dos alguns termos ão das imagens

Funções (12.º ano)

Limite (definição de Heine)

Exercícios de Provas Nacionais e Testes Intermédios - Propostas de resolução

1. Como $\lim u_n = \lim \left(\frac{8n-4}{n+1}\right) = \lim \left(\frac{8n}{n}\right) = 8$ e (u_n) é uma monótona crescente, então $\lim u_n = 8^-$

a(un)

E assim, vem que:

$$\lim_{x \to 8^{-}} f(x) = \log_2(8 - 8^{-}) = \log_2(0^{+}) = -\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $-\infty$, quando o valor de n aumenta.

Resposta: Opção A

Exame -2020, 1.^a fase

2. Como
$$\lim x_n = \lim \left(-\frac{1}{n}\right) = 0^-$$
, então

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f(x) = \frac{0 - 1}{e^{0^{-}} - 1} = \frac{-1}{1^{-} - 1} = \frac{-1}{0^{-}} = +\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção D

Exame - 2014, Ép. Especial

3. Como
$$\lim x_n = \lim \left(\left(1 + \frac{1}{n} \right)^n \right) = e^-$$
, então

$$\lim_{x \to e^{-}} g(x) = \lim_{x \to e^{-}} g(x) = \ln(e - e^{-}) = \ln(0^{+}) = -\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $-\infty$, quando o valor de n aumenta.

Resposta: Opção D

Exame -2014, 2.a fase

4. Como $\lim x_n = \lim \frac{1}{\sqrt{n}} = 0^+$, então

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f(x) = e^{\frac{1}{0^+}} - 3 = e^{+\infty} - 3 = +\infty - 3 = +\infty$$

E assim

$$\lim \frac{2}{f(x_n)} = \frac{\lim 2}{\lim f(x_n)} = \frac{2}{+\infty} = 0$$

Resposta: Opção C

Exame – 2014, $1.^a$ fase

5. Como se pretende que $\lim h(x_n) = +\infty$, então, de acordo com o gráfico da função h, a expressão da sucessão (x_n) pode ser

•
$$\left(1-\frac{1}{n}\right)$$
 porque como $\lim \left(1-\frac{1}{n}\right)=1^-$, temos que $\lim h\left(x_n\right)=\lim_{x\to 1^-}h(x)=+\infty$

•
$$\left(1+\frac{1}{n}\right)^n$$
 porque como $\lim \left(\left(1+\frac{1}{n}\right)^n\right)=e^-$, temos que $\lim h\left(x_n\right)=\lim_{x\to e^-}h(x)=+\infty$

Assim, concluímos que $\left(1+\frac{1}{n}\right)^3$ é a única expressão que não pode ser o termo geral da sucessão (x_n) porque como $\lim \left(\left(1+\frac{1}{n}\right)^3\right)=1^+$ temos que $\lim h\left(x_n\right)=\lim_{x\to 1^+}h(x)=-\infty$

Resposta: Opção B

Teste Intermédio 12.º ano - 30.04.2014

6. Temos que $\lim u_n = \lim \left(2 + \frac{1}{n}\right) = 2^+$

Como
$$\lim f(u_n) = +\infty$$
 então $\lim f(u_n) = \lim_{x \to 2^+} f(x) = +\infty$

No gráfico da opção (A), temos que $0<\lim f(u_n)<2$ pelo que $\lim f(u_n)=\lim_{x\to 2^+}f(x)\neq +\infty$

No gráfico da opção (B), temos que $-2 < \lim f(u_n) < 0$ pelo que $\lim f(u_n) = \lim_{x \to 2^+} f(x) \neq +\infty$

No gráfico da opção (D), temos que $\lim_{x\to 2^+} f(x) \neq -\infty$

No gráfico da opção (C) temos que $\lim_{x\to 2^+} f(x) = +\infty$ (como se ilustra graficamente na figura anterior.

Resposta: Opção C

Teste Intermédio 12.º ano - 28.02.2013

7. Como (x_n) é uma sucessão com termos em] -1,1[e $\lim(x_n)=1,$ então

$$\lim x_n = 1^-$$

E assim, de acordo com o gráfico, temos que

$$\lim f(x_n) = \lim_{x \to 1^-} f(x) = +\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $+\infty$, quando (x_n) tende para 1

Resposta: Opção A

Exame – 2012, 2.ª Fase

8. Como $\lim u_n = \lim \left(\left(1 + \frac{1}{n}\right)^n\right) = e$, então $\lim f(u_n) = 0 \iff \lim_{x \to e} f(x) = 0$

Calculado $\lim_{x\to e} f(x)$ para cada uma das expressões algébricas apresentadas, temos:

- Se $f(x) = 1 \ln x$ então $\lim_{x \to e} f(x) = \lim_{x \to e} (1 \ln x) = 1 \ln e = 1 1 = 0$
- Se $f(x) = 1 + \ln x$ então $\lim_{x \to e} f(x) = \lim_{x \to e} (1 + \ln x) = 1 + \ln e = 1 + 1 = 2$
- Se $f(x) = x \ln x$ então $\lim_{x \to e} f(x) = \lim_{x \to e} (x \ln x) = e \ln e$
- Se $f(x) = x + \ln x$ então $\lim_{x \to e} f(x) = \lim_{x \to e} (x + \ln x) = e + \ln e$

Desta forma, de entre as hipóteses apresentadas, a única expressão algébrica em que $\lim_{x\to e} f(x) = 0$ é $1-\ln x$

Resposta: Opção A

Teste Intermédio 12.º ano – 13.03.2012

mat.absolutamente.net

9. Se $\lim u_n = k$, então $\lim f(u_n) = 3 \iff \lim_{x \to k} f(x) = 3$

Calculado $k = \lim_{x \to k} u_n$ e $\lim_{x \to k} f(x)$ para cada uma das sucessões apresentadas, temos:

- $\lim u_n = \lim \left(2 \frac{1}{n}\right) = 2 \frac{1}{+\infty} = 2 0^+ = 2^-$ E assim, $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (e^x - 1) = e^{2^-} - 1 = e^2 - 1$
- $\lim u_n = \lim \left(2 + \frac{1}{n}\right) = 2 + \frac{1}{+\infty} = 2 + 0^+ = 2^+$ E assim, $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(\frac{4}{x} + 1\right) = \frac{4}{2^+} + 1 = 2 + 1 = 3$
- $\lim u_n = \lim \left(3 \frac{1}{n}\right) = 3 \frac{1}{+\infty} = 3 0^+ = 3^-$ E assim, $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \left(\frac{4}{x} + 1\right) = \frac{4}{3^-} + 1 = \frac{4}{3} + \frac{3}{3} = \frac{7}{3}$
- $\lim u_n = \lim \left(3 + \frac{1}{n}\right) = 3 + \frac{1}{+\infty} = 3 + 0^+ = 3^+$ E assim, $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \left(\frac{4}{x} + 1\right) = \frac{4}{3^+} + 1 = \frac{4}{3} + \frac{3}{3} = \frac{7}{3}$

Desta forma, de entre as hipóteses apresentadas, a única sucessão em que $\lim f(u_n) = 3 \notin 2 + \frac{1}{n}$

Resposta: Opção B

Exame – 2011, Prova especial

10. Como

$$\lim u_n = \lim \left(\frac{1}{n}\right) = \frac{1}{+\infty} = 0^+$$

então

$$\lim_{n \to +\infty} g(u_n) = \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \ln x = \ln 0^+ = -\infty$$

Resposta: Opção ${\bf D}$

Exame – 2010, 2.ª Fase

11. Como

$$\lim\left(4 - \frac{1000}{n}\right) = 4 - \frac{1000}{+\infty} = 4 - 0^{+} = 4^{-}$$

então, pela observação do gráfico da função h, temos que

$$\lim u_n = \lim \left(h \left(4 - \frac{1000}{n} \right) \right) = \lim_{x \to 4^-} h(x) = 1$$

Graficamente, na figura ao lado, estão representados alguns termos de $\left(4-\frac{1000}{n}\right)$ como objetos, e alguns termos da sucessão (u_n) no eixo vertical, que tendem para 1^- , quando o valor de n aumenta.

Resposta: Opção B

Teste Intermédio 12.º ano – 15.03.2010

mat.absolutamente.net

12. Como $\lim_{n \to +\infty} g(x_n) = +\infty$, e como, pela observação do gráfico temos que $\lim_{x \to +\infty} g(x) = +\infty$ e que $\lim_{x \to -2^-} g(x) = +\infty$, temos que

$$\lim(x_n) = +\infty$$
 ou então $\lim(x_n) = -2^{-1}$

Assim, calculando os limites das sucessões de cada uma das hipóteses, temos:

•
$$\lim \left(-2 - \frac{1}{n}\right) = -2 - 0^+ = -2^-$$

•
$$\lim \left(1 + \frac{1}{n}\right) = 1 + 0^+ = 1^+$$

•
$$\lim \left(1 - \frac{1}{n}\right) = 1 - 0^+ = 1^-$$

Pelo que, de entre os termos gerais de sucessões apresentados, o único em que $\lim_{n\to+\infty}g(x_n)=+\infty$ é $-2-\frac{1}{n}$

Graficamente, na figura anterior, estão representados alguns termos da sucessão $x_n = -2 + \frac{1}{n}$ como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção B

Exame – 2008, 2.ª Fase

13. Como

$$\lim(u_n) = \lim\left(\frac{n+1}{n^2}\right) = \lim\left(\frac{n}{n^2} + \frac{1}{n^2}\right) = \lim\left(\frac{1}{n} + \frac{1}{n^2}\right) = 0^+ + 0^+ = 0^+$$

Temos que

$$\lim_{n \to +\infty} g(u_n) = \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{e^x + 5}{2 + \cos x} = \frac{e^0 + 5}{2 + \cos(0)} = \frac{1 + 5}{2 + 1} = \frac{6}{3} = 2$$

Resposta: Opção C

Exame - 2006, 1.a fase

14. Como

$$\lim(x_n) = \lim\left(\left(1 + \frac{1}{n}\right)^n\right) = e$$

Temos que

$$\lim y_n = \lim(1 + \ln(x_n)) = 1 + \ln e = 1 + 1 = 2$$

Resposta: Opção A

Teste Intermédio 12.º ano – 17.03.2006

15. Como $\lim_{n\to +\infty} g(x_n) = +\infty$, e como, pela observação do gráfico temos que $\lim_{x\to 3^-} g(x) = +\infty$, então

$$\lim(x_n) = 3^-$$

Assim, calculando os limites das sucessões de cada uma das hipóteses, temos:

- $\lim \left(3 \frac{1}{n}\right) = 3 0^+ = 3^-$
- $\lim \left(3 + \frac{1}{n}\right) = 3 + 0^+ = 3^+$
- $\lim_{-4^{-}} \left(-4 \frac{1}{n} \right) = -4 0^{+} =$
- $\lim_{-4^{+}} \left(-4 + \frac{1}{n} \right) = -4 + 0^{+} =$

Pelo que, de entre os termos gerais de sucessões apresentados, o único em que $\lim_{n\to+\infty} g(x_n) = +\infty$ é $3-\frac{1}{n}$

Graficamente, na figura anterior, estão representados alguns termos da sucessão $x_n = 3 - \frac{1}{n}$ como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção A

Exame – 2001, Ép. Especial

16. Como

$$\lim(u_n) = \lim\left(\left(1 + \frac{1}{n}\right)^n\right) = e$$

Temos que

$$\lim f(u_n) = \lim_{x \to e} f(x) = \lim_{x \to e} \ln x = \ln e = 1$$

Resposta: Opção C

Exame – 1999, Prova para militares (prog. antigo)

17. Como

$$\lim(x_n) = \lim\left(2 - n^2\right) = 2 - \infty = -\infty$$

E como a reta x=1 é assintota do gráfico de f, quando $x\to -\infty,$ temos que

$$\lim f(x_n) = \lim_{x \to -\infty} f(x) = 1$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para 1, quando o valor de n aumenta.

Resposta: Opção B

Exame - 1999, 1.a fase - 1.a chamada (prog. antigo)

18. Como

$$\lim(x_n) = \lim\left(1 + \frac{1}{n}\right) = 1 + 0^+ = 1^+$$

E como a reta y=1 é assintota do gráfico de f, pela observação do gráfico, temos que

$$\lim(u_n) = \lim f(x_n) = \lim_{x \to 1^+} f(x) = -\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $-\infty$, quando o valor de n aumenta.

Resposta: Opção A

Exame – 1999, Prova modelo (prog. antigo)

19. Como

$$\lim(u_n) = \lim\left(\frac{1}{n}\right) = 0^+$$

Pela observação do gráfico da função g, temos que

$$\lim_{n \to +\infty} g(u_n) = \lim_{x \to 0^+} g(x) = 2$$

Graficamente, na figura ao lado, estão representados alguns termos de (u_n) como objetos, e alguns termos da sucessão das imagens $g(u_n)$, que tendem para 2, quando o valor de n aumenta.

Resposta: Opção C

Exame – 1998, Prova modelo (prog. antigo)