Chytrid Biology 101

Salvador Lopez

Chytrids began causing pond interruption during Sapphire's first growing season

- First raceways were inoculated Winter 2008/2009
- First chytrids were observed and captured Summer 2009
- Desmid ponds were crashing
 48-72 hours after inoculation

Chytrids are a basal fungi that produce motile (flagellated or amoeboid) zoospores

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Chytrids have distinct life cycle stages

Chytrids can be characterized through zoospore ultrastructure

- Initially, chytrids were characterized through sporangia morphology.
- Sporangia morphology is not conserved amongst species.
- Zoospore ultrastructure is static amongst species.

L: Lipid globule

M: Mitochondria

R: Ribosomes

FC: Fenestrated cisterna

Posterior, whiplash flagella
Images courtesy Dr. Peter Letcher

Chytrids can be characterized through zoospore ultrastructure

Images courtesy Dr. Peter Letcher

Chytrids begin attachment/encystment after finding suitable substrate

Images courtesy Dr. Peter Letcher

Chytrids begin germination after successful encystment

Images courtesy Dr. Peter Letcher

Chytrids zoospore development commences following germination

lipids

Mitosis = Multiple nuclei

Single lipid globules
Chytrid Biology 101

Lipid globules begin coalescing

Fully cleaved zoospore

Chytrids dehisce after progeny has matured

FD01
ITS similar to uncultured fungus clone F1210G

Zoospore

Size: 2-3 uM

Body: Irregular. Motile; amoeboid.

Center refracts light, revealing a greenish hue. Move slowly, using their extended pseudopodia. Best seen with 100X objective, phase III contrast.

Sporangia

Size: 2-4 uM

Body: Spherical. Non-motile

Opaque. Progeny don't seem to mature inside the sporangia. Best seen at 100X objective, phase III contrast.

FD61
ITS similar to uncultured fungus clone IVN1-23

Zoospore

Size: 4-6 uM

Body: Irregular. Motile; amoeboid

Refract light, revealing a greenish hue. Move slowly, using their pseudopodia. Best seen with 100X objective, phase III contrast.

Sporangia

Size: 5-7 uM

Body: Spherical. Non-motile.

Semi-translucent. Progeny appear to mature inside the sporangia. Best seen at 100X objective, phase III contrast.

FD95
ITS similar to uncultured fungus clone 167-40

Zoospore

Size: 2-3 uM

Body: Irregular. Motile; amoeboid.

Center refracts light, revealing a greenish hue. Move slowly, using their extended pseudopodia. Best seen with 100X objective, phase III contrast.

Sporangia

Size: 2-4 uM

Body: Spherical. Non-motile

Opaque. Progeny don't seem to mature inside the sporangia. Best seen at 100X objective, phase III contrast.

FD100

ITS similar to uncultured Chytridiomycota clone AY2009A6

Zoospore

Size: 1-2 uM

Body: Spherical. Motile; uniflagellate

Refract light, revealing a greenish hue. Move quickly in a circular path. Best seen with 100X objective, phase III contrast or with 40X objective, dark field contrast.

Sporangia

Size: 5-7 uM

Body: Pear shaped. Non-motile.

Semi-translucent. Progeny mature inside the sporangia. Best seen at 100X objective, phase III contrast.

FD101 ITS similar to Rhizophydiales sp. ARG010

Zoospore

Size: 2-3 uM

Body: Spherical. Motile; biflagellate

Refract light, revealing a greenish hue. Move quickly in a circular path. Best seen with 100X objective, phase III contrast or with 40X objective, dark field contrast.

Sporangia

Size: 3-5 uM

Body: Spherical. Non-motile.

Semi-translucent. Progeny appear to mature inside the sporangia. Best seen at 100X objective, phase III contrast.

Efforts were made to understand chytrid physiology in order to develop crop protections strategies

Molecular tools were developed to identify and quantitatively monitor chytrids

Multiple pesticides were screened to develop crop protection strategies for chytrids

- Various fungicides with different modes of action were screened against algae and chytrids
- Top three candidates: fluazinam, pyraclostrobin, and thiram
- EUPs were acquired for all three fungicides
- All three fungicides have been deployed in the field

Trends in CT values are used to implement crop protection strategies

Figure 1. Two pests monitored using qPCR in two different raceways. CT values triggered crop protection strategies (red arrows) extending raceway productivity.

Our goal is to generate a pest database for evolving crop protection strategies

- One step ahead:
 - Capture/identify potential threats
 - Culture/establish lab crash models to develop monitoring tools and crop protection strategies
 - Long-term storage of pests
 - Screening of new crop protection strategies

ZERO interruption in culture productivity (due to pests)