Hugo Marquerie 28/02/2025

Lem-relacion-equivalencia-abiertahausdorff

Lema 1. Sea \sim abierta en (X, \mathcal{T}) esp topológico, entonces

$$X/\sim$$
 es de Hausdorff $\iff \mathcal{R} := \{(x,y) \in X \times X : x \sim y\}$ es cerrado.

Demostración:

 \implies Veamos que $(X \times X) \setminus \mathcal{R}$ es abierto con la topología producto.

Sea $(x,y) \notin \mathcal{R}$, entonces $x \not\sim y \implies [x] \neq [y]$ en X/\sim . Como X/\sim es de Hausdorff, $\exists U \in \mathcal{V}([x]), V \in \mathcal{V}([y]) : U \cap V = \varnothing$. Por tanto, $\varnothing = \pi^{-1}(U \cap V) = \pi^{-1}(U) \cap \pi^{-1}(V)$.

Veamos que $(\pi^{-1}(U) \times \pi^{-1}(V)) \cap \mathcal{R} = \emptyset$. Sea $(a,b) \in (\pi^{-1}(U) \times \pi^{-1}(V)) \cap \mathcal{R}$, entonces

*
$$(a,b) \in \mathcal{R} \implies a \sim b \implies [a] = [b] \text{ en } X/\sim y$$

$$* \ (a,b) \in (\pi^{-1}(U) \times \pi^{-1}(V)) \implies [a] \in U \ {\scriptstyle \wedge} \ [b] \in V.$$

Por tanto, $[a] \in U \cap V = \emptyset$, luego $(a, b) \notin \mathcal{R}$. $\longrightarrow \longleftarrow$

Sean $[x] \neq [y]$ en X/\sim , entonces $(x,y) \notin \mathcal{R} \implies \exists A_1, A_2 \subset X$ tales que $(x,y) \in A_1 \times A_2 \wedge (A_1 \times A_2) \cap \mathcal{R} = \emptyset$. Definimos $U = \pi(A_1)$ y $V = \pi(A_2)$ que son abiertos de X/\sim porque \sim es abierta. Entonces, $x \in U \wedge y \in V \wedge U \cap V = \emptyset$. Por tanto, X/\sim es de Hausdorff.

Referenciado en

• Esp-proyectivo-real