0			
:	-	_	
	0	1	
		Y	
	(7	
•	(1	
	0		
	000000000000000000000000000000000000000	1	
	(
	(1	
	5		
	+		
	3		
	(1	
	000000000000000000000000000000000000000		
	5	1	
	1	2	2
(í		5

Asignatura	Datos del alumno	Fecha	
Tuetouriente de Detec	Apellidos: Alquezar Pitarch	11/05/2024	
Tratamiento de Datos	Nombre: Alejandro	11/05/2024	

Actividad: datos ausentes y normalización

Cargamos los datos y realizamos un gráfico para tener una representación visual de los datos ausentes por cada variable.

```
[83]: surveys = pd.read_csv("surveys.csv")
[84]: surveys.head()
                                                                          weight
         record_id month day year plot_id species_id sex hindfoot_length
                               1977
                               1977
                                                                             NaN
                                                   NI
                                                        м
                                                                      33.0
      2
                               1977
                                                  DM
                                                                             NaN
                                                                             NaN
                           16
                               1977
                                                  DM
                                                        м
                                                                      36.0
                           16 1977
                                                  DM
                                                                      35.0
                                                                             NaN
```


Asignatura	Datos del alumno	Fecha	
Tratamianto do Datos	Apellidos: Alquezar Pitarch	44/05/2024	
Tratamiento de Datos	Nombre: Alejandro	11/05/2024	

Tomamos la variable 'weight' como dependiente y las variables explicativas 'month', 'year', 'plot_id', 'sex' y 'hindfoot_length'. Dado que sex no es una variable numérica, y eso nos puede causar problemas, sustituimos los valores de M (macho) por el valor 0 y los valores de F (hembra) por el valor 1.

```
[86]: #Dado que la variable sex no es númerica, vamos a sustituir M (macho) por 0 y F (hembra) por 1.
surveys['sex'] = surveys['sex'].replace({'M': 0, 'F': 1})

data_clean = surveys.dropna(subset=['weight'])

variables_explicativas = ['month', 'year', 'plot_id', 'sex', 'hindfoot_length']
y = data_clean['weight']
X = data_clean[variables_explicativas]

print("¿Hay valores nulos en la variable weight?")
print(data_clean['weight'].isnull().any())

# Mostrar el número de observaciones en los conjuntos de datos X e y
print("\nNúmero de observaciones en el conjunto de datos X (variables explicativas):", X.shape[0])
print("Número de observaciones en el conjunto de datos y (variable dependiente):", y.shape[0])
¿Hay valores nulos en la variable weight?
False

Número de observaciones en el conjunto de datos X (variables explicativas): 32283
Número de observaciones en el conjunto de datos y (variable dependiente): 32283
```

Mecanismo de imputación

Empezamos primero utilizando imputación simple usando la media:

```
[87]: #Imputación simple usando la media
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)

# Ajustar el modelo de regresión lineal
model = LinearRegression()
model.fit(X_imputed, y)

# Predecir los valores de y utilizando el modelo ajustado
y_pred = model.predict(X_imputed)

# Calcular el coeficiente de determinación (R^2)
score_imp_simple_media = r2_score(y, y_pred)
print("Coeficiente de determinación (R^2):", score_imp_simple_media)
Coeficiente de determinación (R^2): 0.4334811293712356
```

Obtenemos un valor de coeficiente de determinación de 0,43348...

Asignatura	Datos del alumno	Fecha	
Tuetemiente de Detec	Apellidos: Alquezar Pitarch	44 /05 /2024	
Tratamiento de Datos	Nombre: Alejandro	11/05/2024	

Ahora, realizamos imputación simple usando la mediana:

```
[88]: imputer = SimpleImputer(strategy='median')
      X_imputed = imputer.fit_transform(X)
      # Ajustar el modelo de regresión lineal
      model = LinearRegression()
      model.fit(X_imputed, y)
      # Predecir los valores de y utilizando el modelo ajustado
      y_pred = model.predict(X_imputed)
      \# Calcular el coeficiente de determinación (R^2)
      score_imp_simple_mediana = r2_score(y, y_pred)
      \verb|print("Coeficiente de determinación (R^2):", score\_imp\_simple\_mediana)|\\
      Coeficiente de determinación (R^2): 0.4372417276222883
```

Obtenemos un coeficiente de 0,43724...

A continuación, realizamos imputación múltiple usando regresiones (MICE):

```
[89]: imputer = IterativeImputer()
      X_imputed = imputer.fit_transform(X)
      # Ajustar el modelo de regresión lineal
      model = LinearRegression()
      model.fit(X_imputed, y)
      # Predecir los valores de y utilizando el modelo ajustado
      y_pred = model.predict(X_imputed)
      # Calcular el coeficiente de determinación (R^2)
      score_imp_multiple_simple = r2_score(y, y_pred)
      print("Coeficiente de determinación (R^2):", score_imp_multiple_simple)
      Coeficiente de determinación (R^2): 0.43919327531655894
```

Obtenemos un coeficiente de 0,43919...

Continuamos utilizando una imputación múltiple en este caso usando árboles:

```
[90]: imputer = IterativeImputer(estimator=DecisionTreeRegressor(), random_state=0)
      X_imputed = imputer.fit_transform(X)
      # Ajustar el modelo de regresion mediante arboles de decisiones
      model = LinearRegression()
      model.fit(X imputed, y)
      # Predecir los valores de y utilizando el modelo ajustado
      y_pred = model.predict(X_imputed)
      # Calcular el coeficiente de determinación (R^2)
      score_imp_multiple_arbol = r2_score(y, y_pred)
      print("Coeficiente de determinación (R^2):", score_imp_multiple_arbol)
      Coeficiente de determinación (R^2): 0.4407359858018337
```

Obtenemos un coeficiente de 0.44073...

Asignatura	Datos del alumno	Fecha	
Trotomiouto do Dotos	Apellidos: Alquezar Pitarch	11/05/2024	
Tratamiento de Datos	Nombre: Alejandro	11/05/2024	

Finalmente, utilizamos imputación múltiple usando k vecinos más cercanos:

```
[91]:
      imputer = KNNImputer()
      X_imputed = imputer.fit_transform(X)
      # Ajustar el modelo de regresion mediante arboles de decisiones
      model = LinearRegression()
      model.fit(X imputed, y)
      # Predecir los valores de y utilizando el modelo ajustado
      y_pred = model.predict(X_imputed)
      # Calcular el coeficiente de determinación (R^2)
      score_knn = r2_score(y, y_pred)
      print("Coeficiente de determinación (R^2):", score_knn)
      Coeficiente de determinación (R^2): 0.4452573283071828
```

Y, como podemos observar, tiene el coeficiente de determinación mas elevado con un valor de 0,44525... Lo que nos indica que es el mejor método para imputar los valores ausentes en este caso. Otro método no utilizado en este caso puede ser el de imputación por interpolación.

Introducimos los valores del modelo a nuestro dataset limpio:

[95]:	data_ data_ data_	<pre>data_clean.loc[:, 'month'] = X_imputed[:, 0] data_clean.loc[:, 'year'] = X_imputed[:, 1] data_clean.loc[:, 'plot_id'] = X_imputed[:, 2] data_clean.loc[:, 'sex'] = X_imputed[:, 3] data_clean.loc[:, 'hindfoot_length'] = X_imputed[:, 4]</pre>								
[96]:	data_	clean.he	ad()							
[96]:	re	ecord_id	month	day	year	plot_id	species_id	sex	hindfoot_length	weight
	62	63	8	19	1977	3	DM	0.0	35.0	40.0
	63	64	8	19	1977	7	DM	0.0	37.0	48.0
	64	65	8	19	1977	4	DM	1.0	34.0	29.0
	65	66	8	19	1977	4	DM	1.0	35.0	46.0
	66	67	8	19	1977	7	DM	0.0	35.0	36.0

_
2
_
_
_
=
_
П
Ξ
C
-
\simeq
202
П
0
Q
7
CHOIN
П
7
_
-
\simeq
(1
\subseteq
5
П
~
7
7
C
ñ
Denzaral Denzarana
C
77
č
7
Ā
2
7
7
_
-
C
_

Asignatura	Datos del alumno	Fecha	
Tretamiento de Detec	Apellidos: Alquezar Pitarch	44/05/2024	
Tratamiento de Datos	Nombre: Alejandro	11/05/2024	

Normalización

Empezamos seleccionando las columnas numéricas que vamos a normalizar. En este caso, son las columnas 'weight' y 'hindfoot_length'. Una vez tenemos los datos, los normalizamos usando Z-score con la función StandardScaler(). Finalmente, unificamos los datos en un mismo dataset.

35324 rows × 9 columns

Título de la actividad	Descripción	Puntuación máxima (puntos)	Nota
Criterio 1	Analiza y aplica la imputación de valores faltantes de manera adecuada	4	4
Criterio 2	Realiza la normalización correctamente	4	4
Criterio 3	Los comentarios del trabajo son pertinentes	2	1
		10	90

Comentarios: