Lgebra: A Symbolic Language CS****: Compiler-II Course Project

Group **

November 1, 2023

Contents

1	Introduction								
2	Wh	y Lgeb	ora?	3					
3	Language Specifications								
	3.1	Keywo	ords	. 3					
	3.2	Data 7	Гурез	. 3					
	3.3	Identif	fiers	. 3					
		3.3.1	Rules	. 3					
		3.3.2	Reserved Identifiers	. 4					
	3.4	Declar	rations	. 4					
		3.4.1	Curves	. 4					
		3.4.2	Other Non-Curves	. 4					
	3.5	Expres	ssion	. 4					
		3.5.1	Curve	. 4					
		3.5.2	Non-Curve	. 5					
	3.6	Consta	ants	. 5					
		3.6.1	Built-In constants	. 5					
		3.6.2	User-defined constants	. 5					
	3.7	Function	ons	. 5					
		3.7.1	Built-In Functions						
		3.7.2	User-defined Functions	. 5					
	3.8	Structs	S	. 6					
	3.9	Vector	S	. 6					

	3.10 Error Analysis	6
4	Other Functionalities 4.1 Operator and Function Overloading	
5	Compilation Steps	6
6	Performance Analysis	6
7	Drawbacks	6
8	Future Scope	6
9	Conclusion	6

- 1 Introduction
- 2 Why Lgebra?
- 3 Language Specifications
- 3.1 Keywords

Keywords	Description	Example
if		
else		
until		
repeat		
for		
break		
continue		
return		

3.2 Data Types

Data Types	Description	Example
int		
long		
float		
real		
complex		
vector <data type=""></data>		
curves		

3.3 Identifiers

3.3.1 Rules

1. All identifiers should start with alphabets

2.

3.3.2 Reserved Identifiers

- 1. Keywords and Datatype are reserved Identifiers
- 2. Constants like pi, e, ... are reserverd Identifiers

3.4 Declarations

3.4.1 Curves

1. Curve should be declared as follows

```
curve curve_name(commma seperated variables)
= Expression in terms of independent variable
```

- 2. Every curve should have at least one independent variable (like x in f(x))
- 3. Apart from independent variables, other variable in expression should be declared and defined.
- 4. By default the return type of function is real. Hence it need not to be mentioned.
- 5. In following example, both x is different

```
int x = 1;
curve f(x) = x^2+1;
```

3.4.2 Other Non-Curves

1. Other declaration are C like declaration.

3.5 Expression

3.5.1 Curve

1. Curve evaluation syntax is similar to call

- Assume declaration is curve f(x, y)
- f(a): Curve f is called with value of x. Is similar to f(x=x)
- f(a,b): Curve f is called with value of x and y
- f(a,b,c): Error. Excess number of arguments
- f(x=a, y=b): Curve f is called with value of x as a and y as b.
- f(x=a, y=b, z=c): Curve f is called with value of x as a, y as b and z as c. No Error: z will be substituted be with c. If there is no z then there will be no effect of z=c;

3.5.2 Non-Curve

Similar to C

3.6 Constants

3.6.1 Built-In constants

Name	Value	Description
е	2.721	Euler Constant

3.6.2 User-defined constants

Explain About Long long constant, float constant, complex constant etc

3.7 Functions

3.7.1 Built-In Functions

- 1. **sum**:
- 2. derivate:

3.7.2 User-defined Functions

1. User Defined Function should be defined as follows:

3.8 Structs

1. C like functionalities

3.9 Vectors

1. Explain Operation on Vectors and how to declare it.

3.10 Error Analysis

1. Explain try and catch block

4 Other Functionalities

- 4.1 Operator and Function Overloading
- 4.2 Irrational Mathematics
- 5 Compilation Steps
- 6 Performance Analysis
- 7 Drawbacks
- 8 Future Scope
- 9 Conclusion