Calcul différentiel Barbara Gris

TD 15 Optimisation

Exercice 1

Soient A, B et C trois points du plan non alignés.

- 1. Montrer que l'application $\Phi: M \mapsto MA + MB + MC$ est strictement convexe.
- 2. Montrer que l'application Φ admet un unique minimum.
- 3. Soit M_0 le point où ce minimum est atteint. A-t-on $d_{M_0}\Phi$?

Exercice 2

On munit \mathbb{R}^3 de sa norme euclidienne. Soit $A=\{(x,y,z)\in\mathbb{R}^3 \mid z^2+xy=0, x^2+y^2=1\}.$

- 1. Quelle est la nature de l'ensemble A?
- 2. Déterminer les points de A les plus proches de (0,0,0).

Exercice 3

Soit B une matrice symétrique définie positive de \mathbb{R}^n . Soient $r \in \mathbb{R}$ et $a, \alpha \in \mathbb{R}^n$, on pose $C = \{X \in \mathbb{R}^n \mid \langle BX, X \rangle = r^2\}$ et $F : X \in \mathbb{R}^n \mapsto \langle a, X \rangle + \alpha$. Peut-on minimiser F sur C?

Calcul différentiel Barbara Gris

Exercice 4

- 1. Dans \mathbb{R}^3 , on considère la surface S d'équation $x^4 + y^4 + z^4 = 1$. Déterminer les points de S les plus éloignés de l'origine (0,0,0) (pour la distance euclidienne).
- 2. Plus généralement, soient $q \ge p > 1$. Donner la valeur maximale de $\sum_{i=1}^{n} |xi|^p$ sous la contrainte $\sum_{i=1}^{n} |xi|^q = 1$.

Exercice 5

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^1 vérifiant la propriété suivante

$$\exists \alpha > 0 \quad | \quad \forall x, y \quad < \nabla f(x) - \nabla f(y), x - y \ge \alpha ||x - y||^2$$

- 1. A l'aide d'une formule intégrale de Taylor avec reste intégral, démontrer que pour tout x,y on a $f(y) f(x) \langle \nabla f(x), y x \rangle \ge \frac{\alpha}{2} ||y x||^2$.
- 2. En déduire que f est coercive.
- 3. Que peut-on en conclure sur le problème de minimisation de f?
- 4. Pour x^0 donné, on définit la suite x^k par $x^{k+1} = x^k \rho_k \nabla f(x^k)$ où ρ_k (que l'on ne cherchera pas à déterminer) est tel que

$$f(x^k - \rho \nabla f(x^k)) = min_{\rho \in \mathbb{R}^+} f(x^k - \rho \nabla f(x^k))$$

Vérifier que si a est une solution du problème de minimisation, $\alpha ||x^k - a|| \le ||\nabla f(x^k)||$.

Calcul différentiel Barbara Gris

- 5. Montrer que $\langle \nabla f(x^{k+1}), \nabla f(x^k) \rangle = 0$ pour tout k. En déduire que la suite $f(x^k)$ est une suite décroissante et que $\lim_{k \to \infty} ||x^{k+1} x^k|| = 0$.
- 6. On suppose de plus que ∇f est lipschitzienne, montrer que $\|\nabla f(x^k)\| \longrightarrow 0$ et conclure.

Exercice 6

- 1. Soit $f: \mathbb{R}^d \to \mathbb{R}$ une fonction C^1 . Montrer que, localement, la direction opposée à celle du gradient est la meilleure direction de descente.
- 2. Cette direction n'est pas toujours la meilleure globalement : Soit $\Phi: \mathbb{R}^2 \mapsto \mathbb{R}$ telle que $\Phi(x) = x^T A x$ avec

$$A = \left(\begin{array}{cc} a^2 & 0\\ 0 & b^2 \end{array}\right) \quad , \quad a >> b$$

Représenter les lignes de niveaux de Φ . Que pouvez-vous dire de la direction opposée à celle du gradient? Proposez un changement de variable permettant permettant d'utiliser l'algorithme de descente de gradient de manière plus efficace.