

Attention

Lecture 21 of "Mathematics and Al"

Outline

- 1. Self-supervised learning
- 2. Neural-model architectures for learning structured data

Schwarze Math 76.01 Summer 2024

3. Attention

Self-supervised learning

Structured data

- (Semantic) relationships between input features
- Examples of structured data:
 - Time series, text, images, video, matrices, tensors, graphs
- How should a model account for those?
- Examples of neural models for structured data:
 - CNNs, RNNs, ...

UNSTRUCTURED DATA

STRUCTURED DATA

VS

Self-supervised learning (SSL)

- Predict a missing part of x_i from other parts of x_i
- Use structured data x_1, x_2, \dots
- No need for labeled observations $(x_1, y_1), (x_2, y_2), ...$
- Examples:
 - Fill in the blanks

<sos> I think I **** apples more than oranges <eos>

Complete the sentence

<sos> Thank you for your kind ****

Neural-model architectures for learning structured data

Neural approach to learning structured data

- Structured learning:
 - Weights should reflect aspects of the structure of the data (specifically the structural aspects that we expect to be important for learning)
- Ensemble learning:
 - Train multiple learners in parallel that can focus on different aspects of the structure

Image processing via CNNs

Structured learning:

CNN layers have sparse weight tensors (compared to complete layers)

Similarity of the relationship between adjacent pixels corresponds to filters being independent of pixel position

• Ensemble learning:

Each filter corresponds to a separate channel in the next layer

"BOB LIKES THE"

Sequence learning via RNNs

Structured learning:

Hidden states $H_i^{(k)} = \left(x_i^{(k)}, h_i^{(k)}\right)$ in k —th layer include decaying memory of previous hidden states

Sequence learning via RNNs

Structured learning:

Hidden states $H_i^{(k)} = \left(x_i^{(k)}, h_i^{(k)}\right)$ in k —th layer include decaying memory of previous hidden states

Ensemble learning:

Can include multiple $H_i^{(k)}$ for each input $x_i^{(in)}$

Forward pass in a RNN

- Sequential processing of information
- No parallel computation scheme
- Training RNNs tends to be slow

Sequence learning via bidirectional RNNs

• Structured learning:

Forward hidden states $\vec{H}_i^{(k)} = \left(x_i^{(k)}, \vec{h}_i^{(k)}\right)$ in the k-th encoder layer include decaying memory of previous forward hidden states

• Backward hidden states $\overleftarrow{H}_i^{(k)} = \left(x_i^{(k)}, \overleftarrow{h}_i^{(k)}\right)$ in the k-th decoder layer include decaying memory of subsequent backward hidden states

Forward hidden state \vec{H}_3 encodes "BOB LIKES THE"

Step 6

Forward pass in a bidirectional RNN step 7

- Sequential processing of information
- Whole input sequence read before output is produced
- No parallel computation scheme
- Training biRNNs tends to be even slower than training RNNs

Context

Proximity in word order matters less than proximity in meaning

Attention

Attention in bi-directional RNNs

- Direct attention to forward hidden states (i.e., embedded features) that seem particularly relevant to the context
- Measure relevance via some similarity

$$a_{i,j} = \overleftarrow{H}_i \cdot \overrightarrow{H}_j$$

(or kernel function)

• Context for prediction O_2 is

$$\overleftarrow{H}_{2} = f\left(x_{2}^{(in)}, \sum_{j} softmax(a_{3,j})\overrightarrow{H}_{j}\right)$$

Query-key-value (QKV) formulation

- Motivated by information retrieval from data bases
- Previous example used backward hidden states \overleftarrow{H}_i as queries and forward hidden states as \overrightarrow{H}_i keys and values

Self-attention

- Direct attention to forward hidden states (i.e., embedded features) that seem particularly relevant to the context
- Measure relevance via some similarity

$$a_{i,j} = \vec{H}_i \cdot \vec{H}_i$$

(or kernel function)

• Context for prediction O_2 is

$$\vec{H}_2 = f\left(x_2^{(in)}, \sum_j softmax(a_{2,j})\vec{H}_j\right)$$

Self-attention with QKV formulation

- Create 3 linear projections of $x_i^{(in)}$ using weights $W^{(key)}$, $W^{(value)}$, $W^{(query)}$
- Use queries, keys, and values
 - Queries: $q_j = W^{(query)} x_j^{(in)}$
 - Keys: $k_j = W^{(key)} x_i^{(in)}$
 - Values: $v_j = W^{(value)} x_i^{(in)}$
- Context for prediction O₂ is

$$\vec{H}_2 = f\left(x_2^{(in)}, \sum_j softmax(a_{2,j})v_j\right)$$
 with $a_{i,j} = q_i \cdot k_j$

Examples

