```
2.
fs = 44100; % Sampling frequency (Hz)
f = 440; % Frequency of sine wave (Hz)
T = 1/fs; % Sampling period
t = 0:T:0.01; % Time vector (10 ms duration)
n0 = 20; % Shift amount (change this to see phase shift)
% Generate the sine wave
x = \sin(2 * pi * f * t);
% Create the shifted impulse \delta[n - n0]
delta = zeros(1, length(x));
delta(n0 + 1) = 1; % Since Octave indices start at 1
% Convolve the sine wave with the impulse
y = conv(x, delta, 'same'); % Keep the output size the same as input
% Plot the original and shifted sine waves
figure;
plot(t, x, 'b', 'LineWidth', 1.5); hold on;
plot(t, y, 'r', 'LineWidth', 1.5);
legend('Original Sine Wave', 'Phase-Shifted Sine Wave');
xlabel('Time (s)');
ylabel('Amplitude');
title(['Sine Wave Shifted by n_0 = ', num2str(n0)]);
grid on;
```

Homework 3, Unit 0: Foundations and Fundamentals

Prof. Jordan C. Hanson

February 19, 2025

1 Memory Bank

• Homogeneous system: Let k be a constant, and let $s_{\rm in}(t)$ and $s_{\rm out}(t)$ be the input and output signals to a system tem S, respectively. S is homogeneous if:

$$s_{\text{out}}(t) = S[s_{\text{in}}(t)]$$
 (1)

$$ks_{\text{out}}(t) = S[ks_{\text{in}}(t)]$$
 (2)

• Additive system: Let $s_1(t)$ and $s_2(t)$ be two input signals to a system S, with outputs $s'_1(t)$ and $s'_2(t)$. S is additive

$$s_1'(t) = S[s_1(t)]$$
 (3)

$$s_2'(t) = S[s_2(t)]$$
 (4)

$$s_1'(t) + s_2'(t) = S[s_1(t) + s_2(t)]$$
 (5)

• Shift-invariant system: Let $s_{\rm in}(t)$ and $s_{\rm out}(t)$ be input and output signals to a system S, and let t_0 be a constant. S is shift invariant if:

$$s_{\text{out}}(t) = S[s_{\text{in}}(t)] \tag{6}$$

$$s_{\text{out}}(t - t_0) = S[s_{\text{in}}(t - t_0)]$$
 (7)

- $F(f) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-2\pi jft}dt$... The Fourier
- $\mathcal{F}^{-1}\left\{F(f)\right\} = \int_{-\infty}^{\infty} F(f) e^{2\pi j f t} df$... The Inverse Fourier Transform.
- \bullet The Dirac $\delta\text{-function}$ is a distribution defined by the following property:

$$f(t_0) = \int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt$$
 (8)

In words, the integral of a δ -function times a function f is the value of the function at t_0 .

 Convolution: this is an operation that characterizes the response h[n] of a linear system.

$$y[i] = h[n] * x[n] = \sum_{j=0}^{M-1} h[j]x[i-j]$$
 (9)

In words, the output at sample i is equal to the produce of the system response h and the input signal x, summed over the proceeding M samples (from j = 0 to j = M - 1).

2 Linear Systems

Figure 1: Linear systems commute.

1. Consider Fig. 1, which depicts two linear systems A and B. Symbolically, systems A and B commute if $A\{B\{x[n]\}\}=B\{A\{x[n]\}\}$. (a) Let $A\{x[n]\}=2x[n]-1$, and $B\{x[n]\}=0.5x[n]$. Which system, A or B, is a linear system? For the system that is not linear, which linear property does it break? (b) Modify the non-linear system to make it linear, and show that A and B commute.

DA { x [n] } = 2 x [n]
A { B { x [n] } = B { A { x [n] } }
A { B { x [n] } = A { 0.5 x [n] }
2(0.5 x [n]) = x [n]

B{A{x[n]}}=B{2x[n]} 0.5(2x[n]]=x[n]

2. Consider Eq. 8 in the Memory Bank. Let f(t) = $a_1 \cos(2\pi f_1 t) + a_2 \cos(2\pi f_2 t)$, with $T_1 = 1/f_1$, $T_2 =$ $1/f_2$, and $f_2 = 2f_1$. Evaluate the following:

• $\int_{-\infty}^{\infty} f(t)\delta(t-T_1)dt$

 $\int_{-\infty}^{\infty} f(t)\delta(t-T_2)dt$ f(t)=a,cos(2 Tif,t) +a,cos(2 Tif,t)

 $f(\tau_2) = a_1 \cos(2\pi R_2 T_2) + a_2 \cos(2\pi f_2 T_2)$ $f(\tau_2) = a_1 \cos(2\pi R_1 (\pm f_1)) + a_2 \cos(2\pi R_2 T_2)$ $f(\tau_1) = a_1 \cos(\pi) + a_2 \cos(2\pi)$ $f(\tau_2) = a_2 (-1) + a_2 (1)$ $f(\tau_2) = -a_1 + a_2$

$$f_{1}=2f_{2}=\frac{1}{4}, \quad f_{1}=\frac{1}{4}, \quad f_{2}=\frac{1}{4}, \quad f_{1}=\frac{1}{4}, \quad f_{1}=\frac{1}{4}, \quad f_{2}=\frac{1}{4}, \quad f_{1}=\frac{1}{4}, \quad f_{2}=\frac{1}{4}, \quad f_{1}=\frac{1}{4}, \quad f_{2}=\frac{1}{4}, \quad f_{2}=\frac{1}{4},$$

3. Let $f(t) = a\delta(t - t_0)$. (a) Show that the magnitude of the Fourier transform of this impulse is a. (b) Show that the phase angle, ϕ , is $-2\pi f t_0$. (c) Show that the group delay, $\tau_g = -d\phi/d\omega$ is t_0 . $\phi(t) = \arg(ae^{-j2\pi f t_0})$ $\phi(t) = -2\pi f (ae^{-j2\pi f t_0})$ $\phi($

4. Let $\delta[n]$ represent a digital impulse: $[1000\ 0000]^1$. (a) If y[n] = S[x[n]] = 0.5x[n-2], what is $S[\delta[n]]$? (b) y[n] is the *impulse response* of S. What is the *step response*, if the step input is s[n] = [01111111]?

SKM]=0.58[n-1]

5[8[n]=0.58[n-1]

5[8[n]=0.58[n-1]

y[n]= & skx[0.58[n-k-2]

1. For

3 Fourier Transforms and Basic Filters

1. Suppose we pass a signal s(t) into a low-pass filter. The signal as a function of frequency is S(f), the Fourier transform of s(t). The output of the low-pass filter will be S(f) times $1/(1+j\omega\tau)$, where $\omega=2\pi f$, and $\tau=RC$. That is, the output will be $S(f)/(1+j\omega\tau)$. (a) Calculate the Fourier transform S(f), if $s(t)=a\delta(t-t_0)$ (as we did in class). (b) Suppose we pass our impulse s(t) into a low-pass filter. What is the magnitude of the output, as a function of frequency? (c) Repeat this exercise, but with a high-pass filter response: $i\omega\tau/(1+i\omega\tau)$.

filter response: $j\omega\tau/(1+j\omega\tau)$. $S(t) = \int_{0}^{\infty} a\delta(t-t)e^{-j2\pi t^{2}} dt$ $S(t) = ae^{-j2\pi t^{2}} dt$ S(t) =

Let the index for data in this list of numbers start with n = 0.

3. (a) Show that the inverse Fourier transform of $S(f) = (a/2)(\delta(f-f_0)+\delta(f+f_0))$ is a cosine function. (b) Show that the inverse Fourier transform of $S(f) = (a/2j)(\delta(f-f_0)-\delta(f+f_0))$ is a sine function. $S(f) = \frac{a}{2}(S(f-f_0)+S(f-f_0))$

 $S(t) = \frac{(8(f-f_0))}{(8(f-f_0))} + \frac{(f-f_0)}{(6(f-f_0))} = \frac{(8(f-f_0))}{(6(f-f_0))} + \frac{(f-f_0)}{(6(f-f_0))} = \frac{(8(f-f_0))}{(6(f-f_0))} + \frac{(6(f-f_0))}{(6(f-f_0))} = \frac{(8(f-f_0))}{(6(f-f_0))} =$

4 Convolution and Octave Code

1. For the following exercises, use Eq. 9. Let the digital impulse be $\delta[n]$ which is 1 for n=0, and 0 if $n\neq 0$. For example, $\delta[n-5]$ is 1 when n=5. (a) Show that if $x[n]=\delta[n],\ y[n]=h[n]*x[n]=h[n]$. That is, if the input data is an impulse, the output is the system response. (b) Show that if the input impulse is shifted $(x[n]=\delta[n-n_0])$, the output is h[n], shifted by the

(2/1) = 0/11 - 10/1); the output is 1/1/1, shitted by the same amount.

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2 | 6

(2/1) = 1/2

2. In octave, use the conv function to convolve a 440 Hz sine wave with a $\delta[n-n_0]$ impulse. Shift the phase of the sine output by varying n_0 .

²Hint: multiply the numerator and denominator of ratios by the complex conjugate of the denominator, to aid in splitting the complex expression into real and imaginary parts.