One approach popular for requirements analysis is Use Case analysis. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. There are many approaches to the Software development process. There exist a lot of different approaches for each of those tasks. Normally the first step in debugging is to attempt to reproduce the problem. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. It is very difficult to determine what are the most popular modern programming languages. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. However, readability is more than just programming style. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Scripting and breakpointing is also part of this process. It affects the aspects of quality above, including portability, usability and most importantly maintainability. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Ideally, the programming language best suited for the task at hand will be selected. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Unreadable code often leads to bugs, inefficiencies, and duplicated code.