Niveau: Première année de PCSI

COLLE 7 = FONCTIONS CONTINUES

Connaître son cours:

- 1. Soit f une fonction continue sur un intervalle I. Montrer que : si f est injective, alors f est strictement monotone.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour chaque $x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.
- 3. Soit $f:[0,1] \to [0,1]$ une fonction continue. Démontrer que f admet toujours au moins un point fixe.

Fonctions continues:

Exercice 1. Théorème des cordes universelles

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une application continue telle que f(0) = f(1) et $n \in \mathbb{N}^*$. Définissons

$$g: \left\{ \begin{array}{ccc} \left[0, 1 - \frac{1}{n}\right] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f(x + \frac{1}{n}) - f(x) \end{array} \right.$$

- 1. Calculer $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)$.
- 2. En déduire qu'il existe $\alpha_n \in \left[0, 1 \frac{1}{n}\right]$ tel que $f(\alpha_n + \frac{1}{n}) = f(\alpha_n)$.
- 3. Expliquer à l'aider d'un schéma ce qui est décrit par ce théorème.

Exercice 2.

Démontrer que si une fonction $f: \mathbb{R} \to \mathbb{R}$ est continue en x_0 , alors |f| est continue en x_0 . Démontrer que la réciproque est fausse.

Exercice 3.

Définition 1.

 \triangleright Un réel $c \in [a, b]$ est un point fixe de l'application $f : [a, b] \rightarrow [a, b]$ si f(c) = c.

ightharpoonup Un réel $c \in [a,b]$ est un 2-cycle de l'application $f:[a,b] \to [a,b]$ si $f(c) \neq c$ et $f \circ f(c) = c$.

On note f^n la composée $n^{\text{ième}}$ de l'application $f:[a,b]\to I$; par exemple, $f^0=\text{Id}$, $f^1=f, f^2=f\circ f, f^3=f\circ f\circ f\dots$

- 1. Montrer que toute application continue $f:[a,b] \to [a,b]$ admet un point fixe.
- 2. Montrer que tout point fixe d'une application $f:[a,b] \to [a,b]$ est un point fixe de f^n pour n > 0.
- 3. Donner un exemple d'application continue $f:[a,b] \to [a,b]$ qui admet un 2-cycle.
- 4. Donner un exemple d'application continue $f:[a,b] \to [a,b]$ qui n'admet pas de 2-cycle.
- 5. Déterminer, selon la valeur de $\lambda \in]0,4]$, les points fixes et les 2-cycles de l'application

Niveau: Première année de PCSI

Exercice 4.

Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues. Montrer que $\inf(f, g)$ et $\sup(f, g)$ sont continues de deux manières différentes.

Exercice 5.

Soit $F: \mathbb{R}^+ \to \mathbb{R}$ une application uniformément continue sur \mathbb{R}^+ .

$$\forall \epsilon > 0, \ \exists \alpha > 0, \ \forall (x,y) \in (\mathbb{R}^+)^2, \ |x-y| \le \alpha \implies |f(x) - f(y)| \le \epsilon$$

On se propose de démontrer qu'il existe deux réels a et b tels que, pour tout $x \in [0, +\infty[$, on ait $F(x) \le ax + b$. Pour cela, on commence par fixer $\eta_1 > 0$ tel que

$$\forall (x,y) \in ([0,+\infty[)^2, (|x-y| < \eta_1 \Longrightarrow |F(x) - F(y)| \le 1).$$

On fixe également $x_0 \in [0, +\infty[$.

- 1. Soit n_0 le plus petit entier tel que $\frac{x_0}{n_0} \le \eta_1$; justifier l'existence de n_0 et démontrer que $n_0 \le \frac{x_0}{\eta_1} + 1$.
- 2. Montrer que

$$|F(x_0) - F(0)| \le \sum_{k=0}^{n_0-1} \left| F\left(\frac{(k+1)x_0}{n_0}\right) - F\left(\frac{kx_0}{n_0}\right) \right|.$$

- 3. Conclure.
- 4. La fonction exponentielle est-elle uniformément continue sur \mathbb{R}^+ ?

Exercice 6.

Soit $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.