Homeomorphisms

Definition: Homeomorphism

Let X and Y be topological spaces and let $f: X \to Y$. To say that f is a homeomorphism means that f is a continuous bijection and f^{-1} is continuous. If such an f exists then X and Y are said to be homeomorphic or topologically equivalent.

Theorem

Homeomorphic is an equivalence relation.

Proof. Assume that X,Y, and Z are topological spaces.

R: Consider $i_X = i_X^{-1}$, which is continuous. Therefore X is homeomorphic to X.

S: Assume that *X* is homeomorphic to *Y*.

Then there exists a homeomorphism $f:X\to Y$. Since f is a homeomorphism, it is invertible and its inverse is continuous. Thus, $f^{-1}:Y\to X$ is a continuous, invertible function and $(f^{-1})^{-1}=f$ is invertible. Therefore Y is homeomorphic to X.

T: Assume that X is homeomorphic to Y and Y is homeomorphic to Z.

Then there exists homeomorphics $f:X\to Y$ and $g:Y\to Z$. So consider $g\circ f:X\to Z$. Since f and g are continuous and invertible, $g\circ f$ is continuous and invertible. Furthermore, since f^{-1} and g^{-1} are continuous, $f^{-1}\circ g^{-1}=(g\circ f)^{-1}$ is continuous. Therefore X is homeomorphic to Z.

Lemma

For all $a, b \in \mathbb{R}$ such that a < b, (a, b) is homeomorphic to (0, 1).

Proof. Let $f:(0,1)\to(a,b)$ be defined by f(t)=a+t(a-b). f is linear, and thus continuous and invertible with $f^{-1}(s)=\frac{s-a}{b-a}$ which is also linear and thus continuous. Therefore (a,b) is homeomorphic to (0,1).

Corollary

All open intervals in \mathbb{R} are homeomorphic.

Proof. Assume $(a,b),(c,d)\subset\mathbb{R}$. (a,b) is homeomorphic to (0,1) and (0,1) is homeomorphic to (c,d). Therefore, (a,b) is homeomorphic to (c,d).

Theorem

 $(a,b) \subset \mathbb{R}$ is homeomorphic to R.

Proof. (a,b) is homeomorphic to $(-\frac{\pi}{2},\frac{\pi}{2})$. Now, consider $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ defined by $f(x)=\tan x$. This is a continuous and invertible function whose inverse is also continuous. Thus, $(-\frac{\pi}{2},\frac{\pi}{2})$ is \mathbb{R} . Therefore, (a,b) is homeomorphic to R.

Theorem

Let X and Y be topological spaces and let $f: X \to Y$ be continuous. TFAE:

- 1. f is a homeomorphism.
- 2. *f* is a closed bijection.
- 3. f is an open bijection.

Proof.

 $(1 \implies 2)$ Assume that f is a homeomorphism.

This means that f is a bijection and its inverse is continuous. So assume that $A \subset X$ is closed in X. Since f is bijective, $f(A) = (f^{-1})^{-1}(A)$, and since $(f^{-1})^{-1}$ is continuous, f(A) is also closed. Therefore f is a closed bijection.

 $(2 \implies 3)$ Assume that f is a closed bijection.

Assume that $U \in \mathscr{T}_X$. This means that X-U is closed in X, and since f is closed, f(X-U) is closed in Y and so $Y-f(X-U) \in \mathscr{T}_Y$. But f is a bijection and so $Y-f(X-U) = f(U) \in \mathscr{T}_Y$. Therefore, f is an open bijection.

 $(3 \implies 1)$ Assume that f is an open bijection.

Assume that $U \in \mathscr{T}_Y$. Since f is continuous, $f^{-1}(U) \in \mathscr{T}_X$. But f is open so $(f^{-1})^{-1}(U) \in \mathscr{T}_Y$. Therefore f^{-1} is continuous and hence f is a homeomorphism.

Theorem

Let X and Y be topological spaces such that X is compact and Y is Hausdorff and let $f: X \to Y$ be a continuous bijection. f is a homeomorphism.

Proof. Since X is compact, Y is Hausdorff, and f is a bijection, f is closed. Therefore, since f is a continuous closed bijection, f is a homeomorphism.

Example

Let X and Y be topological spaces and let f be continuous bijection.

1. Y is T_2 but X is not compact.

Consider $X=[0,2\pi]$ and $Y=S^1$ with $f:X\to Y$ defined by $f(t)=e^{it}$. But $f^{-1}(e^{it})=t$ is not continuous.

2. X is compact but Y is not T_2 .

Consider $X=[0,1]_{\mathrm{std}}$ and $Y=[0,1]_{\mathrm{ind}}$ with f(x)=x. But f is not open.