(A) 6 ; (B) -6 ; (C) 36 ; (D) -36 .	4. 设1,2,3 为 3 阶方阵 A 的特征值,则 -A* = (D)	(A) 1: (B) 2; (C) -3; (D) 不能确定.	3. $A_{3x1}B_{1x3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -1 & -2 & -3 \end{pmatrix}$, $M \operatorname{tr}(B_{1x3}A_{3x1}) = (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(A) 2 (B) -2 (C) -6 (D) -54.	2. 设三阶行列式 $ \alpha,\beta,\gamma =2$,则行列式 $ \alpha+\beta,-2\beta+\gamma,\gamma-\alpha =(-C-)$	(C) 设 $r(A)=n$,则 n 元线性方程组 $Ax=b$ 有解: (D)正交矩阵的行列式值必为 1.	1. 下列命题正确的是(A) (A) 相似矩阵具有相同特征值; (B)两个同阶矩阵如果相抵,则必相似;			1 1 1 1 1 1 1 1 1 1	应试人	我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。	课程名: 线性代数 B 参考 答案 课程号: 01013010 学分: 应试人声明:	上海大学 2013~2014 学年 秋 季学期 A 试卷 绩
				10. 设 α , β 为3维列向量,且 $\alpha^T\beta=2$, $A=I-\alpha\beta^T$,则 $A^{2n}=I$ 。	9. 设 α,β,γ 为两两正交的单位向量,则 $\alpha+2\beta-2\gamma$ 的长度为 $\underline{3}$;		似: $8. \ \text{设} A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 3 & 4 & 1 \\ 4 & 7 & 8 & 3 \end{pmatrix}, \ mr(AB) = 2;$		(1 2)	6. $\partial A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $\partial A^2 - A - 3I = A$;		、作	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5. 设 A 是 n 阶方阵,且 $A\alpha = \beta$,则线性方程组 $\begin{pmatrix} A & -\beta \\ I & 0 \end{pmatrix} x = \begin{pmatrix} 0 \\ \alpha \end{pmatrix}$ 有解 (B)

		ل ل د
	(1分),又 $ C^{-1} =1$,得 $C^*=C^{-1}$ (2分)	$\text{FFU}(C^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -5 & 6 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ 5 & -6 & -5 & 6 \end{pmatrix} (1 \text{ $\frac{1}{2}$}), \ \ \mathbb{X}[C^{-1}]$
	(2分)	$\mathbb{X}(B-I)^{-1} = \begin{pmatrix} 6 & -1 \\ -5 & 1 \end{pmatrix}$
<u>5</u>	$I (B-I)^{-1} (B-I)^{-1} (B-I)^{-1} (2 \%)$	$\begin{bmatrix} A-I,I \end{bmatrix} \rightarrow \begin{bmatrix} I & (B-I)^{-1} \\ I & I \end{bmatrix} \rightarrow \begin{bmatrix} I \\ (B-I)^{-1} \end{bmatrix} \rightarrow \begin{bmatrix} I \\ (3 \%) \end{bmatrix}$
	(2分)	解 由 $A-C=I$ 得 $C^{-1}=(A-I)^{-1}$
	且 $A-C=I$,求 C^*	12. (12 \Re) $\Re A = \begin{pmatrix} B & 0 \\ B-I & B \end{pmatrix}, B = \begin{pmatrix} 7 & 1 \\ 5 & 2 \end{pmatrix}$, \mathbb{B}
$\mathbb{H} \alpha_3$	- Im	$\begin{bmatrix} 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$
所以材	$(2 \mathcal{H}) = (-1)^{\frac{n(n-1)}{2}} (n+1) (0 \mathcal{H})$	$ \begin{vmatrix} n+1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & \cdots & 0 & 0 \\ = (-1)^{\frac{n(n-1)}{2}} & \cdots & \cdots & \cdots & \cdots & (2 \%) = (-1)^{\frac{n(n-1)}{2}} & \cdots & \cdots & \cdots & \cdots \end{vmatrix} $
1	n+1 1 2 1 $n+1$ 1 1 2	1 1 2 1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 2 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & 1 & 1 \\ 2 & \cdots & 1 & 1 \end{vmatrix} $
4		11. (8 分)计算n 阶行列式 D= ··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
1	ه ب ب	
13. (得分 评卷人 三、计算题: (6 题, 共 62 分)

14. (12分) 求解线性方程组 $[x_1 + (a-3)x_2 - 2x_3 + x_4 = 2,$ $2x_1 - ax_2 - 2x_3 - 2x_4 = -a,$ $x_1 - x_2 - x_3 - x_4 = -1,$

若有无穷多解,用其特解与对应齐次线性方程组的基础解系表示其通解 解 增广矩阵

(44)

线性方程组通解为 子党

当 α≠2 时,有 $x = k_1(1, 1, 0, 0)^T + k_2(3, 0, 2, 1)^T + (-4, 0, -3, 0)^T$

(3年)

 $B \to \begin{pmatrix} 1 & 0 & 0 & -3 & a-5 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 & a-5 \end{pmatrix}$

3 好

线性方程组通解为

 $x = k_1(3, 0, 2, 1)^T + (a - 5, 1, a - 5, 0)^T$

面好西季的文本名之本后回到

15. (8分)设A为3阶矩阵,且三维列向量组 α 1, α 2, α 3线性无关。如果

$$A\alpha_1 = \alpha_2, A\alpha_2 = \alpha_3, A\alpha_3 = 0$$

计算 A3+I的特征值。

A01,00 = 08AWATRE (20)

解 由 $A\alpha_1 = \alpha_2$, $A\alpha_2 = \alpha_3$, $A\alpha_3 = 0$, 得

 $A^3\alpha_1 = 0, A^3\alpha_2 = 0, A^3\alpha_3 = 0$ (2 %+1 %+1 %)

所以 $A^3(\alpha_1,\alpha_2,\alpha_3)=0$, 因为 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, 即 $(\alpha_1,\alpha_2,\alpha_3)$ 可逆, 得 $A^3=0$ (分)

得 A 产 I, 有 A 3 + I 的特征值为 1, 1, 1 (2 分)

A、潜向信息 O.O.O. 图 对, 对力, 阿男子美见人、特任信息、·· A工、有目传的儿. (分下的如分分)

201

A的特征值为4,1,1

当 $\lambda = 4$ 时,有特征向量 $\alpha_1 = \frac{1}{\sqrt{3}}(1,1,1)^7$

(2分)

(2分)

(2分)

(3分)

当 $\lambda = 1$ 时,有特征向量 $\alpha_2 = (1, -1, 0)^T, \alpha_3 = (1, 0, -1)^T$

单位正交化为 $\beta_2 = \frac{1}{\sqrt{2}}(1,-1,0)^T$, $\beta_3 = \frac{1}{\sqrt{6}}(1,1,-2)^T$

设 $Q = (\alpha_1, \beta_2, \beta_3)$,有 $Q^T A Q = \text{diag}(4,1,1)$

由此有 $Q(A^{-1}+I)Q^T = \operatorname{diag}(\frac{5}{4},2,2)$, 即取 $P = Q^T$

(1分)

(2分)

得分 | 评卷人

四、证明题:(2题,每题6分共12分)

17. (6分) 设 A 为 n (n > 1) 阶可逆矩阵,求证 | A* | | A | "-1

Ħ 首先有 A*A = | A | I

(2分)

因为A 可逆, 得 $A^* = |A|A^-$

得| A* |=| A|"| A-1 |=| A|"-1

(6分) 设A,B 分别为 $n \times n, n \times m$ 矩阵, 且AB = B, r(B) = n, 求证A = I.

Ħ 因为 AB=B, 所以 (A-I)B=0

得r(A-I)+r(B) ≤ n

根据r(B)=n, 得r(A-I)=0 , 有A-I=0 , 即A=I

(2分)

(2分)

(2分)

(2分)

(2分)

kidst Radin = xk, d, + xkada+xkada (2) The >, AN=>N, 040 (26) N= N=N=1+ N=0=+ N=0=+ N=0=+ N=0=+ N=0== 1

× - > - \