```
In [2]:
         #importing libraries
         import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
        #Loading data
In [3]:
         df = pd.read_csv("Flyzy Flight Cancellation.csv")
In [4]:
         df.head()
Out[4]:
               Flight
                       Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_Dep
                  ID
                       Airline
         0 7319483
                                          475
                                                      Airport 3
                                                                           Airport 2
                       Airline
             4791965
                                          538
                                                      Airport 5
                                                                           Airport 4
                            Ε
                       Airline
            2991718
                                          565
                                                      Airport 1
                                                                           Airport 2
                       Airline
            4220106
                                          658
                                                      Airport 5
                                                                           Airport 3
                       Airline
             2263008
                                          566
                                                      Airport 2
                                                                           Airport 2
In [5]:
         df.tail()
Out[5]:
                  Flight
                          Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_I
                           Airline
         2995 1265781
                                              395
                                                         Airport 2
                                                                              Airport 3
                               D
                           Airline
         2996
               5440150
                                              547
                                                         Airport 1
                                                                              Airport 4
                               Ε
                           Airline
         2997
                 779080
                                              461
                                                         Airport 1
                                                                              Airport 3
                           Airline
         2998
               4044431
                                              464
                                                         Airport 3
                                                                              Airport 3
                           Airline
         2999
                2806578
                                              369
                                                                              Airport 2
                                                         Airport 1
In [6]:
         df.shape
Out[6]:
         (3000, 14)
         df.columns
In [7]:
```

Observation: Most of the column names consist of multiple words seperated by underscores, but 'Flight ID' does not follow this format, therefore we need to change it to keep consistancy.

```
In [8]: #Changing column name
         df.rename(columns={'Flight ID' : 'Flight_ID'}, inplace =True)
        df.head(2)
In [9]:
Out[9]:
            Flight_ID
                      Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_Dej
                       Airline
             7319483
                                         475
                                                    Airport 3
                                                                         Airport 2
                       Airline
             4791965
                                          538
                                                    Airport 5
                                                                         Airport 4
                            Ε
```

CHECKING DATA TYPES OF EACH COLUMN

```
In [10]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 14 columns):

#	Column	Non Null Count	Dtuno			
#	COTUMN	Non-Null Count	Dtype			
0	Flight_ID	3000 non-null	int64			
1	Airline	3000 non-null	object			
2	Flight_Distance	3000 non-null	int64			
3	Origin_Airport	3000 non-null	object			
4	Destination_Airport	3000 non-null	object			
5	Scheduled_Departure_Time	3000 non-null	int64			
6	Day_of_Week	3000 non-null	int64			
7	Month	3000 non-null	int64			
8	Airplane_Type	3000 non-null	object			
9	Weather_Score	3000 non-null	float64			
10	Previous_Flight_Delay_Minutes	3000 non-null	float64			
11	Airline_Rating	3000 non-null	float64			
12	Passenger_Load	3000 non-null	float64			
13	Flight_Cancelled	3000 non-null	int64			
dtypes: float64(4), int64(6), object(4)						

memory usage: 328.3+ KB

Observation: This results indicate that all columns have the correct data types according to the data they contain

```
In [11]: #Checking for duplicates entries
duplicates = df[df.duplicated()]
```

```
In [12]:
         duplicates
Out[12]:
            Flight_ID Airline Flight_Distance Origin_Airport Destination_Airport Scheduled_Department
         No duplicates on the dataset
         CHECKING FOR MISSING VALUES
In [13]:
         df.isnull().sum()
Out[13]: Flight_ID
                                            0
          Airline
                                            0
          Flight_Distance
                                            0
          Origin_Airport
                                            0
          Destination_Airport
                                            0
          Scheduled_Departure_Time
                                            0
          Day_of_Week
                                            0
          Month
                                            0
          Airplane_Type
                                            0
          Weather_Score
                                            0
          Previous_Flight_Delay_Minutes
          Airline_Rating
                                            0
          Passenger Load
                                            0
          Flight_Cancelled
                                            0
          dtype: int64
         There are no missing values
         CHECKING FOR OUTLIERS
         #Used boxplot to visually check outliers
In [22]:
In [14]: columns_to_check =['Flight_Distance',
                    'Scheduled_Departure_Time',
                    'Weather_Score',
                    'Previous_Flight_Delay_Minutes',
                    'Airline_Rating', 'Passenger_Load',
                    'Flight_Cancelled'
                   ]
In [15]: plt.figure(figsize =(15,10))
         for i, col in enumerate(columns_to_check, 1):
              plt.subplot(3,3, i)
              sns.boxplot(x=df[col])
              plt.title(f'Box Plot of {col}')
         plt.tight layout()
         plt.show()
```


This plots shows that the following columns have outliers and have to be handled

- 1. Flight_Distance
- 2. Previous_Flight_Delay_Minutes
- 1. Handling outliers for Flight_Distance column using Capping method Because it reduces the impact of extreme outliers, which can distort the analysis.

Box plot of Capped Flight Distance

The results shows no more outliers for Flight_Distance

2. Handling Outliers for Previous_Flight_Delay_Minutes Using Log Transformation because data is skewed, compressing the range of delay times, reducing the impact of extreme values.

```
In [17]: #creating a new column and applying the log
    df['Log_Previous_Flight_Delay_Minutes'] = np.log1p(df['Previous_Flight_Delay_Min

In [18]: #Plotting transformed column
    plt.figure(figsize = (8,6))
    sns.boxplot(x=df['Log_Previous_Flight_Delay_Minutes'])
    plt.title('Box plot of Log_Previous_Flight_Delay_Minutes')
    plt.show()
```

Box plot of Log_Previous_Flight_Delay_Minutes

Now the outliers were handled and not showing on the plot

In [19]:	df.head(2)						
Out[19]:		Flight_ID	Airline	Flight_Distance	Origin_Airport	Destination_Airport	Scheduled_De _l
	0	7319483	Airline D	475	Airport 3	Airport 2	
	1	4791965	Airline E	538	Airport 5	Airport 4	
	4						+
In [20]:	df.shape						
Out[20]:	EXPLORATORY DATA ANALYSIS DESCRIPTIVE STATISTICS						

In [23]: df.describe()

Out[23]:

_		Flight_ID	Flight_Distance	Scheduled_Departure_Time	Day_of_Week	Mc
	count	3.000000e+03	3000.000000	3000.000000	3000.000000	3000.000
	mean	4.997429e+06	498.909333	11.435000	3.963000	6.381
	std	2.868139e+06	98.892266	6.899298	2.016346	3.473
	min	3.681000e+03	138.000000	0.000000	1.000000	1.000
	25%	2.520313e+06	431.000000	6.000000	2.000000	3.000
	50%	5.073096e+06	497.000000	12.000000	4.000000	6.000
	75 %	7.462026e+06	566.000000	17.000000	6.000000	9.000
	max	9.999011e+06	864.000000	23.000000	7.000000	12.000
	4					>

The above shows statistical analysis for various features.

Examples, We can see the longest flight delay of 250 minutes from the previous flight delay minutes and also highest and lowest Airline ratings amongst other observations

DATA DISTRIBUTION

Numerical Columns

```
In [21]: df.columns
Out[21]: Index(['Flight_ID', 'Airline', 'Flight_Distance', 'Origin_Airport',
                 'Destination_Airport', 'Scheduled_Departure_Time', 'Day_of_Week',
                 'Month', 'Airplane_Type', 'Weather_Score',
                 'Previous_Flight_Delay_Minutes', 'Airline_Rating', 'Passenger_Load',
                 'Flight_Cancelled', 'Capped_Flight_Distance',
                 'Log_Previous_Flight_Delay_Minutes'],
                dtype='object')
In [23]: #Selecting relevant numerical columns
         numerical columns = [
              'Flight_Distance', 'Weather_Score', 'Previous_Flight_Delay_Minutes',
              'Airline_Rating', 'Passenger_Load', 'Capped_Flight_Distance',
             'Log_Previous_Flight_Delay_Minutes'
         ]
In [24]: # Plotting the distribution for each numerical column
         for col in numerical_columns:
             plt.figure(figsize=(8, 4))
             sns.histplot(df[col], kde=True, bins=30) #
             plt.title(f'Distribution of {col}')
             plt.xlabel(col)
             plt.ylabel('Frequency')
             plt.show()
```


From this, we can see various distribution of the numerical columns

Now checking categorial columns

```
import warnings
warnings.filterwarnings("ignore")
#selecting columns to check
categorical_columns = ['Airline','Day_of_Week', 'Month', 'Airplane_Type','Origin

# Plotting the distribution for each categorical column
for col in categorical_columns:
    plt.figure(figsize=(8, 4))
    sns.countplot(x=df[col], palette='coolwarm') # Countplot to show the freque
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.xticks(rotation=45) # Rotate x labels if needed for readability
    plt.show()
```


Data from Flight_Cancelled target column is highly imbalanced, we have more occurances of cancelled flights than non cancelled.

There is also a noticeable high occurance of:

TypeA flight than other flights

AirlineA than other airlines

Airport1 than other airports

Month and day of the week: there is slight difference between various months and various days of the week

RELATIONSHIP BETWEEN FEATURES:

In [50]: #Correlation matrix to understand the relationships better
df.select_dtypes(include ="number").corr()

Out[50]:

	Flight_ID	Flight_Distance	Scheduled_Departure_Time
Flight_ID	1.000000	-0.007541	0.006207
Flight_Distance	-0.007541	1.000000	0.039727
Scheduled_Departure_Time	0.006207	0.039727	1.000000
Day_of_Week	-0.012384	0.024455	-0.011834
Month	-0.025743	0.019573	0.018319
Weather_Score	-0.002007	0.010139	-0.023682
Previous_Flight_Delay_Minutes	0.006172	0.018413	-0.036318
Airline_Rating	0.043170	0.042128	0.040739
Passenger_Load	0.009312	-0.018627	0.046556
Flight_Cancelled	-0.009101	-0.277471	-0.043733
Capped_Flight_Distance	-0.007407	0.988170	0.033209
Log_Previous_Flight_Delay_Minutes	0.011250	0.008974	-0.032594
4			>

In [53]: #Visualising the relationships using Heatmap
plt.figure(figsize =(12,10))
sns.heatmap(df.select_dtypes(include ="number").corr(), annot = True)

Out[53]: <Axes: >

Relationship Insights:

Flight_Distance & Capped_Flight_Distance are strongly correlated since "Capped_Flight_Distance" is derived from "Flight_Distance" while managing outliers.

Similarly for Previous_Flight_Delay_Minutes & Log_Previous_Flight_Delay_Minutes (0.827)

Flight_Cancelled & Weather_Score (0.306): There's a moderate positive correlation indicating that poor weather may be associated with more cancellations.

Flight_Cancelled & Previous_Flight_Delay_Minutes (0.303): A moderate positive correlation suggesting that flights with previous delays might have a higher chance of being cancelled.

Scheduled_Departure_Time & Passenger_Load (0.047): Slight positive correlation but not strong.

Flight_Distance & Passenger_Load (-0.0186): A weak negative correlation

Airline_Rating & Previous_Flight_Delay_Minutes (-0.0360): A weak negative correlation, indicating that higher delays are not strongly related to airline ratings.

Airline_Rating & Flight_Cancelled (-0.314): A moderate negative correlation, indicating that lower airline ratings might be associated with higher chances of cancellation.

Day_of_Week, Month: weak correlations with other variables, indicating that the day of the week and month might not have strong impacts on flight cancellations.

RELATIONSHIP BETWEEN FEATURES AND TARGET COLUMN

Based on the investigations from the Correlation matrix and Heatmap above, below are the observations:

Flight_Distance - there is a moderate negative correlation between Flight_Distance and Flight_Cancelled, suggesting flight distance might not be highly influencial

Scheduled_Departure_Time, correlation is very close to zero indicating weak correlation with Flight_Cancelled, therefore might not be a significant predictor for flight cancellations

Day_of_Week and Month, also shows weak correlation with the target column , suggesting not much impact on flight cancellations

Weather_Score, shows moderate postive correlation with target column indicating worse weather conditions can influence flight cancellations, this is very important for predicting cancellations

Previous_Flight_Minutes_Minutes, there is moderate postive correlation suggesting previous delays could influence cancellations

Airline_Rating, shows moderate negative correlation with the target, it indicate flights with lower airline rating are likely to be cancelled

Passenger_Load, weak correlation indicating number of passengers not impacting flight cancellations

Capped_Flight_Distance, similar to original Flight_Distance, moderate negative correlation

Log_Transformed_Delay_Minutes, also similar to the original Previous_Flight_Delay_Minutes although slitly lower than original but it still indicates delays are positively associated with cancellations.

_	-		
Tn		- 1	
411		- 1	۰