Detecting Child Unsafe Videos Using Transcripts

Shritishma Reddy & Pratik Kamble

Apr 6, 2019

Basic Introduction

This project proposes an end to end pipeline for the detection of child unsafe videos using video transcripts

The pipeline has three phases:

- 1. Data acquisition: Collection of a holistic video-transcript dataset representative of children viewing habits and trends.
- 2. Unsafe pattern detection: Analyze speech patterns and clustering hot spot zones to form a timeline representation
- 3. Video classification: Classification of videos into unsafe types, religious, abusive, drug use, etc.

Data Acquisition

The main categories of media streaming are entertainment websites, online games, email, social networking and general interest portals.

The main type of genres are as follows:

- Religion-based hate speech: found in chat rooms and online forums
- Color-based hate speech: hidden in meaning and harder to detect
- Foul language

Video (Media Content) Classification

- After data collection of videos (media) is identified, a simple classical model is used in cascade to analyze and mark scenes and zones in the time frame with dangerous content
- Above meta-data is passed through a zonal mapping pipeline, where a score is assigned for each category to each media file. Finally depending on the thresholding for each genre distribution across ages, a weighted average is taken to judge the video's overall score.

Video Annotation and Labeling

- Dataset should be representative of divisions and genre distribution amidst children
- We are collecting 5 videos in each positive category, approximately of 5 mins each
- The videos must be representative of age genre balance. Younger children are usually pressured into by peers and boundary videos are easy gateways to explicit content

$$N = n_{videos} \times n_{categories} \times n_{agegroups} \times m \times \delta \times \alpha$$

rivideos = 5 per category, nagegroup = 3 per category, m = average length per video of selection, delta = average rate of speech, alpha = conversion rate (we are only looking at positive dataset to seed the dataset)

Raw Transcript Collection

- The collected files were formatted using the srt standard and were converted into a *dataset* for annotation.

Vedio_Id Genre		start	end	text	
0	3tgZ	0	0.00	3.71	mr. mine you say babe
1	3tgZ	0	3.72	22.79	mr. mine babe what's d
2	3tgZ	0	22.79	22.80	of a dynamic punch mr. line
3	3tgZ	0	22.80	28.40	of a dynamic punch you'll
4	3tgZ	0	28.40	28.41	you'll get stronger your

Data Insights

77% of our dataset is "Clean"
12% of our dataset is "Abusive"
11% of our dataset is "Hate"
Average running time of video: 4.5
mins

Additionally, some inference can be drawn as to the average "unsafe" duration of a video and the subsequent variation with genres.

Dataset Preparation

Training Dataset - Distribution across categories

For training: used Davidson dataset and 20% of data corresponding to each label of our Youtube dataset for training

To keep our dataset bias-free, a dataset spanning the categorical distribution shown in the figure on the left are used

Dataset Preparation

Dataset cleaning:

- Lowercased each sentence and stemmed it using the Porter Stemmer.
- Created bigram, unigram and trigram features each weighted by its tf-idf
- NLTK

Results