PREVENTIVE MAINTANENCE NASA WATER PUMP

Canva

APRIL 2024

Objective

Showcase how such models can accurately predict failures, leading to proactive maintenance interventions aimed at reducing downtime and optimizing maintenance schedules.

Business Understanding

Goal

DEVELOP AND IMPLEMENT MODELS TO ENABLE ACCURATE FAILURE PREDICTIONS

Goal

- REDUCED BREAKDOWNS
- EXTEND EQUIPMENT LIFE
- OPTIMIZE MAINTENANCE SCHEDULE
- ENHANCE OPERATONS EFFICIENCY

Data Set

- Data from Kaggle
- Analyzed sensor data from NASA water pumps
- Identified key sensors with significant readings variability
- Detected patterns linked to machine health and potential faults

Data Insight

ATTRIBUTES

• Total Entries: 220.320

• Total Columns: 55

• Unnamed: OColumn: ID/Index

• Sensor 15 column: Removing

DISTRIBUTION

• Normal: 205,836

• Recovering: 14,477

• Broken: 7

MISSING VALUES

- 77,017 and 220,320 missing
- Checked for duplicates
- Used median to fill in N/A.

Data Prep

- Cleaned and preprocessed data for quality and consistency
- Merged similar machine statuses to simplify the target variable
- Visualized data distribution and sensor correlations
- Utilized exploratory data analysis for a deeper understanding of data

Model Process

01

Regression Models

• Logistic and Random Forest

02

Ensemble Models

• Bagging, AdaBoost, XGBoost, Stacking, and Voting

03

Tuning

- Gridsearch validation
- Hyperparameter tuning

Results

- Achieved high consistency and accuracy across multiple models
- Near-perfect ROC AUC scores indicating excellent model performance

•

Next Steps

01

Refine models

• Continuous monitoring of key sensors for real-time predictive maintenance

02

Deployment

• Implementation into production with a real-time analytics pipeline

03

More data insight

• Further investigation into high-impact sensors for targeted maintenance

Further experiment

 Regular retraining of models with new data to maintain performance

Sens)

CONTACT

www.github.com/yaterjo

jly35630@yahoo.com

555-867-5309

Atlanta, Georgia

Our Team

Johnathan Yater

Data Science

THANK YOU