

Content

- Introduction
- 02 Objectives & characteristics
- Aromatic compounds production
- Applicative study
- Key learnings

O 1 Introduction

Introduction

Introduction

The table shows the main differences in terms of assimilation and production capabilities between Brettanomyces bruxellensis, S. cerevisiae (Ale yeasts) and S. pastorianus (Lager yeasts)

		Brettanomyces bruxellensis	S. cerevisiae (Ale)	S. pastorianus (Lager)
Assimilation	Glucose	+	+	+
	Maltose	+	+	+
	Maltotriose	+	+/-	+
	Dextrins	+/-	+/-	-
	Cellobiose	+	-	-
	Nitrate	+	-	-
Production	Ethanol	+	+	+
	Glycerol	-	+	+
	Acetic acid	+	-	-
	Volatile phenols	+	+/-	-

Objective & characteristics

Targets of *Brettanomyces* for SafBrew[™] BR-8

Type of microorganism:

Brettanomyces bruxellensis species¹

Typical flavour expression:

funky notes, such as horse, farm, animal, leather...

Fermentation profile and sugar assimilation:

glucose-fructose-maltose-maltotriose exclusively, no assimilation of dextrins

Robust to re-fermentation conditions

Most suitable for bottle and cask fermentation (secondary fermentation)²

No off-flavour

SafBrewTM BR-8 Specifications

Typical values¹

Dry matter 94,0-96,5% (w/w)

Viable yeast > 5.0 *10 9 cfu/g

Purity:

Lactic acid bacteria Total Bacteria <1 cfu /106 yeast cell <5 cfu /106 yeast cell

Acetic acid bacteria « Wild » Yeast² <1 cfu /106 yeast cell <5 cfu /106 yeast cell

Pediococcus

<1 cfu /10⁶ yeast cell

Pathogenic micro-organisms in accordance with regulation

¹ Analysis done according to our HACCP study

Saccharomyces cerevisiae

Produces acetate ester: Isoamyl Acetate (banana) Phenylethyl acetate (rose) Specific esters

Brettanomyces

Produces ethyl esters:
Ethyl acetate (solvent)
Ethyl hexanoate (Red apple)
Ethyl octanoate (tropical, pineapple)
Esterify fatty acid chains (grape/wine)

Brettanomyces

Posses B-glucosidase activity allowing to release of terpenes, aromatic compounds with a very low threshold in beer

O4 Applicative study

Experimental conditions

Refermentation beer

6,3% ABV by a POFyeast

3g/l (0,41 oz/gal) of CO_2

8 dry samples (\$1-8) rehydrated

In 10 times the weight of sterile water

At 28°C (82.4°F) during 30 min

Under low agitation

Bottles fermentation

+10 g/l (1.34 oz/gal) of sterile sucrose

+5 g/hl (or equivalent) (0.67 oz/gal) of SafBrewTM BR-8 vs SafAleTM F-2

At 24°C (75.2°F) during 1 and 3 months

Analytical & sensory data after 1 & 3 months

All samples refermented with SafBrew™ BR-8 show a concentration in 4-EP and 4-EG >> threshold

All samples refermented with SafBrew™ BR-8 show a brett footprint after 1 month that increases after 3 months

05 Key learnings

SafBrew™ BR-8 Brettanomyces bruxellensis sp.

Usage

Bottles & casks fermentation

Rehydration

10 times

the weight in sterile water or wort

Dosage rate

5-10 g/hl¹ (0.006-0.013oz/gal)

Rehydration

25-29°C

(77-84.2°F)

15-30min under low/moderate agitation

Refermentation²

15°C-25°C

(59-77°F)

1-3 months

Phenols production

4-EP & 4-EG

« horsy-funky » character (after 1 and ideally 3 months)

Storage conditions

≥ 6 months at 4°C

(39.2°F)

2 years shelf-life

¹⁻ Our standard recommendation is to dose 10 g/hL in all cases. However, depending on the alcohol and CO^2 content of the beer before refermentation, you might go down to 5 g/hl. In case of the higher dosage rates, yeast can form flocs settling on the bottom of beer bottles.

Hugo Picard

Technical Sales Manager - Home Segment

Phone: +33 6 49 55 63 45

Email: h.picard@fermentis.lesaffre.com

Thank you for your attention!

If you have any questions about the SafBrew™ BR-8, could be about the product itself, could be about the way to use it, could be something else, don't hesitate to contact me and I will do my best to answer you! By the way, if you're coming, don't hesitate to visit our booth during the next Homebrew Con in San Diego, it'll be a pleasure to meet you there.

Follow us!

