Частные производные первого порядка

Примеры.

Найти частные производные первого порядка функции 2-х переменных, заданной в явном виде:

1.
$$Z = ln (3x^2 - 2y)$$

$$Z'_{x}=6x/(3x^{2}-2y)$$
; $Z'_{y}=-2/(3x^{2}-2y)$.

2.
$$Z = \arcsin(4x + y)$$

$$Z'_{x} = \sqrt[4]{\sqrt{1 - (4x + y)^{2}}}; \ Z'_{y} = \sqrt[4]{\sqrt{1 - (4x + y)^{2}}}$$

3.
$$Z = \sqrt{9 - x^2 - y^2}$$

$$Z'_{x} = -x / \sqrt{9 - x^2 - y^2}$$
; $Z'_{y} = -y / \sqrt{9 - x^2 - y^2}$

4.
$$Z = \ln (5x - 3y)$$

$$Z'_{x} = \frac{5}{(5x - 3y)}$$
; $Z'_{y} = \frac{-3}{(5x - 3y)}$

5.
$$Z = \arccos(x + 3y)$$

$$Z'_{x} = -1 / \sqrt{1 - (x + 3y)^{2}}; \quad Z'_{y} = -3 / \sqrt{1 - (x + 3y)^{2}}$$

6.
$$Z = ln (5x^2 - 2y)$$

$$Z'_{x}=^{10x}/_{(5x^{2}-3y)}; \ Z'_{y}=^{-3}/_{(5x^{2}-3y)}.$$

7.
$$Z = \arcsin (4x + y)$$

$$Z'_{x} = \frac{4}{\sqrt{1 - (4x + y)^{2}}}; \ Z'_{y} = \frac{1}{\sqrt{1 - (4x + y)^{2}}}$$

8.
$$Z = \sqrt{9 - x^2 - y^2}$$

$$Z'_{x} = -x / \sqrt{9 - x^2 - y^2}$$
; $Z'_{y} = -y / \sqrt{9 - x^2 - y^2}$

9.
$$Z = \ln (5x - 3y)$$

$$Z'_{x} = \frac{5}{(5x - 3y)}$$
; $Z'_{y} = \frac{-3}{(5x - 3y)}$

10.
$$Z = (x - 5y)^{-3}$$

$$Z'_{x} = -3/(x - 5y)^{4}$$
; $Z'_{y} = 15/(x - 5y)^{4}$

Примеры для самостоятельной работы:

Вычислить частные производные первого порядка функции двух переменных Z'_{x} и Z'_{y} :

1.
$$Z = ln (x^3 + 7y)$$

2. $Z = \arcsin (8x - y)$
3. $Z = \frac{9}{\sqrt{2x^2 - 5y + y^2}}$
4. $Z = \sqrt{11 - x^3 + y^5}$
5. $Z = \frac{17}{\sqrt{2 + 4x^2 - y^3}}$
6. $Z = \ln (\frac{3}{(x - y)})$
7. $Z = \arccos (4x - 3y)$
8. $Z = \frac{-5}{\sqrt{6x^2 + 3x - y^3}}$
9. $Z = \frac{x + y}{\sqrt{x - y}}$
10. $Z = \frac{x}{\sqrt{x + y}}$

Частные производные первого порядка неявно заданной функции

Если функция двух независимых переменных z=z(x,y) задана неявно в виде F(x,y,z)=0 и выполнены условия теоремы существования (функция непрерывна на всей числовой оси и непрерывны ее частные производные), то частные производные по переменным x и y будем вычислять по формулам:

$$\frac{\partial z}{\partial x} = -\frac{F'_x}{F_{z'}}; \quad \frac{\partial z}{\partial y} = -\frac{F'_y}{F_{z'}};$$

Пример1. Найти частные производные функции z по переменным x и y:

$$3x^2 - 2y^3 - 7xy + z^2 - 2z + 9 = 0$$

Решение. Дифференцируем функцию F(x,y,z) по переменной х:

$$F'_{x}(x,y,z) = 6x - 7y$$

Дифференцируем функцию F(x,y,z) по переменной у:

$$F'_{\nu}(x,y,z) = -6y^2 - 7x$$

Дифференцируем функцию F(x,y,z) по переменной z:

$$F'_{z}(x,y,z) = 2z-2.$$

Получили частные производные:

$$\frac{\partial z}{\partial x} = \frac{7y - 6x}{2z - 2}; \quad \frac{\partial z}{\partial y} = \frac{6y^2 + 7x}{2z - 2};$$

Примеры для самостоятельной работы:

Вычислить частные производные первого порядка функции двух переменных Z'_x и Z'_y , заданной неявно.

1.
$$x^3 - 3y^4 + 5xy + z^3 - 3z + 11 = 0$$

2.
$$2x^2 - y^3 - e^{x+2y-z} + z^2 + 5z+9 = 0$$

3.
$$4x - 5y^3 + 9xy + z^2 - 2e^z - 12 = 0$$

4.
$$\sin(4x - y^3) + \cos xy + z^2 - 1 = 0$$

5.
$$e^{5x-y} + 9x + 3y + z^4 - 2e^{xz} - 15 = 0$$