From Bubble Sort to Quick Sort

Hui Chen
Department of Engineering & Computer Science
Virginia State University
February 10, 2017

Acknowledgement

- This presentation is inspired by the following resources
 - The CS Unplugged project
 - http://csunplugged.org/
 - The OpenDSA project
 - https://opendsa-server.cs.vt.edu/
 - The Runestone Interactive project
 - Problem Solving with Algorithms and Data Structures using Python
 - http://interactivepython.org/runestone/static/pythonds/ index.html

Where do we sort?

Where are we ordering a list of objects?

Return to product information Have one to sell? Every purchase on Amazon.com is protected by an A-to-z guarantee. Feedback on this

Introduction to Algorithms, 3rd Edition (MIT Press) (Hardcover)

by Thomas H. Cormen, et al.

★★★★★ * 432 customer reviews | Share ☑ 🕶

Access codes and supplements are not guaranteed with used items.

Refine by Clear all	Price + Shipping	Condition (Learn more)	Delivery
Shipping Prime Free shipping Condition New Rental Used Like New Very Good Good Acceptable	\$49.94 + \$3.99 shipping + \$0.00 estimated tax	New	 Arrives between March 3-23. Ships from India. Learn more about import fees and international shipp time. Shipping rates and return policy.
	\$49.95 + \$3.99 shipping + \$0.00 estimated tax	New Delivery within 4 to 7 business days, great customer service. do » Read more	Arrives between March 3-23.Shipping rates and return policy.
	\$78.00 + \$3.99 shipping + \$0.00 estimated tax	New	 Arrives between February 10-28. Ships from MN, United States. Shipping rates and return policy.
	¢79 EC	New	Awine between Feb. 42. Mar. 4

About 117,000,000 results (0.66 seconds)

sort

/sôrt/ •

→

verb

gerund or present participle: sorting

- arrange systematically in groups; separate according to type, class, etc.
 "she sorted out the clothes, some to be kept, some to be thrown away"
 synonyms: classify, class, categorize, catalog, grade, group; More
- resolve (a problem or difficulty).
 "the teacher helps the children to sort out their problems"
 synonyms: resolve, settle, solve, fix, work out, straighten out, deal with, put right, set right,
 rectify, iron out; More

Translations, word origin, and more definitions

Feedback

Sorting algorithm - Wikipedia

https://en.wikipedia.org/wiki/Sorting_algorithm •

A **sorting** algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order.

Quicksort · Merge sort · Bubble sort · Selection sort

Watch a video

- About 1'30"
- An important figure was asked a question relevant to today's discussion. Let's see what he had to say.
- The video is at,
 - https://youtu.be/k4RRi_ntQc8

Feedback

Sorting algorithm - Wikipedia

https://en.wikipedia.org/wiki/Sorting_algorithm •

A **sorting** algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order.

Quicksort · Merge sort · Bubble sort · Selection sort

Objective

- · To be able
 - to explain and implement bubble sort and quick sort
 - to learn to evaluate sorting algorithms
 - to explain time complexity of bubble sort and quick sort, and
 - to gain insight of the divide-and-conquer strategy

How do we sort?

Let's try to understand what bubble sort is.

Sorting objects by weight

 How do we sort a few objects by weight given a balance scale?

How many steps do we take?

- How many comparisons do we take?
- How many exchanges do we take?
- What if we have more objects to sort?

Why do we call it bubble sort?

· Let's watch a demo

Can we sort faster?

- Can we sort using less steps?
 - less comparisons
 - less exchanges
- Consider a divide-and-conquer strategy.
 - Choose an object, and use it to divide the objects into two halves

Sorting objects more quickly

 Let's apply the divide-and-conquer approach using a balance scale

How many steps do we take?

- Bubble sort and quick sort
 - · How many comparisons do we take?
 - How many exchanges do we take?
- What if we have more objects to sort?

Sorting: a summary

- Data structure
 - Lists
- Basic operations
 - Comparison and exchange
- Two algorithms
 - Bubble sort
 - Quick sort

Bubble Sort

```
def bubble_sort(objects):
    for num_elems in range(len(objects)-1, 0, -1):
        # bubble the greatest element up
        for i in range(num_elems):
        if objects[i] > objects[i+1]:
        objects[i], objects[i+1] = objects[i+1], objects[i]
```

Quick Sort

```
def quick_sort(objects):
   pivot = objects[0] # pick a pivot
   # divide the objects into two halves, lighter & heavier
   lighter = [elem for elem in data_list[1:] if elem <= pivot]
    heavier = [elem for elem in data_list[1:] if elem > pivot]
   # apply the same strategy to the two halves
    lighter = quick_sort(lighter)
    heavier = quick_sort(heavier)
   return lighter + [pivot] + heavier
```

Do some experiments

- Implement the algorithms in Python
- Measure running time used to sort lists of different sizes
- Observe the relationship between the running time and the size of the lists
- Code
 - https://goo.gl/QA3pNO (require only browser)
 - Github repository: https://goo.gl/phTjrS

Graph of what function is linear in log-log scale?

- How about $f(n) = n^2$?
- $\log f(n) = \log n^2 = 2 \log n$
- Let $y = \log f(n)$, $x = \log n$, we get
- y = 2x

Analysis of Bubble sort

The number of comparison

•
$$(n-1)$$
 + $(n-2)$ + $(n-3)$ + ...+ 1 = $n(n-1)/2$

Analysis of Bubble sort

How about the number of exchanges?

Analysis of Bubble sort

- How about the number of exchanges?
- It depends! See the following two cases.

How about analysis of Quick sort?

Discussion on running time

- Does the bubble sort always take the same amount of running time given the list of the same size?
- Does the quick sort always take the same amount of running time given the list of the same time?

Discussion on running time

- Does a sorting algorithm always take the same amount of running time given the list of the same size?
- Consider 3 cases
 - Ordered randomly
 - Already sorted in descending order
 - Already sorted in ascending order

Running time

- What is the relationship between running time and the size of list?
 - Can you predict the running time given the size of a list?
 - Orders of growth
 - Big-O, Big-⊕ notations

Discussion on choice of pivot

 For quick sort, does the pivot have to be the first element?

Discussion on divide-andconquer

• For sorting, is there any other divide-and-conquer approach you can think of?

Sorting algorithm evaluation

- How do we evaluate sorting algorithms?
 - Running time
 - Memory requirement
 - Stability
- How do we choose a sorting algorithm?

Exercise

- Measure running time for both Bubble sort and Quick sort
- Consider 3 cases
 - Ordered randomly
 - Already sorted in descending order
 - my_list = list(range(1000, 0, -1))
 - Already sorted in ascending order
 - my_list = list(range(0, 1000, 1))

Thank you!

- · Discussed Bubble sort & Quick sort
 - They are comparison-exchange based sorting algorithms
 - They have significantly different time complexity
 - You shall see more applications of the divide-andconquer strategy
- Some exercises for you!
- Do you have any questions?

huichen@ieee.org