FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 31: 01/11/22)

fines e f'CBXA a rela-Cos inviersa de f. Entes: (férma funças => fébriétiva. Prova: (=) Sup. que f é bijetion. De-Venus prono entois que f'CBXA é una fineas. Veronos: (1) Como f é robrejetion, entous $\mathbb{D}^{out}(t, J) \subset \mathbb{B}^{d}$ Varnur growntin organo que B C Dom (f') De late, $b \in B = Im(+) \Rightarrow \exists a \in A \text{ tal que}$

$f(a) = b \iff (a,b) \in F$	
Logo, $(b, a) \in f^{-3}$,	
e isto significa dizer que	t
$b \in D_{om}(f^{-1}) = \{ v \in B : \exists u \in A, (v,u) \in f^{-1} \}$	e
Partonto, B C Dorm (f'), on reja,	_
Dom (+') = B,	(0
Dom (f') = B, que prova a 1° exergêncie pra f's m	C
uno mest	
{ (11) Consider (b, x), (b, x) ∈ f.	1
). Enter $(x_1,b) \in f$ $(x_2,b) \in f$	
me Conno f è una funça;	P

f(n) = b e f(n2) = b $f(x_1) = f(x_2).$ Desde que f é injulies: Ou rega, f'empoue a 2° exmencio de definiças de finness (=>) Enercició de leitura no tuto. Def: Tuma lungar Immero de uma funçar f: A > B bijetiva é uma funcas f's: B -> A tal que:

Teorema: Se +: A >B & J:B > (No) fineser, entas Jof é una finca Ex. f:R->R & J:R->R evm f(x)=x+s & g(y)=y2 Entero: Jof: R-> R e fog: R-> R Com $\left(\begin{array}{c} 3 \circ 4 \end{array} \right) \left(x \right) = \begin{array}{c} 3 \left(4 \left(x \right) \right) = \begin{array}{c} 3 \left(x + 1 \right) = \left(x + 1 \right) \end{array}$ $(\{ 0 \}) (y) = \{ (\emptyset (y)) = \{ (y^2) = y^2 + 1 \}$ Propriedade Ameiativa

Considere f: A > B, g: B-> C e h: (-> D. Entes: ((Nog) 0+ = h 0 (90+)

fineser i dentidade Ida: A -> A e IdB: B > B definido por $Id_A(x) = x e Id_B(y) = y$. Entras: 1) f é mystro (> 33:B-A toll que 30/=]d M) fi Adaytus (>) Ih: B > A talque foh = IdR Prova: Vya Material e Envercion.

Durdos
Litter 4: En 5-d): Se ACC e BCD enters (A×B)C(C×D)
Sol.: Lembrondo:
XCY" rignifica: "Yx, neX => ueV"
Vyanus:
$\forall x, x \in (A \times B) = x = (9,6) \in A \times B$
$\Rightarrow \alpha \in A e b \in B$
QEC e bED
$\Rightarrow (a_1b) \in (XD) \Rightarrow u=(a_1b) \in CvD.$

Luta 4: En. (0-(6)-(6): em Ai = {n eR; 0 < x < i} Sol: 1=0 => A = {x \in |R: 0 \in x \in 0} = \$ 1=1 => A, = { nelR: 0 < n < 1} = [0,1) 1 = 2 => A, = = [0,2) = [0, l)人= l => A,= Note que de [0,1) c [0,2) c ... c [0,1). Entas $A_{\lambda} = A_{0} \cup A_{1} \cup A_{2} \cup ... \cup A_{n} = [0, 1] = A_{n}$ 16 {0,1,2,...,1}