F19T1A5

- a) Es sei $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ eine holomorphe Funktion mit $f(\frac{1}{n}) = n$ für alle $n \in \mathbb{N}$. Welchen Konvergenzradius hat die Potenzreihenentwicklung von f um $z_0 = 1 + i$? Begründe die Antwort kurz.
- b) Es sei $G \neq \mathbb{C}$ ein einfach zusammenhängendes Gebiet in \mathbb{C} und seien $a, b \in G$ mit $a \neq b$. Zeige, dass es eine biholomorphe (konforme und surjektive) Abbildung $f: G \to G$ von G auf sich selbst mit f(a) = b gibt.
- c) Es sei $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Zeige, dass es keine holomorphe Funktion $f : \mathbb{C} \to \mathbb{C}$ mit $f(\partial \mathbb{D}) = \partial \mathbb{D}$ und $f(z) \neq 0$ für alle $z \in \mathbb{C}$ gibt.

Zu a):

Der Konvergenzradius ist $\sqrt{2} = |0 - (1+i)|$

Da $f\big|_{\{z\in\mathbb{C}:|z-(1+i)|<\sqrt{2}\}}$ holomorph ist, konvergiert die Potenzreihenentwicklung

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(1+i)}{n!} (z - (1+i))^n$$

von f um 1+i auf $\{z \in \mathbb{C} : |z-(1+i)| < \sqrt{2}\}$ (also $\rho \ge \sqrt{2}$). 0 ist keine hebbare Singularität von f, da wegen $f(\frac{1}{n}) = n$, f in keine punktierten Umgebung von 0 beschränkt ist. Daher ist $\rho \le \sqrt{2}$ (denn sonst gibt die Potenzreihe eine holomorphe Fortsetzung von f in 0).

$$\Rightarrow \rho = \sqrt{2}$$

Zu b):

Sei $\mathbb{E} := \{ z \in \mathbb{C} : |z| < 1 \}.$

 $\operatorname{Aut}(\mathbb{E}) := \{g_{\lambda,c} : \mathbb{E} \to \mathbb{E}, z \mapsto e^{i\lambda} \frac{z-c}{1-\bar{c}z} : \lambda \in \mathbb{R}, c \in \mathbb{E}\}$ ist die Menge aller biholomorphen Abbildungen von \mathbb{E} in sich, wobei $g_{\lambda,c}(c) = 0$.

Nach dem Riemannschen Abbildungssatz gibt es ein biholomorphes $h: \mathcal{G} \to \mathbb{E}$ $\Rightarrow h_a := g_{0,h(a)} \circ h: \mathcal{G} \to \mathbb{E}$ ist biholomorph mit $h_a(a) = g_{0,h(a)}(h(a)) = 0$.

Analog gibt es ein biholomorphes $h_b: \mathcal{G} \to \mathbb{E}$ mit $h_b(b) = 0$

$$\Rightarrow f := (h_b)^{-1} \circ h_a : \mathcal{G} \to \mathcal{G}$$
 ist biholomorph mit

$$f(a) = (h_b)^{-1}(h_a(a)) = (h_b)^{-1}(0) = b$$

Zu c):

 $f|_{\{z\in\mathbb{C}:|z|\leq 1\}}$ ist stetig, $f|_{\{z\in\mathbb{C}:|z|<1\}}$ ist holomorph. Nach dem Maximumsprinzip Minimumsprinzip (da $f(z)\neq 0$ $\forall z$) für beschränkte Gebiete hat $|f||_{\{z\in\mathbb{C}:|z|\leq 1\}}$ ein Maximum Minimum. Dieses wird auf $\partial\mathbb{D}=\{z\in\mathbb{C}:|z|=1\}$ angenommen. Wegen $f(\partial\mathbb{D})=\partial\mathbb{D}$ ist $\max\{|f(z)|:|z|\leq 1\}=1=\min\{|f(z)|:|z|\leq 1\}$ $\Rightarrow |f|$ ist konstant auf $\{z\in\mathbb{C}:|z|\leq 1\}$

- $\Rightarrow f|_{\mathbb{D}}$ ist konstant (nach Maximumsprinzip, da z.B. $0 \in \mathbb{D}$ ein lokales Maximum von $|f||_{\mathbb{D}}$ ist).
- $\Rightarrow f$ ist konstant nach dem Identitätssatz im Widerspruch zu $f(\partial \mathbb{D}) = \partial \mathbb{D}$.