Orthogonalité Orthogonalité

MAT-2930 Algèbre linéaire appliquée Jean-François Lalonde

Vecteurs orthogonaux (ou perpendiculaires)

• Deux vecteurs sont orthogonaux si:

• Le vecteur **0** est orthogonal à n'importe quel autre vecteur

Théorème de Pythagore

• **u** et **v** sont orthogonaux si et seulement si :

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Sous-espaces orthogonaux

• Sous-espace $\mathcal S$ est orthogonal au sous-espace $\mathcal T$ si tous les vecteurs de $\mathcal S$ sont orthogonaux à tous les vecteurs de $\mathcal T$.

Dans \mathbb{R}^2 Dans \mathbb{R}^3

Sous-espaces d'une matrice A =

$$\mathbf{A} =$$

Espace des lignes

Espace des colonnes

Espace nul

Espace nul de \mathbf{A}^{T}

Sous-espaces orthogonaux d'une matrice

- L'espace nul est orthogonal à l'espace des lignes!
- Pourquoi ?

$$Ax = 0$$

Sous-espaces d'une matrice

 $\mathbf{A} = egin{bmatrix} & & & & \\ & & & & \\ & & & \mathrm{rang}(\mathbf{A}) = r \end{bmatrix}^n$

Espace des lignes

Espace des colonnes

Espace nul

Espace nul de \mathbf{A}^T

Exemple

 $\mathbf{A} = \begin{bmatrix} & & & \\ & & & \end{bmatrix} m$

- Matrice $m \times 3$
- Possibilités pour l'espace nul et l'espace des lignes

Est-ce possible?

Quelles sont les possibilités ?

Exemple

• Caractériser l'espace des lignes et l'espace nul $\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix}$

Sous-espaces d'une matrice

Pour une matrice $m \times n$, l'espace nul et l'espace des lignes sont des **compléments orthogonaux** dans \mathbb{R}^n .

Espace nul contient tous les vecteurs orthogonaux à l'espace des colonnes.

Une **base** pour un sous-espace est un ensemble de vecteurs qui : 1. engendrent le sous-espace 2. sont indépendants

• Combien de vecteurs y a-t-il dans n'importe quelle base de R² ?

Base orthogonale

Une base orthogonale pour un sous-espace est

un ensemble de vecteurs qui :

- 1. engendrent le sous-espace
 - 2. sont indépendants
- 3. sont orthogonaux entre eux

Base orthonormée

Une **base orthonormée** pour un sous-espace est un ensemble de vecteurs qui :

- 1. engendrent le sous-espace
 - 2. sont indépendants
- 3. sont orthogonaux entre eux
 - 4. sont unitaires