同调论

刘博文

目录

1	奇异同调			2
	1.1	范畴与	5函子	2
		1.1.1	范畴	2
		1.1.2	协变函子	3
		1.1.3	反变函子	3
	1.2	链复形	/与链映射	4
		1.2.1	链复形及其同调群	4
		1.2.2	链映射及其诱导同态	5
		1.2.3	链同伦	5
	1.3	奇异同]调群	5
		1.3.1	奇异单形	5
		1.3.2	奇异链复形与奇异同调群	6
		1.3.3	简约奇异同调群	8
		1.3.4	奇异同调的同伦不变性	9
		1.3.5	与基本群的关系	10
		1.3.6	U 小奇异链	10
	1.4	Mayer	·Vietoris 序列	11
		1.4.1	同调代数工具	11
		1.4.2	Mayer-Vietoris 序列	14
	1.5	插曲:	微分上同调	15
		1.5.1	de Rham 上同调	15
		1.5.2	Stokes 公式	17
		1.5.3	de Rham 上同调的函子性	17
		151	de Rham 上司调中的 Mayor-Vietoris 序列	18

1 奇异同调

1.1 范畴与函子

1.1.1 范畴

定义 1.1.1. 一个范畴 C 是由以下要素组成:

- 1. 一类数学对象 $ob(\mathcal{C})$;
- 2. 对于每两个对象 X,Y, 给定了一个集合 Mor(X,Y), 其元素称为从 X 到 Y 的 射, 记 $f \in Mor(X,Y)$ 为 $f: X \to Y$;
- 3. 一个复合规则 $\operatorname{Mor}(X,Y) \times \operatorname{Mor}(Y,Z) \to \operatorname{Mor}(X,Z)$, 记作 $(f,g) \mapsto g \circ f$, 并且满足以下性质:
 - (1) 结合律: 对任意的 $f: X \to Y, g: Y \to Z, h: Z \to W$, 满足

$$h\circ (g\circ f)=(h\circ g)\circ f$$

(2) 单位律: 每个对象 X 有一个单位射 $\mathrm{id}_X: X \to X$, 满足对任何 $f: Y \to X$ 有

$$id_X \circ f = f$$

对于任何 $g: X \to Z$, 满足

$$g \circ \mathrm{id}_X = g$$

在下面的例子中,都以 {对象,射}的形式展示:

- 例 1.1.1. 集合的范畴: {集合, 函数}
- 例 1.1.2. 光滑流形的范畴: {光滑流形, 光滑映射}
- 例 1.1.3. 拓扑空间的范畴: {拓扑空间, 连续映射}
- 例 1.1.4. 单纯复形的范畴: {单纯复形,单纯映射}
- 例 1.1.5. 阿贝尔群的范畴: {阿贝尔群, 群同态}
- 例 1.1.6. 群的范畴: {群, 群同态}; 环的范畴: {环, 环同态}
- **例 1.1.7.** 域 F 上线性空间的范畴: $\{F$ 线性空间, F 线性映射 $\}$
- **例 1.1.8.** 域 F 上的代数的范畴: $\{F$ 代数, F 代数同态 $\}$
- M 1.1.9. 拓扑空间的范畴: {拓扑空间, X 到 Y 映射的同伦类}
- 例 1.1.10. 带基点的拓扑空间的范畴: {带基点的拓扑空间,保持基点的连续映射}
- **例 1.1.11.** 取定拓扑空间 X,考虑: $\{X$ 中的点,从点 α 到点 b 的道路的同伦类,其中 $\alpha,b\in X\}$

1.1.2 协变函子

定义 1.1.2. 假设 C, \mathcal{D} 是两个范畴, 一个协变函子 $F: \mathcal{C} \to \mathcal{D}$ 是一个对应:

- 1. C 中的每个对象 X 对应于 D 的一个对象 F(X);
- 2. C 的每个射 $f: X \to Y$ 对应于 \mathcal{D} 的一个射 $F(f): F(X) \to F(Y)$, 满足以下 性质:
 - (1) 复合律: 对于射 $f: X \to Y, g: Y \to Z$, 有

$$F(g \circ f) = F(g) \circ F(f)$$

(2) 单位律: 对于任意对象 X, 有

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$

- 例 1.1.12. 遗忘函子: {拓扑空间,映射} → {集合,函数}
- **例 1.1.13.** 基本群函子 π_1 : {带基点的拓扑空间,保持基点的连续映射} \rightarrow {群,群同态}
- **例 1.1.14.** 单纯同调函子 H_* : {单纯复形,单纯映射} \rightarrow {阿贝尔群,群同态}

1.1.3 反变函子

定义 1.1.3. 假设 C, \mathcal{D} 是两个范畴, 一个反变函子 $F: C \to \mathcal{D}$ 是一个对应:

- 1. C 中的每个对象 X 对应于 D 的一个对象 F(X);
- 2. C 的每个射 $f: X \to Y$ 对应于 D 的一个射 $F(f): F(Y) \to F(X)$, 满足以下 性质:
 - (1) 复合律: 对于射 $f: X \to Y, g: Y \to Z$, 有

$$F(g \circ f) = F(f) \circ F(g)$$

(2) 单位律: 对于任意对象 X, 有

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$

M1.1.15. 对偶函子: {域 F 上的线性空间, F 线性映射} \rightarrow {对偶空间, 映射的拉回}

例 1.1.16. 给定拓扑空间 X, 考虑 $C(X) = \{$ 连续函数 $X \to \mathbb{R} \}$, 则有反变函子 $C^* : \{$ 拓扑空间,连续映射 $\} \to \{$ 实代数,实代数同态 $\}$

定义 1.1.4. 称一个射 $f: X \to Y$ 是可逆的,如果存在射 $g: Y \to X$,使得:

$$g \circ f = \mathrm{id}_X, \quad f \circ g = \mathrm{id}_Y$$

定义 1.1.5. 称两个对象是同构的,如果它们之间存在一对互逆的射。

命题 1.1.1. 协变 (反变) 函子总是把单位射变成单位射, 把可逆射变成可逆射, 把同构的对象变成同构的对象。

1.2 链复形与链映射

1.2.1 链复形及其同调群

定义 1.2.1. 一个链复形 $C = \{C_q, \partial_q\}$ 是一串阿贝尔群 C_q 以及一串群同态 ∂_q : $C_q \to C_{q-1}$ (称为 q 维边缘算子),满足 $\partial_q \circ \partial_{q+1} = 0, \forall q$,写法上有:

$$\cdots \to C_{q+1} \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \to \cdots$$

定义 1.2.2. 链复形 $C=\{C_q,\partial_q\}$ 的 q 维闭链群定义为 $Z_q(C)=\operatorname{Ker}\partial_q;\ q$ 维边缘链群定义为 $B_q(C)=\operatorname{Im}\partial_{q+1}$

定义 1.2.3. 链复形 C 的 q 维同调群定义为 $H_q(C) = Z_q(C)/B_q(C)$, 其元素称为 C 的 q 维同调类。

约定 1.2.1. 我们约定, $z_q \in Z_q(C)$ 所代表的同调类为 $[z_q] \in H_q(C)$,记 $H_*(C) = \{H_q(C)\}$,实际上, $H_*(C)$ 是一个分次群。

定义 1.2.4. 分次群指的是一个阿贝尔群序列 $G_* = \{G_q \mid q \in \mathbb{Z}\}$,分次群同态 $\phi_*: G_* \to G'_*$ 指的是一个同态序列 $\{\phi_q: G_q \to G'_q \mid q \in \mathbb{Z}\}$

定义 1.2.5. 设 C,D 是链复形,一个链映射 $f:C\to D$ 是一串同态 $f_q:C_q\to D_q$,满足:

$$\partial_q \circ f_q = f_{q-1} \circ \partial_q, \quad \forall q$$

即下面的图表交换1:

 $^{^1}$ 我们不在符号上区分不同链复形之间的边缘同态,一并记作 ∂_q ,请读者留心。

1.2.2 链映射及其诱导同态

命题 1.2.1. 链映射 $f: C \to D$ 诱导出同调群的同态 $f_*: H_*(C) \to H_*(D)$,映射为 $f_*([z_q]) = [f_q(z_q)], \forall z_q \in Z_q(C)$

至此,我们得到了一个新的范畴,即链复形的范畴 {链复形,链映射},以及一个新的函子,同调函子: {链复形,链映射} → {分次群,分次群同态}。

1.2.3 链同伦

定义 1.2.6. 两个链映射 $f,g:C\to D$ 称为是链同伦的,如果存在一串同态 $T=\{T_q:C_q\to D_{q+1}\}$,如下面图表:

使得对任意 q 满足 $\partial_{q+1}\circ T_q+T_{q-1}\circ\partial_q=g_q-f_q$, 称 T 为联结 f,g 得一个链同伦,记作 $f\simeq g:C\to D$ 或者 $T:f\simeq g:C\to D$

定理 1.2.1. 假设 $f \subseteq g : C \to D$, 则 $f_* = g_* : H_*(C) \to H_*(D)$, 即链同伦的链映射诱导出相同的同调群同态。

命题 1.2.2. 链映射之间的链同伦关系是一个等价关系。

定义 1.2.7. 两个链复形 C,D 称为是链同伦等价的,如果存在链映射 $f:C\to D,g:D\to C$,使得 $f\circ g\simeq \mathrm{id}_D, g\circ f\simeq \mathrm{id}_C$

命题 1.2.3. 链同伦等价诱导同调群的同构,因而链同伦等价的链复形有同构的同调群。

1.3 奇异同调群

1.3.1 奇异单形

定义 1.3.1. q 维标准单形 $\Delta_q = \{(x_0, x_1, \dots, x_q) \in \mathbb{R}^{q+1} \mid 0 \le x_i \le 1, \sum_{i=0}^q x_i = 1\}$

定义 1.3.2. 拓扑空间 X 中的 q 维奇异单形指的是一个连续映射 $\sigma: \Delta_q \to X$

例 1.3.1. (线性奇异单形) C 是 \mathbb{R}^n 中的凸集, $c_0, c_1, \ldots, c_q \in C$, 则有唯一的线性 映射 $\Delta_q \to C$, 把顶点 e_0, \ldots, e_q 映射成 c_0, \ldots, c_q , 记为 $(c_0c_1 \ldots c_q): \Delta_q \to C$, 定义为 $\sum_i x_i e_i \mapsto \sum_i x_i c_i$

在下面的讨论中, 我们取定拓扑空间 X

定义 1.3.3. X 的 q 维奇异链群 $S_q(X)$ 定义为以 X 中所有 q 维奇异单形为基生成的自由阿贝尔群, 其元素称为 q 维奇异链, 具有形式

$$c_q = k_1 \sigma_q^{(1)} + \dots + k_r \sigma_q^{(r)}, \quad k_i \in \mathbb{Z}, \sigma_q^{(i)} : \Delta_q \to X, q \ge 0$$

并且规定负维数的 $S_q(X) = 0$

定义 1.3.4. X 中 q 为奇异单形 $\sigma: \Delta_q \to X$ 的边缘定义为如下 q-1 维奇异链

$$\partial \sigma = \partial (\sigma \circ (e_0 \dots e_q)) = \sum_{i=0}^q (-1)^i \sigma \circ (e_0 \dots \hat{e_i} \dots e_q)$$

做 Z 线性扩张得到

$$\partial_q: S_q(X) \to S_{q-1}(X)$$

是阿贝尔群同态。

命题 1.3.1. $S_*(X) = \{S_q(X), \partial_q\}$ 是链复形。

证明. 即验证 $\partial_{q-1}\circ\partial_q=0$,由于 ∂ 是群同态,因此只需要在奇异单形上验证即可。 先在标准单形上看:

$$\partial_{q-1} \circ \partial_{q}(e_{0} \dots e_{q}) = \sum_{i=0}^{q} (-1)^{i} \partial_{q-1}(e_{0} \dots \widehat{e_{i}} \dots e_{q})$$

$$= \sum_{i=0}^{q} (\sum_{ji} (-1)^{j-1} (e_{0} \dots \widehat{e_{i}} \dots \widehat{e_{j}} \dots \widehat{e_{j}} \dots e_{q}))$$

$$= \sum_{0 \le j < i \le q} (-1)^{i+j} (e_{0} \dots \widehat{e_{j}} \dots \widehat{e_{i}} \dots e_{q}) + \sum_{0 \le i < j \le q} (-1)^{i+j-1} (e_{0} \dots \widehat{e_{i}} \dots \widehat{e_{j}} \dots e_{q})$$

$$= 0$$

将上式用映射 $\sigma: \Delta_q \to X$ 复合就得到 $\partial_{q-1} \circ \partial_q(\sigma) = 0$

1.3.2 奇异链复形与奇异同调群

定义 1.3.5. 链复形 $S_*(X) = \{S_q(X), \partial_q\}$ 称为 X 的奇异链复形。由 X 的奇异链复形决定的同调群称为 X 的奇异同调群,记作 $H_*(X) := H_*(S_*(X))$

定义 1.3.6. 设 $f: X \to Y$ 是映射,它把 X 中的奇异单形 $\sigma: \Delta_q \to X$ 变成 Y 中的奇异单形 $f \circ \sigma$,记为 $f_\#(\sigma)$ 。通过线性扩张可以得到同态

$$f_{\#}: S_q(X) \to S_q(Y)$$

命题 1.3.2. $f_\#$ 与 ∂ 可交换, 即 $f_\#: S_*(X) \to S_*(Y)$ 是链映射。

证明. 显然。

定义 1.3.7. 映射 $f: X \to Y$ 诱导的同调群的同态 $f_*: H_*(X) \to H_*(Y)$ 指的是链映射 $f_\#: S_*(X) \to S_*(Y)$ 所诱导的同调群同态。

命题 1.3.3 (奇异同调群的拓扑不变性). 同胚的拓扑空间有着同构的奇异同调群。

 $\mathbf{\dot{t}}$ 1.3.1. 协变函子 S_* 把拓扑空间范畴变到链复形范畴,同调函子把链复形范畴变成分次群范畴,将这两个协变函子复合得到协变函子称为奇异同调函子 H_* 。因此用这种观点,命题 1.3.3 是直接的,因为函子是保同构的。

例 1.3.2. 单点空间的奇异同调群 $H_*(\mathrm{pt})$ 如下

$$H_*(\mathrm{pt}) = \begin{cases} \mathbb{Z}, & q = 0\\ 0, & q > 0 \end{cases}$$

这是因为对于每一个维度,都只有一个奇异单形 $\sigma: \Delta_q \to \{\mathrm{pt}\}$,因此 $S_q(X) = \mathbb{Z}, \forall q$,对于边缘同态 ∂_q 来说,我们有

$$\partial_q = \begin{cases} 1, & q = 2k + 1 \\ 0, & q = 2k \end{cases}$$

因此我们有如下的链复形

$$0 \longleftarrow \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{1} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{1} \dots$$

因此可以得到我们期待的结果。

定义 1.3.8. 克罗内克同态 $\varepsilon: S_0(X) \to \mathbb{Z}$ 定义为

$$\varepsilon(k_1a_1+\cdots+k_ra_r)=k_1+\cdots+k_r$$

注 1.3.2. ε : $S_0(X) \to \mathbb{Z}$ 诱导出满同态 $H_0(X) \to \mathbb{Z}$, 因为 $S_0(X) = Z(X)$, 并且每个 1 维奇异单形的边缘的克罗内克指标为零。

命题 1.3.4. 如果空间 X 道路连通,则 $\varepsilon: H_0(X) \to \mathbb{Z}$ 是同构。

证明. 任取基点 $p \in X$,任意 $c_0 = k_1 a_1 + \cdots + k_r a_r \in \text{Ker}(\varepsilon)$,则 $c_0 = c_0 - \varepsilon(c_0)b = k_1(a_1 - b) + \cdots + k_r(a_r - b)$,由于 X 道路连通,因此存在道路连接 a_i 和 b,对于每个 i 成立,记作 σ_i ,因此

$$\partial(\sum_{i}k_{i}\sigma_{i})=c_{0}$$

因此 c_0 是一个边缘链, 因此 $\operatorname{Ker} \varepsilon = 0$, 即 ε 是同构。

定义 1.3.9. 一蔟链复形 $\{C_{\lambda}: \lambda \in \Lambda\}$, 其中 $C_{\lambda} = \{C_{\lambda q}, \partial_{\lambda q}\}$ 这蔟链复形的直和定义为 $\bigoplus C_{\lambda} = \{\bigoplus_{\lambda \in \Lambda} C_{\lambda q}, \bigoplus \partial_{\lambda q}\}$

命题 1.3.5.

$$H_*(\bigoplus_{\lambda} C_{\lambda}) = \bigoplus_{\lambda} H_*(C_{\lambda})$$

证明. 我们具体写出链复形的直和如下:

$$\cdots \bigoplus_{\lambda} C_{\lambda q+1} \stackrel{\oplus_{\lambda} \partial_{\lambda q+1}}{\longrightarrow} \bigoplus_{\lambda} C_{\lambda q} \stackrel{\oplus_{\lambda} \partial_{\lambda q}}{\longrightarrow} \bigoplus_{\lambda} C_{\lambda q-1} \rightarrow \cdots$$

因此可以注意到

$$H_q(\bigoplus_{\lambda} C_{\lambda}) = \operatorname{Ker} \bigoplus_{\lambda} \partial_{\lambda q} / \operatorname{Im} \bigoplus_{\lambda} \partial_{\lambda q+1} = \bigoplus_{\lambda} \operatorname{Ker} \partial_{\lambda q} / \operatorname{Im} \partial_{\lambda q+1}$$

最后一个等式成立是因为核与像是可以与直和交换的, 因此

$$H_q(\bigoplus_{\lambda} C_{\lambda}) = \bigoplus_{\lambda} H_q(C_{\lambda})$$

定理 1.3.1. 设 $X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$ 是 X 的道路连通分支分解,则有同调群的直和分解 $H_*(X) = \bigoplus_{\lambda \in \Lambda} H_*(X_{\lambda})$

证明. 用 \sum_X 记 X 中全体奇异单形的集合,则可以分解为 $\sum_X = \coprod_{\lambda \in \Lambda} \sum_{X_\lambda}$,从而有直和分解 $S_*(X) = \bigoplus_{\lambda \in \Lambda} S_*(X_\lambda)$

推论 1.3.1. 拓扑空间 X 道路连通当且仅当 $H^0(X) = \mathbb{Z}$

1.3.3 简约奇异同调群

定义 1.3.10. 拓扑空间 X 的增广链复形 $\widetilde{S}_*(X) = \{\widetilde{S}_q(X), \widetilde{\partial}_q\}$ 定义为

$$\widetilde{S}_q(X) = \begin{cases} S_q(X), & q > -1 \\ \mathbb{Z}, & q = -1 \end{cases} \qquad \widetilde{\partial}_q = \begin{cases} \partial_q, & q > 0 \\ \varepsilon, & q = 0 \end{cases}$$

注 1.3.3. $f: X \to Y$ 诱导的 $f_\#: S_q(X) \to S_q(Y)$ 保持零维的克罗内克指数,因此 $f_\#: \widetilde{S}_*(X) \to \widetilde{S}_*(Y)$ 是链映射 $(f_\#: \widetilde{S}_{-1}(X) \to \widetilde{S}_{-1}(Y)$ 规定为 id)

定义 1.3.11. 拓扑空间 X 的简约同调群定义为增广链复形 $\widetilde{S}_*(X)$ 对应的同调群,记作 $\widetilde{H}_*(X)$ 。 $f:X\to Y$ 诱导的同态 $f_*:\widetilde{H}_*(X)\to\widetilde{H}_*(Y)$ 规定为链映射 $f_\#:\widetilde{S}_*(X)\to\widetilde{S}_*(Y)$ 所诱导的同调群同态

命题 1.3.6. 对于拓扑空间 X, 简约同调群与同调群有如下关系

$$H_q(X) = \begin{cases} \widetilde{H}_q(X), & q \neq 0 \\ \widetilde{H}_q(X) \oplus \mathbb{Z}, & q = 0 \end{cases}$$

证明. 由于增广链复形与链复形相比只改变了链群 C_{-1} 以及 ∂_0 ,因此对于 q > 0 时的同调群都是不改变的。

对于零维的情况, 我们有

$$H_0(X) = C_0(X) / \operatorname{Im} \partial_1, \quad \widetilde{H}_0(X) = \operatorname{Ker} \varepsilon / \operatorname{Im} \partial_1$$

而由于 ε 是满射, 我们有

$$C_0(X)/\operatorname{Ker}\varepsilon\cong\mathbb{Z}$$

因此可以得到

$$H_0(X) \cong \widetilde{H}_0(X) \oplus \mathbb{Z}$$

注 1.3.4. 后补:上面的证明利用了一个看似"显然"的结果:

$$C_0(X)/\operatorname{Ker} \varepsilon \cong \mathbb{Z} \implies C_0(X) \cong \operatorname{Ker} \varepsilon \oplus \mathbb{Z}$$

实际上是因为下述短正合列分裂的结果

$$0 \to \operatorname{Ker} \varepsilon \to C_0(X) \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

推论 1.3.2. 拓扑空间 X 是道路连通当且仅当 $\widetilde{H}_0(X)=0$

1.3.4 奇异同调的同伦不变性

定义 1.3.12. 映射 $f: X \to Y, g: X \to Y$ 称为同伦的, 如果存在映射 $F: X \times I \to Y$, 使得 F(x,0) = f(x), F(x,1) = g(x), 记作 $f \cong g$

定义 1.3.13. 两个拓扑空间 X,Y 称为同伦等价,或者是有相同的同伦型,如果存在映射 $f: X \to Y, g: Y \to X$,使得 $f \circ g \cong \mathrm{id}_Y, g \circ f \cong \mathrm{id}_X$

定义 1.3.14. 拓扑空间 X 称为是可缩的,如果它与单点集有相同的同伦型。

定义 1.3.15. 拓扑空间 X 的子空间 A 称为是 X 的收缩形变核²,如果存在收缩 $r: X \to A^3$,使得 $i \circ r$ 同伦于 id_X ,并且同伦的过程中固定 A^4 ,其中 $i: A \to X$ 是 嵌入。

例 1.3.3. S^n 是 $\mathbb{R}^n \setminus \{0\}$ 的收缩形变核。

定理 1.3.2 (同伦不变性). 假定 $f \cong g$ 是同伦的映射,则 $f_{\#} \cong g_{\#} : S_{*}(X) \to S_{*}(Y)$ 是链同伦的,因而诱导相同的同调群同态。

推论 1.3.3 (同伦型不变性). 设拓扑空间 X,Y 有相同的同伦型 $X \cong Y$, 则它们的同调群同构。

推论 1.3.4. 设拓扑空间 X 的子空间 $A \in X$ 的收缩形变核,则嵌入映射 $i: A \to X$ 诱导了同调群的同构。

1.3.5 与基本群的关系

定义 1.3.16. X 是拓扑空间, $x_0 \in X$ 是取定的基点,则 X 的基本群为

$$\pi_1(X, x_0) = \{ \gamma \text{的同伦类} \mid \gamma \in x_0 \text{处的闭路} \}$$

如果我们将 [0,1] 等同于 1 维标准单形,则 X 中的每条道路都是 X 中的 1 维奇异单形,若 γ 是闭道路,则 γ 是闭链,因此 $H_1(X)$ 关心的也是 X 中的闭路的情况。以 $[\gamma]_h \in H_1(X)$ 表示 γ 代表的同调类, $[\gamma]$ 代表 γ 的同伦类。

易知

$$[\gamma \gamma']_h = [\gamma]_h + [\gamma']_h$$

故我们有同态:

$$h_*: \pi_1(X, x_0) \to H_1(X)$$

定义为 $[\gamma] \mapsto [\gamma]_h$, 称为 Hurewicz 同态。

定理 1.3.3. 假设拓扑空间 X 道路连通,则 Hurewicz 同态是满同态,并且 $Ker h_*$ 是 $\pi_1(X,x_0)$ 的换位子群,即 $H_1(X)$ 就是 $\pi_1(X,x_0)$ 的交换化。

1.3.6 *U* 小奇异链

定义 1.3.17. X 是拓扑空间,U 是 X 的覆盖,奇异单形 $\sigma: \Delta_q \to X$ 被称为 U-小的,如果 $\sigma(\Delta_q) \subset U \in U$;记 $S_q^U(X)$ 是由以所有 U-小奇异单形为基生成的自由阿贝尔群,是 $S_*(X)$ 的子链复形。

定理 1.3.4. 假设 $\operatorname{Int} \mathcal{U} = \{ \check{U} \mid U \in \mathcal{U} \}$ 是 X 的开覆盖,则存在链映射 $k: S_*(X) \to S_*^{\mathcal{U}}(X)$ 满足 $k \circ i = \operatorname{id}, i \circ k \cong \operatorname{id},$ 从而含入映射诱导出同调群的同构。

²这里的定义有时也被称为强形变收缩核

 $^{^3}$ 映射 $r: X \to A$ 被称为收缩,如果 $r \circ i = \mathrm{id}_A$

⁴这意味着同伦 $F: X \times I \to X$ 满足对于任意的 $t \in I, F(a,t) = a, \forall a \in A$

1.4 Mayer-Vietoris 序列

1.4.1 同调代数工具

定义 1.4.1. 阿贝尔群同态 $A \xrightarrow{f} B \xrightarrow{g} C$ 在 B 处正合,如果 $\operatorname{Ker} g = \operatorname{Im} f$; 阿贝尔群同态序列 $\cdots \to G_{i-1} \xrightarrow{\phi_{i-1}} G_i \xrightarrow{\phi_i} G_{i+1} \to \cdots$ 被称为正合列,如果在每一个 G_i 处都正合。

定理 1.4.1. 链复形和链映射的长正合列 $0 \to C \xrightarrow{f} D \xrightarrow{g} E \to 0$ 诱导了同调群间的长正合列

$$\cdots \xrightarrow{\partial_*} H_a(C) \xrightarrow{f_*} H_a(D) \xrightarrow{g_*} H_a(E) \xrightarrow{\partial_*} H_{a-1}(C) \to \cdots$$

证明. 首先 f_*, g_* 都是链复形的链映射自然的诱导的同调群之间的态射,下面我们定义 ∂_* ,考虑下面的交换图表:

任取 $z\in E_q$ 是一个闭链,由于 g_q 是满射因此可以考虑 $g_q^{-1}(z)$,并通过 ∂_q 映到 D_{q-1} ,由于 $g_{q-1}\partial_q(g_q^{-1}(z))=\partial_q(z)=0$,因此 $\partial_q(g_q^{-1}(z))\in \operatorname{Ker} g_{q-1}=\operatorname{Im} f_{q-1}$,并且由于

$$f_{q-2}\partial_{q-1}f_{q-1}^{-1}\partial_q g_q^{-1}(z) = \partial_{q-1}\partial_q g_q^{-1}(z) = 0$$

以及 f_{q-2} 是单射可知 $\partial_{q-1}f_{q-1}^{-1}\partial_q g_q^{-1}(z)=0$,因此 $f_{q-1}^{-1}\partial_q g_q^{-1}(z)$ 是 C_{q-1} 中的闭链,因此可以定义

$$\partial_*([z]) := [f_{q-1}^{-1} \partial_q g_q^{-1}(z)]$$

在这里, 我们需要小心验证以下的事实:

- (1) 定义不依赖于 z 这个同调类代表元的选取;
- (2) 定义不依赖于 $g_q^{-1}(z)$ 的选取;

我们依次如下验证:

(1) 如果将 z 改成 $z + \partial_{q+1} a, a \in E_{q+1}$,则

$$\partial_q g_q^{-1}(z + \partial_{q+1} a) = \partial_q g_q^{-1}(z) + \partial_q g_q^{-1} \partial_{q+1}(a) = \partial_q g_q^{-1}(z) + \partial_q \partial_{q+1} g_{q+1}^{-1}(a) = \partial_q g_q^{-1}(z)$$
即与同调类代表元选取无关。

(2) 由于 z 在 g_q^{-1} 下的任何两个原像只相差一个 $\operatorname{Im} f_q$ 中的元素,我们不妨假设将 $g_q^{-1}(z)$ 换成 $g_q^{-1}(z)+f(a), a\in C_q$,则

$$f_{q-1}^{-1}\partial_q(g_q^{-1}(z)+f_q(a))=f_{q-1}^{-1}\partial_qg_q^{-1}(z)+f_{q-1}^{-1}\partial_qf_q(a)=f_{q-1}^{-1}\partial_qg_q^{-1}(z)+\partial_q(a)$$

因此更换 $g_q^{-1}(z)$ 的原像将会得到落在同一个同调类中的元素,因此定义不依赖于 $g_q^{-1}(z)$ 的选取。

因此, ∂_* 的定义是良好的。

定理 1.4.2 (同调序列的自然性). 设有链复形与链映射交换图

$$0 \longrightarrow C \xrightarrow{f} D \xrightarrow{g} E \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow C' \xrightarrow{f'} D' \xrightarrow{g'} E' \longrightarrow 0$$

则有下面的交换图表

$$\dots \longrightarrow H_{q+1}(E) \xrightarrow{\partial_*} H_q(C) \xrightarrow{f_*} H_q(D) \xrightarrow{g_*} H_q(E) \longrightarrow \dots$$

$$\downarrow^{\alpha_*} \qquad \qquad \downarrow^{\beta_*} \qquad \qquad \downarrow^{\gamma_*}$$

$$\dots \longrightarrow H_{q+1}(E') \xrightarrow{\partial_*} H_q(C') \xrightarrow{f'_*} H_q(D') \xrightarrow{g'_*} H_q(E') \longrightarrow \dots$$

引理 1.4.1 (五引理). 设有阿贝尔群的交换图表

其中两个横行都是正合列,如果 f_1, f_2, f_4, f_5 都是同构,则 f_3 也是同构。

注 1.4.1. 实际上, 只需要 f_1, f_2, f_4 是满射, $f_2.f_4, f_5$ 是单射。

定义 1.4.2. 阿贝尔群同态的正合列 $C \xrightarrow{f} D \xrightarrow{g} E$ 称为裂正合的,如果 f(C) 是 D 的直和项,即 D 能分解成 f(C) 和某个子群的直和。

注 1.4.2. 短正合列是列正合列的等价于 $D\cong C\oplus E$,因为如果 $D\cong C\oplus E$,由于 f 是单射自然有 f(C) 是 D 的直和项;而如果 f(C) 是 D 的直和项,那么我们不妨 写成 $D=f(C)\oplus E'$,因此

$$E' \cong D/\operatorname{Im} f \cong D/\operatorname{Ker} g \cong E$$

即 $D \cong C \oplus E$.

命题 1.4.1. 对于阿贝尔群同态的短正合列 $0 \to C \stackrel{f}{\to} D \stackrel{g}{\to} E \to 0$,下列叙述等价:

- 1. 存在同态 $h: D \to C$, 使得 $h \circ f = id_C$
- 2. 存在同态 $k: E \to D$, 使得 $g \circ k = \mathrm{id}_E$
- 3. 短正合列 $0 \to C \xrightarrow{f} D \xrightarrow{g} E \to 0$ 是裂正合的。

特别的, 若 E 是自由阿贝尔群 5 , 则 1,2,3 成立。

证明. 如果短正合列是正合的,那么 (1),(2) 是显然成立的,取 $C \oplus E$ 的到每个分量的投射即可。

下面证明 $(1) \rightarrow (3)$,首先注意到 $D = \operatorname{Im} f + \operatorname{Ker} h$,这是因为任取 $x \in D$,我们有如下分解

$$x = (x - fh(x)) + fh(x)$$

后者显然在 Im f 中,然而前者在 Ker h 中只需要做如下验算

$$h(x - fh(x)) = h(x) - hfh(x) = h(x) - h(x) = 0$$

下面证明 $\operatorname{Im} f \cap \operatorname{Ker} h = 0$,若存在 $c \in C$ 使得 f(c) = d 以及 h(d) = 0,那么 c = hf(c) = h(d) = 0,因此 $D = \operatorname{Im} f \oplus \operatorname{Ker} h$,即该短正合列分裂。

下面证明 $(2) \to (3)$,论证的方式与上面类似,同样注意到 $D = \operatorname{Ker} g + \operatorname{Im} k$,这是因为任取 $x \in D$,我们有如下的分解

$$x = (x - kg(x)) + kg(x)$$

后者显然在 Im k 中,然而前者在 Ker g 中只需要做如下验算

$$g(x - kg(x)) = g(x) - gkg(x) = g(x) - g(x) = 0$$

下面证明 $\operatorname{Im} k \cap \operatorname{Ker} g = 0$,若存在 $d \in D$ 使得 d = k(e),并且满足 g(d) = 0,那么 0 = g(d) = gk(e) = e,因此交平凡,即 $D = \operatorname{Ker} g \oplus \operatorname{Im} k = \operatorname{Im} f \oplus \operatorname{Im} k$,即该短正 合列分裂。

 $^{^{5}}$ 更一般的, E 是投射的, 或 C 是内射的即可。

1.4.2 Mayer-Vietoris 序列

我们先来考虑下面的情况: X 是拓扑空间, X_1, X_2 是 X 的子空间, 使得 $U = \{X_1, X_2\}$ 是 X 的一个覆盖,则

$$S_*^{\mathcal{U}}(X) = S_*(X_1) + S_*(X_2)$$

我们考虑下面的图表:

则可以得到链复形与链映射的短正合列

$$0 \to S_*(X_1 \cap X_2) \xrightarrow{h_\#} S_*(X_1) \oplus S_*(X_2) \xrightarrow{k_\#} S_*(X_1) + S_*(X_2) \to 0$$

其中 $h_{\#}(x) := (i_{1\#}(x), -i_{2\#}(x)), k_{\#}(x) := j_{1\#}(y) + j_{2\#}(z)$

定义 1.4.3. 设 X_1, X_2 是 X 的子空间,满足含入映射 $i: S_*(X_1) + S_*(X_2) \to S_*(X_1 \cup X_2)$ 诱导了同调群的同构,则称 (X_1, X_2) 是一个 Mayer-Vietoris 耦。

例 1.4.1. 若 $\mathring{X}_1 \cup \mathring{X}_2 = X$,则 $\{X_1, X_2\}$ 是一个 Mayer-Vietoris 耦。因为此时 $S_*(X_1) + S_*(X_2) = S_*^{\mathcal{U}}(X)$,根据定理 1.3.4,可知 $S_*^{\mathcal{U}}(X) \cong S_*(X) = S_*(X_1 \cup X_2)$

定理 1.4.3 (Mayer-Vietoris 序列). 设 $\{X_1, X_2\}$ 是一个 Mayer-Vietoris 耦。则存在 长正合列

$$\cdots \to H_q(X_1 \cap X_2) \stackrel{-}{\to} H_1(X_1) \oplus H_2(X_2) \stackrel{+}{\to} H_q(X_1 \cup X_2) \stackrel{\partial}{\longrightarrow} H_{q-1}(X_1 \cap X_2) \to \dots$$
证明. 短正合列诱导长正合列。

注 1.4.3. 对增广链复形,同样有短正合列

$$0 \to \widetilde{S}_*(X_1 \cap X_2) \xrightarrow{h_\#} \widetilde{S}_*(X_1) \oplus \widetilde{S}_*(X_2) \xrightarrow{k_\#} \widetilde{S}_*(X_1) + \widetilde{S}_*(X_2) \to 0$$

因此也有简约同调群的 Mayer-Vietoris 序列。

注 **1.4.4.** $\partial_*: H_q(X_1 \cup X_2) \to H_{q-1}(X_1 \cap X_2)$ 的具体形式: 任取 $[z] \in H_q(X_1 \cup X_2)$, 由于 Mayer-Vietoris 耦的原因,[z] 一定有一个代表闭链可以写成 $x_1 + x_2$,其中 x_1 是 X_2 中的链, x_2 是 X_2 中的链。由于 $\partial z = \partial x_1 + \partial x_2 = 0$,则 $\partial x_1 = -\partial x_2$,记作 y,是 $X_1 \cap X_2$ 中的闭链,它代表了 $H_{q-1}(X_1 \cap X_2)$ 中的同调类,即

$$\partial_*([z]) = [y]$$

定理 1.4.4 (Mayer-Vietoris 序列的自然性). 设 $\{X_1, X_2\}, \{Y_1, Y_2\}$ 是 X, Y 中的 Mayer-Vietoris 耦,映射 $f: X \to Y$ 满足 $f(X_1) \subset Y_1, f(X_2) \subset Y_2$,则有正合列的交换图

$$\cdots \to H_{q+1}(X_1 \cup X_2) \xrightarrow{\partial_*} H_q(X_1 \cap X_2) \xrightarrow{-} H_q(X_1) \oplus H_q(X_2) \xrightarrow{+} H_q(X_1 \cup X_2) \to \dots$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{f_*} \qquad \qquad \downarrow$$

推论 1.4.1. 拓扑空间 X 是两个闭子空间 X_1, X_2 的并,若 $X_1 \cap X_2$ 是某个开邻域的形变收缩核,则 $\{X_1, X_2\}$ 是 Mayer-Vietoris 耦。

例 1.4.2. 当 $n \ge 0$ 时,有球面的同调群为

$$\widetilde{H_q}(S^n) = \begin{cases} \mathbb{Z}, & q = n \\ 0, & \text{ i.e.} \end{cases}$$

证明. 令 $B_+ = \{(x_0, \dots, x_n) \mid x_n \geq 0\}, B_- = \{(x_0, \dots, x_n) \mid x_n \leq 0\}, \ \mathbb{D} \mid B_+ \cap B_- = S^{n-1} \mid \mathbb{D} \mid \mathbb$

$$\cdots \to 0 \xrightarrow{+} \widetilde{H}_q(S^n) \xrightarrow{\partial_*} \widetilde{H}_{q-1}(S^{n-1}) \xrightarrow{-} 0 \xrightarrow{+} \widetilde{H}_{q-1}(S^n) \to \cdots$$

因此可以得到

$$\widetilde{H}_q(S^n) \cong \widetilde{H}_{q-1}(S^{n-1}) \cong \ldots \cong \widetilde{H}_{q-n}(S^0)$$

利用两点空间的简约同调群可以得到我们期待的结果。

1.5 插曲: 微分上同调

1.5.1 de Rham 上同调

在本节中⁶,为了简洁起见,仅从形式上的定义微分形式,而不深究其背后的原理。

⁶关于这部分材料,详见 GTM82

取开集 $D \subseteq \mathbb{R}^n$, 并取坐标 $x = (x^1, ..., x^n)$, 则其上的微分形式如下

$$\Omega^{0}(D) = \{ f \in C^{\infty}(D, \mathbb{R}) \}$$

$$\Omega^{1}(D) = \{ \sum_{i=1}^{n} f_{i} dx^{i} \mid f_{i} \in C^{\infty}(D, \mathbb{R}) \}$$

$$\Omega^{2}(D) = \{ \sum_{1 \leq i < j \leq n}^{n} f_{ij} dx^{i} \wedge dx^{j} \mid f_{ij} \in C^{\infty}(D, \mathbb{R}) \}$$

$$\vdots$$

$$\Omega^{n}(D) = \{ f dx^{1} \wedge \cdots \wedge dx^{n} \mid f \in C^{\infty}(D, \mathbb{R}) \}$$

规定大于 n 次以及小于 0 次的微分形式都是零,并且

$$\mathrm{d}x^i \wedge \mathrm{d}x^j = -\mathrm{d}x^j \wedge \mathrm{d}x^i$$

在微分形式上定义外微分运算 $d: \Omega^k(D) \to \Omega^{k+1}(D)$ 如下

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i}$$

$$d(\sum_{i=1}^{n} f_{i} dx^{i}) = \sum_{i=1}^{n} df_{i} \wedge dx^{i} = \sum_{i,j=1}^{n} \frac{\partial f}{\partial x^{j}} dx^{j} \wedge dx^{i}$$

$$\vdots$$

做 \mathbb{R} -线性扩张即可得到 $\Omega^k(D) \to \Omega^{k+1}(D)$ 的映射,并且容易验证, $\mathrm{d}^2=0$,因此得到了如下的微分复形

$$0 \to \Omega^0(D) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(D) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(D) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^2(D) \stackrel{\mathrm{d}}{\longrightarrow} \dots$$

并且可以定义该微分复形对应的上同调群 7 , 记作 $H^*_{dR}(D,\mathbb{R})$

例 1.5.1. 我们下面计算 $H^0_{dR}(D,\mathbb{R})$ 如下

$$H^0_{dR}(D,\mathbb{R}) = \operatorname{Ker}(d:\Omega^0(D) \to \Omega^1(D))$$
$$= \{ f \in C^{\infty}(D,\mathbb{R}) \mid df = 0 \}$$

因此

$$H^0_{dR}(D,\mathbb{R})=\underbrace{\mathbb{R}\oplus\cdots\oplus\mathbb{R}}_{D}$$
 的连通分支的个数

⁷由于随着边缘同态的作用指标在上升,因此这种同调群一般称作上同调群,以与之前的同调群作区分。

1.5.2 Stokes 公式

回忆在微积分中所学过的如下公式

$$\int_{\partial D} P dx + Q dy = \iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$$

$$\iint_{\partial D} P dy dz + Q dz dx + Q dx dy = \iiint_{D} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz$$

$$\int_{\partial D} P dx + Q dy + Q dz = \iint_{D} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) dy dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) dz dx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$$

注意到, 如果我们记

$$\omega = P dx + Q dy$$

那么根据外微分的运算则有

$$d\omega = d(Pdx + Qdy) = (\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy) \wedge dx + (\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy) \wedge dy = (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx \wedge dy$$

类似上面的运算,可以发现后两个公式也有相同的结果,实际上,它们都是下面公 式的特殊形式

定理 1.5.1 (Stokes 公式). $D \in r$ 维边界分片光滑的区域, $\omega \in r-1$ 次微分形式,则

$$\int_{\partial D} \omega = \int_{D} \mathrm{d}\omega$$

注 1.5.1. 上面的等式也可以写成

$$\langle \partial D, \omega \rangle = \langle D, d\omega \rangle$$

即 ∂与 d 构成对偶。

注 1.5.2. \diamondsuit $\Omega^*(D) = \bigoplus_{i=1}^n \Omega^i(D)$, 则 (Ω^*, \wedge) 构成了一个外代数。满足任取 $\omega \in \Omega^p(D), \eta \in \Omega^q(D)$, 则

$$\omega \wedge \eta = (-1)^{pq} \eta \wedge \omega$$

1.5.3 de Rham 上同调的函子性

取 $D_1 \subseteq \mathbb{R}^n$, $D_2 \subseteq \mathbb{R}^m$, 以及 D_1 的坐标 (y^1,\ldots,y^n) , D_2 的坐标 (x^1,\ldots,x^m) , 我们定义切向量的推出

$$f_*(\frac{\partial}{\partial y^i}) = \sum_{\alpha=1}^m \frac{\partial f^\alpha}{\partial y^i} \frac{\partial}{\partial x^\alpha}$$

设 $\omega = \sum_{i_1,...,i_r} \varphi_{i_1...i_r} dx^{i_1} \wedge ... dx^{i_r}$,则定义微分形式的拉回为

$$f^*(\omega) = \sum_{\alpha_1 \dots \alpha_r} \varphi_{i_1 \dots i_r} \circ f \frac{\partial f^{\alpha_1}}{\partial y^{i_1}} \dots \frac{\partial f^{\alpha_r}}{\partial y^{i_r}} dy^{i_1} \wedge \dots \wedge dy^{i_r}$$

并且我们断言 f^* 保持外积以及与外微分交换,即

$$\begin{cases} f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta) \\ f^* \circ \mathbf{d} = \mathbf{d} \circ f^* \end{cases}$$

因此微分形式的拉回

$$f^*: \Omega^*(D_2) \to \Omega^*(D_1)$$

诱导了 de Rham 上同调群之间的态射, 即 H_{dR}^* 是一个反变函子。

1.5.4 de Rham 上同调中的 Mayer-Vietoris 序列

取 U_1, U_2 是 \mathbb{R}^n 中的开集, $U = U_1 \cup U_2$, 则有

命题 1.5.1. 根据上面的图表,对任意的 p, 我们有下面的短正合列

$$0 \to \Omega^p(U) \xrightarrow{I^p} \Omega^p(U_1) \oplus \Omega^p(U_1) \xrightarrow{J^p} \Omega^p(U_1 \cap U_2) \to 0$$

其中

$$I^{p}(\omega) = (i_{1}^{*}(\omega), i_{2}^{*}(\omega))$$
$$J^{p}(\omega_{1}, \omega_{2}) = j_{1}^{*}(\omega_{1}) - j_{2}^{*}(\omega_{2})$$

证明. 关键证明 J^p 是满射,不妨考虑 p=0 的情形,其余情况类似。取从属于 $\{U_1,U_2\}$ 的单位分解 $\{\rho_1,\rho_2\}$,则任取 $f\in C^\infty(U_1\cap U_2)$,考虑 $f_1=\rho_2 f\in C^\infty(U_1)$, $-\rho_1 f\in C^\infty(U_2)^8$,则

$$f = \rho_2 f - (-\rho_1 f) = (\rho_1 + \rho_2) f = f$$

推论 1.5.1. 上述微分复形的短正合列诱导了 de Rham 上同调群的长正合列,即 Mayer-Vietoris 序列。

$$\underbrace{\cdots \to H^p_{dR}(U,\mathbb{R}) \stackrel{+}{\longrightarrow} H^p_{dR}(U_1,\mathbb{R}) \oplus H^p_{dR}(U_2,\mathbb{R}) \stackrel{-}{\longrightarrow} H^q_{dR}(U_1 \cap U_2) \stackrel{\operatorname{d}^*}{\longrightarrow} H^{q+1}_{dR}(U,\mathbb{R}) \to \dots}_{^{8} \mathbb{R} \sharp \colon \text{ 为什么不选取 } f_1 = \rho_1 f, \, f_2 = \rho_2 f?}$$

注 1.5.4. One of hallmarks of a topologist is a sound intuition of d*

注 1.5.5. 由于我们可以在光滑流形上考虑微分形式,以及光滑流形上单位分解的存在性,上述短正合列可以自然的推广到光滑流形上去。

注 1.5.6. 关于单位分解, 我们做如下补充:

定义 1.5.1 (光滑单位分解). 设 M 是 n 维光滑流形 9 , $\{U_i\}_{i\in I}$ 是 M 的局部有限的 开覆盖 10 , 则存在从属于 $\{U_i\}$ 的光滑单位分解,即存在 $\varphi_i \in U_i, 0 \le \varphi_i \le 1$, 满足 $\operatorname{supp} \varphi_i \subset U_i, \forall i \in I$.

定义 1.5.2 (紧支的光滑单位分解). 设 M 是 n 维光滑流形, $\{U_i\}_{i\in I}$ 是 M 的开覆盖,则存在 $\{V_j\}$ 是 $\{U_i\}$ 的一个局部有限的加细,以及从属于 $\{V_j\}$ 的光滑单位分解 $\{\phi_j\}$,使得 ϕ_j 的支集是 V_j 的紧子集。

例 1.5.2. 计算 $H_{dR}^*(\mathbb{R}^2\setminus\{(0,0)\})$ 如下: 我们取 $U_1=\mathbb{R}^2\setminus[0,+\infty), U_2=\mathbb{R}^2\setminus(-\infty,0]$ 。 则 11

$$H_{dR}^{q}(U_{1} \cap U_{2}) = \begin{cases} 0, & p > 0 \\ \mathbb{R} \oplus \mathbb{R}, & q = 0 \end{cases}, \quad H_{dR}^{q}(U_{1}) \oplus H_{dR}^{q}(U_{2}) = \begin{cases} 0, & p > 0 \\ \mathbb{R} \oplus \mathbb{R}, & q = 0 \end{cases}$$

因此根据 Mayer-Vietoris 序列, 当 p > 0 时有

$$0 \to H_{dR}^p(U_1 \cap U_2) \to H_{dR}^{p+1}(U_1 \cup U_2) \to 0$$

即 $p \ge 2$ 时,有 $H^q_{dR}(U_1 \cup U_2) = 0$ 而当 p = 0 时,有

$$0 \to H^0_{dR}(U_1 \cup U_2) \stackrel{I^*}{\to} H^0_{dR}(U_1) \oplus H^0_{dR}(U_2) \stackrel{J^*}{\to} H^0_{dR}(U_1 \cap U_2) \stackrel{\operatorname{d}^*}{\to} H^1_{dR}(U_1 \cup U_2) \to 0$$

我们可以直接计算

$$H^1_{dR}(U_1 \cup U_2) = H^0_{dR}(U_1 \cap U_2) / \operatorname{Im} J^* = \mathbb{R} \oplus \mathbb{R} / \mathbb{R} = \mathbb{R}$$

 $^{^{9}}$ 当我们提及流形时, 总要求它是 T_{2} 并且可数的。

 $^{^{10}}$ 即任取 $x\in M$, x 只包含在有限多个 U_i 中,我们对流形的要求已经足够强,使得这样的开覆盖总是存在的。

¹¹这里我们实际上应用了庞加莱引理