Data Science

Collection, Cleaning, and Analysis

Manufacturer	Name	CPU Frequency	L1 Cache Size	Volatile Memory Size
HP	Pavillion	3.2 GHz	512 KB	4 GB
Acer	Aspire	3.5 GHz	512 KB	4 GB
Dell	Inspiron	4.0 GHz	1024 KB	8 GB
IBM	Watson	5.0 GHz	2048 KB	32 GB
HP	Spectre	2.8 GHz	256 KB	6 GB
Toshiba	Tecra	3.0 GHz	256 KB	4 GB

Manufacturer	Name	CPU Frequency	L1 Cache Size	Volatile Memory Size
HP	Pavillion	3.2 GHz	512 KB	4 GB
Acer	Aspire	3.5 GHz	512 KB	4 GB
Dell	Inspiron	4.0 GHz	1024 KB	8 GB
IBM	Watson	5.0 GHz	2048 KB	32 GB
HP	Spectre	2.8 GHz	256 KB	6 GB
Toshiba	Tecra	3.0 GHz	256 KB	4 GB

No missing values

Manufacturer	Name	CPU Frequency	L1 Cache Size	Volatile Memory Size
HP	Pavillion	3.2 GHz	512 KB	4 GB
Acer	Aspire	3.5 GHz	512 KB	4 GB
Dell	Inspiron	4.0 GHz	1024 KB	8 GB
IBM	Watson	5.0 GHz	2048 KB	32 GB
HP	Spectre	2.8 GHz	256 KB	6 GB
Toshiba	Tecra	3.0 GHz	256 KB	4 GB

- No missing values
- Uniformity (categories are all unique, consistent units, etc.)

Manufacturer	Name	CPU Frequency	L1 Cache Size	Volatile Memory Size
HP	Pavillion	3.2 GHz	512 KB	4 GB
Acer	Aspire	3.5 GHz	512 KB	4 GB
Dell	Inspiron	4.0 GHz	1024 KB	8 GB
IBM	Watson	5.0 GHz	2048 KB	32 GB
HP	Spectre	2.8 GHz	256 KB	6 GB
Toshiba	Tecra	3.0 GHz	256 KB	4 GB

- No missing values
- Uniformity (categories are all unique, consistent units, etc.)
- Lots (at least 100's) of examples (rows) and lots of information (cols)

Collection

Scraping

HTML → CSV

JSON → CSV

XML → CSV

Three important data collection and cleaning questions:

Three important data collection and cleaning questions:

– What are the sources that you got data from?

Three important data collection and cleaning questions:

- What are the sources that you got data from?
- What data did you get from each of the sources?

Three important data collection and cleaning questions:

- What are the sources that you got data from?
- What data did you get from each of the sources?
- How did you merge that data (name cleaning, etc.)

Why clean?

Data

(Usually) require real valued vectors!

- Quantify variability across the system stack. (memory, processing, etc.)

- Quantify variability across the system stack. (memory, processing, etc.)
- Model and understand the key influencers of *variability*.

- Quantify variability across the system stack. (memory, processing, etc.)
- Model and understand the key influencers of variability.
- Predict and manage variability at the peta- and exascale level.

- Quantify variability across the system stack. (memory, processing, etc.)
- Model and understand the key influencers of variability.
- Predict and manage variability at the peta- and exascale level.

VarSys Data Collection & Cleaning

VarSys Data Collection & Cleaning

I/O Zone

Measuring I/O throughput when reading and writing to disk (or HDD).

6 parameters: 3 ordinal – 3 categorical.

Predicting the distribution of I/O throughput at new parameterizations.

VarSys Data Collection & Cleaning

I/O Zone

Measuring I/O throughput when reading and writing to disk (or HDD).

6 parameters: 3 ordinal – 3 categorical.

Predicting the distribution of I/O throughput at new parameterizations.

CAT

Measuring the number of clock cycles required to check AES key bytes.

4 parameters, all ordinal.

Predicting the baseline time-model for new system parameterizations.

VarSys Analysis & Demo

Details of Analysis

Categorical values are mapped to a regular simplex.

Columns with only one unique value are ignored.

No missing values, if so, those rows with missing entries are ignored.

For >20K data points, Nearest Neighbor is the default algorithm. (others are Voronoi, Delaunay, MLP, MARS, LSHEP, Decision Tree)