

AK801 Beacon 芯片高温测试报告

芯片型号: AK801 测试人员: 瞿鑫

软件版本: _______测试日期: 2020 年 5 月 8 日

测试设备及软件:

编号	测试设备及软件名称	数量
1	信号发生器(Agilent N5182A)	1
2	频谱仪	1
3	可控温度电加热箱	1
3	射频线缆	1
4	串口调试工具软件	1
5	PC	1

测试环境:

项目	参数	最小值	典型值	最大值	单位	备注		
测试环境								
Fop	工作频率	2400		2480	MHZ			
VCC	模组供电电压		3.3		伏特			
TA	操作环境温度		25		摄氏度			

-、发射信号质量测试

在 37 频道 (频点 2402 MHz) 发送常 1 和常 0, 同时关白化使能, 测试数据如下;

泪庇	发送常 1			发送常 0			时钟偏差	发射
温度 (℃)	电流	发射频偏	发射功率	电流	发射频偏	发射功率	的評価左 (kHz)	频点间隔
(0)	(mA)	(kHz)	(dBm)	(mA)	(kHz)	(dBm)	(KIIZ)	(kHz)
20	31.5	397	7. 92	31.1	-101	7. 94	+148	498
30	31.6	400	7.81	31.6	-100	7.85	+150	500
40	31.7	400	7. 76	31.7	-100	7. 76	+150	500
50	31.7	384	7. 67	31.7	-114	7. 67	+135	498
60	31.3	382	7. 3	31.5	-116	7. 3	+133	498
70	31.3	383	7. 31	31.3	-114	7. 32	+134	497
80	31.4	394	7. 19	31.4	-107	7. 25	+144	501
90	31.4	407	7. 12	31.4	-89	7. 13	+159	496
100	31.5	444	6. 98	31.5	-51	7	+196	495

110	31.6	477	6.85	31.5	-18	6.87	+230	495
120	31.5	529	6. 7	31.5	+25	6.72	+277	504
125	31.5	559	6.61	31.5	+60	6.62	+310	499
130	31.4	603	6.46	31.4	+106	6.48	+355	497

备注

- 1) 发射频偏是相对于当前频道对应频点的偏移,比如 channel = 37 时候,频点在 2402MHz,发送常 1 时候频谱仪测得频点在 2402.397MHz,则发射频偏在 397KHz。
- 2) 时钟偏差由发射频偏计算得来。标准的时钟应该是常 1 时发射频偏+250KHz,即调制频点应为 2402.25MHz;发射常 0 时,发射频偏相对 2402MHz 频偏为-250KHz,即调制频点应为 2401.75MHz。上表中时钟偏差=发射频偏与±250KHz 的差值。理论上正负偏差应该对称,这里取均值,实际上测试结果表明,中心频点也随着温度有偏移,在温度 > 90℃比较明显。
 - 3) 结果表明,在 > 90℃时候,温度对时钟偏差的影响显著变大,随温度升高而增大。 电流对温度不敏感。功率随着温度增大呈现下降趋势。
- 4) 由配置为常 0 和常 1 时的频点差可以得到,发射频差在 495-506 kHz 之间,对应调制指数为 0.495-0.506。

二、接收测试

测试 37 频道 (频点 2402MHZ) 时,数据如下;

温度(℃)	电流 (mA)	接收灵敏度 (dBm)	备注	
25	23.9	-88. 1		
30	24.0	-87.8		
40	24.4	-88		
50	24. 1	-86. 7		
60	23.9	-86.6		
70	23.9	-85. 7		
80	24. 2	-87. 9		
90	24. 1	-86.8		
100	24.3	-85. 7		
110	24.6	-85. 4		
120	24. 4	-84.8		
130	24. 4	-79. 5		

备注

- 1) 接收测试时,在常温下测试板上晶振有+150kHZ 偏差,参与1发射信号质量测试,相对晶振无频率偏差时,接收灵敏度会差 0.5-0.7dB。
- 2) 相对室温下,120℃时的接收灵敏度恶化约 3dB,与高温导致的晶振时钟偏差产生的 频率偏移和 Noise Figure 增大有关。

- 3) 灵敏度测试时,未加屏蔽,实验室内其他设备发出的蓝牙和 wifi 信号干扰较大。
- 4) 结果表明, 芯片在 130℃时候性能开始显著变差。温度对接收电流的影响很小。
- 5) 由于高温测试环境下存在较大干扰信号,测得的接收灵敏度非最优性能。可参考在该频道下测得的常温下的接收灵敏度(-94.5dBm),由上表中测得的不同温度下的接收灵敏度间的功率差值,可近似推算无干扰时,对应的各温度下的接收灵敏度。
- 6) 在实验室进行高温测试时,高温测试环境如下:高温测试时使用的高温电加热箱无信号屏蔽功能,且空间存在功率较大的 2.4G 信号(主要为蓝牙和 wifi 信号)干扰,对接收灵敏度测试产生较大影响,使得测试得到的灵敏度较实际性能恶化较大;