

Tranzistoru bipolar

Amplificarea este procesul de mărire liniară a amplitudinii unui semnal electric și, totodată, una dintre principalele aplicații ale tranzistoarelor. Acestea produc o amplificarea a curentului, deoarece curentul de colector (IC) este egal cu curentul de bază (IB) înmulțit cu câștigul în curent (β) care este de obicei de ordinal 102:

$$IC = \beta IB$$

Curentul din baza unui tranzistor este foarte mic în comparație cu curenții de emitor și de colector.

Din această cauză:

$$IC \cong IE$$

• SCHEMA ELECTRICA

- Conexiunea bază comună: intrarea se aplică în emitor (E)
 - ieșirea se citește de pe colector(C)
- Condensatoare se folosesc pentru separarea semnalului variabil de cel continuu la ieşire.

Schema electrică echivalentă de curent continuu

Punctul static de funcționare (PSF)

Folosind Teorema lui Thévenin pentru rezistențele serie din baza tranzistoului, rezultă că:

RTH = RB1 || RB2

VTH = RB2RB1 + RB2VCC

Din teorema lui Kirchhoff pentru tensiuni în bucla I rezultă:

VTH = IBRTH + VBE + IERE

VBE≅0.7 *V*

 $IE = (\beta + 1)IB$

 $VTH = IB[RTH + (\beta + 1)RE] + VBE$

 $IB = VTH - VBERTH + (\beta + 1)RE$

 $IC = \beta IB$

Din teorema lui Kirchhoff pentru tensiuni în bucla II rezultă:

VCC= ICRC+VCE+ IERE

 $IC \cong IE\ VCC = IC\ (RC + RE) + VCE$

VCE = VCC - IC(RC + RE)

Punctul static de funcționare: PSF (*IC*, *VCE*)

Schema electrică echivalentă de curent alternativ

Amplificarea în tensiune:

```
Av = vo/vi
vo=-iCRC; vin=-iBrBE
Rezultă că:
Av = -iCRC/-iBrBE; iC = \beta iB
Av = \beta iBRCi/BrBE; gm = \beta/rBE-
transconductanța
Av = gmRC
```

semnul + arată că tensiunea din colector este în fază cu cea din emitor (defazaj 0°). Amplificarea in curent:

Ai = io/ii $io = iC = \beta iB$ $ii = (\beta + 1)iB - iB = \beta iB$ Rezultă:

Ai=1

Rezistența de intrare:

$$Ri = RE \mid \mid rBE \mid$$

Se observă că Ri < rBE, care este cea mai mica rezistență din circuit (zeci , până la sute de Ω).

Rezistența de ieșire:

$$Ro = RC$$

Rezistența de ieșire ia valori de ordinul $k\Omega$, adică foarte mari față de cele ale rezistenței de intrare.

Așadar, circuitul nu face adaptare de impedanță

Exemplul in mathlab

Pagina de inceput

Graficele impreuna cu circuitu

