Homework 5 for **MATH 574**, Topics in Logic

Due: Wednesday April 9

Problem 1

Let $T: X \to X$ be a measure-preserving transformation of a probability space (X, \mathcal{B}, μ) . Let A be a finite set, and assume $\mathcal{P} = \{P_a : a \in A\}$ is a finite partition of X into measurable sets $(P_a \neq \emptyset)$. The (T, \mathcal{P}) -process is defined by putting

$$X_{\mathcal{P}}(x) = a \text{ iff } x \in P_a, \text{ and } X_n(x) = X_{\mathcal{P}}(T^n x), \text{ for } n \ge 0.$$

Show that there exists a measurable map $F: X \to A^{\mathbb{Z}}$ such that

$$F(Tx) = T_A F(x),$$

where T_A is the shift-map on $A^{\mathbb{Z}}$, and such that the *push-forward measure* of μ under F, given as $\mu_F(B) = \mu(F^{-1}(B))$, is the Kolmogorov measure of the (T, \mathcal{P}) -process.

Note: This shows we can **code** a process as a symbolic system using partitions.

Problem 2

Show that a measure preserving transformation $T: X \to X$ is ergodic if and only if for every measurable $f: X \to \mathbb{C}$,

 $(f \circ T)(x) = f(x)$ for almost every x implies f constant almost everywhere.

Problem 3

Show that if (\vec{p}, M) is a stationary Markov chain, then

$$Q = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} M^i$$

exists (i.e. the limit exists for every entry ij). Show further that Q is also stochastic and that QM = MQ = Q.

Problem 4

Use the preceding exercise to prove the following characterization of ergodicity for Markov chains. Let (\vec{p}, M) be a stationary Markov chain. Then the following are equivalent:

- (i) (\vec{p}, M) is ergodic.
- (ii) All rows of the limit matrix *Q* are identical.
- (iii) 1 is a simple eigenvalue of M.