- 1. 设事件 A, B 相互独立,且 $P(A\overline{B}) = P(\overline{A}B) = \frac{1}{4}$,则 $P(A) = \underline{\qquad \qquad }$ 。
- 3. 10 个人随机地围绕圆桌而坐, 其中甲和乙两个人坐在一起的概率是___
- 4. 设二维随机变量 (X,Y) 的联合概率密度是 $f(x,y)=\begin{cases} 3x \\ 0 \end{cases}$ 其它 其它

100

5. 设 n_A 是n次试验中事件A发生的次数,p=0.7是事件A在每次试验中发生的概率,则对于任意的 $\varepsilon>0$,

 $\lim_{n \to +\infty} P\left\{ \left| \frac{n_A}{n} - p \right| < \varepsilon \right\} = \underline{\hspace{1cm}}$

二、选择题

- (A) $P(A \cup B) = P(A) + P(B)$;
- (B) P(A) = 0 或者 P(B) = 0;
- (C) A, B是互不相容的事件;
- (D) A, B是对立的事件。
- 2. 设样本 X_1, X_2, \cdots, X_n 来自总体 X ,且 $EX = \mu, DX = \sigma^2$,其中 μ 与 σ^2 均未知,则下列结论正确的
- (A) $\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}$ 是 σ^{2} 的无偏估计; (B) $\frac{1}{n-1}\sum_{i=1}^{n}X_{i}$ 是 μ 的无偏估计;
- (C) $\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}$ 是 σ^{2} 的无偏估计; (D) $\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)$ 是 μ 的无偏估计。

- (A) $D(X+Y)=4D(\xi)+9D(\eta)$;
- (B) $D(X-Y) = 4D(\xi) + 9D(\eta)$;

(c) $r_{XY} = 0$;

- (D) E(XY) = E(X)E(Y).

水平 α ,其中 $Z = \frac{\overline{X} - \mu_0}{\sigma / \Gamma_0}$)。

(A) 拒绝域 $\{Z < -z_{\alpha}\}$

(B) 拒绝域 $\{Z>z_{\%}\}$

(C) 拒绝域 $\{Z < -z_{\frac{\alpha}{2}}\}$

(D) 拒绝域 $\{Z>z_{\alpha}\}$

三、有两个罐子,第一个罐子中放有2个白球及5个黑球,第二个罐子中放有3个白球及4个黑球。任取一个罐子, 再从中任取一个球,问: (1) 取出的这个球是白球的概率是多少? P(A)= 在 p(b||A)=立, p(b||A)=3· 八种第二个概率更大 (2) 如果取出的是白球, 问它来自哪只罐子? $0 \le x \le 2$. 问: 四、设连续型随机变量 X 的分布函数是 $F(x) = \{A + Bx\}$ fr(y)= { = { = 1 - 1 - y = 1 } . -1 < y < 1 } A=0, $b=\frac{1}{2}$ $f_{\chi}(\chi)=\begin{cases} \frac{1}{2} & x>2 \end{cases}$ $f_{\chi}(\chi)=\begin{cases} \frac{1}{2} & x>2 \end{cases}$ $f_{\chi}(\chi)=\begin{cases} \frac{1}{2} & x>2 \end{cases}$ (1) A,B各是多少? (2) X 的分布密度是什么? (3) 求出随机变量 $Y=\sin\frac{\pi}{2}(X-1)$ 的分布密度是 五、将两枚骰子抛掷n次,令X表示点对(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6) 出现的总次数。求: (1) X的分布律; (2) $E(X^2)$; (3) 点对(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6) 至少出现一次的概率。 p(x≥1) = 1 - (₹) P(x=k) = Ck(+) k(+), K=0,1,..., n. 六、设随机变量 X_1 和 X_2 都服从标准正态分布, X_3 和 X_4 服从同一个指数分布,其概率密度函数为 $f_3(x)=e^{-x}$,x>0。 如果 X_1, X_2, X_3, X_4 是相互独立的,且记随机变量 $Y_1 = 3X_1 - 4X_2$, $Y_2 = 4X_1 + 3X_2$ 。问: (1~N(0,25) fy = 10 xek. (1) 随机变量 $Y_{\rm I}$ 服从什么分布?其概率密度函数是什么?数学期望和方差各是多少? $E_{\rm I}^{\rm I}=0$, $D_{\rm I}^{\rm I}=25$ · (2) 随机变量 Y_1 和 Y_2 的协方差是多少? Y_1 和 Y_2 是否相互独立? (Y_1,Y_2) 二维占意志的. $Cov(Y_1,Y_2)=0$. (3) 随机变量 $X_1 + X_3$ 的数学期望与方差分别是多少? $E(x_1+x_3)=1$. $D(x_1+x_3)=2$ (y. e-y, y>0. (4) $X_3 + X_4$ 的概率密度函数是什么? 2) Y=X3+X4. 七、设总体X分布在区间(0,1)上,其概率密度为 $f(x)=(\theta+1)x^{\theta},0< x<1$,其中 θ 是未知参数, $\theta>-1$ 。求: θ 和大奶些你什么。 0=- -的矩估计量和极大似然估计量。在代计算: 0= 2x-1 八、某种零件的重量服从正态分布 $N(\mu,\sigma^2)$,其中 μ,σ^2 都是未知的,从中抽取容量为 9 的一个样本,求零件重量 的置信度为95%的置信区间。样本值为(单位:公斤) 4.9 5.3 4.8 4.8 5.1 5. 2 4. 7 5.0 $(\overline{X} \pm \frac{S}{3} t_{0.025}(8)) = (4.837. 5.163)$ 已知数据: $z_{0.05} = 1.65$; $t_{0.05}(8) = 1.860$; $t_{0.05}(9) = 1.833$; $t_{0.05}(10) = 1.813$; $z_{0.025} = 1.96$; $t_{0.025}(8) = 2.306$; $t_{0.025}(9) = 2.262$; $t_{0.025}(10) = 2.228$. 九、设随机变量X的分布函数为单调增加的连续函数F(x),证明:随机变量Y=F(X)在区间[0,1]课上评过.

star

