sign up log in tour help

Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It's 100% free, no registration required.

Anybody can ask Anybody can The best answers are voted a question answer up and rise to the top

Sum of three numbers from unformly distributed set equals to zero

I'm reading Sedgewick's "Algorithms" and completely stuck at one exercise. It is formulated like that:

Develop an appropriate mathematical model describing the number of triples of N random int values that sum to o, where the values are uniformly distributed between -M and M, where M is not small

I wrote a program to calculate such triplets. It iterates through all possible **distinct triplets** in array **A** of N numbers. **A** may have repeating numbers, but these numbers are form uniform random generator.

Example:

A = [7, -3, -4, 0] gives 4 distinct triplets: $\{7, -3, -4\}, \{7, -3, 0\}, \{7, -4, 0\}, \{-3, -4, 0\}$. We have only one triplet (first) that sums to 0.

I already calculated the number of 3-samples, it's sampling without replacement and without order: N! / 3! (N - 3)!, but I have no idea how to formulate quantity of triplets that sum to zero.

I want a model and mathematical basis, to calculate average quantity of such triplets among all 3-samples from N.

(combinatorics) (uniform-distribution)

edited Mar 3 '14 at 13:55

asked Feb 10 '14 at 20:38 oroboros 62 6

3-samples and triples are not the same thing, in most definitions - a triple is an ordered sequence of three numbers. Also, nothing said that the values in the triple have to be distinct. – Thomas Andrews Feb 10 '14 at 20:43

"Triplets" in my case are just samples of three numbers. And, yes, values may not be distinct. – oroboros Feb 10 '14 at 20:50

So is there a distinction between the triplet $\langle -1,-1,2\rangle$ and $\langle -1,2,-1\rangle$? – Thomas Andrews Feb 10 '14 at 20:54

It does not depend on values (which are just *uniformly distributed*). Set **A** may have repeating numbers. Your two triplets should consist of different elements from **A**, e.g. $\{a[0], a[1], a[2]\}$ and $\{a[0], a[1], a[3]\}$ are distinct. But $\{a[0], a[1], a[2]\}$ and $\{a[1], a[2], a[0]\}$ are not considered in this task. — oroboros Feb 10 '14 at 21:00

"triples of N random int values. . . where the values are uniformly distributed between -M and $M\dots$ To me, if say N is 4 and M is large, then one of these things is something like $(\{1,1,1,-3\},\{1,2,3,-6\},\{2,2,1,-5\})$ s that right? It looks like there is confusion between what role N has and what the role of 3 is. - alex.jordan Feb 10 '14 at 21:28

@alex.jordan N is the size of set, we should select only 3 distinct elements at a time. If N = 4, we have set like [34,76,-10,3]. From set we can select triples: $(\{34,76,-10\},\{34,76,3\},\{34,-10,3\},\{76,-10,3\})$. – oroboros Feb 10 '14 at 22:19

1 Answer

We are counting the number of pairs (A,t) where $A=(A_1,\ldots,A_N)$ is a sequence of N numbers in the range [-M,M] and t is a subset of $\{1,\ldots,N\}$ of size 3 such that $\sum_{i\in t}A_i=0$.

We first pick a triple (this can be done in $\binom{N}{3}$ ways), then pick three values from [-M,M] that sum to 0 (this can be done in $3M^2+3M+1$). Finally we pick the values of the remaining N-3 positions (can be done in $(2M+1)^{N-3}$ ways).

1 of 2 7/15/2016 5:34 PM

The total is thus $\binom{N}{3}(3M^2+3M+1)(2M+1)^{N-3}$, and the average number of t's per A

$$\frac{\binom{N}{3}(3M^2+3M+1)(2M+1)^{N-3}}{(2M+1)^N} = \frac{\binom{N}{3}(3M^2+3M+1)}{(2M+1)^3} \sim \frac{1}{16}\frac{N^3}{M}.$$

EDIT: I fixed the count of triples from [-M,M] with sum 0, and calculated the average number of t's, which is what the OP asked about (rather than the probability that a random triple of a random int vector will have sum zero).

edited Mar 4 '14 at 18:53

answered Mar 3 '14 at 14:09

Is number of triplets = N * 3/16M? Or I should multiply "total" and "fraction" instead? - oroboros Mar 4

Based on my program statistics quantity of zero triplets = $N^{\circ}3$ / 16M. Looks like, there must be error in your answer (or in my understanding of it). – oroboros Mar 4 '14 at 9:31

1 You are right - I made a mistake in the calculation (see edit for details). - Eric Mar 4 '14 at 18:54

2 of 2 7/15/2016 5:34 PM