Exercise 5:

Foundations of Mathematical, WS24

Zichao Wei

This is **exercise** 5 for Foundations of Mathematical, WS24. Generated on 2024-10-30 with 10 problems per section.

2024-11-04

1. Introduction

Practice makes perfect.

We need many exercises to master the skill of mathmatical. However, it's not easy to find the exercise which just fit for you.

So, I create this repo to generate the exercise for you.

Just enjoy it!

The syntax of this document is Quarto syntax, which is a markdown-based language. It is designed to be human-readable and easy to write, while also being powerful enough to support complex document structures.

You can check the syllabus of this course in the following link: Syllabus°.

2. Exercise

2.1. Vector Arithmetic

2.1.1. Addition

1. Let
$$\mathbf{u} = \begin{bmatrix} 8 \\ 1 \\ -5 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 10 \\ 1 \\ -4 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

2. Let
$$\mathbf{u} = \begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -2 \\ -6 \\ 7 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

3. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 7 \\ -8 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 6 \\ -4 \\ -7 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

4. Let
$$\mathbf{u} = \begin{bmatrix} -6 \\ 10 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 8 \\ -5 \\ 6 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

5. Let
$$\mathbf{u} = \begin{bmatrix} -5 \\ 10 \\ 8 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -5 \\ 10 \\ -4 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

6. Let
$$\mathbf{u} = \begin{bmatrix} -1 \\ -6 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 6 \\ 2 \\ -2 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

7. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ -2 \\ -3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

8. Let
$$\mathbf{u} = \begin{bmatrix} 8 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 10 \\ 5 \\ -4 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

9. Let
$$\mathbf{u} = \begin{bmatrix} 10 \\ -5 \\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 7 \\ 0 \\ -2 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

10. Let
$$\mathbf{u} = \begin{bmatrix} -3 \\ -8 \\ 8 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -4 \\ -3 \\ -1 \end{bmatrix}$. Compute $\mathbf{u} + \mathbf{v}$.

2.1.2. Subtraction

1. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ -6 \\ -4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -5 \\ 3 \\ 3 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

2. Let
$$\mathbf{u} = \begin{bmatrix} -7 \\ -4 \\ 4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 8 \\ 0 \\ 7 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

3. Let
$$\mathbf{u} = \begin{bmatrix} 5 \\ -2 \\ 8 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -7 \\ 5 \\ -9 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

4. Let
$$\mathbf{u} = \begin{bmatrix} 10 \\ -1 \\ 5 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ -9 \\ -4 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

5. Let
$$\mathbf{u} = \begin{bmatrix} 5 \\ 2 \\ 8 \\ -9 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -4 \\ 1 \\ -10 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

6. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 10 \\ -8 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -4 \\ -10 \\ 4 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

7. Let
$$\mathbf{u} = \begin{bmatrix} -6 \\ -9 \\ 9 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 7 \\ 0 \\ 7 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

8. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ -7 \\ 5 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -8 \\ 0 \\ 4 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

9. Let
$$\mathbf{u} = \begin{bmatrix} -4 \\ 0 \\ -4 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 6 \\ -1 \\ 7 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

10. Let
$$\mathbf{u} = \begin{bmatrix} -3 \\ 3 \\ -7 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 5 \\ -10 \\ -5 \end{bmatrix}$. Compute $\mathbf{u} - \mathbf{v}$.

2.1.3. Scalar Multiplication

1. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 9 \\ 2 \end{bmatrix}$$
. Compute $-7\mathbf{v}$.

². Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix}$$
. Compute 9v.

3. Let
$$\mathbf{u} = \begin{bmatrix} 9 \\ 0 \\ 10 \end{bmatrix}$$
. Compute $-8\mathbf{v}$.

4. Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix}$$
. Compute $-10\mathbf{v}$.

5. Let
$$\mathbf{u} = \begin{bmatrix} 5 \\ -1 \\ -4 \end{bmatrix}$$
. Compute $-9\mathbf{v}$.

6. Let
$$\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$
. Compute $-1\mathbf{v}$.

7. Let
$$\mathbf{u} = \begin{bmatrix} 7 \\ 3 \\ -3 \end{bmatrix}$$
. Compute $0\mathbf{v}$.

8. Let
$$\mathbf{u} = \begin{bmatrix} -4 \\ 2 \\ 4 \end{bmatrix}$$
. Compute 5v.

9. Let
$$\mathbf{u} = \begin{bmatrix} 6 \\ -8 \\ 0 \end{bmatrix}$$
. Compute $-2\mathbf{v}$.

10. Let
$$\mathbf{u} = \begin{bmatrix} 6 \\ -1 \\ 7 \end{bmatrix}$$
. Compute $3\mathbf{v}$.

2.2. Matrix Arithmetic

2.2.1. Addition

1. Let
$$A = \begin{bmatrix} 7 & -4 & 8 \\ -4 & 3 & 2 \\ 4 & 8 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -4 & -2 \\ -1 & -10 & -6 \\ -8 & 0 & -4 \end{bmatrix}$. Compute $A + B$.

1. Let
$$A = \begin{bmatrix} 7 & -4 & 8 \\ -4 & 3 & 2 \\ 4 & 8 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -4 & -2 \\ -1 & -10 & -6 \\ -8 & 0 & -4 \end{bmatrix}$. Compute $A + B$.
2. Let $A = \begin{bmatrix} 9 & 6 & 2 \\ 5 & 4 & -4 \\ -2 & 4 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 6 & -2 \\ 3 & -9 & 0 \\ -9 & -3 & -8 \end{bmatrix}$. Compute $A + B$.

3. Let
$$A = \begin{bmatrix} 3 & -7 & -9 \\ 2 & 6 & -7 \\ -1 & 5 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & -2 & 2 \\ -9 & -2 & 5 \\ -10 & -10 & -9 \end{bmatrix}$. Compute $A + B$.

4. Let
$$A = \begin{bmatrix} -6 & -9 & -3 \\ 4 & 3 & -3 \\ 1 & 0 & 9 \end{bmatrix}$$
 and $B = \begin{bmatrix} 8 & 4 & -4 \\ 0 & -8 & 1 \\ 0 & 6 & 6 \end{bmatrix}$. Compute $A + B$.

5. Let
$$A = \begin{bmatrix} 1 & -7 & -2 \\ -8 & 2 & -7 \\ 9 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -7 & 0 \\ 4 & -1 & -3 \\ -2 & -4 & 4 \end{bmatrix}$. Compute $A + B$.

5. Let
$$A = \begin{bmatrix} 1 & -7 & -2 \\ -8 & 2 & -7 \\ 9 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -7 & 0 \\ 4 & -1 & -3 \\ -2 & -4 & 4 \end{bmatrix}$. Compute $A + B$.

6. Let $A = \begin{bmatrix} -2 & -10 & -5 \\ -7 & 7 & 1 \\ -6 & 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -4 & 5 \\ 3 & -3 & 5 \\ -1 & 7 & -8 \end{bmatrix}$. Compute $A + B$.

7. Let
$$A = \begin{bmatrix} -7 & 7 & -6 \\ -3 & -6 & 5 \\ -7 & -9 & -7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -1 & -3 \\ -2 & -4 & 3 \\ -9 & -7 & -2 \end{bmatrix}$. Compute $A + B$

7. Let
$$A = \begin{bmatrix} -7 & 7 & -6 \\ -3 & -6 & 5 \\ -7 & -9 & -7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -1 & -3 \\ -2 & -4 & 3 \\ -9 & -7 & -2 \end{bmatrix}$. Compute $A + B$.

8. Let $A = \begin{bmatrix} -9 & -5 & -9 \\ -8 & -3 & -4 \\ -3 & 4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 8 & -6 & -9 \\ 3 & 4 & -5 \\ -10 & -9 & 2 \end{bmatrix}$. Compute $A + B$.

9. Let
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 6 & -8 & -10 \\ 7 & 8 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -7 & 7 \\ 3 & 6 & -5 \\ -7 & 2 & 7 \end{bmatrix}$. Compute $A + B$.

9. Let
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 6 & -8 & -10 \\ 7 & 8 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -7 & 7 \\ 3 & 6 & -5 \\ -7 & 2 & 7 \end{bmatrix}$. Compute $A + B$.

10. Let $A = \begin{bmatrix} 2 & -5 & 6 \\ 1 & 2 & -7 \\ -7 & -10 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ -10 & -5 & -1 \\ -7 & -5 & 8 \end{bmatrix}$. Compute $A + B$.

2.2.2. Subtraction

1. Let
$$A = \begin{bmatrix} 0 & -4 & 6 \\ 4 & 6 & 9 \\ 6 & -9 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 6 & 3 \\ -6 & 1 & 0 \\ 1 & 7 & -4 \end{bmatrix}$. Compute $A - B$.

2. Let
$$A = \begin{bmatrix} -8 & -3 & -3 \\ 9 & -2 & 4 \\ 1 & -7 & 9 \end{bmatrix}$$
 and $B = \begin{bmatrix} -8 & 7 & 1 \\ -7 & 3 & 1 \\ 5 & -9 & 6 \end{bmatrix}$. Compute $A - B$.

3. Let
$$A = \begin{bmatrix} -1 & 6 & 8 \\ -7 & -3 & 1 \\ -6 & 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -4 & 1 \\ -10 & 9 & -6 \\ 7 & 8 & 1 \end{bmatrix}$. Compute $A - B$.

4. Let
$$A = \begin{bmatrix} -9 & -10 & -10 \\ -1 & 3 & -3 \\ 5 & 4 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & -5 & 1 \\ 2 & -5 & -6 \\ -6 & 6 & 1 \end{bmatrix}$. Compute $A - B$.

5. Let
$$A = \begin{bmatrix} 2 & 3 & 6 \\ -9 & -3 & 0 \\ -2 & 9 & 9 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 0 & 5 \\ 2 & -1 & 4 \\ 7 & -3 & -6 \end{bmatrix}$. Compute $A - B$.

6. Let
$$A = \begin{bmatrix} -5 & -5 & -1 \\ 5 & 8 & 0 \\ -5 & -3 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -5 & -7 \\ -4 & 1 & 3 \\ -4 & 8 & 8 \end{bmatrix}$. Compute $A - B$.

7. Let
$$A = \begin{bmatrix} 1 & -2 & -8 \\ 7 & -5 & -7 \\ 3 & -6 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 0 & 0 \\ 4 & 5 & 2 \\ -4 & -6 & -6 \end{bmatrix}$. Compute $A - B$.

8. Let
$$A = \begin{bmatrix} 9 & 4 & 9 \\ 4 & 6 & 5 \\ 9 & 6 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 6 & 0 \\ 6 & -6 & 3 \\ 6 & -5 & 4 \end{bmatrix}$. Compute $A - B$.

9. Let
$$A = \begin{bmatrix} -3 & 5 & -3 \\ 7 & -5 & 2 \\ 1 & 9 & -5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -9 & -6 & 9 \\ -9 & -3 & 0 \\ 1 & -3 & -8 \end{bmatrix}$. Compute $A - B$.

10. Let
$$A = \begin{bmatrix} -6 & 5 & -2 \\ 7 & 4 & 4 \\ -5 & 1 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 9 & 7 \\ 8 & 5 & -4 \\ 9 & 3 & -3 \end{bmatrix}$. Compute $A - B$.

2.2.3. Multiplication

5

1. Let
$$A = \begin{bmatrix} -5 & -6 & 3 \\ -4 & -9 & -2 \\ -10 & -2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & -6 & -2 \\ -5 & 3 & -5 \\ 2 & 2 & 0 \end{bmatrix}$. Compute $A \cdot B$.

2. Let
$$A = \begin{bmatrix} 6 & 4 & -1 \\ 8 & 9 & -10 \\ 5 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 9 & -7 \\ -5 & -4 & 4 \\ -8 & -7 & -6 \end{bmatrix}$. Compute $A \cdot B$.

3. Let
$$A = \begin{bmatrix} 5 & 1 & 1 \\ -7 & 7 & -1 \\ -1 & 5 & -7 \\ 7 & -6 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 3 & 5 \\ -10 & -8 & 0 \\ 4 & -2 & -10 \end{bmatrix}$. Compute $A \cdot B$.

4. Let $A = \begin{bmatrix} 1 & -10 & -9 \\ -1 & 3 & -4 \\ -6 & 7 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -5 & -1 \\ -1 & 4 & 0 \\ -3 & -8 & 2 \end{bmatrix}$. Compute $A \cdot B$.

4. Let
$$A = \begin{bmatrix} 1 & -10 & -9 \\ -1 & 3 & -4 \\ -6 & 7 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -5 & -1 \\ -1 & 4 & 0 \\ -3 & -8 & 2 \end{bmatrix}$. Compute $A \cdot B$.

5. Let
$$A = \begin{bmatrix} -5 & -5 & -4 \\ 1 & 5 & 3 \\ 2 & -8 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 9 & 8 \\ 7 & -4 & -4 \\ 8 & -1 & -7 \end{bmatrix}$. Compute $A \cdot B$.

6. Let
$$A = \begin{bmatrix} -3 & 2 & -10 \\ -2 & -1 & 5 \\ 2 & -10 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & -7 & -1 \\ 6 & -1 & -2 \\ 8 & 6 & 4 \end{bmatrix}$. Compute $A \cdot B$.

7. Let $A = \begin{bmatrix} 2 & 6 & -5 \\ -4 & -7 & 0 \\ -9 & -8 & -10 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 0 & 7 \\ 0 & -5 & 0 \\ 5 & 1 & 4 \end{bmatrix}$. Compute $A \cdot B$.

7. Let
$$A = \begin{bmatrix} 2 & 6 & -5 \\ -4 & -7 & 0 \\ -9 & -8 & -10 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 & 7 \\ 0 & -5 & 0 \\ 5 & 1 & 4 \end{bmatrix}$. Compute $A \cdot B$.

8. Let
$$A = \begin{bmatrix} 0 & -5 & 8 \\ 2 & 8 & -6 \\ -10 & 9 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 0 & -3 \\ 4 & -10 & 3 \\ -10 & -5 & -5 \end{bmatrix}$. Compute $A \cdot B$.

9. Let
$$A = \begin{bmatrix} -2 & 4 & -8 \\ 9 & 3 & 6 \\ -9 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -1 & 6 \\ -6 & -4 & -5 \\ 2 & -4 & -4 \end{bmatrix}$. Compute $A \cdot B$.

10. Let
$$A = \begin{bmatrix} -5 & 5 & 6 \\ -5 & 5 & 1 \\ 8 & -1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -7 & -4 \\ 1 & 6 & 3 \\ 7 & 7 & -7 \end{bmatrix}$. Compute $A \cdot B$.

3. Answer

3.1. Vector Arithmetic

3.1.1. Addition

1:
$$\begin{bmatrix} 18 \\ 2 \\ -9 \end{bmatrix}$$
 2:
$$\begin{bmatrix} 4 \\ -9 \\ 10 \end{bmatrix}$$
 3:
$$\begin{bmatrix} 7 \\ 3 \\ -15 \end{bmatrix}$$
 4:
$$\begin{bmatrix} 2 \\ 5 \\ 5 \end{bmatrix}$$
 5:
$$\begin{bmatrix} -10 \\ 20 \\ 4 \end{bmatrix}$$

6:
$$\begin{bmatrix} 5 \\ -4 \\ -2 \end{bmatrix}$$
 7:
$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 8:
$$\begin{bmatrix} 18 \\ 5 \\ -3 \end{bmatrix}$$
 9:
$$\begin{bmatrix} 17 \\ -5 \\ 2 \end{bmatrix}$$
 10:
$$\begin{bmatrix} -7 \\ -11 \\ 7 \end{bmatrix}$$

3.1.2. Subtraction

1:
$$\begin{bmatrix} 6 \\ -9 \\ -7 \end{bmatrix}$$
 2: $\begin{bmatrix} -15 \\ -4 \\ -3 \end{bmatrix}$ 3: $\begin{bmatrix} 12 \\ -7 \\ 17 \end{bmatrix}$ 4: $\begin{bmatrix} 10 \\ 8 \\ 9 \end{bmatrix}$ 5: $\begin{bmatrix} 12 \\ 7 \\ 1 \end{bmatrix}$

$$6: \begin{bmatrix} 4 \\ 20 \\ -12 \end{bmatrix} 7: \begin{bmatrix} -13 \\ -9 \\ 2 \end{bmatrix} 8: \begin{bmatrix} 9 \\ -7 \\ 1 \end{bmatrix} 9: \begin{bmatrix} -10 \\ 1 \\ -11 \end{bmatrix} 10: \begin{bmatrix} -8 \\ 13 \\ -2 \end{bmatrix}$$

3.1.3. Scalar Multiplication

1:
$$\begin{bmatrix} 0 \\ -63 \\ -14 \end{bmatrix}$$
 2: $\begin{bmatrix} 0 \\ 54 \\ 54 \end{bmatrix}$ 3: $\begin{bmatrix} -72 \\ 0 \\ -80 \end{bmatrix}$ 4: $\begin{bmatrix} -30 \\ -30 \\ -50 \end{bmatrix}$ 5: $\begin{bmatrix} -45 \\ 9 \\ 36 \end{bmatrix}$

6:
$$\begin{bmatrix} 0 \\ -4 \\ 4 \end{bmatrix}$$
 7: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 8: $\begin{bmatrix} -20 \\ 10 \\ 20 \end{bmatrix}$ 9: $\begin{bmatrix} -12 \\ 16 \\ 0 \end{bmatrix}$ 10: $\begin{bmatrix} 18 \\ -3 \\ 21 \end{bmatrix}$

3.2. Matrix Arithmetic

3.2.1. Addition

$$1: \begin{bmatrix} 5 & -8 & 6 \\ -5 & -7 & -4 \\ -4 & 8 & 1 \end{bmatrix} 2: \begin{bmatrix} 6 & 12 & 0 \\ 8 & -5 & -4 \\ -11 & 1 & -8 \end{bmatrix} 3: \begin{bmatrix} -1 & -9 & -7 \\ -7 & 4 & -2 \\ -11 & -5 & -9 \end{bmatrix} 4: \begin{bmatrix} 2 & -5 & -7 \\ 4 & -5 & -2 \\ 1 & 6 & 15 \end{bmatrix} 5: \begin{bmatrix} 4 & -14 & -2 \\ -4 & 1 & -10 \\ 7 & -4 & 6 \end{bmatrix}$$

$$6: \begin{bmatrix} 3 & -14 & 0 \\ -4 & 4 & 6 \\ -7 & 8 & -3 \end{bmatrix} 7: \begin{bmatrix} -9 & 6 & -9 \\ -5 & -10 & 8 \\ -16 & -16 & -9 \end{bmatrix} 8: \begin{bmatrix} -1 & -11 & -18 \\ -5 & 1 & -9 \\ -13 & -5 & 5 \end{bmatrix} 9: \begin{bmatrix} 2 & -5 & 10 \\ 9 & -2 & -15 \\ 0 & 10 & 9 \end{bmatrix} 10: \begin{bmatrix} 3 & -3 & 9 \\ -9 & -3 & -8 \\ -14 & -15 & 5 \end{bmatrix}$$

3.2.2. Subtraction

$$1: \begin{bmatrix} 4 & -10 & 3 \\ 10 & 5 & 9 \\ 5 & -16 & 6 \end{bmatrix} 2: \begin{bmatrix} 0 & -10 & -4 \\ 16 & -5 & 3 \\ -4 & 2 & 3 \end{bmatrix} 3: \begin{bmatrix} -5 & 10 & 7 \\ 3 & -12 & 7 \\ -13 & -4 & 4 \end{bmatrix} 4: \begin{bmatrix} -18 & -5 & -11 \\ -3 & 8 & 3 \\ 11 & -2 & -7 \end{bmatrix} 5: \begin{bmatrix} 6 & 3 & 1 \\ -11 & -2 & -4 \\ -9 & 12 & 15 \end{bmatrix}$$

$$6: \begin{bmatrix} -8 & 0 & 6 \\ 9 & 7 & -3 \\ -1 & -11 & -5 \end{bmatrix} 7: \begin{bmatrix} 5 & -2 & -8 \\ 3 & -10 & -9 \\ 7 & 0 & 6 \end{bmatrix} 8: \begin{bmatrix} 6 & -2 & 9 \\ -2 & 12 & 2 \\ 3 & 11 & -4 \end{bmatrix} 9: \begin{bmatrix} 6 & 11 & -12 \\ 16 & -2 & 2 \\ 0 & 12 & 3 \end{bmatrix} 10: \begin{bmatrix} -12 & -4 & -9 \\ -1 & -1 & 8 \\ -14 & -2 & 9 \end{bmatrix}$$

3.2.3. Multiplication

$$1: \begin{bmatrix} 56 & 18 & 40 \\ 57 & -7 & 53 \\ 50 & 54 & 30 \end{bmatrix} 2: \begin{bmatrix} 12 & 45 & -20 \\ 67 & 106 & 40 \\ 7 & 34 & -37 \end{bmatrix} 3: \begin{bmatrix} -74 & -75 & -25 \\ -78 & -29 & 65 \\ 44 & 77 & 75 \end{bmatrix} 4: \begin{bmatrix} 36 & 27 & -19 \\ 10 & 49 & -7 \\ -19 & 10 & 18 \end{bmatrix} 5: \begin{bmatrix} -57 & -21 & 8 \\ 57 & -14 & -33 \\ -108 & 56 & 90 \end{bmatrix}$$