Active Contours

Internal Energies

Internal Energies

- E_{int} is the internal energy of the snake
- It tries to force the snake to be small and smooth

•
$$E_{int} = \frac{1}{2}(\alpha(s)|v_s(s)|^2 + \beta(s)|v_{ss}(s)|^2)$$

- First-order term $\alpha(s)|v_s(s)|^2$
 - magnitude of first derivative larger for longer snakes
- Second-order term $\beta(s)|v_{ss}(s)|^2$
 - magnitude of second derivative larger for sharper bends

Euler-Lagrange equation

Minimize using Euler-Lagrange equation

- E-L in short
 - Second-order partial differential equation
 - Finds solutions that make the function stationary

- Stationary
 - Functions derivative is equal to 0
 - Red dots →

Conversion

•
$$E_{int} = \frac{1}{2}(\alpha(s)|v_s(s)|^2 + \beta(s)|v_{ss}(s)|^2)$$

Magic... (a lengthy conversion)

•
$$\alpha s(x,y)'' + \beta s(x,y)'''' + \frac{\partial E_{ext}}{\partial x,y} = 0$$

Conversion

•
$$E_{int} = \frac{1}{2}(\alpha(s)|v_s(s)|^2 + \beta(s)|v_{ss}(s)|^2)$$

Magic... (a lengthy conversion)

•
$$\alpha s(x,y)'' + \beta s(x,y)'''' + \frac{\partial E_{ext}}{\partial x,y} = 0$$
 External Forces: F_{ext}

1. Set 0 to be derivative of s over time

•
$$\alpha s'' + \beta s'''' + F_{ext} = \frac{\partial s}{\partial t}$$

- Logic
 - When the snake has converged to minimum, there will be no further change
 - Derivative of s over time will be 0
 - → Equation is satisfied

2. Finite differences to get derivatives on N spline points

- E.g. for x direction:
 - x''(i) = x(i-1) 2x(i) + x(i+1)
 - x''''(i) = x(i-2) 4x(i-1) + 6x(i) 4x(i+1) + x(i+2)

$$\Rightarrow \frac{\partial x_t(i)}{\partial t} = \alpha \left(x(i-1) - 2x(i) + x(i+1) \right) + \beta \left(x(i-2) - 4x(i-1) + 6x(i) - 4x(i+1) + x(i+2) \right) + f_x$$

3. Formulate A

$$\frac{\partial x_t(i)}{\partial t} = \alpha \left(x(i-1) - 2x(i) + x(i+1) \right) + \beta \left(x(i-2) - 4x(i-1) + 6x(i) - 4x(i+1) + x(i+2) \right) + f_x$$

• For N = 2:
$$\frac{\partial x_t(2)}{\partial t} = \alpha (x(1) - 2x(2) + x(3)) + \beta (x(0) - 4x(1) + 6x(2) - 4x(3) + x(4)) + f_x$$

• For N = 3:
$$\frac{\partial x_t(3)}{\partial t} = \alpha (x(2) - 2x(3) + x(4)) + \beta (x(1) - 4x(2) + 6x(3) - 4x(4) + x(5)) + f_x$$

• ..

• This can be rewritten in matrix form!

$$\frac{\partial x_t(i)}{\partial t} = \alpha \left(x(i-1) - 2x(i) + x(i+1) \right) + \beta \left(x(i-2) - 4x(i-1) + 6x(i) - 4x(i+1) + x(i+2) \right) + f_x$$

- We observe the following dependencies:
 - x(i-2): β
 - x(i-1): $\alpha-4\beta$
 - x(i): $-2\alpha + 6\beta$
 - x(i+1): $\alpha-4\beta$
 - x(i+2): β

$$\frac{\partial x_t(i)}{\partial t} = \alpha \left(x(i-1) - 2x(i) + x(i+1) \right) + \beta (x(i-2) - 4x(i-1) + 6x(i) - 4x(i+1) + x(i+2)) + f_x$$

- We observe the following dependencies:
 - x(i-2): β

 - x(i-1): $\alpha 4\beta$ x(i): $-2\alpha + 6\beta$
 - x(i+1): $\alpha-4\beta$
 - x(i+2): β

A = NxN, N is the number of discrete points for the snake

- We found: $\frac{\partial X_t}{\partial t} = AX_t + f_x(X_t, Y_t)$
- Now we assume that the movement of the snake in each iteration is very small

$$\bullet \frac{(X_t - X_{t-1})}{\gamma} = AX_t + f_{\chi}(X_t, Y_t)$$

- We found: $\frac{\partial X_t}{\partial t} = AX_t + f_x(X_t, Y_t)$
- Now we assume that the movement of the snake in each iteration is very small

$$\bullet \frac{(X_t - X_{t-1})}{\gamma} = AX_t + f_x(X_t, Y_t)$$

- $X_t X_{t-1} = \gamma A X_t + \gamma f_{\mathcal{X}}(X_t, Y_t)$
- $X_t = \gamma A X_t + X_{t-1} + \gamma f_x(X_t, Y_t)$

- We found: $\frac{\partial X_t}{\partial t} = AX_t + f_x(X_t, Y_t)$
- Now we assume that the movement of the snake in each iteration is very small

$$\bullet \ \frac{(X_t - X_{t-1})}{\gamma} = AX_t + f_{\chi}(X_t, Y_t)$$

•
$$X_t - X_{t-1} = \gamma A X_t + \gamma f_{\mathcal{X}}(X_t, Y_t)$$

•
$$X_t = \gamma A X_t + X_{t-1} + \gamma f_x(X_t, Y_t)$$

•
$$X_t - \gamma A X_t = X_{t-1} + \gamma f_{\mathcal{X}}(X_t, Y_t)$$

•
$$(I - \gamma A)X_t = X_{t-1} + \gamma f_{\mathcal{X}}(X_t, Y_t)$$

- We found: $\frac{\partial X_t}{\partial t} = AX_t + f_x(X_t, Y_t)$
- Now we assume that the movement of the snake in each iteration is very small

$$\bullet \ \frac{(X_t - X_{t-1})}{\gamma} = AX_t + f_x(X_t, Y_t)$$

- $X_t X_{t-1} = \gamma A X_t + \gamma f_{\mathcal{X}}(X_t, Y_t)$
- $X_t = \gamma A X_t + X_{t-1} + \gamma f_x(X_t, Y_t)$
- $X_t \gamma A X_t = X_{t-1} + \gamma f_x(X_t, Y_t)$
- $(I \gamma A)X_t = X_{t-1} + \gamma f_{\mathcal{X}}(X_t, Y_t)$
- $X_t = (I \gamma A)^{-1} (X_{t-1} + \gamma f_x(X_t, Y_t))$

•
$$X_t = (I - \gamma A)^{-1} (X_{t-1} + \gamma f_x(X_t, Y_t))$$

•
$$Y_t = (I - \gamma A)^{-1} (Y_{t-1} + \gamma f_y(X_t, Y_t))$$