

The Zero Boil-Off Tank (ZBOT)
Experiment Role in Development of
Cryogenic Fluid Storage and Transfer

Technologies

Dr. David Chato NASA/GRC

Dr. Mo Kassemi NCSER

November 30, 2012

ZBOT Project Team

Glenn Research Center

SCIENCE AND MANAGEMI	ENT	_
----------------------	-----	---

Bill Sheredy– NASA GRC PM
Mohammad Kassemi – PI, NCSER
David Chato - Co-Principal Investigator, NASA

ENGINEERING

Bernie Bolte – Electrical Engineer, ZIN
Robert Brock - Software Lead, ZIN
Jim Bruewer – Manufacturing Manager, ZIN
Tony Bruzas – Chemical Engineer, ZIN
Kimesha Calaway – Systems/Integration, ZIN
Kevin Dendorfer – Electrical Technician, ZIN
Jeff Eggers – Software Engineer, ZIN
Jeff Fortuna – Mechanical Designer, ZIN
Greg Funk – Systems/Integration, ZIN
Andrew Kawecki - Mechanical Technician, ZIN
Alex Kieckhafer – Thermal Engineer, ZIN

SAFETY and MISSION ASSURANCE

Alex Beltram- RM Facilitator, ZIN
Brian Loucks- Quality Oversight, ARES

Bart Gruber – Project Lead, ZIN

Chris Lant – Optics, ZIN

Kevin Magee – Fluids Engineer, ZIN

John Morrison – Software Engineer

Jim Ogrin – Mechanical Lead, ZIN

William Pachinger – Electrical Engineer, ZIN

Jim Paskert – Manufacturing Engineer, ZIN

Rick Pfeiffer – Electrical Designer, ZIN

Joseph Samrani – Electrical Lead, ZIN

Craig Totman – Mechanical Engineer, ZIN

Chris Werner – Structural Engineer, ZIN

David Plachta - Project Scientist, NASA

Olga Kartuzova - Research Scientist

Sonya Hylton – Research Scientist, NCSER

Nechelle Grant - Risk Management, ARES Rick Plastow- Software QA, Bastion Chris Bodzioney- Safety Engineer, ZIN Darryl Seeley - Quality Assurance, ZIN

Background and Motivation

- Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions
- It is identified by NASA as an area with greatest potential for cost saving
- This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks
- We propose to use the ISS lab to generate & collect archival scientific data:
 - raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM)
 - develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs

Related Mission: Cryogenic Propellant Storage and Transfer Technology Demonstration Mission

NASA is undertaking a demonstration mission to advance cryogenic propellant storage and transfer technologies that will enable exploration beyond Low-Earth Orbit

Launch 2016 • Demonstrate in-space transfer

• Demonstrate in-space, accurate gauging

Broad Scientific Goals of ZBOT

Glenn Research Center

- Perform hand-in-hand experimentation, theoretical analysis, and computational modeling to:
 - 1. Gain a fundamental understanding of the phase change and transport phenomena associated with tank pressurization and pressure control
 - 2. Determine the time constants associated with pressurization, mixing, destratification, and pressure reduction for different gravitational environments
 - 3. Determine the effects of noncondensables on evaporation and condensation and transport phenomena
 - 4. Delineate the different microgravity transport/phase change mechanisms associated with different mixing/cooling strategies
 - 5. Investigate the nature of microgravity superheating and its effect on boil-off
 - 6. Validate and verify a state-of-the-art two-phase CFD model for cryogenic storage
- Produce archival data and simulations that will not only benefit the cryogenic storage tank design but a multitude of other two-phase flow operations and processes in space

ZBOT-1 Fluid Mixing

ZBOT-2 NonCondensable ZBOT-3
Active Cooling

ZBOT-1 Engineering Questions: Pressurization & Pressure Control

Glenn Research Center

- How much natural mixing will take place in a given tank during operation at various gravitational levels?
- How much forced mixing is needed to thermally de-stratify the tanks without active cooling?
- Under what conditions will it be necessary to augment the thermal destratification through active cooling?
- How effectively do mixing-only and/or mixing-with-active-cooling decrease the pressure reduction times?

Need: reliable engineering correlations for mixing, destratification, and pressure reduction times as functions of relevant tank parameters such as heat leak rates, mixing flow rates, and fill levels

Application: sizing of the pumps, determining forced mixing modes, possible placement of flow control structures, and sizing and implementation of the active cooling mechanisms (TVS, Cryocooler, etc.)

Important Experimental Components & Science Requirements

NATIONAL CENTER FOR SPACE EXPLORATION RESEARCH

Glenn Research Center

ZBOTComponents

- ventless Dewar(s)
- temp-controlled shield
- fluid support unit
- axial mixing jet
- longitudinal spray bar
- noncondensable gas injection
- Liquid Acquisition Devices (LADs)

ZBOT Requirements:

- transparent Dewar & fluid
- tightly controlled thermal & flow BC s
- accurate & local temperature measurement
- in-flight fluid degassing
- accurate determination of ullage pressure and gaseous concentration
- whole-field visualization of interface, flow. and velocimetry using PIV.

Main CPST Elements:

- Broad Area Cooling (BAC)
- active internal cooling
- dynamic mixing
- noncondensable effects
- liquid transfer
- mass gauging
- LAD operations

Why Small-Scale Experiment Simulant Fluid?

Glenn Research Center

NRC Decadal Report:

• "1G empirically-based predictive methods in the design of the future multiphase technologies are of limited use "

• "a new predictive capability and design methodology needs to be adopted that relies in particular on physically-based multiphase models that quantify accurately the effects of gravity."

• "to be effective, such models must necessarily be assessed against, appropriate small scale reduced-g data, and they must be capable of accurately scaling-up these data to the large multiphase systems for NASA's future human exploration missions."

Validate the Technology - Demonstrates performance of the engineering components: cryocoolers, pump, radiation shield

> Controllable BCs -accurate measurements

> Flow visualization & velocimetry

> Extensibility Gap in scale and fluid closed by the model

○ CPST extensibility gap: 2 meter → 8 meter LH2 → LOX, Methane

Proposed ISS experiment will be able to bridge the CPST extensibility gaps with future mission applications

ZBOT-1 Experiment Description

Glenn Research Center

- ZBOT-1 will involve both pressurization and pressure reduction tests
 - Pressurization tests will be conducted by direct heating of the tank wall
 - Pressure reduction tests will be accomplished through thermal destratification of the bulk liquid by forced jet mixing
- Parametric test runs will investigate the effect of the important system elements of a pressure control strategy on pressurization and pressure control:
 - Wall heat flux (heater)
 - Jet temperature
 - Jet flow rate
 - Tank fill level
- During each test, pressure and temperature are locally measured and the velocity field and ullage location in the liquid are non-intrusively captured

Heat Leak

Test Fluid

- Perfluoro-n-Pentane (PnP, or C₅F₁₂)
- High purity (99.7% straight-chained n-isomer)
- Non-flammable, non-toxic, refrigerant/cleaning fluid
- Physical properties
 - Boiling Point = 29°C @ 1 atm
 - Vapor Pressure = 12.5 psia @ 25°C
- Benefits
 - Has the desired physical properties for science
 - Density matched with DPIV particles
 - Tox 0 Approved by JSC toxicology and MSFC ECLSS groups

PnP n-Isomer (Straight Chained)
Chemical Structure

1. Self-Pressurization

- Heat for 12 hours max.
- Heat at 0.5 to 1.0 Watts

2. Pressure Control via Mixing; Cooling Optional

• Mix with dQ/dT = 0 **OR**

Sub-cooled mixing used after test to rapidly cool tank

Heater Input

Boundary Conditions:

- Add precise heat to fluid using resistive heater strips
- Reduce heat losses through radiation, conduction, and convection
- Circulate temperature-controlled fluid

Instrumentation:

- RTDs measure temperature distributions to ±0.1 °C
- Pressure measured to ±0.05 psia
- Fluid velocity fields via Particle Imaging Velocimetry

Test Tank with Vacuum Jacket Removed and Base

ZBOT Test Section/FSU Engineering Model

Test Section – Cross Section

Beam Dump Tank Camera **Light Sheet** Acceptance Tilted 12° to Cone increase particle visibility Diode Laser

Camera and Illumination Packages Mounted to the Test Section

ZBOT in the MSG Work Volume

Zero Boil-Off Tank Experiment-2 (ZBOT-2): Noncondensable Gas Effects

PI: Dr. Mohammad Kassemi, NCSER/GRC
 Co-I: Dr. David Chato, NASA GRC
 PS: David Plachta, NASA GRC
 PM: William Sheredy, NASA GRC
 Engineering Team: ZIN Technologies, Inc.

Objective:

- Aid the design of NASA's space-based cryogenic storage systems by investigating the effects of noncondensable gases on tank pressure control
- Characterize and assess the effects of noncondensables on evaporation and condensation by obtaining microgravity two-phase flow and heat transfer data in a ventless Dewar
- Gather high quality microgravity data under controlled conditions for validation of storage tank CFD models and development of empirical engineering correlations
 Relevance/Impact:
- Reduce launch mass (cost) by aiding the development of novel dynamic pressure control schemes for long-term storage of cryogenic fluids
- Decrease the risks of future space missions by clarifying and assessing the impact of noncondensables on storage tank pressure reduction/control
- Increase design reliability by providing archival data for benchmarking and improving CFD models used by the Cryogenic Fluids Management community and the Aerospace Companies for future (ground-tested-only) tank designs Development Approach:
- Flight phase: Modify the ZBOT-1 experimental hardware and diagnostics for non-condensable gas studies; Obtain microgravity data to determine the effect of the noncondensable pressurant on tank pressurization, thermal destratification, and pressure reduction through mixing in microgravity
- Modeling: Expand the ZBOT-1 two-phase CFD model to incorporate the noncondensable gas effects
- Validation: Validate the noncondensable tank models with microgravity data
- Scale-up: Use the validated CFD models and empirical microgravity correlations to scale-up the design of the future tanks and dynamic pressure control system

Hand-in-Hand Microgravity & 1G Experimentation and Computational Modeling

ISS Resource Requirements

Accommodation (carrier)	Fluids Integrated Rack
Upmass (kg) (w/o packing factor)	80 - 100 kg
Volume (m³) (w/o packing factor)	0.10 - 0.12 m ³
Power (kw) (peak)	0.100 kW
Crew Time (hrs) (installation/operations)	15 - 20 hrs. total
Launch/Increment	TBD

Zero Boil-Off Tank Experiment-3 (ZBOT-3): Active Cooling

PI: Dr. Mohammad Kassemi, NCSER/GRCCo-I: Dr. David Chato, NASA GRCPS: David Plachta, NASA GRCPM: William Sheredy, NASA GRCEngineering Team: ZIN Technologies, Inc.

Objective:

Aid design of NASA's cryogenic storage systems by studying *different active* cooling strategies for future Zero-Boil-Off (ZBO) tank pressure control designs:

- Obtain microgravity flow and heat transfer data to characterize tank thermal destratification and pressure reduction for: (i) sub-cooled jet mixing (ii) spray-bar mixing; and (iii) broad area cooling with intermittent mixing
- Provide high quality microgravity data under controlled conditions for development, validation and verification of tank pressure control models, CFD codes, and empirically-based correlations
- Perform a quantitative comparison among different ZBO active pressure control strategies using microgravity data and model simulations

Relevance/Impact:

- Reduce launch mass (cost) by aiding development of novel active cooling ZBO pressure control schemes for long-term storage of cryogenic fluids
- Reduce the risks of future missions by testing pressure control systems never tested in microgravity and increase design reliability by providing archival data for benchmarking and improving CFD models/codes used by the Cryogenic Fluids Management Community (CFM) and the Aerospace Companies for future (ground-tested-only) tank designs

Development Approach:

- Flight phase: Modify the ZBOT-2 experimental apparatus to accommodate the pressure control components needed for active cooling studies
- Modeling: Expand the ZBOT-2 two-phase CFD model to incorporate the active cooling components
- Validation: Validate the active cooling tank models with microgravity data
- Scale-up: Use the validated CFD models and empirical microgravity correlations to scale-up the design of the future tanks and their active cooling ZBO pressure control system

ISS Resource Requirements

Accommodation (carrier)	Fluids Integrated Rack
Upmass (kg) (w/o packing factor)	80 - 100 kg
Volume (m³) (w/o packing factor)	0.10 - 0.12 m ³
Power (kw) (peak)	0.100 kW
Crew Time (hrs) (installation/operations)	15 - 20 hrs. total
Launch/Increment	TBD

- ZBOT CDR under way, Formal Review Scheduled for December 10, 2012
- ◆ ZBOT Hardware complete planned for December 2013
- ZBOT flight hardware availability planned for August 2014
- ◆ ZBOT 2,3 still pre-phase A

- ZBOT ready to go soon!
- ZBOT provides valuable data for understanding Cryogenic Propellant Storage and Transfer:
 - Observation of tank fluid mixing in low gravity with condensing fluid
 - Accurate control of thermal environment with precise temperature measurement and control
 - Accurate measurement of fluid motion with laser Particle Imaging Velocimetry
- ZBOT flight experiment data will significantly improve the modeling of Cryogenic Propellant Storage and Transfer
- ZBOT test hardware extensible to several additional Cryogenic Propellant Storage and Transfer research efforts