Université de Picardie Jules Verne

Faculté de Mathématiques et d'Informatique. Année 2024-2025.

Master de Mathématiques : M1-Analyse Fonctionnelle

TD2

Exercice 1

On considère une fonction f de classe C^{∞} sur [a,b] satisfaisant la propriété suivante : pour tout $x_0 \in]a,b[$, il existe $\epsilon>0$ tel que

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad \forall x \in] - \epsilon + x_0, x_0 + \epsilon[.$$

On suppose que pour tout $x \in [a, b]$, il existe un entier n tel que $f^{(n)}(x) = 0$. On considère la suite de sous-ensembles de \mathbb{R}

$$F_n = \{x \in [a, b], f^{(n)}(x) = 0\}.$$

- 1. Montrer que F_n est fermé, et qu'il existe $n_0 \in \mathbb{N}$ tel que F_{n_0} soit d'intérieur non vide.
- 2. En déduire que f est un polynôme sur un intervalle $J \subset [a, b]$.
- 3. Conclure.

Exercice 2

Pour $n \in \mathbb{N}$, on considère l'application ϕ_n définie sur c_{00} par

$$\phi_n(u) = \sum_{k=0}^n k u_k.$$

- 1. Montrer que ϕ_n est une forme linéaire continue sur $(c_{00}, \|.\|_{\infty})$.
- 2. Calculer la norme de ϕ_n .
- 3. Montrer que (ϕ_n) converge vers une application linéaire non continue.
- 4. Qu'en concluez-vous?

Exercice 3

On considère un réel p > 1. On note par p' l'exposant conjugué de p. Dans cet exercice, on considère une suite (x_n) telle que la série de terme général

 x_ny_n converge pour tout $y=(y_n)\in l^p$. Le but de l'exercice est de montrer que $x\in l^{p'}$.

Soit $N \in \mathbb{N}$. On considère l'application linéaire T_N définie sur l^p par

$$T_N(y) = \sum_{n=0}^{N} x_n y_n.$$

1. Montrer que ${\cal T}_N$ est une forme linéaire continue sur l^p et que

$$||T_N||_{(l^p)'} = (\sum_{n=0}^N |x_n|^{p'})^{\frac{1}{p'}}.$$

- 2. En déduire que $x \in l^{p'}$.
- 3. Étudier le cas p = 1.

Exercice 4 (d'après partiel 2020)

Soit E un espace de Banach et T une application linéaire continue définie sur E à valeurs dans E. On désigne par T^n la composée $ToT \cdots oT$ (à n reprises).

On suppose que pour tout $x \in E$, il existe un entier n tel que $T^n(x) = 0$. Démontrer qu'il existe $n \in \mathbb{N}^*$ tel que

$$T^n = 0.$$