- **4.** В газообразную смесь веществ **A** и **B** с плотностью по водороду 11.40 внесли губчатый палладий и смесь нагрели. Образовавшаяся смесь веществ **B** и **C** имеет плотность по водороду 14.25, а 0.896 л (н.у.) этой смеси может прореагировать с 4.8 г брома в темноте, при этом получается жидкость **D** и 0.3 г газа **C**.
- 1. Определите вещества **A**–**D**, ответ подтвердите расчетом. Учтите, что все описанные в задаче реакции протекают количественно.
- 2. Напишите уравнения упомянутых в задаче реакций.
- 3. Рассчитайте мольную долю вещества В в исходной смеси.

№ 4

2 вариант

1) Определим количество вещества брома и смеси веществ **B** и **C**: $n(Br_2) = 4.8/160 = 0.03$ моль; n(B+C) = 0.896/22.4 = 0.04 моль.

Отсюда следует, что с бромом реагирует только вещество **B**. Предположим, что вещество **B** – это алкен, тогда его количество вещества равно 0.03 моль, а количество вещества **C** равно 0.01 моль. Логично предположить, что вещество **B** в исходной смеси [**A**+**B**] находится в избытке, тогда вещество **C** получается по реакции соединения **A** с **B** при катализе палладием.

Отсюда легко определить, что вещества ${\bf B}$ в исходной смеси $[{\bf A}+{\bf B}]$ было 0.03+0.01=0.04 моль.

- 2) Найдем молярную массу газа C, оставшегося после реакции смеси $[\mathbf{B}+\mathbf{C}]$ с бромом: $\mathbf{M}_r(\text{газa}) = 0.3/0.01 = 30$ г/моль (C_2H_6) . Так как известны количества вещества газов в смеси $[\mathbf{B}+\mathbf{C}]$, а также плотность этой смеси по водороду, можно рассчитать молярную массу второго газа:
- $14.25 = (30 \cdot 0.01 + M_r(\mathbf{B}) \cdot 0.03)/(0.04 \cdot 2);$ $M_r(\mathbf{B}) = 28$ г/моль. Такой молярной массе соответствует C_2H_4 . Если газ \mathbf{C} это этан, то можно предположить, что газ \mathbf{A} это водород, а первая реакция это реакция гидрирования этилена (\mathbf{B}) до этана (\mathbf{C}). Подтвердим это расчетом. Если этана в смеси [$\mathbf{B}+\mathbf{C}$] было 0.01 моль, то газа \mathbf{A} в исходной смеси [$\mathbf{A}+\mathbf{B}$] было тоже 0.01 моль, откуда легко посчитать молярную массу \mathbf{A} :
- $11.4 = (M_r(\mathbf{A}) \cdot 0.01 + 28 \cdot 0.04)/(0.05 \cdot 2); M_r(\mathbf{A}) = 2$ г/моль, действительно, водород подходит под условие задачи.
- 3) Тогда запишем реакции, описанные в задаче:

стало 0.03 моль 0 0.01 моль (B) (D)
$$H_2C = CH_2 + Br_2 \longrightarrow Br$$

4) Таким образом, в исходной смеси [A+B] мольная доля вещества B составляла $100 \cdot 0.04/0.05 = 80$ %.

Рекомендации к оцениванию:

1.Определены вещества A–D по 1 баллу2 балла2.Записаны уравнения реакции по 0.5 балла1 балл3.Рассчитана молярная масса веществ A–C по 0.5 балла1.5 балла4.Рассчитана мольная доля A в исходной смеси0.5 балла

ИТОГО: 5 баллов