Assignment 1 CSE-4C CPU Scheduling

Deadline: - 18-02-2019

- 1. Given a system with n processes, how many possible ways those processes are scheduled?
- 2. Differentiate process and thread. Describe all the entries of process control block.
- **3.** Describe the differences among short term, medium term & long term scheduling.
- **4.** Describe the actions a kernel takes to context switch between processes.
- **5.** Write the syntax and explain the use of following system calls: Fork, exec, wait, exit
- **6.** Why context switching time should be minimum? How it is dependent on hardware support?
- 7. What will happen when system call is encountered in a user program?
- **8.** What is the main advantage of multiprogramming?
- **9.** Differentiate the APIs and System calls role in OS with suitable example.
- 10. What is the significance of kernel and user mode in OS? Explain with suitable example
- 11. What are the advantages of Virtual Machine?
- 12. Write down the differences between
 - a. User Thread and Kernel Thread
 - b. Fork () function and clone () function
 - c. CPU burst and I/O burst
- **13.** Explain operating system and importance?
- **14.** Write down a short note on Process Explore tool for Windows.
- **15.** What resources are used when a thread is created? How do they differ from those used when a process is created?
- 16. Write down a program to create two child processes and print following sequence by them

Child 1: - 2 4 8 16 32 64

Child 2: - 2 5 8 11 14 17

- 17. For processes listed in table, draw a chart illustrating their execution using
 - (a) FCFS
 - (b) SJF and Preemptive SJF (Shortest Remaining time first)
 - (c) RR (TQ-2)
 - (d) RR(TQ-1)

Also calculate average turnaround time, average wait time and average waiting time for each algorithm.

Process	Arrival Time	Processing
		Time
A	0	3
В	1.001	6
С	4.001	4
D	6.001	2

18. For the process listed in table below, draw a chart illustrating their execution using preemptive Non preemptive priority scheduling. A larger priority number has higher priority.

Process	Arrival Time	Burst	Priority
A	0	4	3
В	1.0001	3	4
С	2.0001	3	6
D	3.0001	5	5

19. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst Time	Priority
<i>P</i> 1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

- a. Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a nonpreemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 1) scheduling.
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of the scheduling algorithms in parta?
- d. Which of the schedules in part a results in the minimal average waiting time (over all processes)?
 - **20.** Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

	Arrival time	Burst Time	Priority	Process Type
P1	0	7	1	System
P2	3	8	2	Interactive
P3	5	2	1	System
P4	9	12	5	System
P5	0	2	2	Interactive
P6	2	3	1	Others

Schedule the above process as per following algorithm and find the Average waiting and TAT time.

a. Multi-level queue

System Queue – P-SJF	
Interactive – RR-2	
Others –FCFS	

b. Multi-level feedback queue

Q1 RR-4	
Q2 P-SJF	
Q3 FCFS	