EECS 545: Machine Learning

Lecture 14. Markov Networks

Honglak Lee 2/23/2011

Outline

- Bayesian Networks (cont'd)
 - D separation
 - Markov Blanket
- Markov Networks
 - (aka Markov Random Fields, Undirected graphical models)
 - Representation
 - Conditional Independence
 - Examples
- Directed vs Undirected graphical models

D-Separation & Markov Blankets

A LL B C D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 - (a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d-separated from B by \mathbb{C} .
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$.

D-separation: Example

D-separation: I.I.D. Data

The Markov Blanket \(\chi\) in all variables

A set S is called a Markov Blanket of X_i iff X_i is conditionally independent of all other variables given S.

In Bayesian Networks, a Markov Blanket of Xi

 $= \mathsf{Pa}_{\mathsf{X}_{\mathsf{i}}} \cup \mathit{Children}_{X_{\mathsf{i}}} \cup \mathit{Coparents}$

Directed Graphs as Distribution Filters

A set of distribution that satisfies a set of conditional independence represented by directed graphs (via d-separation) is equivalent to

a set of distribution that is represented by Bayesian Network joint-probability factorization. $p(\mathbf{x}) = \prod^K p(x_k|\mathrm{pa}_k)$

8

Markov Networks

Markov Networks (Markov Random Fields)

Markov networks are represented using undirected edges.

Note: there is no explicit definition of conditional probability in the network. (cf. CPD is the basis of Bayesian Network)

Conditional Independence in MN

- A path from X to Y is active if it is not blocked by observed variables.
- X and Y are conditionally independent given Z iff all path from X to Y are blocked by Z.

Markov Blanket of X = neighbors of X

Cliques and Maximal Cliques

A *clique* is a subset C of S where every pair of elements of C are neighbors.

Any clique is subset of a maximal clique. Joint probability is defined as a product of nonnegative potential functions (for maximal cliques).

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C}) \vee \psi_{C$$

$$\Rightarrow$$
 MN factorization $P(x,Y,W) = \frac{1}{2} \pi + (x_c) \pi + \frac{1}{c}(x_c)$

$$P(X,Y,w) = \frac{1}{2} \left\{ \frac{1}{2} \left(X,w \right) \right\}$$

= P(XIW) P(YIW)

> XUTIW

$$\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \left(\frac{1}{2} \left($$

Cliques (for c=1 neighborhoods)

Sets where every pair are neighbors.

Cliques (for c=2 neighborhoods)

Maximal clique: if enlarged, it's not a clique.

Joint Distribution

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_{C}(\mathbf{x}_{C}) \quad \text{Times } \mathbf{x}_{C}$$

is the normalization coefficient; note: M K-state variables \rightarrow K^M terms in Z.

Energies and the Boltzmann distribution

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Examples

Fields of Random Variables

- In a Bayesian network, nodes represent the probabilities of propositions.
 - Layout of the nodes is arbitrary.

- For problems in image analysis, physics, etc, spatial structure is important.
 - Many interactions are *local*, so we need to define the *neighborhood* structure on the set (field) of random variables.

Illustration: Image De-Noising (1)

Original Image

Noisy Image

Illustration: Image De-Noising (2)

Y: noisy binary image (observed), $Y_i \in \{1, -1\}$

X: underlying binary image (to infer), $X_i \in \{1, -1\}$

Illustration: Image De-Noising (3)

Noisy Image

Restored Image (ICM)

Illustration: Image De-Noising (4)

Restored Image (ICM)

Restored Image (Graph cuts)

Directed vs. Undirected Graphs

Converting Directed to Undirected Graphs (1)

Converting Directed to Undirected Graphs (2)

Additional links

Moralizing: "Moral Graph"

$$p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$= \frac{1}{Z}\psi_A(x_1, x_2, x_3)\psi_B(x_2, x_3, x_4)\psi_C(x_1, x_2, x_4)$$

Directed vs. Undirected Graphs (1)

Directed vs. Undirected Graphs (2)

E.g., Markov Network, but cannot be represented by Bayesian Network

$$A \not\perp\!\!\!\perp B \mid \emptyset$$

$$A \perp\!\!\!\perp B \mid C \cup D$$

$$C \perp\!\!\!\perp D \mid A \cup B$$

Directed vs. Undirected Graphs (2)

E.g., Bayesian Network, but cannot be represented by Markov Network

$$A \perp \!\!\!\perp B \mid \emptyset$$

 $A \perp \!\!\!\!\perp B \mid C$

Next

Inference in graphical models

Mixture models and the EM algorithm