Exercise class: propositional logic (solutions)

Steven Schockaert

Week 5

1. Logical equivalence

We consider the following truth table:

a	b	$a \land \neg b$	$a \vee (\neg a \wedge b)$	$a \wedge (\neg a \vee \neg b)$	$\neg(a \to b)$	$a \lor b \to \neg a$
true	true	false	true	false	false	false
true	false	true	true	true	true	false
false	true	false	true	false	false	true
false	false	false	false	false	false	true

It follows that $a \wedge \neg b$ is equivalent to $a \wedge (\neg a \vee \neg b)$ and $\neg (a \to b)$ but not to $a \vee (\neg a \wedge b)$ or $a \vee b \to \neg a$.

2. Conjunctive normal form

We find

$$\neg(a \lor b) \lor (c \to \neg d)
\equiv \neg(a \lor b) \lor (\neg c \lor \neg d)
\equiv (\neg a \land \neg b) \lor (\neg c \lor \neg d)
\equiv (\neg a \lor \neg c \lor \neg d) \land (\neg b \lor \neg c \lor \neg d)$$

$$(a \to (b \to c)) \to d$$

$$\equiv \neg(\neg a \lor (\neg b \lor c)) \lor d$$

$$\equiv (\neg \neg a \land \neg \neg b \land \neg c) \lor d$$

$$\equiv (a \land b \land \neg c) \lor d$$

$$\equiv (a \lor d) \land (b \lor d) \land (\neg c \lor d)$$

$$a \wedge \neg (b \wedge (c \vee \neg (d \vee e)))$$

$$\equiv a \wedge (\neg b \vee (\neg c \wedge \neg \neg (d \vee e)))$$

$$\equiv a \wedge (\neg b \vee (\neg c \wedge (d \vee e)))$$

$$\equiv a \wedge (\neg b \vee \neg c) \wedge (\neg b \vee d \vee e)$$

3. Refutation

Let us first convert $\neg(\neg(a \rightarrow b \lor c) \rightarrow \neg(d \land e))$ into CNF:

$$\neg(\neg(a \to b \lor c) \to \neg(d \land e))$$

$$\equiv \neg(\neg\neg(\neg a \lor b \lor c) \lor \neg(d \land e))$$

$$\equiv \neg(\neg a \lor b \lor c \lor \neg(d \land e))$$

$$\equiv (\neg\neg a \land \neg b \land \neg c \land \neg\neg(d \land e))$$

$$\equiv a \land \neg b \land \neg c \land d \land e$$

- We need to show that $\{a, \neg b, \neg c, d, e, \neg a\}$ is unsatisfiable, by showing that the empty clause can be derived using resolution. From a and $\neg a$ we immediately obtain the empty clause using resolution.
- We need to show that $\{a, \neg b, \neg c, d, e, \neg a \lor b \lor \neg e\}$ is unsatisfiable. From $\neg a \lor b \lor \neg e$ and a we derive

$$b \vee \neg e$$

which combined with \boldsymbol{e} gives

b

which together with $\neg b$ allows us to derive the empty clause.

4. Refutation II

 $K \cup \{ \neg \alpha \}$ contains the following clauses:

$$(1)$$
 $a \lor e$

(2)
$$a \vee \neg f$$

$$(3)$$
 $b \lor d$

$$(4)$$
 c

$$(5)$$
 $\neg d$

(6)
$$\neg e \lor f$$

(7)
$$\neg a \lor \neg b$$

(8)
$$\neg a \lor \neg c$$

Using resolution we find:

(10)
$$d \lor e$$
 $(3+9)$
(11) e $(5+10)$
(12) $\neg c \lor \neg f$ $(2+8)$

(1+7)

$$(13) \qquad \neg f \tag{4+12}$$

(14)
$$\neg e$$
 (6+13)

Combining (11) and (14) we derive the empty clause.

(9)

 $\neg b \lor e$