最优化方法

陆玫

lumei@tsinghua.edu.cn

Tel: 62794756

内容:

- **1.** 线性规划
 - 2. 非线性规划

清华大学研究生公共课教材——数学系列 最优化 理论与算法(第2版) 陈宝林 编著 清华大学出版社

教材

参考书

- ❖《数学规划》黄红选,韩继业编著
- ❖《运筹学》<运筹学>教材编写组 编著
- *Linear and Nonlinear Programming, David G. Luenberger and Yinyu Ye

作业要求与答疑安排

- ❖ 作业要求: 写清名字与学号并将作业扫描(或者 拍照)后在网络学堂上提交(电子版请提交pdf版 本)。
- ❖每周四晚上12点之前提交作业。
- ❖ 答疑时间:每周三下午3:00--4:00
- ❖ 答疑地点: 理科楼A414
- ❖ 通过邮箱(lumei@tsinghua.edu.cn)答疑
- ❖ 总成绩=平时成绩(20%)+期末考试成绩(75%)
- ❖ 出勤: 5分

❖助教:

田静(jingtian_xju@163.com)
邵钰菓(syg20@mails.tsinghua.edu.cn)
李佳明(lijiaminggood@163.com)
吕泽群(2312231981@qq.com)
郑瑜(zhengyu.davy@foxmail.com)

最优化问题

最优化: 在一定约束条件下极大化或极小化某函数. 在所有可行方案中选取最佳方案, 使效益最大或成本最低。

依照给定条件和目标,从众多方案中选择最佳方案

应用

欧拉: 宇宙万物无不与最小化或最大化有关

- ◆ 经济金融: 投资组合
- ◆ 交通运输: 列车运行、物流运输
- ◆ 信息科学:数据挖掘、图像/信号处理、机器学习、强化学习、压缩感知、模式识别
- ◆ 生命医学: 医学图像、DNA序列、蛋白质折叠
- ◆ 军事运筹: 摆兵布阵、后勤保障

历史

最优化的起源:春秋战国时期的田忌赛马

齐	威王 田忌	齐威王 田忌
Ŧ.	A > B	A > F
中	C > D	C < B
下	E > F	E < D
	3 : 0	1 : 2

18世纪,欧拉、拉格朗日、高斯等对与力学、天文学中极值问题的研究

高斯

欧拉 拉格朗日

第一次世界大战

❖ 最早进行运筹学工作的,是以英国生理学家希尔为 首的英国国防部防空试验小组,他们在第一次世界 大战期间进行了高射炮系统利用研究

雷达与"Blackett马戏团"

- ◆ 1935年, 英国科学家沃森--瓦特(R. Watson-Wart〉发明了雷达. 但很快发现由这些雷达得到的信息常常是互相矛盾的,需要加以协调和关联.
- ❖ 1939年组建了代号为"Blackett马戏团"的研究小组,专门 就改进防空系统进行研究,大大提高了英国本土的防空能力
- ◆ "Blackett马戏团"是世界上第一个使用了"Operational Research"一词;从学术思想上,他们的研究已经蕴含着整体性的概念和系统分析的思想,这也是运筹学的精髓

*第二次世界大战

- ❖ 深水炸弹的起爆深度
- ❖ 1942年, 麻省理工学院的物理学家莫尔斯领导的小组 经过调查研究,提出两条重要建议:
 - (I)将反潜攻击由反潜舰艇投掷水雷改为由飞机投掷深水炸弹;且仅当潜艇浮出水面或刚下潜时,才投掷深水炸弹:炸弹的起爆深度由原来的水下100米左右改为水下25米左右.
 - (2)改进运送物资的船队及护航舰艇编队的方式,由小规模多批次,改进为加大规模,减少批次,可使损失减少.

线性规划一第二次世界大战的后勤供应问题

 $\min \ \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
s.t. $\boldsymbol{A} \boldsymbol{x} \geqslant \boldsymbol{b}$

线性规划单纯形方法的创始人 Dantzig

❖第二次世界大战结束时,英、美及加拿大军队中工作的运筹学者已超过**700**人,正是由于战争的需要,运筹学有了长足的发展,并且形成了一门学科。

- ❖用最优化方法解决实际问题,一般可经过下列 步骤:
- ❖①提出最优化问题, 收集有关数据和资料;
- ❖ ②建立最优化问题的数学模型,确定变量,列出目标函数和约束条件;
- *③分析模型,选择合适的最优化方法;
- ❖④求解,一般通过编制程序,用计算机求最优解;
- ❖ ⑤最优解的检验和实施。
- ❖上述 5个步骤中的工作相互支持和相互制约, 在实践中常常是反复交叉进行。

生产计划的编制

产品 资源	A	В	C	企业 现有资源
钢材(吨/只)	3	4	2	600
木材 (立方米/只)	2	1	2	400
人工 (千小时/只)	1	3	3	300
机床(台/只)	1	4	4	200
收益 (千元/只)	2	4	3	

问:企业应如何安排生产,能使总收益最大?

2、数学模型

- ❖ 决策目标: A、B、C产品各生产多少台使企业 总收益最大?
 - 决策变量: 设 x_1, x_2, x_3 为生产A, B, C三种产品的数量。
 - 目标函数: $\max 2x_1 + 4x_2 + 3x_3$
 - 约束条件: $3x_1 + 4x_2 + 2x_3 \le 600$

$$2x_1 + x_2 + 2x_3 \le 400$$

$$x_1 + 3x_2 + 3x_3 \le 300$$

$$x_1 + 4x_2 + 4x_3 \le 200$$

•非负条件: $x_1, x_2, x_3 \ge 0$

$$\begin{cases} \max & 2x_1 + 4x_2 + 3x_3 \\ s.t. & 3x_1 + 4x_2 + 2x_3 \le 600 \\ & 2x_1 + x_2 + 3x_3 \le 400 \\ & x_1 + 3x_2 + 3x_3 \le 300 \\ & x_1 + 4x_2 + 4x_3 \le 200 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

运输问题

如某建材公司有三个水泥厂 A_1 , A_2 , A_3 , 四个经销商 B_1 , B_2 , B_3 , B_4 其产量、销量、运费(元/吨)见表**2**. **5**。

表 2.5 建材公司的数据						
销售地产地	B_1	B_2	B_3	B_4	产量 (吨)	
A_1	8	7	3	2	2000	
A_2 A_3	2	4	9	6	10000	
销量 (吨)	3000	2000	4000	5000		

如何制定调运方案, 使总的运费最小?

数学模型---线性规划问题

min
$$f = 8x_{11} + 7x_{12} + 3x_{13} + 2x_{14} + 4x_{21} + 7x_{22}$$
 $+5x_{23} + x_{24} + 2x_{31} + 4x_{32} + 9x_{33} + 6x_{34}$ $s.t.$ $x_{11} + x_{12} + x_{13} + x_{14} \le 2000$ 由生产基地 A_i $(i = 1, 2, 3)$ 运到销售地 B_j $(j = 1, 2, 3, 4)$ 的货运量为 $x_{21} + x_{22} + x_{33} + x_{34} \le 4000$ 的货运量为 $x_{i1} + x_{21} + x_{31} \ge 3000$ $x_{12} + x_{22} + x_{32} \ge 2000$ $x_{13} + x_{23} + x_{33} \ge 4000$ $x_{14} + x_{24} + x_{34} \ge 5000$ $x_{ij} \ge 0, i = 1, 2, 3; j = 1, 2, 3, 4$

问题的解决方案

其解为 $x = (0,0,2000,0,1000,0,2000,5000,2000,2000,0,0)^T$, min f = 37000元。最佳运输方案见:表2.6

表 2.6 最佳运输方案

销售地产地	B_1	B_2	B_3	B_4	产量 (吨)
A_1 A_2 A_3	0 1000 2000	0 0 2000	2000 2000 0	0 5000 0	2000 10000 4000
销量(吨)	3000	2000	4000	5000	

合理下料问题

现有一批长度一定的原材料钢管,由于生产的需要,要求截出不同规格的钢管若干。

试问应如何下料,既能满足生产的需要,又使得使用的原材料钢管数量最少(即废材最少)?

具体问题:料长7.4m,要求截成2.9m,2.lm,1.5m的钢管分别为1000根,2000根,1000根。如何截取,才使得总用料最省?

Modeling

把所有可能的下料方式、按照各种下料方式从料长7.4m的原料上得到的不同规格钢管的根数、残料长度,以及需要量列于表2.8中。

			表 2.8					
下料方式	B_1	B_2	$B_3 - B_4$	B_5	B_6	B_7	B_8	需要量(根)
钢管规格 (m)	-							
2. 9	2	1	1 1	0	0	0	0	1000
2. 1	0	0	21.	2	1	3	0	2000
1.5	1	3	0 1	2	3	0	4	1000
残料长度(m)	0.1	0	0.3-0.9	0.2	0.8	1. 1	1.4	

问题转化为确定每种下料方式各用多少根7.4m的原料。

数学模型----整数线性规划问题

设 x_1, x_2, \dots, x_8 分别为按照 B_1, B_2, \dots, B_8 方式下料的原料根数,则 $\min f = x_1 + x_2 + \dots + x_8$

$$s.t. \ 2x_1 + x_2 + x_3 + x_4$$
 ≥ 1000 $2x_3 + x_4 + 2x_5 + x_6 + 3x_7$ ≥ 2000 $x_1 + 3x_2$ $x_4 + 2x_5 + 3x_6 + 4x_8$ ≥ 1000 $x_j \geq 0$ $(j = 1, 2, \dots, 8)$ 且为整数

其解为 $x = (0,200,800,0,200,0,0)^T$, $\min f = 1200$ (根) 最佳下料方案为:方式 $B_2:200$ 根,方式 $B_3:800$ 根,方式 $B_5:200$ 根。

人力资源安排问题

某商场是个中型的百货商场,现在需要对营业员的工作时间作出 安排,营业员每周工作五天,休息两天,并要求休息的两天是连续 的,问题归结为:如何安排营业员的作息时间,既能满足工作需要, 又使配备的营业员人数最少?

1、有关数据

对营业员的需求进行统计分析,营业员每天的需求人数如下表所示:

时 间	所需营业员人数
星期日	28 人
星期一	15 人
星期二	24 人
星期三	25 人
星期四	19 人
星期五	31 人
星期六	28 人

2、模型

决策变量: 设 x_j 为第j天开始休息的人数($j=1,2,\cdots,7$)

目标函数:
$$min x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

约束条件:
$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 28$$

$$x_2 + x_3 + x_4 + x_5 + x_6 \ge 15$$

$$x_3 + x_4 + x_5 + x_6 + x_7 \ge 24$$

$$x_4 + x_5 + x_6 + x_7 + x_1 \ge 25$$

$$x_5 + x_6 + x_7 + x_1 + x_2 \ge 19$$

$$x_6 + x_7 + x_1 + x_2 + x_3 \ge 31$$

$$x_7 + x_1 + x_2 + x_3 + x_4 \ge 28$$

❖ 例(挑选球员问题)某篮球教练要从8名业余队员中 挑选3名队员参加专业球队,使平均身高达到最高。 队员的号码、身高及所擅长的位置如下。要求:中 锋1人,后卫1人,前锋1人,但1号、3号与6号队员 中至少保留1人给业余队。

号码	身高(米)	位置	挑选变量
1	1.92	中锋	x_1
2	1.91	中锋	x_2
3	1.90	前锋	x_3
4	1.86	前锋	x_4
5	1.85	前锋	x_5
6	1.83	后卫	<i>x</i> ₆
7	1.80	后卫	x ₇
8	1.79	后卫	<i>x</i> ₈

max
$$1.92x_1 + 1.91x_2 + 1.90x_3 + 1.86x_4$$

 $+1.85x_5 + 1.83x_6 + 1.80x_7 + 1.79x_8$
s.t. $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 = 3$
 $x_1 + x_2 = 1$
 $x_3 + x_4 + x_5 = 1$
 $x_6 + x_7 + x_8 = 1$
 $x_1 + x_3 + x_6 \le 2$
 $x_i = 0 \implies 1 \quad i = 1, 2, \dots, 8$

- * 例(选址问题)设有n个市场,第j个市场的位置为(a_j , b_j),对某种货物的需要量为 q_j , j=1,...,n,现计划建立m个仓库,第i个仓库的容量为 c_i ,i=1,...,m,试确定仓库的位置,使各仓库到各市场的运输量与路程乘积之和最小.
- *解: 设第i个仓库的位置为 (x_i,y_i) , 运输量为 w_{ii} .

$$\min \sum_{j=1}^{n} \sum_{i=1}^{m} w_{ij} \sqrt{(x_i - a_j)^2 + (y_i - b_j)^2}
s.t. \sum_{j=1}^{n} w_{ij} \le c_i \quad i = 1, 2, \dots, m
\sum_{i=1}^{m} w_{ij} = q_j \quad j = 1, 2, \dots, n
w_{ij} \ge 0 \quad i = 1, 2, \dots, m \quad j = 1, 2, \dots, n$$

❖ 例(数据拟合问题)在实验数据处理或统计资料分析中常遇到如下问题:设两个变量x和y,已知存在函数关系,但其解析表达式或者是未知的、或者虽然为已知的但过于复杂。设已取得一组数据,

- $(x_i, y_i), i=1,2,...,m$
- ❖ 根据这组数据导出函数*y=f(x)*的一个简单而近似的解析表达式。
- ❖ 取一个简单的函数序列 $g_0(x), g_1(x), ..., g_n(x)$

$$\min \sum_{i=1}^{m} \left[y_i - \sum_{j=1}^{n} \alpha_j g_j(x_i) \right]^2$$

例:把圆形木材加工成矩形横截面的木梁,要求木梁高度不超过H,横截面的惯性矩(高度²×宽度)不小于W,而且高度介于宽度与4倍宽度之间,问如何确定木梁尺寸可使木梁成本最小。

设矩形横截面的高度为x1,宽度为x2

min
$$\pi \left(\frac{1}{4} x_1^2 + \frac{1}{4} x_2^2 \right)$$

s.t. $x_1 \le H$
 $x_1^2 x_2 \ge W$
 $x_2 \le x_1 \le 4x_2$
 $x_1 \ge 0, x_2 \ge 0$

模型与分类

目标函数

数学模型

 $\min f(x)$

s.t. $\boldsymbol{x} \in \Omega$

可行域/决策集

决策变量

等式约束

等式约束指标不等式约束

不等式约束指标集

1、根据约束划分

无约束优化

$$\min_{x \in R^n} f(x)$$

约束优化

$$\begin{array}{ll}
\min & f(x) \\
\text{s.t.} & x \in \Omega
\end{array}$$

约束优化问题一般比无约束优化问题难解; 有时可以相互转化

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \{ \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} = 1 \} \qquad \qquad \min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \qquad \iff \min_{\boldsymbol{x}, t} \{t \mid t - f(\boldsymbol{x}) \ge 0\}$$

2、根据函数的线性度划分

线性规划:目标函数及约束函数都是线性

$$\begin{array}{ll} \min & c^{\mathsf{T}} x \\ \text{s.t.} & Ax \geqslant b \end{array}$$

非线性规划:目标函数或约束中含有非线性函数

$$\min -3x_1 + x_2 - x_3^2$$
s.t. $x_1 + x_2 + x_3 \le 0$

$$-x_1 + 2x_2 + x_3^2 = 0$$

一类常用的非线性规划

❖ 二次规划:目标函数二次,约束函数线性

min
$$Q(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{x} + \boldsymbol{g}^{\mathrm{T}} \boldsymbol{x}$$

s.t. $\boldsymbol{a}_{i}^{\mathrm{T}} \boldsymbol{x} = b_{i}, i \in \mathcal{E}$
 $\boldsymbol{a}_{i}^{\mathrm{T}} \boldsymbol{x} \geqslant b_{i}, i \in \mathcal{I}$

线性规划、二次规划问题是常见的、重要的最优化问题。 目前已有比较完善的理论和求解方法。

3、根据目标函数和可行域的凸性划分:

凸规划:目标函数为凸函数,可行域为闭凸集。

非凸优化: 目标函数非凸或可行域非凸

凸规划问题的局部最优解就是全局最优解,求解相对容易。 非凸优化问题难于求解,特别是全局最优解。

4、根据函数的解析性质划分

光滑优化: 优化问题的所有函数都连续可微,如 多项式优化

min
$$(x_1 - \frac{4}{9})^2 + (x_2 - 2)^2$$

s.t. $-x_1^2 + x_2 \ge 0$
 $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

非光滑优化: 优化问题含有不可微函数

min
$$\frac{1}{2} ||Ax - b||^2 + ||x||_1$$
 非光滑优化 非光滑项

5、根据可行域中可行点的个数划分

连续优化: 可行域含有无穷多个不可数的点且可行域中的点连续变化。

离散优化:可行域中含有有限个或可数个点,即该优化问题在由有限个点或可数个点组成的可行域中寻求最优解。

多数情况下,该问题的可行域是通过某些元素的排列组合产生的. 因此又称组合优化。

典型案例:装箱问题、旅行商问题(销售商问题)、中国邮路问题。

有多个结构相同、大小相等的箱子及多个不同大小的物品。寻找一种方法,使得用最少的箱子将全部物品装入箱内,或用一个箱子装入尽可能多的物品.

给定多个城市和每两城市 间的距离,寻求一条最短 回路,使得<mark>每座城市访问</mark> 一次并最终回到起始城市 给定多个街道/村庄及每两街 道间的距离。寻求一条最短 回路,使<mark>走遍所有街道</mark>,并 最终回到邮局。

(中国数学家管梅谷1950s)

根据变量的特殊要求,离散优化又分离出

整数规划: 所有变量都取整数(离散优化)

0-1规划: 所有变量取0或1(离散优化)

混合整数规划:部分变量为整数变量,其余变量为连续变量

混合0-1规划: 部分变量取0或1,其余变量为连续变量

稀疏优化: 要求最优解稀疏, 即非零个数尽可能少

华罗庚先生的统筹法:一种安排工序的组合方法

泡茶喝 水壶要洗,茶壶,茶杯要洗;火已生了,需要烧水,茶叶有了。先干什么,后干什么?才能在最短的时间喝上茶?

办法1: 洗水壶,灌凉水,放在火上;在等待水开的时间里,洗茶壶、洗茶杯、拿茶叶;等水开了,泡茶喝。

办法2: 先做好一些准备工作,洗水壶,洗茶壶茶杯,拿茶叶;一切就绪,灌水烧水;坐待水开了泡茶喝。

办法3: 洗净水壶,灌上水,放在火上,坐待水开;水开之后,找茶叶,洗茶壶茶杯,泡茶喝。

第一种办法最省时间,后两种办法都窝了工。这就是组合优化中的排序问题。

基本概念

- ❖ 可行点(可行解): 在线性规划和非线性规划中, 满足约束条件的点.
- ❖ 可行集或可行域S: 全体可行点组成的集合.
- ❖ 无约束问题: 如果一个问题的可行集是整个空间.
- ❖ 对于一个规划问题,下面三种情况必占其一:
- ❖ (1) $S = \Phi$,则称该问题无解或不可行;
- ❖ (2)**S**≠Φ,但目标函数在**S**上无界,则称该问题无界;
- ❖ (3) **S**≠Φ且目标函数有有限的最优值,则称该问题有最优解.

min
$$f(x)$$

s.t. $x \in \Omega$

可行解: $x \in \Omega$

最优解: $x^* \in \Omega$.对任意的 $x \in \Omega$, 都有 $f(x^*) \leq f(x)$

局部最优解: $x^* \in \Omega$. 存在该点的邻域 $N(x^*, \delta)$, 使对任意的 $x \in N(x^*, \delta) \cap \Omega$, 都有 $f(x^*) \leq f(x)$ 。

严格局部最优解: 若 x^* 还满足对任意的 $x \in N(x^*, \delta) \cap \Omega$, $x \neq x^*$, 都有 $f(x^*) < f(x)$.

最优值: 优化问题的目标函数在最优解处的值

若优化问题在可行域上有下界,但没有最优解, 此时称目标函数在可行域上的下确界为优化问题的 最优值。

二元函数 $f(x) = x_1^2 + (1 - x_1 x_2)^2$ 在二维空间中的最优值为0,但只在 $x_1 = \frac{1}{x_2}$ 且 $x_2 \to \infty$ 时才能达到。

考虑到最优值可达和不可达的情况,有时将最优值记为

$$f^* = \inf_{x \in \Omega} f(x)$$

预备知识

线性相关与线性无关:

设V为向量空间, $v^1, v^2, \dots, v^k \in V$,若存在不全为零的数 $\lambda_1, \lambda_2, \dots, \lambda_k$ 使得

$$\lambda_1 v^1 + \lambda_2 v^2 + \dots + \lambda_k v^k = 0$$

则称 v^1, v^2, \dots, v^k 为线性相关的向量组,否则称为线性无关的向量组。

范数

若函数 $||\cdot||: \Re^n \to \Re$ 满足下面条件:

- (1) 正定型: $\forall x \in \Re^n, ||x|| \ge 0,$ 并且 $||x|| = 0 \Leftrightarrow x = 0;$
- (2) 三角不等式: $\forall x, y \in \Re^n$, $||x + y|| \le ||x|| + ||y||$;
- (3) 齐次性: $\forall \alpha \in \mathfrak{R}, \forall x \in \mathfrak{R}^n, ||\alpha x|| = |\alpha||x||$. 则称 $||\cdot||$ 为 \mathfrak{R}^n 上的范数.

常用范数:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \qquad ||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_\infty = \max_{1 \le i \le n} |x_i|$$

序列的极限

- ❖ 定义: 设{ $x^{(k)}$ }是 R^n 中的一个向量序列, $\bar{x} \in R^n$ 如果对任给的 $\varepsilon > 0$ 存在正整数 K_{ε} ,使得当 $k > K_{\varepsilon}$ 时就有 $|x^{(k)} \bar{x}|| < \varepsilon$,则称序列收敛到 \bar{x} 或称序列以 \bar{x} 为极限,记作 $\lim_{k \to \infty} x^{(k)} = \bar{x}$.
- ❖结论:序列若存在极限,则任何子序列有相同的极限,即序列极限是唯一的。
- *定义:设 $\{x^{(k)}\}$ 是 \mathbb{R}^n 中的一个向量序列,如果存在一个子序列 $\{x^{(k)}\}$,使得 $\lim_{k\to\infty} (k_j) = \hat{x}$,则称 \hat{x} 是序列 $\{x^{(k)}\}$ 的一个聚点。

*定义:设 $\{x^{(k)}\}$ 是 R^n 中的一个向量序列,如果对任给定的 $\varepsilon>0$,总存在正整数 K_{ε} ,使得当m, $l>K_{\varepsilon}$ 时就有 $\|x^{(m)}-x^{(k)}\|<\varepsilon$,则称序列 $\{x^{(k)}\}$ 为 Cauchy序列。

❖ 定理: 设 $\{x^{(j)}\}\subset R^n$ 为Cauchy序列,则 $\{x^{(j)}\}$ 的聚点必为极限点。

集合

 x^0 的 ε -邻域: $N_{\varepsilon}(x^0) = \{x \mid ||x - x^0|| < \varepsilon, \varepsilon > 0\}$

内点: 设 $x^0 \in S \subset \mathfrak{R}^n$, 若存在 $\varepsilon > 0$, 使得 $N_{\varepsilon}(x^0) \subset S$, 则称 x^0 为S的一个内点。

补集: 集合S的补集定义为 $S^C = \{x \mid x \notin S, x \in \Re^n\}$

开集: 若对 $\forall x \in S, x$ 为内点,则称S为开集。

闭集: 若集合S的补集 S^{C} 为开集,则称S为闭集。

有界集 : 若存在正数M > 0,使得 $\forall x \in S$, $||x|| \le M$ 成立,则称S为有界集。

紧集: 有界闭集称为紧集.

性质:

- (1) 集合 $S \subset \mathfrak{R}^n$ 是闭集,当且仅当对任意的无穷 序列 $\{x^k\} \subset S$,若 $x^k \to x^*$,则 $x^* \in S$ 。
- (2) 集合 $S \subset \mathfrak{R}^n$ 是紧集当且仅当对任意的无穷 序列 $\{x^k\} \subset S$,必存在收敛于S中点的子序列 $\{x^{k_i}\}$.

函数的展开

梯度:
$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^T$$

Hesse矩阵:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \dots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\ \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \dots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}} \end{bmatrix}$$

Taylor展开

定理:

设函数 $f: \mathbb{R}^n \to \mathbb{R}$ 连续可微,向量 $p \in \mathbb{R}^n$,则

$$f(x+p) = f(x) + \nabla f(x)^{T} p + o(||p||)_{\circ}$$

若函数/是二阶连续可微,则

$$f(x+p) = f(x) + \nabla f(x)^{T} p + \frac{1}{2} p^{T} \nabla^{2} f(x) p + o(||p||^{2}).$$

二次型的正定性

定义: 对实二次型 $f(X) = X^T AX$, 若 $\forall X \neq 0$, 都有 $f(X) = X^T AX > 0$ 成立,则称f(X)为正定二次型, A为正定矩阵。

定理: 对于n阶实对称矩阵A,下列命题等价:

- (1) $X^T AX$ 是正定二次型(或A是正定矩阵);
- (2) A的n个顺序主子式都大于零;
- (3) A的n个特征值都大于零;
- (4) 存在可逆矩阵P, 使得 $A = P^T P$.

二次型的半正定性

定义: 对实二次型 $f(X) = X^T AX$,若 $\forall X \neq 0$,都有 $f(X) = X^T AX \geq 0$ 成立,且存在 $X \neq 0$ 使得 $f(X) = X^T AX = 0$,则称f(X)为半正定二次型,A为半正定矩阵。

定理: 对于n阶实对称矩阵A,下列命题等价:

- (1) $X^T AX$ 是半正定二次型(或A是半正定矩阵);
- (2) A的所有主子式(行号与列号取成相同的子式)都大于等于零,而且至少有一个等于零;
- (3) A的n个特征值都大于等于零,而且至少有一个等于零。

凸集(convex set)

- * 定义: 设x,y为欧式空间 E^n 中相异的两个点,则点集
- $P = \{ \lambda x + (1 \lambda)y | \lambda \in R \}$
- ❖ 称为通过x和y的直线。
- ❖ 定义: 设 $S \subseteq E^n$, 若对 $\forall x^{(1)}, x^{(2)} \in S \mathbb{Z} \forall \lambda \in [0, 1]$, 都有
- $\lambda x^{(1)} + (1 \lambda) x^{(2)} \in S$
- ❖ 则称S为凸集。
- * $\mathbf{\mathfrak{G}}x^{(1)}, x^{(2)}, \dots, x^{(k)} \in S$, 称
- $\lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \ldots + \lambda_k x^{(k)}$
- $\stackrel{\diamond}{\bullet}$ (其中 $\lambda_i \ge 0$, $\lambda_1 + \lambda_2 + \dots + \lambda_k = 1$) 为 $x^{(1)}$, $x^{(2)}$, \dots , $x^{(k)}$ 的凸组合.

❖ H={
$$x|p^Tx=a$$
} ----□型平面

♦ H={
$$x|p^Tx$$
≤ a } ---- (闭) 半空间

♣ L=
$$\{x \mid x = x^{(0)} + \lambda d, \lambda \ge 0\}$$
 — — — 射线

凸集的性质

- *设 S_1 和 S_2 为 E^n 中的两个凸集,β是实数,则
- **♦** (1) β **S**₁ ={ β *x*|*x*∈**S**₁}为凸集。
- *(2) $S_1 \cap S_2$ 为凸集。
- **♦** (3) $S_1+S_2=\{x^{(1)}+x^{(2)}|x^{(1)}∈S_1, x^{(2)}∈S_2\}$ 为凸集。
- **♦ (4)** S_1 - S_2 ={ $x^{(1)}$ - $x^{(2)}$ | $x^{(1)}$ ∈ S_1 , $x^{(2)}$ ∈ S_2 }为凸集。

定义:有限个闭半空间的交 $\{x \mid Ax \leq b\}$ 称为多面体。

结论: 多面体是凸集

极点(extreme point)

定义: 设*S*是非空凸集, $x \in S$, 若由 $x = \lambda x^{(1)} + (1 - \lambda) x^{(2)}$, 其中 $\lambda \in (0,1)$, $x^{(1)}$, $x^{(2)} \in S$, 必推出 $x = x^{(1)} = x^{(2)}$, 则称 x是 S的极点.

极方向(extreme direction)

定义:设S为 E^n 中的闭凸集, $d \in E^n$, $d \neq 0$,如果对 $\forall x \in S$,有 $\{x + \lambda d \mid \lambda \geq 0\} \subset S$

则称向量d为S的方向。设 $d^{(1)}$, $d^{(2)}$ 为S的方向,若对任意的 $\lambda > 0$,有 $d^{(1)} \neq \lambda d^{(2)}$,则称 $d^{(1)}$ 与 $d^{(2)}$ 是两个不同的方向。若S的方向d不能表示为该集合的两个不同方向的正的线性组合,则称d为S的极方向。

$$S = \{(x_1, x_2)^T \mid x_1 \ge 0, x_2 \ge 0\}$$

向量 $d \ge 0, d \ne 0$ 是 S 的方向

例:

设
$$S = \{(x_1, x_2)^T \mid x_2 \ge |x_1|\}, d^{(1)} = (1, 1)^T, d^{(2)} = (-1, 1)^T,$$
则 $d^{(1)}, d^{(2)}$ 是 S 的极方向。

例:设 $S = \{(x_1, x_2)^T \mid x_2 \ge |x_1|\}, d^{(1)} = (1, 1)^T, d^{(2)} = (-1, 1)^T,$ 则 $d^{(1)}, d^{(2)}$ 是S的极方向。

対 $\forall x \in S, \forall \lambda \geq 0$, 有

$$x + \lambda d^{(1)} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 + \lambda \\ x_2 + \lambda \end{pmatrix},$$

$$\therefore x \in S, \quad \therefore x_2 \ge |x_1|,$$

$$\overrightarrow{\text{m}} \quad x_2 + \lambda \ge |x_1| + \lambda \ge |x_1 + \lambda|$$

$$\therefore \left\{ x + \lambda d^{(1)} \mid \lambda \ge 0 \right\} \subset S$$

$$\Rightarrow d^{(1)}$$
是S的方向。

设
$$d^{(1)}=\lambda_1\begin{pmatrix} x_1\\x_2\end{pmatrix}+\lambda_2\begin{pmatrix} y_1\\y_2\end{pmatrix}$$
,其中 λ_1 , $\lambda_2>0$, $\begin{pmatrix} x_1\\x_2\end{pmatrix}$, $\begin{pmatrix} y_1\\y_2\end{pmatrix}$ 是S的方向,

则有
$$\begin{cases} 1 = \lambda_1 x_1 + \lambda_2 y_1 \\ 1 = \lambda_1 x_2 + \lambda_2 y_2 \end{cases} \Rightarrow \lambda_1 x_1 + \lambda_2 y_1 = \lambda_1 x_2 + \lambda_2 y_2$$

$$\Rightarrow x_1 = \frac{\lambda_2}{\lambda_1} (y_2 - y_1) + x_2$$

$$\Rightarrow x_2 \ge |x_1| = \left| \frac{\lambda_2}{\lambda_1} (y_2 - y_1) + x_2 \right| \Rightarrow y_2 \le y_1$$

$$\therefore y_2 \ge |y_1|, \therefore y_2 = y_1 \Longrightarrow x_2 = x_1 \Longrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{x_1}{y_1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

所以, $d^{(1)}$ 是S的极方向。

定理: 设 $S = \{x \mid Ax = b, x \ge 0\} \ne \emptyset$, d是非零向量,则d是S的方向 $\Leftrightarrow d \ge 0$,且Ad = 0.

证明:"
$$\Leftarrow$$
" $\forall x \in S, \lambda \geq 0$,有 $x + \lambda d \geq 0$,且 $A(x + \lambda d) = Ax + \lambda Ad = b$ $\therefore x + \lambda d \in S$,即d是S的方向。 " \Rightarrow "设d是S的方向,则由 $x \in S$,得 $x + \lambda d \in S$,其中 $\lambda > 0$ $\therefore A(x + \lambda d) = b$ 由 $Ax = b, \lambda > 0$,得 $Ad = 0$. 又对 $\forall \lambda > 0$, $x + \lambda d \geq 0$, $\therefore d \geq 0$.

多面集的表示定理

- ❖ 定理: 设 $S=\{x | Ax=b, x \ge 0\}$ 为非空多面集,则有
- ❖ (1) 极点集非空,且存在有限个极点 $x^{(1)}, \dots, x^{(k)}$.
- * (2) 极方向集合为空集的充要条件是S有界;若S 无界,则存在有限个极方向 $d^{(1)},d^{(2)},...,d^{(l)}$.

$$x = \sum_{j=1}^{k} \lambda_{j} x^{(j)} + \sum_{j=1}^{l} \mu_{j} d^{(j)}$$

其中
$$\lambda_j \ge 0, j = 1, 2, \dots, k, \sum_{j=1}^k \lambda_j = 1$$

$$\mu_j \ge 0, j = 1, 2, \dots, l.$$