

Cloud Administrator & Security Engineer

SCRIPTING & DEVOPS

INTRODUCTION

andrea.scrivanti@gmail.com Andrea Scrivanti

Gen-Mar 2023

Conosciamoci

- Andrea Scrivanti <u>andrea.scrivanti@gmail.com</u>
- Laureato in Informatica presso Università degli Studi di Milano – Bicocca con una tesi su piattaforme security-aware
- Mi occupo di Software Engineering e Data Engineering
- Progettazione e sviluppo di sistemi security-aware
- Progettazione e sviluppo di sistemi automatizzati di scraping per costruire knowledge base
- Sistemi di data processing su piattaforma AWS
- Interessi: software engineering, agile, devops, IoT, domotica

Conosciamoci

Programma

- 6 days x 4 hours, topics:
 - Cloud Introduction / Virtualization
 - Scripting
 - Git
 - CI/CD pipeline

Programma

- 4+4 ore di laboratorio
- Presentazione dei progetti e discussione

Perchè parliamo di devops, cloud, scripting?

Cloud Job Postings - Milan

From Jan 2021 to Dec 2021

Lightcast data (2022)

Cloud Job Postings - Milan

Top Hard Skills

Lightcast data (2022)

Cloud Job Postings - Milan

Top Soft Skills

Lightcast data (2022)

Cloud computing

"the dark world"

```
i5/0S Main Menu
MAIN
                                                            System:
                                                                      OSYS1
Select one of the following:

    User tasks

     2. Office tasks
     3. General system tasks
     4. Files, libraries, and folders
     5. Programming
    6. Communications
    7. Define or change the system
    8. Problem handling
    9. Display a menu
    10. Information Assistant options
    11. iSeries Access tasks
    90. Sign off
Selection or command
===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
F23=Set initial menu
(C) COPYRIGHT IBM CORP. 1980, 2005.
```

-La mia consulente finanziaria dopo il passaggio UBI Banca a BPER (fine 2021)

Computing paradigms

"The network is the computer" (John Gage, Sun Microsystems, 1984)

"The cloud is the computer"

Mainframe computing 1 computer / molti utenti

Client-server computing molti computer / molti utenti

Cloud computing

Primo passo...

la virtualizzazione....

Primo passo...

la virtualizzazione....

Virtualizzazione

Attraverso la virtualizzazione vado a scomporre un grosso server fisico in tanti server virtuali.

Ciascun server virtuale è dedicato ad un componente del mio sistema.

In altre parole, vado ad astrarre un servizio IT.

Poche grosse macchine fisiche ospitano tante piccole macchine virtuali indipendenti (diverso sistema operativo, diverse applicazioni,).

A Business Model

- Pay as you go
- · Virtualized resources
- On-demand
- Multi-tenancy
- Scalability, etc.

Platform and a

A Delivery Platform

Enable users to access IP services and on-demand applications A style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet.

[Wikipedia]

Perché?

Avoid the hidden costs of traditional CRM software

Cloud computing

Il cloud computing fornisce tramite WEB risorse di elaborazione che spaziano dei server e lo storage fino ad intere applicazioni di livello enterprise (email, security, backup ecc.)

Il Cloud è in grado di effettuare provisioning di risorse IT 'as a service'.

5 Caratteristiche fondamentali

- Servizi su richiesta
- Accesso di rete
- Pooling di risorse
- Elasticità rapida
- Misura dei servizi

Benefici e sfide cloud computing

Pay per Use

Risorse infinite

Sicurezza (Compliance)

Service Assurance

Scalabilità

Servizi gestiti

Trasparenza

Integrazione con IT

Complessità gestita

Innovazione continua

Portabilità

Licenze

Riduce il time to market

Updated

Confronto dei costi

Modelli di servizio

PaaS
Platform as a Service

laaS Infrastructure as a Service

Il cliente utilizza applicazioni su una infrastruttura accessibile da vari dispositivi client attraverso un'interfaccia (API, interfaccia web, client dedicato) Permette di sviluppare e distribuire applicazioni create utilizzando linguaggi di programmazione supportati dal fornitore

Noleggio capacità di CPU, storage, network e altre risorse come i sistemi operativi e le applicazioni

Docker

Docker tries to solve the "run anywhere" problem using (easily) Linux containers.

Perchè?

Development environment

Production environment

Your script / program

python3 Lib1 Lib2 v2

Your script / program

My script / program

Lib1 Lib2 v2 v2

python2

Lib1 v1 Lib2 v1

Development environment

Production environment

Your script / program

python3 Lib1 Lib2 v2

Your script / program

Lib1

python2 Lib1 Lib2

V1

V1

My script / program

Conflict!!!

Development environment

Your script / program

python3

Lib1 v2

Lib2 v2

Production environment

Docker Engine

Efficienza

Perché è diverso da una virtual machine? (VMware, Xen, ...)

Portabilità

The matrix from hell

Flessibilità

Build, ship and run any app, anyware

Sicurezza

Sicurezza

- Don't give root
- If the application needs root, give looks-like-root
- If that's not sufficient, give root, but build another wall

Docker Immagini e container

An image is an inert, immutable, file that's essentially a snapshot of a container.

Images are created with the build command, and they'll produce a container when started with run.

Images are stored in a Docker registry

Immagini

Immagini private (Dockerfile)

Docker Hub

Registri privati

https://github.com/docker/distribution

Come definire un'immagine e avviarla?

Scrivere un dockerfile

Fare il built dell'immagine

Avviare il container

Come definire un'immagine e avviarla?

Container programming Dockerfile

Version: 0.0.1
FROM sequenceiq/hadoop-docker:2.7.1
LABEL maintainer="alessandrov87 (https://github.com/AlessandroVaccarino)"
Download Pig
RUN curl http://apache.mirror.anlx.net/pig/latest/pig-0.17.0.tar.gz tar -zx -C /usr/local
ENV PATH /usr/local/pig-0.16.0/bin:\$PATH
ENV PATH /usr/local/hadoop/bin:\$PATH
Download and Init Hive
RUN curl http://apache.mirror.anlx.net/hive/stable/apache-hive-1.2.2-bin.tar.gz tar -zx -C /usr/local
ENV PATH /usr/local/apache-hive-1.2.1-bin/bin:\$PATH
Downlaod Zookeeper (for HBase)
RUN curl http://apache.mirror.anlx.net/zookeeper/stable/zookeeper-3.4.12.tar.gz tar -zx -C /usr/local
ENV PATH /usr/local/zookeeper-3.4.12/bin:\$PATH
Download HBase
RUN curl http://apache.mirror.anlx.net/hbase/stable/hbase-1.2.6-bin.tar.gz tar -zx -C /usr/local
ENV PATH /usr/local/hbase-1.2.6/bin:\$PATH
Configure HBase
RUN rm /usr/local/hbase-1.2.6/conf/hbase-site.xml
COPY hbase-site.xml /usr/local/hbase-1.2.6/conf/
Configure boostrap file

Dockerfile

FROM	Sets the base image for subsequent instructions	
ENV	Set environment variable in container	
RUN	Execute command in the image and commit results	
ADD	Add file from host/URL to container	
VOLUME	Specify directory that lives outside union fs	
EXPOSE	Specify ports to open between containers	
CMD	Default command when executing container	

Docker Gestione

docker ps	Mostra l'elenco dei container attivi
docker stop ubuntu	Ferma un container
docker rm ubuntu	Rimuove un container
docker run ubuntu	Avvia un container

Docker Hello World

```
sudo apt install docker.io
```

sudo docker run ubuntu:14.04 /bin/echo 'Hello world'

Docker Hello World

```
docker run ubuntu:14.04 /bin/echo 'Hello world'
Unable to find image 'ubuntu:14.04' locally
Pulling repository ubuntu
6b4e8a7373fe: Download complete
511136ea3c5a: Download complete
b18d0a2076a1: Download complete
67b66f26d423: Download complete
25c4824a5268: Download complete
8b1c48305638: Download complete
c900195dcbf3: Download complete
Hello world
```


Recap

- Docker permette di costruire sistemi modulari e portabili
- Possiamo distribuirlo ovunque: on premises o in cloud
- Dobbiamo orchestrare i container: Kubernetes
- Iniziate ad usare Docker e Kubernetes!!!
 - Google ha introdotto i container più di 10 anni fa

Scripting

A cosa serve?

- Automatizzare compiti
- Diverse tipologie
 - Bash
 - Web based (javascript)
- Linguaggio interpretato

Scripting & Cloud

- Utilità dello scripting nel cloud
- Coltellino svizzero
- Utile in tantissimi casi, fra cui:
 - Analisi log
 - Batch processing
 - · CI/CD

Shell

- Punto di accesso e di gestione del sistema operativo
- Permette di eseguire comandi e avviare programmi
- Diverse tipologie:
 - Sh (Bourne shell)
 - Bash (Bourne Again Shell)
 - Zsh
 - Prompt dei comandi (Windows)

A cosa serve?

- Automatizzare compiti del sistema operativo
- Diverse tipologie
 - Bash
 - Web based (javascript)
- Linguaggio interpretato

