Proving a sum formula by induction

Problem: Prove that

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

- **Solution:** Define the predicate P(n) as the equation above and use induction:
 - ▶ **Basis:** P(1) holds because for n = 1 we have $\sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$
 - ► Induction:
 - ▶ Inductive hypothesis: Assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - ▶ Inductive step: Wish to prove að $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

Proving a sum formula by induction

Problem: Prove that

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

- **Solution:** Define the predicate P(n) as the equation above and use induction:
 - ▶ Basis: P(1) holds because for n=1 we have $\sum_{i=1}^{n} i = \sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$ By inductive hypothesis
 - ► Inducton:
 - ▶ Inductive hypothesis: Assume $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - Inductive step: Wish to prove að $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$. $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$ sem er það sem sanna þurfti.

Sauðakóði

Pseudocode

Java

meðan *C*

while C

while(C)

{

S

}

false

true

{ F }

while C

S

The precondition of the loop describes the state just before the loop starts

Rule 1: $F \rightarrow I$

The loop invariant makes it possible to verify the loop

Rule 2: $\{I \land C\}$ **S** $\{I\}$

The postcondition of the loop describes the state just after the loop finishes

Rule 3: $I \land \neg C \rightarrow E$

$$\{n \geq 0\}$$

An executable and verified sequence of code where n does not change, but s gets a new value

$${ s = 1 + 2 + \dots + n }$$

 ${ s = n(n+1)/2 }$

- Here we prove the formula for $n \ge 0$, not just $n \ge 1$, but that is a minor point
- Is equivalent to proof by induction if and only if the termination of the sequence of code is also proven

```
\{ n \geq 0 \}
```

Initialize s and k

while
$$k \neq n$$

 $\{0 \leq k \leq n \}$
 $\{s = 1 + 2 + \dots + k\}$
 $\{s = k(k+1)/2\}$

Preserve the loop invariant

$$\{ s = 1 + 2 + \dots + n \}$$

 $\{ s = n(n+1)/2 \}$

- Here we prove the formula for $n \ge 0$, not just $n \ge 1$, but that is a minor point
- Is equivalent to proof by induction if and only if the termination of the sequence of code is also proven

```
\{ n \geq 0 \}
k \coloneqq 0
s \coloneqq 0
while k \neq n
   \{0 \le k \le n\}
   \{ s = 1 + 2 + \dots + k \}
   \{ s = k(k+1)/2 \}
    k \coloneqq k + 1
    s \coloneqq s + k
\{ s = 1 + 2 + \dots + n \}
\{ s = n(n+1)/2 \}
```

- Here we prove the formula for $n \ge 0$, not just $n \ge 1$, but that is a minor point
- Is equivalent to proof by induction if and only if the termination of the sequence of code is also proven

```
\{ n \geq 0 \}
k \coloneqq 0
s \coloneqq 0
while k \neq n
    \{0 \le k \le n\}
    \{ s = 1 + 2 + \dots + k \}
    \{ s = k(k+1)/2 \}
    k \coloneqq k + 1
    s \coloneqq s + k
\{ s = 1 + 2 + \dots + n \}
\{ s = n(n+1)/2 \}
```

- Here we prove the formula for $n \ge 0$, not just $n \ge 1$, but that is a minor point
- Is equivalent to proof by induction if and only if the termination of the sequence of code is also proven
- In this case termination is obvious: we will go through the loop exactly n times
- ► The value of the formula n k is originally n and decreases by 1 each pass through the loop and cannot decrease below 0 because then the loop terminates

Arguments

Remember that the code { F }

- needs to fulfil the following:
- 1. $F \rightarrow I$
- 2. $\{C \land I\}S\{I\}$
- 3. $I \wedge \neg C \rightarrow E$

- Clearly rules 1 and 3 are fulfilled
- Rule 2 is also fulfilled since if we let k' and s' stand for the new values in the variables k and s after each general pass through the loop, we get k' = k + 1 and we get

$$s' = s + k'$$

= 1 + 2 + \cdots + k + k'
= 1 + 2 + \cdots + k + (k + 1)
= 1 + 2 + \cdots + k'

and we also get

$$s' = s + k'$$

$$= k(k+1)/2 + k'$$

$$= (k^2 + k)/2 + (k+1)$$

$$= (k^2 + 3k + 2)/2$$

$$= (k+1)(k+2)/2$$

$$= k'(k'+1)/2$$

which is what we needed to prove that the loop invariant is preserved (in addition to $0 \le k' \le n$, which is obvious)

Proving the same in Dafny (to you)

```
method SumIntsLoop( n: int ) returns ( s: int )
 requires n >= 0
 ensures s == n*(n+1)/2
 s := 0;
 var k := 0;
 while k!= n
  decreases n-k
  invariant 0 <= k <= n
  invariant s == k*(k+1)/2
  k := k+1;
  s := s+k;
```

Proving it recursively

```
method SumIntsRecursive( n: int ) returns ( s: int )
  requires n >= 0
  ensures s == n*(n+1)/2
{
  if n == 0 { return 0; }
  s := SumIntsRecursive(n-1);
  s := s+n;
}
```

Proving the same in Dafny (to Dafny)

```
function SumIntsFunction( n: int ): int
 requires n >= 0
 if n == 0 then
 else
  SumIntsFunction(n-1)+n
lemma SumIntsAll()
 ensures forall n \mid n >= 0 :: SumIntsFunction(n) == n*(n+1)/2
```

Proving the same in Dafny (to Dafny)

```
function SumIntsFunction( n: int ): int
 requires n >= 0
 if n == 0 then
 else
  SumIntsFunction(n-1)+n
method Main()
 assert forall n \mid n >= 0 :: SumIntsFunction(n) == n*(n+1)/2;
 print "Success!";
```

Induction without computation (1/2)

```
function SumIntsFunction( n: int ): int
 requires n >= 0
 if n == 0 then
 else
  SumIntsFunction(n-1)+n
lemma SumIntsLemma( n: int )
 requires n >= 0
 ensures SumIntsFunction(n) == n*(n+1)/2
 if n == 0 { return; }
 SumIntsLemma(n-1);
```

Induction without computation (2/2)

```
function SumIntsFunction( n: int ): int
 requires n >= 0
 decreases n
 ensures SumIntsFunction(n) == n*(n+1)/2
 if n == 0 then
 else
  SumIntsFunction(n-1)+n
```