МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСТИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

3BIT

до лабораторної роботи №1

на тему: «Ознайомлення та керування процесами в операційних системах для персонального комп'ютера. Windows.»

з дисципліни: «Операційні системи»

Лектор:ст. викладач кафедри ПЗ Грицай О. Д. **Виконав:**ст. гр. ПЗ-22 Чаус О. М. **Прийняла:**ст. викладач кафедри ПЗ Грицай О. Д. « _____ » _____ 2022 р. ∑= ______

Тема роботи: Ознайомлення та керування процесами в операційних системах для персонального комп'ютера. Windows.

Мета роботи: Ознайомитися з процесами та потоками в операційній системі Windows. Навчитися працювати із системними утилітами, що дають можливість отримувати інформацію про процеси, потоки, використовувану ними пам'ять, та іншу необхідну інформацію.

Теоретичні відомості

Операційна система - це сукупність програм, які призначені для керування ресурсами комп'ютера й обчислювальними процесами, а також для організації взаємодії користувача з апаратурою.

Процес — об'єкт операційної системи, контейнер системних ресурсів, призначених для підтримки виконання програми. Коли в середовищі операційної системи запускається прикладна програма, система створює спеціальний об'єкт — процес, — який призначений для підтримки її виконання

Процес має певний пріоритет, який впливає на кількість процесорного часу, який виділятиметься його потокам. У операційній системі Windows передбачено 32 рівні пріоритету — від 0 до 31.

Моніторинг процесів користувачем

Моніторинг процесів в ос Windows здійснюється через ряд утиліт. Найпоширенішою є вбудована утиліта **Диспетчер Задач (Task manager)**. Вбудований диспетчер завдань Windows забезпечує швидкий перелік процесів у системі.

Більші можливості моніторингу і керування процесами надає утиліта **Process Explorer**. З допомогою цієї утиліти можна отримати ще більше інформації про процеси і потоки.

Хід роботи

1. За допомогою утиліти «Диспетчер задач» та Process Explorer отримав повну інформацію про процеси.

2. За допомогою утиліти Process Explorer отримав додаткову інформацію про процеси та їхні потоки.

3. Використовуючи Диспетчер задач та Process Explorer, змінив пріоритет процесу:

OSCI HUITIC

Julus

i io

Hunne

Далі задав відповідність виконання процесу на окремих ядрах центрального процесора.

4. Використовуючи Process Explorer призупинив процес і відновив його роботу.

5. Виконавши програму з різною кількістю потоків, яка вказана в методичних матеріалах, я отримав такий час роботи програми:

$$T_{1} = 5217 ms$$

$$T_{2} = 3279 ms$$

$$T_{3} = 2057 ms$$

$$T_{4} = 1642 ms$$

$$T_{5} = 1463 ms$$

$$T_{6} = 1264 ms$$

$$T_{7} = 1052 ms$$

$$T_{8} = 988 ms$$

$$A_{2} = \frac{T_{1}}{T_{2}} = \frac{5217}{3279} = 1.59$$

$$A_{3} = \frac{5217}{2057} = 2.54$$

$$A_{4} = \frac{5217}{1642} = 3.18$$

$$A_{5} = \frac{5217}{1463} = 3.57$$

$$A_{6} = \frac{5217}{1264} = 4.13$$

$$A_7 = \frac{5217}{1057} = 4.94$$

$$A_8 = \frac{5217}{988} = 5.28$$

$$A = \frac{1}{p + \frac{1-p}{n}} \Rightarrow A = \frac{1}{\frac{p*n+1-p}{n}} \Rightarrow A = \frac{n}{p*n+1-p} \Rightarrow p = \frac{\frac{n}{A}-1}{n-1}$$

$$p_2 = 0.26$$

$$p_3 = 0.09$$

$$p_4 = 0.08$$

$$p_5 = 0.1$$

$$p_6 = 0.09$$

$$p_7 = 0.07$$

$$p_8 = 0.07$$

- **6.** Дослідив вплив зміни відповідності ядру на швидкодію процесу згідно з своїм варіантом.
 - 12) Відмальовування сцени (fps) деякої відеогри (неонлайн)

Це дослідження я провів за допомогою відеогри Terraria. Отримані результати:

$$T_1 = 5770 \ ms \ (0.17 \ fps)$$

 $T_{2-8} = 16.6 \, ms \, (60 \, fps)$

Висновок: під час виконання лабораторної роботи ознаймився з поняттям операційної системи, програми, ознайомився з утилітою Process Explorer, детальніше ознайомився з утилітою Task Manager, навчився змінювати пріоритет процесу, змінювати відповідність виконання процесу на окремих ядрах центрального процесора та дослідив вплив використання різної кількості ядер для виконання процесу (відмальовування сцени в офлайн відеогрі).