Why Study Atomic Structure?

In Chapter 3, we learned atoms and molecules make up everything. But:

- Why are atoms of different elements different?
- Are atoms really indivisible as Dalton said?

Scientists discovered that atoms are not indivisible — they are made of even smaller particles called sub-atomic particles.

4.1 Charged Particles in Matter

Activity 4.1:

- Comb dry hair → it attracts bits of paper
- Rub glass rod with silk → bring near balloon → balloon gets attracted

✓ Conclusion: Rubbing creates electric charge → things get charged → Matter contains charged particles!

Sub-atomic Particles

- 1. Electron (e-)
 - Discovered by: J.J. Thomson
 - Charge: -1 unit
 - Mass: negligible (1/2000 of a hydrogen atom)
- 2. Proton (p+)
 - Discovered by: E. Goldstein (via canal rays)
 - Charge: +1 unit
 - Mass: 1 atomic mass unit (u)
- 3. Neutron (n)
 - Discovered by: James Chadwick
 - Charge: 0
 - Mass: ≈ 1 u

4.2 Atomic Models

Let's understand how scientists explained atom's structure using models.

4.2.1 Thomson's Model of Atom

Definition: J.J. Thomson proposed that atoms are a sphere of positive charge with negatively charged electrons embedded like seeds in watermelon.

Key points:

- Atom is positively charged with embedded electrons
- Charges are equal & opposite → Atom is neutral

Fig. 4.1 – Thomson's Plum Pudding Model

Limitation:

Couldn't explain results of other experiments, like Rutherford's.

♦ 4.2.2 Rutherford's Alpha-Particle Scattering Experiment

- Bombarded thin gold foil with fast-moving α-particles (He²⁺)
- Observed paths of particles

Observations:

- 1. Most α -particles passed straight
- 2. Some deflected slightly
- 3. A few bounced back!

Conclusion:

- Most of atom is empty space
- Positive charge & mass concentrated in a tiny central part → nucleus
- Electrons revolve around nucleus

Rutherford's Model:

- Atom has a dense nucleus (positive)
- Electrons revolve in circular orbits
- Nucleus is very small

Fig. 4.2 – Rutherford's gold foil experiment

Limitation:

According to classical physics, electrons moving in circles should lose energy and spiral into nucleus \rightarrow atom would collapse. But atoms are stable \rightarrow this model couldn't explain that.

4.2.3 Bohr's Model of Atom

Proposed by: Neils Bohr (to fix Rutherford's model)

Key Postulates:

- 1. Electrons move in fixed energy levels (orbits/shells)
- 2. As long as electrons stay in these orbits, they do not lose energy
- 3. Each orbit has fixed energy and capacity

Fig. 4.3 – Energy levels around nucleus

4.2.4 Neutrons

Neutron → Neutral particle in nucleus
Discovered by: James Chadwick (1932)
Mass ≈ 1 u
Neutrons + Protons = nucleons
All atoms (except hydrogen-1) have neutrons

_

4.3 Electron Distribution in Shells

- Rule for Electron Distribution: (Bohr-Bury scheme)
 - 1. Max electrons in shell = $2n^2$ (n = shell number: K = 1, L = 2...)

Capacity:

- $K \rightarrow 2 (2 \times 1^2)$
- L \rightarrow 8 (2×2²)
- $M \rightarrow 18 (2 \times 3^2)$
- N \rightarrow 32 (2×4²)
- 1. Outer shell can have max 8 electrons
- 2. Inner shells must be filled first

™ Fig. 4.4 – Atomic structures of first 18 elements

■ Table 4.1 – Atomic number, shells, valency for first 18 elements

Activity 4.2:

Make a model showing electronic configurations of 1–18 elements

_

4.4 Valency

■ Valency:

The combining capacity of an atom (how many electrons it can lose/gain/share to complete its

outermost shell).

Rules:

- If outer shell has < 4 electrons → valency = number of electrons
- If outer shell has > 4 electrons → valency = 8 number of electrons
- Completely filled shell (like He, Ne, Ar) → valency = 0
- Examples:
 - Na (2,8,1) → Valency = 1
 - O (2,6) → Gains 2 electrons → Valency = 2
 - $F(2,7) \rightarrow Gains 1 \rightarrow Valency = 1$
 - Mg (2,8,2) → Loses 2 → Valency = 2
- Table 4.1 → Column of valencies

_

4.5 Atomic Number and Mass Number

- Atomic Number (Z):
- Definition: Number of protons in an atom's nucleus
- Z = number of protons = number of electrons (for neutral atom)

Example: Z of carbon = 6

—

- Mass Number (A):
- Definition: Total number of protons + neutrons in an atom
- A = number of protons + number of neutrons

Notation:

Α

 $ZX \rightarrow$ where X = element symbol

Example:

Carbon \rightarrow ¹²₆C \rightarrow 6 protons + 6 neutrons = 12

_

4.6 Isotopes and Isobars

- Isotopes
- **Definition:**

Atoms of the same element with same atomic number but different mass number.

Examples:

- ¹₁H (protium), ²₁H (deuterium), ³₁H (tritium)
- ¹²₆C & ¹⁴₆C
- ³⁵₁₇Cl & ³⁷₁₇Cl

Properties:

- Chemically same
- Physically different
- Used in medicine & nuclear reactors
- Average atomic mass of Cl = (35×75% + 37×25%) / 100 = 35.5 u

Isobars

Definition:

Atoms of different elements with same mass number but different atomic number

Example:

 $^{40}{}_{20}$ Ca and $^{40}{}_{18}$ Ar \rightarrow different elements, same mass