PROVA SCRITTA DI ELETTRONICA 1 4 SETTEMBRE 2019

1) Nel circuito in figura, entrambi i transistori nMOS sono descritti dal coefficiente β_n e dalla tensione di soglia V_T . La tensione di ingresso V_i può assumere i valori 0 e V_{dd} : si determinino i corrispondenti valori della tensione di uscita V_u .

 $V_{dd} = 3.5 \; V, \; R_1 = 0.5 \; k\Omega, \; R_2 = 1 \; k\Omega, \; R_3 = 5 \; k\Omega, \; \beta_n = 3 \; mA/V^2, \; V_T = 0.25 \; V.$

2) Nel circuito in figura, i transistori sono caratterizzati dalla tensione di di soglia $V_{Tn} = |V_{Tp}| = V_{T}$ e dai coefficienti β_n e β_p . La tensione di ingresso V_i abbia l'andamento periodico seguente:

con periodo T pari a 2 ns e tempi di salita e discesa $t_r = t_f = 0.3$ ns. Si determini la potenza media dissipata dalla rete per effetto di "corto circuito".

 $V_{dd} = 2.9 \ V, \ \beta_n = 1 \ mA/V^2, \ \beta_p = 0.4 \ mA/V^2, \ \ V_T = 0.3 \ V.$

Tempo a disposizione: 2h e 30m

Indicare su ciascun foglio nome, cognome, data e numero di matricola

Non usare penne o matite rosse

L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Il circuito consiste di un invertitore nMOS a carico resistivo (M_2, R_3) , preceduto dal pass transistor M_1 .

1) $V_i=0$: in questo caso necessariamente $V_i\leq V_x$ per cui, se acceso, è possibile identificare il terminale di ingresso (a potenziale inferiore) come terminale di source e il nodo a potenziale V_x come terminale di drain. Si ha quindi:

$$V_{GS1} = V_{dd}$$
$$V_{DS1} = V_x$$

Ipotizzando (*) M_1 in regione lineare, si ha:

$$I_{D1} = \beta_n \left((V_{dd} - V_T) V_x - \frac{{V_x}^2}{2} \right)$$

$$I_{R1} = \frac{V_{dd} - V_x}{R_1}$$

$$I_{R2} = \frac{V_x}{R_2}$$

$$I_{R2} = \frac{V_x}{R_2}$$

Solo la prima soluzione soddisfa l'ipotesi (*

$$V_{GS1} > V_{DS1} + V_T \rightarrow V_{dd} > V_x^* + V_T$$

mentre la seconda è da scartare.

Poichè $V_x^* > V_T$, il pull-down dello stadio di uscita M_2 è ON. Ipotizzando lavori in regime di saturazione (**), si ottiene:

$$I_{D2} = \frac{\beta_n}{2} (V_x^* - V_T)^2$$

$$I_{R3} = \frac{V_{dd} - V_u}{R_3}$$

$$\xrightarrow{I_{D2} = I_{R3}} V_u^* = 2.63 V$$

che soddisfa l'ipotesi (**):

$$V_{GS2} < V_{DS2} + V_T \rightarrow V_x^* = 0.59 V < V_u^* + V_T = 2.63 + 0.25 = 2.88V$$

2) $V_i = V_{dd}$: in questo caso necessariamente $V_i \ge V_x$ per cui, se acceso, è possibile identificare il terminale di ingresso (a potenziale superiore) come terminale di drain e il nodo a potenziale V_x come terminale di source. Si ha quindi:

$$V_{GS1} = \dot{V}_{dd} - V_x$$

$$V_{DS1} = V_{dd} - V_x$$

 $V_{DS1}=V_{dd}-V_x$ Poiché $V_{GS1}=V_{DS1}$, il transistore M_1 , se ON, lavora necessariamente in regione di saturazione e si ha:

$$I_{D1} = \frac{\beta_n}{2} (V_{dd} - V_x - V_T)^2$$

$$I_{R1} = \frac{V_{dd} - V_x}{R_1}$$

$$I_{R2} = \frac{V_x}{R_2}$$

$$I_{R2} = \frac{V_x}{R_2}$$

La seconda soluzione è da scartare:

$$V_{CS1} = V_{dd} - V_r = 3.5 - 5.93 < 0 < V_T$$

 $V_{GS1} = V_{dd} - V_x = 3.5 - 5.93 < 0 < V_T$ Poichè ${V_x}^{**} > V_T$, il pull-down dello stadio di uscita M_2 è ON. Ipotizzando lavori in regime lineare (***), si ottiene:

$$I_{D2} = \beta_n \left((V_x^{**} - V_T) V_u - \frac{{V_u}^2}{2} \right)$$

$$I_{R3} = \frac{V_{dd} - V_u}{R_3}$$

$$I_{R3} = \frac{V_{dd} - V_u}{R_3}$$

che soddisfa l'ipotesi (***):

$$V_{GS2} > V_{DS2} + V_T \rightarrow V_x^{**} = 2.57 V > V_u^{**} + V_T = 0.1 + 0.25 = 0.35 V$$

mentre la seconda è da scartare.

Riassumendo, si ha quindi:

$$V_i = 0 \rightarrow V_u = 2.63 V$$

 $V_i = V_{dd} \rightarrow 0.1 V$

Il circuito consiste di un invertitore CMOS. Il calcolo della potenza media di corto circuito è noto dalla teoria. Non è tuttavia applicabile in questo caso l'ipotesi di transistori pienamente complementari, perché $\beta_n \neq \beta_p$. Dalla teoria è facile riconoscere alcuni valori caratteristici, ricordati nella figura a fianco. In particolare, la corrente erogata dal generatore è nulla per $V_i < V_T$ (n OFF) e per $V_i > V_{dd} - V_T$ (p OFF).

La potenza media di corto circuito può essere genericamente espressa come:

$$\widetilde{P_{cc}} = \frac{1}{T} \int_{0}^{T} V_{dd} I_{dd} dt = \frac{V_{dd}}{T} \int_{0}^{T} I_{dn,p} dt$$

Essendo sempre $I_{dn}=I_{dp}$, è possibile utilizzare l'espressione più conveniente fra quelle delle due correnti: dalle caratteristiche statiche riportate in figura, si può ricordare che per $V_T < V_i < V_{TL}$ il transistore nMOS è certamente saturo, mentre per $V_{TL} < V_i < V_{dd} - V_T$ è saturo il pMOS. Nel tratto di caratteristica a pendenza verticale, entrambi i transistori sono saturi; questo avviene per:

avviene per:
$$I_{dn,SAT}=I_{dp,SAT}\to \frac{\beta_n}{2}(V_{TL}-V_T)^2=\frac{\beta_p}{2}(V_{dd}-V_{TL}-V_T)^2\to V_{TL}=1.19~V$$

Nella figura sottostante è quindi riportato l'andamento delle correnti, al variare di V_i nel tempo.

In maniera analoga a quanto discusso nella teoria, la potenza richiesta (omettendo i termini nulli) può essere scomposta come segue:

$$\widetilde{P_{cc}} = \frac{V_{dd}}{T} \int\limits_{0}^{T} I_{dn,p} \ dt = \frac{V_{dd}}{T} \left(\int\limits_{t_{1}}^{t_{2}} I_{dn,SAT} \ dt + \int\limits_{t_{3}}^{t_{3}} I_{dp,SAT} \ dt + \int\limits_{t_{4}}^{t_{5}} I_{dp,SAT} \ dt + \int\limits_{t_{5}}^{t_{6}} I_{dn,SAT} \ dt \right)$$

Poiché $t_r = t_f$, i contributi associati alla salita e alla discesa del segnale di ingresso sono evidentemente simmetrici, per cui è sufficiente calcolarne uno e duplicarlo, ottenendo:

$$\widetilde{P_{cc}} = 2 \frac{V_{dd}}{T} \left(\int_{t_1}^{t_2} I_{dn,SAT} dt + \int_{t_3}^{t_3} I_{dp,SAT} dt \right)$$
 (*)

Durante l'intervallo $t_1 \rightarrow t_3$, è possibile valutare l'andamento del segnale di ingresso (lineare in t) come:

$$V_i(t) = \frac{t}{t_r} V_{dd}$$

e, tramite tale relazione, determinare gli estremi di integrazione:

$$V_i(t_1) = V_T \to t_1 = \frac{V_T}{V_{dd}} t_r = 31.03 \ ps$$
 $V_i(t_2) = V_{TL} \to t_2 = \frac{V_{TL}}{V_{dd}} t_r = 123.2 \ ps$
 $V_i(t_3) = V_{dd} - V_T \to t_3 = \frac{V_{dd} - V_T}{V_{dd}} t_r = 269.0 \ ps$

Si ha quindi:

$$I_{dn,SAT} = \frac{\beta_n}{2} (V_i(t) - V_T)^2 = \frac{\beta_n}{2} \left(\frac{t}{t_r} V_{dd} - V_T \right)^2$$

$$I_{dp,SAT} = \frac{\beta_p}{2} (V_{dd} - V_i(t) - V_T)^2 = \frac{\beta_p}{2} \left(V_{dd} - \frac{t}{t_r} V_{dd} - V_T \right)^2$$

Da cui, tramite (*):

$$\widetilde{P_{cc}} = 2 \frac{V_{dd}}{T} \left(\int_{t_1}^{t_2} \frac{\beta_n}{2} \left(\frac{t}{t_r} V_{dd} - V_T \right)^2 dt + \int_{t_3}^{t_3} \frac{\beta_p}{2} \left(V_{dd} - \frac{t}{t_r} V_{dd} - V_T \right)^2 dt \right) = 91.3 \ \mu W$$