HOMOLOGICAL ALGEBRA

ISHAN LEVY

1. Abelian Categories

Abelian categories are the setting for homological algebra. The notion is due to Grothendieck, and abelian categories appear in many places in mathematics.

A **preadditive category** is one that is enriched over Ab, the category of abelian groups. Note that the dual of a preadditive category is preadditive, so notions can be dualized.

Proposition 1.1. In a preadditive category C, a map f is monic iff for any map g, $f \circ g = 0 \implies g = 0$.

Proof. Take the original condition for monic and subtract.

Dually, a map f is epic iff for any map $g, g \circ f = 0 \implies g = 0$.

Theorem 1.2. In a preadditive category C, finite (possibly empty) coproducts coincide with finite products.

Proof. This follows from the fact that it is true in Ab. For a product, we have projections $A \times B \to A$, B. We can produce the inclusions $A, B \to A \times B$ as $1_B \times 0, 0 \times 1_A$. It is easy to check that these identify $A \times B$ with $A \coprod B$. Now let 0 be an initial object. Hom(0,0) is the trivial ring, so there must be a unique map to 0 as we can compose with the identity of 0, and the composite must be 0.

The finite product and coproduct in a preadditive category are also called the **biproduct**. The biproduct of $A_1
ldots A_n$ is also characterized as an object denoted $A_1 \oplus \cdots \oplus A_n$ such that there are projections π_j to each A_j with sections i_j such that $\sum_{1}^{n} i_j \circ \pi_j = 1_{A_1 \oplus \dots A_n}$ and $\pi_k \circ i_j = 0$ when $j \neq k$.

The **kernel** of a morphism f in a preadditive category is the equalizer with the 0 morphism. The **cokernel** is dual. By subtracting, having kernels is the same as having equalizers and likewise for cokernels.

Proposition 1.3. A morphism f in a preadditive category is monic iff its kernel is 0.

Proof. If its kernel is 0 and $f \circ g$ is 0, g factors through the kernel by definition, so is 0. Thus g is monic. Conversely if f is monic, 0 satisfies the universal property of the kernel.

A monomorphism f is **normal** if it is the kernel of another morphism. The dual notion for epimorphisms is also called normal.

An **abelian category** is a preadditive category that is finitely complete with every monomorphism and epimorphism is normal. It is also a self-dual concept.

Proposition 1.4 (First isomorphism theorem). A normal monic $f: A \to B$ is the kernel of its cokernel.

Proof. f is the kernel of some morphism $g: B \to C$. the composite $g \circ f$ is 0, so g factors through the cokernel. Now the kernel of $B \to \operatorname{coker}(f)$ has a natural map to A as the map $\operatorname{coker}(f) \to C$ is 0. Its inverse exists since by definition the map $A \to B \to \operatorname{coker}(f)$ is 0. \square

Proposition 1.5. In an abelian category, every morphism $f: A \to B$ factors as $A \to \operatorname{im}(f) \to B$, an epic followed by a mono. $\operatorname{im}(A)$ is called the **image**.

Proof. Define im(f) to be the cokernel of the map from the kernel, or alternatively the kernel of the map to the cokernel, which are the same

Proposition 1.6. The kernel of a map is 0 iff the map is mono, and the cokernel of a map is 0 iff the map is epi.

We say that a sequence of morphisms $A_i, f_i : A_i \to A_{i+1}$ is **exact** if the $\operatorname{coker}(f_i) = \ker(f_{i+1})$.