Step-1

Consider Ax = b has at least one solution.

The objective is to show that the only solution to $A^T y = 0$ is y = 0.

If Ax = b has at least one solution, to show that the only solution to $A^Ty = 0$ is y = 0.

Let A be an n by n matrix.

Suppose that Ax = b has at least one solution x for every b if and only if the columns span \mathbb{R}^n .

Step-2

The vector b can be expressed as a combination of the columns of A if and only if the system Ax = b is solvable.

More over all columns of A are linearly independent,

The number of columns in matrix A is n.

Hence, the dimension of column A is n.

$$\dim(\mathbf{C}(A)) = n$$

If columns of A are linearly independent then the rank of A is n.

$$\operatorname{rank}(A) = n$$

Step-3

By a known result,

 $\dim(\mathbf{N}(A)) + \dim(\mathbf{C}(A)) = \text{Number of columns of } A$

 $\dim(\mathbf{N}(A)) + n = n$

 $\dim(\mathbf{N}(A)) = 0$

Step-4

Let A be an n by n matrix.

Then the transpose matrix A^T is also n by n matrix.

Rank of A = n

rank of
$$A^{T} = n$$

$$\dim(\mathbf{N}(A^{T})) = n$$

Step-5

Therefore, the dimension of nullspace A^T is equal to the dimension of nullspace A.

$$\dim\left(\mathbf{N}\left(A^{T}\right)\right) = \dim\left(\mathbf{N}\left(A\right)\right)$$

$$\dim(\mathbf{N}(A^T)) = 0$$
 Since $\dim(\mathbf{N}(A)) = 0$

Therefore, $A^T y = 0$ has only solution y = 0.