В этом листке мы перенесём понятия делимости, общих делителей, разложения на простые сомножители на «целые комплексные числа».

**Определение 1.** Числа вида a+bi, где  $a,b\in\mathbb{Z}$ , называются *гауссовыми целыми числами* или просто *гауссовыми числами*. Множество всех гауссовых чисел обозначается  $\mathbb{Z}[\sqrt{-1}]$  или  $\mathbb{Z}[i]$ . Легко видеть, что сумма и произведение гауссовых чисел – снова гауссовы. Как обычно, скажем, что гауссово число x делит гауссово число y, если существует такое гауссово z, что y=xz.

Если  $z=a+bi\neq 0$ — гауссово число, то его норма  $N(z)=|z|^2=a^2+b^2$ — натуральное число. Делимость гауссовых чисел связана с нормой, как показывает следующее утверждение.

**Задача 1** $^{\varnothing}$ . Докажите, что для всех  $z \in \mathbb{Z}[i]$  **а)** z делит N(z); **б)** если x делит y, то N(x) делит N(y).

**Задача 2.** Для следующих пар чисел выясните, делится ли какое-либо из них на другое, и найдите частное: 1+i и 8; 2+i и 3+i; 4-3i и 3+4i.

**Задача 3.** Докажите, что для гауссовых чисел x и y следующие свойства эквивалентны: (1) Множество делителей x совпадает с множеством делителей y; (2) x делит y и y делит x; (3) x = ry, где N(r) = 1.

**Задача 4** $^{\circ}$ **. а)** Гауссово число x называется *обратимым*, если оно делит 1. Докажите, что обратимые числа в точности числа с нормой 1. **б)** Найдите все обратимые гауссовы числа.

Как видно из задач 3 и 4, в гауссовых числах делимость «не различает» числа, получающиеся друг из друга умножением на обратимые. Такие числа называются *ассоциированными*. У ассоциированных чисел одинаковые делители и делимые. Как следствие, все свойства делимости (простота, обратимость, разложимость) одинаковы для ассоциированных чисел, а разложение на простые и наибольший общий делитель определены с точностью до ассоциированности.

**Определение 2.** Гауссово необратимое число  $x \neq 0$  называется *простым*, если для любого разложения x = yz какое-то из чисел y, z обратимо.

**Задача 5.** Являются ли простыми следующие гауссовы числа: -i, 2, 3, 1+i, 2+i, 1+2i?

Задача 6. Докажите, что гауссово число с простой нормой является простым.

**Задача 7** Докажите, что простые натуральные числа разбиваются на два непересекающиеся множества: простые гауссовы числа и числа, которые являются нормой простых гауссовых чисел.

**Задача 8. а)** Простое натуральное число p является нормой гауссового числа тогда и только тогда, когда  $p=a^2+b^2$  для натуральных a,b. **6)** Какие простые числа  $p\leqslant 29$  являются простыми гауссовыми?

**в)** Сформулируйте гипотезу об этих числах в общем виде и докажите её (Указание: используйте задачу 14 из листка 23).

**Задача 9.** Отметьте на картинке справа обратимые и простые числа. Для всех остальных найдите разложение в произведение простых.

**Задача 10.** а) Нарисуйте на картинке справа все гауссовы числа, кратные 1+2i. б) Докажите, что для любых гауссовых чисел  $x,y,y\neq 0$  найдутся такие гауссовы q,r, что x=qy+r и |r|<|y|.



**в)** Единственны ли такие q, r? Если нет, то сколько их может быть?

**Задача 11.** Определите наибольший общий делитель двух гауссовых чисел, докажите, что он существует и представляется в виде их линейной комбинации (коэффициенты — гауссовы).

**Задача 12.** Найдите наибольший общий делитель чисел **a)** 7 - i и -4 + 7i; **б)** 5 + 3i и 6 - 4i.

**Определение 3.** Гауссовы числа x, y называются взаимно простыми, если их наибольший общий делитель обратим.

**Задача 13 6. a)** Верно ли, что целые числа a и b взаимно просты (как целые), если они взаимно просты как гауссовы? **б)** Верно ли обратное? **в)** Верно ли, что  $x,y\in\mathbb{Z}[i]$  — гауссовы взаимно простые числа, если N(x) и N(y) — взаимно просты (как натуральные)? **г)** Верно ли обратное?

**Задача 14** $^{\circ}$ . Докажите, что если гауссово простое делит произведение xy, то оно делит либо x, либо y.

Задача 15. Сформулируйте и докажите основную теорему арифметики для гауссовых чисел.

| 1<br>a | 1<br>6 | 2 | 3 | $\begin{vmatrix} 4 \\ a \end{vmatrix}$ | 4<br>6 | 5 | 6 | 7 | 8<br>a | 8<br>6 | 8<br>B | 9 | $\begin{array}{ c c }\hline 10 \\ a \end{array}$ | 10<br>б | 10<br>B | 11 | 12<br>a | 12<br>б | 13<br>a | 13<br>б | 13<br>B | 13<br>Г | 14 | 15 |
|--------|--------|---|---|----------------------------------------|--------|---|---|---|--------|--------|--------|---|--------------------------------------------------|---------|---------|----|---------|---------|---------|---------|---------|---------|----|----|
|        |        |   |   |                                        |        |   |   |   |        |        |        |   |                                                  |         |         |    |         |         |         |         |         |         |    |    |