4 QUELQUES APPLICATIONS GÉOMÉTRIQUES

Il est conseillé de traiter les exercices de cette section à la suite les uns des autres.

- **Exercice 36.** Soient z et z' deux nombres complexes non nuls et distincts, admettant pour images respectives les points M et M'. En mettant z et z' sous forme exponentielle, montrer que O, M et M' sont alignés si et seulement si $z\overline{z}' \in \mathbb{R}$, et que cette condition est équivalente à $\frac{z}{z'} \in \mathbb{R}$.
- **Exercice 37.** Soient z, z' et z'' trois nombres complexes distincts deux à deux, admettant pour images respectives les points M, M' et M''.
 - 1. Montrer que M, M' et M'' sont alignés si et seulement si $(z'' z')\overline{(z' z)} \in \mathbb{R}$.
 - 2. Montrer que les points (1,1), (4,2) et (-5,-1) sont alignés.
- **Exercice 38.** Soient z, z' et z'' trois nombres complexes d'images respectives M, M' et M''. On suppose que $z \neq z'$ et $z \neq z''$, et on note $\theta \in \mathbb{R}$ une mesure de l'angle orienté (MM', MM'').
 - 1. Montrer que arg $\left(\frac{z''-z}{z'-z}\right) \equiv \theta \left[2\pi\right]$.
 - 2. Donner une condition nécessaire et suffisante sur le quotient $\frac{z''-z}{z'-z}$ pour que M, M' et M'' soient alignés.
 - 3. Donner une condition nécessaire et suffisante sur le quotient $\frac{z''-z}{z'-z}$ pour que (MM') et (MM'') soient perpendiculaires.
 - 4. Montrer que si $\frac{z''-z}{z'-z}$ est imaginaire pur, alors $|z'-z|^2+|z''-z|^2=|z''-z'|^2$.
- **Exercice 39.** Soient a, b, c, d quatre nombres complexes d'images respectives A, B, C et D. On suppose que $a \neq b$ et $c \neq d$.
 - 1. Montrer que

$$(AB) \perp (CD) \iff \frac{d-c}{b-a}$$
 est imaginaire pur.

2. On suppose que a, b, c et d sont de module 1. Déduire de la question précédente que

$$(AB) \perp (CD) \iff ab + cd = 0.$$

Indication : on pourra utiliser le fait qu'un nombre complexe est imaginaire pur si et seulement s'il est opposé à son conjugué.

Exercice 40. Déterminer géométriquement l'ensemble des points du plan dont l'affixe $z \in \mathbb{C}$ vérifie :

$$(i) |z-2i|=3$$

$$(iii) \left| \frac{z-3}{z+2} \right| = 1$$

$$(v) \ \frac{z-i}{z+1-i} \in \mathbb{R}$$

$$(ii) |iz - 3| = 1$$

$$(iv) |\overline{z} - 3 + i| = |z - 5|$$

$$(vi) \frac{z-i}{z+1-i}$$
 est imaginaire pur.

Pour simplifier les notations, dans les cinq exercices qui suivent, on assimile le plan euclidien standard à l'ensemble \mathbb{R}^2 : un point M du plan de coordonnées $(a,b) \in \mathbb{R}^2$ pourra donc être directement noté (a,b), et si \overrightarrow{u} est un vecteur de coordonnées (a',b') on note $M+\overrightarrow{u}$ le point M' tel que $\overrightarrow{MM'}=\overrightarrow{u}$, c'est-à-dire le point (a+a',b+b').

Exercice 41 (Translations). Soit \overrightarrow{u} un vecteur du plan, d'affixe $z_0 \in \mathbb{C}$.

1. Montrer que l'écriture complexe de la translation de vecteur \overrightarrow{u}

$$T_{\overrightarrow{u}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$M \longmapsto M + \overrightarrow{u}$$

est

$$t_{z_0}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto z + z_0.$

Dans l'énoncé ci-contre, on fait figurer une flèche sur le vecteur pour rappeler les notations utilisées au lycée et marquer la nature profondément géométrique de l'opération de translation.

c'est-à-dire que si M est le point d'affixe z, alors $T_{\overrightarrow{u}}(M)$ est le point d'affixe $z+z_0$.

2. Montrer que la translation $T_{\overrightarrow{u}}$ est bijective et donner sa réciproque.

Exercice 42 (Homothéties). Soit $\lambda \in \mathbb{R}^*$ et soit A un point du plan d'affixe $z_0 \in \mathbb{C}$. On appelle homothétie de centre A et de rapport λ l'application

$$H_{A,\lambda}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$M \longmapsto A + \lambda \overrightarrow{AM}$$

1. Montrer que l'écriture complexe de l'homothétie de centre A et de rapport λ est

$$h_{z_0,\lambda}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto z_0 + \lambda(z - z_0),$

c'est-à-dire que si M est le point du plan d'affixe z, alors $H_{A,\lambda}(M)$ est le point d'affixe $h_{z_0,\lambda}(z)$.

- 2. Montrer que $H_{A,\lambda}$ est bijective et que sa réciproque est une homothétie dont on précisera le centre et le rapport.
- 3. Montrer que la composée de deux homothéties est une translation ou une homothétie.

Exercice 43 (Rotations). Soit $\theta \in \mathbb{R}$ et soit $A \in \mathbb{R}^2$ d'affixe $z_0 \in \mathbb{C}$. On appelle rotation de centre A et d'angle θ la transformation géométrique de \mathbb{R}^2 dont l'écriture complexe est

$$r_{z_0,\theta}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto z_0 + e^{i\theta}(z - z_0).$

- 1. Donner l'écriture explicite de $R_{A,\theta}$ en tant qu'application de \mathbb{R}^2 dans \mathbb{R}^2 .

 Indication: on notera $A=(x_0,y_0)$ (et donc $z_0=x_0+iy_0$), puis pour tout $M=(x,y)\in\mathbb{R}^2$ d'affixe z=x+iy on donnera l'écriture algébrique de $r_{z_0,\theta}(z)$ en fonction de x et y.
- 2. Montrer que la composée de deux rotations est une translation ou une rotation.
- 3. Montrer que la rotation $R_{A,\theta}$ est bijective et donner sa bijection réciproque.
- **Exercice 44** (Symétries). Soit $\theta \in \mathbb{R}$. On considère la transformation géométrique S_{θ} de \mathbb{R}^2 dont l'écriture complexe est

$$s_{\theta}: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto e^{i\theta} \overline{z}.$

- 1. Montrer que si $\theta \equiv 0$ [2 π], alors S_{θ} est la symétrie orthogonale par rapport à un certain axe.
- 2. Montrer que pour tout $z \in \mathbb{C}$, $s_{\theta}(z) = e^{i\frac{\theta}{2}} \cdot e^{-i\frac{\theta}{2}}z$.
- 3. En déduire que S_{θ} est une symétrie orthogonale par rapport à un axe que l'on précisera.
- 4. Calculer $s_{\theta} \circ s_{\theta}$, puis montrer que s_{θ} est bijective et donner s_{θ}^{-1} .
- 5. Si $\theta' \in \mathbb{R}$, que vaut $S_{\theta'} \circ S_{\theta}$?
- **Exercice 45** (Similitudes directes). Soient $\lambda > 0$, $\theta \in \mathbb{R}$ et $A \in \mathbb{R}^2$ d'affixe $z_0 \in \mathbb{C}$. On appelle similitude directe de centre A, d'angle θ et de rapport λ la transformation $S_{A,\theta,\lambda}$ du plan \mathbb{R}^2 telle que pour tout point M, le point $M' := S_{A,\theta,\lambda}(M)$ est l'unique point du plan vérifiant les deux conditions

$$AM' = \lambda AM$$
 et si $A \neq M$, alors $(\overrightarrow{AM}, \overrightarrow{AM'}) \equiv \theta [2\pi]$.

- 1. Illustrer graphiquement l'action de $S_{A,\theta,\lambda}$ sur un point du plan.
- 2. À quelle condition (sur λ et θ) $S_{A,\theta,\lambda}$ est-elle l'identité? une homothétie? une rotation?
- 3. (a) Donner l'écriture complexe de $S_{A,\theta,\lambda}$.
 - (b) Montrer qu'une similitude directe est la composée d'une rotation par une homothétie.
 - (c) Montrer qu'une application $S: \mathbb{R}^2 \to \mathbb{R}^2$ est une similitude directe si et seulement s'il existe $(a,b) \in (\mathbb{C}^* \times \mathbb{C}) \setminus (\{1\} \times \mathbb{C}^*)$ tel que l'écriture complexe de S soit $s: z \mapsto az + b$. Donner le centre, l'angle et le rapport d'une telle similitude.

- 4. Montrer que la composée de deux similitudes directes est une similitude directe ou une translation.
- 5. Montrer que $S_{A,\theta,\lambda}$ préserve les angles orientés, au sens où si B,C et D sont trois points du plan distincts, alors, en notant $B'=S_{A,\theta,\lambda}(B),C'=S_{A,\theta,\lambda}(C)$ et $D'=S_{A,\theta,\lambda}(D)$ on a :

$$(\overrightarrow{BC},\overrightarrow{BD}) \equiv (\overrightarrow{B'C'},\overrightarrow{B'D'}) [2\pi].$$