1

Seminar 4

- 1. Studiati natura urmatoarelor serii cu termeni pozitivi utilizand criteriile indicate
 - i) criteriul comparatiei

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{4n^2-1}}$$

b)
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2}\right)$$

ii) consecinte ale criteriului lui Kummer

a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$
b)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{\sqrt{n}}$$

c)
$$\sum_{n=1}^{\infty} \left[\frac{(2n)!!}{(2n+1)!!} \right]^2$$

iii) criteriul radicalului

$$\sum_{n=1}^{\infty} \frac{n^2}{\left(2 + \frac{1}{n}\right)^n}$$

iv) criteriul condensarii

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}, \quad p > 0$$

2. Studiati convergenta si absolut convergenta urmatoarelor serii cu termeni oarecare

a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{2n+1}{3^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{\sin n}{2^n}$$

3. (criteriul raportului pentru siruri) Fie $(x_n)_{n\in\mathbb{N}}$ un sir cu termeni strict pozitivi pentru care $\exists \lim_{n \to \infty} \frac{x_n}{x_{n+1}} = l$. Au loc afirmatiile
i) Daca l > 1 atunci $\lim_{n \to \infty} x_n = 0$ ii) Daca l < 1 atunci $\lim_{n \to \infty} x_n = \infty$

i) Daca
$$l > 1$$
 atunci $\lim_{n \to \infty} x_n = 0$

ii) Daca
$$l < 1$$
 atunci $\lim_{n \to \infty} x_n = \infty$

4. Fie $\sum_{n=1}^{\infty} x_n$ o serie cu termeni pozitivi. Aratati ca

$$\sum_{n=1}^{\infty} x_n \sim \sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$$

Exercitii suplimentare

- 1. Studiati natura urmatoarelor serii cu termeni pozitivi

 - b) $\sum_{n=0}^{\infty} \frac{2^n}{n+3^n}$ c) $\sum_{n=1}^{\infty} \sin^3 \frac{1}{n}$

 - d) $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{1}{2n+1}$ e) $\sum_{n=1}^{\infty} a^{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}}, \quad a > 0$
 - f) $\sum_{n=1}^{\infty} \frac{(an)^n}{n!}, \quad a > 0$
 - g) $\sum_{n=0}^{\infty} \left(\frac{n+1}{n+2}\right)^{n^2}$
 - h) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$
- 2. Studiati convergenta si absolut convergenta urmatoarelor serii cu termeni oarecare
 - a) $\sum_{n=1}^{\infty} (-1)^n n$
 - b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}}{n+\sqrt{2}}$
 - c) $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + 1})$
- 3. Calculati limita sirului $x_n = \frac{3^n \, n!}{n^n}$.
- 4. Fie $\sum_{n=1}^{\infty} x_n$ o serie convergenta cu termeni pozitivi. Care din urmatoarele afirmatii sunt intotdeauna adevarate?
 - i) Seria $\sum_{n=1}^{\infty} x_n^2$ este convergenta
 - ii) Seria $\sum_{n=1}^{\infty} \sqrt{x_n}$ este convergenta
- 5. Fie $(x_n)_{n\in\mathbb{N}}$ un sir cu termeni pozitivi. Care din urmatoarele implicatii sunt adevarate?
 - i) Daca seria $\sum_{n=1}^{\infty} x_n$ este convergenta \Rightarrow seria $\sum_{n=1}^{\infty} \frac{\sqrt{x_n}}{n}$ este convergenta
 - ii) Daca seria $\sum_{n=1}^{\infty} x_n$ este divergenta \Rightarrow seria $\sum_{n=1}^{\infty} \frac{\sqrt{x_n}}{n}$ este divergenta