- Advanced RISC Machines (ARM)
 - Employs RISC-style architecture with some CISCstyle features

ARM Overview

- 32-bit registers and addresses
- Byte-addressable memory with 8-bit bytes, 16-bit halfwords and 32-bit words.
- Enforces memory alignment for words and half words.
- Supports both big-endian and little-endian memory storage order

ARM Overview

RISC features

- Fixed length 32-bit instructions
- Load/store architecture
- All arithmetic and logic instructions use only register operands

JOHNS HOPKINS

CISC features

- Supports autoincrement, autodecrement & PCrelative addressing modes
- Condition codes (N,Z,V,C) are used for branching & conditional execution
- Multiple registers can be loaded from or stored into a block of consecutive memory words

Unusual features

- All instructions are conditionally executed
 - conditions specified by 4-bit field within each instruction
 - Can be set to always execute
 - Permits shorter routines than RISC machines using many branch instructions
- No divide or explicit shift instructions
 - Division must be done in software
 - Immediate or register operands can be shifted by a prescribed amount before being used

■ 16 registers (R0 – R15)

JOHNS HOPKINS

UNIVERSITY

5

- R15 used as the program counter (PC)
- R14 is the subroutine linkage register
- R13 is the stack pointer
- "Banked registers" facilitate context switches
 - Additional copies of R0 R14
 - Reduces the need to save and restore registers.

ARM Overview

- ARM addressing modes
 - Indexed addressing mode
 - Register mode
 - Immediate mode
 - Indirect mode
 - Absolute mode
 - Auto-increment & auto-decrement
 - PC relative mode

Other ARM features

- Employs memory mapped I/O
 - Direct programmed controlled
 - Interrupt driven
- Supports coprocessors
 - Floating point
 - Signal and video coprocessors
 - Exchange data between CPU and coprocessor registers
 - Memory transfers to/from coprocessor registers

Supports THUMB ISA

Used in low-cost & low-power embedded systems

ARM Overview

- Mobile devices such as phones
- 16-bit machine instructions (reduced code space)
 - Fetched and expanded to 32 bits at run time
- T bit within CPSR indicates when in Thumb mode
 - Programs can contain a mix of Thumb and standard routines.
 - Many Thumb instructions use a two-operand format
 - Conditional execution applies to all standard instructions but only to branches in Thumb set