

PROPOSTA DE TESTE N.º 3

MATEMÁTICA A - 10.º ANO - JANEIRO DE 2016

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

- 1. Considere as seguintes proposições:
 - p: Todo o polinómio de grau ímpar tem pelo menos uma raiz real.

$$q: \forall x \in \mathbb{R}, (x-1)(2-x) \le 0 \Leftrightarrow 1 \le x \le 2$$

r: Se um polinómio *P* tem exactamente três raízes reais de multiplicidades 1, 2 e 3, então, *P* é necessariamente um polinómio de grau 6.

Qual é, respectivamente, o valor lógico das proposições p, q e r?

- **A** *V*, *V*, *F*
- **B** *V*, *F*, *F*
- **C** *F*, *V*, *V*
- D V, F, V
- 2. Na figura estão representados uma circunferência de área 16 e um hexágono regular [ABCDEF], inscrito na circunferência.

Qual é a área do quadrilátero [BCEF]?

- $\boxed{\mathbf{A}} \quad \frac{4\sqrt{3}}{\pi}$
- $\frac{16\sqrt{3}}{\pi}$
- 3. Seja P o polinómio definido por $P(x) = a^3 x^{2n} x^{n+3} + a^2 x 2a$, com $a \in \mathbb{R}^+$ e $n \in \mathbb{N}$.

Sabendo que o resto da divisão inteira P por x+1 é 1 e que n é par, qual é o valor de a?

- **A** −1
- **B** 1

C 2

D 3

4. Qual é o conjunto solução da inequação $x^3 - 3x^2 < 4x - 12$?

A
$$]-2,2[\,\cup\,]3,+\infty[$$

B
$$]-\infty,-4[\,\cup\,]3,4[$$

C
$$]-4,3[\,\cup\,]4,+\infty[$$

$$D]-\infty, -2[\cup]2,3[$$

5. Considere num referencial o.n. xOy os pontos A e B de coordenadas (1,0), (0,1) e a circunferência de equação $x^2 + (y-2)^2 = 10$.

A mediatriz do segmento de recta $\lceil AB \rceil$ intersecta a circunferência em dois pontos, P e Q.

Qual é o valor de d(P,Q)?

A
$$4\sqrt{2}$$

B
$$3\sqrt{2}$$

C
$$2\sqrt{2}$$

$$\mathbf{D}$$
 $\sqrt{2}$

GRUPO II - ITENS DE RESPOSTA ABERTA

- 1. Considere a expressão $E = \frac{\sqrt[3]{x\sqrt[4]{(xy)^2}}}{y\sqrt{xy}} \times \sqrt[3]{xy^2}$, com x e y números reais positivos.
 - **1.1.** Determine o valor de *E* se $y = \sqrt{x}$
 - **1.2.** Mostre que $E = \frac{\sqrt[3]{xy}}{y}$.
 - **1.3.** Considere que x=3 e y=9. Simplifique a expressão $\frac{6\sqrt{E}+1}{\sqrt{3}+2}$, apresentando-a na forma de denominador racional.

Exercício Extra 1: Considere a expressão $E = \frac{\sqrt[3]{\left(x^2 \, y\right)^2 \, \sqrt{x \, y}}}{y \sqrt{x \, y}}$, com $x \in y$ números reais positivos. Mostre que se y = 8 e x é um múltiplo de 4, então, E é um número inteiro.

- **2.** Considere que $B(x) = bx^3 + (2b+a)x^2 + (2a-b)x + a$, com $a,b \in \mathbb{R}$ tais que o resto da divisão inteira de B por $x-1 \in G$ e o resto da divisão inteira de B por $x+3 \in G$.
 - **2.1.** Mostre que a = b = 1.
 - **2.2.** Determine o conjunto solução da inequação $B(x) \ge 5x + 1$.

- 3. Considere o polinómio P tais que o quociente e o resto da divisão inteira por $x^3 2x + 1$ é, respectivamente, 3x + 1 e $-20x^2 21x + 23$.
 - **3.1.** Mostre que -2 é raiz de P e indique a sua multiplicidade.
 - **3.2.** Decomponha *P* num produto de polinómios irredutíveis.
 - **3.3.** Determine o conjunto solução da inequação $(x+2)(x-3)P(x) \le 0$.
- **4.** Na figura estão representadas num referencial o.n. xOy as rectas r, s e t e a circunferência definida pela equação $2x^2 + 2y^2 4x + 16y 16 = 0$.

Sabe-se que:

- a recta r é a bissectriz dos quadrantes ímpares
- o ponto A pertence ao semi-eixo positivo Ox, à circunferência e à recta s
- o ponto B pertence à circunferência e à recta t, tem abcissa -3 e a sua ordenada é maior que a ordenada do centro da circunferência

- o ponto C pertence à circunferência e à recta s
- a recta t é paralela ao eixo Ox e a recta s é paralela ao eixo Oy
- **4.1.** Mostre que as coordenadas do centro da circunferência são (1,-4) e que o seu raio é 5.
- **4.2.** Determine as coordenadas do ponto A e mostre que as coordenadas dos pontos B e C são, respectivamente, (-3,-1) e (4,-8).
- **4.3.** Determine uma equação da mediatriz do segmento de [BC], apresentando-a na forma y = mx + b, com $m,b \in \mathbb{R}$.
- 4.4. Seja P um ponto do plano cuja abcissa excede em duas unidades o dobro da ordenada.

Determine as coordenadas do ponto P de modo que d(P,C) = 9.

4.5. Defina por meio de uma condição a região sombreada da figura, incluindo a fronteira.

Exercício Extra 2: Considere num referencial o.n. xOy os pontos A(6,-1), B(3,2) e C(-1,4). Escreva uma equação da circunferência que contenha os pontos $A, B \in C$.

5. Considere a elipse definida pela equação $(kx)^2 + 49y^2 = 196$, com $k \in \mathbb{R}$.

Sabe-se que o ponto de coordenadas $\left(5, \frac{4\sqrt{6}}{7}\right)$ pertence à elipse.

- **5.1.** Sejam F_1 e F_2 os focos da elipse e P(x,y) um ponto do plano pertencente à elipse.
 - a) Mostre que $d(P, F_1) + d(P, F_2) = 14$ e escreva a equação da elipse na forma reduzida.
 - b) Determine as coordenadas dos focos e o eixo menor.
- **5.2.** Na figura está representada em referencial o.n. xOy a elipse e o rectângulo [ABCD], inscrito na elipse.

Os segmentos de recta [AB] e [CD] são paralelo ao eixo Oy e cada um contém um dos focos da elipse.

Qual é a área do rectângulo [ABCD]?

FIM

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1.

2.

С 3.

GRUPO II - ITENS DE RESPOSTA ABERTA

1.3.
$$-4+3\sqrt{3}$$

2.2.
$$[-4,0] \cup [1,+\infty[$$

3.2.
$$P(x) = 3(x+2)^2 \left(x-\frac{2}{3}\right)(x-3)^2$$

3.3.
$$\left[-2,\frac{2}{3}\right] \cup \{3\}$$

4.2.
$$A(4,0)$$

4.3.
$$y = x - 5$$

4.4.
$$P(4,1)$$
 ou $P(-\frac{16}{5}, -\frac{13}{5})$

4.5.
$$(x-1)^2 + (y+4)^2 \le 25 \land y \le x \land y \le -1 \land x \le 4$$

E.E.2
$$(x+5)^2 + (y+9)^2 = 185$$

5.1. a)
$$\frac{x^2}{49} + \frac{y^2}{4} = 1$$

5.1. a)
$$\frac{x^2}{49} + \frac{y^2}{4} = 1$$
 5.1. b) $F_1(3\sqrt{5},0)$ e $F_2(-3\sqrt{5},0)$; $2b = 4$

5.2.
$$A_{[ABCD]} = \frac{48\sqrt{5}}{7}$$