TUGAS 2 K-MEANS CLUSTERING

Nama: Astri Cahyaningtyas

NIM : 1301154548

Kelas : IF-39-02

ANALISIS MASALAH

K-Means adalah algoritma paling sederhanya yang mengcluster data-data menjadi sebanyak K cluster. Tentukanlah cluster dari 100 data test yang dibantu dengan 600 data train.

Keterangan:

Hitam = train set

Kuning = test set

TUGAS 2 K-MEANS CLUSTERING

DESAIN

Langkah 1

Tentukan nilai centroid secara random. Asumsi C adalah himpunan nilai centroid. Nilai k = 3

```
# Banyaknya k cluster
k = 3
# XO nilai centroid random
C_x0 = np.random.randint(0, np.max(X)-20, size=k)
# X1 nilai centroid random
C_x1 = np.random.randint(0, np.max(X)-20, size=k)
C = np.array(list(zip(C_x0, C_x1)), dtype=np.float32)
print(C)

[[ 1.  2.]
[ 12.  13.]
[ 12.  2.]]
```


Keterangan:

Bintang = nilai centroid awal/random

Langkah 2

Menghitung nilai euclidean (jarak antara titik dan setiap centroid).

TUGAS 2 K-MEANS CLUSTERING

```
# Menghitung jarak Euclidean
def dist(a, b, ax=1):
    return np.linalg.norm(a - b, axis=ax)
```

Langkah 3

Menemukan nilai centroid baru dengan menghitung rata-rata dari semua titik di cluster tersebut.

```
# Menyimpan nilai centroid, selalu update
C_old = np.zeros(C.shape)
# Label(0, 1, 2)
clusters = np.zeros(len(X))
# Error func. Jarak antar centroid lama dna baru
error = dist(C, C_old, None)
# Loop sampai error 0
while error != 0:
    # Assigning each value to its closest cluster
    for i in range(len(X)):
        distances = dist(X[i], C)
        cluster = np.argmin(distances)
        clusters[i] = cluster
    # Storing the old centroid values
    C old = deepcopy(C)
    # Finding the new centroids by taking the average value
    for i in range(k):
        points = [X[j] for j in range(len(X)) if clusters[j] == i]
        C[i] = np.mean(points, axis=0)
    error = dist(C, C_old, None)
```

Langkah 4

Ulangi langkah 2 dan 3 sampai tidak ada perubahan pada nilai centroid

TUGAS 2 K-MEANS CLUSTERING

EVALUASI HASIL EKSPERIMEN

Gambar diatas merupakan hasil eksperimen K-Means. Titik-titik yang berdekatan kemungkinan besar menjadi satu cluster. Berdasarkan hasil observasi cluster dari test set adalah sebagai berikut:

x0	x1	cluster
18.75	22.95	blue
21.45	21.45	blue
20.5	22.85	blue
20.65	24.3	blue
21.7	23.8	blue
23.1	21.7	green
13.35	28.45	blue
12.4	27.85	blue
12.2	28.65	blue
12.9	26.5	blue
11.15	28.7	blue
10.5	28.35	blue
10.25	27.25	blue
12.6	24.05	blue
10.05	25.95	blue
8.5	27.05	blue
7.55	26.3	blue

TUGAS 2 K-MEANS CLUSTERING

9.4	25.55	blue	
10.55	24.35	blue	
5.4	25.25	blue	
4.3	24	blue	
6.1	22.6	blue	
6.4	21.95	blue	
8.45	17.2	blue	
12.3	22.75	blue	
9.95	19.8	blue	
12	20	blue	
11.4	19.25	blue	
15.2	18.2	blue	
31.9	4.4	green	
32.8	6	green	
35.45	4.1	green	
32.3	7.65	green	
31.8	9.45	green	
34.7	8	green	
34.55	8.85	green	
31.2	12	green	
33.1	12.75	green	
35.8	11.55	green	
34.05	13.05	green	
11.05	9.1	red	
14.3	12.45	red	
14.45	10.75	red	
12.35	8.45	red	
12.4	7.1	red	
15.1	10.25	red	
16.75	11.5	red	
15.05	7.8	red	
10.6	5.05	red	
13.9	5.3	red	
12.75	3	red	
15.15	7.1	red	
15.25	2.7	red	
15.7	6.35	red	
17.3	4.8	red	
18.15	1.95	red	
20.45	2.8	red	

TUGAS 2 K-MEANS CLUSTERING

18.65	4.75	red
16.6	7.95	red
20.8	4.7	red
20.55	5.75	red
17.5	8.25	red
18	8.55	red
20.05	6.95	red
24.15	4.55	red
20	8.2	red
16.95	10.35	red
19	11.65	red
20.7	10.65	red
20.95	10.2	red
21.75	8.2	red
23	7.35	red
23.7	8.85	red
5.15	3.45	red
4.95	4.05	red
7.1	4.3	red
8.5	3.25	red
32.45	16.75	green
30.55	18.8	green
31.55	19.65	green
33.7	17	green
31.75	20.25	green
31.55	22.2	green
30.95	24.15	green
33.65	21.9	green
33.8	20.4	green
36.35	20.6	green
34.6	22.05	green
34.9	23.5	green
33.6	23.9	green
33.7	24.85	green
30.25	24.3	green
31.25	27.85	green
33.85	26.05	green
34.65	26.85	green
9.7	12.1	red
5.7	12.25	red

TUGAS 2 K-MEANS CLUSTERING

7.85	11.85	red
7.65	11.1	red
8.3	10.55	red