7.2 初等积分法

- 一、可分离变量微分方程
- 二、齐次方程
- 三、一阶线性微分方程
- 四、伯努利方程
- 五、可降阶高阶微分方程

一、可分离变量微分方程——分离变量法

形式:
$$\frac{dy}{dx} = f(x)g(y)$$

解法: $(1) g(y) \neq 0$.分离变量

$$\frac{1}{g(y)}dy = f(x)dx$$

两边积分
$$\int \frac{1}{g(y)} dy = \int f(x) dx$$
$$F(x)$$

则有
$$G(y) = F(x) + C$$
 ——隐式通解

(2) g(y) = 0, 即g(y) = 0有实根 y_1, y_2, \dots, y_n . 则 $y(x) \equiv y_1, y(x) \equiv y_2, \dots, y(x) \equiv y_n$ 都是该方程的解 (特解).

故求原方程的通解则求出 G(y) = F(x) + C 即可.若要得到所有解还需考虑g(y) = 0所得的特解. 此外,特解 $y(x) \equiv y_1, y(x) \equiv y_2, \cdots, y(x) \equiv y_n$ 可能包含在通解G(y) = F(x) + C 中.

例1. 求微分方程
$$\frac{dy}{dx} = 3x^2y$$
 的通解.

解: (1)
$$y \neq 0$$
时分离变量得 $\frac{\mathrm{d}y}{y} = 3x^2 \, \mathrm{d}x$

两边积分
$$\int \frac{\mathrm{d}y}{y} = \int 3x^2 \, \mathrm{d}x$$

得
$$\ln |y| = x^3 + C_1$$

(2)
$$y = 0$$
 为原方程特解 综上所述, 通解为 $y = Ce^{x^3}$ (C 为任意常数)

例2. 解初值问题
$$\begin{cases} xydx + (x^2 + 1) dy = 0 \\ y(0) = 1 \end{cases}$$

解: (1)
$$y \neq 0$$
时分离变量得 $\frac{dy}{y} = -\frac{x}{1+x^2} dx$

两边积分得
$$\ln |y| = \ln \frac{1}{\sqrt{x^2 + 1}} + \ln |C|$$

即
$$y\sqrt{x^2+1}=C$$
 $(C为常数, C \neq 0)$

(2) y = 0 为原方程特解

综上所述,原方程所有解为 $y\sqrt{x^2+1}=C$ (C 为任意常数)

由初始条件得 C=1,故所求特解为

$$y\sqrt{x^2+1}=1$$

练习: 求方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{x+y}$$
 的通解.

解法 1 分离变量 $e^{-y} dy = e^x dx$

$$-e^{-y} = e^{x} + C$$

$$(e^{x} + C)e^{y} + 1 = 0 \quad (C < 0)$$

解法 2 令 u = x + y, 则 u' = 1 + y'

故有
$$u' = 1 + e^{u}$$
 积分 $\int \frac{du}{dt} = x + e^{u}$

$$\int \frac{\mathrm{d}\,u}{1+e^u} = x + C$$

$$u - \ln\left(1 + e^u\right) = x + C$$

所求通解: $\ln(1+e^{x+y}) = y - C$ (C为任意常数)

 $\int \frac{(1+e^u)-e^u}{1+e^u} \, \mathrm{d} u$

例4. 已知放射性元素铀的衰变速度与当时未衰变原子的含量 M 成正比,已知 t=0 时铀的含量为 M_0 ,求在衰变过程中铀含量 M(t) 随时间 t 的变化规律.

解: 根据题意,有
$$\begin{cases} \frac{\mathrm{d}M}{\mathrm{d}t} = -\lambda M & (\lambda > 0) \\ M|_{t=0} = M_0 & (\text{初始条件}) \end{cases}$$

对方程分离变量,然后积分: $\int \frac{\mathrm{d}M}{M} = \int (-\lambda) \,\mathrm{d}t$

得
$$\ln M = -\lambda t + \ln C$$
,即 $M = Ce^{-\lambda t}$ 利用初始条件,得 $C = M_0$ 故所求铀的变化规律为 $M = M_0 e^{-\lambda t}$.

例5. 设降落伞从跳伞塔下落后所受空气阻力与速度 成正比,并设降落伞离开跳伞塔时(t=0)速度为0,求 降落伞下落速度与时间的函数关系.

解: 根据牛顿第二定律列方程 $m\frac{\mathrm{d}v}{\mathrm{d}t} = mg - kv$ 初始条件为 $v|_{t=0}=0$ 对方程分离变量, 然后积分: $\int \frac{\mathrm{d}v}{mg - kv} = \int \frac{\mathrm{d}t}{m}$ 得 $-\frac{1}{k}\ln(mg-kv) = \frac{t}{m} + C$ (此处 mg-kv > 0) 利用初始条件,得 $C = -\frac{1}{k} \ln(mg)$ k $v \approx \frac{mg}{k}$ $v \approx \frac{mg}{k}$

解微分方程应用题的方法和步骤

(1) 找出事物的共性及可贯穿于全过程的规律列方程.

常用的方法:

- 1) 根据几何关系列方程
- 2) 根据物理规律列方程
- 3) 根据微量分析平衡关系列方程
- (2) 利用反映事物个性的特殊状态确定定解条件.
- (3) 求通解, 并根据定解条件确定特解.

二、齐次方程

形如
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(\frac{y}{x})$$
 的方程叫做**齐次方程**.

解法: 令
$$u = \frac{y}{x}$$
,则 $y = ux$, $\frac{dy}{dx} = u + x \frac{du}{dx}$,

代入原方程得
$$u + x \frac{\mathrm{d} u}{\mathrm{d} x} = \varphi(u)$$

分离变量:
$$\frac{\mathrm{d}\,u}{\varphi(u)-u} = \frac{\mathrm{d}\,x}{x}$$

两边积分,得
$$\int \frac{\mathrm{d} u}{\varphi(u) - u} = \int \frac{\mathrm{d} x}{x}$$

积分后再用 $\frac{y}{x}$ 代替 u,便得原方程的通解.

例1. 解微分方程
$$y' = \frac{y}{x} + \tan \frac{y}{x}$$
.

解: 令
$$u = \frac{y}{x}$$
, 则 $y' = u + xu'$, 代入原方程得 $u + xu' = u + \tan u$ (7.2.1)

(1)
$$\tan u \neq 0$$
时分离变量
$$\frac{\cos u}{\sin u} du = \frac{dx}{x}$$

两边积分
$$\int \frac{\cos u}{\sin u} \, \mathrm{d}u = \int \frac{\mathrm{d}x}{x}$$

得
$$\ln |\sin u| = \ln |x| + \ln |C|$$
,即 $\sin u = Cx$

从而
$$\sin \frac{y}{x} = Cx \ (C 为常数, C \neq 0)$$

(2) $\tan u = 0$ 时, $u = k\pi$ 为方程(7.2.1)的特解,故 原方程有特解 $y = k\pi x (k = 0, \pm 1, \pm 2, ...,)$.

综上,原方程所有解为
$$\sin \frac{y}{x} = Cx(C)$$
为任意常数)

例2. 解微分方程 $(y^2 - 2xy) dx + x^2 dy = 0$.

解: 方程变形为
$$\frac{dy}{dx} = 2\frac{y}{x} - (\frac{y}{x})^2$$
, $\Rightarrow u = \frac{y}{x}$, 则有 $u + xu' = 2u - u^2$ (7.2.2)

 $(1)u^2 - u \neq 0$ 时分离变量

$$\frac{\mathrm{d}u}{u^2 - u} = -\frac{\mathrm{d}x}{x} \qquad \exists \mathbb{P}\left(\frac{1}{u - 1} - \frac{1}{u}\right) \mathrm{d}u = -\frac{\mathrm{d}x}{x}$$

积分得
$$\ln \left| \frac{u-1}{u} \right| = -\ln |x| + \ln |C|$$
, 即 $\frac{x(u-1)}{u} = C$

代回原变量x(y-x) = Cy (C 为常数, $C \neq 0$)

 $(2)u^2 - u = 0$ 时,方程(7.2.2)有特解u = 0, u = 1. 故原方程有特解 y = 0, y = x

综上, 原方程的所有解为 x(y-x) = Cy(C) 为任意常数) 和 y=0.

例3. 求下述微分方程的通解:

$$y' = \sin^2(x - y + 1)$$

$$u' = 1 - y'$$

故有
$$1-u' = \sin^2 u$$

$$\sec^2 u \, \mathrm{d} u = \mathrm{d} x$$

解得
$$\tan u = x + C$$

所求通解: tan(x-y+1) = x+C (C为任意常数)

例 求方程 $x + yy' = (x^2 + y^2 + 1) \tan x$ 的通解解 作代换 $u = x^2 + y^2$, 则 u' = 2x + 2yy',方程变为 $\frac{1}{2}u' = (1 + u) \tan x$.

分离变量得

$$\frac{1}{2(1+u)}du = \tan x dx, \quad (u \ge 0)$$

两边积分得

$$\frac{1}{2}\ln(1+u) = -\ln|\cos x| + \frac{1}{2}\ln C,$$

故通解为

$$(1 + x^2 + y^2)\cos^2 x = C.$$

例3. 在制造探照灯反射镜面时,要求点光源的光线反 射出去有良好的方向性, 试求反射镜面的形状.

解: 设光源在坐标原点, 取x 轴平行于光线反射方向, 则反射镜面由曲线 y = f(x) 绕 x 轴旋转而成.

过曲线上任意点 M(x, y) 作切线 MT,

可得
$$\angle OMA = \angle OAM = \alpha$$

从而
$$AO = OM$$

$$\overrightarrow{\text{min}} \ AO = AP - OP = y \cot \alpha - x = \frac{y}{y'} - x$$

$$OM = \sqrt{x^2 + y^2}$$

于是得微分方程:
$$\frac{y}{y'} - x = \sqrt{x^2 + y^2}$$

15

利用曲线的对称性,不妨设y > 0,于是方程化为

$$\frac{dx}{dy} = \frac{x}{y} + \sqrt{1 + (\frac{x}{y})^2}$$
 (齐次方程)
$$\downarrow \Leftrightarrow v = \frac{x}{y}, \quad \text{則 } x = yv, \quad \frac{dx}{dy} = v + y\frac{dv}{dy}$$

$$y\frac{dv}{dv} = \sqrt{1 + v^2}$$

积分得
$$\ln(v + \sqrt{1 + v^2}) = \ln y - \ln C$$
 $v + \sqrt{1 + v^2} = \frac{y}{C}$ 故有 $\frac{y^2}{C^2} - \frac{2yv}{C} = 1$ $(\frac{y}{C} - v)^2 = 1 + v^2$

$$\frac{y^2}{C^2} - \frac{2yv}{C} = 1$$

代入
$$yv = x$$
, 得 $y^2 = 2C(x + \frac{C}{2})$ (抛物线)

故反射镜面为旋转抛物面.

说明:
$$y^2 = 2C(x + \frac{C}{2})$$

若已知反射镜面的底面直径为 d, 顶到底的距离为 h,则将

$$x + \frac{C}{2} = h , \quad y = \frac{d}{2}$$

这时旋转曲面方程为

$$y^2 + z^2 = \frac{d^2}{4h} \left(x + \frac{d^2}{16h} \right)$$

内容小结

1. 微分方程的概念

微分方程; 阶; 定解条件; 解; 通解; 特解

说明: 通解不一定是方程的全部解.

例如,方程 (x+y)y'=0 有解

$$y = -x$$
 及 $y = C$

后者是通解,但不包含前一个解.

2. 可分离变量方程的求解方法:

分离变量后积分; 根据定解条件定常数.

3. 齐次方程----化为可分离变量方程

思考与练习

求下列方程的通解:

(1)
$$(x + xy^2) dx - (x^2y + y) dy = 0$$

(2)
$$y' + \sin(x + y) = \sin(x - y)$$

提示: (1) 分离变量
$$\frac{y}{1+y^2} dy = \frac{x}{1+x^2} dx$$

(2) 方程变形为 $y' = -2\cos x \sin y$

三、一阶线性微分方程

一阶线性微分方程标准形式:
$$\frac{dy}{dx} + P(x)y = Q(x)$$

若
$$Q(x) \equiv 0$$
,称为**齐次方程**;

若
$$Q(x)$$
 \neq 0,称为**非齐次方程**.

1. 解齐次方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = 0$$

分离变量
$$\frac{\mathrm{d}y}{y} = -P(x)\mathrm{d}x$$

两边积分得
$$\ln |y| = -\int P(x) dx + \ln |C|$$

故通解(全体解)为 $y = Ce^{-\int P(x)dx}$ (C为任意常数).

2. 解非齐次方程
$$\frac{dy}{dx} + P(x)y = Q(x)$$

解: 在方程两边同时乘以 $e^{\int P(x)dx}$ (注意这里 $\int P(x)dx$ 只需取 P 的一个原函数即可, 无需加上任意常数.) 则原方程变为

$$y'(x)e^{\int P(x)dx} + P(x)y(x)e^{\int P(x)dx} = Q(x)e^{\int P(x)dx}.$$

即

$$y(x)e^{\int P(x)dx} = \int Q(x)e^{\int P(x)dx}dx + C.$$

此处 $\int Q(x)e^{\int P(x)dx}dx$ 也只需取 $Q(x)e^{\int P(x)dx}$ 的一个原函数.

从而原方程的通解(全体解)为

$$y(x) = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx}dx + C \right].$$

2. 解非齐次方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

或用**常数变易法**:已知相应齐次方程的通解为 $y = Ce^{-\int P(x)dx}$.

设原方程有如下形式的解

$$y(x) = u(x)e^{-\int P(x) dx}, (*) \quad \text{II}$$

$$u'e^{-\int P(x)dx} - P(x)ue^{-\int P(x)dx} + P(x)ue^{-\int P(x)dx} = Q(x)$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = Q(x)e^{\int P(x)\,\mathrm{d}x}$$

两端积分得 $u = \int Q(x)e^{\int P(x)dx} dx + C$, 带入(*) 则得

通解(全体解)为
$$y = e^{-\int P(x) dx} \left[\int Q(x) e^{\int P(x) dx} dx + C \right]$$

(1)(2)两处应取P(x)的同一个原函数

(1) 用常数变易法求解非齐次方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

时,先求出相应齐次方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = 0$$

的通解 $y = Ce^{-\int P(x)dx}$,再将其中的常数**C**变成函数:

$$y(x) = u(x)e^{-\int P(x) dx},$$

将上式带入非齐次方程求出**所有**满足原方程的u(x)即得通解.

(2) 通解公式中三处的不定积分积出后无需加任意常数.

此外该公式两处出现 $\int P(x)dx$ 的地方需取同一个原函数.

例1. 解方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
.

解: 先解
$$\frac{dy}{dx} - \frac{2y}{x+1} = 0$$
,即 $\frac{dy}{y} = \frac{2dx}{x+1}$

积分得
$$\ln |y| = 2 \ln |x+1| + \ln |C|$$
, 即 $y = C(x+1)^2$

用常数变易法求通解. 令
$$y = u(x) \cdot (x+1)^2$$
,则

$$y' = u' \cdot (x+1)^2 + 2u \cdot (x+1)$$

代入非齐次方程得
$$u' = (x+1)^{\frac{1}{2}}$$

解得
$$u = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$$

故原方程通解为
$$y = (x+1)^2 \left[\frac{2}{3} (x+1)^{\frac{3}{2}} + C \right]$$

例2. 求方程
$$\frac{\mathrm{d}x}{\sqrt{xy}} + \left[\frac{2}{y} - \sqrt{\frac{x}{y^3}}\right] \mathrm{d}y = 0$$
 的通解.

解: 注意 x, y 同号, 当 x > 0 时, $\frac{\mathrm{d}x}{\sqrt{x}} = 2\mathrm{d}\sqrt{x}$, 故方程可

变形为
$$2\frac{d\sqrt{x}}{dy} - \frac{\sqrt{x}}{y} = -\frac{2}{\sqrt{y}}$$
 这是以 \sqrt{x} 为因变量, y为

一阶线性方程通解公式,得

自变量的一阶线性方程

$$\sqrt{x} = e^{\int \frac{dy}{2y}} \left[\int -\frac{1}{\sqrt{y}} e^{-\int \frac{dy}{2y}} dy + \ln|C| \right]$$

$$= \sqrt{y} \left[-\int \frac{1}{\sqrt{y}} \cdot \frac{1}{\sqrt{y}} dy + \ln|C| \right] = \sqrt{y} \ln \left| \frac{C}{y} \right|$$

所求通解为 $y e^{\sqrt{\frac{x}{y}}} = C (C \neq 0)$

例3 如图所示, 平行于 y 轴的动直线被曲线 y = f(x)与 $y = x^3$ ($x \ge 0$)截下的线段PQ之长数值上等于阴影部分的面积, 求曲线 f(x)

解

$$\int_0^x y dx = x^3 - y,$$

两边求导得 $y' + y = 3x^2$,

解得
$$y = e^{-\int dx} \left[C + \int 3x^2 e^{\int dx} dx \right]$$

= $Ce^{-x} + 3x^2 - 6x + 6$,

由 $y|_{y=0}=0$, 得 C=-6,

所求曲线为 $y = 3(-2e^{-x} + x^2 - 2x)$.

四、伯努利 (Bernoulli)方程

伯努利方程的标准形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \quad (n \neq 0, 1)$$

解法: 以 y^n 除方程两边,得

$$y^{-n} \frac{dy}{dx} + P(x)y^{1-n} = Q(x)$$

$$\Rightarrow z = y^{1-n}, \quad \text{则} \frac{dz}{dx} = (1-n)y^{-n} \frac{dy}{dx}$$

$$\frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x) (线性方程)$$

求出此方程通解后, 换回原变量即得伯努利方程的通解.

例4. 求方程
$$\frac{dy}{dx} + \frac{y}{x} = a(\ln x)y^2$$
的通解.

解: 令 $z = y^{-1}$,则方程变形为

$$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -a \ln x$$

其通解为 $z = e^{\int \frac{1}{x} dx} \left[\int (-a \ln x) e^{-\int \frac{1}{x} dx} dx + C \right]$

$$= x \left[C - \frac{a}{2} (\ln x)^2 \right]$$

将 $z = y^{-1}$ 代入,得原方程通解:

$$yx\left[C-\frac{a}{2}(\ln x)^2\right]=1$$

内容小结

1. 一阶线性方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

方法1 先解齐次方程,再用常数变易法.

方法2 用通解公式

$$y = e^{-\int P(x)dx} \left[\int Q(x) e^{\int P(x)dx} dx + C \right]$$

2. 伯努利方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \quad (n \neq 0, 1)$$

 $\Rightarrow u = y^{1-n}$, 化为线性方程求解.

思考与练习

判别下列方程类型:

提示:

$$(1) x\frac{\mathrm{d}y}{\mathrm{d}x} + y = xy\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\longrightarrow \frac{y-1}{y} dy = \frac{dx}{x}$$

可分离 变量方程

(2)
$$x \frac{\mathrm{d}y}{\mathrm{d}x} = y (\ln y - \ln x)$$

$$\longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} \ln \frac{y}{x}$$

齐次方程

$$(3) (y-x^3) dx - 2x dy = 0 \longrightarrow$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{2x}y = -\frac{x^2}{2}$$
 线性方程

(4)
$$2y dx + (y^3 - x) dy = 0 \longrightarrow \frac{dx}{dy} - \frac{1}{2y}x = -\frac{y^2}{2}$$
 线性方程

(5)
$$(y \sin x - 2) y dx = x dy \longrightarrow \frac{dy}{dx} + \frac{2}{x} y = \frac{\sin x}{x} y^2$$
 伯努利

例题

1. 求一连续可导函数 f(x) 使其满足下列方程:

$$f(x) = \sin x - \int_0^x f(x-t) dt$$
 $\Leftrightarrow u = x-t$

提示:
$$f(x) = \sin x - \int_0^x f(u) du$$
则有
$$\begin{cases} f'(x) + f(x) = \cos x \\ f(0) = 0 \end{cases}$$

利用公式可求出

$$f(x) = \frac{1}{2}(\cos x + \sin x - e^{-x})$$

2. 设有微分方程 y' + y = f(x), 其中

$$f(x) = \begin{cases} 2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

试求此方程满足初始条件 $y|_{x=0}=0$ 的连续解.

解: 1) 先解定解问题 $\begin{cases} y' + y = 2, & 0 \le x \le 1 \\ y|_{x=0} = 0 \end{cases}$

利用通解公式,得

$$y = e^{-\int dx} \left(\int 2e^{\int dx} dx + C_1 \right)$$
$$= e^{-x} (2e^x + C_1) = 2 + C_1 e^{-x}$$

利用 $y|_{x=0} = 0$ 得 $C_1 = -2$

故有
$$y = 2 - 2e^{-x} \quad (0 \le x \le 1)$$

2) 再解定解问题
$$\begin{cases} y' + y = 0, x > 1 \\ y|_{x=1} = y(1) = 2 - 2e^{-1} \end{cases}$$

此齐次线性方程的通解为 $y = C_2 e^{-x}$ $(x \ge 1)$

利用衔接条件得 $C_2 = 2(e-1)$

因此有

$$y = 2(e-1)e^{-x} \quad (x \ge 1)$$

3) 原问题的解为

$$y = \begin{cases} 2(1 - e^{-x}), & 0 \le x \le 1 \\ 2(e - 1)e^{-x}, & x \ge 1 \end{cases}$$

五、可降阶高阶微分方程

1、
$$y^{(n)} = f(x)$$
 型的微分方程

2、
$$y'' = f(x, y')$$
型的微分方程

3、
$$y'' = f(y, y')$$
型的微分方程

1、
$$y^{(n)} = f(x)$$
 型的微分方程

令
$$z = y^{(n-1)}$$
,则 $\frac{\mathrm{d}z}{\mathrm{d}x} = y^{(n)} = f(x)$,因此
$$z = \int f(x) \, \mathrm{d}x + C_1$$

即 $y^{(n-1)} = \int f(x) \, \mathrm{d}x + C_1$

同理可得
$$y^{(n-2)} = \int \left[\int f(x) dx + C_1 \right] dx + C_2$$

= $\int \left[\int f(x) dx \right] dx + C_1 x + C_2$

依次通过 n 次积分, 可得含 n 个任意常数的通解.

例1. 求解 $y''' = e^{2x} - \cos x$.

解:
$$y'' = \int (e^{2x} - \cos x) dx + C_1'$$

 $= \frac{1}{2}e^{2x} - \sin x + C_1'$
 $y' = \frac{1}{4}e^{2x} + \cos x + C_1'x + C_2$
 $y = \frac{1}{8}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$
(此处 $C_1 = \frac{1}{2}C_1'$)

2、y'' = f(x, y') 型的微分方程 (不显含y)

设 y' = p(x), 则 y'' = p', 原方程化为一阶方程

$$p' = f(x, p)$$

设其通解为 $p = \varphi(x, C_1)$

则得 $y' = \varphi(x, C_1)$

再一次积分, 得原方程的通解 $y = \int \varphi(x, C_1) dx + C_2$

注: $y^{(n)}=f(x, y^{(k)},..., y^{(n-1)})$ 型

因变量换元: $p = y^{(k)}$

降阶为 $p^{(n-k)} = f(x, p, \dots, p^{(n-k-1)})$ 。

例2. 求解
$$\begin{cases} (1+x^2)y'' = 2xy' \\ y|_{x=0} = 1, \quad y'|_{x=0} = 3 \end{cases}$$

解: 设 y' = p(x), 则 y'' = p', 代入方程得

$$(1+x^2)p' = 2xp \xrightarrow{\text{分离变量}} \frac{dp}{p} = \frac{2xdx}{(1+x^2)}$$

积分得 $\ln |p| = \ln(1+x^2) + \ln |C_1|$, 即 $p = C_1(1+x^2)$

利用
$$y'|_{x=0} = 3$$
,得 $C_1 = 3$,于是有 $y' = 3(1+x^2)$

两端再积分得 $y = x^3 + 3x + C_2$

利用 $y|_{x=0} = 1$, 得 $C_2 = 1$, 因此所求特解为

$$y = x^3 + 3x + 1$$

3、y'' = f(y, y') 型的微分方程 (不显含自变量x)

故方程化为
$$p\frac{\mathrm{d}p}{\mathrm{d}y} = f(y,p)$$

设其通解为 $p = \varphi(y, C_1)$, 即得

$$y' = \varphi(y, C_1)$$

分离变量后积分, 得原方程的通解

$$\int \frac{\mathrm{d}y}{\varphi\left(y,C_{1}\right)} = x + C_{2}$$

例4. 求解 $yy'' - y'^2 = 0$.

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}p}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} = p \frac{\mathrm{d}p}{\mathrm{d}y}$

代入方程得
$$yp\frac{dp}{dy} - p^2 = 0$$
, 即 $\frac{dp}{p} = \frac{dy}{y}$

两端积分得 $\ln |p| = \ln |y| + \ln |C_1|$, 即 $p = C_1 y$,

$$\therefore y' = C_1 y \quad (一阶线性齐次方程)$$

故所求通解为
$$y = C_2 e^{C_1 x}$$

例5. 解初值问题
$$\begin{cases} y'' - e^{2y} = 0 \\ y|_{x=0} = 0, \quad y'|_{x=0} = 1 \end{cases}$$

解: 令
$$y' = p(y)$$
, 则 $y'' = p \frac{dp}{dy}$, 代入方程得
$$p dp = e^{2y} dy$$

积分得
$$\frac{1}{2}p^2 = \frac{1}{2}e^{2y} + C_1$$

利用初始条件, 得 $C_1 = 0$, 根据 $p|_{y=0} = y'|_{x=0} = 1 > 0$, 得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p = e^y$$

积分得 $-e^{-y} = x + C_2$,再由 $y|_{x=0} = 0$,得 $C_2 = -1$ 故所求特解为 $1 - e^{-y} = x$

例6. 设函数 y(x) ($x \ge 0$) 二阶可导,且 y'(x) > 0, y(0) = 1,过曲线 y = y(x)上任一点 P(x, y) 作该曲线的 切线及 x 轴的垂线,上述两直线与 x 轴围成的三角形面积记为 S_1 ,区间[0, x]上以 y(x)为曲边的曲边梯形面积记为 S_2 ,且 $2S_1 - S_2 \equiv 1$,求 y = y(x)满足的方程.

解: 因为y(0) = 1, y'(x) > 0, 所以y(x) > 0.

设曲线y = y(x)在点P(x, y)处的切线倾角为 α ,于是

$$S_1 = \frac{1}{2} y^2 \cot \alpha = \frac{y^2}{2 y'}$$
$$S_2 = \int_0^x y(t) dt$$

利用
$$2S_1 - S_2 = 1$$
, 得 $\frac{y^2}{y'} - \int_0^x y(t) dt = 1$

两边对 x 求导, 得 $yy'' = (y')^2$

定解条件为

$$y(0) = 1, \quad y'(0) = 1$$

令
$$y' = p(y)$$
,则 $y'' = p \frac{dp}{dy}$, 方程化为
$$yp \frac{dp}{dy} = p^2 \longrightarrow \frac{dp}{p} = \frac{dy}{y}$$

$$yp\frac{\mathrm{d}p}{\mathrm{d}y} = p^2 \longrightarrow \frac{\mathrm{d}p}{p} = \frac{\mathrm{d}y}{y}$$

解得 $p = C_1 y$, 利用定解条件得 $C_1 = 1$, 再解 y' = y, 得 $y = C_2 e^x$, 再利用 y(0) = 1 得 $C_2 = 1$, 故所求曲线方程为 $y = e^x$

内容小结

可降阶微分方程的解法 ——降阶法

1.
$$y^{(n)} = f(x)$$
 逐次积分

3.
$$y'' = f(y, y')$$

$$\Leftrightarrow y' = p(y), \quad \text{if } y'' = p \frac{dp}{dy}$$

思考与练习

1. 方程 y'' = f(y') 如何代换求解?

一般说, 用前者方便些.

有时用后者方便.

- 2. 解二阶可降阶微分方程初值问题需注意哪些问题?
 - 答: (1) 一般情况, 边解边定常数计算简便.
 - (2) 遇到开平方时, 要根据题意确定正负号.

例题 设物体 A 从点(0,1)出发,以大小为常数 v的速度沿y轴正向运动,物体B从(-1,0)出发,速度 大小为 2v, 方向指向A, 试建立物体 B 的运动轨迹应满 足的微分方程及初始条件.

提示: 设 t 时刻 B 位于 (x, y), 如图所示, 则有

$$y' = \frac{1 + vt - y}{-x}$$

去分母后两边对 x 求导, 得

$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -v\frac{\mathrm{d}t}{\mathrm{d}x}$$

又由于
$$2v = \frac{ds}{dt} = \sqrt{1 + y'^2} \frac{dx}{dt}$$

弧微分
$$ds = \sqrt{1 + {y'}^2} dx$$

$$\therefore \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2v} \sqrt{1 + (\frac{\mathrm{d}y}{\mathrm{d}x})^2}$$

代入 ① 式得所求微分方程:

$$x\frac{d^2y}{dx^2} + \frac{1}{2}\sqrt{1 + y'^2} = 0$$

其初始条件为

$$y|_{x=-1}=0, y'|_{x=-1}=1$$

