International TOR Rectifier

PDP SWITCH

IRFS4228PbF IRFSL4228PbF

Features

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- •175°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability

Key Parameters					
V _{DS} min	150	V			
V _{DS (Avalanche)} typ.	180	V			
R _{DS(ON)} typ. @ 10V	12	mΩ			
I _{RP} max @ T _C = 100°C	170	Α			
T _J max	175	°C			

G	D	S
Gate	Drain	Source

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low E_{PULSE} rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{GS}	Gate-to-Source Voltage	±30	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	83	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	59	
I _{DM}	Pulsed Drain Current ①	330	
I _{RP} @ T _C = 100°C	Repetitive Peak Current ®	170	
P _D @T _C = 25°C	Power Dissipation	330	W
P _D @T _C = 100°C	Power Dissipation	170	
	Linear Derating Factor	2.2	W/°C
T _J	Operating Junction and	-40 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature for 10 seconds	300	
	Mounting Torque, 6-32 or M3 Screw	10lb·in (1.1N·m)	N

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.45*	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount), D ² Pak ©		40	

^{*} R_{6JC} (end of life) for D²Pak and TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium.

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		150		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		12	15	mΩ	V _{GS} = 10V, I _D = 33A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-14		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 150V, V_{GS} = 0V$
				1.0	mA	$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
g _{fs}	Forward Transconductance	170			S	$V_{DS} = 25V, I_{D} = 50A$
Q_g	Total Gate Charge		71	107	nC	$V_{DD} = 75V, I_D = 50A, V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		21			
$t_{d(on)}$	Turn-On Delay Time		18			$V_{DD} = 75V, V_{GS} = 10V$ ③
t _r	Rise Time		59		ns	$I_D = 50A$
$t_{d(off)}$	Turn-Off Delay Time		24			$R_G = 2.5\Omega$
t _f	Fall Time		33			See Fig. 22
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 120V, V_{GS} = 15V, R_{G} = 5.1\Omega$
			58			$L = 220$ nH, $C = 0.3$ µF, $V_{GS} = 15$ V
E _{PULSE}	Energy per Pulse		56		μJ	$V_{DS} = 120V, R_{G} = 5.1\Omega, T_{J} = 25^{\circ}C$
			110			$L = 220$ nH, $C = 0.3$ µF, $V_{GS} = 15$ V
			110			$V_{DS} = 120V, R_G = 5.1\Omega, T_J = 100^{\circ}C$
C _{iss}	Input Capacitance		4530			$V_{GS} = 0V$
C _{oss}	Output Capacitance		550		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100			f = 1.0MHz
C _{oss} eff.	Effective Output Capacitance		480			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter Typ.		Max.	Units
E _{AS}	Single Pulse Avalanche Energy②		120	mJ
E _{AR}	Repetitive Avalanche Energy ①		33	mJ
V _{DS(Avalanche)}	Repetitive Avalanche Voltage ①	180		V
I _{AS}	Avalanche Current ②		50	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S @ T _C = 25°C	Continuous Source Current			83		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			330		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 50$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		76	110	ns	$T_J = 25^{\circ}C, I_F = 50A, V_{DD} = 50V$
Q _{rr}	Reverse Recovery Charge		230	350	nC	di/dt = 100A/μs ③

2 www.irf.com

IRFS/SL4228PbF

Fig 1. Typical Output Characteristics

V_{GS}, Gate-to-Source Voltage (V) **Fig 3.** Typical Transfer Characteristics

 $V_{DS,}$ Drain-to-Source Voltage (V) Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

I_D, Peak Drain Current (A) **Fig 6.** Typical E_{PULSE} vs. Drain Current

Fig 7. Typical E_{PULSE} vs.Temperature

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

Fig 12. Maximum Safe Operating Area

4

Fig 13. On-Resistance vs. Gate Voltage

500

Fig 14. Maximum Avalanche Energy vs. Temperature

Fig 15. Threshold Voltage vs. Temperature

Fig 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 20a. Gate Charge Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20b. Gate Charge Waveform

6 www.irf.com

Fig 21a. $\rm t_{st}$ and $\rm E_{PULSE}$ Test Circuit

Fig 21b. t_{st} Test Waveforms

Fig 21c. E_{PULSE} Test Waveforms

Fig 22a. Switching Time Test Circuit

Fig 22b. Switching Time Waveforms

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7, CONTROLLING DIMENSION; INCH.
- 8, OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS				
M B O L	MILLIM	MILLIMETERS INC		HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1,14	1.78	.045	.070	
ь3	1,14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
Ε	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.65	-	,066	4
L2	1.27	1.78	-	.070	
L3	0.25	BSC	,010 BSC		
L4	4.78	5.28	.188	.208	

LEAD ASSIGNMENTS

HEXFET

1,- GATE 2, 4.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE
2, 4.- COLLECTOR
3.- EMITTER

DIODES

1.- ANODE *
2. 4.- CATHODE
3.- ANODE

* PART DEPENDENT.

D²Pak (TO-263AB) Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000

IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead — Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

IRFS/SL4228PbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6. CONTROLLING DIMENSION: INCH.

7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

S Y	DIMENSIONS				
M B O L	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0,99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1,14	1,78	.045	.070	
b3	1,14	1,73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1,65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100 BSC		
L	13.46	14,10	.530	.555	
L1	-	1,65	-	.065	4
L2	3.56	3.71	.140	.146	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN

2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

TO-262 Part Marking Information

Note: "P" in assembly line position indicates "Lead — Free"

OR

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
- 4 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.096mH, $R_G = 25\Omega$, $I_{AS} = 50A$.
- \oplus R₀ is measured at T_J of approximately 90°C.
- © When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903