Machine Learning - Block 1 Assignment 3

Agustín Valencia 12/13/2019

Kernel Methods

Implement a kernel method to predict the hourly temperatures for a date and place in Sweden. To do so, you are provided with the files stations.csv and temps50k.csv. These files contain information about weather stations and temperature measurements in the stations at different days and times. The data have been kindly provided by the Swedish Meteorological and Hydrological Institute (SMHI).

You are asked to provide a temperature forecast for a date and place in Sweden. The forecast should consist of the predicted temperatures from 4 am to 24 pm in an interval of 2 hours. Use a kernel that is the sum of three Gaussian kernels:

- The first to account for the distance from a station to the point of interest.
- The second to account for the distance between the day a temperature measurement was made and the day of interest.
- The third to account for the distance between the hour of the day a temperature measurement was made and the hour of interest.

Choose an appropriate smoothing coefficient or width for each of the three kernels above. Answer to the following questions:

- Show that your choice for the kernels' width is sensible, i.e. that it gives more weight to closer points. Discuss why your of definition of closeness is reasonable.
- Instead of combining the three kernels into one by summing them up, multiply them. Compare the results obtained in both cases and elaborate on why they may differ.

Note that the file temps50k.csv may contain temperature measurements that are posterior to the day and hour of your forecast. You must filter such measurements out, i.e. they cannot be used to compute the forecast.

Solution - Kernel Methods

Let obs = (position, date, time) denote an observation where:

$$position = (latitude, longitude)$$

$$date = Year, Month, Day$$

$$time = Hour :: Minutes :: Seconds$$

In the same sense it can be defined pred = (position, date, time) the non-observed data desired to be predicted.

Let the distance functions:

$$d_1 = d_{pos}(a, b) = \sqrt{(long_a - long_b)^2 + (lat_a - lat_b)^2}$$
$$d_2 = d_{date}(a, b) = \mathbf{mod}(|date_a - date_b|, 365)$$
$$d_3 = d_{time}(a, b) = \mathbf{mod}(|time_a - time_b|, 24)$$

The following Gaussian Kernels can be defined:

$$\begin{split} \phi_1 &= \phi_{pos} = e^{\frac{-|d_{pos}(\text{pred,obs})|^2}{2\sigma^2 h_{distance}}} \\ \phi_2 &= \phi_{date} = e^{\frac{-|d_{date}(\text{pred,obs})|^2}{2\sigma^2 h_{date}}} \\ \phi_3 &= \phi_{date} = e^{\frac{-|d_{time}(\text{pred,obs})|^2}{2\sigma^2 h_{time}}} \end{split}$$

For the given date they are computed as following:

If the predictions for a day in winter are computed as

$$y = \frac{1}{N} \sum_{i=1}^{3} \phi_i \left(\frac{d_i(\mathbf{obs}, \mathbf{pred})}{h_i} \right)$$

The following results are obtained

The closer station to (66.3002,19.2) is 614

The temperature measures for 16463 is/are 2.1

The mean predicted temperature for 16463 using sum of kernels is 1.900631

The mean predicted temperature for 16463 using product of kernel is -0.1093738

On the other hand, if the kernels are multiplied instead of added:

$$y = \frac{1}{N} \prod_{i=1}^{3} \phi_i \left(\frac{d_i(\mathbf{obs}, \mathbf{pred})}{h_i} \right)$$

Winter Temperature Prediction – Product kernels

If the same exercise is done for a day in summer it is obtained that:

- ## The closer station to (66.3002,19.2) is 135
- ## The temperature measures for 16642 is/are 18.2
- ## The mean predicted temperature for 16642 using sum of kernels is 3.487142
- ## The mean predicted temperature for 16642 using product of kernel is 0.3702021

Summer Temperature Prediction – Additive kernels

Summer Temperature Prediction – Product kernels

Support Vector Machines

Use the function ksvm from the R package kernlab to learn a SVM for classifying the spam dataset that is included with the package. Consider the radial basis function kernel (also known as Gaussian) with a width of 0.05. For the C parameter, consider values 0.5, 1 and 5.

This implies that you have to consider three models.

- Perform model selection, i.e. select the most promising of the three models (use any method of your choice except cross-validation or nested cross-validation).
- Estimate the generalization error of the SVM selected above (use any method of your choice except cross-validation or nested cross-validation).
- Produce the SVM that will be returned to the user, i.e. show the code.
- What is the purpose of the parameter C?

Solution - Support Vector Machines

The spam dataset has been split in a ratio of 70%/30% for training and testing purposes. The results of the experiments in Appendix B are summarized in the following table (rates are given in % format).

С	trainingError	numSV	TPR	TNR	FPR	FNR	Misclassification
0.5	4.29	1357	94.38	90.15	5.62	9.85	8.33
1.0	3.79	1255	93.76	91.24	6.24	8.76	7.82
5.0	2.36	1186	93.64	91.76	6.36	8.24	7.53

Taking into account that our classifier is meant to detect spam emails, it has to be noticed that the sending a true email to the spambox is way worse than getting spam email in the inbox. That is measured by the False Positive rate which is somewhat similar for all of the predictors.

Analyzing the overall misclassification it is seen that C = 5.0 gets the better score, also it shows the best training error rate and the lowest amount of support vectors which indicates that it is the one with the lower tendency to overfit the data (the more **general** one). Although it is the one showing the lowest True Positive Rate, still a very good number.

Therefore the chosen model to be deployed into the customer's system would be the following:

```
svmToDeploy <- ksvm(
    type ~ .,
    data=spam,
    type="C-svc",
    kernel="rbfdot",
    C = 5.0,
    kpar = list(sigma = 0.05)
)</pre>
```

C parameter denotes the inverse of the regularization penalization. The bigger the C the small the boundary of the classifier.

Appendix A: Code for Assignment 1

```
stations <- read.csv("data/stations.csv")</pre>
temps <- read.csv("data/temps50k.csv")</pre>
st <-merge(stations, temps, by="station_number")</pre>
h_distance <- 300
h_date <- 7
h_{time} < -5
times <- c("04:00:00", "06:00:00", "08:00:00", "10:00:00", "12:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00:00", "14:00", "14:00:00", "14:00", "14:00:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:00", "14:0
                      "16:00:00", "18:00:00", "20:00:00", "22:00:00", "24:00:00")
# utils functions
getPositionDistance <- function(posLatVect, posLongVect, a, b) {</pre>
        res <- sqrt((posLatVect - a)^2 + (posLongVect - b)^2)
        return(res)
}
getDateDistance <- function(dateVect, now) {</pre>
        res <- as.numeric(difftime(dateVect, now, units="days")) %% 365
        return(res)
}
getTimeDistance <- function(timeVect, now) {</pre>
        d <- as.numeric(difftime(timeVect, now, units="hours"))</pre>
        d <- abs(ifelse(d < 12, d, 24-d))</pre>
        return(d)
}
# kernel estimations
kernelPredict <- function(data, a, b, date, h_distance, h_date, h_time, times) {</pre>
        diffDistance <- getPositionDistance(data$longitude, data$latitude, a, b)
        diffDate <- getDateDistance(data$date, date)</pre>
        kernDist <- exp(-abs(diffDistance)^2/(h_distance*2*sd(diffDistance)))</pre>
        kernDate <- exp(-abs(diffDate)^2/(h_date*2*sd(diffDate)))</pre>
        predDist <- 1/nData * sum(kernDist * data$air_temperature)</pre>
        predDate <- 1/nData * sum(kernDate * data$air_temperature)</pre>
        predTempSum <- vector(length = length(times))</pre>
        predTempProd <- vector(length = length(times))</pre>
        for(i in 1:length(times)) {
                 diffTime <- getTimeDistance(data$time, times[i])</pre>
                 kernTime <- exp(-abs(diffTime)^2/(h_time*2*sd(diffTime)))</pre>
                 predTime <- 1/nData * sum(kernTime * data$air_temperature)</pre>
                 predTempSum[i] <- (predDist + predDate + predTime)</pre>
                 predTempProd[i] <- (predDist * predDate * predTime)</pre>
        }
        return( list(
                                   predTempSum = predTempSum,
                                   predTempProd = predTempProd,
                                   diffDistance = diffDistance,
                                   diffDate = diffDate,
                                   diffTime = diffTime,
```

```
kernDist = kernDist,
                 kernDate = kernDate,
                 kernTime = kernTime
             )
    )
}
# diffDistance <- getPositionDistance(data$longitude, data$latitude, a, b)
# diffDate <- getDateDistance(data$date, date)</pre>
# kernDist <- exp(-abs(diffDistance)^2/(h_distance*2*sd(diffDistance)))</pre>
# kernDate <- exp(-abs(diffDate)^2/(h_date*2*sd(diffDate)))</pre>
# predDist <- 1/nData * sum(kernDist * data$air_temperature)</pre>
# predDate <- 1/nData * sum(kernDate * data$air_temperature)</pre>
# predTempSum <- vector(length = length(times))</pre>
# predTempProd <- vector(length = length(times))</pre>
# for(i in 1:length(times)) {
      diffTime <- getTimeDistance(data$time, times[i])</pre>
#
      kernTime <- exp(-abs(diffTime)^2/(h_time*2*sd(diffTime)))</pre>
      predTime <- 1/nData * sum(kernTime * data$air_temperature)</pre>
#
      predTempSum[i] <- (predDist + predDate + predTime)</pre>
      predTempProd[i] <- (predDist * predDate * predTime)</pre>
#
# }
# Date to predict
date <- "2015-01-28"
a <- 66.30020
b <- 19.20000
# Filter the future
st$date <- as.Date(st$date)</pre>
date <- as.Date(date)</pre>
data <- st[which(st$date < date),]</pre>
nData <- nrow(data)</pre>
times <- strptime(times, format = "%H:%M:%S")
data$time <- strptime(data$time, format = "%H:%M:%S")
resWinter <- kernelPredict(data, a, b, date, h_distance, h_date, h_time, times)
predTempSum <- resWinter$predTempSum</pre>
predTempProd <- resWinter$predTempProd</pre>
diffDistance <- resWinter$diffDistance
diffDate <- resWinter$diffDate</pre>
diffTime <- resWinter$diffTime</pre>
kernDist <- resWinter$kernDist</pre>
kernDate <- resWinter$kernDate</pre>
kernTime <- resWinter$kernTime</pre>
# Kernel plotting
ggplot() + geom_point(aes(x=diffDistance, y=kernDist)) +
    ggtitle("Kernel Distances") + xlab("Distance [kms]")
ggplot() + geom_point(aes(x=diffDate, y=kernDate)) +
    ggtitle("Kernel Date") + xlab("Date [days]")
ggplot() + geom_point(aes(x=diffTime, y=kernTime)) +
    ggtitle("Kernel Time") + xlab("Time [hours]")
# Getting real temperatures for the given date
trueData <- st[which(st$date == date),]</pre>
```

```
# Getting closer station to compare against
realDists <- getPositionDistance(trueData$longitude, trueData$latitude, a, b)
closerStationNum <- trueData[which.min(realDists),]$station number</pre>
closerStationName <- trueData[which.min(realDists),]$station name</pre>
trueData <- trueData[which(trueData$station number == closerStationNum),]</pre>
realTemps <- trueData$air temperature</pre>
realTimes <- trueData$time</pre>
meanPredictedSum <- rep(mean(predTempSum), length(times))</pre>
meanPredictedProd <- rep(mean(predTempProd), length(times))</pre>
realTimes <- as.POSIXct(strptime(realTimes, format = "%H:%M:%S"))
posixTimes <- as.POSIXct(times)</pre>
cat("The closer station to (",a,",",b,") is ", closerStationName,"\n", sep="")
cat("The temperature measures for ", date," is/are ", realTemps,"\n", sep="")
cat("The mean predicted temperature for ", date," using sum of kernels is ",
    mean(predTempSum),"\n", sep="")
cat("The mean predicted temperature for ", date," using product of kernel is ",
    mean(predTempProd),"\n", sep="")
ggplot() +
    geom_line(aes(x=posixTimes, y=predTempSum, color="Predicted")) +
    geom_point(aes(x=posixTimes, y=predTempSum, color="Predicted")) +
    geom_line(aes(x=posixTimes, y=meanPredictedSum, color="Mean Predicted Temp")) +
    geom_point(aes(x=realTimes, y=realTemps, color="Real Observation")) +
    ggtitle("Winter Temperature Prediction - Additive kernels") + xlab("Time")
ggplot() +
    geom_line(aes(x=posixTimes, y=predTempProd, color="Predicted")) +
    geom_point(aes(x=posixTimes, y=predTempProd, color="Predicted")) +
    geom_line(aes(x=posixTimes, y=meanPredictedProd, color="Mean Predicted Temp")) +
    geom_point(aes(x=realTimes, y=realTemps, color="Real Observation")) +
    ggtitle("Winter Temperature Prediction - Product kernels") + xlab("Time")
# Date to predict
date <- "2015-07-26"
# Filter the future
st$date <- as.Date(st$date)
date <- as.Date(date)</pre>
data <- st[which(st$date < date),]</pre>
nData <- nrow(data)
times <- c("04:00:00", "06:00:00", "08:00:00", "10:00:00", "12:00:00", "14:00:00",
          "16:00:00", "18:00:00", "20:00:00", "22:00:00", "24:00:00")
times <- strptime(times, format = "%H:%M:%S")</pre>
data$time <- strptime(data$time, format = "%H:%M:%S")</pre>
resSummer <- kernelPredict(data, a, b, date, h_distance, h_date, h_time, times)
predTempSum <- resSummer$predTempSum</pre>
predTempProd <- resSummer$predTempProd</pre>
diffDistance <- resSummer$diffDistance</pre>
diffDate <- resSummer$diffDate</pre>
diffTime <- resSummer$diffTime</pre>
kernDist <- resSummer$kernDist</pre>
kernDate <- resSummer$kernDate
kernTime <- resSummer$kernTime</pre>
```

```
# Getting real temperatures for the given date
trueData <- st[which(st$date == date),]</pre>
# Getting closer station to compare against
realDists <- getPositionDistance(trueData$longitude, trueData$latitude, a, b)
closerStationNum <- trueData[which.min(realDists),]$station number</pre>
closerStationName <- trueData[which.min(realDists),]$station name</pre>
trueData <- trueData[which(trueData$station number == closerStationNum),]</pre>
realTemps <- trueData$air_temperature</pre>
realTimes <- trueData$time</pre>
meanPredictedSum <- rep(mean(predTempSum), length(times))</pre>
meanPredictedProd <- rep(mean(predTempProd), length(times))</pre>
realTimes <- as.POSIXct(strptime(realTimes, format = "%H:%M:%S"))
posixTimes <- as.POSIXct(times)</pre>
cat("The closer station to (",a,",",b,") is ", closerStationName,"\n", sep="")
cat("The temperature measures for ", date," is/are ", realTemps,"\n", sep="")
cat("The mean predicted temperature for ", date," using sum of kernels is ",
    mean(predTempSum),"\n", sep="")
cat("The mean predicted temperature for ", date," using product of kernel is ",
    mean(predTempProd),"\n", sep="")
ggplot() +
    geom_line(aes(x=posixTimes, y=predTempSum, color="Predicted")) +
    geom_point(aes(x=posixTimes, y=predTempSum, color="Predicted")) +
    geom_line(aes(x=posixTimes, y=meanPredictedSum, color="Mean Predicted Temp")) +
    geom_point(aes(x=realTimes, y=realTemps, color="Real Observation")) +
    ggtitle("Summer Temperature Prediction - Additive kernels") + xlab("Time")
ggplot() +
    geom_line(aes(x=posixTimes, y=predTempProd, color="Predicted")) +
    geom_point(aes(x=posixTimes, y=predTempProd, color="Predicted")) +
    geom_line(aes(x=posixTimes, y=meanPredictedProd, color="Mean Predicted Temp")) +
    geom_point(aes(x=realTimes, y=realTemps, color="Real Observation")) +
    ggtitle("Summer Temperature Prediction - Product kernels") + xlab("Time")
```

Appendix B: Code for Assignment 2

```
## Utils
splitData <- function(data, trainRate) {</pre>
    n <- dim(data)[1]</pre>
    idxs <- sample(1:n, floor(trainRate*n))</pre>
    train <- data[idxs,]</pre>
    test <- data[-idxs,]</pre>
    return (list(train = train, test = test))
}
get_performance <- function(targets, predictions, text) {</pre>
    t <- table(targets, predictions)</pre>
    tn \leftarrow t[1,1]
    tp <- t[2,2]
    fp \leftarrow t[1,2]
    fn \leftarrow t[2,1]
    total <- sum(t)
    tpr <- tp/(tp+fp) * 100
    tnr \leftarrow tn/(tn+fn) * 100
    fpr <- fp/(tp+fp) * 100
    fnr <- fn/(tn+fn) * 100
    return (
         list(
              tpr = tpr,
             tnr = tnr,
             fpr = fpr,
             fnr = fnr,
             misclass = (fp+fn)/total * 100
    )
}
# Data split
data(spam)
split <- splitData(spam, .7)</pre>
train <- split$train
test <- split$test</pre>
train.x <- train[,-ncol(train)]</pre>
train.y <- train[,ncol(train)]</pre>
test.x <- test[,-ncol(test)]</pre>
test.y <- test[,ncol(test)]</pre>
Cs \leftarrow c(.5, 1, 5)
kWidth <- 0.05
svmModels <- list()</pre>
svmScores <- data.frame (</pre>
    C = vector(length = 3),
    trainingError = vector(length = 3),
    numSV = vector(length = 3),
    TPR = vector(length = 3),
  TNR = vector(length = 3),
```

```
FPR = vector(length = 3),
    FNR = vector(length = 3),
    Misclassification = vector(length = 3)
)
for (i in 1:length(Cs)) {
    svmModel <- ksvm(</pre>
                     type ~ .,
                     data=train,
                     type="C-svc",
                     kernel="rbfdot",
                     C = Cs[i],
                     kpar = list(sigma = kWidth)
    predictions <- predict(svmModel, test)</pre>
    performance <- get_performance(test.y, predictions)</pre>
    svmScore <- c(</pre>
                     Cs[i],
                     error(svmModel) * 100,
                     nSV(svmModel),
                     performance$tpr,
                     performance$tnr,
                     performance$fpr,
                     performance$fnr,
                     performance$misclass
    svmScores[i,] <- svmScore</pre>
kable(svmScores, digits = 2)
```

Appendix C : Environment setup Code

```
knitr::opts_chunk$set(echo = FALSE)
set.seed(1234567889)
library(geosphere)
library(kernlab)
library(knitr)
library(ggplot2)
```