CSC236H

Introduction to the Theory of Computation

Fall 2019 - Week 4

Bahar Aameri

Language Recognition

Language Recognition Problem:

• Given language L and string s, does s belong to L?

 $\label{thm:many-problems} \mbox{Many problems can be reduced to a recognition problem about formal languages.}$

Examples:

- Syntax Checking for Mathematical Formulas and Parsing.
- Lexical Analysis in Program Compilation.
- Pattern Recognition.

Language Recognition Problem – An analogy

Bird Recognition: Is the given object, **X**, a bird?

Language Recognition – Example

Let $L=\{s\in\{b,c,d\}^*:s \text{ includes at least one }d\}.$

Among the following strings, determine those that are members of ${\it L.}\,$

Deterministic Finite State Automata (DFA)

- Very informally, a Deterministic Finite State Automaton (DFSA or DFA) is a mathematical model of a machine which takes an input string x, and accepts or rejects it.
- · A DFA consists of
 - a set of states;
 - a set of rules (called transition rules) for transition between states based on the input.
 - A designated initial state.
 - A set of designated accepting states.

A language is regular iff a Finite State Automata (FSA) can be used to recognize its strings.

Deterministic Finite State Automata (DFA)

- A DFA is started in its initial state;
- Reads a string one letter at a time, from left to right.
- Depending on the present state of the DFA and the symbol it read, the DFA enters a
 new state.
- The DFA stops when it has processed the entire input string in this manner:
 When stops, if it is in an accepting state, it accepts the input;
 otherwise, it rejects the input.

DFA's - Example

Let $L = \{0s : s \in \{0, 1\}^*\}.$

Give a DFA which only accepts strings in L.

$$D=\langle Q, Z, S, s, F \rangle$$
 $Z=\{0,1\}$ $S=9$

$$2 = \{0,1\}$$
 $5 = \{0,1\}$
 $F = \{0,1\}$

$$8(9_{0},0)=9_{1}$$
 $8(9_{1},1)=9_{1}$
 $8(9_{0},0)=9_{1}$ $8^{*}(9_{0},\omega)=9_{0}$ iff $\omega=e$ not on lection e
 $8(9_{0},0)=9_{1}$ $8^{*}(9_{0},\omega)=9_{0}$ iff $\omega=e$ not on lection e
 $8(9_{0},0)=9_{1}$ e
 $8(9_{0},0)=9_{1}$ iff $\omega=e$ not on lection e
 $8^{*}(9_{0},\omega)=9_{0}$ iff $\omega=e$
 $8^{*}(9_{0},\omega)=9_{0}$ iff $\omega=e$

DFA's - Formal Definition

A Deterministic Finite State Automaton (DFA) \mathcal{D} is a quintuple $\mathcal{D} = \langle Q, \Sigma, \delta, s, F \rangle$ where:

- Q is the set of states in D;
- Σ is the **alphabet** of symbols used by \mathcal{D} ;
- $\delta: Q \times \Sigma \to Q$ is the transition function;
- $s \in Q$ is the **initial state** of \mathcal{D} ;
- $F \subseteq Q$ is the set of **accepting states** of \mathcal{D} .

Important Properties of DFA's

- In a DFA, at a particular state, there is exactly one transition rule for each symbol in the alphabet.
- Dead states are usually not included in the description of the DFA's; if there's no transition rule (arrow) for a letter at a state, by convention it's assumed that it take the DFA to a dead state.
- Inputs to DFAs can be of any length.
- DFA's cannot go back and reread previous letters.
- DFA's have a finite amount of memory, since they have a finite number of states.

DFA's – Example

Let $L = \{0s1 : s \in \{0, 1\}^*\}.$

Give a DFA which **only accepts** strings in L.

Present your DFA both by a drawing and by using formal notation,

 $Symbolic D = \langle Q, \Sigma, 8, 9, F \rangle$ rotation: $\sum_{i=1}^{n} \{0, 1\}$ $Q = \{9, 9, 9, 9, 2\}$ $F = \{9, 2\}$

WZE

 $S^{+}(9_0, \omega) = 9_2$ iff $\omega = 0.051$ where $S \in \{0, 1\}^{+}$ CSC236H | University of Toronto

13

DFA's - Extended Transition Function

&(9,c)

- Transition Function: Takes a state q and a letter c.

 Denotes the state that \mathcal{D} is taken to when \mathcal{D} is at q and reads c
- Extended Transition Function: Takes a state q and a string w. Denotes the state that \mathcal{D} is taken to when \mathcal{D} is at q and reads w.

DFA's - Extended Transition Function

Let Σ^* be the smallest set such that:

- $\epsilon \in \Sigma^*$. B. k.
- If $w \in \Sigma^*$ and $s \in \Sigma$ then $ws \in \Sigma^*$.

Let $\delta: Q \times \Sigma \to Q$ be the transition function of a DFA \mathcal{D} .

The extended transition function of the DFA is the function

$$\delta^*:Q\times\Sigma^*\to Q$$

defined recursively:

- $\delta^*(q,\epsilon) = q$. β .
- For some $w \in \Sigma^*$ and $s \in \Sigma$,

$$\delta^*(q, ws) = \delta(\delta^*(q, w), s).$$

Extended Transition Function – Example

Let
$$L = \{0s1: s \in \{0,1\}^*\}.$$

Give a DFA which **only accepts** strings in ${\cal L}.$

$$\omega_{1} = 0.01, \quad \mathcal{S}^{*}(q_{0}, \omega_{1})?$$

DFA's – Language Recognition

- If $\delta^*(q,w)=q'$, we say that w takes the automaton $\mathcal D$ from q to q'.
- A string $w \in \Sigma^*$ is accepted by \mathcal{D} , if and only if w takes the automaton from the initial state q_0 to an accepting state.

$$\delta^*(q_0, w) \in F.$$

• The <u>language accepted (or recognised)</u> by a DFA \mathcal{D} , denoted by $\mathcal{L}(\mathcal{D})$, is the set of all strings accepted by \mathcal{D} .

$$\mathcal{L}(\mathcal{D}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

State Invariants

• An invariant for q is a statement that **characterizes** all the strings that take the DFA from the initial state to q.

Formally, an invariant for a state q is a predicate I over the domain Σ^* such that for every string an C Σ^*

- The state invariants for a DFA should be mutually exclusive.
 No string should satisfy two different state invariants.
- The state invariants for a DFA should be **exhaustive**. \not **E** Every string in Σ^* , including ϵ , should satisfy one of the state invariants.

DFA's – Example

Describe the language that the following DFA accepts

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w$$

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w = q_0$$

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w \text{ has even number of 1's, we for 1'f}$$

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w \text{ has odd number of 1's, we for 1'f}$$

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w \text{ has odd number of 1's, we for 1'f}$$

$$S^*(q_0, w) = q_0 \quad \text{iff} \quad w \text{ has odd number of 1's, we for 1'f}$$

$$L(D) = \{\omega \in \{0,1\}^* \mid \omega \text{ has odd number of 1's}\}$$

 $\omega \in L(D) \text{ iff } S^*(2,\omega) \in F$

Designing DFA's

- Identify required states (State Invariants).
- For each state, determine how each input symbol changes the state.
- The transition rules must preserve the state invariants

• Example: $L = \{w \in \{0,1\}^* : w \text{ has even number of 0's, even number of 1's}\}.$ $\mathcal{E}^*(\mathbf{g}_0,\omega) = \mathbf{g}_0 \quad \text{iff} \quad \text{whas even number of 0's, even}$ number of l'snumber of 1's 8*(9. ω)=9, eff ω 620.13* has odd o's and $S^*(90. \omega) = 9r$ iff $w \in \{0.1\}^*$ has even o's and odd 1's

8* (90, ω)=9; iff ω6 (0.13* has odd o's and odd 1's

CSC236H | University of Toronto