

# Tecnicatura Superior en Telecomunicaciones

# Espacio Curricular: Arquitectura y conectividad

Tp N° 5

#### Alumnos:

Huk, Romina vanesa - GitHub: RoHu17 Brizuela, Laura Analia - GitHub: gerbena03 Roldán, Patricio Leandro - GitHub: pleroldan

Pantoja, Paola Natalia Alejandra - GitHub: PaolaaPantoja

Paez, Tiziano Adrian - GitHub: tpaez

Paz, Rodolfo: GitHub: Domi74 Gutiérrez, Emma: GitHub: Emygut

Profesor: Ing. Jorge Elías Morales.



# Espacio Curricular: Arquitectura y conectividad

- 1) ¿Qué es un protocolo COAP?, ¿Para qué se usa? Ejemplifique.
- 2) ¿Qué es un protocolo AMQP?, ¿Para qué se usa? Ejemplifique
- 3) ¿Qué es un protocolo MODBUS?, ¿Para qué se usa? Ejemplifique
- 4) ¿Qué es un protocolo HART?, ¿Para qué se usa? Ejemplifique
- 5) ¿Qué es un protocolo PROFINET?, ¿Para qué se usa? Ejemplifique
- 6) ¿Qué es un protocolo CANopen?, ¿Para qué se usa? Ejemplifique
- 7) ¿Qué es un protocolo PROFIBUS-DP/PA?, ¿Para qué se usa? Ejemplifique

El siguiente documento es un resumen de todas estas preguntas, Se detallan con mayor detalle en los documentos unitarios alojados en <u>Github > TP5 > C Prototipo</u>



conectividad

# Protocolos Industriales: Descripción, Usos y Ejemplos

# 1. Protocolo CoAP (Constrained Application Protocol)

¿Qué es?

CoAP es un protocolo de aplicación diseñado específicamente para dispositivos loT con recursos limitados (memoria, potencia de procesamiento y energía). Opera sobre UDP, lo que lo hace más ligero que HTTP, y sigue un modelo de solicitud/respuesta similar a HTTP.

¿Para qué se usa?

Automatización del hogar (control de luces, termostatos)

Monitoreo industrial (sensores de temperatura, presión)

Sistemas de salud (dispositivos médicos remotos)

Ciudades inteligentes (gestión de alumbrado público)

#### Ejemplo:

En una casa inteligente, sensores de temperatura envían datos mediante CoAP a un servidor central. Si la temperatura baja, el servidor activa la calefacción automáticamente.

#### **DIAGRAMA**

[Sensor IoT] --CoAP (UDP)--> [Servidor Central] --CoAP--> [Actuador (Calefacción)]



conectividad

# 2. Protocolo AMQP (Advanced Message Queuing Protocol)

¿Qué es?

AMQP es un protocolo de mensajería abierto y estandarizado que permite la comunicación asíncrona entre aplicaciones. Utiliza intermediarios (brokers) para gestionar colas y enrutar mensajes.

¿Para qué se usa?

Integración de sistemas empresariales

Mensajería en la nube

Aplicaciones financieras (transacciones seguras)

IoT (gestión de datos entre dispositivos)

# Ejemplo:

Un sistema bancario utiliza AMQP para procesar transacciones: las solicitudes se envían a una cola, y el broker las distribuye a los servidores disponibles.

## Diagrama:

[Aplicación Cliente] --Mensaje--> [Broker AMQP] --Mensaje--> [Servidor de Procesamiento]



Espacio Curricular: Arquitectura y conectividad

# 3. Protocolo Modbus

¿Qué es?

Modbus es un protocolo de comunicación industrial basado en arquitectura maestro-esclavo. Existen variantes como Modbus RTU (serial) y Modbus TCP (Ethernet).

¿Para qué se usa?

Automatización industrial (PLCs, sensores)

Sistemas SCADA

Control de procesos en tiempo real

#### Ejemplo:

En una planta manufacturera, un PLC (maestro) consulta datos de sensores de temperatura (esclavos) mediante Modbus TCP para ajustar procesos.

## Diagrama:

```
[PLC (Maestro)] --Modbus TCP--> [Sensor 1 (Esclavo)]
|
--Modbus TCP--> [Sensor 2 (Esclavo)]
```



conectividad

# 4. Protocolo HART (Highway Addressable Remote Transducer)

¿Qué es?

HART es un protocolo híbrido que combina señales analógicas (4-20 mA) con comunicación digital sobre el mismo cable.

¿Para qué se usa?

Configuración remota de instrumentos de campo

Monitoreo y diagnóstico de dispositivos

Industrias químicas y petroleras

#### Ejemplo:

Un transmisor de presión en una planta química envía la lectura analógica (4-20 mA) y datos digitales (temperatura, estado) mediante HART al sistema de control.

## Diagrama:

[Transmisor de Presión] -- Señal 4-20 mA + HART--> [Sistema de Control]



conectividad

# 5. Protocolo PROFINET

¿Qué es?

PROFINET es un protocolo Ethernet industrial que permite comunicación en tiempo real entre dispositivos como PLCs, sensores y actuadores.

¿Para qué se usa?

Control de movimiento en robótica

Automatización de edificios

Manufactura automatizada

# Ejemplo:

En una línea de ensamblaje, PROFINET conecta PLCs con servomotores para sincronizar movimientos con precisión.

```
Diagrama:
```

```
[PLC] --PROFINET--> [Servomotor 1]
|
--PROFINET--> [Servomotor 2]
```



conectividad

# 6. Protocolo CANopen

¿Qué es?

CANopen es un protocolo basado en CAN (Controller Area Network), diseñado para sistemas embebidos y automatización industrial.

¿Para qué se usa?

Vehículos (agricultura, minería)

Robótica industrial

Dispositivos médicos (bombas de infusión)

# Ejemplo:

En un sistema de cintas transportadoras, CANopen coordina múltiples motores y sensores desde un PLC.

## Diagrama:



# 7. Protocolo PROFIBUS-DP/PA

¿Qué es?

PROFIBUS-DP: Para comunicación rápida con dispositivos descentralizados.

PROFIBUS-PA: Para automatización de procesos en entornos peligrosos (con alimentación por bus).

¿Para qué se usa?

Plantas químicas (PROFIBUS-PA para sensores en zonas explosivas)

Control de maquinaria industrial (PROFIBUS-DP)

# Ejemplo:

En una planta de tratamiento de agua, PROFIBUS-PA conecta sensores de nivel, mientras PROFIBUS-DP controla bombas y válvulas.

# Diagrama:

[PLC] --PROFIBUS-DP--> [Bomba]
|
--PROFIBUS-PA--> [Sensor de Nivel]



| Tabla Comparativa de Protocolos Industriales |                   |                     |                        |                                  |                                              |
|----------------------------------------------|-------------------|---------------------|------------------------|----------------------------------|----------------------------------------------|
| Protocolo                                    | Capa OSI          | Topología           | Velocidad              | Aplicaciones Típicas             | Ventajas                                     |
| CoAP                                         | Aplicación        | Punto a punto       | Baja (UDP)             | IoT, hogar inteligente           | Ligero, ideal para<br>dispositivos limitados |
| AMQP                                         | Aplicación        | Broker/Cola         | Alta (TCP/IP)          | Mensajería<br>empresarial        | Confiable, seguro, interoperable             |
| Modbus                                       | Aplicación        | Maestro-Es<br>clavo | Hasta 10 Mbps<br>(TCP) | SCADA, PLCs                      | Simple, ampliamente adoptado                 |
| HART                                         | Física +<br>Datos | Híbrido             | 1.2 kbps<br>(digital)  | Procesos industriales            | Compatible con 4-20 mA                       |
| PROFINET                                     | Aplicación        | Estrella/Anil<br>lo | 100 Mbps - 1<br>Gbps   | Robótica, control en tiempo real | Alta velocidad, determinismo                 |
| CANopen                                      | Aplicación        | Bus lineal          | 1 Mbps                 | Vehículos, robótica              | Robustez, bajo costo                         |
| PROFIBU<br>S                                 | Física +<br>Datos | Bus                 | 12 Mbps (DP)           | Automatización industrial        | Reducción de cableado, confiable             |

# Diagrama de Sistemas Comparativos

[Dispositivo IoT] --CoAP--> [Servidor Cloud]

[PLC] --Modbus--> [Sensores]

[PLC] --PROFINET--> [Robots]

[Sensor PA] --PROFIBUS-PA--> [Controlador]

[Broker AMQP] <--> [Aplicación Empresarial]