# Specifying Constraints in Supertype/Subtype Relationships

This presentation explores how to effectively specify constraints in supertype/subtype relationships within the Entity-Relationship (E-R) model. These constraints are crucial for maintaining data integrity and accurately reflecting real-world business rules. Let's dive in.



## Supertype/Subtype Example: Employee

#### **Employee Supertype**

Consider an `Employee` supertype with attributes like employeeID, name, and address. This represents the general concept of an employee.

#### Salaried vs. Hourly Subtypes

Specialized subtypes, such as `Salaried\_Employee` (salary) and `Hourly\_Employee` (hourly\_rate), inherit these attributes but add their own.



## **Constraint Types: Completeness Constraint**

#### **Total Specialization**

Specifies that every supertype instance **must** be a member of at least one subtype.

#### **Partial Specialization**

Specifies that a supertype instance **can** exist without being a member of any subtype.

## **Total Specialization Example**

1 Car or Truck
2 Vehicle

A `Vehicle` supertype must be either a `Car` or a `Truck`. No vehicle can exist as \*only\* a generic `Vehicle`.

## Partial Specialization Example

1

**Employee** 

2

**Customer** 

3

Person

A `Person` supertype can be an `Employee`, a `Customer`, or neither. A person can exist without being associated with either subtype.



## Constraint Types: Disjointness Constraint

#### **Disjoint Rule**

A supertype instance can belong to **only one** subtype.

#### **Overlap Rule**

A supertype instance can belong to **multiple** subtypes simultaneously.

#### Disjoinens of Disjoprojung



#### An Occolping two Constraint



## **Disjoint Rule Example**



A `Patient` supertype can be either an `Inpatient` OR an `Outpatient`, but not both at the same time. It is disjoint.



## **Overlap Rule Example**



A `Student` supertype can be both an `Athlete` AND a `Scholar`. There is overlap because students can participate in both athletics and academics.

Made with **GAMMA** 

### **Combining Constraints: Example**



An `Account` (Supertype) uses Total Specialization for (`Checking`, `Savings`) and a Disjoint Constraint. Accounts must be one or the other, but not both.

## **Conclusion: Importance of Constraints**



**Enforce Rules** 



**Data Quality** 



Design

Constraints are essential. They enforce business rules, improve data quality, and help make better decisions during database design. They make sure data stays consistent and accurate.

