

Gramática independiente del contexto (GIC)

 La denominación "independiente del contexto" proviene del hecho de cada producción o regla de re-escritura A → ω se aplica a la variable A independientemente de los caracteres que la rodean, es decir, independientemente del contexto en el que aparece A

<u>Teoría Computacional</u> Prof. Luis Enri<u>que Hernández Olvera</u>

5

Lenguaje independiente del contexto

- Las gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
- Los lenguajes libres del contexto son aquellos que pueden ser reconocidos por un autómata de pila determinístico o no determinístico.

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

6

Interpretación de la Producciones	S
(1) Establece que una expresión puede ser un único identificador.	
The didnite an signo	$(1) E \rightarrow ID$ $(2) E \rightarrow E+E$
(3) Establece una expresion similar a la	$(3) E \rightarrow E*E$ $(4) E \rightarrow (E)$
(4) Establece que si tomamos cualquier expresión y la encerramos entre paréntesis, el resultado también es una expresión.	
<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera	15

Derivaciones por la izquierda y por la derecha

Con el fin de restringir el número de opciones disponibles en la derivación de una cadena, a menudo resulta útil seguir un patrón:

- Derivación por la izquierda: las reglas de reemplazo son aplicadas a la primera variable de izquierda a derecha.
- **Derivación por la derecha**: las reglas de reemplazo son aplicadas a la última variable de derecha a izquierda.

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

19

Ejemplo de derivación

Aplicando las producciones de la GIC, inferir que la cadena a*(a+b00) pertenece al lenguaje.

G = (N, T, P, E)

 $N = \{E, ID\}$

 $T = \{+, *, (,), a, b, 0, 1\}$

P =

 $E \rightarrow ID \mid E+E \mid E*E \mid (E)$

 $ID \rightarrow a \mid b \mid IDa \mid IDb \mid ID0 \mid ID1$

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera 20

