



# **Linux Network Servers**

## Firewall

Nos tempos atuais tem se falado muito em segurança, pois a internet se tornou um ambiente perigoso. Todos nossos servidores que estão expostos para a internet necessitam de uma proteção para que não exponha os serviços que estão ali rodando e muito menos informações importantes sobre a empresa. A configuração de um firewall depende diretamente da disponibilidade de serviços de rede e roteamento.

Criar um estrutura de configuração para um firewall nem sempre é uma tarefa simples. Se você ainda não tem um conhecimento básico sólido em Redes é necessário estudar mais para que não ocorra maiores dificuldades na implementação do mesmo. Para configurar um firewall, é necessário o conhecimento sobre a estrutura da rede em questão e dos diferentes protocolos envolvidos na comunicação, isto é, dos serviços que a rede usa para que eles não percam a comunicação.

O objetivo em ter uma máquina fazendo o papel de Firewall Gateway em nossa é rede é minimizar as tentativas de ataques que nossas redes recebem, tentando impedir possíveis invasões e levantamento de informações. Os sistemas GNU/Linux com Kernel série 2.4 e 2.6 trabalham com o Iptables para fazer o gerenciamente de regras de Firewall. Lembrando que o Iptables é apenas um Front-End que gerencia o suporte Netfilter no Kernel. Um firewall faz o filtro de pacotes que passam na rede.

#### Características do iptables:

- Filtro de pacotes statefull: isso significa que o iptables é capaz de atuar sobre as camadas do protocolo TCP;
- Modularidade: a configuração do kernel é modular e com o netfilter não é diferente, pois novas funcionalidades podem ser adicionadas em muito esforço. Um módulo só será usado se for da necessidade do administrador;
- O Iptables possui as seguintes tabelas, sendo elas: filter, nat, mangle. A tabela filter é a tabela padrão do Iptables. Cada uma dessas tabelas possui o que chamamos de CHAINS. As CHAINS são onde vão ser definidos as regras para o nosso firewall.

A tabela filter serve para atribuir permissões de acessos essenciais (permitir/negar). A tabela NAT, que significa Network Address Translation, é um recurso que permite compartilhar acessos de Internet ou redirecionar conexões. Já a table mangle é utilizada para modificar uma propriedade de um pacote e seu uso é avançado, como por exemplo influenciar na decisão de roteamento ou controle de banda.





# **Linux Network Servers**

### As CHAINS da tabela filter são as seguintes:

| INPUT                                                | Regras de entrada de pacotes. |  |
|------------------------------------------------------|-------------------------------|--|
| OUTPUT Regras de saída de pacotes.                   |                               |  |
| FORWARD Regras de passagem de pacotes pelo firewall. |                               |  |

#### As CHAINS da tabela nat são as seguintes:

| PREROUTING | Regras que serão processadas antes do roteamento dos pacotes nas interfaces do firewall. |
|------------|------------------------------------------------------------------------------------------|
|            | Regras que serão precessadas pós roteamento dos pacotes nas interfaces do firewall.      |
| OUTPUT     | Regras de saída de pacotes.                                                              |

### Fluxo de verificações em que um pacote é submetido

Quando um pacote chega ao firewall, a primeira chain verificada é a PREROUTING. É exatamente nesse momento que algumas decisões de roteamento podem acontecer, exemplo: um redirecionamento de conexão ou de porta. Dependendo do destino, o pacote pode ser verificado na chain INPUT ou FORWARD. A chain INPUT é usada quando o destino é o próprio firewall, senão é usada a chain FORWARD que é um encaminhamento (roteamento). Se a chain INPUT é executada, o próximo passo é que chain OUTPUT seja processada, pois aí é que vai a resposta. A chain POSTROUTING é a última a ser processada, que é o momento antes de o pacote ser entregue ao destino.

**Importante:** A chain PREROUTING é a primeira a ser analisada e a POSTROUTING a última. Não é possivel utilizar as chains PREROUTING e POSTROUTING na tabela filter. Na tabela nat o redirecionamento de conexões é feita na chain PREROUTING e para compartilhar acesso usa-se a chain POSTROUTING.





# **Linux Network Servers**

### Compreendendo as políticas BÁSICAS e o conceito das EXCEÇÕES

A metodologia utilizada para implementação do firewall será a seguinte:

Iremos negar todo o tráfego para as CHAINS de **INPUT**, **OUTPUT** e **FORWARD** da tabela filter, posteriormente iremos definir a relação dos serviços que devem ser liberados no firewall, a estes, iremos chamar de exceções. Todo o tráfego de pacotes que as nossas exceções não cobrir serão bloqueado por padrão. Em suma, o que não for oficialmente permitido já está expressamente negado.







# **Linux Network Servers**

### Sintaxe do comando iptables:

# iptables [-t tabela] [opção] [chain] [dados] -j [alvo]

| Parâmetros para o iptables |                  | Descrição do parâmetro                                                                                      |
|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------|
| -P                         | policy           | Estabelece a política de acesso de uma chain                                                                |
| -t                         | table            | Seleciona tabela                                                                                            |
| - <b>A</b>                 | append           | Adiciona como última regra da sequência de uma chain                                                        |
| - <b>I</b>                 | insert           | Insere como primeira regra da sequência de uma chain                                                        |
| -N                         | new-chain        | Cria uma nova chain                                                                                         |
| -D                         | delete           | Remove uma regra                                                                                            |
| -X                         | delete-chain     | Elimina todas as regras presentes em chains de usuário                                                      |
| -F                         | flush            | Elimina todas as regras presentes em uma chain padrão (INPUT, FORWARD etc) ou tabela (para todas as chains) |
| -s                         | source           | Determina a origem do pacote                                                                                |
| -d                         | destination      | Determina o destino do pacote                                                                               |
| dport                      | destination-port | Define a porta de destino                                                                                   |
| sport                      | source-port      | Define a porta de origem                                                                                    |
| -i                         | in-interface     | Define a interface de entrada (input), exemplos: eth0, eth1, ppp0 etc.                                      |
| -o                         | out-interface    | Define a interface de saída (output)                                                                        |
| -р                         | protocol         | Seleciona protocolo (tcp, udp, icmp etc)                                                                    |

### Alvos:

| Alvo (target) | Descrição do alvo                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCEPT        | O pacote é aceito                                                                                                                                                              |
| REJECT        | O pacote é rejeitado imediatamente                                                                                                                                             |
| DROP          | O pacote é negado silenciosamente (mais interessante, pois diminui a eficiência de um ataque DOS/DDOS, isto é, o host de origem fica sem resposta até cair por tempo esgotado. |





# **Linux Network Servers**

#### **Exemplos:**

Verifique como estão configuradas as políticas básicas que estão definidas por padrão:

# iptables -n -L

Modifique as políticas básicas para DROP ALL:

- # iptables -P INPUT DROP # iptables -P OUTPUT DROP
- # iptables -P FORWARD DROP

Verifique se a nova política foi assumida:

# iptables -n -L

Agora que percebemos que temos um firewall ativo, devemos pensar nas demais políticas, uma vez que, por mais seguro que seja um firewall, cuja política base seja negar tudo, não é um firewall prático, pois precisamos realizar comunicações. Dessa forma, precisamos definir políticas de exceções para o Firewall.

Realize o teste usando o comando ping na sua interface loopback:

# ping 127.0.0.1

O teste anterior nos permitiu verificar que devemos definir uma política de exceção para a interface loopback. Criaremos uma política que possibilite isso:

```
# iptables -A OUTPUT -d 127.0.0.1 -j ACCEPT # iptables -A INPUT -d 127.0.0.1 -j ACCEPT
```

Liste as políticas ativas:

# iptables -n -L

Liste as políticas ativas:

# iptables -n -L

Vejamos se agora conseguimos fazer um ping na intreface de loopback:

# ping 127.0.0.1