第一章 差值方法

误差的分类:模型误差,方法误差(截断误差),舍入误差,测量误差,会区分这几种误差,熟练掌握定义。

误差的传播与积累中,知道什么是稳定性。(误差在计算过程中不会被放大就称为稳定) 误差的定义(x-x*),误差限的定义,有效数字和误差限之间的对应关系(近似值 x 规格化 后的指数减去误差限的指数等于有效数字的位数)

注意小数点后的有效数字, 1.20 不能写成 1.2

相对误差限

数值计算的误差估计不要求掌握

泰勒插值及其余项要背过,清楚泰勒插值要解决什么问题,ppt12页上的例 1可能会出填空 题

拉格朗日的插值条件(已知一些点和这些点上的函数值),会计算插值结果,结果不要化简,保留形式。

基函数的性质(所有基函数和为1,只与x有关,与y无关)

插值余项(推导过程可以不用掌握,但要记住余项的形式)

埃特金算法不考

插商的计算方法,有的可以利用插商的性质来求解(习题一第16题),有的只能一步一步的算

插商的几个重要性质: k 阶插商可以表示成 k+1 个函数值的线性组合,对称性,多项式次数 递减,插商与导数的关系

差分的定义,向前差分,向后差分,中心差分

忽略差分的性质, 等距节点的牛顿公式要了解它的稳定性

埃尔米特插值的公式不用看,给定一些函数值和微分值,会求其插值结果即可,要利用承袭性(重要),难度不会超过 ppt13 页例 8

分段插值的性质: 在每个小区间上的插值函数是不一样的

样条函数的定义,三次样条函数是重点:每个小区间是三次多项式,区间与区间交界处是二阶导数连续,这一部分不需要掌握样条函数的求解过程,只掌握定义概念,知道用三对角矩阵来求解即可。

最小二乘法拟合曲线(ppt29页的公式),求解超定方程组

第二章 数值积分

熟练掌握左矩形公式, 右矩形公式, 中矩形公式, 梯形格式, 辛普生格式

什么是求积节点,什么是求积系数,求积系数仅仅与节点 xk 的选取有关,而不依赖于被积函数 f(x)的具体形式。

代数精度的概念,证明过程(两种说法的等价性,ppt19页)也要掌握。

左矩形,右矩形代数精度为0次,中矩形公式和梯形公式为1次,辛普生3次

插值型求积公式的求解过程

给定一个求积公式,会求它的代数精度;会构造求积公式

牛顿科特斯公式只需要掌握科特斯系数的一些特点(只需要掌握 ppt 第 7 页),求积节点必须是等距的

牛顿科特斯代数精度和余项不会考

复合求积公式,等距的求积节点,复合梯形公式的计算,复合辛普生公式的计算,不需要记余项

复合科特斯公式不考

p 阶收敛的定义, 梯形公式 2 阶收敛, 辛普生公式 4 阶收敛, 科特斯公式 6 阶收敛

不会出给定精度, 求如何取 n 的题目

龙贝格, 样条插值积分不会考

高斯插值公式的代数精度, n+1 个点的代数精度为 2n+1

会做区间变换,高斯点不需要背,题目中会给出高斯点,作区间变换到[-1,1]上之后,能列出高斯公式

高斯公式的优缺点, ppt25 页

数值微分不考

第三章 常微分方程的差分方法

知道什么是李普希兹条件

什么是单步法,什么是多步法,什么是显示公式,什么是隐式公式,各有什么优缺点 ppt16 页

显示欧拉方法, 隐式欧拉方法, 改进的欧拉方法的公式

局部截断误差的概念和定义,如何求局部截断误差(泰勒展开)

两步欧拉格式的精度: 2阶精度

龙格库塔方法是单步法, 迭代公式不唯一, 给定公式, 会代数即可

亚当姆斯格式是重点,不需要记公式 ppt32 页是重点,学会构造亚当姆斯的方法,多步法,

必须和龙格库塔方法结合起来使用,龙格库塔启动亚当姆斯的执行

熟练掌握收敛性与稳定性的定义(证明不考)

高阶方程的情形中,只需要会代数即可,先化高阶方程为低阶方程

边值问题不考

第四章 方程求根的迭代法

压缩影像定理要掌握证明(重点)

局部收敛性的定义,知道牛顿公式是二阶局部收敛的

r阶收敛的定义

p阶收敛充要条件的证明

迭代过程的加速, 埃特金算法, 一点注记不考

牛顿迭代公式

牛顿法的收敛性, 收敛定理不考

Ppt31 页小结可能出判断题

牛顿下山法不考

清楚割线法的公式

第五章 线性方程组的迭代法

高斯赛德尔迭代,雅可比迭代,给定一个方程组,能写出雅可比迭代的迭代格式,并且能够计算迭代两步的计算结果,ppt16、17、18页上的例题会做即可

超松弛法会代数,公式不需要记

矩阵分裂法不考

范数的几个性质, 正定性, 齐次性, 三角不等性

1 范数, 无穷范数, 二范数, p 范数的定义, 了解所有 p 范数都是等价的

矩阵范数的四个性质以及性质的证明 ppt9、10 页

矩阵范数的 1 范数无穷范数

对角占优阵的定义,如何调整一个方程组成对角占优方程组,对角占优阵一定是非奇异的 方程组的病态问题,条件数的定义,会求条件数

第六章 线性方程组的直接法

清楚低阶稠密矩阵用消去法,大型稀疏矩阵用迭代法 列主元高斯消去法的求解过程,增广矩阵的变换 假设方程组是对角占优的,则(k=1,2,...,n)全不为 0.

假设方程组对称并且是对角占优的,则 a_{kk}^{k-1} (k=1, 2, ..., n) 全是主元素.

Ppt44 页例题

追赶法必须先列出 L、U 矩阵

追赶法适用于三对角矩阵

平方根法求解对称正定矩阵, 熟练掌握平方根法

改进的平方根法(乔累斯基法)

在求得方程组的近似解 x*后,检验精度的一个简单方法是将 x*代入方程组,求得残量(余量)r=b-Ax*,如果||r||很小,就认为 x*较准确。但此方法对于有些情形会失效(有可能出判断题)

ppt19 页定理的证明可能会出证明题