See chapter 2 in Regression and Other Stories.

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
}

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

A typical set of Julia packages to include in notebooks.

```
begin
      # Specific to this notebook
      using GLM </
      # Specific to ROSTuringPluto
      using Optim ✓
      using Logging ✓
     using Turing ✓
    # Graphics related
     using GLMakie ✓
      # Include basic packages
      using RegressionAndOtherStories ✓
      import RegressionAndOtherStories: link
      Logging.disable_logging(Logging.Warn);
end;
Replacing docs for 'RegressionAndOtherStories.tr
DataFrame, AbstractString} in module 'Regression
```

2.1 Examining where data come from.

hdi =

	rank	state	hdi	canada
1	1	"Connecticut"	0.962	2
2	2	"Massachusetts"	0.961	2
3	3	"New Jersey"	0.961	2
4	4	"Washington, D.C."	0.96	4
5	5	"Maryland"	0.96	3
6	6	"Hawaii"	0.959	2
7	7	"New York"	0.959	1
8	8	"New Hampshire"	0.958	1
9	9	"Minnesota"	0.958	1
10	10	"Rhode Island"	0.958	3
•	more			
51	51	"Mississippi"	0.799	5

⁻ hdi = CSV.read(ros_datadir("HDI",
 "hdi.csv"), DataFrame)


```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI",
         xlabel = "HDI rank of state", ylabel
           = "HDI index")
     limits!(ax, 0, 60, 0.7, 1)
      scatter!(hdi.rank, hdi.hdi)
      selection = 1:20:50
     scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
      for i in selection
         lines!([hdi.rank[i], hdi.rank[i] +
          3],
              [hdi.hdi[i], hdi.hdi[i] +
              0.015]; color=:grey)
          annotations!(hdi.state[i],
              position = (hdi.rank[i] + 3,
              hdi.hdi[i] + 0.015),
              textsize = 10)
     end
      selection = [4, 51]
      scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
      for i in selection
          lines!([hdi.rank[i], hdi.rank[i] +
              [hdi.hdi[i], hdi.hdi[i] -
              0.015]; color=:grey)
          annotations!(hdi.state[i],
              position = (hdi.rank[i] + 3,
              hdi.hdi[i] - 0.023),
              textsize = 10)
     end
     selection = 45:3:50
     scatter!(hdi.rank[selection],
      hdi.hdi[selection]; color=:darkred)
```

	st_state	st_stateabb	st_income
1	"Alabama"	"AL"	21656.2
2	"Alaska"	"AK"	27209.7
3	"Arizona"	"AZ"	23381.0
4	"Arkansas"	"AR"	19977.9
5	"California"	"CA"	29581.4
6	"Colorado"	"CO"	30406.0
7	"Connecticut"	"CT"	37808.2
8	"Delaware"	"DE"	28128.1
9	"Florida"	"FL"	25977.8
10	"Georgia"	"GA"	25502.2
: r	nore		
50	"Wyoming"	"WY"	25934.1

```
begin

votes = CSV.read(ros_datadir("HDI",

"votes.csv"), DataFrame;

delim=",", stringtype=String,

pool=false)

votes[votes.st_year .== 2000,
[:st_state, :st_stateabb, :st_income]]
end
```

```
hdi
                                        canada.dis
     rank
                  state
            "Connecticut"
    1
                              0.962
                                        2
1
    2
            "Massachusetts"
                              0.961
                                        2
2
            "New Jersey"
    3
                                        2
3
                              0.961
            "Maryland"
    5
                              0.96
                                        3
4
            "Hawaii"
    6
                              0.959
                                        2
5
            "New York"
6
    7
                              0.959
                                        1
    8
            "New Hampshire"
                              0.958
7
                                        1
            "Minnesota"
    9
                              0.958
                                        1
8
            "Rhode Island"
    10
                              0.958
                                        3
9
            "California"
10
    11
                              0.958
                                        3
: more
            "Mississippi"
                              0.799
                                        5
50
    51
```

```
tmp = votes[votes.st_year .== 2000,
    [:st_state, :st_stateabb, :st_income]]
votes2 = DataFrame(state=tmp.st_state,
    abbr=tmp.st_stateabb,
    income=tmp.st_income)
    global hdivotes = innerjoin(hdi,
    votes2, on = :state)
end
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI ~
      income",
          xlabel = "Average state income in
          2000",
          ylabel = "Human Development Index")
      for i in 1:size(hdivotes, 1)
          if length(hdivotes.abbr[i]) > 0
              annotations!(hdivotes.abbr[i],
                  position =
                  (hdivotes.income[i],
                  hdivotes.hdi[i]),
                  textsize = 10)
          end
      end
     hdivotes.rank_hdi =
      sortperm(hdivotes.hdi)
     global hdivotes2 = sort(hdivotes,
      :income)
      ax = Axis(f[1, 2]; title = "Ranked HDI
      ~ ranked income",
          xlabel = "Rank of average state
          income in 2000",
          ylabel = "Rank of Human Development
          Index")
      for i in 1:size(hdivotes2, 1)
          if length(hdivotes2.abbr[i]) > 0
              annotations!(hdivotes2.abbr[i],
                  position = (i,
                  hdivotes2.rank_hdi[i]),
                  textsize = 10)
          end
      end
      current_figure()
  end
```

	rank	state	hdi	canada.di
1	51	"Mississippi"	0.799	5
2	50	"West Virginia"	0.8	3
3	48	"Arkansas"	0.803	4
4	40	"New Mexico"	0.895	4
5	42	"Montana"	0.885	1
6	49	"Louisiana"	0.801	5
7	47	"Alabama"	0.809	5
8	29	"Utah"	0.932	2
9	41	"Idaho"	0.89	1
10	46	"Oklahoma"	0.815	4
: r	nore			
50	1	"Connecticut"	0.962	2

hdivotes2

ppl2_1 (generic function with 2 methods)

```
@model function ppl2_1(inc, hdi)
a ~ Normal(0, 5)
b ~ Normal(0, 5)

σ ~ Exponential(1)

μ = a .+ b .* inc
for i in eachindex(hdi)
hdi[i] ~ Normal(μ[i], σ)
end
end
```

```
▶ [
      parameters
                                 std
                                          naive_s
                     mean
   1
                   3.09433
                             1.9036
                                         0.030098
      :a
   2
      :b
                   0.873877
                             0.0667355
                                         0.001058
   3
      : o
                   7.20971
                             0.671482
                                         0.010617
 begin
       rank_income = collect(1:size(hdivotes2,
       1))
       rank_hdi = hdivotes2.rank_hdi
       m2_1t = ppl2_1(rank_income, rank_hdi)
       chns2_1t = sample(m2_1t, NUTS(),
       MCMCThreads(), 1000, 4)
       describe(chns2_1t)
   end
```

```
parameters median mad_sd
                                   mean
                                              st
   "a"
                3.087
                         1.905
                                  3.094
                                            1.96
   "b"
                0.873
                         0.066
                                  0.874
                                            0.06
2
   "σ"
                7.159
                         0.662
                                  7.21
                                            0.67
3
begin
      post2_1t = DataFrame(chns2_1t)
      ms2_1t = model_summary(post2_1t, [:a,
      :b, :σ])
  end
```

```
▶[3.087, 0.873, 7.159]

• ā, b̄, σ̄ = [ms2_1t[p, :median] for p in [:a, :b, :σ]]
```



```
• let
      f = Figure()
      ax = Axis(f[1, 1]; title = "HDI ~
      income",
          xlabel = "Average state income in
          2000",
          ylabel = "Human Development Index")
      for i in 1:size(hdivotes, 1)
          if length(hdivotes.abbr[i]) > 0
              annotations!(hdivotes.abbr[i],
                  position =
                  (hdivotes.income[i],
                  hdivotes.hdi[i]),
                  textsize = 10)
          end
      ax = Axis(f[1, 2]; title = "Ranked HDI
      ~ ranked income",
          xlabel = "Rank of average state
          income in 2000",
          ylabel = "Rank of Human Development
          Index")
      for i in 1:size(hdivotes2, 1)
          if length(hdivotes2.abbr[i]) > 0
              annotations!(hdivotes2.abbr[i],
                  position = (i,
                  hdivotes2.rank_hdi[i]),
                  textsize = 10)
          end
      end
      x = 0:52
      lines!(x, \bar{a} .+ \bar{b} .* x; color=:red)
  end
```

2.2 Validity and reliability.

```
regicert
            survey
      "june08voter"
                          "absolutely certain"
      "aug08relig"
                          "absolutely certain"
 2
      "aug08relig"
                          "absolutely certain"
 3
      "aug08relig"
                          "absolutely certain"
 4
      "june08voter"
                          "absolutely certain"
 5
      "july08poli-econ"
                          "absolutely certain"
      "june08voter"
                          "absolutely certain"
 7
      "aug08relig"
                          "absolutely certain"
      "june08voter"
                          "absolutely certain"
 9
      "july08poli-econ"
                          "absolutely certain"
more
      "sept08forpoli"
                          "absolutely certain"
begin
     pew_pre_raw =
      CSV.read(ros_datadir("Pew", "pew.csv"),
      DataFrame; missingstring="NA",
      pool=false)
     pew_pre = pew_pre_raw[:, [:survey,
      :regicert, :party, :state, :heat2,
      :heat4, :income2, :party4, :date,
          :weight, :voter_weight2, :pid,
          :ideology, :inc]]
  end
```

pid_incprob =

	Column1	V1	V2	V3	,
1	1	0.0	0.0	0.0	0.0
2	2	0.434068	0.410585	0.40081	0.3
3	3	0.583262	0.54593	0.51899	0.5
4	4	0.780714	0.717176	0.67472	0.6
5	5	0.849178	0.818929	0.778284	0.7
6	6	1.0	1.0	1.0	1.0

pid_incprob = CSV.read(ros_datadir("Pew",
 "pid_incprop.csv"), DataFrame;
missingstring="NA", pool=false)

ideo_incprob =

	Column1	V1	V2	V3	
1	1	0.0	0.0	0.0	0
2	2	0.10736	0.0713431	0.0545858	0
3	3	0.261838	0.220291	0.211839	0
4	4	0.640184	0.634329	0.617531	0
5	5	0.914783	0.925208	0.930161	0
6	6	1.0	1.0	1.0	1

- ideo_incprob = CSV.read(ros_datadir("Pew",
 "ideo_incprop.csv"), DataFrame;
 missingstring="NA", pool=false)


```
• let
     x1 = 1.0:1.0:9.0
      f = Figure()
      ax = Axis(f[1, 1], title = "Self-
      declared political ideology by income",
          xlabel = "Income category", ylabel
          = "Vote fraction")
     limits!(ax, 1, 9, 0, 1)
      for i in 1:6
          sca1 = scatter!(x1,
          Array(ideo_incprob[i, 2:end]))
          lin = lines!(x1,
          Array(ideo_incprob[i, 2:end]))
          band!(x1, fill(0, length(x1)),
          Array(ideo_incprob[i, 2:end]);
              color = (:blue, 0.25), label =
              "Label")
      annotations!("Very conservative",
      position = (3.2, 0.945), textsize=15)
      annotations!("Conservative", position =
      (3.9, 0.78), textsize=15)
      annotations!("Moderate", position =
      (4.0, 0.4), textsize=15)
      annotations!("Liberal", position =
      (4.2, 0.1), textsize=15)
      annotations!("Very liberal", position =
      (3.8, 0.0075), textsize=15)
      ax = Axis(f[1, 2], title = "Self-
      declared party indentification by
      income..",
          xlabel = "Income category", ylabel
          = "Vote fraction")
     limits!(ax, 1, 9, 0, 1)
      for i in 1:6
```

```
sca1 = scatter!(x1,
        Array(pid_incprob[i, 2:end]))
        lin = lines!(x1,
        Array(pid_incprob[i, 2:end]))
        band!(x1, fill(0, length(x1)),
        Array(pid_incprob[i, 2:end]);
            color = (:blue, 0.25), label =
            "Label")
    annotations!("Republican", position =
    (4.0, 0.87), textsize=15)
    annotations!("Lean Rep", position =
    (4.15, 0.675), textsize=15)
   annotations!("Independent", position =
    (3.95, 0.53), textsize=15)
    annotations!("Lean Dem", position =
    (4.2, 0.4), textsize=15)
    annotations!("Democrat", position =
    (4.1, 0.19), textsize=15)
    current_figure()
end
```

2.3 All graphs are comparisons.

```
health =
                 country
                             spending lifespan
               "Australia"
                             3357
                                        81.4
               "Austria"
                                        80.1
                             3763
           2
               "Belgium"
                                        79.8
                             3595
               "Canada"
                             3895
                                        80.7
               "Czech"
                                        77.0
           5
                             1626
           6
               "Denmark"
                             3512
                                        78.4
               "Finland"
                             2840
                                        79.5
           7
               "France"
                             3601
                                        81.0
           8
               "Germany"
                             3588
                                        80.0
               "Greece"
          10
                             2727
                                        79.6
           : more
               "USA"
                             7290
                                        78.1
          30
 health =
   CSV.read(ros_datadir("HealthExpenditure",
   "healthdata.csv"), DataFrame;
   missingstring="NA", pool=false)
```

ppl2_3 (generic function with 2 methods)

```
@model function ppl2_3(x, y)
a ~ Normal(0, 50)
b ~ Normal(0, 50)
σ ~ Exponential(1)
μ = a .+ b .* x
for i in eachindex(y)
y[i] ~ Normal(μ[i], σ)
end
end
```

```
▶ [
      parameters
                                   std
                                             naiv
                     mean
                   76.0017
   1
                              0.971398
                                            0.018
      :a
   2
      :b
                   0.0010519
                               0.000302652
                                            4.78
   3
      : o
                   2.1404
                               0.285264
                                            0.004
 begin
      m2_3t = ppl2_3(health.spending,
       health.lifespan)
       chns2_3t = sample(m2_3t, NUTS(),
       MCMCThreads(), 1000, 4)
       describe(chns2_3t)
   end
```

```
parameters median mad_sd
                                   mean
                                              st
   "a"
                76.033
                         0.972
                                  76.002
                                            0.97
1
   "b"
                0.001
                         0.0
                                  0.001
                                            0.0
2
   "σ"
                2.111
                         0.266
                                  2.14
                                            0.28
begin
      post2_3t = DataFrame(chns2_3t)[:, 3:5]
      ms2_3t = model_summary(post2_3t, [:a,
      :b, :σ])
  end
```

```
► [76.033, 0.001, 2.111]
- â, b̂, ô = ms2_3t[:, :median]
```



```
• let
      x = 0:8000
      f = Figure()
      ax = Axis(f[1, 1], title = "Health
      expenditure of 30 'western' countries",
          xlabel = "Spending [PPP US\$]",
          ylabel = "Life expectancy [years]")
     limits!(ax, 0, 8100, 73, 83)
      sca = scatter!(health.spending,
      health.lifespan; color=:darkred)
     lin = lines!(x, \hat{a} + \hat{b} * x;
      color=:lightblue)
      for i in 1:nrow(health)
          if health.country[i] == "UK"
              annotations!(health.country[i],
              position =
              (health.spending[i]+40,
              health.lifespan[i]-0.25),
              textsize=8)
          elseif health.country[i] ==
          "Finland"
              annotations!(health.country[i],
              position =
              (health.spending[i]-100,
              health.lifespan[i]+0.1),
              textsize=8)
          elseif health.country[i] == "Greece"
              annotations!(health.country[i],
              position =
              (health.spending[i]-300,
              health.lifespan[i]-0.25),
              textsize=8)
          elseif health.country[i] == "Sweden"
              annotations!(health.country[i],
              position =
              (health.spending[i]-180,
```

```
health.lifespan[i]-0.25),
            textsize=8)
        elseif health.country[i] ==
        "Ireland"
            annotations!(health.country[i],
            position =
            (health.spending[i]-150,
            health.lifespan[i]-0.25),
            textsize=8)
        elseif health.country[i] ==
        "Netherlands"
            annotations!(health.country[i],
            position =
            (health.spending[i]+50,
            health.lifespan[i]+0.01),
            textsize=8)
        elseif health.country[i] ==
        "Germany"
            annotations!(health.country[i],
            position =
            (health.spending[i]-350,
            health.lifespan[i]+0.08),
            textsize=8)
        elseif health.country[i] ==
        "Austria"
            annotations!(health.country[i],
            position =
            (health.spending[i]+30,
            health.lifespan[i]-0.2),
            textsize=8)
        else
            annotations!(health.country[i],
            position =
            (health.spending[i]+60,
            health.lifespan[i]-0.1),
            textsize=8)
        end
   end
    current_figure()
end
```

Names example.

cleannames =

	X	name	sex	X1880	X1
1	1	"Mary"	"F"	7065	69
2	2	"Anna"	"F"	2604	26
3	3	"Emma"	"F"	2003	20
4	4	"Elizabeth"	"F"	1939	18
5	5	"Minnie"	"F"	1746	16
6	6	"Margaret"	"F"	1578	16
7	7	"Ida"	"F"	1472	14
8	8	"Alice"	"F"	1414	13
9	9	"Bertha"	"F"	1320	13
10	10	"Sarah"	"F"	1288	12
more	е				
98012	98148	"Zzyzx"	"M"	0	0

```
cleannames = CSV.read(ros_datadir("Names",
    "allnames_clean.csv"), DataFrame)
```

- ▶ (98012, 134)
 - size(<u>cleannames</u>)
- ▶["X", "name", "sex", "X1880", "X1881", "X1882",
- names(<u>cleannames</u>)

	name	sex	X1906	X1956	X20	
1	"John"	"M"	8263	80735	1514	
2	"William"	"M"	6567	58927	1891	
3	"James"	"M"	5908	84840	1621	
4	"Charles"	"M"	3607	35198	7999	
5	"George"	"M"	4201	17228	2699	
6	"Frank"	"M"	2798	11126	1399	
7	"Joseph"	"M"	3527	32706	1839	
8	"Thomas"	"M"	2177	44785	9493	
9	"Henry"	"M"	2111	5951	4661	
10	"Robert"	"M"	3636	83869	9874	
more						
36659	"Zzyzx"	"M"	0	0	0	
ط و	cleannames	[c] cannar	**************************************	II M II		

```
- df = cleannames[cleannames.sex .== "M",
   ["name", "sex", "X1906", "X1956", "X2006"]]
```

```
• letters = 'a':'z';
```

```
count_letters (generic function with 1 method)
 function count_letters(df::DataFrame,
 • years::Vector{String})
       letter_counts = DataFrame()
       for year in Symbol.(years)
           !(year in Symbol.(names(df))) &&
           begin
               @warn "The year $(year) is not
               present in df."
               continue
           end
           tmpdf = df[:, [:name, year]]
           yrcounts = zeros(Int,
           length(letters))
           for (ind, letter) in
           enumerate(letters)
               yrcounts[ind] = sum(filter(row -
               > row.name[end] == letter,
               tmpdf)[:, 2])
           letter_counts[!, year] = 100 *
           yrcounts / sum(yrcounts)
       letter_counts
```

letter_count =

	X1906	X1956	X2006
1	0.473516	0.201557	1.76002
2	0.208106	0.0938356	2.07864
3	0.237512	0.466714	1.29964
4	11.2287	13.5269	2.50852
5	14.7936	8.31948	6.97453
6	0.104807	0.13137	0.0960275
7	0.200566	0.562255	0.0941245
8	4.5082	3.9746	4.79937
9	0.0806786	0.054927	1.63744
10	0.0	0.0	0.0605539
: r	nore		
26	0.0180961	0.0176297	0.15058

- ▶ [100.0, 100.0, 100.0]
- sum.(eachcol(letter_count))

all_letter_count =

	X1880	X1881	X1882	X1883
1	0.683795	0.738044	0.675187	0.703254
2	0.461607	0.467494	0.446011	0.433066
3	0.316504	0.329235	0.307625	0.286475
4	8.32253	8.34229	8.55178	8.42755
5	12.2122	12.3229	12.855	12.602
6	0.0979441	0.0825575	0.118995	0.10156
7	0.133313	0.145222	0.128691	0.129345
8	3.66383	3.74095	3.66858	3.74142
9	0.181378	0.204902	0.182459	0.160005
10	0.0	0.0	0.0	0.0
: n	nore			
26	0.0262998	0.00795735	0.0273248	0.011497

```
▶[0.473516, 0.208106, 0.237512, 11.2287, 14.7936
```

count_letters(cleannames[cleannames.sex .==
"M", :], names(cleannames[:, vcat(4:end)]))

all_letter_count[:, "X1906"]


```
• let
      f = Figure()
     ax = Axis(f[1, 1], title="Last letters
      in boys' names over time",
         ylabel="Perc of all boys' names
          that year")
     ax.xticks = (6:25:131, ["1886", "1906",
      "1931", "1956", "1981", "2006"])
     for l in 1:length(letters)
         col = :lightgrey
         if letters[l] == 'n'
              col = :darkblue
          elseif letters[l] == 'd'
              col = :darkred
          elseif letters[l] == 'y'
              col = :darkgreen
          end
          if maximum(Array(all_letter_count)
          [1,:]) > 1
              lines!(1:size(all_letter_count,
              2), Array(all_letter_count)
              [l,:], color=col)
          end
          annotations!("n", position = (106,
          25), textsize=15)
          annotations!("d", position = (56,
          18), textsize=15)
          annotations!("y", position = (106,
          11), textsize=15)
      current_figure()
  end
```

2.4 Data and adjustment.

Not yet done. A good exercise ...?

age =							
	MONTH	YEAR	AGE	TOT_POP	тот_м		
1	4	2000	999	281424600	138056		
2	4	2000	0	3805718	194905		
3	4	2000	1	3820647	195313		
4	4	2000	2	3790534	193903		
5	4	2000	3	3832855	195899		
6	4	2000	4	3926400	201069		
7	4	2000	5	3965175	203110		
8	4	2000	6	4019782	205826		
9	4	2000	7	4118211	210989		
10	4	2000	8	4179294	213787		
: mc	more						
1131	7	2010	85	5532756	180716		

```
- age =
    CSV.read(ros_datadir("AgePeriodCohort", "US-
    ESTOOINT-ALLDATA.csv"), DataFrame)
```

```
▶["MONTH", "YEAR", "AGE", "TOT_POP", "TOT_MALE",
```

names(<u>age</u>)

white_nonhisp =

	Age	Year	Deaths	Population	Rate
1	45	1999	8304	3166393	262.3
2	45	2000	8604	3207271	268.3
3	45	2001	8836	3152637	280.3
4	45	2002	9217	3256317	283.0
5	45	2003	9287	3260376	284.8
6	45	2004	9210	3211340	286.8
7	45	2005	9352	3279109	285.2
8	45	2006	9100	3222835	282.4
9	45	2007	8805	3137876	280.6
10	45	2008	8751	3074171	284.7
: m	ore				
150	54	2013	17989	3141010	572.7

white_hisp =

	Age	Male	Year	Deaths	Population
1	35	0	1999	1291	1578829
2	35	0	2000	1264	1528463
3	35	0	2001	1186	1377466
4	35	0	2002	1194	1333639
5	35	0	2003	1166	1302188
6	35	0	2004	1166	1325435
7	35	0	2005	1201	1383427
8	35	0	2006	1197	1349975
9	35	0	2007	1147	1239648
10	35	0	2008	1098	1155005
: mc	re				
900	64	1	2013	17761	1255101

```
• white_hisp =
   CSV.read(ros_datadir("AgePeriodCohort",
   "white_nonhisp_death_rates_by_sex.txt"),
   DataFrame; delim="\t")
```

white_nonhisp_by_sex =

	Age	Male	Year	Deaths	Population
1	35	0	1999	1291	1578829
2	35	0	2000	1264	1528463
3	35	0	2001	1186	1377466
4	35	0	2002	1194	1333639
5	35	0	2003	1166	1302188
6	35	0	2004	1166	1325435
7	35	0	2005	1201	1383427
8	35	0	2006	1197	1349975
9	35	0	2007	1147	1239648
10	35	0	2008	1098	1155005
: more					
900	64	1	2013	17761	1255101

```
• white_nonhisp_by_sex =
    CSV.read(joinpath(expanduser("~"),
        ".julia", "dev",
        "RegressionAndOtherStories", "data",
        "AgePeriodCohort",
        "white_nonhisp_death_rates_by_sex.txt"),
    DataFrame; delim="\t")
```