Direct Translate

Emanuele Gentiletti Alessandro Caputo

Introduzione

La consegna del progetto richiedeva l'implementazione di due componenti:

- Un PoS tagger basato su Hidden Markov Model e algoritmo di Viterbi
- Un traduttore direct da inglese a italiano, funzionante sulle seguenti frasi:
 - "Il droide nero poi abbassa la maschera e l'elmetto di Vader sulla sua testa"
 - "Questi non sono i droidi che stai cercando."
 - "I tuoi amici possono fuggire, ma tu sei condannato."

Seguendo la struttura del progetto, articoliamo la seguente relazione in due parti, una dedicata al PoS tagger e una al traduttore. L'implementazione del progetto è realizzata in Python, con l'ausilio delle seguenti librerie:

- pyconl1: Parsing dei treebank
- pyyaml: Parsing di file yaml, usati per rappresentare il lessico nella fase di traduzione
- toolz: Utilità varie per la programmazione funzionale.

PoS Tagger

Addestramento

L'implementazione del PoS tagger è articolata nelle fasi di addestramento e di implementazione del tagger. Per l'addestramento, abbiamo fatto uso di dict nidificati per salvare le matrici di probabilità. L'Hidden Markov Model nella sua interezza è contenuto nella seguente classe:

class HMM(NamedTuple):

```
transitions: Dict[str, Dict[str, float]]
emissions: Dict[str, Dict[str, float]]
```

transitions contiene le probabilità di transizione. Per leggere la probabilità di transizione da "ADJ" a "NOUN" si accede così al dizionario:

```
transitions["NOUN"]["ADJ"]
```

Si noti che i PoS nell'accesso sono invertiti rispetto a quello che ci si aspetterebbe naturalmente. Alla fine dell'addestramento andiamo a trasporre manualmente la matrice, in modo che la disposizione rispecchi più naturalmente i pattern di accesso che usiamo nell'implementazione di Viterbi.

Di fatto, andando ad accedere a transitions ["NOUN"], il risultato che otteniamo è un dict così strutturato: $\{\text{key}: P(\text{"NOUN"}|\text{key})\}$

Le probabilità di transizione sono calcolate conteggiando quante volte ogni transizione avviene all'interno del treebank, in dict annidati con la seguente struttura:

```
transitions_counts = {
  "NOUN": {
     "NOUN": 2567,
     "ADJ": 1278,
     ...
  },
  "ADJ": { ... }
}
```

Dove l'elemento transition_counts [k1] [k2] contiene il numero di volte in cui nel treebank avviene la transizione da k1 a k2.

Per convertire i conteggi in distribuzioni di probabilità condizionate, usiamo la seguente funzione, che applichiamo a ogni dizionario annidato:

```
def div_by_total_log(counts: dict):
    denom = log(sum(counts.values()))
    return {k: log(v) - denom for k, v in counts.items()}
```

Ogni dizionario transition_counts[k1] contiene tutti i conteggi delle transizioni che iniziano con k1. Sommando tutti i conteggi, otteniamo il numero totale di transizioni che iniziano con k1 nel treebank. Chiamiamo quindi questo valore denom, e dividiamo ogni valore in transition_counts[k1] per denom. Il risultato che otteniamo sarà la distribuzione di probabilità P(k2|k1).

Le probabilità sono rappresentate in forma logaritmica, per minimizzare l'errore dovuto a valori float troppo piccoli. Per cui, invece di andare a dividere, convertiamo entrambi i valori nei loro logaritmi e li andiamo a sottrarre.

Per le probabilità di emissione, la procedura è del tutto analoga. Il dizionario in questo caso ha struttura emissions [tok] [pos] = P(tok|pos).

Nell'addestramento provvediamo anche a effetturare lo smoothing per le probabilità di transizione ed emissione. Nelle probabilità di transizione andiamo ad agire direttamente sui conteggi: se non ci sono transizioni da A a B, andiamo ad assegnare transition_counts[A][B] = 1.

Per le probabilità di emissione, andiamo invece a calcolare la distribuzione dei PoS tag per le parole che appaiono una sola volta all'interno del treebank.

TODO

La procedura di training per le transizioni può essere descritta concisamente dal seguente statement:

La funzione pipe chiama le funzioni passate come argomenti una dopo l'altra, passando come argomento il risultato della funzione precedente. pipe(arg, do_a, do_b, do_c) restituisce do_c(do_b(do_a(arg))).

In modo simile, la procedura per le probabilità di emissione è la seguente:

```
emissions = pipe(
    training_set,
    emission_counts,
    valmap(div_by_total_log),
    transpose
)
smoothing = pipe(
    dev_set,
    smoothing_counts,
    div_by_total_log
)
emissions = dict_with_missing(emissions, smoothing)
```

Dove dict_with_missing crea un dict che restituisce il secondo argomento (smoothing) quando si tenta di accedere a una chiave mancante (una parola non contenuta nel treebank).

La procedura completa di training è nel file tagger/hmm.py. Per ottenere un'istanza di HMM contente i dati di training, è sufficiente chiamare la funzione hmm_ud_english().

Tagger

L'implementazione di Viterbi è basata fortemente su una funzione d'utilità, merge_with:

```
def merge_with(fn, d1, d2):
    return {key: fn(d1[key], d2[key]) for key in d1.keys() & d2.keys()}
```

La funzione accetta come argomenti una funzione fn e due dizionari d1 e d2. Per ogni chiave in comune dei dizionari k, la funzione calcola fn(d1[k], d2[k]).

Quindi ad esempio:

```
from operator import add
```

class ViterbiTagger:

```
merge_with(add, {'a': 1, 'b': 2, 'c': 2}, {'a': 2, 'b': 2})
# out: {'a': 3, 'b': 4}
```

Questo permette di effettuare operazioni analogamente a come verrebbero effettuate su vettori, ma usando etichette esplicite per identificare i singoli componenti del vettore invece degli indici. La funzione, inoltre, scarta dal risultato i valori che i dizionari non hanno in comune. Nell'implementazione, sfruttiamo questa proprietà per evitare alcuni calcoli inutili.

La classe in cui viene implementato l'algoritmo è la seguente. L'implementazione è contenuta nel file tagger/viterbi_tagger.py.

```
def __init__(self, hmm: HMM):
    self.hmm = hmm

def pos_tags(self, tokens: List[str]) -> List[str]:
    transitions, emissions = self.hmm

# Mantiene in memoria solo l'ultima colonna invece di tutta la matrice.
    viterbi = merge_with(add, get_row(transitions, "QO"), emissions[tokens[0]])
    backptr = []

for token in tokens[1:]:
    viterbi, next_backptr = self._next_col(viterbi, token)
```

viterbi = merge_with(add, viterbi, transitions["Qf"])
path_start = max(viterbi.keys(), key=lambda k: viterbi[k])
return retrace_path(backptr, path_start)

La classe viene inizializzata con un Hidden Markov Model già addestrato. L'algoritmo è contenuto nel metodo pos_tags, che riceve una lista di parole e restituisce una lista di rispettivi PoS tag.

backptr.append(next backptr)

Nell'implementazione, si fa spesso uso dell'operazione merge_with(add, x, y). Il senso da attribuire a questa operazione è sempre la moltiplicazione di vettori di probabilità (dove la moltiplicazione è commutata in addizione perché lavoriamo con logaritmi). Nella seguente spiegazione, mi prendo la libertà di abbreviare l'espressione con x * y per chiarezza.

La prima operazione effettuata è inizializzare la prima colonna della matrice viterbi.

```
viterbi = get row(transitions, "Q0") * emissions[tokens[0]]
```

 ${\tt QO}$ è uno pseudo PoS tag, che rappresenta l'inizio della frase. Ad esempio, $P({\tt ADJ}|{\tt QO})$ rappresenta la probabilità che ci sia un aggettivo all'inizio di una frase.

get_row(transitions, "Q0") restituisce la riga di valori corrispondenti a "Q0" (dove in transitions[k1][k2], la colonna è considerata etichettata k1 e la riga k2).

Per cui, per ogni PoS tag k:

```
get_row(transitions, "QO")[k] = P(k|QO)
```

Nel caso di emissions[tokens[0]], possiamo invece dire che:

```
emissions[tokens[0]][k] = P(k|tokens[0])
```

Possiamo quindi dare il seguente significato all'operazione complessiva:

```
\label{eq:posterior} $$ \text{viterbi}[k] = P(k|Q0) \cdot P(k|\text{tokens}[0])$ $$ \text{def }_{\text{next\_col}}(\text{self, last\_col, token}):$ $$ \text{transitions, emissions} = \text{self.hmm}$$ $$ \text{viterbi} = \{\}$ $$ \text{backptr} = \{\}$ $$ \text{for pos in emissions}[\text{token}].\text{keys}():$ $$ \text{paths\_to\_pos} = \text{merge\_with}(\text{add, last\_col, transitions}[\text{pos}])$ $$ \text{backptr}[\text{pos}], \text{viterbi}[\text{pos}] = \text{max}(\text{paths\_to\_pos.items}(), \text{key=lambda it: it[1]})$ $$ \text{viterbi} = \text{merge\_with}(\text{add, viterbi, emissions}[\text{token}])$ $$ \text{return viterbi, backptr}$$
```