Métodos Numéricos Actividad 2. Método de Secante y Newton

Escenario

Actividad 2 – Método de Secante y Newton-Raphson

Contextualización:

Los métodos numéricos son aplicaciones de algoritmos mediante las cuales es posible formular y solucionar problemas matemáticos utilizando operaciones aritméticas menos complejas. También se conocen como *métodos indirectos*. Un análisis numérico idealiza y concibe métodos para aprobar, de forma eficiente, las soluciones de problemas expresados matemáticamente. El objetivo principal del análisis numérico es encontrar soluciones aproximadas para problemas complejos.

Actividad:

- Ejecutar el archivo con el Lenguaje R.
- Resolver la ecuación por el método de Secante
- Resolver la ecuación por el método de Newton-Raphson.
- Analizar e interpretar los resultados.

Recursos

RStudio: https://www.rstudio.com/products/rstudio/download/

Archivo Met_Secante.R:

http://umi.edu.mx/coppel/IDS/plataforma/files/programasenr/MN_Secante.R

Archivo Met Newton2.R:

http://umi.edu.mx/coppel/IDS/plataforma/files/programasenr/ewton2.R

Descargar la portada desde la plataforma de estudios.

Visualizar el Manual APA en la sección de "Manuales de Inducción" de la plataforma de estudios.

Proceso

Paso 1. Descargar la portada para la actividad.

Paso 2. Utilizar la siguiente estructura, alineada al formato APA:

Portada

- Índice
- Introducción
- Descripción
- Justificación
- Desarrollo:
 - Ecuación método Secante
 - Ecuación método Newton-Raphson
 - Interpretación de resultados
- Conclusión
- Referencias

Paso 3. Redactar una introducción respecto a la información que se presentará en esta actividad. (Mínimo 150 palabras)

Paso 4. Interpretar y argumentar con palabras propias el contexto presentado y lo solicitado dentro de la actividad. (Mínimo 150 palabras)

Paso 5. Redactar una justificación del por qué debería emplearse este tipo de solución para la actividad presentada. (Mínimo 150 palabras)

Paso 6. Instalar la versión libre de RStudio IDE (el enlace de descarga está en la sección *Recursos* del presente documento). Deberás seguir las instrucciones para la instalación.

Paso 7. Resolver las siguientes ecuaciones , la ecuación 1 por el método de la Secante y la ecuación 2 por el método de Newton-Raphson

<u>Utilizar los archivos proporcionados en el módulo usando el RStudio</u>.(*Resolución de ecuaciones*).

Archivo Met Secante.R:

http://umi.edu.mx/coppel/IDS/plataforma/files/programasenr/MN_Secante.R

Archivo Met Newton2.R:

http://umi.edu.mx/coppel/IDS/plataforma/files/programasenr/ewton2.R

Es indispensable insertar capturas de pantalla del proceso, así como su descripción.

Ecuación 1: Mètodo SECANTE

 $f(\theta) = \sin(\theta) + \cos(1 - \theta^2) - 1$

Ecuación 2: Mètodo Newton-Raphson.

 $f(x) = 2x^3 - 8x^2 + 10x - 15$

Paso 8. Interpretar los resultados obtenidos de cada ecuación (*Interpretación de Resultados*).

Paso 9. Redactar una conclusión sobre la importancia de lo realizado en la actividad dentro de su campo laboral o vida cotidiana. (Mínimo 150 palabras).

Paso 10. Incorporar las referencias utilizadas. (en caso de haber utilizado).

Paso 11. Guardar el archivo en formato PDF como: NombreApellido_A2.

Formato de entrega:

Plataforma de entrega: Plataforma de Estudios Actividad 2.

Formato de entrega: PDF

Elementos de entrega:

Documento nombrado: NombreApellido_A2

Se sugiere agregar el documento PDF de las actividades en su portafolio GitHub.