CMPSC 461: Programming Language Concepts Lecture Note 2: Encodings

1 Introduction

Even though all values in the λ -calculus are functions, it would be nice to somehow have objects which could be worked with like integers and boolean values, and control-flow constructs. In this note, we will build such constructs from the core λ -calculus.

2 Encoding Booleans

We first encode Boolean values (TRUE, FALSE) and functions on them (such as AND, IF), such that the expected behavior holds, including statements such as

- AND TRUE FALSE = FALSE
- IF TRUE t f = t, where t and f are arbitrary λ -terms

Notice that here we use the *prefix* form (AND TRUE FALSE), rather than the *infix* form (TRUE AND FALSE) to emphasize that the operation AND is a function with two parameters. Moreover, if-statement in a functional programming language is a function with three parameters: a branch condition; values returned when the branch condition evaluates to TRUE and FALSE respectively.

One way to encode the Boolean values is:

- TRUE $\triangleq \lambda x \ y. \ x$
- FALSE $\triangleq \lambda x \ y. \ y$

To encode function IF, we notice that it should be of the form:

IF =
$$\lambda b \ t \ f$$
. if $b = \text{TRUE} \ \text{then} \ t \ \text{else} \ f$

Now, the definitions of Boolean values become handy, because TRUE $t\ f$ evaluates to t, and FALSE $t\ f$ evaluates to f. Hence, we only need the term $b\ t\ f$ in the body of IF:

IF
$$\triangleq \lambda b t f. b t f$$

With the encoding of IF, we can easily define other Boolean operations. For example, we can encode the operation AND:

AND
$$=\lambda b_1\;b_2.$$
 IF $b_1\;(ext{IF}\;b_2\; ext{TRUE}\; ext{FALSE})$ FALSE

With β -reduction, that is equivalent to:

AND =
$$\lambda b_1 \ b_2 . \ b_1 \ (b_2 \ \text{TRUE FALSE}) \ \text{FALSE}$$

Now we check that such encodings work as expected by one example.

```
AND TRUE FALSE = (\lambda b_1 \ b_2. \ b_1 \ (b_2 \ \text{TRUE FALSE}) \ \text{FALSE}) TRUE FALSE (by definition) = TRUE (FALSE TRUE FALSE) FALSE (\beta-reduction) = (\lambda x \ y. \ x) (FALSE TRUE FALSE) FALSE (by definition) = FALSE TRUE FALSE (\beta-reduction) = (\lambda x \ y. \ y) TRUE FALSE (by definition) = FALSE (\beta-reduction)
```

3 Encoding integers

To encode numbers, we'll use Church numerals. Here, the number n is represented as a higher-order function \underline{n} which, given another function, returns the n-fold composition of that other function: $\underline{n}(f) \mapsto f^n$. The function \underline{n} (we use an underline to distinguish a Church numeral from its counterpart in mathematics) encodes number n. In other words,

$$\underline{n} \triangleq \lambda f \ z. \ f^n \ z = \lambda f \ z. \ \underbrace{f(f(\dots f(z)))}_{n \text{ times}}$$

For example,

$$\underline{0} \triangleq \lambda f \ z. \ z$$

$$\underline{1} \triangleq \lambda f \ z. \ f \ z$$

$$\underline{2} \triangleq \lambda f \ z. \ f \ (f \ z)$$

For Church numerals, we can define a successor function SUCC which takes one Church number and returns its successor. To see how the encoding works, we observe that by definition, SUCC should take some Church number \underline{n} as input, and return the encoding of n+1, which is in the form of λf z. t for some t yet to be defined. So the goal is write down some t such that $t=f^{n+1}$ z given input \underline{n} .

To define the missing piece t, we notice that for any \underline{n} , \underline{n} f $z = f^n z$. So given an input \underline{n} , we can apply f to \underline{n} f z to get f^{n+1} z (i.e., f (\underline{n} f z) = f^{n+1} z). Hence, we simply define t as f (n f z) where n is the input. In summary, we have the following definition:

$$SUCC \triangleq \lambda n. \ \lambda f \ z. \ f \ (n \ f \ z)$$

We can also define simple arithmetic, such as PLUS. One way of doing that is:

$$\mathtt{PLUS} \triangleq \lambda n_1 \; n_2. \; (n_1 \; \mathtt{SUCC} \; n_2)$$

Why this encoding works? Intuitively, a Church number \underline{n} is a function that takes another function f and a term t as inputs, and returns the result of applying f to t for n times. Therefore, we can compute compute $\underline{n_1} + \underline{n_2}$ via $\underline{n_1}$ SUCC $\underline{n_2}$ (i.e., increment $\underline{n_2}$ by one for n_1 times).

Following this idea, we can easily encode multiplication MULT as:

$$\mathtt{MULT} \triangleq \lambda n_1 \; n_2. \; (n_1 \; (\mathtt{PLUS} \; n_2) \; \underline{0})$$

Finally, we check that PLUS $\underline{1} \ \underline{2} = \underline{3}$ based on the definition above.

PLUS
$$\underline{1} \ \underline{2} = (\lambda n_1 \ n_2. \ (n_1 \ \text{SUCC} \ n_2)) \ \underline{1} \ \underline{2} \quad \text{(by definition)}$$

$$= \underline{1} \ \text{SUCC} \ \underline{2} \quad (\beta\text{-reduction})$$

$$= (\lambda f \ z. \ f \ z) \ \text{SUCC} \ \underline{2} \quad \text{(by definition)}$$

$$= \ \text{SUCC} \ \underline{2} \quad (\beta\text{-reduction})$$

$$= (\lambda n. \ \lambda f \ z. \ f \ (n \ f \ z)) \ \underline{2} \quad \text{(by definition)}$$

$$= \lambda f \ z. \ f \ (\underline{2} \ f \ z) \quad (\beta\text{-reduction})$$

$$= \lambda f \ z. \ f \ (\lambda f \ z. \ f \ (f \ z)) \quad (\beta\text{-reduction})$$

$$= \lambda f \ z. \ f \ (f \ (f \ z)) \quad (\beta\text{-reduction})$$

$$= 3 \quad \text{(by definition)}$$