Instructions: We'll use the same whiteboard process until, as a whole class, we decide to use some other process.

a. 2x ≡ 4 (mod 6)

Let x = 2, we then see that $2x = 4 \equiv 4$ (mod 6).

b. 2x ≡ 3 (mod 6) Not possible. Mod 6 will preserve parity, as it is even. So 2x which is even, cannot be equivalent to 3.

c. 4x ≡ 5 (mod 6)

By the same property as b we know this is impossible.

-Miah :)

1. Determine if it is possible to solve the following equations. You can use any method in this problem including trying all possible x's. (Note: since we are trying to solve congruence equations, you may only need yo try to complete the residue system as your possible x's.)

```
a. 2x \equiv 4 \pmod{6}
```

b.
$$2x \equiv 3 \pmod{6}$$

c.
$$4x \equiv 5 \pmod{6}$$

- **d.** $4x \equiv 2 \pmod{6}$ Possible for every integer x such that $x \equiv 2 \pmod{3}$
- **e.** $6x \equiv 3 \pmod{9}$ Possible for every integer x such that $x \equiv 4 \pmod{6}$
- **f.** $6x \equiv 4 \pmod{9}$ Impossible

Not possible. Mod 6 will preserve parity, as it is even. So 2x which is even, cannot be equivalent to 3.

From Miah's work in 1 b 142=7(mod 22)

7-74x-27/

127x-1)h

1 256-55

We can also use the given equation: 2=2*22-3*14. Then x=-3 is a solution. This is equivalent to x=19, and that's 8+11, the other solution mod 22.

22-8 M=5

Michael

$$\Delta X \equiv 1 \pmod{7}$$

0			1	5	1
<i>X</i>	4	5	2	3	6

$$AX \equiv 1 \pmod{10}$$

$$A \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$X \mid 1 \mid X \mid 7 \mid X \mid X \mid X \mid 3 \mid X \mid 9$$

Parity is preserved mod 10 so no even 'a' can multiply with anything to be congruent to 1. Multiples of 5 alternate between 5 and 0.

-Nick

Last page