7

5.21

We continue with the coin tossing scenario from Example 5.23, so our experiment consists in tossing a fair coin ten times. Compute the probabilities of the following events.

a

The first and last tosses are both heads.

```
✓ Answer \checkmark (0.5)(0.5) = 0.25
```

b

Either the first toss or the last toss (or both) are heads.

```
\checkmark Answer 0.5 + 0.5(0.5) = 0.75
```

C

Either the first toss or the last toss (but not both) are heads.

```
\checkmark Answer (0.5)(0.5) + (0.5)(0.5) = 0.5
```

d

There are exactly k heads and 10 - k tails. Compute the probability for each value of k between 0 and 10. (Hint. To save time, note that the probability of exactly k heads is the same as the probability of exactly k tails.)

Answer
P(x)
0.00098
0.00977

x	P(x)		
2	0.04395		
3	0.11719		
4	0.20508		
5	0.24609		
6	0.20508		
7	0.11719		
8	0.04395		
9	0.00977		
10	0.00098		

e

There is an even number of heads.

✓ Answer

The sum of all the even numbers

0.50002 (possible rounding error)

f

There is an odd number of heads.

✓ Answer

0.50001 (another possible rounding error)

Entropy

Consider a cryptosystem with $M=\{a,b,c\}$, $K=\{K1,K2,K3\}$, and $C=\{1,2,3,4\}$.

Suppose the encryption rules are as follows:

	a	b	С
K1	1	2	3
K2	2	3	4
K3	3	4	1

Assume the keys are equiprobable, and the plaintext probabilities are:

$$P(a) = 1/2$$
, $P(b) = 1/3$, and $P(c) = 1/6$.

1

H(M)

ightharpoonup Answer $H(M) = -\left(rac{1}{2}\mathrm{log}_2\left(rac{1}{2} ight) + rac{1}{3}\mathrm{log}_2\left(rac{1}{3} ight) + rac{1}{6}\mathrm{log}_2\left(rac{1}{6} ight) ight) = 1.46 \mathrm{\ bits}$

2

H(K)

\checkmark Answer $\log_2(3) = 1.58 \text{ bits}$

3

H(C)

✓ Answer

$$P(C = 1) = \frac{2}{9}$$

 $P(C = 2) = \frac{5}{18}$
 $P(C = 3) = \frac{1}{3}$
 $P(C = 4) = \frac{1}{6}$

$$H(C) = 1.87$$
 bits

4

H(K|C)

\checkmark Answer P(C||K)

$P(C\ K)$	K1	K2	K3
1	1/2	0	1/6
2	1/3	1/2	0
3	1/6	1/3	1/2
4	0	1/6	1/3

P(K C)	K1	K2	K3	H(K C)
1	3/4	0	1/4	0.8113
2	2/5	3/5	0	0.9710
3	1/6	1/3	1/2	1.4591
4	0	1/3	2/3	0.9183

$$\begin{array}{l} \frac{2}{9} \cdot 0.8113 + \frac{5}{18} \cdot 0.9710 + \frac{1}{3} \cdot 1.4591 + \frac{1}{6} 0.9183 \\ = 1.089 \ \mathrm{bits} \end{array}$$

5

H(M|C)

✓ Answer

$$\begin{split} H(M|C) &= H(M) + H(K) - H(C) \\ &= 1.17 \text{ bits} \end{split}$$