Problem #3.3

Second Shot

First Shot
$$S_1 = 1$$
 $S_2 = 1$ $S_2 = 0$ $S_1 = 1$ $S_2 = 0$ $S_1 = 0$ $S_2 = 1$ $S_2 = 0$ $S_2 = 1$ $S_2 = 0$ $S_2 = 1$ $S_2 = 0$ S_2

 $H_0: S_1 \perp \!\!\! \perp S_2 \text{ vs } H_1: \text{not } H_0$

Data is not ordinal so a restricted alternative is not necessary.

Statistics	Value	p-value	Conclusion	
X^2	0.2727	0.6015	Do not reject H_0 , there is evidence that the	
			first and second shot are independent	
G^2	0.2858	0.5930	Do not reject H_0 , there is evidence that the	
			first and second shot are independent	

Problem #3.9(a)

Table 1: Counts

Table 2: Perason Standard Residuals

	Drugs	No Drugs		Drugs	No Drugs
Schizophrenia	105	52	Schizophrenia	9.6581715	-9.6581716
Affective disorder	19	2	Affective disorder	-6.3053235	6.3053236
Neurosis	8	0	Neurosis	-6.1759785	6.1759786
Personality disorder	47	18	Personality disorder	1.3491055	-1.3491055
Special Systems	12	13	Special Systems	0.6542325	-0.6542325

OUTSTANDING: conclusion

Problem #3.12

Gamma, γ : 0.3873

95% CI: (0.3156, 0.4591)

Gamma is 0.3873 which indicates that when attitudes disagree (i.e. counts that are not on the diagonal), the proportion of concordant attitudes towards abortions (\uparrow school = \uparrow approval) is larger than the proportion of discordant attitudes. This means that there is greater approval of abortion when there is more schooling.

Problem #3.15

Type of CI for OR 95% CI (a) Woolf (i.e. Wald) $(0, \infty)$ (b) Cornfield's Exact $(2.646, \infty)$ OUTSTANDING: Answer: $(0.618, \infty)$ (c) Profile Likelihood $(5.117, \infty)$

Problem #3.31

OUTSTANDING: