Base- $\frac{p}{Q}$ structure of states in automata arising from Christol's theorem

Eric Rowland

Hofstra University

Joint work with Reem Yassawi

Numeration

Utrecht, 2024-6-4

Numeration system

Let p be a prime, $D = \{0, 1, \dots, p-1\}$, and $\alpha \ge 1$.

Let $Q \in \mathbb{Z}[x,y]$ such that $Q(0,0) \not\equiv 0 \mod p$. $\frac{1}{Q}$ has a series expansion modulo p^{α} .

Base- $\frac{p}{Q}$ representation with digits $T_k \in D[x, y]$:

$$\left(T_0 + T_1 \frac{p}{Q} + T_2 \left(\frac{p}{Q}\right)^2 + \dots + T_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1} \mod p^{\alpha}$$

Example

Let
$$p = 2$$
, $\alpha = 2$, $Q = 1 + x + xy^2$,

$$S = 1 + 3x^2 + (3 + 2x + 3x^2)y + 2xy^2 + x^2y^4 + x^2y^5 \in (\mathbb{Z}/4\mathbb{Z})[x, y].$$

Then $S \equiv ((1+y) + (x+y+xy)\frac{2}{Q})Q \mod 4$. Its digits are 1+y and x+y+xy.

To obtain a finite set of *k*th digits, require deg $T_k \le c(k+1)$.

$$S \equiv \left(T_0 + T_1 \frac{p}{Q} + \dots + T_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1} \mod p^{\alpha}$$

Not every polynomial S has a representation.

Necessary condition: $S \equiv T_0 Q^{p^{\alpha-1}-1} \mod p$

Proposition

If S has a representation, then this representation is unique.

Proof: Assume

$$\left(T_0 + T_1 \frac{p}{Q} + \dots + T_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1}
\equiv \left(U_0 + U_1 \frac{p}{Q} + \dots + U_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1} \mod p^{\alpha}.$$

Then $T_0 Q^{p^{\alpha-1}-1} \equiv U_0 Q^{p^{\alpha-1}-1} \mod p$, so $T_0 = U_0$.

Also

$$T_0 Q^{p^{\alpha-1}-1} + T_1 p Q^{p^{\alpha-1}-2} \equiv U_0 Q^{p^{\alpha-1}-1} + U_1 p Q^{p^{\alpha-1}-2} \mod p^2,$$
 which implies $T_1 = U_1$. And so on.

$$S \equiv \left(T_0 + T_1 \frac{p}{Q} + \dots + T_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1} \mod p^{\alpha}$$

Perform carries if a coefficient doesn't belong to $D = \{0, 1, \dots, p-1\}$.

Suppose $T_k \notin D[x, y]$. Quotient by p:

$$\begin{split} S &\equiv \left(\cdots + \frac{T_k \left(\frac{p}{Q} \right)^k}{Q^p} + T_{k+1} \left(\frac{p}{Q} \right)^{k+1} + \cdots \right) Q^{p^{\alpha-1}-1} \mod p^{\alpha} \\ &= \left(\cdots + \left(\frac{R_k}{R_k} + p \frac{U_k}{Q} \right) \left(\frac{p}{Q} \right)^k + T_{k+1} \left(\frac{p}{Q} \right)^{k+1} + \cdots \right) Q^{p^{\alpha-1}-1} \\ &= \left(\cdots + \frac{R_k}{R_k} \left(\frac{p}{Q} \right)^k + \left(\frac{U_k}{Q} Q + T_{k+1} \right) \left(\frac{p}{Q} \right)^{k+1} + \cdots \right) Q^{p^{\alpha-1}-1}. \end{split}$$

Corollary

The set of representable polynomials in $(\mathbb{Z}/p^{\alpha}\mathbb{Z})[x,y]$ is closed under addition and scalar multiplication.

Why is this numeration system natural?

Theorem (Christol 1979/1980)

A sequence $s(n)_{n\geq 0}$ of elements in \mathbb{F}_q is algebraic if and only if it is q-automatic.

Example

$$q = 3$$
, $s(n)_{n \ge 0} = 1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, \frac{1}{1}, 1, 1, 0, 0, \dots$

The generating series $F = \sum_{n \ge 0} s(n)x^n$ satisfies $xF^2 + 2F + 1 = 0$. This automaton outputs s(n) when fed the base-3 representation of n:

$$s(11) = s(102_3) = 1$$

Catalan numbers $C(n)_{n\geq 0} = 1, 1, 2, 5, 14, 42, \dots$ $xy^2 - y + 1 = 0$ Catalan numbers modulo 3: $1, 1, 2, 2, 2, 0, \dots$

What about $C(n) \mod p^{\alpha}$?

Catalan numbers modulo 4: 1, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, ...

Theorem (Eu–Liu–Yeh 2008)

For all $n \ge 0$,

$$C(n) \bmod 4 = \begin{cases} 1 & \textit{if } n = 2^a - 1 \textit{ for some } a \ge 0 \\ 2 & \textit{if } n = 2^b + 2^a - 1 \textit{ for some } b > a \ge 0 \\ 0 & \textit{otherwise}. \end{cases}$$

In particular, $C(n) \not\equiv 3 \mod 4$.

Catalan numbers modulo 8: 1, 1, 2, 5, 6, 2, 4, 5, 6, 6, 4, 2, 4, 4, 0, 5, ...

Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \not\equiv_8 3$ and $C_n \not\equiv_8 7$ for any n. As for other congruences, we have

$$C_n \equiv_8 \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ 2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \ge 0; \\ 4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \ge 0; \\ 5 & \text{if } n = 2^a - 1 \text{ for some } a \ge 2; \\ 6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \ge a \ge 0; \\ 0 & \text{otherwise.} \end{cases}$$

Why are these sequences 2-automatic?

Theorem (Denef-Lipshitz 1987)

A sequence $s(n)_{n\geq 0}$ of elements in $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ is p-automatic if and only if $\sum_{n\geq 0} s(n)x^n \equiv F \mod p^{\alpha}$ for some algebraic series $F \in \mathbb{Z}_p[\![x]\!]$.

 \mathbb{Z}_p is the set of *p*-adic integers.

How big is the automaton for $(C(n) \mod 2^{\alpha})_{n \geq 0}$?

Suggested asymptotics: $p^{\text{polynomial function of }\alpha}$

Upper bound from the construction: $p^{p^{2(\alpha-1)}}\alpha^{hd}$

height
$$h = \deg_x P$$

$$degree d = deg_y P$$

$$P = xy^2 - y + 1$$

Why is the bound so large?

$C(n) \mod 4$:

Each state is represented by a polynomial:

$$S_{0} = 1 + 2x + x^{2} + (1 + 3x)y + 2xy^{2} + (x + 2x^{2})y^{3} + 3x^{2}y^{4} + 2x^{2}y^{5}$$

$$S_{1} = 1 + 2x + x^{2} + (2x + 2x^{2})y + 2x^{2}y^{3} + 3x^{2}y^{4}$$

$$S_{2} = 1 + 3x + (3 + 3x)y + xy^{2} + xy^{3}$$

$$S_{3} = 2 + 2x + 2xy^{2}$$

$$S_{4} = 1 + 3x + 2xy + 3xy^{2}$$

$$S_{5} = 0$$

What's special about these polynomials?

 $(C(n) \mod 4)_{n \geq 0}$ projects to $(C(n) \mod 2)_{n \geq 0}$.

The corresponding automata project to each other...

mod 8:

mod 32:

mod 64:

$$C(n) \mod 2$$
:

$$S_0'=1+x+y+xy^2$$

$$S_1'=1+x+xy^2$$

$$S_2' = 1 + y$$

$$S_3' = 0$$

$$S_4' = 1$$

$C(n) \mod 4$:

$$S_0 = 1 + 2x + x^2 + (1 + 3x)y + 2xy^2 + (x + 2x^2)y^3 + 3x^2y^4 + 2x^2y^5$$

$$S_1 = 1 + 2x + x^2 + (2x + 2x^2)y + 2x^2y^3 + 3x^2y^4$$

$$S_2 = 1 + 3x + (3 + 3x)y + xy^2 + xy^3$$

$$S_3 = 2 + 2x + 2xy^2$$

$$S_4 = 1 + 3x + 2xy + 3xy^2$$

$$S_5 = 0$$

$$C(n) \mod 2$$
:

$$S_0'=1+x+y+xy^2$$

$$S_1'=1+x+xy^2$$

$$S_2' = 1 + y$$

$$S_3' = 0$$

$$S_{4}' = 1$$

$$C(n) \mod 4$$
:

Reduce modulo 2...

$$S_0 \equiv (1 + x + y + xy^2)(1 + x + xy^2) \mod 2$$

$$S_1 \equiv (1 + x + xy^2)^2 \mod 2$$

$$S_2 \equiv (1+y)(1+x+xy^2) \mod 2$$

$$S_3 \equiv 0 \mod 2$$

$$S_4 \equiv 1 + x + xy^2 \mod 2$$

$$\textit{S}_5 \equiv 0 \mod 2$$

They're all divisible by $1 + x + xy^2$ modulo 2!

$$C(n) \mod 2$$
:

$$S_0'=1+x+y+xy^2$$

$$S_1'=1+x+xy^2$$

$$S_2' = 1 + y$$

$$S_3' = 0$$

$$\mathcal{S}_4'=1$$

$$C(n) \mod 4$$
:

Reduce modulo 2...

$$S_0 \equiv (1 + x + y + xy^2)Q \mod 2$$

$$S_1 \equiv (1 + x + xy^2)Q \mod 2$$

$$S_2 \equiv (1+y)Q \mod 2$$

$$S_3 \equiv 0 \cdot Q \mod 2$$

$$S_4 \equiv 1 \cdot Q \mod 2$$

$$S_5 \equiv 0 \cdot Q \mod 2$$

They're all divisible by $1 + x + xy^2$ modulo 2!

$$Q = 1 + x + xv^2$$

$$C(n) \mod 2$$
:

$$S'_0 = 1 + x + y + xy^2$$

 $S'_1 = 1 + x + xy^2$
 $S'_2 = 1 + y$
 $S'_3 = 0$

$$C(n) \mod 4$$
:

 $S_4' = 1$

Base-
$$\frac{p}{Q}$$
 representations:

$$Q=1+x+xy^2$$

$$S_0 \equiv ((1 + x + y + xy^2) + (xy + x^2y^2 + x^2y^3 + x^2y^4 + x^2y^5)\frac{2}{Q})Q \mod 4$$

$$S_4 \equiv ((1 + x + yy^2) + ((x + y^2)y + (x + y^2)y^2 + x^2y^3 + x^2y^4)\frac{2}{Q})Q \mod 4$$

$$S_1 \equiv \left((1 + x + xy^2) + ((x + x^2)y + (x + x^2)y^2 + x^2y^3 + x^2y^4) \frac{2}{Q} \right) Q \mod 4$$

$$S_2 \equiv ((1 + y) + (x + (1 + x)y)\frac{2}{Q})Q \mod 4$$

$$S_3 \equiv \left({\color{red}0} + (1+x+xy^2) {\color{red}2\over Q}
ight) Q \mod 4$$

$$S_4 \equiv \left(1 + (x + xy + xy^2) \frac{2}{Q} \right) Q \mod 4$$

$$S_5 \equiv \left(\frac{0}{Q} + 0 \frac{2}{Q} \right) Q \mod 4$$

The 0th digit gives the projected state modulo 2.

Where does Q come from?

If
$$F = \sum_{n \ge 1} s(n)x^n$$
 satisfies $P(x, F) = 0$, let $Q = P(xy, y)/y$.

Catalan: $P = x(y+1)^2 - (y+1) + 1$, so $Q = xy^2 + 2xy + x - 1$.

Theorem

If $s(n)_{n\geq 0}$ is an algebraic sequence of integers, then every state in the automaton for $(s(n) \mod p^{\alpha})_{n\geq 0}$ has a unique base- $\frac{p}{O}$ representation

$$\left(T_0 + T_1 \frac{p}{Q} + T_2 \left(\frac{p}{Q}\right)^2 + \dots + T_{\alpha-1} \left(\frac{p}{Q}\right)^{\alpha-1}\right) Q^{p^{\alpha-1}-1}$$

where $T_k \in D[x,y]$ for each $k \in \{0,1,\ldots,\alpha-1\}$.

We have bounds on $\deg_x T_k$ and $\deg_y T_k$.

$$D = \{0, 1, \dots, p-1\}$$

Much better upper bound:

$$(1 + o(1)) p^{\frac{1}{6}\alpha(\alpha+1)((2hd-1)\alpha+hd+1)}$$

References

- Gilles Christol, Teturo Kamae, Michel Mendès France, and Gérard Rauzy, Suites algébriques, automates et substitutions, *Bulletin de la Société Mathématique de France* **108** (1980) 401–419.
- Jan Denef and Leonard Lipshitz, Algebraic power series and diagonals, *Journal of Number Theory* **26** (1987) 46–67.
- Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh, Catalan and Motzkin numbers modulo 4 and 8, *European Journal of Combinatorics* **29** (2008) 1449–1466.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, *Journal de Théorie des Nombres de Bordeaux* **27** (2015) 245–288.
- Eric Rowland, Manon Stipulanti, and Reem Yassawi, Algebraic power series and their automatic complexity I: finite fields, https://arxiv.org/abs/2308.10977 (29 pages).