♦ 문제풀이 및 해설은 오른쪽 qr코드와 같습니다.

♦ 함께 열심히 해 봅시다.

유형 1. 함수 $f(x) = \log_a(3x+1) + 1$ $(a > 0, a \ne 1)$ 에 대하여 f(1) = 3일 때, f(0) + f(5)의 값은?

(1)2

2 4

- **8** 6
- (4)8

(5) 10

3= [09 a 4+1 2= (oy a 4

 $\alpha^2 = \Psi$

 $\alpha = 2 (7.00)$

=: for+for=(log2 1+1)+(log2 6+1) - 14 441= 6

유형 2. 다음 중 로그함수 $y = \log_{\frac{1}{r}} \frac{1}{r} (0 < a < 1)$ 의 그래프에 대한 설명으로 옳지 않은 것은?

- ① 함수 $y = \log_a x$ 의 그래프와 일치한다. Q
- ② 점 (1,0)을 반드시 지난다. 🔾
- ③ 그래프의 점근선은 직선 x = 0이다O
- ④ x > 0에서 x의 값이 증가하면 y의 값도 증가한다. χ
- ⑤ 정의역은 양의 실수 전체의 집합이고, 치역은 실수 전 체의 집합이다. ()

$$4 = \log_{\alpha} x^{1}$$

$$= \log_{\alpha} x$$

유형 3. 함수 $y = \log_2(2x + 4)$ 의 그래프는 함수 $y = \log_2 x$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평 행이동한 것이다. 이때 m+n의 값을 구하시오.

$$y = \log_2 2(x+2)$$
 $x, -2$
= $\log_2 x(+2) + 1$ $\frac{y, 1}{y} = \log_2 x$
: $\ln + \ln = -2 + 1 = -1$

유형4.세수

$$A = -\log_{\frac{1}{2}} \frac{1}{6}$$
, $B = 2\log_{\frac{1}{2}} \frac{1}{5}$, $C = -3\log_{\frac{1}{2}} 3$

의 대소 관계는?

$$\{ \mathcal{V} \mid A < B < C \}$$

(2)
$$A < C < B$$

(3)
$$B < A < C$$

$$\textcircled{4}$$
 $B < C < A$

$$\bigcirc$$
 $C < B < A$

A=
$$\log_{\frac{1}{2}} 6$$
 B= $\log_{\frac{1}{2}} \frac{1}{25}$ C= $\log_{\frac{1}{2}} \frac{1}{25}$
 $\log_{\frac{1}{2}} 6 < \log_{\frac{1}{2}} \frac{1}{25} < \log_{\frac{1}{2}} \frac{1}{25}$ [: $\Im(1)$

$$A \subset B \subset C$$

유형 5. 함수 $f(x) = a^x$ (0 < a < 1)에 대하여 y = f(x)의 그래프가 오른쪽 그림과 같다. f(x)의 역 함수를 g(x)라 할 때, g(4)의 값을 구하시오.

$$(1) f(1) = (1 - 1)^{2}$$

$$(2) f(3) = (1 - 1)^{2}$$

$$(3) f(3) = (1 - 1)^{2}$$

$$\begin{array}{ll}
\vec{a} & g(x) = \log_{\frac{1}{2}} x \\
\vec{a} & g(x) = \log_{\frac{1}{2}} x \\
\vec{a} & g(x) = \log_{\frac{1}{2}} x
\end{array}$$

유형 6. 오른쪽 그림은 함수 $y = \log_5 x$ 의 그래프이다. 점 M이 선분 PQ의 중점일 때, a의 값을 구하시오. (단, 점

선은 x축 또는 y축에 평행하다.)

$$M = \frac{\log_2 2 + \log_2 18}{2}$$

$$= \frac{\log_2 36}{2}$$

$$= \log_3 6 \qquad \therefore \alpha = 6$$

유형 7. 정의역이 $\{x \mid 2 \le x \le 6\}$ 인 함수 $y = \log_{\frac{1}{2}}(x^2 - 2x + 8)$ 의 최댓값을 M, 최솟값을 m이라 할 때, M - m의 값은?

유형 8. $1 \le x \le 8$ 에서 함수 $y = (\log_{\frac{1}{2}} x)^2 + 4\log_{\frac{1}{2}} x + 5$ 의 최댓 값을 M, 최솟값을 m이라 할 때, Mm의 값을 구하시오.

$$y = 4^{2} + 4^{4} + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4^{2} + 4^{4} + 4^{4}) - 4 + 5$$

$$= (4$$

유형 9. x > 0, y > 0일 때, $\log_2\left(x + \frac{1}{y}\right) + \log_2\left(y + \frac{9}{x}\right)$ 의 최솟값은?
① 1 ② 2 ③ 3 ④ 4 ④ ⑤ 5

$$\geq [ay_2(2\sqrt{24}\cdot\frac{q}{24}+10)$$
 (-'44.712)
= $(ay_2(6-4)$

 $= \left(\alpha_2 \left(xy + \frac{q}{xy} + (0) \right) \right)$

유형 10. 정의역이 $\{x \mid 1 \le x \le 1000\}$ 인 함수 $y = x^{2-\log x}$ 의 최 댓값을 M, 최솟값을 m이라 할 때, Mm의 값을 구하시오.

$$|ay y = (2 - \log n) \cdot \log x$$

$$|cet (og n = t) (occ + c3)$$

$$|ay y = -t^2 + 2t$$

$$= -(t^2 - 2t + 1) + 1$$

$$= -(t - 1)^2 + 1$$

$$|ay y = -(t - 1)^2 + 1 = 1$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y = -(t - 1)^2 + 1 = -3$$

$$|ay y =$$

유형 11. 방정식 $\log_4(x-2) + \log_{\frac{1}{4}}(x-5) = \frac{1}{2}$ 을 풀면?

① x = 2 ② x = 3 ② x = 5

 $5x = 5 \pm x = 8$ $7 \times 200, \times -500 = 0 \times 5$

i) $[ay_{4}(x-2) - [ay_{4}(x-5)] = [ay_{4}x^{2}]$ $(ay_{4} + \frac{x-2}{x-5}) = [ay_{4}x^{2}]$ x-2 = 2(x-5) x = x

유형 12. 방정식 $\log_3 x - \log_9 x = 2(\log_3 x)(\log_9 x)$ 의 두 실근을 α, β 라 할 때, $\alpha\beta$ 의 값은?

① $\frac{1}{3}$ ② 1 ② $\sqrt{3}$ ④ 3 ⑤ $3\sqrt{3}$ (oy₃x - ½ (oy₃x = 2 (loy₅x)) (½ (oy₃x))

What (oy₃x = t) t - ½ t = xt - ½t $t = t^{2}$ $0 = 2t^{2} - t$ = t(2t - 1) $\therefore t = 0 \text{ or } ½$ (oy₃x = 0 or | | | | | | | | | | | $\therefore X = 1 \text{ or } | | | | | |$ = | | | | | | = | | | | | = | | | | = | | | | = | | | | = | | | = | | | = | | | = | | | = | |

(5) x = 9

유형 13. 방정식
$$x^{\log_3 x} = \frac{1}{3}x^2 = \Xi \theta$$
?

① $x = 2$ ② $x = 3$ ③ $x = 6$ ④ $x = 8$

② $(x = 2)$ ③ $(x = 2)$ ④ $(x = 8)$

② $(x = 2)$ ④ $(x = 2)$ ④ $(x = 8)$
 $(x = 2)$ ④ $(x = 2)$ ④ $(x = 2)$ ④ $(x = 8)$ ④

· += (

(ay 3 x = 1

11=3

유형 14. 연립방정식 $\begin{cases} \log_x 4 - \log_y 2 = 2 \\ \log_x 16 + \log_y 8 = -1 \end{cases}$ 의 해가 $x = \alpha, \ y = \beta$ 일 때, $\alpha\beta$ 의 값을 구하시오.

Let
$$(64x^{2} = \beta)$$
 $(84x^{2} = 3)$
 $(2\beta - 3) = -1$
 $(4\beta + 3) = -1$
 $(4\beta - 2) = 4$
 $(64x^{2} = \beta)$ $(64x^{2} = 3)$
 $(64x^{2} = \beta)$ $(64x^{2} = \beta)$
 $(64x^{2} = \beta)$ $(64x^{2} = 3)$
 $(64x^{2} = \beta)$ $(64x^{2} = \beta)$
 $(64x^{2} =$

유형 15. 방정식 $(\log_2 2x)^2 - 3\log_2 x^2 = 0$ 의 두 실근을 α, β 라 할 때, $\alpha\beta$ 의 값은?

$$(1 + \log_{2} x)^{2} - 6 \log_{2} x = 0$$

$$(et | cy_{2} x = t | (x > 0))$$

$$(1 + t)^{2} - 6t = 0$$

$$t^{2} - 4t + 1 = 0$$

$$(cy_{2} d + (cy_{2})_{5} = 4$$

$$(cy_{2} d)_{5} = 4$$

유형 16. 부등식 $\log(6-x) + \log(x+5) \le [$ 의 해가 $a < x \le -4$ 또는 $b \le x < 6$ 일 때, a + b의 값을 구하시오.

유형 17. 부등식
$$(\log_{\frac{1}{3}} x)^2 - \log_{\frac{1}{3}} x^2 \ge 0$$
을 푸시오.

bet
$$(ay_{\frac{1}{2}})_{1} = t (xx0)$$

 $t^{2} - 2t \ge 0$
 $t(t^{2}) \ge 0$
 $t \le 0 \text{ or } t \ge 2$

$$|ay_{\frac{1}{2}}x \leq 0 | |ay_{\frac{1}{2}}| |ay_{\frac{1}{2}}x \leq |ay_{\frac{1}{2}}x$$

유형 18. 부등식 $x^{\log_3 x} < 9x$ 를 만족시키는 모든 정수 x의 개수는?

$$(ay_3x)^2 \subset (ay_3qx)$$
 $(ay_3x)^2 \subset (ay_3qx)$
 $(ay_3x)^2 \subset (ay_3x)^2$
 $(ay_3x)^2 \subset (ay_3x)^2$

유형 19. 연립부등식
$$\begin{cases} \log_4(x+4)^2 \geq \log_2 3x \\ \log_{\frac{1}{3}}(x+2) \geq -1 \end{cases}$$
 을 만족시키 는 자연수 x 의 값을 구하시오.

유형 20. 모든 양수 x에 대하여 부등식

$$(\log_2 x)^2 + 8\log_2 x + 8\log_2 k > 0$$

이 성립하도록 하는 양수 k의 값의 범위를 구하시오.

유형 21. x에 대한 이차방정식 $x^2 - x \log a + \log a + 3 = 0$ 이 실 근을 갖지 않도록 하는 실수 a의 값의 범위를 구하시오.

유형 22. 자동차의 소음의 세기가 $P \text{ W/m}^2$ 일 때의 소음의 크기를 D dB라 하면 P 와 D 사이에는 다음과 같은 관계가 성립한다.

$$D = 10(\log P + 12)$$

올해 A사, B사에서 출시한 자동차의 소음의 크기가 각각 40 dB, 60 dB 일 때, B사에서 출시한 자동차의 소음의 세기는 A 사에서 출시한 자동차의 소음의 세기의 몇 배인가?

②
$$\frac{1}{10}$$
배

③ 10배

(5) $100\sqrt{2}$ 时

$$\begin{cases} (\alpha \beta_{A} = -8) & \beta_{A} = (0^{-8}) \\ (\alpha \beta_{B} = -6) & \beta_{B} = (0^{-6}) \end{cases}$$

$$\frac{1}{1000} = \frac{1000}{1000} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$$