

Pedro Brandimarte¹, Marek Kolmer^{2,3}, Hiroyo Kawai⁴, Thomas Frederiksen^{1,5}, Aran Garcia-Lekue^{1,5}, Nicolas Lorente⁶, Jakub Lis², Rafal Zuzak², Szymon Godlewski², Christian Joachim⁷, Marek Szymonski², Daniel Sánchez-Portal^{1,6}

1 Donostia International Physics Center, Spain 2 NANOSAM - Jagiellonian University, Poland 3 CNMS - Oak Ridge National Laboratory, USA 4 IMRE - National University of Singapore, Singapore 5 IKERBASQUE, Basque Foundation for Science, Spain 6 Centro de Física de Materiales CSIC-UPV/EHU, Spain 7 CEMES-CNRS, France

October 3, 2019

Pedro Brandimarte¹, Marek Kolmer^{2,3}, Hiroyo Kawai⁴, Thomas Frederiksen^{1,5},
Aran Garcia-Lekue^{1,5}, Nicolas Lorente⁶, Jakub Lis², Rafal Zuzak²,
Szymon Godlewski², Christian Joachim⁷, Marek Szymonski², Daniel Sánchez-Portal^{1,6}

1 Donostia International Physics Center, Spain 2 NANOSAM - Jagiellonian University, Poland 3 CNMS - Oak Ridge National Laboratory, USA 4 IMRE - National University of Singapore, Singapore 5 IKERBASQUE, Basque Foundation for Science, Spain 6 Centro de Física de Materiales CSIC-UPV/EHU, Spain 7 CEMES-CNRS, France

October 3, 2019

Pedro Brandimarte¹, Marek Kolmer^{2,3}, Hiroyo Kawai⁴, Thomas Frederiksen^{1,5}, Aran Garcia-Lekue^{1,5}, Nicolas Lorente⁶, Jakub Lis², Rafal Zuzak², Szymon Godlewski², Christian Joachim⁷, Marek Szymonski², Daniel Sánchez-Portal^{1,6}

1 Donostia International Physics Center, Spain 2 NANOSAM - Jagiellonian University, Poland 3 CNMS - Oak Ridge National Laboratory, USA 4 IMRE - National University of Singapore, Singapore 5 IKERBASQUE, Basque Foundation for Science, Spain 6 Centro de Física de Materiales CSIC-UPV/EHU, Spain 7 CEMES-CNRS, France

October 3, 2019

M. Kolmer et al. J. Phys: Cond. Mat. 29, 444004 (2017).

Methods

Density-Functional Theory (DFT)

SIESTA

E. Artacho et al. Phys. Stat. Sol. (b) **215**, 809 (1999). J. M. Soler et al. J. Phys. Condens. Matter. **14**, 2745 (2002).

Methods

Density-Functional Theory (DFT)

+

Non-Equilibrium Green's Function (NEGF)

TranSIESTA

E. Artacho et al. Phys. Stat. Sol. (b) **215**, 809 (1999). J. M. Soler et al. J. Phys. Condens. Matter. **14**, 2745 (2002).

M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002).

N. Papior et al. Comp. Phys. Comm. 212, 8 (2017).

Methods

Density-Functional Theory (DFT)

+

Non-Equilibrium Green's Function (NEGF)

TranSIESTA

E. Artacho et al. Phys. Stat. Sol. (b) **215**, 809 (1999).

Multi-termina!!!

J. M. Soler et al. J. Phys. Condens. Matter. **14**, 2745 (2002).

M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002).

N. Papior et al. Comp. Phys. Comm. 212, 8 (2017).

Ge(001) surface: 2-terminal setup

of atoms/orbitals: 2240/16000

Ge(001) surface: 2-terminal setup

Ge(001) surface: 2-terminal setup

Standard (one probe) Scanning Tunneling Spectroscopy (STS)

of atoms/orbitals: 2462/18221

Standard (one probe) Scanning Tunneling Spectroscopy (STS)

Coherence length up to **50 nm**!!!

Coherence length up to **50 nm**!!!

Conclusions

- Identification and characterization of the quasi 1D transport surface channels along a single dimer row on bare Ge(001)-c(4×2) surface;
- SP-STM/STS and calculated eigenchannels on a step-edge confirms a coherent transport length up to 50nm;
- TP-STS planar transconductance resonances measured with a tip-totip distance down to 30nm and confirmed by multi-terminal DFT-NEGF simulations.

M. Kolmer, P. Brandimarte* et al. Nature Communications 10, 1573 (2019)

