CC7711

Inteligência Artificial e Robótica

Prof. Dr. Flavio Tonidandel

Representação do Conhecimento Lógica Proposicional Logica de Primeira Ordem (LPO)

Representação do Conhecimento

- Como representar o conhecimento ?
 - Humanos representam conhecimento através da fala e da escrita.
 - Como podemos transferir esse conhecimento para um sistema inteligente (computador, robô, etc) ?
- EXEMPLO:
 - Como fazer o computador entender:
 - Não se pode ter 2 peças de xadrez no mesmo lugar
 - Um carro sem gasolina não anda
- A representação do conhecimento está em diversas áreas da computação:
 - Engenharia de Software (UML)
 - Banco de Dados (organização das tabelas)

Representação do Conhecimento

- Precisamos usar Linguagens formais
 - Regras de formação precisamente definidas
 - Um único sentido (sem ambigüidades)
- Lógica proposicional
 - Conceitos básicos: sintaxe, semântica
 - Gramática, inferência, equivalência, validade, satisfabilidade
 - Padrões de raciocínio

Lógica Proposicional - (LP)

Alfabeto:

- Conjunto finito de símbolos proposicionais
 - P = {p0, p1, p2,..., pn}
 - Também chamados de literais
- Conectivo unário: (negação)
- Conectivos Binários: ∧ (AND); ∨ (OR); → (implicação)
- Elementos de pontuação: () parênteses

- Podemos expressar conhecimento por fórmulas:
- Não podemos ter uma criança aposentada:

¬ (criança ∧ aposentado)

Semântica

Expressamos da LP através de Tabelas-Verdade

Р	Q	$\neg P$	$P \vee Q$	$P \wedge Q$	$P \rightarrow Q$
F	F	Т	F	F	Т
F	Т	Т	Т	F	Т
Т	F	F	Т	F	F
T	Т	F	Т	Т	Т

Na LP há apenas dois valores:

Verdadeiro (T) ou Falso (F)

Valoração de uma fórmula A

Fórmula:
$$A = (p \lor \neg q) \rightarrow (r \land \neg q)$$

- Temos uma valoração
 - V(p) = T
 - V(q) = T
 - V(r) = T
- $V(\neg q) = F$
- $V(p \lor \neg q) = T$
- $V(r \land \neg q) = F$
- $V(A) = V((p \lor \neg q) \rightarrow (r \land \neg q)) = F$

• Logo, V(A) = Falso

Satisfabilidade e Validade

- Dada uma fórmula A:
 - A é dita satisfazível se existir V(A) = T
 - A é dita insatisfazível se toda valoração V(A) = F
 - A é dita válida (ou tautologia), se toda valoração de A for verdadeira.
 - A é dita falsificável se existir uma valoração V(A) = F

Exemplo de tautologia (ou fórmula válida)

Р	Н	(P ∨ H)	((P ∨ H) ∧ ¬ H)	$((P \lor H) \land \neg H) \Rightarrow P$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	Т	Т
Т	Т	Т	F	Т

Asserções

Considerando a Tautologia anterior:

Asserção 1:

• $(P \vee H) \wedge \neg H \rightarrow P$

Asserção 2:

- Sabemos está ensolarado (P) ou está chovendo (H) em um dia (P \vee H) . Sabemos que hoje não está chuva (\neg H). Logo, hoje está ensolarado (\rightarrow P)
- Asserção 1 = Asserção 2 (a 1 descrita em LP e a 2 descrita em Português)

Consequência Lógica

Consequência Lógica:

 Dada duas sentenças A e B, se em todas as valorações em que A for verdadeira, B também o é, dizemos que B é consequência lógica de A:

Equivalência Lógica:

 Se todas as valorações V que satisfazem A também satisfazem B (A |= B) e vice-versa (B |= A), então:

$$A \equiv B$$

Equivalências Lógicas

$$\neg\neg p \equiv p$$
 (eliminação da dupla negação)
 $p \rightarrow q \equiv \neg p \lor q$
 $\neg (p \lor q) \equiv \neg p \land \neg q$ (lei de Morgan 1)
 $\neg (p \land q) \equiv \neg p \lor \neg q$ (lei de Morgan 2)

- Vamos definir um novo conectivo: ↔
- $(A \rightarrow B) \land (B \rightarrow A) \equiv A \leftrightarrow B$

Sistema Dedutivo

Em uma teoria lógica, devemos conseguir inferir novas fórmulas, com base em uma teoria (base de conhecimento) já conhecida.

Inferir uma fórmula A de uma teoria Γ (conjunto de fórmulas que formam a base de conhecimento) escrevemos:

 $\Gamma \vdash A$

 $\Gamma \vdash A$ é chamado de *sequente*

onde Γ é o antecedente (ou hipótese) e A é o consequente (ou conclusão)

Dedução de novas fórmulas

A dedução pode ser feita por:

- Axiomatização
- Regras de Inferência
- Obviamente, queremos inferir novas fórmulas que são consequências lógicas, ou seja:

Se deduzirmos
$$\Gamma \vdash A$$
, então $\Gamma \mid = A$

- Se o sistema de dedução inferir apenas fórmulas que são consequências lógicas, ele é dito correto
- ullet Ele será completo se conseguir inferir TODAS as consequências lógicas de Γ

Sistema Dedutivo da LP

Axiomas (alguns)

- $p \rightarrow (q \rightarrow p)$
- $(p \land q) \rightarrow q$, similar: $(p \land q) \rightarrow p$
- p \rightarrow (p \vee q), similar: q \rightarrow (p \vee q)
- $\neg\neg p \rightarrow p$
- $(p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))$

E uma regra de inferência

- Modus Ponens
- A partir de A→ B e A, infere-se B

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

Exemplos

- Dedução por axiomas
 - $(p \land q) \rightarrow q$
 - Se soubermos que hoje temos Sol e CéuClaro (p ∧ q), então sabemos que temos Sol q.
 - $(p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))$
 - Se chover, ficamos molhado. Se entrarmos na piscina, ficamos molhado. Logo, se chover ou entrarmos na piscina, ficaremos molhados. p=chover; r=molhado; q=entrarPiscina.
- pela Modus Ponens

Se entrar na piscina deixa molhado, e se estamos na piscina, logo estamos molhados.

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

E como fazemos para tornar tudo isso computacional?

EXEMPLO:

- Sócrates estaria disposto a visitar Platão (S), só se Platão estivesse disposto a visitá-lo (P); $(P \rightarrow S)$
- Platão não estaria disposto a visitar Sócrates, se Sócrates estivesse disposto a visitá-lo; (S $\rightarrow \neg P$)
- Platão até estaria disposto a visitar Sócrates, somente se Sócrates não estivesse disposto a visitá-lo. ($\neg S \rightarrow P$)
- Pergunta-se:
- Sócrates está disposto a visitar Platão ou não?
- i.e.: $(P \rightarrow S)$, $(S \rightarrow \neg P)$, $(\neg S \rightarrow P) \mid = S$??????

Resolução

- Método de inferência que permite encontrar a resposta para a pergunta:
 - $(P \rightarrow S)$, $(S \rightarrow \neg P)$, $(\neg S \rightarrow P) \mid = S$
- Este método utiliza apenas fórmulas no formato FNC Forma Normal Conjuntiva

Exemplo de aplicação da RESOLUÇÃO: Considere duas claúsulas verdadeiras $A \lor p$ e $\neg p \lor C$. Com a Resolução pode-se concluir portanto que $A \lor C$ Também é verdadeiro.

verdadeiro, então C deve ser

verdadeiro. Se p for falso,

então A deve ser verdadeiro.

Logo, Av C é verdadeiro.

$$\begin{array}{ccc} A \vee p & \neg p \vee C \\ & A \vee C \end{array}$$

Considera ainda a contração: $r \lor r \equiv r$

FNC – Forma Normal Conjuntiva (ou CNF em inglês)

É uma conjunção de disjunções:

• C₁ ∧ C₂ ∧ ... ∧ C_n

Onde cada Ci é uma claúsula formada por disjunção de formulas:

$$Ci = F_1 \vee F_2 \vee F_3 \vee ... \vee F_m$$

Exemplo:

$$(A \lor B \lor \neg C) \land (C \lor \neg B) \land (\neg A \lor C)$$

$$C_1 \land C_2 \land C_3$$

Criando fórmulas FNC

- Eliminar \leftrightarrow substituindo $\alpha \leftrightarrow \beta$ por $(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$
- Eliminar \rightarrow substituindo $\alpha \rightarrow \beta$ por $\neg \alpha \lor \beta$
- Eliminar dupla negação: ¬¬α ≡ α
- Aplicar de Morgan: $\neg(\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$, $\neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
- Distribuir ∨ sobre ∧ sempre que possível usando

- Exemplo:
- Sentença: $(P \rightarrow S) \land (S \rightarrow \neg P) \land (\neg S \rightarrow P)$
- FNC: $(\neg P \lor S) \land (\neg S \lor \neg P) \land (S \lor P)$

Algoritmo de Resolução

Idéia: resolver por contradição.

- Para mostrar que $\Gamma \models \alpha$, mostramos que $(\Gamma \land \neg \alpha)$ é não-satisfatível Algoritmo:
 - $(\Gamma \land \neg \alpha)$ é convertido em FNC
 - Aplicar regra de resolução às cláusulas resultantes, gerando novas cláusulas.
 - O processo continua até:
 - Não existir nenhuma nova cláusula que possa ser adicionada. Neste caso, α não é conseqüência lógica de Base de Conhecimento Γ
 - Uma aplicação de regra de resolução derivará cláusula **vazia** \square . Neste caso, Γ tem α como conseqüência lógica

Afinal, Sócrates está disposto a visitar Platão ou não?

•
$$(P \rightarrow S)$$
, $(S \rightarrow \neg P)$, $(\neg S \rightarrow P) \mid = S$

Provando por contradição:

•
$$(P \rightarrow S)$$
, $(S \rightarrow \neg P)$, $(\neg S \rightarrow P) \mid = \neg S$

•
$$(P \rightarrow S) \land (S \rightarrow \neg P) \land (\neg S \rightarrow P) \land \neg S$$

• FNC: $(\neg P \lor S) \land (\neg S \lor \neg P) \land (S \lor P) \land \neg S$

Sócrates está disposto a visitar Platão !!!!

Esquema Geral

Exercício 7.9 (livro)

- Se um unicórnio é mítico, então é imortal.
- Porém se ele não é mítico, então é um mamífero mortal.
- Se o unicórnio é imortal ou mamífero, então ele tem chifre.
- O unicórnio é mágico se tem chifre.
- Pergunta-se:
 - a) O unicórnio é mágico?
 - b) O unicórnio tem chifre?
 - c) O unicórnio é mítico?

Exercício: reduzindo a BC para FNC

- Se um unicórnio é mítico, então é imortal
- MITICO ⇒ ¬MORTAL
 - C1: ¬MITICO V ¬MORTAL

- Porém se ele não é mítico, então é um mamífero mortal.
- ¬MITICO ⇒ MAMÍFERO ∧ MORTAL
 - MITICO ∨ (MAMÍFERO ∧ MORTAL)
 - (MITICO ∨ MAMÍFERO) ∧ (MITICO ∨ MORTAL)
 - C2: MITICO V MAMÍFERO
 - C3: MITICO V MORTAL

Exercício: reduzindo a FNC

- Se o unicórnio é imortal ou mamífero, então ele tem chifre.
- ¬MORTAL ∨ MAMÍFERO ⇒ TEM_CHIFRE
 - ¬(¬MORTAL ∨ MAMÍFERO) ∨ TEM_CHIFRE
 - (MORTAL ∧ ¬MAMÍFERO) ∨ TEM_CHIFRE
 - (MORTAL ∨ TEM_CHIFRE) ∧ (¬MAMÍFERO ∨ TEM_CHIFRE)
 - C4: MORTAL V TEM_CHIFRE
 - C5: ¬MAMÍFERO V TEM CHIFRE
- O unicórnio é mágico se tem chifre.
- TEM_CHIFRE ⇒ MÁGICO
 - C6: ¬TEM_CHIFRE V MÁGICO

Claúsulas

- a) O unicórnio tem chifre?
 - C1: ¬MITICO V ¬MORTAL
 - C2: MITICO V MAMÍFERO
 - C3: MITICO V MORTAL
 - C4: MORTAL V TEM_CHIFRE
 - C5: ¬MAMÍFERO V TEM CHIFRE
 - C6: ¬TEM_CHIFRE V MÁGICO
 - incluir: C7: ¬TEM_CHIFRE
- C8 (C7+C5): ¬MAMÍFERO
- C9 (C7+C4): MORTAL
- C10 (C8+C2): MITICO
- C11 (C10+C1): ¬MORTAL
- C12 (C9+C11): □
- Logo, BC = TEM_CHIFRE

<u>¬TEM_CHIFRE</u> MORTAL ∨ <u>TEM_CHIFRE</u> MORTAL

¬MAMÍFERO MITICO ∨ MAMÍFERO
MITICO

MITICO ∨ ¬MORTAL

¬MORTAL

MORTAL ¬MORTAL

Exercício 7.9

- b) O unicórnio é mágico?
- Sim! A resolução fica para vocês fazerem em casa.
 - Dica: inferir ¬TEM_CHIFRE e siga o exemplo da aula
- c) O unicórnio é mítico?
- Não! A resolução fica como *homework*

Análise da Resolução

- Método importante de inferência
- É completo e correto.

Porém....

- Pode demorar muito tempo, pois tem que analisar conjunções de Cláusula por Cláusula e as combinações de seus resultados. É um processo não necessariamente polinomial (NP-Completo).
- Se associado a um método de busca, pode ser facilmente implementado em computador

Cláusulas de Horn

- Se conseguirmos escrever toda nossa BC (Base de Conhecimento) em termos de clausulas de Horn:
 - Não precisaremos mais da Resolução
 - Podemos inferir em um processo Polinomial !!!
- Uma clausula de Horn é uma disjunção de literais com no máximo um literal positivo (u):
- $\neg p \lor \neg q \lor \cdots \lor \neg t \lor u$ reescrita: $(p \land q \land \cdots \land t) \to u$
- Todo o processo se resume a verificar se os literais p, q, ...t são satisfeitos para satisfazer u. Aplicação direta da Modus Ponens!
- Detalhe importante: o u não pode ser negativado: ¬u
- PROLOG usa clausulas de Horn: u :- p, q, ... t.

Clausulas de Horn - Problema do Unicórnio

- Se um unicórnio é mítico, então é imortal.
 - Mitico → Imortal
- Porém se ele não é mítico, então é um mamífero mortal.
 - Not(Mitico) → Mortal
 - Not(Mitico) → Mamifero
 - Mamifero → mortal
- Se o unicórnio é imortal ou mamífero, então ele tem chifre.
 - Imortal → Chifre
 - Mamifero → Chifre
- O unicórnio é mágico se tem chifre.
 - Chifre → Magico
- Adicional:
 - Not(Mortal) → Imortal

Clausulas de Horn - Problema do Unicórnio

- Mitico → Imortal
- Not(Mitico) → Mortal
- Not(Mitico) → Mamifero
- Mamifero → mortal
- Imortal → Chifre
- Mamifero → Chifre
- Chifre → Magico
- Not(Mortal) → Imortal

• ? Chifre

Para Chifre ser verdade, então:

Imortal → Chifre

Mamifero → Chifre

Imortal ou Mamifero precisa ser verdade Para Mamifero ser verdade, Not(Mitico) precisa ser verdade. Não há nenhuma afirmação De que mítico é verdadeira. Logo, Not(Mitico) é TRUE.

Então, pela **Modus Ponens** $\underline{\alpha \Rightarrow \beta, \alpha}$

Not(Mitico) → Mamifero ; Not(Mitico)

Mamífero

Pela Modus Ponens:

Mamifero → Chifre ; Mamifero Chifre

Hipótese Mundo Fechado e Negation as Failure

QUADRO DE AVISOS

Neste semestre teremos as disciplinas:

CC7711 - Inteligência Artificial e Robótica

CC7261 - Sistemas Distribuídos

CC7411 - Trabalho de Final de Curso I

Negação por Falha (Negation as Failure)

Se não se pode provar que P é verdadeiro, então ele é falso

- Quantos disciplinas serão oferecidas ?
- MUNDO FECHADO: 3
 - Abordagem de um banco de dados
 - Negation as Failure
- MUNDO ABERTO: de 3 a infinito
 - Abordagem Lógica
 - Perceba que não há a negação das demais disciplinas

Referências desta Aula

- Russel & Norvig (Artificial Intelligence):
 - Capítulos 6 a 9
- Rezende, Solange (Sistemas Inteligentes):
 - Capítulos 2 e 3
- Silva, F. S., Finger, M.; Melo, Ana C.V. (Lógica p/ a Computação):
 - Capítulos 1, 2 e 3
- Alguns slides desta aula foram baseados nos slides:
- Paulo Eduardo Santos: "Fundamentos da Inteligência Artificial", FEI, 2005
- Alexandre da Silva Simões: "Agentes Lógicos Aula 7", UNESP, 2010
- Paulo Eduardo Santos: "Inferência em LPO", FEI, 2005
- Alexandre da Silva Simões: "Lógica de Primeira Ordem Aula 8", UNESP, 2010
- Alexandre da Silva Simões: "Programação em Lógica Aula 9", UNESP, 2010
- Salvatore J. Stolfo: Inference in first-order logic, Columbia University USA