Лабораторная работа № 2 Изучение приборов и методов измерения давления

Цель работы: ознакомиться общими сведениями, изучить приборы для измерения давления, изучить устройство опытной установки, измерить давление различными приборами, построить пьезометрическую линию.

- 2.1 Общие сведения
- 2.1.1 Понятие «Измерения»

Измерение - процесс получения опытным путём численного соотношения между физической величиной и ее значением, принятым за единицу измерения.

Средство измерения — техническое средство, используемое при измерениях и имеющее нормированные метрологические характеристики.

Измерительный прибор - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Измерительный преобразователь - средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем.

Измерительные приборы делятся на образцовые и рабочие.

Рабочими называются приборы, используемые для практических измерений, делятся на лабораторные и технические.

По назначению технические рабочие приборы делятся на:

- 1) Показывающие приборы, по которым только отсчитывают измеряемую величину в данный момент времени.
- 2) Самопишущие приборы снабжены устройством для автоматической записи значения измеряемой величины за все время работы прибора.
- 3) Сигнализирующие приборы имеют специальные приспособления для включения световой или звуковой сигнализации при достижении измеряемой величиной заранее заданного значения.

По виду показаний измерительные приборы делятся на:

- 1) аналоговые (непрерывные) средство измерения, показания которого являются непрерывной функцией;
- 2) цифровые (дискретные) средство измерения, вырабатывающее дискретную измерительную информацию и показания которого представлены в цифровой форме.

По виду измеряемой величины приборы выпускают для измерения температуры, давления, расхода и количества, уровня жидкости и т.д..

2.1.2 Понятие «Гидростатического давления»

Жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков. Когда жидкость находится в равновесии, то под действием внешних сил в жидкости возникает гидростатическое давление.

Давление — физическая величина, равная нормальной поверхностной силе, приходящейся на единицу площади

$$p_{\rm cp} = \frac{F}{S}$$
, Πa .

Давление можно выразить высотой столба жидкости, которая называется **пьезометрической высотой** — это высота столба жидкости, который своим весом создает избыточное давление

$$h = \frac{p}{\rho \cdot g}$$
, M

В зависимости от начальной точки отсчета давление можно определить как абсолютное, избыточное, атмосферное, дифференциальное давление и вакуум.

Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление - оно называется **атмосферным**. Измеряется, как правило, барометром и определяется как *барометрическое* давление.

Если давление p отсчитывают от абсолютного нуля, то его называют абсолютным

$$p_{\text{aбc}} = p_{\text{aтm}} + p_{\text{изб}}.$$

Разность между абсолютным $p_{\text{абс}}$ и атмосферным давлениями $p_{\text{атм}}$ называется избыточным (манометрическим) давлением

$$p_{\scriptscriptstyle exttt{M36}} = p_{\scriptscriptstyle exttt{aбc}} - p_{\scriptscriptstyle exttt{aTM}}$$
 или $\dfrac{p_{\scriptscriptstyle exttt{M36}}}{
ho \cdot g} = \dfrac{p_{\scriptscriptstyle exttt{a6c}} - p_{\scriptscriptstyle exttt{aTM}}}{
ho \cdot g} = h$.

Вакуум (разрежение) – давление ниже атмосферного

$$p_{\scriptscriptstyle \mathrm{B}} = p_{\scriptscriptstyle \mathrm{aTM}} - p_{\scriptscriptstyle \mathrm{a\delta c}}$$
 .

Дифференциальное давление — разность двух измеряемых давлений, ни одно из которых не является давлением окружающей среды (рис.2.1).

В СИ за единицу давления принят паскаль (Па). **Паскаль** – давление силы в один ньютон на площадь в один квадратный метр (Па = 1 H/m^2).

Гидростатическое давление измеряется в H/m^2 , кгс/см², высотой столба жидкости (в м вод.ст., мм.рт.ст. и т.д.) и, наконец, в атмосферах физических (атм) и технических (ат).

$$1\,\mathrm{atm}=1\,\mathrm{kfc/cm^2}=10000\,\,\mathrm{kfc/m^2}=98100\Pi\mathrm{a};\,1\,\mathrm{бap}=10^5\,\,\Pi\mathrm{a}=1,02\,\mathrm{atm}$$
 . $1\,\mathrm{atm}\,(\phi\!u\!s)=760\,\,\mathrm{mm}\,\mathrm{pt.}\,\mathrm{ct.}=10,\!33\,\,\mathrm{m}\,\mathrm{вд.}\,\mathrm{ct.};$ $1\,\mathrm{atm}\,(m\!e\!x)=736\,\,\mathrm{mm}\,\mathrm{pt.}\,\mathrm{ct.}=10\,\,\mathrm{m}\,\mathrm{вд.}\,\mathrm{ct.}$

Рисунок 2.1 – Соотношение между разными видами давления

2.1.3 Приборы для измерения давления

В зависимости от измеряемой величины приборы давления называются:

- 1) барометры;
- 2) манометры для измерения избыточного давления;
- 3) вакуумметры для измерения вакуумметрического давления;
- 4) *моновакуумметры* для измерения избыточного и вакуумметрического давления;
- 5) *дифференциальные манометры* для измерения разности двух давлений (перепада), ни одно из которых не является давлением окружающей среды.

По принципу действия приборы для измерения давления делятся на:

- 1) жидкостные;
- 2) *пружинные*, в которых измеряемое давление уравновешивается силой, возникающей за счет деформации различного рода упругих элементов (пружина, мембрана и сильфон);
- 3) *грузопоршневые приборы*, в которых сила, создаваемая измеряемым давлением, уравновешивается силой, действующей на поршень определенного сечения;
- 4) электрические манометры, действие которых основано на зависимости электрических параметров манометрического преобразователя от измеряемого давления.

По исполнению приборы измерения давления делятся:

- на шкальные показывающие, самопишущие;
- бесшкальные сигнализирующие и преобразующие.

Жидкостные манометры (пьезометры)

Отличаются простотой конструкции, небольшой стоимостью изготовления и относительно высокой точностью измерения. Принцип действия этих манометров основан на уравновешивании измеряемого давления столбом жидкости (рис.2.2., а).

Рисунок 2.2 – Приборы для измерения давления: a) пьезометр; б) деформационный манометр; в) датчик давления

Для измерения небольших давлений (не более 0,15...0,20 атм) применяются водяные пьезометры; для давлений не свыше 2,0...2,5 атм – ртутные пьезометры.

Простейший жидкостной U-образный манометр состоит из U-образной стеклянной трубки, заполненной жидкостью, и прямолинейной миллиметровой шкалы (рис. 2.2, а). К одному концу трубки подводится давление, под действием которого возникает разность уровней - избыточное давление измеряемой среды.

Если установить несколько пьезометров на одном уровне, то измеряя пьезометрическую высоту (или давление) в каждом сечении можно получить *пьезометрическую линию* (рис. 2.3) и увидеть как изменяется давление в разных точках трубопровода.

Рисунок 2.3. - Пьезометрическая линия

Манометры с упругими чувствительными элементами

Применяются для измерения давления, разрежения и разности давлений в промышленных условиях. Принцип работы основан на использовании деформации упругих чувствительных элементов. Отличаются простотой и надежностью конструкций, наглядностью показаний, небольшими размерами.

Одним из самых распространенных являются манометры с трубчатой пружиной (трубкой Бурдона) (рис.2.2, б). Давление измеряемой среды

воздействует на внутреннюю сторону трубки, в результате чего овальное поперечное сечение принимает почти круглую форму. В результате искривления пружинной трубки возникают напряжения, которые разгибают пружину. Незажатый конец пружины выполняет движение, пропорциональное величине давления. Движение передается посредством стрелочного механизма на шкалу.

Электрические манометры

Существуют электрические приборы давления (датчики), в чувствительных элементах которых происходит прямое преобразование давления в электрический измерительный сигнал (рис. 2.2, в). Датчики давления используются в тяжелых условиях в промышленности или в лабораториях.

Давление среды в трубопроводе подается в камеру измерительного блока и через жидкость воздействует на стальную мембрану, вызывая ее прогиб и изменение электрического сопротивления тензорезисторов. Электрический сигнал от тензопреобразователя передается от измерительного блока в электронное устройство по проводам. Электронное устройство преобразует этот сигнал в токовый выходной сигнал манометра.

На чертежах гидравлических принципиальных схем приборы для измерения давления изображают с помощью специальных условных обозначений (рис. 2.4)

Рисунок 2.4 — Схематичное обозначение приборов для измерения давления: a) общее изображение манометра; δ) манометр электроконтактный; ϵ) манометр дифференциальный; ϵ) датчик давления

2.2 Описание опытной установки

Опытная установка (рис. 2.5) состоит из резервуара 12, заполненного водой, центробежного насоса 13 с электродвигателем, расходомерного устройства (счетчика жидкости) 11, всасывающего 3 и напорного трубопроводов 4.

Напорная труба 4 после вентиля 8 переходит в трубопровод переменного сечения 5, на характерных участках которого установлены пьезометры 1, сливной трубопровод с вентилем 6. Для измерения давления служат вакуумметр 9, манометр 10 и пьезометры 1.

Вентиль 6 перекрывает подачу жидкости на сливе трубопровода 5 переменного сечения. Вентиль 7 предназначен для регулирования расхода жидкости. Вентиль 8 перекрывает подачу жидкости в трубопровод переменного сечения.

Рисунок 2.5. - Схема опытной установки

2.3 Порядок проведения работы

- 1) Полностью открыть вентили 6 и 8, вентиль 7 закрыть.
- 2) Включить в работу насос 13.
- 3) Проверить отсутствие воздуха в пьезометрах.
- 4) Установить уровень жидкости вентилем 8 в пьезометре, соответствующем сечению 1 на максимальном уровне (примерно 1 м).
- 5) Произвести измерения давления по манометру 10 и пьезометрам 1...8,
- 14. Результаты измерений записать в таблицу 2.1.
- 6) Отключить насос и перекрыть все вентили.

2.4 Обработка опытных данных

Определить пьезометрическое давление формуле

$$p = h \cdot \rho \cdot g =$$
______ Па

где $\rho = 1000$ кг/м³ — плотность воды; g = 9.81 м/с² — ускорение свободного падения.

Таблица 2.1 Результаты измерений и расчетов

No	Диаметр	Расстояние между	Пьезометрический	Пьезометрическое
сеч.	сечения	сечениями,	напор	давление
CC4.	d, cm	l, cm	h, см	p , Π a
1				
2				
3				
4				
5				
6				
7				
8				
14				

Pасстояние $l_0 = $	CM.		
Манометрическое ;	давление $p_{\scriptscriptstyle \mathrm{MaH}} = _$	arm=	Па

По данным этой таблицы в масштабе построить пьезометрическую линию p=f(l) . За начало отсчета принять точку подключения манометра.

2.5 Контрольные вопросы

- 1) Определение понятия «Измерение»
- 2) Что называется средством измерения?
- 3) Что такое измерительный прибор?
- 4) Что такое измерительный преобразователь?
- 5) Какие измерительные приборы называются рабочими?
- 6) На какие виды делятся рабочие измерительные приборы?
- 7) На какие виды делятся измерительные приборы по назначению?
- 8) На какие виды делятся измерительные приборы по виду показаний?
- 9) На какие виды делятся измерительные приборы по виду измеряемой величины?
- 10) Что называется гидростатическим давлением?
- 11) По какой формуле определяется гидростатическое давление?
- 12) Как давление связано с высотой уровня жидкости?
- 13) По какой формуле определяется пьезометрическая высота?
- 14) Определение «пьезометрическая высота».
- 15) Какое давление называется атмосферным?
- 16) Каким прибором измеряется атмосферное давление?
- 17) Какое давление называется абсолютным?
- 18) По какой формуле определяется абсолютное давление?
- 19) Какое давление называется избыточным?
- 20) По какой формуле определяется избыточное давление?
- 21) Какое давление называется вакуумметрическим?
- 22) По какой формуле определяется вакуумметрическое давление?
- 23) Какое давление называется дифференциальным?
- 24) Единицы измерения давления в системе СИ?
- 25) В каких единицах измеряется пьезометрическая высота?
- 26) Какие единицы измерения давления существуют?
- 27) Что такое Паскаль?
- 28) Какова связь различных единиц измерения давления?
- 29) Какие приборы используются для измерения давления жидкости?
- 30) На какие виды делятся приборы для измерения давления?
- 31) Что представляет собой жидкостной манометр, как измеряется давление?
- 32) Что такое пьезометрическая линия?
- 33) Принцип работы манометра с трубкой Бурдона?
- 34) Принцип работы электрического манометра?
- 35) Условные обозначения приборов для измерения давления.