RS∧°Conference2018

San Francisco | April 16-20 | Moscone Center

SESSION ID: TV-T02

Itsik Mantin

Lead Scientist Imperva

Al Deception

Fooling Al by Adversaries

No Exemptions for Al!

The Australian Challenge

Fooling AI by Adversaries

Volvo admits its self-driving cars are confused by kangaroos

Swedish company's animal detection system can identify and avoid deer, elk and caribou, but is yet to work against the marsupials' movements

Innocent AI Deception

Kangaroos ... Hmmm..

Adversarial Thinking

	Builder	Adversary
Primary Focus	What happens in case of normal input	What may happen in case of anomalous input?
Failure in rare coincidence	Something I can <u>ignore</u>	Something I can <u>abuse</u>

Blind Spots

Artificial Kangaroo

Getting Hit by an Ostrich

Adversarial Examples

Segmentation

Visual Object Recognition

Panda (57.7%)

Gibbon (99.3%)

School Bus

Ostrich

IMPERVA

RSAConference2018

Dolphin Attack

'Dolphin' attacks fool Amazon, Google voice assistants

O 7 September 2017

Voice-controlled assistants by Amazon, Apple and Google could be hijacked by ultrasonic audio commands that humans cannot hear, research suggests.

Define AI Deception

- Given an A/B classifier, and given a sample X correctly classified as A, attacker generates a sample X' that:
 - 1) Has same-essence as X, and
 - 2) Classified as B

God does not play dice...
...but the devil does

Al Deception Threat

	Same-Essence	Al Deception
Image	human viewer	Different objects detected
Video		Different scene detected
Voice	Identical for human listener	Different speech detected
Software	Same malicious function	Classified as non- malicious

Al Deception – More Threats

Propagation to the Real World

Domain	Al Engine	Al Circumvention	
Surveillance and Control systems	Face detector	Embed face patterns that prevent correct detection	
Finance	Stock prediction	Cause stock patterns that imply positive prediction	
Text analyzers	Translation Engine / Topic Extraction	Embed text patterns that prevent correct analysis	
E-Commerce	Customized pricing	Force user profile or behavior that implies cheaper prices	

1.0

0.01

Are We Better?

HI Deception

Human Intelligence Deception

Wealth Prediction

IMPERVA

?

Risk Mitigation

- Attackers
- Threats

- Model hardening
- Input sanitization

Threat Analysis

Mitigation

Security Analysis

Model Analysis

Robustness

Attack Vectors

Attacker's reach

The Al'ker's Guide to the (Cyber-Security) Galaxy

Al in Cyber Security Applications

 1	N //		
Ihhh	N/I	\neg	ΔI
The	\mathbf{v}		CI

• Prefer robust models

• Prefer explainable models

Training

Sanitize training data

Usage

• Prefer internal (hidden outcome)

Avoid raw input

Threat Detection

Prefer positive security

Combine with other mechanisms

Harnessing Al for Cyber Security Attack Detection in Imperva CounterBreach

IMPERVA

Imperva CounterBreach

Attack detection

ML Anomaly Detection

Baseline

Data Intelligence

ML Models to understand what I see

Data access monitoring

Summary

- Al is awesome technology
- Al fails in adversarial settings
- Al Deception gets only little industry attention
- The threats are acute and critical
- Mitigation in many cases is not trivial

Apply What You Have Learned Today

- Next week you should:
 - Identify critical Al usages within your organization and your roadmap
- In the next three months you should:
 - Carry out security modeling for AI usages (threats, adversaries, attack vectors)
 - In case there is significant threat and viable attack vectors, build mitigation plan. Focus on critical easy-to-exploit vulnerabilities.
- Within six months you should:
 - Execute at least the critical part of mitigation plan

