Math 1431, Section 17699

EMCF 2 (10 points)

Due 2/6 at 11:59pm

Instructions:

f. -5

- Submit this assignment at http://www.casa.uh.edu under "EMCF" and choose EMCF 2.

7. $f(x) = x^7 - 3x^4 + 13$ has no points of discontinuity. a. True
b. False

Full Folynomial

- 8. Give the value(s) of x where the function $f(x) = \frac{(x+2)(x+3)}{x^2-9}$ has an infinite discontinuity.
- 8. Give the value(s) of x where the function $f(x) = \frac{1}{x^2 9}$ has an infinite discontinuous.

 a. 3 Check the X such that the denominator equals 39.0.

 b. =3 $\Rightarrow x^2 = 9 \Rightarrow (x+3)(x-3) \Rightarrow x=3$ of (x=-3).

 c. 3 = -3 Check (2x = -3) $(x+2)(x+3) \Rightarrow x=3$ of $(x+2)(x+3) \Rightarrow x=3$.

 d. = -2 = 3 = -2 = 3 (= -2 = 3)

 f. None of the above.

 Oremovable discontinuous.

 9. Give a value of A so that the function $f(x) = \begin{cases} x = x^2, & x < 2 \\ x^2 + Ax, & x \ge 2 \end{cases}$ is continuous.

- a. 0 Check $(2) \times = 2$.

 b. -1 D lim f(x) and f(2), then let D=D=3c. -2 lim f(x) $(x^2 + Ax, x \ge 2)$ d. There is no such value $(x^2 + Ax, x \ge 2)$ e. -3

 f. None of the above. $(x^2 + Ax, x \ge 2)$ $(x^2 + Ax, x \ge$

- 10. The Intermediate Value Theorem can be used to show that there is a solution to
 - $f(x) = \frac{3x^3 2x 1}{x} = 0$ on [-2, 4].

- a. True Now a=-2, b=4, check if flanfish <0

- (ine fra) < 0 < f(b) or f(b) < 0 < f(a)).
- $f(4) = \frac{3\cdot 4\cdot 2\cdot 4+}{4} = \frac{185}{4} > 0 \Rightarrow IVT fails$ $f(-2) = \frac{-24+4+1}{-2} = \frac{-21}{-2} = \frac{-21}{2} > 0$