파형 변환 회로도

1. 사각파 변환

 \pm 15 V 직류 전압원 V_1,V_2 가 $U_1 \sim U_5$ 에 전압을 공급한다. U_1 의 반전 입력 단자를 접지와 연결하여 comparator 기능을 수행한다. 이에 따라 \pm 15 V(saturation voltage)의 구형파를 출력한다.

$$v_{u1,o} = +15 V(VCC)$$
 $(v_{u1,o} > 0 V)$
 $v_{u1,o} = -15 V(VEE)$ $(v_{u1,o} < 0 V)$

2. 삼각파 변환

U2 반전 마디에서 KCL을 적용하면 다음과 같은 결과를 기대할 수 있다.

$$\frac{v_{u3,o}}{R_2} = -C_1 \frac{dv_{u2,o}}{dt}$$

$$\therefore \frac{dv_{u2,o}}{dt} = -\frac{v_{u1,o}}{R_2 C_1}$$

 $v_{u2,o}$ 의 값이 $\pm rac{v_{u1,o}}{R_2C_1}$ 의 기울기를 번갈아 가는 일차식으로 나온다.(삼각파)

U1이 saturation voltage를 출력하는 사이 구간에서 선형성을 띠고, 그 때 $v_{u1,+}=0\ V$.

전압 분배를 통해 $v_{u1,o}=\frac{(v_{u1,o}-v_{u2,o})R_1}{R_1+Rv_3}$ 이므로, $v_{u2,o}=-\frac{Rv_3}{R_1}v_{u1,o}$ 의 진폭을 가짐을 알 수 있다. (삼각파 그림 첨부)

주기 T에 대해,
$$\frac{\frac{2Rv_3}{R_1}v_{sat}}{\frac{T}{2}} = \frac{v_{sat}}{R_2C_1}$$
 성립. $\therefore f = \frac{1}{T} = \frac{R_1}{4R_2C_1Rv_3}$

따라서 주파수는 가변저항 Rv_3 에 반비례, 진폭은 비례한다.

3. 사인파 변환

3번째 회로 입력인 $v_{u2,o} = at$ (선형)이라고 가정.

U3의 반전 입력 마디에서 KCL을 적용하면 다음과 같은 결과를 기대할 수 있다.

$$C_2 \frac{dv_{u3,o}}{dt} + \frac{1}{R_6} v_{u3,o} = -\frac{at}{R_3}$$

$$v_{u3,o} = ke^{-\frac{1}{C_2R_6}t} + At + B$$

$$A = -\frac{R_6}{R_3}a , B = \frac{C_2R_6^2}{R_3}a , k = -\frac{C_2R_6^2}{R_3}a$$

$$\therefore v_{u3,o} = -\frac{C_2R_6^2}{R_3}ae^{-\frac{1}{C_2R_6}t} - \frac{R_6}{R_3}at + \frac{C_2R_6^2}{R_3}a \quad (v_{u2,o} = at) \quad (a > 0)$$

 $v_{u2,o} = -at$ 인 경우에는 위 $v_{u3,o}$ 에서 부호가 바뀌어서 출력된다.

시뮬레이션 결과

Pcb schematic

소자값

저항	설계값(kΩ)	측정값(kΩ)	가변저항	설계값(kΩ)	측정값(최대, kΩ))
R1	20	20.015	RV1	10	10.198
R2	10	9.9482	RV2	20	19.158
R3	4.7	4.6741	RV3	10	10.507
R4	3.3	3.2729	RV4	20	19.572
R5	3.3	3.2708	축전기	설계값(nF)	측정값(nF)
R6	10	9.9752	C1	100	102.6
R7	3.3	3.2753	C2	100	96.13
R8	3.3	3.2748	C3	100	96.17
R9	10	9.9703	C4	100	96.75
R10	4.7	4.6706			
R11	20	19.969			
R12	3.3	3.2716			
R13	10	9.9588			
R14	3.3	3.2726			

Matlab을 통한 분석

Code

```
1
                        % Parameters
    2
                        c = 2350; % constant c value
    3
                        x = linspace(300, 700, 100); % x values (avoid x=0 to prevent division by zero)
    4
    5
                       % Calculate y values
   6
                       y = c ./ x;
    7
    8
                       % Plot the curve
   9
                        figure;
  10
                        plot(x, y, 'b-', 'LineWidth', 2); % Blue line
  11
                        hold on;
  12
                        % Define red points on the curve
  13
  14
                        red_x = [400, 450, 500, 550, 600]; % x-coordinates of red points
  15
                        red_y = c ./ red_x; % y-coordinates of red points (on the curve)
  16
  17
                       % Define green points at the same x but given y values
  18
                        green_y = [4.96, 4.16, 3.56, 3.08, 2.72]; % y-coordinates of green points (off the curve)
  19
  20
                        % Plot the points
                        plot(red_x, red_y, 'ro', 'MarkerSize', 10, 'LineWidth', 2); % Red points on the curve
  21
                        plot(red_x, green_y, 'go', 'MarkerSize', 10, 'LineWidth', 2); % Green points
  22
  23
                        % Calculate and display distances
  24
                        for i = 1:length(red_x)
  25
             口
                                 % Distance between red and green points
  26
  27
                                 distance = abs(red_y(i) - green_y(i));
  28
                                 % Midpoint for distance label
  29
                                 mid_x = red_x(i); % x-coordinate is the same
  30
  31
                                 mid_y = (red_y(i) + green_y(i)) / 2; % Midpoint between red_y and green_y
  32
  33
                                 % Display distance on the figure
                                  text(mid_x, mid_y, sprintf('%.2f', distance), ...
  34
  35
                                           'Color', 'magenta', 'FontSize', 10, 'HorizontalAlignment', 'center');
  36
 37
                                 % Draw a vertical line connecting the red and green points
37
                           % Draw a vertical line connecting the red and green points
                           plot([red_x(i), red_x(i)], [red_y(i), green_y(i)], `k--', `LineWidth', 1.5); \% \ Black \ dashed \ line \ and \ line \ black \ dashed \ line \ line \ black \ dashed \ line 
38
39
40
                   \% Add labels, title, and legend
41
                   xlabel('x (주파수 [Hz])', 'FontSize', 12); % Updated x-axis label ylabel('y (전압 [V])', 'FontSize', 12); % Updated y-axis label
42
43
                   %title('Graph of y = c / x with Distances Between Points', 'FontSize', 14);
legend('이론 그래프', 'Red Points (이론값)', 'Green Points (측정값)', 'Location', 'best');
44
45
46
47
                   % Add grid for better visualization
48
                   grid on;
                   hold off;
49
50
```


측정 결과 파형별로 각각 400, 450, 500, 550, 600 Hz - High value 진폭 기준

2. 사인파

