Содержание

1	Линейное пространство	3
2	Скалярное произведение, норма	;
3	Метрика	
4	Скалярное произведение, норма, метрика в \mathbb{R}^m	_
	Конец II семестра ↓	
5	Определения в \mathbb{R}^m , покоординатная сходимость, двойной и повторый предел	Ę
6	Бесконечно малое отображение, $o(h)$, отображение дифференцируемое в точке	7
7	Комплексная дифференцируемость, единственность производной	7
8	Дифферецируемость координатных функций, частная производная	
	III семестр↓	
Teop	емы:	
3	Дифференцируемость композиции	11
4	Дифференцирование произведений	11
5	Теорема Лагранжа для векторонозначных функций	11
6	Экстремальное свойство градиента	12
7	Независимость частных производных от порядка дифференцирования	13
8	Полиномиальная формула	14
9	Лемма о дифференцировании «сдвига»	15
10		15
11		17
12		18
13		18
14		18
15		18
16		19
17	Лемма об оценке квадратичной формы и об эквивалентных нормах	20
18		21
19		22
20		23
21	Следствие о сохранении области для отображений в пространство меньшей размерности	23
22		24
23		24
90		0.5
30		25
30		29
31		26
32		27
32		29
33		27
34		28
34		29
35		30
36		28
37	Теорема о предельном переходе в суммах	30
38		31
39		32
40		32
41	Теорема о равномерной сходимости и непрерывности степенного ряда	33
Опре	еделения и формулировки:	
1	Производная по направлению	12
2	Градиент	12

3	Классы $C^r(E)$	13
4	Мультииндекс и обозначения с ним	14
5	Формула Тейлора (различные виды записи)	15
6	n-ый дифференциал	16
7	Норма линейного оператора	16
8	Локальный максимум, минимум, экстремум	19
9	Положительно-, отрицательно-, незнако- определенная квадратичная форма	20
10	Диффеоморфизм	22
11	Формулировка теоремы о гладкости обратного отображения	24
12	Формулировка теоремы о локальной обратимости в терминах систем уравнений	24
13	Поточечная сходимость последовательности функций на множестве	25
14	Равномерная сходимость последовательности функций на множестве	25
15	Формулировка критерия Больцано-Коши для равномерной сходимости	27
16	Равномерная сходимость функционального ряда	28
17	Формулировка критерия Больцано-Коши для равномерной сходимости рядов	29
18	Равномерный предел функции двух переменных	31
19	Теорема о перестановке двух предельных переходов	31
20	Степенной ряд, радиус сходимости степенного ряда, формула Адамара	32

1 Линейное пространство

Определение 1: Множество X называется линейным пространством (или векторным) над полем K, если заданы две операции

 $X \times X \to X \quad ((x,y) \mapsto x + y)$ Сложение: , удовлетворяющие аксиомам: Умножение на скаляр: $K \times X \to X$ $((\alpha, x) \mapsto \alpha \cdot x)$ (X, +) — абелева группа по сложению

- 1. $\forall x, y \in X \ x + y = y + x$ (коммутативность сложения)
- 2. $\forall x, y, z \in X \ (x + y) + z = x + (y + z)$ (ассоциативность сложения)
- 3. $\forall x \in X \ \exists 0_X : x + 0_X = x$ (существование нейтрольного элемента по сложению)
- 4. $\forall x \in X \ \exists (-x) : x + (-x) = 0_X$ (существование обратного элемента по сложению)
- 5. $\forall x \in X, \forall \alpha, \beta \in K \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
- 6. $\forall x, y \in X, \forall \alpha \in K \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
- 7. $\forall x \in X, \forall \alpha, \beta \in K \ (\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)$
- 8. $\forall x \in X \ 1_X \cdot x = x$, где $1_X \in K$ нейтральный элемент по умножению

2 Скалярное произведение, норма

Определение 2: Пусть X — линейное пространство над \mathbb{R} . Отображение $X \times X \to \mathbb{R} \ ((x,y) \mapsto \langle x,y \rangle)$ называется скалярным произведением, если оно удовлетворяет аксиомам:

- 1. $\forall x, y \in X \langle x, y \rangle = \langle y, x \rangle$ (симметричность)
- $2. \ \forall x,y,z \in X, \forall \alpha \in \mathbb{R} \ \langle x+\alpha \cdot y,z \rangle = \langle x,z \rangle + \alpha \, \langle y,z \rangle$ (линейность)
- 3. $\forall x \in X \langle x, x \rangle \geqslant 0$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0_X$ (положительная определённость)

Определение 3: Отображение $X \to \mathbb{R}$ $(x \mapsto ||x||)$ называется нормой (X - линейное пространство)над \mathbb{R}), если оно удовлетворяет аксиомам:

- 1. $\forall x \in X \|x\| \geqslant 0$, $\|x\| = 0 \Leftrightarrow x = 0_X$ (положительная определённость)
- 2. $\forall x \in X, \forall \alpha \in \mathbb{R} \|\alpha \cdot x\| = |\alpha| \|x\|$ (положительная однородность)
- 3. $\forall x,y \in X \ \|x+y\| \leqslant \|x\| + \|y\| \$ (неравенство треугольника для нормы)

Утверждение 1: Отображение $X \to \mathbb{R}, \ x \mapsto \sqrt{\langle x, x \rangle}$ — норма $(X - \text{линейное пространство над } \mathbb{R})$

Доказательство: проверка аксиом нормы:

- 1. Аксиома 3 скалярного произведения
- 2. По аксиоме 2 скалярного произведения $\sqrt{\langle \alpha \cdot x, \alpha \cdot x \rangle} = \sqrt{\alpha^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle}$
- 3. Нужно доказать, что $\forall x, y \in X \ \sqrt{\langle x+y, x+y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$. Обе части положительные, поэтому это неравенство равносильно неравенству

$$\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle \leqslant \langle x, x \rangle + 2 \sqrt{\langle x, x \rangle \langle y, y \rangle} + \langle y, y \rangle$$

$$\langle x, y \rangle \leqslant \sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Рассмотрим функцию $f: \mathbb{R} \to \mathbb{R}, (\alpha \mapsto \langle x + \alpha \cdot y, x + \alpha \cdot y \rangle).$

$$\forall \alpha \in \mathbb{R} \quad f(\alpha) = \langle x, x + \alpha \cdot y \rangle + \langle \alpha \cdot y, x + \alpha \cdot y \rangle =$$

$$= \langle x, x \rangle + \langle x, \alpha \cdot y \rangle + \langle \alpha \cdot y, x \rangle + \langle \alpha \cdot y, \alpha \cdot y \rangle =$$

$$= \langle x, x \rangle + 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle$$

Также $f(\alpha)\geqslant 0\ \forall\,\alpha\in\mathbb{R}$ (по аксиоме 3 скалярного произведения) \Rightarrow дискриминант $\leqslant 0$: $(2\langle x,y\rangle)^2 - 4\langle y,y\rangle\langle x,x\rangle \leqslant 0$, то есть $\langle x,y\rangle^2 \leqslant \langle x,x\rangle\langle y,y\rangle$ или $|\langle x,y\rangle| \leqslant \sqrt{\langle x,x\rangle\langle y,y\rangle}$

Следствие 1: Из доказательства утв. 1 следует неравенство Коши-Буняковского. Разные виды его записи:

1.
$$|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

$$2. \mid \langle x, y \rangle \mid \leqslant ||x|| \, ||y||$$

3.
$$\langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

4.
$$\left(\sum_{i=1}^{m} x_i y_i\right)^2 \leqslant \sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i^2$$
 (при $x, y \in \mathbb{R}^m$)

5.
$$\left| \sum_{i=1}^m x_i y_i \right| \leqslant \sqrt{\sum_{i=1}^m x_i^2} \sqrt{\sum_{i=1}^m y_i^2} \quad (при \ x, y \in \mathbb{R}^m)$$

3 Метрика

Определение 4: Пусть X — множество. Отображение $\rho \colon X \times X \to \mathbb{R}$ называется метрикой, если оно удовлетворяет аксиомам:

- 1. $\forall x, y \in X \ \rho(x, y) = \rho(y, x)$ (симметричность)
- 2. $\forall x, y \in X \ \rho(x, y) \geqslant 0, \quad \rho(x, y) = 0 \Leftrightarrow x = y$ (невырожденность)
- 3. $\forall x, y, z \in X \ \rho(x, y) \leqslant \rho(x, z) + \rho(z, y)$ (неравенство треугольника для метрики)

Утверждение 2: Пусть X — линейное пространство над \mathbb{R} . Отображение $\rho: X \times X \to \mathbb{R}, \, \forall x, y \in X$ $\rho(x,y) = \|x-y\|$ — метрика

Доказательство: проверка аксиом метрики:

- 1. $\forall x, y \in X \|x y\| = \|(-1) \cdot (y x)\| = |-1| \|y x\| = \|y x\|$
- 2. Аксиома 1 нормы
- 3. По 3 аксиоме нормы $\forall x,y,z \in X \ \|x-y\| = \|x-y+z-z\| = \|(x-z)+(z-y)\| \leqslant \|x-z\|+\|z-y\|$

4 Скалярное произведение, норма, метрика в \mathbb{R}^m

Определение 5:
$$\mathbb{R}^m = \{\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{m \text{ pas}}\} = \{(x_1, x_2, \dots, x_m) \mid x_i \in \mathbb{R}\}$$

Утверждение 3: \mathbb{R}^m — линейное пространство над \mathbb{R} с покоординатным сложением и покоординатным умножением на скаляр

Доказательство: Очевидно.

Утверждение 4: Отображение $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$, $(x,y) \mapsto \sum_{i=1}^m x_i y_i$ — скалярное произведение в \mathbb{R}^m

Доказательство: проверка аксиом скалярного произведения:

1.
$$\forall x, y \in \mathbb{R}^m \sum_{i=1}^m x_i y_i = \sum_{i=1}^m y_i x_i$$

2.
$$\forall x, y, z \in \mathbb{R}^m, \forall \alpha \in \mathbb{R} \sum_{i=1}^m (x_i + \alpha y_i) z_i = \sum_{i=1}^m (x_i z_i + \alpha y_i z_i) = \sum_{i=1}^m x_i z_i + \alpha \sum_{i=1}^m y_i z_i$$

3.
$$\forall x \in \mathbb{R}^m \sum_{i=1}^m x_i^2 \geqslant 0$$
, $\mathbf{x} \sum_{i=1}^m x_i^2 = 0 \Leftrightarrow \forall i \in \{1, 2, \dots, m\}$ $x_i^2 = 0 \Leftrightarrow x_i = 0 \Leftrightarrow x = 0$

Следствие 2: По утв. 1 $\forall \, x \in \mathbb{R}^m \, \|x\| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^m x_i^2} = \sqrt{x_1^2 + x_2^2 + \dots x_m^2}$ — норма в \mathbb{R}^m

Следствие 3: По утв. $2 \ \forall \ x,y \in \mathbb{R}^m \ \rho \left(x,y \right) = \|x-y\| = \sqrt{\sum\limits_{i=1}^m (x_i-y_i)^2} -$ метрика в \mathbb{R}^m

4

5 Определения в \mathbb{R}^m , покоординатная сходимость, двойной и повторый предел

Напоминание определений: т.к. \mathbb{R}^m — метрическое пространство, можно определить $(a \in \mathbb{R}^m, r \in \mathbb{R})$

- 6: Шар (открытый) с центром в точке a и радиусом $r B(a, r) = \{x \mid ||x a|| < r\}$
- 7: Сфера с центром в точке a и радиусом $r S(a, r) = \{ x \mid ||x a|| = r \}$
- 8: Замкнутый шар с центром в точке a и радиусом $r \overline{B(a,r)} = \{x \mid ||x-a|| \leq r \}$
- 9: ε -окрестность точки a это $\mathrm{B}(a,\varepsilon)$ ($\varepsilon\in\mathbb{R}$)
- 10: Проколотая ε -окрестность точки a это $\dot{\mathbf{B}}(a,\varepsilon) = \mathbf{B}(a,\varepsilon) \setminus \{a\}$
- 11: Множество $G \subset \mathbb{R}^m$ называется открытым, если $\forall x \in G \ \exists \varepsilon_a \in \mathbb{R} : \mathrm{B}(a, \varepsilon_a) \subset G$. Если множество G открытое, то $G = \bigcup_{x \in G} \mathrm{B}(a, \varepsilon_a)$:

$$G \subset \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a) \text{: Пусть } x \in G, \text{ тогда, т.к. } G - \text{ открытое } \exists \mathrm{B}(x, r) \subset G, \text{ т.е. } x \in \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a)$$
$$G \supset \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a) \text{: Пусть } x \in \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a), \text{ тогда } \exists \, a : x \in \mathrm{B}(a, \varepsilon_a) \subset G$$

- 12: Точка x называется предельной точкой множества $D\subset\mathbb{R}^m,$ если $\forall\, \varepsilon>0$ $\dot{\mathrm{B}}(a,\varepsilon)\cap D\neq\varnothing$
- 13: Множество $F \subset \mathbb{R}^m$ называется замкнутым, если оно содержит все свои предельные точки $\Leftrightarrow \exists G$ открытое множество : $F = \mathbb{R}^m \setminus G$
 - \implies Пусть $x\in\mathbb{R}^m\setminus F$, тогда $\exists\, \varepsilon>0: \mathrm{B}(a,\varepsilon)\cap F=\varnothing,$ то есть дополнение F открыто
- **14:** Точка $a \in \mathbb{R}^m$ называется пределом последовательности $x^{(n)}$, если

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \left\| x^{(n)} - a \right\| < \varepsilon$$

15: Точка $L \in \mathbb{R}^n$ называется пределом отображения $f \colon D \subset \mathbb{R}^m \to \mathbb{R}^n$ при $x \to a \in \mathbb{R}^m$, a - предельная точка D, если

$$orall \, arepsilon > 0 \,$$
 $\exists \, \delta > 0 : orall \, x \in D$ если $0 < \|x - a\| < \delta,$ то $\|f(x) - L\| < \varepsilon$

Равносильное определение (по Гейне):

$$\forall$$
 последовательтости $x^{(k)}:x^{(k)}\to a$ выполнено $f(x^{(k)})\to L$ $x^{(k)}\neq a$ $x^{(k)}\in D$

Vтверждение 5: Сходимость последовательности в \mathbb{R}^m равносильна покоординатной сходимости

$$x^{(n)} \to a \Leftrightarrow \forall i \in \{1, 2, \dots, m\} \ x_i^{(n)} \to a_i$$

Доказательство:

Следствие 4: Из определения предела отображения по Гейне $f:D\subset\mathbb{R}^m\to\mathbb{R}^n$

$$\lim_{x \to a} f(x) = L \iff \forall i \in \{1, 2, \dots, n\} \ \lim_{x \to a} f_i(x) = L_i$$

5

Ещё напоминание определений:

- **16**: $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$, $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$; $\forall i \in \{1, 2, \dots, n\}$ $f_i(x)$ называются координатными функциями функции f(x)
- 17: Метрическое пространство X называется компактным, если из любого покрытия открытыми множествами множно выбрать конечное подпокрытие:

$$\forall \{G_{\alpha}\}$$
 — окрытое покрытие $\exists G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}$ — открытое подпокрытие X

Подмножество $D \subset \mathbb{R}^m$ — компактно $\Leftrightarrow D$ — замкнуто и ограничено $\Leftrightarrow D$ — секвенциально компактно $\Leftrightarrow \forall \varepsilon > 0 \; \exists \;$ конечная ε -сеть (D — сверхограничено) и замкнуто

- D называется ограниченным, если $\exists B(a,r) \subset \mathbb{R}^m : D \subset B(a,r)$
- *D* назвается секвинциально комактным, если из любой последовательности элементов этого множества можно выбрать сходящуся подпоследовательность (к элементу этого множества)
- $N\subset D$ называется ε -сетью, если $\forall\,x\in D\ \exists\,y\in N: \rho\,(x,y)<\varepsilon$ (конечной ε -сетью, если N конечно)
- Последовательность $x^{(n)}$ фундоментальная, если $\forall \, \varepsilon > 0 \, \exists \, N : \forall \, m,k > N \, \, \, \, \, \rho \left(x^{(m)},x^{(k)} \right) < \varepsilon$
- Метрическое пространство X называется полным, если в нём любая фундоментальная последовательность сходится. В \mathbb{R}^m полное \Leftrightarrow замкнутое

Определение 18: $D_1, D_2 \subset \mathbb{R}, \ a_1$ — предельная точка $D_1, \ a_2$ — предельная точка $D_2, \ D \subset \mathbb{R}^2$ — множество : $(D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}) \subset D, \ f \colon D \to \mathbb{R}$

- 1. Пусть $\varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2)$ (если этот предел существует), тогда $\lim_{x_1 \to a_1} \varphi(x_1)$ называется повторным пределом
- 2. Пусть $\psi(x_2) = \lim_{x_1 \to a_1} f(x_1, x_2)$ (если этот предел существует), тогда $\lim_{x_2 \to a_2} \psi(x_2)$ тоже называется повторным пределом
- 3. $L = \lim_{\substack{x_1 \to a_1 \ x_2 \to a_2}} f(x_1, x_2)$ называется двойным пределом , если

$$orall U(L)$$
 — окрестность точки L $\exists V_1(a_1)$ — окрестности : если $x_1 \in \dot{V}_1(a_1) \cap D_1$, то $f(x_1,x_2) \in U(L)$ $V_2(a_2)$ — точек a_1,a_2 $x_2 \in \dot{V}_2(a_2) \cap D_2$

Определение 19: Отображение $f\colon D\subset X\to Y$ X,Y — метрические пространства, $G\subset D,$ a — предельная точка G. Предел сужения отображения $\lim_{x\to a} f\big|_G(x)$ называется пределом по множеству Если $f\colon D\subset \mathbb{R}^2\to \mathbb{R}$ и $C\subset \mathbb{R}^2$ — кривая, то $\lim_{x\to a} f\big|_C(x)$ называется пределом по кривой .

Утверждение 6: Пусть $D_1, D_2 \subset \mathbb{R}$, a_1 — предельная точка D_1 , a_2 — предельная точка D_2 , $D \subset \mathbb{R}^2$ — множество : $(D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}) \subset D$, $f \colon D \to \mathbb{R}$, тогда

- 1. Из того, что \forall кривой $C \in C^1(D): C' \neq 0 \;\; \exists \lim_{x \to a} f \big|_C(x) = L$ следует $\; \exists \lim_{x \to a} f(x) = L$
- 2. Из того, что \forall кривой $C \in C^2(D): C' \neq 0 \;\; \exists \lim_{x \to a} f \big|_C(x) = L \; \mathbf{нe} \; \text{следует} \;\; \exists \lim_{x \to a} f(x) = L$

Доказательство: Его нету.

Теорема 1 (О двойном и повторном пределе):

Пусть $D_1, D_2 \subset \mathbb{R}, a_1$ — предельная точка D_1, a_2 — предельная точка $D_2, D \subset \mathbb{R}^2$ — множество : $\left(D_1 \setminus \{a_1\}\right) \times \left(D_2 \setminus \{a_2\}\right) \subset D, \ f \colon D \to \mathbb{R}, \ \exists \ \text{двойной предел } \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = A \in \overline{\mathbb{R}}, \ \mathsf{и}$ $\forall x_1 \in D_1 \setminus \{a_1\} \ \exists \ \mathsf{конечный} \ \varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2), \ \mathsf{тогда} \ \exists \ \mathsf{повторный} \ \mathsf{предел } \lim_{x_1 \to a_1} \varphi(x_1) = A$

Доказательство: Пусть $A \in \mathbb{R}$. Так как существует двойной предел, выполнено:

$$\forall \, \varepsilon > 0 \quad \exists \, V_1(a_1) \quad - \text{ окрестности} :$$
если $x_1 \in \dot{V}_1(a_1) \cap D_1 \, , \,$ то $\| f(x_1, x_2) - A \| < \frac{\varepsilon}{2}$ $V_2(a_2) \quad$ точек $a_1, a_2 \quad x_2 \in \dot{V}_2(a_2) \cap D_2$

Делая предельный переход в последнем неравенстве при $x_2 \to a_2$ получаем

$$\forall \, \varepsilon > 0 \ \exists \, V_1(a_1) \ -$$
 окрестность : если $x_1 \in \dot{V}_1(a_1) \cap D_1$, то $\| \varphi(x_1) - A \| \leqslant \frac{\varepsilon}{2} < \varepsilon$ точки a_1

Аналогично при $A=\pm\infty$

6 Бесконечно малое отображение, o(h), отображение дифференцируемое в точке

Определение 20: Отображение $\varphi \colon E \subset \mathbb{R}^m \to \mathbb{R}^n$ называется бесконечно малым в точке $x_0 \in \operatorname{Int} E$, если $\varphi(x) \xrightarrow[x \to x_0]{} 0_{\mathbb{R}^n}$

Определение 21: Пусть $E \subset \mathbb{R}^m : 0_{\mathbb{R}^m} \in \operatorname{Int} E, \quad \varphi : E \to \mathbb{R}^n, \quad h \in E$. Говорят, что $\varphi(h) = o(h)$ при $h \to 0_{\mathbb{R}^m}$, если $\frac{\varphi(h)}{\|h\|} \xrightarrow[h \to 0_{\mathbb{R}^m}]{} 0_{\mathbb{R}^n}$ (бесконечно малое в точке $0_{\mathbb{R}^m}$).

Определение в \mathbb{R} было: $f,g\colon E\subset\mathbb{R}\to\mathbb{R},\ x_0$ — предельная точка E, говорят, что f(x)=o(g(x)) при $x\to x_0,\ \text{если}\ \frac{f(x)}{g(x)}\xrightarrow[x\to x_0]{}0\ (g(x)\neq 0$ в некоторой проколотой окрестности точки $x_0)$

Определение 22: Отображение $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ называется диффиренцируемым в точке $a \in \text{Int } E$, если \exists линейный оператор из \mathbb{R}^m в \mathbb{R}^n с матрицей L и \exists бесконечно малое отображение в точке $0_{\mathbb{R}^m}$ $\alpha: U(0_{\mathbb{R}^m}) \to \mathbb{R}^n$ такие, что

$$f(a+h) = f(a) + Lh + \alpha(h) \cdot ||h||$$
 при $h \to 0_{\mathbb{R}^m}$

или

$$f(x) = f(a) + L(x-a) + \alpha(x-a) \cdot ||x-a||$$
 при $x \to a$

Этот линейный оператор (с матрицей L) называется производным оператором отображения f в точке a, обозначается f'(a). Получается, что отображение f' действует из \mathbb{R}^m в пространство линейных операторов.

Определение в $\mathbb R$ было: Функция $f\colon \langle a,b\rangle\to\mathbb R$ дифференцируема в точке $a\in\langle a,b\rangle$, если \exists число $A\in\mathbb R$ такое, что

$$f(a+h)=f(a)+Ah+o(h)$$
 при $h o 0$

В определении в \mathbb{R}^m можно писать o(h) вместо $\alpha(h) \cdot \|h\|$ и o(x-a) вместо $\alpha(x-a) \cdot \|x-a\|$

7 Комплексная дифференцируемость, единственность производной

Определение 23: Отображение $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ ($\Omega-$ открытое множество) называется комплексно дефференцируемым в точке $a\in\Omega,$ если \exists число $\lambda\in\mathbb{C}$ такое, что

$$f(a+h)=f(a)+\lambda h+o(h)$$
 при $h o 0$

или

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lambda$$

Замечание 1: Отображение $\mathbb{R}^2 \to \mathbb{R}^2$ вещественно дефференцироемое (т.е. как в опр. 22) будет комплексно дефференцируемым как отображение $\mathbb{C} \to \mathbb{C}$ только если матрица его производного оператора будет имеет вид $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, т.к. в опр. 23 $\lambda h = (\lambda_1 + \lambda_2 i)(h_1 + h_2 i) =$ $= (\lambda_1 h_1 - \lambda_2 h_2) + (\lambda_1 h_2 + \lambda_2 h_1)i, \quad \text{t.e.} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda_1 h_1 - \lambda_2 h_2 \\ \lambda_1 h_2 + \lambda_2 h_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & -\lambda_2 \\ \lambda_2 & \lambda_1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$

Утверждение 7: В определении дифференцируемости отображения $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ (опр. 22) оператор f'(a) определён однозначно

Доказательство: Пусть $h=t\cdot u, \quad u\in\mathbb{R}^m, \quad t\in\mathbb{R},$ тогда определение можно записать

$$f(a+t\cdot u)=f(a)+t\,Lu+o(t\cdot u)$$
 при $t o 0$

Так как u — фиксированный вектор, $o(t \cdot u) = o(t)$. Можно выразить Lu, перенеся остальное в другую часть и сделав предельный переход при $t \to 0$:

$$Lu = \frac{f(a+t\cdot u) - f(a)}{t} + \frac{o(t)}{t}, \quad t \to 0$$
$$Lu = \lim_{t \to 0} \frac{f(a+t\cdot u) - f(a)}{t}$$

Замечание 2: Определение дифференцируемости (опр. 22) при n=1 (тогда $L=(l_1,l_2,\ldots,l_m)$):

$$f((x_1, x_2, \dots, x_m)) = f((a_1, a_2, \dots a_m)) + (l_1(x_1 - a_1) + l_2(x_2 - a_2) + \dots + l_m(x_m - a_m)) + o(x - a)$$

8 Дифферецируемость координатных функций, частная производная

Лемма 1 (о дифференцируемости отображения и дифференцируемости его координатных функций):

$$f: E \subset \mathbb{R}^m \to \mathbb{R}^n$$
, $a \in \operatorname{Int} E$, $f = (f_1, f_2, \dots, f_n)$, тогда

- 1. Отображение f дифференцируемо \Leftrightarrow все f_i дифференцируемы
- 2. Строки матрицы оператора f'(a) это матрицы операторов $f'_1(a), f'_2(a), \dots, f'_m(a)$

Доказательство:

1. 📦 Из опр. 22

$$\begin{pmatrix} f_1(a+h) \\ f_2(a+h) \\ \vdots \\ f_n(a+h) \end{pmatrix} = \begin{pmatrix} f_1(a) \\ f_2(a) \\ \vdots \\ f_n(a) \end{pmatrix} + \begin{pmatrix} l_{11}h_1 + l_{12}h_2 + \dots + l_{1m}h_m \\ l_{21}h_1 + l_{22}h_2 + \dots + l_{2m}h_m \\ \vdots \\ l_{n1}h_1 + l_{n2}h_2 + \dots + l_{nm}h_m \end{pmatrix} + \begin{pmatrix} \alpha_1(h) \cdot ||h|| \\ \alpha_2(h) \cdot ||h|| \\ \vdots \\ \alpha_m(h) \cdot ||h|| \end{pmatrix}$$

В первой строке записано определение дифференцируемости f_1 , во второй — f_2 и т.д.

⇐ Если сначала написать определения дифференцируемости координатных функций f_1, f_2, \dots, f_m , и потом записать их в одну формулу как в предыдущем пункте, то получится определение дифференцируемости f

2. Матрицы операторов $f_1'(a), f_2'(a), \dots, f_n'(a)$ имеют размер $1 \times m$, т.е. строки. Они записаны во втором слагаемом выше и вместе образуют оператор матрицы f'(a).

Замечание 3:

- 1. Если f = const, то $f' \equiv 0_{m \times n}$ и $o(h) \equiv 0_{\mathbb{R}^n}$
- 2. Если $\mathcal{A} \colon \mathbb{R}^m \to \mathbb{R}^n$ линейное отображение с матрицей A, тогда $\forall \, x \in \mathbb{R}^m$ $\mathcal{A}'(x) = A$ (т.к. из-за линейности $\mathcal{A}(x+h) = \mathcal{A}(x) + \underbrace{Ah}_{\mathcal{A}(h)} + 0$ то есть A это и есть производная по опр. 22)
- 3. Если $\mathcal{A} \colon \mathbb{R}^m \to \mathbb{R}^n$, A его матрица, и отображение задано так: $x \mapsto u + Ax$ называется аффинное отображение (линейное со сдвигом), то тоже $\mathcal{A}'(x) = A$ (т.к. $\mathcal{A}(x+h) = u + A(x+h) = u + Ax + Ah = \mathcal{A}(x) + Ah + 0$)

Определение 24: Пусть $f : E \subset \mathbb{R}^m \to \mathbb{R}, \quad a \in \text{Int } E, \quad k \in \{1, 2, \dots, m\}, \quad \varphi_k : U(a_k) \to \mathbb{R},$ $\varphi_k(u) = f(a_1, a_2, \dots, a_{k-1}, u, a_{k+1}, \dots, a_m), \text{ тогда } \varphi_k'(a_k) = \lim_{t \to 0} \frac{\varphi(a_k + t) - \varphi(a_k)}{t} \text{ (если этот предел существует) называется }$ k-ой частной производной функции f в точке a. Обозначение: $\frac{\partial f}{\partial x_k}(a)$

Замечание 4: Пусть $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ — дифференцируемо в точке a, тогда f — непрерывно в точке a (т.е. $\lim_{x\to a} f(x) = f(a)$). Т.к. переходя к пределу в определении дефференцируемости при $h\to 0$ получаем $\lim_{h\to 0} f(a+h) = f(a)$. Но если существуют все частные производные, то функция может быть не непрерывной, например

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Здесь $\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(0+t,0)-f(0,0)}{t} = 0$ и $\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,0+t)-f(0,0)}{t} = 0$, но

предел в точке 0 вдоль прямой y=x: $\lim_{t\to 0} f(t,t)=1$, а вдоль прямой y=2x: $\lim_{t\to 0} f(t,2t)=\frac{4}{5}$. То есть у f не существует предела в нуле.

Определение 25: Матрица оператора $f'(a), a \in \text{Int } E$ отображения $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ (если f дифференцируемо) называется матрицой якоби отображения f в точке a.

Теорема 2 (необходимое условие дифференцируемости):

Пусть отображение $f \colon E \subset \mathbb{R}^m \to \mathbb{R}^n$ — дифференцируемо в точке $a \in \operatorname{Int} E$, тогда существуют все частные производные всех его координатных функций и

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_m}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_m}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \frac{\partial f_n}{\partial x_2}(a) & \dots & \frac{\partial f_n}{\partial x_m}(a) \end{pmatrix} - \text{матрица якоби отображения } f \text{ в точке } a$$

Доказательство: $\forall i \in \{1, 2, ..., n\}$ рассмотрим координатную функцию f_i .

$$\frac{\partial f_i}{\partial x_k} \stackrel{\text{oup. 24}}{=} \lim_{t \to 0} \frac{f_i(a_1, a_2, \dots, a_{k-1}, a_k + t, a_{k+1}, \dots, a_m) - f_i(a)}{t} = \lim_{t \to 0} \frac{f_i(a) + l_k(a_k + t - a_k) - f_i(a) + o(t)}{t} = l_k$$

 $k \in \{1, 2, \dots, m\}, l_k - k$ -ая компонетна матрицы якоби функции f_i (размер матрицы $-1 \times m$). То есть компонентами l_k матриц якоби координатных функций f_i в точке a являются соответствующие частные производные $\frac{\partial f_i}{\partial x_k}$ координатных функций f_i в точке a. И по лемме 1 строки матрицы якоби отображения f состоят из матриц якоби координатных функций.

Теорема 3 (достаточное условие дифференцируемости):

 $f\colon E\subset\mathbb{R}^m\to\mathbb{R},\quad a\in\operatorname{Int} E,\quad\exists\, r:$ в шаре $\mathrm{B}(a,r)\subset E$ \exists все частные производные $\dfrac{\partial f}{\partial x_k}$ $(k\in\{1,2,\ldots,m\})$ и они непрерывны в точке a. Тогда функция f — дифференцируема в точке a

Доказательство: При m=2.

$$f(x_1, x_2) - f(a_1, a_2) = (f(x_1, x_2) - f(x_1, a_2)) + (f(x_1, a_2) - f(a_1, a_2)) =$$

Пусть $g(x_2)=f(x_1,x_2),\; x_1$ — фиксировано. Тогда $f(x_1,x_2)-f(x_1,a_2)=g(x_2)-g(a_2).$ Функция g — дифференцируема на $[a_2,x_2]\;(g'=\frac{\partial f}{\partial x_2})\Rightarrow$ по теореме Лагранжа $\exists\, x_0$ между x_2 и $a_2:g(x_2)-g(a_2)=g'(x_0)(x_2-a_2)=\frac{\partial f}{\partial x_2}(x_0)(x_2-a_2).$ Поэтому:

$$= \frac{\partial f}{\partial x_2}(x_1, x_0) (x_2 - a_2) + \frac{\partial f}{\partial x_1}(\bar{x}_0, a_2) (x_1 - a_1) =$$

$$= \frac{\partial f}{\partial x_1}(a) (x_1 - a_1) + \frac{\partial f}{\partial x_2}(a) (x_2 - a_2) +$$

$$+ \left(\frac{\partial f}{\partial x_1}(\bar{x}_0, a_2) - \frac{\partial f}{\partial x_1}(a)\right) (x_1 - a_1) + \left(\frac{\partial f}{\partial x_2}(x_1, x_0) - \frac{\partial f}{\partial x_2}(a)\right) (x_2 - a_2)$$

Домножим и поделим на $\|x-a\|$ последнюю строку. $\left(\frac{\partial f}{\partial x_1}(\bar{x}_0,a_2)-\frac{\partial f}{\partial x_1}(a)\right)\xrightarrow[x\to a]{}0$, т.к. x_0 между x_1 и a_1 ; и $\left|\frac{x_1-a_1}{\|x-a\|}\right|\leqslant 1$. Аналогично во втором слагаемом этой строки. Значит теперь в ней написано $\delta.m.\cdot\|x-a\|$, то есть o(x-a). Получилось определение дифференцируемости f. \square

Правила дифференцирования:

1. **Линейность:** $f,g:E\subset\mathbb{R}^m\to\mathbb{R}^n$ — дифференцируемы в точке $a\in {\rm Int}\, E$, тогда отображения $f+g,\,\lambda g$ — тоже дифференцируемы в точке a и их производные операторы равны: $(f+g)'(a)=f'(a)+g'(a),\,(\lambda g)'(a)=\lambda g'(a).$

Лемма 2 (об оценке нормы линейного оператора):

 $f\colon \mathbb{R}^m \to \mathbb{R}^n$ — линейное отображение с матрицей A. Тогда $\forall\, x\in \mathbb{R}^m \; \|Ax\|\leqslant C_A\|x\|$, где $C_A=\sqrt{\sum\limits_{i,j=1}^{n,m}a_{ij}^2}\;,\; a_{ij}$ — элементы матрицы A

Доказательство:

$$||Ax|| = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} x_{j}\right)^{2}} \leqslant \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij}^{2}\right) \left(\sum_{j=1}^{m} x_{j}^{2}\right)} = ||x|| \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^{2}}$$

2. Дифференцируемость композиции: $f: E \subset \mathbb{R}^m \to \mathbb{R}^l, g: I \subset \mathbb{R}^l \to \mathbb{R}^n, f(E) \subset I, f$ диффиренцируемо в точке $a \in \operatorname{Int} E, g$ диффиренцируемо в точке $b = f(a) \in \operatorname{Int} I$. Тогда отображение $g \circ f$ дифференцируемо в точке a и его производный оператор g(f(a))' = g'(f(a)) f'(a) Доказательство: определения дифференцируемости отображений f и g:

$$f(a+h) = f(a) + f'(a)h + \alpha(h) \|h\|, \quad \alpha(h) \xrightarrow[h \to 0_{\mathbb{R}^m}]{} 0_{\mathbb{R}^l}$$
$$g(b+k) = g(b) + g'(b)k + \beta(k) \|k\|, \quad \beta(k) \xrightarrow[k \to 0]{} 0_{\mathbb{R}^n}$$

Получаем, что отображение $g \circ f$ дифференцируемо по определению:

$$g(f(a+h)) - g(f(a)) = g(\underbrace{f(a)}_{b} + \underbrace{f'(a) h + \alpha(h) \|h\|}_{k}) - g(f(a)) =$$

$$= g(f(a)) + g'(f(a)) (f'(a) h + \alpha(h) \|h\|) + \beta(f'(a) h + \alpha(h) \|h\|) \|f'(a) h + \alpha(h) \|h\|\| - g(f(a)) =$$

$$= g'(f(a)) f'(a) h + \underbrace{g'(f(a)) \alpha(h) \|h\|}_{I} + \underbrace{\beta(f'(a) h + \alpha(h) \|h\|) \|f'(a) h + \alpha(h) \|h\|\|}_{II}$$

$$\|I\| = \|g'(f(a))\alpha(h)\| \cdot \|h\| \overset{\text{лемма 2}}{\leqslant} \underbrace{\|\alpha(h)\|}_{h \to 0_{\mathbb{P}^m}} C_{g'(f(a))} \|h\|$$

$$\begin{split} \|II\| &= \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \left\|f'(a)\,h + \alpha(h)\,\|h\|\right\| \stackrel{\text{нер-во тр-ка}}{\leqslant} \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \left\|f'(a)\,h\right\| + \\ &+ \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \left\|\alpha(h)\,\|h\|\right\| \stackrel{\text{лемма 2}}{\leqslant} \textit{6.м.} \cdot \|h\| \, \textit{C}_{f'(a)} + \textit{6.м.} \cdot \textit{6.м.} \cdot \|h\| \quad \text{при } h \to 0_{\mathbb{R}^m} \end{split}$$

Тогда I+II это δ .м. $\cdot \|h\| \Rightarrow$ получилось определение дифференцируемости отображения $g \circ f$.

- 3. Дифференцирование произведений: Отображения $f,g\colon E\subset \mathbb{R}^m\to \mathbb{R}^n, \quad \lambda\colon E\to \mathbb{R}$ дифференцируемы в точке $a\in {\rm Int}\, E$. Тогда отображения $\lambda f(x)=\lambda(x)f(x)$ и $\langle f,g\rangle(x)=$ = $\langle f(x),g(x)\rangle$ дифференцируемы в точке a. Они действуют на вектор $h\in \mathbb{R}^m$ так:
 - $(1) (\lambda f)'(a) \cdot h = (\lambda'(a) \cdot h) \cdot f(a) + \lambda(a) \cdot f'(a) \cdot h$
 - $(2) \langle f, g \rangle'(a) \cdot h = \langle f'(a) \cdot h, g(a) \rangle + \langle f(a), g'(a) \cdot h \rangle$

Доказательство:

②
$$\langle f,g\rangle'(a) \cdot h = \left(\sum_{i=1}^n f_i g_i\right)'(a) \cdot h \stackrel{\text{лин.}}{=} \sum_{i=1}^n (f_i g_i)'(a) \cdot h \stackrel{\textcircled{\tiny 1}}{=} \sum_{i=1}^n (f_i'(a) \cdot h) \cdot g_i(a) + f_i(a) \cdot g_i'(a) \cdot h = \langle f'(a) \cdot h, g(a) \rangle + \langle f(a), g'(a) \cdot h \rangle$$

Теорема 4 (Лагранжа для векторонозначных функций):

 $f\colon [a,b]\subset \mathbb{R} o \mathbb{R}^m$ — непрерывна на [a,b], дифференцируема на (a,b). Тогда $\;\exists\, c\in (a,b):$

$$||f(b) - f(a)|| \le ||f'(c)|| \cdot |b - a||$$

Доказательство: Пусть $\varphi: [a,b] \to \mathbb{R}, \quad \varphi(t) = \langle f(b) - f(a), f(t) - f(a) \rangle$. Тогда φ — непрерывна на [a,b], дифференцируема на (a,b) и $\varphi(a) = 0, \ \varphi(b) = \|f(b) - f(a)\|^2$. Поэтому

$$||f(b) - f(a)||^2 = \varphi(b) - \varphi(a) \stackrel{\text{по обычной теореме}}{=} \varphi'(c)(b-a) \stackrel{\textcircled{2}}{=} \langle f(b) - f(a), f'(c) \rangle (b-a) \stackrel{\text{нер-во Коши-Буняковского}}{\leqslant} \leqslant ||f(b) - f(a)|| \cdot ||f'(c)|| \cdot (b-a)$$

Теперь, деля на ||f(b) - f(a)|| (при f(b) = f(a) доказываемое неравенство очевидно) получаем то, что нужно.

Замечание 5: Общее правило дифференцирования функции одной переменной:

 $f: \mathbb{R} \to \mathbb{R}$ — дифференцируема, задаётся формулой f(x). $f(x) \leadsto F(x_1, x_2, \dots, x_n),$ n — количество x-ов в формуле (т.е. нужно пронумеровать все x-ы). Тогда

$$f'(x) = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(x, x, \dots, x)$$

Доказательство: Определение дифференцируемости F:

$$\underbrace{F(x+h,\ldots,x+h)}_{f(x+h)} = \underbrace{F(x,\ldots,x)}_{f(x)} + \underbrace{\sum_{i=1}^n \frac{\partial F}{\partial x_i}(x,x,\ldots,x)}_{\text{число} \Rightarrow \text{это } f'(x)} \cdot h + o(h) \qquad \text{при } h \to 0$$

Определение 26: Производной по вектору $h \in \mathbb{R}^m$ функции $f \colon E \subset \mathbb{R}^m o \mathbb{R}$ в точке a называется

$$\lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

обозначение: $\frac{\partial f}{\partial h}(a)$. Напрвлением в \mathbb{R}^m называется вектор $l \in \mathbb{R}^m : ||l|| = 1$. Можно рассматривать производную по направлению.

Определение 27: Пусть функция $f: E \subset \mathbb{R}^m \to \mathbb{R}$ — дифференцируема в точке $a \in \text{Int } E$. Тогда матрица якоби функции f имеет размер $1 \times m$ (строка). Если её транспонировать и считать, что это вектор из \mathbb{R}^m , то определение дифференцируемости можно записать так:

$$f(a+h) = f(a) + \langle f'(a), h \rangle + o(h),$$
 при $h \to 0_{\mathbb{R}^m}$

и тогда вектор $f'(a) \in \mathbb{R}^m$ называется градиентом функции f в точке a, обозначается grad f(a).

Замечание 6: $f: E \subset \mathbb{R}^m \to \mathbb{R}$ — дифференцируема в точке $a \in \operatorname{Int} E$, тогда

$$\frac{\partial f}{\partial h}(a) \stackrel{\text{ond. 26}}{=} \lim_{t \to 0} \frac{f(a+th) - f(a)}{t} \stackrel{\text{ond. 22 M T. 2}}{=} \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_1}(a) th_1 + \dots + \frac{\partial f}{\partial x_m}(a) th_m + o(t)}{t} = \langle \operatorname{grad} f(a), h \rangle$$

Теорема 5 (экстремальное свойство градиента):

Пусть $f\colon E\subset\mathbb{R}^m\to\mathbb{R}$ — дифференцируема в точке $a\in\operatorname{Int} E$ и $\operatorname{grad} f(a)\neq 0$. Тогда $l=\frac{\operatorname{grad} f(a)}{\|\operatorname{grad} f(a)\|}$ (направление в \mathbb{R}^m) — направление наискорейшего возрастания функции f, т.е.

 $\forall h \in \mathbb{R}^m$ такого, что $\|h\| = 1$ выполнено:

$$-\|\operatorname{grad} f(a)\| = -\frac{\partial f}{\partial l}(a) \leqslant \frac{\partial f}{\partial h}(a) \leqslant \frac{\partial f}{\partial l}(a) = \|\operatorname{grad} f(a)\|$$

и равенство достигается при h=l (справа) и h=-l (слева)

Доказательство: Так как $\frac{\partial f}{\partial h}(a) = \langle \operatorname{grad} f(a), h \rangle$ (зам. 6), то из неравенства Коши-Буняковского (сл. 1) следует доказываемое неравенство: $-\|\operatorname{grad} f(a)\| \cdot 1 \leqslant \langle \operatorname{grad} f(a), h \rangle \leqslant \|\operatorname{grad} f(a)\| \cdot 1$.

Если в неравенстве Коши-Буняковского $|\langle x,y\rangle| \leq ||x|| \cdot ||y|| \ y = \alpha x$, то достигается равенство. В нашем случае, если h = l, то α это $^{1}/||\operatorname{grad} f(a)||$.

Определение 28: $f : E \subset \mathbb{R}^m \to \mathbb{R}$. Пусть $\exists \, k \in \{1, 2, \dots, m\}$ и $\exists \, U(a)$ — окрестность точки $a \in \text{Int } E$ такие, что можно определить функцию $g \colon U(a) \to \mathbb{R}$ так, что $g(x) = \frac{\partial f}{\partial x_k}(x)$. Тогда, если $\exists \, i \in \{1, 2, \dots, m\}$ такое, что $\exists \, \frac{\partial g}{\partial x_i}(a)$, то эта частная производная называется частной производной

II порядка функции f в точке a. Обозначение: $\frac{\partial^2 f}{\partial x_i \partial x_k}(a)$ или $f''_{x_k x_i}(a)$

По индукции определяется $\frac{\partial^k f}{\partial x_{i_1}\partial x_{i_2}\dots\partial x_{i_n}}(a) = \frac{\partial}{\partial x_{i_1}}\left(\frac{\partial^{k-1} f}{\partial x_{i_2}\partial x_{i_3}\dots\partial x_{i_n}}\right)(a)$

Теорема 6 (о независимости частной производной от порядка дифференцирования):

Пусть $f: E \subset \mathbb{R}^2 \to \mathbb{R}$, точка $(x_0, y_0) \in \text{Int } E$, $\exists r > 0$: в шаре $\mathrm{B}\big((x_0, y_0), r\big) \subset E \ \exists f''_{xy}, f''_{yx}$ и они непрерывны в точке (x_0, y_0) . Тогда $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$

Доказательство: Пусть $\Delta^2 f(h,k) = f(x_0,y_0) + f(x_0+h,y_0+k) - f(x_0,y_0+k) - f(x_0+h,y_0)$. При фиксированном k определим функцию $\alpha(h) = \Delta^2 f(h,k)$. И пусть обе функции заданы так, чтобы аргументы f попадали в шар $B((x_0,y_0),r)$, т.е. $\Delta^2 f \colon B((0,0),r/\sqrt{2}) \to \mathbb{R}$ и $\alpha \colon [0,r/\sqrt{2}) \to \mathbb{R}$. Тогда α непрерывна и дифференцируема на $[0,r/\sqrt{2})$ и $\alpha(0) = 0$, поэтому, применяя теорему Лагранжа сначала к функции α , затем при фиксированной первой переменной к функции f получаем

$$\alpha(h) = \alpha(h) - \alpha(0) = \alpha'(\bar{h}) \cdot h = \left(f_x'(x_0 + \bar{h}, y_0 + k) - f_x'(x_0 + \bar{h}, y_0) \right) \cdot h = \left(f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) \right) \cdot hk$$

Аналогично, при фиксированном h можно определить функцию $\beta(k) = \Delta^2 f(h,k)$ и

$$\beta(k) = \beta(k) - \beta(0) = \beta'(\hat{k}) \cdot k = \left(f_{y}'(x_0 + h, y_0 + \hat{k}) - f_{y}'(x_0, y_0 + \hat{k})\right) \cdot k = \left(f_{yx}''(x_0 + \hat{h}, y_0 + \hat{k})\right) \cdot hk$$

Так как при фиксированных k и h $\alpha(h) = \beta(k) = \Delta^2 f(h,k)$, то имеем равенство

$$f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) = f_{yx}''(x_0 + \hat{h}, y_0 + \hat{k})$$

и делая в нём предельный переход при $h \to 0$ и $k \to 0$ получаем, что $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$, так как $\bar{h}, \hat{h} \in (0, h)$, и $\bar{k}, \hat{k} \in (0, k)$, то есть $\bar{h}, \hat{h}, \bar{k}, \hat{k}$ стремятся к нулю при $h \to 0$ и $k \to 0$). \square

Определение 29: Пусть множество $E \subset \mathbb{R}^m$ — открытое, $r \in \mathbb{N}$, тогда класс $C^r(E)$ — это множество всех функций $f \colon E \to \mathbb{R}$ таких, что у них \exists все возможные частные производные порядка r и все эти производные непрерывны. $C(E) \supsetneq C^1(E) \supsetneq C^2(E) \supsetneq \dots$

$$\frac{C^{\infty}(E)}{\sum_{r=1}^{def}} C^{r}(E)$$

Теорема 7 (общая теорема о независимости частной производной от порядка дифференцирования):

Пусть функция $f \in C^r(E)$, $E \subset \mathbb{R}^m$, $r, k \in \mathbb{N}$, $k \leqslant r$, и наборы индексов $i_1, i_2, \ldots i_k$ и $j_1, j_2, \ldots j_k$ отличаются друг от друга перестановкой. Тогда

$$\frac{\partial^r f}{\partial x_{i_k}, \partial x_{i_{k-1}}, \dots, \partial x_{i_1}} = \frac{\partial^r f}{\partial x_{j_k}, \partial x_{j_{k-1}}, \dots, \partial x_{j_1}}$$
 на множестве E

Доказательство: Сводится к предыдущей теореме, так как любую перестановку можно получить транспозицией соседних элементов. □

Замечание 7: Классы $C^r(E), r \in \mathbb{N}$ замкнуты относительно сложения, умножения на скаляр (и образуют линейное пространство) и композиции.

Определение 30: Вектор $k=(k_1,k_2,\ldots,k_m)\in\mathbb{R}^m$, где все $k_i\in\mathbb{Z},k_i\geqslant 0$ называется мультииндексом

- 1. $|k| \stackrel{\text{def}}{=} k_1 + k_2 + \ldots + k_m$ называется высотой мультииндекса
- 2. $k! \stackrel{\text{def}}{=} k_1! \cdot k_2! \cdot \ldots \cdot k_m!$
- 3. $x^k \stackrel{\text{def}}{=} x_1^{k_1} \cdot x_2^{k_2} \cdot \ldots \cdot x_m^{k_m}$, где $x = (x_1, x_2, \ldots, x_m)$ вектор из \mathbb{R}^m
- 4. $\frac{\partial^{|k|} f}{\partial x^k} \stackrel{\text{def}}{=} \frac{\partial^{|k|} f}{(\partial x_1)^{k_1} (\partial x_2)^{k_2} \dots (\partial x_m)^{k_m}} \qquad (\partial x_i)^{k_i} \text{ ознчает, что по переменной } x_i \text{ частная произ-$

водная берётся k_i раз (это общее обозначение; не только для мультииндекса)

Лемма 3 (полиномиальная формула):

Пусть $r \in \mathbb{N}, \ a_1, a_2, \dots, a_m \in \mathbb{R}, \text{ т.е } a = (a_1, a_2, \dots, a_m) \in \mathbb{R}^m, \text{ тогда}$

$$(a_1 + a_2 + \dots a_m)^r = \sum_{n_1 = 1}^m \sum_{n_2 = 1}^m \dots \sum_{n_r = 1}^m a_{n_1} \cdot a_{n_2} \cdot \dots \cdot a_{n_r} =$$

$$= \sum_{\substack{j : |j| = r \\ j \text{- мультииндекс}}} \frac{r!}{j!} \cdot a^j \stackrel{\text{onp. 30}}{=} \sum_{\substack{(j_1, \dots, j_m) \\ j_1 + \dots + j_m = r}} \frac{r!}{j_1! \cdot j_2! \cdot \dots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \dots \cdot a_m^{j_m}$$

Доказательство: Индукция по r. Обозначим $S_r = \sum \frac{r!}{j!} \cdot a^j$, тогда

База: при r = 1

$$S_{1} = \sum_{\substack{(0,\dots,0,1,0,\dots,0)\\1 \text{ стоит на месте } i\\i\in\{1,\dots,m\}}} \frac{1!}{0! \cdot \dots \cdot 0! \cdot 1! \cdot 0! \cdot \dots \cdot 0!} \cdot a_{1}^{0} \cdot \dots \cdot a_{i-1}^{0} \cdot a_{i}^{1} \cdot a_{i+1}^{0} \cdot \dots \cdot a_{m}^{0} = (a_{1} + a_{2} + \dots \cdot a_{m})^{1}$$

Переход: от r к r+1. Раскроем скобки в выражении $S_{r+1}=(a_1+a_2+\ldots+a_m)\cdot S_r:$

$$\sum_{j:|j|=r} \frac{r!}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1+1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{j:|j|=r} \frac{r!}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m+1}$$

Домножим и поделим каждую сумму на соответствующее j_i+1 :

$$\sum_{j:|j|=r} \frac{r!\cdot (j_1+1)}{(j_1+1)!\cdot j_2!\cdot \ldots \cdot j_m!} \cdot a_1^{j_1+1}\cdot a_2^{j_2}\cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{j:|j|=r} \frac{r!\cdot (j_m+1)}{j_1!\cdot j_2!\cdot \ldots \cdot (j_m+1)!} \cdot a_1^{j_1}\cdot a_2^{j_2}\cdot \ldots \cdot a_m^{j_m+1}$$

Изменим в пределе суммирования высоту мультииндекса на r+1, учитывая, что тогда в каждой сумме соответствующее j_i должно быть $\geqslant 1$:

$$\sum_{\substack{j:|j|=r+1,\\j_1\geqslant 1}} \frac{r! \cdot j_1}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{\substack{j:|j|=r+1,\\j_m\geqslant 1}} \frac{r! \cdot j_m}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m}$$

Каждая сумма умножается на соответствующее j_i , поэтому условие $j_i \geqslant 1$ не нужно, так как соответствующие слагаемые при $j_i = 0$ будут равны нулю. Вынесем за скобки общий множитель:

$$\sum_{\substack{i:|j|=r+1\\j_1!\cdot j_2!\cdot \dots \cdot j_m!}} \frac{r!\cdot (j_1+j_2+\dots+j_m)}{j_1!\cdot j_2!\cdot \dots \cdot j_m!} \cdot a_1^{j_1}\cdot a_2^{j_2}\cdot \dots \cdot a_m^{j_m}$$

Множитель $(j_1 + j_2 + \cdots + j_m)$ это по определению высота мультииндекса, то есть он равен r+1. Значит последняя полученная сумма и есть S_{r+1}

Лемма 4 (о дифференцировании «сдвига»):

 $E \subset \mathbb{R}^m, f \in C^r(E) \ (f \colon E \to \mathbb{R}), \ a \in \operatorname{Int} E. \ \Pi$ усть $h \in \mathbb{R}^m : \$ при $t \in [-1,1]$ вектор $a+th \in E,$ определим функцию $\varphi(t) = f(a+th),$ тогда $\varphi \in C^r([-1,1])$ и $\forall \, k \leqslant r$

$$\varphi^{(k)}(t) = \sum_{\substack{j:|j|=k\\j-\text{мультииндекс}}} \frac{k!}{j!} \cdot h^j \cdot \frac{\partial^k f}{\partial x^j}(a+th) \tag{*}$$

Доказательство: Найдём первую производную функции φ как производную композиции:

$$\varphi'(t) = f'(a+th) \cdot h = f'_{x_1}(a+th) \cdot h_1 + f'_{x_2}(a+th) \cdot h_2 + \dots + f'_{x_m}(a+th) \cdot h_m$$

Это формула (**) при k=1. Вторая производная функции φ :

$$\varphi''(t) = \left(\sum_{i=1}^{m} f'_{x_i}(a+th) \cdot h_i\right)' = \sum_{i=1}^{m} \left(f'_{x_i}(a+th)\right)' \cdot h_i = \sum_{i=1}^{m} \sum_{j=1}^{m} f''_{x_i x_j}(a+th) \cdot h_i h_j =$$

$$= \sum_{i=1}^{m} f''_{x_i x_i}(a+th) \cdot h_i^2 + 2 \cdot \sum_{\substack{j=1 \ i < j}}^{m} f''_{x_i x_j}(a+th) \cdot h_i h_j$$

В первом слагаемом написано то, что получается в формуле (*) при k=2 в случае, когда мультииндекс выглядит как $(0,\ldots,0,2,0\ldots,0)$, во втором слогаемом — как $(0,\ldots,0,1,0\ldots,0,1,0\ldots,0)$. Тогда k-ая производная функции φ :

$$\sum_{i_1=1}^m \sum_{i_2=1}^m \cdots \sum_{i_k=1}^m f_{x_{i_1} x_{i_2} \dots x_{i_k}}^{(k)}(a+th) \cdot h_{i_1} h_{i_2} \dots h_{i_k} \stackrel{\text{лемма 3}}{=} \sum_{\substack{j: |j|=k\\ j-\text{мультииндекс}}} \frac{k!}{j!} \cdot h^j \cdot \frac{\partial^k f}{\partial x^j}(a+th)$$

Лемма 3 объединяет слагаемые, которые отличаются перестановкой множителей. В левой части последнего равенства каждое такое слагаемое домножено на соответствующую частную производную k-го порядка и эти производные так же отличаются друг от друга только порядком дифференцирования, значит они равны (так как непрерывны на E по условию). Поэтому слагаемые, которые объединяет лемма домножены на одно и тоже число, и его можно дописать множетелем при соответствующем слагаемом.

Теорема 8 (формула Тейлора с остатком в форме Лагранжа):

Пусть $E \subset \mathbb{R}^m$, $(f: E \to \mathbb{R})$ $f \in C^{r+1}(E)$, точка $a \in \text{Int } E, R \in \mathbb{R} : B(a,R) \subset E, x \in B(a,R)$, h = x - a, тогда $\exists \theta \in (0,1)$ такое, что:

$$f(x) = \sum_{\substack{k:|k| \leqslant r \\ k \text{— мультииндекс}}} \frac{f^{(k)}(a)}{k!} \cdot h^k + \sum_{\substack{k:|k| = r+1 \\ k \text{— мультииндекс}}} \frac{f^{(k)}(a+\theta h)}{k!} \cdot h^k$$

 $f^{(k)}$ — это другое обозначение для $\dfrac{\partial^{|k|}f}{\partial x^k}$

Доказательство: Определим функцию $\varphi \colon [0,1] \to \mathbb{R}$ $\varphi(t) = f(a+th)$. Тогда $\varphi \in C^{r+1}([0,1])$. Формула Тейлора с центром в точке 0 с остатком в форме Лагранжа для функции φ в единице:

$$\varphi(1) = \sum_{n=1}^{r} \frac{\varphi^{(n)}(0)}{n!} \cdot 1^{n} + \frac{\varphi^{(r+1)}(\theta)}{(r+1)!} \cdot 1^{(r+1)}, \qquad \theta \in (0,1)$$

 $\varphi(1) = f(a+h) = f(x)$. Используя лемму 4, заменяем производные функции φ . Тогда

$$f(x) = \sum_{n=1}^{r} \frac{1}{n!} \cdot \sum_{\substack{k:|k|=n\\k-\text{мультииндекс}}} \frac{n!}{k!} \cdot h^k \cdot f^{(k)}(a) + \sum_{\substack{k:|k|=r+1\\k-\text{мультииндекс}}} \frac{1}{(r+1)!} \cdot \frac{(r+1)!}{k!} \cdot h^k \cdot f^{(r+1)}(a+\theta h)$$

Упрощая, получаем доказываемую формулу.

Замечание 8: Явный вид многочлена Тейлора порядка r функции f в точке a:

$$T_r(f,a)(x) = \sum_{k=1}^r \sum_{\substack{(i_1,\dots,i_m)\\i_1+\dots+i_m=k\\i_1,\dots,i_m \geqslant 0}} \frac{1}{i_1! \cdot \dots \cdot i_m!} \cdot \frac{\partial^k f}{(\partial x_1)^{i_1} (\partial x_2)^{i_2} \dots (\partial x_m)^{i_m}} (a) \cdot (x_1 - a_1)^{i_1} \cdot (x_2 - a_2)^{i_2} \cdot \dots \cdot (x_m - a_m)^{i_m}$$

Следствие 5: В остатке формулы Тейлора есть множитель

$$h^{k} = \left(\frac{h_{1}}{\|h\|}\right)^{k_{1}} \cdot \left(\frac{h_{2}}{\|h\|}\right)^{k_{2}} \cdot \ldots \cdot \left(\frac{h_{m}}{\|h\|}\right)^{k_{m}} \cdot \|h\|^{r+1}$$

А производная $f^k(a+\theta h)$ ограничена в некоторой окрестности точки a, замыкание которой содержится в E, потому что $f^{(k)}$ непрерывна на E. Значит остаток в формуле Тейлора это $osp.\cdot \|h\|^r \cdot \|h\| = o(\|h\|^r)$, при $h \to 0$. Он называется остатком в форме Пеано.

 $\color{red} \textit{Определение 31:} \ \mathrm{O}$ днородный многочлен от h степени n

$$d^{n}f(a,h) = \sum_{\substack{(i_{1},\dots,i_{m})\\i_{1}+\dots+i_{m}=n\\i_{1},\dots,i_{m}>0}} \frac{n!}{i_{1}! \cdot i_{2}! \cdot \dots \cdot i_{m}!} \cdot \frac{\partial^{n}f}{(\partial x_{1})^{i_{1}}(\partial x_{2})^{i_{2}} \dots (\partial x_{m})^{i_{m}}} (a) \cdot h_{1}^{i_{1}} \cdot h_{2}^{i_{2}} \cdot \dots \cdot h_{m}^{i_{m}}$$

называется n-ым дифференциалом функции f в точке a.

Тогда формулу Тейлора можно записать в виде $f(x) = f(a) + \sum_{k=1}^{r} \frac{d^k f(a,h)}{k!} + o(\|h\|^r)$

§ Линейные отображения

Обозначения:

1. Lin(X,Y) — множество линейных отображений из X в Y. X,Y — линейные пространства над \mathbb{R} . (Lin(X,Y)) является линейным пространством над \mathbb{R} с сложением: (A+B)(x) = A(x) + B(x), умножение на скаляр: $(\alpha A(x)) = \alpha A(x)$)

Отображение $A\colon X\to Y$ называется линейным, если $\forall\,x_1,x_2\in X,\ \forall\,\alpha\in\mathbb{R}$ выполнено $A(\alpha x_1+x_2)=\alpha A(x_1)+A(x_2)$

2. Пусть $A \in Lin(\mathbb{R}^m, \mathbb{R}^n)$, тогда $\frac{\|A\|}{\|x\|=1}$ $\stackrel{\text{def}}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|Ax\|$ называется нормой линейного оператора

Замечание 9:

1. $\|A\| \in \mathbb{R}$ (конечное), т.к. из леммы 2 $\|Ax\| \leqslant C_A \|x\| = C_A$, где $C_A = \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^2}$, a_{ij} — элементы матрицы A.

- 2. По теореме Вейерштрасса непрерывная функция на компакте достигает своего максимального значения, и так как линейные отображения непрерывны и множество $\{x \mid x \in \mathbb{R}^m, \|x\| = 1\}$ является компактом, то $\|A\| = \max_{x \in \mathbb{R}^m: \|Ax\|} (\text{в конечномерном случае})$
- 3. $\forall x \in \mathbb{R}^m$ выполнено $\|Ax\| \leqslant \|A\| \cdot \|x\|$. Доказательство: для $x \neq 0_{\mathbb{R}^m}$ возьмём $\bar{x} = x/\|x\|$, тогда $\|A\bar{x}\| \leqslant \|A\|$ (т.к. $\|A\bar{x}\|$ это одно из значений, по которым берётся sup в $\|A\|$) и, домножая на $\|x\|$, получаем доказываемое неравенство ($\|x\| \cdot \|A\bar{x}\| = \|x\| \cdot \|A \cdot x/\|x\|\|$; $1/\|x\|$ скаляр $\Rightarrow = \|Ax\|$)
- 4. Если $\exists C \in \mathbb{R} : \forall x \in \mathbb{R}^m \ \|Ax\| \leqslant C \cdot \|x\|$, то $\|A\| \leqslant C$, потому что, поделив на $\|x\|$ первое неравенство, получаем второе (т.к. $\|A \cdot x/\|x\|\|$ это одно из значений, по которым берётся ѕир в $\|A\|$)

Лемма 5 (об условиях, эквивалентных непрерывности линейного оператора):

Пусть X, Y — линейные пространства, $A \in Lin(X, Y)$, тогда эквивалентно:

- 1. A ограничено (т.е. ||A|| конечна)
- 3. A непрерывно на X

2. A — непрерывно в точке 0_X

4. A — равномерно непрерывно на X

Доказательство: $4 \Rightarrow 3 \Rightarrow 2$ — очевидно.

- $2\Rightarrow 1$: Из определения непрерывности в 0_X : возьмём $\varepsilon=1$, тогда $\exists\,\delta>0$: если $\|x\|\leqslant\delta$, то $\|Ax\|<1$, поэтому для $\forall\,x:\|x\|=1$ выполнено $\|Ax\|={}^1/\!s\cdot\|A(\delta x)\|\leqslant{}^1/\!s$, значит $\sup\|Ax\|\leqslant{}^1/\!s$
- $1 \Rightarrow 4$: $\forall \varepsilon > 0 \; \exists \delta = \varepsilon / \|A\| : \forall x_1, x_2 \; \text{если} \; \|x_2 x_1\| < \delta, \; \text{то} \; \|Ax_2 Ax_1\| \leqslant \varepsilon, \; \text{потому что} \; \|Ax_2 Ax_1\| = \|A(x_2 x_1)\| \leqslant \|A\| \cdot \|x_1 x_2\| < \|A\| \cdot \delta = \varepsilon$

Теорема 9 (о пространстве линейных отображений):

- 1. $\|\cdot\|$ это норма в Lin(X,Y)
- 2. Если $A \in Lin(\mathbb{R}^m, \mathbb{R}^n), B \in Lin(\mathbb{R}^n, \mathbb{R}^l), \text{ то } ||AB||_{m,l} \leq ||A||_{m,n} \cdot ||B||_{n,l}$

Доказательство:

- 1. Проверка аксиом нормы:
 - а) $\|A\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|Ax\| \geqslant 0$ и $\|A\| = 0 \Leftrightarrow A = 0_{Lin(X,Y)}$
 - b) $\|\alpha A\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|\alpha Ax\| = |\alpha| \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|Ax\| = |\alpha| \cdot \|A\|$
 - c) $||(A+B)x|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le (||A|| + ||B||) \cdot ||x|| = ||A|| + ||B||$
- 2. $\|BAx\| \leqslant \|B\| \cdot \|Ax\| \leqslant \|B\| \cdot \|A\| \cdot 1$ это выполнено для любого $x \in \mathbb{R}^m$: $\|x\| = 1$, значит выполнено и для $\sup_{\substack{x \in \mathbb{R}^m: \|x\| = 1}} \|BAx\| = \|AB\|$

Замечание 10:
$$\|A\| \stackrel{1}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| = 1}} \|Ax\| \stackrel{2}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| \leqslant 1}} \|Ax\| \stackrel{3}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| < 1}} \|Ax\| \stackrel{4}{=} \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| \neq 0}} \frac{\|Ax\|}{\|x\|} \stackrel{5}{=} \inf\{C \in \mathbb{R}^m \|Ax\| \leqslant C \cdot \|x\|\}$$

1.

17

Теорема 10 (Лагранжа для отображений):

Пусть отображение $F: E \subset \mathbb{R}^m \to \mathbb{R}^n$ дифференцируемо на E (E — открытое), $[a,b] = \{a + \theta(b-a) \mid \theta \in [0,1]\} \subset E$, тогда $\exists c \in (a,b)$, то есть $\exists \theta \in (0,1) : c = a + \theta(b-a)$ такое что

$$||F(b) - F(a)|| \le ||F'(c)|| \cdot ||b - a||$$

Доказательство: Пусть $f:[0,1] \to \mathbb{R}^m, \ f(t) = F\left(a + t(b-a)\right), \$ тогда f — дифференцируема на [0,1] и $f'(t) = F'\left(a + t(b-a)\right)(b-a)$. По теореме $4 \ \exists \ \theta \in (0,1): \|f(1) - f(0)\| \leqslant \|f'(\theta)\| \cdot (1-0), \$ то есть

$$||F(b) - F(a)|| \le ||F'(a + \theta(b - a)) \cdot (b - a)|| \le ||F'(c)|| \cdot ||b - a||$$

Лемма 6 (о норме обратного отображения):

Пусть $B \in Lin(\mathbb{R}^m, \mathbb{R}^m)$, $\exists c > 0 : \forall x \in \mathbb{R}^m \ \|Bx\| \geqslant c\|x\|$, тогда B — обратим и $\|B^{-1}\| < 1/c$

Доказательство: $\text{Ker } B = \{0\}$, значит B - обратим.

Возьмём $y \in \mathbb{R}^m : ||y|| = 1$, тогда $\exists x \in \mathbb{R}^m : y = Bx$, тогда $x = B^{-1}y$, и так как $||Bx|| \geqslant c||x||$, то $c||B^{-1}y|| \leqslant ||BB^{-1}y|| = ||y||$. Это выполнено $\forall y : ||y|| = 1$, поэтому $\sup_{\substack{y \in \mathbb{R}^n : ||y|| = 1}} ||B^{-1}y|| \leqslant \frac{1}{c}$. \square

Замечание 11: Если $A \in Lin(\mathbb{R}^m, \mathbb{R}^n)$ — обратим, то $\forall \, x \in \mathbb{R}^m \quad \|x\| = \|A^{-1}Ax\| \leqslant \|A^{-1}\| \cdot \|Ax\|$, значит $\|Ax\| \geqslant \frac{1}{\|A^{-1}\|} \cdot \|x\|$

Обозначение: $\Omega_m = \{ A \in Lin(\mathbb{R}^m, \mathbb{R}^m) \mid A - \text{обратим} \}$

Теорема 11 (об обратимости линейного отображения, близкого к обратимому):

Пусть $L \in \Omega_m$, $M \in Lin(\mathbb{R}^m, \mathbb{R}^m)$ — «близкий к обратимому», то есть $||M - L|| < \frac{1}{||L^{-1}||}$, тогда:

1.
$$M \in \Omega_m$$

2. $||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} - ||M - L||}$

3.
$$||M^{-1} - L^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||M - L||} ||M - L||$$

Доказательство: Первые два пункта получаются с помощью леммы 6:

$$||Mx|| = ||Lx - (L - M)x|| \stackrel{\text{нер-во}}{\geqslant} ||Lx|| - ||(L - M)x|| \stackrel{\text{зам. 11}}{\geqslant}$$

$$\geqslant \frac{1}{||L^{-1}||} ||x|| - ||L - M|| \cdot ||x|| = \left(\frac{1}{||L^{-1}||} - ||L - M||\right) \cdot ||x||$$

Третий пункт:

$$\|M^{-1} - L^{-1}\| = \|M^{-1}(L - M)L^{-1}\| \stackrel{\text{\tiny T. } 9.2}{\leqslant} \|M^{-1}\| \cdot \|L - M\| \cdot \|L^{-1}\| \leqslant \frac{\|L^{-1}\|}{\|L^{-1}\|^{-1} - \|M - L\|} \|M - L\| \quad \Box$$

Следствие 6: Непрерывность вычисления обратного оператора.

Отображение $f: \Omega_m \to \Omega_m$, $f(L) = L^{-1}$ — непрерывно, так как выполнено определение непрерывности: из последнего пункта теоремы 11 получаем

$$\forall \, \varepsilon > 0 \ \exists \, \delta = \varepsilon \cdot \left(\|L^{-1}\| \cdot (\|L^{-1}\| + \varepsilon) \right)^{-1} : \forall \, M \in \Omega_m \text{ если } \|M - L\| < \delta, \text{ то } \|M^{-1} - L^{-1}\| < \varepsilon \right)$$

Теорема 12 (о непрерывно дифференцируемых отображениях):

Пусть $D \subset \mathbb{R}^m$ — открытое, отображение $f \colon D \to \mathbb{R}^n$ дифференцируемо на D, то есть \exists отображение $f' \colon D \to Lin(\mathbb{R}^m, \mathbb{R}^n)$. Тогда эквивалентно:

- 1. $f \in C^1(D)$, то есть \exists все $\frac{\partial f_i}{\partial x_j}$ и они непрерывны на D $(i \in \set{1,2,\ldots,n},\ j \in \set{1,2,\ldots,m})$
- 2. Отображение f' непрерывно на D

Доказательство:

 $1\Rightarrow 2$: Из определения непрерывности всех $\frac{\partial f_i}{\partial x_j}$ на D получаем, что $\forall\,x\in D\,\,\forall\,\varepsilon>0\,\,\,\exists\,\delta>0$: $\forall\,ar x\in D\,\,$ если $\|x-ar x\|<\delta$, то $\forall\,i\in\{1,2,\ldots,n\},\,\forall\,j\in\{1,2,\ldots,m\}\,\,\Big\|\frac{\partial f_i}{\partial x_j}(x)-\frac{\partial f_i}{\partial x_j}(ar x)\Big\|<\frac{\varepsilon}{\sqrt{mn}},$ и с помощью зам. 9.1 получаем

$$\|f'(x) - f'(\bar{x})\| \leqslant \sqrt{\sum_{i,j=1}^{n,m} \left(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\bar{x})\right)^2} \leqslant \sqrt{\sum_{i,j=1}^{n,m} \frac{\varepsilon^2}{mn}} = \varepsilon$$

получилось определение непрерывности f' на D.

 $2 \Rightarrow 1$: Определение непрерывности f' на D:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \bar{x} \in D \ \text{если} \ \|x - \bar{x}\| < \delta$$
, то $\|f'(x) - f'(\bar{x})\| < \varepsilon$

И пусть $h = (0, ..., 0, 1, 0, ..., 0)^{\mathrm{T}} \in \mathbb{R}^m$, где 1 стоит на k-ом месте, тогда

$$\left\| \left(f'(x) - f'(\bar{x}) \right) h \right\| \leqslant \| f'(x) - f'(\bar{x}) \| \cdot \| h \| < \varepsilon, \text{ то есть } \sqrt{\sum_{l=1}^{n} \left(\frac{\partial f_{l}}{\partial x_{k}}(x) - \frac{\partial f_{l}}{\partial x_{k}}(\bar{x}) \right)^{2}} < \varepsilon$$

тогда и отдельное (*i*-ое) слагаемое $\left|\frac{\partial f_i}{\partial x_k}(x) - \frac{\partial f_i}{\partial x_k}(\bar{x})\right| < \varepsilon$ получилось определение непрерывности $\frac{\partial f_i}{\partial x_k}$ на D.

Определение 32: Пусть $f \colon E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in \operatorname{Int} E, \ \text{тогда} \ a$ называется точкой локального максимума, если $\exists U(a)$ — окрестность точки $a \colon \forall x \in U(a) \cap E \ f(x) \leqslant f(a)$, строгого локального максимума, если $\exists U(a)$ — окрестность точки $a \colon \forall x \in \dot{U}(a) \cap E \ f(x) < f(a)$. Аналогично определяется точка (строгого) локального минимума (знак меняется на противоположный). Точка a называется точкой (строгого) локального экстремума, если она является точкой (строгого) локального максимума или точкой (строгого) локального минимума.

Теорема 13 (Ферма):

Пусть функция $f\colon E\subset\mathbb{R}^m\to\mathbb{R}$ дифференцируема на $E,\ a\in\mathrm{Int}\,E$ — точка локального экстремума, тогда \forall направления l (oпр. 26) $\frac{\partial f}{\partial l}(a)=0.$

Доказательство: Определим функцию $g: U(0) \subset \mathbb{R} \to \mathbb{R}, g(t) = f(a+tl)$, тогда g — дифференцируема в окрестности нуля и g'(0) = 0, потому что 0 — точка локального экстремума функции g (т.к. g — сужение f на прямую, проходящую через точку a), при этом

$$g'(t) = f'(a+tl) \cdot l = \left(\frac{\partial f}{\partial x_1}(a+tl), \frac{\partial f}{\partial x_2}(a+tl), \dots, \frac{\partial f}{\partial x_m}(a+tl)\right) \cdot \begin{pmatrix} l_1 \\ l_2 \\ \vdots \\ l_m \end{pmatrix} \stackrel{\text{\tiny 3am. 6}}{=} \frac{\partial f}{\partial l}(a+tl)$$

значит
$$\frac{\partial f}{\partial l}(a) = 0.$$

- *Следствие 7: Необходимое условие экстремума:* Если $a \in \text{Int } E \subset \mathbb{R}^m$ точка локального экстремума функции $f \colon E \to \mathbb{R}$, то $\forall i \in \{1, 2, \dots, m\}$ $\frac{\partial f}{\partial x_i} = 0$ (в теореме Ферма (т. 13) можно взять $l = \{0, \dots, 0, 1, 0, \dots, 0\}$, где 1 на i-ом месте).
- **Следствие 8**: Теорема Ролля: Пусть $K \subset \mathbb{R}^m$ компакт, функция $f \colon K \to \mathbb{R}$ непрерывна на K, дифференцируема на $\operatorname{Int} K$, сужение f на границу $K \colon f\big|_{\partial K} = \operatorname{const}$, тогда $\exists \, a \in \operatorname{Int} K \colon \operatorname{grad} f(a) = 0$. Доказательство: по теореме Вейерштрасса f достигает тах и тах
- Определение 33: Отображение $Q: \mathbb{R}^m \to \mathbb{R}$ называется квадратичной формой, если Q(h) это однонродный многочлен второй степени, то есть, если $Q(h) = \sum_{i,j=1}^m a_{ij}h_ih_j, \ a_{ij} \in \mathbb{R}$.
 - 1. Квадратичная форма называется положительно определённой, если $\forall \, h \neq 0_{\mathbb{R}^m} \, \, Q(h) > 0$
 - 2. Квадратичная форма называется отрицательно определённой, если $\forall \, h \neq 0_{\mathbb{R}^m} \, \, Q(h) < 0$
 - 3. Квадратичная форма называется неопределённой (незнакоопределённой), если $\exists\, h, \bar h: Q(h)>0, Q(\bar h)<0$
 - 4. Квадратичная форма называется положительной полуопределённой (положительно определённая, вырожденная), если $\forall h \ Q(h) \geqslant 0$ и $\exists \ h_0 \neq 0_{\mathbb{R}^m} : Q(h_0) = 0$

Лемма 7 (об оценке квадратичной формы и об эквивалентных нормах):

- 1. Пусть $Q: \mathbb{R}^m \to \mathbb{R}$ положительно определнённая квадратичная форма, тогда $\exists \gamma_Q > 0: \forall x \in \mathbb{R}^m \ Q(x) \geqslant \gamma_Q \cdot \|x\|^2$
- 2. Пусть $p: \mathbb{R}^m \to \mathbb{R}$ норма, тогда $\exists c_1, c_2 > 0: \forall x \in \mathbb{R}^m \ c_1 \cdot ||x|| \leqslant p(x) \leqslant c_2 \cdot ||x||$

Доказательство:

1. Пусть $\gamma_Q = \min_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} Q(x)$ (по теореме Вейерштрасса минимум достигается), тогда $\gamma_Q > 0$ и

$$Q(x) = ||x||^2 \cdot Q\left(\frac{x}{||x||}\right) \geqslant ||x||^2 \cdot \gamma_Q$$

2. Пусть $c_1 = \min_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} p(x), \ c_2 = \max_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} p(x)$. Чтобы min и max достигались по теореме Вейерштрасса, надо проверить непрерывноть функции p:

$$|p(x) - p(y)| \overset{\text{hep-bo Tp-}}{\leqslant} p(x - y) \overset{\text{pasjnow. no}}{=} p \left(\sum_{k=1}^{m} (x_k - y_k) e_k \right) \overset{\text{hep-bo Tp-}}{\leqslant} \sum_{k=1}^{m} p \left((x_k - y_k) e_k \right) \overset{x_k - y_k - y_k - y_k}{\leqslant} \sum_{k=1}^{m} p \left((x_k - y_k) e_k \right) \overset{x_k - y_k - y_k}{=}$$

$$= \sum_{k=1}^{m} |x_k - y_k| \cdot p(e_k) \overset{\text{hep-bo Koliui-}}{\leqslant} \sqrt{\sum_{k=1}^{m} |x_k - y_k|^2} \sqrt{\sum_{k=1}^{m} (p(e_k))^2} = M \cdot ||x - y||$$

значит $\forall\,x\in\mathbb{R}^m\,\,\forall\,\varepsilon>0\,\,\,\exists\,\delta=\varepsilon/\!\!\!/M:\forall\,y\in\mathbb{R}^m$ если $\|x-y\|<\delta,$ то $|p(x)-p(y)|\leqslant\varepsilon.$ Тогда

$$p(x) = \|x\| \cdot p\left(\frac{x}{\|x\|}\right) \geqslant c_1 \cdot \|x\|$$
 и аналогично $p(x) \leqslant c_2 \cdot \|x\|$

Теорема 14 (Достаточное условие экстремума):

Пусть $E \subset \mathbb{R}^m, f \in C^2(E)$ $(f \colon E \to \mathbb{R}), a \in \text{Int } E, \text{ grad } f(a) = 0_{\mathbb{R}^m}, Q$ — квадратичная форма, $Q(h) = d^2 f(a,h)$ (опр. 31), тогда

- 1. Если Q положительно определённая, то a точка локального минимума
- 2. Если Q отрицательно определённая, то a точка локального максимума
- 3. Если Q неопределённая, то a не является точкой локального экстремума
- 4. Если Q полуопределённая, то a может быть, а может не быть точкой локального экстремума

Доказательство:

1. Из формулы Тейлора с остатком в форме Лагранжа (теорема 8) $\exists \theta \in (0,1)$:

$$f(a+h) - f(a) = df(a,h) + \frac{1}{2}d^{2}f(a+\theta h,h) =$$

$$= \frac{1}{2}(d^{2}f(a+\theta h,h)) = \frac{1}{2}(Q(h) + d^{2}f(a+\theta h,h) - Q(h)) =$$

$$= \frac{1}{2}(Q(h) + f''_{x_{1}x_{1}}(a+\theta h) \cdot h_{1}h_{1} + f''_{x_{1}x_{2}}(a+\theta h) \cdot h_{1}h_{2} + \dots + f''_{x_{1}x_{m}}(a+\theta h) \cdot h_{1}h_{m} + \dots +$$

$$+ f''_{x_{m}x_{1}}(a+\theta h) \cdot h_{m}h_{1} + f''_{x_{m}x_{2}}(a+\theta h) \cdot h_{m}h_{2} + \dots + f''_{x_{m}x_{m}}(a+\theta h) \cdot h_{m}h_{m} -$$

$$- f''_{x_{1}x_{1}}(a) \cdot h_{1}h_{1} - f''_{x_{1}x_{2}}(a) \cdot h_{1}h_{2} - \dots - f''_{x_{1}x_{m}}(a) \cdot h_{1}h_{m} - \dots -$$

$$- f''_{x_{m}x_{1}}(a) \cdot h_{m}h_{1} - f''_{x_{m}x_{2}}(a) \cdot h_{m}h_{2} - \dots - f''_{x_{m}x_{m}}(a) \cdot h_{m}h_{m})$$

Модуль выделенных слагаемых $\leqslant 6$.м. $\cdot \|h\|^2$ при $h \to 0_{\mathbb{R}^m}$ (так как $f''_{x_ix_j}$ — непрерывна на E, то есть $f''_{x_ix_j}(a+\theta h) \xrightarrow[h\to 0_{\mathbb{R}^m}]{} f''_{x_ix_j}(a)$, а $|h_ih_j|\leqslant \|h\|^2$ (и применяем неравенство треугольника, чтобы оценить модуль суммы)). Тогда, т.к. $\forall B\in\mathbb{R}$ $B\geqslant -|B|$

$$f(a+h) - f(a) \geqslant \frac{1}{2} \big(Q(h) - |\dots| \big) \geqslant \frac{1}{2} \big(Q(h) - \delta.м. \cdot ||h||^2 \big) \geqslant \frac{1}{2} \big(\gamma_Q \cdot ||h||^2 - \delta.м. \cdot ||h||^2 \big) = \frac{1}{2} \cdot ||h||^2 \cdot (\gamma_Q - \delta.м.) > 0 \qquad - \text{ в некоторой окрестности точки } a, \text{ т.к. } \gamma_Q > 0$$

Значит a — точка строгого локального минимума по определению.

- 2. У функции g = -f в точке a локальный минимум (из пункта 1), значит у f локальный максимум в точке a.
- 3. По определению неопределённости квадратичной формы $\exists h^* \in \mathbb{R}^m : Q(h^*) > 0$, тогда $\forall t \in \mathbb{R}^m$ аналогично первому пункту получаем, что

$$f(a+th^*)-f(a)\geqslant rac{1}{2}ig(Q(th^*)-\mathit{б.м.}\cdot\|th^*\|^2ig)=rac{1}{2}(Q(h^*)-\mathit{б.м.})\cdot t^2$$
 при $t o 0_{\mathbb{R}^m}$

значит при достаточно маленьком t $f(a+th^*)-f(a)>0$. Аналогично для вектора $h^\circ\in\mathbb{R}^m:Q(h^\circ)<0$ при маленьком t $f(a+th^\circ)-f(a)<0$. Значит в любой окрестности точки a есть точка $(a+th^*)$, в которой значение >f(a) и точка $(a+th^\circ)$, в которой значение < f(a), то есть локального экстремум в точке a нет.

4. Пример: $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = x_1^2 - x_2^4$, a = (0,0), тогда $\operatorname{grad} f(a) = 0$ и $Q(h) = 2h_1^2$ — полуопределённая квадратичная форма, и в точке a нет локального экстремума (потому что в любой окрестности точки a есть точки $(0, \varepsilon)$ и $(\varepsilon, 0)$, в первой значение отрицательное, во второй положительное), а для функции $f(x_1, x_2) = x_1^2 + x_2^4$ всё тоже самое, но есть локальный экстремум в точке a (потому что функция положительная и только в нуле равна нулю).

§ Диффеоморфизм

Определение 34: Область в \mathbb{R}^m это открытое, связное множество

Определение 35: Отображение $f: O \subset \mathbb{R}^m \to \mathbb{R}^m \ (O - \text{область})$ называется диффеоморфизмом, если оно дифференцируемо, $\exists f^{-1}$ и f^{-1} — дифференцируемо.

Замечание 12: Если f — диффеоморфизм, то, дифференцируя равенство $(f^{-1} \circ f)(x) = x$, получаем $(f^{-1} \circ f)'(x) = 1_{m \times m}$ или $(f^{-1})'(f(x)) \cdot f'(x) = 1_{m \times m}$, то есть $(f^{-1})'(y) = (f'(x))^{-1}$, где y = f(x), значит производный оператор диффеоморфизма обратим.

Лемма 8 (о приближённых значениях дифференцируемого отображения):

Пусть $f \colon O \subset \mathbb{R}^m \to \mathbb{R}^m, f$ — дифференцируемо в точке $x_0 \in O$ (O — открытое), тогда

- 1. Если $\det f'(x_0) \neq 0$, то $\exists \delta > 0, c > 0 : \forall h : ||h|| < \delta ||f(x_0 + h) f(x_0)|| \geqslant c \cdot ||h||$
- 2. Если $f \in C^1(O)$, $B(x_0, r) \subset O$, то при ||h|| < r выполнено $||f(x_0+h)-f(x_0)-f'(x_0)h|| \le A \cdot ||h||$, где $A = \sup_{x \in [x_0, x_0+h]} ||f'(x) f'(x_0)||$, где $[x_0, x_0+h] = \{x_0 + th \mid t \in [0, 1]\}$

Доказательство:

1. Так как производная — это линейный оператор, то

$$\|h\| = \left\| \left(f'(x_0) \right)^{-1} \cdot f'(x_0) \cdot h \right\| \leqslant \left\| \left(f'(x_0) \right)^{-1} \right\| \cdot \|f'(x_0) \cdot h\| \quad \Rightarrow \quad \|f'(x_0) \cdot h\| \geqslant \frac{\|h\|}{\left\| \left(f'(x_0) \right)^{-1} \right\|}$$
 значит
$$\|f(x_0 + h) - f(x_0)\| \stackrel{\text{опр. дифф-сти}}{=} \|f'(x_0)h + o(h)\| \stackrel{\text{нер-во}}{\geqslant} \|f'(x_0)h\| - \|o(h)\| \geqslant$$

$$\geqslant \frac{\|h\|}{\left\| \left(f'(x_0) \right)^{-1} \right\|} - \|\delta.\mathcal{M}\| \cdot \|h\| \geqslant \frac{1}{2 \left\| \left(f'(x_0) \right)^{-1} \right\|} \cdot \|h\| \qquad \text{при } h \to 0_{\mathbb{R}^m}$$

потому что из определения бесконечно малой $\exists \, \delta :$ если $\|h\| < \delta$, то $\|\delta.\mathfrak{M}\| < \frac{1}{2} \| \big(f'(x_0)\big)^{-1} \|^{-1}$

2. Пусть
$$H(x) = f(x) - f'(x_0) \cdot x$$
, тогда $H'(x) = f'(x) - f'(x_0)$. Поэтому
$$H(x_0 + h) - H(x_0) = f(x_0 + h) - f'(x_0) \cdot (x_0 + h) - f(x_0) + f'(x_0) \cdot x_0 = f(x_0 + h) - f(x_0) - f'(x_0) \cdot h$$
 То есть $\|f(x_0 + h) - f(x_0) - f'(x_0)h\| = \|H(x_0 + h) - H(x_0)\|^{\text{теор.10}} \leqslant \|H'(x_0 + \theta h)\| \cdot \|h\| = \|f'(x_0 + \theta h) - f'(x_0)\| \cdot \|h\| \leqslant A \cdot \|h\|$ (т.к. $\sup \leqslant$ значений по которым он берётся)

Теорема 15 (о сохранении области):

Пусть отображение $f: O \subset \mathbb{R}^m \to \mathbb{R}^m$ дифференцируемо на O (O — открытое), $\forall x \in O$ det $f'(x) \neq 0$, тогда f(O) (образ O) — открытое множество

Доказательство: Возьмём $x_0 \in O$. Нужно доказать, что $f(x_0) \in \text{Int } f(O)$. По лемме 8.1 $\exists c, \delta > 0$: $\forall h \in \overline{\mathbb{B}(0,\delta)} \quad \|f(x_0+h)-f(x_0)\| \geqslant c \cdot \|h\|$. Пусть r это половина расстояния от $f(x_0)$ до $f(S(x_0,\delta))$ (расстояние от точки w до сферы S это $\inf_{s \in S} \rho(w,s)$), тогда r > 0, потому что функция $\varphi \colon f(S(x_0,\delta)) \to \mathbb{R}_+$, $\varphi(y) = \rho(y,f(x_0))$ непрерывна (т.к. $|\varphi(a)-\varphi(b)| = |\rho(a,f(x_0))-\rho(b,f(x_0))| \leqslant \rho(a,b)$), задана на компакте (т.к. сфера — компактное множество в \mathbb{R}^m , и f — непрерывная функция) и непрерывная функция достигает минимального значение по теореме Вейерштрасса, и оно больше нуля (пусть минимальное значение достигается в точке $y^* = f(x^*)$, тогда $\varphi(y^*) = \|f(x^*) - f(x_0)\| \geqslant c \cdot \|x^* - x_0\| = c\delta > 0$).

Проверим, что $B(f(x_0),r) \subset f(O)$, то есть что $\forall y \in \mathbb{R}^m : \|y-f(x_0)\| < r \ \exists x \in O : f(x) = y$. Зафиксируем $y: \|y-f(x_0)\| < r$ и определим функцию

$$g \colon \overline{B(x_0, \delta)} \to \mathbb{R}_+ \qquad g(x) = ||f(x) - y||^2$$

Тогда $g(x_0) = \|f(x_0) - y\|^2 < r^2$, а на $S(x_0, \delta)$ $g(x) \geqslant r^2$ (т.к. $\|f(x) - y\| \geqslant \|f(x) - f(x_0)\| - \|f(x_0) - y\| \geqslant 2r - r = r$). То есть g достигает минимального значения (т.к. это непрерывная функция, заданная на компакте) внутри шара. По теореме Ферма (т. 13) в этой точке все частные производные равны нулю. Так как $g(x) = (f_1(x) - y_1)^2 + (f_2(x) - y_2)^2 + \ldots + (f_m(x) - y_m)^2$, то, вычисляя производные, получаем

$$\begin{cases} g'_{x_1}(x) = 2(f_1(x) - y_1) \cdot \frac{\partial f_1}{\partial x_1}(x) + 2(f_2(x) - y_2) \cdot \frac{\partial f_2}{\partial x_1}(x) + \dots + 2(f_m(x) - y_m) \cdot \frac{\partial f_m}{\partial x_1}(x) = 0 \\ g'_{x_2}(x) = 2(f_1(x) - y_1) \cdot \frac{\partial f_1}{\partial x_2}(x) + 2(f_2(x) - y_2) \cdot \frac{\partial f_2}{\partial x_2}(x) + \dots + 2(f_m(x) - y_m) \cdot \frac{\partial f_m}{\partial x_2}(x) = 0 \\ \vdots \\ g'_{x_m}(x) = 2(f_1(x) - y_1) \cdot \frac{\partial f_1}{\partial x_m}(x) + 2(f_2(x) - y_2) \cdot \frac{\partial f_2}{\partial x_m}(x) + \dots + 2(f_m(x) - y_m) \cdot \frac{\partial f_m}{\partial x_m}(x) = 0 \end{cases}$$

То есть столбец $2(f(x)-y)^{\mathrm{T}}\cdot f'(x)$ — нулевой. Тогда, домножая $2(f(x)-y)^{\mathrm{T}}\cdot f'(x)=0$ на $\frac{1}{2}(f'(x))^{-1}$ (обратная матрица существует, т.к. по условию $\det f'(x)\neq 0$), получаем, что f(x)=y. Таким образом, x:f(x)=y это точка, в которой g(x) принимает минимальное значение.

Следствие 9: Пусть $f: O \subset \mathbb{R}^m \to \mathbb{R}^l, O$ — открытое, $m > l, f \in C^1(O), \forall x \in O \ rank \big(f'(x)\big) = l,$ тогда f(O) — открытое множество.

Доказательство: Фиксируем $x_0 \in O$. Будем считать, что первые l столбцов производной в точке x_0 линейно не зависимы (иначе можно перенумеровать координаты, чтобы это было так), то есть

$$\det\left(\underbrace{\frac{\partial f_i}{\partial x_j}(x_0)}_{A_l}\right)_{\substack{i \in \{1,2,\dots,l\}\\j \in \{1,2,\dots,l\}}} \neq 0$$

Тогда \exists окрестность $U(x_0)$, в которой этот определитель не равен нулю (так как определитель — это непрерывная функция, потому что он является суммой и произведение непрерывных функций — частных производных). Пусть $\widetilde{f} \colon O \to \mathbb{R}^m$, $\widetilde{f}(x) = (f(x), x_{l+1}, x_{l+2}, \dots, x_m)$, тогда

$$\det \widetilde{f}'(x_0) = \det \begin{pmatrix} A_l & A_{m-l} \\ 0 & E \end{pmatrix} = \det A_l \neq 0$$

Значит по теореме 15 $\widetilde{f}(O)$ — открытое множество. А f(O) это проекция $\widetilde{f}(O)$ на \mathbb{R}^l (т.е. отображение, сопоставляющее точке $(x_1, x_2, \dots, x_l, x_{l+1}, \dots, x_m) \in \widetilde{f}(O)$ точку $(x_1, x_2, \dots, x_l) \in \mathbb{R}^l$), и при проекции открытость множества сохраняется (потому что проекция шара это шар и если $B \subset A$, то проекция B содержится в проекции A)

Теорема 16 (о гладкости обратимого отображения):

Пусть $f: O \subset \mathbb{R}^m \to \mathbb{R}^m$, $f \in C^r(O)$ $(r \in \mathbb{N})$, f — обратимо и $\forall x \in O$ det $f'(x) \neq 0$. Тогда $f^{-1} \in C^r(f(O))$

Доказательство: Нету (нужна только формулировка)

Теорема 17 (о локальной обратимости):

$$f\colon O\subset\mathbb{R}^m o\mathbb{R}^m,\,f\in C^1(O),\,x_0\in O,\,\det f'(x_0)
eq 0$$
, тогда $\exists\,U(x_0):f\big|_{U(x_0)}$ — диффеоморфизм.

Доказательство: Если проверить обратимость f, то по теор. 16 обратное отображение будет дифференцируемым. Так как $f'(x_0)$ — обратимый линейный оператор, то (по зам. 11) $\exists c > 0 : \forall h \in \mathbb{R}^m$ $||f'(x_0)\cdot h||\geqslant c\cdot ||h||$. Возьмём окрестность $U(x_0)=\mathrm{B}(x_0,r)\subset O:\forall x\in U(x_0)$ det $f'(x)\neq 0$ (такая окрестность существует, т.к. $\det f'(x)$ — это непрерывная функция, потому что является суммой и произведение непрерывных функций — частных производных) и $||f'(x) - f'(x_0)|| < c/4$ (это можно сделать по определению непрерывности отображения f', оно непрерывно по т. 12). Пусть $x, y \in U(x_0), y = x + h$, тогда

$$f(y) - f(x) = f(x+h) - f(x) - f'(x)h + f'(x)h - f'(x_0)h + f'(x_0)h$$

Значит по неравенству треугольника:

$$||f(y) - f(x)|| \ge ||f'(x_0)h|| - ||f(x+h) - f(x) - f'(x)h|| - ||f'(x)h - f'(x_0)h||$$

По т. 8.2 $\|f(x+h)-f(x)-f'(x)h\| \leqslant A \cdot \|h\|$, где $A=\sup_{t\in [x,x+h]} \|f'(t)-f'(x)\|$ и так как по неравенству треугольника $A\leqslant \sup_{t\in [x,x+h]} \left(\|f'(t)-f'(x_0)\|+\|f'(x_0)-f'(x)\|\right)\leqslant c/4+c/4=c/2$, значит

$$||f(y) - f(x)|| \ge c \cdot ||h|| - c/2 \cdot ||h|| - c/4 \cdot ||h|| = c/4 \cdot ||x - y||$$

То есть $f|_{U(x_0)}$ инъективно, поэтому \exists обратное, заданное на $f(U(x_0))$

Теорема 18 (о локальной обратимости в терминах систем уравнений):

Пусть $f: O \subset \mathbb{R}^m \to \mathbb{R}^m, f \in C^1(O), x^0 \in O, \det f'(x^0) \neq 0, f_1, f_2, \dots f_m$ — координатные функции отображения $f, y^0 = f(x^0)$. Тогда $\exists U(y^0)$ такая, что система

$$\begin{cases} f_1(x_1, x_2, \dots, x_m) = y_1 \\ f_2(x_1, x_2, \dots, x_m) = y_2 \\ \vdots \\ f_m(x_1, x_2, \dots, x_m) = y_m \end{cases}$$

имеет решение при любом $y\in U(y^0)$ и $x_1=g_1(y_1,y_2,\ldots,y_m),\ x_2=g_2(y_1,y_2,\ldots,y_m),\ \ldots$ $x_m = g_m(y_1, y_2, \dots, y_m)$, где $g = f^{-1} \in C^1(U(y^0))$

Теорема 19 (о неявном отображении):

Пусть $f: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$, O — открытое, $f \in C^r(O)$, точка $(a,b) \in O$ такая, что f(a,b) = 0, $\det f_u'(a,b) \neq 0$, тогда $\exists P(a) \subset \mathbb{R}^m, Q(b) \subset \mathbb{R}^n$ — окрестности точек a и b такие, что \exists единственное отображение $\varphi \colon P \to Q$ такое, что $\forall x \in P \ f(x, \varphi(x)) = 0$, при этом $\varphi \in C^r(P)$

Доказательство: Пусть $\Phi \colon O \to \mathbb{R}^{m+n}$, $\Phi(x,y) = (x,f(x,y))$, тогда $\det \Phi'(x) = \begin{pmatrix} E_m & 0 \\ f'_x & f'_y \end{pmatrix} = \det f'_y \neq 0$, значит по теореме 17 существует окрестность точки (a,b), в которой f — диффеоморфизм класса C^r . Возьмём подмножество $U = P_1(a) \times Q(b)$ ($P_1(a), Q(b)$ — окрестности точек a, b), содержащееся в этой окрестности. Пусть $P = \Phi(\widetilde{U}) \cap (\mathbb{R}^m \times \{0_{\mathbb{R}^m}\}) \dots$

§ Функциональные последовательности

Определение 36: Последовательность функций — это отображение из № в множество функций.

Определение 37: Пусть X — множество, Y — метрическое пространство, $f, f_1, f_2, ... : X \to Y$, последовательность отображений f_n сходится поточечно f к отображению f на множестве $E \subset X$ означает, что $\forall x_0 \in E$ $f_n(x_0) \xrightarrow[n \to \infty]{} f(x_0)$, т.е.

$$\forall x_0 \in E \ \ \forall \varepsilon > 0 \ \ \exists N : \forall n > N$$
выполнено $\rho(f_n(x_0), f(x_0)) < \varepsilon$

Определение 38: Последовательность отображений f_n сходится равномерно к отображению f на множестве E если $\sup_{x \in E} \rho\left(f_n(x_0), f(x_0)\right) \xrightarrow[n \to \infty]{} 0$, т.е.

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E$$
 выполнено $\rho(f_n(x), f(x)) < \varepsilon$

Обозначение: $f_n \xrightarrow[n \to \infty]{E} f$

Замечание 13:

- 1. Из равномерной сходимости следует поточечная сходимость (наоборот нет)
- 2. Если $f_n \xrightarrow[n \to \infty]{E} f$ и $E_0 \subset E$, то $f_n \xrightarrow[n \to \infty]{E_0} f$

Лемма 9 (или следующий пункт замечания):

Пусть X — множество, Y — метрическое пространство, $\mathcal{F} = \{f : X \to Y \mid f$ — ограничено $\}$ (f — ограничено означает, что $\exists y_0 \in Y, r \in \mathbb{R} : \forall x \in X$ выполнено $f(x) \in B(y_0, r)$). Тогда функция $\rho_{\mathcal{F}} \colon \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ такая, что $\rho_{\mathcal{F}} (f_1, f_2) = \sup_{x \in X} \rho (f_1(x), f_2(x))$ является метрикой на \mathcal{F} .

Доказательство: Выполнение первых двух аксиом метрики (опр. 4) следует из их выполнения в метрике на Y. Неравенство треугольника: при любом $x \in X$ выполнено

$$\rho(f_1(x), f_2(x)) \leqslant \rho(f_1(x), g(x)) + \rho(g(x), f_2(x)) \leqslant \rho_{\mathcal{F}}(f_1, g) + \rho_{\mathcal{F}}(g, f_2) \qquad \forall f_1, f_2, g \in \mathcal{F}$$

Правая часть неравенства не зависит от x, поэтому она является верхней границей (для множества чисел $\{\rho(f_1(x), f_2(x)) \mid x \in X\}$), тогда она больше либо равна точной верхней границы $\Rightarrow \rho_{\mathcal{F}}(f_1, f_2) \leqslant \rho_{\mathcal{F}}(f_1, g) + \rho_{\mathcal{F}}(g, f_2)$

Теорема 20 (Стокса-Зайдля о непрерывности предельной функции):

Отображение f и последовательность отображений f_n действуют $X \to Y$, где X,Y — метрические пространства. Пусть все отображения из последовательности непрерывны в точке $c \in X$ и $f_n \xrightarrow[n \to \infty]{X} f$. Тогда f непрервна в точке c.

Доказательство: Применяя два раза неравенство треугольника к $\rho(f(x), f(c))$, получаем

$$\rho(f(x), f(c)) \leqslant \rho(f(x), f_n(x)) + \rho(f_n(x), f(c)) \leqslant \rho(f(x), f_n(x)) + \rho(f_n(x), f_n(c)) + \rho(f_n(x), f(c))$$

Из определения равномерной сходимости f_n к f ($\forall \varepsilon > 0 \; \exists N : \forall n > N \; \sup_{x \in X} \rho \big(f_n(x), f(x) \big) < \varepsilon$) получаем, что $\forall \varepsilon > 0$ первое и последние слагаемое в правой части неравенства $< \varepsilon$. Из определения непрерывности f_n в точке c ($\forall \varepsilon > 0 \; \exists U(c) :$ если $x \in U(c)$, то $\rho \big(f_n(x), f_n(c) \big) < \varepsilon$) получаем, что $\exists U(c)$ — окрестность точки x такая, что если $x \in U(c)$, то второе слагаемое

из правой части неравенства $< \varepsilon$. Складывая, получаем, что $\rho(f(x), f(c)) < 3 \cdot \varepsilon$. Получилось определение непрервности f в точке c.

Следствие 10: Если
$$f_n \in C(X)$$
 и $f_n \xrightarrow[n \to \infty]{X} f$, то $f \in C(X)$.

Замечание 14:

- 1. В теореме 20 достаточно того, чтобы X было топологическим пространством.
- 2. В теореме 20 достаточно требовать равномерную сходимость f_n к f только в некоторой окрестности точки c.
- 3. В следствии (сл. 10) достаточно требовать локальную равномерную сходимость, то есть $\forall \, x \in X \;\; \exists \, U(x) : \, f_n \xrightarrow[n \to \infty]{U(x)} f$. Из локальной равномерной сходимости не следует обычная.

Например, $X = (0,1), f_n(x) = x^n$:

Поточечная сходимость: $x^n \xrightarrow[n \to \infty]{} 0$ на (0,1).

Локальная равномерная сходимость: $\sup_{(\alpha,\beta)}|x^n-0|=\beta^n\xrightarrow[n\to\infty]{}0 \qquad \forall\, (\alpha,\beta)\subset (0,1),\,\,\beta\neq 1$

Обычной равномерной сходимости нет: $\sup_{(0,1)} |x^n - 0| = 1$

Теорема 21 (о полноте пространства непрерывных функций на компакте):

Пусть K — компактное метрическое пространство, тогда $C(K) = \{ f : K \to \mathbb{R} \mid f$ — непрерывно $\}$ есть полное метрическое пространство относительно метрики $\rho(f_1, f_2) = \sup_K |f_1(x) - f_2(x)|$

- 1. $\rho(f_1, f_2) = \sup_K |f_1(x) f_2(x)|$ является метрикой по лемме 9, т.к. непрерывные функции на компакте ограничены (теорема Вейерштрасса)
- 2. Метрическое пространство называется компактным, если из любого покрытия пространства открытыми множествами можно выбрать конечное подпокрытие.
- 3. Метрическое пространство называется полным, если в нём любая фундаментальная последовательность сходится.
- 4. Последовательность x_n называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N$$
 выполнено $\rho(x_n, x_m) < \varepsilon$

5. Если последовательность сходится, то она фундаментальная. Доказательство: $\forall \, \varepsilon > 0$ из определения сходимости x_n к a ($\forall \, \varepsilon > 0$ $\exists \, N : \forall \, n > N$ выполнено $\rho \, (x_n, a) < \varepsilon$) возьмём n, m > N, тогда, используя неравенство треугольника, получаем $\rho \, (x_n, x_m) \leqslant \rho \, (x_n, a) + \rho \, (a, x_m) < 2\varepsilon$. Получилось определение фундаментальности.

Доказательство: Нужно доказать, что любая фундаментальная последовательность сходится. Возьмём фундаментальную последовательность f_n . Тогда $\forall x_0 \in K$ последовательность $f_n(x_0)$ — фундоментальная, и она вещественная \Rightarrow она сходится. Обозначим её предел $f(x_0)$. Определение фундоментальности $f_n(x)$:

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ \forall x_0 \in K$$
 выполнено $|f_n(x_0) - f_m(x_0)| < \varepsilon$

При каждом фиксированном x_0 делаем предельный переход при $m \to \infty$, получаем

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x_0 \in K$$
 выполнено $|f_n(x_0) - f(x_0)| \leqslant \varepsilon$

То есть f_n сходится к f равномерно. Тогда f непрерывна на K по теореме 20, то есть $f \in C(K)$, а сходимость последовательности в C(X) — это равномерная сходимость функциональных последовательностей.

Замечание 15:

1. Пространство $\mathcal{F} = \{ f \colon X \to Y \mid f$ — ограничено, $\}$, где X — множество, Y — полное метрическое пространство, тоже является полным.

Доказательство останется тем же, только в конце нельзя будет применить теорему 20. Но если $f_n \in \mathcal{F}$ и $f_n \xrightarrow[n \to \infty]{X} f$, то $f \in \mathcal{F}$. Доказательство: определение ограниченности f_n :

$$\forall n \; \exists y_n \in Y, r_n \in \mathbb{R} : \forall x \in X$$
выполнено $f_n(x) \in \mathrm{B}(y_n, r_n)$

Определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E$$
 выполнено $\rho(f_n(x), f(x)) < \varepsilon$

Тогда возьмём $\varepsilon_0 > 0$, найдём соответствующее N, возьмём n = N + 1 и для них при любом $x \in X$ будет выполнено $\rho(f(x), f_{N+1}(x)) < \varepsilon_0$ и $\rho(y_{N+1}, f_{N+1}(x)) < r_{N+1} \Rightarrow$ по неравенству треугольника $\rho(f(x), y_{N+1}) < r_{N+1} + \varepsilon_0$, то есть f — ограничено.

- 2. Пространство $C_M(K) = \{ f : K \to Y \mid f$ непрерывно $\}$, где K компактное метрическое пространство, Y полное метрическое пространство, тоже является полным.
- 3. Критерий Больцано-Коши равномерной сходимости функциональной последовательности: так как сходимость последовательности в C(K) это равномерная сходимость функциональных последовательностей, и C(K) полное пространство (по теореме 21), то в C(K) равномерная сходимость последовательности $f_n(x) \Leftrightarrow$

$$\forall \, \varepsilon > 0 \;\; \exists \, N : \forall \, n, m > N \;$$
 выполнено $\sup_{x \in K} |f_n(x) - f_m(x)| < \varepsilon$

Теорема 22 (о предельном переходе под знаком интеграла для последовательностей):

Пусть
$$f_n \in C[a,b]$$
 $(f_n \colon [a,b] \to \mathbb{R})$ и $f_n \xrightarrow[n \to \infty]{[a,b]} f$, тогда $\int\limits_a^b f_n \xrightarrow[n \to \infty]{} \int\limits_a^b f$

Доказательство: Используя определение равномерной непрерывности, получаем

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f_{n} - f| \leqslant \sup_{[a,b]} |f_{n} - f| \cdot (b - a) \xrightarrow[n \to \infty} 0$$

По теореме 20 f непрерывна, значит $\int\limits_a^b f$ имеет смысл

Теорема 23 (правило Лейбница дифференцирования интеграла по параметру):

Пусть $f:[a,b]\times[c,d]\to\mathbb{R}, f$ и f_y' — непрерывны на $[a,b]\times[c,d], \Phi\colon[c,d]\to\mathbb{R}, \Phi(y)=\int\limits_a^b f(x,y)\,dx,$ тогда Φ — дифференцируема на [c,d] и $\Phi'(y)=\int\limits_a^b f_y'(x,y)\,dx$

Доказательство: $\forall y \in [c,d], \ \forall h \in \mathbb{R} : y+h \in [c,d]$ верно:

$$\frac{\varPhi(y+h)-\varPhi(y)}{h} = \frac{\int_a^b f(x,y+h)\,dx - \int_a^b f(x,y)\,dx}{h} \stackrel{\text{т. Лагранжа}}{=} \int_a^b f_y'(x,y+\theta_h h)\,dx, \quad \theta_h \in (0,1)$$

По теореме Кантора (непрерывная функция на компакте равномерно непрерывна) f'_y равномерно непрерывна на $[a,b] \times [c,d]$, то есть

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x_1, x_2 \in [a, b] \times [c, d],$$
 если $||x_1 - x_2|| < \delta$, то $|f_u'(x_1) - f_u'(x_2)| < \varepsilon$

Пользуясь этим определением, фиксируем $\varepsilon > 0$, находим $\delta > 0$. Тогда, при $|h| < \delta$, так как $||(x, y + \theta_h h) - (x, y)|| < \delta$, то $|f_u'(x, y + \theta_h h) - f_u'(x, y)| < \varepsilon$ или

$$\left| \int_a^b f_y'(x,y+\theta_h h) \, dx - \int_a^b f_y'(x,y) \, dx \right| \leqslant \int_a^b \left| f_y'(x,y+\theta_h h) \, dx - f_y'(x,y) \, dx \right| \leqslant \varepsilon \cdot (b-a),$$

потому что подынтегральная функция не превосходит ε . Значит

$$\left|\frac{\varPhi(y+h)-\varPhi(y)}{h}-\int_a^b f_y'(x,y)\,dx\right|\leqslant \varepsilon\cdot (b-a),\quad \text{to ectb}\quad \lim_{h\to 0}\frac{\varPhi(y+h)-\varPhi(y)}{h}=\int_a^b f_y'(x,y)\,dx$$

И по определению производной $\Phi'(y) = \int\limits_a^b f_y'(x,y)\,dx.$

Теорема 24 (о предельном переходе под знаком производной):

$$f_n \in C^1\langle a,b \rangle, \, f_n \xrightarrow[n \to \infty]{} f$$
 поточечно на $\langle a,b \rangle, \, f'_n \xrightarrow[n \to \infty]{} \varphi$, тогда $f \in C^1\langle a,b \rangle$ и $f' = \varphi$ на $\langle a,b \rangle$

Доказательство: Пусть $x_0 \in \langle a, b \rangle$, тогда $\forall x \in \langle a, b \rangle$ по теореме $22 \int_{x_0}^x f_n' \xrightarrow[n \to \infty]{} \int_{x_0}^x \varphi$, то есть $f_n(x) - f_n(x_0) \xrightarrow[n \to \infty]{} \int_{x_0}^x \varphi$, а по условию $f_n(x) - f_n(x_0) \xrightarrow[n \to \infty]{} f(x) - f(x_0)$, значит $f(x) - f(x_0) = \int_{x_0}^x \varphi$, тогда (так как интеграл с переменным верхнем пределом дифференцируем) f — дифференцируем и $f'(x) = \varphi(x)$, то есть $f' \in C^1 \langle a, b \rangle$ (по теореме 20φ непрерывна).

Определение 39: Пусть $u_n: X \to \mathbb{R}$, где X — множество, тогда функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно (поточечно) функциональная последовательность из частичных сумм $S_k(x) = \sum_{n=1}^k u_n(x)$. Функция $S(x) = \lim_{k \to \infty} S_k(x)$ называется суммой функционального ряда. То есть ряд сходится равномерно, если

$$\forall \varepsilon > 0 \ \exists N : \forall k > N \ \forall x \in X$$
 выполнено $|S(x) - S_k(x)| < \varepsilon$

 $R_n(x) = S(x) - S_k(x) = \sum_{k=n+1}^{\infty} u_n(x)$ называется остатком функционального ряда.

Замечание 16:

- 1. Ряд равномерно сходится на $E \Leftrightarrow R_n(x) \xrightarrow[n \to \infty]{E} 0$ (следует прямо из определения)
- 2. Если ряд $\sum_{n=1}^{\infty}u_n(x)$ равномерно сходится на E, то $u_n(x)$ $\xrightarrow[n \to \infty]{E}$ 0 (т. к. $u_k(x)=R_{k-1}(x)-R_k(x)$)

Теорема 25 (Признак Вейерштрасса равномерной сходимости функционального ряда):

Пусть $u_n\colon X\to\mathbb{R}$ (X — множество), $C_n\in\mathbb{R}:|u_n|\leqslant C_n\ \forall\, n\in\mathbb{N}$ и $\sum\limits_{n=1}^\infty C_n$ — сходится. Тогда функциональный ряд $\sum\limits_{n=1}^\infty u_n(x)$ — сходится равномерно на X.

Доказательство: Чтобы доказать равномерную сходимость функционального ряда, можно проверить сходится ли равномерно остататок ряда к нулю (зам. 16.1)

$$\sup_{x \in X} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \sup_{x \in X} \sum_{k=n+1}^{\infty} |u_k(x)| \leqslant \sum_{k=n+1}^{\infty} C_n \xrightarrow[k \to \infty]{} 0$$

Замечание 17: Критерий Больцано-Коши: ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на $E \Leftrightarrow$

$$\forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall k \in \mathbb{N}, \ \forall x \in E$$
 выполнено $|u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+k}(x)| < \varepsilon$

Это верно, потому что это критерий Больцано-Коши сходимости функциональной последовательности (зам. 15), записанный для частичных сумм, а равномерная сходимость ряда это равномерная сходимость последовательности из его частичных сумм.

Тогда ряд не сходится равномерно ⇔

$$\exists \varepsilon > 0 : \forall N \ \exists n > N, \ \exists k \in \mathbb{N}, \ \exists x \in E :$$
 выполнено $|u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+k}(x)| > \varepsilon$

Теорема 26 (Стокса-Зайдля для рядов):

Пусть $u_n: X \to \mathbb{R}$ — непрерывны в точке $x_0 \in X$ (X — метрическое пространство) и $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно к функции S(x). Тогда S(x) — непрерывна в точке x_0

Доказательство: Частичная сумма $S_k(x) = \sum_{n=1}^k u_n(x)$ — непрерывна в точке x_0 и $S_k(x) \xrightarrow[k \to \infty]{X} S(x)$ по определению равномерной сходимости ряда (опр. 39). Тогда по теореме Стокса-Зайдля для последовательностей (т. 20) S(x) непрерывна в точке x_0 .

Теорема 27 (об интегрировании функционального ряда):

Пусть $u_n \in C[a,b]$ $(u_n \colon [a,b] \to \mathbb{R})$, ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно к функции S(x), тогда

$$\sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) = \int_{a}^{b} S(x)$$

Доказательство: Частичная сумма $S_k(x) = \sum_{n=1}^k u_n(x) \in C[a,b]$ и $S_k(x) \xrightarrow[k \to \infty]{X} S(x)$ по определению равномерной сходимости ряда (опр. 39). Тогда по теореме $22 \int_a^b S_k(x) \xrightarrow[k \to \infty]{X} \int_a^b S(x)$. Значит, делая предельный переход при $k \to \infty$ в равенстве $\sum_{n=1}^k \int_a^b u_n(x) = \int_a^b S_k(x)$, получаем доказываемую формулу. По теореме $20 \int_a^b S(x)$ имеет смысл, т.к. S_K непрерывны и сходятся равномерно к S(x).

Теорема 28 (о дифференцировании ряда):

Пусть $u_n \in C^1\langle a,b\rangle$, ряд $\sum\limits_{n=1}^\infty u_n(x)$ сходится поточечно к S(x) на $\langle a,b\rangle$, и $\sum\limits_{n=1}^\infty u'_n(x)$ равномерно сходится к $\varphi(x)$ на $\langle a,b\rangle$. Тогда $S(x)\in C^1\langle a,b\rangle$ и $S'(x)=\varphi$.

Доказательство: Частичная сумма $S_k(x) = \sum_{n=1}^k u_n(x) \in C^1 \langle a,b \rangle$ и сходится поточечно к S(x) по определению поточечной сходимости ряда (опр. 39), а последовательность функций $\sum_{n=1}^k u_n'(x)$ сходится равномерно к $\varphi(x)$, значит из теоремы 24 получаем $S(x) \in C^1 \langle a,b \rangle$ и $S'(x) = \varphi(x)$. \square

Следствие 11: Дифференцируемость гамма функции. Запишем формулу Вейерштрасса:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{k} \right) \cdot e^{-\frac{x}{k}} \qquad (x > 0)$$

Прологарифмируем её

$$-\ln \Gamma(x) = \ln x + \gamma x + \sum_{k=1}^{\infty} \left(\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right)$$

Равномерная сходимость ряда из производных есть по признаку Вейерштрасса (т. 25):

$$\left(\ln\left(1+\frac{x}{k}\right) - \frac{x}{k}\right)' = \frac{1/k}{1+x/k} - \frac{1}{k} = -\frac{x}{(k+x)\cdot k}$$

Модуль этого выражения это возрастающая функция, поэтому $\forall M \in \mathbb{R}$

$$\left|-\frac{x}{(k+x)\cdot k}\right| = \frac{x}{(k+x)\cdot k} \stackrel{\text{на } [0,M]}{\leqslant} \frac{M}{(k+M)\cdot k}$$
 и ряд $\sum_{k=1}^{\infty} \frac{M}{(k+M)\cdot k}$ сходится.

Значит по теореме 28 сумма ряда дифференцируема, тогда и гамма функция дифференцируема как композиция и произведение дифференцируемых функций:

$$\Gamma(x) = \left(xe^{\gamma x} + e^{\left(\sum_{k=1}^{\infty} \ln\left(1 + \frac{x}{k}\right) + \frac{x}{k}\right)}\right)^{-1}$$

Теорема 29 (о предельном переходе в суммах):

 $u_n\colon E\subset X\to \mathbb{R},\ X$ — метрическое пространство, $x_0\in X$ — предельная точка E. Пусть $\forall\, n\;\;\exists \lim_{x\to x_0}u_n(x)=a_n$ (конечный), и $\sum_{n=1}^\infty u_n(x)$ равномерно сходится на E, тогда

ряд
$$\sum_{n=1}^{\infty} a_n$$
 — сходится и $\sum_{n=1}^{\infty} a_n = \lim_{x \to x_0} \left(\sum_{n=1}^{\infty} u_n(x) \right)$

Доказательство: Чтобы доказать сходимость вещественного ряда $\sum_{n=1}^{\infty} a_n$ достаточно проверить фундаментальность $S_N^a = \sum_{n=1}^N a_n$ последовательности частичных сумм. Пусть $S_N(x) = \sum_{n=1}^N u_n(x)$ — функциональная последовательность частичных сумм ряда $\sum_{n=1}^{\infty} u_n(x)$, тогда из зам. 17 (т.к. этот ряд равномерно сходится) $\forall \varepsilon > 0 \; \exists N : \forall n > N, \forall p \in \mathbb{N}, \forall x \in E$ выполнено $|S_{n+p}(x) - S_n(x)| < \varepsilon$, а для x из некоторой окрестности точки x_0 выполнено $|S_{n+p}^a - S_{n+p}(x)| < \varepsilon$ и $|S_n(x) - S_n^a| < \varepsilon$. Тогда, используя неравенство треугольника, получаем

$$\left| S_{n+p}^a - S_n^a \right| \le \left| S_{n+p}^a - S_{n+p}(x) \right| + \left| S_{n+p}(x) - S_n(x) \right| + \left| S_n(x) - S_n^a \right| < 3 \cdot \varepsilon$$

Это определение фундаментальности S_N^a . Теперь определим функции

$$\tilde{u}_n(x) = \begin{bmatrix} u_n(x), & x \in E \\ a_n, & x = x_0 \end{bmatrix}$$

 $\tilde{u}_n(x)$ — непрерывны в точке x_0 (потому что по условию $\lim_{x\to x_0}u_n(x)=a_n)$ и $\sum_{n=1}^\infty \tilde{u}_n(x)$ равномерно сходится на $E\cup\{\,x_0\,\}$, так как

$$\sup_{x \in E \cup \{x_0\}} \left| \sum_{k=n+1}^{\infty} \tilde{u}_k(x) \right| \leqslant \sup_{x \in E} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| + \sum_{k=n+1}^{\infty} a_k \xrightarrow[n \to \infty]{} 0$$

Значит по теореме Стокса-Зайдля для рядов (т. 26) сумма ряда $\sum_{n=1}^{\infty} \tilde{u}_n(x) = \tilde{S}(x)$ непрерывна в

точке
$$x_0$$
, поэтому $\lim_{x \to x_0} \left(\sum_{n=1}^{\infty} u_n(x) \right) = \lim_{x \to x_0} \tilde{S}(x) = \tilde{S}(x_0) = \sum_{n=1}^{\infty} \tilde{u}_n(x_0) = \sum_{n=1}^{\infty} a_n$

Теорема 30 (о перестановке предельных переходов):

 $f_n \colon E \subset X \to \mathbb{R}, (X$ — метрическое пространство), x_0 — предельная точка E, пусть

1.
$$\forall n \ f_n(x) \xrightarrow[x \to x_0]{} A_n, \quad (A_n - \text{конечный предел})$$

2.
$$f_n(x) \xrightarrow[n \to \infty]{E} S(x)$$

Тогда

1.
$$\exists \lim_{n \to \infty} A_n = A$$
 (конечный)

2.
$$S(x) \xrightarrow[x \to x_0]{} A$$

T.e.
$$\lim_{n\to\infty} \left(\lim_{x\to x_0} f_n(x)\right) = \lim_{x\to x_0} \left(\lim_{n\to\infty} f_n(x)\right)$$

Доказательство: Пусть $u_n = f_n - f_{n-1} \ (u_1 = f_1)$, тогда $u_n(x) \xrightarrow[x \to x_0]{} a_n = A_n - A_{n-1} \ (a_1 = A_1)$ и частичная сумма $S_n(x) = \sum_{k=1}^n u_n(x) = f_n(x) \xrightarrow[n \to \infty]{} S(x) \Rightarrow \text{ряд} \sum_{n=1}^\infty u_n(x)$ сходится равномерно на E, значит по теореме 29

1. Ряд $\sum_{n=1}^{\infty} a_n$ сходится, а $\sum_{k=1}^{n} a_n = A_n$, то есть последовательность A_n сходится, обозначим её предел A.

2.
$$\sum_{n=1}^{\infty} a_n = \lim_{x \to x_0} \left(\sum_{n=1}^{\infty} u_n(x) \right) = \lim_{x \to x_0} S(x), \text{ а по первому пункту } \sum_{n=1}^{\infty} a_n = A, \text{ значит } S(x) \xrightarrow[x \to x_0]{} A.$$

Определение 40: Пусть $f: E \times D \to \mathbb{R}$, E — множество, $D \subset Y$ — метрическое пространство, тогда функция $h: D \to \mathbb{R}$ называется равномерным пределом функции f при $t \to t_0$, если

$$orall arepsilon > 0 \ \exists \, U(t_0) : \ \mathrm{ec}$$
ли $t \in U(t_0), \, \mathrm{To} \ \sup_{x \in E} |f(x,t) - h(x)| < arepsilon$

Обозначается $f(x,t) \Longrightarrow_{t \to t_0} h(x)$

Теорема 31 (о перестановке двух предельных переходов):

 $f\colon E\times D\to \mathbb{R},\quad E\subset X,\, D\subset Y$ — метрические пространства, x_0 — предельная точка $E,\,y_0$ — предельная точка D. Пусть

1.
$$\exists$$
 функция $A \colon D \to \mathbb{R} : \forall y \in D$ $\lim_{x \to x_0} = A(y)$

2.
$$f(x,y) \Longrightarrow S(x)$$
, где $S \colon E \to \mathbb{R}$

Тогда

1. $\exists \lim_{y \to y_0} A(y) = A$ (конечный)

$$2. \lim_{x \to x_0} S(x) = A$$

Доказательство: Отсутствует (нужна только формулировка)

Теорема 32 (признак Дирихле):

Пусть $a_n, b_n \colon X \to \mathbb{R}$ — функциональные последовательности (X — множество) и

1. Частичные суммы $A_N(x) = \sum_{n=1}^N a_n(x)$ равномерно ограничены, то есть

$$\exists C_A \in \mathbb{R} : \forall x \in X, \ \forall N \in \mathbb{N} \ |A_N(x)| \leqslant C_A$$

2.
$$\forall x_0 \in X$$
 $b_n(x_0) \xrightarrow[n \to \infty]{} 0$ монотонно, и $b_n(x) \xrightarrow[n \to \infty]{} 0$

Тогда ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ сходится равномерно на X.

Доказательство: Есть равенство:

$$\sum_{k=N}^{M} a_k(x) \cdot b_k(x) = A_M(x) \cdot b_M(x) - A_{N-1}(x) \cdot b_{N-1}(x) + \sum_{k=N}^{M-1} (b_k - b_{k+1}) \cdot A_k(x)$$

Оно верно, потому что... Значит

$$\left| \sum_{k=N}^{M} a_k(x) \cdot b_k(x) \right| \leqslant |A_M(x)| \cdot |b_M(x)| + |A_{N-1}| \cdot |b_{N-1}(x)| \pm \sum_{k=N}^{M-1} (b_k - b_{k+1}) \cdot |A_k(x)| \leqslant C_A \cdot \left(|b_M(x)| + |b_{N-1}(x)| + |b_N(x)| + |b_M(x)| \right)$$

По признаку Коши равномерной сходимости ряда (зам. 17) $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ сходится равномерно, потому что $b_n(x)$ равномерно сходится.

Определение 41: Пусть $z_0 \in \mathbb{C}, \ r \in (0, +\infty), \$ тогда В $(z, r) = \{ z \in \mathbb{C} \ | \ |z - z_0| < r \} \subset \mathbb{C}$ называется кругом с центром в точке z_0 и радиуса r.

Определение 42: Пусть a_n — комплексная последовательность, $z_0 \in \mathbb{C}$, тогда $A(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ называется степенным рядом $(A: E \subset \mathbb{C} \to \mathbb{C})$. Ряд сходится, если сходится последовательность частичных сумм. Сходится абсолютно, если сходится вещественный ряд $\sum_{n=0}^{\infty} |a_n (z-z_0)^n|$

Замечание 18: Комплексный ряд $\sum_{n=0}^{\infty} a_n$ сходится \Leftrightarrow сходятся вещественные ряды $\sum_{n=0}^{\infty} \operatorname{Re} a_n$ и $\sum_{n=0}^{\infty} \operatorname{Im} a_n$ (это покоординатная сходимость, утв. 5). Если ряд $\sum_{n=0}^{\infty} |a_n|$ сходится, то и $\sum_{n=0}^{\infty} a_n$ сходится, так как $|\operatorname{Re} a_n| \leqslant |a_n|$ и $|\operatorname{Im} a_n| \leqslant |a_n|$, значит ряды из вещественных и мнимых частей сходятся абсолютно \Rightarrow сходятся.

Теорема 33 (о круге сходимости степенного ряда):

Пусть
$$A(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 — степенной ряд, тогда возможно

- 1. Ряд сходится абсолютно при любом $z\in\mathbb{C}$
- 2. Ряд сходится абсолютно только при $z=z_0$, иначе расходится
- 3. $\exists \, R \in (0,+\infty)$: ряд сходится абсолютно при $|z-z_0| < R$ и расходится при $|z-z_0| > R$

Доказательство:

1. Верхний предел вещественной последовательности \boldsymbol{x}_n это

$$\overline{\lim}_{n\to\infty} x_n = \lim_{n\to\infty} y_n, \qquad$$
 где $y_n = \sup\{x_n, x_{n+1}, x_{n+2}, \dots\}$

2. Признак Коши сходимости вещественного ряда. Пусть $\sum_{n=1}^{\infty} x_n$ — неотрицательный вещественный ряд, тогда он сходится, если $\overline{\lim}_{n\to\infty} \sqrt[n]{x_n} < 1$, и расходится, если $\overline{\lim}_{n\to\infty} \sqrt[n]{x_n} > 1$, причём $x_n \xrightarrow[n\to\infty]{} 0$

По признаку Коши ряд $\sum_{n=0}^{\infty} |a_n(z-z_0)^n|$ сходится, если

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n(z-z_0)^n|} = \overline{\lim}_{n\to\infty} |z-z_0| \cdot \sqrt[n]{|a_n|} = |z-z_0| \cdot \overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1$$

То есть может быть 3 случая:

- 1. Если $\varlimsup_{n o \infty} \sqrt[n]{|a_n|} = 0,$ то ряд A сходится при любом $z \in \mathbb{C}$
- 2. Если $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} = +\infty$, то ряд A сходится только при $z=z_0$, и расходится в остальных случаях, т.к. слагаемые не стремятся к 0
- 3. Если $|z-z_0|<rac{1}{\varlimsup\limits_{n o\infty}\sqrt[n]{|a_n|}}$, то ряд A сходится абсолютно

Таким образом в последнем пункте $R=\frac{1}{\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}}$ — это формула Коши-Адамара.

Замечание 19: Был ещё признак Даламбера: Пусть $\sum_{n=1}^{\infty} x_n$ — положительный вещественный ряд $u \; \exists \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = D$, тогда ряд сходится, если D < 1, и расходится, если D > 1. Поэтому в теореме 33 радиус круга сходимости можно считать по формуле $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$ (если этот предел существует).

Теорема 34 (о равномерной сходимости и непрерывности степенного ряда):

Пусть $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ — степенной ряд и R — радиус его круга сходимости. Тогда:

- 1. $\forall r \in (0,R)$ $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ равномерно сходится на $\overline{\mathrm{B}(z_0,r)}$
- 2. f(z) непрерывна на $\mathrm{B}(z_0,R)$

Доказательство:

1. Так как на $\overline{\mathrm{B}(z_0,r)}$ $a_n(z-z_0)^n \leqslant a_n r^n$ и ряд $\sum_{n=0}^\infty a_n r^n$ сходится на $\overline{\mathrm{B}(z_0,r)}$, потому что $\sum_{n=0}^\infty a_n r^n = \sum_{n=0}^\infty a_n \left((z_0+r) - z_0 \right)$ и $(z_0+r) \in \mathrm{B}(z_0,R)$, то по признаку Вейерштрасса (теорема 25) на $\overline{\mathrm{B}(z_0,r)}$ равномерно сходится ряд $\sum_{n=0}^\infty a_n (z-z_0)^n$.

2. $\forall z \in \mathrm{B}(z_0,R)$ возьмём $r \in (|z-z_0|,R)$, тогда в шаре $\overline{\mathrm{B}(z_0,r)}$ есть равномерная сходимость ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ (из пункта 1), и $a_n (z-z_0)^n$ непрерывна, значит по теореме Стокса-Зайдля (теорема 26) f непрерывна в точке z.