RUICONG(RAY) CHEN

PhD Candidate of EECS@MIT raychen@mit.edu https://ruicong-chen.github.io/

SUMMARY

- I have excellence in analog/mixed-signal/digital chip design with proved record of leading publications such as VLSI-C 2022.
- I have experience in complex system design based on custom designed chip with top publication such as MobiCOM 2020.
- I have strong technical backgrounds in circuits and system from my 4 years of PhD training at MIT.
- I am co-advised by Prof. Anantha Chandrakasan and Prof. Hae-Seung Lee.
- I am always curious about new technology and passionate about doing high-impact work.

EDUCATION

 Ph.D. Candidate, Department of Electrical Engineering and Computer Science (EECS), MIT 	2021-2023, Cambridge, MA
- Advisors: Anantha P. Chandrakasan and Hae-Seung Lee	
S.M., Department of Electrical Engineering and Computer Science (EECS), MIT	2019-2021, Cambridge, MA
- Advisors: Anantha P. Chandrakasan and Hae-Seung Lee	
B.S., Department of Electrical Engineering and Computer Science (EECS), Peking University	2015-2019. Beijing. China

RESEARCH INTERESTS

- Mixed-signal Application-Specific Integrated Circuit (ASIC) Design
- Hardware security
- · In-memory computing and machine learning

MAIN RESEARCH EXPERIENCE

- Ranking the 1st in the department

Circuit design for secure IoT applications

July 2021-Present, MIT

- Design, simulate, fabricate and test ADCs with side-channel attack resistance
- Improve the circuit performance with security feature
- One work submitted to ISSCC
- One work published on top venue of circuits, VLSI-C
- Direct hybrid-encoding for signed expressions (HESE) SAR for neuromorphic computing
- Apr 2020-June 2021, MIT
- Explore HESE to shorten signed-digit number representations for neuromorphic computing
- Implement energy-efficient HESE-direct SAR ADC with spare cycles for calibrations
- Work published on ISLPED
- Wireless and Batteryless Micro-Implants

- Sept 2019-Mar 2020, MIT
- Design, simulate, fabricate, and test the system with costume designed IC on flexible PCB
- Work published on top venue of networking, MobiCOM

FEATURED PUBLICATIONS

RaM-SAR: A Low Energy and Area Overhead, 11.3fJ/conv.-step 12b 25MS/s Secure Random-Mapping SAR ADC with Power and EM Side-channel Attack Resilience, The 2022 International Symposium on VLSI Circuits (VLSI-C 2022)

R.-C Chen, H.-R Wang, A. Chandrakasan, H.-S Lee

A Bit-level Sparsity-aware SAR ADC with Direct Hybrid Encoding for Signed Expressions for AloT Applications, The 2022 International Symposium on Low Power Electronics and Design (ISLPED 2022)

R.-C Chen, H. T. Kung, A. Chandrakasan, H.-S Lee

Enabling Self-Reconfigurability for Wireless and Batteryless Micro-Implant, The 26th Annual International Conference on Mobile Computing and Networking (MobiCOM 2020)

M.-R, Abdelhamid, R.-C Chen, J.-Y Chou, A. Chandrakasan, F. Adib

SELECTED AWARDS

Commlab Fellowship
 National Scholarship 2017
 Outstanding Graduate in Beijing 2019
 by Ministry of Education of the P.R. China
 by Beijing Municipal Commission of Education

Outstanding Graduate of Peking University 2019

SERVICE

• Reviewers of TVLSI, T-CAS I and T-CAS II

Current

2021

by Peking University

• Circuit Session Chair of MTL Annual Research Conference (MARC)

2021-2023

Commlab Fellow of MIT School of Engineering

TECHNICAL SKILLS

Programming SKills Hardware Skills