Sean Li

Made with TiKT

Sean Li

Generated June 11, 2020

1 Problems

- 1. The residents of the local zoo are either rabbits or foxes. The ratio of foxes to rabbits in the zoo is 2:3. After 10 of the foxes move out of town and half the rabbits move to Rabbitretreat, the ratio of foxes to rabbits is 13:10. How many animals are left in the zoo?
- 2. Arnold is studying the prevalence of three health risk factors, denoted by A, B, and C, within a population of men. For each of the three factors, the probability that a randomly selected man in the population has only this risk factor (and none of the others) is 0.1. For any two of the three factors, the probability that a randomly selected man has exactly these two risk factors (but not the third) is 0.14. The probability that a randomly selected man has all three risk factors, given that he has A and B is $\frac{1}{3}$. The probability that a man has none of the three risk factors given that he does not have risk factor A is $\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.
- 3. Patio blocks that are hexagons 1 unit on a side are used to outline a garden by placing the blocks edge to edge with n on each side. The diagram indicates the path of blocks around the garden when n = 5.

Sean Li

If n = 202, then the area of the garden enclosed by the path, not including the path itself, is $m(\sqrt{3}/2)$ square units, where m is a positive integer. Find the remainder when m is divided by 1000.

- 4. Point B is on \overline{AC} with AB = 9 and BC = 21. Point D is not on \overline{AC} so that AD = CD, and AD and BD are integers. Let s be the sum of all possible perimeters of $\triangle ACD$. Find s.
- 5. It is known that, for all positive integers k, $1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6}$. Find the smallest positive integer k such that $1^2 + 2^2 + 3^2 + \ldots + k^2$ is a multiple of 200.
- 6. Call a set S product-free if there do not exist $a, b, c \in S$ (not necessarily distinct) such that ab = c. For example, the empty set and the set $\{16, 20\}$ are product-free, whereas the sets $\{4, 16\}$ and $\{2, 8, 16\}$ are not product-free. Find the number of product-free subsets of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
- 7. Triangle ABC has side lengths AB = 12, BC = 25, and CA = 17. Rectangle PQRS has vertex P on \overline{AB} , vertex Q on \overline{AC} , and vertices R and S on \overline{BC} . In terms of the side length PQ = w, the area of PQRS can be expressed as the quadratic polynomial

$$Area(PQRS) = \alpha w - \beta \cdot w^2.$$

Then the coefficient $\beta = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

- 8. Let S be the sphere with center (0,0,1) and radius 1 in \mathbb{R}^3 . A plane \mathcal{P} is tangent to S at the point (x_0,y_0,z_0) , where x_0 , y_0 , and z_0 are all positive. Suppose the intersection of plane \mathcal{P} with the xy-plane is the line with equation 2x + y = 10 in xy-space. What is z_0 ?
- 9. Suppose a, b, and c are nonzero real numbers such that

$$bc + \frac{1}{a} = ca + \frac{2}{b} = ab + \frac{7}{c} = \frac{1}{a+b+c}$$
.

Find a + b + c.

- 10. Find the least odd prime factor of $2019^8 + 1$.
- 11. Find the sum of all positive integers n such that, given an unlimited supply of stamps of denominations 5, n, and n + 1 cents, 91 cents is the greatest postage that cannot be formed.
- 12. Let $\triangle PQR$ be a triangle with $\angle P=75^\circ$ and $\angle Q=60^\circ$. A regular hexagon ABCDEF with side length 1 is drawn inside $\triangle PQR$ so that side \overline{AB} lies on \overline{PQ} , side \overline{CD} lies on \overline{QR} , and one of the remaining vertices lies on \overline{RP} . There are positive integers a,b,c, and d such that the area of $\triangle PQR$ can be expressed in the form $\frac{a+b\sqrt{c}}{d}$, where a and d are relatively prime, and c is not divisible by the square of any prime. Find a+b+c+d.
- 13. Let S be the set of all permutations of $\{1, 2, 3, 4, 5\}$. For $s = (a_1, a_2, a_3, a_4, a_5) \in S$, define nimo(s) to be the sum of all indices $i \in \{1, 2, 3, 4\}$ for which $a_i > a_{i+1}$. For instance, if s = (2, 3, 1, 5, 4), then nimo(s) = 2 + 4 = 6. Compute

$$\sum_{s \in S} 2^{\text{nimo}(s)}.$$

- 14. From the set of integers $\{1, 2, 3, \ldots, 2009\}$, choose k pairs $\{a_i, b_i\}$ with $a_i < b_i$ so that no two pairs have a common element. Suppose that all the sums $a_i + b_i$ are distinct and less than or equal to 2009. Find the maximum possible value of k.
- 15. Given that

$$\sum_{x=1}^{70} \sum_{y=1}^{70} \frac{x^y}{y} = \frac{m}{67!}$$

for some positive integer m, find $m \pmod{71}$.

Sean Li Sean Li

2 Answers

1. 690. Source: CMIMC 2017 Algebra 1

Solution: http://cmimc-official.herokuapp.com/docs/past-tests/2017_Algebra_S.pdf

2. 76. Source: AIME 2014 II 2

Solution: https://artofproblemsolving.com/wiki/index.php/2014_AIME_II_Problems/Problem_2

3. 803. Source: AIME 2002 II 4

Solution: https://artofproblemsolving.com/wiki/index.php/2002_AIME_II_Problems/Problem_4

4. 380. Source: AIME 2003 I 7

Solution: https://artofproblemsolving.com/wiki/index.php/2003_AIME_I_Problems/Problem_7

5. 112. Source: AIME 2002 II 7

Solution: https://artofproblemsolving.com/wiki/index.php/2002_AIME_II_Problems/Problem_7

6. 252. Source: AIME 2017 I 12

Solution: https://artofproblemsolving.com/wiki/index.php/2017_AIME_I_Problems/Problem_12

7. 161. Source: AIME 2015 II 7

Solution: https://artofproblemsolving.com/wiki/index.php/2015_AIME_II_Problems/Problem_7

8. 40/21. Source: CMIMC 2017 Geometry 4

Solution: http://cmimc-official.herokuapp.com/docs/past-tests/2017_Geometry_S.pdf

9. $-\frac{\sqrt[3]{3}}{2}$. Source: CMIMC 2018 Algebra 5

Solution: http://cmimc-official.herokuapp.com/docs/past-tests/2018_Algebra_S.pdf

10. 97. Source: AIME 2019 I 14

Solution: https://artofproblemsolving.com/wiki/index.php/2019_AIME_I_Problems/Problem_14

11. 71. Source: AIME 2019 II 14

Solution: https://artofproblemsolving.com/wiki/index.php/2019_AIME_II_Problems/Problem_14

12. 21. Source: AIME 2013 I 12

Solution: https://artofproblemsolving.com/wiki/index.php/2013_AIME_I_Problems/Problem_12

Sean Li

13. 9765. Source: NIMO 2017 C27 8

Solution: https://artofproblemsolving.com/community/c139h1311411p7026706

 $14.\ 803.$ Source: AIME 2009 II 12

 $Solution: \ https://artofproblemsolving.com/wiki/index.php/2009_AIME_II_Problems/Problem_12$

15. 12. Source: CMIMC 2016 Number Theory 8

Solution: http://cmimc-official.herokuapp.com/docs/past-tests/2016_NumberTheory_ S.pdf