US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

Inventor(s)

12386030

August 12, 2025

Ali; Murtaza et al.

Method and system for antenna array calibration for cross-coupling and gain/phase variations in radar systems

Abstract

A radar system with on-system calibration includes capabilities for radar detection and correction for system impairments to improve detection performance. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar system uses a series of calibration measurements of a known object to estimate the system impairments. A correction is then applied to the beamforming weights to mitigate the effect of these impairments on radar detection. The estimation and correction requires no external measurement equipment and can be computed on the radar system itself.

Inventors: Ali; Murtaza (Cedar Park, TX), Ertan; Ali Erdem (Austin, TX), Foltinek; Kevin B. (Austin, TX)

Applicant: UHNDER, INC. (Austin, TX)

Family ID: 1000008749855

Assignee: Robert Bosch GMBH (Gerlingen, DE)

Appl. No.: 18/630364

Filed: April 09, 2024

Prior Publication Data

Document IdentifierUS 20240272276 A1 **Publication Date**Aug. 15, 2024

Related U.S. Application Data

continuation parent-doc US 17147914 20210113 US 11953615 child-doc US 18630364 us-provisional-application US 62960220 20200113

Publication Classification

Int. Cl.: G01S7/35 (20060101); G01S7/02 (20060101); G01S7/28 (20060101); G01S7/32 (20060101); G01S7/40 (20060101); G01S13/34 (20060101); G01S13/36 (20060101); G01S13/42 (20060101); G01S13/58 (20060101); G01S13/87 (20060101); G01S13/931 (20200101); H01Q3/26 (20060101)

U.S. Cl.:

CPC **G01S7/352** (20130101); **G01S7/023** (20130101); **G01S7/4004** (20130101); **G01S13/34** (20130101); **G01S13/584** (20130101); **G01S13/588** (20130101); **G01S13/931** (20130101); **H01Q3/267** (20130101); G01S7/28 (20130101); G01S7/32 (20130101); G01S7/356 (20210501); G01S13/36 (20130101); G01S13/42 (20130101); G01S13/878 (20130101); G01S2013/93271 (20200101); G01S2013/93272 (20200101)

Field of Classification Search

CPC: G01S (7/352); G01S (7/023); G01S (7/4004); G01S (13/34); G01S (13/584); G01S (13/588); G01S (13/931); G01S (7/28); G01S (7/32); G01S (7/356); G01S (13/36); G01S (13/42); G01S (13/878); G01S (2013/93271); G01S (2013/93272); G01S (7/032); G01S (7/028); H01Q (3/267)

References Cited

U.S.	PATENT	DOCUMENTS

U.S. PATENT DOO	U.S. PATENT DOCUMENTS					
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC		
1882128	12/1931	Fearing	N/A	N/A		
3374478	12/1967	Blau	N/A	N/A		
3735398	12/1972	Ross	N/A	N/A		
3750169	12/1972	Strenglein	N/A	N/A		
3766554	12/1972	Tresselt	N/A	N/A		
3896434	12/1974	Sirven	N/A	N/A		
3932871	12/1975	Foote	N/A	N/A		
4078234	12/1977	Fishbein et al.	N/A	N/A		
4176351	12/1978	De Vita et al.	N/A	N/A		
4308536	12/1980	Sims, Jr. et al.	N/A	N/A		
4566010	12/1985	Collins	N/A	N/A		
4612547	12/1985	Itoh	N/A	N/A		
4882668	12/1988	Schmid et al.	N/A	N/A		
4910464	12/1989	Trett et al.	N/A	N/A		
4939685	12/1989	Feintuch	N/A	N/A		
5001486	12/1990	Bächtiger	N/A	N/A		
5012254	12/1990	Thompson	N/A	N/A		
5034906	12/1990	Chang	N/A	N/A		
5087918	12/1991	May et al.	N/A	N/A		
5140331	12/1991	Aulenbacher	342/192	G01S 7/4004		
5170331	12/1991	Aulenbacher et al.	N/A	N/A		
5151702	12/1991	Urkowitz	N/A	N/A		
5175710	12/1991	Hutson	N/A	N/A		
5218619	12/1992	Dent	N/A	N/A		
5272663	12/1992	Jones et al.	N/A	N/A		
5280288	12/1993	Sherry et al.	N/A	N/A		
5302956	12/1993	Asbury et al.	N/A	N/A		
5341141	12/1993	Frazier et al.	N/A	N/A		
5345470	12/1993	Alexander	N/A	N/A		
5361072	12/1993	Barrick et al.	N/A	N/A		
5376939	12/1993	Urkowitz	N/A	N/A		
5379322	12/1994	Kosaka et al.	N/A	N/A		
5436872	12/1994	Gilmour et al.	N/A	N/A		
5497162	12/1995	Kaiser	N/A	N/A		
5508706	12/1995	Tsou et al.	N/A	N/A		
5581464	12/1995	Woll et al.	N/A	N/A		
5654715	12/1996	Hayashikura et al.	N/A	N/A		
5657021	12/1996	Ehsani-Nategh et al.	N/A	N/A		
5657023	12/1996	Lewis et al.	N/A	N/A		
5682605	12/1996	Salter	N/A	N/A		
5691724	12/1996	Aker et al.	N/A	N/A		
5712640	12/1997	Andou	N/A	N/A		
5724041	12/1997	Inoue et al.	N/A	N/A		
5847661	12/1997	Ricci	N/A	N/A		
5861834	12/1998	Sauer et al.	N/A	N/A		
5892477	12/1998	Wehling	N/A	N/A		
5917430	12/1998	Greneker, III et al.	N/A	N/A		
5920278	12/1998	Tyler et al.	N/A	N/A		
5920285	12/1998	Benjamin	N/A	N/A		
5931893	12/1998	Dent et al.	N/A	N/A		
5959571	12/1998	Aoyagi et al.	N/A	N/A		
5970400	12/1998	Dwyer	N/A	N/A		
6048315	12/1999	Chiao et al.	N/A	N/A		
6067314	12/1999	Azuma	N/A	N/A		

6069581	12/1999	Bell et al.	N/A	N/A
6121872	12/1999	Weishaupt	N/A	N/A
6121918	12/1999	Tullsson	N/A	N/A
6151366	12/1999	Yip	N/A	N/A
6163252	12/1999	Nishiwaki	N/A	N/A
6184829	12/2000	Stilp	N/A	N/A
6191726	12/2000	Tullsson	N/A	N/A
6208248	12/2000	Ross	N/A	N/A
6288672	12/2000	Asano et al.	N/A	N/A
6307622	12/2000	Lewis	N/A	N/A
6335700	12/2001	Ashihara	N/A	N/A
6347264	12/2001	Nicosia et al.	N/A	N/A
6396436	12/2001	Lissel et al.	N/A	N/A
6400308	12/2001	Bell et al.	N/A	N/A
6411250	12/2001	Oswald et al.	N/A	N/A
6417796	12/2001	Bowlds	N/A	N/A
6424289	12/2001	Fukae et al.	N/A N/A	N/A N/A
6529931 6547733	12/2002 12/2002	Besz et al. Hwang et al.	N/A N/A	N/A N/A
6583753	12/2002	Reed	N/A N/A	N/A N/A
6614387	12/2002	Deadman	N/A	N/A
6624784	12/2002	Yamaguchi	N/A	N/A
6674908	12/2003	Aronov	N/A	N/A
6683560	12/2003	Bauhahn	N/A	N/A
6693582	12/2003	Steinlechner et al.	N/A	N/A
6714956	12/2003	Liu et al.	N/A	N/A
6747595	12/2003	Hirabe	N/A	N/A
6768391	12/2003	Dent et al.	N/A	N/A
6865218	12/2004	Sourour	N/A	N/A
6867732	12/2004	Chen et al.	N/A	N/A
6888491	12/2004	Richter	N/A	N/A
6975246	12/2004	Trudeau	N/A	N/A
7066886	12/2005	Song et al.	N/A	N/A
7119739	12/2005	Struckman	N/A	N/A
7130663	12/2005	Guo	N/A	N/A
7202776	12/2006	Breed	N/A	N/A
7289058	12/2006	Shima	N/A	N/A
7299251	12/2006	Skidmore et al.	N/A	N/A
7338450	12/2007	Kristofferson et al.	N/A	N/A
7395084 7460055	12/2007 12/2007	Anttila Nishijima et al.	N/A N/A	N/A N/A
7474258	12/2007	Arikan et al.	N/A N/A	N/A N/A
7545310	12/2008	Matsuoka	N/A	N/A
7545321	12/2008	Kawasaki	N/A	N/A
7564400	12/2008	Fukuda	N/A	N/A
7567204	12/2008	Sakamoto	N/A	N/A
7609198	12/2008	Chang	N/A	N/A
7642952	12/2009	Fukuda	N/A	N/A
7663533	12/2009	Toennesen	N/A	N/A
7667637	12/2009	Pedersen et al.	N/A	N/A
7728762	12/2009	Sakamoto	N/A	N/A
7791528	12/2009	Klotzbuecher	N/A	N/A
7847731	12/2009	Wiesbeck et al.	N/A	N/A
7855677	12/2009	Negoro et al.	N/A	N/A
7859450	12/2009	Shirakawa et al.	N/A	N/A
8019352	12/2010	Rappaport et al.	N/A	N/A
8044845	12/2010	Saunders	N/A	N/A
8049663	12/2010	Frank et al.	N/A	N/A
8059026	12/2010 12/2011	Nunez Smith, Jr. et al.	N/A N/A	N/A N/A
8102306 8115672	12/2011	Nouvel et al.	N/A N/A	N/A N/A
8154436	12/2011	Szajnowski	N/A	N/A N/A
8169359	12/2011	Aoyagi	N/A	N/A
1-10000	_ _ , _ 0 ± ±	J ~o ~	1,71	

8212713	12/2011	Aiga et al.	N/A	N/A
8330650	12/2011	Goldman	N/A	N/A
8390507	12/2011	Wintermantel	N/A	N/A
8471760	12/2012	Szajnowski	N/A	N/A
8532159	12/2012	Kagawa et al.	N/A	N/A
8547988	12/2012	Hadani et al.	N/A	N/A
8686894	12/2013	Fukuda et al.	N/A	N/A
8694306	12/2013	Short et al.	N/A	N/A
8768248	12/2013	Sadr	N/A	N/A
8994581	12/2014	Brown	N/A	N/A
9020011	12/2014	Hiebert et al.	N/A	N/A
9063225	12/2014	Lee et al.	N/A	N/A
9121943	12/2014	Stirlin-Gallacher et al.	N/A	N/A
9182479	12/2014	Chen et al.	N/A	N/A
9194946	12/2014	Vacanti	N/A	N/A
9239378	12/2015	Kishigami et al.	N/A	N/A
9239379	12/2015	Burgio et al.	N/A	N/A
9274217	12/2015	Chang et al.	N/A	N/A
9282945	12/2015	Smith et al.	N/A	N/A
9335402	12/2015	Maeno et al.	N/A	N/A
9400328	12/2015	Hsiao et al.	N/A	N/A
9541639	12/2016	Searcy et al.	N/A	N/A
9568600	12/2016	Alland	N/A	N/A
9575160	12/2016	Davis et al.	N/A	N/A
9599702	12/2016	Bordes et al.	N/A	N/A
9618616	12/2016	Kishigami et al.	N/A	N/A
9689967	12/2016	Stark et al.	N/A	N/A
9709674	12/2016 12/2016	Moriuchi et al. Davis et al.	N/A N/A	N/A N/A
9720073 9726756	12/2016	Jansen	N/A N/A	N/A N/A
9720080	12/2016	Rodenbeck	N/A	N/A
9753121	12/2016	Davis	N/A	N/A
9753132	12/2016	Bordes et al.	N/A	N/A
9772397	12/2016	Bordes et al.	N/A	N/A
9791551	12/2016	Eshraghi et al.	N/A	N/A
9791564	12/2016	Harris et al.	N/A	N/A
9806914	12/2016	Bordes et al.	N/A	N/A
9829567	12/2016	Davis et al.	N/A	N/A
9846228	12/2016	Davis et al.	N/A	N/A
9869762	12/2017	Alland et al.	N/A	N/A
9945935	12/2017	Eshraghi et al.	N/A	N/A
9954955	12/2017	Davis et al.	N/A	N/A
9971020	12/2017	Maher et al.	N/A	N/A
9989627	12/2017	Eshraghi et al.	N/A	N/A
9989638	12/2017	Harris et al.	N/A	N/A
10073171	12/2017	Bordes et al.	N/A	N/A
10090585	12/2017	Dinc et al.	N/A	N/A
10092192	12/2017	Lashkari et al.	N/A	N/A
10142133	12/2017	Bordes et al.	N/A	N/A
10145954	12/2017	Davis et al.	N/A	N/A
10191142	12/2018	Eshraghi et al.	N/A	N/A
10197671 10215853	12/2018 12/2018	Alland et al. Stark et al.	N/A N/A	N/A N/A
10213033	12/2018	Davis et al.	N/A	N/A
10305611	12/2018	Rimini et al.	N/A N/A	N/A N/A
10324165	12/2018	Bordes et al.	N/A	N/A
10324103	12/2018	Prados et al.	N/A	N/A
10371737	12/2018	Zivkovic	N/A	N/A
10536529	12/2019	Davis et al.	N/A	N/A
10551482	12/2019	Eshraghi et al.	N/A	N/A
10573959	12/2019	Alland et al.	N/A	N/A
10594916	12/2019	Sivan	N/A	N/A
10605894	12/2019	Davis et al.	N/A	N/A

10659078	12/2019	Nayyar et al.	N/A	N/A
10670695	12/2019	Maher et al.	N/A	N/A
10690780	12/2019	Zarubica	N/A	G01S 19/32
10775478	12/2019	Davis et al.	N/A	N/A
10782389	12/2019	Rao et al.	N/A	N/A
10805933	12/2019	Stephens et al.	N/A	N/A
10812985	12/2019	Mody et al.	N/A	N/A
10852408	12/2019	Aslett et al.	N/A	N/A
10866306	12/2019	Maher et al.	N/A	N/A
10908272	12/2020	Rao et al.	N/A	N/A
10935633	12/2020	Maher et al.	N/A	N/A
10976431	12/2020	Harris et al.	N/A	N/A
11054516	12/2020	Wu et al.	N/A	N/A
11086010	12/2020	Davis et al.	N/A	N/A
11105890	12/2020	Behrens et al.	N/A	N/A
11175377	12/2020	Bordes et al.	N/A	N/A
11194016	12/2020	Eshraghi et al.	N/A	N/A
11262448	12/2021	Davis et al.	N/A	N/A
11271328	12/2021	Liu et al.	N/A	N/A
11340331	12/2021	Maher et al.	N/A	N/A
11454697	12/2021	Maher et al.	N/A	N/A
11474225	12/2021	Dent et al.	N/A	N/A
11582305	12/2022	Davis et al.	N/A	N/A
11681017 11726172	12/2022 12/2022	Behrens et al. Maher et al.	N/A N/A	N/A N/A
11740323	12/2022	Davis et al.	N/A N/A	N/A N/A
11846696	12/2022	Rao et al.	N/A	N/A N/A
2001/0002919	12/2022	Sourour et al.	N/A	N/A
2002/0004692	12/2001	Nicosia et al.	N/A	N/A
2002/0044082	12/2001	Woodington et al.	N/A	N/A
2002/0063653	12/2001	Oey et al.	N/A	N/A
2002/0075178	12/2001	Woodington et al.	N/A	N/A
2002/0118522	12/2001	Ho et al.	N/A	N/A
2002/0130811	12/2001	Voigtlaender	N/A	N/A
2002/0147534	12/2001	Delcheccolo et al.	N/A	N/A
2002/0155811	12/2001	Prismantas	N/A	N/A
2003/0001772	12/2002	Woodington et al.	N/A	N/A
2003/0011519	12/2002	Breglia et al.	N/A	N/A
2003/0058166	12/2002	Hirabe	N/A	N/A
2003/0073463	12/2002	Shapira	N/A	N/A
2003/0080713	12/2002	Kirmuss	N/A	N/A
2003/0102997	12/2002	Levin et al.	N/A	N/A
2003/0164791	12/2002	Shinoda et al.	N/A	N/A
2003/0228890	12/2002	Falaki	N/A	N/A
2003/0235244	12/2002	Pessoa et al.	N/A	N/A
2004/0012516	12/2003	Schiffmann	N/A	N/A
2004/0015529	12/2003	Tanrkulu et al.	N/A	N/A
2004/0066323 2004/0070532	12/2003	Richter Ishii et al.	N/A N/A	N/A N/A
2004/00/0332	12/2003 12/2003	Nishira et al.	N/A N/A	N/A N/A
2004/0130486	12/2003	Akopian	N/A	N/A N/A
2004/0138802	12/2003	Kuragaki et al.	N/A	N/A
2004/0130002	12/2003	Won et al.	N/A	N/A
2004/02195/9	12/2003	Kubo et al.	N/A	N/A
2005/0001757	12/2004	Shinoda et al.	N/A	N/A
2005/0008065	12/2004	Schilling	N/A	N/A
2005/0069162	12/2004	Haykin	N/A	N/A
2005/0090274	12/2004	Miyashita	N/A	N/A
2005/0100106	12/2004	Chen	N/A	N/A
2005/0156780	12/2004	Bonthron et al.	N/A	N/A
2005/0201457	12/2004	Allred et al.	N/A	N/A
2005/0225476	12/2004	Hoetzel et al.	N/A	N/A
2005/0273480	12/2004	Pugh et al.	N/A	N/A

2006/0012511	12/2005	Dooi et al.	N/A	N/A
2006/0012311	12/2005	Wintermantel	N/A	N/A N/A
2006/0050333	12/2005	Sterin	N/A	N/A
2006/0093078	12/2005	Lewis et al.	N/A	N/A
2006/0109170	12/2005	Voigtlaender et al.	N/A	N/A
2006/0109170	12/2005	Asai	N/A	N/A
2006/0114324	12/2005	Farmer et al.	N/A	N/A
2006/0140249	12/2005	Kohno	N/A	N/A
2006/0181448	12/2005	Natsume et al.	N/A	N/A
2006/0220943	12/2005	Schlick et al.	N/A	N/A
2006/0244653	12/2005	Szajnowski	N/A	N/A
2006/0262007	12/2005	Bonthron	N/A	N/A
2006/0262009	12/2005	Watanabe	N/A	N/A
2007/0018884	12/2006	Adams	N/A	N/A
2007/0018886	12/2006	Watanabe et al.	N/A	N/A
2007/0040729	12/2006	Ohnishi	N/A	N/A
2007/0096885	12/2006	Cheng et al.	N/A	N/A
2007/0109175	12/2006	Fukuda	N/A	N/A
2007/0115869	12/2006	Lakkis	N/A	N/A
2007/0120731	12/2006	Kelly, Jr. et al.	N/A	N/A
2007/0132633	12/2006	Uchino	N/A	N/A
2007/0152870	12/2006	Woodington et al.	N/A	N/A
2007/0152871	12/2006	Puglia	N/A	N/A
2007/0152872	12/2006	Woodington	N/A	N/A
2007/0164896	12/2006	Suzuki et al.	N/A	N/A
2007/0171122	12/2006	Nakano	N/A	N/A
2007/0182619	12/2006	Honda et al.	N/A	N/A
2007/0182623	12/2006	Zeng	N/A	N/A
2007/0188373	12/2006	Shirakawa et al.	N/A	N/A
2007/0200747	12/2006	Okai	N/A	N/A
2007/0205937	12/2006	Thompson	N/A	N/A
2007/0263748	12/2006	Mesecher	N/A	N/A
2007/0279303	12/2006	Schoebel	N/A	N/A
2008/0012710	12/2007	Sadr	N/A	N/A
2008/0080599	12/2007	Kang	N/A	N/A
2008/0088499	12/2007	Bonthron	N/A	N/A
2008/0094274	12/2007	Nakanishi	N/A	N/A
2008/0106458	12/2007	Honda et al.	N/A	N/A
2008/0150790	12/2007	Voigtlaender et al.	N/A	N/A
2008/0180311	12/2007	Mikami	N/A	N/A
2008/0208472	12/2007	Morcom	N/A	N/A
2008/0218406	12/2007	Nakanishi	N/A	N/A
2008/0258964	12/2007	Schoeberl Variable et al	N/A	N/A
2008/0272955	12/2007	Yonak et al.	N/A	N/A
2009/0003412 2009/0015459	12/2008	Negoro et al. Mahler et al.	N/A N/A	N/A N/A
2009/0015459	12/2008 12/2008	Fukuda	N/A N/A	N/A N/A
2009/0013404	12/2008	Colburn et al.	N/A	N/A
2009/0021429	12/2008	Arikan	N/A	N/A N/A
2009/002/23/	12/2008	Matsuoka	N/A	N/A
2009/0051581	12/2008	Hatono	N/A	N/A
2009/0072957	12/2008	Wu et al.	N/A	N/A
2009/0073025	12/2008	Inoue et al.	N/A	N/A
2009/0074031	12/2008	Fukuda	N/A	N/A
2009/0079617	12/2008	Shirakawa et al.	N/A	N/A
2009/0085827	12/2008	Orime et al.	N/A	N/A
2009/0103593	12/2008	Bergamo	N/A	N/A
2009/0121918	12/2008	Shirai et al.	N/A	N/A
2009/0212998	12/2008	Szajnowski	N/A	N/A
2009/0232510	12/2008	Gupta et al.	N/A	N/A
2009/0237293	12/2008	Sakuma	N/A	N/A
2009/0254260	12/2008	Nix et al.	N/A	N/A
2009/0267822	12/2008	Shinoda et al.	N/A	N/A

2009/0289831	12/2008	Akita	N/A	N/A
2009/0295623	12/2008	Falk	N/A	N/A
2010/0001897	12/2009	Lyman	N/A	N/A
2010/0019950	12/2009	Yamano et al.	N/A	N/A
2010/0039311	12/2009	Woodington et al.	N/A	N/A
2010/0039313	12/2009	Morris	N/A	N/A
2010/0075704	12/2009	McHenry et al.	N/A	N/A
2010/0116365	12/2009	McCarty	N/A	N/A
2010/0127916	12/2009	Sakai et al.	N/A	N/A
2010/0156690	12/2009	Kim et al.	N/A	N/A
2010/0166121	12/2009	Kenney, Jr.	N/A	N/A
2010/0198513	12/2009	Zeng et al.	N/A	N/A
2010/0202495	12/2009	Kagawa et al.	N/A	N/A
2010/0253573	12/2009	Holzheimer et al.	N/A	N/A
2010/0277359	12/2009	Ando	N/A	N/A
2010/0289692	12/2009	Winkler	N/A	N/A
2011/0006944	12/2010	Goldman	N/A	N/A
2011/0032138	12/2010	Krapf	N/A	N/A
2011/0074620	12/2010	Wintermantel	N/A	N/A
2011/0187600	12/2010	Landt	N/A	N/A
2011/0196568	12/2010	Nickolaou	N/A	N/A
2011/0234448	12/2010	Hayase	N/A	N/A
2011/0248796	12/2010	Pozgay	N/A	N/A
2011/0279303	12/2010	Smith, Jr. et al.	N/A	N/A
2011/0279307	12/2010	Song	N/A	N/A
2011/0285576	12/2010	Lynam	N/A	N/A
2011/0291874	12/2010	De Mersseman	N/A	N/A
2011/0291875	12/2010	Szajnowski	N/A	N/A
2011/0292971	12/2010	Hadani et al.	N/A	N/A
2011/0298653	12/2010	Mizutani	N/A	N/A
2012/0001791	12/2011	Wintermantel	N/A	N/A
2012/0050092	12/2011	Lee et al.	N/A	N/A
2012/0050093	12/2011	Heilmann et al.	N/A	N/A
2012/0105268	12/2011	Smits et al.	N/A	N/A N/A
2012/0112957 2012/0133547	12/2011 12/2011	Nguyen et al. MacDonald et al.	N/A N/A	N/A N/A
2012/0135347	12/2011	Karr	N/A N/A	N/A N/A
2012/0140034	12/2011	Choi et al.	N/A	N/A N/A
2012/01/3240	12/2011	Yukmatsu et al.	N/A	N/A N/A
2012/01943//	12/2011	Lakkis	N/A	N/A
2012/0135343	12/2011	Kim et al.	N/A	N/A
2012/0249356	12/2011	Shope	N/A	N/A
2012/0257643	12/2011	Wu et al.	N/A	N/A
2012/0283987	12/2011	Busking et al.	N/A	N/A
2012/0314799	12/2011	In De Betou et al.	N/A	N/A
2012/0319900	12/2011	Johansson et al.	N/A	N/A
2013/0016761	12/2012	Nentwig	N/A	N/A
2013/0021196	12/2012	Himmelstoss	N/A	N/A
2013/0027240	12/2012	Chowdhury	N/A	N/A
2013/0057436	12/2012	Krasner et al.	N/A	N/A
2013/0069818	12/2012	Shirakawa et al.	N/A	N/A
2013/0102254	12/2012	Cyzs	N/A	N/A
2013/0113647	12/2012	Sentelle et al.	N/A	N/A
2013/0113652	12/2012	Smits et al.	N/A	N/A
2013/0113653	12/2012	Kishigami et al.	N/A	N/A
2013/0129253	12/2012	Moate	382/278	G01S 13/90
2013/0135140	12/2012	Kishigami	N/A	N/A
2013/0169468	12/2012	Johnson et al.	N/A	N/A
2013/0169485	12/2012	Lynch	N/A	N/A
2013/0176154	12/2012	Bonaccio et al.	N/A	N/A
2013/0194127	12/2012	Ishihara et al.	N/A	N/A
2013/0214961	12/2012	Lee et al.	N/A	N/A
2013/0229301	12/2012	Kanamoto	N/A	N/A

2013/0244710	12/2012	Nguyen et al.	N/A	N/A
2013/0249730	12/2012	Adcook	N/A	N/A
2013/0249730	12/2012	Braswell et al.	N/A	N/A
2013/0314271	12/2012	Binzer et al.	N/A	N/A
2014/0022108	12/2013	Alberth, Jr. et al.	N/A	N/A
2014/0028491	12/2013	Ferguson	N/A	N/A
2014/0035774	12/2013	Khlifi	N/A	N/A
2014/0049423	12/2013	De Jong et al.	N/A	N/A
2014/0070985	12/2013	Vacanti	N/A	N/A
2014/0085128	12/2013	Kishigami et al.	N/A	N/A
2014/0097987	12/2013	Worl et al.	N/A	N/A
2014/0111367	12/2013	Kishigami et al.	N/A	N/A
2014/0111372	12/2013	Wu	N/A	N/A
2014/0139322	12/2013	Wang et al.	N/A	N/A
2014/0159948	12/2013	Ishimori et al.	N/A	N/A
2014/0168004	12/2013	Chen et al.	N/A	N/A
2014/0218240	12/2013	Kpodzo et al.	N/A	N/A
2014/0220903	12/2013	Schulz et al.	N/A	N/A
2014/0253345	12/2013	Breed	N/A	N/A
2014/0253364	12/2013	Lee et al.	N/A	N/A
2014/0285373	12/2013	Kuwahara et al.	N/A	N/A
2014/0316261	12/2013	Lux et al.	N/A	N/A
2014/0327566	12/2013	Burgio et al.	N/A	N/A
2014/0327570	12/2013	Beyer	N/A	N/A
2014/0340254	12/2013	Hesse	N/A	N/A
2014/0348253	12/2013	Mobasher et al.	N/A	N/A
2014/0350815	12/2013	Kambe	N/A	N/A
2015/0002329	12/2014	Murad et al.	N/A	N/A
2015/0002357	12/2014	Sanford et al.	N/A	N/A
2015/0035662	12/2014	Bowers et al.	N/A	N/A
2015/0061922	12/2014	Kishigami	N/A	N/A
2015/0103745	12/2014	Negus et al.	N/A	N/A
2015/0153445	12/2014	Jansen	N/A	N/A
2015/0160335	12/2014	Lynch et al.	N/A	N/A
2015/0198709	12/2014	Inoue	N/A	N/A
2015/0204966	12/2014	Kishigami	N/A	N/A
2015/0204971	12/2014	Yoshimura et al.	N/A	N/A
2015/0204972	12/2014	Kuehnle et al.	N/A	N/A
2015/0226838	12/2014	Hayakawa	N/A	N/A
2015/0226848	12/2014	Park	N/A	N/A
2015/0234045	12/2014	Rosenblum	N/A	N/A
2015/0247924	12/2014	Kishigami	N/A	N/A
2015/0255867	12/2014	Inoue	N/A	N/A
2015/0280893	12/2014	Choi et al.	N/A	N/A
2015/0301172	12/2014	Ossowska	N/A	N/A
2015/0323660 2015/0331090	12/2014 12/2014	Hampikian	N/A N/A	N/A N/A
2015/0331090	12/2014	Jeong et al. Bharadia et al.	N/A	N/A
2015/0335647	12/2014	Kollmer	N/A N/A	N/A N/A
2015/0340323	12/2014	Kishigami et al.	N/A	N/A
2015/0303912	12/2014	Murashov et al.	N/A	N/A
2015/03/310/	12/2014	Stainvas Olshansky et al.	N/A	N/A
2016/0003933	12/2015	Gazit et al.	N/A	N/A N/A
2016/0003939	12/2015	Stainvas Olshansky et al.	N/A	N/A
2016/0003333	12/2015	Nayyar et al.	N/A	N/A
2016/0025844	12/2015	Mckitterick et al.	N/A	N/A
2016/0033623	12/2015	Holder	N/A	N/A
2016/0033631	12/2015	Searcy et al.	N/A	N/A
2016/0033632	12/2015	Searcy et al.	N/A	N/A
2016/0041260	12/2015	Cao et al.	N/A	N/A
2016/0054441	12/2015	Kuo et al.	N/A	N/A
2016/0061935	12/2015	McCloskey et al.	N/A	N/A
2016/0084941	12/2015	Arage	N/A	N/A
		5		

2016/0084943	12/2015	Arage	N/A	N/A
2016/0091595	12/2015	Alcalde	N/A	N/A
2016/0103206	12/2015	Pavao-Moreira et al.	N/A	N/A
2016/0124075	12/2015	Vogt et al.	N/A	N/A
2016/0124086	12/2015	Jansen et al.	N/A	N/A
2016/0131742	12/2015	Schoor	N/A	N/A
2016/0131752	12/2015	Jansen et al.	N/A	N/A
2016/0139254	12/2015	Wittenberg	N/A	N/A
2016/0146931	12/2015	Rao et al.	N/A	N/A
2016/0154103	12/2015	Moriuchi	N/A	N/A
2016/0157828	12/2015	Sumi et al.	N/A	N/A
2016/0178732	12/2015	Oka et al. Lashkari et al.	N/A N/A	N/A N/A
2016/0213258 2016/0223643	12/2015 12/2015	Li et al.	N/A N/A	N/A N/A
2016/0223644	12/2015	Soga	N/A	N/A
2016/0238694	12/2015	Kishigami	N/A	N/A
2016/0245909	12/2015	Aslett et al.	N/A	N/A
2016/0291130	12/2015	Ginsburg et al.	N/A	N/A
2016/0349365	12/2015	Ling	N/A	N/A
2017/0010361	12/2016	Tanaka	N/A	N/A
2017/0023661	12/2016	Richert	N/A	N/A
2017/0023663	12/2016	Subburaj et al.	N/A	N/A
2017/0045608	12/2016	Mclean et al.	N/A	N/A
2017/0074980	12/2016	Adib	N/A	N/A
2017/0090015	12/2016	Breen et al.	N/A	N/A
2017/0117946	12/2016	Lee	N/A	G01S 3/72
2017/0117950	12/2016	Strong	N/A	N/A
2017/0153315	12/2016	Katayama	N/A	N/A
2017/0153316 2017/0176583	12/2016 12/2016	Wintermantel Gulden et al.	N/A N/A	N/A N/A
2017/01/0303	12/2016	Kishigami	N/A	N/A N/A
2017/0212213	12/2016	Hung et al.	N/A	N/A
2017/0223712	12/2016	Stephens et al.	N/A	N/A
2017/0234968	12/2016	Roger et al.	N/A	N/A
2017/0254879	12/2016	Tokieda, I et al.	N/A	N/A
2017/0293027	12/2016	Stark et al.	N/A	N/A
2017/0307728	12/2016	Eshraghi et al.	N/A	N/A
2017/0307729	12/2016	Eshraghi et al.	N/A	N/A
2017/0309997	12/2016	Alland et al.	N/A	N/A
2017/0310758	12/2016	Davis	N/A	G01S 13/931
2017/0363731	12/2016	Bordes et al.	N/A	N/A
2018/0003799	12/2017	Yang et al.	N/A	N/A
2018/0019755	12/2017 12/2017	Josefsberg et al. Marr	N/A N/A	N/A N/A
2018/0175907 2018/0031674	12/2017	Bordes et al.	N/A N/A	N/A N/A
2018/0031675	12/2017	Eshraghi et al.	N/A	N/A
2018/0095161	12/2017	Kellum et al.	N/A	N/A
2018/0095163	12/2017	Lovberg et al.	N/A	N/A
2018/0113191	12/2017	Villeval et al.	N/A	N/A
2018/0115371	12/2017	Trotta et al.	N/A	N/A
2018/0128913	12/2017	Bialer	N/A	N/A
2018/0149730	12/2017	Li et al.	N/A	N/A
2018/0149736	12/2017	Alland et al.	N/A	N/A
2018/0231655	12/2017	Stark et al.	N/A	N/A
2018/0271776	12/2017	Kazakevitch	N/A	N/A
2018/0294564	12/2017	Kim	N/A	H01Q 3/2652
2018/0294908	12/2017	Abdelmonem	N/A N/A	N/A N/A
2018/0329027 2018/0358706	12/2017 12/2017	Eshraghi et al. Kildal et al.	N/A N/A	N/A N/A
2018/0372837	12/2017	Bily et al.	N/A	N/A
2018/0374346	12/2017	Fowe	N/A	N/A
2019/0013566	12/2018	Merrell	N/A	H01Q 1/1257
2019/0056476	12/2018	Lin	N/A	N/A

2019/0064364	12/2018	Boysel et al.	N/A	N/A
2019/0072641	12/2018	Al-Stouhi et al.	N/A	N/A
2019/0146059	12/2018	Zanati et al.	N/A	N/A
2019/0178983	12/2018	Lin et al.	N/A	N/A
2019/0187245	12/2018	Guarin Aristizabal et al.	N/A	N/A
2019/0219685	12/2018	Shan	N/A	N/A
2019/0235050	12/2018	Maligeorgos et al.	N/A	N/A
2019/0293755	12/2018	Cohen et al.	N/A	N/A
2019/0324134	12/2018	Cattle	N/A	N/A
2019/0377077	12/2018	Kitayama et al.	N/A	N/A
2019/0379386	12/2018	Chi	N/A	N/A
2019/0383929	12/2018	Melzer et al.	N/A	N/A
2020/0003884	12/2019	Arkind et al.	N/A	N/A
2020/0011983	12/2019	Kageme et al.	N/A	N/A
2020/0014105	12/2019	Braun	N/A	H01Q 3/267
2020/0033445	12/2019	Raphaeli	N/A	H01Q 1/38
2020/0036487	12/2019	Hammond et al.	N/A	N/A
2020/0064455	12/2019	Schroder et al.	N/A	N/A
2020/0107249	12/2019	Stauffer et al.	N/A	N/A
2020/0142049	12/2019	Solodky et al.	N/A	N/A
2020/0158861	12/2019	Cattle et al.	N/A	N/A
2020/0191939	12/2019	Wu et al.	N/A	N/A
2020/0292666	12/2019	Maher et al.	N/A	N/A
2020/0313719	12/2019	Blanchard et al.	N/A	N/A
2020/0363499	12/2019	Mayer et al.	N/A	N/A
2020/0393536	12/2019	Stettiner	N/A	N/A
2021/0181300	12/2020	Choi et al.	N/A	N/A
2021/0190904	12/2020	Bourdoux et al.	N/A	N/A
2021/0190905	12/2020	Roger et al.	N/A	N/A
2021/0364634	12/2020	Davis et al.	N/A	N/A
2021/0389414	12/2020	Behrens et al.	N/A	N/A
2022/0291335	12/2021	Maher et al.	N/A	N/A
2022/0350020	12/2021	Davis et al.	N/A	N/A
2022/0365169	12/2021	Lefevre et al.	N/A	N/A
EODEIGN DATEN	T DOCUMENTS			

FOREIGN PATENT DOCUMENTS Patent No.

D-44 N-		Caracatana	CDC
Patent No.	Application Date	Country	CPC
0509843	12/1991	EP	N/A
1826586	12/2006	EP	N/A
0725480	12/2010	EP	N/A
2374217	12/2012	EP	N/A
2884299	12/2014	EP	N/A
2821808	12/2014	EP	N/A
3349038	12/2017	EP	N/A
3062446	12/2017	EP	N/A
3152956	12/2018	EP	N/A
3483622	12/2018	EP	N/A
3499264	12/2019	EP	N/A
2751086	12/1997	FR	N/A
2529029	12/2015	GB	N/A
3625307	12/2003	JP	N/A
2010243330	12/2009	JP	N/A
101010522	12/2010	KR	N/A
102088426	12/2019	KR	N/A
WO2008022981	12/2007	WO	N/A
WO2010/022156	12/2009	WO	N/A
WO2012115518	12/2011	WO	N/A
WO2013147948	12/2012	WO	N/A
WO2015175078	12/2014	WO	N/A
WO2015185058	12/2014	WO	N/A
WO2016011407	12/2015	WO	N/A
WO2016030656	12/2015	WO	N/A
WO2017187242	12/2016	WO	N/A
WO2017059961	12/2016	WO	N/A

WO2017175190	12/2016	WO	N/A
WO2017187330	12/2016	WO	N/A
WO2020/259916	12/2019	WO	N/A

OTHER PUBLICATIONS

Chambers et al., "An article entitled Real-Time Vehicle Mounted Multistatic Ground Penetrating Radar Imaging System for Buried Object Detection," Lawrence Livermore National Laboratory Reports (LLNL-TR-615452), Feb. 4, 2013; Retrieved from the Internet from https://e-reports-ext.llnl.gov/pdf/711892.pdf. cited by applicant

Fraser, "Design and simulation of a coded sequence ground penetrating radar," In: Diss. University of British Columbia, Dec. 3, 2015. cited by applicant

Zhou et al., "Linear extractors for extracting randomness from noisy sources," In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on Oct. 3, 2011. cited by applicant

V. Giannini et al., "A 79 GHz Phase-Modulated 4 Ghz-Bw Cw Radar Transmitter in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 49, No. 12, pp. 2925-2937, Dec. 2014. (Year: 2014). cited by applicant

Óscar Faus García, "Signal Processing for mm Wave MIMO Radar," University of Gavle, Faculty of Engineering and Sustainable Development, Jun. 2015; Retrieved from the Internet from http://www.diva-

portal.se/smash/get/diva2:826028/FULLTEXT01.pdf. cited by applicant

Levanan Nadav et al., "Non-coherent pulse compression—aperiodic and periodic waveforms", IET Radar, Sonar & Navagation, The Institution of Engineering and Technology, Jan. 1, 2016, pp. 216-224, vol. 10, Iss. 1, UK. cited by applicant Akihiro Kajiwara, "Stepped-FM Pulse Radar for Vehicular Collision Avoidance", Electronics and Communications in Japan, Part 1, Mar. 1998, pp. 234-239, vol. 82, No. 6 1999. cited by applicant

A. Bourdoux, U. Ahamd, D. Guermandi, S. Brebels, A. Dewilde, W. Van Thillo, PMCW "Waveform and MIMO Technique for a 79 GHz CMOS Automotive Radar", 2016 IEEE Radar Conference (RadarConf), 2016, pp. 1-5, doi: 10.1109/RADAR.2016.7485114. (Year: 2016). cited by applicant

V. Jain, F. Tzeng, L. Zhou and p. Heydari, "A single-Chip Dual-Band 22-29-GHz/77-81-GHz BiCMOS Transceiver for Automotive Radars," in IEEE Journal of Solid-State Circuits, vol. 44, No. 12, pp. 3469-3485, Dec. 2009, doi: 10.1109/JSSC.2009.2032583. (Year: 2009). cited by applicant

A. Medra et al., "An 80 GHz Low-Noise Amplifier Resilient to the TX Spillover in Phase-Modulated Continuous-Wave Radars," in IEEE Journal of Solid-State Circuits, vol. 51, No. 5, pp. 1141-1153, May 2016, doi: 10.1109/JSSC.2016.2520962. (Year: 2016). cited by applicant

B. P. Ginsburg et al., "A multimode 76-to-81Ghz automotive radar transceiver with autonomous monitoring," 2018 IEEE International Solid—State Circuits Conference—(ISSCC), 2018, pp. 158-160, doi: 10.1109/ISSCC.2018.8310232 (Year: 2018). cited by applicant

Y. Ma, C. Miao, Y. Zhao, and W. Wu, "An MIMO Radar System Based on the Sparse-Array and Its Frequency Migration Calibration Method", in MDPI Journal of Sensors, vol. 19, issue No. 16, Published Aug. 2019, doi: 10.3390/s19163580 (Year: 2019). cited by applicant

RadarRangeEquation2011.pdf from http://www.ece.uah.edu/courses/material/EE619-2011/RadarRangeEquation(2)2011.pdf (Year: 2011). cited by applicant

What are S-Parameters Everything RF.pdf from https://www.everythingrf.com/community/what-are-s-parameters (Year 2018). cited by applicant

Primary Examiner: Kelleher; William

Assistant Examiner: Siddiquee; Ismaaeel A.

Attorney, Agent or Firm: Gardner, Linn, Burkhart & Ondersma LLP

Background/Summary

CROSS REFERENCE TO RELATED APPLICATION (1) The present application claims priority to and is a continuation of U.S. patent application Ser. No. 17/147,914, filed Jan. 13, 2021, which claims the benefits of U.S. provisional application, Ser. No. 62/960,220, filed Jan. 13, 2020, which are hereby incorporated by reference herein in their entireties. (2) The present invention is directed to radar systems, and more particularly to radar systems for vehicles and robotics.

BACKGROUND OF THE INVENTION

(1) The use of radar to determine location, range, and velocity of objects in an environment is important in a number of applications including automotive radar, industrial processes, robotic sensing, gesture detection, and positioning. A radar system typically transmits radio signals and listens for the reflection of the radio signals from objects in the environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object, and the velocity of the object. Using multiple transmitters and/or receivers, or a movable transmitter or receiver, the location (angle) of an object can also be determined. Therefore, radar systems require accurate operation to maintain their optimal performance.

SUMMARY OF THE INVENTION

- (2) Embodiments of the present invention provide for a radar calibration system that calibrates for radar system impairments using a series of radar data measurements. Such impairments include coupling effects, per channel gain and phase variations, and direction dependent gain and phase variations. This calibration system operates under a variety of environments, with a variety of external information, and with a variety of objective functions to modify the measurement collection as well as the calibration processing to optimize the system with respect to a given objective function.
- (3) In an aspect of the present invention, a radar system for a robot or vehicle that calibrates for system impairments includes a radar system with at least one transmitter and at least one receiver. The transmitter and receiver are connected to at least one antenna. The transmitter is configured to transmit radio signals. The receiver is configured to receive a radio signal that includes the transmitted radio signal transmitter by the transmitter and reflected from objects in the environment. The receiver is also configured to receive radio signals transmitted by other radar systems.
- (4) In an aspect of the present invention, the radar system comprises one of: a single transmitter and a plurality of receivers; a plurality of transmitters and a single receiver; and a plurality of transmitters and a plurality of receivers.
- (5) In a further aspect of the present invention, the transmitters and receivers may be connected to multiple antennas through a switch.
- (6) In another aspect of the present invention, the radar system includes a calibration module that is configured to rotate its direction in both azimuth and elevation. In the presence of at least one reflecting object, the calibration module collects reflected signals from the at least one reflecting object at desired angles of interest in the azimuth and elevation space. This rotation may occur in either a continuous manner or a discrete "stop-and-go" manner. The radar system's center point of the antenna array does not need to align with the center point of rotation, and the radar system corrects for phase distortion and angle-of-arrival error due to this misalignment. This misalignment is referred to as nodal displacement. The calibration module then processes these measurements into a correction matrix, which calibrates for radar system impairments. These may include phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross coupling. The angles-of-arrival of the collected reflected signals may be either estimated by the radar system or determined through prior knowledge of the object(s) location(s) relative to the radar system.
- (7) In another aspect of the present invention, the radar system may modify its measurement collection and calibration processing to optimize different objective functions. These modifications include the speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signal(s). These modifications also include parameters in the processing that control the computation of the correction matrix and affect the processing speed and correction accuracy.
- (8) In another aspect of the present invention, a method for calibrating a radar system for system impairments includes at least one transmitter transmitting radio signals. At least one receiver is receiving radio signals that include radio signals transmitted by the transmitter and reflected from objects in an environment. The at least one transmitter and the at least one receiver are coupled to an antenna array. A platform rotating the at least one receiver and the at least one transmitter in both azimuth and elevation. An array center of the antenna array is not aligned with the platform's rotational center. The method includes collecting, with a calibration module, in the in the presence of at least one object, reflected signals from the at least one object at desired angles of interest in azimuth and elevation, calculating a misalignment between the array center of the antenna array and the rotation center of the platform. The method also includes correcting, with the at least one receiver, for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement. The array center of the antenna array is a nodal point. (9) These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1**A is a diagram of a radar system where a nodal point for an axis of rotation does not match a radar array center of the radar system in accordance with the present invention;
- (2) FIG. **1**B is a perspective view of a radar calibration system orientated towards a target in accordance with the present invention;
- (3) FIG. 1C is another view of the radar calibration system and target of FIG. 1B;
- (4) FIG. **2** is a diagram of a radar calibration system installed on a maneuverable platform in accordance with the present invention;
- (5) FIG. **3**A and FIG. **3**B are block diagrams of radar systems that use the calibration system in accordance with the present invention;
- (6) FIG. **4** is a block diagram illustrating a radar with a plurality of receivers and a plurality of transmitters (MIMO radar) that uses the calibration system in accordance with the present invention;
- (7) FIG. **5** is a visualization of an exemplary antenna array, an exemplary received plane wave, and exemplary coupling effects in accordance with the present invention;
- (8) FIG. **6** is a diagram of exemplary sweep patterns executed during an exemplary measurement procedure in accordance with the present invention;
- (9) FIG. 7 is a flow chart describing the high-level processes of the calibration procedure, in accordance with the present invention;

- (10) FIG. **8** is a flow chart describing the process of estimating direction dependent and per channel phase correction, in accordance with the present invention;
- (11) FIG. **9** is a flow chart describing the process of estimating direction dependent and per channel gain correction, in accordance with the present invention; and
- (12) FIG. **10** is a flow chart describing the process of estimating cross-coupling correction, in accordance with the present invention:

DESCRIPTION OF THE PREFERRED EMBODIMENTS

- (13) Referring to the drawings and the illustrative embodiments depicted therein, wherein numbered elements in the following written description correspond to like-numbered elements in the figures, a calibration system provides for a calibration of a radar system. The radar system includes a calibration module that includes a platform for rotating receivers and transmitters of the radar system in both azimuth and elevation. An array center of the antenna array is not aligned with the platform's rotational center. The calibration module collects, in the presence of at least one object, reflected signals from the at least one object at desired angles of interest in azimuth and elevation. The calibration module calculates a misalignment between the array center of the antenna array and the rotation center of the platform. The at least one receiver corrects for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement. The array center of the antenna array is a nodal point.
- (14) An exemplary radar system operates by transmitting one or more signals from one or more transmitters and then listening for reflections of those signals from objects in the environment by one or more receivers. By comparing the transmitted signals and the received signals, estimates of the range, velocity, and angle (azimuth and/or elevation) of the objects can be estimated.
- (15) There are several different types of signals that transmitters in radar systems employ. A radar system may transmit a pulsed signal or a continuous signal. In a pulsed radar system, the signal is transmitted for a short time and then no signal is transmitted. This is repeated over and over. When the signal is not being transmitted, the receiver listens for echoes or reflections from objects in the environment. Often a single antenna is used for both the transmitter and receiver and the radar transmits on the antenna and then listens to the received signal on the same antenna. This process is then repeated. In a continuous wave radar system, the signal is continuously transmitted. There may be an antenna for transmitting and a separate antenna for receiving.
- (16) Another classification of radar systems is the modulation of signal being transmitted. A first type of continuous wave radar signal is known as a frequency modulated continuous wave (FMCW) radar signal. In an FMCW radar system, the transmitted signal is a sinusoidal signal with a varying frequency. By measuring a time difference between when a certain frequency was transmitted and when the received signal contained that frequency, the range to an object can be determined. By measuring several different time differences between a transmitted signal and a received signal, velocity information can be obtained.
- (18) In some radar systems, the signal (e.g. a PMCW signal) is transmitted over a short time period (e.g. 1 microsecond) and then turned off for a similar time period. The receiver is only turned on during the time period where the transmitter is turned off. In this approach, reflections of the transmitted signal from very close targets will not be completely available because the receiver is not active during a large fraction of the time when the reflected signals are being received. This is called pulse mode.
- (19) Digital frequency modulated continuous wave (FMCW) and phase modulated continuous wave (PMCW) are techniques in which a carrier signal is frequency or phase modulated, respectively, with digital codes using, for example, GMSK. Digital FMCW radar lends itself to be constructed in a MIMO variant in which multiple transmitters transmitting multiple codes are received by multiple receivers that decode all codes.
- (20) The advantage of the MIMO digital FMCW radar is that the angular resolution is that of a virtual antenna array having an equivalent number of elements equal to the product of the number of transmitters and the number of receivers. Digital FMCW MIMO radar techniques are described in U.S. Pat. Nos. 9,989,627; 9,945,935; 9,846,228; and 9,791,551, which are all hereby incorporated by reference herein in their entireties.
- (21) The radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 10,261,179; 9,971,020; 9,954,955; 9,945,935; 9,869,762; 9,846,228; 9,806,914; 9,791,564; 9,791,551; 9,772,397; 9,753,121; 9,689,967; 9,599,702; 9,575,160, and/or 9,689,967, and/or U.S. Publication Nos. US-2017-0309997; and/or U.S. patent application Ser. No. 16/674,543, filed Nov. 5, 2019, Ser. No. 16/259,474, filed Jan. 28, 2019, Ser. No. 16/220,121, filed Dec. 14, 2018, Ser. No. 15/496,038, filed Apr. 25, 2017, Ser. No. 15/689,273, filed Aug. 29, 2017, Ser. No. 15/893,021, filed Feb. 9, 2018, and/or Ser. No. 15/892,865, filed Feb. 9, 2018, and/or U.S. provisional application, Ser. No. 62/816,941, filed Mar.

- 12, 2019, which are all hereby incorporated by reference herein in their entireties.
- (22) Antenna Calibration:
- (23) Determining a correct angle calibration matrix to counter the impact of effective cross-coupling between virtual receivers in large-scale MIMO systems has been challenging. The problem is especially acute when the system is large or cannot be conveniently placed on the rotating measurement system. In some cases, a nodal point cannot be maintained or cannot even be accurately determined. Such cases occur in radars mounted on robots, drones or other devices, or in cases when angle calibration is desired in situ with the whole system assembled. An exemplary method is disclosed that efficiently and correctly determines channel-to-channel variations and cross-coupling coefficients from angle sweep data in the presence of an unknown nodal point of the system. An exemplary algorithm also produces the diagonal calibration values as a byproduct.
- (24) Typical angle calibration methods require collection of channel response data for a number of angles, which is also called as angle sweep data. The data is collected in an anechoic chamber with a single target in far-field and radar mounted on a gimbal that can be rotated between the angles of interest (up-to ± 90 degrees), which allows collecting the target virtual channel response in those angles. A typical data collection system is shown in FIG. 1A. This represents the case where the nodal point for the axis of rotation is the same as the center of the radar antenna system. The radar may have planar antenna array (2-D) instead of a linear antenna array (1-D). The radar will then need to rotate in two axes maintaining the nodal point of rotation in both axes at the center of the planar antenna array. The antenna array can be a virtual array created through the use multi-input multi-output (MIMO) technology.
- (25) FIGS. **1**B and **1**C illustrate an exemplary calibration system for a radar system. As discussed herein, the calibration system and radar system is first installed in a temporary installation. While in the temporary installation, the calibration system records calibration measurements. The calibration system is capable of recording a series of calibration measurements. Henceforth, an exemplary "measured channel response" refers to the data from these calibration measurements. As illustrated in FIGS. 1B and 1C, a radar 101 is mounted on top of an adjustable gimbal mount platform (hereinafter a "platform") **120**. The platform **120** is configured to rotate in one or both of azimuth (x-axis) and elevation (yaxis). The radar **101** is configured to transmit a signal to a reflecting object **103**. FIGS. **1B** and **1**C illustrate a signal traversal path 104 extending from an array center 112 of an antenna array 110 to the reflecting object 103, while an expected path 105 is illustrated from the platform's rotation center 122 to the reflecting object 103. The deviance in angle between the signal traversal path 104 and the expected path 105 causes a phase shift between the expected signal 105 and the actual reflected signal 104, as well as an error in the angle of arrival. This deviance is referred to as nodal displacement, and the phase shift is modeled as a direction dependent phase variation. Nodal displacement occurs for multiple of reasons. First, the height of the radar **101** on the platform **120** may not exactly match the plane of the nodal point of rotation. Second, the nodal point may not exactly match the virtual center of the antenna array. The radar 101 may also have multiple antenna configurations with different virtual centers, and physical relocation of the radar system 101 may not be feasible. Last, there can be an error in estimating the correct nodal point.
- (26) FIG. 2 illustrates an exemplary radar/calibration system 201 which records calibration measurements while the radar/calibration system 201 is installed in a final platform or rotatable gimbal (the "platform") 220. As illustrated in FIG. 2, the radar/calibration system 201 is mounted in the platform 220. A reflecting object 203 is positioned in front of the radar/calibration system 201. FIG. 2 illustrates a signal traversal path 204 extending from an array center 212 of an antenna array 210 of the radar 201 to a reflecting object 203. An expected path 205 is also illustrated extending from the rotation axis 222 of the platform 220 to the reflecting object 203. Rotation is achieved by the mechanics of the platform 220 itself. As in the previous paragraph, a direction dependent phase variation occurs due to nodal displacement when the rotation axis 222 of the platform 220 does not match the array center 212 of the antenna array 210.
- (27) FIG. **3**A illustrates an exemplary radar using the calibration method and calibration system described in the current invention with at least one antenna **302** that is time-shared between at least one transmitter **306** and at least one receiver **308** via at least one duplexer **304**. Output from the receiver(s) **308** is received by a control and processing module **310** that processes the output from the receiver(s) **308** to produce display data for the display **312**. The control and processing module **310** is also operable to produce a radar data output that is provided to other control and processing units. The control and processing module **310** is also operable to control the transmitter(s) **306** and the receiver(s) **308**.
- (28) FIG. **3**B illustrates an alternative exemplary radar using the calibration method and system described in the current invention with separate sets of transmitter and receiver antennas. As illustrated in FIG. **3**B, at least one antenna **302**A for the at least one transmitter **306** and at least at least one antenna **302**B for the at least one receiver **308**.
- (29) FIG. **4** illustrates an exemplary MIMO (Multi-Input Multi-Output) radar **400** that is configured to use the calibration method and system described herein. With MIMO radar systems **400**, each transmitter signal is rendered distinguishable from every other transmitter signal by using appropriate differences in the modulation, for example, different digital code sequences. Each receiver **408** correlates with each transmitter signal, producing a number of correlated outputs equal to the product of the number of receivers **408** with the number of transmitters **406** (virtual receivers=RX.sub.N*TX.sub.N). The outputs are deemed to have been produced by a number of virtual receivers, which can exceed the number of physical receivers **408**.
- (30) FIG. **4** illustrates a radar system **400** with a plurality of antennas **402** connected to a plurality of receivers **408**, and a plurality of antennas **404** connected to a plurality of transmitters **406**. The radar system **400** of FIG. **4** is also a radar-on-chip system **400** where the plurality of receivers **408** and the plurality of transmitters **406**, along with any processing to produce radar data output and any interface (like Ethernet, CAN-FD, Flex Ray etc.), are integrated on a single semiconductor IC (Integrated Circuit). Using multiple antennas allows the radar system **400** to determine the angle of objects/targets in the

environment. Depending on the geometry of the antenna system **402**, **404**, different angles (e.g., with respect to the horizontal or vertical) can be determined. The radar system **400** may be connected to a network via an Ethernet connection or other types of network connections **414**. The radar system **400** may also include memory **410**, **412** to store software used for processing the received radio signals to determine range, velocity, and location of objects/targets in the environment. Memory may also be used to store information about objects/targets in the environment.

- (31) In practice, antenna elements have a directional gain and phase response. This response varies with respect to azimuth and elevation. The combination of transmitter and receiver antenna responses can be modeled as a new virtual antenna response. This response causes a gain and phase variation from the ideal signals at the virtual receivers. This effect can be divided into a per channel gain, per channel phase, direction dependent gain, and direction dependent phase.
- (32) In practice, leakage exists between antenna elements due to coupling effects. This coupling occurs between both the signals at the TX antenna elements and the RX antenna elements. This causes a deviation in both the signals that are transmitted by the transmitters **406** of the radar system **400** and the signals that are received by the receivers **408** of the radar system **400**. The combined effect of coupling at both the transmitter and the receiver is modeled as coupling between virtual receivers. FIG. **5** illustrates the coupling in a virtual array. FIG. **5** illustrates a virtual antenna element array **501**, a propagation front **502** of a far-field signal, and the path **503** of the signals to the virtual receivers. The signals at each virtual antenna element will couple. This coupling causes a gain and phase variation from the ideal signal at the virtual receivers. This impairment is henceforth referred to as mutual coupling.
- (33) In the preferred embodiment, the measured channel response is collected using a PMCW radar. Alternative embodiments may include other radar types.
- (34) Using the radar calibration systems described either in FIG. 1 or 2, one method of collecting the calibration measurements is a stop and go sweep. In this method, the radar system is rotated to the exact desired azimuth and elevation angles, where it stops before collecting the radar data. This method provides increased accuracy.
- (35) A second method of collecting the calibration measurements is a continuous sweep. In this second method, the radar system rotates in a continuous fashion and collects radar data while rotating. This method provides increased speed. However, it sacrifices accuracy due to angular smearing of the target response. There is no doppler impact since the rotation causes the effective target movement to be tangential to the radar. FIG. 6 illustrates exemplary sweep patterns. FIG. 6 illustrates azimuth sweeps 601 and elevation sweeps 602. The quantity, speed, and angular range of the sweeps is variable and chosen dependent on the array design. All sweeps contain a stationary measurement at boresight of the radar.
- (36) FIG. 7 illustrates the steps to an exemplary radar system calibration procedure. In step **701**, an exemplary measurement collection process is carried out. In step **702**, an exemplary phase correction process is carried out, which estimates and corrects for the per channel phase variation and direction dependent phase variation in the collected data. In step **703**, an exemplary gain correction process is carried out, which estimates and corrects for the per channel gain variation and direction dependent gain variation in the phase-corrected data. In step **704**, an exemplary ideal response refinement process is carried out, which uses the gain- and phase-corrected data to improve the angle-of-arrival estimation for the collected radar data. In step **705**, an exemplary cross-coupling calibration process is carried out, which estimates and corrects for the cross-coupling effects remaining in the gain- and phase-corrected data.
- (37) The radar data is described by the following exemplary mathematical model. Denoting az and el as the azimuth and elevation angles (in radians) to the target, define the u-v space as:
- (38) $u = \sin(az)\cos(el)v = \sin(el)$ Assuming a planar antenna array where the k.sup.th (out of N.sub.vrx) virtual antenna is located at (0, dy.sub.k, dz.sub.k) in rectangular coordinates, the ideal receive data in the absence of any cross-coupling and no gain/phase variation is given by:
- (39) $y_{\text{ideal}}(k, u, v) = e^{-j\frac{2\pi}{\Lambda}(\text{dy}_k u + \text{dz}_k v)}$ This ideal response of the N.sub.vrx virtual antennas corresponding to a far-field target in the u and v (or equivalently in az and el) space is expressed in vector form as:
- (40) $\overset{\text{fwdarw.}}{y}_{\text{ideal}}(u,v) = [y_{\text{ideal}}(0,u,v), y_{\text{ideal}}(1,u,v), .\text{Math.}, y_{\text{ideal}}(N_{\text{vrx}} 1, u, v)]^T$ In the presence of cross-coupling, the received signal vector is {right arrow over (x)}=A{right arrow over (y)}.sub.ideal, where A={a.sub.m.Math.k}, 0 \le m.Math.k \le N.sub.vrx-1 is a matrix that captures both coupling and per channel gain and phase variation. With this impairment, the received data becomes:
- (41) $x(k, u, v) = \underset{m=0}{\overset{N_{\text{vix}} 1}{\text{Math.}}} \alpha_{m.k} e^{-j\frac{2\pi}{\Lambda}(\text{dy}_m u + \text{dz}_m v)}$ The vector representation of the channel response {right arrow over (x)}(u, v) is then:
- (42) $\overset{\text{fwdarw.}}{X}(u,v) = [x(0,u,v),x(1,u,v), .Math.,x(N_{vrx}-1,u,v)]^T$ The data model described above applies to a far-field target. The embodiments of the method and calibration system discussed herein equally applies to a near-field target as well with a corresponding modification of the signal vectors defined above. The data model can be updated for non-nodal displacement for the radar in the data collection setup as follows:
- (43) $x_{\text{meas}}(k, u, v) = \gamma(u, v)$. Math. $\alpha_{m,k} e^{-j\frac{2\pi}{\Lambda}(\text{dy}_m(u \delta u(u, v)) + \text{dz}_m(v \delta v(u, v)))}$ Here, $\gamma(u, v)$ is due to the angle dependent phase correction (e.g., as a result of nodal displacement). $\delta u(u, v)$ and $\delta v(u, v)$ represent the angle dependent (hence the notation that these parameters are dependent on the angle of incidence as well) mismatch between the expected direction and the actual sampled direction. The vector representation {right arrow over (x)}.sub.meas (u, v) is:
- (44) $X_{\text{meas}}^{\text{fwdarw.}}(u, v) = [x_{\text{meas}}(0, u, v), x_{\text{meas}}(1, u, v), .Math., x_{\text{meas}}(N_{\text{vrx}} 1, u, v)]^T$ or $X_{\text{meas}}^{\text{fwdarw.}}(u, v) = \gamma(u, v)A_{\text{deal}}^{\text{fwdarw.}}(u \delta u(u, v), v \delta v(u, v))$
- (45) FIG. **8** illustrates an exemplary calibration procedure for direction dependent phase variation and per channel phase

variation. In step 801, the estimates of the direction dependent phase variation and per channel phase variation are initialized to zero. Then, in step **802**, a correction term is computed as the normalized complex conjugate of the measured channel response at boresight of the radar system. Then an iterative procedure begins. In step 803, the direction dependent phase variation is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response. In step **804**, the channel response is corrected again with this phase. Next in step **805**, the per channel phase variation is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response, now across all directions. In step 806, the channel response is corrected again with this phase. This iterative procedure is repeated for a fixed number of iterations or until convergence.

- (46) This phase calibration procedure can be described mathematically using the previous exemplary signal model. The initial coupling matrix in step 802 is set to zeros, except for the diagonal elements which are initially set to
- (47) $\alpha_{k,k}^{\text{brs}} = \frac{x_{\text{meas}}^*(k,0,0)}{\text{.Math. } x_{\text{meas}}(k,0,0) \cdot \text{.Math. }} \text{ since {right arrow over (x)}.sub.meas (k, 0,0) is the channel measured at boresight on the$ k.sup.th virtual element. Accordingly with step **801** and step **802**, we now initialize the following terms: direction dependent phase term: \angle {tilde over (y)}.sup.0 (u, v)=0, per channel phase term: \angle ã.sub.k,k.sup.0=0, and the array response corrected for the direction dependent and per channel phase terms {tilde over (x)}.sup.0 (k, u, v)=a.sub.k,k.sup.brsx.sub.meas(k, u, v). Then the iterative procedure begins. The superscript it is the iteration index. The direction-dependent least squares solution, \angle {tilde over (γ)}.sup.it(u, v), in step **803** is obtained by minimizing the cost function below:
- (48) $C_{1,\text{phase}}(u,v) = \text{.Math.}_{k=0}^{N_{\text{vrx}}-1} \text{.Math. } y_{\text{ideal}}(k,u,v)e^{-j\angle \tilde{y}^{\text{it}}(u,v)} \tilde{x}^{\text{it}-1}(k,u,v) \text{.Math.}^2$ The radar data is then updated in step **804** as
- (49) $0\tilde{x}^{it}(k,u,v) = \tilde{x}^{it-1}(k,u,v)e^{j\angle \tilde{y}^{it}(u,v)}$ The per channel least squared solution, $\angle \tilde{a}$.sub.k,k.sup.it, in step **805** is obtained by minimizing the cost function below
- (50) $C_{2, \text{phase}}(k) = M_{u, v}^{\text{ath}}$. Math. $y_{\text{ideal}}(k, u, v)e^{-j\angle \tilde{\alpha}_{k, k}^{\text{it}}} \tilde{\chi}^{\text{it}}(k, u, v)$. Math. ² The radar data is then updated in step **806**
- (51) $\tilde{x}^{it}(k, u, v) = \tilde{x}^{it}(k, u, v)e^{j\angle \tilde{\alpha}_{k,k}^{it}}$ This procedure loops for a finite number of iterations. Let the number of iterations be L. At the end of iterations, we obtain the following information: updated virtual array response (corrected for phase which corrects for nodal displacement as well as phase response per angle) $\{\text{tilde over}(x)\}(k, u, v) = \{\text{tilde over}(x)\}, \sup_{x \in \mathbb{R}^n} L(k, u, v), \}$ estimate of direction dependent phase correction
- (52) $\angle \tilde{\gamma}(u, v) = \sum_{\text{it}=1}^{L} \angle \tilde{\gamma}^{\text{it}}(u, v)$, and estimate of per channel phase variation (53) $\angle \tilde{\alpha}_{k,k} = \sum_{\text{it}=1}^{L} \angle \tilde{\alpha}_{k,k}^{\text{it}}$.
- (54) FIG. **9** illustrates an exemplary calibration procedure for direction dependent gain variation and per channel gain variation. First in step **901**, the estimates of the direction dependent gain and per channel gain are initialized to unity. The corrected channel response after the phase correction is now used. Then an iterative procedure begins. In step 902, the direction dependent gain is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response. Note that the ideal channel response is unity across all virtual receivers. In step 903, the channel response is corrected with this gain. Next in step 904, the per channel gain is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response, now across all directions. In step **905**, the channel response is corrected again with this gain. This iterative procedure is repeated for a fixed number of iterations or until convergence.
- (55) This gain calibration procedure can be described mathematically using the previous exemplary signal model. Accordingly, with step **901**, the following terms are initialized: direction dependent amplitude term: $|\{\text{tilde over }(y)\}|$. sup.0(u, v)|=1, per channel amplitude term: $|\tilde{a}.sub.k,k.sup.0|=1$, and the array response as corrected at the output of the previous phase calibration stage $\{\text{tilde over }(x)\}$.sup. $0(k, u, v) = \{\text{tilde over }(x)\}(k, u, v)$. Then the iterative procedure begins. The directiondependent least-squares solution, $\{\text{tilde over }(\gamma)\}$.sup.it(u, v), in step **902**, is obtained by minimizing the cost function below:
- $C_{1,\text{gain}}(u,v) = .\text{Math.}_{k=0}^{N_{\text{vrx}}-1}$.Math. .Math. $y_{\text{ideal}}(k,u,v)$.Math. .Math. $\tilde{\gamma}^{\text{it}}(u,v)$.Math. .Math. $\tilde{\chi}^{\text{it}-1}(k,u,v)$.Math. .Math. $\tilde{\gamma}^{\text{it}}(u,v)$.Math. .Math. $\tilde{\chi}^{\text{it}-1}(k,u,v)$.Math. .Math. $\tilde{\gamma}^{\text{it}}(u,v)$.Math. The per channel least-squares solution, |\text{\tilde{a}}.\text{sub.k},\text{k.sup.it}|, in step
- 904 is obtained by minimizing the cost function below
- (58) $C_{2,\text{gain}}(k) = Math.$ Math. $y_{\text{ideal}}(k, u, v)$.Math. $\tilde{\alpha}_{k,k}^{\text{it}}$.Math. $-\tilde{x}^{\text{it}}(k, u, v)$.Math. ² The radar data is then updated in step **905** as:
- (59) $\tilde{x}^{it}(k, u, v) = \tilde{x}^{it}(k, u, v)$.Math. $\tilde{\alpha}_{k, k}^{it}$.Math. This procedure loops for a finite number of iterations. Let the number of iterations be L. At the end of iterations, we obtain the following information: updated virtual array response (corrected for direction dependent phase which corrects for nodal displacement as well as amplitude/phase response per angle) {tilde over (x){(k, u, v)={tilde over (x)}.sup.L(k, u, v), an estimate of direction dependent amplitude correction,
- (60) .Math. $\tilde{\gamma}(u,v)$.Math. = $\Pi_{\text{it}=1}^{L}$.Math. $\tilde{\gamma}^{\text{it}}(u,v)$.Math. , and an estimate of per channel amplitude variation (61) 0 .Math. $\tilde{\alpha}_{k,k}$.Math. = $\Pi_{\text{it}=1}^{L}$.Math. $\tilde{\alpha}_{k,k}^{\text{it}}$.Math. .
- (62) The total per channel gain and phase correction terms are combined into a matrix, which is referred to as the diagonal antenna correction matrix. Using the exemplary mathematical model, this diagonal antenna correction matrix is defined as:
- (63) $\tilde{A}_d^{-1} = \text{diag}\{ \text{ .Math. } \tilde{\alpha}_{k,k} \text{ .Math. } e^{j \angle \tilde{\alpha}_{k,k}} \}, 0 \le k \le N_{\text{vix}} 1$

(64) In an embodiment of the method and calibration system discussed herein, the ideal channel response can be refined to correct for setup error and nodal displacement error after the diagonal antenna correction. The MUSIC algorithm is used, which exploits knowledge of the number of objects to provide a super-resolution estimate of the actual object directions in each measurement. These directions are then used to recompute the ideal channel response. This refined ideal channel response is used during the cross-coupling calibration process.

(65) FIG. 10 illustrates the calibration procedure for cross-coupling. First in step 1001, a cross coupling estimate matrix is initialized to zeros. Then in step 1002, a virtual channel is selected. In step 1003, a list of retired cross channels is initialized to empty. Then in step 1004, the measured response of the selected virtual channel is projected onto the ideal response for all cross channels. In step 1005, the cross channel that corresponds to the maximum of the projection and is not yet retired is selected. The value of this projection is also recorded. In step 1006, the contribution of the selected cross channel is removed from the measured response of the selected virtual channel. In step 1007, if the contribution is greater than a given threshold, the cross-coupling matrix element corresponding to the selected virtual channel and the selected cross channel is set to the recorded projection value in step 1008. Then in step 1009, the selected cross channel is retired. The process repeats at the projection in step 1004. If the contribution was not greater than a given threshold in step 1007, then the process repeats at the virtual channel selection in step 1002 with the next virtual channel. This iterates until the process has completed for all virtual channels, as shown by step 1010. In step 1011, the cross-coupling matrix is then normalized by multiplying by the square root of the number of virtual antennas divided by the L2 norm squared of the diagonal elements of the cross-coupling matrix. The cross-coupling correction matrix is then estimated using the inverse of this cross-coupling matrix.

(66) This cross-coupling calibration procedure can be described mathematically using the previous exemplary signal model. First in step 1001, the cross-coupling matrix \tilde{A} .sub.c=0.sub.N.sub.vrx.sub.-N.sub.vrx. is initialized. Then the iterative procedure begins for each virtual channel. In step 1002, the index of the current virtual channel is denoted as k. In step 1003, initialize the list of retired cross channels $S=\{\}$ is initialized. The projection of the k virtual channel response onto the ideal response for all cross channels in step 1004 is given by:

(67) $\beta_{k,m} = \text{.Math.}_{u,v} \tilde{\chi}(k,u,v) \tilde{y}_{\text{ideal}}(m,u,v), 0 \le m \le N_{\text{vrx}} - 1$ Then in step **1005**, the channel, m.sub.max, with the largest of β.sub.k,m is found as:

(68) $m_{max} = \underset{m \text{ .Math. } S}{\operatorname{argmax}}$.Math. $\beta_{k,m}$.Math. If this is the first iteration, $|\beta.\operatorname{sub.k,m.sub.max}|$ is recorded as the largest coupling value, $\beta.\operatorname{sub.max}$. In this implementation of the algorithm, these values are used in the thresholding function in step **1007**. Then in step **1006**, the contribution to the measured channel response is removed from the selected cross-channel from above as:

(69) $\tilde{x}(k,u,v) = \tilde{x}(k,u,v) - y_{ideal}(m_{max},u,v)\beta_{k,m_{max}}$ In step **1007**, if the ratio between |β.sub.k,m.sub.max| and β.sub.max exceeds a certain threshold, Th.sub.cpl, m.sub.max is added to S in step **1009**, and Ã.sub.c(k, m.sub.max) is set to β.sub.k,m.sub.max in step **1008**, and then the process goes to the projection in step **1004**. If the threshold test in step **1007** fails, the search for the k.sup.th virtual channel is ended when the next virtual channel is repeated at step **1002**. Once the iterations are completed over all the virtual channels as indicated by step **1010**, the estimated cross-coupling matrix is normalized in step **1011** as follows:

(70)
$$\tilde{A}_C = \frac{\sqrt{N}}{\text{.Math. diag}(\tilde{A}_c) .Math.} \tilde{A}_C$$

(71) A final correction matrix is computed through matrix multiplication of the cross-coupling correction matrix and the diagonal antenna correction matrix. Using the previous exemplary signal model, this correction matrix is defined mathematically as {tilde over (C)}=A.sub.c.sup.-1Ã.sub.d.sup.-1. This final correction matrix is implemented into the radar processing. The vector of data received at the virtual receivers is multiplied by this correction matrix before being multiplied by a steering matrix to achieve the calibrated beamformed output. The steering matrix is a stack of steering vectors, whose elements correspond to the desired complex beamforming weights. In the preferred embodiment, these vectors are the complex conjugate of the ideal channel response for the antenna array at a desired set of directions.

(72) Thus, the exemplary embodiments discussed herein provide for the calibration of a radar system that corrects or adjusts for a misalignment between an array center of an antenna array of the radar system and a rotation center of the radar system via a platform of a calibration module that rotates the radar system in both azimuth and elevation. The calibration module calculates a misalignment between the array center of the antenna array and the rotation center of the radar system. At least one receiver of the radar system corrects for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement. (73) Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims

1. A radar system comprising: a transmitter communicatively coupled to a transmitter antenna array, wherein the transmitter is configured to transmit radio signals via the transmitter antenna array; a receiver communicatively coupled to a receiver antenna array, wherein the receiver is configured to receive radio signals via the receiver antenna array that include radio signals transmitted by the transmitter and reflected from objects in an environment; a calibration module comprising a platform configured to rotate the transmitter antenna array and the receiver antenna array in azimuth and/or elevation, wherein respective array centers of the transmitter antenna array and/or the receiver antenna array are not aligned with the

platform's rotation center; wherein the calibration module is configured to access receiver data from the receiver for each of a plurality of azimuth and/or elevation angles as the platform is rotated, wherein the calibration module is operable to calculate a misalignment value from the receiver data to define a misalignment between the array center of the receiver antenna array and the rotation center of the platform, and wherein the receiver is operable to perform antenna calibrations that includes accounting for the misalignment based upon the calculated misalignment value.

- 2. The radar system of claim 1, wherein the platform is configured to rotate in discrete steps, and wherein the calibration module is operable to collect receiver data from the receiver at each discrete step.
- 3. The radar system of claim 2, wherein the calibration module is configured to rotate the platform to discrete angles before collecting receiver data.
- 4. The radar system of claim 2, wherein the platform is configured to rotate discretely for azimuth sweeps and/or elevation sweeps.
- 5. The radar system of claim 1, wherein the platform is configured to rotate in a continuous sweep of angles, and wherein the calibration module is operable to collect receiver data while the platform is rotating.
- 6. The radar system of claim 5, wherein the platform is configured to rotate continuously for azimuth sweeps and/or elevation sweeps.
- 7. The radar system of claim 1, wherein the receiver is operable to perform the antenna calibrations to account for phase distortion and angle-of-arrival error.
- 8. The radar system of claim 1 further comprising a plurality of transmitters and a plurality of receivers, wherein each transmitter of the plurality of transmitters is communicatively coupled to the transmitter antenna array, and wherein each receiver of the plurality of receivers is communicatively coupled to the receiver antenna array.
- 9. The radar system of claim 8, wherein the calibration module is configured to access receiver data from each receiver of the plurality of receivers for each of a plurality of azimuth and/or elevation angles as the platform is rotated, and wherein the calibration module is configured to calculate a respective misalignment value for each receiver of the plurality of receivers.
- 10. The radar system of claim 9, wherein each receiver of the plurality of receivers is operable to perform antenna calibrations to account for the respective phase distortion and angle-of-arrival errors that includes accounting for the misalignment based upon the calculated misalignment values of each respective receiver of the plurality of receivers.
- 11. The radar system of claim 10, wherein the misalignment between the array center of the receiver antenna array and the rotation center of the platform is a nodal displacement, and wherein the array center of the receiver antenna array is a nodal point.
- 12. The radar system of claim 11, wherein the calibration module is operable to process phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.
- 13. The radar system of claim 12, wherein the calibration module is operable to modify its measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.
- 14. The radar system of claim 8 further comprising an antenna switch, wherein the transmitter antenna array and the receiver antenna array each comprise multiple antennas, and wherein each transmitter of the plurality of transmitters and each receiver of the plurality of receivers are coupled to the corresponding multiple transmitter antennas and multiple receiver antennas, respectively, via the antenna switch.
- 15. A radar system comprising: a plurality of transmitters, each communicatively coupled to a transmitter antenna array, wherein each transmitter of the plurality of transmitters is configured to transmit radio signals via the transmitter antenna array; a plurality of receivers, each communicatively coupled to a receiver antenna array, wherein each receiver of the plurality of receivers is configured to receive radio signals via the receiver antenna array that include radio signals transmitted by the transmitters and reflected from objects in an environment; a calibration module comprising a platform configured to rotate the transmitter antenna array and the receiver antenna array in azimuth and/or elevation, wherein respective array centers of the transmitter antenna array and the receiver antenna array are not aligned with the platform's rotation center; wherein the calibration module is configured to access receiver data from each receiver of the plurality of receivers for each of a plurality of azimuth and/or elevation angles as the platform is rotated, wherein the calibration module is operable to calculate a respective misalignment value for each receiver of the plurality of receivers from the receiver data to define a misalignment between the array center of the receiver antenna array and the rotation center of the platform.
- 16. The radar system of claim 15, wherein each receiver of the plurality of receivers is operable to perform antenna calibrations to account for respective phase distortion and angle-of-arrival errors that includes accounting for the misalignment based upon the calculated misalignment values of each respective receiver of the plurality of receivers.
- 17. The radar system of claim 16, wherein the misalignment between the array center of the receiver antenna array and the rotation center of the platform is a nodal displacement, and wherein the array center of the receiver antenna array is a nodal point.
- 18. The radar system of claim 17, wherein the calibration module is operable to process phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.

- 19. The radar system of claim 18, wherein the calibration module is operable to modify its measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.
- 20. A method for calibrating a radar system for system impairments, wherein the method comprises: transmitting, with a transmitter, radio signals; receiving, with a receiver, radio signals that include radio signals transmitted by the transmitter and reflected from objects in an environment; wherein the transmitter and the receiver are coupled to an antenna array; rotating, with a platform, the antenna array in both azimuth and elevation, and wherein an array center of the antenna array is not aligned with the platform's rotational center; in the presence of at least one object, collecting from the receiver data defined by received radio signals reflected from the at least one object at selected azimuth and/or elevation angles, and calculating a misalignment value for a misalignment between the array center of the antenna array and the rotation center of the platform, and correcting, with the receiver, antenna calibration errors that accounts for the misalignment based upon the misalignment value, wherein the misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement, and wherein the array center of the antenna array is a nodal point.
- 21. The method of claim 20, wherein correcting for antenna calibration errors accounts for phase distortions and angle-of-arrival errors.
- 22. The method of claim 21 further comprising processing phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments, which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.
- 23. The method of claim 22 further comprising solving phase error and amplitude variations via an iterative least squares optimization solution.
- 24. The method of claim 21 further comprising estimating, with the receiver, angles-of-arrival of the collected reflected signals or determining angles-of-arrival of the collected reflected signals based upon prior knowledge of the at least one object's location relative to the receiver.
- 25. The method of claim 21 further comprising modifying measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.
- 26. The method of claim 20, wherein the platform is rotated in either a continuous manner or in discrete steps, wherein, when rotating in discrete steps, the platform is rotated to discrete angles before collecting receiver data, and wherein, when rotating continuously, the platform is rotated in a continuous sweep of angles while collecting receiver data.