Probabilistic Mitigation Strategies

Thanh H. Nguyen

New Mexico State University tnguyen@cs.nmsu.edu

December 6, 2019

Physical CPS System

Definition

A physical CPS system S is a tuple (C, A, F, R, Prob) where:

- *C* is a set of physical components.
- A is a finite set of actions that can be execute over CPS system.
- F is a finite set of fluent literals.
- R is a set of relations that map each physical component $c \in C$ with a set of physical component properties that are defined in CPS Ontology. For any $r \in R$, $r : C \longrightarrow 2^P$. P is set of all properties that are defined in CPS ontology.
- Pr is a set of probabilities of success of actions. Given an action $a \in A$, there is a probability of success of action a denoted by $prob(a) \in Prob$. The value of prob(a) can be None if the probability of success of a is unknown. $Prob = \{prob(a) | a \in A\}$

Representation the System

- Step 1: Representation the probability of success of action. The fluent prob_success(a, $prob_a$) denotes that an action a has probability $prob_a$ ($0 \le prob_a \le 100$).
- Step 2: The fluent prob_of_state(prob) models the propagation by the model to the successor state. The statement holds(prob_of_state(prob),S) means that at step S of the CPS evolution, the probability of the current state described by this fluent is prob ($0 \le prob \le 100$). The initial value at time step 0 is holds(prob_of_state(100),0) or prob_of_state(0) = 100.
- **Step 3**: Assuming that at step S of evolution, an action a can be executed. The predicate do(a,S) denotes that action a is executed at step S.

3/4

Compute the Probability of success of mitigation strategies

• Step 4: (1) Given the probability of success of mitigation strategies in CPS System at step S: prob_of_state(S). (2) At step S, an action a is executed (do(a,S) holds) and the probability of success of a is prob_success(a). So the probability of success of CPS system at step S + 1 is:

$$prob_of_state(S+1) = \begin{cases} \frac{prob_of_state(S)*prob_success(a)}{100}, \\ \text{if } prob_success(a) \neq \textit{None} \\ prob_of_state(S), \text{ if } prob_success(a) = \textit{None} \end{cases}$$

• Step 5: Finally, assume that S_{last} is the last step of system evolution, the value of prob_of_state(S_{last}) represents the probability of success of mitigation strategy $\alpha = a_0...a_{S_{last}}$