Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 5

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	$\mathbf{D}\mathbf{M}$		2
	1.1.	Oobór horyzontów predykcji i sterowania	2

Na podstawie analizy odpowiedzi skokowych przyjęliśmy horyzont dynamiki D=80.

1.1. Dobór horyzontów predykcji i sterowania

Dobór horyzontów przeprowadzaliśmy korzystając z parametrów μ i λ równymi 1. Rozpoczęliśmy od nastaw $N=N_u=D=80$. Dla tych parametrów błąd wynosił E=115,6910. Przebieg wyjść obiektu przedstawia wykres 1.1, a sterowań wykres 1.2.

Postanowiliśmy skrócić horyzonty do wartości $N=N_u=50$. Otrzymany błąd wyniósł E=115,6908, a więc był praktycznie jednakowy jak dla dłuższych horyzontów. Przebiegi wyjść i sterowań przedstawiają wykresy 1.3 i 1.4.

W kolejnym kroku skróciliśmy horyzont predykcji do wartości N=40, a sterowania $N_u=10$. Taka zmiana przyniosła niewielką poprawę wskaźnika błędu do wartości E=115,6152. Przebieg wyjść obiektu przedstawiają wykresy 1.5 i 1.6.

Jak się okazało, dalsze skracanie horyzontu sterowania przyniosło znacznie bardziej wymierne rezultaty - dla $N_u=5$ wskaźnik błędu zmalał do wartości E=111,7038. Przebieg wyjść obiektu przedstawiają wykresy 1.7 i 1.8.

Dalsze skracanie horyzontu predykcji nie przyniosło pozytywnych rezultatów. Dla $N_u = 2$ wskaźnik błędu wyniósł E = 124,1625. Można więc przypuszczać, że jeszcze mniejsze wartości horyzontu sterowania przyniosłyby pogorszenie jakości regulacji. Przebieg wyjść obiektu przedstawiają wykresy 1.9 i 1.10.

W kolejnych zadaniach używane będą horyzonty N=40 i $N_u=5$.

Rys. 1.1. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=80,\,N_u=80.$

Rys. 1.2. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=80,\,N_u=80.$

Rys. 1.3. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=50,\,N_u=50.$

Rys. 1.4. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=50,\,N_u=50.$

Rys. 1.5. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=10.$

Rys. 1.6. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=10.$

Rys. 1.7. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.8. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.9. Przebiegi wyjść obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=5.$

Rys. 1.10. Przebiegi sterowań obiektu dla horyzontów predykcji i sterowania $N=40,\,N_u=2.$