VAN KAMPEN'S THEOREM

X = AUB A, B open, path connected.

AnB path connected.

Xo & ANB basepoint for X, A, B, AnB.

The induced $\pi_i(A) \to \pi_i(X) \otimes \pi_i(B) \to \pi_i(X)$ extend to $\underline{\Phi} : \pi_i(A) * \pi_i(B) \to \pi_i(X)$

Denote ix: A-X, is: B-X.

Let N = normal Subgroup of $TL_1(A) * TL_1(B)$ generated by the $iA(w) iB(w)^{-1}$ for $w \in \mathbb{Z} TL_1(A \cap B)$.

Theorem: ① Φ is surjective. ② $\ker \Phi = N$.

Examples. ① $TI_1(S^1 \vee S^1) \cong F_2$ induction $\longrightarrow TI_1(\bigvee S^1) \cong F_n$ $\Longrightarrow TI_1(\mathbb{R}^2 - n \text{ pts}) \cong TI_1(\mathbb{R}^3 - \text{unlink}) \cong F_n$. $TI_1(\text{graph}) \cong F_n$. ② $TI_1(S^n) = 1 \quad n \ge 2$.

3 Th $(S^3 - (p,q) - torus knot) \cong \langle x,y \mid x^p = \bullet y^q \rangle$ gluing two solid tori along an annulus. Proof ① Let $f: I \rightarrow X$ loop at X_0 .

Choose $0 = S_0 < S_1 < \cdots < S_m = 1$ S.t. $f[S_i, S_{i+1}]$ is a path in either A or B_i call it f_i .

Vi, choose path g_i in A_0B from X_0 to $f(S_i)$ The loop $(f_i, g_i)(g_1f_2g_2)\cdots(g_{m-1}f_m)$ is homotopic to f, and is a composition of loops, \rightleftharpoons each in A or B. $\Longrightarrow f_i \in I_m \Phi$.

② A factorization of $f \in TL_1(X)$ is an element of $\overline{\Psi}'(f)$: $f_1 \cdots f_m \qquad f_i \in TL_1(A) \text{ or } TL_i(B)$ We showed in ① that each f has a factorization.

Two factorizations are equivalent modulo N

iff they differ by a Sequence of moves:

(i) Combine [fi][fi+1] → [fifi+1]

if fi, fi+1 lie both in TL(A) or in TL(B).

(ii) Regard [fi] ∈ TL(A) as [fi] ∈ TL(B)

if fi ∈ TL(A∩B).

Let $f_i \cdots f_k$, $f_i' \cdots f_i'$ factorizations of f_i .

To show they are related by (i) & (ii).

Choose a homotopy IxI -> X from one to the other.

Cut IXI into small rectangles, each mapping to A or B, and so induced partitions of top 8 bottom edges are finer than those coming from the factorizations.

Push across one square at a time. Show the new factorization differs from old by (i) & (ii). E.g. two bottom-right squares.

Then rewrite $\[mu]$ as $\[mu]$ (move (i)). rewrite $\[mu]$ as $\[mu]$ $\[mu]$ (move (ii)). Homotope $\[mu]$ $\[mu]$ $\[mu]$ across square. etc.

ATTACHING DISKS

X path connected, based at Xo. Attach 2-cell D^2 via $C_P: S^1 \to X$. $X \to Y$.

Choose path of from Xo to Q(S1).
The loop of Q(S1) of is nullhomotopic in Y.

Let N= normal subgroup of TI, (X) generated by this loop. Note: N independent of J.

Prop. The inclusion $X \rightarrow Y$ induces a surjection $T_{\Gamma}(X, x_0) \rightarrow T_{\Gamma}(Y, x_0)$ with Kernel N.

Proof: Choose $y \in int(D^2)$ Apply Van Kampen to Y-Y, Y-X. Note: Y-Y = XY-X = * $(Y-Y) \cap (Y-X) = int(D^2)-Y = S^1$.

Applications. ① Mg = orientable surface of genus g. $TL_1(Mg) \cong \langle a_1, b_1, ..., a_g, b_g | [a_1, b_1] ... [a_g, b_g] = 1 \rangle$ $\implies Mg \not= Mh \quad g \not= h \quad as$ $TL_1(Mg)^{ab} \cong \mathbb{Z}^{2g}$.

2) For any group G, there is a 2-dim cell complex X_G with $TL_1(X_G) \cong G$.

To do this, choose a presentation $G = \langle g_{\varkappa} | r_{\beta} \rangle$ $\chi_{G} = \chi_{S}^{1}$ with 2-cells attached along r_{β} .