Варианты курсовых работ

Вариант 1 (Табулирование функции, заданной интегралом с параметрами)

Получить таблицу значений функции $f(y) = \int_{a}^{b} \frac{\sin(xy)}{(x+k) \cdot \sqrt[3]{x^2}} dx$ для ряда равноотстоящих

(с шагом h) значений $y \in [c,d]$. Численный метод интегрирования должен обеспечивать точность $\mathcal E$. Значение параметра k - абсцисса точки минимума функции $P(x) = 2x^2 - \exp(x)$ на отрезке [m,n].

Исходные данные:

а	b	С	d	m	n	\mathcal{E}	
			h				
0.1	1.1	0.3	0.5	0.02	0	1	0.001

Вариант 2 (Нахождение минимума сложной функции)

Вычислить минимум функции $F(x) = P(x_1) \cdot x^2 - 2.5 P(x_2) \cdot \sin x - 3$ на отрезке [a,b] с точностью \mathcal{E} . $P(x_1), P(x_2)$ - значения в точках x_1 и x_2 соответственно интерполяционного многочлена, построенного для таблично заданной функции f(x). Исходные данные:

x_1	x_2	a	b	\mathcal{E}
0.042	0.588	0	2	0.0001

X	0	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	1.859	1.852	1.851	1.848	1.842	1.833	1.822

Вариант 3 (Табулирование функции, связанной с решением задачи Коши)

Получить таблицу значений решения дифференциального уравнения $y' = \frac{\cos y}{a+x} + ky^2$, y(0) = 0 на отрезке $\begin{bmatrix} 0 & b \end{bmatrix}$ с шагом h . $\begin{pmatrix} a & k \end{pmatrix}$ - координаты точки минимума функции $f(t) = -\exp(-t) \cdot \ln(t)$ на отрезке $\begin{bmatrix} m & n \end{bmatrix}$, определяемого с точностью $\mathcal E$.

Исходные данные:

b	m	n	h	\mathcal{E}
1	1	4	0.1	0.001

Вариант 4 (Нахождение минимума сложной функции)

Вычислить минимум функции $F(x) = k \cdot (2 \cdot x^2 + 3 \cdot \exp(-x))$ на отрезке [c,d] с точностью \mathcal{E} ; $k = \int_{-\infty}^{b} (2-x) \cos x^2 dx$.

Исходные данные:

а	b	C	d	\mathcal{E}
0	0.4	0	1	0.001

Вариант 5 (Вычисление площади сложной фигура)

Вычислить с точностью \mathcal{E} площадь криволинейной трапеции, ограниченной осью Ох, прямыми x=a, x=b и кривой $y=f(x)=\sqrt{1-0.25\sin^2tx}$. Параметр t – корень уравнения $t^3-0.39t^2-10.5t+11=0$, принадлежащий отрезку [c,d] и определяемый с точностью \mathcal{E} . Исходные данные:

a	b	c	d	${\cal E}$
0	$\pi/2$	1	2	0.001

Вариант 6 (Нахождение минимума сложной функции)

Вычислить минимум функции $F(x) = k \cdot (a \cdot x + b) \cdot P(x)$ на отрезке [a,b] с точностью \mathcal{E} ; P(x) - интерполяционный многочлен для функции f(x), заданной таблично; k = P(c). Исходные данные:

\mathcal{X}	1.05	1.15	1.25	1.35	
f(x)	2.30	2.74	3.46	4.60	
а	b	С	\mathcal{E}		
1.05	1.35	1.10	0.001		

Вариант 7 (Нахождение минимума сложной функции)

Вычислить минимум функции $F(x) = k \cdot \exp(-x) \cdot \sin 2x$ на отрезке [a,b] с точностью \mathcal{E} ;

$$k = \int_{c}^{d} \frac{f(t)}{\ln(t+2)} dt; \quad \text{if } c \le t \le m, \quad 8-t \text{ при } m \le t \le d$$

Точность вычисления интеграла также принять равной \mathcal{E} . Исходные данные:

a	b	\mathcal{E}	c	d	m
-2	0	0	6	2	
	0/0001				

Вариант 8 (Нахождение корней нелинейного уравнения)

Вычислить методом Ньютона корень уравнения $x \cdot \exp(x) = 1.215 + a$ с точностью $\mathcal E$. Параметр a – абсцисса точки минимума функции $f(x) = x^4 + x^2 + x + 1$ на отрезке [c,d]. Исходные данные:

C	d	${\cal E}$
-1	1	0.001

Вариант 9 (Вычисление площади сложной фигура)

Вычислить с точностью $\mathcal{E}_{\text{площадь}}$ фигуры между дугами двух кривых $y = \sin(x^2) + 2_{\text{H}}$ $y = \exp(x^2)$.

Исходные данные: $\varepsilon = 0.001$

Вариант 10 (Вычисление определенного интеграла)

Вычислить с точностью \mathcal{E} интеграл $\int_{a}^{b} \sin(f^{2}(x)) dx$, если графиком функции y = f(x) является прямая, проходящая через точки A(c,d) и B – точку минимума функции $F(t) = 5 \exp(-t) + 4t - t^{3}/3$ на отрезке [m,n], определенную с точностью \mathcal{E} .

Исходные данные:

a	b	С	d	m	n	\mathcal{E}
-1	2	0.2	4	0	1	0.001

Вариант 11 (Нахождение минимума сложной функции)

Вычислить с точностью \mathcal{E} минимум функции $g(x) = x^3 + f(x)$ на отрезке [a,b], если f(x) - интерполяционный многочлен, построенный по исходным данным. Исходные данные:

1.201.122.25 4.28x	0.78	1.56	2.34	3.12	3.90
$\begin{array}{c} 2.50 \\ f(x) \end{array}$					

a	b	\mathcal{E}
0.78	3.90	0.001

Вариант 12 (Вычисление определенного интеграла)

Вычислить с точностью \mathcal{E} интеграл $\int_{a}^{b} \exp(x \cdot \sin x) dx$, где (a;b) – координаты точки минимума функции $y = f(t) = 4 \sin t - \sqrt{t}$ на отрезке [c,d], определенной с точностью \mathcal{E} . Исходные данные:

C	d	\mathcal{E}
0	8	0.001

Вариант 13 (Нахождение максимума сложной функции)

Получить таблицу значений функции $f(x) = \int_1^x \frac{\ln \sqrt{t}}{t} dt - 1$ для ряда равноотстоящих (с шагом h) значений $x \in [a,b]$. Найти с точностью \mathcal{E} максимум интерполяционного многочлена, построенного по точкам $(x_i, f(x_i))$.

Исходные данные:

а	b	h	\mathcal{E}
1	4	0.5	0.001

Вариант 14 (Нахождение максимального значения сложной функции на отрезке)

Найти максимальное значение функции $F(x) = |P_2(x) - f(x)|$ на отрезке [a,b], где $f(x) = \exp(-\sin x) + \sin x - 1$, $P_2(x)$ - интерполяционный многочлен, построенный по таблице решений дифференциального уравнения $y' + y \cos x = \sin x \cdot \cos x$, y(0) = 0, $x \in [a,b]$ с шагом h. Исходные данные:

a	b	h
0	1	0.5

Вариант 15 (Нахождение минимума сложной функции)

Найти минимум функции $F(x) = f(x) + \exp(-x^2)$ на множестве $x \in [0, +\infty)$, где f(x) определяется дифференциальным уравнением $f'(x) = \frac{2}{\sqrt{2\pi}} \exp(-x^2)$; f(0) = 0.

Вариант 16 (Нахождение корня нелинейного уравнения)

На отрезке [0,2] найти корень уравнения $\exp(x) - \cos(x) = k$, где k – минимальное значение интерполяционного многочлена P(x), построенного по следующим данным:

x	0.0	0.6	1.2	1.8	2.4	3.0
P	4.05	3.18	3.11	3.65	4.86	6.92

Вариант 17 (Нахождение корня нелинейного уравнения)

Решить уравнение $\ln^2 x = \frac{k}{x}$, где k – абсцисса точки минимума функции $f(x) = 2 \cdot \exp(x) - 5 \cdot x^2$ на отрезке [0,4].

Вариант 18 (Решения системы нелинейных уравнений)

Решить методом Ньютона систему нелинейных уравнений

$$tg(xy + 0.2) = x^2$$

 $x^2 + 2y^2 = 1$

Вариант 19 (Решение нелинейного уравнения со сложной функцией)

Решить (относительно
$$x$$
) уравнение $\int_{0}^{x} \frac{\sin t}{t} dt = \frac{\pi}{2}, \quad x \in [0, 2\pi]$.

Вариант 20 (Вычисление площади сложной фигура)

Определить с точностью $\mathcal E$ площадь криволинейной трапеции, ограниченной осью Ох, прямыми x=a и x=b, а также кривой $y=c\cdot \exp(-x)+x^2\cdot \sin x$, где коэффициент c-абсцисса точки минимума функции $f(x)=\sqrt{x}-2\cos x$ на отрезке [p,q]. Исхолные ланные:

а	b	p	Q	\mathcal{E}
1	3	3	8	0.001

Вариант 21 (Нахождения оптимального значения)

Найти оптимальное значение q>0, при котором расстояние от точки пересечения графиков y(x,q) и z(x) на отрезке [0,5] будет минимальным.

Исхолные данные: $y(x,q) = q \cdot \exp(-x)$; $z(x) = \exp(x-5)$.

Вариант 22 (Нахождение минимума сложной функции)

Найти минимальное значение функции $F(x) = f(x) + \exp(-x^2)$, где f(x) задана дифференциальным уравнением

$$f'(x) = \frac{2}{\sqrt{2\pi}} \exp(-x^2), \quad x \ge 0$$

 $f(0) = 0.$

Вариант 23 (Нахождение максимального значения функции)

Найти максимальное на $[0,+\infty)$ значение функции $f(x) = \exp(-x^2) \cdot \int_0^x \exp(t^2) dt$.

Вариант 24 (Решения задачи Коши с начальными данными, заданными сложным образом)

Функция y(x) задана дифференциальным уравнением $y'' = -\cos x; \quad y(0) = a; \quad y'(0) = 0.$

Значение параметра a>0 должно быть таким, чтобы расстояние между точкой $(x_*,y_*(x_*))$ и точкой (1;2) на координатной плоскости было минимальным (здесь $x_*=\arg\min_{x_*}y_*(x_*)$).

Вариант 25 (Табулирование функции, заданной определенным интегралом)

Получить таблицу значений функции $F(y) = \int_{a}^{b} \frac{\sin(y \cdot x)}{x_1 + x_2} dx$ для $y \in [c, d]$ с шагом h,

обеспечив точность вычислений \mathcal{E} ;

$$x_1 = \arg \min(\sin(2x) \cdot \sqrt{x}), \qquad x_2 = \arg \min(\cos(x+1)).$$

 $x \in [c, d]$ $x \in [c, d]$

Исходные данные:

а	b	c	d	h	\mathcal{E}
1	2	1	4	0.1	0.01

Вариант 26 (Нахождения минимума сложной функции)

Вычислить минимум функции $F(x) = P_1(x) - P_2(x)$ для $x \in [a,b]$ с точностью \mathcal{E} ; $P_1(x)$ и $P_2(x)$ - интерполяционные многочлены, построенные по следующим данным:

x	1.0	1.5	2.0	2.5	3.0
$P_{\scriptscriptstyle 1}$	0.741	0.638	0.549	0.472	0.407
P_{2}	0.273	0.042	-0.227	-0.288	0.084

Исходные данные:

а	b	ε
1	3	0.001

Вариант 27 (Нахождения минимума сложной функции)

Вычислить минимум функции $f(x) = 10 \cdot P(0.8) \sqrt{1 + \left| \frac{x}{2} \right|} \sin(2x) - P(1.2)$ на отрезке [a,b] с точностью \mathcal{E} ; P(x) - интерполяционный многочлен, построенный по следующим данным:

	<u>, </u>	, <u>1</u>	riy i ri
x	0,7	1.0	1.3
P	2.014	2.718	3.669

Исходные данные:

a	b	\mathcal{E}
1	3	0.001

Вариант 28 (Вычисления минимума функции, заданной определенным интегралом с параметром)

Вычислить минимум функции $f(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin t) dt$ на отрезке $x \in [0, 2\pi]$.

Вариант 29 (Вычисление площади сложной фигуры)

Вычислить площадь фигуры, расположенной на координатной плоскости между дугами двух кривых: $y_1(x) = 2^{(x^2)}$; $y_2(x) = \cos(x^2) + 1$.

Вариант 30 (Нахождение минимума сложной функции)

Найти минимум функции $F(x) = f(x) + \exp(-x^2)$ на множестве $x \in [0, +\infty)$, где f(x) определяется дифференциальным уравнением $f'(x) = \frac{2}{\sqrt{2\pi}} \exp(-x^2)$; f(0) = 0.

Вариант 31 (Нахождение корня нелинейного уравнения)

На отрезке [0,2] найти корень уравнения $\exp(x) - \cos(x) = k$, где k – минимальное значение интерполяционного многочлена P(x), построенного по следующим данным:

1			1	י רעריז	1	
x	0.0	0.6	1.2	1.8	2.4	3.0
P	4.05	3.18	3.11	3.65	4.86	6.92

Вариант 32 (Нахождение корня нелинейного уравнения)

Решить уравнение $\ln^2 x = \frac{k}{x}$, где k – абсцисса точки минимума функции $f(x) = 2 \cdot \exp(x) - 5 \cdot x^2$ на отрезке [0,4].

Вариант 33 (Решения системы нелинейных уравнений)

Решить методом Ньютона систему нелинейных уравнений

$$tg\left(xy+0.2\right)=x^2$$

$$x^2 + 2y^2 = 1$$