CK-12 FOUNDATION

CK-12 Biology I Workbook

Brainard

CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, webbased collaborative model termed the "FlexBook," CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning.

Copyright © 2010 CK-12 Foundation, www.ck12.org

Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the "CC License"), which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms.

Printed: July 27, 2010

Author Jean Brainard

Contents

	1.1	Chapter 1: Foundations of Life Science	1
	1.2	Lesson 1.1: Nature of Science	1
	1.3	Lesson 1.2: Communicating Ideas	6
	1.4	Lesson 1.3: Tools and Techniques	10
	1.5	Lesson 1.4: Principles of Biology	15
2	Che	emical Basis of Life Worksheets	23
	2.1	Chapter 2: Chemical Basis of Life	23
	2.2	Lesson 2.1: Matter	23
	2.3	Lesson 2.2: Organic Compounds	27
	2.4	Lesson 2.3: Chemical Reactions	32
	2.5	Lesson 2.4: Water	36
3	Cell	Structure and Function Worksheets	41
	3.1	Chapter 3: Cell Structure and Function	41
	3.2	Lesson 3.1: Introduction to Cells	41
	3.3	Lesson 3.2: Cell Structures	47
	3.4	Lesson 3.3: Cell Transport and Homeostasis	52
4	Pho	otosynthesis Worksheets	57
	4.1	Chapter 4: Photosynthesis	57

	4.2	Lesson 4.1: Energy for Life: An Overview of Photosynthesis	57
	4.3	Lesson 4.2: Into the Chloroplast: How Photosynthesis Works	61
5	Cel	lular Respiration Worksheets	69
	5.1	Chapter 5: Cellular Respiration	69
	5.2	Lesson 5.1 Powering the Cell: Cellular Respiration and Glycolysis	69
	5.3	Lesson 5.2: Into the Mitochondrion: Making ATP with Oxygen	75
	5.4	Lesson 5.3: Anaerobic Respiration: ATP, New Fuels, and Yogurt without Oxygen	79
6	Cel	l Division and Reproduction Worksheets	85
	6.1	Chapter 6: Cell Division and Reproduction	85
	6.2	Lesson 6.1: Chromosomes and the Cell Cycle	85
	6.3	Lesson 6.2: Meiosis	90
7	Mei	ndelian Genetics Worksheets	97
	7.1	Chapter 7: Mendelian Genetics	97
	7.2	Lesson 7.1: Mendel's Investigations	97
	7.3	Lesson 7.2: Mendelian Inheritance	101
8	Mo	lecular Genetics Worksheets	107
	8.1	Chapter 8: Molecular Genetics	107
	8.2	Lesson 8.1: DNA and RNA	107
	8.3	Lesson 8.2: Protein Synthesis	112
	8.4	Lesson 8.3: Mutation	116
	8.5	Lesson 8.4: Regulation of Gene Expression	121
9	Hui	man Genetics Worksheets	127
	9.1	Chapter 9: Human Genetics	127
	9.2	Lesson 9.1: Human Genes and Chromosomes	127
	9.3	Lesson 9.2: Human Inheritance	131

 $\mathbf{i}\mathbf{v}$

www.ck12.org

10	Biot	echnology V	Worksheets	137
	10.1	Chapter 10:	Biotechnology	137
	10.2	Lesson 10.1:	DNA Technology	137
	10.3	Lesson 10.2:	Biotechnology	143
11	Hist	ory of Life	Worksheets	149
	11.1	Chapter 11:	History of Life	149
	11.2	Lesson 11.1:	Studying the History of Life	149
	11.3	Lesson 11.2:	Early Life	153
	11.4	Lesson 11.3:	Multicellular Life	158
12	Evo	lutionary T	heory Worksheets	163
	12.1	Chapter 12:	Evolutionary Theory	163
	12.2	Lesson 12.1:	Darwin and The Theory of Evolution	163
	12.3	Lesson 12.2:	Evidence for Evolution	168
	12.4	Lesson 12.3:	Evolution Continues Today - Can We Control It?	172
13	Evo	lution in Po	pulations Worksheets	177
13			pulations Worksheets Evolution in Populations	
13	13.1	Chapter 13:		
13	13.1 13.2	Chapter 13: Lesson 13.1:	Evolution in Populations	177
13	13.1 13.2 13.3	Chapter 13: Lesson 13.1: Lesson 13.2:	Evolution in Populations	177 177 181
	13.1 13.2 13.3 13.4	Chapter 13: Lesson 13.1: Lesson 13.2:	Evolution in Populations	177 177 181
	13.1 13.2 13.3 13.4 Class	Chapter 13: Lesson 13.1: Lesson 13.2: Lesson 13.3: esification W	Evolution in Populations	177 177 181 185
	13.1 13.2 13.3 13.4 Class 14.1	Chapter 13: Lesson 13.1: Lesson 13.2: Lesson 13.3: sification W Chapter 14:	Evolution in Populations	177 177 181 185 191
	13.1 13.2 13.3 13.4 Class 14.1 14.2	Chapter 13: Lesson 13.1: Lesson 13.2: Lesson 13.3: sification W Chapter 14: Lesson 14.1:	Evolution in Populations	177 177 181 185 191 191
	13.1 13.2 13.3 13.4 Class 14.1 14.2 14.3	Chapter 13: Lesson 13.1: Lesson 13.2: Lesson 13.3: sification W Chapter 14: Lesson 14.1: Lesson 14.2:	Evolution in Populations	177 177 181 185 191 191
14	13.1 13.2 13.3 13.4 Class 14.1 14.2 14.3 14.4	Chapter 13: Lesson 13.1: Lesson 13.2: Lesson 13.3: sification W Chapter 14: Lesson 14.1: Lesson 14.2: Lesson 14.3:	Evolution in Populations	177 177 181 185 191 191 195

	15.2	Lesson 15.1: The Science of Ecology	207
	15.3	Lesson 15.2: Flow of Energy	212
	15.4	Lesson 15.3: Recycling Matter	216
16	Bior	mes, Ecosystems, and Communities Worksheets	221
	16.1	Chapter 16: Biomes, Ecosystems and Communities Worksheets	221
	16.2	Lesson 16.1: Biomes	221
	16.3	Lesson 16.2: Terrestrial Biomes	225
	16.4	Lesson 16.3: Aquatic Biomes	230
	16.5	Lesson 16.4: Community Interactions	235
17	Pop	ulations Worksheets	241
	17.1	Chapter 17: Populations	241
	17.2	Lesson 17.1: Characteristics of Populations	241
	17.3	Lesson 17.2: Population Dynamics	246
	17.4	Lesson 17.3: Human Population Growth: Doomsday, Cornucopia, or Somewhere in Between?	250
18	Ecol	ogy and Human Actions Worksheets	255
	18.1	Chapter 18: Ecology and Human Actions	255
	18.2	Lesson 18.1: The Biodiversity Crisis	255
	18.3	Lesson 18.2: Natural Resources	260
	18.4	Lesson 18.3: Natural Resources II: The Atmosphere	264
	18.5	Lesson 18.4: Climate Change	268
19	The	Human Body Worksheets	275
	19.1	Chapter 19: The Human Body	275
	19.2	Lesson 19.1: Organization of the Human Body	275
	19.3	Lesson 19.2: Homeostasis and Regulation	281
20	Ner	vous and Endocrine Systems Worksheets	287

vi

	20.1	Chapter 20:	Nervous and Endocrine Systems	287
	20.2	Lesson 20.1:	Nervous System	287
	20.3	Lesson 20.2:	Endocrine System	293
21	Skel	etal, Muscu	llar, and Integumentary Systems Worksheets	301
	21.1	Chapter 21:	Skeletal, Muscular, and Integumentary Systems	301
	21.2	Lesson 21.1:	Skeletal System	301
	21.3	Lesson 21.2:	Muscular System	307
	21.4	Lesson 21.3:	Integumentary System	311
22	Circ	ulatory and	Respiratory Systems Worksheets	317
	22.1	Chapter 22:	Circulatory and Respiratory Systems	317
	22.2	Lesson 22.1:	Circulatory System	317
	22.3	Lesson 22.2:	Blood	321
	22.4	Lesson 22.3:	Respiratory System	326
23	Dige	estive and E	Excretory Systems Worksheets	333
23			Excretory Systems Worksheets Digestive and Excretory Systems	
23	23.1	Chapter 23:		333
23	23.123.2	Chapter 23: Lesson 23.1:	Digestive and Excretory Systems	333 333
23	23.123.223.3	Chapter 23: Lesson 23.1: Lesson 23.2:	Digestive and Excretory Systems	333 333 338
	23.1 23.2 23.3 23.4	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3:	Digestive and Excretory Systems	333 333 338
	23.1 23.2 23.3 23.4 Imm	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: hune System	Digestive and Excretory Systems	333 333 338 343
	23.1 23.2 23.3 23.4 Imm 24.1	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: hune System Chapter 24:	Digestive and Excretory Systems	333 338 348 349
	23.1 23.2 23.3 23.4 Imm 24.1 24.2	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: nune System Chapter 24: Lesson 24.1:	Digestive and Excretory Systems	333 338 343 349 349 349
	23.1 23.2 23.3 23.4 Imm 24.1 24.2 24.3	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: nune System Chapter 24: Lesson 24.1: Lesson 24.2:	Digestive and Excretory Systems	333 338 343 349 349 349
	23.1 23.2 23.3 23.4 Imm 24.1 24.2 24.3 24.4	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: nune System Chapter 24: Lesson 24.1: Lesson 24.2: Lesson 24.3:	Digestive and Excretory Systems Food and Nutrients Digestive System Excretory System and Disease Worksheets Immune System and Disease Nonspecific Defenses Immune Response	333 338 348 349 349 355
24	23.1 23.2 23.3 23.4 Imm 24.1 24.2 24.3 24.4 24.5	Chapter 23: Lesson 23.1: Lesson 23.2: Lesson 23.3: nune System Chapter 24: Lesson 24.1: Lesson 24.2: Lesson 24.3: Lesson 24.4:	Digestive and Excretory Systems Food and Nutrients Digestive System Excretory System and Disease Worksheets Immune System and Disease Nonspecific Defenses Immune Response Immune System Diseases	333 338 348 349 349 355 359

25.2	Lesson :	25.1:	Male Reproductive System	371
25.3	Lesson	25.2:	Female Reproductive System	376
25.4	Lesson	25.3:	Fertilization, Gestation, and Development	381
25.5	Lesson 5	25.4:	Sexually Transmitted Diseases	386

www.ck12.org **viii**

Chapter 1

Foundations of Life Science Worksheets

1.1 Chapter 1: Foundations of Life Science

- Lesson 1.1: Nature of Science
- Lesson 1.2: Communicating Ideas
- Lesson 1.3: Tools and Techniques
- Lesson 1.4: Principles of Biology

1.2 Lesson 1.1: Nature of Science

Lesson 1.1: True or False

Name	Class	Date	
Write true if the statement is t	true or false if the statement	t is false.	
1. Science involves of principles and forces working in	objective, logical, and repeat n the natural universe.	table attempts to unders	stand the
2. Scientific methods evidence that is critically evaluate	s are based on gathering observated.	ervable, empirical and me	easurable
3. Scientific theories have yet to be proved false.	s are supported by a great	deal of data and evider	nce; they
4. In natural experin	ments, it is difficult to contr	ol all variables.	
5. The goal of science	ce is to understand how ever	rything works.	

Read this passage from	n the text and answer the question	s that follow.
Name	Class	Date
Lesson 1.1: Cr	itical Reading	
15. The Ce are important theories	•	n and the Germ Theory of Disease
14. Once an	idea is accepted as scientific fact,	that idea can never be changed.
13. A law amount of data or ev	<u> </u>	ation based on a sufficiently large
12. Answeri	ng scientific questions usually beg	ins with an observation.
11. Science	can be used to answer all question	ıs.
10. An obse	ervation can only be made in a con	trolled, experimental environment.
9. Scientific natural world.	laws are principles which can be	used to predict the behavior of the
8. A hypot scientist thinks could l	, , , , , , , , , , , , , , , , , , ,	guess, but is also based on what a
7. Scientists	s accept all claims, regardless of sc	ientific evidence.
scription of reality by	v c	c considered the most complete de-

Experiments

A scientific experiment must have the following features:

- a control, so variables that could affect the outcome are reduced
- the variable being tested reflects the phenomenon being studied
- the variable can be measured accurately, to avoid experimental error
- the experiment must be reproducible.

An **experiment** is a test that is used to eliminate one or more of the possible hypotheses until one hypothesis remains. The experiment is a cornerstone in the scientific approach to gaining deeper knowledge about the physical world. Scientists use the principles of their hypothesis to make predictions, and then test them to see if their predictions are confirmed or rejected.

Scientific experiments involve **controls**, or subjects that are not tested during the investigation. In this way, a scientist limits the factors, or variables that can cause the results of an

investigation to differ. A **variable** is a factor that can change over the course of an experiment. **Independent variables** are factors whose values are controlled by the experimenter to determine its relationship to an observed phenomenon (the dependent variable). **Dependent variables** change in response to the independent variable. **Controlled variables** are also important to identify in experiments. They are the variables that are kept constant to prevent them from influencing the effect of the independent variable on the dependent variable.

For example, if you were to measure the effect that different amounts of fertilizer have on plant growth, the independent variable would be the amount of fertilizer used (the changing factor of the experiment). The dependent variables would be the growth in height and/or mass of the plant (the factors that are influenced in the experiment). The controlled variables include the type of plant, the type of fertilizer, the amount of sunlight the plant gets, the size of the pots you use. The controlled variables are controlled by you, otherwise they would influence the dependent variable.

In summary:

- The independent variable answers the question "What do I change?"
- The dependent variables answer the question "What do I observe?"
- The controlled variables answer the question "What do I keep the same?"

Questions

1. What is an experiment and how does an experiment relate to a hypothesis?
-
-
-
2. What is the difference between a control and a variable in a scientific experiment?
-
-
-
3. Discuss the differences between dependent variables and independent variables.
-
-
-
4. What is a controlled variable? Provide an example.
_

3

5. If you were to conduct an experiment measuring the effect that different amounts of fertilizer have on plant growth, what would be the independent variable(s), the dependent variable(s), and the controlled variable(s).

-

Lesson 1.1: Multiple Choice

Name	$_$ Class $_$	Date

Circle the letter of the correct choice.

- 1. A scientific experiment must have the following features:
 - (a) a control, so variables that may affect the outcome are reduced.
 - (b) the variable being tested reflects the question being asked.
 - (c) the variable being tested can be measured accurately.
 - (d) all of the above
- 2. In the general process of a scientific investigation, what comes directly after an observation?
 - (a) experiment
 - (b) prediction
 - (c) hypothesis
 - (d) theory
- 3. A hypothesis
 - (a) is a suggested explanation for a phenomena based on evidence that can be tested by observation or experimentation.
 - (b) is a guess.
 - (c) is based on what a scientist thinks could happen.
 - (d) is an explanation of a scientific concept.
- 4. A scientific theory
 - (a) describes a guess or an opinion.
 - (b) is supported by a great deal of data and evidence.
 - (c) is the process of scientific investigation.
 - (d) is just another name for a hypothesis.

5. Wh	Which of the following is not an accepted, verified scientific th	eory?
` .	(a) Atomic Theory	
	(b) String Theory(c) Theory of Relativity	
· .	(d) Theory of Evolution	
6. Wh	Which of the following are not true of a scientific law?	
(b (c	(a) Is a principle which can be used to predict the behavior of(b) Is well-supported by observations and/or experimental ev(c) Is the same as a scientific theory.(d) Usually refers to rules for how nature will behave under of	idence.
7. Arr	Arrows that are grouped tightly together but away from the sidered	
(b (c	 (a) accurate but not precise. (b) precise but not accurate. (c) neither accurate nor precise. (d) both accurate and precise. 	
	on 1.1: Vocabulary	ate
Match th	the vocabulary word with the proper defination.	
Term		
1	1. deduction	
2	2. variable	
3	3. observation	
4		
_	4. Occam's razor	
5	4. Occam's razor 5. control	
	-	
6	5. control	
6 7	5. control 6. phenomenon	
6 7 8	5. control 6. phenomenon 7. skepticism	
6 7 8 9	5. control 6. phenomenon 7. skepticism 8. dependent variable	

Definition

a. the act of noting or detecting a phenomenon through the senses

- b. is any occurrence that is observable
- c. involves determining a single fact from a general statement
- d. states that the explanation for a phenomenon should make as few assumptions as possible
- e. claims must be exposed to scientific testing through critical thinking before being accepted
- f. a factor that can change over the course of an experiment
- g. changes in response to the independent variable
- h. a suggested explanation based on evidence that can be tested by observation or experimentation
- i. something that is not tested during the investigation
- j. involves determining a general statement that is very likely to be true, from several facts

1.3 Lesson 1.2: Communicating Ideas

Lesson 1.2: True or False

\mathbf{Name}_{-}	Class Date
Write tru	ue if the statement is true or false if the statement is false.
	_ 1. Peer-reviewed journal articles have the lowest level of trust.
	_ 2. One well known and well respected medical journal is JAMA.
	_ 3. Systematic bias is introduced from a flaw in measurements.
	4. A science magazine is written for an expert audience.
	_ 5. Conducting science requires only human creativity.
	_ 6. One source of research funding is from the military.
	_ 7. Bioethics is a slow-growing academic area of inquiry.
	8. One application of biotechnology is bioremediation.
of nitroge	_ 9. The thale cress has been genetically modified to turn red, only in the presence en dioxide.
	_ 10. "Snow World" is a virtual reality game.
Lessoi	n 1.2: Critical Reading
Name_	Class Date

Read this passage from the lesson and answer the questions that follow.

Science in the Media

A lot of popular science articles come from sources whose aim is to provide a certain amount of entertainment to the reader or viewer. Many popular science articles will examine how a phenomenon relates to people and to their environment. Nevertheless, there is a tendency in the popular media to dilute scientific debates into two sides, rather than cover the complexities and nuances of an issue.

Even well-intentioned scientists can sometimes unintentionally create truth-distorting media firestorms because of journalists' difficulty in remaining critical and balanced, the media's interest in controversy, and the general tendency of science reporting to focus on apparent "groundbreaking findings" rather than on the larger context of a research field. Sometimes scientists will seek to exploit the power of the media. When scientific results are released with great fanfare and limited peer review, the media often requires skepticism and further investigation by skilled journalists and the general public.

The dichloroacetic acid (DCA) story, discussed earlier in this lesson, is an example of what can go wrong when a scientific discovery grasps the public's attention.

An intense amount of public interest was raised by the study and the story received much media attention. As a result, the American Cancer Society and other medical organizations received a large volume of public interest and questions about the "miracle cure," DCA.

One of the first stories about the findings contained the headline:

"Cheap, 'safe' drug kills most cancers"

The article did explain that the studies were only carried out on cancer cells grown in the lab and in rats. However, the headline may have given some readers the impression that human testing of DCA was complete. People were wildly interested in this new "cure" to cancer. This prompted the American Cancer Society and other organizations to issue reports that reminded people that although the study results were promising, no formal clinical trials in humans with cancer had yet been carried out. They stressed the need for caution in interpreting the early results. Doctors warned of possible problems if people attempted to try DCA outside a controlled clinical trial. The media received some criticism for the sensation that arose due to their coverage of the discovery.

Questions

1. Rather than focusing on apparent "groundbreaking findings," what should science reporting focus on?

-

_

2. What do scientific results need prior accurate?	to release to the pub	lic, in order to be the most
-		
_		
	.1	
3. If scientific results are not accurate when the response of the media and the general	v	o the public, what should be
-		
-		
_		
4. In reporting about DCA, one of the fir "Cheap, 'safe' drug kills most cancers." impression?		9
-		
-		
-		
5. In response to the article mentioned in Cancer Society?	question 4, what was	the response of the American
-		
_		
_		
Lesson 1.2: Multiple Choice	e	
Name	Class	Date
Circle the letter of the correct choice.		
1. In which of the following formats viewed?	are scientific debates	properly carried out and re-
(a) scientific articles published in(b) government reports	scientific journals	
(c) presentations at academic con (d) all of the above	ferences	
2. Which of the following is a well kn	own and well respected	d science or medical journal?

www.ck12.org

Match the	e vocabulary term wi	th the correct de	finition.	
Name		(Class	Date
Lesson	1.2: Vocabu	lary		
(b) (c)	American Cancer S Center for Disease Food and Drug Ad none of the above	Control		
	ich of the following inization?	s a source of fu	nding for scie	entific research from a non-pr
(b) (c)	1930s 1940s 1950s 1960s			
6. Whe	•	k, and Franklin	build a mode	el of the double helix structure
(b) (c)	New Scientist Scientific American International Polar all of the above			
5. Whi	ich of the following i	s written for a n	on-expert au	idience?
(b) (c)	to keep up one's re for commercial motiva for political motiva all of the above	tivation		
4. Und	ler what conditions	night scientific r	nisconduct o	ccur?
(b) (c)	materials and meth introduction. abstract. discussion.	ods.		
3. The	first section of a sci	ence article is ca	alled the	
(b) (c)	The Wall Street Jo The Lancet Time Magazine none of the above	urna		

Write true if the statement is true or fe		
Name		
Lesson 1.3: True or False		
1.4 Lesson 1.3: Tools a	and Technic	ques
j. use of microorganisms to clean up co	ntaminated sites	
i. discipline concerned with what is mo	v	d, right and wrong
h. an interdisciplinary field which helps	_	
g. situation in which a researcher has preach other	-	
f. person that does scientific investigati		
e. a written discussion of new research		v -
d. choice by a terminally ill person to h		
c. brief, usually one-paragraph, summa		
b. process of opening a scientist's researe experts in the same field	arch or ideas to ex	camination by other scientists who
a. ability to repeat experiments and ge	t the same results	
Definition		
10. bioinformatics		
9. ethics		
8. scientific article		
7. abstract		
6. research scientist		
5. peer review		
4. bioremediation		
2. conflict of interest 3. reproducibility		

2. The symbol for meter is m.
 3. Kilo- is a multiple of a thousandth.
 4. A physics lab might contain a particle accelerator.
 5. Optical microscopes are the simplest and most widely used type of microscope.
 6. TEM images show the outside of an object.
7. Scientific models are representations of reality.
 8. Latex gloves are recommended for lab use.
 9. Wear loose, floppy clothes in the lab.
10. Common safety equipment in a school lab includes an eye-wash fountain

Lesson 1.3: Critical Reading

Name	$_$ Class $_$	Date

Read this passage from the lesson and answer the questions that follow.

Scientific Models

Scientific models are representations of reality. To describe particular parts of a phenomenon, or the interactions among a set of phenomena, it is sometimes helpful to develop a model of the phenomenon. For instance, a scale model of a house or of a solar system is clearly not an actual house or an actual solar system; the parts of an actual house or an actual solar system represented by a scale model are, only in limited ways, representative of the actual objects.

Figure A model of planets of the solar system. This model is clearly not a real solar system;

it is a representation of the planets Jupiter, Saturn, Neptune, and Uranus. Scientists use representations of natural things to learn more about them. Also, the visitors to the Griffith Observatory in Los Angeles can get a better idea of the relative sizes of the planets (and Pluto!) by observing this model.

Scientific modeling is the process of making abstract models of natural phenomena. An abstract model is a theoretical construct that represents something. Models are developed to allow reasoning within a simplified framework that is similar to the phenomena being investigated. The simplified model may assume certain things that are known to be incomplete in some details. Such assumptions can be useful in that they simplify the model, while at the same time, allowing the development of acceptably accurate solutions. These models play an important role in developing scientific theories.

A simulation is a model that runs over time. A simulation brings a model to life and shows how a particular object or phenomenon will behave. It is useful for testing, analysis or training where real-world systems or concepts can be represented by a model. For the scientist, a model also provides a way for calculations to be expanded to explore what might happen in different situations. This method often takes the form of models that can be programmed into computers. The scientist controls the basic assumptions about the variables in the model, and the computer runs the simulation, eventually coming to a complicated answer.

Examples of models include:

- Computer models
- Weather forecast models
- Molecular models
- Climate models
- Ecosystem models
- Geologic models

One of the main aims of scientific modeling is to allow researchers to quantify their observations about the world. In this way, researchers hope to see new things that may have escaped the notice of other researchers. There are many techniques that model builders use which allow us to discover things about a phenomenon that may not be obvious to everyone.

Evaluating Models

A person who builds a model must be able to recognize whether a model reflects reality. They must also be able to identify and work with differences between actual data and theory.

A model is evaluated mostly by how it reflects past observations of the phenomenon. Any model that is not consistent with reproducible observations must be modified or rejected. However, a fit to observed data alone is not enough for a model to be accepted as valid. Other factors important in evaluating a model include:

www.ck12.org 12

- Its ability to explain past observations
- Its ability to predict future observations
- Its ability to control events
- The cost of its use, especially when used with other models
- Ease of use and how it looks

Circle the letter of the correct choice.

Questions		
1. What does a scientific model do?		
2. What is the advantage of assumptions in	a model?	
3. What is a simulation?		
4. Name three examples of models.		
•		
•		
. W/h - 4 :		
5. What is a model evaluated mostly by?		
•		
Lesson 1.3: Multiple Choice		
Name	Class	Date

1. The SI system of measurement is based on multiples of
(a) 10s.(b) 20s.
(c) 50s.
(d) 100s.
2. The following are SI base units
(a) meter. (b) kilogram.
(c) kelvin.
(d) all of the above
3. Equipment most likely found in a physics lab would include
(a) Bunsen burners.(b) a particle accelerator.
(c) microscopes.
(d) none of the above
4. Typical magnification of a light microscope is up to
(a) 500x.(b) 1000x.
(c) 1500x. (d) 2000x.
5. An ocular lens with a magnification of 10x and an objective lens with a magnification
of 50x together will magnify an object by
(a) 60x.
(b) 100x. (c) 250x.
(d) 500x.
6. Biosphere 2 was built to
(a) forecast wind speeds and directions.
(b) attempt to recreate a self-sustaining biome.(c) predict water flow in the Everglades.
(d) none of the above
7. What are the best kind of shoes to wear in the lab?
(a) enclosed toe shoes(b) sandals
(b) sandals(c) flip flops
(d) none of the above

Lesson 1.3: Vocabulary

Name	Class	Date
Match the vocabulary term with the corre	ct definition.	
Term		
1. microscopes		
2. aseptic technique		
3. statistics		
4. stereo microscope		
5. lab techniques		
6. International System of Units	(SI)	
7. simulation		
8. scientific modeling		
9. optical microscope		
Definition		
a. the procedures used in science to carry	out an experim	ent
b. the measurements that scientists use;	a form of the me	etric system
c. a mathematical science in which the and presentation of data is carried out	collection, analy	sis, interpretation or explanation,
d. a microscope that uses visible light an	d lenses to magn	aify objects
e. a model that runs over time		
f. a light microscope with two ocular lens	ses	
g. instruments used to view objects that	are too small to	be seen by the naked eye
h. the process of making abstract models	of natural phen	omena
i. laboratory procedures that are carried	out under sterile	e conditions
1.5 Lesson 1.4: Principl	es of Biolo	$_{\mathrm{ogy}}$
Lesson 1.4: True or False		
Name	Class	Date

Write true if the statement is true or false if the statement is false.
1. One of the traits of a living organism is it grows and changes.
2. The cell is the basic unit of life.
3. Evolutionary theory cannot explain how specialized features develop in differ-
ent species.
4. In mutualism, both organisms in the relationship are harmed.
5. The biosphere includes all living things within all of their environments.
6. About 80 percent of freshwater fish from South America are not yet classified.
7. The Earth is about 2.0 billion years old.
8. Oswald Avery and his colleagues identified DNA as the genetic material.
9. Since 1953, genetics and molecular biology have become core aspects of evolutionary biology.
10. Humans evolved from chimpanzees.
Lesson 1.4: Critical Reading

Read this passage from the lesson and answer the questions that follow.

Unifying Principles of Biology

There are four unifying principles of biology that are important for types of biology studies. These are:

Class

Date

The Cell Theory

Name

The cell is the basic unit of life. The Cell Theory states that all living things are made of one or more cells, or the secretions of those cells, such as the organisms shown in **Figure 3**. For example, shell and bone are built by cells from substances that they secrete into their surroundings. Cells come from cells that already exist, that is, they do not suddenly appear from nowhere. In organisms that are made of many cells (called multicellular organisms), every cell in the organism's body derives from the single cell that results from a fertilized egg. You will learn more about cells and the Cell Theory in the *Cell Structure and Function* chapter.

Figure Tiny diatoms and whale sharks are all made of cells. Diatoms are about 20 μ m in diameter and are made up of one cell, whereas whale sharks can measure up to 12 meters in length, and are made up of billions of cells.

Gene Theory

A living organism's traits are encoded in their DNA, the large molecule, or macromolecule, that holds the instructions needed to build cells and organisms. DNA makes up the genes of an organism. Traits are passed on from one generation to the next by way of these genes. Information for how the organism appears and how its cells work come from the organism's genes. Although the appearance and cell function of the organism may change due to the organism's environment, the environment does not change its genes. The only way that genes can change in response to a particular environment is through the process of evolution in populations of organisms. You will learn more about DNA and genes in the *Molecular Genetics* chapter.

Homeostasis

Homeostasis is the ability of an organism to control its body functions in order to uphold a stable internal environment even when its external environment changes. All living organisms perform homeostasis. For example, cells maintain a stable internal acidity (pH); and warm-blooded animals maintain a constant body temperature. You will learn more about homeostasis in *The Human Body* chapter.

Homeostasis is a term that is also used when talking about the environment. For example, the atmospheric concentration of carbon dioxide on Earth has been regulated by the concentration of plant life on Earth because plants remove more carbon dioxide from the atmosphere during the daylight hours than they emit to the atmosphere at night.

Evolution

Evolution by natural selection, is the theory that maintains that a population's inherited traits change over time, and that all known organisms have a common origin. Evolutionary theory can explain how specialized features, such as the geckos sticky foot pads shown in Figure 4, develop in different species. You will learn more about evolution in the *Evolutionary Theory* and *Evolution in Populations* chapters.

Figure A Tokay Gecko. The pads at the tip of the Tokay gecko's foot are covered in microscopic hairs, each split into hundreds of tips that measure about 200 nanometers in diameter. By using these tiny hairs that can cling to smooth surfaces, the geckos are able to support their entire body weight while climbing walls, definately a product of evolution.

Questions

- 1. What do diatoms and whale sharks have in common?
- -
- 2. What is the only way that genes can change in response to a particular environment?
- _
-
- 3. What is homeostasis?

-		
-		
4. How do cells perform home	eostasis?	
-		
-		
-		
5. How are the pads of the Te	okay gecko's foot adapted fo	r climbing?
-		
-		
-		
Losson 1 4. Multin	lo Choico	
Lesson 1.4: Multipl		
Name	Class	Date
Circle the letter of the correct	t choice.	
1. Immunology is the stud	ly of	
(a) how organisms into(b) life at the level of(c) an organism's resis(d) none of the above		
2. A living organism		
(a) responds to its env(b) grows and changes(c) is composed of cell(d) all of the above	J.	
3. Cells together form		
(a) atoms.(b) tissues.(c) molecules.(d) organelles.		
4. How many numbers of o	cells are whale sharks made	up of?
(a) hundreds.(b) thousands.(c) millions.		

(d) billions	S.		
5. E. coli bacte	eria living inside your intest	tines is an example of	what kind of relationship?
(a) mutual(b) parasit(c) predate(d) none of	tic.		
6. A desert con	mmunity consists of		
(a) rabbits(b) ocotille(c) snakes(d) all of the	o.		
7. About how	many billion years old is the	he Earth?	
(a) 1.5(b) 3.0(c) 4.5(d) 6.0			
	Vocabulary	_ Class	Date
Match the vocabul	alary term with the correct of	definition.	
Term			
1. cell			
2. biochen	mistry		
3. botany			
4. organis	sm		
5. adaptat	tion		
6. biology	7		
7. commu	inity		
8. biologic	cal interactions		
9. cell bio	ology		
10. evolut	tionary biology		
Definition			

- a. the study of the chemicals that make up life
- b. the study of life
- c. an individual living creature
- d. the study of life at the level of the cell
- e. the interactions between different organisms in an environment
- f. composed of the relationships between groups of different species
- g. the smallest unit of structure and function of living organisms
- h. refers to the process of becoming adjusted to an environment
- i. the study of how populations and species change over time
- j. the study of plants

Chapter 2

Chemical Basis of Life Worksheets

2.1 Chapter 2: Chemical Basis of Life

- Lesson 2.1: Matter
- Lesson 2.2: Organic Compounds
- Lesson 2.3: Chemical Reactions
- Lesson 2.4: Water

2.2 Lesson 2.1: Matter

Lesson 2.1: True or False

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. An atom is the smallest particle of a chemical compound.
	2. There are only about 20 known elements.
	3. Elements called metals are generally shiny.
	4. Ionic bonds form between atoms with the same electronegativity.
	5. Water is an example of an organic compound.
	_ 6. Most organic compounds are held together by covalent bonds.
	7. Substances in a mixture can be separated only with a chemical reaction.
	8. Energy is a property of matter.
	9. Organisms change energy from one form to another.

10. Molecules of liquid water hat11. Matter keeps changing state12. Water vapor is the same thi).	y than molecules of ice.					
Lesson 2.1: Critical Reading							
Name	_ Class	Date					
Read this passage from the lesson and answer the questions that follow.							
Matter and Energy							
Energy is a property of matter that is defined as the ability to do work. The concept of energy is useful for explaining and predicting most natural phenomena, and it is foundational for an understanding of biology. All living organisms need energy to grow and reproduce. However, energy can never be created or destroyed. It is always conserved. This is called the law of conservation of energy. Therefore, organisms cannot create the energy they need. Instead, they must obtain energy from the environment. Organisms also cannot destroy or use up the energy they obtain. They can only change it from one form to another.							
Forms of Energy							
Energy can take several different forms. Common forms of energy include light, chemical, and heat energy. Other common forms are kinetic and potential energy.							
How Organisms Change Energy							
In organisms, energy is always changing from tain light energy from sunlight and change is energy is energy stored in bonds between a isms eat and digest the food, they break the Organisms do not use energy very efficient from food is converted to heat energy that	t to chemical atoms within to chemical boatly. About 90	energy in food molecules. Chemical food molecules. When other organds and release the chemical energy. It percent of the energy they obtain					

Questions

1. How is energy defined?

2. Why do living organisms need energy?

-		
3. Why must organisms obtain energy from	om the environment?	
-		
-		
-		
4. What is one way that organisms chang	e energy?	
-		
-		
-		
5. Explain what this statement means: C	rganisms do not use	energy very efficiently.
-		
-		
-		
Losson 2 1: Multiple Choice	0	
Lesson 2.1: Multiple Choic	e	
Lesson 2.1: Multiple Choic	e Class	Date
		Date
Name		Date
Name Circle the letter of the correct choice. 1. All elements and compounds are (a) rganic substances. (b) inorganic substances. (c) chemical substances. (d) all of the above. 2. Which element is a nonmetal? (a) iron (b) gold		Date
Name		Date
Name	Class	Date
Name Circle the letter of the correct choice. 1. All elements and compounds are (a) rganic substances. (b) inorganic substances. (c) chemical substances. (d) all of the above. 2. Which element is a nonmetal? (a) iron (b) gold (c) copper (d) hydrogen	Class	Date

(d) state.

4.	Chemical bonds form when ato	oms share	
	(a) neutrons.		
	(b) electrons.(c) protons.		
	(d) molecules.		
5.	Types of chemical bonds include	de ionic bonds and	
	(a) organic bonds.(b) covalent bonds.		
	(c) atomic bonds.		
	(d) potential bonds.		
6.	Common forms of energy inclu	ıde	
	(a) light energy.(b) chemical energy.		
	(c) heat energy.		
	(d) all of the above.		
7.	Which object has kinetic energ	gy?	
	(a) A tire on a parked car.(b) A stone at the bottom of	a pond	
	(c) A leaf falling from a tree.	a pona.	
	(d) A diver standing on a div	ing board.	
т	0.1 37 1 1		
Less	son 2.1: Vocabulary		
Name	e	Class	Date
Match	the vocabulary term with the	$correct\ definition.$	
Term			
	_ 1. element		
	_ 2. metal		
	_ 3. chemical compound		
	_ 4. water		
	_ 5. mixture		
	_ 6. energy		
	7. kinetic energy		
	_ 8. potential energy		
	9. solid		

_____ 10. liquid

Definition

- a. substance that forms in a chemical reaction
- b. chemical compound with twice as many hydrogen atoms as oxygen atoms
- c. pure substance that cannot be broken down into different types of substances
- d. ability to do work
- e. stored energy
- f. state of matter in which atoms change positions but do not move apart
- g. type of element that is a good conductor of heat and electricity
- h. state of matter in which atoms do not move
- i. energy of movement
- j. combination of two or more chemical substances in any proportions

2.3 Lesson 2.2: Organic Compounds

Lesson 2.2: True or False

Name	Cla	ass	_ Date
Write true if	the statement is true or false if the	statement is fal	se.
1.	Carbohydrates contain nitrogen, ca	arbon, hydrogen	, and oxygen.
2.	Table sugar is an example of a mor	nosaccharide.	
3.	Complex carbohydrates form the e	xternal skeleton	of some animals.
4.	Lipids include substances such as f	ats and oils.	
5.	Saturated fatty acids are found ma	inly in animals.	
6.	Unsaturated fatty acids form straig	ght chains.	
7.	Lipids are the only organic molecu	les used for ener	·gy.
8.	All amino acids have the same bas	ic structure.	
9.	Long chains of amino acids are call	led polynucleotic	des.
10	. Proteins make up the majority of	muscle tissues.	
11.	. Hemoglobin is a protein that carr	ies oxygen in th	e blood.

12. Nucleic acids a	are found in all living cells and	d viruses.
13. Chains of nucl	leic acids are held together by	bonds between sugars.
14. Groups of four	r bases each form "words" of t	the genetic code.
Lesson 2.2: Critical	l Reading	
Name	Class	Date
Read this passage from the le	sson and answer the questions	s that follow.

Lipids

Lipids are organic compounds that contain mainly carbon, hydrogen, and oxygen. They include substances such as fats and oils. Lipid molecules consist of fatty acids, with or without additional molecules. Fatty acids are organic compounds that have the general formula CH3(CH2)nCOOH, where n usually ranges from 2 to 28 and is always an even number.

Saturated and Unsaturated Fatty Acids

Fatty acids can be saturated or unsaturated. The term saturated refers to the placement of hydrogen atoms around the carbon atoms. In a saturated fatty acid, all the carbon atoms (other than carbon in the -COOH group) are bonded to as many hydrogen atoms as possible. Saturated fatty acids do not contain any other groups except -COOH. This is why they form straight chains. Because of this structure, saturated fatty acids can be packed together very tightly. This allows organisms to store chemical energy very densely. The fatty tissues of animals contain mainly saturated fatty acids. In an unsaturated fatty acid, some carbon atoms are not bonded to as many hydrogen atoms as possible. This is because they are bonded to one or more additional groups. Wherever these other groups bind with carbon, they cause the chain to bend. This gives unsaturated fatty acids different properties than saturated fatty acids. For example, unsaturated fatty acids are liquids at room temperature whereas saturated fatty acids are solids. Unsaturated fatty acids are found mainly in plants, especially in fatty tissues such as nuts and seeds. Unsaturated fatty acids occur naturally in bent shapes. However, unsaturated fatty acids can be artificially manufactured to have straight chains like saturated fatty acids. Called trans fatty acids, these synthetic lipids were commonly added to foods, until it was found that they increased the risk for certain health problems. Many food manufacturers no longer use trans fatty acids for this reason.

Types of Lipids

Lipids may consist of fatty acids alone or in combination with other compounds. Several types of lipids consist of fatty acids combined with a molecule of alcohol:

• Triglycerides are the main form of stored energy in animals. This type of lipid is commonly called fat.

- Phospholipids are a major component of the membranes surrounding the cells of all organisms.
- Steroids have several functions. The steroid cholesterol is an important part of cell membranes and plays other vital roles in the body. Other steroids are male and female sex hormones.

$\mathbf{\cap}$, •	
W	uestions	S

Quest	10115
1. Wh	at are fatty acids?
-	
-	
-	
2. Con	npare and contrast saturated and unsaturated fatty acids.
-	
-	
-	
3. Wh	y should you avoid eating foods containing trans fatty acids?
_	
-	
_	
4. Wh	at are triglycerides?
-	
-	
- F 1171	do ameniamo mondado e 1 altata 2
a. Wh	y do organisms need phospholipids?
-	
_	
-	
Less	on 2.2: Multiple Choice
Name	Class Date
Circle	the letter of the correct choice.

- 1. Which carbohydrate is not a simple sugar?
 - (a) fructose
 - (b) sucrose
 - (c) glucose
 - (d) amylose
- 2. Complex carbohydrates that are used to store energy include
 - (a) chitin.
 - (b) cellulose.
 - (c) glycogen.
 - (d) all of the above
- 3. Which statement is true of all fatty acids?
 - (a) They are liquids at room temperature.
 - (b) They can be manufactured by the human body.
 - (c) They consist of cholesterol and triglycerides.
 - (d) They contain carbon, hydrogen, and oxygen.
- 4. Fatty acids to avoid in healthful diet include
 - (a) omega-3 fatty acids.
 - (b) omega-6 fatty acids.
 - (c) saturated fatty acids.
 - (d) all of the above
- 5. The part of an amino acid that determines its unique properties is its
 - (a) sugar molecule.
 - (b) phosphate group.
 - (c) side chain.
 - (d) peptide.
- 6. One role of proteins is to
 - (a) help maintain the shape of cells.
 - (b) form cell membranes.
 - (c) contain the genetic code.
 - (d) form cell walls.
- 7. Which statement is true of all nucleic acids?
 - (a) They consist of two chains.
 - (b) They are found only in the nucleus of cells.
 - (c) They have a double helix shape.
 - (d) They contain phosphorus.

Lesson 2.2: Vocabulary

additional molecules

Name	Class	Date
Match the vocabulary term with	the correct definition.	
Term		
1. functional group		
2. simple sugar		
3. complex carbohydrate		
4. lipid		
5. steroid		
6. amino acid		
7. peptide		
8. nucleic acid		
9. DNA		
10. RNA		
Definition		
a. another term for a polysaccha	ride	
b. type of organic compound that	at consists of smaller units	called nucleotides
c. small group of elements with function of the organic compoun	_	that determines the nature and
d. double-stranded nucleic acid t	that contains the genetic ir	structions for proteins
e. another term for a monosacch	aride or disaccharide	
f. single-stranded nucleic acid th	at helps assemble amino a	cids and make proteins
g. short chain of amino acids		
h. type of organic compound t	that consists of one or mo	ore fatty acids with or without

i. small organic molecule that is a building block of proteins

j. type of lipid that helps form cell membranes

2.4 Lesson 2.3: Chemical Reactions

Lesson 2.3: True or False

Name	Class Date_	
Write true	rue if the statement is true or false if the statement is false.	
	1. The arrow in a chemical equation shows the direction in v	which the reaction
occurs.		
	2. In a chemical reaction, the quantity of some of the elements	s usually changes.
acid to pro	3. A decomposition reaction occurs when sodium combines produce table salt.	with hydrochloric
	4. The combustion of methane is an example of an exothermic	reaction.
	5. All catabolic reactions have heat as one of their products.	
	6. An example of an anabolic reaction is the breakdown of glu	cose molecules.
	7. The energy released in a chemical reaction is called activati	on energy.
	8. In all chemical reactions, reactants need energy to collide a	nd react.
	9. The speed of a chemical reaction depends only on the te	emperature of the
reactants.	ts.	
	10. Most chemical reactions in organisms would be impossible	without enzymes.
	11. An enzyme speeds up a chemical reaction by adding heat	to the reactants.
	12. In animals, enzymes are needed only to help digest food.	
Lesson	on 2.3: Critical Reading	
Name	Class Date_	

Enzymes and Biochemical Reactions

Most chemical reactions within organisms would be impossible under the conditions in cells. For example, the body temperature of most organisms is too low for reactions to occur quickly enough to carry out life processes. Reactants may also be present in such low concentrations that it is unlikely they will meet and collide. Therefore, the rate of most biochemical reactions must be increased by a catalyst. A catalyst is a chemical that speeds up chemical reactions. In organisms, catalysts are called enzymes. Like other catalysts, enzymes are not reactants in the reactions they control. They help the reactants interact

Read this passage from the lesson and answer the questions that follow.

but are not used up in the reactions. Instead, they may be used over and over again. Unlike other catalysts, enzymes are usually highly specific for particular chemical reactions. They generally catalyze only one or a few types of reactions. Enzymes are extremely efficient in speeding up reactions. They can catalyze up to several million reactions per second. As a result, the difference in rates of biochemical reactions with and without enzymes may be enormous. A typical biochemical reaction might take hours or even days to occur under normal cellular conditions without an enzyme but less than a second with the enzyme.

How Enzymes Work

How do enzymes speed up biochemical reactions so dramatically? Like all catalysts, enzymes work by lowering the activation energy of chemical reactions. Enzymes generally lower activation energy by reducing the energy needed for reactants to come together and react. For example:

- Enzymes bring reactants together so they don't have to expend energy moving about until they collide at random. Enzymes bind both reactant molecules (called substrate), tightly and specifically, at a site on the enzyme molecule called the active site.
- By binding reactants at the active site, enzymes also position reactants correctly, so they do not have to overcome intermolecular forces that would otherwise push them apart. This allows the molecules to interact with less energy.
- Enzymes may also allow reactions to occur by different pathways that have lower activation energy.

Questions
1. Why are enzymes essential for life processes of organisms?
-
-
-
2. Reactants are used up in chemical reactions but enzymes can be used over and over again Why?
-
-
-
3. How efficient are enzymes in speeding up chemical reactions? Give details to suppor your answer.
-

4. How are enzymes like other catalysts? How are they different?

5. Describe one way that enzymes may lower the activation energy of reactions.

-

Lesson 2.3: Multiple Choice

Name_____ Class____ Date____

Circle the letter of the correct choice.

- 1. How many molecules of oxygen are reactants in this chemical reaction? $CH_4 + 2O_2 \rightarrow CO_2 + H_2O$
 - (a) zero
 - (b) one
 - (c) two
 - (d) four
- 2. What type of reaction is this: methane + oxygen \rightarrow carbon dioxide + water?
 - (a) endothermic reaction
 - (b) combustion reaction
 - (c) substitution reaction
 - (d) anabolic reaction
- 3. Which reaction is an example of a synthesis reaction?
 - (a) $N_2 + 3H_2 \to 2NH_3$
 - (b) $2H_2O \to 2H_2 + O_2$
 - (c) $2Na^+ + 2HCl \rightarrow 2NaCl + H_2$
 - (d) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- 4. What is the general formula for an endothermic reaction?
 - (a) Reactants + Heat \rightarrow Products
 - (b) Reactants + Products \rightarrow Heat
 - (c) Reactants Heat \rightarrow Products

(d)	Reactants \rightarrow Products + Heat
5. Whe	en amino acids combine to form a protein, the reaction is a(n)
(b) (c)	exothermic reaction. decomposition reaction. anabolic reaction. combustion reaction.
6. A ca	talyst is any chemical that
(b) (c)	is present at the start of a chemical reaction. is produced during a chemical reaction. binds with an enzyme in a chemical reaction. speeds up a chemical reaction.
7. A ch	nemical reaction catalyzed by an enzyme requires
(b) (c)	fewer reactants. more products. less activation energy. more chemical bonds.
Lesson Name	2.3: Vocabulary Class Date
	vocabulary term with the correct definition.
Term	
1.	reactant
2.	product
3.	combustion reaction
4.	synthesis reaction
5.	substitution reaction
6.	exothermic reaction
7.	catabolic reaction
8.	anabolic reaction
9	activation energy

Definition

_____ 10. enzyme

- a. reaction in which one element replaces another element in a compound
- b. reaction in which reactants unite to form a more complex product
- c. any chemical reaction that releases energy
- d. energy needed for a chemical reaction to get started
- e. substance that forms as a result of a chemical reaction
- f. reaction in which a compound or element burns in oxygen
- g. exothermic reaction that occurs in organisms
- h. substance involved in a chemical reaction that is present at the beginning of the reaction
- i. chemical that speeds up chemical reactions in organisms
- j. endothermic reaction that occurs in organisms

2.5 Lesson 2.4: Water

Lesson 2.4: True or False

Name		Class	Date
Write true	if the statement is true or false if	the statement is fals	se.
	1. Most of Earth's water exists in	the atmosphere as v	vater vapor.
	2. Hydrogen bonds form between	hydrogen atoms of a	djacent water molecules.
	3. A solution has the same propor	tion of substances the	hroughout.
	4. Nonpolar substances are more s	soluble in water than	are polar substances.
	5. The concentration of hydronium	n ions in a solution i	indicates its solubility.
	6. An example of a very strong ac	id is bleach.	
	7. Acids have a bitter taste and fe	el slimy to the touch	1.
	8. Most enzymes require a specific	range of pH in orde	er to do their job.
	9. Bicarbonate ions help the body	maintain a healthfu	ıl pH.
	10. Humans are composed of abou	it 95 percent water.	
	11. Water molecules are released of	during anabolic reac	tions.
	12. An example of a hydration rea	action is cellular resp	oiration.

Lesson 2.4: Critical Reading

Name	_ Class	Date
1 tanic	_ 🗀 🗀	

Read this passage from the lesson and answer the questions that follow.

Water and Life

Humans are composed of about 70 percent water. This water is crucial for normal functioning of the body. Water's ability to dissolve most biologically significant compounds—from inorganic salts to large organic molecules—makes it a vital solvent inside organisms and cells. Water is an essential part of most metabolic processes within organisms. Metabolism is the sum total of all body reactions, including those that build up molecules (anabolic reactions) and those that break down molecules (catabolic reactions). In anabolic reactions, water is generally removed from small molecules in order to make larger molecules. In catabolic reactions, water is used to break bonds in larger molecules in order to make smaller molecules. Water is central to two related, fundamental metabolic reactions in organisms: photosynthesis and respiration. All organisms depend directly or indirectly on these two reactions.

• In photosynthesis, cells use the energy in sunlight to change water and carbon dioxide into glucose and oxygen. It is represented by the chemical equation:

$$6CO_2 + 6H_2O + \text{energy} \rightarrow C_6H_{12}O_6 + 6O_2$$

• In cellular respiration, cells break down glucose in the presence of oxygen and release energy, water, and carbon dioxide. It is represented by the chemical equation:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + \text{energy}$$

Two other types of reactions that occur in organisms and involve water are dehydration and hydration reactions. A dehydration reaction occurs when molecules combine to form a single, larger molecule and also a molecule of water. It is a type of catabolic reaction. An example of a dehydration reaction is the formation of peptide bonds between amino acids in a polypeptide chain. When two amino acid bond together, a molecule of water is lost. A hydration reaction is the opposite of a dehydration reaction. A hydration reaction adds water to an organic molecule and breaks the large molecule into smaller molecules. It is a type of anabolic reaction. An example of a hydration reaction is the breaking of peptide bonds in polypeptides to form individual amino acids. Water is essential for all of these important chemical reactions in organisms. As a result, virtually all life processes depend on water. Clearly, without water, life as we know it could not exist.

Questions		
1. Why is water a good solvent for organis	sms?	
-		
-		
-		
2. Define metabolism.		
-		
-		
_		
3. What is the difference between anabo each.	lic and catabolic react	ions? Give an example of
-		
-		
-		
4. How is water involved in photosynthesis	s?	
-		
-		
-		
5. What is water's role in hydration reacti	ions?	
_		
-		
_		
Lesson 2.4: Multiple Choice	e	
Name	Class	_ Date
Circle the letter of the correct choice.		
1. The greatest percentage of Earth's fa	reshwater is in	
(a) the atmosphere.		
(b) rivers and lakes.		

Mata	ch the vocabulary term with the con		
Nan	ne	Class	Date
Les	son 2.4: Vocabulary		
	(b) hydration(c) catabolism(d) precipitation		
	(a) neutralization	ted by tills equation	
7	What type of reaction is represen	ted by this equation	$3^{\circ} NaOH + HCl \rightarrow NaCl + H_0$
	(a) lower.(b) higher.(c) the same.(d) zero.		
6.	Compared with the pH of pure w	vater, the pH of a ba	ase is
	(a) an acid.(b) a base.(c) a neutral solution.(d) pure water.		
5.	A solution with a low hydronium	ion concentration i	\mathbf{S}
	(a) very dense.(b) highly basic.(c) highly acidic.(d) strongly nonpolar.		
4.	Water cannot dissolve substances	s that are	
	(a) ion.(b) base.(c) solute.(d) solvent.		
3.	In ocean water, water is the		
	(a) new elements.(b) hydrogen bonds.(c) nuclei.(d) solutes.		
2.	The polarity of water molecules of	causes them to form	
	(d) glaciers and polar ice caps.		

Term	
	1. acid
	2. base
	3. ion
	4. metabolism
	5. neutralization
	6. pH
	7. polarity
	8. solubility
	9. solute
	10. solvent

Definition

- a. ability of a solute to dissolve in a particular solvent
- b. sum total of all body reactions
- c. measure of the acidity of a solution
- d. solution with a higher hydronium ion concentration than pure water
- e. substance in a solution that dissolves the other substance
- f. solution with a pH higher than 7
- g. reaction in which an acid and a base react to form a salt and water
- h. substance in a solution that is dissolved by the other substance
- i. difference in electrical charge between different parts of a molecule
- j. electrically charged atom or molecule

Chapter 3

Cell Structure and Function Worksheets

3.1 Chapter 3: Cell Structure and Function

- Lesson 3.1: Introduction to Cells
- Lesson 3.2: Cell Structures
- Lesson 3.3: Cell Transport and Homeostasis

3.2 Lesson 3.1: Introduction to Cells

Lesson 3.1: True or False

Name		Class	Date	
Write tru	ue if the statement is true or false	if the stateme	ent is false.	
	1. Individual cells are so tiny the	hat they must	be viewed with an electron mic	cro-
scope.				
	_ 2. Robert Hooke viewed cork ce	lls using a ligh	at microscope that he himself ma	ade.
	_ 3. Anton van Leeuwenhoek used	d a light micro	oscope to view plaque from his o	own
teeth!				
	4. The magnification of a micro	scope is the sa	ame number as its resolution.	
	_ 5. Individual organelles can be	seen with an ϵ	electron microscope.	
	6. One strand of the cell theory	states that al	ll cells have a nucleus.	
	7. Another strand of the cell the	ory states tha	t all living organisms are compri	ised

of one or r	more cells.
	8. Today, the spontaneous generation of life hypothesis is generally accepted as
true.	
	9. Most cells are small so that they have a large surface-area-to-volume ratio.
	10. One micrometer (μm) is the same distance as 10^{-2} meters.
	11. Most cells are between 1 and 100 μm in diameter.
	12. All cells that synthesize proteins have ribosomes.
	13. Prokaryotic cells do not have a nucleus.
	14. Prokaryotic cells do not have any genetic material.
	15. Eukaryotic cells lack mitochondria.
Lesson	3.1: Critical Reading

\mathbf{Name}	Class	$\mathrm{Date}___$

Read this passage from the lesson and answer the questions that follow.

Cell Size

If cells have such an important job, why are they so small? And why are there no organisms with huge cells? The answers to these questions lie in a cell's need for fast, easy food. The need to be able to pass nutrients and gases into and out of the cell sets a limit on how big cells can be. The larger a cell gets, the more difficult it is for nutrients and gases to move in and out of the cell.

As a cell grows, its volume increases more quickly than its surface area. If a cell were to get very large, the small surface area would not allow enough nutrients to enter the cell quickly enough for the cell's needs. Figure 5 explains how this works. However, large cells have a way of dealing with some size challenges. Big cells, such as some white blood cells, often grow more nuclei so that they can supply enough proteins and RNA for the cell's needs. Large, metabolically active cells often have lots of folds in their cell surface membrane. These folds increase the surface area available for transport into or out of the cell. Such cell types are found lining your small intestine, where they absorb nutrients from your food through little folds called microvilli.

Scale of Measurements

1 centimeter (cm) = 10 millimeters (mm) = 10^{-2} meters (m) $1 \ mm = 1000 \ micrometers \ (\mu m) = 10^{-3} \ m$ $1 \ \mu m = 1000 \ nanometers \ (nm) = 10^{-6} \ m$

 $1 \ nm = 10^{-3} \ \mu m$

Figure 3.1: A small cell (left), has a larger surface-area to volume ratio than a bigger cell (center). The greater the surface-area to volume ratio of a cell, the easier it is for the cell to get rid of wastes and take in essential materials such as oxygen and nutrients.

Imagine cells as little cube blocks. A small cube cell is one unit in length.

The total surface area of this cell is calculated by the equation:

height \times width \times number of sides \times number of boxes

$$1 \times 1 \times 6 \times 1 = 6$$

The volume of the cell is calculated:

height \times width \times length \times number of boxes

$$1 \times 1 \times 1 \times 1 = 1$$

The surface-area to volume ratio is:

area ÷ volume

$$6 \div 1 = 6$$

A larger cell that is 3 units in length would have a total surface area of

$$3 \times 3 \times 6 \times 1 = 54$$

and a volume of:

$$3 \times 3 \times 3 \times 1 = 27$$

The surface-area to volume ratio of the large cell is:

$$54 \div 27 = 2$$

Now, replace the three unit cell with enough one unit cells to equal the volume of the single three unit cell. This can be done with 27 one unit cells. Find the total surface area of the 27 cells:

$$1 \times 1 \times 6 \times 27 = 162 \ units$$

The total volume of the block of 27 cells is:

$$1 \times 1 \times 1 \times 27 = 27$$

The surface-area to volume ratio of the 27 cells is:

$$162 \div 27 = 6$$

Questions

- 1. Why are cells small?
- -
- 2. What are microvilli? What is their function?
- -
- -

Name	Class	Date
Lesson 3.1: Multiple	Choice	
-		
-		
-		
5. What is the surface area-to-v	volume ratio of a 2 μm cub	pe?
-		
-		
-		
4. What is the volume of a cube	e with a length of 2 μm ?	
-		
-		
-		

- 1. Studying the cellular functions of bacteria
 - (a) is a waste of time for scientists.
 - (b) can give us insight into how many cells, including human cells, work.
 - (c) is obsolete, because everything is known about all bacteria.
 - (d) none of the above
- 2. The 17^{th} century Dutch scientist Antony van Leeuwenhoek viewed the following types of organisms with his light microscope:
 - (a) living sperm cells
 - (b) ciliates
 - (c) rotifers
 - (d) all of the above
- 3. A typical light microscope can magnify an object
 - (a) up to two times its size (2x).
 - (b) up to 10x maximum.
 - (c) hundreds of times its original size.
 - (d) millions of times its original size.

4. An advantage of using an electron mic	croscope is	
(a) it can be used to visualize subcel light microscope.	lular structures that	are too small to see with a
(b) they are cheap.		
(c) they can fit in the palm of your h	nand.	
(d) all of the above5. The cell theory was first postulated by	z scientists in	
(a) 2002.	SCICITUISUS III	
(b) 1992.		
(c) Germany.(d) New York City.		
6. A cell has a volume of $27 \mu m^3$. Its sur	face area is $54 \ \mu m^2$.	The surface area-to-volume
ratio is		
(a) $\frac{1}{2}$.		
(b) 1. (c) 2.		
(d) 1458.		
7. Prokaryotes and eukaryotes are simila	r in that	
(a) both have DNA as the genetic m	aterial.	
(b) both have chloroplasts.(c) neither have a nucleus.		
(d) neither have a semipermeable cel	l membrane.	
Lesson 3.1: Vocabulary		
Name	_ Class	_ Date
Match the vocabulary term with the correct	definition.	
Term		
1. ribosomes		
2. nucleus		
3. organelle		
4. DNA		
5. Prokaryotic cells		
6. resolution		
7. Eukaryotic cells		

 8. cell
9. cytosol
10. cytoplasm

Definition

- a. The minimum distance that two points can be separated by and still be distinguished as two separate points.
- b. Cells that contain a nucleus.
- c. The membrane bound organelle that contains DNA; found in eukaryotic cells.
- d. A watery fluid that contains dissolved particles and organelles.
- e. Contains the genetic information needed for building structures such as proteins.
- f. Structure that carries out specific functions inside the cell.
- g. The general term for all of the material inside the cell, between the cell membrane and the nucleus.
- h. Typical of simple, single-celled organisms, such as bacteria; lack a nucleus and other membrane bound organelles.
- i. The organelles on which proteins are made (synthesized).
- j. The smallest unit that can carry out the processes of life; the basic unit of all living things.

3.3 Lesson 3.2: Cell Structures

Lesson 3.2: True or False

Name		$___$ Class $___$	Date	
Write tru	e if the statement is true	or false if the statement	t is false.	
	_ 1. The eukaryotic plasm	a membrane is made m	ostly of carbohydrates.	
	2. A phospholipid molec	ule has a hydrophilic pa	art and a hydrophobic part	·.
membran	_ •	e proteins extend acros	s the entire width of the p	lasma
	4. The cytoskeleton is m	ade of protein.		
	$_$ 5. The cytoskeleton can	accurately be described	l as being fiber-like.	
	6. The centrioles contain	short microtubules.		

7. Flagella contai	II DNA.		
8. Mitochondria o	contain DNA.		
	unction on the plasma membr gh endoplasmic reticulum duri	· ·	
10. The lysosome	is the organelle that stores ca	alcium ions in eukaryotic	cells.
11. Ribosomes as molecules.	re made up of only polypeption	des and contain no other	macro-
12. Animal cells,	but not plant cells, have the C	Golgi apparatus in the cyt	oplasm.
13. Chloroplasts of	contain DNA molecules.		
14. All cells are e	ither part of a colonial organis	sm or a multicellular orga	nism.
	cteria can live in communities acteria specialize in other func	_	ecialize
Lesson 3.2: Critica	d Reading		
Name	Class	Date	

The nucleus

The nucleus is a membrane-enclosed organelle found in most eukaryotic cells. The nucleus is the largest organelle in the cell and contains most of the cell's genetic information (mitochondria also contain DNA, called mitochondrial DNA, but it makes up just a small percentage of the cell's overall DNA content). The genetic information, which contains the information for the structure and function of the organism, is found encoded in DNA in the form of genes. A gene is a short segment of DNA that contains information to encode an RNA molecule or a protein strand. DNA in the nucleus is organized in long linear strands that are attached to different proteins. These proteins help the DNA to coil up for better storage in the nucleus. Think how a string gets tightly coiled up if you twist one end while holding the other end. These long strands of coiled-up DNA and proteins are called chromosomes. Each chromosome contains many genes. The function of the nucleus is to maintain the integrity of these genes and to control the activities of the cell by regulating gene expression. Gene expression is the process by which the information in a gene is "decoded" by various cell molecules to produce a functional gene product, such as a protein molecule or an RNA molecule.

Read this passage from the lesson and answer the questions that follow.

The degree of DNA coiling determines whether the chromosome strands are short and thick or long and thin. Between cell divisions, the DNA in chromosomes is more loosely coiled and forms long thin strands called chromatin. Before the cell divides, the chromatin coil up more tightly and form chromosomes. Only chromosomes stain clearly enough to be seen

under a microscope. The word chromosome comes from the Greek word chroma, (color) and soma, (body) due to its ability to be stained strongly by dyes.

Qu	esti	ons
₩ u	CSU	CILO

1. Describe the atmesture of the ruelous		
1. Describe the structure of the nucleus.		
-		
-		
-		
2. What is the function of the nucleus?		
_		
-		
-		
3. Define a gene.		
-		
-		
-		
4. What is a chromosome?		
-		
-		
-		
5. Propose a reason why chromatin condense	es before cell divisio	n.
-		
-		
-		
Lesson 3.2: Multiple Choice		
Name	Class	_ Date
Circle the letter of the correct choice.		
1. The head group of a typical membrane acid tails are	phospholipid is	, whereas the two fatty

- (a) hydrophilic, hydrophobic
- (b) large, very small
- (c) hydrophobic, hydrophilic
- (d) hydrophilic, hydrophilic
- 2. Some membrane proteins are called integral membrane proteins. Some integral membrane proteins
 - (a) transport molecules across the membrane.
 - (b) are temporarily associated with the membrane.
 - (c) easily fall off of the membrane.
 - (d) are never associated with a membrane.
- 3. Vesicles and organelles are transported around the cell by
 - (a) microfilaments.
 - (b) microtubules.
 - (c) intermediate filaments.
 - (d) flagella.
- 4. A gene is
 - (a) a protein that is wrapped around the DNA in the nucleus.
 - (b) a phospholipid in the plasma membrane.
 - (c) a random sequence of nucleotides that contains no information.
 - (d) an information-rich segment of DNA that codes for some type of RNA molecule and/or a protein.
- 5. The number of mitochondria in a eukaryotic cell
 - (a) can vary and depends upon the cell's energy needs.
 - (b) is fixed and never varies.
 - (c) is reduced in half every time a cell divides.
 - (d) is the same as the number of nuclei in the cell.
- 6. Peroxisomes
 - (a) form from vesicles delivered from the endoplasmic reticulum.
 - (b) contain genetic material (DNA).
 - (c) are organelles that break down toxic substances in the cell.
 - (d) contain ribosomes and synthesize protein.
- 7. Consider a plant cell. If microtubules were inhibited from functioning with a microtubule-specific drug, then which of the following cell functions would be immediately and directly inhibitied?
 - (a) the structure of the nuclear membrane
 - (b) cell-to-matrix junctions
 - (c) protein synthesis
 - (d) normal cellulose deposition in the plant cell wall

Lesson 3.2: Vocabulary

Name	Class	Date
Match the vocabulary term with the corre	$ect\ definition.$	
Term		
1. chromoplasts		
2. nucleus		
3. Cell wall		
4. Golgi apparatus		
5. carotenoid		
6. lysosome		
7. Rough endoplasmic reticulum		
8. chloroplast		
9. Smooth endoplasmic reticulum	1	
10. nucleolus		

Definition

- a. A light-absorbing photosynthetic pigment.
- b. The organelle that captures light energy from the sun and uses it with water and carbon dioxide to produce sugars for food.
- c. Pigment-containing organelles that are found in flower petals and fruits.
- d. An organelle, which in some cell types, can actually digest a bacterium.
- e. The cell's "post office," which sorts its protein cargo into vesicles that are addressed to the appropriate final destination.
- f. A cell structure that is composed of a large amount of cellulose.
- g. The site of ribosomal subunit assembly.
- h. Contains newly synthesized proteins, some of which are destined to go to the plasma membrane.
- i. An organelle that is surrounded by a double phospholipid bilayer and whose outer membrane is contiguous with the rough endoplasmic reticulum.
- j. An organelle that can detoxify some drugs.

3.4 Lesson 3.3: Cell Transport and Homeostasis

Lesson 3.3: True or False

Name	Class Date	
Write true	ue if the statement is true or false if the statement is false.	
	_ 1. A selectively permeable membrane permits only some molecules across	s the
membrane	ne.	
	_ 2. Selectively permeable cell membranes help maintain cell homeostasis.	
	_ 3. Osmosis is one kind of active transport.	
will be eq	_ 4. At equilibrium, the concentrations of a solute on both sides of a memb	orane
	_ 5. At osmotic equilibrium, all water movement across the membrane stops.	
	_ 6. Facilitated diffusion is a protein-mediated form of transport.	
	_ 7. Some gated channel proteins open in response to specific chemical signals	s.
membrane	$_$ 8. Ions such as K^+ and Cl^- diffuse directly across the phospholipids of the bilayer.	f the
	_ 9. Active transport is transport of molecules down their concentration grad	ient.
	_ 10. Active transport requires ATP, either directly or indirectly.	
	_ 11. The sodium-potassium pump transports sodium out of cells.	
	_ 12. There is a voltage across the plasma membrane called the membrane poten	ntial.
	_ 13. Only liquids can be taken up into cells by endocytosis.	
	_ 14. G-protein linked receptors are integral membrane proteins.	
signal from	_ 15. One advantage of a cell's having a signal transduction pathway is that om a single ligand is amplified many times.	t the
Lesson	n 3.3: Critical Reading	
Name	Class Date	
	s passage from the lesson and answer the questions that follow.	
Signal T	Transduction	

A signal-transduction pathway is the signaling mechanism by which a cell changes a signal on

its surface into a specific response inside the cell. It most often involves an ordered sequence of chemical reactions inside the cell, which are carried out by enzymes and other molecules. In many signal transduction processes, the number of proteins and other molecules participating in these events increases as the process progresses from the binding of the signal. A "signal cascade" begins. Think of a signal cascade as a chemical domino-effect inside the cell, in which one domino knocks over two dominos, which in turn knock over four dominos, and so on. The advantage of this type of signaling to the cell is that the message from one little signal molecule can be greatly amplified and have a dramatic effect. G protein-linked receptors are only found in higher eukaryotes, including yeast, plants, and animals. Your senses of sight and smell are dependent on G-protein linked receptors. The ligands that bind to these receptors include light-sensitive compounds, odors, hormones, and neurotransmitters. The ligands for G-protein linked receptors come in different sizes, from small molecules to large proteins. G protein-coupled receptors are involved in many diseases, but are also the target of around half of all modern medicinal drugs.

The sensing of the external and internal environments at the cellular level relies on signal transduction. Defects in signal transduction pathways can contribute or lead to many diseases, including cancer and heart disease. This highlights the importance of signal transductions to biology and medicine.

Questions

٠	
1.	Cell signals have what purpose?
-	
-	
-	
2.	In a cell, what is the advantage of having a signaling cascade?
-	
-	
-	
3.	What organisms have G-protein linked receptors?
-	
-	
-	
4.	What is a specific example of a ligand that binds to a G-protein linked receptor?
-	
_	

_		
5. How do G-protein linked receptors relate	to human hea	alth and medicine?
-		
-		
-		
Lesson 3.3: Multiple Choice		
Name	Class	Date
Circle the letter of the correct choice.		
 Both cations (positively charged ions) a (a) diffuse rapidly through the phosph (b) diffuse slowly across the glucose of (c) cannot pass directly through the list hydrophobic. (d) cannot pass directly through the list hydrophilic. 	holipid bilayer f the bilayer. lipid bilayer l	r. because the interior of the bilayer
2. Several drops from a dropper full of a catest tube of water. What will happen		
 (a) They will stay segregated in the artube. (b) They will move by diffusion until test tube and then there will be noted (c) They will sink to the bottom of the (d) They will transform the chemical 3. If a red blood cell shrinks when it is place 	their concent o net movemente test tube a structure of t	tration is equal everywhere in the ent. and stay there forever. the water molecules in the tube.

- (b) isotonic
- (c) hypotonic
- (d) monotonic
- 4. Most plant cells exist and thrive in _____ environments.

is _____ relative to the red blood cell cytosol.

- (a) hypertonic
- (b) isotonic
- (c) hypotonic
- (d) monotonic

5. The	group of proteins called ion channels includes those tha	t are
(b) (c)	made of 100% lipid. always closed. peripheral membrane proteins. always open.	
6. Rece	eptor proteins can	
(b) (c)	be plasma membrane proteins. be intracellular proteins. bind to a ligand. all of the above	
7. The	binding of a ligand to a G-protein linked receptor	
(b) (c)	activates the receptor by changing its shape. occurs in the nucleus. occurs in the cytosol. is completely nonspecific.	
Lesson	a 3.3: Vocabulary Class	Date
Name	· ·	Date
Name	Class	Date
Name Match the	Class	Date
Name Match the Term 1.	Classe vocabulary term with the correct definition.	Date
Name Match the Term 1.	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis	Date
Name Match the Term123.	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis	Date
Name Match the Term1234.	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis ligand	Date
Name Match the Term12345.	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis ligand Contractile vacuole	Date
Name Match the Term13356.	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis ligand Contractile vacuole osmosis	Date
Name	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis ligand Contractile vacuole osmosis Transport protein	Date
Name	Classe vocabulary term with the correct definition. Facilitated diffusion exocytosis ligand Contractile vacuole osmosis Transport protein Signal transduction pathway	Date

Definition

a. A type of vacuole that removes excess water from a cell.

- b. The diffusion of solutes through transport proteins in the plasma membrane.
- c. A protein that completely spans the membrane, and allows certain molecules or ions to cross the membrane.
- d. A transport protein that acts like a pore in the membrane that lets water molecules or mall ions through quickly.
- e. A small molecule that starts a change inside a cell in response to the binding of a specific signal to a receptor protein.
- f. The process of capturing a substance or particle from outside the cell by engulfing it with the cell membrane.
- g. A small molecule that binds to a larger molecule.
- h. The signaling mechanism by which a cell changes a signal on it surface into a specific response inside the cell.
- i. The process of vesicles fusing with the plasma membrane and releasing their contents to the outside of the cell.
- j. The diffusion of water molecules across a selectively permeable membrane from an area of higher concentration to an area of lower concentration.

Image Sources

(1) .

Chapter 4

Photosynthesis Worksheets

4.1 Chapter 4: Photosynthesis

- Lesson 4.1: Energy for Life: An Overview of Photosynthesis
- Lesson 4.2: Into the Chloroplast: How Photosynthesis Works

4.2 Lesson 4.1: Energy for Life: An Overview of Photosynthesis

Lesson 4.1: True or False

Name	Class	Date
Write true if the	statement is true or false if the stateme	nt is false.
1. Son	ne bacteria can photosynthesize.	
2. All	bacteria use light energy to fix carbon.	
3. Wh	en chlorophyll molecules absorb light, e	lectrons are energized.
4. A n	nolecule of glucose has a total of 3 carbo	on atoms.
5. AT	P contains a phosphate atoms.	
6. Car	bon dioxide is a waste product of photo	osynthesis.
7. Oxy	ygen is a product of photosynthesis.	
8. Me	thane is the source of carbon for photos	ynthesis.
9. All	chemical reactions have two reactants a	and two products.

Name	Class Date			
Lesson	on 4.1: Critical Reading			
	15. The reactions of the Calvin Cycle occur inside the chloro	plast.		
plasts.	14. Chlorophyll molecules are embedded in the thylakoid m	embranes of chloro-		
	_ 13. There are internal membranes inside a chloroplast.			
	12. Breaking chemical bonds in food molecules can release so	ome heat.		
	11. Plant cells can store energy in the form of carbon-contain	ning compounds.		
	10. Most of the ATP produced by a plant cell is exported from	om the cell.		

How Do Organisms Get Energy? Autotrophs vs. Heterotrophs

Read this passage from the lesson and answer the questions that follow.

Living organisms obtain chemical energy in one of two ways.

Autotrophs store chemical energy in carbohydrate food molecules they build themselves. Food is chemical energy stored in organic molecules. Food provides both the energy to do work and the carbon to build bodies. Because most autotrophs transform sunlight to make food, we call the process they use photosynthesis. Only three groups of organisms - plants, algae, and some bacteria - are capable of this life-giving energy transformation. Autotrophs make food for their own use, but they make enough to support other life as well. Almost all other organisms depend absolutely on these three groups for the food they produce. The producers, as autotrophs are also known, begin food chains which feed all life. Food chains will be discussed in the *Principles of Ecology* chapter.

Heterotrophs cannot make their own food, so they must eat or absorb it. For this reason, heterotrophs are also known as consumers. Consumers include all animals and fungi and many protists and bacteria. They may consume autotrophs, or other heterotrophs or organic molecules from other organisms. Heterotrophs show great diversity and may appear far more fascinating than producers. But heterotrophs are limited by our utter dependence on those autotrophs which originally made our food. If plants, algae, and autotrophic bacteria vanished from earth, animals, fungi, and other heterotrophs would soon disappear as well. All life requires a constant input of energy. Only autotrophs can transform that ultimate, solar source into the chemical energy in food which powers life.

Questions

1. What is an autotroph?

_

-			
-			
2. Define a heterotroph.			
-			
-			
-			
3. List one similarity between autotrophs ar	nd heterotrophs	3.	
-			
-			
-			
4. Defend this statement: Plants are autotre	ophs.		
-			
_			
_			
5. What would happen to life on earth if t surface?	he sun's rays c	ould no longer reach the	earth's
-			
-			
-			
Lesson 4.1: Multiple Choice			
Name	Class	Date	
Circle the letter of the correct choice.			
1. A major difference between heterotrop			
(a) heterotrophs live in the water and(b) heterotrophs are multicellular and	-		
(a) beterotrophs are different and all	-		

- (c) heterotrophs are different and all autotrophs are the same.
- (d) heterotrophs ingest food molecules and autotrophs can make food molecules.
- 2. A major similarity between heterotrophs and autotrophs is that
 - (a) both are always multicellular.

ıe	cabulary ter	-		Date
heh	cabulary ter			Date
h the vo				Date
ıe				Date
son 4	.1: Voca	abulary		
(b) th (c) to	at they accesslow down	ept the oxygen sychemical reaction	ynthesized as a p ns.	product of photosynthesis.
The rol	e of enzyme	es in photosynthe	esis is	
 (a) Co (b) Co (c) Co 	O_2 . $_3H_{12}O_6$. H_4 .	uia ior giucose is		
(b) bla (c) graded (d) or	ack een ange			
When e	exposed to s	unlight, chloroph	nyll appears	in color to the human
(b) ca th (c) or	rbon-contain eir constitue ganic nitrog	ning compounds ent atoms. en-containing co	that store energ	gy in the chemical bonds betw
Food ca	an be define	d chemically as		
(b) in (c) in	intertidal reareas with a	egions (areas bet abundant air an	ween low tide an	nd high tide zones).
Chemos	synthetic or	ganisms are ofte	n found	
(c) all	heterotropl	hs and autotropl		
	(c) all (d) more Chemose (a) in (b) in (c) in (d) all Food cath (a) in (d) not the (a) when each (b) black (c) grangle (d) or The chord (a) Control (b) Control (c) Control (c) Control (d) the (d) the (d) the (d) the (e) to chemose (d) more chord (e) Control (for the chord (fo	(c) all heterotrophological members of bethe Chemosynthetic or (a) in hot water was to in intertidal recognition (c) in areas with (d) all of the above Food can be defined (a) inorganic nitrostation (b) carbon-contain their constituted (c) organic nitroged (d) none of the above When exposed to so (a) white (b) black (c) green (d) orange The chemical form (a) CO ₂ . (b) C ₆ H ₁₂ O ₆ . (c) CH ₄ . (d) C ₆ H ₅ O ₄ . The role of enzymeth (a) that they are (b) that they are (c) to slow down (d) to speed up chemical form (d) the	(d) members of both groups can be Chemosynthetic organisms are ofter (a) in hot water vents in the deep (b) in intertidal regions (areas bet (c) in areas with abundant air and (d) all of the above Food can be defined chemically as (a) inorganic nitrogen-containing (b) carbon-containing compounds their constituent atoms. (c) organic nitrogen-containing conduction (d) none of the above When exposed to sunlight, chloroph (a) white (b) black (c) green (d) orange The chemical formula for glucose is (a) CO_2 . (b) $C_6H_{12}O_6$. (c) CH_4 . (d) $C_6H_5O_4$. The role of enzymes in photosynthem (a) that they are the light-absorbing (b) that they accept the oxygen system (c) to slow down chemical reactions (d) to speed up chemical reactions	 (c) all heterotrophs and autotrophs on the earth if (d) members of both groups can be found in the of Chemosynthetic organisms are often found (a) in hot water vents in the deep ocean. (b) in intertidal regions (areas between low tide art (c) in areas with abundant air and sunlight. (d) all of the above Food can be defined chemically as (a) inorganic nitrogen-containing compounds that (b) carbon-containing compounds that store energy their constituent atoms. (c) organic nitrogen-containing compounds that lated (d) none of the above When exposed to sunlight, chlorophyll appears

2. Photosynthesis occurs	only in plants.	
1. Both photosystems I the chloroplast.	and II (PS I and II) a	re located in the stromal fluid of
Write true if the statement is true o	·	·
Name	Class	Date
Lesson 4.2: True or Fals	se	
thesis Works		
4.3 Lesson 4.2: Into	the Chloropla	ast: How Photosyn-
j. the organelle in which photosynth	nesis occurs	
i. organisms that cannot make their	own food; they must	absorb in ingest food
h. thermal energy		
g. an organisms that can make its o	wn food	
f. A pathway that traces energy flow	w from producers throu	ıgh consumers
e. a six carbon organic molecule tha	at is used as an energy	source by many organisms
d. the primary pigment of photosyn	thesis	
c. An energy carrier molecule produbuild sugar in the Calvin cycle	aced in the light reaction	ons of photosynthesis and used to
b. carbon-containing molecules that	are synthesized by liv	ing organisms
a. Molecules that have no carbon at	toms (with a few excep	etions such as carbon dioxide)
Definition		
10. organic molecules		
9. inorganic molecules		
8. chloroplast		
7. chlorophyll		
6. glucose		
5. food chain		
4. autotroph		
3. heterotrophs		

- _____ 3. There is no evidence supporting the endosymbiotic theory.
 - 4. Chlorophyll absorbs blue and blue-violet light.
- ______ 5. Chlorophyll absorbs green light.
 - _____ 6. The air we breathe contains mostly nitrogen.
- ______7. A particular pigment will absorb light of some wavelengths, but not others.
- 8. The chlorophyll molecule (below) contains a hydrophobic region that allows it to be embedded in membranes inside the chloroplast.

- _ 9. The source of electrons for photosynthesis is water.
- _____ 10. At some steps of the photosynthetic electron transport chain, energy released during the transfer of an electron from one electron carrier to another is used to pump a proton (H^+) across the thylakoid membrane.
- _____ 11. When a chlorophyll molecule absorbs a photon of light, an electron of chlorophyll drops down to a lower energy level.
- _____ 12. ATP synthesis happens during the light reactions of photosynthesis.

13.	Carbon dioxide is a waste product of the Calvin Cycle.
 14.	Stomata can regulate gas exchange between the air and a leaf.
15	The Calvin Cycle fixes carbon dioxide into an organic compound

Lesson 4.2: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

How Do Chloroplasts Convert Light Energy to Chemical Energy?

Excited electrons that have absorbed light energy are unstable. However, the highly organized electron carrier molecules embedded in chloroplast membranes order the flow of these electrons, directing them through electron transport chains (ETCs). At each transfer, small amounts of energy released by the electrons are captured and put to work or stored. Some is also lost as heat with each transfer, but overall the light reactions are extremely efficient at capturing light energy and transforming it to chemical energy.

Two sequential transport chains harvest the energy of excited electrons, as shown in **Figure 9**.

- 1. First, they pass down an ETC that captures their energy and uses it to pump hydrogen ions by active transport into the thylakoids. These concentrated ions store potential energy by forming an electrochemical gradient a higher concentration of both positive charge and hydrogen inside the thylakoid than outside. Picture this energy buildup of H⁺ as a dam holding back a waterfall. Like water flowing through a hole in the dam, hydrogen ions "slide down" their concentration gradient through a membrane protein, which acts as both ion channel and enzyme. As they flow, the ion channel/enzyme ATP synthase uses their energy to chemically bond a phosphate group to ADP, making ATP. The gradient formed by the H⁺ ions is known as a chemiosmotic gradient.
- 2. Light re-energizes the electrons, and they travel down a second electron transport chain (ETC), eventually bonding hydrogen ions to $NADP^+$ to form a more stable

energy storage molecule, NADPH. NADPH is sometimes called "hot hydrogen", and its energy and hydrogen atoms will be used to help build sugar in the second stage of photosynthesis.

NADPH and ATP molecules now store the energy from excited electrons – energy that was originally sunlight – in chemical bonds. Thus chloroplasts, with their orderly arrangement of pigments, enzymes, and electron transport chains, transform light energy into chemical energy. The first stage of photosynthesis – light-dependent reactions or simply "light reactions" – is complete.

Questions
1. What happens to the chlorophyll electron that has absorbed light?
-
_
-
2. Why do H^+ need to be ferried across the thylakoid membrane? Why don't they simply diffuse across the phospholipid bilayer?
-
_
-
3. Why do you think that electron transfer occurs between multiple electron carriers instead of between a single electron donor and a single electron acceptor?
_
_
_
4. How does ATP synthase accomplish ATP synthesis?
-
_
5. Consider the following hypothetical situation. A chemical called a proton ionophore is added to photosynthetic plant cells. (Proton ionophores readily transport H+ across membranes and dissipate any concentration gradient.) What will happen to ATP synthesis

64 www.ck12.org

after the ionophore is added?

--

Lesson 4.2: Multiple Choice

Name	Class	Date
Circle the letter of the correct choice.		
1. When a healthy houseplant grows	in a pot for several y	ears,
a. the dry mass of the soil stays abob. the dry mass of the soil increasesc. the dry mass of the soil decreasesd. the minerals in the soil are conve	s by 50%. s by 50%.	
2. Why can't a mouse survive for longer	ng in a sealed containe	er full of air?
a. There is too much nitrogen in thb. The mouse uses up all of the carc. The mouse uses up all of the oxyd. The mouse exhales so much oxyg	bon dioxide in the air gen in the air.	
3. When exposed to sunlight, caroter	noids appear	in color to the human eye.
a. whiteb. blackc. greend. orange		
4. Thylakoid membranes serve which	n of the following fund	tions?
a. They are the location of chlorophb. They are the location of electronc. They are the location of ATP synd. all of the above	carriers.	
5. The photograph below shows		

- a. Plant pigments before and after separation by paper chromatography.
- b. Chlorophyll before and after DNA analysis.
- c. The possible shapes of a chloroplast.
- d. none of the above

6. C4 plants evolved

- a. to maximize the efficiency of CO_2 fixation in hot, dry environments where the stomata must be closed at times during the day.
- b. to fix CO_2 only at night.
- c. another electron transport chain in the outer chloroplast membrane.
- d. before photosynthetic bacteria.

7. CAM plants

- a. fix CO_2 only in the day.
- b. fix CO_2 only at night.
- c. do not fix CO_2 .
- d. evolved before photosynthetic bacteria.

Lesson 4.2: Vocabulary

Name	Class	Date
Match the vocabulary term with the corr	rect definition.	
Term		
1. thylakoids		

2.	RuBisCo
3.	NADPH
4.	Calvin Cycle
5.	Endosymbiotic Theory
6.	photosystem
7.	photosynthesis
8.	stomata
9.	carbon fixation
10). accessory pigments

Definition

- a. "pores" in a leaf that can be opened and closed; when open, they permit diffusion of water vapor and gases
- b. the process of integration of carbon dioxide into organic molecules
- c. light-absorbing pigments that absorb light energy and transfer the absorbed energy to chlorophyll
- d. an assembly of pigments and proteins that function in photosynthetic light absorption and use
- e. the light-independent reactions of photosynthesis during which CO_2 is fixed into organic molecules
- f. the set of chemical reactions by which light energy is transformed into chemical energy, which in turn is used to fix carbon from the air into organic compounds
- g. internal chloroplast membranes; are flat and can be stacked upon one another; location of chlorophyll, accessory pigments and the electron carriers of the electron transport chain
- h. the theory that explains why chloroplasts have structural similarities to prokaryotic cells; states that chloroplasts were once independent prokaryotic cells that were engulfed by a eukaryotic cell
- i. an electron carrier that is an electron donor in the Calvin cycle
- j. an abundant enzyme that combines one molecule of CO_2 with a 5-carbon sugar

Chapter 5

Cellular Respiration Worksheets

5.1 Chapter 5: Cellular Respiration

- Lesson 5.1: Powering the Cell: Cellular Respiration and Glycolysis
- Lesson 5.2: Into the Mitochondrion: Making ATP with Oxygen
- Lesson 5.3: Anaerobic Respiration: ATP, New Fuels, and Yogurt without Oxygen

5.2 Lesson 5.1 Powering the Cell: Cellular Respiration and Glycolysis

Lesson 5.1: True or False

Name			Class		Date		
Write true	e if	the statement is true or false if	the staten	nent is fals	se.		
	1.	All organisms on earth will die	without a	constant	supply of o	oxygen.	
	2.	Energy released during the bre	akdown of	cells is us	sed to synt?	hesize ATP.	
be used to		The energy released from the enthesize up to 38 molecules of A		n of a sing	gle molecul	le of glucose ca	an
	4.	When wood is burned, carbon	dioxide is	a product	of the bur	rning reaction.	
energy.	5.	When glucose is broken down	during ce	llular resp	piration, a	product is lig	ht
	6.	In eukaryotic cells, glycolysis o	ccurs in th	e mitocho	ondrion.		
	7.	All ATP synthesis in a eukaryo	otic cell ha	ppens in t	he mitocho	ondria.	

	8. Carbon dioxide is a product of both cellular respiration and photosynthesis.
	9. An electron transport chain is involved in both cellular respiration and in
photosynt	hesis.
	10. The carbon-oxygen cycle connect consumers to producers.
	11. Some anaerobic bacteria are used by humans to make yogurt.
	12. There are no known anaerobic bacteria that can cause harm to humans.
	13. Fats can be used as an energy source for glycolysis.
	14. Glucose gets phosphorylated during glycolysis.
	15. One of the final products of glycolysis is a five-carbon compound.

Lesson 5.1: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Introduction

You know that humans deprived of oxygen for more than a few minutes will quickly become unconscious and die. Breathing, also known as respiration, is essential for human life, because the body cannot store oxygen for later use as it does food. The mammalian respiratory system, shown in **Figure 1** features a diaphragm, trachea, and a thin membrane whose surface area is equivalent to the size of a handball court - all for efficient oxygen intake. Other forms of life employ different types of respiratory organs: fish and aquatic amphibians and insects flaunt gills, spiders and scorpions develop "book lungs," and terrestrial insects use an elaborate network of tubes called tracheae, which open via spiracles, as shown in **Figure 2** and **3**. A constant supply of oxygen gas is clearly important to life. However, do you know why you need oxygen?

www.ck12.org **70**

The human respiratory system is only part of the story of respiration. Diaphragm, lungs, and trachea take air deep into the body and provide oxygen gas to the bloodstream. The fate of that oxygen is the story of cellular respiration.

Spiracles in this Indian Luna Moth (*Actias selene*) caterpillar connect to a system of internal tubes (tracheae) which carry oxygen throughout the animal's body.

Gills in this alpine newt larva, *Triturus alpestris*, bring blood close to an extensive surface area so that the newt can absorb dissolved oxygen gas from its watery habitat.

Questions

જ	uestions
1.	Why do you need to breath continually, even when you sleep?
-	
-	
_	
2.	Why do you think humans cannot store oxygen?
-	
-	
-	
3.	Why is the surface area of a mammalian respiratory system so large?
-	
-	
-	
4.	How do fish absorb oxygen?
-	
-	
-	
5.	Explain why oxygen is essential to life?
_	
-	

72

Lesson 5.1: Multiple Choice

Name		_ Class	Date	
Circle the	e letter of the correct choice.			
1. Cow	s need to breathe because			
(b) (c)	they need carbon dioxide from they need oxygen from the air for they need to expel methane, a lungs. they need to expel nitrogen gas, a lungs.	or cellular respira waste product of	tion. cellular respiration, from	
2. In m	nammals, oxygen gas diffuses from	n the air into the	bloodstream via the	
(b) (c)	cells lining the nose. kidney. liver. lungs.			
3. In th	he chemical reaction that represen	nts the burning o	f wood, the reactants are)
(b) (c)	wood and O_2 . CO_2 , H_2O . light energy and heat. sparks (as from a match).			
4. Orga	anisms that are producers (such a	as plants)		
(b) (c)	produce only O_2 . produce only CO_2 . produce both CO_2 and O_2 . produce methane, octane, and C_2 .	O_2 .		
5. A ty	pical eukaryotic liver cell may ha	ave as many as _	mitochondri	a.
(b) (c)				
	reaction $C_6H_{12}O_6 + 2 NAD^+ + 2$ ne overall reaction of	$Pi+2 ADP \longrightarrow$	2 pyruvate $+2 NADH +$	2 ATP
(b) (c)	alcoholic fermentation. wood burning. glycolysis. the Krebs cycle.			

7. In the equation $O_2 + C_6 H_{12} O_6 \longrightarrow 6CO_2 + 6H_2O$, what important reaction components are missing? (Hint: there are five.)

Lesson 5.1: Vocabulary

Name	Class	Date
Match the vocabulary term with	the correct definition.	
Term		
1. cytosol		
2. Glycolysis		
3. glycogen		
4. NADH		
5. cellular respiration		
6. glucose		
7. ATP		
8. symbiont		
9. anaerobic		
10. aerobic		

Definition

- a. occurring only in the presence of oxygen
- b. An organism that lives in a close, mutually beneficial relationship with an organism of a different species
- c. a six-carbon sugar that is an energy source for cells
- d. the universal energy currency of cells
- e. occurring in the absence of oxgen
- f. the aqueous part of the cell's cytoplasm; contains water, ions, small molecules, and organic macromolecules
- g. An ATP-producing pathway in which glucose is broken down into two 3-carbon molecules; oxygen is not required
- h. an electron carrier that delivers electrons to the electron transport chain of cellular respiration

- i. a storage form of glucose that consists of covalently linked glucose molecules
- j. The process that transfers chemical energy from glucose to ATP

5.3 Lesson 5.2: Into the Mitochondrion: Making ATP with Oxygen

Lesson 5.2: True or False

Name	Class	Date
Write true if the sta	atement is true or false if the statement	is false.
1. Oxyge	en has always been an abundant compo	nent of the earth's atmosphere.
2. Today	, eighty percent of the volume of the ea	rth's air is oxygen.
3. Aerob	ic respiration evolved before oxygenic p	hotosynthesis.
4. In euk	aryotic cells, if oxygen is present, then p	byruvate is fermented to ethanol.
5. When some organisms wer	n oxygen first appeared in significant core harmed.	oncentrations in the earth's air,
6. The st	ructure and function of mitochondria su	apport the endosymbiotic theory.
7. Before	pyruvate enters the Krebs Cycle, it is con	nverted to a 2-carbon compound.
8. The K	Krebs cycle occurs in the cytosol.	
9. <i>CO</i> ₂ is	s produced during the Krebs Cycle.	
10. On n	nolecule of GTP is produced per turn of	f the Krebs Cycle.
11. 4 mo	decules of NAD^+ are produced per turn	of the Krebs Cycle.
12. The the surface area of t	invaginations (infoldings) of the inner make the membrane.	nitochondrial membrane increase
13. ATP chondrial membrane	synthase is an integral membrane prote.	ein embedded in the inner mito-
14. FAL	OH_2 donates electrons to the electron tra	ansport chain in mitochondria.
15. The pH of the mitochone	pH in the intermembrane space of the drial matrix.	mitochondria is lower than the

Lesson 5.2: Critical Reading

Class	Date
r the question	ns that follow.
or Life in th	e Fast Lane
two FADH2 electron tran	onds of glucose is stored in divers and ten NADH. The primary task sport chain (ETC), is to transfer power work within the cell.
both ETCs, nat energy-ca p. In both playdrogen ions membrane.	tion closely resemble the electron, energy carrier molecules are arrying electrons cascade from on hotosynthesis and aerobic respiration into a compartment, creating at And in both processes, the energy P.
h-energy electron outer to an according to the carrier to an according to the cansfers their ain a concent reate stored electron transp	respiratory chain" is embedded in $FADH_2$ and NADH (produced in trons to energy carrier molecule other, the energy they lose is used ating an electrochemical gradient inner compartment – through at energy to ATP. Note the paradox ration gradient of hydrogen ions energy (ATP). In broad terms, is port chain to ATP synthesis with Nobel laureate Peter D. Mitchell
s energy-carr	ying molecules?
port chain (E	TC) in mitochondria?
	br Life in the he chemical betwo FADH2 are electron transported by two FADH2 are electron transported by the ele

acteristics?	ar respiration a	and photosynthesis share what char-
-		
-		
_		
4. Where are H^+ pumped in mitochondry	ia?	
_		
_		
5. Why do you think Peter Mitchell's dis	covery of chem	niosmosis won a Nobel prize?
-		
-		
-		
Lesson 5.2: Multiple Choic		
Name	Class	Date
Circle the letter of the correct choice.		
1. The "oxygen catastrophe" is		
(a) the harm caused by a decrease(b) the harm caused by a decrease(c) the period after oxygen first a concentration.(d) none of the above	e in oxygen dur	
2. The 2-carbon compound, acetyl Co.	Α,	
(a) enters glycolysis at step 3.(b) enters the Krebs Cycle.(c) enter the ETC.(d) binds to NADH.		
3. In cellular respiration, carbon dioxi	de is released	
(a) during the first half of glycolys(b) during the Krebs Cycle.	sis.	

(c) during the ETC.

(d) none of the above		
4. One of the products of glycolysis is		
(a) GTP.		
(b) glycogen.(c) starch.		
(d) none of the above		
5. The concentration gradient of H^+ acr	oss the inner i	mitochondrial membrane is $a(n)$
(a) chemical gradient.		
(b) electrical gradient.(c) pH gradient.		
(d) A and B		
(e) A, B, and C6. The net yield of ATP from the break	down of a sing	lo mologulo of glugoso is
(a) -2.	lown of a sing.	le molecule of glucose is
(a) -2. (b) 0.		
(c) 2.		
(d) 38.7. The function of oxygen in the ETC is		
(a) to accept electrons that have pas		he ETC of the mitochondria
(b) to combine with carbon dioxide a	~	
(c) to donate electrons to the ETC.		
(d) all of the above		
Lesson 5.2: Vocabulary		
Name	_ Class	Date
Match the vocabulary term with the correct	definition.	
Term		
1. ATP synthase		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
3. matrix		
4. intermembrane space		
5. electrochemical gradient		
6. ATP		
7 cristae		

 8.	Krebs cycle
 9.	glycolysis
 10.	chemiosmosis

Definition

- a. the mechanism by which energy stored in an H^+ gradient across a membrane is harnessed to synthesize ATP using the energy of hydrogen ions
- b. space formed by infoldings of the inner mitochondrial membrane
- c. the space between the outer and inner mitochondrial membranes
- d. Ion channel and enzyme complex that chemically bonds a phosphate group to ADP, making ATP as H+ ions flow through the ion channel
- e. stage 1 of aerobic cellular respiration
- f. molecule which stores a usable amount of chemical energy; the universal energy currency of cells
- g. A difference in both the net electrical charge and the concentration of a chemical across a membrane
- h. stage 2 of aerobic cellular respiration
- i. An electron carrier used to deliver energized electrons to the electron transport chain of aerobic respiration
- j. The aqueous space inside the inner mitochondrial membrane

5.4 Lesson 5.3: Anaerobic Respiration: ATP, New Fuels, and Yogurt without Oxygen

Lesson 5.3: True or False

Name	Class	Date	
Write true if the statement is true	ue or false if the statement	t is false.	
1. In Lactobacillus, if	oxygen is absent, then pyr	cuvate is fermented to la	actic acid.
2. Facultative anaero	bes die in the presence of o	oxygen.	
3. Obligate aerobes t	hrive in the absence of oxy	gen.	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	of fermentation is to regene AD^+ for glycolysis.	erate NAD+ from NAD	H so that

	5. Beer-makers use yeast to produce the alcohol in beer.
	6. Humans are obligate aerobes.
	7. Red muscle is specialized for anaerobic sprinting.
	8. White muscle is specialized for endurance activities.
	9. In the absence of oxygen, muscle cells convert pyruvate to lactic acid.
	10. Fermentation in bacteria occurs only in oxygen-rich environments.
	11. One of the products of lactic acid fermentation is NADH.
	12. The Lactobacillus in yogurt makes humans very ill.
	13. Some gasoline in the USA contains ethanol made from corn.
	14. The holes in yeasted breads are created by methane gas.
	15. Ethanolic anaerobic respiration produces 2 ATP per molecule of glucose.
Lesson	5.3: Critical Reading

Lesson 5.3: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Are Drumsticks and Athletic Prowess Related?

Yes! Muscle color reflects its specialization for aerobic or anaerobic metabolism. Although humans are obligate aerobes, our muscle cells have not given up on ancient pathways that allow them to keep producing ATP quickly when oxygen runs low. The difference is more pronounced in chickens and grouse (**Figure 3**), which stand around all day on their legs. For long periods of time, they carry out aerobic respiration in their "specialized-for-endurance" red muscles. If you have ever hunted grouse, you know that these birds "flush" with great speed over short distances. Such "sprinting" flight depends on anaerobic respiration in the white cells of breast and wing muscle. No human muscle is all red or all white, but chances are, if you excel at running short distances or at weight lifting, you have more white glycolytic fibers in your leg muscles. If you run marathons, you probably have more red oxidative fibers.

You probably were not aware that muscle cells "ferment." Lactic acid fermentation is the type of anaerobic respiration carried out by yogurt bacteria (Lactobacillus and others) and by your own muscle cells when you work them hard and fast. Converting pyruvate to 3-carbon lactic acid (**Figure 4**) regenerates NAD^+ so that glycolysis can continue to make ATP in low-oxygen conditions. For Lactobacillus bacteria, the acid resulting from fermentation kills bacterial competitors in buttermilk, yogurt, and some cottage cheese. The benefits extend to humans who enjoy these foods, as well. You may have noticed this type of fermentation in your own muscles, because muscle fatigue and pain are associated with lactic acid. Keep

www.ck12.org **80**

this in mind, however, as we discuss a second type of fermentation, which produces alcohol.
Imagine what would happen as you ran a race if muscle cells conducted alcoholic rather than
lactic acid fermentation

\sim			
w	uest	1.10	ns

Circle the letter of the correct choice.			
Name	Class	Date	
Lesson 5.3: Multiple Cho	oice		
-			
-			
-			
5. What would happen if a person rar tation instead of lactic acid fermentat		scles carried out alcohol	ic fermen-
-			
-			
-			
4. What are the products of lactic aci	d fermentation?		
-			
-			
- -			
3. Would an animal that was a great red muscle or white muscle? Why?	sprinter, but was a	poor distance runner, l	nave more
-			
-			
-			
2. How does the color of red muscle re	eflect its function?		
-			
-			
-	1		
1. How is muscle color related to mus	cle specialization?		

1. Human skeletal muscle cells are
 (a) obligate anaerobes. (b) obligate aerobes. (c) facultative alcoholic fermenters. (d) facultative anaerobes.
2. Trained marathoners will have
 (a) more red muscle cells and fewer white muscle cells. (b) more white muscle cells and fewer red muscle cells. (c) more alchoholic fermentation and less lactic acid fermentation. (d) more lactic acid fermentation when running slowly.
3. The purpose of lactic acid fermentation in Lactobacillus is
 (a) to regenerate NADH so glycolysis can continue and ATP can be made. (b) to regenerate NAD+ so glycolysis can continue and ATP can be made. (c) to create acetyl CoA. (d) to use acetyl CoA.
4. Human uses of alcoholic fermentation include
 (a) bread baking. (b) wine making. (c) biofuel production. (d) all of the above
5. For each glucose molecule consumed, a cell performing aerobic respiration can synthesize as many as ATP.
 (a) 2 (b) 4 (c) 38 (d) 76
6. The Krebs Cycle

- (a) is present in aerobic bacteria.
- (b) is used in ethanolic fermentation.
- (c) is used in alcoholic fermentation.
- (d) all of the above
- 7. Myoglobin binds to
 - (a) fructose.
 - (b) oxygen.
 - (c) pyruvate.
 - (d) the ETC.

Lesson 5.3: Vocabulary

Name	Class	Date
Match the vocabulary term with the	he correct definition.	
Term		
1. obligate aerobe		
2. glycolysis		
3. Red muscle		
4. lactic acid fermentation	1	
5. alcoholic fermentation		
6. obligate anaerobe		
7. aerobic		
8. White muscle		
9. Anaerobic		
10. facultative anaerobe		

Definition

- a. an organism which uses anaerobic respiration, and dies in the presence of oxygen
- b. the process for making ATP in the absence of oxygen by converting glucose to lactic acid
- c. the net synthesis of 2 ATP from the breakdown of one molecule of glucose into 2 pyruvate molecules
- d. with oxygen, or living or occurring only in the presence of oxygen
- e. the process for making ATP in the absence of oxygen, by converting glucose to ethanol and carbon dioxide
- f. an organism which requires oxygen for cellular respiration
- g. an organism which can respire aerobically when oxygen is present, but is also capable of fermentation when oxygen levels are low
- h. muscle with a rich blood supply; specialized for aerobic respiration
- i. muscle specialized for anaerobic respiration, specifically for lactic acid fermentation
- j. without oxygen; living or occurring in the absence of oxygen

Chapter 6

Cell Division and Reproduction Worksheets

6.1 Chapter 6: Cell Division and Reproduction

- Lesson 6.1: Chromosomes and the Cell Cycle
- Lesson 6.2: Meiosis

6.2 Lesson 6.1: Chromosomes and the Cell Cycle

Lesson 6.1: True or False

Name		Class	Date
Write true if	the statement is true or false if	the statement is fals	e.
1.	Before most cell divisions, most	cells do not increase	e in size.
	During cell division, one of the dar daughter cell gets all of the small	•	of the larger chromosomes,
3. mitosis.	The number of chromosomes in	n a cell is duplicate	d before the beginning of
double stranc	Many species of bacteria have ded DNA.	a single circular chr	omosome that consists of
5.	Under ideal conditions, some ba	cteria can reproduce	e every 20 seconds.
6.	Each human chromosomes conta	ains a maximum of o	one gene.
7.	. The information needed to ma	ake a particular cell	lular protein is contained

within a g	ene.
drates, and	8. A chromosome is composed of DNA, RNA, protein, phospholipids, carbohyd cell walls.
	9. A human gamete contains 46 chromosomes.
anaphase.	10. Two sister chromatids are attached to each other until the beginning of
	11. Most cells spend the majority of their lives in interphase.
	12. DNA is duplicated during S phase of the cell cycle.
aid of mic	13. During mitosis, the duplicated chromosomes move to opposite poles with the rotubules.
the cell cy	14. Cells have cell cycle checkpoints that regulate progression from one phase of cle to the next.
rates.	15. Compared to normal cells, cancer cells have exceptionally slow cell division
Lesson	6.1: Critical Reading
Name	Class Date
Read this	passage from the lesson and answer the questions that follow.

Control of the Cell Cycle

How does the cell know when to divide? How does the cell know when to replicate the DNA? The answers to these questions have to do with the control of the cell cycle. But how is the cell cycle controlled?

The cell cycle is controlled by a number of protein-controlled feedback processes. Two types of proteins involved in the control of the cell cycle are kinases and cyclins. Cyclins activate kinases. Cyclins are a group of proteins that is rapidly produced at key stages in the cell cycle. Kinases activate other target molecules. It is this precise regulation of proteins that triggers advancement through the cell cycle.

The cell cycle has key checkpoints. When the cell receives key signals or information (feedback regulation), the cell can begin the next phase of the cell cycle. The cell can also receive signals that delay passage to the next phase of the cell cycle. These signals allow the cell to complete the previous phase before moving forward. Three key checkpoints are the cell growth (G1) checkpoint, the DNA synthesis (G2) checkpoint, and the mitosis checkpoint.

The cell growth (G1) checkpoint allows the cell to proceed into the S phase of the cell cycle and continue on to divide. The cell spends most of the cycle in the G1 phase. G1 is where

www.ck12.org

the cell carries out its main functions. If the cell has performed its functions and has grown to significant size to be divided in half, key proteins will stimulate DNA replication to begin. If the cells are not to divide, such as some muscle and nerve cells, the cell will stop at this checkpoint and move into a resting phase. Some cells may stay in this resting period permanently, never dividing.

The DNA synthesis (G2) checkpoint determines if the cell is ready for mitosis. DNA repair enzymes check the replicated DNA at this point. If the checkpoint is passed, the many molecular mechanisms and processes needed for mitosis will begin.

The mitosis checkpoint determines the end of one cycle and the beginning of the next. This checkpoint signals the end of mitosis, allowing the cell to prepare for the beginning of G1 of the next cell cycle.

Questions

1. Does the cell have any control over its progression through the cell cycle? If so, how is it regulated?
_
-
2. What happens at a cell cycle checkpoint?
-
-
_
3. What are the five main phases of the cell cycle? What are the main events in each?
-
<u>-</u>
_
4. List and briefly describe the three main cell cycle checkpoints.
- -
-
5. What do you think happens when a cell loses control of the cell cycle?
-
-

Lesson 6.1: Multiple Choice

Name	Class	Date	

Circle the letter of the correct choice.

- 1. The process in prokaryotes by which a cell divides to form two identical cells by cytokinesis is called
 - (a) binary fission.
 - (b) cyclin.
 - (c) multi-fission.
 - (d) S phase.
- 2. During which phase of the cell cycle does the cytoplasm split such that two daughter cells are formed?
 - (a) G1 phase
 - (b) G2 phase
 - (c) S phase
 - (d) C phase
- 3. Human liver cells and kidney cells each contain
 - (a) different genes from one another, because some of the proteins made differ between the two cell types.
 - (b) the same genes, because in a single multicellular organism, all somatic cells (non-germ cells) contain the same genes.
 - (c) a set of proteins, all of which are produced in both cell types.
 - (d) a single, circular chromosome.
- 4. Human chromosomes
 - (a) are present in cells as a set of 23 chromosomes total.
 - (b) come in pairs, both pairs inherited from the mother.
 - (c) come in pairs, one of which is inherited from the mother, and the other, from the father.
 - (d) come in pairs, both pairs inherited from father.
- 5. Chromosomes that are the same size and shape and that contain the same genes
 - (a) are duplicated during G2 phase.
 - (b) are homologous chromosomes.
 - (c) are present in prokaryotes, but not eukaryotes.
 - (d) all of the above
- 6. Unfertilized human eggs contain what complement of sex chromosomes?

- (a) one Y chromosome
- (b) one X chromosome
- (c) two X chromosomes
- (d) one X and one Y chromosome
- 7. Some cancers are triggered by
 - (a) ultraviolet radiation.
 - (b) tobacco smoking.
 - (c) asbestos.
 - (d) all of the above

Lesson 6.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. spindle		
2. zygote		
3. oncogene		
4. gene		
5. haploid		
6. mitosis		
7. cell plate		
8. S phase		
9. sister chromatid		
10. autosomes		

Definition

- a. The cell cycle phase during which the DNA is replicated, and correspondingly, the chromosomes are duplicated.
- b. Microtubule-based fibers used to move chromosomes and separate the sister chromatids during mitosis.
- c. The phase of the cell cycle during which the duplication of the nucleus occurs.
- d. Forms during cytokinesis in plant cells; a new plasma membrane grows along each side of the cell plate, with a new cell wall forming on the outside of each new membrane.

- e. Identical copies of a DNA molecule that are attached at their centromeres.
- f. Chromosomes that are not directly involved in determining the sex of an individual.
- g. The first cell of a new individual.
- h. A segment of DNA that contains the information necessary to encode an RNA molecule or a protein.
- i. A cell that contains one set of chromosomes, such as a human sperm cell or egg.
- j. A gene, which when it is mutated and/or when it produces too much protein product, can cause cancer and speed up the cell cycle.

6.3 Lesson 6.2: Meiosis

Lesson 6.2: True or False

Name		Class	Date
Write true	e if the statement is true or false ij	f the statement is fals	e.
	_ 1. In some species, an organism of	can have just one pare	ent.
the parent	2. Asexual reproduction produces t.	s an individual that is	s genetically different from
	3. All bacteria are either distinct	ly male or female.	
	$_{-}$ 4. Fragmentation is actually a kin	nd of asexual reprodu	ection.
	5. Human gametes are haploid.		
	$_{-}$ 6. Meiosis is required to form hun	man gametes.	
	7. Both prophase I and metaphase	se II are stages of me	losis.
matids in	8. At the beginning of meiosis in the cell.	humans, during prop	phase I, there are 92 chro-
from a sin	9. At the end of oogenesis in humagle primary oocyte.	nan females, 4 haploid	l mature ova are produced
primary s	_ 10. At the end of spermatogenerer permatocyte.	esis, 4 spermatids ar	e produced from a single
	11. In meiosis, the sister chromat	ids separate from each	ch other at anaphase I.
native for	12. Crossing-over during meiosis ms of the same gene) in the recomb		abinations of alleles (alter-

www.ck12.org **90**

to asexual		Sexual reproduction results in less genetically diverse offspring when compared roduction.
	14.	Organisms with a haploid life cycle never undergo mitosis.
	15.	Organisms with a diploid life cycle produce diploid gametes.

Lesson 6.2: Critical Reading

Name	Class	\mathbf{Date}

Read this passage from the lesson and answer the questions that follow.

Meiosis and Genetic Variation

Sexual reproduction results in infinite possibilities of genetic variation. This occurs through a number of mechanisms, including crossing-over, the independent assortment of chromosomes during anaphase I, and random fertilization.

Crossing-over occurs during prophase I. Crossing-over is the exchange of genetic material between non-sister chromatids of homologous chromosomes. Recall during prophase I, homologous chromosomes line up in pairs, gene-for-gene down their entire length, forming a configuration with four chromatids, known as a tetrad. At this point, the chromatids are very close to each other and some material from two chromatids switch chromosomes, that is, the material breaks off and reattaches at the same position on the homologous chromosome (Figure below). This exchange of genetic material can happen many times within the same pair of homologous chromosomes, creating unique combinations of genes. This process is also known as recombination.

M, F: parental chromosomes C1, C2: novel chromosomes

As mentioned above, in humans there are over 8 million configurations in which the chromo-

somes can line up during metaphase I. It is the specific processes of meiosis, resulting in four unique haploid cells, that results in these many combinations. Figure below compares mitosis and meiosis. This independent assortment, in which the chromosome inherited from either the father or mother can sort into any gamete, produces the potential for tremendous genetic variation. Together with random fertilization, more possibilities for genetic variation exist between any two people than individuals alive today. Sexual reproduction is the random fertilization of a gamete from the female using a gamete from the male. In humans, over 8 million (223) chromosome combinations exist in the production of gametes in both the male and female. A sperm cell, with over 8 million chromosome combinations, fertilizes an egg cell, which also has over 8 million chromosome combinations. That is over 64 trillion unique combinations, not counting the unique combinations produced by crossing-over. In other words, each human couple could produce a child with over 64 trillion unique chromosome combinations.

Questions

1. The genetic variation of offspring produced by sexual reproduction is almost limitless
List and describe the mechanisms responsible for this variation.
-
_
-
2. What is crossing over? When does it occur?
_
-
3. How do the products of crossing-over (the recombinant chromatids) differ from the parental chromosomes?
-
-
4. What is a tetrad? During what phase of the cell cycle are tetrads found?
-
_
-

5. In humans, there are over 8 million possible ways that chromosomes can line up during metaphase I of meiosis. The common dog (Canis lupus familiaris) has 78 chromosomes

www.ck12.org **92**

(Lindblad-Toh K et al. 2005. Genome sec ture of the domestic dog., <i>Nature</i> , 438:80 mosomes can line up during metaphase I g	3-819). Is the nu	umber of possible ways that chro
-		
-		
-		
Lesson 6.2: Multiple Choic	e	
Name	Class	Date
Circle the letter of the correct choice.		
1. Cytokinesis occurs from the	start to finish of	meiosis.
(a) once		
(b) twice(c) four times		
(d) not at all		
2. In meiosis, the sister chromatids sep	parate from one a	another during
(a) metaphase I.		
(b) metaphase II.		
(c) anaphase I. (d) anaphase II.		
3. In preparation for meiosis, the DNA	\ replicates	
(a) once		
(b) twice		
(c) four times		
(d) not at all	,	1
4. Gametogenesis in males produces _	gametes, and	d in females gametes.
(a) two, two(b) four, four		
(c) one, four		
(d) four, one		
5. In a newly formed zygote, most of t	he organelles and	d cytoplasm originated from the
(a) somatic cells of the father.		
(b) somatic cells of the mother.		
(c) egg. (d) sperm.		

- 6. A life cycle in which the zygote is the only diploid cell is called a

 (a) diploid life cycle.
 - (b) haploid life cycle.
 - (c) alternation of generations life cycle.
 - (d) monotypic life cycle.
- 7. Organisms that have an alternation of generations life cycle
 - (a) have all females in one generation, and all males in the next.
 - (b) have all males in one generation, and all females in the next.
 - (c) alternate between mitosis and cytokinesis.
 - (d) alternate between diploid and haploid phases.

Lesson 6.2: Vocabulary

Name	Class	Date
Match the vocabulary term with the correct	t definition.	
Term		
1. Tetrad		
2. Gametes		
3. Spore		
4. budding		
5. gametophyte		
6. fertilization		
7. meiosis		
8. Fission		
9. polar body		
10. haploid Definition		

- a. A type of cell division in diploid organisms that results in the production of four haploid cells.
- b. Results from the alignment of a pair of duplicated homologous chromosomes during prophase I.
- c. A cell that is produced during oogenesis and does not develop into a viable gamete, but degrades.
- d. A cell containing one set of chromosomes.

- e. An organism's reproductive cells.
- f. A form of asexual reproduction in which new cells are formed by cleavage of the parental cell in half.
- g. A haploid reproductive cell that can develop into an adult without fusing with another haploid cell.
- h. A type of asexual reproduction in which daughter cell buds off from a parent cell.
- i. The fusion of two gametes to form a zygote.
- j. An organism that produces gametes by mitosis.

Chapter 7

Mendelian Genetics Worksheets

7.1 Chapter 7: Mendelian Genetics

- Lesson 7.1: Mendel's Investigations
- Lesson 7.2: Mendelian Inheritance

7.2 Lesson 7.1: Mendel's Investigations

Lesson 7.1: True or False

Name			Class	Date
Write tru	e if	the statement is true or false if	the statem	ent is false.
	_ 1.	The "father of modern genetics	" is Grego	r Mendel.
	_ 2.	The passing of characteristics f	rom parent	t to offspring is called heredity.
offspring.	_ 3.	A dihybrid cross tracks the in	heritance	of one characteristic from parent to
plant is ca		Fertilization in which pollen frod self-pollination.	om one flov	wer pollinates a flower on a different
	_ 5.	Offspring of the P generation a	re referred	to as F2 offspring.
white plan		. In Mendel's experiments, a tralways produced purple offspring		g purple plant and a true-breeding
	_ 7.	A variation of a gene is called a	an allele.	
	_ 8.	The allele that is expressed is c	alled the r	ecessive allele.

Name	Class Date
Lesson	7.1: Critical Reading
	15. Genetics is the branch of biology that focuses on heredity in organisms.
	14. The Law of Independent Assortment states that a pair of alleles is separated, ed, during the formation of gametes.
	13. The genotype of an organsim determines its phenotype.
gous.	
	12. An organism that has an identical pair of alleles for a trait is called heterozy-
	11. In genetics problems, capital letters refer to recessive alleles, while lowercase r to dominant alleles.
	10. Albinism is a recessively inherited disorder in which the body does no produce the pigment melanin.
	9. Genes that are likely to be inherited together because they are located close in the same chromosome are called linked genes.

Dominant and Recessive Alleles

Mendel used letters to represent dominant and recessive factors. Likewise, geneticists now use letters to represent alleles. Capital letters refer to dominant alleles, and lowercase letters refer to recessive alleles. For example, the dominant allele for the trait of green pod color is indicated by G. The recessive trait of yellow pod color is indicated by g. A true-breeding plant for green pod color would have identical alleles GG in all is somatic cells. Likewise, a true-breeding plant for yellow pod color would have identical alleles gg in all of its somatic cells. During gamet formation, each gamete receives one copy of an allele. When fertilization occurs between these plants, the offspring receives two copies of the allele, one from each parent. In this case, all of the offspring would have two different alleles, Gg, one from each of its parents.

Read this passage from the lesson and answer the questions that follow.

An organism that has an identical pair of alleles for a trait is called homozygous. The true-breeding parents GG and gg are homozygous for the pod color gene. Organisms that have two different alleles for a gene are called heterozygous. The offspring of the cross between the GG and gg plants are all heterozygous for the pod color gene. Due to dominance and recesiveness of alleles, an organism's traits do not always reveal its genetics. Therefore, geneticists distinguish between an organism's genetic makeup, called its genotype, and its physical traits, called its phenotype. For example, the GG parent and the Gg offspring have the same phenotype (green pods) but different genotypes.

Questions

1.	Capital letters and lowercase letters are used to identify what particular alleles?
-	
-	
-	
2.	What defines a true-breeding plant?
-	
-	
-	
3.	Contrast the terms homozygous and heterozygous.
-	
_	
-	
4.	Why does an organism's genotype determine it's phenotype?
-	
_	
_	
5. gg	What would be the phenotype for pod color of a pea plant with the genotype GG? Gg? Why?
-	
-	
-	
L	esson 7.1: Multiple Choice
Na	ame Class Date
Ci	rcle the letter of the correct choice.
	1. Who is known as the "father of modern genetics"?
	(a) Charles Darwin(b) Gregor Mendel
	(c) Robert Hooke
	(d) Carolus Linnaeus

	th the vocabulary term with the correct definition.
	son 7.1: Vocabulary
	 (a) are unlikely to be inherited together. (b) are likely to be inherited together. (c) are never inherited together. (d) are always inheited together.
7.	Linked genes are genes that are located close together on a chromosome and
	(a) recessive.(b) dominant.(c) homozygous.(d) heterozygous.
6.	The allele that is expressed when two separate alleles are inherited is referred to as
	(a) homozygous.(b) heterozygous.(c) monozygous.(d) dizygous.
5.	An organism that has an identical pair of alleles for a trait is called
	 (a) 1 (b) 2 (c) 4 (d) 5
4.	Due to the Law of Segregation, how many alleles are inherited from each parent?
	 (a) All the offspring would be tall. (b) All the offspring would be short. (c) All the offspring would be medium height. (d) The offspring would be 50% tall and 50% short.
3.	According to the blending inheritance hypothesis that was popular in the 19th century what would happen if a tall plant was mixed with a short plant?
	 (a) artificial fertilization. (b) artificial selection. (c) artificial mating. (d) artificial mechanism.

Term
1. allele
2. genotype
3. phenotype
4. hybridization
5. linked genes
6. heterozygous
7. homozygous
8. heredity
9. dominant allele
10. recessive allele
Definition
a. A cross between two individuals that have different traits.
b. Organisms that have two different alleles for a gene.
c. Different versions of a gene.
d. Genes that are close together on a chromosome and are packaged into the gamete together.
e. The passing of characteristics from parent to offspring.
f. The allele that is expressed only in the absence of a dominant allele.
g. An organism's genetic makeup.
h. An organism that has an identical pair of alleles for a trait.
i. The allele that is expressed when two separate alleles are inherited.
j. An organism's physical traits.
7.3 Lesson 7.2: Mendelian Inheritance
Lesson 7.2: True or False
Name Class Date
Write true if the statement is true or false if the statement is false.
1. Probability is the likelihood that a certain event will occur.

	2. Results predicted by probablity are most accurate when few trials are per-
formed.	
	3. A heterozygote (Bb) has a 50% chance of donating the recessive allele (b) into
its gamete	S.
	4. A test cross is a chart which shows the inheritance of a trait over several
generation	S.
	5. A dihybrid cross tracks the inheritance of two characteristics a the same time.
erozygous	6. The genotypic ratio of offspring resulting from a dihybrid cross of two het-individuals is 9:3:3:1.
	7. Pedigrees are useful in tracking the inheritance patterns of genetic disorders.
	8. A human male's sex chromosomes are XX.
	9. Traits that are located on a sex chromosome are called sex-linked traits.
	10. Most sex-linked disorders are dominant and found on the Y chromosome.
	11. It is possible for males to be heterozygous for a sex-linked disorder.
that disord	12. A female who possesses one copy of a sex-linked disorder, but does not express ler is reffered to as a carrier of that disorder.
parent wit	13. If a trait is recessive, a person with the trait may have one, both, or neither h the trait.
	14. Environmental factors never influence an organism's phenotype.
	15. Human height can be influenced by environmental factors in addition to
genes.	
Lesson	7.2: Critical Reading
Name	Class Date
Read this	passage from the lesson and answer the questions that follow.

Complex Forms of Heredity

When three or more alleles determine a trait, the trait is said to have **multiple alleles**. The human ABO blood group is controlled by a single gene with three alleles: i, I^A , I^B , and the recessive i allele. The gene encodes an enzyme that affects carbohydrates that are found on the surface of the red blood cell. A and B refer to two carbohydrates found on the surface of red blood cells. There is not an O carbohydrate. Type O red blood cells do not have either type A or B carbohydrates on their surface.

The alleles I^A and I^B are dominant over i. A person who is homozygous recessive ii has type

O blood. Homozygous dominant I^AI^A or heterozygous dominant I^Ai have type A blood, and homozygous dominant I^BI^B or heterozygous dominant I^Bi have type B blood. I^AI^B people have type AB blood, because the A and B alleles are codominant. Type A and type B parents can have a type AB child. Type A and a type B parent can also have a child with Type O blood, if they are both heterozygous (I^Bi, I^Ai) .

Questions

1. How does increasing the number of alleles for a particular trait affect the amount of phenotypic variation possible?

--

2. What are the three alleles found in the gene that codes for human blood type?

-

3. What are the relationships found between the three alleles? Which ones are dominant? Which ones are recessive?

_

4. Use the information found in the passage to complete the following table:

Table 7.1:

Genotype	Phenotype
I^AI^A	?
?	Type A
?	Type A Type B
I^Bi	?
I^AI^B	?
?	Type O

5. Would it be possible for a man with type A blood and a woman with type B blood to produce a child with type O blood? Explain.

_

.

Lesson 7.2: Multiple Choice

Nan	ne	Class	Date
Circi	le the letter of the correct choice.		
1.	If you toss a coin 10 times and gethe next toss will result in a head (a) 50% (b) 30% (c) 70% (d) 100%	_	tails, what is the probability that
2.	What are the possible parental ger (a) homozygous dominant (b) homozygous recessive (c) heterozygous (d) both b and c	notypes of an indiv	idual who is homozygous recessive
3.	In pea plants, the dominant allele (p) codes for white flowers. What dominant (PP) plant and a heter purple flowers? (a) 100% (b) 75% (c) 25% (d) 0%	is the probability	that a cross between a homozygou
4.	What is the probability that a created a homozygous recessive (pp) plant (a) 100% (b) 0% (c) 75% (d) 25%		() -
5.	A pedigree can be used to determ (a) a trait is sex-linked or autos (b) a trait is caused by a domin (c) a person is heterozygous or l (d) All of the above.	somal. ant or recessive all	

6.	In certain plants called snapdragons, the heterozygous phenotype is a blend of the two homozygous phenotypes. Homozygous dominant plants are red, heterozygous plants are pink, and homozygous recessive plants are white. What type of inheritance pattern is this?
	 (a) complete dominance (b) codominance (c) incomplete dominance (d) none of the above
7.	The A and B alleles in human blood type follow what type of inheritance pattern? (a) complete dominance (b) codominance (c) incomplete dominance

- (d) none of the above

Lesson 7.2: Vocabulary

Name	Class	Date	
Match the vocabulary term with the co	$rrect\ definition.$		
Term			
1. autosome			
2. pedigree			
3. polygenic traits			
4. carrier			
5. sex-linked trait			
6. sex chromosome			
7. testcross			
8. codominance			
9. Punnett square			
10. incomplete dominance			
Definition			

- a. Traits that are affected by more than one gene.
- b. A chromosome that determines the sex of an organism.
- c. A cross used to determine an unknown genotype.

- d. A person who is heterozygous for a recessive allele of a trait.
- e. Any chromosome other than a sex chromosome.
- f. Occurs when the phenotype of the offspring is somewhere in between the phenotypes of both parents.
- g. A diagram that helps predict the probable inheritance of alleles in different crosses.
- h. A chart which shows the inheritance of a trait over several generations.
- i. Occurs when both traits appear in a heterozygous individual.
- j. A trait whose allele is found on a sex chromosome.

Chapter 8

Molecular Genetics Worksheets

8.1 Chapter 8: Molecular Genetics

- Lesson 8.1: DNA and RNA
- Lesson 8.2: Protein Synthesis
- Lesson 8.3: Mutation
- Lesson 8.4: Regulation of Gene Expression

8.2 Lesson 8.1: DNA and RNA

Lesson 8.1: True or False

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. Proteins give organisms their traits.
	2. The function of proteins is determined by their structure.
	3. Avery proved conclusively that DNA is the genetic material.
	4. The backbone of DNA consists of base pairs.
	5. DNA base sequences are often used to solve crimes.
	6. DNA replication begins when polymerase breaks hydrogen bonds in DNA.
	7. In DNA, the complement of ATC is TAG.
	8. In RNA, guanine always bonds with uracil.
	9. RNA is found only in the cytoplasm of the cell.

	10. RNA molecules are smaller that	n DNA molecules.	
	11. Messenger RNA carries instruc	tions to the ribosom	ie.
	12. Ribosomal RNA brings amino a	acids to the ribosom	ie.
Lesson	8.1: Critical Reading		
Name	(Class	Date

Read this passage from the lesson and answer the questions that follow.

The Double Helix

In the early 1950s, Rosalind Franklin started working on understanding the structure of DNA fibers. Franklin, together with Maurice Wilkins, used her expertise in x-ray diffraction photographic techniques to analyze the structure of DNA. In February 1953, Francis Crick and James D. Watson of the Cavendish Laboratory in Cambridge University had started to build a model of DNA. Watson and Crick indirectly obtained Franklin's DNA X-ray diffraction data demonstrating crucial information into the DNA structure. Francis Crick and James Watson then published their double helical model of DNA in *Nature* on April 25th, 1953.

DNA has the shape of a **double helix**, just like a spiral staircase. There are two sides, called the **sugar-phosphate backbone**, because they are made from alternating phosphate groups and deoxyribose sugars. The "steps" of the double helix are made from the base pairs formed between the nitrogenous bases. The DNA double helix is held together by hydrogen bonds between the bases attached to the two strands.

The double helical nature of DNA, together with the findings of Chargaff, demonstrated the base-pairing nature of the bases. Adenine always pairs with thymine, and guanine always pairs with cytosine. Because of this complementary nature of DNA, the bases on one strand determine the bases on the other strand. These complementary base pairs explain why the amounts of guanine and cytosine are present in equal amounts, as are the amounts of adenine and thymine. Adenine and guanine are known as **purines**. These bases consist of two ring structures. Purines make up one of the two groups of nitrogenous bases. Thymine and cytosine are **pyrimidines**, which have just one ring structure. By having a purine always combine with a pyrimidine in the DNA double helix, the distance between the two sugar-phosphate backbones is constant, maintaining the uniform shape of the DNA molecule.

So it is this four letter code, made of just A, C, G, and T, that determines what the organism will become and what it will look like. How can these four bases carry so much information? This information results from the order of these four bases in the chromosomes. This sequence carries the unique genetic information for each species and each individual. Humans have about 3,000,000,000 bits of this information in each cell. A gorilla may also have close to that amount of information, but a slightly different sequence. For example, the

sequence AGGTTTACCA will have different information than CAAGGGATTA. The closer the evolutionary relationship is between two species, the more similar their DNA sequences will be. For example, the DNA sequences between two species of reptiles will be more similar than between a reptile and an elm tree.

Questions

1. The discovery of the structure of during the first half of the 1900s. V model of DNA? When did they publi	Which two scientists		
-			
-			
-			
2. Explain why DNA is like a spiral s	staircase.		
- -			
-			
_			
3. What holds together the complem	entary strands of a I	DNA molecule?	
-			
_			
_			
4. List the complementary base pairs	s of DNA		
4. Dist the complementary base pairs	, or Divit.		
-			
-			
- 			
5. How can the four bases of DNA ca	arry all the genetic if	normation of an organism?	
-			
-			
-			
Lesson 8.1: Multiple Ch	oice		
Name	Class	Date	

Circle the letter of the correct choice.

- 1. The structure of proteins is determined by the order and type of their
 - (a) nitrogen bases.
 - (b) pyrimidines.
 - (c) amino acids.
 - (d) nucleotides.
- 2. The central dogma of molecular biology is best represented by
 - (a) DNA + RNA = Protein.
 - (b) DNA \rightarrow RNA + Protein.
 - (c) DNA \rightarrow RNA \rightarrow Protein.
 - (d) Protein \rightarrow RNA \rightarrow DNA.
- 3. What makes up the "steps" of the DNA spiral staircase?
 - (a) sugars
 - (b) phosphates
 - (c) sugars and phosphates
 - (d) nitrogenous base pairs
- 4. Pyrimidines include
 - (a) uracil.
 - (b) thymine.
 - (c) cytosine.
 - (d) all of the above.
- 5. During DNA replication, the two new strands of DNA are built
 - (a) in opposite directions.
 - (b) in the cell cytoplasm.
 - (c) from amino acids.
 - (d) at a ribosome.
- 6. When a protein is made in a cell, the instructions for the protein are first copied from DNA to
 - (a) rRNA.
 - (b) tRNA.
 - (c) mRNA.
 - (d) none of the above.
- 7. Most RNA codons code for a(n)
 - (a) protein.
 - (b) ribosome.
 - (c) nucleotide.
 - (d) amino acid.

Lesson 8.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. anticodon		
2. codon		
3. DNA		
4. gene		
5. nucleotide		
6. purine		
7. pyrimidine		
8. ribosome		
9. RNA		
10. transformation		
Definition		
a. monomer of all nucleic acids		
b. double-stranded nucleic acid		
c. thymine or cytosine		
d. site of protein synthesis		
e. three-base code word in tRNA		
f. single-stranded nucleic acid		
g. segment of DNA that codes for a	protein	
h. genetic change due to assimilation	n of external DNA	
i. adenine or guanine		
j. three-base code word in mRNA		

8.3 Lesson 8.2: Protein Synthesis

Lesson 8.2: True or False

Name		$__$ Class $___$	Date				
Write true	e if the statement is true or fals	e if the statemen	t is false.				
	1. Transcription is "RNA \rightarrow DNA."						
2. Transcription begins with the formation of a ribosome.							
	3. Nucleotides are added to the	ae 3 end of mRN	A.				
	4. The 5 end of mRNA helps	it find DNA.					
	5. Splicing is the process of amino acids joining to form a protein.						
	6. There are 64 different amino acids in proteins.						
	7. Francis Crick helped demonstrate the presence of codons.						
	8. All codons code for amino a	acids.					
	9. The reading frame in translation consists of four bases.						
	10. The same genetic code is found in all organisms.						
	11. Ribosomes are composed of 30 different subunits.						
	12. Proteins may be modified after protein synthesis.						
Lesson	8.2: Critical Readin	ıg					
Name		Class	Date				

Read this passage from the lesson and answer the questions that follow.

Transcription

Transcription is "DNA \rightarrow RNA." In other words, transcription is the transfer of the genetic "instructions" from DNA to RNA. During transcription, a complementary copy of RNA is made. Whereas in DNA replication both strands of the DNA double helix are used as templates, in transcription only one strand is needed. RNA polymerase enzymatically "reads" a template strand of DNA, known as the coding strand, to synthesize the complementary RNA strand. Transcription is divided into 3 stages, appropriately named initiation, elongation and termination.

Initiation

Transcription begins with the binding of RNA polymerase to the promoter of a gene. An

eukaryotic promoter usually includes specific sequences that are recognized by transcription factors, which are proteins that aid in the binding of RNA polymerase to the correct place on the DNA. The transcription initiation complex formed by the promoter, transcription factors, and RNA polymerase signals the start, or **initiation**, of transcription. The DNA unwinds and produces a small open complex, which allows **RNA polymerase** to "read" the DNA template and begin the synthesis of RNA.

Elongation

Transcription **elongation** involves the further addition of RNA nucleotides and the change of the open complex to a transcriptional complex. As the RNA transcript is assembled, DNA in front of RNA polymerase unwinds and transcription continues. As transcription progresses, RNA nucleotides are added to the 3' end of the growing RNA transcript. The transcriptional complex has a short DNA-RNA hybrid, an 8 base-pair stretch in which the newly made RNA is temporarily hydrogen bonded to the DNA template strand. Unlike DNA replication, mRNA transcription can involve multiple RNA polymerases, allowing numerous mRNAs to be produced from a single copy of the gene. This step also involves a proofreading mechanism that can replace an incorrectly added RNA nucleotide.

Termination

The termination of transcription in prokaryotes and eukaryotes is very different. Though both involve the detachment of the RNA from the DNA template, how this occurs is surprisingly distinct. Bacteria use two different strategies for transcription termination, Rhodependent and Rho-independent termination. In **Rho-dependent termination**, a protein factor called "Rho" destabilizes the RNA-DNA hybrid, releasing the newly synthesized mRNA from the elongation complex. In Rho-independent termination, RNA transcription stops when the newly synthesized RNA molecule forms a hairpin loop followed by a run of uracils. This structure is the signal for the detachment of the RNA from the DNA. The DNA is now ready for translation.

The **termination** of transcription in eukaryotes is less well understood. The RNA polymerase transcribes a polyadenylation signal. Polyadenylation is the addition of a string of A's to the mRNA's 3' end and will be discussed in the next section. However, soon after the transcription of this signal, proteins cut the RNA transcript free from the polymerase and the polymerase eventually falls off the DNA. This process produces a pre-mRNA, an mRNA that is not quite ready to be translated.

Questions

1. Define transcription.

-

Circle the letter of the correct of		
Name	Class	Date
Lesson 8.2: Multiple	e Choice	
-		
-		
-		
5. Contrast transcription termi	ination in prokaryotes and	eukaryotes.
-		
-		
-		
4. What occurs during transcri	iption elongation?	
-		
-		
-		
3. Describe how transcription by	begins.	
-		
-		
2. List the three stages of trans		

1. What is one role in protein synthesis that is played by RNA polymerase?

- (a) It carries information out of the nucleus.
- (b) It begins the transcription process.
- (c) It forms a subunit of the ribosome.
- (d) It acts as a stop codon in RNA.
- 2. What happens during transcription?
 - (a) A new polypeptide is created.
 - (b) RNA is scanned by a ribosome.
 - (c) A new copy of DNA is produced.
 - (d) A complementary copy of RNA is made.
- 3. In eukaryotes, termination of transcription involves
 - (a) Rho formation.

(c)	polyadenylation. DNA promotion. RNA translation.
4. A co	odon is a(n)
(b) (c)	nucleotide. amino acid. nitrogen base. three-base sequence.
5. Wh:	ich code word signals "start" in the genetic code?
(b) (c)	UAG AUG UGA UAA
6. How	w many amino acids can one codon code for?
(a) (b) (c) (d)	3
7. Dur	ing which phase(s) of translation is the ribosome assembled?
(b) (c) (d)	initiation elongation termination all of the above 8.2: Vocabulary
Name	Class Date
	e vocabulary term with the correct definition.
Term	
1.	transcription
2.	translation
3.	exon
4.	intron
5.	initiation
6.	elongation

7. termination
8. editing
9. splicing
10. ribosome
Definition
a. process of changing the nucleotide sequence of mRNA
b. region of a gene that codes for a protein
c. site where polypeptides are assembled
d. process that uses DNA to make mRNA
e. region of DNA that has no known function
f. process by which introns are removed from pre-mRNA
g. process of adding more amino acids to a polypeptide
h. end of transcription or translation
i. start of transcription or translation
i process that uses mRNA to make a protein

8.4 Lesson 8.3: Mutation

Lesson 8.3: True or False

Name	Class	Date
Write true if the statement	t is true or false if the statemen	at is false.
1. It is possible	for mutations to occur spontar	neously.
2. Only somation	e mutations can be passed on to	o offspring.
3. An inversion	is a type of chromosomal altera	ation.
4. A mutation	that changes C to G is a transit	tion mutation.
5. A nonsense r	nutation codes for a premature	stop codon.
6. A silent mut	ation codes for a different amin	o acid.
7. Some mutati	ons have no significant effect.	
8. Nearly all ca	ncers are caused of mutations is	n DNA.

Name		Class	Date			
Lesson	8.3: Critical Reading					
	12. Mutations in tumor suppresso	or genes are generally	dominant alleles.			
	11. A cell needs multiple mutation	ns to transform to a	cancerous cell.			
	10. Proto-oncogenes are abnormal cancer-causing genes.					
	9. All cancers need an environment	ntal trigger to develo	p.			

Read this passage from the lesson and answer the questions that follow.

Types of Mutations

In multicellular organisms, mutations can be subdivided into germline mutations, which can be passed on to descendants, and somatic mutations, which cannot be transmitted to the next generation. Germline mutations change the DNA sequence within a sperm or egg cell, and therefore can be inherited. This inherited mutation results in a class of diseases known as a genetic disease. The mutation may lead to a nonfunctional protein, and the embryo may not develop properly or survive. Somatic mutations may affect the proper functioning of the cell with the mutation. During DNA replication, the mutation will be copied. The two daughter cells formed after cell division will both carry the mutation. This may lead to the development of many cells that do not function optimally, resulting a less than optimal phenotype. Various types of mutations can all have severe effects on the individual. These include point mutations, framehift mutations and chromosomal alterations.

Chromosomal Alterations

Chromosomal alterations are large changes in the chromosome structure. They occur when a section of a chromosome breaks and rejoins incorrectly, or does not rejoin at all. Sometimes the segment may join backwards or reattach to another chromosome altogether. These mutations are very serious and usually lethal to the zygote or embryo. If the embryo does survive, the resulting organism is usually sterile and thus, unable to pass along the mutation.

The five types of chromosomal alterations are deletions, duplications, insertions, inversions, and translocations.

- 1. **Deletions**: removal of a large chromosomal region, leading to loss of the genes within that region.
- 2. **Duplications** (or **amplifications**): lead to multiple copies of a chromosomal region, increasing the number of the genes located within that region. Some genes may be duplicated in their entirety.
- 3. **Insertions**: the addition of material from one chromosome to a nonhomologous chromosome.

- 4. **Inversions**: reversing the orientation of a chromosomal segment.
- 5. **Translocations**: interchange of genetic material between nonhomologous chromosomes.

Point Mutations

As the name implies, **point mutations** occur at a single site within the DNA. Lets go back to our earlier example from lesson 8.2:

THE BIG FAT CAT ATE THE RED RAT.

A change at any one position could result in a sequence that does not make sense. Such as:

THE BIG FAT SAT ATE THE RED RAT.

As shown above, point mutations exchange one nucleotide for another and are known as base substitution mutations. These mutations are often caused either by chemicals or by a mistake during DNA replication. A transition exchanges a purine for a purine $(A \leftrightarrow G)$ or a pyrimidine for a pyrimidine, $(C \leftrightarrow T)$, and is the most common point mutation. Less common is a transversion, which exchanges a purine for a pyrimidine or a pyrimidine for a purine $(\frac{C}{T} \leftrightarrow \frac{A}{G})$. Point mutations that occur within the protein coding region of a gene are classified by the effect on the resulting protein:

- 1. **Silent mutations**: which code for the same amino acid.
- 2. Missense mutations: which code for a different amino acid.
- 3. Nonsense mutations: which code for a premature stop codon.

These mutations may result in a protein with the same function, with altered function, or with no function.

Questions

1.	What	are	germline mu	tations?
-				
2.	What	are	somatic mut	ations?
2.	What	are	somatic mut	rations?
2.	What	are	somatic mut	ations?

3. Define chromosomal alterations, and explain why chromosomal alternations are often lethal.

118

-			
-			
-			
4. Define point mutations, and give	an example.		
-			
-			
_			
5. Compare and contrast transitions	s and transversion.		
-			
-			
-			
Lesson 8.3: Multiple Cl	hoice		
Name	Class	Date	
Circle the letter of the correct choice	e.		
·			
1. Common mutagens include			
(a) X-rays.(b) chemicals.(c) ultraviolet light.(d) all of the above.			
2. The exchange of genetic mater as	rial between two nonho	mologous chromosomes is kr	nown
(a) deletion.(b) inversion.(c) duplication.(d) translocation.			
3. A point mutation in which one	e purine is exchanged f	or another purine is called a	(n)
(a) amplification.(b) transversion.(c) transition.(d) inversion.			
4. Removing nucleotides or adding	ng nucleotides results in	ı a	

(b) (c)	a) point mutation. b) proto-oncogene. c) base substitution. d) reading frame shift.		
` ´	the role of DNA ligase is to		
(b) (c)	a) digest DNA. b) divide DNA. c) repair DNA. l) make DNA.		
6. The	e normal function of tumor suppressor ge	enes is to	
(b) (c)	n) mutate. c) cause cancer. c) help tumors grow. l) stop the cell cycle.		
7. Mut	utation of a proto-oncogene produces a(n)		
(b) (c)	tumor suppressor gene. o) loss-of-function gene. c) backup gene. d) oncogene.		
Lesson	n 8.3: Vocabulary		
Name	Clas	SS	Date
Match the	he vocabulary term with the correct definit	tion.	
Term			
1.	. deletion		
2.	2. duplication		
3.	B. germline mutation		
4.	I. insertion		
5.	5. inversion		
6.	5. missense mutation		
7.	7. nonsense mutation		
8.	3. point mutation		

www.ck12.org **120**

_____ 9. silent mutation

____ 10. somatic mutation

Definition

- a. mutation that adds multiple copies of a chromosomal region
- b. mutation that reverses the order of nucleotides of a chromosomal region
- c. point mutation that codes for a different amino acid
- d. mutation that removes a chromosomal region
- e. mutation in which one nucleotide is substituted for another
- f. mutation in the DNA of a body cell
- g. mutation in the DNA of a gamete
- h. point mutation that codes for the same amino acid
- i. point mutation that codes for a premature stop codon
- j. mutation that adds part of a chromosome to a nonhomologous chromosome

8.5 Lesson 8.4: Regulation of Gene Expression

Lesson 8.4: True or False

Name	$___$ Class $___$	$___$ Date $___$
Write true if the statement	t is true or false if the statemen	t is false.
1. Any aspect of	f a gene's expression may be re	gulated.
2. Transcription	factors are DNA regions that	control gene expression.
3. Repressor pr	oteins bind to DNA at the pron	noter region.
4. Basal factors	regulate gene expression by pro-	eventing transcription.
5. Gene regulat	ion is more complex in eukaryo	tes than prokaryotes.
6. Operators ar	e generally located immediately	downstream from the promoter.
7. The lac oper	on is found only in eukaryotic o	organisms such as humans.
8. RNA polyme	erase binds to the lac promoter	when lactose is available.
9. Enhancers an	e regulatory proteins that preven	ent RNA translation.
10. Homeobox §	genes contain a highly conserved	d DNA sequence.
11 Hox genes o	letermine whether cells produce	lactose

	12. At	least two	separate	mutations	are necessa	ry for	cancer	to	develor	p.
--	--------	-----------	----------	-----------	-------------	--------	--------	----	---------	----

Lesson 8.4: Critical Reading

Name Class	Date
------------	------

Read this passage from the lesson and answer the questions that follow.

The Lac Operon

The lac operon (Figure 8.1) is an operon required for the transport and metabolism of lactose in *E. coli*. The lac operon is regulated by the availability of lactose. The lac operon consists of a promoter, an operator, three adjacent structural genes which code for enzymes and a terminator. The three genes are: lacZ, lacY, and lacA. All three genes are controlled by the same regulatory elements.

Figure 8.1: The lac operon. The lac operon contains genes for three enzymes, lac, lacY, and lac A, as well as the promoter, operator, and terminatory regulatory regions.

In bacteria, the lac repressor protein blocks the synthesis of enzymes that digest lactose when there is no lactose present. When lactose is present, it binds to the repressor, causing it to detach from the DNA strand.

Specific control of the lac operon depends on the availability of lactose. The enzymes needed to metabolize lactose are not produced when lactose is not present. When lactose is available, and therefore needs to be metabolized, the operon is turned on, RNA polymerase binds to the promoter, and the three genes are transcribed into a single mRNA molecule. However, if lactose is not present (and therefore does not need to be metabolized), the operon is turned off by the lac repressor protein.

The lacI gene, which encodes the lac repressor, lies near the lac operon and is always expressed (constitutive). Therefore, the lac repressor protein is always present in the bacteria. In the absence of lactose, the lac repressor protein will bind to the operator, just past the promoter in the lac operon. The repressor blocks the binding of RNA polymerase to the promoter, keeping the operon turned off.

When lactose is available, a lactose metabolite called allolactose binds to the repressor. This interaction causes a conformational change in the repressor shape and the repressor falls off the operator, allowing RNA polymerase to bind to the promoter and initiate transcription.

Questions

1. List the basic components of	an operon.	
-		
-		
-		
2. What is the lac operon?		
-		
-		
-		
3. What regulates the lac opero	n?	
-		
-		
-		
4. What happens to the lac ope	ron when lactose is present	?
-		
-		
-		
5. What happens to the lac ope	ron when lactose is not pre-	esent?
_		
_		
-		
Lesson 8.4: Multiple	Choice	
Name	Class	Date
Circle the letter of the correct cl		
1. You have cells with differe	nt functions because you h	ave cells with different
(a) DNA.		
(b) genes.(c) proteins.		
(d) chromosomes.		

atch	h the vo	cabulary $t\epsilon$	erm with t	he corre	ct definition.			
am		7 7					Date_	
ess	son 8	.4: Vo	abulaı	·y				
	(b) specific (c) sti	using cell of eeding up mulating to pmoting ce	cell division he cell cy	cle.				
7.	One wa	y that gen	es may he	elp preve	nt cancer in	cells with	n DNA dar	mage is by
	(b) ho (c) ga	meobox gex genes. o genes. of the abo						
6.	Genes i	mportant	to eukary	otic deve	elopment are	regulated	d by	
	(b) TA (c) ras	operon. TA box. element. repressor						
5.	A cis-re	gulatory e	lement for	und in th	ne promoter	of most e	eukaryotic	genes is the
	(b) en (c) zir	trients. nancers. c fingers. meoboxes.						
4.	In bacte	eria, gene r	egulation	is genera	ally influence	d by the p	presence or	absence of ce
	(b) RI (c) DI	gulatory province of the polymer of	erase. ces.					
3.	An initi	ation com	plex is co	mposed of	of trans-acti	ng factors	s and	
	(b) ac	omoter. ivator. nancer. erator.						
	. , -							

1. activator
2. gap gene
3. hox gene
4. operator
5. operon
6. promoter
7. repressor
8. RNA polymerase
9. TATA box
10. transcription factor

Definition

- a. gene that functions in patterning the body during development by providing the placement of certain body parts
- b. in most eukaryotic genes, part of the promoter where RNA polymerase binds
- c. protein that enhances the interaction between RNA polymerase and a particular promoter
- d. segment of DNA that allows a gene to be transcribed by helping RNA polymerase find the start of the gene
- e. enzyme that transcribes DNA to make RNA
- f. gene that controls the shape of a developing zygote early in its development
- g. region of prokaryotic DNA with a promoter, operator, and one or more genes
- h. protein involved in regulating gene expression
- i. region of prokaryotic DNA where a repressor binds
- j. protein that binds to non-coding sequences on DNA and impedes RNA polymerase

Image Sources

(1) http://en.wikipedia.org/wiki/Image:Lac_operon1.png. Public Domain.

Chapter 9

Human Genetics Worksheets

9.1 Chapter 9: Human Genetics

- Lesson 9.1: Human Genes and Chromosomes
- Lesson 9.2: Human Inheritance

9.2 Lesson 9.1: Human Genes and Chromosomes

Lesson 9.1: True or False

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. A genetic disease is caused by a mutation in a gene or chromosome.
	2. The human genome consists only of genes that code for proteins.
	3. All organisms have the same number of chromosomes.
	4. A normal human gamete has 23 pairs of chromosomes.
	5. Chromosomes are composed of both nucleic acids and proteins.
	6. Gene expression is controlled by regulatory sequences on chromosomes.
	7. Linkage refers to whether a gene is dominant or recessive.
	8. Loci on the same chromosome always assort independently during meiosis.
	9. The DNA base sequence CACACACA is a dinucleotide repeat sequence.
	10. Females are heterozygous for the X chromosome.

	11. All sex-linked genes control to	caits that determine	an individual's sex.
	12. The process of X-inactivation	results in the format	tion of male gametes.
Lesson	9.1: Critical Reading		
Namo		Class	Data

Read this passage from the lesson and answer the questions that follow.

The Human Genome

What makes each one of us unique? You could argue that the environment plays a role, and it does to some extent. But most would agree that your parents have something to do with your uniqueness. In fact, it is our genes that make each one of us unique—or at least genetically unique. We all have the genes that make us human: the genes for skin and bones, eyes and ears, fingers and toes, and so on. However, we all have different skin colors, different bone sizes, different eye colors, and different ear shapes. In fact, even though we have the same genes, the products of these genes work a little differently in most of us. And that is what makes us unique. The human **genome** consists of all the DNA of *Homo sapiens*. Humans have about 3 billion bases of information, divided into roughly 20,000 genes, which are spread among non-coding sequences. Our genes are distributed on 24 distinct chromosomes. The human genome includes all of the hereditary information encoded in the DNA, not just genes but non-coding sequences as well. It consists of proteincoding exons, noncoding introns, and regulatory sequences. It also contains genes that code for RNA molecules, as well as "junk" DNA, which are regions of DNA for which no function has yet been identified. Our knowledge of the human genome has been advanced greatly by the Human Genome Project. This project is a huge collaborative effort that has sequenced all human genes and produced a reference sequence of the entire human genome.

Chromosomes and Genes

The human genome consists of 24 distinct chromosomes: 22 autosomes plus the sex chromosomes, X and Y. A **chromosome** is a threadlike molecule of genes, other DNA, and proteins. Chromosomes are located in the nucleus of cells. Different organisms have different numbers of chromosomes. Human somatic cells have 23 chromosome pairs for a total of 46 chromosomes: two copies of the 22 autosomes (one from each parent), plus an X chromosome from the mother and either an X or a Y chromosome from the father. There are an estimated 20,000 human protein-coding genes, but humans are known to have many more than 20,000 proteins. Most human genes have multiple exons separated by much larger introns. Regulatory sequences controlling gene expression are associated with exons. The introns are usually excised (removed) during post-transcriptional modification of the mRNA. Human cells make significant use of alternative splicing to produce a number of different proteins from a single gene. So even though the human genome is surprisingly similar in size to the genomes of simpler organisms, the human proteome is thought to be much larger. A **proteome** is the

Q	uestions
1.	How do our genes makes us unique?
-	
-	
-	
2.	What is the human genome. Describe in detail.
-	
-	
-	
3.	How has the Human Genome Project contributed to knowledge of the human genome?
-	
-	
_	Compare and contract evens introns and regulatory acquences of chromosomes
4.	Compare and contrast exons, introns, and regulatory sequences of chromosomes.
_	
_	
5.	How is the human proteome related to the human genome?
_	
_	
_	
L	esson 9.1: Multiple Choice
N	ame Class Date
C	ircle the letter of the correct choice.
	1. What is the function of exons?
	(a) They regulate genes.(b) They replicate genes.

complete set of proteins expressed by a genome.

Match the	e vocabulary term with the correct	definition	
Name		_ Class	Date
Lesson	9.1: Vocabulary		
(b) (c)	type of repeat polymorphism. inactivated X chromosome. X-linked or Y-linked gene. gene that causes a genetic disorder	er.	
	arr body is a(n)		
(b) (c) (d)	are highly variable from person to are identical in all human beings, always code for the most importa- cannot be used for DNA testing.		
6. Repe	etitive DNA sequences		
(a) (b) (c)	ch of the following is an example of GGATAA to CCTATT GGATAA to GGATAG GGATAA to GGCTCC GGATAA to AATAGG	or an SNP!	
, ,			
(b) (c)	an allele on the X chromosome as an allele for a gene on one chromo on the other chromosome of the p an allele on the X chromosome as two alleles on the same X chromo	osomes of a pair and pair nd an allele on chro	d the allele for the same gene
4. Whi	ch two alleles are most likely to ap	opear in the same h	numan gamete?
(b) (c)	They code for RNA molecules. They are generally much smaller They are usually removed from n They splice together different pro-	nRNA after transcr	_
3. Whi	ch sentence is true about introns i	in human genes?	
(a) (b) (c) (d)	23 24		
2. How	many pairs of autosomes are four	nd in a normal hum	nan somatic cell?
\ /	They code for proteins. Their function is not yet known.		

Term		
1. autosome		
2. chromosome		
3. genome		
4. karyotype		
5. linkage		
6. sex chromosome		
7. repetitive sequence		
8. SNP		
9. SRY		
10. X-inactivation		
Definition		
a. X or Y chromosome in humans		
b. all the hereditary information encoded	in DNA	
c. DNA sequence that repeats a number of	of times	
d. any chromosome that is not a sex chro	mosome	
e. variation in an individual nucleotide ba	ise	
f. sex-determining region of the Y chromo	osome	
g. relationship between genes located clos	e together on th	ne same chromosome
h. random inactivation of one X chromoso	ome in each cell	of a female
i. photograph of the chromosomal comple	ment of an indi-	vidual
j. threadlike molecule that contains DNA	wound around	proteins
9.3 Lesson 9.2: Human	Inheritan	ce
Lesson 9.2: True or False		
Lesson 9.2. True or raise		
Name	Class	Date
Write true if the statement is true or fals	e if the statemer	nt is false.
1. All sex-linked traits are con-	trolled by genes	on the X chromosome.

	2. Only dominant traits are passed from parents to their children.
	$_{-}$ 3. A healthy heterozygote for a defective recessive allele is called a carrier.
	4. You need only one dominant allele for a dominant trait to be expressed.
	5. A man passes all of his X-linked genes to all of his daughters.
	_ 6. Only one mutation for Tay-Sachs disease has ever been identified.
	7. People with achondroplasia have severely shortened bones.
	8. Carriers of X-linked recessive disorders are always male.
	9. A person with the ABO genotype AB has type A blood.
	_ 10. The allele that causes sickle-cell disease is pleiotropic.
	11. The most common trisomy in humans is trisomy X.
	12. Gene therapy techniques include selective reverse mutation.
Lesson	9.2: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Complex Traits

So far we have discussed traits inherited in a simple Mendelian pattern. Either the trait is dominate or recessive. The trait is affected by only one gene. But this is not the case for many genes; rarely is inheritance that simple. More complex patterns of inheritance are common. Mendel's pea plants showed complete dominance of one allele over the other. The offspring always looked like one of the parents—there was never any phenotype "in between" the two parents. The heterozygous individuals were indistinguishable from the homozygous dominant individuals. Is it possible for both alleles to be dominant, or neither to be completely dominant? The answer to both of these questions is yes.

Codominance

Codominance occurs when two alleles are both expressed in the heterozygous individual; that is, both alleles affect the phenotype in separate and distinguishable ways. The A and B alleles of the ABO blood group system are a classic example. The A and B alleles are codominant with each other. When a person has both an A allele and a B allele, the person has type AB blood. When two people with type AB blood have children, the children can be type A, type AB, or type B. There is a 1A:2AB:1B expected phenotype ratio instead of the 3:1 phenotype ratio expected when one allele is dominant and the other is recessive.

Incomplete Dominance

Incomplete dominance is seen in heterozygous individuals with an intermediate phenotype. For example, if Mendel had ever observed a medium stem length plant when a tall and short plant were crossed, that would have suggested incomplete dominance. In incomplete dominant situations, the phenotype expression is dependent on the dosage of the genes. Two copies of the gene result in full expression, while only one copy produces partial expression and an intermediate phenotype.

Questions

1. What does codominance refer to?
-
-
-
2. Describe an example of codominance in humans.
-
-
-
3. For a gene with two codominant alleles, how many possible phenotypes are there? Explain your answer.
-
-
-
4. What is incomplete dominance?
-
-
-
5. When an allele has incomplete dominance, how does the heterozygous phenotype compare to the dominant and recessive homozygous phenotypes?
_
- -

Lesson 9.2: Multiple Choice

Name	Class	Date
Circle the letter of the correct choice.		
 Two normal parents could have a c (a) fatal. (b) recessive. (c) uncommon. (d) dominant. 	hild with an inhe	erited disease if the disease is
 2. Which of the following is an autoso (a) Huntington's disease (b) cystic fibrosis (c) Tay-Sachs disease (d) hemophilia A 	omal dominant ge	enetic disorder?
3. A man with a certain genetic trait has the trait. However, some of the likely to be a(n)(a) autosomal dominant trait.(b) Y-linked recessive trait.		
(c) X-linked dominant trait.(d) X-linked recessive trait.		
 4. Duchenne muscular dystrophy is a (a) the X chromosome. (b) the Y chromosome. (c) an autosome. (d) chromosome 21. 	genetic disease c	ontrolled by a gene on
5. A human gene that produces a collar system but also the eyes and ears.(a) epistasis.(b) hypostasis.(c) pleiotropy.		*
(d) codominance.6. Which genetic disorder is a sex chr	omosome trisomy	7?

(a) trisomy 21

(b) Klinefelter's syndrome

(c) Down syndrome(d) Turner syndrome

- 7. What is the most common method of gene therapy?
 - (a) replacing a mutant allele with a normal allele
 - (b) creating a vaccine against a viral vector
 - (c) using ultrasonography to correct abnormalities
 - (d) injecting patients with normal placental tissue

Lesson 9.2: Vocabulary

Name	Class	Date
Match the vocabulary term with the correct of	definition.	
Term		
1. pedigree		
2. mutation		
3. achondroplasia		
4. multiple allele trait		
5. pleiotropy		
6. epistasis		
7. polygenic trait		
8. nondisjunction		
9. trisomy		
10. amniocentesis		
Definition		

- a. procedure to test fetal DNA for genetic abnormalities
- b. change in the nucleotide sequence of DNA or RNA
- c. situation in which a gene at one locus alters the phenotypic expression of a gene at another locus
- d. autosomal dominant disorder characterized by dwarfism
- e. trait for which there are more than two possible alleles
- f. chart that represents genetic inheritance in a family
- g. situation in which a gene has multiple phenotypic effects
- h. trait that is controlled by more than one gene and usually influenced by the environment

- i. situation in which an extra chromosome is present in a person's cells
- j. failure of replicated chromosomes to separately properly during meiosis

Chapter 10

Biotechnology Worksheets

10.1 Chapter 10: Biotechnology

Lesson 10.1: DNA TechnologyLesson 10.2: Biotechnology

10.2 Lesson 10.1: DNA Technology

Lesson 10.1: True or False

Name		Class	Date
Write true	if the statement is true or false if	the statement is fals	2.'
a	1. The DNA sequence of one human man being.	n being is on average	99.9% identical to another
	2. As of 2009, all living human be	ings have had their e	ntire genome sequenced.
:	3. The nucleotide bases present in	a DNA sequence are	e A, U, G, C.
	4. Techniques that enabled scientis	sts to clone genes we	re developed in the 1970s.
	5. A restriction enzyme is useful any different DNA sequences.	because it is a gener	ic enzyme that recognizes
(6. Ligation of 2 DNA fragments is	an enzyme-catalyze	d reaction.
	7. Plasmids are circular, double-st	randed DNA molecu	les.
	8. The gels used in gel electrophor polyacrylamide.	resis are made of gela	atin-like materials such as

Name		Class	Date
Lesson	10.1: Critical Reading		
been subject	15. A chemical called ethidium bected to gel electrophoresis.	romide is often used	l to detect DNA that has
	14. The standard procedure of gel eom DNA that is negatively charged		ates DNA that is positively
	13. To determine if a DNA fragmer can sequence DNA of the plasmid.		lly inserted into a plasmid,
	12. A standard recombinant DNA been successfully transfected with a	_	
	11. The process of DNA transfecti	ion is always 100% s	uccessful.
different sp	10. Using recombinant DNA technologies.	iques, scientists can	join DNA fragments from
	9. PCR stands for polyacrylamide	gel electrophoresis.	

The Polymerase Chain Reaction

The Polymerase Chain Reaction (PCR) is used to amplify specific regions of a DNA strand millions of times. A region may be a number of loci, a single gene, a part of a gene, or a non-coding sequence. This technique produces a useful quantity of DNA for analysis, be it medical, forensic or some other form of analysis. Amplification of DNA from as little as a single cell is possible. Whole genome amplification is also possible.

PCR utilizes a heat stable DNA polymerase, Taq polymerase, named after the thermophilic bacterium $Thermus\ aquaticus$, from which it was originally isolated. $T.\ aquaticus$ is a bacterium that lives in hot springs and hydrothermal vents, and Taq polymerase is able to withstand the high temperatures required to denature DNA during PCR (discussed below). Taq polymerase's optimum temperature for activity is between $75^{\circ}C$ and $80^{\circ}C$. Recently other DNA polymerases have also been used for PCR.

A basic PCR involves a series of repeating cycles involving three main steps (see Figure below):

- 1. denaturation of the double stranded DNA
- 2. annealing of specific oligonucleotide primers
- 3. extension of the primers to amplify the region of DNA of interest

Read this passage from the lesson and answer the questions that follow.

These steps will be discussed in additional detail below.

The oligonucleotide primers are single stranded pieces of DNA that correspond to the 5' and 3' ends of the DNA region to be amplified. These primers will anneal to the corresponding segment of denatured DNA. Taq Polymerase, in the presence of free deoxynucleotide triphosphates (dNTPs), will extend the primers to create double stranded DNA. After many cycles of denaturation, annealing and extension, the region between the two primers will be amplified.

The PCR is commonly carried out in a thermal cycler, a machine that automatically allows heating and cooling of the reactions to control the temperature required at each reaction step (see below). The PCR usually consists of a series of about 30 to 35 cycles. Most commonly, PCR is carried out in three repeating steps, with some modifications for the first and last step.

PCR is usually performed in small tubes or wells in a tray, each often beginning with the complete genome of the species being studied. As only a specific sequence from that genome is of interest, the sequence specific primers are targeted to that sequence. PCR is done with all the building blocks necessary to create DNA: template DNA, primers, dNTPs, and a polymerase.

The three basic steps of PCR are:

- Denaturation step: This step is the first regular cycling event and consists of heating the reaction to $94-98^{\circ}C$ for 30 to 60 seconds. It disrupts the hydrogen bonds between complementary bases of the DNA strands, yielding single strands of DNA.
- Annealing step: The reaction temperature is lowered to $50-65^{\circ}C$ for 30 to 60 seconds, allowing annealing of the primers to the single-stranded DNA template. Stable hydrogen bonds form between the DNA strand (the template) and the primers when the primer sequence very closely matches the complementary template sequence. Primers are usually 17 22 nucleotides long and are carefully designed to bind to only one site in the genome. The polymerase binds to the primer-template hybrid and begins DNA synthesis.
- Extension step: A temperature of around 72°C is used for this step, which is close to the optimum temperature of Taq polymerase. At this step the Taq polymerase extends the primer by adding dNTPs, using one DNA strand as a template to create the other (new) DNA strand. The extension time depends on the length of the DNA fragment to be amplified. As a standard, at its optimum temperature, the DNA polymerase will polymerize a thousand bases in one minute.

Questions

1. Why is the Polymerase Chain Reaction (PCR) technique useful for scientists?

_

_	
2. What enzyme is necessary to perform PCR? Venzyme?	What are some special characteristics of this
_	
_	
-	
3. Name and briefly describe the three stages of	f a PCR cycle.
_	
-	
-	
4. Draw a diagram depicting your answer to que	estion 3.
-	
_	
_	
5. Theoretically, PCR cycles could continue indwhat is used up?	lefinitely. In practice, PCR will cease when
-	
-	
_	
Lesson 10.1: Multiple Choice	
Name Cl	ass Date
Circle the letter of the correct choice.	

1. Which of the pairs of sequences below contain a single nucleotide polymorphism (SNP)?

- (a) AAGGCTAA and AAGGCTAA
- (b) AAGGCTAA and AAGGCTGG
- (c) AAGGCTAA ATGGCTAA
- (d) GGGGGGG and TTTTTTT
- 2. A restriction enzyme such as EcoRI
 - (a) recognizes a short, specific sequence of nucleotides and cuts both strands of the double-strnded DNA molecule.

- (b) recognizes a short, specific sequence of nucleotides and cuts only one strand of the double-stranded DNA molecule.
- (c) recognizes any six-base-pair DNA sequence and cuts both DNA strands.
- (d) cleaves RNA strands, not DNA strands.
- 3. The order of steps during the FIRST cycle of a Polymerase Chain Reaction is
 - (a) extend the oligonucleotide primers, denature the DNA, denature the DNA again.
 - (b) primers anneal, denature the DNA, anneal more primers.
 - (c) Taq polymerase extends the primers, the primers anneal, DNA is denatured.
 - (d) denature the double-stranded DNA, oligonucleotide primers anneal to the template DNA, primers are extended with the help of Taq polymerase.
- 4. Scientists can typically distinguish cells that have been successfully transfected with a plasmid from those that have not by
 - (a) viewing them under a basic light microscope—the larger cells are transfected, and the smaller cells are not.
 - (b) screening them for resistance to a specific antibiotic.
 - (c) growing them at high temperature—the cells that die are transfected and the cells that live are not.
 - (d) oberving replication of the chromosome. Cells that have been transfected can replicate their chromosome; cells that have not been transfected cannot replicate their chromosome.
- 5. Standard gel electrophoresis of DNA separates DNA fragments based upon
 - (a) charge differences.
 - (b) sequence differences at one nucleotide.
 - (c) size differences.
 - (d) none of the above
- 6. The enzyme DNA ligase
 - (a) joins together two double-standed DNA pieces by making a phosphodiester bonds between them.
 - (b) adds base pairs to a double-stranded DNA molecule.
 - (c) deletes multiple base pairs from a single-stranded DNA molecule.
 - (d) functions only at temperatures below $20^{\circ}C$.
- 7. The enzyme Taq polymerase
 - (a) was originally purified from a bacterium that lives in hot springs.
 - (b) can work at high temperatures (such as $95^{\circ}C$).
 - (c) extends a DNA primer by adding dNTPs complementary to the template DNA.
 - (d) all of the above

Lesson 10.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. Taq polymerase		
2. biotechnology		
3. Genbank		
4. Restriction enzyme		
5. Gene cloning		
6. Gel electrophoresis		
7. Polymerase chain reaction	(PCR)	
8. plasmid		
9. Recombinant DNA		
10. The Human Genome Pro	oject	

Definition

- a. An enzyme, often isolated from bacteria, that catalyzes the cutting of both strands of a double-stranded DNA molecule at a specific sequence.
- b. An analytical technique in which DNA molecules are separated by size during their migration through a charged electrical field.
- c. The project in which the DNA of all of the human chromosomes was sequenced.
- d. The field in which biological knowledge is used in concert with technology to solve practical problems.
- e. A small, circular, double-stranded DNA molecule often found in bacteria.
- f. A thermostable enzyme that catalyzes primer extension in a PCR reaction.
- g. The National Center for Biotechnology Information, part of the United States Government, which maintain genomic sequences (and other sequences) in a database.
- h. Two or more DNA strands that combine DNA sequences which would not normally occur together; the DNA ligated together can even be from different organisms.
- i. The process of isolating a DNA sequence of interest for the purpose of making multiple copies of it.

j. A cyclic process in which three main chemical reactions are repeated to create millons of copies of a target DNA sequence from starting material that might contain only a single copy of the target sequence.

10.3 Lesson 10.2: Biotechnology

Lesson 10.2: True or False

Name			$Class___$	$_{}$ Date $_{}$
Write true	e if	the statement is true or false if	the statement	is false.
associated		Because the human genome is at the mutations in all human genes		now know all of the phenotypes
	2.	Two different individuals can m	etabolize the s	ame drug at a different rate.
uterus).	3.	Fetuses can be screened for some	genetic disease	es while in utero (in the mother's
for genetic		Scientists and physicians can us utations in newborn babies.	e the polymera	se chain reaction (PCR) to test
amounts o		The most commonly grown transcribing transcribing transcribing and transcribe transcribes are set of the most commonly grown transcribes.	nsgenic crops a	re extremely sensitive to minute
	6.	Transgenic corn making Bt tox	in is resistant t	o damage by certain insects.
	7.	Certain vaccines can be made i	n bananas.	
enucleated		In animal cloning, a nucleus fuscle cell.	rom a skin cel	l is added to a nucleus from a
	9.	PCR is now the most commonl	y used technique	ue in DNA fingerprinting.
print.	10.	. It is extremely likely that two	first cousins w	ill have the same genetic finger-
	11.	. The biotechnology term STR	stands for Stan	dard telomore Restriction.
loci equals		. The probability that a person e probability of A plus the prob	0	-
tion are se		. In Southern blotting, DNA fracted by gel electrophoresis.	gments produc	eed by restriction enzyme diges-
conditions		. Hybridization of two single I the two strands have complemen		11 1
	15.	. Because genetic engineering is	s technology-ba	ased, there are no ethical issues

Lesson 10.2: Critical Reading

Name	Class	Date	
Read this passage from the	lesson and answer the ques	tions that follow.	

Applications of DNA Technology: Medicine

As discussed in the first lesson of this chapter, the Human Genome Project has opened up many applications to take advantage of what we know about our genome in order to help us. Many of these applications are medically related. Others will be legally related. And yet still other uses of DNA technology include those in agriculture and the food sciences.

Understanding and curing genetic diseases is the ultimate goal of human geneticists. As discussed in the *Human Genetics* chapter, gene therapy is the insertion of a new gene into an individual's cells and tissues to treat a disease, replacing a mutant disease-causing allele with a normal, non-mutant allele. Of course, the findings of the Human Genome Project are significant in determining the disease-causing alleles.

In the 1920s, there was no known way to produce insulin, which was needed by people to remove excess sugar from the bloodstream. People with diabetes either lack insulin, produce low levels of insulin, or are resistant to insulin, and thus they may need external insulin to control blood glucose levels. This problem was solved, at least temporarily, when it was found that insulin from a pig's pancreas could be used in humans. This method was the primary solution for diabetes until recently. The problem with insulin production was raised again: there were not enough pigs to provide the quantities of insulin needed. Scientists needed to devise another way. This led to one of the biggest breakthroughs in recombinant DNA technology: the cloning of the human insulin gene.

By methods discussed in the first lesson in this chapter, the specific gene sequence that codes for human insulin was introduced into *E. coli*. In a 24 hour period, billions of *E. coli* containing the human insulin gene resulted, producing human insulin to be administered to patients.

Though the production of human insulin by recombinant DNA procedures is an extremely significant event, many other aspects of DNA technology are beginning to become reality. In medicine, modern biotechnology provides significant applications in such areas as pharmacogenomics, genetic testing (and prenatal diagnosis), and gene therapy. These applications use our knowledge of biology to improve our health and our lives. Many of these medical applications are based on the Human Genome Project.

Questions

1. What is gene therapy?

-			
-			
-			
2. What is insulin and what is its general fu	inction?		
-			
-			
-			
3. What is diabetes?			
-			
-			
-			
4. When a person does not make any insulin	n, what is a ma	ain treatment?	
-			
-			
5. How is insulin for diabetics produced?			
-			
-			
-			
Lesson 10.2: Multiple Choice	9		
Name	Class	Date	
Cirle the letter of the correct choice.	-		_
1. The field of study that focuses on how inherited) affects his or her response to		· -	ular alleles
(a) genetics.	<u> </u>		
(b) pharmacology.			
(c) genomics.(d) pharmacogenomics.			

2. Genetic testing is an effective method to use for all of the following except

www.cl	k12.org 146
	1. Transgenic crops
Term	
Match	the vocabulary term with the correct definition.
Name _.	Class Date
Lesso	on 10.2: Vocabulary
((a) DNA ligation. (b) DNA fingerprinting. (c) chromosome counting. (d) chromatid counting.
b	The DNA of one individual can be distinguished as different from another individual by the technique of
((a) human. (b) dog. (c) sheep. (d) rat.
	The first mammal to be cloned from an adult somatic cell was a
((a) herbicide-resistance. (b) drought-tolerance. (c) improved flavor. (d) improved nutrition.
5. N	Most transgenic crops grown in 2001 contained inserted genes for
((a) a cold-resistant gene from fish. (b) caterpillar genes in the corn genome. (c) a gene coding for a toxin which specifically kills the caterpillar. (d) higher protein levels than other corn.
4. C	Corn resistant to being eaten by the corn borer caterpillar contains
((a) traditional breeding methods. (b) recombinant DNA techniques. (c) special minerals in the soil. (d) mouse cells as an incubator.
3. T	ransgenic crops, such as rice, are created using
((c) perform genetic screening of newborns.(d) treat a disease.

(a) confirm a diagnosis.(b) predict disease risk.

 2. CODIS
 3. DNA fingerprinting
4. Transgenic animals
5. STR profiling
 6. Southern blot
 7. pharmacogenomics
8. microsatellites
9. Genetic testing
10. Preimplantation genetic diagnosis (PGD)

Definition

- a. Genetically engineered animals that contain a gene from another species.
- b. Analysis of 13 short tandem repeat loci to create a forensic DNA profile.
- c. Adjacent repeating units of 2 10 bases in length, for example (GATC)n, where GATC is a tetranucleotide repeat and n refers to the number of repeats.
- d. The result of cloning genes into crop plants to give the crops a beneficial trait.
- e. Molecular genetic analysis performed on embryos prior to implantation in a uterus.
- f. The Combined DNA index system, which stores DNA profiles.
- g. The study of how the genetic inheritance of an individual affects his or her body's response to and processing of drugs.
- h. The direct examination of DNA sequences for mutated sequence.
- i. Molecular biology techniques are used to create a distinct pattern of an individual's DNA.
- j. Named after its inventor Edwin Southern, is a method used to check for the presence of a specific DNA sequence in a DNA sample.

Chapter 11

History of Life Worksheets

11.1 Chapter 11: History of Life

- Lesson 11.1: Studying the History of Life
- Lesson 11.2: Early Life
- Lesson 11.3: Multicellular Life

11.2 Lesson 11.1: Studying the History of Life

Lesson 11.1: True or False

Name	Class	Date
Write true if the state	ement is true or false if the statemer	nt is false.
1. Fossiliza	ation most often preserves soft body	parts.
2. Paleont	ologists are scientists who study foss	sils.
3. Index fo	ossils can help identify rock layers of	the same age in different places.
4. Relative	e dating relies on the position of foss	sils within a rock column.
5. Carbon-	-14 dating can be used to date fossils	that are up to 6 million years old.
6. Radioac	ctive decay is a random process that	occurs at a fixed rate.
7. Molecul	lar clocks support a universal commo	on ancestor for all life.
8. Eras of	the geologic time scale are divided in	nto eons.
9. Only or	ne mass extinction has ever occurred	in the history of life on Earth.
10. The fo	ossil record does not support the ide	ea of a common ancestor of all life

on Earth.				
	_ 11. The rate of evolution is al	ways the same.		
	12. Geographic changes can affect patterns of evolution.			
Lesson 11.1: Critical Reading				
Name		Class	Date	_
D 1.11.	e 1 1 1 1	.7	.1 . 6 11	

Read this passage from the lesson and answer the questions that follow.

A Geologic Time Scale Measures the Evolution of Life

Observation of rock layers, dating techniques, and correlation of similar strata from around the world led to the development of a geologic time scale. How does the scale divide the 4.6 billion years of Earth's history? What themes emerge from its stories of the past? One theme is the almost unimaginable amounts of time in Earth's history. The deep time of Earth's history is far beyond our experience, and our knowledge is far more detailed for recent periods than for the distant past. A scale divided into evenly spaced periods of time would not show this recent detail, so the divisions of the geologic time scale are not evenly spaced. Instead, they mark major changes in Earth's climate, geography, atmosphere, and life. In the geologic time scale, the largest units of time are eons. Eons include smaller units called eras, which in turn include periods, epochs, and stages. Faunal stages identify specific fossil groups. Terms such as upper (or late) and lower (or early) may be used to divide units into more or less recent subdivisions. The total history of Earth comprises four eons. From most to least recent they are the Phanerozoic, Proterozoic, Archean, and Hadean. Their names refer to a second major theme of Earth's history: the evolution of life. Phanerozoic means "visible life." The Phanerozoic Eon spans the most recent 545 million years of Earth's history. It is divided into three eras well known for their chronicle of life in the fossil record:

- The Cenozoic ("recent life") Era is the present era. It is the era we humans live in.
- The Mesozoic ("middle life") Era precedes the Cenozoic Era. It is the middle era of the Phanerozoic Eon.
- The Paleozoic ("old life") Era is oldest era of the Phanerozoic Eon. It begins with the Cambrian Period, when the first great explosion of life occurred. For the first time in the Cambrian, living things were composed of hard parts that turned to fossils and left a record of their lives. (The name "Cambrian" refers to where these fossils were first studied.)

Proterozoic means "before complex life." The Proterozoic Eon precedes the Phanerozoic Eon. It extends back to 2.5 billion years ago. The Archean ("ancient") Eon precedes the Proterozoic Eon. The Hadean ("unseen") Eon reaches back to the formation of Earth. These three oldest eons are combined in the Precambrian Supereon, which includes all of Earth's history up to the Cambrian explosion of life.

Questions				
1. How long is the history of I	Earth?			
-				
-				
-				
2. What is the basis for division	ons of the geo	ologic time scal	le?	
-				
-				
-				
3. What is the most recent eo	n of the geolo	ogic time scale,	and what eras does it in	ıclude?
-				
-				
- 4 D : 0 1 1 1 1 0 4 1	ć. F	.1.2.1.4		
4. Briefly describe the first the	ree eons of Ea	arth's history.		
-				
-				
5. Why is the Cambrian Perio	od such an im	nortant divisio	on of the goologic time so	alo?
-	d such an im	portant divisio	on of the geologic time se	arc:
_				
-				
Lesson 11.1: Multip	ole Choic	\mathbf{e}		
Name		_ Class	Date	
Circle the letter of the correct	choice.			
4 70 11	1 1 1 1	. 1		
1. If rock layers are undistu	arbed, the lov	vest layers are		
(a) oldest.(b) newest.				
(c) youngest.				

Nam		ion.	_ Date	
	esson 11.1: Vocabulary	s	_ Date	
	(a) plate tectonics.(b) adaptive radiation.(c) quantum evolution.(d) episodic speciation.			
7.	7. Massive geographic changes that occurred dutheory of	iring Earth's l	history are explained by t	he
0.	 6. Eukaryotic cells first appeared in the fossil r (a) 4.2 billion years ago. (b) 3.5 billion years ago. (c) 1.8 billion years ago. (d) 0.5 billion years ago. 	ecord about		
6	 (a) era-eon-epoch-period (b) period-eon-epoch-era (c) epoch-era-eon-period (d) eon-era-period-epoch 	acord about		
5.	5. Which choice lists the divisions of the geolog	cic time scale	from largest to smallest?	
	(a) carbon-14.(b) uranium-238.(c) potassium-40.(d) all of the above.			
4.	(d) molecular clock.4. Isotopes used to measure the ages of rocks a	nd fossils incl	ude	
	(a) isotope.(b) half-life.(c) light-year.			
3.	3. The time it takes half of a given amount of a	α radioactive ϵ	element to decay is its	
2.	 (a) relative dating. (b) absolute dating. (c) geologic dating. (d) rock-layer dating. 	п арргожина	e age in years is carred	
2	2. The method of dating fossils that provides a	n approximate	e age in years is called	
	(d) most recent.			

Term	
1. adaptive radiation	
2. coevolution	
3. coextinction	
4. convergent evolution	
5. divergent evolution	
6. gradualism	
7. macroevolution	
8. microevolution	
9. punctuated equilibrium	
10. quantum evolution	
Definition	
a. increased risk of extinction in interdependent spec	cies when one of the species goes extinct
b. type of evolution in which closely related species	become less similar
c. evolution in taxa higher than the species level	
d. idea that evolution occurs infrequently but rapid	ly
e. evolution within a population or species	
f. type of evolution in which distantly related species	es become more similar
g. idea that higher taxa originated in response to dr	rastic environmental changes
h. rapid evolution from a single species to several sp	pecies to fill a diversity of niches
i. idea that evolution occurs via slow, steady change	9
j. type of evolution in which two species influence ea	ach other's evolution
11.3 Lesson 11.2: Early Life	
Lesson 11.2: True or False	
Name Class_	Date
Write true if the statement is true or false if the statement. 1. There is fossil evidence for life during	

2. Most scientists agree that organic molecules arose before cells.
3. The metabolism-first model is the idea that biochemical pathways evolved before replicator molecules.
4. Archaebacteria are thought to have evolved from Eukaryota.
5. Comets and meteors are known to contain organic molecules.
6. A single LUCA is thought to have given rise to all cellular life on Earth.
7. The oldest known fossils represent photosynthetic organisms.
8. The earliest prokaryotes lacked cell membranes.
9. Massive deposits of iron ore formed when Earth first became a planet.
10. Ozone in the atmosphere protects Earth from harmful radiation.
11. Endosymbiotic theory is no longer accepted by most scientists.
12. Mitochondria have the same DNA sequences as the DNA in the nucleus.
Lesson 11.2: Critical Reading

Name	Class	$\mathrm{Date}_{}$

Read this passage from the lesson and answer the questions that follow.

Formation of Earth: We are Made of Stardust!

Earth began as the solar system began—often described as a giant rotating cloud of dust, rocks, and gas. "Dust, rocks, and gas" may not sound inspiring, but this cloud contained the 92 elements, or kinds of atoms, that combine to form everything—both living and nonliving—of the wonderful world we inhabit. The Big Bang (9 billion years earlier!) produced atoms of hydrogen and helium. Elements as heavy as lithium followed the Big Bang within minutes. Stars such as red giants fused hydrogen and helium nuclei to form elements from carbon (the foundation of life!) to calcium (now in our bones and teeth). Supernova explosions formed and ejected heavier elements such as iron (found in red blood cells). We are not just "dust." We—and our world—are stardust!

How did this rotating cloud of stardust become our solar system? One theory suggests that a nearby supernova sent a shock wave through a cloud of stardust, increasing its spin to form a protoplanetary disk. Most of the mass concentrated in the middle of the disk, which began to heat up. Eventually, heat in this central core began nuclear fusion of hydrogen to helium, and the core ignited. The sun was born.

Matter outside the sun's gravity separated into rings of debris. Collisions of objects within the rings formed larger objects. These were protoplanets that would eventually became the planets of the solar system. One protoplanet, about 150 million kilometers from the sun,

would become Earth. Solar wind cleared much of the remaining non-planetary material from the disk.

Early Earth was very different from the Earth we know today. The planet was bombarded by debris and heated by radioactive decay and the pressure of contraction. As a result, Earth was molten at first. Heavy elements sank to the center, and lighter ones traveled to the surface. Heat and solar wind meant that early Earth had no atmosphere or oceans. Eventually, contraction and cooling allowed formation of a crust and retention of an atmosphere. However, continued bombardment melted portions of the crust for a long time.

About 4.5 billion years ago, Earth collided with another protoplanet, named Theia. This "Big Whack" gave Earth its moon and tilted Earth on its current axis. The tilt led to the seasons, which now influence so much of life's diversity. The Big Whack may also have initiated plate tectonic activity by speeding up Earth's rotation. The day/night cycle during the Hadean Eon may have been as short as 10 hours. Since then, the moon's tidal drag may have resulted in Earth's slower rotation.

As Earth continued to cool amidst heavy bombardment, steam escaped from the crust and active volcanoes released other gases to form a primitive atmosphere. The early atmosphere was reddish in color and would have been toxic to modern multicellular organisms. It contained ammonia, methane, water vapor, carbon dioxide, and nitrogen, but no more than a trace of oxygen. In the absence of oxygen, no ozone layer protected Earth from the sun's ultraviolet rays. Between 4.2 and 3.8 billion years ago, clouds produced rain, which formed the oceans. The early oceans were olive green.

Questions

	Explain how stardust became our solar system.
2.	In detail, describe early Earth.
3.	What happened when Earth collided with the protoplanet Theia?

4. Describe Earth's early atmosphere.		
-		
-		
-		
5. How did early Earth's oceans form? Wha	t did they look like?	
-		
-		
-		
Lesson 11.2: Multiple Choice	•	
Name	Class	Date
Circle the letter of the correct choice.		

- 1. The solar system formed from a
 - (a) protocell.
 - (b) protoplasm.
 - (c) protoplanet.
 - (d) protoplanetary disk.
- 2. Miller and Urey tested the hypothesis that conditions on primitive Earth would have allowed the
 - (a) formation of living cells from organic molecules.
 - (b) synthesis of organic molecules from inorganic precursors.
 - (c) evolution of eukaryotic organisms from prokaryotic organisms.
 - (d) development of DNA and RNA from primitive protein molecules.
- 3. The idea that a replicator molecule evolved before the evolution of biochemical pathways is known as the
 - (a) metabolic-pathway model.
 - (b) endosymbiotic model.
 - (c) genes-first model.
 - (d) replicator model.
- 4. The exogenesis hypothesis is supported by the discovery of
 - (a) Archaebacteria in hydrothermal vents.
 - (b) circular DNA in mitochondria.
 - (c) living cells in black smokers.
 - (d) organic molecules in space.

5. The earliest life on Earth most likely evolved during the
 (a) Proterozoic Eon. (b) Primitive Eon. (c) Primeval Eon. (d) Hadean Eon.
6. Not long after prokaryotic cells evolved, they split into two major groups, called the Eubacteria and the
 (a) Protista. (b) Eukaryota. (c) Mitochondria. (d) Archaebacteria.
7. Before the evolution of photosynthesis, organisms were
(a) aerobic.(b) symbiotic.(c) anaerobic.(d) eukaryotic.
Lesson 11.2: Vocabulary
Name Class Date
Match the vocabulary term with the correct definition.
Term
1. protocell
2. prokaryote
3. heterotroph
4. chemoautotroph
5. glycolysis
6. photosynthesis
7. anaerobe
8. eukaryote
9. endosymbiont
10. stromatolite
Definition
a. organism that feeds on other organisms

157

- b. pathway for transferring energy from organic molecules to ATP
- c. organism that requires an environment without oxygen
- d. mat of photosynthetic microorganisms
- e. organism that lives inside the cells of another organism
- f. simple, membrane-enclosed early metabolic unit
- g. use of sunlight to make carbohydrates from carbon dioxide and water
- h. single-celled organism that lacks a nucleus
- i. organism whose DNA is enclosed within a nuclear membrane
- j. organism that extracts energy from inorganic molecules

11.4 Lesson 11.3: Multicellular Life

Lesson 11.3: True or False

Name_	e Class	Date	
Write tr	e true if the statement is true or false if the statement is false		
	1. The first animals evolved before the first true plants.		
	2. The evolution of sexual reproduction may have increa	sed the rate of evolut	tion.
	3. Arthropods called trilobites first appeared in the Per	mian Period.	
	4. There has been only one supercontinent in Earth's h	istory.	
ocean to	5. Evolution of lobe-like fins allowed vertebrates to e to the land.	ventually move from	the
they are	6. Levels of oxygen in the air were lower during the Care now.	arboniferous Period t	than
	7. Pangaea formed during the Permian Period of the Pa	aleozoic Era.	
	8. There was a resurgence of evolution at the beginning	of the Mesozoic Era	Ն.
	9. The Paleogene Period was the golden age of large dis	nosaurs.	
	10. The K-T extinction occurred at the end of the Cret	aceous Period.	
	11. Homo erectus was probably the first hominid to lea	ve Africa.	
	12. There has been a decrease in carbon dioxide since t	he Industrial Revolut	tion.

Lesson 11.3: Critical Reading

Name		$_$ Class $___$	Date	

Read this passage from the lesson and answer the questions that follow.

Introduction

The history of life reaches the last billion years of Earth's 4.6 billion-year history with no hint of the wondrous diversity of life as humans know it. Not until nearly 80% of Earth's history had passed did multicellular life evolve. The fossil record tells the story: millions of species of fish, amphibians, reptiles, birds, mammals, mosses, ferns, conifers, flowering plants, and fungi eventually populated the seas and covered Earth, as continents crashed together and broke apart, glaciers advanced and retreated, and meteors struck, causing massive extinctions. Biologists estimate that 99% of the species that have ever lived on Earth are now extinct. Nonetheless, up to 80 million species populate our world today. Life has had a colorful and exciting last billion years, spawning diversity almost beyond our comprehension. And yet, the giant steps of evolution remain back in the Precambrian. Its catalog of evolutionary innovations is long and impressive:

- Energized elements from stardust formed simple organic molecules.
- Building blocks chained together to form catalysts and self-replicating macromolecules.
- Biochemical pathways evolved.
- Protective yet permeable membranes enclosed the catalysts, replicators, and their metabolic retinue.
- Early prokaryotic cells "learned" to make ATP by splitting glucose.
- Other cells began to harvest the energy of sunlight through photosynthesis.
- Photosynthetic cyanobacteria produced vast amounts of "waste" oxygen, dramatically altering Earth's atmosphere.
- The oceans rusted and iron ore was deposited.
- An ozone layer formed, shielding life from UV radiation.
- The "oxygen catastrophe" killed many anaerobic prokaryotes.
- Still other prokaryotes "learned" to use the new oxygen to release the energy remaining in carbohydrate products of glycolysis.
- Endosymbiosis created eukaryotes, firmly establishing the three major evolutionary lineages, which today still comprise the living world.

The timing and exact nature of most of these innovations is speculative; indeed, the first few may have been extraterrestrial and even deeper in time. They comprise perhaps the most important landmarks in the evolution of life, but the fossil record is sketchy due to prokaryote size, rock layer metamorphosis, and burial by more recent rocks.

Questions

1. At what point in Earth's history did multicellular life evolve?

_			
_			
_			
2. State the number of species and the per	cent of Earth's	total species that ex	ist today
-		total species that ex	ist today.
3. List significant events that occurred in the evolution of early prokaryotes.	he early evolution	on of life on Earth up	through the
-			
-			
-			
4. How did the evolution of photosynthesi forms?	s by cyanobacte	ria affect early Eart	h and its life
-			
-			
-			
5. Why is the fossil record sketchy for the	early evolution	of life on Earth?	
-			
-			
-			
Lesson 11.3: Multiple Choice	ee		
Name	Class	Date	
Circle the letter of the correct choice.			
1. The evolution of sexual reproduction	occurred about		
(a) 4 billion years ago.			
(b) 3 billion years ago.(c) 2 billion years ago.			
(d) 1 billion years ago.			

	_ 1. Paleozoic Era
_ = = 11	
Tern	
	the vocabulary term with the correct definition.
Nam	e Class Date
Les	son 11.3: Vocabulary
	(c) glaciations (d) megafauna
	(a) human actions(b) impact events
7.	What is the main cause of the "sixth extinction"?
	(b) fishes. (c) insects. (d) dinosaurs.
0.	(a) birds.
6.	(d) humans. During the Paleocene, mammals took over ecological niches formerly occupied by
	(a) amphibians.(b) dinosaurs.(c) hominids.
5.	The massive Permian extinction allowed an adaptive radiation of
	 (a) outcompete fish. (b) reproduce on land. (c) survive in the water. (d) live on the ocean floor.
4.	The evolution of eggs with shells allowed vertebrates to
	 (a) They had scaly skin and claws. (b) They lacked jaws and had armor. (c) They spent part of the time on land. (d) They evolved during the Jurassic Period.
3.	Which statement is true about the first fish?
	 (a) Neogene Period. (b) Cambrian Period. (c) Cretaceous Period. (d) Quaternary Period.
2.	Nearly all modern animal phyla first appeared during the

2. trilobite
3. liverwort
4. Permian Period
5. Mesozoic Era
6. Pangaea
7. Jurassic Period
8. Cenozoic Era
9. Paleocene Epoch
10. Holocene Epoch

Definition

- a. first true plant to live on land
- b. supercontinent that eventually broke up into all the continents we know today
- c. most recent era of the geologic time scale
- d. geologic era that starts with the Cambrian Period
- e. first epoch of the Cenozoic Era
- f. era known as the "age of dinosaurs"
- g. current epoch of the geologic time scale
- h. arthropod that was common during the Cambrian Period
- i. last period of the Paleozoic Era
- j. period of the Mesozoic Era when large dinosaurs were widespread

Chapter 12

Evolutionary Theory Worksheets

12.1 Chapter 12: Evolutionary Theory

- Lesson 12.1: Darwin and The Theory of Evolution
- Lesson 12.2: Evidence for Evolution
- Lesson 12.3: Evolution Continues Today Can We Control It?

12.2 Lesson 12.1: Darwin and The Theory of Evolution

Lesson 12.1: True or False

$\mathbf{Name}_{}$	(Class	_ Date
Write true	e if the statement is true or false if t	he statement is fal	lse.
works.	1. Darwin is the only scientist respo	nsible for our unde	erstanding of how evolution
their offsp	2. Traits that an individual acquiroring.	es during their lif	etime can be passed on to
"gentlema	_ 3. Darwin studied to become a document scientist."	tor and then a cle	ergyman before becoming a
environme	4. Natural selection selects favoragent.	ble characteristics	s that best suit the future
	5. Natural selection that is guided	oy humans is calle	d artificial selection.
	6. Variation must be heritable for r	atural selection to	o operate.
	7. Prior to Darwin and the devel	opment of evoluti	onary theory, most people

believed t	he earth to be very old.
evolutiona	_ 8. All life is related through a common ancestor is one of Darwin's two major ary ideas.
ronment.	9. An adaptation is a characteristic that helps an organism survive in its envi-
	10. Cloning is a good way to guarantee the survival of a species.
evolution.	_ 11. John Baptiste Lamarck provided nothing useful to our understanding of
from read	_ 12. Darwin's idea that individuals in a population compete for resources came ing a book by Thomas Malthus.
wished he	13. Darwin regretted using the term natural selection to describe his theory and had called it "natural preservation" instead.
	14. Mutations occur when an organism needs change in order to survive.
	_ 15. Species produce more offspring than can survive in the environment.
Lesson	12.1: Critical Reading
Name	Class Date

Darwin's Theory of Evolution

Darwin delighted in the great diversity of life, but also saw unity within that diversity. He saw striking patterns in the similarities and differences. Seeking an explanation for those patterns, he developed the concept of natural selection. Natural selection explains how today's organisms could be related – through "descent with modification" from common ancestors. Natural selection explains the story told by the fossil record – the long history of life on Earth. Natural selection is a scientific answer (if only partial) to the old questions: Who are we? How did we come to be?

Read this passage from the lesson and answer the questions that follow.

In the light of natural selection, it is easy to see that variation – differences among individuals within a pop-ulation – increases the chance that at least some individuals will survive if the environment changes. Here is a strong argument against cloning humans: if we were all genetically identical – if variation (or genetic variation) did not exist – a virus which previously could kill just some of us would either kill all of us, or none of us. Throughout the long history of life, variation has provided insurance that inevitable changes in the environment will not mean the extinction of a species. Similarly, the diversity of species ensures that envi-ronmental change will not mean the extinction of life. Life has evolved (or, the Earth's changing environment has selected) variation and diversity because they ensure

survival.

\sim	, •	
()	uestions	3
· V	account	,

Name	Class	Date
Lesson 12.1: Multiple C	hoice	
-		
-		
-		
5. Why can natural selection only be did we come to be? What questions	-	_
-	<i>"</i>	
-		
-		
4. Explain in your own words why a population's members were all identications.		e extinction of a population if that
-		
-		
-		
3. Why is variation so important to t	the continuation of l	ife on earth?
-		
-		
-		
2. In your own words, explain the me	eaning of the phrase,	"descent with modification."
-		
-		
-		
diverse. What similarities do they has and differences be explained by the t	ve in common? Diffe	v v
1. "Darwin delighted in the great div Using any two organisms of your cho	• .	v

Circle the letter of the correct choice.

- 1. A scientist who studies fossils to explore the history of life is called a
 - (a) geologist.
 - (b) botanist.
 - (c) archeologist.
 - (d) paleontologist.
- 2. Charles Darwin lived during the
 - (a) 20^{th} century.
 - (b) 19^{th} century.
 - (c) 18^{th} century.
 - (d) 17^{th} century.
- 3. What type of fossil remains did Darwin discover in Argentina that turned out to be one of the largest land mammals that have ever lived?
 - (a) Galapagos tortoise
 - (b) Ground sloth
 - (c) Giraffe
 - (d) Elephant
- 4. What is the process by which a certain trait becomes more common within a population?
 - (a) Inheritance of Acquired Characteristics
 - (b) Natural selection
 - (c) Struggle for existance
 - (d) Overproducing of offspring
- 5. Who developed a theory of evolution similar to Darwin's?
 - (a) Alfred Russel Wallace
 - (b) Charles Lyell
 - (c) John Baptiste Lamarck
 - (d) Thomas Malthus
- 6. An explanation which ties together or unifies a large group of observations is called a
 - (a) hypothesis.
 - (b) law.
 - (c) theory.
 - (d) trait.
- 7. A population of worms comes in two varieties: black worms and pink worms. A predator moves into the area that likes to eat only pink worms. What will happen to the worm population over time?
 - (a) The population will eventually consist of more black worms than pink worms.

- (b) The population will eventually consist of more pink worms than black worms.
- (c) The predator will eat all the worms causing the worm population to go extinct.
- (d) The population will not change.

Lesson 12.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. Natural Selection		
2. Charles Darwin		
3. John Steven Henslow		
4. John Baptiste Lamarck		
5. Theory		
6. Law		
7. Charles Lyell		
8. Artificial Selection		
9. Thomas Malthus		
10. Alfred Russell Wallace		

Definition

- a. The process by which a certain trait becomes more common within a population, including heritable variation, overproduction of offspring, and differential survival and reproduction.
- b. Concluded that the earth was very old and that many small changes over long periods of time led to present-day landscapes.
- c. A statement which reliably describes a certain set of observations in nature; usually testable.
- d. An explanation which ties together or unifies a large group of observations.
- e. Described competition among humans as a result of overpopulation and too little food which lead to the realization that all animals must compete to survive.
- f. Origin of Species author
- g. Darwin's mentor
- h. Animal or plant breeding where humans determine which individuals will reproduce.

- i. Developed independently the same theory of evolution as Darwin
- j. Although incorrect, his concept of inheritance of acquired characteristics provided more interest to the idea that life had evolved

12.3 Lesson 12.2: Evidence for Evolution

Lesson 12.2: True or False

Name	_ Class	Date
Write true if the statement is true or false	if the stateme	nt is false.
1. Goosebumps are a type of ve	stigial structu	re found in humans.
2. Analogous structures are structure are structure are structures are structures are structures.	ructures which	evolved from the same structure
3. Plate tectonics explains the cresult of continental drifting.	distant locatio	ns of closely related species as the
4. The fossil record for horses showing the environment.	ows gradual ch	anges which correspond to changes
5. Evolution is like a progressing perfect as time goes on.	ng ladder, whe	re species become more and more
6. Species that are related to each near each other on a cladogram.	ch other by a r	ecent common ancestor are located
7. The number of differences in the time elapsed since two organisms share		between any two species measures neestor.
8. Human DNA sequences are 5	50-55% the san	ne as those of chimpanzees.
9. Comparative embryology rev	eals homologie	s which form during adulthood.
10. The wing of a bat and the	e wing of a bi	rd are considered to be analogous
structures.		
11. The fossil record for horse information are missing.	evolution has	large gaps where huge amounts of
12. Fossils are easily formed and	d maintained o	over time.
13. A fossil can be dated by located layer in which it was found.	oking at the re	elative position of the fossil in the
14. The study of fossils to explo	ore the history	of life is called paleontology.

observation. Lesson 12.2: Critical F	Reading	a question or explanation of ar
Name		
Read this passage from the lesson	and answer the questions	s that follow.
Molecular Biology		
Did you know that your genes are time, the "comparative anatomy" more convincing set of homologies genes made of DNA. The order of a protein, which does the work of chosen (or not) in natural selection sequence of nucleotides in a gene the universality of DNA genes an ancestry. Yet there is more.	of the molecules which is to the evidence for evolution of nucleotides—As, Ts, Cs, r builds the structures of the formal organisms, a single into a corresponding characteristic.	make up life has added an ever ution. All living organisms have and Gs - in each gene codes for life. Proteins govern the traits agle Genetic Code translates the ain of 20 amino acids. By itself
If we compare the sequence of nuclear another, we see remarkable similar same as those of chimpanzees, an similar metabolism. All organism processes such as cellular respirate similar DNA sequences among exancestry.	ities. For example, humand 50% the same as a bars have genes for DNA retion. Although metaboli	n DNA sequences are 98-99% the nana's! These similarities reflec- plication, protein synthesis, and c processes do not leave fossils
Questions		
1. What things are made up of Dl	NA?	
-		
-		
-		
2. What four substances make up	DNA and what do these	substances do?
-		
-		
-		
3. What do you think is meant by for proteins is strong evidence for		lity of DNA genes and their code

_			
_			
_			
4. What does the amount of simila	rity in two species' DN	A indicate?	
- What does the amount of similar	arty in two species Divi	i marcate:	
_			
_			
5. What type of genes make up the	- 50% that you share wi	th bananas?	
-	5 5070 tilde you sildle wi	on senemes.	
_			
_			
Lesson 12.2: Multiple	Choice		
Name	Class	Date	
Circle the letter of the correct choice			
,			
1. Structures that evolved indep	pendently in two differen	at species are referred to	as
(a) homologous.(b) vestigial.			
(c) analogous.			
(d) comparative.			
2. The study of the developmen	t of vertebrate animals	before birth or hatching	is called
(a) anatomy.(b) embryology.			
(c) homology.			
(d) biogeography.			
3. What two structures appear	in the early developmen	t of all vertebrate embry	vos?
(a) fur and nails			
(b) feathers and lungs(c) fingers and toes			
(d) gill slits and a tail			
4. Which of the following types	of evidence for evolution	n did Darwin not know	about?
(a) Molecular data			

(b) Biogeography(c) Comparative anatomy(d) Fossils		
5. A cladogram is a tree-like diagram use	d to show	
(a) the position of fossils found in diffe(b) analogous structures found in diffe(c) how life may evolve in the future.(d) evolutionary relationships among	erent organisms.	
6. The process where a single ancestor raspecies is known as	apidly evolves into	a large number of different
(a) homology.(b) adaptive radiation.(c) island biogeography.(d) adaptation.		
7. The study of the distribution of plants their distribution is called	and animals and	the processes that influence
(a) biogeography.(b) comparative anatomy.(c) comparative embryology.(d) molecular data.		
Lesson 12.2: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct of	lefinition.	
Term		
1 .1.1		

Name	$___$ Class $___$	Date
Match the vocabulary term w	with the correct definition.	
Term		
1. cladogram		
2. homologous struct	ures	
3. embryology		
4. biogeography		
5. vestigial structure	S	
6. analogous structur	es	
7. fossils		
8. comparative anato	omy	
9. relative dating		

1	10. pa	aleonto	ology
---	--------	---------	-------

Definition

- a. The study of patterns of distribution of species on continents and islands.
- b. Similar structures with identical functions shared by distantly related species that are a result from natural selection in similar environments, but that evolved independently.
- c. The study of the similarities and differences in organisms' structures.
- d. Structures which evolved from the same structure within a common ancestor; may or may not serve the same function.
- e. The study of fossils to explore the history of life.
- f. A tree-like diagram showing evolutionary relationships according to a given set of data, such as molecular data.
- g. Structures which are reduced and perhaps even nonfunctional in one species but homologous to functional structures in a closely related species.
- h. A technique for aging fossils based on comparing their positions within rock layers; fossils in lower layers are usually older than fossils in upper layers.
- i. A branch of comparative anatomy which studies the development of vertebrate animals before birth or hatching.
- j. The mineralized remains of an animal, plant, or other organism.

12.4 Lesson 12.3: Evolution Continues Today - Can We Control It?

Lesson 12.3: True or False

Name	Class_		Date	
Write true if	f the statement is true or false if the sta	tement is fals	e.	
	Darwin used his observations of artifice his theory of evolution by natural selections.	· · · · · · · · · · · · · · · · · · ·	, as he called it,	to derive
2.	. Transgenic animals are produced by in	nterbreeding to	wo different spec	ies.
3.	. The first mammal to be cloned was a	type of dog na	amed Dolly.	
4.	. Cloning eliminates variation in a popu	lation.		
5.	. Most pest population evolve resistance	e to pesticides	s after a few shor	t genera-
tions of expos	osure.			

Name	Class Date
Lesson	12.3: Critical Reading
	15. Transgenic animals have provided no benefits to humans.
ulation is human.	14. The biggest concern regarding the spread of viruses among the human popthat the virus will mutate and become more easily transmissible from human to
	13. Avian flu is a type of influenza in which the main host is a type of bird.
changes in	12. Changes in beak size and body size in Darwin's Finches were determined by a weather.
migrating	11. Peppered moth populations adapted to changes in their environment by to a new location.
	10. A worldwide epidemic is called a pandemic.
	9. Sharing antibiotics is a good idea.
better.	_ 8. Tou should arways limsh your bottle of antibiotics even after you begin to feer
	8. You should always finish your bottle of antibiotics even after you begin to feel
	7. Antibiotics should be taken to treat the common cold.
	6. XDR-Tuberculosis has not evolved resistance to antibiotics.

Evolution of Resistance

The evolution of resistance is a growing problem for many disease-causing bacteria and also for parasites, viruses, fungi, and cancer cells. The "miracle" of drug treatment which appeared to protect humans from disease may be short-lived. How does resistance happen? How can we prevent it?

Read this passage from the lesson and answer the questions that follow.

First, recognize that resistance describes the bacterium (or other microorganism) – not the human. Bacteria multiply much more rapidly than humans, and therefore can evolve much more rapidly. Consider a population of bacteria infecting an individual with tuberculosis. Like all populations, individuals within that population show variation. Mutations add more variation. By chance, mutation may change the chemistry of one or a few bacteria so that they are not affected by a particular antibiotic. If the infected human begins to take antibiotics, they change the environment for the bacteria, killing most of them. However, the few bacteria which by chance have genes for resistance will survive this change in environment and reproduce offspring which also carry the genes. More and more of the bacterial population will be resistant to antibiotics, because the antibiotics select for resistance. The bacteria are merely evolving in response to changes in their habitats! If the resistant bacteria are

Questions			
1. Compare the rate of reproductio	n in humans to the rate	e of reproduction in bacteria.	
-			
-			
-			
2. How does the difference in rates the amount of time it takes each or	_	en humans and bacteria relate	e to
-			
-			
-			
3. Are all individual bacterium in a	population of bacteria	the same?	
-			
-			
-			
4. What role does chance play in the	ne development of antib	iotic resistance?	
-			
-			
-			
5. Explain in your own words how a over time.	population of bacteria	evolves resistance to an antibio	otic
-			
-			
-			
Lesson 12.3: Multiple 0	Choice		
Name	Class	Date	
Circle the letter of the correct choice	ce.		

174

www.ck12.org

transmitted to another human "habitat", their population continues to expand, and if the new "habitat" takes different drugs, natural selection may result in multi-drug resistance.

- 1. The mating of two different species to produce offspring is called
 - (a) cloning.
 - (b) hybridization.
 - (c) artificial selection.
 - (d) coevolution.
- 2. Which of the following outcome of genetic engineering provides NO direct benefits to humans?
 - (a) invention of new medicines
 - (b) transgenic animals
 - (c) genetic pollution
 - (d) improved agriculture
- 3. The development of resistance to antibiotics is a classic example of
 - (a) genetic engineering.
 - (b) natural selection.
 - (c) cloning.
 - (d) transgenic animals.
- 4. Why does cloning contradict the principles of natural selection?
 - (a) It produces no variation.
 - (b) It is too slow.
 - (c) It is too fast.
 - (d) It is another mechanism by which evolution can occur.
- 5. Epidemics that become wide-spread and impact large numbers of people world-wide are referred to as
 - (a) pandemics.
 - (b) genetic pollution.
 - (c) global epidemics.
 - (d) superbugs.
- 6. What is the virus which causes AIDS that is quickly becoming resistant to anti-viral medications?
 - (a) Tuberculosis
 - (b) Swine flu
 - (c) Avian flu
 - (d) HIV
- 7. The name of a virus that is transmissible from birds to humans is called
 - (a) Tuberculosis.
 - (b) Swine flu.
 - (c) Avian flu.
 - (d) HIV.

Lesson 12.3: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. cloning		
2. genetic engineering		
3. transgenic animal		
4. coevolution		
5. mutation		
6. geologic time		
7. genetic pollution		
8. genetically modified organ	nism	
9. natural selection		
10. artificial selection		

Definition

- a. An animal which possesses genes of another species.
- b. A change in the nucleotide sequence of DNA or RNA.
- c. The process of creating an identical copy of an organism
- d. The process by which a certain trait becomes more common within a population, including heritable variation, overproduction of offspring, and differential survival and reproduction.
- e. An organism whose genes have been altered by genetic engineering.
- f. The manipulation of an organism's genes, usually involving the insertion of a gene or genes from one organism into another.
- g. Time on the scale of the history of Earth, which spans 4.6 billion years.
- h. Animal or plant breeding that involves humans choosing which individuals will reproduce according to desirable traits.
- i. The natural hybridization or mixing of genes of a wild population with a domestic or feral population.
- j. A pattern in which species influence each other's evolution and therefore evolve in tandem.

Chapter 13

Evolution in Populations Worksheets

13.1 Chapter 13: Evolution in Populations

- Lesson 13.1: Genetics of Populations
- Lesson 13.2: Genetic Change in Populations
- Lesson 13.3: The Origin of Species

13.2 Lesson 13.1: Genetics of Populations

Lesson 13.1: True or False

Name			Class	Date	
Write true	e if	the statement is true and false	if the state	ement is false.	
	1.	Darwin didn't know how traits	are passed	ed from parent to offspring.	
	2.	Albinism is caused by having t	wo copies	of a recessive gene.	
heterozygo		An individual who has ident for that gene.	ical copies	s of the same gene is referred to	as
	4.	Mutations in body cells do not	affect the	e DNA in eggs and sperm.	
	5.	Sexual reproduction can create	new allele	es for a population.	
	6.	Individuals do not evolve.			
	7.	Genes code for proteins.			
	8.	Mutations never improve an or	ganism's f	fitness.	
	9.	It is possible to determine an o	organism's	genotype by its phenotype.	

10. The ability of an organism wisknown as fitness.	th a certain	n genotype to	survive and reproduce
Lesson 13.1: Critical Reading	g		
Name	Class	Da	te
Read this passage from the lesson and answe	er the quest	ions that follo	w.
Populations and Gene Pools			
Individuals do not evolve. Natural selection reproduce, but it cannot change the individ of organisms of a single species in a certain differential survival on individuals within it the level of genes and alleles in order to disc	ual's genes. area – evo Populati	However, a plus when nation genetics	population – a group ural selection imposes studies populations at
If we consider all the alleles of all the ger we have defined the gene pool for that p variation – that raw material for natural sele a rabbit population, for example, includes allelength, tail shape, and more. If a population individual gene, s/he may look at the gene p	opulation. ection – wit eles which d geneticist	Gene pools of thin a population etermine coat wants to focus	contain all the genetic ion. The gene pool for color, ear size, whisker on the variation in an
Questions			
1. Why can't an individual evolve?			
-			
-			
-			
2. Name some populations of organisms tha	t live in you	ır neighborho	od.
-			
-			
-			
3. What does population genetics study?			
-			
-			
4. What are some alleles present in the general	pool of a 1	rabbit populat	ion?

-		
-		
-		
5. What are some alleles present in	the gene pool of a hu	man population?
-		
-		
-		
Lesson 13.1: Multiple C	Thoico	
_		D 4
Name_		Date
Circle the letter of the correct choice	2.	
1. Segments of DNA located on ε	a particular place on	a chromosome are called
(a) proteins(b) alleles(c) genes(d) nitrogenous bases		
2. How many copies of an individ	lual gene do humans	receive?
 (a) 1 (b) 2 (c) 4 (d) It varies from person to p 	oerson.	
3. The mutation that causes sickly	le cell anemia is what	type of mutation?
(a) single-base substitution(b) neutral(c) chromosomal(d) non-heritable		
4. Mutations can be		
(a) neutral(b) harmful(c) helpful(d) all of the above		
5. If you saw a rabbit with brown	n fur color, what wou	ld you be able to determine about

the rabbit?

(a)	Its phenotype for fur color.
\ /	Its genotype for fur color.
` /	The number of offspring it will be able to produce. The age of the rabbit.
()	
	amount of a particular allele in a population is referred to as allele
()	abundance
` '	frequency popularity
` /	potential
7. Wha	at is it called when a particular gene is transcribed and translated?
(a)	replication
` '	coding
(c)	expression sequencing
(4)	
(d)	sequencing
Lesson	13.1: Vocabulary Class Date
Lesson	13.1: Vocabulary
Lesson	13.1: Vocabulary Class Date
Lesson Name	13.1: Vocabulary Class Date e vocabulary term with the correct definition.
Lesson Name Match the Term	13.1: Vocabulary ClassDate evocabulary term with the correct definition.
Lesson Name Match the Term1.	13.1: Vocabulary Class Date e vocabulary term with the correct definition. gene allele
Lesson Name Match the Term 1 2 3.	13.1: Vocabulary Class Date e vocabulary term with the correct definition. gene allele
Lesson Name Match the Term1234.	13.1: Vocabulary Class Date e vocabulary term with the correct definition. gene allele genotype
Lesson Name Match the Term12345.	

Definition

_____ 8. gene pool

_____ 10. mutation

____ 9. allele frequency

- a. Describes a genotype or individual having two copies of the same allele for a gene.
- b. Within a population, the sum of all the alleles of all the genes of all the individuals.

- c. A group of organisms of a single species living within a certain area.
- d. The physical appearance of an organism determined by a particular genotype (and sometimes also by the environment).
- e. The genetic makeup of an organism; specifically, the two alleles present.
- f. A change in the nucleotide sequence of DNA or RNA.
- g. A segment of DNA which codes for a protein or RNA molecule; a unit of inheritance.
- h. An alternative form or different version of a gene.
- i. The fraction (usually expressed as a decimal) of a population's gene pool made up of a particular allele.
- j. Describes a genotype or individual having two different alleles for a gene.

13.3 Lesson 13.2: Genetic Change in Populations

Lesson 13.2: True or False

Name			Class	_ Date
Write true	e if	the statement is true and false	if the statement is f	alse.
	1.	A population that is evolving is	s said to be in Hard	y-Weinberg equilibrium.
	2.	Large populations are more vuln	nerable to genetic d	rift than small populations.
	3.	Genetic drift is a random proce	ess.	
frequencie		Macroevolution can be measured	d as a generation-to	-generation change in allele
parent to		Mutations must occur in all boospring.	dy cells in order for	them to be passed on from
	6.	Skin color is a polygenic trait in	n humans.	
	7.	Natural selection acts on pheno	types, rather than	genotypes.
changes.	8.	. Neutral mutations hold pote	ential for future se	lection if the environment
favoring in	9. ndi	. Stabilizing selection shifts the viduals with an extreme form of	- *	away from the average by
 potential i		O. Kin selection involves the sac order to help a close relative repr		ual of his/her reproductive

Lesson 13.2: Critical Reading

Name	Class	Date
Read this passage from the less	on and answer the questions t	that follow.
Natural Selection		
Another way to look at natura with a certain genotype to rep organism's genes in all of the n types affect fitness; the genotyp genotype frequencies is natural	roduce. Fitness can be measext generation's genes. When be with higher fitness become	ured as the proportion of tha differences in individual geno
An intriguing corollary of gen reproductive success or even sur and reproduction of close relat Examples include subordinate potential mates and honeybee young to ensure that their mot	vival can actually increase fith tives who share a significant male turkeys, who help their workers, who spend their live	less if they promote the survival proportion of the same genese dominant brothers display to less collecting pollen and raising
Questions		
1. What is fitness?		
-		
-		
-		
2. Organism A lives a long life a produces offspring. Which orga		rganism B lives a short life, bu
-		
-		
-		
3. How is fitness measured?		
-		
-		
-		
4. What do subordinate male t	urkeys do in order to increase	e their fitness?
-		

-						
5.	Why does	s an organ	ism benefit	from helping	g its kin surviv	e and reproduce?
-						
-						
_						

Lesson 13.2: Multiple Choice

Name	${ m Class}$	${f Date}$

Circle the letter of the correct choice.

- 1. Large changes in a species (speciation) over geologic time would be considered
 - (a) microevolution
 - (b) macroevolution
 - (c) Hardy-Weinberg model
 - (d) genetic equilibrium
- 2. In the Hardy-Weinberg equation, what part of the equation refers to heterozygotes?
 - (a) p^2
 - (b) 2pq
 - (c) q^2
 - (d) $p^2 + 2pq + q^2$
- 3. Which of the following conditions of the Hardy-Weinberg model were not met in the cystic fibrosis example given in the text?
 - (a) no migration
 - (b) random mating
 - (c) no natural selection
 - (d) all of the above
- 4. In order for a mutation to be passed from parent to offspring it must appear in
 - (a) gametes
 - (b) any of the parents' cells
 - (c) all of the body cells
 - (d) none of the above
- 5. All of the following are examples of events that could cause genetic drift EXCEPT:
 - (a) earthquake
 - (b) flood
 - (c) fire

- (d) migration
- 6. What type of natural selection results in a shift of allele frequencies toward one extreme?
 - (a) stabilizing selection
 - (b) disruptive selection
 - (c) directional selection
 - (d) extreme selection
- 7. Why did early humans living in Africa have dark skin?
 - (a) It protected them from the harmful effects of UV radiation.
 - (b) It was caused by the type of food that was in their diet.
 - (c) It was the result of genetic drift.
 - (d) It was the result of gene flow.

Lesson 13.2: Vocabulary

Name	Class	Date
Match the vocabulary term w	with the correct definition.	
Term		
1. Hardy-Weinberg n	nodel	
2. gene flow		
3. genetic drift		
4. fitness		
5. bottleneck effect		
6. founder effect		
7. adaptive radiation		
8. kin selection		
9. stabilizing selection	n	
10. disruptive selection	on	

Definition

- a. Behaviors which sacrifice reproductive success or even survival to promote the survival and reproduction of close relatives who share a significant proportion of the same genes.
- b. Describes a population at genetic equilibrium, meeting five conditions: no mutation, no migration, very large population size, random mating, and no natural selection.

- c. The loss of diversity resulting from a drastic reduction in population size and subsequent genetic drift.
- d. The ability of an organism with a certain genotype to survive and reproduce, often measured as the proportion of that organism's genes in all of the next generation's genes.
- e. The net movement of genes into or out of a population through immigration or emigration.
- f. Random changes in allele frequencies in small populations.
- g. Selection which favors the two extremes of a phenotypic distribution the ends of a bell curve, or the homozygous phenotypes, as opposed to the average, or heterozygous phenotype.
- h. Relatively rapid evolution of several species from a single founder population to several to fill a diversity of available ecological niches.
- i. Selection which favors the average or heterozygous phenotype, resulting in no change or in a narrowing of the distribution of phenotypes.
- j. The loss of genetic diversity resulting from colonization of a new area by a small group of individuals which have broken off from a larger population.

13.4 Lesson 13.3: The Origin of Species

Lesson 13.3: True or False

Name	Class	$oxed{Date}$	
Write true if the statement is true	and false if the stateme	nt is false.	
1. The Morphological Spand biochemical similarities.	pecies Concept groups or	ganisms based on their struct	tural
2. Any two individuals to be the same species.	hat can mate and produ	ce offspring are always consid	lered
3. The Biological Specture ducing organisms.	ies Concept does not ac	dequately define as exually re	pro-
4. All humans are mem	bers of the same species	s.	
5. Geographic isolation	is required for reproduc	etive isolation to occur.	
6. Long periods of envir	conmental stability may	slow the rate of speciation.	
7. Gradualism describes of rapid speciation.	the rate of evolution as a	relatively stable with brief per	riods
8. While tetraploid plan they cannot successfully reproduce	v -	interbreed with other tetraple	oids,

9. Rivers, mountains, and glain Sympatric speciation.	ciers are example	es of geographic barriers that result
10. Differences in mating semanting lead to Sympatric speciation.	easons is an exan	mple of reproductive isolation that
Lesson 13.3: Critical Read	ling	
Name	Class	Date
Read this passage from the lesson and a	nswer the questio	ons that follow.
The Tempo of Speciation		
Speciation and extinction characterize a both. Two startling facts emerge from a successful species lives for "just" a few re have ever lived have become extinct. The the tempo and pattern of species format	careful study of t million years. Sec le last aspects of s	the fossil record: First, the average cond, over 99.9% of all species that
Over time, geographic changes isolate a drift. Mutations alter individual genoty groups colonize them. It is clear that a is considerable debate about the rate at biologists agree that single mutations sel	rpes and gene poor evolution continut which speciation	ols. New habitats form, and small ues to change life. However, there on occurs over geologic time. Most

an exception, but in general, mutations are more likely to be harmful, and selected against. Except for the special case of polyploidy, discussed above, speciation cannot occur within a single generation. So, what do we know about the rate and pattern of speciation?

Some evolutionary biologists consider the rate of evolution to be slow and constant, with small changes accumulating to form big changes – the idea of gradualism. Others (Niles Eldridge and Stephen Jay Gould), in response to the apparently "sudden" appearance of new forms in the fossil record, suggest that species diverge in bursts of relatively rapid change, and then remain stable for relatively long periods – a model known as punctuated

"leaps." Mutations in regulatory genes, which have major effects during development, may be

equilibrium. Gould maintains that speciation and evolution occur rapidly in small, peripheral populations, whereas large, central populations remain stabilized for long periods of time. It is the large, central, stable populations which are represented in our fossil record, he argues

- not the small, peripheral, evolving ones.

Questions

1. What two startling facts does the fossil record document?

_

-		
2. Why do you think 99.9% of all species	that have ever	· lived have gone extinct?
-		
-		
-		
3. While there is no debate that evolution?	on occurs, wh	at do scientists debate about with
-		
-		
-		
4. In what type of genes should a mutation	on occur in tha	at might quickly lead to speciation?
-		
-		
-		
5. Describe the two hypotheses given that	t explain the te	empo of speciation.
-		
-		
-		
Lesson 13.3: Multiple Choice	ce	
Name	Class	Date
Circle the letter of the correct choice.		
1. According to the Biological Species of the same species because a horse		· ·
(a) unable to mate.		
(b) unable to produce offspring the	at are fortile	
(c) unable to produce offspring that(d) not found in the same habitat.	u are rerune.	

2. In the Allopatric speciation experiment with fruit flies, flies that were fed on maltose preferred to mate with what type of fly?

(a) Only maltose-fed flies

 (b) Only starch-fed flies (c) Both maltose-fed flies and starch-fed flies (d) Neither maltose-fed flies ore starch-fed flies
3. The duplication of chromosome sets, often resulting in instant speciation is called
(a) diploidy (b) polyploidy (c) haploidy (d) tetraploidy
4. Sympatric speciation occurs
 (a) with no geographic barriers. (b) with geographic barriers. (c) only in certain types of organisms. (d) none of the above
5. Reproductive isolation
 (a) increases gene flow (b) decreases gene flow (c) stabilizes gene flow (d) has no effect on gene flow
6. What percentage of species that have ever lived are now extinct?
(a) 20.9% (b) 60.9% (c) 75.9% (d) 99.9%
7. The idea that the rate of evolution is slow and constant, with small changes accumulating to form big changes, is called
 (a) punctuated equilibrium (b) Biological species concept (c) ecological niche (d) gradualism
Lesson 13.3: Vocabulary
Name Class Date
Match the vocabulary term with the correct definition.
Term
1. Biological species concept
2. reproductive isolation

 3. gradualism
4. ecological niche
5. sympatric speciation
 6. Morphological species concept
7. punctuated equilibrium
8. Genealogical (evolutionary) species concept
9. allopatric speciation
 10. speciation

Definition

- a. The idea that species diverge in bursts of relatively rapid change and then remain stable for relatively long periods.
- b. The process which results in new, separate and genetically distinct groups of organisms (species).
- c. A group of organisms similar enough that they could interbreed and produce fertile offspring under natural conditions.
- d. The set of environmental conditions and resources used or required by a species; the role a species plays in its ecosystem.
- e. The idea that the tempo of evolution is slow and constant, with small changes accumulating to form big changes.
- f. A group of organisms which share a recent, unique common ancestor common ancestry without divergence.
- g. The evolution of new species from closely related populations located in the same area.
- h. The separation of closely related populations by barriers to producing viable offspring.
- i. A group of organisms which share extensive structural and biochemical similarities.
- j. The evolution of a new species from a closely related population isolated by geographic barriers.

Chapter 14

Classification Worksheets

14.1 Chapter 14: Classification

Lesson 14.1: Form and Function

Lesson 14.2: Phylogenetic Classification Lesson 14.3: Modern Classification Systems

14.2 Lesson 14.1: Form and Function

Lesson 14.1: True or False

Name	Class	Date
Write true	rue if the statement is true and false if the statement is	s false.
	1. Scientists have identified millions of different spe	ecies of organisms.
	2. Classification helps scientists understand the div	ersity of organisms.
	3. Aristotle considered birds to be the most comple	ex organisms.
	4. Linnaeus tried to classify the entire known natur	cal world.
	5. All organisms capable of moving on their own be	elong to the same class
	6. Linnaeus thought of each species as an unchangi	ng "ideal type."
	7. More than one species may have the same genus	and species names.
	8. In binomial nomenclature, the species name is a	lways capitalized.
	9. Linnaeus' method for naming species is no longe	r used.
	10. Linnaean taxonomy has not been revised since	it was first introduced.

	$11.\ \mathrm{Modern}$ classification systems are based on evolutionary relationships.
	12. Vertebrates are a subphylum in the phylum called chordates.
Lesson	14.1: Critical Reading

Read this passage from the lesson and answer the questions that follow.

Binomial Nomenclature

Name

The single greatest contribution that Linnaeus made to science is his method of naming species. This method, called **binomial nomenclature**, gives each species a unique, two-word name (also called a scientific or Latin name). Just like we have a first and last name, organisms have a distinguishable two word name as well. The two words in the name are the genus name and the species name. For example, the human species is uniquely identified by its genus and species names as *Homo sapiens*. No other species has this name.

Class

Date

Both words in a scientific name are Latin words or words that have been given Latin endings. The genus name is always written first and starts with an upper-case letter. The species name is always written second and starts with a lower-case letter. Both names are written in italics.

As another example, consider the group of organisms called *Panthera*. This is a genus in the cat family. It consists of all large cats that are able to roar. Within the genus *Panthera*, there are four different species that differ from one another in several ways. One obvious way they differ is in the markings on their fur. *Panthera leo* (lion species) has solid-colored fur, *Panthera tigris* (tiger species) has striped fur, and the other two *Panthera* species have fur with different types of spots. As this example shows, the genus name *Panthera* narrows a given cat's classification to big cats that roar. Adding the species name limits it to a single species of cat within this genus.

Why is Linnaeus' method of naming organisms so important? Before Linnaeus introduced his method, naming practices were not standardized. Some names were used to refer to more than one species. Conversely, the same species often had more than one name. In addition, a name could be very long, consisting of a string of descriptive words. For example, at one time, common wild roses were named *Rosa sylvestris alba cum rubore folio glabro*. Names such as this were obviously cumbersome to use and hard to remember.

For all these reasons, there was seldom a simple, fixed name by which a species could always be identified. This led to a great deal of confusion and misunderstanding, especially as more and more species were discovered. Linnaeus changed all that by giving each species a unique and unchanging two-word name. Linnaeus's method of naming organisms was soon widely accepted and is still used today.

Questions

1.	What is Linnaeus' single greatest contribution to science?
-	
-	
-	
2.	What two words make up the name of a species in Linnaeus' naming system?
-	
-	
-	
3.	What is the scientific name for the human species? For the tiger species?
-	
-	
-	
4.	Describe naming practices that were used before Linnaeus introduced his method.
-	
-	
-	
5.	What are the advantages of binomial nomenclature over earlier naming practices?
-	
-	
-	
\mathbf{L}	esson 14.1: Multiple Choice
N	ame Class Date
C_{i}	ircle the letter of the correct choice.
	1. Which grouping of organisms is a kingdom?
	(a) plants
	(b) cats
	(c) mammals (d) vertebrates
	2. Whales, bats, and humans all belong to the same

((a) species.(b) genus.(c) family.(d) class.	
	Among animals, the most diverse group of organ	nisms is the
((a) rodents.(b) insects.(c) amphibians.(d) reptiles.	
4. T	The scientist known as the "father of taxonomy	" was
((a) Linnaeus.(b) Aristotle.(c) Darwin.(d) Taxonomus.	
5. A	A species is a division of a(n)	
((a) genus.(b) phylum.(c) order.(d) species.	
	Which taxon is missing from the sequence belowder - family	ow? kingdom - phylum?
((a) superfamily(b) domain(c) genus(d) class	
7. L	ions have the scientific name Panthera leo. Wh	nat genus do lions belong to?
((a) leo(b) Panthera(c) Catus(d) Carnivora	
Lesso	on 14.1: Vocabulary	
Name	Class	Date
Match	the vocabulary term with the correct definition.	
Term		
	1. taxonomy	

			ee represent common ancestors. ncestor are more closely related.
Write i	true if the statement is true and fo	alse if the statemen	nt is false.
Name		Class	Date
Less	on 14.2: True or False		
14.3	Lesson 14.2: Phylo	genetic Cla	assification
j. categ	gories of organisms in a taxonomy		
i. taxo	n that is a division of a family		
h. Lini	naeus' method of naming species u	using a unique two	-word name
g. taxo	on that is a division of a class		
f. grou	p of organisms that are similar en	ough to mate and	produce offspring together
e. taxo	on that is a division of a phylum		
d. met	hod of organizing living things int	o groups	
c. majo	or grouping of organisms such as p	plants or animals	
b. taxo	on that is a division of an order		
a. taxo	on that is a division of a kingdom		
Definit	ion		
	10. binomial nomenclature		
	9. genus		
	8. family		
	7. order		
	6. class		
	5. phylum		
	4. species		
	3. kingdom		

Name	Class Date
Lesson	14.2: Critical Reading
for phylog	12. Horizontal gene transfer is a drawback in using nucleic acid base sequences genetic analysis.
common a	•
	11. Similar nucleic acid base sequences are assumed to indicate descent from a
	10. Phenetic analysis distinguishes between ancestral traits and derived traits.
tions.	9. Phylogenetic classifications always agree with Linnaean taxonomic classifica-
ancestry.	
	8. A phylogenetic classification can include any organisms without regard to
	7. There is no limit on the number of levels in a cladogram.
than repti	
	6. The phylogenetic classification of birds groups them with mammals rather
	5. Derived traits are always entirely new traits, unlike any traits in ancestors.
	4. An example of a derived trait in humans is the presence of eyes.

Cladistics

The most popular method of making phylogenetic trees is called cladistics. It depicts hypotheses about how organisms are related, based on traits of ancestor and descendent species. Cladistics was developed in the 1950s by a scientist named Willi Hennig. Over the next several decades, it became very popular. It is still widely used today.

Read this passage from the lesson and answer the questions that follow.

Clades and Cladograms

The term cladistics comes from the word clade. A clade is a group of organisms that includes an ancestor species and all of its descendants. A diagram showing evolutionary relationships within one or more clades is called a cladogram. Clade is a relative concept. How you define a clade depends on which species you are interested in. For example, all insects can be considered a clade because they have a common ancestor. Within the insect clade, butterflies, moths, and flies can also be considered a clade for the same reason.

Generating Cladograms

The starting point in constructing a cladogram is a set of data on traits of a group of related species. The traits could be physical traits, genetic traits, or both. The next step is deciding which traits were inherited from the common ancestor and which traits evolved only in a

descendant species after splitting off from the common ancestor. Traits inherited from a common ancestor are called ancestral traits. Traits that evolved since two groups shared a common ancestor are called derived traits. In cladistics, the sharing of derived traits is the most important evidence for evolutionary relationships. Organisms with the same derived traits are grouped in the same clade. More than one possible cladogram usually can be created from the same set of data. In fact, the number of possible cladograms increases exponentially with the number of species included in the analysis. Only one cladogram is possible with two species. More than 100 cladograms are possible with five species. With nine species, more than two million cladograms are possible!

Choosing the Best Cladogram

How do scientists know which of many possible cladograms is the "right" one? There is no right or wrong cladogram. However, some cladograms fit the facts better than others. Statistical methods can be used to determine which cladogram best fits a particular data set. An important deciding factor is parsimony. Parsimony means choosing the simplest explanation from among all possible explanations. In cladistics, parsimony usually means choosing the cladogram with the fewest branching points. A cladogram shows just one of many possible phylogenies for a group of organisms. It can provide insights about how evolution occurred. However, a cladogram should not be considered a model of actual evolutionary events. It does not necessarily show what really happened. It just shows what could have happened.

Questions

1.	What is cladistics?
-	
-	
-	
2.	Why is clade a relative concept?
-	
-	
-	
3.	What is the difference between ancestral traits and derived traits?
-	
-	
-	
4.	What does parsimony usually mean in cladistics?
_	

197

-

5. How is a cladogram like a hypothesis?

-

-

Lesson 14.2: Multiple Choice

Name_____ Class____ Date____

Circle the letter of the correct choice.

- 1. What was Charles Darwin trying to show with his "Tree of Life"?
- a. how life had originated
- b. how evolution had occurred
- c. what factors had led to natural selection
- d. why some species had gone extinct
- 2. Which two species in the cladogram below shared the most recent common ancestor?

- a. species A and B
- b. species B and C
- c. species C and D
- d. species A and D

3. How many clades are represented by	the cladogram in	question 2?	
a. oneb. twoc. threed. four			
4. An example of a derived trait in birds	s is		
a. eyesb. lungsc. feathersd. legs			
5. A drawback of phylogenetic classificat	tion is that it		
a. has fixed numbers and types of taxab. is based only on physical traits of forc. does not include a method for namingd. does not represent evolutionary related	rm and function. ng species.		
6. What is one problem in using DNA d	ata for phylogene	tic analysis?	
a. DNA data are rarely available for extinct species.b. DNA can pass only from parents to offspring.c. DNA is not found in microorganisms.d. DNA is found only in fossils.			
Lesson 14.2: Vocabulary			
Name	Class	Date	
Match the vocabulary term with the corr	ect definition.		
Term			
1. phylogeny			
2. phylogenetic tree			
3. common ancestor			
4. cladistics			

5. clade	
6. cladogram	
7. ancestral traits	
8. derived traits	
9. parsimony	
10. phylogenetic classification	
Definition	
a. last ancestral species that two descendant species	s shared
b. diagram showing evolutionary relationships with	in one or more clades
c. evolutionary history of a group of genetically rela	ated organisms
d. traits inherited from a common ancestor	
e. method of making evolutionary trees based on tr	aits of ancestor and descendant species
f. diagram representing a phylogeny	
g. choosing the simplest explanation from among a	ll possible explanations
h. classification of organisms on the basis of evolut	ionary relationships
i. traits that evolved since two groups shared a con	nmon ancestor
j. group of organisms that includes an ancestor spe	cies and all of its descendants
14.4 Lesson 14.3: Modern Cla Lesson 14.3: True or False	ssification Systems
Name Class	Date
Write true if the statement is true and false if the s	statement is false.
1. The Linnaean system of classification	was first revised in the late 1900s.
2. By 1977, a total of six new kingdoms	had been added to the Linnaean system.
3. The protist kingdom originally include	ed both bacteria and protozoa.
4. Bacteria were placed in their own kirdo not make their own food.	ngdom when it was discovered that they
5. The original Monera kingdom was lat	er renamed the Eukarya domain.
6 The five-kingdom classification system	n included the Fungi kingdom

Name	Class Date
Lesson	14.3: Critical Reading
future.	12. The three-domain system of classification is unlikely to be revised in the
	11. Animals and archaea are currently classified in the same domain.
their cell 1	10. Archaea were found to differ from the other organisms in the composition of membranes.
combined.	9. There are more organisms in the Eukarya domain than in both other domains
	8. The Eubacteria kingdom was later re-classified as the Archaea domain.
Eukarya.	7. The last kingdom to be added to Linnaeus' original classification was the

Domains

The six-kingdom system didn't show that all four eukaryote kingdoms are more closely related to each other than to the two bacteria kingdoms. It also didn't show that the two bacteria kingdoms are as different from each other as they are from the eukaryote kingdoms. To show these similarities and differences, a new taxon, called the domain, was introduced. It was defined as a taxon higher than the kingdom.

Read this passage from the lesson and answer the questions that follow.

The Three-Domain System

In 1990, a new classification system was introduced that contained three domains: Bacteria, Archaea, and Eukarya. The Bacteria domain was formerly the Eubacteria kingdom, and the Archaea domain was formerly the Archaebacteria kingdom. The Eukarya domain includes all four eukaryote kingdoms: plants, animals, protists, and fungi. The three-domain system emphasizes the similarities among eukaryotes and the differences among eukaryotes, bacteria, and archaea. By using domains, these relationships could be shown without replacing the popular six-kingdom system. Archaea were first found in extreme environments. For example, they were found in the hot water geysers in Yellowstone National park. Archaea have since been found in all of Earth's habitats. They are now known to be present everywhere in high numbers. They may contribute as much as 20 percent to Earth's total biomass. The three-domain system was quickly adopted by many other biologists. There were some critics, however, who argued that the system put too much emphasis on the uniqueness of Archaea. Later studies confirmed how different Archaea are from other organisms. For example, organisms belonging to Archaea were found to differ from both Eukarya and Bacteria in the composition of their cell membranes and the system they use for DNA replication.

These differences convinced most critics that the three-domain system was justified. After its introduction in 1990, the three-domain system became increasingly popular. Within a decade of its introduction, it had largely replaced earlier classifications.

How Are the Three Domains Related?

Comparisons of ribosomal RNA base sequences showed that organisms belonging to Eukarya are more similar to Archaea than they are to Bacteria. This suggested the hypothesis that Archaea and Eukarya shared a more recent common ancestor with each other than with Bacteria. However, the results of a study published in 2007 seem to conflict with this hypothesis. Comparing DNA base sequences, the 2007 study suggested that the domain Archaea may be older than either Bacteria or Eukarya. That would make Archaea the most ancient group of organisms on Earth. Which, if either, hypothesis is correct is not yet known. Scientists need to learn more about Archaea and their relationships with other organisms to resolve these questions.

Questions

Where does the domain fit into Linnaean taxonomy?
Why was there a need for the domain?
List the domains of the three-domain system.
What kingdoms are included in each of the three domains?
State two current hypotheses about how the three domains are related.

_

Lesson 14.3: Multiple Choice

Name	Class	Date	

Circle the letter of the correct choice.

- 1. Protozoa were originally classified as animals because
 - (a) they consist of just one cell.
 - (b) they do not have a nucleus.
 - (c) they lack a cell membrane.
 - (d) they can move on their own.
- 2. When the protist kingdom was first introduced in 1866, it consisted of all known
 - (a) fungi.
 - (b) microorganisms.
 - (c) plants.
 - (d) animals.
- 3. In a bacterial cell, the cell's organelles may
 - (a) be found in the nucleus.
 - (b) lack surrounding membranes.
 - (c) have nuclear membranes.
 - (d) contain DNA.
- 4. All of the following are eukaryotes except
 - (a) frogs.
 - (b) halobacteria.
 - (c) molds.
 - (d) mushrooms.
- 5. Bacteria that were once classified in the Eubacteria kingdom are now placed in the
 - (a) Monera kingdom.
 - (b) Bacteria domain.
 - (c) Archaea domain.
 - (d) Eukarya domain.
- 6. The human species is placed in the domain called
 - (a) Chordata.
 - (b) Mammalia.
 - (c) Eukarya.

- (d) Animalia.
- 7. At present, the most widely used classification system is the
 - (a) five-kingdom system.
 - (b) three-kingdom system.
 - (c) three-domain system.
 - (d) one-domain system.

Lesson 14.3: Vocabulary

Name	_ Class	Date
Match the vocabulary term with the correct	definition.	
Term		
1. protozoa		
2. Protista		
3. prokaryote		
4. eukaryote		
5. Monera		
6. fungi		
7. domain		
8. Bacteria		
9. Archaea		
10. Eukarya		
Definition		
a. kingdom of single-celled eukaryote organ	nisms such as pro-	tozoa
b. organism whose cells have nuclei		
c. original name of the kingdom that include	ded all bacteria	
d. kingdom of eukaryote organisms such as	s mushrooms and	molds
e. domain that was formerly the Archaebae	cteria kingdom	
f. single-celled organisms that can move on	their own	
g. domain that includes all four eukaryote	kingdoms	
h. domain that was formerly the Eubacteri	a kingdom	

- i. organism whose cells lack nuclei $\,$
- j. taxon higher than the kingdom

Chapter 15

Principles of Ecology Worksheets

15.1 Chapter 15: Principles of Ecology

- Lesson 15.1: The Science of Ecology
- Lesson 15.2: Flow of Energy
- Lesson 15.3: Recycling Matter

15.2 Lesson 15.1: The Science of Ecology

Lesson 15.1: True or False

Name	Clas	ss	Date
Write true	if the statement is true and false if the	statement is fa	ulse.
1	1. Ecology is usually considered to be	a branch of biol	logy.
2	2. The environment of an organism inc	ludes only nonl	iving physical factors.
3	3. The biosphere extends from sea leve	l to about 11,00	00 meters above sea level.
4	4. An important ecological issue is the	rapid growth o	f the human population.
5	5. A community is the biotic compone	nt of an ecosyst	em.
6	6. An ecosystem is always closed in ter	ms of energy.	
7	7. An ecosystem depends on continuous	inputs of matte	er from outside the system
8	8. Organisms that depend on different	food sources ha	ave different niches.
(9. Mammals that live in very cold ha	bitats must hav	ve insulation to help then
stay warm.			

	10.	Different species cannot occupy the same niche in the same geographic area
for very lo	ng.	
	11.	Field studies refer to the collection of data in a field, meadow, or other open
area.		
	12.	Ecologists use inferential statistics to describe the data they collect.
Lesson	15	5.2: Critical Reading
Name		Class Date

Read this passage from the lesson and answer the questions that follow.

Ecosystem

An ecosystem is a natural unit consisting of all the living organisms in an area functioning together with all the nonliving physical factors of the environment. The concept of an ecosystem can apply to units of different sizes. For example, a large body of fresh water could be considered an ecosystem, and so could a small piece of dead wood. Both contain a community of species that interact with one another and with the abiotic components of their environment.

Like most natural systems, ecosystems are not closed, at least not in terms of energy. Ecosystems depend on continuous inputs of energy from outside the system. Most ecosystems obtain energy from sunlight. Some obtain energy from chemical compounds. In contrast to energy, matter is recycled in ecosystems. Elements such as carbon and nitrogen, which are needed by living organisms, are used over and over again.

Niche

One of the most important ideas associated with ecosystems is the niche concept. A niche refers to the role of a species in its ecosystem. It includes all the ways species' members interact with the abiotic and biotic components of the ecosystem. Two important aspects of a species' niche include the food it eats and how it obtains the food.

Habitat

Another aspect of a species' niche is its habitat. A species' habitat is the physical environment to which it has become adapted and in which it can survive. A habitat is generally described in terms of abiotic factors, such as the average amount of sunlight received each day, the range of annual temperatures, and average yearly rainfall. These and other factors in a habitat determine many of the traits of the organisms that can survive there.

Consider a habitat with very low temperatures. Mammals that live in the habitat must have insulation to help them stay warm. Otherwise, their body temperature will drop to a level that is too low for survival. Species that live in these habitats have evolved fur, blubber, and other traits that provide insulation in order for them to survive in the cold.

Human destruction of habitats is the major factor causing other species to decrease and become endangered or go extinct. Small habitats can support only small populations of organisms. Small populations are more susceptible to being wiped out by catastrophic events from which a large population could bounce back.

Ω	uestions	;

Circle the letter of the correct ch	noice	
Name	Class	Date
Lesson 15.1: Multiple	e Choice	
•		
5. What factors make up a speci	les nabitat?	
. XXII . 1 C . 1		
4. Define niche. What are two a	spects of a niche?	
3. What happens to matter in ed	cosystems?	
2. How do ecosystems obtain end	ergy?	
i. What is an ecosystem: Give a	an example.	
1. What is an ecosystem? Give a	an example	

- 1. Abiotic components of the environment include
 - (a) air temperature.
 - (b) other species.
 - (c) producers.
 - (d) all of the above.
- 2. The chief food producers in the ocean are
 - (a) plants.
 - (b) zooplankton.
 - (c) phytoplankton.
 - (d) fish.
- 3. Coyotes and rabbits that live in the same area
 - (a) are in direct competition with each other.
 - (b) have a predator-prey relationship.
 - (c) belong to the same population.
 - (d) have the same niche.
- 4. Aspects of a species' habitat include
 - (a) the average rainfall it receives.
 - (b) the amount of sunlight it gets.
 - (c) the range of temperatures it experiences.
 - (d) all of above.
- 5. The niche of a plant includes all of the following except its
 - (a) role as a producer.
 - (b) need for sunlight.
 - (c) use of soil nutrients.
 - (d) genetic makeup.
- 6. According to the competitive exclusion principle, if two species occupied the same niche in the same area, they would
 - (a) outcompete species in other niches.
 - (b) move to a different habitat.
 - (c) be in competition with each other.
 - (d) both go extinct.
- 7. An example of a descriptive statistic is a(n)
 - (a) hypothesis.
 - (b) summary.
 - (c) inference.
 - (d) mean.

Lesson 15.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the c	orrect definition.	
Term		
1. ecology		
2. organism		
3. abiotic components		
4. biotic components		
5. biosphere		
6. population		
7. community		
8. ecosystem		
9. niche		
10. habitat		
Definition		
a. living organisms in the environmen	nt	

- b. physical environment to which an organism has become adapted
- c. populations of different species that live in the same area and interact with one another
- d. scientific study of the interactions of living things with each other and their environments
- e. role of a species in its ecosystem
- f. areas of Earth where all organisms live
- g. life form consisting of one or more cells
- h. natural unit consisting of all the living organisms in an area together with all the nonliving physical factors of the environment
- i. nonliving physical aspects of the environment
- j. organisms of the same species that live in the same area and interact with one another

15.3 Lesson 15.2: Flow of Energy

Lesson 15.2: True or False

Name	Class Date
Write true	ue if the statement is true and false if the statement is false.
	_ 1. All organisms use organic compounds for energy.
	2. Plants are the most important heterotrophs in terrestrial ecosystem
	_ 3. Zooplankton are the chief aquatic producers.
	4. Archaea make food using energy in sunlight.
	_ 5. A few plants trap and digest animals.
	_ 6. Energy flows from producers and consumers to decomposers.
	_ 7. Saprotrophs complete the breakdown of any remaining organic ma
	8. Bacteria are the only organisms that can decompose dead wood.
	9. A fish that eats zooplankton is a primary consumer.
	_ 10. Hawks have more energy than plants in a terrestrial ecosystem.
	_ 11. Multiple intersecting food webs make up a food chain.
	_ 12. Cows eat grass, so they are secondary consumers.
Lesson	n 15.2: Critical Reading
Name	Class Date

Producers

Producers are organisms that produce organic compounds from energy and simple inorganic molecules. Producers are also called autotrophs, which literally means "self nutrition." This is because producers synthesize food for themselves. They take energy and materials from the abiotic environment and use them to make organic molecules. Autotrophs are a vital part of all ecosystems. The organic molecules they produce are needed by all the organisms in the ecosystem. There are two basic types of autotrophs: photoautotrophs and chemoautotrophs. They differ in the type of energy they use to synthesize food.

Read this passage from the lesson and answer the questions that follow.

Photoautotrophs

Photoautotrophs are organisms that use energy from sunlight to make glucose from carbon

dioxide and water by photosynthesis. Glucose, a carbohydrate, is an organic compound that can be used by autotrophs and other organisms for energy. Photoautotrophs include plants, algae, and certain bacteria. Plants are the most important photoautotrophs in land-based, or terrestrial, ecosystems. There is great variation in the plant kingdom. Plants include organisms as different as trees, grasses, mosses, and ferns. Nonetheless, all plants are eukaryotes that contain chloroplasts, the cellular "machinery" needed for photosynthesis.

Algae are photoautotrophs found in most ecosystems, but they generally are more important in water-based, or aquatic, ecosystems. Like plants, algae are eukaryotes that contain chloroplasts for photosynthesis. Algae include single-celled eukaryotes, such as diatoms, as well as multicellular eukaryotes, such as seaweed.

Photoautotrophic bacteria, called cyanobacteria, are also important producers in aquatic ecosystems. Cyanobacteria were formerly called blue-green algae, but they are now classified as bacteria. Other photosynthetic bacteria, including purple photosynthetic bacteria, are producers in terrestrial as well as aquatic ecosystems.

Both cyanobacteria and algae make up phytoplankton. Phytoplankton refers to all the tiny photoautotrophs found on or near the surface of a body of water. Phytoplankton usually is the primary producer in aquatic ecosystems.

Chemoautotrophs

In some places where life is found on Earth, there is not enough light to provide energy for photosynthesis. In these places, producers called chemoautotrophs make organic molecules from carbon dioxide and water by chemosynthesis. Instead of energy from sunlight, chemosynthesis depends on energy from the oxidation of inorganic compounds, such as hydrogen sulfide (H2S). Oxidation is an energy-releasing chemical reaction in which a molecule, atom, or ion loses electrons. Chemoautotrophs include bacteria called nitrifying bacteria. Nitrifying bacteria live underground in soil. They oxidize nitrogen-containing compounds and change them to a form that plants can use. Chemoautotrophs also include archaea. Archaea are a domain of microorganisms that resemble bacteria. Most archaea live in extreme environments, such as around hydrothermal vents in the deep ocean floor. They use the toxic chemicals released from the vents to produce organic compounds. The organic compounds can then used by other organisms, such as tube worms.

Questions

1. What are producers? Name two types of producers.

-

2. How do photoautotrophs produce food?

-

_		
_		
3. What are the components of phytop aquatic ecosystems?	lankton, and wha	t is the role of phytoplankton in
-		
-		
-		
4. How do chemoautotrophs produce for	od?	
-		
-		
-		
5. What are examples of chemoautotrop	ohs?	
-		
-		
_		
Lesson 15.2: Multiple Cho	oice	
Name	Class	Date
Circle the letter of the correct choice.		
v		
1. What is the main contribution of a	autotrophs to ecos	ystems?
(a) organic molecules such as glu-	cose.	
(b) elements such as nitrogen.(c) carbon dioxide.		
(d) water.		
2. All of the following are true of alga-		
(a) all algae are eukaryotes.	ae except	
(b) some algae are single-celled.(c) most algae are aquatic.	ae except	
· /	ae except	
(d) some algae are bacteria.	ae except	

(a) herbivores

6	zooplankton
5.	herbivores
4.	consumers
3.	phytoplankton
2.	photoautotrophs
1.	producers
Term	
Match th	e vocabulary term with the correct definition.
Name	Class Date
Lessor	n 15.2: Vocabulary
(d)	producers
(c)	primary consumers
` ′	tertiary consumers secondary consumers
7. Wh	ich trophic level of an ecosystem has the least biomass?
(b) (c)	decomposers. scavengers. saprotrophs.
	e broadest level of an energy pyramid consists of producers.
,	nutrients present in certain foods.
(b) (c)	feeding relationships in an ecosystem. energy flow among producers. Calories available to primary consumers.
5. A fo	ood web is best described as a diagram of
(b) (c)	animals. plants. bacteria. protozoa.
4. Fun	gi are the main decomposers of dead
(c)	other consumers other carnivores all of the above
/a \	

7. scavengers		
8. carnivores		
9. omnivores		
10. decomposers		
Definition		
a. organisms that eat a diet consist herbivores	ing mainly of herbivore	s or of other organisms that eat
b. all organisms that depend on oth	er organisms for food	
c. organisms that eat both plants ar	nd animals as primary f	ood sources
d. small organisms that consume pr	oducers on or near the	surface of a body of water
e. organisms that consume dead pla	nts and animals and ot	her organic waste
f. all organisms that produce organic	compounds from energ	y and simple inorganic molecules
g. tiny photoautotrophs found on or	near the surface of a b	ody of water
h. carnivores that mainly eat the ca	rcasses of dead animals	
i. organisms that consume only pro-	ducers such as plants or	algae
j. organisms that use energy from s	unlight to make food by	photosynthesis
15.4 Lesson 15.3: Re Lesson 15.3: True or Fa	ů ů	r
Name	Class	Date
Write true if the statement is true of	and false if the statemen	t is false.
$\underline{\hspace{1cm}}$ 1. All chemical elements tems.	that are needed by living	ng things are recycled in ecosys-
2. The deep ocean is a re	eservoir for water in the	water cycle.
3. Earth's gravity is the	driving force behind the	e water cycle.

www.ck12.org **216**

4. Rain that flows over the ground is called groundwater.

_____ 6. Carbon is stored in the ocean as carbon dioxide.

______ 5. The water cycle ends when precipitation falls and returns to the ocean.

_____ 7. All organisms release carbon dioxide as a byproduct of cellular respiration.

	$_8.$ When volcanoes erupt, they return carbon from the mantle to the atmosphere.
	9. Of living things, only producers need nitrogen.
	10. Plants absorb nitrogen gas through their root hairs.
	11. Some nitrogen-fixing bacteria live in the root nodules of legumes.
	$_$ 12. The anammox reaction of the nitrogen cycle occurs in water.
Lesson	15.3: Critical Reading
Name	Class Date

Name	$__$ Class $___$	Date	

Read this passage from the lesson and answer the questions that follow.

Nitrogen Cycle

The atmosphere is the largest reservoir of nitrogen on Earth. It consists of 78 percent nitrogen gas. The nitrogen cycle moves nitrogen through abiotic and biotic components of ecosystems.

Absorption of Nitrogen

Plants and other producers use nitrogen to synthesize nitrogen-containing organic compounds, including chlorophyll, proteins, and nucleic acids. Consumers also make use of the nitrogen in these compounds. Plants absorb nitrogen from the soil through their root hairs. However, they cannot absorb nitrogen gas directly. They can absorb nitrogen only in the form of nitrogen-containing ions, such as nitrate ions.

Nitrogen Fixation

The process of converting nitrogen gas to nitrate ions that plants can absorb is called nitrogen fixation. It is carried out mainly by nitrogen-fixing bacteria. Some nitrogen-fixing bacteria live in soil. Others live in the root nodules of legumes such as peas and beans. In aquatic ecosystems, some cyanobacteria are nitrogen fixing.

Ammonification and Nitrification

After being used by organisms, nitrogen is released back into the environment. When decomposers break down organic remains and wastes, they release nitrogen in the form of ammonium ions. This is called ammonification. Certain soil bacteria, called nitrifying bacteria, convert ammonium ions to nitrites. Other nitrifying bacteria convert the nitrites to nitrates, which plants can absorb. The process of converting ammonium ions to nitrites or nitrates is called nitrification.

Denitrification and the Anammox Reaction

Still other bacteria, called denitrifying bacteria, convert some of the nitrates in soil back into nitrogen gas in a process called denitrification. It is the opposite of nitrogen fixation. Deni-

trification returns nitrogen gas back to the atmosphere, where it can continue the nitrogen cycle. In the ocean, an anammox reaction returns nitrogen to the atmosphere. The reaction involves certain bacteria, and it converts ammonium and nitrite ions to nitrogen gas.

\cap	uestions	
W	uestions	i

esson 15.3: Multiple Choice ome Class Date
esson 15.3: Multiple Choice
What is the anammox reaction, and when does it occur in the nitrogen cycle?
Describe what happens during nitrification.
What role do decomposers play in the nitrogen cycle?
What do nitrogen-fixing bacteria do, and where do they live?
What is the only form of nitrogen that plants can absorb?
,

	219	www.ck12
Name	e Class Date	
Less	son 15.3: Vocabulary	
	(c) biosphere.(d) ocean.	
	(a) atmosphere.(b) mantle.	
7. 🛚	The anammox reaction changes ammonium ions to a form that ca	an enter the
	(a) nitrifying bacteria.(b) denitrifying bacteria.(c) nitrogen-fixing bacteria.(d) all of the above.	
6. A	Ammonium ions are converted to nitrites or nitrates by	
	(a) plants.(b) large fish.(c) zooplankton.(d) cyanobacteria.	
5. N	Nitrogen-fixing organisms in aquatic ecosystems are	
	(a) bicarbonate ions.(b) carbon dioxide.(c) natural gas.(d) limestone.	
4. (Calcium carbonate that settles out of ocean water forms	
	 (a) burned in car engines. (b) used to heat homes. (c) released into the air. (d) added to fertilizers. 	
	Methane gas released by landfills is	
	 (a) cools down. (b) gains energy. (c) is under more pressure. (d) is pulled by gravity. 	
2. V	Water vapor condenses as it rises high in the atmosphere because	it

(a) runoff.

(b) groundwater. (c) reservoir water. (d) discharge water. Match the vocabulary term with the correct definition.

Term

1.	sublimation
2.	transpiration
3.	infiltration
4.	cellular respiration
5.	subduction
6.	nitrogen fixation
7.	ammonification
8.	nitrification
9.	denitrification

10. anammox reaction

Definition

- a. process by which plants lose water through their leaves
- b. process in which the ocean floor is pulled down into the mantle
- c. process of converting ammonium ions to nitrites or nitrates
- d. transformation of snow and ice directly into water vapor
- e. release of ammonium ions by decomposers as they break down organic remains and wastes
- f. chemical reaction in which ammonium and nitrite ions combine to form water and nitrogen gas
- g. general process of converting nitrates into nitrogen gas
- h. process of rainwater soaking into the ground
- i. process of converting nitrogen to nitrate ions that plants can absorb
- j. process by which cells oxidize glucose and produce energy

Chapter 16

Biomes, Ecosystems, and Communities Worksheets

16.1 Chapter 16: Biomes, Ecosystems and Communities Worksheets

- Lesson 16.1: Biomes
- Lesson 16.2: Terrestrial Biomes
- Lesson 16.3: Aquatic Biomes
- Lesson 16.4: Community Interactions

16.2 Lesson 16.1: Biomes

Lesson 16.1: True or False

Name	Class	Date
Write true if the st	tatement is true and false if the statemen	et is false.
1. Clima	ate is the most important abiotic factors	affecting terrestrial biomes.
2. Clima	ate is determined only by distance from	the equator.
3. The	northern temperate zone goes from the e	quator to the arctic circle.
4. The	moisture of a biome is determined solely	by precipitation.
5. When	n air masses cool, they can hold more wa	ater vapor.
6. Coast	tal areas may have warmer winters and co	poler summers than inland areas.

	7. Between the equator and 20° north latitude, the climate is very dry.
	8. Warm, sunny areas have less evaporation than cool, cloudy areas.
	9. Dry climates are found only where the weather is hot and sunny.
	10. Air masses that have passed over a wide expanse of land carry little moisture.
	11. Climate has no influence on the quality of soil in an area.
	12. Adaptations to dryness include thick, barrel-like stems in plants.
Loggon	16 1: Critical Reading

Lesson 16.1: Critical Reading

Name	Class	Date
------	-------	------

Read this passage from the lesson and answer the questions that follow.

Climate and Plant Growth

Plants are the major producers in terrestrial biomes. Almost all other terrestrial organisms depend on plants either directly or indirectly for food. Plants need air, warmth, sunlight, water, and nutrients to grow. Climate is the major factor affecting the number and diversity of plants that can grow in a terrestrial biome. Climate determines the average temperature and precipitation, the length of the growing season, and the quality of the soil, including levels of soil nutrients.

Growing Season

The growing season is the period of time each year when it is warm enough for plants to grow. The timing and length of the growing season determine what types of plants can grow in an area. For example, near the poles the growing season is very short. The temperature may rise above freezing for only a couple of months each year. Because of the cold temperatures and short growing season, trees and other slow-growing plants are unable to survive. The growing season gets longer from the poles to the equator. Near the equator, plants can grow year-round if they have enough moisture. A huge diversity of plants can grow in hot, wet climates. The timing of precipitation also affects the growing season. In some areas, most of the precipitation falls during a single wet season (such as in California), rather than throughout the year (such as in New England). In these areas, the growing season lasts only as long as there is enough moisture for plants to grow.

Soil

Plants need soil that contains adequate nutrients and organic matter. Nutrients and organic matter are added to soil when plant litter and dead organisms decompose. In cold climates, decomposition occurs very slowly. As a result, soil in cold climates is thin and poor in nutrients. Soil is also thin and poor in hot, wet climates because the heat and humidity cause such rapid decomposition that little organic matter accumulates in the soil. The frequent

rains also leach nutrients from the soil. Soil in temperate climates is typically thicker and richer in nutrients. It contains more organic matter and is the best soil for growing most plants.

Questions	5

on plants?	
n in a given location	?
f soil is best for mos	t plants?
imates?	
Class	Date
	n in a given location of soil is best for most imates? Class

1. Major subdivisions of the biosphere are called

(a) (b) (c) (d)	niches. habitats. climate zones. biomes.			
2. Clim	ates are classifi	ed as tropical,	temperate, or arct	ic based on their
(b) (c)	air pressure. temperature. precipitation. wind speed.			
3. Coa	stal areas tend t	o be mild bec	ause	
(b) (c)	the temperatur coastal areas as	re of the ocean re always at lo	ather out to sea. changes little from w latitudes. areas from extreme	
4. The	major producer	s in terrestria	l biomes are	
` :	plants. bacteria. algae. herbivores.			
5. Plan	its need nutrient	ts that are nat	urally added to soi	ls in the process of
(b) (c)	leaching. root growth. adaptation. decomposition.			
6. Bioc	liversity is usual	lly greater in b	piomes that are	
(b) (c)	wetter. warmer. closer to the ecall of the above	_		
Lesson	16.1: Voc	abulary		
Name			Class	Date
Match the	vocabulary terr	n with the corr	rect definition.	
Term				
1.	biome			
2.	climate			
www.ck12	.org		224	

3. weather	
4. latitude	
5. altitude	
6. tropical zone	
7. temperate zone	
8. rain shadow	
9. growing season	
10. biodiversity	
Definition	
a. conditions of temperature and precipitation on any given day	
b. zone from the tropical zone to the arctic or antarctic circle.	
c. land on the leeward side of a mountain range that receives litt	le precipitation
d. group of similar ecosystems that cover a broad area	
e. the number of different species of organisms in a biome or eco	system
f. zone from the Tropic of Capricorn to the Tropic of Cancer	
g. average weather in an area over a long period of time	
h. distance north or south of the equator	
i. period of time each year when it is warm enough for plants to	grow
j. distance above sea level	
16.3 Lesson 16.2: Terrestrial Biomes Lesson 16.2: True or False	
Name Class	Date
Write true if the statement is true and false if the statement is fo	ulse.
1. The distribution of terrestrial biomes reflects par moisture.	tterns of temperature and
2. All tundra biomes have high biodiversity.	
3. Arctic tundra is found in the Rocky Mountains in	the United States.
4. Only Alpine tundra has permafrost.	

Namo	Class Data
Lesson	16.2: Critical Reading
	12. Little sunlight reaches the floor of a tropical dry forest.
	11. Death Valley is an example of rain shadow desert.
	10. The largest deserts are found at about 60° north or south latitude.
	9. Chaparral is a type of tropical biome.
firs.	
	8. Temperate rainforests consist mainly of evergreen tress such as hemlocks and
	7. There are boreal forests in Canada and the United States.
	6. The primary vegetation in boreal forests is lichen.
	5. When permatrost melts, it releases greenhouse gases.

Arctic and Subarctic Biomes

Artic and subarctic biomes are found near the north and south poles or at high altitudes in other climate zones. The biomes include tundra and boreal forests. Both have cold, dry climates and poor soil. They can support only limited plant growth and have low biodiversity. The remainder of this passage describes tundra biomes.

Read this passage from the lesson and answer the questions that follow.

Tundra

Tundra is an arctic biome where it is too cold for trees to grow. Outside of the polar ice caps, tundra has the coldest temperatures on Earth. There are two types of tundra: arctic tundra, which is also found in Antarctica, and alpine tundra, which is found only at high altitudes.

- Arctic tundra occurs north of the arctic circle and south of the antarctic circle. It covers much of Alaska and vast areas of northern Canada and Russia. It is also found along the northern coast of Antarctica.
- Alpine tundra occurs in mountains around the world at any latitude, but only above the tree line. The **tree line** is the edge of the zone at which trees are able to survive. Alpine tundra is found in the Rocky Mountains in the United States and in several other mountain ranges around the world.

Both types of tundra receive very low precipitation, but little of it evaporates because of the cold. Arctic tundra has **permafrost**, which is frozen soil year-round. The top layer of soil thaws in the summer, but deeper layers do not. As a result, water cannot soak into the

ground. This leaves the soil soggy and creates many bogs, lakes, and streams. Alpine tundra does not have permafrost, except at very high altitudes. Therefore, alpine tundra soil tends to be dry rather than soggy.

Global warming poses a serious threat to arctic tundra biomes because it is causing the permafrost to melt. When permafrost melts, it not only changes the tundra. It also releases large amounts of methane and carbon dioxide into the atmosphere. Both are greenhouse gases, which contribute to greater global warming.

The most common types of vegetation in tundra are mosses and lichens. They can grow in very little soil and become dormant during the winter. Tundra is too cold for amphibians or reptiles, which cannot regulate their own body heat. Insects such as mosquitoes can survive the winter as pupae and are very numerous in summer. In addition, many species of birds and large herds of caribou migrate to arctic tundra each summer. However, few birds and mammals live there year-round. Those that remain have adapted to the extreme cold. Polar bears are an example. They have thick fur to insulate them from the cold. In alpine tundra, animals must adapt to rugged terrain as well as to cold. Alpine animals include mountain goats, which not only have wool to keep them warm but are also sure-footed and agile.

Questions

1.	Where are arctic and subarctic biomes located?
-	
-	
-	
2.	Describe arctic tundra.
-	
-	
-	
3.	Where is alpine tundra found? How does it differ from arctic tundra?
-	
-	
-	
4.	How is global warming threatening arctic tundra biomes?
_	
_	
_	

5. What species are commonly found in tu	undra biomes?	
-		
_		
-		
Lesson 16.2: Multiple Choice	ce	
Name	Class	Date
Circle the letter of the correct choice.		
1. A humid biome between 30° south a	nd 30° north lat	citude is called a
(a) tropical rainforest.(b) tropical dry forest.(c) boreal rainforest.(d) chaparral forest.		
2. Alpine tundra biomes are found only	7	
 (a) north of the arctic circle. (b) close to the South Pole. (c) at 90° north or south latitude. (d) above certain altitudes. 		
3. What type of climate would you exp	ect in a boreal f	forest?
(a) continental climate(b) temperate climate(c) tropical climate(d) subtropical climate		
4. Cone-bearing, needle-leaved evergree	en trees such as	spruces are called
(a) deciduous trees.(b) conifers.(c) epiphytes.(d) shrubs.		
5. Which biome, found in central and s	outhern Californ	nia, has a Mediterranean climate?
(a) rainforest(b) conifer forest(c) boreal forest(d) chaparral		
6. Deserts are characterized by		

- (a) humid air masses.
- (b) extreme daily temperature variations.
- (c) rich soil with a high organic content
- (d) more than 25 centimeters of precipitation per year.
- 7. Which sentence is true about tropical grassland biomes?
 - (a) They receive very high rainfall.
 - (b) They are found mainly in Europe.
 - (c) They have cool temperatures.
 - (d) They have large herds of herbivores.

Lesson 16.2: Vocabulary

Name	$___$ Class $___$	Date
Match the vocabulary term	with the correct definition.	
Term		
1. tundra		
2. temperate decidu	ous forest	
3. temperate rainfor	rest	
4. temperate grassla	and	
5. tropical grassland	l	
6. desert		
7. boreal forest		
8. tropical dry fores	t	
9. tropical rainfores	t	
10. chaparral		

Definition

- a. tropical biome that receives heavy rainfall and consists mainly of tall, broadleaf evergreen trees
- b. temperate biome that receives relatively low precipitation and consists mainly of grasses
- c. tropical biome that receives relatively low rainfall, has a dry season, and consists mainly of widely spaced, drought-adapted trees
- d. arctic biome where is it too cold for trees to grow
- e. temperate biome with a Mediterranean climate that consists mainly of densely-growing

evergreen shrubs such as scrub oak

- f. temperate biome that receives moderate rainfall and consists mainly of deciduous trees such as maples
- g. tropical biome that receives relatively low rainfall, has a dry season, and consists mainly of grasses
- h. temperate or tropical biome that receives no more than 25 centimeters of precipitation per year
- i. temperate biome that receives heavy rainfall and consists mainly of evergreen trees such as hemlocks
- j. subarctic biome covered with conifers

16.4 Lesson 16.3: Aquatic Biomes

Lesson 16.3: True or False

Name	(Class	Date
Write true	e if the statement is true and false if	the statement is fo	alse.
	_ 1. Most aquatic organisms have to	deal with extremes	s of temperature.
	2. Aquatic biomes have more total	biomass than terre	strial biomes.
	$_{\perp}$ 3. There is generally plenty of oxyg	gen to support orga	nisms in the photic zone.
	4. Oceanic biomes occur in ocean w	vater over the cont	inental shelf.
	_ 5. Nekton are aquatic organisms th	at can make their	own food.
	_ 6. Sponges and clams are examples	of benthic organis	ms.
	7. Water at the bottom of the ocea	n is always cold.	
	$_{-}$ 8. The intertidal zone has very low	biodiversity.	
	9. Corals are colored rocks found a	t the bottom of tro	pical ocean water.
	10. The depth of the photic zone in	a lake depends or	clarity of water.
	11. Plants are important producers	in ocean water bio	omes.
	$_{\perp}$ 12. Both riparian zones and wetlan	ds help prevent ero	osion.

Lesson 16.3: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Marine Biomes

Marine biomes are aquatic biomes found in the salt water of the ocean. Major marine biomes include neritic, oceanic, and benthic biomes. Neritic and oceanic biomes are described in the rest of this passage.

Neritic Biomes

Neritic biomes occur in ocean water over the continental shelf. They extend from the low-tide water line to the edge of the continental shelf. The water here is shallow, so there is enough sunlight for photosynthesis. The water is also rich in nutrients, which are washed into the water from the nearby land. Because of these favorable conditions, large populations of phytoplankton live in neritic biomes. They produce enough food to support many other organisms, including both zooplankton and nekton. As a result, neritic biomes have relatively great biomass and biodiversity. They are occupied by many species of invertebrates and fish. In fact, most of the world's major saltwater fishing areas are in neritic biomes.

Oceanic Biomes

Oceanic biomes occur in the open ocean beyond the continental shelf. There are lower concentrations of dissolved nutrients away from shore, so the oceanic zone has a lower density of organisms than the neritic zone. The oceanic zone is divided into additional zones based on water depth.

- The **epipelagic zone** is the top 200 meters of water, or the depth to which enough sunlight can penetrate for photosynthesis. Most open ocean organisms are concentrated in this zone, including both plankton and nekton.
- The **mesopelagic zone** is between 200 and 1,000 meters below sea level. Some sunlight penetrates to this depth but not enough for photosynthesis. Organisms in this zone consume food drifting down from the epipelagic zone, or they prey upon other organisms in their own zone. Some organisms are detrivores, which consume dead organisms and organic debris as they drift down through the water.
- The **bathypelagic zone** is between 1,000 and 4,000 meters below sea level. No sunlight penetrates below 1,000 meters, so this zone is completely dark. Most organisms in this zone either consume dead organisms drifting down from above or prey upon other animals in their own zone. There are fewer organisms and less biomass here than in higher zones. Some animals are bioluminescent, which means they can give off light. This is an adaptation to the total darkness.
- The abyssopelagic zone is between 4,000 and 6,000 meters below sea level and is completely dark. It has low biomass and low species diversity.

Questions
1. Describe a neritic biome.
_
-
-
2. Why do oceanic biomes generally have a lower density of organisms than neritic biomes
-
-
-
3. Why are most open ocean organisms found in the epipelagic zone?
_
-
-
4. Name three oceanic biomes that are located in the aphotic zone.
-
-
-
5. What types of organisms are found in aphotic ocean biomes?
_
_
_
Lesson 16.3: Multiple Choice
Name Class Date
Circle the letter of the correct choice.

1. Deep ocean water may contain more nutrients than surface water due to

• The **hadopelagic zone** is found in the water of deep ocean trenches below 6,000 meters. It is totally dark and has very low biomass and very low species diversity.

- (a) decomposition of marine organisms.
- (b) photosynthesis by photic organisms.
- (c) runoff from nearby land.
- (d) turnover of deep ocean water.
- 2. Plankton consists of
 - (a) algae.
 - (b) bacteria.
 - (c) animals.
 - (d) all of the above.
- 3. In ocean zones deeper than 200 meters, most organisms are
 - (a) consumers.
 - (b) producers.
 - (c) phytoplankton.
 - (d) zooplankton.
- 4. How do organisms in the hadal zone of the ocean make food?
 - (a) photosynthesis
 - (b) chemosynthesis
 - (c) decomposition
 - (d) predation
- 5. Based on the availability of sunlight, lakes are divided into the littoral zone, limnetic zone, profundal zone, and
 - (a) intertidal zone.
 - (b) benthic zone.
 - (c) pelagic zone.
 - (d) epipelagic zone.
- 6. Compared with lakes that have low nutrient levels, lakes that have high nutrient levels have
 - (a) higher productivity.
 - (b) clearer water.
 - (c) lower biodiversity.
 - (d) more dissolved oxygen.
- 7. Any area that is saturated or covered by water for a least one season of the year is classified as a
 - (a) wetland.
 - (b) riparian zone.
 - (c) littoral zone.
 - (d) coral reef.

Lesson 16.3: Vocabulary

Name	Class	Date
Match the vocabulary term with the correct	t definition.	
Term		
1. abyssal zone		
2. aphotic zone		
3. bathyal zone		
4. benthic zone		
5. hadal zone		
6. intertidal zone		
7. littoral zone		
8. mesopelagic zone		
9. neritic zone		
10. riparian zone		
Definition		
a. part of the ocean floor that makes up t	he continental sl	ope
b. narrow strip along the coastline of the	ocean that is exp	posed to air at low tide
c. part of the ocean floor that is under the	e deep ocean	
d. part of the pelagic zone over the contin	ental shelf	
e. bottom surface of the ocean or a lake		
f. water between 200 and $1,000$ meters bel	ow sea level in t	he oceanic zone
g. interface between running freshwater ar	nd land	
h. deep water where too little sunlight per	netrates for phot	osynthesis to occur
i. part of the ocean floor that is in deep o	cean trenches	
j. shallow water near the shore of a lake o	r the ocean	

16.5 Lesson 16.4: Community Interactions

Lesson 16.4: True or False

Name_		Class	Date
Write tru	rue if the statement is true and false	if the stateme	ent is false.
	1. Species interact in the same ba	sic ways in a	l biomes.
	2. Types of community interaction	ns include sy	nbiosis.
	3. Predation always involves one a	animal consu	ming another animal.
likely to	4. If the population of a prey specdecrease.	cies increases	, the population of its predator is
	5. Some prey species have adaptat	ions that mal	ke them more visible to predators.
	6. Interspecific competition always	s leads to the	extinction of one of the species.
	7. Predation is an example of a sy	mbiotic relat	ionship.
relationsl	-	from which i	t takes blood have a mutualistic
	9. Many plants and fungi are para	sitic during	some stages of their life cycle.
	10. The species that is harmed in	a parasitic re	elationship is called the host.
	11. Most ecosystems are stable an	d unchanging	r.
	12. Primary succession usually occ	curs faster th	an secondary succession.
Lesson	n 16.4: Critical Reading		
Name_		Class	Date
Read this	is passage from the lesson and answer	the question	as that follow.

Symbiotic Relationships

Symbiosis is a close association between two species in which at least one species benefits. For the other species, the outcome of the association may be positive, negative, or neutral. There are three basic types of symbiotic relationships: mutualism, commensalism, and parasitism. The rest of this passage describes mutualism and commensalism.

Mutualism

Mutualism is a symbiotic relationship in which both species benefit. Lichen is a good example. A lichen is not a single organism but a fungus and an alga. The fungus absorbs

water from air and minerals from rock or soil. The alga uses the water and minerals to make food for itself and the fungus. Another example involves goby fish and shrimp. The nearly blind shrimp and the fish spend most of their time together. The shrimp maintains a burrow in the sand in which both the goby and the shrimp live. When a predator comes near, the fish touches the shrimp with its tail as a warning. Then, both fish and shrimp retreat to the burrow until the predator is gone. Each gains from this mutualistic relationship: the shrimp gets a warning of approaching danger, and the fish gets a safe home and a place to lay its eggs. Co-evolution often occurs in species involved in mutualistic relationships. Many examples are provided by flowering plants and the species that pollinate them. Plants have evolved flowers with traits that promote pollination by particular species. Pollinator species, in turn, have evolved traits that help them obtain pollen or nectar from certain species of flowers. For example, some plants with tube-shaped flowers co-evolved with hummingbirds. The birds evolved long, narrow beaks that allowed them to sip nectar from the tubular blooms.

Commensalism

Commensalism is a symbiotic relationship in which one species benefits while the other species is not affected. In commensalism, one animal typically uses another for a purpose other than food. For example, mites attach themselves to larger flying insects to get a "free ride," and hermit crabs use the shells of dead snails for shelter. Co-evolution explains some commensal relationships. An example is the human species and some of the species of bacteria that live inside humans. Through natural selection, many species of bacteria have evolved the ability to live inside the human body without harming it.

Questions

1.	Define symbiosis, and name types of symbiotic relationships.
-	
•	
۷.	Explain why lichen is an example of mutualism.
3.	Describe an example of co-evolution in a mutualistic relationship.
•	
-	

4. How is commensalism different from mutua	alism?
-	
-	
-	
5. Describe an example of commensalism invo	olving humans.
-	
-	
-	
Lesson 16.4: Multiple Choice	
Name	Class Date
Circle the letter of the correct choice.	
1. The focus of species interactions is the	
(a) biome.(b) climate zone.(c) community.(d) individual.	
2. Camouflage is an adaptation to predation	on that occurs in
(a) prey species only.(b) predator species only.(c) both prey and predator species.(d) animal species only.	
3. Which sentence is true about all symbic	etic relationships?
(a) Both species always benefit.(b) At least one species always benefit(c) One species is always harmed.(d) Neither species is ever harmed.	s.
4. A hermit crab uses the shell of a dead s	nail for shelter. This is an example of a
(a) mutualistic relationship.(b) commensal relationship.(c) predator-pray relationship.(d) parasite-host relationship.	

5. Whole communities change through time in the process of ecological

- (a) symbiosis.
- (b) succession.
- (c) competition.
- (d) evolution.
- 6. Secondary succession occurs where
 - (a) the soil is already in place.
 - (b) organisms have never lived.
 - (c) there is nothing but bare rock.
 - (d) lava has hardened into rock.
- 7. The final stage of ecological succession is called a(n)
 - (a) successional community.
 - (b) secondary community.
 - (c) pioneer community.
 - (d) climax community.

Lesson 16.4: Vocabulary

Name	Class	Date	_
Match the vocabulary term with the	e correct definition.		
Term			
1. commensalism			
2. competition			
3. intraspecific competition	L		
4. interspecific competition			
5. mutualism			
6. parasitism			
7. predation			
8. primary succession			
9. secondary succession			
10. symbiosis			

Definition

- a. relationship between organisms that strive for the same limited resources
- b. ecological succession that occurs in an area that has never been colonized

- c. symbiotic relationship in which one species benefits and one species is harmed
- d. symbiotic relationship in which one species benefits and one species is not affected
- e. competition between members of the same species
- f. any close association between two species in which at least one species benefits
- g. ecological succession that occurs in a formerly inhabited area that was disturbed
- h. symbiotic relationship in which both species benefit
- i. relationship in which members of one species consume members of another species
- j. competition between members of different species

Chapter 17

Populations Worksheets

17.1 Chapter 17: Populations

- Lesson 17.1: Characteristics of Populations
- Lesson 17.2: Population Dynamics
- Lesson 17.3: Human Population Growth: Doomsday, Cornucopia, or Somewhere in Between?

17.2 Lesson 17.1: Characteristics of Populations

Lesson 17.1: True or False

Name	Class	Date
Write true if the statem	ent is true or false if the statemen	nt is false.
1. Humans fi	irst started worrying about overpo	opulation in the 1960s.
2. A Malthus	sian crisis refers to a population o	utgrowing its food supply.
3. Everyone	agrees that human overpopulation	is a serious problem.
4. Garrett H	ardin argued that people can solve	e all their population problems.
5. Members	of the same population may belon	g to different species.
6. Population	n Viability Analysis predicts the p	probability of extinction.
7. Almost al	l populations have a uniform patte	ern of dispersion.
8. A clumpe	d dispersion pattern is typical of a	a highly competitive species.
9. Population	ns whose individuals do not intera	act often have random dispersion.

	_ 10. A later age of reproduction results in a slower growing population.
	_ 11. A growing population usually has many more adults than young people.
	$_$ 12. With an early loss pattern of survivorship, most individuals live to old age.
Lessor	n 17.1: Critical Reading
Name	Class Date

Read this passage from the lesson and answer the questions that follow.

Introduction

What exactly is the "population problem"? How can it be solved? To most people, the population problem is too many people, or a human population that is growing too fast. Humans have shown concern for overpopulation for thousands of years. Here are just a few examples:

- The ancient Greeks built outposts for their expanding population. They also delayed the age of marriage for men to 30 years to slow down population growth.
- In 1798, the economist Thomas Malthus predicted that the human population would outgrow its food supply by the middle of the 19th century. That time arrived without this crisis occurring, but Charles Darwin nevertheless embraced Malthus' ideas and made them a foundation of his own theory of evolution by natural selection.
- In a 1968 essay in the journal Science, titled "The Tragedy of the Commons," the ecologist Garrett Hardin argued that humans should "relinquish their freedom to breed... [because] the population problem has no technical solution... [but] requires a fundamental extension in morality."
- In 1979, the government of China instituted a "birth planning" policy. It charged fines to families with more than one child.

Not everyone has been concerned about overpopulation. In fact, others have taken the opposite view, that bigger is better when it comes to the human population. For example, Julian Simon, a business professor, argued that population is "the ultimate resource." He also believed that people and markets would find solutions for any problems caused by overpopulation. A group known as cornucopians continues to promote a similar view. They believe that a big population is good thing, not a problem.

Would you support a law forbidding you to marry until a certain age? Do you know how such a law would affect population growth? Would you limit the size of all families to one child? Or do you believe families should welcome as many children as possible? Should these decisions be regulated by law, or by individual choice? These and similar questions about population show that the "population problem" reaches beyond biology to economics, law,

on the human population problem.
Questions
1. What does the "population problem" usually refer to?
-
-
-
2. Describe two ways the ancient Greeks tried to control their population.
-
-
-
3. What prediction did Thomas Malthus make about the human population?
-
-
-
4. What view of population did Garrett Hardin put forth in his article "The Tragedy of the Commons"?
-
-
-
5. Why is the "population problem" not just a biological issue? Give examples to illustrate your answer.
-
-
-

morality, and religion. Nonetheless, understanding the biology of populations can shed light

Lesson 17.1: Multiple Choice

Name	_ Class	Date
Circle the letter of the correct choice.		

1. Charles Darwin was influenced by the population ideas of
 (a) Paul Ehrlich. (b) Julian Simon. (c) Garrett Hardin. (d) Thomas Malthus.
2. A gene pool reflects the interaction between the environment and a(n)
(a) species.(b) ecosystem.(c) population.(d) community.
3. If the number of organisms in a species falls bellow its MVP, then the species is likely to
(a) go extinct.(b) be healthy.(c) grow rapidly.(d) become overpopulated.
4. The pattern of population dispersion in which organisms are evenly spaced is referred to as
(a) random.(b) uniform.(c) clumped.(d) clustered.
5. If a population has roughly equal proportions at each age, then the population's size is likely to be
(a) stable.(b) doubling.(c) increasing.(d) decreasing.
6. When the death rate of a population is high, life expectancy is generally
 (a) long. (b) short. (c) rising. (d) none of the above.
7. A species in which most individuals live to old age typically has a(n)
 (a) high birth rate. (b) high death rate. (c) early loss pattern. (d) high level of parental care.

Lesson 17.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the	correct definition.	
Term		
1. age at maturity		
2. age-sex structure		
3. birth rate		
4. death rate		
5. dispersion		
6. life expectancy		
7. minimum viable population	on	
8. overpopulation		
9. population density		
10. survivorship curve		
Definition		
a. number of deaths in a population	per unit time	
b. average survival time of individua	als in a population	
c. condition in which population size	e exceeds carrying cap	acity
d. smallest number of individuals ne	eded for a species to a	void extinction
e. proportions of males and females	across all age levels of	a population
f. graph of the number of individual	s still living at each ag	ge
g. number of organisms per unit are	a or volume	
h. age at which individuals become	able to reproduce	
i. pattern of spacing of individuals v	within a population	
j. number of births in a population j	per unit time	

17.3 Lesson 17.2: Population Dynamics

Lesson 17.2: True or False

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. Few populations are capable of geometric growth.
	2. Exponential growth is slow at first and then speeds up.
	3. Dispersal helps to reduce intraspecific competition.
	4. Ducks use a precocial strategy to ensure reproductive success.
	5. Populations change only through births and deaths.
	6. Introductions involve non-native species moving into an area.
	7. Exponential growth occurs at the beginning of an S-shaped growth model.
	8. Limiting factors increase population growth rates.
	9. Light may be a density-dependent limiting factor.
	10. DDT was a density-dependent factor for peregrine falcons.
	11. J-curves depict the pattern of logistic population growth.
	12. K-selected species are regulated by density-independent factors.
Lesson	17.2: Critical Reading
Name	Class Date

Read this passage from the lesson and answer the questions that follow.

Births and Deaths: Balancing Costs of Reproduction and Survival

The growth rate of a population is the change in population size per member of the population per unit of time. The symbol r denotes growth rate. The growth rate clearly depends on the birth rate, represented by b, which is the number of births per individual in the population over a given unit of time. The growth rate also depends on the death rate, represented by d, which is the number of deaths per individual over a given unit of time. Growth rate can be calculated with this formula:

$$r = b - d$$

If the birth rate is greater than the death rate, r is positive and the population grows. If the death rate is greater than the birth rate, r is negative and the population declines. If the

birth rate and death rate are the same, the growth rate is zero, and the size of the population stays the same.

Mere survival does not spell success in the game of life. Natural selection requires that survivors also reproduce. Individuals in a species must make trade-offs between their own survival and their ability to successfully reproduce. However, species vary in the strategies they use to achieve reproductive success. There are two extreme strategies: precocial and altricial.

The precocial strategy is to have as many offspring as possible but to provide little parental care. The offspring are relatively mature at birth or hatching. Geese, ducks, and chickens use this strategy. Often living and nesting on the ground, precocial species are subject to high predation rates, so few offspring survive long enough to reproduce. Those who do reproduce lay many eggs at once, and the eggs are large. When the chicks hatch, they are already developed enough to find food and escape from predators.

The altricial strategy is to have few offspring but to provide a lot of parental care. The offspring are relatively immature at birth. Robins and hummingbirds use this strategy. These birds hatch helpless and naked, completely unprepared for independent life. Survival of the offspring matters a great deal, because there are so few of them, so parents build elaborate nests safely hidden in trees and invest a great deal of energy finding food for the young until they have developed enough to fly and find food on their own.

Questions

Questions
1. How is population growth rate calculated from birth and death rates?
_
2. Explain the relationship between birth and death rates and population growth.
-
-
_
3. What is the precocial strategy? Name a species that uses this strategy.
-
-
_
4. Describe the altricial strategy. What is one species that uses this strategy?

247

-		
-		
5. What are examples of pare	enting behaviors in altricial bi	ird species?
-		
-		
-		
Lesson 17.2: Multip	ole Choice	
Name	Class	Date

Circle the letter of the correct choice.

- 1. Change in a population's size over a unit of time, such as a year, is the population's
 - (a) birth rate.
 - (b) growth rate.
 - (c) migration rate.
 - (d) carrying capacity.
- 2. Birds with a precocial reproductive strategy have
 - (a) large numbers of eggs.
 - (b) eggs that are small in size.
 - (c) high levels of parental care.
 - (d) low rates of predation on chicks.
- 3. Which of these choices is an example of dispersal?
 - (a) A seed blows away from the parent plant.
 - (b) A flock of robins flies south for the winter.
 - (c) An arctic owl wanders south to find prey.
 - (d) An insect species gradually extends its range.
- 4. When animals such as gray whales migrate, it can affect
 - (a) the population growth rate.
 - (b) the death rate.
 - (c) the birth rate.
 - (d) all of the above.
- 5. The size of a population when it reaches its plateau in the logistic model is called the
 - (a) limiting factor.
 - (b) population density.
 - (c) carrying capacity.

(d)	K-selection.	
6. Exa	amples of density-dependent limiting factors include	
(b) (c)	wastes. pesticides. herbicides. habitat destruction.	
7. Whi	ich statement is typically true of r-selected species?	
(b) (c) (d)	They are regulated by density-dependent factors. They have long average life expectancy. They have unstable environments. They are large organisms.	
Lesson	n 17.2: Vocabulary	
Name	$____ Class____$	Date
Match the	e vocabulary term with the correct definition.	
Term		
1.	altricial	
2.	colonization	
3.	dispersal	
4.	emigration	
5.	immigration	

Definition

_____ 6. irruption

_____ 7. migration

_____ 8. nomadism

_____ 9. precocial

_____ 10. range expansion

- a. movement of offspring away from parents
- b. movement of individuals into a population's range from other areas
- c. regular, wide-ranging wandering to compensate for fluctuating food supplies
- d. direct, often seasonal movement of a species or population

- e. relating to the situation in which the young are relatively mature and mobile from the moment of birth or hatching
- f. movement of a population into a newly created or newly found area
- g. gradual extension of a population beyond its original boundaries
- h. irregular population movements, often caused by food source failures
- i. relating to the situation in which the young cannot move around on their own soon after birth or hatching
- j. movement of individuals out of a population's range

Lesson 17.3: Human Population Growth: Doomsday, Cornucopia, or Somewhere in Between?

Lesson 17.3: True or False

Name	Class Date
Write true	if the statement is true and false if the statement is false.
	1. All populations have the capacity to grow infinitely large.
	2. Different human populations have different growth rates today.
	3. Humans first invented agriculture about 1000 years ago.
	4. The development of agriculture lowered the carrying capacity for humans.
	5. By 1804, the world's human population reached one million.
	6. No country today remains in stage 1 of the demographic transition.
	7. Replacement fertility is lower if there are more males than females.
	8. The U.S. population has reached stage 5 of the demographic transition.
	9. The growth of the total human population has started to slow down.
	10. Modern agriculture depends heavily on the use of fossil fuels.
	11. All scientists agree that humans have surpassed their carrying capacity.
	12. The U.S. population has the world's smallest ecological footprint.
Lesson	17.3: Critical Reading
Name	Class Date
www.ck12	$_{ m .org}$ 250

Read this passage from the lesson and answer the questions that follow.

Demographic Transition

Major changes in human population growth began during the 18^{th} century in Europe. First, agricultural improvements led to a major increase in food supplies. As a result, death rates due to starvation declined. Improvements in sanitation and personal hygiene lowered death rates even more. In the 19^{th} century, the industrial revolution led to the development of new energy sources, such as coal and electricity. The new sources of energy further increased the efficiency of agriculture and food production. They also promoted the development of new forms of transportation, which improved the distribution of food. All of these changes led to a continued decline in death rates.

As death rates fell, more children survived to reproduce. As a result, birth rates remained high. The gap between birth and death rates widened. This caused population growth rates to increase. Although these changes did not happen uniformly throughout the world, they were soon reflected in world population levels. It took 200,000 years for the human population to grow to 1 billion, but only 123 years to grow to 2 billion!

Demographic transition theory holds that all or most human populations pass through the same four stages of growth as the populations of Europe since the 18^{th} century.

- Stage 1 is characterized by slow, uneven growth maintained by high rates of birth and death. Most human populations were at this stage up until the 18th century.
- Stage 2 is characterized by a lower death rate but not a lower birth rate, so the rate of population growth is high.
- Stage 3 is characterized by a decline in the birth rate, bringing it closer to the already low death rate. The birth rate falls because of a variety of technological and social changes. As a result, the population growth rate slows.
- Stage 4 is characterized by birth rates that decline even more until they equal death rates. The population growth rate falls to zero.

Overall, the world's human population is currently at about stage 2 of the demographic transition. However, many countries have populations that are in stage 3 or 4 of the demographic transition.

Questions

1. What are some reasons that death rates declined in Europe during the 18^{th} and 19^{th} centuries?

-

2. Why did the human population grow fro 200,000 years for it to grow to 1 billion?	om 1 to 2 billion in j	ust 123 years when it tool
-		
-		
-		
3. What is demographic transition theory?		
-		
-		
-		
4. Briefly describe the four stages of the den	nographic transition	
-		
-		
_		
5. Rate the human population today in tertransition.	ms of its progression	n through the demographic
-		
-		
-		
Lesson 17.3: Multiple Choice)	
Name	_ Class	Date
Circle the letter of the correct choice.	-	
1. Stable environments favor adaptations	for	
(a) low carrying capacity.(b) efficient resource use.(c) r-selected growth.		
(d) high birth rates.2. In 18th century Europe, death rates fe	oll because of	
(a) farming improvements.	II DECAUSE OI	
(a) farming improvements.(b) safer water supplies.(c) personal hygiene.		

(d) all of the above.	
3. Soon after the start of the demographic transition in Europe, the rate growth	e of population
(a) increased.(b) decreased.(c) fell to zero.(d) stayed the same.	
4. According to demographic transition theory, in which stage do birth ra	tes decline?
 (a) stage 1 (b) stage 2 (c) stage 3 (d) stage 4 	
5. Reasons for the decline in birth rates during Europe's demographic trans	sition included
(a) compulsory education.(b) high child mortality.(c) early marriage.(d) all of the above.	
6. A population in the second stage of the demographic transition has a pomid with	opulation pyra-
 (a) a wide base. (b) straight sides. (c) a narrow base. (d) a bulge in the middle. 	
7. If a population has a negative growth rate, its population pyramid is	
(a) top heavy.(b) broad based.(c) bottom heavy.(d) none of the above.	
Lesson 17.3: Vocabulary	
Name Class Date	
Match the vocabulary term with the correct definition.	
Term	
1. carrying capacity	
2. cornucopian	

 3. demographic transition theory
 4. density-dependent factor
 5. density-independent factor
 6. ecological footprint
 7. exponential model
 8. logistic model
 9. neo-Malthusian
10. replacement fertility

Definition

- a. model in which the population growth rate increases as population size increases
- b. person who believes humans will find solutions to any overpopulation problems
- c. factor that has the potential to control population because its effects are proportional to population density
- d. number of births per female required to maintain current population levels
- e. people who believe that human population growth cannot continue without dire consequences
- f. maximum population size an environment can support without habitat degradation
- g. model in which the population growth rate slows as the population reaches the carrying capacity
- h. amount of land area needed to sustain a particular lifestyle
- i. factor that may affect population size or density but cannot control it
- j. theory that human populations pass through predictable stages of growth

Chapter 18

Ecology and Human Actions Worksheets

18.1 Chapter 18: Ecology and Human Actions

- Lesson 18.1: The Biodiversity Crisis
- Lesson 18.2: Natural Resources
- Lesson 18.3: Natural Resources II: The Atmosphere
- Lesson 18.4: Climate Change

18.2 Lesson 18.1: The Biodiversity Crisis

Lesson 18.1: True or False

Name	Class	Date
Write true if the stateme	nt is true or false if the statement	t is false.
1. Scientists e	stimate that fewer than 1 million	species currently live on Earth.
2. There are f	ewer species alive today than the	re were millions of years ago.
3. There is a a	general increase in biodiversity fro	om the equator to the poles.
4. Over 99 pe	rcent of all species that have ever	lived on Earth are extinct.
5. The first sp	pecies ever to go extinct because o	of human actions was the dodo.
6. Monocultur	res provide the greatest genetic va	ariety for hybridization.
7. The largest	cause of deforestation today is re	oad construction.

	8. Alien species often lack natural enemies in their new habitats.
	9. Eating high on the food chain allows a given area to support more people.
	10. Growing crops organically is better for the environment.
	11. Incandescent light bulbs are more energy efficient than fluorescent bulbs.
	12. You should properly dispose of old computers because they contain toxins.
Lesson	18.1: Critical Reading

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Biodiversity Patterns in Time

How has Earth's biodiversity changed over time? The fossil record is our window into the past. Coupled with gene studies, fossils show a distinct pattern of increasing biodiversity through time.

Evidence suggests that life did not appear on Earth until perhaps 4 billion years ago. For several billion years, unicellular organisms were the only form of life. During that time, biodiversity clearly increased. Eubacteria and Archaebacteria emerged from a common ancestor some 3 billion years ago. Eukaryotes emerged by endosymbiosis about 2 billion years ago.

The emergence of multicellular life about 1 billion years ago certainly increased biodiversity, although we have little way of knowing whether it might also have negatively affected the diversity of microorganisms. Fossils remain relatively rare until the Cambrian explosion 542 million years ago. Since then, a much more detailed fossil record shows a pattern of increasing biodiversity marked by major extinctions.

The fossil record suggests a dramatic increase in biodiversity over the last 200 million years. Most scientists think this increase in biodiversity was real and due to an expanding numbers of niches. However, some scientists think that it is a product of sampling bias. More recent fossils and rock layers are better preserved, they argue, so it only appears that there is greater biodiversity in recent periods than in the more distant past.

Most scientists also accept that there were at least five major mass extinctions. Some think that there may be regular cycles of extinction. Causes for these extinctions are not completely understood. Hypotheses include global climate change, major volcanic eruptions, continental drift, dramatic oceanic change, extraterrestrial impacts, and supernova events.

Increasingly accepted is a current sixth, or Holocene, extinction event. In a 1998 survey, more than 70% of biologists considered the present era to be a sixth mass extinction event. It may also be the extinction event in which extinctions are occurring faster than at any time in the past.

Ω	ues	ti	or	าร
-	aco	UI	U I.	\mathbf{I}

1. What general trend in biodiversity do fossils show for the entire history of life on Earth? What trend do they show over just the last 200 million years?
_
_
2. How might the emergence of multicellular life have affected the diversity of microorganisms on Earth?
_
- -
3. Some scientists think that sampling bias may account for the increase in biodiversity in recent periods of Earth's history. Explain why.
-
-
4. What hypotheses have been suggested for why the first five mass extinctions occurred?
-
-
5. What is the sixth extinction event? What rate of extinction is associated with this event?
_
-
_
Lesson 18.1: Multiple Choice
Name Class Date
Circle the letter of the correct choice.

The statement "diversity begets diversity" is true because more species lead to more
 (a) ecosystems.

- (b) kingdoms.
- (c) biomes.
- (d) niches.
- 2. Estimates of biodiversity for early in Earth's history may be too low because the earliest organisms were
 - (a) less likely to be preserved as fossils.
 - (b) more likely to live on land.
 - (c) less likely to evolve.
 - (d) all of the above.
- 3. Organisms that help decompose wastes include
 - (a) fungi.
 - (b) protists.
 - (c) scavengers.
 - (d) all of the above.
- 4. The major reason for habitat loss is
 - (a) using land for agriculture.
 - (b) hunting wild animals.
 - (c) building new homes.
 - (d) spreading diseases.
- 5. What is one reason that the burning of tropical rain forests contributes to global warming?
 - (a) It uses up carbon dioxide.
 - (b) It reduces photosynthesis.
 - (c) It increases UV radiation.
 - (d) It destroys the ozone layer.
- 6. Why should you avoid using plastic bags?
 - (a) They cannot be re-used.
 - (b) They cannot be recycled.
 - (c) They are made from fossil fuels.
 - (d) They do not hold as much as paper bags.
- 7. When you buy a car, your number one priority in terms of helping the environment should be to buy a(n)
 - (a) used car.
 - (b) small car.
 - (c) American car.
 - (d) fuel efficient car.

Lesson 18.1: Vocabulary

Name	$___$ Class $___$	Date
Match the vocabulary term with the	$correct\ definition.$	
Term		
1. biodiversity hotspot		
2. biodiversity		
3. endemic species		
4. epiphyte		
5. extirpation		
6. genetic diversity		
7. genetic pollution		
8. keystone species		
9. exotic species		
10. species diversity		
Definition		
a. plant that grows on top of another	er plant	
b. elimination of a species from a pa	articular region of its r	range
c. number of different species in an	ecosystem or on Earth	1
d. mixing of genes of a wild populat	tion with a domestic of	r feral population
e. unique species found only in a cer	rtain area and nowhere	e else
f. region that has lost at least 70 p endemic species of vascular plants	ercent of its original h	abitat but contains at least 1500
g. species with an importance to ecos or mass	system diversity and st	ability that outweighs its numbers
h. variation among individuals and	populations within a s	pecies
i. variation in life at all levels of org	anization, from genes	to ecosystems
j. non-native species that is introdu	ced to a completely ne	ew ecosystem

18.3 Lesson 18.2: Natural Resources

Lesson 18.2: True or Flase

Name_	Class Date
Write tr	ue if the statement is true or false if the statement is false.
	_ 1. The formation of soils may require millions of years.
	_ 2. The only way people use soils is for agriculture.
	_ 3. The acidification of soil generally increases its productivity.
	_ 4. Contour plowing is one way to prevent soil erosion.
	_ 5. Paving over land can degrade streams and rivers.
	_ 6. A wetland is any area that is permanently covered with water.
	_ 7. Most wetlands have very high biodiversity.
	8. Most of Earth's water is in the form of water vapor in the atmosphere.
	_ 9. Adding nutrients to aquatic ecosystems is a good way to increase their biodi-
versity.	
	_ 10. It takes less water to produce 1 kg of wheat than 1 kg of beef.
	_ 11. One way to reduce water use is to landscape with native plants.
	_ 12. Gray water is water that comes from deep under Earth's surface.
Lesso	n 18.2: Critical Reading

Read this passage from the lesson and answer the questions that follow.

Name Class Date

Renewable and Nonrenewable Resources

A resource replenished by natural processes at a rate roughly equal to the rate at which humans consume it is a renewable resource. Sunlight and wind, for example, are in no danger of being used in excess of their long-term availability. Hydropower is renewed by the Earth's hydrologic cycle. Water has also been considered renewable, but overpumping of groundwater is depleting aquifers, and pollution threatens the use of many water resources, showing that the consequences of resource use are not always simple depletion. Soils are often considered renewable, but erosion and depletion of minerals proves otherwise.

Living things (forests and fish, for example) are considered renewable because they can

reproduce to replace individuals lost to human consumption. This is true only up to a point, however. Overexploitation can lead to extinction, and overharvesting can remove nutrients so that soil fertility does not allow forest renewal. Energy resources derived from living things—such as ethanol, plant oils, and methane—are considered renewable, although their costs to the environment are not always adequately considered. Renewable materials include sustainably harvested wood, cork, and bamboo, as well as sustainably harvested crops. Metals and other minerals are sometimes considered renewable because they are not destroyed when they are used and can be recycled.

A nonrenewable resource is not regenerated or restored on a time scale comparable to its consumption. Nonrenewable resources exist in fixed amounts (at least relative to our time frame) and can be used up. The classic examples are fossil fuels such as petroleum, coal, and natural gas. Fossil fuels have formed from remains of plants (for coal) and plankton (for oil) over periods of 50 to 350 million years. Many tons of plankton are required to produce just 1 liter of gasoline! We have been consuming fossil fuels for less than 200 years, yet even the most optimistic estimates suggest that remaining reserves can supply our needs for just a few decades or centuries at most.

Nuclear power is considered a nonrenewable resource because uranium fuel supplies are finite. Some estimates suggest that known supplies could last 70 years at current rates of use, although unknown reserves are probably much larger, and new technologies could make some reserves more useful.

Questions
1. What is a renewable resource? Give three examples.
<u>-</u>
_
<u>-</u>
2. Define the term nonrenewable resource. What are three nonrenewable resources?
-
-
_
3. Living things are considered renewable because they can reproduce. Why is this true only up to a point?
-
-
<u>-</u>

4. Metals and other minerals are finite; more of them cannot be produced. Why are they

sometimes considered renewable?			
-			
_			
-			
5. Some people consider nuclear power to to fossils fuels. Explain why nuclear power			e
-			
-			
-			
Lesson 18.2: Multiple Choi	ce		
Name	Class	Date	
Circle the letter of the correct choice.			
 "Something supplied by nature that (a) natural resource. (b) renewable resource. (c) nonrenewable resource. (d) renewable energy source. 			
2. Use of a resource in a way that cons	serves it for futu	ure generations is called	
 (a) virtual use. (b) secondary use. (c) sustainable use. (d) anthropogenic use. 			
3. Practices that contribute to soil eros	sion include		
(a) overgrazing.(b) strip farming.(c) no-till farming.(d) all of the above.			
4. One result of deforestation is a decr	ease in		
(a) soil erosion.(b) photosynthesis.(c) carbon dioxide.			

(d) global warming.

5. Draining wetlands is most likely to	cause an increase	in
(a) flooding.(b) water storage.(c) sedimentation.(d) denitrification.		
6. An algal bloom indicates that a bod	ly of water	
(a) is a dead zone.(b) has excessive nutrients.(c) is being used sustainably.(d) is a healthy aquatic ecosystem.		
7. What causes eutrophication?		
(a) runoff from agricultural lands(b) overexploitation of fish(c) use of virtual water(d) none of the above		
T 100 T/ 1 1		
Lesson 18.2: Vocabulary Name	Class	Date
.		Date
Name		Date
Name Match the vocabulary term with the correct		Date
Name Match the vocabulary term with the correct Term		Date
Name		Date
Name		Date
Name		Date
Name Match the vocabulary term with the correct Term 1. anthropogenic source 2. dead zone 3. desertification 4. eutrophication		Date
Name Match the vocabulary term with the correct Term 1. anthropogenic source 2. dead zone 3. desertification 4. eutrophication 5. biological magnification		Date
Name Match the vocabulary term with the correct Term 1. anthropogenic source 2. dead zone 3. desertification 4. eutrophication 5. biological magnification 6. nonpoint source pollution		Date
Name Match the vocabulary term with the correct Term 1. anthropogenic source 2. dead zone 3. desertification 4. eutrophication 5. biological magnification 6. nonpoint source pollution 7. point source pollution		Date
Name Match the vocabulary term with the correct Term 1. anthropogenic source 2. dead zone 3. desertification 4. eutrophication 5. biological magnification 6. nonpoint source pollution 7. point source pollution 8. primary pollutant		Date

a. degradation of formerly productive dry land

- b. process in which synthetic chemicals concentrate as they move up a food chain
- c. source of pollution related to human activities
- d. single-site source of pollutants, such as from a sewer overflow
- e. substance formed when pollutants interact with sunlight, air, or each other
- f. increase in nutrient levels in a body of water
- g. substance released directly into air by a process such as the burning of fossil fuel
- h. addition of salts to soils, often by irrigation
- i. runoff of pollutants from land, such as agricultural or developed land
- j. region of a lake or the ocean where life can no longer survive due to eutrophication

18.4 Lesson 18.3: Natural Resources II: The Atmosphere

Lesson 18.3: True or Flase

Name		Class	Date
Write true	e if the statement is true or false if	the statement is fals	3e.
	1. Acid rain is an example of a sec	ondary pollutant.	
	2. Pesticides are major sources of r	nercury pollution.	
	3. Smog causes respiratory problem	ns and eye irritation	1.
	4. Global dimming has worsened st	teadily since 1990.	
	5. Aerosol pollution may lower oce	an temperatures.	
	6. Acid rain is no longer a problem	once it falls to Ear	cth.
	7. Coal burning is the primary sou	rce of sulfur oxides.	
	8. Areas with colder climates are le	ess affected by acid	rain.
	9. Air pollution adds harmful ozon	e to the stratospher	re.
	10. The ozone layer is thicker near	the equator than a	t the poles.
	11. Ozone depleting pollutants incl	lude carbon monoxi	de and asbestos.
	12. The hole in the ozone layer is t	the major cause of g	global warming.

Lesson 18.3: Critical Reading

Name	Class	Date
Read this passage from the lesson and o	answer the auestions	that follow.

Upsetting the Equilibrium of the Atmosphere: Air Pollution

Despite the atmosphere's apparent vastness, human activities have significantly altered its equilibrium in ways that threaten its services for life. Chemical substances, particulate matter, and even biological materials cause air pollution if they modify the natural characteristics of the atmosphere. Primary pollutants are directly added to the atmosphere by processes such as fires and burning of fossil fuels. Examples of primary pollutants include sulfur oxides and nitrogen oxides, both of which contribute to acid rain. Secondary pollutants form when primary pollutants interact with sunlight, air, or each other. Examples of secondary pollutants include chlorine and bromine, both of which threaten the ozone layer.

What causes air pollution? The majority of air pollutants can be traced to the burning of fossil fuels or other materials. We burn fossil fuels in power plants to generate electricity; in factories to power machinery; in stoves and furnaces for heat; and in airplanes, ships, trains, and motor vehicles for transportation. Pollutants are also released when waste is burned in waste facilities. In addition, we burn wood for heat and burn vegetation for agriculture and land management. Besides burning, there are many other anthropogenic (human-caused) sources of air pollution. For example, methane and ammonia are produced by agricultural practices, and both contribute to global warming.

What are the effects of air pollution? In 2002, the World Health Organization estimated that 2.4 million people die each year as a consequence of air pollution—more than are killed in automobile accidents. Respiratory and cardiovascular problems are the most common health effects of air pollution. Accidents that release airborne poisons (such as the accident at the Chernobyl nuclear plant) have also killed many people—and undoubtedly other animals. In addition, air pollution affects entire ecosystems worldwide by causing acid rain, ozone depletion, and global warming.

Particulates and aerosols (airborne solid particles or liquid droplets) are unique types of pollutants. They pollute only air, not soils or water. Among other problems, these two types of pollutants cause global dimming. This is a reduction in the amount of solar radiation reaching Earth's surface. It occurs because particulates and aerosols absorb solar energy and reflect sunlight back into space. As a result, there is less sunlight for photosynthesis, less food at all trophic levels, and less energy to drive the water cycle. Other effects of global dimming include cooler oceans and less rainfall, which may lead to droughts, less plant growth, and famines.

Questions

1. What is air pollution?

_			
-			
	1 11 .		
2. Compare and contrast primary and second	ndary pollutar	nts.	
-			
-			
-			
3. List several causes of air pollution.			
-			
_			
-			
4. What are some of the effects of air pollu	tion?		
-			
_			
E. Come types of air pollution cause global	dimension Ho	v con this effect constrat	- 0200 02
5. Some types of air pollution cause global	diffilling. How	v can tins affect ecosyst	ems:
-			
-			
-			
T 100 M 1: 1 Cl :			
Lesson 18.3: Multiple Choice	е		
Name	_ Class	Date	_
Circle the letter of the correct choice.			
1. Secondary pollutants form when prim	ary pollutants	s interact with	
(a) air.	ary portation	illuctaco wion	
(b) sunlight.			
(c) each other.			
(d) all of the above.			
2. The majority of air pollutants can be	traced to the		
(a) burning of fossil fuels.			

(b) eruption of volcanoes.(c) use of fertilizers.(d) erosion of soil.	
3. Light pollution may have harmful effects	on
(a) human health.(b) animal behavior.(c) animal navigation.(d) all of the above.	
4. Natural precipitation is slightly acidic be atmosphere combines with	ecause a weak acid forms when water in the
(a) ozone.(b) aerosols.(c) particulates.(d) carbon dioxide.	
5. Catalytic converters in cars help address	the problem of
(a) acid rain.(b) light pollution.(c) noise pollution.(d) sustainable use.	
6. Effects of ozone depletion include an incr	ease in
(a) skin cancers.(b) plant growth.(c) plankton.(d) asthma.	
7. Ways to reduce air pollution include usin	ıg
(a) more electricity.(b) less hydropower.(c) more solar energy.(d) less geothermal energy.	
Lesson 18.3: Vocabulary	
Name C	Class Date
Match the vocabulary term with the correct def	inition.
Term	
1. acid rain	
2. aerosol	

3. air pollution	
4. global dimming	
5. global warming	
6. greenhouse effect	
7. light pollution	
8. ozone depletion	
9. ozone hole	
10. ozone layer	
Definition	
a. alteration of Earth's atmosphere by chemical, particulate, or biological ma	terials
b. trapping by the atmosphere of heat energy radiated from Earth's surface	
c. recent increases in Earth's average near-surface and ocean temperatures	
d. reduction in the stratospheric concentration of ozone molecules	
e. any form of precipitation that has an unusually low pH	
f. concentration of ozone molecules in the stratosphere	
g. airborne solid particles or liquid droplets	
h. seasonal reduction in the ozone layer over Antarctica	
i. reduction in the amount of radiation reaching Earth's surface	
j. production of light by humans in amounts that are annoying, wasteful, or l	harmful
18.5 Lesson 18.4: Climate Change Lesson 18.4: True or False	
Name Class Date	
Write true if the statement is true or false if the statement is false.	
1. The greenhouse effect is a natural feature of Earth's atmosphere	e.
2. Earth's temperature increased by almost half a degree Celsius and 2004.	between 1995
3. The warmest year ever recorded on Earth was the year 1940.	
4. Earth was very cold during the Jurassic Period because of sun s	spot activity.

Name	Class Date
Lesson	18.4: Critical Reading
	12. The melting of permafrost is one cause of a runaway greenhouse effect.
	$11.\ \mathrm{More}$ greenhouse gases are emitted in the U.S. by agriculture than by industry.
year 2000.	
	10. The concentration of carbon dioxide in the atmosphere has declined since the
	9. Earth's average temperature first began to increase steadily in 1990.
	$8.\ $ Most scientists agree that human actions are the main cause of global warming.
just $10^{\circ}C$.	
	7. The difference between an entirely glaciated Earth and an ice-free Earth is
	6. The so-called "little ice age" occurred during the Middle Ages.
	5. One source of temperature information for the past comes from tree rings.

What is the Greenhouse Effect?

The greenhouse effect is a natural feature of Earth's atmosphere and an ecosystem service. Without the greenhouse effect, Earth's surface temperature would average $-18^{\circ}C$ ($0^{\circ}F$)—a temperature far too cold to support life as we know it. With the greenhouse effect, Earth's surface temperature averages $15^{\circ}C$ ($59^{\circ}F$). This is the average temperature to which today's diversity of life has adapted.

Read this passage from the lesson and answer the questions that follow.

How does this ecosystem service work? Of the solar radiation that reaches Earth's surface, as much as 30 percent is reflected back into space. About 70 percent is absorbed as heat, warming the land, waters, and atmosphere. If there were no atmosphere, most of the heat would radiate back out into space as infrared radiation. Earth's atmosphere, however, contains molecules of water, carbon dioxide, methane, and ozone, and these molecules absorb some of the infrared radiation. Some of this absorbed radiation further warms the atmosphere, and some is radiated back down to Earth's surface or out into space. A balance between the heat that is absorbed and the heat that is radiated out into space results in an equilibrium that maintains a constant average temperature for Earth and its life.

If we compare Earth's atmosphere to the atmospheres of Mars and Venus, we can better understand the precision and value of Earth's thermal equilibrium. Mars' atmosphere is very thin, exerting less than 1 percent of the surface pressure of our own atmosphere. As you might expect, the thin atmosphere of Mars cannot hold heat from the sun. As a result, the average surface temperature on Mars is $-55^{\circ}C$ ($-67^{\circ}F$), even though the atmosphere of Mars is 95 percent carbon dioxide and also contains a great deal of dust. Mars' daily

variations in temperature are extreme because the atmosphere cannot hold heat.

In contrast, Venus' atmosphere is much thicker than Earth's, and it exerts 92 times the surface pressure of Earth's atmosphere. Moreover, 96 percent of Venus' atmosphere is carbon dioxide, so a strong greenhouse effect heats Venus' surface to as high as $500^{\circ}C$ (932°F). This is hotter than any other planet in our solar system. The thick atmosphere also prevents heat from escaping at night, so daily temperature variations are minimal on Venus.

Considering the extremes of the greenhouse effect on Mars and Venus, we can better appreciate the precise balance that allows our own atmosphere to provide temperatures hospitable to liquid water and life.

Questions

1. Contrast the average temperature on Earth's surface with and without the greenhouse effect.
-
_
2. Explain how the atmosphere warms Earth's surface.
- -
2 Who would Earth's town and touch a sunch different if the along the day of two calls are
3. Why would Earth's temperature be much different if the planet had no atmosphere?
-
_
-
4. Mars' atmosphere is 95 percent carbon dioxide, which is a greenhouse gas, yet Mars' surface has extreme variations in temperature. Explain why.
-
_
_
5. Why is Venus hotter than any other planet in our solar system?
-
_

Lesson 18.4: Multiple Choice

(c) It increases erosion.

Name	Class	Date	
Circle the letter of the o	correct choice.		
1. What percentage into space?	of the solar radiation that rea	eaches Earth's surface is reflected	back
(a) 1 percent(b) 30 percent(c) 70 percent(d) 100 percent			
2. Greenhouse gases	absorb energy in the form of		
(a) visible light.(b) UV light.(c) X rays.(d) heat.			
3. During the past 1	00 years, surface air temperat	tures on Earth have risen by	
 (a) 0.74°C. (b) 3.74°C. (c) 5.74°C. (d) 7.74°C. 			
4. One reason that d	leforestation increases greenho	ouse gases is because it leads to	
(a) less soil erosi(b) more respirat(c) more weather(d) less photosyr	tion. ring.		
5. A major greenhou	se gas released by cattle prod	luction is	
(a) iron oxide.(b) nitrous oxide(c) sulfur dioxide(d) carbon mono	e.		
6. Global warming i global warming?	s causing permafrost to melt	t. How may this lead to even gr	reatei
(a) It causes dro(b) It raises sea !	_		

- (d) It releases methane.
- 7. Which human action, by itself, both increases the amount of carbon entering the atmosphere and decreases the amount of carbon removed from the atmosphere?
 - (a) burning trash
 - (b) burning fossil fuels
 - (c) composting yard waste
 - (d) slash-and-burn agriculture

Lesson 18.4: Vocabulary

Name	Class Date	
Match the vocabulary term with the cor	rect definition.	
Term		
1. carbon sink		
2. carbon offsetting		
3. carbon sequestration		
4. carbon-neutral		
5. emissions cap		
6. emissions trading		
7. greenhouse effect		
8. greenhouse gas		
9. planetary engineering		
10. runaway greenhouse effect		

Definition

- a. process that removes carbon dioxide from the atmosphere
- b. buying or exchanging a means of reducing carbon dioxide for rights to release carbon dioxide
- c. positive feedback loop in which increasing temperature triggers the release of more greenhouse gases
- d. atmospheric substance that transmits solar radiation and absorbs infrared radiation
- e. reservoir that increases absorption of carbon dioxide
- f. radical, often global changes in technology, culture, or biosphere management

- g. upper limit on carbon dioxide or other pollutant release
- h. trapping by the atmosphere of heat energy from Earth's surface
- i. reducing greenhouse gas emissions by trade-offs from one location to another
- j. relating to anything that balances carbon dioxide release against something that sequesters carbon

Chapter 19

The Human Body Worksheets

19.1 Chapter 19: The Human Body

- Lesson 19.1: Organization of the Human Body
- Lesson 19.2: Homeostasis and Regulation

19.2 Lesson 19.1: Organization of the Human Body

Lesson 19.1: True or False

Name	Class	Date	
Write true if the statement is true	or false if the statemer	nt is false.	
1. In most multicellular	r organisms, not all cell	s are like.	
2. Each specialized cell	has a specific function	in the body.	
3. Every cell in the boo	ly originated from a sin	gle fertilized egg.	
4. A cell that is able t	to differentiate into all	cell types within a bo	ody is called
pluripotent.			
5. Human adult stem c	ells cannot be isolated f	rom a tissue sample, s	such as bone
marrow.			
6. Though the sponge	is a large organized, m	ulticellular structure,	its cells are
not organized into true tissues.			
7. Epithelial tissue is m	nade up of layers of tigh	tly packed cells.	
8. Your skin is the sma	llest organ in your body	y.	

 9. One of the functions of the integumentary organ system is for movement.
10. Leukocytes are among the structures involved in the immune system.

Lesson 19.1: Reading Comprehension

Name	Class	Date
------	-------	------

Read this passage from the text and answer the questions that follow.

Cells

A-Embryonic stem cells (purple)
B-adult stem cell (blue)
C-differentiated cell (yellow)

1-embryonic stem cell division to make more stem cells 2-totipotent embryonic stem cells can produce pluripotent adult stem cells 3-adult stem cells divide, and eventually differentiate into specialized cells. (4)

Figure 19.1: Division and differentiation of stem cells into specialized cells.

Stem Cells

An unspecialized cell that can divide many times and give rise to different, specialized cells is called a **stem cell**, as shown in **Figure 1**. Zygotes and embryonic cells are both types of stem cells. The stem cells found in embryos can divide indefinitely, can specialize into any cell type and are called **embryonic stem cells**. Embryonic stem cells are totipotent.

Undifferentiated cells that are found within the body and that divide to replace dying cells and damaged tissues are called adult stem cells. Adult stem cells can divide indefinitely, and generate all the cell types of the organ from which they originate. They can potentially re-grow the entire organ from just a few cells. A third type of stem cell is found in blood from the umbilical cord of a new-born baby, and the placenta. These "cord blood stem cells" are considered to be adult stem cells because they cannot generate all body cell types, just different types of blood cells. Therefore, adult stem cells and cord blood stem cells are pluripotent.

Stem Cells in Medicine

Stem cells are of great interest to researchers because of their ability to divide indefinitely, and to differentiate into many cell types. Stem cells have many existing or potential therapeutic applications. Such therapies include treatments for cancer, blood disorders, brain or spinal cord injuries, and blindness.

Figure 19.2: Human embryonic stem cell colony, which was grown in a laboratory on a feeder layer of mouse cells. Embryonic stem cells are totipotent.

Embryonic stem cells, as shown in **Figure 2**, are taken from eggs that were fertilized in the laboratory and donated to research. They may have the greatest potential because they are totipotent, and thus have the most potential medical applications. However, embryonic stem cells harvested from a donated embryo differ from a potential patient's tissue type. Therefore, just as in organ transplantation, there is a risk of a patient's body rejecting transplanted embryonic stem cells. Some individuals and groups have objections to the

harvesting of embryonic stem cells, because harvesting the stem cells involves the destruction of the embryo. Some researchers are looking into methods to extract embryonic stem cells without destroying the actual embryo. Other researchers have claimed success in harvesting embryonic stem cells from the embryonic fluid that surrounds a growing fetus.

Adult stem cells, including cord blood stem cells, have already been used to treat diseases of the blood such as sickle-cell anemia and certain types of cancer. Unlike embryonic stem cells, the use of adult stem cells in research and therapy is not controversial because the production of adult stem cells does not require the destruction of an embryo. Adult stem cells can be isolated from a tissue sample, such as bone marrow, from a person. Scientists have recently discovered more sources of adult stem cells in the body. Adult stem cells have been found in body fat, the inside lining of the nose, and in the brain. Some researchers are investigating ways to revert adult stem cells back to a totipotent stage.

Questions

& westions
1. What is the definition of a stem cell?
-
-
-
2. What can adult stem cells replace?
-
-
_
3. What is the main difference between embryonic and adult stem cells?
-
-
-
4. Name two ways in which researchers could harvest embryonic stem cells without destroying the actual embryo.
-
-
_
5. Name one source of adult stem cells in the human body.
_

Lesson 19.1: Multiple Choice $Class ___ Date___$ Circle the letter of the correct choice. 1. A cell that is able to differentiate into all cell types is called (a) pluripotent (b) differentiated (c) totipotent (d) none of the above 2. Adult stem cells (a) can divide indefinitely (b) can generate all the cell types of the organ from which they originate (c) can potentially re-grow the entire organ from just a few cells (d) all of the above 3. A third type of stem cell is found in (a) the placenta (b) the liver (c) the pancreas (d) the heart 4. Muscle tissue is made up of (a) neurons (b) fat cells (c) cells that contain contractile filaments (d) none of the above 5. One of the structures involved in the respiratory system is the (a) lymph node (b) pharynx

279

6. Providing cells with _____ and ____ is an extremely impor-

(c) pancreas(d) adenoids

tant function.

(a) blood, oxygen(b) oxygen, nutrients

		air, blood air, oxygen
7.	The	largest organ in the body is (are) the
	(a)	heart
	(b)	muscles
	(c)	bones
	(d)	skin

Lesson 19.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the c	orrect definition Term	s.
1. differentiation		
2. organ system		
3. tissue		
4. muscle tissue		
5. pluripotent		
6. organ		
7. connective tissue		
8. epithelial tissue		
9. stem cell		
10. cells		

Definitions

- a. the most basic units of life in your body
- b. a group of connected cells that have a similar function within an organism
- c. layers of tightly packed cells that line the surfaces of the body for protection, secretion, and absorption
- d. a cell able to differentiate into many cell types, but not all
- e. process by which an unspecialized cell divides many times to produce specialized cells that work together and make up the body
- f. an unspecialized cell that can divide many times and give rise to different, specialized cells
- g. cells that contain contractile elements that move past each other and change the size of

the cell

h. a group of organs that act together to carry out complex interrelated functions

i. made up of many different types of cells that are all involved in structure and support of the body

j. structure made of two or more tissues that work together for a common purpose

19.3 Lesson 19.2: Homeostasis and Regulation

Lesson 19.2: True or False

Disruption of Homeostasis

Name	Class	Date
Write true if the statement is true or false if	the statem	ent is false.
1. The release of hormones into the	he blood is	caused by a response.
2. Control of blood glucose level i	s an examp	ble of positive feedback.
3. One of the homeostatic processe and glucagon into the blood	es of chemic	cal regulation is the release of insulin
4. Cell toxicity is one cause of dis	ease and ce	ellular malfunction
5. Insulin replacement therapy is a back into balance	not used to	bring the body's handling of glucose
6. The blood of an anemic woman	n will have	increased oxygen-carrying capacity.
7. Genes are sometimes turned o some control over.	ff or on du	e to external factors which we have
8. Physical activity is essential for	r proper fui	nctioning of our cells and bodies.
9. Medications cannot help balance the brain.	e the amour	nt of mood-altering chemicals within
10. When a person takes too m system, basic life functions are disrupted.	uch of a dr	rug that affects the central nervous
Lesson 19.2: Reading Compre	ehensio	n
Name	Class	Date
Read this passage from the text and answer t	he question	as that follow.

Many homeostatic mechanisms keep the internal environment within certain limits (or set points). When the cells in your body do not work correctly, homeostatic balance is disrupted. Homeostatic imbalance may lead to a state of disease. Disease and cellular malfunction can be caused in two basic ways: by deficiency (cells not getting all they need) or toxicity (cells being poisoned by things they do not need). When homeostasis is interrupted, your body can correct or worsen the problem, based on certain influences. In addition to inherited (genetic) influences, there are external influences that are based on lifestyle choices and environmental exposure. These factors together influence the body's ability to maintain homeostatic balance. The endocrine system of a person with diabetes has difficulty maintaining the correct blood glucose level. A diabetic needs to check their blood glucose levels many times during the day, as shown in **Figure 3**, and monitor daily sugar intake.

Figure 19.3: A person with diabetes has to monitor their blood glucose carefully. This glucose meter analyses only a small drop of blood.

Internal Influences: Heredity

Genetics: Genes are sometimes turned off or on due to external factors which we have some control over. Other times, little can be done to prevent the development of certain genetic diseases and disorders. In such cases, medicines can help a person's body regain homeostasis. An example is the metabolic disorder Type 1 diabetes, which is a disorder where the pancreas is no longer producing adequate amounts of insulin to respond to changes in a person's blood glucose level. Insulin replacement therapy, in conjunction with carbohydrate counting and careful monitoring of blood glucose concentration, is a way to bring the body's handling of glucose back into balance. Cancer can be genetically inherited or be due to a mutation caused by exposure to toxin such as radiation or harmful drugs. A person may also inherit a predisposition to develop a disease such as heart disease. Such diseases can be delayed

or prevented if the person eats nutritious food, has regular physical activity, and does not smoke.

External Influences: Lifestyle

Nutrition: If your diet lacks certain vitamins or minerals your cells will function poorly, and you may be at risk to develop a disease. For example, a menstruating woman with inadequate dietary intake of iron will become anemic. Hemoglobin, the molecule that enables red blood cells to transport oxygen, requires iron. Therefore, the blood of an anemic woman will have reduced oxygen-carrying capacity. In mild cases symptoms may be vague (e.g. fatigue), but if the anemia is severe the body will try to compensate by increasing cardiac output, leading to weakness, irregular heartbeats and in serious cases, heart failure.

Physical Activity: Physical activity is essential for proper functioning of our cells and bodies. Adequate rest and regular physical activity are examples of activities that influence homeostasis. Lack of sleep is related to a number of health problems such as irregular heartbeat, fatigue, anxiety, and headaches. Being overweight and obesity, two conditions that are related to poor nutrition and lack of physical activity greatly affect many organ systems and their homeostatic mechanisms. Being overweight or obese increases a person's risk of developing heart disease, Type 2 diabetes, and certain forms of cancer. Staying fit by regularly taking part in aerobic activities such as walking, shown in Figure 4, has been shown to help prevent many of these diseases.

Figure 19.4: Adding physical activity to your routine can be as simple as walking for a total of 60 minutes a day, five times a week.

Questions

1. When homeostasis is interrupted, what are two ways your body can respond?

_

-		
_		
2. Why does a person with diabetes have t	to monitor his c	or her blood glucose carefully?
_		
-		
_		
3. Explain how in a person with Type 1 detection the body's handling of glucose back into be		replacement therapy helps bring
-		
-		
_		
4. How can such diseases as cancer or hear	rt disease be del	layed or prevented?
-		
-		
-		
5. Give an example of how a poor lifestyle	choice can lead	to a health problem.
-		
-		
_		
Lesson 19.2: Multiple Choic	e	
Name	Class	Date
C:1-41-1-44		
Circle the letter of the correct choice.		
·	emperature char	nge triggers a command from the
 When body temperature rises, the te (a) brain 	emperature char	nge triggers a command from the
 When body temperature rises, the te (a) brain (b) muscles 	emperature char	nge triggers a command from the
 When body temperature rises, the te (a) brain (b) muscles (c) glands 	emperature char	nge triggers a command from the
 When body temperature rises, the te (a) brain (b) muscles 		
 When body temperature rises, the te (a) brain (b) muscles (c) glands 	emperature char	nge triggers a command from the

	(b) the species(c) proper blood volume(d) growth	
3.	Disruption of homeostasis can be caused by	
	 (a) heredity (b) lifestyle (c) environmental exposure (d) all of the above 	
4.	. A woman whose ovaries are removed early in l	life is at higher risk of developing
	(a) diabetes(b) osteoporosis(c) cancer(d) depression	
5.	. A person with diabetes has to monitor what ca	carefully?
	(a) muscle strength(b) how much he or she eats(c) blood glucose(d) the amount of water he or she drinks	
6.	feedback occurs when t	the response to a stimulus reduces the
	original stimulus.	
	(a) Positive(b) Negative(c) Homeostatic(d) Regulatory	
7.	. Homeostasis in mammals includes	
	(a) the regulation of the amounts of water an(b) the removal of metabolic waste.(c) the regulation of body temperature.(d) all of the above	nd minerals in the body.
Les	sson 19.2: Vocabulary	
Nam	me Class_	Date
Matc	ch the vocabulary term with the correct definition	n Term.
	1. negative feedback	
	2. homeostasis	
	3 positive feedback	

 4. cellular toxin
 5. stimulus
 6. excretion
 7. thermoregulation
 8. hormone
 9. osmoregulation
10. endocrine system

Definition

- a. occurs when the response to a stimulus increases the original stimulus
- b. occurs when the response to a stimulus reduces the original stimulus
- c. stability, balance, or equilibrium within the cell or a body
- d. regulation of the amounts of water and minerals in the body
- e. chemical messenger molecules
- f. removal of metabolic waste
- g. substance that interferes with cellular function and causes cellular malfunction
- h. controls almost every other body system
- i. regulation of body temperature
- j. causes an increase or a decrease in the amount of hormone secreted

Image Sources

- (1) http://commons.wikimedia.org/wiki/Image:Glucose_test.jpg. GFDL 1.2.
- (2) http://en.wikipedia.org/wiki/Image:
 Human_embryonic_stem_cell_colony_phase.jpg. Public Domain.
- (3) *Jame* . CC-SA-BY 2.0.
- (4) http://en.wikipedia.org/wiki/Image: Stem_cell_division_and_differentiation.svg. Public Domain.

Chapter 20

Nervous and Endocrine Systems Worksheets

20.1 Chapter 20: Nervous and Endocrine Systems

• Lesson 20.1: Nervous System

• Lesson 20.2: Endocrine System

20.2 Lesson 20.1: Nervous System

Lesson 20.1: True or False

Name		Class	Date
Write true	if the statement is true or false if	the statement is fals	<i>3e.</i>
	1. The axon is a long, membrane-	bound extension of t	the cell body.
	2. The sodium-potassium pump re	emoves Na+ ions fro	m the cell by active trans-
port.			
	3. Chemical synapses use ions as	messengers.	
	4. The cerebellum is involved in c	oordination and con	trol of body movement.
	5. If the cerebellum is damaged the	nere will be paralysis	3.
through a	6. A reflex is an automatic action reflex arc.	caused by a defined	d stimulus and carried out
	7. The parasympathetic division ξ	gets the body ready	for "fight or flight."

	8. The fovea contains the largest	concentration of rod	cells in the eye.		
	9. Hair cells send electrical signals to the cerebellum.				
	10. A psychoactive drug alters co	gnitive function in the	ne central nervous system		
Lesson	20.1: Critical Reading	S			
Name		Class	Date		

Read this passage from the lesson and answer the questions that follow.

Somatic and Autonomic Nervous Systems

The motor division of the peripheral nervous system is divided into the somatic nervous system and the autonomic nervous system: The somatic nervous system is the part of the PNS that is associated with the conscious (voluntary) control of the body through the movement of skeletal muscles and the perception of external stimuli through senses such as touch, hearing, and sight. The system includes all the neurons connected with muscles, skin and sense organs. The somatic nervous system is made up of sensory nerves that receive sensory information from the external environment, and motor nerves responsible for muscle contraction. Together with interneurons, the sensory and motor neurons are found in a reflex arc. A reflex is an automatic (involuntary) action caused by a defined stimulus and carried out through a reflex arc. For example, a person stepping on a sharp object would start the reflex action through the creation of a stimulus, (pain) within specialized pain receptors located in the skin tissue of the foot. The resulting stimulus would be passed along sensory neurons to the spinal cord. This stimulus is usually processed by an interneuron to create an immediate response to pain by initiating a motor response in the muscles of the leg which pull the foot away from the object. This reflexive action would occur as the pain sensation is arriving in the brain. A reflex arc is shown in **Figure 19**.

The autonomic nervous system (ANS) is the part of the peripheral nervous system that maintains homeostasis in the body. Your body carries out most of these maintenance activities without your conscious control, which is why the autonomic nervous system is also called the involuntary nervous system. The ANS has far reaching effects, such as the control of heart rate, digestion, respiration rate, salivation, and perspiration. Some autonomic nervous system functions work in line with the conscious mind, such as breathing.

The ANS is also made up of the sensory and motor neurons that send messages to and from the internal organs. These neurons form reflex arcs that pass through the medulla oblongata. This explains why even a person's cerebrum may experience trauma, yet their cardiovascular, digestive and respiratory functions will continue even if higher level functions such as awareness and consciousness, are lost. Such a low level of brain functioning is referred to as a vegetative state.

The ANS has two subdivisions: the sympathetic division and parasympathetic division. The

Figure 20.1: The components of a reflex. A sensory receptor that detects a stimulus and sends nerve signals to the spinal cord. These signals activate motor neurons that lead back to the effector (muscle).

sympathetic division generally stimulates body systems during emergency situations. It gets the body ready for "fight or flight", which would probably be required by the situation shown in **Figure 20**, while the parasympathetic division controls non-emergency functions such as digestion. The relationship between the divisions of the nervous system is illustrated in **Figure 21**.

Figure 20.2: A situation in which your sympathetic nervous system (and hopefully your somatic nervous system), would be firing at full speed.[1]

Questions

1. The motor division of the peripheral nervous system is divided into what two nervous systems?

-

2. List two ways in which the somatic nervous system is associated with the voluntary control of the body.

-

3. If a person steps on a sharp object, what reflexive action occurs as the pain sensation is arriving in the brain?

_

4. Give an example of a bodily function that is controlled by both the somatic and autonomic nervous systems.

-

_		
-		
5. Look at Figure 20. Explain how be working here.	both the sympathetic ar	nd somatic nervous systems w
-		
-		
-		
Lesson 20.1: Multiple	Choice	
Name	Class	Date
Circle the letter of the correct choice	ce.	
1. In myelinated neurons, ion flo	ows occur only at the	
(a) myelin sheaths(b) Nodes of Ranvier(c) synapses(d) Schwann cells		
2. One of the three functional gr	roups of nerves is the	
(a) sensory neurons(b) interneurons(c) motor neurons(d) all of the above		
3. The most common excitatory	transmitter in the bod	ly is
(a) glutamate(b) GABA(c) glycine(d) acetylcholine		
4. The receptors for epinephrine	e are called	
(a) histamine receptors(b) adrenoceptors(c) glutamate receptors(d) 5-HT receptors		
5. One of the autonomic function	ons is	
(a) heartbeat		

(b) breathing

(c) temperature regulation(d) all of the above		
6. The central region of the spinal	cord is known as	
 (a) white matter (b) grey matter (c) the brainstem (d) none of the above 		
7. Photoreceptors are found in the	;	
(a) iris(b) cornea(c) retina(d) lens		
Lesson 20.1: Vocabulary		
Name	Class	Date
$Match\ the\ vocabulary\ term\ with\ the\ c$	orrect definition.	
Term		
1. dendrites		
2. axon		
3. action potential		
4. neuromuscular junction		
5. glial cell		
6. midbrain		
7. nociceptor		
8. synapse		
9. cerebellum		
10. psychoactive drug		
Definition		
a. a substance that affects the centra	l nervous system by a	altering cognitive function
b. cell that provides a support system	n for the neurons	

c. a long, membrane-bound extension of the cell body that passes the nerve impulse onto

www.ck12.org **292**

the next cell

- d. extend from the cell body and receive a nerve impulse from another cell
- e. the part of the brain involved in coordination and control of body movement
- f. part of the brain involved with unconscious functions such as breathing, heartbeat, and temperature regulation
- g. an electrical charge that travels along the membrane of a neuron
- h. a type of pain receptor which responds to potentially damaging stimuli
- i. a specialized junction at which neurons communicate with each other
- j. a synapse between a neuron and a muscle cell

20.3 Lesson 20.2: Endocrine System

Lesson 20.2: True or False

Name		Class	Date
Write tru	ue if the statement is true or fal	lse if the statemen	nt is false.
to our env	_ 1. The nervous and endocring vironment.	e systems work c	losely together to help us respond
of the boo	_ 2. Hormones are chemical med dy and cause changes in cells in	0	that are made by cells in one part the body.
	_ 3. Exocrine glands secrete ho	rmones.	
	4. Steroid hormones diffuse the	hrough cell memb	pranes.
	_ 5. The pituitary gland secrete	es hormones that	stimulate exocrine glands.
	_ 6. Insulin and glucagon are b	oth involved in c	ontrolling blood glucose levels.
	_ 7. Cortisol decreases blood pr	ressure and blood	l sugar levels.
	$_$ 8. The gonads only produce ϵ	endocrine actions	, not exocrine ones.
	9. Epinephrine is a "fight or f	flight" hormone.	
anisms.	_ 10. Positive feedback mechani	isms are not as co	ommon as negative feedback mech-
Lesson	n 2: Critical Reading	5	
Name		Class	Date

Read this passage from the lesson and answer the questions that follow.

Negative Feedback

Negative feedback is a reaction in which the system responds in such a way as to reverse the direction of change. Since this tends to keep things constant, it allows for a process to return from a state of imbalance back to a homeostatic equilibrium.

A common, non-biological example of negative feedback happens in a home heating system. When you are home, you set your thermostat to $21^{\circ}C$ (about $70^{\circ}F$), which is the **set point**. The thermometer in the thermostat monitors the room temperature and will sense when the temperature drops below the $21^{\circ}C$ set point (the stimulus). The thermometer will then send a message to the thermostat (control center), which in turn sends a message to the furnace to switch on and heat up the room. When the room temperature returns to the set temperature, the thermostat shuts the furnace off. In this home-heating example, the increase in air temperature is the negative feedback that results in the furnace being shut off. In this way a set room temperature of $21^{\circ}C$ (within a degree or two) is maintained.

An example of negative feedback in the body is the control of blood-glucose concentrations by insulin. A higher amount of glucose in the blood (the stimulus), signals the beta cells of the pancreas to release insulin into the blood. Hormone concentration alone cannot trigger a negative feedback mechanism, negative feedback is instead triggered by an overproduction of the effect of the hormone, such as the lowering of blood glucose concentration (the effect), which causes a decrease in the secretion of insulin by the pancreas.

Negative Feedback: Regulation of Thyroid Hormones

The thyroid hormones thyroxine (T4) and triiodothyronine (T3) regulate the rate of metabolism. The production of T4> and T3 is regulated by thyroid-stimulating hormone (TSH), which is released by the anterior pituitary. The thyroid and the TSH-producing cells of the anterior pituitary form a negative feedback loop, as shown in **Figure 14**.

Thyroid-stimulating hormone production is decreased when the T4 levels are high, and when TSH levels are high, T4 production is decreased. The production and secretion of TSH is in turn controlled by thyrotropin-releasing hormone (TRH), which is produced by the hypothalamus. The rate of TRH secretion is increased in situations such as cold temperature because increasing the metabolic rate would generate more heat. Increased levels of T4 and T3 in the blood cause a reduction in TRH secretion. Among other things, TSH secretion is reduced by high levels of thyroid hormones, as well as the antagonistic hormone somatostatin. These feedback loops keep the concentration of thyroid hormones within a narrow range of concentrations.

Questions

1. What is negative feedback?

-

Figure 20.3: Two negative feedback loops exist in the control of thyroid hormone secretion. (1) shows the loop between the TSH-producing cells of the anterior pituitary and the thyroid. Increased levels of T4 and T3 in the blood cause a reduction in TSH secretion. (2) shows that increased levels of T4 and T3 in the blood cause a reduction in TRH secretion.

-				
-				
2. In the home-heating example, what is t	the negative fee	dback?		
-				
-				
-				
3. What hormone effect triggers the negative	tive feedback in	the blood-	-glucose exam	ple?
-				
-				
-				
Look at the figure above to answer of	questions 4 an	nd 5:		
4. In negative feedback loop 1, what effection blood have?	ect does the inc	ereased leve	els of T3 and	T4 in the
-				
-				
-				
5. What is the effect of the two negative hormones?	e feedback loop	os on the c	concentration	of thyroid
-				
-				
-				
Lesson 20.2: Multiple Choice	ce			
Name	Class	D)ate	-
Circle the letter of the correct choice.				
1. The endocrine system releases horm	ones into the			
(a) nervous system				
(b) muscles(c) blood				
(d) none of the above				

2. Amino acid-based hormones usually b	ind to receptors that	are found on the
(a) cell nucleus(b) cell membrane(c) mitochondria(d) none of the above		
3. Glucagon is released by the		
(a) thymus(b) pituitary gland(c) ovary(d) pancreas		
4. The posterior pituitary releases which	of the following?	
(a) oxytocin(b) LH(c) FSH(d) growth hormone		
5. Melatonin is involved in		
(a) digestion(b) water loss(c) sleep cycles(d) none of the above		
6. An example of a positive feedback me	chanism is	
(a) control of blood glucose concentr(b) control of milk production(c) control of thyroid hormone secret(d) none of the above		
7. Which of the following regulates meta	bolism?	
(a) pancreas(b) pituitary gland(c) adrenal glands(d) kidneys		
Lesson 20.2: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct	definition.	
Term		
1. cortisol		

2. glucagon
3. target cell
4. islets of Langerhans
5. hypersecretion
6. hyposecretion
7. prostaglandins
8. gonads
9. exocrine glands
10. endocrine glands

Definition

- a. an important hormone involved in carbohydrate metabolism
- b. the production of too much of a hormone
- c. a steroid hormone produced by the adrenal glands
- d. the gamete producing organs
- e. areas of the pancreas with groupings of endocrine cells
- f. hormone-like substance made from essential fatty acids, produced by most cells in the body
- g. the cell on which a hormone has an effect
- h. the production of no hormone or too little of a hormone
- i. a system of organs that releases chemical message molecules into the blood
- j. organs that secrete their products into ducts

Image Sources

- (1) .
- (2) .
- (3) .

Chapter 21

Skeletal, Muscular, and Integumentary Systems Worksheets

21.1 Chapter 21: Skeletal, Muscular, and Integumentary Systems

- Lesson 21.1: Skeletal System
- Lesson 21.2: Muscular System
- Lesson 21.3: Integumentary System

21.2 Lesson 21.1: Skeletal System

Lesson 21.1: True or False

Name	Class	Date
Write true if the statement is true or false if	the statement is fals	e.
1. The function of cartilage in the for the movement of bones at a joint.	e adult skeleton is to	o provide smooth surfaces
2. The skeletons of babies and chithan adult skeletons.	ldren have many few	er bones and less cartilage
3. The skeleton is the bone and callows it to move.	artilage scaffolding th	nat supports the body and
4. Limbs are connected to the resgirdles.	st of the skeleton by	collections of bones called

	5. Calcium is released by the bones when blood levels of calcium drop too low.
	6. Spongy bone makes up the outer layer of bones.
skeleton.	7. Compact bone accounts for about 20% of the total bone mass of an adult
	8. In newborns, bones contain only red marrow.
	9. The bones of the wrist are long bones.
	10. Synovial joints are the most mobile joints of all.
Lesson	21.1: Critical Reading

Read this passage from the lesson and answer the questions that follow.

Joints

Name

A **joint** (also called an articulation), is a point at which two or more bones make contact. They are constructed to allow movement and provide mechanical support for the body. Joints are a type of lever, which is a rigid object that is used to increase the mechanical force that can be applied to another object. This reduces the amount of energy that need to be spent in moving the body around. The articular surfaces of bones, which are the surfaces that meet at joints, are covered with a smooth layer of articular cartilage.

Class

Date

There are three types of joints: immovable, partly movable, and synovial.

- Immovable Joint: At an immovable joint (or a fixed joint), bones are connected by dense connective tissue, which is usually collagen. Immovable joints, like those connecting the cranial bones, have edges that tightly interlock, and do not allow movement. The connective tissue at immovable joints serves to absorb shock that might otherwise break the bone.
- Partly Movable Joints: At partly movable joints (or cartilaginous joints), bones are connected entirely by cartilage. Cartilaginous joints allow more movement between bones than a fibrous joint does, but much less than the highly mobile synovial joint. Examples of partly-movable joint include the ribs, the sternum and the vertebrae, shown in Figure 21.1. Partly-movable joints also form the growth regions of immature long bones.
- Synovial joints: Synovial joints, also known as movable joints, are the most mobile joints of all. They are also the most common type of joint in the body. Synovial joints

Figure 21.1: Illustration of an synovial disk, a cartilaginous joint. These partly-movable joints are found between the vertebrae. An X ray of the cervical (neck) vertebrae is at right.

contain a space between the bones of the joint (the articulating bones), which is filled with synovial fluid. Synovial fluid is a thick, stringy fluid that has the consistency of egg albumin. The word "synovial" comes from the Latin word for "egg". The fluid reduces friction between the articular cartilage and other tissues in joints and lubricates and cushions them during movement. There are many different types of synovial joints, and many different examples. A synovial joint is shown in Figure 21.2.

Questions		
1. Name the three types of joints described	here.	
-		
2. What is the main function of an immova	able joint?	
-		
3. Give an example of a partly movable join	nt.	
-		
-		
4. What is the function of synovial fluid?		
-		
-		
5. Give an example of a synovial joint.		
-		
Lesson 21.1: Multiple Choice		
Name	_ Class	Date

Figure 21.2: Diagram of a synovial joint. Sinovial joints are the most common type of joint in the body, and allow a wide range of motions. Think of how difficult walking would be if your knees and hips were only partly movable, like your spine.

Circle the letter of the correct choice.

1.	The adult human skeleton consists of approximately how many bones?
	(a) 50(b) 100(c) 200(d) 300
2.	Bones of the axial skeleton include the
	(a) hyoid bone.(b) ossicles.(c) the skull.(d) all of the above
3.	Which of the following help to give bones strength?
	 (a) lamella (b) osteocytes (c) chondrocytes (d) none of the above
4.	Which of the following is a type of bone marrow?
	(a) white marrow(b) red marrow(c) spongy marrow(d) none of the above
5.	The patella is an example of a
	(a) sesamoid bone.(b) short bone.(c) irregular bone.(d) flat bone.
6.	The purpose of remodeling is to
	(a) regulate calcium homeostasis.(b) repair micro-damaged bones from everyday stress.(c) shape the skeleton during skeletal growth.(d) all of the above
7.	The most common cause of rickets is a deficiency in Vitamin
	 (a) A (b) C (c) D (d) E

Lesson 21.1: Vocabulary

Name	Class	Date
Match the vocabulary term with the corre	ect definition.	
Term		
1. ligament		
2. rickets		
3. compact bone		
4. bone marrow		
5. osteoclast		
6. haversian canal		
7. spongy bone		
8. cartilage		
9. endochondrial ossification		
10. intramembranous ossification		

Definition

- a. A type of tissue that makes up the dense outer layer of bones.
- b. A type of bone cell that removes calcium salts from bone matrix.
- c. The process of replacing cartilage with bony tissue.
- d. Located in the center of each osteon, serves as a passageway for blood vessels and nerves.
- e. A band of tough, fibrous tissue that connects a bone to another bone.
- f. The process of bone tissue developing from a fibrous membrane
- g. Dense connective tissue that is made of tough protein fibers
- h. A soft, connective tissue found in the interior bones.
- i. A type of tissue that is less dense than compact bone, and is found toward the center of the bone.
- j. A common disease among children in developing countries; symptoms include soft bones that are prone to fractures.

21.3 Lesson 21.2: Muscular System

Lesson 21.2: True or False

	_
nt is false.	
by the autonomic i	nervous system.
gular angles.	
n chemical composi	tion and action.
the interaction of ac	tin and myosin.
e muscle remains t	he same length
gth.	
Class	Date
	nt is false. by the autonomic regular angles. n chemical composite the interaction of active muscle remains to gth. ClassClass

Read this passage from the lesson and answer the questions that follow.

Smooth Muscle Contraction

Smooth muscle-containing tissue, such as the stomach or urinary bladder often must be stretched, so elasticity is an important characteristic of smooth muscle. Smooth muscle (like cardiac muscle) does not depend on motor neurons to be stimulated. However, motor neurons of the autonomic nervous system do reach smooth muscle, causing it to contract or relax, depending on the type of neurotransmitter that is released. Smooth muscle is also affected by hormones. For example, the hormone oxytocin causes contraction of the uterus during childbirth.

Similar to the other muscle types, smooth muscle contraction is caused by the sliding of myosin and actin filaments over each other. However, calcium initiates contractions in a

Figure 21.3: The intestinal tract contains smooth muscle which moves food along by contracting and relaxing in a process called peristalsis. An animation of peristalsis can be viewed at

different way in smooth muscle than in skeletal muscle. Smooth muscle may contract phasically with rapid contraction and relaxation, or tonically with slow and sustained contraction. The reproductive, digestive, respiratory, and urinary tracts, skin, eye, and vasculature all contain smooth muscle. For example, the ability of vascular smooth muscle (veins and arteries) to contract and dilate is critical to the regulation of blood pressure. Smooth muscle contracts slowly and may maintain the contraction (tonically) for prolonged periods in blood vessels, bronchioles, and some sphincters. In the digestive tract, smooth muscle contracts in a rhythmic peristaltic fashion. It rhythmically massages products through the digestive tract, shown in **Figure 21.3**, as the result of phasic contraction.

Questions		
1. Why is it important that smooth muscle have elasti	icity?	
-		
2. Give an example of smooth muscle being affected by	y hormones.	
-		
3. What ability of vascular smooth muscle is critical to	the regulation of blo	od pressure?
-		
4. How does the contraction of smooth muscle in the o	digestive system aid in	digestion?
-		
_		
5. What determines whether smooth muscle contracts	or relaxes?	
-		
Lesson 21.2: Multiple Choice		
Name	Class	Date
Circle the letter of the correct choice.		

(d) all of the above

(a) esophagus (b) stomach (c) intestines

2. Approximately how many skeletal muscles are in the human body?

1. Smooth muscle is found within walls of the _____

(a) 235

Teri	n 1. sarcomeres	
	ch the vocabulary term with the correct definition.	
Nan	Class	Date _
	sson 21.2: Vocabulary	.
	(a) muscular dystrophy(b) ALS(c) polio(d) all of the above	
7.	Which of the following diseases cause muscle atrophy?	
	(a) weight training(b) stretching(c) cycling(d) walking	
6.	An example of anaerobic exercise is	_•
	 (a) 30 minutes a day for at least 3 days a week. (b) 40 minutes a day for at least 5 days a week. (c) 60 minutes a day for at least 5 days a week. (d) none of the above 	
5.	What level of physical activity helps a person to maintain a good fitness?	level of physic
	(a) Pressing the palms together in front of the body.(b) Lifting an object off a desk.(c) Pushing against a door frame.(d) none of the above	
4.	Which of the following is an example of an isotonic contraction?	
	(a) has the largest number of mitochondria per cell.(b) contains myoglobins.(c) is provided with a large amount of nutrients and oxygen.(d) all of the above	
3.	Cardiac muscle	
	(b) 450 (c) 640 (d) 760	

2. actin	
3. atrophy	
4. motor unit	
5. tendinitis	
6. hypertrophy	
7. cardiac muscle	
8. extensor	
9. aerobic respiration	
10. muscle contraction	
Definition	
a. A group of individual muscle fibers along with their motor neuron.	
b. The loss of muscle mass.	
c. Involuntary muscle that makes up the heart.	
d. A painful disorder of a tendon.	
e. Repeating units of actin and myosin filaments.	
f. A muscle that causes the angle of a joint to become larger.	
g. The breakdown of food energy to generate ATP, occurs in the pres	ence of oxygen.
h. A thread-like protein filament that is involved in muscle contractio	n.
i. The generation of tension in a muscle fiber by the movement of act	in and myosin.
j. The growth in size of muscle fibers and muscles.	
21.4 Lesson 21.3: Integumentary System	
Lesson 21.3: True or False	
NameClass_	Date
Write true if the statement is true or false if the statement is false.	
1. The skin is the body's largest organ.	
2. Subcutaneous tissue lies underneath the dermis.	
3. The epidermis has lots of blood vessels.	

Lesson	21.3: Critical Reading
	10. UV radiation excites DNA molecules in skin cells.
	9. The skin makes vitamin A through exposure to UV radiation.
	8. The evaporation of sweat helps increase the temperature of the skin surface.
	7. The subcutaneous tissue contains about 90 percent of the body's fat.
	6. If a sebaceous gland becomes plugged and infected, it develops into a pimple.
	5. The epidermis contains the hair follicles.
	4. Melanocytes are located in the bottom layer of the epidermis.

Class

Date -

Read this passage from the lesson and answer the questions that follow.

Functions of Skin: Skin and Homeostasis

Name

The skin has multiple roles in homeostasis, including protection, control of body temperature, sensory reception, water balance, synthesis of vitamins and hormones, and absorption of materials. The skin's main functions are to serve as a barrier to the entry of microbes and viruses, and to prevent water and extracellular fluid loss. Acidic secretions from skin glands also stop the growth of fungi on the skin. Melanocytes form a second barrier: protection from the damaging effects of UV radiation. When a microbe gets into the skin (or when the skin is cut) an immune system reaction occurs.

Heat and cold receptors are located in the skin. When the body temperature rises, the hypothalamus sends a nerve signal to the sweat-producing skin glands, causing them to release sweat onto the skin surface. The evaporation of sweat helps reduce the temperature of the skin surface which cools the body. The hypothalamus also causes dilation of the blood vessels of the skin, allowing more blood to flow into those areas, causing heat to be released from the skin surface. When body temperature falls, the sweat glands constrict and sweat production decreases. If the body temperature continues to fall, the body will start to generate heat by raising the body's metabolic rate and by causing the muscles to shiver.

The homeostatic functions of the skin include:

- Protection of the body's internal tissues and organs.
- Protection against invasion by infectious organisms.
- Protection of the body from dehydration.
- Protection of the body against large changes in temperature.
- Excretion of wastes through sweat.
- Acts as a receptor for the senses of touch, pressure, pain, heat, and cold.

• Stores water, fat, and vitamin D.		
Questions		
1. What do acidic secretions from skin glands do?		
-		
2. How does dilation of the blood vessels of the surface?	skin reduce the temperatu	ure of the skin
_		
3. What can the muscles do to help raise the body	y's temperature?	
4. How does the skin protect the body from dehyd	dration?	
5. How does the skin excrete wastes?		
Lesson 21.3: Multiple Choice		
Name	Class	Date
Circle the letter of the correct choice.		
1. The skin shields the body against		
(a) heat(b) light(c) injury		
(d) all of the above		
2. The epidermis contains		
(a) hair follicles(b) blood vessels(c) sweat glands(d) none of the above		
3. Which of the following is the most lethal tur	nor?	

 $\bullet\,$ Makes vitamin D through exposure to UV radiation.

5. mutation		
4. integumentary system		
3. epidermis		
2. melanin		
1. dermis		
Term		
Match the vocabulary term with the correct definition.		
Name	Class	Date
Lesson 21.3: Vocabulary		
T 010 X7 1 1		
(d) 10 cms		
(b) 1 cm (c) 5 cms		
(a) 1 mm		
7. Every 100 days, nails grow at a rate about		
(c) wavy (d) all of the above		
(b) curly		
6. Terminal hair can be genetically programmed to be _ (a) straight		·
(d) none of the above 6. Torminal hair can be genetically programmed to be		
(a) vellus hair (b) terminal hair (c) lanugo		
5. What type of hair covers the entire body of fetuses?		
(a) the cuticle(b) the nail plate(c) the lunula(d) none of the above		
4. Which of the following is composed of keratin?		
(b) basal cell carcinoma(c) squamous cell carcinoma(d) none of the above		
(a) melanoma		

6.	sebaceous gland
7.	sebum
8.	subcutaneous tissue
9.	papillary region
10	. reticular region

Definition

- a. A change to the nucleotide sequence of DNA or RNA.
- b. The outermost layer of the skin.
- c. Secretes an oily substance into the hair follicle.
- d. Lies below the dermis and contains fat and loose connective tissue.
- e. The layer of skin directly under the epidermis
- f. An oily substance secreted by sebaceous glands.
- g. Part of the dermis that contains touch receptors.
- h. The brown pigment that gives skin, hair and eyes their color.
- i. Part of the dermis that contains the hair follicles and roots, nerves, and glands.
- j. The organ system consisting of skin, hair, and nails.

Chapter 22

Circulatory and Respiratory Systems Worksheets

22.1 Chapter 22: Circulatory and Respiratory Systems

- Lesson 22.1: Circulatory System
- Lesson 22.2: Blood
- Lesson 22.3: Respiratory System

22.2 Lesson 22.1: Circulatory System

Lesson 22.1: True or False

Name	Class	Date
Write true if the states	nent is true or false if the statemer	it is false.'
1. In adults	, the normal mass of the heart is 1	00-200 grams.
2. The right	t side of the heart collects oxygena	ted blood from the body
3. Valves in	the heart maintain the flow of blo	od.
4. Cardiac	muscle is self-exciting.	
5. The hear	theat is made up of three parts.	
6. Arteries	carry blood away from the heart.	
7. The aort	a is the largest artery in the body.	
8. Capillari	es are the smallest of the body's bl	ood vessels.

 9. The lymphatic system is often called the primary circulatory system
10. Atherosclerosis normally begins in adulthood.

Lesson 22.1: Critical Reading

Name	${f Class}$	\mathbf{Date}
------	-------------	-----------------

Read this passage from the lesson and answer the questions that follow.

Homeostatic Imbalances of the Cardiovascular System

Cardiovascular disease (CVD) refers to any disease that affects the cardiovascular system, but it is usually used to refer to diseases related to atherosclerosis, which is a chronic inflammatory response in the walls of arteries that causes a swelling and buildup of materials called plaque. Plaque is made of cell debris, cholesterol, fatty acids, calcium, and fibrous connective tissue that build up around an area of inflammation. As a plaque grows it stiffens and narrows the artery, which reduces the flow of blood through the artery, shown in Figure 22.1.

Figure 22.1: Atherosclerosis is sometimes referred to as hardening of the arteries.

Atherosclerosis

Atherosclerosis normally begins in later childhood, and is usually found in most major arteries. It does not usually have any early symptoms. Causes of atherosclerosis include a high-fat diet, high cholesterol, smoking, obesity, and diabetes. Atherosclerosis becomes a threat to health when the plaque buildup interferes with the blood circulation in the heart (coronary circulation) or the brain (cerebral circulation). A blockage in the coronary circulation, can lead to a heart attack, and blockage of the cerebral circulation (leading to, or within the brain) can lead to a stroke. According to the American Heart Association, atherosclerosis is a leading cause of CVD.

Questions		
1. Cardiovascular disease (CVD) is usually referred	d to diseases related to wha	at?
-		
2. What is plaque made up of?		
-		
3. Atherosclerosis is sometimes referred to as what	ţ?	
-		
4. What are the causes of atherosclerosis?		
-		
5. In what two organs can plaque buildup interfere	e with blood circulation?	
-		
Lesson 22.1: Multiple Choice		
Name	Class	Date
Circle the letter of the correct choice.		
1. What does the cardiovascular system move t	o and from body cells?	
(a) nutrients		
(b) hormones(c) gases and wastes		
(d) all of the above		
2. In adults, the normal mass of the heart is	·	
(a) 50-100 grams (g)		
(b) 100-150 g (c) 200-250 g		

(d) 250-350 g		
3. One of the semilunar valves is the		
(a) pulmonary(b) tricuspid(c) bicuspid(d) mitral		
4. Which of the following is the most critical nutries	nt carried by the blood	?
(a) calcium(b) oxygen(c) iron(d) none of the above		
5. In the U.S. the healthy systolic pressure is		<u> </u>
 (a) less than 80 mm Hg (b) less than 100 mm Hg (c) less than 120 mm Hg (d) less than 140 mm Hg 		
6. An example of a portal venous system is the blood tract and the	l vessel network between	1 the digestive
(a) heart.(b) liver.(c) brain.(d) none of the above		
7. The lymphatic system		
(a) removes excess fluids from body tissues.(b) absorbs fats and transports them to the care(c) produces certain types of white blood cells.(d) all of the above	diovascular system.	
Lesson 22.1: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct definition.		
Term		
1. vein		
2. systole		

3. artery	
4. ventricles	
5. hypertension	
6. diastole	
7. coronary circulation	
8. blood pressure	
9. sphygmomanometer	
10. atrioventricular valves	
Definition	
a. Large, muscular vessels that carry blood away from the heart	
b. Contraction of the heart chambers, which drives blood out of the chambers	
c. Supplies the heart tissue with blood	
d. Heart chambers which collect blood from the atria and pump it out of the heart	
e. Vessel that carries blood toward the heart	
f. The force exerted by circulating blood on the walls of blood vessels	
g. Ensure blood flows from the atria to the ventricles	
h. Measures arterial pressure	
i. Period of time when the heart relaxes after contraction	
j. Condition in which a person's blood pressure is chronically high	
22.3 Lesson 22.2: Blood	
Lesson 22.2: True or False	
Name Class Dat	e
Write true if the statement is true or false if the statement is false.	
1. Arterial blood carries oxygen and nutrients to all the body's cells.	
2. Plasma acts as a buffer, maintaining pH near 7.4.	
3. Mature red blood cells have a nucleus.	
4. Platelets make up 50 percent of blood volume.	

Lesson	22.2: Critical Reading
	10. Those with sickle cell disease are resistant to malaria.
	9. Those with type AB positive blood are called universal donors.
	8. The Rhesus system is named after the Rhesus monkey.
	7. Type O blood does not have an antigen.
	6. Increasing blood flow to the surface causes cooler skin.
	5. The hemoglobin molecule is the major transporter of oxygen in mammals.

Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Homeostatic Imbalances of the Blood

Problems can occur with red blood cells, white blood cells, platelets, and other components of the blood. Many blood disorders are genetic, they are inherited from a parent, some are a result of nutrient deficiency, while others are cancers of the blood.

Sickle-cell disease is a group of genetic disorders caused by abnormally shaped hemoglobin, called sickle hemoglobin. In many forms of the disease, the red blood cells change shape because the abnormal hemoglobin proteins stick to each other, causing the cell to get a rigid surface and sickle shape, shown in Figure 22.2. This process damages the membrane of the red blood cell, and can cause the cells to get stuck in blood vessels. This clotting causes oxygen starvation in tissues, which may cause organ damage such as stroke or heart attack. The disease is chronic and lifelong. Individuals are most often well, but their lives are punctuated by periodic painful attacks. Sickle-cell disease occurs more commonly in people (or their descendants) from parts of the world such as sub-Saharan Africa, where malaria is or was common. It also occurs in people of other ethnicities. As a result, those with sickle cell disease are resistant to malaria since the red blood cells are not favored by the malaria parasites. The mutated hemoglobin allele is recessive, meaning it must be inherited from each parent for the individual to have the disease.

Iron deficiency anemia is the most common type of anemia. It occurs when the dietary intake or absorption of iron is less than what is needed by the body. As a result, hemoglobin, which contains iron, cannot be made. In the United States, 20 percent of all women of childbearing age have iron deficiency anemia, compared with only 2 percent of adult men. The principal cause of iron deficiency anemia in premenopausal women is blood lost during menstruation.

Leukemia is a cancer that originates in the bone marrow and is characterized by an abnormal production of white blood cells (rarely red blood cells) that are released into the

Figure 22.2: Sickle-cell disease. The abnormal shape of the red blood cells damages the red blood cells which causes them to get stuck in blood vessels. The blocked capillaries reduce the blood flow to an organ, and can result in pain and organ damage.

bloodstream. **Lymphoma** is a cancer of the lymphatic system, which helps to filter blood. Lymphoma can be categorized as either Hodgkin's lymphoma or non-Hodgkin's lymphoma.

Hemophilia is the name of a group of hereditary genetic diseases that affect the body's ability to control blood clotting. Hemophilia is characterized by a lack of clotting factors in the blood. Clotting factors are needed for a normal clotting process. When a blood vessel is injured, a temporary scab does form, but the missing coagulation factors prevent the formation of fibrin which is needed to maintain the blood clot. Therefore, a person who has hemophilia is initially able to make a clot to stop the bleeding, but because fibrin is not produced, the body is unable to maintain a clot for long. The risks of the re-bleeding of an injury and internal bleeding are increased in hemophilia, especially into muscles, joints, or bleeding into closed spaces.

Haemochromatosis is a hereditary disease that is characterized by a buildup of iron in the body. Iron accumulation can eventually cause end organ damage, most importantly in the liver and pancreas, manifesting as liver failure and diabetes mellitus respectively. It is estimated that roughly one in every 300-400 people is affected by the disease, primarily of Northern European and especially people of Irish, Scottish, Welsh and English descent.

Questions

1. In sickle-cell disease, why do the red blood cells change shape?

_

2. Why are people with sickle-cell disease resistant t	o malaria?	
3. Why must sickle-cell disease be inherited from each have the disease?	ch parent in order for th	ne individual to
-		
4. Why can't a person who has hemophilia maintain	a blood clot?	
5. In what part of the world would you most likely finematosis?	d people with the disease	e of haemochro-
Lesson 22.2: Multiple Choice	Class	Date
rvame	Class	Date
Circle the letter of the correct choice.		
 Blood accounts for what percent of the human (a) 2% (b) 7% (c) 10% (d) 25% Within blood plasma are		
 3. Which of the following produce antibodies? (a) B-cells (b) T-cells (c) macrophages (d) lymphocytes 4. How long do platelets survive before being rem (a) 2 days 	noved by the liver and sp	bleen?
(a) 2 days (b) 5 days (c) 10 days		

(d) 15 days		
5. Blood plasma contains		
(a) serum albumin.(b) antibodies.(c) hormones.(d) all of the above		
6. Which of the following is a blood group sy	rstem?	
(a) MNS(b) Kell(c) Duffy(d) all of the above		
7. Leukemia is characterized by an abnormal	production of	
(a) red blood cells.(b) white blood cells.(c) platelets.(d) none of the above		
Lesson 22.2: Vocabulary Name	Class	Date
Match the vocabulary term with the correct defir	nition.	
Term		
1. thrombocytes		
2. hemoglobin		
2. hemoglobin 3. erythrocytes		
3. erythrocytes		
3. erythrocytes 4. lymphoma		
3. erythrocytes 4. lymphoma 5. serum albumin		
3. erythrocytes4. lymphoma5. serum albumin6. universal recipients		
3. erythrocytes4. lymphoma5. serum albumin6. universal recipients7. hormones		

Definition

- a. protein in red blood cells that carries oxygen
- b. a cancer of the lymphatic system, which helps to filter blood
- c. individuals with type AB positive blood
- d. red blood cells
- e. chemical messengers that are produced by one cell and carried to another
- f. platelets
- g. determined by the presence or absence of certain molecules, called antigens, on the surface of red blood cells
- h. the production of blood cells in the red and yellow bone marrow
- i. blood clotting
- j. a plasma protein that acts as a transporter of hormones and other molecules

22.4 Lesson 22.3: Respiratory System

Lesson 22.3: True or False

Name		Class	Date
Write tru	te if the statement is true or false if the	he statement is false.	
internal r	_ 1. The exchange of gases between respiration.	the blood and the cells of th	e body is called
	$_{\rm -}$ 2. The trachea pulls air in and push	nes it out.	
body.	_ 3. Respiration is the transport of or	xygen from the outside air to	the cells of the
	4. One of the products of cellular re	espiration is carbon dioxide.	
	_ 5. The pharynx closes over the trac	hea when food is swallowed.	
	_ 6. The alveoli are part of the upper	respiratory tract.	
three stag	7. In air-breathing vertebrates success.	h as humans, respiration of	oxygen includes
	_ 8. The process of gas exchange occu	irs in the alveoli.	
	9. Exhaled air has a relative humid	ity of 100 percent.	
	_ 10. Exhalation is generally an active	e process.	

Lesson 22.3: Critical Reading

${f Name}_{}$	Class	Date

Read this passage from the lesson and answer the questions that follow.

Homeostatic Imbalances of the Respiratory System: Diseases and Disorders

Respiratory disease is the term for diseases of the lung, bronchial tubes, trachea and throat. These diseases range from mild, such as a cold, to being possibly life-threatening, such as bacterial pneumonia.

Respiratory diseases can be grouped as either obstructive (conditions which lower the rate of the airflow into and out of the lungs, such as in asthma) or restrictive (conditions that cause a reduction in the functional volume of the lungs, such as emphysema.)

Emphysema is a chronic lung disease caused by loss of elasticity of the lung tissue. The destruction of elastic structures that support the alveoli and the capillaries that feed the alveoli cause them to become hard and stiff. Eventually the walls of the alveoli break down and the alveoli become larger. The amount of oxygen that can enter the blood with each breath is reduced because the large alveoli cannot function efficiently; much of the oxygen that gets into the large alveoli cannot be absorbed into the blood so the oxygen is unused. Symptoms include shortness of breath on exertion (usually when climbing stairs or a hill, and later at rest), and an expanded chest. Damage to the alveoli, which can be seen in Figure 22.3, is irreversible. Smoking is a leading cause of emphysema.

Figure 22.3: The inside of a lung showing the characteristics of emphysema due to smoking. Instead of alveoli, the cut surface shows multiple cavities lined by heavy black carbon deposits.

Bronchitis is an inflammation of the bronchi. Acute bronchitis is usually caused by viruses or bacteria and may last several days or weeks. Acute bronchitis is characterized by cough and phlegm (mucus) production. Symptoms are related to the inflammation of the airways and phlegm production, and include shortness of breath and wheezing. Chronic bronchitis is not necessarily caused by infection and is generally part of a syndrome called chronic obstructive pulmonary disease (COPD). Chronic bronchitis is defined clinically as a persistent cough that produces phlegm and mucus, for at least three months in two consecutive years.

Figure 22.4: Asthma narrows the airways by causing allergy-induced spasms of surrounding muscles, narrowing of the airway, and excessive production of phlegm (mucus), which clogs the airways. The airway constriction responds to medicines called bronchodilators which relax the muscles. The feeling of breathlessness is somewhat like being able to breath only through a straw while walking.

Asthma is a chronic illness in which the airways narrow and becomes inflamed, as shown in Figure 22.4. Excessive amounts of mucus are also made by the lungs. Asthma often happens in response to one or more triggers. It may be triggered by exposure to an allergen such as mold, dust, or pet hair. It can also be caused by cold air, warm air, moist air, exercise, or emotional stress. In children, the most common triggers are viral illnesses such as those that cause the common cold. This airway narrowing causes symptoms such as wheezing, shortness of breath, chest tightness, and coughing. Some people with asthma, especially children, can become very frightened by the symptoms, which may cause even more breathing distress. Between asthma attacks, most patients feel well but can have mild symptoms and may remain short of breath after exercise for longer periods of time than a person who does not have asthma. The symptoms of asthma, which can range from mild to life threatening, can usually be controlled with a combination of medicines and environmental changes.

Public attention in the developed world has recently focused on asthma because of the increasing numbers of cases, affecting up to one in four children who live in cities.

Questions
1. What are the two major ways in which respiratory diseases can be grouped?
-
2. What happens to lung tissue in emphysema?
_
-
3. In emphysema, why is the amount of oxygen that can enter the blood with each breath reduced?
-
-
4. How is chronic bronchitis defined clinically?
<u>-</u>
-
5. How is asthma an example of an obstructive respiratory disease?
-

Lesson 22.3: Multiple Choice

Name	Class	Date
Circle the letter of the correct choice.		
1. The respiratory system consists of the		
(a) pharynx		
(b) trachea		
(c) diaphragm		
(d) all of the above		
2. In cellular respiration, which of the following is	not produced?	
(a) oxygen		

(a) nasal cavity

(b) carbon dioxide

(c) ATP (d) water

3. Which of the following is part of the lower respiratory tract?

(b) pharynx(c) trachea		
(d) none of the above		
4. Which of the following is one of the stages of	of the respiration of oxygen	ι?
(a) ventilation from the atmosphere into t(b) pulmonary gas exchange from the alve(c) gas transport from the pulmonary capripheral capillaries in the organs(d) all of the above	oli into the pulmonary cap	
5. Exhaled air has a relative humidity of what	percent?	
 (a) 25 (b) 50 (c) 75 (d) 100 		
6. Immediately after the aorta, oxygenated blo	ood travels to the	
(a) peripheral capillaries.(b) smaller arteries.(c) arterioles.(d) none of the above		
7. Which of the following is a respiratory disea	ase?	
(a) bronchitis(b) pneumonia(c) tuberculosis(d) all of the above		
Lesson 22.3: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct defini	tion.	
Term		
1. obstructive		
2. lung volume		
3. emphysema		

_____ 4. respiratory disease

_____ 5. internal respiration

 6. restrictive
 7. bronchitis
8. alveoli
 9. diaphragm
10. asthma

Definition

- a. the exchange of gases between the blood and the cells of the body
- b. a muscle that is found below the lungs
- c. conditions which lower the airflow rate into and out of the lungs
- d. a chronic illness in which the airways narrow and become inflamed
- e. multi-lobed sacs in which most of the gas exchange occurs
- f. the average breath capacity of a person
- g. conditions that cause a reduction in the functional volume of the lungs
- h. a chronic lung disease caused by loss of elasticity of the lung tissue
- i. an inflammation of the bronchi
- j. the term for diseases of the lung, bronchial tubes, trachea and throat

Chapter 23

Digestive and Excretory Systems Worksheets

23.1 Chapter 23: Digestive and Excretory Systems

- Lesson 23.1: Food and Nutrients
- Lesson 23.2: Digestive System
- Lesson 23.3: Excretory System

23.2 Lesson 23.1: Food and Nutrients

Lesson 23.1: True or False

Name	Class	Date
Write true if the statement is true	or false if the statement is false.'	
1. Factors that influence	e nutrient needs include age and gender.	
2. Insoluble fiber plays r	no role in the body.	
3. The main role of prot	eins is to provide fuel for energy.	
4. Essential amino acids	cannot be synthesized by the body.	
5. Lipids provide less en	ergy per gram than other macronutrients	J.
6. The healthiest source	s of lipids in the diet are plant foods.	
7. Water has no Calories	s, so you can never drink too much water	

	8. You should avoid eating too many foods that are nutrient dense.
	9. Enriched foods are always the best choices for balanced eating.
weight.	10. People who are obese have a lower life expectancy than people of normal
	11. Vitamin D is synthesized in the skin when it is exposed to sunlight.
	12. Good sources of phytochemicals are meats and grains.

Lesson 23.1: Critical Reading

Name	$___$ Class $__$	$_{}$ Date $_{}$

Read this passage from the lesson and answer the questions that follow.

Weight Gain and Obesity

Any unneeded energy in food, whether it comes from carbohydrates, proteins, or lipids, is stored in the body as fat. An extra 3,500 kilocalories of energy results in the storage of one pound (0.45 kg) of fat. People who consistently consume more food energy then they need gain weight. People who continue to store fat and gain weight may eventually become obese.

Obesity occurs when the body mass index is 30.0 kg/m_2 or greater. Body mass index (BMI) is a simple way to estimate the percentage of fat in the body. It is calculated by dividing an individual's weight (in kilograms) by the square of the individual's height (in meters). For example, a man who weighs 88 kilograms and is 1.7 meters tall has a BMI of:

$$88 \text{ kg} \div (1.7 \text{ m})^2 = 30.4 \text{ kg/m}^2.$$

Compare this BMI with the BMI values in **Table 23.1**. The man's BMI is greater than 29.9 kg/m^2 , so he would be considered obese.

Table 23.1: Body Mass Index and Weight Status

BMI Value (kg/m ²)	Weight Status
<18.5	Underweight
18.5 – 24.9	Normal weight
25.0 – 29.9	Overweight
>29.9	Obese

People who are obese are at greater risk of many serious health problems, including metabolic syndrome. **Metabolic syndrome** is a cluster of conditions that together greatly increase the risk of cardiovascular disease. The conditions include type 2 diabetes, high blood pressure,

and high blood levels of LDL cholesterol and triglycerides. A wide range of other disorders may also be related to obesity, including menstrual disorders in females, certain types of cancer, osteoarthritis, and depression. In addition, people who are obese have a lower life expectancy.

From 1980 to 2002, the number of obese adults in the U.S. doubled. By 2004, almost one-third of U.S. adults aged 20 years or older were obese. The prevalence of obesity in the U.S. is the highest in the developed world. Given its prevalence and serious health risks, obesity is now a leading public health problem in this country.

The combination of eating too much and moving too little generally causes obesity. The best way to lose weight and avoid obesity is to eat less and exercise more. However, many factors may play a role in obesity, making it difficult for most people to eat wisely and lose weight. These factors may be genetic or environmental.

Questions

1. If you take in more Calories than you need, what happens to the extra energy?
- -
-
-
-
2. What is body mass index (BMI)?
-
-
-
-
3. If a person is 1.5 meters tall and has a body mass of 45 kilograms, what is the person's BMI?
- -
-
4. What causes obesity?
-
-
-
5. Describe metabolic syndrome.

- --

Lesson 23.1: Multiple Choice

Name_____ Class_____ Date _-

Circle the letter of the correct choice.

- 1. Macronutrients include
 - (a) water.
 - (b) vitamins.
 - (c) minerals.
 - (d) all of the above.
- 2. Which nutrients form muscles and antibodies?
 - (a) complex carbohydrates
 - (b) simple carbohydrates
 - (c) proteins
 - (d) lipids
- 3. Which food group is represented by the widest colored band of MyPyramid?
 - (a) vegetables
 - (b) grains
 - (c) fruits
 - (d) oils
- 4. People are considered to be of normal weight if their body mass index is
 - (a) less than 18.5 kg/m2.
 - (b) between 18.5 and 24.9 kg/m².
 - (c) at least 25.0 kg/m2.
 - (d) over 30.0 kg/m2.
- 5. Which nutrient is an antioxidant that neutralizes free radicals?
 - (a) Vitamin C
 - (b) Vitamin K
 - (c) calcium
 - (d) potassium
- 6. Lutein is an example of a(n)

(a) macronutrient.(b) polysaccharide.		
(c) phytochemical.		
(d) amino acid.		
7. A serious eating disorder characterized by	very low body weight is	
(a) hyponatremia.(b) bulimia nervosa.		
(c) anorexia nervosa.		
(d) binge eating disorder.		
Lagger 99 1. Wasabulana		
Lesson 23.1: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct defin	nition.	
Term		
1. carbohydrate		
2. eating disorder		
3. hyponatremia		
4. lipid		
5. metabolic syndrome		
6. mineral		
7. obesity		
8. protein		
9. triglyceride		
10. vitamin		
Definition		

Defin

- a. organic compound consisting of fatty acids that provides the body with energy
- b. any inorganic chemical element that the body needs in small amounts to function properly
- c. organic compound consisting of saccharides that provides the body with energy
- d. type of lipid in which three fatty acids are bound to glycerol
- e. large organic compound that contains nitrogen and is made of amino acids

- f. psychiatric illness that involves an abnormal eating pattern
- g. type of organic compound that the body needs in very small amounts to function properly
- h. condition in which the body mass index is 30.0 kg/m² or greater
- i. condition in which the brain swells with water causing symptoms such as nausea, vomiting, headache, and coma
- j. cluster of conditions that increase the risk of cardiovascular disease and include type 2 diabetes, high blood pressure, and high blood lipids

23.3 Lesson 23.2: Digestive System

Lesson 23.2: True or False

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. Food moves through the digestive system because of gravity.
	2. Accessory organs of the GI tract are not needed for digestion.
	3. Chemical digestion begins in the mouth.
	4. The esophagus produces enzymes that help digest sugar.
	5. Digestive enzymes in the stomach require an acidic environment to work.
	6. The main digestive enzyme in the stomach is amylase.
	7. The small intestine is much shorter than the large intestine.
	8. Villi in the jejunum produce the digestive enzyme trypsin.
	9. The enzyme maltase helps digest carbohydrates in the small intestine.
	10. Wastes are stored in the colon until they pass from the body as feces.
	11. Ulcerative colitis is a form of inflammatory bowel disease.
	12. Cystic fibrosis is a disease that affects the pancreas.
Lesson	23.2: Critical Reading
Name	ClassDate

Read this passage from the lesson and answer the questions that follow.

Digestion and Absorption: The Small Intestine

The small intestine is narrow tube about seven meters long in adults. It is the site of most chemical digestion and virtually all absorption. As you can see from Figure 1, the small intestine is much longer than the large intestine. It is called "small" because it is smaller in diameter than the large intestine. Like the rest of the GI tract, the small intestine pushes food along with peristalsis. The small intestine is made up of three parts: the duodenum, jejunum, and ileum. Each part has a different function.

Digestion in the Small Intestine

The **duodenum** is the first part of the small intestine. It is only about 25 cm long, but most chemical digestion occurs here. Many enzymes are active in the duodenum, and several are listed in **Table 23.2**. Some of the enzymes are produced by the duodenum. The rest are produced by the pancreas and secreted into the duodenum.

Name of Enzyme	Nutrient It Digests	Site of Production
Amylase	carbohydrates	pancreas
Trypsin	proteins	pancreas
Lipase	lipids	pancreas
Maltase	carbohydrates	small intestine
Peptidase	proteins	small intestine
Lipase	lipids	small intestine

Table 23.2: Digestive Enzymes Active in the Duodenum

How does the pancreas "know" when to secrete enzymes into the small intestine? The pancreas is controlled by compounds called hormones. Hormones are chemical messengers in the body. They regulate many body functions, including secretion of digestive enzymes. When food enters the stomach, a hormone called gastrin is secreted by the stomach. Gastrin, in turn, stimulates the pancreas to secrete its digestive enzymes.

The liver produces fluid called bile, which is secreted into the duodenum. Some bile goes to the gall bladder, where it is stored and becomes more concentrated. In the duodenum, bile breaks up large globules of lipids into smaller globules that are easier for lipase enzymes to break down chemically.

Bile also reduces the acidity of the chyme entering from the highly acidic stomach. This is important for digestion, because digestive enzymes in the duodenum require a neutral environment in order to work. The pancreas also contributes to the neutral environment of the duodenum by secreting bicarbonate, a basic substance that neutralizes acid.

Absorption in the Small Intestine

The **jejunum** is the second part of the small intestine. It is about 2.5 meters long. This is where most nutrients are absorbed into the blood.

As shown in **Figure 23.1**, the mucous membrane lining the jejunum is covered with microscopic, fingerlike projections called **villi** (singular: villus). Each villus, in turn, has thousands of even smaller projections called microvilli (singular: microvillus). The villi contain capillaries, which are tiny blood vessels. Nutrients are absorbed into these capillaries across the surface of the villi and microvilli. Because there are millions of these tiny projections, they greatly increase the surface area for absorption. In fact, villi and microvilli increase the absorptive surface of the small intestine to the size of a tennis court! This allows far greater absorption of nutrients.

Figure 23.1: Magnified image of villi lining the jejunum (small intestine).

The **ileum** is the third part of the small intestine. It is about 3.5 meters long. A few remaining nutrients are absorbed in the ileum. Salts that form from liver bile are also absorbed there. Like the jejunum, the ileum is covered with villi and microvilli that increase the area for absorption.

Questions

1. Where is the duodenum located, and what happens here?

2. Name two functions in digestion that are served by liver bile.
-
-
-
-
3. How does the pancreas contribute to digestion in the duodenum?
-
-
-
-
4. Describe intestinal villi, and explain their significance in the absorption of nutrients in the jejunum.
-
-
5. Describe the ileum and its role in digestion.
-
-
-
Lesson 23.2: Multiple Choice
Name Class Date
Circle the letter of the correct choice.
1. The lower GI tract includes the
(a) large intestine.
(b) esophagus. (c) stomach
(b) esophagus.(c) stomach.

Nam	neClass	Date _
	sson 23.2: Vocabulary	
T	(c) gastritis. (d) colitis.	
	(a) appendicitis.(b) hepatitis.	
7.	. Inflammation of the colon is called	
	(a) inflammatory bowel disease.(b) bacterial infection.(c) stomach ulcer.(d) food allergy.	
6.	. Crohn's disease is a type of	
	(a) duodenum.(b) jejunum.(c) cecum.(d) ileum.	
5.	. Parts of the large intestine include the	
	(a) mouth.(b) stomach.(c) pancreas.(d) small intestine.	
4.	. Maltase is a digestive enzyme produced by the	
	(a) molars.(b) canines.(c) ncisors.(d) all of the above.	
3.	. Teeth that grind food into smaller pieces as you chew include	
	 (a) liver and pancreas. (b) mouth and stomach. (c) small and large intestines. (d) gall bladder and small intestine. 	
2.	. Mechanical digestion takes place mainly in the	

www.ck12.org 342

Match the vocabulary term with the correct definition.

Term
1. cecum
2. colon
3. duodenum
4. esophagus
5. ileum
6. jejunum
7. liver
8. pharynx
9. rectum
10. stomach
Definition
a. first part of the small intestine, where most chemical digestion occurs
b. third part of the large intestine, where feces accumulates
c. third part of the small intestine, where a few remaining nutrients and salts are absorbed
d. tube connecting the mouth to the rest of the digestive tract
e. saclike organ between the esophagus and small intestine, where mechanical and chemical digestion take place
f. second part of the large intestine, where excess water is absorbed from food wastes
g. second part of the small intestine, where most nutrients are absorbed
h. narrow tube that passes food from the mouth to the stomach
i. first part of the large intestine, where waste enters from the small intestine
j. large organ next to the stomach that produces bile needed for digestion
23.4 Lesson 23.3: Excretory System
Lesson 23.3: True or False
NameDate_

Write true if the statement is true or false if the statement is false.

	_ 1. The lungs are the body's major organs of excretion.		
	2. The receptors for temperature regulation are located in the skin.		
	3. Positive feedback mechanisms are common in the human body.		
	4. The liver eliminates excess water and carbon dioxide from the blood.		
	5. The large intestine breaks down excess amino acids in the body.		
	6. The kidneys are located just above the waist at the back of the abdomina		
cavity.			
	7. The hormone aldosterone helps regulate kidney functions.		
	8. The innermost layer of the kidney is the renal cortex.		
	9. Filtered blood is carried away from the kidney by the renal vein.		
	10. A person needs two healthy kidneys in order to survive.		
	11. Bacterial infections of the urinary tract are very rare.		
	12. Inability to concentrate urine is a characteristic of diabetes insipidus.		

Lesson 23.3: Critical Reading

Name	Class	$___$ Date $_$	

Read this passage from the lesson and answer the questions that follow.

Homeostasis

Homeostasis is a fundamental characteristic of all living things. Internal body conditions must be kept within certain limits for the normal functioning of cells. Homeostasis involves keeping many internal factors at more or less constant levels. The factors include body temperature and properties of the blood. For example, the blood must have certain levels of acidity, salts, and nutrients in order for cells to function normally.

A variety of homeostatic mechanisms help maintain stability of the internal environment. Each mechanism involves the interaction of at last three components: a receptor, a control center, and an effector.

- The receptor senses changes in the internal environment and sends the information to the control center.
- The control center processes the information, determines the appropriate action, and sends a command to the effector.
- The effector responds to the command and changes conditions in the internal environment.

An example of a homeostatic mechanism in humans is the regulation of body temperature. This is represented by the diagram in **Figure 23.2**. Temperature receptors in the skin send information about skin temperature to the brain. The brain is the control center. It determines whether the temperature is too high or too low and sends appropriate commands to effectors that control body temperature. Effectors include blood vessels near the surface of the body. If the temperature is too high, the brain commands the blood vessels to dilate, which helps the body lose heat. If the temperature is too low, the brain commands the blood vessels to constrict, which helps the body retain heat. These actions help return body temperature to normal.

Negative Feedback and Body Temperature

Figure 23.2: Regulation of body temperature is an example of negative feedback. When body temperature deviates from normal, this information feeds back to the brain and sets in motion changes that return body temperature to normal.

The regulation of body temperature is an example of negative feedback. Negative feedback is a type of homeostatic mechanism in which change in one direction results in a counteractive change in the opposite direction. Negative feedback reverses the direction of change to bring conditions back to normal. Most of the mechanisms that control homeostasis in the human body involve negative feedback.

Positive feedback mechanisms also exist, but they are not common in the human body. Positive feedback accelerates or amplifies a change and pushes levels farther away from normal. One example of a positive feedback mechanism in the body is blood clotting, which is described in the chapter titled *Circulatory and Respiratory Systems*.

If homeostasis is disturbed, a homeostatic imbalance results. This may result in cells getting too much or not enough of certain substances. Many diseases are caused by homeostatic imbalances. For example, diabetes mellitus is a disease in which the blood contains too much glucose. This can have serious consequences for cells throughout the body. It may lead to damaged blood vessels, heart disease, blindness, and kidney failure.

Questions

1. What does homeostasis involve?

-
-
_
2. List properties of the blood that must be maintained at more-or-less constant levels in order for cells to function normally.
_
3. What three components are involved in each homeostatic mechanism? What is the role of each component?
_
_
_
4. Describe the homeostatic mechanism that regulates human body temperature.
-
-
-
5. Explain why the regulation of human body temperature is an example of negative feedback.
-
_
-

Lesson 23.3: Multiple Choice

Name	Class	Date

Circle the letter of the correct choice.

- 1. The control center of a homeostatic mechanism
 - (a) senses changes in the internal environment.
 - (b) changes conditions in the internal environment.
 - (c) sends information about body conditions to the brain.
 - (d) processes information and sends commands to the effector.
- 2. Which statement is true about negative feedback?
 - (a) It reverses the direction of a change.
 - (b) It brings body conditions back to normal.
 - (c) It is the main type of homeostatic mechanism.
 - (d) all of the above
- 3. The process of removing substances from the blood by a nephron is called
 - (a) absorption.
 - (b) filtration.
 - (c) secretion.
 - (d) excretion.
- 4. The return of needed substances in filtrate back to the bloodstream is known as
 - (a) refiltration.
 - (b) transfusion.
 - (c) reabsorption.
 - (d) condensation.
- 5. Antidiuretic hormone (ADH) stimulates the collecting ducts of the kidneys to
 - (a) make urine less concentrated.
 - (b) reabsorb more water from tubular fluid.
 - (c) filter more substances from blood.
 - (d) excrete more water in urine.
- 6. The kidneys regulate the blood concentration of several ions, including
 - (a) sodium ions.
 - (b) bicarbonate ions.
 - (c) calcium ions.
 - (d) all of the above.
- 7. How do the kidneys respond to high blood glucose in people with diabetes mellitus?
 - (a) They reabsorb more glucose from filtrate.

- (b) They excrete more glucose in urine.
- (c) They produce more erythropoietin.
- (d) They stop secreting rennin.

Lesson 23.3: Vocabulary

Name	Class	Date
Match the vocabulary term with the correct definition.		
Term		
1. erythropoietin		
2. excretion		
3. receptor		
4. effector		
5. bladder		
6. urethra		
7. nephron		
8. glomerulus		
9. rennin		
10. dialysis		
Definition		
a. hollow organ that stores urine		
b. medical procedure in which blood is filtered with the	e help of a machine	
c. structure that changes conditions in the internal env	rironment to maintain h	omeostasis
d. process of removing wastes and excess water from the	ne body	
e. part of a nephron that filters substances out of the b	olood	
f. hormone secreted by the kidney that stimulates the	production of red blood	cells
g. structural and functional unit of the kidney		
h. structure that senses changes in the internal environ	iment	
i. hormone secreted by the kidney when blood pressure	e falls	
j. muscular tube that carries urine out of the body		

Chapter 24

Immune System and Disease Worksheets

24.1 Chapter 24: Immune System and Disease

- Lesson 24.1: Nonspecific Defenses
- Lesson 24.2: Immune Response
- Lesson 24.3: Immune System Diseases
- Lesson 24.4: Environmental Problems and Human Health

24.2 Lesson 24.1: Nonspecific Defenses

Lesson 24.1: True or False

Name_	Class Date
Write tre	ue if the statement is true or false if the statement is false.
coughs.	_ 1. Pathogens are physically forced out of the respiratory tract when a person
	_ 2. In a healthy human, the skin's surface contains no bacteria.
	_ 3. Pathogen is a technical term for germ.
	_ 4. All immune system responses are specific; there are no nonspecific defenses.
	_ 5. The common cold is caused by a bacterium.
	_ 6. Strep throat is caused by a virus.
	7. Athlete's foot is caused by a fungus.

8. Tuberculosis is caused by a bacterium.
9. Cold sores are caused by a fungus.
10. Some mushrooms contain chemicals harmful to humans.
11. Mucus made by the respiratory system is one kind of immune system defense.
12. Cilia move pathogens into the bloodstream.
13. The main function of red blood cells is to make antibodies.
14. Histamines reduce inflammation.
15. Some types of white blood cells secrete histamines.

Lesson 24.1: Critical Reading

Name	$_{ m Class}$	Date
------	---------------	------

Read this passage from the lesson and answer the following questions.

First Line of Defense

The immune system has three lines of defense. The first line of defense includes a variety of barriers against pathogens that keep most pathogens out of the body. Pathogens are disease-causing agents, such as bacteria and viruses. Defenses in the first line are the same regardless of the type of pathogen. This is why they are called nonspecific defenses. Several types of pathogens that are common causes of human disease can be seen in the Figure below.

Type of pathogen		Description	Human Disease caused by pathogens of that type
Bacteria Escherichia coli		Single - celled organisms without a nucleus	Strep throat.staph infections, tuberculosis,food poisoning, tetanus.pneumona,syphilis
Viruses Herpes simplex	+	Non living particles that reproduce by taking over living cells	Common coid,flu,genital herpes, cold sores,measle,AIDS,genital warts,chicken pox,small pox
Fungi Death Cap mushroon	R	Simple organisms,including mushrooms and yeasts,that grow as single cells or thread like filaments	Ringworm,athlete's foot,tineas, candidiasis,histoplasmosis, mushroom poisoning
Giardia Lamblia		Single celled organism with a nucleus	Malaria,"traveller's diarrhea" giardiasis,typano somiasis ("sleeping sickness")

Mechanical Barriers

Mechanical barriers physically block pathogens from entering the body. The skin is the most important mechanical barrier. In fact, it is the single most important defense of the body against pathogens. It forms a physical barrier between the body and the outside world. The outer layer of the skin is a tough, nearly water-proof coating that is very difficult for

pathogens to penetrate.

At body openings, such as the mouth and nose, the body has a different mechanical barrier. Instead of skin, mucous membranes line these and other organs that are exposed to the outside environment. They include the organs of the respiratory, gastrointestinal, and urinary tracts. Mucous membranes secrete mucus, a slimy substance that coats the membranes and traps pathogens. Mucous membranes also have cilia, which are tiny projections that have wavelike motions. The movements of cilia sweep mucus and trapped pathogens toward body openings to be removed from the body.

Pathogens are removed from the respiratory tract when you sneeze or cough. In addition, tears wash pathogens from the eyes, and urine flushes pathogens out of the urinary tract. Chemical Barriers

Chemical barriers are proteins that destroy pathogens at the body's surface. The skin and mucous membranes secrete proteins that kill many of the pathogens with which they come into contact. For example, enzymes called lysozymes—which are found in sweat, mucus, tears, and saliva—kill pathogens by breaking open their cell walls. Urine and vaginal secretions are too acidic for many pathogens, and semen contains zinc, which most pathogens cannot tolerate. Hydrochloric acid secreted by mucous membranes lining the stomach kills pathogens that enter the stomach in food or water.

Biological Barriers

Biological barriers involve living organisms that compete with pathogens. Human skin is covered by millions of bacteria. Millions more colonize the gastrointestinal, urinary, and genital tracts. Most of these bacteria are helpful or at least not harmful. They are important in defense because they help prevent harmful bacteria from becoming established in or on the body. They do this by competing with harmful bacterial for food and space. Helpful bacteria may also change pH or other factors and make conditions less suitable for harmful bacteria.

Questions

1.	Name and briefly describe the immune system's first line of defense.
-	
-	
-	
2.	How can the skin be considered part of the immune system?
-	
-	
_	

3. What are mucous membranes? Where are they found?
-
-
-
4. Are all bacteria that live in the human body harmful? Why or why not?
-
_
-
5. What is the purpose of the cilia of the cells that line the respiratory lining?
_
-
-
Lesson 24.1: Multiple Choice
Name Class Date
Name Class Date Circle the letter of the correct choice.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin. d. the spine. 2. Lysozymes
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin. d. the spine. 2. Lysozymes a. are enzymes that break down histamines. b. are enzymes that break down bacterial cell walls.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin. d. the spine. 2. Lysozymes a. are enzymes that break down histamines. b. are enzymes that break down bacterial cell walls. c. are antibodies that bind to red blood cells.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin. d. the spine. 2. Lysozymes a. are enzymes that break down histamines. b. are enzymes that break down bacterial cell walls.
Circle the letter of the correct choice. 1. A component of the immune system's first line of defense is a. cytokines. b. antibodies. c. the skin. d. the spine. 2. Lysozymes a. are enzymes that break down histamines. b. are enzymes that break down bacterial cell walls. c. are antibodies that bind to red blood cells.

- b. by healthy tissues, including the respiratory tract and intestinal tract.
- c. by the respiratory tract, but not by the intestinal tract.
- d. none of the above
- 4. The diagram below shows the process of

- a. skin cell production.
- b. cilia action.
- c. pinocytosis.
- d. phagocytosis.
- 5. When bacteria enter the body through a cut in the skin
- a. the second line of defense of the immune system is activated.
- b. the first line of defense of the immune system has succeeded.
- c. the third line of defense of the immune system is activated within seconds.
- d. the immune system shuts down.
- 6. A chemical that is produced as a part of the inflammatory response is
- a. histamine.
- b. monoamine.
- c. cilia.
- d. flagella.
- 7. A type of human immune system cell that ingests pathogens by phagocytosis is
- a. bacteria.
- b. muscle cell.
- c. macrophage.
- d. neuron.

Lesson 24.1: Vocabulary

Name	Class	Date
Match the vocabulary term w	ith the correct definition.	
Term		
1. pathogens		
2. lysozymes		
3. cytokines		
4. chemical barriers		
5. white blood cells		
6. nonspecific defense	S	
7. inflammatory response	onse	
8. histamines		
9. biological barriers		
10. phagocytosis		

Definition

- a. Defenses that are the same regardless of the type of pathogen; found in the first and second line of defense.
- b. Living organisms that compete with pathogens; help prevent harmful bacteria from becoming established in or on the body.
- c. Disease-causing agents, such as bacteria and viruses.
- d. Enzymes that kill pathogens by breaking open their cell walls; found in sweat, mucus, tears, and saliva.
- e. leukocytes
- f. Chemicals that destroy pathogens at the body's surface.
- g. Proteins that act as chemical signals used to communicate between cells.
- h. A complex biological reaction to tissue damage; one of the first responses of the immune system to infection or injury; triggered by chemicals called cytokines and histamines.
- i. The process of engulfing and breaking down pathogens and other unwanted substances.
- j. chemicals that cause inflammation

24.3 Lesson 24.2: Immune Response

Lesson 24.2: True or False

B Cell Activation

Name	Class Date
Write true	e if the statement is true or false if the statement is false.
	1. The third line of defense is nonspecific.
	2. The lymphatic system is not part of the immune system.
	3. The lymphatic system transports fatty acids out of the bloodstream.
	4. The lymphatic system produces white blood cells.
	5. Another name for white blood cell is leukocyte.
	6. The red bone marrow is part of the lymphatic system.
	7. T cells mature in the thymus.
	8. The spleen makes new red blood cells.
	9. Humans cannot survive without tonsils.
	10. Lymph is pumped through the lymphatic vessels by the lymphatic pumping
organ.	
	11. B cells mature in the thymus.
are nonsel	12. A major function of the humoral immune system is to destroy proteins that
are nonser	13. Both T cells and B cells have receptors that bind specifically to a particular
antigen.	10. Both 1 cond and B cond have receptors that shed specimently to a particular
antibody-	14. Helper T cell cytokines stimulate the development of B cells into mature producing cells.
specifically	15. The base of a Y-shaped antibody is the part of the protein that binds y to an antigen.
Lesson	24.2: Critical Reading
Name	Class Date
Read this	passage from the lesson and answer the questions that follow.

Naïve B cells are activated by an antigen in the sequence of events shown in Figure below. A B cell encounters its matching antigen and engulfs it. The B cell then displays fragments of the antigen on its surface. This attracts a helper T cell (which you will read about below). The helper T cell binds to the B cell at the antigen site and releases cytokines. As you read in Lesson 1, cytokines are chemical signals used to communicate between cells. Cytokines from the helper T cell stimulate the B cell to develop into plasma cells or memory cells.

Questions

1. What is the first step in the activation of a naïve B cell?

-

2. What is the second step in the activation process?

-		
-		
-		
3. Define antigen display as illustrated in the	ne above figur	re.
-		
-		
4. Describe the basis of the T cell binding t	to the B cell i	in the above figure.
-		
-		
5. What stimulates the maturation of B cel	ls? What do	mature R cells produce?
-	is. What do	mavare B cens produce.
_		
_		
Lesson 24.2: Multiple Choice	е	
Name	_ Class	Date
Circle the letter of the correct choice.		
	_	
1. Transport of fatty acids occurs from t		into the
(a) small intestine, lymphatic system(b) blood, small intestine	1	
(c) skeletal muscle cells, small intest	ine	
(d) urinary tract, antigen2. From the choices below, one possible ca	ause of localia	red fluid accumulation in the tissues
is	2450 01 1004112	
(a) too rapid transport of fatty acids		v I
(b) too rapid transport of fatty acids(c) drinking more than 8 glasses of v		

from the tissues.

(d) damage to the lymph vessels such that they do not take up excess body fluids

3. Located behind the breast bone, to system	his gland function	ns to mature T cells of the immu
(a) spleen.(b) thymus.(c) heart.(d) gall bladder.		
4. Lymph drains into the bloodstream	m from the	
(a) intestine.(b) lymphatic ducts in the chest.(c) tonsils.(d) spleen.		
5. Cells that display parts of a patho	ogen's proteins on	n their surface are called
(a) red blood cells.(b) regulatory T cells.(c) antigen-presenting cells.(d) helper T cells.		
6. Helper T cells		
(a) destroy pathogens.(b) make antibodies.(c) kill cancerous cells.(d) none of the above		
7. Cells infected with a virus are		
(a) stimulated to divide by helpe(b) making antibodies.(c) destroyed by cytotoxic T cell(d) none of the above		
Lesson 24.2: Vocabulary		
Name	Class	Date
Labeling a Diagram: In the diagram of to which arrows point.		
	250	

24.4 Lesson 24.3: Immune System Diseases

Lesson 24.3: True or False

Name	Class Date
Write tru	the if the statement is true or false if the statement is false.
	_ 1. Inflammation of the skin can result from a bee sting.
	$_$ 2. An allergen is any antigen that causes an allergic reaction in a sensitive person.
	_ 3. A person is either allergic to many antigens, or to none.
	4. All allergies are severe.
	5. Histamines stimulate inflammation.
	_ 6. One symptom of an allergy can be itchy eyes.
	7. Anaphylaxis is the most severe response to an allergen, and is potentially fatal.
	8. An antidote to anaphylaxis is immediate injection of epinephrine.
	9. HIV is an example of an autoimmune disease.
	_ 10. Multiple sclerosis is an example of an autoimmune disease.
	$_$ 11. Joint inflammation is a typical symptom of both Type I diabetes and multiple
sclerosis.	
	_ 12. Congenital immunodeficiency is usually caused by a mutation.
	13. The absence of a thymus (thymic aplasia) results from a genetic defect.

_____ 14. People who have received an organ transplant often are treated with drugs that suppress their immune system.

_____ 15. People who have AIDS are susceptible to certain types of pathogens that don't often infect healthy people.

Lesson 24.3: Critical Reading

Name Class	\mathbf{Date}	
------------	-----------------	--

Read this passage and answer the questions that follow.

Contact with Poison Ivy: A Classic Example of a Delayed Hypersensitivity Response

Figure 24.1

Have you every heard the saying "Leaves of three, let them be?" That admonition refers to poison ivy. Poison Ivy grows in the 48 contiguous states of the United States. Depending upon the particular variety and its environment, poison ivy can be a fuzzy, climbing vine, a short, trailside plant, or shrub-like. Leaves are arranged in groups of three. The exact shape and color of the leaves can vary (they can be green, green with a reddish tinge, shiny, or not). The variation in appearance is probably one reason why so many people brush against poison ivy without knowing. They then suffer from an intensely itchy red rash that results from contact with poison ivy's leaves or stems. Such a rash is a classic example of a delayed hypersensitivity response. This response is also a form of allergic contact dermatitis.

You may be wondering, what is it in poison ivy that causes the rash? Is poison ivy contagious? The answer to the first question is: urushiol, an oil that the plant makes, causes the angry red rash. People get the rash when they touch or brush up against part of the plant, and some of the urushiol gets transferred to their skin. Urushiol can also be transferred to garden tools, clothes, and pet fur. It can be inactivated with lots of soap and water. However, if you touch poison ivy you must wash it off immediately, since the hypersensitivity response begins in as little as a few minutes after exposure.

Now let's answer to the second question: is poison ivy contagious? If you touch someone who still has urushiol on their skin or clothes, or a pet who has urushiol on its fur, then yes, you can contract the poison ivy rash this way. However, if you touch a poison ivy rash on someone else, you will not get a rash.

References:

http://www.cdc.gov/niosh/topics/plants/ http://www.ipm.uconn.edu/IPM/homegrnd/htms/poisivy2.htm Poison Ivy from http://www.cdc.gov/niosh/topics/plants/ Questions 1. Where is poison ivy found in the United States? 2. What does poison ivy look like? 3. What kind of immune response does poison ivy contact elicit (provoke) in sensitive individuals? -

4. What is urushiol? What are some of its characteristics?

-		
5. What are some strategies to pr	revent poison ivy?	
-		
-		
-		
Lesson 24.3: Multippl	e Choice	
		_
Name		Date
Circle the letter of the correct cho		
1. Allergic symptoms of sneezing	and itchy, watery eyes car	n often be treated effectively with
a. aspirin.b. antibiotics.c. antihistamines.d. histamines.		
2. In one type of immunotherapy	used to treat allergic syn	nptoms,
 a. the antigen is removed from t b. all T cells are inactivated. c. a person is injected repeated with the goal of reducing th d. the allergen is removed from a 	ly over time with an alleme person's sensitivity to t	
3. Pollen from the ragweed plant	(shown below)	

- a. acts as an antihistamine.
- b. causes HIV.
- c. causes allergic rhinitis in sensitive individuals.
- d. most often causes joint pain.
- 4. Painful joints, caused by inflammation of the joints resulting from an immune system attack against the joint tissues typifies ______.
 - a. AIDS.
 - b. delayed hypersensitivity response.
 - c. type I diabetes.
- d. rheumatoid arthritis.
- 5. The autoimmune disease that results from the body attacking tissues such as the heart or lungs is called
- a. rheumatoid arthritis.

b. type I diabetes.			
c. multiple sclerosis.d. systemic lupus erythematosus.			
a. a.g. a. a. a.g. a. a.g. a. a.g. a. a.g. a. a. a.g. a. a. a.g. a			
5. Treatment for type I diabetes incl	ludes		
a. elevation of the heart.			
b. a diet high in sugar.c. insulin, delivered as injections or	through a nump		
d. avoidance of exercise.	tinough a pump.		
7. HIV results from			
a. destruction of helper T cells becab. an overactive immune system thc. a bacterium found in contaminatd. all of the above	at persists for years.	human immunodeficiency v	irus.
Lesson 24.3: Vocabulary	V		
Name	Class	Date	
Match the vocabulary term with the	correct definition.		
Гегт			
1. opportunistic diseases			
2. epinephrine			
3. HIV			
4. immunodeficiency			

Definition

_____ 5. allergic rhinitis

_____ 8. antihistamines

_____ 9. autoimmunity

_____ 10. anaphylaxis

_____ 7. AIDS

_____6. acquired immunodeficiency

- a. Acquired immune deficiency syndrome; a late stage in the progression of an HIV infection.
- b. Diseases that occur when the immune system fails to recognize the body's own molecules as self and attacks the body's cells as though they were foreign invaders.
- c. An allergic response in which there is a sudden, massive release of histamines throughout the body.
- d. Drugs that reduce or eliminate the effects of histamines.
- e. The "fight-or-flight" hormone that your adrenal glands normally produce when you are in danger.
- f. A common immediate hypersensitivity reaction; affects mainly mucous membranes lining the nose; often called hay fever.
- g. Infections and tumors rare in people with a healthy immune system but common in immunodeficient people.
- h. Occurs when one or more components of the immune system are not working normally.
- i. Immunodeficiency that occurs when immune function declines in a person who was born with a normal immune system.
- j. The human immunodeficiency virus, the virus that causes AIDS.

24.5 Lesson 24.4: Environmental Problems and Human Health

Lesson 24.4: True or False

$Name_{-}$	Class Date
Write tr	rue if the statement is true or false if the statement is false.
	1. Chemicals in the environment are one cause of some cancers.
	2. There is no link between air pollution and asthma.
	3. Mutations in some genes can contribute to the development of cancer.
	4. Since it is present in sunlight, ultraviolet radiation is not considered a carcino
gen.	
	5. All viruses cause the same cancer.
	6. Non-cancerous cells have lost the ability to regulate their cell cycles.
	7. Damaged DNA can be repaired by the gene products of tumor-suppresso
genes.	

	8. Oncogenes are mutated genes that have lost their normal, regulated function
	9. All tumors are cancerous.
	10. Tumor removal by surgery is one strategy used to treat some cancers.
	11. The Air Quality Index can vary between different geographical locations.
	12. Ozone is a gas that can be hazardous to human health.
	13. Some people are allergic to mold.
	14. All agents of bioterrorism are spread through the air.
	15. As of 2009, there have not yet been any acts of bioterrorism in the US.
Lesson	24.4: Critical Reading

Read this passage from the lesson and answer the questions that follow.

Cancer Treatment and Prevention

Name

Most cancers can be treated and some can be cured. The general goal of treatment is to remove the tumor without damaging the rest of the body. Cancer may be treated with a combination of surgery, chemotherapy, and/or radiation. In the past, chemotherapy drugs caused serious side effects. Many of today's chemotherapy drugs target specific molecules in tumors. This reduces damage to normal body cells and causes fewer side effects.

Class

Date

The outcome of cancer treatment depends on factors such as the type of cancer and its stage. The stage of cancer refers to the extent to which the cancer has developed. Generally, early diagnosis and treatment lead to the best chances of survival. That's why it's important for people to be aware of the following warning signs of cancer:

- A change in bowel or bladder habits
- A sore that does not heal
- Unusual bleeding or discharge from any place
- A lump in the breast or other parts of the body
- Chronic indigestion or difficulty in swallowing
- Obvious changes in a wart or mole
- Persistent coughing or hoarseness

Having warning signs of cancer does not mean that you have cancer, but you should see a doctor to be sure. Getting recommended tests for particular cancers, such as colonoscopies for colon cancer, can also help detect cancers early, when chances of a cure are greatest.

Many cancers can be prevented, or at least their risk can be reduced. You can help reduce your risk of cancer by avoiding specific carcinogens and maintaining a healthy lifestyle. Carcinogens you can avoid or limit your exposure to include tobacco smoke, sexually transmitted viruses, improperly cooked foods, and UV radiation. Other lifestyle choices you can make to reduce your risk of cancer include being physically active, eating a low-fat diet, and maintaining a normal weight.

Questions

Name	Class	_ Date
Lesson 24.4: Multiple Cho	ice	
-		
-		
-		
5. How can you reduce your risk of devel	oping cancer?	
-		
-		
-		
4. Name 3 symptoms that may indicate of	cancer.	
-		
-		
-		
- 3. How does early diagnosis aid survival?)	
-		
_		
2. What is meant by a stage of cancer?		
-		
-		
-		
1. What are three standard types of cand	cer treatment?	

 ${\it Circle \ the \ letter \ of \ the \ correct \ choice}.$

1. Which of the following is a potential carcinogen?

www	368
	 (a) Smallpox (b) Cholera (c) Anthrax (d) Brucellosis
7.	is a pathogen that has been used in a documented incident of bioterrorism in the US.
7	 (a) cholera. (b) brucellosis. (c) ricin. (d) smallpox.
6.	One of the most dangerous bioterrorism agents is
	(a) No (b) Outdoor (c) Indoor (d) Indoor and outdoor
5.	 (a) colorectal cancer. (b) lung cancer. (c) leukemia. (d) bladder cancer. air pollution is a human health problem
4.	The most common type of infant cancer is
	(a) carcinoma.(b) sarcoma.(c) neuroma.(d) lymphoma.
3.	A tumor of connective tissues is classified as a
	 (a) inducing mutations that cause unregulated cell division of cells. (b) repairing mutations in DNA. (c) suppressing the division of cells that have damaged DNA. (d) none of the above
2.	Carcinogens cause cancer by
	(c) ultraviolet radiation(d) asbestos(e) all of the above
	(b) hepatitis B virus (c) ultraviolet radiation
	(a) radon

Lesson 24.4: Vocabulary

Name	$___$ Class $___$	Date
Match the vocabulary term with the	e correct definition.	
Term		
1. tumor-suppressor genes		
2. proto-oncogenes		
3. lymphoma		
4. tumor		
5. oncogene		
6. ozone		
7. carbon monoxide		
8. Sarcoma		
9. bioterrorism		
10. carcinoma		

Definition

- a. A gas that forms close to the ground when high concentrations of air pollutants are heated by sunlight.
- b. A tumor of connective tissues, such as bone.
- c. An abnormal mass of tissue.
- d. A tumor of epithelial tissues, such as lung tissue.
- e. A gas produced by cars, furnaces, and other devices that burn fuel; replaces oxygen in the blood and quickly leads to death.
- f. Genes that normally repair damaged DNA or prevent cells with badly damaged DNA from dividing.
- g. Terrorism by intentional release or spread of pathogens.
- h. A tumor of lymphatic cells, such as T cells.
- i. Genes that normally help regulate cell division.
- j. A gene that, when mutated or expressed at high levels, helps turn a normal cell into a cancer cell.

Image Sources

(1) http://www.cdc.gov/niosh/topics/plants/.

Chapter 25

Reproductive System and Human Development Worksheet

25.1 Chapter 25: Reproductive System and Human Development

- Lesson 25.1: Male Reproductive System
- Lesson 25.2: Female Reproductive System
- Lesson 25.3: Fertilization, Gestation, and Development
- Lesson 25.4: Sexually Transmitted Diseases

25.2 Lesson 25.1: Male Reproductive System

Lesson 25.1: True or False

Name		Class	Date
Write true if the statement is	rue or false if the statem	ent is false.	
1. Testosterone is a	masculinizing hormone.		
2. All of a baby boy	's reproductive organs ar	re present at birth.	
3. During puberty i	n boys the long bones sto	op growing.	
4. Underarm hair a	ppears in boys during sta	age 3 of puberty.	
5. Testosterone rece	eptors are located on the	nucleus of cells.	
6. Puberty begins a	t the same age in all boys	S.	

7. The urethra passes through the testes and scrotum.
8. The seminiferous tubules join together to form the epididymis.
 9. Sperm consist of semen and glandular secretions.
10. The connecting piece of a sperm contains the nucleus.
 11. The nucleus of a sperm carries copies of the male's chromosomes.
12. Sperm are released from the body during fertilization.

Lesson 25.1: Critical Reading

Name	Class	Date -

Read this passage from the lesson and answer the questions that follow.

Spermatogenesis

Spermatogenesis is the process of producing mature sperm. Sperm are haploid cells, meaning they have half the number of chromosomes as other cells of the body, which are diploid cells. Sperm must be haploid in order for normal sexual reproduction to occur. During reproduction, a sperm unites with another cell, called an egg. This is called **fertilization**. Unless both sperm and egg are haploid, the resulting offspring will not have the diploid number of chromosomes (see chapter titled *Cell Division and Reproduction*).

Sperm are produced in the seminiferous tubules of the testes and finish maturing in the epididymis. The entire process takes about 9 to 10 weeks. As shown in **Table 25.1**, the production of sperm occurs in several steps, each involving a different type of cell and process.

Spermatogenesis begins when a spermatogonium with the diploid number of chromosomes undergoes mitosis to form primary spermatocytes, also with the diploid number. It proceeds as a primary spermatocyte undergoes the first cell division of meiosis to form secondary spermatocytes with the haploid number of chromosomes. A secondary spermatocyte undergoes the second meiotic cell division to form haploid spermatids. Spermatids mature into sperm, which are also haploid.

Table 25.1: Spermatogenesis and Cell Division

Type of Cell	Number of Chromosomes	Process
Spermatogonium	Diploid	Mitosis
Primary Spermatocyte	Diploid	Meiosis 1
Secondary Spermatocyte	Haploid	Meiosis 2
Spermatid	Haploid	Maturation

Table 25.1: (continued)

Type of Cell	Number of Chromosomes	Process
Spermatozoon (sperm)	Haploid	Fertilization

Spermatogonia, which line the seminiferous tubules in the testes, are diploid cells. They begin the process of spermatogenesis when they divide by mitosis to produce cells called primary spermatocytes, which are also diploid cells. Some spermatogonia divide just to produce copies of themselves. This ensures a constant supply of spermatogonia for future sperm production.

Primary spermatocytes go through the first cell division of meiosis to produce secondary spermatocytes. These are haploid cells. Secondary spermatocytes then quickly complete the meiotic division to become spermatids, which are also haploid cells.

Spermatids slowly mature into sperm, like the one shown in **Figure 25.1**. Among other changes, they lose excess cytoplasm from the head and grow a tail. The tail is a flagellum that lets them move by rotating like a propeller. The acrosome that covers part of the head produces digestive enzymes that help the head penetrate an egg. The mitochondria in the connecting piece produce energy that the sperm needs to "swim" through the female reproductive tract to reach an egg. However, sperm do not develop the ability to move until they complete their maturation in the epididymis. It takes sperm four to six weeks to travel through the epididymis and become fully mature. After they mature, they remain in the epididymis until they leave the body.

Figure 25.1: A mature sperm cell has several structures that help it reach and penetrate an egg. These structures include the acrosome, mitochondria, and tail. The nucleus, which makes up most of the head, carries copies of the father's chromosomes.

Questions

1. Define the term spermatogenesis.

_

-		
2. Explain why sperm must be haploid cells.		
-		
-		
-		
-		
3. What is the first step in sperm production	n? Where does it take place?	
-		
-		
-		
-		
4. What are two changes that take place in	sperm as they mature?	
-		
-		
-		
5. When do sperm develop the ability to mo	ve? Where does this occur?	
-		
-		
-		
Lesson 25.1: Multiple Choice)	
Name	Class	Date
Circle the letter of the correct choice.		
1 3371 . 1	1	1
1. What hormone stimulates an embryo's gans?	s reproductive organs to develop) into male or-
(a) acrosomal hormone		
(b) secondary sex hormone(c) testosterone		
(d) luteinizing hormone		

2. Which is the best definition of puberty?		
 (a) age when males reach adulthood (b) period when humans become sexually mature (c) stage when male reproductive organs form (d) age when males start the adolescent growth specifically 		
3. Which of the following is not a secondary sex chara-	acteristic of males?	
(a) Adam's apple(b) apocrine sweat production(c) mature testes(d) wide shoulders		
4. Which choice shows the correct sequence of change	es during puberty in	n males?
(a) testes grow, penis becomes longer, facial hair(b) facial hair appears, testes grow, penis become(c) penis becomes longer, testes grow, facial hair(d) penis becomes longer, facial hair appears, test	s longer appears	
5. For the average U.S. boy, puberty lasts about		
(a) 1 year.(b) 3 years.(c) 6 years.(d) 10 years.		
6. Sperm travel from the epididymis to the urethra th	rough the	
(a) vas deferens.(b) seminal vesicles.(c) prostate gland.(d) testes.		
7. Of the following cells, the only diploid cells are		
(a) spermatogonia.(b) spermatozoa.(c) spermatids.(d) secondary spermatocytes.		
Lesson 25.1: Vocabulary		
Name	Class	Date
Match the weeklamy terms with the count definition		
Match the vocabulary term with the correct definition.		
Term		

1. acrosome		
2. cells of Leydig		
3. epididymis		
4. luteinizing hormone		
5. semen		
6. seminiferous tubules		
7. Sertoli cells		
8. sperm		
9. spermatogonia		
10. testosterone		
Definition		
a. coiled tube where sperm are stored		
b. fluid that is ejaculated from the urethra		
c. sperm-producing cells		
d. male sex cells		
e. chief sex hormone in males		
f. cells that secrete testosterone		
g. functional units of the testes		
h. pituitary hormone that stimulates the testes		
i. cells that protect and nourish developing sperm		
j. covering of the head of a sperm		
25.3 Lesson 25.2: Female Reprod	ductive Syste	em
Lesson 25.2: True or False		
Name	Class	Date
Write true if the statement is true or false if the statem	ent is false.	
1. Females continue to produce eggs through	•	
2. The changes of puberty usually happen in		most females

Name	Class Date .
Lesson	25.2: Critical Reading
	12. The events of the menstrual cycle always occur in the same sequence.
	11. The corpus luteum develops in the follicular phase of the menstrual cycle.
	10. The ovarian menstrual cycle begins with ovulation.
	9. Fertilization normally occurs in the uterus or vagina.
	8. A polar body disintegrates and disappears from the ovary.
	7. Both primary and secondary oocytes are diploid cells.
	6. One role of the cells of a follicle is to help an egg mature.
	5. The upper ends of the Fallopian tubes are attached to the ovaries.
	4. Internal female reproductive organs include the uterus and vulva.
	3. The majority of U.S. girls start puberty by the age of 10 years.

Read this passage from the lesson and answer the questions that follow.

Sexual Development in Females

The main differences between boys and girls at birth are their reproductive organs. Unlike males, females are not influenced by the male sex hormone testosterone during embryonic and fetal development. This is because they lack a Y-chromosome. As a result, females do not develop male reproductive organs.

Development Before Birth

Unless an embryo is stimulated by testosterone, the reproductive organs develop into female organs, such as the ovaries and uterus. By the third month of fetal development, most of the internal female organs have formed. Immature **ova**, or eggs, also form in the ovary before birth. Whereas a male produces sperm throughout his lifetime (after puberty), a female produces all the eggs she will ever make before birth.

Like baby boys, baby girls are born with all their reproductive organs present but immature and unable to function. Female reproductive organs grow very little during childhood. They begin to grow rapidly and to mature during puberty.

Changes of Puberty

You know that puberty is the period during which humans become sexually mature. Puberty in girls differs from puberty in boys in several ways, including when it begins, how long it lasts, and the hormones involved. Girls begin puberty a year or two earlier than boys, and

they complete puberty in about four years instead of six. In females, the major sex hormone is **estrogen** rather than testosterone.

Puberty in girls starts when the hypothalamus in the brain stimulates the pituitary gland to secrete hormones that target the ovaries. The pituitary hormones are luteinizing hormone, or LH, and follicle-stimulating hormone, or FSH. These hormones stimulate the ovary to produce estrogen.

Estrogen has many functions that you will read more about below. During puberty, estrogen promotes growth and other physical changes in females. For example, estrogen stimulates growth of the breasts and uterus. It also stimulates development of bones and contributes to the adolescent growth spurt in height. These and several other changes in females during puberty are listed in **Table 25.2**:

Table 25.2: Physical Changes in Females During Puberty

Changes in Reproductive Organs	
Ovaries and follicles grow	Uterus grows and endometrium thickens
Other reproductive structures grow	Menstrual cycle begins
Other Physical Changes	
Breasts develop	Long bones grow and mature
Pubic hair grows	Underarm hair grows
Body fat increases	Apocrine sweat glands develop
Pelvis widens	

Some of the changes involve the maturation of organs, such as ovaries, that are necessary for reproduction. Mature reproductive organs are primary sex characteristics. Other changes, such as growth of pubic hair, lead to traits that are secondary sex characteristics. One of the most significant changes in females during puberty is menarche. **Menarche** is the beginning of menstruation, or monthly periods.

Questions

1. What are the main differences between boys and girls at birth? What causes these differences?

_

-

2. How does puberty in girls differ from puberty in boys?

_

-		
_		
-		
3. What signals the start of puberty in girls?		
-		
-		
-		
-		
4. What role does estrogen play in puberty?		
-		
-		
-		
-		
5. Define menarche. When does it occur?		
-		
-		
_		
-		
Lesson 25.2: Multiple Choice		
Name	Class	Date
Circle the letter of the correct choice.		
1. Females do not develop male reproductive orga	ns because females	
(a) produce estrogen.		
(b) lack a Y-chromosome.(c) have an X-chromosome.		
(d) develop more slowly than males.		
2. The first observable change in females during p	ouberty is usually the	
(a) beginning of breast development.		

	200	
	2. estrogen	
	1. corpus luteum	
Tern		
	th the vocabulary term with the correct definition.	
Nam	neClass	Date
Les	son 25.2: Vocabulary	
	(c) estrogen.(d) progesterone.	
	(a) LH.(b) FSH.	
7.	Menopause is caused by a natural decline in the secretion of	
	 (a) menstrual phase (b) follicular phase (c) uterine phase (d) ovarian phase 	
6.	During what phase of the menstrual cycle does the endometrium develop?	
	 (a) ovulation. (b) maturation. (c) fertilization. (d) menstruation. 	
5.	The release of a secondary oocyte from an ovary is called	
	(a) ovum.(b) oogonium.(c) polar body.(d) primary oocyte.	
4.	Oogenesis begins with a(n)	
	(a) Fallopian tube.(b) cervix.(c) vulva.(d) ovary.	
3.	The passageway from the uterus to the vagina is called the	
	(b) growth of underarm hair.(c) end of the growth spurt.(d) first menstrual period.	

3. Fallopian tube
4. follicle
5. follicle-stimulating hormone
6. luteinizing hormone
7. ovary
8. progesterone
9. uterus
10. vulva
Definition
a. structure that carries eggs from an ovary to the uterus
b. structure in the ovary that contains an egg
c. structure that forms in the ovary and produces progesterone
d. egg-producing organ of the female reproductive system
e. name for the external female reproductive structures
f. organ where a fetus grows and develops until birth
g. main pituitary hormone that triggers puberty in females
h. major female sex hormone
i. pituitary hormone that stimulates the production of estrogen
j. hormone that promotes gestation
25.4 Lesson 25.3: Fertilization, Gestation, and Devel-
opment
Lesson 25.3: True or False
Name Class Date
Write true if the statement is true or false if the statement is false.
1. A human zygote is a diploid cell.
2. A fertilized egg first starts dividing when it reaches the uterus.

 3. The embryoblast is a cell layer of the morula.
4. The endoderm forms the lungs, liver, and pancreas.
 5. Arm buds appear during the eighth week of gestation.
 6. The fetus starts breathing on its own by week 18.
7. Fetal body fat rapidly increases toward the end of gestation.
8. A fetus born before 38 weeks is unlikely to survive.
 9. A fetus is more sensitive than an embryo to most toxins.
 10. Growth during infancy is faster than growth during puberty.
 11. Children usually start losing their deciduous teeth by age six.
 12. The immune system becomes more efficient as adults age.

Read this passage from the lesson and answer the questions that follow.

Name

Lesson 25.3: Critical Reading

Placenta and Related Structures

The **placenta** is a temporary organ in which nutrients and wastes are exchanged between a mother and her embryo or fetus. The placenta begins to form in the second week after fertilization. It continues to develop and grow to meet the needs of the growing fetus. A fully developed placenta is made up of a large mass of blood vessels from both the mother and the fetus. The maternal and fetal vessels are close together but separated by empty space. This allows the mother's and fetus's blood to exchange substances without actually mixing.

Class

Date -

How the Placenta Works

Blood from the mother enters the maternal blood vessels of the placenta under pressure, forcing the blood into the empty spaces surrounding the vessels. When the mother's blood contacts the fetal blood vessels, gases are exchanged. Oxygen from the mother's blood is exchanged with carbon dioxide from the fetus's blood. A release of pressure brings the mother's blood back from the placenta and into her veins.

The fetus is connected to the placenta through the **umbilical cord**, a tube that contains two arteries and a vein. Blood from the fetus enters the placenta through the umbilical arteries, exchanges gases with the mother's blood, and travels back to the fetus through the umbilical vein.

In addition to gas exchange, the placenta transfers nutrients, hormones, and other needed substances from the mother's blood to the fetus's blood. The placenta also filters many harmful substances out of the mother's blood so they are not transferred to the fetus. In addition, the placenta secretes hormones that maintain the corpus luteum in the mother's ovary. The corpus luteum secretes progesterone, which is needed to prevent the endometrium of the uterus from breaking down.

Amniotic Sac and Fluid

Attached to the placenta is the **amniotic sac**, which surrounds and protects the embryo or fetus. It begins to form in the second week after fertilization. It soon fills with water and dissolved substances to form **amniotic fluid**. The fluid allows the fetus to move freely until the fetus grows to fill most of the available space. The fluid also cushions the fetus and helps protect it from injury.

Questions

1. What is the placenta, and what are its functions?
_
-
-
2. Describe the fully developed placenta. How is the fetus connected to the placenta?
-
-
- -
3. Explain how gases are exchanged between a mother and fetus.
-
-
- -
4. Besides oxygen, what substances are transferred from the mother to the fetus through the placenta?
-
-

5. Identify the functions of the amniotic sac and amniotic fluid.			
Class	Date		
	c fluid. Class		

(d) 38.		
6. The fetus is forced out of the mother's body d	luring childbirth by	
(a) contractions of the uterus.		
(b) tension in the vagina.(c) the pull of gravity.		
(d) the fetus' weight.		
7. Children between the ages of one and three ye	ears are generally referred	d to as
(a) babies.		
(b) infants.(c) toddlers.		
(d) newborns.		
Lesson 25.3: Vocabulary		
Name	Class	Date
Match the vocabulary term with the correct definition	n.	
Term		
1. blastocyst		
2. cleavage		
3. differentiation		
4. ectoderm		
5. endoderm		
6. gastrulation		
7. implantation		
8. mesoderm		
9. morula		
10. trophoblast		
Definition		
a. embedding of the blastocyst in the lining of the v	ıterus	
b. embryonic cell layer that forms tissues involved in	n digestion and breathin	g
c. initial ball of cells formed in the first few days aft	ter fertilization	

(c) 26.

- d. embryonic cell layer that forms tissues that provide movement and support
- e. embryonic cell layer that forms tissues that cover the outer body
- f. outer layer of blastocyst cells that develop into the placenta
- g. process by which unspecialized cells become specialized into different cells types
- h. ball of cells containing a fluid-filled cavity and distinct layers
- i. development of different layers of cells in the embryo
- j. initial cell divisions that increase the number of cells but not their overall size

25.5 Lesson 25.4: Sexually Transmitted Diseases

Lesson 25.4: True or False

Name	Class	Date
Write true if the statement is true or false if the s	statement is false.	
1. Any disease that can spread through	h sexual contact is an STD.	
2. Most sexually transmitted diseases a	are caused by protozoa.	
3. STDs can spread through oral sexua	al behaviors.	
4. Females are more likely than males	to develop chlamydia.	
5. Untreated chlamydia leads to a serie	ous liver disease.	
6. Chlamydia can be passed to a baby	before or during birth.	
7. Gonorrhea is no longer common in t	the United States.	
8. Gonorrhea always causes symptoms	in infected females.	
9. Untreated syphilis can eventually ca	ause brain damage.	
10. HSV-2 is the pathogen that causes	genital warts.	
11. There is no known cure for hepatit	is B.	
12. A PAP test is used to diagnose cer	vical cancer.	
Lesson 25.4: Critical Reading		
Name	Class	Date

Read this passage from the lesson and answer the questions that follow.

Sexually Transmitted Diseases

Common STDs include chlamydia, gonorrhea, syphilis, human immunodeficiency virus (HIV) infection, genital herpes, hepatitis B, and genital warts. To be considered an STD, a disease must have only a small chance of spreading naturally in ways other than sexual contact. Many diseases that can spread through sexual contact spread more commonly by other means. These diseases are not considered STDs.

Pathogens that Cause STDs

STDs may be caused by several different types of pathogens, including protozoa, insects, bacteria, and viruses.

- The protozoa *Trichomonas vaginalis* causes an STD called trichomoniasis. This is an infection of the vagina in females and the urethra in males.
- Pubic lice, like the one in **Figure 25.2**, are insect parasites that can be transmitted sexually. They suck the blood of their host and irritate the skin in the pubic area.

Figure 25.2: A magnified pubic louse ().

Although these STDs are common, the majority of STDs are caused by bacteria or viruses. Several bacterial and viral STDs are described below. It is important to note that most bacterial STDs can be cured with antibiotics, whereas viral STDs do not have cures, although some can be prevented with vaccines.

How STDs Spread

Most of the pathogens that cause STDs enter the body through mucous membranes of the reproductive organs. All sexual behaviors that involve contact between mucous membranes put a person at risk for infection. This includes vaginal, anal, and oral sexual behaviors.

Many STDs can also be transmitted through body fluids such as blood, semen, and breast milk. For example, in the past, HIV and hepatitis B were transmitted through blood transfusions. This no longer occurs because donated blood is now screened for the pathogens.

Use of shared injection or tattoo needles is another way in which blood and pathogens can be transferred from one person to another. A number of STDs can also be transmitted from a mother to her baby through her blood during childbirth or through her breast milk after birth.

STDs are much more common in young adults and teens than in older people. One reason is that young people are more likely to take risks and to think "It can't happen to me." They also may not know how STDs are spread. In addition, younger people may be more sexually active than older people.

Questions

•	
1.	When is a disease classified as an STD?
-	
-	
-	
2.	List four types of pathogens that cause STDs.
-	
-	
3.	Describe how pathogens that cause STDs enter the body.
-	
-	
-	
-	
4.	Besides sexual activity, what are other ways that some STDs can spread?
-	
-	
-	
-	
5.	Why are STDs more common in young adults and teens than in older people?
-	
-	
-	
-	

Lesson 25.4: Multiple Choice

7. Cervical cancer is caused by

(a) HPV.

Name	Class	Date
Circle the letter of the correct choice.		
 STDs may be caused by all of the following except (a) diet. (b) viruses. (c) insects. (d) protozoa. 		
2. Many STDs can be transmitted through(a) blood.(b) semen.(c) breast milk.(d) all of the above.		
 3. Why are newborns treated routinely with eye drops (a) to prevent chlamydia eye infections (b) to improve their distance vision (c) to help them see more clearly (d) to protect them from HIV 	s?	
 4. During which stage of syphilis does a small sore app (a) primary stage (b) secondary stage (c) latent stage (d) tertiary stage 	pear on the genitals?	
 5. Which statement is true about genital herpes? (a) It is caused by bacteria. (b) It does not have symptoms. (c) It can be cured with antibiotics. (d) It can cause blindness in newborns. 		
 6. Vaccines have been developed to prevent infection v (a) syphilis. (b) gonorrhea. (c) hepatitis B. (d) chlamydia. 	with	

- (b) HSV.(c) HIV.(d) PID.

Lesson 25.4: Vocabulary

Name	Class	Date
Match the vocabulary term with the correct definition.		
Term		
1. chlamydia		
2. genital herpes		
3. genital warts		
4. gonorrhea		
5. hepatitis B		
6. HIV		
7. pelvic inflammatory disease		
8. sexually transmitted disease		
9. syphilis		
10. trichomoniasis		
Definition		
a. STD caused by a protozoan		
b. STD caused by the bacterium Neisseria gonorrheae		
c. infection of the uterus, Fallopian tubes, and/or ovaries		
d. STD caused by the bacterium Treponema pallidum		
e. STD caused by the human papillomavirus		
f. most common STD in the U.S.		
g. virus that causes acquired immunodeficiency disease		
h. any disease caused by a pathogen that spreads mainly t	hrough sexual conta	ict
i. inflammation of the liver caused by a virus		
j. STD caused by the virus HSV-2		