CMP205: Computer Graphics

Lecture 1: Line Drawing

Ahmed S. Kaseb Fall 2018

Slides by: Dr. Mohamed Alaa El-Dien Aly

Agenda

- Raster Displays
- Gamma Correction
- RGB Color & Alpha Channel
- Line Drawing

Acknowledgments: Some slides adapted from Steve Marschner and Fredo Durand.

Raster Displays

- Displays that present *raster* images to the user
- LCD, CRT, Projector, ... etc

Raster Images Vs Vector Images

- Raster Images
 - Made up of pixels with a certain resolution
 - "Pixelization" effect on zoom in
 - E.g. JPEG, BMP, PNG, GIF

Raster Images Vs Vector Images

- Vector Images
 - Made up of "descriptions" of objects
 - Must be "rasterized" for display
 - Resolution independent
 - E.g. SVG


```
sodipodi:type="star"
style="fill:#d11616;fill-opacity:1;stroke:#000000;stroke-width:2.5;stroke-miterl
id="path3003"
sodipodi:sides="5"
sodipodi:cx="254.28571"
sodipodi:cv="448.07648"
sodipodi:r1="137.35846"
sodipodi:r2="52.745647"
sodipodi:arg1="0.52359878"
sodipodi:arg2="1.1906953"
inkscape:flatsided="false"
inkscape:rounded="0.13"
inkscape:randomized="0.005"
d="m 372.59548,516.37604 c -7.04466,11.1192 -86.44943,-25.10108 -98.49121,-19.796
inkscape:transform-center-x="8.8250402"
inkscape:transform-center-v="4.4368255" />
```

Pixels

- Square Grid of "pixels"
- Each pixel stores color values
- Resolution: size of raster

Pixels at integer coordinates

4 x 3 Pixel Grid

Display Intensity

- How many bits to represent each pixel?
 - Floating point number: 16 or 32 bits
 - Integers: 8, 10, 12, ... bits
- Floating points
 - $-0 \rightarrow black (pixel off)$
 - $-1 \rightarrow$ white (pixel fully on)
 - $-0.5 \rightarrow \text{halfway gray}$
- Integers: quantized values e.g. 8-bits
 - $-0 \rightarrow black$
 - $-255 \rightarrow \text{white}$

Gamma Correction

- How do displays convert pixel *values* to *intensities*?
 - We would like the screen to:
 - display *white* (intensity 1.0) when we give it 1.0
 - display *black* (intensity 0.0) when we give it 0.0
 - display *grey* (intensity 0.5) when we give it 0.5
- What actually happens?
 - Screens respond non-linearly, e.g. they give intensity
 - 1.0 with input 1.0
 - 0.0 with input 0.0
 - 0.25 with input 0.5

Gamma Correction

This is modeled as:

$$I_{out} = I_{max} \times I_{in}^{\gamma}$$

$$\gamma = 2.2$$

$$I_{in} = 0 \rightarrow I_{out} = 0$$

$$I_{in} = 0.5 \rightarrow I_{out} = 0.218$$

$$I_{in} = 1 \rightarrow I_{out} = 1$$

Gamma Correction

To get the correct intensity from the screen, we modify the input:

Correction
$$I_{out} = I_{max} \times (I_{in}^{1/\gamma})^{\gamma}$$

$$= I_{max} \times I_{in}$$

RGB Color

- For color images, each pixel has three values: Red, Green, and Blue Color
- Additive Property

RGB Colors

- Represent colors as 3 dimensional vectors (r, g, b)
 - Black = (0, 0, 0)
 - Red = (1, 0, 0)
 - **-** ...
 - White = (1, 1, 1)

Displays and Cameras

LCD pixels have 3 sub-pixels

Mosaic Capture

Bayer Mosaic in Digital Cameras

Alpha Channel

• Handles (partially) transparent objects

Line Drawing

• Basic Operation

- Slope-Intercept
- Problem?
 - Vertical lines!
 - $-m=\infty$
- Solution?

$$y = mx + b$$

• Implicit Form f(x, y) = Ax + By + C = 0

Both points are on the line:

$$Ax_0 + By_0 + C = 0$$

$$Ax_1 + By_1 + C = 0$$

The normal vector on the line is: (A, B)

$$(A, B)^{T}(x_{1}-x_{0}, y_{1}-y_{0})=0$$

why?

One possible (A, B) is: $(A, B) = (y_0 - y_1 x_1 - x_0)$

• Implicit Form f(x, y) = Ax + By + C = 0

Plug in
$$(x_0, y_0)$$
 we get:
 $(y_0 - y_1)x_0 + (x_1 - x_0)y_0 + C = 0$

Solve for
$$C$$
:
$$C = x_0 y_1 - x_1 y_0$$

$$A = y_0 - y_1$$

$$B = x_1 - x_0$$

$$C = x_0 y_1 - x_1 y_0$$

$$f(x,y)=Ax+By+C=0$$

f(x, y) is the signed scaled distance from the point (x, y) to the line

$$f(x,y)=0 \rightarrow \text{On the line}$$

 $f(x,y)>0 \rightarrow \text{Above the line}$
 $f(x,y)<0 \rightarrow \text{Below the line}$

- Line Drawing Algorithm
- Uses the Implicit Equation
- Similar to Bresenham's Algorithm
- Integer end-points
- Four Cases:
 - 0<*m*≤1
 - $-1 < m < \infty$
 - -1<*m*≤0
 - $-\infty < m \le -1$

- First case:
 - more "run" than "rise"
 - Assume moving right

• Which one is better?

First version

$$y=y_0$$

for $x=x_0:x_1$
 $draw(x,y)$
if $f(x+1,y+0.5)<0$
 $y=y+1$

• Optimizations?

- Optimizations
 - Incremental Calculations
 - Integer Operations

$$y = y_0$$

for $x = x_0 : x_1$
 $draw(x, y)$
if $f(x+1, y+0.5) < 0$
 $y = y+1$

- Incremental Calculations
 - Note that:

$$f(x,y)=(y_0-y_1)x+(x_1-x_0)y+C=0$$

- Which implies that:

$$\begin{split} f\left(x+1,y\right) &= f\left(x\,,y\right) + \left(y_0 - y_1\right) \\ f\left(x+1,y+1\right) &= f\left(x\,,y\right) + \left(y_0 - y_1\right) + \left(x_1 - x_0\right) \end{split}$$

Second Pass

$$y = y_0$$

$$d = f(x_0 + 1, y_0 + 0.5)$$
for $x = x_0 : x_1$

$$draw(x, y)$$
if $d < 0$

$$y = y + 1$$

$$d = d + (x_1 - x_0) + (y_0 - y_1)$$
else
$$d = d + (y_0 - y_1)$$

- Integer Operations
 - Note that:

$$f(x,y)=2f(x,y)=0$$

• Which implies:

$$d = 2f(x_0 + 1, y_0 + 0.5)$$

$$\downarrow$$

$$d = 2(y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0$$

Third Pass

```
y=y_0
d = 2(y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0
for x = x_0 : x_1
 draw(x, y)
 if d < 0
  y = y + 1
  d = d + 2(x_1 - x_0) + 2(y_0 - y_1)
 else
  d = d + 2(y_0 - y_1)
```

Recap

- Raster Displays
- Alpha Channels
- Gamma Correction
- Line Drawing