Przewidywanie wskaźnika INDPRO z wykorzystaniem metod statystycznych

Presentation by **Filip Kin**January 2022

Badanie zbioru danych

Ponieważ nazwy zmiennych są nieopisane, nie jesteśmy w stanie posłużyć się żadnym twierdzeniem ekonomicznym, dlatego wykorzystamy metody matematyczno-statystyczne. Z analizy eksploracyjnej wynikło, że:

- Mamy do czynienia z szeregiem czasowym, na który wpływa wiele parametrów.
- Cały zbiór liczy 275 rekordów, mamy jedną zmienną objaśnianą oraz 5 zmiennych objaśniających.
- Po zbadaniu rozkładu zmiennej objaśnianej ukazuje się rozkład leptokurtyczny lewostronny.
- Testy korelacji wykluczają zależność zmiennych objaśniających od siebie i wykazują korelację tychże zmiennych ze zmienną objaśnianą.
- Dzięki użyciu testu KPSS oraz ADF możemy dojść do wniosku, że model nie jest stacjonarny.
- Za pomocą testu ACF dochodzimy do wniosku, że mamy do czynienia z szeregiem autoregresyjnym.

Dzięki powyższym informacjom dobieramy 3 modele, które mają największe szanse powodzenia w prognozowaniu:

- 1. Model AR(1)
- Model regresji liniowej
- Model regresji wielomianowej

	у	x1	x2	х3	х4	х5
0	NaN	2.456	4.00	1386.96	6.4	406426
1	104.7474	2.837	4.04	1462.59	4.4	405948
2	104.8129	2.578	3.56	1736.47	4.6	405466
3	104.4135	2.793	3.13	1688.85	18.0	403957
4	104.4852	3.283	3.10	1822.57	4.4	400415

Pięć pierwszych rekordów

Rozkład zmiennej objaśnianej

Test ACF dla zmiennej objaśnianej

Porównanie modeli statystycznych/uczenia maszynowego

Model AR

Z uwagi na zanikającą wykładniczo autokorelację można użyć modelu autoregresyjnego AR(1). Z wydruku wynika, że wyraz wolny jest nieistotny a kryteria informacyjne są dość niskie. Niestety, przy próbie prognozowania model nie może poszczycić się zbyt duża dokładnością, ponieważ mimo zmieniania liczby opóźnień, ciągle prognozuje 0.

Regresja liniowa

Najpopularniejsza forma prognozowania. Z wydruku wiadomo, że

- wszystkie zmienne są statystycznie istotne
- test Durbina-Watsona pokazuje, że mamy do czynienia z autokorelacją dodatnią
- 3. test Jarque-Berra udowadnia, że rozkład zmiennej objaśnianej skośnością i kurtozą przypomina rozkład normalny Błąd RMSE wyniósł w przybliżeniu 2.505 Ponadto adjusted R^2 wynosi 66% na danych treningowych i 73% na danych testowych. Walidacja krzyżowa nie wykazała, aby niższa liczba parametrów znacząco poprawiała wyniki. Niezły wynik, jednak można spróbować użyć innego modelu.

Regresja wielomianowa

Istnieje szansa, że nie mamy do czynienia z zależnością liniową. Z tego powodu używamy regresji wielomianowej stopnia drugiego, czyli funkcji kwadratowej. RMSE jest niższy niż w przypadku regresji liniowej i wynosi w przybliżeniu 2.21. Współczynnik determinacji 83 % na danych treningowe oraz 79% na danych jest zadowalający. Walidacja krzyżowa tak jak w przypadku regresji liniowej nie wykazała, aby niższa liczba parametrów poprawiała wyniki. Błąd

Dobór ostatecznego modelu i podsumowanie

Ostatecznie decydujemy się na użycie regresji wielomianowej, ponieważ przyniosła ona najlepsze rezultaty z wybranych modeli, nie wykazując przy tym przetrenowania ani niedotrenowania.

Z tego wynika, że trend w szeregu nie jest liniowy, jednakowoż mała ilość danych oraz zbyt krótki horyzont czasowy może zakrzywiać rzeczywistość.

Zważając na powyższy fakt, współczynnik determinacji R^2 wynoszący 79% jest satysfakcjonujący.

