# Politechnika Warszawska

WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH





# Projekt Układu Zasilającego

wariant numer 62

Alicja Misterka Numer indeksu: 324045

## Spis treści

| 1 | Założenia projektowe                |                                                                        |   |  |  |  |  |  |
|---|-------------------------------------|------------------------------------------------------------------------|---|--|--|--|--|--|
| 2 | Układ cyfrowy - przetwornica LT8612 |                                                                        |   |  |  |  |  |  |
|   | 2.1                                 | dobór elementów i schemat układu                                       |   |  |  |  |  |  |
|   | 2.2                                 | Wyniki symulacji                                                       |   |  |  |  |  |  |
|   |                                     | 2.2.1 Sprawność                                                        | • |  |  |  |  |  |
| 3 | Ukł                                 | nd analogowy, wariant 1 - stabilizator LT3045                          |   |  |  |  |  |  |
|   | 3.1                                 | Dobór elementów i schemat układu                                       |   |  |  |  |  |  |
|   | 3.2                                 | Wyniki symulacji                                                       |   |  |  |  |  |  |
|   |                                     | 3.2.1 Napięcia wyjściowe oraz tętnienia                                |   |  |  |  |  |  |
|   |                                     | 3.2.2 Sprawność                                                        |   |  |  |  |  |  |
| 4 | Ukł                                 | Układ analogowy, wariant 2 - przetwornica LT8338 i stabilizator LT3080 |   |  |  |  |  |  |
| - | 4.1                                 | dobór elementów i schemat układu                                       |   |  |  |  |  |  |
|   |                                     | 4.1.1 Stabilizator napięcia LT3080                                     |   |  |  |  |  |  |
|   |                                     | 4.1.2 Przetwornica podwyższająca napięcie LT8338                       |   |  |  |  |  |  |
|   |                                     | 4.1.3 Ostateczny układ                                                 |   |  |  |  |  |  |
|   | 4.2                                 | Wyniki symulacji                                                       |   |  |  |  |  |  |
|   |                                     | 4.2.1 Napięcia wyjściowe oraz tętnienia                                |   |  |  |  |  |  |
|   |                                     | 4.2.2 Sprawność                                                        |   |  |  |  |  |  |
| 5 | Ukl                                 | ad analogowy, wariant 3 - przetwornica LT8362                          |   |  |  |  |  |  |
|   | 5.1                                 | dobór elementów i schemat układu                                       |   |  |  |  |  |  |
|   | 5.2                                 | Wyniki symulacji                                                       |   |  |  |  |  |  |
|   |                                     | 5.2.1 Napięcie wyjściowe oraz tętnienia                                |   |  |  |  |  |  |
|   |                                     | 5.2.2 Sprawność układu                                                 |   |  |  |  |  |  |
| 6 | Wn                                  | oski                                                                   |   |  |  |  |  |  |

# 1 Założenia projektowe

Celem projektu jest zaprojektowanie układu zasilającego dla systemu elektronicznego, zasilanego z pojedynczego źródła napięcia 10 V. Układ ma generować 4 napięcia zasilające: jedno dla części cyfrowej i trzy dla części analogowej, zgodnie z tabelą przedstawiającą wymagane napięcia i maksymalny pobór prądu.

Cewki i kondensatory to rzeczywiste elementy, dobrano je odpowiednio z szeregów E6 i E12. ESR i ESL kondensatorów wyliczono za pomocą kalkulatora od firmy Murata Manufacturing

zaś w przypadku cewek użyto specjalnej formuły, zdefiniowanej w instrukcji projektowej - ich dokumentacje zostały zawarte w plikach projektu. Układy zaprojektowano dla  $f_{osc}=1MHz$ , uwzględniając spadek pojemności kondensatorów i uwzględniona została rezystancja generatora sygnału wejściowego wynosząca  $100m\Omega$ .

| Linia zasilająca | Napięcie | Pobór prądu |
|------------------|----------|-------------|
| cyfrowa          | 2.5 V    | 5.5 A       |
| analogowa        | 7 V      | 200 mA      |
| analogowa        | 19 V     | 450  mA     |
| analogowa        | -19 V    | 450  mA     |

Tabela 1: założenia projektowe

<sup>&</sup>lt;sup>1</sup>Link do kalkulatora

Niestety, z racji na bardzo zły sprzęt pomiarowy na którym operowałam, w przypadku układu analogowego numer 2, wymusiłam na programie LTSpice działanie w trybie ttrol równym 10 do optymalizacji czasu symulacji, która w dalszym ciągu trwała trzy godziny. Pozostałe układy zostały przesymulowane na domyślnych ustawieniach programu.

W plikach projektu zamieszczone zostały także logi po symulacji.

# 2 Układ cyfrowy - przetwornica LT8612

#### 2.1 dobór elementów i schemat układu

Aby zaprojektować układ zgodny z wymaganiami, wybrałam przetwornicę obniżającą napięcie LT8612, która obsługuje prąd większy niż 5.5A.



Rysunek 1: Schemat układu cyfrowego

Kondensatory C4, C5, C6 zostały dobrane, aby zapewnić maksymalną sprawność układu i najmniejsze tętnienia napięcia wyjściowego i wejściowego. Wartość rezystora  $R_T$  odczytałam z karty katalogowej dla częstotliwości 1 MHz. Stosunek rezystorów R2 i R3 obliczyłam ze wzoru:

$$R2 = R3 \cdot (\frac{V_{OUT}}{0.970V} - 1) \approx 1.57 \cdot R3$$

Induktancję cewki wyliczyłam i dobrałam na podstawie wzorów dołączonych do karty katalogowej, z której wyliczyłam:

$$f_{SW} = \frac{46.5 - 5.2}{R_T} = 0.96MHz$$

$$L = \frac{V_{OUT} + V_{SW(BOT)}}{f_{SW}} \cdot 0.7 \approx 1.8\mu H => 2.2\mu H$$

$$\Delta I_L = \frac{V_{OUT}}{L \cdot 0.96} \cdot \left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right) = 0.85A$$

$$I_{L(MAX)} > I_{LOAD} + \frac{1}{2}\Delta I_L = 6.35A$$

| $R_T$       | R2           | R3           | L          | C4         | C5   | C6        |
|-------------|--------------|--------------|------------|------------|------|-----------|
| $43k\Omega$ | $390k\Omega$ | $240k\Omega$ | $2.2\mu H$ | $100\mu F$ | 10pF | $10\mu F$ |

Tabela 2: Parametry elementów elektronicznych

#### 2.2 Wyniki symulacji

| $V_{OUT}$ dla $I_{OUT} = 0A$ | $V_{OUT}$ dla $I_{OUT} = 5.5A$ | Tętnienia $V_{OUT}$ | Tętnienia $V_{IN}$ |
|------------------------------|--------------------------------|---------------------|--------------------|
| 2.57 V                       | 2.54 V                         | $6.09~\mathrm{mV}$  | 0  mV              |

Tabela 3: Wyniki symulacji w programie LTSpice

#### 2.2.1 Sprawność

| Pobór prądu [A] | Sprawność układu [%] | Pobór prądu [A] | Sprawność układu [%] |
|-----------------|----------------------|-----------------|----------------------|
| 0.55            | 95.19                | 3.3             | 92.99                |
| 1               | 95.74                | 3.85            | 92.16                |
| 1.65            | 95.36                | 4.4             | 91.25                |
| 2.2             | 94.66                | 4.95            | 90.35                |
| 2.75            | 93.86                | 5.5             | 89.52                |

Tabela 4: Pomiar sprawności - wyniki symulacji

Jak możemy zauważyć, kosztem tętnień napięcia wyjściowego, zwiększyliśmy sprawność całego układu. W przypadku układu cyfrowego jest kluczowe, dlatego zdecydowałam się na użycie przetwornicy obniżającej napięcie - układ działa stabilnie i zgodnie z moimi oczekiwaniami.

## 3 Układ analogowy, wariant 1 - stabilizator LT3045

#### 3.1 Dobór elementów i schemat układu

Do wykonania układu analogowego, najważniejsze jest dla nas zachowanie jak najmniejszych tętnień, dlatego wybrałam prosty stabilizator LT3045. W tym układzie kluczowe było dobranie odpowiednich rezystorów w pinie SET, który bezpośrednio wpływa na napięcie wyjściowe. Aby uzyskać 7V, należy dołaczyć rezystancje rzedu  $70k\Omega$ :

$$R2||R3 = 70k\Omega$$

Pozostałe elementy dobrane są zgodnie z zaleceniami producenta, uwzględniając wymagania dla kondensatora C2, który musi posiadać bardzo niski ESR, jak pokazano w tabeli 3.1.



Rysunek 2: Schemat układu analogowego, wariant 1

| R2           | R3           | C1       | C2         | С3         |
|--------------|--------------|----------|------------|------------|
| $200k\Omega$ | $110k\Omega$ | $1\mu F$ | $4.7\mu F$ | $4.7\mu F$ |

Tabela 5: Parametry elementów elektronicznych

#### 3.2 Wyniki symulacji

#### 3.2.1 Napięcia wyjściowe oraz tętnienia

| $V_{OUT}$ dla $I_{OUT} = 0A$ | $V_{OUT}$ dla $I_{OUT} = 5.5A$ | Tętnienia $V_{OUT}$  | Tętnienia $V_{IN}$ |
|------------------------------|--------------------------------|----------------------|--------------------|
| 7.10 V                       | 7.10 V                         | $0.0005~\mathrm{mV}$ | 0  mV              |

Tabela 6: Wyniki symulacji w programie LTSpice

#### 3.2.2 Sprawność

| Pobór prądu [mA] | Sprawność układu [%] | Pobór prądu [mA] | Sprawność układu [%] |
|------------------|----------------------|------------------|----------------------|
| 20               | 62.87                | 120              | 68.23                |
| 40               | 65.95                | 140              | 68.40                |
| 60               | 67.06                | 160              | 68.54                |
| 80               | 67.63                | 180              | 68.65                |
| 100              | 67.98                | 200              | 68.74                |

Tabela 7: Pomiar sprawności - wyniki symulacji

Jak możemy zauważyć, kosztem sprawności układu, zmniejszyliśmy tętnienia napięcia wyjściowego do bliskich zeru. Wybór stabilizatora LT3045 zamiast przetwornicy pozwolił na uzyskanie niemal zerowych tętnień, na czym zależy nam w przypadku projektowania układów analogowych.

# 4 Układ analogowy, wariant 2 - przetwornica LT8338 i stabilizator LT3080

#### 4.1 dobór elementów i schemat układu

W przypadku projektowania układu analogowego zależy nam na niskich tętnieniach układu. Nie byłam jednak w stanie znaleźć stabilizatora, który wzmocniłby napięcie wyjściowe z 10 V do 19 V. Dlatego, aby stworzyć układ, połączyłam:

- Przetwornicę podwyższającą napięcie LT8338
- Stabilizator LT3080, stabilizujący napięcie do 19 V.



Rysunek 3: Schemat układu analogowego, wariant 2

#### 4.1.1 Stabilizator napięcia LT3080

W przypadku projektowania stabilizatora, należało ustawić napięcie wyjściowego za pomocą pinu SET korzystając ze wzoru zamieszczonego w dokumentacji:

$$V_{OUT} = R_{SET} \cdot 10^{-5}$$
, czyli  $R_{SET} = 1.9 M\Omega$ 

Z karty katalogowej odczytałam także drop-out, który dla maksymalnego poboru prądu (450 mA) wynosi niecałe 1.3 V. Oznacza to, że napięcie wejściowe stabilizatora, a zatem wyjściowe z przetwornicy, musi wynosić przynajmniej 20.3 V.

#### 4.1.2 Przetwornica podwyższająca napięcie LT8338

Za pomocą pinu RT ustawiłam częstotliwość sygnału na 1Hz. Następnie za pomocą dwóch oporników w pinie CTRL ustawiłam napięcie wyjściowe przetwornicy na około 22 V za pomocą zależności:  $V_{OUT}=18\cdot V_{CTRL}$ .

W przypadku projektowania przetwornicy, istotne jest dobranie odpowiedniej cewki. Aby zrobić to właściwie, posiłkowałam się kartą katalogową:

$$\begin{split} D_{MAX} &= \frac{V_{OUT} - VIN}{V_{OUT}} = 0.54 \\ L &> \frac{V_{IN}}{0.2 \cdot f} \cdot D_{MAX} - > L > 2.7 \mu H \\ \text{oraz } I_L \approx 1.2 A \text{ (co wyczytałam z karty katalogowej)}. \end{split}$$

Na początku zastosowałam cewkę o indukcyjności  $6.8\mu H$ , jednak układ był bardzo powolny, dlatego postawiłam na znalezenie stosunkowo taniej, acz charakteryzującą się dużą indukcyjnością.

#### 4.1.3 Ostateczny układ

Kondensatory przynależące do przetwornicy i stabilizatora dobrałam zgodnie z kartą katalogową pamiętając o maksymalnym napięciu znamionowym.

Bezpośrednie połączenie stabilizatora i przetwornicy (czy też przy użyciu jedynie kondensatora pełniącego funkcję wejściowego i wyjściowego jednocześnie) wiąże się z ogromnymi tętnieniami na wyjściu - w moim przypadku były to nawet 2.5 V. Aby temu zapobiec, dołączyłam do układu filtr LC dla 20kHz, dla którego wartośc indukcyjności wyliczyłam ze związku:

$$f_c = \frac{1}{\pi \cdot \sqrt{L \cdot C}}$$
 czyli, dobierając z szeregu, E6:  $L = 2.2 \mu H$ 

| Element elektroniczny | Wartość                | Element elektroniczny | Wartość              |
|-----------------------|------------------------|-----------------------|----------------------|
| R1                    | $1.8~\mathrm{M}\Omega$ | C1, C2 C4             | $4.75~\mu\mathrm{F}$ |
| R2                    | 820 kΩ                 | C2, C6                | $100 \ \mu F$        |
| R3                    | $1~\mathrm{M}\Omega$   | C3, C5                | $0.1~\mu\mathrm{F}$  |
| R4                    | 82 kΩ                  | L1                    | $10~\mu\mathrm{H}$   |
| R5                    | 11 kΩ                  | L2                    | $2.2~\mu\mathrm{H}$  |
| R6                    | $0.1~\mathrm{M}\Omega$ |                       |                      |

Tabela 8: Parametry elementów elektronicznych

#### 4.2 Wyniki symulacji

#### 4.2.1 Napięcia wyjściowe oraz tętnienia

| $V_{OUT}$ dla $I_{OUT} = 0A$ | $V_{OUT}$ dla $I_{OUT} = 450mA$ | Tętnienia $V_{OUT}$ | Tętnienia $V_{IN}$  |
|------------------------------|---------------------------------|---------------------|---------------------|
| 19.01 V                      | 18.999 V                        | $0.41~\mathrm{mV}$  | $22.65~\mathrm{mV}$ |

Tabela 9: Wyniki symulacji w programie LTSpice

#### 4.2.2 Sprawność

| Pobór prądu [mA] | Sprawność układu [%] | Pobór prądu [mA] | Sprawność układu [%] |
|------------------|----------------------|------------------|----------------------|
| 45               | 47.67                | 270              | 47.32                |
| 90               | 42.25                | 315              | 47.63                |
| 135              | 44.85                | 360              | 47.76                |
| 180              | 45.02                | 405              | 53.49                |
| 225              | 46.73                | 450              | 59.12                |

Tabela 10: Pomiar sprawności - wyniki symulacji

Jako że układ ma charakter analogowy i największą uwagę zwracamy na tętnienia które udało się zmniejszyć do rzędu niecałych mV, układ działa zgodnie z naszymi założeniami. Aby zmniejszyć ewentualnie tętnienia sygnału wejściowego i wyjściowego, mogłabym ewentualnie zwiększyć kondensatory wejściowe i wyjściowe.

## 5 Uklad analogowy, wariant 3 - przetwornica LT8362

#### 5.1 dobór elementów i schemat układu

Analogicznie, chcąc otrzymać napięcie ujemne na wyjściu w układzie analogowym, powinnam wybrać przetwornicę odwracającą i odpowiedni stabilizator jednak okazało się to niepotrzebne - na stronie analog.com znalazłam układ przetwornicy typu SEPIC, która przy swojej pracy dba również o zachowanie stosunkowo małych tętnień napięcia wyjściowego.



Rysunek 4: Schemat układu analogowego, wariant trzeci

Do poprawnego skonstruowania układu skorzystałam z noty katalogowej. Dobrałam odpowiednią rezystancję dla pinu RT określając działanie układu na 1MHz, a napięcie zdefiniowałam poprzez zastosowanie wzoru:

$$R1 = R2 \cdot (\frac{V_{OUT}}{1.6V} - 1) = 10.875 \cdot R2$$

Kondensatory dobrałam zgodnie z zaleceniami producenta a przy doborze cewki kierowałam się własnościami zawartymi w nocie:

$$\begin{split} D_{MAX} &= \frac{V_{OUT} - V_{IN}}{V_{OUT}} = 0.47 \\ L &> \frac{V_{IN}}{\Delta I_{SW} \cdot f} \cdot D_{MAX} = 6.2 \\ \text{Z noty katalogowej odczytuję, że: } I_L = 3.1A. \end{split}$$

Korzystając z faktu, że wcześniej znalazłam bardzo dobrą cewkę, użyłam jej także do tego układuj bowiem spełniała wszystkie wymagania.

| Element elektroniczny | Wartość              | Element elektroniczny | Wartość             |
|-----------------------|----------------------|-----------------------|---------------------|
| R1                    | $1~\mathrm{M}\Omega$ | C1, C2                | $1~\mu\mathrm{F}$   |
| R2                    | 43 kΩ                | C3, C5                | 1 nF                |
| R3                    | $1~\mathrm{k}\Omega$ | C4                    | $10 \ \mu F$        |
| $R_{VC}$              | 630 kΩ               | C7                    | $4.7~\mu\mathrm{H}$ |
| R5                    | 43 kΩ                | L1, L2                | 10 μΗ               |

Tabela 11: Parametry elementów elektronicznych

### 5.2 Wyniki symulacji

#### 5.2.1 Napięcie wyjściowe oraz tętnienia

| $V_{OUT}$ dla $I_{OUT} = 0A$ | $V_{OUT}$ dla $I_{OUT} = 450mA$ | Tętnienia $V_{OUT}$ | Tętnienia $V_{IN}$  |
|------------------------------|---------------------------------|---------------------|---------------------|
| -19.10                       | -18.98 V                        | $11.6~\mathrm{mV}$  | $19.46~\mathrm{mV}$ |

Tabela 12: Wyniki symulacji w programie LTSpice

#### 5.2.2 Sprawność układu

| Pobór prądu [mA] | Sprawność układu [%] | Pobór prądu [mA] | Sprawność układu [%] |
|------------------|----------------------|------------------|----------------------|
| 45               | 95.74                | 270              | 94.66                |
| 90               | 96.13                | 315              | 94.59                |
| 135              | 95.99                | 360              | 94.44                |
| 180              | 96.12                | 405              | 94.29                |
| 225              | 94.64                | 450              | 94.10                |

Tabela 13: Pomiar sprawności - wyniki symulacji

Nieco zdziwiły mnie tak wysokie wyniki sprawności po dodaniu elementów rzeczywistych, ale powodem może być model diody ze SPICE'a. Wybrałam go zgodnie z zaleceniami producenta, ale mimo wszystko różni się od rzeczywistej.

Niemniej, układ działa zgodnie z założeniami - osiągnęliśmy stosunkowo małe tętnienia przy okazji otrzymując dobrą sprawność.

#### 6 Wnioski

Projektowanie układów zasilających wiąże się z wyborem parametrów, które uważamy za istotne. Możemy łatwo zauważyć, że tętnienia napięcia wyjściowego wymieniają się na sprawność układu. Używanie rzeczywistych modeli kondensatorów i cewek doprowadziło do znacznego zwiększenia tętnień i spadku sprawności układu o czym należy pamiętać podczas projektowania prawdziwych układów.