# $\Pi\Lambda H10$

ΕΝΟΤΗΤΑ 1: Εισαγωγή στους Η/Υ

Μάθημα 1.2: Πράξεις στα Συστήματα Αρίθμησης

Δημήτρης Ψούνης





# Περιεχόμενα Μαθήματος

#### Α. Θεωρία

- 1. Πρόσθεση στα Συστήματα Αρίθμησης
  - Πρόσθεση στο Δεκαδικό Σύστημα 1.
  - Πρόσθεση στο Δυαδικό Σύστημα
  - Πρόσθεση στο Οκταδικό Σύστημα
  - Πρόσθεση στο Δεκαεξαδικό Σύστημα
  - 5. Πρόσθεση σε Άλλα Συστήματα

#### 2. Αφαίρεση στα Συστήματα Αρίθμησης

- Αφαίρεση στο Δεκαδικό Σύστημα
- Αφαίρεση στο Δυαδικό Σύστημα
- 3. Αφαίρεση στο 8δικό και 16δικό Σύστημα
- Αφαίρεση σε Άλλα Συστήματα

#### 3. Πολλαπλασιασμός και Διαίρεση

- Πολλαπλασιασμός στα Συστήματα Αρίθμησης
- Διαίρεση στα Συστήματα Αρίθμησης

#### 4. Αναπαράσταση Αριθμών στην Μνήμη του Υπολογιστή

- Bits, Bytes και Απεικόνιση στη Μνήμη
- Μήκος Λέξης
- Αναπαράσταση Αρνητικών με Μέτρο
- Αναπαράσταση Αρνητικών με Συμπλήρωμα ως Προς 1
- Αναπαράσταση Αρνητικών με Συμπλήρωμα ως Προς 2

#### 5. Αφαίρεση με Τεχνική Συμπληρώματος ως Προς 2

- Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης
- Αφαίρεση σε Άλλα Σύστημα Αρίθμησης

#### Ασκήσεις

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

### 1. Πρόσθεση στο Δεκαδικό Σύστημα Αρίθμησης

- Λίγα λόγια για την πρόσθεση στο δεκαδικό σύστημα αρίθμησης
  - Οι δύο αριθμοί που προσθέτουμε καλούνται **προσθετέοι**
  - Το αποτέλεσμα είναι το άθροισμα των αριθμών

#### Μεθοδολογία (από το δημότικο):

- Γράφουμε τους αριθμούς τον ένα κάτω απ' τον άλλο με ευθυγράμμιση στην ίδια τάξη ψηφίων (υποδιαστολή).
- Κάνουμε την πρόσθεση από δεξιά προς τα αριστερά.
- Σε περίπτωση που το άθροισμα είναι μεγαλύτερο του 10 μεταφέρουμε κρατούμενο 1 μονάδα (συμβολίζει μια 10-άδα) στην αμέσως αριστερή στήλη και καταγράφουμε το αποτέλεσμα.

$$Παράδειγμα: (5649)_{10} + (184)_{10}$$

Άρα: 
$$(5649)_{10} + (184)_{10} = (5833)_{10}$$

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

### 2. Πρόσθεση στο Δυαδικό Σύστημα Αρίθμησης

- Στην **πρόσθεση** στο **δυαδικό** σύστημα αρίθμησης
  - Η διαφορά με το δεκαδικό σύστημα είναι ότι το κρατούμενο συμβολίζει μια 2-άδα

#### Μεθοδολογία:

- Επειδή προκύπτουν αθροίσματα 3 ψηφίων (2 προσθετέοι και κρατούμενο) ισχύουν τα εξής:
  - $0 + 0 = (0)_{10} = (0)_2 : Άθροισμα 0 (όχι κρατούμενο)$
  - $0 + 0 + 1 = (1)_{10} = (1)_2$  : Άθροισμα 1 (όχι κρατούμενο)
  - $0 + 1 + 1 = (2)_{10} = (10)_2$ : Άθροισμα 0 (κρατούμενο 1)
  - $1 + 1 + 1 = (3)_{10} = (11)_2$ : Άθροισμα 1 (κρατούμενο 1)

Παράδειγμα 1: (110110)<sub>2</sub> + (11100)<sub>2</sub>

$$(+) \frac{111110}{110010}$$

$$1010010$$

 $A\rho\alpha$ :  $(110110)_2 + (11100)_2 = (1010010)_2$ 

Παράδειγμα 2: (1011.01)<sub>2</sub> + (10.111)<sub>2</sub>

$$\frac{1011.01}{10.111}$$

$$\frac{(+)}{1110.001}$$

$$A\rho\alpha$$
:  $(110110)_2 + (11100)_2 = (1010010)_2$ 

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Δυαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις προσθέσεις στο δυαδικό σύστημα αρίθμησης:

$$L$$
 (1101)<sub>2</sub> +(11010)<sub>2</sub>

$$II.$$
  $(110.001)_2 + (110.01101)_2$ 

$$III.$$
  $(110)_2 + (11.0011)_2$ 



## 1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Δυαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του δυαδικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(10010)_2 + (111)_2$$



## 1. Πρόσθεση στα Συστήματα Αρίθμησης

- 3. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης
- Στην **πρόσθεση** στο **οκταδικό** σύστημα αρίθμησης
  - Η διαφορά με το δεκαδικό σύστημα είναι ότι το κρατούμενο συμβολίζει μια 8-άδα

#### Μεθοδολογία:

- Όταν θα αθροίζουμε δύο οκταδικά ψηφία το αποτέλεσμα θα βγει το πολύ 15 (7+7+1).
- Ο ακόλουθος πίνακας ελαχιστοποιεί τα λάθη:

| Άθροισμα |              |      |                |  |  |  |
|----------|--------------|------|----------------|--|--|--|
| Απο      | τέλε         | σμα  |                |  |  |  |
|          | 0            | -<-  | <del></del> 8  |  |  |  |
|          | 1            | <-   | <u> </u>       |  |  |  |
|          | 2            | - 4  | 10             |  |  |  |
|          | 3            | - <- | — 11           |  |  |  |
|          | 4            | <    | <del></del> 12 |  |  |  |
|          | 5            |      | <del></del> 13 |  |  |  |
|          | 6            | <    | 14             |  |  |  |
|          | 7            | =<   | <del></del> 15 |  |  |  |
|          | $\downarrow$ |      | <b>V</b>       |  |  |  |

Π.χ. Κρατούμενο 0 Κρατούμενο 1

- Αν το άθροισμα βγει 6 τότε γράφουμε στο αποτέλεσμα 6 και το κρατούμενο είναι 0
- Αν το άθροισμα βγει 14 τότε γράφουμε στο απότέλεσμα 6 και το κρατούμενο είναι 1







## 1. Πρόσθεση στα Συστήματα Αρίθμησης

### 2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης

$$(+) \qquad \begin{array}{c} 2\overline{4}3\overline{07} \\ 2714 \\ \hline 27223 \end{array}$$

Άρα: 
$$(24307)_8 + (2714)_8 = (27223)_8$$

$$Παράδειγμα 2: (57.07)8 + (11.231)8$$

$$(+) \begin{array}{c} 1 & 1 \\ 57.07 \\ 11.231 \\ \hline 70.321 \end{array}$$

Άρα:
$$(57.07)_8 + (11.231)_8 = (70.321)_8$$



## 1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις προσθέσεις στο οκταδικό σύστημα αρίθμησης:

$$I. (712.07)_8 + (6.17)_8$$

$$II. (777.77)_8 + (1.01)_8$$

III. 
$$(523)_8 + (675)_8$$

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

2. Πρόσθεση στο Οκταδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του οκταδικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(137)_8 + (52)_8$$

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

#### 4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης

- Στην **πρόσθεση** στο **δεκαεξαδικό** σύστημα αρίθμησης
  - Η διαφορά με το δεκαδικό είναι ότι το κρατούμενο συμβολίζει μια 16-άδα

#### Μεθοδολογία:

- Όταν θα αθροίζουμε δύο δεκεαξαδικά ψηφία το αποτέλεσμα θα βγει το πολύ 31 (15+15+1).
- Ο ακόλουθος πίνακας ελαχιστοποιεί τα λάθη:

#### Π.χ.:

- Αν το άθροισμα βγει 5 τότε
   το αποτέλεσμα είναι 5 και το κρατούμενο 0
- Αν το άθροισμα βγει 12 τότε
   το αποτέλεσμα είναι C και το κρατούμενο 0
- Αν το άθροισμα βγει 18 τότε
   το αποτέλεσμα είναι 2 και το κρατούμενο 1
- Αν το άθροισμα βγει 28 τότε
   το αποτέλεσμα είναι C και το κρατούμενο 1





## 1. Πρόσθεση στα Συστήματα Αρίθμησης

### 4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης

$$Aρα:(16F1)_{16} + (5739)_{16} = (6E2A)_{16}$$

| Άθροισμα             |          |   |    |  |  |
|----------------------|----------|---|----|--|--|
| Αποτέλεσ             | ια       |   |    |  |  |
| 0                    | <b>←</b> |   | 16 |  |  |
| 1                    | <b>←</b> |   | 17 |  |  |
| 2                    | <b>←</b> | _ | 18 |  |  |
| 3                    | <b>←</b> | _ | 19 |  |  |
| 4                    | <b>←</b> |   | 20 |  |  |
| 5                    | <b>←</b> | _ | 21 |  |  |
| 6                    | <b>←</b> |   | 22 |  |  |
| 7                    | <b>←</b> |   | 23 |  |  |
| 8                    | <b>←</b> |   | 24 |  |  |
| 9                    | <b>←</b> |   | 25 |  |  |
| 10 (A)               | <b>←</b> | _ | 26 |  |  |
| 11 (B)               | <b>←</b> | _ | 27 |  |  |
| 12(C)                | <b>←</b> |   | 28 |  |  |
| 13 (D)               | <b>←</b> |   | 29 |  |  |
| 14(E)                | <b>←</b> |   | 30 |  |  |
| 15(F)                | <b>←</b> |   | 31 |  |  |
| Κρατούμενο 0 Κρατούμ |          |   |    |  |  |

Άρα:  $(AA.81)_{16} + (1C.802)_{16} = (C7.012)_{16}$ 

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις προσθέσεις στο 16δικό σύστημα αρίθμησης:

$$L (AA)_{16} + (BC)_{16}$$

$$II.$$
  $(19B.A2)_{16} + (0.FE)_{16}$ 

III. 
$$(DEF)_2 + (FED)_2$$

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

4. Πρόσθεση στο Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 2: Εκτελέστε την ακόλουθη πρόσθεση του 16δικού συστήματος και επαληθεύστε το αποτέλεσμα μέσω του δεκαδικού συστήματος.

$$(2A)_{16} + (3B)_{16}$$

## 1. Πρόσθεση στα Συστήματα Αρίθμησης

- 5. Πρόσθεση σε άλλα Συστήματα Αρίθμησης
- Εντελώς αντίστοιχα σε οποιοδήποτε άλλο σύστημα αρίθμησης:
  - Η διαφορά με το δεκαδικό είναι ότι το κρατούμενο συμβολίζει μια b-άδα όπου b είναι η βάση του συστήματος αρίθμησης

#### Μεθοδολογία:

- Αντίστοιχα θα ισχύει ότι το άθροισμα θα είναι το πολύ (b-1)+(b-1)+1=2b-1
- Ο πίνακας θα έχει μία στήλη από 0 έως b-1 και μία στήλη από b έως 2b-1

Άσκηση: Εκτελέστε τις ακόλουθες προσθέσεις:

$$I.$$
  $(311.13)_4 + (23.21)_4$ 

$$II. (712.66)_9 + (83.771)_9$$

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

### 1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

- Λίγα λόγια για την αφαίρεση στο δεκαδικό σύστημα αρίθμησης
  - Αφαιρούμε από το μειωτέο τον αφαιρετέο
  - Το αποτέλεσμα είναι η διαφορά των αριθμών

#### Μεθοδολογία

- Γράφουμε τον αφαιρετέο κάτω από το μειωτέο με ευθυγράμμιση στην ίδια τάξη ψηφίων (υποδιαστολή).
- Κάνουμε την αφαίρεση από δεξιά προς τα αριστερά.
- Σε περίπτωση που το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου
  - Προσθέτουμε μια δεκάδα στο τρέχον ψηφίο του μειωτέου
  - Προσθέτουμε μια μονάδα στο αριστερό ψηφίο του αφαιρετέου

Άρα: 
$$(3549)_{10} - (378)_{10} = (3171)_{10}$$



## 2. Αφαίρεση στα Συστήματα Αρίθμησης

1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

#### Μεθοδολογία:

 Την ίδια διαδικασία κάνουμε αν ο αφαιρετέος έχει κι άλλα ψηφία μεγαλύτερα από αυτά του αφαιρετέου προσέχοντας τις διορθώσεις

#### Παράδειγμα:

$$(3249)_{10} - (378)_{10}$$

Άρα: 
$$(3249)_{10} - (378)_{10} = (2871)_{10}$$

### Παράδειγμα:

$$(3079)_{10} - (288)_{10}$$

Άρα: 
$$(3079)_{10} - (288)_{10} =$$
 $(2791)_{10}$ 

### Παράδειγμα:

$$(300079)_{10} - (288)_{10}$$

#### Άρα:

$$(300079)_{10} - (288)_{10} =$$
  
 $(299791)_{10}$ 

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση: Εκτελέστε τις ακόλουθες πράξεις του δεκαδικού συστήματος αρίθμησης

$$L (10.16)_{10} - (8.396)_{10}$$

$$II.$$
  $(112)_{10}$   $-(181)_{10}$ 

III. 
$$-(121)_{10} - (189)_{10}$$

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

- 2. Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης
- Στην αφαίρεση στο δυαδικό σύστημα αρίθμησης όταν το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου:
  - Προσθέτουμε **μια δυάδα** στο ψηφίο του μειωτέου.
  - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.

#### Μεθοδολογία

- Καλό θα είναι στις διορθώσεις που παριστούμε να βάζουμε τα ισοδύναμα δεκαδικά.
- Οι πιο έμπειροι ας το αναπαραστήσουν με δυαδικό!

$$Παράδειγμα: (1101)2 - (110)2$$

Άρα: 
$$(1101)_2 - (110)_2 = (111)_2$$

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

### 1. Αφαίρεση στο Δεκαδικό Σύστημα Αρίθμησης

Άρα: 
$$(1001)_2 - (111)_2 = (10)_2$$

$$Παράδειγμα 4: (111000)_2 - (101011)_2$$

$$A\rho\alpha$$
:  $(111000)_2 - (101011)_2 = (1101)_2$ 

$$Παράδειγμα 3: (1010)2 -(101)2$$

Άρα: 
$$(1010)_2 - (101)_2 = (101)_2$$

$$Παράδειγμα 5: (101.001)2 -(11.1001)2$$

$$A\rho\alpha$$
:  $(101.001)_2 - (11.1001)_2 = (1.1001)_2$ 

### www.psounis.gr

# Α. Θεωρία

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

2. Αφαίρεση στο Δυαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση 1: Εκτελέστε τις ακόλουθες αφαιρέσεις του δυαδικού συστήματος αρίθμησης

$$I. \quad (1010.11)_2 - (111.101)_2$$

$$II.$$
  $(1000)_2 - (11.0001)_2$ 

III. 
$$(11.01)_2 - (100.101)_2$$

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

### 3. Αφαίρεση στο Οκταδικό και Δεκαεξαδικό Σύστημα Αρίθμησης

- Στην **αφαίρεση** στο **οκταδικό** σύστημα αρίθμησης, δουλεύουμε αντίστοιχα με το δεκαδικό, αλλά:
  - Προσθέτουμε μια οκτάδα στο ψηφίο του μειωτέου.
  - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.
- Στην αφαίρεση στο 16δικό σύστημα αρίθμησης, δουλεύουμε αντίστοιχα με το δεκαδικό, αλλά:
  - Προσθέτουμε μια δεκαεξάδα στο ψηφίο του μειωτέου.
  - Προσθέτουμε μία μονάδα στο αριστερό ψηφίο του αφαιρετέου.

#### Μεθοδολογία

- Στο 16δικό βοηθάει να ανάγουμε πρώτα τα γράμματα στα ισοδύναμα δεκαδικά.
- Οι πράξεις που προκύπτουν γίνονται πάντα στο δεκαδικό.

$$Παράδειγμα 1: (732)_8 - (64)_8$$

$$Aρα: (732)_8 - (64)_8 = (646)_8$$

 $^{\prime}$ Aρα:  $(CAA)_{16} - (2F)_{16} = (C7B)_{16}$ 

## 2. Αφαίρεση στα Συστήματα Αρίθμησης

3. Αφαίρεση στο Οκταδικό και Δεκαεξαδικό Σύστημα Αρίθμησης (Ασκήσεις)

Άσκηση: Εκτελέστε τις ακόλουθες αφαιρέσεις

$$I. (71.01)_8 - (16.54)_8$$

$$II.$$
  $(A.1)_{16} - (1.A)_{16}$ 

III. 
$$(2BB.FA)_{16} - (F8.AC)_{16}$$



## 2. Αφαίρεση στα Συστήματα Αρίθμησης

- 4. Αφαίρεση σε άλλα Συστήματα Αρίθμησης
- Εντελώς αντίστοιχα σε οποιοδήποτε άλλο σύστημα αρίθμησης κάνουμε την αφαίρεση από αριστερά προς τα δεξιά:
- Αν το ψηφίο του μειωτέου είναι μικρότερο από το ψηφίο του αφαιρετέου:
  - Προσθέτουμε b μονάδες στο τρέχον ψηφίο του μειωτέου
  - Προσθέτουμε μία μονάδα στο αριστερό του τρέχοντος ψηφίο του αφαιρετέου

Άσκηση: Εκτελέστε τις ακόλουθες προσθέσεις:

$$I.$$
  $(311.13)_4 - (23.21)_4$ 

$$II.$$
  $(712.66)_9 - (83.771)_9$ 



## 3. Πολλαπλασιασμός και Διαίρεση

### 1. Πολλαπλασιασμός στα Συστήματα Αρίθμησης

- Ο συνήθης υπολογιστικός τρόπος για να γίνει ένας πολλαπλασιασμός είναι μέσω διαδοχικών προσθέσεων
- Οι προσθέσεις γίνονται στο σύστημα αρίθμησης που είναι οι αριθμοί.

 $A\rho\alpha:(4)_{10}\times(5)_{10}=(20)_{10}$ 

 $A\rho\alpha$ :  $(100)_2 \times (101)_2 = (10100)_2$ 

#### www.psounis.gr

Άρα:  $(10001)_2 / (101)_2 = (11)_2$  με υπόλοιπο

διαίρεσης ίσο με το  $(10)_2$ 

# Α. Θεωρία

## 3. Πολλαπλασιασμός και Διαίρεση

### 2. Διαίρεση στα Συστήματα Αρίθμησης

Άρα:  $(17)_{10} / (5)_{10} = (3)_{10}$  με υπόλοιπο

διαίρεσης ίσο με το 2

- Ο συνήθης υπολογιστικός τρόπος για να γίνει μία διαίρεση είναι μέσω διαδοχικών αφαιρέσεων
- Οι αφαιρέσεις γίνονται στο σύστημα αρίθμησης που είναι οι αριθμοί.

| <u>Παράδειγμα 1:</u> (17) <sub>10</sub> /(5) <sub>10</sub> | <u>Παράδειγμα 2:</u> $(10001)_2/(101)_2$           |  |  |
|------------------------------------------------------------|----------------------------------------------------|--|--|
| 17                                                         | 10001                                              |  |  |
| (−) 5 ← 1η αφαίρεση                                        | $(-)$ <b>101</b> $\leftarrow$ 1 $^{\eta}$ αφαίρεση |  |  |
| 12                                                         | 1100                                               |  |  |
| (−) <b>5</b> ← 2η αφαίρεση                                 | (−) <b>101</b> ← 2η αφαίρεση                       |  |  |
| 7                                                          | 111                                                |  |  |
| (−) <b>5</b> ← 3η αφαίρεση                                 | (−) <b>101</b> ← 3η αφαίρεση                       |  |  |
| <b>2</b> < STOP. Αριθμός<5                                 | <b>10</b> ← STOP. Αριθμός<101                      |  |  |
|                                                            |                                                    |  |  |



## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

### 1. Bits, Bytes και Απεικόνιση Αριθμών στην μνήμη

- Μπορούμε (για την ώρα) να οραματιστούμε την μνήμη του υπολογιστή σαν μια ταινία που έχει χώρους αποθήκευσης για δυαδικά ψηφία.
- Ένα δυαδικό ψηφίο (που έχει τιμή 0 ή 1) καλείται bit. Αποτελεί τη μικρότερη μονάδα αποθήκευσης πληροφορίας στους υπολογιστές.
- 8 διαδοχικά bits αποτελούν 1 byte.
  - Ιστορικά 1 byte χρησίμευε για την αποθήκευση ενός χαρακτήρα στην μνήμη σύμφωνα με τον πίνακα ASCII σε παλιότερα συστήματα.
  - Ό,τι βλέπουμε στον υπολογιστή είναι τελικά κωδικοποιημένο στο δυαδικό σύστημα αρίθμησης.



#### www.psounis.gr

# Α. Θεωρία

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 1. Bits, Bytes και Απεικόνιση Αριθμών στην μνήμη
- Ο πίνακας ASCII στους πρώτους υπολογιστές κωδικοποιούσε σύμβολα σε bytes!

<u>Παράδειγμα:</u> Η λέξη: 01001000 01000101 01011100 01011100 01000001 01010011

```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr
Dec Hx Oct Char
                                                           64 40 100 4#64; 0
                                      32 20 040   Space
                                                                              96 60 140 4#96;
   0 000 NUL (null)
     001 SOH (start of heading)
                                      33 21 041 4#33;
                                                           65 41 101 4#65; A
                                                                              97 61 141 4#97;
                                      34 22 042 4#34;
                                                           66 42 102 B B
                                                                              98 62 142 4#98;
      002 STX (start of text)
                                      35 23 043 4#35; #
                                                           67 43 103 a#67; C
                                                                              99 63 143 4#99;
    3 003 ETX (end of text)
    4 004 EOT (end of transmission)
                                      36 24 044 4#36;
                                                           68 44 104 D D
                                                                            100 64 144 6#100;
                                      37 25 045 4#37;
    5 005 ENQ
             (enquiry)
                                                           69 45 105 E E
                                                                            101 65 145 6#101;
                                                           70 46 106 4#70; F 102 66 146 4#102;
      006 ACK (acknowledge)
    7 007 BEL (bell)
              (backspace)
                                      41 29 051 6#41;
                                                                          I |105 69 151 i
             (horizontal tab)
              (NL line feed, new line)
                                                                            106 6A 152 j
                                                           75 4B 113 6#75; K 107 6B 153 6#107; k
      013 VT
              (vertical tab)
                                      43 2B 053 +
                                      44 20 054 @#44;
              (NP form feed, new page)
              (carriage return)
                                      45 2D 055 -
              (shift out)
                                      46 2E 056 .
                                      47 2F 057 /
                                                           79 4F 117 O 0
      017 SI
              (shift in)
                                                                            111 6F 157 o
                                      48 30 060 4#48; 0
                                                           80 50 120 4#80;
                                                                            112 70 160 p p
             (data link escape)
              (device control 1)
                                        31 061 4#49;
                                                           81 51 121 6#81 0
                                                                             113 71 161 4#113;
                                      50 32 062 @#50; 2
                                                           82 52 122 4#82;
              (device control 2)
     023 DC3
             (device control 3)
                                      51 33 063 3 3
                                                                             115 73 163 s
                                      52 34 064 & #52; 4
                                                                                 74 164 t t
20 14 024 DC4 (device control 4)
21 15 025 NAK (negative acknowledge)
                                      53 35 065 5 5
                                                                            117 75 165 u u
22 16 026 SYN (synchronous idle)
                                      54 36 066 6 6
                                                                             118 76 166 v V
                                                           87 57 127 4#87; W
                                                                             119 77 167 4#119; ₩
23 17 027 ETB (end of trans. block)
                                      55 37 067 4#55; 7
                                      56 38 070 4#56; 8
24 18 030 CAN (cancel)
                                                           88 58 130 4#88; X
                                                                             120 78 170 x X
                                      57 39 071 4#57; 9
                                                           89 59 131 4#89; Y
25 19 031 EM
              (end of medium)
                                                                             121 79 171 y Y
                                      58 3A 072 4#58; :
                                                           90 5A 132 4#90; Z
26 1A 032 SUB
             (substitute)
27 1B 033 ESC
             (escape)
                                      59 3B 073 4#59; ;
                                                           91 5B 133 [ [
                                                                             123 7B 173 {
28 1C 034 FS
                                      60 3C 074 4#60; <
                                                           92 5C 134 \
                                                                             124 70 174 6#124;
              (file separator)
29 1D 035 GS
                                      61 3D 075 = =
                                                           93 5D 135 ] ]
                                                                            125 7D 175 }
              (group separator)
30 1E 036 RS
              (record separator)
                                      62 3E 076 > >
                                                           94 5E 136 ^
                                                                             126 7E 176 ~
31 1F 037 US
              (unit separator)
                                      63 3F 077 ? ?
                                                           95 5F 137 _ _ |127 7F 177  DEL
```

### 4. Αναπαράσταση Αριθμών στον Υπολογιστή

### 2. Μήκος Λέξης

- Για την ομαδοποίηση των bits χρησιμοποιούμε τον όρο μήκος λέξης (πόσα bits ομαδοποιούμε).
   Κάθε υπολογιστής έχει συγκεκριμένο μήκος λέξης (συνηθέστερα 1 byte)
  - Ένα byte έχει μήκος λέξης = 8

#### Έτσι σε ένα υπολογιστή με μήκος λέξης 8:

- Μπορούμε να αναπαραστήσουμε 2<sup>8</sup> αριθμούς
- Αν θέλουμε να αναπαραστήσουμε φυσικούς αριθμούς, μπορούμε να αναπαραστήσουμε από το 0 έως το 28-1 (δηλαδή από το 0 έως το 255)

```
0000000
                       0000001
                       0000010 =
                                                Αριθμοί του
                       00000011 =
Δυαδικοί Αριθμοί
                                                Δεκαδικού
με μήκος λέξης 8
                                                Συστήματος
                                     252
                       11111100
(1 byte)
                                     253
                       11111101
                       11111110
                                     254
                       11111111
                                     255
```

Σε μια κωδικοποίηση αριθμών κατά σύμβαση λέμε ότι το αριστερότερο είναι το περισσότερο σημαντικό ψηφίο (Most Significant Bit – MSB) και το δεξιότερο είναι το λιγότερο σημαντικό ψηφίο (Least Significant Bit – LSB)

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

### 2. Μήκος Λέξης

- Οι αριθμοί αναπαρίστανται σε έναν υπολογιστή με τόσα bits όσα και το μήκος λέξης του υπολογιστή.
  - Αν απαιτούνται λιγότερα bits από το μήκος λέξης τότε συμπληρώνουμε από αριστερά με μηδενικά.
  - Αν απαιτούνται περισσότερα bits από το μήκος λέξης έχουμε υπερχείλιση (overflow) και χάνονται τα bits που υπερβαίνουν το μήκος λέξης από αριστερά.

Παράδειγμα: Να κωδικοποιηθούν σε υπολογιστή με μήκος λέξης 8 (1 byte) οι αριθμοί: 254, 12, 515

#### Απάντηση:

- Ισχύει  $(254)_{10}$ =  $(111111110)_2$ . Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 11111110
- $\log (12)_{10} = (1100)_2$ . Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 00001100
- Ισχύει  $(515)_{10}$ =  $(100000011)_2$ . Άρα ο αριθμός με μήκος λέξης 8 κωδικοποιείται: 0000011 άρα έχουμε υπερχείλιση (δεν κωδικοποιήθηκε σωστά ο αριθμός)

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

### 2. Μήκος Λέξης

Άσκηση: Να αναπαρασταθούν οι παρακάτω φυσικοί αριθμοί σε υπολογιστή με μήκος λέξης 8. Σε ποιες περιπτώσεις έχουμε υπερχείλιση (overflow);

$$I.$$
  $(16)_{10}$ 

$$II.$$
 (F0)<sub>16</sub>

III. 
$$(477)_8$$



## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 3. Αναπαράσταση Αρνητικών με Μέτρο
- Για την αναπαράσταση αρνητικών ακέραιων αριθμών προτείνονται 3 τρόποι:
  - Ο 1ος τρόπος είναι η αναπαράσταση μέτρου.
  - Το αριστερότερο bit (MSB) παίζει το ρόλο προσήμου (0 για το (+) και 1 για το (-) )

#### Έτσι σε ένα υπολογιστή με μήκος λέξης 8:



- Μπορούμε να αναπαραστήσουμε 28-2 = 254 αριθμούς
- Οι 127 θα είναι οι θετικοί και οι 127 θα είναι οι αρνητικοί ακέραιοι.
- Πρόβλημα!
  - Το 0 αναπαρίσταται δύο φορές
    - Τη μία με θετικό πρόσημο και την άλλη με αρνητικό πρόσημο.
  - Ο τρόπος αυτός δεν χρησιμοποιείται στην πράξη!

```
0000000
             +0
0000001 =
             +1
0000010 =
             +2
00000011 =
             +3
                       θετικοί
                       ακέραιοι
01111100 =
            +124
            +125
01111101
        = +126
01111110
           +127
01111111 =
10000000 =
             -0
10000001 =
             -1
10000010 =
             -2
10000011 =
                       αρνητικοί
                       ακέραιοι
11111100
             -124
           -125
11111101 =
           -126
11111110
11111111
             -127
```

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 1
- Για την αναπαράσταση αρνητικών ακέραιων αριθμών προτείνονται 3 τρόποι:
  - Ο 2<sup>ος</sup> τρόπος είναι η αναπαράσταση συμπληρώματος ως προς 1.
  - Κανόνας: «Αντιστρέφουμε τα bits του αριθμού: Κάθε 0 γίνεται 1 και κάθε 1 γίνεται 0»

#### Έτσι σε ένα υπολογιστή με μήκος λέξης 8:

- Μπορούμε να αναπαραστήσουμε 28-1 = 255 αριθμούς
- Οι 127 θα είναι οι θετικοί και οι 127 θα είναι οι αρνητικοί ακέραιοι και ένας είναι το 0.

- Πρόβλημα!
  - Το 0 αναπαρίσταται δύο φορές
    - Τη μία με θετικό πρόσημο και την άλλη με αρνητικό πρόσημο.
  - Το πρόβλημα αυτό ξεπερνιέται με την τεχνική συμπληρώματος ως προς 2!

```
0000000
             +0
0000001 =
             +1
00000010 =
             +2
00000011 =
             +3
                       θετικοί
                       ακέραιοι
01111100 =
            +124
01111101 =
            +125
011111110 = +126
011111111 = +127
10000000 = -127
10000001 = -126
10000010 = -125
10000011 =
           -124
                       αρνητικοί
                       ακέραιοι
11111100
             -2
11111101 =
11111110
             -1
11111111
```

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

- 3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2
- Για την αναπαράσταση αρνητικών ακέραιων αριθμών προτείνονται 3 τρόποι:
  - Ο 3<sup>ος</sup> τρόπος είναι η **αναπαράσταση συμπληρώματος ως προς 2**.
  - Κανόνας: «Υπολογίζουμε το συμπλήρωμα ως προς 1 και προσθέτουμε μια μονάδα»

#### Έτσι σε ένα υπολογιστή με μήκος λέξης 8:

- Για την κωδικοποίηση του αρνητικού αριθμού -7:
  - Ο αριθμός +7 είναι : 00000111
  - Το συμπλήρωμα ως προς 1: 11111000
  - Το συμπλήρωμα ως προς 2:11111001
- $A\rho\alpha (-7)_2 = (111111001)_2$

#### Παρατηρήσεις:

- Ξεπεράστηκε το πρόβλημα με το 0.
- Ωστόσο, οι αρνητικοί είναι παραπάνω από τους θετικούς
- Είναι ευθύνη αυτού που κωδικοποιεί τα δεδομένα να προσέχει τα όρια των αριθμών ώστε να χωράνε στο μήκος λέξης και να μην έχουμε υπερχείλιση.

```
0000000
            +0
0000001 =
            +1
0000010 =
            +2
00000011 =
            +3
                       θετικοί
                       ακέραιοι
01111100 =
            +124
01111101
           +125
011111110 = +126
011111111 = +127
10000000 = -128
10000001 = -127
10000010 = -126
10000011 =
           -125
                       αρνητικοί
                       ακέραιοι
11111100
11111101 =
            -3
11111110 =
            -2
11111111
```

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

#### 3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

- Τέλος, αν μας δίνεται μία λέξη και μας πουν ότι είναι το συμπλήρωμα ως προς 2 ενός αριθμού,
   τότε για να υπολογίσουμε ποιος αρνητικός αριθμός είναι:
  - Υπολογίζουμε το συμπλήρωμα ως προς 2 του αριθμού και υπολογίζουμε το μέτρο του.
  - Βάζουμε αρνητικό πρόσημο.

Ποιον αρνητικό αριθμό κωδικοποιεί η λέξη 11111001 σε υπολογιστή με μήκος λέξης 8 Λύση:

#### Έχουμε:

Ο αριθμός είναι : 11111001

Το συμπλήρωμα ως προς 1 : 00000110

+1

Το συμπλήρωμα ως προς 2 :00000111

Άρα ο αριθμός είναι:  $(-7)_2$ 

## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

### 3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

Άσκηση 1: Βρείτε την αναπαράσταση ως προς 2 των παρακάτω αρνητικών δυαδικών αριθμών σε μορφή συμπληρώματος ως προς 2 σε υπολογιστή με μήκος λέξης 4 και υπολογιστή με μήκος λέξης 8:

$$L (-5)_{10}$$

$$II. \quad (-31)_{10}$$

$$III.$$
  $(-1F)_{16}$ 



## 4. Αναπαράσταση Αριθμών στον Υπολογιστή

3. Αναπαράσταση Αρνητικών με Συμπλήρωμα ως προς 2

Άσκηση 2: Έστω υπολογιστής με μήκος λέξης 8 που οι αρνητικοί αριθμοί είναι αποθηκευμένοι με συμπλήρωμα ως προς 2. Σε ποιους δεκαδικούς αριθμούς αντιστοιχούν οι ακόλουθες λέξεις:

I. 00000101

II. 10100101

III. 11100111

## 5. Αφαίρεση με Τεχνική Συμπληρώματος

### 1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2

- Με το συμπλήρωμα ως προς 2 έχουμε την δυνατότητα να κάνουμε εύκολα πράξεις προσημασμένων ακεραίων στο δυαδικό:
  - Προετοιμάζουμε τους αριθμούς με βάση το μήκος λέξης
  - Οι αρνητικοί απεικονίζονται με συμπλήρωμα ως προς 2
  - Όλες οι πράξεις γίνονται προσθέσεις!
  - Τυχόν κρατούμενο αγνοείται

Άσκηση: Κάνετε τις πράξεις 15+17, 15-17, -15+17, -15-17 με την τεχνική του συμπληρώματος ως προς 2 σε υπολογιστή με μήκος λέξης 8 δυαδικών ψηφίων. Επαληθεύστε το αποτέλεσμα στο δεκαδικό σύστημα

#### Λύση: Προεργασία:

Ο αριθμός 15 είναι: 00001111

Ο αριθμός 17 είναι: 00010001

Ο αριθμός -15:

Ο αριθμός +15 είναι : 00001111

Το συμπλήρωμα ως προς 1 : 11110000

• Το συμπλήρωμα ως προς 2:11110001

Άρα ο αριθμός -15 είναι: 11110001

Ο αριθμός -17:

· Ο αριθμός +17 είναι : 00010001

Το συμπλήρωμα ως προς 1 : 11101110

• Το συμπλήρωμα ως προς 2:11101111

Άρα ο αριθμός -17 είναι: 11101111

## 5. Αφαίρεση με Τεχνική Συμπληρώματος

### 1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2

Συνεπώς: 
$$(15)_{10} + (17)_{10} =$$

$$(00001111)_2 + (00010001)_2$$

$$00001111$$

$$(+) 00010001$$

$$00100000$$

$$Aρα: (15)_{10} + (17)_{10} = (00100000)_2 = (32)_{10}$$

Συνεπώς: 
$$-(15)_{10} + (17)_{10} = (-15)_{10} + (17)_{10}$$

$$(11110001)_2 + (00010001)_2$$

$$\frac{1}{11110001}$$

$$(+) 00010001$$

$$\frac{1}{111100010001}$$

Άρα: 
$$(-15)_{10}$$
+  $(17)_{10}$ =  $(00000010)_2$ =  $(2)_{10}$ 

Συνεπώς: 
$$(15)_{10} - (17)_{10} = (15)_{10} + (-17)_{10}$$

$$(00001111)_2 + (11101111)_2$$

$$00001111$$

$$(+) 11101111$$

$$(+) 11111110$$

$$100000011$$

$$11111110$$

$$100000010$$

$$111111110$$

$$100000010$$

$$111111110$$

Άρα: 
$$(15)_{10} + (-17)_{10} = (110111110)_2 = (-2)_{10}$$

Συνεπώς: 
$$-(15)_{10} - (17)_{10} = (-15)_{10} + (-17)_{10}$$

$$(11110001)_2 + (11101111)_2$$

$$11111111$$
Το αποτέλεσμα είναι:
$$11100000$$
Το συμπλήρωμα ως προς 1

Άρα ο αριθμός στο 10δικό 32

Άρα: 
$$(-15)_{10}$$
+  $(-17)_{10}$ =  $(11100000)_2$ =  $(-32)_{10}$ 



## 5. Αφαίρεση με Τεχνική Συμπληρώματος

1. Αφαίρεση στο Δυαδικό με Συμπλήρωμα ως προς 2

Άσκηση: Να εκτελέσετε την πράξη  $(52)_{10}-(71)_{10}$  χρησιμοποιώντας την μέθοδο του συμπληρώματος ως προς 2. Θεωρήστε ότι οι δυαδικοί αριθμοί αναπαριστώνται με 8 δυαδικά ψηφία (bits)

## 5. Αφαίρεση με Τεχνική Συμπληρώματος

#### 2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

- Στο δυαδικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 2:
  - Αντιστρέφαμε τα bits (ή ισοδύναμα κάναμε την πράξη 1-Ψ, όπου Ψ το ψηφίο)
  - Προσθέταμε μια μονάδα
- Αντίστοιχα στο 8δικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 8:
  - Κάνουμε την πράξη **7-Ψ** όπου Ψ το ψηφίο (συμπλήρωμα ως προς 7)
  - Προσθέτουμε μία μονάδα (και έχουμε το συμπλήρωμα ως προς 8)
- Αντίστοιχα στο 16δικό σύστημα για τον υπολογισμό του συμπληρώματος ως προς 16:
  - Κάνουμε την πράξη 15-Ψ όπου Ψ το ψηφίο (συμπλήρωμα ως προς 15)
  - Προσθέτουμε μία μονάδα (και έχουμε το συμπλήρωμα ως προς 16)
- κ.ο.κ. και έχουμε την απεικόνιση των αρνητικών αριθμών στο αντίστοιχο σύστημα.
  - Έπειτα για τις πράξεις, ισχύουν τα ακριβώς ίδια με το 2δικό σύστημα αρίθμησης

Παράδειγμα 1: Να απεικονιστεί το  $(-32)_{10}$  στο δεκαεξαδικό σύστημα με μήκος λέξης 4.

#### Λύση:

Το 32 στο δεκαεξαδικό είναι:  $(20)_{16}$  Με μήκος λέξης ίσο με το 4:  $(0020)_{16}$  Το Συμπλήρωμα ως προς 15:  $(FFDF)_{16}$  Το Συμπλήρωμα ως προς 16:  $(FFE0)_{16}$ 

## 5. Αφαίρεση με Τεχνική Συμπληρώματος

### 2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

Παράδειγμα 2: Να γίνει η πράξη το  $(32)_{16}$  –  $(7F)_{16}$  στο δεκαεξαδικό σύστημα με μήκος λέξης 4 και την τεχνική του συμπληρώματος ως προς 16. Επαληθεύστε μέσω του δεκαδικού συστήματος αρίθμησης.

#### Λύση:

```
Μειωτέος: (32)_{16} = \mathbf{3} \times 16^1 + \mathbf{2} \times 16^0 = 48 + 2 = (50)_{10}
Αφαιρετέος: (7F)_{16} = \mathbf{7} \times 16^1 + \mathbf{15} \times 16^0 = 112 + 15 = (127)_{10}
```

Ο Μειωτέος με Μήκος Λέξης 4: 0032

Ο Αφαιρετέος με Μήκος Λέξης 4: 007 Ε

Απεικόνιση του  $(-7F)_{16}$ Ο Μειωτέος είναι:  $(007F)_{16}$  (+) **FF81** Το Συμπλήρωμα ως προς 15:  $(FF80)_{16}$ Το Συμπλήρωμα ως προς 16:  $(FF81)_{16}$  Άρα: **FFB3** 

Το αποτέλεσμα είναι αρνητικός άρα θα υπολογίσουμε το συμπλήρωμα ως προς 16:

Ο αριθμός είναι:  $(FFB3)_{16}$ Το Συμπλήρωμα ως προς 15:  $(004C)_{16}$ 

Το Συμπλήρωμα ως προς 16:  $(004D)_{16}$ 

Συνεπώς το αποτέλεσμα είναι:  $-(4D)_{16} = -(4 \times 16^1 + 13 \times 16^0) = -(64 + 13) = -(77)_{10}$ 



## 5. Αφαίρεση με Τεχνική Συμπληρώματος

### 2. Αφαίρεση σε άλλα Συστήματα με Τεχνική Συμπληρώματος

Άσκηση: Να εκτελέσετε την πράξη  $(1F)_{16}$  –  $(3A)_{16}$ 

- Ι. Απευθείας στο Δεκαεξαδικό
- ΙΙ. Με μετατροπή στο Δυαδικό και την τεχνική του συμπληρώματος ως προς 2
- ΙΙΙ. Με Μετατροπή στο Δεκαδίκό
- ΙV. Με χρήση της τεχνικής συμπληρώματος ως προς 16.

Για το ερώτημα (ΙΙ) θεωρήστε μήκος λέξης 8, για το ερώτημα (ΙV) μήκος λέξης 4