Zuzana Czmelová - Lab assignment 1 (gates)

Part 1

(Submit the GitHub link to your Digital-electronics-1 repository)

My GitHub repository

Part 2

(Verification of De Morgan's laws of function f(c,b,a))

Link to my EDA playground example:

De Morgan's laws

Listing of VHDL code of - architecture:

```
architecture dataflow of gates is
begin
    f_o <= ((not b_i) and a_i) or ((not c_i) and (not b_i));
    fnand_o <= not(not((not b_i) and a_i) and not((not c_i) and (not b_i)));
    fnor_o <= not(b_i or (not a_i)) or not(c_i or b_i);
end architecture dataflow;</pre>
```

Table of function values of set variables

С	b	а	f(c,b,a)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Screenshot with simulated time waveforms

Screenshot of time waveforms

Part 3

(Verification of Distributive laws)

Link to my EDA playground example:

Distributive laws

```
architecture dataflow of gates is
begin
    a_o <= (x_i and y_i) or (x_i and z_i);
    b_o <= x_i and (y_i or z_i);
    c_o <= (x_i or y_i) and (x_i or z_i);
    d_o <= x_i or (y_i and z_i);

end architecture dataflow;</pre>
```

Screenshot with simulated time waveforms (if functions a=b and c=d)

Screenshot of time waveforms