MATHEMATICS-I (MA10001)

July 26, 2017

- 1. Solve the following differential equations:
 - (a) $x^2y'' + y = 3x^2$
 - (b) $x^2y'' 2y = x^2 + x^{-1}$,
 - (c) $xy''' + y'' = x^{-1}$,
 - (d) $x^2y'' + 2xy' = \ln x$,
 - (e) $x^3y''' + 3x^2y'' + xy' + y = \ln x + x$,
 - (f) $3x^2y'' 5xy' + 5y = \sin(\ln x)$,

 - (g) $x^2y'' 2xy' + 2y = x + x^2 \ln x + x^3$, (h) $x^4y^{iv} + 6x^3y''' + 9x^2y'' + 3xy' + y = (1 + \ln x)^2$,
 - (i) $x^2y'' xy' + 4y = \cos(\ln x) + x\sin(\ln x)$,

 - (j) $x^2y''' + 2y' 2x^{-1}y = x \ln x + 3$, (k) $y'' + \frac{1}{x}y' = \frac{12 \ln x}{x^2}$.
- 2. Solve the following differential equations:
 - (a) $(1+x)^2y'' + (1+x)y' + y = 4\cos(\ln(1+x))$,
 - (b) $(x+3)^2y'' 4(x+3)y' + 6y = x$,
 - (c) $(3x+2)^2y'' + 3(3x+2)y' 36y = 3x^2 + 4x + 1$.
- 3. Apply the method of variation of parameters to solve the following differential equations:

 - (a) $y'' + 4y = 4 \tan 2x$, (b) $y'' 3y' + 2y = \frac{e^x}{(1 + e^x)}$,

 - (c) $x^2y'' 2xy' + 2y = x \ln x$, x > 0, (d) $x^2y'' + 3xy' + y = \frac{1}{(1-x)^2}$,
 - (e) $y'' + 3y' + 2y = x + \cos x$,
 - (f) $y'' + 2y' + 5y = e^{-x} \sec 2x$,

 - (g) $y''' + y' = \sec x$, (h) $y''' 6y'' + 11y' 6y = e^{2x}$.
- 4. Using the method of variation of parameters, solve

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$

with y(0) = 0 and $(\frac{dy}{dx})_{x=0} = 0$.

5. Solve the following system of differential equations:

(a)
$$\frac{dx}{dt} = 3x + 2y$$
, $\frac{dy}{dt} = 5x + 3y$,
(b) $\frac{dx}{dt} + 5x + y = e^t$, $\frac{dy}{dt} = x - 3y + e^{2t}$,
(c) $\frac{dx}{dt} + 4x + 3y = t$, $\frac{dy}{dt} + 2x + 5y = e^t$,
(d) $\frac{dx}{dt} + 2x - 3y = t$, $\frac{dy}{dt} - 3x + 2y = e^{2t}$,
(e) $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t$, $\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t$.

(e)
$$\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t, \quad \frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t.$$