PS 1

Elmer S. Poliquit

2024-01-31

Problem Set 1

1. Prove that $\lim_{x\to -1} 2x + 1 = -1$.

Note: For any given $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$. Draft:

$$\begin{aligned} |2x+1-(-1)| &< \epsilon \\ |2x+2| &< \epsilon \\ |2||x-(-1)| &< \epsilon \\ |x-(-1)| &< \frac{\epsilon}{|2|} \\ \delta &\leq \frac{\epsilon}{2} \end{aligned}$$

- 2. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function and graph using R with the point/s identified. $f(x) = x^3 4x^2 2x 5$ on [-10, 10].
- 3. Find the point c that satisfies the mean value theorem for integrals on the interval [-1,1]. The function is $f(x) = 2e^x$.
- 4. Consider the function $f(x) = \cos(x/2)$. a Find the fourth Taylor polynomial for f at $x = \pi$. b Use the fourth Taylor polynomial to approximate $\cos(\pi/2)$. c Use the fourth Taylor polynomial to bound the error.
- 5. If fl(x) is the machine approximated number of a real number x and ϵ is the corresponding relative error, then show that $fl(x) = (1 \epsilon)x$.
- 6. For the following numbers x and their corresponding approximations x_A , find the number of significant digits in x_A with respect to x and find the relative error.

a.
$$x=451.01, x_A=451.023$$

b. $x=-0.04518, x_A=-0.045113$
c. $x=23.4604, x_A=23.4213$

7. Find the condition number for the following functions

a.
$$f(x) = 2x^2$$

b. $f(x) = 2\pi^x$
c. $f(x) = 2b^x$

8. Determine if the following series converges or diverges. If it converges determine its sum.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$