Evaluating extreme quantile forecasts

Rob J Hyndman

Business & Economic Forecasting Unit MONASH University

Outline

- **Examples**
- **Forecast density evaluation**
- Forecast quantile evaluation
- **Electricity peak demand forecasting**

Extreme quantile forecasting

Extreme quantile forecasting

Outline

- **Examples**
- Forecast density evaluation
- Forecast quantile evaluation
- **Electricity** peak demand forecasting

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

If $Q_t(p)$ is an accurate forecast distribution, then $G(p) \approx p$.

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

 $Q_t(p) =$ forecast quantile of y_t , to be exceeded with probability 1 - p.

$$G(p)$$
 = proportion of times y_t less than $Q_t(p)$ in the historical data.

Excess probability

$$E(p) = G(p) - p$$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

$$G(p) =$$
 proportion of times y_t less than $Q_t(p)$ in the historical data.

Excess probability

$$E(p) = G(p) - p$$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

Excess probability

$$E(p) = G(p) - p$$

• $KS = \max_{p} |E(p)|$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

Excess probability

$$E(p) = G(p) - p$$

- $KS = \max_{p} |E(p)|$
- MAEP = $\int_0^1 |E(p)| dp$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

$$G(p) =$$
 proportion of times y_t less than $Q_t(p)$ in the historical data.

Excess probability

$$E(p) = G(p) - p$$

- $KS = \max_{p} |E(p)|$
- MAEP = $\int_{0}^{1} |E(p)| dp$
- Cramer-von-Mises = $\int_0^1 E^2(p) dp$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

 $G(p) = \text{proportion of times } y_t \text{ less than}$ $Q_t(p)$ in the historical data.

$$F_t(y) = \operatorname{Prob}(y_t \leq y) = \operatorname{distribution of} y_t.$$

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

$$F_t(y) = \operatorname{Prob}(y_t \leq y) = \operatorname{distribution of} y_t.$$

•
$$F_t(Q_t(p)) = p$$
.

1

- $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 p.
- G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

$$F_t(y) = \operatorname{Prob}(y_t \leq y) = \operatorname{distribution of} y_t.$$

- $F_t(Q_t(p)) = p$.
- $Z_t = F_t(y_t)$ is the PIT.

 $Q_t(p)$ = forecast quantile of y_t , to be exceeded with probability 1 - p.

 $G(p) = \text{proportion of times } y_t \text{ less than}$ $Q_t(p)$ in the historical data.

$$F_t(y) = \operatorname{Prob}(y_t \leq y) = \operatorname{distribution of} y_t.$$

- $F_t(Q_t(p)) = p$.
- $Z_t = F_t(y_t)$ is the PIT.
- If $F_t(y)$ is correct, then Z_t will follow a U(0,1) distribution.

Distribution of MAEP

$$Z_{i} = F_{i}(y_{i})$$

$$A_{i} = \begin{cases} \frac{1}{2} \left[(Z_{i} - \frac{i-1}{n})^{2} + (Z_{i} - \frac{i}{n})^{2} \right] & \text{if } \frac{i-1}{n} < Z_{i} < \frac{i}{n} \\ \frac{1}{n} |Z_{i} - \frac{i-0.5}{n}| & \text{otherwise.} \end{cases}$$

$$Z_{i} = F_{i}(y_{i})$$

$$A_{i} = \begin{cases} \frac{1}{2} \left[(Z_{i} - \frac{i-1}{n})^{2} + (Z_{i} - \frac{i}{n})^{2} \right] & \text{if } \frac{i-1}{n} < Z_{i} < \frac{i}{n} \\ \frac{1}{n} |Z_{i} - \frac{i-0.5}{n}| & \text{otherwise.} \end{cases}$$

$$\mathsf{MAEP} = \sum_{i=1}^{n} A_i$$

$$Z_{i} = F_{i}(y_{i})$$

$$A_{i} = \begin{cases} \frac{1}{2} \left[(Z_{i} - \frac{i-1}{n})^{2} + (Z_{i} - \frac{i}{n})^{2} \right] & \text{if } \frac{i-1}{n} < Z_{i} < \frac{i}{n} \\ \frac{1}{n} |Z_{i} - \frac{i-0.5}{n}| & \text{otherwise.} \end{cases}$$

$$\mathsf{MAEP} = \sum_{i=1}^{n} A_i$$

•
$$E(MAEP) = \frac{1}{\sqrt{10n}}$$

$$Z_{i} = F_{i}(y_{i})$$

$$A_{i} = \begin{cases} \frac{1}{2} \left[(Z_{i} - \frac{i-1}{n})^{2} + (Z_{i} - \frac{i}{n})^{2} \right] & \text{if } \frac{i-1}{n} < Z_{i} < \frac{i}{n} \\ \frac{1}{n} |Z_{i} - \frac{i-0.5}{n}| & \text{otherwise.} \end{cases}$$

$$\mathsf{MAEP} = \sum_{i=1}^{n} A_i$$

- $E(MAEP) = \frac{1}{\sqrt{10n}}$
- $V(MAEP) = \frac{1}{54p}$

$$Z_{i} = F_{i}(y_{i})$$

$$A_{i} = \begin{cases} \frac{1}{2} \left[(Z_{i} - \frac{i-1}{n})^{2} + (Z_{i} - \frac{i}{n})^{2} \right] & \text{if } \frac{i-1}{n} < Z_{i} < \frac{i}{n} \\ \frac{1}{n} |Z_{i} - \frac{i-0.5}{n}| & \text{otherwise.} \end{cases}$$

$$\mathsf{MAEP} = \sum_{i=1}^{n} A_i$$

- $E(MAEP) = \frac{1}{\sqrt{10n}}$
- $V(MAEP) = \frac{1}{54p}$
- Get p-values by simulation.

MAEP for density evaluation

 MAEP more sensitive and less variable than KS.

MAEP for density evaluation

- MAFP more sensitive and less variable than KS.
- MAEP more interpretable than Cramer-von-Mises statistic.

MAEP for density evaluation

- MAEP more sensitive and less variable than KS.
- MAEP more interpretable than Cramer-von-Mises statistic.
- Calculation and interpretation of MAEP does not require a PIT.

Outline

- Examples
- Forecast density evaluation
- Forecast quantile evaluation
- Electricity peak demand forecasting

Quantile evaluation

Apply density evaluation measures to tail of distribution only.

$$Q_t(p)$$
 = forecast quantile of y_t , to be exceeded with probability $1 - p$.

G(p) = proportion of times y_t less than $Q_t(p)$ in the historical data.

$$E(p) = G(p) - p =$$
 excess probability

Quantile evaluation

Apply density evaluation measures to tail of distribution only.

$$Q_t(p)$$
 = forecast quantile of y_t , to be exceeded with probability $1 - p$.

$$G(p) =$$
 proportion of times y_t less than $Q_t(p)$ in the historical data.

$$E(p) = G(p) - p =$$
 excess probability

Quantile evaluation measures

• KS = $\max_p |E(p)|$ where p > q

Quantile evaluation

Apply density evaluation measures to tail of distribution only.

$$Q_t(p)$$
 = forecast quantile of y_t , to be exceeded with probability $1 - p$.

 $G(p) = \text{proportion of times } y_t \text{ less than } Q_t(p) \text{ in the historical data.}$

$$E(p) = G(p) - p =$$
 excess probability

- KS = $\max_{p} |E(p)|$ where p > q
- MAEP_q = $\int_{q}^{1} |E(p)| dp$

 q must be small enough for some observations to have occurred in the tail.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.
- Let $X_q =$ number of observations > Q(q). Then $X_q \sim \text{Binomial}(n, 1 - q)$.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.
- Let $X_q =$ number of observations > Q(q). Then $X_q \sim \text{Binomial}(n, 1 - q)$.
- Select n to ensure probability of at least 5 tail observations is at least 0.95.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.
- Let $X_q =$ number of observations > Q(q). Then $X_q \sim \text{Binomial}(n, 1 - q)$.
- Select n to ensure probability of at least 5 tail observations is at least 0.95.
- $q = 0.9 \Rightarrow n > 89$.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.
- Let $X_q =$ number of observations > Q(q). Then $X_q \sim \text{Binomial}(n, 1 - q)$.
- Select n to ensure probability of at least 5 tail observations is at least 0.95.
- $q = 0.9 \Rightarrow n > 89$.
- $q = 0.95 \Rightarrow n > 181$.

- q must be small enough for some observations to have occurred in the tail.
- If y_t values independent and there are n forecast distributions, then probability of Q(q) being exceeded at least once is $1 q^n$.
- Let $X_q =$ number of observations > Q(q). Then $X_q \sim$ Binomial(n, 1 - q).
- Select *n* to ensure probability of at least 5 tail observations is at least 0.95.
- $q = 0.9 \Rightarrow n > 89$.
- $q = 0.95 \Rightarrow n > 181$.
- $q = 0.99 \Rightarrow n > 913$.

Sample size needed

Outline

- Examples
- Forecast density evaluation
- Forecast quantile evaluation
- Electricity peak demand forecasting

• We need forecasts of half-hourly demand with α annual probability of exceedance.

- We need forecasts of half-hourly demand with α annual probability of exceedance.
- Insufficient data to look at annual maximums (less than 15 years)

- We need forecasts of half-hourly demand with α annual probability of exceedance.
- Insufficient data to look at annual maximums (less than 15 years)
- Create approximately independent weekly maximum forecasts (21 weeks each summer)

- We need forecasts of half-hourly demand with α annual probability of exceedance.
- Insufficient data to look at annual maximums (less than 15 years)
- Create approximately independent weekly maximum forecasts (21 weeks each summer)
- For these weekly forecasts, $q = (1 \alpha)^{1/21}$.

- We need forecasts of half-hourly demand with α annual probability of exceedance.
- Insufficient data to look at annual maximums (less than 15 years)
- Create approximately independent weekly maximum forecasts (21 weeks each summer)
- For these weekly forecasts, $q = (1 \alpha)^{1/21}$.
- For 15 years of data, n = 315.

- We need forecasts of half-hourly demand with α annual probability of exceedance.
- Insufficient data to look at annual maximums (less than 15 years)
- Create approximately independent weekly maximum forecasts (21 weeks each summer)
- For these weekly forecasts, $q = (1 \alpha)^{1/21}$.
- For 15 years of data, n = 315.
- Therefore $q \leq 0.971$ and $\alpha \geq 0.46$.

Model evaluation for electricity demand

	q = 0.95	q = 0.90	q = 0.50	q = 0.10	q = 0.0
Ex ante	4.35%	5.59%	9.25%	10.73%	10.31%
Ex post	3.79%	4.28%	5.24%	7.95%	8.24%