

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ		Радиотехнический (РТ)					
КАФЕДРАСистемы обработки информации и управления (ИУ-5)							
РАСЧЕТ	коп-онт	СНИТЕЛЬНАЯ	ЗАПИСКА				
KHAY	но-иссл	ЕДОВАТЕЛЬСКО.	Й РАБОТЕ				
	1	НА ТЕМУ:					
Пр	Прогнозирование смерти пациента						
	п сердечноі	й недостаточност	lu				
			_				
Студент	<u>-61Б</u>		М. А. Ходосов				
(Групп	та)	(Подпись, дата)	(И.О.Фамилия)				
Руководитель			Ю. Е. Гапанюк				
		(Подпись, дата)	(И.О.Фамилия)				
Консультант							

(Подпись, дата)

(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

			УТВЕРЖДАЮ	
		Заве,	дующий ка	афедрой
				(Индекс)
		<u> </u>		(И.О.Фамилия) 2022 Г
	3 A []	АНИЕ		
на выпо	олнение научно	-исследовател	ьской р	аботы
по теме Прогнозир	ование смерти пацие	нта от сердечной не	достаточно	ости
Студент группы]	Ходосов Ми	хаил Александрович	<u></u>	
	(Фамили	ия, имя, отчество)		
Направленность НИР	(учебная, исследоват	ельская, практическ	ая, произво	одственная, др.)
	учебная			
Источник тематики (к	афедра, предприятие	, НИР) <u>кас</u>	федра	
График выполнения Н	IИР: 25% к нед	., 50% к нед., 75	% к нед	., 100% к нед.
Техническое задание обучения. На основе в решения задачи класс	<u>ыбранного набора да</u>	•	-	
Оформление научно-	исследовательской р	работы:		
Расчетно-пояснительн Перечень графическог			и, плакаты,	слайды и т.п.)
	15 1	2022		
Дата выдачи задания	<_15_»февраля	<u>2022</u> г.		
Руководитель НИР				Ю. Е. Гапанюк
Студент		(Подпись, дата	a)	(И.О.Фамилия) М. А. Ходосов
•		(Подпись, дата	a)	(И.О.Фамилия)

Содержание

Описание набора данных	4
Импорт библиотек	5
Загрузка данных	5
Проведение разведочного анализа данных	5
Построение графиков для понимания структуры данных	7
Выбор признаков, подходящих для построения моделей. Кодирование категори	альных
признаков. Масштабирование данных	12
Проведение корреляционного анализа данных. Формирование промежуточных	выводов
о возможности построения моделей машинного обучения	13
Выбор метрик для последующей оценки качества моделей	14
Выбор наиболее подходящих моделей для решения задачи классификации или	
регрессии	16
Формирование обучающей и тестовой выборок на основе исходного набора дан	ных16
Построение базового решения (baseline) для выбранных моделей без подбора	
гиперпараметров. Производится обучение моделей на основе обучающей выбор	эки и
оценка качества моделей на основе тестовой выборки	17
Подбор гиперпараметров для выбранных моделей	22
Сравнение качества полученных моделей с качеством baseline-моделей	24
Формирование выводов о качестве построенных моделей на основе выбранных	метрик
	28
Заключение	29
Список использованных источников информации	29

Описание набора данных

В качестве набора данных мы будем использовать набор данных прогнозирования сердечной недостаточности

https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data

Датасет состоит из файла heart_failure_clinical_records_dataset.csv. Файл содержит следующие столбцы:

- age возраст (лет)
- апаетіа наличие анемии (логическое значение)
- creatinine_phosphokinase уровень фермента КФК в крови (мкг/л)
- diabetes наличие у пациента диабета (логическое значение)
- ejection_fraction процент крови, покидающий сердце при каждом сокращении (в процентах)
 - high_blood_pressure наличие гипертонии (логическое значение)
 - platelets уровень тромбоцитов в крови (кг/мл)
- serum_creatinine уровень сывороточного креатинина в крови (мг/дл)
 - serum_sodium уровень натрия в сыворотке крови (мэкв/л)
 - sex пол (бинарное значение)
 - smoking курит ли пациент (логическое значение)
 - time период наблюдения (дни)
- DEATH_EVENT смерть пациента в течение периода наблюдения (логическое значение)

Для решения задачи классификации в качестве целевого признака будем использовать "DEATH_EVENT". Поскольку признак содержит только значения 0 и 1, то это задача бинарной классификации.

Импорт библиотек

```
In [1]: import numpy as np
              import pandas as pd
              import seaborn as sns
              import matplotlib.pyplot as plt
              from sklearn.preprocessing import MinMaxScaler
             from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.model_selection import train_test_split
              from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
             from sklearn.metrics import accuracy_score, balanced_accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score, classification_report from sklearn.metrics import confusion_matrix
              from sklearn.metrics import plot_confusion_matrix
              from sklearn.model_selection import GridSearchCV
             from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score from sklearn.metrics import roc_curve, roc_auc_score from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR
             from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
              from sklearn.preprocessing import LabelEncoder
              from sklearn.preprocessing import OrdinalEncoder
              %matplotlib inline
             sns.set(style="ticks")
             import warnings
             warnings.filterwarnings('ignore')
```

Загрузка данных

```
In [2]: # считываем данные, выводим первые 5 строк

data = pd.read_csv('./heart_failure_clinical_records_dataset.csv', sep=",")

data.head()

target_col = 'DEATH_EVENT'
```

Проведение разведочного анализа данных

Характеристики датасета. Убедимся, что пропусков нет.

```
In [5]: # типы данных
          data.dtypes
                                            float64
Out[5]: age anaemia
                                             int64
          creatinine_phosphokinase
                                              int64
          diabetes
ejection_fraction
high_blood_pressure
platelets
serum_creatinine
                                             int64
int64
                                              int64
                                           float64
                                          float64
          serum_sodium
                                             int64
          sex
smoking
                                             int64
int64
          time
                                             int64
          DEATH_EVENT
                                             int64
          dtype: object
In [6]: # проверим наличие пустых значений data.isnull().sum()
Out[6]: age anaemia
                                           0
          creatinine_phosphokinase
                                           0
          diabetes
                                           0
          ejection_fraction
                                           0
          high_blood_pressure
          platelets
                                           0
          serum_creatinine
serum_sodium
                                           0
0
0
          sex
          smoking
          time
DEATH_EVENT
                                           0
                                           0
          dtype: int64
```

Построение графиков для понимания структуры данных

Проверим целевой признак

```
In [9]: # ybedumcs, что целевой признак содержит только θ u 1
data[target_col].unique()

Out[9]: array([1, θ])

In [10]: # ουεκιων οςοπκουωενια δολοκως u σλοροδως
fig, ax = plt.subplots(figsize=(2,2))
plt.hist(data[target_col])
plt.show()

200

00 0.5 1.0

In [11]: data[target_col].value_counts()

Out[11]: θ 203
1 96
Name: DEATH_EVENT, dtype: int64

In [12]: total = data.shape[θ]
class_θ, class_1 = data[target_col].value_counts()
print('Knac θ οςοταβηρετ {}%, a κласс 1 составляет {}%,'
.format(round(class_θ / total, 4)*10θ), round(class_1 / total, 4)*10θ))
```

Класс 0 составляет 67.89%, а класс 1 составляет 32.11%.

Построим скрипичные диаграммы


```
In [13]: # скрипичные диаграммы для числовых колонок for col in ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium']: sns.violinplot(x=data[col]) plt.show()
```


40 50 60 ejection_fraction

70

Построим корреляционную матрицу

Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных.

```
In [15]: data.dtypes
                                      float64
Out[15]: age anaemia
                                        int64
          creatinine_phosphokinase
                                        int64
         diabetes
                                        int64
         ejection_fraction
                                       int64
         high_blood_pressure
                                        int64
         platelets
          .
serum_creatinine
                                      float64
         serum_sodium
                                       int64
                                        int64
         sex
         smoking
         time
                                        int64
         DEATH_EVENT
                                        int64
         dtype: object
```

Как видим, нет необходимости кодировать категориальные признаки.

Выполним мастшабирование

```
In [16]: # числовые колонки для масштабирования scale_cols = ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium', 'time']
           # проведем масштабирование с помощью MinMaxScaler
           data\_scaled = data
           sc = MinMaxScaler()
           sc_data = sc.fit_transform(data_scaled[scale_cols])
           # добавим новые колонки
for i in range(len(scale_cols)):
               col = scale_cols[i]
col_name = col + '_scaled'
                data_scaled[col_name] = sc_data[:,i]
           # y\partial aлим cmapыe data_scaled = data_scaled.drop(scale_cols, axis=1) data_scaled.head()
             anaemia diabetes high_blood_pressure sex smoking DEATH_EVENT age_scaled creatinine_phosphokinase_scaled ejection_fraction_scaled platelets
Out[16]:
                               0
                                                    1
                                                        1
                                                                   0
                                                                                       0.636364
                                                                                                                         0.071319
                                                                                                                                                 0.090909
                                                                                                                                                                  0.
                0
                              0
                                                    0 1
                                                                                        0.272727
                                                                                                                         1.000000
                                                                                                                                                 0.363636
           2
                                                    0
                                                                                        0.454545
                                                                                                                         0.015693
                                                                                                                                                 0.090909
                                                                                                                                                                  0.
                                                    0 1
           3
                               0
                                                                   0
                                                                                   1 0.181818
                                                                                                                         0.011227
                                                                                                                                                 0.090909
                                                                                                                                                                  0.
           4
                                                    0 0
                                                                   0
                                                                                        0.454545
                                                                                                                         0.017479
                                                                                                                                                 0.090909
                                                                                                                                                                  0.
```

Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения

Построим кореляционную матрицу на масштабированных данных, убедимся, что она совпадает с исходной.

Исходя из кореляционных матриц, можно сделать следующие выводы:

- 1) Целевой признак DEATH_EVENT наиболее сильно кореллирует с возрастом(0,25), процентом крови, покидающей сердце при каждом сокращении (0,27); уровень сывороточного креатинина в крови (0.29); уровень натрия в сыворотке крови (0,20) и период наблюдения в днях (0,53). Эти признаки обязательно следует оставить в модели классификации.
- 2) У нас нет признаков которые имеют корреляцию, близкую по модулю к 1, поэтому никакие признаки не следуют исключать из модели по этому признаку.

Выбор метрик для последующей оценки качества моделей

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок:

Метрика precision:

Можно переводить как точность, но такой перевод совпадает с переводом метрики "accuracy".

$$precision = \frac{TP}{TP+FP}$$

Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция precision_score.

Метрика recall (полнота):

$$recall = \frac{TP}{TP + FN}$$

Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция recall_score.

Метрика F_1 -мера

Для того, чтобы объединить precision и recall в единую метрику используется F_{β} -мера, которая вычисляется как среднее гармоническое от precision и recall:

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{precision + recall}$$

где eta определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при $\beta=1$:

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Для вычисления используется функция f1_score.

Метрика ROC AUC

Основана на вычислении следующих характеристик:

 $TPR = rac{TP}{TP+FN}$ - True Positive Rate, откладывается по оси ординат. Совпадает с recall.

 $FPR = \frac{FP}{FPLTTN}$ - False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

```
In [18]: class MetricLogger:
                def __init__(self):
                      self.df = pd.DataFrame(
                          {'metric': pd.Series([], dtype='str'),
                           'alg': pd.Series([], dtype='str'),
'value': pd.Series([], dtype='float')})
                def add(self, metric, alg, value):
                     Добавление значения
                     # Удаление значения если оно уже было ранее добавлено self.df.drop(self.df['self.df['metric']==metric)&(self.df['alg']==alg)].index, inplace = True)
                     # Добавление нового значения

temp = [{'metric':metric, 'alg':alg, 'value':value}]

self.df = self.df.append(temp, ignore_index=True)
                def get_data_for_metric(self, metric, ascending=True):
                     Формирование данных с фильтром по метрике
                     temp_data = self.df[self.df['metric']==metric]
                     temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
return temp_data_2['alg'].values, temp_data_2['value'].values
                def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
                     Вывод графика
                     array_labels, array_metric = self.get_data_for_metric(metric, ascending)
                     fig, ax1 = plt.subplots(figsize=figsize)
                     pos = np.arange(len(array_metric))
                     rects = ax1.barh(pos, array_metric, align='center',
                                          height=0.5,
                                          tick_label=array_labels)
                     ax1.set_title(str_header)
                     for a,b in zip(pos, array_metric):
                          plt.text(0.5, a-0.05, str(round(b,3)), color='white')
                     plt.show()
```

Выбор наиболее подходящих моделей для решения задачи классификации или регрессии

Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Решающее дерево
- Случайный лес (ансамблевая)
- Градиентный бустинг (ансамблевая)

Формирование обучающей и тестовой выборок на основе исходного набора данных

```
In [19]: X = data_scaled.drop(target_col, axis=1)
Y = data_scaled[target_col]

In [20]: # pasdenum &bibopky Ha obyvaiouyvo u mecmodyvo
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2)
print('{}, {}'.format(x_train.shape, x_test.shape))
print('{}, {}'.format(y_train.shape, y_test.shape))

(209, 12), (90, 12)
(209,), (90,)
```

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки

```
In [21]: # модели
            models =
                            {'LogisticRegression': LogisticRegression(),
                            'KNearestNeighbors':KNeighborsClassifier(n_neighbors=3),
'DecisionTree':DecisionTreeClassifier(),
                            'RandomForest':RandomForestClassifier(
                           'GradientBoost':GradientBoostingClassifier()}
In [22]: # сохранение метрик
            clasMetricLogger = MetricLogger()
            def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
    fpr, tpr, thresholds = roc_curve(y_true, y_score,
                                                           pos_label=pos_label)
                 roc_auc_value = roc_auc_score(y_true, y_score, average=average)
                 #plt.figure()
                 1w = 2
                 ax.set_xlim([0.0, 1.0])
                 ax.set_xlim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
                 ax.set_title('Receiver operating characteristic')
                 ax.legend(loc="lower right")
In [23]: clas_X_train = x_train
clas_Y_train = y_train
            clas_X_test = x_test
            clas_Y_test = y_test
 Y_pred = model.predict(clas_X_test)
                 **Inpedckasanue depommocmu knacca "1" dnn roc auc
Y_pred_proba_temp = model.predict_proba(clas_X_test)
Y_pred_proba = Y_pred_proba_temp[:,1]
                 precision = precision score(clas Y test.values, Y pred)
                 recall = recall_score(clas Y_test.values, Y_pred)
f1 = f1_score(clas_Y_test.values, Y_pred)
roc_auc = roc_auc_score(clas_Y_test.values, Y_pred_proba)
                 clasMetricLogger.add('precision', model_name, precision)
clasMetricLogger.add('recall', model_name, recall)
clasMetricLogger.add('f1', model_name, f1)
                 clasMetricLogger.add('roc_auc', model_name, roc_auc)
                 fig, ax = plt.subplots(ncols=2, figsize=(10,5))
                 cmap=plt.cm.Blues, normalize='true')
                 fig.suptitle(model_name)
                 plt.show()
 In [25]: accuracies = {}
             for model_name, model in models.items():
                 model.fit(x_train,y_train)
                 y_pred = model.predict(x_test)
y_prob = model.predict_proba(x_test)[:,1]
                  cm = confusion_matrix(y_test, y_pred)
                 clas_train_model(model_name, model, clasMetricLogger)
                 print(classification_report(y_test, y_pred))
print(f'ROC AUC score: {roc_auc_score(y_test, y_prob)}')
print('Accuracy Score: ',accuracy_score(y_test, y_pred))
                  acc = accuracy_score(y_test, y_pred)*100
                 accuracies[model_name] = acc
```


ROC AUC score: 0.9330808080808082 Accuracy Score: 0.88888888888888888

KNearestNeighbors

ROC AUC score: 0.683712121212111 Accuracy Score: 0.7666666666666667

DecisionTree

ROC AUC score: 0.75

Accuracy Score: 0.7888888888888889

RandomForest

ROC AUC score: 0.9368686868686869 Accuracy Score: 0.9111111111111111

20

GradientBoost

ROC AUC score: 0.9185606060606062 Accuracy Score: 0.911111111111111

Подбор гиперпараметров для выбранных моделей

```
In [26]: # подбор гиперпараметров
           n_range_list = list(range(0,300,10))
           n_range_list[0] = 1
           KN_range_list = list(range(0,150,1))
           KN_range_list[0] = 1
           thirty_range_list = list(range(10,50,1))
           grid_models = [(LogisticRegression(),[{'C':[0.25,0.5,0.75,1],'random_state':[0]}]),
                          (KNeighborsClassifier(),[{'n_neighbors':KN_range_list}]),
(DecisionTreeClassifier(),[{'criterion':['gini','entropy'],'random_state':[0]}]),
(RandomForestClassifier(),[{'n_estimators':n_range_list,'criterion':['gini','entropy'],'random_state':[0]}]),
                          (GradientBoostingClassifier(),[{'n_estimators':n_range_list,'criterion':['friedman_mse','mse'],'loss':['deviance'
 In [27]: first_grid = GridSearchCV(LogisticRegression(),param_grid = [{'C':[0.25,0.5,0.75,1],'random_state':[0]}], scoring = 'accuracy',c
           first_grid.fit(clas_X_train, clas_Y_train)
 Out[27]: GridSearchCV(cv=5, estimator=LogisticRegression(),
                        param_grid=[{'C': [0.25, 0.5, 0.75, 1], 'random_state': [0]}],
scoring='accuracy')
 In [28]: first_grid.best_estimator_
 Out[28]: LogisticRegression(C=1, random_state=0)
 In [29]: first_grid.best_score_
 Out[29]: 0.789198606271777
 In [30]: second_grid = GridSearchCV(KNeighborsClassifier(),param_grid = [{'n_neighbors':KN_range_list}], scoring = 'accuracy',cv=5)
          second_grid.fit(clas_X_train, clas_Y_train)
 Out[30]: GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
                        param_grid=[{'n_neighbors': [1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
                                                      12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, ...]}],
                        scoring='accuracy')
In [31]: second_grid.best_estimator_
Out[31]: KNeighborsClassifier(n_neighbors=11)
In [32]: second_grid.best_score_
Out[32]: 0.7227642276422765
In [33]: third_grid = GridSearchCV(DecisionTreeClassifier(),param_grid = [{'criterion':['gini','entropy'],'random_state':[0]}], scoring =
         third_grid.fit(clas_X_train, clas_Y_train)
Out[33]: GridSearchCV(cv=5, estimator=DecisionTreeClassifier(),
                      scoring='accuracy')
In [34]: third_grid.best_estimator_
Out[34]: DecisionTreeClassifier(criterion='entropy', random_state=0)
In [35]: third_grid.best_score_
Out[35]: 0.7943089430894309
In [36]: fourth_grid = GridSearchCV(RandomForestClassifier(),param_grid = [{'n_estimators':thirty_range_list,'criterion':['gini','entropy
          fourth_grid.fit(clas_X_train, clas_Y_train)
Out[36]: GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                       28, 29, 30, 31, 32, 33, 34, 35, 36,
                                                      37, 38, 39, ...],
                                     'random_state': [0]}],
                       scoring='accuracy')
```

```
In [37]: fourth_grid.best_estimator_
Out[37]: RandomForestClassifier(n_estimators=40, random_state=0)
In [38]: fourth_grid.best_score_
Out[38]: 0.8371660859465736
In [39]: fifth_grid = GridSearchCV(GradientBoostingClassifier(),param_grid = [{'n_estimators':thirty_range_list,'criterion':['friedman_ms
        fifth_grid.fit(clas_X_train, clas_Y_train)
Out[39]: GridSearchCV(cv=5, estimator=GradientBoostingClassifier(),
                    28, 29, 30, 31, 32, 33, 34, 35, 36,
                                                37, 38, 39, ...],
                                'random_state': [0]}],
                    scoring='accuracy')
In [40]: fifth_grid.best_estimator_
Out[40]: GradientBoostingClassifier(criterion='mse', learning_rate=0.8, loss='exponential', n_estimators=35, random_state=0)
In [41]: fifth_grid.best_score_
Out[41]: 0.8181184668989546
In [42]: # выведем лучшие параметры для каждой модели
         for i,j in grid_models:
    grid = GridSearchCV(estimator=i,param_grid = j, scoring = 'accuracy',cv=5)
            grid = Gridoearch(v(estimator=1,param_grid = ), scoring = accurate
grid.fit(x_train, y_train)
best_accuracy = grid.best_score_
best_param = grid.best_params_
print('{}:\nBest Accuracy : {:.2f}%'.format(i,best_accuracy*100))
print('Best Parameters : ',best_param)
print('')
            print('-----')
            print('')
         LogisticRegression():
         Best Accuracy : 78.92%
        Best Parameters : {'C': 1, 'random_state': 0}
         -----
         KNeighborsClassifier():
         Best Accuracy : 72.28%
         Best Parameters : {'n_neighbors': 11}
         _____
         DecisionTreeClassifier():
         Best Accuracy : 79.43%
         Best Parameters : {'criterion': 'entropy', 'random_state': 0}
         RandomForestClassifier():
         Best Accuracy : 83.72%
        Best Parameters : {'criterion': 'gini', 'n_estimators': 40, 'random_state': 0}
        GradientBoostingClassifier():
        Best Accuracy : 81.31%
         Best Parameters : {'criterion': 'friedman_mse', 'learning rate': 0.5, 'loss': 'exponential', 'n_estimators': 40, 'random_stat
         e': 0}
         _____
```

Сравнение качества полученных моделей с качеством baseline-моделей

LogisticRegression

ROC AUC score: 0.9330808080808082 Accuracy Score: 0.88888888888888888

KNearestNeighbors

ROC AUC score: 0.7749368686868687 Accuracy Score: 0.77777777777778

DecisionTree

ROC AUC score: 0.7064393939393939 Accuracy Score: 0.7444444444444445

RandomForest

ROC AUC score: 0.9160353535353536 Accuracy Score: 0.92222222222222

GradientBoost Receiver operating characteristic 0.9 1.0 0.8 0.8 - 0.7 0.92 0.076 0 -True Positive Rate - 0.6 0.6 True label - 0.5 0.4 - 0.4 0.25 0.75 1 0.3 0.2 0.2 0 1 ROC curve (area = 0.88) 0.0 0.1 Predicted label 0.6 0.2 0.4 0.8 1.0 0.0 False Positive Rate precision recall f1-score support 0 0.91 0.92 0.92 66 1 0.78 0.75 0.77 24

ROC AUC score: 0.8832070707070707 Accuracy Score: 0.87777777777778

0.85

0.88

0.84

0.88

accuracy

macro avg

weighted avg

Формирование выводов о качестве построенных моделей на основе выбранных метрик

0.88

0.84

0.88

90

90

90

```
In [45]: # cpaθним pesynemamu мodeneŭ c nomowwe zucmozpamm

colors = ["purple", "green", "orange", "magenta","#CFC60E","#0F8BAE",'#417D7A','#066163','#4D4C7D']

sns.set_style("whitegrid")
plt.figure(figsize=(16,5))
plt.yticks(np.arange(0,100,10))
plt.ylabel("Accuracy %")
plt.xlabel("Algorithms")
sns.barplot(x=list(accuracies.keys()), y=list(accuracies.values()), palette=colors)
plt.show()

sns.set_style("whitegrid")
plt.figure(figsize=(16,5))
plt.yticks(np.arange(0,100,10))
plt.ylabel("Accuracy %")
plt.xlabel("Algorithms")
sns.barplot(x=list(best_accuracies.keys()), y=list(best_accuracies.values()), palette=colors)
plt.show()
```


Заключение

Три модели: логистическая регрессия, градиентный бустинг и случайный лес показали наиболее высокий результат для решения выбранной задачи.

Список использованных источников информации

- 1. GitHub репозиторий курса «Технологии машинного обучения» 2022 год. URL: https://github.com/ugapanyuk/ml_course_2022/wiki/COURSE_TMO
- 2. Matplotlib URL: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
- 3. Scikit-learn URL: https://scikit-learn.org/stable/index.html