

Internetkommunikation

Hinweis: Im Fach 'Internetkommunikation' ist in der Klausur keine Formelsammlung zugelassen. Daher kann diese Formelsammlung lediglich zur Prüfungsvorbereitung dienen.

1. Das Internet

"Ein Netz aus Netzen" - Öffentliches Internet verbindet private Intranets.

1.1. Begriffe

User	Teilnehmer
Terminal	Endgerät
Router	
Nodes	
Links	Abschnitte
M2M	Maschine zu Maschine
MSS	Maximum Segment Size
RTT	Round Trip Time

1.2. Netzstrukturen

1.3. Architekturen

Client/Server: Ständige Verfügbarkeit

Peer to Peer(P2P): Hohe Skalierbarkeit, da jeder Besitzer auch Anbieter

einer Datei ist.

Paketvermittlung (100 - 1000 Byte) Pakete teilen sich die Netzressourcen, statistisches Multiplexen. Ermöglicht varaible Übertragungsraten

Routing bestimmt den Weg von Quelle zur Senke.

Forwarding Eingehende Pakete werden an den richtigen Ausgang gelei-

2. Protokolle (Regeln)

Protokolle definieren das Format und die Reihenfolge in der Nachrichten im System gesendet und empfangen werden.

2.1. OSI-ISO Schichtenmodell

OSI Model

2.2. Internet Layers

Übertragungsverzögerung

Application (HTTP:) Regelt Syntax und Semantik von Nachrichten Transport (TCP): Ende-zu-Ende Datentransfer zwischen Prozessen. Network (IP): Routing der Pakete durchs Netz mit Quell- und Zieladres-

Link (MAC,LLC): Verteilung des Medienzugangs (MAC) und Sicherung der Übetragung durch Flusssteuerung (LLC) mit Prüfsummen.

Physical (PHY): Bits auf der Leitung/el. magn. Welle Kenngrößen eines Netzwerks:

Delay (Verzögerung): und Jitter, d.h. Schwankung der Verzögerung $T_{
m ges} = T_{
m VK} + T_{
m VQ} + T_{
m S} + T_{
m P} + T_{
m P}$ Verarbeitung Wartezeit Puffer Übertragung Ausbreitung

Packetgröße (Bit) $T_{\mathsf{S}} = rac{L}{R} = rac{\mathsf{Packetgrove} \ (\mathsf{Bit/s})}{\mathsf{Bandbreite} \ \mathsf{einer} \ \mathsf{Leitung} \ (\mathsf{Bit/s})}$

 $T_{\rm P}=rac{d}{s}=rac{{
m Leitungslänge}}{{
m Ausbreitungsgeschwindigkeit}}$

Loss (Verlust:) Verluste von Paketen

Throughput (Durchsatz:) $R \cdot \rho$ Goodput: $R \cdot \rho \frac{L_{\mathrm{D}}}{L_{\mathrm{H}} + L_{\mathrm{D}}}$ Leitung mit kleinstem R begrenzt den Throughput (Engpass)

Verkehrsauslastung: $\eta = \text{Anforderungsrate} \cdot \text{Verzögerung} = a \cdot T_{S}$

2.3. Kendall Notation für Warteschlangen

Kendall Notation: X / Y / N / s / g

Art des Ankuftsprozesses (M für Markov)

Υ Art des Bedienprozesses (M für Markov)

Ν Anzahl der Bedieneinheiten (Server)

Kapazität (Plätze) der Warteschlange

Verlustsystem s=0, Wartesystem $s\to\infty$

Warteverlustsystem $0 < s < \infty$

Zahl der Quellen

 λ_X Geburtsrate

Sterberate

Wartewahrscheinlichkeit PW dafür, dass ein ankommendes Paket warten muss, also falls Pakete > N

Mittlere Warteschlangenlänge $\Omega = p_N \frac{\overline{N}}{(1 - \frac{A}{N})^2}$

Mittlere Wartezeit $T_{\mathsf{W}} = \frac{\Omega}{\lambda}$

Angebot: $A = \frac{\lambda}{n}$ Ausnutzung: $\rho = \frac{A}{N} = 1 - p_0$

Protokoll Wirkungsgrad $\rho = \frac{T_{S}}{T_{S} + 2T_{D}}$

Nachrichtensendedauer T_S ; Kanallaufzeit $T_P = \frac{l}{a}$

2.3.1 Poisson-Prozess

Geburtsrate $\lambda = \frac{1}{E[A]}$

2.3.2 Neg-Exponentialverteilung

mittlere Bearbeitungszeit (Sterberate) $\mu = \frac{1}{\text{Bedienzeit}}$

2.4. Flusssteuerung

Go-back-N: Übertragene P bei Fehler: $\mathrm{Time} - 2T_{\mathsf{P}} - t_{\mathsf{out}} + 1$

3. Protokolle (Beispiele)

3.1. HTTP

3.1.1 Allgemein

Non-Persistent: Neue Anfrage für jedes Objekt (2 RTT pro Objekt) Persistent: Server lässt Verbindung offen (1 RTT pro Objekt) Pipelining: Parallele Object Requests möglich (≈ 1 RTT für alles) DNS Anfrage: $T_{DNS} = RTT$, TCP Aufbau: $T_{TCP} = RTT$

Gesamtladen
$$T_{\rm HTTP}=2RTT+4T_{\rm Si}$$

Round-Trip-Time $RTT=2(T_{\rm p}+T_{\rm v})$
 $T_{\rm Si}=T+T+T$

3.1.2 Coockies

- 1. set-cookie: Kopfzeile in der HTTP Response Nachricht
- 2. Cookie Kopfzeile in jeder HTTP Request Nachricht
- 3. Cookie auf dem Rechner des Anwenders
- 4. Cookie in der Datenbank des Servers

3.1.3 Web-Cache

Benutzer definiert Webzugriff über Cache (Proxy-Server) Browser sendet alle HTTP-Requests an den Cache Im Cache: Proxy sendet Seite aus dem Cache an den Client Nicht im Cache: Proxy läd Seite in den Cache und leitet sie weiter

3.2. FTP - File Transfer Protocol

Client kontaktiert Server

Login: user: ¡name¿, pass: ¡password¿ Dateizugriff: list, retr ¡file¿, stor ¡file¿

3.3. SMTP - Simple Mail Transfer Protocol

Header: To: ¡adress¿, From: ¡adress¿, Subject: ¡subject¿ Zugriffsprotokolle: POP3 [RFC 1939], IMAP [RFC 1730], HTTP

3.4. DNS - Domain Name System

Übersetzung von Hostnamen zu IP Adressen Kanonische Namen (Originalname) oder Aliase (Alternativnamen) Baumstruktur: DNS-Rootserver speichert TLD-DNS-Server (org, com) Iterativ: Client ightarrow Lokaler DNS ightarrow Rest der Reihe nach probieren

4. Transportschicht

Ende-zu-Ende Transport zwischen Prozessen auf hosts

- 2 Tupel → UDP
- 4 Tupel → TCP

zuverlässige Übertragung

4.1. Fensterprotokoll

Kanalausnutzung $\rho_n = \frac{L_N}{t} \, \frac{W_s t_n}{t_s}$

4.2. IP - Internet Protocol

4.2.1 UDP - User Datagram Protocol [RFC 768]

Unzuverlässiger Transport Minimales, best-effort

2 Tupel: Empfänger IP, Empfänger Port

- Bild UDP mit Sockets -

4.2.2 TCP - Transfer Control Protocol Reno [RFC 793]

Zuverlässige Datenübertragung

- Bild TCP mit Sockets -

4 Tupel: Empfänger IP, Empfänger Port, Sender IP, Sender Port

Zustände

Server: CLOSED, LISTEN, SYN_RECV, ESTB, CLOSE_WAIT, LAST_ACK Client: CLOSED, SYN_SENT, ESTB, FIN_WAIT1, FIN_WAIT2, TIME_WAIT

Max-Sequenznummer: 232 Bit

Three-Way-Handshake

FlowControl: Sender schickt nicht mehr Daten als Empf. puffern kann. ACK: Empfänger bestätigt iedes Packet mit einem ACK + seg vom nächsten erwarteten Paket. Ist das nächste anders → duplicated ACK Fast-Retransmit: Falls 3 Ack mit selber $seq \rightarrow resend$ before timeout Three-Way-Handshake: $SYN \rightarrow SYN+ACK \rightarrow ACK$

Fehlererkennung Timer (wird bei Empfang eines ACKs zurückgesetzt) oder 3 gleiche ACKs → fast retransmit

Congestion Control: Verhindert Überlastung: Rate $= \frac{\text{CongWin}}{\text{prr}}$ Slowstart: Exp. Wachstum (Verdopplung pro RTT) von CongWin, ab thresh lineares Wachstum. (+1MSS pro RTT)

Bei 3 doppelten Acks: threshNew = CongWinNew = CongWin/2 (Reno) Bei Timeout/Anfang: CongWinNew = 1, threshNew = CongWin/2

LastByteSent - LastByteAcked < CongWin

Fehlerrate max. Fenstergröße

 $\begin{array}{l} \textbf{Durchsatz: } D = \frac{\mathsf{Daten}}{\mathsf{Zeit}} = \frac{1.22 \cdot \mathsf{MSS}}{\mathsf{RTT.}} = \frac{0.75 \cdot N \cdot \mathsf{MSS}}{\mathsf{RTT}} = \frac{0.75 \cdot W}{\mathsf{RTT}} \\ \mathsf{MSS} \ (\mathsf{Max. Seg. Size.}) = \mathsf{MTU} \text{ - Header IP - Header TCP} \approx 1500 \mathsf{Byte} \\ R = \frac{W \cdot MSS}{RTT} \end{array}$

durchschnittliche Fenstergröße mit cong. control: $\frac{W+\frac{W}{2}}{2}=0.75W$ Anzahl der Segmente die einen Link voll ausnutzen:

4.3. Protokolle auf verlustbehafteten Kanälen

Wirkungsgrad (Utilization):

 $U = \frac{\text{Nachrichten Sendedauer}}{\text{Zeit bis nächste Nachricht gesendet werden kann}} = \frac{T_S}{RTT + T_S}$

4.4. Protokolle mit PipeliningPrinzip: Sende mehrere unbestätigte Pakete und warte dann auf ACKs. Puffern der unbestätigten Pakete notwendig, höhere Sequenznummern.

4.4.1 Go-Back-N — Bild Go-Back-N (aus Folie) —

Schiebe Sendefenster bei entpsr. ACK um eins über die Pakete. Nur ein Timer für das gesamte Fenster. Wenn Timer abläuft, sende gesamtes Fenster

4.4.2 Selective RepeatWiederhole nur Pakete für die keine ACKs empfangen wurden.

4.5. Anwendungsschicht

Adressierung Transportdienstgüte: Prinzipien Info-Abruf:

Architektur Client-Server / P2P Overlay: virtuelle Netzstruktur Host(IP) + PortDelay / Loss / Durchsatz pull/push Nachrichtenformat

7ustand stateless / stateful Verbindungsverwaltung persistent / non-persistent

5. Netzschicht

Protokolle: IP ATM

Aufgaben: Routing und Forwarding IP: BestEffort, Reihenfolge egal, keine Zuverlässigkeit

5.1. Router

Routing: Memory, Bus, Crossbar

Pufferdimensionierung bei N Datenflüssen und Link-Datenrate R Puffergröße $P=\frac{\mathrm{KTT}\cdot R}{\sqrt{N}}$

5.2. IP - Internet Protocol [RFC]

20 Byte Header Seit 1993: Klassenlose Adressierung

5.2.1 Abbildung auf MAC-Adressen

Version	Protocol	Table
IPv4	Address Resolution Protocol ARP	ARP-Table
IPv6	Neighbor Discovery Protocol NDP	NDP-Table

5.2.2 DHCP – Dynamic Host Configuration Protocol [RFC 2131] Automatische Vergabe von Adressen und Parametern über UDP ohne manuelle Konfiguration

5.2.3 NAT – Network Adress Translation Abbildung von verschiedenen LAN Adressen auf eine WAN Adresse mit unterschiedlichen Ports.

5.2.4 Subnetze 200.56.168.0/21 bedeutet von 32bit sind 21bit fest und 32-2111bit variabel

Anzahl der Class C Subnetze (/24): 24 - 21 = 3 $2^3 = 8$ Anzahl der IP-Adressen: 32 - 21 = 11 $2^{11} = 2048$

5.3. IPv6

32 Bit Adresse, 40 Byte Header, Verkehrsklassen für QoS Migration mit Tunneling (IPv6 im Datenteil von IPv4)

5.4. ICMP - Internet Control Message Protocol

5.5. Routingverfahren

Diikstra Algorithmus (erfordert globales Wissen) globale Infornation: Link-State-Routing jeder Knoten berechnet den kürzesten Weg zu jedem anderen Router

dezentrale (lokale) Information: Distance-Vector-Routing Jeder Knoten schätzt den kürzesten Weg zu iedem anderen Router

Hirachisches Routing Autonomer Systeme AS: Inter-AS-Routing: BGP - Border Gateway Protocol [RFC 4271] BGP hält das Internet zusammen! Intra-AS-Routing: RIP, OSPF, IGRP

6. Quality of Service

6.1. Prinzipien

- 1. Markieren(Verkehrsklassen) und differenziert weiterleiten: Scheduling Algorithmen: FIFO, Priority, Round Robin, WFQ
- 2. Isolation = Eingrenzung und Überwachen: Policing/Shaping → Token Bucket begrenzt Paketfluss auf vorgegebene Burst-Größe und vorgegebene durchschnittliche Rate. max. Pakete $\leq R \cdot t \text{ und } \leq b + r \cdot t$
- 3. Ressourcen vollständig ausnutzen
- 4. Admission Control: Datenfluss meldet Bedarf und muss ggf. abgewiesen werden

DiffServ verschiedene Klassen priorisieren den Verkehr (Feld in IP) IntServ Reservierung auf dem gesamten Pfad (Garantie mit RSVP)

Weighted Fair Queuing: $B_i = \frac{W_i}{\sum_{j=1}^n W_j} \cdot R$ Delay Weighted Fair Queuing + Token Bucket: $d_{\max, \text{WFQ}} =$

 $d_{\mathsf{max},\mathsf{TB}} = \frac{b_i(R-S_i)}{S_i(R-r_i)w_i/\sum w_i}$

 w_i : Prioritätsgewicht des Kanals, R: Gesamtrate, b: max Anzahl der Tokens r: Tokenrate, S: Warteschlangenrate

7. Link Layer and Medium Access Control

Transportiert frames von einem Knoten über einen Link zum Nachbarknoten. Regelt Zugriff auf das Medium (MAC)

Protokolle: Ethernet, WLAN, PPP

Frame: In header(MAC-Adresse) und trailer(Checksum) verpacktes Datagramm

Fehler durch Signalabfall und Rauschen

7.1. Medium Access Control

Aufteilung des Mediums (Partitioning): Datenrate aufteilen in Zeit/Fre-

Wahlfreier Zugriff (Random Access): Kollisionenserkennung: Nur senden wenn Kanal frei

Abwechselnder Zugriff

Exponential Backoff: Zufällige Wartezeit aus einem exponentiell steigenden Zeitbereich ARP um MAC Adresse über Broadcast ermitteln. Hub: Verbindet bloß alle Kabel, keine Pufferung Switch: Pufferung, gezielte Weiterleitung

8. Sonstiges

Port	Service	Protocols	Description
20	ftp-data	TCP/UDP	File Transfer Data
21	ftp	TCP/UDP	File Transfer Control
22	ssh	TCP	SSH Remote Login Protocol
23	telnet	TCP	Telnet
25	smtp	TCP	Simpler Mail Transfer Protocol
53	domain	TCP/UDP	Domain Name Server
80	http	TCP	Hypertext Transfer Protocol
110	рор3	TCP	Post Office Protocol 3
143	imap4	TCP	Interner Message Access Protocol 4
443	ssl	TCP	HTTPS: HTTP over TLS/SSL