

Introduction to Natural Language Processing

Natural Language Processing with Disaster Tweets

Predict which Tweets are about real disasters & which ones are not

Data Description

Size: ~11K Tweets

(70% Training + 30% Test)

Evaluation Metric

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

Set **Beta** = **0.5**

(Precision is *more important* than **R**ecall)

Data Analysis

Data Preprocessing

Applying Models

Evaluation

Features of Interest

BEFORE

URL

Punctuation

Hashtag

Mention

Most common

Hashtags

count per

Tweet

Keywords

Locations

Named entity types

AFTER

Character

Word

Unique word

Average word length

count per

Tweet

Unigrams
Most Bigrams

common Trigrams

Fourgrams

Transformation

Remove URLs, HTML tags, Emojis, punctuation marks

Apply Wordnet lemmatizer

Adding Potential Indicators

From most common N-grams to Disaster/Non-Disaster N-gram count

The greater the number N, the more disaster-relevant/irrelevant the most common N-grams in Disaster/Non-Disaster Tweets become, but also the less frequent they are.

Problem:

- "Has any of the most common N-grams in Disaster Tweets" as potential indicator?
 - ⇒ For high N, many Disaster Tweets will be flagged as "No"

Solution:

- 1. Create two lists of disaster-relevant/irrelevant N-grams from the most common [N+2]-grams in Disaster/Non-Disaster Tweets
- 2. Count the number of N-grams of each Tweet in each of those lists

Stratified Cross Validation

Embedders

	Implementation	Vector Dimension
Bag-of- Words	Use "sklearn.CountVectorizer" to embed Tweets directly	Vocabulary length
GloVe	 Download the pretrained corpus model "glove.twitter.27B.50d.txt" Embed every word then Tweets by using the downloaded model 	50
Sentence- BERT	 Continue training the fine-tuned Sentence Transformer model "paraphrase-MiniLM-L6-v2" on pairs of Disaster and/or Non-Disaster Tweets Use the continue-trained model to embed Tweets directly 	384
TF-IDF	Use "sklearn.TfidfVectorizer" to embed Tweets directly	Vocabulary length
Word2Vec	 Download the pretrained corpus model "word2vec-google-news-300" Embed every word then Tweets by using the downloaded model 	300

Data Analysis **Data Preprocessing Applying Models Evaluation Classifiers** Multilayer Logistic Random Regression Perceptron Forest **100** Decision Trees **L2** Regularization **ReLU** activation Gini Impurity as split criteria One hidden layer with 100 neurons Max #Iterations 200 Build trees with Bootstrapping **Constant** learning rate **0.001**

Results

Discussion

PROBLEM OPTIMIZATION Label test set with a gold standard model Human error during labeling test set No hyperparameter tuning Hyperparameter Optimization for Logistic Regression Classifier with Random Search & Grid Search Only one training epoch Increase the number of training epochs for Sentence-BERT Embedder for Sentence-BERT Embedder Inaccurate & incomplete training samples **Evaluate samples systematically** for Sentence-BERT model before training Sentence-BERT model Treat potential indicator choices Possibility of added potential indicators being insignificant as hyperparameters during fine-tuning