Object exploration using haptic information by a human-robot team

Florian Wirnshofer, Benedikt Schmidt

Project Laboratory Cognitive Robotics and Control

Supervisor: Denis Cehajic

Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Content

Online Load Estimation

Experimental Setup

Experimental Results

Task

Goal

Human-Robot cooperative estimation of load uncertainties.

Key-Questions

- How to fuse and process sensor feedback, resulting in a reliable load-identification?
- How should the agents excite the load?
- How to exchange information between agents?

Online Load Estimation

Model:

[Hatsopoulos and W. Warren 1996]

$${}^{\mathrm{L}}\boldsymbol{F}=m^{\mathrm{W}}\boldsymbol{\ddot{p}}+m^{\mathrm{L}}\boldsymbol{g}+{}^{\mathrm{L}}\boldsymbol{\dot{\omega}}\times m^{\mathrm{L}}\boldsymbol{c}+{}^{\mathrm{L}}\boldsymbol{\omega}\times ({}^{\mathrm{L}}\boldsymbol{\omega}\times m^{\mathrm{L}}\boldsymbol{c})$$

$$^{\mathrm{L}}\boldsymbol{N} = ^{\mathrm{L}}\boldsymbol{I}^{\mathrm{L}}\dot{\boldsymbol{\omega}} + ^{\mathrm{L}}\boldsymbol{\omega} \times (^{\mathrm{L}}\boldsymbol{I}^{\mathrm{L}}\boldsymbol{\omega}) + m^{\mathrm{L}}\boldsymbol{c} \times ^{\mathrm{W}}\boldsymbol{\ddot{p}} + m^{\mathrm{L}}\boldsymbol{c} \times ^{\mathrm{L}}\boldsymbol{g}$$

 \ddot{p} EEF acceleration m Object mass I Object inertia tensor

RLS Estimation-Parameters:

$$\boldsymbol{\Theta} = [m, mc_{\mathbf{x}}, mc_{\mathbf{y}}, mc_{\mathbf{z}}, I_{\mathbf{x}\mathbf{x}}, I_{\mathbf{x}\mathbf{y}}, I_{\mathbf{x}\mathbf{z}}, I_{\mathbf{y}\mathbf{y}}, I_{\mathbf{y}\mathbf{z}}, I_{\mathbf{z}\mathbf{z}}]^{\mathrm{T}}$$

Experimental Results

Cooperative Online Load Estimation

 $^{\mathrm{L}}\boldsymbol{F}_{i}$: Forces acting at grasping point i, measured w.r.t. the EEF frame L.

 $^{\mathrm{L}}N_{i}$: Torques acting at grasping point i, measured w.r.t. the EEF frame I.

$$\sum_{i=1}^{n} {}^{\mathrm{L}}\boldsymbol{F}_{i} = f\left({}^{\mathrm{W}}\boldsymbol{\ddot{p}}, {}^{\mathrm{L}}\boldsymbol{\omega}, {}^{\mathrm{L}}\boldsymbol{\dot{\omega}}, {}^{\mathrm{L}}\boldsymbol{c}, m\right)$$

$$\sum_{i=1}^{n} {}^{\mathrm{L}}\boldsymbol{N}_{i} + \sum_{i=2}^{n} {}^{\mathrm{L}}\boldsymbol{r}_{1i} \times {}^{\mathrm{L}}\boldsymbol{F}_{i} = f\left({}^{\mathrm{W}}\boldsymbol{\ddot{p}}, {}^{\mathrm{L}}\boldsymbol{\omega}^{\mathrm{L}}, \boldsymbol{\dot{\omega}}, {}^{\mathrm{L}}\boldsymbol{c}, {}^{\mathrm{L}}\boldsymbol{I}, m\right)$$

Cooperative Online Load Estimation

Excitation Pattern

RLS convergence prerequisites

- Reference trajectory must be persistently exciting(PE)
- Non-zero acceleration of EEF in 6-DoF [Yoshida 1999]

CHALLENGE: Satisfaction of actuator limits, especially when trying to identify big objects.

Data Acquisition

Information	Tool	Frame Rate $\left[\mathrm{Hz} \right]$
$^{\mathrm{L}}oldsymbol{F}_{i},^{\mathrm{L}}oldsymbol{N}_{i}$	JR3	8000 → 100
	Qualisys	100
$^{ ext{L}}oldsymbol{\omega}$	Qualisys	100
$^{\mathrm{W}}oldsymbol{p}$	Qualisys	100
$^{ ext{L}}oldsymbol{r}_{1i}$	Qualisys	100

Experimental Results

Experimental Results

Conducted experiments: PROPOSAL

- Multiple grasping points in simulation
- One grasping point
- Multiple grasping points

•0000000

Simulation Results with Noise ($P = 0.05 \,\mathrm{W}$)

Simulation Results with Noise ($P = 0.05 \,\mathrm{W}$)

Error of inertias $I\left[\mathrm{kg}\cdot\mathrm{m}^{2}\right]$

One Grasping Point

Error of center of gravity $c[\mathrm{m}]$

One Grasping Point

Error of inertias $I \left[\text{kg} \cdot \text{m}^2 \right]$

Multiple Grasping Points

Multiple Grasping Points

Conclusion

Online Load Estimation

References

N. Hatsopoulos and Jr. W. Warren. Resonance Tuning in Rhythmic Arm Movements. In: Journal of Motor Behaviour 28.1 (1996), pp. 3-14.

K. Yoshida. Swing-Up Control of an Inverted Pendulum by Energy-Based Methods. In: American Control Conference 6 (1999), pp. 4045-4047.

