Inhaltsverzeichnis

Inł	naltsv	verzeichnis	1
1	Logi 1.1 1.2 1.3	Aussagenlogik	3 3 4 4
2	2.1 2.2	ve Mengenlehre Quantitative Relationen Abbildungen Relationen	7 8 8 9
3		Reelle Zahlen	11 11 12 13 14 15 16
4	4.1 4.2 4.3 4.4	Verkettete Listen	19 19 20 21 22
5	Bäu 5.1	··· ·	27 27
6	Exkı	urs Lineare Algebra	29

31

Index

Logik

1.1 Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

$$\textbf{Negation} \ \neg \mathcal{A} \ \ \text{,} \ \mathsf{Nicht''} \ \big(!, \ \text{-,} \quad \ \ \, \big)$$

Konjunkt.
$$\mathcal{A} \wedge \mathcal{B}$$
 "und" (&&, $\stackrel{\cdot}{=}$

Disjunkt.
$$\mathcal{A} \vee \mathcal{B}$$
 "oder" (II, \bigcirc

$$\begin{array}{lll} \textbf{Implikat.} \ \mathcal{A} \Rightarrow \mathcal{B} \ \ \text{,Wenn,} & \mathsf{dann''} \\ \ \ \ \ \ \ \ \ \mathcal{B''} \ \ (\rightarrow, \ \mathsf{if}) \end{array}$$

$$\mathcal{A}\Rightarrow\mathcal{B}$$
 " \mathcal{A} hinreichend"

$$\mathcal{B}\Rightarrow\mathcal{A}$$
 " \mathcal{A} notwendig"

Äquiv.
$$\mathcal{A} \Leftrightarrow \mathcal{B}$$
 "Genau dann, wenn" $(\leftrightarrow, \equiv, =, \downarrow)$ "

Wahrheitswertetabelle mit 2^n Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

$\overline{\mathcal{A}}$	\mathcal{B}	$\neg A$	$\mathcal{A} \wedge \mathcal{B}$	$A \lor B$	$\mathcal{A}\Rightarrow\mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

ea ea ea

Äquivale	Bezeichnung	
$A \wedge B$	$B \wedge A$	Kommutativ
$A \vee B$	$B \lor A$	Rommutativ
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ
$A \vee (B \vee C)$	$(A \lor B) \lor C$	ASSOZIALIV
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv
$A \wedge A$	A	I-I
$A\vee A$	A	Idempotenz
$\neg \neg A$	A	Involution
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN
$A \wedge (\mathbf{A} \vee B)$	A	A1
$A \vee (\mathbf{A} \wedge B)$	A	Absorption
$A \Rightarrow B$	$\neg A \lor B$	
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$	

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

1.2 Prädikatenlogik

Quantoren Innerhalb eines Universums:

Existenzq. ∃ "Mind. eines"

Individuum ∃! "Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$ Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

Klassische Tautologien	Bezeichnung
$A \vee \neg A$	Ausgeschlossenes Drittes
$A \wedge (A \Rightarrow B) \Rightarrow B$	Modus ponens
$(A \land B) \Rightarrow A$	٠ ١٠ ١٠ ١٠ ١٠. ١٠. ١٠. ١٠. ١٠
$A \Rightarrow (A \lor B)$	Abschwächung

Negation (DE-MORGAN)

$$\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$$
$$\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$$

Häufige Fehler

- $\bullet \ \ U=\emptyset^{\complement} \ \ {\rm nicht \ notwendig}$
- $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$
- $\bullet \ \neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

1.3 Beweistechniken

Achtung: Aus falschen Aussagen können wahre *und* falsche Aussagen folgen.

Direkt $A\Rightarrow B$ Angenommen A, zeige B. Oder: Angenommen $\neg B$, zeige $\neg A$ (*Kontraposition*).

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Fallunters. Aufteilen, lösen, zusammenführen. O.B.d.A = "Ohne Beschränkung der Allgemeinheit"

Widerspruch $(\neg A\Rightarrow \bot)\Rightarrow A$ Angenommen $A \land \neg B$, zeige Kontradiktion. (Reductio ad absurdum)

Ring (Transitivität der Implikation)

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$
$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow A$$

Induktion $F(n) \quad \forall n \geq n_0 \in \mathbb{N}$

- 1. Anfang: Zeige $F(n_0)$.
- 2. **Schritt:** Angenommen F(n) (Hypothese), zeige F(n+1) (Behauptung).

Starke Induktion: Angenommen $F(k) \quad \forall n_0 \leq k \leq n \in \mathbb{N}.$

Häufige Fehler

- Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Naive Mengenlehre

Mengen Zusammenfassung versch. Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

 ${\bf Universum}\,\, U$

Einschränkung $\{x \mid F(x)\}$

Relationen

Mächtigkeit

$$\begin{split} |M| & \begin{cases} = n & \text{endlich} \\ \geq \infty & \text{unendlich} \end{cases} \\ & = |N| \Leftrightarrow \exists f_{\text{bijekt.}}: M \to N \end{split}$$

$\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$ Abzählbar

- Endliche Mengen, ∅, ℕ, ℤ, ℚ
- $M_{\mathsf{abz.}} \wedge N_{\mathsf{abz.}} \Rightarrow (M \cup N)_{\mathsf{abz.}}$ $(=\{m_1,n_1,m_2,n_2,\dots\})$
- $M_{\mathsf{abz.}} \wedge N \subseteq M \Rightarrow N_{\mathsf{abz.}}$

$$f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14} \dots$$

$$f(2) = 0, r_{21} \mathbf{r}_{22} r_{23}r_{24} \dots$$

$$f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$$

$$f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$$

(CANTORS Diagonalargumente)

Operationen

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

 $\bullet \ \forall M:\emptyset\subseteq M$, nicht $\forall M:\emptyset\in M$

2.1 Quantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I$.

$$\bigcup_{i \in I} M_i := \{x \mid \exists i \in I : x \in M_i\}$$
$$\bigcap_{i \in I} M_i := \{x \mid \forall i \in I : x \in M_i\}$$

Neutrale Elemente

- $ullet \ \bigcup_{i\in\emptyset} M_i=\emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

$$|\mathcal{P}(M)| = 2^{|M|} \quad (\in / \notin \mathsf{bin\"{a}r})$$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$
$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

2.2 Abbildungen

Abbildung $\mathbf f$ von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

Totalität
$$\forall x \in X \exists y \in Y : f(x) = y$$

Eindeutigkeit $\forall x \in X \forall a, b \in Y : f(x) = a \land f(x) = b \Rightarrow a = b$

$$\mathbf{f}:X o Y$$

$$\mathbf{Bilder}\ f(X') = \{f(x) \mid x \in X'\} \quad X' \subseteq X$$

 $\begin{array}{c} \textbf{Urbilder} \ \ f^{-1}(Y') = \{x \in X \mid f(x) \in Y'\} \quad Y' \\ Y \end{array}$

 $\mathbf{Graph} \ \operatorname{gr}(f) := \{(x, f(x)) \mid x \in X\}$

ldentität

$$id_A: A \to A$$

 $id_A(a) := a \quad \forall a \in A$

 $\begin{array}{l} \textbf{Umkehrfunktion} \ f^{-1}:Y\to X \ \ \text{wenn} \ f \ \ \text{bijektiv und} \ (f\circ f^{-1})(y)=y \ \ \text{bzw.} \ f;f^{-1}=\text{id}_X \wedge f^{-1};f=\text{id}_X \end{array}$

Für die Relation f^{-1} gilt:

•
$$x \in f^{-1}(\{f(x)\})$$

• $f(f^{-1}(\{y\})) = \{y\}$ falls f surjektiv

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X:$$
 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv
$$\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$$

Bijektiv/Invertierbar wenn injektiv und surjektiv

 $\textbf{Verkettung} \quad f \circ g : A \to C$

$$(f\circ g)(a)=f(g(a))$$

(der Reihenfolge nach)

2.3 Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

$$\equiv$$
 Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathrm{id}_M \subseteq R$

$$\equiv$$
 Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$

Antis.
$$\forall x, y : ((x, y) \in R \land (y, x) \in R) \Rightarrow$$

$$\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$$

Spezielle Relationen

Inverse Relation
$$R^{-1}$$
 mit $R \in M \times N := \{(n,m) \in N \times M \mid (m,n) \in R\}$

Leere Relation Ø

Identität id
$$_M := \{(m,m) \mid m \in M\}$$
 (=)

All relation $M \times M$

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- $\bullet \ \emptyset \notin \mathcal{N}$

 - $M = \bigcup \mathcal{N}$ $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
 - (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

• (Korrespondiert zur ÄK.)

Analysis

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Körperaxiome
$$(\mathbb{R},+,*)$$
 $a,b,c\in\mathbb{R}$

Addition $(\mathbb{R}, +)$

Assoziativität a + (b+c) = (a+b) + c

Kommutativität

$$a + b = b + a$$

Neutrales Element Null $a+0=a \quad 0 \in \mathbb{R}$

$$a+0=a$$
 $0\in\mathbb{N}$

Inverses "Negativ"

$$a + (-a) = 0 \quad (-a) \in \mathbb{R}$$

Multiplikation $(\mathbb{R}, *)$

Assoziativität a*(b*c) = (a*b)*c

Kommutativität a * b = b * aNeutrales Element Eins

$a*1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert"
$$a*(a^{-1}) = 1 \\ a \neq 0, (a^{-1}) \in \mathbb{R}$$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

$$a < b$$
 oder $a = b$ oder $b < a$
 \Rightarrow Irreflexivität $(a < b \Rightarrow a \neq b)$

Addition
$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

Archimedes Axiom

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$

$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$$

 $(\Rightarrow \sqrt{2}
otin \mathbb{Q}$, da mit $rac{a}{b} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
 - Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

$$\bullet \ \frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$$

$$\bullet \quad \frac{a}{b} \stackrel{*d}{=} \frac{ad}{bd}$$

$$\bullet \ \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\bullet \ \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

•
$$\sqrt[n]{\mathbf{a} * \mathbf{b}} = \sqrt[n]{\mathbf{a}} * \sqrt[n]{\mathbf{b}}$$

•
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$$

•
$$\sqrt[n]{a} < \sqrt[n]{b}$$
 $0 \le a < b$

$$\bullet \quad \sqrt[n+1]{a} < \sqrt[n]{a} \quad 1 < a$$

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

$$\bullet \ a^{\times} * b^{\times} = (a * b)^{\times}$$

$$\bullet \ a^x * a^y = a^{x+y}$$

$$\bullet \ (a^x)^y = a^{x*y}$$

Dezimaldarstellung

Gauss-Klammer $[y] := \max\{k \in \mathbb{Z} \mid k \le y\} = |y|$

$$[y] = k \Leftrightarrow k \le y < k+1$$

Existenz $\forall x \geq 0 \exists ! (a_n)_{n \in \mathbb{N}} \text{ mit}$

•
$$a_n \in \{0, \dots, 9\} \quad \forall n \in \mathbb{N}$$

•
$$\sum_{N_0}^{n} \frac{a_i}{10^i} \le x < \sum_{i=0}^{n} \frac{a_i}{10^i} + \frac{1}{10^n} \quad \forall n \in$$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma $x \ge 0$, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n \ge N : a_n = 9)$$

 $x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ periodisch

3.2 Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Offen $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

$$\mathbf{Minimum} \ \min(A) := a_0$$

$$\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a$$

Maximum
$$\max(A) := a_0$$

 $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$
 $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A : \mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A : \mathbf{s} \leq a$

Vollständigkeit

Infimum (klein)
$$\inf(A)$$

:= $\max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} \leq a\}$

Supremum (groß)
$$\sup(A)$$
 := $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \leq s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

3.3 Folgen

Folge $(\mathbf{a_n})_{\mathbf{n}\in\mathbb{N}}$ in A ist eine Abb. $f:\mathbb{N}\to A$ mit $a_n=f(n)$.

Geometrische Folge
$$a_{n+1} = a_n * q$$

$$a_n = q^n \quad q \in \mathbb{R}$$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$$

Summen und Produkte

Summe
$$\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$$

Produkt
$$\prod_{i=1}^n i = 1 * 2 * 3 * \cdots * n$$

Fakultät
$$n! = \prod^n i \ (0! = 1)$$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} b^k$$

3.4 Grenzwerte

$$\mbox{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \leq x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x*y| = |x|*|y|

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \geq n_0 :$$

$$\begin{vmatrix} \mathbf{a_n - a} \end{vmatrix} \leq \epsilon$$

$$(a - \epsilon \leq a_n \leq a + \epsilon)$$

$$\xrightarrow{\text{Epsilonumgebung} \atop \mathbf{a - \epsilon} = a + \epsilon} \mathbb{R}$$

•
$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$$

Beschränkt + monoton \Rightarrow konvergent:

$$\lim_{n \to \infty} a_n = egin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{ ext{fall}}. \ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{ ext{steig}}. \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty} \frac{1}{n^k} = 0$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} nq^n = 0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a > 0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \mathsf{div.} & \le -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a_n}| \le \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt \Rightarrow divergent

3.5 Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

•
$$a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$$

 $\Rightarrow a = b \text{ (Max. einen Grenzw.)}$

•
$$a = 0 \land (b_n)_{beschr.}$$

 $\Leftrightarrow \lim_{n \to \infty} a_n b_n = 0$

•
$$a_n \le b_n \Leftrightarrow a \le b$$
 (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n \in \mathbb{N}}$ mit $(n_k)_{k \in \mathbb{N}}$ sodass $b_k = \mathbf{a}_{nk} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}.$$

(nicht streng!)

${\bf H\ddot{a}ufungspunkt} \quad h \ {\rm mit \ einer \ Teilfolge}$

$$\lim_{n \to \infty} a_{n\,k} = h$$

•
$$\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$$

Bolzano-Weierstraß

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H"auf.}$$

(Beschränkte Teilfolgen besitzen mind. einen Häufungspunkt)

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von R

$$(a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}} \Leftrightarrow \exists \lim_{n \to \infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

Reihe $(s_n)_{n\in\mathbb{N}}=\sum_{k=1}^\infty a_k$ mit den Gliedern $(a_k)_{k \in \mathbb{N}}$.

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n kon-

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}\quad q\in(-1;1)$$

Harmon. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert $\forall \alpha > 1$

Lemma

• $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ konvergent $-\sum_{k=1}^{\infty} \mathbf{a_k} + \sum_{k=1}^{\infty} \mathbf{b_k} = \sum_{k=1}^{\infty} (\mathbf{a_k} + \mathbf{c} * \sum_{k=1}^{\infty} \mathbf{a_k} = \sum_{k=1}^{\infty} \mathbf{c} * \mathbf{a_k}$

$$*\sum_{k=1}^{\infty} \mathbf{a_k} = \sum_{k=1}^{\infty} \mathbf{c} * \mathbf{a_k}$$

- $\exists N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\mathrm{konv.}} \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}}$ (Es reicht spätere Glieder zu betrachten)
 - $\begin{array}{l} (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \ \forall N \ \in \ \mathbb{N} \end{array}$ $\Rightarrow \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}}$ $\Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0$

Konvergenzkriterien

Cauchy

$$\Leftrightarrow (\sum_{k=1}^{n} a_k)_{n \in \mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0 :$$

$$|\sum_{k=m+1}^{n} a_k| \leq \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{\text{beschr.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

 $\textbf{Majorante } 0 \leq \mathbf{a_n} \leq \mathbf{b_k} \quad \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

Quotient $a_n \ge 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o\infty}rac{a_{n+1}}{a_n}egin{cases} <1 o(\sum_{n=1}^\infty a_n)_{ ext{konv.}}\ >1 o(\sum_{n=1}^\infty a_n)_{ ext{div.}} \end{cases}$$

Wurzel $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o \infty} \sqrt[n]{a_n} \left\{ < 1 o (\sum_{n=1}^\infty a_n)_{\mathsf{konv.}} \ > 1 o (\sum_{n=1}^\infty a_n)_{\mathsf{div.}}
ight.$$

Absolut

$$(\sum_{n=1}^{\infty} |a_n|)_{\mathrm{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\mathrm{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\mathsf{konv}}$$

Grenzwert $a_n, b_n \ge 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o\infty}rac{a_n}{b_n}>0\Rightarrow \ (\sum_{n=1}^\infty a_n)_{\mathsf{konv.}}\Leftrightarrow (\sum_{n=1}^\infty b_n)_{\mathsf{konv.}}$$

Exponentialfunktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

- $\exp(0) = 1$
- $\exp(1) = e \approx 2,71828 \notin \mathbb{Q}$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

$$\exp(x) * \exp(y) = \exp(x+y)$$

Cauchy-Produkt

$$(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Korollar

- $\exp(x) > 0$
- $\bullet \ \frac{1}{\exp(x)} = \exp(-x)$
- $x < y \Rightarrow \exp(x) < \exp(y)$
 - $\bullet \ \exp(r * x) = (\exp(x))^r$
- $\exp(r) = e^r$

Algorithmen auf Datenstrukturen

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Problemlösung.

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Sprache, Pseudocode, Mathematische Ausdrücke, Quellcode, Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilprobleme

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösungen

4.1 Effizienz

Raum/Zeit-Tradeoff: Zwischenspeichern vs. Neuberechnen

Programmlaufzeit/-allokationen	Komplexität
Einfluss äußerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- ullet Best-case C_B
- Average-case
- Worst-case C_W

Asymptotische Zeit-/Speicherkomplexitä

Groß-O-Notation Kosten $C_f(n)$ mit g:

 $\mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \ge n_0$

Untere Schranke $\Omega(f)$ $C_f(n) \geq c * g(n)$

Obere Schranke O(f) $C_f(n) \le c * g(n)$

(Beweis: g und c finden)

Groß-O	Wachstum	Klasse	
O(1)	Konstant		
$O(\log n)$	Logarithmisch		
O(n)	Linear		ösbar
$O(n \log n)$	Nlogn		lösl
$O(n^2)$	Quadratisch	Polynomiell $O(n^k)$	
$O(n^3)$	Kubisch	Folynomien $O(n^-)$	
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$	Ī
O(n!)	Fakultät		hart
$O(n^n)$			

erste Operation

Rechenregeln

Elementare Operationen, Kontrollstr. \in O(1

Schleifen $\in i$ Wiederholungen *O(f) teu-

Abfolge O(g) nach $O(f) \in O(\max(f;g))$

 $\textbf{Mastertheorem} \quad a \geq 1, \ b > 1, \ \Theta \geq 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling Runden

Floor $\lfloor x \rfloor$ nach unten Ceiling $\lceil x \rceil$ nach oben

4.2 Suchverfahren

Lineare Liste endlich, geordnete (nicht sortierte) Folge n Elemente $L:=[a_0,\ldots,a_n]$ gleichen Typs.

 $\begin{array}{ll} \textbf{Array} & \textbf{Sequenzielle Abfolge im Speicher, statisch, Index } O(1), \textbf{schnelle Suchverfahren} \ \boxed{L[0] \mid} \\ \end{array}$

Sequenziell
$$C_A(n)=rac{1}{n}*\sum^n i=rac{n+1}{2}\in O(n)$$
 Algorithm: Sequential Search

Augoritam: Sequential Search Input: Liste L, Predikat x Output: Index i von x for $i \leftarrow 0$ to L.len-1 do if x = L[i] then $| return \ i$ end end return-1

 $\begin{aligned} & \text{Algorithm: } i\text{-Smallest Element} \\ & \text{Input: Unsortierte Liste } L, \text{Level } i \\ & \text{Output: Kleinstes Element } x \\ & p \leftarrow L[L. \text{len} - 1] \\ & \text{for } k = 0 \text{ to } L. \text{len} - 1 \text{ do} \\ & \text{if } L[k] p \text{ then} \\ & | \text{Push } (L > , L[k]) \\ & \text{end} \\ & \text{end} \end{aligned}$

Sortierte Listen

Binär $C_W(n) = \lfloor \log_2 n \rfloor + 1$, $C_A(n) \stackrel{n \to \infty}{\approx} \log_2 n \in O(\log n)$

Kosten Vergleich a, Sprung b mit Sprung optimaler Sprungweite:

$$m = \big\lfloor \sqrt{(\frac{a}{b})*n)} \big\rfloor$$

$$C_A(n) = \frac{1}{2}(\lceil \frac{n}{m} \rceil * a + mb) \in O(\sqrt{n})$$

Algorithm: Jump Search Algorithm: Jump search $\begin{aligned} & \text{Input: Sortierte Liste } L, \text{Predikat } x \\ & \text{Output: Index } i \text{ von } x \\ & m \leftarrow \lfloor \sqrt{n} \rfloor \\ & \text{while } i < L.\text{Ien do} \\ & i \leftarrow i + m \\ & \text{if } x < L[i] \text{ then} \\ & & | \text{ return Search } [L[i-m], \ldots, L[i-1]] \end{aligned}$ end return -1

- k-Ebenen Sprungsuche $\in O(\sqrt[k]{n})$
- ullet Partitionierung in Blöcke m möglich

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Output: Sortierte Liste L, Predikat xOutput: Index i von xwhile x > L[i] do x > L[i] i x > L[i] i return Search $[L\lfloor i/2 \rfloor, \ldots, L[i-1]]$

ullet Unbekanntes n möglich

Interpolation $C_A(n) = 1 + \log_2 \log_2 n$, $C_W(n)$ O(n)

Algorithm: Searchposition

Input: Listengrenzen [u, v]Output: Suchposition p $\operatorname{return} \, \lfloor u + \frac{x - L[u]}{L[v] - L[u]} \, (v - u) \rfloor$ Algorithm: Interpolation Search

Againmin interpolation search [L[u]], Predikat x Output: Index i von x if $x < L[u] \lor x > L[v]$ then return -1 $p \leftarrow \mathrm{Searchposition}(u,v)$ if x = L[p] then return p if x = L[p] then return p if x > L[p] then return p if x > L[p] then return Interpolation $\mathrm{Search}(p+1,v,x)$ else el sı | er ${\it return } \ {\it Interpolation } \ {\it Search}(u,\, p\, -\, 1,\, x) \\$

Häufigkeitsordnungen mit Zugriffswahrschein lichkeit p_i : $C_A(n) = \sum_{i=0}^n i p_i$

Frequency-count Zugriffszähler pro Element

Transpose Tausch mit Vorgänger

Move-to-front

4.3 Verkettete Listen

 $p
ightarrow \left| ext{ (key)} \;
ight| \; \mathsf{value} \; \overline{\mid \; \mathsf{next} \;
ight|}. \; \mathsf{Index} \; \mathsf{ist} \; \mathsf{seq.} \; \mathsf{Su-}$ $che \in \overline{O(n)}$

$\begin{array}{c} \textbf{L\"{o}schen} & \in O(1) \\ & \\ \textbf{Algorithm: Delete} \end{array}$

nput: Zeiger p auf Vorgänger des löschendes Elements $p \neq \emptyset \land p \rightarrow \textit{next} \neq \emptyset$ then $p \rightarrow \textit{next} \leftarrow (p \rightarrow \textit{next}) \rightarrow \textit{next}$

• desh. sehr dynamisch

Suchen $C_A(n) = \frac{n+1}{2} \in O(n)$

Doppelt Verkettet Zeiger auf Vorgänger (key) | value | prev | next

- Bestimmung des Vorgängers (bei Einfügen, Löschen) $\in O(1)$ statt O(n)
 - Höherer Speicheraufwand

Skip

- $\bullet \ \ \, \hbox{Zeiger auf Ebene} \ \, i \ \, \hbox{zeigt zu n\"{a}chstem} \\ 2^i \ \, \hbox{Element}$
 - Suchen $\in O(\log n)$

(Perfekt) Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2h+1} \colon \mathsf{Einf\"{u}gen}, \, \mathsf{L\"{o}schen} \in O(\log n)$

Spezielle Listen

ADT "Abstrakte Datentypen"

 $\begin{array}{c} \textbf{Priority Queue} \ P = \begin{bmatrix} p_0 & p_1 & \cdots & p_n \\ a_0 & a_1 & \cdots & a_n \end{bmatrix} \ \text{Jede} \\ \\ \text{Element} \ a \ \text{hat Priorität} \ p; \ \text{Entfernen} \\ \text{von Element mit h\"ochster (MIN) Priorit\"at} \\ \end{array}$

4.4 Sortierverfahren

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

 $\begin{array}{ll} \textbf{Gesucht} \ \, \text{Bijektive Abbildung} \ \, \pi \, : \, I \to I \\ \qquad \qquad \text{(Permutation), sodass} \, K_{\pi(i)} \le K_{\pi(i+1)} \\ \qquad I \end{array}$

mit Optimierung nach geringen

- ullet Schlüsselvergleichen C
- ullet Satzbewegungen M

Eigenschaften

Ordnung *Allgemein* vs. *speziell*: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation *Stabil* vs. *instabil*: Vorherig relative Reihenfolge bleibt erhalten

Speicher *In situ* vs. *ex situ*: Zusätzlicher Speicher notwendig

Lokal *Intern* vs. *extern*: Alles im RAM oder Mischung vorsortierter externer Teilfogen

```
Ordnung \forall x, y \in X
```

Reflexiv $x \leq x$

Antisym. $x \le y \land y \le x \Rightarrow x = y$

Total (Vollständig) $x \le y \lor y \le x$ (ohne Total: "Halbordnung")

Grad der Sortierung

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{aligned} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{aligned}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$\begin{aligned} \operatorname{las}(L) &:= \max\{r.\operatorname{len} \mid \\ r \text{ ist Run in } L\} \\ \operatorname{rem}(L) &:= L.\operatorname{len} - \operatorname{las}(L) \end{aligned}$$

Einfache Sortierverfahren O(n²)

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

```
\label{eq:algorithm: Selectionsort} \begin{split} & \text{Input: Liste } L \\ & \text{Output: Sortierte Liste } L \\ & \text{for } i \leftarrow 0 \text{ to } L.len - 2 \text{ do} \\ & & \text{min } \leftarrow i \\ & & \text{for } j \leftarrow i + 1 \text{ to } L.len - 1 \text{ do} \\ & & \text{if } L[i] < L[\min] \text{ then} \\ & & \text{limin } \leftarrow j \text{ end} \\ & & \text{if } min \neq i \text{ then} \\ & & \text{Swap } L[\min], L[i] \\ & \text{end} \\ & \text{if } L.len = 0 \text{ then} \\ & & \text{lend} - 1 \text{ then} \\ & & \text{
```

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

Bubble Vertausche benachbarte Elemente, durchlaufe bis nichts vertauscht werden muss. *Achtung*: Die hinteren Elemente können im Durchlauf ignoriert werden!

```
\begin{aligned} & \textbf{Algorithm: Bubblesort} \\ & \textbf{Input: Liste } L \\ & \textbf{Output: Sortierte Liste } L \\ & i \leftarrow L \text{.len} \\ & \text{swapped} \leftarrow 1 \\ & \text{while swapped do} \\ & \text{for } j \leftarrow 0 \text{ to } i - 2 \text{ do} \\ & \text{if } L[j] > L[j+1] \text{ then} \\ & \text{Swap } L[j], L[j+1] \\ & \text{end} \\ & \text{i} - - \end{aligned}
```

Verbesserte Sortierverfahren $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden (Kamm). Im letzten Schritt dann Insertionsort ($h_t=1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

 $\begin{array}{ll} \textbf{Quick} & \text{Rekursiv: Pivot-Element in der Mitte, Teillisten } L_<, L_>, \text{sodass } \forall l_< \in L_< \forall l_> \in L_> : l_< < x < L_>. \text{ Zerlegung: Durchlauf von Links bis } L[i] \geq x \text{ und von Rechts bis } L[j] \leq x, \text{ dann tauschen.} \end{array}$

```
Algorithm: Quicksort Input: Liste L, Indices l, r Output: L; sortiert zwischen l und r if l \geq r then i \neq l j \leftarrow r piv \leftarrow L[\lfloor \frac{l+r}{2} \rfloor] do while L[i] < piv do |i++| end while L[j] > piv do |j--| end if i \leq j then | Swap L[i], L[j] | i++| j--| while i \leq j; Quicksort (L, l, j) Quicksort (L, l, j)
```

Turnier Liste also Binärbaum, bestimme $\min(I$ durch Austragen des Turniers, entferne Sieger und wiederhole von Siegerpfad aus.

Heap Stelle Max-Heap (größtes Element in der Wurzel) her, gib Wurzel aus und ersetze mit Element ganz rechts in unterster Ebene.

```
Algorithm: Max-Heapify Input: Liste L, Index i der MHE widerspricht und \forall j > i erfüllen MHE \forall j \geq i l \leftarrow 2i + 1 r \leftarrow 2i + 1 r \leftarrow 2i + 2 if l < L \cdot len \wedge L[l] > L[i] then largest \leftarrow l else | largest \leftarrow l else | largest \leftarrow l if l < L \cdot len \wedge L[r] > L[largest] then | largest \leftarrow r if largest \neq r then | Sap L[i], L[largest] then | Sap L[i], L[largest] Max-Heapify L, largest end | Max-Heapify L, L end | Max-Heapify L end |
```

Merge Zerlege Liste in k Teile, sortiere die se (mit Mergesort) und verschmelze die sortierten Teillisten (merge).

Iteratives 2-Mergesort

$$\label{eq:algorithm: lteratives 2-h} \begin{split} & \text{Input: Liste } L \\ & \text{Output: Sortierte Liste } i \\ & \text{for } k \leftarrow 2; \ k < n; \ k \\ & \text{for } i \leftarrow 0; \ i + + \\ & \text{for } i \leftarrow 0; \ i + + \\ & \text{end} \\ & \text{end} \\ \end{split}$$

Natürliches Mergesort Verschmelzen von benachbarten Runs (Ausnutzen der Vorsortierung)

Untere Schranke allgemeiner Sortierverfahren

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

(Siehe Pfadlänge auf Entscheidungsbaum)

Spezielle Sortierverfahren O(n)

Distribution Abspeichern der Frequenz jedes Elementes k auf F[k]; Ausgeben jedes Index F[k] mal.

Lexikographische Ordnung \leq Sei $A = \{a_1, \dots$ ein Alphabet, dass sich mit gegebener Ordnung $a_1 < \dots < a_n$ wie folgt auf dem Lexikon $A* = \bigcup_{n \in \mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Fachverteilen Sortieren von $n\ k$ -Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Große Datensätze sortieren

 $\begin{array}{ll} \textbf{Indirekt} & \text{Liste von Zeigern } Z[i] = i \text{ auf die} \\ \text{eigentlichen Listenelemente. Schlüsselvergleiche mit } L[Z[i]], \text{Satzbewegungen nur als Zeigertausch in } Z. \text{ Anschließend linear kopieren.} \end{array}$

Extern Zerlegen in m Blöcke, sortieren im Hauptspeicher (Run) der mind. m+1 Blöcke groß ist, verschmelzen der Runs (m-Wege Merge).

Ausgeglichenes 2-Wege-Mergesort Daten auf Band n, sortieren von Block $r_1 < n$ auf zweites Band und r_2 auf drittes Band, löschen des ersten Bandes und Merge 2r abwechselnd auf erstes (neues $2r_1$) und viertes Band (neues $2r_2$) und wiederholen.

Replacement Selectionsort Lese r < n Elemente auf Priority-Queue Q. Falls $x = \min(Q) \geq$ letztem Element auf zweiten Band, schreibe x aus, sonst schreibe Q auf Band. Wiederhole auf dritten Band und dann merge.

es es es

	Stabil	Mem.	Schlüsselvergleiche		Satzbewegungen				
Algo.			C_B	C_A	C_W	M_B	M_A	M_W	
Selection	×	1	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	3(n - 1)	3(n-1)	3(n-1)	_
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{s} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n-1)	$\frac{n^2+2n-4}{4} + n - 1$	$\frac{n^2+3n-4}{2}$	O(n²)
Bubble	/	1	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	0	$\frac{3n(n-1)}{4}$	$\frac{3n(n-1)}{2}$	0
				Best-case	Avera	ge-case	Worst-ca	se	
Shell	×	1		-			-		
Quick	×	$\log n$		$n \log n$	n	$\log n$	n^2		3
Turnier	×	2n-1		$n \log n$	n	$\log n$	$n \log n$		O(n logn)
Heap	×	1		$n \log n$	$n \log n$		$n \log n$		õ
Merge	/	19.		$n \log n$	n	$\log n$	$n \log n$		
			Untere	Schranke $\Omega(n \log n)$ für al	lgemeine	Sortierverfa	ahren		
Distribution	_	20		n		n	n log n, n	2	O(n)

Bäume

- Verallg. von Listen: Element/Knoten kann mehrere Nachfolger haben
- Darstellung von Hierarchien

Baum Ungerichteter Graph mit

Einfach keine Schleife oder Doppelkanten oder Doppelkanten

Zusammenhängend Für jede zwei Knoten gibt es genau eine Folge von Kanten die sie verbindet

Azyklisch kein Zyklus (Cycle)

 $\begin{array}{ll} \textbf{Wurzelbaum} & \text{Baum mit genau einem Knoten der Wurzel heißt} \end{array}$

Orientierter Wurzelbaum Alle Knoten sind Wurzel ihrer disjunkten Unterbäume und haben verschiedene Werte gleichen Typs. (Im Nachfolgenden einfach nur "Baum")

Darstellungsarten

Graph •

Array $[a,b,c,\emptyset,\emptyset,d,e]$

Menge $\{\{a,b,c,d,e\},\{b\},\{c,d,e\},\{d\},\{e\}\}$

Klammer (a,(b),(c,(d),(e)))

Größen

Ordnung Max. Anzahl von Kindern jedes Knoten eines Baums

Tiefe Anzahl Kanten zwischen einem Knoten und Wurzel

Stufe Alle Knoten gleicher Tiefe

Höhe Max. Tiefe +1

Eigenschaften

Geordnet Kinder erfüllen Ordnung von links nach rechts

Vollständig Alle Blätter auf gleicher Stufe, jede Stufe hat max. Anzahl von Kindern

5.1 Binärbäume

Geordneter, orientierter Wurzelbaum der Ordnung $\,2.\,$

Strikt Jeder Knoten hat 0 oder 2 Kinder (Kein Knoten hat genau 1 Kind).

Vollständig Jeder Knoten außer der letzten

Stufe hat genau 2 Kinder.

Fast Vollständig Vollständig, auSSer Blätter können rechts fehlen.

Ausgeglichen Vollständig, aber Blätter auf letzten 2 Stufen

2 Binärbäume heißen

Ähnlich selbe Struktur

Äquivalent Ähnlich und selbe Knoten

Größen

- ullet Für i Stufen max. 2^i Knoten
- ullet Für n Knoten genau n-1 Kanten
- Vollständiger B. mit n Knoten hat Höhe von $\log_2 n + 1$

Exkurs Lineare Algebra

 $\textbf{Matrixmul.} \quad (m \times n)(n \times p) = (m \times p)$

$$(AB)_{ij} = \sum_{k=1}^m a_{ik} b_{kj}$$
 (Reihe $imes$ Spalte)

Index

DE-MORGAN, 3
ARCHIMEDES Axiom, 11
BERNOULLI Ungleichung, 13
BOLZANO-WEIERISTRASS, 15
CAUCHY-Floge, 15
CAUCHY-Frodukt, 17
GAUSSCHE Summenformel, 13
GAUSS-Klammer, 12

Abbildung, 8
Abbildungsindentität, 8
Abbildungsindentität, 8
Abgeschlossen, 12
Abschwächung, 4
Absolute Konvergent, 17
Absoption, 3
Abstrakter Datentyp, 22
Abzählbarkeit, 7
Addition, 11
Algorithmus, 19
Allgemeine Harmonische Reih
16
Allgemeine Suche, 22 Allgemeine Hammen

16
Allgemeine Suche, 22
Allquantor, 4
Allrelation, 9
Angeordnete Körper, 11
Antisymmetrie, 9
Anzahl der Inversionen, 23
Arrithmetische Folge, 13
Array, 20
Assoziativität, 11
Ausgeglichener Binärbaum, 27
Ausgeglichener 2-Wege-Mergesort, 26

Linsenes Drittes, 4 26
Ausgeschlossenes Drittes, 4
Aussage, 3
Auswahlaxiom, 8
Auswahlproblem, 20
Average-case Komplexität, 19
Axiom, 3
Azyklischer Graph, 27

Baum, 27 Baumhöhe, 27 Baumhöhe, 27
Baumordnung, 27
Baumstufe, 27
Beschränkte Folge, 15
Beschränkte Menge, 13
Best-case Komplexität, 1
Bestimmt Divergent, 14
Bijektiv, 9
Bild, 8
Binomial Koeffizient, 14
Binarbaum, 27
Binäre Suche, 20
Bruch, 12
Bubblesort, 23
Bucketsort, 23
Bucketsort, 25 19

Ceiling, 20

Definitionsbereich, 8 Definitionsbereich, 8 Dezimaldarstellung, 12 Diagonalargumente, 7 Differenz, 7 Direkter Beweis, 4 Disjunktion, 3 Distributionsort, 25 Distributionsort, 25 Distributivität, 11 Divide & Conquer, 19 Doppelt Verkettete Liste Dreiecksungleichung, 14

Dreicc.

Effizienz, 19
Einfacher Graph, 27
Eins, 11
Einschachtelungssatz, 15
Einschränkung, 7
Eliment, 7
Elimination, 3
endlich, 7
Elsilonation, 3
endlich, 7
Ex situ Suche, 22
Exakte Schranke Komplexität, 19
Existenzquantor, 4
***ialfunktion, 17
**hsuche, 21

19
Existenzquantor, 4
Exponentialfunktion, 17
Exponentielle Spruchsuche, 21
Externe Suche, 22
Externes Sortieren, 25

Fachverteilen, 25 Fakultät, 13 Fallunterscheidung, 4 Fast Vollständiger Binärbaum, 27

Floor, 20 Folge, 13 Frequency-count Regel, 21 Funktion, 8 Funktionsgraph, 8

Geometrische Folge, 13 Geometrische Reihe, 16 Geometrische Summe, 1 Geordneter Baum, 27 Gleichmächtigkeit, 7 Grad der Sortierung, 23 Grenzwertkriterium, 17 Grenzwertsätze, 15 Groß-O-Notation, 19

Halbordnung, 23 Heapsort, 24 High-level Sprache, 19

Hinreichende Bedingung, 3 Häufigkeitsgeordnete Listen Häufungspunkt, 15

Idempotenz, 3 Implikation, 3 In situ Suche, 22 Indirektes Sortieren, 25 in situ Sucne, 22
Individuum, 4
Induktion, 4
Induktion, 4
Induktionsanfang, 4
Induktionsbehauptung, 4
Induktionsschritt, 4
Induktionsschritt, 4
Induktionsschritt, 2
Infirmum, 13
Injektiv, 9
Insertionsort, 23
Instabile Suche, 22
Interne Suche, 22
Interpolationssuche, 21
Intervall, 12
Inverse Relation, 9
Involution, 3
Irrationalität, 11
Irreflexivität, 9
Irreflexivität der Ordnung, 11

Kartesiches Produkt, 9
Kehrwert, 11
Knotentiefe, 27
Kommutativität, 11
Komplement, 7
Komplexitätsklassen, 19
Komposition, 9
Konjunktion, 3
Kontradiktion, 4
Kontradiktion, 4
Kontraposition, 4
Kreuzprodukt, 9
Körperaxiome, 11

Leere Menge, 7 Leere Relation, 9 Leibniz-Kriterium, 17 Lexikographische Ordnung, 25 Limes, 14 Lineare Liste, 20 Lineare Liste, 20 Logische Assoziativität, 3 Logische Distributivität, 3 Logische Kommutativität, 3 Low-level Sprache, 19 Längster Run, 23

Majorante, 17
Majorantenkriterium, 17
Mastertheorem, 20
Matrixmultiplikation, 29
Maximum, 13
Menge, 7
Mengengleichheit, 7
Mengenguotient, 10
Mergesort, 24
Minimum, 13
Minorante, 17
Modus ponens, 4
Monoton steigend, 15
Monotonie, 15
Monotonie, 15
Monoton fallend, 15
Move-to-front Regel, 21
Multiplikation, 11
Mächtigkeit, 7

Natürliches Mergesort, 25 Negation, 3, 4 Negatives, 11 Neutrale Mengenelemente, 8 Notwendige Bedingung, 3 Null, 11 Nullfolge, 14

O.B.d.A, 4
Obere Schranke Komplexität, 19
Obere Schranken, 13
Offen, 12
Operation, 7
Ordnung, 23
Orientierter Wurzelbaum, 27

Partialsumme, 16 Perfekte Skip-Liste, 22 Potenz, 12 Potenzmenge, 8 Primfaktorzerlegung, 13 Priority Queue, 22 Produkt, 13 Prädikatenlogik, 3

Quantor, 4 Queue, 22 Quicksort, 24 Quotientenkriterium, 17

Randomisierte Skip-Liste, 22 Raum/Zeit-Tradeoff, 19 Reductio ad absurdum, 4 Reflexivität, 9 Reihe, 16 Reihendreiecksungleichung, 17 Rekursion, 13 Relation, 9 Relationsidentität, 9 Replacement Selectionsort, 26 Run, 23

Sandwichtheorem, 15 Schnitt, 7 Selectionsort, 23

Sequenzielle Suche, 20 Shellsort, 24 Skip-Liste, 22 Spreigle Suche, 22 Sprzielle Suche, 22 Sprzielle Suche, 22 Stable Suche, 22 Stack, 22 Stack, 22 Starke Induktion, 4 Strikter Binärbaum, 27 Summ, 13 Surjektiv, 9 Symmetrie, 9

Tautologie, 4
Teilbarkeit, 11
Teilfolge, 15
Teilmenge, 7
Theorem, 3
Transitivität, 9
Transitivität der Ordnung, 11
Transpose Regel, 21
Trichotomie, 11
Turniersortierung, 24

Umgekehrte Dreiecksungleichung
14
Umkehrfunktion, 8
unendlich, 7
Ungerichteter Graph, 27
Universum, 7
Untere Schranke allgemeiner Sortierverfahren, 25
Untere Schranke Komplexität, 19
Untere Schranke, 13 19 Untere Schranken, 13 Unvollständigkeitssatz, 3 Urbild, 8

Vereinigung, 7 Verkettee, Eiste, 21 Verkettung, 9 Vollständiger Baum, 27 Vollständiger Binärbaum, 27 Vollständigkeit, 9, 13 Vollständigkeit der Reelen Zah-len, 16 Vollständigkeitsaxiom, 13

Wahrheitswertetabelle, 3 Wertebereich, 8 Widerlegbar, 4 Widerspruch, 4 Worst-case Komplexität, 19 Wurzel, 12 Wurzelbaum, 27 Wurzelkriterium, 17

Zerlegung, 9 Zusammenhängender Graph, 27

Ähnliche Binärbäume, 28 Äquivalenz, 3 Äquivalenzklasse, 9 Äquivalenzrelation, 9 Äquivalte Binärbäume, 28