Data Visualization with R

Armand Tossou

9/6/2021

Grammar of Graphics with ggplot2

Each ggplot2 plot has 3 basic layers: - a data layer - an aesthetics layer - and a geometries layer Additional layers include: - facets: to put multiple plots on the same canvas - statistics: - coordinates - and a theme

```
#load the package
library(ggplot2)

# create a scatterplot
pl <- ggplot(data=mtcars,aes(x=mpg,y=hp))
pl + geom_point()</pre>
```


Adding facets:

```
# create a scatterplot for each cylendar type
pl <- ggplot(data=mtcars,aes(x=mpg,y=hp)) + geom_point()
pl + facet_grid(cyl ~ .)</pre>
```


Let's add a statistics layer:

```
# create a scatterplot for each cylendar type, adding a smoothed line of fit
pl <- ggplot(data=mtcars,aes(x=mpg,y=hp)) + geom_point()
pl + facet_grid(cyl ~ .) + stat_smooth()</pre>
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Next, let's add coordinates to our plot.

```
# create a scatterplot for each cylendar type, adding a smoothed line of fit, and adding coordinates
pl <- ggplot(data=mtcars,aes(x=mpg,y=hp)) + geom_point()
pl2 <- pl + facet_grid(cyl ~ .) + stat_smooth()
pl2 + coord_cartesian(xlim = c(15,25))</pre>
```

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

Finally, let's add a theme to our plot.

```
# create a scatterplot for each cylendar type, adding a smoothed line of fit,
# and adding coordinates, and adding a theme
pl <- ggplot(data=mtcars,aes(x=mpg,y=hp)) + geom_point()
pl2 <- pl + facet_grid(cyl ~ .) + stat_smooth()
pl2 + coord_cartesian(xlim = c(15,25)) + theme_bw()</pre>
```

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

RStudio ggplot cheat sheet: https://www.maths.usyd.edu.au/u/UG/SM/STAT3022/r/current/Misc/data-visualization-2.1.pdf

```
# install.packages("ggplot2")
library(ggplot2)
# install the dataset we'll be working with
{\it \#install.packages("ggplot2movies")}
library(ggplot2movies)
# show the columns of the 'movies' dataset
colnames(movies)
    [1] "title"
                       "year"
                                      "length"
                                                     "budget"
                                                                    "rating"
                       "r1"
                                      "r2"
                                                     "r3"
                                                                    "r4"
    [6] "votes"
##
                       "r6"
                                      "r7"
                                                     "r8"
                                                                    "r9"
##
   [11] "r5"
                                      "Action"
                                                                    "Comedy"
   [16] "r10"
                       "mpaa"
                                                     "Animation"
## [21] "Drama"
                       "Documentary" "Romance"
                                                     "Short"
```

Start out by plotting a basic histogram:

```
# data & aesthetics
pl <- ggplot(movies,aes(x=rating))

# geometry
pl2 <- pl + geom_histogram(binwidth = 0.1, color='red',fill='pink',alpha=0.4)

# add labels
pl3 <- pl2 + xlab('Movie Ratings') + ylab('Count')

print(pl3)</pre>
```


There are also some advanced options that we can apply to the geometry layer.

```
pl <- ggplot(movies,aes(x=rating))
pl2 <- pl + geom_histogram(binwidth = 0.1,aes(fill=..count..))
pl3 <- pl2 + xlab('Movie Ratings') + ylab('Count')
print(pl3)</pre>
```



```
# we'll use the built-in 'mtcars' dataframe to plot mile per galon by car weight
df <- mtcars

# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
print(pl + geom_point())</pre>
```


Now let's improve upon our scatterplot by playing around with: - the size of points - transparency

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(size=10,alpha=0.5)
print(pl2)</pre>
```


We can size points in our scartterplot with other features in the dataset:

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(size=mtcars$cyl,alpha=0.5) # sizing points based on the number of car 'cylinders
print(pl2)</pre>
```


Pass the aesthetics parameters directly inside the geometries:

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))
# geometry
pl2 <- pl + geom_point(aes(size=hp,alpha=0.5)) # sizing points based on the number of car 'horsepower'
print(pl2)</pre>
```


Let's size up points based on the number of car 'cylinders'. Note how we tell R that the 'cyl' variable is categorical (rather than continuous).

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(aes(size=factor(cyl),alpha=0.5))
print(pl2)</pre>
```

Warning: Using size for a discrete variable is not advised.

However, it's typically recommended to rather define shapes for categorical variables. In the scatterplot below, we get a different geometric shape for each cylinder type.

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(aes(shape=factor(cyl),size=3))
print(pl2)</pre>
```


Now let's try coloring by cylinder. So we get both shapes and colors based on the levels in the 'cylinder' variable.

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(aes(shape=factor(cyl),color=factor(cyl),size=3))
print(pl2)</pre>
```


Now let's play around with colors.

First, let's color all points blue.

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(color='blue',size=3)
print(pl2)</pre>
```


Let's define colors with HEX color values. This makes it possible to get more specific colors. Color picker websites like this one https://www.color-hex.com/ can come in handy.

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(color='#43e8d8',size=3) # teal color
print(pl2)</pre>
```


Color points by gradient. Here for instance, we can color the scatterplot by 'horsepower', a continuous variable.

```
# data & aesthetics
pl <- ggplot(df,aes(x=wt,y=mpg))

# geometry
pl2 <- pl + geom_point(aes(color=hp),size=3)

# we can specify the color range
pl3 <- pl2 + scale_color_gradient(low='blue',high='red')

print(pl3)</pre>
```


Show a count when we're dealing with categorical data.

Let's categorize the class of vehicles vurses the count of how many times they occur in the dataset.

```
# use the 'mpg' data frame that's built-in ggplot2
df <- mpg

# data & aesthetics
pl <- ggplot(df,aes(x=class))

# geometry
pl2 <- pl + geom_bar()

print(pl2)</pre>
```


Use the bar value to add a 3rd layer of data.

Let's color the bars based off the 'drive' column. This creates a stacked barplot.

```
# data & aesthetics
pl <- ggplot(df,aes(x=class))

# geometry
pl2 <- pl + geom_bar(aes(fill=drv))
print(pl2)</pre>
```


Let's adjust the position adjustment inside the barplot.

Here we create side-by-side bars instead of stacked bars.

```
# data & aesthetics
pl <- ggplot(df,aes(x=class))

# geometry
pl2 <- pl + geom_bar(aes(fill=drv),position = "dodge")
print(pl2)</pre>
```


A different type of positioning within the barplot. Let's show percentages on the bars, rather than counts of instances.

```
# data & aesthetics
pl <- ggplot(df,aes(x=class))

# geometry
pl2 <- pl + geom_bar(aes(fill=drv),position = "fill")
print(pl2)</pre>
```


We graphically depict groups of data through their quartiles. Let's create box plots of 'miles per galon' by 'cylinder' type.

```
# we'll use the 'mtcars' data frame again
df <- mtcars

# data & aesthetics
pl <- ggplot(df,aes(x=factor(cyl),y=mpg))

# geometry
pl2 <- pl + geom_boxplot()
print(pl2)</pre>
```


Flip the coordinates of the boxplot by showing it vertically instead of horizontally.

```
# data & aesthetics
pl <- ggplot(df,aes(x=factor(cyl),y=mpg))

# geometry
pl2 <- pl + geom_boxplot() + coord_flip()
print(pl2)</pre>
```


Color the boxes.

```
# data & aesthetics
pl <- ggplot(df,aes(x=factor(cyl),y=mpg))

# geometry
pl2 <- pl + geom_boxplot(fill='purple')
print(pl2)</pre>
```


Color box plots based on factors of the cylinder variable.

```
# data & aesthetics
pl <- ggplot(df,aes(x=factor(cyl),y=mpg))

# geometry
pl2 <- pl + geom_boxplot(aes(fill=factor(cyl)))
print(pl2)</pre>
```


Now, let's add a theme layer.

```
# data & aesthetics
pl <- ggplot(df,aes(x=factor(cyl),y=mpg))

# geometry
pl2 <- pl + geom_boxplot(aes(fill=factor(cyl))) + theme_light()
print(pl2)</pre>
```


We'll compare two variables from the same dataset.

Let's use a '2D bin' chart to plot a heatmap of movie ratings by year.

```
# use the movies dataset
library(ggplot2movies)

# data & aesthetics
pl <- ggplot(movies,aes(x=year,y=rating))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_bin2d()

print(pl2)</pre>
```


Let's change the default color map.

```
# data & aesthetics
pl <- ggplot(movies,aes(x=year,y=rating))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_bin2d()

# we can specify the color range
pl3 <- pl2 + scale_fill_gradient(low='green',high='red')

print(pl3)</pre>
```


By default, the bin sizes are just c(1,1). We can Control the bin sizes.

```
# data & aesthetics
pl <- ggplot(movies,aes(x=year,y=rating))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_bin2d(binwidth=c(3,1))

# we can specify the color range
pl3 <- pl2 + scale_fill_gradient(low='blue',high='red')

print(pl3)</pre>
```


HEX plot

We can also create a HEX plot instead of a rectangle '2d bin' chart.

Note that the geom_hex() option requires the hexbin package to be installed.

```
# install the `hexbin` package
#install.packages("hexbin")

# data & aesthetics
pl <- ggplot(movies,aes(x=year,y=rating))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_hex()

# we can specify the color range
pl3 <- pl2 + scale_fill_gradient(low='blue',high='red')

print(pl3)</pre>
```


2D Density plot

```
# data & aesthetics
pl <- ggplot(movies,aes(x=year,y=rating))
# geometry: check out the '2D bin' chart
pl2 <- pl + geom_density_2d()
print(pl2)</pre>
```


Learning to deal with coordinates will allow us to resize our plots correctly.

Faceting will allow us to place multiple plots next to one another.

Coordinates

We'll use the 'mpg' bulit-in data set to create a scatterplot.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

print(pl2)</pre>
```


Play around with coordinates in order to set \boldsymbol{x} and \boldsymbol{y} limts.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set x-y limits
pl3 <- pl2 + coord_cartesian(xlim = c(1,4),ylim = c(13,30))
print(pl3)</pre>
```


Set aspect ratio. This ratio is 1:1 by default.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set the 'x to y' aspect ratio to 1/3
pl3 <- pl2 + coord_fixed(ratio= 1/3)

print(pl3)</pre>
```


Faceting

 $First\ create\ a\ normal\ scatterplot.$

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()
print(pl2)</pre>
```


Now let's separate the normal scatterplot into facets based on the number of cylinders.

The . symbol in facet_grid() represents everything.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# separate the normal scatterplot into facets based on the number of cylinders
pl3 <- pl2 + facet_grid(. ~ cyl)

print(pl3)</pre>
```


Another example: facet by drive type.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# separate the normal scatterplot into facets based on the number of cylinders
pl3 <- pl2 + facet_grid(drv ~ .)</pre>
print(pl3)
```


Facet by drive type and the number of cylinders.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=displ,y=hwy))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# separate the normal scatterplot into facets based on the number of cylinders
pl3 <- pl2 + facet_grid(drv ~ cyl)

print(pl3)</pre>
```


Themes allow us to quickly create beautiful looking graphs.

Using built-in themes

Create a standard scatterplot.

```
# use the built-in 'mtcars' dataset
df <- mtcars

# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

print(pl2)</pre>
```


Let's apply a theme layer.

We can set a theme that applies to all our plots like this:

```
theme_set(theme_minimal())
```

Now let's re-plot our basic scatter plot.

```
# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

print(pl2)</pre>
```


Instead, we can manually set a theme for each plot.

```
# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set theme manually
pl3 <- pl2 + theme_dark()

print(pl3)</pre>
```


Accessing more theme options

We can install more themes by installing and calling the ggthemes package.

```
#install.packages("ggthemes")
library(ggthemes)
```

Now we can access additional themes, like the Economist's publications.

```
# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set theme manually
pl3 <- pl2 + theme_economist()

print(pl3)</pre>
```


Imitate the style of the 'fivethirtyeight' blog.

```
# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set theme manually
pl3 <- pl2 + theme_fivethirtyeight()

print(pl3)</pre>
```


Try the Wall Street Journal theme.

```
# data & aesthetics
pl <- ggplot(mtcars,aes(x=wt,y=mpg))

# geometry: check out the '2D bin' chart
pl2 <- pl + geom_point()

# set theme manually
pl3 <- pl2 + theme_wsj()

print(pl3)</pre>
```


##ggplot2 Exercises

For the first few plots, use the mpg dataset.

```
# call necessary libraries
# library(ggplot2)
# library(ggthemes)

# preview the 'mpg' dataset
head(mpg)
```

```
## # A tibble: 6 x 11
     manufacturer model displ year
                                       cyl trans
                                                              cty
                                                                    hwy fl
                                                                               class
##
     <chr>
                  <chr> <dbl> <int> <int> <chr>
                                                      <chr> <int> <int> <chr> <chr>
## 1 audi
                  a4
                          1.8 1999
                                        4 auto(15)
                                                      f
                                                               18
                                                                     29 p
                                                                               compa~
## 2 audi
                          1.8 1999
                                        4 manual(m5) f
                                                               21
                                                                     29 p
                                                                               compa~
                  a4
                                                                     31 p
## 3 audi
                  a4
                          2
                               2008
                                        4 manual(m6) f
                                                               20
                                                                               compa~
## 4 audi
                          2
                               2008
                  a4
                                        4 auto(av)
                                                      f
                                                               21
                                                                     30 p
                                                                               compa~
## 5 audi
                          2.8 1999
                                        6 auto(15)
                  a4
                                                      f
                                                               16
                                                                      26 p
                                                                               compa~
## 6 audi
                  a4
                          2.8 1999
                                        6 manual(m5) f
                                                               18
                                                                     26 p
                                                                               compa~
```

Ex1: Histogram of hwy mpg values:

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=hwy))

# geometry
#pl2 <- pl + geom_histogram(binwidth = 0.1, color='red',fill='pink',alpha=0.4)
pl2 <- pl + geom_histogram(fill='red',alpha=0.5)

# add labels
#pl3 <- pl2 + xlab('Highway') + ylab('Count')
print(pl2)</pre>
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Ex2: Barplot of car counts per manufacturer with color fill defined by cyl count.

```
# data & aesthetics
pl <- ggplot(mpg,aes(x=manufacturer))

# geometry
#pl2 <- pl + geom_bar(aes(fill=factor(cyl)),position = "fill")
pl2 <- pl + geom_bar(aes(fill=factor(cyl)))

# rotate labels by 90 degrees on x-asis for readability
pl3 <- pl2 + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))</pre>
```


Switch now to use the txhousing dataset that comes with ggplot2

head(txhousing)

```
## # A tibble: 6 x 9
##
              year month sales
                                  volume median listings inventory date
     city
##
     <chr>>
              <int> <int> <dbl>
                                    <dbl>
                                           <dbl>
                                                     <dbl>
                                                               <dbl> <dbl>
                                 5380000
                                           71400
                                                                  6.3 2000
## 1 Abilene
              2000
                        1
                             72
                                                       701
                        2
## 2 Abilene
              2000
                             98
                                 6505000
                                           58700
                                                       746
                                                                 6.6 2000.
## 3 Abilene
              2000
                        3
                            130
                                 9285000
                                           58100
                                                       784
                                                                 6.8 2000.
## 4 Abilene
              2000
                             98
                                 9730000
                                           68600
                                                       785
                                                                  6.9 2000.
## 5 Abilene
              2000
                        5
                            141 10590000
                                           67300
                                                       794
                                                                 6.8 2000.
## 6 Abilene
              2000
                            156 13910000
                                           66900
                                                       780
                                                                  6.6 2000.
```

Ex3: Create a scatterplot of volume versus sales. Afterwards, play around with alpha and color arguments to clarify information.

```
# data & aesthetics
pl <- ggplot(txhousing,aes(x=sales,y=volume))
# geometry
#pl2 <- pl + geom_point(aes(shape=factor(cyl),color=factor(cyl),size=3))</pre>
```

```
pl2 <- pl + geom_point(color="blue",alpha=0.2) + theme_gray()
print(pl2)</pre>
```

Warning: Removed 568 rows containing missing values (geom_point).

Ex4.: Add a smooth fit line to the scatterplot from above. Hint: You may need to look up geom_smooth()

```
# data & aesthetics
pl <- ggplot(txhousing,aes(x=sales,y=volume))

# geometry
#pl2 <- pl + geom_point(aes(shape=factor(cyl),color=factor(cyl),size=3))
pl2 <- pl + geom_point(color="blue",alpha=0.2) + theme_gray()

# add a smooth fit line
#pl3 <- pl2 + geom_smooth(method = 'loess',color="red",size=1.5)
pl3 <- pl2 + geom_smooth(color="red",size=1.5,se=TRUE)

print(pl3)</pre>
```

```
## 'geom_smooth()' using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
```

Warning: Removed 568 rows containing non-finite values (stat_smooth).

Warning: Removed 568 rows containing missing values (geom_point).

