Predicting Recipes Site Traffic

A solution for Tasty Bytes

The Project

Predicting recipes to be shown on web site

Business Goals

Predict which recipes will lead to high traffic

Correctly predict high traffic recipes 80% of the time

Data

Information of each recipe given by Product team

Data

Information of each recipe given by Product team

	recipe ~	calories ~	carbohydrate ~	sugar v	protein ~	category ~	servings ~	high_traffic ~
0	1	null	null	null	null	Pork	6	High
1	2	35.48	38.56	0.66	0.92	Potato	4	High
2	3	914.28	42.68	3.09	2.88	Breakfast	1	null
3	4	97.03	30.56	38.63	0.02	Beverages	4	High
4	5	27.05	1.85	0.8	0.53	Beverages	4	null

Data Validation

- 52 rows with missing values (removed)
- Category: "chicken breast" merged into "chicken"
- Servings "4-6 as a snack": only considered the numeric information

Key Findings

Recipe's Web Traffic

High: 59.8%

Low: 40.2%

High Traffic Probability per Categories

Variables Correlation

Outcomes

Models

Model Metric

Precision

It measures how reliable the model is when it says something is positive (i.e. high traffic).

Range: 0 to 1. The greater, the better.

Model Metric

Model Name

Logistic Regression

Decision Tree

Precision Score

0.819

0.814

Model Metric

Model Name

Precision
Score

0.819

Decision Tree

0.814

Business Metric

KPI

- 1. Selection of recipes with at least 80% chances of high traffic.
- 2. From this selection, compare the predicted class (high or non) against the real one.
- 3. Get the score of correct predictions

The higher the percentage, the better the model performs.

Business Metric

KPI

Model Name

KPI %

Logistic 97.3%

Decision Tree 89.7%

Business Metric

KPI

Model Name

Logistic
Regression

Pecision Tree

89.7%

Recommendations

Recommendations

- Apply A/B testing on website during next month and collect more data.
- Deploy Logistic Regression model into production. Compare with estimated KPI (97.3%)
- Provide missing information (cost per serving, ingredients) in order to increase the model precision.

Thanks

Questions?

GabrielMazzotta@hotmail.com