

Semillero de Investigación SOLID

VISUALIZACIÓN DE LA EVOLUCIÓN DE CALIDAD DE UN SOFTWARE MEDIANTE DIAGRAMAS DE KIVIAT 3D

Juan José López Giraldo, Jose Manuel Ramírez Cruz, Sandra Victoria Hurtado Gil

RESUMEN

En busca de reducir el tiempo que un ingeniero de software usa para entender las métricas de calidad de su software y su evolución en el tiempo, se desarrollará un aplicativo para visualizar, por medio de un diagrama de Kiviat 3D interactivo, estas métricas en diferentes versiones del código. Se llevará a cabo el proyecto en tres etapas: 1) la caracterización del sistema de visualización de software -estableciendo las métricas-, 2) la implementación del sistema y 3) la validación de la visualización implementada, todo el proceso guiado por la metodología ÁgilUC.

PALABRAS CLAVE

Visualización de información, Análisis estático de código, Diagrama de Kiviat, Evolución del software, Principios de diseño de software, Métricas de calidad de software.

PLANTEAMIENTO DEL PROBLEMA

Los sistemas actuales de software son cada vez más complejos, lo cual hace que los ingenieros de software ocupen un tiempo considerable en comprender y analizar sistemas en etapas de diseño, desarrollo y mantenimiento [1]. La visualización de datos ha demostrado tener un impacto positivo, ya que ayuda a reducir tiempo y agrega dinamismo a estas tareas[2]. Existen diferentes tipos de visualizaciones de un código, cada una con ventajas y desventajas:

Matriz de dependencias (https://www.ndepend.com/docs/depen dency-structure-matrix-dsm)

Diagrama de Kiviat (https://www.data-toviz.com/caveat/spider.html)

Treemap
(http://www.softviscollection.org/vis/m
etrics-treemap/)

Diagrama de Kiviat 3D [3, 4]

2 OBJETIVOS

General

Desarrollar una aplicación para visualizar la evolución de un conjunto de métricas relacionadas con calidad del diseño de un software mediante un diagrama de Kiviat 3D.

Específicos

- Definir un conjunto de métricas que permita evaluar la calidad del diseño de un software, a partir de los principales principios del diseño.
- Identificar un analizador estático de código que permita obtener datos del código para calcular las métricas.
- Diseñar e implementar la aplicación que visualice las métricas seleccionadas, haciendo uso del analizador identificado.
- Validar la aplicación en sus aspectos de funcionalidad y efectividad.

3 METODOLOGÍA

4 RESULTADOS ESPERADOS

- Comparación de formatos de visualización.
- Diseño del software (mockups, API, diagramas de clases).
- Software funcional.
- Diseño y resultado de pruebas funcionales.
- Evaluación de la efectividad de la visualización (encuestas o grupos focales)

5 REFERENCIAS

- 1. Brito, F., Goulão, M., & Esteves, R. (1995). Toward the Design Quality Evaluation of Object Oriented Software Systems. Proc. of 5th International Conference on Software Quality.
- 2. Storey, M. A. D., Wong, K., & Müller, H. A. (2000). How do program understanding tools affect how programmers understand programs? Science of Computer Programming, 36(2), 183–207. https://doi.org/10.1016/S0167-6423(99)00036-2
- 3. Kerren, A., & Jusufi, I. (2010). 3D Kivat diagrams for the interactive analysis of software metric trends. Proceedings of the ACM Conference on Computer and Communications Security.
- 4. Hackstadt, S. T., & Malony, A. D. (1995). Visualizing parallel programs and performance. IEEE Computer Graphics and Applications, 15(4), 12-14.
- 5. Mattila, A. L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., & Samp; Väätäjä, H. (2016). Software visualization today Systematic literature review. Proceedings of the 20th International Academic Mindtrek Conference.
- 6. Merino, L., et al. (2018). A systematic literature review of software visualization evaluation. Journal of Systems and Software.
- 7. Hurtado-Gil, S. V. (2019). AgilUC: Software development process for small teams and a strategy for its teaching. REVISTA EDUCACION EN INGENIERIA, 15(29), 21–27.