DSI 03

Capstone Project
Partner Insight: Broadband new acquisition

Background

Partner: Personal selling is a face-to-face selling technique by which a salesperson uses his or her interpersonal skills to persuade a customer in buying a particular product. The salesperson tries to highlight various features of the product to convince the customer that it will only add value. However, getting a customer to buy a product is not the motive behind personal selling every time. Often companies try to follow this approach with customers to make them aware of a new product.

Partner sales target: End Customer, SME (Small and medium-sized enterprises)

Partner Benefit: Salary, Commission

Problem Statement

The XYZ Company is a communications satellite service company with thousands of regional sales teams. Each month, partner leave the area to sell products to customers at various locations at all times

Because there are thousands of active partner "Effective" cluster of partner and not effective based on measurement when achieving target. Therefore may not be enough

Company wants to find a way to divide the cluster of partners. For purpose maintain good partners and focus on ineffective partner.

Data availability and Limitation

availability

- 1. Partner Information
- Information successful sales rate per partner
- 3. Sales revenue (Based on the price of the package) that has not yet been issued a bill
- 4. Information for cancellation of services that comes from the partner's offering

Not availability

- 1. Customer LifeTime / Customer Value
- 2. Partner complaint

limitation

- Data compensation and salary
- Cost per partner condition is not clear (hidden cost)

5

Project Vision

Due to limitations and the availability of information, team will divide project into phase.

For in this phase we focus on New acquisition data for proof of concept

Update: 21/12/2023

Develop Process

EDA (Exploratory data analysis)

Study the nature and format of data to create models.

The data obtained is from January 2021 to the current month (December 2023).

Data includes number of sales information. Total revenue, total service cancellation and Partner details

Performance from New acquisition in each month

Number of partner each month

Partner's workspace

Feature Engineer

The information obtained can be used at all, the Feature Engineer process is only to delete some partner data and create a feature that is about time.

Feature Engineer

- Eliminate sales data sold by AE (Account executive).
- Add a create set of function about date.

- → AE are a group of salespeople who sell products to departments, organizations, and large companies.
- → Number of sale from AE is less but revenue is more.
- → SMB: Small and Midsize Business.

Data Processing

Dataset: Partner

Column	Description
partner_code	Partner code registered with the company
partner_status	Status of partner : Active, Inactive
partner_aging	Working age of employees (unit : Day)
partner_ageing_mth	Working age of employees (unit : Month)
partner_ageing_yr	Working age of employees (unit : Year)
total_revenue	Number of revenue from product sold per partner
total_churn	The number of customers who cancel the service from the goods that the partner sells

Dataset: Sales

Column	Description			
sale_rate_m4	The number of products sold in month per partner back 4 months (e.g. current December back 4 month = October)			
sale_rate_m3	The number of products sold in month per partner back 3 months (e.g. current December back 4 month = August)			
sale_rate_m2	The number of products sold in month per partner back 2 months (e.g. current December back 4 month = September)			
sale_rate_m1	The number of products sold in month per partner back 1 months (e.g. current December back 4 month = November)			
sale_flag_m4				
sale_flag_m3	Flor Two or Felor (Two - house sold in thet month. Felor - not sold in that month)			
sale_flag_m2	Flag True or False (True = have sold in that month, False = not sold in that month)			
sale_flag_m1				
sales_month	Total number of month sold per partner			
sales_consecutive	Number of consecutive sales months per partner			

Dataset for Modeling : Partner and Sales

Dataset: Revenue

Column	Description
rev_m4	The number of revenue from product sold per partner back 4 months (e.g. current December back 4 month = October)
rev_m3	The number of revenue from product sold per partner back 3 months (e.g. current December back 4 month = August)
rev_m2	The number of revenue from product sold per partner back 2 months (e.g. current December back 4 month = September)
rev_m1	The number of revenue from product sold per partner back 1 months (e.g. current December back 4 month = November)
rev_flag_m4	
rev_flag_m3	Flag True or False (True = have sold in that month, False = not sold in that month)
rev_flag_m2	Flag True of False (True – Have Sold III that Month, False – Not Sold III that Month)
rev_flag_m1	
rev_month	Total revenue of month sold per partner
rev_consecutive	Number of consecutive revenue from sold per partner

Dataset: Churn

Column	Description		
churn_m4	The number of customers who cancel the service per partner back 4 months (e.g. current December back 4 month = October)		
churn_m3	The number of customers who cancel the service per partner back 3 months (e.g. current December back 4 month = August)		
churn_m2	The number of customers who cancel the service per partner back 2 months (e.g. current December back 4 month = September)		
churn_m1	The number of customers who cancel the service per partner back 1 months (e.g. current December back 4 month = November)		
churn_flag_m4			
churn_flag_m3	Flag True or False (True = have sold in that month, False = not sold in that month)		
churn_flag_m2	- Flag True of Faise (True - Have sold in that month, Faise - Hot sold in that month)		
churn_flag_m1			
churn_month	Total customers cancel per partner		
churn_consecutive	Number of consecutive customer cancel per partner		

Dataset for Modeling: Revenue and Churn

Second EDA

Performance from New acquisition in each month

2.5

Active

Non-Active

partner_status

Unidentified

NaN

Final Data Model

Data Set 1	Description	
partner_code	Partner code registered with the company	
partner_ageing_yr	Working age of employees (unit : Year)	
sales_consecutive	Number of consecutive sales months per partner	
rev_consecutive	Number of consecutive revenue from sold per partner	
churn_consecutive	Number of consecutive customer cancel per partner	

partner_code	partner_ageing_yr	sales_month	sales_consecutive	rev_month	rev_consecutive	churn_month	churn_consecutive
39089437	2	4	4	4	4	0	0
80101224	2	2	2	2	2	0	0
39096384	2	4	4	4	4	0	0
39097318	2	4	4	4	4	1	1
39094136	2	4	4	4	4	0	0

Contain of 1,690 partner and 7 feature for clustering

Final Data Model

Data Set 1	Description	
partner_ageing_yr	/orking age of employees (unit : Year)	
sales_consecutive	Number of consecutive sales months per partner	
rev_consecutive	Number of consecutive revenue from sold per partner	
churn_consecutive	Number of consecutive customer cancel per partner	

Data Set 2	Description		
partner_ageing_mth	Working age of employees (unit : Month)		
sale_rate_m4	The number of products sold in month per partner back 4 months (e.g. current December back 4 month = October)		
sale_rate_m3	The number of products sold in month per partner back 3 months (e.g. current December back 4 month = August)		
sale_rate_m2	The number of products sold in month per partner back 2 months (e.g. current December back 4 month = September)		
sale_rate_m1	The number of products sold in month per partner back 1 months (e.g. current December back 4 month = November)		
rev_m4	The number of revenue from product sold per partner back 4 months (e.g. current December back 4 month = October)		
rev_m3	The number of revenue from product sold per partner back 3 months (e.g. current December back 4 month = August)		
rev_m2	The number of revenue from product sold per partner back 2 months (e.g. current December back 4 month = September)		
rev_m1	The number of revenue from product sold per partner back 1 months (e.g. current December back 4 month = November)		
churn_m4	The number of customers who cancel the service per partner back 4 months (e.g. current December back 4 month = October)		
churn_m3	The number of customers who cancel the service per partner back 3 months (e.g. current December back 4 month = August)		
churn_m2	The number of customers who cancel the service per partner back 2 months (e.g. current December back 4 month = September)		
churn_m1	The number of customers who cancel the service per partner back 1 months (e.g. current December back 4 month = November)		

Modeling

K Mean

The concentration density is at the sales range from 1 to 550 subscriber.

The model can be divided into 3 cluster of partner, with the following amounts

Cluster 0:60%

Cluster 1:32%

Cluster 2: 0.8%

Silhouette Score: 0.620

! label not defined yet

Agglomerative

From the model, can separate partner into 3 cluster, with the same result as the K Mean model.

DBSCAN

The DBSCAN model clearly differs from the two models above. It can divide up to 6 cluster of partners, which 1 outlier.

Cluster	Percent
-1	0.8%
0	60%
1	31%
2	0.5%
3	0.5%
4	0.3%

Silhouette Score: 0.610

! label not defined yet

DBSCAN

The model can divide the groups of partners in more detail than other

Result

As a result of the model, we find that most partner are concentrated in sales ranges from 1 to 500 subs,

And considering deep down, we will see the density of partner and cluster clearly.

Which lead to the action plan.

Recommendation and Action Plan

Recommend.

From the density in previous slide.

The team has divided the sales range into 4 parts, each of which consists of a cluster of partner in different levels, That make company easy to focus.

Action Plan.

Partner cluster 1: Has a small sales volume but products are high price. Companies should push this group to increase sales rate.

Partner Cluster 0: Has a large sales volume but low price and is a large group. Companies could help to find a package or improve the this group to sold high value

Cluster	Label
-1	Sales Less, Low Revenue+, With Churn
0	Sales More, Low Revenue, No Churn
1	Sales Less, High Revenue, No Churn
2	Sales More, Low Revenue, With Churn
3	Sales Less, Low Revenue, With Churn
4	Sales Less, Low Revenue, With Churn

Model Improve Plan

Quick Win: Develop additional processes to determine the characteristics of each cluster. Another improve follow Project vision

Cluster	Partner Aging	total_sales	total_revenue	total_churn
-1	3	7,000	3,000,000	20
0	2	60,000	41,111,000	-
1	2	1,000	1,000,000	-
2	2	19,000	10,100,200	100
3	2	2,000	1,011,010	10
4	2	4,000	1,222,000	10

Cluster	Label		
-1	Sales Less, Low Revenue+, With Churn		
0	Sales More, Low Revenue, No Churn		
1	Sales Less, High Revenue, No Churn		
2	Sales More, Low Revenue, With Churn		
3	Sales Less, Low Revenue, With Churn		
4	Sales Less, Low Revenue, With Churn		

Sample label (subject may be change)

Thank You

Enhance

