Algorithmus von Dijkstra

Priority Queue

INSERT(S, x) inserts the element x into the set S. This operation could be written as $S \leftarrow S \cup \{x\}$.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Initialisierung

```
INITIALIZE-SINGLE-SOURCE (G, s)

1 for each vertex v \in V[G]

2 do d[v] \leftarrow \infty

3 \pi[v] \leftarrow \text{NIL}

4 d[s] \leftarrow 0
```

Relax

```
RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v] \leftarrow d[u] + w(u, v)

3 \pi[v] \leftarrow u
```

Beispiel RELAX I

Beispiel RELAX I

Beispiel RELAX II

Beispiel RELAX II


```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s)
S \leftarrow \emptyset
Q \leftarrow V[G]
   while Q \neq \emptyset
          \mathbf{do} \ u \leftarrow \mathrm{EXTRACT-Min}(Q)
              S \leftarrow S \cup \{u\}
              for each vertex v \in Adj[u]
                    do RELAX(u, v, w)
```


Korrektheitsbeweis

