ECE637 Lab report 4 Pointwise Operations and Gamma

Name: Chengzhang Zhong

Section 1. Histogram of an Image

Figure 1.1 Histogram of race.tif

Figure 1.2 Histogram of kids.tif

Section 2. Histogram Equalization

Part 1. function equalize.m.

```
function [Y] = equalize(X)

L = 256;
H = hist(X(:),[0:255]);
```

```
total = sum(H);
Fx = zeros(1,L);
Z = zeros(1,L);
for i = 1:1:L
   Fx(i) = sum(H(1:i))/total;
end
clf;
figure(1)
plot(Fx);
title('CDF of the image');
xlabel('intensity');
Ymax = max(Fx);
Ymin = min(Fx);
Z = (L-1)*(Fx - Ymin)/(Ymax-Ymin);
[m n] = size(X);
Y = zeros(m,n,'uint8');
for i = 1:1:m
   for j = 1:1:n
   Y(i,j) = Z(X(i,j));
   end
end
road = 'E:\2016spring\ECE637\lab4\equalized kids.jpg';
imwrite(Y, road);
```

Part 2. a labeled plot of $F^x(i)$ for the image kids.tif

Figure 2.1 F[^] x(i) for the image kids.tif

Part 3. a labeled plot of the of the equalized image's histogram.

Figure 2.2 the equalized image's histogram.

Part 4. the equalized image.

Figure 2.3 the equalized image.

Section 3. Contrast Stretching

Part 1. Code for stretch

```
function output = stretch(input,T1,T2)
map = zeros(1,256);
```

```
map(T2:end) = 255;
[m n] = size(input);
output = zeros(m,n,'uint8');
for i = T1:1:T2
    map(i) = 255*(i-T1)/(T2-T1);
end
for k = 1:1:m
    for j = 1:1:n
        output(k,j) = round(map(input(k,j)));
    end
end
road = 'E:\2016spring\ECE637\lab4\stretched_kids.jpg';
imwrite(output,road)
```

Part 2. the transformed image and its histogram

Figure 3.1 the transformed image.

Figure 3.2 the transformed image's histogram.

Section 4. Gamma (γ)

Part 2. Determining the Gamma of Your Computer Monitor

My gray level = 200.

Figure 4.1 gray level image

Procedures:

First we know that $I_g = I_c$, through calculation we can have

$$\frac{I_{255}+0}{2} = I_{255} \left(\frac{g}{255}\right)^{\gamma}, \text{ which gives the result as } \gamma = \frac{\log \left(\frac{1}{2}\right)}{\log \left(\frac{g}{255}\right)}$$

Results: $\gamma = 2.85, g = 200$.

Part 3. Gamma Correction

For the linear.tif:

Use $\gamma = 2.85$ to correct the image.

The formula used in this part: $g = I_{255} \cdot \left(\frac{I_g}{255}\right)^{\frac{1}{2.85}}$

linear image

output image(gamma = 2.85)

Figure 4.2 linear.tif original image and corrected image

For the gamma15.tif:

Use $\gamma = 2.85$ to correct the image.

The formulas used in this part:

Since the picture has already been corrected by 1.5, the first step is to transfer it back:

$$I_g = I_{255} \left(\frac{g}{255}\right)^{1.5}$$

Next part, we choose γ =2.85 to correct the image.

$$g' = I_{255} \cdot \left(\frac{I_g}{255}\right)^{\frac{1}{2.85}}$$

Figure 4.3 gamma15.tif original image and corrected image