AAMEG - MATEMÁTICA DISCRETA

O presente questionário faz parte do projeto de ensino "Ações de apoio à melhoria do ensino de Matemática Discreta", associado ao programa "Ações de Apoio à Melhoria do Ensino de Graduação (AAMEG)", sob a coordenação da Pró-Reitoria de Graduação (PROGRAD). Este formulário tem como propósito primordial identificar as principais questões enfrentadas pelos estudantes de Matemática Discreta, com enfoque específico no conteúdo de *teoria dos conjuntos - demonstração direta*.

* In	dica uma pergunta obrigatória	
1.	E-mail *	
2.	Nome *	1 ponto
3.	Matrícula *	1 ponto
4	4. To also a solution of the control	4
4.	 Tendo como base o enunciado a seguir, "Demonstre, por demonstração direta, que para todo conjunto X,Y, X∩(X∪Y)=X.", e considerando que a demonstração seja iniciada da seguinte forma: "Sejam A, B dois conjuntos particulares e arbitrários.", qual alternativa melhor representa o OBJETIVO da questão. 	* 1 ponto
	Marcar apenas uma oval.	
	A∩(A∪B)=A	
	\bigcirc A \cap (A \cup B) \subseteq A	
	$A \subseteq A \cap (A \cup B)$	
	Para todo $z \in U$, se $z \in A \cap (A \cup B)$ então $z \in A$	
	Para todo $z \in U$, se $z \in A$ então $z \in A \cap (A \cup B)$	

5. 2. Tendo como base o enunciado a seguir, "Demonstre, por demonstração direta, que para todo conjunto X,Y,Z, se X ⊆ Y e X ⊆ Z então X ⊆ Y∩Z", e considerando que a demonstração seja iniciada da seguinte forma: "Sejam A, B, C três conjuntos particulares e arbitrários, tal que A ⊆ B e A ⊆ C.", qual alternativa melhor representa o OBJETIVO PARCIAL da questão?

Marcar apenas uma oval.

\bigcirc A \subseteq B
\bigcirc A \subseteq C
\bigcirc Para todo $z \in U$, se $z \in B \cap C$ então $z \in A$
\bigcirc A \subseteq B \cap C

Para todo $z \in U$, se $z \in A$ então $z \in B \cap C$.

6. 3. Qual das alternativas a seguir representa corretamente a definição de * 1 ponto igualdade de conjuntos?

Marcar apenas uma oval.

Para todo conjunto X, Y, X = Y $\leftrightarrow \forall w \in U$, $w \in X \rightarrow w \in Y$
Para todo conjunto X, Y, X = Y \leftrightarrow \forall w \in U, w \in X ou w \in Y
Para todo conjunto X, Y, X = Y \leftrightarrow X \nsubseteq Y ou Y \nsubseteq X
Para todo conjunto X, Y, X = Y $\leftrightarrow \forall w \in U$, $w \in X$ e $w \in Y$
Para todo conjunto X, Y, X = Y \leftrightarrow X \subseteq Y e Y \subseteq X

7.	 4. Caso deseje solucionar uma questão com o seguinte enunciado "Demonstre, por demonstração direta, que para todo conjunto X, Y, X∩(X∪Y)=X.", quais serão as definições necessárias? I. Definição de Subconjunto; 	* 1 ponto
	II. Definição de Igualdade de Conjuntos;	
	III. Definição de União;	
	IV. Definição de Interseção;	
	V. Definição de Diferença;	
	VI. Definição de Complemento.	
	Marcar apenas uma oval.	
8.	5. Tendo como base o enunciado a seguir: "Demonstre, por demonstração direta, que para todo conjunto W , X , Y , Z , se $W \subseteq X$ e $Y \subseteq Z$ $então$ $W - Z \subseteq X - Y$ ", selecione a alternativa que representa corretamente o início da demonstração. Marcar apenas uma oval.	* 1 ponto
		a C C D
	Sejam A, B, C, D quatro conjuntos particulares e arbitrários, tal que $A \subseteq B$	
	Sejam A, B, C, D quatro conjuntos particulares e arbitrários, tal que A – D \subseteq Sejam A, B, C, D quatro conjuntos particulares e arbitrários, se A \subseteq B e C \subseteq $então$ A – D \subseteq B – C.	
	Seja $k \in U$ um elemento particular e arbitrário, tal que $k \in A - D$.	
	Sejam A, B, C, D quatro conjuntos particulares e arbitrários, tal que pela de diferença de conjuntos, podemos concluir que $k \in A$ e $k \notin D$.	efinição

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários