Input disturbance rejection

det external "disturbance" input to the system: Not under our direct control, and cannot be predicted or measured during operation of the system.

What affect will this have on stability or accuracy?

"rejection": ability to maintain ess(1) small even when d(t) # Ø.

Re-derive feedback loop equations:

$$=G(s)H(s)E(s)+G(s)D(s)$$

or
$$Y(s) = \frac{L(s)}{1 + L(s)}Y_{d}(s) + \frac{G(s)}{1 + L(s)}D(s)$$

$$T(s)$$

Si(s) "input sensituity" TF.

Added term due to disturbance

Note: poles of Si(s) same as T(s) => Si(s) is stable

If T(s) is.

=> Disturbonce Cannot destabilize system!

Distribunce can however, worsen tracking:

$$Y(s) = T(s)Y_{d}(s) + S_{i}(s)D(s)$$

$$E(s) = Y_{d}(s) - Y(s) = (1 - T(s))Y_{d}(s) - S_{c}(s)D(s)$$

Want to quantify the added errors due to distribunce

Can analyze similarly to above, but need a bit more core:

$$\int_{c} (s) = \frac{G(s)}{1 + L(s)}$$

Let
$$G(s) = \frac{N_G(s)}{D_G(s)}$$
, $H(s) = \frac{N_H(s)}{D_H(s)}$ so $L(s) = \frac{N_G(s) N_H(s)}{D_G(s) D_H(s)}$

$$S_{c}(s) = \frac{G(s)}{1 + L(s)} = \frac{N_{c}(s)D_{H}(s)}{D_{c}(s)D_{H}(s) + N_{c}(s)N_{H}(s)}$$

Then additional error:

$$S_{i}(s)D(s) = \left[\frac{N_{c}(s)D_{H}(s)}{D_{c}(s)D_{H}(s) + N_{c}(s)N_{H}(s)}\right] \left[\frac{\alpha(s)}{b(s)}\right]$$

Internal model principle again!

If $N_6(s)D_H(s)$ cancels non-stable roots of b(s)then in steady-state $J''\{5;D\}=\emptyset$

i.e. distribance creates No additional error!

Implications:

If $N_6(s)D_{H}(s)$ cancels non-stable roots of b(s), then cancellation is either due to:

=> No(s) cancelling (extremely rare)

=> DH(s) cancelling (can design for this)

So generally, external distribunces create NO Add'l error if compensator contains an internal movel of distribunce.

That is, if Compensator H(s) has some non-stable poles as the disturbance.

i.e. if d(t)=do (constant), No add'l tracking error
if H(s) has Pole at origin.

Summary of error analysis

For perfect tracking of "typep" desired behaviors

L(s) must have pri poles at origin

For perfect rejection of type p disturbances d(4), but nonzero H(s) must have p+1 poles at origin errors

required poles

in Both cases, P Poles at orga

(one less) will

Note: tracking objectives can be satisfied if required poles come from plant, compensator, or a combination of both

But dist. rejection regt's can be satisfied only by poles in the compensator.

=> Above are special cases of IMP.

Good accuracy thus often requires H(s) to have at least one pole at origin.

=> This pole adds - 90° of phase at all frequencies!

=> Works against our stability/performance guidelines of increasing phase margin.

=> Even adding a LHP zero doesn't help here:

$$H(s) = K\left[\frac{s - \epsilon_c}{s}\right]$$
 $\epsilon_c < \phi$

has ¥H(jw)<ذ for all w≥o.

=) May be acceptable if $\angle G(j\omega)$ already has "adequate" positive phase, so $\angle L = \angle G + \angle H$ can tolerate a Small reduction.

More go to still despite	enerally,	me, 9	Pequire	exta	LHP	Ze ro(s)
to \$711	Provide	Position	e Phase	cha	nges t	6 L(s)
despite	required	Doke o	forigin			
	7		· 7			

Implementability requires an additional LHP pole:

$$H(s) = \left\{ \frac{(s-2c_1)(s-2c_2)}{5(s-2c_1)} \right\}$$

4 degrees of freedom total!

Things get even more complicated if H(s) needs

2 poles at origin to achive bracking
objectives!

Remember: Tracking of Ya(+) depends on properties of L(s)

Disturbance rejection depends on proporties of H(s)