PRZECZYTAJ, ZANIM ZACZNIESZ PRACĘ...

- 1. Maksymalnie za projekt można uzyskać **20 punktów**, są do zrobienia 3 zadania (jedno za 6pkt i dwa po 7 pkt każde) w ramach jednego z 9-ciu zestawów.
- 2. Przydział zadań do zrobienia oraz numeru zestawu jest podany w osobnych plikach (grupa_przydzial_zadan.pdf).
- 3. Punktacja ogólna oraz sposób przydziału punktów za poszczególne etapy rozwiązania są umieszczone razem z treścią zadań.
- 4. Pierwsza strona projektu powinna zawierać wypełnioną tabelkę tytułową (wzór znajduje się w oddzielnym pliku).
- 5. Termin oddania projektu to **18 stycznia 2018**. Projekty (wyłącznie w wersji papierowej) proszę oddać osobiście lub przez zaufanego "pełnomocnika" na zajęciach. Oddanie projektu z opóźnieniem skutkuje odjęciem 2pkt za każdy dzień opóźnienia.
- 6. Wykonując zadania proszę zwracać uwagę na następujące kwestie:
 - estetyka wykresów (odpowiednie skalowanie, tytuł, opisy osi, jednostki, typ wykresu),
 - wzory powinny być podane wraz z opisem użytych symboli,
 - poszczególne etapy obliczeń, przekształceń itd. proszę opatrywać komentarzami tak, żeby osoba czytająca mogła się zorientować co, w jaki sposób i dlaczego zostało policzone,
 - obliczenia powinny być w miarę szczegółowe, czyli nie wystarczy sam ogólny wzór i wynik końcowy, należy np. pokazać, jak podstawowy wzór został zastosowany do przypadku rozpatrywanego w zadaniu oraz jakie są wartości wszystkich użytych do obliczeń wielkości,
 - końcowe wyniki obliczeń proszę podawać z jednostkami.
- 7. Zastrzegam sobie prawo wyzerowania projektu, jeśli:
 - praca bezsprzecznie okaże się plagiatem,
 - wykonane zadania będą niezgodne z dokonanym przeze mnie przydziałem.

Wioleta Ślubowska

ZADANIE 1 ANALIZA TERMICZNA (6 pkt)

Na podstawie pliku *analiza_termiczna_nr_zestawu.txt* dla szkła:

- 1. Wykonać termogram, czyli wykres przestawiający zależność różnicy przepływu ciepła (HF *heat flow*) między próbką badaną a próbką odniesienia od temperatury *T* próbki badanej.
- 2. Oznaczyć i zidentyfikować występujące w badanym materiale przemiany termiczne. Przy interpretacji przyjąć, że przemiany egzotermiczne zachodzą w górę.
- 3. Podać w tabeli charakterystyczne dla zaobserwowanych przemian temperatury i krótko opisać sposób ich wyznaczenia.

zadanie do wykonania	punkty max
wykres (termogram) – opisy osi, jednostki	2
zidentyfikowanie przemian termicznych	1
wyznaczenie temperatur przemian termicznych	2
wyjaśnienie sposobu wyznaczenia tych temperatur	1

ZADANIE 2 ZALEŻNOŚĆ ARRHENIUSA (7 pkt)

Pliki $Arrhenius_nr_zestawu.txt$ zawierają w pierwszej kolumnie temperaturę T w °C, a w drugiej opór R w Ω cylindrycznej próbki wykonanej z badanego materiału. Wymiary próbek dla poszczególnych zestawów przedstawia tabela.

- 1. Obliczyć wartości przewodności właściwej materiału w funkcji temperatury w skali bezwzględnej, $\sigma(T)$.
- 2. Sprawdzić, czy przewodność właściwa σ zmienia się z temperaturą zgodnie z zależnością Arrheniusa σ $T=\frac{\sigma_0}{T}e^{-\frac{E_a}{k_BT}}$

gdzie E_a – energia aktywacji, k_B – stała Boltzmanna, σ_0 - czynnik eksponencjalny

3. Jeśli zależność Arrheniusa jest spełniona, obliczyć wartość energii aktywacji E_a (w eV) oraz przewodności właściwej (w S/cm) w temperaturach 25°C oraz 125°C.

numer zestawu	pole powierzchni elektrod S /mm²	grubość próbki d /mm
1	10	0,9
2	15	2
3	8,5	0,5
4	10,5	1,1
5	8	0,7
6	20	3,3
7	1,05	10
8	9	2,5
9	30	1

Jeśli po zlinearyzowaniu zależności $\sigma(T)$, punkty pomiarowe nie układają się na prostej w całym zakresie temperatury, zrobić dopasowanie liniowe dla prostoliniowego fragmentu tej zależności od strony niskich temperatur.

zadanie do wykonania		
obliczenie $\sigma(T)$ – wzór, dane w tabeli	1	
wykres Arrheniusa postaci $\log(\sigma T)$ w funkcji $1000/T$ – opisy osi, jednostki	2	
dopasowanie liniowe		
wyznaczenie E_a i σ_0 z parametrów dopasowania	2	
wyznaczenie przewodności właściwej (w S/cm) w temperaturach 25°C oraz 125°C	1	

ZADANIE 3 DYFRAKTOMETRIA RENTGENOWSKA (7 pkt)

Dla struktury krystalicznej wskazanego materiału obliczyć położenia maksimów dyfrakcyjnych w zakresie kątów $10^{\circ} \le 2\vartheta \le 90^{\circ}$ dla podanej długości fali padającego promieniowania. Uwzględnić wpływ czynnika struktury na występowanie maksimum dyfrakcyjnego. Wyniki dla różnych rodzin płaszczyzn przedstawić w tabeli o polach: h, k, l, d_{hkl} , 2ϑ , F_{hkl} (uwzględnić również te maksima, które są wygaszane). Spośród widm dyfrakcyjnych zawartych w plikach $dyfraktogram_A-l.xy$ wskazać to, które odpowiada badanemu kryształowi. Odpowiedź uzasadnić, wykreślając dany dyfraktogram i nanosząc na wykres położenia obliczonych maksimów.

numer zestawu	materiał	typ struktury	stała sieci /Å	długość fali użytego promieniowania / Å
1	Mn	bcc	8,91	1,66
2	GaP	fcc z bazą	5,45	1,66
3	Pt	fcc	3,92	2,29
4	NaCl	fcc z bazą	5,64	1,54
5	Zr	hcp	3,23	1,79
	21	Zi licp	5,15	
6	Cd hcp 2,98 5,62	hcn	2,98	1,66
		ПСР	5,62	1,00
7	Ti	hcp	2,95	1,66
'	11		4,68	4,68
8	C (diament)	fcc z bazą	3,57	0,70
9	Cs	bcc	6,14	1,54

Dla układu heksagonalnego obowiązuje wzór:

$$\frac{1}{d_{hkl}^2} = \frac{4}{3} \ \frac{h^2 + hk + k^2}{a^2} \ + \frac{l^2}{c^2}$$

zadanie do wykonania	punkty max
wyznaczenie położeń maksimów dyfrakcyjnych – wzory, tabela z obliczeniami	3
wskazanie, które maksima będą widoczne – wzory, przykładowe obliczenia czynnika struktury	2
wskazanie właściwego pliku z dyfraktogramem – wykres porównawczy	2

ZADANIE 4 FONONY (6 pkt)

Przedstawić (w formie rękopisu) obliczenia zależności dyspersyjnej $\omega(k)$ dla fali płaskiej propagującej się w jednowymiarowym, dwuatomowym łańcuchu periodycznym przy podanych w tabeli założeniach. Narysować wykres otrzymanych gałęzi fononowych dla pierwszej strefy Brillouina (tj. $-\pi/a \le k \le \pi/a$, gdzie a jest znaną stałą sieci).

numer zestawu	m ₁	m ₂	γ ₁	γ1
1	1	2	2	3
2	1	1	1	1
3	2	2	3	3
4	10	1	2	1
5	10	10	1	3
6	10	5	10	5
7	1	10	5	5
8	5	5	20	1
9	3	1	1	4

zadanie do wykonania	punkty max
obliczenia – szczegółowe i czytelne	4
wykres $\omega(k)$ dla pierwszej strefy Brillouina, wskazanie gałęzi fononów optycznych i akustycznych	2

ZADANIE 5 TESTY BATERII LI-ION (7 pkt)

W plikach *bateria_nr_zestawu.txt* znajdują się wyniki pomiarów napięcia ogniwa z wybranym materiałem katodowym w funkcji czasu ładowania lub rozładowania stałym prądem. Masa katody oraz prądy ładowania/rozładowania są zawarte w tabeli.

- 1. Na podstawie tych danych wykreślić krzywą ładowania lub rozładowania, tzn. zależność napięcia na ogniwie w funkcji pojemności grawimetrycznej.
- 2. Ile wynosi teoretyczna pojemność badanej katody? Przedstawić szczegółowe obliczenia. Jaki ułamek (podać w procentach) pojemności teoretycznej stanowi doświadczalna pojemność badanej katody?
- 3. Wykreślić krzywą zróżniczkowanej pojemności ogniwa w funkcji napięcia i zaznaczyć na niej ekstrema odpowiadające reakcjom redox związanym z interkalacją/deinterkalacją Li⁺ w wybranych materiałach.

nr zestawu	materiał katodowy	masa /mg	prąd rozładowania lub ładowania/μΑ	cykl
1	LiFePO₄	3,53	59,8	rozładowanie
2	LiVPO ₄ F	4,7	36,6	ładowanie
3	LiVPO ₄ F	4,47	34,3	rozładowanie
4	LiVPO ₄ F	4,7	36,6	rozładowanie
5	LiFePO₄	3,53	29,9	rozładowanie
6	LiVPO ₄ F	4,47	34,7	ładowanie
7	LiFePO₄	3,28	55,4	rozładowanie
8	LiVPO ₄ F	1,47	11,4	ładowanie
9	LiFePO₄	3,28	27,7	rozładowanie

zadanie do wykonania	punkty max
wykreślenie krzywej ładowania/rozładowania	2
obliczenie teoretycznej pojemności katody i porównanie z pojemnością eksperymentalną	2
wykreślenie krzywej zróżniczkowanej pojemności	2
wskazanie ekstremów odpowiadających reakcjom redox	1

ZADANIE 6 LASER PÓŁPRZEWODNIKOWY NA STUDNI KWANTOWEJ (6 pkt)

Zaprojektować nanostrukturę półprzewodnikową opartą na studni kwantowej, która dzięki zjawisku elektroluminescencji emituje światło o długości λ . Dobierając materiały uwzględnić dopasowanie stałej sieciowej poszczególnych warstw. W obliczeniach użyć wartości stanów energetycznych dla prostokątnej studni kwantowej o nieskończonym potencjale.

Długość fali obliczamy indywidualnie według wzoru: $\lambda = (z+2,25) \cdot 100$ nm + i(mod 100) · 1nm, gdzie z – numer przydzielonego zestawu, i – numer albumu Autora. Na jaki kolor powinna świecić zaprojektowana struktura? Wykonać schematyczny rysunek tej struktury.

Założyć, że energie nośników w studni są skwantowane i wyrażają się zależnością:

$$E_n = n^2 \frac{\hbar^2 \pi^2}{2m^* a^2}$$

gdzie n – numer kolejnego poziomu, m^* – masa efektywna elektronu/dziury (dla uproszczenia założyć, że jest równa masie spoczynkowej elektronu), a – szerokość studni (rzędu nm)

zadanie do wykonania	punkty max
obliczenie długości fali λ i wskazanie koloru światła emitowanego	1
wyznaczenie przerwy energetycznej materiału na obszar czynny lasera	2
wybranie na podstawie diagramu odpowiednich materiałów do konstrukcji lasera	2
schematyczny rysunek zaprojektowanej struktury	1