Causal Inference and ML Experiments

Rayid Ghani and Kit Rodolfa

Carnegie Mellon University

Things to cover today

- Reminders for list of things to do for your project
- Causal Inference 001
- With Observational Data
 - Methods
 - Examples
- Experiments
 - Standard Randomized Controlled Trials
 - Trial Design
 - Examples
 - Validating ML models/systems
 - Trial Design
 - Examples

Class Recap

Project checklist

- Train Test Splits make sure you're using all of them
- •Features make sure you have relevant features
 - Imputation
 - scaling
- Models
 - Make sure you have an appropriately large grid and model types
- Model Selection
 - Initial metric (sanity check with PR-k curve), and selection metric over time
- Interpretability
 - Feature importances, Cross-Tabs
- Bias
 - Protected Group and Bias Metric

Goals of Causal Inference

correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

Do sports programs affect school graduation rates?

Do sports programs affect school graduation rates?

Do sports programs affect school graduation rates?

• Examples?

Causal Research Design

- 1. Experiments
- 2. Quasi-experiments
- 3. Observational studies

Experiment

Quasi-Experimental

Observational Study

Include confounders in regression

Methods for causal inference

- Using Observational Data
- Using Experiments

Causal inference with observational data

- Matching
- Difference-in-Difference (DID)
- Regression Discontinuity Design (RDD)
- Instrumental Variables

• Limitations?

Causal inference with observational data

Causal inference with observational data

Causal inference with experiments

- Standard "Randomized Controlled Trials"
- Trial Design
 - Outcome
 - Sample size
 - Power
 - Randomization

Ethical Concerns

Some things to keep in mind

Effect size > what is practically useful and significant Significance Level ~ cost of implementing the new system/model

Designing Trials to Validate ML Systems

- What can we do with historical data?
 - Model Selection
 - Performance Estimation

- How do we select the model to deploy?
 - Compare shortlisted models against baseline

How do we validate whether our ML system will work when deployed?

Designing an experiment

- What are we trying to test?
- How do we create different arms of the experiment?
- How we do we run the experiment?
- What do we measure?
- How do we evaluate?

What are we testing in an experiment?

- Lift?
- Classification?
- Probability estimates?
- Ranking?
- How does the experiment design change?

How many [students, inspections, projects] should we include in our trial?

Doing a trial over [y] years with [n] students every year will give us a [p%] chance to detect an [e%] increase in [outcome] with a statistical significance of [s%]

How many [students, inspections, projects] should we include in our trial?

https://clincalc.com/stats/samplesize.aspx

Some Readings

- References on causal inference
- The seven tools of causal inference, with reflections on machine learning by Pearl, J. Comm ACM. 2019
- <u>Elements of Causal Inference</u> by Peters et al. MIT Press. (Open Access Text)
- Counterfactuals and Causal Inference: Methods and Principles for Social Research by Morgan and Winship. Cambridge University Press.
- Data Analysis Using Regression and Multilevel/Hierarchical Models by Gelman and Hill. Cambridge University Press.