_			_		-
r	١. ١	11.		aalko	
	വ	บบทา	$a \mapsto a$	ากบรด	\sim 1
			1 115	าสาหน	,, ,,

Gravitatsiooni mõju kera soojusmahtuvusele

Uurimistöö

Kaarel Kivisalu

11. a

Juhendajad: prof Jaan Kalda

õp Toomas Reimann

Sisukord

Sis	ssejuha	tus	3
1	Teore	etiline osa	4
	1.1	Tavapärane lahendus	4
	1.2	Tavapärane lahendus ja selle termodünaamika II seaduse rikkumine	4
	1.3	Statistiline mehaanika	5
	1.4	Schroedingeri vorrand	6
	1.5	Energiatasemed ja soojusmahtuvus	6
	1.6	Kvaasi-klassikaline lähendus	6
	1.7	Häiritusteooria	6
2	Prakt	siline osa	8
	2.1	Tükiti lineaarne potentsiaal	8
	2.2	Tükiti paraboolne potentsiaal	9
	2.3	Kolmanda astme polünoompotentsiaal	11
Ko	kkuvõ	te	12
Ki	nnitus	leht	13

Sissejuhatus

I rahvusvahelisel füüsikaolümpiaadil 1967. aastal oli järgnev probleem (**ipho67**):

Kaks homogeenset ühesugust kera on sama algtemperatuuriga. Üks kera on liikumatult horisontaalse tasandil, teine ripub niidi küljes. Mõlemale kerale antakse võrdne soojushulk. Kas kerade lõpptemperatuur on sama või mitte. Soojuskadudega mitte arvestada.

Käesolevas töös uuritakse konkreetsete potentsiaalide korral konstantse gravitatsioonvälja mõju kera soojusmahtuvusele. Konstantse gravitatsioonivälja potentsiaal on lineaarne. Vaadatakse soojusmahtuvuse erinevust juhtudel, kui on ainult kera potentsiaal ja kera potentsiaalile on lisatud lineaarne gravitatsioonivälja potentsiaal.

Töös on analüüsitud kuuppolünoompotentsiaali häirituse meetodil ja kahest lineaarsest funktsioonist koosnevat potentsiaali kvaasi-klassikaliselt. Samuti on näidatud, et osade potentsiaalide korral ei mõjuta gravitatsioon soojusmahtuvust.

Varem on uuritud gravitatsiooni mõju metallkera soojusmahtuvusele üldjuhul. Leiti üldine seos soojusmahtuvuse, temperatuuri, gravitatsioonivälja tugevuse ja lineaarse soojuspaisumisteguri vahel. Saadud tulemust on eksperimentaalselt väga raske kinnitada, kuna gravitatsiooni mõju on väga väike. Konkreetsete potentsiaalide läbivaatamine tõstaks ka varem leitud mudeli usaldusväärsust.

Uurimistöö hüpotees on, et sõltuvalt potentsiaalist võib gravitatsioon nii tõsta kui ka langetada keha soojusmahtuvust.

1 Teoreetiline osa

1.1 Tavapärane lahendus

Tavapärane lahendus põhineb soojuspaisumisega seotud erinevustel. Kerale A soojust andes see paisub ja selle massikese tõuseb. Järelikult peab osa kerale A antavast soojushulgast kuluma kera massikeskme gravitatsioonilise potentsiaalse energia tõstmiseks ja lõpptemperatuur on madalam algsest. Vastupidiselt, kera B massikese langeb soojuspaisumise tõttu ja energiat saadakse juurde, järelikult on kera B lõpptemperatuur kõrgem.

Pannakse ka kirja tavapärasele lahendusele vastavad valemid. Olgu kerade soojusmahtuvus C_0 gravitatsioonivälja puudumisel. Tavapärase lahenduse korrale, kui kera A soojendatakse, siis selle massikese tõused $dR = \alpha R \, dT$ võrra, kus dT on temperatuuri tõus, α on soojuspaisumistegur ja R on kera raadius. Kera saab potentsiaalse energia $d\Phi = mg \, dR$, kus m on keha mass ja g on raskuskiirendus. Järelikult, kui soojushulk δQ antakse süsteemile, siis saadakse, et

$$\delta Q = C_0 dT + mg dR = C_0 dT + mg\alpha R dT = (C_0 + mg\alpha R) dT.$$
 (1)

See on ekvivalentne väitega, et kera A soojusmahtuvus on:

$$C_A = C_0 + mg\alpha R. (2)$$

Analgoselt saame, et kera B soojusmahtuvus on

$$C_B = C_0 - mg\alpha R. (3)$$

Enamiku materjalide jaoks on $\alpha > 0$, millest tulenevalt $C_A > C_B$. Järelikult on tavapärase lahenduse kohaselt kera A lõpptemperatuur madalam kera B lõpptemperatuurist.

1.2 Tavapärane lahendus ja selle termodünaamika II seaduse rikkumine

Tavapärases lahenduses kaudselt eeldatakse, et keha siseenergia U ja raadius R sõltuvad ainult temperatuurist T, mitte aga raskuskiirendusest g. Vaadeltakse järgnevat tsüklit:

pall asub horisontaalsel külmal tasandil temperatuuriga T_1 ; pall ühendatakse soojema reservaariga, mille temperatuur $T_2 = T_1 + dT > T_1$; pall riputatakse nööri külge ja horisontaalne tasand eemaldatakse; pall ühendatakse külma revervuaariga, mille temperatuur on T_1 . Selle protsessi kasutegur on tehtud töö ja neeldunud soojuse suhe ning avaldub kujul (palma15)

$$\eta = \frac{2mg\alpha R}{C_0 + mg\alpha R}. (4)$$

Kasutegur η ei sõltu dT suurusest. Termodünaamika teist seadus saab sõastada järgnevalt: iga tsükkel, mis töötab ainult temperatuuride T_1 ja T_2 juures ei saa olla effektiivsem Carnot' tsüklist, mis töötab samade temperatuuride juures. Carnot' tsükli efektiivsus on

$$\eta_{Carnot'} = \frac{dT}{T_2} \tag{5}$$

Järelikult, kui dT on piisavalt väike, siis on palliga tsükli kasutegur suurem Carnot' tsükli kasutegurist. Teisisõnu rikub tavapärane lahendus termodünaamika II seadust.

Joonis 1. Probleemi ülesehitus (palma15) Allikas:

1.3 Statistiline mehaanika

Kasutades statistilise mehaanika meetodeid on võimalik leida kera soojusmahtuvuse sõltuvus gravitatsioonist (palma15):

$$\frac{\partial C(g,T)}{\partial g} = -mTY\left(\alpha^2 + \frac{\partial \alpha}{\partial T}\right),\tag{6}$$

kus C on soojusmahtuvus, g on raskuskiirenuds, m on kera mass, T on kera temperatuur, Y on massikeskme kõrgus, α on lineaarne soojuspaisumistegur.

1.4 Schroedingeri vorrand

Ajast sõltumatu Scröendingeri võrrand ühes dimensioonis avaldub kujul (griffiths05)

$$\hat{H}\Psi = E\Psi,\tag{7}$$

kus E on süsteemi koguenergia ja

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{2x}{dx^2} + V(x). \tag{8}$$

1.5 Energiatasemed ja soojusmahtuvus

Kanoonilise ansambli jaoks, mis on kvantmehaaniline ja diskreetne, on kanooniline statistiline summa Z defineeritud kui jälg Boltzmanni tegurist (kardar07):

$$Z = \operatorname{tr}(e^{-\beta \hat{H}}) = \sum_{n} e^{-\beta E_n}.$$
(9)

Keskmine energia U avaldub kui (kardar07)

$$U = -\frac{\partial \ln Z}{\partial \beta}.\tag{10}$$

Soojusmahtuvus on defineeritud kui

$$C = \frac{\partial U}{\partial T}. (11)$$

Eelnevatest võrranditest on lihtne näha, et

$$\frac{\partial C}{\partial g} = -\frac{\partial}{\partial g} \frac{\partial}{\partial T} \frac{\partial}{\partial \beta} \ln \sum_{n} e^{-\beta E_n}.$$
 (12)

1.6 Kvaasi-klassikaline lähendus

1.7 Häiritusteooria

Schrödingeri võrrandit täpselt lahendada on võimalik ainult lihtsamatel juhtudel. Kui on teada lahend mingi juhu jaoks, siis väikeste häirituste korral on võimalik lahendada võrrandid ligikaudselt kasutades häiritusteooriat.

Oletame, et antud füüsikalise süsteemi Hamiltoonian avaldub kujul

$$\hat{H} = H_0 + V, \tag{13}$$

kus V on väike häiritus häirimata operaatori H_0 , jaoks. Eeltatakse, et V ja H_0 ei sõltu ajast.

Häirituse teooria diskreetse spektrumi jaoks saab formuleerida järgnevalt. Eeldatakse, et on teada diskreetse spektri omaväärtused (ingl eigenvalues) $E_0^{(0)}$ ja omafunktsioonid (ingl eigenfunctions) ϕ^0 häitimata operaatori H_0 jaoks, st et on teada võrrandi

$$H_0\phi = E_0\phi \tag{14}$$

täpsed lahendid. Soovitakse leida ligikaudseid lahendeid võrrandile

$$\hat{H}\phi = (H_0 + V)\phi = E\phi,\tag{15}$$

st ligikaudesd avaldised häiritud operaatori \hat{H} omafunktsioonide ϕ_n ja omaväärtuste E_n väärtused.(landau05)

2 Praktiline osa

Käesolevas osas leitakse konkreetsetele võimalikele kera potentsiaalidele vastavad soojusmahtuvuse sõltuvused gravitatsioonist, kus gravitatsiooni potentsiaal on võetud lineaarseks sõltuvalt ühest koordinaadist. Kuigi tegelik kera potentsiaal on keeruline võib anda konkreetne potentsiaal küllaltki täpse lahendi.

2.1 Tükiti lineaarne potentsiaal

Vaadeltakse potentsiaali kujuga

$$V(x) = \begin{cases} (-a + mg)x, & x < 0, \\ (b + mg)x, & x \ge 0, \end{cases}$$

$$\tag{16}$$

kus a ja b on positiivsed reaalarvulised konstandid ning -a + mg < 0 ja b + mg > 0. Kvaasi-klassikalises lähenduses saame leida vastava energiatasemed:

$$\left(n + \frac{1}{2}\right)\pi\hbar = \int_{x_1}^{0} \sqrt{2m[E_n - (-a + mg)x]} \, dx + \int_{0}^{x_2} \sqrt{2m[E_n - (b + mg)x]} \, dx, \quad (17)$$

kus $n \in \{0, 1, 2, ...\}, x_1 = \frac{E_n}{-a + mg}$ ja $x_2 = \frac{E_n}{b + mg}$. Integreerides saadakse, et

$$\left(n + \frac{1}{2}\right) \pi \hbar = \sqrt{2m} \left[-\frac{2(E_n - (-a - mg)x)^{\frac{2}{3}}}{3(-a + mg)} \right] \Big|_{x_1}^{0} + \sqrt{2m} \left[-\frac{2(E_n - (b - mg)x)^{\frac{2}{3}}}{3(b + mg)} \right] \Big|_{x_2}^{0} \\
= -\frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(-a + mg)} + \frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(b + mg)}.$$
(18)

 E_n avaldades saadakse, et

$$E_n = \left[\frac{3\pi}{2\sqrt{2}} \frac{\hbar}{\sqrt{m}} \frac{(-a+mg)(b+mg)}{a+b} \right]^{\frac{2}{3}} \left(n + \frac{1}{2} \right)^{\frac{2}{3}}.$$
 (19)

Asendades võrrandisse 19 $c=\left[\frac{3\pi}{2\sqrt{2}}\frac{\hbar}{\sqrt{m}}\frac{(-a+mg)(b+mg)}{a+b}\right]^{\frac{2}{3}}$ avaldub statistiline summa järgnevalt:

$$Z = \sum_{n=0}^{\infty} e^{-\beta c(n + \frac{1}{2})^{\frac{2}{3}}}.$$
 (20)

Kui $\beta c \ll 1,$ siis saab summa asendada integraaliga ja $n + \frac{1}{2} \approx n$:

$$Z = \sum_{n=0}^{\infty} e^{-\beta c (n + \frac{1}{2})^{\frac{2}{3}}} \approx \int_{0}^{\infty} e^{-\beta c n^{\frac{2}{3}}} dn = \left[\frac{3\sqrt{\pi} \operatorname{erf}\left(n^{\frac{1}{3}}\sqrt{\beta c}\right)}{4(\beta c)^{\frac{3}{2}}} - \frac{3n^{\frac{1}{3}} e^{-\beta c n^{\frac{2}{3}}}}{2\beta c} \right] \Big|_{0}^{\infty} = \frac{3\sqrt{\pi}}{4(\beta c)^{\frac{3}{2}}}.$$
(21)

2.2 Tükiti paraboolne potentsiaal

$$\frac{\sqrt{m}\left(\sqrt{2}g^{2}m^{2}+2^{\frac{5}{2}}E_{n}a\right)\arcsin\left(\frac{\sqrt{g^{2}m^{2}+4E_{n}a}\sqrt{g^{2}m^{4}+4E_{n}a}m^{2}}{g^{2}m^{3}+4E_{n}am}\right)}{4a^{\frac{3}{2}}}=\pi\left(n+\frac{1}{2}\right)\hbar\tag{22}$$

2.3 Kolmanda astme polünoompotentsiaal

Vaatame potentsiaali kujuga

$$V(x) = \frac{m\omega^2 x^2}{2} + mgx + ax^3.$$
 (23)

Lahendid saame leida häirituse meetodiga. On lihtne potentsiaali

$$V(x) = \frac{m\omega^2 x^2}{2} + mgx \tag{24}$$

omaväärtused, kui teha asendus $y=x+\frac{g}{\omega^2}.$ Saadakse, et

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{1}{2}\frac{mg^2}{\omega^2}.$$
 (25)

Kokkuvõte

Kinnitusleht

Kinnitan, et
• koostasin uurimistöö iseseisvalt. Kõigile töös kasutatud teiste autorite töödele ja andmeallikatele on viidatud;
• olen teadlik, et uurimistööd ei edastata teistele tulu teenimise eesmärgil ega jagata teadlikult plagieerimiseks.
kuupäev / nimi / allkiri
Tunnistan uurimistöö kaitsmisvalmiks.
Juhendajad
kuupäev / nimi / allkiri
kuupäev / nimi / allkiri