Definice 0.1 (Category, map (arrow, morphism), composition, domain, codomain)

A category \mathcal{A} consists of: a collection $\mathrm{ob}(\mathcal{A})$ of objects, and for each $A, B \in \mathcal{A}$, a collection $\mathcal{A}(A,B)$ of maps, arrows, or morphisms from A to B. Such that for each $A,B,C \in \mathrm{ob}(\mathcal{A})$ a function (named composition) $\circ: \mathcal{A}(B,C) \times \mathcal{A}(A,B) \to \mathcal{A}(A,C), \ (g,f) \mapsto g \circ f$ meets following:

For each $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, $h \in \mathcal{S}(C, D)$: $(h \circ g) \circ f = h \circ (g \circ f)$ (associativity). For each $A \in \text{ob}(\mathcal{A}) \exists 1_A \in \mathcal{A}(A, A)$, called the identity, such that, for each $f \in \mathcal{A}(A, B)$: $f \circ 1_A = f = 1_B \circ f$.

Poznámka (Notation)

$$A \in \text{ob}(\mathcal{A}) \Leftrightarrow A \in \mathcal{A}.$$

$$f \in \mathcal{A}(A, B) \Leftrightarrow A \xrightarrow{f} B \Leftrightarrow f : A \to B.$$

For $f \in \mathcal{A}(A, B)$: domain(f) := A and codomain(f) := B.

Například (of categories) Category of:

- sets (SET): ob(SET) := sets, SET(A, B) := functions from A to B, \circ is composition;
- groups (GRP): ob(GRP) := groups, GRP(G, H) := group homomorphisms, \circ is composition;
- rings (RING): ob(RING) := rings, RING(A, B) := ring homomorphisms, \circ is composition;
- vector spaces (VECT_K): ob($VECT_K$) := vector spaces over K, RING(A, B) := K linear maps, \circ is composition;
- topological spaces (TOP): ob(TOP) := topological spaces, RING(A, B) := continuous maps, \circ is composition.

Definice 0.2 (Isomorphism, inverse)

 $f: A \to B$ in a category \mathcal{A} is an isomorphism if exists a map $g: B \to A$ in \mathcal{A} such that $g \circ f = 1_A$ and $f \circ g = 1_B$. Then we call g the inverse of f.

 $Nap \check{r} iklad$

In SET isomorphisms are bijections.

Příklad

Show that inverses are unique (justifying the use of the determine article in the previous definition).

Poznámka

0-morphisms are called morphisms (between objects), 1-morphisms are called functors (between categories), 2-morphisms are called natural transformations (between functors).

Definice 0.3 (Functor)

Let \mathcal{A} and \mathcal{B} be categories. A functor $F : \mathcal{A} \to \mathcal{B}$ consists of: a function $F : \text{ob}(\mathcal{A}) \to \text{ob}(\mathcal{B})$, and for each $A, A' \in \mathcal{A}$ a function $F : \mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A'))$. Such that

$$F(f' \circ f) = F(f) \circ F(f'), \qquad \forall A \stackrel{f'f''}{A} \in \mathcal{A},$$

 $F(1_A) = 1_{F(A)} \qquad \forall A \in \mathcal{A}.$

Například (Forgetful functors)

 $U:GRP \to SET$, for any group (G,\cdot) , $U((G,\cdot)):=G$, and for any morphism $f,U(f:(G,\cdot)\to (H,*)):=f:G\to H$. (Exercise: Convince yourself that this is a well-defined functors.)

We can do the same for rings, vector spaces and topological spaces.

Například

Let \mathcal{A} be the following category: $ob(\mathcal{A}) = \{\cdot\}$, $\mathcal{A}(\cdot, \cdot) = 1$., and $1 \cdot \circ 1 = 1$. It is called discrete category with one object.

$$ob(\mathcal{B}) = \{\cdot, *\}, \, \mathcal{B}(\cdot, \cdot) = 1, \, \mathcal{B}(\cdot, *) = \emptyset$$

Directed transitive graph (with all loops) with concatenation of edges.

From group (G, +) we construct category \mathcal{G} by putting: $ob(\mathcal{G}) := \cdot$, $\mathcal{G}(\cdot, \cdot) := G$ and $oldsymbol{:} := +$. We can generalize to a monoid (M, +).

Now, let \mathcal{A} be a category with one object $\{\cdot\}$ (and assume that $\mathcal{S}(\cdot,\cdot)$ is a set). Then homomorphism with composition are monoid. And isomorphisms with composition are groups (so one-object category with all homomorphism isomorphic represents group).

(Category, where $\mathcal{A}(\cdot,\cdot)$ is a set, is often called locally small.)

Let G and H be groups and \mathcal{G} , \mathcal{H} their associated one-object categories. What is a functor from \mathcal{G} to \mathcal{H} ? For $F: \mathrm{ob}(\mathcal{G}) \to \mathrm{ob}(\mathcal{H})$ we have no other choice than $F(\cdot) := *$. For $F: \mathcal{G}(\cdot, \cdot) \to \mathcal{H}(*, *) = \mathcal{H}(F(\cdot), F(\cdot))$ we demonstrated (see lecture) that F needs to be group homomorphism (and every group homomorphism $G \to H$ is functor). (All this work for monoids too.)

Let AB be the category of ob(AB) := Abelian groups and AB(A, B) := group homomorphism. Then $U:AB \to GRP$ as "forgetful functor" is "identity". The same for commutative rings. Also we have forgetful functor $U:RING \to AB, (R,+,\cdot) \mapsto (R,+)$ and functor $U:RING \to MONOIDS, (R,+,\cdot) \mapsto (R,\cdot)$.

 $U: SET \to VECT_{\mathbb{K}}$ we can define by $F(X) = (X \to F)$ (functions from X to F) (free vector space).

Definice 0.4 (Functor composition)

When we have functor $F: \mathcal{A} \to \mathcal{B}$ and $F': \mathcal{B} \to \mathcal{C}$. We want to $F' \circ F$ to be functor, so it has function on objects and functions on morphism classes. Function on object is simply composition $F' \circ F$. Functions on morphism classes is also composition:

$$\mathcal{A}(A,A') \xrightarrow{F} B(F(A),F(A')) \xrightarrow{F'} \mathcal{C}(F' \circ F(A),F' \circ F(A')) \implies F' \circ F : \mathcal{A}(A,A') \to \mathcal{C}(F' \circ F(A),F' \circ F(A')).$$

Důkaz

1.
$$(F' \circ F)(1_A) = F'(F(1_A)) = F'(1_{F(A)}) = 1_{F' \circ F(A)}$$
. (For $A \in \mathcal{A}$.)

$$2. \ (F'\circ F)(f'\circ f)=F'(F(f'\circ f))=F'((F(f'))\circ (F(f)))=(F'\circ F(f'))\circ (F'\circ F(f)).$$
 (For $A\xrightarrow{f} A'\xrightarrow{f'} A''\in \mathcal{A}.$)

So $F' \circ F$ is a functor. We call it the composition of F and F'.

Definice 0.5 (CAT)

The category of categories (CAT) has categories as objects and functors as morphisms (with its composition from the previous definition).

 $D\mathring{u}kaz$

We need: 1. An identity functor $1_{\mathcal{A}} \in CAT(\mathcal{A}, \mathcal{A})$ (function on objects is identity, function on $CAT(\mathcal{A}, \mathcal{B})$ is identity too), we can easily see that it fulfills condition from category definition.

2. Associativity of composition: composition of functions is associative, so we see this from the definition of the functor composition.

Definice 0.6 (Dual category (opposite category))

For a category \mathcal{A} , its dual category (or opposite category) \mathcal{A}^{op} is defined by: $\text{ob}(\mathcal{A}^{\text{op}}) = \text{ob}(\mathcal{A})$, $\mathcal{A}^{\text{op}}(B,A) = \mathcal{A}(A,B)$ ($\forall A,B \in \text{ob}(\mathcal{A})$), composition in \mathcal{A}^{op} is the composition in \mathcal{A} .

Příklad (Excercise)

$$(\mathcal{A}^{\mathrm{op}})^{\mathrm{op}} = \mathcal{A}.$$

Definice 0.7 (Contravariant functor)

For two cats \mathcal{A}, \mathcal{B} a contravariant functor: $\mathcal{A} \to \mathcal{B}$ is a functor $F : \mathcal{A}^{\text{op}} \to \mathcal{B}$ $(F(f' \circ f) = (F(f)) \circ (F(f')))$.

Příklad

Functor $C: TOP \to ALG_{\mathbb{K}}$ is $X \in TOP \to C(X) \in ALG_{\mathbb{K}}$, where C(X) is the collection of all continuous functions $X \to \mathbb{K}$ with addition, multiplication and scalar multiplication. But when we try to define C for morphisms, we find that it cannot be done this way. $(C(X \xrightarrow{f} Y) = C(X) \xrightarrow{C(f)} C(Y)$, so $C(f)(\varphi) = \varphi \circ f \implies$ this does not define a functor.)

So we "fix it" by taking contravariant functor.

Definice 0.8 (Presheaf)

Let \mathcal{A} be a category a presheaf on \mathcal{A} is a functor $\mathcal{A}^{op} \to SET$.

Příklad

Let X be a topological space. Write O(X) for ordered subsets of X ordered by inclusion \rightarrow category O(X): objects are open subsets, morphisms are inclusion and \circ is composition of inclusions.

Definice 0.9 (Faithful functor, full functor)

A functor $F: \mathcal{A} \to \mathcal{B}$ is faithful (resp. full) if for each $A, A' \in \mathcal{A}$ the function

$$\mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A')), \qquad f \mapsto F(f),$$

is injective (resp. surjective) $\forall A, A' \in \mathcal{A}$.

Pozor

If F is faithful, we do not have $F(f_1) \neq F(f_2) \forall$ distinct morphisms f_1, f_2 . $(F(A) \text{ still can be equal to } F(A'), \text{ so it can be } f_1: A \to A, f_2: A' \to A'.)$

Definice 0.10 (Subcategory)

Let \mathcal{A} be a category. A subcategory $\mathcal{S} \subset \mathcal{A}$ consists of a subclass $ob(\mathcal{S}) \subseteq ob(\mathcal{A})$ together with, for $S, S' \in ob(\mathcal{S})$, a subclass $\mathcal{S}(S, S') \subseteq \mathcal{A}(S, S')$ such that \mathcal{S} is closed under composition.

Definice 0.11 (Full subcategory)

We say that subcategory S is full if $S(S, S') = A(S, S'), \forall S, S' \in ob(S)$.

Poznámka

A full subcategory is identified by its objects.

Například

AB is the full subcategory of GRP.

Příklad

For any subcategory $\mathcal{S} \subset \mathcal{A}$, we have an inclusion functor $I: \mathcal{S} \to \mathcal{A}$.

I is faithful, and it is full $\Leftrightarrow S$ is full.

Definice 0.12

 $F: \mathcal{A} \to \mathcal{B}$, Im(F) has objects F(A) and morphisms F(f).

Pozor

 $\operatorname{Im}(F)$ nemusí být kategorie. (Mohou vzniknout "možnosti složení", které v původní kategorii nebyly.)

0.1 2-morphism and natural transformations

Definice 0.13 (Natural transformation)

Let \mathcal{A} and \mathcal{B} be categories and $\mathcal{A} \stackrel{F}{\underset{G}{\Longrightarrow}} \mathcal{B}$ two functors. A natural transformation between F and G is a family of morphisms in \mathcal{B} : $(F(A) \stackrel{\alpha_A}{\Longrightarrow} G(A))_{A \in \mathcal{A}}$ such that $F(f) \circ \alpha_B = \alpha_A G(f)$ for every $A \stackrel{f}{\Longrightarrow} B \in \mathcal{A}$.

We call the morphisms α_A the components of the natural transformation.

Příklad

Define a composition of natural transformations and use it to define the functor category of \mathcal{A} and \mathcal{B} (objects functors $F: \mathcal{A} \to \mathcal{B}$ and morphisms natural transformations α).

Příklad

For two graphs H, K, functors between their 1-object cats \leftrightarrow group homomorphism. What is a natural transformations between two functors?

0.2 Free functors

Poznámka

Recall forgetfull functors. What about functors in the other direction?

Například

 $F: SET \to VECT_{\mathbb{K}}, X \mapsto F(X). F(X)$ (the free \mathbb{K} -vector space) is is functions $f: X \to \mathbb{K}$ endowed with the vector space structure (addition and scalar multiplication). (Alternatively F(X) is the vector space with a basis $\{e_x^X | x \in X\}$).

Morphisms: $F(f)(e_x^X) := e_{f(x)}^X$.

Například

 $U: GRP \to SET$, so free functor should look like $F: SET \to GRP$. $S \mapsto F(S)$, where F(S) (the free group) is a sets for which $\exists i: S \to F(S)$ inclusion of sets to F(S), that for every $f: S \to \mathcal{G}$ function between sets and groups, $\exists ! \varphi_i$ such that $i \circ \varphi_i$ commutes.

Think about / look up: this defines F(S) uniquely up to group isomorphism.

Příklad

Take the set $S^{-1} = \{S^{-1} | S \in S\}$. Take all words in the alphabet $S \cup S^{-1}$ that are reduced, i.e. we remove pairs of the form SS^{-1} , $S^{-1}S$ and ? is concatenation of words with reduction.

Příklad

How does act on morphisms.

TODO!!!

1 Adjunction

Definice 1.1

Let $\mathcal{A} \underset{G}{\overset{F}{\rightleftharpoons}} \mathcal{B}$ be categories and functors. We say that F is left adjoint to G, and G is right adjoint to F, and write F - |G| if $B(F(A), B) \cong \mathcal{A}(A, G(B))$ "naturally" in $A \in \mathcal{A}$, and $B \in \mathcal{B}$.

Poznámka

Naturally: $-: \mathcal{B}(F(A), B) \to \mathcal{A}(A, G(B))$ and $-: \mathcal{A}(A, G(B)) \to \mathcal{B}(F(A), B)$.

1.
$$\overline{F(A)} \xrightarrow{g} B \xrightarrow{q} B' = A \xrightarrow{\overline{g}} G(B) \xrightarrow{F(q)} G(B') \in \mathcal{A}$$
. 2. $\overline{A'} \xrightarrow{p} A \xrightarrow{f} G(B) = F(A') \xrightarrow{F(p)} F(A) \xrightarrow{\overline{f}} B \in \mathcal{B}$.

An adjunction between F and G is a choice of such isomorphism in $B(F(A), B) \cong \mathcal{A}(A, G(B))$.

Příklad (Think about this)

Adjoints may not exist. But if an adjunction does exist, then it is unique up to unique isomorphism.

Definice 1.2 (Initial, terminal and zero object)

Let \mathcal{A} be a category. An object $I \in \mathcal{A}$ is initial if for every $A \in \mathcal{A}$, $\exists !$ map $I \to A$. An object $T \in \mathcal{A}$ is terminal if for every $A \in \mathcal{A}$ $\exists !$ map $A \to T$. If object is both initial and terminal, we say that it is a zero object.

Například

In SET, we have an initial object. It is empty set.

In GRP we have an initial object $\{e\}$. And it is also a terminal object.

What object is a terminal object in SET? T =the set with one element.

The terminal object in CAT is 1, the discrete category with one object.

Lemma 1.1

Let I and I' be two initial objects in a category A. Then there is a unique isomorphism $I \to I'$, i.e. $I \cong I'$.

 $D\mathring{u}kaz$

Since I and I' are both initial objects, $\exists !$ morphisms $\mathrm{id}_I:I\to I,\ f:I\to I',\ g:I'\to I$ and $\mathrm{id}_{I'}:I'\to I'$. Because $g\circ f=\mathrm{id}_I$ and $f\circ g=\mathrm{id}_{I'},\ f$ and g give an isomorphism between I and I'. Moreover we see that it is unique.

Například

 $VECT_{\mathbb{K}}$: initial object and terminal object is zero vector space (this is part of the "abelian category structure" of $VECT_{\mathbb{K}}$).

Let R be a ring. Then we denote by MOD_R the category of R-modules with R-linear maps. This has zero object 0 – the zero module.

Příklad

Initial and terminal objects can be described via adjunctions: Let \mathcal{A} be a category, then \exists ! functor $\mathcal{A} \to 1$ (the discrete category with one element). What bout a functor $1 \to \mathcal{A}$? We see that such functor $F \leftrightarrow$ objects $A \in \mathcal{A}$.

TODO?

TODO!!!

TODO!!!

TODO!!!

Věta 1.2

Take cats and functors $\mathcal{A} \xrightarrow{F} \mathcal{B} \xrightarrow{G} \mathcal{A}$. There is a bijective correspondence between

- 1. (hom-class) adjunctions F |G|;
- 2. pairs $(1 \xrightarrow{?} GF, FG \xrightarrow{\varepsilon} 1_B)$ of natural transformations, satisfying the triangle identities;
- 3. "initial objects in certain comma categories".

TODO!!!

Lemma 1.3

Take an adjunction $\mathcal{A} \xrightarrow{F} \mathcal{B} \xrightarrow{G} \mathcal{B}$, F - | G, and $A \in \mathcal{A}$. Then $(F(A), \eta_A : A \to GF(A))$ is an initial object in the category $(A \Rightarrow G)$

TODO!!!

TODO!!!

2 Representable functors

Poznámka

From now on all categories are assumed to be locally small (i.e. $\mathcal{A}(A, B)$ is a set).

Definice 2.1

Let \mathcal{A} be a locally small category and let $A \in \mathcal{A}$. We define a functor

$$H^A(\cdot) := \mathcal{A}(A, \cdot) : \mathcal{A} \to SET$$

as follows:

- objects: $B \in \mathcal{A}, H^A(B) := \mathcal{A}(A, B);$
- morphisms: for $B \xrightarrow{g} B' \in \mathcal{A}$ the map $H^A(g) := \mathcal{A}(A,g) : \mathcal{A}(A,B) \to \mathcal{A}(A,B')$ is defined by $p \mapsto g \circ p$.

Poznámka

Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Define $f_V := \langle v, \cdot \rangle : V \to \mathbb{K}, w \mapsto \langle v, w \rangle$. For some $v \in V$.

Definice 2.2

Let \mathcal{A} be a locally small category, a functor $X : \mathcal{A} \to SET$ is called representable if, for some $A \in \mathcal{A}$, we have $X \simeq H^A$. A representation is a choice of isomorphism: $X \to H^A$.

Například

Let G be a group and let \mathcal{G} be the associated one object category. Recall that (functors $\mathcal{G} \to SET \Leftrightarrow G$ -sets.)

Since a representable functor is a functor, it must correspond to a G-set. The corresponding G-set is G itself, i.e. the left regular representation. (Since we only have one object, we only have one representable functor $H^{\cdot}: \mathcal{G} \to SET, \cdot \mapsto \mathcal{G}(\cdot, \cdot)$.)

Tvrzení 2.1

Any SET valued with a left adjoint is representable.

 $D\mathring{u}kaz$

 $G: \mathcal{A} \to SET \implies \mathcal{G}(A) \simeq SET(1, G(A))$, where 1 is 1-element set.

Příklad

The forgetful functor $U: VECT_{\mathbb{K}} \to SET$ is representable, since it admits a left adjoint, i.e. the free functor.

$$(f_v:V\to\mathbb{K},\,w\mapsto\langle v,w\rangle,\,v\in V,\implies V\to V^*=LIN_{\mathbb{K}}(V,\mathbb{K}),\,v\mapsto f_v=\langle v,\cdot\rangle.)$$

Poznámka

A morphism $A' \xrightarrow{f} A$ induces a natural transformation $H^A \overset{H^f}{\Rightarrow} H^{A'}$, defined by $H^A(B) = \mathcal{A}(A,B) \overset{H^f}{\Rightarrow} H^{A'}(B) = \mathcal{A}(A',B), p \mapsto p \circ f.$

Definice 2.3

Let \mathcal{A} be a locally small cat, the functor $H^{\cdot}: \mathcal{A}^{\text{op}} \to [\mathcal{A}, SET]$ (functor category: objects are $F: \mathcal{A} \to SET$, morphisms are natural transformations) is defined on objects $H^{\cdot}(A) = H^{A}$ and on morphisms $H^{\cdot}(f) = H^{f}$.

Poznámka (Moral)

This is a "representation" of \mathcal{A}^{op} in $[\mathcal{A}, SET]$. (Functor categories "nicer" than general categories.)

Definice 2.4

Let \mathcal{A} be a locally small category and $A \in \mathcal{A}$. We define a functor $H_A : \mathcal{A}(\cdot, A) : \mathcal{A} \to SET$, as following:

- objects: $H_A(B) = \mathcal{A}(B, A), B \in \mathcal{A};$
- morphism: $B' \stackrel{g}{\to} B$ define $H_A(g) := \mathcal{A}(g,A) : \mathcal{A}(B,A) \to \mathcal{A}(B',A), p \mapsto p \circ g.$

Poznámka

This now gives the definition of representable functor for functors $X: \mathcal{A}^{\mathrm{op}} \to SET$.

Definice 2.5 (Recall)

The functor category $[A^{op}, SET]$ is called the category of pre-sheaves on A.

Definice 2.6

Let \mathcal{A} be a locally small category. The Yoneda embedding of \mathcal{A} is the functor $H: \mathcal{A} \to [\mathcal{A}^{\text{op}}, SET]$ (defined in analogy with H).

Poznámka

Embedding for categories is defined at the level of homomorphism sets $\mathcal{A}(A, B) \xrightarrow{F} \mathcal{B}(F(A), F(B))$ is injective, $\forall A, B \in \mathcal{A}$, i.e. F is a faithfull functor.

Například

Recall the functor $C: TOP^{\text{op}} \to RING, X \mapsto C(X)$ (continuous functions from X to \mathbb{C} or \mathbb{R} , ring with respect to point-wise operations). The functor $TOP^{\text{op}} \xrightarrow{C} RING \xrightarrow{U} SET$ is representable since

$$U(C(X)) = TOP(X, \mathbb{R}) \text{ or } TOP(X, \mathbb{C}) = H_{\mathbb{R}}(X) \text{ or } H_{\mathbb{C}}(X).$$

Věta 2.2 (Yoneda lemma)

Let \mathcal{A} be locally small small category. Then $[\mathcal{A}^{op}, SET](H_A, X) \simeq X(A)$. Naturally in $A \in \mathcal{A}$, and $X \in [\mathcal{A}^{op}, SET]$ (pre-sheaf), where naturality means that the composite functor

$$\mathcal{A}^{op} \times [\mathcal{A}^{op}, SET] \stackrel{H^{op} \times 1}{\longrightarrow} [\mathcal{A}^{op}, SET]^{op} \times [\mathcal{A}^{op}, SET] \stackrel{Hom_{[\mathcal{A}^{op}, SET]}}{\longrightarrow} ET,$$

$$(A, X) \mapsto (H_A, X) \mapsto [\mathcal{A}^{op}, SET](H_A, X)$$

is naturally isomorphic to the evaluation functor

$$\mathcal{A}^{op} \times [\mathcal{A}^{op}, SET] \stackrel{en}{\to} SET, \qquad (A, X) \mapsto X(A).$$

Příklad

Confirm how the two functors act on morphisms.

Důkaz (Yoneda)

Strategy for the proof: we want a natural isomorphism between our two functors:

- components are isomorphisms in SET labelled by the objects of $\mathcal{A}^{\text{op}} \times [\mathcal{A}^{\text{op}}, SET]$; (This we need to look up.)
- naturality conditions labelled by morphisms in $\mathcal{A}^{\text{op}} \times [\mathcal{A}^{\text{op}}, SET]$. (This is what we need to check.)

Let's focus this week on the first point. So for every $A \in \mathcal{A}^{op}$, and every $X \in [\mathcal{A}^{op}, SET]$ we want an isomorphism of sets:

$$[\mathcal{A}^{\mathrm{op}}, SET](H_A, X) \xrightarrow{\hat{}(A, X)} X(A) \xrightarrow{\hat{}(A, X)} [\mathcal{A}^{\mathrm{op}}, SET](H_A, X).$$
$$F(A) \xrightarrow{\alpha_A} G(A) \overset{\alpha_A^{-1}}{F}(A).$$

Lemma 2.3 (Observation)

A function is defined by $[\mathcal{A}^{op}, SET](H_A, X) \xrightarrow{\hat{}} X(A), (\alpha : H_A \to X) \mapsto \hat{\alpha} := \alpha_A(1_A).$

Rough work: $\alpha: H_A \to X \Leftrightarrow \alpha_B: \mathcal{A}(B,A) \to X(B) \ (B \in \mathcal{A})$. Let's look at the case $B = A: \alpha_A: \mathcal{A}(A,A) \to X(A), \ 1_A \mapsto \alpha_A(1_A)$.

Lemma 2.4

A function is defined by

$$[\mathcal{A}^{op}, SET](H_A, X) \stackrel{\cdot}{\leftarrow} X(A), \qquad \tilde{x} \leftarrow |x.$$

```
Důkaz (The previous lemma) x \in X(A), we need natural transformation \tilde{X}: H_A \to X, that is, for each B \in \mathcal{A}^{op} a function \tilde{x}_B: H_A(B) = \mathcal{A}(B,A) \to X(V), which is natural in B.

TODO!!!

TODO!!!
```

TODO!!!

3 Limits and colimits

Poznámka

Change of viewpoint. We will look at the zero level, i.e. back inside categories.

Například

In $VECT_{\mathbb{K}}$, the category of all vector spaces, take V, W two objects. Consider $V \oplus W$ as a way to produce a new object from V and W.

Příklad

In SET let X, Y be two objects. How can we form a new object from X and Y.

Řešení

Cartesian product $X \times Y$.

Například

In GROUP, we can also take Cartesian product of two groups $G \times H$.

Definice 3.1

Let \mathcal{A} be a category. A product of X and Y consists of object P and morphisms $X \stackrel{p_1}{\leftrightarrow} P \stackrel{p_2}{\rightarrow} Y$ with the property that for all objects and morphisms $X \stackrel{f_1}{\leftrightarrow} A \stackrel{f_2}{\rightarrow} Y \exists ! \text{ map } \overline{f} : A \to P \text{ such that } f_2 = \overline{f} \circ p_2 \text{ and } f_1 = \overline{f} \circ p_1.$

We call p_1 and p_2 the projections of the product.

Například

For $V, W \in VECT_{\mathbb{K}}$ we define $P = V \oplus W$, $p_1 : V \oplus W \to V$, $(v, w) \mapsto v$ and $p_2 : V \oplus W \to W$, $(v, w) \mapsto w$.

Například

For $V, W \in VECT_{\mathbb{K}}$, we have maps

$$p_1: V \oplus W \to V$$
, $(v, w) \mapsto v$, $p_2: V \oplus W \to W$, $(v, w) \mapsto w$.

Assume $\exists A \in VECT_{\mathbb{K}} + \text{maps } f_1 : A \to V, f_2 : A \to W$. Then for \overline{f} we take the linear map

$$\overline{f}(a) = (\overline{f}_V(a), \overline{f}_w(a)) = (f_1(a), f_2(a)).$$

- \implies by definition the diagram commutes and \hat{f} is the unique linear such that this happens.
- $\implies V \oplus W$ is the product of V and W.

Příklad

Verify that products are unique up to unique isomorphism.

Příklad

For $X, Y \in SET$ consider the Cartesian product $X \times Y$, and the maps $p_1 : X \times Y \to X$, $p_2 : X \times Y \to Y$. Consider another set Z and functions $f_1 : Z \to X$, $f_2 : Z \to Y$. Consider the diagram of the product. What is \hat{f} ?

Řešení

Take $\hat{f}(z) := (f_1(z), f_2(z))$ and we are done.

Například

 $X, Y \in TOP$. Then the product of X and Y is the Cartesian product of X and Y endowed with the product topology.

Take 2 = (XY) (two-objects category with only identities). There is no cone, objects that maps to both X and Y, hence the product of X and Y does not exist.

Příklad

Show that for 1 = () the product of X with itself is X.

Příklad

 $V_1, \ldots, V_n \in VECT_{\mathbb{K}}$ then we can consider $V_1 \oplus V_2 \oplus \ldots \oplus V_k \in VECT_{\mathbb{K}}$.

Poznámka

This is a generalised product over $I := \{1, \dots, k\}$.

Definice 3.2 (Generalised product)

Let \mathcal{A} be a category, I a set and $(X_i)_{i\in I}$ a family of objects of \mathcal{A} . A product of $(X_i)_{i\in I}$ consists of an object P and a family of maps $(P \xrightarrow{p_i} X_i)_{i\in I}$ such that $\forall A \in \mathcal{A}$ and maps $(AX_i)_{i\in I}$ ('cone') $\exists !$ map $\overline{f}: A \to P$ such that $p_i \circ \overline{f} = f_i, \forall i \in I$.

Poznámka

Generalised products do not need to exist, but if they do exist, then they are unique.

Důsledek

When |I| = 2, generalised products reduce to products (binary products).

Definice 3.3 (Diagram of shape, cone, limit)

Let \mathcal{A} be a category, and let \mathcal{I} be a small category. A diagram of shape \mathcal{I} is a functor $D: \mathcal{I} \to \mathcal{A}$.

Například

A binary product is a diagram of shape $(A \leftarrow B \rightarrow C)$.

- A cone on D is an object $A \in \mathcal{A}$ (the vertex) together with a family $(A \xrightarrow{f_I} D(I))_{I \in \mathcal{I}}$ ('cone') of maps in \mathcal{A} such that for all $I \xrightarrow{U} J$ in \mathcal{I} the triangle $A \xrightarrow{f_I} D(I) \xrightarrow{D(U)} D(J) \xleftarrow{f_J} A$ commutes
- A limit of D is a cone $(LD^{p_i}(I))_{I\in\mathcal{I}}$ such that for any other cone L on D, $\exists !$ map $\overline{f}: A \to L$ such that $p_I \circ \overline{f} = f_I$, $\forall I \in \mathcal{I}$. (Factorisation in terms of \overline{f} .)

Například

A binary product is a limit of shape I = 2 := (XY). A (generalised) product is a limit of shape \mathcal{I} , where \mathcal{I} is a discrete category.

Například (Equaliser)

For a diagram $E = (X \rightrightarrows Y)$. A limit in a category \mathcal{A} is called the equaliser.

Například (Pullback)

For a diagram of shape $P = (A \to B \leftarrow C)$, the limit is called a pullback.

Definice 3.4 (Has all limits)

A category has all limits, if it has limits of shape \mathcal{I} , \forall small categories \mathcal{I} .

Tvrzení 3.1

Let A be a category.

- If A has all products and equaliser \implies it has all limits.
- If A has binary products, a terminal objects and equalisers. Then A has finite limits (\mathcal{I} is a finite category).

Definice 3.5 (Monics)

Let \mathcal{A} be a category, a map $X \xrightarrow{f} Y$ in \mathcal{A} is monic, if for all objects A and maps $A \underset{x'}{\Longrightarrow} X$,

$$f \circ x = f \circ x' \implies x = x'.$$

Příklad

In SET a map is monic if it is injective: f injective \Longrightarrow monic (easy), f monic \Longrightarrow injective $1 \stackrel{x}{\Longrightarrow} X \stackrel{f}{\to} Y$, tj. $x \neq x' \Longrightarrow f(x(1)) \neq f(x'(1))$.

Příklad

Similarly, for GRP, $VEC_{\mathbb{K}}$, RING, ... monics \Leftrightarrow injective.

Lemma 3.2

 $\overline{X \xrightarrow{f} Y \text{ is monic iff } X \xrightarrow{1_X} X \xrightarrow{f} Y \xleftarrow{f} X \xleftarrow{1_X} X \text{ is a pullback.}}$

4 Colimits

Definice 4.1 (Cocone, colimit)

Let \mathcal{A} be a category and \mathcal{I} a small category in \mathcal{A} , and write $D^{\mathrm{op}}: \mathcal{I}^{\mathrm{op}} \to \mathcal{A}^{\mathrm{op}}$. A cocone on D is a cone on D^{op} and a colimit of D is a limit of D^{op} .

Explicitly a cocone on D is an object $A \in \mathcal{A}$ (vertex) plus a family $(D(I) \xrightarrow{f_I} A)_{I \in \mathcal{I}}$ (cocone) of morphisms such that $\forall (IJ) \in \mathcal{I}: D(I) \xrightarrow{D(u)} D(J) \xrightarrow{f_J} A \xleftarrow{f_I} D(I)$.

A colimit is a universal cocone $(D(I)^{p_I}L)$, i.e. it satisfies TODO (diagram with commutation).

Definice 4.2 (Coproduct / sum)

Coproduct (or sum) is a colimit of a discrete category.

Například

SET coproducts/sums are disjoint unions.

GROUP. The coproduct of two groups G and H is G*H, the free product of G and H.

 $V, W \in VECT_{\mathbb{K}}$, what is the coproduct of V and W? $V \oplus W$.

Důsledek

Sometimes products and coproducts are same. (This is a general fact about Abelian categories.)

Například (Coequaliser)

A colimit of shape $E := (X \rightrightarrows Y)$ is called a coequaliser.

Například (Pushout)

A colimit of shape $(A \leftarrow B \rightarrow C)$ is called pushout (i.e. a pushback in \mathcal{A}^{op}).

Například

Take $\mathcal{A} = AB$ (the category of Abelian groups). The coequaliser of $A \stackrel{s}{\Longrightarrow} B$ is $B \stackrel{proj}{\Longrightarrow} B/(\Im(t) \cup \Im(s))$. For s = 0 we get the cokernel of $t : A \to B$.

Definice 4.3 (Epics)

$$g\circ f=g'\circ f\implies g=g'.$$

Například

SET epics \Leftrightarrow surjective maps.

HAUSDTOP. Any morphism $f: X \to Y$ with dense image is an epic.

Příklad

Express epics as a pushout.

Definice 4.4 (Preservation of limits)

Let \mathcal{I} be a small category, a functor $F: \mathcal{A} \to \mathcal{B}$ preserves limits of shape \mathcal{I} if for all diagrams $D: \mathcal{I} \to \mathcal{A}$ and all cones $(A \stackrel{p_I}{\to} D(I))$ on D, $(A \stackrel{p_I}{\to} D(I))_{I \in \mathcal{I}}$ is a limit on D in A. $\Longrightarrow (F(A) \stackrel{F(p_1)}{\to} F(D(I)))_{I \in \mathcal{I}}$, cone on $F \circ D$ in B, is a limit cone.

Například

Take $I = \emptyset$, empty category, and $D : \emptyset \to \mathcal{A}$. What is any object $A \in \mathcal{A}$? L is a limit if for any other cone A we have a unique morphism $A \xrightarrow{\hat{f}} L$. So a limit of shape \emptyset is a terminal object. Dually a colimit over \emptyset is an initial object.

Například (Equalisers)

A fork in a category consists of objects and maps $A \xrightarrow{f} X \xrightarrow{s} Y$ such that $s \circ f = t \circ f$.

Definice 4.5

Let \mathbb{A} be a category, and $X \stackrel{s}{\underset{t}{\Longrightarrow}} \overline{Y}$ be objects and morphisms. An equaliser of s and t is $E \stackrel{i}{\to} X$ such that $E \stackrel{i}{\to} X \stackrel{s}{\underset{t}{\Longrightarrow}} Y$ is a fork such that for any other fork $\exists !$ map $\hat{f}: A \to E$ such that $X \leftarrow A \stackrel{\hat{f}}{\to} E \stackrel{i}{\to} X$.

Například

In
$$SET X \stackrel{s}{\underset{t}{\Longrightarrow}} Y$$
. $E := \{x \in X | s(x) = t(x)\}$.

Let $o: G \to H$ be a morphism in GROUP. This gives us a fork $Ker(o) \hookrightarrow G \stackrel{o}{\underset{e}{\Longrightarrow}} H$, where $e(g) = e_H$ (identity of H) \Longrightarrow Kernels are equalisers.

 $V \stackrel{s}{\underset{t}{\Longrightarrow}} W \in VECT_{\mathbb{K}}$ then the equaliser of this diagram is $Ker(t-s) \hookrightarrow V$.

Poznámka (Pullbacks)

Recall that a pullback was a limit of shape $\mathcal{I} := (A \to B \leftarrow C)$. For a category \mathcal{A} , $D: \mathcal{I} \to \mathcal{A}$ we get $(X \xrightarrow{s} Z \xleftarrow{t} Y) \in \mathcal{A}$.

A pullback is an object $P \in \mathcal{A}$ together with maps $p_1 : P \to X$, $p_2 : P \to Y$ such that $P \xrightarrow{p_1} Y \xrightarrow{t} Z \xleftarrow{s} X \xleftarrow{p_1} P$ commutes and such that for any other cone ... we have ... commutes.

Například (Pullbacks in SET)

The pullback of a diagram $(X \to Z \leftarrow Y)$ in SET is $P = \{(x, y) \in X \times Y | s(x) = t(y)\}$. $P \xrightarrow{p_X} X \xrightarrow{t} Z \xrightarrow{s} Y \xrightarrow{p_Y} P$.

Inverse image (on SET): $f^{-1}(Y') \stackrel{p_y}{\to} Y \stackrel{j}{\longleftrightarrow} Y \stackrel{f}{\longleftarrow} X \stackrel{p_X}{\longleftarrow} f^{-1}(Y')$, where j is inclusion, $f^{-1}(Y')$ are (x,y) such that $f(x)=y\in Y'$. \Leftrightarrow the pullback $f^{-1}(Y)$ since y is determined by x.

Intersection: Let $X,Y\subseteq Z$. Then $P\stackrel{p_y}{\to} Y\stackrel{\text{inclusion}}{\longleftrightarrow} Z\stackrel{\text{inclusion}}{\longleftrightarrow} X\stackrel{p_X}{\longleftarrow} P,\; (x,y)\stackrel{p_y}{\mapsto} y\mapsto y=$

$$x \longleftrightarrow x \overset{p_X}{\longleftrightarrow} (x, y) \implies P \simeq X \cap Y.$$

TODO!!!

Tvrzení 4.1

A morphism $f: X \to Y$ of objects in an additive category \mathcal{C} is monic (resp. epic) iff $\operatorname{Ker}(f) = (0, 0 \to m)$, respective (resp. coker $(f) = (0, n \to 0)$).

 $D\mathring{u}kaz$

Exercise.

Definice 4.6 (Pre-abelian category)

A pre-abelian category $\mathcal C$ is an additive category such that every morphism in $\mathcal C$ has a kernel and a cokernel.

Poznámka

Now suppose we have a morphism $f: X \to Y$ in a pre-abelian category. Then consider following diagram:

$$0 \to \operatorname{Ker}(f) \to X \xrightarrow{f} Y \to \operatorname{coker}(f) \to 0,$$

$$X \to \operatorname{coker} \ker(f) \xrightarrow{h} \ker \operatorname{coker}(f) \leftarrow Y, \qquad \operatorname{coker} \ker(f) \xrightarrow{g?} Y.$$

The arrow g is induced by the universal property of $coker \operatorname{Ker}(f)$ applied to the composite $\ker(f) \to X \to Y$ and the same for h.

So we see that in a pre-abelian category, an morphism factors through its coimage $coim(f) := coker \operatorname{Ker}(f)$ and its image $\Im(f) := \operatorname{Ker} ckoer(f)$.

Definice 4.7 (Abelian category)

A pre-abelian category \mathcal{A} is abelian if for every morphism $f \in \mathcal{A}$, the canonical morphism $coim(f) \to \Im(f)$ is an isomorphism.

Příklad

Show that this is true in MOD_R . (Use the fundamental 3-theorems of modules).

Věta 4.2 (Frey–Mitchel embedding theorem)

Let \mathcal{A} be a small abelian category. Then exists a ring R and a full-faithful functor $F: \mathcal{A} \to MOD_R$.

Poznámka
How can we tell when $\mathcal{A} \simeq MOD_R$?

Věta 4.3 (Morita's theorem)

Let \mathcal{A} be a complete abelian category, with "pregenerator" $P \in \mathcal{A}$, and let $R = \mathcal{A}(P, P)$. Then the functor $\mathcal{A}(P, -) : \mathcal{A} \to MOD_R$ is an equivalence of categories.