La droite dans le plan

Repère du plan -Coordonnées d'un point, d'un vecteur.

1.1 Repère du plan

définition

Un repère du plan est constitué de trois points non alignés.(O, I, J) est appelé un repère : O est l'origine.

(OI) est l'axe des abscisses.

(OJ) est l'axe des ordonnées.

Ce repère est également noté (O, \vec{i}, \vec{j}) , en posant : $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$. Les deux vecteurs non colinéaires \vec{i} et \vec{j} constituent la base du repère.

Si $(OI) \perp (OJ)$ alors (O, \vec{i}, \vec{j}) est un repère orthogonal.

Si de plus OI = OJ = 1 alors (O, \vec{i}, \vec{j}) est un repère orthonormé.

1.2 Coordonnées d'un point, d'un vecteur

Définition

Le plan est muni du repère $(O, \vec{i}, \vec{j}).M$ un point quelconque. On pose : $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$.

Soit H le projeté de M sur (OI) parallèlement à (OJ), donc il existe x tel que $\overrightarrow{OH} = x\overrightarrow{i}$.

Soit K le projeté de M sur (OJ) parallèlement à (OI), donc il existe y tel que $\overrightarrow{OK} = y\overrightarrow{j}$.

On a $\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{OK}$.

Donc: $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$.

le couple (x,y) est appelé les coordonnées du point M et on note M(x,y) ou $M\binom{x}{y}$.

x est l'abscisse du point M et y est l'ordonnée du point M.

De la même façon le vecteur \vec{v} a pour coordonnées $\binom{a}{b}$

1.3 Égalité de deux vecteurs

Propriété

Deux vecteurs sont égaux si,et seulement si,leurs coordonnés dans un repère donné sont égales.

Dans un repère (O, \vec{i}, \vec{j}) . Si $\vec{u}\binom{a}{b}$ et $\vec{v}\binom{a'}{b'}$, alors $\vec{u} = \vec{v}$ si et seulement si $\left\{ \begin{array}{l} a = a' \\ b = b' \end{array} \right.$

1.4 Régles de calcul sur les coordonnées

Propriétés

Le plan est muni du repère (O, \vec{i}, \vec{j}) . On considère $A(x_A, y_A)$, $B(x_B, y_B)$, $\vec{u}(x, y)$ et $\vec{v}(x', y')$.

- 1. $\overrightarrow{AB}(x_B x_A, y_B y_A)$.
- 2. $\vec{u} + \vec{v}(x + x', y + y')$
- 3. $k\vec{u}(kx, ky)$ avec $k \in \mathbb{R}$.
- 4. Si M est le milieu du segment [AB] alors $:M(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2})$
- 5. Si (O, \vec{i}, \vec{j}) est un repère orthonormée : $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$.

1.5 Exercices

Exercice 1

Le plan est muni du repère (O, \vec{i}, \vec{j}) orthonormé. On considère les points A(1; 2) et B(-5, 2).

- 1. Représenter dans le repère (O, \vec{i}, \vec{j}) les points A et B.
- 2. Déterminer les coordonnées du vecteur \overrightarrow{AB} et calculer la distance AB.
- 3. Déterminer les coordonnées du point I le milieu du segment [AB].
- 4. Déterminer les coordonnées du point C vérifiant : $\overrightarrow{CA} + \overrightarrow{OB} = \vec{0}$.
- 5. Déterminer les coordonnées du vecteur \vec{u} tel que : $\vec{U} = \overrightarrow{OA} + 3\overrightarrow{AB} \overrightarrow{OC}$

Exercice 2

ABCD est un parallélogramme de centre O et G le centre de gravité du triangle ABC.

Déterminer les coordonnées des points A, B, C, D, O et G dans le repère $(A, \overline{AB}, \overline{AD})$

2 Condition de colinéarité de deux vecteurs

Activité

Le plan est muni du repère (O, \vec{i}, \vec{j}) . Soient $\vec{u}(x,y)$ et $\vec{v}(x',y')$ deux vecteurs du plan.

Montrer que \vec{u} et \vec{v} sont colinéaires si et seulement si xy' - x'y = 0.

Propriétè

Le plan est muni du repère (O, \vec{i}, \vec{j}) . Soient $\vec{u}(x, y)$ et $\vec{v}(x', y')$ deux vecteurs du plan. \vec{u} et \vec{v} sont colinéaires si et seulement si xy' - x'y = 0.

le nombre xy' - x'y est appelé le déterminant des vecteurs \vec{u} et \vec{v} dans la base (\vec{i}, \vec{j}) , et on écrit : $\det(\vec{u}, \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$.

Si $xy' - x'y \neq 0$ alors les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires .

Exemples

Étudier la colinéarité de \vec{u} et \vec{v} dans les cas suivants :

- 1. $\vec{u}(-2;1)$ et $\vec{v}(1;\frac{-1}{2})$.
- 2. $\vec{u}(2\sqrt{2}; \sqrt{3})$ et $\vec{v}(-\sqrt{3}; \sqrt{2})$.
- 3. $\vec{u}(2m-3; m+3)$ et $\vec{v}(1;4)$ avec $m \in \mathbb{R}$.

3 La droite dans le plan

3.1 vecteur directeur d'une droite

Définition

Soit A un point du plan P et \vec{u} un vecteur non nul. La droite (D) passant par A et de vecteur directeur \vec{u} est l'ensemble des points M du plan qui vérifient $\overrightarrow{AM} = k\vec{u}$; et on note $D(A; \vec{u}) = \{M \in P/\overrightarrow{AM} = k\vec{u}; k \in \mathbb{R}\}$

Remarque

Le vecteur directeur de la droite (AB) est \overrightarrow{AB}

Exemples

- si A(1;3) et B(-1;2) le vecteur directeur de la droite (AB) est $\vec{u}(\ ;\)$.
- On considère la droite (D) d'équation y = 3x 1. Déterminer \vec{u} le vecteur directeur de la droite (D).

3.2 Représentation paramétrique d'une droite

Activité

Le plan est muni du repère (O, \vec{i}, \vec{j}) . Soit (D) la droite passant par $A(x_A; y_A)$ et $\vec{u}(a; b)$ le vecteur directeur de (D). Montrer que : $\begin{cases} x = x_A + at \\ y = y_A + bt \end{cases}$ avec $t \in \mathbb{R}$

Définition

Le plan est muni du repère (O, \vec{i}, \vec{j}) . Soit $A(x_A; y_A)$ et $\vec{u}(a; b)$ un vecteur non nul.

Le système $\begin{cases} x = x_A + at \\ y = y_A + bt \end{cases}$ avec $t \in \mathbb{R}$ est appelé représentation paramétrique de la droite (D) passant par $A(x_A; y_A)$ et de vecteur directeur $\vec{u}(a; b)$.

Exemple

On considère le point A(3; -2) et le vecteur $\vec{u}(4; 2)$.la représentation paramétrique de la droite (D) passant par A et de vecteur directeur \vec{u} est : $\begin{cases} x = \\ y = \end{cases}$

4 Équation cartésienne d'une droite dans le plan

Définition

Le plan est muni du repère (O, \vec{i}, \vec{j}) . Toute équation de la forme ax + by + c = 0 tels que $a \neq 0$ ou $b \neq 0$ est appelée équation cartésienne de la droite (D) de vecteur directeur $\vec{u}(-b; a)$.

Propriété

Le plan est muni du repère (O, \vec{i}, \vec{j}) . On considère La droite (D) passant par $A(x_A; y_A)$ et de vecteur directeur $\vec{u}(a; b)$. Pour tout point $M(x; y) \in (D)$, on a :det $(\overrightarrow{AM}, \vec{u}) = 0$

Exercice

Déterminer l'équation cartésienne de la droite (D) dans les cas suivant :

- 1. la droite (D) passant par A(3; -2) et B(1; -2).
- 2. la droite (D) passant par A(3;-2) et de vecteur directeur $\vec{u}(4;1)$.
- 3. la représentation paramétrique de la droite (D) est : $\begin{cases} x = 3 t \\ y = 1 + 2t \end{cases}$ avec $t \in \mathbb{R}$.

Remarques

- Toute équation de la forme y = mx + p est appelé l'équation réduite de la droite (D). m est le coefficient directeur ou la pente de la droite (D). p est l'ordonnée à l'origine.
- Toute droite (D) parallèle à l'axe des abscisses et passant par $A(x_A; y_A)$ est d'équation $y = y_A$.
- Toute droite (D) parallèle à l'axe des ordonnées et passant par $A(x_A; y_A)$ est d'équation $x = x_A$.

5 Positions relatives de deux droites

Rappel

Soient (D) et (D') deux droites du plan telles que : (D) : y = mx + p et (D') : y = m'x + p'.

- (D)//(D') si et seulement si m=m'.
- (D) et (D') sont sécantes si et seulement si $m \neq m'$.
- $(D) \perp (D')$ si et seulement si $m \times m' = -1$

Soient (D) et (D') deux droites du plan, \vec{u} et \vec{v} deux vecteurs directeurs de (D) et (D') respectivement.

- (D)/(D') si et seulement si $\det(\vec{u}, \vec{v}) = 0$.
- (D) et (D') sont sécantes si et seulement si $\det(\vec{u}, \vec{v}) \neq 0$.

Exercice

Étudier la position de (D) et (D') dans les cas suivants :

- 1. (D): $\begin{cases} x=2+t \\ y=2+3t \end{cases} \text{ et } (D')$: $\begin{cases} x=4+2k \\ y=3-k \end{cases} \text{ avec } (t,k) \in \mathbb{R}^2$
- 2. (D): 2x 3y + 1 = 0 et (D'): x 4y 2 = 0
- 3. (D): x + y 2 = 0 et $(D'): \begin{cases} x = 4 + 2t \\ y = 1 + 3t \end{cases}$.
- $4. \ (D): \left\{ \begin{array}{ll} x=-1+t \\ y=2+2t \end{array} \right. \ \text{et} \ (D'): \left\{ \begin{array}{ll} x=1-k \\ y=-1-2k \end{array} \right. \ \text{avec} \ (t,k) \in \mathbb{R}^2$