Project 1:

Data type: time series

Number of features: 463 (the first column includes time)

Number of Samples: 397 (the first row includes feature IDs)

Target IDs for prediction: (3 different accuracies)

Good result: 542236, 67321

mid result: 549295

bad result: 41108, 541982

Dear all.

I am excited to present an engaging project involving predictive modeling in the maritime shipping industry using a comprehensive dataset from 1991 to the present day. The ultimate objective is forecasting future values after the last recorded month.

The dataset is a tabular time series with time in the first column. Each sample includes all features of a month as the input to the model (independent variables) and the intended value (in the specified column as a target) for the next month as the output of the model (dependent variable).

To generate X and y, we can consider the entire table as X and copy the target column in a vector as y. Remember that the label of sample t in X is in row t+1 in y.

Creating X_train, y_train, X_test, and y_test from X and y is crucial. In time series, we must avoid data leakage, which means seeing a sample between test samples in the train set considering the order of the samples.

AutoSave ●										×		
File Home Insert Draw Page Layout Formulas Data Review View Automate Help Acrobat												
Pacte Clipboard G	- 11 - → A' 11 - → A' 12 -	A = = # * .	→ → ∰ Wrap Text	General \$ ~ % 9 Number	Formatting Table Styles						eate PDF and ne via Outlook	^
ARE - [] × ✓ Æ [2001205												
A	В	С	D	Е	F	G	Н	1	J	K	L	
352 20200301	364.3125	227.125	275.625	405.75	239.875	390.75	417.8125	327.375	420	205.75	276.1875	
353 20200401	276.3125	197	219.1875	320.5625	170	275.8125	317.4375	250.1875	316.3125	158.5	206	
354 20200501	254.95	171.25	205.5	287.95	169	262.05	304.85	257.25	289.55	164.3	197.75	
355 20200601	314.0625	181.0625	273.9375	350.25	251.25	323.875	390.25	316	378.125	236.125	260.375	2
356 20200701	335.45	184.45	293.2	378	267.85	353.2	432.7	340.25	398.2	255.05	285.1	
357 20200	1.8125	225	305.8125	392.0625	283.5625	376.6875	429.375	348.25	398.6875	270.4375	304.875	
358 20 X_tr	ain 🔀 525	276.6875	294.25	359.25	272.5	360.625	397.9375	328.75	386.4375	255.5	293.625	3:
359 2020	335.6	314	289.85	359.8	272.7	350.3	400.15	336.3	381.95	253.1	294.7	
360 2020	355	317.5	302	393.5	287.25	355.8125	420.125	362.875	406	276.4375	310.6875	
361 2020	0.375	355.8125	325.375	445.125	315.75	408.0625	477.9375	391.3125	448	294.875	331.5625	
362 2021	36.35	410.95	346.25	490.25	349.2	449.55	508.9	438.35	488.9	323.6	352.5	
363 2021	89.25	376.25	379.5625	547.4375	401.5	505.625	556.1875	500.625	555.3125	361.375	380.5	4:
364 2021	.9375	376.125	400	578.1875	432.75	530.9375	585.875	506.9375	602.875	382.875	407.6875	4:
365 2 X to	est /25	423.3	394.5	556.75	411.45	511.3	569.3	491.35	583.75	370.3	396.3	
366 2021	2.1875	497.875	400.25	611.125	421	535.75	607.375	498.125	626.5	378.8125	407.125	
367 2021060	535.25	540.875	419.5625	629.375	433.875	560.25	643.8125	528.8125	660.3125	402.9375	418.625	
268 20210701 Sub_OII_VLCC_M	onthly ⊕	6/15 25	122 15	620.7	116 2	556 15	655 95	5/5 55	652 35	4U8 3	132 UZ	·
Ready (\$) Accessibility: Unavailable							Average: 6671	19.8437 Count: 464 Sure	294866970.9 🖼 Display S	ettings III III	e	÷ 235%

Due to the temporal nature of time series data, we aim to assess the model's accuracy over the last three years available in the dataset. To achieve this, consider training the model on all samples from the beginning up to n-36, and then test it on the last 36 samples (n is the total number of samples excluding the last one that doesn't include a label).

Your task is to train a regression model on the training set X_train and evaluate its performance on a designated test set X_test. It is highly recommended that you test your code by printing a sample input and output to the model to ensure true data preparation.

Finally, an Excel file comprising the data from the last 36 months will be created for reporting and analysis. The first column should represent time, the second column the true target values, the third column the predicted values, and the fourth column the calculated accuracy using the formula:

Accuracy = 100*(1-abs((actual-prediction)/actual))

Ultimately, the average accuracy across the 36 predictions will be calculated.

This project offers a hands-on opportunity to apply regression modeling techniques to real-world data, emphasizing the challenges and nuances of forecasting in the dynamic maritime shipping industry. I encourage you to explore different regression models, fine-tune parameters, and critically evaluate the model's performance.

Please submit your code named your "group name" Version 1, an Excel file of the results, and a Word file of the report. I will add some tasks in the next rounds to the initial core I'm sharing now. You may modify or complete your code and update the results and the report every time.

Best of luck, and I look forward to your insightful analyses.

Regards,

Mehdi.