

FIG.1

FIG.2

FIG.3

F1G.5

FIG. 9(d)

78

A. Fractional Lower Order Moments:

It is known that a real non-Gaussian SuS random variable X with zero location parameter has finite Inectional lower order myment [3] Positive-Order and Negative-Order

E(|X|') = C(|p,n|)^{1/2}, for $0 (1).

where <math>C_1(p,n) = \frac{2((p+1)(p-2)^2)}{2((p+1)(p-2)^2)}$, is the characteristic exponent (0 < n < 2), γ is the dispersion and $\Gamma(\cdot)$ is the However, finite E([X]*) also exists for p < 0. The proof 5
for the one dimensional case is surightforward. If X is 172,
SnS random wurshle with probability density function (194)
\$1.00 to the condition of the c

 $f_N(x) = \frac{1}{x} \int_0^\infty \operatorname{cem}(\omega x) \operatorname{exp}(-\omega \omega^n) d\omega$