What is claimed is:

1. A substrate for an information recording medium, which is formed of a glass having a glass transition temperature (Tg) of 600° C or higher and having an etching rate of 0.1 μ m/minute or less with regard to a hydrosilicofluoric acid aqueous solution that is maintained at a temperature of 45°C and has a hydrosilicofluoric acid concentration of 1.72 % by weight.

10

30

35

5

- 2. The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO_2 , Al_2O_3 , CaO and K_2O as essential components.
- 3. The substrate for an information recording medium as recited in claim 2, wherein the glass has a composition comprising, by mol%, 45 to 70 % of SiO₂, 1 to 15 % of Al₂O₃, the total content of SiO₂ and Al₂O₃ being 57 to 85 %, 2 to 25 % of CaO, 0 to 15 % of BaO, 0 to 15 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 2 to 30 %, more than 0 % but not more than 15 % of K₂O, 0 to 8 % of Li₂O, 0 to 8 % of Na₂O, the total content of K₂O, Li₂O and Na₂O being 2 to 15 %, 0 to 12 % of ZrO₂ and 0 to 10 % of TiO₂, the total content of said components being at least 95 %.
 - 4. The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO_2 , Al_2O_3 , CaO, Na_2O and K_2O and has a chemically strengthened layer.
 - 5. The substrate for an information recording medium as recited in claim 4, wherein the glass has a composition comprising, by mol%, 47 to 70 % of SiO_2 , 1 to 10 % of Al_2O_3 , the total content of SiO_2 and Al_2O_3 being 57 to 80 %, 2 to 25 % of CaO, 1 to 15 % of BaO, 1 to 10 % of Na_2O_3 , more than

- 0 % but not more than 15 % of K_2O , 0 to 3 % of Li_2O , the total content of Na_2O , K_2O and Li_2O being 3 to 16 %, 1 to 12 % of ZrO_2 , 0 to 10 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MgO, CaO, SrO, BaO and ZnO being 3 to 30 %, the ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO being at least 0.5, and 0 to 10 % of TiO_2 , the total content of said components being at least 95 %.
- 10 6. The substrate for an information recording medium as recited in claim 1, wherein the glass contains SiO_2 , Al_2O_3 , CaO, BaO, Na_2O and ZrO_2 as essential components and has a chemically strengthened layer,
- The substrate for an information recording medium 15 7. as recited in claim 6, wherein the glass has a composition comprising, by mol², 47 to 70 % of SiO_2 , 1 to 10 % of Al_2O_3 , the total content of SiO2 and Al2O3 being 57 to 80 %, 2 to 25 % of CaO, 1 to 15 % of BaO, 1 to 10 % of Na₂O, 0 to 15 % of K₂O, 0 to 3 % of Li₂O, the total content of Na₂O, K₂O and 20 Li_2O being 3 to 16 %, 1 to 12 % of ZrO_2 , 0 to 10 % of MgO, 0 to 15 % of SrO, 0 to 10 % of ZnO, the total content of MqO, CaO, SrO, BaO and ZnO being 3 to 30 %, the ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO being at least 0.5, and 0 to 10 % of TiO2, the 25 total content of said components being at least 95 %.
 - 8. The substrate for an information recording medium as recited in any one of claims 1 to 7, which is for use in a perpendicular-magnetic-recording-mode information recording medium.

30

An information recording medium having an information recording layer formed on the substrate for an information recording medium recited in any one of claims 1 to 8.

10. The information recording medium as recited in claim 8, which is a perpendicular-magnetic-recording-mode magnetic recording medium.

5

10

11. for manufacturing Α process an information recording medium, which comprises the step of forming an recording layer a substrate information on information recording medium and uses the substrate for an information recording medium recited in any one of claims 1 to 8 as said substrate, said step comprising the procedure of heating said substrate to a temperature of 300 to 600°C.