

東有大學信息科学与工程学院 SCHOOL OF INFORMATION SCIENCE AND ENGINEERING

LATEX 实践第 1 次实验 简单模板的使用

04000000 姓名

2021年9月25日

目录

1	实验	目的	1				
2	公式		1				
	2.1	基本形式	1				
	2.2	无标号公式	1				
	2.3	多标号公式	1				
	2.4	多行公式	1				
	2.5	矩阵	1				
	2.6	在公式中使用正体	2				
	2.7	在公式中插入中文	2				
3	图片		2				
	3.1	单张图片	2				
	3.2	多张子图	2				
4	表格		3				
	4.1	基础表格	3				
	4.2		3				
			3				
			4				
5	算法		4				
6	代码		4				
7	引文		5				
参	参考文献 5						

1 实验目的

- (1) 熟悉 LATEX 基本语法;
- (2) 熟悉简单的常用模板, 学会魔改模板以使其适用于自己的报告。

2 公式

2.1 基本形式

最基本的公式如(1)所示。

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}} \tag{1}$$

2.2 无标号公式

使用 "equation*"来构建没有标号的公式。

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = 1$$

2.3 多标号公式

想罗列多个方程?可以用 subequations + align 实现。

$$\tau_p = \tau_{1p} + \tau_2 = 33 \text{ns} = 16.5 \, T_c$$
 (2a)

$$\tau_i = \tau_{1i} + \tau_2 = 29 \text{ns} = 14.5 \, T_c$$
 (2b)

2.4 多行公式

公式太长怎么办?可以拆成多行。breqn 宏包中的 dmath 环境可以自动帮你换行。

$$\sin \alpha + \sin \beta = \sin(\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2}) + \sin(\frac{\alpha - \beta}{2} + \frac{\alpha - \beta}{2})$$

$$= \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} + \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$+ \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} - \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$= 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
(3)

2.5 矩阵

有多种环境可以描述矩阵。其中, bmatrix 为方括号, pmatric 为圆括号。

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$
 (4)

2.6 在公式中使用正体

公式中默认为斜体,而有时非变量要用正体表示。我一般采用简单粗暴的 {\rm xxx}。

$$\eta = \frac{L/R}{RTT + L/R} \tag{5}$$

2.7 在公式中插入中文

用 mbox 可以在公式中插入中文。

MTBF = 总工作时间/故障次数(小时)

3 图片

3.1 单张图片

图1是我家的小猫咪。他正在优雅地撒播打滚。

图 1: 可爱的小猫咪

3.2 多张子图

图2是被玩坏了的小猫咪。

(a) 高斯滤波

(b) 梯度滤波

图 2: 基于梯度滤波的边缘检测

4 表格

4.1 基础表格

表1是一张最普通的表格。人物、成绩纯属虚构。

表 1: 某某班级成绩表

学号	姓名	绩点	排名
04000001	李雷	4.101	1
04000002	韩梅梅	4.061	2
04000003	李雷梅	3.999	3

4.2 合并单元格

4.2.1 纵向合并

表2是某次实验里贴过来的。

表 2: 顶层模块端口定义

输入端口	CLK0	时钟
	ena0	使能
	rst0	清零
输出端口	led	显示
捌山畑口	cout0	进位标志

4.2.2 横向合并

表3展示了上面几个虚构的同学"四大名补"的分数。所有信息纯属虚构,如有雷同, 纯属巧合。

成绩 姓名 电路 信号 模电 电磁场 李雷 80 85 82 85 韩梅梅 85 90 88 83

91

87

93

表 3: 某某班四大名补均分表

5 算法

算法1是一个神奇的算法,形象生动地展示了令人窒息的操作。

81

李雷梅

```
算法 1: 神奇算法
   输入: x_{train}, y_{train}, \theta
   输出:ω
1 \omega \leftarrow 0;
n \leftarrow 0;
3 while 大条件 do
       J \leftarrow \|\boldsymbol{\omega} \boldsymbol{x}_{train} - \boldsymbol{y}_{train}\|_2^2;
       if 小条件 then
           神奇的操作;
 6
           用神奇的方法更新 \omega;
 7
       end
8
       else
9
            更神奇的操作;
10
            用更神奇的方法更新 \omega;
11
       end
12
       n \leftarrow n + 1;
13
14 end
```

6 代码

使用 Listings 优雅地插入代码。代码清单1是用来产生图2的程序。Listings 支持各种编程语言,您只需要把导言区和下面的"Python"换成其他语言即可。

代码清单 1: 基于 Python 和 OpenCV 的边缘检测实现

```
from cv2 import cv2
   img = cv2.imread('./image/cat.jpg')
 2
   # Note: the default order of color for cv2 is BGR
 3
   # A convert is needed if interacted with other software
 4
   # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 5
   print(img.shape)
 6
 7
 8
   # Note: the (x,y) of cv2.imread is different from numpy
   y_size = img.shape[0]
 9
   x_size = img.shape[1]
10
   img = cv2.resize(img, dsize=( int(x_size/6), int(y_size/6)))
11
12
   img = img[:,:,2]
13
   print(img.shape)
   cv2.imshow('img', img)
14
   cv2.imwrite('./img/img_resized.jpg', img)
15
16
   # Note: the size of the kernel must be odd numbers
17
   img_Guassian = cv2.GaussianBlur(img, (9,9), 0.5)
18
19
   cv2.imshow('img_Guassian', img_Guassian)
20
    cv2.imwrite('./img/img_Guassian.jpg', img_Guassian)
21
   # Derivation of the 1st order in direction x
22
23
   img_Sobel = cv2.Sobel(img_Guassian, cv2.CV_16S, 1, 0)
24
   # Convert back to unit8
25
   img Sobel = cv2.convertScaleAbs(img Sobel)
   cv2.imshow('img_Sobel', img_Sobel)
26
27
   cv2.imwrite('./img/img_Sobel.jpg', img_Sobel)
28
   cv2.waitKey()
```

7 引文

文献[1]因为封面上盛开的鲜花,又叫"花书",是深度学习的圣经。

参考文献

[1] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.org