Домашня Робота з Рівнянь Математичної Фізики #1

Захаров Дмитро 27 лютого, 2025

Зміст

1	Домашня Робота			
	1.1	Вправа 12.3	2	

1 Домашня Робота

1.1 Вправа 12.3

Умова Задачі 1.1. Завдання складається з двох частин:

• Частина 1. Розв'язати рівняння $\Delta u_1(x,y) = xy$, $(x,y) \in (0,\pi)^2$. Крайові умови:

$$u_1(0, y) = 0$$
, $u_1(\pi, y) = 0$, $y \in [0, \pi]$,
 $u_1(x, 0) = \sin x$, $u_1(x, \pi) = 0$, $x \in [0, \pi]$

• **Частина 2.** Розв'язати рівняння $\Delta u_2(x,y)=0$, $(x,y)\in(0,\pi)^2$. Крайові умови:

$$u_2(0, y) = y(\pi - y), \quad u(\pi, y) = 0, \quad y \in [0, \pi],$$

 $u_2(x, 0) = 0, \quad u(x, \pi) = 0, \quad x \in [0, \pi]$

Розв'язання.

Частина 1. Нехай $u_1(x,y) = V(x)U(y)$. Тоді маємо V''(x)U(y) + V(x)U''(y) = 0 звідки

$$\frac{V''(x)}{V(x)} = -\frac{U''(y)}{U(y)} = -\lambda.$$

Отже, $V''(x) + \lambda V(x) = 0$. Також, справедливі наступні умови:

$$V(0)U(y) = 0$$
, $V(\pi)U(y) = 0$, $y \in [0, \pi]$, $V(x)U(0) = \sin x$, $V(x)U(\pi) = 0$, $x \in [0, \pi]$.

Отже, якщо V(x), U(y) нетривіальні, то V(0)=0, $V(\pi)=0$, U(0)=1, $U(\pi)=0$. Розглядаємо випадки для різних λ .

Випадок 1. $\lambda=0$. Тоді V''(x)=0, звідки V(x)=ax+b для $a,b\in\mathbb{R}$. Оскільки V(0)=0, $V(\pi)=0$, то $V(x)\equiv0$.

Випадок 2. $\lambda < 0$. В такому разі розв'язком є $V(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$. Підставимо умови на V(x): $V(0) = C_1 + C_2 = 0$ та $V(\pi) = C_1 e^{-\sqrt{\lambda}\pi} + C_2 e^{-\sqrt{\lambda}\pi} = 0$. З другої умови, оскільки експоненти невід'ємні, маємо $C_1 = C_2 = 0$. Отже, розв'язком є $V(x) \equiv 0$.

Випадок 3. $\lambda > 0$. В такому разі розв'язком є $V(x) = C_1 \sin(\sqrt{\lambda}x) + C_2 \cos(\sqrt{\lambda}x)$. Підставимо умови на V(x): $V(0) = C_2 = 0$ та $V(\pi) = C_1 \sin(\sqrt{\lambda}\pi) = 0$. Отже, маємо розв'язки вигляду $V_n(x) = \sin nx$ для $n \in \mathbb{N}$.

Отже, шукаємо розв'язок $u_1(x, y)$ у наступному вигляді:

$$u_1(x,y) = \sum_{n \in \mathbb{N}} f_n(y) \sin nx$$

Знайдемо оператор Лапласа для $u_1(x, y)$:

$$\Delta u_1(x,y) = \sum_{n \in \mathbb{N}} \left(f_n''(y) - n^2 f_n(y) \right) \sin nx = xy$$

Відомо, що розкладання g(x) = x у ряд Фур'є має вигляд:

$$g(x) = -2\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n} \sin nx.$$

Таким чином, маємо:

$$\sum_{n\in\mathbb{N}} \left(f_n''(y) - n^2 f_n(y) \right) \sin nx = \sum_{n\in\mathbb{N}} -2 \cdot \frac{(-1)^n}{n} y \sin nx.$$

Отже отримуємо диференціальне рівняння:

$$f_n''(y) - n^2 f_n(y) = \frac{2(-1)^{n+1}}{n} y.$$

Однорідна частина має вигляд $f_n''(y) - n^2 f_n(y) = 0$, звідки $f_n(y) = C_{n,1} e^{ny} + C_{n,2} e^{-ny}$. Залишається знайти частковий розв'язок $\widetilde{f}_n(y)$, тоді загальний розв'язок має вигляд:

$$f_n(y) = C_{n,1}e^{ny} + C_{n,2}e^{-ny} + \widetilde{f}_n(y).$$

Оскільки праворуч стоїть лінійна функція, то можемо спробувати пошукати розв'язок у вигляді $\widetilde{f}_n(y) = a_n y$, тоді матимемо:

$$-n^2 a_n y = \frac{2(-1)^{n+1}}{n} y \implies a_n = \frac{2(-1)^n}{n^3}.$$

Отже, остаточно $f_n(y) = \frac{2y(-1)^n}{n^3} + C_{n,1}e^{ny} + C_{n,2}e^{-ny}$. Знайдемо невідомі коефіцієнти. Маємо $u_1(x,0) = \sin x$, тому $\sum_{n \in \mathbb{N}} \sin nx f_n(0) = \sin x$. Звідки $f_1(0) = 1$, проте $f_n(0) = 0$ для всіх n > 1. З іншого боку, $u_1(x,\pi) = \sum_{n \in \mathbb{N}} \sin nx f_n(\pi) = 0$, звідки $f_n(\pi) \equiv 0$.

Розберемося спочатку з $f_1(y)$. Маємо $f_1(y) = C_{1,1}e^y + C_{1,2}e^{-y} - 2y$. Маємо $f_1(0) = C_1 + C_2 = 1$. З іншого боку $f_1(\pi) = C_1e^\pi + C_2e^{-\pi} - 2\pi = 0$. З цих двох рівнянь маємо:

$$f_1(y) = -2y + \frac{2\pi e^{\pi} - 1}{e^{2\pi} - 1}e^{y} + \frac{e^{2\pi} - 2\pi e^{\pi}}{e^{2\pi} - 1}e^{-y}$$

Що стосується інших $f_n(y)$, то тут ситуація інша. Маємо $f_n(0)=0$, себто $C_{n,1}+C_{n,2}=0$, звідки:

$$f_n(y) = \gamma_n e^{ny} - \gamma_n e^{-ny} + \frac{2y(-1)^n}{n^3} = \gamma_n \sinh ny + \frac{2y(-1)^n}{n^3}.$$

Скористаємося тепер тим, що $f_n(\pi)=0$. Маємо $\gamma_n \sinh n\pi + \frac{2\pi(-1)^n}{n^3}=0$, звідки:

$$\gamma_n = \frac{2\pi(-1)^{n+1}}{n^3 \sinh n\pi}$$

Отже, остаточно:

$$f_n = \begin{cases} -2y + \frac{2\pi e^{\pi} - 1}{e^{2\pi} - 1} e^{y} + \frac{e^{2\pi} - 2\pi e^{\pi}}{e^{2\pi} - 1} e^{-y}, & n = 1, \\ \frac{2(-1)^n}{n^3} \left(y - \frac{\pi}{\sinh n\pi} \sinh ny \right), & n > 1, \end{cases}$$

а розв'язок має вигляд $u_1(x,y)=\sum_{n\in\mathbb{N}}f_n(y)\sin nx$.

Частина 2. Аналогічним чином до попередньої частини, отримуємо вираз $u_2(x,y) = \sum_{n \in \mathbb{N}} g_n(x) \sin ny$. Маємо:

$$\Delta u_2(x,y) = \sum_{n \in \mathbb{N}} \left(g_n''(x) - n^2 g_n(x) \right) \sin ny = 0.$$

Звідки $g_n''(x)-n^2g_n(x)=0$, а тому $g_n(x)=C_{n,1}e^{nx}+C_{n,2}e^{-nx}$. Оскільки $u_2(0,y)=y(\pi-y)$, то отримуємо:

$$\sum_{n\in\mathbb{N}}g_n(0)\sin ny=y(\pi-y).$$

Розкладемо праву частину у ряд Фур'є. Тоді будемо мати 1 :

$$g_n(0) = \frac{2}{\pi} \int_0^{\pi} y(\pi - y) \sin ny \, dy = \frac{4}{\pi n^3} (1 + (-1)^{n+1}) = \begin{cases} 0, & n = 2k, \\ \frac{8}{\pi n^3}, & n = 2k + 1. \end{cases}$$

У свою чергу з умови $u_2(\pi, y) = 0$ отримуємо $g_n(\pi) \equiv 0$. Тепер, оскільки в нас фігурує $(-1)^{n+1}$, то розглянемо два випадки: n = 2k та n = 2k + 1 для $k \in \mathbb{N}$.

Випадок 1. n=2k+1. Маємо $g_n(x)=C_{n,1}e^{nx}+C_{n,2}e^{-nx}$ з умовами $g_n(\pi)=0$ та $g_n(0)=\frac{8}{\pi n^3}$. Таким чином:

$$C_{n,1} + C_{n,2} = \frac{8}{\pi n^3}, \quad C_{n,1}e^{n\pi} + C_{n,2}e^{-n\pi} = 0$$

Підставимо перше у друге, врахувавши, що $C_{n,2} = \frac{8}{\pi n^3} - C_{n,1}$:

$$C_{n,1}(e^{n\pi} - e^{-n\pi}) + \frac{8e^{-n\pi}}{\pi n^3} = 0 \implies C_{n,1} = -\frac{4e^{-n\pi}}{\pi n^3 \sinh n\pi}$$

Отже, $C_{n,2}=\frac{8}{\pi n^3}-C_{n,1}=\frac{4e^{n\pi}}{\pi n^3\sinh n\pi}$. Звідси:

$$g_n(x) = -\frac{4e^{n(x-\pi)}}{\pi n^3 \sinh n\pi} + \frac{4e^{-n(x-\pi)}}{\pi n^3 \sinh n\pi} = \frac{4}{\pi n^3 \sinh n\pi} \cdot (e^{n(\pi-x)} - e^{-n(\pi-x)}) = \frac{8 \sinh n(\pi-x)}{\pi n^3 \sinh n\pi}$$

Випадок 2. n=2k. Маємо $g_n(x)=C_{n,1}e^{nx}+C_{n,2}e^{-nx}$ з умовами $g_n(\pi)=0$ та $g_n(0)=0$. Таким чином $g_n\equiv 0$.

Отже, остаточна відповідь:

$$u_2(x,y) = \frac{8}{\pi} \sum_{n=0}^{+\infty} \frac{\sinh((2n+1)(\pi-x))}{(2n+1)^3 \sinh((2n+1)\pi)} \sin((2n+1)y).$$

 $^{^1}$ Пораховано автоматично за допомогою Wolfram Mathematica, проте ідейно для інтегрування потрібно скористатися інтегруванням за частинами.