Derivative

Definition

The vector function $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ has a derivative (is differentiable) at t if f, g, and h have derivatives at t. The derivative is the vector function

$$\vec{r}'(t) = \frac{d\vec{r}}{dt}$$

$$= \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$$

$$= \frac{df}{dt}\hat{i} + \frac{dg}{dt}\hat{j} + \frac{dh}{dt}\hat{k}$$

Definitions

If r is the position vector of a particle moving along a smooth curve in space, then

$$\vec{v}\left(t\right) = \frac{d\vec{r}}{dt}$$

is the particle's *velocity vector*, tangent to the curve. At any time t, the direction of \vec{v} is the *direction of motion*, the magnitude of \vec{v} is the particle's *speed*, and the derivative $\vec{a} = \frac{d\vec{v}}{dt}$, when it exists, is the particle's *acceleration vector*. In summary,

1. Velocity is the derivative of position: $\vec{v}(t) = \frac{d\vec{r}}{dt}$

2. Speed is the magnitude of velocity: $Speed = |\vec{v}|$

- 3. Acceleration is the derivative of velocity: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$
- **4.** The unit vector $\frac{\vec{v}}{|\vec{v}|}$ is the direction of motion at time *t*.

Example

Find the velocity, speed, and acceleration of a particle whose motion in space is given by the position vector $\vec{r}(t) = 2\cos t \ \hat{i} + 2\sin t \ \hat{j} + 5\cos^2 t \ \hat{k}$. Sketch the velocity vector $\vec{v}\left(\frac{7\pi}{4}\right)$

Solution

The velocity vector at time *t* is:

$$\vec{v}(t) = \vec{r}'(t) = -2\sin t \ \hat{i} + 2\cos t \ \hat{j} - 10\cos t \sin t \ \hat{k}$$
$$= -2\sin t \ \hat{i} + 2\cos t \ \hat{j} - 5\sin 2t \ \hat{k}$$

The acceleration vector at time *t* is:

$$\vec{a}(t) = \vec{r}''(t) = -2\cos t \ \hat{i} - 2\sin t \ \hat{j} - 10\cos 2t \ \hat{k}$$

The speed is:

$$|\vec{v}(t)| = \sqrt{(-2\sin t)^2 + (2\cos t)^2 + (-5\sin 2t)^2}$$

$$= \sqrt{4\sin^2 t + 4\cos^2 t + 25\sin^2 2t}$$

$$= \sqrt{4(\sin^2 t + \cos^2 t) + 25\sin^2 2t}$$

$$= \sqrt{4 + 25\sin^2 2t}$$

$$= \sqrt{4 + 25\sin^2 2t}$$

$$\vec{v}\left(\frac{7\pi}{4}\right) = -2\sin\left(\frac{7\pi}{4}\right)\hat{i} + 2\cos\left(\frac{7\pi}{4}\right)\hat{j} - 5\sin\left(\frac{7\pi}{2}\right)\hat{k}$$
$$= \sqrt{2}\hat{i} + \sqrt{2}\hat{j} + 5\hat{k}$$

$$\vec{a} \left(\frac{7\pi}{4} \right) = -2\cos\left(\frac{7\pi}{4}\right)\hat{i} - 2\sin\left(\frac{7\pi}{4}\right)\hat{j} - 10\cos\left(\frac{7\pi}{2}\right)\hat{k}$$
$$= -\sqrt{2}\hat{i} + \sqrt{2}\hat{j}$$

$$\left| \vec{v} \left(\frac{7\pi}{4} \right) \right| = \sqrt{4 + 25\sin^2\left(\frac{7\pi}{2}\right)}$$
$$= \sqrt{29}$$

Differentiation Rules for vector Functions

Let \vec{u} and \vec{v} be differentiable vector functions of t, C a constant vector, c any scalar and f any differentiable scalar function.

- **1.** Constant Function Rule: $\frac{d}{dt}\vec{C} = \mathbf{0}$
- **2.** Scalar Multiple Rules: $\frac{d}{dt} \left[c\vec{u} \left(t \right) \right] = c\vec{u}'(t)$

$$\frac{d}{dt} \left[f(t) \vec{u}(t) \right] = f'(t) \vec{u}(t) + f(t) \vec{u}'(t)$$

- 3. Sum Rule: $\frac{d}{dt} \left[\vec{u}(t) + \vec{v}(t) \right] = \vec{u}'(t) + \vec{v}'(t)$
- **4.** Difference Rule: $\frac{d}{dt} \left[\vec{u}(t) \vec{v}(t) \right] = \vec{u}'(t) \vec{v}'(t)$
- **5.** Dot Product Rule: $\frac{d}{dt} \left[\vec{u}(t) \cdot \vec{v}(t) \right] = \vec{u}'(t) \cdot \vec{v}'(t) + \vec{u}(t) \cdot \vec{v}'(t)$
- **6.** Cross Product Rule: $\frac{d}{dt} \left[\vec{u}(t) \times \vec{v}(t) \right] = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$
- 7. Chain Rule: $\frac{d}{dt} \left[\vec{u} \left(f(t) \right) \right] = f'(t) \vec{u}' \left(f(t) \right)$

Vector Functions of Constant Length

The position vector, of a particle that is moving on a sphere, has a constant length equal to the radius of the sphere. The velocity vector $\frac{d\vec{r}}{dt}$, tangent to the path of motion, is tangent to the sphere and hence perpendicular to $\vec{r}(t)$. the vector and its first derivative are orthogonal.

$$|\vec{r}(t) \cdot \vec{r}(t)| = c^2$$
 $|\vec{r}(t)| = c$ is constant

$$\frac{d}{dt} [\vec{r}(t) \cdot \vec{r}(t)] = 0$$
Differentiate both sides

 $\vec{r}'(t) \cdot \vec{r}(t) + \vec{r}(t) \cdot \vec{r}'(t) = 0$
 $2 \vec{r}'(t) \cdot \vec{r}(t) = 0$

If $\vec{r}(t)$ is a differentiable vector function of t of constant length, then

$$\vec{r}\left(t\right) \bullet \frac{d\vec{r}}{dt} = 0$$

Exercises Section 1.5 – Calculus of Vector-Valued Functions

(1-4) $\vec{r}(t)$ is the position of a particle in the *xy*-plane at time *t*. Find an equation in *x* and *y* whose is the path of the particle. Then find the particle's velocity and acceleration vectors at the given value of *t*.

1.
$$\vec{r}(t) = (t+1)\hat{i} + (t^2-1)\hat{j}, \quad t=1$$

3.
$$\vec{r}(t) = e^t \hat{i} + \frac{2}{9} e^{2t} \hat{j}, \quad t = \ln 3$$

2.
$$\vec{r}(t) = \frac{t}{t+1}\hat{i} + \frac{1}{t}\hat{j}, \quad t = -\frac{1}{2}$$

4.
$$\vec{r}(t) = (\cos 2t)\hat{i} + (3\sin 2t)\hat{j}, \quad t = 0$$

(5-6) Give the position vectors of particles moving along various curves in the xy-plane. Find the particle's velocity and acceleration vectors at the stated times and sketch them as vectors on the curve

5. Motion on the circle
$$x^2 + y^2 = 1$$
 $\vec{r}(t) = (\sin t)\hat{i} + (\cos t)\hat{j}$, $t = \frac{\pi}{4}$ and $\frac{\pi}{2}$

6. Motion on the cycloid
$$x = t - \sin t$$
, $y = 1 - \cos t$; $\vec{r}(t) = (1 - \sin t)\hat{i} + (1 - \cos t)\hat{j}$; $t = \pi \& \frac{3\pi}{2}$

(7-11) r(t) is the position of a particle in the *xy*-plane at time *t*. Find the particle's velocity and acceleration vectors. Then find the particle's speed and direction of motion at the given value of *t*. Write the particle's velocity at that time as the product of its speed and direction.

7.
$$\vec{r}(t) = (t+1)\hat{i} + (t^2-1)\hat{j} + 2t\hat{k}, \quad t=1$$

8.
$$\vec{r}(t) = (t+1)\hat{i} + \frac{t^2}{\sqrt{2}}\hat{j} + \frac{t^3}{3}\hat{k}, \quad t=1$$

9.
$$\vec{r}(t) = (2\cos t)\hat{i} + (3\sin t)\hat{j} + 4t\hat{k}, \quad t = \frac{\pi}{2}$$

10.
$$\vec{r}(t) = (2\ln(t+1))\hat{i} + t^2\hat{j} + \frac{t^2}{2}\hat{k}, \quad t = 1$$

11.
$$\vec{r}(t) = (e^{-t})\hat{i} + (2\cos 3t)\hat{j} + (2\sin 3t)\hat{k}, \quad t = 0$$

12. Find all points on the ellipse $\vec{r}(t) = \langle 1, 8\sin t, \cos t \rangle$, for $0 \le t \le 2\pi$, at which $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal.