КОНТРОЛЬНАЯ РАБОТА (26.04.2012)

1. Небольшой шарик колеблется на нити, пропущенной через отверстие в потолке (см. рисунок). Амплитуда *А* колебаний мала. Нить плавно и очень медленно тянут вверх. Какой станет амплитуда колебаний, когда длина маятника уменьшится вдвое? Как изменится ответ, если нить вытаскивать очень короткими малыми рывками в моменты прохождения шариком положения равновесия?

- **2.** Гибкая веревка длиной L вращается вокруг вертикальной оси с постоянной угловой скоростью ω так, что каждая ее точка описывает горизонтальную окружность. Верхний конец веревки закреплен, а нижний описывает окружность радиусом R. Расстояние по вертикали между концами веревки равно H. Определите углы, которые образуют с вертикалью концы веревки. Считайте, что веревка находится в вертикальной плоскости.
- **3.** Металлический стержень длиной L и массой m подвешен на невесомых нерастяжимых проводящих нитях, длина каждой из которых также равна L. Система находится в однородном магнитном поле с магнитной индукцией \bar{B} (см. рисунок). Какой ток необходимо пропустить через нити и стержень, чтобы силы натяжения нитей уменьшились в 1,5 раза? Увеличились в 2 раза?
- **4.** Четыре одинаковых точечных источника света расположены на высоте h над полом в вершинах квадрата со стороной a. При каком соотношении между h и a в точке пола под центром этого квадрата будет максимум освещенности? Отраженный свет не учитывайте.
- **5.** Один моль идеального одноатомного газа совершил приведенный на рисунке цикл, где 1-2 изотерма, а 3-4 процесс с постоянной теплоемкостью C = R/2. Минимальная температура в цикле $T_{\min} = 300 \text{ K}$, $V_1 = V_4 = 4V_2$, $V_3 = 3V_2$. Определите T_4 и КПД цикла.

Подсказка. При |x| □ 1 можно считать $(1 \pm x)^{\alpha} = 1 \pm \alpha x + \frac{\alpha(\alpha - 1)}{2} x^{2}$. Трансцендентные уравнения можно

решать приближенно (например, подбором с помощью калькулятора).

Відповіді.

1. Легше відповісти на друге запитання, застосувавши закон збереження моменту імпульсу. З нього випливає, що максимальна швидкість кульки обернено пропорційна довжині маятника: $v_{\text{max}} = I^{-1}$. Оскільки $v_{\text{max}} = \omega A = A\sqrt{g/I}$, звідси отримуємо $A = I^{-1/2}$. У цьому випадку амплітуда збільшиться у $\sqrt{2}$ раза. *Те ж саме можна отримати через енергію*.

Якщо ж нитку тягнуть плавно, то краще скористатися законом збереження енергії. Сила натягу нитки

 $T = mg\cos\alpha + mv^2/I = mg\cos\alpha + 2mg(\cos\alpha - \cos\alpha_0) = mg(1 + \alpha_0^2 - \frac{3}{2}\alpha^2)$. Ми нехтуємо зміною довжини нитки та кутової амплітуди коливань протягом одного періоду. Середнє значення α^2 дорівнює $\alpha_0^2/2$, а середнє значення сили $\overline{T} = mg(1 + \alpha_0^2/4)$. Робота з витягання нитки дорівнює збільшенню енергії у стані рівноваги плюс збільшенню енергії самих коливань $\frac{mgA^2}{2I}$. Звідси $-mg\frac{A^2}{4I^2}dI = d(\frac{mgA^2}{2I})$, або $-\frac{A^2}{2I^2}dI = d(\frac{A^2}{I})$. Якщо позначити $f = A^2/I$, то $\frac{df}{f} = -\frac{1}{2}\frac{dI}{I}$, звідки $f \Box I^{-1/2}$, $A \Box I^{1/4}$. Отже, амплітуда зменшиться в $\sqrt[4]{2}$ раза (1,19), тобто стане 0,84 A.

2. $tg\alpha_2 = \frac{\omega^2 R}{g}$, $\cos\alpha_1 = \frac{mg}{T(0,0)}$ (ми проводимо осі від верхнього краю мотузки вниз і праворуч). Залишається проблема — знайти натяг у верхнього кінця. Для цього беремо вісь по дотичній, отримуємо:

$$dT = -dm \cdot g \cos \alpha - dm \cdot \omega^2 x \sin \alpha = -\frac{m}{L} (gdy + \omega^2 x dx).$$

Враховуючи, що на вільному кінці натяг відсутній, отримуємо:

$$T=m\frac{g(H-y)+\omega^2(R^2-x^2)/2}{L}.$$

Отже, $\cos \alpha_1 = \frac{2gL}{2gH + \omega^2 R^2}$. Чи видно звідси, що права частина менша від одиниці? Ні! Тому що *R*, *H* самі є функціями від *g*, *L*, ω

3. Головна ідея задачі: треба врахувати, що нитки утворюють дуги. Якщо позначити центральний кут такої дуги 2α , радіус R, а силу натягу нитки T, із співвідношень T = BIR, $2T\cos\alpha = mg \pm BIL$, $2\alpha R = L$ дістаємо $\frac{\alpha}{\cos\alpha} = \frac{BIL}{mg \pm BIL}$. Звідси $T = \frac{BIL}{2\alpha}$. Отже, $\cos\alpha \pm \alpha = \frac{mg}{2T}$. Верхній знак відповідає зменшенню натягу, нижній — збільшенню.

Сила натягу зменшується у півтора раза за умови $\alpha + \cos \alpha = 3/2$, тобто при $\alpha = 0.8$ рад і $I = 0.53 \frac{mg}{BL}$ (струм іде праворуч).

Сила натягу збільшується у два рази за умови $\cos \alpha - \alpha = 1/2$, тобто при $\alpha = 0.415$ рад і $I = 0.83 \frac{mg}{RI}$ (струм іде ліворуч).

4. Виберемо початок координат на підлозі під центром квадрата, проведемо осі паралельно сторонам квадрата. Освітленість E(x, y) можна розкласти в ряд, зберігаючи величини до другого порядку малості включно. Цю процедуру можна значно спростити, якщо помітити, що внаслідок симетрії системи освітленість в

точках із координатами (x, y), (-x, y), (x, -y), (-x, -y) має бути однаковою. Отже, в сумі мають бути відсутні члени першого порядку та добутки ху. Таким чином, $E(x, y) = E(0, 0) + b_1 x^2 + b_2 y^2$. Якщо ж і далі врахувати симетрію, отримаємо $b_1 = b_2 = b$ і $E(x, y) = E(0, 0) + bs^2$, де $s = \sqrt{x^2 + y^2}$ — відстань точки від центральної. Максимум освітленості в центральній точці буде за умови b < 0. А щоб знайти цей коефіцієнт, найпростіше розглянути точку, яка зміщена від центральної на малу відстань s у напрямі від вершини 1 до вершини 3 квадрата. Освітленість є сумою $E_{1.4}$.

Скористаємося законом освітленості. Якщо сила світла джерела 1, а відстань точки на підлозі від проекції джерела світла m, то освітленість $E = \frac{1}{r^2} \cos \alpha = \frac{1h}{\left(h^2 + m^2\right)^{3/2}}$.

Звідси випливає:

$$E_{1,3} = \frac{Ih}{\left(h^2 + \left(a/\sqrt{2} \pm s\right)^2\right)^{3/2}}, \quad E_2 = E_4 = \frac{Ih}{\left(h^2 + a^2/2 + s^2\right)^{3/2}}.$$

Для малих s отримуємо
$$E_1 + E_3 = E_0 \left(2 - 3s^2 \frac{h^2 - 2a^2}{\left(h^2 + a^2/2\right)^2} \right)$$
, $E_2 = E_4 = E_0 \left(1 - \frac{3s^2}{2\left(h^2 + a^2/2\right)} \right)$.

Тут
$$E_0 = \frac{Ih}{\left(h^2 + a^2/2\right)^{3/2}}$$
. Таким чином, загальна освітленість $E = E_0 \left(4 - 6s^2 \frac{h^2 - 3a^2/4}{\left(h^2 + a^2/2\right)^2}\right)$.

Отже, максимум спостерігається за умови $h > a\sqrt{3}/2$. Можна переконатися, що вже при $h = a\sqrt{3}/2$ освітленість під кожною лампою менша від освітленості центральної точки.

5. Теплоту газ отримує тільки на 2-3, $Q_{2-3} = 20 p_{\min} V_{\min}$. Рівняння політропи (вивести!) $pV^n = \text{const}$, де $n = \frac{C - C_p}{C - C} = 2$. Можна розглянути випадки адіабатного та ізопроцесів.

Oтже, для політропи $\rho V^2 = {\sf const} \Rightarrow VT = {\sf const}$. Очевидно, $T_{\sf min} = T_1 = T_2$, $T_{\sf max} = T_3 = 3T_{\sf min}$.

Тоді
$$T_4 = 3T_3/4 = 2,25T_{min} = 675 \ \hat{E}$$
. Робота за цикл

Тоді
$$T_4 = 3T_3/4 = 2,25T_{\min} = 675 \ \hat{E}$$
. Робота за цикл
$$A = A_{1-2} + A_{2-3} + A_{3-4} = -4 \ln 4 \cdot p_{\min} V_{\min} + 8 p_{\min} V_{\min} + (3vR/2 - C)(T_3 - T_4) = -4 \ln 4 \cdot p_{\min} V_{\min} + 8 p_{\min} V_{\min} + 3 p_{\min} V_{\min} = p_{\min} V_{\min} (11 - 4 \ln 4).$$

Тоді ККД циклу
$$\eta = \frac{11 - 4 \ln 4}{20} \approx 0,27.$$