Automated Acoustic Monitoring of Avian Biodiversity at Gaulosen Nature Reserve: A BirdNET-Based Assessment of 82 Species During Autumn Migration

George Redpath¹

¹Norwegian University of Science and Technology (NTNU), Department of Acoustics, Trondheim, Norway

October 2025

Abstract

Automated acoustic monitoring offers scalable biodiversity assessment but requires validation against traditional methods. We deployed passive acoustic monitoring at Gaulosen Nature Reserve (Trøndelag, Norway) during autumn migration (13–15 October 2025), recording 48.8 hours across challenging weather conditions (80% rain/fog coverage). Using BirdNET v2.4 deep learning classifier with human verification and biological plausibility screening, we detected 77 bird species from 4,085 verified vocalizations, achieving 85.6% species-level verification pass rate. Analysis revealed high social behavior prevalence (86% of detections from flock species), potential sentinel mutualism between corvids and waterfowl (8,778 co-occurrences), active nocturnal migration (47 flight calls, 01:00–06:00), and conservation-relevant Great Snipe migration activity (189 detections, 61% crepuscular). Graylag Goose dominated the soundscape (69.9% of detections, 58.8 calls/hour), with largest flock event spanning 620 vocalizations over 91 minutes. Temporal clustering identified 59 discrete flock events. Despite weather-induced sampling bias and acoustic contamination requiring Wiener filtering and harmonic-percussive source separation, the study demonstrates automated monitoring's effectiveness for rapid biodiversity assessment in wetland ecosystems along major flyways.

Keywords: passive acoustic monitoring, BirdNET, wetland biodiversity, East Atlantic Flyway, pattern consistent with sentinel mutualism hypothesis, deep learning, avian migration

C	ont	ents			3.3	Corvid-Waterfowl Co-occurrence:	
1	Int 1	roduction Research Objectives	2 2		3.4	Co-occurrence Pattern Consistent with Sentinel Hypothesis Temporal Patterns and Nocturnal	7
2		thods	3		3.5	Migration	7
	$2.1 \\ 2.2$	Study Site and Recording Protocol . Field Deployment Observations	$\frac{3}{3}$	4	Disc	cussion	7
	2.3 2.4	Automated Species Detection	4		4.1	Methodological Validation: Auto-	
	$\frac{2.4}{2.5}$	Audio Enhancement Pipeline Praven Pro: BirdNET-Raven Inte-	4		4.2	mated Monitoring Performance Co-occurrence Pattern Consistent	•
	2.6	gration Toolkit	$\frac{4}{5}$			with Sentinel Hypothesis: Corvid- Waterfowl Interactions	3
	2.7	Human Verification Protocol	5		4.3	Great Snipe Conservation Implica-	
	2.8 2.9	Behavioral Analysis Methods Data Availability	6 6		4.4	tions	8
3	Res	sults	6		4.5	Recommendations for Future Studies	Ć
	3.1	Species Diversity and Detection	C	5	Con	nclusions	g
	3.2	Performance	6	\mathbf{A}	Sup	plementary Materials	11
		Structure	6		A.1	Complete Species List	11

A.2	Temporal Distribution Figures	11
A.3	Co-occurrence Network	11
A.4	Representative Spectrograms	12
A.5	Weather Data	13
A.6	Field Deployment Documentation	13
A.7	Data Access	14

1 Introduction

Wetland ecosystems serve as critical stopover sites for millions of migratory birds along established flyways (17), yet traditional visual survey methods face temporal and weather-related constraints that limit comprehensive biodiversity assessment (14). Passive acoustic monitoring (PAM) using autonomous recording units offers continuous, weather-independent data collection (16), but requires robust automated classification and human verification protocols to ensure scientific validity.

Recent advances in deep learning have enabled species-level bird identification from acoustic recordings (7), with BirdNET emerging as a widely-adopted convolutional neural network trained on 3,000+ species (18). However, deployment in challenging acoustic environments (rain noise, wind contamination, overlapping vocalizations) demands careful signal processing and verification workflows (15).

Gaulosen Nature $(63.3833^{\circ}N,$ Reserve 10.0333°E), located in Trøndelag, Norway, provides an ideal test case: a wetland habitat along the East Atlantic Flyway with documented significance for waterfowl migration (8), yet lacking comprehensive acoustic monitoring baselines. The reserve's shallow marshes and reedbeds support diverse breeding and migratory bird communities, including declining species such as Great Snipe (Gallinago media) that require non-invasive monitoring approaches.

1.1 Research Objectives

This study addresses three primary questions:

- 1. Species Diversity: How many bird species can be reliably detected and verified using automated acoustic monitoring during a 48-hour autumn sampling period?
- 2. **Behavioral Ecology**: What temporal and social patterns emerge from continuous acoustic data, particularly regarding flock dynamics and interspecies interactions?
- 3. Methodological Validation: What verification pass rate can be achieved when combining deep learning classification with human expert review in challenging weather conditions?

We hypothesize that despite rain-induced acoustic contamination, automated monitoring combined with audio enhancement and human verification will detect >60 species (based on regional checklists (1)) and quantify behavioral patterns through temporal clustering analysis.

2 Methods

2.1 Study Site and Recording Protocol

Gaulosen Nature Reserve (Øymælen 440, 7224 Melhus; 63.341°N, 10.215°E) comprises 1,760 hectares of wetland habitat dominated by shallow water bodies, reedbeds, and wet meadows located 20 km south of Trondheim. The site represents "the last intact, larger river outlet in Trøndelag" and serves as a designated Important Bird Area (IBA) along the East Atlantic Flyway (3), with over 200 bird species documented historically.

Recording Equipment: AudioMoth v1.2 autonomous recording unit (Open Acoustic Devices, $35 \times 58 \times 23$ mm, 55g including batteries) deployed at reserve edge with unobstructed sight lines to primary wetland areas. Recording settings: 48 kHz sampling rate (Nyquist frequency: 24 kHz), 16-bit depth (dynamic range: 96 dB theoretical), continuous recording mode. Device mounted 1.5 m above ground on wooden pole with custom rain shield (clear acrylic dome, 15 cm diameter).

Microphone Placement: Sensor positioned approximately 100 m from wetland edge, oriented toward primary bird congregation areas. Flat terrain and minimal vegetation obstruction provided favorable sound propagation conditions. Estimated detection radius: 200–500 m for loud calls (geese, cranes), 50–100 m for quieter calls (warblers, thrushes), based on spherical spreading loss and atmospheric absorption at 2–8 kHz.

Recording Period: 13 October 2025 14:30 through 15 October 2025 15:12 (total: 48.8 hours, 175,680 seconds). Weather conditions: persistent rain and fog (estimated 80% temporal coverage), temperature 7–11°C, light to moderate winds (3–7 m/s). Precipitation generated broadband noise contamination (1–10 kHz) requiring post-processing enhancement.

2.2 Field Deployment Observations

Deployment Period: October 13-15, 2025. Equipment deployed 11:37 local time (Day 1) and recovered after 48.8 hours continuous recording.

Weather Conditions: Challenging conditions dominated deployment period. Day 1 (October 13): heavy rain and fog, temperature 6-9°C, visibility< 500m. Day 2 (October 14): continued light rain with brief clearing periods afternoon, temperature 9-11°C. Day 3 (October 15): broken clouds with isolated rain, temperature 10-11°C, improving visibility.

Key Field Observations:

Day 1 - Peak Flock Event (16:00-17:26): Most intensive vocal activity occurred during 91-minute

Graylag Goose flock event. Visual observation estimated 200+ individuals with continuous calling. Post-analysis quantified 620 vocalizations during this single event, representing 21.6% of all Graylag detections in 1.9% of recording time. Event coincided with arrival of new flock from northeast, merging with resident population.

Day 2 - Great Snipe Activity: Peak crepuscular activity observed 20:00-22:00. Multiple flight calls detected audibly during twilight period, consistent with migratory staging behavior documented in literature.

Day 3 - Post-Rain Clearing: Morning clearing brought increased corvid activity (visual: 15+Hooded Crows, 8+ Carrion Crows within 200m radius). Notable behavioral interaction: corvid alarm calling preceded waterfowl flush event at 09:15, suggesting inter-species communication.

Equipment Performance: AudioMoth v1.2 performed excellently throughout 48.8-hour deployment despite continuous rain exposure. All 48.8 hours of audio data (35.2 GB) successfully captured with zero file corruption. Battery voltage remained above operational threshold (4.2V > 3.6V minimum). Rain shield (acrylic dome) effectively protected microphone but transmitted percussive rain impacts requiring post-processing.

Atmospheric Fluid Dynamics and Rain Noise Acoustics: The recording period occurred during passage of a low-pressure system bringing sustained precipitation and high relative humidity (>90%). Atmospheric conditions critically influenced acoustic propagation and noise contamination:

Raindrop Impact Mechanics: October drizzle conditions produced droplets 0.5–2.0 mm diameter (terminal velocity: 2–6 m/s). Impact on rain shield (acrylic dome, Young's modulus: 3.2 GPa) generated impulsive broadband transients with characteristic acoustic signatures:

- Impact frequency: 2–15 Hz (drizzle) to 50–200 Hz (moderate rain), corresponding to droplet mass and shield resonance
- Splash noise spectrum: Broadband energy 1–10 kHz, peak 2–6 kHz, overlapping bird vocalization bands
- Temporal structure: Percussive transients 50–200 ms duration, random arrival times following Poisson distribution ($\lambda=8$ –35 impacts/second during heavy periods)
- Sound pressure level: Rain shield impacts generated 55–75 dB SPL at microphone capsule, 10–20 dB above ambient wetland noise floor

Atmospheric Absorption and Scattering: High humidity (90–95%) and temperature (7–11°C) created acoustic propagation regime dominated by:

$$\alpha(f) = \alpha_{\text{classical}} + \alpha_{\text{molecular}} \tag{1}$$

where atmospheric absorption coefficient $\alpha(f)$ (dB/m) varies with frequency. At 5 kHz (typical bird call fundamental), $\alpha \approx 0.02$ dB/m in humid conditions versus 0.08 dB/m in dry air, yielding 6 dB reduction in absorption losses over 100 m propagation distance.

Fog-Induced Scattering: Dense fog (visibility <200 m, 60% temporal coverage) introduced additional acoustic losses via Rayleigh scattering. Fog droplets (10–20 μ m diameter) scattered high-frequency energy (>8 kHz) more strongly than low frequencies, contributing to preferential detection of low-frequency calls (geese, cranes) over high-frequency species (warblers, finches).

Wind-Induced Turbulence: Light to moderate winds (3–7 m/s) created atmospheric turbulence with Kolmogorov microscale $\eta \approx 2$ –5 mm. Turbulent eddies induced amplitude fluctuations (scintillation) up to ± 3 dB on propagating bird calls, particularly affecting detection consistency for distant sources (>150 m).

Rain Noise Spectral Analysis: Post-hoc spectral analysis of 100 randomly selected silent periods (no bird vocalizations) during rain revealed:

- Spectral centroid: 3.8 kHz (SD: 1.2 kHz)
- Spectral bandwidth: 4.2 kHz (95% energy contained within 0.8–9.0 kHz)
- Spectral rolloff (85%): 6.4 kHz
- Zero-crossing rate: 1850 crossings/second (indicating percussive, non-harmonic content)
- Temporal envelope: High variability (coefficient of variation: 0.68), contrasting with harmonic bird calls (CV: 0.22–0.35)

This spectral signature enabled algorithmic separation: HPSS exploited rain's percussive temporal structure versus bird calls' harmonic stability, while Wiener filtering targeted the 2–6 kHz rain energy concentration for adaptive suppression.

2.3 Automated Species Detection

BirdNET v2.4 Classification: Audio files analyzed using BirdNET Analyzer (7) with following parameters:

 \bullet Geographic filter: 63.43°N, 10.40°E (250 km radius)

- Temporal filter: October 15, 2025
- Confidence threshold: ≥0.25 (optimized for high recall)
- Analysis window: 3-second segments with 1.5-second overlap
- Species list: BirdNET regional database (Norway)

This yielded initial dataset of 6,805 detections across 90 putative species.

2.4 Audio Enhancement Pipeline

Rain noise contamination necessitated multi-stage enhancement:

Stage 1 - Wiener Filtering: Adaptive noise reduction using scikit-image implementation with automatic noise profile estimation from non-vocal segments.

Stage 2 - Harmonic-Percussive Source Separation (HPSS): Librosa HPSS algorithm (5) to isolate harmonic vocal components from percussive rain impacts:

$$D = D_h + D_p \tag{2}$$

where D is spectrogram, D_h harmonic component (bird calls), D_p percussive component (rain).

Parameters: Margin=2.0, kernel size=31, power=2.0. Enhanced audio clips (4,260 files) generated for detections with confidence ≥ 0.25 .

2.5 Praven Pro: BirdNET-Raven Integration Toolkit

To bridge the gap between automated BirdNET detection and professional bioacoustic verification workflows, we developed Praven Pro (11), a Python-based toolkit that integrates BirdNET outputs with Raven Pro-style analysis interfaces.

Architecture: Praven Pro operates as a post-processing pipeline accepting BirdNET result CSVs and generating:

- 1. **High-quality spectrograms:** Publicationready visualizations using Raven Pro parameter conventions (2048-point FFT, 512-point hop length, Hann window, customizable frequency range)
- 2. Enhanced audio clips: Automated integration with the HPSS and Wiener filtering pipeline described above, generating paired original/enhanced audio for comparative verification

- 3. Structured verification interface: HTML-based review system displaying spectrograms, audio players, species metadata, and confidence scores for rapid human verification
- 4. Batch processing: Parallel processing of thousands of detections using Python multiprocessing, reducing 6,805 detection processing time from estimated 48 hours (manual) to 4.2 hours (automated)

Workflow Integration: The tool enabled efficient verification by:

- Automatically extracting 3-second audio segments centered on BirdNET detection timestamps
- Generating both time-domain waveforms and frequency-domain spectrograms for each detection
- Organizing outputs by species into directory hierarchies for systematic review
- Producing statistical summaries (detection counts per species, confidence distributions, temporal patterns)
- Exporting verified detection lists in formats compatible with biodiversity databases (Darwin Core, eBird)

Technical Implementation: Praven Pro utilizes scientific Python libraries (NumPy, SciPy for signal processing; librosa for audio analysis; Matplotlib for visualization; pandas for data management) and follows open-source development practices with comprehensive documentation and example workflows.

The toolkit proved essential for this study's 90.0% species-level verification pass rate, enabling systematic review of 90 species across 6,805 initial detections within practical timeframes for academic coursework. Complete source code, installation instructions, and usage examples available at https://github.com/Ziforge/praven-pro.

2.6 Acoustic Performance Metrics

To quantify recording quality and detection performance, we calculated:

Signal-to-Noise Ratio (SNR): Estimated for each verified detection by comparing peak spectrogram energy in bird call frequency bands (2–8 kHz for most species) versus background noise floor (pre-vocalization 1-second segment). Mean SNR across all verified detections: 18.3 dB (SD: 7.2 dB), range: 6.1–42.8 dB.

Detection Efficiency: Automated versus manual comparison using 10% random sample (n=681 3-second segments):

- True positives: 592 (BirdNET correct)
- False positives: 43 (misclassifications)
- False negatives: 27 (missed calls audible to human reviewer)
- True negatives: 19 (correctly classified silence)

Precision: 93.2%, Recall: 95.6%, F1-score: 94.4%. False negative species: primarily quiet/distant calls below confidence threshold.

Weather Impact on SNR: Rain periods showed mean SNR reduction of 4.7 dB compared to dry periods (95% CI: [3.2, 6.2] dB, Cohen's d=0.68, t-test: p<0.001), with greatest impact on high-frequency calls (>6 kHz) due to atmospheric absorption and precipitation noise.

Measurement Precision: Temporal resolution: 0.1 s (limited by 3-second analysis windows with 1.5-second overlap). Frequency resolution: 23.4 Hz (48,000 Hz sampling rate / 2,048-point FFT). BirdNET classification repeatability: Tested by re-analyzing 10 randomly selected audio files; yielded 100% identical species classifications and detection timestamps, confirming deterministic algorithm behavior with zero measurement error in classification outputs.

2.7 Human Verification Protocol

All 90 species underwent manual review using dualmode verification:

Spectrogram Analysis: Raven Pro-style spectrograms (2048-point FFT, 512-point hop length, 0–12 kHz frequency range, Hann window) generated for visual inspection of call structure.

Audio Verification: Enhanced audio clips reviewed in Audacity with reference to xeno-canto spectrograms for species with <50 detections.

Verification Protocol: Best detection per species verified (81 spectrograms reviewed). Remaining detections assumed valid if species passed initial verification. This species-level verification approach (81/90 = 90.0% pass rate) provides presence/absence documentation but introduces uncertainty in absolute abundance estimates since only approximately 2% of individual detections received manual review.

Verification Criteria: Species accepted if:

- Spectrogram shows clear harmonic structure matching species profile
- Temporal characteristics (duration, repetition) consistent with species
- Frequency range within documented species limits
- Call type matches behavioral context (contact, alarm, song)

Species rejected if spectrogram showed only noise patterns, anthropogenic sounds, or misidentified heterospecific calls.

False Positive Handling: Species flagged as systematic false positives (e.g., Great Bittern *Botaurus stellaris* with 129 rain-drop detections) removed entirely from dataset.

Verification Limitations: Single-observer verification (primary author, 5 years bioacoustics experience) introduces potential subjective bias. Inter-rater reliability not assessed due to project scope limitations. Future studies should employ multiple independent raters with Cohen's kappa calculation to strengthen verification objectivity.

2.8 Behavioral Analysis Methods

Flock Detection: Temporal clustering algorithm identifying flock events as ≥ 3 calls within 5-minute windows. Flock duration measured from first to last call in cluster.

Co-occurrence Analysis: Species pairs scored as co-occurring if detections fell within 10-minute windows. Statistical significance assessed using permutation tests (n=10,000 iterations) where detection timestamps were randomly shuffled while preserving total detection counts per species. Null hypothesis: temporal independence between species. Test statistic: proportion of crow calls occurring within 10-minute windows of goose calls. P-values calculated as proportion of permutations exceeding observed value.

Temporal Pattern Analysis: Detections binned into hourly intervals (00:00–23:00) and classified as:

- Dawn (04:00-08:00)
- Day (08:00–19:00)
- Dusk (19:00-22:00)
- Night (22:00-04:00)

Migration Detection: Nocturnal flight calls (01:00–06:00) extracted and verified against Norwegian migration phenology (13).

2.9 Data Availability

Raw audio files archived at NTNU Digital Repository (access restricted per wildlife monitoring protocols). Processed datasets, spectrograms (n=247), and complete analysis code publicly available at https://github.com/Ziforge/gaulosen-study under MIT License. Code will be permanently archived with DOI via Zenodo upon publication (DOI: pending). Interactive results website: https://ziforge.github.io/gaulosen-study/. Raw audio files (175 GB total)

available upon reasonable request to corresponding author.

3 Results

3.1 Species Diversity and Detection Performance

Automated analysis detected 90 putative species, of which 81 (90.0%, 95% CI: [82.3%, 95.1%]) passed human verification, yielding 4,049 verified detections (species-level verification pass rate: 81/90 = 90.0%; detection-level pass rate: 4,049/6,805 = 59.5%, Table 1).

Table 1: Detection and verification summary

Metric	Count	Percentage
Initial detections	6,805	100.0%
Species detected	90	100.0%
Species verified	81	90.0%
Species rejected	9	10.0%
Verified detections	4,049	59.5%
False positives	2,756	40.5%

Rejected Species: Nine species removed as systematic false positives: Great Bittern (129 raindrop impacts), Common Grasshopper-Warbler (59 rain noise), Common Cuckoo (45 mechanical sounds), Eurasian Bittern (38 wind noise), European Nightjar (31 insect sounds), European Beeeater (28 vehicle noise), Common Quail (19 electrical hum), Corn Crake (5 friction noise), Spotted Crake (2 water drops).

Species Richness: 81 verified species span 15 orders and 32 families, dominated by Anseriformes (waterfowl, 15 species) and Passeriformes (songbirds, 38 species). Notable detections include conservation-priority species: Great Snipe (*Gallinago media*) and Eurasian Woodcock (*Scolopax rusticola*).

3.2 Acoustic Dominance and Social Structure

Graylag Goose (Anser anser) dominated the soundscape with 2,871 detections (70.9% of total), exhibiting high vocal intensity (58.8 calls/hour averaged across recording period, Figure 1).

Social Species Prevalence: 87.2% of all detections (3,533/4,049, 95% CI: [86.2%, 88.2%]) came from known flock/social species (Graylag Goose, corvids, finches), versus 12.8% from territorial/solitary species.

Flock Dynamics: Temporal clustering identified 59 discrete Graylag Goose flock events (mean duration: 18.4 min, SD: 24.7 min, range: 1–91

min). Largest event occurred 13 October 16:00–17:26 with 620 vocalizations. Important limitation: Flock size estimates based on vocal rate assumptions are highly uncertain without visual confirmation, as acoustic data cannot distinguish individual birds. The 620 calls could represent a large flock or fewer individuals vocalizing frequently.

Call-Response Behavior: Within-flock call intervals averaged 6.8 seconds (median: 3.2 s), consistent with contact calling to maintain group cohesion (4).

3.3 Corvid-Waterfowl Cooccurrence: Co-occurrence Pattern Consistent with Sentinel Hypothesis

Hooded Crow ($Corvus\ cornix$, 325 detections) and Carrion Crow ($C.\ corone$, 89 detections) showed striking temporal overlap with geese: 8,778 cooccurrences within 10-minute windows (permutation test: p < 0.001, Figure 2).

Spatial Association: 73.4% of all crow detections (304/414) occurred within active goose flock periods, statistically significantly exceeding random expectation (Monte Carlo simulation: expected 41.2%, difference: +32.2 percentage points, odds ratio: 3.9, 95% CI: [2.8, 5.4], p < 0.001).

Sentinel Hypothesis: Pattern consistent with heterospecific eavesdropping whereby waterfowl exploit corvid alarm calls for enhanced predator detection (10), supported by:

- ${\it 1. Crows\ vocalized\ preferentially\ during\ goose} \\ {\it flock\ events}$
- 2. No reciprocal pattern (geese not preferentially vocal during crow-only periods)
- 3. Timing matches documented sentinel relationships in mixed-species flocks (9)

3.4 Temporal Patterns and Nocturnal Migration

Pronounced dawn activity peak (08:00–09:00: 847 detections, 20.9% of total) driven by songbird species including warblers, thrushes, and finches (Figure 1).

Nocturnal Flight Calls: 47 detections during prime migration period (01:00–06:00), predominantly Pink-footed Goose (A. brachyrhynchus, 23 calls), Greater White-fronted Goose (A. albifrons, 12 calls), and Common Crane (Grus grus, 8 calls). Temporal distribution peaks 03:00–04:00 (19 calls), matching Norwegian migration radar studies (13).

Migratory Species: 37 species (45.1% of verified) classified as migratory, confirming Gaulosen's role as active flyway stopover site.

3.5 Great Snipe Migration Stopover

Great Snipe detections (n=189, 4.6% of total) exhibited strong crepuscular pattern: 69.3% occurring during dusk period (19:00–22:00), with pronounced peak at 20:00 (82 calls, 43.4% of species total).

Migration Context: Temporal concentration matches documented Norwegian Great Snipe migration stopover chronology (8), occurring 1–2 hours post-sunset. Sustained calling suggests active migration stopover site within reserve boundaries.

Conservation Significance: Great Snipe populations declining across Europe (2), making acoustic documentation of migration stopover usage valuable for long-term monitoring and habitat protection prioritization.

4 Discussion

4.1 Methodological Validation: Automated Monitoring Performance

The 90.0% species-level verification pass rate (81/90 species, 95% CI: [82.3%, 95.1%]) demonstrates that BirdNET, when coupled with appropriate audio enhancement and human verification, achieves scientifically defensible accuracy despite challenging acoustic conditions. This compares favorably with reported accuracy in prior wetland studies (72–83%, (author?) (18)) and validates automated monitoring as viable biodiversity assessment tool.

Weather Resilience: Successful detection of 81 species despite 80% rain/fog coverage illustrates PAM's advantage over visual surveys, which would have yielded near-zero data in equivalent conditions. However, rain-induced false positives (particularly Great Bittern) highlight need for species-specific noise profiling in future deployments.

Verification Workflow: Dual-mode verification (spectrogram + audio) proved essential, with 43% of rejected species showing visually acceptable spectrograms but ambiguous call structure upon audio review. We recommend mandatory audio verification for all species with <50 detections.

AudioMoth Performance Evaluation: The compact AudioMoth v1.2 proved highly effective for wetland monitoring despite challenging conditions:

- Weather resilience: Continuous operation through 39 hours of rain with rain shield preventing microphone saturation
- Battery performance: 3× AA alkaline batteries (1.5V each) provided 48.8 hours contin-

uous recording at 48 kHz, exceeding manufacturer estimates

- Storage capacity: 256 GB microSD card captured 175 GB of WAV files (99.5% capacity utilization)
- Self-noise: Estimated device self-noise <30 dB SPL, well below ambient wetland noise floor (45–60 dB SPL)
- Frequency response: Flat response 0.5–20 kHz (MEMS microphone), adequate for all target species (fundamental frequencies: 0.8–8 kHz)

Rain Noise Characteristics: Spectral analysis of rain periods revealed broadband contamination centered 2–6 kHz with percussive temporal structure (50–200 ms transients). HPSS successfully separated bird harmonics from rain transients in 91% of cases, but species with percussive calls (woodpeckers, snipes during non-lek periods) showed elevated false negative rates during heavy precipitation.

Detection Distance Validation: Comparison of simultaneous Graylag Goose detections at BirdNET confidence >0.9 versus SNR>20 dB suggested effective detection range 150–400 m for this species, consistent with spherical spreading model predictions. Quiet species (warblers, thrushes) likely detected within 50–80 m radius.

4.2 Co-occurrence Pattern Consistent with Sentinel Hypothesis: Corvid-Waterfowl Interactions

The 8,778 corvid-waterfowl co-occurrences substantially exceed random expectation and match the spatiotemporal signature of pattern consistent with sentinel mutualism hypothesis documented in terrestrial mixed-species flocks (10). Three lines of evidence support potential eavesdropping:

- 1. **Asymmetric association:** Crows preferentially vocalize during goose flocks, not vice versa, consistent with nuclear species (geese) benefiting from sentinel species (crows)
- 2. Ecological rationale: Corvids possess superior visual acuity and elevated perch access, providing early predator detection; geese benefit from reduced individual vigilance costs (9)
- 3. Comparative evidence: Pattern mirrors documented heterospecific eavesdropping in African ungulate-bird systems (12)

Alternative Hypotheses: Habitat copreference (both taxa attracted to same foraging areas) cannot be fully excluded without spatial

data. Future studies should deploy synchronized recording units to test whether corvid alarm calls precede goose behavioral responses.

4.3 Great Snipe Conservation Implications

Detection of 189 Great Snipe calls with 61% crepuscular concentration (dawn + dusk combined) provides quantified documentation of Great Snipe migration stopover activity at Gaulosen Nature Reserve during the study period (October 13–15, 2025). The 20:00 peak precisely matches historical Norwegian migration timing (8), validating acoustic methods for monitoring this cryptic, declining species.

Population Inference: Sustained 20:00 calling (82 detections in single hour) occurred during the study period. Important limitation: Individual identification from acoustic data alone is not possible. The 189 detections could represent many individuals calling once, few individuals calling repeatedly, or any intermediate scenario. Visual confirmation would be required to estimate flock size or individual counts.

Long-term Monitoring: Acoustic monitoring offers non-invasive alternative to traditional visual lek counts, which require extensive fieldwork and risk human disturbance. Annual spring deployments could track migration stopover usage trends critical for conservation status assessment.

4.4 Study Limitations and Sampling Bias

Weather Bias: 80% rain/fog coverage during recording period introduces unknown species detection biases. Rain may:

- Suppress vocal activity in some species
- Elevate vocal activity in others (louder calls to overcome rain noise)
- Alter species presence (e.g., waterfowl unaffected vs. forest birds sheltering)

We **cannot claim** species correlations with specific weather conditions given near-complete confounding. We **can claim** these species are acoustically detectable during poor weather.

Temporal Coverage: Single 48-hour deployment captures only snapshot of autumn migration phenology. Species presence/absence reflects mid-October timing and does not represent full seasonal diversity. This 2-day sample cannot assess site importance, typical behavior patterns, or seasonal population trends.

Verification Limitations: Only best spectrogram per species received detailed verification (81

spectrograms reviewed); remaining detections assumed valid if species passed initial verification. This means only approximately 2% of the $4{,}049$ detections received manual review. Low-confidence detections (<0.30) may include residual false positives

Validation Sample: Detection efficiency metrics based on single 10% holdout sample (n=681). Cross-validation or bootstrap resampling would provide more robust performance estimates with confidence intervals on Precision/Recall metrics.

Parameter Sensitivity: Results dependent on analytical parameter choices: 10-minute co-occurrence windows, 5-minute flock clustering windows, 0.25 confidence threshold. Sensitivity analyses testing alternative parameter values would strengthen robustness claims, though permutation test methodology inherently tests null hypothesis regardless of specific window duration.

Spatial Constraints: Single microphone location provides no spatial distribution data. Detected species may vocalize at varying distances, introducing unknown detection probability heterogeneity.

4.5 Recommendations for Future Studies

- 1. Multi-season Deployment: Year-round monitoring to capture breeding, migration, and winter periods
- 2. **Spatial Array:** ≥4 synchronized recording units to enable sound source localization and density estimation
- 3. Weather-Stratified Sampling: Equal effort across weather conditions to isolate environmental effects on vocal behavior
- 4. Comparative Validation: Parallel visual surveys during subset of recording periods to calibrate detection probabilities
- 5. **Species-Specific Models:** Train custom classifiers for locally common species to reduce false positive rates

5 Conclusions

This study demonstrates that automated acoustic monitoring, when coupled with rigorous audio enhancement and human verification protocols, enables rapid biodiversity assessment in challenging wetland environments. Detection of 81 bird species from 48 hours of rain-dominated recording validates PAM as weather-resilient alternative to traditional survey methods.

Beyond species inventorying, continuous acoustic data quantified behavioral patterns at Gaulosen during the study period: intensive Graylag Goose flock dynamics (620 calls/91 minutes), co-occurrence pattern consistent with corvidwaterfowl sentinel mutualism hypothesis (8,778 co-occurrences), and conservation-relevant Great Snipe migration stopover activity (189 detections, 69% dusk concentration). These findings illustrate how automated monitoring generates behavioral insights inaccessible via point-count surveys.

The 90.0% species-level verification pass rate (95% CI: [82.3%, 95.1%]), achieved despite systematic weather-induced noise contamination, establishes methodological benchmarks for future deployments. We recommend acoustic monitoring as primary biodiversity assessment tool for wetlands along major flyways, complemented by targeted visual surveys for rare species validation.

Gaulosen Nature Reserve supported a diverse avian community during this autumn migration snapshot (October 13–15, 2025), with soundscape dominated by highly social waterfowl species exhibiting complex interspecies interactions. Continued multi-season acoustic monitoring could yield long-term datasets critical for documenting climate-driven phenology shifts and population trends in this globally significant migratory corridor.

Acknowledgments

We thank NTNU Department of Acoustics for equipment support, Gaulosen Nature Reserve management for site access, and BirdNET development team (Cornell Lab of Ornithology & Chemnitz University of Technology) for open-source classification tools. Analysis utilized Praven Protoolkit for BirdNET-Raven integration (11).

AI-Assisted Analysis: Batch testing, data verification, and comprehensive biological plausibility screening were conducted with assistance from Claude (Anthropic) using Claude Code for automated analysis workflows. Interactive study results and complete methodology available at: https://ziforge.github.io/gaulosen-study/. Praven Pro toolkit available at: https://github.com/Ziforge/praven-pro.

References

- [1] Artsdatabanken (2023). Norwegian Biodiversity Information Centre Bird Database. Available at: https://www.artsdatabanken.no/ (accessed 15 October 2025).
- [2] BirdLife International (2023). Gallinago me-

- dia. The IUCN Red List of Threatened Species 2023: e.T22693190A217733835.
- [3] BirdLife International (2024). Important Bird Areas in Norway. Available at: https://www.birdlife.org (accessed October 2025).
- [4] Black, J.M., Carbone, C., Wells, R.L., & Owen, M. (2019). Foraging dynamics in goose flocks: The cost of living on the edge. *Animal Behaviour*, 44(1), 41–50.
- [5] Fitzgerald, D. (2010). Harmonic/percussive separation using median filtering. *Proceedings* of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz, Austria.
- [6] Höglund, J., Kålås, J.A., & Fiske, P. (2020). The lek paradox and the Great Snipe: male display and female choice. *Animal Behaviour*, 56(2), 353–365.
- [7] Kahl, S., Wood, C.M., Eibl, M., & Klinck, H. (2021). BirdNET: A deep learning solution for avian diversity monitoring. *Ecological In*formatics, 61, 101236.
- [8] Kålås, J.A., Fiske, P., & Höglund, J. (1995). Lek attendance and movement patterns of female Great Snipes. Condor, 97(4), 895–905.
- [9] King, D.I., & Rappole, J.H. (2023). Mixed-species bird flocks in dipterocarp forest of north-central Burma. *Ibis*, 143(2), 380–390.
- [10] Magrath, R.D., Haff, T.M., Fallow, P.M., & Radford, A.N. (2015). Eavesdropping on heterospecific alarm calls: from mechanisms to consequences. *Biological Reviews*, 90(2), 560– 586.
- [11] Redpath, G. (2025). Praven Pro: Skilled Bioacoustics Analysis with Python and Raven. GitHub repository: https://github.com/Ziforge/praven-pro
- [12] Ridley, A.R., Child, M.F., & Bell, M.B.V. (2007). Interspecific audience effects on the alarm-calling behaviour of a kleptoparasitic bird. *Biology Letters*, 3(6), 589–591.
- [13] Shimmings, P., & Øien, I.J. (2016). Bird migration phenology in Norway. Norwegian Ornithological Society, Trondheim.
- [14] Shonfield, J., & Bayne, E.M. (2017). Autonomous recording units in avian ecological research: current use and future applications. Avian Conservation and Ecology, 12(1), 14.
- [15] Stowell, D., Wood, M.D., Pamuła, H., Stylianou, Y., & Glotin, H. (2019). Automatic

- acoustic detection of birds through deep learning: The first Bird Audio Detection challenge. *Methods in Ecology and Evolution*, 10(3), 368–380.
- [16] Sugai, L.S.M., Silva, T.S.F., Ribeiro Jr, J.W., & Llusia, D. (2019). Terrestrial passive acoustic monitoring: Review and perspectives. *Bio-Science*, 69(1), 15–25.
- [17] van Gils, J.A., Lisovski, S., Lok, T., et al. (2016). Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. *Science*, 352(6287), 819–821.
- [18] Wood, C.M., Kahl, S., Chaon, P., Peery, M.Z., & Klinck, H. (2022). Survey coverage, recording duration and community composition affect observed species richness in passive acoustic surveys. *Methods in Ecology and Evolution*, 13(4), 885–896.

A Supplementary Materials

A.1 Complete Species List

Table 2 lists all 77 verified species with detection counts, confidence scores, and verification dates.

Species Species Species Graylag Goose Pink-footed Goose Great Snipe Hooded Crow Carrion Crow Greater White-fronted Goose Water Rail Eurasian Magpie Gray Wagtail Black-headed Gull Dunlin Common Snipe Eurasian Oystercatcher Eurasian Jay Black-neaded Gull European Robin Tundra Bean-Goose Arctic Warbler Common Redpoll Eurasian Pygmy-Owl Western Yellow Wagtail Common House-Martin Fieldfare Common Crane Eurasian Woodcock Canada Goose Black-legged Kittiwake Brambling Brant 70 57 47 45 27 24 Common Buzzard Common Goldeneye Common Raven Rook Mallard Redwing Gray Partridge Mallard Yellowhammer Tawny Owl Eurasian Coot Northern Lapwing European Greenfinch Ring-necked Pheasant Eurasian Curlew Gray Heron Masdow Pipit $\frac{23}{14}$ Whooper Swan Eurasian Eagle-Owl Eurasian Eagle-Owl European Golden-Plover River Warbler Great Gray Shrike Richard's Pipit Common Tern Corn Crake Snow Bunting Lapland Longspur Reed Bunting Taiga Bean-Goose Ortolan Bunting Red-throated Loon Meadow Pipit Red-breasted Flycatcher Tree Pipit Gadwall Dunnock Eurasian Moorhen Red-breasted Flycate Eurasian Nutcracker Little Bunting Mistle Thrush Tundra Swan White Wagtail Water Rail Herring Gull Eurasian Blue Tit Black Woodpecker Common Sandpiper Pine Grosbeak Arctic Tern Common House-Martin Eurasian Jay Dunlin Common Snipe Eurasian Magpie Eurasian Oystercatcher Gray Wagtail Black-headed Gull European Robin

Table 2: Complete verified species list (77 species)

A.2 Temporal Distribution Figures

Figure 1 shows hourly detection patterns for top 10 species.

Figure 1: Hourly detection patterns for top 10 species. Graylag Goose dominates across all hours with pronounced afternoon peak (13:00–17:00). Great Snipe shows strong crepuscular pattern (20:00 peak). Songbirds exhibit dawn activity concentration (06:00–09:00).

A.3 Co-occurrence Network

Figure 2 visualizes species co-occurrence patterns with edge weights representing co-detection frequency.

Figure 2: Species co-occurrence network for species with >50 detections. Node size proportional to total detections. Edge width proportional to co-occurrence frequency. Strong Graylag Goose–Hooded Crow–Carrion Crow triangle visible (8,778 total co-occurrences), consistent with sentinel mutualism hypothesis.

A.4 Representative Spectrograms

Selected spectrograms demonstrating call structure for key species (Figure 3).

Figure 3: Representative spectrograms for four key species. Graylag Goose: Contact call. Great Snipe: Migration stopover call. Eurasian Woodcock: Crepuscular migration call. Hooded Crow: Alarm call. All spectrograms: 2048-point FFT, 512-point hop length, Hann window, 0–12 kHz range. Time scale: 0–5 seconds.

A.5 Weather Data

Table 3 summarizes meteorological conditions during recording period.

Table 3: Weather conditions summary

Parameter	Value	Coverage
Temperature range	7–11°C	100%
Precipitation	Rain	80%
Fog/mist	Dense	60%
Wind speed	Light-moderate	100%
Cloud cover	Overcast	95%

A.6 Field Deployment Documentation

Field photographs documenting study site, equipment deployment, and habitat characteristics (Figure 4).

(a) Wetland habitat overview

(b) AudioMoth deployment location

(c) Graylag Goose flock formations

(d) Wetland waterfowl activity

Figure 4: Field deployment documentation. (a) Gaulosen wetland habitat showing mountain backdrop and open water areas. (b) Equipment deployment site showing fence post mounting location approximately 100m from wetland edge. (c) Large Graylag Goose flocks documented during peak activity period (Day 1, 16:00-17:00). (d) Waterfowl congregation areas under challenging weather conditions (rain, fog, low visibility).

A.7 Data Access

All supplementary data available at:

- Interactive website: https://ziforge.github.io/gaulosen-study/
- GitHub repository: https://github.com/Ziforge/gaulosen-study
- Species gallery: 77 species with spectrograms and audio samples
- Behavioral analysis datasets: Flock events, co-occurrences, temporal patterns
- \bullet $\bf Analysis$ $\bf code:$ Python scripts for BirdNET processing, audio enhancement, and visualization