1 Hamiltonians and EOM

1.1 Toy Problem

Consider simplest spin Hamiltonian $H = -\vec{B} \cdot \vec{s}$. It's clear that if we set up initial conditions \vec{s} misaligned from \vec{B} , it will simply spin around \vec{B} , which is fixed. Thus, let $\hat{B} \cdot \hat{s} = \cos \theta$ the angle between the two, and let ϕ measure the azimuthal angle.

We claim that $\cos\theta$, ϕ are canonical variables. Since ϕ is ignorable, immediately $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}\cos\theta}{\mathrm{d}t} = -\frac{\partial H}{\partial \phi} = 0$, while $\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\partial H}{\partial(\cos\theta)} = Bs$ tells us the rate at which the spin precesses around \vec{B} .

1.2 Cassini State Hamilttonian

This Hamiltonian is Kassandras Eq. 13, in the co-rotating frame with the perturber's angular momentum:

$$\mathcal{H} = \frac{1}{2} (\hat{s} \cdot \hat{l})^2 - \eta (\hat{s} \cdot \hat{l}_p). \tag{1}$$

In this frame, we can choose $\hat{l} \equiv \hat{z}$ fixed, and $\hat{l}_p = \cos I \hat{z} + \sin I \hat{x}$ fixed as well. Then

$$\hat{s} = \cos\theta \hat{z} - \sin\theta (\sin\phi \hat{y} + \cos\phi \hat{x}).$$

We can choose the convention for $\phi = \phi$ azimuthal angle requiring $\phi = 0, \pi$ mean coplanarity between $\hat{s}, \hat{l}, \hat{l}_p$ in the \hat{x}, \hat{z} plane such that \hat{l}_p, \hat{s} lie on the same side of \hat{l} . Then we can evaluate in coordinates

$$\begin{split} \hat{s} \cdot \hat{l} &= \cos \theta, \\ \hat{s} \cdot \hat{l}_p &= \cos \theta \cos I - \sin I \sin \theta \cos \phi, \\ \mathcal{H} &= -\frac{1}{2} \cos^2 \theta + \eta \bigl(\cos \theta \cos I - \sin I \sin \theta \cos \phi \bigr). \end{split}$$

Note that if we take $\cos \theta$ to be our canonical variable, $\sin \theta = \sqrt{1 - \cos^2 \theta}$ can be used.

1.3 Equation of Motion

The correct EOM comes from Kassandra's Eq. 12:

$$\begin{split} \frac{\mathrm{d}\hat{s}}{\mathrm{d}t} &= \left(\hat{s}\cdot\hat{l}\right)\left(\hat{s}\times\hat{l}\right) - \eta\left(\hat{s}\times\hat{l}_{p}\right), \\ &= \left(s_{y}s_{z} - \eta s_{y}\cos(I)\right)\hat{x} - \left(s_{x}s_{z} + \eta(s_{x}\cos I - s_{z}\sin I)\right)\hat{y} + \eta s_{y}\sin(I)\hat{z}. \end{split}$$

Alternatively, consider Hamilton's equations applied to the Hamiltonian:

$$\frac{\partial \phi}{\partial t} = \frac{\partial \mathcal{H}}{\partial (\cos \theta)} = -\cos \theta + \eta (\cos I + \sin I \cot \theta \cos \phi), \tag{2}$$

$$\frac{\partial(\cos\theta)}{\partial t} = -\frac{\partial\mathcal{H}}{\partial\phi} = -\eta \sin I \sin\theta \sin\phi. \tag{3}$$

This produces the same trajectories as the Cartesian EOM, so this is correct. However, since $\frac{\partial \phi}{\partial t} \propto 1/\sin\theta$, this is not a desirable system of equations to use, as they are very stiff near $\theta \approx 0$.

Figure 1: Separatrix for various values of η .

1.4 Cassini States

The zeros to Eq. 3 are the Cassini states; we will go to canonical variables $\mu = \cos \theta$. We can immediately see that $\sin \phi = 0$ is necessary, so $\cos \phi = \pm 1$ and we need only solve for $\frac{\partial \phi}{\partial t} = 0$. We can furthermore separate the problem into two regimes, $\eta \ll 1$ and $\eta \gg 1$.

For $\eta \ll 1$, it is clear that there will be two solutions near $\mu^2 = 1$ and two solutions near $\mu = 0$:

- For $\mu=1-\frac{\theta^2}{2}$, the dominant terms are $\frac{\partial \phi}{\partial t}\approx -1+\eta \sin I\frac{1}{\theta}=0$, where we've taken $\cos \phi=+1$ and $\phi=0$. This forces $\theta=\eta \sin I$.
- Similarly, for $\mu=-1+\frac{\epsilon^2}{2}$, $\phi=0$ and $\epsilon=\eta\sin I$ again. This actually corresponds to $\theta=\pi-\eta\sin I$.
- For $\mu \approx 0$, we have instead $\frac{\partial \phi}{\partial t} = -\mu \left(1 \eta \sin I \cos \phi\right) + \eta \cos I = 0$. This forces $\mu_{\pm} = \frac{\eta \cos I}{1 \pm \eta \sin I}$, where $\phi_{\pm} = \pi, 0$ respectively.

Note that $\phi = 0, \mu \approx 0$ is conventionally CS4. The linearization locally has form $\frac{\partial \delta \phi}{\partial t} = -\delta \mu (1 - \eta \sin I)$ and $\frac{\partial \delta \mu}{\partial t} = -\eta \sin I \delta \phi$, so the eigenvalues are $\approx \mp \sqrt{\eta \sin I}$, and the two eigenvectors are $(1, \pm \sqrt{\eta \sin I})$.

For $\eta \gg 1$, the solutions obviously just come from $\cos I \pm \sin I \cot \theta = 0$, which are just $\sin(I \pm \theta) = 0$

1.5 Separatrix Area

We can estimate the area enclosed by the separatrix, as shown in Fig. 1. Note that the separatrix joins Cassini State 4 to its $+2\pi$ image.

We notate $\mu = \cos \theta$; note that CS4 is $\mu_4 \approx \frac{\eta \cos I}{1 - \eta \sin I} \approx \eta \cos I$. Setting the Hamiltonian equal to its

value at CS4 gives

$$\begin{split} H_4 &\equiv H \big(\mu_4, \phi_4 \big) \approx -\frac{\mu_4^2}{2} + \eta \mu_4 \cos I - \eta \sin I, \\ &= + \eta^2 \cos^2 I - \eta \sin I, \\ H(\mu_{sep}, \phi_{sep}) &= H_4 = - \eta \sin I \cos \phi_{sep} - \frac{\mu_{sep}^2}{2} + \eta \mu_{sep} \cos I + \mathcal{O}(\eta^3), \\ 0 &\approx \frac{\mu_{sep}^2}{2} - \eta \mu_{sep} \cos I - \eta \sin I \big(1 - \cos \phi_{sep} \big) + \eta^2 \cos^2 I, \\ \mu_{sep}(\phi) &\approx \sqrt{2 \eta \sin I \big(1 - \cos \phi \big)} + \mathcal{O}(\eta). \end{split}$$

We can then easily compute the area enclosed by the separatrix

$$A_{sep} = \int_{0}^{2\pi} 2\mu_{sep} \, d\phi,$$

$$\approx 16\sqrt{\eta \sin I}.$$
(4)

For $\eta=0.1, I=20^{\circ}$, this predicts $\frac{A_{sep}}{A_T}\approx 0.235$, which is pretty close to my numerically calculated $\frac{A_{sep}}{A_T}=0.229$.

1.6 Tidal Dissipation

We can add a tidal dissipation term; we write it in form $\left(\frac{d\hat{s}}{dt}\right)_{tide} = \epsilon \hat{s} \times (\hat{l} \times \hat{s})$. Expanding,

$$\left(\frac{\mathrm{d}\hat{s}}{\mathrm{d}t}\right)_{tide} = \epsilon(\hat{z} - s_z \hat{s}),$$

$$= \epsilon(-s_z s_x \hat{x} - s_z s_y \hat{y} + (1 - s_z^2)\hat{z}).$$
(5)

We run numerical simulations for weaker $\epsilon \ll \eta \ll 1$ and stronger $\epsilon \lesssim \eta \ll 1$.

We can seek equilibria of the the system including tides, which requires

$$0 = s_y s_z - \eta s_y \cos I - \epsilon s_z s_x,$$

$$0 = -s_x s_z - \eta (s_x \cos I - s_z \sin I) - \epsilon s_z s_y,$$

$$0 = \eta s_y \sin(I) + \epsilon (1 - s_z^2).$$

We expect at least two equilibria, based on the simulations: one near $s_z \approx 1$ and one $s_z \approx 0$.

For near alignment/near Cassini state 1, $1 - s_z \sim 1 - s_\perp^2$, so we can set $s_z = 1$ to first order: $s_y - \epsilon s_x - \eta s_y \cos I = -s_x - \eta (s_x \cos I - \sin I) - \epsilon s_y = \eta s_y \sin I = 0$. This can be satisfied if we set $s_x = \tan(I) \ll 1$, $s_y = \mathcal{O}(\epsilon s_x)$; this coarsely corresponds to Cassini state 1.

The other solution should be near Cassini state 2, where $s_x \approx 1$; dropping second order terms forces $\eta s_y + \epsilon s_z = -s_z - \eta(\cos I - s_z \sin I) = \eta s_y \sin(I) + \epsilon = 0$. This can thus be satisfied for $s_y \approx -\frac{\epsilon}{\eta \sin(I)}$. Thus, this explains why as ϵ is increased, we first start to get points that don't converge to Cassini state 2 in the absence of tides, before starting to see points that fail to converge to Cassini state 1.

2 Separatrix Hopping

Inspired by G&H, heteroclinic orbits are topologically unstable for any nonzero perturbation, but opened width ~ perturbation parameter.

2.1 Try 1: Qualitative

We zoom in on Cassini State 4, which has $\theta_4 = -\frac{\pi}{2} + \frac{\eta \cos I}{1 - \eta \sin I}$, $\mu_4 = \frac{\eta \cos I}{1 - \eta \sin I}$, $\phi_4 = 0$. Then, using equations of motion

$$\frac{\partial \phi}{\partial t} = \mu - \eta \left(\cos I + \sin I \frac{\mu}{\sqrt{1 - \mu^2}} \cos \phi \right),\tag{6}$$

$$\frac{\partial \mu}{\partial t} = -\eta \sin I \sin \phi + \left[\epsilon \left(1 - \mu^2\right)\right],\tag{7}$$

we can perturbatively require $\frac{\partial \theta}{\partial t} = 0$ for $\epsilon \neq 0$. This corresponds to $\eta \sin I \sin(\phi_4 + \delta \phi) \approx \epsilon$, or $\delta \phi_4 = +\frac{\epsilon}{\eta \sin I}$. This is in agreement with Dong's result. Note that $\delta \theta_2 = -\frac{\epsilon}{\eta \sin I}$, which I saw in my simulations.

This implies that the stable manifolds of the two saddle points, which once overlapped with each other's unstable manifolds (creating a heteroclinic orbit) now are offset from one another by distance $D \sim \frac{\epsilon}{n \sin I}$. The question is how likely it is to thread the needle.

Consider that, very near CS4, the angle of incidence on the desired gap is roughly $\tan \psi \approx \psi = \frac{\Delta \theta}{\Delta \phi}$. Over the course of one orbit, $\Delta \phi$ changes by 2π , while $\Delta \theta \sim \epsilon \sin \theta T$ where T is the period of an orbit. Examining the data, $T \sim 50$, and so $\frac{\Delta \theta}{\Delta \phi} \sim \frac{2\pi}{\epsilon(50)}$.

Examining the data, $T \sim 50$, and so $\frac{\Delta \theta}{\Delta \phi} \sim \frac{2\pi}{\epsilon(50)}$.

The effective probability of threading the opened gap between the stable/unstable manifolds is then just $P \propto D \sin \psi \sim \frac{2\pi}{T(\eta \sin I)}$. According to later analysis, this should really be $\frac{2\pi}{T}$. Plugging in some observational values $T \sim 50$ for $\eta = 0.1$ gives $P \propto 0.13$. In reality, I find it asymptotes to ~ 0.08 , so the constant of proportionality is of order unity. Not bad given the really crappy $\psi \sim \frac{\langle \dot{\theta} \rangle}{\dot{\phi}}$ argument.

2.2 Try 2: Melnikov Distance

We notice that the separatrix is a heteroclinic orbit, or a saddle connection, in the dissipation free problem. Introducing dissipation breaks the saddle connection by a distance that can be estimated with the Melnikov distance. This is G&H Equation 4.5.11 or something:

$$d(t_0) = \frac{\epsilon M(t_0)}{|f(q^0(0))|} + \mathcal{O}(\epsilon^2), \tag{8}$$

$$M(t_0) = \int_{-\infty}^{\infty} [f \times g]_{hetero} \, \mathrm{d}t. \tag{9}$$

This is not a hard formula to understand; along the separatrix, motion is dominated by f, but the perpendicular component adds up to contribute to a total "perpendicular distance away from the original separatrix" necessary to hit the saddle point, at least intuitively.

We evaluate the Melnikov integral $M(t_0)$ on the heteroclinic orbit. Note that since in our problem our perturbation g is time-independent, so too is the Melnikov integral $M(t_0) = M$.

Let's apply this to the Cassini state Hamiltonian w/ dissipation. We first write down our EOM in Melnikov form (we use canonical variables μ, ϕ):

$$\frac{\mathrm{d}\hat{s}}{\mathrm{d}t} = \underbrace{\frac{\partial \mathcal{H}}{\partial \mu}\hat{\phi} - \frac{\partial \mathcal{H}}{\partial \phi}\hat{\mu}}_{f} + \epsilon \underbrace{\left(1 - \mu^{2}\right)\hat{\mu}}_{g}.$$
(10)

Then $f \times g = f_{\phi}g_{\mu} = \frac{\partial \mathscr{H}}{\partial \mu}(1-\mu^2)$. We then want to integrate this along the heteroclinic orbit. We can make change of variables

$$M = \int_{0}^{2\pi} \frac{\partial \mathcal{H}}{\partial \mu} (1 - \mu^2) \left(\frac{\partial \phi}{\partial t} \right)^{-1} d\phi.$$
 (11)

But thankfully, $\frac{\partial \mathscr{H}}{\partial \mu} = \frac{\partial \phi}{\partial t}$ in the absence of dissipation, and so $M = 2\pi (1 - \mu^2) \approx 2\pi (1 - 2\eta \sin I)$. Thus, the Melnikov distance at point q^0 , a point on the heteroclinic orbit of the unperturbed Hamiltonian, is just

$$d(q^0) = \frac{2\pi\varepsilon \left(1 - 2\eta\sin I\right)}{\left|f(q^0)\right|}. (12)$$

Note that the maximum value $|f(q^0)|$, which occurs at $\phi = \pi$, is just $f \approx \sqrt{4\eta \sin I}$.

It proves to be a bit difficult to make quantitative predictions though, since the phase diagram is very smushed where f is large, and d is rather inaccurate where f is small. Let's think about a Poincaré map instead.

2.3 Try 3: Poincaré Section

Let's consider the Poincaré section every time $\phi = \phi_4$ as the trajectory subject to tidal dissipation is moving $\theta < \theta_4 \to \theta_4$. To provide an estimate of $\Delta\theta(\theta) = \theta_{n-1} - \theta_n$, this is just ϵT where T is the time elapsed between θ_n, θ_{n+1} , the period of the orbit. T is dominated by when $\frac{\partial \phi}{\partial t} \ll 1$ though, or where the orbit is close to the saddle point.

Note that T is dominated by the time it spends near the saddle point. We showed earlier that near CS4, $\frac{\partial \phi}{\partial t} \approx \delta \mu$ where $\delta \mu = \mu - \mu_4$. Thus, we might surmise $\Delta \theta(\theta) \propto \theta^{-1}$ for sufficiently small $\theta - \theta_4$. Far away, T is roughly constant and $\Delta \theta(\theta)$ is roughly constant.

What is "far away"? Well, it probably depends on how affected our trajectory is by the separatrix; far away from the saddle point, we go along contours of roughly constant θ , while close by we follow the separatrix pretty well. We computed earlier that $\mu_{sep} \sim \sqrt{4\eta \sin I}$, so we might expect $\mu > \mu_{sep}, \Delta \mu \sim C$, while $\mu < \mu_{sep}, \Delta \mu \sim \delta \mu^{-1}$.

My $\mu > \mu_{sep}$ simulations don't seem to work very well, so I'll focus on the $\delta \mu^{-1}$ case. In this case, define $\delta \mu_c : \Delta \mu(\delta \mu_c) = -\delta \mu_c$, i.e. the point that jumps immediately to the saddle point. Furthermore, assume the inbound distribution is flat between $\delta \mu_c$, $f^{-1}(\delta \mu_c)$. TODO: empirically, $\mu_c \sim \epsilon T$ is flat with η , probably just because we're not getting sufficiently close to the saddle point for the $\propto \sqrt{\eta}$ to kick in.

Then, we can compare the empirical Poincaré section of the points that cross the separatrix versus the total predicted interval width $\delta\mu_c$, $f^{-1}(\delta\mu_c)$; this would predict 7.2%, 18%. This does alright!

Now, one final way to think about this, and I think this is the important one: consider if we are some $\delta\mu_0$ at $\phi=0$ such that we barely hop the separatrix; this corresponds to $P_{hop}=\frac{\delta\mu_0}{\mu_c}$. In order for $\delta\mu_0$ to be hopping, $\delta\mu_\phi$ must be within $d_\phi\approx\frac{2\pi\varepsilon}{\mu}$ of the separatrix. We can compute the ratio between $\delta\mu_0,\delta\mu_\phi$ by setting their Hamiltonian variations equal:

$$\delta H_0 pprox -\mu_4 \delta \mu_0 + \eta \cos I \delta \mu_0 pprox \eta^2 \cos I \sin I \delta \mu_0,$$
 $\delta H_\phi pprox -\sqrt{4\eta \sin I} \delta \mu_\phi,$
 $\frac{\delta \mu_\phi}{\delta \mu_0} \propto \eta^{3/2} \cos I \sqrt{\sin I}.$

We can assemble