Cyclotomy in Radicals

Edwin Park

2023

CONTENTS Edwin P.

Contents

1	Van	ndermonde's Method	1
	1.1	Theory	1
	1.2	3 rd Roots of Unity	3
	1.3	5 th Roots of Unity	4
		7 th Roots of Unity	
		11 th Roots of Unity	
	1.6	13 th Roots of Unity	Ć
	1.7	17 th Roots of Unity	10
2	Gal	ois Theory	11

1 Vandermonde's Method

1.1 Theory

We wish to express the n^{th} roots of unity in radicals with index lower than n. The following method is due to Vandermonde and Gauss.

We consider a primitive p^{th} root ζ where p is prime (results for composite numbers follow from the prime numbers, as we will show later). We begin by considering the vector space $\mathbb{Q}(\zeta)$ over \mathbb{Q} . A natural basis is $\{\zeta^i \mid i=1,2,\ldots,p-1\}$. However, we will instead work with $\{\zeta^i \mid i=g^1,g^2,\ldots,g^{p-1}\}$ where g is a primitive root modulo p. Although this is simply a re-ordering of the previous basis, it is helpful as automorphisms in $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ will simply "shift" the coefficients of a vector.

To illustrate this, consider the automorphism ϕ in the Galois group which maps ζ to ζ^g . To notate vectors we will use $[C_1, C_2, \ldots, C_n] = C_1 \zeta^{g^1} + C_2 \zeta^{g^2} + \cdots + C_n \zeta^{g^n}$, where n = p - 1 is the dimension of the vector space. Noting that ϕ takes ζ^{g^i} to $\zeta^{g^{i+1}}$, we see that $\phi([C_1, C_2, \ldots, C_n]) = [C_n, C_1, C_2, \ldots, C_{n-1}]$. Ultimately, we want an expression for $[0, \ldots, 0, 1]$ (or any other vector with only one non-zero entry) by adding/multiplying/radicalising vectors whose values we already know. Vandermonde's method uses addition, which our current basis is optimised for.

A natural way to abuse the coefficient-shifting property of ϕ is by considering the vector $[\omega^1, \omega^2, \dots, \omega^n]$ where ω is a primitive n^{th} root of unity.

$$\phi\left(\left[\omega^{1}, \omega^{2}, \dots, \omega^{n}\right]\right) = \left[\omega^{n}, \omega^{1}, \dots, \omega^{n-1}\right]$$
$$= \omega^{-1}\left[\omega^{1}, \omega^{2}, \dots, \omega^{n}\right]$$

The genius step is to consider such vectors for all n^{th} roots of unity and notice that adding them up gives the desired $[0, \ldots, 0, 1]$:

$$(\omega^{1})^{1}\zeta^{1} + (\omega^{1})^{2}\zeta^{2} + \cdots + (\omega^{1})^{n}\zeta^{n} =: V_{1}$$

$$+ (\omega^{2})^{1}\zeta^{1} + (\omega^{2})^{2}\zeta^{2} + \cdots + (\omega^{2})^{n}\zeta^{n} =: V_{2}$$

$$+ \vdots$$

$$+ (\omega^{n})^{1}\zeta^{1} + (\omega^{n})^{2}\zeta^{2} + \cdots + (\omega^{n})^{n}\zeta^{n} =: V_{n}$$

$$= 0 + 0 + \cdots + n\zeta^{n} = n\zeta^{n}$$

$$(1)$$

Each of the first n-1 columns add to 0 because ω^i is a root of unity whose order divides n, and the columns cycles over powers of ω^i from 1 to n. The column is non-zero only when $\omega^i = 1$.

Furthermore, each of the rows V_i are expressible in radicals. Noting that

$$\phi(V_i) = \phi([(\omega^i)^1, (\omega^i)^2, \dots, (\omega^i)^n])$$

$$= [(\omega^i)^n, (\omega^i)^1, \dots, (\omega^i)^{n-1}]$$

$$= [\omega^1, \omega^2, \dots, \omega^n],$$

it follows that

$$\phi\left(V_{i}^{n}\right)=\phi\left(V_{i}\right)^{n}$$
 (automorphisms preserve products)
$$=\omega^{-in}V_{i}^{n}$$

$$=V_{i}^{n}.$$

So V_i^n is invariant under ϕ . Given $V_i^n = [C_1, C_2, \dots, C_n]$ we have $[C_1, C_2, \dots, C_n] = [C_n, C_1, \dots, C_{n-1}] = \cdots = [C_n - 1, C_n, \dots, C_n - 2]$, so $C_1 = C_2 = \cdots = C_n$. $[1, 1, \dots, 1] = -1$ so $V_i^n = -C_1$. Theoretically

1.1 Theory Edwin P.

we've established now that expressing ζ in radicals is possible, but calculating C_1 in practicality is non-trivial. (write notes on this!) Suppose we want to find the coefficient of ζ^1 in $[a_1, a_2, \ldots, a_n][b_1, b_2, \ldots, b_n]$. We want to determine entries A_i and B_j such that

$$\zeta^{g^i}\zeta^{g^j} = \zeta^1 \Rightarrow g^i + g^j \equiv 1 \pmod{p}$$

For example, take p = 11 and g = 2.

The problem of determining which coefficients are involved boils down to calculating discrete logarithms, for which no efficient solution is known.

From (1) one may write:

$$\zeta^{-1} = \frac{\sqrt[n]{V_1} + \sqrt[n]{V_2} + \dots + \sqrt[n]{V_n}}{n}.$$

However, this equation is not necessarily correct. While we know V_i^n , there are n possible values for V_i . For example, from $x^4=1$ we are unsure wheter $x=\pm 1$ or $x=\pm i$. A way to mitigate this problem is by noting that the correct form of V_i can be determined from the value of V_1 . $\phi(V_iV_1^{n-i})=\omega^{-i}V_i\omega^{i-n}V_1^{n-i}=V_iV_1^{n-i}$, so $V_iV_1^{n-i}$ may be determined using the same method for determining V_i^n . Thus, we can instead write:

$$\zeta = \frac{1}{n} \left(V_1 + \frac{V_2 V_1^{n-2}}{V_1^{n-2}} + \frac{V_3 V_1^{n-3}}{V_1^{n-3}} + \dots + \frac{V_n V_1^{n-n}}{V_1^{n-n}} \right).$$

But which root of V_1^n should we choose? It turns out that choosing any will give us some p^{th} root ζ^j of unity. Suppose we mistake V_1 for $\omega^j V_1$. Then, we will mistake V_i for

$$\frac{V_i V_1^{n-i}}{(\omega^j V_1)^{n-i}} = \omega^{ij} V_i.$$

Using the diagram from before, this has the effect of shifting all coefficients by j to the left, ultimately giving us $zeta^{-j}$ instead of $zeta^{-1}$:

1.2 3rd Roots of Unity

We have $\omega = -1$, p = 3 and n = 2. A (and also the only) primitive root for 3 is 2, so g = 2. Noting $\zeta^3 = 1$, we have

$$V_1 = (-1)\zeta^{2^2} + (1)\zeta^{2^1}$$
$$= \zeta^2 - \zeta$$
$$\Rightarrow V_1^2 = \zeta^2 - 2\zeta^3 + \zeta^4$$
$$= \zeta^2 + \zeta - 2$$
$$= [3, 3]$$

So $V_1 = \pm \sqrt{-3}$. Take $V_1 = \sqrt{-3}$.

$$V_2V_1^{2-2} = (\zeta + \zeta^2)$$
$$= -1$$

So ultimately,

$$\zeta^{-1} = \frac{1}{n} \left(V_1 + \frac{V_2 V_1^{n-2}}{V_1^{n-2}} \right)$$
$$= \frac{1}{2} \left(\sqrt{-3} - 1 \right)$$
$$= -\frac{1}{2} + \frac{\sqrt{3}}{2} i$$

If we chose $V_1 = -\sqrt{-3}$ then we would have gotten $\zeta^{-1} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

1.3 5th Roots of Unity

From here on we omit the details of the calculation of products of V_i and only show relevant results. Calculating V_i can be done with a computer algebra system.

For ease of notation, we let q be the number minimally satisfying $\eta^q \sqrt[k]{V_i^k} = V_i$ where $k = \frac{n}{(i,n)}$ and η is the "minimal" k^{th} primitive root (meta; why not others? what if we try the others?), and the radical evaluates to the root with minimal argument (from 0 to 2π), and q' satisfy the same equation but with the radical evaluating to the "principal" value (meta; the default implementation in mathematica is problematic as it uses the range -pi to pi; unless this is remedied q' is more or less useless).

g = 2:

i	$V_i V_1^{n-i}$	V_i^k	k	q
1	-15 + 20i	-15 + 20i	4	1
2	-5 - 10i	5	2	1
3	-5	-15 - 20i	4	0
4	-1	-1	1	0

g = 3:

i	$V_i V_1^{n-i}$	V_i^k	k	q
1	-15 - 20i	-15 - 20i	4	0
2	-5 + 10i	5	2	1
3	-5	-15 + 20i	4	1
4	-1	-1	1	0

1.4 7th Roots of Unity

g = 3:

i	$V_iV_1^{n-i}$	V_i^k	k	q	
1	$\frac{1}{2}(-7)\left(71+39i\sqrt{3}\right)$	$\frac{1}{2}(-7)\left(71+39i\sqrt{3}\right)$	6	2	
2	$\frac{1}{2}(-7)(17+19i\sqrt{3})$	$\frac{1}{2}(-7)(-1+3i\sqrt{3})$	3	2	
3	$\frac{1}{2}(-7)(13+3i\sqrt{3})$	-7	2	0	
4	$\frac{1}{2}(-7)i(\sqrt{3}+5i)$	$\frac{1}{2}(-7)\left(-1-3i\sqrt{3}\right)$	3	0	
5	-7	$\frac{1}{2}(-7)(71-39i\sqrt{3})$	6	0	
6	-1	-1	1	0	

g = 5:

i	$V_iV_1^{n-i}$	V_i^k	k	$\mid q \mid$
1	$\frac{1}{2}(-7)\left(71 - 39i\sqrt{3}\right)$	$\frac{1}{2}(-7)\left(71 - 39i\sqrt{3}\right)$	6	0
2	$\frac{1}{2}(-7)(17-19i\sqrt{3})$	$\frac{1}{2}(-7)(-1-3i\sqrt{3})$	3	0
3	$\frac{1}{2}(-7)(13-3i\sqrt{3})$	-7	2	0
4	$\frac{7}{2}i(\sqrt{3}-5i)$	$\frac{1}{2}(-7)\left(-1+3i\sqrt{3}\right)$	3	2
5	-7	$\frac{1}{2}(-7)(71+39i\sqrt{3})$	6	2
6	-1	-1	1	0

1.5 11th Roots of Unity

g = 2:

i	$V_iV_1^{n-i}$	V_i^k	k	q
1	$\frac{1}{4}(-11)i\left(-25\sqrt{3905050-1323310\sqrt{5}}+i\left(12475\sqrt{5}+30341\right)\right)$	$\frac{1}{4}(-11)i\left(-25\sqrt{3905050-1323310\sqrt{5}}+i\left(12475\sqrt{5}+30341\right)\right)$	10	2
2	$-11\left(\frac{5627\sqrt{5}}{4} + \frac{1}{4}i\sqrt{33331490\sqrt{5} + 74804650} + \frac{7773}{4}\right)$	$-11\left(\frac{25\sqrt{5}}{4} + \frac{5}{2}i\sqrt{\frac{1}{2}\left(205 - 89\sqrt{5}\right)} + \frac{89}{4}\right)$	5	0
3	$-11 \left(-180 \sqrt{5}+6 i \sqrt{9190 \sqrt{5}+21250}+919\right)$	$\frac{1}{8}(-11)i\left(33322i + 2410i\sqrt{5} - 50\sqrt{3905050 - 1705682\sqrt{5}}\right)$	10	6
4	$-11\left(\frac{435\sqrt{5}}{4} - \frac{1}{4}i\sqrt{173662\sqrt{5} + 388330} - \frac{1093}{4}\right)$	$-11\left(-\frac{25\sqrt{5}}{4} + \frac{5}{2}i\sqrt{\frac{1}{2}\left(89\sqrt{5} + 205\right)} + \frac{89}{4}\right)$	5	0
5	$-11\left(-\frac{175\sqrt{5}}{4} - \frac{25}{4}i\sqrt{50 - 10\sqrt{5}} + \frac{69}{4}\right)$	-11	2	0
6	$-11\left(-\frac{35\sqrt{5}}{4} - \frac{1}{4}i\sqrt{5822\sqrt{5} + 13130} + \frac{5}{4}\right)$	$-11\left(-\frac{25\sqrt{5}}{4} - \frac{5}{2}i\sqrt{\frac{1}{2}\left(89\sqrt{5} + 205\right)} + \frac{89}{4}\right)$	5	4
7	$-11\left(-rac{13\sqrt{5}}{4}+rac{5}{4}i\sqrt{2\sqrt{5}+10}-rac{35}{4} ight)$	$-11\left(\frac{1205\sqrt{5}}{4} - \frac{25}{4}i\sqrt{3905050 - 1705682\sqrt{5}} - \frac{\cancel{41611}}{4}\right)$	10	8
8	$-11\left(-\frac{3\sqrt{5}}{4} + \frac{1}{4}i\sqrt{50 - 10\sqrt{5}} + \frac{9}{4}\right)$	$-11\left(\frac{25\sqrt{5}}{4} - \frac{5}{2}i\sqrt{\frac{1}{2}\left(205 - 89\sqrt{5}\right)} + \frac{89}{4}\right)$	5	4
9	-11	$-11\left(\frac{12475\sqrt{5}}{4} - \frac{25}{4}i\sqrt{3905050 - 1323310\sqrt{5}} - \frac{27931}{4}\right)$	10	2
10	-1	-1	1	0

g = 6:

i	$V_iV_1^{n-i}$	V_i^k	$\mid k \mid$	q
1	$\frac{1}{4}(-11)\left(12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 27931\right)$	$\frac{1}{4}(-11)\left(12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 27931\right)$	10	2
2	$\frac{1}{4}(-11)\left(-5627\sqrt{5} + i\left(768\sqrt{5} + 1495\right)\sqrt{2\left(\sqrt{5} + 5\right)} + 8691\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5} - 5i\sqrt{410 - 178\sqrt{5}} + 89\right)$	5	4
3	$-11\left(-180\sqrt{5} - 6i\sqrt{9190\sqrt{5} + 21250} + 919\right)$	$\frac{1}{4}(-11)\left(1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 41611\right)$	10	8
4	$\frac{1}{4}(-11)\left(-5\left(87\sqrt{5}+79\right)-i\sqrt{173662\sqrt{5}+388330}\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}-5i\sqrt{178\sqrt{5}+410}+89\right)$	5	4
5	$\frac{1}{4}(-11)\left(175\sqrt{5}-25i\sqrt{50-10\sqrt{5}}+299\right)$	-11	2	0
6	$\frac{1}{4}(-11)\left(35\sqrt{5}-i\sqrt{5822\sqrt{5}+13130}-37\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}+5i\sqrt{178\sqrt{5}+410}+89\right)$	5	0
7	$\frac{1}{4}(-11)\left(13\left(\sqrt{5}-1\right)+5i\sqrt{2\left(\sqrt{5}+5\right)}\right)$	$\frac{1}{4}(-11)\left(-1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 16661\right)$	10	6
8	$\frac{1}{4}(-11)\left(3\sqrt{5}+i\sqrt{50-10\sqrt{5}}+7\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5}+5i\sqrt{410-178\sqrt{5}}+89\right)$	5	0
9	-11	$\frac{1}{4}(-11)\left(-12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 30341\right)$	10	2
10	-1	-1	1	0

g = 7:

i	$V_iV_1^{n-i}$	V_i^k	k	q
1	$\frac{1}{4}(-11)\left(-1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 16661\right)$	$\frac{1}{4}(-11)\left(-1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 16661\right)$	10	6
2	$\frac{1}{4}(-11)\left(-459\sqrt{5} - i\sqrt{22283998\sqrt{5} + 74804650} + 2605\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}-5i\sqrt{178\sqrt{5}+410}+89\right)$	5	4
3	$-11\left(180\sqrt{5}-6i\sqrt{21250-9190\sqrt{5}}+919\right)$	$\frac{1}{4}(-11)\left(12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 27931\right)$	10	2
4	$\frac{1}{4}(-11)\left(-349\sqrt{5}+i\sqrt{103202\sqrt{5}+388330}-1179\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5}+5i\sqrt{410-178\sqrt{5}}+89\right)$	5	0
5	$\frac{1}{4}(-11)\left(-115\sqrt{5}+25i\sqrt{50-22\sqrt{5}}+359\right)$	-11	2	0
6	$\frac{1}{4}(-11)\left(21\sqrt{5}+i\sqrt{2882\sqrt{5}+13130}+19\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5} - 5i\sqrt{410 - 178\sqrt{5}} + 89\right)$	5	4
7	$\frac{1}{4}(-11)\left(-5\sqrt{5}-i\sqrt{1450-190\sqrt{5}}-19\right)$	$\frac{1}{4}(-11)\left(-12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 30341\right)$	10	2
8	$\frac{1}{4}(-11)\left(\sqrt{5}-i\sqrt{50-22\sqrt{5}}+11\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}+5i\sqrt{178\sqrt{5}+410}+89\right)$	5	0
9	-11	$\frac{1}{4}(-11)\left(1205\sqrt{5}-25i\sqrt{3905050-1705682\sqrt{5}}-41611\right)$	10	8
10	-1	-1	1	0

g = 8:

i	$V_iV_1^{n-i}$	V_i^k	k	$\mid q \mid$
1	$\frac{1}{4}(-11)\left(1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 41611\right)$	$\frac{1}{4}(-11)\left(1205\sqrt{5} - 25i\sqrt{3905050 - 1705682\sqrt{5}} - 41611\right)$	10	8
2	$\frac{1}{4}(-11)\left(459\sqrt{5} - i\sqrt{22283998\sqrt{5} + 74804650} + 13859\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}+5i\sqrt{178\sqrt{5}+410}+89\right)$	5	0
3	$-11\left(180\sqrt{5}+6i\sqrt{21250-9190\sqrt{5}}+919\right)$	$\frac{1}{4}(-11)\left(-12475\sqrt{5} - 25i\sqrt{3905050 - 1323310\sqrt{5}} - 30341\right)$	10	2
4	$\frac{1}{4}(-11)\left(349\sqrt{5}+i\sqrt{103202\sqrt{5}+388330}-309\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5}-5i\sqrt{410-178\sqrt{5}}+89\right)$	5	4
5	$\frac{1}{4}(-11)\left(115\sqrt{5}+25i\sqrt{50-22\sqrt{5}}+9\right)$	-11	2	0
6	$\frac{1}{4}(-11)i\left(\sqrt{2882\sqrt{5}+13130}+3i\left(7\sqrt{5}+17\right)\right)$	$\frac{1}{4}(-11)\left(25\sqrt{5}+5i\sqrt{410-178\sqrt{5}}+89\right)$	5	0
7	$\frac{1}{4}(-11)i\left(19i+5i\sqrt{5}+\sqrt{1450-190\sqrt{5}}\right)$	$\frac{1}{4}(-11)\left(12475\sqrt{5}-25i\sqrt{3905050-1323310\sqrt{5}}-27931\right)$	10	2
8	$\frac{1}{4}(-11)\left(-\sqrt{5}-i\sqrt{50-22\sqrt{5}}+5\right)$	$\frac{1}{4}(-11)\left(-25\sqrt{5}-5i\sqrt{178\sqrt{5}+410}+89\right)$	5	4
9	-11	$\frac{1}{4}(-11)\left(-1205\sqrt{5}-25i\sqrt{3905050-1705682\sqrt{5}}-16661\right)$	10	6
10	-1	-1	1	0

1.6 13th Roots of Unity

g = 2:

i	$V_iV_1^{n-i}$	V_i^k	$\mid k \mid$	q
1	$-13\left(-6210\sqrt{3} - \frac{3}{2}i\left(10175\sqrt{3} - 93012\right) - \frac{685795}{2}\right)$	$-13\left(-6210\sqrt{3} - \frac{3}{2}i\left(10175\sqrt{3} - 93012\right) - \frac{685795}{2}\right)$	12	4
2	$-13 \left(10736 \sqrt{3}+i \left(-52536 \sqrt{3}-8906\right)-43581\right)$	$-13\left(\frac{337}{2} + \frac{15i\sqrt{3}}{2}\right)$	6	0
3	$-13\left(-10746\sqrt{3}+i\left(-2196\sqrt{3}-20895\right)+4270\right)$	ho 65-156i	4	1
4	$-13\left(2160\sqrt{3}+i\left(4200-2142\sqrt{3}\right)+4165\right)$	$-13\left(\frac{5}{2}+\frac{3i\sqrt{3}}{2}\right)$	3	0
5	$-13\left(-900\sqrt{3}+\frac{15}{2}i\left(119\sqrt{3}-8\right)-\frac{119}{2}\right)$	$-13\left(6210\sqrt{3} + \frac{3}{2}i\left(10175\sqrt{3} + 93012\right) - \frac{685795}{2}\right)$	12	11
6	$-13\left(345\sqrt{3} - \frac{1}{2}i\left(135\sqrt{3} - 46\right) + \frac{9}{2}\right)$	13	2	0
7	$-13\left(90\sqrt{3}+\frac{3}{2}i\left(25\sqrt{3}+4\right)-\frac{5}{2}\right)$	$-13\left(6210\sqrt{3} - \frac{3}{2}i\left(10175\sqrt{3} + 93012\right) - \frac{685795}{2}\right)$	12	6
8	$-13\left(\frac{15}{2}i\left(\sqrt{3}-4\right)+18\sqrt{3}+\frac{25}{2}\right)$	$-13\left(\frac{5}{2} - \frac{3i\sqrt{3}}{2}\right)$	3	2
9	$-13\left(\frac{9\sqrt{3}}{2} - \frac{3}{2}i\left(2\sqrt{3} + 5\right) - 5\right)$	65 + 156i	$\mid 4 \mid$	0
10	$-13\left(\sqrt{3} + \frac{1}{2}i\left(3\sqrt{3} + 2\right) - \frac{3}{2}\right)$	$-13\left(\frac{337}{2} - \frac{15i\sqrt{3}}{2}\right)$	6	5
11	-13	$-13\left(-6210\sqrt{3} + \frac{3}{2}i\left(10175\sqrt{3} - 93012\right) - \frac{685795}{2}\right)$	12	1
12	-1	_1	1	0

1.7 17th Roots of Unity

g = 3:

i	$V_iV_1^{n-i}$	V_i^k	$\mid k \mid$	q
1	$-17\left((332126703 + 180803848i) + (28762800 - 89862184i)\sqrt{2} \right)$	$-17\left(\left(332126703 + 180803848i \right) + \left(28762800 - 89862184i \right) \sqrt{2} \right)$	16	2
2	$-17\left((-26561768 + 39707967i) + (43752888 - 94790412i)\sqrt{2}\right)$	$(136 - 255i) \left(24\sqrt{2} + 287i\right)$	8	7
3	$-17\left((17989751 - 7762652i) + (3741959 - 14838356i)\sqrt{2}\right)$	$-17\left((332126703 - 180803848i) + (138288240 - 114771640i)\sqrt{2}\right)$	16	4
4	$-17((-2122627 + 2885880i) - (2101116 + 2581618i)\sqrt{2})$	-255 - 136i	$\mid 4 \mid$	0
5	$-17\left((478225+539044i)-(319831-225440i)\sqrt{2}\right)$	$-17\left(\left(332126703 + 180803848i \right) + \left(138288240 + 9649528i \right) \sqrt{2} \right)$	16	12
6	$-17((-128548 + 25357i) - (13434 - 265548i)\sqrt{2})$	$(-136 - 255i) \left(24\sqrt{2} + 287i\right)$	8	1
7	$-17\left((-17727-1716i)-(94840-23386i)\sqrt{2}\right)$	$-17\left(\left(332126703 - 180803848i \right) + \left(28762800 - 77188856i \right) \sqrt{2} \right)$	16	8
8	$-17\left((-3103 - 644i) - (8936 + 4908i)\sqrt{2}\right)$	17	2	0
9	$-17((-1393-140i)+(668-1438i)\sqrt{2})$	$-17\left(\left(332126703 + 180803848i \right) - \left(33166128 - 15838968i \right) \sqrt{2} \right)$	16	15
10	$-17\left((532+371i)+(654+120i)\sqrt{2}\right)$	$(-136 + 255i) (24\sqrt{2} - 287i)$	8	6
11	$-17\left((175-100i)-(117-132i)\sqrt{2}\right)$	$-17\left(\left(332126703 - 180803848i \right) - \left(133884912 - 40748424i \right) \sqrt{2} \right)$	16	11
12	$-17((-3+32i)+(12+14i)\sqrt{2})$	-255 + 136i	$\mid 4 \mid$	3
13	$-17\left((9+12i)-(7-4i)\sqrt{2}\right)$	$-17\left((332126703 + 180803848i) - (133884912 - 64373688i)\sqrt{2}\right)$	16	3
14	$-17\sqrt{8\sqrt{2}-4i\sqrt{\sqrt{2}+10}-1}$	$(136 + 255i) \left(24\sqrt{2} - 287i\right)$	8	0
15	-17	$-17\left(\left(332126703 - 180803848i \right) - \left(116402128 - 92885528i \right) \sqrt{2} \right)$	16	5
16	-1	_1	1	0

2 Galois Theory