From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-\bar{x} $
83	-7.5	7.5
82	-8.5	8.5
92	1.5	1.5
105	14.5	14.5
======	======	=======
$\sum_{x} x = 362$		$\sum x - \bar{x} = 32$
$\bar{x} = 90.5$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{32}{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

Х	$X - \bar{X}$	$(x-\bar{x})^2$
42	-6	36
47	-1	1
48	0	0
39	-9	81
51	3	9
56	8	64
53	5	25
=======	=======	=======
$\sum x = 336$ $\bar{x} = 48$		$\sum (x - \bar{x})^2 = 216$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{216}{7 - 1}}$$
$$= \sqrt{36}$$
$$= \boxed{6}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
139	-9.1999999999999	9.2
156	7.80000000000001	7.8
148	-0.199999999999989	0.2
144	-4.19999999999999	4.2
154	5.80000000000001	5.8
======	======	=======
$\sum x = 741$		$\sum x - \bar{x} = 27.2$
$\bar{x} = 148.2$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{27.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
140	1	1
136	-3	9
140	1	1
140	1	1
======	=======	=======
$\sum x = 556$ $\bar{x} = 139$		$\sum (x - \bar{x})^2 = 12$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{12}{4 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
129	-11.6	11.6
149	8.40000000000001	8.4
128	-12.6	12.6
136	-4.59999999999999	4.6
161	20.4	20.4
======	=======	=======
$\sum x = 703$		$\sum x - \bar{x} = 57.6$
$\bar{x} = 140.6$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{57.6}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
155	3.5	12.25
149	-2.5	6.25
149	-2.5	6.25
153	1.5	2.25
=======	=======	=======
$\sum x = 606$ $\bar{x} = 151.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

Х	$X-ar{X}$	$ x-ar{x} $
57	7.4	7.4
56	6.4	6.4
44	-5.6	5.6
41	-8.6	8.6
50	0.39999999999999	0.4
======	=======	=======
$\sum x = 248$		$\sum x - \bar{x} = 28.4$
$\bar{x} = 49.6$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{28.4}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
189	5	25
183	-1	1
196	12	144
175	-9	81
180	-4	16
190	6	36
175	-9	81
======	======	======
$\sum x = 1288$		$\sum (x - \bar{x})^2 = 384$
$\bar{x} = 184$		

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{384}{7 - 1}}$$
$$= \sqrt{64}$$
$$= \boxed{8}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
45	7.6	7.6
30	-7.4	7.4
36	-1.4	1.4
42	4.6	4.6
34	-3.4	3.4
======	=======	=======
$\sum x = 187$		$\sum x - \bar{x} = 24.4$
$\bar{x} = 37.4$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{24.4}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
192	-1	1
194	1	1
193	0	0
194	1	1
192	-1	1
======	======	=======
$\sum x = 965$ $\bar{x} = 193$		$\sum (x - \bar{x})^2 = 4$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{4}{5 - 1}}$$
$$= \sqrt{1}$$
$$= \boxed{1}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

$X - \bar{X}$	$ x-\bar{x} $
3.2	3.2
-4.8	4.8
-2.8	2.8
-4.8	4.8
9.2	9.2
======	=======
	$\sum x - \bar{x} = 24.8$
	3.2 -4.8 -2.8 -4.8

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{24.8}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
125	-1.5	2.25
125	-1.5	2.25
131	4.5	20.25
125	-1.5	2.25
=======	======	=======
$\sum x = 506$ $\bar{x} = 126.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
187	1.19999999999999	1.2
190	4.19999999999999	4.2
179	-6.80000000000001	6.8
183	-2.80000000000001	2.8
190	4.19999999999999	4.2
======	======	======
$\sum x = 929$		$\sum x - \bar{x} = 19.2$
$\bar{x} = 185.8$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{19.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
108	4.5	20.25
102	-1.5	2.25
102	-1.5	2.25
102	-1.5	2.25
=======	======	=======
$\sum_{\bar{X}} x = 414$ $\bar{x} = 103.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
102	8	8
89	-5	5
89	-5	5
109	15	15
93	-1	1
94	0	0
82	-12	12
======	======	=======
$\sum x = 658$ $\bar{x} = 94$		$\sum x - \bar{x} = 46$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{46}{7}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
95	-5	25
109	9	81
103	3	9
95	-5	25
98	-2	4
======	======	=======
$\sum x = 500$ $\bar{x} = 100$		$\sum (x - \bar{x})^2 = 144$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{144}{5 - 1}}$$
$$= \sqrt{36}$$
$$= \boxed{6}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
126	2.8	2.8
126	2.8	2.8
129	5.8	5.8
123	-0.2000000000000003	0.2
112	-11.2	11.2
=======	======	======
$\sum x = 616$ $\bar{x} = 123.2$		$\sum x - \bar{x} = 22.8$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{22.8}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
175	-1	1
175	-1	1
179	3	9
174	-2	4
177	1	1
=======	======	======
$\sum x = 880$ $\bar{x} = 176$		$\sum (x - \bar{x})^2 = 16$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{16}{5 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
183	-4.19999999999999	4.2
186	-1.19999999999999	1.2
191	3.80000000000001	3.8
184	-3.19999999999999	3.2
192	4.80000000000001	4.8
======	=======	======
$\sum x = 936$		$\sum x - \bar{x} = 17.2$
$\bar{x} = 187.2$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{17.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
98	3	9
94	-1	1
94	-1	1
94	-1	1
=======	=======	=======
$\sum x = 380$ $\bar{x} = 95$		$\sum (x - \bar{x})^2 = 12$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{12}{4 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
93	-1.2	1.2
95	0.79999999999997	0.8
92	-2.2	2.2
95	0.79999999999997	0.8
96	1.8	1.8
======	======	=======
$\sum x = 471$		$\sum x - \bar{x} = 6.8$
$\bar{x} = 94.2$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{6.8}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

Х	$X - \bar{X}$	$(x-\bar{x})^2$
113	-3.5	12.25
113	-3.5	12.25
113	-3.5	12.25
127	10.5	110.25
======	=======	======
$\sum x = 466$ $\bar{x} = 116.5$		$\sum (x - \bar{x})^2 = 147$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{147}{4 - 1}}$$
$$= \sqrt{49}$$
$$= \boxed{7}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
114	-0.5	0.5
120	5.5	5.5
112	-2.5	2.5
114	-0.5	0.5
119	4.5	4.5
108	-6.5	6.5
======	=======	=======
$\sum x = 687$		$\sum x - \bar{x} = 20$
$\bar{x} = 114.5$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{20}{6}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
52	3	9
47	-2	4
48	-1	1
50	1	1
48	-1	1
51	2	4
47	-2	4
======	=======	=======
$\sum x = 343$ $\bar{x} = 49$		$\sum (x - \bar{x})^2 = 24$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{24}{7 - 1}}$$
$$= \sqrt{4}$$
$$= \boxed{2}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

Х	$X - \bar{X}$	$ x-ar{x} $
93	4.8	4.8
86	-2.2	2.2
87	-1.2	1.2
92	3.8	3.8
83	-5.2	5.2
======	=======	=======
$\sum_{\bar{X}} x = 441$ $\bar{x} = 88.2$		$\sum x - \bar{x} = 17.2$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{17.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
69	-9.5	90.25
87	8.5	72.25
89	10.5	110.25
69	-9.5	90.25
=======	=======	=======
$\sum_{\bar{X}} x = 314$ $\bar{x} = 78.5$		$\sum (x - \bar{x})^2 = 363$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{363}{4 - 1}}$$
$$= \sqrt{121}$$
$$= \boxed{11}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
110	-4.8	4.8
117	2.2	2.2
120	5.2	5.2
115	0.200000000000003	0.2
112	-2.8	2.8
======	======	=======
$\sum x = 574$		$\sum x - \bar{x} = 15.2$
$\bar{x} = 114.8$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{15.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
65	-1	1
67	1	1
67	1	1
65	-1	1
66	0	0
======	======	=======
$\sum x = 330$ $\bar{x} = 66$		$\sum (x - \bar{x})^2 = 4$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{4}{5 - 1}}$$
$$= \sqrt{1}$$

= 1

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
199	3.5	3.5
189	-6.5	6.5
193	-2.5	2.5
201	5.5	5.5
$\sum x = 782$ $\bar{x} = 195.5$	======	$\sum x - \bar{x} = 18$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{18}{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

Х	$X - \bar{X}$	$(x-\bar{x})^2$
153	11	121
137	-5	25
142	0	0
135	-7	49
143	1	1
======	======	======
$\sum x = 710$		$\sum (x - \bar{x})^2 = 196$
$\bar{x} = 142$		

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{196}{5 - 1}}$$
$$= \sqrt{49}$$
$$= \boxed{7}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-\bar{x} $
100	-1.5	1.5
102	0.5	0.5
103	1.5	1.5
101	-0.5	0.5
======	======	======
$\sum x = 406$		$\sum x - \bar{x} = 4$
$\bar{x} = 101.5$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{4}{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
163	-1	1
165	1	1
164	0	0
165	1	1
163	-1	1
=======	======	=======
$\sum x = 820$ $\bar{x} = 164$		$\sum (x - \bar{x})^2 = 4$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{4}{5 - 1}}$$
$$= \sqrt{1}$$
$$= \boxed{1}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
129	-3.5	3.5
131	-1.5	1.5
142	9.5	9.5
128	-4.5	4.5
$\sum_{\bar{x}} x = 530$ $\bar{x} = 132.5$	======	$\sum x - \bar{x} = 19$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{19}{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
138	1.5	2.25
132	-4.5	20.25
138	1.5	2.25
138	1.5	2.25
======	=======	=======
$\sum x = 546$ $\bar{x} = 136.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
186	-5	5
205	14	14
186	-5	5
189	-2	2
189	-2	2
187	-4	4
195	4	4
======	======	=======
$\sum x = 1337$ $\bar{x} = 191$		$\sum x - \bar{x} = 36$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{36}{7}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
197	0.5	0.25
191	-5.5	30.25
195	-1.5	2.25
203	6.5	42.25
=======	=======	=======
$\sum x = 786$ $\bar{x} = 196.5$		$\sum (x - \bar{x})^2 = 75$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{75}{4 - 1}}$$
$$= \sqrt{25}$$
$$= \boxed{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
115	-1.40000000000001	1.4
127	10.6	10.6
103	-13.4	13.4
115	-1.40000000000001	1.4
122	5.5999999999999	5.6
======	=======	=======
$\sum x = 582$		$\sum x - \bar{x} = 32.4$
$\bar{x} = 116.4$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{32.4}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
86	1.5	2.25
82	-2.5	6.25
82	-2.5	6.25
88	3.5	12.25
=======	=======	=======
$\sum_{\bar{X}} x = 338$ $\bar{x} = 84.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
70	21.4	21.4
36	-12.6	12.6
59	10.4	10.4
50	1.4	1.4
28	-20.6	20.6
======	======	======
$\sum_{\bar{X}} x = 243$ $\bar{x} = 48.6$		$\sum x - \bar{x} = 66.4$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{66.4}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
146	3	9
146	3	9
140	-3	9
143	0	0
140	-3	9
======	=======	=======
$\sum x = 715$ $\bar{x} = 143$		$\sum (x - \bar{x})^2 = 36$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{36}{5 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
130	3	3
129	2	2
123	-4	4
126	-1	1
$\sum_{\bar{x}} x = 508$ $\bar{x} = 127$	======	$\sum x - \bar{x} = 10$

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{10}{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
92	-1	1
88	-5	25
89	-4	16
96	3	9
98	5	25
95	2	4
=======	======	=======
$\sum x = 558$ $\bar{x} = 93$		$\sum (x - \bar{x})^2 = 80$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{80}{6 - 1}}$$
$$= \sqrt{16}$$
$$= \boxed{4}$$

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
136	2.80000000000001	2.8
133	-0.199999999999989	0.2
130	-3.19999999999999	3.2
133	-0.19999999999989	0.2
134	0.80000000000011	8.0
======	======	======
$\sum x = 666$		$\sum x - \bar{x} = 7.2$
$\bar{x} = 133.2$		

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{7.2}{5}$$

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
54	-2.5	6.25
58	1.5	2.25
54	-2.5	6.25
60	3.5	12.25
=======	=======	=======
$\sum_{\bar{X}} x = 226$ $\bar{x} = 56.5$		$\sum (x - \bar{x})^2 = 27$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$