Problem Set – More on Functions

1. Prompt the user to repeatedly to do the program input (Yes or No)). If they respond Yes, go into the loop and prompt them for last name, month and sales. Write a function to compute next month's forecast. Pass to the function month and sales. Determine the forecast percent (see below) and compute next month's sales to be sales x (1+forecast percent). Return next month's sales and display the value.

Month Forecast Perc	
Jan, Feb, Mar	0.10
Apr, May, Jun	0.15
Jul, Aug, Sep	0.20
Oct, Nov, Dec	0.25

Input	Process	Output
Arguments:	Function:	Return:
month, sales	compute next month's forecast	next month's forecast
Prompt to run the program Loop: last name, month and sales from	Compute next month's sale	Next month's sales and display the value
user		

2. Prompt the user to repeatedly to do the program input (Yes or No)). If they response Yes go into the loop and prompt the user for length, width, and height of a room. Write a function to compute the wall square footage of the room. The function should receive the length, width and height of the room and return wall square footage 2 x length x height (2 of the walls) + 2 x width x height (the other 2 walls). A gallon of paint covers 50 square feet. Compute the number of gallons needed to paint the walls of the room (square footage of the room / 50). Display the number of gallons needed.

Note: the computation can be any algebraic equivalent as long as the computation is correct.

Bonus: Add the following

- a. A function to compute the area of the ceiling or floor (length x width).
- b. Use the function to get the area of the ceiling or wall.
- c. Determine the number of gallons of ceiling paint or floor varnish
- d. Display the number of gallons for the ceiling or floor.

Input	Process	Output	
Arguments:	Function:	Return:	
length, width and	compute wall square footage	wall square footage	
height			
Prompt to run the	Compute number of gallons needed to paint	Number of gallons needed	
program	the walls of the room		
Loop: length, width			
and height			
Bonus:			
Arguments:	Function:	Return:	
length and width of	compute the area of ceiling or floor	Area of ceiling or floor	
ceiling or floor			
ILength and width of	Determine the number of gallons of ceiling	Number of gallons for	
ceiling or floor from	paint or floor varnish	ceiling or floor	
user			

3. Prompt the user to repeatedly to do the program (input (Yes or No)). If they response Yes go into the loop and prompt the user for make, model, electric vehicle code (Y or N) and MSRP (sticker price) of an automobile. Write a function to compute the out the door price. Pass to the function the MSRP, make, model and electric vehicle code. Determine the percent off the MSRP then compute the new MSRP and finally add 7% sales tax to the total. Return and display the total. Also sum all MSRP's and sum of all sales price of the cars (MSRP – discount + tax).

To determine percent off MSRP	Percent off MSRP
Honda Accord	0.10
Toyota Rav4	0.15
All electric vehicles	0.30
All other vehicles	0.05

Input	Process	Output
Arguments:	Function:	Return:
MSRP, make, model	compute percent off the MSRP	new MSRP
and EV (y/n)		
Prompt to run the	Compute new MSRP + sales tax	Total
program	Sum of all MSRPs	Sum of MSRPs and total
Loop: make, model,	Sum of all sales price	sales
electric vehicle (y/n)		
and MSRP		

4. Prompt the user to repeatedly to do the program input (Yes or No)). If they response Yes go into the loop and prompt the user for last name and miles from downtown Chicago. Write a function to compute the train ticket price. Pass to the function the miles from downtown Chicago and determine the ticket price. Return the ticket price. Sum price of all tickets.

Miles from Downtown Chicago	Ticket Price
30 or more	\$12
20 to 29	\$10
10 to 19	\$8
All others	\$5

Input	Process	Output
Arguments:	Function:	Return:
miles from downtown	compute train ticket price	train ticket price
Chicago		
Prompt to run the	Determine ticket price	Ticket price
program	Sum of all ticket prices	Sum of all ticket prices
Loop: last name, miles		
from downtown		
Chicago		

5. Prompt the user to repeatedly to do the program input (Yes or No)). If they response Yes go into the loop and prompt the user for county and market value of a home. Write a function to compute the assessed value. Pass to the function the county and market value. The function will determine the assessed value percent then compute and return the assessed value. (Multiply the market value by assessed value percent. Sum and display all market values and assessed values.

County	Assessed Value Percent	
Cook	0.90	
DuPage	0.80	
McHenry	0.75	
Kane	0.60	
All others	0.70	

Input	Process	Output
Arguments:	Function:	Return:
county, market value	compute assessed value percent	assessed value
Prompt to run the	Determine assessed value	Assessed values
program	Sum all market values	Sum all market values and
Loop: county, market	Sum all assessed values	sum all assessed values
value		