PID - Tehnica fundamentală a controlului automat

Paula Raica

Departmentul de Automatică

Str. Dorobantilor 71-73, sala C21, tel: 0264 - 401267

Str. Baritiu 26-28, sala C14, tel: 0264 - 202368

email: Paula.Raica@aut.utcluj.ro

Universitatea Tehnică din Cluj-Napoca

Introducere

Un sistem de control automat este proiectat pentru a genera un semnal de *comandă* care să corecteze comportamentul unui proces astfel încât să aducă ieșirea procesului la o valoare dorită numită *referință*.

Exemplu

Sistemul de control a temperaturii într-o casă:

- Procesul casa,
- lesirea procesului temperatura
- Referință temperatura dorită în casă,
- Traductor/Senzor Termocuplu care măsoară temperatura
- Regulator termostat
- Semnalul de comandă semnalul trimis spre aparatul de aer condiționat
- Elementul de execuție aparatul de aer condiționat
- Perturbație sursă aleatoare de căldură

Algoritmul PID

■ PID (proportional-integrator-derivator) este algoritmul de control cel mau mult utilizat în automatizări industriale (95 %).

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

- $\mathbf{u}(t)$ semnalul de comandă
- e(t) eroarea = diferența între referință și măsură

- *K*_P constanta de proporționalitate
- \blacksquare K_I constanta de integrare
- K_D constanta de derivare () > > > > < < > <

Regulator PID

leșirea regulatorului PID ca funcție de timp:

$$u(t) = K_P e(t) + K_I \int_0^t e(au) d au + K_D rac{de(t)}{dt}$$

Regulator PID

Funcția de transfer a unui regulator PID (ideal)

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt} | \mathcal{L}$$

$$U(s) = K_P E(s) + K_I \frac{1}{s} E(s) + K_D s E(s) = (K_P + K_I \frac{1}{s} + K_D s) E(s)$$

$$G_{PID}(s) = \frac{U(s)}{E(s)} = K_P + K_I \frac{1}{s} + K_D s$$

regulator proporțional (P): $G_P(s) = K_P$ regulator proporțional-integrator (PI): $G_{PI}(s) = K_P + \frac{K_I}{s}$ regulator proporțional-derivator (PD): $G_{PD}(s) = K_P + K_D \cdot s$ regulator proporțional-integrator-derivator (PID): $G_{PID}(s) = K_P + \frac{K_I}{s} + K_D s$

Regulator PID

Funcția de transfer a unui regulator PID (ideal)

$$G_{PID}(s) = \frac{U(s)}{E(s)} = K_P + K_I \frac{1}{s} + K_D s$$

Efectul termenilor PID

Se consideră un sistem în buclă închisă, cu un proces cu funcția de transfer G(s) și un regulator PID.

Pentru fiecare termen P, I și D, se analizează:

- lacktriangle eroarea e(t) și semnalul de comandă u(t)
- \blacksquare ieşirea procesului c(t)

Acţiunea P

 $K_D = 0$, $K_I = 0$. Ieșirea regulatorului P este:

$$u(t) = K_P e(t)$$
 și funcția de transfer: $G_P(s) = K_P$

Figure: (stânga) $K_P = 2$, (dreapta) $K_P = 5$

Acţiunea P

Se observă:

- lacktriangle eroarea staționară descrește cu creșterea constantei \mathcal{K}_P
- răspunsul sistemului devine mai oscilant cu creșterea constantei K_P

Acțiunea I

 $K_D = 0$. leşirea regulatorului PI este:

$$u(t) = K_P e(t) + \int_0^t e(au) d au$$
 și funcția de transfer: $G_{PI}(s) = K_P + rac{K_I}{s}$

Figure: Control PI. (stânga) $K_P = 1, K_I = 0.5$, (dreapta) $K_P = 1, K_I = 1$

Acțiunea I

Se observă:

- ieșirea procesului este mai rapidă (timp de creștere mai mic), dar este mai oscilantă cu creșterea *K*_I
- **E**roarea staționară este zero pentru orice valoare a constantei K_I
- Principala funcție a efectului integrator este anularea erorii staționare.
- Un regulator cu acțiune integrală produce un semnald e comandă care crește chiar și pentru o eroare mică pozitivă. O eroare negativă va deterina scăderea semnalului de comandă, chiarși pentru o valoare mică a erorii.

Acțiunea D

 $K_I = 0$. Ieșirea regulatorului PD este:

$$u(t) = K_P e(t) + K_D \frac{de(t)}{dt}$$
 și funcția de transfer: $G_{PI}(s) = G_{PI}(s) = K_P + K_D s$

Figure: Derivata ca predicție

Acțiunea PD poate fi interpretată: semnalul de comandă este proporțional cu ieșirea *prezisă* a procesului, unde predicția se face extrapolând eroarea pe tangenta la curba erorii.

Acţiunea D

Figure: PID control. (stånga) $K_P=1, K_I=1, K_D=1$, (dreapta) $K_P=1, K_I=1, K_D=3$

AcțiuneaD

Se observă:

- eroarea staționară este zero datorită termenului I
- suprareglajul descrește cu creșterea lui K_D
- datorită schimbării bruşte în eroare la timpul inițial, termenul D are o valoare mare la timpul inițial şi astfel determină un semnal de comandă foarte mare.

Alte forme ale regulatorului PID

■ Funcția de transfer a unui regulator PID ideal este:

$$G_{PID}(s) = \frac{U(s)}{E(s)} = K_P + K_I \frac{1}{s} + K_D s \tag{1}$$

Expresia de mai sus se poate rearanja:

$$G_{PID}(s) = K_P \left(1 + \frac{K_I}{K_P s} + \frac{K_D}{K_P} s \right)$$

$$= K_P \left(1 + \frac{1}{T_i s} + T_d s \right)$$
(2)

- unde parametrii regulatorului sunt:
 - \blacksquare K_P constanta de proporționalitate
 - $T_i = \frac{K_P}{K_I}$ timpul (constanta de timp) de integrare
 - $T_d = \frac{K_D}{K_B}$ timpul (constanta de timp) de derivare

Regulatorul PID - filtrarea efectului derivator

- Expresiile anterioare ale unui regulator PID au presupus că un efect D ideal poate fi realizat, dar în realitate acest lucru nu este posibil
- Un regulator PID **real** are și un efect de întârziere inclus în termenul D, sub forma unui element cu funcția de transfer:

$$G_D(s) = \frac{T_d s}{\frac{T_d s}{N} s + 1}$$

unde N are o valoarea mare.

■ Funcția de transfer a unui PID real este:

$$G_{PID} = K_P \left(1 + rac{1}{T_i s} + rac{T_d s}{rac{T_d}{N} s + 1}
ight)$$

Acordarea regulatoarelor PID

Acordare = alegerea constantelor K_P , K_I , K_D astfel încât suma efectelor determină ieșirea procesului să evolueze astfel încât să se elimine eroarea.

$$u(t) = K_P e(t) + K_I \int_0^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$

Pentru un proces lent:

- Daca eroarea se schimbă brusc termenul D se modifică primul
- Termenul P menținea ieșirea regulatorului până când eroarea este eliminată
- Termenul I contribuie la ieșirea regulatorului când eroarea se acumulează în timp. Poate produce suprareglaj.

Acordarea regulatoarelor PID

Trei abordări :

- Trial-and-error' se bazează pe experiența. Exemplu: scăderea K_I reduce suprareglajul dar reduce și viteza de variație a erorii
- Abordarea analitică. Daca se cunoaște modelul matematic al procesului există numeroase metode de acordare a regulatoarelor.
- Un compromis între abordarea experimentală și analitică. A fost propusă în 1942 de John G. Ziegler și Nathaniel B. Nichols de la Taylor Instruments.

Acordarea regulatoarelor PID

In practică ieșirea unui PID este dat de:

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]$$

$$G_{PID}(s) = \frac{U(s)}{E(s)} = K_p \left(1 + \frac{1}{T_i s} + T_d s\right)$$

unde: K_p = constanta de proporționalitate, T_i = timpul de integrare, T_d = timpul de derivare

Metoda în buclă închisă

- Se setează $T_i = \infty$, și $T_d = 0$.
- Se crește K_p de la 0 la o valoare critică K_0 unde ieșirea c(t), prezintă oscilații întreținute.

Metoda în buclă închisă

Se determină experimental:

- K₀ constanta de proporționalitate critică
- T₀ perioada critică a oscilațiilor.

Metoda în buclă închisă

Type of controller	K_p	T_i	T_d
Р	0.5 <i>K</i> ₀	∞	0
PI	0.45 <i>K</i> ₀	$1/1.2T_0$	0
PID	0.6 <i>K</i> ₀	0.5 <i>T</i> ₀	$0.125 T_0$

Un regulator PID acordat cu metoda ZN rezultă:

$$G_{PID}(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = 0.6 K_0 \left(1 + \frac{1}{0.5 T_0 s} + 0.125 T_0 s \right)$$
$$= 0.075 K_0 T_0 \frac{(s + 4/T_o)^2}{s}$$

Regulatorul are un pol în origine și un zero dublu la $s = -4/T_0$.

Termenul derivator. Dacă ieșirea procesului este afectată de zgomot termenul D poate determina variații mari ale comandei (ex. reglarea presiunii și nivelului)

Metoda se poate aplica pentru procese cu model cunoscut

 $T_i = \infty$, $T_d = 0$, funcția de transfer a buclei închise:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p}$$

Cu metoda Routh-Hurwitz se determină valoarea lui K_p pentru care sistemul este la limita de stabilitate.

Ecuația caracteristică:

$$s^3 + 6s^2 + 5s + K_p = 0$$

$$s^{3} : 1 5 s^{2} : 6 K_{p} (s+6)(s^{2}+5) = (s+6)(s^{2}+\omega_{n}^{2}) = 0$$

$$s^{1} : \frac{30-K_{p}}{6} 0 \Rightarrow \omega_{n} = \sqrt{5} = 2\pi \cdot f = 2\pi \cdot \frac{1}{T_{0}},$$

$$\Rightarrow K_{0} = K_{p} = 30 T_{0} = \frac{2\pi}{\omega_{n}} = \frac{2\pi}{\sqrt{5}} = 2.81$$

$$K_{n} = 0.6K_{0} = 18, T_{i} = 0.5T_{0} = 1.405, T_{d} = 0.125T_{0} = 0.35$$

 $s^3 + 6s^2 + 5s + 30 = 0$

Funcția de transfer a regulatorului PID:

$$G_{PID}(s) = 18\left(1 + \frac{1}{1.405s} + 0.35s\right) = \frac{6.32(s + 1.42)^2}{s}$$

Răspunsul la treaptă a sistemului închis:

Se muta zeroul la -0.65:

$$G_{PID}(s) = \frac{13.84(s+0.65)^2}{s}$$

Se crește K_p la 39.42:

$$G_{PID}(s) = \frac{30.322(s+0.65)^2}{s}$$

2. Metoda în buclă deschisă

Se aplică o treaptă la intrarea procesului și se măsoară ieșirea:

 \Rightarrow constanta de proporționalitate K, timpul mort L, constanta de timp T.

Metoda în buclă deschisă

Funcția de transfer a procesului = sistem de ordinul 1 cu timp mort:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

Metoda în buclă deschisă

Type of controller	K_p	T_i	T_d
Р	T/L	∞	0
PI	0.9T/L	L/0.3	0
PID	1.2T/L	2 <i>L</i>	0.5 <i>L</i>

Regulatorul PID:

$$G_{PID}(s) = \mathcal{K}_p\left(1 + \frac{1}{T_i s} + T_d s\right) = 0.6 T \frac{\left(s + 1/L\right)^2}{s}$$

pol în origine și un zerou dublu la s=-1/L.

Metodele de acordare Zeigler-Nichols produc un răspuns tranzitoriu oscilant. Regulatorul trebuie acordat fin înainte de a fi pus în funcțiune.