Berechenbarkeit Vorlesung 1: Überblick

4. April 2024

Team & Sprechstunden

Hausaufgabenkontrolle

- Riko Kister
- Tristan Schauder
- Alexander Vopel

Team & Sprechstunden

Hausaufgabenkontrolle

- Riko Kister
- Tristan Schauder
- Alexander Vopel

Sprechstunden

```
► Andreas Maletti
```

maletti@informatik.uni-leipzig.de

▶ Erik Paul

epaul@informatik.uni-leipzig.de

► Karin Quaas

quaas@informatik.uni-leipzig.de

► Fabian Sauer

sauer@informatik.uni-leipzig.de

nach Vereinbarung

montags, 17-18 Uhr

nach Vereinbarung

nach Vereinbarung

Veranstaltungen

Veranstaltungen

• Vorlesung: donnerstags, jede Woche, 17:15–18:45 Uhr, Hs. 5

▶ Andreas Maletti

• Übungen: montags, dienstags & mittwochs, alle 14 Tage

Woche	Wochentag	Zeit	Raum	Übungsleiter
	montags	11:15-12:45	P-801	► Erik Paul
A-Woche	dienstags	11:15-12:45	P-801	► Fabian Sauer
A-woche	dienstags	15:15-16:45	SG 2-14	► Karin Quaas
	mittwochs	11:15-12:45	SG 3-12	► Karin Quaas
	montags	11:15-12:45	P-801	► Erik Paul
B-Woche	dienstags	11:15-12:45	P-801	► Fabian Sauer
D-Woche	dienstags	15:15-16:45	SG 2-14	► Karin Quaas
	mittwochs	11:15-12:45	SG 3-12	► Karin Quaas

Termine — Modul Berechenbarkeit

Übungen	Vorlesung
2.4.	4.4. Überblick
9.4.	11.4. Turingmaschine I (Übungsblatt 1)
16.4. Übung 1 B-Woche	18.4. Turingmaschine II
23.4. Übung 1 A-Woche	25.4. Loop-Programme (Übungsblatt 2)
30.4. Übung 2 B-Woche (Mittwoch Feiertag)	2.5. While-Programme
7.5. Übung 2 A-Woche	9.5. (Übungsblatt 3)
14.5. Übung 3 B-Woche (Montag Feiertag)	16.5. Rekursion I

Übungen	Vorlesung
21.5.	23.5.
Übung 3	Rekursion II
A-Woche	(Übungsblatt 4)
28.5.	30.5.
Übung 4	Entscheidbarkeit
B-Woche	
4.6.	6.6.
Übung 4	Unentscheidbarkeit
A-Woche	(Übungsblatt 5)
11.6.	13.6.
Übung 5	Spez. Probleme
B-Woche	·
18.6.	20.6.
Übung 5	Klasse P
A-Woche	(Übungsblatt 6)
25.6.	27.6.
Übung 6	NP-Vollständigkeit
B-Woche	
2.7.	4.7.
Übung 6	Komplexitätsklassen
A-Woche	

Materialien und Literatur

Materialien

• Ankündigungen, Kursmaterialien & Vorlesungsaufzeichnungen

Materialien und Literatur

Materialien

• Ankündigungen, Kursmaterialien & Vorlesungsaufzeichnungen

► Moodle-Kurs

 Literatur zum Selbststudium & zur Vertiefung (in der Bibliothek als Buch verfügbar)

Uwe Schöning

► Theoretische Informatik — kurz gefasst

Spektrum Akademischer Verlag, 5. Auflage, 2008

Steven Homer, Alan L. Selman

► Computability and Complexity Theory

Springer-Verlag, 2. Auflage, 2011

Prüfung

Termine

• Prüfungsabmeldung bis 8. Juni 2024 um 23:59 Uhr

Prüfung

- Klausur, 60 min
- Hilfsmittel: 1 DIN-A4-Blatt mit Notizen (beschrieben, bedruckt, etc.)

Begleitende Aufgaben

Aufgaben

- Keine Prüfungsvorleistung
- Hausaufgaben zur Selbstkontrolle und für Klausur-Bonuspunkte (6 Serien; 4 Serien bis 8. Juni)

Begleitende Aufgaben

Aufgaben

- Keine Prüfungsvorleistung
- Hausaufgaben zur Selbstkontrolle und für Klausur-Bonuspunkte (6 Serien; 4 Serien bis 8. Juni)
- Abgabe Hausaufgaben via Moodle (Informationen & Termin auf Aufgabenblatt)
- Gruppenabgabe (max. Gruppengröße 2) möglich (nur ein Gruppenmitglied lädt Lösung hoch Matrikelnummer aller Gruppenmitglieder auf Abgabe)

Bonuspunkte

Bonuspunkte

Erreichte Hausaufgaben-Punkte	Klausur-Bonuspunkte (Anteil)
≤ 60	Prüfungsteilnahme <mark>überdenken</mark>
61–70	+1 Punkt (≈ 2%)
71–80	+2 Punkte (≈ 3%)
81–90	+3 Punkte (5%)
	+4 Punkte (≈ 7%)
101–110	+5 Punkte (≈ 8%)
	+6 Punkte (10%)

Überblick

<u>Inhalt</u>

- Verschiedene (universelle) Berechnungsmodelle
- Berechenbare Funktionen
- Komplexitätstheorie

Überblick

<u>Inhalt</u>

- Verschiedene (universelle) Berechnungsmodelle
- Berechenbare Funktionen
- Komplexitätstheorie

Plakative Fragestellungen

- Was ist "Berechnung"? (Algorithmus)
 - Was ist "berechenbar"?
 - Wie teuer ist "Berechnung"? (Dimensionen: Zeit und Speicher)

Bitte Fragen direkt stellen!

Chomsky-Hierarchie

Noam Chomsky (* 1928)

- Amer. Linguist & Philosoph
- Verfechter Präzision
- Einführung Chomsky-Hierarchie

© Ministerio de Cultura de la Nación Argentina

§1.1 Definition (Grammatik; engl. grammar)

Grammatik ist Tupel (N, Σ, S, P)

- endliche Menge N von Nichtterminalen (engl. nonterminals)
- **2** endliche Menge Σ von Terminalen (engl. terminals) mit $N \cap \Sigma = \emptyset$
- **3** Startnichtterminal $S \in N$ (engl. initial nonterminal)
- endliche Menge P von Produktionen (engl. productions) der Form $\ell \to r$ mit $\ell \in (N \cup \Sigma)^+ \setminus \Sigma^+$ und $r \in ((N \setminus \{S\}) \cup \Sigma)^*$

§1.1 Definition (Grammatik; engl. grammar)

Grammatik ist Tupel (N, Σ, S, P)

- endliche Menge N von Nichtterminalen (engl. nonterminals)
- **2** endliche Menge Σ von Terminalen (engl. terminals) mit $N \cap \Sigma = \emptyset$
- **3** Startnichtterminal $S \in N$ (engl. initial nonterminal)
- endliche Menge P von Produktionen (engl. productions) der Form $\ell \to r$ mit $\ell \in (N \cup \Sigma)^+ \setminus \Sigma^+$ und $r \in ((N \setminus \{S\}) \cup \Sigma)^*$

Notizen

 Linke Produktionsseite ℓ = Sequenz von Nichtterminalen & Terminalen (mind. 1 Nichtterminal muss vorkommen)

§1.1 Definition (Grammatik; engl. grammar)

Grammatik ist Tupel (N, Σ, S, P)

- endliche Menge N von Nichtterminalen (engl. nonterminals)
- **2** endliche Menge Σ von Terminalen (engl. *terminals*) mit $N \cap \Sigma = \emptyset$
- **3** Startnichtterminal $S \in N$ (engl. initial nonterminal)
- endliche Menge P von Produktionen (engl. productions) der Form $\ell \to r$ mit $\ell \in (N \cup \Sigma)^+ \setminus \Sigma^+$ und $r \in (N \setminus \{S\}) \cup \Sigma^*$

Notizen

- Linke Produktionsseite ℓ = Sequenz von Nichtterminalen & Terminalen (mind. 1 Nichtterminal muss vorkommen)
- Rechte Produktionsseite *r* = Sequenz von Nichtterminalen & Terminalen (Startnichtterminal darf nicht vorkommen)

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. context-free) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. context-free) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

Grammatik
$$G = (\{S, S'\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow a S' a \qquad S'
ightarrow b S' b \qquad S'
ightarrow a a \qquad S'
ightarrow b b b'$$

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. *context-free*) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

§1.3 Beispiel

Grammatik
$$G = (\{S, S'\}, \{a, b\}, S, P)$$
 mit Produktionen P

 $S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb'$

kontextsensitiv	kontextfrei	regulär

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. *context-free*) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

§1.3 Beispiel

Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

kontextsensitiv	kontextfrei	regulär
✓		

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. context-free) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

Grammatik
$$G = (\{S, S'\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow a S'
ightarrow b S' b \qquad S'
ightarrow a a \qquad S'
ightarrow b b b'$$

kontextsensitiv	kontextfrei	regulär
✓	✓	

§1.2 Definition (kontextsensitiv, kontextfrei, regulär)

Grammatik (N, Σ, S, P) ist

- kontextsensitiv (engl. context-sensitive) falls $|\ell| \leq |r|$,
- kontextfrei (engl. context-free) falls $\ell \in N$ und $r \neq \varepsilon$, und
- regulär (engl. regular) falls $\ell \in N$ und $r \in (\Sigma \times N) \cup \Sigma$

für jede Produktion $(\ell \to r) \in P \setminus \{S \to \varepsilon\}$

Grammatik
$$G = (\{S, S'\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \to \varepsilon$$
 $S \to S'$ $S' \to aS'a$ $S' \to bS'b$ $S' \to aa$ $S' \to bb$

kontextsensitiv	kontextfrei	regulär
✓	✓	X

§1.4 Beispiel

 $EE \rightarrow \varepsilon$

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \rightarrow S'E \qquad S' \rightarrow aS'a \qquad S' \rightarrow bS'b \qquad S' \rightarrow E$$

$$Ea \rightarrow EA \qquad Aa \rightarrow aA \qquad Ab \rightarrow bA \qquad AE \rightarrow Ea$$

$$Eb \rightarrow EB \qquad Ba \rightarrow aB \qquad Bb \rightarrow bB \qquad BE \rightarrow Eb$$

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \to S'E \qquad S' \to aS'a \qquad S' \to bS'b \qquad S' \to E$$

$$Ea \to EA \qquad Aa \to aA \qquad Ab \to bA \qquad AE \to Ea$$

$$Eb \to EB \qquad Ba \to aB \qquad Bb \to bB \qquad BE \to Eb$$

$$EE \to \varepsilon$$

kontextsensitiv	kontextfrei	regulär

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \to S'E \qquad S' \to aS'a \qquad S' \to bS'b \qquad S' \to E$$

$$Ea \to EA \qquad Aa \to aA \qquad Ab \to bA \qquad AE \to Ea$$

$$Eb \to EB \qquad Ba \to aB \qquad Bb \to bB \qquad BE \to Eb$$

$$EE \to \varepsilon$$

kontextsensitiv	kontextfrei	regulär
X		

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \to S'E \qquad S' \to aS'a \qquad S' \to bS'b \qquad S' \to E$$

$$Ea \to EA \qquad Aa \to aA \qquad Ab \to bA \qquad AE \to Ea$$

$$Eb \to EB \qquad Ba \to aB \qquad Bb \to bB \qquad BE \to Eb$$

$$EE \to \varepsilon$$

kontextsensitiv	kontextfrei	regulär
X	X	

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \to S'E \qquad S' \to aS'a \qquad S' \to bS'b \qquad S' \to E$$

$$Ea \to EA \qquad Aa \to aA \qquad Ab \to bA \qquad AE \to Ea$$

$$Eb \to EB \qquad Ba \to aB \qquad Bb \to bB \qquad BE \to Eb$$

$$EE \to \varepsilon$$

kontextsensitiv	kontextfrei	regulär
X	X	X

§1.5 Definition (Ableitungsschritt)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Ableitungsrelation $\Rightarrow_{\mathcal{G}} \subseteq (N \cup \Sigma)^* \times (N \cup \Sigma)^*$ ist

$$\Rightarrow_{G} = \left\{ (v\ell v', vrv') \mid (\ell \to r) \in P, \ v, v' \in (N \cup \Sigma)^{*} \right\}$$

§1.5 Definition (Ableitungsschritt)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Ableitungsrelation $\Rightarrow_{\mathcal{G}} \subseteq (N \cup \Sigma)^* \times (N \cup \Sigma)^*$ ist

$$\Rightarrow_{G} = \left\{ (v\ell v', vrv') \mid (\ell \to r) \in P, \ v, v' \in (N \cup \Sigma)^{*} \right\}$$

Illustration

- Produktion $\ell \to r \in P$
- Ableitungsschritt $\cdots \ell \cdots \Rightarrow_G \cdots r \cdots$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Ableitungsschritte:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underline{abbaabba}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Ableitungsschritte:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underline{abbaabba}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Ableitungsschritte:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underline{abbaabba}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Ableitungsschritte:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underline{abbaabba}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S o arepsilon \qquad S o S' \qquad S' o aS'a \qquad S' o bS'b \qquad S' o aa \qquad S' o bb$$

Ableitungsschritte:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underline{abbaabba}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Ableitungsschritte:

• Ableitung von v = abbaabba:

$$S \Rightarrow_G S' \Rightarrow_G aS'a \Rightarrow_G abS'ba \Rightarrow_G abbS'bba \Rightarrow_G \underbrace{abbaabba}_{G}$$

• Allgemein $S \Rightarrow_G^* ww^R$ für alle $w \in \{a, b\}^*$

Beispiel (§1.4)

 $FF \rightarrow \varepsilon$

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$
 $FE \rightarrow \varepsilon$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$
 $EF \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

 $FF \rightarrow \varepsilon$

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EF oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EF oup \varepsilon$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EF oup \varepsilon$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $FF oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

 $FF \rightarrow \varepsilon$

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$ $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$ $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$ $EFF oup \varepsilon$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EF oup \varepsilon$

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

§1.6 Definition (Erzeugte Sprache; engl. generated language)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Die von G erzeugte Sprache $L(G) \subseteq \Sigma^*$ ist

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

§1.6 Definition (Erzeugte Sprache; engl. generated language)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Die von G erzeugte Sprache $L(G) \subseteq \Sigma^*$ ist

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow a S' a \qquad S'
ightarrow b S' b \qquad S'
ightarrow a a \qquad S'
ightarrow b b$$

§1.6 Definition (Erzeugte Sprache; engl. generated language)

Sei $G = (N, \Sigma, S, P)$ Grammatik

Die von
$$G$$
 erzeugte Sprache $L(G) \subseteq \Sigma^*$ ist

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Erzeugte Sprache $L(G) = \{ww^R \mid w \in \{a, b\}^*\}$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Erzeugte Sprache $L(G) = \{ww \mid w \in \{a, b\}^*\}$

§1.7 Definition (Sprachklassen)

Sprache $L \subseteq \Sigma^*$ ist

- regulär (engl. regular),
 falls reguläre Grammatik G mit L(G) = L existiert
- kontextfrei (engl. context-free),
 falls kontextfreie Grammatik G mit L(G) = L existiert
- kontextsensitiv (engl. context-sensitive),
 falls kontextsensitive Grammatik G mit L(G) = L existiert

§1.7 Definition (Sprachklassen)

Sprache $L \subseteq \Sigma^*$ ist

- regulär (engl. regular),
 falls reguläre Grammatik G mit L(G) = L existiert
- kontextfrei (engl. context-free),
 falls kontextfreie Grammatik G mit L(G) = L existiert
- kontextsensitiv (engl. context-sensitive),
 falls kontextsensitive Grammatik G mit L(G) = L existiert

Notizen

- Sprache regulär falls erzeugbar von regulärer Grammatik
- Analog für weitere Sprachklassen

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S
ightarrow arepsilon \qquad S
ightarrow S' \qquad S'
ightarrow aS'a \qquad S'
ightarrow bS'b \qquad S'
ightarrow aa \qquad S'
ightarrow bb$$

Erzeugte Sprache $L(G) = \{ww^R \mid w \in \{a, b\}^*\}$

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow \varepsilon$$
 $S \rightarrow S'$ $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow aa$ $S' \rightarrow bb$

$$S' \rightarrow bS'b$$

$$S' \rightarrow bb$$

Erzeugte Sprache
$$L(G) = \{ww^R \mid w \in \{a,b\}^*\}$$

Frage

Ist Sprache L(G) kontextfrei?

Beispiel (§1.3)

Kontextfreie Grammatik $G = (\{S, S'\}, \{a, b\}, S, P)$ mit Produktionen P

 $S \rightarrow \varepsilon$ $S \rightarrow S'$ $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow aa$ $S' \rightarrow bb$

Erzeugte Sprache $L(G) = \{ww^R \mid w \in \{a, b\}^*\}$

Frage

Ist Sprache L(G) kontextfrei?

Antwort

Ja, denn kontextfreie Grammatik G erzeugt L(G)

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$ $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$ $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$ $EE oup \varepsilon$

Erzeugte Sprache $L(G) = \{ww \mid w \in \{a, b\}^*\}$

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Erzeugte Sprache
$$L(G) = \{ww \mid w \in \{a, b\}^*\}$$

Frage

G nicht kontextsensitiv, also ist L(G) nicht kontextsensitiv. Korrekt?

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Erzeugte Sprache
$$L(G) = \{ww \mid w \in \{a, b\}^*\}$$

Frage

G nicht kontextsensitiv, also ist L(G) nicht kontextsensitiv. Korrekt?

<u>Antwort</u>

Nein, dafür dürfte keine kontextsensitive Grammatik L(G) erzeugen

Chomsky-Sprachklassen

$$\mathsf{Typ\text{-}3}(\Sigma)\subseteq\mathsf{Typ\text{-}2}(\Sigma)\subseteq\mathsf{Typ\text{-}1}(\Sigma)\subseteq\mathsf{Typ\text{-}0}(\Sigma)\subseteq\mathcal{P}(\Sigma^*)$$

Reguläre Sprachen

Beschreibung reguläre Sprachen

- Reguläre Grammatik
- Endlicher Automat
- Regulärer Ausdruck

(nichtdeterministisch oder deterministisch)

Reguläre Sprachen

Beschreibung reguläre Sprachen

- Reguläre Grammatik
- Endlicher Automat

(nichtdeterministisch oder deterministisch)

Regulärer Ausdruck

Stichworte

- Normalformen, Determinisierung & Minimierung
- Abschluss- & Entscheidbarkeitsresultate
- Pumping-Lemma

Kontextfreie Sprachen

Beschreibung kontextfreie Sprachen

- Kontextfreie Grammatik
- Kellerautomat
- Deterministischer Kellerautomat

(nichtdeterministisch) (strikt schwächer)

Kontextfreie Sprachen

Beschreibung kontextfreie Sprachen

- Kontextfreie Grammatik
- Kellerautomat
- Deterministischer Kellerautomat

(nichtdeterministisch) (strikt schwächer)

<u>Stichworte</u>

- Normalformen & Parsing-Algorithmen
- Abschluss- & Entscheidbarkeitsresultate
- Pumping-Lemma

Chomsky-Sprachklassen

$$\mathsf{Typ\text{-}3}(\Sigma) \subsetneq \mathsf{Typ\text{-}2}(\Sigma) \subsetneq \mathsf{Typ\text{-}1}(\Sigma) \subseteq \mathsf{Typ\text{-}0}(\Sigma) \subseteq \mathcal{P}(\Sigma^*)$$

Chomsky-Sprachklassen

$$\mathsf{Typ\text{-}3}(\Sigma) \subsetneq \mathsf{Typ\text{-}2}(\Sigma) \subsetneq \mathsf{Typ\text{-}1}(\Sigma) \subseteq \mathsf{Typ\text{-}0}(\Sigma) \subseteq \mathcal{P}(\Sigma^*)$$

Kontextsensitive Sprachen

Beschreibung kontextsensitive Sprachen

- Kontextsensitive Grammatik
- Linear beschränkte Turingmaschine
- Linear beschränkte det. Turingmaschine

(nichtdeterministisch) (Mächtigkeit unklar)

Kontextsensitive Sprachen

Beschreibung kontextsensitive Sprachen

- Kontextsensitive Grammatik
- Linear beschränkte Turingmaschine
- Linear beschränkte det. Turingmaschine

(nichtdeterministisch)
(Mächtigkeit unklar)

<u>Stichworte</u>

- Normalformen & Parsing-Algorithmus
- Abschluss- & Entscheidbarkeitsresultate

Typs-0-Sprachen

Beschreibung Typ-0-Sprachen

- Chomsky-Grammatik
- Turingmaschine (nichtdeterministisch oder deterministisch)
- ullet While-Programm, μ -rekursive Funktion, . . . (berechenbare Funktion)

Typs-0-Sprachen

Beschreibung Typ-0-Sprachen

- Chomsky-Grammatik
- Turingmaschine (nichtdeterministisch oder deterministisch)
- ullet While-Programm, μ -rekursive Funktion, . . . (berechenbare Funktion)

Stichworte

- Normalformen & Determinisierung
- Abschluss- & Entscheidbarkeitsresultate

Ausblick — Chomsky-Sprachklassen

$$\mathsf{Typ\text{-}3}(\Sigma) \subsetneq \mathsf{Typ\text{-}2}(\Sigma) \subsetneq \mathsf{Typ\text{-}1}(\Sigma) \subsetneq \mathsf{Typ\text{-}0}(\Sigma) \subsetneq \mathcal{P}(\Sigma^*)$$

Eigenschaften

• Es gibt Sprachen, die nicht Typ-0 sind

Eigenschaften

- Es gibt Sprachen, die nicht Typ-0 sind
- Es gibt Typ-0-Sprachen mit unentscheidbarem Wortproblem

Eigenschaften

- Es gibt Sprachen, die nicht Typ-0 sind
- Es gibt Typ-0-Sprachen mit unentscheidbarem Wortproblem

Eigenschaften

- Es gibt Sprachen, die nicht Typ-0 sind
- Es gibt Typ-0-Sprachen mit unentscheidbarem Wortproblem

§1.8 Definition (abzählbar; engl. countable)

Menge M ist abzählbar falls injektive Funktion $f: M \to \mathbb{N}$ existiert

Eigenschaften

- Es gibt Sprachen, die nicht Typ-0 sind
- Es gibt Typ-0-Sprachen mit unentscheidbarem Wortproblem

§1.8 Definition (abzählbar; engl. countable)

Menge M ist abzählbar falls injektive Funktion $f: M \to \mathbb{N}$ existiert

- M abzählbar gdw. jedem $m \in M$ eigene natürliche Zahl zuweisbar
- ullet Natürliche Zahlen $\mathbb{N} = \{0,1,2,3,\dots\}$ abzählbar

§1.9 Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

§1.9 Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

Beweis.

Seien p_1, \ldots, p_k verschiedene Primzahlen.

§1.9 Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

Beweis.

Seien p_1,\ldots,p_k verschiedene Primzahlen. Sei $f\colon \mathbb{N}^k \to \mathbb{N}$ gegeben durch

$$f(n_1,\ldots,n_k)=\prod^k p_i^{n_i}=p_1^{n_1}\cdot\ldots\cdot p_k^{n_k}$$
 für alle $n_1,\ldots,n_k\in\mathbb{N}$

§1.9 Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

Beweis.

Seien p_1,\ldots,p_k verschiedene Primzahlen. Sei $f\colon \mathbb{N}^k \to \mathbb{N}$ gegeben durch

$$f(n_1,\ldots,n_k)=\prod_{i=1}^k p_i^{n_i}=p_1^{n_1}\cdot\ldots\cdot p_k^{n_k}$$
 für alle $n_1,\ldots,n_k\in\mathbb{N}$

Falls $f(m_1, \ldots, m_k) = f(n_1, \ldots, n_k)$ für $m_1, \ldots, m_k, n_1, \ldots, n_k \in \mathbb{N}$, dann folgt $m_i = n_i$ für alle $1 \le i \le k$ da Primfaktorenzerlegung eindeutig.

§1.9 Theorem (Abzählbarkeit von \mathbb{N}^k)

Menge \mathbb{N}^k abzählbar für alle $k \in \mathbb{N}$

Beweis.

Seien p_1,\ldots,p_k verschiedene Primzahlen. Sei $f\colon \mathbb{N}^k \to \mathbb{N}$ gegeben durch

$$f(n_1,\ldots,n_k)=\prod_{i=1}^k p_i^{n_i}=p_1^{n_1}\cdot\ldots\cdot p_k^{n_k}$$
 für alle $n_1,\ldots,n_k\in\mathbb{N}$

Falls $f(m_1, \ldots, m_k) = f(n_1, \ldots, n_k)$ für $m_1, \ldots, m_k, m_1, \ldots, n_k \in \mathbb{N}$, dann folgt $m_i = n_i$ für alle $1 \le i \le k$ da Primfaktorenzerlegung eindeutig. Also ist f injektiv und \mathbb{N}^k damit abzählbar.

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Die Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ ist abzählbar

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Die Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ ist abzählbar

Beweis.

Menge \mathbb{N}^k abzählbar via $f_k\colon \mathbb{N}^k \to \mathbb{N}$ für alle $k\in \mathbb{N}$ nach Theorem §1.9.

Sei
$$f: \mathbb{N}^* \to \mathbb{N}$$
 gegeben durch

$$f(w) = f_2ig(|w|, f_{|w|}(w)ig)$$
 für alle $w \in \mathbb{N}^*$

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Die Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ ist abzählbar

Beweis.

Menge \mathbb{N}^k abzählbar via $f_k\colon \mathbb{N}^k o \mathbb{N}$ für alle $k\in \mathbb{N}$ nach Theorem §1.9.

 $f(w) = f_2(|w|, f_{|w|}(w))$

Sei
$$f \colon \mathbb{N}^* \to \mathbb{N}$$
 gegeben durch

für alle
$$w \in \mathbb{N}^*$$

Falls
$$f(w) = f(w')$$
 für $w, w' \in \mathbb{N}^*$, dann $|w| = |w'|$ und $f_{|w|}(w) = f_{|w'|}(w')$, da f_2 injektiv.

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Die Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ ist abzählbar

Beweis.

Menge \mathbb{N}^k abzählbar via $f_k\colon \mathbb{N}^k\to \mathbb{N}$ für alle $k\in \mathbb{N}$ nach Theorem §1.9. Sei $f\colon \mathbb{N}^*\to \mathbb{N}$ gegeben durch

 $f(w) = f_2ig(|w|, f_{|w|}(w)ig)$ für alle $w \in \mathbb{N}^*$

Falls f(w) = f(w') für $w, w' \in \mathbb{N}^*$, dann |w| = |w'| und $f_{|w|}(w) = f_{|w'|}(w')$, da f_2 injektiv. Weiterhin folgt w = w' aus der Injektivität von $f_{|w|} = f_{|w'|}$.

§1.10 Theorem (Abzählbarkeit von \mathbb{N}^*)

Die Menge $\mathbb{N}^* = \bigcup_{k \in \mathbb{N}} \mathbb{N}^k$ ist abzählbar

Beweis.

Menge \mathbb{N}^k abzählbar via $f_k \colon \mathbb{N}^k \to \mathbb{N}$ für alle $k \in \mathbb{N}$ nach Theorem §1.9. Sei $f \colon \mathbb{N}^* \to \mathbb{N}$ gegeben durch

 $f(w) = f_2(|w|, f_{|w|}(w))$

für alle $w \in \mathbb{N}^*$

Falls
$$f(w) = f(w')$$
 für $w, w' \in \mathbb{N}^*$, dann $|w| = |w'|$ und $f_{|w|}(w) = f_{|w'|}(w')$, da f_2 injektiv. Weiterhin folgt $w = w'$ aus der Injektivität von $f_{|w|} = f_{|w'|}$. Also ist f injektiv und \mathbb{N}^* damit abzählbar.

Abzählbarkeit der Grammatiken

- Kodiere Terminale durch ungerade Zahlen (a = 1; b = 3)
- ② Gerade positive Zahlen für Nichtterminale (S=2; S'=4; A=6; ...)
- 0 als Trennzeichen

Abzählbarkeit der Grammatiken

- Kodiere Terminale durch ungerade Zahlen (a = 1; b = 3)
- ② Gerade positive Zahlen für Nichtterminale (S=2; S'=4; A=6; ...)
- 0 als Trennzeichen

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$ $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$ $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

$$\textit{EE}
ightarrow arepsilon$$

Abzählbarkeit der Grammatiken

- Kodiere Terminale durch ungerade Zahlen (a = 1; b = 3)
- ② Gerade positive Zahlen für Nichtterminale (S=2; S'=4; A=6; ...)
- 0 als Trennzeichen

Beispiel (§1.4)

Grammatik
$$G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$$
 mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$c(G) = \underbrace{2.0.4.10}_{S \to S'E} .0.\underbrace{4.0.1.4.1}_{S' \to aS'a} .0.\underbrace{4.0.3.4.3}_{S' \to bS'b} .0. \cdots$$

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ der Typ-0-Sprachen über Alphabet Σ abzählbar

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge $\mathsf{Typ}\text{-}\mathsf{0}(\Sigma)\subseteq\mathcal{P}(\Sigma^*)$ der $\mathsf{Typ}\text{-}\mathsf{0}\text{-}\mathsf{Sprachen}$ über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom).

Mit Hilfe von c kann jede Grammatik als Element von \mathbb{N}^* kodiert werden (c <u>nicht</u> injektiv)

 $c \colon \{G \mid G \text{ Grammatik ""uber } \Sigma\} \to \mathbb{N}^*$

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ der Typ-0-Sprachen über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom).

Mit Hilfe von c kann jede Grammatik als Element von \mathbb{N}^* kodiert werden (c <u>nicht</u> injektiv)

$$c \colon \{G \mid G \text{ Grammatik "uber } \Sigma\} \to \mathbb{N}^*$$

Für alle Grammatiken G und G' mit c(G) = c(G') gilt L(G) = L(G').

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ der Typ-0-Sprachen über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom).

Mit Hilfe von c kann jede Grammatik als Element von \mathbb{N}^* kodiert werden (c <u>nicht</u> injektiv)

$$c \colon \{G \mid G \text{ Grammatik "uber } \Sigma\} \to \mathbb{N}^*$$

Für alle Grammatiken G und G' mit c(G) = c(G') gilt L(G) = L(G'). Sei $C = \{c(G) \mid G \text{ Grammatik "über } \Sigma\}$.

 ${\it C}$ abzählbar da ${\it C} \subseteq \mathbb{N}^*$ und \mathbb{N}^* abzählbar gemäß Theorem §1.10.

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ der Typ-0-Sprachen über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom).

Mit Hilfe von c kann jede Grammatik als Element von \mathbb{N}^* kodiert werden (c <u>nicht</u> injektiv)

$$c \colon \{G \mid G \text{ Grammatik ""uber } \Sigma\} \to \mathbb{N}^*$$

Für alle Grammatiken G und G' mit c(G) = c(G') gilt L(G) = L(G'). Sei $C = \{c(G) \mid G \text{ Grammatik "über } \Sigma\}$.

 ${\it C}$ abzählbar da ${\it C} \subseteq \mathbb{N}^*$ und \mathbb{N}^* abzählbar gemäß Theorem §1.10.

Also ist Relation $\rho = \{(c(G), L(G)) \mid G \text{ Grammatik ""uber } \Sigma\}$ surjektive Funktion $\rho \colon C \to \text{Typ-0}(\Sigma)$.

§1.11 Theorem (Abzählbarkeit der Typ-0-Sprachen)

Menge Typ-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$ der Typ-0-Sprachen über Alphabet Σ abzählbar

Beweis (nutzt Auswahlaxiom).

Mit Hilfe von c kann jede Grammatik als Element von \mathbb{N}^* kodiert werden (c <u>nicht</u> injektiv)

$$c \colon \{G \mid G \text{ Grammatik "uber } \Sigma\} \to \mathbb{N}^*$$

Für alle Grammatiken G und G' mit c(G) = c(G') gilt L(G) = L(G'). Sei $C = \{c(G) \mid G \text{ Grammatik "über } \Sigma\}$.

 ${\cal C}$ abzählbar da ${\cal C} \subseteq \mathbb{N}^*$ und \mathbb{N}^* abzählbar gemäß Theorem §1.10.

Also ist Relation $\rho = \{(c(G), L(G)) \mid G \text{ Grammatik ""uber } \Sigma\}$ surjektive Funktion $\rho \colon C \to \text{Typ-0}(\Sigma)$. Damit ist Typ-0(Σ) abzählbar.

Notizen

• Theorem §1.11 gilt auch ohne Auswahlaxiom

- Theorem §1.11 gilt auch ohne Auswahlaxiom
- Betrachte längen-lexikographische Ordnung $\preceq \subseteq \mathbb{N}^* \times \mathbb{N}^*$ auf \mathbb{N}^* (ordne Elemente zunächst nach Länge und dann lexikographisch)

- Theorem §1.11 gilt auch ohne Auswahlaxiom
- Betrachte längen-lexikographische Ordnung $\preceq \subseteq \mathbb{N}^* \times \mathbb{N}^*$ auf \mathbb{N}^* (ordne Elemente zunächst nach Länge und dann lexikographisch)

- Theorem §1.11 gilt auch ohne Auswahlaxiom
- Betrachte längen-lexikographische Ordnung $\preceq \subseteq \mathbb{N}^* \times \mathbb{N}^*$ auf \mathbb{N}^* (ordne Elemente zunächst nach Länge und dann lexikographisch)
- Für $\rho \colon \mathcal{C} \to \mathsf{Typ}\text{-}\mathsf{0}(\Sigma)$ surjektiv, sei $\bar{\rho} \colon \mathsf{Typ}\text{-}\mathsf{0}(\Sigma) \to \mathbb{N}^*$ gegeben durch

$$ar{
ho}(\mathit{L}) = \min_{\preceq} ig\{ \mathit{w} \in \mathbb{N}^* \mid
ho(\mathit{w}) = \mathit{L} ig\}$$
 für alle $\mathit{L} \in \mathsf{Typ} ext{-0}(\Sigma)$

Notizen

- Theorem §1.11 gilt auch ohne Auswahlaxiom
- Betrachte längen-lexikographische Ordnung $\preceq \subseteq \mathbb{N}^* \times \mathbb{N}^*$ auf \mathbb{N}^* (ordne Elemente zunächst nach Länge und dann lexikographisch)
- ullet Für $ho\colon \mathcal{C} o \mathsf{Typ} ext{-}0(\Sigma)$ surjektiv, sei $ar
 ho\colon\mathsf{Typ} ext{-}0(\Sigma) o\mathbb{N}^*$ gegeben durch

$$\bar{\rho}(\mathit{L}) = \min_{\preceq} \big\{ \mathit{w} \in \mathbb{N}^* \mid \rho(\mathit{w}) = \mathit{L} \big\} \qquad \quad \text{für alle } \mathit{L} \in \mathsf{Typ-O}(\Sigma)$$

Menge $\left\{w\in\mathbb{N}^*\mid \rho(w)=L\right\}$ nichtleer da ρ surjektiv. Also existiert Minimum und $\bar{\rho}$ ist injektiv. Damit ist Typ-0(Σ) abzählbar.

§1.12 Lemma

Unendliche Menge M abzählbar gdw. Bijektion $f: \mathbb{N} \to M$ existiert

§1.12 Lemma

Unendliche Menge M abzählbar gdw. Bijektion $f: \mathbb{N} \to M$ existiert

Beweis.

(kleine Übung)

§1.13 Theorem (Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

§1.13 Theorem (Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis.

Σ* abzählbar und unendlich.

 $\mathcal{P}(\Sigma^*)$ strikt mächtiger als Σ^* gemäß Cantors Theorem.

Also $\mathcal{P}(\Sigma^*)$ nicht abzählbar (d.h. überabzählbar).

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis (detailliert).

Da Σ^* abzählbar unendlich, existiert $f\colon \mathbb{N} \to \Sigma^*$ bijektiv gem. Lemma §1.12.

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis (detailliert).

Da Σ^* abzählbar unendlich, existiert $f\colon \mathbb{N} \to \Sigma^*$ bijektiv gem. Lemma §1.12. Offenbar ist $\mathcal{P}(\Sigma^*)$ unendlich. Sei $\mathcal{P}(\Sigma^*)$ abzählbar; d.h. gem. Lemma §1.12 existiert $g\colon \mathbb{N} \to \mathcal{P}(\Sigma^*)$ bijektiv.

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis (detailliert).

Da Σ^* abzählbar unendlich, existiert $f \colon \mathbb{N} \to \Sigma^*$ bijektiv gem. Lemma §1.12. Offenbar ist $\mathcal{P}(\Sigma^*)$ unendlich. Sei $\mathcal{P}(\Sigma^*)$ abzählbar; d.h. gem. Lemma §1.12 existiert $g \colon \mathbb{N} \to \mathcal{P}(\Sigma^*)$ bijektiv.

Betrachte Sprache

$$L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}$$

Da g bijektiv, existiert $i \in \mathbb{N}$ mit L = g(i).

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis (detailliert).

Da Σ^* abzählbar unendlich, existiert $f \colon \mathbb{N} \to \Sigma^*$ bijektiv gem. Lemma §1.12. Offenbar ist $\mathcal{P}(\Sigma^*)$ unendlich. Sei $\mathcal{P}(\Sigma^*)$ abzählbar; d.h. gem. Lemma §1.12 existiert $g \colon \mathbb{N} \to \mathcal{P}(\Sigma^*)$ bijektiv.

Betrachte Sprache

$$L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}$$

Da g bijektiv, existiert $i \in \mathbb{N}$ mit L = g(i).

Dann $f(i) \in L$ gdw. $f(i) \notin g(i) = L$.

Theorem (§1.13 Überabzählbarkeit aller Sprachen)

Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ nicht abzählbar

Beweis (detailliert).

Da Σ^* abzählbar unendlich, existiert $f\colon \mathbb{N} \to \Sigma^*$ bijektiv gem. Lemma §1.12. Offenbar ist $\mathcal{P}(\Sigma^*)$ unendlich. Sei $\mathcal{P}(\Sigma^*)$ abzählbar; d.h. gem. Lemma §1.12 existiert $g\colon \mathbb{N} \to \mathcal{P}(\Sigma^*)$ bijektiv.

Betrachte Sprache

$$L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}$$

Da g bijektiv, existiert $i \in \mathbb{N}$ mit L = g(i).

Dann $f(i) \in L$ gdw. $f(i) \notin g(i) = L$. Widerspruch 4 Also $\mathcal{P}(\Sigma^*)$ nicht abzählbar.

Diagonalisierung

$$L = \{f(i) \mid i \in \mathbb{N}, f(i) \notin g(i)\}$$

1. Hauptsatz

§1.14 Theorem

Nicht alle Sprachen sind Typ-0

Beweis.

Typ-0-Sprachen Typ-0(Σ) über Σ abzählbar gemäß Theorem §1.11.

1. Hauptsatz

§1.14 Theorem

Nicht alle Sprachen sind Typ-0

Beweis.

Typ-0-Sprachen Typ-0(Σ) über Σ abzählbar gemäß Theorem §1.11. Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ überabzählbar gemäß Theorem §1.13.

1. Hauptsatz

§1.14 Theorem

Nicht alle Sprachen sind Typ-0

Beweis.

Typ-0-Sprachen Typ-0(Σ) über Σ abzählbar gemäß Theorem §1.11. Menge $\mathcal{P}(\Sigma^*)$ aller Sprachen über Σ überabzählbar gemäß Theorem §1.13.

Also Tup-0(Σ) $\subseteq \mathcal{P}(\Sigma^*)$.

Zusammenfassung

- Wiederholung reguläre & kontextfreie Sprachen
- Chomsky-Grammatiken & Ableitungen
- Typ-0(Σ) $\subsetneq \mathcal{P}(\Sigma^*)$

(Nicht alle Sprachen sind Typ-0)

Erste Übungsserie erscheint nächste Woche