In [1]:

```
import numpy as np
import pandas as pd
```

In [2]:

```
dataset = pd.read_csv(r"C:\Users\kotha\Downloads\insurance.csv")
```

In [3]:

dataset

Out[3]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [4]:

```
dataset.isnull().any()
```

Out[4]:

age	False		
sex	False		
bmi	False		
children	False		
smoker	False		
region	False		
charges	False		
<pre>dtype: bool</pre>			

```
In [5]:
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
dataset["sex"] = le.fit_transform(dataset["sex"])
dataset["smoker"] = le.fit_transform(dataset["smoker"])
dataset["region"] = le.fit_transform(dataset["region"])
```

In [6]:

```
dataset.head(1)
```

Out[6]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.9	0	1	3	16884.924

In [7]:

```
x = dataset.iloc[:,0:6].values
y = dataset.iloc[:,6:7].values
```

In [8]:

```
from sklearn.preprocessing import OneHotEncoder
one = OneHotEncoder()
z= one.fit_transform(x[:,5:6]).toarray()
x = np.delete(x,5,axis=1)
x = np.concatenate((z,x),axis=1)
```

In [9]:

```
x.shape
```

Out[9]:

(1338, 9)

In [10]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state=0)
```

In [11]:

```
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
mlr.fit(x_train,y_train)
```

Out[11]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
se)

```
In [12]:
```

```
x_test
Out[12]:
array([[ 0.
                 0.
                          0.
                               , ..., 30.2 , 1.
                                                         0.
                                                              ],
                                                              ],
                  0.
       [ 0.
                          1.
                               , ..., 29.37 , 1.
                                                         0.
                                , ..., 40.565,
       [ 0.
                  1.
                          0.
                                                2.
                                                         1.
                                                              ],
       . . . ,
                  0.
                          0.
                                , ..., 40.28 ,
                                                0.
       [ 1.
                                                         0.
       [ 0.
                  0.
                          1.
                               , ..., 39.05 , 3.
                                                      , 1.
                                                              ],
                          0.
                                                              ]])
       [ 1.
                  0.
                                , ..., 24.795, 3.
                                                         0.
In [13]:
y_test
Out[13]:
array([[ 9724.53
                     ],
       [ 8547.6913
                     ],
       [45702.02235],
       [12950.0712
       [ 9644.2525
       [ 4500.33925 ],
       [ 2198.18985 ],
       [11436.73815],
       [ 7537.1639
       [ 5425.02335 ],
       [ 6753.038
                     ],
       [10493.9458
                    ],
       [ 7337.748
                     ],
       [ 4185.0979
                     ],
       [18310.742
                     ],
       [10702.6424
                     ],
       [12523.6048
                     ],
       [ 3490.5491
In [14]:
```

```
y_pred = mlr.predict(x_test)
```

```
In [15]:
y_pred
Out[15]:
array([[1.11699271e+04],
       [9.48670909e+03],
       [3.81811231e+04],
       [1.62663133e+04],
       [6.91464801e+03],
       [3.96348488e+03],
       [1.57939691e+03],
       [1.43852566e+04],
       [9.01257970e+03],
       [7.50846068e+03],
       [4.49176728e+03],
       [1.02795839e+04],
       [8.80129751e+03],
       [3.79802013e+03],
       [2.79262010e+04],
       [1.07151158e+04],
       [1.12889756e+04],
       [6.10501768e+03].
In [16]:
from sklearn.metrics import r2_score
accuracy = r2_score(y_test,y_pred)
In [17]:
accuracy
Out[17]:
0.7999876970680434
In [18]:
yp = mlr.predict([[0,0,0,1,20.9,89.9,77.8,90.8,88.5]])
In [19]:
ур
Out[19]:
```

array([[2146175.50313513]])

In [20]:

```
x_train
```

Out[20]:

```
array([[ 0.
                0.
                        0.
                           , ..., 34.1 ,
                                                        ],
                0.,
                           , ..., 34.43,
       [ 0.
                        1.
                                                        ],
       [ 1.
                        0.
                            , ..., 36.67,
                                                    1.
       [ 0.
                 0.
                        1.
                            , ..., 25.08,
                                            0.
                        0.
                            , ..., 35.53,
       [ 0.
                                            0.
                                                    0.
                1.
                                                        ],
       [ 0.
                        0.
                            , ..., 18.5 ,
                                            1.
                                                    0.
                                                        ]])
```

In [21]:

```
import matplotlib.pyplot as plt
plt.scatter(x_train[:,8],y_train)
```

Out[21]:

<matplotlib.collections.PathCollection at 0x15bbbbf4148>

In []: