Chapter 10

Thermal Physics

Thermal Physics

- Thermal physics is the study of
 - Temperature
 - Heat
 - How these affect matter

Thermal Physics, cont

- Descriptions require definitions of temperature, heat and internal energy
- Heat leads to changes in internal energy and therefore to changes in temperature
- Gases are critical in harnessing internal energy to do work

Heat

- The process by which energy is exchanged between objects because of temperature differences is called *heat*
- Objects are in thermal contact if energy can be exchanged between them
- Thermal equilibrium exists when two objects in thermal contact with each other cease to exchange energy

Zeroth Law of Thermodynamics

- If objects A and B are separately in thermal equilibrium with a third object, C, then A and B are in thermal equilibrium with each other
 - Object C could be the thermometer
- Allows a definition of temperature

Temperature from the Zeroth Law

- Temperature is the property that determines whether or not an object is in thermal equilibrium with other objects
- Two objects in thermal equilibrium with each other are at the same temperature

Thermometers

- Used to measure the temperature of an object or a system
- Make use of physical properties that change with temperature
- Many physical properties can be used
 - Volume of a liquid
 - Length of a solid
 - Pressure of a gas held at constant volume
 - Volume of a gas held at constant pressure
 - Electric resistance of a conductor
 - Color of a very hot object

Thermometers, cont

- A mercury thermometer is an example of a common thermometer
- The level of the mercury rises due to thermal expansion
- Temperature can be defined by the height of the mercury column

Temperature Scales

- Thermometers can be calibrated by placing them in thermal contact with an environment that remains at constant temperature
 - Environment could be mixture of ice and water in thermal equilibrium
 - Also commonly used is water and steam in thermal equilibrium

Celsius Scale

- Temperature of an ice-water mixture is defined as 0° C
 - This is the freezing point of water
- Temperature of a water-steam mixture is defined as 100° C
 - This is the boiling point of water
- Distance between these points is divided into 100 segments or degrees

- Temperature readings are nearly independent of the gas
- Pressure varies
 with temperature
 when maintaining
 a constant
 volume

Kelvin Scale

- When the pressure of a gas goes to zero, its temperature is -273.15° C
- This temperature is called absolute zero
- This is the zero point of the Kelvin scale
 - $-273.15^{\circ} C = 0 K$
- To convert: $T_C = T 273.15$
 - The size of the degree in the Kelvin scale is the same as the size of a Celsius degree

Pressure-Temperature Graph

- All gases
 extrapolate to the
 same temperature
 at zero pressure
- This temperature is absolute zero

Modern Definition of Kelvin Scale

- Defined in terms of two points
 - Agreed upon by International Committee on Weights and Measures in 1954
- First point is absolute zero
- Second point is the triple point of water
 - Triple point is the single point where water can exist as solid, liquid, and gas in equilibrium
 - Single temperature and pressure
 - Occurs at 0.01° C and P = 4.58 mm Hg

Modern Definition of Kelvin Scale, cont

- The temperature of the triple point on the Kelvin scale is 273.16 K
- Therefore, the current definition of of the Kelvin is defined as 1/273.16 of the temperature of the triple point of water

Some Kelvin Temperatures

- Some representative Kelvin temperatures
- Note, this scale is logarithmic
- Absolute zero has never been reached

Fahrenheit Scales

- Most common scale used in the US
- Temperature of the freezing point is 32°
- Temperature of the boiling point is 212°
- 180 divisions between the points

Converting Among Temperature Scales

$$T_C = T_K - 273.15$$

$$T_F = \frac{9}{5}T_C + 32$$

$$T_C = \frac{5}{9}T_F - 32$$

$$\Delta T_F = \frac{9}{5}\Delta T_C$$

Thermal Expansion

- The thermal expansion of an object is a consequence of the change in the average separation between its constituent atoms or molecules
- At ordinary temperatures, molecules vibrate with a small amplitude
- As temperature increases, the amplitude increases
 - This causes the overall object as a whole to expand

4

Linear Expansion

For small changes in temperature

$$\Delta L = \alpha L_o \Delta T \text{ or } L - L_o = \alpha L_o T - T_o$$

- α, the coefficient of linear expansion, depends on the material
 - See table 10.1
 - These are average coefficients, they can vary somewhat with temperature

Applications of Thermal Expansion - Bimetallic Strip

- Thermostats
 - Use a bimetallic strip
 - Two metals expand differently
 - Since they have different coefficients of expansion

Area Expansion

 Two dimensions expand according to

$$\Delta A = A - A_o = \gamma A_o \Delta t,$$

$$\gamma = 2\alpha$$

 γ is the coefficient of area expansion

4

Volume Expansion

Three dimensions expand

$$\Delta V = \beta V_o \Delta t$$
 for solids, $\beta = 3\alpha$

 For liquids, the coefficient of volume expansion is given in the table

More Applications of Thermal Expansion

- Pyrex Glass
 - Thermal stresses are smaller than for ordinary glass
- Sea levels
 - Warming the oceans will increase the volume of the oceans

Unusual Behavior of Water

- As the temperature of water increases from 0°C to 4°C, it contracts and its density increases
- Above 4 °C, water exhibits the expected expansion with increasing temperature
- Maximum density of water is 1000 kg/m³ at 4
 °C

Ideal Gas

- If a gas is placed in a container
 - It expands to fill the container uniformly
 - Its pressure will depend on the
 - Size of the container
 - The temperature
 - The amount of gas
- The pressure, volume, temperature and amount of gas are related to each other by an equation of state

Ideal Gas, cont

- The equation of state can be complicated
- It can be simplified if the gas is maintained at a low pressure
- Most gases at room temperature and pressure behave approximately as an ideal gas

Characteristics of an Ideal Gas

- Collection of atoms or molecules that move randomly
- Exert no long-range force on one another
- Each particle is individually pointlike
 - Occupying a negligible volume

Moles

It's convenient to express the amount of gas in a given volume in terms of the number of moles, n

$$n = \frac{mass}{molar\ mass}$$

 One mole is the amount of the substance that contains as many particles as there are atoms in 12 g of carbon-12

4

Avogadro's Number

- The number of particles in a mole is called Avogadro's Number
 - N_A =6.02 x 10²³ particles / mole
 - Defined so that 12 g of carbon contains N_A atoms
- The mass of an individual atom can be calculated:

$$\mathbf{m}_{\mathsf{atom}} = \frac{\mathsf{molar\ mass}}{\mathsf{N}_{\mathtt{A}}}$$

Avogadro's Number and Masses

- The mass in grams of one Avogadro's number of an element is numerically the same as the mass of one atom of the element, expressed in atomic mass units, u
- Carbon has a mass of 12 u
 - 12 g of carbon consists of N_A atoms of carbon
- Holds for molecules, also

Ideal Gas Law

- PV = nRT
 - R is the Universal Gas Constant
 - R = 8.31 J/mol/K
 - $R = 0.0821 \, \text{L} \cdot \text{atm} / \, \text{mol} \cdot \text{K}$
 - Is the equation of state for an ideal gas

Ideal Gas Law, Alternative Version

- $\blacksquare P V = N k_B T$
 - K_R is Boltzmann's Constant

 - N is the total number of molecules
- \bullet n = N / N_A
 - n is the number of moles
 - N is the number of molecules

Kinetic Theory of Gases – Assumptions

- The number of molecules in the gas is large and the average separation between them is large compared to their dimensions
- The molecules obey Newton's laws of motion, but as a whole they move randomly

Kinetic Theory of Gases – Assumptions, cont.

- The molecules interact only by short-range forces during elastic collisions
- The molecules make elastic collisions with the walls
- The gas under consideration is a pure substance, all the molecules are identical

 The pressure is proportional to the number of molecules per unit volume and to the average translational kinetic energy of a molecule

$$P = \frac{3}{2} \left(\frac{N}{V} \right) \left(\frac{1}{2} m v^2 \right)$$

Pressure, cont

- The pressure is proportional to the number of molecules per unit volume and to the average translational kinetic energy of the molecule
- Pressure can be increased by
 - Increasing the number of molecules per unit volume in the container
 - Increasing the average translational kinetic energy of the molecules
 - Increasing the temperature of the gas

Molecular Interpretation of Temperature

 Temperature is proportional to the average kinetic energy of the molecules

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

 The total kinetic energy is proportional to the absolute temperature

$$KE_{total} = \frac{3}{2}nRT$$

4

Internal Energy

 In a monatomic gas, the KE is the only type of energy the molecules can have

$$U = \frac{3}{2} nRT$$

- U is the internal energy of the gas
- In a polyatomic gas, additional possibilities for contributions to the internal energy are rotational and vibrational energy in the molecules

4

Speed of the Molecules

 Expressed as the root-mean-square (rms) speed

$$v_{rms} = \sqrt{\frac{3 k_B T}{m}} = \sqrt{\frac{3 R T}{M}}$$

- At a given temperature, lighter molecules move faster, on average, than heavier ones
 - Lighter molecules can more easily reach escape speed from the earth

Some rms Speeds

TABLE 10.2

Some rms Speeds

Gas	Molar Mass (kg/mol)	$v_{ m rms}$ at $20^{\circ}{ m C}~({ m m/s})$
$\overline{\mathrm{H_2}}$	2.02×10^{-3}	1 902
He	4.0×10^{-3}	1 352
H_2O	18×10^{-3}	637
Ne	20.2×10^{-3}	602
N_2 and CO	28.0×10^{-3}	511
NO	30.0×10^{-3}	494
O_2	32.0×10^{-3}	478
CO_2	44.0×10^{-3}	408
SO_2	64.1×10^{-3}	338

- A system of gas at a given temperature will exhibit a variety of speeds
- Three speeds are of interest:
 - Most probable
 - Average
 - rms

4

Maxwell Distribution, cont

- For every gas, V_{mp} < V_{av} < V_{rms}
- As the temperature rises, these three speeds shift to the right
- The total area under the curve on the graph equals the total number of molecules