Cadeias de Markov

Definição, principais conceitos e resultados iniciais

Cadeia de Markov - definição

Propriedade Markoviana

Um processo estocástico $\{X_n\}$, com **espaço de estados discreto** (enumerável) S e em **tempo discreto**, é uma cadeia de Markov se possui a propriedade Markoviana, isto é, para todo $i_0, i_1, \ldots, i_{n-1}, i, j \in S$,

$$P(X_{n+1} = j \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}, X_n = i)$$

= $P(X_{n+1} = j \mid X_n = i) = p_{ij}(n)$

Isto é, condicionado ao "presente", o "passado" e o "futuro" são independentes.

$$P(X_{n+1} = j \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}, X_n = i)$$

$$= P(X_{n+1} = j \mid X_n = i) = p_{ij}(n)$$

$$= P(X_{n+1} = j \mid X_n = i) = p_{ij}(n)$$

Beti Kira MAE0312 18 e 23.março.2022

Probabilidades de transição

Probabilidades de transição homogêneas

Uma cadeia de Markov $\{X_n\}$ é dita ser homogênea (no tempo) ou estacionária se, para todo $n \ge 0$,

$$p_{ij}(n) = P(X_{n+1} = j \mid X_n = i) = P(X_1 = j \mid X_0 = i) = p_{ij}(0) = p_{ij}$$

Essas probabilidades de transição podem ser representadas por uma matriz P, chamada de matriz de probabilidades de transição, cujos elementos p_{ij} satisfazem:

- $p_{ij} \ge 0$ para todo $i, j \in S$
- ullet $\sum_{j\in S}p_{ij}=1$ para todo $i\in S$

ou seja, a soma dos elementos de cada linha é 1, para todas as linhas.

Uma matriz que satisfaz as 2 condições acima é denominada matriz estocástica.

Matriz de probabilidades de transição

Suponha que o espaço de estados seja $S=\{0,1,2,\ldots\}$, então a matriz de probabilidades de transição é representada por

futuro
$$0 \quad 1 \quad 2 \quad \dots \\
0 \quad p_{00} \quad p_{01} \quad p_{02} \quad \dots \\
p_{10} \quad p_{11} \quad p_{12} \quad \dots \\
p_{20} \quad p_{21} \quad p_{22} \quad \dots \\
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots \quad)$$

ou
$$\mathbf{P} = (p_{ij})_{i,j \in S \times S}$$

 $p_{ij} =$ probabilidade do processo ou sistema, estando do estado i, ir para o estado j, em um passo/instante de tempo.

Exemplo 4.1 - S. Ross (modificado)

Suponha que a chance de chover amanhã depende apenas se choveu ou não hoje e não depende das condições de dias anteriores.

Considere também que se chover hoje então não choverá amanhã com probabilidade α ; e se não chover hoje, então choverá amanhã com probabilidade β .

Qual é o espaço de estados?

$$S = \{ \mbox{chove}, \mbox{n\~ao} \mbox{ chove} \} \quad \mbox{ou} \quad \{a,b\} \quad \mbox{ou ainda} \quad \{0,1\}$$

E a matriz de probabilidades de transição em um passo?

$$\mathbf{P} = \frac{\mathsf{chove}}{\mathsf{n\~{a}o}} \left(\begin{array}{cc} \mathsf{chove} & \mathsf{n\~{a}o} \ \mathsf{chove} \\ \end{array} \right)$$

EXEMPLOS

- Exercício 04-Lista 01 (Ruína do jogador)
- Exercício 10-Lista 01 (Urna de Ehrenfest)
- Exercício 06-Lista 01

⇒ Resolução na aula

Teorema

Denote por $\pi_0(j) \stackrel{ou}{=} \pi^{(0)}(j) = P(X_0 = j)$, a probabilidade que, no tempo 0 (estado inicial), o processo esteja no estado $j \in S$.

Então o vetor (linha) π_0 ou $\pi^{(0)} = (\pi^{(0)}(j), j \in S)$ representa a distribuição inicial da cadeia.

Caracterização do processo

A matriz de probabilidades de transição $\mathbf{P}=(p_{ij})_{i,j\in S}$ e a distribuição inicial $\boldsymbol{\pi^{(0)}}=(\pi^{(0)}(j),j\in S)$ caracterizam completamente a cadeia de Markov $\{X_n\}_{n\in N}$.

Demonstração: na lousa

Observação: consideraremos o vetor de probabilidades como sendo vetor linha, isto é, por exemplo, se $S = \{a, b, c, d\}$ então

$$\boldsymbol{\pi^{(0)}} = \left(\pi^{(0)}(a), \pi^{(0)}(b), \pi^{(0)}(c), \pi^{(0)}(d)\right)$$

Exemplo 4.8 - S.Ross (modificado)

Considere o exemplo anterior (chove/não chove) com $\alpha=0,3$ e $\beta=0,4$, então a matriz de probabilidades de transição em um passo é

$$\mathbf{P} = egin{array}{ccc} \mathsf{chove} & \left(egin{array}{ccc} 0,7 & & 0,3 & \ 0,4 & & 0,6 & \end{array}
ight)$$

Perguntas:

- (a) se chover hoje, calcule a probabilidade que choverá depois de amanhã.
- (b) se não chover hoje, qual é a probabilidade que choverá depois de amanhã.
- (c) se chover hoje, calcule a probabilidade que choverá daqui a 4 dias.

Resolução na lousa

A matriz de probabilidades de transição em 2 passos é

$$\mathbf{P}^{(2)} = \mathbf{P}^2 = \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix}$$

A matriz de transição em 4 passos:

$$\mathbf{P}^{(4)} = \left(\begin{array}{cc} 0.5749 & 0.4251 \\ 0.5668 & 0.4332 \end{array} \right)$$

A matriz de transição em 8 passos:

$$\mathbf{P}^{(8)} = \left(\begin{array}{cc} 0,57146 & 0,42854\\ 0,57139 & 0,42861 \end{array}\right)$$

A matriz de transição em 10 passos:

$$\mathbf{P}^{(10)} = \left(\begin{array}{cc} 0.57143 & 0.42857 \\ 0.57143 & 0.42857 \end{array} \right)$$

Equações de Chapman-Kolmogorov

Para todo $n \geq 0$ e $i, j \in S$, aplicando o teorema da probabilidade total, temos

$$P(X_{n+m} = j \mid X_0 = i) = \sum_{k \in S} P(X_{n+m} = j \mid X_n = k) P(X_n = k | X_0 = i)$$

Usando a notação

$$p_{ij}^{(n)} = P(X_{n+m} = j \mid X_m = i) = P(X_n = j \mid X_0 = i)$$
, tem-se que

Equações de Chapman-Kolmogorov

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)};$$

ou matricialmente

$$\mathbf{p}^{(n+m)} - \mathbf{p}^{(n)} \cdot \mathbf{p}^{(m)}$$

A matriz $P^{(n)}$

Note que $\mathbf{P}^{(n)}$ é uma matriz, cujas caselas/entradas representam

$$\mathbf{P}_{ij}^{(n)} = P(X_n = j \mid X_0 = i) \stackrel{homog}{=} P(X_{\ell+n} = j \mid X_{\ell} = i)$$

a probabilidade da cadeia ir do estado i para o estado j em n passos.

No exemplo (chove/não chove), note que (para 5 casas decimais),

$$\mathbf{P}^{(n)} = \mathbf{P}^{(10)}$$
 para todo $n \ge 10$

isto nos remete à noção de "convergência".

Portanto, se existir, o limite

$$\lim_{n \to \infty} P(X_n = j \mid X_0 = i_0)$$

pode depender do estado inicial i_0 .

A matriz $\mathbf{P}^{(n)}$ - perguntas

- Como calcular $P^{(n)}$?
- Quando existe o limite de $\mathbf{P}^{(n)}$ quando $n \to \infty$?
- Se o limite acima existe, como obtê-lo?
- Se o limite acima existe, ele depende do estado inicial ?
 Isto é, temos um limite para cada i₀ (linha i₀) ?
- Veja as 2 linhas de ${f P}^{(10)}$ do exemplo chove/não chove. O que ocorre?
- No item acima, o que isso significa (interpretação)?
 Isso acontece sempre?

 \longrightarrow o comportamento assintótico está conectado com a classificação dos estados (e da cadeia).