

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 15 Learning Outcomes

- Define/Discuss Shear Strain
- Define Hooke's Law for Shear
- Relate the Modulus of Elasticity (Young's Modulus) to the Modulus of Rigidity (Shear Modulus)

3D State of Stress at a Point (shown in positive sign convention)

By Equilibrium:

$$\tau_{xy} = \tau_{yx} = \tau$$

Shear Strain, γ

Change in the angle between perpendicular reference axes; Angular Distortion

(Shear Distortion)

$$\gamma \equiv Shear \ Strain \ [dimensionless]$$

$$\gamma = \gamma_1 + \gamma_2 = \frac{\pi}{2} - \beta$$

Shear Strain, γ

Sign Convention

(+) Shear Stress causes (+) Shear Strain

Angle reduced on 2 positive (or 2 negative) faces

Hooke's Law in Shear

(valid for linear elastic region):

Analogous to:

$$\sigma = E \varepsilon$$

G = Modulus of Rigidity (Shear Modulus)

Hooke's Laws

$$\sigma = E \varepsilon$$

$$\tau = G\gamma$$

Relationship between E and G

(They are not independent)

$$G = \frac{E}{2(1+\upsilon)}$$