Time Series Analysis Lecture 4

Mixed Autoregressive Moving Average (ARMA) Models Autoregressive Integrated Moving Average (ARIMA) Models Seasonal ARIMA (SARIMA) Models

datascience@berkeley

Mathematical Formulation and Properties of ARMA Models

Mathematical Formulation of ARMA(p,q) Models

A time series $x_t : \cdots - 2, -1, 0, 1, 2, \ldots$ is called a mixed autoregressive moving average process of order (p,q), ARMA(p,q), if it is stationary and takes the following functional form

$$(x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t - \theta_1 w_{t-1} - \dots - \theta_q w_{t-q})$$
 (4.1.1)

where $\phi_p \neq 0$, $\theta_q \neq 0$, and $\sigma_w^2 > 0$. Also, we implicitly assume that the series x_t is demeaned: $x_t - \mu$. To simplify notations, we do not use \tilde{x} where $\tilde{x} = x_t - \mu$

The parameters p and q are called autoregressive and the moving average orders.

To incorporate a non-zero mean, μ into the model, we set $\alpha = \mu (1 - \phi_1 - \cdots - \phi_p)$ and re-write the model as

$$x_t = \alpha + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$
 (4.1.2)

where w_t is assumed to be a Gaussian white noise series with mean zero and variance σ_w^2 .

Berkeley school of information