DAC

Mame: MAHFUZA KHATUN

ID: 2112376111

course code: CSF-1212

Course title: Introduction to Degital Electionies

Session: 2020-21

Department: Computer Science and Engineering

Name of Experiment: DAC USINDA R-2R LADDER NETWORK.

Objective: To build and study DAC Using R-2R ladder network,

Task:

1) To design a circuit to observe the of a DAC circuit.

11) To implement the designed circuit on the breadboard.

11) To observe the output,

Theony:

R-2R Configuration is a simple arrangement that consists of parallel and series resistors connected in the caseaded form to an operational amplifier. An operational amplifier can be used in inverting or non-inverting form depending on the polarity of output voltage that we want to get form DAC. R-2R Ladder resistors act as voltage dividers along with the entire network with the output voltage, dependent on the input voltage

Apparatus:

- 1) Resistens
- 11) LEDS
- 111) 741 IC
- 14) wines

working procedure:

- 1) Calculating analog output voltage for various Combinations from 0000 to 1111 of 4-bit R-2R ladder network.
- ") connect the eineuit as shown in the diagram
- (") Connect voltages corresponding to logic 1 and logic 0 to the input bit position of R-2R ladder for various combinations from 0000 to 1111.
- 14) Read analog output voltage of R-2R ladder network for each combination using multimeter
- v) Compare calculated and observed values of analog output voltage corresponding to binary input combination and find the error value.
- vi) plot agraph of analog output rollage versus binary number.

Block diagnam: Birnny Cineait Diagram: Fig: DAC circuit diagram using R-2A ladden

Note: 1. Use 2R = 2KR or any value and R = 1KR can be obtained by Connecting two 2R 2R nexistors In Panallel. 2. Connect series combination of 22012 nexistor and LFD between input and ground to see input,

Experiment table:

1 de de la conserion							
0-)	Binary input				Analog octput (Void	a de de la la	Mentur
obs	D	c	B	A	(8xx0+4xe+2xb+xA)16	Calculated	Ji reas
					(8×0+0+0+0)/76	0	0
1	0	0		0	(0+0+0+3.20)/16	0.2	0.175
2	0	0	0		0 +0 10 25 40 111	0.406	0.35
3	0	0	1	0	(0+0+2×3·25+0)/16	0.606	0.60
9	0	0	1	1	(0+0+2×3.25+3.20)/16	0.75	0.71
5	0	1	0	0	(0+4×3+0+0)/16	0.95	0.90
6	0	1	0	1	(0+4×3+0+3.20)/16		1.10
7	0	1	1	0	(0+4×3+2×3·25+0)116	1.156	1.30
	0	1	1	1	(0+4+3+2+3.25+3.20)/16	1.356	1.15
		0		0	(8×2.4+0+0+0)/16	1.20	
9			-	1	(8 ×2.4+0+0+3.20)/16	1.40	1.35
10		0	1	0	10 -1 012.05+0116	1.606	1.61
11		0	1	1	(8×2.4+0+2×3.25+3.20)/16	1.806	1.78
22	1	0	1		CO+0.1.1 142+A+0116	1.95	1.93
13	1	1	0		8×2.4+4×3+0+3.20)/16	2.25	2.12
14	1	1	C		(8×2.4+4×3+2×3.25+0)116	2.356	2.34
15	1	1	1	0	(0 X X Y T Y 7 3 1 7 7 5 7 7 9 1 16	2.556	2.50
	1	1	1	1	(8×24+4×9+2×3.25+3.20)/16	7.35	

Calculation:

Analog output rollage is given by

Youl= \(\frac{\frac{1}{2} + \frac{1}{2} + \frac{1}{

2 VA+2 VB+4 VC+8 VD

when n is number of bits = 4.

VA. Vo. ve. Vo one. Digital input voltage levels Connesponding to logic 2 and logic O.

Result and discussion;

- 2) Observed analog output voltage, materies with calculated analog output voltage,
- 2) The graph of analog voltage repsul binary equivalent shows stepwise increase with step size equal to $\frac{VR}{2^n}$ vie analog output voltage Corresponding to 0001.

Precoution:

- i) Always connect ground first and then Connection
- 11) The kit should be be of before changing the connections (11) Switch of the kit after the experiment,