Week 15

Jinxi Xiao

Orthogonality
Gram-Schmidt

Process

QR-Decompositio

Advise for review

Week 15

Jinxi Xiao

January 2, 2024

E-mail: xiaojx@shanghaitech.edu.cn

QR-Decomposition

dvise for review

Angle and Orthogonality

Gram-Schmidt Process

QR-Decomposition

Advise for review

Advise for review

Theorm

 $|\langle u, v \rangle| \le ||u|| \cdot ||v||$

 $||u + v|| \le ||u|| + ||v||$

Definition

$$\theta = \arccos \frac{\langle u, v \rangle}{||u|| \cdot ||v||}$$

Angle and

dvise for review

Def We say that u and v are orthogonal if $\langle u,v \rangle = 0$

Orthogonal Complements

Definition. If W is a subspace of an inner product space V, then the orthogonal complement of W is defined by

$$W^{\perp} = \{ \mathbf{v} : \langle \mathbf{v}, \mathbf{w} \rangle = 0 (\forall \mathbf{w} \in W) \}.$$

Theorem. Let W be a subspace of an inner product space V.

- (1) W^{\perp} is a subspace of V.
- (2) $W^{\perp} \cap W = \{\mathbf{0}\}.$
- (3) If V is finite-dimensional, then $(W^{\perp})^{\perp} = W$.

Gram-Schmidt Process

Advise for review

Recall

Notice that standard bases that we have learnt are all orthonormal under the basic inner product.

Philosophy: Basis is designed for a vector space. Now there is a inner product, the basis vectors can have "angles".

Definition.

- A set of two or more vectors in an inner product space is called orthogonal if all pairs of distinct vectors in the set are orthogonal.
- \diamond An orthogonal set in which each vectors has norm 1 is called orthonormal.
- ♦ If a basis is orthogonal, then we say it is an orthogonal basis.
- ♦ If a basis is orthonormal, then we say it is an orthonormal basis.

Gram-Schmidt Process

Properties of Orthogonal Basis

Theorem. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal set of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$, then S is linearly independent.

Proof:

Theorem. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal basis for an inner product space V, and if \mathbf{u} is any vector in V, then

$$\boldsymbol{u} = \frac{\langle \boldsymbol{u}, \boldsymbol{v}_1 \rangle}{\|\boldsymbol{v}_1\|^2} \boldsymbol{v}_1 + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_2 \rangle}{\|\boldsymbol{v}_2\|^2} \boldsymbol{v}_2 + \dots + \frac{\langle \boldsymbol{u}, \boldsymbol{v}_n \rangle}{\|\boldsymbol{v}_n\|^2} \boldsymbol{v}_n.$$

Proof:

Remark: When S is an orthonormal basis,

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Orthogonal Projections

Jinxi Xiao

Angle and Orthogonality

Gram-Schmidt Process

QR-Decompositio

Advise for review

Orthogonal Projections

Theorem. (Projection Theorem) If W is a subspace of a finite-dimensional inner product space V, then every vector \mathbf{u} in V can be expressed in exactly one way as

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

where $\mathbf{w}_1 \in W$ and $\mathbf{w}_2 \in W^{\perp}$.

Remark: We denote $\mathbf{w}_1 = \operatorname{proj}_W(\mathbf{u})$ and $\mathbf{w}_2 = \operatorname{proj}_{W^{\perp}}(\mathbf{u})$.

Theorem. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and W be a subspace of V with an orthogonal basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$. Then for any $\mathbf{u} \in V$,

$$\operatorname{proj}_{W} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{1} + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r}$$

Proof:

Remark: When S is an orthonormal basis for W,

$$\operatorname{proj}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} + \cdots, + \langle \mathbf{u}, \mathbf{v}_{r} \rangle \mathbf{v}_{r}.$$

Gram-Schmidt Process

Gram-Schmidt Process

Theorem. Every nonzero finite-dimensional inner product space has an orthonormal basis.

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for V.

Step 1-1. Take
$$\mathbf{u}_1 = \mathbf{v}_1$$
.

Step 1-2. Take
$$\mathbf{u}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 = \operatorname{proj}_{\operatorname{span}\{\mathbf{u}_1\}^{\perp}}(\mathbf{v}_2).$$

Step 1-3. Take
$$\mathbf{u}_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\|\mathbf{u}_2\|^2} \mathbf{u}_2 = \text{proj}_{\text{span}\{\mathbf{u}_1, \mathbf{u}_2\}^{\perp}}(\mathbf{v}_3).$$

Step 1-n. Take

$$\mathbf{u}_n = \mathbf{v}_n - \frac{\langle \mathbf{v}_n, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 - \dots - \frac{\langle \mathbf{v}_n, \mathbf{u}_{n-1} \rangle}{\|\mathbf{u}_{n-1}\|^2} \mathbf{u}_{n-1} = \operatorname{proj}_{\operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_{n-1}\}^{\perp}}(\mathbf{v}_n).$$

Conclusion of step 1:

We obtain an orthogonal basis $S' = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ for V.

Step 2. Let
$$\mathbf{w}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|} \ (1 \le i \le n)$$
.

Conclusion of step 2:

We obtain an orthonormal basis $S'' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ for V.

Jinxi Xiao

Gram-Schmidt **Process**

QR-Decomposition

QR-Decomposition

QR-Decomposition

Theorem. Suppose that $A \in M_{m \times n}$ and $\operatorname{rank}(A) = n$. Then A can be factored as A = QR, where $Q \in M_{m \times n}$ is an matrix with orthonormal column vectors, and R is an invertible upper triangular matrix.

Indeed, let $A = [\begin{array}{c|ccc} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{array}]$. Suppose that we obtain orthonormal vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ by applying the Gram-Schmidt process to $\mathbf{c}_1, \dots, \mathbf{c}_n$. Then

$$A = \left[\begin{array}{c|ccc} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{array} \right] = \left[\begin{array}{c|ccc} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \end{array} \right] \left[\begin{array}{c|ccc} \langle \mathbf{c}_1, \mathbf{q}_1 \rangle & \langle \mathbf{c}_2, \mathbf{q}_1 \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{c}_1, \mathbf{q}_2 \rangle & \langle \mathbf{c}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{c}_1, \mathbf{q}_n \rangle & \langle \mathbf{c}_2, \mathbf{q}_n \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_n \rangle \end{array} \right]$$

$$= \left[\begin{array}{c|ccc} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_n \end{array} \right] \left[\begin{array}{c|ccc} \langle \mathbf{c}_1, \mathbf{q}_1 \rangle & \langle \mathbf{c}_2, \mathbf{q}_1 \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \\ \langle \mathbf{c}_2, \mathbf{q}_1 \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle & \dots \\ \langle \mathbf{c}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{c}_n, \mathbf{q}_1 \rangle \end{array} \right] = QR.$$

ocess

(R-Decomposition

Advise for review

Angle and Orthogonality

Gram-Schmidt Process

QR-Decomposition

Advise for review

Process

Advise for review

Notes

- Should attach importance to the final exam.
- ► The most important thing is to go over the slides, and understand the basic concepts
- ► Then practice some problems (hw, exercises in the discussion class ...)