Homework 6 Solutions

Solutions Due: Wednesday, March 4

- (6pts) 1. Consider the sequence $5, 11, 19, 29, 41, 55, \ldots$ Assume $a_1 = 5$.
 - (a) Find a closed formula for a_n , the *n*th term of the sequence, by writing each term as a sum of a sequence. Hint: first find a_0 , but ignore it when collapsing the sum.

Solution: $a_0 = 1$, $a_1 = 1 + 4$, $a_2 = 1 + 4 + 6$, $a_3 = 1 + 4 + 6 + 8$ and so on. If we ignore (for the moment) the 1, we have the sum of an arithmetic sequence. So

$$a_n = 1 + [4 + 6 + 8 + 10 + \dots + (2n) + (2 + 2n)]$$

$$+a_n = 1 + [(2 + 2n) + (2n) + \dots + 8 + 6 + 4]$$

$$2a_n = 1 + n(2n + 6)$$

So
$$a_n = \frac{1 + n(2n + 6)}{2}$$

(b) Find a closed formula again, this time using either polynomial fitting or the characteristic root technique (whichever is appropriate). Show your work.

Solution: The sequence of first differences is $4, 6, 8, 10, 12, \ldots$, so the sequence of second differences is $2, 2, 2, \ldots$ which is constant. Thus we know that the original sequence will be a quadratic: $a_n = an^2 + bn + c$. We know $a_0 = 1$ so we have c = 1. This gives the system

$$5 = a + b + 1$$

$$11 = 4a + 2b + 1$$

If we multiply the first equation by -2 and add the second equation we get 1 = 2a - 1 so a = 1. Plugging this into the first equation gives b = 3. Thus the closed formula is $a_n = n^2 + 3n + 1$.

(c) Find a closed formula once again, this time by recognizing the sequence as a modification to some well known sequence(s). Explain.

Solution: If we compare our sequence to the sequence of squares $1, 4, 9, 16, 25, \ldots$ we see a difference of $4, 7, 10, 13, 16, \ldots$ These are each 1 more than a multiple of 3. So we see that the sequence $5, 11, 19, 29, 41, 55, \ldots$ is just the sequence of squares plus the sequence given by 3n + 1. So

$$a_n = n^2 + 3n + 1$$

2. In their down time, ghost pirates enjoy stacking cannonballs in triangular based pyramids (aka, tetrahedrons), like those pictured here:

Note, in the picture on the right, there are some cannonballs (actually just one) you cannot see. The next picture would have 4 cannonballs you cannot see.

The pirates wonder how many cannonballs would be required to build a pyramid 15 layers high (thus breaking the world cannonball stacking record). Can you help?

(2pts) (a) Let P(n) denote the number of cannonballs needed to create a pyramid n layers high. So P(1) = 1, P(2) = 4, and so on. Calculate P(3), P(4) and P(5).

Solution: To get the next larger pyramid, we add a triangle of cannonballs to the previous pyramid. Thus to get P(n), we add P(n-1) to the *n*th triangular number: P(3) = 4 + 6 = 10, P(4) = 10 + 10 = 20, P(5) = 20 + 15 = 35.

(4pts) (b) Use polynomial fitting to find a closed formula for P(n). Show your work.

Solution: The first differences are $3, 6, 10, 15, \ldots$ The second differences are $3, 4, 5, 6, \ldots$ The third differences are $1, 1, 1, \ldots$ Since third differences are constant, we know the closed formula for P(n) will be a degree 3 polynomial. So $P(n) = an^3 + bn^2 + cn + d$. Note that P(0) = 0, so d = 0. To solve for a, b, and c, we solve the system of equations:

$$1 = a + b + c$$
$$4 = 8a + 4b + 2c$$
$$10 = 27a + 9b + 3c$$

Doing so gives $a = \frac{1}{6}$, $b = \frac{1}{2}$ and $c = \frac{1}{3}$ so

$$P(n) = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$$

(2pts) (c) Answer the pirate's question: how many cannonballs do they need to make a pyramid 15 layers high?

Solution:

$$P(15) = \frac{1}{6}15^3 + \frac{1}{2}15^2 + \frac{1}{3}15 = 680$$

- (8pts) 3. Consider the sequences $2, 5, 12, 29, 70, 169, 408, \ldots$ (with $a_0 = 2$).
 - (a) Describe the rate of growth of this sequence.

Solution: It does not seem to help to look at the difference between terms - in fact, the differences seem to be growing in the same manner as the original sequence. However, looking at the ratio between terms gives us almost a common ratio of 2. In other words, it appears that the sequence is growing exponentially.

(b) Find a recursive definition for the sequence.

Solution: We see that 5 is a little more than twice the previous term, and 12 is a little more than twice 5. In fact, it is exactly 2 more, which is the first term. So perhaps $a_n = 2a_{n-1} + a_{n-2}$, and this seems to work moving forward.

(c) Find a closed formula for the sequence.

Solution: Use the characteristic root technique. The characteristic equation is $x^2 - 2x - 1 = 0$. Solving this (using the quadratic formula) gives $x = 1 \pm \sqrt{2}$. So we know that the closed formula for $a_n = a(1 + \sqrt{2})^n + b(1 - \sqrt{2})^n$. Now let's find a and b. We have

$$2 = a + b$$
$$5 = a(1 + \sqrt{2}) + b(1 - \sqrt{2})$$

Use substitution: a=2-b so $5=(2-b)(1+\sqrt{2})+b(1-\sqrt{2})$ which simplifies to $b=\frac{3\sqrt{2}-4}{4}$. This gives $a=\frac{4-3\sqrt{2}}{4}$. Therefore

$$a_n = \frac{4 - 3\sqrt{2}}{4} (1 + \sqrt{2})^n + \frac{3\sqrt{2} - 4}{4} (1 - \sqrt{2})^n$$

(d) If you look at the sequence of differences between terms, and then the sequence of second differences, the sequence of third differences, and so on, will you ever get a constant sequence? Explain how you know.

Solution: You will never get a constant sequence of differences. If you did, this would mean that the original sequence would be some polynomial. But we have an exponential closed formula, so no polynomial will fit.

- 4. Let a_n be the number of $1 \times n$ tile designs can you make using 1×1 squares available in 4 colors and 1×2 dominoes available in 5 colors.
- (3pts) (a) First, find a recurrence relation to describe the problem. Explain why the recurrence relation is correct (in the context of the problem).

Solution: $a_n = 4a_{n-1} + 5a_{n-2}$. Each path of length n must either start with one of the $4 \ 1 \times 1$ tiles, in each case there are then a_{n-1} ways to finish the path, or start with one of the $5 \ 1 \times 2$ tiles, in each case there are then a_{n-2} ways to finish the path.

(2pts) (b) Write out the first 6 terms of the sequence a_1, a_2, \ldots

Solution: 4, 21, 104, 521, 2604, 13021

(3pts) (c) Solve the recurrence relation. That is, find a closed formula for a_n .

Solution: The characteristic equation is $x^2 - 4x - 5 = 0$ so the characteristic roots are x = 5 and x = -1. Therefore the general solution is

$$a_n = a5^n + b(-1)^n$$

We solve for a and b using the fact that $a_1 = 4$ and $a_2 = 21$. We get $a = \frac{5}{6}$ and $b = \frac{1}{6}$. Therefore the solution is

$$a_n = \frac{5}{6}5^n + \frac{1}{6}(-1)^n$$