Grading Sheet for Project Report

Group #
Grading Policy: The median grade should be between 75 and 85.

1.	Abstract (~200-300 words)	5	
	- Background (why we need to develop these devices?)		
	- Objective (what kind of devices do you develop?))		
	- Methods (how do you achieve the objective?)		
	- Main results and conclusions		
2	Introduction	10	
	- Discuss the nature of problem investigated and where your		
	device can be used for.		
	 Discuss the relevant literature with ~ 10 papers. 		
	 Brief description of your device – methods and results (one 		
	paragraph)		
3	Synthesis (Design)	8	
	- Describe your originality (creativity) of your linkage design (and		
	locking design) compared with other designs published.		
	- Graphical linkage synthesis		
	o Two position or three position synthesis?		
	 CAD figures 		
	On the linkages		
	On the whole device (if you have)		
	 Pictures of your prototypes and components 		
4	Fabrication and assembly (Manufacturing)	7	
	- Selection of materials with sound justification		
	 Part materials, motors, and sensors. 		
	- Describe the procedure of manufacturing.		
	- Describe the procedure of assembly of components, motors,		
	sensors, etc.		
5	Control of sensors and actuators	5	
	- Describe the algorithm with a flowchart and a circuit diagram		
6	Analysis	15	
	- Classification of the designed linkage		
	o DOF		
	 Crank-slider, crank-crank, etc. 		
	o Grashof condition		
	- Position analysis for transformation (with graphs ¹ from		
	MATLAB results)		
	- Force analysis with a Free Body Diagram (with graphs from		
	MATLAB results)		
	Required input torque to lift the weight of the device		
	 Justification of the selection of motors 		
	 Design and analysis of external gearboxes if 		
	added		

¹ When you plot graphs, do not forget the dimension on the x- and y- axes.

	Total	100	
13	Gameday performance	20	
12	Peer evaluation	5	
	Raspberry PI programming codeOthers		
	budget?)		
	- Budget table and justification. (Is your spending under the		
	 Use IEEE format on the author pictures. Gantt chart 		
	member)		
	- Contribution of each team members (with pictures of each		
11	Appendix	3	
10	References ~ 10 papers - Use the IEEE format	2	
	 Conclusion must be drawn from results and discussion. 		
	- Generalized ideas		
	- Short narrative key findings with a bulleted list		
9	Conclusion - Brief summary of objectives and methods	5	
	your work.		
	- Discuss theoretical and practical implication (broader impact) of		
	- Discuss the intellectual merit of your work.		
	 Discuss agreement or disagreement between your analyses and experiments. 		
8	(Further) Discussion	5	
	O Show it with the analysis.		
	- Demonstration of locking capacity without power source.		
	 Measure the rolling speed and compare it with the analysis. 		
'	- Demonstration of load carrying capacity	10	
7	 For different radial spring forces. Experiment (with figures) 	10	
	- Climbing speed analysis		
	with the force analysis.		
	 Check the safety factors of the assembled components 		

Comments:				