

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2º

NOMBRE: FIRMA:

TITULACIÓN: Eléctrico Electrónico Mecánico Diseño I. GRUPO: A B C D

Ponga el nombre, marque su titulación (dobles grados marque dos) y su grupo, y firme esta hoja. Conteste a las cuestiones sobre esta hoja y justifique las respuestas en hojas anexas. Las respuestas no justificadas o justificadas incorrectamente, no puntuarán. Todas las cuestiones puntúan por igual. Esta hoja deberá ser devuelta a la salida del examen.

C1. En el circuito de la figura se verifica que $I_2=5$ 0° A; $V_2=220$ 0° V y el amperímetro marca 13A. La tensión \mathbf{V}_1 tiene un valor:

C2. En el circuito de la figura $i_g = I_0 \sin(\omega t + 90^\circ)$ con $I_0 \neq 0$. Para que la fuente tenga tensión nula, su pulsación ha de valer:

C3. El circuito de la figura está alimentado por un alternador equilibrado. Las seis impedancias son iguales y de valor $10|-30^{\circ}$ Ω y $W_b = -750\sqrt{3}\,W$. Calcule la lectura del vatímetro W_a y la secuencia de fases de la red:

C4. El circuito de la figura es una distribución en corriente continua que alimenta a un receptor. La lectura del amperímetro es 30A. Calcule la potencia total generada por las dos fuentes de tensión del circuito.

C5. Calcule los parámetros Thevenin y Norton del circuito de la figura entre los terminales a y b.

