NGS - variant analysis

Variant calling

GATK workflow

Three important questions

- Is there a variant at location X?
 - Deviation from REF in the alignments
- What are the alleles?
 - The variation in sequence in these deviations
- What is the genotype (HomRef, Heterozygote or HomAlt)?
 - Estimating the allele counts in the sample

HaplotypeCaller

What are the alleles?

What are the alleles?

- Indel realignment
- Expensive process, but only on 'active' regions

What is the genotype?

At a site we count 9 bases

5 REF and 4 ALT

Pr(X=4) = 0.25 ifheterozygous so: $\mathcal{L}(p=0.5 \mid X=4) = 0.25$

p=0

0 REF and 9 ALT

$$\mathcal{L}(p=0.5 \mid X=9) = 0.002$$

$$\mathcal{L}(p=1 | X=9) = 1$$

$$\mathcal{L}(p=0 \mid X=9) = 0$$

Question

Estimating genotype

What are the likely genotypes? At a site we count 9 bases

8 REF and 1 ALT
$$\mathcal{L}(p=0.5 \mid X=1) = 0.017$$
 $\mathcal{L}(p=0 \mid X=1) = 0$

Base quality and error

- Base quality: 20 = error probability 0.01
- 100 samples with 40x coverage
- In total 40 errors expected

Estimating the genotype

Genotype likelihood (simplified):

$$\mathcal{L}(g) = \frac{1}{m^k} \prod_{j=1}^l \left[(m-g)\epsilon_j + g(1-\epsilon_j) \right] \prod_{j=l+1}^k \left[(m-g)(1-\epsilon_j) + g\epsilon_j \right]$$

g: genotype (i.e. 0, 1 or 2)

m: ploidy (2 for human)

€: base error

k: number of bases at the site

I: number of bases that equal reference

In GATK: $PL = -10*log10(\mathcal{L}(g))$

PL and GQ

Our example: 8 REF and 1 ALT Assuming base error probability $\epsilon = 0.01$ PL = $-10*log10(\mathcal{L}(g))$

Genotype	HomRef	Heterozygous	HomAlt
$\mathcal{L}(g)$	0.0092	0.0020	9.9E-17
PL (20	27	160

Lowest PL = most likely genotype GQ = Second lowest PL - Lowest PL = 27 - 20 = 7 $p(genotype \ error) = 10^{\frac{-7}{10}} = 0.2$

Question

Estimating the genotype

$$g = 0,1 \text{ or } 2$$

 $m = 2$
 $\epsilon = 0.01 \text{ (BQ=20)}$
 $k = 9$

Base quality correction

- Essential for estimating genotype likelihood
- Context can affect base quality, e.g.:
 - homopolymers
 - cycle
- estimated error rate # 'real' error rate
- Base quality score recalibration (BQSR) takes this context into account

BQSR

vcf

```
##fileformat=VCFv4.2
##FILTER=<ID=LowOual.Description="Low quality">
##FILTER=<ID=PASS,Description="All filters passed">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MO=255 or with bad mates are filtered)">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specs">
##GATKCommandLine=<ID=GenotypeGVCFs .commandLine="GenotypeGVCFs --output"
##GATKCommandLine=<ID=HaplotypeCaller.CommandLine="HaplotypeCaller --bam-output
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN.Number=1.Type=Integer.Description="Total number of alleles in called genotypes">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">
##contig=<ID=chr20,length=64444167>
#CHROM
           POS ID REF ALT
                             QUAL FILTER
                                                             TNFO
                                                                          FORMAT
                                                                                                     father
                                                                                                                               mother
                                       . AC=1:AF=0.167:AN=6:DP=15 GT:AD:DP:GO:PL
                                                                                     0/1:3,5:8:58:143,0,58
                                                                                                                   0/0:2,0:2:6:0,6,48
chr20 10019252 .
                   G C 134.68
                                       . AC=5;AF=0.833;AN=6;DP=45 GT:AD:DP:GQ:PL
                                                                                  0/1:7,6:13:99:231,0,256 1/1:0,13:13:39:573,39,0
chr20 10019348 . A ACT 1587.89
chr20 10019469 . C T 1792.98
                                       . AC=4;AF=0.667;AN=6;DP=89 GT:AD:DP:GQ:PL 0/1:17,15:32:99:465,0,503 0/1:11,12:23:99:289,0,289
```

vcf

```
##fileformat=VCFv4.2
##FILTER=<ID=LowQual,Description="Low quality">
##FILTER=<ID=PASS,Description="All filters passed">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MO=255 or with bad mates are filtered)">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specs">
##GATKCommandLine=<ID=GenotypeGVCFs .commandLine="GenotypeGVCFs --output
##GATKCommandLine=<ID=HaplotypeCaller.CommandLine="HaplotypeCaller --bam-output
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN.Number=1.Type=Integer.Description="Total number of alleles in called genotypes">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">
##contig=<ID=chr20,length=64444167>
#CHROM
           POS ID REF ALT
                             QUAL FILTER
                                                             TNFO
                                                                          FORMAT
                                                                                                    father
                                                                                                                              mother
                                       . AC=1:AF=0.167:AN=6:DP=15 GT:AD:DP:GO:PL
                                                                                     0/1:3,5:8:58:143,0,58
                                                                                                                  0/0:2,0:2:6:0,6,48
chr20 10019252 .
                   G C 134.68
                                       . AC=5;AF=0.833;AN=6;DP=45 GT:AD:DP:GQ:PL
                                                                                   0/1:7,6:13:99:231,0,256 1/1:0,13:13:39:573,39,0
chr20 10019348 . A ACT 1587.89
                                       . AC=4;AF=0.667;AN=6;DP=89 GT:AD:DP:GQ:PL 0/1:17,15:32:99:465,0,503 0/1:11,12:23:99:289,0,289
chr20 10019469 . C T 1792.98
```

vcf

#CHROM	POS	ID	REF	ALT	FORMAT	NA00001	NA00002
20	14370	•	G	Α	GT:GQ	0 0:48	1 0:48
20	17330	•	T	Α	GT:GQ	0 0:49	0 1:99
20	1110696	•	Α	G,T	GT:GQ	1 2:21	2 1:27
20	1230237	•	T	•	GT:GQ	0 0:54	0 0:48
20	1234567	•	GTC	G,GTCT	GT:GQ	0/1:35	0/2:17
			†	† †			
			0	1 2	n		

Question

sample 1

sample 2

sample	1.vcf		
CHROM 20	POS 1101	ID SNPX	SAMP1
20	1203	SNPY	0 1

sampl	e2.vcf		
CHROM	POS	ID	SAMP2
20	1101	SNPX	1 0
20	1203	SNPY	0 1
20	1253	SNPZ	1 1

combin	ed.vcf			
CHROM	POS	ID	SAMP1	SAMP2
20	1101	SNPX	1 1	1 0
20	1203	SNPY	0 1	0 1
20	1253	SNPZ	5	1 1

Question

Missing genotype problem

- Most variant callers genotype all samples in one go. But:
 - variant calling process can become very computational intensive
 - new sample? Redo entire variant call
- GATK uses GVCF:
 - Store information on non-variant regions

Other software

- freebayes: haplotype-aware variant calling -> good alternative to gatk
- bcftools: working with vcfs (part of samtools)
- vcftools: working with vcfs
- whatshap: haplotyping
- DeepVariant: variant calling in short and long reads

GATK workflow

