DOCÈNCIA PA2 FONAMENTS DE QUÍMICA

			1	
16-nov	17-nov	18-nov	19-nov	20-nov
			Eq. Redox	Eq. Redox
			Teoria	Teoria
23-nov	24-nov	25-nov	26-nov	27-nov
Eq. Redox	Eq. Redox	Diagrames	Diagrames	Diagrames
Problemes	Problemes	Teoria	Teoria	Teoria
30-nov	01-dic	02-dic	03-dic	04-dic
Diagrames	Diagrames	Diagrames	Gasos	Gasos
Teoria APQ	Problemes	Problemes	Teoria	Problemes
07-dic	08-dic	09-dic	10-dic	11-dic
Gasos		Cinètica	Cinètica	Cinètica
Problemes		Teoria	Teoria	Problemes
14-dic	15-dic	16-dic	17-dic	18-dic
Cinètica	Simetria	Simetria	Simetria	Simetria
Problemes	Teoria	Teoria	Teoria	Teoria
20-dic	21-dic	22-dic	23-dic	24-dic
Simetria	Simetria	Simetria		
Teoria	Problemes	Problemes		

Professorat Anna Pla Quintana

Josep Maria Luís Luís

Miquel Costas Salgueiro

Bloc 8. Equilibris en solució

8.5 Equilibris de transferència d'electrons.

Concepte d'oxidació-reducció

Nombre d'oxidació

Igualació de reaccions redox: mètode de l'ió-electró

Piles electroquímiques: components i notació de les piles

FEM d'una pila. Potencials estàndard de reducció

Relació entre ε^0 , ΔG^0 i K

Condicions no estàndard. Equació de Nernst

Electròlisi

Concepte d'oxidació - reducció

Una substància s'oxida quan cedeix electrons i es redueix quan accepta electrons.

Una reacció d'oxidació-reducció o redox és aquella en la qual es produeix una transferència d'electrons:

$$Zn + Cu^{2+} \leftrightarrows Zn^{2+} + Cu$$

Zn perd electrons: s'oxida; és **l'agent reductor**

Nombre d'oxidació

En una reacció redox, de transferència d'electrons, varien els nombres d'oxidació dels elements que pateixen l'oxidació i la reducció.

El **nombre d'oxidació** d'un àtom en una molècula o ió és la càrrega elèctrica fictícia que adquiriria en el supòsit que tots els enllaços covalents que forma es polaritzessin fins a l'extrem de ionitzar-se.

Espècies monoatòmiques: Diferència entre el nombre atòmic de l'element i el nombre d'electrons a l'escorça. Càrrega neta de l'element.

Nombre d'oxidació

Espècies poliatòmiques:

- 1. El nombre d'oxidació de l'oxigen combinat és –2 excepte en els peròxids, en què és –1.
- 2. El nombre d'oxidació de l'hidrogen combinat és +1 excepte en els hidrurs metàl·lics, en què és -1.
- 3. El nombre d'oxidació dels àtoms dels metalls combinats coincideix amb la seva valència iònica. Els metalls alcalins sempre tenen nombre d'oxidació +1 i els alcalinoterris +2.
- 4. En els halurs, el nombre d'oxidació de l'halogen és -1.
- 5. En els sulfurs, el nombre d'oxidació del sofre és -2.
- 6. La suma algebraica dels nombres d'oxidació de tots els àtoms d'un compost neutre és igual a zero.
- 7. La suma algebraica dels nombres d'oxidació de tots els àtoms d'un ió és igual a la càrrega de l'ió.

Exercici 8.53. Quin és el nombre d'oxidació del fòsfor en el HPO₄²-? I a la fosfina?

Exercici 8.54. Quin element s'oxida i quin es redueix en el procés redox següent?

$$Cr_2O_7^{2-} + 3 Sn^{2+} \implies 2 Cr^{3+} + 3 Sn^{4+} + H_2O$$

Igualació de reaccions redox

Mètode del ió-electró

- 1. Determinem el nº d'oxidació dels elements i identifiquem quins s'oxiden i quins es redueixen.
- 2. Separem la reacció global en dues semireaccions, una d'oxidació i una altra de reducció, escrites en forma iònica.
- 3. Per a cada semireacció, igualem el nº d'àtoms que s'oxiden o es redueixen.
- 4. Segons el medi:
 - Àcid: s'igualen els O afegint H₂O on calgui
 - s'igualen els H afegint H⁺ on calgui
 - Bàsic: s'igualen els O afegint 2 OH⁻ on calgui i H₂O a l'altra banda.
 - s'igualen els H afegint H₂O on calgui i OH⁻ a l'altra banda.
- 5. Igualar les càrregues afegint els e que calguin.
- 6. El nombre d'electrons perduts pel reductor = nombre d'electrons guanyats per l'oxidant. Per això es multipliquen les semireaccions pel coeficient mínim
- 7. Sumem les semireaccions (equació iònica).
- 8. Escrivim, si cal, l'equació molecular considerant els ions espectadors.

Igualació de reaccions redox Mètode del ió-electró

Igualeu mitjançant el mètode del ió-electró la reacció de l'àcid nítric amb àcid clorhídric per donar clor i monòxid de nitrogen (NO).

Exercici 8.55. Igualeu la reacció següent utilitzant el mètode del ió-electró:

$$Cr_2(SO_4)_3 + KCIO_3 + KOH \rightarrow K_2CrO_4 + KCI + K_2SO_4 + H_2O$$

Igualeu mitjançant el mètode del ió-electró la reacció de l'àcid nítric amb àcid clorhídric per donar clor i monòxid de nitrogen (NO).

Exercici 8.55. Igualeu la reacció següent utilitzant el mètode del ió-electró: $Cr_2(SO_4)_3 + KCIO_3 + KOH \rightarrow K_2CrO_4 + KCI + K_2SO_4 + H_2O$

Piles electroquímiques

Una pila electroquímica és un dispositiu experimental amb el qual es pot generar electricitat mitjançant una reacció química.

Semireacció d'oxidació $Zn \rightarrow Zn^{2+} + 2e^{-}$

Semireacció de reducció $Cu^{2+} + 2e^{-} \rightarrow Cu$

Piles electroquímiques

Exercici 8.56. Escriviu la notació de la pila de la figura 8.5.1.

La força que fa moure els electrons de l'ànode cap al càtode és el que anomenen **potencial de cel·la** o **força electromotriu (FEM, \epsilon o \Delta E)**. Depèn de la naturalesa de la reacció redox i de les concentracions de les espècies implicades.

Potencial estàndard (\varepsilon^0 o \Delta E^0) de la pila és el que es mesura quan les espècies en solució tenen concentració 1M i els gasos es troben a la pressió d'1 atm.

$$W_{elèctric} = -q \epsilon^{0}$$

$$q = n F ; F = 96485 C \cdot mol^{-1}$$

$$\epsilon^{0} = \epsilon^{0}_{red} + \epsilon^{0}_{ox}$$

 ε^0 pila es mesura amb un voltímetre ε^0 semipila no es pot mesurar!!

Per tal de poder donar valors de potencial a les semipiles s'assigna arbitràriament un potencial de zero unitats a **l'elèctrode estàndard d'hidrogen** i per assignar el potencial de les altres semipiles es mesura el voltatge que generen en una pila quan estan combinats amb el d'hidrogen.

Elèctrode de referència: EEH (SHE)

Condicions estàndard: [] =1,0 M, P_i = 1 atm

$$2H^+(aq) + 2e^- \rightarrow H_2(g)$$
 $\epsilon^o_{red} = 0 \text{ V}$

$$H_2(g) \rightarrow 2H^+(aq) + 2e^ \epsilon^{\circ}_{ox} = 0 \text{ V}$$

 $|| H_2 (1 \text{ atm}) | H^+ (aq) (1,0 \text{ M}) | Pt (s) \oplus$

Pt (s) \ominus | H₂ (1 atm) | H⁺ (aq) (1,0 M) ||

oxidació reducció

$$H_2(g) \rightarrow 2H^+(aq) + 2e^- Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

$$\varepsilon^{0} = \varepsilon^{0}_{red} + \varepsilon^{0}_{ox}$$
0.340 V = ε^{0}_{red} (Cu²⁺/Cu) + ε^{0}_{ox} (H₂/H⁺)
$$\varepsilon^{0}_{ox}$$
 (H₂/H⁺) = 0 V
$$\varepsilon^{0}_{red}$$
 (Cu²⁺/Cu) = 0.340 V

Seguint aquest procediment s'han calculat els potencials estàndard de molts parells redox i s'han tabulat. Per conveni s'han expressat en termes de **potencials estàndard de reducció**.

 $Zn (s) \rightarrow Zn^{2+}(aq) + 2e^{-} 2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$

Sistema	Semireacció	E° (V)
Li+ / Li	Li ⁺ + 1 e ⁻ → Li	-3,04
K+ / K	K+ + 1 e ⁻ → K	-2,92
Ca ²⁺ /Ca	Ca ²⁺ + 2 e ⁻ → Ca	-2,87
Na⁺ / Na	Na ⁺ + 1 e ⁻ → Na	-2,71
Mg ²⁺ / Mg	Mg ²⁺ + 2 e ⁻ → Mg	-2,37
Al ³⁺ / Al	Al ³⁺ + 3 e ⁻ → Al	-1,66
Mn ²⁺ / Mn	$Mn^{2+} + 2 e^- \rightarrow Mn$	-1,18
Cr ²⁺ / Cr	$Cr^{2+} + 2 e^- \rightarrow Cr$	-0,91
Zn ²⁺ / Zn	$Zn^{2+}+2e^- \rightarrow Zn$	-0,76
Cr ³⁺ / Cr ²⁺	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0,41
Fe ²⁺ / Fe	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0,41
Cd ²⁺ / Cd	$Cd^{2+} + 2 e^- \rightarrow Cd$	-0,40
Ni ²⁺ / Ni	$Ni^{2+} + 2 e^- \rightarrow Ni$	-0,25
Sn ²⁺ / Sn	$Sn^{2+} + 2 e^- \rightarrow Sn$	-0,14
Pb ²⁺ / Pb	$Pb^{2+} + 2 e^- \rightarrow Pb$	-0,13
H ⁺ / H ₂	$2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{H}_2$	0,00
Cu ²⁺ / Cu	Cu $^{2+}$ + 2 e ⁻ \rightarrow Cu	0,34
I ₂ / I ⁻	$I_2 + 2 e^- \rightarrow 2 I^-$	0,53
MnO ₄ -/MnO ₂	$MnO_4^- + 2 H_2O + 3 e^- \rightarrow MnO_2 + 4 OH^-$	0,53
Hg ²⁺ / Hg	$Hg^{2+} + 2 e^- \rightarrow 2 Hg$	0,79
Ag+ / Ag	$Ag^+ + 1 e^- \rightarrow Ag$	0,80
Br ₂ / Br	$Br_2 + 2 e^- \rightarrow 2 Br^-$	1,07
Cl ₂ / Cl ⁻	$\text{Cl}_2 + 2 \text{ e}^- \rightarrow 2 \text{ Cl}^-$	1,36
Au ³⁺ / Au	$Au^{3+} + 3 e^- \rightarrow Au$	1,50
MnO ₄ - / Mn ²⁺	$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 2 H_2O$	1,51

Les espècies més reductores que l'hidrogen (amb més tendència a oxidar-se) tenen potencials de reducció negatius.

Les espècies més oxidants que l'hidrogen (amb més tendència a reduir-se) tenen potencials de reducció positius.

$$\varepsilon^0 = \varepsilon^0_{red} + \varepsilon^0_{ox}$$

Donat que tenim tabulats els potencials estàndard de reducció, la fem de la pila es calcula com:

$$\varepsilon^0 = \varepsilon^0$$
red(càtode) - ε^0
red(ànode)
[reducció] [oxidació]

DEL NOMBRE
D'ELECTRONS!!!

La reacció espontània serà aquella en que es redueixi l'espècie que tingui un potencial de reducció més alt, per tant la que tingui un potencial positiu.

$$\varepsilon^0 = \varepsilon^0_{\text{red(càtode)}} - \varepsilon^0_{\text{red(ànode)}} > 0$$

$$\Delta G^0$$
=-nF ϵ^0 ; ΔG^0 < 0 ESPONTÀNIA

R-3, 3a prova curs 2011/12

R-3) (10 punts) Donades les dades de la taula següent, contesteu les qüestions que es proposen a continuació:

Sistema	Semireacció	ε ⁰ (volts)
Co ³⁺ / Co ²⁺	$Co^{3+}_{(aq)} + e^{-} \rightarrow Co^{2+}_{(aq)}$	+1.808
Ce ⁴⁺ / Ce ³⁺	$Ce^{4+}_{(aq)} + e^{-} \rightarrow Ce^{3+}_{(aq)}$	+1.61
Br ₂ / Br ⁻	$Br_{2(1)} + 2e^{-} \rightarrow 2 Br_{(aq)}$	+1.087
Hg ₂ ²⁺ / Hg	$Hg_2^{2+}_{(aq)} + 2e^- \rightarrow 2 Hg_{(l)}$	+0.79
Cu ²⁺ / Cu	$Cu^{2\tau}_{(aq)} + 2e^{\tau} \rightarrow Cu_{(s)}$	+0.339
V^{3+} / V^{2+}	$V_{(aq)}^{3+} + e^{-} \rightarrow V_{(aq)}^{2+}$	-0.256
Mn ²⁺ / Mn	$Mn^{2+}_{(aq)} + 2e^{-} \rightarrow Mn_{(s)}$	-1.185
Ti ²⁺ / Ti	$Ti^{2+}_{(aq)} + 2e^{-} \to Ti_{(s)}$	-1.628

- a) De les espècies representades a la taula, quin és el millor agent oxidant?
- b) Quines substàncies, de les representades a la taula, reduirien $Hg_2^{2^+}$ (aq) a $Hg_{(l)}$ en condicions estàndard?
- c) Quina combinació de semireaccions donaria una pila electroquímica amb una major potencial de cel·la en condicions estàndard? Quin valor de ϵ^0 tindria la pila? Escriu l'equació redox igualada que es donaria en aquesta pila.

R-3, 3a prova curs 2011/12

d) Completa el diagrama que s'adjunta d'una pila electroquímica amb les dades que s'obtindrien emprant els sistemes Ce⁴⁺/Ce³⁺ i Cu²⁺/Cu en condicions estàndard: indicar les semireaccions que es donen a cada compartiment, totes les substàncies presents a cada compartiment i la seva concentració, el sentit del moviment dels electrons i dels ions. Considereu que tenim un pont salí de clorur potàssic.

e) Si amb els dos sistemes anteriors (Ce⁴⁺/Ce³⁺ i Cu²⁺/Cu) es volgués construir una cuba electrolítica, quin seria el voltatge mínim que caldria aplicar per tal d'invertir el sentit de la circulació d'electrons i provocar la precipitació de coure metàl·lic?

Relació entre ε^0 , ΔG^0 i K

$$\Delta G^0 < 0 \Rightarrow$$
 espontània

$$\Delta G^0 = -n F \epsilon^0$$

$$\Delta G^0 = -R T \ln K$$

$$-n F \varepsilon^0 = -R T \ln K$$

$$\varepsilon^0 = \frac{RT}{nF} \ln K$$

I si substituïm:

$$R = 8,32 \text{ J/K mol}$$

$$\varepsilon^0 = \frac{0.059}{n} \log K$$

Relació entre ε^0 , ΔG^0 i K

Exercici 8.58. Determineu per a la pila

$$\mathsf{Zn}_{(\mathsf{s})} \ominus \mid \mathsf{Zn^{2+}}_{(\mathsf{aq})}$$
(1,0 M) $\mid\mid \mathsf{Cu^{2+}}_{(\mathsf{aq})}$ (1,0 M) $\mid \oplus \mathsf{Cu}_{(\mathsf{s})}$

el valor de ΔG^0 . Utilitzeu els valors de ϵ^0 de la taula 8.5.1.

Exercici 8.59. Quin valor té la constant d'equilibri del procés redox del problema anterior?

$$\Delta G = \Delta G^{0} + RT \ln Q$$

$$\Delta G^{0} = -n F \varepsilon^{0}$$

$$\Delta G = -n F \varepsilon^{0} + RT \ln Q$$

$$\Delta G = -n F \varepsilon$$

$$= -n F \varepsilon^{0} + RT \ln Q$$

$$\varepsilon = \varepsilon^{0} - RT/nF \ln Q$$

$$T = 298 K$$

$$R = 8,32 J/K \text{ mol}$$

$$\varepsilon = \varepsilon^0 - \frac{0.059}{n} \log Q$$
 Equació de Nernst

$$\varepsilon^0 = \frac{0.059}{n} \log K$$

Exercici 8.60. Determineu el valor de ε (fem) per la pila:

$$Cd_{(s)} \ominus \mid Cd^{2+}_{\text{(aq)}} \text{ (0,5 M)} \parallel \text{Ni}^{2+}_{\text{(aq)}} \text{ (0,1M)} \parallel \oplus \text{Ni}_{(s)}$$

3a prova curs 2010/11

R-4) (5 punts) Una cel·la està formada per un elèctrode de magnesi en una dissolució de Mg(NO₃)₂ 1,0 M i un elèctrode de plata en solució de AgNO₃ 0,1 M. Calculeu la f.e.m. de la pila a 25°C.

Dades: $E0(Ag^{+}/Ag)=0.80 \text{ V}$; $E^{0}(Mg^{2+}/Mg)=-2.37 \text{ V}$. Eq. de Nernst

Aplicació de l'equació de Nernst a una semipila

Dependència del potencial de reducció de la concentracions de les espècies oxidada i reduïda del parell redox.

$$\epsilon_{\text{Aox/Ared}} = \epsilon_{\text{Aox/Ared}}^{\text{O}} - \frac{0.059}{n_{\text{A}}} \log \frac{\left[A_{\text{red}}\right]}{\left[A_{\text{ox}}\right]}$$

$$\epsilon_{\text{Aox/Ared}} = \epsilon_{\text{Aox/Ared}}^{\text{O}} + \frac{0.059}{n_{\text{A}}} \log \frac{\left[A_{\text{red}}\right]}{\left[A_{\text{ox}}\right]}$$

$$\epsilon_{\text{Aox/Ared}} = \epsilon_{\text{Aox/Ared}}^{\text{O}} + \frac{0.059}{n_{\text{A}}} \log \frac{\left[A_{\text{red}}\right]}{\left[A_{\text{red}}\right]}$$

$$\epsilon = \epsilon_{\text{Aox/Ared}}^{\text{O}} - \frac{RT}{nF} \ln Q$$

Aplicació de l'equació de Nernst a una semipila

Exercici 8.61. Calcular el potencial d'un elèctrode de platí en un medi de HCl 0,1 M, Cr₂O₇²⁻ 0,05 M i Cr³⁺1,5 M.

Electròlisi

Corrent elèctric

Reacció química (no espontània)

Aplicacions industrials:

- 1- Obtenció de productes químics (ex. Na i Cl₂ a partir de NaCl)
- 2- Purificació de substàncies (ex. purificació de Cu).
- 3- Recobriments metàl·lics (ex. ferro galvanitzat)

Electròlisi

Lleis de Faraday

Primera llei: Les masses de les substàncies dipositades o alliberades en cada elèctrode durant una electròlisi són proporcionals a la quantitat d'electricitat que ha passat a través de la cel·la electrolítica.

Segona llei: Per a una mateixa quantitat de corrent elèctric, les masses dipositades en els elèctrodes són proporcionals als equivalents químics de les substàncies.

$$Q_{P} N_{A} = 1,6021.10^{-19} C \times 6,0221.10^{23} 1/mol = 96485 C / mol = 1 Faraday$$

$$Ag^+ + e^- \rightarrow Ag$$
 Un mol d'electrons reduirà 1 mol de Ag^+ $Cu^{2+} + 2e^- \rightarrow Cu$ ½ mol de $Cu^{2+} i 1/3$ mol de Al^{3+} $Al^{3+} + 3e^- \rightarrow Al$

Normalment no mesurem directament la càrrega elèctrica, el que es mesura és la intensitat. Així la càrrega que passa per una cel·la:

$$q = I.t$$
 1 C = 1 A x 1 s

Electròlisi

Exercici 8.62. Un corrent de 4 ampers circula durant 1 hora i 10 minuts per de dues cel·les electrolítiques que contenen, respectivament, sulfat de coure (II) i clorur d'alumini : a) Escriviu les reaccions que es produeixen en el càtode i b) Calculeu els grams de coure i alumini metàl·lics que s'hauran dipositat. Dades: Cu = 63,5 i Al = 27,0.

Resposta: 5,53 g de Cu i 1,57 g d'Al.

Prova recuperable. Curs 2010/11.

6) (5 punts) ¿Quina intensitat de corrent ha de tenir una cel·la electrolítica que diposita 12,16 g de ferro en el càtode en 2,5 hores, quan es fa passar per una dissolució de clorur de ferro (III)?

Dibuixa l'esquema de la cel·la electrolítica formada per aquest càtode i un ànode de Zn/Zn²⁺ Dades: PA(Fe) = 55,85 g/mol; F=96485 C ; I = Q / t

Cinquena prova de química. Part recuperable. Curs 2012/13

R-5) (10 punts) Considera la pila $Fe^{2+}|Fe^{3+}|MnO_4|Mn^{2+}$ i respon de manera raonada a les questions que segueixen:

- a) Escriviu les reaccions igualades (en medi àcid) per a cada elèctrode així com la reacció total.
- b) Calculeu el valor de la seva FEM a 25 °C si la concentració de totes les espècies és 1 M.
- c) Calculeu el valor de la FEM si la concentració de protons és 0.1 M i la dels restants ions és 0.01 M.
- d) Calculeu el valor de ΔG^0 i el de la constant d'equilibri.

Dades: $\epsilon^{0}(MnO_{4}^{-}/Mn^{2+}) = 1.51 \text{ V}$; $\epsilon^{0}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V}$

Setena prova de química. Part recuperable. Curs 2009/10

3) Justifica si el cobalt sòlid reduirà el Fe²⁺ a ferro metàl·lic de manera espontània a 298 K si es disposa d'una dissolució que ja conté Co²⁺ de concentració igual a 0.15 M i de Fe²⁺ 0.68 M.

Dades:
$$E^0$$
 (Fe²⁺/Fe)= -0.44 V
 E^0 (Co²⁺/Co)= -0.28 V