1 (Nuclear Phenomena)

AB High-spin states in doubly odd 172Ta were investigated in two different expts. by means of in-beam γ -ray and internal-conversion electron spectroscopy techniques. Excited states of 172Ta were populated using the 159Tb(180,5n) and 165Ho(12C,5n) reactions at beam energies of 93 and 79 MeV, resp. Eleven rotational bands, including twin bands in the normal deformation regime, have been observed and their configurations discussed. Three **isomeric** states have been found and their **half-lives** measured. Alignments, band crossing frequencies, and electromagnetic properties have been analyzed in the framework of the cranking model.

ST tantalum 172 level **isomeric**; internal conversion electron
tantalum 172; **gamma** tantalum 172

IT **Nuclear energy level**
(**isomer**; of tantalum 172)

IT Electron internal conversion
Gamma ray
Nuclear energy level
Nuclear transition

IT Rotational nuclear level
(of tantalum 172)

IT 15759-26-9, Tantalum 172, properties
RL: PRP (Properties)
(nuclear high-spin states in)

IT 7440-27-9, Terbium, reactions 7440-60-0, Holmium, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(tantalum 172 levels from reaction of)

L172 ANSWER 8 OF 12 HCAPLUS COPYRIGHT ACS on STN
AN 1977:590358 HCAPLUS
DN 87:190358
OREF 87:29995a,29998a
TI Magnetic moments of 8+ and 11- states of a molybdenum-92 nucleus and anomalous orbital magnetism of protons in the region of Z = 40-44
AU Kuznichenko, A. V.; Lebedev, V. N.; Levon, A. I.; Nemets, O. F.
CS Inst. Yad. Issled., Kiev, USSR
SO Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya (1977), 41(8), 1624-33
CODEN: IANFAY; ISSN: 0367-6765
DT Journal
LA Russian
CC 70-2 (Nuclear Phenomena)
AB The $^{90}\text{Zr}(\alpha, 2n)^{92}\text{Mo}$ reaction at 27 MeV energy of the α -particle is applied to produce ^{92}Mo [14191-67-4] in 2 of its **isomeric** states: 2765 keV with spin-parity value of 8+ and lifetime of 8.8 ns, and 4487 keV with spin-parity 11- and **halflife** of 220 ns. Angular distributions of γ -quanta from various states of ^{92}Mo placed in an external magnetic field exhibit an intensity modulation due to the Larmor precession of that **nucleus** in its **isomeric** states. This exptl. method gives the values of the gyroscopic factors for the 2 **isomeric** staes under study. The exptl. values are analyzed in terms of their deviation from single-particle model values of the g-factors. The concept of the additivity of magnetic moments is discussed, and various correction terms are introduced. Also the g-factors of the p states of other nuclei in the region around Zr are discussed in the framework of a model with a spin polarization of the core of the nucleus.
ST molybdenum 92 level g factor
IT Nuclear g-factor
Nuclear magnetic moment
(of molybdenum-92 **isomeric** states)
IT 14191-67-4, properties
RL: PRP (Properties)
(nuclear energy levels of, g-factor of)

L172 ANSWER 10 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 1967:469570 HCAPLUS

DN 67:69570

OREF 67:13089a

TI High resolution studies of the γ -rays from
isomeric states with half-lives of 10 μ sec.-30 msec. in nuclei with Z = 63-83

AU Conlon, Thomas W.

SO U. S. A. E. C. (1966), PUC-937-217, 202 pp. Avail.: Dep. mn; CFSTI
From: Nucl. Sci. Abstr. 1967, 21(6), 10007

CODEN: XAERAK

LA English

AB Isomeric states with half-lives between 10 μ sec. and 30 msec. in the atomic number range $63 \leq Z \leq 83$ were excited principally by the (p,n) and (p,2n) reactions, using 17.5-Mev. p. The γ -rays involved in the decay of the isomeric states were measured by using a Li-drifted Ge detector. Nine new isomers were produced which have half-lives in the quoted range. For 6 of these the isomeric nucleus has been uniquely identified and the multipolarities-of the γ -rays involved have in most cases been assigned. These isomeric nuclei and the measured-value-of the half-lives (in μ sec.) are: 153Gd, 75.8; 159Dy, 122.3; 165Tm, 80.3; 172Lu, 434; 191Pt, 107; and 207Bi, 174. The decay of the isomeric states in 159Dy and 207Bi give rise to particularly complicated spectra; in each case .apprx.10 . gamma.-rays are involved. A unique scheme for the decay of the 159Dy isomer has been established; for the 207Bi isomer, a level scheme has been constructed which is consistent with the intensities and energies of the observed transitions. The remaining 3 new isomers were observed following bombardment of Gd, Hf, and 208Pb; their respective half-lives are: 180, 6.1 + 103, 500 μ sec. Fourteen isomers which have been previously reported were excited in this work. The isomeric nuclei together with the halflives in μ sec. are: 151Eu, 62.7; 153Tb, 190; 173Lu, 87.5; 175Hf, 54; 181Ta, 22.0; 180W, 5.53 + 103; 181W, 16.0; 187Os, 31; 187Ir, 29 + 103; 189Ir, 12.3 + 103; 199Tl, 29.2 + 103; 200Tl, 33 + 103; 201Tl, 2.7 + 103; and 206Pb, 142. In almost all of these cases, the precision of the known transition energies and known halflives were greatly improved. The multipolarities of the transitions involved and the identity of the isomeric nuclei have been verified. The origin of the isomeric states are discussed principally in terms of the Nilsson model for odd-A nuclei. By considering the Nilsson states available to the last 2 particles, the isomerism in the even-A nuclei 172Lu and 180W can be understood. A state which may be described by the coupling of 3 particles, each described by Nilsson orbitals, is suggested to explain the observed isomer in 159Dy. Reduced matrix elements were extracted for the isomeric transitions and were examined to bring out possible systematic effects.

IT Matrixes

(for gamma rays from isomeric transitions)

IT Nuclear energy levels

(lifetime of, determination of short)

IT Gamma rays

(transitions of, multipolarity of)

IT 12586-31-1, Neutrons

(from proton bombardment, short-lived nuclear energy level excitation in)

IT 12586-59-3, Protons

(neutrons from bombardment by, short-lived nuclear energy level excitation in)

IT 13982-38-2, Bismuth, isotope of mass 207, properties

(nuclear energy levels of, determination of short half-life of)

L172 ANSWER 11 OF 12 HCAPLUS COPYRIGHT ACS on STN
AN 1967:449224 HCAPLUS
DN 67:49224
OREF 67:9222h,9223a
ED Entered STN: 12 May 1984
TI Activation of short lived **isomers** of stable **nuclei** by indium-116m **γ -rays**
AU Abrams, I.; Pelekis, L.
SO Latvijas PSR Zinatnu Akademijas Vestis, Fizikas un Tehnisko Zinatnu Serija (1967), (1), 3-6
CODEN: LZFTA6; ISSN: 0321-1673
DT Journal
LA Russian
CC 75 (Nuclear Phenomena)
AB Inelastic scattering of **γ -quanta** on stable nuclei by using **γ -radiations** from a radioactive **isotope** is investigated. The method for studying the resultant short lived **isomers** with **half life** of 2-50 sec. is described. By inelastic 116Im **γ -ray** scattering (flux = $1.1 + 10^{12} \text{ } \gamma\text{-quanta/cm.2-sec.}$) the following short lived **isomers** were obtained: 77Sem, 79Brm, 107Agm, 109Agm, 167Erm, 179Hfm. The **halflives**, the activation cross sections, and the energy of the **isomeric** transitions were determined
ST SELENIUM 77M; **GAMMA** SCATTERING; BROMINE 79M; ERBIUM 167M; SILVER 107M 109M; INDIUM 116M **GAMMA**; HAFNIUM 179M
IT **Gamma rays**
 (bombardment, activation of short-lived **isomers** of stable nuclei by)
IT **Nuclear energy levels**
 (of **isomers**, **γ -activation** of)
IT 14265-76-0P, preparation 14336-94-8P, properties 14378-37-1P,
 preparation 14378-38-2P, preparation 14380-60-0P, preparation
 14681-72-2P, preparation
RL: PREP (Preparation)
 (nuclear **isomer** of, activation by **γ -rays**)

L172 ANSWER 12 OF 12 HCAPLUS COPYRIGHT ACS on STN

AN 1942:14412 HCAPLUS

DN 36:14412

OREF 36:2203d-g

TI **Isomerism of atomic nuclei**

AU Rusinov, L. I.; Yuzefovich, A. A.

SO Journal of Physics (Moscow) (1940), 3, 281-6

CODEN: JOPYA6; ISSN: 0368-3400

DT Journal

LA English

CC 3 (Subatomic Phenomena and Radiochemistry)

AB cf. C. A. 35, 3895.2. **Isomeric nuclei**, according to the Bohr-Weizsacker theory (C. A. 31, 3378.3), have the same atomic number and the same mass number in 2 different energy states. These are distinguished by a large difference in angular momentum and the **quantum** mech. prohibitions make the transition of the nucleus from the excited to the ground state highly improbable. The theory is applied to the exptl. data on the β and γ transformations of the radioactive Br-80 nucleus. Each β transition is accompanied by the emission of a soft electron of approx. 30 e. kv., determined by **absorption** in cellophane, and interpreted as an electron of internal conversion. This requires that characteristic **x- rays** be emitted in the process of **decay** of radioactive Br. Electromagnetic radiation of intensity **increasing** with the **half-life** of the **isomeric** Br-80 **nucleus** is found to have a wave length of 1 A. The observed rays from the **isomeric** Br-80 **nucleus** are differently **absorbed** in filters of As and Se with equal surfaces masses. The total excitation energy of the **metastable** Br-80 nucleus is 85 e. kv. A transition takes place to a lower excited level differing by 48 e. kv., performed only by internal electron conversion. From the 37-e. kv. level a transition occurs to the ground state of the Br-80 nucleus; the coefficient of internal conversion is approx. 50%, which, according to the theory, represents a dipole transition. Direct transition from the 85-e. kv. to the ground level does not occur.

IT Atomic nuclei

(isomerism of)

IT 7726-95-6, Bromine

(isomers of mass 80, nuclear transitions
in)

L175 ANSWER 1 OF 1 HCAPLUS COPYRIGHT ACS on STN
 AN 2004:444957 HCAPLUS
 DN 141:147683
 ED Entered STN: 02 Jun 2004
 TI Implementing quantum gates on oriented optical isomers
 AU Sola, Ignacio R.; Malinovsky, Vladimir S.; Santamaria, Jesus
 CS Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
 SO Journal of Chemical Physics (2004), 120(23), 10955-10960
 CODEN: JCPSA6; ISSN: 0021-9606
 PB American Institute of Physics
 DT Journal
 LA English
 CC 73-10 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 AB Section cross-reference(s): 22, 65
 Optical enantiomers are proposed to encode mol. two-qubit information processing. Using sequences of pairs of nonresonant optimally polarized pulses, different schemes to implement quantum gates, and to prepare entangled states, are described. We discuss the role of the entanglement phase and the robustness of the pulse sequences which depend on the area theorem. Finally, possible scenarios to generalize the schemes to n-qubit systems are suggested.
 ST quantum gate oriented enantiomer nonresonant polarized pulse pair
 IT Isomerization
 (enantiomerization; implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT Energy level
 (entangled; implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT Enantiomers
 (implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT Laser radiation
 (pulsed, polarized; implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT Polarized laser radiation
 (pulsed; implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT Information theory
 (quantum; implementing quantum gates on oriented optical isomers using sequences of pairs of nonresonant optimally polarized pulses)
 IT 14056-58-7, Phosphinothioic acid
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process)
 (implementing quantum gates on oriented optical isomers of)

10/599, 555

— Search Histories —

25aug08 12:39:25 User259284 Session D4356.2

Dialog File 2:INSPEC 1898-2008/Jul W4
 (c) Institution of Electrical Engineers

Set	Items	Description
S1	20612	ENTANGL????? OR QUANT????? (3N) COUPL?????
S2	3020	S1(5N) (PHOTON???? OR ENERGY OR ENERGIES OR PARTICLES OR RADIATION OR RAY OR GAMMA OR X OR IRRADIAT???? OR LIGHT OR LASE???)
S3	2125	ENTANGL????? (5N) (PHOTON???? OR ENERGY OR ENERGIES OR PARTICLES OR RADIATION OR RAY OR GAMMA OR X OR IRRADIAT???? OR LIGHT OR LASE???)
S4	1852	QUANT????? (3N) COUPL????? (5N) (PHOTON???? OR ENERGY OR ENERGIES OR PARTICLES OR RADIATION OR RAY OR GAMMA OR X OR IRRADIAT???? OR LIGHT OR LASE???)
S5	3954	S3 OR S4
S6	3954	S2:S4
S7	603	HALFLI?
S8	8366	HALF()LIFE??
S9	3854	HALF()LIVE??
S10	109845	LIFETIME??
S11	5509	LIFE()TIME
S12	979	LIFE()TIMES
S13	17333	DECAY????? (2N) (DURATION?? OR PROLONG????? OR SHORTEN????? OR LENGTHEN????? OR INTERVAL?? OR TIME OR TIMES OR SEGMENT???? OR SECONDS OR MINUTES OR HOURS OR DAYS OR INSTANTAN???????)
S14	91	S6 AND S7:S13
S15	0	S14 AND RADIOISOMER?
S16	0	S14 AND ISOMER?
S17	1	S14 AND ISOTOP?
S18	0	S14 AND RADIOISOTOP?
S19	0	S14 AND RADIONUC?
S20	0	S14 AND NUCLIDE??
S21	0	S14 AND NUCLEIDE??
S22	2	S14 AND NUCLEI
S23	2	S14 AND NUCLEUS??
S24	4	S14 AND NUCLEAR
S25	6	S15:S24
S26	28531	GROUND STATES (January 1995)
S27	29575	EXCITED STATES (January 1995)
S28	2083	METASTABLE STATE
S29	20059	NUCLEAR ENERGY LEVEL TRANSITIONS (January 1969)
S30	42350	NUCLEAR ENERGY LEVEL?
S31	10533	BOUND STATES (January 1995)
S32	76	PROBAB????? (5N) DEEXCIT???????
S33	94	PROBAB????? (5N) DE() EXCIT???????
S34	13	S14 AND S26:S31
S35	0	S14 AND S32
S36	0	S14 AND S33
S37	6428	S1:S36 AND ISOMER???????
S38	0	S1:S36 AND RADIOISOMER?????????
S39	28	S37 AND ABSOR????? (3N) PHOTON?????
S40	25	S37 AND ABSOR????? (3N) GAMMA
S41	8	S37 AND ABSOR????? (3N) LIGHT
S42	12	S37 AND ABSOR????? (3N) LASE?????
S43	4	S37 AND ABSOR????? (3N) RADIAT??????
S44	2	S37 AND ABSOR????? (3N) IRRADIAT???????
S45	0	S37 AND ABSOR????? (3N) BOMBARD??????
S46	0	S37 AND ABSOR????? (3N) BEAM
S47	0	S37 AND ABSOR????? (3N) BEAMS
S48	0	S37 AND ABSOR????? (3N) BREMS???????????
S49	8	S37 AND ABSOR????? (3N) ENERGY

P. 1 of 2

S50 0 S37 AND ABSOR???????(3N) CASCAD???????

 S51 11 S37 AND ABSOR???????(3N) X

 S52 22 S37 AND ABSOR???????(3N) RAY

 S53 7 S37 AND ABSOR???????(3N) RAYS

 S54 90 S39:S53

 S55 90 S54 NOT S25

 S56 90 S55 AND S1:S31

 S57 0 S55 AND S32:S34

 S58 0 S55 AND CHANG???????(3N) (LIFE OR LIFES OR LIVE OR LIVES OR -
HALFLI????? OR LIFETIM? OR DECAY????? OR DEEXCIT????????? OR -
DE() EXCIT????????? OR PROBABILIT????)

 S59 0 S55 AND ENTANGL???????(7N) (LIFE OR LIFES OR LIVE OR LIVES -
OR HALFLI????? OR LIFETIM? OR DECAY????? OR DEEXCIT?????????
OR DE() EXCIT????????? OR PROBABILIT????)

 S60 0 S55 AND COUPL???????(7N) (LIFE OR LIFES OR LIVE OR LIVES OR -
HALFLI????? OR LIFETIM? OR DECAY????? OR DEEXCIT????????? OR -
DE() EXCIT????????? OR PROBABILIT????)

 S61 2 S55 AND QUANT???????(7N) (LIFE OR LIFES OR LIVE OR LIVES OR -
HALFLI????? OR LIFETIM? OR DECAY????? OR DEEXCIT????????? OR -
DE() EXCIT????????? OR PROBABILIT????)

 S62 0 S55 AND QUANT???????(2N) COUPL???????

 S63 0 S55 AND QUANT???????(2N) ENTANG?????????

 S64 0 S55 AND ENTANG?????????

 S65 5 S55 AND COUPL???????

 S66 4 S55 AND QUANTA??

 S67 12 S55 AND QUANTUM??

 S68 18 S61:S67

 S69 73 S1 AND CI=NB

 S70 147 S1 AND CI=CD

 S71 5 S1 AND CI=CE

 S72 30 S1 AND CI=CS

 S73 9 S1 AND CI=SN

 S74 70 S1 AND CI=TE

 S75 9 S1 AND CI=XE

 S76 8 S1 AND CI=HF

 S77 1 S1 AND CI=IR

 S78 9 S1 AND CI=PT

 S79 845 S1 AND CI=IN

 S80 1127 S69:S79

 S81 158 S80 AND ENTANGL???????

 S82 996 S80 AND COUPL??????

 S83 1090 S80 AND QUANT?????

 S84 140 S80 AND ABSOR???????

 S85 26 S1AND82AND83

 S86 2 S1AND82AND84

 S87 133 S3AND82AND84

 S88 0 S80 AND ISOMER??????

 S89 50 S1 AND ISOMER??????

 S90 207 S85:S89

 S91 207 S90 NOT S68

 S92 9 S91 AND LIFE??????

 S93 0 S91 AND HALFLI?

 S94 0 S91 AND HALF() LIFE

 S95 0 S91 AND HALF() LIFES

 S96 0 S91 AND HALF() LIVE

 S97 0 S91 AND HALF() LIVES

 S98 10 S91 AND DECAY???????

 S99 0 S91 AND DEEXCIT?

 S100 0 S91 AND DE() EXCIT??????

 S101 17 S92:S100

INSPEC
P-2 of 2

25aug08 13:04:44 User259284 Session D4356.4

SYSTEM:OS - DIALOG OneSearch

File 6:NTIS 1964-2008/Aug W5
 File 23:CSA TECHNOLOGY RESEARCH DATABASE 19632008/AUG
 File 305:Analytical Abstracts 19802008/Jul W1
 File 8:Ei Compendex(R) 18842008/Aug W3
 File 14:Mechanical and Transport Engineer Abstract 19662008/Jul
 File 25:Weldasearch 1966-2008/Jun
 File 31:World Surface Coatings Abs 19762008/Jul
 File 33:Aluminium Industry Abstracts 19662008/Aug
 File 35:Dissertation Abs Online 18612008/Apr
 File 36:Metabase 1965-20080825
 File 46:Corrosion Abstracts 19662008/Aug
 File 56:Computer and Information Systems Abstracts 19662008/Jul
 File 57:Electronics & Communications Abstracts 19662008/Jul
 File 60:ANTE: Abstracts in New Tech & Engineer 19662008/Jul
 File 61:Civil Engineering Abstracts. 19662008/Jul
 File 63:Transport Res(TRIS) 1970-2008/Jun
 File 64:Environmental Engineering Abstracts 19662008/Jun
 File 65:Inside Conferences 1993-2008/Aug 21
 File 68:Solid State & Superconductivity Abstracts 19662008/Aug
 File 81:MIRA - Motor Industry Research 2001-2008/Feb
 File 95:TEME-Technology & Management 1989-2008/Aug W3
 File 96:FLUIDEX 1972-2008/Jun
 File 99:Wilson Appl. Sci & Tech Abs 19832008/Jul
 File 103:Energy SciTec 1974-2008/Jul B2
 File 118:ICONDA-Intl Construction 1976-2008/Jul
 File 134:Earthquake Engineering Abstracts 19662008/Jul
 File 144:Pascal 1973-2008/Aug W3
 File 239:Mathsci 1940-2008/Sep
 File 240:PAPERCHEM 19672008/Aug W3
 File 248:PIRA 1975-2008/Oct W4
 File 293:Engineered Materials Abstracts 19662008/Aug
 File 315:ChemEng & Biotech Abs 1970-2008/Aug
 File 323:RAPRA Rubber & Plastics 19722008/Jun
 File 335:Ceramic Abstracts/World Ceramics Abstracts 19662008/Jul

Set	Items	Description
S1	68	AU=DESBRANDES R?
S2	86	AU=DESBRANDES, R?
S3	0	AU=DES BRANDES, R?
S4	0	AU=DES BRANDES R?
S5	1	AU=VANGENT D?
S6	0	AU=VANGENT, D?
S7	19	AU=VAN GENT, D?
S8	24	AU=VAN GENT D?
S9	1931	AU=COLLINS C?
S10	3156	AU=COLLINS, C?
S11	4313	ENTANGL??????(4N) (PHOTON??? OR ENERGY OR GAMMA)
S12	19	ENTANGL??????(4N) QUANTA??
S13	11268	ENTANGL??????(4N) QUANTUM??
S14	22549	COUPL???(4N) QUANTUM??
S15	407304	ABSOR??????(3N) (PHOTON??? OR ENERGY OR GAMMA OR X OR RAY OR RAYS OR BEAM OR BEAMS OR RADIATION OR LIGHT)
S16	4649	S1:S10
S17	0	16AND11
S18	0	16AND12
S19	0	16AND13
S20	1	16AND14
S21	63	16AND15
S22	0	S21 AND ENTANG???????
S23	2	S21 AND COUPL?????
S24	3	S20 OR S23
S25	2	RD S24 (unique items)
S26	526	LIFETIME?? AND S11:S14
S27	25	LIFE()TIME AND S11:S14

Page 1 of 2

S28 8 LIFE() TIMES AND S11:S14
S29 1298 DECAY???? AND S11:S14
S30 0 HALFLI? AND S11:S14
S31 3 HALF()LIFE AND S11:S14
S32 0 HALF()LIFES AND S11:S14
S33 0 HALF()LIVES AND S11:S14
S34 0 HALF()LIVE AND S11:S14
S35 16 DEEXCIT????? AND S11:S14
S36 21 DE()EXCIT????? AND S11S14
S37 1350 S27:S36
S38 43 S15 AND S37
S39 2 ISOMER????? AND S37
S40 0 RADIOISOMER????? AND S37
S41 11 RADIOISOTOP????? AND S37
S42 22 ISOTOP????? AND S37
S43 2 NUCLIDES AND S37
S44 0 NUCLEIDES AND S37
S45 0 NUCLEIDE AND S37
S46 0 NUCLIDE AND S37
S47 0 RADIONU????? AND S37
S48 65 S38:S47
S49 55 RD S48 (unique items)
S50 55 S49 NOT S25
S51 0 S50 AND DEEXCIT?????
S52 2 S50 AND DE()EXCIT?????
S53 11 S50 AND ENTANGL?????
S54 13 S52:S53

Dialog
NPL
page 2 of 2

25aug08 13:17:09 User259284 Session D4356.5

Dialog File 34:SciSearch(R) Cited Ref Sci 1990-2008/Aug W4
(c) The Thomson Corp

Set	Items	Description
S1	379	CR=COLLINS CB, 199?
S2	54	CR=COLLINS CB, 200?
S3	394	S1:S2
S4	56	S3/2005-2008
S5	338	S3 NOT S4
S6	0	S5 AND ENTANGL?????????
S7	0	S5 AND QUANT????(3N)COUPL?????

page 1 of 1

CAS/STN FILE 'HCAPLUS' ENTERED AT 08:03:57 ON 26 AUG 2008

E OLARIU S, 1998, V58/RE
L1 15 SEA ABB=ON PLU=ON ("OLARIU S, 1998, V58, P2560, PHYS REV C"/RE OR "OLARIU S, 1998, V58, P333, PHYS REV C"/RE OR "OLARIU S, 1998, VC58, P2560, PHYS REV"/RE OR "OLARIU S, 1998, VC58, P333, PHYS REV"/RE OR "OLARIU S, 1999, V44, P45, ROMANIAN JOURNAL OF PHYSICS"/RE)
L2 14 SEA ABB=ON PLU=ON L1 AND 1998-2004/PY
L3 12 SEA ABB=ON PLU=ON L2 AND GAMMA
L4 7 SEA ABB=ON PLU=ON L2 AND PHOTON#####
L5 2 SEA ABB=ON PLU=ON L2 AND ABSOR#####
L6 2 SEA ABB=ON PLU=ON L2 AND ABSOR#####
L7 3 SEA ABB=ON PLU=ON L2 AND RATE
L8 0 SEA ABB=ON PLU=ON L2 AND CHANG#####
L9 9 SEA ABB=ON PLU=ON L2 AND DECAY#####
L10 2 SEA ABB=ON PLU=ON L2 AND LIFE#####
L11 3 SEA ABB=ON PLU=ON L2 AND LIVE###
L12 0 SEA ABB=ON PLU=ON L2 AND HALFILI#####
L13 2 SEA ABB=ON PLU=ON L2 AND DEEXCIT?
L14 8 SEA ABB=ON PLU=ON L2 AND EXCIT#####
L15 14 SEA ABB=ON PLU=ON (L2 OR L3 OR L4 OR L5 OR L6 OR L7 OR L8 OR L9 OR L10 OR L11 OR L12 OR L13 OR L14)
D BIB AB IT RE 1-14

FILE 'STNGUIDE' ENTERED AT 08:06:38 ON 26 AUG 2008

FILE 'HCAPLUS' ENTERED AT 08:12:58 ON 26 AUG 2008

E VYSOTSKII V, 1998/RE
L16 0 SEA ABB=ON PLU=ON ("VYSOTSKII V, 1998, P100, PROCEEDINGS OF THE REGIONAL SCIENTIFIC TECHNICAL CONFERENCE OF DVGMA"/RE OR "VYSOTSKII V, 1998, P137, POVERKHNOSt"/RE OR "VYSOTSKII V, 1998, P1905, IZV AKAD NAUK SER KHIM"/RE OR "VYSOTSKII V, 1998, P69, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998, P71, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998, P79, TAMOZHENNAYA POLITIKA ROSSII NA DAL NEM VOSTOKE"/RE OR "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY PROCEEDINGS"/RE OR "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROC INT CONF PHYS NUCL SCI TECHNOL"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V47, P1851, RUSS CHEM BULL"/RE OR "VYSOTSKI I V, 1998, V57, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V57, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYSICAL REVIEW C"/RE OR "VYSOTSKII V, 1998, V60, P729, COLLOID J ENGL TRANSL"/RE OR "VYSOTSKII V, 1998, V60, P729, KOLLOID ZH"/RE OR "VYSOTSKII V, 1998, V60, P729, KOLLOIDN ZH"/RE OR "VYSOTSKII V, 1998, VC58, P337, PHYS REV"/RE) AND ENTANGL#####
L17 5 SEA ABB=ON PLU=ON ("VYSOTSKII V, 1998, P100, PROCEEDINGS OF THE REGIONAL SCIENTIFIC TECHNICAL CONFERENCE OF DVGMA"/RE OR "VYSOTSKII V, 1998, P137, POVERKHNOSt"/RE OR "VYSOTSKII V, 1998, P1905, IZV AKAD NAUK SER KHIM"/RE OR "VYSOTSKII V, 1998,

CAS/STN
Fwd.cite

page
1 of 3

P69, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P71, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P79, TAMOZHENNAYA POLITIKA ROSSII NA DAL NEM VOSTOKE"/RE OR
 "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE
 PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V,
 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR
 SCIENCE AND TECHNOLOGY PROCEEDINGS"/RE OR "VYSOTSKII V, 1998,
 V2, P1739, INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR
 SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739,
 PROC INT CONF PHYS NUCL SCI TECHNOL"/RE OR "VYSOTSKII V, 1998,
 V2, P1739, PROCEEDINGS OF INTERNATIONAL CONFERENCE ON THE
 PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V,
 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
 ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR
 "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL
 CONFERENCE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR
 "VYSOTSKII V, 1998, V47, P1851, RUSS CHEM BULL"/RE OR "VYSOTSKI
 I V, 1998, V57, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998,
 V57, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS
 REV"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS REV C"/RE OR
 "VYSOTSKII V, 1998, V58, P337, PHYSICAL REVIEW C"/RE OR
 "VYSOTSKII V, 1998, V60, P729, COLLOID J ENGL TRANSL"/RE OR
 "VYSOTSKII V, 1998, V60, P729, KOLLOID ZH"/RE OR "VYSOTSKII V,
 1998, V60, P729, KOLLOIDN ZH"/RE OR "VYSOTSKII V, 1998, VC58,
 P337, PHYS REV"/RE) AND QUANTUM

L18

43 SEA ABB=ON PLU=ON ("VYSOTSKII V, 1998, P100, PROCEEDINGS OF
 THE REGIONAL SCIENTIFIC TECHNICAL CONFERENCE OF DVGMA"/RE OR
 "VYSOTSKII V, 1998, P137, POVERKHNOSt"/RE OR "VYSOTSKII V,
 1998, P1905, IZV AKAD NAUK SER KHIM"/RE OR "VYSOTSKII V, 1998,
 P69, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P71, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P79, TAMOZHENNAYA POLITIKA ROSSII NA DAL NEM VOSTOKE"/RE OR
 "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE
 PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V,
 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR
 SCIENCE AND TECHNOLOGY PROCEEDINGS"/RE OR "VYSOTSKII V, 1998,
 V2, P1739, INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR
 SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739,
 PROC INT CONF PHYS NUCL SCI TECHNOL"/RE OR "VYSOTSKII V, 1998,
 V2, P1739, PROCEEDINGS OF INTERNATIONAL CONFERENCE ON THE
 PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V,
 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
 ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR
 "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL
 CONFERENCE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR
 "VYSOTSKII V, 1998, V47, P1851, RUSS CHEM BULL"/RE OR "VYSOTSKI
 I V, 1998, V57, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998,
 V57, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS
 REV"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS REV C"/RE OR
 "VYSOTSKII V, 1998, V58, P337, PHYSICAL REVIEW C"/RE OR
 "VYSOTSKII V, 1998, V60, P729, COLLOID J ENGL TRANSL"/RE OR
 "VYSOTSKII V, 1998, V60, P729, KOLLOID ZH"/RE OR "VYSOTSKII V,
 1998, V60, P729, KOLLOIDN ZH"/RE OR "VYSOTSKII V, 1998, VC58,
 P337, PHYS REV"/RE)

CAS/STN
fwd cte

Page
2 of 3

L19

0 SEA ABB=ON PLU=ON ("VYSOTSKII V, 1998, P100, PROCEEDINGS OF
 THE REGIONAL SCIENTIFIC TECHNICAL CONFERENCE OF DVGMA"/RE OR
 "VYSOTSKII V, 1998, P137, POVERKHNOSt"/RE OR "VYSOTSKII V,
 1998, P1905, IZV AKAD NAUK SER KHIM"/RE OR "VYSOTSKII V, 1998,
 P69, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P71, PROC IX CONF LASER OPTICS 98"/RE OR "VYSOTSKII V, 1998,
 P79, TAMOZHENNAYA POLITIKA ROSSII NA DAL NEM VOSTOKE"/RE OR

"VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONF ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY PROCEEDINGS"/RE OR "VYSOTSKII V, 1998, V2, P1739, INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROC INT CONF PHYS NUCL SCI TECHNOL"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V2, P1739, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE PHYSICS OF NUCLEAR SCIENCE AND TECHNOLOGY"/RE OR "VYSOTSKII V, 1998, V47, P1851, RUSS CHEM BULL"/RE OR "VYSOTSKII V, 1998, V57, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V57, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYS REV C"/RE OR "VYSOTSKII V, 1998, V58, P337, PHYSICAL REVIEW C"/RE OR "VYSOTSKII V, 1998, V60, P729, COLLOID J ENGL TRANSL"/RE OR "VYSOTSKII V, 1998, V60, P729, KOLLOID ZH"/RE OR "VYSOTSKII V, 1998, V60, P729, KOLLOIDN ZH"/RE OR "VYSOTSKII V, 1998, VC58, P337, PHYS REV"/RE) AND QUANTA

L20	12	SEA ABB=ON	PLU=ON	L18 AND LIFE#####
L21	7	SEA ABB=ON	PLU=ON	L18 AND LIVE#####
L22	0	SEA ABB=ON	PLU=ON	L18 AND HALFLI#####
L23	8	SEA ABB=ON	PLU=ON	L18 AND TIME
L24	17	SEA ABB=ON	PLU=ON	L18 AND DECAY#####
L25	0	SEA ABB=ON	PLU=ON	L18 AND DURATION
L26	1	SEA ABB=ON	PLU=ON	L18 AND PROLONG#####
L27	0	SEA ABB=ON	PLU=ON	L18 AND INTERVAL
L28	0	SEA ABB=ON	PLU=ON	L18 AND ELAPS#####
L29	6	SEA ABB=ON	PLU=ON	L18 AND ABSOR#####
L30	1	SEA ABB=ON	PLU=ON	L18 AND COLLI#####
L31	0	SEA ABB=ON	PLU=ON	L18 AND BOMBAR#####
L32	27	SEA ABB=ON	PLU=ON	(L17 OR (L20 OR L21 OR L22 OR L23 OR L24 OR L25 OR L26))
L33	7	SEA ABB=ON	PLU=ON	(L29 OR L30)
L34	5	SEA ABB=ON	PLU=ON	L32 AND L33
L35	5	SEA ABB=ON	PLU=ON	L34 NOT L15
L36	5	SEA ABB=ON	PLU=ON	L35 AND 1998-2004/PY

D BIB AB IT RE 1-5

CAPS/STN
Swd cite
page 3 of 3

CAS/STN FILE 'LCA' ENTERED AT 12:11:28 ON 25 AUG 2008

L1 231 SEA ABB=ON PLU=ON HALFLIFE# OR HALF(W) (LIFE# OR LIVE#) OR
HALFLIVE#
L2 0 SEA ABB=ON PLU=ON (DEEXCIT##### OR DE EXCIT#####) (4A) PROBAB
ILIT####
L3 57 SEA ABB=ON PLU=ON DECAY#### (4A) (TIME## OR TIMING OR DURATION
OR ELAPS### OR INTERVAL# OR SECONDS OR MICROSEC### OR
MILLISEC#### OR MINUTES OR HOURS OR DAYS OR YEARS)
L4 42 SEA ABB=ON PLU=ON (CHANG### OR MODIF##### OR ALTER OR
ALTERING OR ALTERS OR ALTERED OR SHORTER#### OR LENGTHEN####
OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG####
OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER####
##) (10A) L1
L5 0 SEA ABB=ON PLU=ON (CHANG### OR MODIF##### OR ALTER OR
ALTERING OR ALTERS OR ALTERED OR SHORTER#### OR LENGTHEN####
OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG####
OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER####
##) (10A) L2
L6 7 SEA ABB=ON PLU=ON (CHANG### OR MODIF##### OR ALTER OR
ALTERING OR ALTERS OR ALTERED OR SHORTER#### OR LENGTHEN####
OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG####
OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER####
##) (10A) L3
L7 4 SEA ABB=ON PLU=ON L1(10A) (THEORY OR THEORETIC##### OR KNOWN
OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
L8 0 SEA ABB=ON PLU=ON L2(10A) (THEORY OR THEORETIC##### OR KNOWN
OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
L9 0 SEA ABB=ON PLU=ON L3(10A) (THEORY OR THEORETIC##### OR KNOWN
OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
L10 7 SEA ABB=ON PLU=ON L1(10A) (INITIAL## OR BEFORE OR PREVIOUS##
OR PRIOR OR STARTING)
L11 0 SEA ABB=ON PLU=ON L1(10A) (PRE OR PREBOMBARD##### OR PREIRRADI
ATION)
L12 0 SEA ABB=ON PLU=ON L1(10A) (FINAL OR LATER OR (FOLLOWING OR
AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON#####
OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)
L13 0 SEA ABB=ON PLU=ON L2(10A) (INITIAL## OR BEFORE OR PREVIOUS##
OR PRIOR OR STARTING)
L14 0 SEA ABB=ON PLU=ON L2(10A) (PRE OR PREBOMBARD##### OR PREIRRADI
ATION)
L15 0 SEA ABB=ON PLU=ON L2(10A) (FINAL OR LATER OR (FOLLOWING OR
AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON#####
OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)
L16 2 SEA ABB=ON PLU=ON L3(10A) (INITIAL## OR BEFORE OR PREVIOUS##
OR PRIOR OR STARTING)
L17 0 SEA ABB=ON PLU=ON L3(10A) (PRE OR PREBOMBARD##### OR PREIRRADI
ATION)
L18 0 SEA ABB=ON PLU=ON L3(10A) (FINAL OR LATER OR (FOLLOWING OR
AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON#####
OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)
L19 284 SEA ABB=ON PLU=ON (L1 OR L2 OR L3)
L20 18 SEA ABB=ON PLU=ON (ISOTOPE OR RADIOISOTOPE) AND L19

page 1 of 8

L21 4 SEA ABB=ON PLU=ON (ISOMER##### OR RADIOISOMER#####) AND L19
 L22 10 SEA ABB=ON PLU=ON (NUCLIDE OR RADIONUCLIDE) AND L19
 L23 0 SEA ABB=ON PLU=ON (NUCLEIDE OR RADIONUCLEIDE) AND L19
 L24 28 SEA ABB=ON PLU=ON (L20 OR L21 OR L22 OR L23)
 L25 3 SEA ABB=ON PLU=ON (L4 OR L5 OR L6 OR L7 OR L8 OR L9 OR L10
 OR L11 OR L12 OR L13 OR L14 OR L15 OR L16 OR L17 OR L18) AND
 L24

FILE 'HCAPLUS' ENTERED AT 12:19:07 ON 25 AUG 2008

L26 89293 SEA ABB=ON PLU=ON HALFLIFE# OR HALF(W) (LIFE# OR LIVE#) OR
 HALFLIVE#
 L27 176 SEA ABB=ON PLU=ON (DEEXCIT##### OR DE EXCIT#####) (4A) PROBAB
 ILIT#####
 L28 29309 SEA ABB=ON PLU=ON DECAY##### (4A) (TIME## OR TIMING OR DURATION
 OR ELAPS##### OR INTERVAL# OR SECONDS OR MICROSEC##### OR
 MILLISEC##### OR MINUTES OR HOURS OR DAYS OR YEARS)
 L29 17846 SEA ABB=ON PLU=ON (CHANG##### OR MODIF##### OR ALTER OR
 ALTERING OR ALTERS OR ALTERED OR SHORTER##### OR LENGTHEN#####
 OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG#####
 ## OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER#####
 ##) (10A) L1
 L30 20 SEA ABB=ON PLU=ON (CHANG##### OR MODIF##### OR ALTER OR
 ALTERING OR ALTERS OR ALTERED OR SHORTER##### OR LENGTHEN#####
 OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG#####
 ## OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER#####
 ##) (10A) L2
 L31 5157 SEA ABB=ON PLU=ON (CHANG##### OR MODIF##### OR ALTER OR
 ALTERING OR ALTERS OR ALTERED OR SHORTER##### OR LENGTHEN#####
 OR SHORTEN##### OR INCREAS##### OR DECREAS##### OR PROLONG#####
 ## OR VARY##### OR VARIES OR VARIED OR VARIAB##### OR DIFFER#####
 ##) (10A) L3
 L32 1076 SEA ABB=ON PLU=ON L1(10A) (THEORY OR THEORETIC##### OR KNOWN
 OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
 LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
 L33 3 SEA ABB=ON PLU=ON L2(10A) (THEORY OR THEORETIC##### OR KNOWN
 OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
 LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
 L34 507 SEA ABB=ON PLU=ON L3(10A) (THEORY OR THEORETIC##### OR KNOWN
 OR PRESUM##### OR PREDETERMIN##### OR PRE DETERMIN##### OR
 LITERATURE OR HANDBOOK OR MANUAL OR ESTABLISHED)
 L35 2112 SEA ABB=ON PLU=ON L1(10A) (INITIAL## OR BEFORE OR PREVIOUS##
 OR PRIOR OR STARTING)
 L36 100 SEA ABB=ON PLU=ON L1(10A) (PRE OR PREBOMBARD##### OR PREIRRADI
 ATION)
 L37 359 SEA ABB=ON PLU=ON L1(10A) (FINAL OR LATER OR (FOLLOWING OR
 AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON#####
 OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)
 L38 2 SEA ABB=ON PLU=ON L2(10A) (INITIAL## OR BEFORE OR PREVIOUS##
 OR PRIOR OR STARTING)
 L39 0 SEA ABB=ON PLU=ON L2(10A) (PRE OR PREBOMBARD##### OR PREIRRADI
 ATION)
 L40 1 SEA ABB=ON PLU=ON L2(10A) (FINAL OR LATER OR (FOLLOWING OR
 AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON#####
 OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)
 L41 901 SEA ABB=ON PLU=ON L3(10A) (INITIAL## OR BEFORE OR PREVIOUS##

OR PRIOR OR STARTING)

L42 28 SEA ABB=ON PLU=ON L3(10A) (PRE OR PREBOMBARD##### OR PREIRRADIATION)

L43 162 SEA ABB=ON PLU=ON L3(10A) (FINAL OR LATER OR (FOLLOWING OR AFTER OR POST) (2A) (ABSOR##### OR BOMBARD##### OR PHOTON##### OR GAMMA) OR POSTBOMBARD##### OR POSTIRRADIATION)

L44 118102 SEA ABB=ON PLU=ON (L1 OR L2 OR L3)

L45 10426 SEA ABB=ON PLU=ON (ISOTOPE OR RADIOISOTOPE) AND L19

L46 3542 SEA ABB=ON PLU=ON (ISOMER##### OR RADIOISOMER#####) AND L19

L47 4004 SEA ABB=ON PLU=ON (NUCLIDE OR RADIONUCLIDE) AND L19

L48 5 SEA ABB=ON PLU=ON (NUCLEIDE OR RADIONUCLEIDE) AND L19

L49 15387 SEA ABB=ON PLU=ON (L20 OR L21 OR L22 OR L23)

L50 1958 SEA ABB=ON PLU=ON (L4 OR L5 OR L6 OR L7 OR L8 OR L9 OR L10 OR L11 OR L12 OR L13 OR L14 OR L15 OR L16 OR L17 OR L18) AND L24

FILE 'STNGUIDE' ENTERED AT 12:20:58 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:23:03 ON 25 AUG 2008

L51 330 SEA ABB=ON PLU=ON L50 AND (ABSOR##### OR PHOTOABSOR##### OR BOMBARD#####)

L52 508 SEA ABB=ON PLU=ON L50 AND GAMMA

L53 0 SEA ABB=ON PLU=ON L50 AND BREMS#####

L54 18 SEA ABB=ON PLU=ON L50 AND CASCAD#####

L55 33 SEA ABB=ON PLU=ON L50 AND PHOTON#####

L56 522 SEA ABB=ON PLU=ON (L52 OR L53 OR L54 OR L55)

L57 132 SEA ABB=ON PLU=ON L51 AND L56

L58 0 SEA ABB=ON PLU=ON L57 AND ENTANGL#####

L59 0 SEA ABB=ON PLU=ON L57 AND QUANT##### (3A) COUPL#####

L60 100 SEA ABB=ON PLU=ON (L50 OR L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR L57) AND MECHANISM

L61 27 SEA ABB=ON PLU=ON (L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR L57) AND MECHANISM

L62 7 SEA ABB=ON PLU=ON CHANG##### (4A) HALFLI#####

L63 629 SEA ABB=ON PLU=ON CHANG##### (4A) HALF LIFE

L64 80 SEA ABB=ON PLU=ON CHANG##### (4A) HALF LIVE

L65 167 SEA ABB=ON PLU=ON INITIAL## (4A) HALF LIVE

L66 2 SEA ABB=ON PLU=ON INITIAL## (4A) HALFLI?

L67 776 SEA ABB=ON PLU=ON INITIAL## (4A) HALF LIFE

L68 71 SEA ABB=ON PLU=ON (L50 OR L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR L57) AND (L62 OR L63 OR L64 OR L65 OR L66 OR L67)

L69 8 SEA ABB=ON PLU=ON L60 AND L68

L70 33 SEA ABB=ON PLU=ON L61 OR L69

FILE 'STNGUIDE' ENTERED AT 12:26:48 ON 25 AUG 2008

FILE 'LCA' ENTERED AT 12:32:21 ON 25 AUG 2008

L71 49 SEA ABB=ON PLU=ON (NUCLEAR OR NUCLIDE OR NUCLEIDE OR RADIONUC##### OR NUCLEUS OR NUCLEI OR ELEMENT OR ELEMENTAL) (3A) (?ISOMER? OR ?ISOTOPE?)

FILE 'ZCPLUS' ENTERED AT 12:32:33 ON 25 AUG 2008
E GAMMA RAYS/CT

FILE 'LCA' ENTERED AT 12:33:06 ON 25 AUG 2008

L72 26 SEA ABB=ON PLU=ON GAMMA RAY(L) ABSOR#####
 L73 15 SEA ABB=ON PLU=ON GAMMA RAYS(L) ABSOR#####
 L74 222 SEA ABB=ON PLU=ON (GAMMA RAY OR PHOTON### OR RADIATION OR
 ?PARTICLE? OR ENERGY OR EV OR E V OR KEV OR MEV) (4A) ABSOR#####
 L75 26 SEA ABB=ON PLU=ON GAMMA RAY(L) ABSOR#####

FILE 'HCAPLUS' ENTERED AT 12:36:16 ON 25 AUG 2008
 L76 1374 SEA ABB=ON PLU=ON (L26 OR L27 OR L28 OR L29 OR L30 OR L31 OR
 L32 OR L33 OR L34 OR L35 OR L36 OR L37 OR L38) AND L71
 L77 1055 SEA ABB=ON PLU=ON (L26 OR L27 OR L28 OR L29 OR L30 OR L31 OR
 L32 OR L33 OR L34 OR L35 OR L36 OR L37 OR L38) AND (L73 OR L74
 OR L75)
 L78 1055 SEA ABB=ON PLU=ON (L39 OR L40 OR L41 OR L42 OR L43 OR L44 OR
 L45 OR L46 OR L47 OR L48 OR L49 OR L50) AND (L73 OR L74 OR
 L75)
 L79 1374 SEA ABB=ON PLU=ON (L26 OR L27 OR L28 OR L29 OR L30 OR L31 OR
 L32 OR L33 OR L34 OR L35 OR L36 OR L37 OR L38) AND L71
 L80 1374 SEA ABB=ON PLU=ON (L39 OR L40 OR L41 OR L42 OR L43 OR L44 OR
 L45 OR L46 OR L47 OR L48 OR L49 OR L50) AND L71
 L81 89 SEA ABB=ON PLU=ON (L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR
 L57 OR L58 OR L59 OR L60 OR L61 OR L62 OR L63 OR L64 OR L65 OR
 L66 OR L67 OR L68 OR L69 OR L70) AND L71
 L82 30 SEA ABB=ON PLU=ON (L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR
 L57 OR L58 OR L59 OR L60 OR L61 OR L62 OR L63 OR L64 OR L65 OR
 L66 OR L67 OR L68 OR L69 OR L70) AND (L73 OR L74 OR L75)

FILE 'LCA' ENTERED AT 12:38:29 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:40:03 ON 25 AUG 2008
 L83 3423 SEA ABB=ON PLU=ON L27 OR L30 OR (L33 OR L34) OR (L36 OR L37
 OR L38 OR L39 OR L40) OR (L42 OR L43) OR L48 OR (L51 OR L52 OR
 L53 OR L54 OR L55 OR L56 OR L57 OR L58 OR L59 OR L60 OR L61 OR
 L62 OR L63 OR L64 OR L65 OR L66 OR L67 OR L68 OR L69)
 L84 2413 SEA ABB=ON PLU=ON (L76 OR L77 OR L78 OR L79 OR L80 OR L81 OR
 L82)
 L85 130 SEA ABB=ON PLU=ON L83 AND L84
 L86 14 SEA ABB=ON PLU=ON L85 AND L72
 L87 11 SEA ABB=ON PLU=ON L85 AND L73
 L88 34 SEA ABB=ON PLU=ON L85 AND L74
 L89 3 SEA ABB=ON PLU=ON (L62 OR L63 OR L64 OR L65 OR L66 OR L67)
 AND (L86 OR L87 OR L88)
 L90 3 SEA ABB=ON PLU=ON L89 NOT L70
 D ALL TOT

FILE 'STNGUIDE' ENTERED AT 12:41:53 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:43:25 ON 25 AUG 2008
 L91 1522 SEA ABB=ON PLU=ON L71 AND (L72 OR L73 OR L74 OR L75 OR L76
 OR L77 OR L78 OR L79 OR L80 OR L81 OR L82 OR L83 OR L84 OR L85
 OR L86 OR L87 OR L88)

FILE 'STNGUIDE' ENTERED AT 12:43:36 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:44:26 ON 25 AUG 2008
 L92 1519 SEA ABB=ON PLU=ON L91 NOT (L90 OR L70)

L93 164 SEA ABB=ON PLU=ON (L73 OR L74 OR L75) AND L92
 L94 79 SEA ABB=ON PLU=ON L92 AND CHANG#####
 L95 29 SEA ABB=ON PLU=ON L92 AND INITIAL##
 L96 114 SEA ABB=ON PLU=ON L92 AND THEORETICAL##
 L97 344 SEA ABB=ON PLU=ON (L93 OR L94 OR L95 OR L96)
 L98 5 SEA ABB=ON PLU=ON L97 AND ?ISOMER? (6A) CHANG#####
 D ALL TOT

FILE 'STNGUIDE' ENTERED AT 12:46:19 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:48:14 ON 25 AUG 2008
 L99 28 SEA ABB=ON PLU=ON ?ISOMER? (5A) ?ABSORB? (5A) (GAMMA OR PHOTON###
 # OR ENERGY OR RADIATION)
 L100 3 SEA ABB=ON PLU=ON (L92 OR L93 OR L94 OR L95 OR L96 OR L97)
 AND L99
 L101 3 SEA ABB=ON PLU=ON L100 NOT L98
 D ALL TOT

FILE 'STNGUIDE' ENTERED AT 12:48:53 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:52:09 ON 25 AUG 2008
 L102 118102 SEA ABB=ON PLU=ON (L26 OR L27 OR L28 OR L29 OR L30 OR L31 OR
 L32 OR L33 OR L34 OR L35 OR L36 OR L37 OR L38 OR L39 OR L40 OR
 L41 OR L42 OR L43 OR L44 OR L45 OR L46 OR L47 OR L48 OR L49 OR
 L50)
 L103 2180 SEA ABB=ON PLU=ON (L51 OR L52 OR L53 OR L54 OR L55 OR L56 OR
 L57 OR L58 OR L59 OR L60 OR L61 OR L62 OR L63 OR L64 OR L65 OR
 L66 OR L67 OR L68 OR L69 OR L70)
 L104 108143 SEA ABB=ON PLU=ON (L72 OR L73 OR L74 OR L75 OR L76 OR L77 OR
 L78 OR L79 OR L80 OR L81 OR L82 OR L83 OR L84 OR L85 OR L86 OR
 L87 OR L88 OR L89 OR L90 OR L91 OR L92 OR L93 OR L94 OR L95 OR
 L96 OR L97 OR L98 OR L99)
 L105 44 SEA ABB=ON PLU=ON L90 OR L70 OR L98 OR L101

FILE 'STNGUIDE' ENTERED AT 12:52:12 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:54:41 ON 25 AUG 2008
 L106 220495 SEA ABB=ON PLU=ON (L102 OR L103 OR L104) NOT L105
 L107 3699 SEA ABB=ON PLU=ON L106 AND NUCLEAR ENERGY LEVEL
 L108 20408 SEA ABB=ON PLU=ON L106 AND GAMMA RAY
 L109 724 SEA ABB=ON PLU=ON L106 AND (DEEXCIT? OR DE EXCIT#####)
 L110 2328 SEA ABB=ON PLU=ON L106 AND (METASTAB? OR META STABLE OR META
 STABILI#####)

FILE 'STNGUIDE' ENTERED AT 12:54:51 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:56:10 ON 25 AUG 2008
 L111 116402 SEA ABB=ON PLU=ON L106 AND ABSOR#####
 L112 110896 SEA ABB=ON PLU=ON L106 AND (HALFLI##### OR HALF LIFE OR HALF
 LIVE OR DECAY##(2A) (TIME OR PROLONG##### OR DURATION OR
 INTERVAL))

FILE 'STNGUIDE' ENTERED AT 12:56:26 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 12:58:41 ON 25 AUG 2008

L113

614 SEA ABB=ON PLU=ON (L107 OR L108 OR L109 OR L110 OR L111 OR
L112) AND (RADIOISOMER? OR RADIO ISOMER##### OR ISOMER##### (3A
) (ELEMENT OR ELEMENTAL OR NUCLEAR OR NUCLEI OR NUCLEUS OR
RADIONU? OR NUCLIDE OR NUCLEIDE))

FILE 'STNGUIDE' ENTERED AT 12:58:47 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 13:00:52 ON 25 AUG 2008

L114 1 SEA ABB=ON PLU=ON L113 AND QUANT##### (3A) (ENTANGL##### OR COUPL#####)

L115 1 SEA ABB=ON PLU=ON L113 AND ENTANGL##### (3A) (ENERGY OR PHOTON##### OR GAMMA)

L116 1 SEA ABB=ON PLU=ON L113 AND ENTANGL#####

L117 20 SEA ABB=ON PLU=ON L113 AND DEEXCIT#####

L118 3 SEA ABB=ON PLU=ON L113 AND DE EXCIT#####

L119 396 SEA ABB=ON PLU=ON L113 AND (ABSOR##### OR GAMMA OR X RAY OR BREMS##### OR CASCAD#####)

L120 165 SEA ABB=ON PLU=ON L113 AND (ABSOR##### OR GAMMA OR X RAY OR BREMS##### OR CASCAD#####) (4A)?ISOMER?

L121 1 SEA ABB=ON PLU=ON L113 AND (ABSOR##### OR GAMMA OR X RAY OR BREMS##### OR CASCAD#####) (4A)?TANGL?

L122 4 SEA ABB=ON PLU=ON L113 AND (ABSOR##### OR GAMMA OR X RAY OR BREMS##### OR CASCAD#####) (4A)COUPL#####

L123 27 SEA ABB=ON PLU=ON (L114 OR L115 OR L116 OR L117 OR L118) OR (L121 OR L122)

L124 20 SEA ABB=ON PLU=ON (L119 OR L120) AND CHANG#####

L125 2 SEA ABB=ON PLU=ON (L119 OR L120) AND SMOOTH#####

L126 19 SEA ABB=ON PLU=ON (L119 OR L120) AND INCREAS#####

L127 7 SEA ABB=ON PLU=ON (L119 OR L120) AND DECREAS#####

L128 3 SEA ABB=ON PLU=ON (L119 OR L120) AND VARY#####

L129 1 SEA ABB=ON PLU=ON (L119 OR L120) AND VARIES

L130 0 SEA ABB=ON PLU=ON (L119 OR L120) AND VARIAB#####

L131 30 SEA ABB=ON PLU=ON (L119 OR L120) AND FUNCTION

L132 9 SEA ABB=ON PLU=ON (L119 OR L120) AND MECHANISM

L133 4 SEA ABB=ON PLU=ON L124 AND L126

L134 3 SEA ABB=ON PLU=ON L124 AND L117

L135 2 SEA ABB=ON PLU=ON L124 AND L131

L136 0 SEA ABB=ON PLU=ON L117 AND L126

L137 2 SEA ABB=ON PLU=ON L117 AND L131

L138 1 SEA ABB=ON PLU=ON L126 AND L131

L139 50 SEA ABB=ON PLU=ON (L114 OR L115 OR L116) OR L118 OR (L121 OR L122 OR L123) OR L125 OR (L127 OR L128 OR L129) OR (L132 OR L133 OR L134 OR L135 OR L136 OR L137 OR L138)

L140 50 SEA ABB=ON PLU=ON L139 NOT L105

L141 10 SEA ABB=ON PLU=ON L140 AND ABSOR#####

L142 45 SEA ABB=ON PLU=ON L140 AND GAMMA

L143 10 SEA ABB=ON PLU=ON L140 AND CHANG#####

L144 47 SEA ABB=ON PLU=ON L141 OR L142 OR L143

L145 50 SEA ABB=ON PLU=ON L140 OR L144

D BIB AB IT 1-50

FILE 'STNGUIDE' ENTERED AT 13:08:16 ON 25 AUG 2008

FILE 'LCA' ENTERED AT 13:10:58 ON 25 AUG 2008

L146 0 SEA ABB=ON PLU=ON NUCLEAR TRANSITION

L147 0 SEA ABB=ON PLU=ON NUCLEAR LEVEL EXCITATION

FILE 'HCAPLUS' ENTERED AT 13:12:01 ON 25 AUG 2008

L148 94 SEA ABB=ON PLU=ON L105 OR L145

L149 398 SEA ABB=ON PLU=ON (L114 OR L115 OR L116 OR L117 OR L118 OR L119 OR L120 OR L121 OR L122 OR L123 OR L124 OR L125 OR L126 OR L127 OR L128 OR L129 OR L130 OR L131 OR L132 OR L133 OR

L150 L134 OR L135 OR L136 OR L137 OR L138 OR L139 OR L140 OR L141)
L151 348 SEA ABB=ON PLU=ON L149 NOT L148
L152 35 SEA ABB=ON PLU=ON L150 AND L146
L153 6 SEA ABB=ON PLU=ON L150 AND L147
L154 230 SEA ABB=ON PLU=ON L150 AND NUCLEAR ENERGY LEVEL
 0 SEA ABB=ON PLU=ON PROBAB####(7A) (EXCIT##### OR DEEXCIT##
 #####) AND (L151 OR L152 OR L153)
L155 0 SEA ABB=ON PLU=ON DEEXCIT##### AND (L151 OR L152 OR L153)

L156 0 SEA ABB=ON PLU=ON DE EXCIT##### AND (L151 OR L152 OR
 L153)
L157 9 SEA ABB=ON PLU=ON ABSOR##### (4A) (PHOTON#### OR GAMMA) AND
 (L151 OR L152 OR L153)
L158 5 SEA ABB=ON PLU=ON HALFLI? AND (L151 OR L152 OR L153)
L159 217 SEA ABB=ON PLU=ON HALF LIFE AND (L151 OR L152 OR L153)
L160 100 SEA ABB=ON PLU=ON HALF LIVE AND (L151 OR L152 OR L153)
L161 145 SEA ABB=ON PLU=ON DECAY##### AND (L151 OR L152 OR L153)
L162 159 SEA ABB=ON PLU=ON (L159 OR L160 OR L161) AND (HALF OR
 DECAY#####) (4A)?ISOMER?
L163 0 SEA ABB=ON PLU=ON (L159 OR L160 OR L161) AND (HALF OR
 DECAY#####) (4A)?ISOMER?(7A)CHANG#####
L164 14 SEA ABB=ON PLU=ON (HALF OR DECAY#####) (4A)?ISOMER?(7A)CHANG
 #####
L165 34 SEA ABB=ON PLU=ON L152 OR (L157 OR L158) OR L164
L166 31 SEA ABB=ON PLU=ON L151 AND (L159 OR L160 OR L161)
L167 62 SEA ABB=ON PLU=ON L165 OR L166
L168 62 SEA ABB=ON PLU=ON L167 NOT L148
L169 0 SEA ABB=ON PLU=ON L168 AND ENTANGL#####
L170 8 SEA ABB=ON PLU=ON L168 AND QUANT#####
L171 4 SEA ABB=ON PLU=ON L168 AND COUPL#####
L172 12 SEA ABB=ON PLU=ON L170 OR L171
 D ALL TOT

FILE 'STNGUIDE' ENTERED AT 13:18:10 ON 25 AUG 2008

FILE 'HCAPLUS' ENTERED AT 13:20:37 ON 25 AUG 2008

L173 350 SEA ABB=ON PLU=ON (L150 OR L151 OR L152 OR L153 OR L154 OR
 L155 OR L156 OR L157 OR L158 OR L159 OR L160 OR L161 OR L162
 OR L163 OR L164 OR L165 OR L166 OR L167 OR L168) NOT (L148 OR
 L172)
L174 0 SEA ABB=ON PLU=ON QUANT##### (3A) ENTANGL##### AND L173
L175 1 SEA ABB=ON PLU=ON QUANT##### (7A) ENTANGL##### (7A)?ISOMER? NOT
 (L148 OR L172)
 D ALL

page 8 of 8

Front for the arXiv

[Front > search](#)[search](#) | [register](#) | [submit](#)
[journals](#) | [about](#) | [FAQ](#)

Search results

Author Title/ID
Abstract+ Category
 articles per page Show [Search help](#)

E-prints 1 to 4 of 4

1. [quant-ph/0611109](#) **Intercontinental quantum liaisons between entangled electrons in ion traps of thermoluminescent crystals.** Robert Desbranx, Daniel Van Gent. [physics.quant-ph](#).
2. [physics/0503052](#) **Remote Stimulated Triggering of Quantum Entangled Photoluminescent Molecules of Strontium Aluminate.** D. L. Van Gent (Nuclear Science Center), R. Desbranx (Louisiana State University). [physics.optics](#).
3. [nucl-ex/0411050](#) **Remote Stimulated Triggering of Quantum Entangled Nuclear Metastable States of ^{115}In .** Daniel L. Van Gent. [physics.nucl-ex](#).
4. [nucl-ex/0411047](#) **Induced Quantum Entanglement of Nuclear Metastable States of ^{115}In .** Daniel L. Van Gent. [physics.nucl-ex](#).

E-prints 1 to 4 of 4

[help@front.math.ucdavis.edu](#) - for questions or comments about the Front[arXiv.contact.page](#) - for questions about downloading and submitting e-prints

Front for the arXiv

Front > search

[search](#) | [register](#) | [submit](#)
[journals](#) | [about](#) | [FAQ](#)

Search results

Author Title/ID
Abstract+ Category
 articles per page Show

E-prints 1 to 4 of 4

1. quant-ph/0611109 Intercontinental quantum liaisons between entangled electrons in ion traps of thermoluminescent crystals. Robert Desbran~~d~~des, Daniel Van Gent, physics.quant-ph.
2. physics/0503052 Remote Stimulated Triggering of Quantum Entangled Photoluminescent Molecules of Strontium Aluminate. D. L. Van Gent (Nuclear Science Center), R. Desbran~~d~~des (Louisiana State University). physics.optics.
3. cond-mat/0304659 Superconductor quantum fluid and gravitation field: Can a quantum fluid shield a gravitational field?. Robert Desbran~~d~~des, physics.cond-mat.
4. cond-mat/0303647 Interaction of superconductor quantum fluid with gravity field. Robert Desbran~~d~~des, physics.supr-con.

E-prints 1 to 4 of 4

help@front.math.ucdavis.edu - for questions or comments about the Front

[arXiv contact page](#) - for questions about downloading and submitting e-prints

INFORMATION BRIDGE

No more results found.

Searched: Bibliographic Data Contains (isomer*)
All Fields Contains (quantum entangl*)

Page 1 of 1

Sorted By: Relevance, Descending

Results: Zero matches.

Size	Identifier	Title	Creator/Author (s)	Pub Date
				Page 1 of 1

INFORMATION BRIDGE

Searched: All Fields Contains ("van gent")

Page 1 of 1

Sorted By: Relevance, Descending**Results:** 1–4 of exactly 4 matches. in 0.12 seconds.

Size	Identifier	Title	Creator/Author(s)	Pub Date
1 Mb	DOE/BC--96001296	Bibliography of reports, papers, and presentations on naturally occurring radioactive material (NORM) in petroleum industry wastes	Smith, K.P. ; Wilkey, M.L. ; Hames, R.D.	1997 Jul 01
611 K	LBNL--52307	Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers	Galitsky, Christina ; Worrell, Ernst ; Ruth, Michael	2003 Jul 01
32 Mb	LBL-PUB--677-Vol.6b	Journal of Glenn T. Seaborg, July 1, 1977--December 31, 1977. Volume 6b	Not Available	1995 Sep 01
43 Mb	LA-UR--97-31	Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences	Myers, G. ; Foley, B. ; Korber, B. ; et.al.	1997 Apr 01

Page 1 of 1

INFORMATION BRIDGE

Searched: All Fields Contains (desbrandes)

Page 1 of 1

Sorted By: Relevance, Descending**Results:** 1–4 of exactly 4 matches. in 0.018 seconds.

Size	Identifier	Title	Creator/Author(s)	Pub Date
4 Mb	DOE/BC/14653--T9	Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992	Pope, G.A. ; Sepehrnoori, K.	1992 Dec 31
5 Mb	EGG-EP-9840	The feasibility of recovering medium to heavy oil using geopressured- geothermal fluids	Negus-de Wys, J. ; Kimmell, C.E. ; Hart, G.F. ; et.al.	1991 Sep 01
5 Mb	DOE/BC/14977--14; PRRC-97-22	Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.	Grigg, R.B. ; Schechter, D.S.	1997 Aug 01
15 Mb	DOE/BC/14977--13	Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991–May 31, 1997	Grigg, R.B. ; Schechter, D.S.	1998 Feb 01

Page 1 of 1

INFORMATION BRIDGE

No more results found.

Searched: All Fields Contains (desbrandes van gent)

~~SEARCHED~~
Page 1 of 1

Sorted By: Relevance, Descending

Results: Zero matches.

Size	Identifier	Title	Creator/Author(s)	Pub Date
				Page 1 of 1

INFORMATION BRIDGE

Searched: All Fields Contains ("quantum entanglement")

Page 1 of 1

Sorted By: Relevance, Descending

Results: 1–15 of exactly 15 matches. in 0.101 seconds.

Size	Identifier	Title	Creator/Author(s)	Pub Date
1 Mb	LA-UR--98-725; CONF-980245--	Quantum entanglement and the communication complexity of the inner product function	Cleve, R. ; Dam, W. van ; Nielsen, M. ; et.al.	1998 Aug 01
? K	JLAB-ACC-05-451; DOE/ER/40150-3991	Microwave Superconducting Accelerators and Precision Sub-Atomic, Atomic and Molecular Physics at Jefferson Lab	Swapan Chattopadhyay	2005 Nov 15
79 K	ORNL/CP-103754	Epistemology and Rosen's Modeling Relation	Dress, W.B.	1999 Nov 07
801 K	LA-UR--98-2010; CONF-981123--	On quantum algorithms for noncommutative hidden subgroups	Ettinger, M. ; Hoeyer, P.	1998 Dec 01
? K	JLAB-ACC-04-257; DOE/ER/40150-3827	From Quark Confinement to Protein Dynamics via Nano-beams and Attosecond Pulses, A Theme with Variations on Microwave Superconductivity and Energy Recovery	Swapan Chattopadhyay	2004 Oct 25
? K	SAND2003-4688	Quantum computing accelerator I/O : LDRD 52750 final report.	Schroepel, Richard Crabtree ; Modine, Normand Arthur ; Ganti, Anand ; et.al.	2003 Dec 01
1 Mb	LBNL--56826	Opportunities for discovery: Theory and computation in Basic Energy Sciences	Harmon, Bruce ; Kirby, Kate ; McCurdy, C. William	2005 Jan 11
? K	SAND2004-0959	Taking ASCI supercomputing to the end game.	DeBenedictis, Erik P.	2004 Mar 01
18 Mb	CONF-2000/1	Proceedings of the eighteenth symposium on energy engineering sciences.	None	2000 Sep 26
? K	SLAC-R-845	Study of Rare B-Meson Decays Related to the CPObservable $\sin(2\beta + \gamma)$ at the BABAR Experiment	Orimoto, Toyoko Jennifer ; /UC, Berkeley	2007 Aug 21
19 Mb	IS-T 2543	Quantum Monte Carlo Calculations Applied to Magnetic Molecules	Larry Engelhardt	2006 Aug 09
12 Mb	LBL--38076	Dealing with quantum weirdness: Holism and related issues	Elby, A.R.	1995 Dec 01
4 Mb	LBNL/PUB--5498	Laboratory directed research and development program FY 2003	Hansen, Todd	2004 Mar 27
? K	SLAC-PUB-13155	B, D and K Decays	Artuso, M. ; Asner, D.M. ; Ball, P. ; et.al.	2008 Mar 07
? K	SAND2007-1774	Laboratory directed research and development 2006 annual report.	Westrich, Henry Roger	2007 Mar 01

Page 1 of 1

INFORMATION BRIDGE

No more results found.

Searched: All Fields Contains (aji moore kwiat) —

Page 1 of 1

Sorted By: Relevance, Descending

Results: Zero matches.

Size	Identifier	Title	Creator/Author (s)	Pub Date
				Page 1 of 1

INFORMATION BRIDGE

Searched: All Fields Contains (quantum entangl* absorbs)

Page 1 of 1

Sorted By: Relevance, Descending

Results: 1–25 of exactly 34 matches. in 0.068 seconds.

Size	Identifier	Title	Creator/Author (s)	Pub Date
5 Mb	LBNL--55856; CbP Note - 619	Quantum interference	Sessler, Andrew M.	2004 Jan 01
870 K	DOE/ER/60513--T1	Resonant multiphoton ionization spectra of molecules and molecular fragments. Technical report, October 1987--September 1988	Not Available	1997 Jul 01
898 K	DOE/ER/60513--T10	Resonant multiphoton ionization spectra of molecules and molecular fragments. Annual technical report, October 1987--September 1988	Not Available	1988 Dec 31
? K	DOE/SC/BES-0701	Directing Matter and Energy: Five Challenges for Science and the Imagination	Hemminger, J. ; Fleming, G. ; Ratner, M.	2007 Dec 20
? K	SLAC-PUB-13164	General Relativistic Effects in Atom Interferometry	Dimopoulos, Savas ; /Stanford U., Phys. Dept. ; Graham, Peter W. ; et.al.	2008 Mar 17
24 Mb	LA-13829-PR	Laboratory Directed Research and Development FY 2000 Annual Progress Report	Los Alamos National Laboratory	2001 May 01
15 Mb	LBNL--40348	Fabrication and electronic transport studies of single nanocrystal systems	Klein, D.L.	1997 May 01
? K	UCRL-52000-01-4	Science and Technology Review April 2001	Quong, A.A.	2001 Apr 01
40 Mb	SLAC-R-484; CONF-9408100--	XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology	Chan, J. ; DePorcel, L.	1996 Feb 01
? K	FERMILAB-THESIS-2005-10	Extending the Sensitivity to the Detection of WIMP Dark Matter with an Improved Understanding of the Limiting Neutron Backgrounds	Kamat, Sharmila ; /Case Western Reserve U.	2005 Jan 01
6 Mb	LA-13730-PR	1999 LDRD Laboratory Directed Research and Development	Rita Spencer ; Kyle Wheeler	2000 Jun 01
9 Mb	LBNL--57369	NERSC Annual Report 2004	Hules, John ; Bashor, Jon ; Yarris, Lynn ; et.al.	2005 Apr 15
26 Mb	LA--13355-PR	Physics division. Progress report, January 1, 1995--December 31, 1996	Stewart, M. ; Bacon, D.S. ; Aine, C.J. ; et.al.	1997 Oct 01
? K	SAND2007-1774	Laboratory directed research and development 2006 annual report.	Westrich, Henry Roger	2007 Mar 01
23 Mb	CONF-9705121--	Proceedings of the fifteenth symposium on energy engineering sciences	NONE	1997 Nov 01
12 Mb	DOE/BC/14882--5	Responsive copolymers for enhanced petroleum recovery. Annual report	McCormick, C. ; Hester, R.	1994 Aug 01
? K	SAND2005-7926	Advanced proton-exchange materials for energy efficient fuel cells.	Fujimoto, Cy H. ; Grest, Gary Stephen ; Hickner, Michael A. ; et.al.	2005 Dec 01
21 Mb	ORNL--6816	Solid State Division progress report for period ending September 30, 1993	Green, P.H. ; Hinton, L.W.	1994 Aug 01
23 Mb	ORNL--6934	Solid State Division progress report for period ending March 31, 1997	Green, P.H. ; Hinton, L.W.	1997 Dec 01
40 Mb	LA--13433-PR	Laboratory directed research and development: FY 1997 progress report	Vigil, J. ; Prono, J.	1998 May 01
	FERMILAB-TM-2207	The MiniBooNE detector technical design	I. Stancu et al.	2003 Apr 18

1-10 of 333 hits for absorb* photon* gamma quantum entanglement (isomer*)

 Email, Save or Export checked resultsSort by: Relevance Date

Filter search results by

Content sources

Journal sources (15)

- ScienceDirect (13)
- Institute of Physics (2)

Preferred web (12)

- NDLTD (6)
- Patent Offices (5)
- Digital Archives (1)

Other web (306)

File types

- HTML (148)
- PDF (114)
- Word (6)

Refine your search

condensed matter
 applied physics
 nuclear physics
 two-dimensional
 chemical physics
 neutron
 quantum information
 condensed matter physics
 photons
 nanotubes

[more >](#)

Did you mean absorb* photon* gamma quantum entanglement (isomer*) ?

Be among the first...

Cell Host & Microbe

REMOTE COMMUNICATION METHOD AND DEVICE USING NUCLEAR ISOMERS APPLICATION, Nov 2005 DESBRANDES, Robert / VAN GENT, Daniel Lee (E-QUANTIC COMMUNICATIONS), PATENT COOPERATION TREATY

patno:WO05112041
 ...Photoexcitation of nuclear Isomers by (y,) reactions...Cryptography using Polarized Photons in Optical-Fiber over...Nonlocality Proof of Quantum Teleportation and Entanglement Swapping @, Physical..emission of radiation from Isomeric nuclei ☺, Physical...technique d'intrigue de photons est utilisee en cryptographie...cause par des rayons gamma mis par le mme...
Full text available at patent office. For more in-depth searching go to LexisNexis-similar results

Quantum control of bound and continuum state dynamics
 Shapiro, M. / Brunet, P., *Physics Reports*, 425 (4), p.195-264, Mar 2006
 ...semiconducting quantum well system was...state [0 , by a two-photon adiabatic passage...pseudo-rotation (isomerization) andz-the out-of-plane...of theNa+Na+photon association. Taken..delayed, Fig. 18 Gamma++(dashed).Gamma...The generation of entanglement in multi-channel...a molecule by a photon ("photodissociation...generic example of a quantum-dynamical event...
Published journal article available from ScienceDirect
similar results

Kostoff, Ronald N. / Briggs, Michael B. / Rushenberg, Robert L. / Bowles, Christine A. / Pecht, Michael , Jun 2006
REPORT IDENTIFIES AND ANALYZES THE SCIENCE AND TECHNOLOGY CORE COMPETENCIES OF CHINA. THE FIRST PART OF THE STUDY WAS PERFORMED IN THE 2003-2004 TIME FRAME, AND ANALYZES DATABASES CONTAINING 2000-2003 DATA FOR CHINA. THE SECOND PART OF THE REPORT WAS ... [http://dlib.sir.arizona.edu/1149/] similar results

METHOD FOR GENERATING ENTANGLLED ELECTRON, INFRARED-RAY, VISIBLE-RAY, ULTRAVIOLET-RAY, X-RAY AND GAMMA-RAY BEAMS
DESBRADES, Robert (E-QUANTIC COMMUNICATIONS), PATENT COOPERATION TREATY APPLICATION, Aug 2007
 patno:WO07088156
 ...program 107 C.1. Robust polarization-based quantum key distribution over collective-noise...Exponential speed-up with a single bit of quantum information: Measuring the average...121 C.2.2. Entanglement
 122 C.2.3 Quantum probe...
[\[http://www.ist.caltech.edu/~dpoulin/publications/thesis/\]](http://www.ist.caltech.edu/~dpoulin/publications/thesis/)
Full text available at patent office. For more in-depth searching go to LexisNexis-similar results

Emergence of a classical world from within quantum theory by David... [PDF-5MB]
 May 2006
 ...program 107 C.1. Robust polarization-based quantum key distribution over collective-noise...Exponential speed-up with a single bit of quantum information: Measuring the average...121 C.2.2. Entanglement
 122 C.2.3 Quantum probe...
[\[http://www.ist.caltech.edu/~dpoulin/publications/thesis/\]](http://www.ist.caltech.edu/~dpoulin/publications/thesis/)
similar results

Author index with titles
 Journal of Physics: Condensed Matter, 15 (50), p.8969-9040, Dec 2003
 doi:10.1088/0953-8984/15/50/501
 ...Jensen M Ø and Bohr H: Energy levels and quantum states of [Leu]enkephalin conformations...F: Excitons in InP/InAs inhomogeneous quantum dots 175 Asté T and Coniglio A: Cell approach...Flitzhenry P 165 Bimberg D and Ledentsov N:

1-15 of 15 hits for **absorb*** photon* gamma quantum entanglement (isomer*) Email, Save or Export checked resultsSort by: Relevance Date

Did you mean **absorb*** photon* **gamma** quantum entanglement (isomer*)?

Quantum control of bound and continuum state dynamics
Shapiro, M. / **Brenner, P.**, *Physics Reports*, 425 (4), p.195-264, Mar 2006
 ...semiconducting quantum well system was...state 0... by a two-photon adiabatic passage...pseudo-rotation (isomerization) and/or the out-of-plane...of the Na+Na₂-photon association. Taken...delayed. Fig. 18 Gamma ++(dashed), Gamma...The generation of entanglement in multi-channel...a molecule by a photon ("photodissociation...generic example of a quantum-dynamical event...")

Published journal article available from ScienceDirect

similar results

Author index with titles
Merkli, M. / **Sigal, I.M.** / **Berman, G.P.**, *Annals of Physics*, 323 (2), p.373-412, Feb 2008
 doi:10.1088/0953-8984/15/10/01
 ...Jensen M Ø and Bohr H: Energy levels and quantum states of [Leu]enkephalin conformations...F: Excitons in InP/InAs inhomogeneous quantum dots 175 Aste T and Coniglio A: Cell approach...Fitzhenny P 165 Birnberg D and Ledentsov N: Quantum dots: lasers and amplifiers R1063 Birnbo...

Published journal article available from IOP

similar results

Resonance theory of decoherence and thermalization
Merkli, M. / **Sigal, I.M.** / **Berman, G.P.**, *Annals of Physics*, 323 (2), p.373-412, Feb 2008
 ...of the qubit and the quantum register. We compare...that this Hamiltonian absorbs the leading order correction...free quantum fields (photons, photons or other massless...the transition from quantum behaviour to classical...the system-reservoir entanglement. 4. The corresponding...the context of the quantum Langevin equation in...

Published journal article available from ScienceDirect

similar results

Author index with titles
Journal of Physics: Condensed Matter, 15 (50), p.8969-9040, Dec 2003
 doi:10.1088/0953-8984/15/50/501
 ...Roversi J A: The entanglement of two dipole...of D+ 2 and the isomerization of acetylene to...Litvinlyuk IV: Multi-photon resonant effects...decoherence of a quantum channel in the...Nonclassical second-order photon statistics 783...atomic systems near absorbing and dispersing...D and Chen Z: Quantum phase transition...characteristic function and entanglement of optical evolution

Published journal article available from IOP

similar results

Increased levels of carbonic anhydrase II in the developing Down syndrome brain
Palmiello, S. / **Kida, E.** / **Kaur, K.** / **Walus, M.** / **Wisniewski, K.E.** / **Wierzbka-Bobrowicz, T.** / **Rabe, A.** / (...)/
Golabek, A.A., *Brain Research*, 1190, p.193-205, Jan 2008
 By using a proteomic approach, we found increased levels of carbonic anhydrase II (CA II) in the brain of Ts65Dn mice, a mouse model for Down syndrome (DS). Further immunoblot analyses showed that the levels of CA II are increased not only...

Published journal article available from ScienceDirect

similar results

Poly(ambidoxamine), polypropylenimine, and related dendrimers and dendrons possessing different 1->2 branching motifs: An...

Newkome, G.R. / **Strainer, C.D.**, *Polymer*, 49 (1), p.1-173, Jan 2008
 This review presents an overview of 1->2 branched dendrimers and dendrons, created by a divergent procedure, from their synthesis to modern day applications. The first members of this branched class of fractal macromolecules were prepared...

 absorb* photon* gamma quantum entanglement (isomer*) Search

1-100 of 100 hits for absorb* photon* gamma quanta entanglement (isomer*)

 Email, Save or Export checked resultsSort by: Relevance Date

Filter search results by

Content sources

Journal sources (3)

ScienceDirect (2)
Institute of Physics (1)

Preferred web (1)

Digital Archives (1)

Other web (96)

File types

HTML (31)

PDF (17)

Refine your search

beat beatle
abettor
abacuses
abscender
applied physics
abster
abscus
civil engineering
applied mechanics
more >

Did you mean absorb* photon* gamma quantum entanglement (isomer*) ?

1. Cell-Interactive Biopolymer-based Hydrogels designed for Tissue Engineering
Van Vlietbergh, S., dissertation, May 2008
Dr. E. Schacht Dankwoord Bij het afronden van dit doctoraatswerk ben ik een aantal mensen een woordje van dank verschuldigd. In de eerste plaats wil ik graag mijn promotor, prof. Etienne Schacht, bedanken omdat hij mij de kans geboden heeft om dit ... [http://hdl.handle.net/1854/10681]
[similar results](#)

2. Highlights aus Hochenergie- und Plasmaphysik/Quantenoptik... [601K]
Jul 2007
...just one atom (19/2007) Entanglement percolation in quantum...Polarization-controlled single photons - art. no. 063601
...just two atoms by detecting photons? - art. no. 010502...entanglement of a single photon with a trapped atom...cosmologically distant OH absorber or emitter - art. no...First results on in-beam gamma spectroscopy of neutron-rich...
[http://www.mpg.de/forschungsergebnisse/wissveroeffentlichungen/]

3. Resonance theory of decoherence and thermalization
Merkli, M. / Sigal, I.M. / Berman, G.P., *Annals of Physics*, 323 (2), p.373-412, Feb 2008
...conjecture that this Hamiltonian absorbs the leading order correction...massless free quantum fields (photons, phonons or other massless...) absorption and emission of field quanta with energies corresponding...and absorption of reservoir **quanta**. The condition 0 is actually necessary for...creates the system-reservoir entanglement. 4. The corresponding expressions...
[Published journal article available from ScienceDirect](#)
[similar results](#)

4. Quantum control of bound and continuum state dynamics
Shapiro, M. / Brunner, P., *Physics Reports*, 425 (4), p.195-264, Mar 2006
...state 0, by a two-photon adiabatic passage via...alongs-the pseudo-rotation (isomerization) andz-the out-of-plane...simulation of the Na+ Natro-photon association. Taken...is delayed. FIG. 18 Gamma++(dashed), Gamma-(dot-dashed)...using one- vs. two-photon interferences. We next...Selectivity Interference Entanglement Adiabatic passage 1...
[Published journal article available from ScienceDirect](#)
[similar results](#)

5. Deutsche Tagung für Forschung mit Synchrotronstrahlung, Neutronen... [PDF-5MB]
Sep 2006
...Field Magnet for Neutron Scattering at Hahn-Meitner Institute D-V27 Dynamics of soft matter surfaces investigated with X-ray photon correlation spectroscopy D-V30 Phase Transitions in Solids Stimulated by Si- simultaneous Exposure to High Pressure and Relativistic...
[http://www.physik.uni-kiel.de/ktn/sni2006/Dokumente/SN...]
[similar results](#)

6. HistCite--index: Niels Bohr [156K]
Apr 2005
..OF PHYSICS 22 (5): 277-290 BERMAN AI PHOTONUCLEAR REACTIONS 0 1 1219 5 53 1214 1957..HEAVY CHARGED-PARTICLES IN SILICON ABSORBERS 0 16 1226 3 53 2915 1977 SYNTHESE...quantum theory: Complementarity and ENTANGLEMENT in Physics and beyond 1 17 1278 6...CORRESPONDENCE BETWEEN CLASSICAL AND QUANTAL DESCRIPTIONS 0 0 1292 9 51 3292 1981...
[http://www.garfield.library.upenn.edu/histcomp/bohr-n-...]
more hits from [www.garfield.library.univ.edu]
[similar results](#)

7. Author index with titles
Journal of Physics: Condensed Matter, 15 (50), p.8969-9040, Dec 2003
doi:10.1088/0953-8984/15/50/M01

1-15 of 15 hits for absorb* photon* gamma quantised entanglement (isomer*)

[Email, Save or Export checked results](#)Sort by: Relevance Date

Filter search results by

Content sources

- Journal sources
- Preferred web
- Other web (15)

File types

- PDF (6)
- HTML (1)

Refine your search

- disassemble
- armament
- antioxidant
- bluebonnet
- tasmania
- decision-making
- fullword
- bordebo
- capitalizable
- eonism

[more >](#)

Did you mean absorb* photon* gamma quantized entanglement (isomer*)?

1. [HistCite.* index: Albert Einstein 1900-1955 \[163K\]](#)
 Apr 2005
 ...4564-4570 Cesar CL Kleppner D Two-photon Doppler-free spectroscopy...825-829 Shi MJ Du JF Zhu DP Entanglement of quantum pure states 2 9...Gisin N Go A EPR test with photons and kaons: Analogies 5 9 4287...843-845 Takeuchi S Beamlike twin-photon generation by use of type...conductivity of lithium salts in gamma-butyrolactone 0 9 # LCR NCR...
[similar results](http://www.garfield.library.upenn.edu/histcomp/einstein1...)

2. [C:\temp\NanoReport.pptx.pdf \[PDF-405K\]](#)
 Jun 2006
 ...computing (which uses single-molecule switches to process data) and quantum computing (which uses single electrons via quantum entanglement) are the two major forces in nano computing technology. Section 1 2 We regard nanotechnology and biotechnology as complimentary...
[similar results](http://www.swinburne.edu.au/ict/research/cms/documents...)

3. [Microsoft Word - msd35E4B.rtf \[PDF-2MB\]](#)
 Dec 2005
 ...techniques generated will find further application in areas of mathematical physics and non-commutative geometry related to quantized calculus. *** DP0344111 Dr Y Du Prof NE Dancer Title: Free boundary problems in partial differential equations and related...
[more hits from \[www.arc.gov.au\]](http://www.arc.gov.au/pdf/2003_0P_RFCD.pdf)
[similar results](#)

4. [Microsoft Word - sisikaas-poordje-engl.doc \[PDF-84KB\]](#)
 Oct 2006
 On 5 February 2003, at their meeting in Tartu Centres of Excellence of Estonian Science decided to act concerently and to issue an omnibus volume "CENTRES OF EXCELLENCE OF ESTONIAN SCIENCE".
[\[http://www.akadeemia.ee/_repository/File/PUBLIKATSIOON...\]](http://www.akadeemia.ee/_repository/File/PUBLIKATSIOON...)
[similar results](#)

5. [Book of Abstracts for the XX International Conference on Atomic... \[PDF-3MB\]](#)
 Jun 2006
 ...Quanteninformation GmbH Technikerstraße 25 A-5020 Innsbruck Austria LINOS Photonics GmbH & Co. KG K' onigsallee 23 D-37091 Göttingen Germany..Karlsfeld Germany Phone: +49 8131-59-55-0 www.thorilabs.com TOPTICA Photonics AG Lochhamer Schlag 19 D-82166 Gräfelfing Germany Phone...
[\[http://heatc-c704.uibk.ac.at/icap2006/PosterSessionsAn...\]](http://heatc-c704.uibk.ac.at/icap2006/PosterSessionsAn...)
[similar results](#)

6. [aardvark aardvarks aback. abacuses abalone abandoned... \[ASCII-559K\]](#)
 May 2007
 ...absolutely absoluteness absolutes absolutism absolutist absolutists absolve absolved absolves absolving **absorb** **absorbed** **absorbtency absorber absorbers absorbing** **absorbingly absorbs** absorption absorptions absorptive absorptivity abstain...
[\[http://www.cs.pitt.edu/~kirk/cs150/Ramirez/Summer2007...\]](http://www.cs.pitt.edu/~kirk/cs150/Ramirez/Summer2007...)
[similar results](#)

7. [AAA 1 AAAS 1 AAU 1 ABA 1 AC 1 ACM 1 ACS 1 AL 1 AK 1 AL 1 AU 1 AMA 1... \[ASCII-2MB\]](#)
 Sep 1998
 AAA 1 AAAS 1 AAU 1 ABA 1 AC 1 ACM 1 ACS 1 AL 1 AK 1 AL 1 AU 1 AMA 1 ANSTI 1 API 1 APS 1 AR 1 ARCO 1 ARPA 1 ASAP 1 ASCII 1 ASTN 1 ATMs 1 AZ 1 Arhus 1 Aaron 1 Abba 1 Abbott 1 Abbott's 1 Abe 1 Abel 1 Abel's 1 Abelian 1 Abelson 1 Abelson's 1 Aberdeen 1 Aberdeen's 1 Abernathy 1 Abernathy's 1 Abidjan 1
[\[http://www.ime.usp.br/%7Evoshi/mac122/exx/freq_testes/...\]](http://www.ime.usp.br/%7Evoshi/mac122/exx/freq_testes/...)
[more hits from \[www.ime.usp.br\]](#)

1-100 of 119 hits for **absorb* photon* gamma quantized entanglement (isomer*)**
 Email, Save or Export checked results
Sort by: Relevance Date

1. Increased levels of carbonic anhydrase II in the developing Down syndrome brain
Palminiello, S. / Kida, E. / Kaur, K. / Walus, M. / Wisniewski, K.E. / Wierzbicka, Bobrowicz, T. / Rabe, A. / (...) / Golabek, A.A. , Brain Research, 1190, p.193-205, Jan 2008

By using a proteomic approach, we found increased levels of carbonic anhydrase II (CA II) in the brain of Ts65Dn mice, a mouse model for Down syndrome (DS). Further immunoblot analyses showed that the levels of CA II are increased not only ...

Published journal article available from
 similar results

2. Poly(amiidoamine)...polypropylenimine, and related dendrimers and dendrons possessing different 1->2 branching motifs: An...

Newkome, G.R. / Shreiner, C.D. , Polymer, 49 (1), p.1-173, Jan 2008

This review presents an overview of 1->2 branched dendrimers and dendrons, created by a divergent procedure, from their synthesis to modern day applications. The first members of this branched class of fractal macromolecules were prepared...

Published journal article available from
 similar results

3.

Author index with titles

Journal of Physics B: Atomic, Molecular and Optical Physics, 39 (24), p.5237-5270, Dec 2006

doi:10.1088/0953-4075/39/24/N01

...and Roversi J A: The **entanglement** of two dipole-dipole...dissociation of D+ 2 and the **isomerization** of acetylene to vinylidene...Litvinnyuk I V: Multi-**photon** I V: Multi-photon resonant effects in...atomic systems near **absorbing** and dispersing bodies...characteristic function and **entanglement** of optical evolution

Published journal article available from
 similar results

4. Template controlled synthesis of magnetic, semiconducting nanoparticles within amphiphilic core shell cylindrical polymer...

Jan 2004

...transition region to the terminal flow zone with decrease in frequency. These results indicate that the intermolecular chain **entanglement** might be strongly restricted in polymer brush systems due to the multibranched structure with high branch density. 29...their large surface areas, with the best established examples including size-dependent excitation or emission,^{30,31} **quantized** conductance,³² superparamagnetism,³³ single-electron tunneling,³⁴ and metal-insulator transition.³⁵ The ability of fabricating...

Full text thesis available via NDLTD (OCLC)

 similar results
Filter search results by**Content sources****Journal sources (4)**

- ScienceDirect (3)
- Institute of Physics (1)

Preferred web (1)

- NDLTD (1)

Other web (14)**File types**

- HTML (50)
- PDF (39)
- Word (1)

Refine your search

- two-dimensional
- gamma-ray
- superconducting
- applied physics
- carbon nanotubes
- condensed matter
- abacuses
- nuclear physics
- civil engineering
- abater

more >

1-18 of 18 hits for **absorb* photon* gamma qe entanglement (isomer*)**
 Email, Save or Export checked results

 Sort by: Relevance

 Date
Filter search results by**Content sources** **Journal sources (3)**

* ScienceDirect (3)

 Preferred web (2)

* NDLTD (2)

 Other web (13)**File types**

* HTML (10)

* PDF (9)

Refine your search

- * condensed matter
- * acoustics
- * two-dimensional
- * gamma-ray
- * acoustical
- * semiconductors
- * acoustical properties
- * low-dimensional structures
- * density functional
- * superconducting

[more ▾](#)

 Resonance theory of decoherence and thermalization

 Merkli, M. / Sigal, I.M. / Berman, G.P., *Annals of Physics*, 323 (2), p.373-412, Feb 2008

...We conjecture that this Hamiltonian **absorbs** the leading order correction to the non-interacting...reservoirs of massless free quantum fields (**photons**, phonons or other massless excitations)...evolution creates the system-reservoir **entanglement**. 4. The corresponding expressions for...

Published journal article available from

 ScienceDirect

 The fabrication of novel microfluidic devices for chemical separation and concentration enrichment of amino acids, proteins, ...

 Roman, Gregory T., Oct 2006

My doctoral dissertation consists of three fundamental studies: 1) synthesis of biocompatible materials that can be used as microfluidic substrates; 2) characterizing these materials with respect to properties important to microfluidic fabrication, ...

Full text thesis available via NDLTD (K-State Research Exchange)
 similar results

 The fabrication of novel microfluidic devices for chemical separation and concentration enrichment of amino acids, proteins, ...

 Roman, Gregory T., Jan 2006

Thesis (Ph. D.)-Kansas State University, 2006. Title from electronic thesis title page. Includes bibliographical references.

Full text thesis available via NDLTD (OCLC)
 similar results

 00.00.00 GENERAL_01.00.00 Communication, education, history, and... [ASCII-329K]

 Jan 2008

...quantum theory, see 42.50.Xa) 03.65.Ud **Entanglement** and quantum nonlocality (e.g. EPR...inequalities, GHZ states, etc.) (for **entanglement** production and manipulation, see 03.67.Bg for **entanglement** measures, witnesses etc., see 03.67...
[\[http://www.aip.org/pacs/pacs08/ASCII2008FullPacs.txt\]](http://www.aip.org/pacs/pacs08/ASCII2008FullPacs.txt)
 more hits from [www.aip.org]
 similar results

 2003 PACS [609K]

 Feb 2008

...quantum theory, see 42.50.Xa) 03.65.Ud **Entanglement** and quantum nonlocality (e.g. EPR...inequalities, GHZ states, etc.) (for **entanglement** production in quantum information, see 03.67.Mn for **entanglement** in Bose-Einstein condensates, see...
[\[http://publish.aps.org/PACS/03pacs.html\]](http://publish.aps.org/PACS/03pacs.html)
 similar results

 Be among the first...

1-35 of 35 hits for **photon* gamma quant* entangl* isomer* deexcit* (captur* OR absor*)**

Sort by: Relevance Date

<input type="checkbox"/>	Email, Save or Export checked results
--------------------------	---------------------------------------

Filter search results by

- Content sources
- Journal sources (1)
- Institute of Physics (1)
- Preferred web (5)

Content sources

- Patent Offices (4)
- NDLTD (1)

Journal sources (1)

- Institute of Physics (1)

Preferred web (5)

- Other web (29)
- File types
 - HTML (23)
 - PDF (10)

Refine your search

- nuclear physics
 - neutron
 - heavy-ion
 - applied physics
 - nuclear physics a
 - two-dimensional
 - heavy ions
 - proton
 - accelerator
 - relativistic
- more >

1. Expériences interdisciplinaires d'interaction particule-matière
Dauvergne, D., Nov 2006
 ...électrons 7 I-2-1 **Capture** résonnante triélectronique 8 I-2-2 **Capture** résonnante par excitation...REC - EI 13 I-3-1 **Capture** résonnante diélectronique...commentaires originaux permet, quant à elle, de recevoir...l'émission d'un **photon** pour la **capture** électronique...
Full text thesis available via NDLTD (CCSD theses-en-ligne)
 similar results

2. Author index with titles
Journal of Physics: Condensed Matter, 15 (50), p.8969-9040, Dec 2003
 doi:10.1088/0953-8984/15/50/M01
 ...Jensen M Ø and Bohr H: Energy levels and **quantum** states of [Leu]enkephalin conformations...F. Excitons in InP/InAs inhomogeneous **quantum** dots 175 Aste T and Coniglio A; Cell approach...Fitzhenry P 165 Blimberg D and Ledentsov N: **Quantum** dots: lasers and amplifiers R1063 Bimbo...

Published journal article available from Top

similar results

3. REMOTE COMMUNICATION METHOD AND DEVICE USING NUCLEAR ISOMERS
DESBRANDES, Robert / VAN GENT, Daniel Lee (E-QUANTIC COMMUNICATIONS),
 PATENT COOPERATION TREATY APPLICATION, Nov 2005
 patno:WO05112041
 ...Demonstration of **Quantum** Cryptography using Polarized **photons** in Optical...Nonlocality Proof of **Quantum** Teleportation and **Entanglement** Swapping...radiation from **isomeric** nuclei...d'intrication de **photons** est utilise...des rayons **gamma** mis par ...
Full text available at patent office. For more in-depth searching go to LexisNexis
 similar results

4. NASA Scientific and Technical Aerospace Reports [PDF-5MB]

Jul 2006
 ...century aeronautics and aerospace research and development, a worldwide investment totaling billions of dollars, have been **captured**, organized, and stored in the NASA Aeronautics and Space Database. New information is continually announced and made available...
[\[http://www.sti.nasa.gov/Pubs/star/star0615.pdf\]](http://www.sti.nasa.gov/Pubs/star/star0615.pdf)
 more hits from [www.sti.nasa.gov]
 similar results

5. Archiv - frühere Veranstaltungen [2MB]

Nov 2007
 ...information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of **photonic**, electronic, heavy particle and atomic collisions. In the symposium, particular attention will be devoted to dynamical phenomena...
[\[http://www.scirus.com/srsapp/search?sort=0&t=all&q=photon*+gamma+quant*+entangl*+isomer*+deexcit*&cn=all&co=AND&t=any&q=c...\]](http://www.scirus.com/srsapp/search?sort=0&t=all&q=photon*+gamma+quant*+entangl*+isomer*+deexcit*&cn=all&co=AND&t=any&q=c...)

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	721	wang and greenwald	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:16
L2	136	L1 and (kwiat or aji or moore or julsgaard or gent or desbrandes or collins or vangent or karamian or Vysotskii or Olariu or Rivlin or Zadernovsky)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:19
L3	6	L1 and (absor\$8 or captur\$7) near4 (photon\$5 or gamma)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:19
L4	0	L2 and L3	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:20
L5	22166	(absor\$8 or captur\$7) near4 (photon\$5 or gamma)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:21
L6	684	(qe or entangl\$7 or (quant\$4 near3 coupl\$6)) near9 (photon\$5 or gamma)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:22
L7	27410	(absor\$8 or captur\$7) near9 (photon\$5 or gamma)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:22
L8	238	L6 and L7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:22
L9	20	L8 and (wang or greenwald)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:22

EAST Search History

L10	46	L8 and (kwiat or aji or moore or julsgaard or gent or desbrandes or collins or vangent or karamian or Vysotskii or Olariu or Rivlin or Zadernovsky)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:22
L11	61	L9 or L10	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2008/08/26 10:23
L12	84146	Halfli\$6 or (half adj (life\$1 or live\$1)) or halflive\$1	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:24
L13	25	(deexcit\$7 or (de adj1 excit\$7)) near6 probabilit\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:25
L14	181816	lifetime or (life adj time)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:25
L15	22996	(control\$5 or time or duration or life or elaps\$6 or elaps\$7 or interval) near2 decay\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:26
L16	3	L11 and L12	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:26
L17	1	L11 and L13	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:26
L18	25	L11 and L14	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:27
L19	4	L11 and L15	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:27

EAST Search History

L20	54	L13 or L16 or L17 or L18 or L19	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:27
L21	47	L20 and absor\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:27
L22	47	L20 and absor\$12	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:28
L23	17	L20 and captur\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:28
L24	11	L20 and qe	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:28
L25	27	L20 and entangl\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:28
L26	17	L22 and L23	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:28
L27	27	L24 or L25	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:29
L28	12	L26 and L27	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:29
L29	0	L28 and isomer\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:29

EAST Search History

L30	4	L20 and isomer\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:29
L31	0	L20 and radioisomer\$8	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:29
L32	514	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 (gamma or photon\$4 or absor\$12 or captur\$9))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:31
L33	148	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 gamma)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:32
L34	330	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 absor\$12)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:32
L35	33	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 captur\$7)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:32
L36	80	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 photon)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:32
L37	82	(L1 or L2 or L3 or L5 or L6 or L7 or L12 or L13 or L14 or L15) and (isomer\$8 near7 photon\$4)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:33
L38	6	L33 and L34	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:33
L39	6	L33 and L35	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:33

EAST Search History

L40	5	L34 and L35	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:33
L41	2	L33 and L37	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:34
L42	56	L34 and L37	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:34
L43	9	L35 and L37	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:34
L44	6	L42 and x adj ray	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:34
L45	25	L38 or L39 or L40 or L41 or L43 or L44	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:35
L46	25	L45 not L30	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:35
L47	7	L46 and isomer\$8.ti.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:35
L48	9	L46 and isomer\$8.ab.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:35
L49	5	L46 and isomer\$8.clm.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:35

EAST Search History

L50	9	L47 or L48 or L49	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:36
L51	0	L46 and (element or elemental or inorganic or anorganic or metal\$6 or tin or cesium or caesium or cs or ce or sn or cerium or nb or niobium or te or tellurium or cd or cadmium or xe or xenon or hf or hafnium or ir or iridium or pt or platinum) near8 isoomer\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:39
L52	0	L46 and (93nb\$6 or 111cd\$6 or 117sn\$6 or 19sn\$6 or 125te\$6 or 129xe\$6 or 131xe\$6 or 178hf\$6 or 179hf\$6 or 193ir\$6 or 195pt\$6 or 135ce\$6 or 135cs\$6) near8 isoomer\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:42
L53	0	(93nb\$6 or 111cd\$6 or 117sn\$6 or 19sn\$6 or 125te\$6 or 129xe\$6 or 131xe\$6 or 178hf\$6 or 179hf\$6 or 193ir\$6 or 195pt\$6 or 135ce\$6 or 135cs\$6) near8 isoomer\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:42
L54	258	(93nb\$6 or 111cd\$6 or 117sn\$6 or 19sn\$6 or 125te\$6 or 129xe\$6 or 131xe\$6 or 178hf\$6 or 179hf\$6 or 193ir\$6 or 195pt\$6 or 135ce\$6 or 135cs\$6)	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:42
L55	0	(element or elemental or inorganic or anorganic or metal\$6 or tin or cesium or caesium or cs or ce or sn or cerium or nb or niobium or te or tellurium or cd or cadmium or xe or xenon or hf or hafnium or ir or iridium or pt or platinum) near8 isoomer\$7	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:42
L56	16	L54 and isomer\$12	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2008/08/26 10:43

[Web](#) [Images](#) [Maps](#) [News](#) [Shopping](#) [Gmail](#) [more](#) ▾

[Advanced Search](#)

[Preferences](#)

Web

Results 1 - 2 of 2 for "quantum entangled photons" gamma isomer. (0.44 seconds)

Tip: Save time by hitting the return key instead of clicking on "search"

[PDF] Remote Stimulated Triggering of Quantum Entangled Nuclear ...

File Format: PDF/Adobe Acrobat - [View as HTML](#)

We have previously reported [5] strong evidence that high-energy gamma and Bremsstrahlung quantum entangled photons can be transferred for extended ...

arxiv.org/pdf/nucl-ex/0411050 - Similar pages

by DL Van Gent - 2004 - Cited by 1 - Related articles - All 2 versions

[PDF] Layout 1

File Format: PDF/Adobe Acrobat

ISOTOPES AND SPIN-ISOMERS USING LOW TEMPERATURE GAS CHROMATOGRAPHY QUANTUM ENTANGLED PHOTONS AND COMPLEMENTARITY ...

www.salisbury.edu/ncur22/docs/NCUR22_ProgramBook.pdf - Similar pages

[Search within results](#) | [Language Tools](#) | [Search Tips](#) | [Dissatisfied? Help us improve](#) | [Try Google Experimental](#)

[Google Home](#) - [Advertising Programs](#) - [Business Solutions](#) - [Privacy](#) - [About Google](#)

ajj moore kwiat entanglement OR qe OR entangled - Google Search

[Web](#) [Images](#) [Maps](#) [News](#) [Shopping](#) [Gmail](#) [more](#) ▾

ali moore kwiat entanglement OR qe OR entangled

Search

[Advanced Search](#)

Results 1 - 12 of 12 for all moore kwiat entanglement OR qe OR entangled. (0.15 seconds)

Web

Did you mean: aj moore kwiat entanglement OR qe OR entangled

Quantum Computing with Trapped Ions, Atoms and Light
nated by the laser pulses, and they are in the states a_{j1} which are not coupled to [40] K. Mattle, H. Weinfurter,
P. G. Kwiat, and A. Zeilinger, Phys.
[doi.wiley.com/10.1002/1521-3978\(200009\)48:9/11%3C839::AID-PROP839%3E3.0.CO%3B2-V - Similar pages](https://doi.wiley.com/10.1002/1521-3978(200009)48:9/11%3C839::AID-PROP839%3E3.0.CO%3B2-V)

[Journals of the American Physical Society - 2003 ANNUAL INDEX - PR...](http://journals.aps.org/annualindex/2003/authA.html)
Reconstruction of a multimode entangled state using a two-photon J.B. Altepeter, D. Branning, E. Jeffrey, T.C.
Wei, P.G. Kwiat, R.T. Thew, ...
publish.aps.org/annualindex/2003/authA.html - 671k - Cached - Similar pages

[Journals of the American Physical Society - PRL 2001 ANNUAL INDEX...](http://journals.aps.org/annualindex/2001/authLA.html)
Sven Aerts, Paul Kwiat, Jan-Åke Larsson, and Marek Zukowski Aerts *et~al.* reply Natural thermal and magnetic entanglement in the 1D Heisenberg model ...
publish.aps.org/annualindex/2001/authLA.html - 278k - Cached - Similar pages

Journals of the American Physical Society - 2001 ANNUAL INDEX - PR ...
Sven Aerts, Paul Kwiat, Jan-Ake Larsson, and Marek Zukowski Recoherence in the entanglement dynamics
and classical orbits in the \$N_atom ...
publish.aps.org/annualindex/2001/authA.html - 685k - Cached - Similar pages

...mn 0 01 05 1 1 10 100 10th 11 11_d0003 12 13 14 141a 143b 15 16 ...
... Kwak Kwaku Kwame Kwan Kwapong Kwiat Kwokmung Kwon Kyi Kyle Kyong Kyung L ajerimac ajf ajfoyt ajg
ajgerste ajh ajhatt aji ajit aji ajjudas ajk ajl ...
mit.edu/~mkgray/ljk/src/Attic/kerberos_password_hacker/allwords - Similar pages

[...mn 0 01 05 1 1 10 100 10th 11 11_d0003 12 13 14 141a 143b 15 16 ...](http://www.mit.edu/~mklgray/fik/src/Attic/kerberos_password_hacker/baldwin.words)
... Kwak Kwaku Kwame Kwan Kwapong Kwiat Kwokmgung Kwon Kyi Kyle Kyong Kyung L L ... Montenegro
Montero-luque Montreal Monty Monty1 Moon Moore Moormans Moose ...
such mit.edu/~mklgray/fik/src/Attic/kerberos_password_hacker/baldwin.words - 465k - Cached - Similar pages

2006 APS March Meeting

[PDF] [2006 APS March Meeting](#)
File Format: PDF/Adobe Acrobat
JEFFREY, PAUL KWiat, University of Illinois at Urbana-Champaign — Using pairs of polarization-entangled photons, we report measurements of Bell's ...
flux.aps.org/meetings/bapsfiles/Unit_MAR06_DCMP.pdf - Similar pages

[PPF] 2008 APS March Meeting

[PDF] 2008.03.08
File Format: PDF/Adobe Acrobat
8:48AM A12.00005 Entanglement and quantum phase transition in the ground JULIO T. BARREIRO, TZU-
CHIEH WEI, PAUL G. KWIAT, University of Illinois at ...
flux.aps.org/meetings/YR08/MAR08/all_MAR08.pdf - Similar pages

List of Records - UQ eSpace

[List of Records](#) | [Search](#) | [Advanced Search](#) | [Help](#) | [Feedback](#) | [Logout](#)

Childs, AM, Leung, DW, Verstraete, F and Vidal, G (2003) Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions. ... [View Record](#) - 755k - [espacelibrary.uq.edu.au/list/browse?year&year=2003&rows=50&page=_row=11?year=2003&rows=5... Cached - Similar pages](#)

Spis podkładów muzycznych

[DOC] File Format: Microsoft Word
ALIBABKI - KWIAT JEDNEJ NOCY. ALIBABKI - TANGO ZALOTNE (PRZELEC MNIE) AS IF WE NEVER
MET CHANTE MOORE. AS IF WE NEVER SAID GOODBYE BARBRA STREISAND ...
keyboard.w.terapia.pl/spis_podkladow_muzycznych.doc - Similar pages

POLSKIE I SWIATOWE PODKLADY MUZYCZNE AUDIO Strony www.http...
... KAPITANSKIE TANGO ALIBABKI - KWIAŁ JEDNEJ NOCY ALIBABKI - TANGO ZALOTNE TO SAY
GOODBYE BARBRA STREISAND AS IF WE NEVER MET CHANTE MOORE AS IF WE ...
keyboard w. interia.pl/spisprom.txt - Similar pages

a aa aaa aaaa aaas aab aabh aachen aahs aalborg aaleksander ...
... aje¶li aji aij ajzderdzis ajzderdzisa ak akacji akacjowa akacjowego kwiatarni kwiatiarstwa kwiat
kwiatach kwiatami kwiatem kwiatka kwiatki ...
sumum kt agh.edu.pl/~winieze/Perl/Lab6/słownik - Similar.pages

Did you mean to search for: ai moore kwiat entanglement OR qe OR entangled

"quantum entangled photons" isomer - Google Search

[Web](#) [Images](#) [Maps](#) [News](#) [Shopping](#) [Gmail](#) [more ▾](#)

[Advanced Search Preferences](#)

Results 1 - 5 of 5 for "quantum entangled photons" isomer. (0.40 seconds)

Web

Tip: Save time by hitting the return key instead of clicking on "search"

[PDF] [Remote Stimulated Triggering of Quantum Entangled Nuclear ...](#)

File Format: PDF/Adobe Acrobat - [View as HTML](#)

Bremsstrahlung quantum entangled photons can be transferred for extended ... photon energy of isomers has been coined, "Nucleonics" [6] being essentially ...
[arxiv.org/pdf/nucl-ex/0411050](http://arxiv.org/pdf/nucl-ex/0411050.pdf) - Similar pages
 by DL Van Gent - 2004 - Cited by 1 - Related articles - All 2 versions

[NCUR22 at Salisbury University](#)

QUANTITATIVE ANALYSIS OF HYDROGEN ISOTOPES AND SPIN-ISOMERS USING LOW ... QUANTUM

ENTANGLED PHOTONS AND COMPLEMENTARITY, Poster, Physics, Kaitlin O'Neill ...

www.salisbury.edu/ncur22/search/List_NCUR.aspx?subject=Physics - 40k - Cached - Similar pages

[PDF] [Layout 1](#)

File Format: PDF/Adobe Acrobat

ISOTOPES AND SPIN-ISOMERS USING LOW TEMPERATURE GAS CHROMATOGRAPHY QUANTUM

ENTANGLED PHOTONS AND. COMPLEMENTARITY ...

www.salisbury.edu/ncur22/docs/NCUR22_ProgramBook.pdf - Similar pages

[Quantum optical coherence tomography data collection apparatus and ...](#)

... includes a source of quantum entangled photons and a quantum interference device. ... unsaturated polyester resins based on particular didicidol isomers ...
www.patentfellow.com/6882431.html - Similar pages

[moodlefct's Pagecast about Notícias sobre Engenharia Física ...](#)

Mass Measurement Technique Uncovers New Iron Isomer. A ground state atomic nucleus can be The title of her project was "Quantum Entangled Photons and ..."
edubuzz.pageflakes.com/moodlefct/16258013/ - 36k - Cached - Similar pages

[Search within results](#) | [Language Tools](#) | [Search Tips](#) | [Dissatisfied? Help us improve](#) | [Try Google Experimental](#)

[Google Home](#) - [Advertising Programs](#) - [Business Solutions](#) - [Privacy](#) - [About Google](#)

"quantum entangled photon" isomers - Google Search

[Web](#) [Images](#) [Maps](#) [News](#) [Shopping](#) [Gmail](#) [more ▾](#)

[Advanced Search Preferences](#)

Results 1 - 6 of 6 for "quantum entangled photon" isomers. (0.06 seconds)

Web

Tip: Save time by hitting the return key instead of clicking on "search"

[Chinese Physics Letters Volume 21, Number 10](#)

1961, A Random Number Generator Based on Quantum Entangled Photon Pairs Ma Hai-Qiang, Wang Su-Mei,

... 2012, Isomer Spectrum of Small Carbon Clusters ...

www.iop.org/EJ/toc/0256-307X/21/10 - Similar pages

[Chinese Physics Letters](#)

A Random Number Generator Based on Quantum Entangled Photon Pairs. Chinese Physics Letters 2004 21

(10): Isomer Spectrum of Small Carbon Clusters ...

cpl.ioph.ac.cn/en/search_gkll.asp?page=1&pagesize=10&sel_zazhimc=Chinese%20Physics%20Letters&... - 179k

- Cached - Similar pages

@article {Wang:October 2004:0256-307X:1869, author = "Wang Wen-Ge ...

... on Quantum Entangled Photon Pairs", journal = "Chinese Physics Letters", title = "Isomer Spectrum of

Small Carbon Clusters", journal = "Chinese ...

www.ingentaconnect.com/content/iop/cpl/2004/00000021/00000010;jsessionid=2p066091oduh4.alice?format=bib -

Similar pages

[IngentaConnect Table Of Contents: Chinese Physics Letters](#)

A Random Number Generator Based on Quantum Entangled Photon Pairs pp. 1961-1964(4) ... Isomer

Spectrum of Small Carbon Clusters pp. 2012-2015(4) ...

www.ingentaconnect.com/content/iop/cpl/2004/00000021/00000010 - Similar pages

More results from www.ingentaconnect.com »

[\[PDF\] 15TH INTERNATIONAL LASER PHYSICS WORKSHOP \(LPHYS'06\) JULY 24-28 ...](#)

File Format: PDF/Adobe Acrobat - [View as HTML](#)

Hf Isomer alpha-decay. P1.3. S.A. Kochubei, N.N. Rubtsova, V.N. Ishchenko, quantum entangled photon

pairs. 12.45-14.00. Lunch. Seminar 7.8 ...

www.lasphys.com/workshops/lasphys06/Program.pdf - Similar pages

[Phase Rate: Health Information from Peer Reviewed Scientific...](#)

... FeO to form other organic compounds, such as ethylene, isomers of dichloroethylene, experiment using a series of quantum entangled photon pairs. ...

www.level1diet.com/phase+rate_q - 92k - Cached - Similar pages

In order to show you the most relevant results, we have omitted some entries very similar to the 6 already displayed.

If you like, you can repeat the search with the omitted results included.

[Search within results](#) | [Language Tools](#) | [Search Tips](#) | [Dissatisfied? Help us improve](#) | [Try Google Experimental](#)

[Google Home](#) - [Advertising Programs](#) - [Business Solutions](#) - [Privacy](#) - [About Google](#)

"quantum entangled photon" isomer - Google Search

[Web](#) [Images](#) [Maps](#) [News](#) [Shopping](#) [Gmail](#) [more ▾](#)

[Advanced Search Preferences](#)

Results 1 - 6 of 6 for "quantum entangled photon" isomer (0.23 seconds)

Web

Tip: Save time by hitting the return key instead of clicking on "search"

[Chinese Physics Letters Volume 21, Number 10](#)

A Random Number Generator Based on Quantum Entangled Photon Pairs Ma Hai-Qiang, Wang Su-Mei,

... 2012, Isomer Spectrum of Small Carbon Clusters ...

www.iop.org/EJ/toc/0256-307X/21/10 - Similar pages

[Chinese Physics Letters](#)

A Random Number Generator Based on Quantum Entangled Photon Pairs. Chinese Physics Letters 2004 21

(10): ... Isomer Spectrum of Small Carbon Clusters ...

cpl.iphy.ac.cn/en/search_gkll.asp?page=1&pagesize=10&sel_zazhijmc=Chinese%20Physics%20Letters&... - 179k

- Cached - Similar pages

@article {Wang_October_2004:0256-307X:1869, author = "Wang Wen-Ge ...

... on Quantum Entangled Photon Pairs", journal = "Chinese Physics Letters", ... title = "Isomer Spectrum of

Small Carbon Clusters", journal = "Chinese ...

www.ingentaconnect.com/content/iop/cpl/2004/00000021/00000010;jsessionid=2p066091oduh4.alice?format=bib -

Similar pages

[IngentaConnect Table Of Contents: Chinese Physics Letters](#)

A Random Number Generator Based on Quantum Entangled Photon Pairs pp. 1961-1964(4) ... Isomer

Spectrum of Small Carbon Clusters pp. 2012-2015(4) ...

www.ingentaconnect.com/content/iop/cpl/2004/00000021/00000010 - Similar pages

More results from www.ingentaconnect.com »

[\[PDF\] 15TH INTERNATIONAL LASER PHYSICS WORKSHOP \(LPHYS'06\) JULY 24-28 ...](#)

File Format: PDF/Adobe Acrobat - [View as HTML](#)

File Format: PDF/Adobe Acrobat - [View as HTML](#)

Hf isomer alpha-decay. P1.3. S.A. Kochubei, N.N. Rubtsova, V.N. Ishchenko, quantum entangled photon

pairs. 12.45-14.00. Lunch. Seminar 7.8 ...

www.lasphys.com/workshops/lasphys06/Program.pdf - Similar pages

Similar pages

[中国物理快报：英文版- Chinese Physics Letters -2004年第10期目录 ...](#) - [Translate this page]

A Random Number Generator Based on Quantum Entangled Photon Pairs 马海强王素梅张达常群��季 ... Isomer

Spectrum of Small Carbon Clusters 盛阳李鹏宁西京 (2012) ...

www.cqvip.com/qk/84212X/200410/index.shtml - Similar pages

Similar pages

In order to show you the most relevant results, we have omitted some entries very similar to the 6 already displayed.

If you like, you can repeat the search with the omitted results included.

[Search within results](#) | [Language Tools](#) | [Search Tips](#) | [Dissatisfied? Help us improve](#) | [Try Google Experimental](#)

[Google Home](#) - [Advertising Programs](#) - [Business Solutions](#) - [Privacy](#) - [About Google](#)

 [Search Session History](#)

Edit an existing query or
compose a new query in the
Search Query Display.

**Select a search number (#)
to:**

- Add a query to the Search Query Display
- Combine search queries using AND, OR, or NOT
- Delete a search
- Run a search

Tue, 26 Aug 2008, 11:47:33 AM EST

Search Query Display

[BROWSE](#)

[SEARCH](#)

[IEEE XPLORE GUIDE](#)

[SUPPORT](#)

Recent Search Queries

		Results
#1	((((qe)<in>ti) <or> ((quant* and entangl*)<in>ti))) <and> (pyr >= 2003 <and> pyr <= 2004)	25
#2	((((qe)<in>ti) <or> ((quant* and entangl*)<in>ti))) <and> (pyr >= 2003 <and> pyr <= 2004)	25
#3	((((qe)<in>ti) <or> ((quant* and entangl*)<in>ti))) <and> (pyr >= 2003 <and> pyr <= 2004)	25

[Help](#) [Contact Us](#) [Privacy & Security](#) [IEEE.org](#)

© Copyright 2008 IEEE – All Rights Reserved

[BROWSE](#)[SEARCH](#)[IEEE XPLORE GUIDE](#)[SUPPORT](#) [Search Session History](#)

Edit an existing query or
compose a new query in the
Search Query Display.

Select a search number (#) to:

- Add a query to the Search Query Display
- Combine search queries using AND, OR, or NOT
- Delete a search
- Run a search

Tue, 26 Aug 2008, 11:57:16 AM EST

Search Query Display

Recent Search Queries

		Results
#1	((((entangl* or qe))<in>metadata) <and> (((photon* or gamma))<in>metadata))<and> ((isomer*)<in>metadata)	0
#2	((((entangl* or qe))<in>metadata) <and> (((photon* or gamma))<in>metadata))<and> ((isomer*)<in>metadata)	0
#3	((((entangl* or qe))<in>metadata) <and> (((photon* or gamma))<in>metadata))<and> isomer*	0

[Help](#) [Contact Us](#) [Privacy & Security](#) [IEEE.org](#)

© Copyright 2008 IEEE – All Rights Reserved