

FERROELECTRIC TRANSISTOR, USE THEREOF IN A MEMORY CELL
CONFIGURATION AND METHOD OF PRODUCING THE FERROELECTRIC

5

TRANSISTOR

Cross-Reference to Related Application:

This application is a continuation of copending International Application No. PCT/DE99/02083, filed July 5, 1999, which designated the United States.

Background of the Invention:

Field of the Invention:

The invention relates to a ferroelectric transistor that has two source/drain regions, a channel region, a gate electrode, and a layer of ferroelectric material provided between the gate electrode and the channel region. The conductivity of this transistor is dependent on the state of polarization of the layer of ferroelectric material. Ferroelectric transistors of this type are being investigated with regard to non-volatile memories. This involves assigning two different states of polarization of the layer of ferroelectric material to two different logical values of a digital item of information. Other possible applications for ferroelectric transistors of this type are, for example, in neural networks.

It is known (see for example T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu: A Single Transistor Ferroelectric Memory Cell, IEEE, ISSCC, 1995, pages 68 to 69), to use ferroelectric transistors as memory cells of a memory cell configuration.

5 In this case, each of the ferroelectric transistors is connected between a supply voltage line and a bit line. The selection takes place via a back gate. The ferroelectric transistors used have a floating gate electrode between the ferroelectric layer and the gate oxide. The charge of the floating gate electrode is controlled via the state of polarization of the ferroelectric layer.

15 It has been found that, when reading the information, voltage drops occur even at non-selected memory cells and this may lead to a falsification of the information stored in the individual memory cells. This falsification is attributed to the fact that flipping processes of the domains in ferroelectric materials are of a random nature and can be induced even at low voltages.

20

Summary of the Invention:

It is accordingly an object of the invention to provide a ferroelectric transistor and a method of producing the transistor which overcomes the above-mentioned disadvantageous 25 of the prior art apparatus and methods of this general type. In particular, it is an object of the invention to provide a

ferroelectric transistor which is suitable as a memory cell of a memory cell configuration and in which changing of the written information during the reading operation is avoided.

5 With the foregoing and other objects in view there is provided, in accordance with the invention a ferroelectric transistor that has two source/drain regions, which are configured in a semiconductor substrate. All semiconductor materials, in particular monocrystalline silicon, are suitable as the semiconductor substrate. The semiconductor substrate may in this case be both a monocrystalline silicon wafer and a SOI substrate. Configured on the surface of the semiconductor substrate between the two source/drain regions is a first gate intermediate layer and a first gate electrode. The first gate intermediate layer contains at least one ferroelectric layer. Configured between the source/drain regions, in the direction of a joining line between the source/drain regions, there is in addition to the first gate intermediate layer, a second gate intermediate layer and a second gate electrode. The 20 second gate intermediate layer contains a dielectric layer. The first gate electrode and the second gate electrode are connected to each other via a diode structure.

In this ferroelectric transistor, the first gate electrode and 25 the second gate electrode are configured next to each other along the joining line between the source/drain regions. The

channel region of the ferroelectric transistor is consequently subdivided. One part of the channel region, which is configured under the first gate electrode, is capable of being activated by the charge effective at the first gate electrode.

5 Another part of the channel region, which is configured under the second gate electrode, is capable of being activated by the charge effective at the second gate electrode. Current can flow between the source/drain regions only when both the part of the channel region below the first gate electrode and the part of the channel region below the second gate electrode are conducting.

45 The diode structure is polarized in such a way that, when a voltage is present at the second gate electrode, the conductivity of the channel region under the second gate electrode is controlled, the diode structure blocks, and as a result, the first gate electrode is isolated from this voltage.

20 When the ferroelectric transistor is being used as a memory for digital information, two states of polarization are assigned to the logical values in the ferroelectric layer. In the case of one state of polarization, the channel region below the first gate electrode and the ferroelectric layer is 25 conducting, in the case of the other state it is not.

Since the first gate electrode and the second gate electrode are configured next to each other in the direction of the joining line between the source/drain regions, the activation by the second gate electrode is adequate for performing the reading operation. Dependent on the state of polarization of the ferroelectric layer, the channel region below the first gate electrode is or is not conducting. By activating the second gate electrode in such a way that the transistor in the region of the second gate electrode is turned on, the information is read out, and it is assessed whether a current is or is not flowing via the transistor.

PCT/EP98/02045

20

The diode structure which is configured between the first gate electrode and the second gate electrode ensures that the voltage for activating the second gate electrode drops only over the second gate electrode. The first gate electrode is isolated from this voltage via the diode structure, so that no voltage drops over the ferroelectric layer. As a result, changing of the polarization of the ferroelectric layer, and consequently of the stored information, is avoided.

Alternatively, a voltage may be applied to the second gate electrode in order to polarize the ferroelectric layer. This is used for writing and erasing information.

25

Writing of information takes place in this case by a voltage which is greater than the reverse voltage of the diode structure and which polarizes the ferroelectric layer in one direction.

5

Erasing of the information takes place by a voltage with a different algebraic sign, so that the diode structure is polarized in the conducting direction and the voltage dropping across the ferroelectric layer polarizes the latter in the other direction.

10
15
20
25

The terms writing and erasing of information can also be used vice versa in this connection.

In accordance with an added feature of the invention, the second gate intermediate layer and the second gate electrode are respectively made up of two substructures which are configured mirror-symmetrically in relation to the first gate intermediate layer. The two substructures of the second gate electrode are electrically connected to each other. This configuration has the advantage that the voltage present across the second gate electrode induces, during the reading operation, an electric field of such a kind that the ferroelectric layer lies on an equipotential line and consequently no change in the polarization of the

ferroelectric layer occurs. This configuration of the invention is particularly insensitive to disturbances.

In accordance with an additional feature of the invention, a
5 dielectric layer is provided between the surface of the semiconductor substrate and the ferroelectric layer. This facilitates the application of the ferroelectric layer.

In accordance with another feature of the invention, the
10 dielectric layer which is configured in the first gate intermediate layer between the semiconductor surface and the ferroelectric layer, and the dielectric layer which is a component part of the second gate intermediate layer are formed as a continuous electrical layer. The stack including
15 the ferroelectric layer and the first gate electrode is produced on the surface of the continuous electrical layer.

In accordance with a further feature of the invention, the
first gate electrode and/or the second gate electrode are part
20 of the diode structure. In this way, the space requirement of the diode structure is reduced.

In accordance with a further added feature of the invention,
the first gate electrode has polycrystalline silicon which is
25 doped of a first conductivity type. The second gate electrode likewise has polycrystalline silicon which is doped of a

second conductivity type, opposite that of the first type.

The first gate electrode is in this case adjacent to the second gate electrode, so that the diode structure is formed by the first gate electrode and the second gate electrode. In 5 this configuration, only three terminals are required for the operation of the ferroelectric transistor, two at the source/drain regions and one at the second gate electrode.

Alternatively, in this configuration the first gate electrode and the second gate electrode can be respectively formed by correspondingly doped epitaxially grown silicon.

In accordance with a further additional feature of the invention, an auxiliary layer, for example of platinum, is provided between the ferroelectric layer and the first gate electrode. The auxiliary layer avoids undesired properties of the ferroelectric layer, such as for example, fatigue or 45 imprint resistance.

In accordance with yet another feature of the invention, the

20 first gate intermediate layer contains a dielectric layer of CeO_2 , ZrO_2 , Y_2O_3 , or another oxide with the greatest possible dielectric susceptibility, for example SrTiO_3 . For the dielectric layer in the second gate intermediate layer, SiO_2 , CeO_2 , ZrO_2 , Y_2O_3 , or another oxide with the greatest possible 25 dielectric susceptibility, for example SrTiO_3 , is suitable.

The ferroelectric layer may be composed of, inter alia,

strontium-bismuth-tantalum (SBT), lead-zirconium-titanate (PZT), lithium niobate (LiNbO_3) or barium-strontium-titanate (BST).

5 With the foregoing and other objects in view there is also provided, in accordance with the invention, a memory cell configuration including a plurality of memory cells that include the above described ferroelectric transistor.

With regard to the interference immunity of the memory cell configuration during the reading, writing and erasing of information, it is advantageous, in this case, to provide each memory cell with, in addition to the ferroelectric transistor, a selection transistor having a control electrode. In addition, the memory cell configuration has word lines, bit lines and supply lines, the word lines cross the supply lines and the bit lines. The ferroelectric transistor of one of the memory cells is, in each case, connected between two neighboring bit lines. The selection transistor is connected between the second gate electrode and one of the supply voltage lines. The control electrode of the selection transistor is respectively connected to one of the word lines.

25 With the foregoing and other objects in view there is also provided, in accordance with the invention, a method of producing a ferroelectric transistor, which includes:

providing a semiconductor substrate with a surface; applying, to the surface of the semiconductor substrate, a dielectric layer, a ferroelectric layer, and a first electrode layer; structuring the first electrode layer and the ferroelectric 5 layer together to produce a first gate electrode; applying and structuring a second electrode layer to produce a second gate electrode adjacent and laterally overlapping the first gate electrode; and providing the first gate electrode and the second gate electrode from materials that are matched to each other in such a way that the first gate electrode and the second gate electrode form a diode structure.

10
15
20
25

With the foregoing and other objects in view there is also provided, in accordance with the invention, a method of producing a ferroelectric transistor, which includes:
providing a semiconductor substrate with a surface; applying, to the surface of the semiconductor substrate, a first gate intermediate layer, a ferroelectric layer, and a first electrode layer; structuring the first electrode layer the 20 ferroelectric layer, and the first electrode layer together to produce a first gate electrode; producing a second gate intermediate layer disposed laterally relative to the first gate intermediate layer; providing the second gate intermediate layer with a dielectric layer; applying and structuring a second electrode layer to produce a second gate electrode adjacent and laterally overlapping the first gate

electrode; and providing the first gate electrode and the second gate electrode from materials that are matched to each other in such a way that the first gate electrode and the second gate electrode form a diode structure.

5

In accordance with a concomitant feature of the invention, the method includes steps of, applying an auxiliary layer between the ferroelectric layer and the first electrode layer; and structuring the auxiliary layer when performing the step of structuring the ferroelectric layer and the first electrode layer.

10
15
20
25

Other features which are considered as characteristic for the invention are set forth in the appended claims.

20

Although the invention is illustrated and described herein as embodied in a ferroelectric transistor, use thereof in a memory cell configuration and method of producing it, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

25

The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description

of specific embodiments when read in connection with the accompanying drawings.

Brief Description of the Drawings:

5 Fig. 1 shows a section through a ferroelectric transistor;

Fig. 2 shows a section through a ferroelectric transistor in which the first gate intermediate layer and the second gate intermediate layer have a continuous dielectric layer;

10 Figs. 3 to 5 show steps used to produce the ferroelectric transistor which is shown in Fig. 2; and

15 Fig. 6 shows a circuit diagram for a memory cell configuration.

Description of the Preferred Embodiments:

Referring now to the figures of the drawing in detail and first, particularly, to Fig. 1 thereof, there is shown a cross-sectional view taken through a ferroelectric transistor.

20 Two source/drain regions 12 are configured in a p-doped semiconductor substrate 11 made of monocrystalline silicon. A first gate intermediate layer 13 and a first gate electrode 14 are configured between the source/drain regions 12 on the

25 surface of the semiconductor substrate 11. The first gate intermediate layer 13 has a dimension, in the direction of the

line joining the two source/drain regions 12, that is smaller than the distance between the two source/drain regions 12. The first gate intermediate layer 13 has a first dielectric layer 131 and a ferroelectric layer 132. The first dielectric layer 131 contains CeO₂ and has a thickness of 5 to 10 nm. 5 The ferroelectric layer 132 has a thickness of 50 to 100 nm and contains strontium-bismuth-tantalum (SBT) or lead-zirconium-titanate (PZT). The first gate electrode 14 has a thickness of 30 to 50 nm and is formed from p⁺-doped polysilicon with a dopant concentration in the order of 10¹⁹ cm⁻³. An auxiliary layer 15 is configured between the first gate electrode 14 and the ferroelectric layer 132. The auxiliary layer 15 protects the ferroelectric layer 132 and is formed from platinum in a thickness of 30 nm.

45 A second dielectric layer 16 of SiO₂ having a layer thickness of 5 to 10 nm is configured laterally in relation to the first dielectric layer 131. The second dielectric layer 16 includes two parts. One part is configured between one of the 20 source/drain regions 12 and the first dielectric layer 131 and the other part is configured between the other source/drain region 12 and the first dielectric layer 131. The two parts of the second dielectric layer 16 are configured mirror-symmetrically in relation to the first dielectric layer 131. 25 The two parts of the second dielectric layer 16 act as a second gate intermediate layer. A second gate electrode 17 of

n⁺-doped polysilicon is configured above the second dielectric layer 16. The second gate electrode 17 covers the first gate electrode 14, so that it has a U-shaped cross section in the section shown in Fig. 1. As a result, the two parts of the 5 second gate electrode 17, which are configured on the surface of the two parts of the second dielectric layer 16, are electrically connected to each other. Furthermore, the second gate electrode 17 is adjacent to the surface of the first gate electrode 14. The first gate electrode 14 and the second gate electrode 17 together form a diode structure.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

For writing information into the ferroelectric transistor, the pn junction, which is formed by the first gate electrode 14 and the second gate electrode 17, is operated in the conducting direction, that is to say, a negative voltage pulse is applied to the n⁺-doped second gate electrode 17. As a 20 result, the ferroelectric layer 132 is polarized in such a way that the part of the channel region configured under the first gate intermediate layer 13 is in accumulation and therefore blocks.

For reading from the memory transistor, on the other hand, the pn junction, which is formed by the first electrode 14 and the second gate electrode 17, is operated in the non-conducting 25 direction below the breakdown voltage. As a result, the channel region is brought into inversion via the second gate

electrode 17 on both sides of the ferroelectric layer 132,
without the state of polarization of the ferroelectric layer
132 changing in the process. A current flows via the
transistor only when the ferroelectric layer 132 is polarized
5 in such a way that the part of the channel region which is
below the first gate intermediate layer 13, that is to say
below the ferroelectric layer 132, is also in inversion.
Otherwise, no current flows via the transistor. The states
"current flow via the transistor" and "no current flow via the
transistor" are consequently assigned to the various items of
logical information.

To erase the information stored in the ferroelectric layer
132, the pn junction formed by the first gate electrode 14 and
the second gate electrode 17 is operated in the non-conducting
direction above its breakdown voltage. As a result, the
ferroelectric layer 132 is polarized in such a way that the
channel region below the first gate intermediate layer 13 is
in inversion and therefore conducts.

20 Referring to Fig. 2, there is shown a cross-sectional view
taken through a further exemplary embodiment of the
ferroelectric transistor. The further exemplary embodiment
includes a semiconductor substrate 21 that has two
25 source/drain regions 22 designed in a form analogous to that
explained with reference to the embodiment shown in Fig. 1. A

dielectric layer 26 having a layer thickness of 5 to 10 nm and formed from CeO₂ or ZrO₂ is configured between the source/drain regions 22 on the surface of the semiconductor substrate 21.

A ferroelectric layer 23 is configured on the surface of the dielectric layer 26. The dimension of the ferroelectric layer 23 parallel to the surface of the substrate 21 is smaller than that of the dielectric layer 26. The dielectric layer 26 protrudes laterally beyond the ferroelectric layer 23. An auxiliary layer 25 is configured on the surface of the ferroelectric layer 23. A first gate electrode 24 is configured on the surface of the auxiliary layer 25. A second gate electrode 27 abuts the surface of the dielectric layer 26 on both sides of the ferroelectric layer 23 and covers the first gate electrode 24. The ferroelectric layer 23, the auxiliary layer 25, the first gate electrode 24, and the second gate electrode 27 are configured in a way analogous to that explained with reference to the embodiment shown in Fig. 1.

The operating mode of the ferroelectric transistor represented in Fig. 2 takes place in a way analogous to that explained on the basis of Fig. 1.

To produce the ferroelectric transistor represented in Fig. 2, the dielectric layer 26 is deposited onto the surface of the semiconductor substrate 21, in which first active and non-active regions were defined by an isolating technique, and in which trenches were implanted in a known way (not

represented). An appropriate isolating technique can be, for example, a LOCOS technique or an STI (Shallow Trench Isolation) technique (not represented). The ferroelectric layer 23 is applied to the dielectric layer 26 by a single-stage or multi-stage sol-gel process or by a CVD process. A heat treatment at 700°C follows, in order to bring the ferroelectric layer 23 into the desired ferroelectric phase. The auxiliary layer 25 of platinum is then applied to the surface of the ferroelectric layer 23 by sputtering. A p-doped polysilicon layer 24' is deposited onto the auxiliary layer 25 (see Fig. 3).

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
10175
10180
10185
10190
10195
10200
10205
10210
10215
10220
10225
10230
10235
10240
10245
10250
10255
10260
10265
10270
10275
10280
10285
10290
10295
10300
10305

polysilicon layer 27' and the dielectric layer 26 are structured, with the second gate electrode 27 being formed. The second gate electrode 27 overlaps the first gate electrode 24 laterally on both sides. HBr or HCl is used for 5 structuring the n-doped polysilicon layer 27'. Cl, Ar, or a mixture of Cl and Ar with additions of heavy gases, such as for example SF₆, BC_l₃, is used for structuring the dielectric layer 26 (see Fig. 5).

10
15
20
25

By implantation with arsenic, the source/drain regions 22 are then implanted in a self-adjusted manner in relation to the second gate electrode 24. This completes the ferroelectric transistor represented in Fig. 2.

The production process can be varied in many different ways. In particular, the heat treatment for fixing the desired 15 ferroelectric phase of the ferroelectric layer 23 may also take place after the deposition of the p-doped polysilicon layer 24, if the required temperature is low enough so that no SiO₂ forms above the auxiliary layer 25 and below the first 20 electrode. Preferably, the heat treatment is performed after deposition of the auxiliary layer 25. Furthermore, in the structuring of the first gate electrode 24, the dielectric layer 26 may be structured at the same time down to the 25 surface of the semiconductor substrate 21 and the heat treatment may take place after forming the first gate

electrode 24. In this case, during this heat treatment, an SiO₂ layer is formed on the surface of the semiconductor substrate 21, lateral to the first gate electrode 24 and is used thereafter as a gate oxide below the second gate 5 electrode 27 lateral to the first gate electrode 24. The heat treatment is in this case preferably controlled in such a way that an SiO₂ layer is not at the same time produced between the first gate electrode 24 and the auxiliary layer 25.

10 Furthermore, the source/drain regions 22 may also be produced with an LDD profile. For this purpose, spacers are formed on the edges of the second gate electrode 27 in the course of the process.

15 In the exemplary embodiments, the construction of an n-channel transistor has been described. The invention can be carried out in an analogous way for a p-channel transistor; in this case, all of the conductivity types are to be changed over correspondingly.

20 In a memory cell configuration, a large number of memory cells are provided, each of which has a ferroelectric transistor FT and a selection transistor AT (see Fig. 6). The ferroelectric transistor FT is in each case configured in the way explained 25 on the basis of Fig. 1 or Fig. 2. The selection transistor AT is configured as a MOS transistor with a gate electrode. The

memory cell configuration additionally includes word lines WL, supply lines VL and bit lines BL. The word lines WL cross both the supply lines VL and the bit lines BL.

5 The ferroelectric transistor FT of each of the memory cells is respectively connected between two neighboring bit lines BL. The selection transistor AT of the corresponding memory cell is connected between the second gate electrode of the ferroelectric transistor FT and a supply line VL. The gate electrode of the selection transistor AT is connected to one of the word lines WL.

15 The selection of a memory cell takes place in the memory cell configuration via the corresponding word line WL and the corresponding supply line VL.

Reading from the memory cell takes place by performing a continuity test between the neighboring bit lines BL, between which the corresponding ferroelectric transistor FT is connected. To read out the information, the associated supply line VL is subjected to a voltage level, so that the pn junction formed by the first gate electrode and second gate electrode in the ferroelectric transistor is operated in the non-conducting direction below the breakdown voltage. The second gate electrode in this case brings the channel region of the ferroelectric transistor laterally in relation to the

ferroelectric layer locally into inversion, without at the same time changing the state of polarization of the ferroelectric layer. A current flows through the ferroelectric transistor only when the ferroelectric layer is 5 polarized in such a way that the channel region below the ferroelectric layer is also in inversion. A current can only flow between the neighboring bit lines BL if the selected ferroelectric transistor FT is turned on, that is to say if the ferroelectric layer is correspondingly polarized.

10
15
20
25

To write information into the ferroelectric transistor FT of a memory cell, the selection likewise takes place via the corresponding word line WL and the corresponding supply line VL. In this case, the corresponding supply line VL is subjected to a level by which the pn junction which is formed by the first gate electrode and second gate electrode of the ferroelectric transistor FT is operated in the conducting direction. As a result, the ferroelectric layer is polarized in such a way that the channel region below the ferroelectric 20 layer is in accumulation and therefore blocks.

To erase information in the ferroelectric transistor of a memory cell, the memory cell is likewise selected via the word line WL and the supply line VL. A voltage level of such a 25 kind that the pn junction formed by the first gate electrode and second gate electrode of the ferroelectric transistor is

operated in the non-conducting direction above its breakdown voltage is applied to the supply line VL. As a result, the ferroelectric layer is polarized in such a way that the channel region below the ferroelectric layer is in inversion
5 and therefore conducts.

During the reading operation, writing operation and erasing operation, all of the other memory cells which are connected to the same bit lines BL or supply lines VL are connected to other word lines WL. They are therefore not selected and block.

The various operating states of writing, reading and erasing are set by means of different voltage levels at the supply line. For operating the memory cell configuration with a ferroelectric transistor with a ferroelectric material having a coercive field strength E_c of approximately 30 kV/cm and a dielectric layer 131 having a relative dielectric constant ϵ_r of approximately 20 which is constructed in a way analogous to
15 that explained on the basis of Fig. 1 or 2, the following
20 levels are suitable:

Reading: + 0.5 V;

Writing: + 3 V; and

25 Erasing: - 3 V.