Power Distribution System for a CubeSat

Presented by :

Ansaf Niyaz | TRV19EE016 | Govind Murali | TRV19EE025 | Jijesh J. Kumar | TRV19EE029 | Naveen A.B. | TRV19EE038

EEE Dept., GEC Barton Hill, Thiruvananthapuram

February 27, 2023

Guided by: Dr. Dinesh Gopinath

Contents

- 1. Objective
- 2. System Architecture
- 3. Hardware Design
- 4. Project Timeline
- 5. References

Objective

To design and implement a fully autonomous power generation, storage and distribution system for a CubeSat

System Architecture

Figure 1: CubeSat EPS Architecture

Hardware Design - Buck and Boost Converters with Monitoring

Figure 2: Circuit design of buck and boost converters with monitoring

Hardware Design - Buck and Boost Converters (Contd.)

Buck Converter:

- IC: TPS62203
- Input Voltage: 3.6 5V
- Output Voltage: 3.3V
- Switching Frequency: 1MHz
- Output Current: 300mA (max.)

Boost Converter:

- IC: LTC3426
- Input Voltage: 3.6 5V
- Output Voltage: 5V
- Switching Frequency: 1.2MHz
- Output Current: 500mA (max.)

All convertors operate in continuous conduction mode.

Hardware Design - Buck and Boost Converters with Monitoring (Contd.)

Figure 3: PCB Layout of buck and boost converters with monitoring

Hardware Design - Buck and Boost Converters with Monitoring (Contd.)

Figure 4: 3-D model of buck and boost converters with monitoring

Hardware Design - Voltage and Current monitoring IC

- IC: LTC 2990
- Quad input
- Voltage and Current Monitoring
- Communication via I2C serial interface

Hardware Design - Battery Charger

Figure 5: Circuit design of Battery Charger

Hardware Design - Battery Charger (Contd.)

Synchronous Buck Battery Charger:

- IC: BQ25302 (With External Power Path configuration)
- Input Voltage: 5V
- Output Voltage: 4.2V (max.)
- Switching Frequency: 1.2MHz
- Output Current: Limited to 1.2A
- Thermistor: Semitec 103AT-2 ($10k\Omega$)
- Charging Temperature: Limited between 0 45 C

Hardware Design - Battery Charger (Contd.)

Figure 6: PCB Layout of Battery Charger

Hardware Design - Battery Charger (Contd.)

Figure 7: 3-D model of Battery Charger

Hardware Design - MPPT

Figure 8: Circuit design of MPPT

Hardware Design - MPPT (Contd.)

- IC: SPV1040
- MPPT with Perturb and Observe algorithm
- Input Voltage: 0.3 5.5V
- Output Voltage: 5V
- Switching Frequency: 100kHz
- Inbuilt over-current, temperature protection
- Efficiency: 95%

Hardware Design - MPPT (Contd.)

Figure 9: PCB Layout of MPPT

Hardware Design - MPPT (Contd.)

Hardware Design - Protection

Figure 11: Circuit design for protection

Hardware Design - Protection (Contd.)

Figure 12: PCB Layout of protection circuit

Hardware Design - Protection (Contd.)

Figure 13: 3-D model of protection circuit

Project Timeline

Activity	Jan week 3-4	Feb week 1-2	Feb week 3-4	Mar week 1-2	Mar week 3-4	Apr week 1-2	Apr week 3-4	May week 1-3
PCB design and fabrication								
Component procurement								
Microcontroller programming								
Soldering								
Troubleshooting								
Report Writing								

References

- Knap, Vaclav & Vestergaard, Lars & Stroe, Daniel-Ioan (2020)
 A Review of Battery Technology in CubeSats and Small Satellite Solutions Energies, vol. 13
- Comparison of Peak Power Tracking Based Electric Power System Architectures for CubeSats

A. Edpuganti, V. Khadkikar, H. Zeineldin, M. S. E. Moursi and M. Al Hosani (2021)

- IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2758-2768, May-June 2021
- Review on the charging techniques of a Li-lon battery

 Third International Conference on Technological Advances in Electrical, Electronics and

 Computer Engineering (TAEECE), 2015, pp. 50-55

[3] E. Ayoub and N. Karami (2015)

References (Contd.)

- [4] B. Hussein, A. M. Massoud and T. Khattab (2022) Centralized, Distributed, and Module-Integrated Electric Power System Schemes in CubeSats: Performance Assessment IEEE Access, vol. 10, pp. 55396-55407
- A. Edpuganti, V. Khadkikar, M. S. E. Moursi, H. Zeineldin, N. Al-Sayari and K. Al Hosani (2022)
 A Comprehensive Review on CubeSat Electrical Power System Architectures

IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3161-3177, March 2022

[6] Aulia Indana, Dharu Arseno, Edwar, and Adilla Safira (2020)
Output Power Analysis of Tel-USat Electrical Power System
AIP Conference Proceedings 2226

Thank You