Exercise sheet 7 - Topics in Topology

March 22, 2022

- 1. In this exercise we make precise the construction of continuous maps $X \cup_{\varphi} Y \to Z$, where $\varphi : A \subset X \to Y$ and X, Y, Z are topological spaces.
 - (a) Let \sim be an equivalence relation on X and consider the quotient topology in X/\sim with the projection $\pi:X\to X/\sim$ (recall: $U\subset X/\sim$ is open if and only if $\pi^{-1}(U)\subset X$ is open).
 - Show that if $f: X \to Y$ is a continuous map satisfying that if $x \sim x'$ then f(x) = f(x'), there exists a unique continuous map $\bar{f}: X/\sim \to Y$ such that $f=\bar{f}\circ \pi$.
 - (b) Consider $X \coprod Y$ the set-theoretic disjoint union of X and Y, and let $i: X \hookrightarrow X \coprod Y$, $j: Y \hookrightarrow X \coprod Y$ be the canonical inclusions. We endow $X \coprod Y$ with a topology defined as follows: $U \subset X \coprod Y$ is open if and only if $i^{-1}(U) \subset X$ and $j^{-1}(U) \subset Y$ are open. Show that given continuous maps $f: X \to Z$ and $g: Y \to Z$, there exists a unique continuous map $h = f \coprod g: X \coprod Y \to Z$ such that $f = h \circ i$ and $g = h \circ j$.
 - (c) Recall that $X \cup_{\varphi} Y := (X \coprod Y)/a \sim \varphi(a)$ for $a \in A \subset X$. Write $\bar{i} = \pi \circ i : X \to X \cup_{\varphi} Y$ and $\bar{j} = \pi \circ j : X \to X \cup_{\varphi} Y$ for the canonical inclusion-projection maps, where here $\pi : X \coprod Y \to X \cup_{\varphi} Y$ is the projection to the quotient. Show that given continuous maps $f : X \to Z$ and $g : Y \to Z$ such that $f(a) = g(\varphi(a))$ for all $a \in A$, there exists a unique continuous map $h : X \cup_{\varphi} Y \to Z$ such that $h \circ \bar{i} = f$ and $h \circ \bar{j} = g$.
 - (d) Write down commutative diagrams relating the maps for each of the previous exercises.
- 2. Let X', Y' be additional topological spaces with $\varphi': A' \subset X' \to Y'$, and let $i': X' \hookrightarrow X' \coprod Y'$, $j': Y' \hookrightarrow X' \coprod Y'$ be as before.

Use the previous exercise to show that a continuous map $f: X \to X'$ and a continuous map $g: Y \to Y'$ such that $i'(f(a)) \sim j'(g(\varphi(a)))$ (in $X' \coprod Y'$) completely determine a continuous map $X \cup_{\varphi} Y \to X' \cup_{\varphi'} Y'$.

3. Let M be a 3-manifold with boundary $\partial M \cong S^2$. Show that the closed 3 manifold resulting from attaching a 3-disc to M does not depend on the diffeomorphism $f: S^2 \to S^2$ used. More precisely, given any two diffeomorphisms $f, g: S^2 \to S^2$, show that there is a diffeomorphism

$$M \cup_f D^3 \xrightarrow{\cong} M \cup_g D^3.$$

Hint: Use the Alexander extension lemma.

4. Mimic your argument from the previous exercise to show that a closed 4-manifold M is completely determined by the data of 0,1 and 2-handles. More precisely, if M_2 denotes the union of 0,1 and 2-handles, then $\partial M_2 \cong \#_m S^1 \times S^2$ as 3-handles \cup 4-handle $\cong \natural_m S^1 \times D^3$. Then show that given two diffeomorphisms $f, g: \#_m S^1 \times S^2 \to \#_m S^1 \times S^2$, there is a diffeomorphism

$$M_2 \cup_f (\natural_m S^1 \times D^3) \xrightarrow{\cong} M_2 \cup_g (\natural_m S^1 \times D^3).$$

Hint: Replace the Alexander extension lemma used in the previous exercise by the Laudenbach-Poenaru theorem discussed in the lectures.