Topology Problems

Homotopy

- 1. Show that any non-surjective map $f:X o S^n$ is homotopic to the constant map.
- 2. Let $f,g o S^n$ be such that $\forall x \in X, f(x) \neq -g(x)$. Show that $f \simeq g$.
- 3. Given $f: x \mapsto -x$ the antipodal map, show that $n = 1 \mod 2 \implies f \simeq \mathrm{id}$.
- 4. Show that X is contractible $\iff \mathrm{id}_X \simeq g$ for some constant map g.
- 5. Show that $S^1 \times I \simeq M$, the Mobius strip.
- 6. Show that $\mathbb{R}^3 S^1 \simeq S^1 \vee S^2$.
- 7. Classify the letters of the alphabet up to homeomorphism, and up to homotopy.
- 8. Let $f,g:S^1 o X$,

$$P = X \cup_f B^2 \cong X \coprod B^2 / \sim$$
, where $x \sim f(x)$,

$$Q = X \cup_q B^2$$
.

Show that $f \simeq g \implies P \simeq Q$.

Fundamental Group

- 1. Show that $x, y \in X$ path & simply-connected \implies all paths from x to y are homotopic rel $\{0, 1\}$.
- 2. Show that for X path connected, $\pi_1(X) = 1 \iff \forall \text{cts. } f: S^1 \to X f$, extends to a continuous map $F: B^2 \to X$.
- 3. Show $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- 4. Show $\pi_1(S^n) = 1$ for $n \geq 2$.
- 5. Show that $S^2 \{p_0, p_1\} \simeq S^1$.
- 6. Show that $S^3-\{p_0,p_1\}\simeq S^2$
- 7. Show that $S^2 \ncong S^3$.
- 8. For each of the following $f: S^1 \to S^1$, identify the corresponding $f_*: \mathbb{Z} \to \mathbb{Z}$:
 - 1. $z \mapsto z^n$
 - 2. $\bar{x} \mapsto -\bar{x}$
 - 3. $e^{i\theta} \mapsto e^{2\pi i \sin \theta}$
- 9. Determine the winding number of the following map: $f:S^1 \to \mathbb{C}-\{0\}, z\mapsto 8z^4+4z^3+2z^2+z^{-1}$
- 10. Identify $\pi_1(M, [(1, \frac{1}{2})])$, and identify the class of ∂M .
- 11. Let $X = S^1 \times S^1$ and γ a loop based at x_0 . What is the induced map γ_{t} ?

Group Actions

- 1. Show that octagon pasting is homeomorphic to the $T = \mathbb{R}^2/\mathbb{Z}^2$.
- 2. Let x_0 be the image of 0, show that there is an order 6 homeomorphism $f: T \to T$ fixing x_0 . Find a representation of f_* as a matrix, and find its determinant.
- 3. Show that $\pi_1(K)$, the Klein bottle, is given by pairs (m,n) where $(m,n)\star(p,q)=(m+(-1)^np,n+q)$

- 1. Show this is torsion-free
- 2. Show that T is a double cover of K.
- 4. For each of these actions of \mathbb{Z}_2 on S^n , compute $\pi_1(S^n/\mathbb{Z}_2)$
 - 1. $S^1, z \mapsto -z$
 - 2. $S^2, (x,y,z)\mapsto (-x,-y,z)$
 - 3. S^3 , $(z,w)\mapsto (-z,-w)$

Applications

- 1. Let $i:\mathbb{RP}^2 \to \mathbb{RP}^3$, induced by $S^2 \hookrightarrow S^3$ as the equator. Show that $i \not\simeq \mathrm{const.}$
- 2. Show that there is no map $f:S^2 o S^1$ that commutes with the antipodal map.
- 3. Prove that for any $f: S^2 \to \mathbb{R}^2$, there exists $x \in S^2$ such that f(x) = f(-x).
- 4. Prove the Ham Sandwich theorem.
- 5. Show that \boldsymbol{K} can not be a topological group.

Van Kampen's Theorem

- 1. Compute a presentation of $\pi_1(T)$ and prove it is isomorphic to \mathbb{Z}_2 .
- 2. (Images)
- 3. Show that $T-D^1:=X\simeq S^1\vee S^1$.
 - 1. Show there does not exist a retraction $r: X \to \partial X$.
- 4. Images
- 5. IMages
- 6. Images
- 7. Calculate a presentation of $\pi_1(S^3 K)$
- 8. Show that all 3 presentations of $\pi_1(K)$ are isomorphic
 - 1. Square with sides glued
 - 2. Two mobius strips glues along boundary
 - 3. Multiplication rule
- 9. Given a group $G = \langle A : R \rangle$, show how to construct a CW-complex X such that $\pi_1(X) = G$.
- 10. Write down the fundamental group of the following spaces:
 - 1. $\mathbb{R}^2 \{0, 1\}$
 - 2. $\mathbb{R}^2 I$
 - 3. The symbol $\oplus \in \mathbb{R}^2$
 - 4. $S^2 \{p_i\}_{i=1}^4$
 - 5. $T \{p_0\}$
 - 6. S^2/\mathbb{Z}_2 via the antipodal map
 - 7. S^2/\mathbb{Z}_3 via a $2\pi/3$ rotation about the z-axis.
 - 8. $S_2 \cup \{(0,0,z) \mid -1 \le z \le 1\}$
 - 9. $\mathbb{R}^3 \{(x, y, 0) \mid x^2 + y^2 = 1\}$
 - 10. $\mathbb{R}^2 H$, the Hopf link
- 11. Prove that the homophony group is trivial.