Bernsteinovi polinomi treh spremenljivk

Petja Murnik in Nejc Jenko

17. januar 2025

Uvod

Pri predavanjih predmeta RPGO smo obravnavali Bernsteinove bazne polinome ene ter dveh spremenljivk, ki smo jih uporabili pri različnih aplikacijah pri numerični matematiki.

V tem delu bomo predstavili Bernsteinove bazne polinome treh spremenljivk, ki so razširitev prej omenjenih.

Definicija prostora polinomov treh spremenljivk

Prostor polinomov stopnje d treh spremenljivk je definiran kot:

$$\mathcal{P}_d(x,y,z) = \left\{ \sum_{i+j+k \leq n} c_{i,j,k} x^i y^j z^k : c_{i,j,k} \in \mathbb{R} \right\}.$$

Ta prostor ima dimenzijo:

$$\mathcal{P}_d = \binom{d+3}{3}.$$

Lema 1

Lema

Naj bo \mathcal{P}_d definiran kot v prej. Potem velja, da je $\dim \mathcal{P}_d = \binom{d+3}{3}$. Nadalje monomi $\left\{x^i y^j z^k\right\}_{0 \le i+j+k \le d}$ tvorijo njegovo bazo.

Dokaz leme 1 (skrajšan)

- ▶ Monomi oblike $\{x^i y^j z^k\}_{0 \le i+j+k \le d}$ razpenjajo \mathcal{P}_d .
- ▶ Velja $|\{(i,j,k): 0 \le i+j+k \le d, i,j,k \in \mathbb{N}_0\}| = \binom{d+3}{3} = \dim \mathcal{P}_d.$
- Predpostavimo, da je polinom $p(x, y, z) = \sum_{0 \le i+j+k \le d} a_{ijk} x^i y^j z^k$ identično enak 0.
- Vsi mešani odvodi polinoma so enaki 0.
- ▶ Direktno odvajanje: $D_x^i D_y^j D_z^k p(x, y, z)|_{x=0, y=0, z=0} = a_{ijk}$ za vsak $0 \le i + j + k \le d$.
- Linearna neodvisnost monomov je dokazana.

Lema 2

Lema

Naj bo T tetraeder z volumnom V_T , potem obstaja konstanta K odvisna le od d, da za vsak $p \in \mathcal{P}_d$ ter $1 \le q < \infty$

$$V_T^{-1/q} \|p\|_{q,T} \le \|p\|_{\infty l,T} \le KV_T^{-1/q} \|p\|_{q,T},$$
 (1)

kjer je $\|\cdot\|_{q,T}$ standardna L_q norma glede na tetraeder T.

Dokaz leme 2

Za prvo neenakost računamo

$$\int_{T} |p(t)|^{q} dt \leq \int_{T} \left(\sup_{t \in T} |p(t)| \right)^{q} dt = \left(\sup_{t \in T} |p(t)| \right)^{q} \int_{T} 1 dt = \|p\|_{\infty, T}^{q} V_{T}$$

ter če začetek in konec q-korenimo, dobimo željeno. Druga neenakost izhaja iz ekvivalentnosti norm v končno dimenzionalnem prostoru \mathcal{P}_d :

$$\|p\|_{\infty,T} \leq K \|p\|_{q,T}.$$

Združitev obeh neenakosti:

$$V_T^{-1/q} \|p\|_{q,T} \le K \|p\|_{\infty,T} \le KV_T^{-1/q} \|p\|_{q,T}.$$

S tem je lema dokazana.

Definicija nedegeneriranega tetraedra

Definicija

Rečemo, da je tetraeder $T=\langle V_1,V_2,V_3,V_4\rangle$ nedegeneriran, če ima neničelen volumen. Rečemo, da so vozlišča V_1,V_2,V_3,V_4 tetraedra T v **kanoničnem redu**, če lahko T rotiramo in transliramo tako, da ploskev $\langle V_1,V_2,V_3\rangle$ leži v ravnini z=0 in je pozitivno orientirana ter je z koordinata vozlišča V_4 pozitivna.

Lema 3

Lema

Naj bo $T=\langle V_1,V_2,V_3,V_4\rangle$ tetraeder v kanoničnem redu. Potem za vsako točko $V=(x,y,z)\in\mathbb{R}^3$ obstajajo enolično določene $\phi_1,\phi_2,\phi_3,\phi_4\in\mathbb{R}$, da velja

$$V = \phi_1 V_1 + \phi_2 V_2 + \phi_3 V_3 + \phi_4 V_4 \tag{2}$$

ter

$$\phi_1 + \phi_2 + \phi_3 + \phi_4 = 1. \tag{3}$$

Vrednostim $\phi_1, \phi_2, \phi_3, \phi_4$ rečemo **baricentrične koordinate** točke V glede na tetraeder T.

Dokaz leme 3

Željeno je rešitev nesingularnega sistema

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ y \\ z \end{bmatrix}. \quad \Box$$

$$\phi_1 = rac{1}{\det(M)} egin{array}{cccc} 1 & 1 & 1 & 1 \ x & x_2 & x_3 & x_4 \ y & y_2 & y_3 & y_4 \ z & z_2 & z_3 & z_4 \ \end{array} = rac{V_{\widetilde{T}_1}}{V_T},$$

kjer je $V_{\widetilde{T}_i}$ prostornina tetraedra, ki ga dobimo, če zamenjamo i-to vozlišče s točko V.

Baricentrične koordinate glede na tetraeder

Definicija Bernsteinovih baznih polinomov

Definicija

Naj bo $T = \langle V_1, V_2, V_3, V_4 \rangle$ tetraeder v kanoničnem redu. **Bernsteinov bazni polinom** stopnje n glede na tetraeder T je definiran kot

$$B_{ijkl}^{d} := \frac{d!}{i!j!k!l!} \phi_1^i \phi_2^j \phi_3^k \phi_4^l, \quad i+j+k+l=d,$$
 (4)

kjer je $\phi_1, \phi_2, \phi_3, \phi_4$ baricentrične koordinate funkcije glede na tetraeder T. V primeru, ko je kateri izmed indeksov i, j, k, l negativen, nastavimo $B^d_{ijkl} = 0$.

Ključne lastnosti: nenegativnost, particija enote.

Izrek 2

Izrek

Bernsteinovi bazni polinomi B^d_{ijkl} tvorijo bazo prostora \mathcal{P}_d . Prav tako velja

$$\sum_{i+i+k+l=d} B_{ijkl}^d(V) = 1, \quad \forall V \in \mathbb{R}^3$$
 (5)

ter

$$0 \le B_{ijkl}^d(V) \le 1, \quad \forall V \in \mathcal{T}. \tag{6}$$

Povzetek dokaza

- ightharpoonup Označimo z \mathcal{B}_d množico Bernsteinovih polinomov.
- ▶ Dokazujemo enakost $(\phi_1 + \phi_2 + \phi_3 + \phi_4)^d = \sum_{i+j+k+l=d} \frac{d!}{i!i!k!l!} \phi_1^i \phi_2^j \phi_3^k \phi_4^l$.
- ▶ Indukcija po d:
 - ightharpoonup Za d=0 je enakost očitna.
 - Za d = 1 uporabimo enačbo baricentričnih koordinat.
 - ▶ Združimo vse člene in dobimo $\sum_{i+j+k+l=d} \frac{ix_1+jx_2+kx_3+lx_4}{d} B^d_{ijkl}$.
- Indukcijski korak:
 - Predpostavimo, da trditev velja za $\mu + \nu + \kappa \leq d 1$.
 - ightharpoonup Za $\mu + \nu + \kappa = d$ uporabimo podobno metodo kot za d=1.
- **D**okazujemo, da Bernsteinovi bazni polinomi tvorijo bazo \mathcal{P}_d .
- Iz lastnosti baricentričnih koordinat sledi izjava o mejah Bernsteinovih baznih funkcij.

Povzetek dokaza

- Dokazali smo, da Bernsteinovi polinomi tvorijo bazo prostora \mathcal{P}_d .
- Uporabili smo indukcijo po d in lastnosti baricentričnih koordinat.
- Izjava o mejah Bernsteinovih baznih funkcij sledi direktno iz teh lastnosti.

Definicija B-forme in B-koeficientov

Iz izreka 1 sledi, da lahko vsak polinom $p \in \mathcal{P}_d$ lahko zapišemo na enoličen način kot

$$p = \sum_{i+j+k+l=d} c_{ijkl} B_{ijkl}^d. \tag{7}$$

Tak zapis imenujemo **B-forma** ter koeficente *c_{ijkl}* **B-koeficienti**. Množico domenskih točk definiramo ter označimo kot

$$\mathcal{D}_{d,T} := \left\{ \zeta_{ijkl}^T := \frac{iV_1 + jV_2 + kV_3 + lV_4}{d} \right\}_{i+j+k+l=d}.$$
 (8)

Domenske točke $\mathcal{D}_{3,T}$

$$V_1 = (0,0,0), V_2 = (0,1,0), V_3 = (1,1,0), V_4 = (0,0,1)$$

Izrek 3

Izrek

Naj bo $p \in \mathcal{P}_d$ zapisan v obliki (7). Označimo z $F_1 := \langle V_2, V_3, V_4 \rangle$ ploskev tetraedra T nasproti vozlišču V_1 . Potem velja

$$p|_{F_1} = \sum_{j+k+l=d} c_{0jkl} B_{0jkl}^d = \sum_{j+k+l} c_{jkl}^{F_1} B_{jkl}^{F_1,d},$$
 (9)

kjer $c_{jkl}^{F_1}:=c_{0jkl}$ ter so $B_{jkl}^{F_1,d}$ Bernsteinovi bazni polinomi stopnje d glede na trikotnik F_1 .

Ideja De Casteljaujevega algoritma

V tem razdelku bomo predstavili de Casteljaujev algoritem. Algoritem omogoča učinkovito in stabilno izračunavanje vrednosti polinomov v B-formi. Algoritem temelji na rekurzivni zvezi:

$$B^{d}_{ijkl} = \phi_1 B^{d-1}_{i-1,j,k,l} + \phi_2 B^{d-1}_{i,j-1,k,l} + \phi_3 B^{d-1}_{i,j,k-1,l} + \phi_4 B^{d-1}_{i,j,k,l-1},$$

Izrek 4

Izrek

Naj bo $p \in \mathcal{P}_d$ zapisan v obliki B-forme (7). Njegove koeficiente označimo z $c_{ijkl}^{(0)} = c_{ijkl}, i+j+l+k=d$. Naj ima točka V baricentrične koordinate $\phi_1, \phi_2, \phi_3, \phi_4$.

Potem velja:

$$p(V) = \sum_{i+j+k+l=d} c_{ijkl}^{(d)} B_{ijkl}^d(V),$$

kjer so $c_{ijkl}^{(r)}$ definirani kot:

$$c_{ijkl}^{(r)} = \phi_1 c_{i-1,j,k,l}^{(r-1)} + \phi_2 c_{i,j-1,k,l}^{(r-1)} + \phi_3 c_{i,j,k-1,l}^{(r-1)} + \phi_4 c_{i,j,k,l-1}^{(r-1)},$$

$$za \ i+j+k+l = d, \ r = 1, 2, \dots, d.$$

Algoritem 1

de Casteljaujev algoritem

- 1. Za r=0 nastavi $c_{ijkl}^{(0)}=c_{ijkl}$ za i+j+k+l=d.
- 2. Za $r=1,2,\ldots,d$ izračunaj

$$c_{ijkl}^{(r)} = \phi_1 c_{i-1,j,k,l}^{(r-1)} + \phi_2 c_{i,j-1,k,l}^{(r-1)} + \phi_3 c_{i,j,k-1,l}^{(r-1)} + \phi_4 c_{i,j,k,l-1}^{(r-1)},$$

za i + j + k + l = d.

3. Vrednost polinoma p v točki V je enaka

$$p(V) = \sum_{i+j+k+l=d} c_{ijkl}^{(d)} B_{ijkl}^d(V).$$