1.

Sol)

Seek time + rotation delay = 5 + 4 = 9 msec

Average file size = 8×2^{10} Byte = 2^{13} Byte,

Transfer rate = $8MB/sec = 8 \times 2^{20}$ Byte/sec = 2^{23} Byte/sec

A file with average size can transfer $9 + (2^{13} \text{ Byte}/2^{23} \text{ Byte/sec}) \times 10^3 = 9.977 \text{ msec}$

Read + write takes 9.977 + 9.977 = 19.954 msec

8KB takes 19.1954 msec

8GB space take $19.954 \times 2^{20} \text{ mec} = 20923285.504 \text{ msec} = 20923.285504 \text{ sec} = 5.8 \text{ hour}$

2.

Sol) since 1 block is 2KB, and 4 Byte per block address, it can save $2 \times 2^{10} / 4 = 2^9 = 512$ block information

Total = 512 + 10 = 522 block information.

Since a block size is 2KB, largest file will be $2KB \times 522 = 1044 \text{ KB}$

3.

a.

 $128~GB = 128GB~/~8KB~blocks = 128 \times 2^{30}~/~8 \times 2^{10} = ~2^{7}~\times 2^{30}~/~2^{3}~\times 2^{10} = ~2^{37}/~2^{13} = ~2^{24}~blocks$

Each block can save $2^{16}/64 = 2^{10}-1 = 1023$ block information.

 2^{24} blocks /1023 = 16400.1

b.

 $128 \text{ GB} = 2^{24} \text{ blocks}$

Need 2^{24} bits= $2^{24} / 8 = 2^{24} / 2^3 = 2^{21}$ Byte

Need $2^{21}/(8 \times 2^{10}) = 2^8$ blocks for saving free block information

c.

- Since this system use 64 bit disk block number, this system support 2⁶⁴ blocks
- Maximum disk size = $2^{64} \times 8 \times 2^{10}$ Byte = 128×2^{70} = 128 ZB

4.

Sol)

Since there are B blocks, system with bit map need B bits space to keep free block information.

At time t, if there is F free blocks, system with free-list need DF bits space for free block information.

Free list need less space than bit map if DF <B ---(A)

Fraction of free blocks = number of free block / total number of block = F/B From A) we can get F/B < 1/D. if D is 16, than 1/16 = 0.0625. about 6 % of disk space must be free.