Proyecto 2

Árbol de expansión mínimo

Descripción

Programar los algoritmos de Prim y Kruskal para obtener el MST.

Instrucciones

- Implementar los siguientes algoritmos en Java:
 - o Prim usando Heap de nodos
 - o Kruskal usando DFS para ciclos
 - o Kruskal usando Union-Find para ciclos.
- Probar los 4 algoritmos con el archivo anexo:
 - El archivo describe un grafo no dirigido con costos enteros de sus aristas (tomado de la referencia [1]).
 - o Su formato es:
 - [Número de nodos] [Número de aristas]
 - [Nodo 1 de la arista 1] [Nodo 2 de la arista 1] [costo de la arista 1]
 - [Nodo 1 de la arista 2] [Nodo 2 de la arista 2] [costo de la arista 2]
 - .,
 - o Puede haber datos iguales y negativos.
- Reportar:
 - Solución Final: Costo total
 - o Tiempo de ejecución
- Comente sus resultados.

API

Se requieren tres funciones:

Cada función lee el grafo del archivo que recibe como parámetro, obtiene su MST con el algoritmo dado y regresa su costo. Además imprime el tiempo de ejecución y las aristas del MST en el siguiente formato:

```
(nodoInicial, nodoFinal, costo)
// Prim
float prim(string archivo);
// Kruskal con DFS para detección de ciclos
float kruskalDFS(string archivo);
// Kruskal con Union-Find para detección de ciclos
float kruskalUF(string archivo);
```

Documentación

- Para este proyecto se requiere la documentación normal:
 - o Manual del usuario con impresiones de pantalla
 - o Descripción Técnica como comentarios en el código
 - o Solución Final y análisis
 - o Referencias (en caso de existir)

Referencias

[1] Tim Roughgarden. <u>Algorithms- Design and Analysis- Part 1</u>. Stanford-Coursera (2015). <u>https://www.coursera.org/learn/algorithm-design-analysis</u>.