Словарик

- \circ Группа это множество G с операцией ⋆, которое обладает следующими свойствами:
 - (i) замкнутость: $\forall a, b \in G$: $a \star b \in G$;
 - (ii) ассоциативность: $\forall a, b, c \in G$: $(a \star b) \star c = a \star (b \star c)$;
 - (iii) наличие нейтрального элемента: $\exists e \in G : \forall a \in G : e \star a = a$;
 - (iv) наличие обратного элемента: $\forall a \in G : \exists a^{-1} \in G : a \star a^{-1} = e$.
- \circ Для группы существует обозначение: (G, \star) . Если группа G конечна, то ее nopядок |G| это количество элементов в ней. Пopядком элемента x, аналогично с перестановкой, называется такое минимальное число d, что $x^d = e$.
- \circ Множество $H \subset G$ называется nod apynnoй группы (G, \star) . Если для нее выполняются аксиомы группы (i)-(iv), то есть: (i) $\forall a,b \in H$: $a \star b \in H$; (ii) $\forall a,b,c \in H$: $(a \star b) \star c = a \star (b \star c)$; (iii) $\exists e \in H \forall a \in H$: $e \star a = a$, и (iv) $\forall a \in H \exists a^{-1} \in H$: $a \star a^{-1} = e$. Тут важно, что вместо группы G написана группа H.
- Группа называется абелевой (коммутативной), если операция \star коммутативна, то есть $\forall a, b \in G$: $a \star b = b \star a$.
- о *Таблицой Кэли (умножения)* называется таблица, в которой записаны все элементы группы и их композиции.
- \circ Группы называются *изоморфными*, если между ними существует взаимно однозначное соответствие, сохраняющее операцию. То есть, если $\varphi: (\mathcal{G}, \star) \to (\mathcal{H}, \star)$ изоморфизм, то $\forall a, b \in \mathcal{G}: \varphi(a \star b) = \varphi(a) \star \varphi(b)$. Только у изоморфных группы изоморфны таблицы Кэли. Неформально говоря, изоморфные группы это "одни и те же" группы.

Задачки

- 1. Сколько элементов в группе D_5 ? А сколько элементов порядка 2?
- 2. Докажите, что A_n подгруппа группы S_n .
- 3. Верно ли, что подгруппа абелевой группы всегда абелева? Если да объясните. Если нет приведите контрпример.
- 4. В группе \mathcal{D}_6 найдите композицию $r \circ \mathfrak{S}_4$, где r поворот на $6\mathcal{O}^\circ$, а \mathfrak{S}_4 отражение относительно вертикальной оси.
- 5. Напишите таблицу Кэли для группы \mathcal{G}_3 . Какие из элементов коммутируют между собой?

6. Докажите, что в группе D_n выполняется равенство:

$$sor = r^{-1} os$$

Где r — поворот на $^{360^{\circ}}/_{n}$, а ε — отражение относительно любой оси.

- 7. Пусть $H = (\{-1, 1\}, \times)$ в (\mathbb{R}^*, \times). Является ли H подгруппой? Является ли H абелевой?
- 8. Изоморфны ли группы: (a) S_2 и $\mathbb{Z}/(2)$; (b) S_3 и $\mathbb{Z}/(3)$; (c) D_4 и S_4 ; (d) S_4 и D_{12} , и (f*) S_5 и D_{10} .
- 9. Найдите все подгруппы в: (a) $\mathbb{Z}/(\mathfrak{S})$; (b) $\mathfrak{S}_{\mathfrak{Z}}$; (c) \mathcal{D}_{4} ; (d) $\mathcal{D}_{\mathfrak{S}}$; (e*) \mathcal{D}_{42} , и (f*) A_{4} . Для каждой подгруппы проверьте, что ее порядок делит порядок всей группы. Подумайте над тем, каким группам изоморфны каждая из них.
- 10. Летнешкольников заставили выложить плац правильной шестиугольной плиткой². Сколько существует симметрий такого замощения плиткой? Образуют ли они группу? Если да, то какой у нее порядок?
- 11. Пусть H множество всех перестановок из S_4 , которые оставляют тройку на месте. Является ли H подгруппой группы S_3 ? Если да, то какой у нее порядок и является ли она абелевой?
- 12. Является ли множество $G = \{2^n \mid n \in \mathbb{Z}\}$ с операцией умножения группой? Если да, то является ли она абелевой? Какие в ней подгруппы?
- 13. Придумайте свой объект, например, букву "Ж". Опишите его группу симметрий. Подумайте, какой группе она изоморфна.
- 14. Пусть H подгруппа группы G. Тогда *левым смежным классом* называется $gH = \{gh \mid h \in H\}$.
 - (a) Докажите, что два смежных класса либо совпадают, либо не пересекаются.
 - (b)* Докажите, что все смежные классы находятся в биекции друг с другом.
 - (c) В каком соотношении находится порядок группы H, число смежных классов и порядок группы G?
 - (d) Почему в группе порядка 15 не может быть подгруппы порядка 4?

¹Здесь "звёздочка" обозначает то, что нет нуля.

²Причем плитка самая обычная, на ней даже узоров никаких нет.