In the Specification:

The title has been replaced with the following title:

-- ANTIBODIES TO PRO326 POLYPEPTIDES--

The paragraph, beginning at page 2, line 34 has been amended as follows:

--Purification and sequence analysis of the EGF-like domain has revealed the presence of six conserved cysteine residues which cross-bind to create three peptide loops, Savage et al., J. Biol. Chem. 248: 7669-7672 (1979). It is now generally known that several other peptides can which share the generalized with the **EGF** receptor same react X_nCX₇CX_{4.5}CX₁₀CXCX₅GX₂CX_n, where X represents any non-cysteine amino acid, and n is a variable repeat number. Non isolated peptides having this motif include TGF- α , amphiregulin, schwannoma-derived growth factor (SDGF), heparin-binding EGF-like growth factors and certain virally encoded peptides (e.g., Vaccinia virus, Reisner, Nature 313: 801-803 (1985), Shope fibroma virus, Chang et al., Mol Cell Biol. 7: 535-540 (1987), Molluscum contagiosum, Porter and Archard, J. Gen. Virol. 68: 673-682 (1987), and Myxoma virus, Upton et al., J. Virol. 61: 1271-1275 (1987), Prigent and Lemoine, *Prog. Growth Factor Res.* 4: 1-24 (1992).--

The paragraph, beginning at page 14, line 14, has been amended as follows:

--Purification and sequence analysis of the EGF-like domain has revealed the presence of six conserved cysteine residues which cross-bind to create three peptide loops, Savage CR et al., J. Biol. Chem. 248: 7669-7672 (1979). It is now generally known that several other peptides can **EGF** which share the same generalized motif with the receptor react X_nCX₇CX_{4.5}CX₁₀CXCX₅GX₂CX_n, where X represents any non-cysteine amino acid, and n is a variable repeat number. Non isolated peptides having this motif include TGF-a, amphiregulin, schwannoma-derived growth factor (SDGF), heparin-binding EGF-like growth factors and certain virally encoded peptides (e.g., Vaccinia virus, Reisner AH, Nature 313: 801-803 (1985), Shope fibroma virus, Chang W., et al., Mol Cell Biol. 7: 535-540 (1987), Molluscum contagiosum, Porter CD & Archard LC, J. Gen. Virol. 68: 673-682 (1987), and Myxoma virus, Portion Come J. I. Lay I felt experiences topen in the complete of the principle

> Amendment and Response to Office Action (dated April 23, 2003) Application Serial No. 09/902,615 Attorney Docket No.: 39780-1618P2C28

The paragraph, beginning at page 69, line 6, has been amended as follows:

--Percent amino acid sequence identity may also be determined using the sequence

comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).

The NCBI-BLAST2 sequence comparison program may be downloaded from

http://www.nebi.nlm.nih.gov. NCBI-BLAST2 uses several search parameters, wherein all of

those search parameters are set to default values including, for example, unmask = yes, strand =

all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value =

0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix =

BLOSUM62.--

The paragraph, beginning at page 71, line 26, has been amended as follows:

--Percent nucleic acid sequence identity may also be determined using the sequence

comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).

The NCBI-BLAST2 sequence comparison program may be downloaded from

http://www.nebi.nlm.nih.gov. NCBI-BLAST2 uses several search parameters, wherein all of

those search parameters are set to default values including, for example, unmask = yes, strand =

all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value =

0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix =

BLOSUM62.--

The paragraph, beginning at page 147, line 20 has been amended as follows:

--Commercially available reagents referred to in the examples were used according to

manufacturer's instructions unless otherwise indicated. The source of those cells identified in the

following examples, and throughout the specification, by ATCC accession numbers is the

American Type Culture Collection, [Rockville, Maryland] Manassas, VA.--

The paragraph beginning at page 147, line 27, has been amended as follows:

--The extracellular domain (ECD) sequences (including the secretion signal sequence, if

any) from about 950 known secreted proteins from the Swiss-Prot public database were used to

and proprietary databases (e.g. LIFESEQTM, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST2 (Altschul, and Gish, Methods in Enzymology 266: 460-80 (1996); http://blast.wustl/edu/blast/README.html) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a Blast score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, Washington).

The paragraph, beginning at page 154, line 14 has been amended as follows:

--The EST sequence accession number AF007268, a murine fibroblast growth factor (FGF-15) was used to search various public EST databases (e.g., GenBank, Dayhoff, etc.) The search was performed using the computer program BLAST or BLAST2 Altschul et al., Methods in Enzymology, 266:460-480 (1996); http://blast.wustl/edu/blast/README.html as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. The search resulted in a hit with GenBank EST AA220994, which has been identified as stratagene NT2 neuronal precursor 937230.--

The paragraph beginning at page 167, line 30, has been amended as follows:

--The extracellular domain (ECD) sequences (including the secretion signal, if any) of from about 950 known secreted proteins from the Swiss-Prot public protein database were used to search expressed sequence tag (EST) databases. The EST databases included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQTM, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST2 (Altshul et al., Methods in Enzymology 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequence. Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, Washington; http://bozeman.mbt.washington.edu/phrap.docs/phrap.html)--

The paragraph beginning at page 178, line 14, has been amended as follows:

--The extracellular domain (ECD) sequences (including the secretion signal, if any) of from about 950 known secreted proteins from the Swiss-Prot public protein database were used to search expressed sequence tag (EST) databases. The EST databases included public EST databases (e.g., GenBank) and a proprietary EST DNA database (LIFESEQTM, Incyte Pharmaceuticals, Palo Alto, CA). The search was performed using the computer program BLAST or BLAST2 (Altshul et al., Methods in Enzymology 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequence. Those comparisons resulting in a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program "phrap" (Phil Green, University of Washington, Seattle, Washington; http://bozeman.mbt.washington.edu/phrap.docs/phrap.html).--

The paragraph, beginning at page 250, line 2, has been amended as follows:

--The following materials have been deposited with the American Type Culture Collection, [12301 Parklawn Drive, Rockville, MD,]10801 University Boulevard, Manassas, VA USA (ATCC):

<u>Material</u>	ATCC Dep. No.	Deposit Date
DVI 22202 1121	ATCC 200250	Cantanal an 16, 1007
DNA32292-1131	ATCC 209258	September 16, 1997
DNA33094-1131	ATCC 209256	September 16, 1997
DNA33223-1136	ATCC 209264	September 16, 1997
DNA34435-1140	ATCC 209250	September 16, 1997
DNA27864-1155	ATCC 209375	October 16, 1997
DNA36350-1158	ATCC 209378	October 16, 1997
DNA32290-1164	ATCC 209384	October 16, 1997
DNA35639-1172	ATCC 209396	October 17, 1997
DNA33092-1202	ATCC 209420	October 28, 1997
DNA49435-1219	ATCC 209480	November 21, 1997
DNA35638-1141	ATCC 209265	September 16, 1997
DNA32298-1132	ATCC 209257	September 16, 1997
DNA33089-1132	ATCC 209262	September 16, 1997
DNA33786-1132	ATCC 209253	September 16, 1997
DNA35918-1174	ATCC 209402	October 17, 1997

DNA39969-1185	ATCC 209400	October 17, 1997
DNA32286-1191	ATCC 209385	October 16, 1997
DNA33461-1199	ATCC 209367	October 15, 1997
DNA40628-1216	ATCC 209432	November 7, 1997
DNA33221-1133	ATCC 209263	September 16, 1997
DNA33107-1135	ATCC 209251	September 16, 1997
DNA35557-1137	ATCC 209255	September 16, 1997
DNA34434-1139	ATCC 209252	September 16, 1997
DNA33100-1159	ATCC 209373	October 16, 1997
DNA35600-1162	ATCC 209370	October 16, 1997
DNA34436-1238	ATCC 209523	December 10, 1997
DNA33206-1165	ATCC 209372	October 16, 1997
DNA35558-1167	ATCC 209374	October 16, 1997
DNA35599-1168	ATCC 209373	October 16, 1997
DNA36992-1168	ATCC 209382	October 16, 1997
DNA34407-1169	ATCC 209383	October 16, 1997
DNA35841-1173	ATCC 209403	October 17, 1997
DNA33470-1175	ATCC 209398	October 17, 1997
DNA34431-1177	ATCC 209399	October 17, 1997
DNA39510-1181	ATCC 209392	October 17, 1997
DNA39423-1182	ATCC 209387	October 17, 1997
DNA40620-1183	ATCC 209388	October 17, 1997
DNA40604-1187	ATCC 209394	October 17, 1997
DNA38268-1188	ATCC 209421	October 28, 1997
DNA37151-1193	ATCC 209393	October 17, 1997
DNA35673-1201	ATCC 209418	October 28, 1997
DNA40370-1217	ATCC 209485	November 21, 1997
DNA42551-1217	ATCC 209483	November 21, 1997
DNA39520-1217	ATCC 209482	November 21, 1997
DNA41225-1217	ATCC 209491	November 21, 1997
DNA43318-1217	ATCC 209481	November 21, 1997
DNA40587-1231	ATCC 209438	November 7, 1997
DNA41338-1234	ATCC 209927	June 2, 1998
DNA40981-1234	ATCC 209439	November 7, 1997
DNA37140-1234	ATCC 209489	November 21, 1997
DNA40982-1235	ATCC 209433	November 7, 1997
DNA41379-1236	ATCC 209488	November 21, 1997
DNA44167-1243	ATCC 209434	November 7, 1997
DNA39427-1179	ATCC 209395	October 17, 1997
DNA40603-1232	ATCC 209486	November 21, 1997
DNA43466-1225	ATCC 209490	November 21, 1997
DNA43046-1225	ATCC 209484	November 21, 1997
17/ 132008 1121	VTCC 200371	Py + Ay Tr - Tike

Please replace the paragraph beginning at page 25 1, line 10, with the following rewritten paragraph:

--These deposit were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations there under (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures that all restrictions imposed by the depositor on the availability to the public of the deposited material will be irrevocably removed upon the granting of the pertinent U.S. patent, assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638).--