```
In [2]: import pandas as pd
        url = 'https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.cs
        titanic_df = pd.read_csv(url)
        titanic_df.head()
```

Out[2]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050C
	4										•
In [3]:	ti ti	int(titanic_ tanic_df['Ag tanic_df['Em 'Cabin' in titanic_df	e'] = tita barked'] = titanic_d1	anic_df = titan: f.columr	['Age'].fi] ic_df['Emba ns:	arked'].	filln		_].mode(

```
print(titanic_df.isnull().sum())
```

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64 PassengerId Survived 0 Pclass 0 Name 0 Sex 0 0 Age SibSp 0 0 Parch Ticket 0 Fare 0 Embarked 0 dtype: int64

```
In [4]: import matplotlib.pyplot as plt
import seaborn as sns

palette = sns.color_palette("husl", 3) # HUSL color palette with 3 colors
plt.figure(figsize=(10, 6)) # Adjust the figure size
sns.barplot(x='Pclass', y='Survived', hue='Pclass', data=titanic_df, palette=palett
plt.title('Survival Rate by Passenger Class', fontsize=16, weight='bold')
plt.xlabel('Passenger Class', fontsize=14, weight='bold')
plt.ylabel('Survival Rate', fontsize=14, weight='bold')
plt.xticks(fontsize=12)
plt.legend([], [], frameon=False)
plt.show()
```



```
In [5]: palette = sns.color_palette("husl", 2) # HUSL color palette with 2 colors
    plt.figure(figsize=(10, 6)) # Adjust the figure size
    sns.barplot(x='Sex', y='Survived', hue='Sex', data=titanic_df, palette=palette, edg
    plt.title('Survival Rate by Sex', fontsize=16, weight='bold')
    plt.xlabel('Sex', fontsize=14, weight='bold')
    plt.ylabel('Survival Rate', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.legend([], [], frameon=False)
    plt.show()
```



```
In [6]: palette = sns.color_palette("husl")
    plt.figure(figsize=(10, 6)) # Adjust the figure size
    sns.histplot(titanic_df['Age'], bins=30, kde=True, color=palette[0], edgecolor='bla
    plt.title('Age Distribution of Passengers', fontsize=16, weight='bold')
    plt.xlabel('Age', fontsize=14, weight='bold')
    plt.ylabel('Count', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```



```
In [7]: palette = sns.color_palette("husl")
    plt.figure(figsize=(10, 6)) # Adjust the figure size
    sns.histplot(titanic_df['Fare'], bins=30, kde=True, color=palette[1], edgecolor='bl
    plt.title('Fare Distribution of Passengers', fontsize=16, weight='bold')
    plt.xlabel('Fare', fontsize=14, weight='bold')
    plt.ylabel('Count', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```



```
In [8]: palette = sns.color_palette("Set2", 3)
    plt.figure(figsize=(10, 6)) # Adjust the figure size
    sns.barplot(x='Embarked', y='Survived', data=titanic_df, hue='Embarked', palette=pa
    plt.title('Survival Rate by Embarkation Port', fontsize=16, weight='bold')
    plt.xlabel('Embarkation Port', fontsize=14, weight='bold')
    plt.ylabel('Survival Rate', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.legend([], [], frameon=False)
    plt.show()
```

200

300

Fare

100

400

500


```
In [9]: palette = sns.color_palette("pastel", 9)
    titanic_df['FamilySize'] = titanic_df['SibSp'] + titanic_df['Parch'] + 1
    plt.figure(figsize=(10, 6))
    sns.barplot(x='FamilySize', y='Survived', data=titanic_df, hue='FamilySize', palett
    plt.title('Survival Rate by Family Size', fontsize=16, weight='bold')
    plt.xlabel('Family Size', fontsize=14, weight='bold')
    plt.ylabel('Survival Rate', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.legend([], [], frameon=False)
    plt.show()
```



```
In [10]: numerical_df = titanic_df.select_dtypes(include=['number'])
    plt.figure(figsize=(12, 10))
    sns.set(font_scale=1.2)
    sns.heatmap(numerical_df.corr(), annot=True, cmap='viridis', fmt='.2f', vmin=-1, vm
    plt.title('Correlation Heatmap', fontsize=16, weight='bold')
    plt.tight_layout()
    plt.show()
```



```
In [11]: palette = {"male": "#6495ED", "female": "#FF69B4"}
    plt.figure(figsize=(12, 8))
    sns.violinplot(x='Survived', y='Age', hue='Sex', data=titanic_df, split=True, palet
    plt.title('Survival Rate by Age and Gender', fontsize=16, weight='bold')
    plt.xlabel('Survived', fontsize=14, weight='bold')
    plt.ylabel('Age', fontsize=14, weight='bold')
    plt.legend(title='Sex', title_fontsize='large', loc='upper right')
    plt.show()
```

Survival Rate by Age and Gender


```
In [12]: import seaborn as sns
    import matplotlib.pyplot as plt
    palette = sns.color_palette("Set2", 3)
    plt.figure(figsize=(8, 6))
    sns.countplot(x='Embarked', data=titanic_df, palette=palette, edgecolor='black', hu
    plt.title('Passenger Count by Embarkation Port', fontsize=16, weight='bold')
    plt.xlabel('Embarkation Port', fontsize=14, weight='bold')
    plt.ylabel('Count', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.grid(True, axis='y', linestyle='--', linewidth=0.5)
    plt.legend([],[], frameon=False) # Disable the Legend
    plt.show()
```



```
In [13]: palette = sns.color_palette("Set2")
    plt.figure(figsize=(10, 6))
    sns.kdeplot(titanic_df[titanic_df['Survived'] == 1]['Age'], label='Survived', fill=
    sns.kdeplot(titanic_df[titanic_df['Survived'] == 0]['Age'], label='Not Survived', f
    plt.title('Age Distribution by Survival', fontsize=16, weight='bold')
    plt.xlabel('Age', fontsize=14, weight='bold')
    plt.ylabel('Density', fontsize=14, weight='bold')
    plt.legend(fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```



```
In [14]: palette = sns.color_palette("husl", 2)
    plt.figure(figsize=(10, 6))
    sns.boxplot(x='Survived', y='Fare', hue='Survived', data=titanic_df, palette=palett
    plt.title('Fare Distribution by Survival', fontsize=16, weight='bold')
    plt.xlabel('Survived', fontsize=14, weight='bold')
    plt.ylabel('Fare', fontsize=14, weight='bold')
    plt.yscale('log')
    plt.legend().set_visible(False)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```

Fare Distribution by Survival


```
In [15]: palette = sns.color_palette("husl", 2)
    plt.figure(figsize=(10, 6))
    sns.barplot(x='Pclass', y='Survived', hue='Sex', data=titanic_df, palette=palette,
    plt.title('Survival Rate by Passenger Class and Gender', fontsize=16, weight='bold'
    plt.xlabel('Passenger Class', fontsize=14, weight='bold')
    plt.ylabel('Survival Rate', fontsize=14, weight='bold')
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```

1

Passenger Class

```
import seaborn as sns
import matplotlib.pyplot as plt
bins = [0, 12, 18, 35, 60, 120]
labels = ['Child [0-12]', 'Teen [13-18]', 'Adult [19-35]', 'Middle-Aged [36-60]', '
titanic_df['AgeGroup'] = pd.cut(titanic_df['Age'], bins=bins, labels=labels)
palette = sns.color_palette("husl", len(labels))
plt.figure(figsize=(10, 6))
sns.barplot(x='AgeGroup', y='Survived', data=titanic_df, hue='AgeGroup', palette=pa
plt.title('Survival Rate by Age Group', fontsize=16, weight='bold')
plt.xlabel('Age Group', fontsize=14, weight='bold')
plt.ylabel('Survival Rate', fontsize=14, weight='bold')
plt.xticks(fontsize=12)
plt.legend([], [], frameon=False)
plt.show()
```

0.0

3

Survival Rate by Age Group


```
import seaborn as sns
import matplotlib.pyplot as plt
palette = 'coolwarm'
g = sns.FacetGrid(titanic_df, col='Pclass', row='Sex', margin_titles=True, height=4
g.map_dataframe(sns.histplot, x='Age', hue='Survived', element='step', stat='densit
g.set_axis_labels('Age', 'Density')
g.add_legend(title='Survived', fontsize=12)
g.set_titles(col_template='{col_name} Class', row_template='{row_name}', fontweight
plt.subplots_adjust(top=0.9)
g.fig.suptitle('Survival Rate by Age, Passenger Class, and Gender', fontsize=16, fo
plt.show()
```



```
In [55]: import matplotlib.pyplot as plt
    palette = 'coolwarm'
    pairplot_df = titanic_df[['Survived', 'Pclass', 'Age', 'Fare', 'FamilySize']]
    sns.pairplot(pairplot_df, hue='Survived', palette=palette, diag_kind='kde', plot_kw
```

plt.suptitle('Pair Plot of Numerical Features and Survival Outcome', y=1.02, fontsi
plt.show()

Pair Plot of Numerical Features and Survival Outcome


```
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
sns.violinplot(x='Pclass', y='Age', hue='Survived', data=titanic_df, split=True, in
sns.stripplot(x='Pclass', y='Age', hue='Survived', data=titanic_df, dodge=True, edg
plt.title('Age Distribution by Passenger Class and Survival Status', fontsize=16, f
plt.xlabel('Passenger Class', fontsize=14)
plt.ylabel('Age', fontsize=14)
plt.legend(title='Survived', loc='upper right', fontsize=12)
plt.tight_layout()
plt.show()
```

Age Distribution by Passenger Class and Survival Status


```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
titanic_df['AgeGroup'] = pd.cut(titanic_df['Age'], bins=[0, 12, 18, 35, 60, 100], l
survival_rates = titanic_df.pivot_table(values='Survived', index='AgeGroup', column
plt.figure(figsize=(10, 6))
heatmap = sns.heatmap(survival_rates, annot=True, cmap='coolwarm', fmt='.2f', linew
cbar = heatmap.collections[0].colorbar
cbar.set_label('Survival Rate', rotation=270, labelpad=15)
plt.title('Survival Rates by Age Group and Passenger Class', fontsize=16, fontweigh
plt.xlabel('Passenger Class', fontsize=14)
plt.ylabel('Age Group', fontsize=14)
plt.tight_layout()
plt.show()
```


In []