Poisson_Distribution

December 11, 2020

There are three random variables that can be used to describe the Poisson process.

 X_i - denotes the inter-arrival time, time between the $(i-1)^{st}$ and i^{th} arrival

 T_n - denotes the time of the n^{th} arrival

The above two random variables are associated with each other as follows:

$$T_n = \sum_{i=1}^n X_i, \ n \in \mathbb{N}$$

(*T* is the partical sum process associated with *X*)

$$X_n = T_n - Tn - 1, \ n \in \mathbb{N}_+$$

 N_t - denote the number of arrivals in (0, t] for $t \in [0, \inf]$, it is the counting process. The counting process N and the arrival time process T are inverses of one another

$$T_n = \min\{t \ge 0 : N_t = n\}, \ n \in \mathbb{N}$$

 $N_t = \max\{n \in \mathbb{N} : T_n \le t\}, \ t \in [0, \inf)$

Running an experiment where events occur according to an underlying uniformly and identically distributied random number, with probability p.

Created file 'C:\Users\nithin\Documents\GitHub\energy-height-conversion\Tools\Routines\FHI\coinflip.m'.

Defining r as the success rate, p as the probability of success per trial, nTrial as the number of trials, maxt as the maximum time of the simulation, repeat or nExp as the number of re-runs to increase the statistics.

Generate the random number N_t , number of arrivals in time $\max(t)$ and plot the probability density function of N_t , which is a function of the number of successes n within $\max(t)$

mean of inter arrival times: 9.765

1/r = 10

median of inter arrival times: 6.7686