Separačné metódy

• distribúcia analytu medzi 2 fázy

Východzia	Konečná	
fáza	fáza	
S	1	Extrakcia
S	g	Sublimácia
1	S	Zrážanie, elektrolýza
1	g	Destilácia
g	1	GLC
1	1	Extrakcia, LLC
g	S	GSC

- slúžia na izoláciu látok z komplexných zmesí (a rôznych matríc)
- separácia zložiek zmesí je založená na rozdielnych vlastnostiach analytov (polarita, rozpustnosť, prchavosť...)
- klasifikácia:
 - o chromatografické metódy
 - rôzna distribúcia zložiek zmesi analytov medzi 2 fázy (vzájomne nemiešateľné)
 - elektroforetické (elektromigračné) metódy
 - rôzna pohyblivosť iónov v rámci 1 fázy (v el. poli)
- vyjadrenie koncentrácie analytu v 2 fázach:
 - distribučný pomer
 - koncentračný

$$D_C = \frac{(c_A)_I}{(c_A)_{II}}$$

hmotnostný

$$D_m = \frac{(m_A)_I}{(m_A)_{II}}$$

o rozdeľovacia konštanta – Nernstov rozdeľovací zákon

$$\blacksquare K_D = \frac{(a_A)_I}{(a_A)_{II}}$$

o separačný faktor

$$\bullet \quad \alpha_{A/B} = \frac{(m_A/m_B)_{II}}{(m_A/m_B)_I} = \frac{(c_A/c_B)_{II}}{(c_A/c_B)_I} = \frac{D_A}{D_B}$$

- určuje, či bola separácia úspešná
 - ak 10⁴ bola úspešná v 1 kroku
 - ak nie opakovať kontinuálne
- základné separačné metódy:
 - zrážanie
 - oddelenie zložiek zo zmesi využitím zrážacích reakcií s kvantitatívnym priebehom (separácia iónov)
 - elektrolýza
 - separácia katiónov s rôznym rozkladným napätím
 - vylúčenie zložiek na elektródach
 - destilácia
 - oddelenie zložiek z kvapalných zmesí na základe rozdielnej teploty varu

- o výmena iónov
 - použtie iónomeničov (ionexov)
 - $R H^+ + M^+ \leftrightarrow R M^+ + H^+$ (adsorpcia/desorpcia)
- extrakcia
 - spočíva v prechode separovanej zložky z tuhej alebo kvapalnej fázy do kvapaliny, ktorá je so vzorkou alebo jej roztokom nemiešateľná
- o chromatografia
 - separácia zložiek zmesi medzi stacionárnou a mobilnou fázou

Extrakcia

- separačná metóda založená na rozdielnej rozpustnosti analytov v rôznych rozpúšťadlách
- slúži na izoláciu a zakoncentrovanie analytu (úprava vzorky)
- klasifikácia:
 - o *I-I extrakcia* (LLE)
 - o s-l extrakcia
 - o extrakcia tuhou fázou (SPE)
 - o mikroextrakcia tuhou fázou (SPME)...

• s-l extrakcia

- typická pre organické zlúčeniny
- macerácia
 - nemení sa poloha ani látkové množstvo s a l fázy
- o perkolácia
 - tuhá látka je fixovaná a preteká ňou rozpúšťadlo
- o protiprúdová extrakcia
 - obe fázy sa pohybujú proti sebe

• LLE

- o charakteristická pre anorganické zlúčeniny (iónové)
- o používajú sa oddeľovacie lieviky
- o upravia sa do komplexov, iónových solvátov alebo iónových asociátov
- o používajú sa 2 vzájomne nemiešateľné kvapaliny

Chromatografia

- analytická separačná (a preparatívna) metóda na dôkaz a stanovenie anorganických, organických a iných analytov (obsah $10-10^{-7}\%$, $M_r=100-10^6$)
- princíp:
 - o separácia na základe rôznej distribúcie analytu v sytéme 2 fáz:
 - mobilnej
 - stacionárnej
- zakladateľ Cvet
- základné rozdelenie podľa skupenstva mobilnej fázy:
 - kvapalná
 - o plynná
- rozdelenie podľa spôsobu kontaktu fáz:
 - kolónová
 - o planárna

• rozdelenie chromatografických metód:

Mobilná fáza	Stacionárna fáza	Typ rovnováhy	Metóda
Plyn (GC)	Kvapalina	Rozdeľovanie	GLC
	Tuhá látka	Adsorpcia	GSC
	Tuhá látka	Sieťový efekt	Molekulové sitá
Kvapalina (LC)	Kvapalina	Rozdeľovanie	LLC
		Rozdeľovanie	PC, TLC
		Sieťový efekt	GPC
	Tuhá látka	Adsorpcia	LSC,TLC
		Iónová výmena	IEC
		Biochemická špecifická	Afinitná ch.
		reakcia	
Kvapalina	Organická fáza na	rozdeľovanie	SFC
v nadkritickom stave	tuhom povrchu		

• retencia

o zadržanie analytu v kolóne

elúcia

transport analytu cez kolónu kontinuálnym prídavkom mobilnej fázy

eluent

mobilná fáza

• efluent

- výtok z chromatografickej kolóny
- počas separácie sa zložky zmesi distribuujú do zón, ktoré sú detektorom zaznamenávané v podobe elučných kriviek (koncentrácia, čas) – chromatogramy

chromatografický záznam

- o retenčný (elučný) čas t_R
 - čas od nástreku vzorky až po vrchol elučnej krivky
- mŕtvy elučný čas t_M
 - elučný čas zlúčeniny, ktorá v kolóne nepodlieha retencii
- redukovaný elučný čas

- elučný objem
 - objem mobilnej fázy, ktorá prešla cez kolónu za retenčný čas analytu
- mŕtvy a redukovaný elučný objem
 - objemy zodpovedajúce príslušným časom
 - prepočet času na objem mobilnej fázy využíva znalosť objemového prietoku
 - $V = t. F_M F_M \text{prietok mobilnej fázy}$

o rozlíšenie

- odseparovanie na základnú čiaru, t.j. medzera medzi susednými píkmi
- vyjadruje, do akej miery sú odseparované 2 zložky, ktoré podliehajú elúcii
- pre 2 látky 1 a 2:
 - $R_{1,2} = \frac{2.(V_{R,1} V_{R,2})}{w_1 + w_2}$ w šírka chromatografického píku
 - ideálne R=1,5; optimálne stačí aj R=1

o retenčný faktor

- pomer redukovaného elučného času a mŕtveho elučného času (optimum 2-10)

o účinnosť separácie

- výškový ekvivalent teoretickej priehradky H
 - časť kolóny, v ktorej dôjde k 1 rovnovážnemu rozdeleniu analytu medzi stacionárnu a mobilnú fázu
 - $H = \frac{L}{N}$ L dĺžka kolóny; N počet teoretických priehradiek

$$\circ N = 16. \left(\frac{t_R}{w}\right)^2$$

- čím vyššie N, tým je separácia účinnejšia a nižšie H
- o van Deemterova rovnica H=f(U) (U prietoková rýchlosť)
 - popisuje neideálne správanie zložiek počas separácie rozširovanie chromatogafických zón
 - turbulentná difúzia
 - rôzna rýchlosť analytu v kolóne (v dôsledku rôzneho umiestnenia náplne
 - molekulová difúzia
 - o rôzna koncentrácia analytu v kolóne
 - odpor voči prechodu hmoty
 - adsorpcia/desorpcia analytu zo stacionárnej fázy (závisí od hrúbky stacionárnej fázy)
 - rôzne molekuly difundujú rôzne hlboko do stacionárnej fázy

dôkaz a stanovenie

- identifikácia
 - porovnanie t_R analytu a štandardu
 - o negatívna jednoznačne vieme určiť neprítomnosť analytu
 - použitie korelačných vzťahov členov homologických radov
 - použitie retenčných Kovatsových indexov
 - MS (hmotnostná spektrometria) detekcia
 - poztitívna identifikácia

stanovenie

- využitie kalibračných závislostí
 - o plocha píku zodpovedá koncentrácii analytu

• plynová chromatografia

- o stacionárna fáza adsorbent (GSC), kvapalina (GLC)
- o mobilná fáza plyn
- o vzorka kvapalina, plyn
- rýchle a účinné analýzy
- o po nadávkovaní odparenie v injektore
 - dôležitá je teplota varu a termická stabilita analytu
 - v prípade, že to nie je splnené použije sa derivatizácia

o detekcia

- pomocou MS (nepotrebuje štandard)
- TCD (tepelno-vodivostný detektor), FID (plameňovoionizačný detektor), ECD (detektor elektrónového záchytu) – vyžadujú štandard analytu

o <u>aplikácia:</u>

- analýza prchavých látok (org. aj anorg.)
- analýza pesticídov
- analýza liečiv, drog, metabolitov

• vysokoúčinna kvapalinová chromatografia HPLC

- stacionárna fáza s, l
- o mobilná fáza I

o klasifikácia podľa typu sorbenta:

- adsorpčná (LSC)
- iónovo-výmenná
- gélová
- afinitná
- chirálna
- rozdeľovacia (LLC)

o <u>aplikácia</u>

- analýza neprchavých a termolabilných látok
- analýza liečiv, drog, metabolitov
- analýza prírodných produktov, polymérov
- analýza výbušnín, pesticídov

chromatografia na tenkej vrstve

- jednoduchá, rýchla metóda
- rôzne typy sorbenta (stacionárnej fázy)
 - SiO₂, Al₂O₃, RPfázy
- spôsob vyvijánia
 - vzostupné
 - zostupné
 - cirkulárne
 - anticirkulárne

detekcia

UV, chemická (postrek)

kvalitatívna analýza

- retardačný faktor RF
 - $R_F = \frac{a}{b}$ a vzdialenosť štart škvrna; b vzdialenosť štart čelo

o stanovenie

plocha (výška) píkov je priamo úmerná koncentrácii analytu

Elektromigračné metódy

- separácia je založená na rôznej pohyblivosti iónov v roztoku účinkom elektrického poľa
- ióny sa pohybujú rýchlosťou, ktorá závisí od hmotnosti, tvaru a veľkosti častíc
- po čase dôjde k rozdeleniu do zón podľa rôznej pohyblivosti detekcia
- delenie:

- Tisseliova voľná elektroforéza
- o zónová elektroforéza
- o kapilárna elektroforéza CE (izotachoforéza)
- HPCE vysokoúčinná kapilárna elektroforéza
- o izoelektrická fokusácia

• elektroforetická pohyblivosť

$$\circ$$
 $u = \frac{v}{E}$

• <u>izotachoforéza (modifikovaná zónová elektroforéza)</u>

- o použitie 2 elektrolytov s rôznou pohyblivosťou iónov
- separácia iónov do zón sa uskutočňuje v kapiláre, ktorá spája katódový (zakončujúci elektrolyt) a anódový priestor (vedúci elektrolyt)
- o vzorka sa nanáša na rozhranie elektrolytov
- o zóny sa pohybujú rovnakou rýchlosťou, majú rôznu teplotu
- o dôkaz poloha zón
- stanovenie dĺžka zón
- o záznam *elektroforogram*

• vysokoúčinná kapilárna elektroforéza

- o separácia sa uskutočňuje v kapiláre, na ktorú sa privádza napätie zo zdroja
- o <u>aplikácie:</u>
 - separácia a stanovenie peptidov
 - analýza proteínov
 - analýza anorganických látok