Refine Search

Search Results -

Terms	Documents
L9 same L8	10

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Wednesday, October 27, 2004 Printable Copy Create Case

<u>Set Name</u>	<u>e Query</u>	Hit Count Set Name		
ide by sid	_ •		result set	
DB=P	GPB; PLUR=YES; OP=	4DJ	•	
<u>L10</u>	L9 same 18	10	<u>L10</u>	
<u>L9</u>	il-16	574	<u>L9</u>	
<u>L8</u>	L7 same 16	168	<u>L8</u>	
<u>L7</u>	rantes	1576	<u>L7</u>	
<u>L6</u>	fibroblasts or fibroblast	18303	<u>L6</u>	
DB=USPT; PLUR=YES; OP=ADJ				
<u>L5</u>	L2 same 11	10	<u>L5</u>	
<u>L4</u>	L3 same l1	118	<u>L4</u>	
<u>L3</u>	rantes	1040	<u>L3</u>	
<u>L2</u>	il-16	113	<u>L2</u>	
<u>L1</u>	fibroblasts or fibroblast	23619	<u>L1</u>	

END OF SEARCH HISTORY

Set	Items	Description
S1	440480	FIBROBLASTS OR FIBROBLAST
S2	112474	AUTOANTIBODY OR AUTOANTIBODIES
S3	1591415	ACTIVATE OR ACTIVATED OR STIUMLATE OR STIMULATED
S4	1722215	ACTIVATE OR ACTIVATED OR STIMULATE OR STIMULATED
S5	119	S4 AND S2 AND S1
S6	79	RD (unique items)

.

· ·

	1492303	ANTIBODY OR ANTIBODIES
S2	335599	FIBROBLASTS OR FIBROBLAST
S3	32717	S1 AND S2
S4	12038	S3/TI
S5	1239750	ACTIVATE OR ACTIVATION OR ACTIVATES
S6	3940	S5 AND S1 AND S2
S7	1819	S6/TI
S8	459282	S1/TI
S9	111004	S2/TI
S10	1089	S8 AND S9
S11	350271	S5/TI
S12	36	S11 AND S8 AND S9
S13	5132	
S14	3960	FAP OR FIBROBLAST (W) ACTIVATION (W) PROTEIN
S15	5111	S13 NOT S14
S16	5111	S5 AND S15
S17	3940	S3 AND S2 AND S5
S18	1089	S8 AND S9
S19	76	S18 AND S5
S20	58	S19 NOT S14
S21	36	RD (unique items)
2		

Connecting via Winsock to Dialog Logging in to Dialog Trying 31060000009998...Open DIALOG INFORMATION SERVICES PLEASE LOGON: ***** ENTER PASSWORD: ***** Welcome to DIALOG Dialog level 04.18.01D Last logoff: 18oct04 13:25:29 Logon file405 27oct04 11:14:39 *** ANNOUNCEMENT *** *** -- Connect Time joins DialUnits as pricing options on Dialog. See HELP CONNECT for information. --SourceOne patents are now delivered to your email inbox as PDF replacing TIFF delivery. See HELP SOURCE1 for more information. -- Important Notice to Freelance Authors--See HELP FREELANCE for more information NEW FILES RELEASED ***Beilstein Abstracts (File 393) ***Beilstein Facts (File 390) ***Beilstein Reactions (File 391) ***F-D-C Gold/Silver Sheet (File 184) ***BIOSIS Toxicology (File 157) ***IPA Toxicology (File 153) UPDATING RESUMED RELOADED ***Toxfile (File 156) REMOVED ***Textile Technology Digest (File 119) >>> Enter BEGIN HOMEBASE for Dialog Announcements <<< of new databases, price changes, etc. * * * SYSTEM: HOME Cost is in DialUnits Menu System II: D2 version 1.7.9 term=ASCII *** DIALOG HOMEBASE(SM) Main Menu *** Information: 1. Announcements (new files, reloads, etc.) 2. Database, Rates, & Command Descriptions 3. Help in Choosing Databases for Your Topic

4. Customer Services (telephone assistance, training, seminars, etc.)

Connections:

5. Product Descriptions

```
6. DIALOG(R) Document Delivery
  7. Data Star(R) .
    (c) 2003 Dialog, a Thomson business.
                                            All rights reserved.
                                               /NOMENU = Command Mode
                          /L = Logoff
     /H = Help
Enter an option number to view information or to connect to an online
 service. Enter a BEGIN command plus a file number to search a database
(e.g., B1 for ERIC).
? b 410
       27oct04 11:14:39 User231886 Session D579.1
            $0.00 0.197 DialUnits FileHomeBase
     $0.00 Estimated cost FileHomeBase
     $0.00 Estimated cost this search
     $0.00 Estimated total session cost 0.197 DialUnits
File 410:Chronolog(R) 1981-2004/Sept
       (c) 2004 The Dialog Corporation
      Set Items Description
      ____
                 -----
? set hi ;set hi
HILIGHT set on as ''
HILIGHT set on as ''
? b 5 155 73 357 358 399
       27oct04 11:14:48 User231886 Session D579.2
            $0.00 0.097 DialUnits File410
     $0.00 Estimated cost File410
     $0.03 TELNET
     $0.03 Estimated cost this search
     $0.03 Estimated total session cost 0.293 DialUnits
SYSTEM: OS - DIALOG OneSearch
        5:Biosis Previews(R) 1969-2004/Oct W3
  File
         (c) 2004 BIOSIS
  File 155:MEDLINE(R) 1951-2004/Oct W4
         (c) format only 2004 The Dialog Corp.
  File 73:EMBASE 1974-2004/Oct W3
         (c) 2004 Elsevier Science B.V.
  File 357:Derwent Biotech Res. _1982-2004/Oct W5
         (c) 2004 Thomson Derwent & ISI
  File 358:Current BioTech Abs 1983-2004/Sep
         (c) 2004 DECHEMA
  File 399:CA SEARCH(R) 1967-2004/UD=14118
         (c) 2004 American Chemical Society
*File 399: Use is subject to the terms of your user/customer agreement.
Alert feature enhanced for multiple files, etc. See HELP ALERT.
      Set Items Description
          ----
? s fibroblast or fibroblasts
          277489 FIBROBLAST
          276558 FIBROBLASTS
      S1 440480 FIBROBLAST OR FIBROBLASTS
? sa il(w)16
               0 A IL
         1331165 16
               0 A IL(W)16
      S2
? s il(w)16
```

392236 IL 1331165 16

```
S3
            873 IL(W)16
? s rantes
     S4
          13405 RANTES
? s s2 and s3 and s4
              0
                 S2
            873
                 S3
          13405
                 S4
              0 S2 AND S3 AND S4
     S5
? s s1 and s3 and s4
         440480
                 S1
            873
                 S3
          13405
                 S4
     56
             20 S1 AND S3 AND S4
? rd
...completed examining records
         10 RD (unique items)
? t s7/7, k/all
>>>KWIC option is not available in file(s): 399
            (Item 1 from file: 5)
 7/7, K/1
DIALOG(R) File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.
           BIOSIS NO.: 200400290870
0014920113
Transforming growth factor-beta induces elevated interleukin-16 mRNA in
  synovial fibroblasts
AUTHOR: Aicher Wilhelm K (Reprint)
AUTHOR ADDRESS: Orthopaedic Surgery, UKT, Hoppe Seyler Str. 3, Tuebingen,
  BW, D 72076, Germany**Germany
AUTHOR E-MAIL ADDRESS: aicher@uni-tuebingen.de
JOURNAL: FASEB Journal 18 (4-5): pAbst. 779.9 2004 2004
MEDIUM: e-file
CONFERENCE/MEETING: FASEB Meeting on Experimental Biology: Translating the
Genome Washington, District of Columbia, USA April 17-21, 2004; 20040417
SPONSOR: FASEB
ISSN: 0892-6638 (ISSN print)
DOCUMENT TYPE: Meeting; Meeting Abstract
RECORD TYPE: Abstract
LANGUAGE: English
ABSTRACT: Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory
  disease. ***IL*** - ***16*** is expressed at elevated levels in RA synovial
    ***fibroblasts*** (SF). Binding of
                                         ***IL*** - ***16***
                                                                  to CD4 on
T-cells,
  macrophages or neutrophils induces chemotaxis and may activate these
  cells. As ***IL*** - ***16***
                                    may contribute to the chronic inflammation RA
  we investigated mechanisms regulating IL-16
  expression. Methods: SF were prepared from synovial membranes of patients
  undergoing synovectomy after written consent. Cells were stimulated with
  cytokines including rhIL-1Beta, rhRANTES, rhTGF-Beta, rhTNF-a, rhVEGF and
    ***IL*** - ***16*** expression was enumerated by quantitative RT-PCR.
  Results: VEGF or RANTES failed to modulate IL-16 mRNA
  responses in SF. Addition of TGF-Beta induced a statistically significant
    ***IL*** - ***16*** response (194% +/- 65, p<0.006). Addition of IL-1Beta
  or TNF-a reduced ***IL*** - ***16*** mRNA amounts to 38.4% (+/-15, p<0.001)
  and 45% (+/- 35, p<0.0025). Conclusion: The data suggest that induction of
  IL-16 expression in SF is not associated with the most
  prominent pro-inflammatory cytokines promoting inflammation in RA,
  IL-1Beta and TNF-a. Further, as TGF-Beta is inducing a statistically
  significant and prominent IL-16 response, induction of
  IL-16 may represent an early event, possibly preceding
  infiltration of inflammatory mononuclear cells. 6418.
```

```
Transforming growth factor-beta induces elevated interleukin-16 mRNA in
  synovial fibroblasts
ABSTRACT: Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory
  disease. ***IL*** - ***16*** is expressed at elevated levels in RA synovial
                                         ***IL*** - ***16***
    ***fibroblasts***
                        (SF). Binding of
                                                                   to CD4 on
T-cells,
  macrophages or neutrophils induces chemotaxis and may activate these
  cells. As ***IL*** - ***16*** may contribute to the chronic inflammation RA
  we investigated mechanisms regulating IL-16
  expression.Methods:SF were prepared from synovial membranes of patients
  undergoing synovectomy after written consent. Cells were stimulated with
  cytokines including rhIL-1Beta, rhRANTES, rhTGF-Beta, rhTNF-a, rhVEGF and
    ***IL*** - ***16*** expression was enumerated by quantitative RT-PCR.
  Results: VEGF or RANTES failed to modulate IL-16 mRNA
  responses in SF. Addition of TGF-Beta induced a statistically significant
    ***IL*** - ***16*** response (194% +/- 65, p<0.006). Addition of IL-1Beta
  or TNF-a reduced ***IL*** - ***16*** mRNA amounts to 38.4% (+/-15, p<0.001)
  and 45% (+/- 35, p<0.0025). Conclusion: The data suggest that induction of
  IL-16 expression in SF is not associated with the most
  prominent pro-inflammatory cytokines promoting inflammation...
...1Beta and TNF-a. Further, as TGF-Beta is inducing a statistically
  significant and prominent IL-16 response, induction of
  IL-16 may represent an early event, possibly preceding
  infiltration of inflammatory mononuclear cells. 6418.
DESCRIPTORS:
  ORGANISMS: PARTS ETC: synovial fibroblast --
             (Item 2 from file: 5)
 7/7, K/2
DIALOG(R) File 5:Biosis Previews(R)
(c) 2004 BIOSIS. All rts. reserv.
            BIOSIS NO.: 200300393864
0014435434
Immunoglobulin activation of T cell chemoattractant expression in
  fibroblasts from patients with Graves' disease is mediated through
  the insulin-like growth factor I receptor pathway.
AUTHOR: Pritchard Jane; Han Rui; Horst Noah; Cruikshank William W; Smith
  Terry J (Reprint)
AUTHOR ADDRESS: Harbor-University of California-Los Angeles Medical Center,
  1124 West Carson Street, Torrance, CA, 90502, USA**USA
AUTHOR E-MAIL ADDRESS: tjsmith@ucla.edu
JOURNAL: Journal of Immunology 170 (12): p6348-6354 June 15, 2003 2003
MEDIUM: print
ISSN: 0022-1767 (ISSN print)
DOCUMENT TYPE: Article
RECORD TYPE: Abstract
LANGUAGE: English
ABSTRACT: Graves' disease (GD) is associated with T cell infiltration, but
  the mechanism for lymphocyte trafficking has remained uncertain. We
  reported previously that fibroblasts from patients with GD express
  IL-16, a CD4-specific chemoattractant, and RANTES, a
  C-C chemokine, in response to GD-specific IgG (GD-IgG). We unexpectedly
  found that these responses result from a functional interaction between
  GD-IgG and the insulin-like growth factor (IGF)-I receptor (IGF-IR).
  IGF-I and the IGF-IR-specific IGF-I analog, des(1-3), mimic the effects
  of GD-IgG. Neither GD-IgG nor IGF-I activates chemoattractant expression
               ***fibroblasts***
                                  from donors without GD. Interrupting IGF-IR
```

function with specific receptor-blocking Abs or by transiently transfecting **fibroblasts** with a dominant negative mutant IGF-IR completely attenuates signaling provoked by GD-IgG. Moreover, GD-IgG displaces specific 125I-labeled IGF-I binding to **fibroblasts** and

attenuates IGF-IR detection by flow cytometry. These findings identify a

novel disease mechanism involving a functional GD-IqG/IGF-IR bridge, which potentially explains T cell infiltration in GD. Interrupting this pathway may constitute a specific therapeutic strategy.

Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves' disease is mediated through the insulin-like growth factor I receptor... ...ABSTRACT: cell infiltration, but the mechanism for lymphocyte trafficking has remained uncertain. We reported previously that

fibroblasts from patients with GD express IL-16, a CD4-specific chemoattractant, and RANTES, a C-C chemokine, in response to GD-specific IgG (GD-IgG). We unexpectedly found... ...effects of GD-IgG. Neither GD-IgG nor IGF-I activates chemoattractant

expression in control ***fibroblasts*** from donors without GD. Interrupting IGF-IR function with specific receptor-blocking Abs or by transiently transfecting fibroblasts with a dominant negative mutant IGF-IR completely attenuates signaling provoked by GD-IgG. Moreover, GD-IgG displaces specific 125I-labeled IGF-I binding to ***fibroblasts*** and attenuates IGF-IR detection by flow cytometry. These findings identify a novel disease mechanism... DESCRIPTORS:

fibroblast ...ORGANISMS: PARTS ETC: ***IL*** - ***16*** {interleukin-16... CHEMICALS & BIOCHEMICALS:

RANTES --

(Item 3 from file: 5) 7/7, K/3DIALOG(R) File 5:Biosis Previews(R)

(c) 2004 BIOSIS. All rts. reserv.

BIOSIS NO.: 200300258282 Lung fibroblasts infected with respiratory syncytial virus express inflammatory and immunomodulatory mediators.

AUTHOR: Arnold Ralf (Reprint); Konig Wolfgang AUTHOR ADDRESS: Institute of Medical Microbiology,

Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg, 39120, Germany * * Germany

AUTHOR E-MAIL ADDRESS: ralf.arnold@medizin.uni-magdeburg.de; wolfgang.koenig@medizin.uni-magdeburg.de

JOURNAL: FASEB Journal 17 (4-5): pAbstract No. 161.22 March 2003 2003

MEDIUM: e-file

CONFERENCE/MEETING: FASEB Meeting on Experimental Biology: Translating the Genome San Diego, CA, USA April 11-15, 2003; 20030411

SPONSOR: FASEB

ISSN: 0892-6638 _(ISSN print)

DOCUMENT TYPE: Meeting; Meeting Abstract

RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: RSV is the most common cause of bronchiolitis and pneumonia among infants under 1 year of age. Lung ***fibroblasts*** are intimately engaged in the regulation of inflammatory lung responses. We hypothesized whether human lung fibroblasts (MRC-5, WI-38) are target cells for RSV infection. Our data show that both MRC-5 and WI-38 cells express the viral F-protein on their cell surface demonstrating the infection and synthesis of viral proteins. We observed a time-and RSV-dose dependent release of MIP-lalpha, IL-16, IL-8, RANTES, IL-6 and PGE2. In a Th1-cytokine environment (IFN-gamma) the RSV-infected WI-38 cells upregulated their MHC-II molecule expression. In contrast, the constitutive expression of MHC-I molecules was only moderately

upregulated within the first 24 h p.i. unlike to the adhesion molecule ICAM-1 which was significantly expressed on the cell surfaces of RSV-infected ***fibroblasts*** . Increased IL-6-, IL-8-, ICAM-1 mRNA steady state level were verified by RT-PCR, Taqman and mRNA-ELISA. By Western blot studies and inhibition experiments using specific antagonists an involvement of distinct signal transduction elements was demonstrated for the release of IL-8, These data suggest that lung fibroblasts are target cells for RSV infection and that they contribute to inflammatory as well as specific immune reponses by means of a variety of RSV-induced soluble and cellbound mediators. (BMBF-NBL3-01ZZ0107). Lung fibroblasts infected with respiratory syncytial virus express inflammatory and immunomodulatory mediators.

... ABSTRACT: most common cause of bronchiolitis and pneumonia among infants under 1 year of age. Lung ***fibroblasts*** are intimately engaged in the regulation of inflammatory lung responses. We hypothesized whether human lung ***fibroblasts*** (MRC-5, WI-38) are target cells for RSV infection. Our data show that both...

...of viral proteins. We observed a time-and RSV-dose dependent release of MIP-1alpha, ***IL*** - ***16*** , IL-8, ***RANTES*** , IL-6 and PGE2. In a Th1-cytokine environment (IFN-gamma) the RSV-infected WI...

...adhesion molecule ICAM-1 which was significantly expressed on the cell surfaces of RSV-infected ***fibroblasts*** . Increased IL-6-, IL-8-, RANTES-and ICAM-1 mRNA steady state level were verified by RT-PCR, Taqman and mRNA...

...an involvement of distinct signal transduction elements was demonstrated for the release of IL-8, ***RANTES*** and PGE2. These data suggest that lung fibroblasts are target cells for RSV infection and that they contribute to inflammatory as well as... DESCRIPTORS:

...ORGANISMS: human lung ***fibroblasts*** ; ...

...human lung ***fibroblasts*** ORGANISMS: PARTS ETC: lung fibroblast --CHEMICALS & BIOCHEMICALS: ... ***IL*** ***16*** {interleukin-16...

RANTES ;

(Item 4 from file: 5) 7/7.K/4DIALOG(R) File 5:Biosis Previews(R) (c) 2004 BIOSIS. All rts. reserv.

BIOSIS NO.: 200200589923

Igs from patients with Graves' disease induce the expression of T cell chemoattractants in their fibroblasts

AUTHOR: Pritchard Jane; Horst Noah; Cruikshank William; Smith Terry J (Reprint)

AUTHOR ADDRESS: Department of Medicine, Division of Molecular Medicine, Harbor-University of California, Los Angeles Medical Center, 1124 West Carson Street, Building C-2, Torrance, CA, 90502, USA**USA

JOURNAL: Journal of Immunology 168 (2): p942-950 January 15, 2002 2002

MEDIUM: print ISSN: 0022-1767

DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: Thyroid-associated ophthalmopathy and dermopathy are connective

tissue manifestations of Graves' disease (GD). Tissue remodeling is a prominent feature of both and is apparently driven by recruited T cells. In this study, we report that IgG isolated from patients with GD (GD-IgG) up-regulates T lymphocyte chemoattractant activity in GD-derived ***fibroblasts*** from orbit, thyroid, and several regions of skin. This chemoattractant activity, absent in fibroblasts from donors without known thyroid disease, is partially susceptible to neutralization by anti- ***IL*** - ***16*** and anti- ***RANTES*** Absolute ***16*** is a ***RANTES*** is a C-C-type chemokine. CD4+-specific chemoattractant and IL-16 and RANTES protein levels, as determined by specific ELISAs, are substantially increased by GD-IgG in GD ***fibroblasts*** . Addition of the macrolide, rapamycin, to fibroblast culture medium blocked the up-regulation by GD-IgG of IL-16, implicating the FRAP/mTOR/p70s6k pathway in the induction of ***IL*** - ***16*** expression. These findings suggest a specific mechanism for activation of fibroblasts in GD resulting in the recruitment of T cells. They may provide insight into a missing link between the glandular and extrathyroidal manifestations of GD.

Igs from patients with Graves' disease induce the expression of T cell chemoattractants in their fibroblasts

... ABSTRACT: from patients with GD (GD-IgG) up-regulates T lymphocyte chemoattractant activity in GD-derived fibroblasts from orbit, thyroid, and several regions of skin. This chemoattractant activity, absent in fibroblasts from donors without known thyroid disease, is partially susceptible to neutralization by anti-IL-16 and anti- ***RANTES*** Absolute ***IL*** - ***16*** is a CD4+-specific chemoattractant and ***RANTES*** is a C-C-type chemokine. 16 and RANTES protein levels, as determined by specific ELISAs, are substantially increased by GD-IgG in GD Addition of the macrolide, rapamycin, to fibroblast culture medium blocked the up-regulation by GD-IgG of IL-16, implicating the FRAP/mTOR/p70s6k pathway in the induction of IL-16 expression. These findings suggest a specific mechanism for activation of ***fibroblasts*** in GD resulting in the recruitment of T cells. They may provide insight into a... DESCRIPTORS:

...ORGANISMS: PARTS ETC: dermal ***fibroblasts*** ***IL*** - ***16*** {interleukin-16... CHEMICALS & BIOCHEMICALS:

{regulation upon activation normal T cell expressed and ***RANTES*** secreted

(Item 5 from file: 5) 7/7, K/5DIALOG(R) File 5:Biosis Previews(R) (c) 2004 BIOSIS. All rts. reserv.

0013103555 BIOSIS NO.: 200100275394

Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner

AUTHOR: Majka Marcin; Janowska-Wieczorek Anna; Ratajczak Janina; Ehrenman Karen; Pietrzkowski Zbigniew; Kowalska M Anna; Gewirtz Alan M; Emerson Stephen G; Ratajczak Mariusz Z (Reprint)

AUTHOR ADDRESS: Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, University of Pennsylvania, 422 Curie Blvd, 405A Stellar Chance Labs, Philadelphia, PA, 19104, USA**USA

JOURNAL: Blood 97 (10): p3075-3085 May 15, 2001 2001

MEDIUM: print ISSN: 0006-4971 DOCUMENT TYPE: Article RECORD TYPE: Abstract LANGUAGE: English

ABSTRACT: The aim of this study was to explore further the hypothesis that early stages of normal human hematopoiesis might be coregulated by autocrine/paracrine regulatory loops and by cross-talk among early hematopoietic cells. Highly purified normal human CD34+ cells and ex vivo expanded early colony-forming unit-granulocyte-macrophage (CFU-GM)-derived, burst forming unit-erythroid (BFU-E)-derived, and CFU-megakaryocyte (CFU-Meg)-derived cells were phenotyped for messenger RNA expression and protein secretion of various growth factors, cytokines, and chemokines to determine the biological significance of this secretion. Transcripts were found for numerous growth factors (kit ligand (KL), FLT3 ligand, fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulinlike growth factor-1 (IGF-1), and thrombopoietin (TPO)); cytokines (tumor necrosis factor-alpha, Fas ligand, interferon alpha, interleukin 1 (IL-1), and IL-16); and chemokines (macrophage inflammatory protein-lalpha (MIP-lalpha), MIP-lbeta, regulated upon activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein-3 (MCP-3), MCP-4, IL-8, interferon-inducible protein-10, macrophage-derived chemokine (MDC), and platelet factor-4 (PF-4)) to be expressed by CD34+ cells. More importantly, the regulatory proteins VEGF, HGF, FGF-2, KL, FLT3 ligand, TPO, IL-16, IGF-1, transforming growth factor-beta1 (TGF-beta1), TGF-beta2, RANTES, MIP-lalpha, MIP-lbeta, IL-8, and PF-4 were identified in media conditioned by these cells. Moreover, media conditioned by CD34+ cells were found to inhibit apoptosis and slightly stimulate the proliferation of other freshly isolated CD34+ cells; chemoattract CFU-GM-and CFU-Meg-derived cells as well as other CD34+ cells; and, finally, stimulate the proliferation of human endothelial cells. It was also demonstrated that these various hematopoietic growth factors, cytokines, and chemokines are expressed and secreted by CFU-GM-, CFU-Meg-, and BFU-E-derived cells. It is concluded that normal human CD34+ cells and hematopoietic precursors secrete numerous regulatory molecules that form the basis of intercellular cross-talk networks and regulate in an autocrine and/or a paracrine manner the various stages of normal human hematopoiesis.

... ABSTRACT: of this secretion. Transcripts were found for numerous growth factors (kit ligand (KL), FLT3 ligand, **fibroblast** growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulinlike...

...TPO)); cytokines (tumor necrosis factor-alpha, Fas ligand, interferon alpha, interleukin 1 (IL-1), and IL-16); and chemokines (macrophage inflammatory protein-lalpha (MIP-lalpha), MIP-lbeta, regulated upon activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein-3 (MCP-3), MCP-4, IL-8, interferon-inducible protein-10, macrophage...

...CD34+ cells. More importantly, the regulatory proteins VEGF, HGF, FGF-2, KL, FLT3 ligand, TPO, IL-16, IGF-1, transforming growth factor-beta1 (TGF-beta1), TGF-beta2, RANTES, MIP-lalpha, MIP-lbeta, IL-8, and PF-4 were identified in media conditioned by...

...REGISTRY NUMBERS: ***fibroblast*** growth factor-2
DESCRIPTORS:

CHEMICALS & BIOCHEMICALS:

EMICALS: ***fibroblast*** growth factor-2...

7/7,K/6 (Item 1 from file: 155)
DIALOG(R)File 155:MEDLINE(R)
(c) format only 2004 The Dialog Corp. All rts. reserv.

16926686 PMID: 15322222 Synovial fibroblasts from patients with rheumatoid arthritis, like fibroblasts from Graves' disease, express high levels of IL16 when treated with Igs against insulin-like growth factor-1 receptor. Pritchard Jane; Tsui Shanli; Horst Noah; Cruikshank William W; Smith Terry J Division of Molecular Medicine, Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502, USA. Journal of immunology (Baltimore, Md. - 1950) (United States) Sep 1 2004, 173 (5) p3564-9, ISSN 0022-1767 Journal Code: 2985117R Contract/Grant Number: DK063121; DK; NIDDK; EY11708; EY; NEI; EY8976; EY; NEI; HL32802; HL; NHLBI; M01 RR00425; RR; NCRR Document type: Journal Article Languages: ENGLISH Main Citation Owner: NLM Record type: Completed We have reported recently that IgG from patients with Graves' disease can induce the expression of the CD4-specific T lymphocyte chemoattractant, IL-16, and RANTES, a C-C chemokine, in ***fibroblasts*** . This induction is mediated through the insulin-like growth factor-1 receptor (IGF-1R) pathway. We now report that Abs from individuals with active rheumatoid arthritis (RA-IgG) stimulate in ***fibroblasts*** the expression of these same cytokines. their synovial IgG from individuals without known autoimmune disease fails to elicit this chemoattractant production. Furthermore, RA-IgG fails to induce ***IL*** 16 or RANTES expression in synovial fibroblasts from donors with osteoarthritis. RA-IgG-provoked ***IL*** - ***16*** production also appears to involve the IGF-1R because RANTES receptor-blocking Abs prevent the response. RA ***fibroblasts*** transfected with a dominant-negative mutant IGF-1R fail to respond to RA-IqG. IGF-1 and the IGF-1R-specific analog Des(1-3) also induce cytokine ***fibroblasts*** . RA-IgG-provoked in RA production ***16*** expression is inhibited by rapamycin, a specific macrolide inhibitor of the Akt/FRAP/mammalian target of rapamycin/p70(s6k) pathway, and by dexamethasone. GD-IgG can also induce ***IL*** - ***16*** shows similar activity in GD and RA-IgG fibroblasts,

expression is inhibited by rapamycin, a specific macrolide inhibitor of the Akt/FRAP/mammalian target of rapamycin/p70(s6k) pathway, and by dexamethasone. GD-IgG can also induce ***IL*** - ***16*** in Rifibroblasts, and RA-IgG shows similar activity in GD ***fibroblasts*** . Thus, IgGs from patients with RA, like those associated with GD, activate IGF-1R, and in so doing provoke T cell chemoattraction expression in fibroblasts, suggesting a potential common pathway in the two diseases. Immune-competent cell trafficking to synovial tissue is integral to the pathogenesis of RA. Recognition of this novel RA-IgG/fibroblast interaction and its functional consequences may help identify therapeutic targets.

and

Record Date Created: 20040823
Record Date Completed: 20040921

Synovial **fibroblasts** from patients with rheumatoid arthritis, like **fibroblasts** from Graves' disease, express high levels of **IL- 16** when treated with Igs against insulin-like growth factor-l receptor.

... with Graves' disease (GD) can induce the expression of the CD4-specific T lymphocyte chemoattractant, IL-16, and ***RANTES*** , a C-C chemokine, in their ***fibroblasts*** . This induction is mediated through the insulin-like growth factor-1 receptor (IGF-1R) pathway...

... report that Abs from individuals with active rheumatoid arthritis (RA-IgG) stimulate in their synovial **fibroblasts** the expression of these same cytokines. IgG from individuals without known autoimmune disease fails to elicit this chemoattractant production. Furthermore, RA-IgG fails to induce **IL-16** or **RANTES** expression in synovial

from donors with osteoarthritis. RA-IgG-provoked ***fibroblasts*** -16 and RANTES production also appears to involve the IGF-1R because receptor-blocking Abs prevent the response. RA ***fibroblasts*** transfected with a dominant-negative mutant IGF-1R fail to respond to RA-IgG. IGF... ... and the IGF-1R-specific analog Des(1-3) also induce cytokine production in RA ***fibroblasts*** . RA-IgG-provoked ***IL*** - ***16*** expression is inhibited by rapamycin, a specific macrolide inhibitor of the Akt/FRAP/mammalian target of rapamycin/p70(s6k) pathway, and by dexamethasone. GD-IgG can also induce ***IL*** - ***16*** RA shows similar activity in GD and RA-IgG fibroblasts, . Thus, IgGs from patients with RA, like those associated ***fibroblasts*** with GD, activate IGF-1R, and in so doing provoke T cell chemoattraction expression in fibroblasts, suggesting a potential common pathway in the two diseases. Immune-competent cell trafficking to synovial tissue is integral to the pathogenesis of RA. Recognition of this novel RA-IgG/ fibroblast interaction and its functional consequences may help identify therapeutic targets. Rheumatoid--immunology--IM; Chemotactic Factors Arthritis, --biosynthesis--BI; Fibroblasts--drug effects--DE; Fibroblasts Fibroblasts--metabolism--ME; Graves' Disease --immunology--IM; Graves' Disease--metabolism--ME; Immunosuppressive --immunology--IM; Agents--pharmacology--PD; RANTES--metabolism--ME; Sirolimus--pharmaco logy--PD; Synovial Membrane--immunology--IM Chemical Name: Antibodies; Chemotactic Factors; Immunosuppressive Agents; Interleukin-16; RANTES; Receptors, Somatomedin; Sirolimus 7/7,K/7 (Item 2 from file: 155) DIALOG(R) File 155: MEDLINE(R) (c) format only 2004 The Dialog Corp. All rts. reserv. PMID: 14669949 16082038 The putative role of fibroblasts in the pathogenesis of Graves' disease: evidence for the involvement of the insulin-like growth factor-1 receptor in ***fibroblast*** activation. Smith Terry J Division of Molecular Medicine, Department of Medicine, Building C-2, Harbor-UCLA Medical Center, 1124 West Carson St., Torrance, CA 90502, USA. tjsmith@ucla.edu Autoimmunity (England) Sep-Nov 2003, 36 (6-7)p409-15, Journal Code: 8900070 Contract/Grant Number: EY08976; EY; NEI; EY11708; EY; NEI Document type: Journal Article; Review; Review, Tutorial Languages: ENGLISH Main Citation Owner: NLM Record type: Completed Graves' disease when fully expressed affects the thyroid gland and connective tissues of the orbit and pretibium. While the glandular disease is relatively well-characterized, the pathogenesis of the orbital and dermal components remains enigmatic. In the following article, we review some of the evidence suggesting that fibroblast activation in Graves' disease might play an integral role in the tissue remodeling associated with ophthalmopathy. The thyrotropin receptor (TSHR) is expressed at low levels in several connective tissue depots and by their derivative ***fibroblasts*** , including those from the orbit. Little direct evidence currently links extra-thyroidal TSHR expression with Graves' disease. Very recent observations now implicate the insulin-like growth factor-1 receptor ***fibroblast*** activating antigen. When immunoglobulins (IGF-1R) as a from patients with the disease, with or without clinical ophthalmopathy,

bind IGF-1R on the surface of fibroblasts, the receptor becomes

expression of

two

T lymphocyte

and upregulates the

activated

```
***RANTES*** . Thus, IGF-1R
                   ***IL*** - ***16***
                                            and
chemoattractants,
may
represent a second self-antigen with a pathogenic role in extra-thyroidal
Graves' disease. (43 Refs.)
 Record Date Created: 20031212
 Record Date Completed: 20040430
  The putative role of fibroblasts in the pathogenesis of Graves'
disease: evidence for the involvement of the insulin-like growth factor-1
receptor in ***fibroblast*** activation.
 ...components remains enigmatic. In the following article, we review some
of the evidence suggesting that fibroblast activation in Graves'
disease might play an integral role in the tissue remodeling associated
with...
...TSHR) is expressed at low levels in several connective tissue depots and
by their derivative ***fibroblasts*** , including those from the orbit.
Little direct evidence currently links extra-thyroidal TSHR expression with
... recent observations now implicate the insulin-like growth factor-1
                              ***fibroblast***
                                                 activating antigen. When
receptor
         (IGF-1R) as
                        a
immunoglobulins from patients with the disease, with or without clinical
ophthalmopathy, bind IGF-1R on the surface of fibroblasts, the
receptor becomes activated and upregulates the expression of two T
                               ***IL*** - ***16***
                                                       and
                                                             ***RANTES***
lymphocyte chemoattractants,
Thus,
IGF-1R may represent a second self-antigen with a pathogenic role in extra
 Descriptors: Autoantigens; *Fibroblasts--physiology--PH; *Graves'
Disease--physiopathology--PP; *Receptor, IGF Type 1--immunology--IM;
          Cytokines--physiology--PH; Fibroblasts--immunology--IM;
Graves' Disease--immunology--IM; Orbit; Receptors, Thyrotropin--immunology
--IM; Receptors, Thyrotropin--metabolism--ME
            (Item 3 from file: 155)
 7/7,K/8
DIALOG(R) File 155: MEDLINE(R)
(c) format only 2004 The Dialog Corp. All rts. reserv.
10620624 PMID: 10725741
   Cultured human fibroblasts express constitutive IL-16
mRNA: cytokine induction of active IL-16 protein synthesis
through a caspase-3-dependent mechanism.
  Sciaky D; Brazer W; Center D M; Cruikshank W W; Smith T J
  Division of Molecular Medicine, Department of Medicine, Albany Medical
College, Center, Albany, NY 12208, USA.
  Journal of immunology (Baltimore, Md. - 1950) (UNITED STATES)
2000, 164 (7) p3806-14, ISSN 0022-1767 Journal Code: 2985117R
  Contract/Grant Number: EY08976; EY; NEI; EY11708; EY; NEI; HL32802; HL;
NHLBI
 Document type: Journal Article
 Languages: ENGLISH
 Main Citation Owner: NLM
 Record type: Completed
  Human fibroblasts can express numerous regulatory molecules that
influence immune function. ***IL*** - ***16*** , a ligand for CD4, is a
chemoattractant molecule expressed by lymphocytes, eosinophils, mast cells,
and lung epithelium. It appears that the sole target for ***IL*** - ***16***
 is the CD4-bearing cell. Here we demonstrate that
                                                    ***fibroblasts***
several tissues can express IL-16 mRNA and protein as well as
                        -dependent chemoattractant activity. The transcript is
  ***IL*** - ***16***
expressed abundantly under basal culture conditions as a 2.5-kb band on
Northern analysis, similar to that observed in lymphocytes.
16 protein and activity are undetectable in fibroblast cultures
```

```
conditions. However, when treated with
              same
                     control
       these
proinflammatory cytokines such as IL-1beta, they express very high levels
of IL-16 protein and chemoattractant activity, a substantial
component of which can be blocked with ***IL*** - ***16*** -neutralizing
Absolute
The amount of IL-16 protein released into the medium is 3- to
4-fold greater, on a per cell basis, than that observed in lymphocytes. The
induction of IL-16 protein by IL-1beta can be attenuated with
specific inhibition of caspase-3, which could be detected in IL-1beta-treated ***fibroblasts*** . IL-1beta also induces ***RANTES***
mRNA, protein, and activity, and most of the chemoattractant activity
released from fibroblasts not derived from IL-16 can be
attributed to ***RANTES*** . Human ***fibroblasts***
                                                                appear to be an
important source of IL-16 and through expression of this
molecule may have key roles in the recruitment of CD4+ cells to sites of
inflammation. ***IL*** - ***16*** expression and the mechanism involved in
its regulation appear to be cell type specific.
  Record Date Created: 20000504
  Record Date Completed: 20000504
   Cultured human fibroblasts express constitutive IL-16
 mRNA: cytokine induction of active IL-16 protein synthesis
through a caspase-3-dependent mechanism.
  Human fibroblasts can express numerous regulatory molecules that
influence immune function. ***IL*** - ***16*** , a ligand for CD4, is a
chemoattractant molecule expressed by lymphocytes, eosinophils, mast cells,
and lung epithelium. It appears that the sole target for ***IL*** - ***16***
 is the CD4-bearing cell. Here we demonstrate that ***fibroblasts*** from
several tissues can express IL-16 mRNA and protein as well as
  ***IL*** - ***16*** -dependent chemoattractant activity. The transcript is
expressed abundantly under basal culture conditions as a 2.5-kb band on
Northern analysis, similar to that observed in lymphocytes.
16 protein and activity are undetectable in fibroblast cultures
      these same control conditions. However, when treated with
proinflammatory cytokines such as IL-1beta, they express very high levels
of IL-16 protein and chemoattractant activity, a substantial component of which can be blocked with ***IL*** - ***16***
                                        ***IL*** - ***16*** -neutralizing
Absolute
The amount of IL-16 protein released into the medium is 3- to
4-fold greater, on a per cell basis, than that observed in lymphocytes. The
induction of IL-16 protein by IL-1beta can be attenuated with
specific inhibition of caspase-3, which could be detected in
IL-1beta-treated ***fibroblasts*** . IL-1beta also induces
                                                                    ***RANTES***
mRNA, protein, and activity, and most of the chemoattractant activity
released from fibroblasts not derived from IL-16 can be
                ***RANTES*** . Human ***fibroblasts***
attributed to
important source of IL-16 and through expression of this
molecule may have key roles in the recruitment of CD4+ cells to sites of
               ***IL*** - ***16***
                                        expression and the mechanism involved in
inflammation.
its regulation appear to be cell type specific.
  Descriptors: Caspases--physiology--PH; *Cytokines--pharmacology--PD; *
Fibroblasts -- metabolism -- ME; *Interleukin -16 -- biosynthesis -- BI; *Int
erleukin-16--genetics--GE; *RNA, Messenger--biosynthesis--BI; Caspases
--metabolism--ME; Cells, Cultured; Chemotaxis, Leukocyte--immunology--IM;
        Activation--immunology--IM; Fibroblasts--enzymology--EN;
Fibroblasts--immunology--IM; Inflammation Mediators--pharmacology--PD
; Interleukin-1--pharmacology--PD; Lymphocytes--immunology--IM; Lymphokines
--pharmacology...
```

7/7,K/9 (Item 1 from file: 73)
DIALOG(R)File 73:EMBASE
(c) 2004 Elsevier Science B.V. All rts. reserv.

11782250 EMBASE No: 2002354689

Numerous growth factors, cytokines, and chemokines are secreted by human CD34SUP+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner

Majka M.; Janowska-Wieczorek A.; Ratajczak J.; Ehrenman K.; Pietrzkowski Z.; Kowalska M.A.; Gewirtz A.M.; Emerson S.G.; Ratajczak M.Z.

M.Z. Ratajczak, Department of Pathology, University of PA School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104 United States

AUTHOR EMAIL: mariusz@mail.med.upenn.edu

Blood (BLOOD) (United States) 15 MAY 2001, 97/10 (3075-3085)

CODEN: BLOOA ISSN: 0006-4971 DOCUMENT TYPE: Journal; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

NUMBER OF REFERENCES: 65

The aim of this study was to explore further the hypothesis that early stages of normal human hematopoiesis might be coregulated by autocrine/paracrine regulatory loops and by cross-talk among early hematopoietic cells. Highly purified normal human CD34SUP+ cells and ex vivo expanded early colony-forming unit-granulocyte-macrophage (CFU-GM)-derived, burst forming unit-erythroid (BFU-E)-derived, and CFU-megakaryocyte (CFU-Meg)-derived cells were phenotyped for messenger RNA expression and protein secretion of various growth factors, cytokines, and chemokines to determine the biological significance of this secretion. Transcripts were found for numerous growth factors (kit ligand [KL], FLT3 ligand, fibroblast growth factor-2 [FGF-2], vascular endothelial growth factor [VEGF], hepatocyte growth factor [HGF], insulinlike growth factor-1 [IGF-1], and thrombopoietin [TPO]); cytokines (tumor necrosis factor-alpha, Fas ligand, interferon alpha, interleukin 1 [IL-1], and IL-16); and chemokines (macrophage inflammatory protein-lalpha [MIP-1alpha], MIP-1beta, regulated upon activation, normal T cell expressed and secreted [RANTES], monocyte chemotactic protein-3 [MCP-3], MCP-4, IL-8, interferon-inducible protein-10, macrophage-derived chemokine [MDC], and platelet factor-4 [PF-4]) to be expressed by CD34SUP+ cells. More importantly, the regulatory proteins VEGF, HGF, FGF-2, KL, FLT3 ligand, TPO, IL-16, IGF-1, transforming growth factor-betal (TGF-beta1), TGF-beta2, RANTES, MIP-lalpha, MIP-lbeta, IL-8, and PF-4 were identified in media conditioned by these cells. Moreover, media conditioned by CD34SUP+ cells were found to inhibit apoptosis and slightly stimulate the proliferation of other freshly isolated CD34SUP+ cells; chemo-attract CFU-GM- and CFU-Meg-derived cells as well as other CD34SUP+ cells; and, finally, stimulate the proliferation of human endothelial cells. It was also demonstrated that these various hematopoietic growth factors, cytokines, and chemokines are expressed and secreted by CFU-GM-, CFU-Meg-, and BFU-E-derived cells. It is concluded that normal human CD34SUP+ cells and hematopoietic precursors secrete numerous regulatory molecules that form the basis of intercellular cross-talk networks and regulate in an autocrine and/or a paracrine manner the various stages of normal human hematopoiesis. (c) 2001 by The American Society of Hematology.

...of this secretion. Transcripts were found for numerous growth factors (kit ligand [KL], FLT3 ligand, **fibroblast** growth factor-2 [FGF-2], vascular endothelial growth factor [VEGF], hepatocyte growth factor [HGF], insulinlike...

...TPO]); cytokines (tumor necrosis factor-alpha, Fas ligand, interferon alpha, interleukin 1 [IL-1], and IL-16); and chemokines (macrophage inflammatory protein-lalpha [MIP-lalpha], MIP-lbeta, regulated upon activation, normal T cell expressed and secreted [RANTES], monocyte chemotactic protein-3 [MCP-3], MCP-4, IL-8, interferon-inducible protein-10, macrophage...

...CD34SUP+ cells. More importantly, the regulatory proteins VEGF, HGF,

FGF-2, KL, FLT3 ligand, TPO, IL-16, IGF-1, transforming growth factor-beta1 (TGF-beta1), TGF-beta2, RANTES, MIP-1alpha, MIP-1beta, IL-8, and PF-4 were identified in media conditioned by... DRUG DESCRIPTORS: *stem cell factor; *fibroblast growth factor 2; *vasculotropin; * scatter factor; *somatomedin C; *thrombopoietin ...necrosis factor alpha; FAS ligand; alpha interferon; interleukin 1; interleukin 16; macrophage inflammatory protein 1; RANTES; monocyte chemotactic protein 3; monocyte chemotactic protein 4; thrombocyte factor 4 ; interleukin 8; gamma interferon... (Item 1 from file: 357) 7/7, K/10DIALOG(R) File 357: Derwent Biotech Res. (c) 2004 Thomson Derwent & ISI. All rts. reserv. 0347856 DBR Accession Number: 2004-20148 PATENT Novel amended recombinant cell comprising one or more heterologous genes encoding chemokine or cytokine, useful for inducing/accelerating immune response in individual against immunogen - recombinant cell and cytokine and chemokine gene for use in disease therapy AUTHOR: GAERTNER F H; LEE S L; SHUTTER R W PATENT ASSIGNEE: GAERTNER F H; LEE S L; SHUTTER R W 2004 PATENT NUMBER: US 20040146484 PATENT DATE: 20040729 WPI ACCESSION NO.: 2004-552635 (200453) PRIORITY APPLIC. NO.: US 681540 APPLIC. DATE: 20031007 NATIONAL APPLIC. NO.: US 681540 APPLIC. DATE: 20031007 LANGUAGE: English ABSTRACT: DERWENT ABSTRACT: NOVELTY - An amended recombinant cell (ARC) (I) comprising one or more heterologous genes encoding a chemokine or a cytokine, is new. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (1) inducing/accelerating (M1) an immune response in an individual against an antigen or immunogen, involves the step of administering (I) or a composition comprising (I), to an (2) treating (M2) tumors, cancers, or malignancies, individual; involves administering (I) or a composition comprising (I), to an individual; (3) inducing (M3) a desired biological effect in an individual, involves administering (I) or a composition comprising (I), to an individual; and (4) producing (I), involves introducing at least one heterologous gene encoding a cytokine, and optionally, a chemokine into a cell, growing the cell in a nutrient medium, harvesting the cells, and inactivating or fixing the cells. BIOTECHNOLOGY - Preferred Recombinant Cell: In (I), the heterologous gene encodes interleukin (IL)-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-16 , IL-18, IL-23, IL-24, erythropoietin, granulocyte colony stimulating factor (G-CSF), macrophage-CSF, platelet derived growth factor (PDGF), MSF, FLT-3 ligand, endothelial growth factor (EGF), fibroblast growth factor (FGF), aFGF(FGF-1), bFGF(FGF-2), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, insulin-like growth factor 1 (IGF-1), IGF-2, vascular endothelial growth factor (VEGF),

derived growth factor (PDGF), MSF, FLT-3 ligand, endothelial growth factor (EGF), fibroblast growth factor (FGF), aFGF(FGF-1), bFGF(FGF-2), FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, insulin-like growth factor 1 (IGF-1), IGF-2, vascular endothelial growth factor (VEGF), interferon (IFN)-gamma, IFN-alpha, IFN-beta, leukemia inhibitor factor (LIF), ciliary neurotrophic factor (CNTF), oncostatin M, stem cell factor (SCF), transdermal growth factor (TGF)-alpha, TGF-beta1, THFbeta-2, chemokine chosen from BCA-i/BLC-1, BRAK/Kec, CXCL16, CXCR3, ENA-78/LIX, Eotaxin-1, Eotaxin-2/MPIF-2, Exodus-2/SLC, Fractalkine/Neur otactin, GROalpha/MGSA, HCC-1, I-TAC, Lymphotactin/ATAC/SCM, MCP-1/MCAF, MCP-3, MCP-4, MDC/STCP-1, ABCD-1, MIP-lalpha, MIP-lbeta, MIP-2alpha/GRObeta, MIP-3alpha/Exodus/LARC, MIP-3beta/Exodus-3/ELC, MIP-4/PARC/DCCK1, PF-4, regulated upon activation, normal T-cell expressed and secreted (RANTES), SDF1alpha, TARC, and TECK, or 57 cytokines or chemokines such as TNF, IL, other growth and regulatory factors and CSF as given in the specification. The heterologous gene encodes IFN-gamma, where IFN-gamma is bovine, avian, fish or human, preferably bovine. The avian IFN-gamma is chicken IFN-gamma. (I)

further comprises a heterologous gene encoding IFN-alpha. The cell is a microbial cell of Gram-positive organisms, Gram-negative organism, yeast, or fungi, preferably Pseudomonas fluorescens. (I) a carrier. Preferred Method: (M1) further involves comprises administration of an antigen of interest, preferably the administration of lipopolysaccharide (LPS). (I) co-express at least one antigen of (M1) accelerates the development of immunoglobulin (Ig)-M, interest. IgA, IgE, or IgY antibodies. (M1) further involves administering an antigen or immunogen prior to, concurrent with, or subsequent to the administration of composition comprising (I). (I) or composition comprising (I) has IFN-gamma and/or IFN-alpha. The IFN-alpha and IFN-gamma are of human, avian, bovine, or fish origin. The antigen or immunogen is a pathogen normally encountered by an individual in the environment or pathogenic substances specifically introduced into the environment of the individual. The antigen or immunogen is: biotoxin chosen from mycotoxins, trichothecene mycotoxin (T-2), Staphylococcal enterotoxin B, ricin, and Clostridium botulinum neurotoxin; a viral or bacterial pathogen chosen from smallpox, anthrax, Ebola virus, Yersinia pestis and weaponized microbial cells; or fungal pathogen. (M2) further involves administering chemotherapeutic agents, and optionally, tumor or cancer antigens. In (M3), the desired biological effect is chosen activation or stimulation or macrophage in an individual, stimulation, suppression, or modulation of the immune system of an individual, increasing viral resistance in an individual, effecting a desired biological affect of cytokines, factors involved in immune response, chemokines, as given in the specification, treating shipping fever in animals, protecting the newborn animals from viral disease or bacterial gastroenteritis and reducing the severity of disease or disease symptoms. ACTIVITY - Cytostatic; Immunomodulator. No supporting data is given. MECHANISM OF ACTION - Immune response stimulator (claimed). USE - (I) is useful for inducing/accelerating an immune response in an individual against an antigen or immunogen, for treating tumors, cancers or malignancies, and for inducing a desired biological effect in an individual, where the desired biological effect is stimulation, suppression, or modulation of the immune system of an individual (all claimed). EXAMPLE - Completed Pseudomonas fluorescens fermentation culture was poured into a sterile beaker containing a sterilized magnetic stirring bar. The culture was stirred slowly, while the pH was monitored with an alcohol-sterilized pH-probe. Glacial acetic acid was added, drop-wise, for 10 minutes, until a pH of about 4.3 was reached. Following titration of the culture to about pH 4.3, concentrated 1% Lugol iodine (Lugol iodine; sterile distilled water, 90 mL; potassium iodide, 10 g/100 mL; iodine, 5 g/100 mL, glacial acetic acid, 10 mL). The solution was stirred well and aseptically transferred to a new, sterile beaker containing a sterile stirring bar. The solution was covered and stirred for one hour at room temperature. The cells were treated for longer periods of time (e.g., up to two hours) with similar results. The Lugol/cell mixture was transferred to a sterile 500 mL capped bottle and centrifuged at 7500 rpm for 15 minutes. The supernatant liquid was decanted and discarded. Sterile distilled water at room temperature was added up to the original volume, the pellet was dislodged with a sterile spatula, and the cells were re-suspended with an autoclave-sterilized, homogenized for about 10 seconds. Resuspension and centrifugation were repeated, as described above, three times to wash the cells free of Lugol solution. During the final wash the amended recombinant cells (ARC) were resuspended to 1/110 original volume and, frozen at -80degreesC in sterile screw-cap tubes for long-term storage. Thus, ARC were obtained. (34 pages)

...ABSTRACT: 5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-15, ***IL***

16, IL-18, IL-23, IL-24, erythropoietin, granulocyte colony stimulating factor (G-CSF), macrophage-CSF, platelet derived growth factor (PDGF), MSF, FLT-3 ligand, endothelial growth factor (EGF), fibroblast growth factor (FGF), aFGF(FGF-1), bFGF(FGF-2), FGF-3,

FGF-4, FGF-5...

... MIP-4/PARC/DCCK1, PF-4, regulated upon activation, normal T-cell expressed and secreted (RANTES), SDF1alpha, TARC, and TECK, or 57 cytokines or chemokines such as TNF, IL, other growth...