Progressive Growing of GANs for Improved Quality, Stability, and Variation

Table

- I. GAN
- 2. PGGAN 's Key Idea
 - 3. Network Consist (+ 방법론)
- 4. 결과

논문 선정 이유

1. 인공지능의 최적화 알고리즘이 수학적으로 완벽하다는 점

2. 두 네트워크를 대치시켜 최고의 성능을 뽑아내는 GAN의 구조에 매료

3. GAN의 구조적인 문제점을 찿다가 다양한 방법론이 제시된 해당 논문 선택

I. GAN (Generative Adversarial Network)

- What is GAN?
 - Generative Adversarial Networks (적대적 생성 네트워크) designed by Ian. J. Goodfellow
 - The training procedure for <u>Generator</u> is to maximize the probability of <u>Discriminator</u> making a mistake.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

I. Previous study의 문제점

고해상도 이미지 생성 시

- 1. 큰 규모로 동시에 처리하게 되면 작은 영역의 특징을 부드럽게 검출해내지 못함
- 2. 잠재 벡터에서 고해상도로 한꺼번에 처리해 버리기 때문에 <mark>학습이 불안정</mark>함 (sudden shock)
- 3. 고해상도 이미지의 경우 D가 너무 쉽게 판별해 버림 (D의 성능이 G를 압도함)
- 4. 해상도가 크기 때문에 용량이 커져 미니배치의 크기를 작게 설정할 수 밖에 없었음

II. PGGAN (Progressive Growing GAN) Key Idea

이를 해결하기 위해 해당 논문에서는

저해상도부터 시작하여 <mark>레이어를 더해감</mark>으로써 고해상도의 학습을 진행하는 구조

II. PGGAN (Progressive Growing GAN) Key Idea

이를 해결하기 위해 해당 논문에서는 **G와 D 동시에 점진적으로 증가하는 구조**를 제시

II. PGGAN (Progressive Growing GAN)

Adding Layer

II. PGGAN Advantage

- ✓ 안정적이고 빠른 학습 가능
 - ✓ 초반에 작은 이미지에서 시작하여 적은 정보량을 추가해가며 학습을 하기 때문에 학습이 안정화 됨
 - ✔ 어려운 질문이 아닌 간단한 질문을 반복해 던지는 것과 같음

II. PGGAN Advantage

- ✔ 넓은 영역의 특징 (==작은 해상도)에서 점차 작은 영역의 특징(==고해상도)에 집중하게 됨.
 - ✓ 보다 부드러운 특징 검출이 가능함
 - ✔ 이미지의 커다란 구조를 먼저 파악하고 후에 미세한 구조를 파악

II. PGGAN Advantage

✓ 생성자와 판별자를 비슷한 정도로 함께 학습을 하기 때문에고해상도 이미지에서 판별자의 성능이 생성자의 성능을 과하게 뛰어넘는 것을 방지

Generator

Generator	Act.	Output shape	Params
Latent vector	-	$512 \times 1 \times 1$	-
Conv 4×4	LReLU	$512 \times 4 \times 4$	4.2M
Conv 3×3	LReLU	$512 \times 4 \times 4$	2.4M
Upsample	-	512 × 8 × 8	_
Conv 3×3	LReLU	$512 \times 8 \times 8$	2.4M
Conv 3 × 3	LReLU	$512 \times 8 \times 8$	2.4M
Upsample	-	512 × 16 × 16	-
Conv 3×3	LReLU	$512 \times 16 \times 16$	2.4M
Conv 3×3	LReLU	$512 \times 16 \times 16$	2.4M
Upsample	-	$512 \times 32 \times 32$	-
Conv 3 × 3	LReLU	$512 \times 32 \times 32$	2.4M
Conv 3 × 3	LReLU	$512 \times 32 \times 32$	2.4M
Upsample	-	512 × 64 × 64	-
Conv 3×3	LReLU	$256 \times 64 \times 64$	1.2M
Conv 3×3	LReLU	$256 \times 64 \times 64$	590k
Upsample	_	256 × 128 × 128	-
Conv 3×3	LReLU	$128 \times 128 \times 128$	295k
Conv 3×3	LReLU	$128 \times 128 \times 128$	148k
Upsample	-	$128 \times 256 \times 256$	_
Conv 3×3	LReLU	$64 \times 256 \times 256$	74k
Conv 3×3	LReLU	$64 \times 256 \times 256$	37k
Upsample	-	64 × 512 × 512	-
Conv 3×3	LReLU	$32 \times 512 \times 512$	18k
Conv 3 × 3	LReLU	$32 \times 512 \times 512$	9.2k
Upsample	-	$32 \times 1024 \times 1024$	_
Conv 3×3	LReLU	$16 \times 1024 \times 1024$	4.6k
Conv 3×3	LReLU	$16 \times 1024 \times 1024$	2.3k
Conv 1×1	linear	$3 \times 1024 \times 1024$	51
Total trainable	parameters		23.1M

Discriminator

Discriminator	Act.	Output shape	Params
Input image	-	3 × 1024 × 1024	-
Conv 1 × 1	LReLU	$16 \times 1024 \times 1024$	64
Conv 3 × 3	LReLU	$16 \times 1024 \times 1024$	2.3k
Conv 3 × 3	LReLU	$32 \times 1024 \times 1024$	4.6k
Downsample	-	$32 \times 512 \times 512$	_
Conv 3 × 3	LReLU	32 × 512 × 512	9.2k
Conv 3 × 3	LReLU	$64 \times 512 \times 512$	18k
Downsample	-	$64 \times 256 \times 256$	-
Conv 3 × 3	LReLU	64 × 256 × 256	37k
Conv 3 × 3	LReLU	$128 \times 256 \times 256$	74k
Downsample	-	$128 \times 128 \times 128$	-
Conv 3 × 3	LReLU	$128 \times 128 \times 128$	148k
Conv 3 × 3	LReLU	$256 \times 128 \times 128$	295k
Downsample	-	$256 \times 64 \times 64$	-
Conv 3 × 3	LReLU	256 × 64 × 64	590k
Conv 3 × 3	LReLU	$512 \times 64 \times 64$	1.2M
Downsample	-	$512 \times 32 \times 32$	_
Conv 3 × 3	LReLU	512 × 32 × 32	2.4M
Conv 3 × 3	LReLU	$512 \times 32 \times 32$	2.4M
Downsample	-	$512 \times 16 \times 16$	_
Conv 3 × 3	LReLU	512 × 16 × 16	2.4M
Conv 3 × 3	LReLU	$512 \times 16 \times 16$	2.4M
Downsample	-	$512 \times 8 \times 8$	-
Conv 3 × 3	LReLU	512 × 8 × 8	2.4M
Conv 3 × 3	LReLU	$512 \times 8 \times 8$	2.4M
Downsample	-	$512 \times 4 \times 4$	_
Minibatch stddev	-	513 × 4 × 4	-
Conv 3 × 3	LReLU	$512 \times 4 \times 4$	2.4M
Conv 4 × 4	LReLU	$512 \times 1 \times 1$	4.2M
Fully-connected	linear	$1 \times 1 \times 1$	513
Total trainable para	23.1M		

• Minibatch Standard Deviation (in D) \rightarrow Increasing Variation

• Pixel Normalization (in G)

$$b_{x,y} = \frac{a_{x,y}}{\sqrt{\frac{1}{N} \sum_{j=0}^{N-1} (a_{x,y}^j)^2 + \epsilon}}$$

 $a_{x,y}$: Origin pixel

 $b_{x,y}$: pixel after Norm

N : Number of feature map

→ Prevent the escalation of Signal magnitudes between G and D

IV. Result

	CELEBA				LSUN BEDROOM							
Training configuration	Sliced Wasserstein distance ×10 ³			MS-SSIM	Sliced Wasserstein distance ×10 ³				MS-SSIM			
	128	64	32	16	Avg		128	64	32	16	Avg	
(a) Gulrajani et al. (2017)	12.99	7.79	7.62	8.73	9.28	0.2854	11.97	10.51	8.03	14.48	11.25	0.0587
(b) + Progressive growing	4.62	2.64	3.78	6.06	4.28	0.2838	7.09	6.27	7.40	9.64	7.60	0.0615
(c) + Small minibatch	75.42	41.33	41.62	26.57	46.23	0.4065	72.73	40.16	42.75	42.46	49.52	0.1061
(d) + Revised training parameters	9.20	6.53	4.71	11.84	8.07	0.3027	7.39	5.51	3.65	9.63	6.54	0.0662
(e*) + Minibatch discrimination	10.76	6.28	6.04	16.29	9.84	0.3057	10.29	6.22	5.32	11.88	8.43	0.0648
(e) Minibatch stddev	13.94	5.67	2.82	5.71	7.04	0.2950	7.77	5.23	3.27	9.64	6.48	0.0671
(f) + Equalized learning rate	4.42	3.28	2.32	7.52	4.39	0.2902	3.61	3.32	2.71	6.44	4.02	0.0668
(g) + Pixelwise normalization	4.06	3.04	2.02	5.13	3.56	0.2845	3.89	3.05	3.24	5.87	4.01	0.0640
(h) Converged	2.42	2.17	2.24	4.99	2.96	0.2828	3.47	2.60	2.30	4.87	3.31	0.0636

^{*} MS - SSIM: (SSIM + scale) 다중 스케일 정보를 결합한 SSIM(인간의 눈으로 보았을 때와 비슷한 관점으로 평가)

^{*} SSIM(x,y) = l(x,y)c(x,y)s(x,y) : 두 이미지의 <u>구조적</u> 유사도를 평가

IV. Result

IV. Result

Unsupervised			LABEL CONDITIONED				
Method		Inception score	Method		Inception score		
ALI	(Dumoulin et al., 2016)	5.34 ± 0.05	DCGAN	(Radford et al., 2015)	6.58		
GMAN	(Durugkar et al., 2016)	6.00 ± 0.19	Improved GAN	(Salimans et al., 2016)	8.09 ± 0.07		
Improved GAN	(Salimans et al., 2016)	6.86 ± 0.06	AC-GAN	(Odena et al., 2017)	8.25 ± 0.07		
CEGAN-Ent-VI	(Dai et al., 2017)	7.07 ± 0.07	SGAN	(Huang et al., 2016)	8.59 ± 0.12		
LR-AGN	(Yang et al., 2017)	7.17 ± 0.17	WGAN-GP	(Gulrajani et al., 2017)	8.67 ± 0.14		
DFM	(Warde-Farley & Bengio, 2017)	7.72 ± 0.13	Splitting GAN	(Grinblat et al., 2017)	8.87 ± 0.09		
WGAN-GP	(Gulrajani et al., 2017)	7.86 ± 0.07					
Splitting GAN	(Grinblat et al., 2017)	7.90 ± 0.09					
Our (best run)		8.80 ± 0.05					
Our (computed f	from 10 runs)	8.56 ± 0.06					

Table 3: CIFAR10 inception scores, higher is better.

^{*} Inception Score : 생성된 이미지의 품질과 다양성을 기준으로 평가 두 기준이 모두 우수하다면 큰 값

Any Question?

0

Tel: 010-6725-2073

e-mail: diditjwjd@gmail.com

Kakaotalk: tjwjd0909