VE270 Homework 8

Liu Yihao 515370910207

Problem 1.

1. The truth table is

s_2	s_1	s_0	X	n_2	n_1	n_0	Y
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	0	0
0	1	0	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	X	X	X	X
1	0	0	1	X	X	X	X
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	0	0	0	0
1	1	0	1	0	1	0	0
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

The euqations are

$$n_2 = s'_2 s_1 s'_0 X'$$

$$n_1 = s'_2 s_1 s'_0 + s'_1 s_0 + s_1 X$$

$$n_0 = s'_1 s'_0 X + s'_1 s_0 X'$$

$$Y = s'_2 s_1 s'_0$$

2.

3. The state diagram is

Inputs: X; Outputs: Y

The truth table is

s_2	s_1	s_0	X	n_2	n_1	n_0	Y
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	0	0
0	1	0	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	1	0	1	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

The euqations are

$$n_2 = s_2' s_1 s_0' X'$$

$$n_1 = s_2' s_1' s_0 + s_2' s_0 X + s_2' s_1 s_0' + s_1 s_0' X$$

$$n_0 = s_2' s_1' s_0' X + s_2' s_1' s_0 X'$$

$$Y = s_2' s_1 s_0'$$

The schematics is

Problem 2.

1. The truth table is

s_2	s_1	s_0	X	n_2	n_1	n_0	Y
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	0	0
0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	X	X	X	X
1	0	0	1	X	X	X	X
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	0	0	0	0
1	1	0	1	0	1	0	1
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

The euqations are

$$n_2 = s'_2 s_1 s'_0 X'$$

$$n_1 = s'_2 s_1 s'_0 + s'_1 s_0 + s_1 X$$

$$n_0 = s'_1 s'_0 X + s'_1 s_0 X'$$

$$Y = s_1 s'_0 X$$

2.

3. The state diagram is

Inputs: X; Outputs: Y

The truth table is

s_2	s_1	s_0	X	n_2	n_1	n_0	Y
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	0	0
0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	1	0	1	0	1	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	0	0	0

The euqations are

$$n_2 = s_2' s_1 s_0' X'$$

$$n_1 = s_2' s_1' s_0 + s_2' s_0 X + s_2' s_1 s_0' + s_1 s_0' X$$

$$n_0 = s_2' s_1' s_0' X + s_2' s_1' s_0 X'$$

$$Y = s_1 s_0' X$$

The schematics is

Problem 3.

So we can find that (A,D) and (B,C) are two pairs of equivalent state. The optimized FSM diagram is

Inputs: i; Outputs: h

Problem 4.

Straightforward 2-bit binary encoding:

The truth table is

s_1	s_0	n_1	n_0	W	X	Y
0	0	0	1	1	0	0
0	1	1	0	0	1	0
1	0	1	0	0	0	1
1	1	0	0	0	0	0

The euqations are

$$n_{1} = s'_{1}s_{0} + s_{1}s'_{0}$$

$$n_{0} = s'_{0}$$

$$W = s'_{1}s'_{0}$$

$$X = s'_{1}s_{0}$$

$$Y = s_{1}s'_{0}$$

The logic size is 8, the delay is 1.

3-bit output encoding:

The truth table is

s_2					n_0			
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	1	0	1	0
0	1	1	X	X	1 X	X	X	X
1	0	0	0	1	0 X	1	0	0
1	0	1	X	X	X	X	X	X
1	1	0	X	X	X	X	X	
1	1	1	X	X	X	X	X	X

The euqations are

$$n_2 = s_2' s_1' s_0'$$

$$n_1 = s_2$$

$$n_0 = s_1$$

$$W = s_2$$

$$X = s_1$$

$$Y = s_0$$

The logic size is 3, the delay is 1.

One-hot encoding: The truth table is

s_3	s_2	s_1	s_0	n_3	n_2	n_1	n_0	W	X	Y
0	0	0	0	X	X	X	X	X	Χ	X
0	0	0	1	0	0	1	0	1	0	0
0	0	1	0	0	1	0	0	0	1	0
0	0	1	1	X	X	X	X	X	X	X
0	1	0	0	1	0	0	0	0	0	1
0	1	0	1	X	X	X	X	X	X	X
0	1	1	0	X	X	X	X	X	X	X
0	1	1	1	X	X	X	X	X	X	X
1	0	0	0	0	0	0	1	0	0	0
1	0	0	1	X	X	X	X	X	X	X
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

The euqations are

$$n_3 = s_2$$

$$n_2 = s_1$$

$$n_1 = s_0$$

$$n_0 = s_3$$

$$W = s_0$$

$$X = s_1$$

$$Y = s_2$$

The logic size is 0, the delay is 0.