Alex Look

DSC 324

Homework Module 2

1/23/22

1a) Copy of dataset with select columns

mtcars.cyl	mtcars.disp	mtcars.hp
Min. :4.000	Min.: 71.1	Min. : 52.0
1st Qu.:4.000	1st Qu.:120.8	1st Qu.: 96.5
Median :6.000	Median:196.3	Median :123.0
Mean :6.188	Mean:230.7	Mean :146.7
3rd Qu.:8.000	3rd Qu.:326.0	3rd Qu.:180.0
Max. :8.000	Max.:472.0	Max. :335.0
mtcars.wt Min. :1.513 1st Qu.:2.581 Median :3.325 Mean :3.217 3rd Qu.:3.610 Max. :5.424	mtcars.carb Min. :1.000 1st Qu.:2.000 Median :2.000 Mean :2.812 3rd Qu.:4.000 Max. :8.000	, and

1b) Column of 1's named "count"

Description: df [32 x 6]				
count <dbl></dbl>	mtcars.cyl <dbl></dbl>	mtcars.disp <dbl></dbl>	mtcars.hp <dbl></dbl>	mtcars.wt <dbl></dbl>	mtcars.carb <dbl></dbl>
1	6	160.0	110	2.620	4
1	6	160.0	110	2.875	4
1	4	108.0	93	2.320	1
1	6	258.0	110	3.215	1
1	8	360.0	175	3.440	2
1	6	225.0	105	3.460	1
1	8	360.0	245	3.570	4
1	4	146.7	62	3.190	2
1	4	140.8	95	3.150	2
1	6	167.6	123	3.440	4
1	6	167.6	123	3.440	4
1	8	275.8	180	4.070	3
1	8	275.8	180	3.730	3

1-13 of 32 rows Previous 1 2 3 Next

1c) Convert dataset into matrix

Г1 Т			mtcars.disp		mtcars.wt
ᅡᇰᅧ	1	6	160.0	110	2.620
[1,] [2,] [3,]	1	6	160.0	110	2.875
[2,]	1	4	108.0	93	2.320
[4,]	1	6	258.0	110	3.215
[4,] [5,] [6,]	1	8	360.0	175	3.440
[b,]	1	6	225.0	105	3.460
[/,]	1	8	360.0	245	3.570
[8,]	1	4	146.7	62	3.190
[9,]	1	4	140.8	95	3.150
[10,]	1	6	167.6	123	3.440
[11,]	1	6	167.6	123	3.440
[12,]	1	8	275.8	180	4.070
[13,]	1	8	275.8	180	3.730
[14,]	1	8	275.8	180	3.780
[15,]	1	8	472.0	205	5.250
[16,]	1	8	460.0	215	5.424
[17,]	1	8	440.0	230	5.345
[18,]	1	4	78.7	66	2.200
[19,1	1	4	75.7	52	1.615
[20,]	1	4	71.1	65	1.835
[27,]	1	4	120.1	97	2.465 3.520
[19,] [20,] [21,] [22,] [23,]	1	8	318.0	150	2.320
[23,]	1	8 8	304.0	150 245	3.435
[24,]	1	8	350.0	175	3.840 3.845
[26]	1	4	400.0 79.0	66	
[27]	1	4	120.3	91	1.935
[28]	1	4	95.1	113	2.140
[25,] [26,] [27,] [28,] [29,]	1	8	351.0	264	1.513 3.170
[30]	1	6	145.0	175	2.770
[30,]	1	8	301.0	335	3.570
[30,] [31,] [32,]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	121.0	109	2.780
L J L ,]		7	121.0	±03	2.700

[29,] 4 [30,] 19 [30,] 6 [31,] 19 [31,] 8 [32,] 25	[1,]] [2,]] [4,,]] [5,,]] [112,,]] [12,,]] [12,,]] [13,,]] [15,,]] [14,,]] [15,,]] [16,,]] [17,,]] [17,,]] [18,,]] [19	mtcars.carb 4 4 1 1 2 1 4 2 2 4 4 3 3 3 4 4 4 1 2 1 1 2 2 4 6 8 2	[1,]] [2,]] [3,]] [4,]] [6,]] [11,]] [12,]] [12,]] [12,]] [14,]] [14,]] [17,]]	mtcars.m 21 21 22 21 18 18 14 24 22 19 17 16 17 15 10 10 14 32 30 33 21 15 15 13 19 27 26 30 15 15 21
--	--	---	---	--

1d) Compute beta coefficients

```
[,1]
                        [,2]
                                [,3]
                                         [,4]
                                                [,5]
                                                        [,6]
count
               1.00
                       1.000
                                1.00
                                       1.000
                                                1.00
                                                        1.00
               6.00
                                4.00
                                       6.000
                                                8.00
                                                        6.00
mtcars.cyl
                       6.000
mtcars.disp 160.00 160.000 108.00 258.000 360.00 225.00
mtcars.hp
             110.00 110.000
                               93.00 110.000 175.00 105.00
                       2.875
                                2.32
                                       3.215
                                                3.44
               2.62
                                                        3.46
mtcars.wt
               4.00
                                                2.00
                       4.000
                               1.00
                                       1.000
                                                        1.00
mtcars.carb
               [,7]
1.00
                               [,9]
                       [,8]
                                             [,11]
                                                     [,12]
                                     [,10]
                       1.00
                               1.00
                                      1.00
                                              1.00
count
                                                      1.00
mtcars.cyl
               8.00
                       4.00
                              4.00
                                      6.00
                                              6.00
                                                      8.00
mtcars.disp 360.00 146.70 140.80 167.60 167.60 275.80
             245.00
                      62.00
                             95.00 123.00 123.00 180.00
mtcars.hp
                       3.19
                               3.15
               3.57
                                      3.44
                                              3.44
                                                      4.07
mtcars.wt
               4.00
                               2.00
                                      4.00
                                              4.00
mtcars.carb
                       2.00
                                                      3.00
              [,13]
                      [,14]
                              [,15]
                                      [,16]
                                               [,17]
                                                     [,18]
               1.00
                       1.00
                               1.00
                                               1.000
                                      1.000
                                                        1.0
count
                              8.00
                                                        4.0
               8.00
                       8.00
                                      8.000
                                               8.000
mtcars.cyl
mtcars.disp 275.80 275.80 472.00 460.000 440.000
                                                       78.7
             180.00 180.00 205.00 215.000 230.000
mtcars.hp
                                                       66.0
               3.73
                       3.78
                               5.25
                                      5.424
                                               5.345
                                                        2.2
mtcars.wt
               3.00
                       3.00
                              4.00
                                      4.000
                                               4.000
                                                        1.0
mtcars.carb
                      [,20]
                                                       [,24]
              [,19]
                               [,21]
                                      [,22]
                                               [,23]
              1.000
                                       1.00
                                               1.000
                                                        1.00
count
                      1.000
                               1.000
mtcars.cyl
              4.000
                     4.000
                              4.000
                                       8.00
                                               8.000
                                                        8.00
mtcars.disp 75.700 71.100 120.100 318.00 304.000 350.00
             52.000 65.000
                             97.000 150.00 150.000 245.00
mtcars.hp
                               2.465
                                       3.52
              1.615
                      1.835
                                               3.435
                                                        3.84
mtcars.wt
                               1.000
                      1.000
                                       2.00
              2.000
                                               2.000
                                                        4.00
mtcars.carb
               [,25]
                       [,26]
                               [,27]
                                       [,28]
                                               [,29]
                                                       [,30]
               1.000
                       1.000
                                1.00
                                       1.000
                                                1.00
                                                        1.00
count
mtcars.cyl
               8.000
                      4.000
                               4.00
                                       4.000
                                                8.00
                                                        6.00
mtcars.disp 400.000 79.000 120.30
                                     95.100 351.00 145.00
             175.000 66.000
                               91.00 113.000 264.00 175.00
mtcars.hp
               3.845
                       1.935
                                2.14
                                       1.513
                                                3.17
                                                        2.77
mtcars.wt
                                       2.000
               2.000
                       1.000
                                2.00
                                                4.00
                                                        6.00
mtcars.carb
              [,31]
                      [,32]
               1.00
count
                       1.00
               8.00
                       4.00
mtcars.cyl
mtcars.disp 301.00 121.00
mtcars.hp
             335.00 109.00
               3.57
                       2.78
mtcars.wt
               8.00
mtcars.carb
                       2.00
```

1e) Comparing manual calculation to output of function

```
lm(formula = mpg \sim cyl + disp + hp + wt + carb, data = mtcars)
Residuals:
    Min
                  Median
              1Q
                               3Q
                                      Max
-4.0635 -1.4580 -0.4306
                          1.2927
                                   5.8244
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                               3e-13 ***
(Intercept) 40.815359
                         3.025568
                                    13.490
                                    -1.902
cyl
             -1.291899
                         0.679227
                                             0.06830
                                     0.747
disp
              0.011486
                         0.015375
                                             0.46175
             -0.020353
                         0.020062
                                             0.31968
                                    -1.015
hp
                                             0.00337 **
             -3.846949
                         1.192155
                                    -3.227
wt
             -0.006747
                         0.574269
carb
                                    -0.012
                                             0.99072
Signif. codes:
0 ****
        0.001 '**'
                    0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.56 on 26 degrees of freedom
                                  Adjusted R-squared:
Multiple R-squared: 0.8486,
F-statistic: 29.15 on 5 and 26 DF, p-value: 7.056e-10
       mtcars.mpg
[1,]
     40.815359236
[2,]
[3,]
[4,]
[5,]
[6,]
     -1.291898563
      0.011485584
     -0.020352893
    -3.846949031
    -0.006746893
```

When looking at the manual calculations I did compared to the ones that was outputted to the function, the results that were returned were exact same numbers in which confirms that the result I hand calculated was the same as what the function had outputted. I will not consider rounding because that is something very meniscal to the idea of what the problem had asked because the results are vastly similar.

2a) Running regression model

Training MEDV Adj R^2: .7491.

Root MSE	4.66119	R-Square	0.7571
Dependent Mean	22.30737	Adj R-Sq	0.7491
Coeff Var	20.89531		

RSME of both Training and Test sets:

Residual standard error: 4.661 on 367 degrees of freedom Multiple R-squared: 0.7571, Adjusted R-squared: 0.7491 F-statistic: 95.31 on 12 and 367 DF, p-value: < 2.2e-16

[1] 4.580769 [1] 5.263608

Housing Training RMSE: 4.580769

Housing Testing RMSE: 5.263608

I believe that there is no evidence of overfitting. Between both training and testing RMSE's there is very little difference between the two values.

2b)

When looking at the graph there is no obvious dip in this graph so finding a minimum lambda might not exist.

2c)

[1] 63.53669

The dev value used to be 75 and now is 20.61% that would mean I am losing coefficients and the R-value was lost so it may not have regularized correctly.

The Lasso is doing better cause of the dev percentage difference is less than the ridge.

There is one variable selected in the lambda.1se under Df. The variance after the OLS went down even more than the Lasso or Ridge to 19.48 from the initial 75%.

2f) OLS, Ridge, Lasso

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                         5.610e+00
(Intercept)
             3.965e+01
                                     7.069 7.94e-12 ***
                                    -3.807 0.000165 ***
            -1.299e-01
                         3.412e-02
CRIM
                         1.570e-02
                                     2.764 0.005994 **
ΖN
             4.341e-02
                                     0.091 0.927884
INDUS
             6.302e-03
                         6.958e-02
             3.594e+00
                         9.454e-01
                                     3.802 0.000168 ***
CHAS
                                    -5.021 8.05e-07 ***
NOX
            -2.197e+01
                        4.377e+00
             4.229e+00
                                    8.634 < 2e-16 ***
                        4.898e-01
RM
                                    -0.008 0.993307
AGE
            -1.268e-04
                         1.511e-02
DIS
            -1.529e+00
                        2.318e-01
                                    -6.598 1.46e-10 ***
             2.665e-01
                        7.341e-02
                                    3.630 0.000324 ***
RAD
                        4.130e-03
                                    -2.746 0.006338 **
            -1.134e-02
TAX
            -9.828e-01
                        1.506e-01
                                   -6.526 2.24e-10 ***
PTRATIO
                                    -7.655 1.73e-13 ***
LSTAT
            -4.665e-01 6.094e-02
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4.661 on 367 degrees of freedom Multiple R-squared: 0.7571, Adjusted R-squared: 0.7491 F-statistic: 95.31 on 12 and 367 DF, p-value: < 2.2e-16

```
13 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -0.122160867
            -0.002991104
ΖN
INDUS
             0.033262853
CHAS
            -0.195382591
             2.282376267
NOX
            -0.120336124
RM
             0.006961588
AGE
DIS
            -0.121059676
             0.056792060
RAD
             0.002498431
TAX
             0.083324303
PTRATIO
             0.036690422
LSTAT
MEDV
            -0.027024183
13 x 1 sparse Matrix of class "dgCMatrix"
                    s1
(Intercept) 1.8617434
ΖN
INDUS
CHAS
NOX
RM
AGE
DIS
            0.1964528
RAD
TAX
PTRATIO
LSTAT
MEDV
```

When looking at all the different datasets OLS and Ridge are considerably close in coefficients. Lasso only has 1 coefficient and that value compared to the other two are not very close.

2g) If I had to pick a model to use out of these, I would use the OLS model because the values would already be checked for overfitting. Each model after Ridge and Lasso we are losing coefficients after each run and to me I would rather have the whole dataset and it already be checked for overfitting.

3a) Predicting the test set

```
Residual standard error: 1.303 on 17 degrees of freedom Multiple R-squared: 0.9272, Adjusted R-squared: 0.9058 F-statistic: 43.32 on 5 and 17 DF, p-value: 4.387e-09
```

```
[1] 1.120282
[1] 4.260169
```

I feel there is overfitting because of the huge gap in RMSE from the training and test sets.

3b) [1] 15.37505

That 15.37505 is the RMSE.

3c)

[1] 15.37505

It is doing better because there is less lambda but the RMSE is the same value between both.

3d)

3e) The .5 RMSE was the closest RMSE to the test RMSE. All three were better than the ridge and lasso.

3f) When mixing both ridge and lasso its better than the extremes to have regularized seeing as though .5 was much closer to the test RMSE.