

MPPCs for nEXO

Fabrice Retière for EXO photo-

detector group

The EXO concept

- Charge readout
 - 2D position
 - Charge arrival time
 - Energy
- Light readout
 - Timing resolution
 - Event start time
 - No need for good energy resolution
 - Energy

Light/charge fluctuations

EXO-200 looking for $0\nu\beta\beta$

- Nature 510, 229–234 (12 June 2014)
- Background reduction:
 - Energy resolution
 - Low radioactivity
 - LXe self shielding an dMulti-site / single-site (does not affect light)

EXO-200

Teflon Reflectors (increase light collection)

APD plane and wire planes (wires are photo-etched)

Central HV plane (photo-etched phosphor bronze)

Acrylic supports and field shaping rings

Kapton flex cables (spring connections eliminate solder joints and glue)

Light detection in EXO-200

R. Neilson, et al. NIM A 608 (2009) 6875

- very clean & light-weight,
- very sensitive to VUV

QE > 1 at 175nm

Gain set at ~200 V~1500V, ΔV < ±0.5V ΔT < ±0.1K APD is the driver for temperature stability Small Leakage current at LXe Temp.

EXO-200 resolution limited by APD noise

EXO-200 to nEXO

nEXO: at the conceptual stage

EXO-200 "operating" detector Two drift regions (central cathode) Charge collection on anode wires Light readout by ~500 APDs

Dec 9

TRIUMFnEXO baseline configuration Up to 4 m² of photo-detectors

ETRIUMF

Scintillation photon detection requirements for nEXO

Side issues about E-Field Charge may land on MPPCs

Aside about index of refraction

- $n_{LXe} \sim n_{SiO2} \sim 1.7$
- Re(n_{Si}) ~ 0.7-0.8
 - Surprisingly large uncertainty
- Very significant reflections at Lxe/SiO2-Si
 - Anti-reflective coating with MgF2?

- Reflected photons have a fair chance of being detected later on
 - Account for reflectivity in simulations
- Need careful scaling from measurements in gas/vacuum

Photo-detector specifications for nEXO

Parameters	Value
Photo-detection efficiency at 175-178nm (without AR coating measured in gas/vacuum)	≥15%
Radiopurity: contribution of photo-detectors to the overall background	<1%
Dark noise rate at -100°C	≤50Hz/mm²
Average number of correlated avalanches per parent avalanche at -100°C	≤0.2
Single photo-detector active area	≥1cm²
Capacitance	<50pF/mm²

TRIUMF

Assessing nuisance parameters TRIUMF test setup

- Control temperature down to -110C
- Trigger on dark noise pulses with threshold ~0.5PE
 - Measure cross-talk as
 - P1 = 1-N1/Ntrig
 - N1 = number of single PE
- Measure all pulses following trigger
 - Fit when pulses are close to each others
 - Use scope time for late pules
 - Built time difference distribution between trigger and next pulse

ETRIUMFAmplitude and time after an avalanche

Timing analysis at -100°C

$$\begin{aligned} \mathsf{P}_{\mathsf{AP+ND}}(t) &= \left(1 - \int_0^t \mathsf{P}_{\mathsf{AP}}(t')dt'\right) \mathsf{P}_{\mathsf{DN}}(t) \\ &+ \left(1 - \int_0^t \mathsf{P}_{\mathsf{DN}}(t')dt'\right) \mathsf{P}_{\mathsf{AP}}(t) \\ \mathsf{P}_{\mathsf{DN}}(t) &= \frac{1}{\tau} \cdot e^{\frac{-t}{\tau}} \\ \mathsf{P}_{\mathsf{AP}}(t) &= \sum_{i=1}^n \frac{P_{\mathsf{ap}}}{\tau_i} \cdot e^{\frac{-t}{\tau_i}} \cdot (1 - e^{\frac{-t}{\tau_{\mathsf{Rec}}}}) \end{aligned}$$

Dark noise edge yields ~0.5Hz/mm2
But some not so clear issue with long
time constants
Short AP time constant ~2% probability

TRIUMF Efficiency measurement at Stanford

- In vaccum
- Light source: Xe gas scintillation
- Liquid nitrogen cooler
- Use reference Rxxx PMT for light yield calibration

TRIUMF Efficiency measurement at Stanford

From the W.Ootani's talk at NDIP-2014

Low radioactivity issue

- Hoping to have the photo-detectors contribute less than 1% of total background
 - ²³⁸U and ²³²Th are <9mBq/kg (<0.73pg/g) and <43mBq/kg (<10pg/g)
 - Impossible to measure by counting: 1kg of material yield 1 count in 30h.
- Assaying either by neutron activation in a reactor or Inductively Coupled Plasma Mass spectrometry
 - Measure content of stable isotopes and assume equilibrium
 - Assaying must happen in parallel with device characterization
- Low radioactivity packaging: looking at bounding Silicon chip on quartz plates

Low radioactivity packaging

- nEXO requirements are extremely low
 - Much lower than dark matter experiments
- Strategy:
 - Use as little material as possible
 - E.g. Mount MPPCs directly on Photo-detector Readout Board. I.e. Without carrier board. Make testing very cumbersome however
 - Assay every single pieces of material
 - EXO would like to assay raw materials (e.g wire bound, epoxy) before they get used in the final product
 - Assay a sample of silicon before packaging
 - Use Nuclear Activation for Enhanced sensitivity

Low radioactivity material

- Silicon is expected to be fine
 - Though, may depend on details...
- Wire bound. Little material. Probably ok
- Epoxy. Little material. Probably ok
 - Some Epoxies were found to be acceptable in EXO-200
 - Electrically conductive epoxies have not be tested though
 - Also possible issue with contamination of the liquid Xenon
- Carrier board material. Significant amount of material (more than Silicon) so risky
 - EXO currently investigating using quark or Saphire
- Metal for electrical connection
 - Some copper has very low radioactivity. Can be provided by nEXO
- Solder for board to board connections
 - Can be very radioactive and should be avoided as much as possible
- Other possible materials: optical thin films, window in front of the MPPC will have to be assayed

Large area readout issues

- PD area~4m2
- # channel~ 100-10,000
- Channel area up to 20×20cm²
- Common base option may work
 - Single photon identification compromise with >10nF
- Total power < 50W

Possible readout configuration

Photo-detectors

ASIC

Support and Connection board

Carrier cards

- Photo-detectors
 - $-2\times2cm^2$
- Carrier card
 - Holding photo-detector
 - May not be needed
 - $2.2 \times 2.2 \text{cm}^2$
- Support and connection board
 - 16 readout ASICs on the back side
 - All connections on the back side

PRB photo-detector side

Possible configuration 2

- 16 ASICs per photo-detector readout boards (PRB)
- 1 coincidence unit per PRB and possibly ADC and timing capabilities
- Would require ~24 PRBs
 - x2 segmentation in z
 - x12 in azimuth
- Total number of photodetectors

Note that the numbers don't fully add-up accounting for nEXO's current baseline geometry. But it does not matter right now.

MPPC configuration

- Area requirement 4 to 5 cm²
 - Based on 3x3 mm2 devices
 - 8x8 matrix = 2.4x2.4 = 5.76 cm² (need ~10,000 in that case)
 - $7x7 \text{ matrix} = 2.1x2.1 = 4.41 \text{ cm}^2$
 - $6x6 \text{ matrix} = 1.8x1.8 = 3.24 \text{ cm}^2$
 - Or possibly on different sizes
- Desirable to connect all the MPPCs on the silicon to minimize connections
 - The question is whether or not to have some MPPCs in series vs parallel
 - One option: 4x4 matrix of 6x6mm2 (or 8x8 of 3x3mm2) making 4 groups of MPPCs connected in parallel (either 4 6x6mm2 or 16 3x3mm2) and then connect the 4 groups in series
 - Or for better uniformity connect first in series 4 6x6 mm2 (or 16 3x3mm2) and then connect in parallel.

Using MEG MPPC for development

- Investigate series vs parallel solution using MEG MPPCs at TRIUMF
 - PCB holding the MPPC must fit on the cold chuck

Cold board 1 MEG MPPC

Analog board

Schematics: L. Fabris, ORNL

Layout: M. Constalbles, TRIUMF?

Test performances with

- -16 6x6mm2 in parallel
- 4 6x6mm2 in series then parallel
- 4 6x6mm2 in parallel then series

Test performances with

- -1 6x6mm2
- 4 6x6mm2 in series
- 4 6x6mm2 in parallel

Cold board 4 MEG MPPCs

Analog board

Schematics: L. Fabris, ORNL

Layout: M. Constalbles, TRIUMF

The current landscape

Set Hellon naservatory

Parameters	Spec.	FBK-2010	НРК	KETEK	SensL
Over-voltage	N/A	5V	2.5V	2.5V	
PDE at 175nm (%)	>15%	10 ^S	17 ^S , 19 ^M	0	0
Dark noise rate at -100C (Hz/mm ²)	<50	10 ^{3 S}	0.5 ^T	4 ^T	?
Cross-talk probability		0.06 ^S	0.34 ^T	0.1^{T}	?
Total after-pulsing rate at -100C		?	0.16^{T}	0.25 ^T	?
Xt+AP within 10 μs at -100C	<0.2	?	0.38 ^T	0.15^{T}	?
Recovery time		?	25ns ^T	900ns ^T	?
Pulse rise time (Gaussian σ)		?	1.6ns ^T	0.5ns [⊤]	?
Pulse fall time(s) (exp. constant)		?	30ns ^T	6/300ns ^T	?
Capacitance (pF/mm²)	<50	330	35	100	80 / 3.2
Thorium content (μBq/kg)	< 43	<13 ^A	?	?	<2 10 ^{6 N}
Uranium content (μBq/kg)	< 9	<2.5 10 ^{2 A}	?	?	<94 10 ^{6 N}
Potassium content (μBq/kg)	?	<1.4 10 ^{2 A}	?	?	<4.7 10 ⁶ N

 $^{^{\}rm S}$ Measured at Stanford, $^{\rm T}$ Measured at TRIUMF, $^{\rm A}$ measured at U.Alabama with neutron activation $^{\rm M}$ Measured by the MEG collaboration, $^{\rm N}$ measured by the NEXT collaboration by Ge counting

Summary

- Hamamatsu MPPCs are very well suited for nEXO if 2 issues can be addressed
 - Lower cross-talk with trenches. Easy?
 - Find a way to achieve the required extremely low radioactivity... Hard?
- Would be nice add-ons:
 - Increase efficiency using anti-reflective coating. Possible?
 - Lower capacitance per unit area. Possible?

Time scale

- Identify compelling photo-detector(s) by the end of 2016
- Build a small scale (10x10x10cm3) demonstrator by early 2017
- Down-select by DOE in 2016 or 2017
 - Chose technology, i.e. Germanium or Xenon
- Construction starting in 2017 or 2018

Add-on

Low capacitance SiPM concept

- Motivations
 - Lower electronics noise. Can live with lower gain
 - Less gain: reduce correlated avalanche rate
 - Maintain same peak current which to first order is defined by $\Delta V/R_{\text{quench}}$. Peak current is critical for good timing
 - Narrow pulse. Fall time ~ R_{quench} x Cpix
- Idea
 - "Point" contact diode
 - Need electric field to drift carrier to point contact
 - Impact ionization only occurs close to point contact
 - Single carrier detection (e- prefered)
 - Block carriers from substrate from reaching the drift field region

substrate

