Chapter 7: One sample tests

(Ott & Longnecker Sections: 5.4-5.7, 5.9)

Part 2

Last updated: 3/24/2019

https://dzwang91.github.io/stat324/

Overview

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu \neq \mu_0$$

Population mean

$$H_0: \mu = \mu_0$$
 v.s. $H_A: \mu < \mu_0$

$$H_0: \mu = \mu_0$$
 v.s. $H_A: \mu > \mu_0$

parametric tests

Sample mean test

Z test

T test

Example: two-tailed T test

Story

A paint shop uses an automatic device to apply paint to engine blocks. It is important that the amount applied is of a minimum thickness.

Primary Research Question

Its customer, a manufacturer wants to know the average thickness of paint in a warehouse. It is supposed to be 1.50mm.

u = 1.50mm?

Sampling

16 blocks are selected randomly and then measured from thousands of blocks in the warehouse.

n = 16

Data

1.29, 1.12, 0.88, 1.65, 1.48, 1.59, 1.04, 0.83, 1.76, 1.31, 0.88, 1.71, 1.83, 1.09, 1.62, 1.49 (in mm)

$$\bar{x} = 1.358$$

 $s = 0.3385$

Example: two-tailed T test

• Step 1:

$$H_0$$
: $\mu = 1.5$, H_A : $\mu \neq 1.5$

- Step 2: Choose $\alpha = 0.05$
- Step 3: Rejection region is $T < -t_{15,0.025}$ or $T > t_{15,0.025}$. From t table, $t_{15,0.025} = 2.13$.
- Step 4: $t_{obs}=\frac{1.348-1.50}{\frac{0.3385}{\sqrt{16}}}=-1.796$. t_{obs} does not fall in the rejection region, so we do not reject the null.

Example: two-tailed T test

• Step 1:

$$H_0$$
: $\mu = 1.5$, H_A : $\mu \neq 1.5$

- Step 2: Choose $\alpha = 0.05$
- Step 3: Rejection region is $T < -t_{15,0.025}$ or $T > t_{15,0.025}$. From t table, $t_{15,0.025} = 2.13$.
- Step 4: $t_{obs}=\frac{1.348-1.50}{\frac{0.3385}{\sqrt{16}}}=-1.796.$ t_{obs} does not fall in the rejection region, so we do not reject the null.

Is this test statistically good?

Outline

1 Power calculation

2 Sample size calculation

Power

Definition

The power of a test is the probability of rejecting H_0 given that the alternative hypothesis is true. That is

Power =
$$1 - \beta$$

where β is the Type II error.

• How can we calculate the power of a test?

Power

Definition

The power of a test is the probability of rejecting H_0 given that the alternative hypothesis is true. That is

Power =
$$1 - \beta$$

where β is the Type II error.

• How can we calculate the power of a test?

Definition

Simple hypothesis against a simple alternative:

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu = \mu_1,$$

where μ_0 and μ_1 are two constants.

Vignette one: power for two-tailed T test

$$H_0: \mu = 1.5 \text{ v.s. } H_A: \mu = 1.4$$

Power:

$$P(\text{Reject } H_0|H_A \text{ is true}) = P\left(|T| > 2.13 \middle| \mu = 1.4\right)$$
$$= P\left(\left|\frac{\bar{X} - 1.5}{S/\sqrt{n}}\right| > 2.13 \middle| \mu = 1.4\right) = ?$$

Vignette one: power for two-tailed T test

$$H_0: \mu = 1.5 \text{ v.s. } H_A: \mu = 1.4$$

Power:

$$P(\text{Reject } H_0|H_A \text{ is true}) = P\left(|T| > 2.13 \middle| \mu = 1.4\right)$$
$$= P\left(\left|\frac{\bar{X} - 1.5}{S/\sqrt{n}}\right| > 2.13 \middle| \mu = 1.4\right) = ?$$

• What is the distribution of $\frac{\bar{X}-1.5}{S/\sqrt{n}}$ when $\mu=1.4$?

Vignette one: power for two-tailed T test

$$H_0$$
: $\mu = 1.5$ v.s. H_A : $\mu = 1.4$

• Power:

$$P(\text{Reject } H_0|H_A \text{ is true}) = P\left(|T| > 2.13 \middle| \mu = 1.4\right)$$
$$= P\left(\left|\frac{\bar{X} - 1.5}{S/\sqrt{n}}\right| > 2.13 \middle| \mu = 1.4\right) = ?$$

• What is the distribution of $\frac{\bar{X}-1.5}{S/\sqrt{n}}$ when $\mu=1.4$? NOT t distribution.

Power calculation continued

• Decomposition:

$$\frac{\bar{X} - 1.5}{S/\sqrt{n}} = \frac{\bar{X} - 1.4}{S/\sqrt{n}} + \frac{1.4 - 1.5}{S/\sqrt{n}}$$

Under $\mu=1.4$, $\frac{\bar{X}-1.4}{S/\sqrt{n}}$ is t_{n-1} distribution.

Power calculation continued

• Decomposition:

$$\frac{\bar{X} - 1.5}{S/\sqrt{n}} = \frac{\bar{X} - 1.4}{S/\sqrt{n}} + \frac{1.4 - 1.5}{S/\sqrt{n}}$$

Under $\mu = 1.4$, $\frac{\bar{X}-1.4}{S/\sqrt{n}}$ is t_{n-1} distribution.

$$Power = P(|\frac{\bar{X} - 1.4}{S/\sqrt{n}} + \frac{1.4 - 1.5}{S/\sqrt{n}}| > 2.13|\mu = 1.4)$$

$$= P(|t_{15} + \frac{1.4 - 1.5}{0.3385/\sqrt{16}}| > 2.13) = P(|t_{15} - 1.18| > 2.13)$$

$$= P(T_{15} < -0.95) + P(T_{15} > 3.31) = 0.179 + 0.002 = 0.181$$

Power calculation continued

• Decomposition:

$$\frac{\bar{X} - 1.5}{S/\sqrt{n}} = \frac{\bar{X} - 1.4}{S/\sqrt{n}} + \frac{1.4 - 1.5}{S/\sqrt{n}}$$

Under $\mu=1.4$, $\frac{\bar{X}-1.4}{S/\sqrt{n}}$ is t_{n-1} distribution.

$$Power = P(|\frac{\bar{X} - 1.4}{S/\sqrt{n}} + \frac{1.4 - 1.5}{S/\sqrt{n}}| > 2.13|\mu = 1.4)$$

$$= P(|t_{15} + \frac{1.4 - 1.5}{0.3385/\sqrt{16}}| > 2.13) = P(|t_{15} - 1.18| > 2.13)$$

$$= P(T_{15} < -0.95) + P(T_{15} > 3.31) = 0.179 + 0.002 = 0.181$$

• This power is low. This means that if the true population mean was $\mu=1.4$, we would be very unlikely to reject the null based on a sample of size 16.

How can we increase power?

How can we increase power?

What is the required sample size to achieve specific power?

Outline

1 Power calculation

2 Sample size calculation

- Two-tailed Z test:
 - $H_0: \mu = \mu_0$ v.s. $H_A: \mu \neq \mu_0$,
 - Test statistic: $Z = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$
 - Rejection region to control Type I error at significance level α :

$$Z>z_{\alpha/2}$$
 or $Z<-z_{\alpha/2}$.

- Two-tailed Z test:
 - $H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu \neq \mu_0$,
 - Test statistic: $Z = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$
 - Rejection region to control Type I error at significance level α :

$$Z > z_{\alpha/2}$$
 or $Z < -z_{\alpha/2}$.

• Goal: find the required sample size to achieve power at least $1-\beta$ for the specific simple alternative H_A : $\mu=\mu_1$

- Two-tailed Z test:
 - $H_0: \mu = \mu_0$ v.s. $H_A: \mu \neq \mu_0$,
 - Test statistic: $Z = \frac{\bar{X} \mu_0}{\sigma / \sqrt{n}}$
 - Rejection region to control Type I error at significance level α :

$$Z > z_{\alpha/2}$$
 or $Z < -z_{\alpha/2}$.

• Goal: find the required sample size to achieve power at least $1-\beta$ for the specific simple alternative H_A : $\mu=\mu_1$ \Leftrightarrow

What is *n* which satisfies
$$P(|\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}| < z_{\alpha/2}|\mu = \mu_1) \le \beta$$
?

Derivation:

$$P(\left|\frac{\bar{X} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}|\mu = \mu_1) \le \beta$$

$$P(\left|Z + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}) \le \beta$$

$$P(-z_{\alpha/2} < Z + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} < z_{\alpha/2}) \le \beta$$

$$P(-z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} < Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) \le \beta \qquad (\star)$$

• In order to make (*) hold, only need

$$P(Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) = \beta$$

In order to make (★) hold, only need

$$P(Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) = \beta$$
$$z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} = -z_{\beta}$$

• In order to make (*) hold, only need

$$P(Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) = \beta$$

$$z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} = -z_{\beta}$$

$$n = \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_1 - \mu_0}\right)^2$$

• In order to make (*) hold, only need

$$P(Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) = \beta$$

$$z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} = -z_\beta$$

$$n = \left(\frac{\sigma(z_{\alpha/2} + z_\beta)}{\mu_1 - \mu_0}\right)^2$$

• How does *n* change when α and β become small?

• In order to make (*) hold, only need

$$P(Z < z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}) = \beta$$

$$z_{\alpha/2} - \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} = -z_\beta$$

$$n = \left(\frac{\sigma(z_{\alpha/2} + z_\beta)}{\mu_1 - \mu_0}\right)^2$$

- How does *n* change when α and β become small?
- How does n change when the difference between μ_1 and μ_0 becomes small?

Back to example

 Determine the required sample size to have power 0.8 under $H_A: \mu = 1.4$

Back to example

- Determine the required sample size to have power 0.8 under $H_{\rm A}$: $\mu=1.4$
- We have $\beta = 1 0.8 = 0.2$, $z_{0.05/2} = 1.96$ and $z_{0.2} = 0.84$. Use S = 0.3385 as an estimator of σ . Then

$$n = (\frac{0.3385(1.96+0.84)}{1.5-1.4})^2 = 89.8$$
, round up to 90.

Take-home exercise

Find the required sample size for right-tailed Z test which achieves power at least $1-\beta$ at significance level α for the specific simple alternative H_A : $\mu=\mu_1$

What's the next?

We'll introduce sign test and discuss how to test population proportions in next lecture.