Probabilistic Principal Component Analysis and the E-M algorithm

The Minh Luong CS 3750 October 23, 2007

Outline

- Probabilistic Principal Component Analysis
 - Latent variable models
 - Probabilistic PCA
 - Formulation of PCA model
 - · Maximum likelihood estimation
 - Closed form solution
 - EM algorithm
 - » EM Algorithms for regular PCA
 - » Sensible PCA (E-M algorithm for probabilistic PCA)
 - Mixtures of Probabilistic Principal Component Analysers

Review of PCA

- · Primary uses:
 - Analyze data and extract variables with similar concepts (principal components)
 - Project the data onto a lower dimensional space
 - Principal components which explain a greater amount of the variance are considered to be more important
- Accomplishes this by:
 - Maximizing variance of the projected data x
 - Represent matrix x in a different (q-dimensional) space using a set of orthonormal vectors W
 - Weight matrix W is a $d \times q$ matrix that represents a re-mapping of original data y into its "ideal" principal subspace, represented by x
 - Each of q orthonormal columns of the weight matrix W, w_i , represents a separate principal component
 - Likelihood of a point in y is the distance between it and its reconstruction, Wx

Limitations of PCA

- Non-parametric
 - no probabilistic model for observed data
- The variance-covariance matrix needs to be calculated
 - Can be very computation-intensive for large datasets with a high # of dimensions
- Does not deal properly with missing data
 - Incomplete data must either be discarded or imputed using ad-hoc methods
- Outlying data observations can unduly affect the analysis

Motivation behind probabilistic PCA

- Addresses limitations of regular PCA
- PCA can be used as a general Gaussian density model in addition to reducing dimensions
- Maximum-likelihood estimates can be computed for elements associated with principal components
- Captures dominant correlations with few parameters
- Multiple PCA models can be combined as a probabilistic mixture
- Can be used as a base for Bayesian PCA

Latent variable models

- Latent variable(s): unobserved variable (s)
 - Offer a lower dimensional representation of the data and their dependencies
- Latent variable model:
 - -y: observed variables (*d*-dimensions)
 - -x: latent variables (q-dimensions)
 - q<d
- Less dimensions results in more parsimonious models

Probabilistic PCA (PPCA)

- Latent variable model with linear relationship (factor analysis)
 - $y \sim Wx + \mu + \varepsilon$
 - Latent variables: $x \sim N(\theta, I)$
 - Error (or noise): $\boldsymbol{\varepsilon} \sim N(\boldsymbol{\theta}, \boldsymbol{\psi})$
 - Location term (mean): µ
- Probabilistic PCA: Noise variances constrained to be equal $(\psi_i = \sigma^2)$
 - Error: $\varepsilon \sim N(0, \sigma^2 I)$ (isotropic noise model)
 - $-v|x\sim N(WX+\mu,\sigma^2I)$
 - $y \sim N(\mu, C_y)$, where $C_y = WW^T + \sigma^2 I$ (where C_y is the covariance matrix for the observed data y)
- Normal PCA is a limiting case of probabilistic PCA, taken as the limit as the covariance of the noise becomes infinitesimally small $(\psi = \lim_{\sigma^2 \to 0} \sigma^2 I)$

Illustration of probabilistic PCA

Latent variables (x) q = 2 (hidden variables, underlying concepts)

Note: Observed variables become independent of each other given latent factors

Observed variables (y) d = 7 (data)

PPCA (Maximum likelihood PCA)

- Log-likelihood for Gaussian noise model:
 - $LL=-N/2 \{d \ln(2\pi) + \ln|C_y| + \text{tr}(C_y^{-1}S)\}$ • $C_y=WW^T + \sigma^2$
- Maximum likelihood estimates for above:
 - $-\mu$: mean of the data
 - -S (sample covariance matrix of the observations Y):
 - $S = (1/N) \sum_{n=1}^{N} (Y_n \mu)(Y_n \mu)^T$
- MLE's for W and σ^2 can be solved in two ways:
 - closed form (Tipping and Bishop)
 - EM algorithm (Roweis)

Tr(A) = sum of diagonal elements of A

MLE's for probabilistic PCA (closed form)

Likelihood of LL is maximized with respect to W and σ^2 , MLE's can be obtained in closed form:

$$\sigma_{\mathrm{ML}}^2 = \frac{1}{d-q} \sum_{j=q+1}^d \lambda_j$$

• Represents the variance lost in the projection, averaged over the # dim decreased

$$- W_{ML} = U_q (\Lambda_q - \sigma^2 I)^{1/2} R$$

- Represents the mapping of the latent space (containing X) to that of the principal subspace (containing Y)
- Columns of $U_q(dx q \text{ matrix})$: principal eigenvectors of S
- Λ_a (q x q diagonal matrix): corresponding eigenvalues $\lambda_{1,a}$
- R: q x q arbitrary rotation matrix (can be set to R=I)

Derivation of MLEs

- $LL = -N/2 \{ d \ln(2\pi) + \ln|\mathbf{C}_v| + \text{tr}(\mathbf{C}^{-1}_v \mathbf{S}) \}$

The 1st derivative of LL w/ respect to W:

- $dL/dW = N(C^{-1}SC^{-1}W C^{-1}W)$, where $W = ULV^{T} = \sigma^{2}I + WW^{T}$
- The stationary points are $SC^{-1}W = W$.
- Non-trivial case: $W \neq 0$, $C \neq S$
- SVD: $W = ULV^T$, $U: d \times q$ orthonormal vectors, $L: q \times q$ matrix of singular values, $V: q \times q$ orthogonal matrix,
 - $C^{-1}W = W(\sigma^2 I + W^T W)^{-1} = UL(\sigma^2 I + L^2)^{-1}V^T$
- At the stationary points:
 - $SUL(\sigma^2I + L^2)V^T = ULV^T$
 - $SUL = U(\sigma^2 I + L^2)L$
- Column vectors of U, u_i , are eigenvectors of S, with eigenvalue λ_i , such that $\sigma^2 + l_i^2$ $= \lambda_j$ • $l_i^2 = (\lambda_j - \sigma^2)^{1/2}$
- (substitute into SVD) $W = U_q (\Lambda_q \sigma^2 I) R$
 - U_q : $d \times q$ with q column eigenvectors u_j of S
 - $\Lambda_i: \lambda_1...\lambda_q$, (q eigenvalues of u_i), or σ^2 (corresponding d-q "discarded" rows of W)
 - R: arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a reparametrization)

Derivation of MLEs (cont)

- Substitute above results into original *LL* expression
- $LL = -N/2 \{ d \ln(2\pi) + \sum_{j=1}^{q} \ln(\lambda_j) + \sum_{j=q+1}^{d} \lambda_j + (d-q) \ln \sigma^2 + q \}$ • $\lambda_1 ... \lambda_q$, are q non-zero eigenvalues of u_j and $\lambda_{q+1} ... \lambda_d$, are zero
- Taking derivative of above with respect to σ^2 and solving for zero gives:

$$\sigma_{\mathrm{ML}}^2 = \frac{1}{d-q} \sum_{j=q+1}^d \lambda_j$$

Differences between factor analysis and probabilistic PCA (PPCA)

- Covariance
 - PPCA (and standard PCA) is covariant under rotation of the original data axes
 - Factor analysis is covariant under component-wise rescaling
- Principal components (or factors)
 - In PPCA: different principal components (axes) can be found incrementally
 - Factor analysis: factors from a two-factor model may not correspond to those from a one-factor model

Dimensionality reduction and optimal reconstruction

- Using Bayes rule, we can obtain a posterior estimate of the latent variables
 - $-x[y \sim N(M^{-1}W^{T}(y \mu), \sigma^{2}M^{-1}),$
 - where $M = W^TW + \sigma^2 I$, M is a $q \times q$ matrix
 - Cond. latent mean: $E[x|y] = \langle x_n | y_n \rangle = M^{-1}W^T(y_n \mu)$
- Reconstruction of the observed data with respect to the new subspace:
 - The latent projection of regular PCA is skewed towards the origin (due to marginal distribution for x)
 - $y_n = W_{ML} < x_n | y_n > + \mu$ is not orthogonal and thus not optimal
 - Optimal reconstruction of the observed data may still be obtained from conditional latent mean:
 - $y_n = W_{ML}(W_{ML}^T W_{ML})^{-1} M < x_n | y_n > + \mu$

Motivation behind using E-M for PCA

- Naive PCA and MLE PCA computation-heavy for high dimensional data or large data sets
- PCA does not deal properly with missing data
 - E-M algorithm estimates ML values of missing data at each iteration
- Naïve PCA uses simplistic way (distance² from observed data) to access covariance
 - Sensible PCA (SPCA) defines a proper covariance structure whose parameters can be estimated through the E-M algorithm

E-M algorithm (review)

- Iterative process to estimate parameters consisting of two steps for each iteration
 - Expectation (data step): complete all hidden and missing variables Θ (or latent variables) from current set of parameters
 - Maximization (likelihood step): Update set of parameters
 ♠', using MLE, from complete set of data from previous step
- Likelihood obtained from MLEs guaranteed to improve in successive iterations
- Continue iterations until negligible improvement is found in likelihood

E-M algorithm for normal PCA

- Amounts to an iterative procedure for finding subspace spanned by the q leading eigenvectors without computing covariance
- E-step: $X = (W^T W)^{-1} W^T Y$
 - Fix subspace and project data, y, into it to give values of hidden states x
 - Known: Y: d-dimensional observed data
 - Unknown (latent): X: q-dimensional unknown states
- M-step: $W_{new} = YX^T(XX^T)^{-1}$
 - Fix values of hidden states and choose subspace orientation that minimizes squared reconstruction errors

E-M algorithm and missing data

• Data with missing obs filled out: x, Complete data (with blanks not filled out): y

E-step (fill in missing variables):

- If data point y is complete, then y = y and x = x is found as usual
- If the data point y is not complete, x* and y* are the solution to the least squares problem. Compute x by projecting the observed data y into the current subspace.
 - For each (possibly incomplete) point y, find the unique pair of points (x^*,y^*) that minimize the norm $||Wx^*-y^*||$.
 - Constrain x* to be in the current principal subspace and y* in the subspace defined by known info about y
 - If y can be completely solved in system of equations, set corresponding column of X to x* and the corresponding column of Y to y*
 - Otherwise, QR factorization can be used on a particular constraint matrix to find least squares solution

E-M algorithm and missing data (E-step)

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 0.5 \\ 2 & 1 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 3 \\ 1 \\ ? \end{bmatrix}$$

Set x = (-1, 4), y = (3, 1, 2), proceed to M-step

If two elements are missing in Y, then we use QR factorization to find the pair (x^*, y^*) with the least squares of the norm $||Wx^*-y^*||$, according to the constraints specified in the set of equations Wx = y.

EM for probabilistic PCA (Sensible Principal Component Analysis)

- Probabilistic PCA model:
 - $Y \sim N(\mu, WW^T + \sigma^2 I)$
- Similar to normal PCA model, the differences are:
 - We do not take the limit as σ^2 approaches 0
 - During E-M iterations, data can be directly generated from the SPCA model, and the likelihood estimated from the test data set
 - Likelihood much lower for data far away from the training set, even if they are near the principal subspace
- EM algorithm steps implemented as follows:
 - E: $\beta = W^T(WW^T + \sigma^2 I)^{-1}$, $< x_n | y_n > = \beta(Y \mu)$, $\Sigma_x = nI n\beta W + < x_n | y_n > < x_n | y_n > T$
 - Log-likelihood in terms of weight matrix W, and a centered observed data matrix $Y \mu$, noise covariance $\sigma^2 I$, and conditional latent mean $\langle x_n | y_n \rangle$
 - M: $W^{new} = (Y \mu) < x_n | y_n > T \Sigma_x^{-1}, \sigma^2 new = trace[XX^T W < x_n | y_n > (Y \mu)^T]/n^2$ Differentiate LL in terms of W and σ^2 and set to zero.

Advantages of using E-M algorithm in probabilistic PCA models

- Convergence:
 - Tipping and Bishop showed (1997) that the only stable local extremum is the *global maximum* at which the true principal subspace is found
- Complexity:
 - Methods that explicitly compute the sample covariance matrix have complexities $O(nd^2)$
 - E-M algorithm does not require computation of sample covariance matrix, O(dnq)
 - Huge advantage when $q \ll d$ (# of principal components is much smaller than original # of variabes)

E-M algorithm for PPCA (illustration)

(illustration) Example: 38 observations (with 18 data points each) from *Tobamovirus* data set (Ripley, 1996)

Other methods for PCA

- Power iteration methods
 - Iteratively update eigenvector estimates through repeated multiplication by matrix to be diagonalized
 - Extremely inefficient to calculate explicitly $(O(nq^2))$
 - E-M algorithm provides efficient way to obtain sample covariance matrix, without explicitly calculating it
 - Iterative methods to compute SVD are closely related to the E-M algorithm
- Learning methods for the principal subspace
 - Sanger's and Oja's rule
 - Typically require more iterations and the learning parameter to be set by hand

Mixtures of probabilistic PCAs

- A combination of local probabilistic PCA models
- Multiple plots may reveal more complex data structures than a PCA projection alone
- Applications:
 - Image compression (Dony and Haykin 1995)
 - Visualization (Bishop and Tipping, 1998)
- Clustering mechanisms of mixture PPCA:
 - Local linear dimensionality reduction
 - Semi-parametric density estimation

Mixtures of probabilistic PCAs

$$-LL = \sum_{n=1}^{N} ln\{p(y_n)\} = \sum_{n=1}^{N} ln\{\sum_{i=1}^{M} \pi_i p(y_n|i)\}$$

- p(y|i) is a single PPCA model and π_i is the corresponding mixing proportion
- Different mean vectors μ_i , weighting matrices W_i , and noise error parameters σ_i^2 for each of M probabilistic PCA models
- An iterative E-M algorithm can be used to solve for parameters
- Guaranteed to find a *local* maximum of the loglikelihood