MATH-300 Andrew Jones

Worksheet 3

Let A, B, and C be sets. Prove or disprove the following statements.

1. If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$ *Proof.* Assume that $A = \{a\}$ and $C = \{a\}$ and $B = \{b\}$ It follows that: $A \cap B = \emptyset$ and $B \cap C = \emptyset$ however $A \cap C = \{a\}$ There for: $\exists A : \exists C :$ $A \cap C \neq \emptyset$ and $A \cap B = \emptyset$ and $B \cap C = \emptyset$ 2. If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$ *Proof.* Assume that $A = \{a\}$ and $C = \{a, c\}$ and $B = \{b\}$ It follows that: $A \not\subseteq B$ and $B \not\subseteq C$ however $A \subset C$ There for: $\exists A : \exists C : A \subset C$ and $A \not\subseteq B$ and $B \not\subseteq C$ 3. If $A \subseteq \emptyset$, then $a = \emptyset$ *Proof.* Assume the negation $A \subseteq \emptyset$ and $A \neq \emptyset$. If $A \neq \emptyset$ then $A \not\subseteq \emptyset$ by definition of \emptyset 4. If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$ *Proof.* Assume that $A \subseteq C$ and $B \subseteq C$ there for 2 cases can occur for $A \cap B \subseteq C$ Case 1: $A \cap B = \emptyset$ there for $A \cap C \subseteq C$ as $\emptyset \subseteq C$ Case 2: $A \cap B \neq \emptyset$ then $\forall e \in A \cap B : e \in C$ there for $A \cap B \subseteq C$ 5. If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective. 6. If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective 7. Give an example of a function $f: A \to A$ that is injective but not surjec-

9. Let $f: A \to B$ and $g: B \to A$. If $g \circ f = id_a$, then both f and g are bijections.

8. Give an example of a function $g:A\to A$ that is surjective but not

10. If $f: A \to A$ is surjective, and if A is a finite set, then f is injective.

injective.

11. If $f: A \to A$ satisfies the property that $f \circ f = id_a$ then f is a bijection.