UIT2504 Artificial Intelligence Local Search Strategies

C. Aravindan <AravindanC@ssn.edu.in>

Professor of Information Technology SSN College of Engineering

August 26, 2024

Evaluating a state

- Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s
- In such cases, the most desirable state may be chosen from the working set
- Working set is maintained as a priority queue based on the evaluation function f
- ullet Obviously, the quality of search depends on the evaluation function f

2/22

C. Aravindan (SSN) Al August 26, 2024

Heuristics

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map? — Straight line distance (SLD) from the current city to the destination city
- Heuristics should be an easy function to compute!
- $h(s^*)$ should be 0 for any goal state s^*

3/22

C. Aravindan (SSN) AI August 26, 2024

Admissible Heuristics

- A heuristic h is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the **true** cost to reach the goal state from n.
- In other words, $f(n) = g(n) + h(n) \le C^*$, where C^* is the optimal path cost
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is always optimistic
- The SLD heuristics and the two heuristics for sliding puzzle problem are examples of admissible heuristics

C. Aravindan (SSN) AI August 26, 2024 4/22

Consistent Heuristics

• A heuristics is consistent if for every node n, $h(n) \le c(n, a, n') + h(n')$, where n' is a successor of n generated by some action a

Consistent Heuristics

• When h is consistent, we can infer the following

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

- That means, evaluation function f is monotonic it is non-decreasing along any path
- Every consistent heuristics is also admissible

Questions?

 In several problems, the path is irrelevant and a goal-state is a solution we are looking for

- In several problems, the path is irrelevant and a goal-state is a solution we are looking for
- With state space = set of "complete" configurations,
 - Find an optimal configuration (eg. TSP, maximal matching in a bipartite graph, "weights" that minimize error on the examples)

- In several problems, the path is irrelevant and a goal-state is a solution we are looking for
- With state space = set of "complete" configurations,
 - Find an optimal configuration (eg. TSP, maximal matching in a bipartite graph, "weights" that minimize error on the examples)
 - Find a configuration that satisfies some constraints (eg. Timetable generation, *n*-queens problem, stable matching)

8 / 22

C. Aravindan (SSN) AI August 26, 2024

- In several problems, the path is irrelevant and a goal-state is a solution we are looking for
- With state space = set of "complete" configurations,
 - Find an optimal configuration (eg. TSP, maximal matching in a bipartite graph, "weights" that minimize error on the examples)
 - Find a configuration that satisfies some constraints (eg. Timetable generation, *n*-queens problem, stable matching)
- In such cases, we can use iterative improvement algorithms "keep a single current state and try to improve it"

8 / 22

C. Aravindan (SSN) AI August 26, 2024

Example: TSP

• "Complete formulation" — any Hamiltonian circuit is a state

Example: TSP

- "Complete formulation" any Hamiltonian circuit is a state
- Start with any complete state (any Hamiltonian circuit)
- Action: Pairwise exchanges replace edges (u, v) and (u', v') with edges (u, v') and (u', v)

Example: TSP

- "Complete formulation" any Hamiltonian circuit is a state
- Start with any complete state (any Hamiltonian circuit)
- Action: Pairwise exchanges replace edges (u, v) and (u', v') with edges (u, v') and (u', v)

• Able to get within 1% of optimal solution very quickly, even with thousands of cities (good, as an approximation algorithm)

9/22

C. Aravindan (SSN) AI August 26, 2024

ullet "Complete formulation" — n queens on board, one per column

- \bullet "Complete formulation" n queens on board, one per column
- Start with any state any placement of n queens, one per column, on a chess board

- "Complete formulation" n queens on board, one per column
- Start with any state any placement of n queens, one per column, on a chess board
- Action: Move a queen, within its column, to reduce the number of conflicts

C. Aravindan (SSN) Al August 26, 2024 10 / 22

- "Complete formulation" n queens on board, one per column
- Start with any state any placement of n queens, one per column, on a chess board
- Action: Move a queen, within its column, to reduce the number of conflicts

• Able to solve instantaneously even for very large *n*

10 / 22

C. Aravindan (SSN) Al August 26, 2024

Outline of Hill Climbing Algorithm

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	¥	13	16	13	16
<u>w</u>	14	17	15	휄	14	16	16
17	₩	16	18	15		15	♛
18	14	₩	15	15	14	₩	16
14	14	13	17	12	14	12	18

ullet One of the square with h=12 is chosen and the corresponding queen is moved there

•
$$h(s) = 1$$

- h(s) = 1
- And, we have hit a local minimum!

Hill Climbing Search

Local maxima / minima

- Local maxima / minima
- Ridges sequence of local maxima that is very difficult for the greedy algorithm to navigate

- Local maxima / minima
- Ridges sequence of local maxima that is very difficult for the greedy algorithm to navigate
- Plateaux flat local maximum or a shoulder

- Local maxima / minima
- Ridges sequence of local maxima that is very difficult for the greedy algorithm to navigate
- Plateaux flat local maximum or a shoulder

Local maxima is a serious problem

Empirical analysis of 8-queens problem reveals that the greedy hill-climbing algorithm gets stuck 86% of the time

Ridges

• Random sideways moves

 Random sideways moves — can escape from a shoulder, but gets trapped in a local maxima

 Random sideways moves — can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited

 Random sideways moves — can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm
- First Choice Hill Climbing randomly generate the successors, until one better than the current is generated

C. Aravindan (SSN) AI August 26, 2024

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm
- First Choice Hill Climbing randomly generate the successors, until one better than the current is generated
- Random Restart

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm
- First Choice Hill Climbing randomly generate the successors, until one better than the current is generated
- Random Restart enough restarts may make this algorithm complete

C. Aravindan (SSN) AI August 26, 2024

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm
- First Choice Hill Climbing randomly generate the successors, until one better than the current is generated
- ullet Random Restart enough restarts may make this algorithm complete if each hill-climbing has a probability p of success, then 1/p restarts are expected

C. Aravindan (SSN) AI August 26, 2024

- Random sideways moves can escape from a shoulder, but gets trapped in a local maxima — number of sideways moves may be limited — number of instances solved for the 8-queens problem increases from 14% to 94%
- Stochastic Hill Climbing chooses at random, among all uphill moves — probability of selection can depend on the steepness of the ascent — example of a Randomized algorithm
- First Choice Hill Climbing randomly generate the successors, until one better than the current is generated
- Random Restart enough restarts may make this algorithm complete if each hill-climbing has a probability p of success, then 1/p restarts are expected for 8-queens, $p\approx 0.14$, and so roughly 7 restarts are expected

Questions?

 One interesting variation of hill climbing is to adopt the concept of simulated annealing

- One interesting variation of hill climbing is to adopt the concept of simulated annealing
- For example, consider a ball set to roll on a state landscape

- One interesting variation of hill climbing is to adopt the concept of simulated annealing
- For example, consider a ball set to roll on a state landscape
- The ball simply follows the rules of gravity and moves towards nearby valley

- One interesting variation of hill climbing is to adopt the concept of simulated annealing
- For example, consider a ball set to roll on a state landscape
- The ball simply follows the rules of gravity and moves towards nearby valley
- The ball needs to make some uphill moves to escape from local minima!

- One interesting variation of hill climbing is to adopt the concept of simulated annealing
- For example, consider a ball set to roll on a state landscape
- The ball simply follows the rules of gravity and moves towards nearby valley
- The ball needs to make some uphill moves to escape from local minima!
- Imagine applying just enough force for it to escape from all local minima but not from global minima

19 / 22

C. Aravindan (SSN) AI August 26, 2024

- One interesting variation of hill climbing is to adopt the concept of simulated annealing
- For example, consider a ball set to roll on a state landscape
- The ball simply follows the rules of gravity and moves towards nearby valley
- The ball needs to make some uphill moves to escape from local minima!
- Imagine applying just enough force for it to escape from all local minima but not from global minima
- How to find that "just enough force"?

• Similar to the metallurgical process of annealing

- Similar to the metallurgical process of annealing
- Start with a high "temperature"

- Similar to the metallurgical process of annealing
- Start with a high "temperature" probability of selecting a bad move is high

- Similar to the metallurgical process of annealing
- Start with a high "temperature" probability of selecting a bad move is high
- Slowly reduce the "temperature"

- Similar to the metallurgical process of annealing
- Start with a high "temperature" probability of selecting a bad move is high
- Slowly reduce the "temperature" probability of selecting a bad move reduces slowly

- Similar to the metallurgical process of annealing
- Start with a high "temperature" probability of selecting a bad move is high
- Slowly reduce the "temperature" probability of selecting a bad move reduces slowly
- "Schedule" of reducing the temperature is very critical

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state  \begin{array}{l} current \leftarrow problem. \\ \text{INITIAL} \\ \textbf{for } t=1 \textbf{ to} \propto \textbf{do} \\ T \leftarrow schedule(t) \\ \textbf{if } T=0 \textbf{ then return } current \\ next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow \text{Value}(current) - \text{Value}(next) \\ \textbf{if } \Delta E > 0 \textbf{ then } current \leftarrow next \\ \end{array}
```

else $current \leftarrow next$ only with probability $e^{-\Delta E/T}$

Questions?

