Theorems

We say that a function f approaches the **limit** L near a if, for every $\epsilon > 0$ there exists $\delta > 0$ such that for all

$$0 < |x - a| < \delta$$

implies

$$|f(x) - L| < \epsilon$$

And we say that a function is **continuous** at a if

$$\lim_{x \to a} f(x) = f(a)$$

preliminary theorem

Suppose f is continuous at a and that f(a) > 0. Then f(x) > 0 for all x in some interval containing a. More precisely, there is a number $\delta > 0$ such that f(x) > 0 for all x satisfying $|x - a| < \delta$, that is, all x in $[a - \delta, a + \delta]$.

proof

Since f is continuous, for every $\epsilon > 0$ there is a $\delta > 0$ such that for all x satisfying $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

$$-\epsilon < f(x) - f(a) < \epsilon$$

This must be true for $\epsilon = f(a)$ (since f(a) > 0). Hence

$$-f(a) < f(x) - f(a) < f(a)$$

SO

$$f(x) > 0$$

1 Bolzano's Theorem

theorem

If f is continuous on [a, b] and f(a) < 0 < f(b) then there is some x in [a, b] such that f(x) = 0.

Spivak

Recall the completeness axiom in this formulation: if A is a set of real numbers, $A \neq \emptyset$, and A is bounded above, then A has a *least upper bound*.

Define $A = \{ x : a \le x \le b \text{ and } f \text{ is negative on } [a, x] \}.$

(This definition of A will exclude points like x' where f(x') < 0, but not every point in [a, x'] is < 0. In effect, we are focusing on the first time f(x) crosses zero. We prove there is at least one such x).

Clearly, $a \in A$ since f(a) < 0, so $A \neq \emptyset$.

Since f is continuous, points x close to a also have the property that f(x) < 0.

Similarly $b \notin A$ and points near b have the property that f(x) > 0 and so these points are also not in A. Hence b is certainly an upper bound for A.

Therefore, by the completeness axiom, A has a least upper bound. Let us call it α .

We claim that $f(\alpha) = 0$. The proof is by contradiction.

proof

 \circ Suppose $f(\alpha) < 0$

If $f(\alpha) < 0$ then nearby points also have this property. In particular we can find δ such that if x is in $[\alpha, \alpha + \delta]$, f(x) < 0. But this contradicts the fact that α is an upper bound for A, since there would be points $x > \alpha$ that are in A.

 \circ Suppose $f(\alpha) > 0$

If $f(\alpha) > 0$ then points in the neighborhood of x also have this property.

In particular we can find δ such that if x is in $[\alpha - \delta, \alpha]$, f(x) > 0.

But this contradicts the fact that α is the least upper bound for A, since there would be points $x < \alpha$ that are not in A and so also upper bounds.

I found another version of this proof with the same logic but with more δ and ϵ stuff.

proof

We look for the largest x on this interval such that $f(x) \leq 0$.

- \circ Let **S** be the set of all $x \in [a, b]$ such that $f(x) \leq 0$.
- $\circ \mathbf{S}$ is non-empty $(\mathbf{S} \neq \emptyset)$ since $a \in \mathbf{S}$.
- \circ Since f(b) > 0, $b \notin \mathbf{S}$, and since every x in the relevant interval is $\leq b$, b is larger than all members of \mathbf{S} , and so b is an upper bound of \mathbf{S} .

The completeness axiom says that every non-empty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .

- \circ Therefore, by the property of **completeness**, there exists a least upper bound or supremum of S.
- \circ Define c to be that supremum, the largest x in this interval with the property that $f(x) \leq 0$.
- \circ Since f(x) is continuous, $\lim_{x\to c} f(x) = f(c)$.

Exactly one of three things is true: f(c) > 0, f(c) < 0 or f(c) = 0.

We claim that f(c) = 0. The proof is by contradiction.

Suppose f(c) > 0.

- We define $\epsilon_1 = f(c)/2$. Then ϵ_1 is positive and $2\epsilon_1 = f(c) > 0$.
- \circ By the definition of continuity, there exists δ_1 , such that for all $0 < |x-c| < \delta_1$ it is true that

$$|f(x) - f(c)| < \epsilon_1$$

• Then, by a preliminary theorem from the section on the triangle inequality:

$$-\epsilon_1 < f(x) - f(c) < \epsilon_1$$
$$-\epsilon_1 < f(x) - 2\epsilon_1 < \epsilon_1$$
$$\epsilon_1 < f(x) < 3\epsilon_1$$

since $\epsilon_1 > 0$ this implies that f(x) > 0 everywhere in the interval $c - \delta_1 < x < c + \delta_1$.

 \circ It would appear that we have found a smaller upper bound for the set **S** in the interval $[c - \delta_1, c)$. But by assumption, c is a supremum or least upper bound, so this is a contradiction.

To summarize: by focusing on the least upper bound c of the set of all numbers x in [a, b] for which $f(x) \leq 0$, we conclude that f(c) > 0 is impossible.

Suppose f(c) < 0.

- We can define $\epsilon_2 = -f(c)/2$. Then $\epsilon_2 > 0$ and $-f(c) = 2\epsilon_2$.
- \circ By the definition of continuity, there exists δ_2 , such that for all $0 < |x-c| < \delta_2$ it is true that

$$|f(x) - f(c)| < \epsilon_2$$

o Then

$$-\epsilon_2 < f(x) - f(c) < \epsilon_2$$

We have $-f(c) = 2\epsilon_2$

$$-\epsilon_2 < f(x) + 2\epsilon_2 < \epsilon_2$$
$$-3\epsilon_2 < f(x) < -\epsilon_2$$

which implies that f(x) < 0 everywhere in the interval $c - \delta_2 < x < c + \delta_2$.

 \circ It would appear that we have found a value for x < 0 in the interval $[c, c + \delta_2)$. But c is a least upper bound for \mathbf{S} , there are not supposed to be any negative values of f(x) larger than c, so this is a contradiction.

We conclude that f(c) < 0 is impossible.

The last remaining possibility is that f(c) = 0.

There is one more issue. We assumed above that f(b) > 0 > f(a).

Suppose that f(b) < 0 and f(a) > 0. Define g(x) = -f(x). Note that g(x) is continuous on the same interval, and repeat the argument. The conclusion does not depend on this assumption.

This completes the proof of Bolzano's Theorem.

2 Existence of the square root of 2

The above proof is basically the same as a proof that $\sqrt{2}$ exists (for example).

We find $\sqrt{2}$ as the least upper bound of the set

$$\mathbf{A} = \{ a \in \mathbb{R} \mid a^2 < 2 \}$$

We know that **A** is bounded above (certainly, by 2), and so it has a least upper bound b by the completeness axiom.

We claim that $b^2 = 2$

We will prove this by showing that assuming that $b^2 < 2$ or $b^2 > 2$ both lead to contradictions.

• Suppose that $b^2 > 2$.

Consider a number just a bit smaller than b, namely b-1/n. Then we can always find n so that $(b-1/n)^2 > 2$. Multiplying out:

$$(b-\frac{1}{n})^2 = b^2 - \frac{2b}{n} + \frac{1}{n^2} > b^2 - 2\frac{b}{n}$$

We show that we can find n such that

$$b^{2} - 2\frac{b}{n} > 2$$

$$b^{2} - 2 > 2\frac{b}{n}$$

$$\frac{b^{2} - 2}{2b} > \frac{1}{n}$$

We can always find such an n, by the Archimedean property.

Since $(b-1/n)^2 > 2$ it is an upper bound on **A** (numbers whose square is less than 2.

This contradicts the assumption that b is the least upper bound.

• Similarly, assume $b^2 < 2$.

In this case we will prove that b is not an upper bound at all for A.

We do this by showing that $(b+1/n)^2 < 2$ and so is $\in \mathbf{A}$ but $(b+1/n)^2 > b^2$. Thus it is an element in the set which is larger than the supposed upper bound.

We have

$$(b + \frac{1}{n})^2 = b^2 + \frac{2b}{n} + \frac{1}{n^2}$$

and we need

$$b^{2} + \frac{2b}{n} + \frac{1}{n^{2}} < 2$$

$$b^{2} - 2 < -\frac{2b}{n} - \frac{1}{n^{2}}$$

$$b^{2} - 2 > \frac{2b}{n} + \frac{1}{n^{2}}$$

We can always find such an n. As n gets large, the second term will get small much faster than the first. We need to find n large enough that

$$\frac{b^2 - 2}{2b} > \frac{1}{n}$$

and we already did, above.

Now we have that b is not an upper bound on the set A (numbers whose square is less than 2) since $(b+1/n)^2 < 2$.

Since neither of $b^2 > 2$ and $b^2 < 2$ is true, we conclude that $b^2 = 2$.