Module 3 Introduction

The Space of Architectures

Fully Connected Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Attention-Based Networks

The Space of Architectures

Transformer [Vaswani et. al. 2017] is a multi-layer attention model that is currently state of the art in most language tasks (and in many other things!)

Has superior performance compared to previous attention based architectures via

- Multi-query hidden-state propagation ("self-attention")
- Multi-head attention
- Residual connections, LayerNorm

Recurrent Neural Networks

Attention-Based Networks

Graph-Based Networks

Many → many: speech recognition, optical character recognition

Many → one: sentiment analysis, topic classification

Also consider: one → many, one → one.

Example Application: NLP

$$\begin{aligned} \mathbf{p}(\mathbf{s}) &= \mathbf{p}(w_1, w_2, \dots, w_n) \\ &= \mathbf{p}(w_1) \, \mathbf{p}(w_2 \mid w_1) \, \mathbf{p}(w_3 \mid w_1, w_2) \cdots \mathbf{p}(w_n \mid w_{n-1}, \dots, w_1) \\ &= \prod_{i} \mathbf{p}(w_i \mid w_{i-1}, \dots, w_1) \\ &= \prod_{i} \mathbf{p}(w_i \mid w_{i-1}, \dots, w_1) \\ &= \mathbf{mext} \quad \text{history} \end{aligned}$$

Word2vec: the Skip-gram model

- The idea: use words to predict their context words
- Context: a fixed window of size 2m

Slide Credit: Richard Socher, Christopher Manning

A Sequential Structure

A Multi-Relation Graph

Embedding: A learned map from entities to vectors of numbers that encodes similarity

- Word embeddings: word → vector
- Graph embeddings: node → vector

Graph Embedding: Optimize the objective that connected nodes have more similar embeddings than unconnected nodes via gradient descent.

Slide Credit: Adam Lerer

Graph Embeddings

Application: VideoSpace

Alignment in machine translation: for each word in the target, get a distribution over words in the source [Brown et. al. 1993], (lots more)

Figure from Latent Alignment and Variational Attention by Deng et. al.

- Search exponential space in linear time
- Beam size k determines "width" of search
- At each step, extend each of k
 elements by one token
- Top k overall then become the hypotheses for next step

Beam Search

- Given a set of vectors $\{u_1, ..., u_N\}$ and a "query" vector q
- We can select the most similar vector to \mathbf{q} via $\mathbf{p} = Softmax(U\mathbf{q})$

$$a_j = \frac{e^{u_j \cdot q}}{\sum_k e^{u_k \cdot q}}$$
 output $= \sum_k a_k u_k$