```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import keras
(X train , y train), (X test, y test) =
keras.datasets.fashion mnist.load data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/train-labels-idx1-ubyte.gz
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/train-images-idx3-ubyte.gz
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/t10k-labels-idx1-ubyte.gz
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/t10k-images-idx3-ubyte.gz
X test.shape ,y test.shape
((10000, 28, 28), (10000,))
X_train.shape , y_train.shape
((60000, 28, 28), (60000,))
X train[0]
array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Θ,
              0,
          Θ,
                  0, 0, 0, 0, 0, 0,
0,
       0,
          0],
     [ 0,
          0,
              0,
                  0,
                     0, 0, 0, 0, 0, 0,
                                               0,
0,
          0, 0, 0, 0, 0, 0, 0, 0,
0,
       0,
          0],
     [ 0,
              0,
                  0,
                     0, 0, 0, 0, 0, 0,
                                               0,
          0,
0,
          0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
       0,
          0],
                  0, 0, 0, 0, 0, 0, 0,
              0,
     [ 0,
          0,
1,
```

```
0,
             0, 13, 73,
                          0,
                               0,
                                   1,
                                        4,
                                            0,
                                                 0,
                                                     0,
                                                          0,
1,
        1,
             0],
             0, 0, 0,
                          0,
                               0,
                                   0,
                                        0,
                                            0,
                                                 0,
                                                     0,
                                                          0,
      [ 0,
3,
        0, 36, 136, 127, 62,
                              54,
                                   0,
                                        0,
                                            0,
                                                 1,
                                                     3,
                                                          4,
0,
             3],
        0,
      [ 0,
             0, 0, 0, 0, 0, 0,
                                        0,
                                            0,
                                                 0,
                                                     0,
                                                          0,
6,
        0, 102, 204, 176, 134, 144, 123, 23, 0,
                                                0,
                                                     0,
                                                          0,
12,
        10,
             0],
                 0, 0, 0, 0, 0, 0,
                                                0,
                                                     0,
                                                          0,
      [ 0,
             0,
0,
        0, 155, 236, 207, 178, 107, 156, 161, 109, 64, 23, 77,
130,
        72,
            15],
                 0, 0, 0, 0, 0, 0, 0, 0, 1,
      [ 0, 0,
0,
       69, 207, 223, 218, 216, 216, 163, 127, 121, 122, 146, 141,
88,
      172,
            66],
                 0, 0, 0, 0, 0, 0, 1, 1, 1,
      [ 0, 0,
0,
       200, 232, 232, 233, 229, 223, 223, 215, 213, 164, 127, 123,
196,
       229,
             0],
                 0, 0, 0, 0, 0, 0, 0, 0,
             0,
0,
       183, 225, 216, 223, 228, 235, 227, 224, 222, 224, 221, 223,
245,
             0],
      173,
                 0, 0, 0, 0, 0, 0, 0, 0,
             Θ,
0,
       193, 228, 218, 213, 198, 180, 212, 210, 211, 213, 223, 220,
243,
      202.
             0],
             0, 0, 0, 0, 0, 0, 0, 1, 3,
      [ 0,
12,
       219, 220, 212, 218, 192, 169, 227, 208, 218, 224, 212, 226,
197,
       209, 52],
      [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0,
99,
       244, 222, 220, 218, 203, 198, 221, 215, 213, 222, 220, 245,
119,
       167,
            56],
                 0,
                      0,
                          0,
                               Θ,
                                   0,
                                        0,
                                                     Θ,
      [ 0,
             0,
                                            0,
                                                 4,
                                                          0,
```

```
55,
        236, 228, 230, 228, 240, 232, 213, 218, 223, 234, 217, 217,
209,
               0],
         92,
                         4, 6, 7, 2, 0, 0, 0,
       [ 0,
               0,
                    1,
                                                            0,
                                                                 0,
237,
        226, 217, 223, 222, 219, 222, 221, 216, 223, 229, 215, 218,
255,
         77,
               0],
                              0, 0, 0, 0, 62, 145, 204,
       [ 0,
               3,
                    0,
                         0,
228,
        207, 213, 221, 218, 208, 211, 218, 224, 223, 219, 215, 224,
244,
       159,
               0],
                                  44, 82, 107, 189, 228, 220, 222,
               0,
                    0,
                         0,
                             18,
217,
        226, 200, 205, 211, 230, 224, 234, 176, 188, 250, 248, 233,
238,
        215,
               0],
              57, 187, 208, 224, 221, 224, 208, 204, 214, 208, 209,
       [ 0,
200,
        159, 245, 193, 206, 223, 255, 255, 221, 234, 221, 211, 220,
232,
        246,
               0],
       [ 3, 202, 228, 224, 221, 211, 211, 214, 205, 205, 205, 220,
240,
         80, 150, 255, 229, 221, 188, 154, 191, 210, 204, 209, 222,
228,
        225,
               01,
       [ 98, 233, 198, 210, 222, 229, 229, 234, 249, 220, 194, 215,
217,
        241, 65, 73, 106, 117, 168, 219, 221, 215, 217, 223, 223,
224,
        229,
            29],
       [ 75, 204, 212, 204, 193, 205, 211, 225, 216, 185, 197, 206,
198,
        213, 240, 195, 227, 245, 239, 223, 218, 212, 209, 222, 220,
221,
        230, 67],
       [ 48, 203, 183, 194, 213, 197, 185, 190, 194, 192, 202, 214,
219,
        221, 220, 236, 225, 216, 199, 206, 186, 181, 177, 172, 181,
205,
        206, 115],
       [ 0, 122, 219, 193, 179, 171, 183, 196, 204, 210, 213, 207,
211,
        210, 200, 196, 194, 191, 195, 191, 198, 192, 176, 156, 167,
177,
        210, 92],
```

```
[ 0,
               0, 74, 189, 212, 191, 175, 172, 175, 181, 185, 188,
189,
        188, 193, 198, 204, 209, 210, 210, 211, 188, 188, 194, 192,
216,
       170,
               0],
               0, 0, 0, 66, 200, 222, 237, 239, 242, 246, 243,
       [ 2,
244,
        221, 220, 193, 191, 179, 182, 182, 181, 176, 166, 168, 99,
58,
          0,
               0],
                         Θ,
                              0,
                                    0, 0, 40, 61, 44, 72,
                    0,
                                                                  41,
          0,
               Θ,
35,
          0,
               0,
                    0,
                         0,
                              0,
                                    0, 0, 0,
                                                 0,
                                                      Θ,
                                                           0,
                                                                   0,
0,
          0,
               0],
                    Θ,
                         Θ,
                               Θ,
                                    0,
                                         Θ,
                                              0,
                                                   0,
                                                         0,
                                                              0,
                                                                   0,
          0,
               Ο,
0,
          0,
               0,
                    0,
                         0, 0,
                                    0, 0,
                                              0,
                                                   0,
                                                        0,
                                                              0,
                                                                   0,
0,
          0,
               0],
                    0,
                         Θ,
                               0,
          0,
               0,
                                    0,
                                         0,
                                              0,
                                                   0,
                                                         0,
                                                              0,
                                                                   0,
0,
                         0, 0,
                                    0,
               0, 0,
                                       Θ,
                                              0,
                                                   0,
                                                              0,
                                                                   0,
                                                        0,
0,
          0, 0]], dtype=uint8)
X_train
array([[[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0]],
       [[0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0]],
       [[0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0],
```

```
[0, 0, 0, \ldots, 0, 0, 0]],
        . . . ,
        [[0, 0, 0, \ldots, 0, 0, 0],
         [0, 0, 0, \ldots, 0, 0, 0]],
        [[0, 0, 0, \ldots, 0, 0, 0],
         [0, 0, 0, \ldots, 0, 0, 0]],
        [[0, 0, 0, \ldots, 0, 0, 0],
         [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)
y_train[0]
class labels =
["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "S
neaker", "Bag", "Ankle boot"]
0 => T-shirt/top
1 => Trouser
2 => Pullover
3 => Dress
4 => Coat
5 => Sandal
6 => Shirt
7 => Sneaker
8 \Rightarrow Baq
9 => Ankle boot '''
{"type": "string"}
plt.imshow(X train[0],cmap = "Greys")
```

<matplotlib.image.AxesImage at 0x7f178f50fe80>


```
plt.figure(figsize=(16,16))
j=1

for i in np.random.randint(0,1000,25):
   plt.subplot(5,5,j);
   j=j+1
   plt.imshow(X_train[i],cmap="Greys")
   plt.axis("off")
   plt.title('{}/{}'.format(class_labels[y_train[i]],y_train[i]))
```


X_train.ndim
3

Change 3d to 4d

```
X_train = np.expand_dims(X_train,-1)
X_test = np.expand_dims(X_test,-1)
X_train.shape
(60000, 28, 28, 1)
```

```
X_test.shape
(10000, 28, 28, 1)
```

Feature scale

```
X_train=X_train/255
X_test=X_test/255
X_train[0]
array([[[0.
[0.
         [0.
         [0.
          [0.
          [0.
          [0.
          [0.
         [0.
          [0.
         [0.
          [0.
          [0.
          [0.
          [0.
         [0.
          [0.
          [0.
          [0.
          [0.
          [0.
          [0.
         [0.
          [0.
         [0.
         [0.
          [0.
         [0.
        [[0.
         [0.
          [0.
         [0.
         [0.
         [0.
         [0.
         [0.
         [0.
[0.
```

```
[0.
[0.
[0.
                  ],
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
[0.
 [0.
 [0.
[[0.
[0.
[0]
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
[0.
[0.
                  j,
],
],
[[0.
                  ],
```

```
[0.
 [0.
             ],
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.00392157],
 [0.
 [0.
 [0.05098039],
 [0.28627451],
 [0.
 [0.
 [0.00392157],
 [0.01568627],
 [0.
 [0.
 [0.
 [0.
 [0.00392157],
 [0.00392157],
 [0.
             ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.01176471],
 [0.
 [0.14117647],
 [0.53333333],
 [0.49803922],
 [0.24313725],
 [0.21176471],
 [0.
             ],
 [0.
             ],
```

```
[0.
 [0.00392157],
 [0.01176471],
 [0.01568627],
 [0.
 [0.
 [0.01176471]],
[[0.
[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.02352941],
 [0.
 [0.4
 [0.8
 [0.69019608],
 [0.5254902],
 [0.56470588],
 [0.48235294],
 [0.09019608],
 [0.
 [0.
 [0.
 [0.
 [0.04705882],
 [0.03921569],
            ]],
 [0.
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
```

```
[0.
             ],
 [0.
 [0.60784314],
 [0.9254902],
 [0.81176471],
 [0.69803922],
 [0.41960784],
 [0.61176471],
 [0.63137255],
 [0.42745098],
 [0.25098039],
 [0.09019608],
 [0.30196078],
 [0.50980392],
 [0.28235294],
 [0.05882353]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.00392157],
 [0.
 [0.27058824],
 [0.81176471],
 [0.8745098],
 [0.85490196],
 [0.84705882],
 [0.84705882],
 [0.63921569],
 [0.49803922],
 [0.4745098],
 [0.47843137],
 [0.57254902],
 [0.55294118],
 [0.34509804],
 [0.6745098],
 [0.25882353]],
[[0.
             ],
[0.
             ],
             ],
 [0.
```

```
[0.
 [0.
             ],
 [0.
 [0.
 [0.
 [0.
 [0.00392157],
 [0.00392157],
 [0.00392157],
 [0.
 [0.78431373],
 [0.90980392],
 [0.90980392],
 [0.91372549],
 [0.89803922],
 [0.8745098],
 [0.8745098],
 [0.84313725],
 [0.83529412],
 [0.64313725],
 [0.49803922],
 [0.48235294],
 [0.76862745],
 [0.89803922],
 [0.
             ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.71764706],
 [0.88235294],
 [0.84705882],
 [0.8745098],
 [0.89411765],
 [0.92156863],
 [0.89019608],
 [0.87843137],
 [0.87058824],
 [0.87843137],
```

```
[0.8666667],
 [0.8745098],
 [0.96078431],
 [0.67843137],
 [0.
             ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.75686275],
 [0.89411765],
 [0.85490196],
 [0.83529412],
 [0.77647059],
 [0.70588235],
 [0.83137255],
 [0.82352941],
 [0.82745098],
 [0.83529412],
 [0.8745098],
 [0.8627451],
 [0.95294118],
 [0.79215686],
             ]],
 [0.
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.00392157],
 [0.01176471],
 [0.
 [0.04705882],
 [0.85882353],
```

```
[0.8627451],
 [0.83137255],
 [0.85490196],
 [0.75294118],
 [0.6627451],
 [0.89019608],
 [0.81568627],
 [0.85490196],
 [0.87843137],
 [0.83137255],
 [0.88627451],
 [0.77254902],
 [0.81960784],
 [0.20392157]],
[[0.
 [0.
            ],
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.02352941],
 [0.
 [0.38823529],
 [0.95686275],
 [0.87058824],
 [0.8627451],
 [0.85490196],
 [0.79607843],
 [0.77647059],
 [0.8666667],
 [0.84313725],
 [0.83529412],
 [0.87058824],
 [0.8627451],
 [0.96078431],
 [0.4666667],
 [0.65490196],
[0.21960784]],
[[0.
            ],
 [0.
 [0.
             ],
 [0.
            ],
 [0.
             ],
```

```
[0.
 [0.
             ],
 [0.
 [0.
 [0.01568627],
 [0.
 [0.
 [0.21568627],
 [0.9254902],
 [0.89411765],
 [0.90196078],
 [0.89411765],
 [0.94117647],
 [0.90980392],
 [0.83529412],
 [0.85490196],
 [0.8745098],
 [0.91764706],
 [0.85098039],
 [0.85098039],
 [0.81960784],
 [0.36078431],
 [0.
             ]],
[[0.
 [0.
 [0.00392157],
 [0.01568627],
 [0.02352941],
 [0.02745098],
 [0.00784314],
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.92941176],
 [0.88627451],
 [0.85098039],
 [0.8745098],
 [0.87058824],
 [0.85882353],
 [0.87058824],
 [0.8666667],
 [0.84705882],
 [0.8745098],
 [0.89803922],
 [0.84313725],
 [0.85490196],
```

```
[0.30196078],
[0.
            ]],
[[0.
[0.01176471],
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.24313725],
[0.56862745],
[0.8
[0.89411765],
[0.81176471],
[0.83529412],
[0.8666667],
[0.85490196],
[0.81568627],
[0.82745098],
[0.85490196],
[0.87843137],
[0.8745098],
[0.85882353],
[0.84313725],
[0.87843137],
[0.95686275],
[0.62352941],
[0.
            ]],
[[0.
[0.
[0.
[0.
[0.07058824],
[0.17254902],
[0.32156863],
[0.41960784],
[0.74117647],
[0.89411765],
[0.8627451],
[0.87058824],
[0.85098039],
[0.88627451],
[0.78431373],
[0.80392157],
```

```
[0.82745098],
[0.90196078],
[0.87843137],
[0.91764706],
[0.69019608],
[0.7372549],
[0.98039216],
[0.97254902],
[0.91372549],
[0.93333333],
[0.84313725],
[0.
            ]],
[[0.
[0.22352941],
[0.73333333],
[0.81568627],
[0.87843137],
[0.8666667],
[0.87843137],
[0.81568627],
[0.8
[0.83921569],
[0.81568627],
[0.81960784],
[0.78431373],
[0.62352941],
[0.96078431],
[0.75686275],
[0.80784314],
[0.8745098],
[1.
[1.
[0.8666667],
[0.91764706],
[0.8666667],
[0.82745098],
[0.8627451],
[0.90980392],
[0.96470588],
[0.
            ]],
[[0.01176471],
[0.79215686],
[0.89411765],
[0.87843137],
[0.8666667],
[0.82745098],
[0.82745098],
[0.83921569],
```

```
[0.80392157],
[0.80392157],
[0.80392157],
[0.8627451],
[0.94117647],
[0.31372549],
[0.58823529],
[1.
[0.89803922],
[0.8666667],
[0.7372549],
[0.60392157],
[0.74901961],
[0.82352941],
[0.8
[0.81960784],
[0.87058824],
[0.89411765],
[0.88235294],
            ]],
[0.
[[0.38431373],
[0.91372549],
[0.77647059],
[0.82352941],
[0.87058824],
[0.89803922],
[0.89803922],
[0.91764706],
[0.97647059],
[0.8627451],
[0.76078431],
[0.84313725],
[0.85098039],
[0.94509804],
[0.25490196],
[0.28627451],
[0.41568627],
[0.45882353],
[0.65882353],
[0.85882353],
[0.8666667],
[0.84313725],
[0.85098039],
[0.8745098],
[0.8745098],
[0.87843137],
[0.89803922],
[0.11372549]],
```

```
[[0.29411765],
[0.8
[0.83137255],
8.0]
[0.75686275],
[0.80392157],
[0.82745098],
[0.88235294],
[0.84705882],
[0.7254902],
[0.77254902],
[0.80784314],
[0.77647059],
[0.83529412],
[0.94117647],
[0.76470588],
[0.89019608],
[0.96078431],
[0.9372549],
[0.8745098],
[0.85490196],
[0.83137255],
[0.81960784],
[0.87058824],
[0.8627451],
[0.8666667],
[0.90196078],
[0.2627451]],
[[0.18823529],
[0.79607843],
[0.71764706],
[0.76078431],
[0.83529412],
[0.77254902],
[0.7254902],
[0.74509804],
[0.76078431],
[0.75294118],
[0.79215686],
[0.83921569],
[0.85882353],
[0.8666667],
[0.8627451],
[0.9254902],
[0.88235294],
[0.84705882],
[0.78039216],
```

```
[0.80784314],
[0.72941176],
[0.70980392],
[0.69411765],
[0.6745098],
[0.70980392],
[0.80392157],
[0.80784314],
[0.45098039]],
[[0.
[0.47843137],
[0.85882353],
[0.75686275],
[0.70196078],
[0.67058824],
[0.71764706],
[0.76862745],
8.0]
[0.82352941],
[0.83529412],
[0.81176471],
[0.82745098],
[0.82352941],
[0.78431373],
[0.76862745],
[0.76078431],
[0.74901961],
[0.76470588],
[0.74901961],
[0.77647059],
[0.75294118],
[0.69019608],
[0.61176471],
[0.65490196],
[0.69411765],
[0.82352941],
[0.36078431]],
[[0.
[0.
[0.29019608],
[0.74117647],
[0.83137255],
[0.74901961],
[0.68627451],
[0.6745098],
[0.68627451],
[0.70980392],
```

```
[0.7254902],
 [0.7372549],
 [0.74117647],
 [0.7372549],
 [0.75686275],
 [0.77647059],
 [0.8
 [0.81960784],
 [0.82352941],
 [0.82352941],
 [0.82745098],
 [0.7372549],
 [0.7372549],
 [0.76078431],
 [0.75294118],
 [0.84705882],
 [0.6666667],
 [0.
            ]],
[[0.00784314],
 [0.
[0.
 [0.
 [0.25882353],
 [0.78431373],
 [0.87058824],
 [0.92941176],
 [0.9372549],
 [0.94901961],
 [0.96470588],
 [0.95294118],
 [0.95686275],
 [0.8666667],
 [0.8627451],
 [0.75686275],
 [0.74901961],
 [0.70196078],
 [0.71372549],
 [0.71372549],
 [0.70980392],
 [0.69019608],
 [0.65098039],
 [0.65882353],
 [0.38823529],
 [0.22745098],
 [0.
 [0.
            ]],
[[0.
            ],
```

```
[0.
 [0.
              ],
 [0.
 [0.
 [0.
 [0.
 [0.15686275],
 [0.23921569],
 [0.17254902],
 [0.28235294],
 [0.16078431],
 [0.1372549],
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
              ],
 [0.
[[0.
[0.
[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
              ],
 [0.
              ],
```

```
[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
               ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
              ]]])
```

split dataset

```
from sklearn.model_selection import train_test_split

X_train,X_val,y_train,y_val=train_test_split(X_train,y_train,test_size =0.2,random_state=2020)

X_train.shape , y_train.shape
((48000, 28, 28, 1), (48000,))

X_val.shape,y_val.shape
```

```
((12000, 28, 28, 1), (12000,))
model= keras.models.Sequential([
keras.layers.Conv2D(filters=32, kernel size=3, strides=(1,1), padding='va
lid',activation='relu',input shape=[28,28,1]),
   keras.layers.MaxPooling2D(pool size=(2,2)),
   keras.layers.Flatten(),
   keras.layers.Dense(units=128, activation = 'relu'),
   keras.layers.Dense(units=10,activation ='softmax'),
])
model.summary()
Model: "sequential"
Layer (type)
                         Output Shape
                                               Param #
conv2d (Conv2D)
                         (None, 26, 26, 32)
                                               320
max pooling2d (MaxPooling2 (None, 13, 13, 32)
                                               0
D)
flatten (Flatten)
                         (None, 5408)
                                               0
dense (Dense)
                         (None, 128)
                                               692352
dense 1 (Dense)
                         (None, 10)
                                               1290
Total params: 693962 (2.65 MB)
Trainable params: 693962 (2.65 MB)
Non-trainable params: 0 (0.00 Byte)
model.compile(optimizer='adam',loss='sparse categorical crossentropy',
metrics=['accuracy'])
model.fit(X train , y train , epochs=20 , batch size=512 ,verbose=1 ,
validation data=(X val,y val))
Epoch 1/20
accuracy: 0.7882 - val loss: 0.4195 - val accuracy: 0.8574
Epoch 2/20
accuracy: 0.8664 - val_loss: 0.3880 - val_accuracy: 0.8641
Epoch 3/20
accuracy: 0.8834 - val loss: 0.3371 - val accuracy: 0.8860
Epoch 4/20
```

```
accuracy: 0.8916 - val loss: 0.3168 - val accuracy: 0.8910
Epoch 5/20
accuracy: 0.8990 - val loss: 0.3178 - val accuracy: 0.8892
Epoch 6/20
accuracy: 0.9054 - val loss: 0.3007 - val accuracy: 0.8975
Epoch 7/20
accuracy: 0.9097 - val loss: 0.2931 - val accuracy: 0.8978
accuracy: 0.9150 - val loss: 0.2809 - val accuracy: 0.9045
Epoch 9/20
accuracy: 0.9197 - val loss: 0.2798 - val_accuracy: 0.9027
Epoch 10/20
accuracy: 0.9236 - val loss: 0.2762 - val accuracy: 0.9071
Epoch 11/20
accuracy: 0.9244 - val loss: 0.2755 - val accuracy: 0.9069
Epoch 12/20
accuracy: 0.9280 - val loss: 0.2888 - val accuracy: 0.9008
Epoch 13/20
accuracy: 0.9310 - val loss: 0.2816 - val accuracy: 0.9029
Epoch 14/20
accuracy: 0.9349 - val loss: 0.2696 - val accuracy: 0.9087
Epoch 15/20
accuracy: 0.9349 - val loss: 0.2867 - val accuracy: 0.8988
Epoch 16/20
94/94 [============== ] - 1s 10ms/step - loss: 0.1719 -
accuracy: 0.9384 - val loss: 0.2594 - val accuracy: 0.9118
Epoch 17/20
94/94 [============= ] - 1s 9ms/step - loss: 0.1612 -
accuracy: 0.9417 - val loss: 0.2707 - val accuracy: 0.9095
Epoch 18/20
accuracy: 0.9442 - val loss: 0.2713 - val accuracy: 0.9087
accuracy: 0.9472 - val loss: 0.2662 - val accuracy: 0.9111
Epoch 20/20
```

test the model

```
model.predict(np.expand dims(X test[0],axis=0)).round(2)
1/1 [=======] - 0s 191ms/step
array([[0., 0., 0., 0., 0., 0., 0., 0., 1.]], dtype=float32)
np.argmax(model.predict(np.expand dims(X test[0], axis=0)).round(2))
1/1 [======= ] - 0s 25ms/step
9
y_test[0]
np.argmax(model.predict(np.expand_dims(X_test[5], axis = 0)).round(2))
1/1 [=======] - 0s 27ms/step
1
y_test[5]
1
y_pred = model.predict(X_test).round(2)
313/313 [============ ] - 1s 2ms/step
y pred
array([[0. , 0. , 0. , ..., 0. , 0. , 1.
          , 0. , 1. , ..., 0. , 0. , 0.
      [0.
         , 1. , 0. , ..., 0. , 0. , 0.
               , 0. , ..., 0. , 1. , 0.
         , 0.
          , 1.
               , 0. , ..., 0. , 0. , 0. ],
              , 0. , ..., 0.02, 0.04, 0. ]], dtype=float32)
      [0. , 0.
model.evaluate(X test,y test)
- accuracy: 0.9019
[0.2807701826095581, 0.9018999934196472]
```

```
plt.figure(figsize=(16,30))

j=1

for i in np.random.randint(0,1000,60):
   plt.subplot(12,5,j); j=j+1
   plt.imshow(X_train[i].reshape(28,28),cmap="Greys")
   plt.title('Actual ={} / {} \n predicted ={} /

{}'.format(class_labels[y_test[i]],y_test[i],class_labels[np.argmax(y_pred[i])],np.argmax(y_pred[i])))
   plt.axis('off')
```

Actual =Dress / 3 predicted =Dress / 3 Actual = Dress / 3 predicted =Shirt / 6 predicted =Pullover / 2 predicted =T-shirt/top / 0 Actual predicted =T-shirt/top / 0

predicted =Bag / 8

Actual = Dress / 3 predicted = Dress / 3

Actual = Sneaker / 7 predicted =Sneaker / 7

Actual =T-shirt/top / 0 predicted =T-shirt/top / 0

Actual =T-shirt/top / 0 predicted =T-shirt/top / 0

Actual =Dress / 3 predicted =Dress / 3

Actual Bag / 8 predicted =Bag / 8

Actual = Pullover / 2 predicted =Pullover / 2

Actual = Ankle boot / 9 predicted =Ankle boot / 9

Actual =Bag / 8 predicted =Bag / 8

Actual =T-shirt/top / 0 predicted =T-shirt/top / 0

predicted =Shirt / 6

predicted =Sneaker / 7

Actual =Coat / 4 predicted =Coat / 4

Actual =Sandal / 5 predicted =Sandal / 5

Actual = Ankle boot / 9 predicted =Ankle boot / 9

Actual =Trouser / 1 predicted =Trouser / 1

Actual = Ankle boot / 9 predicted =Ankle boot / 9

Actual =Shirt / 6 predicted =Shirt / 6

Actual =Ankle boot / 9 predicted =Ankle boot / 9

Actual = Ankle boot / 9 predicted =Ankle boot / 9

predicted = Dress / 3

Actu predicted =Coat / 4

Actual =Coat / 4 predicted =Coat / 4

Actual =Pullover / 2 predicted =Pullover / 2

Actual = Shirt / 6 predicted =Shirt / 6

Actual =Trouser / 1 predicted =Trouser / 1

confusion matrix

```
from sklearn.metrics import confusion_matrix

plt.figure(figsize=(16,9))
y_pred_labels=[np.argmax(labels) for labels in y_pred]
cm=confusion_matrix(y_test,y_pred_labels)
sns.heatmap(cm,annot=True,fmt='d',xticklabels=class_labels,yticklabels=class_labels)

<Axes: >
```


from sklearn.metrics import classification_report
cm=classification_report(y_test,y_pred_labels,target_names=class_label
s)
print(cm)

	precision	recall	f1-score	support
T-shirt/top	0.87	0.84	0.86	1000
Trouser	0.99	0.98	0.98	1000
Pullover	0.83	0.86	0.84	1000
Dress	0.93	0.88	0.90	1000
Coat	0.90	0.77	0.83	1000
Sandal	0.98	0.98	0.98	1000
Shirt	0.68	0.82	0.75	1000

Sneaker	0.94	0.97	0.96	1000
Bag	0.98	0.97	0.97	1000
Ankle boot	0.98	0.95	0.96	1000
accuracy macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.90 0.90	10000 10000 10000

save cnn

```
model.save('fasion classification cnn model.h5')
/usr/local/lib/python3.10/dist-packages/keras/src/engine/
training.py:3103: UserWarning: You are saving your model as an HDF5
file via `model.save()`. This file format is considered legacy. We
recommend using instead the native Keras format, e.g.
`model.save('my model.keras')`.
  saving api.save model(
path='/content/drive/MyDrive/Fasion classification cnn model.h5'
model.save(path)
model=keras.models.load model('/content/drive/MyDrive/
Fasion classification cnn model.h5')
model.predict(np.expand dims(X test[1],axis=0)).round(2)
1/1 [=======] - 0s 47ms/step
array([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)
pred=np.argmax(model.predict(np.expand dims(X test[1],axis=0)).round(2
))
1/1 [=======] - 0s 39ms/step
2
y_test[1]
2
x=y=0
for i in range(300):
(np.argmax(model.predict(np.expand dims(X test[i],axis=0)).round(2)) )
==y_test[i]:
      print('Valid prediction');
      x=x+1;
   else:
       print('Invalid prediction');
```

```
y=y+1
print("Total valid prediction = ",x);
print("Total invalid prediction = ",y);
1/1 [======] - 0s 53ms/step
Valid prediction
1/1 [======] - 0s 58ms/step
Valid prediction
1/1 [======] - 0s 26ms/step
Valid prediction
1/1 [=======] - 0s 55ms/step
Valid prediction
1/1 [=======] - 0s 70ms/step
Valid prediction
1/1 [=======] - 0s 25ms/step
Valid prediction
1/1 [======] - 0s 26ms/step
Valid prediction
1/1 [======] - 0s 25ms/step
Valid prediction
1/1 [======= ] - 0s 55ms/step
Valid prediction
1/1 [======] - 0s 56ms/step
Valid prediction
1/1 [=======] - 0s 25ms/step
Valid prediction
1/1 [======] - 0s 55ms/step
Valid prediction
1/1 [=======] - 0s 34ms/step
Invalid prediction
1/1 [======] - 0s 38ms/step
Valid prediction
1/1 [======] - 0s 52ms/step
Invalid prediction
1/1 [======] - 0s 39ms/step
Valid prediction
1/1 [======] - 0s 68ms/step
Valid prediction
1/1 [=======] - 0s 71ms/step
Invalid prediction
1/1 [======] - 0s 142ms/step
Valid prediction
1/1 [======] - 0s 148ms/step
Valid prediction
Valid prediction
1/1 [======] - 0s 18ms/step
Valid prediction
1/1 [======= ] - 0s 25ms/step
```

Valid prediction			
1/1 [===========] Invalid prediction	-	0s	20ms/step
1/1 [========]	-	0s	22ms/step
Valid prediction 1/1 [=======]	-	0s	19ms/step
<pre>Invalid prediction 1/1 [==========]</pre>	-	0s	17ms/step
Valid prediction 1/1 [=========]			•
Valid prediction 1/1 [===================================			•
Valid prediction			•
1/1 [===========] Valid prediction	-	0s	17ms/step
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [=======]	-	0s	16ms/step
Valid prediction 1/1 [=======]	-	0s	19ms/step
Valid prediction 1/1 [=========]	_	05	16ms/sten
Valid prediction 1/1 [===================================			•
Valid prediction			•
1/1 [===========] Valid prediction	-	0s	17ms/step
1/1 [===========] Valid prediction	-	0s	17ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [==========]	-	0s	16ms/step
Valid prediction 1/1 [========]			
Valid prediction			-
1/1 [=======] Valid prediction	-	0s	19ms/step
1/1 [===========] Valid prediction	-	0s	22ms/step
1/1 [======]	-	0s	23ms/step
Invalid prediction 1/1 [===================================	-	0s	22ms/step
Valid prediction 1/1 [=========]	_	05	18ms/sten
Valid prediction			
1/1 [=======] Valid prediction			
1/1 [=======] Valid prediction	-	0s	16ms/step

1/1 [==========]	-	0s	16ms/step
Valid prediction 1/1 [===========]	-	0s	16ms/step
Valid prediction 1/1 [===========]	-	0s	16ms/step
Invalid prediction 1/1 [=========]	_	05	17ms/sten
Valid prediction 1/1 [===================================			•
Valid prediction			•
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [======]	-	0s	17ms/step
Valid prediction 1/1 [===================================	-	0s	16ms/step
Valid prediction 1/1 [==========]	_	0s	20ms/step
Valid prediction 1/1 [===================================			•
Valid prediction			
1/1 [=======] Valid prediction			•
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [======]	-	0s	18ms/step
Valid prediction 1/1 [============]	-	0s	16ms/step
Valid prediction 1/1 [==========]	_	0s	16ms/step
Valid prediction 1/1 [==========]			•
Valid prediction			•
1/1 [=======] Valid prediction			
1/1 [========] Valid prediction	-	0s	17ms/step
1/1 [=========] Valid prediction	-	0s	16ms/step
1/1 [=========]	-	0s	16ms/step
Invalid prediction 1/1 [=========]	-	0s	17ms/step
Invalid prediction 1/1 [==========]			·
Valid prediction			•
1/1 [=========] Valid prediction			
1/1 [=======]	-	0s	17ms/step

Valid prediction			
1/1 [===================================	-	0s	20ms/step
1/1 [=======]	-	0s	20ms/step
Valid prediction 1/1 [=======]	-	0s	20ms/step
Invalid prediction 1/1 [==========]	_	0s	16ms/step
Valid prediction 1/1 [========]			·
Valid prediction			•
1/1 [============] Valid prediction			•
1/1 [============] Valid prediction	-	0s	17ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=======]	-	0s	16ms/step
Valid prediction 1/1 [========]			•
Valid prediction 1/1 [===================================			•
Valid prediction			•
1/1 [=======] Valid prediction			•
1/1 [============] Valid prediction	-	0s	20ms/step
1/1 [======]	-	0s	19ms/step
Valid prediction 1/1 [===================================	-	0s	17ms/step
Valid prediction 1/1 [=======]	_	05	21ms/sten
Valid prediction 1/1 [===================================			-
Valid prediction			·
1/1 [=========] Valid prediction	-	0s	21ms/step
1/1 [============] Valid prediction	-	0s	21ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [========]	-	0s	17ms/step
Valid prediction 1/1 [=======]	_	0s	16ms/step
Valid prediction 1/1 [========]			
Valid prediction	-	U3	τοιιι3/3 τερ

1/1 [======]	-	0s	17ms/step
Valid prediction 1/1 [==========]	-	0s	17ms/step
Valid prediction 1/1 [========]			•
Invalid prediction			-
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [======]	-	0s	24ms/step
Valid prediction 1/1 [==========]	_	05	17ms/sten
Valid prediction			•
1/1 [============] Valid prediction	-	ΘS	1/ms/step
1/1 [=======]	-	0s	18ms/step
Valid prediction 1/1 [========]	-	0s	22ms/step
Valid prediction 1/1 [========]		0.0	25mc/cton
Valid prediction			
1/1 [===========] Valid prediction	-	0s	19ms/step
1/1 [======]	-	0s	17ms/step
Valid prediction 1/1 [==========]	_	0<	17ms/sten
Valid prediction			
1/1 [===========] Valid prediction	-	0s	16ms/step
1/1 [======]	-	0s	16ms/step
Valid prediction 1/1 [==========]	_	0s	16ms/step
Valid prediction			•
1/1 [============] Valid prediction			•
1/1 [===================================	-	0s	17ms/step
Valid prediction 1/1 [===================================	-	0s	23ms/step
Valid prediction 1/1 [=========]		0.5	21mc/stan
Valid prediction			•
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=========]	_	0s	17ms/step
Valid prediction			•
1/1 [========] Valid prediction	-	US	1/ms/step
1/1 [============]	-	0s	17ms/step

Valid prediction			
1/1 [===================================	-	0s	17ms/step
1/1 [======]	-	0s	18ms/step
Valid prediction 1/1 [=========]	-	0s	18ms/step
Valid prediction 1/1 [=========]	_	05	17ms/sten
Valid prediction 1/1 [==========]			
Valid prediction			
1/1 [==========] Valid prediction			·
1/1 [===========] Invalid prediction	-	0s	17ms/step
1/1 [=========]	-	0s	21ms/step
Valid prediction 1/1 [=========]	-	0s	17ms/step
Valid prediction 1/1 [=========]			
Valid prediction			·
1/1 [============] Valid prediction			·
1/1 [==========] Valid prediction	-	0s	22ms/step
1/1 [=======]	-	0s	19ms/step
Valid prediction 1/1 [==========]	_	0s	19ms/step
Valid prediction 1/1 [============]			
Invalid prediction			
1/1 [=======] Valid prediction	-	0s	16ms/step
1/1 [========]	-	0s	17ms/step
Valid prediction 1/1 [=========]	-	0s	17ms/step
Valid prediction 1/1 [=========]	_	۸c	17mc/stan
Valid prediction			
1/1 [=======] Valid prediction	-	0s	16ms/step
1/1 [=========]	-	0s	17ms/step
<pre>Invalid prediction 1/1 [===========]</pre>	-	0s	22ms/step
Valid prediction 1/1 [=========]	_	05	17ms/sten
Valid prediction			
1/1 [=======] Valid prediction	-	US	18ms/step
·			

1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=========]	-	0s	21ms/step
Valid prediction 1/1 [=========]	_	05	21ms/sten
Invalid prediction			•
1/1 [===========] Valid prediction			•
1/1 [===========] Valid prediction	-	0s	19ms/step
1/1 [=======]	-	0s	17ms/step
Invalid prediction 1/1 [==========]	-	0s	17ms/step
Valid prediction 1/1 [========]			
Valid prediction			
1/1 [============] Valid prediction	-	0s	17ms/step
1/1 [=======]	-	0s	18ms/step
Valid prediction 1/1 [========]	-	0s	16ms/step
Invalid prediction 1/1 [========]	_	٩c	22ms/sten
Valid prediction			•
1/1 [============] Valid prediction	-	0s	16ms/step
1/1 [======]	-	0s	17ms/step
Valid prediction 1/1 [========]	-	0s	17ms/step
Valid prediction 1/1 [==========]	_	05	21ms/sten
Valid prediction			
1/1 [===========] Valid prediction			•
1/1 [===========] Valid prediction	-	0s	23ms/step
1/1 [=======]	-	0s	24ms/step
Valid prediction 1/1 [=========]	-	0s	20ms/step
Valid prediction 1/1 [========]			
Valid prediction			
1/1 [==========] Valid prediction	-	0s	19ms/step
1/1 [======]	-	0s	16ms/step
Valid prediction 1/1 [========]	-	0s	17ms/step
Valid prediction 1/1 [========]	_	00	16ms/sten
1/1 []	_	03	101113/3 CEb

Valid prediction			
1/1 [=======]	-	0s	18ms/step
Valid prediction 1/1 [===================================	-	0s	17ms/step
Valid prediction 1/1 [========]	-	0s	17ms/step
Valid prediction 1/1 [=========]	-	0s	23ms/step
Valid prediction 1/1 [========]			
Valid prediction			•
1/1 [=======] Valid prediction			•
1/1 [============] Valid prediction			·
1/1 [============] Valid prediction	-	0s	30ms/step
1/1 [=======]	-	0s	33ms/step
Valid prediction 1/1 [===================================	-	0s	25ms/step
Valid prediction 1/1 [=======]	-	0s	24ms/step
Valid prediction 1/1 [=========]	_	05	27ms/sten
Valid prediction 1/1 [=========]			•
Valid prediction			•
1/1 [============] Valid prediction			•
1/1 [============] Valid prediction	-	0s	26ms/step
1/1 [=======]	-	0s	24ms/step
Valid prediction 1/1 [=======]	-	0s	32ms/step
Valid prediction 1/1 [==========]	-	0s	25ms/step
Valid prediction 1/1 [=========]	_	05	26ms/sten
Valid prediction 1/1 [==========]			
Valid prediction			
1/1 [==========] Valid prediction	-	0s	27ms/step
1/1 [============] Valid prediction	-	0s	24ms/step
1/1 [=======]	-	0s	26ms/step
Valid prediction 1/1 [===================================	-	0s	23ms/step
Valid prediction			

1/1 [=======] Valid prediction	-	0s	27ms/step
1/1 [=======]	-	0s	25ms/step
Valid prediction 1/1 [=======]	-	0s	26ms/step
Valid prediction 1/1 [========]			•
Valid prediction			•
1/1 [===========] Valid prediction	-	0s	35ms/step
1/1 [=======]	-	0s	32ms/step
Valid prediction 1/1 [========]	-	0s	24ms/step
Valid prediction 1/1 [===================================			•
Valid prediction			•
1/1 [========] Valid prediction	-	0s	26ms/step
1/1 [========]	-	0s	26ms/step
Valid prediction 1/1 [=======]	_	0s	25ms/step
Valid prediction			
1/1 [==========] Valid prediction	-	ΘS	38ms/step
1/1 [===================================	-	0s	26ms/step
Valid prediction 1/1 [===========]	-	0s	27ms/step
Valid prediction 1/1 [========]	_	05	32ms/sten
Valid prediction			•
1/1 [=========] Valid prediction	-	0s	29ms/step
1/1 [=======]	-	0s	26ms/step
Valid prediction 1/1 [============]	-	0s	26ms/step
Valid prediction 1/1 [=======]			
Valid prediction			
1/1 [=======] Valid prediction	-	0s	19ms/step
1/1 [=======]	-	0s	20ms/step
Valid prediction 1/1 [=========]	-	0s	18ms/step
Valid prediction 1/1 [=========]		0.c	17mc/cten
Valid prediction			
1/1 [=======] Valid prediction	-	0s	17ms/step
1/1 [==========]	-	0s	17ms/step

Valid prediction			
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=======]	-	0s	18ms/step
Valid prediction 1/1 [==========]	_	0s	22ms/step
Valid prediction 1/1 [========]			·
Valid prediction			
1/1 [===========] Valid prediction			
1/1 [=========]	-	0s	17ms/step
Valid prediction 1/1 [=========]	-	0s	16ms/step
Valid prediction 1/1 [==========]	_	Θc	17ms/sten
Valid prediction			
1/1 [==========] Invalid prediction	-	0s	16ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [=========]	-	0s	17ms/step
Valid prediction 1/1 [=========]		0.0	17mc/cton
Valid prediction			·
1/1 [===========] Valid prediction	-	0s	19ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [==========]	-	0s	17ms/step
Valid prediction			
1/1 [=======] Valid prediction			
1/1 [=========] Valid prediction	-	0s	20ms/step
1/1 [=======]	-	0s	20ms/step
Valid prediction 1/1 [=========]	_	05	22ms/sten
Valid prediction			
1/1 [=======] Valid prediction	-	ΘS	24ms/step
1/1 [=========]	-	0s	17ms/step
<pre>Invalid prediction 1/1 [=========]</pre>	-	0s	18ms/step
Valid prediction 1/1 [=======]	_	00	17ms/stan
Valid prediction			
1/1 [=======] Valid prediction	-	0s	18ms/step
p. 01-11011			

1/1 [===================================	-	0s	16ms/step
Valid prediction 1/1 [==========]	-	0s	18ms/step
Invalid prediction 1/1 [=========]	_	0s	19ms/step
Valid prediction 1/1 [===================================			
Valid prediction			
1/1 [==========] Invalid prediction	-	0s	17ms/step
1/1 [===========]	-	0s	17ms/step
Valid prediction 1/1 [========]	-	0s	18ms/step
Valid prediction 1/1 [==========]	_	05	17ms/sten
Valid prediction			•
1/1 [===========] Valid prediction			•
1/1 [===========] Valid prediction	-	0s	21ms/step
1/1 [======]	-	0s	25ms/step
Valid prediction 1/1 [=========]	-	0s	17ms/step
Valid prediction 1/1 [========]		Ωc	10mc/sten
Valid prediction			
1/1 [==========] Valid prediction	-	0s	18ms/step
1/1 [==========] Valid prediction	-	0s	17ms/step
1/1 [========]	-	0s	16ms/step
Valid prediction 1/1 [=========]	_	0s	17ms/step
Valid prediction 1/1 [=========]			·
Valid prediction			
1/1 [======] Valid prediction	-	0s	18ms/step
1/1 [=======]	-	0s	17ms/step
Valid prediction 1/1 [========]	-	0s	18ms/step
Valid prediction 1/1 [========]		Ωc	16ms/sten
Valid prediction			•
1/1 [=======] Valid prediction	-	0s	17ms/step
1/1 [======]	-	0s	17ms/step
Valid prediction 1/1 [==========]	-	0s	20ms/step
Valid prediction			

1/1 [======]	-	0s	20ms/step
Valid prediction 1/1 [========]	-	0s	29ms/step
Valid prediction 1/1 [=========]		۵۵	20ms/stop
Valid prediction			
1/1 [===========] Invalid prediction	-	0s	20ms/step
1/1 [========]	-	0s	22ms/step
Valid prediction 1/1 [===========]		0.5	21ms/sten
Valid prediction			
1/1 [===========] Valid prediction	-	0s	17ms/step
1/1 [=========]	-	0s	20ms/step
Valid prediction 1/1 [==========]	_	05	16ms/sten
Valid prediction			·
1/1 [===========] Valid prediction	-	0s	16ms/step
1/1 [======]	-	0s	19ms/step
Valid prediction 1/1 [=========]	_	05	18ms/sten
Valid prediction			
1/1 [=======] Valid prediction	-	0s	1/ms/step
1/1 [===========]	-	0s	21ms/step
Valid prediction 1/1 [=========]	_	0s	23ms/step
Valid prediction			
1/1 [==========] Valid prediction	-	θS	24ms/step
1/1 [=======]	-	0s	19ms/step
Valid prediction 1/1 [============]	-	0s	21ms/step
Valid prediction			
1/1 [========] Valid prediction	-	US	1/ms/step
1/1 [==========] Valid prediction	-	0s	16ms/step
1/1 [========]	_	0s	17ms/step
Valid prediction 1/1 [========]			
Valid prediction			
1/1 [=========] Valid prediction	-	0s	17ms/step
1/1 [========]	-	0s	16ms/step
Valid prediction 1/1 [=========]		0.0	17ms/sten
1/1 []	-	0.5	1/1113/3 CCh

```
Valid prediction
Valid prediction
1/1 [=======] - 0s 16ms/step
Valid prediction
1/1 [======= ] - 0s 16ms/step
Valid prediction
1/1 [=======] - Os 16ms/step
Valid prediction
Valid prediction
1/1 [=======] - 0s 21ms/step
Valid prediction
1/1 [======] - Os 23ms/step
Valid prediction
Total valid prediction = 278
Total invalid prediction = 22
```