Union-Find

Gianluigi Zavattaro Dip. di Informatica – Scienza e Ingegneria Università di Bologna gianluigi.zavattaro@unibo.it Slide realizzate a partire da materiale fornito dal Prof. Moreno Marzolla

Original work Copyright © Alberto Montresor, Università di Trento, Italy (http://www.dit.unitn.it/~montreso/asd/index.shtml)
Modifications Copyright © 2009—2011 Moreno Marzolla, Università di Bologna, Italy (http://www.moreno.marzolla.name/teaching/ASD2010/)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Struttura dati per insiemi disgiunti

Motivazioni

 In alcune applicazioni siamo interessati a gestire insiemi disgiunti di oggetti

Operazioni fondamentali:

- Creare un insieme a partire da un singolo elemento
- Unire due insiemi
- Identificare l'insieme a cui appartiene un elemento

Struttura dati

- Una collezione S = { S₁, S₂, ..., S_k } di insiemi dinamici disgiunti
- Gli insiemi contengono complessivamente n≥k elementi
- Ogni insieme è identificato da un rappresentante univoco

Scelta del rappresentante

- Il rappresentante di S_i può essere un qualsiasi membro dell'insieme S_i
 - Operazioni di ricerca del rappresentante su uno stesso insieme devono restituire sempre lo stesso oggetto
 - Solo in caso di unione con altro insieme il rappresentante può cambiare

Operazioni su strutture Union-Find

- makeSet(elem x)
 - Crea un insieme il cui unico elemento (e rappresentante) è x
 - x non deve appartenere ad un altro insieme esistente
- find(elem x) → name
 - Restituisce il rappresentante dell'unico insieme contenente x
- union(name x, name y)
 - Unisce i due insiemi rappresentati da x e da y
 - Assumiamo che il nome del nuovo insieme sia x
 (assunzione non strettamente necessaria: basta che venga scelto un rappresentante univoco per il nuovo insieme)
 - I vecchi insiemi devono essere distrutti

(i valori sottolineati indicano il rappresentante)

makeSet(i) i=1..6

union(1,2)

union(3,4)

union(5,6)

union(1,3)

union(1,5)

<u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u>

 $\boxed{1,2}$ $\boxed{3}$ $\boxed{4}$ $\boxed{5}$ $\boxed{6}$

<u>1, 2</u> <u>3, 4</u> <u>5</u> <u>6</u>

 $\boxed{1,2}$ $\boxed{3,4}$ $\boxed{5,6}$

<u>1, 2, 3, 4</u> <u>5, 6</u>

<u>1</u>, 2, 3, 4, 5, 6

- Rappresentiamo il circuito con un insieme
 V = {1, ..., n} di n nodi (pin) collegati da segmenti conduttivi
- Indichiamo con E la lista di coppie (v_1, v_2) di pin che sono tra di loro adiacenti (collegati)
- Vogliamo pre-processare il circuito in modo da rispondere in maniera efficiente a interrogazioni del tipo: "i pin x e y sono tra loro collegati?"

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

- {1, 4}
- {3, 6}
- {8, 9}
- {2, 5}
- {4, 5}
- {6, 9}
- {4, 7}

I pin x e y non sono tra loro collegati perché

 $find(x) \neq find(y)$

I pin x e y sono tra loro collegati perché

$$find(x) = find(y)$$

Implementazione di Union-Find

- Algoritmi elementari:
 - Algoritmo QuickFind: alberi di altezza uno
 - makeSet(), find(): O(1); union(): O(n)
 - Algoritmo QuickUnion: alberi generali
 - makeSet(), union(): O(1); find(): O(n)
- Algoritmi basati su euristiche di bilanciamento
 - QuickFind—Euristica sul peso
 - QuickUnion—Euristica sul rango

QuickFind

- Ogni insieme viene rappresentato con un albero di altezza uno
 - Le foglie dell'albero contengono gli elementi dell'insieme
 - Il rappresentante è la radice

Nota implementativa

• È possibile rappresentare gli insiemi disgiunti tramite liste

QuickFind: Esempio—union(find(g), find(h))

QuickFind

- Le operazioni makeSet () e find () richiedono tempo O(1):
 - makeSet (x): crea un albero in cui l'unica foglia è x e il rappresentante di x è x stesso; costo O(1)
 - find(x): restituisce il puntatore al padre di x; costo O(1)
- L'operazione union (A, B) richiede più tempo:
 - Tutte le foglie dell'albero B vengono spostate nell'albero A
 - Costo nel caso pessimo O(n), essendo n il numero complessivo di elementi in entrambi gli insiemi disgiunti
 - Infatti nel caso peggiore B ha n-1 elementi

QuickUnion

- Implementazione basata su foresta
 - Si rappresenta ogni insieme tramite un albero radicato generico
 - Ogni nodo dell'albero contiene
 - l'oggetto

• un puntatore al padre (la radice non ha padre)

- Il rappresentante è la radice

QuickUnion

- makeSet(x)
 - Crea un albero con un unico nodo x
 - Costo: O(1) nel caso pessimo
- find(x)
 - Risale la lista dei padri di x fino a trovare la radice e restituisce la radice come oggetto rappresentante
 - Costo: O(n) nel caso pessimo
- union (A, B)
 - Appende l'albero B ad A, rendendo la radice di B figlia della radice di A
 - Costo: O(1) nel caso pessimo

QuickUnion: Esempio—union(c, f)

QuickUnion: Esempio—union(c, f)

Caso pessimo per find()

makeSet(i) i=1..6 union(5,6)union(4,5)union(3,4) ... 6

Algoritmi e Strutture di Dati

Nota implementativa

 Un modo molto comodo per rappresentare una foresta di alberi QuickUnion è di usare un array di interi (vettore dei padri)

Riepilogo

	QuickFind	QuickUnion
makeSet	O(1)	O(1)
union	O(n)	O(1)
find	O(1)	O(n)

Considerazioni

- Quando usare....
 - QuickFind?
 - Quando le union() sono rare e le find() frequenti
 - QuickUnion?
 - Quando le find() sono rare e le union() frequenti
- È importante sapere che esistono tecniche euristiche che permettono di migliorare questi risultati

QuickFind: Euristica sul peso

- Una strategia per diminuire il costo dell'operazione union() in QuickFind consiste nel:
 - Memorizzare nella radice il numero di elementi dell'insieme;
 la dimensione può essere mantenuta in tempo O(1)

Appendere l'insieme con meno elementi a quello con più elementi

Notare che cambiamo il nome del rappresentante perché stiamo assumendo che l'insieme union(A,B) abbia nome A

Osservazioni / 1

- Ogni volta che una foglia acquista un nuovo padre, fa parte di un insieme che ha almeno il doppio di elementi di quello cui apparteneva
- Dimostrazione
 - union(A,B) con size(A) ≥ size(B)
 - Le foglie di B cambiano padre
 - $size(A)+size(B) \ge size(B)+size(B) = 2 size(B)$
 - union(A,B) con size(A) \leq size(B)
 - Le foglie di A cambiano padre
 - $size(A)+size(B) \ge size(A)+size(A) = 2 size(A)$
- Conclusione:
 - ogni foglia cambia il proprio padre al più log n volte

Osservazioni / 2

- Nel caso pessimo, durante una esecuzione di union, fino a n/2 elementi possono cambiare di padre:
 - Costo di union () nel caso pessimo: O(n)
- Quantifichiamo ora il costo ammortizzato:
 - Ricordiamo che il costo ammortizzato è dato dal costo complessivo di k esecuzioni (per un qualche k), diviso k
 - Considero n-1 esecuzioni (numero max di unioni, in quanto dopo n-1 unioni tutti gli n elementi saranno uniti)
 - Ogni esecuzione ha costo O(w), con w numero di "cambi di padre" da effettuare
 - Il numero complessivo massimo di cambi di padre è n log n
 - Ognuno degli n elementi cambia padre al più log n volte
 - Il costo ammortizzato risulta essere O(n log n) / n-1 = O(log n)

QuickUnion Euristica "union by rank"

- Il problema degli alberi QuickUnion è che possono diventare troppo alti
 - quindi rendere inefficienti le operazioni find ()
- Idea:
 - Rendiamo la radice dell'albero più basso figlia della radice dell'albero più alto
- Ogni radice mantiene informazioni sul proprio rango
 - il rango rank(x) di un nodo x è il numero di archi del cammino più lungo fra x e una foglia sua discendente
 - rango ≡ altezza del sottoalbero radicato sul nodo

makeSet(i) i=1..6 union(5,6)6 union(4,5)union(3,4) ... Notare che cambiamo il nome del rappresentante perché stiamo assumendo

che l'insieme union(A,B) abbia nome A

Proprietà alberi QuickUnion con euristica sul rango

- Un albero QuickUnion con euristica sul rango avente il nodo x come radice ha n≥2^{rank(X)} nodi
- Dimostrazione: induzione sul numero di operazioni union () effettuate
 - Base (0 operazioni union): tutti gli alberi hanno rango zero (singolo nodo) quindi hanno esattamente 2º=1 nodi
 - Induzione: consideriamo cosa succede prima e dopo una operazione union (A, B)
 - A U B denota l'insieme ottenuto dopo l'unione
 - rank(A U B) è l'altezza dell'albero che denota A U B
 - |A U B| è il numero di nodi dell'albero A U B, e risulta
 |A U B| = |A| + |B| perché stiamo unendo sempre insiemi disgiunti

Passo induttivo caso rank(A) < rank(B)

Nota: abbiamo scambiato A con B

- |A U B| = |A|+|B|
- rank(A U B) = rank(B)
 - perché l'altezza dell'albero A U B è uguale all'altezza dell'albero B
- Per ipotesi induttiva, |A|≥2^{rank(A)}, |B|≥2^{rank(B)}
- Quindi

$$|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} > 2^{rank(B)} = 2^{rank(A \cup B)}$$

Passo induttivo

caso rank(A) > rank(B)

- |A U B| = |A|+|B|
- rank(A U B) = rank(A)
 - perché l'altezza dell'albero A U B è uguale all'altezza dell'albero A
- Per ipotesi induttiva, |A|≥2^{rank(A)}, |B|≥2^{rank(B)}
- Quindi

$$|A \cup B| = |A| + |B| \ge 2^{rank(A)} + 2^{rank(B)} > 2^{rank(A)} = 2^{rank(A \cup B)}$$

Passo induttivo

caso rank(A) = rank(B)

union(A,B)

- |A U B| = |A|+|B|
- rank(A U B) = rank(A) +1
- Per ipotesi induttiva, |A|≥2^{rank(A)}, |B|≥2^{rank(B)}
- Quindi

$$|A \cup B| = |A| + |B|$$

 $\geq 2^{rank(A)} + 2^{rank(B)} = 2 \times 2^{rank(A)} = 2^{rank(A)+1} = 2^{rank(A \cup B)}$

Costo operazioni di find

- Utilizzando l'euristica sul rango, find() ha costo O(log n) nel caso pessimo
- Dimostrazione
 - find() ha un costo O(h) con h altezza dell'albero
 - L'altezza di un albero QuickUnion A è rank(A)
 - Da quanto appena visto, 2^{rank(A)} ≤ n
 - Quindi altezza = rank(A) ≤ (log n)

Riepilogo

	QuickFind	QuickUnion	QuickFind eur. peso	QuickUnion eur. rank
makeSet	O(1)	O(1)	O(1)	O(1)
union	O(n)	O(1)	O(log n) amm.	O(1)
find	O(1)	O(n)	O(1)	O(log n)