

Agenda

Representação gráfica de dados cuidados na representação gráfica

Apresentação dos trabalhos da semana

Estatísticas descritivas

tendência central variabilidade assimetria

Análise Preliminar de Dados

cuidados na representação gráfica

Análise preliminar de dados | cuidados na representação gráfica

"ao menos 65% das pessoas são aprendizes visuais" (Dr. Richard Felder, em tradução livre)

Quando as análises estatísticas são finalizadas, é hora de apresentá-las

Para apresentações orais

figuras são (muito!) mais eficientes que tabelas

Para apresentações escritas

figuras precisam ser autoexplicativa (com ajuda de uma legenda apropriada)

Análise preliminar de dados | cuidados na representação gráfica

Recomendações gerais para um bom gráfico

cuide com cores: maximize a relação "informação/tinta" evite perspectivas

eixos devem começar em zero quando a magnitude do dado é importante conexões entre pontos somente com variáveis contínuas apresentações orais devem conter gráficos diferentes de apresentações por escrito

Cuidados com cores

podem aumentar o interesse do público, porém enviesar a interpretação de resultados

Características trazidas pelas cores

cores quentes ou intensas (grande saturação) tendem a aumentar os objetos

cores frias ou em tons pastéis amenizam o efeito

Características trazidas pelas cores (cont.)

dados representados por círculos/pontos com diferentes cores são mais eficientes do que representados por diferentes símbolos

linhas com diferentes cores são mais eficientes do que linhas sólidas vs. linhas tracejadas (ou outros padrões)

Cuidado com múltiplas cores

pessoas conseguem diferenciar entre 8 a 12 cores

daltonismo (mais comum: distinção entre vermelho e verde)

sugestão: https://www.color-blindness.com/coblis-color-blindness-simulator/

Relação "informação/tinta" (data-ink ratio) (Tufte, 1983)

$$Data-ink \ ratio = \frac{\text{cores relevantes}}{\text{total de cores do gráfico}}$$

Em essência: somente os objetos que contém as informações relevantes devem ser destacados por cores

Exemplo de maximização da data-ink ratio: calorias em 100g de bacon

1. Eliminação das cores de fundo

2. Eliminação de informações redundantes (legenda e títulos)

3. Eliminação das bordas

4. Aplicação de cores somente à informação de destaque

5. Retirada sombras e perspectivas

6. Eliminação de linhas de grade

Análise preliminar de dados | perspectiva

Perspectiva: aspecto de 3 dimensões

prejudica análises que envolvem áreas, comprimentos ou ângulos nosso cérebro compensa a perspectiva aumentando o tamanho de objetos à distância

Área de drenagem de 5 bacias na Baía de Chesapeake (EUA) Fonte: Helsel et al. (2020, p. 423)

Usos da água nos EUA

Fonte: Helsel et al. (2020, p. 423)

Análise preliminar de dados | gráficos com números

Gráficos com números (além dos eixos)

podem indicar que o gráfico precisa ser mais bem definido

quando requeridos, números devem ser mostrados em outro lugar (apêndices)

Quebras de escala cuidar para não confundir o público preferir uma quebra completa na escala

Fonte: Helsel et al. (2020, p. 426)

Quebras de escala

cuidar para não confundir o público preferir uma quebra completa na escala

Fonte: Helsel et al. (2020, p. 426)

Quebras de escala

cuidar para não confundir o público preferir uma quebra completa na escala

Fonte: Helsel et al. (2020, p. 426)

Escalas automáticas

ferramentas ajustam automaticamente as escalas dos eixos podem não ser apropriadas para a apresentação das conclusões desejadas ex.: análise de tendências

Fonte: Helsel et al. (2020, p. 427)

Escalas automáticas

ferramentas ajustam automaticamente as escalas dos eixos podem não ser apropriadas para a apresentação das conclusões desejadas ex.: análise de tendências

Fonte: Helsel et al. (2020, p. 427)

Escalas automáticas

ex.: comparação entre dados

Fonte: Helsel et al. (2020, p. 428)

Escalas automáticas

ex.: comparação entre dados

Fonte: Helsel et al. (2020, p. 428)

Escalas transformadas

valores dos eixos devem manter a escala original dos dados ex.: transformação logarítmica

APRESENTAÇÃO DOS TRABALHOS

Análise Preliminar de Dados

estatísticas descritivas

Análise preliminar de dados | estatísticas descritivas

Estatísticas descritivas: métodos para resumir um conjunto de dados

Provêm informações importantes para inferir aspectos da população tendência central variabilidade assimetria

Prioridade para medidas robustas

robustez estatística: técnica que funciona bem para amostras com diferentes características

Análise preliminar de dados | estatísticas descritivas

Para os próximos exemplos será utilizada a séries de Nitrogênio Orgânico (NOrg) no posto IG3 (rio Iguaçu), compreendida entre jun./05 e ago./17

Análise preliminar de dados | caracterização dos dados

Caracterização dos dados

Tamanho total da série

pode ou não incluir falhas na observação falhas tipicamente representadas por códigos: -999, NA, etc.

Quantidade de falhas

expresso tipicamente em percentual

Tamanho da série sem falhas

série efetivamente usada para o cálculo das estatísticas

Análise preliminar de dados | tendência central

Medidas de tendência central

Média aritmética (\bar{X}):

$$\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$

onde

 X_i observação no instante i

n tamanho da amostra

Métrica pouco robusta por sofrer com a influência de *outliers*.

Análise preliminar de dados | tendência central

Mediana (\tilde{X}) : métrica robusta de tendência central (imune a *outliers*) equivale ao percentil 50 (P_{50})

Ordenar a série de forma crescente: $X(1) < X(2) < \cdots < X(n)$

Depois:

$$\tilde{X} = \begin{cases} X\left(\frac{n+1}{2}\right), \text{ para n impar} \\ \frac{1}{2}\left[X\left(\frac{n}{2}\right) + X\left(\frac{n}{2} + 1\right)\right], \text{ para n par} \end{cases}$$

Medidas de variabilidade

Variância (s^2):

$$s^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \bar{X})^{2}}{n-1}$$

onde

 X_i observação no instante i

 \overline{X} média da amostra

n tamanho da amostra

Métrica pouco robusta por sofrer com a influência de *outliers*.

Desvio padrão (s):

$$s = \sqrt{s^2}$$

onde s^2 variância da amostra

Preferível quando se quer expressar a estatística na unidade original da variável

Métrica pouco robusta por sofrer com a influência de *outliers*.

Amplitude interquartil (*IQR*): métrica robusta de variabilidade mede a variabilidade de 50% dos dados centrais da amostra elimina a influência de 25% dos dados em cada extremidade

$$IQR = P_{75\%} - P_{25\%}$$

onde

 P_i percentil referente aos valores menores ou iguais a j na amostra ordenada

$$P_j = X_{(n+1)\cdot j}$$

Para $P_{75\%}$ e $P_{25\%}$, j = 0.75 e 0.25, respectivamente

Amplitude interquartil (IQR): (cont.)

Ex.: seja a amostra {11, 9, 4, 2, 8, 11, 12}. Ordenando-a, tem-se:

$$P_{25\%}$$
: $X_{(7+1)\cdot 0,25} = X_2 \to 4$
 $P_{75\%}$: $X_{(7+1)\cdot 0,75} = X_6 \to 11$
 $\therefore IQR = 11 - 4 = 7$

Quando os índices não resultam em valores inteiros, é preciso interpolar

Desvio absoluto da mediana (MAD):

$$MAD(X) = \left| \tilde{d}_i \right|$$

onde

 \tilde{d}_i mediana de d_i

$$d_i = X_i - \tilde{X}$$

onde

 X_i observação no instante i

 \tilde{X} mediana da amostra

Coeficiente de variação (*CV*): medida adimensional de dispersão útil para comparar o nível de dispersão de séries com diferentes escalas

$$CV = \frac{S}{\overline{X}} (\times 100)$$

onde

 \overline{X} média da amostra

s desvio padrão da amostra

 $CV \le 15\%$ baixa dispersão $15\% < CV \le 30\%$ média dispersão CV > 30% alta dispersão

Medidas de assimetria

A assimetria positiva é característica inerente de variáveis naturais

Fonte: https://upload.wikimedia.org/wikipedia/commons/c/cc/Relationship_between_mean_and_median_under_different_skewness.png

Em dados com assimetria positiva, tanto a média quanto o desvio padrão (ou variância) são métricas pouco precisas média é sempre maior que a mediana

Para esses casos, métricas adicionais (robustas) precisam ser incluídas na análise exploratória dos dados

Assimetria também indica a não normalidade dos dados cuidados no uso de técnicas estatísticas paramétricas (mais detalhes no decorrer do curso)

desvio padrão (ou variância) são tendenciosos

Coeficiente de assimetria (g): medida clássica de assimetria

$$g = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \frac{(X_i - \bar{X})^3}{s^3}$$

onde

 X_i observação no instante i

média da amostra

s desvio padrão da amostra

n tamanho da amostra

Métrica pouco robusta por sofrer com a influência de *outliers*.

Em amostras com tamanhos inferiores a 100 elementos, g pode ser altamente tendencioso

tendenciosidade estatística: diferença entre o valor amostral e o populacional de uma estimativa

A assimetria amostral tende a ser subestimada em relação à assimetria populacional

Somente quando a assimetria populacional é nula, g é uma estimativa não tendenciosa

Assimetria quartílica (quartile skew -qs): medida robusta de assimetria

$$qs = \frac{(P_{75\%} - P_{50\%}) - (P_{50\%} - P_{25\%})}{(P_{75\%} - P_{25\%})}$$

onde

 P_j percentil referente aos valores menores ou iguais a j na amostra ordenada

$$P_j = X_{(n+1)\cdot j}$$

Para $P_{75\%}$, $P_{50\%}$ e $P_{25\%}$, j = 0.75, 0.50 e 0.25, respectivamente

Análise preliminar de dados | aplicação

Aplicação em R: estatísticas descritivas

Caracterização	Tamanho da série	58 elementos
	Falhas	5,2%
Tendência central	Média	3,39 mg/L
	Mediana	1,88 mg/L
Variabilidade	Variância	36,11 (mg/L) ²
	Desvio Padrão	6,01 mg/L
	Amplitude interquartil	2,83 mg/L
	Desvio absoluto da mediana	2,16 mg/L
	Coef. de variação	56%
Assimetria	Coef. de assimetria	1,41
	Assimetria interquatílica	0,22

Revisão

Gráficos são a forma mais eficiente de comunicação e divulgação priorizar o que se quer mostrar cuidar com cores, eixos e escalas

Estatísticas descritivas são úteis para melhor entendimento da amostra medidas de tendência central, variação e assimetria assimetria inerente às variáveis ambientais pode distorcer estatísticas clássicas priorizar medidas robustas

Estatística Aplicada a Ciências Ambientais

Daniel Detzel detzel@ufpr.br