计算机图形学 Computer Graphics

陈中贵

chenzhonggui@xmu.edu.cn

http://graphics.xmu.edu.cn/~zgchen

第七章第二节

光栅化

主要内容

- 线段的扫描转换算法
 - DDA算法
 - Bresenham算法
- 多边形的填充算法
 - 种子填充算法
 - 扫描线填充算法
- 走样/反走样

光栅化(rasterization)

- 光栅化也称为扫描转换(scan conversion)
 - 确定哪些像素在由顶点表示的图元内部
 - 生成片段集合
 - 一片段有位置值(像素位置)和由顶点属性值插值得到的颜色、纹理坐标和深度等其他属性
- 最终像素的颜色由片段颜色、纹理和其他顶点属性确定

一些假设

- 颜色缓冲区是一个n x m像素阵列,(0,0)对应 于左下角
- 像素可由图形系统内部函数赋颜色值: write_pixel(int ix, int iy, int value);
- · 颜色缓冲区是离散的,只讨论位于整数ix和iy 位置上的像素
 - 如果片段位置为(63.4,157.9),取(63,158)或(63.5,157.5),取决于像素中心位于整数值还是半整数值
 - 像素显示为正方形,中心在像素位置,边长为两个相邻像素间的距离
 - OpenGL的像素中心位于半整数值位置

直线段的扫描转换

- 假定线段的端点为(x₁,y₁)和(x₂,y₂),取整数值的窗口坐标
- 线段的斜率为 $m = \frac{y_2 y_1}{x_2 x_1} = \frac{\Delta y}{\Delta x}$

DDA算法

- DDA: <u>Digital Differential Analyzer 数字</u>微分分析器
 - DDA是早期用于微分方程数值仿真的机电设备
 - 直线 y = mx + h满足微分方程 dy/dx = m = $\Delta y/\Delta x = (y_2-y_1) / (x_2-x_1)$

问题

- DDA = 对于每个x画出最接近的整数y
 - 对于斜率大的直线有问题

利用对称性

- 只对 $0 \le |m| \le 1$ 的直线应用上述算法
- 对于|m|>1的直线,交换x与y的角色
 - -对于每个y,找出最接近的整数x

例子

• 例: 画直线段(0,0) →(5,2)

dx=5, dy=2, 斜率m=0.4

X	у	int(y+0.5)
0	0	0
1	0.4	0
2	0.8	1
3	1.2	1
4	1.6	2
5	2.0	2

Bresenham算法

- DDA算法中每一步需要一次浮点加法
- Bresenham算法中可以不出现任何浮点运算,是硬件和软件光栅化器的标准算法
- 只考虑0 ≤ m ≤1的情形
 - 其它情形利用对称性处理
- 如果从一个已被确定激活的像素出发,那么下一像素的可能位置只会有两种可能

候选像素

线段端点在整数值 (x_1,y_1) 和 (x_2,y_2) ,斜率 $0 \le m \le 1$, $m = \Delta y/\Delta x$, $\Delta y = y_2 - y_1$, $\Delta x = x_2 - x_1$

注意直线可能通过这 个像素的任何地方

决策变量

$$d = (x_2-x_1) (a-b) = \Delta x (a-b)$$
, d为整数 $d > 0$,采用下像素(i+1,j) $d \le 0$,采用上像素(i+1,j+1)

增量形式

• x=k处的决策变量为 $d_k = \Delta x (a_k - b_k)$,则 $d_{k+1} = d_k - 2 \Delta y$, 如果 $d_k > 0$ $d_{k+1} = d_k - 2(\Delta y - \Delta x)$,其他

$$a_{i+1}=a_i-m, b_{i+1}=b_i+m$$

$$a_{i+1}=a_i+1-m, b_{i+1}=b_i+m-1$$

决策变量d的初值

- 在 $x=x_1$ 处,a=1, b=0, $d=\Delta x>0$
- 在 $x=x_1+1$ 处,a=1-m, b=m, $d=\Delta x-2\Delta y$

- 算法优点:
 - 对每个x值,只需要进行整数加法以及符号判断
 - 可以在图形芯片上用单个指令实现

多边形的扫描转换

- 对于多边形,扫描转换就是填充
- 早期的光栅系统
 - 可以显示被填充的多边形
 - 无法实时给多边形内部每个点着以不同颜色
- 直线的光栅化算法就是Bresenham算法, 而多边形的填充算法有许多种
 - 具体选择与系统的实现框架有关

内外检测

- 对多边形内部区域的填充过程等价于判断 多边形所在平面上哪些点是内部点
 - 多边形填充是一个分类问题
- 如何区分内部与外部?
 - 对于非平面多边形,无法定义它的内部区域
 - 对于凸多边形,很容易做到
 - 对于非简单多边形,就非常困难
 - 可以采用奇偶检测的方法
 - 统计与多边形边的交点数
 - 环绕数 (winding number)

奇偶检测

- 奇偶检测(odd-even test), 也称为射线法
 - 判断多边形内-外区域的最常用方法
- 从一点p引射线,如果与多边形的交点数为偶数,则p在多边形外,否则p在多边形内
- 如果交点为顶点,需要特别处理
- 通常使用扫描线代替射线

环绕数

- 首先根据多边形的边界建立一条环路
 - 从一个顶点出发,依次遍历各边,最后回到该 顶点
- 一点的环绕数计算
 - 多边形各边按上述环路遍历绕该点的次数
 - 顺时针方向为正
 - 逆时针方向为负

- 如果环绕数不等于0 就是内部

OpenGL与凹多边形

- OpenGL只保证正确填充凸多边形
- 实际应用时由用户保证这条约定被遵守, 或者用其它软件把给定多边形剖分为凸多 边形
 - -一般结果就是三角形的集合
 - 好的剖分算法应当不生成过长或过细的三角形
 - GLU库提供了剖分函数

在帧缓冲区中的填充

- 在流水线尾部进行填充
 - 只接受凸多边形
 - 非凸多边形需要已被剖分
 - 顶点处的亮度(颜色)已经计算出来(Gouraud明 暗处理算法)
 - -与z缓冲区算法结合在一起
 - 跟踪扫描线,插值亮度
 - 增量方法的作用不大

插值

 $C_1C_2C_3$ 由glColor或顶点光照计算指定, C_4 由 C_1 和 C_3 插值得到, C_5 由 C_2 和 C_3 插值得到,红线上各点的颜色由 C_4 和 C_5 沿扫描线区间插值得到

种子填充算法

- 用Bresenham算法将多边形的边扫描转换为帧缓冲区中像素,颜色置成边/内部填充颜色(BLACK)
- · 如果已知位于多边形内部的一个种子点(WHITE)
 - ,那么可以递归填充

```
flood_fill(int x, int y)
{
    if(read_pixel(x,y) == WHITE)
    {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
    }
}
```


扫描线填充算法

- 根据奇偶检测规则,可知扫描线上有3个填充区间位于多边形的内部
 - 填充区间由扫描线与多边形的交点集合确定
 - 沿扫描线,逐区间填充
 - 每个填充区间可以独立地进行光照或深度计算

扫描线填充

- 通过逐边处理来得到扫描线与多边形的交点序列
 - 可采用增量算法来计算交点
- 进行扫描线填充时,交点首先按扫描线排序,然 后每条扫描线上按x坐标排序
 - 时间复杂度O(n log n)

通过顶点列 表生成的顶 点顺序

所期望的顺序

数据结构

• y-x算法:

- 为每条扫描线建一个桶
- 对多边形每条边,把它与各扫描线的交点放入对应的桶
- 在桶内,按x坐标值对 交点进行插入排序

奇异情形

- 可以把大多数的多边形填充算法 拓展到对其他封闭曲线的填充
 - 必要的细节考虑
- 即使对于多边形,对于某些算法也需要仔细考虑
- 对奇偶检测方法,顶点可能正好位于扫描线上
 - (a) 顶点处交点计0次或2次
 - (b) 顶点处交点计1次

走样

- 线段和多边形边线光栅化的结果呈锯齿状
- 走样(aliasing)源于把连续表示的对象(无限分辨率)转换为离散的采样近似表示(有限分辨率)
- 走样误差是由帧缓冲区的3个问题所引起
 - 帧缓冲区的像素数固定,近似一条线段只有有限的模式
 - 多条不同的连续线段可能被相同的像素序列来近似表示
 - 像素位置固定于均匀分布栅格上
 - 不能把像素放于任意位置
 - 像素的大小和形状固定

线段的走样

• 理想的线段应当是一个像素宽,但不能直接绘制,必须离散成正方形像素序列

• 对于每个x选择最佳的y(或者反过来)会导致 走样的光栅化直线

面积平均反走样

• 对每个x,根据理想直线所覆盖的面积对多个像素着色

放大显示的结果

多边形的走样

- 对于多边形,走样问题可能非常严重
 - -边的锯齿形状
 - 小多边形被忽略
 - 需要进行颜色组合,从而可能一个多边形并不完全确定一个像素的颜色

三个多边形对该像素的颜色都应该有贡献

时间域走样

- 当生成图像序列,例如动画时,除了之前讨论的空间域走样,还要考虑时间域走样
 - 如果对象的投影非常小,那么移动过程中可能不会在投影平面成像,从而观察者会看到该对象在屏幕上闪烁

