NDIIT

DISCRETE MATHEMATICS

ASSIGNMENT 1

SUBMITTED BY TEJAS KHURANA

BCA 2nd Year

Write the general term $(n^2 - y)^6$.

ANSWER 1

Given: -

$$=)(x^2-y)^6$$

$$=) [x^2 + (-y)]^6$$

General term in the expansion is: -

$$=) T_r + 1 = {}^{6}C_r (x^2)^{6-r} (-y)^r$$

$$=) {}^{6}C_{r} (x^{12-2r} (-y)^{r}).$$

QUESTION 2

Find the coefficient of X^5 in $(x+3)^9$.

ANSWER 2

For general term of expansion $(x + 3)^9$: -

=) Putting
$$a = x$$
, $b = 3$, $n = 9$

$$=) T_r + 1 = {}^{9}C_r x^{9-r} 3^r - 1$$

Now we need to find the coefficient of X⁵.

=) So,
$$x^{9-r} = x^5 - 2$$

On comparing we get,

$$=)9-r=5$$

$$=) r = 4$$

Adding r=4 in 1 equation, we get: -

$$=) T_{4+1} = {}^{9}C_{4}x^{4-4}3^{4}$$

$$=$$
) $\frac{9!}{4! \ 5!} x^5 \times (3 \times 3 \times 3 \times 3)$

$$=)\frac{9\times8\times7\times6\times5!}{4!\ 5!}\times x^5\times (3\times3\times3\times3)$$

$$=$$
) 10, 206 x^5

Hence, the coefficient of $x^5 = 10,206$.

QUESTION 3

Write all possible subset of $A = \{5,6\}$.

If
$$A = \{2,3,4,5\}$$
 and $B = \{3,5,6,7\}$ and

- (i) AuB
- (ii) AnB.

ANSWER 3

Given: -

$$A = \{5,6\}, n=2$$

The no of possible subsets are $2^n = 2^2$

$$=) 4.$$

$$A = \{Q\}, \{5\}, \{6\}, \{5,6\}.$$

- (i) A u B = $\{2, 3, 4, 5, 6, 7\}$
- (ii) A n B = $\{3, 5\}$

The truth value of given statement is '4+3=7 or 5 is not prime'.

- a) True
- b) False

ANSWER 4

The answer to the following question is 'True' because: -

Compound statements with 'or' is true when either of the statement is true.

QUESTION 5

What is the value of x after this statement, assuming initial value of x is 5?

'If x equals to one then x=x+2 else x=0'.? ANSWER 5

The answer is x=0, because: -

If condition is false, so value decided according

to else condition.

QUESTION 6

Boolean algebra can be used_____? ANSWER 6

Boolean Algebra is used to analyse and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called a primary Algebra or Logical algorithm.

QUESTION 7

What is the maximum number of edges in a bipartite graph on 14 vertices?

ANSWER 7

No. of given vertices (n) = 14

=) Both the set unit contain 7 vertices and every vertex of first set unit have an edge to every other vertex of the second set.

Hence, The total no. of edges or maximum no. of edges = 7x7 = 49.

QUESTION 8

What is the number of vertices in an undirected connected graph with 39 edges, 7 vertices of degree 2, 2 vertices

of degree 5 and remaining of degree 6? ANSWER 8

We know that, sum of degree of all the vertices is 2x no. of edges.

So,
$$2 \times 7 + 5 \times 2 + 6 \times x = 39 \times 2$$

$$=) 14 + 10 + 6x = 78$$

$$=$$
) $34 + 6x = 78$

$$=$$
) $6x = 78 - 24$

$$=$$
) $6x = 54$

$$=) x = 9$$

Hence, the no. of vertices are: -7+2+9=18.

QUESTION 9

An n-vertex graph has _____ edges.? ANSWER 9

- A complete graph has an edge between any two vertices.
- We can get edges by picking up any two vertices.
- So, if there are n vertices, there are $(n2) = \frac{n(n-1)}{2}$ edges.

What is a star tree?

ANSWER 10

In graph theory, a star is the complete bipartite graph. A tree with one internal node and k leaves (but no internal nodes and K=1 leaves no internal nodes and K+1 leaves when $k \le 1$).

Vertices = K+1

Edges = K

Diameter = minimum of (2, k+1).

NDIIT

DISCRETE MATHEMATICS

ASSIGNMENT 2

Draw the circuit which realise the function, if(X,Y,Z,T)= $X^{(Y \lor T')} \lor (Z \lor (X \lor T \lor Z'))$] ^Y.

ANSWER 1

Hamiltonian path and circuits?

ANSWER 2

Hamiltonian Path

- If there exists a walk in the connected graph that visits every vertex of the graph exactly once repeating the edges then such a walk is called Hamiltonian Path.
- In this, all the edges may or may not be covered but edges must not repeat.

- It is also known as Hamiltonian Cycle.
- A Hamiltonian Path which starts and ends at the same vertex is called as a Hamiltonian Circuit.
- If there exists a cycle in the connected graph that contains all the vertices of the graph that cycle is called Hamiltonian Circuits.

Examples of Hamiltonian Path are: -

Define the limit point of a set S of real numbers. Determine the limit points of the following sets:

- (a) The set Q of all rational numbers
 - (b) The set Z of all integers.

ANSWER 3

Limit points of a set of 5 real numbers.

- Any Points on the boundary of the circle is a limit of a sequence of points inside the circle.
- In R, every real number is a limit point of the subset Q of rationals.
- Every real number can be app arbitrarily closely by a sequence of rationals. (by truncating the decimal explanation, say).

a) Set Q of all rational numbers.

➤ Define

- For every point of a set of rational number, we can average construct a sequence in rational number which will coverage to that point.
- So derived set will be full of R.

b) The set Z of all Integers

> Define

 The Integers have no limit points in the reals since all integers are isolated, that is, each integer has a neighbourhood that does contain any other integer, to see that Z contain no limit points.