Newtons avkjølings lov

Navn: Nora Olsen Skrede

Samandrag

I denne oppgåva vart det helt kokande vatn i ein kopp som vart dekka med plastfolie.

Temperaturutviklinga i vatnet vart målt regelmessig fram til det nådde ca.

romtemperatur, frå 85,4°C til 26,6°C. Newtons avkjølings lov vart brukt til å rekne ut

punkta til ein kurve som vart samanlikna med ein teoretisk avkjølingskurve. Det vart

brukt regresjon for å finne best tilpassa kurve og bestemme k-verdien som vart 0.0181.

Dermed kan det evaluerast kor godt eksperimentet stemmer overeins med newtons

teori om avkjøling.

1 Teori

Newtons avkjølings lov er ein teoretisk modell for korleis temperaturen i eit system er

avhengig av temperaturen til omgivnadane:

 $\frac{dT}{dt} = -k(T(t) - T_k)$

Der T(t) er temperaturen til gjenstanden ved tida t. T_k er temperaturen til omgivnadane

og k er ein konstant som avhenger av gjenstanden sin varmekapasitet, overflateareal og

varmeoverføringa mellom gjenstanden og omgivnadane.

Proposjonalkonstanten:

Avkjølingskonstanten er eit mål på kor godt varmen flyt mellom gjenstanden og

omgivnadane. Den avhenger blant anna av materialet til gjenstanden, temperaturen og

om det er trekk i omgivnadane, og gjenstandens overflateareal. Denne kan ein bruke

regresjon for å finne den mest presise verdien av k, som passar dei målte

temperaturane.

Side 1 av 6

Newtons avkjølingslov forutset at temperaturforskjellen mellom gjenstanden og omgivnadane er stor, temperaturen til omgivnadane er konstant og at tempreaturen fell jamt, med rask nedgang i starten. Modellen gir ein god beskrivelse i mange praktiske tilfeller, men påverkast ofte av andre faktorar som fordamping eller ujamne temperaturar i omgivnadane.

2 Eksperimentelt

Temperaturen vart målt for omgivnadane med eit termometer. Vatn vart kokt opp i ein kjele før det ble helt opp i ein kopp av keramikk. Koppen vart dekka til med plastfolie og målt starttemperatur. Deretter vart temperaturen målt kvart minutt dei fyrste 15 minutta, då gjekk det over til kvart 2 minutt i 14 minutt. Før etter omtrent ein halvtime, vart det målt kvar 5 minutt i 20 minutt. Tilslutt vart temperaturen målt kvar 10 minutt til den nådde romtemperatur. Resultata vart oppført i ein tabell og deretter plotta mot den teoretiske kurva til newtons avkjølings lov.

Figur 2.1: Oppsettet under målingar av temperaturen til vatnet

3 Resultat

Omgivnadane hadde ein temperatur på 20,3°C, og starttemperaturen var på 85,4°C. Ved å plotte temperaturane mot tida, sjå vedlegg 1 og figur 4.1.

Ved å bruke regresjon og funskjonen scipy.optimize frå pyton vart den beste verdien av k bestemt. Ut i frå målingane er den optimale verdien for k: 0.018114180161972172

Figur 4.1: Resultata av forsøket er plotta i blå linje, raud linje er Newtons teoretiske kurve mtp. Avkjøling.

4 Diskusjon

Ut i frå figur 4.1 vart det observert eit avvik, som forventa frå newtons teoretiske kurve. Dette kan skylde fleire faktorar. Blant anna er konstant temperatur blant omgivnadane vanskeleg å oppretthalde gjennom eit forsøk over ei lengre tid. Fordamping av vatnet vart forhindra delvis med plastfolie, men ein kan ikkje sjå vekk ifrå at det framleis er varmetap derifrå. Trekk i rommet utan ifrå, frå vindauge og vifte kan også påverke resultatet.

Vedlegg

```
向 个 ↓ 古
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# Gitte data (tid og temperatur)
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 34, 39, 43, 49, 53, 59, 63, 69, 79,89,99,109,119,129,139,149,159,169])
y = np.array([85.4, 82.1, 80.5, 78.9, 77.7, 76.5, 75.3, 74.5, 73.3, 72.1, 70.4, 69.6, 68.8, 68., 66.8, 65.2, 63.6, 62, 61.2, 59.6, 58.4, 57.2, 54.4, 52, 49.6, 48, 46, 44.2, 42.4, 41.1, 38.3, 36.1,34.1,32.5,31,29.9,28.8,27.9,26.9]
# Romtemperatur (for Newtons avkjølingslov)
temp_rom = 20.3
temp_rom+=273
# Newtons avkjølingslov - beregn temperatur
def newtons_law(t, T0, temp_rom, k):
    return temp_rom + (T0 - temp_rom) * np.exp(-k * t)
# Estimer en passende verdi for k
\#k = -np.log((y[-1] - temp\_rom) / (y[\theta] - temp\_rom)) / x[-1]
popt, _ = curve_fit(lambda t, k: newtons_law(t, y[0], temp_rom, k), x, y)
k_optimal = popt[0]
# Beregn temperaturene for Newtons avkj\philingslov for hver tid i x
\label{temp_newton} \texttt{temp\_newton} \texttt{ = newtons\_law}(\texttt{x, y[0], temp\_rom, k\_optimal})
# Plot dataene og Newtons avkjølingslov på samme rutenett
plt.plot(x, y, marker='o', linestyle='-', color='b', label="Mâlte temperaturer")
plt.plot(x, temp_newton, linestyle='--', color='r', label="Newtons avkjølingslov")
# Legge til tittel og aksetitler
plt.title("Temperaturutvikling i forhold til Newtons avkjølingslov")
plt.xlabel("Tid (minutter)")
plt.ylabel("Temperatur K")
# Legge til rutenett og legende
plt.grid(True)
plt.legend()
# Vis grafen
plt.show()
print(f"The optimal value of k is: {k_optimal}")
```

Figur V1.1: Python kode for å finne best mogleg verdi for k og plotte kurva vist i figur 3.1

Tabell V1.1: Temperaturmålingar tatt etter minutt tid.

	Α	В	С	D
1	minutt	temperatur(c)	
2	1	85,4		
3	2	82,1		
4	3	80,5		
5	4	78,9		
6	5	77,7	omgivnad	20,3
7	6	76,5		
8	7	75,3		
9	8	74,5		
10	9	73,3		
11	10	72,1		
12	11	70,4		
13	12	69,6		
14	13	68,8		
15	14	68		
16	15	66,8		
17	17	65,2		
18	19	63,6		
19	21	62		
20	23	61,2		
21	25	59,6		
22	27	58,4		
23	29	57,2		
24	34	54,4		
25	39	52		
26	44	49,6		
27	49	48		
28	54	46,0		
29	59	44,2		
30	64	42,4		
31	69	41,1		
32	79	38,3		
33	89	36,1		
34	99	34,1		
35	109	32,5		
36	119	31		
37	129	29,9		
38	139	28,8		
39	149	27,9		
40	159	26,9		
41	169	26,6		

5 Kjelder

- 1. Avkjøling- Labdiktat avkjoling.pdf(06.11.24)
- 2. Jupyterlab Notebook(programmering)- <u>Untitled6.ipynb (9) JupyterLab</u>
- 3. Hansen, N. K. *Modellere med differensiallikninger*-<u>Modellere med differensiallikninger</u>nkhansen.com(06.11.24)