Chapter 15 Multiple Integrals 15.2 Double Integrals over genaral regions

Given: A function f defined on D

Extend f to a rectangle containing D

$$\iint\limits_D f(x, y) \, dA = \iint\limits_R F(x, y) \, dA$$

Region of type I.

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

EXAMPLE 1 Evaluate $\iint_D (x + 2y) dA$, where *D* is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

Region of Type II.

EXAMPLE. Evaluate $\iint_D e^{-y^2} dA$, where D is the region bounded by the lines x = 0, x = 3 and x = y.

EXAMPLE. Find the volume of the tetrahedron bounded by the planes $x+2y+z=2,\ x=2y,\ y=0,$ and z=0.

EXAMPLE 5 Evaluate the iterated integral $\int_0^1 \int_x^1 \sin(y^2) dy dx$.

$$\boxed{6} \iint_D (f(x,y) + g(x,y)) dA = \iint_D f(x,y) dA + \iint_D g(x,y) dA$$

$$\boxed{7} \iint_D cf(x,y) dA = c \iint_D f(x,y) dA$$

8 If
$$f(x,y) \ge g(x,y)$$
 on D , then $\iint_D f(x,y) dA \ge \iint_D g(x,y) dA$

9 If
$$D = D_1 \cup D_2$$
, with $D_1 \cap D_2 = \emptyset$, then

$$\iint_{D} f(x,y) \, dA = \iint_{D_1} f(x,y) \, dA + \iint_{D_2} f(x,y) \, dA$$

$$\boxed{10} Area(D) = \iint_D 1 \, dA$$

11 If
$$m \le f(x,y) \le M$$
, then $m \cdot Area(D) \le \iint_D f(x,y) dA \le M \cdot Area(D)$

Example. Find the area of the trapezoid below:

Challenge. Find the area of the hexagone below using properties 9 and 10:

