CLAIMS

What is claimed is:

1	1. An integrated voice activation detector for
2	detecting whether voice is present, the integrated voice
3	activation detector comprising:
4	a semiconductor integrated circuit including,
5	at least one signal processing unit to perform
6	voice detection; and
7	a processor readable storage means to store
8	signal processing instructions for execution by the
9	at least one signal processing unit to:
10	detect whether noise is present to
11	determine whether a noise flag should be set;
12	detect a predetermined number of zero
13	crossings to determine whether a zero crossing
14	flag should be set;
15	detect whether a threshold amount of
16	energy is present to determine whether an
17	energy flag should be set;
18	detect whether instantaneous energy is

19	present to determine whether a instantaneous
20	energy flag should be set; and
21	utilize a combination of the noise,
22	zero crossing, energy, and instantaneous energy
23	flags to determine whether voice is present.

- 1 2. The integrated voice activation detector of
- 2 claim 1, wherein the signal processing instructions
- 3 further for execution by the at least one signal
- 4 processing unit to, perform fast Fourier transformation
- 5 (FFT) processing to determine whether a FFT flag should
- 6 be set.
- 3. The integrated voice activation detector of
- 2 claim 1, wherein the signal processing instructions
- 3 further for execution by the at least one signal
- 4 processing unit to, perform an interim voice activity
- 5 decision, a interim voice activity decision flag being
- 6 set to indicate voice has been detected by determining if
- 7 the instantaneous energy flag is set or the energy flag
- 8 is set and the noise flag is not set and the zero
- 9 crossing flag is not set.

- 1 4. The integrated voice activation detector of
- 2 claim 3, wherein the signal processing instructions
- 3 further for execution by the at least one signal
- 4 processing unit to, perform HangOver and Speech Kick in
- 5 processing after the interim voice activity decision has
- 6 been made to determine whether a voice activity flag
- 7 should be set or cleared.
- 1 5. The integrated voice activation detector of
- 2 claim 4, wherein the signal processing instructions
- 3 further for execution by the at least one signal
- 4 processing unit to, if the voice activity flag is set,
- 5 send a speech payload to be packetized and update the
- 6 voice activity detection flag for external interaction
- 7 with other functions of the semiconductor integrated
- 8 circuit.
- 1 6. The integrated voice activation detector of
- 2 claim 4, wherein the signal processing instructions
- 3 further for execution by the at least one signal
- 4 processing unit to, if the voice activity flag is not

- 5 set, disable an automatic level control and cause a
- 6 silence insertion description payload to be prepared.
- 7. The integrated voice activation detector of
- 2 claim 1, wherein detecting a predetermined number of zero
- 3 crossings to determine whether a zero crossing flag
- 4 should be set includes determining whether a root mean
- 5 square crossing value is greater than a threshold value.
- 1 8. The integrated voice activation detector of
- 2 claim 1, wherein detecting whether noise is present to
- 3 determine whether a noise flag should be set includes
- 4 determining whether energy in a current frame multiplied
- 5 by a threshold is greater than delayed frame energy.
- 1 9. The integrated voice activation detector of
- 2 claim 1, wherein detecting whether a threshold amount of
- 3 energy is present to determine whether an energy flag
- 4 should be set includes determining if a logarithm of an
- 5 autocorrelation of a frame is greater than an energy
- 6 threshold.

10

11

2	claim 1, wherein detecting whether instantaneous energy
3	is present to determine whether an instantaneous energy
4	flag should be set includes determining whether a
5	difference between a current frames energy at an
6	autocorrelation of a tenth delayed sample and a prior
7	frames energy at an autocorrelation of a tenth delayed
8	sample is greater than a previous frames autocorrelation
9	multiplied by a threshold.
1	11. A method for voice activation detection to
2	detect whether voice is present, the method comprising:
3	detecting whether noise is present to
4	determine whether a noise flag should be set;
5	detecting a predetermined number of
6	zero crossings to determine whether a zero
7	crossing flag should be set;
8	detecting whether a threshold amount of
9	energy is present to determine whether an

1 10. The integrated voice activation detector of

126

detecting whether instantaneous energy

energy flag should be set;

12	is present to determine whether a instantaneous
13	energy flag should be set; and
14	utilizing a combination of the noise,
15	zero crossing, energy, and instantaneous energy
16	flags to determine whether voice is present.

- 1 12. The method of claim 11, further comprising,
- 2 performing fast Fourier transformation (FFT) processing
- 3 to determine whether a FFT flag should be set.
- 1 13. The method of claim 11, further comprising,
- 2 performing an interim voice activity decision, a interim
- 3 voice activity decision flag being set to indicate that
- 4 voice has been detected by determining if the
- 5 instantaneous energy flag is set or the energy flag is
- 6 set and the noise flag is not set and the zero crossing
- 7 flag is not set.
- 1 14. The method of claim 13, further comprising,
- 2 performing HangOver and Speech Kick in processing after
- 3 the interim voice activity decision has been made to
- 4 determine whether a voice activity flag should be set or

- 5 cleared.
- 1 15. The method of claim 14, further comprising, if
- 2 the voice activity flag is set, sending a speech payload
- 3 to be packetized and updating the voice activity
- 4 detection flag for external interaction with other
- 5 functions.
- 1 16. The method of claim 14, further comprising, if
- 2 the voice activity flag is not set, disabling an
- 3 automatic level control and causing a silence insertion
- 4 description payload to be prepared.
- 1 17. The method of claim 11, wherein detecting a
- 2 predetermined number of zero crossings to determine
- 3 whether a zero crossing flag should be set includes
- 4 determining whether a root mean square crossing value is
- 5 greater than a threshold value.
- 1 18. The method of claim 11, wherein detecting
- 2 whether noise is present to determine whether a noise
- 3 flag should be set includes determining whether energy in

- 4 a current frame multiplied by a threshold is greater than
- 5 delayed frame energy.
- 1 19. The method of claim 11, wherein detecting
- 2 whether a threshold amount of energy is present to
- 3 determine whether an energy flag should be set includes
- 4 determining if a logarithm of an autocorrelation of a
- 5 frame is greater than an energy threshold.
- 1 20. The method of claim 11, wherein detecting
- 2 whether instantaneous energy is present to determine
- 3 whether an instantaneous energy flag should be set
- 4 includes determining whether a difference between a
- 5 current frames energy at an autocorrelation of a tenth
- 6 delayed sample and a prior frames energy at an
- 7 autocorrelation of a tenth delayed sample is greater than
- 8 a previous frames autocorrelation multiplied by a
- 9 threshold.
- 1 21. An apparatus comprising:
- 2 at least one signal processing unit to perform
- 3 voice detection; and

4	a storage device to store signal processing
5	instructions for execution by the at least one
6	signal processing unit to:
7	determine whether a noise flag, a zero
8	crossing flag, an energy flag, and an
9	instantaneous energy flag should be set; and
10	utilize a combination of the noise,
11	zero crossing, energy, and instantaneous energy
12	flags to determine whether voice is present.
1	22. The apparatus of claim 21, wherein the signal
2	processing instructions further for execution by the at
3	least one signal processing unit to:
4	detect whether noise is present to
5	determine whether the noise flag should be set;
6	detect a predetermined number of zero
7	crossings to determine whether the zero
8	crossing flag should be set;
9	detect whether a threshold amount of
10	energy is present to determine whether the
11	energy flag should be set; and
12	detect whether instantaneous energy is

130

- present to determine whether the instantaneous energy flag should be set.
- 1 23. The apparatus of claim 21, wherein the signal
- 2 processing instructions further for execution by the at
- 3 least one signal processing unit to, perform fast Fourier
- 4 transformation (FFT) processing to determine whether a
- 5 FFT flag should be set.
- 1 24. The apparatus of claim 21, wherein the signal
- 2 processing instructions further for execution by the at
- 3 least one signal processing unit to, perform an interim
- 4 voice activity decision, a interim voice activity
- 5 decision flag being set to indicate voice has been
- 6 detected by determining if the instantaneous energy flag
- 7 is set or the energy flag is set and the noise flag is
- 8 not set and the zero crossing flag is not set.
- 1 25. The apparatus of claim 24, wherein the signal
- 2 processing instructions further for execution by the at
- 3 least one signal processing unit to, perform HangOver and
- 4 Speech Kick in processing after the interim voice

- activity decision has been made to determine whether a 5
- voice activity flag should be set or cleared.
- 26. The apparatus of claim 25, wherein the signal 1
- processing instructions further for execution by the at 2
- 3 least one signal processing unit to, if the voice
- activity flag is set, send a speech payload to be 4
- packetized and update the voice activity detection flag 5
- for external interaction with other functions of the
- 7 semiconductor integrated circuit.
- 27. The apparatus of claim 25, wherein the signal 1
- processing instructions further for execution by the at
- least one signal processing unit to, if the voice 3
- activity flag is not set, disable an automatic level 4
- control and cause a silence insertion description payload 5
- 6 to be prepared.
- 28. The apparatus of claim 22, wherein detecting a 1
- predetermined number of zero crossings to determine 2
- whether a zero crossing flag should be set includes
- determining whether a root mean square crossing value is

- 5 greater than a threshold value.
- 1 29. The apparatus of claim 22, wherein detecting
- 2 whether noise is present to determine whether a noise
- 3 flag should be set includes determining whether energy in
- 4 a current frame multiplied by a threshold is greater than
- 5 delayed frame energy.
- 1 30. The apparatus of claim 22, wherein detecting
- 2 whether a threshold amount of energy is present to
- 3 determine whether an energy flag should be set includes
- 4 determining if a logarithm of an autocorrelation of a
- 5 frame is greater than an energy threshold.
- 1 31. The apparatus of claim 22, wherein detecting
- 2 whether instantaneous energy is present to determine
- 3 whether an instantaneous energy flag should be set
- 4 includes determining whether a difference between a
- 5 current frames energy at an autocorrelation of a tenth
- 6 delayed sample and a prior frames energy at an
- 7 autocorrelation of a tenth delayed sample is greater than
- 8 a previous frames autocorrelation multiplied by a

11

12

threshold.

1	32. A method comprising:
2	determining whether a noise flag, a zero
3	crossing flag, an energy flag, and an
4	instantaneous energy flag should be set; and
5	utilizing a combination of the noise, zero
6	crossing, energy, and instantaneous energy
7	flags to determine whether voice is present.
1	33. The method of claim 32, further comprising:
2	detecting whether noise is present to
3	determine whether the noise flag should be set;
4	detecting a predetermined number of zero
5	crossings to determine whether the zero
6	crossing flag should be set;
7	detecting whether a threshold amount of
8	energy is present to determine whether the
9	energy flag should be set; and
10	detecting whether instantaneous energy is

energy flag should be set.

present to determine whether the instantaneous

- 1 34. The method of claim 33, further comprising,
- 2 performing fast Fourier transformation (FFT) processing
- 3 to determine whether a FFT flag should be set.
- 1 35. The method of claim 32, further comprising,
- 2 performing an interim voice activity decision, a interim
- 3 voice activity decision flag being set to indicate that
- 4 voice has been detected by determining if the
- 5 instantaneous energy flag is set or the energy flag is
- 6 set and the noise flag is not set and the zero crossing
- 7 flag is not set.
- 36. The method of claim 35, further comprising,
- 2 performing HangOver and Speech Kick in processing after
- 3 the interim voice activity decision has been made to
- 4 determine whether a voice activity flag should be set or
- 5 cleared.
- 1 37. The method of claim 36, further comprising, if
- 2 the voice activity flag is set, sending a speech payload
- 3 to be packetized and updating the voice activity
- 4 detection flag for external interaction with other

- 5 functions.
- 1 38. The method of claim 36, further comprising, if
- 2 the voice activity flag is not set, disabling an
- 3 automatic level control and causing a silence insertion
- 4 description payload to be prepared.
- 1 39. The method of claim 33, wherein detecting a
- 2 predetermined number of zero crossings to determine
- 3 whether a zero crossing flag should be set includes
- 4 determining whether a root mean square crossing value is
- 5 greater than a threshold value.
- 1 40. The method of claim 33, wherein detecting
- 2 whether noise is present to determine whether a noise
- 3 flag should be set includes determining whether energy in
- 4 a current frame multiplied by a threshold is greater than
- 5 delayed frame energy.
- 1 41. The method of claim 33, wherein detecting
- 2 whether a threshold amount of energy is present to
- 3 determine whether an energy flag should be set includes

- 4 determining if a logarithm of an autocorrelation of a
- 5 frame is greater than an energy threshold.
- 1 42. The method of claim 33, wherein detecting
- 2 whether instantaneous energy is present to determine
- 3 whether an instantaneous energy flag should be set
- 4 includes determining whether a difference between a
- 5 current frames energy at an autocorrelation of a tenth
- 6 delayed sample and a prior frames energy at an
- 7 autocorrelation of a tenth delayed sample is greater than
- 8 a previous frames autocorrelation multiplied by a
- 9 threshold.
- 1 43. A machine-readable medium having stored thereon
- 2 instructions, which when executed by a machine, causes
- 3 the machine to perform operations comprising:
- determining whether a noise flag, a zero
- 5 crossing flag, an energy flag, and an
- 6 instantaneous energy flag should be set; and
- 7 utilizing a combination of the noise, zero
- 8 crossing, energy, and instantaneous energy
- g flags to determine whether voice is present.

1	44. The machine-readable medium of claim 43, further
2	comprising:
3	detecting whether noise is present to
4	determine whether the noise flag should be set;
5	detecting a predetermined number of zero
6	crossings to determine whether the zero
7	crossing flag should be set;
8	detecting whether a threshold amount of
9	energy is present to determine whether the
10	energy flag should be set; and
11	detecting whether instantaneous energy is
12	present to determine whether the instantaneous
13	energy flag should be set.

- 1 45. The machine-readable medium of claim 43, further
- 2 comprising, performing fast Fourier transformation (FFT)
- 3 processing to determine whether a FFT flag should be set.
- 1 46. The machine-readable medium of claim 43, further
- 2 comprising, performing an interim voice activity
- 3 decision, a interim voice activity decision flag being
- 4 set to indicate that voice has been detected by

- 5 determining if the instantaneous energy flag is set or
- 6 the energy flag is set and the noise flag is not set and
- 7 the zero crossing flag is not set.
- 1 47. The machine-readable medium of claim 46, further
- 2 comprising, performing HangOver and Speech Kick in
- 3 processing after the interim voice activity decision has
- 4 been made to determine whether a voice activity flag
- 5 should be set or cleared.
- 1 48. The machine-readable medium of claim 47, further
- 2 comprising, if the voice activity flag is set, sending a
- 3 speech payload to be packetized and updating the voice
- 4 activity detection flag for external interaction with
- 5 other functions.
- 1 49. The machine-readable medium of claim 47, further
- 2 comprising, if the voice activity flag is not set,
- 3 disabling an automatic level control and causing a
- 4 silence insertion description payload to be prepared.
- 1 50. The machine-readable medium of claim 44, wherein

- 2 detecting a predetermined number of zero crossings to
- 3 determine whether a zero crossing flag should be set
- 4 includes determining whether a root mean square crossing
- 5 value is greater than a threshold value.
- 1 51. The machine-readable medium of claim 44, wherein
- 2 detecting whether noise is present to determine whether a
- 3 noise flag should be set includes determining whether
- 4 energy in a current frame multiplied by a threshold is
- 5 greater than delayed frame energy.
- 1 52. The machine-readable medium of claim 44, wherein
- 2 detecting whether a threshold amount of energy is present
- 3 to determine whether an energy flag should be set
- 4 includes determining if a logarithm of an autocorrelation
- 5 of a frame is greater than an energy threshold.
- 1 53. The machine-readable medium of claim 44, wherein
- 2 detecting whether instantaneous energy is present to
- 3 determine whether an instantaneous energy flag should be
- 4 set includes determining whether a difference between a
- 5 current frames energy at an autocorrelation of a tenth

- 6 delayed sample and a prior frames energy at an
- 7 autocorrelation of a tenth delayed sample is greater than
- 8 a previous frames autocorrelation multiplied by a
- 9 threshold.