Algorithm 1: Counting monomials with only even exponents for given even partition of number n

Input: Even partition $\mathcal{P} = \{p_1, ..., p_k\}$ of the number n, problem dimension d,number of random samples m

Output: Number of monomials with only even exponents

- S := 0
- For every multipermutation of \mathcal{P} do:

– Create
$$\mathcal{T} = \{\underbrace{1,...,1}_{p_1},...,\underbrace{k,...,k}_{p_k}\}$$

- For every multipermutation of \mathcal{T} do:
 - * Check if \mathcal{T} is correct with Algorithm (5). If Algorithm (5) returned false, go to the next multipermutation of \mathcal{P} .
 - * Create matrices D and M for the table \mathcal{T} with Algorithm (2).
 - * If there are unfilled places in matrices D and M, create pairs of matrices D' and M' by filling unfilled places in D and M in every possible way.
 - * From the set of every generated in previous step pairs of matrices, discard these which are incorrect. Correctnes of the pair of matrices is check with Algorithm (3).
 - * For every pair of matrices calculate it's numerical value with Algorithm (4) and add it to S.
- \bullet Return S

Algorithm 2: Creating matrices D and M

Input : $T = \{t_1, ..., t_n\}$, where $t_i \in \{1, ..., k\}$

Output: Filled matrices D and M

- \bullet Create matrices D and M of a dimension k
- From i = 1 to n do:
 - If i is odd, do:
 - * To $M_{t_i t_{i+1}}$ and $M_{t_{i+1} t_i}$ write "=".
 - * To $D_{t_i t_{i+1}}$ and $D_{t_{i+1} t_i}$ write " \neq ".
 - If i is even, do:
 - * To $D_{t_i t_{i+1}}$ and $D_{t_{i+1} t_i}$ write "=".
 - * To $M_{t_i t_{i+1}}$ and $M_{t_{i+1} t_i}$ write " \neq ".
- $\bullet\,$ Return matrices D and M

Note: If there is an occurrence of writing " \neq " or "=" in previously filled place, stop the algorithm and don't return anything.

Algorithm 3: Checking if given pair of matrices D and M is correct

Input: Matrices D and M

Output: True, if given pair is correct; False in other cases

- For every pair of indexes i, j of the matrix do:
 - If $D_{ij} = M_{ij} = "="$
 - * Return False
- If the negation of any from implications listed below is true: $[(X_{ij} = "=") \land (X_{ik} = "=")] \Rightarrow X_{kj} = "=" \text{ or } [(X_{ij} = "=") \land (X_{ik} = "\neq")] \Rightarrow X_{kj} = "\neq" \text{ where X is a matrix } D \text{ or } M$
 - Return False
- Return True

Algorithm 4: Calculating a component of sum from formula for number of monomials

Input: Pair of matrices D and M, problem dimension d, number of random samples m

Output: A component of sum from formula for number of monomials

- q = 1
- From i = 1 to dim D do:

$$- \text{ If } i = 1$$

$$* q = q \cdot d \cdot m$$

- Else:
 - * Calculate c_d oraz c_m with Algorithm (6) with input data: (D,i) and (M,i)
 - * If there exists i < j, such that $D_{ij} = " \neq "$, do:

$$\cdot q = q \cdot (d - c_d)$$

* If there exists i < j, such that $M_{ij} = " \neq "$, do:

$$\cdot q = q \cdot (m - c_m)$$

• Retrun q

Algorithm 5: Checking if table \mathcal{T} is correct

Input : $\mathcal{T} = \{t_1, ..., t_n\}$, where $t_i \in \{1, ..., k\}$

Output: True, if \mathcal{T} is correct; False in other cases

- \bullet $A = \emptyset$
- From i = 1 to n do:
 - If there exists s < i, such that $t_s > t_i$ and $t_i \notin A$, do:
 - * Return False
 - insert t_i into A
- ullet Return True

Algorithm 6: Calculating auxiliary minuend

Input : Matrix X, number i
Output: Auxiliary minuend

- If i = 1 do:
 - Return 0
- For each j < i do:
 - If $X_{ij} = "\neq"$ do:
 - * Calculate c_j with Algorithm (6) with input data (X,j)
- $c = \min_j c_j$
- Return c+1