Pushed towards the tight border (pushed_rightwards)

Visiteremo alcune celle di un array raccogliendo da ciascuna di esse il numero di gemme ivi contenute. Le celle sono numerate da 1 ad n, da sinistra verso destra, e la cella dalla quale partiamo è sempre la cella 1. Per ogni $i=1,2,\ldots,n$, la cella i contiene g_i gemme, che avremo modo di raccogliere se visiteremo effettivamente tale cella. In ogni cella è presente anche un troll, col troll nella cella i temibile di livello t_i . Quando sono nella cella i faccio appena in tempo a raccogliere le gemme e debbo subito scappare in una cella j con $j>i+t_i$.

Si pianifichi quali celle dell'array visitare per massimizzare il numero di gemme raccolte.

Dati di input

La prima riga del file input.txt contiene un numero intero e positivo n, la lunghezza dell'array. La seconda riga contiene una sequenza di n numeri naturali separati da spazio: l'i-esimo di questi numeri è g_i , il numero di gemme nella cella i. La terza riga contiene una sequenza di n numeri naturali separati da spazio: l'i-esimo di questi numeri è t_i , la temibilità del troll della cella i.

Dati di output

Nella prima ed unica riga del file output.txt si scriva il massimo numero di gemme che risulta possibile raccogliere.

Esempio di input/output

File input.txt	File output.txt
6	3
0 1 3 3 0 0 0 2 1 6 0 9	
File input.txt	File output tyt
The input tax	File output.txt
6	4
	_

Subtask

- Subtask 1 [0 punti]: i due esempi del testo.
- Subtask 2 [20 punti]: $n \le 10$.
- Subtask 3 [30 punti]: $t_i = 1$ per ogni cella $i, n \le 1000$.
- Subtask 5 [20 punti]: $n \le 1000$.
- Subtask 6 [30 punti]: $n \le 100000$.