N5: Atomic Structure and Bonding

Elements are made of atoms. Atoms contain subatomic particles.

Subatomic particle	Mass	Charge	Location

Each element is defined by the number	of, this is
called the	
In a neutral atom the number of positive	e is equal to
the number of negative	. Atoms can form ions by
losing or gaining electrons.	

The nucl	leus of the atom contains the protons and neutrons, they
are the p	particles that contribute to the mass of the atom. The
	for an individual atom is equal to
the sum	of proton and neutrons.
Some el	ements have atoms of different mass. These are called
	They have the same number of
(number) but different numbers of
(_ number). The relative atomic masses found in the data
book is a	an average of the masses of the taking into
account	their proportions. The relative atomic mass of an element
is closes	st to the mass of the abundant isotope.
	Chlorine has two isotopes, Cl-35 and Cl-37. The relative
?	atomic mass of chlorine is 35.5. Which isotope is most
	abundant?

Bromine has two isotopes, Br-79 and Br-81. The relative atomic mass of bromine is 80. What does this tell you about the abundance of bromine isotopes?

Nuclide notation is a shorthand way to represent atoms and the subatomic particles present.

Number of protons =

Number of neutrons =

Number of electrons =

?

How many protons, electrons and neutrons are present in each nuclide notation?

23 Na 11 35 -CI 17

27 3+ Al 13 ?

A particle contains 8 protons, 8 neutrons and 10 electrons. Write the nuclide notation.

Electrons fill the electron shells following the _____ rule. Electrons fill _____ before pairing.

Write and draw the electron arrangements for sodium, fluorine and aluminium. Use page 6 of your data book to help.

Elements are arrar	nged in order of
	on the periodic table.
Indicate • Metals/non-metals • Alkali metals • Transition metals • Halogens • Noble gases	Elements in groups have the of This means they have the same and
Alkali metals:	
Halogens:	
Noble gases:	

	cles. Ions form when atoms s to achieve electron The number of electrons lost/gained
Positive ions form when metal a	atoms
E.g. sodium	
Atom	lon
Na	Na
Positive protons = Negative electrons = Charge =	Positive protons = Negative electrons = Charge =

This change can be represented using an ion-electron equation:

Write the ion-electron equation for the formation of magnesium ions.

Negative ions for	rm when n	on-metal atoms	
	to	the	

E.g chlorine

Atom

Ion

Positive protons = Negative electrons = Charge = Positive protons = Negative electrons = Charge =

This change can be represented using an ion-electron equation:

?

Write the ion-electron equation for the formation of oxygen ions.

lons form by transfer of electrons from _____ to ____-_____ atoms. The oppositely charged ions that form are then _____, forming ionic bonds. Na Na Ionic compounds form 3D _____ structures. Each _____ ion is surrounded by _____ ions and each _____ ion is surrounded by ____ ions. The formulae of ionic compounds represents _____

When two non-metal atoms bottheir		
This is called		
A bond forms	when two	nuclei are
held together by their		
	between them.	
Covalent bonding occurs in two •	o ways:	
A molecule is		
Covalent molecules occur in bo	oth elements and c	ompounds.
There are seven elements which	n exist as diatomic	molecules that
form using covalent bonds:	•	
•	•	
•	•	
• The covalent bonds in a molecu	ule can be represer	nted using outer

Copyright Miss Adams Chemistry (W. Adams) 2020

Page 9

electron (dot and cross)	diagrams.	The formula of	a covalent
molecule represents			

E.g. hydrogen, H₂

Draw an outer electron picture for hydrogen chloride (HCl), water (H₂O), ammonia (NH₃) and methane (CH₄).

Atoms can form multiple covalent bonds with other atoms.

Molecules can have different shapes depending on the number of bonds and their orientation to a central atom.

Compound	Formula	Shape diagram	Shape name
Hydrogen chloride			
Water			
Ammonia			
Methane			

The wedges represent bonds coming towards you out of the page, the dashes represent bonds going away from you and the lines are in the plane of the paper.

Covalent network struc	aures can exist	t for elements or co	ompounas.
Covalent networks cor	sist of a	of	
bonded atoms. The for	mulae of coval	ent networks repre	esents
Examples include			
	and		

The different types of bonding lead to different properties.

Type of bonding	Melting/ Boiling point	Conduction of electricity	Solubility in water
lonic			
Covalent molecular			
Covalent network			