Relatório 1º projeto ASA 2024/2025

Grupo: AL008

Aluno(s): Joana Vaz (106078) e Guilherme Peixoto (102439)

Descrição do Problema e da Solução

O problema consiste em modelar e analisar um sistema de transporte público representado por estações e linhas de conexão. O objetivo é determinar o menor número máximo de trocas de linha necessário para conectar quaisquer duas estações. Além disso, deve-se verificar se é possível conectar todas as estações e se há algum cenário onde isso não seja viável.

A solução proposta utiliza o algoritmo de Floyd-Warshall para calcular a menor distância entre todas as linhas no sistema. As informações de entrada são processadas para identificar as interseções entre linhas, e uma matriz de adjacência é construída.

Leitura dos Dados de Entrada

A leitura dos dados de entrada envolve ler de V, E, e L e tem complexidade O(1), leitura das E conexões entre estações e linhas de complexidade de O(E) e o preenchimento das estruturas de dados para armazenar as estações e suas linhas de transporte. Esta operação é O(E) para processar todas as conexões. Complexidade total da leitura dos dados: O(E).

Processamento da Instância para Construção das Interseções

O programa percorre todas as estações e calcula as interseções entre as linhas que passam por cada estação, as linhas são armazenadas em um vetor, e todas as combinações de pares de linhas são consideradas. Isto resulta em um processamento de O(L²) para cada estação. Como temos V estações, a complexidade total desse passo é O(V * L²), o que resulta na complexidade total deste campo.

Verificação de Condições de Consistência (Estações e Linhas)

A verificação se todas as estações têm linhas é O(V), se todas as estações são cobertas por pelo menos uma linha é O(V * L) e se interseções entre as linhas é feita comparando todas as possíveis combinações de linhas e checando se elas se cruzam. Isso leva a uma complexidade $O(L^2)$. Logo a complexidade total para as verificações de consistência: $O(V * L + L^2)$.

Inicialização da Matriz de Distâncias para o Algoritmo de Floyd-Warshall

A matriz de distâncias é inicializada com O(L2)

Execução do Algoritmo de Floyd-Warshall

O algoritmo tem uma complexidade de O(L3), onde L é o número de linhas.

A Complexidade Global da Solução é dominada pela etapa de execução do Floyd-Warshall e pelo cálculo da maior distância, levando a uma complexidade final de O(V² * L² + L³).

Relatório 1º projeto ASA 2024/2025

Grupo: AL008

Aluno(s): Joana Vaz (106078) e Guilherme Peixoto (102439)

Avaliação experimental dos resultados:

Recorrendo ao gerador, geramos um total de 20 instâncias com um incremento de 55 no valor total de V+L e obtivemos o seguinte gráfico:

V		L	O(V2 * L2 + L3)	V+L	tempo (ms)
•	5	50	187500	55	1188
	10	100	2000000	110	2068
	15	150	8437500	165	2947
	20	200	24000000	220	1672
	25	250	54687500	275	2737
	30	300	108000000	330	3062
	35	350	192937500	385	3341
	40	400	320000000	440	3216
	45	450	501187500	495	3760
	50	500	750000000	550	4314
	55	550	1081437500	605	5575
	60	600	1512000000	660	6525
	65	650	2059687500	715	7990
	70	700	2744000000	770	10045
	75	750	3585937500	825	12847
	80	800	4608000000	880	16223
	85	850	5834187500	935	20088
	90	900	7290000000	990	24114
	95	950	9002437500	1045	28369
1	00	1000	11000000000	1100	32801

Observamos que a curva apresenta uma relação que não é linear, o que nos diz que a complexidade do algoritmo cresce consoante o tamanho do problema. Isto pode indicar uma complexidade superior a O(n+m).

Com base na análise teórica, a complexidade do algoritmo foi dita como O(f(n,m)). O gráfico abaixo representa o tempo de execução no eixo y e a complexidade teórica f(n,m) no eixo x. Nesse gráfico, podemos observar que existe uma tendência aproximadamente linear entre os valores teóricos e os tempos medidos.

Esta relação linear confirma que a implementação está alinhada com a complexidade teórica prevista, mesmo que a dependência em relação às dimensões n e m não seja diretamente proporcional.

