Techniques for Precise and Scalable Data Flow Analysis

by

<u>Komal Pathade</u>

under the guidance of Prof. Uday Khedker

Thanks

Outline

1. Data Flow
Analysis and Its
Existing Solutions

2. Improving Precision of Data Flow Analysis

3. Improving Scalability of Data Flow Analysis

Outline

Data Flow
 Analysis and Its
 Existing Solutions

2. Improving Precision of Data Flow Analysis

3. Improving Scalability of Data Flow Analysis

Data Flow Analysis- A simple example

Values of z at node 5?

Values of z at node 5?

Computes value along each path separately

Node	Value of z from paths		
	Blue	Red	
5	z=2	z=0	

Values of z at node 5?

Computes value along each path separately

Node	Value of z from paths		
	Blue	Red	
5	z=2	z=0	

Values of *z* at node 5?

Computes value along each path separately

Node	Value of z from paths	
	Blue	Red
5	z=2	Ž

- Red path is infeasible so z=0 is discarded,
- Thus, the remaining value z=2 is precise
- Not scalable, because the number of paths can be very large

Maximum Fix Point (MFP) Solutions

Values of z at node 5?

Compute range of values reaching along all paths

Node	Value Range of z from all paths
5	z=[0,2]

- Scalable: computes only one value per program point
- Imprecise: z=0 is included which reaches along infeasible path (marked in red)
- No obvious way of eliminating 0 at node 5

Trade-off

Research Gap

No generic and efficient solution for eliminating infeasible path effect in this area

1. Data Flow
Analysis and Its
Existing Solutions

2. Improving Precision of Data Flow Analysis

3. Improving Scalability of Data Flow Analysis

Assumption

- A set of Infeasible paths is given as Input
- Trigger edges (i.e., edges at which the values reaching along infeasible path should be blocked) are known

Trigger Edge

Problem Statement

Can we improve the precision of MFP solutions, if we know which paths are infeasible?

Problem Statement

Can we improve the precision of MFP solutions, if we know which paths are infeasible?

Desirable:
A Generic and Efficient Solution

Our Contribution

We introduce Feasible Path MFP Solutions

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Node	Value range of z from		
	Feasible Paths Infeasible Paths		
		Red	
4	z=[2,2]	z=[0,0]	
5	z=[2,2]	z=[0,0]	

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Node	Value range of z from		
	Feasible Paths Infeasible Paths		
		Red	
4	z=[2,2]	z=[0,0]	
5	z=[2,2]	z= [0]	

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Node	Value range of z from		
	Feasible Paths Infeasible Paths		
		Red	
4	z=[2,2]	z=[0,0]	
5	z=[2,2]	z= 0 0]	

The final range is meet of ranges from all buckets (except discarded ranges)

Is one Bucket sufficient for all infeasible paths?

Answer: Depends on the **structure** of infeasible paths

Dealing with Multiple Infeasible Paths

Dealing with Overlapping Infeasible Paths

Dealing with Infeasible Paths across Procedures

Dealing with Multiple Infeasible Paths

Dealing with Overlapping Infeasible Paths

Dealing with Infeasible Paths across Procedures

Observation:

We can eliminate the effect of all infeasible paths that **contain the same MIPS** using a single bucket

	Value range of z from		
Node	Feasible Paths	Infeasible segment start	
		red	
4		z=[2,2]	
5		z=[2,2]	
6		z 2]	

Is one bucket sufficient for **Multiple MIPS**?

	Value range of z from		
Node	Feasible Paths	Infeasible segment start	
		red	
4		z=[2,2]	
5		z=[2,2]	
6		z 2]	

- Green path segment is also a MIPS
- Here one bucket is not sufficient for two MIPS
- Need one bucket per MIPS

	e range of z from	
Node	Feasible Paths	Infeasible segment start
		red
4		z=[2,2]
5		z=[2,2]
6		z 2 2]

- Green path segment is also a MIPS
- Here one bucket is not sufficient for two MIPS
- Need one bucket per MIPS

	Value range of z from		
Node	Feasible	Infeasible segment star	
	Paths	red	Green
4		z=[2,2]	z=[0,0]
5		z=[2,2]	z= 0]
6		z=	z=[0,0]

Dealing with Multiple Infeasible Paths

Dealing with Overlapping MIPS

Dealing with Infeasible Paths across Procedures

Dealing with overlapping MIPS

Possible Overlaps between 2 MIPS

One bucket for each MIPS

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths	Infeasible segment start	
		Red	Green
4	z=[2,2]	z=[0,0]	z=[0,0]
5	z=[2,2]	z=[0,0]	z=[0,0]
6	z=[2,2]	z=[0,0]	z = [0,0]

One bucket for each MIPS

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths	Infeasible segment start	
		Red	Green
4	z=[2,2]	z=[0,0]	z=[0,0]
5	z=[2,2]	z= [0]	z=[0,0]
6	z=[2,2]	z=[0,0]	z= (0]

One bucket for each MIPS

Values of z at node 5?

Value range of z from			
Feasible Paths	Infeasible segment start		
	Red	Green	
z=[2,2]	z=[0,0]	z=[0,0]	
z=[2,2]	z= [0]	z=[0,0]	
z=[2,2]	z=[0,0]	z= (0]	
	reasible Paths $z=[2,2]$ $z=[2,2]$	Feasible Paths Infeasible set $z=[2,2]$ $z=[0,0]$ $z=[2,2]$ $z=[0,0]$	

Imprecise

What went wrong?

Intuitively, we got a covering, instead of a partition

Start edges of red and green MIPS

Create bucket representing combination of MIPS

Create bucket representing combination of MIPS

Observation:

We **only** need to consider cases when **A MIPS contains-prefix-of (CPO) other MIPS** because in such cases they contain the same values in corresponding buckets.

Our running example

Assign the value to composite bucket

Move the value when overlap changes

Move the value when overlap changes

Move the value when overlap changes

Challenges in Computing Precise FPMFP Solutions

Dealing with Multiple Infeasible Paths

Dealing with Overlapping MIPS

Dealing with Infeasible Paths across Procedures

Functional Approach for FPMFP Computation

Compute GEN and KILL Summary for Functions

foo:

- Uses constant boundary value
- Traverses call graph in bottom-up order

Compute GEN and KILL Summary for Functions

foo:

foo

- GEN Summary : z++
- KILL Summary : {z} (contains modified variables)

Substitute Summary in FPMFP Computation

OUT4 is computed using summary of foo and IN4.

	Value ran	Value range of z from		
Node	Feasible Paths	Red		
IN4	z=[5,5]	z=[0,0]		
OUT4	z=[6,6]	z=[1,1]		
5	z=[6,6]	z 1 ,1]		
6	z=[6,6]	z=[1,1]		

Eliminates effect of balanced MIPS

 The variables in the condition on the Trigger edge are not modified at intermediate nodes of a balanced MIPS

- Condition on trigger edge (a==6)
- "a" is not modified along
 Red MIPS

Benefit of summaries along feasible paths

Benefit of summaries along feasible paths

1. Data Flow
Analysis and Its
Existing Solutions

2. Improving Precision of Data Flow Analysis

3. Improving Scalability of Data Flow Analysis

The Good Thing is...

Many Infeasible Paths Exist (9-40% [1]), so scope for precision improvement

^[1] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soa. 1997. Refining data flow information using infeasible paths. In Software Engineering ESEC/FSE'97. Springer, 361–377.

The Not So Good Thing is...

Too Many Infeasible Paths May Exist (> 99%, theoretically)

Therefore, the challenge is ...

- 1. Reducing infeasible path detection cost
- 2. Reducing the number of Buckets

Node **Bucket1 Bucket2 ... Bucket∞**

1. Reducing infeasible path detection cost

Observation:

Infeasible paths is a property of programs so they affect all flow sensitive data flow analysis

For example on LHS

 -Reaching definition
 (a=6 doesn't reach node 3)
 -Liveness (z is not live at node 1)

 So detect infeasible paths only once for a program (instead of for each data flow analysis)

2. Reducing the number of buckets

Reduce Distinct MIPS using MIPS Equivalence

Reduce Number of Composite Buckets

Use Equality of Data Flow Values to Merge Buckets

Use of MIPS Equivalence

Observation:

If two balanced MIPS have the **same trigger edge** then the corresponding data flow values can be kept in **same bucket**.

	Value range of z from		
Node	Feasible	Infeasible so	egment start
	Paths	Blue	Red
4		z=[0,0]	z=[5,5]
5		z =7, 0]	z =17, 5]
6	z=[0,5]		• •

Use of MIPS Equivalence

Observation:

If two balanced MIPS have the **same trigger edge** then the corresponding data flow values can be kept in **same bucket**.

Node	Va Feasible Paths	lue range of z from Infeasible segment start Blue
4		z=[0,5]
5		z= 1 ,5]
6	z=[0,5]	

2. Reducing the number of buckets

Reduce Distinct MIPS using MIPS Equivalence

Reduce Number of Composite Buckets

Use Equality of Data Flow Values to Merge Buckets

When not to create composite buckets

When MIPS do not have contains-prefix-of relation

	Value range of z from			
Node	Feasible	Infeasible segment start		
	Paths	Blue	Red	
4		z=[2,2]	z=[0,0]	
5		z=[2,2]	z=[0,0]	
6		z=[2,2]	z=[0,0]	

When not to create composite buckets

When MIPS do not have contains-prefix-of relation

	Value range of z from		
Node	Feasible	Infeasible segment start	
	Paths	Blue	Red
4		z=[2,2]	z=[0,0]
5		z=[2,2]	z =17, 0]
6		z = ,2]	z=[0,0]

2. Reducing the number of buckets

Reduce Distinct MIPS using MIPS Equivalence

Reduce Number of Composite Buckets

Use Equality of Data Flow Values to Merge Buckets

Same data flow values in buckets

Same data flow values in buckets

Bucketing is not useful in this case

Node	Value range of z from Feasible Infeasible segment start Paths Bre		
4	z=[0,0]	•	
5	z=[0,0]		
6	z=[0,0]		

Experiments

Implementation and Benchmarks

- Reaching definitions analysis and potentially uninitialized variable analysis in TCS ECA (Embedded Code Analyzer)
- 30 benchmarks that include Open Source(18), Industry(5), and SPEC CPU 2006(7) benchmarks

Results:

- 1. Improvement
 - depends on the presence of infeasible paths and analysis type

Analysis	Precision Improvement			Benchmarks with
	Maximum	Average	Geometric mean	Non-zero improvement
Un-initialized Variables	100%	18.5%	3	14/27
Def-Use Pairs	13%	2.8%	1.75	28/30

2. Analysis Time: Average 3x more than MFP.

Benchmarks		Uninitialized				
		Variable Alarms				
		MFP	FPMFP	reduction(%)		
	1.acpid	1	1	0(0)		
	2.polymorph	4	4	0(0)		
	3.nlkain	4	0	4(100)		
	4.spell	3	3	0(0)		
	5.ncompress	7	7	0(0)		
	6.gzip	0	0	-		
rce	7.stripee	27	1	26(96.30)		
Open Source	8.barcode-nc	0	0	-		
ben	9.barcode	2	0	2(100)		
0	10.archimedes	61	56	5(8.20)		
	11.combine	63	63	0(0)		
	12.httpd	117	117	0(0)		
	13.sphinxbase	46	43	3(6.52)		
	14.chess	16	16	0(0)		
	15.antiword	18	18	0(0)		
	16.sendmail	103	102	1(0.97)		
	17.sudo	62	58	4(6.45)		
	18.ffmpeg	124	112	12(9.68)		

Uninitialized Alarms:

- Improvement is observed when all paths along which variable is undefined are infeasible.
- 100% reduction is achievable in some cases
- Reasons for less improvement
 - initialization in Library calls
 - function call in path condition

Benchmarks		Reaching Definition Analysis				
Trmo	Name	#def-us	se pairs	raduation(%)		
Type	Name			reduction(%)		
		MFP	FPMFP			
	1.acpid	156	156	0(0.00)		
	2.polymorph	228	228	0(0.00)		
	3.nlkain	1042	965	77(7.39)		
	4.spell	516	515	1(0.19)		
	5.ncompress	1201	1175	26(2.16)		
	6.gzip	3423	3401	22(0.64)		
	7.stripec	2703	2645	58(2.15)		
rce	8.barcode-nc	3051	3007	44(1.44)		
Open Source	9.barcode	3709	3653	56(1.51)		
ben	10.archimedes	44337	44216	121(0.27)		
0	11.combine	16618	15859	759(4.57)		
	12.httpd	10475	10072	403(3.85)		
	13.sphinxbase	9641	8482	1159(12.02)		
	14.chess	31386	31303	83(0.26)		
	15.antiword	68889	60144	8745(12.69)		
	16.sendmail	102812	101470	1342(1.31)		
	17.sudo	14391	14211	180(1.25)		
	18.ffmpeg	89148	86607	2541(2.85)		

Def-Use Query:

- Improvement is observed only when all paths between definition and use are infeasible
- 100% reduction may not be achievable by any technique

Benchmarks			Analysis Time (Sec)			Memory Consumption (MB)			
	Delicilitates		MFP	FPMFP	Increase(x)	Prep	MFP	FPMFP	Increase(x)
	1.acpid	1.1	0.8	0.7	-0.1	4	0	0	0
	2.polymorph 0.96	1.1	0.8	0.7	-0.1	1	0	U	0
	3.nlkain	1.2	0.9	1.2	0.3	1	1	1	0
	4.spell	1.1	0.8	1	0.2	1	1	0	0
	5.ncompress	1	0	1	1(1)	2	1	4	2(2)
	6.gzip	1	1	5	4(4)	5	10	24	14(1.4)
Source	7.stripee	3	1	6	5(5)	8	5	21	15(3)
Sou	8.barcode-nc	2	1	2	1(1)	6	8	6	-1(-0.1)
Open	9.barcode	2	2	2	0	7	10	8	-1(-9.1)
0	10.archimedes	6	3	32	29(10)	24	44	156	112(2.5)
	11.combine	5	3	5	2(0.6)	16	23	10	-3(-0.1)
	12.httpd	40	14	19	5(0.3)	28	39	21	-18(-0.46)
	13.sphinxbase	7	3	3	0	13	13	7	- 9(- 0.56)
	14.chess	13	7	30	23(3)	31	93	191	98(1)
	15.antiword	13	16	82	66(4)	47	101	218	117(1)
	16.sendmail	110	142	2060	1918(13)	81	340	1548	1208(3.5)
	17.sudo	15	9	17	8(1)	35	71	19	-52(-0.7)
	18.ffmpeg	234	51	80	29 (0.5)	158	266	90	-175(-0.6)

Prep. Represents Infeasible path detection cost

High analysis time because number of MIPS is large (i.e, 669)

On 50% benchmarks memory consumption was reduced

Related Work

Main Contributions

- 1. A new generic solution for data flow analysis (FPMFP) (more precise than MFP and more scalable than MOP)
- 2. Inter-procedural Extension of FPMFP
- 3. Novel Optimizations to make FPMFP practically effective
- 4. Implemented the solution in industry strength static analysis tool. Performed experiments on 30 benchmarks

Publications based on this work

- "Computing partially path-sensitive MFP solutions in data flow analyses"
 Komal Pathade, Uday Khedker
 Published in International Conference on Compiler Construction (CC) 2018.
- "Path-sensitive MFP solutions in presence of intersecting infeasible path segments in data flow analyses" Komal Pathade, Uday Khedker Published in International Conference on Compiler Construction (CC) 2019.

Directions for Future Work

- 1. Inter-procedural infeasible paths that start and end in different procedures
- 2. A pre-analysis to estimate the impact of FPMFP.

Thank You

Questions?

1. Rastislav Bodik, Rajiv Gupta, and Mary Lou Soa. 1997. Refining data flow information using infeasible paths. In Software Engineering ESEC/FSE'97. Springer, 361–377.

2. Paulo Marcos Siqueira Bueno and Mario Jino. 2000. Identication of potentially infeasible program paths by monitoring the search for test data. In Automated Software Engineering, 2000. Proceedings ASE 2000. The Fifteenth IEEE International Conference on. IEEE, 209–218.

3. Rastislav Bodik, Rajiv Gupta, and Mary Lou Soa. 1997. Interprocedural conditional branch elimination. In ACM SIGPLAN Notices, Vol. 32. ACM, 146–158.

4. Aditya Thakur and R Govindarajan. 2008. Comprehensive path sensitive dataflow analysis. In Proceedings of the 6th annual IEEE/ACM international symposium on Code generation and optimization. ACM, 55–63.

5. Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. 2004. Software validation via scalable path-sensitive value flow analysis. In ACM SIGSOFT Software Engineering Notes, Vol. 29. ACM, 12–22.

6. Yichen Xie, Andy Chou, and Dawson Engler. 2003. Archer: using symbolic, path-sensitive analysis to detect memory access errors. ACM SIGSOFT Software Engineering Notes 28, 5 (2003), 327–336.

- 7. Komal Pathade, Uday Khedker,
 "Computing partially path-sensitive MFP solutions in data flow analyses"
 Published in International Conference on Compiler Construction (CC) 2018.
- 8. Komal Pathade, Uday Khedker "Path-sensitive MFP solutions in presence of intersecting infeasible path segments in data flow analyses" Published in International Conference on Compiler Construction (CC) 2019.

Additional Slides

CFG Restructuring

Feasible Path MFP

Equivalence of Two Balanced MIPS

A balanced MIPS

Equivalence of Two Balanced MIPS

Second balanced MIPS

Equivalence of Two Balanced MIPS

Interleaving of two balanced MIPS

Paths in the Interleaving are infeasible

MIPS Equivalence Theorem:

All paths in the interleaving of two balanced MIPS are infeasible, if the MIPS have the same trigger edge.

93

Use of MIPS Equivalence

Observation:

If two balanced MIPS have the same trigger edge then the corresponding data flow values can be kept in same bucket.

N	Value range of z from				
Node	Feasible	Infeasible segment start			
	Paths	Blue	Green		
4		z=[0,0]	z=[5,5]		
5		z =7, 0]	z =17, 5]		
6	z=[0,5]		• •		

Use of MIPS Equivalence

Observation:

If two balanced MIPS have the same trigger edge then the corresponding data flow values can be kept in same bucket.

Node	Va Feasible Paths	Value range of z from Infeasible segment start Blue			
4		z=[0,5]			
5		z= 1 ,5]			
6	z=[0,5]				

Non balanced MIPS: start and end in same proc

MIPS start and end in different procedure

Types of MIPS Observed

and branch condition

Path segments connecting A and B are MIPS

branch conditions

one iteration

		Number of Distinct MIPS				
Benchmarks		Before and After Optimization 1				
		Before	After	Reduction(%)		
	1.acpid	83	6	77(92.77)		
	2.polymorph 0.96	65	24	41(63.08)		
	3.nlkain	35	33	2(5.71)		
	4.spell	99	14	85(85.86)		
	5.ncompress	14163	30	14133(99.79)		
	6.gzip	23.5M	49	23.5M(99.99)		
물	7.stripee	0.7M	107	0.7M(99.99)		
Open Source	8.barcode-nc	208	60	148(71.15)		
氢	9.barcode	3851	76	3775(98.03)		
0	10.archimedes	1M	118	1M(99.99)		
	11.combine	27061	234	26827(99.14)		
	12.httpd	76.5B	226	76.5B(99.99)		
	13.sphinxbase	6463	213	6250(96.70)		
	14.chess	19.7B	262	19.7B(99.99)		
	15.antiword	1446.7T	669	1446.7T(99.99)		
	16.sendmail	94T	726	94T(99.99)		
	17.sudo	549565	250	549315(99.95)		
	18.ffmpeg	5T	1363	5T(99.99)		
	19.mcf	44	19	25(56.82)		
	20.bzip2	115M	501	115M(99.99)		
8	21.hmmer	8.6M	595	8.6M(99.99)		
SPEC 2006	22.sjeng	1508T	438	1508T(99.99)		
萬	23.milc	2322	497	1825(78.60)		
00	24.h264ref	51B	2189	51B(99.99)		
	25.gobmk	$> 2^{64}$	1834	$> 2^{64}$ (99.99)		

Reduction in number of distinct MIPS

Upto: 99%,

Average: 85%

■ Geometric mean: 78%

		Analys	sis Tim	e (in Seconds)		
Benchmarks		Before and After Optimization 2				
		Before	After	Reduction(%)		
	1.acpid	0.6	0.7	-0.1(-16)		
	2.polymorph 0.96	0.5	0.7	-0.2(-40)		
	3.nlkain	0.6	1.2	-0.6(-100)		
	4.spell	0.7	1	-0.3(-42)		
	5.ncompress	3	1	2(66)		
	6.gzip	22	5	17(77)		
2	7.stripce	55	6	49(89)		
Open Source	8.barcode-nc	2	2	0		
豆	9.barcode	2	2	0		
0	10.archimedes	53	32	21(39)		
	11.combine	19	5	14(73)		
	12.httpd	290	19	271 (93)		
	13.sphinxbase	4	3	1(25)		
	14.chess	76	30	46(60)		
	15.antiword	705	82	623(88)		
	16.sendmail	Timeout	2060	_		
	17.sudo	64	17	47(73)		
	18.ffmpeg	Timeout	80	_		
	19.mcf	1	1	0		
	20.bzip2	931	69	862 (92)		
9	21.hmmer	143	23	120(83)		
SPEC 2006	22.sjeng	501	62	439(87)		
Ħ	23.milc	11	7	4(36)		
000	24.h264ref	2977	451	2526(84)		
	25.gobmk	Timeout	9818	_		

Reduction in analysis time

Upto: 99%,

Average: 43%

■ Geometric mean: 19.8%

$$1 - 2 - 3 - (2 - 3)^{39} - 4 - 6$$

Thank You ALL!

Guide

Prof. Uday Khedker

RPC Members

- Prof. Amitabh Sanyal
- Prof. Supratim Biswas

TCS Mentors

- R Venkatesh
- Ulka Shrotri
- Shrawan Kumar
- Advaita Datar
- Tukaram Muske
- Ravindra Metta
- Kumar Madhukar

Family

- Nanda Pathade (Mom)
- Dadasaheb Pathade (Dad)
- Priyanka Pathade (Sister)

Friends

- Divyesh Unadkat
- Anshuman Dhuliya
- Punit Shah
- Rohit Saxena
- Arun
- Prashant
- Supriya
- Madhav
- Swati, Pritam, Nisha, Diptesh, Kevin