Multi-Input Multi-Output Electric Motor Modeling using Neural Networks

Sagar Verma

Centre de Vision Numérique, Centralesupélec, Gif-sur-Yvette

December, 2018

Table Of Contents

- 1. Dataset
- 2. Experiments
- 3. Results
- 4. Questions

What we discussed in the last meeting?

- 1. Problem definition
- 2. Neural networks introduction
- 3. Early results on public dataset
- 4. Error in predicting impulse peeks
- 5. Prediction scaling problem

Dataset Description

- 1. Single experiment
- 2. 1200 seconds long
- 3. Simulink dq-frame model is used

Dataset

Voltages

Dataset Stator Puls

Dataset

Speed

Dataset Currents

Dataset

Torque Load

Dataset Train-Test Split

- 1. Single experiment
- 2. Train on 0s-839s, test on 839s-1199.75s
- 3. Window size w = 100, stride s = 1

Experiments

Convolution network

- 1. CNN and ANN works better then RNN (Miller et al. 2018).
- Encoder network
 - 2.1 Kernels capture $w \le 10$
 - 2.2 Signals act as feature channels, no flattening
- Decoder network
 - 3.1 Implicitly segment different temporal patterns
- 4. Three outputs, three networks.
- 5. Input: $w \times 3$ 2-D vector, Output: w

Convolution network

Results

Current1

Results

Current2

Results

Torque

Thank you!