CoCoNuT Assignment One

January 20, 2015

1 Introduction To Sage

We start with a basic introduction to Sage. We introduce basic commands, and after which we will give some problems. All of the answers to the problems should make use *only* of the commands given in this section. The reason for this is that Sage is VERY powerful, and so one can actually solve most problems with a single command. We however want you to learn both *how* to use Sage, and *how* sage actually *works*.

Sage is basically Python, with a lot of mathematical software compiled in and available from a Python command prompt. Launch Sage with the command sage on a lab machine. It will display the prompt sage:, enter a command to get output on the line below¹.

Note: Any code you write directly into Sage is not saved, i.e. it will be deleted once you exit the session. A good idea is to save you code into a .sage file and then you can upload it using the command load("filename.sage").

Variables and Arithmetic

```
sage: 1+1
```

Division with remainder uses the // and % operations.

```
sage: 5 // 3
1
sage: 5 % 3
2
```

You assign variables with the = sign. By default, x is a symbolic variable, all other variables are unassigned. To make more symbolic variables, declare them with var.

```
sage: u=1
  (no output)
sage: u
1
sage: v
  (error - since v is not assigned)
sage: x
x
sage: x+x+1
```

 $^{^{1}}$ If this does not work on any CS dept machine, let Nigel know the machine name.

²That is, the value of x is an object that handles its own arithmetic.

```
2*x + 1
sage: var('y')
y
sage: x+y
x + y
```

Conditional Statements and Loops

If, for and while statements work as in Python (Sage is Python, after all). Sage will auto-indent lines (4 spaces) and display a : prompt after an if/for/while statement, use backspace to enter elif/else clauses. Entering an empty line ends and evaluates the statement. The equality operator for numbers is == and the range(n) function returns an array of integers from 0 to n-1. You can also use range(n, m) to get integers from n to m-1 and range(n, m, s) to set a custom step.

```
sage: u=1
sage: v=2
sage: if u<v:</pre>
          print 'less than'
\dots: elif u == v:
....: print 'equal'
....: else:
           print 'greater than'
. . . . :
less than
sage: u=10
sage: v=1
sage: while u > v:
. . . . :
           print u
. . . . :
           u = u - 1
. . . . :
10
9
8
7
6
5
4
3
sage: for u in range(5):
          print u
. . . . :
. . . . :
0
1
2
3
sage: for u in range(1,10,3):
. . . . :
           print u
```

```
....:
1
4
7
```

Functions

Sage offers two types of functions, mathematical functions using symbolic variables (on which one can do calculus etc.) and regular Python procedures, introduced with the def keyword.

Lists

The list data type in Sage stores elements of arbitrary type.

```
sage: L=[1,2,'A','B']
sage: L[0]
1
sage: L=[i for i in range (5)]
sage: L
[0, 1, 2, 3, 4]
```

Polynomials

Examples of defining polynomials in Sage:

• Integer coefficients: Univariate polynomials in x with integer coefficients can be define as follows: sage: $ZP.\langle x \rangle = ZZ[]$ Or sage: $ZP.\langle x \rangle = Integers()[]$ One can perform the usual arithmetic operations on polynomials in the same manner as one does with numbers.

```
sage: p1= x^5 + 3*x^2 - 2*x + 7
sage: p2= x^2 + x
sage: p1*p2
x^7 + x^6 + 3*x^4 + x^3 + 5*x^2 + 7*x
sage: p1//p2
x^3 - x^2 + x + 2
```

• Polynomials with coefficients in $\{0,\ldots,n-1\}$, i.e. the integers modulo n. Example for n=7,

```
sage: ZP.\langle x \rangle = (Integers(7))[]
```

One can similarly define multivariate polynomials $sage: ZP.\langle x,y \rangle = ZZ[]$

Primes

To check whether or not a variable/number is prime, use the function $is_prime()$. e.g. $is_prime(11)$ will return True. To get the smallest prime > n, use the $next_prime(n)$. e.g. $next_prime(11)$ will return 13. Similarly, $previous_prime(n)$ returns the largest prime that is < n. The function $prime_range(a,b)$ returns a list of the primes which are $\ge a$ and < b.

2 Assignment One Questions

1.	(a)	Using $only$ the techniques discussed above, implement a function in sage called MyPowMod(a, b, c) that takes three integers a,b,c as input and returns $a^b \mod c$.
	(b)	Use your function to compute 5385892759875 $^{\wedge}$ 409784891274 (where $^{\wedge}$ denotes exponentiation) mod 5427528967528756.
2.	(a)	Again using only the techniques above, write a function MyGCD(a,b) that computes the greatest common divisor of two integers.
	(b)	Compute the GCD of 593085902352 and 8752389742891 using your function.
3.	(a)	Again, using the above techniques only, write a function $\texttt{MyLCM(a, b)}$ that computes the least common multiple of a and b .
	(b)	Compute the LCM of 55902352 and 8381902352 using your function.
4.		his question your answers should be the sage code needed to produce the answer, and not the ific answer (which is trivial).
	(a)	Create a list L containing the odd integers between 1 and 1911.
	(b)	Reverse the order of the items in L.

(d) Append the values 7,19 to L.
(e) Convert the List L into a set S.
(f) What is the cardinality of S?
5. The extended GCD algorithm is an extension of the GCD algorithm which besides computing the GCD of a and b , it also finds the integers x and y satisfying $x \cdot a + y \cdot b = \text{GCD}(a,b)$. The Sage command $xgcd(a,b)$ will return a list of 3 elements $(\text{GCD}(a,b),x,y)$ satisfying the above equation.
<pre>sage: xgcd(12,15) (3, -1, 1)</pre>
(a) Using your prior knowledge (or Wikipedia) write a Sage function MyXGCD(a,b) that mimics the inbuilt xgcd(a,b) command.
(b) Using only the commands above, write a function Findx which on input a and b outputs a satisfying $a \cdot x = 1 \pmod{b}$ if such x exists. If such a value does not exist, your function must display an appropriate message.
6. Using only the commands above, write a function MyFactor which on input a large integer n return its prime divisors and their exponents. e.g. MyFactor(18) will return [[2,1], [3,2]]

6

(c) Compute the number of elements in L?