30/09/2023	Devoir surveillé A1	Représentation graphique	Eléments filetés
30/09/2023	Devoir surveille A1	Calcul vectoriel	

DOCUMENTS ET CALCULATRICE INTERDITS

NOM: Prénom: Groupe:

Installation éléments filetés (10 points)

1- Montage de palier de moteur électrique

Le système représente un palier de moteur électrique. L'assemblage des flasques 1, 2 et 3 se fait à l'aide d'un boulon M16 constitué d'une vis CHC (NF EN ISO 4762), d'un écrou H usuel (NF EN ISO 4032) et d'une rondelle d'appui plate (NF EN ISO 10673) série normale.

Compléter la figure 1 à l'aide des informations fournies par les documents annexes.

Figure 1 à compléter – échelle 1 :1 – Palier de moteur électrique

2- Montage de roulement à billes

Le système représente un montage de roulement à billes à contact radial à une rangée de billes. L'assemblage des pièces réalisant le montage de la bague intérieure se fait à l'aide d'une vis H (NF EN ISO 4014) M12 et d'une rondelle élastique fendue (NF E 25-515) série usuelle.

Compléter la figure 2 à l'aide des informations fournies par les documents annexes.

30/09/2023	Devoir surveillé A1	Représentation graphique	Eléments filetés
30/09/2023	Devoit surveille A1	Calcul vectoriel	

DOCUMENTS ET CALCULATRICE INTERDITS

Figure 2 à compléter – échelle 1 :1 – Montage de roulement à billes

Calcul vectoriel (10 points)

1- Barycentre

ABC est un triangle.

- G est le barycentre de (A, 1)(B, 2)(C, 3). Construire le point G.
 (Utiliser un point intermédiaire I, barycentre de (A,1) et (B,2))
- 2. H est le barycentre de (A, 1)(B, 3)(C, -3). Démontrer que (AH) est parallèle a (BC).

$$\overrightarrow{HA} + 3\overrightarrow{HB} - 3\overrightarrow{HC} = \overrightarrow{0}$$

$$\overrightarrow{HA} + 3\overrightarrow{HB} + 3\overrightarrow{CH} = \overrightarrow{0}$$

$$\overrightarrow{HA} + 3\overrightarrow{CH} + 3\overrightarrow{HB} = \overrightarrow{0}$$

$$\overrightarrow{HA} + 3\overrightarrow{CB} = \overrightarrow{0}$$
alors $\overrightarrow{HA} = 3\overrightarrow{BC}$ donc (HA) est parallèle à (BC)

Α

20	/na	/2023	•
JU,	<i>(</i> U)	/ 2023)

Devoir surveillé A1

Représentation graphique	Eléments filetés
Calcul vectoriel	

DOCUMENTS ET CALCULATRICE INTERDITS

2- Produit vectoriel

L'espace est rapporté à un repère orthonormé direct $(0; \vec{l}, \vec{l}, \vec{k})$.

On donne les points A(3; 2; 1), B(1; 0; 1) et C(1; 1; -1) (les coordonnées sont exprimées en mètres)

- 1) Calculer le produit vectoriel $\overrightarrow{AB} \wedge \overrightarrow{AC}$ puis sa norme $||\overrightarrow{AB} \wedge \overrightarrow{AC}||$
- 2) En déduire l'aire du triangle ABC.
- 3) Calculer AB et AC.
- 4) Calculer l'angle \widehat{BAC} .

1-
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} -2 \\ -2 \\ 0 \end{vmatrix} \wedge \begin{vmatrix} -2 \\ -1 \\ -2 \end{vmatrix} = \begin{vmatrix} 4 \\ -4 \\ -2 \end{vmatrix} \leftrightarrow ||\overrightarrow{AB} \wedge \overrightarrow{AC}|| = \sqrt{4^2 + (-4)^2 + (-2)^2} = \sqrt{36} = 6 \text{ m}$$

2- $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ représente l'aire du parallépipède construit par les deux vecteurs.

donc S = aire du triangle ABC =
$$\frac{\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|}{2}$$
 alors S = 3 m²

3-
$$\overrightarrow{AB} = \begin{vmatrix} -2 \\ -2 \\ 0 \end{vmatrix} \leftrightarrow ||\overrightarrow{AB}|| = \sqrt{(-2)^2 + (-2)^2 + 0^2} = \sqrt{8} = 2\sqrt{2}$$

$$||\overrightarrow{AC}|| = \begin{vmatrix} -2 \\ -1 \\ -2 \end{vmatrix} \leftrightarrow ||\overrightarrow{AC}|| = \sqrt{(-2)^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$$

$$AB = 2\sqrt{2} \text{ et } AC = 3$$

4-
$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \cdot AC \cdot \sin(\overrightarrow{AB}, \overrightarrow{AC})$$

alors $\widehat{BAC} = \arcsin\left(\frac{S}{AB \cdot AC}\right) = \arcsin\left(\frac{6}{2 \cdot \sqrt{2} \cdot 3}\right) = \arcsin\left(\frac{1}{\sqrt{2}}\right) = \arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$
soit $\widehat{BAC} = 45^{\circ}$

Représentation graphique	Elén
Calcul vectoriel	

Eléments filetés

DOCUMENTS ET CALCULATRICE INTERDITS

49.4 Longueurs des taraudages

Pour une vis, l'implantation j doit être au moins égale aux valeurs suivantes :

- \blacksquare métaux durs : $j \ge d$,
- métaux tendres : $j \ge 1,5d$.

Pour un goujon (voir § 51.2), l'implantation j doit respecter les valeurs suivantes :

- métaux durs : j = 1,5 d ,
- métaux tendres : j = 2d.

d	р	q	S	d	p	q	S
1,6	j + 1,5		j + 1,5	19200000		j + 14	j + 4,5
2,5	j + 1,5	j + 4	j + 1,5	12	j + 7	j + 16	j + 5
3	j + 2	j + 5	j + 2	16	j + 8	j + 20	j+6
4	j + 2,5	j+6	j + 2,5	20	j + 10	j + 25	j + 7,5
5	j+3	j+8	j+3	24	j + 12	j + 25	j + 8,5
6	j+4	j + 10	j + 3,5	30	j+14	j + 30	j + 10
8	j+5	j + 12	j + 4	36	j+16	j + 36	j + 11

Vis Trou borgne réduit Trou borgne réduit Trou borgne réduit

49 . 5 Lamages Trous de passage

Suivant les outils utilisés, on distingue :

- les lamages pour outils de serrage débordants ;
- les lamages pour outils de serrage non débordant.

REMARQUES

- ► Les lamages de cote C₁ autorisent le montage sous tête de rondelles Grower (§ 54.14).
- ▶ Dans le cas d'une vis utilisée sans rondelle sous la tête, fraiser légèrement l'entrée du trou de passage afin d'assurer une portée correcte de la tête.

	Lam	nage		d ₁			Lam	age		d_1	
d	C ₁	C ₂	ej H12	Série movenue H13	H14 large	d	C ₁	C ₂	e H12	Série H13	H large
1,6	8,5	5	1,8	2	2,1	10	20	37	10,5	11	12
2	6	10	2,2	2,4	2,5	12	22	42	13	13,5	14,5
2,5	11	7	2,7	2,9	3,1	16	30	52	17	17,5	18,5
3	8	12	3,2	3,4	3,6	20	36	64	21	22	24
4	10	16,5	4,3	4,5	4,8	24	42	79	25	26	28
5	11	19,5	5,3	5,5	5,8	30	53	96	31	33	35
6	13	22	6,4	6,6	7	36	63	98	37	39	42
8	18	28,5	8,4	9	10	-	-	-	-	-	=

Lamages - Trous de passage

Outils de serrage débordant

Outils de serrage non débordant

30/09/2023

Devoir surveillé A1

Représentation graphique Eléments filetés Calcul vectoriel

DOCUMENTS ET CALCULATRICE INTERDITS

* Préciser, si nécessaire, le type d'extrémité,

								L	ong	ueui	s I	et	long	guei	ırs f	ilet	ées	X**								
d													Lon	gue	urs I											
u	6	8	10	12	16	20	25	30	35	40	45	50	55	60	65	70	80	90	100	110	120	130	140	150	160	180 20
3						12	12	12																		
4							14	14	14	14																
5							16	16	16	16	16	16														
6								18	18	18	18	18	18	18												
8									22	22	22	22	22	22	22	22	22									
10										26	26	26	26	26	26	26	26	26	26							
12											30	30	30	30	30	30	30	30	30	30	30					
(14)												34	34	34	34	34	34	34	34	34	34	34	34			
16													38	38	38	38	38	38	38	38	38	38	38	38	38	
20									-						46	46	46	46	46	46	46	46	46	46	46	

Représentation	graphique
Calcul vectoriel	

Eléments filetés

DOCUMENTS ET CALCULATRICE INTERDITS

Écrous

Toute pièce avant un trou taraudé fait fonction d'écrou. Par l'intermédiaire d'une tige filetée, un écrou peut servir :

- soit d'écrou d'assemblage (figure ci-contre),
- soit d'écrou de transformation de mouvement (écrou d'étau par exemple).

L'étude est limitée aux écrous d'assemblage.

Écrous manœuvrés par clés

- L'écrou hexagonal convient à la majorité des applications. C'est l'écrou le plus utilisé.
- Par rapport à l'écrou hexagonal usuel, l'écrou bas présente un encombrement moindre, mais aussi une résistance au cisaillement des filets plus faible.
- L'écrou carré s'arrondit moins facilement que l'écrou hexagonal. Il est surtout utilisé dans le bâtiment.
- L'écrou borgne protège l'extrémité des vis contre les chocs. Il améliore l'esthétique et la sécurité.
- L'écrou à portée sphérique autorise des défauts limités de perpendicularité. Il s'utilise avec une rondelle à portée
- L'écrou à embase évite l'emploi d'une rondelle.

d	a	b ₁	b ₂	е	f	g	i	j	k	R	u
M1,6	3,2	1,3	1	-	W_	_	-	-	25	_	-
M2	4	1,6	1,2	-	-	-	-	-	-	-	-
M2,5	5	2	1,6	-	-	-	-	-	=	-	-
M3	5,5	2,4	1,8	2,4	5,1	_	-	-	2	-	-
M4	7	3,2	2,2	3,2	6,7	-	-	-	-	-	-
M5	8	4,7	2,7	4	8	11,8	5	15	9,25	7	2,5
M6	10	5,2	3,2	5	10	14,2	8	17	11	14	4
M8	13	6,8	4	6,5	13	17,9	11	23	24,5	14	5
M10	16	8,4	5	8	16,5	21,8	13	28	18,5	22	5
M12	18	10,8	6	10	19,5	26	15	35	20	22	6
M16	24	14,8	8	13	25	34,5	21	45	26	30	7
M20	30	18	10	16	31	42,8	25	50	31	44	8
M24	36	21,5	12	19	37	_	29	60	37	44	10
M30	46	25,6	15	24	47	-	35	68	48	66	10

Écrous hexagonaux à embase cylindro-tronconique

NF EN 1661

EXEMPLE DE DÉSIGNATION d'un écrou hexagonal de cote d = M10 et de classe de qualité 08 (ou la matière)* : Écrou hexagonal ISO 4032 - M10 - 08

Écrous hexagonaux NF EN ISO 4032 Écrous bas hexagonaux **NF EN ISO 4035** b₁ max. Écrou usuel b₂ max. Écrou bas

Matériaux pour la visserie : chapitre 55.

Devoir surveillé A1

Représentation graphique Calcul vectoriel

Eléments filetés

DOCUMENTS ET CALCULATRICE INTERDITS

d'appui

Les rondelles d'appui évitent de marquer les pièces en augmentant la surface de contact.

Certains types permettent:

- le freinage des vis et des écrous (chapitre 54) ;
- l'étanchéité (§ 72.2).

Rondelles plates 52.1

Rondelles plates

NF EN ISO 10673

Matières : voir chapitre 55.

Série	Étroite	Normale	Large
Туре	S	N	L

Rondelles à portée sphérique*

NF E 27-615

NF E 25-515

Rondelles élastiques

	Réd		Usu		Forte symbole WL		
Série	symbo		NF E 2		NF E 2		
d	b	е	b	e	b	e	
3	5,2	0.6	5,2	1	6,2	-1	
4	7,3	1	7,3	1,5	8,3	1,2	
5	8,3	1	8,3	1,5	10,3	1,5	
6	10,4	1,2	10,4	2	12,4	1,8	
8	13,4	1,5	13,4	2,5	15,4	2	
10	16,5	1,8	16,5	3	18,5	2,5	
12	20	2	20	3,5	23	3	
(14)	23	2,5	23	4	25	3	
16	25	2,5	25	4	29	3,5	
20	31	3	31	5	35	4,5	
24	37	3,5	37	6	39	4,5	
30	45	4,5	45	7	1	-	
36		-	53	8	-	3	
42	-	-	61	9	(H)	-	
48	-	-	69	10	12	14	

Le freinage est obtenu grâce à l'élasticité de la rondelle. L'efficacité est augmentée par l'incrustation des bords de la rondelle dans l'écrou (ou dans la tête de la vis) et dans la pièce.

Rondelle - W10

* Nomel. ** Mécanindus.