Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

26 января 2019 г.

1 Введение

Эти лекции были рассказаны студентам групп M3334—M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 1

2.1 λ -исчисление

Определение 2.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

$$\Phi ::= x | (\Phi) | \lambda x. \Phi | \Phi \Phi$$

Иногда для упращения записи мы будем опускать скобки. В этом случае, перед разбором выражения, следует расставить все опущенные скобки. При их рассатвлении будем придерживаться правил:

- 1. В аппликации расставляем скобки слева направо: $A \ B \ C \implies (A \ B) \ C$.
- 2. Абстракции жадные поглащают скобками все что могут до конца строки: $\lambda a. \lambda b. a \ b \implies \lambda a. (\lambda b. (a \ b)).$

Пример.
$$\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf)))$$

Договоримся, что:

- Переменные x, a, b, c.
- Термы (части λ -выражения) X, A, B, C.
- Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные— из конца.

Есть понятия связанного и свободного вхождения переменной (аналогично исчислению предикатов).

Определение 2.2. Если вхождение x находится в области действия абстракции по x, то такое вхождение называется связанным, иначе вхождение называется свободным.

Определение 2.3. Терм Q называется свободным для подстановски в Φ вместо x, если после подстановки Q ни одно вхождение не станет связанным.

Пример. $\lambda x.A$ связывает все свободные вхождения x в A.

Определение 2.4. Функция V(A) — множество переменных, входящих в A.

Определение 2.5. Функция FV(A) — множество свободных переменных, входящих в A:

$$\mathrm{FV}(A) = \begin{cases} \{x\} & \text{если } A \equiv x \\ \mathrm{FV}(P) \cup \mathrm{FV}(Q) & \text{если } A \equiv PQ \\ \mathrm{FV}(P) \backslash \{x\} & \text{если } A \equiv \lambda x.P \end{cases}$$

 λ -выражение можно понимать как функцию. Абстракция — это функция с аргументом, аппликация — это передача аргумента.

Определение 2.6 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

- 1. $A \equiv x$, $B \equiv y$ и $x \equiv y$.
- 2. $A \equiv P_1 Q_1$, $B \equiv P_2 Q_2$ if $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$.
- 3. $A \equiv \lambda x. P_1, \ B \equiv \lambda y. P_2$ и $P_1[x := t] =_{\alpha} P_2[y := t]$, где t новая переменная.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

- 1. $tz =_{\alpha} tz$ верно по второму условию.
- 2. Тогда получаем, что $\lambda y.ty =_{\alpha} \lambda x.tx$ по третьему условию, так как из предыдущего пункта следует $ty[y:=z] =_{\alpha} tx[x:=z]$.
- 3. Из второго пункта пункта получаем что $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$ по третьему условию, так как $\lambda y.xy[x := t] =_{\alpha} \lambda x.yx[y := t]$.

Определение 2.7 (β -редекс). β -редекс—выражение вида: ($\lambda x.A$) B

Определение 2.8 (β -редукция). $A \to_{\beta} B$, если имеет место одно из следующих условий:

- 1. $A \equiv P_1Q_1, B \equiv P_2Q_2$ и либо $P_1 =_{\alpha} P_2, Q_1 \rightarrow_{\beta} Q_2$, либо $P_1 \rightarrow_{\beta} P_2, Q_1 =_{\alpha} Q_2$
- 2. $A \equiv (\lambda x.P) Q$, $B \equiv P[x := Q]$ причем Q свободна для подстановки вместо x в P
- 3. $A \equiv \lambda x.P$, $B \equiv \lambda x.Q$ и $P \rightarrow_{\beta} Q$

Пример. $(\lambda x.x) y \rightarrow_{\beta} y$

Пример. $a(\lambda x.x)y \rightarrow_{\beta} ay$

2.2 Представление некоторых функций в лямбда исчислении

Логические значения легко представить в терминах λ -исчисления. В самом деле, положим:

- True $\equiv \lambda a \lambda b.a$
- False $\equiv \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции

Определение 2.9. If $\equiv \lambda c. \lambda t. \lambda e. (ct)e$

Пример. If T $a \ b \rightarrow_{\beta} a$

Доказательство.

$$((\lambda c.\lambda t.\lambda e.(ct)e) \ \lambda a\lambda b.a) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda a\lambda b.a) \ t \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda b.t) \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.t) \ a \ b \rightarrow_{\beta} (\lambda e.a) \ b \rightarrow_{\beta} a$$

Как мы видим If T действительно возвращает результат первой ветки. Другие логические операции:

Not =
$$\lambda a.a$$
 F T Add = $\lambda a.\lambda b.a$ b F Or = $\lambda a.\lambda b.a$ T b

2.3 Черчевские нумералы

Определение 2.10 (черчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & \text{при } n > 0 \\ x & \text{при } n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n. \lambda f. \lambda x. f(n f x)$$

Арифметические операции:

- 1. IsZero = $\lambda n.n(\lambda x. F) T$
- 2. Add = $\lambda a.\lambda b.\lambda f.\lambda x.a f(b f x)$
- 3. Pow = $\lambda a.\lambda b.b$ (Mul a) $\overline{1}$
- 4. IsEven = $\lambda n.n$ Not T
- 5. Mul = $\lambda a.\lambda b.a$ (Add b) $\overline{0}$

Для того, чтобы определить (-1), сначала определим пару:

$$\langle a, b \rangle = \lambda f. f \, a \, b$$
 First $= \lambda p. p \, T$ Second $= \lambda p. p \, F$

Затем n раз применим функцию $f\left(\langle a,b\rangle\right)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \operatorname{First}(n \left(\lambda p. \left\langle \left(\operatorname{Second} p\right), (+1) \left(\operatorname{Second} p\right)\right\rangle\right) \left\langle \overline{0}, \overline{0}\right\rangle)$$

3 Лекция 2

3.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 3.1 (λ -терм). Рассмотрим классы эквивалентности $[A]_{=\alpha}$ Будем говорить, что $[A] \to_{\beta} [B]$, если существуют $A' \in [A]$ и $B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 3.1. $(=_{\alpha})$ — отношение эквивалентности.

Пусть в А есть β -редекс $(\lambda x.P)Q$, но Q не свободен для подстановски вместо x в P, тогда найдем $y \notin V[P], y \notin V[Q]$. Сделаем замену P[x := y]. Тогда замена P[x := y][y := Q] допустима. То есть, можно сказать, что мы просто переименовали переменную x в P и получили свободу для подстановки, тем самым получив возможность редукции.

Лемма 3.2. $P[x := Q] =_{\alpha} P[x := y][y := Q]$, если замена допустима.

3.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $K,\ I,\ \Omega$

Определение 3.2. λ -выражение A находится в нормальноф форме, если оно не содержит β -редексов.

Определение 3.3. A — нормальная форма B, если существует последовательность термов $A_1...A_n$ такая, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} ... \to_{\beta} A_n =_{\alpha} A$.

Определение 3.4. Комбинатор — λ -выражение без свободных переменных.

Определение 3.5.

- $I \equiv \lambda x.x$ (Identitant)
- $K \equiv \lambda a. \lambda b. a \text{ (Konstanz)}$
- $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$

Лемма 3.3. Ω — не имеет нормальной формы.

Доказательство. Ω Имеет единтсвенный β -редекс, где $A \equiv xx$, $B \equiv (\lambda x.xx)$. Тогда единственный возможный путь редукции — подставить B вместо x в A. Но тогда мы получим Ω . Следовательно у Ω нет нормальной формы, так как в полученном выражении у нас всегда будет β -редекс.

3.3 β -редуцируемость

Определение 3.6. Будем говорить, что $A \twoheadrightarrow_{\beta} B$, если \exists такие $X_1..X_n$, что $A =_{\alpha} X_1 \to_{\beta} X_2 \to_{\beta} ... \to_{\beta} X_{n-1} \to_{\beta} X_n =_{\alpha} B$.

 $(\twoheadrightarrow_{\beta})$ — рефлексивное и транзитивное замыкание $(\twoheadrightarrow_{\beta})$. $(\twoheadrightarrow_{\beta})$ не обязательно приводит к нормальной форме

Пример. $\Omega \twoheadrightarrow_{\beta} \Omega$

3.4 Ромбовидное свойство

Определение 3.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если $\forall a, b, c$, таких, что aRb, aRc, $b \neq c$, $\exists d$, что bRd и cRd.

Пример. (\leq) на множестве натуральных чисел обладает ромбовидным свойством, (>) на множестве натуральных чисел не обладает ромбовидным свойством.

3.5 Теорема Чёрча-Россер, следствие о единственности нормальной формы

Теорема 3.1 (Черча-Россера). $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Следствие 3.1. Если у A есть нормальная форма, то она единтсвенная с точностью до $(=_{\alpha})$ (переименования переменных).

Доказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 3.4. Если B — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма 3.5. Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство. Пусть $M_1R^*M_n$ и M_1RN_1 . Тогда существуют такие $M_2 \dots M_{n-1}$, что $M_1RM_2 \dots M_{n-1}RM_n$. Так как R обладает ромбовидным свойством, M_1RM_2 и M_1RN_1 , то существует такое N_2 , что N_1RN_2 и M_2RN_2 . Аналогично, существуют такие $N_3 \dots N_n$, что $N_{i-1}RN_i$ и M_iRN_i . Мы получили такое N_n , что $N_1R^*N_n$ и $M_nR^*N_n$.

Пусть теперь $M_{1,1}R^*M_{1,n}$ и $M_{1,1}R^*M_{m,1}$, то есть имеются $M_{1,2}\dots M_{1,n-1}$ и $M_{2,1}\dots M_{m-1,1}$, что $M_{1,i-1}RM_{1,i}$ и $M_{i-1,1}RM_{i,1}$. Тогда существует такое $M_{2,n}$, что $M_{2,1}R^*M_{2,n}$ и $M_{1,n}R^*M_{2,n}$. Аналогично, существуют такие $M_{3,n}\dots M_{m,n}$, что $M_{i,1}R^*M_{i,n}$ и $M_{1,n}R^*M_{i,n}$. Тогда $M_{1,n}R^*M_{m,n}$ и $M_{m,1}R^*M_{m,n}$.

Лемма 3.6 (Грустная лемма). (\rightarrow_{β}) не обладает ромбовидным свойством.

Доказательство. Пусть $A = (\lambda x. xx)(\mathcal{I}\mathcal{I})$. Покажем что в таком случае не будет выполняться ромбовидное свойство:

Рис. 1: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение 3.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

- 1. $A =_{\alpha} B$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ if $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$
- 3. $A \equiv \lambda x.P_1, B \equiv \lambda x.P_2 \text{ if } P_1 \rightrightarrows_{\beta} P_2$
- 4. $A=_{\alpha}(\lambda x.P_1)Q_1,\ B=_{\alpha}P_2[x\coloneqq Q_2]$ причем Q_2 свободна для подстановки вместо x в P_2 и $P_1\rightrightarrows_{\beta}P_2,\ Q_1\rightrightarrows_{\beta}Q_2$

Лемма 3.7. Если $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x \coloneqq Q_1] \rightrightarrows_{\beta} P_2[x \coloneqq Q_2]$

 Δ оказательство. Будем доказывать индукцией по определению $\rightrightarrows_{\beta}$. Рассмотрим случаи:

- Пусть $P_1 =_{\alpha} P_2$. Тогда лемма легко доказывается индукцией по структуре выражения.
- Пусть $P_1 \equiv A_1B_1$, $P_2 \equiv A_2B_2$. По определению $(\rightrightarrows_{\beta})$ $A_1 \rightrightarrows_{\beta} A_2$ и $B_1 \rightrightarrows_{\beta} B_2$. Рассмотрим два случая:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$. Тогда $A_1[x := Q_1]B_1 \rightrightarrows_{\beta} A_2[x := Q_2]B_2$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
 - 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
- Пусть $P_1 \equiv \lambda y. A_1$, $P_2 \equiv \lambda y. A_2$. по определению $(\rightrightarrows_{\beta})$ $A_1 \rightrightarrows_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y. (A_1[x \coloneqq Q_1]) \rightrightarrows_{\beta} \lambda y. (A_2[x \coloneqq Q_2])$ по определению $(\rightrightarrows_{\beta})$. Следовательно $\lambda y. A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} \lambda y. A_2[x \coloneqq Q_2]$ по определению подствановки.
- Пусть $P_1 =_{\alpha} (\lambda y. A_1) B_1$, $P_2 =_{\alpha} A_2[y \coloneqq B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[x \coloneqq Q_2]$, $B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} B_2[x \coloneqq Q_2]$. Следовательно по определению $(\rightrightarrows_{\beta})$ получаем, что $(\lambda y. A_1[x \coloneqq Q_1]) B_1[x \coloneqq Q_1] \rightrightarrows_{\beta} A_2[y \coloneqq B_2][x \coloneqq Q_2]$

Лемма 3.8. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. Будем доказывать индукцией по определению $(\rightrightarrows_{\beta})$. Покажем, что если $M \rightrightarrows_{\beta} M_1$ и $M \rightrightarrows_{\beta} M_2$, то существует M_3 , что $M_1 \rightrightarrows_{\beta} M_3$ и $M_2 \rightrightarrows_{\beta} M_3$. Рассмотрим случаи:

- Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \rightrightarrows_{\beta} P_1$, $P \rightrightarrows_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3$, $P_2 \rightrightarrows_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- Если $M \equiv PQ, M_1 \equiv P_1Q_1$ и по определению $(\rightrightarrows_{\beta}) P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим два случая:
 - 1. $M_2 \equiv P_2 Q_2$. Тогда по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3, P_2 \rightrightarrows_{\beta} P_3$. Аналогично для Q. Тогда возьмем $M_3 \equiv P_3 Q_3$.
 - 2. $P \equiv \lambda x. P'$ значит $P_1 \equiv \lambda x. P_1'$ и $P' \rightrightarrows_{\beta} P_1'$. Пусть тогда $M_2 \equiv P_2[x \coloneqq Q_2]$, по определению $(\rightrightarrows_{\beta}) \ P' \rightrightarrows_{\beta} P_2, Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 3.7 существует $M_3 \equiv P_3[x \coloneqq Q_3]$ такой, что $P_1' \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

- Если $M \equiv (\lambda x.P)Q, M_1 \equiv P_1[x := Q_1]$ и $P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2)Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 3.7 существует такой $M_3 \equiv P_3[x \coloneqq Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x \coloneqq Q_2], \ P \rightrightarrows_{\beta} P_2, \ Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 3.7 существует такой $M_3 \equiv P_3[x \coloneqq Q_3],$ что $P_1 \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

Лемма 3.9.

1.
$$(\rightrightarrows_{\beta})^* \subseteq (\to_{\beta})^*$$

$$2. (\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$$

Следствие 3.2. $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство. $(\rightarrow_{\beta})^* = (\twoheadrightarrow_{\beta})$. Тогда $(\twoheadrightarrow_{\beta}) = (\rightrightarrows_{\beta})^*$. Значит из того, что $(\rightrightarrows_{\beta})$ обладает ромбовидным свойством и леммы 3.5 следует, что $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

3.6 Нормальный и аппликативный порядок вычислений

Пример. Выражение $KI\Omega$ можно редуцировать двумя способами:

1.
$$\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a. \lambda b. a) \mathcal{I}) \Omega \rightarrow_{\beta} (\lambda b. \mathcal{I}) \Omega \rightarrow_{\beta} \mathcal{I}$$

$$2. \ \mathcal{K} \, \mathcal{I} \, \Omega =_{\alpha} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \twoheadrightarrow_{\beta} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K} \, \mathcal{I} \, \Omega$$

Как мы видим, в первом случае мы достигли нормальной формы, в то время как во втором мы получаем бесонечную редукцию. Разница двух этих способов в порядке редукции. Первый называется нормальный порядок, а второй аппликативный.

Определение 3.9 (нормальный порядок редукции). Редукция самого левого β -редекса.

Определение 3.10 (аппликативный порядок редукции). Редукция самого левого β -редекса из самых вложенных.

Теорема 3.2 (Приводится без доказательсвта). Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок хоть и приводит к нормальной форме ,если она существует, но бывает ситуации в которых аппликативный порядок вычисляется быстрее чем нормальный

Пример. Рассмотрим лямбда выражение $(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I})$. Попробуем редуцировать его нормальным порядком:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} ... \to_{\beta} \mathcal{I}$$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\lambda x.x \ x \ x)\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}$$