システム計画論 第3回 課題

May 1, 2023 29C23002 石川健太郎

[3a]

 $N = \{1, 2, ..., n\}, N^- = \{i \in N \mid k_i < 0\}, N^+ = \{i \in N \mid k_i \ge 0\}$ とする.

$$\sum_{i \in N} k_i A_i = \sum_{i \in N^-} k_i A_i + \sum_{i \in N^+} k_i A_i \tag{1}$$

$$= -\sum_{i \in N^{-}} |k_{i}| A_{i} + \sum_{i \in N^{+}} |k_{i}| A_{i}$$
(2)

$$= -\sum_{i \in N^{-}} \left[|k_{i}| \, a_{i}^{L}, \, |k_{i}| \, a_{i}^{R} \right] + \sum_{i \in N^{+}} \left[|k_{i}| \, a_{i}^{L}, \, |k_{i}| \, a_{i}^{R} \right] \tag{3}$$

$$= -\left[\sum_{i \in N^{-}} |k_{i}| \, a_{i}^{L}, \sum_{i \in N^{-}} |k_{i}| \, a_{i}^{R}\right] + \left[\sum_{i \in N^{+}} |k_{i}| \, a_{i}^{L}, \sum_{i \in N^{+}} |k_{i}| \, a_{i}^{R}\right]$$
(4)

$$= \left[-\sum_{i \in N^{-}} |k_{i}| a_{i}^{R}, -\sum_{i \in N^{-}} |k_{i}| a_{i}^{L} \right] + \left[\sum_{i \in N^{+}} |k_{i}| a_{i}^{L}, \sum_{i \in N^{+}} |k_{i}| a_{i}^{R} \right]$$
(5)

$$= \left[\sum_{i \in N^{+}} |k_{i}| \, a_{i}^{L} - \sum_{i \in N^{-}} |k_{i}| \, a_{i}^{R}, \sum_{i \in N^{+}} |k_{i}| \, a_{i}^{R} - \sum_{i \in N^{-}} |k_{i}| \, a_{i}^{L}, \right]$$

$$(6)$$

[3b]

まず、 $\left(f\left(\tilde{A}_1,\tilde{A}_2\right)\right)_h\supseteq f\left((\tilde{A}_1)_h,(\tilde{A}_2)_h\right)$ を示す.

 $y \in f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ とする.

y の定義から任意のy に対して $y=f\left(\bar{x}_1,\bar{x}_2\right)$ を満たす $\bar{x}_1\in (\tilde{A})_h,\ \bar{x}_2\in (\tilde{A})_h$ が存在するので,任意の y について $f^{-1}(y)\neq\emptyset$ である。

よって, 拡張原理から次の関係が成り立つ.

$$\mu_{f(\tilde{A}_1, \tilde{A}_2)}(y) = \sup_{(x_1, x_2) \in f^{-1}(y)} \min \left(\mu_{\tilde{A}_1}(x_1), \mu_{\tilde{A}_2}(x_2) \right) \tag{7}$$

$$\geq \min\left(\mu_{\tilde{A}_1}(\bar{x}_1), \mu_{\tilde{A}_2}(\bar{x}_2)\right) \tag{8}$$

$$> h \quad \left(\bar{x}_1 \in (\tilde{A})_h, \ \bar{x}_2 \in (\tilde{A})_h \ \text{tore}, \ \mu_{\tilde{A}_1}(\bar{x}_1) > h, \ \mu_{\tilde{A}_2}(\bar{x}_2) > h\right)$$
 (9)

 $\mu_{f\left(\tilde{A}_{1},\tilde{A}_{2}\right)}(y) \geq h$ なので、 $y \in \left(f\left(\tilde{A}_{1},\tilde{A}_{2}\right)\right)_{h}$ である.

以上から、 $\left(f\left(ilde{A}_1, ilde{A}_2
ight)
ight)_h\supseteq f\left((ilde{A}_1)_h,(ilde{A}_2)_h
ight)$ が示された.

次に, $\left(f\left(\tilde{A}_{1},\tilde{A}_{2}\right)\right)_{h}\subseteq f\left((\tilde{A}_{1})_{h},(\tilde{A}_{2})_{h}\right)$ を示す.

 $y \in \left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)$, とする.

拡張原理から, $\hat{\mu}_{f\left(\tilde{A}_{1},\tilde{A}_{2}\right)}(y)=\sup_{(x_{1},x_{2})\in f^{-1}(y)}\min\left(\mu_{\tilde{A}_{1}}(x_{1}),\mu_{\tilde{A}_{2}}(x_{2})\right)$ が成り立ち, $\mu_{f\left(\tilde{A}_{1},\tilde{A}_{2}\right)}(y)=\min\left(\mu_{\tilde{A}_{1}}(\bar{x}_{1}),\mu_{\tilde{A}_{2}}(\bar{x}_{2})\right)$ を満たす $\bar{x}_{1}\in\tilde{A}_{1},\bar{x}_{2}\in\tilde{A}_{2}$ が存在する.

満たす $\bar{x}_1 \in \tilde{A}_1, \bar{x}_2 \in \tilde{A}_2$ が存在する. $y \in \left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h \ \text{より} \,, \quad \mu_{f\left(\tilde{A}_1, \tilde{A}_2\right)}(y) > h \ \text{なので}, \ \min\left(\mu_{\tilde{A}_1}(\bar{x}_1), \mu_{\tilde{A}_2}(\bar{x}_2)\right) > h \ \text{である}.$

すなわち、 $\mu_{\tilde{A}_1}(\bar{x}_1) > h, \mu_{\tilde{A}_2}(\bar{x}_2) > h$ が成り立ち、 $\bar{x}_1 \in (\tilde{A}_1)_h, \bar{x}_2 \in (\tilde{A}_2)_h$ である。 このことから、 $y \in f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ であるといえる。 以上から、 $\left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h \subseteq f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ が示された。 $\left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h \supseteq f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right), \left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h \subseteq f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ が成り立つので、 $\left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h = f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ が成り立つので、 $\left(f\left(\tilde{A}_1, \tilde{A}_2\right)\right)_h = f\left((\tilde{A}_1)_h, (\tilde{A}_2)_h\right)$ が成り立つ。