אנליזה מודרנית טל נוביק מועד א' תשע"ז

רגב יחזקאל אימרה

February 5, 2025

. מדידה שאלה fי מדידה ל-fי מרחב מדיד ותהיינה הוכיחו כי $f_n:X \to \mathbb{R}$ מדידה ותהיינה מרחב מדיד ותהיינה שאלה בי מדיד ותהיינה מדיד ו

 $\{x\in X:\inf f_n\geq\alpha\}=\bigcup_{n=1}^\infty\text{ אז }\{x\in X:f_n\geq\alpha\}\in A$ פתרון: ידוע כי $f=\lim_{n\to\infty}f_n=\sup_n\inf_{k\geq n}f_k$ נוכיח כי $f=\lim_{n\to\infty}f_n=\sup_n\inf_{k\geq n}f_k$ פתרון: ידוע כי $\{x\in X:\sup f_n\leq\alpha\}=\bigcap_{n\to\infty}f_n\leq\alpha$ כי אם $\{x\in X:\sup f_n\geq\alpha\}\in A$

 $\{x\in X: \sup f_n\leq lpha\}=igcap_{n=1}$ אז $\{x\in X: f_n\leq lpha\}\in A$ באותו אופן: אם $\{x\in X: f_n\leq lpha\}\in A$ כי אם $\{x\in X: f_n\leq lpha\}\in A$. $\sup f_n\leq lpha\iff f_n\leq lpha\iff f_n\leq lpha$

E מדידה מדידה אלגברה ל אותה א פונים $\delta>0$ קיים arepsilon>0 קיים איים ι פונית שאלה ι אלגברה מקיימת ש- ι אלגברה המקיימת ש- ι סופית פונית שאם אלכל פונית אותה א ι ι או אותה אלגברה המקיימת ש- ι סופית פונית אלגברה אלגברה המקיימת ש- ι פתקיים שאם אלכל פונית אלגברה המקיימת ש- ι או אותה אלגברה המקיימת ש- ι פתקיים שאם אלכל פונית ש- ι אותה אלגברה המקיימת ש- ι פונית ש- ι פונית

פתרון נניח בשלילה כי קיימת E קבוצה מדידה כך שקיים $\varepsilon>0$ כך שלכל $\delta>0$ מתקיים $\delta>0$ מתקיים ν בפרט עבור ν בפרט עבור $\varepsilon>0$ נקבל עבור $\nu<0$ מתקיים $\delta>0$ מתקיים $\nu<0$ וגם ν וגם ν בחירה לכך ש- ν . נשאיף את δ לאפס ונקבל ν וגם ν וגם ν בסתירה לכך ש- ν נקבל ν בחירה לכך ש- ν מתקיים ν בחירה לכך ש- ν מחקיים ν

שאלה 3) תהי $\mathbb{R} \to \mathbb{R}$ פונקציה מדידה לבג המקיימת g(x)=g(x+1) לכל g(x)=g(x+1). הראה כי g סופית פית $g:\mathbb{R} \to \mathbb{R}$ מנדיר $g:\mathbb{R} \to \mathbb{R}$ הראה כי $g:\mathbb{R} \to \mathbb{R}$ סופית כב"מ.

פתרון: g(x)=g(x+1) נקבל כי g(x)=g(x+1) מהנתון ש-g(x)=g(x+1) כמעט לכל g(x)=g(x+1) מהנתון ש-g(x)=g(x+1) כמעט לכל g(x)=g(x+1) במעט לכל g(x)=g(x+1)

$$f(x) < \infty \iff \sum_{n=1}^{\infty} \frac{g(nx)}{n^2} < \infty \iff \sum_{n=1}^{\infty} \frac{M}{n^2} < \infty \iff \frac{\pi^2}{6}M < \infty$$

כנדרש.

 $.1 \leq r ויהיו ,
 <math display="inline">\mu\left(X\right) < \infty$ ו מידה מידה מרחב (X,A,μ) (4 שאלה

 $\|f\|_r \leq \mu\left(X
ight)^{rac{1}{r}-rac{1}{p}} \|f\|_p$ מתקיים $f \in L^p(\mu)$ א) הראה שלכל

 $L^p(\mu)\subseteq L^r(\mu)$ ב) בי הראה ש

: פתרון

$$\begin{split} \|f\|_{r} &= \left(\int_{X} |f|^{r} dm\right)^{\frac{1}{r}} = \left(\int_{X} |f|^{r} 1 dm\right)^{\frac{1}{r}} = (\||f|^{r} 1\|_{1})^{\frac{1}{r}} \\ &\leq \left(\||f|^{r}\|_{\frac{p}{r}} \|1\|_{\frac{p}{p-r}}\right)^{\frac{1}{p_{1}}} = \left(\left(\int_{X} ||f|^{r}|^{\frac{p}{r}} dm\right)^{\frac{r}{p}} \left(\int_{X} 1 dm\right)^{\frac{p-r}{p}}\right)^{\frac{1}{r}} = \left(\int_{X} |f|^{p} dm\right)^{\frac{1}{p}} \mu\left(X\right)^{\frac{p-r}{pr}} = \|f\|_{p} \mu\left(X\right)^{\frac{1}{r} - \frac{1}{p}} \end{split}$$

כנדרש.

⋆ לפי אי שיוויון הלדר.

ב) ענדרש. , $\|f\|_r < \infty$ כלומר כלומר לכן אזי $\|f\|_p \mu\left(X
ight)^{rac{1}{r}-rac{1}{p}} < \infty$ ב) תהי ל

: שאלה 5) חשבו

$$\lim_{n o \infty} \int\limits_0^\infty rac{\sin(e^x)}{1 + nx^2} dx$$
 (x

$$\lim_{n \to \infty} \int\limits_{-\infty}^{\infty} rac{e^{-rac{x^2}{n}}}{1+e^{nx}} dx$$
 (2

פתרון: א) כיוון ש- $\int\limits_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$ לכן מונקציה אינטגרבילית פונקציה $\left|\frac{\sin(e^x)}{1+nx^2}\right| \leq \left|\frac{1}{1+nx^2}\right| \leq \frac{1}{1+x^2}$ לכן מהתכנסות נשלטת נקבל פתרון: א

$$\lim_{n\to\infty}\int\limits_0^\infty \frac{\sin(e^x)}{1+nx^2}dx = \int\limits_0^\infty \lim_{n\to\infty} \frac{\sin(e^x)}{1+nx^2}dx = \int\limits_0^\infty 0dx = 0$$

. בי"מ. $\frac{\sin(e^x)}{1+nx^2}$ כב"מ. רציפה כב"מ.

ב) לכל $x\in\mathbb{R}$ אינטגרבילית. לכן מהתכנסות נשלטת $\left|\frac{e^{-\frac{x^2}{n}}}{1+e^{nx}}\right|\leq \left|\frac{1}{1+\frac{x^3}{6}}\right|=\left|\frac{6}{6+x^3}\right|$ לכן לכל $x\in\mathbb{R}$ אינטגרבילית. לכן מהתכנסות נשלטת

$$\lim_{n\to\infty}\int\limits_{-\infty}^{\infty}\frac{e^{-\frac{x^2}{n}}}{1+e^{nx}}dx=\int\limits_{-\infty}^{\infty}\lim_{n\to\infty}\frac{e^{-\frac{x^2}{n}}}{1+e^{nx}}dx=\int\limits_{-\infty}^{\infty}0dx=0$$

כנדרש.

 $L^2\left(\mathbb{R},m
ight)$ שאלה 6) נגדיר $\left\{f_n
ight\}_{n\in\mathbb{Z}}=\left\{\mathbb{I}_{[n,n+1]}
ight\}_{n\in\mathbb{Z}}$ במרחב הילברט א) האם זו משפחה אורתונורמלית!

 $L^{2}\left(\mathbb{R},m
ight)$ ב) ב-פרף על ידי משפחה או צפוף ב-בו המרחב ב

$$\langle f_n, f_m \rangle = \int\limits_{-\infty}^{\infty} \mathbb{I}_{[n,n+1]} \mathbb{I}_{[m,m+1]} dm = \int\limits_{-\infty}^{\infty} \delta_{mn} dm = \delta_{mn}$$

. בירוב מדוע $f(x)=x\mathbb{I}_{[0,1]}$ וברור בעזרת לקירוב שלא ניתנת לקירוב שלא ניתנת לקירוב שלא $f(x)\in L^2\left(\mathbb{R},m\right)$ וברור מדוע לא ניתנת לקירוב.