The strength of the linear relationship between Y and the set of predictors X_1, X_2, \dots, X_p can be assessed through the examination of the scatter plot of Y versus \hat{Y} and the correlation coefficient between Y and \hat{Y} , which is given by

$$Cor(Y, \hat{Y}) = \frac{\sum (y_i - \bar{y})(\hat{y}_i - \bar{\hat{y}})}{\sqrt{\sum (y_i - \bar{y})^2 \sum (\hat{y}_i - \bar{\hat{y}})^2}},$$
 (3.28)

where \bar{y} is the mean of the response variable Y and \bar{y} is the mean of the fitted values. As in the simple regression case, the coefficient of determination $R^2 = [\text{Cor}(Y, \hat{Y})]^2$ is also given by

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}},$$
 (3.29)

Thus, R^2 may be interpreted as the proportion of the total variability in

the response variable Y that can be accounted for by the set of predictor variables X_1, X_2, \dots, X_p . In multiple regression, $R = \sqrt{R^2}$ is called the *multiple correlation coefficient* because it measures the relationship between one variable Y and a set of variables X_1, X_2, \dots, X_p .

$$\hat{b}_{0} = \overline{Y} - b_{1} \overline{X}_{1} - b_{2} \overline{X}_{2} \qquad \text{whereas} \\ x_{1} = x_{1} - \overline{x_{1}} \\ x_{2} = x_{2} - \overline{x_{2}} \\ \hat{b}_{1} = \frac{(\sum x_{2}^{2})(\sum x_{1}y) - (\sum x_{1}x_{2})(\sum x_{2}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}} \qquad y_{1} = y - \overline{y}$$

$$\hat{b}_{2} = \frac{(\sum x_{1}^{2})(\sum x_{2}y) - (\sum x_{1}x_{2})(\sum x_{1}y)}{(\sum x_{1}^{2})(\sum x_{2}^{2}) - (\sum x_{1}x_{2})^{2}}$$

	MULTIPLE LINEAR REGRESSION - EXAMPLE - 03 SEP 2020												
SNO	QD (Y)	Price (X1)	Income (X2)	у	x1	x2	y2	(x1)2	(x2)2	y * x1	y * x2	x1 * x2	
1	100	5	1000	20	-1	200	400	1	40000	-20	4000	-200	
2	75	7	600	-5	1	-200	25	1	40000	-5	1000	-200	
3	80	6	1200	0	0	400	0	0	160000	0	0	0	
4	70	6	500	-10	0	-300	100	0	90000	0	3000	0	
5	50	8	300	-30	2	-500	900	4	250000	-60	15000	-1000	
6	65	7	400	-15	1	-400	225	1	160000	-15	6000	-400	
7	90	5	1300	10	-1	500	100	1	250000	-10	5000	-500	
8	100	4	1100	20	-2	300	400	4	90000	-40	6000	-600	
9	110	3	1300	30	-3	500	900	9	250000	-90	15000	-1500	
10	60	9	300	-20	3	-500	400	9	9 250000		10000	-1500	
	800	60	8000	0	0	0	3450	30	1580000	-300	65000	-5900	
	count(n)	10											
	Mean(Y)	80											
	Mean(X1)	6											
	Mean(X2)	800	00			Beta1 cap	NR =	-90500000	NR/DR =	-7.188			
						регат сар	DR =	12590000					
						D-4-2 C	NR =	180000	NR/DR	0.0143			
						Beta2 Cap	DR =	12590000					
						Beta0 Cap	68.56						

MULTIPLE LINEAR REGRESSION

Miles Traveled (X1)	Num Deliveries (X2)	Travel Time (hrs) (Y)			
, ,		7			
69	4	7			
66	1	5.4			
78	3	6.6			
111	6	7.4			
44	1	4.8			
77	3	6.4			
80	3	7			
66	2	5.6			
109	5	7.3			
76	3	6.4			
	Traveled (X1) 89 66 78 111 44 77 80 66 109	Traveled (X1) Deliveries (X2) 89 4 66 1 78 3 111 6 44 1 77 3 80 3 66 2 109 5			

																				_	_			
	\ /\		••	_	••		_			М							_			~		10		
_	V		•			v				M	_	Δ		4	w			ĸ	_	•			ш	MI.
	v	L	L				_	_	••	w	_	_	V D		•	_	u	1	_	Э.	91	\sim		•

SNO	Miles Num Traveled Deliveries (X1) (X2)		gasPrice (X3)	Travel Time (hrs) (Y)		
1	89	4	3.84	7		
2	66	1	3.19	5.4		
3	78	3	3.78	6.6		
4	111	6	3.89	7.4		
5	44	1	3.57	4.8		
6	77	3	3.57	6.4		
7	80	3	3.03	7		
8	66	2	3.51	5.6		
9	109	5	3.54	7.3		
10	76	3	3.25	6.4		

MULTIPLE REGRESSION PROCESS

As we discussed in Parts 1 & 2, conducting multiple regression analysis requires a fair amount of pre-work before actually running the regression. Here are the steps:

- 1. Generate a list of potential variables; independent(s) and dependent
- 2. Collect data on the variables
- 3. Check the relationships between each independent variable and the dependent variable using scatterplots and correlations
- Check the relationships among the independent variables using scatterplots and correlations
- 5. (Optional) Conduct simple linear regressions for each IV/DV pair
- 6. Use the non-redundant independent variables in the analysis to find the best fitting model
- 7. Use the best fitting model to make predictions about the dependent variable.

RDS DATA AND VARIABLE NAMING

To conduct your analysis you take a random sample of 10 past trips and record four pieces of information for each trip: 1) total miles traveled, 2) number of deliveries, 3) the daily gas price, and 4) total travel time in hours.

$milesTraveled, (x_1)$	numDeliveries, (x_2)	gasPrice,(x3)	travelTime(hrs),(y)
89	4	3.84	7
66	1	3.19	5.4
78	3	3.78	6.6
111	6	3.89	7.4
44	1	3.57	4.8
77	3	3.57	6.4
80	3	3.03	7
66	2	3.51	5.6
109	5	3.54	7.3
76	3	3.25	6.4

SKETCHING OUT RELATIONSHIPS

DV VS IV SCATTERPLOTS

IV SCATTERPLOTS (MULTICOLLINEARITY)

CORRELATION SUMMARY

- Correlation analysis confirms the conclusions reached by visual examination of the scatterplots
- Redundant multicollinear variables
 - milesTraveled and numDeliveries are both highly correlated with each other and therefore are redundant; only one should used in the multiple regression analysis
- Non-contributing variables
 - gasPrice is NOT correlated with the depended variable and should be excluded

VARIABLE REGRESSIONS

- In this first step, we will perform a simple regression for each independent variable individually. The first will be conducted in Excel then the rest in Minitab (SPSS, SAS, JMP, R, etc. are all fine as well)
- We will discuss interpretations of results
- We will note how our results change:
 - Coefficients
 - Values, t-statistic, p-value
 - Analysis of Variance (ANOVA)
 - F-value, p-value
 - R-squared, R-squared(adjusted), R-squared(predicted)
 - VIF (Variance Inflation Factor)
 - Mallows C_p

BIVARIATE STATISTICS

The value of one variable, is a function of the other variable.

The value of y, is a function of x; y = f(x).

The value of the dependent variable, is a function of the independent variable.

ALGEBRA REVIEW: LINES

SIMPLE LINEAR REGRESSION MODEL

DISTRIBUTION OF y-VALUES

GENERAL REGRESSION LINES

REGRESSION EQUATION WITH ESTIMATES

If we actually knew the population parameters, β_0 and β_1 , we could use the Simple Linear Regression Equation.

$$E(y) = \beta_0 + \beta_1 x$$

In reality we almost never have the population parameters. Therefore we will estimate them using sample data. When using sample data, we have to change our equation a little bit.

 \hat{y} , pronounced "y-hat" is the point estimator of E(y)

$$\hat{y} = b_0 + b_1 x$$

 $\hat{y} = b_0 + b_1 x$ \hat{y} , is the mean value of y for a given value of x.

DISTRIBUTION OF SAMPLE y-VALUES

WHEN THE SLOPE, $\beta_1 = 0$

When conducting simple linear regression with TWO variables, we will determine how good the regression line "fits" the data by comparing it to THIS TYPE; where we pretend the second variable does not even exist; the slope, $\beta_1=0$.

In this situation, the value of \hat{y} is 10 for every value of x.

$$\hat{y} = b_0 + b_1 x$$

$$\hat{y} = b_0 + (0) x$$

$$\hat{y} = b_0$$

$$\hat{y} = 10$$

PATTERN MATCHING TO GENERAL REGRESSION MODELS

PATTERN MATCHING TO GENERAL REGRESSION MODELS

GETTING READY FOR LEAST SQUARES

