

## Kap. 2: Grundbegriffe

- 2.1 Begriffe der Mathematik (nur Wiederholung)
- 2.2 System, Abstraktion und Modell
- 2.3 Information und ihre Repräsentation
- 2.4 Formale Sprachen
- 2.5 Graphen und Bäume
- 2.6 Algorithmen

# **>** Quellen

- M. Broy: "Informatik Eine grundlegende Einführung", Teil 1, Springer-Verlag, 1992 (Kap. 1, 2)
- U. Rembold, P. Levi: "Einführung in die Informatik für Naturwissenschaftler und Ingenieure", 3. Auflage, Hanser-Verlag, 1999 (Kap. 2.2.1, 2.7)
- D. Werner u.a.: "Taschenbuch der Informatik", Fachbuchverlag Leipzig, 1995 (Kap. 2.3.1)
- U. Schöning: "Theoretische Informatik kurz gefasst", Spektrum-Verlag, 1997



### 2.1 Begriffe der Mathematik

 Bemerkung: Die in diesem Abschnitt besprochenen Begriffe sind entweder bereits aus der Schule bekannt oder werden in den Mathematik-Vorlesungen besprochen. Sie werden im weiteren als bekannt vorausgesetzt.

#### Symbole in Aussagen



| $\exists x$             | es existiert ein x, es gibt ein x (Existenz-Quantor)     |
|-------------------------|----------------------------------------------------------|
| ∃! <b>x,</b> ∄ <b>x</b> | Varianten: es existiert genau ein $x$ , es gibt kein $x$ |
| ∀ <i>x</i>              | für alle <i>x</i><br>(All-Quantor)                       |
| $p \wedge q$            | Aussage <i>p</i> und Aussage <i>q</i>                    |
| $p \vee q$              | Aussage p oder Aussage q                                 |
| ¬ p                     | nicht <i>p,</i> Verneinung der Aussage <i>p</i>          |
| $m{p}\Rightarrowm{q}$   | wenn <i>p,</i> dann <i>q</i>                             |
| $p \Leftrightarrow q$   | p genau dann, wenn $q$                                   |
| <i>p</i> :⇔ <i>q</i>    | definitionsgemäß genau dann, wenn $oldsymbol{q}$         |

# Mengen



Die Menge mit den Elementen a und b {a, b}  $\{x \mid p(x)\}$ Menge aller x, für die die Aussage p(x) gilt {}, Ø die leere Menge  $a \in A$ a ist Element der Menge A A⊆B Teilmengenbeziehung echte Teilmengenbeziehung  $A \subset B$ **Durchschnitt**  $A \cap B$  $A \cup B$ Vereinigung  $A \mid B$ Differenz  $A \oplus B$ Disjunkte Vereinigung,  $A \cup B \setminus (A \cap B)$ Kardinalität oder Mächtigkeit der |A|Menge A. Bei endlichen Mengen: **Anzahl der Elemente** 





# Mengen (2)

Übliche Notationen für Zahlenmengen in der Mathematik

```
Die Menge der natürlichen Zahlen, {0, 1, 2, 3, ...}
Die natürlichen Zahlen ohne die Null, {1, 2, 3, ...}, N \ { 0 }
Bemerkung: Manchmal wird N auch ohne Null definiert: N, N₀
Die Menge der ganzen Zahlen, {..., -2, -1, 0, 1, 2, ...}
Die Menge der rationalen Zahlen, {x = p / q | p ∈ Z ∧ q ∈ Z⁺}
Die Menge der reellen Zahlen
Die Menge der komplexen Zahlen
Die Menge der komplexen Zahlen
```



#### Potenzmenge, Produkt



Die *Potenzmenge* P(A) einer Menge A ist die <u>Menge aller</u> <u>Teilmengen</u> von A, d.h.  $P(A) = \{B \mid B \subseteq A\}$ 

- Beispiel:  $P(\{a,b\}) = \{ \{\}, \{a\}, \{b\}, \{a,b\} \}$
- Falls  $|A| < \infty$ , dann gilt  $|P(A)| = 2^{|A|}$ 
  - Selbst-Test: Wie beweist man dies?



Das (*kartesische*) *Produkt*  $A \times B$  der Mengen A und B ist die Menge aller geordneten Paare (a,b) mit  $a \in A$  und  $b \in B$ .

- Beispiel:  $A=\{m,n\}, B=\{r,s,t\} \Rightarrow$  $A\times B=\{(m,r), (m,s), (m,t), (n,r), (n,s), (n,t)\}$
- Notation: Man schreibt statt A A auch A<sup>2</sup>.
- Für endliche Mengen A und B gilt für die Kardinalitäten:  $|A \times B| = |A|^*|B|$ .





Eine Teilmenge *R* ⊆ *A*×*B* des Produkts zweier Mengen *A* und *B* heißt (zweistellige oder binäre) *Relation R zwischen A* und *B* .

- Notation: statt  $(a,b) \in R$  auch R(a,b) oder Infix-Notation: a R b
- Beispiel:

A: Menge der Personalausweisnummern aller Wiesbadener,

B: Menge der vergebenen Autokennzeichen beginnend mit WI fährt ⊆ A×B ist eine binäre Relation zwischen A und B.



```
fährt = {
  (113123, WI-AS 30),
  (157373, WI-AS 30),
  (247903, WI-TT 2),
  (247903, WI-GT 777),
  (479969, WI-HH 89) }
  fährt(113123, WI-AS 30)
  oder 113123 fährt WI-AS 30
```



P Eine Teilmenge *R ⊆ A×A* heißt *Relation R auf* der Menge *A*.



– Beispiel:

A: Menge der Personalausweisnummern (IDs) aller Wiesbadener,  $R = \{ (x,y) \in A \times A \mid \text{Person mit ID } x \text{ ist verwandt mit Person mit ID } y \}.$ 

Relationen besitzen spezielle Eigenschaften

hier z.B.: Transitivität





#### Eigenschaften von Relationen

- Sei R ⊆ A×A eine binäre Relation auf A. Dann heißt R
  - reflexiv : $\Leftrightarrow \forall a \in A$ : a R a
    - **■** Beispiele: Relationen = und  $\leq$  auf  $\mathbb{N}$ ,  $\subseteq$  auf Mengen
  - irreflexiv : $\Leftrightarrow$  ∄ a∈A: a R a
    - Beispiele: Relationen ≠ und < auf N</p>
    - Hinweis: "irreflexiv" ≠ "nicht reflexiv" (warum?)
  - symmetrisch : $\Leftrightarrow \forall a,b \in A$ : a R b  $\Rightarrow$  b R a
    - Lies: "Für alle a und b aus A gilt: Aus a Relation b folgt b Relation a"
    - Beispiele: Relationen = und ≠ auf N
  - antisymmetrisch : $\Leftrightarrow \forall a,b \in A$ : a R b ∧ b R a  $\Rightarrow$  a = b
    - **■** Beispiel: Relation  $\leq$  auf  $\mathbb{N}$ ,  $\subseteq$  auf Mengen.



## Eigenschaften von Relationen (2)

#### (Fortsetzung)

- transitiv:  $\Leftrightarrow$   $\forall$  a,b,c∈A: a R b  $\land$  b R c  $\Rightarrow$  a R c
  - Beispiele: Relationen = < > ≤ auf N, ⊆ auf Mengen
- total : $\Leftrightarrow$   $\forall$  a,b∈A: a R b  $\vee$  b R a
  - Bemerkung: mathematisches "oder"
     d.h.: es kann gleichzeitig a R b und b R a gelten.
  - **■** Beispiel: Relation  $\leq$  auf  $\mathbb{N}$



### Matrixdarstellung binärer Relationen

- Sei  $R \subseteq A \times A$  eine binäre Relation auf A.
- Das kartesische Produkt  $A \times A$  lässt sich als Matrix veranschaulichen. Markiert man die Matrixzellen, die Elementen  $(a,b) \in R$  entsprechen, erhält man eine Matrixdarstellung von R.
- Mit dieser lassen sich viele Relationseigenschaften visualisieren:

$$R=(\{1,2,3,4\}^2,=)$$

$$R=(\{1,2,3,4\}^2, \neq)$$

$$R=(\{1,2,3,4\}^2,\leq)$$

| (1,1) | (1,2) | (1,3) | (1,4) |
|-------|-------|-------|-------|
| (2,1) |       |       |       |
| (3,1) |       |       |       |
| (4,1) |       |       | (4,4) |





- R reflexiv
   Matrix-Diagonale vollständig gefüllt
- R irreflexiv Matrix-Diagonale völlig leer
- R symmetrisch Matrix spiegelsymmetrisch zur Hauptdiagonalen
- R antisymm. Matrix enthält kein spiegelsymmetrisches
   Zellenpaar außerhalb der Hauptdiagonalen



## Äquivalenzrelation



Sei  $R \subseteq A \times A$  eine Relation. Dann heißt  $R \stackrel{\ddot{A}quivalenzrelation}{}$ , wenn R reflexiv, transitiv und symmetrisch ist.

Ist R eine Äquivalenzrelation und ist  $(a,b) \in R$ , so heißen a und b äquivalent.

#### **Beispiel:**

- Sei  $A = \mathbb{N}$ ,  $n \in \mathbb{N}$ . Dann ist  $R = \{ (x,y) \mid x \mod n = y \mod n \}$ eine Äquivalenzrelation. (x und y haben bei Division durch n denselben Rest)



Äquivalenzklassen, d.h. Mengen bzgl. R äquivalenter Elemente (Restklassen)



#### Partielle und totale Ordnung



Eine <u>reflexive</u>, <u>transitive und antisymmetrische</u> Relation *R* auf einer Menge *A* heißt <u>partielle Ordnung R</u> auf der Menge *A*.

Beispiel:

Sei  $A = \{ \{a\}, \{b\}, \{a,b\}, \{a,b,c\} \}, \subseteq die$  Teilmengenrelation. Dann definiert  $\subseteq$  eine partielle Ordnung R auf A:

$$R = \{ (\{a\}, \{a,b\}), (\{a\}, \{a,b,c\}), (\{b\}, \{a,b,c\}), (\{a,b\}, \{a,b,c\}), (\{a\}, \{a\}), (\{b\}, \{b\}), (\{a,b\}, \{a,b\}), (\{a,b,c\}, \{a,b,c\}) \}$$



Bemerkung:

R ist keine totale Relation, z.B. gilt weder  $\{a\}\subseteq \{b\}$  noch  $\{b\}\subseteq \{a\}$ .

20.11.2020



## Partielle und totale Ordnung (2)



Eine <u>reflexive</u>, <u>transitive</u>, <u>antisymmetrische und totale</u> Relation *R* auf einer Menge *A* heißt <u>lineare</u> oder <u>totale Ordnung</u> *R* auf der Menge *A*.

Beispiel: ≤ auf natürlichen Zahlen



"Beweis" durch Nachprüfen der Eigenschaften:

**■** Reflexivität:  $\forall a \in \mathbb{N}$ :  $a \leq a$ 

 $\odot$ 

**Transitivität:**  $\forall a,b,c \in \mathbb{N}$ :  $a \le b \land b \le c \Rightarrow a \le c$ 

 $\odot$ 

**■** Antisymmetrie:  $\forall a,b \in \mathbb{N}$ :  $a \le b \land b \le a \Rightarrow a = b$ 

**:** 

**Totalität:**  $\forall a,b \in \mathbb{N}$ :  $a \le b \lor b \le a$ 

20.11.2020



#### **Funktion / Abbildung**



Eine Relation  $f \subseteq A \times B$  zwischen den Mengen A und B heißt Funktion oder Abbildung aus der Menge A in die Menge B, falls aus  $(x,y) \in f$  und  $(x,z) \in f$  folgt: y = z.

- Bemerkungen:
  - Funktionen sind also spezielle Relationen.
  - Übliche Notation:  $f: A \rightarrow B$  und f(a)=b statt  $(a,b) \in f$ 
    - b heißt das Bild von a unter der Funktion f,
    - a ist ein(!) Urbild von b.





 $Rng(f) := \{b \in B \mid (a,b) \in f\}$  heißt Bild- oder Wertebereich von f



20.11.2020

Englische Bezeichnungen: Dom - "domain", Rng - "range"



### Funktion / Abbildung (2)



Eine Funktion  $f: A \rightarrow B$  heißt  $total :\Leftrightarrow Dom(f) = A$ .

 "Keine Definitionslücken – der Definitionsbereich ist gleich der Ausgangsmenge"



Eine Funktion  $f: A \rightarrow B$  heißt surjektiv : $\Leftrightarrow Rng(f) = B$ .

"Jedes Element der Zielmenge besitzt (mind.) ein Urbild"



Eine Funktion  $f: A \rightarrow B$  heißt *injektiv* : $\Leftrightarrow f(a)=f(b) \Rightarrow a=b$ 

"Verschiedene Elemente der Definitionsmenge ergeben stets verschiedene Werte"



20.11.2020

Eine Funktion  $f: A \rightarrow B$  heißt bijektiv : $\Leftrightarrow f$  ist total, surjektiv und injektiv.

 "Bijektive Funktionen sind umkehrbar. Jede Urbildmenge ist einelementig."



#### Funktion





#### Bijektion





#### 2.2 System, Abstraktion und Modelle

- Der Systembegriff wird im täglichen Leben verwendet wie auch in allen wissenschaftlichen Disziplinen.
  - Beispiele:
    - Das politische System der Bundesrepublik Deutschland
    - Der menschliche K\u00f6rper als biologisches System
    - Das Milchstraßensystem



- Charakterisierende Merkmale eines *informationstechnischen Systems*:
  - Schnittstelle des Systems:
     Grenze zwischen "außerhalb" und "innerhalb"
  - Umgebung des Systems: der äußere, für die Betrachtung weniger wichtige Teil
  - System: innere Teil ist der eigentliche Betrachtungsgegenstand mit:
    - Komponenten (des Systems)
    - deren Beziehungen zueinander (Wechselwirkungen)



### **Graphische Veranschaulichung**

zum Systembegriff





#### **Abstraktion und Modelle**



Abstraktion entsteht durch Erkennen von unter einer bestimmten Betrachtungsweise relevanten Gegenständen, Eigenschaften und Beziehungen eines Ausschnitts der realen Welt.

- Modell als Ersatz der Realität
- zusätzliche wünschenswerte Eigenschaften wie z.B.
  - einfacher zu verstehen (z.B. Straßenatlas)
  - billiger oder sicherer (z.B. Fahrsimulator)
  - mathematische Theorie nutzbar machen (z.B. Physik, Baustatik)
- Für denselben Ausschnitt der Realität können verschiedene Modelle existieren.





### **Abstraktion und Modelle (2)**

- Das Studium der Informatik beinhaltet das Kennenlernen einer Vielzahl von Modellen
  - aus der Mathematik
  - aus Ingenieur-Disziplinen
  - durch die Informatik selbst entwickelt (z.B. Graphen, Automaten, ...)
- In der Informatik sind systemorientierte Betrachtungsweisen verbreitet. Ziel oft: Struktur- und Verhaltensmodelle entwickeln.
- Wahl der Abstraktionsebene spielt oft entscheidende Rolle:
  - ⇒ Art und Umfang der Komponenten und ihrer Wechselwirkungen
  - **⇒ Komplexität des Systems.**



#### Hierarchische Abstraktionsebenen

 Vorgehensweise häufig "von oben nach unten" (engl.: top-down)

d.h. Informatiker beginnen oft mit einem Modell der Realität auf einer sehr hohen Abstraktionsebene und konkretisieren dieses Modell schrittweise zu immer detaillierteren Modellen, um sich einer Realisierung zu nähern.





- Ausschnitt aus den üblicherweise betrachteten Abstraktionsebenen eines Rechensystems
- wird im Verlaufe des Studiums konkretisiert

|   |                     | <u>typiscne Modelle</u>   | <u>ın Vorlesung</u> |
|---|---------------------|---------------------------|---------------------|
| 6 | Geschäftsprozess    | Prozessketten             | "E-Biz.", evtl. BWL |
| 5 | Anwendungsprogramm  | Datenflussdiagramm        | Softwaretechnik     |
| 4 | Betriebssystem      | Prozesssysteme            | Betriebssysteme     |
| 3 | Prozessor           | Maschinensprache          | Rechnerorganisation |
| 2 | Funktionsblöcke     | Register-Transfer-Sprache | Rechnerorganisation |
| 1 | digitale Signale    | Gatter                    | Digitaltechnik      |
| 0 | elektrische Signale | physikal. Modell          | (Elektrotechnik)    |
|   |                     |                           |                     |

tunicaha Madalla



#### Beispiel: Verfeinerung eines Systems

• Eine Komponente eines Systems kann auf der nächsttieferen Abstraktionsebene selbst wieder als System betrachtet werden.





#### 2.3 Information und ihre Repräsentation

- Information ist einer der zentralen Begriffe der Informatik:
  - "Informatik ist die Wissenschaft von der systematischen Verarbeitung von Information.
  - Sie befasst sich mit Struktur, Eigenschaften und Beschreibungsmitteln von Informationen und informationsverarbeitenden Systemen und deren Betrieb und Anwendung" (vgl. Kap.1).
- Bedeutung des Begriffs "Information" im t\u00e4glichen Leben:
  - zutreffende Aussagen über bestimmte Gegenstände, Zustände, Ereignisse oder Zusammenhänge in der realen Welt.



#### 2.3 Information und ihre Repräsentation

- Zur Bedeutung des Begriffs "Information" in der Informatik:
  - Unterschied: abstrakt, ohne Bezug zur realen Welt
  - d.h. abstrakter Bedeutungsgehalt von textuellen Ausdrücken, Grafiken, usw.
- Information wird aber erst durch äußere Darstellungen verarbeitbar / kommunizierbar.
- ⇒ Die Informatik trennt strikt zwischen der abstrakten Information und ihren äußeren Darstellungen.



### Information und Repräsentation - Definition



- *Information* nennt man den abstrakten Bedeutungsgehalt (Semantik) einer Beschreibung, Aussage, Nachricht, usw.
- Äußere Form der Darstellung heißt Repräsentation.
- Übergang von der Repräsentation zur abstrakten Information heißt Interpretation, in umgekehrter Richtung spricht man von Repräsentierung.





#### Anmerkungen

- Typische Repräsentationen:
  - Körperbewegungen (Handzeichen)
  - das gesprochene Wort (akustische Repräsentation)
  - Zeichenfolgen (das geschriebene Wort)
  - grafische Darstellungen (Zeichnungen, Ikonen, ...)
- Festlegung f
  ür die Deutung von Repr
  äsentationen notwendig.
   Durch Bedeutung wird die Repr
  äsentation zu Information.
- Repräsentationen können mehrere Bedeutungen besitzen.
   Beispiel: Zeichenfolge "G", "R" "Ü" "N":
- Repräsentationssysteme sind i.d.R.
  - unterschiedlich leistungsfähig (mächtig) und
  - abhängig von der darzustellenden Information unterschiedlich zweckmäßig in Hinblick auf die beabsichtigte Verarbeitung.



20.11.2020

#### **Anmerkungen (2)**

- Dieselbe Information kann mehrere unterschiedliche (aber semantisch gleichwertige) Repräsentierungen besitzen.
- Beispiel: Die natürlichen Zahlen
  - **Repräsentationssystem 1:** Notation üblicher Dezimalzahlen: 0, 1, 2, 3, 4, 5, ...
  - **Repräsentationssystem 2:** Strichfolgen: leere Folge ε, I, II, III, IIII, IIII, ...







Herstellen von Beziehungen zwischen der in Repräsentationen enthaltenen abstrakten Information und der realen Welt wird *Verstehen* genannt.

- Verstehen einer Nachricht beinhaltet damit
  - Erkennen der Bedeutung der Nachricht (abstrakte Information) und
  - Herstellen des Bezugs zur realen Welt.
- Verstehen ist ein <u>subjektiver</u> Prozess und nicht formalisierbar.



#### Hierarchische Repräsentierungsebenen

 Vorgang der Repräsentierung / Interpretation kann wiederholt über mehrere Abstraktionsebenen erfolgen.

 $\Rightarrow$ 

hierarchisch angelegte Repräsentierungssysteme für Information auf verschiedenen Abstraktionsstufen.

 Dieser Ansatz wird z.B. im Rahmen der Betrachtung von Datenstrukturen und der Programmierung eine große Rolle spielen.







#### Beispiel: Hierarchie abstrakter Maschinen

Repräsentationssystem jeder Ebene: abstrakte Maschine



Hierarchiebildung



Implementierung in der nächst tieferen Ebene



- In den folgenden beiden Abschnitten werden zwei in der Informatik häufig eingesetzte Repräsentationssysteme vorgestellt:
  - (textuelle) formale Sprachen
  - Graphen
- Diese werden detailliert im weiteren Informatikstudium behandelt.



#### 2.4 Formale Sprachen

- Für die automatisierte Informationsverarbeitung mit Rechensystemen sind textuelle Darstellungen immer noch am weitesten verbreitet:
  - für menschliche Benutzer lesbare Ein- /Ausgabe
  - Kommandosprachen (z.B. UNIX shell)
  - Programmiersprachen für Informatiker: C/C++, Java, ...
  - Auszeichnungssprachen: SGML, HTML, XML, ...
- In diesem Abschnitt:
   Einführung des Begriffs der formalen Sprache



#### Zeichen, Zeichenvorrat



Ein Zeichen (engl. character) ist ein Element einer vereinbarten endlichen, nicht-leeren Menge, die als Zeichenvorrat bezeichnet wird.

- Zeichenvorrat aus genau zwei verschiedenen Zeichen heißt binärer Zeichenvorrat.
- Bit (Abk. für <u>bi</u>nary digit)
   bezeichnet jedes Zeichen aus
   einem binären Zeichenvorrat.
- Symbol: (streng genommen) ein Zeichen zusammen mit einer vereinbarten Bedeutung. Häufig werden aber Zeichen und Symbol gleichwertig benutzt.

#### Beispiele:

{+,-,\*,/} {Mo, Di, Mi, Do, Fr, Sa, So}

{0,1}, {dunkel, hell}, {0V, +5V}, {falsch, wahr}, {ja, nein}

i.d.R. {0,1}.





Ein Alphabet  $\Sigma$  ist ein Zeichenvorrat, auf dem eine lineare Ordnung (Reihenfolge) für die Zeichen definiert ist.

#### Beispiele:

- **-** {0,1}, 0<1
- **-** {0,1,2,3,4,5,6,7,8,9}, 0<1<2<3<4<5<6<7<8<9
- {A,B,C, ...,Z,a,b,c, ...,z}, A<B<C< ...<Z<a<b<c< ...<z.



## Zeichenketten



- Eine endliche Folge  $w=a_1...a_n$  von Zeichen eines Alphabets  $\Sigma$  heißt Wort oder Zeichenkette (engl.: string) über  $\Sigma$ .
- Sei  $w=a_1...a_n$  Zeichenkette über  $\Sigma$ , |w|=n bezeichnet die *Länge* der Zeichenkette.
- Das *leere Wort* wird durch ε bezeichnet *(auch als "" geschrieben)*, besitzt Länge 0.



 $\Sigma^*$ : Menge aller Zeichenketten über  $\Sigma$ 

 $\Sigma^+$ : Menge aller nicht-leeren Zeichenketten über  $\Sigma$ 

 $\Sigma^n$ : Menge aller Zeichenketten der Länge n über  $\Sigma$ .

- Beispiel:  $\Sigma = \{0,1\}, \ \Sigma^* = \{0,1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, ...\}$ 

•  $\Sigma^* = \{0,1\}^*$  heißt die <u>Menge der Binärwörter</u>, Elemente von  $\Sigma^n$  heißen auch *n-Bit-Wörter* oder <u>Binärwörter</u> der Länge n.



## Konkatenation von Zeichenketten



Seien  $\Sigma$  ein Alphabet,  $u = a_1...a_m$  und  $v = b_1...b_n$  Wörter über  $\Sigma$ . Das Wort

$$w = uv = u||v = a_1...a_mb_1...b_n$$
,

das durch Anfügen des Worts v an u entsteht, heißt Konkatenation oder Verkettung von u und v.

Es gilt: 
$$|uv| = |u| + |v|$$
.

• Ist  $w \in \Sigma^*$  und n eine natürliche Zahl, dann bezeichnet  $w^n$  mit

$$W^0 := \varepsilon$$

$$W^{n+1} := W^n W$$

das Wort, das aus *n* aneinandergefügten Kopien von *w* besteht,

w\* bezeichnet ein beliebiges solches Wort(n-fache Wiederholung von w für irgendein n),

w<sup>+</sup> ein nicht-leeres solches Wort.



## Präfix / Suffix



### Sind $x, y, z \in \Sigma^*$ (leere Wörter eingeschlossen) und ist

$$w = xyz = x||y||z,$$

#### dann heißt

x ein *Präfix (Anfangsstück)* von w

y ein *Teilwort* von w und

z ein Suffix (Endstück) von w.



# Lexikographische Ordnung



Sei  $\Sigma$  ein Alphabet und  $\leq$  die lineare Ordnung auf  $\Sigma$ .

Für Wörter  $w_1, w_2 \in \Sigma^*$  wird nun ebenfalls eine Ordnung  $\leq_{lex}$ , die *lexikographische Ordnung*, <u>induktiv</u> durch folgende Festlegungen definiert:

$$\forall \ w \in \Sigma^* : \varepsilon \leq_{lex} w$$

$$\forall \ a_1, \ a_2 \in \Sigma:$$

$$a_1 || w_1 \leq_{lex} a_2 || w_2, \ :\Leftrightarrow \ a_1 < a_2 \text{ oder } (a_1 = a_2 \text{ und } w_1 \leq_{lex} w_2)$$

- Die lexikographische Ordnung definiert eine lineare Ordnung auf  $\Sigma^*$ .
  - Beispiele:

$$\Sigma = \{0,1\}, 0 < 1$$
  
 $\varepsilon \leq_{lex} 0, 01 \leq_{lex} 1, 01 \leq_{lex} 10, 01 \leq_{lex} 011, 011 = 011$ 



## **Formale Sprache**



- Sei  $\Sigma$  ein Alphabet. Eine <u>Teilmenge</u>  $L \subseteq \Sigma^*$  heißt (formale) <u>Sprache</u>,  $x \in L$  heißt <u>Wort der Sprache</u> L.
- Beispiel:

$$\Sigma = \{0,1\}, L = \{1, 01, 001, 0001, 00001, ...\} \subseteq \Sigma^*.$$

(Man kann L auch durch den Ausdruck 0\*1 charakterisieren).



## Operationen auf formalen Sprachen



Sei  $\Sigma$  ein Alphabet und seien  $L, M \subseteq \Sigma^*$  formale Sprachen.

- L ∪ M bzw. L ∩ M bezeichnen (wie allg. für Mengen)
   die Vereinigung bzw. den Durchschnitt der beiden Sprachen
   L und M.
- $LM = \{ uv \mid u \in L \text{ und } v \in M \}$  bezeichnet die Konkatenation der Sprachen L und M. Kurzschreibweisen:  $L^2 = LL$ ,  $L^n = LL...L$
- $L^*$  definiert durch  $L_0 = \varepsilon$ ,  $L_{n+1} = L_n L$ ,  $L^* = \bigcup L_n$ beinhaltet die Menge aller Wörter, die durch Verkettung einer beliebigen Anzahl von Wörtern aus L entstehen (sog. abgeschlossene oder Kleene'sche Hülle).
- $L^+ = L^* \setminus \{\varepsilon\}$

#### Beispiel:

```
\Sigma = \{0,1\}, \ L = \{01, 0001\} \subseteq \Sigma^*

L^* = \{\varepsilon, 01, 0101, 0001, 010101, 010001, 000101, \dots\}
```





Seien A und B Zeichenvorräte. Ein *Code* oder eine *Codierung* ist eine Abbildung

 $c:A \rightarrow B$  oder  $c:A^* \rightarrow B^*$ .

(d.h. zwischen Zeichenvorräten A und B und auch zwischen Wörtern über Zeichenvorräten).

- Die Bildmenge  $\{b \in B \mid b=c(a), a \in A\}$  unter c, d.h. die Menge der Codewörter von c, wird ebenfalls Code genannt.
- Die Elemente von A werden auch Klarzeichen genannt, die Elemente von B auch Codezeichen.
- Die Abbildung eines Codes kann partiell sein, d.h. nicht für jedes Wort aus A\* muss eine Darstellung existieren.



## **Decodierung**

 In der Regel ist die Abbildung eines Codes injektiv, d.h. verschiedene Zeichen oder Wörter werden auf verschiedene Codewörter abgebildet.



Dann ist auf der Bildmenge eine umkehrbare Codierung beschrieben durch eine Abbildung

 $d: \{b \in B \mid b = c(a), a \in A\} \rightarrow A$ 

die *Decodierung* genannt wird.



## **Binär-Codierung**



Für die Informationsdarstellung in Rechensystemen werden fast ausschließlich *Binär-Codierungen (Binär-Codes) von Alphabeten* betrachtet.

Dies sind Codierungen der Form

$$c:A \to \{0,1\}^*$$

wobei A ein vorgegebenes Alphabet ist.



## 2.5 Graphen und Bäume

- Graphen: strukturelle Modelle
   d.h. mit ihnen können identifizierte Objekte und ihre Beziehungen zueinander beschrieben werden.
- Graphen werden in der Informatik oft verwendet.
- Hier:
  - als formales Modell des intuitiven Systembegriffs
  - als weiteres konkretes Repräsentierungssystem für Information
- Bäume: spezielle Arten von Graphen.

# + Graph



Ein *gerichteter Graph* (engl. *graph*) G = (V,E) ist ein Paar, bestehend aus einer endlichen, nichtleeren Menge V zusammen mit einer Relation  $E \subseteq V \times V$ .

- V heißt die Menge der Knoten (engl.: vertices) des Graphen G.
- E heißt die Menge der Kanten (engl.: edges) von G.
- Notation: Eine Kante  $(a,b) \in E$  wird graphisch durch einen Pfeil von Knoten a zu Knoten b dargestellt.

#### Beispiel:

- G = (V,E) mit V = { init, working, finished, error } und





Ungerichtete Graphen:

 Bei Kanten werden Richtungen nicht angenommen,
 d.h. die Reihenfolge der Knoten zur Bezeichnung einer Kante ist unerheblich.



Ein Graph G = (V,E) heißt markiert (bewertet, attributiert), wenn jedem Knoten (knotenmarkiert) oder jeder Kante (kantenmarkiert) (oder beiden) durch eine Abbildung weitere Größen (Werte des Bildbereichs der Abbildung) zugeordnet sind.

# Beispiel

- G = (V,E) mit
  - V = { init, working, finished, error } und

  - Kantenbewertung action:  $E \rightarrow \{go, halt, fault\}$





# Gerichteter Kantenzug, gerichteter Weg



Sei G = (V,E) ein gerichteter Graph. Sei  $z=(v_0, ..., v_n)$  eine Folge von n+1 Knoten des Graphen mit  $(v_0, v_1), ..., (v_{n-1}, v_n)$  E; dann heißt z gerichteter Kantenzug in G der Länge n. (Die Folge der Knoten ist durch Kanten verbunden, mehrfaches Durchlaufen von Knoten ist erlaubt).

• Sei G = (V,E) ein gerichteter Graph. Ein gerichteter Kantenzug  $w=(v_0, ..., v_n)$  in G heißt gerichteter Weg in G, wenn alle Knoten verschieden sind.

#### Beispiele:

- (3, 5, 6, 2, 3, 4) ist ein gerichteter Kantenzug
- Wege sind z.B.
  (1, 2, 3, 7, 4) und (2, 3, 5, 6)



# **X** Zyklus



- Sei G = (V,E) ein gerichteter Graph und  $w=(v_0, ..., v_n)$  ein gerichteter Weg in G. Dann heißt  $c=(v_0, ..., v_n, v_{n+1})$  Zyklus, wenn  $(v_n, v_{n+1}) \in E$  und  $v_{n+1} = v_0$  (d.h. Anfangs- und Endknoten stimmen überein).
- Ein entarteter Zyklus (v<sub>i</sub>, v<sub>i</sub>) E heißt Schlinge (von einem Knoten unmittelbar in ihn zurück).
- Ein Graph heißt zyklenfrei, wenn er keinen Zyklus enthält.

### Beispiel:



— (2, 3, 5, 6, 2) ist ein Zyklus.





## Zusammenhängender Graph



- Ein gerichteter Graph G = (V,E) heißt zusammenhängend, wenn es für je zwei Knoten  $v_1, v_2 \in V$  mindestens einen gerichteten Weg zwischen ihnen in G gibt.
- Der Graph heißt streng zusammenhängend, wenn es für je zwei Knoten  $v_1, v_2 \in V$  einen Weg von  $v_1$  nach  $v_2$  und umgekehrt gibt (d.h. jeder Knoten kann von jedem anderen aus erreicht werden).







# Zusammenhängender Graph (2)

- Ergänzung: Ein ungerichteter Graph heißt zusammenhängend, wenn es für je zwei Knoten  $v_1, v_2 \in V$  mindestens einen ungerichteten Weg zwischen ihnen gibt.
- Beispiel:



zusammenhängend

nicht zusammenhängend



## **Gerichteter Baum**



Sei B = (V,E) ein gerichteter Graph. B heißt baumartig oder kurz Baum (engl.: tree), wenn gilt:

- B ist zusammenhängend und zyklenfrei.
- Es gibt genau einen Knoten v<sub>w</sub> ∈ V ,
   in den keine Kante mündet. Dieser
   Knoten heißt Wurzel des Baumes.
- Von der Wurzel  $v_w$  des Baumes gibt es zu jedem anderen Knoten v ∈ V,
    $v ≠ v_w$  genau einen gerichteten Weg.
- Ein Knoten v heißt Blatt oder Endknoten, wenn er keine ausgehende Kante besitzt, d.h. wenn kein v' existiert mit (v,v') ∈ E.

#### Beispiel:

$$B = (V,E)$$

$$V = \{1,2,3,4,5,6,7\}$$

$$E = \{ (1,2), (1,3), (3,4), (3,5), (3,6), (6,7) \}$$



Die Knoten 2, 4, 5 und 7 sind die Blätter von B.



# **Gerichteter Baum (2)**



- Die Knoten  $v' \in V$ , die von einem Knoten v durch eine einzige Kante  $(v,v') \in E$  erreicht werden, heißen Söhne oder Kinder von v (umgekehrt Vater).
- Die Gesamtheit aller von v (auch über Zwischenknoten) erreichbaren Knoten heißen die Nachfahren von v. Diese bilden wiederum einen Baum, für den v die Wurzel ist. Dieser Baum heißt auch der von v aufgespannte Unterbaum.
- Die Knoten auf dem Weg von der Wurzel bis vor v heißen die Vorfahren von v.



- Die Knoten 2 und 3 sind die Söhne von 1.
- 4, 5, 6, 7 sind die Nachfahren von 3.
- 1 und 3 sind die Vorfahren von 5.



## Binärer Baum



Sei B = (V,E) ein gerichteter Baum. B heißt binärer Baum oder Binärbaum, wenn jeder Knoten höchstens zwei Söhne hat und zwischen dem linken Unterbaum und dem rechten Unterbaum unterschieden wird.

• Beispiel: Arithmetischer Ausdruck (a+b)\* $c-d/\sqrt{e}$ 



Operanden sind Blätter

- Im Baum werden keine Klammern benötigt
- vgl. Eingabe bei Taschenrechnern ("Umgekehrte Polnische Notation", etwa bei HP-Modellen)



## 2.6 Algorithmen

- In diesem Abschnitt soll ein weiterer Aspekt von Informatik angerissen werden:
  - "Informatik ist die Wissenschaft von der systematischen <u>Verarbeitung</u> von Information" (vgl. Kap.1).
- Die automatisierte Verarbeitung verlangt, dass die Verarbeitungsvorschrift
  - in ihrer Bedeutung exakt festgelegt ist,
  - eine geeignete Repräsentation in einer formalen Sprache oder einer graphischen Darstellungsform besitzt
  - und letztlich durch einen Prozessor eines Rechensystems ausführbar ist.
- Der in der Informatik verwendete Begriff für derartige Verarbeitungsvorschriften ist der des Algorithmus.



- In der Theoretischen Informatik
  - Algorithmus-Begriff wird exakt über math. Konzepte eingeführt
  - z.B. Markov-Algorithmen, Turing-Maschinen.
- Hier: Intuitiver Algorithmus-Begriff
  - Konkrete Algorithmen (z.B. für Sortierprobleme unter Nutzung bestimmter Datenstrukturen) werden in der Vorlesung "Algorithmen und Datenstrukturen" im 2. Fachsemester behandelt.



- Herkunft des Begriffs Algorithmus (vgl. Kap.1):
  - Rechenbuch von Muhammed ibn Musa Al-Chwarizmi
  - ca. 1750 in Zusammenhang mit den vier Grundrechenarten benutzt
  - Ab Mitte dieses Jahrhunderts zur Bezeichnung einer allgemeinen Handlungs- und Bearbeitungsvorschrift
- Nicht-präzise Verarbeitungsvorschriften aus dem täglichen Leben:
  - Kochrezept
  - Strick- und H\u00e4kelmuster
  - Bedienungsanleitung / Gebrauchsanweisung



# **Intuitiver Algorithmus-Begriff**



Ein *Algorithmus* ist ein Verfahren mit einer *präzisen* (d.h. in einer genau festgelegten Sprache abgefassten) *endlichen* Beschreibung unter Verwendung *effektiver* (d.h. tatsächlich ausführbarer) elementarer Verarbeitungsschritte zur Lösung einer Klasse gleichartiger Probleme.

#### Anmerkungen:

- Unterscheidung zwischen dem Algorithmus und seiner Beschreibung (d.h. Repräsentation).
- Das aus einer Klasse speziell zu bearbeitende Problem wird durch Eingabe-Parameter bestimmt.
- Algorithmen liefern für Eingaben i.d.R. Resultate als Ausgaben.
   Algorithmus entspricht in diesem Sinne einer partiellen Abbildung.
- Zur Lösung einer Problemklasse gibt es i.d.R. verschiedene Algorithmen.
- Abhängig von den zur Verfügung stehenden elementaren Aktionen können Algorithmen zur Lösung derselben Problemklasse sehr unterschiedlich ausfallen.



- Unabhängig von der Beschreibungsform ist es bei Algorithmen wichtig, die folgenden Aspekte zu <u>unterscheiden</u>:
  - die <u>Aufgabenstellung</u>, d.h. die zu lösende Problemklasse.
  - Die <u>Art und Weise</u>, wie die Aufgabe bewältigt wird, unterschieden nach
    - den elementaren Verarbeitungsschritten, die zur Verfügung stehen,
    - der Beschreibung der Auswahl der einzelnen auszuführenden Schritte.



## Eigenschaften von Algorithmen

Merkmale eines Algorithmus zu seiner Beurteilung



20.11.2020

Ein Algorithmus heißt für eine Eingabe

endet stets nach endlich vielen Schritten terminierend

deterministisch: keine Freiheit in der Auswahl der

Verarbeitungsschritte

determiniert Resultat/Endzustand des Algorithmus eindeutig

bestimmt

im Endzustand liegt eine Lösung des korrekt.

Problems vor

sequenziell: **Folge von Verarbeitungsschritten** 

gewisse Verarbeitungsschritte werden parallel:

nebeneinander ausgeführt

Ein Algorithmus heißt insgesamt terminierend (deterministisch, determiniert, korrekt, sequenziell), wenn der Algorithmus diese Eigenschaft für jede zulässige Eingabe besitzt.

# **\*** Beispiel

- Euklids Algorithmus zur Berechnung des größten gemeinsamen Teilers (ggT).
- Aufgabenstellung: Gegeben seien zwei ganze Zahlen a und b mit a>0 und b>0. Gesucht wird der größte gemeinsame Teiler ggT(a,b) von a und b.
- Algorithmus für ggT(a,b) nach Euklid:
  - (1) falls a=b, dann ist ggT(a,b) = a;
  - (2) falls a < b, dann wende den Algorithmus ggT an auf (a,b-a).
  - (3) falls b < a, dann wende den Algorithmus ggT an auf (a-b,b).

#### Anmerkungen:

- arithm. Operation "-" und Vergleichsoperationen "<" und "=" werden als die elementaren Verarbeitungsschritte angenommen.</li>
- Lässt man die Einschränkungen a>0 und b>0 weg, so erhält man einen Algorithmus, der für ungleiche negative Zahlen nicht terminiert.
- Der Algorithmus ist
  - sequenziell
  - deterministisch (damit auch determiniert, Umkehrung gilt nicht!)
  - korrekt.



- Klassische Elemente in der Beschreibung von Algorithmen sind:
  - Ausführung elementarer Schritte
  - Fallunterscheidung über Bedingungen
  - Wiederholung und Rekursion
- Diese Elemente treten in ähnlicher Form in allen Systemen zur Repräsentierung von Algorithmen auf.
- Sie bilden auch die Grundlage jeder Programmierausbildung (vgl. Vorlesung OOSE).



# Güte von Algorithmen

 Beim Vergleich von Algorithmen interessieren nicht nur die o.a. Eigenschaften, vielmehr sind auch <u>Maße (Vergleichsmaßstäbe)</u> <u>für ihre Effizienz</u> gefragt.



- Unter der *Komplexität* eines Algorithmus versteht man den Aufwand in Abhängigkeit vom Anfangszustand, der durch die Ausführung des Algorithmus entsteht, gemessen in
  - Speicherbedarf zur Speicherung von internen Zuständen usw.
  - Zeitbedarf, gemessen in der Anzahl der benötigten Schritte



# **Güte von Algorithmen (2)**

I.d.R. besteht Zielkonflikt zw. Speicherbedarf und Zeitbedarf:



 Eine ausführlichere Behandlung der Komplexität von Algorithmen erfolgt in den Vorlesungen "Algorithmen und Datenstrukturen (ADS)" sowie "Automatentheorie und Formale Sprachen (AFS)"



## Repräsentierung von Algorithmen

- Die Beschreibung eines Algorithmus erfolgt in einer Sprache. Beispiele sind etwa:
  - natürliche Sprache (Kochrezept: "Man nehme ...")
  - halbformale Sprache
     (Strickmuster: \* 2 re, 2 li; ab \* wdh. bis Ende)
  - mathematische Formeln ( $f(x) = 3x^2 + 7x + 5$ )
  - Graphen
    - z.B. Straßenkarte für eine Zielanfahrt,
    - elektrischer Schaltplan,
    - Unified Modeling Language UML, (vgl. Vorlesung Softwaretechnik).



# Repräsentierung von Algorithmen (2)

## • Weitere Beispiele:

- Programmiersprachen verschiedener Abstraktionsebenen und Anwendungsbereiche (vgl. Vorlesung OOSE)
  - programmierbare Taschenrechner,
  - Maschinensprache
  - Assembler,
  - **C/C++**, Java, Ruby, ... (Universelle Programmiersprachen)
  - **APL** (Mathematik),
  - **"XSLT, XQuery (Auszeichnungssprachen)**
  - \*Structured Query Language (SQL, für Datenbanken).
- Hardware-Beschreibungssprachen (vgl. Vorlesung Rechnerorganisation), z.B.
  - **"VHDL** (Beschreibung von Verfahren, die in Hardware ablaufen)



## Programmiersprachen, Programme

 Für die Informatik sind nur Sprachen interessant, die eine exakte Festlegung der Algorithmen erlauben, da nur so eine maschinelle Verarbeitung erfolgen kann.



- **Syntax** einer Sprache: definiert die <u>zulässigen Anordnungen der</u> Sprachelemente auf der Ebene der Repräsentation.
- Semantik einer Sprache: definiert eine Interpretation und legt fest, wie die Sprachelemente in Hinblick auf das Problemlösungsverfahren zu interpretieren sind.
- Programmiersprache: eine formale Sprache zur Repräsentation von Algorithmen. Ein in einer solchen Programmiersprache beschriebener Algorithmus heißt Programm.



# **Ausführung eines Programms**



**Prozessor**: eine ein Programm ausführende Instanz

**Prozess**: Ausführung eines Programms für ein konkretes Problem

- Vorgehensweise: Prozessor liest die Repräsentation des Programms, interpretiert diese in Hinblick auf die Problemlösung.
   Er führt die darin vorgesehenen elementaren Aktionen aus.
- Die Ausführung paralleler Algorithmen führt zu *nebenläufigen Prozessen*.



## **Anmerkungen**

- Nur wenige Programmiersprachen bieten ein Konzept für Parallelität.
- Nebenläufigkeit ("Quasiparallelität") wird detailliert in der Vorlesung Betriebssysteme (3. Semester) besprochen.
- Betriebssysteme unterstützen mit ihrem Prozesskonzept die nebenläufige Ausführung von Programmen (bei Vorhandensein mehrerer Prozessoren bzw. Prozessorkerne in einem Rechensystem findet die Ausführung tatsächlich parallel statt).



### Programme verschiedener Abstraktionsebenen

- Algorithmen sind auf verschiedenen Abstraktionsebenen definierbar. Diese gehen einher mit dem angenommenen Vorrat an elementaren Aktionen.
- Unterschieden mindestens: Maschinenebene und Anwendungsprogrammebene.
- Übersetzung von Programmen zwischen verschiedenen Abstraktionsebenen:
  - Compiler
  - Interpreter

#### Beispiel:





### Abstraktionsebenen in Anwendungsprogrammen

- Moderne Programmiersprachen (wie C++, Java, Smalltalk, Ruby) unterstützen die Definition problemangepasster (benutzerdefinierter) Abstraktionsebenen.
- Damit ist es Anwendungsprogrammierern möglich, sich im Sinne von abstrakten Maschinen eigene, auf der betrachteten Ebene als elementar angesehene Objekte und Aktionen zu definieren.

#### Vorteil:

- Übergang zwischen den verschiedenen Arbeitsphasen bei der Realisierung informationstechnischer Systeme wird erleichtert (von Systemanalyse über Systementwurf zur Implementierung; vgl. Vorlesungen <u>Programmiermethoden und -techniken</u> und <u>Softwaretechnik</u>).
- Diese Abstraktionsebenen innerhalb eines Anwendungsprogramms sind auf der Maschinenebene heutiger Prozessoren nicht sichtbar.



## Beispiel: Primzahlsuche (einfacher Algorithmus)

#### a) Lösung in "C"

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
int main( int argc, char* argv[])
  int i, imax, n, n1, n2;
  n1 = atoi(argv[1]);
  n2 = atoi(argv[2]);
  for (n=n1; n<=n2; n++) {
    imax = (int) sqrt((double) n);
    for (i=2; i<=imax; i++)
        if (n%i==0) goto no_prime;
    printf("%d\n", n);
no prime:
    continue;
  return 0;
```

b) Lösung in Hochsprache "Ruby"



Der höhere Abstraktionsgrad der Hochsprache

- gestattet die Verwendung kompakter, problemangepasster Sprachelemente
- ermöglicht die Formulierung gut lesbaren und dennoch sehr kurzen Quellcodes
- führt so zu kürzeren Entwicklungszeiten
- erfordert mehr Rechner-Ressourcen zur Laufzeit