The group G is isomorphic to the group labelled by [40, 12] in the Small Groups library. Ordinary character table of $G \cong C2 \times (C5 : C4)$:

	1a	5a	4a	2a	4b	2b	10a	4c	2c	4d
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	E(4)	-1	-E(4)	1	1	E(4)	-1	-E(4)
χ_3	1	1	-1	1	-1	1	1	-1	1	-1
χ_4	1	1	-E(4)	-1	E(4)	1	1	-E(4)	-1	E(4)
χ_5	4	-1	0	0	0	4	-1	0	0	0
χ_6	1	1	1	1	1	-1	-1	-1	-1	-1
χ_7	1	1	E(4)	-1	-E(4)	-1	-1	-E(4)	1	E(4)
χ_8	1	1	-1	1	-1	-1	-1	1	-1	1
χ_9	1	1	-E(4)	-1	E(4)	-1	-1	E(4)	1	-E(4)
χ_{10}	4	-1	0	0	0	-4	1	0	0	0

Trivial source character table of $G \cong C2 \times (C5 : C4)$ at p = 2:

Vormalisers N_i		N_1		N_3		N_4	N_5	N_6	N_7
p-subgroups of G up to conjugacy in G		P_1		P_3		P_4	P_5	P_6	P_7
Representatives $n_j \in N_i$	1a	5a	1a	1a	5a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	8	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	-2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	4	4	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	-1	0	4	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	4	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	0	0	0	0	0	2
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									

```
P_1 = Group([(1)] \cong 1 \\ P_2 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30)]) \cong C2 \\ P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,21)(16,22)(19,25)(20,26)(23,29)(24,30)(27,33)(28,34)(31,36)(32,37)(35,39)(38,40)]) \cong C2 \\ P_4 = Group([(1,9)(2,13)(3,4)(5,39)(6,7)(8,40)(10,35)(11,34)(12,33)(14,38)(15,37)(16,36)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)]) \cong C2 \\ P_5 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,3)(25,24)(25,26)(29,30),(1,3)(22,37)(35,39)(38,40)]) \cong C2 \times C2 \\ P_6 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,2,4,7)(3,6,9,13)(5,16,35,31)(8,19,38,20)(10,22,39,36)(11,23,28,24)(12,32,27,15)(14,25,40,26)(17,29,34,30)(18,37,33,21)]) \cong C4 \\ P_7 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,6,4,13)(2,9,7,3)(5,22,35,36)(8,25,38,26)(10,16,39,31)(11,29,28,24)(12,32,27,15)(14,25,40,26)(17,29,34,30)(18,37,33,21))] \cong C4 \\ P_8 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,6,4,13)(2,9,7,3)(5,22,35,36)(8,25,38,26)(10,16,39,31)(11,29,28,23)(12,37,27,21)(14,19,40,20)(15,18,32,33)(17,23,34,24))] \cong C4 \\ P_8 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,6,4,13)(2,9,7,35)(22,35,36)(8,25,38,26)(10,16,39,31)(11,29,28,23)(12,37,27,21)(14,19,40,20)(15,18,32,33)(17,23,34,24))] \cong C4 \\ P_8 = Group([(1,4)(2,7)(3,9)(5,35)(6,13)(8,38)(10,39)(11,28)(12,27)(14,40)(15,32)(16,31)(17,34)(18,33)(19,20)(21,37)(22,36)(23,24)(25,26)(29,30),(1,6,4,13)(29,23)(23,24)(25,26)(29,30),(1,6,4,13)(29,23)(23,24)(25,26)(29,30),(1,6,4,13)(29,23)(2
```

 $\frac{1}{\sqrt{2}} = Group([(1, 4)(2, 7)(3, 9)(5, 35)(6, 13)(8, 38)(10, 23)(11, 28)(12, 27)(14, 40)(15, 32)(16, 31)(17, 34)(18, 33)(19, 20)(21, 37)(22, 36)(23, 24)(25, 26)(29, 30), (1, 24, 17)(3, 6), 13)(5, 10, 17)(17, 34)(18, 33)(19, 20)(21, 37)(22, 36)(23, 24)(25, 26)(29, 30), (1, 24, 17)(3, 6), 13)(5, 13)(8, 13)(8, 13)(11, 28)(12, 27)(14, 40)(15, 32)(16, 32)(17, 34)(18, 33)(19, 20)(21, 37)(22, 36)(23, 24)(25, 26)(29, 30)(12, 31)(3, 13$