Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И Лобачевского»

Отчёт по лабораторной работе «Эффект Холла»

Выполнили:

Студенты 2 курса, ВШОПФ

Зинягин Алексей Мурзина Полина

Дата допуска: 09.11.22 г.

Дата лабораторной работы: 09.11.22 г.

Дата отчета: 13.11.22 г.

Цель работы: изучение эффекта Холла для полупроводника в слабом магнитном поле, измерение холловской разности, определение концентрации и знака основных носителей заряда.

Оборудование: полупроводниковый образец, вольтметр, электромагнит, блоки питания, компас

Теоретические обоснования.

Эффект Холла: если проводник или полупроводник с током поместить в магнитное поле, перпендикулярное к направлению тока, то в нем возникнет электрическое поле, перпендикулярное вектору плотности тока и вектору магнитной индукции.

В данной работе для изучения эффекта Холла используется полупроводник, поскольку в металлических образцах тех же размеров и при тех же значениях силы тока и индукции магнитного поля холловская разность потенциалов была бы намного меньше, что неудобно для измерений.

Рассмотрим полупроводник в форме прямоугольной пластины с размерами a, b, c вдоль осей X, Y, Z (см. рис.1). Для упрощения предположим, что полупроводник содержит

Рис.1 Геометрия образца

носители заряда лишь одного типа: дырки или электроны.

Приложим напряжение к противоположным граням образца так, чтобы электрическое поле \vec{E} было направлено вдоль оси X, магнитное поле пусть направлено вдоль оси Z.

Электрическое поле \vec{E} создает в полупроводнике ток с плотностью

 $\vec{J} = \sigma \vec{E}$ (1), где σ – удельная электрическая проводимость, связанная с ρ – удельным сопротивлением соотношением σ =1/ ρ (2),

Со стороны магнитного поля \vec{B} на движущиеся заряды действует магнитная составляющая силы Лоренца: $\vec{F} = q[\vec{v}, \vec{B}]$ (3), q- заряд, v- скорость частицы.

В рассматриваемом случае скорость носителей заряда складывается из дрейфовой скорости $(\overrightarrow{v_d})$ (скорости упорядоченного направленного движения под действием \overrightarrow{E} и тепловой скорости, которая в силу хаотичности не дает вклада в эффект, поэтому далее считаем $\overrightarrow{v} = \overrightarrow{v_d}$. Действие силы Лоренца приводит к движению носителей в положительном направлении оси Y и накоплению на верхней грани образца дырок или электронов (рис.2)

Рис.2 Возникновение поля Холла в дырочном (а) и электронном (б) полупроводниках

В результате поперечного движения носителей верхняя и нижняя грани заряжаются, и возникает перпендикулярное к \vec{E} электрическое поле $\vec{E_H}$ – поле Холла, препятствующее дальнейшему движению зарядов вдоль оси Y под действием силы Лоренца.

Равновесное состояние достигается, когда выполнено равенство:

$$q\overrightarrow{E_H} + \vec{F} = 0$$
 (4)

Учтем, что $\vec{v} = \overrightarrow{v_d}$, а скорость дрейфа носителей в образце пропорциональная напряженности электрического поля: $\overrightarrow{v_d} = \mu \vec{E}$ (5), где μ – дрейфовая подвижность, тогда введем *коэффициент Холла*:

$$R = {\mu/\sigma}$$
 (6)

И получим итоговое выражение для поля Холла:

$$\overrightarrow{E_H} = -R[\vec{\jmath}, \vec{B}] (7)$$

Коэффициент Холла в случае слабого магнитного поля практически не зависит от величины поля B и характеризует материал, относительные размеры. В рассматриваемом случае полупроводника прямоугольной формы с размерами $a \times b$, при выполнении условия $a \gg b$ зависимостью R(a / b) можно пренебречь.

Подставив в (1) выражение плотности тока $\vec{j} = q n \overrightarrow{v_d}$ (8), где n – концентрация носителей заряда, получим альтернативное выражение для коэффициента Холла

$$R = \frac{1}{qn} (9)$$

Более строгий подход позволяет получить соотношения:

$$R = \gamma \frac{\mu}{\sigma}$$
, $R = \gamma \frac{1}{\sigma n}$, (10)

где γ — безразмерный коэффициент, называемый *холл-фактором*. Холл-фактор зависит от величины магнитного поля и механизма рассеяния свободных носителей заряда при их взаимодействии с ионами примесей и кристаллической решеткой. Для используемого в

данной работе чистого слаболегированного германия при комнатной температуре в слабом магнитном поле $\gamma \approx 1,18$.

Можно уточнить дрейфовую подвижность с учетом Холл-фактора, введя *холловскую подвижность*:

$$\mu_{\rm H} = \gamma \mu (11)$$

Из рис.2 видно, что результирующее электрическое поле $\vec{E}' = \vec{E} + \vec{E}_H$ составляет угол θ (угол Холла) с вектором плотности тока \bar{J} , при этом tg $\theta = \frac{E_H}{E}$, $\vec{E}_H = -\mu[\vec{E},\vec{B}]$, значит

$$tg \theta = \frac{E_H}{E} = -\mu_H B_z \quad (12)$$

При условии слабого магнитного поля:

$$\mu_H B_z \ll 1 (13)$$

тангенс можно заменить значением аргумента $tg \theta \sim \theta$, тогда

$$\theta \approx -\mu_H B_z$$
 (14)

Эквипотенциальные поверхности в средней части ограниченного вытянутого вдоль оси X образца поворачиваются при включении магнитного поля B на угол θ относительно их первоначального положения. Поэтому в точках, лежащих на одной плоскости, перпендикулярной \vec{j} появляется холловская разность потенциалов U_H .

Рис. 3. Поворот эквипотенциальных плоскостей (штриховая линия) относительно первоначального положения в дырочном (а) и электронном (б) полупроводниках

Для образца прямоугольной формы (рис 1) в приближении однородного поля Холла эта разность потенциалов связана с полем Холла:

 $U_H = bE_H \ \ \ (15)$, где b – размер образца вдоль оси Y

Поскольку $j = \frac{J}{hc}$ (16), где J – полный ток в образце, с – размер образца вдоль оси Z, то

$$U_{H} = bE_{H} = bRjB_{z} = \frac{R}{c}JB_{z}$$
(17)

Таким образом, в слабых полях холловская разность потенциалов линейно зависит от тока J, протекающего через образец, и индукции магнитного поля B. Это соотношение легко проверяется экспериментально.

Образец

Для проведения измерений в данной лабораторной работе используется образец из слаболегированного германия. Образец имеет форму тонкой прямоугольной пластинки (рис.1, рис.4). Измеряя напряжение на контактах 3-4 можно оценить холловскую разность потенциалов. При изготовлении образца не удается разместить оба холловских контакта (контакты 3 и 4 на рис 4) таким образом, чтобы они в отсутствие магнитного поля лежали на одной эквипотенциальной поверхности. В реальном образце между плоскостями, в которых расположены контакты 3 и 4 всегда есть небольшое смещение Δx . При \vec{B} =0 и $I\neq 0$ между этими плоскостями устанавливается разность потенциалов

Рис. 4. Расположение контактов на образце

$$U_{34} = R_{34}J, (19)$$

где $R_{3-4} = \rho \frac{\Delta x}{bc}$ (21)- сопротивление участка образца между контактами 3 и 4. Другие побочные факторы дают значительно меньший вклад в разность потенциалов между этими контактами, а значит, разности потенциалов U^{B}_{34} и U_{34} между контактами 3 и 4 при $\vec{B} \neq 0$ и $\vec{B} = 0$ соответственно, связаны соотношением:

$${f U^B}_{34}={f U}_{
m H}+{f U}_{34}$$
 (20), поскольку ${f U}_{
m H}=rac{R}{c}JB_z$ (21), то
$${f U}_{
m H}=rac{R}{c}JB_z={f U^B}_{34}-{f U}_{34}$$
 (22)

Отсюда видно, что коэффициент Холла R может быть найден по тангенсу угла наклона линейных участков экспериментально найденных зависимостей: $U^B_{34}(B)|_{J=const}$ и $U_H(J)|_{B=const}$.

Экспериментальная часть.

1. Выполнили необходимые электрические соединения согласно рис. 6.

Рис 5. Схема подключения измерительных приборов

- 2. Включили ток J. С помощью вольтметра определили, что переключатель Π_J при котором направление тока в образце совпадает с выбранным нами направлением оси X (рис. 4, 5). Ток, текущий в данном направлении, будем обозначать J^+ , а в противоположном I^- .
- 3. Мы сняли зависимость разности потенциалов U_{56} между контактами 5 и 6 от величины тока J в отсутствие магнитного поля B. Измерения мы провели для двух направлений тока при изменении его величины от 0 до 10 мA, результаты занесли в Табл.1.

І, мА	1	2	3	4	5	6	7	9
11+ D	0.02	1.66	2.40	2.20	4.01	1 16	<i>5</i> 11	6.21
U_{56}^{+} , мВ	0,82	1,66	2,49	3,29	4,01	4,46	5,11	6,31
$U_{56}^{-},$	-0,72	-1,49	-2,29	-3,03	-4,08	-4,59	-5,31	-6,55
мВ								

Таблица 1.

4. По результатам таблицы 1 построили графики зависимости $\mathrm{U}_{56}(J)|_{\mathrm{B=0.}}$ По графику определим значение сопротивления R_{56} участка 5-6.

$$R_{56} = (0.71 \pm 0.02) \text{ MOM}$$

5. Используем значение поперечных размеров образца ($l_x=1$,99см, $l_y=0$,51см, $l_z=0$,1 см), расстояния между контактами 5-6 $l_{56}=0$,96 см и сопротивления $R_{56}=0$ м), чтобы вычислить удельную электрическую проводимость полупроводника σ (в 0м $^{-1}$ с $^{-1}$)

$$\sigma = \frac{1}{\rho} = \frac{l_{56}}{R_{56}*S} = \frac{l_{56}}{R_{56}*l_y*l_z}$$
 (25)

- 6. Включили ток i в обмотках электромагнита, определили с помощью компаса, что при нахождении переключателя Π_B в нижнем положении направление вектора магнитной индукции \overrightarrow{B} в образце совпадает с выбранным нами направлением оси Z (рис.4-5). Поле, направленное таким образом, будем обозначать B^+ , а противоположное B^- .
- 7. Мы установили ток в образце J^+ =5мA и измерили разность потенциалов между контактами 3-4 при выключенном магнитном поле $U_{34}=0.081$ В и при $B^+=2000$ Гс

 $U_{34}^B=-0,0008$ В, тогда по формуле (22) $U_H=U_{34}^B-U_{34}=-0,0008-0,081=-0,0818$ В. Так как холловская разность потенциалов отрицательна, то основные носители заряда – электроны.

8. Мы установили ток в образце J^+ =2мА и сняли зависимость разности потенциалов $U^B_{34}(B)$ между контактами 3-4 от величины поля В (для двух направлений), аналогично поступили для значений J^+ =5мА и J^+ =7мА. Результаты занесли в табл.2.

В, Гс	400	700	1040	1380	1660	2000	2380	2560	2800	3000
I, A	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
U_{34}^{+} , MB $J^{+} = 2$ MA	29,1	22,7	17,1	11,8	6,1	0,2	-3,9	-8,8	-12,4	-16,2
U_{34}^{-} , MB $J^{+} = 2$ MA	39,5	45,9	51	57,5	63,6	69,7	73,8	78,7	82,2	86,2
U_{34}^{+} , MB $J^{+} = 5$ MA	69	54,4	41,5	27,6	14,6	0,4	-11,8	-23,5	-33,3	-41,5
U_{34}^{-} , мВ $J^{+} = 5$ мА	97,8	111,5	123,2	135,7	151	163,8	177,7	188,5	200	208
U_{34}^+ , MB $J^+ = 7$ MA	88	70,3	53,5	36,3	17,2	0	-12,6	-29,8	-40	-50
U ₃₄ , мВ	122	142,3	159	175,7	194,7	212	225,5	243,4	253	262

$J^+ = 7 \text{MA}$												
	Таблица 2.											

9. По результатам измерений таблицы 2 построили графики (на одном чертеже!) зависимости $U^{B}_{34}(B)|_{J=const,}$ по ним определили коэффициент Холла R.

$$k_2 = 1.73 * 10^{-5} \frac{\text{B}}{\Gamma \text{c}}; \ k_5 = 4.21 * 10^{-5} \frac{\text{B}}{\Gamma \text{c}}; \ k_3 = 5.31 * 10^{-5} \frac{\text{B}}{\Gamma \text{c}}$$

10. Снимем зависимость $U_H(J)|_{B=const}$, результаты занесем в таблицу 3. Температура окружающей среды во время проведения эксперимента t=23°C.

Ј, мА		1	2	3	4	5	6	7	8	9
B=0	J ⁺	18,6	38,7	60,1	81,3	103,6	124,5	144,6	170,4	183,9
U ₃₄ , мВ	J ⁻	-17,8	-35,2	-52,1	-67,2	-81,9	-95,1	-108,9	-120,2	-128,7
B ⁺ =700Γc	J ⁺	12,5	26,4	42	57,7	75,8	91,7	110,2	130,1	145,8
U ₃₄ , мВ	J-	-11,8	-29,9	-34,1	-43,9	-53,9	-62,7	-72,4	-82,8	-88,8
$U_H =$	J ⁺	-6,1	-12,3	-18,1	-23,6	-27,8	-32,8	-34,4	-40,3	-38,1
$U_{34}^{B}-U_{34}$										
U_H , мВ	J ⁻	6	5,3	18	23,3	28	32,4	36,5	37,4	39,9
B ⁺ =1500Γc	J ⁺	6,4	12,5	20,5	30,5	41,2	53,2	67	83,7	94,6
U ₃₄ , мВ	J-	-5,7	-9	-12,8	-16,7	-20,2	-23,8	-29,1	-34	-38
$U_H =$	J ⁺	-12,2	-26,2	-39,6	-50,8	-62,4	-71,3	-77,6	-86,7	-89,3
$U^{B}_{34} - U_{34}$										
U_H , м ${ m B}$	J ⁻	12,1	26,2	39,3	50,5	61,7	71,3	79,8	86,2	90,7
B ⁺ =2400Γc	J ⁺	-1,7	-2,4	-1,8	0,3	6,3	11,9	21	29	40,9
U ₃₄ , мВ	J ⁻	2,4	5,8	9,7	13,3	14,6	17,4	17,9	19,1	17,8
$U_H = $ $U^B_{34} - U_{34},$	J ⁺	-20,3	-41,1	-61,9	-81	-97,3	-112,6	-123,6	-141,4	-143

U_H , мВ	J ⁻	20,2	41	61,8	80,5	96,5	112,5	126,8	139,3	146,5
------------	----------------	------	----	------	------	------	-------	-------	-------	-------

Таблица 3.

- 11. По результатам таблицы 3. Построили графики $|U_H(J)|_{B=const}$ и $|U_{34}(J)|_{B=0}$. По ним определим:
- а) коэффициент Холла R по тангенсу угла наклона линейных участков экспериментально найденных зависимостей
- б) сопротивление R_{34} по формуле (19) $U_{34}=R_{34}J$. $R_{34}=\frac{U_{34}}{I}$

$$r_{700} = 4,43$$
 мОм; $r_{1500} = 9,85$ мОм; $r_{2400} = 15,9$ мОм

12. По найденным значениям R_{34} и σ вычислим смещение Δx контактов Холла в исследуемом образце по формуле: $R_{3-4}=\rho\frac{\Delta x}{bc}$

Тогда $\Delta \mathbf{x} = \sigma^* R_{34} * l_y * l_z =$

13. Вычислим холловскую подвижность по формуле $\mu_H = \gamma \mu$, где μ найдем по формуле $R = {}^{\mu}/_{\sigma}$, а $\gamma \approx 1,18$ при комнатной температуре в слабом магнитном поле.

Тогда $\mu_{\rm H} = R * \sigma * \gamma =$

- 14. а) Проверим выполнение условия слабого магнитного поля по формуле (13): $\mu_H B_z \ll 1$
- б) вычислим угол Холла при $B^{+} = 2000 \Gamma {\rm c}$ по формуле (14): $\theta \approx -\mu_H B_z$
- 15. Оценим концентрацию основных носителей зарядов в образце из соотношения (10):

$$R = \gamma \frac{1}{an}, \quad n = \frac{\gamma}{aR}$$

Выводы.