Data Science – Images

Descriptive Statistics

The formula for the population mean is as follows:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$$

where:

u = the population mean (pronounced mu, as in "I hope you find this amusing")

 $\sum_{i=1}^{n} x_{i}$ = the sum of all the data values in the population

N = the number of data values in the population

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{N}$$

where:

 σ^2 = the variance of the population (pronounced "sigma squared")

 x_i = the measurement of each item in the population

 μ = the population mean

N = the size of the population

Descriptive Statistics

Descriptive Statistics

- **High kurtosis** Black
- Low kurtosis Green

Probability

def·i·ni·tion

Permutations are the number of different ways in which objects can be arranged in order. The number of permutations of n objects taken r at a time can be found by ${}_{n}P_{r} = \frac{n!}{(n-r)!}$.

Combinations are the number of different ways in which objects can be arranged without regard to order. The number of combinations of n objects taken r at a time can be found

by
$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$
.

 $P[A] = \frac{\text{Number of possible outcomes in which Event A occurs}}{\text{Total number of possible outcomes in the sample space}}$ where: P[A] = the probability that Event A will occur

Probability

Contingency Table for the Tennis Example

Warm-Up Time	Debbie Wins (A)	Bob Wins (A')	Total
Less than 10 min (B)	4	9	13
10 min or more (B')	5	2	7
Total	9	11	20

The events of interest are ...

- Event A = Debbie wins the tennis match.
- Event B = the warm-up time is less than 10 minutes.
- Event A' = Bob wins the tennis match.
- Event B' = the warm-up time is 10 minutes or more.

A z-score measures exactly how many standard deviations above or below the mean a data point is.

Here's the formula for calculating a z-score:

$$z = \frac{\text{data point} - \text{mean}}{\text{standard deviation}}$$

Here's the same formula written with symbols:

$$z = \frac{x - \mu}{\sigma}$$

Confidence Intervals — for sample size >30

- Let's say from a sample of 32 customers the average order is \$78.25 and the population standard deviation is \$37.50. (This represents the variation among orders within the population.). The SD of the sample can be used if population SD is not known
- Put simply, the standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean
- We can do this by increasing the sample size.
- Problem statement: Where does the population mean lie (lower and upper limits) if 90% is the confidence level?

In general, we can construct a *confidence interval* around our sample mean using the following equations:

 $\bar{x} + z_{\sigma} \sigma_{\bar{\tau}}$ (upper limit of confidence interval)

 $\bar{x} - z_c \sigma_{\bar{z}}$ (lower limit of confidence interval)

where:

 \bar{x} = the sample mean

 $z_{\rm c}$ = the critical z-score, which is the number of standard deviations based on the confidence level

 $\sigma_{\bar{x}}$ = the standard error of the mean (remember our friend from Chapter 13?)

The term $z_r \sigma_{\overline{x}}$ is referred to as the margin of error, or E, a phrase often referred to in polls and surveys.

onfidence	Intervals w	ith Various C	onfidence Leve	ls	
Confidence Level	ce Z _c	$\sigma_{\bar{x}}$	Sample Mean	Lower Limit	Upper Limit
90	1.64	\$6.63	\$78.25	\$67.38	\$89.12
95	1.96	\$6.63	\$78.25	\$65.26	\$91.24
99	2.57	\$6.63	\$78.25	\$61.21	\$95.29

$$\overline{x} = \$78.25$$

$$n = 32$$

$$\sigma = \$37.50$$

$$z_c = 1.64$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{\$37.50}{\sqrt{32}} = \$6.63$$
Upper limit = $\overline{x} + 1.64\sigma_{\overline{x}} = \$78.25 + 1.64(\$6.63) = \89.12
Lower limit = $\overline{x} - 1.64\sigma_{\overline{x}} = \$78.25 - 1.64(\$6.63) = \67.38

Hypothesis testing

Alternative Hypothesis
$H_1: \mu \neq 6.0$
$H_1: \mu < 6.0$
$H_1: \mu > 6.0$

Let us define the test statistic z in terms of the sample mean, the sample size and the population standard deviation σ :

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Chi-square distribution

The chi-square statistic is found using the following equation:

$$\chi^2 = \sum \frac{\left(O - E\right)^2}{E}$$

where:

O = the number of observed frequencies for each category

E = the number of expected frequencies for each category

Observed Frequencies for Tennis Example

	0–10 Min	11–20 Min	More than 20 Min	Total
Debbie wins	4	10	9	23
Bob wins	14	9	4	27
Total	18	19	13	50

First we state the hypotheses as:

H₀: Warm-up time is independent of performance

H₁: Warm-up time affects performance

H₀: The actual rating distribution can be described by the expected distribution.

H₁: The actual rating distribution differs from the expected distribution.

Expected Movie-Rating Distribution

Number of Stars	Percentage	
5	40%	
4	30%	
3	20%	
2	5%	
1	5%	
Total	100%	

After its debut, a sample of 400 moviegoers were asked to rate the movie, with the results shown in the following table.

Observed Movie-Rating Distribution

Number of Stars	Number of Observations	
5	145	
4	128	
3	73	
2	32	
1	22	
Total	400	

ANOVA, f-test

To test the hypothesis for ANOVA, we need to compare the calculated test statistic to a critical test statistic using the F-distribution. The calculated F-statistic can be found using the equation:

$$F = \frac{MSB}{MSW}$$

where MSB is the mean square between, found by:

$$MSB = \frac{SSB}{k-1}$$

and MSW is the mean square within, found by:

$$MSW = \frac{SSW}{N - k}$$

hypothesis statement would look like the following:

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_1 : not all μ 's are equa

	vn (lippings Fertilizer 1 Fertilizer 2 Fertilizer 3		
	rerunzer 1	refunzer 2	rerunzer
	10.2	11.6	8.1
	8.5	12.0	9.0
	8.4	9.2	10.7
	10.5	10.3	9.1
	9.0	9.9	10.5
	8.1	12.5	9.5
Mean	9.12	10.92	9.48
Variance	1.01	1.70	0.96

Thank You