Dokumentacja Implementacji Drzewa Czerwono-Czarnego (Red-Black Tree)

Autor: Marian Wachała

Data: 7 stycznia 2025

Spis treści

1	Wst	ер
	1.1	Drzewo czerwono-czarne
	1.2	Założenia drzewa czerwono-czarnego
	1.3	Podstawowe pojęcia w drzewie czerwono-czarnym
2	Opi	s Implementacji
	2.1	Rola NIL jako strażnika
	2.2	Podstawowe metody
		2.2.1 Wstawianie elementu
		2.2.2 Naprawa drzewa po wstawieniu (fixInsert)
		2.2.3 Usuwanie elementu
		2.2.4 naprawa drzewa po usunięciu elementu (fixDelete)
		2.2.5 Wyszukiwanie elementu
	2.3	Metody pomocnicze
3	Podsumowanie	
	3.1	Złożoność operacji dodawania i usuwania elmentów z drzewa czerwono-
		czarnego

1 Wstęp

1.1 Drzewo czerwono-czarne

Drzewo czerwono-czarne (ang. Red-Black Tree) to samobalansujące się drzewo BST (ang. Binary Search Tree), które zapewnia średni czas wstawiania, usuwania i wyszukiwania na poziomie $\mathcal{O}(\log n)$.

Zachowanie równowagi jest możliwe dzięki specjalnym regułom związanym z kolorowaniem węzłów na kolor czerwony (RED) lub czarny (BLACK) oraz dzięki odpowiednim operacjom rotacji (lewo- i prawostronnej).

1.2 Założenia drzewa czerwono-czarnego

Drzewa czerwono-czarne opierają się na następujących regułach:

- 1. Każdy węzeł jest **czerwony** lub **czarny**.
- 2. **Strażnik NIL** jest zawsze czarny i działa jako końcowy wezeł (liść) w każdej ścieżce.
- 3. Korzeń drzewa jest zawsze czarny.
- 4. Każda ścieżka od węzła do liścia zawiera taką samą liczbę czarnych węzłów.
- 5. Czerwony węzeł nie może mieć czerwonych rodziców ani dzieci (własność **Black Depth**).

1.3 Podstawowe pojęcia w drzewie czerwono-czarnym

Podczas opisywania operacji na drzewie czerwono-czarnym używane są następujące terminy:

- Ojciec (Parent) bezpośredni przodek danego węzła w drzewie.
- Dziadek (Grandparent) przodek węzła będący ojcem jego ojca.
- Wujek (Uncle) węzeł będący drugim dzieckiem dziadka, który nie jest ojcem danego węzła.
- Brat (Sibling) inne dziecko tego samego ojca co dany węzeł.

2 Opis Implementacji

2.1 Rola NIL jako strażnika

W implementacji zastosowano specjalny wezeł NIL, który:

- Działa jako wskaźnik na wszystkie puste liście w drzewie.
- Upraszcza implementację, eliminując konieczność sprawdzania, czy wskaźniki są nullptr.
- Wspiera zachowanie spójności drzewa podczas operacji naprawczych (fixInsert i fixDelete).

2.2 Podstawowe metody

2.2.1 Wstawianie elementu

Proces wstawiania polega na dodaniu nowego węzła do drzewa zgodnie z zasadami BST, a następnie naprawie potencjalnych naruszeń zasad drzewa czerwono-czarnego za pomocą metody fixInsert.

```
void insert(const T& key);
```

Metoda wykonuje następujące kroki:

- 1. Tworzy nowy węzeł o wartości key z kolorem RED.
- 2. Znajduje odpowiednie miejsce w drzewie dla nowego węzła.
- 3. Wywołuje fixInsert w celu przywrócenia właściwości drzewa czerwono-czarnego.

2.2.2 Naprawa drzewa po wstawieniu (fixInsert)

Gdy nowy węzeł zostanie wstawiony, może dojść do naruszenia reguł drzewa czerwonoczarnego. Naprawa odbywa się w następujących krokach:

Przypadek A: Ojciec węzła jest lewym dzieckiem dziadka.

• 1. Wujek jest czerwony:

- Zmieniamy kolor dziadka na czerwony.
- Zmieniamy kolor ojca na czarny.
- Zmieniamy kolor wujka na czarny.
- Przechodzimy do dalszego przetwarzania od dziadka.

• 2. Wujek jest czarny:

- a. Węzeł jest lewym dzieckiem ojca:

- * Wykonujemy rotację w lewo na ojcu.
- * Aktualizujemy odniesienia do węzła i jego rodzica.

b. Węzeł jest prawym dzieckiem ojca:

- * Wykonujemy rotację w prawo na dziadku.
- * Zamieniamy kolory ojca i dziadka.
- * Przechodzimy do dalszego przetwarzania od ojca.

Przypadek B: Ojciec węzła jest prawym dzieckiem dziadka. Wykonujemy to samo, tylko, że podmieniamy left z right.

2.2.3 Usuwanie elementu

Proces usuwania obejmuje:

```
bool remove(const T& key);
```

- 1. Wyszukanie węzła o wartości key.
- 2. Przypadek dla węzła z jednym dzieckiem lub bez dzieci:
 - Usunięcie węzła i podłączenie jego dziecka.
- 3. Przypadek dla węzła z dwoma dziećmi:
 - Znalezienie najmniejszego węzła w prawym poddrzewie (minValueNode).
 - Zastapienie wartości usuwanego węzła wartością znalezionego węzła.
 - Usunięcie znalezionego węzła.
- 4. Wywołanie fixDelete w celu przywrócenia właściwości drzewa.

2.2.4 naprawa drzewa po usunięciu elementu (fixDelete)

Podobnie jak w przypadku wstawiania, po usunięciu elementu może dojść do naruszenia własności drzewa czerwono-czarnego. Naprawa po usunięciu elementu odbywa się w następujących krokach:

Przypadek A: Węzeł jest lewym dzieckiem rodzica.

- 1. Brat węzła jest czerwony:
 - Zmieniamy kolor brata na czarny.
 - Zmieniamy kolor rodzica na czerwony.
 - Wykonujemy rotację w lewo na rodzicu.
 - Aktualizujemy odniesienie do brata (teraz jest to prawy syn rodzica po rotacji).
- 2. Brat węzła jest czarny i ma dwóch czarnych synów:
 - Zmieniamy kolor brata na czerwony.
 - Przechodzimy do dalszego przetwarzania od rodzica.
- 3. Brat węzła jest czarny i jego prawy syn jest czarny, ale lewy syn jest czerwony:
 - Zmieniamy kolor lewego syna brata na czarny.
 - Zmieniamy kolor brata na czerwony.
 - Wykonujemy rotację w prawo na bracie.
 - Aktualizujemy odniesienie do brata (teraz jest to prawy syn rodzica po rotacji).

• 4. Brat węzła jest czarny i jego prawy syn jest czerwony:

- Zmieniamy kolor brata na kolor rodzica.
- Zmieniamy kolor rodzica na czarny.
- Zmieniamy kolor prawego syna brata na czarny.
- Wykonujemy rotację w lewo na rodzicu.
- Przerywamy pętlę (ustawiamy węzeł na korzeń).

Przypadek B: Węzeł jest prawym dzieckiem rodzica.

Postępujemy analogicznie jak w przypadku A, zamieniając kierunki rotacji oraz role lewego i prawego syna.

2.2.5 Wyszukiwanie elementu

Metoda wyszukuje element w drzewie:

```
Node < T > * search (Node < T > * root, const T & key);
```

Wyszukiwanie odbywa się rekurencyjnie w oparciu o reguły BST:

- Jeśli wartość key jest równa wartości bieżącego węzła, zwracany jest wskaźnik do węzła.
- Jeśli wartość key jest mniejsza, wyszukiwanie kontynuowane jest w lewym poddrzewie.
- Jeśli wartość key jest większa, wyszukiwanie kontynuowane jest w prawym poddrzewie.

2.3 Metody pomocnicze

- rotateLeft(Node<T>* node) Rotacja w lewo względem węzła node.
- rotateRight(Node<T>* node) Rotacja w prawo względem węzła node.
- minValueNode(Node<T>* node) Znajduje węzeł o najmniejszej wartości w poddrzewie.
- transplant(Node<T>* u, Node<T>* v) Zamienia węzeł u z węzłem v.

3 Podsumowanie

3.1 Złożoność operacji dodawania i usuwania elmentów z drzewa czerwono-czarnego

Drzewa czerwono-czarne są niezwykle efektywnymi strukturami danych, które dzięki swoim właściwościom zapewniają, że operacje wstawiania i usuwania są wykonywane w czasie $\mathcal{O}(\log n)$. Utrzymanie zrównoważenia drzewa poprzez odpowiednie rotacje i zmiany kolorów węzłów gwarantuje, że nawet w najgorszym przypadku wysokość drzewa pozostaje na poziomie logarytmicznym względem liczby jego elementów.