Metrische Räume

Norm

- Definition: Abbildung $\|\cdot\|:V\to\mathbb{R}_{\geq 0}$ so dass $\forall v,w\in V,\lambda\in\mathbb{R}$:
 - \circ Definitheit: $||v|| = 0 \Leftrightarrow v = 0$
 - Absolute Homogenität: $||\lambda v|| = |\lambda| \cdot ||v||$
 - Dreiecksungleichung: $||v + w|| \le ||v|| + ||w||$ $(\mathbb{R}\text{-Vektorraum }V)$

Metrik

- Definition: $d: X \times X \to \mathbb{R}_{\geq 0}$ (Menge X) so dass $\forall x, y, z \in X$:
 - \circ Positivität: $d(x,y) = 0 \Leftrightarrow x = y$
 - Symmetrie: d(x, y) = d(y, x)
 - Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$
- · Wichtige Metriken:

 - Euklidische Metrik: $X = \mathbb{R}^n$, $d_e(x,y) \coloneqq \sqrt{\sum_{i=1}^n (x_i y_i)^2} = ||x y||$ Induzierte Metrik: $d(v,w) \coloneqq ||v w||$ (Norm $||\cdot||$)

 - Winkelmetrik: $d_W(x, y) := \arccos(\langle x, y \rangle)$
- **Pseudometrik**: Metrik, aber $d(x, y) = 0 \Rightarrow x = y$ gilt nicht
- Metrischer Raum: (X,d) (Menge X , Metrik d auf X)

Konstruktionen

- Einheitssphäre: $S_1^n \coloneqq \left\{x \in \mathbb{R}^{n+1}: \|x\| = 1\right\} n$ -te Einheitssphäre
- Abgeschlossener Ball: abgeschlossener r-Ball um x

$$\overline{B_r(x)} \coloneqq \{ y \in X : d(x,y) \le r \}$$

• Offener Ball: offener r-Ball um x

$$B_r(x) \coloneqq \{y \in X : d(x,y) < r\}$$

- Abstandserhaltende Abbildung: $f: X \to Y$ sodass

$$\forall x,y \in X: d_Y(f(x),f(y)) = d_X(x,y).$$

(metrische Räume (X, d_X) , (Y, d_Y))

- · Isometrie: bijektive abstandserhaltende Abbildung
- $\rightarrow X, Y \text{ isometrisch} \Leftrightarrow \exists \text{ Isometrie } f: (X, d_X) \rightarrow (Y, d_Y)$

Längenmetriken

Graphen

- Graph: G = (E, K)
- \circ Eckenmenge E
- \circ Kantenmenge $K \subseteq \{\{u, v\} : u \neq v \in E\}$
- Erreichbarkeit: $p, q \in E$ erreichbar $\iff \exists$ Kantenzug zwischen p und q
- Zusammenhängend ⇔ alle Ecken von beliebiger, fester Ecke aus erreichbar
- $\rightarrow d(p,q)$ = kürzester Kantenzug zwischen p und q definiert Metrik

Euklidische Metrik

- Kurvenmenge: $\Omega_{pq}(X\subseteq \operatorname{\mathbb{R}}^n)$ Menge der stetig db. Kurven zwischen p und q
- Euklidische Länge: $L_{\mathrm{euk}}(c) = \int_a^b \left\| c'(t) \right\| \mathrm{d}t \, (c \in \Omega_{pq}(\mathbb{R}^2))$
- o unabhängig von Kurvenparametrisierung
- o invariant unter Translationen, Drehungen, Spiegelungen
- Euklidische Metrik auf \mathbb{R}^2 -Kurven: $d_{\mathrm{euk}}(p,q) \coloneqq \inf L_{\mathrm{euk}}(c)$ $(p, q \in \mathbb{R}^2, c \in \text{Menge der stetig differenzierbaren Kurven zwischen } p \text{ und } q)$ $\rightarrow (\mathbb{R}^2, d_{\text{euk}}) = (\mathbb{R}^2, d_e)$

Sphärische Geometrie

- Sphärische Länge: $L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{x_1'^2 + x_2'^2 + x_3'^2} dt$ (für $c : [a,b] \ni t \mapsto (x_1(t), x_2(t), x_3(t)) \in S_R^2 \subset \mathbb{R}^3$)
 - invariant unter \mathbb{R}^2 -Rotationen
- Großkreis: Schnitt von S_R^2 und und 2-dimensionalen UVR des \mathbb{R}^2
- Sphärenmetrik: $d_S(p,q) := \inf L_s(c) (c \in \Omega_{pq}(S_R^2))$
- \circ Großkreise sind kürzeste Verbindungkurven zwischen Punkten in S_R^2
- $\circ (S_R^2, D_S)$ ist metrischer Raum und isometrisch zu $(S_R^2, R \cdot d_W)$

Grundbegriffe allg. Topologie

Topologische Räume

- Topologie: $\mathcal{O} \subseteq \mathcal{P}(X)$ (Menge X) sodass
- $\circ X, \emptyset \in \mathcal{O}$
- \circ Durchschnitte endlich & Vereinigungen beliebig vieler Mengen aus $\mathcal O$ in $\mathcal O$
- Topologischer Raum: (X, \mathcal{O})
- \circ Offene Teilmengen von X: Elemente von $\mathcal O$
- \circ Abgeschlossene Teilmengen $A \subset X$: $X \setminus A$ offen
- · Wichtige Topologien:
- $\circ \ \textit{Triviale Topologie} \colon \mathcal{O}_{\text{trivial}} \coloneqq \{X, \varnothing\}$
- \circ Diskrete Topologie: $\mathcal{O}_{diskret} \coloneqq \mathcal{P}(X)$
- Standard-Topologie auf \mathbb{R} : $\mathcal{O}_s \coloneqq \{I \in \mathbb{R} : I = \text{Vereinigung offener Intervalle}\}$
- *Zariski-Topologie*: $\mathcal{O}_Z := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\}$
- o Induzierte Topologie (Metrik):
 - $-U \subset X \text{ d-offen} \Longleftrightarrow \forall p \in U \exists \varepsilon = \varepsilon(p) > 0 : B_{\varepsilon}(p) \subset U$
 - d-offene Mengen bilden induzierte Topologie
- \circ Teilraum-Topologie: $\mathcal{O}_Y := \{ U \subseteq Y : \exists V \in \mathcal{O}_X : U = V \cap Y \}$ (Topologischer Raum (X, \mathcal{O}_X) , Teilmenge $Y \subseteq X$)
- o *Produkttopologie*: Topologische Räume (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)
 - $W \subseteq X \times Y$ offen in Produkttopologie $\iff \forall (x,y) \in W \; \exists \; \text{Umgebung} \; U \; \text{von} \; x$ in X und V von y in Y, sodass $U \times V \subseteq W$
- o $\mbox{\it Quotiententopologie:}\ (X,\mathcal{O})$ topologischer Raum, $\pi:X\ni x\mapsto [x]\in X/\sim$ kanonische Projektion
- $\rightarrow U \subset X/\sim \text{ ist offen} \Leftrightarrow \pi^{-1}(U) \text{ ist offen in } X.$
- Basis für Topologie $\mathcal{O} \colon \mathcal{B} \subset \mathcal{O}$ sodass für jede offene Menge Ø $\neq V \in \mathcal{O}$ gilt $V = \bigcup V_i, \quad V_i \in \mathcal{B}$
- Umgebung $U \subset X$ von $A \subset X$, falls $\exists \ O \in \mathcal{O} : A \subset O \subset U$ (Topologischer Raum (X, \mathcal{O}))
- Innerer, äußerer Punkt $p \in X$ von $A \subset X$, falls A (bzw. $X \setminus A$) Umgebung
- → Inneres von $A \subset X$: Menge \mathring{A} der inneren Punkte von A
- Abgeschlossene Hülle von A: Menge $A \subset X$, die *nicht* äußere Punkte sind
- Triangulierbar: falls \exists Simplizialkomplex K und Homö $K \to X$ $\circ \ \chi(X) \coloneqq \chi(K)$

Hausdorffsches Trennungsaxiom

- Hausdorffsch (top. Raum (X, \mathcal{O})): $\forall p \neq q \in X \exists U \ni p, V \ni q : U \cap V = \emptyset$ $(Umgebungen\ U, V)$
- · Hausdorffsche Räume:
 - o Metrische Räume (über Dreiecks-Ugl.)
 - \circ (\mathbb{R} , \mathcal{O}_s), weil \mathcal{O}_s von Metrik induziert wird
 - Teilraum von Hausdorff-Raum
 - o Produkt von Hausdorff-Räumen bzgl. Produkttopologie

Stetigkeit

- Stetigkeit (zwischen top. Räumen (X,\mathcal{O}_X) , (Y,\mathcal{O}_Y)): $f:X\to Y$ stetig falls Urbilder offener Mengen in Y offen sind in X
- Homöomorphismus (zw. top. Räumen): $f: X \to Y$ bijektiv mit f, f^{-1} stetig $\rightarrow X, Y \text{ homöomorph}, \text{ falls } \exists \text{ Homö } f: X \rightarrow Y \text{ (schreibe } X \cong Y)$
- $\circ~\textit{Hom\"{o}omorphismengruppe}$: Identität, Verkettungen, Inverse von Hom\"{o} sind Hom\"{o} → Gruppe
- · Wichtige Homöomorphismen:
 - $\circ [0,1] \cong [a,b] (a < b \in \mathbb{R})$
 - o $S^n \setminus \{(0, \dots, 0, 1)\} \cong \mathbb{R}^n$ (also S^n ohne "Nordpol")

Zusammenhang

- **Definition**: (X,\mathcal{O}) zusammenhängend, falls Ø und X die einzigen offenabgeschlossenen Teilmengen sind
- $\Leftrightarrow X$ ist nicht disjunkte Vereinigung von 2 offenen, nichtleeren Mengen
- · Eigenschaften:
 - A zusammenhängend $\Rightarrow \overline{A}$ ist zusammenhängend
 - o A, B zusammenhängend, $A \cap B \neq \emptyset \Rightarrow A \cup B$ zusammenhängend

Zusammenhangskomponente

- **Definition**: Z(x) = Vereinigung aller zusammenhängender Teilmengen, die xenthalten
- · Eigenschaften:
- $\circ Z(X) = \text{disjunkte Zerlegung von } X$
- \circ Elemente von Z(X) = zusammenhängend

Weg-Zusammenhang

Definition: (X, O) weg-zusammenhängend

$$\Leftrightarrow \forall p,q \in X \; \exists \; \mathrm{Weg} \; \alpha : [0,1] \to X : \alpha(0) = p \land \alpha(1) = q$$

- · Eigenschaften:
- o X weg-zusammenhängend $\Rightarrow X$ zusammenhängend
- o Stetige Bilder von (weg-)zusammenhängenden Räumen sind es auch
- o Ein (nicht) zusammenhängender Raum kann nur zu einem (nicht) zusammenhängenden Raum homöomorph sein

Kompaktheit

• **Definition**: (X, \mathcal{O}) kompakt \Leftrightarrow jede offene X-Überdeckung besitzt endliche Teilüberdeckung:

$$X = \bigcup_{i \in I} U_i, \ U_i \text{ offen } \Rightarrow \exists i_1, \dots, i_k \in I : X = U_{i_1} \cup \dots \cup U_{i_k}$$

- Lokal kompakt: Jeder Punkt von X besitzt kompakte Umgebung
- o Man kann von lokale auf globale Eigenschaften schließen
- $\to X$ kompakt, $f: X \to \mathbb{R}$ lokal beschränkt $\Rightarrow f$ beschränkt
- o Stetige Bilder kompakter Räume sind kompakt
- o Abgeschlossene Teilräume kompakter Räume sind kompakt
- Produkte kompakter Räume sind kompakt
- o Kompakte Mengen in Hausdorff-Räumen sind abgeschlossen

Spezielle Topologien

Topologische Mannigfaltigkeit

- Definition: topologischer Raum M mit
- 1. lokal euklidisch: $\forall p \in M \exists$ offene Umgebung U von p und Homöomorphismus

$$\varphi:U\to \varphi(U)\subset \mathbb{R}^n$$
 mit festem n

- \rightarrow Karte (φ, U)
- \rightarrow Atlas $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) : \alpha \in A\} \text{ (mit } \bigcup_{\alpha \in A} U_{\alpha} = M)$
- 2. M ist hausdorffsch
- 3. M-Topologie besitzt abzählbare Basis
- · Eigenschaften:
- Geschlecht der Mannigfaltigkeit = Anzahl
- o Offene Teilmengen einer Mannigfaltigkeit sind auch Mannigfaltigkeiten
- · Produkt-Mannigfaltigkeit: Produkt zweier MF ist auch MF
- o Dimension Produkt-MF = Summe der Dimensionen der beiden MF

Differenzierbare Mannigfaltigkeit

Kartenwechsel: Homöomorphismus

$$\psi \circ \varphi^{-1} : \underbrace{\varphi(D)}_{\subset \mathbb{R}^n} \to \underbrace{\psi(D)}_{\subset \mathbb{R}^n}$$
(topologische MF $M, p \in M$)
$$C^{\infty}$$
-Atlas A von M : alle möglich

- C^{∞} -Atlas $\mathcal A$ von M: alle möglichen Kartenwechsel sind C^{∞} -Abbildungen $(\mathbb R^n)$ C^{∞} -Struktur: maximaler C^{∞} -Atlas für topologische MF
- Differenzierbare Mannigfaltigkeit: topologische MF mit \boldsymbol{C}^{∞} -Struktur
- \circ orientierbar, falls \exists Atlas S, sodass alle Kartenwechsel positive Funktionaldeter-
- Punkt-Differenzierbarkeit: $F: M^m \to N^n$ differenzierbar in $p \in M$, falls $\psi \circ F \circ \varphi^{-1} : \underbrace{\varphi(U)}_{\subset \mathbb{R}^m} \to \underbrace{\psi(V)}_{\subset \mathbb{R}^n}$ is C^{∞} in $\varphi(p)$

 $(M^m, N^n$ d-bare M; F stetig; (U, φ) , (V, ψ) Karten um p und F(p))

- Differenzierbarkeit: F differenzierbar, falls F in allen $p \in M$ d-bar ist
- Diffeomorphismus zwischen dMF: F bijektiv, F d-bar, F^{-1} d-bar
- Fläche: 2-dimensionale MF
- Produkt-Mannigfaltigkeit: M^m , N^n dMF-en $\rightarrow M \times N$ ist (m + n)-
- Lie-Gruppe: Gruppe mit C^{∞} -Mannigfaltigkeitsstruktur, sodass $G \times G \to G$, $(g,h) \mapsto gh^{-1}$ in C^{∞} ist
 - o Abgeschlossene Untergruppen von Lie-Gruppen sind auch Lie-Gruppen

Simplizialkomplexe

- Simplex (k-dimensional): konvexe Hülle von k+1 Punkten in $\operatorname{\mathbb{R}}^n$:

$$s(v_0, \dots, v_k) = \left\{ \sum_{i=0}^n \lambda_i v_i : \forall \lambda_i \ge 0, \sum_{i=0}^k \lambda_i = 1 \right\}$$
$$(v_0 - v_1, \dots, v_0 - v_k \text{ linear unabhängig})$$

- Teilsimplex, Seite: konvexe Hülle einer Teilmenge von $\{v_0,\ldots,v_k\}$
- Simplizialkomplex: endliche Menge K von Simplices in \mathbb{R}^n , sodass
- 1. Für jeden Simplex enthält K auch alle Teilsimplices
- 2. Durchschnitt zweier Simplices ist Ø oder gemeinsamer Teilsimplex
- o Dimension: maximale Dimension seiner Simplices

- Euler-Charakteristik: $\chi(K) = \sum_{i=0}^{k} (-1)^{i} \alpha_{i} (\alpha_{i} = \#i\text{-Simplices in } K)$
- Endlicher Graph: endlicher, 0- oder 1-dimensionaler Simplizialkomplex
 - o zusammenhängend: $\forall p, p' \in G \exists p = p_0, p_1, \dots, p_n = p'$, sodass p_{i-1} und p_i durch Kante verbunden sind
 - Baum: zusammenhängender Graph T, sodass für jeden 1-Simplex $s \in T: T \setminus \mathring{s}$ ist nicht zusammenhängend ($\mathring{s}=$ Kante ohne Endpunkte, offener 1-Simplex)
- Euler-Charakteristik: $\chi(G) = \#$ Ecken #Kanten
 - \circ Baum: $\chi(T) = 1$
 - Zusammenhängender Graph: $\chi(G) = 1 n$ (n = # Kanten, die man aus Gentfernen kann, sodass G zusammenhängend bleibt)
- · Spannender Baum (von zusammenhängendem Graph): Komplement aller Kanten, die man entfernen kann, sodass G zusammenhängend bleibt
- **Ebener Graph**: realisiert durch Punkte und Geraden in \mathbb{R}^2 , sodass Kanten sich nicht schneiden
- \circ Seiten: Zusammenhangskomponenten von $\mathbb{R}^2 \setminus G$
- · Planarer Graph: Graph, der isomorph zu einem ebenen Graphen ist
- Euler-Formel: für zusammenhängende, ebene Graphen G gilt:

$$\chi(G) = e(G) - k(G) + s(G) = 2$$
 • Polyeder: $P \in \mathbb{R}^3$ mit

- 1. P ist Durchschnitt endlich vieler affiner Halbräume von \mathbb{R}^3 (affine Halbräume gegeben durch $a_i x + b_i y + c_i z \ge d_i$, i = 1, ..., k)
- ${\cal P}$ ist beschränkt und nicht in einer Ebene enthalten
- o Rand: Gegeben durch (Seiten-)Flächen, Kanten und Ecken
- 1-Skelett: Menge der Ecken und Kanten, ist Graph in R
- o Schlegel-Diagramm: Projektion von Punkt nahe bei einem Seitenmittelpunkt auf geeignete Ebene; 1-Skelett → ebener Graph
- Eulersche Polyeder-Formel: e(P) k(P) s(P) = 2
- o regulär: falls
 - 1. alle Seitenflächen kongruente reguläre n-Ecke sind und
- 2. in jeder Ecke m solcher n-Ecke zusammentreffen

Verkleben

• Verklebung: X, Y topologische Räume, $A \in X$ Teilraum, $f : A \to Y$. Äquivalenz
relation auf $X \cup Y$ via f:

$$x = x'$$

$$x$$

 \Rightarrow Quotientenraum $X \cup_f Y = X \cup Y / \sim$ ist Verklebung von X an Y via f

• Selbstverklebung: Topologischer Raum X, Teilraum $A \subset X$, $f : A \to X$, $X_f := X / \sim \text{mit Äquivalenzrelation wie oben}$

Flächengeometrie

Reguläre \mathbb{R}^3 -Flächen

- Reguläre Fläche: $S \subset \mathbb{R}^3$ (mit Teilraum-Topologie von \mathbb{R}^3), falls $\forall p \in S$ eine Umgebung V von p und eine Abbildung $F: \underset{\text{offen}}{U} \subset \mathbb{R}^2 \to \underset{\text{offen}}{V} \cap S \subset \mathbb{R}^3$

$$F: U \subset \mathbb{R}^2 \to V \cap S \subset \mathbb{R}^3$$

$$(u, v) \mapsto (x(u, v), y(u, v), z(u, v))$$

existiert, sodass

- 1. F ist differenzierbarer Homöomorphismus
- 2. das Differenzial (Jacobi-Matrix) von F, $dF_q: \mathbb{R}^2 \supseteq T_q U \to T_{F(q)} \mathbb{R}^3 \cong \mathbb{R}^3$

ist injektiv (hat Rang 2) ($\forall q \in U$)

- Lokale Parametrisierung von reg. Fläche $S{:}\ F$ von der regulären Fläche
- Vektorprodukt: $a \land b = (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1)$ $\circ \ (a \land b) \perp a, \ (a \land b) \perp b$
 - $\circ ||a \wedge b|| = ||a|| \cdot ||b|| \cdot \sin \alpha$
- Tangentialraum in $p \in \mathbb{R}^3$: affiner Unterraum $T_p\mathbb{R}^3 = \{p\} \times \mathbb{R}^3$

• Tangentialebene für
$$p = x(u,v) \in S$$
 (reguläre Fläche):
$$T_pS = \mathrm{d}x_{(u,v)}(T_{(u,v)}\mathbb{R}^2) = \{p\} \times [x_u(u,v), x_v(u,v)] \subset T_p\mathbb{R}^3$$

Erste Fundamentalform

- Erste Fundamentalform einer regulären Fläche S:

e Fundamentaliorm einer regular
$$\begin{pmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{pmatrix}$$
 mit $E(u,v) = \langle x_u(u,v), x_u(u,v) \rangle$ $F(u,v) = \langle x_u(u,v), x_v(u,v) \rangle$

 $G(u,v) = \langle x_v(u,v), x_v(u,v) \rangle$

• Längen: Flächenkurve
$$x: [\alpha, \beta] \ni t \mapsto x(u(t), v(t)) =: c(t) \in S.$$

$$L(c) = \int_{\alpha}^{\beta} \sqrt{E(u, v)(u')^2 + F(u, v)2u'v' + G(u, v)(v')^2} dt$$

Winkel: Flächenkurven

$$c_1: (-\varepsilon, \varepsilon) \ni t \mapsto (u_1(t), v_1(t)) \in S,$$

$$c_2: (-\varepsilon, \varepsilon) \ni t \mapsto (u_2(t), v_2(t)) \in S,$$

$$c_1(0) = c_2(0). \cos \angle (c_1'(0), c_2'(0)) = \underbrace{Eu_1'u_2' + F(u_1'v_2' + v_1'u_2') + Gv_1'v_2'}_{\sqrt{Eu_1^{2'} + 2Fu_1'v_1' + Gv_1^{2'}}} \underbrace{\sqrt{Eu_2^{2'} + 2Fu_2'v_2' + Gv_2^{2'}}}_{\bullet \text{ Flächeninhalt } von \ x(U) \in S \in \mathbb{R}^2:}$$

$$A(x(U)) = \iint_U \sqrt{\det \mathbf{I}} \, \mathrm{d}u \mathrm{d}v$$

$$A(x(U)) = \iint_{U} \sqrt{\det I} \, \mathrm{d}u \mathrm{d}v$$

(Lokale) Flächenisometrien

- Reguläre Fläche = metrischer Raum: Längenmetrik auf S durch $d_S(p,q) = \inf L(c)$
- (Flächen-)Isometrie $f: S \to \tilde{S}$, falls
- 1. f ist Diffeomorphismus und
- 2. $\forall (c: I \rightarrow S): L(f \circ c) = L(c)$ ("f ist längenerhaltend")
- Lokale Isometrie $f:S \to \tilde{S}$, falls $\forall p \in S \exists$ offene Umgebungen A von p und B von f(p), sodass f Isometrie von A nach B ist
- Kriterium lokale Isometrie: $x:U \to x(U) \subset S, \tilde{x}:U \to \tilde{x}(U) \subset \tilde{S}$ sodass $\forall (u,v) \in U : \left(\begin{smallmatrix} E & F \\ F & G \end{smallmatrix}\right)(u,v) = \left(\begin{smallmatrix} \widetilde{E} & \widetilde{F} \\ \widetilde{F} & \widetilde{G} \end{smallmatrix}\right)(u,v),$ so sind x(U) und $\tilde{x}(U)$ isometrisch

Zweite Fundamentalform

• Normalenvektor: für Parametrisierung $x:U\ni (u,v)\mapsto x(u,v)\in S$

$$n(p) = n(x(u,v)) = n(u,v) = \frac{x_u(u,v) \land x_v(u,v)}{\|x_u(u,v) \land x_v(u,v)\|}$$
ist Einheitsvektor senkrecht zu $T_pS(\forall p \in x(U) \in S)$
• Zweite Fundamentalform für Parametrisierung $x: U \to S$:

$$\begin{pmatrix} L(u,v) & M(u,v) \\ M(u,v) & N(u,v) \end{pmatrix} := \begin{pmatrix} \langle x_{uu}, n \rangle & \langle x_{uv}, n \rangle \\ \langle x_{vu}, n \rangle & \langle x_{vv}, n \rangle \end{pmatrix}$$

Gauß-Krümmung

- Gauß-Krümmung: $K:S\ni p\mapsto K(p)=\frac{\det \mathrm{II}_p}{\det \mathrm{I}_p}$ K ist Größe der inneren Geometrie von S
- Bertrand-Puiseux ($p \in S$): Für hinreichend kleine r > 0 ist

$$S_r(p) = \{ q \in S : d(p,q) = r \}$$

eine geschlossene, d-bare Kurve, Länge
$$L(S_r(p))$$
. Dann gilt:
$$K(p) = \lim_{r \to 0} \frac{3}{\pi r^3} (2\pi r - L(S_r(p)))$$

Gauß-Bonnet - lokal

Kovariante Ableitung von a nach u:

$$D_u a = a_u - \langle n, a_u \rangle n \ (= a_u + \langle n_u, a \rangle n)$$

(lokale Parametrisierung $x: U \to S$, tangentiales Vektorfeld $a: U \to \mathbb{R}^3$ auf S) \Rightarrow Komponente von a_u in Tangentialrichtung

- Geodätische Krümmung $\kappa_q(s)$: Krümmung der in Tangentialebene projizierten

Kurve
$$c''(s) = 0 \cdot c'(s) + \kappa_g(s)(n(s) \wedge c'(s)) + \alpha(s)n(s)$$
• Satz von Gauß-Bonnet — lokal:
$$\int_{\delta G} \kappa_g(s) ds + \iint_G K dA = 2\pi$$
mit

$$\int_{\delta G} \kappa_g(s) ds + \iint_G K dA = 2\pi$$

- 2. $x: U \to S$ lokale Parametrisierung
- 3. $G \subseteq x(U) \subset S$ einfach zusammenhängendes Gebiet mit d-barem Rand δG
- 4. $s \mapsto (u(s), v(s))$ beschreibe $x^{-1}(\delta G) \subset U$
- **Geodätische**: Flächenkurve mit $\kappa_q = 0$ ("Gerade" auf krummer Fläche)

Gauß-Bonnet - mit Ecken

$$\iint_G K dA + \int_{\delta G} \kappa_g ds = \pi (2 - m) + \sum_{i=1}^m \alpha_i$$

(Ecken $1, \ldots, m$ mit Innenwinkel α_i

Gauß-Bonnet - global

- Klassifikationssatz für 2-MF: Kompakte randlose 2-MF ist homöomorph zu
 - 1. einer Sphäre S^2 oder
- 2. einer zusammenhängenden Summe von g Tori (falls M orientierbar) oder
- 3. einer zusammenhängenden Summe von g projektiven Ebenen (sonst)
- Geschlecht: g von oben
- Euler-Charakteristik von M-Triangulierung:

$$\chi_T(M) = \#\text{Ecken} - \#\text{Kanten} + \#\text{Flächen}$$

- o $\chi(M) = \chi_T(M)$ unabhängig von Triangulierung
- $\circ \ \chi_T(M) = 2 2g$

· Globaler Satz von Gauß-Bonnet:

$$\iint_{S} K dA = 2\pi \chi(S)$$

 $(S \subset \mathbb{R}^3 \text{ kompakte randlose orientierbare Fläche})$

Hyperbolische Ebene

Obere Halbebene

- Definition: $H^2=\left\{(x_1,x_2)\in\mathbb{R}^2:x_2>0\right\}$ Punkte: Elemente in H^2
- Geraden: Halbkreise mit Zentrum auf x_1 -Achse + Parallelen zur x_2 -Achse

Riemannsche Metrik

- Tangentialraum: T_pM = Menge von Äquivalenzklassen von d-baren Kurven $\operatorname{durch} p \in M$
- **Riemannsche Metrik** auf d-barer MF: Familie von Skalarprodukten $\langle \cdot, \cdot \rangle_p$ auf $T_p M$, die d-bar von p abhängt

Ebene hyperbolische Geometrie

- Modell: $H^2 = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ mit hyperbolischer riemannscher Metrik

• Modell:
$$H = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$
 mit hyperbolische: $g_{ij} = \begin{pmatrix} \frac{1}{y^2} & 0 \\ 0 & \frac{1}{y^2} \end{pmatrix}$
• Hyperbolische Länge (mit $c(t) = z(t) = x(t) + \mathrm{i}y(t)$): $L_h(c) = \int_a^b \left\| c' \right\|_H \mathrm{d}t = \int_a^b \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)} \mathrm{d}t$
 $= \int_a^b \frac{\left| z'(t) \right|}{y(t)}$
• Möbius-Transformation von $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(n, \mathbb{R})$: $T_A : H^2 \ni z \mapsto \frac{az + b}{cz + d} \in H^2$

$$T_A: H^2 \ni z \mapsto \frac{az+b}{cz+d} \in H^2$$

- Hyperbolische Längenmetrik: (Ω_{pq} stückw. db Kurven in H^2 zw p und q) $d_h(p,q) = \inf L_k(c)$

 - (H^2,d_h) ist metrischer Raum Möbius-Transformationen $\{T_A:A\in SL(2,\mathbb{R})\}$ sind Isom. von (H^2,d_h) (H^2,d_h) ist homogen: $\forall p,q\in H^2\ \exists\ \mathrm{Iso}\ T_A:T_A(p)=q$ • Streckungen sind Isometrien in H^2 (mit $A = \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \frac{1}{-\Delta} \end{pmatrix}$) $\Rightarrow d_h(z, w) = d_h(\lambda z, \lambda w)$

Geodätische

- Geodätische zwischen Punkten in H^2 , d_h : parametrisierte Halbkreise und Ger-
- aden orthogonal zur reellen Achse \Rightarrow Halbkreise haben Zentrum auf reeller Achse $\forall p,q \in H^2$ können durch eindeutige Geodätische verbunden werden; $d_h(p,q)$ = hyp. Länge dieser Geodätischen

Gauß-Bonnet

• Hyperbolischer Flächeninhalt für
$$A \in H^2$$
:
$$\mu(a) = \iint_A \sqrt{\det(g_{ij}(z))} \mathrm{d}x \mathrm{d}y = \iint_A \frac{1}{y^2} \mathrm{d}x \mathrm{d}y \leq x$$

- Flächeninhalt invariant unter Isometrien (also Möbius-Transformationen)
- Hyperbolisches Polygon mit n Seiten: Abgeschlossene Teilmenge von $\overline{H^2} = H^2 \cup (\mathbb{R} \cup \{\infty\})$
 - o Seiten: geodätische Segmente, die Polygon begrenzen
 - o Ecken: Stelle, an der sich genau zwei Seiten schneiden
- Hyperbolische Winkelmessung: wie im Euklidischen
- Gauß-Bonnet: Flächeninhalt eines hyp. △ ist durch Winkel vollständig bestimmt: $\mu(\triangle) = \pi - \alpha - \beta - \gamma \le \pi$

Krümmung

- Einheitsscheibe: $D^2=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2<1\right\}=\{z\in\mathbb{C}:|z|<1\}$ Metrik auf D^2 mit $M:H^2\ni z\mapsto \frac{iz+1}{z+i}\in D^2$ durch $d_h^*(z,w)=d_h(M^{-1}(z),M^{-1}(w))$ Krümmung für Längenraum: $K(p)=\lim_{\rho\to0}\frac{3}{\pi p^3}(2\pi\rho-L(S_\rho(0)))$

$$d_h^*(z,w) = d_h(M^{-1}(z), M^{-1}(w))$$

$$K(p) = \lim_{\rho \to 0} \frac{3}{\pi p^3} (2\pi \rho - L(S_{\rho}(0)))$$

• Krümmung von D^2 (und damit auch H^2) ist konstant -1 (nutzt $L_{h^*}(S_{\rho}(0)) =$ $2\pi \sinh(\rho)$ für hyp. Kreis mit Radius ρ , Zentrum 0)