The Černý Conjecture and Group Representations

Benjamin Steinberg

Carleton University

bsteinbg@math.carleton.ca

SATA September 4, 2008

- An automon $\mathscr{A} = (Q, \Sigma)$ is synchronizing if there exists $w \in \Sigma^*$ such that |Qw|=1.
- Such a word w is called a reset word.

- An automon $\mathscr{A}=(Q,\Sigma)$ is synchronizing if there exists $w\in \Sigma^*$ such that |Qw|=1.
- Such a word w is called a *reset word*.

Conjecture (Černý '64)

A synchronizing automaton with n states admits a reset word of length at most $(n-1)^2$.

- The best known upper bound on the length of reset words is $\frac{n^3-n}{6}$, due to Pin based on a non-trivial combinatorial result of Frankl.
- One can obtain a bound of $\frac{n^3-n}{3}$ with straightforward methods.
- Improving a bound by a factor of 2 can be hard work!

- An automon $\mathscr{A} = (Q, \Sigma)$ is synchronizing if there exists $w \in \Sigma^*$ such that |Qw|=1.
- Such a word w is called a reset word.

Conjecture (Černý '64)

A synchronizing automaton with n states admits a reset word of length at most $(n-1)^2$.

- The best known upper bound on the length of reset words is $\frac{n^3-n}{6}$, due to Pin based on a non-trivial combinatorial result of Frankl.
- One can obtain a bound of $\frac{n^3-n}{2}$ with straightforward methods.
- Improving a bound by a factor of 2 can be hard work!

- An automon $\mathscr{A} = (Q, \Sigma)$ is synchronizing if there exists $w \in \Sigma^*$ such that |Qw|=1.
- Such a word w is called a reset word.

Conjecture (Černý '64)

A synchronizing automaton with n states admits a reset word of length at most $(n-1)^2$.

- The best known upper bound on the length of reset words is $\frac{n^3-n}{6}$, due to Pin based on a non-trivial combinatorial result of Frankl.
- One can obtain a bound of $\frac{n^3-n}{3}$ with straightforward methods.
- Improving a bound by a factor of 2 can be hard work!

Pin's Theorem

- The literature on Černý's conjecture consists of a vast array of partial results, the first of which was Pin's Theorem.
- If (Q, Σ) is an automaton, we view $\Sigma \subseteq T_Q$ (the semigroup of self-maps of Q).

Pin's Theorem

- The literature on Černý's conjecture consists of a vast array of partial results, the first of which was Pin's Theorem.
- If (Q, Σ) is an automaton, we view $\Sigma \subseteq T_Q$ (the semigroup of self-maps of Q).

Theorem (Pin '78)

Let $\mathscr{A} = (Q, \Sigma)$ be a synchronizing automaton so that |Q| is a prime p and some element of Σ cyclically permutes Q. Then:

- **1** \mathscr{A} is synchronizing if and only if Σ contains a non-permutation;
- ② In this case, \mathscr{A} has a reset word of length at most $(p-1)^2$.

- Motivated by the first part of Pin's Theorem, I defined in 2004 the notion of a synchronizing group.
- A group $G \subseteq S_n$ is called *synchronizing* if, for all non-permutations

- Motivated by the first part of Pin's Theorem, I defined in 2004 the notion of a synchronizing group.
- A group $G \subseteq S_n$ is called *synchronizing* if, for all non-permutations $t \in T_n$, the monoid $\langle G \cup t \rangle$ contains a constant map.
- Pin's Theorem implies that cyclic groups of prime order are
- It is easy to see that 2-transitive groups are synchronizing.

- Motivated by the first part of Pin's Theorem, I defined in 2004 the notion of a synchronizing group.
- A group $G \subseteq S_n$ is called *synchronizing* if, for all non-permutations $t \in T_n$, the monoid $\langle G \cup t \rangle$ contains a constant map.
- Pin's Theorem implies that cyclic groups of prime order are synchronizing.
- It is easy to see that 2-transitive groups are synchronizing.
- With Arnold, I proved synchronizing groups are primitive and gave a

- Motivated by the first part of Pin's Theorem, I defined in 2004 the notion of a synchronizing group.
- A group $G \subseteq S_n$ is called *synchronizing* if, for all non-permutations $t \in T_n$, the monoid $\langle G \cup t \rangle$ contains a constant map.
- Pin's Theorem implies that cyclic groups of prime order are synchronizing.
- It is easy to see that 2-transitive groups are synchronizing.
- With Arnold, I proved synchronizing groups are primitive and gave a sufficient condition for a group to be synchronizing in terms of representation theory that covers the above results.
- João Araújo independently came up with the notion in 2006 and
- Synchronizing groups have recently received quite a bit of attention

- Motivated by the first part of Pin's Theorem, I defined in 2004 the notion of a synchronizing group.
- A group $G \subseteq S_n$ is called *synchronizing* if, for all non-permutations $t \in T_n$, the monoid $\langle G \cup t \rangle$ contains a constant map.
- Pin's Theorem implies that cyclic groups of prime order are synchronizing.
- It is easy to see that 2-transitive groups are synchronizing.
- With Arnold, I proved synchronizing groups are primitive and gave a sufficient condition for a group to be synchronizing in terms of representation theory that covers the above results.
- João Araújo independently came up with the notion in 2006 and found a beautiful group theoretic reformulation.
- Synchronizing groups have recently received quite a bit of attention from prominent group theorists including Peter Neumann, Jan Saxl, Peter Cameron and Csaba Schneider.

Dubuc's Theorem

 Dubuc extended the second part of Pin's Theorem to arbitrary automata containing a cyclic permutation via an ingenious linear algebraic argument.

The results of Dubuc and Pin make it natural to consider more

Dubuc's Theorem

 Dubuc extended the second part of Pin's Theorem to arbitrary automata containing a cyclic permutation via an ingenious linear algebraic argument.

Theorem (Dubuc '98)

Let $\mathscr{A} = (Q, \Sigma)$ be a synchronizing automaton on n states such that Σ contains a cyclic permutation of the states. Then $\mathscr A$ has a reset word of length at most $(n-1)^2$.

 The results of Dubuc and Pin make it natural to consider more general groups than cyclic groups.

- Let G be a group of order n and Δ a generating set of G.
- The automaton (G, Δ) is called the *Cayley graph* of G with respect to Δ . A typical transition is of the form $q \xrightarrow{a} qa$ with $q \in G$, $a \in \Sigma$.
- Let us say that an automaton \mathscr{A} contains the Cayley graph (G,Δ) if
- So \mathscr{A} is obtained from the Cayley graph by adding new transitions

- Let G be a group of order n and Δ a generating set of G.
- The automaton (G, Δ) is called the *Cayley graph* of G with respect to Δ . A typical transition is of the form $q \xrightarrow{a} qa$ with $q \in G$, $a \in \Sigma$.
- Let us say that an automaton \mathscr{A} contains the Cayley graph (G,Δ) if $\mathscr{A} = (G, \Sigma)$ where $\Delta \subseteq \Sigma$.
- So $\mathscr A$ is obtained from the Cayley graph by adding new transitions but no new states.
- Call (G, Δ) a Černý Cayley graph if every synchronizing automaton

- Let G be a group of order n and Δ a generating set of G.
- The automaton (G, Δ) is called the *Cayley graph* of G with respect to Δ . A typical transition is of the form $q \xrightarrow{a} qa$ with $q \in G$, $a \in \Sigma$.
- Let us say that an automaton \mathscr{A} contains the Cayley graph (G,Δ) if $\mathscr{A} = (G, \Sigma)$ where $\Delta \subseteq \Sigma$.
- So $\mathscr A$ is obtained from the Cayley graph by adding new transitions but no new states.
- ullet Call (G,Δ) a $\check{\mathit{Cerny}}$ Cayley graph if every synchronizing automaton containing it has a reset word of length at most $(n-1)^2$.
- Let's say G is a $\check{C}ern\acute{y}$ group if all its Cayley graphs are $\check{C}ern\acute{y}$ Cayley

- Let G be a group of order n and Δ a generating set of G.
- The automaton (G, Δ) is called the *Cayley graph* of G with respect to Δ . A typical transition is of the form $q \xrightarrow{a} qa$ with $q \in G$, $a \in \Sigma$.
- Let us say that an automaton \mathscr{A} contains the Cayley graph (G,Δ) if $\mathscr{A} = (G, \Sigma)$ where $\Delta \subseteq \Sigma$.
- So $\mathscr A$ is obtained from the Cayley graph by adding new transitions but no new states.
- ullet Call (G,Δ) a $\check{\mathit{Cerny}}$ Cayley graph if every synchronizing automaton containing it has a reset word of length at most $(n-1)^2$.
- Let's say G is a $\check{C}ern\acute{y}$ group if all its Cayley graphs are $\check{C}ern\acute{y}$ Cayley graphs.
- Dubuc's theorem says that $(\mathbb{Z}, \{1\})$ is a Černý Cayley graph.
- Cyclic groups of prime power order are Černý groups.

- Let G be a group of order n and Δ a generating set of G.
- The automaton (G, Δ) is called the *Cayley graph* of G with respect to Δ . A typical transition is of the form $q \xrightarrow{a} qa$ with $q \in G$, $a \in \Sigma$.
- Let us say that an automaton \mathscr{A} contains the Cayley graph (G,Δ) if $\mathscr{A} = (G, \Sigma)$ where $\Delta \subseteq \Sigma$.
- So \mathscr{A} is obtained from the Cayley graph by adding new transitions but no new states.
- ullet Call (G,Δ) a $\check{\mathit{Cerny}}$ Cayley graph if every synchronizing automaton containing it has a reset word of length at most $(n-1)^2$.
- Let's say G is a $\check{C}ern\acute{y}$ group if all its Cayley graphs are $\check{C}ern\acute{y}$ Cayley graphs.
- Dubuc's theorem says that $(\mathbb{Z}, \{1\})$ is a Černý Cayley graph.
- Cyclic groups of prime power order are Černý groups.

Rystsov's Theorem

- The above notion was implicitly considered by Rystsov.
- In 1995, he proved a synchronizing automaton containing the Cayley graph of a group of order n admits a reset word of length $\leq 2(n-1)^2$.
- He proved in fact a slightly better result.
- Let (G, Δ) be a Cayley graph with |G| = n > 1.
- Define $\operatorname{diam}_{\Lambda}(G)$ to be the least m so that any two states of (G, Δ) can be connected by a word of length at most m.
- $1 < \operatorname{diam}_{\Lambda}(G) < n-1$.

•
$$(n-1)^2 = 1 + n(n-2)$$
.

Rystsov's Theorem

- The above notion was implicitly considered by Rystsov.
- In 1995, he proved a synchronizing automaton containing the Cayley graph of a group of order n admits a reset word of length $< 2(n-1)^2$.
- He proved in fact a slightly better result.
- Let (G, Δ) be a Cayley graph with |G| = n > 1.
- Define $\operatorname{diam}_{\Lambda}(G)$ to be the least m so that any two states of (G, Δ) can be connected by a word of length at most m.
- $1 < \operatorname{diam}_{\Lambda}(G) < n-1$.

Theorem (Rystsov '95)

A synchronizing automaton containing the Cayley graph (G, Δ) has a reset word of length at most $1 + (n-1 + \operatorname{diam}_{\Delta}(G))(n-2)$.

•
$$(n-1)^2 = 1 + n(n-2)$$
.

Our Goal

- Recall Rystsov's bound is $1 + (n-1 + \operatorname{diam}_{\Delta}(G))(n-2)$ and $(n-1)^2 = 1 + n(n-2).$
- So Rystsov's bound only achieves the Černý bound when the diameter
- We aim to improve his bound so that in many cases we achieve the
- Even when we do not achieve the Černý bound with our main result,
- Our results lead to several new families of Černý Groups.
- Our main tool is representation theory.

Our Goal

- Recall Rystsov's bound is $1 + (n-1 + \operatorname{diam}_{\Delta}(G))(n-2)$ and $(n-1)^2 = 1 + n(n-2).$
- So Rystsov's bound only achieves the Černý bound when the diameter is 1, i.e., all non-trivial elements of G belong to the generating set.
- We aim to improve his bound so that in many cases we achieve the Černý bound.
- Even when we do not achieve the Černý bound with our main result, our techniques often suffice to establish a family of Cayley graphs is Černý.
- Our results lead to several new families of Černý Groups.
- Our main tool is representation theory.

Representation Theory

- Fix a field K of characteristic 0 (usually \mathbb{Q}).
- All vector spaces V will be over K and finite dimensional.
- Fix a group G of order n.
- A representation of G is a homomorphism $\varphi \colon G \to GL(V)$ to the group of invertible linear transformations on V.
- $\dim V$ is called the *degree* of φ .
- $K^G = \{f : G \to K\}$ is a vector space of dimension n.
- $\lambda: G \to GL(K^G)$ given by

$$\lambda_g(f)(x) = f(xg)$$

Representation Theory

- Fix a field K of characteristic 0 (usually \mathbb{Q}).
- All vector spaces V will be over K and finite dimensional.
- Fix a group G of order n.
- A representation of G is a homomorphism $\varphi \colon G \to GL(V)$ to the group of invertible linear transformations on V.
- $\dim V$ is called the *degree* of φ .
- $K^G = \{f : G \to K\}$ is a vector space of dimension n.
- $\lambda: G \to GL(K^G)$ given by

$$\lambda_g(f)(x) = f(xg)$$

is a representation of degree n called the regular representation.

- Let $\varphi \colon G \to GL(V)$ be a representation.
- $W \leq V$ is called a *G*-invariant subspace if $\varphi_q W \subseteq W$ all $g \in G$.
- 0 and V are the trivial G-invariant subspaces.
- For the regular representation $\lambda \colon G \to GL(K^G)$ there are two important invariant subspaces.
- The subspace V_1 of constant functions is G-invariant.

$$\lambda_g f(x) = f(xg) = c$$

- Let $\varphi \colon G \to GL(V)$ be a representation.
- $W \leq V$ is called a *G*-invariant subspace if $\varphi_q W \subseteq W$ all $g \in G$.
- 0 and V are the trivial G-invariant subspaces.
- For the regular representation $\lambda \colon G \to GL(K^G)$ there are two important invariant subspaces.
- The subspace V_1 of constant functions is G-invariant.
- If f(x) = c all $x \in G$, then

$$\lambda_g f(x) = f(xg) = c$$

- Let $\varphi \colon G \to GL(V)$ be a representation.
- $W \leq V$ is called a *G*-invariant subspace if $\varphi_q W \subseteq W$ all $g \in G$.
- 0 and V are the trivial G-invariant subspaces.
- For the regular representation $\lambda \colon G \to GL(K^G)$ there are two important invariant subspaces.
- The subspace V_1 of constant functions is G-invariant.
- If f(x) = c all $x \in G$, then

$$\lambda_q f(x) = f(xg) = c$$

and so $\lambda_q f = f$. Thus V_1 is G-invariant.

• The space V_0 of all functions f so that $\sum_{x \in G} f(x) = 0$ is also

- Let $\varphi \colon G \to GL(V)$ be a representation.
- $W \leq V$ is called a *G*-invariant subspace if $\varphi_q W \subseteq W$ all $g \in G$.
- 0 and V are the trivial G-invariant subspaces.
- For the regular representation $\lambda \colon G \to GL(K^G)$ there are two important invariant subspaces.
- The subspace V_1 of constant functions is G-invariant.
- If f(x) = c all $x \in G$, then

$$\lambda_q f(x) = f(xg) = c$$

and so $\lambda_q f = f$. Thus V_1 is G-invariant.

• The space V_0 of all functions f so that $\sum_{x \in G} f(x) = 0$ is also G-invariant of dimension n-1.

Irreducible Representations

- A representation $\varphi \colon G \to GL(V)$ is irreducible if it admits no non-trivial G-invariant subspaces.
- A degree 1 representation is obviously irreducible.
- Any representation can be uniquely expressed as a direct sum of irreducible representations (irreps).
- Every irrep appears as summand in the decomposition of the regular representation.
- The degree of any irrep is between 1 and n-1.

Irreducible Representations

- A representation $\varphi \colon G \to GL(V)$ is irreducible if it admits no non-trivial G-invariant subspaces.
- A degree 1 representation is obviously irreducible.
- Any representation can be uniquely expressed as a direct sum of irreducible representations (irreps).
- Every irrep appears as summand in the decomposition of the regular representation.
- The degree of any irrep is between 1 and n-1.

Definition

Define m(G) to be the maximal degree of an irrep of G over \mathbb{Q} .

The Main Result

Theorem (BS)

Let (G, Δ) be a Cayley graph of a group of order n. Then any synchronizing automaton containing (G,Δ) admits a reset word of length at most

$$1 + (n - m(G) + \operatorname{diam}_{\Delta}(G))(n - 2).$$

In particular, if $\operatorname{diam}_{\Delta}(G) \leq m(G)$, then (G, Δ) is a Černý Cayley graph.

- The last statement follows since $(n-1)^2 = 1 + n(n-2)$.
- m(G) = 1 iff $G \cong \mathbb{Z}_2^k$ for some k, as irreps separate points.

The Main Result

Theorem (BS)

Let (G, Δ) be a Cayley graph of a group of order n. Then any synchronizing automaton containing (G, Δ) admits a reset word of length at most

$$1 + (n - m(G) + \operatorname{diam}_{\Delta}(G))(n - 2).$$

In particular, if $\operatorname{diam}_{\Delta}(G) \leq m(G)$, then (G, Δ) is a Černý Cayley graph.

- The last statement follows since $(n-1)^2 = 1 + n(n-2)$.
- m(G) = 1 iff $G \cong \mathbb{Z}_2^k$ for some k, as irreps separate points.
- So we beat Rystsov's bound of $1 + (n-1 + \operatorname{diam}_{\Lambda}(G))(n-2)$ in

The Main Result

Theorem (BS)

Let (G, Δ) be a Cayley graph of a group of order n. Then any synchronizing automaton containing (G, Δ) admits a reset word of length at most

$$1 + (n - m(G) + \operatorname{diam}_{\Delta}(G))(n - 2).$$

In particular, if $\operatorname{diam}_{\Delta}(G) \leq m(G)$, then (G, Δ) is a Černý Cayley graph.

- The last statement follows since $(n-1)^2 = 1 + n(n-2)$.
- m(G) = 1 iff $G \cong \mathbb{Z}_2^k$ for some k, as irreps separate points.
- So we beat Rystsov's bound of $1 + (n-1 + \operatorname{diam}_{\Lambda}(G))(n-2)$ in essentially all cases.

Cyclic groups

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong\bigoplus_{d|n}\mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).

Cyclic groups

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z}) = n-1$, we achieve the Černý bound if and only if

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z})=n-1$, we achieve the Černý bound if and only if $\phi(n) = n - 1.$
- In particular, we recover Pin's Theorem, but not Dubuc's Theorem

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z}) = n-1$, we achieve the Černý bound if and only if $\phi(n) = n - 1.$
- In particular, we recover Pin's Theorem, but not Dubuc's Theorem (although we are very close).
- Suppose p < q are odd primes and n = pq.

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z}) = n-1$, we achieve the Černý bound if and only if $\phi(n) = n - 1.$
- In particular, we recover Pin's Theorem, but not Dubuc's Theorem (although we are very close).
- Suppose p < q are odd primes and n = pq.
- Then $\operatorname{diam}_{\{p,q\}}(\mathbb{Z}_n) = q 1 + p 1 \ (\mathbb{Z}_n \cong \mathbb{Z}_q \times \mathbb{Z}_p).$
- $\phi(n) = (p-1)(q-1) \ge q-1+p-1.$

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1)\cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z}) = n-1$, we achieve the Černý bound if and only if $\phi(n) = n - 1.$
- In particular, we recover Pin's Theorem, but not Dubuc's Theorem (although we are very close).
- Suppose p < q are odd primes and n = pq.
- Then $\operatorname{diam}_{\{p,q\}}(\mathbb{Z}_n) = q 1 + p 1 \ (\mathbb{Z}_n \cong \mathbb{Z}_q \times \mathbb{Z}_p).$
- $\phi(n) = (p-1)(q-1) > q-1+p-1.$
- So $(\mathbb{Z}_{pq}, \{p, q\})$ is a Černý Cayley graph.

- The regular representation of \mathbb{Z}_n is isomorphic to $\mathbb{Q}[x]/(x^n-1)$ where the generator acts by multiplication by x.
- $\mathbb{Q}[x]/(x^n-1) \cong \bigoplus_{d|n} \mathbb{Q}(\zeta_d)$ (ζ_d is a primitive d^{th} -root of unity).
- So $m(\mathbb{Z}_n) = \phi(n)$.
- As $\operatorname{diam}_{\{1\}}(\mathbb{Z}) = n-1$, we achieve the Černý bound if and only if $\phi(n) = n - 1.$
- In particular, we recover Pin's Theorem, but not Dubuc's Theorem (although we are very close).
- Suppose p < q are odd primes and n = pq.
- Then $\operatorname{diam}_{\{p,q\}}(\mathbb{Z}_n) = q 1 + p 1 \ (\mathbb{Z}_n \cong \mathbb{Z}_q \times \mathbb{Z}_p).$
- $\phi(n) = (p-1)(q-1) > q-1+p-1.$
- So $(\mathbb{Z}_{pq}, \{p, q\})$ is a Černý Cayley graph.

- Let p be a prime.
- ullet To show that \mathbb{Z}_n^k is a Černý group, it suffices to consider the Cayely graph with respect to a basis Δ .
- diam $_{\Delta}(\mathbb{Z}_{p}^{k}) = k(p-1)$.

- Let p be a prime.
- ullet To show that \mathbb{Z}_n^k is a Černý group, it suffices to consider the Cayely graph with respect to a basis Δ .
- diam $_{\Delta}(\mathbb{Z}_{p}^{k}) = k(p-1)$.
- One can prove $m(\mathbb{Z}_n^k) = p-1$: each irrep factors through a map to
- Our bound therefore is not strong enough when k > 1. Nonetheless

- Let p be a prime.
- ullet To show that \mathbb{Z}_n^k is a Černý group, it suffices to consider the Cayely graph with respect to a basis Δ .
- diam $_{\Delta}(\mathbb{Z}_{p}^{k}) = k(p-1)$.
- One can prove $m(\mathbb{Z}_p^k) = p-1$: each irrep factors through a map to \mathbb{Z}_p .
- Our bound therefore is not strong enough when k > 1. Nonetheless we can prove:

- Let p be a prime.
- ullet To show that \mathbb{Z}_n^k is a Černý group, it suffices to consider the Cayely graph with respect to a basis Δ .
- diam $_{\Delta}(\mathbb{Z}_{p}^{k}) = k(p-1)$.
- One can prove $m(\mathbb{Z}_p^k) = p-1$: each irrep factors through a map to \mathbb{Z}_p .
- Our bound therefore is not strong enough when k > 1. Nonetheless we can prove:

Theorem (BS)

The group \mathbb{Z}_p^k is a Černý group for p prime, all $k \geq 1$.

- Let D_n be the dihedral group of order 2n (symmetry group of a regular n-gon).
- Let Δ consist of a reflection and a rotation by $2\pi/n$.
- Then diam $_{\Delta}(D_n) \leq \lceil \frac{n+1}{2} \rceil$.

- Let D_n be the dihedral group of order 2n (symmetry group of a regular n-gon).
- Let Δ consist of a reflection and a rotation by $2\pi/n$.
- Then diam $_{\Delta}(D_n) \leq \lceil \frac{n+1}{2} \rceil$.
- One can prove $m(D_n) = \phi(n)$. (Act on $\mathbb{Q}(\zeta_n)$ by having the

- Let D_n be the dihedral group of order 2n (symmetry group of a regular n-gon).
- Let Δ consist of a reflection and a rotation by $2\pi/n$.
- Then diam $_{\Delta}(D_n) \leq \lceil \frac{n+1}{2} \rceil$.
- One can prove $m(D_n) = \phi(n)$. (Act on $\mathbb{Q}(\zeta_n)$ by having the reflection act as complex conjugation and the rotation act as multiplication by ζ_n .)
- If $n = p^a q^b$ where $p \leq q$ are odd primes, then one verifies that

- Let D_n be the dihedral group of order 2n (symmetry group of a regular n-gon).
- Let Δ consist of a reflection and a rotation by $2\pi/n$.
- Then diam $_{\Delta}(D_n) \leq \lceil \frac{n+1}{2} \rceil$.
- One can prove $m(D_n) = \phi(n)$. (Act on $\mathbb{Q}(\zeta_n)$ by having the reflection act as complex conjugation and the rotation act as multiplication by ζ_n .)
- If $n = p^a q^b$ where $p \le q$ are odd primes, then one verifies that $\lceil \frac{n+1}{2} \rceil \leq \phi(n)$ and so we obtain a Černý Cayley graph.

- Let D_n be the dihedral group of order 2n (symmetry group of a regular n-gon).
- Let Δ consist of a reflection and a rotation by $2\pi/n$.
- Then diam $_{\Delta}(D_n) \leq \lceil \frac{n+1}{2} \rceil$.
- One can prove $m(D_n) = \phi(n)$. (Act on $\mathbb{Q}(\zeta_n)$ by having the reflection act as complex conjugation and the rotation act as multiplication by ζ_n .)
- If $n = p^a q^b$ where $p \le q$ are odd primes, then one verifies that $\lceil \frac{n+1}{2} \rceil \leq \phi(n)$ and so we obtain a Černý Cayley graph.

Theorem (BS)

Let p be an odd prime. Then D_p and D_{p^2} are Černý groups.

- It is known that the symmetric group S_n has p_n irreducible representations over \mathbb{Q} where p_n is the number of partitions of n.
- The sum of the squares of the degrees of the irreps of S_n is n!.
- Thus $m(S_n)^2 p_n \geq n!$, i.e., $m(S_n) \geq \sqrt{n!/p_n}$.

- It is known that the symmetric group S_n has p_n irreducible representations over \mathbb{Q} where p_n is the number of partitions of n.
- The sum of the squares of the degrees of the irreps of S_n is n!.
- Thus $m(S_n)^2 p_n \geq n!$, i.e., $m(S_n) \geq \sqrt{n!/p_n}$.
- $p_n \sim \frac{\exp\left(\pi\sqrt{2n/3}\right)}{4n\sqrt{3}}$ and $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.
- Therefore, $m(S_n)$ grows extremely quickly as a function of n.

- It is known that the symmetric group S_n has p_n irreducible representations over \mathbb{Q} where p_n is the number of partitions of n.
- The sum of the squares of the degrees of the irreps of S_n is n!.
- Thus $m(S_n)^2 p_n \geq n!$, i.e., $m(S_n) \geq \sqrt{n!/p_n}$.
- $p_n \sim \frac{\exp\left(\pi\sqrt{2n/3}\right)}{4n\sqrt{3}}$ and $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.
- Therefore, $m(S_n)$ grows extremely quickly as a function of n.
- With Coxeter-Moore generators $(1\ 2), (2\ 3), \ldots, (n-1\ n)$, the

- It is known that the symmetric group S_n has p_n irreducible representations over \mathbb{Q} where p_n is the number of partitions of n.
- The sum of the squares of the degrees of the irreps of S_n is n!.
- Thus $m(S_n)^2 p_n \geq n!$, i.e., $m(S_n) \geq \sqrt{n!/p_n}$.
- $p_n \sim \frac{\exp\left(\pi\sqrt{2n/3}\right)}{4n\sqrt{3}}$ and $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.
- Therefore, $m(S_n)$ grows extremely quickly as a function of n.
- With Coxeter-Moore generators $(1\ 2), (2\ 3), \ldots, (n-1\ n)$, the diameter is $\binom{n}{2}$ [think "Bubble Sort"] and so we obtain a Černý Cayley graph for n large enough.
- With the generating set $(1\ 2), (1\ 2\ \cdots n)$, the diameter of S_n is at

- It is known that the symmetric group S_n has p_n irreducible representations over \mathbb{Q} where p_n is the number of partitions of n.
- The sum of the squares of the degrees of the irreps of S_n is n!.
- Thus $m(S_n)^2 p_n \geq n!$, i.e., $m(S_n) \geq \sqrt{n!/p_n}$.
- $p_n \sim \frac{\exp\left(\pi\sqrt{2n/3}\right)}{4n\sqrt{3}}$ and $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.
- Therefore, $m(S_n)$ grows extremely quickly as a function of n.
- With Coxeter-Moore generators $(1\ 2), (2\ 3), \ldots, (n-1\ n)$, the diameter is $\binom{n}{2}$ [think "Bubble Sort"] and so we obtain a Černý Cayley graph for n large enough.
- With the generating set $(1\ 2), (1\ 2\ \cdots n)$, the diameter of S_n is at most $\binom{n}{2}(n+1)$ and so we again get a Černý Cayley graph for n large enough.

Affine Groups

- Let p be a prime.
- The affine group AG(1,p) is the group of all functions $f: \mathbb{Z}_p \to \mathbb{Z}_p$ of the form f(x) = ax + b with $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$.
- $AG(1,p) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p^*$.
- It turns out m(AG(1,p)) = p-1 (act on $\mathbb{Q}[\zeta_p]$), which is not in general larger than the diameter.

Affine Groups

- Let p be a prime.
- The affine group AG(1,p) is the group of all functions $f: \mathbb{Z}_p \to \mathbb{Z}_p$ of the form f(x) = ax + b with $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$.
- $AG(1,p) \cong \mathbb{Z}_p \rtimes \mathbb{Z}_n^*$.
- It turns out m(AG(1,p)) = p-1 (act on $\mathbb{Q}[\zeta_p]$), which is not in general larger than the diameter.

Theorem (BS)

Let Δ be a generating set for AG(1,p) so that each translation can be represented by a word in Δ^* of length at most p-1. Then $(AG(1,p),\Delta)$ is a Černý Cayley graph. This applies in particular if Δ contains a translation.

Special Linear Groups

- Let p be a prime.
- $SL(2,p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a,b,c,d \in \mathbb{Z}_p, ad bc = 1 \right\}.$
- A standard generating set Δ for SL(2,p) consists of the matrices

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Special Linear Groups

- Let p be a prime.
- $SL(2,p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a,b,c,d \in \mathbb{Z}_p, ad bc = 1 \right\}.$
- A standard generating set Δ for SL(2,p) consists of the matrices

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

- The diameter with this generating set is no more than 3p-2.
- Estimating m(SL(2, p)) is a bit more complicated.

Special Linear Groups

- Let p be a prime.
- $SL(2,p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a,b,c,d \in \mathbb{Z}_p, ad bc = 1 \right\}.$
- A standard generating set Δ for SL(2,p) consists of the matrices

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

- The diameter with this generating set is no more than 3p-2.
- Estimating m(SL(2,p)) is a bit more complicated.

- To estimate m(SL(2, p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K \leq \mathbb{C}$.
- The *character* χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_g)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).

- To estimate m(SL(2, p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K \leq \mathbb{C}$.
- The character χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_q)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).
- A representation is determined up to isomorphism by its character.

- To estimate m(SL(2, p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K < \mathbb{C}$.
- The character χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_q)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).
- A representation is determined up to isomorphism by its character.
- If |G| = n, then $\chi_{\omega}(q)$ is a sum of n^{th} -roots of unity.

- To estimate m(SL(2,p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K < \mathbb{C}$.
- The character χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_q)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).
- A representation is determined up to isomorphism by its character.
- If |G| = n, then $\chi_{\varphi}(g)$ is a sum of n^{th} -roots of unity.
- The character field $\mathbb{Q}(\chi_{\varphi})$ is the field extension of \mathbb{Q} generated by the

- To estimate m(SL(2,p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K < \mathbb{C}$.
- The character χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_q)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).
- A representation is determined up to isomorphism by its character.
- If |G| = n, then $\chi_{\varphi}(g)$ is a sum of n^{th} -roots of unity.
- The character field $\mathbb{Q}(\chi_{\omega})$ is the field extension of \mathbb{Q} generated by the $\chi_{\omega}(g)$ with $g \in G$.
- It is a finite Galois extension of O.

- To estimate m(SL(2, p)) we make use of character theory.
- Let $\varphi \colon G \to GL(V)$ be a representation of G over $K \leq \mathbb{C}$.
- The character χ_{φ} of φ is defined by $\chi_{\varphi}(g) = \operatorname{Trace}(\varphi_q)$.
- $\chi_{\varphi}(1)$ is the degree of φ (it is the trace of the identity map).
- A representation is determined up to isomorphism by its character.
- If |G| = n, then $\chi_{\varphi}(g)$ is a sum of n^{th} -roots of unity.
- The character field $\mathbb{Q}(\chi_{\omega})$ is the field extension of \mathbb{Q} generated by the $\chi_{\omega}(g)$ with $g \in G$.
- It is a finite Galois extension of Q.

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(q) = h(\chi(q))$.

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(g) = h(\chi(g))$.
- There is a unique integer $m(\chi)$ (called the Schur index of χ) so that

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(q) = h(\chi(q))$.
- There is a unique integer $m(\chi)$ (called the *Schur index* of χ) so that

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

is an irreducible rational character of G.

- All irreducible rational characters of G are obtained this way.

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(q) = h(\chi(q))$.
- There is a unique integer $m(\chi)$ (called the *Schur index* of χ) so that

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

is an irreducible rational character of G.

- All irreducible rational characters of G are obtained this way.

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(q) = h(\chi(q))$.
- There is a unique integer $m(\chi)$ (called the *Schur index* of χ) so that

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

is an irreducible rational character of G.

- All irreducible rational characters of G are obtained this way.
- The Schur index is difficult to calculate.
- But the degree of $\tilde{\chi}$ is $\tilde{\chi}(1) = m(\chi) \cdot |H| \cdot \chi(1) > [\mathbb{Q}(\chi) : \mathbb{Q}]\chi(1)$.

Schur Index

- Let χ be an irreducible complex character of G and let $H = \operatorname{Gal}(\mathbb{Q}(\chi) : \mathbb{Q}).$
- So $|H| = [\mathbb{Q}(\chi) : \mathbb{Q}].$
- For $h \in H$, define $h \cdot \chi$ by $h \cdot \chi(q) = h(\chi(q))$.
- There is a unique integer $m(\chi)$ (called the *Schur index* of χ) so that

$$\tilde{\chi} = m(\chi) \cdot \sum_{h \in H} h \cdot \chi$$

is an irreducible rational character of G.

- All irreducible rational characters of G are obtained this way.
- The Schur index is difficult to calculate.
- But the degree of $\tilde{\chi}$ is $\tilde{\chi}(1) = m(\chi) \cdot |H| \cdot \chi(1) > [\mathbb{Q}(\chi) : \mathbb{Q}]\chi(1)$.

- Computation of the irreducible complex characters of SL(2,p) go back to Frobenius and Schur.
- SL(2,p) has irreducible complex characters χ_1 and χ_2 of degrees p+1 and p-1 (respectively) with respective character fields $\mathbb{Q}(\cos\frac{2\pi}{n-1})$ and $\mathbb{Q}(\cos\frac{2\pi}{n+1})$.
- If $n \geq 3$, then $[\mathbb{Q}(\cos 2\pi/n) : \mathbb{Q}] = \phi(n)/2$.

- Computation of the irreducible complex characters of SL(2,p) go back to Frobenius and Schur.
- SL(2,p) has irreducible complex characters χ_1 and χ_2 of degrees p+1 and p-1 (respectively) with respective character fields $\mathbb{Q}(\cos\frac{2\pi}{n-1})$ and $\mathbb{Q}(\cos\frac{2\pi}{n+1})$.
- If $n \geq 3$, then $[\mathbb{Q}(\cos 2\pi/n) : \mathbb{Q}] = \phi(n)/2$.
- Thus $m(SL(2,p)) \ge \max \left\{ (p+1) \frac{\phi(p-1)}{2}, (p-1) \frac{\phi(p+1)}{2} \right\}.$

- Computation of the irreducible complex characters of SL(2,p) go back to Frobenius and Schur.
- SL(2,p) has irreducible complex characters χ_1 and χ_2 of degrees p+1 and p-1 (respectively) with respective character fields $\mathbb{Q}(\cos\frac{2\pi}{n-1})$ and $\mathbb{Q}(\cos\frac{2\pi}{n+1})$.
- If $n \geq 3$, then $[\mathbb{Q}(\cos 2\pi/n) : \mathbb{Q}] = \phi(n)/2$.
- Thus $m(SL(2,p)) \ge \max \left\{ (p+1) \frac{\phi(p-1)}{2}, (p-1) \frac{\phi(p+1)}{2} \right\}.$
- The diameter of the Cayley graph of SL(2,p) with our generators was

- Computation of the irreducible complex characters of SL(2,p) go back to Frobenius and Schur.
- SL(2,p) has irreducible complex characters χ_1 and χ_2 of degrees p+1 and p-1 (respectively) with respective character fields $\mathbb{Q}(\cos\frac{2\pi}{n-1})$ and $\mathbb{Q}(\cos\frac{2\pi}{n+1})$.
- If $n \geq 3$, then $[\mathbb{Q}(\cos 2\pi/n) : \mathbb{Q}] = \phi(n)/2$.
- Thus $m(SL(2,p)) \ge \max \Big\{ (p+1) \frac{\phi(p-1)}{2}, (p-1) \frac{\phi(p+1)}{2} \Big\}.$
- The diameter of the Cayley graph of SL(2,p) with our generators was at most 3p-2.

- Computation of the irreducible complex characters of SL(2,p) go back to Frobenius and Schur.
- SL(2,p) has irreducible complex characters χ_1 and χ_2 of degrees p+1 and p-1 (respectively) with respective character fields $\mathbb{Q}(\cos\frac{2\pi}{n-1})$ and $\mathbb{Q}(\cos\frac{2\pi}{n+1})$.
- If $n \geq 3$, then $[\mathbb{Q}(\cos 2\pi/n) : \mathbb{Q}] = \phi(n)/2$.
- Thus $m(SL(2,p)) \ge \max \left\{ (p+1) \frac{\phi(p-1)}{2}, (p-1) \frac{\phi(p+1)}{2} \right\}.$
- The diameter of the Cayley graph of SL(2,p) with our generators was at most 3p-2.

Theorem (BS)

Let $p \ge 17$ be a prime. Then the Cayley graph of SL(2,p) with respect to the generators $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is a Černý Cayley graph.

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subsetneq G$, there exists $w \in \Sigma^*$ so that $|w| \le n - m(G) + \operatorname{diam}_{\Delta}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subsetneq G$, there exists $w \in \Sigma^*$ so that $|w| \le n - m(G) + \operatorname{diam}_{\Delta}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.
- Then we expand n-2 times by words of length at most

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subseteq G$, there exists $w \in \Sigma^*$ so that $|w| < n - m(G) + \operatorname{diam}_{\Lambda}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.
- Then we expand n-2 times by words of length at most $n - m(G) + \operatorname{diam}_{\Lambda}(G)$.
- This gives a reset word of length at most

$$V_0 = G \cdot \chi_S$$
 and $V_k = G \cdot \Sigma \cdot V_{k-1}$.

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subseteq G$, there exists $w \in \Sigma^*$ so that $|w| < n - m(G) + \operatorname{diam}_{\Lambda}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.
- Then we expand n-2 times by words of length at most $n - m(G) + \operatorname{diam}_{\Lambda}(G)$.
- This gives a reset word of length at most $1 + (n - m(G) + \operatorname{diam}_{\Lambda}(G))(n - 2).$
- We do this by studying the tower $\{V_k\}$ of G-invariant subspace of the

$$V_0 = G \cdot \chi_S$$
 and $V_k = G \cdot \Sigma \cdot V_{k-1}$.

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subseteq G$, there exists $w \in \Sigma^*$ so that $|w| < n - m(G) + \operatorname{diam}_{\Lambda}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.
- Then we expand n-2 times by words of length at most $n - m(G) + \operatorname{diam}_{\Lambda}(G)$.
- This gives a reset word of length at most $1 + (n - m(G) + \operatorname{diam}_{\Lambda}(G))(n - 2).$
- We do this by studying the tower $\{V_k\}$ of G-invariant subspace of the regular representation of G where

$$V_0 = G \cdot \chi_S$$
 and $V_k = G \cdot \Sigma \cdot V_{k-1}$.

- Let (G, Σ) be a synchronizing automaton containing the Cayley graph of (G, Δ) .
- Our goal is to show that, for any $S \subseteq G$, there exists $w \in \Sigma^*$ so that $|w| < n - m(G) + \operatorname{diam}_{\Lambda}(G) \text{ and } |Sw^{-1}| > |S|.$
- With one letter we can "expand" a subset of size 1 to size 2.
- Then we expand n-2 times by words of length at most $n - m(G) + \operatorname{diam}_{\Lambda}(G)$.
- This gives a reset word of length at most $1 + (n - m(G) + \operatorname{diam}_{\Lambda}(G))(n - 2).$
- We do this by studying the tower $\{V_k\}$ of G-invariant subspace of the regular representation of G where

$$V_0 = G \cdot \chi_S$$
 and $V_k = G \cdot \Sigma \cdot V_{k-1}$.

- A number of questions remain open.
- Is every cyclic group a Černý group?

- A number of questions remain open.
- Is every cyclic group a Černý group?
- Is every abelian group a Černý group?

- A number of questions remain open.
- Is every cyclic group a Černý group?
- Is every abelian group a Černý group?
- Is every dihedral group a Černý group?

- A number of questions remain open.
- Is every cyclic group a Černý group?
- Is every abelian group a Černý group?
- Is every dihedral group a Černý group?
- Is every group a Černý group?

- A number of questions remain open.
- Is every cyclic group a Černý group?
- Is every abelian group a Černý group?
- Is every dihedral group a Černý group?
- Is every group a Černý group?

The End

Thanks for your attention!