

Taming Transformers for High-Resolution Image Synthesis (VQ-GAN)

김지환

Contents

- 1. Introduction
- 2. Methods
- 3. Results

VQ-GAN

Abstract

- Transformer는 sequential data에 대해 long-range interaction을 학습하도록 설계되었고 CNN과 달리 local interaction을 우선시하는 inductive-bias가 없다.
- CNN의 inductive-bias와 transformer의 expressivity를 결합해 고해상도 이미지를 생성하는 것이 목적.
- CNN으로 이미지 구성요소의 contextrich vocabulary를 학습.
- Transformer로 고해상도 이미지 구성을 효율적으로 모델링.
- 클래스 정보나 segmentation 같은 공간 정보로 이미지를 제어하는 conditional synthesis task에 쉽게 적용.

Auto-Encoder: 입력을 latent variable로 보낸 후 latent variable로 원본 복원, Encoder 중심의 모델.

Variational-AE: 입력데이터의 분포를 근사하는 모델을 학습 후 새로운 이미지 생성, Decoder 중심의 모델.

Background - VAE

- ① 데이터의 분포 p(x)
- ② 데이터를 latent variable로 표현한 분포 p(z|x): Encoder
- ③ latent variable 주었을때 데이터를 생성하는 p(x|z): Decoder

$$p(z|x) = rac{p(x|z)p(z)}{p(x)}
ightharpoonup prior \ p(z|x) = rac{p(z|x)p(z)}{p(z|x)}$$

$$D_{KL}(P||Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx$$

Maximum likelihood: $\arg\max_{\theta} p_{\theta}(x) = \int_{z} p_{\theta}(x,z) = \int_{z} p_{\theta}(x|z) p_{\theta}(z)$ 모든 z에 대해 계산할수 없기때문에 Intractable. Variational Inference: 복잡한 p가 있을때 단순한 q 로 근사하겠다. $q_{\phi}(z|x) \approx p_{\theta}(z|x)$

$$\begin{split} &= \int_z q_\phi(z|x) \log \frac{p_\theta(z,x)}{p_\theta(z|x)} \\ &= \int_z q_\phi(z|x) \log (\frac{p_\theta(z,x)}{q_\phi(z|x)} \frac{q_\phi(z|x)}{p_\theta(z|x)}) \\ &= \int_z q_\phi(z|x) \log \frac{p_\theta(z,x)}{q_\phi(z|x)} + \int_z q_\phi(z|x) \log \frac{q_\phi(z|x)}{p_\theta(z|x)} \\ &= \mathcal{L}(\theta,\phi;x) + D_{KL}(q_\phi(z|x)||p_\theta(z|x)) \\ &\geq \underline{\mathcal{L}}(\theta,\phi;x) \quad \because D_{KL} \geq 0 \\ \\ \underline{\mathcal{L}}(\theta,\phi;x) &= \int_z q_\phi(z|x) \log \frac{p_\theta(z,x)}{q_\phi(z|x)} \\ &= -\int_z q_\phi(z|x) \log \frac{q_\phi(z|x)}{p_\theta(z)} + \int_z q_\phi(z|x) \log p_\theta(x|z) \quad \because p_\theta(z,x) = p(x|z)p(z) \\ &= -D_{KL}(q_\phi(z|x)||p(z)) + \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] \end{split}$$

Prior z: 다루기 쉬운 표준 정규분포로 가정.

Reparameterization trick

mu, sigma를 통해 z를 샘플링을하게 되면 deterministic하지 않아 역전파가 불가능. e를 확정적으로 샘플링 해놓고 z를 만들면 deterministic해져서 역전파가 가능해진다.

VQ-GAN

Background - VAE

Code

```
def encode(self, input: Tensor) -> List[Tensor]:
    result = self.encoder(input)
    result = torch.flatten(result, start_dim=1)
    log_var = self.fc_var(result)
    return [mu, log_var]
def decode(self, z: Tensor) -> Tensor:
    result = self.decoder_input(z)
    result = self.final layer(result)
    return result
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
    std = torch.exp(0.5 * logvar)
    eps = torch.randn_like(std)
def forward(self, input: Tensor, **kwargs) -> List[Tensor]:
    mu, log_var = self.encode(input)
    z = self.reparameterize(mu, log var)
    return [self.decode(z), input, mu, log_var]
```

VQ-GAN

Background - VQ VAE

Neural Discrete Representation Learning
Prior 분포를 연속적인 특정 분포로 가정하지 말고
이산적이고 훈련이 가능한 분포로 만들자!

Discrete Latent variables

eg.

Input image **x**: 16x3x224x224

Encoded feature $Z_e(x)$: $16x_{64}x_{32}x_{32}$ (B*D*H*W) -> 16,384 * 64

Code book **e**: 512x<u>64</u> (num_embedding * D)

Encoding one hot **q(z|x)**: 16,384 * 512 (16x32x32x512)

Quantized latents $\mathbf{Z_q(x)}$: Encoding one hot * Code book: 16,384 * <u>64</u>

VQ-GAN

Background - VQ VAE

Loss function

$$L = \log p(x|z_q(x)) + \|sg[z_e(x)] - e\|_2^2 + \|z_e(x) - sg[e]\|_2^2$$
Reconstruction Codebook Commitment

- ① Reconstruction: Decoder, Encoder 훈련 -> Encoder는 gradient를 복사해서 훈련
- ② Codebook: Codebook의 벡터가 Encoder의 output과 가깝게 되도록 훈련
- ③ Commitment: Encoder가 Codebook의 벡터와 가까운 벡터를 내도록 훈련

VQ-GAN

Background - VQ VAE

1) Codebook 정의

```
self.embedding = nn.Embedding(self.K, self.D)
self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K)
```

2) 벡터 양자화

3) Loss 계산

```
# Compute the VQ Losses
commitment_loss = F.mse_loss(quantized_latents.detach(), latents)
embedding_loss = F.mse_loss(quantized_latents, latents.detach())

vq_loss = commitment_loss * self.beta + embedding_loss

# Add the residue back to the latents
quantized_latents = latents + (quantized_latents - latents).detach()

return quantized_latents.permute(0, 3, 1, 2).contiguous(), vq_loss # [B x D x H x W]
```

$$L = \log p(x|z_q(x)) + ||sg[z_e(x)] - e||_2^2 + ||z_e(x) - sg[e]||_2^2$$

Background - VQ VAE

- VQ-VAE는 long-term dependency를 잘 모델링할 수 있다.
- 원본 source를 작은 latent로 수십 배 압축할 수 있다.
- 이러한 latent는 discrete하며, continuous latent와 비교하여 성능이 필적할 만하다.
- Image, audio, video 모두에 대해서 잘 모델링 및 압축한 후 중요한 내용을 잘 보존하면서 복원이 가능하다.

VQ-GAN

2. Methods

2. Methods VQ-GAN

Training-procedure

First-stage

Second-stage

Architecture

- ① CNN을 사용해 local feature가 풍부한 context를 Codebook에 encoding.
- ② Transformer을 사용해 global composition을 학습.

2. Methods

(1) Learning Codebook

- VQ-VAE와 유사하게 discrete한 latent embedding을 추출할 수 있도록 Codebook Z 학습.
- 이미지 생성후 Discriminator를 활용한 adversarial training 방식을 사용하는 것이 차이점.

$$\mathcal{L}_{VQ}(E, G, \mathcal{Z}) = \begin{cases} ||x - \hat{x}||^2 + & ||sg[E(x)] - z_{\mathbf{q}}||_2^2 \\ + \beta ||sg[z_{\mathbf{q}}] - E(x)||_2^2. \end{cases}$$

$$\mathcal{L}_{GAN}(\{E, G, \mathcal{Z}\}, D) = [\log D(x) + \log(1 - D(\hat{x}))]$$

VQ-VAE Loss

$$L = \log p(x|z_q(x)) + ||sg[z_e(x)] - e||_2^2 + ||z_e(x) - sg[e]||_2^2$$
Reconstruction Codebook Commitment

- ① Reconstruction: Decoder, Encoder 훈련 -> Encoder는 gradient를 복사해서 훈련
- ② Codebook: Codebook의 벡터가 Encoder의 output과 가깝게 되도록 훈련
- ③ Commitment: Encoder가 Codebook의 벡터와 가까운 벡터를 내도록 훈련

VQ-GAN

(1) Learning Codebook

- VQ-VAE와 유사하게 discrete한 latent embedding을 추출할 수 있도록 Codebook Z 학습.
- 이미지 생성후 Discriminator를 활용한 adversarial training 방식을 사용하는 것이 차이점.

$$\mathcal{L}_{VQ}(E, G, \mathcal{Z}) = \|x - \hat{x}\|^2 + \|sg[E(x)] - z_{\mathbf{q}}\|_2^2 + \beta \|sg[z_{\mathbf{q}}] - E(x)\|_2^2.$$

$$\mathcal{L}_{GAN}(\{E, G, \mathcal{Z}\}, D) = [\log D(x) + \log(1 - D(\hat{x}))]$$

GAN Loss

Patchgan의 구조를 활용해 patch 단위로 real/fake를 구별하는 discriminator 사용.

(1) Learning Codebook

- VQ-VAE와 유사하게 discrete한 latent embedding을 추출할 수 있도록 Codebook Z 학습.
- 이미지 생성후 Discriminator를 활용한 adversarial training 방식을 사용하는 것이 차이점.

$$\mathcal{L}_{VQ}(E, G, \mathcal{Z}) = \|x - \hat{x}\|^2 + \|sg[E(x)] - z_{\mathbf{q}}\|_2^2 + \beta \|sg[z_{\mathbf{q}}] - E(x)\|_2^2.$$

$$\mathcal{L}_{GAN}(\{E, G, \mathcal{Z}\}, D) = [\log D(x) + \log(1 - D(\hat{x}))]$$

VQ-VAE Loss

GAN Loss

$$\begin{aligned} \mathcal{Q}^* &= \operatorname*{arg\,min}_{E,G,\mathcal{Z}} \max_{D} \mathbb{E}_{x \sim p(x)} \Big[\mathcal{L}_{\text{VQ}}(E,G,\mathcal{Z}) \\ &+ \lambda \mathcal{L}_{\text{GAN}}(\{E,G,\mathcal{Z}\},D) \Big] \end{aligned} \quad \lambda = \frac{\nabla_{G_L}[\mathcal{L}_{\text{rec}}]}{\nabla_{G_L}[\mathcal{L}_{\text{GAN}}] + \delta} \end{aligned}$$

2. Methods

(2) Transformer

- Codebook Z를 학습 완료후 Transformer 를 학습
- GPT와 같은 Decoder-only 아키텍처 사용
- Transformer 훈련시에 index 일정 부분을 랜덤으로 만들고 그것을 올바르게 맞추는 방식으로 학습
- 샘플 생성 시 Computational Cost를 줄이기 위해 Sliding window 사용

Figure 3. Sliding attention window.

VQ-GAN

(2) Transformer

Conditional generation

2. Methods VQ-GAN

(2) Transformer

1) Transformer Training

```
def forward(self, x, c):
    # one step to produce the logits
    _, z_indices = self.encode_to_z(x)
    _, c_indices = self.encode_to_c(c)
    if self.training and self.pkeep < 1.0:</pre>
        mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape,
                                                      device=z_indices.device))
        mask = mask.round().to(dtype=torch.int64)
        r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
        a_indices = mask*z_indices+(1-mask)*r_indices
    else:
        a_indices = z_indices
    cz_indices = torch.cat((c_indices, a_indices), dim=1)
    # target includes all sequence elements (no need to handle first one
    # differently because we are conditioning)
    target = z_indices
    # make the prediction
    logits, _ = self.transformer(cz_indices[:, :-1])
    # cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
    logits = logits[:, c_indices.shape[1]-1:]
    return logits, target
```

```
def shared_step(self, batch, batch_idx):
    x, c = self.get_xc(batch)
    logits, target = self(x, c)
    loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
    return loss
```

(2) Transformer

2) Autoregressive Sampling

```
for k in range(steps):
        callback(k)
        assert x.size(1) <= block size # make sure model can see conditioning</pre>
       x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed</pre>
       logits, _ = self.transformer(x_cond)
       # pluck the logits at the final step and scale by temperature
       logits = logits[:, -1, :] / temperature
       # optionally crop probabilities to only the top k options
        if top k is not None:
           logits = self.top_k_logits(logits, top_k)
        # apply softmax to convert to probabilities
        probs = F.softmax(logits, dim=-1)
        # sample from the distribution or take the most likely
        if sample:
            ix = torch.multinomial(probs, num_samples=1)
        else:
            _, ix = torch.topk(probs, k=1, dim=-1)
        # append to the sequence and continue
        x = torch.cat((x, ix), dim=1)
    # cut off conditioning
   x = x[:, c.shape[1]:]
return x
```

vs SOTA

- Autoregressive generative model SOTA PixelSNAIL 보다 좋은 성능.
- Semantic image synthesis task와 VAE 모델간의 비교에서도 더 좋은 성능을 보여줌.

	Negative Log-Likelihood (NLL)			
Data / # params	Transformer <i>P-SNAIL steps</i>	Transformer <i>P-SNAIL time</i>	PixelSNAIL fixed time	
RIN / 85M	4.78	4.84	4.96	
LSUN-CT/310M	4.63	4.69	4.89	
IN / 310M	4.78	4.83	4.96	
D-RIN / 180 M	4.70	4.78	4.88	
S-FLCKR / 310 M	4.49	4.57	4.64	

Table 1. Comparing Transformer and PixelSNAIL architectures across different datasets and model sizes. For all settings, transformers outperform the state-of-the-art model from the PixelCNN family, PixelSNAIL in terms of NLL. This holds both when comparing NLL at fixed times (PixelSNAIL trains roughly 2 times faster) and when trained for a fixed number of steps. See Sec. 4.1 for the abbreviations.

Dataset	ours	SPADE [53]	Pix2PixHD (+aug) [75]	CRN [9]
COCO-Stuff	22.4	22.6/23.9(*)	111.5 (54.2)	70.4
ADE20K	35.5	33.9/35.7(*)	81.8 (41.5)	73.3

Table 2. FID score comparison for semantic image synthesis $(256 \times 256 \text{ pixels})$. (*): Recalculated with our evaluation protocol based on [50] on the validation splits of each dataset.

Model	Codebook Size	$\dim \mathcal{Z}$	FID/val	FID/train
VQVAE-2	$64 \times 64 \& 32 \times 32$	512	n/a	~ 10
DALL-E [59]	32×32	8192	32.01	33.88
VQGAN	16×16	1024	7.94	10.54
VQGAN	16×16	16384	4.98	7.41
$VQGAN^*$	32×32	8192	1.49	3.24
VQGAN	$64\times64~\&~32\times32$	512	1.45	2.78

Table 5. FID on ImageNet between reconstructed validation split and original validation (FID/val) and training (FID/train) splits. *trained with Gumbel-Softmax reparameterization as in [59, 29].

vs SOTA

CelebA-HQ 256×256		FFHQ 256×256		
Method	FID↓	Method	FID ↓	
GLOW [37]	69.0	VDVAE (t = 0.7) [11]	38.8	
NVAE [69]	40.3	VDVAE (t = 1.0)	33.5	
PIONEER (B.) [23]	39.2 (25.3)	VDVAE (t = 0.8)	29.8	
NCPVAE [1]	24.8	VDVAE (t = 0.9)	28.5	
VAEBM [77]	20.4	VQGAN+P.SNAIL	21.9	
Style ALAE [56]	19.2	BigGAN	12.4	
DC-VAE [54]	15.8	ours (k=300)	9.6	
ours (k=400)	10.2	U-Net GAN (+aug) [66]	10.9 (7.6)	
PGGAN [31]	8.0	StyleGAN2 (+aug) [34]	3.8 (3.6)	

Table 3. FID score comparison for face image synthesis. CelebA-HQ results reproduced from [1, 54, 77, 24], FFHQ from [66, 32].

VQ-GAN

3. Results VQ-GAN

Conditioning

• Completion, Depth-to-Image, Semantic-guide, Pose-guide, Class-condition

High Resolution

VQ-GAN

Figure 5. Samples generated from semantic layouts on S-FLCKR. Sizes from top-to-bottom: 1280×832 , 1024×416 and 1280×240 pixels. Best viewed zoomed in. A larger visualization can be found in the appendix, see Fig 29.

Conclusion

- 저해상도 이미지에 제한되어 있던 transformer의 문제를 해결.
- 처음으로 Transformer 기반 아키텍처로 고해상도 이미지를 생성.
- CNN과 Transformer의 구성요소를 상호 보완적으로 잘 활용함.

VQ-GAN

Thank you