MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 20		
Standard: This student is able to S14: CompTests. Use the comparison tests to determine		Mark:
series convergence.		
3/3	tompt due on	

Does
$$\sum_{n=2}^{\infty} \frac{5n}{n^3 - 1} = \frac{10}{7} + \frac{15}{26} + \frac{20}{63} + \dots$$
 converge or diverge?

MA 126-103 — Summer 2017 — Dr. Clontz

Name:		Exercise Type (Cost): In-Class (1AP)	
J#:			
Date: 2017 July 20			
Standard: This student is able	to	Mark:	
	series as convergent or divergent hniques to determine convergence	or	
divergence. $2/4$	* re	attempt due on:	
eries is convergent or diverg	may be multiple correct responses gent. You do not need to show yo $\sum_{i=0}^{\infty} \left(\frac{5}{2} - \frac{5}{2}\right)$	ur work.	
$\sum_{k=1}^{\infty} \frac{3^k}{(k+1)5^k}$	$\sum_{m=3}^{\infty} \left(\frac{5}{m} - \frac{5}{m+1}\right)$	$\sum_{n=2}^{\infty} \frac{2^n}{n!}$	
Partial Sum Sequence	• Partial Sum Sequence	• Partial Sum Sequence	
• Divergence Test	• Divergence Test	• Divergence Test	
• Geometric Series Test	• Geometric Series Test	• Geometric Series Test	
• Alternating Series Test	• Alternating Series Test	• Alternating Series Test	
• Integral Test	• Integral Test	• Integral Test	
• p-Series Test	• p-Series Test	• p-Series Test	
• Ratio Test	• Ratio Test	• Ratio Test	
• Root Test	• Root Test	• Root Test	
• Direct/Limit Comp. Test	• Direct/Limit Comp. Test	• Direct/Limit Comp. Test	
• Converges	• Converges	• Converges	

• Diverges

• Diverges

• Diverges

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 20		
Standard: This student is able to		Mark:
C14: PowSer. Identify the domain of a function defined as a power series.		
$1/4$ \star reat	tempt due on:	

Find the domain of $f(x) = \sum_{k=2}^{\infty} \frac{(x-3)^k}{k^2+1}$. (For each endpoint, if they exist, write the appropriate series, but you do not need to show your work in determining if the series converges or diverges.)