

Présentation mi-parcours

Projet Ruche

Station météologique

Sommaire

I. Présentation du projet

II. Avancement du projet

III. Hardware

- A. Fonctionnement des capteurs
- B. Dimensionnement et câblage
- C. Tests du fonctionnement des codes
- D. Résolution des problèmes
- E. PCB

IV. Développement logiciel

- A. Capteur de pression / altitude / humidité / température
- B. Capteur de luminosité
- C. Pluviomètre
- D. Anémomètre
- E. Girouette
- F. Module LoRa
- G. Gestion du mode sommeil

V. Conclusion

I) Présentation

Objectifs du module Météo :

Relever la température, l'humidité, l'altitude, de la pluviométrie, la direction et la vitesse du vent ;

Réceptionner les données transmises par les autres modules ;

Transmettre la totalité des données à la base de données. Passerelle LORA Déia fait Station Météo LORA RUCHE BALANCE LORA

Déjà fait

II) Avancement du projet

Tâches Mois	09	10	11	12	01	02	03	04	05
Câblage des différents éléments / FTDI									
Capteur de pression/altitude/humidité/température									
Capteur de luminosité									
Pluviomètre									
Girouette									
Anémomètre									
Module LoRa									
Gestion du mode sommeil									
PCB									

A) Fonctionnement des capteurs

<u>Mesures</u>:

- Altitude
 Humidité (%)
- Température (-40 à 85°C)

Alimentation:

- min 1.7v
- max 3.6v

I²C interface:

- SCK: serial clock (SCL)
- SDI: data (SDA)
- SDO: Slave address LSB

Capteur BME

ADC: 16 bit

A) Fonctionnement des capteurs

Capteur TSL

ADC: 16 bit

Mesure:

- Luminosité (0,1 à 40 000 lux)

Alimentation:

- min 2.7v
- max 3.6v

I²C interface:

- SCL: serial clock
- SDA: data

A) Fonctionnement des capteurs

Girouette

Anémomètre

Pluviomètre

Mesures:

- Orientation du vent
- Vitesse du vent
- Précipitation

A) Fonctionnement des capteurs

Girouette

Direction	Resistance	Voltage
(Degrees)	(Ohms)	(V=5v, R=10k)
0	33k	3.84v
22.5	6.57k	1.98v
45	8.2k	2.25v
57.5	891	0.41v
90	1k	0.45v
112.5	688	0.32v
135	2.2k	0.90v
157.5	1.41k	0.62v
180	3.9k	1.40v
202.5	3.14k	1.19v
225	16k	3.08v
247.5	14.12k	2.93v
270	120k	4.62v
292.5	42.12k	4.04v
315	64.9k	4.78v
337.5	21.88k	3.43v

B) Dimensionnement et câblage

C) Tests du fonctionnement des codes

Dácupáration dos

Capteur BME	valeurs, comparaison avec météo france
Capteur TSL	Récupération des valeurs en Candela

Conclusion

Aucun problème rencontré lors des tests de fonctionnement

C) Tests du fonctionnement des codes

Girouette ——————————————————————————————————	Récupération de la tension en V sur une entrée analogique
Pluviomètre ————————————————————————————————————	Récupération de la quantité d'eau en m^3/L sur une entrée digital
Anémomètre ————————————————————————————————————	Récupération de la vitesse du vent en km/h sur une entrée digital
C	

Conclusion

Nous avons rencontré des problèmes avec les interruptions

D) Résolution des problèmes

Rajout d'une capacité de 220pF pour éviter les rebonds

Vérification à l'oscilloscope que les interruptions sont propres

OK ça a fonctionné la capacité a bien été dimensionné mais il n'est pas suffisant pour gérer entièrement notre problème d'interruption

Test du code avec un GBF

OK ça a fonctionné

Nous pensons que l'oscilloscope n'est pas assez performant pour voir les rebonds **Conclusion**

L'anti-rebond à finalement été géré par le code en ajoutant une condition minimum de temps entre deux interruptions

E) PCB

- 1. Récupération du PCB existant
- 2. Suppression des composants inutiles
- 3. Ajout des librairies pour les composants existants
- 4. Séparation des différents éléments présents sur la carte en groupe (acquisition, traitement, communication, action)

A) Capteur de pression / altitude / humidité / température

Code capteur BME

B) Capteur luminosité

Code capteur TSL

C) Pluviomètre

Calcule de la quantité d'eau en m³/L :

Quantité = 0.2794 * nbBasculements

F) Anémomètre

Calcule de la vitesse en km/h:

interruptSec = nbInterrupt / Periode Vitesse = interruptSec*2.4

E) Girouette

La lecture d'une valeur analogique avec l'ESP32 signifie que l'on peut mesurer différents niveaux de tension entre 0 V et 3,3 V.

La tension mesurée est alors affectée à une valeur comprise entre 0 et 4095,

E) Girouette

Problème : comportement non linéaire des broches ESP32 ADC

ESP32 n'est pas capable de distinguer 3,3 V de 3,2 V => même valeur pour les deux tensions: 4095.

De même pour 0 V et 0,1 V, valeur obtenue => 0

F) Module LoRa

Fonctionnement <u>de la Gateway</u>

F) Module LoRa

Envoie d'un message

F) Module LoRa

Réception d'un message

G) Gestion du mode sommeil

Conclusion

- ☐ Réalisation du PCB
- ☐ Test du module LORA
- → Fin de la réalisation du code et test de la girouette

Merci de votre attention. Avez-vous des questions?