I. SUPPLEMENTARY APPENDIX FOR HOW GRAPH NEURAL NETWORK LEARNS CELLULAR COVERAGE FROM REAL NETWORK CONFIGURATIONS

A. Dataset

We are using two datasets, crawled from two real networks in 2 different regions. **CPH** is a dense urban deployment, while **A+A** includes more rural areas. Their statistical feature is given in Table. I.

Table I: Selection of Datasets Statistical features

Dataset	СРН	A+A
Feature Distribution		
# of Nodes	1643	4359
# of Relations	7894	27294
Average Degree	8.456	7.612
Mean clustering coefficient	0.2947	0.3658
Average Antenna Height(m)	24.4756	32.1485
Average Inter-site distance	0.8205	2.0711
Optional Sectors #	[1,4]	[1,3]
Optional Electrical Tilt	[1,7]	[3, 8]
Optional Tx Scheme	$2 \times 2, 4 \times 4$	$2 \times 2, 4 \times 4$
Tx Power (Watt)	460,490,505,520	460,490,505,520
Ground Truth distribution (Averaged)		
SINR: [Perfect%, Good%, Fair%, Bad%]	[58.0, 38.3, 3.56, 0.088]	[78.8, 20.4, 0.751, 0.0244]
CQI: [Perfect%, Good%, Fair%, Bad%]	[79.8, 15.2, 4.68, 0.318]	[56.1, 16.6, 18.0, 9.37]

B. Simulation Environment

Our ground truth are obtained using Info-Vista Planet 7.6, a list of simulation parameter we use are given in Table II. Note we simulate the scenario without any fading (i.e, in Open space).

Table II: Selection of Simulation Parameter

Parameter	Value
Propagation Model eNB type UE Height Environment Horizontal Beam Width Frequency band Penetration loss	Info-Vista Planet Generic Outdoors 1.6 m Open space [59,88] 1,3,7,20 0dB

C. Training Parameter

We have implemented all models with PyTorch as well as Torch-geometric, while the training is conducted using the following training parameters as presented in Table III, using a NVIDIA-1080 GPU.

Table III: Training parameters in Phase PT and FT

Parameter	Phase PT (\mathcal{HP}_{PT})	Phase FT (\mathcal{HP}_{FT})
Epoch Length N_{PT}, N_{FT}	10000	40000
Learning rate	10^{-3}	10^{-3}
Learning decaying factor	0.5	0.5
Learning decaying step size	1000	1000
Early Stopping Patience	8	8
Early Stopping step size	50	50
Weight decay	5×10^{-4}	5×10^{-4}