

TEST REPORT

Test report no.: 1-0210/15-01-05-C

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

Mobotix AG

Kaiserstraße

67722 Langmeil / GERMANY Phone: +49 6302 9816-0 Contact: Thomas Kern

e-mail: thomas.kern@mobotix.com

Phone: +49 6302-9816-0

Manufacturer

Mobotix AG

Kaiserstraße

67722 Langmeil / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Display
Model name: MX- Display+
FCC ID: YYRDISPB
IC: 9357A-DISPB
Frequency: 13.56 MHz
Technology tested: RFID

Lab Manager

Radio Communications & EMC

Antenna: Integrated loop antenna
Power supply: 48.0 V DC by POE
Temperature range: 0°C to +40°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Stefan Bös	David Lang

Lab Manager

Radio Communications & EMC

Table of contents

1	Table	of contents2
2	Gene	ral information3
	2.1 2.2	Notes and disclaimer
3	Test	standard/s3
	3.1	Measurement guidance4
4	Test e	environment4
5	Test i	tem4
	5.1	Additional information4
6	Test I	aboratories sub-contracted5
7	Desci	iption of the test setup5
	7.1 7.2 7.3 7.4	Shielded semi anechoic chamber
8	Meas	urement uncertainty10
9	Seque	ence of testing11
	9.1 9.2	Sequence of testing 9 kHz to 30 MHz11 Sequence of testing 30 MHz to 1 GHz12
10	Sur	nmary of measurement results13
11	Add	litional comments13
12	Mea	asurement results14
	12.1 12.2 12.3 12.4 12.5	Occupied bandwidth
13	Obs	servations24
Anr	nex A	Document history24
Anr	nex B	Further information24
۸nr	10V C	Accreditation Cartificate

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0210/15-01-05-B and dated 2015-11-27

2.2 Application details

Date of receipt of order: 2015-07-31
Date of receipt of test item: 2015-08-24
Start of test: 2015-08-24
End of test: 2015-09-21

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	01.10.2013	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
RSS - 210 Issue 8	December 2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - 210 Issue 8 Amendment 1	February 2015	RSS-210, Amendment 1 — Licence-Exempt, Low-Power Radio Apparatus Operating in the Television Bands (February 2015)

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Relative humidity content: 51 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 48.0 V DC by POE

Power supply: V_{max} 48.0 V V_{min} 12.0 V

5 Test item

Kind of test item	:	Display
Type identification	:	MX- Display+
PMN	:	MXDisplay+
HVIN	:	MXDisplay+
FVIN	:	0.0.1.2
HMN	:	- <i>l</i> -
S/N serial number	:	10.7.1.133 and 10.7.32.84
HW hardware status	:	Mainboard: 2V3 Peripherialboard: 2V2
SW software status	:	0.0.1.2
Frequency band	:	13.56 MHz
Type of radio transmission Use of frequency spectrum	:	Modulated carrier
Type of modulation	:	AM
Antenna	:	Integrated loop antenna
Power supply	:	48.0 V DC by POE
Temperature range	:	0°C to +40°C

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-0210/15-01-01_AnnexA

1-0210/15-01-01_AnnexB

1-0210/15-01-01_AnnexD

6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	_	
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $SS[dB\mu V/m] = 12.35[dB\mu V/m] + 1.90[dB] + 16.80[dB\mu V/m] = 31.05[dB\mu V/m] (35.69 \mu V/m)$

No	Lab /	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
4	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $\overline{SS[dB\mu V/m]} = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	В	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	В	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	В	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	24.06.2015	24.06.2017
5	В	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
6	В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-

7.3 AC conducted

SS = UR + CF + VC

(SS-signal strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $SS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	С	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
2	С	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016
3	С	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016

7.4 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	D	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	D	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	26.09.2013	26.09.2015
3	D	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	23.01.2015	23.01.2016
4	D	Signal Analyzer 20Hz-26,5GHz-150 to + 30 DBM	FSiQ26	R&S	835111/0004	300002678	Ve	22.01.2015	22.01.2017

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was set up to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

•

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

•

Final measurement

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver

The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210 Issue 8 RSS Gen Issue 4	See table!	2016-02-26	-/-

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a)	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 & § 15.225 (b-d)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal			\boxtimes		-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-
§ 15.225 (a)	Frequency tolerance	Normal & extreme conditions	Normal & extreme conditions	\boxtimes				-/-
_								

Note: C = Complies; NC = Not complies; NA = Not applicable; NP = Not performed

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

12 Measurement results

12.1 Occupied bandwidth

Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Analyser function:	99 % power function			
Used equipment:	See chapter 7.4			
Measurement uncertainty:	See chapter 8			

Limit:

IC			
for RSP-100 test report coversheet only			

Result EUT A:

99% emission bandwidth
584 kHz

Plot:

Plot 1: 99 % emission bandwidth

Date: 26.AUG.2015 11:02:11

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters				
Detector:	Quasi peak / peak (worst case)			
Resolution bandwidth:	120 kHz			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Used equipment:	See chapter 7.2			
Measurement uncertainty:	See chapter 8			

Limit:

FCC & IC					
Frequency	Field strength	Measurement distance			
(MHz)	(µV/m)	(m)			
13.553 to 13.567	15,848 (84 dBµV/m)	30			

Recalculation:

According to ANSI C63.10				
Frequency Formula Correction value				
13.56 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}} \right) - 20 \log \left(\frac{d_{limit}}{d_{nearfield}} \right)$	-21.39		

According to ANSI C63.10

Result:

Field strength of the fundamental					
Frequency 13.56 MHz					
Distance	@ 3 m	@ 30 m			
Measured / calculated value	77.3 dBµV/m	55.9 dBµV/m			

12.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Used equipment:	See chapter 7.1 and 7.2			
Measurement uncertainty:	See chapter 8			

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30	30 (29.5 dBμV/m)	30		
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBµV/m)	3		
216 – 960	200 (46 dBµV/m)	3		

Note: For a reduced measurement distance, please take a look at the limit line and the ANSI C63.10-2013 sub clause 6.4 radiated emissions from unlicensed wireless devices below 30 MHz.

Result:

Detected emissions					
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value		
All peaks detected in range from 9 kHz to 30 MHz are > 20 dB below limit.					
For frequencies > 30 MHz see result table below the plots					

Plots:

Plot 1: 9 kHz - 30 MHz, magnetic emissions

Plot 2: Spectrum mask (the limits are recalculated according to the ANSI C63.10-2013 sub clause 6.4)

Date: 18.SEP.2015 15:32:22

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.684800	29.56	30.00	0.44	1000.0	120.000	100.0	٧	276	14.0
67.795200	28.69	30.00	1.31	1000.0	120.000	352.0	٧	117	8.9
156.992400	14.93	33.50	18.57	1000.0	120.000	100.0	٧	266	9.0
284.740350	13.31	36.00	22.69	1000.0	120.000	400.0	Н	220	14.1
374.978550	31.26	36.00	4.74	1000.0	120.000	272.0	Н	97	16.5
881.049000	20.74	36.00	15.26	1000.0	120.000	200.0	Н	27	23.9

12.4 Conducted limits

Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
Resolution bandwidth:	F < 150 kHz: 200 Hz			
Resolution bandwidth.	F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz			
Video paridwidiri.	F > 150 kHz: 100 kHz			
Trace mode:	Max hold			
Used equipment:	See chapter 7.3			
Measurement uncertainty:	See chapter 8			

Limit:

FCC & IC					
Frequency	Quasi-peak	Average			
(MHz)	(dBµV/m)	(dBµV/m)			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30.0	60	50			

Result:

Detected emissions						
Frequency (MHz) Detector Resolution bandwidth (kHz) Detected value						
See table below plots!						

Plots:

Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dΒμV	dΒμV	dΒμV	dΒμV
0.49302	36.06	20.06	30.46	15.74
0.73902	51.91	4.09	45.91	0.09
0.80983	48.82	7.18	42.61	3.39
0.81773	48.76	7.24	42.67	3.33
1.4426	50.11	5.89	40.94	5.06
1.6994	50.07	5.93	42.95	3.05
1.7033	51.00	5.00	45.09	0.91
1.7725	50.60	5.40	43.44	2.56
5.4554	53.17	6.83	41.45	8.55
5.4566	52.67	7.33	41.43	8.57
5.4569	51.58	8.42	41.32	8.68
13.583	47.46	12.54	47.41	2.59

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dΒμV	dΒμV	dΒμV	dΒμV
0.78695	48.44	7.56	41.47	4.53
0.85333	47.37	8.63	41.36	4.64
0.87698	46.76	9.24	40.83	5.17
0.89434	47.39	8.61	40.38	5.62
1.191	50.55	5.45	37.32	8.68
1.5402	51.43	4.57	39.40	6.60
1.7044	51.56	4.44	45.36	0.64
1.8414	49.64	6.36	41.78	4.22
5.0407	52.87	7.13	40.14	9.86
5.3725	51.77	8.23	42.14	7.86
5.4588	53.96	6.04	41.94	8.06
5.4598	53.33	6.67	41.76	8.24

12.5 Frequency error

Measurement:

The maximum detected field strength for the spurious.

Measurement parameters				
Detector:	Peak detector			
Resolution bandwidth:	10 Hz / 100 Hz			
Video bandwidth:	> RBW			
Trace mode:	Max hold			
Used equipment:	See chapter 7.4			
Measurement uncertainty:	See chapter 8			

Limit:

FCC

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. (±1.356 kHz)

Results: Temperature variation

Frequency tolerance					
Measured frequency (MHz)	Conditions	Result			
13.559896	-20 °C & 100% voltage	complies			
13.559908	-10 °C & 100% voltage	complies			
13.559888	0 °C & 100% voltage	complies			
13.559876	+10 °C & 100% voltage	complies			
13.559872	+20 °C & 100% voltage	complies			
13.559776	+30 °C & 100% voltage	complies			
13.559776	+40 °C & 100% voltage	complies			
13.559768	+50 °C & 100% voltage	complies			

Results: Voltage variation

Frequency tolerance					
Measured frequency (MHz)	Temperature	Result			
13.559872	+20 °C & 85% voltage	complies			
13.559872	+20 °C & 100% voltage	complies			
13.559872	+20 °C & 115% voltage	complies			
Measurem	± RBW				

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-09-29
-A	Editorial changes (FCC/IC ID, HVIN,FVIN)	2015-11-24
-B	Editorial changes (HVIN,HMN)	2015-11-27
-C	Editorial changes (Section 5)	2016-02-26

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Annex C **Accreditation Certificate**

Front side of certificate

Back side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Bellehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, IIAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Darbaşebundene Kommunikation einschileßlich xDSL vol P und DECT Akustik Funk einschileßlich WLAN Short Range Devices (SRD) RFID WIMMAX und Richtfunk Mobiltunk (GSM / DCS, Over the Air (OTA) Performance) Elektromagnetische Verträglichkeit (EMV) einschiließlich Automotive Produktsicherheit SAR und Hearing Aid Compatibility (HAC) Umweltsimulation Smart Card Terminals

Smart Card Terminals Bluetooth Wi-Fi- Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsmummer D-Pt-17076-01 und ist gillig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstraße 6 60504 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsselnundt- besenf der vorherigen schriftlichen Zuszimmung der Deutsche Akkreditierungsselle GribH (DAMS). Ausginnenmen dawen ist die sepa Weiersverselnung des Deckle attes durch die umpetitig geneinner Konformititiskewertungsselle in unwei directer Folgen.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereichs erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkredidierung erfolgte gemäß des Gisseltess über din Akkredidies ungsatella (AMStelleC) vom 31. Juli 2009 (BoBH. 1. S. 2675) owsie der Verordrung (Fol Nr. 7855/2008 des Europäischen Parlament und des Retes wohn 9. Juli 2008 (Both die Verschriffun (Bis Akkredidiess) und Marktüberwaltung 1m Zusammenhang mit der Vermanklung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAMS ist Utterrechtensi der Verläufskung kon Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAMS ist Utterrechtensi der Verläufskung kon Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die CAMS ist Utterrechtensi der Verläufskung kon Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Ger intermitiant blandstung kanzendision (Ed.) des International Acceptitation Form (Ah.) and der intermitiant blandstung kanzendision of Goognation (BLAC). Die Unterreichner Gleser Abkommen orkomen ihre Akkred Hierungen gegenste lig an.

Der akture in Stund der Villiglienberadt kann folgenden Webseiten ertnommen werden: Filt: www.dereppear accend teillon.org 1865: www.deserrg 1865: www.deserrg

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html