Computer Arithmetic

ALU

Figure 9.1 ALU Inputs and Outputs

Addition and Subtraction

OVERFLOW RULE: If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

SUBTRACTION RULE: To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.

OF = Overflow bit

SW = Switch (select addition or subtraction)

Figure 9.6 Block Diagram of Hardware for Addition and Subtraction

Multiplication

Figure 9.7 Multiplication of Unsigned Binary Integers

Figure 9.9 Flowchart for Unsigned Binary Multiplication

С	A	Q	M	
0	0000	1101	1011	Initial values
0	1011 0101	1101 1110	1011 1011	Add } First Shift & cycle
0	0010	1111	1011	Shift } Second cycle
0	1101 0110	1111 1111	1011 1011	Add \ Third Shift \ cycle
1 0	0001 1000	1111 1111	1011 1011	Add \ Fourth Shift \ cycle

Figure 9.8 Hardware Implementation of Unsigned Binary Multiplication

1011					
× 1101					
00001011	1011	×	1	×	2°
0000000	1011	×	0	×	21
00101100	1011	×	1	×	2 ²
01011000	1011	×	1	×	2 ³
10001111					

Figure 9.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result

						1	0	0	1	1	(-13)
					×	0	1	0	1	1	(+11)
	1	1	1	1	1	1	0	0	1	1	
	1	1	1	1	1	0	0	1	1		
Sign extension is shown in blue	0	0	0	0	0	0	0	0			
	1	1	1	0	0	1	1				
	0	0	0	0	0	0					
	1	1	0	1	1	1	0	0	0	1	(-143)

Figure 9.8 Sign extension of negative multiplicand.

1001	(9)	1001 (-7)
×0011	(3)	×0011 (3)
00001001	1001 × 20	$11111001 (-7) \times 2^0 = (-7)$
00010010	1001×2^{1}	11110010 (-7) \times 2 ¹ = (-14)
00011011	(27)	11101011 (-21)

(a) Unsigned integers

(b) Twos complement integers

Figure 9.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

Booth's Algorithm

Figure 9.12 Booth's Algorithm for Twos Complement Multiplication

A	Q	Q_{-1}	М	
0000	0011	0	0111	Initial values
1001	0011	0	0111	$A \leftarrow A - M$) First
1100	1001	1	0111	Shift Scycle
1100	1001		0111	SHITC) CYCLE
				7 Second
1110	0100	1	0111	Shift Scycle
0101	0100	1	0111	$A \leftarrow A + M \setminus Third$
0010	1010	0	0111	Shift ∫ cycle
				7 Fourth
0001	0101	0	0111	Shift >
		-) cycle

Figure 9.13 Example of Booth's Algorithm (7 × 3)

How Booth's algorithm works

Consider first the case of a positive multiplier

- consisting of one block of 1s surrounded by 0s

$$M * (00011110) = M * (2^{4} + 2^{3} + 2^{2} + 2^{1})$$

$$= M * (16 + 8 + 4 + 2)$$

$$= M * 30$$

$$M * (00011110) = M * (2^{5} - 2^{1})$$

$$= M * (32 - 2)$$

$$= M * 30$$

the product can be generated by one addition and one subtraction of the multiplicand.

Booth's algorithm conforms to this scheme by performing a subtraction when the first 1 of the block is encountered (1–0) and an addition when the end of the block is encountered (0–1).

Let X be a negative number in twos complement notation. Representation of $X = \{1x_{n-2}x_{n-3}, \dots, x_1x_n\}$

$$X = -2^{n-1} + (x_{n-2} \times 2^{n-2}) + (x_{n-3} \times 2^{n-3}) + \cdots + (x_1 \times 2^1) + (x_0 \times 2^0)$$

Representation of $X = \{111 ... 10x_{k-1}x_{k-2} ... x_1x_0\}$

$$X = -2^{n-1} + 2^{n-2} + \cdots + 2^{k+1} + (x_{k-1} \times 2^{k-1}) + \cdots + (x_0 \times 2^0)$$

$$2^{n-2} + 2^{n-3} + \cdots + 2^{k+1} = 2^{n-1} - 2^{k+1}$$

$$-2^{n-1} + 2^{n-2} + 2^{n-3} + \cdots + 2^{k+1} = -2^{k+1}$$

$$X = -2^{k+1} + (x_{k-1} \times 2^{k-1}) + \cdots + (x_0 \times 2^0)$$

Consider the multiplication of some multiplicand by (-6). In twos complement representation, using an 8-bit word, (-6) is represented as 11111010.

$$-6 = -2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{1}$$

$$M * (11111010) = M * (--2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{1})$$

$$M * (11111010) = M * (-2^{3} + 2^{1})$$

$$M * (11111010) = M * (-2^{3} + 2^{2} - 2^{1})$$

Mul	tiplier	Version of multiplicand
Bit i	Bit <i>i</i> – 1	selected by bit i
0	0	0 × M
0	1	+ 1 × M
1	0	$-1 \times M$
1	1	$0 \times M$

Figure 9.12 Booth multiplier recoding table.

(b) $(7) \times (-3) = (-21)$

(d) $(-7) \times (-3) = (21)$

Figure 9.14 Examples Using Booth's Algorithm

(a) $(7) \times (3) = (21)$

(c) $(-7) \times (3) = (-21)$

Exercise

- Given x and y in twos complement notation i.e., x=0101 and y=1010,compute the product p=x*y with Booth's algorithm
 - Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each number is represented using 6 bits

Division

Figure 9.15 Example of Division of Unsigned Binary Integers

Figure 9.16 Flowchart for Unsigned Binary Division

The algorithm assumes that the divisor V and the dividend D are positive and that |V| = |D| |V| < |D|. If |V| = |D|, then the quotient =1and remainder=0. If |V| > |D|, then Q=0 and R=D. The algorithm can be summarized as follows:

1. Load the twos complement of the divisor into the M register; that is, the M register contains the negative of the divisor. Load the dividend into the A, Q registers.

The dividend must be expressed as a 2n-bit positive number. Thus, for example, the 4-bit 0111 becomes 00000111.

- 2. Shift A, Q left 1 bit position.
- 3. Perform This operation subtracts the divisor from the contents of A.
- 4. a. If the result is nonnegative (most significant bit of A=0), then set Q0=1
- b. If the result is negative (most significant bit of A=1), then set Q0=0, and restore the previous value of A.
- 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
- 6. The remainder is in A and the quotient is in Q.

Example of Restoring Twos Complement Division (7/3)

Figure 9.24 A restoring division example.

Consider the following examples of integer division with all possible combinations of signs of D and V:

$$D = 7$$
 $V = 3$ \Rightarrow $Q = 2$ $R = 1$
 $D = 7$ $V = -3$ \Rightarrow $Q = -2$ $R = 1$
 $D = -7$ $V = 3$ \Rightarrow $Q = -2$ $R = -1$
 $D = -7$ $V = -3$ \Rightarrow $Q = 2$ $R = -1$

The reader will note from Figure 9.17 that (-7)/(3) and (7)/(-3) produce different remainders. We see that the magnitudes of Q and R are unaffected by the input signs and that the signs of Q and R are easily derivable form the signs of D and V. Specifically, $\operatorname{sign}(R) = \operatorname{sign}(D)$ and $\operatorname{sign}(Q) = \operatorname{sign}(D) \times \operatorname{sign}(V)$. Hence, one way to do twos complement division is to convert the operands into unsigned values and, at the end, to account for the signs by complementation where needed. This is the method of choice for the restoring division algorithm [PARH00].

Exercise

 Divide 145 by 13 in binary twos complement notation, using 12-bit words. Use the restoring division algorithm

Reference

William Stallings, "Computer Organization and Architecture – Designing for Performance", 9th edition, PHI, 2015.