Optimisation de l'utilisation des challenges au tennis grâce au Processus de Décision Markovien (PDM)

YAHAYA A.K Saad

Juillet 2024

CK081M

YAHAYA A.K Saad Juillet 2024

2 / 23

- Introduction
- 2 Théorie des PDM
- Modélisation
- A Résultats
- 6 Conclusion

YAHAYA A.K Saad Juillet 2024
 Introduction
 Théorie des PDM
 Modélisation
 Résultats
 Conclusion

 ●000
 0000000
 00000
 000
 000

Introduction

Figure – 1. Joueuse qui conteste l'arbitre

YAHAYA A.K Saad Juillet 2024 3 / 23

 Introduction
 Théorie des PDM
 Modélisation
 Résultats
 Conclusion

 0 ● 00
 0000000
 00000
 000
 00

Introduction

Figure – 2. Système Hawkeye

YAHAYA A.K Saad Juillet 2024 4 / 23

Le dilemme

On appelle **challenge** le nombre de chances de contester à tort un arbitre. Un joueur n'a qu'un maximum de 3 challenges.

- Un joueur trop **passif** risque de laisser beaucoup de bonnes occasions de contester correctement
- Un joueur trop **agressif** risque d'épuiser ses 3 chances trop tôt et d'être contraint de subir toute décision de l'arbitre le reste du jeu

YAHAYA A.K Saad Juillet 2024

Problématique

Introduction 000

Comment optimiser l'utilisation des challenges au tennis?

YAHAYA A.K Saad Juillet 2024 6 / 23

Théorie des PDM

C'est quoi un PDM?

Un PDM est un quadruplet $\{S, A, P, R\}$ définissant :

- ullet ${\cal S}$ l'ensemble des états
- \bullet \mathcal{A} l'ensemble des actions
- ullet $\mathcal{P}: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o [0,1]$ la fonction de transition
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ la fonction récompense

Politique π

C'est la fonction $\pi: \mathcal{S} \times \mathcal{A} \to [0;1]$ qui détermine le comportement(choix d'actions) de l'agent dans son environnement.

YAHAYA A.K Saad Juillet 2024

8 / 23

Théorie des PDM

Propriété de Markov : "Le futur ne dépend que du présent"

 $\mathsf{Soit}(s_t)_{t\in\mathbb{N}}$ une suite d'états d'un système markovien, alors :

$$\forall t \in \mathbb{N}, \ \mathbb{P}\left(s_{t+1}|s_t,...,s_0\right) = \mathbb{P}\left(s_{t+1}|s_t\right)$$

Ainsi, $\forall (s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$

$$\mathcal{P}(s, a, s') = \mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a)$$

YAHAYA A.K Saad Juillet 2024

troduction Théorie des PDM Modélisation Résultats Conclusion
1000 00●0000 0000 000 00

Théorie des PDM

Figure – 3. Modèle d'apprentissage par renforcement

YAHAYA A.K Saad Juillet 2024 9 / 23

Théorie des PDM

Le Gain futur

Pour une politique $\pi, \forall t \in \mathbb{N}$, on note \mathcal{R}_t le total de récompenses amorties que peut espérer l'agent à partir du temps t:

$$\mathcal{R}_t = \sum_{k=0}^{+\infty} \gamma^k r_{t+k+1} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$
 (1)

 $\gamma \in [0,1]$: le facteur d'amortissement r_t : la récompense obtenue au temps t suivant une politique π

YAHAYA A.K Saad Juillet 2024

Théorie des PDM

fonction valeur d'états v_{π}

Pour une politique π , on définie :

$$v_{\pi}: \mathcal{S} \to \mathbb{R}$$
 (2)

$$s \to \mathbb{E}(\mathcal{R}_t | s_t = s)$$

Résoudre un PDM revient dès lors à déterminer la politique qui maximise la fonction valeur d'états

politique optimale π^*

C'est la politique qui vérifie :

$$\forall s \in \mathcal{S}, v_{\pi^*}(s) = v^*(s) = \max_{s} v_{\pi}(s)$$
(3)

YAHAYA A K Saad Juillet 2024 11 / 23

Théorie de PDM

Equation de Bellman

La fonction valeur d'états peut s'écrire récursivement :

$$\forall s \in \mathcal{S}, v_{\pi}(s) = \sum_{a \in A} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma v_{\pi}(s'))$$
 (4)

Equation d'optimalité de Bellman

Dans ce cas, elle s'écrit :

$$\forall s \in \mathcal{S}, v^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma v^*(s'))$$
 (5)

YAHAYA A.K Saad Juillet 2024 12 / 23

13 / 23

14 fin

Algorithme 1 : Policy iteration

```
Entrées : \pi quelconque
   Sorties : \pi^*
1 V(s) = 0 \ \forall s \in S:
2 repeat
       pour s \in S faire
4 v_{\pi}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma v_{\pi}(s'))
         fin
6 until V ne change presque plus;
7 pour s \in \mathcal{S} faire
8 \pi(s) \leftarrow \arg\max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma v_{\pi}(s'))
9 fin
10 si \pi ne change plus alors
         return v \approx v^*, \pi \approx \pi^*
11
12 sinon
         revenir à la ligne 2
13
```

YAHAYA A K Saad Juillet 2024

Hypothèses

- le ieu oppose le joueur A et B
- 2 le score d'un joueur varie de 0 a 4
- le premier joueur à avoir le score 4 gagne le jeu
- le joueur A peut contester tant qu'il ne compte pas encore 3 échecs
- Si A conteste avec succès, il gagne le point joué, sinon B gagne le point
- on ne prend pas en compte les challenges de B
- **©** Perception=Probabilité : Si le joueur pense qu'il a une chance ϵ de contester correctement, alors la probabilité qu'il conteste correctement est ϵ

YAHAYA A.K Saad Juillet 2024 14 / 23

Modélisation

Actions

- Contester
- Ne pas contester

Récompense

On récompense l'agent à la fin du jeu :

- Si le joueur gagne le jeu, sa récompense est +100
- S'il perd le jeu, sa récompense est -100

YAHAYA A.K Saad Juillet 2024 15 / 23

ntroduction Théorie des PDM **Modélisation** Résultats Conclusion 2000 000000 **00000** 000 00

Modélisation

Figure – 4. Les types d'états de A

YAHAYA A.K Saad Juillet 2024 16 / 23

17 / 23

Modélisation

Algorithme 2 : Génération de ${\mathcal S}$

```
Sorties : S = []
1 S = []
2 Types = [E1, E2, E3]
3 pour scoreA de 0 a 4 faire
     pour scoreB de 0 a 4 faire
         pour nbreChlg de 0 a 3 faire
5
             pour Ei dans Types faire
                                          si scoreB ≥ nbre_Chlge_ratés et scoreA + scoreB < 8 alors
                    s = ( (scoreA, scoreB), nbreChlge, Ei )
                    Ajouter s a S
10
                 fin
11
             fin
12
         fin
13
     fin
15 fin
```

 $card(\mathcal{S})=146$

YAHAYA A.K Saad Juillet 2024

18 / 23

16 **return** p

Algorithme 3 : Définition de $\mathcal{P}(s, a, s_prime)$

```
Entrées : s, a, s_prime
  Sorties: \mathcal{P}(s, a, s\_prime)
pE1 = 0.3, pE2 = 0.2, b = 0.8, pE3 = 0.5, c = 0.2
2 Calculer \DeltaScore et \DeltanbreChalge
3 si A a perdu le point joué alors
       si la transition n'est pas possible (Ex : s est du type E1) alors
           return p = 0
       sinon
           p' = f(a, type d'état Ei de s, b, c)
       fin
9 fin
10 si A a perdu le point joué alors
      ... Se déduit par symétrie
11
12 fin
13 si s_prime est du type Ei alors
14
      p = p' * pEi
15 fin
```

YAHAYA A.K Saad Juillet 2024

Modélisation

Figure – 5. Actions optimales dans un état de forte perception; E2

YAHAYA A.K Saad Juillet 2024 19 / 23

Figure – 6. Actions optimales dans un état de faible perception; E3

YAHAYA A.K Saad Juillet 2024

20 / 23

Figure – 7. Actions optimales dans un état de faible perception; E3

YAHAYA A.K Saad Juillet 2024

21 / 23

Théorie des PDM Modélisation Résultats **Conclusion**OOOOOOO OOO OOO ●O

Conclusion

- Le joueur doit toujours contester s'il pense qu'il a une très grande chance d'avoir raison
- Plus la perception de contester correctement est grande, mieux il vaut de contester
- Moins le joueur a des challenges, plus il doit être prudent et passif
- Plus l'adversaire se rapproche de la victoire, plus il devient necessaire de contester

YAHAYA A.K Saad Juillet 2024 22 / 23

Thank you!

YAHAYA A.K Saad

YAHAYA A.K Saad Juillet 2024 23 / 23

Annexe

- 6 Le vrai tennis
 - Le système de comptage de point
 - Statistiques sur les challenges
- Démonstrations
 - Equation de Bellman
- 8 Les codes python
 - Policy iteration
 - Création de l'environnement
 - Les graphes

FAQ:

- D'où viennent les 3 types d'états : E1, E2, E3?
- Démontrer les équations de Bellman.
- Comment les valeurs des probabilités pE1 = 0.3, pE2 = 0.2, b = 0.8, pE3 = 0.5, c = 0.2 affectent-elles le résultat final?
- Quelles sont les fonctions du facteur d'amortissement γ ?

Le scoring

- Point : C'est l'unité de base au tennis.
 - 0 ← Love
 - 1 ← 15
 - 2 ← 30
 - 3 ← 40
 - 4 \leftarrow jeu .
- Jeu : Pour gagner un jeu, il faut inscrire au moins 4 points.
 A 4-4, c'est le Deuce. Pour remporter le jeu, le joueur doit gagner 4 points consécutifs.
- **Set** : Le premier joueur a gagner **6** jeux avec une marge d'au moins **2** gagne le set. A **6-6**, un jeu décisif (**tiebreak**) est joué : le premeir a gagner **7** points avec marge d'au moins **2** remporte le set.
- Match : Il est généralement composé de 3 sets. Le premier à gagner 2 sets remporte le match.

Stats

	Australian Open		Wimbledon	
	Men's	Women's	Men's	Women's
Total number of challenges	436	194	428	191
Number of correct challenges	137	68	120	49
Number of incorrect challenges	299	126	308	142
Percentage overturned	31.42%	35.05%	28.04%	25.65%
Total points played	13726	8317	14906	8811

 $Figure-8. \ Singles \ challenge \ summary: Australian \ Open \ and \ Wimbledon \ 2012.$

	Men's	Women's
Total Number of Challenges	260	140
Number of Correct Challenges	92	44
Number of Incorrect Challenges	168	96
Percentage Overturned	35.38%	31.43%
Avg. Challenges per Match	5.65	4.24

Figure - 9. Singles challenge summary Wimbledon 2010

Equation de Belman

$$v_{\pi}(s) = \mathbb{E}(\mathcal{R}_t|s_t = s) = \mathbb{E}(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s) = \mathbb{E}(r_{t+1} + \gamma \mathcal{R}_{t+1}|s_t = s)$$

Or

$$\mathbb{E}(r_{t+1}) = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') \mathcal{R}(s, a, s')$$
$$\mathbb{E}(\mathcal{R}_{t+1} | s_t = s) = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') v_{\pi}(s')$$

fonction de valeur d'état

Les fonctions de valeur d'états peuvent s'ecrire plus s :

$$\begin{aligned} \forall (s, a) \in \mathcal{S} \times \mathcal{A}, q_{\pi}(s, a) &= \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma v_{\pi}) \\ \forall s \in \mathcal{S}, v_{\pi}(s) &= \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} q_{\pi}(s, a) \end{aligned}$$

Nouvelles expressions des equations optimales

Les equations de Bellman optimales deviennent :

$$\forall s \in \mathcal{S}, v^*(s) = \max_{a \in \mathcal{A}} q^*(s, a)$$

$$\forall (s, a) \in \mathcal{S} \times \mathcal{A}, q^*(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{P}(s, a, s') (\mathcal{R}(s, a, s') + \gamma \max_{a' \in \mathcal{A}} q^*(s, a'))$$

fonction de valeur d'état d'action

Policy iteration

Initialisation

```
1 env=Environnement()
2 pi = (state: [0.5,0.5] for state in States)
3 V = (state: 0 for state in States)
4
5 gamma = 0.99 #facteur de remise du return, j'aurai pu prendre gamma = 1 car States est fini
6 epsilon = 0.00001 #seuil de similitude requis pour stopper les updates
```

Policy iteration

```
1 def evaluate policy(env, pi, V, gamma, epsilon):
       V updated = copy.deepcopy(V)
       improved - True
       while True:
           delta = 0
           for s in States:
               V new = 0
 9
               nA = len(env.P[s])
10
11
               for a in range(nA):
                   prob a = pi[s][a]
                   q_s_a = compute_q_value_for_s_a(env, V_updated, s, a, gamma)
14
                   V new += prob a * q s a
15
17
               delta = max(delta, np.abs(V new - V updated[s]))
               V updated[s] = V new
18
20
           if(delta < epsilon):
21
               break
22
23
       if(np.array equal(V, V updated)):
24
           improved = False
25
26
       return V updated, improved
28 def improve policy(env, pi, V, gamma):
       for s in States:
29
30
           nA = len(env.P[s])
31
           q_s = np.zeros([nA, 1])
32
           for a in range(nA):
33
               q_s[a] = compute_q_value_for_s_a(env, V, s, a, gamma)
34
35
           best a = np.argmax(q s)
36
           pi[s] = np.eye(nA)[best_a]
37
38
       return pi
```

```
1 i = 0
2 while True:
3 i**=1

4

5 V, improved = evaluate_policy(env, pi, V, gamma, epsilon)
6 pi = improve_policy(env, pi, V, gamma)

7

8 if(improved == False):
9 print("Terminé après " + str(i) + " itérations.")

9 break
```

Terminé après 5 itérations.

Création des états

Les états

```
1 States=[]
 2 Categories=['E1', 'E2', 'E3'] # les diff situation du joueur, tout comme leur probabilité d'occurence pE1, pE2, pE3
 4 for i in range(5):
       for j in range(5):
           for q in range(4):
               for Eperception in Categories:
                   if i >= 3-g and i+i < 8: # le joueur adverse a moins le nbre de challenge raté comme score, et le premier joueur a avoir 4 pts rempor
                       # done=Fal.se
                       if i==4 or i==4 : # critere de fin de ieu
                           # done = True
14
                           Eperception=None # pas besoin
                       s= ((i, j), q, Eperception)
16
                       if s not in States: # enelever les repetitions
17
                           States.append(s)
18
```

L'environnement

```
class Environmement():
       def init (self, pE1=0.3 , pE2=0.2, b=0.8, pE3=0.5, c=0.2):
           def proba( s, a, s prime):
                ### 1e etape: calcul de proba pour passer au "score" de s prime ###
                if s[2] == None : # L Eperception None est celle des etats terminaux
                   return 0
8
9
               deltaS = [s_prime[\theta][\theta] - s[\theta][\theta], s_prime[\theta][1] - s[\theta][1]] \# difference \ entre \ le \ score \ d'arriv\'e \ et \ d\'epart
10
                deltaNbreChige = s prime[1] - s[1] # différence entre le nbr de challenge d'arrivé et départ
                if deltaS == [0,1]: # A perd le ieu
14
                    if s[2] == 'E1' : # E1 est un etat gagant à coup sûr
                        p = 0
                   elif a == 0 : # A n'a pas fait un challenge
18
                        if deltaNbreChlge != 0 : # nbreChlge diminue sans que A ait contesté, ABSURDE
                            p = 0
20
                        else:
                            p = 1 # A perd a coup sûr
                   else: # A a fait un challenge
24
                        if deltaNbreChige == 0 : # A a raté un challenge et nbreChige = cst, ABSURDE
26
                            p = 0
                        elif s[2] -- 'E2' :
28
                            p = 1-b
                        elif s[2] == 'E3' :
30
                            p = 1-c
31
32
               elif deltaS == [1,0] :# A gagne le jeu
33
34
                   if s[2] == 'E1' : # E1 est un etat gagant à coup sûr
35
36
                   elif a == 0 : # A n'a pas fait un challenge
                        p = 0
38
                   else:
39
                        if s[2] -- 'E2':
40
                            p = b
41
                        elif s[2] == 'E3':
42
                            p = c
```

p = c

p = 0

42

43 44

45

else: # transition impossible (d'apres nos hypotheses, sinon, possible dans la réalité) # pas sur qu il y ait d autre, juste précaution

```
46
47
                    ### 2e etape: multiplication par la proba de tomber dans l Eperception de s prime ###
48
49
               if s_prime[2] == 'E1':# on met a jour p pour prendre en compte 'la Eperception' du prochain etat
50
                    p*=pE1
51
               elif s prime[2] == 'E2':
                    p*=pE2
               elif s prime[2] == 'E3':
54
                   p*=pE3
               # sinon, le Eperception est None, donc etat terminal
56
               return p
58
59
               ### FIN de la def de Proba ###
60
61
           ### Remplissage du dictionaire de transition ###
           P = \{\}
64
           for s in States:
               i, j = s[0][0], s[0][1] # le score
66
               q = s[1] # challenges restants
67
               Eperception = s[2]
               nA = 2 # nombres d'actions disponibles
68
70
               dynamics s = {} # le dico qui contiendra les infos de transition de chaque etat s
               ### Remplissage de dynamics s ###
74
               if q == 0 or Eperception == 'E1' : # A ne peut plus challenger ou bien il est dans un etat gagnant
                    nA = 1
76
               for a in range(nA):
                    margeQ1 = 0 # intret dans le boucle ci apres
                    marge02 = 2
80
                    if a == 0:
81
                       margeO2=1
82
                    else:
83
                       margeQ1=1
85
                    s prime list = [] # succeseurs de s
```

84 85

86 87

88 89

90

91 92

93

94

95

96

97

98

99

100

101 102

103

104

105

106

107

108

109

110

114

115

116

118

120

122

124 125 6-4- -

```
s prime list = [] # succeseurs de s
        if i < 4 and i < 4: # les etats terminaux n'ont pas de successeurs
            for t in range(margeQ1,margeQ2): # le petit delta q, il doit etre nul si a==0
                for Eperception in Categories:
                    if i+1 < 4:
                        s prime1 = ((i+1, j), q, Eperception) # on ne change pas q car A gagne dans ici
                        done1 = False
                        reward1 = 0
                   elif i+1 == 4:
                        s prime1 = ((i+1, j), q, None)
                        reward1 = 100 # etat terminal gagnant
                       done1 = True
                   p1 = proba(s, a, s prime1)
                    if j+1 < 4:
                        s prime2 = ((i, j+1), q-t, Eperception)
                       done2 = False
                       reward2 = 0
                    elif j+1 == 4:
                        s prime2 = ((i, j+1), q-t, None)
                       done2 = True
                        reward2 = -100
                   p2 = proba(s, a, s prime2)
                    if (p1, s prime1, reward1, done1) not in s prime list: # il y a repetition avec les Eperception None
                        s prime list.append((p1, s prime1, reward1, done1))
                    if(p2, s prime2, reward2, done2) not in s prime list:
                        s_prime_list.append((p2, s_prime2, reward2, done2))
        dynamics_s.update({a:s_prime_list}) # attention, les etats terminaux n ont pas de succeseur
    ### FIN remplissage de dynamics s ###
    P.update({s: dynamics s})
### FIN Remplissage du dictionaire de transition ###
self.P = P
```

Les graphes

Les types d'états

```
import matplotlib.pyplot as plt

import matplotlib.pyplot as plt

name = ['E1 : A gagne a coup sûr', 'E2 : A perd, forte Eperception de remporter un chlge', 'E3 : A perd, faible Eperception de remporter un chlge']

data = [0.3, 0.2, 0.5]

explode=(0.04, 0.02, 0.02)

plt.pie(data, explode=explode, labels=name, autopct='%1.1f%%', startangle=180, shadow=False, colors=['g','orange','red'])

plt.show()

plt.show()
```

le résultat

41 plt.show()

```
1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 import seaborn as sns
 5 # Les données fournies
 6 data = E3
 8 # Préparer les combinaisons de score et le nombre de challenges restants
9 scores = sorted(set(key[0] for key in data.keys()))
10 challenges = sorted(set(key[1] for key in data.keys()))
12 # Créer une matrice pour stocker les décisions
13 decision matrix = np.full((len(challenges), len(scores)), -1) # Initialiser avec -1 pour les valeurs manquantes
14
15 # Remplir la matrice de décision
16 for key, value in data.items():
       score, challenges left, - key
18
       decision = np.argmax(value) # Obtenir l'indice de la décision (0 ou 1)
       score idx = scores.index(score)
20
       challenges idx = challenges.index(challenges left)
       decision matrix[challenges idx, score idx] = decision
23 # Créer les étiquettes pour les axes
24 score labels = [f"{s[0]}-{s[1]}" for s in scores]
26 # Définir la palette de couleurs : gris pour les manquants, vert pour challenger (1)
27 cmap = sns.color palette(["grey", "red", "green"])
28
29 # Création de La heatmap
30 plt.figure(figsize=(14, 10))
31 ax = sns.heatmap(decision matrix, annot=False, cbar=True, cmap=cmap, xticklabels=score labels, yticklabels=challenges, linewidths=.5, linecolor='blac
33 # Personnalisation de La colorbar
34 colorbar = ax.collections[0].colorbar
35 colorbar.set ticks([-1, 0, 1])
36 colorbar.set ticklabels(['Manguant', 'Non-challenger', 'Challenger'])
38 plt.xlabel('ScoreA, ScoreB')
39 plt.vlabel('Nombre de challenges restants')
40 plt.title('Décision de challenger en fonction du score et du nombre de challenges restants')
```