Cálculo Integral em R Cálculo para Engenharia

Maria Elfrida Ralha

Licenciatura em Engenharia Informática

1/33

- 1 Integral Definido (de Riemann): continuação
- 2 Teorema Fundamental do Cálculo
- Métodos de integração
 - Integração por decomposição
 - Integração imediata
 - Integração por partes
 - Integração por substituição
- 4 Integrais Impróprios
 - Integrais em intervalos ilimitados
 - Integrais de funções ilimitadas
 - Integrais de funções ilimitadas em intervalos ilimitados
- 5 Outras Aplicações do Cálculo Integral
 - Áreas de domínios planos

2/33

Integral de Riemann

Seja $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função limitada.

• Consideramos uma partição, \mathcal{P} , do intervalo [a, b], isto é, subdividimos o intervalo [a, b] em n subintervalos que não se sobrepõem e que reunidos são [a, b]. Sejam $x_0, x_1, \ldots, x_{n-1}, x_n$ os extremos desses subintervalos, com

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

• Chamamos soma(s) de Riemann de f no intervalo [a,b], para a partição \mathcal{P} , a

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) (x_{k+1} - x_k), \quad \text{onde} \quad \widetilde{x_k} \in [x_k, x_{k+1}]$$

ou

$$\sum_{k=0}^{n-1} f(\widetilde{x_k}) \Delta x_{k+1}, \quad \text{com} \quad \Delta x_{k+1} = x_{k+1} - x_k$$

• [Integral definido] O integral definido de f em [a, b] é o limite da(s) soma(s) de Riemann de f, quando $n \longrightarrow \infty$, isto é

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} f(\widetilde{x_k}) \, \Delta \, x_{k+1}$$

• O integral definido de f em [a, b] representa-se por

$$\int_{x=a}^{b} f(x) \, dx$$

- A função f diz-se integrável no intervalo [a, b] (segundo Riemann).
- Observe-se que: $n \longrightarrow \infty$ equivale a $\Delta x_{k+1} \longrightarrow 0$.

Índice

- 🕕 Integral Definido (de Riemann): continuação
- 2 Teorema Fundamental do Cálculo
- Métodos de integração
 - Integração por decomposição
 - Integração imediata
 - Integração por partes
 - Integração por substituição
- 4 Integrais Impróprios
 - Integrais em intervalos ilimitados
 - Integrais de funções ilimitadas
 - Integrais de funções ilimitadas em intervalos ilimitados
- 5 Outras Aplicações do Cálculo Integral
 - Áreas de domínios planos

Teorema Fundamental do Cálculo

- Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua e, por simplicidade, assuma-se $f\geq 0$.
- Considere-se a área limitada pelo gráfico de f e o eixo das abcissas entre t=a e t=x ($x\leq b$): para cada x o valor da área será dado por uma "função área" F

$$F(x) = \int_a^x f(t) dt.$$

Nota: Esta "função área" pode definir-se, mesmo sem estar garantida a continuidade de f.

Tem-se

$$f(x) h \le \Delta F(x) \le f(x+h) h$$

Justifique!

Ou, dividindo a expressão anterior por h,

$$f(x) \le \frac{\Delta F(x)}{h} \le f(x+h)$$

• Tomando o limite quando $h \longrightarrow 0$ nas desigualdades anteriores tem-se

$$\lim_{h \to 0} \frac{\Delta F(x)}{h} = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = F'(x)$$

е

$$\lim_{h \to 0} f(x+h) = f(x)$$

Então

$$f(x) \leq F'(x) \leq f(x)$$

isto é, a "função área"

$$F(x) = \int_{a}^{x} f(t) dt$$

é derivável, tendo-se que $\forall x \in [a, b], F'(x) = f(x)$ o que equivale a dizer-se que a "função área" é uma primitiva da função f.

Teorema (Fundamental do Cálculo)

Seja $f: [a, b] \longrightarrow \mathbb{R}$ uma função contínua.

1) A função $F:[a,b] \longrightarrow \mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt$$

é derivável em [a, b], tendo-se

$$F'(x) = f(x), \quad \forall x \in [a, b].$$

2) Fórmula de Barrow: Sendo F uma primitiva de f em [a, b], tem-se

$$\int_a^b f(t) dt = F(t) \Big|_a^b \stackrel{\text{def.}}{=} F(b) - F(a).$$

Consequências do TFC: derivação sob o sinal de integral

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, F uma sua primitiva e $\varphi:[c,d]\longrightarrow [a,b]$ derivável.

• Então f é integrável, em particular, entre a e $\varphi(x)$, tendo-se

$$\int_{a}^{\varphi(x)} f(t) dt = F(\varphi(x)) - F(a)$$

• Pelo teorema da derivação da função composta tem-se, então

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = [F(\varphi(x))]' = F'(\varphi(x)) \varphi'(x).$$

• Por 1) do teorema fundamental do cálculo F' = f, pelo que se conclui que

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = f(\varphi(x)) \varphi'(x).$$

Sendo $\varphi, \psi \colon [c, d] \longrightarrow [a, b]$ funções deriváveis, tem-se

$$\left(\int_{\varphi(x)}^{\psi(x)} f(t) dt\right)' = f(\psi(x)) \psi'(x) - f(\varphi(x)) \varphi'(x)$$

Basta notar que

$$\int_{\varphi(x)}^{\psi(x)} f(t) dt = \int_{a}^{\psi(x)} f(t) dt - \int_{a}^{\varphi(x)} f(t) dt = F(\psi(x)) - F(\varphi(x))$$

e conjugar o teorema fundamental do cálculo com o teorema da derivação de funções compostas.

- Calcule F'(x) quando $F(x) = \int_0^x \frac{1}{1+t} dt$
- ② Calcule G'(x) quando $G(x) = \int_0^{x^2} \frac{1}{1+t} dt$.
- $oldsymbol{0}$ Defina f sabendo que $f\colon \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ é uma função contínua tal que

$$\forall x \in \mathbb{R}_0^+, \quad \int_0^{x^2} f(t) \, dt = x^3 e^x - x^4$$

Índice

- 🕕 Integral Definido (de Riemann): continuação
- 2 TEOREMA FUNDAMENTAL DO CÁLCULO
- Métodos de integração
 - Integração por decomposição
 - Integração imediata
 - Integração por partes
 - Integração por substituição
- 4 Integrais Impróprios
 - Integrais em intervalos ilimitados
 - Integrais de funções ilimitadas
 - Integrais de funções ilimitadas em intervalos ilimitados
- 5 Outras Aplicações do Cálculo Integral
 - Áreas de domínios planos

Métodos de integração

- Integração por decomposição
- Integração imediata
- Integração por partes
- Integração por substituição

Integração por decomposição: Linearidade do integral

Sejam $f,g:[a,b]\longrightarrow \mathbb{R}$ funções contínuas e $lpha\,,eta\in\mathbb{R}$ constantes. Então

$$\int_a^b [\alpha f(x) \pm \beta g(x)] dx = \alpha \int_a^b f(x) dx \pm \beta \int_a^b g(x) dx.$$

- [cf. ALGA] O integral definido é um operador linear.
- Calcule

$$\int_0^{\pi} \left[\sqrt{2} x^2 + 2 \operatorname{sen} x \right] dx.$$

Integração imediata

Sejam funções $f:I\longrightarrow J$ e $g:J\longrightarrow \mathbb{R}$ duas funções deriváveis tais que a função composta está bem definida. Então

$$\int_{a}^{b} g'(f(x)) \cdot f'(x) dx = \int_{a}^{b} [g(f(x))]' dx = g(f(b)) - g(f(a)).$$

Calcule

$$\int_{\pi/4}^{\pi} \cos x \left(\sin x \right)^3 dx.$$

Integração por partes

Sejam funções $f,g:[a,b]\longrightarrow \mathbb{R}$ funções de classe \mathcal{C}^1 . Então

$$\int_{a}^{b} f'(x) g(x) dx = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

Calcule

$$\int_0^{\pi} x \cos x \, dx.$$

Integração por substituição

Sejam $g:[a,b]\longrightarrow \mathbb{R}$ contínua, I um intervalo, $f:I\longrightarrow [a,b]$ de classe \mathcal{C}^1 e $\alpha,\beta\in I$ tais que

$$f(\alpha) = a$$
 e $f(\beta) = b$.

Então

$$\int_{a}^{b} g(x) dx = \int_{\alpha}^{\beta} g(f(t)) f'(t) dt.$$

- O método de integração por substituição também se denomina método de integração por mudança de variáveis.
- ① Calcule $\int_{-1}^{1} \arcsin x \, dx$, considerando a seguinte mudança de variáveis:

$$x:\left[-rac{\pi}{2},rac{\pi}{2}
ight]\longrightarrow [-1,1]$$
 definida por $x(t)=\sin t.$

Índice

- 🕕 Integral Definido (de Riemann): continuação
- 2 TEOREMA FUNDAMENTAL DO CÁLCULO
- Métodos de integração
 - Integração por decomposição
 - Integração imediata
 - Integração por partes
 - Integração por substituição
- Integrais Impróprios
 - Integrais em intervalos ilimitados
 - Integrais de funções ilimitadas
 - Integrais de funções ilimitadas em intervalos ilimitados
- 5 Outras Aplicações do Cálculo Integra
 - Áreas de domínios planos

Integrais Impróprios:: Problemas Introdutórios

• Qual a área delimitada pela curva definida por $y = \frac{1}{x^2}$, quando $x \ge 1$?

• Qual a área delimitada pela curva definida por $y = \frac{1}{(x-2)^2}$, quando 1 < x < 3?

Integrais impróprios

• [Tipo 1] Integrais em intervalos ilimitados: sendo $a,b \in \mathbb{R}$

$$]-\infty,a]$$
 ou $[b,+\infty[$ ou $]-\infty,+\infty[$

• [Tipo 2] Integrais de funções ilimitadas em algum ponto do intervalo de integração. Por exemplo.

$$\int_{-1}^{1} \frac{1}{x} dx.$$

• [Tipo 3] Integrais em intervalos ilimitados & de funções ilimitadas em algum ponto do intervalo de integração.

• Seja f definida em $[a, +\infty[$ e integrável em qualquer intervalo [a, b] com $[a, b] \subset [a, +\infty[$.

Define-se o integral impróprio de f em $[a, +\infty[$ por

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx.$$

- Se o limite não existir, diz-se que o integral impróprio é divergente.
- Se o limite existir, diz-se que o integral impróprio é convergente e/ou que *f* é integrável em sentido impróprio.

• Seja f definida em $]-\infty,b]$ e integrável em qualquer intervalo [a,b] com $[a,b]\subset]-\infty,b]$.

Define-se o integral impróprio de f em $]-\infty,b]$ por

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

- Se o limite não existir, diz-se que o integral impróprio é divergente.
- Se o limite existir (for finito), diz-se que o integral impróprio é convergente e/ou que f é integrável em sentido impróprio.
- Seja f definida em \mathbb{R} e integrável em em qualquer intervalo [a, b] de \mathbb{R} . Define-se o integral impróprio de f em \mathbb{R} por

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

com $c \in \mathbb{R}$ arbitrário, desde que os integrais do 2.º membro sejam convergentes.

• É divergente o integral impróprio

$$\int_{1}^{+\infty} \frac{1}{x} dx.$$

De facto.

$$\int_1^{+\infty} \frac{1}{x} dx = \lim_{t \to +\infty} \int_1^t \frac{1}{x} dx = \lim_{t \to +\infty} \left[\ln x \right]_1^t = \lim_{t \to +\infty} (\ln t - \ln 1) = +\infty.$$

• É convergente o integral impróprio

$$\int_1^{+\infty} \frac{1}{x^2} \, dx.$$

De facto,

$$\int_1^{+\infty} \frac{1}{x^2} dx = \lim_{t \to +\infty} \int_1^t \frac{1}{x^2} dx = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_1^t = \lim_{t \to +\infty} \left(-\frac{1}{t} + 1 \right) = 1.$$

Nota (Critério de Comparação)

- Se $0 \le f(x) \le g(x)$ e $\int_{a}^{+\infty} g(x) dx$ converge, então $\int_{a}^{+\infty} f(x) dx$ também converge.
- Se $0 \le g(x) \le f(x)$ e $\int_a^{+\infty} g(x) dx$ diverge, então $\int_a^{+\infty} f(x) dx$ também diverge.

EXEMPLO:

Nota: Existem resultados análogos para os integrais impróprios $\int_{-a}^{a} f(x) dx$.

Exemplos

 Os seguintes integrais são úteis na aplicação do critério de comparação:

$$\bullet \ \int_1^{+\infty} \frac{1}{x^r} \, dx \quad \left\{ \begin{array}{ll} \text{converge, quando} & r > 1 \\ \\ \text{diverge, quando} & r \leq 1. \end{array} \right.$$

$$\bullet \int_0^{+\infty} e^{-rx} dx \quad \begin{cases} \text{converge, quando } r > 0 \\ \text{diverge, quando } r \le 0. \end{cases}$$

• Seja $f:[a,b[\longrightarrow \mathbb{R} \text{ integrável em } [a,c] \text{ com } [a,c] \subset [a,b[\text{ e ilimitada quando } x \rightarrow b. \text{ Define-se o integral impróprio de } f \text{ em } [a,b[\text{ por }]$

$$\int_a^b f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx.$$

• Seja $f:]a, b] \longrightarrow \mathbb{R}$ integrável em [c, b] com $[c, b] \subset]a, b]$ ilimitada quando $x \to a$. Define-se o integral impróprio de f em [a, b] por

$$\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx.$$

- Se o limite não existir, diz-se que o integral impróprio é divergente.
- Se o limite existir (for finito), diz-se que o integral impróprio é convergente.

Exemplo

• Determine, se possível, o valor de

$$\int_0^2 \frac{1}{(1-x)^2} \, dx.$$

- A função integranda está definida em ℝ \ {1}.
- Assim, há que escrever

$$\int_0^2 \frac{1}{(1-x)^2} \, dx = \int_0^1 \frac{1}{(1-x)^2} \, dx + \int_1^2 \frac{1}{(1-x)^2} \, dx$$

Mas

e estudar separadamente cada um dos integrais impróprios do tipo 2.

$$\int_0^1 \frac{1}{(1-x)^2} dx = \lim_{t \to 1^-} \int_0^t \frac{1}{(1-x)^2} dx = \lim_{t \to 1^-} \left[-\frac{1}{1-x} \Big|_{x=0}^t = \lim_{t \to 1^-} \left[-1 + \frac{1}{1-t} \right] \right]$$

Como o limite não existe, este integral é divergente.

• Uma vez que um dos integrais do 2.º membro é divergente, o integral dado é divergente.

- Para os integrais impróprios mantêm-se válidas as propriedades de linearidade e aditividade.
- Para os integrais do tipo 2 tem lugar um "Critério de comparação" análogo ao critério para integrais do tipo 1.
- Dizem-se integrais impróprios do tipo 3 os integrais que são simultaneamente do tipo 1 e do tipo 2.

Exercício: É do tipo 3 o integral

$$\int_0^{+\infty} \frac{1}{1-x} dx.$$
 Porquê?

Índice

- 🕕 Integral Definido (de Riemann): continuação
- 2 Teorema Fundamental do Cálculo
- Métodos de integração
 - Integração por decomposição
 - Integração imediata
 - Integração por partes
 - Integração por substituição
- 4 Integrais Impróprios
 - Integrais em intervalos ilimitados
 - Integrais de funções ilimitadas
 - Integrais de funções ilimitadas em intervalos ilimitados
- 5 Outras Aplicações do Cálculo Integral
 - Áreas de domínios planos

Cálculo Integral:: Algumas Aplicações

• Cálculo de áreas de domínios planos

• Cálculo de comprimento de curvas

 Cálculo de Distâncias, Limites, Valores Médios, Volumes de sólidos de revolução

Cálculo de áreas

• Se f é contínua em [a, b] e $f(x) \ge 0$ para todo o $x \in [a, b]$ então a área da região sob o gráfico de f entre x = a e x = b é

$$\text{área de } \mathcal{D} = \int_{x=a}^{b} f(x) \, dx$$

Em geral,

• Se f e g são contínuas em [a,b] e $f(x) \ge g(x)$ para todo o $x \in [a,b]$ então a área da região limitada pelos gráfico de f e g entre a e b é

$$area = \int_{x=a}^{b} [f(x) - g(x)] dx.$$

• Calcular a medida da área da região delimitada pelos gráficos das funções seno e cosseno para x entre 0 e $\frac{\pi}{A}$.

