Interior, adherencia, frontera y derivado.

1. Se considera el siguiente subconjunto de \mathbb{R} :

$$A = (-\infty, -\sqrt{2}) \cup [\sqrt{2}, 3) \cup \left\{ \frac{3n+10}{n+3} : n \in \mathbb{N} \right\} \cup \{0\}.$$

Hallar Int A, \overline{A} y A' en las siguientes topologías sobre \mathbb{R} :

- (1) La usual.
- (2) La cofinita.
- (3) $\mathcal{T}_{[)}$ (la que tiene como base $\mathcal{B} = \{[a,b) : a,b \in \mathbb{R}\}\).$
- (4) La que tiene como base $\mathcal{B} = \{[a, b) : a, b \in \mathbb{Q}\}.$
- (5) \mathcal{T}_{\leftarrow} (la que tiene como base $\mathcal{B} = \{(-\infty, a) : a \in \mathbb{R}\}$).
- 2. Halla un subconjunto $A \subset \mathbb{R}$ tal que con la topología usual de \mathbb{R} se tenga

$$Fr(A) = [1, 2] \cup \{0\} \cup \{1/n \mid n \in \mathbb{Z}^+\}.$$

- **3.** Encuentra dos subconjuntos A, D abiertos de \mathbb{R} tal que los cuatro subconjuntos $A \cap \overline{D}, \overline{A} \cap D, \overline{A} \cap \overline{D}$ y $\overline{A} \cap \overline{D}$ sean distintos.
 - **4.** Sea X un espacio topológico y $A, D \subset X$. Demuestra lo siguiente:
 - (i) $Fr A = \overline{A} \setminus Int A$.
 - (ii) $Fr A = \emptyset$ si y sólo si A es simultáneamente abierto y cerrado.
 - (iii) Si $\overline{A} \cap \overline{D} = \emptyset$ entonces $Fr(A \cup D) = Fr(A) \cup Fr(D)$.
 - (iv) Si A es abierto entonces $A \cap \overline{D} \subset \overline{A} \cap \overline{D}$. Se satisface la inclusión si A no es abierto?
 - (v) Si $A \cup D = X$ entonces $\overline{A} \cup Int D = Int A \cup \overline{D} = X$.
 - (vi) $Int A \cup Int D \subset Int(A \cup D)$.
 - (vii) La inclusión en el apartado anterior puede ser estricta.
 - (Indicación: encuentra $A, D \subset \mathbb{R}$ tales que $Int(A) \cup Int(D) \neq Int(A \cup D)$.)
 - (viii) Si Fr A = D y Fr D = A entonces A = D.
- **5.** Prueba que si en un espacio topológico X, un conjunto A y su complementario son densos (esto es, $\overline{A} = \overline{X A} = X$), entonces $Int A = Int(X A) = \emptyset$. ¿Es cierto el recíproco?
 - 6. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
 - 1. Para cada $A \subset X$ se tiene que $Int(FrA) = \emptyset$.
 - 2. Si $A \neq \emptyset$ es cerrado y $IntA = \emptyset$, existe D tal que A = FrD.
 - 3. Si $Int(A) \neq \emptyset$ entonces $Int(\overline{A}) \neq \emptyset$.
 - 4. Para cada $A \subset X$, $\overline{A} = \overline{Int A}$.
 - 5. Si $A \cap Fr(A) = \emptyset$ entonces A es abierto.
 - 6. Para cada $A \subset X$, el conjunto A' es cerrado.
 - 7. Si $x \notin A'$ entonces $x \notin (\overline{A})'$.

- 7. Sea X un espacio topológico. Sea $\{A_i : i \in I\}$ una familia de subconjuntos de X.
- (i) Demuestra que

$$\bigcup_{i\in I} \overline{A_i} \subset \overline{\bigcup_{i\in I} A_i}.$$

- (ii) Demuestra que si I es finito entonces $\bigcup_{i \in I} \overline{A_i} = \overline{\bigcup_{i \in I} A_i}$.
- (iii) Halla un contraejemplo que muestre que en general no es cierto que $\overline{\bigcup_{i\in I} A_i} \subset \bigcup_{i\in I} \overline{A_i}$.
- (iv) Encuentra un fallo en la siguiente falsa demostración de la inclusión citada en (iii): Si $x \in \overline{\bigcup_{i \in I} A_i}$ entonces, para todo entorno U de x, $U \cap (\bigcup_{i \in I} A_i) \neq \emptyset$. Por tanto, $U \cap A_{i_0} \neq \emptyset$ para algún $i_0 \in I$ y se tiene $x \in \overline{A_{i_0}}$ y $x \in \bigcup_{i \in I} \overline{A_i}$.

Topología producto. Subespacios.

8. En el espacio producto $(\mathbb{R}, \mathcal{T}_{[]}) \times (\mathbb{R}, \mathcal{T}_{[]})$ describe la topología inducida en los subconjuntos

$$X = \{(x, -x) : x \in \mathbb{R}\} \quad e \quad Y = \{(x, x) : x \in \mathbb{R}\}.$$

9. Sean X e Y espacios topológicos. Sea $A \subset X \times Y$. Sean

$$A_x = \{ y \in Y : (x, y) \in A \} \quad y \quad A_y = \{ x \in X : (x, y) \in A \}.$$

- (i) Demuestra que si A es abierto en $X \times Y$ entonces para cada $x \in X$ y cada $y \in Y$, A_x y A_y son abiertos en Y y en X respectivamente.
 - (ii) Si A_x y A_y son abiertos para cada $x \in X$ y cada $y \in Y$, ¿es A abierto en $X \times Y$?
- 10. Se considera la topología $\mathcal{T}_{\mathcal{B}}$ en \mathbb{R}^2 generada por la base \mathcal{B} del ejercicio 9 de la hoja 1 1 ¿Existen en \mathbb{R} sendas topologías de modo que su producto coincida con la topología $\mathcal{T}_{\mathcal{B}}$? (Indicación: Prueba que ambas topologías deben ser menos finas que la usual.)
- 11. Sean X e Y dos conjuntos no vacíos. Sea \mathcal{T} la topología producto en $X \times Y$ construida a partir de las topologías \mathcal{T}_1 de X y \mathcal{T}_2 de Y. Prueba que si \mathcal{B} es una base de \mathcal{T} (no necesariamente la "base producto") entonces $p_1(\mathcal{B}) = \{p_1(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}_1 y $p_2(\mathcal{B}) = \{p_2(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}_2 . ¿Se puede usar este hecho para resolver el ejercicio anterior?

¹Para cada punto (x, y) de \mathbb{R}^2 y cada $r \in \mathbb{R}$ con r > 0 se considera el siguiente conjunto B((x, y), r): el cuadrado con lados paralelos a los ejes, centrado en (x, y) y de lado 2r, del que se ha excluido los lados y los puntos de las diagonales que no sean el punto (x, y). $\mathcal{B} = \{B((x, y), r) : (x, y) \in \mathbb{R}^2, r > 0\}$.