# **TEMA 4**

## **RED TEAM**

Metodología: Diseñar ataques específicos, explotar vulnerabilidades con herramientas como Kali Linux, Metasploit y Nmap.

Objetivo: Reportar debilidades al equipo defensivo (Blue Team).

#### **Distribuciones Linux:**

-Kali Linux: Auditoría y pruebas de seguridad.

-Parrot Security OS: enfocado en pruebas de penetración y análisis forense.

## Herramientas específicas:

-Nmap/Zenmap: escaneo de puertos y servicios

-Wireshark: Análisis de tráfico para red o sniffing.

-Metasploit: Framework para pruebas de penetración

-John the Ripper: crackeo de contraseñas

etc,...

#### Ciberincidentes y Taxonomía

Definición: Sucesos que afectan la confidencialidad, integridad o disponibilidad de la información.

#### Clasificación:

Nivel crítico: amenazas avanzadas como Advanced Persistent Threats.

Nivel muy alto: Distribución de Malware, sabotaje, robo,....

Nivel medio: DoS, DDoS, pérdida de datos, phishing.

Nivel bajo: Spam, análisis de paquetes, sniffing,....

#### Gestión:

<u>Equipos CERT/CSIRT</u> especializados en recolectar, analizar y dar respuesta a posibles ciberincidentes o incidentes de seguridad.

#### Repositorios como:

MITRE ATT&CK: ofrece conjunto de tácticas y técnicas de ataque.

CVE MITRE con registros de vulnerabilidades ya conocidas.

CWE MITRE: lista de tipos de componentes software y hardware

vulnerables, una CWE esta asociada a una o varias CVE.

NVD con registros de vulnerabilidades ya conocidas.

NVD de NIST: ofrece APIS para conectar y descargar vulnerabilidades

registradas en el tiempo.

## **BLUE TEAM**

Metodología: Evaluar riesgos, diseñar estrategias de mitigación y monitorear el sistema. Objetivo: Proteger la infraestructura frente a los ataques detectados por el Red Team.

#### Seguridad en email: PGP y S/MIME:

**PGP(Pretty Good privacy):** autenticidad, integridad y confidencialidad.

Se usa más a nivel personal.

- -Firma digital.
- -Encriptación.
- -Integra criptografía de clave pública y privada.
- -Operaciones de compresión(ZIP).
- -Modelos de clave: Private-Key ring(users) y Public-Key ring(otros

users).

-Compatibilidad de emails.

#### S/MIME (Secure/Multipurpose Internet Mail Extension):

Se usa más a nivel comercial.

- -Firma digital.
- -Encriptación.
- -Utiliza certificados de clave pública en formato X.509v3
- -Sigue el modelo de PKI hibrido.

**Telnet** (**puerto 23**): facilita el acceso remoto a otros sistemas sobre TCP, de forma que el terminal local aparenta ser el terminal del sistema remoto. protocolo de texto plano vulnerable a sniffing.

**FTP(p20/21):** permite la transferencia de ficheros entre diferentes recursos remotos. protocolo de texto plano vulnerable a sniffing.

#### SHH(Secure Shell(puerto 22):

- -alternativa cifrada que utiliza criptografía pública.
- -Funciona como túnel seguro para transferencia de datos(SFTP) y copia segura(SCP).
- -SSH2 permite ser usado para transferir ficheros como alternativa a FTP conocido como SFTP y SCP.

#### SHH1 Y SHH2 son incompatibles:

-SSH1: tripleDES, Blowfish para cifrado, RSA para autenticación.

-SSH2: AES, Blowfish, Twofish, 3DES, CAST,... para cifrado, MAC integridad, DH

intercambio de claves segura, y RSA o DSA para autenticación.

## SSH: Secure Shell (v2)

- SSHv2 / SSH-2 sigue el siguiente funcionamiento general:
  - Capa de aplicación:
    - Gestiona la <u>autenticación del cliente</u> haciendo uso de un usuario/contraseña o aplicando criptografía de clave pública
  - Capa de transporte:
    - Gestiona e intercambia las claves iniciales para el cifrado
    - Establece los modos de cifrado y de comprensión, donde es el servidor quien realmente indica el método a aplicar y el cliente selecciona el más conveniente para él
  - Capa de red:
    - Establece una "conexión directa" entre el cliente-servidor y redirige el tráfico entre estos puntos de conexión
      - Modo túnel (en base a cifrado simétrico negociado en la capa de transporte)
- SSH-2 / SSHv2:
  - Facilita de forma segura la transferencia de datos y gestión de dispositivos remotos
  - Garantiza el "tunneling" entre puntos (P2P: Peer-to-Peer), es decir, todas las sesiones y comunicaciones se realizan en un túnel cifrado
  - Mitiga o evita ataques específicos:
    - · Man-in-the-Middle

## SFTP (FTP sobre SSH) # FTPS (FTP sobre TSL)

- Funcionamiento de SFTP:
  - Se puede basar de diferentes modos de <u>autentificación</u> para conectar con el servidor SFTP:
    - Modo básico: usuario y contraseña
    - Modo avanzado: usando las <u>claves públicas de SSH</u>, previamente generadas, y compartiendo dichas claves públicas con el servidor SFTP
      - » De esta forma, cuando el cliente quiere establecer conectividad con el sistema remoto, el proceso software del cliente tendrá que transmitir su clave pública al servidor para su autenticación

## Cifrado de Disco y Archivos:

#### Herramientas de OpenSource:

-*TrueCrypt/VeraCrypt:* cifrado de discos duros.

(veracrypt incluye n° de iteraciones para el cifrado)

- -DiskCryptor:similar a trueCrypt pero incluye dispositivos externos.
- -OpenStego/OpenPuff: técnicas de esteganografía para ocultar información en imágenes o multimedia.

# SEGURIDAD EN PAGOS ELECTRÓNICOS

## Sistemas de pago electrónicos:

- Permiten realizar pagos en redes abiertas como Internet, mientras que la transferencia de valor real es garantizada por bancos a través de sus redes cerradas, consideradas más seguras.
- Los actores principales incluyen compradores, vendedores, bancos emisores y adquirientes, y pasarelas de pago.

### Clasificación de sistemas de pago electrónicos:

- Según momento de contacto con el banco:
  - o **On-line**: El vendedor verifica la validez del pago antes de enviar el producto.
  - o **Off-line**: El pago es validado y depositado después de completada la transacción.
- Según momento de deducción del dinero:
  - **Pre-pago**: El comprador paga antes de adquirir el producto (e.g., tarjetas telefónicas).
  - **Pago instantáneo**: El dinero se deduce al realizar la compra (e.g., tarjetas de débito).
  - o **Post-pago**: El banco asegura el pago al vendedor, pero el comprador ve el cargo después.
- Según cantidad implicada:
  - o Macropagos: Más de 10 euros.
  - o **Pagos medios**: Entre 1 y 10 euros.
  - o **Micropagos**: Menos de 1 euro.

### Problemas de seguridad en pagos electrónicos

- Principales amenazas:
  - o Escuchas ilegales (sniffing).
  - o Suplantación de identidad (cliente o vendedor).
  - o Generación o modificación de datos falsos.
  - o Etc...
- Soluciones implementadas en los protocolos:
  - o Criptografía.
  - o Mecanismos de autenticación y autorización.
  - o Firmas y certificados digitales.
  - Certificados digitales
  - o Etc...

## Protocolo SSL y su evolución

- SSL (Secure Sockets Layer):
  - o Creado en 1994 por Netscape para proteger comunicaciones.
  - Usaba criptografía híbrida:
    - Asimétrica (RSA o Diffie-Hellman) para autenticación y claves de sesión.
    - Simétrica (e.g., DES, RC4) para cifrado de datos.
  - SSL también asegura la integridad de los datos mediante MAC y una clave secreta para dicha MAC.
  - Problemas:
    - No protege al comprador del vendedor.
    - Solo protege las transacciones entre dos puntos.
    - No hay mecanismos de autenticación de tarjetas.
    - No incluye mecanismos de facturación ni gestión de recibos.

## **Protocolo SET (Secure Electronic Transaction)**

- **Desarrollado por VISA y Mastercard (1996)** para reducir fraudes y garantizar pagos en las transacciones electrónicas basadas en tarjetas de crédito.
- Características clave:
  - o Uso obligatorio de certificados X.509 para todas las entidades.
  - Confidencialidad, autenticación, integridad y no-repudio(autorización de pago).
  - Privacidad: El vendedor no conoce los datos de la tarjeta del cliente, y el banco no conoce los detalles del pedido.

#### • Desventajas:

- o Depende de los algoritmos que ofrece el protocolo.
- o Gestión compleja de certificados digitales.
- Pasos del protocolo:
  - 1. Petición del producto.
  - 2. Intercambio de certificados.
  - 3. Envío de información de pedido y pago.
  - 4. Autorización del pago por el banco emisor.
  - 5. Confirmación del pago.
  - 6. Compensación hacia el vendedor.

#### • Firma dual:

- Divide información en:
  - Payment Information (PI): Datos de pago para el banco.
  - Order Information (OI): Detalles del pedido para el vendedor.
- Ofrece privacidad al cliente y garantiza no-repudio

#### **CyberCash**:

- Utiliza una pasarela privada para gestionar pagos electrónicos.
- Autenticación de entidades y cifrado de datos.

#### Desventaja:

- Problema de privacidad: La pasarela puede analizar los hábitos del cliente.
- Usa DES.

### iKP (i-Key Protocol):

- Desarrollado por IBM, incluye variantes (1KP, 2KP, 3KP) según el número de entidades certificadas.
- Uso de criptografía de clave pública para autenticación.

#### Las desventajas de uso de 1KP son:

- el cliente se autentica utilizando sólo un número de tarjeta de crédito y, opcionalmente, un PIN, en lugar de firmas digitales
- el vendedor no se autentica ni ante el cliente ni ante al banco
- ni el vendedor ni el cliente proporcionan evidencias de intervención en la transacción.

## **Micropagos (Millicent)**:

- Protocolo para transacciones de bajo valor.
- Basado en criptografía simétrica y cupones electrónicos (scrips).
- Incluye un bróker que media entre clientes y vendedores para reducir costos.

## PRIVACIDAD DE LOS USUARIOS EN APLICACIONES

## **Conceptos Generales**

#### • Definición de privacidad:

- Derecho a proteger, controlar y decidir sobre el acceso y uso de información personal (identidad, localización, rutinas, etc.).
- Diferencia entre privacidad y confidencialidad:
  - Privacidad: Relacionada con la persona.
  - Confidencialidad: Relacionada con los datos.

#### Amenazas comunes:

- Rastreo de actividad en la red: Mediante análisis de tráfico.
- Análisis pasivo: Observación de datos cifrados, como cabeceras o patrones de paquetes.

#### Propiedades fundamentales de la privacidad:

- No vinculabilidad (unlinkability): Imposibilidad de relacionar entidades o mensajes.
- No observabilidad (unobservability): Imposibilidad de rastrear mensajes o identificar a los emisores.

#### Enfoques complementarios:

- o **Enfoque legislativo:** limitan practicas abusivas de empresas.
- o **Enfoque tecnológico:** mecanismos de preservación de la privacidad

## Anonimato y Técnicas Relacionadas

• **Definición**: Estado en el que un individuo no puede ser identificado entre un grupo.

#### • Técnicas de anonimato:

- Pseudónimos: Sustituyen la identidad real, pero pueden ser vinculados a largo plazo.
- o **Anonimato rastreable**: Permite revelar la identidad en casos justificados.
- o **Anonimato no rastreable**: Garantiza que no se pueda identificar al usuario.
- Anonimato no rastreable y no vinculante: Evita la vinculación entre acciones del mismo usuario.

#### • Técnicas avanzadas:

- Ofuscación: Generalización o supresión de datos para ocultar información sensible.
- o Esquemas avanzados de firma digital.
- Protocolos de enrutado y criptografía: Ocultan direcciones de red y trazas de paquetes.

## Esquemas Avanzados de Firma Digital

#### Extensiones de la firma digital tradicional:

- **Firma ciega**: Permite que un firmante valide un mensaje sin conocer su contenido (útil para voto electrónico).
- Firma de grupo: Cualquier miembro de un grupo puede firmar en nombre del grupo. Un administrador puede revelar al firmante en caso de disputas.
- Firma de anillo: Ofrece anonimato total, ya que ni siquiera el administrador puede identificar al firmante.

# Firma de grupo

- Un esquema de firma de grupo debe satisfacer las siguientes propiedades iniciales para cumplir la condición de "anonimato rastreable":
  - sólo los miembros del grupo pueden firmar mensajes de forma correcta (*infalsificable*)
  - a excepción del administrador del grupo nadie puede descubrir:
    - qué miembro del grupo ha firmado el mensaje (anonimato)
    - si dos firmas han sido emitidas por el mismo miembro del grupo (<u>no-vinculación</u>)
  - los miembros no pueden evitar la apertura de la firma por parte del administrador, ni firmar por otro

## Protocolos Criptográficos y de Enrutado

Estos protocolos protegen las comunicaciones frente a observadores externos. Los métodos incluyen:

#### a. Uso de proxies:

- Los servidores proxy actúan como intermediarios para ocultar la dirección IP del emisor.
- Limitación: El proxy puede ser un punto de fallo si no es confiable.

#### b. Uso de mezcladores (mixers):

- Almacenan y mezclan mensajes antes de enviarlos, ocultando la relación entre emisor y receptor.
- **Limitación**: Introducen latencia y pueden ser vulnerables si el mezclador es comprometido.

#### c. Enrutado por capas (Onion Routing):

- Los mensajes se cifran en múltiples capas, que se descifran progresivamente al pasar por cada nodo.
- Ejemplo avanzado: TOR (The Onion Router):
  - o Ofrece anonimato mediante rutas aleatorias y cifrado.
  - o Limita ataques de correlación aplicando guardianes de entrada.
  - o Foward secrecy: va cambiando los nodos cada10 minutos.
  - o **Limitación**: Velocidad lenta y no garantiza privacidad de datos fuera de la red.

## d. Basados en creación de grupos:

- Crowds: Los nodos enrutan mensajes de forma aleatoria entre compañeros del grupo.
- **Hordes**: Variante más rápida, pero menos segura, ya que transmite respuestas por difusión (broadcast).

|                     | Arquitectura | Latencia   |
|---------------------|--------------|------------|
| Proxy               | Centralizada | Baja       |
| Mezcladores         |              | Alta       |
| Enrutado de cebolla |              | Muy alta   |
| Tor                 |              | Media-baja |
| Crowds              | Distribuida  | Media-baja |

# TEMA 5

#### Introducción

- La expansión de la web en los años 90 incrementó los riesgos de seguridad:
  - o Lado del cliente: Troyanos, suplantación de identidad.
  - o Lado del servidor: Ataques de denegación de servicio, robo de información.
  - o Información en tránsito: Escuchas ilegales y modificación de mensajes.
- Principales amenazas:
  - o Confidencialidad: Escuchas no autorizadas (sniffing).
  - o Integridad: Modificación de datos en tránsito.
  - o **Disponibilidad:** Ataques de denegación de servicio (DoS).
  - o **Autenticación:** Suplantación de identidad o datos falsificados.

## Seguridad en la Capa de Transporte

### SSL(Secure Sockets Layer)

- SSL (Secure Sockets Layer):
  - Creado por Netscape en 1994 para proporcionar seguridad en la capa de transporte.
  - Asegura confidencialidad, integridad y autenticación mediante criptografía híbrida:
    - Clave pública: Para autenticación e intercambio de claves.
    - Clave simétrica: Para cifrado de datos.
  - o NO proporciona servicio de no repudio.
- Evolución hacia TLS (Transport Layer Security):
  - o **1999 (TLS 1.0):** Estandarización por el IETF.
  - o **TLS 1.2:** Introduce AES-GCM y SHA-256 para mayor seguridad.
  - TLS 1.3 (2018): Mejora rendimiento (handshake más corto) y refuerza seguridad (Perfect Forward Secrecy).
- Principales características de SSL/TLS:
  - o **Independencia de la capa de aplicación:** Puede usarse con múltiples protocolos (HTTP, FTP, Telnet, etc.).
  - Doble funcionalidad:
    - Establecer una conexión segura: Autenticación mutua entre cliente y servidor.
    - 2. **Transmitir datos de forma segura:** Cifrados y protegidos contra manipulación.

#### Detalles del Protocolo SSL/TLS

#### Dos conceptos:

- Sesión SSL: asociación entre el cliente y el servidor en la que se negocian los parámetros de seguridad para todas las conexiones de esa sesión
- o Conexión SSL: realización de la transmisión de datos entre el cliente y el servidor, protegida criptográficamente según lo negociado en la sesión.

#### • Estructura por subcapas:

 SSL Record Protocol: asegura que los datos de la capa de aplicación se procesen y transmitan de forma segura mediante las siguientes etapas:

Fragmentación: Divide los datos en bloques manejables.

**Compresión:** Opcional, reduce el tamaño de los datos.

**Añadir MAC:** Garantiza la integridad de los datos.

Cifrado: Protege la confidencialidad de los datos.

**Añadir una cabecera SSL Record:** Indica detalles como el tipo de protocolo.

Fragmentación: Los bloques tienen un tamaño máximo de 16,384 bytes.

Reensamblado: En el destino, los datos son descifrados,

descomprimidos y reensamblados antes de ser entregados a la capa de aplicación.

- Subprotocolos principales:
  - SSL Handshake Protocol: Negociación de parámetros de seguridad (versiones, algoritmos, claves).

Es la parte más compleja de SSL porque permite al servidor y al cliente:

- autenticarse mutuamente
- negociar un algoritmo de cifrado y una función MAC
- así como las claves a usar para **proteger los datos del SSL record**.

Por lo tanto, cada mensaje tiene 3 campos:

- **Tipo** (1 byte): indica uno de 10 posibles mensajes (ver siguiente tabla)
- Longitud (3 bytes): longitud del mensaje en bytes
- Contenido (≥ 0 bytes): parámetros asociados con el mensaje (ver también siguiente tabla)
- SSL Change Cipher Spec Protocol: Activa el algoritmo de cifrado negociado.
- SSL Alert Protocol: Intercambia alertas (por ejemplo, errores críticos o advertencias).

Cada mensaje de este protocolo consta de 2 bytes.

- -El primer byte toma el valor 1 (warning) o 2 (fatal) para informar de la severidad del mensaje
  - si el nivel es fatal, SSL termina la conexión de forma inmediata
  - otras conexiones de la misma sesión pueden continuar pero no se producen nuevas conexiones dentro de la misma sesión
- El segundo byte contiene un código que indica la alerta específica
- ejemplos: unexpected\_message, bad\_record\_mac, decompression\_failure, illegal\_parameter, ...

 SSL Application Data Protocol: es el propio protocolo de la capa de aplicación (ej: HTTP) y alimenta al SSL Record Protocol.

#### • Proceso de intercambio de claves (Handshake):

- **1.-**Cliente envía un ClientHello con parámetros iniciales (algoritmos soportados, número aleatorio, la versión del protocolo, método de compresion).
- **2.-**Servidor responde con un ServerHello, certificados(opcional) y parámetros necesarios para gestionar la clave secreta(puede solicitarle certificado al cliente).
- **3.** El cliente envia certificado si se le pidió, y los parámetros de seguridad necesarios para computar la clave de sesión.
- **4.** Ambas partes acuerdan una **clave de sesion compartida** para cifrar la sesión.

#### **Necesitamos:**

- -clave de sesión
- -clave para el MAC
- -IV para el modo de operación

#### Paso 1:

- generar números aleatorios (la salt para generar después los parámetros de seguridad comentados anteriormente),
- establecer el resto de parámetros de seguridad (ej. tipo de algoritmos de intercambio de clave),
- enviar toda esta información a la otra parte

**Paso 2**: crear y enviar la semilla "pre-shared master key" mediante ClientKeyExchange

#### ServerHelloDone

Paso 3: continuar con los objetivos del paso 2, pero esta vez usando como semilla el master key

SSL - Secure Sockets Layer - intercambio de claves Tanto SSL como TLS usan también DHE (**Diffie Helman efímero**): Sin embargo, antes de entrar en el DHE, recordemos cómo funciona DH Alice: Bob: Valores públicos: q, α Valores públicos: q, α Xa < q, clave privada</li> Xb < q, clave privada  $Ya = \alpha^{Xa} \mod q$ , clave pública  $Yb = \alpha^{Xb} \mod q$ , clave pública  $Yb = \alpha^{Xb} \mod q$  $Ya = \alpha^{Xa} \mod q$  $KAB = (Yb)^{Xa} \mod q$  $KAB = (\alpha^{Xb})^{Xa} \mod q$  $KAB = (Ya)^{Xb} \mod q$  $KAB = (\alpha^{Xa})^{Xb} \bmod q$  $KAB = \alpha^{Xb Xa} \mod q = \alpha^{Xa Xb} \mod q$ Recordatorio...

- Perfect Forward Secrecy (PFS):
  - o Introducido con Diffie-Hellman efímero (DHE) y curvas elípticas (ECDHE).
  - Garantiza que las claves de sesión no puedan ser descifradas incluso si la clave privada del servidor es comprometida.

# **TLS 1.2**

#### Cambios significativos introducidos en TLS 1.2:

- Cálculo de claves: Emplea SHA-256 en lugar de MD5 y SHA-1, que eran utilizados en versiones anteriores.
- **Cipher Suites:** Introduce AES-GCM y AES-CCM como modos de cifrado autenticado (AEAD). Elimina algoritmos débiles como DES e IDEA.
- Introduce el concepto de "Authenticated Encryption with addition data"
- **Soporte para curvas elípticas:** Utiliza ECDHE para mejorar la seguridad en el intercambio de claves.
- Extensiones en los mensajes ClientHello y ServerHello: Permite detallar certificados, autorizaciones y parámetros de seguridad.

# **TLS 1.3**

## Principales mejoras respecto a TLS 1.2:

- Rendimiento: Reduce el tiempo de handshake a un solo Round-Trip Time (RTT).
- Seguridad mejorada: Elimina algoritmos inseguros como CBC y MD5.
- **0-RTT para reconexiones:** Permite conexiones más rápidas reutilizando credenciales previas.
- Perfect Forward Secrecy (PFS): Obliga a utilizar claves efímeras (DHE o ECDHE).
- Simplificación: Reducción de modos de operación, limitándose a AEAD (GCM, CCM).

## Comparativa entre TLS 1.2 y TLS 1.3

Aspecto **TLS 1.2 TLS 1.3** 

Handshake RTT 2 1

Algoritmos Algunos permitidos (CBC,

inseguros RC4)

0-RTT con PSK

Eliminados

Reconexión rápida No soportada

Intercambio de Solo DHE/ECDHE (PFS RSA, DHE

claves obligatorio)

## SSL Handshake Protocol

| Mensajes            | Parámetros asociados con los contenidos (contenido)                                                                                                                                | Tipo                                                                 |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Hello_request       | null                                                                                                                                                                               | Tipo = 0<br>Lo solicita el servidor<br>para renegociar una<br>sesión |
| Client_hello        | Versión, random_cliente, sessión ID, cipher suite, método de compresión                                                                                                            | Tipo = 1                                                             |
| Server_hello        | Versión, random_servidor, sessión ID, cipher suite, método de compresión                                                                                                           | Tipo = 2                                                             |
| Certificate         | Cadena de certificados X.509                                                                                                                                                       | Tipo =11                                                             |
| Server_key_exchange | Parámetros de seguridad necesarios para computar la clave de sesión (ej. usando DH como seed inicial) y firma del hash(cliente_random + servidor_random + parámetros de seguridad) | Tipo =12                                                             |
| Certificate_request | Tipo de certificados y autoridades                                                                                                                                                 | Tipo =13                                                             |
| Server_hello_done   | Null                                                                                                                                                                               | Tipo = 14                                                            |
| Client_key_exchange | El pre-shared master key cifrado con RSA, o añade los parámetros de DH/Fortezza para computar el master key en cada una de las partes                                              | Tipo = 16                                                            |
| Cerificate_verify   | Se aplica cuando se solicita el certificado. Consiste en <b>firmar el</b> hash(master key + hash(todos los mensajes intercambiados hasta el momento))                              | Tipo = 15                                                            |
| Finished            | Es el cifrado del hash(master_key + hash(hash(todos los mensajes                                                                                                                   | Tipo = 20                                                            |

## **DTLS (Datagram Transport Layer Security)**

**DTLS** es una adaptación de TLS para protocolos que operan sobre **UDP**, garantizando seguridad en entornos donde se requiere baja latencia (como IoT o videoconferencias).

- Introduce un número de secuencia explícito para controlar la entrega de paquetes no ordenados o perdidos.
- Última versión: DTLS 1.2 (2012).

# **SEGURIDAD EN REDES TCP/IP**

## Seguridad en la Capa de Internet

- Informe de la Internet Architecture Board (IAB, 1994):
  - Recomendó incorporar cifrado y autenticación en la arquitectura de Internet, especialmente en IPv6.
- IPSec (RFC 4301):
  - o Introduce especificaciones de seguridad en la capa de Internet, aplicables tanto a IPv6 como a IPv4.
  - Beneficios:
    - Protección transparente para todas las aplicaciones sin necesidad de cambios en ellas.
    - Aplicable a escenarios como redes empresariales, intranets, extranets y comercio electrónico.

#### • Propiedades de IPSec:

- Autenticación: Verifica el origen de los mensajes.
- o **Integridad:** Garantiza que los datos no han sido alterados.
- o **Confidencialidad:** Cifra los datos para evitar accesos no autorizados.

->usando: MAC, cifrado, algoritmos para el intercambio de clave.

#### • Limitaciones de IPSec:

- No proporciona no-repudio (como TLS/SSL).
- No protege completamente frente a ataques DoS, aunque puede mitigar ataques de repetición.

#### Protocolos de IPSec

### • ESP (Encapsulating Security Payload):

- o Cifra el contenido del paquete.
- o Garantiza confidencialidad, y autenticación e integridad opcional.
- Usa un número de secuencia para evitar ataques de repetición.

#### • AH (Authentication Header):

- Garantiza la integridad y autenticación del paquete.
- o También incluye un número de secuencia para mitigar ataques de repetición.

#### • IKE (Internet Key Exchange):

- Gestiona las claves de cifrado y establece asociaciones de seguridad (SAs),
  especifico para generar y distribuir claves para ESP y AH.
- Usa certificados X.509 y algoritmos como Diffie-Hellman para el intercambio de claves(autentica la identidad del sistema remoto)

## Modos de IPSec

#### Modo Transporte:

- o Protege únicamente la carga útil (payload) del paquete IP.
- o Adecuado para comunicaciones entre dos hosts.
- o Permite cifrado, autenticación o ambos en el payload.
- Ejemplo: Visible la IP de origen y destino finales.



#### Modo Túnel:

- o Protege todo el paquete IP, incluyendo su cabecera.
- o Adecuado para comunicaciones entre gateways o routers.
- Encapsula el paquete IP original dentro de otro paquete con una nueva cabecera IP
- Ventaja: Oculta las IPs de origen y destino final, útil para VPNs.



## Asociaciones y Políticas de Seguridad

### • Asociaciones de Seguridad (SAs):

- Para activar IPSec es necesario establecer previamente:
  - el origen y el destino de los paquetes IPSec
  - el modo de autenticación de los mensajes; p. ej. el HMAC
  - el algoritmo de cifrado; p. ej: AES o Blowfish
  - el índice de parámetro de seguridad (SPI Security Parameter Index)
  - núm. de 32 bits único para cada asociación definida para ESP/AH
  - un número de secuencia única (Sequence Number) de paquetes para controlar los ataques replay
  - sólo se aceptan paquetes que tienen un número actual de secuencia o posterior, las anteriores se descartan
- Contienen parámetros como:
  - Algoritmos de cifrado y autenticación (AES, HMAC).
  - Claves
  - Índices de parámetros de seguridad (SPI, Security Parameter Index).
- Gestionadas mediante bases de datos (SAD, Security Association Database).

#### Políticas de Seguridad (SPs):

- Definen las reglas para proteger el tráfico (origen, destino, puertos, protocolos).
- Almacenadas en una base de datos de políticas de seguridad (SPD, Security Policy Database).

## Cabeceras AH y ESP

- AH (Authentication Header):
  - o Proporciona integridad y autenticación.
  - Campos clave:
    - **Next Header:** Tipo de cabecera siguiente.
    - **SPI:** Identificador de la SA.
    - Sequence Number: Evita ataques de repetición.
    - Authentication Data: Valor MAC para integridad.
- ESP (Encapsulating Security Payload):
  - o Cifra el payload y, opcionalmente, proporciona autenticación.
  - Campos clave:
    - Encrypted Payload: Datos cifrados.
    - Padding: Alinear datos al tamaño del bloque.
    - Authentication Data: Verifica integridad.

## **Protocolo Internet Key Exchange (IKE)**

- Funciones de IKE:
  - Negocia SAs para IPSec.
  - o Autentica las partes de la comunicación.
  - Establece claves secretas.
- Estructura de IKE:
  - Basado en ISAKMP (Internet Security Association and Key Management Protocol).
  - o Usa:
    - Certificados X.509 para autenticación.
    - Diffie-Hellman para intercambio de claves.
- Fases de IKE:
  - o Fase 1: Autenticación de las partes y establecimiento de una SA ISAKMP.
    - Modos:
      - Agresivo: Más rápido, pero expone la identidad en texto plano.
      - **Principal:** Más seguro, pero más lento.
  - o **Fase 2:** Negociación de SAs y generación de claves de sesión para IPSec.