5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии.

Дорогинин Д.В. Группа Б02-825

В работе: с помощью сцинтилляционного счётчика измеряются линейные коэффициенты ослабления потока γ -лушче в свинце, железе и алюминии; по их величине определяется энергия γ -квантов.

Теория

Проходя через вещество, пучок γ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l},$$

$$I = I_0 e^{-\mu' m_l},$$

где I, I_0 – интенсивности прошедшего и падающего излучений, l – длина пути, пройденного пучком γ -лучей, m_l – масса пройденного вещества на единицу площади, μ, μ' – константы, зависящие от вещества. Ослабление потока γ -лучей возникает из-за фотоэлектрического поглощения, комптоновского рассеяния и генерации электрон-позитронных пар (при достаточных энергиях).

Считая, что опыт поставлен в хорошей геометрии, то есть сквозь вещество всегда идёт узкий параллельный пучок, можно считать, что комптоновское рассеяние выводит γ -кванты из пучка и в итоге меняется количество, но не энергия γ -квантов. Это означает, что μ не зависит от l. Число выбывших на пути dl из пучка γ -квантов

$$-dN = \mu N dl,$$

откуда

$$N = N_0 e^{\mu l},$$

или

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{1}$$

Описание установки

На Рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание

Рис. 1: Схема установки.

сцинтилляционного счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

Ход работы

Включив установку, убеждаемся в том, что она чувствует гамма-лучи: подаем на ФЭУ напряжение, указанное на установке. Измерив скорость счета при полностью открытом коллиматоре, а затем при коллиматоре, закрытом свинцовой пробкой, отметим, что скорость счета резко уменьшается (см результаты измерений), что свидетельствует об исправности счетчика.

Теперь исследуем поглощение γ -лучей в свинце, железе и алюминии. Для этого измеряем число частиц, попадающих в счетчик за фиксированное время, равное $t_0=10$ с в отсутствие и в присутствии поглотителя. Количество поглощенных лучей измеряем для разного числа образцов – указаны как $\mathrm{El} \times n$, где El – материал поглотителя, n – число поглотителей, – а также для закрытого свинцовой пробкой коллиматора («Фон») и для коллиматора без поглотителей («Ничего»). Результаты измерений представлены в Таблице 2, погрешность считаем корнем из числа частиц ($\sigma_N = \sqrt{N}$). В таблице из измерений не вычтен фон.

Также проведём измерения толщин поглотителей, результаты представлены в Таблице 1. Погрешность всех измерений считаем приборной $\sigma_x = 0.1$ см.

Материал	1	2	3	4	5	сред.
Pb	4.4	4.7	4.5	5.0	4.8	4.7
Al	20.0	20.1	20.2	20.0	20.1	20.1
Fe	10.1	10.1	9.8	10.1	10.1	10.0

Таблица 1: Измерения толщины поглотителей.

		1	2	3	4	5	6	сред.
Фон	N	203	147	125	150	135	155	153
Фон	σ_N	14	12	11	12	12	12	12
Ничего /	N	234300	218400	216700	213700	212500	212700	218100
	σ_N	500	500	500	500	500	500	500
$Pb \times 1$	N	100500	101800	103000	101400	102000	101300	101700
	σ_N	300	300	300	300	300	300	300
$Pb \times 2$	N	48900	48500	49300	49000	48800	49000	49000
	σ_N	200	200	200	200	200	200	200
$Pb \times 3$	N	28300	28400	28900	29100	28500	28900	28700
PDX3	σ_N	200	200	200	200	200	200	200
$Pb \times 4$	N	15940	15920	16570	16380	16070	16340	16200
	σ_N	130	130	130	130	130	130	130
$Pb \times 5$	N	9370	9210	9400	9600	9340	9400	9380
10 × 0	σ_N	100	100	100	100	100	100	100
$Pb \times 6$	N	5350	5380	5230	5460	5320	5390	5350
10 × 0	σ_N	70	70	70	70	70	70	70
$Al \times 1$	N	140500	137900	135900	134000	136000	138200	137100
	σ_N	400	400	400	400	400	400	400
$Al \times 2$	N	78000	76600	77100	77800	77100	77600	77400
	σ_N	300	300	300	300	300	300	300
$Al \times 3$	N	46700	47100	47700	47600	47800	47200	47300
$A_1 \wedge 3$	σ_N	200	200	200	200	200	200	200
$Al \times 4$	N	29300	28700	28900	29500	29000	29100	29100
$A1 \times 4$	σ_N	200	200	200	200	200	200	200
$Al \times 5$	N	18080	18190	17910	18230	17730	17970	18020
AI A 9	σ_N	130	130	130	140	130	130	130
$Fe \times 1$	N	110900	109400	108000	107800	106400	105500	108000
	σ_N	300	300	300	300	300	300	300
$Fe \times 2$	N	51600	51200	51400	51600	51800	51500	51500
	σ_N	200	200	200	200	200	200	200
Fe \times 3	N	26300	26600	27200	26900	27200	29700	27300
	σ_N	200	200	200	200	200	200	200
$Fe \times 4$	N	14290	14310	14380	14430	14490	14360	14380
	σ_N	120	120	120	120	120	120	120
$Fe \times 5$	N	7700	7500	7800	7850	8150	7750	7790
1.6 \ 0	σ_N	90	90	90	90	90	90	90

Таблица 2: Измерения числа частиц.

Построим кривые зависимости логарифма посчитанных частиц $\ln \frac{N_0}{N}$, где N_0 – число частиц без поглотителей, от суммарной толщины образцов l. Погрешность логарифма некоторой величины φ с погрешностью σ_{φ} считается по формуле

$$\sigma_{\ln \varphi} = \frac{\partial \ln \varphi}{\partial \varphi} \sigma_{\varphi} = \frac{\sigma_{\varphi}}{\varphi}.$$

Погрешность дроби $\frac{N_0}{N}$ считаем как

$$\sigma_{
m дробь} = \sqrt{rac{\sigma_{N_0}^2}{N^2} + rac{N_0^2 \sigma_N^2}{N^4}}.$$

Графики представим на Рис. 2. Прямые имеют фиксированную точку пересечения с осями в нуле. С помощью МНК найдём коэффициент наклона прямых.

Рис. 2: Графики $\ln \frac{N_0}{N} = f(l)$ для Рb (верхний-левый), Al (верхний-правый) и Fe (нижний).

В Таблице 3 представлены коэффициенты наклона, они же коэффициенты поглощения μ , погрешность взята из МНК. По таблице в учебнике определим среднюю энергию γ -квантов в каждом опыте.

	μ, cm^{-1}	$\sigma_{\mu}, \text{ cm}^{-1}$	E_{γ} , МэВ
Pb	1.43	0.05	0.60
Al	0.251	0.003	0.60
Fe	0.691	0.009	0.50

Таблица 3: Значения коэффициентов поглощения и энергия γ -квантов.