Distribuições Discretas

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 20 de maio de 2022

Sumário

1 Distribuição Hipergeométrica

Distribuição Binomial

Propriedades

- Se $X \sim B(n, p)$ então
 - $\mathbb{E}(X) = np$ (Demonstração)
 - Var(X) = np(1-p) (Demonstração)
 - $\mathbb{E}(X^k) = np\mathbb{E}[(Y+1)^{k-1}]$ sendo que $Y \sim B(n-1,p)$.

Distribuição Binomial

Proposição:

Se $X \sim B(n,p)$ então

$$\mathbb{P}(X=x+1) = \frac{p}{1-p} \frac{n-x}{x+1} \mathbb{P}(X=x)$$

Distribuição binomial

Exemplo

- Suponha que uma válvula eletrônica, instalada em determinado circuito, tenha probabilidade 0, 2 de funcionar mais do que 500 horas. Se testarmos 20 válvulas:
- (a) Qual será a probabilidade de que, exatamente 2 válvulas, funcionem mais do que 500 horas?
- (b) Qual o número esperado de válvulas que funcionaram mais do que 500 horas?
- (c) Qual o desvio-padrão?

Distribuição binomial

Exemplo

• Solução: Seja X a v.a que representa o número de válvulas que funcionem mais do que 500 horas. Admitindo que, $X \sim B(20;0,2)$ temos que

$$\mathbb{P}(X=2) = {20 \choose 2} (0,2)^2 (0,8)^{20-2}$$
$$= 190 \times (0,2)^2 \times (0,8)^{18} = 0,137$$

• O número esperado de válvulas funcionando mais do que 500 horas é dado por

$$\mathbb{E}(X) = 20 \times 0, 2 = 4$$
, com desvio-padrão

$$DP(X) = \sqrt{Var(X)} = \sqrt{20 \times 0, 2 \times 0, 8} \approx 1,79.$$

Exemplo

- O controle de qualidade de uma determinada industria verificou que a probabilidade de que uma peça, produzida por determinada máquina, seja defeituosa é 0,2. Se 10 peças produzidas por essa máquina forem escolhidas ao acaso, responda:
 - (a) Qual a probabilidade de ser encontrada no máximo uma peça defeituosa?
 - (b) Qual a esperança e o desvio-padrão do número de peças defeituosas?
 - (c) Se nenhuma peça defeituosa for encontrada, a máquina está operando em perfeitas condições. Se somente uma peça defeituosa for encontrada, a máquina precisará de "reparos leves" com um custo de R\$ 10,00. Já se forem encontradas mais do que uma, a máquina precisará de "reparos maiores" ao custo de R\$ 50,00. Qual o custo de manutenção esperado para essa máquina?

Exemplo

Roda da Fortuna

• O jogo a seguir, conhecido como roda da fortuna, é bastante popular em muitos parques e casinos. Um jogador aposta em um número de 1 a 6. Três dados são então lançados, e se o número apostado sair i vezes, i = 1, 2, 3, então o jogador ganha i unidades; se o número apostado não sair em nenhum dos dados, então o jogador perde 1 unidade. Este jogo é justo para o jogador?

Fonte: Ross (2010)

Sumário

1 Distribuição Hipergeométrica

- Este é um modelo para amostragem sem reposição de uma população com um número finito de elementos que podem ser classificados em duas categorias mutuamente excludentes.
- Detalhes:
 - \bullet N objetos
 - $\bullet \ r$ possuem uma característica A
 - N-r possuem uma característica B
 - $\bullet\,$ um grupo de n elementos é escolhido ao acaso, dentre os Npossíveis, sem reposição
- Objetivo: calcular a probabilidade de que este grupo de n elementos contenha x elementos com a característica A.

Seja X a v.a representando o número de elementos com a característica A, dentre os n elementos selecionados. Dizemos que X tem distribuição hipergeométrica e sua distribuição de probabilidade é dada por:

$$p(x) = \mathbb{P}(X = x) = \frac{\binom{r}{x} \binom{N - r}{n - x}}{\binom{N}{n}} \quad \forall$$

 $\max\{0, n - (N - r)\} \le x \le \min\{r, n\}.$

• Notação: $X \sim \text{Hip}(N, n, r)$

Propriedades

• Se $X \sim \text{Hip}(N, n, r)$ então

$$\mathbb{E}(X^k) = n \frac{r}{N} \mathbb{E}((Y+1)^{k-1}) \text{ em que } Y \sim \text{Hip}(N-1, n-1, r-1).$$

Dessa forma,

$$\mathbb{E}(X) = n \frac{r}{N} e$$

$$Var(X) = n\frac{r}{N}(1 - \frac{r}{N})(\frac{N-n}{N-1}).$$

• O termo $\frac{N-n}{N-1}$ é o chamado fator de correção em amostras finitas.

• Aplicação: Controle de Qualidade Suponha um lote com N=100 elementos a ser analisado. São escolhidas n=5 peças sem reposição. Sabendo que neste lote de 100 elementos, r=10 são defeituosos, a probabilidade de não se obter nenhuma peça defeituosa na amostra retirada é:

$$\mathbb{P}(X=0) = \frac{\binom{10}{0} \binom{100-10}{5-0}}{\binom{100}{10}} = \frac{\binom{90}{5}}{\binom{100}{10}} \approx 0,584$$

Aproximação da Hipergeométrica pela Binomial

- Uma interessante propriedade da distribuição Hipergeométrica pode ser observada quando N é grande em comparação a n. Nesta situação, as retiradas serão "quase" independentes.
- Quando isso ocorre a distribuição Hipergeométrica se aproxima de uma distribuição binomial com parâmetros n e r/N. Ou seja,

$$\mathbb{P}(X=x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}} \approx \binom{n}{x} (\frac{r}{N})^x (1-\frac{r}{N})^{n-x}$$

 \bullet Em geral, essa é uma boa aproximação quando $\frac{n}{N} \leq 0, 1.$

Aproximação da Hipergeométrica pela Binomial

Tabela: Valores de p(0) para diferentes valores de N,n e r sob os modelos Hipergeométrico e Binomial

(N, n, r)	n/N	$\operatorname{Hip}(N, n, r)$	B(n, r/N)
(50, 15, 10)	0,300	0,018	0,035
(70, 15, 10)	0,214	0,074	0,099
(90, 15, 10)	$0,\!167$	0,145	$0,\!171$
(110, 15, 10)	$0,\!136$	0,215	0,239
(130, 15, 10)	0,115	$0,\!280$	0,301
(150, 15, 10)	0,100	0,337	$0,\!355$
(170, 15, 10)	0,088	$0,\!387$	0,403
(190, 15, 10)	0,079	$0,\!430$	0,444
(200, 15, 10)	0,075	0,450	0,463