Sketch the Bode plot for the system with 616) + 161 = 64(5+2) $5(8+0.5)(5^{2}+3.28+64)$

Solutions

(1) The rearrangement of the transfer function gives GBIHB) = 64(1+3)2

$$\frac{3\left(1+\frac{8}{0.5}\right)\left(1+\frac{3.25}{64}+\frac{5^{2}}{64}\right)64\times0.5}{4\left(1+\frac{4}{2}\right)}$$

$$3\left(1+\frac{5}{0.5}\right)\left(1+0.055+\frac{5^{2}}{64}\right)$$

1 The sinusoidal transfer function is

 $G(j\omega)H(j\omega) = 4(1+j\omega) \over j\omega(1+j\omega)(1+0.05j\omega-\frac{\omega^2}{64})$

(2) Prepare a table as shown:

S.NO	Factor	Corner Freq	LM	φ
1)	4	-	Constant 12dB	0°
2)	(jw)-1	555 -	Constant Slope -20013/lec	-90°
3)	$\left(1+\frac{j\omega}{0.5}\right)^{-1}$	0.5	-20dB dee above	W≤0.05, ¢=0° W=0.6, ¢=-45° W7,50, ¢=-90°

011.5	Factor	Corner Freq	LM	4
4	(1+ jw/2)+1	2	od Bupto Cf t20 dB dec7Cf	W≤0.2, \$=0 W=2, \$=45 W720, \$=90
5	$[-\omega^{2} + j0.05\omega]^{-1}$	8	-40 distdec >	WSO.8, \$ =0 W=8, \$=-90 W7,80, \$=-180

- 1 The type of the system determines the slope of the log-magnitude curve at low frequencies.
- 1 The state parition, velocity and acceleration error coefficients describe the low frequency behaviour of type 0, type 1 and type 2 systems respectively.
- (2) Thus information conversing the existence and magnitude of the steady state error of a control system to a given input can be determined from the observation of the low begreing region of the log-mag curve.
 - 1) POSITIONAL ERROR CONSTANT
 - 1) Fig below shows an enample of the log-mag plot of a type 0 system

(The positional error constant is defined as kp = lim (als) H(s) $s \to 0$

le Kp= lim ayin) Hyin)

& At low frequencies,

20 log kp = 20 log | ayw) kyw)

- @ The LFA is a straight line at 20 log kp.
- 2) VELOCITY ERROR CONSTANT
- Dig below shows on example of the log-mag plot of a type I system.

- & The velocity error constant is defined as Ku = lum saus) Hus)
 8-70
 - & Kre = Lim (jw) ayu) Hyw)
 - At low frequencies (ω=0)
 kw = (jω) ωyω) μίμω)
 ωγω) μίω) = kw
 ων
 - (8) Thus 20 log | Qyw) Hyw) = 20 log | Ku |
 - (B) At w=1, 20 log | ayw) Hill = 20 log | ku | = 20 log tu

- & This means the intersection of the invital-20dB/dec segment (or its extension) with the line $\omega=1$ has the magnitude 20 log kg.
- 8) The intersection of the initial 20 defdee segmentor its extension with the OdB him has a frequency numerically equal to ku.
- @ This can be proved as follows:
 - · Let the line intersed odB at w,
 - · 20 log $\left| \frac{ku}{jw_1} \right| = 0 dB = 20 log 1$
 - $|\frac{k\nu}{|\omega|}| = 1 \quad \text{or} \quad |k\nu = \omega_1|$

- 3 ACCELERATION ERROR CONSTANT
 - The acceleration error constant is defined as $Ka = \lim_{s \to 0} s^2 h(s) H(s)$ $s \to 0$ ie $Ka = \lim_{s \to 0} (jw)^2 h(jw) H(jw)$ $w \to 0$
 - At low frequencies $(\omega 70)$ $ka = (i\omega)^2 \, \alpha \, y\omega \, \mu \, y\omega$ $\alpha \, y\omega \, \mu \, y\omega = \frac{ka}{(i\omega)^2}$
 - $@ 20 \log |\alpha y \omega) + y \omega| = 20 \log \left[\frac{ka}{(i\omega)^2}\right]$
 - (3) At w=1, $(20 \log | \Omega y w) + y w) = 20 \log | ka | = 20 \log ka$
 - (1) Thus the intersertors of the initial -40dB dee segment or its extension with the W=1 line has the magnitude 20 log Ka.
 - The frequency W2 at the intersection of the initial -40d b | dec segment or its extension with the odB line gives the square root of ka numerically.

$$20 \log \left| \frac{ka}{(i\omega_2)^2} \right| = 0 dB = 20 \log 1$$

$$\left| \frac{ka}{(i\omega_2)^2} \right| = 1$$

$$ka = \omega_2$$

$$\left| \omega_2 = \sqrt{ka} \right|$$

