"Laboratório de Arquitetura e Organização de Computadores I – Introdução ao Quartus II"

Prof. Dr. Emerson Carlos Pedrino

DC/UFSCar

São Carlos

Introdução ao Quartus II

 Objetivo: Desenvolvimento de um decodificador para display de 7 segmentos utilizando a técnica de descrição de projeto por diagrama esquemático.

Desenvolvimento do Projeto

- Iniciar o Quartus II
- File->New Project Wizard
 - Diretório->...\Lab_1
 - Nome do Projeto->Lab_1
 - Top Level Name->Lab_1

FPGA adotada

- Família: Cyclone II
- EP2C20F484C7

Criação do Diagrama Esquemático do Projeto

- New->Block Diagrama/Schematic File
- File->Salve as: Lab_1.bdf

- Clicar 2x na área do projeto
- Em Symbol->Name digitar: 7449
- Clicar em alguma posição da área do projeto
- Repetir os passos anteriores para inserir os pinos de Entrada e Saída do projeto (input e output)

Tela Atualizada do Projeto

Inserção de portas NOT

Considerando-se que as saídas do decodificador utilizado são ativas em nível alto e o display de 7 segmentos a ser utilizado é de anodo comum, portas NOT deverão ser inseridas nas saídas.

Circuito atualizado com as devidas ligações e nomes dos pinos

Circuitos da Placa DE1 - Entradas

Circuitos da Placa DE1 - Saída

Atribuição dos Nomes aos Pinos de E/S

Importação dos Pinos

- Assignments->Import Assignments
 - Obs.: importar o arquivo: DE1_Default.qsf
- Para não sobrecarregar o dispositivo:
 - Assignments->Device->Device and Pin
 Options->Unused Pins->As inputs, tristated

Compilando o Projeto

Processing->Start Compilation

Verificação dos Pinos

Assignments->Pins.

		Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved
1	•	HEX0[6]	Output	PIN_E2	2	B2_N1	3.3-V LVTTL	
2		HEX0[5]	Output	PIN_F1	2	B2_N1	3.3-V LVTTL	
3		HEX0[4]	Output	PIN_F2	2	B2_N1	3.3-V LVTTL	
4		HEX0[3]	Output	PIN_H1	2	B2_N1	3.3-V LVTTL	
5		HEX0[2]	Output	PIN_H2	2	B2_N1	3.3-V LVTTL	
6		HEX0[1]	Output	PIN_J1	2	B2_N1	3.3-V LVTTL	
7		HEX0[0]	Output	PIN_J2	2	B2_N1	3.3-V LVTTL	
8	<u></u>	SW[3]	Input	PIN_V12	7	B7_N1	3.3-V LVTTL	
9	■	SW[2]	Input	PIN_M22	6	B6_N0	3.3-V LVTTL	
10	<u></u>	SW[1]	Input	PIN_L21	5	B5_N1	3.3-V LVTTL	
11	₽	SW[0]	Input	PIN_L22	5	B5_N1	3.3-V LVTTL	
12	•	GPIO_0[0]	Unknown	PIN_A13	4	B4_N1	3.3-V LVTTL	
13	•	GPIO_0[1]	Unknown	PIN_B13	4	B4_N1	3.3-V LVTTL	
14	•	GPIO_0[2]	Unknown	PIN_A14	4	B4_N1	3.3-V LVTTL	

Simulando o Projeto

- New->Verification/...->Vector Waveform File
- Salvar: Lab_1.vwf
- Com o botão direito do mouse, clicar na coluna da esquerda e selecionar Insert->Insert Node or Bus->Node Finder (Pins: all)->List->"clicar em >>"
- Editar as formas de onda de entrada, salvar e pressionar ctr+i. Em *Processing->Simulator Tool* (Simulation mode: Functional), gerar *Netlist*, *Start*, *Report*.

Configurando a Placa DE1

Em Tools->Programmer selecionar Lab_1.sof e setar a opção Program/Configure. Em seguida, clicar em Start.

Exercício

- Construa um contador assíncrono de 31 a 0 e utilize uma das teclas KEYn da placa DE1 para gerar o clock do circuito de forma manual. Utilize Também os LEDs da placa para visualização da contagem.
- Explicar o funcionamento do CI Schmitt Trigger.