DÉRIVÉE : Deuxième partie

Table des matières

Ι	Rappel cours dérivation première partie	1
ΙΙ	Fonction dérivée de fonctions de référence	3
II	I Fonction dérivée et opérations 1 RAPPEL : Somme de deux fonctions, multiplication par un réel	3 3 4 4 5
IV	Fonction dérivée d'une fonction composée 1 Dérivée des fonctions du type $x \mapsto f(ax + b)$	5 5
Ι	Rappel cours dérivation première partie	
	 Le taux de variations de f en a est le nombre défini par τa(h) = f(a+h)-f(a)/h Le nombre dérivé s'il existe est le nombre défini par : f'(a) = lim ta(h) = lim ta(h) - f(a)/h Si f est dérivable en a , la tangente Ta à la courbe représentative f de f en a est la droite : qui a pour coefficient directeur f'(a) qui passe par le point A de coordonnées (a; f(a)). elle a pour équation y = f'(a) (x - a) + f(a) Lorsque le nombre dérivé de f existe pour toutes les valeurs x de I, on dit que f est dérivable sur La fonction qui à x associe son nombre dérivé f'(x) s'appelle la fonction dérivée de f (ou la dérivée de f) et elle se note f'. Premières formules de dérivation (voir paragraphes II) et III) dérivée de x → x², x → x³ de u + et de λu) L'étude du signe de la dérivée de la fonction f permet d'étudier les variations de f Soit f une fonction dérivable sur une intervalle I, alors : 	r I. vée
	- Si, pour tout x de I , $f'(x) \ge 0$ alors f est croissante sur I . - Si, pour tout x de I , $f'(x) \le 0$ alors f est décroissante sur I . - Si, pour tout x de I , $f'(x) = 0$, alors f est constante sur I .	

Méthode 1 (Rappel :Étude d'une fonction polynôme de degré 3)

Soit la fonction f définie sur $\mathbb R$ par $f(x)=x^3-3x-4$

1. Déterminer la dériver de f

$$f'(x) = 3x^2 - 3 \qquad \forall x \in \mathbb{R}$$

2. Étudier le signe de f'(x)

Signe de
$$f'(x) : a = 3 > 0$$

3. En déduire les variations de f

On factorise $f'(x) = 3(x^2 - 1) = 3(x - 1)(x + 1)$ f' est une fonction du 2^{nd} degré qui a 2 racines, 1 et -1 donc f'(x) est du signe de a = 3 > 0 à l'exterieur des racines.

Tableau de variations

$$f(-1) = (-1)^3 - 3 \times (-1) - 4 = -1 + 3 - 4 = -2$$
 $f(1) = (1)^3 - 3 \times (1) - 4 = 1 - 3 - 4 = -6$

4. Donner l'équation de la tangente T à la courbe de f au point d'abscisse -2

Equation tengeante à C_f au point d'abscice

$$y = f'(a)(x - a) + f(a)$$

lci

$$T_{-2}: y = f'(-2)(x - (-2)) + f(-2)$$

$$f'(-2) = 3 \times (-2)^2 - 3 = 3 \times 4 - 3 = 9$$

$$f(-2) = (-2)^3 - 3 \times (-2) - 4 = -8 + 6 - 4 = -6$$

Donc

$$T_{-2}: y = 9(x+2) - 6 T_{-2}: y = 9x + 12$$

II Fonction dérivée de fonctions de référence

Fonctions de référence

f désigne une fonction dérivable sur I et f' est la fonction dérivée de f. On a :

Fonction f	Fonction f'	Intervalle I
k	0	\mathbb{R}
ax + b	a	\mathbb{R}
x^2	2x	\mathbb{R}
x^3	$3x^2$	\mathbb{R}
x^n	nx^{n-1}	\mathbb{R} , avec $n \in \mathbb{N}^*$
$\frac{1}{x}$	$-\frac{1}{x^2}$	R *
$\cos(x)$	$-\sin(x)$	\mathbb{R}
$\sin(x)$	$\cos(x)$	\mathbb{R}

Remarque 1

Les quatre premières lignes sont des rappels de la partie 1 sur la dérivation. La 5ème est une généralisation des résultats obtenus avec x^2 et x^3 .

Exemple 1

Si f est définie par $f(x) = x^5$, f est dérivable sur \mathbb{R} et $f'(x) = 5x^4$.

Les quatre dernières lignes sont admises.

III Fonction dérivée et opérations

1 RAPPEL : Somme de deux fonctions, multiplication par un réel

Fonction u + v et λu avec λ réeel

Si u et v sont deux fonctions dérivables sur un même intervalle I de $\mathbb R$ et λ un réel non nul alors :

- (u+v) est dérivable sur I et (u+v)'=u'+v'.
- λu est dérivable sur I et $(\lambda u)' = \lambda u'$

Méthode 2

1. Déterminer la dérivée de la fonction f définie sur $]0;+\infty[$ par $f(x)=-3x^4-rac{5}{x}$

$$f'(x) = -3 \times (4x^3) - 5 \times (-\frac{1}{x^2}) = -12x^3 + \frac{5}{x^2}$$

2. Déterminer la dérivée de la fonction g définie sur \mathbb{R} par $g(x) = 3\cos(x) - 5\sin(x)$

$$g'(x) = -3(\sin(x)) - 5(\cos(x)) = 3\sin(x) - 5\cos(x)$$

Produit de deux fonctions dérivables

Fonction $u \times v$

Si u et v sont deux fonctions dérivables sur un même intervalle I de \mathbb{R} , alors $u \times v$ est dérivable sur I et $(u \times v)' = u'v + uv'.$

Exemple 2 (Rédaction)

Soit la fonction f définie sur $\mathbb R$ par :

$$f(x) = (4x^3 - 3)(-\frac{3}{2}x^2 - 4x)$$

f est de la forme uv avec :

①
$$u(x) = 4x^3 - 3$$

$$① v(x) = -\frac{3}{2}x^2 - 4x$$

② u est dérivable sur $\mathbb R$

②
$$v$$
 est dérivable sur $\mathbb R$

$$u'(x) = 12x^2$$

f est donc dérivable sur $\mathbb R$ et pour tout $x\in\mathbb R$

$$f'(x) = (12x^2)(-\frac{3}{2}x^2 - 4) + (-3x - 4)(4x^3 - 3)$$

$$\Leftrightarrow f'(x) = -16x^4 - 48x^3 - 12x^4 + 9x - 16x^3 + 12$$

$$\Leftrightarrow f'(x) = -28x^4 - 64x^3 + 9x + 12$$

$$\Leftrightarrow f'(x) = -28x^4 - 64x^3 + 9x + 12$$

Méthode 3

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(x) = x \cos(x)$.

f est définie sur \mathbb{R} f est de la forme uv avec

J	CSt definite Sur III	j est de la forme av	
	u(x) = x	$v(x) = \cos$	
	u dérivable sur $\mathbb R$	v dérivable sur $\mathbb R$	
	u'(x) = 1	$v'(x) = -\sin(x)$	

Donc f est dérivable sur $\mathbb R$ avec

$$f'(x) = 1 \otimes \cos(x) \oplus (-\sin(x)) \otimes x$$

$$f'(x) = 1 \times \cos(x) \oplus (-\sin(x) \times x)$$

On développe,

$$f'(x) = \cos -x\sin(x)$$

Inverse d'une fonction dérivable 3

fonction $\frac{1}{v}$

Si v est une fonction dérivable sur un intervalle I de $\mathbb R$ et qui ne s'annule pas, alors $\frac{1}{n}$ est dérivable sur I

$$\operatorname{et}\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}.$$

Exemple 3 (Rédaction)

Soit la fonction f définie sur \mathbb{R} (car pour tout $x \in \mathbb{R}$, $3x^2 + 2x + 1 \neq 0$) par :

$$f(x) = \frac{1}{3x^2 + 2x + 1}$$

f est de la forme $\frac{1}{u}$ avec :

$$u(x) = 3x^2 + 2x + 1$$

u est dérivable sur $\mathbb R$ et $u(x) \neq 0$ pour tout $x \in \mathbb R$

$$u'(x) = 6x + 2$$

f est donc dérivable sur $\mathbb R$ et pour tout $x\in\mathbb R$: $f'(x)=-\frac{6x+2}{(3x^2+2x+1)^2}$

$$f'(x) = -\frac{6x+2}{(3x^2+2x+1)^2}$$

Méthode 4

Déterminer la fonction dérivée de la fonction f définie sur $]5; +\infty[$ par $f(x)=\frac{1}{2x-10}$

Soit la fonction f définie sur $[5+\infty[$ par $f(x)=\frac{1}{2x-10}$

f est de la forme $\frac{1}{n}$ avec

$$u(x) = 2x - 10$$

u est dérivable sur $]5; +\infty[$ et non nul

$$u'(x) = 2$$

Donc f est dérivable sur $]5; +\infty[$ et $\forall x \in]5; +\infty[$

$$f'(x) = \bigcirc \frac{2}{(2x-10)^2}$$

Quotient de deux fonctions dérivables

Fonction $\frac{u}{v}$

Si u et v sont deux fonctions dérivables sur un même intervalle I de \mathbb{R} et v ne s'annule pas sur I, alors $\frac{u}{v}$

est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Exemple 4 (Rédaction)

Soit la fonction f définie sur $\mathbb{R}\setminus\{-\frac{2}{3}\}$ par :

$$f(x) = \frac{2x - 1}{3x + 2}$$

①
$$u(x) = 2x - 1$$

①
$$v(x) = 3x + 2$$

②
$$u$$
 est dérivable sur \mathbb{R}

②
$$v$$
 est dérivable sur \mathbb{R} et $v(x) \neq 0$ pour $x \in \mathbb{R} \setminus \{-\frac{2}{\pi}\}$

$$u'(x) = 2$$

$$v'(x) = 3$$

3x+2 f est de la forme $\frac{u}{v}$ avec : ① u(x)=2x-1 ② v(x)=3x+2 ② v est dérivable sur \mathbb{R} ② v est dérivable sur \mathbb{R} et $v(x)\neq 0$ pour $x\in \mathbb{R}\setminus\{-\frac{2}{3}\}$ ③ v'(x)=3 donc f est dérivable sur $\mathbb{R}\setminus\{-\frac{2}{3}\}$ et pour tout $x\in \mathbb{R}\setminus\{-\frac{2}{3}\}$:

$$f'(x) = \frac{2(3x+2) - 3(2x-1)}{(3x+2)^2}$$
$$f'(x) = \frac{6x + 4 - 6x + 3}{(3x+2)^2}$$

$$f'(x) = \frac{6x + 4 - 6x + 3}{(3x + 2)^2}$$

$$f'(x) = \frac{7}{(3x+2)^2}$$

On ne développe pas le dénominateur car par la suite on va étudier le signe de f'(x) et comme $(3x+2)^2$ est positif il suffira d'étudier le signe du numérateur.

Méthode 5

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(x) = \frac{\cos x}{x^2 + 1}$

Méthode 6 (Étude de variations d'une fonction)

Déterminer les fonctions dérivées des fonctions f définies sur I suivantes puis établir leur tableau de variations :

1.
$$f(x) = 3x^2 + 2x - 4$$
, $I = \mathbb{R}$

3.
$$f(x) = x^2(-2x+3)$$
, $I = \mathbb{R}$

2.
$$f(x) = \frac{3}{x}$$
, $I =]0; +\infty[$

4.
$$f(x) = \frac{3x+4}{1-2x}$$
, $I =]\frac{1}{2}; +\infty[$

Fonction dérivée d'une fonction composée

Dérivée des fonctions du type $x \mapsto f(ax + b)$

Propriété

On définit sur un intervalle J une fonction g composée de la fonction affine $x \mapsto ax + b$ par une fonction f. On a le schéma de composition suivant g: $x \longmapsto ax + b \longmapsto f(ax + b)$

Soient a et b deux réels et f une fonction dérivable sur I. Soit J un intervalle tel que pour tout xappartenant à I, ax + b appartient à J.

Alors la fonction $g: x \mapsto f(ax+b)$ est dérivable sur J et pour tout x dans J:

$$g'(x) = a \times f'(ax + b)$$

Méthode 7

Déterminer la fonction dérivée de la fonction g définie sur \mathbb{R} par $g(x) = (3x-2)^4$.

$\mathbf{2}$ Dérivée des fonctions trigonométriques composées

Propriété

Soient A, ω et φ des réels.

Les fonctions $f: t \longmapsto A\cos(\omega t + \varphi)$ et $g: t \longmapsto A\sin(\omega t + \varphi)$ sont dérivables sur \mathbb{R} et pour tout x dans \mathbb{R} on a:

$$f'(t) = -A \times \omega \sin(\omega t + \varphi)$$

$$g'(t) = A \times \omega \cos(\omega t + \varphi)$$

Méthode 8

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(t)=10\cos(25t+\frac{\pi}{4})$.