Domena i svojstva realnih funkcija realne varijable

Matematika za ekonomiste 1

Damir Horvat

FOI, Varaždin

Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

četvrti zadatak

peti zadatak

prvi zadatak

Zadatak 1

Odredite domene i nultočke sljedećih funkcija:

a)
$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$
 b) $g(x) = (2 + x - x^2)^{\frac{1}{5}}$

c)
$$h(x) = \log (10^{x-1} - 5)$$
 d) $k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$

Rješenje

a) domena

$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$

Rješenje

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

$$f(x) = \sqrt{\frac{1}{x+2} - 2 - 1}$$

a) domena

omena
$$\frac{x-3}{x+2}-2\geqslant 0$$
 uključeno u ovom uvjetu

 $x + 2 \neq 0$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$x + 2$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$\frac{x-3}{x+2}$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

′uključeno u

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

x + 2

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2} - 2 \geqslant 0$$
 ovom uvjetu

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2} \geqslant 0$$
$$-x-7$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

owena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2} \geqslant 0$$
$$\frac{-x-7}{x+2} \geqslant 0$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2} \geqslant 0$$
$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x - 7 = 0$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2}\geqslant 0$$

$$-x - 7 = 0$$
$$x = -7$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x-3} - 2 \ge 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

uključeno u

-x - 7

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{x+2}{-x-7} \ge 0$$

$$-x-7=0$$
 $x+2=0$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\begin{array}{c}
\text{omena} \\
x - 3 \\
\end{array}$$

 $x + 2 \neq 0$

′uključeno u

-x - 7

x + 2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

 $x + 2 \neq 0$

-x - 7

x + 2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

omena ovom uvjetu
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

-x - 7

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

 $+\infty$

Rješenje

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

ovom uvjetu

-x - 7

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7 \qquad x = -2$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

ovom uvjetu

-x - 7

x+2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

 $+\infty$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

ovom uvjetu

-x - 7

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

ovom uvjetu

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

′uključeno u

ovom uvjetu

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

-x - 7

x + 2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena
$$\frac{x-3}{x+2} - 2 \geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

etu —c	∞ –	7 –:	2 +0	∞
-x - 7	+	_	_	
x + 2	_			
$\frac{-x-7}{x+2}$				

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

-x - 7

x + 2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x - 7 = 0 \qquad x + 2 = 0$$
$$x = -7 \qquad x = -2$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

x + 2

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2}-2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x-7=0 \qquad x+2=0$$

$$x = -7$$
 $x = -2$

RJEŠENJE:

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

ovom uvjetu

$$\frac{x-3-2(x+2)}{x+2} \geqslant 0$$
$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x - 7 = 0$$
 $x + 2 = 0$
 $x = -7$ $x = -2$

RJEŠENJE:

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

$$\frac{x-3-2(x+2)}{x+2} \geqslant 0$$
$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x - 7 = 0$$
 $x + 2 = 0$
 $x = -7$ $x = -2$

$$x = -2$$

 $x + 2 \neq 0$

uključeno u

RJEŠENJE: $x \in [-7, -2)$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

a) domena

$$\frac{x-3}{x+2}-2\geqslant 0$$

 $x + 2 \neq 0$

uključeno u

$$\frac{x-3-2(x+2)}{x+2}\geqslant 0$$

$$\frac{-x-7}{x+2} \geqslant 0$$

$$-x - 7 = 0 \qquad x + 2 = 0$$

$$x = -7$$
 $x = -2$

RJEŠENJE:
$$x \in [-7, -2)$$

$$D_f = [-7, -2\rangle$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$D_f = [-7, -2\rangle$$

$$\sqrt[4]{\frac{x-3}{x+2}} - 2 - 1 = 0$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$D_f = [-7, -2\rangle$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$D_f = [-7, -2\rangle$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$D_f = [-7, -2\rangle$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2} - 1$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$x-3$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$x-3 =$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$x-3 = 3x+6$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$x-3 = 3x+6$$

$$-2x = 9$$

$$f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2}-2=1$$

$$\frac{x-3}{x+2} = 3 / (x+2)$$

$$x - 3 = 3x + 6$$

$$-2x = 9$$
$$x = -\frac{9}{2}$$

 $D_f = [-7, -2\rangle$

 $f(x) = \sqrt[4]{\frac{x-3}{x+2}} - 2 - 1$

3/19

$$\sqrt[4]{\frac{x-3}{x+2} - 2 - 1} = 0$$

$$\sqrt[4]{\frac{x-3}{x+2} - 2} = 1 / 4$$

$$\frac{x-3}{x+2}-2=1$$

$$\frac{x-3}{x+2} = 3 / \cdot (x+2)$$

$$= 3x + 6$$

$$x - 3 = 3x + 6$$
$$-2x = 9$$

$$-2x = 9$$
$$x = -\frac{9}{2}$$

3/19

 $f(x) = \sqrt[4]{\frac{x-3}{x+2}} - 2 - 1$

$$\sqrt[4]{\frac{x-3}{x+2}} - 2 - 1 = 0$$

$$\sqrt[4]{\frac{x-3}{x+2}} - 2 = 1 / 4$$

$$\frac{x-3}{x+2} - 2 = 1$$

$$\frac{x-3}{x+2}=3\left/\cdot\left(x+2\right)\right.$$

$$x - 3 = 3x + 6$$

$$-2x = 9$$

 $f(x) = \sqrt[4]{\frac{x-3}{x+2} - 2 - 1}$ $D_f = [-7, -2\rangle$

jest nultočka jer pripada domeni

3 / 19

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$g(x) = \sqrt[5]{2+x-x^2}$$

$$D_g = \mathbb{R}$$

 $g(x) = (2 + x - x^2)^{\frac{1}{5}}$

b) domena

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2+x-x^2}$$

b) domena

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2+x-x^2}$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0/5$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2+x-x^2}$$

$$\sqrt[5]{2 + x - x^2} = 0 / 5$$
$$-x^2 + x + 2 = 0$$

b) domena

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0 / 5$$

$$-x^2 + x + 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)}$$

$$ax^{2} + bx + c = 0$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

b) domena

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0/5$$

$$-x^2+x+2=0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2-4 \cdot (-1) \cdot 2}}{2 \cdot (-1)}$$

$$x_{1,2} = \frac{-1 \pm 3}{-2}$$

$$ax^{2} + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0 / 5$$

$$-x^2 + x + 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)}$$

$$x_{1,2} = \frac{-1 \pm 3}{-2}$$

$$x_1 = -1, \quad x_2 = 2$$

$$ax^{2} + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$g(x) = (2 + x - x^2)^{\frac{1}{5}}$$

$$g(x) = \sqrt[5]{2 + x - x^2}$$

$$\sqrt[5]{2+x-x^2} = 0/5$$

$$-x^2 + x + 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)}$$

$$x_{1,2} = \frac{-1 \pm 3}{-2}$$

$$x_{1} = -1, \quad x_{2} = 2$$

$$ax^{2} + bx + c = 0$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$h(x) = \log\left(10^{x-1} - 5\right)$$

c) domena

 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$\log = \log_{10} h(x) = \log (10^{x-1} - 5)$$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$
$$10^{x-1} > 5$$

```
c) domena
```

$$a^{\log_a x} = x$$

$$\log = \log_{10} h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$
$$10^{x-1} > 5$$
$$10^{x-1} >$$

$$a^{\log_a x} = x \qquad \log = \log_{10} \qquad h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$
$$10^{x-1} > 5$$
$$10^{x-1} > 10^{\log 5}$$

$$a^{\log_a x} = x$$

$$\log = \log_{10} h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$

 $10^{x-1} > 5$
 $10^{x-1} > 10^{\log 5}$

$$a^{\log_a x} = x$$
 $\log = \log_{10}$ $h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

 $10^{x-1} > 5$
 $10^{x-1} > 10^{\log 5}$

Ako je
$$a>1$$

 $a^x > a^y \Leftrightarrow x > y$

$$a^{\log_a x} = x$$
 $\log = \log_{10}$ $h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x - 1$$

Ako je
$$a > 1$$

$$a^{x} > a^{y} \Leftrightarrow x > y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 \log 5$$

Ako je
$$a>1$$

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10}$ $h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

Ako je
$$a>1$$

$$a^x > a^y \Leftrightarrow x > y$$

Ako je
$$0 < a < 1$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x - 1 > \log 5$$

$$x > 1 + \log 5$$

Ako je a > 1

 $a^x > a^y \Leftrightarrow x > y$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$
 $10^{x-1} > 5$
 $10^{x-1} > 10^{\log 5}$
 $x - 1 > \log 5$
 $x > 1 + \log 5$
 $D_h = \langle 1 + \log 5, +\infty \rangle$

Ako je 0 < a < 1 $a^x > a^y \Leftrightarrow x < y$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = ig\langle 1 + \log 5, +\infty ig
angle$$

Ako je a > 1

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \left\langle 1 + \log 5, +\infty \right
angle$$

Ako je a > 1

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \langle 1 + \log 5, +\infty \rangle$$

$$\log\left(10^{x-1}-5\right)=0$$

Ako je
$$a>1$$

$$a^x > a^y \Leftrightarrow x > y$$

Ako je
$$0 < a < 1$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \langle 1 + \log 5, +\infty \rangle$$

$$\log (10^{x-1} - 5) = 0$$

Ako je a > 1

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x \qquad \log = \log_{10} h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$

$$-3 > 0$$
 $10^{x-1} > 5$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \langle 1 + \log 5, +\infty \rangle$$

$$\log (10^{x-1} - 5) = 0$$
$$10^{x-1} - 5 =$$

Ako je a > 1

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$\log_a x = b \longrightarrow x = a^b$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \langle 1 + \log 5, +\infty \rangle$$

$$\log \left(10^{x-1} - 5\right) = 0$$
$$10^{x-1} - 5 = 10^0$$

Ako je a > 1

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$a^{\log_a x} = x \qquad \log = \log_{10} \qquad h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$

 $10^{x-1} > 5$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

nultočke

$$D_h = ig\langle 1 + \log 5, +\infty ig
angle$$

$$\log (10^{x-1} - 5) = 0$$
$$10^{x-1} - 5 = 10^0$$

 $10^{x-1} = 6$

Ako je
$$a>1$$

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$\log_a x = b \longrightarrow x = a^b$$

$$\log = \log_{10}$$

$$a^{\log_a x} = x$$

$$\log = \log_{10} h(x) = \log \left(10^{x-1} - 5\right)$$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = ig\langle 1 + \log 5, +\infty ig
angle$$

$$\log \left(10^{x-1} - 5\right) = 0$$
$$10^{x-1} - 5 = 10^0$$

$$10^{x-1} - 6$$

$$10^{x-1} = 6$$

Ako je
$$a > 1$$

$$a^x > a^y \Leftrightarrow x > y$$

$$a^x > a^y \Leftrightarrow x < y$$

$$\log_a x = b \xrightarrow{} x = a^b$$

$$a^x = b \longrightarrow x = \log_a b$$

$$= \mathbf{x}$$

$$\log = \log_{10}$$

$$a^{\log_a x} = x$$
 $\log = \log_{10}$ $h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$

$$10^{x-1} > 5$$

$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \left<1 + \log 5, +\infty\right>$$

$$\log\left(10^{x-1}-5\right)=0$$

$$10^{x-1} - 5 = 10^0$$

$$10^{x-1}=6$$

$$x - 1 =$$

Ako je
$$a > 1$$

$$a^x > a^y \Leftrightarrow x > y$$

Ako je
$$0 < a < 1$$

$$a^x > a^y \Leftrightarrow x < y$$

$$\log_a x = b \longrightarrow x = a^b$$

$$a^x = b \longrightarrow x = \log_a b$$

$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$

$$10^{x-1} - 5 > 0$$
$$10^{x-1} > 5$$

$$10^{x-1} > 5$$
$$10^{x-1} > 10^{\log 5}$$

$$x-1 > \log 5$$

$$x > 1 + \log 5$$

$$D_h = \langle 1 + \log 5, +\infty \rangle$$

$$\log \left(10^{x-1} - 5\right) = 0$$
$$10^{x-1} - 5 = 10^0$$

$$10^{x-1} = 6$$

$$x - 1 = \log 6$$

Ako je
$$a > 1$$

 $a^x > a^y \Leftrightarrow x > y$

Ako je 0 < a < 1

$$a^x = b \longrightarrow x = \log_a b$$

c) domena
$$a^{\log_a x} = x$$
 $\log = \log_{10} h(x) = \log (10^{x-1} - 5)$
 $10^{x-1} - 5 > 0$
 $10^{x-1} > 5$
 $10^{x-1} > 10^{\log 5}$
 $x - 1 > \log 5$
 $x > 1 + \log 5$
Ako je $a > 1$
 $a^x > a^y \Leftrightarrow x > y$
 $\log (10^{x-1} - 5) = 0$
 $10^{x-1} - 5 = 10^0$
 $10^{x-1} = 6$
 $x - 1 = \log 6$
 $x = 1 + \log 6$

c) domena
$$a^{\log_a x} = x$$
 $\log = \log_{10}$ $h(x) = \log (10^{x-1} - 5)$
 $10^{x-1} - 5 > 0$
 $10^{x-1} > 5$
 $10^{x-1} > 10^{\log 5}$
 $x - 1 > \log 5$
 $x > 1 + \log 5$
Ako je $a > 1$
 $a^x > a^y \Leftrightarrow x > y$
 $\log (10^{x-1} - 5) = 0$
 $\log (10^{x-1} - 5) = 0$
 $10^{x-1} - 5 = 10^0$
 $10^{x-1} = 6$
 10^{x-1

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

• x + 2 > 0

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

• x+2>0 cosposition x+2>0

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

- x + 2 > 0 cos $\log_{\frac{1}{2}}$
- $\log_{\frac{1}{2}}(x+2) \geqslant 0$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0 \leftarrow zbog log_{\frac{1}{2}}$$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{}$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x+2>0$$
 cos $\log_{\frac{1}{2}}$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{}$$

 $x+2>0$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0 \leftarrow zbog log_{\frac{1}{2}}$$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{}$$

 $x+2>0$

$$x > -2$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0 \leftarrow zbog log_{\frac{1}{2}}$$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff \mathsf{zbog} \sqrt{}$$

$$x + 2 > 0$$

$$x > -2$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0 \iff zbog log_{\frac{1}{2}}$$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{}$$

$$x + 2 > 0$$

$$x > -2$$

 $\log_{\frac{1}{2}}(x+2)\geqslant 0$

$$\log_a a^x = x$$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

 $\log_{\frac{1}{2}}(x+2)\geqslant 0$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

$$\log_a a^x = x$$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0$$
 cos $\log_{\frac{1}{2}}$

•
$$\log_{\frac{1}{2}}(x+2) \ge 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant$$

$$\log_a a^x = x$$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

•
$$x + 2 > 0$$
 cos $\log_{\frac{1}{2}}$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

Ako ie a > 1

 $\log_a a^x = x$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

 $\log_a x > \log_a y \iff x > y$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \ge 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

 $\log_{\frac{1}{2}}(x+2)\geqslant 0$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

Ako ie
$$a > 1$$

 $\log_a x > \log_a y \iff x > y$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{0}$$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \iff x < y$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x + 2$$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \Leftrightarrow x < y$

Ako ie
$$a > 1$$

П

 $\log_a a^x = x$ $k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

 $\log_a x > \log_a y \iff x > y$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$x > -2$$

 $\log_{\frac{1}{2}}(x+2)\geqslant 0$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{0}$$

$$x+2$$
 $\left(\frac{1}{2}\right)^0$

Ako je 0 < a < 1

 $\log_a x > \log_a y \iff x < y$

Ako ie
$$a > 1$$

 $\log_a a^x = x$ $k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x+2 \leqslant \left(\frac{1}{2}\right)^0$$

Ako je 0 < a < 1

 $\log_a x > \log_a y \iff x < y$

Ako ie
$$a > 1$$

$$\log_a a^x = x$$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x+2\leqslant \left(\frac{1}{2}\right)^0$$

$$x+2\leqslant 1$$

Ako je 0 < a < 1

 $\log_a x > \log_a y \Leftrightarrow x < y$

$$o$$
 ie $a > 1$

 $\log_a a^x = x \qquad k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$x + 2 > 0$$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x + 2 \leqslant \left(\frac{1}{2}\right)^0$$
$$x + 2 \leqslant 1$$

 $x \leqslant -1$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \iff x < y$

Ako je
$$a >$$

 $\log_a a^x = x \qquad k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff \mathsf{zbog} \sqrt{}$$

$$x+2>0$$

$$x > 0$$

$$x > -2$$

 $\log_{\frac{1}{2}}(x+2)\geqslant 0$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^{0}$$

$$x+2\leqslant \left(\frac{1}{2}\right)^0$$

$$x + 2 \leqslant 1$$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \iff x < y$

Ako ie
$$a > 1$$

 $\log_a x > \log_a y \iff x > y$

$$\log_a a^x = x$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

d) domena

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$(x+2) \geqslant 0 \iff z \log \sqrt{}$$

$$x + 2 > 0$$
 $x > -2 \leftarrow p$

$$\log_{\frac{1}{2}}(x+2)\geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x + 2 \leqslant \left(\frac{1}{2}\right)^0$$
 $presjek rješenja \qquad x + 2 \leqslant 1$

$$x + 2 \leqslant 1$$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \Leftrightarrow x < y$

 $\log_a a^x = x \mid k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

d) domena

•
$$x+2>0$$
 cm- zbog $\log_{\frac{1}{2}}$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

 $\log_{\frac{1}{2}}(x+2) \geqslant 0$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}\left(\frac{1}{2}\right)^0$$

$$x+2>0$$
 $x>-1$

$$x + 2 \leqslant \left(\frac{1}{2}\right)^{0}$$

$$x + 2 \leqslant \left(\frac{1}{2}\right)^{0}$$

$$x + 2 \leqslant 1$$

$$x \leqslant -1$$

$$x \leqslant -1$$

Ako je
$$0 < a < 1$$

 $\log_a x > \log_a y \Leftrightarrow x < y$

6/19

 $\log_a a^x = x \mid k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$

d) domena

•
$$x+2>0$$
 cm- zbog $\log_{\frac{1}{2}}$

•
$$\log_{\frac{1}{2}}(x+2) \geqslant 0 \iff z \log \sqrt{-}$$

$$\log_{\frac{1}{2}} \log_{\frac{1}{2}}(x+2) \geqslant 0$$

$$\log_{\frac{1}{2}}(x+2) \geqslant \log_{\frac{1}{2}}(\frac{1}{2})^{0}$$

* € [-2, -1]]

$$x + 2 > 0$$

$$x > -2 \qquad presjek rješenja$$

$$x+2 \leqslant \left(\frac{1}{2}\right)^0$$

 $x + 2 \le 1$

Ako je
$$0 < a < 1$$

$$\log_a x > \log_a y \iff x < y$$

$$D_k = \langle -2, -1 \rangle$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

 $D_k = \langle -2, -1]$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

$$\sqrt{\log_{\frac{1}{2}}(x+2)}=0$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

$$\sqrt{\log_{\frac{1}{2}}(x+2)}=0/^2$$

 $D_k = \langle -2, -1]$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

 $D_k = \langle -2, -1]$

$$\sqrt{\log_{\frac{1}{2}}(x+2)}=0/2$$

$$\log_{\frac{1}{2}}(x+2)=0$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

 $D_k = \langle -2, -1]$

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$
 $\log_{\frac{1}{2}}(x+2) = 0$

$$\log_a x = b \longrightarrow x = a^b$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$

$$\log_{\frac{1}{2}}(x+2) = 0$$

$$x+2 = 0$$

$$\log_a x = b \longrightarrow x = a^b$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$

$$\log_{\frac{1}{2}}(x+2) = 0$$

$$x+2 = \left(\frac{1}{2}\right)^{0}$$

$$\log_a x = b - x = a^b$$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$

$$\log_{\frac{1}{2}}(x+2) = 0$$

$$x+2 = \left(\frac{1}{2}\right)^{0}$$

$$x+2 = 1$$

 $\log_a x = b - x = a^b$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$

$$\log_{\frac{1}{2}}(x+2) = 0$$

$$x+2 = \left(\frac{1}{2}\right)^{0}$$

$$x+2 = 1$$

$$x = -1$$

 $\log_a x = b - x = a^b$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

$$\sqrt{\log_{\frac{1}{2}}(x+2)} = 0 / 2$$

$$\log_{\frac{1}{2}}(x+2) = 0$$

$$x+2 = \left(\frac{1}{2}\right)^{0}$$

$$x+2 = 1$$

 $\log_a x = b \longrightarrow x = a^b$

$$k(x) = \sqrt{\log_{\frac{1}{2}}(x+2)}$$

nultočke

$$\sqrt{\log_{\frac{1}{2}}(x+2)}=0/^2$$

 $\log_{\frac{1}{2}}(x+2)=0$

$$x+2=\left(\frac{1}{2}\right)^0$$

x + 2 = 1

= -1

$$D_k = \langle -2, -1]$$

jest nultočka jer pripada domeni

 $\log_a x = b \longrightarrow x = a^b$

drugi zadatak

Zadatak 2

Zadane su funkcije $f(x) = \ln(x-3)$ i $g(x) = x^2 + x + 1$.

- a) Odredite pravila pridruživanja funkcija $f \circ g$ i $g \circ f$.
- b) Na kojim su domenama od funkcija f i g kompozicije $f \circ g$ i $g \circ f$ dobro definirane?

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

Rješenje

a)

9 / 19

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

a)

$$(f \circ g)(x) =$$

 $ln = log_e$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f\circ g)(x)=f(\qquad)$$

$$g(x) = x^2 + x + 1$$

 $f(x) = \ln(x - 3)$

Rješenje

 $ln = log_e$

$$(f\circ g)(x)=f(g(x))$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

Rješenje

$$(f \circ g)(x) = f(g(x)) = f($$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1)$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln ($

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln ((x^2 + x + 1))$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3)$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

Rješenje $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

$$= \ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$$

$$(g \circ f)(x) =$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

$$= \ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$$

$$(g\circ f)(x)=g(\qquad)$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g\circ f)(x)=g(f(x))$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g($$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3))$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$
$$= ($$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

= $(\ln(x-3))^2$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

= $(\ln(x-3))^2 +$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

= $(\ln(x-3))^2 + \ln(x-3)$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

= $(\ln(x-3))^2 + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

$$= \ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

= $(\ln(x-3))^2 + \ln(x-3) + 1 =$
= $\ln^2(x-3)$

$$\log_a^k x = \left(\log_a x\right)^k$$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

a)

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

$$= \ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

$$= (\ln(x-3))^2 + \ln(x-3) + 1 =$$

$$= \ln^2(x-3) + \ln(x-3)$$

 $\log_a^k x = \left(\log_a x\right)^k$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

a)

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

$$= \ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

$$= (\ln(x-3))^{2} + \ln(x-3) + 1 =$$

$$= \ln^{2}(x-3) + \ln(x-3) + 1$$

 $\log_a^k x = \left(\log_a x\right)^k$

$$g(x) = x^2 + x + 1$$
 $f(x) = \ln(x - 3)$

 $ln = log_e$

a)

$$(f \circ g)(x) = f(g(x)) = f(x^2 + x + 1) =$$

= $\ln((x^2 + x + 1) - 3) = \ln(x^2 + x - 2)$

$$(g \circ f)(x) = g(f(x)) = g(\ln(x-3)) =$$

$$= (\ln(x-3))^{2} + \ln(x-3) + 1 =$$

$$= \ln^{2}(x-3) + \ln(x-3) + 1$$

Budite jako oprezni

 $\left(\log_a x\right)^k \neq \log_a x^k$

 $\log_a^k x = \left(\log_a x\right)^k$

$$f(x) = \ln(x-3)$$
 $(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

b)

$$f(x) = \ln(x-3)$$
 $(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$f(x) = \ln(x - 3) \tag{g}$$

$$f(x) = \ln(x-3)$$
 $g(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

b) domena funkcije
$$g \circ f$$

$$x - 3 > 0$$

$$f(x) = \ln(x-3)$$

$$f(x) = \ln(x-3)$$
 $g(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

b) domena funkcije
$$g \circ f$$

$$x - 3 > 0 - x > 3$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{g\circ f}=\langle 3,+\infty\rangle$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 - x > 3$$

$$D_{g\circ f}=\langle 3,+\infty \rangle$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{g\circ f}=\langle 3,+\infty \rangle$$

$$x^2 + x - 2 > 0$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{g \circ f} = \langle 3, +\infty \rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3) \mid (g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{g\circ f}=\langle 3,+\infty\rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$f(x) = \ln(x-3) \qquad (g \circ f)(x) =$$

$$f(x) = \ln(x-3) \qquad (g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 - x > 3$$

$$D_{g\circ f}=\langle 3,+\infty \rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$f(x) = \ln(x-3)$$
 $(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

 $x_1 = 1$, $x_2 = -2$

b) domena funkcije
$$g \circ f$$

$$x - 3 > 0 \xrightarrow{} x > 3$$

$$D_{g \circ f} = \langle 3, +\infty \rangle$$
domena funkcije $f \circ g$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$f(x) = \ln(x-3)$$
 $(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

b) domena funkcije
$$g \circ f$$

$$x - 3 > 0 \xrightarrow{} x > 3$$

$$D_{g \circ f} = \langle 3, +\infty \rangle$$
domena funkcije $f \circ g$

$$x^2 + x - 2 > 0$$

$$x^{2} + x - 2 = 0$$
$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$f(x) = \ln(x-3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 - x > 3$$

$$D_{g\circ f}=\langle 3,+\infty\rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$f(x) = \ln\left(x - 3\right)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x-3>0 \longrightarrow x>3$$

$$D_{g\circ f}=\langle 3,+\infty\rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x-3>0 \longrightarrow x>3$$

$$D_{g\circ f}=\langle 3,+\infty\rangle$$

$$x^2 + x - 2 > 0$$

$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$D_{f \circ g} = \langle -\infty, -2 \rangle \cup \langle 1, +\infty \rangle$$

$$f(x) = \ln\left(x - 3\right)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{\sigma \circ f} = \langle 3, +\infty \rangle$$

domena funkcije $f \circ g$

$$x^{2} + x - 2 > 0$$

$$x^{2} + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

 $x_1 = 1$, $x_2 = -2$

$$D_{f \circ g} = \langle -\infty, -2 \rangle \cup \langle 1, +\infty \rangle$$

Funkcije f i g moramo gledati na sljedeći način:

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $g \circ f(x) = \ln^2(x-3) + \ln(x-3) + 1$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

$$D_{\sigma \circ f} = \langle 3, +\infty \rangle$$

domena funkcije
$$f \circ g$$

$$x^2 + x - 2 > 0$$
$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$D_{f \circ g} = \langle -\infty, -2 \rangle \cup \langle 1, +\infty \rangle$$

Funkcije f i g moramo gledati na sljedeći način:

 $\operatorname{Im} f \subseteq D_g$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3) \qquad (g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$$

$$g(x) = x^2 + x + 1$$

$$g(x) = x^2 + x + 1$$
 $(f \circ g)(x) = \ln(x^2 + x - 2)$

$$x - 3 > 0 \longrightarrow x > 3$$

 $D_{\sigma \circ f} = \langle 3, +\infty \rangle$

domena funkcije
$$f \circ g$$

$$x^2 + x - 2 > 0$$
$$x^2 + x - 2 = 0$$

$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

$$D_{f \circ g} = \langle -\infty, -2 \rangle \cup \langle 1, +\infty \rangle$$

Funkcije f i g moramo gledati na sljedeći način:

$$f:\langle 3,+\infty\rangle\to\mathbb{R}$$

 $\operatorname{Im} f \subseteq D_g$

$$f(x) = \ln(x - 3)$$

$$f(x) = \ln(x-3)$$
 $(g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

 $g(x) = x^2 + x + 1$ $(f \circ g)(x) = \ln(x^2 + x - 2)$

b) domena funkcije $g \circ f$

$$D_{g\circ f}=\langle 3,+\infty
angle$$

 $x - 3 > 0 \longrightarrow x > 3$

domena funkcije
$$f \circ g$$

$$x^2 + x - 2 > 0$$

$$x^{2} + x - 2 = 0$$
$$x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{2}$$

$$x_1 = 1, \ x_2 = -2$$

Funkcije f i g moramo gledati na sljedeći način:

$$f:\langle 3,+\infty\rangle\to\mathbb{R}$$

b) domena funkcije
$$g \circ f$$
 $x-3>0 \longrightarrow x>3$
 $D_{g\circ f}=\langle 3,+\infty\rangle$
domena funkcije $f \circ g$

$$x^2+x-2>0$$
 $x^2+x-2=0$

$$x^2+x-2=0$$
Funkcije $f \circ g$

$$x_1=1, x_2=-2$$

$$x_1=1, x_2=-2$$

$$Funkcije f \circ g$$

$$f:\langle 3,+\infty\rangle \to \mathbb{R}$$

$$g:\langle -\infty,-2\rangle \cup \langle 1,+\infty\rangle \to \mathbb{R}$$

 $f(x) = \ln(x-3) \mid (g \circ f)(x) = \ln^2(x-3) + \ln(x-3) + 1$

 $g(x) = x^2 + x + 1$ $| (f \circ g)(x) = \ln(x^2 + x - 2)$

treći zadatak

Zadatak 3

Zadana je funkcija h svojim grafom na donjoj slici.

Ispitajte monotonost, omeđenost i parnost funkcije h na temelju njezinog grafa.

monotonost

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija *h* nije omeđena odozgo jer je

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija *h* nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija *h* nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija *h* je omeđena odozdo jer je

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija *h* nije omeđena odozgo jer je

$$\lim_{x\to -\infty} h(x) = +\infty.$$

Funkcija h je omeđena odozdo jer je $h(x) \ge 100$,

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija h je omeđena odozdo jer je $h(x) \geqslant 100$, tj. m = 100 je jedna donja međa funkcije h.

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija h je omeđena odozdo jer je $h(x) \geqslant 100$, tj. m=100 je jedna donja međa funkcije h.

Funkcija h nije omeđena jer nije omeđena odozgo.

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija h je omeđena odozdo jer je $h(x) \geqslant 100$, tj. m=100 je jedna donja međa funkcije h.

Funkcija *h* nije omeđena jer nije omeđena odozgo.

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija h je omeđena odozdo jer je $h(x)\geqslant 100$, tj. m=100 je jedna donja međa funkcije h.

Funkcija *h* nije omeđena jer nije omeđena odozgo.

parnost/neparnost

Funkcija h nije parna jer

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija *h* nije omeđena jer nije omeđena odozgo.

parnost/neparnost

Funkcija h nije parna jer njezin graf nije simetričan s obzirom na os y.

monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija *h* nije omeđena jer nije omeđena odozgo.

parnost/neparnost

Funkcija h nije parna jer njezin graf nije simetričan s obzirom na os y. Funkcija h nije neparna jer

Rješenje monotonost

Funkcija *h* je monotona funkcija jer strogo pada.

omeđenost
$$m \leqslant h(x) \leqslant M$$

Funkcija h nije omeđena odozgo jer je

$$\lim_{x\to-\infty}h(x)=+\infty.$$

Funkcija h je omeđena odozdo jer je $h(x) \geqslant 100$, tj. m=100 je jedna donja međa funkcije h.

Funkcija *h* nije omeđena jer nije omeđena odozgo.

parnost/neparnost

Funkcija h nije parna jer njezin graf nije simetričan s obzirom na os y. Funkcija h nije neparna jer njezin graf nije simetričan s obzirom na ishodište koordinatnog sustava.

12/19

četvrti zadatak

Zadana je funkcija f svojim grafom na donjoj slici.

Ispitajte monotonost, omeđenost i parnost funkcije f na temelju njezinog grafa.

monotonost

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

Funkcija *f* nije monotona funkcija na svojoj domeni.

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

Funkcija *f* nije monotona funkcija na svojoj domeni.

Budite iznimno oprezni

Funkcija f ne raste na skupu $\langle 0,3 \rangle \cup \langle 3,+\infty \rangle$.

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

Funkcija *f* nije monotona funkcija na svojoj domeni.

Budite iznimno oprezni

Funkcija f ne raste na skupu $\langle 0,3\rangle \cup \langle 3,+\infty\rangle$.

Budite iznimno oprezni

Funkcija f ne pada na skupu $\langle -\infty, -3 \rangle \cup \langle -3, 0 \rangle$.

monotonost

Funkcija f raste na intervalima $\langle 0, 3 \rangle$ i $\langle 3, +\infty \rangle$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

Funkcija *f* nije monotona funkcija na svojoj domeni.

parnost/neparnost

Budite iznimno oprezni

Funkcija f ne raste na skupu $\langle 0,3\rangle \cup \langle 3,+\infty\rangle$.

Budite iznimno oprezni

Funkcija f ne pada na skupu $\langle -\infty, -3 \rangle \cup \langle -3, 0 \rangle$.

monotonost

Funkcija f raste na intervalima (0,3) i $(3,+\infty)$.

Funkcija f pada na intervalima $\langle -\infty, -3 \rangle$ i $\langle -3, 0 \rangle$.

Funkcija *f* nije monotona funkcija na svojoj domeni.

parnost/neparnost

Funkcija f je parna jer je njezin graf simetričan s obzirom na os y.

Budite iznimno oprezni

Funkcija f ne raste na skupu $\langle 0,3 \rangle \cup \langle 3,+\infty \rangle$.

Budite iznimno oprezni

Funkcija f ne pada na skupu $\langle -\infty, -3 \rangle \cup \langle -3, 0 \rangle$.

omeđenost

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti,

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti, tj.

$$\lim_{x\to 3-} f(x) = +\infty.$$

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti, tj.

$$\lim_{x \to 3-} f(x) = +\infty.$$

Funkcija f nije omeđena odozdo jer u okolini broja 3 poprima beskonačno velike negativne vrijednosti,

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti, tj.

$$\lim_{x\to 3-} f(x) = +\infty.$$

Funkcija f nije omeđena odozdo jer u okolini broja 3 poprima beskonačno velike negativne vrijednosti, tj.

$$\lim_{x\to 3+} f(x) = -\infty.$$

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti, tj.

$$\lim_{x\to 3-} f(x) = +\infty.$$

Funkcija f nije omeđena odozdo jer u okolini broja 3 poprima beskonačno velike negativne vrijednosti, tj.

$$\lim_{x\to 3+} f(x) = -\infty.$$

Funkcija f nije omeđena jer nije omeđena niti odozgo niti odozdo.

Funkcija f nije omeđena odozgo jer u okolini broja 3 poprima beskonačno velike pozitivne vrijednosti, tj.

$$\lim_{x\to 3-} f(x) = +\infty.$$

Funkcija f nije omeđena odozdo jer u okolini broja 3 poprima beskonačno velike negativne vrijednosti, tj.

$$\lim_{x\to 3+} f(x) = -\infty.$$

Funkcija *f* nije omeđena jer nije omeđena niti odozgo niti odozdo.

Slično je u okolini broja -3

$$\lim_{x \to -3-} f(x) = -\infty$$

$$\lim_{x \to -3+} f(x) = +\infty$$

peti zadatak

Ispitajte parnost sljedećih funkcija:

a)
$$f(x) = \frac{2x^2}{3-x^2}$$

b)
$$h(x) = 2^{5-x} + 50$$

c)
$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

Ispitajte parnost sljedećih funkcija:

a)
$$f(x) = \frac{2x^2}{3-x^2}$$

b)
$$h(x) = 2^{5-x} + 50$$

c)
$$g(x) = \log_4 \frac{3 + 2x}{3 - 2x}$$

Parna funkcija

- $x \in D_f \Rightarrow -x \in D_f$
- $f(-x) = f(x), \forall x \in D_f$

Ispitajte parnost sljedećih funkcija:

a)
$$f(x) = \frac{2x^2}{3-x^2}$$

b)
$$h(x) = 2^{5-x} + 50$$

c)
$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

Parna funkcija

- $x \in D_f \Rightarrow -x \in D_f$
- $f(-x) = f(x), \forall x \in D_f$

Neparna funkcija

- $x \in D_f \Rightarrow -x \in D_f$
- $f(-x) = -f(x), \forall x \in D_f$

$$f(x) = \frac{2x^2}{3-x^2}$$

$$3 - x^2 \neq 0$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3-x^2}$$

$$f(-x) =$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = ----$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{}$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^{2} \neq 0 \xrightarrow{} x^{2} \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$
$$f(-x) = \frac{2 \cdot (-x)^{2}}{3 - (-x)^{2}}$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = ----$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - (-x)^2}$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2}$$

$$17 \, / \, 19$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3-x^2}$$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

$$h(x) = 2^{5-x} + 50$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

b) domena
$$D_h = \mathbb{R}$$

$$h(x) = 2^{5-x} + 50$$

Riešenje

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

b) domena
$$D_h = \mathbb{R}$$

$$h(-x) =$$

$$h(x) = 2^{5-x} + 50$$

Riešenje

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x)=2^{5-(-x)}$$

$$h(x) = 2^{5-x} + 50$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50$$

$$h(x) = 2^{5-x} + 50$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50$$

$$h(x) = 2^{5-x} + 50$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

b) domena
$$D_h = \mathbb{R}$$

$$h(x) = 2^{5-x} + 50$$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(x)=2^{5-x}+50$$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija *h* nije niti parna niti neparna.

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3}
ight\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(x) = 2^{5-x} + 50$$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

Riešenje

a) domena
$$D_f = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

$$h(1) =$$

a) domena
$$D_f = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

$$h(1) = 2^4 + 50$$

a) domena
$$D_f = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \longrightarrow x^2 \neq 3 \longrightarrow x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

$$h(1) = 2^4 + 50 = 66$$

a) domena
$$D_f = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

$$h(1) = 2^4 + 50 = 66$$
. $h(-1) =$

a) domena
$$D_f = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija *h* nije niti parna niti neparna.

$$h(1) = 2^4 + 50 = 66$$
, $h(-1) = 2^6 + 50$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

$$h(1) = 2^4 + 50 = 66, \quad h(-1) = 2^6 + 50 = 114$$

a) domena
$$D_f = \mathbb{R} \setminus \left\{ -\sqrt{3}, \sqrt{3} \right\}$$

$$f(x) = \frac{2x^2}{3 - x^2}$$

 $h(x) = 2^{5-x} + 50$

$$3 - x^2 \neq 0 \xrightarrow{} x^2 \neq 3 \xrightarrow{} x \neq \pm \sqrt{3}$$

$$f(-x) = \frac{2 \cdot (-x)^2}{3 - (-x)^2} = \frac{2x^2}{3 - x^2} = f(x)$$

Funkcija f je parna funkcija.

b) domena $D_h = \mathbb{R}$

$$h(-x) = 2^{5-(-x)} + 50 = 2^{5+x} + 50 \neq \pm h(x)$$

Funkcija h nije niti parna niti neparna.

Protuprimjer $h(-1) \neq \pm h(1)$

$$h(1) = 2^4 + 50 = 66, \quad h(-1) = 2^6 + 50 = 114$$

$$g(x) = \log_4 \frac{3 + 2x}{3 - 2x}$$

c) domena

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

c) domena

$$\frac{3+2x}{3-2x}>0$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x} > 0$$

$$3+2x=0$$

$$x = -\frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

3 + 2x	

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$\overline{3+2x}$	
$\overline{3-2x}$	

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$\begin{array}{c|c}
3+2x \\
\hline
3-2x \\
\hline
\frac{3+2x}{3-2x}
\end{array}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$\begin{array}{c|c}
-\infty \\
\hline
3+2x \\
\hline
3-2x \\
\hline
\frac{3+2x}{3-2x}
\end{array}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

 $\frac{3+2x}{3-2x}$

$$\begin{array}{c|c}
-\infty & +\infty \\
\hline
3+2x & \\
3-2x & \\
\end{array}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$\begin{array}{c|cccc}
-\frac{3}{2} & +\infty \\
\hline
3+2x & \\
\hline
3-2x & \\
\hline
\frac{3+2x}{3-2x} & \\
\end{array}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$D_g = \left\langle -\frac{3}{2}, \, \frac{3}{2} \right\rangle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(-x) =$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(-x) = \log_4$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{2}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x}>0$$

$$3 + 2x = 0$$
 $3 - 2x = 0$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 - \cdots$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 - 2x}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1}$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1} =$$

$$\log_a x^k = k \cdot \log_a x$$

$$D_{g}=\left\langle -rac{3}{2},\,rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x} > 0$$

$$3+2x = 0 \qquad 3-2x = 0$$

$$3-2x=0$$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$x = -\frac{3}{2}$$

$$\langle \frac{1}{2} \rangle$$

$$-\frac{3}{2}$$

$$\frac{3-2x}{3+2x}$$

3 + 2x

$$\rightarrow$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1} =$$

$$\log_a x^k = k \cdot \log_a x$$

$$D_g = \left\langle -\frac{3}{2}, \, \frac{3}{2} \right
angle$$

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$\frac{3+2x}{3-2x} > 0$$
$$3+2x = 0 \qquad 3-$$

 $x = -\frac{3}{2}$

$$3-2x=0$$

 $x=\frac{3}{2}$

$$g(-x) = \log_4 \frac{3+2\cdot(3+2)\cdot(3+2$$

$$\frac{3+2}{3-2}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1} =$$
$$= -\log_4 \frac{3 + 2x}{3 - 2x}$$

$$\log_a x^k = k \cdot \log_a x$$

$$D_g = \left\langle -rac{3}{2}, \; rac{3}{2}
ight
angle$$

$$g(x) = \log_4 \frac{3 + 2x}{3 - 2x}$$

$$\frac{3+2x}{3-2x} > 0$$
$$3+2x = 0 \qquad 3-$$

$$3-2x=0$$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$= -\log_4 \frac{3 + 2x}{3 - 2x} = -g(x)$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1} =$$
$$= -\log_4 \frac{3 + 2x}{3 - 2x} = -g(x)$$

$$\log_a x^k = k \cdot \log_a x$$

 $D_{g}=\left\langle -\frac{3}{2},\,\frac{3}{2}\right
angle$

$$g(x) = \log_4 \frac{3 + 2x}{3 - 2x}$$

3 + 2x = 0

$$\frac{3+2x}{3-2x} > 0$$

$$3 - 2x = 0$$

$$x = -\frac{3}{2} \qquad \qquad x = \frac{3}{2}$$

$$x = -\frac{1}{2} \qquad \qquad x = \frac{1}{2}$$

$$g(-x) = \log_4 \frac{3 + 2 \cdot (-x)}{3 - 2 \cdot (-x)} = \log_4 \frac{3 - 2x}{3 + 2x} = \log_4 \left(\frac{3 + 2x}{3 - 2x}\right)^{-1} =$$

$$= -\log_4 \frac{3 + 2x}{3 - 2x} = -g(x)$$
g je neparna funkcija

$$-g(x)$$

Graf funkcije *g*

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$D_{g} = \left\langle -\frac{3}{2}, \frac{3}{2} \right\rangle$$

Graf funkcije *g*

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$D_g = \left\langle -\frac{3}{2}, \, \frac{3}{2} \right\rangle$$

$$\lim_{x\to\frac{3}{2}-}g(x)=+\infty$$

Graf funkcije *g*

$$g(x) = \log_4 \frac{3+2x}{3-2x}$$

$$D_g = \left\langle -\frac{3}{2}, \; \frac{3}{2} \right\rangle$$

$$\lim_{x\to\frac{3}{2}-}g(x)=+\infty$$

$$\lim_{x\to -\frac{3}{2}+}g(x)=-\infty$$