EI-27003: Electronics Devices and Circuits Lecture - 14

Subject Incharge: Mr. Rajesh Khatri Associate Professor

LECTURE - 14

Year: 2020-21

Numerical

- Consider a process technology for which L_{min} =0.4um, t_{ox} =8nm, u_n =450cm²/v-s and V_t =0.7V.
- (a)Find C_{ox} and K_n
- (b)For a MOSFET with W/L=8um/0.8um, calculate the values of $V_{\rm GS}$ and $V_{\rm DSmin}$ needed to operate the transistor in the saturation region with dc current $I_{\rm D}$ =100uA.
- (c)For the device in (b), find the value of V_{GS} required to cause the device to operate as a1000ohm resistor for very small V_{DS}.
- Solution: (a) $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.45X10^{-11}}{8X10^{-9}} = 4.32X10^{-3} \text{ F/m}^2 = 4.32 \text{ fF/um}^2$

$$K_n = u_n C_{ox} = 450 \text{ x } 4.32 = 194 \text{uA/V}^2$$

For MOS operation in saturation region:

$$I_D = \frac{1}{2} K_n \frac{W}{L} (V_{GS} - V_t)^2$$

Numerical

•
$$100 = \frac{1}{2}X194 X \frac{8}{0.8} (V_{GS} - 0.7)^2$$

•
$$V_{GS} - 0.7 = 0.32 \text{V}$$

• OR
$$V_{GS}$$
=1.02V

• Hence $V_{DSmin} = V_{GS} - V_t = 0.32V$

For MOSFET in triode region with V_{DS} very small

$$I_D = K_n \frac{W}{L} (V_{GS} - V_t) V_{DS}$$

From which the drain to source resistance r_{DS} can be written as:

$$r_{DS} = \frac{V_{DS}}{I_D} \quad \text{small VDS}$$

$$= 1/K_n \frac{W}{L} (V_{GS} - V_t)$$

$$1000 = \frac{1}{194 \times 10^{-6} \times 10(V_{GS} - 0.7)}$$

Numerical

- This gives $V_{GS} 0.7 = 0.52 \text{V}$
- OR

$$V_{GS} = 1.22 \text{V}$$

Design the circuit shown in fig, so that the transistor operates at I_D=0.4mA and V_D=+0.5V. The NMOS transistor has V_t=0.7V, u_nC_{ox}=100uA/V², L=1um and W=32um. Neglect the channel-length modulation effect.

Solution

- Since V_D=+0.5V, V_G=0V
- V_{DS}<(V_{GS}-V_t) triode region & V_{DS}>(V_{GS}-V_t) sat. region
- V_D>V_G, it means that NMOS is operating in saturation region. So use saturation equation to find V_{GS}.
- $I_D = \frac{1}{2} u_n C_{ox} \frac{W}{L} (V_{GS} V_t)^2$
- $400 = \frac{1}{2} 100 \frac{32}{1} (V_{GS} V_t)^2$
- Which results $(V_{GS} V_t) = 0.5 \text{V}$ OR $V_{GS} = 0.5 + 0.7 = 1.2 \text{V}$
- We know $V_{GS} = V_G V_S$ i.e 1.2 = 0 1.2
- Hence V_S= -1.2V

$$R_S = \frac{V_S - V_{SS}}{I_D} = \frac{-1.2 - (-2.5)}{0.4} = 3.25 \text{K}\Omega$$

Similarly
$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2.5 - 0.5}{0.4} = 5 \text{K}\Omega$$

• Design the circuit shown in fig. to obtain a current I_D 0f 80uA. Find the value required for R and find dc voltage V_D . Let the NMOS transistor have V_t =0.6V, u_nC_{ox} =200uA/V², L=0.8um and W=4um. Neglect the channel length modulation effect.

- Solution:
- From Fig. Drain is connected to gate, hence $V_D=V_G$, hence NMOS is operating in Saturation region.

$$I_D = \frac{1}{2} u_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

We can write :
$$(V_{GS} - V_t) = \sqrt{\frac{2I_D}{u_n c_{ox} \frac{W}{L}}}$$

$$(V_{GS} - V_t) = \sqrt{\frac{2X80}{200X\frac{4}{0.8}}} = 0.4V$$

$$V_{GS}$$
=0.4+0.6=1V

Hence
$$V_D = V_G = 1V$$

Hence required value of R

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{3 - 1}{0.08} = 25 \text{K}\Omega$$

Numerical - HW

 Redesign the circuit in Numerical-3 to double the value of I_D without changing V_D. Give new values for W/L and R.

Answer: W/L=10 i.e. 8um/0.8um, R=12.5K

Design the circuit in fig to establish a drain voltage of 0.1V. What is the
effective resistance between drain and source at this operating point?

Assume $V_t=1V$ and $Kn(W/L)=1mA/V^2$

Answer: $R_D=12.4K$, $r_{DS}=253$

Its Quiz Time

https://forms.gle/vgZLfLnRCvUJXSNMA