Idiot's guide to ELEC4402 communication systems

License and information

Notes are open-source and licensed under the GNU GPL-3.0. You must include the full-text of the license and follow its terms when using these notes or any diagrams in derivative works (but not when printing as notes)

Copyright (C) 2024 Peter Tanner

► GPL copyright information

Access a PDF render of the notes (It is recommended to refer to this instead of the GitHub rendered page!)

I accept pull requests or suggestions but the content must not be copyrighted under a non-GPL compatible license.

Fourier transform identities

Time Function	Fourier Transform
$\operatorname{rect}\left(\frac{t}{T}\right) \Pi\left(\frac{t}{T}\right)$	$T\mathrm{sinc}(fT)$
$\mathrm{sinc}(2Wt)$	$rac{1}{2W}\mathrm{rect}\left(rac{f}{2W} ight) - rac{1}{2W}\Pi\left(rac{f}{2W} ight)$
$\exp(-at)u(t), a>0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), a>0$	$\frac{2a}{a^2+(2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$1 - rac{ t }{T}, t < T$	$T\mathrm{sinc}^2(fT)$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
g(t-a)	$\exp(-j2\pi fa)G(f)$ shift property
g(bt)	$rac{G(f/b)}{ b }$ scaling property
g(bt-a)	$rac{1}{ b } \exp(-j2\pi a(f/b)) \cdot G(f/b)$ shift and scale
$rac{d}{dt}g(t)$	$j2\pi fG(f)$ differentiation property
G(t)	g(-f) duality property
g(t)h(t)	G(f)*H(f)
g(t) * h(t)	G(f)H(f)
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$
$\cos(2\pi f_c t)$	$rac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$
$\sin(2\pi f_c t)$	$rac{1}{2j}[\delta(f-f_c)-\delta(f+f_c)]$
$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
$\frac{1}{\pi t}$	$-j\mathrm{sgn}(f)$
u(t)	$rac{1}{2}\delta(f)+rac{1}{j2\pi f}$
$\sum_{n=-\infty}^\infty \delta(t-nT_0)$	$rac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - rac{n}{T_0} ight) = f_0 \sum_{n=-\infty}^{\infty} \delta \left(f - n f_0 ight)$

$$u(t) = \begin{cases} 1, & t > 0 \\ \frac{1}{2}, & t = 0 \\ 0, & t < 0 \end{cases}$$
 Unit Step Function
$$\operatorname{sgn}(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$
 Signum Function
$$\operatorname{sinc}(2Wt) = \frac{\sin(2\pi Wt)}{2\pi Wt} \qquad \text{sinc Function}$$

$$\operatorname{rect}(t) = \Pi(t) = \begin{cases} 1, & -0.5 < t < 0.5 \\ 0, & |t| > 0.5 \end{cases}$$
 Rectangular/Gate Function
$$g(t) * h(t) = (g * h)(t) = \int_{\infty}^{\infty} g(\tau)h(t - \tau)d\tau$$
 Convolution

Fourier transform of continuous time periodic signal

Required for some questions on sampling:

Transform a continuous time-periodic signal $x_p(t) = \sum_{n=-\infty}^\infty x(t-nT_s)$ with period T_s :

$$X_p(f) = \sum_{n=-\infty}^{\infty} C_n \delta(f-nf_s) \quad f_s = rac{1}{T_s}$$

Calculate C_n coefficient as follows from $x_p(t)$:

$$egin{aligned} C_n &= rac{1}{T_s} \int_{T_s} x_p(t) \exp(-j2\pi f_s t) dt \ &= rac{1}{T_s} X(nf_s) \quad ext{(TODO: Check)} \quad x(t-nT_s) ext{ is contained in the interval } T_s \end{aligned}$$

rect function

Bessel function

$$\sum_{n\in\mathbb{Z}}{J_n}^2(eta)=1 \ J_n(eta)=(-1)^nJ_{-n}(eta)$$

White noise

$$egin{aligned} R_W(au) &= rac{N_0}{2} \delta(au) = rac{kT}{2} \delta(au) = \sigma^2 \delta(au) \ G_w(f) &= rac{N_0}{2} \ N_0 &= kT \ G_y(f) &= |H(f)|^2 G_w(f) \ G_v(f) &= G(f) G_v(f) \end{aligned}$$

WSS

$$\mu_X(t) = \mu_X ext{ Constant} \ R_{XX}(t_1,t_2) = R_X(t_1-t_2) = R_X(au) \ E[X(t_1)X(t_2)] = E[X(t)X(t+ au)]$$

$$egin{aligned} \langle X(t)
angle_T &= rac{1}{2T}\int_{-T}^T x(t)dt \ &\langle X(t+ au)X(t)
angle_T &= rac{1}{2T}\int_{-T}^T x(t+ au)x(t)dt \ &E[\langle X(t)
angle_T] &= rac{1}{2T}\int_{-T}^T x(t)dt &= rac{1}{2T}\int_{-T}^T m_X dt = m_X \end{aligned}$$

Туре	Normal	Mean square sense
ergodic in mean	$\lim_{T o\infty} \left\langle X(t) ight angle_T = m_X(t) = m_X$	$\lim_{T o\infty} \mathrm{VAR}[\langle X(t) angle_T] = 0$
ergodic in autocorrelation function	$\lim_{T o\infty}\left\langle X(t+ au)X(t) ight angle_T=R_X(au)$	$\lim_{T o\infty} \mathrm{VAR}[\langle X(t+ au)X(t) angle_T] = 0$

A WSS random process needs to be both ergodic in mean and autocorrelation to be considered an ergodic process

Other identities

$$f*(g*h)=(f*g)*h\quad \text{Convolution associative}$$

$$a(f*g)=(af)*g\quad \text{Convolution associative}$$

$$\sum_{x=-\infty}^{\infty}(f(xa)\delta(\omega-xb))=f\left(\frac{\omega a}{b}\right)$$

Other trig

$$\cos 2\theta = 2\cos^2\theta - 1 \Leftrightarrow \frac{\cos 2\theta + 1}{2} = \cos^2\theta$$

$$e^{-j\alpha} - e^{j\alpha} = -2j\sin(\alpha)$$

$$e^{-j\alpha} + e^{j\alpha} = 2\cos(\alpha)$$

$$\cos(-A) = \cos(A)$$

$$\sin(-A) = -\sin(A)$$

$$\sin(A + \pi/2) = \cos(A)$$

$$\sin(A - \pi/2) = -\cos(A)$$

$$\cos(A - \pi/2) = \sin(A)$$

$$\cos(A + \pi/2) = -\sin(A)$$

$$\cos(A + \pi/2) = -\sin(A)$$

$$\cos(A + \pi/2) = -\sin(A)$$

$$\int_{x \in \mathbb{R}} \sin(Ax) = \frac{1}{|A|}$$

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\cos(A)\cos(B) = \frac{1}{2}(\cos(A - B) + \cos(A + B))$$

$$\cos(A)\sin(B) = \frac{1}{2}(\sin(A + B) - \sin(A - B))$$

$$\sin(A)\sin(B) = \frac{1}{2}(\cos(A - B) - \cos(A + B))$$

$$\cos(A) + \cos(B) = 2\cos\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \cos(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\sin(A) - \sin(B) = 2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) + \sin(B) = 2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\left(\frac{A}{2} + \frac{B}{2}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2} + \frac{\pi}{4}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} - \frac{B}{2} - \frac{\pi}{4}\right)\sin\left(\frac{A}{2} + \frac{B}{2} + \frac{\pi}{4}\right)$$

$$\cos(A) - \sin(B) = -2\sin\left(\frac{A}{2} + \frac{B}{2} - \frac{\pi}{4}\right)\sin\left(\frac{A}{2} - \frac{B}{2} + \frac{\pi}{4}\right)$$

IQ/Complex envelope

Convert complex envelope representation to time-domain representation of signal

$$egin{aligned} g(t) &= g_I(t) \cos(2\pi f_c t) - g_Q(t) \sin(2\pi f_c t) \ &= \mathrm{Re}[ilde{g}(t) \exp{(j2\pi f_c t)}] \ &= A(t) \cos(2\pi f_c t + \phi(t)) \ A(t) &= |g(t)| = \sqrt{g_I^2(t) + g_Q^2(t)} \quad ext{Amplitude} \ \phi(t) \quad ext{Phase} \ g_I(t) &= A(t) \cos(\phi(t)) \quad ext{In-phase component} \ g_Q(t) &= A(t) \sin(\phi(t)) \quad ext{Quadrature-phase component} \end{aligned}$$

For transfer function

$$egin{aligned} h(t) &= h_I(t)\cos(2\pi f_c t) - h_Q(t)\sin(2\pi f_c t) \ &= 2\mathrm{Re}[ilde{h}(t)\exp\left(j2\pi f_c t
ight)] \ \Rightarrow ilde{h}(t) &= h_I(t)/2 + jh_Q(t)/2 = A(t)/2\exp\left(j\phi(t)
ight) \end{aligned}$$

AM

CAM

$$\begin{split} m_a &= \frac{\min_t |k_a m(t)|}{A_c} \quad k_a \text{ is the amplitude sensitivity (volt}^{-1}), m_a \text{ is the modulation index.} \\ m_a &= \frac{A_{\max} - A_{\min}}{A_{\max} + A_{\min}} \quad \text{(Symmetrical } m(t)\text{)} \\ m_a &= k_a A_m \quad \text{(Symmetrical } m(t)\text{)} \\ x(t) &= A_c \cos(2\pi f_c t) \left[1 + k_a m(t)\right] = A_c \cos(2\pi f_c t) \left[1 + m_a m(t)/A_c\right], \\ \text{where } m(t) &= A_m \hat{m}(t) \text{ and } \hat{m}(t) \text{ is the normalized modulating signal} \\ P_c &= \frac{A_c^2}{2} \quad \text{Carrier power} \\ P_x &= \frac{1}{4} m_a^2 A_c^2 \\ \eta &= \frac{\text{Signal Power}}{\text{Total Power}} = \frac{P_x}{P_x + P_c} \\ B_T &= 2f_m = 2B \end{split}$$

 B_T : Signal bandwidth B: Bandwidth of modulating wave

Overmodulation (resulting in phase reversals at crossing points): $m_a>1$

DSB-SC

$$x_{ ext{DSB}}(t) = A_c \cos{(2\pi f_c t)} m(t)
onumber \ B_T = 2f_m = 2B$$

FM/PM

$$\begin{split} s(t) &= A_c \cos\left[2\pi f_c t + k_p m(t)\right] \quad \text{Phase modulated (PM)} \\ s(t) &= A_c \cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right] \quad \text{Frequency modulated (FM)} \\ s(t) &= A_c \cos\left[2\pi f_c t + \beta \sin(2\pi f_m t)\right] \quad \text{FM single tone} \\ \beta &= \frac{\Delta f}{f_m} = k_f A_m \quad \text{Modulation index} \\ \Delta f &= \beta f_m = k_f A_m f_m = \max_t (k_f m(t)) - \min_t (k_f m(t)) \quad \text{Maximum frequency deviation} \\ D &= \frac{\Delta f}{W_m} \quad \text{Deviation ratio, where } W_m \text{ is bandwidth of } m(t) \text{ (Use FT)} \end{split}$$

Bessel form and magnitude spectrum (single tone)

$$s(t) = A_c \cos \left[2\pi f_c t + eta \sin(2\pi f_m t)
ight] \Leftrightarrow s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(eta) \cos[2\pi (f_c + n f_m) t]$$

$$egin{aligned} P_{ ext{av}} &= rac{{A_c}^2}{2} \ P_{ ext{band_index}} &= rac{{A_c}^2 J_{ ext{band_index}}^2(eta)}{2} \ ext{band_index} &= 0 \implies f_c + 0 f_m \ ext{band_index} &= 1 \implies f_c + 1 f_m, \ldots \end{aligned}$$

Carson's rule to find B (98% power bandwidth rule)

$$egin{aligned} B &= 2Mf_m = 2(eta+1)f_m \ &= 2(\Delta f + f_m) \ &= 2(k_f A_m + f_m) \ &= 2(D+1)W_m \ B &= egin{cases} 2(\Delta f + f_m) & ext{FM, sinusoidal message} \ 2(\Delta \phi + 1)f_m & ext{PM, sinusoidal message} \end{cases} \end{aligned}$$

Δf of arbitrary modulating signal

Find instantaneous frequency $f_{
m FM}$.

M: Number of **pairs** of significant sidebands

$$egin{align*} s(t) &= A_c \cos(heta_{ ext{FM}}(t)) \ f_{ ext{FM}}(t) &= rac{1}{2\pi} rac{d heta_{ ext{FM}}(t)}{dt} \ A_m &= \max_t |m(t)| \ \Delta f &= \max_t |f_{ ext{FM}}(t)) - f_c \ W_m &= \max(ext{frequencies in } heta_{ ext{FM}}(t)...) \ ext{Example: sinc}(At+t) + 2\cos(2\pi t) &= rac{\sin(2\pi((At+t)/2))}{\pi(At+t)} + 2\cos(2\pi t)
ightarrow W_m &= \max\left(rac{A+1}{2},1
ight) \ D &= rac{\Delta f}{W_m} \ B_T &= 2(D+1)W_m \end{aligned}$$

Complex envelope

$$egin{aligned} s(t) &= A_c \cos(2\pi f_c t + eta \sin(2\pi f_m t)) \Leftrightarrow ilde{s}(t) = A_c \exp(jeta \sin(2\pi f_m t)) \ s(t) &= \mathrm{Re}[ilde{s}(t) \exp(j2\pi f_c t)] \ ilde{s}(t) &= A_c \sum_{n=-\infty}^{\infty} J_n(eta) \exp(j2\pi f_m t) \end{aligned}$$

Band

Narrowband	Wideband
$D < 1, \beta < 1$	D>1, eta>1

Power, energy and autocorrelation

$$G_{ ext{WGN}}(f) = rac{N_0}{2}$$
 $G_x(f) = |H(f)|^2 G_w(f) ext{ (PSD)}$
 $G_x(f) = G(f) G_w(f) ext{ (PSD)}$
 $G_x(f) = \lim_{T o \infty} rac{|X_T(f)|^2}{T} ext{ (PSD)}$
 $G_x(f) = \mathfrak{F}[R_x(au)] ext{ (WSS)}$
 $P = \sigma^2 = \int_{\mathbb{R}} G_x(f) df$
 $P = \sigma^2 = \lim_{t o \infty} rac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$
 $P[A\cos(2\pi f t + \phi)] = rac{A^2}{2} ext{ Power of sinusoid}$
 $E = \int_{-\infty}^{\infty} |x(t)|^2 dt = |X(f)|^2$
 $R_x(au) = \mathfrak{F}(G_x(f)) ext{ PSD to Autocorrelation}$

Noise performance

$$egin{align*} ext{CNR}_{ ext{in}} &= rac{P_{ ext{in}}}{P_{ ext{noise}}} \ ext{CNR}_{ ext{in,FM}} &= rac{A^2}{2WN_0} \ ext{SNR}_{ ext{FM}} &= rac{3A^2k_f^2P}{2N_0W^3} \ ext{SNR}(ext{dB}) &= 10\log_{10}(ext{SNR}) & ext{Decibels from ratio} \end{aligned}$$

Sampling

$$egin{aligned} t &= nT_s \ T_s &= rac{1}{f_s} \ x_s(t) &= x(t)\delta_s(t) = x(t)\sum_{n \in \mathbb{Z}} \delta(t-nT_s) = \sum_{n \in \mathbb{Z}} x(nT_s)\delta(t-nT_s) \ X_s(f) &= X(f) * \sum_{n \in \mathbb{Z}} \delta\left(f - rac{n}{T_s}
ight) = X(f) * \sum_{n \in \mathbb{Z}} \delta\left(f - nf_s
ight) \ B &> rac{1}{2}f_s, 2B > f_s o ext{Aliasing} \end{aligned}$$

Procedure to reconstruct sampled signal

Analog signal x'(t) which can be reconstructed from a sampled signal $x_s(t)$: Put $x_s(t)$ through LPF with maximum frequency of $f_s/2$ and minimum frequency of $-f_s/2$. Anything outside of the BPF will be attenuated, therefore n which results in frequencies outside the BPF will evaluate to 0 and can be ignored.

Example: $f_s = 5000 \implies \mathrm{LPF} \in [-2500, 2500]$

Then iterate for $n=0,1,-1,2,-2,\ldots$ until the first iteration where the result is 0 since all terms are eliminated by the LPF.

TODO: Add example

Then add all terms and transform $ar{X}_s(f)$ back to time domain to get $x_s(t)$

Fourier transform of continuous time periodic signal (1)

Required for some questions on $\boldsymbol{sampling}:$

Transform a continuous time-periodic signal $x_p(t) = \sum_{n=-\infty}^{\infty} x(t-nT_s)$ with period T_s :

$$X_p(f) = \sum_{n=-\infty}^{\infty} C_n \delta(f-nf_s) \quad f_s = rac{1}{T_s}$$

Calculate C_n coefficient as follows from $x_p(t)$:

$$egin{aligned} C_n &= rac{1}{T_s} \int_{T_s} x_p(t) \exp(-j2\pi f_s t) dt \ &= rac{1}{T_s} X(nf_s) \quad ext{(TODO: Check)} \quad x(t-nT_s) ext{ is contained in the interval } T_s \end{aligned}$$

Nyquist criterion for zero-ISI

Do not transmit more than 2B samples per second over a channel of B bandwidth.

Relationship of Nyquist frequency & rate (example)

Insert here figure 8.3 from M F Mesiya - Contemporary Communication Systems (Add image to images/sampling.png)

sampling

Quantizer

$$\Delta = rac{x_{
m Max} - x_{
m Min}}{2^k} ~~{
m for}~k ext{-bit quantizer}~({
m V/lsb})$$

Quantization noise

$$\begin{split} e &:= y - x \quad \text{Quantization error} \\ \mu_E &= E[E] = 0 \quad \text{Zero mean} \\ \sigma_E^{\ 2} &= E[E^2] - 0^2 = \int_{-\Delta/2}^{\Delta/2} e^2 \times \left(\frac{1}{\Delta}\right) de \quad \text{Where } E \sim 1/\Delta \text{ uniform over } (-\Delta/2, \Delta/2) \\ \text{SQNR} &= \frac{\text{Signal power}}{\text{Quantization noise}} \\ \text{SQNR}(\text{dB}) &= 10 \log_{10}(\text{SQNR}) \end{split}$$

Insert here figure 8.17 from M F Mesiya - Contemporary Communication Systems (Add image to images/quantizer.png)

Figure 8.17 Two types of eight-level uniform quantizer.

quantizer

Line codes

$$R_b \rightarrow \text{Bit rate} \\ D \rightarrow \text{Symbol rate} \mid R_d \mid 1/T_b \\ A \rightarrow m_a \\ V(f) \rightarrow \text{Pulse shape} \\ V_{\text{rectangle}}(f) = T \text{sinc}(fT \times \text{DutyCycle}) \\ G_{\text{MunipolarNRZ}}(f) = \frac{(M^2 - 1)A^2D}{12} |V(f)|^2 + \frac{(M - 1)^2}{4} (DA)^2 \sum_{l = -\infty}^{\infty} |V(lD)|^2 \delta(f - lD) \\ G_{\text{MpolarNRZ}}(f) = \frac{(M^2 - 1)A^2D}{3} |V(f)|^2 \\ G_{\text{unipolarNRZ}}(f) = \frac{A^2}{4R_b} \left(\text{sinc}^2 \left(\frac{f}{R_b} \right) + R_b \delta(f) \right), \text{NB}_0 = R_b \\ G_{\text{polarNRZ}}(f) = \frac{A^2}{R_b} \text{sinc}^2 \left(\frac{f}{R_b} \right) \\ G_{\text{unipolarNRZ}}(f) = \frac{A^2}{4R_b} \left(\text{sinc}^2 \left(\frac{f}{R_b} \right) + R_b \delta(f) \right) \\ G_{\text{unipolarNRZ}}(f) = \frac{A^2}{4R_b} \left(\text{sinc}^2 \left(\frac{f}{R_b} \right) + R_b \delta(f) \right) \\ G_{\text{unipolarRZ}}(f) = \frac{A^2}{4R_b} \left(\text{sinc}^2 \left(\frac{f}{R_b} \right) + R_b \delta(f) \right) \\ NB_0 = 2R_b$$

Modulation and basis functions

BASK constellation

QPSK constellation

BPSK constellation

BASK

Basis functions

$$arphi_1(t) = \sqrt{rac{2}{T_b}}\cos(2\pi f_c t) \quad 0 \leq t \leq T_b$$

Symbol mapping

$$b_n:\{1,0\} o a_n:\{1,0\}$$

2 possible waveforms

$$egin{aligned} s_1(t) &= A_c \sqrt{rac{T_b}{2}} arphi_1(t) = \sqrt{2E_b} arphi_1(t) \ s_1(t) &= 0 \ & ext{Since } E_b = E_{ ext{average}} = rac{1}{2} (rac{A_c^2}{2} imes T_b + 0) = rac{A_c^2}{4} T_b \end{aligned}$$

Distance is $d=\sqrt{2E_b}$

BPSK

Basis functions

$$arphi_1(t) = \sqrt{rac{2}{T_b}}\cos(2\pi f_c t) \quad 0 \leq t \leq T_b$$

$$b_n:\{1,0\} o a_n:\{1,-1\}$$

2 possible waveforms

$$egin{aligned} s_1(t) &= A_c \sqrt{rac{T_b}{2}} arphi_1(t) = \sqrt{E_b} arphi_1(t) \ s_1(t) &= -A_c \sqrt{rac{T_b}{2}} arphi_1(t) = -\sqrt{E_b} arphi_2(t) \ & ext{Since } E_b = E_{ ext{average}} = rac{1}{2} (rac{A_c^2}{2} imes T_b + rac{A_c^2}{2} imes T_b) = rac{A_c^2}{2} T_b \end{aligned}$$

Distance is $d=2\sqrt{E_b}$

QPSK (
$$M=4$$
 PSK)

Basis functions

$$T=2T_b$$
 Time per symbol for two bits T_b $arphi_1(t)=\sqrt{rac{2}{T}}\cos(2\pi f_c t) \quad 0\leq t\leq T$ $arphi_2(t)=\sqrt{rac{2}{T}}\sin(2\pi f_c t) \quad 0\leq t\leq T$

4 possible waveforms

$$egin{aligned} s_1(t) &= \sqrt{E_s/2} \left[arphi_1(t) + arphi_2(t)
ight] \ s_2(t) &= \sqrt{E_s/2} \left[arphi_1(t) - arphi_2(t)
ight] \ s_3(t) &= \sqrt{E_s/2} \left[-arphi_1(t) + arphi_2(t)
ight] \ s_4(t) &= \sqrt{E_s/2} \left[-arphi_1(t) - arphi_2(t)
ight] \end{aligned}$$

Note on energy per symbol: Since $|s_i(t)| = A_{c_i}$ have to normalize distance as follows:

$$egin{aligned} s_i(t) &= A_c \sqrt{T/2}/\sqrt{2} imes \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \ &= \sqrt{T{A_c}^2/4} \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \ &= \sqrt{E_s/2} \left[lpha_{1i} arphi_1(t) + lpha_{2i} arphi_2(t)
ight] \end{aligned}$$

Signal

Symbol mapping:
$$\{1,0\} o \{1,-1\}$$

$$I(t) = b_{2n}\varphi_1(t) \quad \text{Even bits}$$

$$Q(t) = b_{2n+1}\varphi_2(t) \quad \text{Odd bits}$$

$$x(t) = A_c[I(t)\cos(2\pi f_c t) - Q(t)\sin(2\pi f_c t)]$$

Example of waveform

► Code

Remember that $T=2T_{b}$

b_n	QPSK bits
I(t) (Odd, 1st bits)	QPSK bits
Q(t) (Even, 2nd bits)	QPSK bits

Matched filter

1. Filter function

Find transfer function h(t) of matched filter and apply to an input:

$$h(t) = s_1(T-t) - s_2(T-t)$$

 $h(t) = s^*(T-t)$ ((.)* is the conjugate)
 $s_{on}(t) = h(t) * s_n(t) = \int_{-\infty}^{\infty} h(\tau) s_n(t-\tau) d\tau$ Filter output
 $n_o(t) = h(t) * n(t)$ Noise at filter output

2. Bit error rate

Bit error rate (BER) from matched filter outputs and filter output noise

$$\begin{split} Q(x) &= \frac{1}{2} - \frac{1}{2} \mathrm{erf} \left(\frac{x}{\sqrt{2}} \right) \Leftrightarrow \mathrm{erf} \left(\frac{x}{\sqrt{2}} \right) = 1 - 2Q(x) \\ E_b &= d^2 = \int_{-\infty}^{\infty} |s_1(t) - s_2(t)|^2 dt \quad \mathrm{Energy \ per \ bit} / \mathrm{Distance} \\ T &= 1/R_b \quad R_b \mathrm{: Bitrate} \\ E_b &= PT = P_{\mathrm{av}} / R_b \quad \mathrm{Energy \ per \ bit} \\ P(\mathrm{W}) &= 10^{\frac{P(\mathrm{dB})}{10}} \\ P_{\mathrm{RX}}(W) &= P_{\mathrm{TX}}(W) \cdot 10^{\frac{P_{\mathrm{loss}}(\mathrm{dB})}{10}} \quad P_{\mathrm{loss}} \ \mathrm{is \ expressed \ with \ negative \ sign \ e.g. \ "-130 \ dB"} \\ \mathrm{BER}_{\mathrm{MatchedFilter}} &= Q\left(\sqrt{\frac{d^2}{2N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \\ \mathrm{BER}_{\mathrm{unipolarNRZ|BASK}} &= Q\left(\sqrt{\frac{d^2}{N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \\ \mathrm{BER}_{\mathrm{polarNRZ|BPSK}} &= Q\left(\sqrt{\frac{2d^2}{N_0}}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \end{split}$$

Value tables for $\operatorname{erf}(x)$ and Q(x)

$\operatorname{erf}(x)$ function

\boldsymbol{x}	$\operatorname{erf}(x)$	\boldsymbol{x}	$\operatorname{erf}(x)$	\boldsymbol{x}	$\operatorname{erf}(x)$
0.00	0.00000	0.75	0.71116	1.50	0.96611
0.05	0.05637	0.80	0.74210	1.55	0.97162
0.10	0.11246	0.85	0.77067	1.60	0.97635
0.15	0.16800	0.90	0.79691	1.65	0.98038
0.20	0.22270	0.95	0.82089	1.70	0.98379
0.25	0.27633	1.00	0.84270	1.75	0.98667
0.30	0.32863	1.05	0.86244	1.80	0.98909
0.35	0.37938	1.10	0.88021	1.85	0.99111
0.40	0.42839	1.15	0.89612	1.90	0.99279
0.45	0.47548	1.20	0.91031	1.95	0.99418
0.50	0.52050	1.25	0.92290	2.00	0.99532
0.55	0.56332	1.30	0.93401	2.50	0.99959
0.60	0.60386	1.35	0.94376	3.00	0.99998
0.65	0.64203	1.40	0.95229	3.30	0.999998**
0.70	0.67780	1.45	0.95970		

${\cal Q}(x)$ function

\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)
0.00	0.5	2.30	0.010724	4.55	$2.6823 imes 10^{-6}$	6.80	$5.231 imes 10^{-12}$
0.05	0.48006	2.35	0.0093867	4.60	$2.1125 imes 10^{-6}$	6.85	$3.6925 imes 10^{-12}$
0.10	0.46017	2.40	0.0081975	4.65	$1.6597 imes 10^{-6}$	6.90	$2.6001 imes 10^{-12}$
0.15	0.44038	2.45	0.0071428	4.70	$1.3008 imes 10^{-6}$	6.95	$1.8264 imes 10^{-12}$
0.20	0.42074	2.50	0.0062097	4.75	$1.0171 imes 10^{-6}$	7.00	1.2798×10^{-12}
0.25	0.40129	2.55	0.0053861	4.80	$7.9333 imes 10^{-7}$	7.05	8.9459×10^{-13}
0.30	0.38209	2.60	0.0046612	4.85	$6.1731 imes 10^{-7}$	7.10	$6.2378 imes 10^{-13}$
0.35	0.36317	2.65	0.0040246	4.90	$4.7918 imes 10^{-7}$	7.15	$4.3389 imes 10^{-13}$
0.40	0.34458	2.70	0.003467	4.95	$3.7107 imes 10^{-7}$	7.20	$3.0106 imes 10^{-13}$
0.45	0.32636	2.75	0.0029798	5.00	$2.8665 imes 10^{-7}$	7.25	$2.0839 imes 10^{-13}$
0.50	0.30854	2.80	0.0025551	5.05	$2.2091 imes 10^{-7}$	7.30	$1.4388 imes 10^{-13}$
0.55	0.29116	2.85	0.002186	5.10	$1.6983 imes 10^{-7}$	7.35	$9.9103 imes 10^{-14}$
0.60	0.27425	2.90	0.0018658	5.15	$1.3024 imes 10^{-7}$	7.40	6.8092×10^{-14}
0.65	0.25785	2.95	0.0015889	5.20	9.9644×10^{-8}	7.45	$4.667 imes 10^{-14}$
0.70	0.24196	3.00	0.0013499	5.25	7.605×10^{-8}	7.50	3.1909×10^{-14}
0.75	0.22663	3.05	0.0011442	5.30	5.7901×10^{-8}	7.55	$2.1763 imes 10^{-14}$
0.80	0.21186	3.10	0.0009676	5.35	4.3977×10^{-8}	7.60	$1.4807 imes 10^{-14}$
0.85	0.19766	3.15	0.00081635	5.40	3.332×10^{-8}	7.65	$1.0049 imes 10^{-14}$
0.90	0.18406	3.20	0.00068714	5.45	$2.5185 imes 10^{-8}$	7.70	$6.8033 imes 10^{-15}$
0.95	0.17106	3.25	0.00057703	5.50	1.899×10^{-8}	7.75	4.5946×10^{-15}
1.00	0.15866	3.30	0.00048342	5.55	$1.4283 imes 10^{-8}$	7.80	$3.0954 imes 10^{-15}$
1.05	0.14686	3.35	0.00040406	5.60	1.0718×10^{-8}	7.85	$2.0802 imes 10^{-15}$

\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)	\boldsymbol{x}	Q(x)
1.10	0.13567	3.40	0.00033693	5.65	$8.0224 imes 10^{-9}$	7.90	$1.3945 imes 10^{-15}$
1.15	0.12507	3.45	0.00028029	5.70	$5.9904 imes 10^{-3}$	7.95	$9.3256 imes 10^{-16}$
1.20	0.11507	3.50	0.00023263	5.75	4.4622×10^{-9}	8.00	$6.221 imes 10^{-16}$
1.25	0.10565	3.55	0.00019262	5.80	$3.3157 imes 10^{-9}$	8.05	$4.1397 imes 10^{-16}$
1.30	0.0968	3.60	0.00015911	5.85	$2.4579 imes 10^{-9}$	8.10	2.748×10^{-16}
1.35	0.088508	3.65	0.00013112	5.90	$1.8175 imes 10^{-9}$	8.15	$1.8196 imes 10^{-16}$
1.40	0.080757	3.70	0.0001078	5.95	$1.3407 imes 10^{-9}$	8.20	$1.2019 imes 10^{-16}$
1.45	0.073529	3.75	$8.8417 imes 10^{-5}$	6.00	$9.8659 imes 10^{-10}$	8.25	$7.9197 imes 10^{-17}$
1.50	0.066807	3.80	7.2348×10^{-5}	6.05	$7.2423 imes 10^{-10}$	8.30	$5.2056 imes 10^{-17}$
1.55	0.060571	3.85	$5.9059 imes 10^{-5}$	6.10	$5.3034 imes 10^{-10}$	8.35	3.4131×10^{-17}
1.60	0.054799	3.90	$4.8096 imes 10^{-5}$	6.15	3.8741×10^{-10}	8.40	$2.2324 imes 10^{-17}$
1.65	0.049471	3.95	$3.9076 imes 10^{-5}$	6.20	$2.8232 imes 10^{-10}$	8.45	$1.4565 imes 10^{-17}$
1.70	0.044565	4.00	$3.1671 imes 10^{-5}$	6.25	$2.0523 imes 10^{-10}$	8.50	$9.4795 imes 10^{-18}$
1.75	0.040059	4.05	$2.5609 imes 10^{-5}$	6.30	$1.4882 imes 10^{-10}$	8.55	6.1544×10^{-18}
1.80	0.03593	4.10	$2.0658 imes 10^{-5}$	6.35	$1.0766 imes 10^{-10}$	8.60	$3.9858 imes 10^{-18}$
1.85	0.032157	4.15	1.6624×10^{-5}	6.40	$7.7688 imes 10^{-11}$	8.65	2.575×10^{-18}
1.90	0.028717	4.20	1.3346×10^{-5}	6.45	$5.5925 imes 10^{-11}$	8.70	$1.6594 imes 10^{-18}$
1.95	0.025588	4.25	1.0689×10^{-5}	6.50	4.016×10^{-11}	8.75	1.0668×10^{-18}
2.00	0.02275	4.30	$8.5399 imes 10^{-6}$	6.55	$2.8769 imes 10^{-11}$	8.80	$6.8408 imes 10^{-19}$
2.05	0.020182	4.35	$6.8069 imes 10^{-6}$	6.60	$2.0558 imes 10^{-11}$	8.85	$4.376 imes 10^{-19}$
2.10	0.017864	4.40	5.4125×10^{-6}	6.65	$1.4655 imes 10^{-11}$	8.90	$2.7923 imes 10^{-19}$
2.15	0.015778	4.45	4.2935×10^{-6}	6.70	1.0421×10^{-11}	8.95	$1.7774 imes 10^{-19}$
2.20	0.013903	4.50	$3.3977 imes 10^{-6}$	6.75	$7.3923 imes 10^{-12}$	9.00	$1.1286 imes 10^{-19}$
2.25	0.012224						

Adapted from table 6.1 M F Mesiya - Contemporary Communication Systems

Receiver output shit

$$r_o(t) = egin{cases} s_{o1}(t) + n_o(t) & ext{code 1} \ s_{o2}(t) + n_o(t) & ext{code 0} \ n: ext{AWGN with } \sigma_o^2 \end{cases}$$

ISI, channel model

Nyquist criterion for zero ISI

TODO:

Nomenclature

 $D \to \operatorname{Symbol}$ Rate, Max. Signalling Rate

 $T \to \operatorname{Symbol} \operatorname{Duration}$

 $M \to \operatorname{Symbol} \operatorname{set} \operatorname{size}$

 $W o ext{Bandwidth}$

Raised cosine (RC) pulse

^{**}The value of ${
m erf}(3.30)$ should be pprox 0.999997 instead, but this value is quoted in the formula table.

Linear modulation RC pulse

NRZ unipolar RC pulse

 $0 \le \alpha \le 1$

 \triangle NOTE might not be safe to assume T'=T, if you can solve the question without T then use that method.

To solve this type of question:

- 1. Use the formula for ${\cal D}$ below
- 2. Consult the BER table below to get the BER which relates the noise of the channel N_0 to E_b and to R_b .

Linear modulation ($M ext{-PSK}$, $M ext{-QAM}$) NRZ unipolar encoding

$W=B_{ m abs-abs}$	$W=B_{ m abs}$
$W=B_{ ext{abs-abs}}=rac{1+lpha}{T}=(1+lpha)D$	$W=B_{ m abs}=rac{1+lpha}{2T}=(1+lpha)D/2$
$D=rac{W ext{ symbol/s}}{1+lpha}$	$D=rac{2W ext{ symbol/s}}{1+lpha}$

Symbol set size M

$$D ext{ symbol/s} = rac{2W ext{ Hz}}{1+lpha} \ R_b ext{ bit/s} = (D ext{ symbol/s}) imes (k ext{ bit/symbol}) \ M ext{ symbol/set} = 2^k \ E_b = PT = P_{ ext{av}}/R_b ext{ Energy per bit}$$

Nyquist stuff

Condition for 0 ISI TODO:

$$P_r(kT) = egin{cases} 1 & k=0 \ 0 & k
eq 0 \end{cases}$$

Other

$$\begin{split} \text{Excess BW} &= B_{\text{abs}} - B_{\text{Nyquist}} = \frac{1+\alpha}{2T} - \frac{1}{2T} = \frac{\alpha}{2T} \quad \text{FOR NRZ (Use correct B_{abs})} \\ &\alpha = \frac{\text{Excess BW}}{B_{\text{Nyquist}}} = \frac{B_{\text{abs}} - B_{\text{Nyquist}}}{B_{\text{Nyquist}}} \\ &T = 1/D \end{split}$$

Table of bandpass signalling and BER

Binary Bandpass Signaling	$B_{ m null-null}$ (Hz)	$B_{ m abs-abs} = \ 2 B_{ m abs}$ (Hz)	BER with Coherent Detection	BER with Noncoherent Detection
ASK, unipolar NRZ	$2R_b$	$R_b(1+lpha)$	$Q\left(\sqrt{E_b/N_0} ight)$	$0.5\exp(-E_b/(2N_0))$
BPSK	$2R_b$	$R_b(1+lpha)$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
Sunde's FSK	$3R_b$		$Q\left(\sqrt{E_b/N_0} ight)$	$0.5\exp(-E_b/(2N_0))$
DBPSK, M - ary Bandpass Signaling	$2R_b$	$R_b(1+lpha)$		$0.5\exp(-E_b/N_0)$
QPSK/ $QPSK$ ($M=4$, $QPSK$)	R_b	$rac{R_b(1+lpha)}{2}$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
MSK	$1.5R_b$	$rac{3R_b(1+lpha)}{4}$	$Q\left(\sqrt{2E_b/N_0} ight)$	Requires coherent detection
M-PSK ($M>4$)	$2R_b/\log_2 M$	$rac{R_b(1+lpha)}{\log_2 M}$	$rac{2}{\log_2 M}Q\left(\sqrt{2\log_2 M\sin^2\left(\pi/M ight)E_b/N_0} ight)$	Requires coherent detection
M-DPSK ($M>4$)	$2R_b/\log_2 M$	$rac{R_b(1+lpha)}{2\log_2 M}$		$rac{2}{\log_2 M}Q\left(\sqrt{4\log_2 M\sin^2\left(\pi/(2M) ight)E_b/N_0} ight)$
M-QAM (Square constellation)	$2R_b/\log_2 M$	$rac{R_b(1+lpha)}{\log_2 M}$	$rac{4}{\log_2 M} \left(1 - rac{1}{\sqrt{M}} ight) Q\left(\sqrt{rac{3\log_2 M}{M-1}} E_b/N_0 ight)$	Requires coherent detection
M-FSK Coherent	$\frac{(M+3)R_b}{2\log_2 M}$		$rac{M-1}{\log_2 M}Q\left(\sqrt{(\log_2 M)E_b/N_0} ight)$	
Noncoherent	$2MR_b/\log_2 M$			$rac{M-1}{2\log_2 M} 0.5 \exp(-(\log_2 M) E_b/2N_0)$

Adapted from table 11.4 M F Mesiya - Contemporary Communication Systems

PSD of modulated signals

Modulation	$G_x(f)$
Quadrature	$rac{A_c^2}{4}[G_I(f-f_c) + G_I(f+f_c) + G_Q(f-f_c) + G_Q(f+f_c)]$
Linear	$rac{ V(f) ^2}{2} \sum_{l=-\infty}^{\infty} R(l) \exp(-j2\pi l f T)$ What??

Symbol error probability

- Minimum distance between any two point
- Different from bit error since a symbol can contain multiple bits

Information theory

Entropy for discrete random variables

$$H(x) \geq 0$$

$$H(x) = -\sum_{x_i \in A_x} p_X(x_i) \log_2(p_X(x_i))$$

$$H(x,y) = -\sum_{x_i \in A_x} \sum_{y_i \in A_y} p_{XY}(x_i,y_i) \log_2(p_{XY}(x_i,y_i))$$
 Joint entropy
$$H(x,y) = H(x) + H(y)$$
 Joint entropy if x and y independent
$$H(x|y=y_j) = -\sum_{x_i \in A_x} p_X(x_i|y=y_j) \log_2(p_X(x_i|y=y_j))$$
 Conditional entropy
$$H(x|y) = -\sum_{y_j \in A_y} p_Y(y_j) H(x|y=y_j)$$
 Average conditional entropy, equivocation
$$H(x|y) = -\sum_{x_i \in A_x} \sum_{y_i \in A_y} p_X(x_i,y_j) \log_2(p_X(x_i|y=y_j))$$

$$H(x|y) = H(x,y) - H(y)$$

$$H(x,y) = H(x) + H(y|x) = H(y) + H(x|y)$$

Entropy is maximized when all have an equal probability.

Differential entropy for continuous random variables

TODO: Cut out if not required

$$h(x) = -\int_{\mathbb{R}} f_X(x) \log_2(f_X(x)) dx$$

Mutual information

Amount of entropy decrease of x after observation by y.

$$I(x;y) = H(x) - H(x|y) = H(y) - H(y|x)$$

Channel model

Vertical, x: input Horizontal, y: output

$$\mathbf{P} = egin{bmatrix} p_{11} & p_{12} & \dots & p_{1N} \ p_{21} & p_{22} & \dots & p_{2N} \ dots & dots & \ddots & dots \ p_{M1} & p_{M2} & \dots & p_{MN} \end{bmatrix}$$

Input has probability distribution $p_X(a_i) = P(X = a_i)$

Channel maps alphabet ' $\{a_1,\ldots,a_M\} o \{b_1,\ldots,b_N\}$ '

Output has probabiltiy distribution $p_Y(b_j) = P(y = b_j)$

$$egin{aligned} p_Y(b_j) &= \sum_{i=1}^M P[x=a_i,y=b_j] \quad 1 \leq j \leq N \ &= \sum_{i=1}^M P[X=a_i] P[Y=b_j|X=a_i] \ [p_Y(b_0) \quad p_Y(b_1) \quad \dots \quad p_Y(b_j)] &= [p_X(a_0) \quad p_X(a_1) \quad \dots \quad p_X(a_i)] imes \mathbf{P} \end{aligned}$$

Fast procedure to calculate I(y;x)

- 1. Find H(x)
- 2. Find $[p_Y(b_0) \quad p_Y(b_1) \quad \dots \quad p_Y(b_j)] = [p_X(a_0) \quad p_X(a_1) \quad \dots \quad p_X(a_i)] \times \mathbf{P}$
- 3. Multiply each row in **P** by $p_X(a_i)$ since $p_{XY}(x_i,y_i) = P(y_i|x_i)P(x_i)$
- 4. Find H(x, y) using each element from (3.)
- 5. Find H(x|y) = H(x, y) H(y)
- 6. Find I(y; x) = H(x) H(x|y)

Channel types

Туре	Definition
Symmetric channel	Every row is a permutation of every other row, Every column is a permutation of every other column. Symmetric \implies Weakly symmetric
Weakly symmetric	Every row is a permutation of every other row, Every column has the same sum

Channel capacity of weakly symmetric channel

 $C \to {\rm Channel\ capacity\ (bits/channels\ used)}$

 $N o ext{Output alphabet size}$

 $\mathbf{p} \to \text{Probability vector, any row of the transition matrix}$

 $C = \log_2(N) - H(\mathbf{p})$ Capacity for weakly symmetric and symmetric channels

R < C for error-free transmission

Channel capacity of an AWGN channel

$$y_i = x_i + n_i \quad n_i \sim N(0, N_0/2)$$

$$C = rac{1}{2}\log_2\left(1 + rac{P_{\mathrm{av}}}{N_0/2}
ight)$$

Channel capacity of a bandwidth AWGN channel

Note: Define XOR (\oplus) as exclusive OR, or modulo-2 addition.

 $P_s o ext{Bandwidth limited average power}$

 $y_i = \mathrm{bandpass}_W(x_i) + n_i \quad n_i \sim N(0, N_0/2)$

$$C = W \log_2 \left(1 + rac{P_s}{N_0 W}
ight)$$

$$C = W \log_2(1 + ext{SNR}) \quad ext{SNR} = P_s/(N_0 W)$$

Channel code

Hamming weight	$w_H(x)$	Number of '1' in codeword \boldsymbol{x}
Hamming distance	$d_H(x_1,x_2)=w_H(x_1\oplus x_2)$	Number of different bits between codewords x_1 and x_2 which is the hamming weight of the XOR of the two codes.
Minimum distance	$d_{ m min}$	IMPORTANT : $x eq 0$, excludes weight of all-zero codeword. For a linear block code, $d_{\min} = w_{\min}$

Linear block code

Code is (n, k)

n is the width of a codeword

 2^k codewords

A linear block code must be a subspace and satisfy both:

- 1. Zero vector must be present at least once
- 2. The XOR of any codeword pair in the code must result in a codeword that is already present in the code table.

For a linear block code, $d_{\min} = w_{\min}$

Code generation

Each generator vector is a binary string of size $\emph{n}.$ There are \emph{k} generator vectors in $\emph{\textbf{G}}.$

A message block \mathbf{m} is coded as \mathbf{x} using the generation codewords in \mathbf{G} :

$$\mathbf{m} = [m_0 \quad \dots \quad m_{n-2} \quad m_{k-1}]$$
 $\mathbf{m} = [101001] \quad \text{Example for } k = 6$
 $\mathbf{x} = \mathbf{mG} = m_0 \mathbf{g}_0 + m_1 \mathbf{g}_1 + \dots + m_{k-1} \mathbf{g}_{k-1}$

Systemic linear block code

Contains k message bits (Copy \mathbf{m} as-is) and (n-k) parity bits after the message bits.

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 & p_{0,0} & \dots & p_{0,n-2} & p_{0,n-1} \\ 0 & 1 & \dots & 0 & p_{1,0} & \dots & p_{1,n-2} & p_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & p_{k-1,0} & \dots & p_{k-1,n-2} & p_{k-1,n-1} \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} m_0 & \dots & m_{n-2} & m_{k-1} \end{bmatrix}$$

$$\mathbf{x} = \mathbf{m}\mathbf{G} = \mathbf{m} \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{m}\mathbf{I}_k & \mathbf{m}\mathbf{P} \end{bmatrix} = \begin{bmatrix} \mathbf{m} & \mathbf{b} \end{bmatrix}$$

$$\mathbf{b} = \mathbf{m}\mathbf{P} \quad \text{Parity bits of } \mathbf{x}$$

Parity check matrix ${f H}$

Transpose \mathbf{P} for the parity check matrix

$$egin{aligned} \mathbf{H} &=& \left[\mathbf{P}^{\mathrm{T}} \mid \mathbf{I}_{n-k}
ight] \ &=& \left[egin{array}{ccccc} \mathbf{p}_{0}^{\mathrm{T}} & \mathbf{p}_{1}^{\mathrm{T}} & \dots & \mathbf{p}_{k-1}^{\mathrm{T}} \mid \mathbf{I}_{n-k} \end{array}
ight] \ &=& \left[egin{array}{ccccc} p_{0,0} & \dots & p_{0,k-2} & p_{0,k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,k-2} & p_{1,k-1} & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n-1,0} & \dots & p_{n-1,k-2} & p_{n-1,k-1} & 0 & 0 & \dots & 1 \end{array}
ight] \ \mathbf{H}^{\mathrm{T}} &=& \mathbf{0} \implies \mathrm{Codeword} \text{ is valid} \end{aligned}$$

Procedure to find parity check matrix from list of codewords

- 1. From the number of codewords, find $k = \log_2(N)$
- 2. Partition codewords into k information bits and remaining bits into n-k parity bits. The information bits should be a simple counter (?).
- 3. Express parity bits as a linear combination of information bits
- 4. Put coefficients into ${f P}$ matrix and find ${f H}$

Example:

Set x_1, x_2 as information bits. Express x_3, x_4, x_5 in terms of x_1, x_2 .

Error detection and correction

Detection of s errors: $d_{\min} \geq s+1$

Correction of u errors: $d_{\min} \geq 2u+1$

CHECKLIST

- ullet Transfer function in complex envelope form $ilde{h}(t)$ should be divided by two.
- Convolutions: do not forget width when using graphical method
- todo: add more items to check