

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07K 5/097, A61K 38/06	A1	(11) International Publication Number: WO 99/42475 (43) International Publication Date: 26 August 1999 (26.08.99)
(21) International Application Number: PCT/US99/02627		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 8 February 1999 (08.02.99)		
(30) Priority Data: 60/075,171 19 February 1998 (19.02.98) US		
(71) Applicant: ORTHO-MCNEIL PHARMACEUTICAL, INC. [US/US]; U.S. Route #202, P.O. Box 300, Raritan, NJ 08869-0602 (US).		
(72) Inventors: HOEKSTRA, William; 2047 Stone Ridge Lane, Villanova, PA 19085 (US). HULSHIZER, Becky, L.; 211 Hancock Court, North Wales, PA 19454 (US).		
(74) Agents: CIAMPORCERO, Audley, A., Jr. et al.; Johnson & Johnson, One Johnson & Johnson Plaza, New Brunswick, NJ 08933 (US).		

(54) Title: AZOLE PEPTIDOMIMETICS AS THROMBIN RECEPTOR ANTAGONISTS

(57) Abstract

Azole derivatives of formula (I) are disclosed as useful in treating platelet-mediated thrombotic disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

AZOLE PEPTIDOMIMETICS AS THROMBIN RECEPTOR ANTAGONISTS

5

BACKGROUND OF THE INVENTION

Thrombin is an important serine protease in hemostasis and thrombosis.

10 One of the key actions of thrombin is receptor activation. A functional human thrombin receptor, cloned by Coughlin in 1991 (T.-K. Vu, *Cell* 1991, 64, 1057), was found to be a member of the G-protein coupled receptor (GPCR) superfamily. The receptor activation putatively occurs by N-terminal recognition and proteolytic cleavage at the Arg-41/Ser-42 peptide bond to reveal a truncated N-terminus. This new receptor sequence, which has an

15 SFLLRN (Ser-Phe-Leu-Leu-Arg-Asn) N-terminus acting as a tethered ligand to recognize a site on the receptor, can trigger activation and signal transduction leading to platelet aggregation. Since 1991, two other protease-activated receptors with extensive homology to the thrombin

20 receptor, "PAR-2" (S. Nystedt, *Proc. Natl. Acad. Sci USA* 1994, 91, 9208) and "PAR-3" (H. Ishihara, *Nature* 1997, 386, 502), were cloned, and found to be activated by similar N-terminal hexapeptide sequences. Thrombin receptor (PAR-1) specific antibody-induced blockade of the platelet thrombin receptor has shown efficacy against arterial thrombosis *in vivo* (J. J. Cook

25 *Circulation* 1995, 91, 2961). Hence, antagonists of the thrombin receptor based on SFLLRN are useful in antagonizing these protease-activated receptors and as such may be used to treat platelet mediated thrombotic disorders such as myocardial infarction, stroke, restenosis, angina, atherosclerosis, and ischemic attacks by virtue of their ability to prevent

30 platelet aggregation.

The thrombin receptor has also been identified on other cell types: endothelial, fibroblast, osteosarcoma, smooth muscle, and neuronal/glia. Thrombin activation of endothelial cells upregulates P-selectin to induce

35 polymorphonuclear leukocyte adhesion - an inflammatory response of the vessel wall (Y. Sugama, *J. Cell Biol.* 1992, 119, 935). In fibroblasts, thrombin receptor activation induces proliferation and transmission of mitogenic signals (D. T. Hung, *J. Cell Biol.* 1992, 116, 827). Thrombin has

been implicated in osteoblast proliferation through its activation of osteoblast cells (D. N. Tatakis, *Biochem. Biophys. Res. Commun.* 1991, 174, 181). Thrombin has been implicated in the regulation and retraction of neurons (K. Jalink, *J. Cell. Biol.* 1992, 118, 411). Therefore, in this context, 5 the antagonist compounds of this invention may also be useful against inflammation, restenosis, osteoporosis, and neurodegenerative disorders.

The compounds of the present invention are azole peptidomimetics represented by the general formula (I) below. Azole-containing cyclic 10 peptides have been synthesized to be employed as cytotoxic agents (C. Boden, *Tetrahedron Lett.* 1994, 35, 8271). By contrast, the azole peptidomimetics of the present invention are strictly acyclic with activity against the thrombin receptor. Azole-based dolastatin analogues have been prepared as antitumor agents (K. Sakakibara, PCT Int. Appl., 31 pp., 15 WO9633212). These compounds contain a 4-thiazole-alkylamide C-terminus, whereas the compounds of the present invention require at least two amino acid residues C-terminal to the 4-thiazole carboxamide for activity against the thrombin receptor. Similarly, azole endothelin antagonists have been prepared which contain a 4-thiazole-carboxylic acid C-terminus (T. 20 von Geldern, *J. Med. Chem.* 1996, 39, 957).

DISCLOSURE OF THE INVENTION

25 The present invention is directed to compounds represented by the following general formula (I):

30 wherein A1, A2, A3, A4, R1, R2, R3, and X are as hereinafter defined. The compounds of the present invention are platelet aggregation inhibitors and as such are useful in treating platelet-mediated thrombotic disorders such as arterial and venous thrombosis, acute myocardial infarction, reocclusion 35 following thrombolytic therapy and angioplasty, inflammation, unstable

angina, and a variety of vaso-occlusive disorders. These compounds are also useful as antithrombotics in conjunction with fibrinolytic therapy (e.g., t-PA or streptokinase). Pharmaceutical compositions containing such compounds as the active ingredient as well as methods of preparing the 5 compounds are also part of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

More particularly, the present invention is directed to compounds of the 10 following formula (I):

15 wherein A₁ is an amino acid residue selected from Sar, Gly, His, His(CH₂Ph), Ile Ser, Thr, β-Ala, or Ala. A₁ may also be a C₂-C₆-acyl group such as, for example, acetyl, propionyl or butyryl or a C₁-C₈-alkyl group such as, for example, methyl, ethyl, propyl or butyl;

20 wherein A₂ is an alkyl amino acid residue selected from Cha, Leu, Ile, Asp, and Glu or an amino alkyl amino acid residue such as Lys, His, Orn, homoArg and Arg;

wherein A₃ is an amino alkyl amino acid residue selected from Lys, His, 25 Orn, Arg and homoArg;

wherein A₄ is an arylalkyl residue selected from Phe and Tyr or an aralkylamino group such as benzylamino or a phenethylamino group;

30 wherein R₁ is selected from H or alkyl;

wherein R₂ is an aryl, substituted aryl, heteroaryl, substituted heteroaryl, aralkyl or substituted aralkyl group, however R₂ is preferably aralkyl;

35 wherein R₃ is selected from H or alkyl;

wherein X is selected from S, O, or NR₄, wherein R₄ is selected from H or alkyl;

- 5 and the pharmaceutically acceptable salts thereof.

As used herein, unless otherwise noted alkyl and alkoxy whether used alone or as part of a substituent group, include straight and branched chains having 1-8 carbons. For example, alkyl radicals include methyl, ethyl, 10 propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, 3-(2-methyl)butyl, 2-pentyl, 2-methylbutyl, neopentyl, n-hexyl, 2-hexyl, 2-methylpentyl and the like. Alkoxy radicals are oxygen ethers formed from the previously described straight or branched chain alkyl groups. Acyl radicals are residues having 2-6 carbon atoms derived from an organic acid 15 by removal of the hydroxyl group.

The terms "aryl", "heteroaryl", "substituted aryl" and "substituted heteroaryl" as used herein alone or in combination with other terms indicates aromatic or heteroaromatic groups such as phenyl, naphthyl, 20 pyridyl, thienyl, furanyl, or quinolinyl wherein the substituent is a halo, alkyl, amino, nitro or alkoxy group. The term "aralkyl" means an alkyl group substituted with an aryl group.

Unless otherwise indicated, the other substituent on the carbon to 25 which R₂ is attached is hydrogen.

The compounds of the present invention may also be present in the form of a pharmaceutically acceptable salt. The pharmaceutically acceptable salt generally takes a form in which the basic nitrogen is 30 protonated with an inorganic or organic acid. Representative organic or inorganic acids include hydrochloric, hydrobromic, hydriodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, mandelic, methanesulfonic, 35 hydroxyethanesulfonic, benzenesulfonic, oxalic, pamoic, 2-naphthalenesulfonic, α -toluenesulfonic, cyclohexanesulfamic, salicylic, saccharinic or trifluoroacetic.

Particularly preferred compounds of the present invention include those compounds shown in Table I, where the amino acids bear the "L" absolute configuration unless denoted otherwise.

5

TABLE I

	#	R3	A1	A2	A3	A4	X
10	1	H	Sar	Cha	Arg	NHCH ₂ Ph	O
	2	H	β-Ala	Cha	Arg	NHCH ₂ Ph	O
	3	H	Sar	Cha	Arg	NH(CH ₂) ₂ Ph	S
	4	H	Sar	Cha	t-Arg	Phe-NH ₂	S
	5	H	Ile	Cha	Arg	Phe-NH ₂	S
15	6	H	Sar	Lys	Arg	NH(CH ₂) ₂ Ph	S
	7	Me	Sar	Cha	Arg	NHCH ₂ Ph	O
	8	Me	His(CH ₂ Ph)	Cha	Arg	NHCH ₂ Ph	O
	9	Me	Ac	Cha	Arg	NHCH ₂ Ph	O
	10	Me	Me ₂	Cha	Arg	NHCH ₂ Ph	O

20

The antagonists of the present invention may be prepared as shown in Scheme AA. Protected oxazole intermediates (AA2) can be prepared in two steps from the corresponding dipeptide (AA1) by Burgess Reagent-mediated cyclization to the oxazoline and then oxidation with, for example, t-butyl peroxybenzoate to give the oxazole (AA2). Dipeptides such as AA1 can be synthesized from the corresponding protected amino acids using standard solution-phase peptide coupling conditions utilizing EDC as the activating agent, NMM as the base and DCM as the solvent. Standard peptide methods are employed to complete the synthesis (e.g. compound 1). Boc removal from AA2 utilizing an acid such as, for example, TFA or HCl and coupling with Boc-Sar-OSu affords AA3. The ester is then saponified

with a base such as, for example, lithium hydroxide or any alkali metal or alkaline earth metal base and the carboxylic acid product is coupled with H-Cha-OMe to give AA4. Saponification of AA4 with a base, such as lithium hydroxide, for example, coupling with H-Arg(Pmc)-NH₂ (EDC), and 5 deprotection with TFA affords the product (1). The aforementioned Arg reagent, and other Arg amides in general, can be prepared in two steps from Fmoc-Arg(Pmc)-OH by EDC-mediated coupling with benzylamine and then Fmoc removal with 20% piperidine in dioxane. Although the Scheme is used to illustrate the preparation of those compounds wherein R₂ is p-F-Ph, 10 all of the compounds of the present invention can be prepared using the method illustrated in Scheme AA by utilizing an appropriately substituted oxazole, thiazole or imidazole as the starting material. Intermediate azoles other than oxazole AA2 can be prepared according to the methods exemplified in Schemes AB, AC, and AD.

SCHEME AA

AA1

1) $\text{MeO}_2\text{CNSO}_2\text{NEt}_3$
 2) $\text{PhCO}_3\text{tBu}, \text{Cu}(\text{OAc})_2$
 CuBr

AA2

1) TFA, DCM
 2) Boc-Sar-OSu, NMM

1) LiOH, aq. THF
 2) H-Cha-OMe, EDC

AA3

1) LiOH, aq. THF
 2) H-Arg(Pmc)-NHBn, EDC
 3) TFA, PhOMe, DCM

AA4

SCHEME AB

5

The thiazole intermediate AB2 can be prepared in three steps from an amino acid residue (AB1) using Hantzsch cyclization methodology (Scheme AB). AB1 is converted to the corresponding thioamide using Lawesson's Reagent. The thioamide is then alkylated with ethyl 3-bromopyruvate, and the product is cyclized with trifluoroacetic anhydride to give AB2. Those compounds of the present invention wherein X is S can be prepared from AB2 using standard peptide coupling procedures as exemplified in Scheme AA.

15

SCHEME AC

The 5-methyl-oxazole intermediate AC2 can be prepared in two steps from a dipeptide (AC1) (Scheme AC). AC1 is converted to the corresponding methyl ketone using the Dess-Martin reagent and the methyl ketone is then cyclized with triphenylphosphine/iodine to give AC2. In the case of compound 10, the *N,N*-dimethyl-p-F-Phe derivative is prepared by reductive alkylation with, for example, formaldehyde/sodium triacetoxyborohydride following Boc removal with, for example, TFA from AC2, and then the synthesis completed as shown in Scheme AA.

Those starting materials wherein X is NR_4 can be synthesized according to methods known to those skilled in the art. (S. K. Thompson, J.

Med. Chem. 1994, 37, 3100). In this procedure, EDC-mediated coupling of Boc-p-Phe-OH (AD1) with 4-amino-isoxazole followed by hydrogenation ($H_2/Pd-C$) and sodium hydroxide-mediated cyclization provides the corresponding 2-substituted-imidazole-4-carboxaldehyde (AD2, Scheme 5 AD). Oxidation of this aldehyde to the corresponding imidazole-4-carboxylic acid using standard methods ($NaClO_2$) and trimethylsilyldiazomethane esterification provides the imidazole AD3. Those compounds of the present invention wherein X is NR_4 can be prepared from AD3 using standard 10 peptide coupling procedures as exemplified in Scheme AA. Alkylation of the imidazole by generally known techniques produces those compounds of the invention wherein R_4 is alkyl.

Scheme AD

15

To prepare the pharmaceutical compositions of this invention, one or more compounds of formula (I) or salt thereof of the invention as the active 20 ingredient, is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral such as intramuscular. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus, for liquid oral preparations, such as, for 25

example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules, caplets, gelcaps and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques. For parenterals, the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, an amount of the active ingredient necessary to deliver an effective dose as described above. The pharmaceutical compositions herein will contain, per unit dosage unit, e.g., tablet, capsule, powder, injection, suppository, teaspoonful and the like, of from about 0.03 mg to 100 mg/kg (preferred 0.1-30 mg/kg) and may be given at a dosage of from about 0.1-300 mg/kg/day (preferred 1-50 mg/kg/day). The dosages, however, may be varied depending upon the requirement of the patients, the severity of the condition being treated and the compound being employed. The use of either daily administration or post-periodic dosing may be employed.

BIOLOGY

The compounds of the present invention interrupt platelet activation induced by thrombin's proteolytic cleavage of its platelet surface receptor, and thereby inhibit platelet aggregation. Such compounds are, therefore, useful in treating platelet-mediated thrombotic disorders such as arterial and venous thrombosis, acute myocardial infarction, reocclusion following thrombolytic therapy and angioplasty, and a variety of vaso-occlusive disorders.

IN VITRO THROMBIN RECEPTOR BINDING ASSAY.

CHRF membranes (Jones, *Biochim. Biophys. Acta* 1992, 1136, 272) are thawed from -70°C, centrifuged at maximum speed for 5 min, washed twice with binding buffer (50 mM HEPES containing 5 mM MgCl₂ and 0.1% BSA), and re-suspended in binding buffer (25 µg/100 mL). 100 µl of membranes are added to the 24-Wallac plates and delivered to the Tomtech apparatus. In a typical experiment, 6 µl of samples (from a 125 µg/mL intermediary plate, 20%DMSO) and 44 µl buffer are delivered to the plates (final conc. of compounds is 3.7 µg/mL, 0.6% DMSO). Similarly, 6 µl 20%DMSO and 44 µl buffer are delivered to both column 1 (NSB) and column 12 (TB). 10 µl Ser-pFPhe-Har-Leu-Har-Lys-Tyr-NH₂ (721-40; 500 µM in deionized water) is added to column 1. 50 µl tritiated 721-40 (specific activity 46 Ci/mmol) is added to all the wells. The plates are mixed well for 20 seconds, incubated for 30 min, and then harvested with 10 mM HEPES/138 mM NaCl using the Skatron harvester. The filters (GF/C Brandel FPXLR 296) are presoaked 3 h in 0.5% polyethylenimine in HEPES/0.1 M N-acetylglucosamine) are set in saran wrap and dried for 3 min in the microwave, and placed in sample bags (Wallac 1450-432). 4.5 mL scintillation fluid (Wallac, Betaplate Scint 1205-440) is added. The bags are sealed, placed in filter cassettes (Wallac 1450-104), and analyzed on the microbeta counter.

25

IN VITRO INHIBITION OF THROMBIN-INDUCED GEL-FILTERED PLATELET AGGREGATION ASSAY.

The percentage of platelet aggregation is calculated as an increase in light transmission of compound-treated platelet concentrate vs. control-treated platelet concentrate. Human blood is obtained from drug free, normal donors in tubes containing 0.13 M sodium citrate. Platelet rich plasma (PRP) is collected by centrifugation of whole blood at 200 x g for 10 min at 25°C. The PRP (5 mL) is gel filtered through Sepharose 2B (bed volume 50 mL), and the platelet count is adjusted to 2x10⁷ platelets per sample. The following constituents are added to a siliconized cuvette: concentrated platelet filtrate and Tyrode's buffer (0.14 M NaCl, 0.0027 M KCl, 0.012 M NaHCO₃, 0.76 mM Na₂HPO₄, 0.0055 M glucose, 2 mg/mL

BSA and 5.0 mM HEPES @ pH 7.4) in an amount equal to 350 µl, 50 µl of 20 mM calcium and 50 µl of the test compound. Aggregation is monitored in a BIODATA aggregometer for the 3 min following the addition of agonist (thrombin 50 µl of 1 unit/mL).

5

Table II shows the biological activity of the compounds of the present invention. The table contains IC₅₀ values (µM) of the compounds in a thrombin receptor binding assay, and IC₅₀ values (µM) against platelet aggregation stimulated by two agonists, thrombin or SFLLRN-NH₂ (TRAP).

10

TABLE II
Biological Activity

15	<u>Compound</u>	Thr Receptor Binding		Platelet Aggregation**	
		IC ₅₀ *	IC ₅₀ Thr*	IC ₅₀ TRAP*	IC ₅₀ Thr*
	1	2.0	25	10	
	2	8.2	10	7	
	3	35.0	12	0.6	
	4	5.0	45	3	
20	5	3.5	43	9	
	6	15.5	26	4	
	7	7.0	19	22	
	8	30.0	13	5	
	9	31.0	24	11	
25	10	NT	11	17	

* µM

** Thrombin-induced aggregation of gel-filtered platelets in µM.

30

EXAMPLES

Protected amino acids were purchased from Fluka Chemical or Bachem Bioscience Inc. All other chemicals were purchased from Aldrich Chemical Company, Inc. High field ¹H NMR spectra were recorded on a Bruker AC-360 spectrometer at 360 MHz, and coupling constants are given in Herz. Melting points were determined on a Mel-Temp II melting point

apparatus and are uncorrected. Microanalyses were performed at Robertson Microlit Laboratories, Inc., Madison, New Jersey.

In the examples and throughout this application, the following
5 abbreviations have the meanings recited hereinafter:

	Ac	Acetyl
	Bn	Benzyl
	Boc	t-Butoxycarbonyl
10	Cbz	Benzoyloxycarbonyl
	CP	compound
	DCE	1,2-Dichloroethane
	DCM	Dichloromethane
	DIC	Diisopropylcarbodiimide
15	DIEA	Diisopropylethylamine
	DMAP	4-Dimethylaminopyridine
	DME	1,2-Dimethoxyethane
	DMF	N, N-Dimethylformamide
	EDC	Ethyl dimethylaminopropylcarbodiimide
20	EDTA	Ethylenediaminetetraacetic acid
	Et ₂ O	Diethyl ether
	Fmoc	9-Fluorenylmethoxycarbonyl
	HOBT	Hydroxybenzotriazole
	i-Pr	Isopropyl
25	NMM	N-Methylmorpholine
	OSu	N-Oxysuccinimide
	Pmc	2,2,5,7,8-Pentamethylchroman-6-sulfonyl
	PTSA	p-Toluenesulfonic acid
	RT	room temperature
30	TFA	Trifluoroacetic acid

Amino acid abbreviations are defined below:

	Ala	Alanine
	β-Ala	beta-Alanine
35	Arg	Arginine
	Asp	Aspartic Acid
	Cha	Cyclohexylalanine
	p-F-Phe	4-Fluorophenylalanine

	Glu	Glutamic Acid
	Gly	Glycine
	hArg	Homoarginine (homoArg)
	His	Histidine
5	Ile	Isoleucine
	Leu	Leucine
	Lys	Lysine
	Or	Ornithine
	Phe	Phenylalanine
10	Sar	Sarcosine
	Ser	Serine
	Thr	Threonine
	Tyr	Tyrosine

15

Methyl 2-[1(S)-t-butoxycarbonylamino-2-(4-fluorophenyl)ethyl]oxazole-4-carboxylate (AA2)

To a solution of Boc-p-F-Phe-OH (0.018 mol), DCM (200 mL), H-Ser-OMe (0.018 mol), HOBT (10 mg), and EDC-HCl (0.036 mol) at 5°C was added NMM (0.036 mol). The reaction was stirred for 3.5 h, diluted with sat'd NH₄Cl (30 mL). The layers were separated, and the organic layer was washed with sat'd NaHCO₃ (30 mL), dried (Na₂SO₄), and evaporated to give a white powder (5.9 g). The powder was dissolved in DME (100 mL), treated with (methoxycarbonylsulfamoyl) triethylammonium hydroxide (0.015 mol), and heated at reflux for 1 h. The reaction was cooled to RT, diluted with EtOAc (150 mL) and sat'd NaHCO₃ (30 mL), and the layers separated. The organic layer was dried (Na₂SO₄) and evaporated to give a white solid (4.8 g). The solid was dissolved in benzene (140 mL), treated with Cu(OAc)₂ (0.014 mol), CuBr (0.014 mol), and t-butyl peroxybenzoate (0.020 mol), and heated at reflux for 5 h. The reaction was cooled, diluted with EtOAc (50 mL) and sat'd NaHCO₃ (10 mL), and filtered. The layers of the filtrate were separated, and the organic layer dried and evaporated to a brown oil. The oil was purified over silica gel (2% MeOH/DCM) to give AA2 as a gold solid (1.75 g); ¹H NMR (CDCl₃) δ 8.12 (s, 1 H), 7.6 (m, 1 H), 6.9 (m, 4 H), 5.2 (m, 1 H), 3.91 (s, 3 H), 3.2 (m, 2 H), 1.40 (s, 9 H); FAB-MS m/e 365 (MH⁺).

The following examples describe the invention in greater detail and are intended to illustrate the invention but not to limit it.

5

EXAMPLE 12-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (1)

- 10 Intermediate AA2 (4.1 mmol) was dissolved in DCM (10 mL) and TFA (12 mL) and stirred for 1 h. The solution was concentrated to give a brown oil, and the oil triturated with hexane (50 mL). The oil was dissolved in DCM (60 mL), treated with Boc-Sar-OSu (4.1 mmol) and NMM (12.3 mmol), and stirred for 24 h. The reaction mixture was diluted with sat'd NH₄Cl (15 mL) and the layers separated. The organic layer was washed with sat'd NaHCO₃ (20 mL), dried (Na₂SO₄), evaporated, and purified by silica gel chromatography (2%MeOH/DCM) to give a brown oil (AA3, 1.0 g). AA3 (2.1 mmol) was dissolved in THF (10 mL), cooled to 5°C, treated with aq. LiOH (4 mmol/20 mL water), and stirred for 2 h. The reaction was acidified with citric acid (0.5 g) and extracted with CHCl₃ (2x70 mL). The organic materials were dried (Na₂SO₄) and evaporated to give a gold foam (0.85 g). The foam (2.0 mmol) was dissolved in DCM (60 mL) and treated with H-Cha-OMe•HCl (2.0 mmol), HOBT (10 mg), EDC•HCl (3.0 mmol), and NMM (4.0 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (20 mL), and the layers separated. The organic layer was dried, evaporated, and purified by silica gel chromatography (3% MeOH/DCM) to afford a gold oil (AA4, 1.0 g; FAB-MS m/e 589, MH⁺). AA4 (1.7 mmol) was dissolved in THF (10 mL), cooled to 5°C, treated with aq. LiOH (3.4 mmol/20 mL water), and stirred for 2 h. The reaction was acidified with citric acid (0.5 g) and extracted with CHCl₃ (2x70 mL). The organic materials were dried (Na₂SO₄) and evaporated to give a gold oil (0.71 g). The oil (1.2 mmol) was dissolved in DCM (60 mL) and treated with H-Arg(Pmc)-NHCH₂Ph (1.2 mmol), HOBT (10 mg), EDC•HCl (2.4 mmol), and NMM (1.2 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (20 mL), and the layers separated. The organic layer was dried (Na₂SO₄), evaporated, and purified by silica gel chromatography (7% EtOH/DCM) to afford a clear glass (0.90 g). The glass was dissolved in DCM (5 mL) and anisole (0.5 mL), treated with TFA (10 mL), and stirred for 2.5 h. The solution was evaporated, and the resultant

green oil triturated with Et₂O (4x30 mL), dried (Na₂SO₄), and isolated as a white powder (0.90 g): mp 127-130°C; FAB-MS m/e 720 (MH⁺); [α]²⁴D - 21.8° (c 0.28, MeOH). Anal. calcd. for C₃₇H₅₀N₉O₅F • 2.0 TFA (947.91): C, 51.95; H, 5.53; N, 13.30. Found: C, 51.53; H, 5.78; N, 13.05.

5

EXAMPLE 2

10 2-[1(S)-8-Alanineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (2)

Compound 2 was prepared using the method described in example 1. Intermediate AA2 (2.2 mmol) was deprotected with TFA and then reacted with H-β-Ala-OSu (2.2 mmol) as described. Compound 2 was isolated as a white powder (0.21 g): mp 108-112°C; FAB-MS m/e 720 (MH⁺). Anal. calcd. for C₃₇H₅₀N₉O₅F • 2.0 TFA • 0.5 H₂O (956.93): C, 51.46; H, 5.58; N, 13.17; KF, 0.91. Found: C, 51.41; H, 5.95; N, 13.20; KF, 0.88.

20 Ethyl 2-[1(S)-t-butoxycarbonylamino-2-(4-fluorophenyl)ethyl]thiazole-4-carboxylate (AB2)

To a solution of AB1 (14.9 mmol) in dioxane (60 mL) was added Lawesson's reagent (8.9 mmol). This mixture was stirred for 3 h, filtered, and the filtrate evaporated and purified by silica gel chromatography (2% MeOH/DCM) to afford the thioamide (3.9 g). The thioamide (13.1 mmol) was dissolved in DME (80 mL), treated with NaHCO₃ (0.10 mol) and ethyl bromopyruvate (39.3 mmol), and stirred for 20 min. The mixture was cooled to 5°C, treated with a solution of TFAA (52.4 mmol), pyridine (0.10 mol), and DME (10 mL), and the ice bath removed. This mixture was stirred for 17 h, filtered, concentrated, diluted with DCM, and washed with water. The organic layer was dried (Na₂SO₄) and purified by silica gel chromatography (1.5% MeOH/DCM) to afford AB2 as a white foam (4.6 g): ¹H NMR (CDCl₃) δ 8.08 (s, 1 H), 7.1 (m, 2 H), 6.9 (m, 2 H), 5.3 (m, 2 H), 4.4 (q, 2 H), 3.2 (m, 2 H), 1.5 (t, 3 H), 1.40 (s, 9 H); FAB-MS m/e 395 (MH⁺).

EXAMPLE 32-[1(S)-Garcosineamido-2-(4-fluorophenyl)ethyl]thiazole-4-carboxy-5 cyclohexylalanyl-arginine phenethylamide (3)

Compound 3 was prepared by the method described for compound 1. Intermediate AB1 (1.2 mmol) was dissolved in DCM (10 mL) and TFA (12 mL) and the resultant solution was stirred for 1 h. The solution was then 10 concentrated to give a brown oil, and the oil triturated with hexane (50 mL). The oil was dissolved in DCM (60 mL), treated with Boc-Sar-OSu (1 mmol) and NMM (3 mmol), and stirred for 24 h. The reaction was diluted with sat'd NH₄Cl (15 mL) and the layers separated. The organic layer was washed with sat'd NaHCO₃ (20 mL), dried (Na₂SO₄), evaporated, and purified by 15 silica gel chromatography (2%MeOH/DCM) to give an oil. The oil was dissolved in THF (10 mL), cooled to 5°C, treated with aq. LiOH (1 mmol/6 mL water), and stirred for 2 h. The reaction was acidified with citric acid (0.2 g) and extracted with CHCl₃ (2x70 mL). The organic materials were dried (Na₂SO₄) and evaporated to give a foam. The foam (0.5 mmol) was 20 dissolved in DCM (60 mL) and treated with H-Cha-OMe•HCl (0.5 mmol), HOBT (3 mg), EDC•HCl (1 mmol), and NMM (1.5 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (20 mL), and the layers separated. The organic layer was dried (Na₂SO₄), evaporated, and purified by silica gel 25 chromatography (3% MeOH/DCM) to afford a clear oil. The oil was dissolved in THF (5 mL), cooled to 5°C, treated with aq. LiOH (0.2 mmol/4 mL water), and stirred for 2 h. The reaction was acidified with citric acid (0.5 g) and extracted with CHCl₃ (2x50 mL). The organics were dried (Na₂SO₄) and evaporated to give a gold oil (0.71 g). The oil (1.2 mmol) was dissolved 30 in DCM (60 mL) and treated with H-Arg(Pmc)-NHCH₂CH₂Ph (1.2 mmol), HOBT (10 mg), EDC•HCl (2.4 mmol), and NMM (1.2 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (20 mL), and the layers separated. The organic layer was dried, evaporated, and purified by silica gel chromatography (7% EtOH/DCM) to afford a clear glass (0.3 g). The glass was dissolved in DCM (5 mL) and anisole (0.5 mL), treated with TFA 35 (10 mL), and stirred for 2.5 h. The solution was evaporated, and the resultant brown oil triturated with Et₂O (4x30 mL), dried, and isolated as a beige powder (0.093 g): ¹H NMR (DMSO-d₆) δ 9.2 (m, 2 H), 8.4 (d, 1 H), 8.33 (s, 1 H), 8.2 (m, 1 H), 8.1 (m, 1 H), 7.6 (m, 1 H), 6.9-7.4 (m, 9 H), 5.4 (m, 1 H),

4.6 (m, 1 H), 4.2 (m, 1 H), 3.6 (q, 2 H), 3.0-3.5 (m, 6 H), 2.7 (m, 2 H), 2.5 (m, 2 H), 2.39 (s, 3 H), 1.3-1.9 (m, 10 H), 0.8-1.3 (m, 10 H); FAB-MS m/e 750 (MH⁺).

5

EXAMPLE 4

2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]triazole-4-carboxy-cyclohexylalanyl-homoarginyl-phenylalanineamide (4)

10

Compound 4 was prepared by the method described in example 3 from AB2 (1.0 mmol) and Boc-Sar-OSu (1.0 mmol), and isolated as a tan powder (0.021 g); ¹H NMR (DMSO-d₆) δ 8.38 (s, 1 H), 8.0 (d, 1 H), 7.9 (d, 1 H), 7.5 (m, 1 H), 7.0-7.4 (m, 9 H), 5.4 (m, 1 H), 4.6 (m, 1 H), 4.4 (m, 1 H), 4.2 (m, 1 H), 15 3.7 (q, 2 H), 3.4 (m, 4 H), 3.1 (m, 4 H), 2.8 (m, 2 H), 2.47 (s, 3 H), 1.7 (m, 1 H), 1.3-1.8 (m, 8 H), 0.8-1.4 (m, 16 H); FAB-MS m/e 807 (MH⁺).

EXAMPLE 5

20

2-[1(S)-Isoleucineamido-2-(4-fluorophenyl)ethyl]triazole-4-carboxy-cyclohexylalanyl-arginyl-phenylalanineamide (5)

Compound 5 was prepared by the method described in example 3 from 25 AB2 (1.3 mmol) and Boc-Ile-OH (1.3 mmol), and isolated as a pale yellow powder (0.079 g); ¹H NMR (DMSO-d₆) δ 9.2 (m, 1 H), 8.8 (m, 1 H), 8.72 (s, 1 H), 7.7-8.1 (m, 7 H), 7.6 (m, 1 H), 6.8-7.5 (m, 9 H), 5.4 (m, 1 H), 4.6 (m, 1 H), 4.4 (m, 1 H), 4.3 (m, 1 H), 3.7 (m, 2 H), 3.6 (m, 1 H), 3.4 (m, 2 H), 2.7-3.2 (m, 6 H), 1.8 (m, 2 H), 1.0-1.7 (m, 18 H), 0.9 (d, 3 H), 0.8 (t, 3 H); FAB-MS m/e 835 (MH⁺).

EXAMPLE 6

- 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]thiazolid-4-carboxy-lysyl-
5 arginine phenethylamide (6)

Compound 6 was prepared by the method described in example 3 from AB2 (1.4 mmol) and Boc-Sar-OSu (1.4 mmol), and isolated as a tan powder (0.099 g); FAB-MS m/e 725 (MH⁺).

10

Methyl 2-[1(S)-t-butoxycarbonylamino-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxylate (AC2)

- 15 Dipeptide AC1 (12.6 mmol), prepared by the method described for the preparation of Boc-p-F-Phe-Ser-OMe in example AA2, was dissolved in DCM (125 mL) and water (0.2 mL) and treated with 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benzodioxol-3(1H)-one (Dess-Martin reagent; 15.1 mmol). The reaction was stirred for 30 min, diluted with DCM (100 mL), and washed with
20 sat'd NaHCO₃ (2x40 mL), dried, and evaporated. The residue was purified by silica gel chromatography (30% EtOAc/hexane) to give a ketone. A solution of DCM (70 mL), PPh₃ (8.3 mmol), and TEA (16.5 mmol) was treated with the ketone (8.3 mmol) and stirred for 5 min. The mixture was washed with aq. Na₂S₂O₃ and sat'd NaHCO₃, and the organic layer dried, evaporated, and purified by silica gel chromatography (25%EtOAc/hexane) to give AC2 as a white foam (2.5 g); ¹H NMR (CDCl₃) δ 7.1 (m, 2 H), 6.9 (m, 2 H), 5.1 (m, 2 H), 3.92 (s, 3 H), 3.2 (m, 2 H), 2.60 (s, 3 H), 1.40 (s, 9 H); FAB-MS m/e 379 (MH⁺).

30

EXAMPLE 7

- 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (7)
- 35 Compound 7 was prepared by the method described for the preparation of compound 1. Intermediate AC1 (1.3 mmol) was dissolved in DCM (10 mL) and TFA (12 mL) and the solution was stirred for 1 h. The solution was

concentrated to give a tan oil, and the oil triturated with hexane (50 mL). The oil was dissolved in DCM (60 mL), treated with Boc-Sar-OSu (1.3 mmol) and NMM (4 mmol), and stirred for 24 h. The reaction was diluted with sat'd NH₄Cl (15 mL) and the layers separated. The organic layer was washed
5 with sat'd NaHCO₃ (20 mL), dried (Na₂SO₄), evaporated, and purified by silica gel chromatography (2%MeOH/DCM) to give an oil. The oil was dissolved in THF (10 mL), cooled to 5°C, treated with aq. LiOH (1 mmol/6 mL water), and the mixture stirred for 2 h. The reaction mixture was acidified with citric acid (0.2 g) and extracted with CHCl₃ (2x70 mL). The organic
10 materials were dried (Na₂SO₄) and evaporated to give a foam. The foam (0.6 mmol) was dissolved in DCM (60 mL) and the solution was treated with H-Cha-OMe•HCl (0.6 mmol), HOBT (3 mg), EDC•HCl (1 mmol), and NMM (1.5 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (15 mL), and the layers separated. The organic layer was dried (Na₂SO₄),
15 evaporated, and the residue was purified by silica gel chromatography (3% MeOH/DCM) to afford a tan oil. The oil was dissolved in THF (5 mL), cooled to 5°C, treated with aq. LiOH (0.2 mmol/4 mL water), and the mixture was stirred for 2 h. The reaction mixture was then was acidified with citric acid (0.5 g) and extracted with CHCl₃ (2x50 mL). The organic materials were
20 dried (Na₂SO₄) and evaporated to give a glass (0.71 g). The glass (1.2 mmol) was dissolved in DCM (60 mL) and the solution was treated with H-Arg(Pmc)-NH₂Bn (1.2 mmol), HOBT (5 mg), EDC•HCl (2.4 mmol), and NMM (1.2 mmol). This mixture was stirred for 2 h, diluted with sat'd NH₄Cl (20 mL), and the layers separated. The organic layer was dried (Na₂SO₄),
25 evaporated, and the residue was purified by silica gel chromatography (7% EtOH/DCM) to afford a clear glass (0.3 g). The glass was dissolved in DCM (5 mL) and anisole (0.5 mL), the resultant solution was treated with TFA (10 mL), and stirred for 2.5 h. The solution was evaporated, and the resultant glass triturated with Et₂O (4x25 mL), dried (Na₂SO₄), and isolated as a white
30 powder (0.10 g): mp 117-121°C; FAB-MS m/e 734 (MH⁺). Anal. calcd. for C₃₈H₅₂N₉O₅F • 2.0 TFA • 0.5 H₂O (970.94): C, 51.96; H, 5.71; N, 12.98; KF, 0.94. Found: C, 51.88; H, 5.89; N, 12.60; KF, 1.0.

EXAMPLE 8

- 5 2-[1(S)-N(tau)-Benzyl-histidineamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (8)

Compound 8 was prepared by the method described for the preparation of compound 7 from AC2 (1.1 mmol) and Boc-His(Bn)-OH (1.1 mmol), and isolated as a white powder (0.083 g): mp 101-106°C; FAB-MS m/e 890 (MH⁺). Anal. calcd. for C₄₈H₆₀N₁₁O₅F • 2.6 TFA • 0.8 anisole • 1.0 H₂O (1294.5): C, 54.61; H, 5.53; N, 11.90; KF, 1.39. Found: C, 54.23; H, 5.44; N, 11.96; KF, 1.75.

EXAMPLE 9

- 15 2-[1(S)-Acetamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (9)

20 Compound 9 was prepared by the method described for the preparation of compound 7 from AC2 (1.2 mmol) and acetyl chloride (1.2 mmol), and isolated as a white powder (0.10 g): mp 111-116°C; FAB-MS m/e 705 (MH⁺). Anal. calcd. for C₃₇H₄₉N₈O₅F • 1.0 TFA • 1.0 anisole • 1.0 H₂O (901.78): C, 57.54; H, 6.35; N, 12.43; KF, 2.0. Found: C, 57.71; H, 6.27; N, 12.49; KF, 2.32.

25

EXAMPLE 10

- 30 2-[1(S)-N,N-Dimethyl-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide (10)

35 Compound 10, prepared by the method described for the preparation of compound 7, was synthesized via methyl 2-[1(S)-N,N-dimethyl-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxylate as follows. Intermediate AC2 (1.0 mmol) was deprotected of the Boc group with TFA as described. The primary amine TFA salt was partitioned between DCM (50 mL) and sat'd NaHCO₃ (15 mL), and the layers separated. The organic layer was dried (Na₂SO₄) and evaporated to a glass. The glass was dissolved in DCE

(10 mL) and 37% formaldehyde (0.23 mL) at RT and then treated with sodium triacetoxyborohydride (4.0 mmol). The mixture was stirred for 18 h, diluted with DCM (50 mL), and washed with sat'd NaHCO₃ (10 mL). The organic layer was dried (Na₂SO₄), evaporated, and the resultant foam
5 purified by silica gel chromatography (1.5%MeOH/DCM) to afford methyl 2-[1(S)-N,N-dimethyl-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxylate as a glass (0.24 g). This glass was used to prepare **10** aby the method described in example 7. Compound **10** was isolated as a tan powder
10 (0.088 g): mp 115°C; FAB-MS m/e 691 (MH⁺). Anal. calcd. for C₃₇H₅₁N₈O₄F • 2.0 TFA • 2.1 H₂O (956.75): C, 51.47; H, 6.03; N, 11.71; KF, 3.95. Found: C, 51.24; H, 6.28; N, 12.09; KF, 4.23.

WE CLAIM:

1. A compound represented by the general formula (I):

5

wherein A₁ is an amino acid residue selected from Sar, Gly, His,
10 His(CH₂Ph), Ile, Ser, Thr, β-Ala, Ala, a C₂-C₆-acyl group and a C₁-C₈-alkyl
group;

wherein A₂ is an alkyl amino acid residue selected from Cha, Leu, Ile,
Asp and Glu or an aminoalkyl amino acid residue selected from Lys, His,
15 Orn, homoArg and Arg;

wherein A₃ is an amino alkyl amino acid residue selected from Lys, His,
Orn, Arg and homoArg;

20 wherein A₄ is an arylalkyl residue selected from Phe and Tyr or an
aralkylamino group;

wherein R₁ is selected from H or alkyl;

25 wherein R₂ is aryl, substituted aryl, heteroaryl, substituted heteroaryl
aralkyl or substituted aralkyl;

wherein R₃ is H or alkyl;

30 wherein X is selected from S, O, or NR₄, wherein R₄ is selected from H
or alkyl;

and the pharmaceutically acceptable salts thereof.

2. The compound of claim 1 wherein X is O.
3. The compound of claim 1 wherein X is S.
5
4. The compound of claim 1 wherein X is NR₄.
5. The compound of claim 1, wherein:
A₁ is an amino acid residue;
10 A₂ is an alkyl amino acid residue;
A₃ is an aminoalkyl amino acid residue;
A₄ is aralkyl;
R₁ is H or alkyl;
R₂ is aryl or substituted aryl;
15 R₃ is H or alkyl; and
X is S, O, or NR₄,
and the pharmaceutically acceptable salts thereof.
6. The compound of claim 5 wherein X is O.
20
7. The compound of claim 5 wherein X is S.
8. The compound of claim 5 wherein X is NR₄.
- 25 9. The compound of claim 1, selected from any of:

2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide,
- 30 2-[1(S)-β-Alanineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide,
- 35 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]thiazole-4-carboxy-cyclohexylalanyl-arginine phenethylamide,
2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]triazole-4-carboxy-cyclohexylalanyl-homoarginyl-phenylalanineamide,

- 2-[1(S)-Isoleucineamido-2-(4-fluorophenyl)ethyl]triazole-4-carboxy-cyclohexylalanyl-arginyl-phenylalanineamide,
- 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]thiazole-4-carboxy-lysyl-
5 arginine phenethylamide,
- 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide,
- 10 2-[1(S)-N(tau)-Benzyl-histidineamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide,
- 2-[1(S)-Acetamido-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide and
15 2-[1(S)-N,N-Dimethyl-2-(4-fluorophenyl)ethyl]-5-methyloxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide.
- 20 10. A compound of claim 9 selected from the group consisting of:
- 2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide,
- 25 2-[1(S)-β-Alanineamido-2-(4-fluorophenyl)ethyl]oxazole-4-carboxy-cyclohexylalanyl-arginine benzylamide and
2-[1(S)-Sarcosineamido-2-(4-fluorophenyl)ethyl]thiazole-4-carboxy-cyclohexylalanyl-arginine phenethylamide.

11. A compound of claim 1 of the formula:

wherein A₁ is an amino acid residue selected from Sar, Gly, His,
5 His(CH₂Ph), Ile, Ser, Thr, β-Ala, Ala, a C₂-C₆-acyl group or a C₁-C₈-alkyl
group;

wherein A₂ is an alkyl amino acid residue selected from Cha, Leu, Ile,
Asp and an amino alkyl amino acid residue selected from Lys, His, Orn,
10 homoAarg and Arg;

wherein A₃ is an amino alkyl amino acid residue selected from Lys, His,
Orn, Arg and homoArg;

15 wherein A₄ is an arylalkyl residue selected from Phe, Tyr or an
aralkylamino group;

wherein R₃ is H or alkyl;

20 wherein X is selected from S, O, or NR₄, wherein R₄ is selected from H
or alkyl;

and the pharmaceutically acceptable salts thereof.

25

12. The compound of claim 11 wherein X is O.

13. The compound of claim 11 wherein X is S.

30 14. The compound of claim 11 wherein X is NR₄.

15. The compound of claim 11 wherein:
- A₁ is an amino acid residue;
- A₂ is an alkyl amino acid residue;
- 5 A₃ is an amino alkyl amino acid residue;
- A₄ is arylalkyl or aralkylamino;
- R₃ is H; and
- X is S, O or NR₄.
- 10 16. The compound of claim 15 wherein X is O.
17. The compound of claim 15 wherein X is S.
18. The compound of claim 15 wherein X is NR₄.
- 15 19. The compound of claim 1 wherein the pharmaceutically acceptable salt is the trifluoroacetate.
20. A composition for treating platelet-mediated thrombotic disorders comprising the compound of claim 1 in an effective amount for treating such disorders in combination with a pharmaceutically acceptable carrier.
- 20 21. A method of treating platelet-mediated thrombotic disorders comprising administering to a patient afflicted with such disorder an effective amount of the compound of claim 1 to treat such disorder.
- 25 22. The method of claim 21, wherein the amount is 0.03 mg to 100 mg/kg/day.

INTERNATIONAL SEARCH REPORT

I :ational Application No
PCT/US 99/02627

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07K5/097 A61K38/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	HOEKSTRA W J ET AL: "Thrombin receptor (PAR-1) antagonists. Heterocycle-based peptidomimetics of the SFLLR agonist motif" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 8, no. 13, 7 July 1998, page 1649-1654 XP004137101 see the whole document --- A	1-22
A	DATABASE WPI Section Ch, Week 9601 Derwent Publications Ltd., London, GB; Class B03, AN 96-006941 XP002103727 & JP 07 285952 A (FUJISAWA PHARM CO LTD) , 31 October 1995 see abstract --- -/-/	1-22

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

26 May 1999

10/06/1999

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Groenendijk, M

INTERNATIONAL SEARCH REPORT

	International Application No PCT/US 99/02627
--	---

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	M S BERNATOWICZ ET AL: "Development of potent thrombin receptor antagonist peptides" JOURNAL OF MEDICINAL CHEMISTRY, vol. 39, no. 25, 6 December 1996, pages 4879-4887, XP002095053 see the whole document	1-22
A	SCARBOROUGH, R. M. ET AL: "Thrombin receptor antagonists derived from "tethered ligand" agonist peptides" 1994 , PEPT.: CHEM., STRUCT. BIOL., PROC. AM. PEPT. SYMP., 13TH (1994), MEETING DATE 1993, 695-7. EDITOR(S): HODGES, ROBERT S.;SMITH, JOHN A. PUBLISHER: ESCOM, LEIDEN, NETH. CODEN: 60LXAW XP002103726 see the whole document	1-22
A	WO 94 03479 A (COR THERAPEUTICS INC ;SCARBOROUGH ROBERT M (US)) 17 February 1994 see the whole document	1-22
A	VON GELDERN T W ET AL: "Azole endothelin antagonists. 1. A receptor model explains an unusual structure-activity profile." JOURNAL OF MEDICINAL CHEMISTRY, (1996 FEB 16) 39 (4) 957-67. JOURNAL CODE: JOF. ISSN: 0022-2623., XP002103725 United States see the whole document	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/02627

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 21 and 22 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No

PCT/US 99/02627

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9403479	A 17-02-1994	AU	669922 B	27-06-1996
		AU	4668593 A	03-03-1994
		CA	2140543 A	17-02-1994
		EP	0656008 A	07-06-1995
		JP	2675438 B	12-11-1997
		JP	7506115 T	06-07-1995
		SG	49772 A	15-06-1998
		US	5866681 A	02-02-1999