A study of CP violation in $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ and $B^{\pm} \rightarrow (\pi^+\pi^-\pi^+\pi^-)_D h^{\pm}$ decays

Martin Tat Guy Wilkinson Sneha Malde

University of Oxford

Approval presentation

2nd September 2022

Thank you

- Big thank you to all reviewers!
- B2OC WG reviewers/convenors:
 - Anton Poluektov
 - Nathan Philip Jurik
 - Paras Naik
- RC reviewers:
 - Lucia Grillo
 - Francesco Dettori

Introduction and motivation

- Aim of this analysis: Measure CP observables in $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}, \ h = K, \pi$ decays
 - First study of CP violation in this channel
 - Enhance sensitivity through sophisticated binning of 5D phase space
 - \bullet Provide input for future model-independent measurement of γ
- Also measure phase space inclusive CP observables for $B^{\pm} \to [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$, $h = K, \pi$ decays

Introduction and motivation

- $B^{\pm} \to [K^+ K^- \pi^+ \pi^-]_D K^{\pm}$ was first proposed by J. Rademacker and G. Wilkinson
 - Phys. Lett. B647 (2007) 400
 - Expected γ precision from FOCUS amplitude model with 1000 $B^\pm \to DK^\pm$ candidates: 14°
- Recent state of the art amplitude analysis by LHCb:
 - JHEP 02 (2019) 126
 - Develop a suitable binning scheme
- No measurement of strong phases c_i and s_i exists today
 - Current BESIII dataset is 8 fb⁻¹

- Allows for a direct measurement of $D \to K^+ K^- \pi^+ \pi^-$ strong phases
- ullet Final γ measurement will be model independent

Theory of BPGGSZ method

• $B^{\pm} \rightarrow Dh^{\pm}$ amplitude:

$$\begin{split} \mathcal{A}(B^-) &= \mathcal{A}(D^0) + r_B e^{i(\delta_B - \gamma)} \mathcal{A}(\bar{D^0}) \\ \mathcal{A}(B^+) &= \mathcal{A}(\bar{D^0}) + r_B e^{i(\delta_B + \gamma)} \mathcal{A}(D^0) \end{split}$$

- $\mathcal{A}(D^0)$ and $\mathcal{A}(\bar{D^0})$ depend on D phase space
- ullet Strong-phase difference of D^0 and $ar{D^0}$ decays inaccessible at LHCb
- Model-independent measurement: Integrate over bins of phase space

Event yield in bin i

$$N_{i}^{-} = h_{B^{-}} \Big(F_{i} + (x_{-}^{2} + y_{-}^{2}) \bar{F}_{i} + 2 \sqrt{F_{i} \bar{F}_{i}} (x_{-} c_{i} + y_{-} s_{i}) \Big)$$

$$N_{-i}^{+} = h_{B^{+}} \Big(F_{i} + (x_{+}^{2} + y_{+}^{2}) \bar{F}_{i} + 2 \sqrt{F_{i} \bar{F}_{i}} (x_{+} c_{i} + y_{+} s_{i}) \Big)$$

Theory of BPGGSZ method

Event yield in bin i

$$\begin{split} N_i^- &= h_{B^-} \big(F_i + (x_-^2 + y_-^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_- c_i + y_- s_i) \big) \\ N_{-i}^+ &= h_{B^+} \big(F_i + (x_+^2 + y_+^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_+ c_i + y_+ s_i) \big) \end{split}$$

- CP observables:
 - $x_{\pm}^{DK} = r_B^{DK} \cos(\delta_B^{DK} \pm \gamma), \quad y_{\pm}^{DK} = r_B^{DK} \sin(\delta_B^{DK} \pm \gamma)$ • $x_{\xi}^{D\pi} = \text{Re}(\xi^{D\pi}), \ y_{\xi}^{D\pi} = \text{Im}(\xi^{D\pi}) \qquad \left(\xi^{D\pi} = \frac{r_B^{D\pi}}{r_{DK}} e^{i(\delta_B^{D\pi} - \delta_B^{DK})}\right)$
 - $x_{\xi}^{D\pi} = \text{Re}(\xi^{D\pi}), \ y_{\xi}^{D\pi} = \text{Im}(\xi^{D\pi})$ $\left(\xi^{D\pi} = \frac{l_B}{r_B^{DK}} e^{l(\delta_B^{\pi} \delta_B^{\pi})}\right)$
- Fractional bin yield:
 - $F_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_i \int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$
 - ullet Floated in the fit, mostly constrained by $B^\pm o D \pi^\pm$
- Amplitude averaged strong phases:

$$c_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \big|\mathcal{A}(\bar{D^0})\big|^2}} \quad s_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \sin(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \big|\mathcal{A}(\bar{D^0})\big|^2}}$$

Binning scheme

A binning scheme must satisfy the following:

- Minimal dilution of strong phases when integrating over bins
- Enhance interference between $B^{\pm} \to D^0 h^{\pm}$ and $B^{\pm} \to \bar{D^0} h^{\pm}$

How to bin a 5-dimensional phase space?

- Generate C++ code for LHCb amplitude model using AmpGen¹
- For each B^{\pm} candidate, calculate

$$\frac{A(D^0)}{A(\bar{D^0})} = r_D e^{i\delta_D}$$

- Bin along δ_D and r_D , maximize Q-value to optimize
 - Q=1 corresponds to unbinned limit

¹AmpGen by Tim Evans

Binning scheme

 $B^{\pm} \to (K^+K^-\pi^+\pi^-)_D h^{\pm}$

Phase-space inclusive CP observables

- Statistically independent analysis without phase space binning
 - BPGGSZ looks at relative bin yields
 - Quasi-GLW observables depend on absolute yields
- Charge asymmetry:

$$A_h = \frac{\Gamma(B^- \to Dh^-) - \Gamma(B^+ \to Dh^+)}{\Gamma(B^- \to Dh^-) + \Gamma(B^+ \to Dh^+)}$$

• $B \to DK$ vs $B \to D\pi$ double ratio:

$$R_{\text{CP}} = \frac{R_{hh\pi\pi}}{R_{K\pi\pi\pi}}, \quad R = \frac{\Gamma(B^- \to DK^-) + \Gamma(B^+ \to DK^+)}{\Gamma(B^- \to D\pi^-) + \Gamma(B^+ \to D\pi^+)}$$

• Measure A_h and $R_{\rm CP}$ for $B^\pm \to [K^+K^-\pi^+\pi^-]_D h^\pm$ and $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$

Phase-space inclusive CP observables

CP observables and physics parameters

$$A_h = \frac{2r_B^{Dh}(2F_+ - 1)\sin\left(\delta_B^{Dh}\right)\sin(\gamma)}{1 + (r_B^{Dh})^2 + 2r_B^{Dh}(2F_+ - 1)\cos\left(\delta_B^{Dh}\right)\cos(\gamma)},$$

$$R_{
m CP} = 1 + (r_B^{Dh})^2 + 2r_B^{Dh}(2F_+ - 1)\cos(\delta_B^{Dh})\cos(\gamma)$$

- Need CP-even fraction F_+ to interpret in terms of physics parameters
- For $D^0 \to K^+ K^- \pi^+ \pi^-$:
 - $F_{+} = 0.736$
 - Calculated from the model

- For $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$:
 - $F_+ = 0.735 \pm 0.016$
 - Recent measurement by BESIII arXiv:2208.10098

Publication strategy

- \bullet Strong phases c_i and s_i have not been published by BESIII yet
- We would like to publish a model dependent result initially
 - ullet Focus of the paper should be on CP violation, not γ
 - Bin yields and correlation matrices will be provided in the appendix
- When c_i and s_i become available, the result can be updated to yield a model independent measurement of γ , which can be included in the next combination

Selection

- 1 Initial cuts: Trigger requirements, mass cuts, bachelor p, etc.
 - D mass window: 25 MeV
 - B^{\pm} mass fit range: [5080, 5700] MeV
- BDT: Efficient combinatorial background rejection
 - Signal sample: MC with AmpGen model
 - Background sample: Data from $m_B \in [5800, 7000]$ MeV
 - ullet Pick BDT cut that minimises statistical sensitity of γ
- § Final cuts: PID cuts, flight significance cuts, K_S veto, etc
 - PIDK cut at 4 to separate $B^\pm o DK^\pm$ and $B^\pm o D\pi^\pm$
 - Flight significance at 2 to reduce charmless backgrounds

 $\rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$

(a) BDT output

(b) BDT output on a log scale

12 / 27

Summary of backgrounds

- Partially reconstructed B decays
 - Modelled in the fit with HILL/HORNSdini shapes
- Combinatorial
 - Floating exponential
- CF $D^0 o K^-\pi^+\pi^-\pi^+$ and semi-leptonic $D^0 o K^-(X)I^+\nu_I$ background
 - Small, assign systematic

- Charmless
 - Fix from sideband
- CF $D^0 o K^-\pi^+\pi^-\pi^+\pi^0$ background
 - Not negligible!

$D^0 \to K^- \pi^+ \pi^- \pi^+ \pi^0$ partially reconstructed mis-ID

- Missing π^0 and $\pi \to K$ mis-ID
- Float yield relative to $B \rightarrow D^*h$ background

B mass of $K \pi \pi \pi \pi^0 \rightarrow KK \pi \pi$

Global fit

Figure 2: $B^{\pm} \rightarrow DK^{\pm}$ channel (left) and $B^{\pm} \rightarrow D\pi^{\pm}$ channel (right)

- $B^{\pm} \rightarrow DK^{\pm}$ yield: 3026 ± 38
- $B^{\pm} \to D\pi^{\pm}$ yield: 44 349 \pm 218

Fit split by charge

Figure 3: $B^{\pm} \to (K^{+}K^{-}\pi^{+}\pi^{-})Dh^{\pm}$

Sneha Malde

16 / 27

Fit split by charge

Figure 4: $B^{\pm} \to (\pi^{+}\pi^{-}\pi^{+}\pi^{-})Dh^{\pm}$

CP fit setup

- Fix mass shape from global fit
- Split by B^{\pm} charge and D phase space bins
 - Simultaneous fit with 64 categories
- Signal yields parameterised in terms of CP observables x_{\pm}^{DK} , y_{\pm}^{DK} , $x_{\xi}^{D\pi}$, $y_{\xi}^{D\pi}$ (6 parameters)
- Fractional bin yields F_i are floating (15 parameters)
- Combinatorial background yield floated in each bin (64 parameters)
- Total partially reconstructed background yield is floated in each bin (64 parameters)
- ullet Normalisation of each charge and B^\pm decay is floated (4 parameters)
- In total: 153 free parameters

CP fit results

- Shown are the 2σ contours of fitted CP observables
- The distinct $B^\pm \to DK^\pm$ contours indicate CP violation, while the $B^\pm \to D\pi^\pm$ mode has very low sensitivity to CP violation

Fractional bin asymmetries

- Useful cross check to compare measured bin asymmetries against bin asymmetries predicted by the fitted CP observables
- The $B^\pm \to DK^\pm$ mode show non-zero bin asymmetries, and the non-trivial distribution is driven by the change in strong phases across phase space

Systematic uncertainties

- Dominant c_i/s_i systematic uncertainty due to model dependence
 - Strategy: Generate toys with c_i/s_i from older CLEO model, fit with c_i/s_i from LHCb model
 - Will be replaced when BESIII results become available
- All internal systematic uncertainties are much smaller than the statistical uncertainties

Sneha Malde

21 / 27

Summary of all BPGGSZ systematic uncertainties

Uncertainties of BPGGSZ CP observables in units of 10^{-2}

Source	x_{-}^{DK}	y_{-}^{DK}	x_{+}^{DK}	y_{+}^{DK}	$x_{\xi}^{D\pi}$	$y_{\xi}^{D\pi}$
Statistical	2.87	3.40	2.51	3.05	4.24	5.17
Mass shape	0.02	0.02	0.03	0.06	0.02	0.04
Bin-dependent mass shape	0.11	0.05	0.10	0.19	0.68	0.16
PID efficiency	0.02	0.02	0.03	0.06	0.02	0.04
Low-mass background model	0.02	0.02	0.03	0.04	0.02	0.02
Charmless background	0.14	0.15	0.12	0.14	0.01	0.02
CP violation in low-mass background	0.01	0.10	0.08	0.12	0.07	0.26
Semi-leptonic b-hadron decays	0.05	0.27	0.06	0.01	0.07	0.19
Semi-leptonic charm decays	0.02	0.07	0.03	0.15	0.06	0.24
$D ightarrow K^- \pi^+ \pi^- \pi^+$ background	0.11	0.05	0.07	0.04	0.09	0.05
$\Lambda_b o pD\pi^-$ background	0.01	0.25	0.14	0.04	0.06	0.34
$D ightarrow K^- \pi^+ \pi^- \pi^+ \pi^0$ background	0.30	0.05	0.19	0.07	0.05	0.01
Fit bias	0.06	0.05	0.13	0.02	0.06	0.13
Total LHCb systematic	0.37	0.43	0.34	0.32	0.70	0.57
c_i , s_i	0.35	3.64	1.74	1.29	0.14	1.10
Total systematic	0.51	3.67	1.78	1.33	0.72	1.24

Summary of all quasi-GLW systematic uncertainties

Uncertainties of quasi-GLW CP observables in units of 10^{-2}

Source	$A_K^{KK\pi\pi}$	$A_{\pi}^{KK\pi\pi}$	$A_K^{\pi\pi\pi\pi}$	$A_{\pi}^{\pi\pi\pi\pi}$	$R_{C\!P}^{KK\pi\pi}$	$R_{C\!P}^{\pi\pi\pi\pi}$
Statistical	23.5	5.5	13.3	3.1	24.2	14.3
Charmless background	1.2	< 0.1	0.4	< 0.1	13.9	8.5
External parameters	1.0	0.7	1.0	0.7	4.0	4.0
Fixed yield fractions	0.1	< 0.1	0.1	< 0.1	1.3	1.4
Mass shape	0.3	< 0.1	0.2	< 0.1	3.1	3.1
PID efficiency	0.1	< 0.1	0.1	< 0.1	2.5	1.6
Total systematic	1.6	0.7	1.1	0.7	15.1	10.1

Summary of measured CP observables

Measured binned CP observables:

$$x_{-}^{DK} = (7.9 \pm 2.9 \pm 0.4 \pm 0.4) \times 10^{-2}$$

$$y_{-}^{DK} = (-3.3 \pm 3.4 \pm 0.4 \pm 3.6) \times 10^{-2}$$

$$x_{+}^{DK} = (-12.5 \pm 2.5 \pm 0.3 \pm 1.3) \times 10^{-2}$$

$$y_{+}^{DK} = (-4.2 \pm 3.1 \pm 0.3 \pm 1.3) \times 10^{-2}$$

$$x_{\xi}^{D\pi} = (-3.1 \pm 4.3 \pm 0.7 \pm 0.1) \times 10^{-2}$$

$$y_{\xi}^{D\pi} = (-1.7 \pm 5.2 \pm 0.6 \pm 1.1) \times 10^{-2}$$

• Measured inclusive CP observables:

$$A_{K}^{KK\pi\pi} = 0.093 \pm 0.023 \pm 0.002$$

$$A_{\pi}^{KK\pi\pi} = -0.009 \pm 0.006 \pm 0.001$$

$$A_{K}^{\pi\pi\pi\pi} = 0.060 \pm 0.013 \pm 0.001$$

$$A_{\pi}^{\pi\pi\pi\pi} = -0.0082 \pm 0.0031 \pm 0.0007$$

$$R_{CP}^{KK\pi\pi} = 0.974 \pm 0.024 \pm 0.015$$

$$R_{CP}^{\pi\pi\pi\pi} = 0.978 \pm 0.014 \pm 0.010$$

Interpretation

$$\begin{split} \gamma &= (116^{+12}_{-14})^{\circ} \\ \delta^{DK}_{B} &= (81^{+14}_{-13})^{\circ} \\ r^{DK}_{B} &= 0.110^{+0.020}_{-0.020} \\ \delta^{D\pi}_{B} &= (298^{+62}_{-118})^{\circ} \\ r^{D\pi}_{B} &= 0.0041^{+0.0055}_{-0.0041} \end{split}$$

Interpretation

- \bullet Value of γ from binned analysis is somewhat high, but falls within the 3σ contours
- Phase space inclusive measurement are compatible with our expectations
- Interpretation may evolve when full model independent inputs are available

Conclusion

- First study of CP violation has been performed in $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ in bins of phase space
- Phase space inclusive measurement for $B^\pm \to [K^+K^-\pi^+\pi^-]_D h^\pm$ and $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$
- This publication is model dependent, but strong phases will become available from BESIII soon
 - Sufficient information will be provided in the paper to allow a model independent update when c_i and s_i become available
- Complete paper draft is available
- Link to:
 - TWiki
 - ANA note
 - Paper draft (also uploaded to Indico)

Thanks for listening!