Related Work

Actor-Critic Based IFS Methods

 Actor (Explainer): Pick features for a given instance Critic: Evaluate the goodness of current Actor

A.

() 1

Explainer (Actor)

ritir

Feedback

Advantages: Give an appropriate feedback (loss) function Totally data-driven

Drawbacks: High difficulty to find a nice feedback function

Related Work

Actor-Critic Based IFS Methods

- Advantages:
 - Give an appropriate feedback (loss) function
 - Totally data-driven

- Drawbacks:
 - High difficulty to find a nice feedback function

- Actor (Explainer): Pick features for a given instance
- Critic: Evaluate the goodness of current Actor

Related Work

INVASE (Actor-Critic Based)

- Critic: Neural netwrok Model that use partial feature values to approximate original black-box model
- ✓ Achieve nice performance on synthetic datasets in terms of TPR & FDR