Exercice 1:

Dans toute la suite, si $x \in \mathbb{C}$ alors \overline{x} désigne le conjugué de x dans \mathbb{C} .

I/

1- Soit $n, m \in \mathbb{N}^*$ et $M = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in M_{n,m}(\mathbb{C})$ et $v = (x_k)_{1 \leq k \leq m}$ un vecteur de \mathbb{C}^m .

On note par:

$$\overline{M} = (\overline{a_{ij}})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in M_{n,m}(\mathbb{C}) \text{ et } \overline{v} = (\overline{x_k})_{1 \leq k \leq m} \in \mathbb{C}^m.$$

Montrer que : $\overline{M.v} = \overline{M}.\overline{v}$.

2- Soit $n \in \mathbb{N}^*$ et $M = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$. Supposons que M admet une valeur propre $\lambda \in \mathbb{C} \setminus \mathbb{R}$ et que $v \in \mathbb{C}^n$ est un vecteur propre de M associé λ .

Montrer que $\overline{\lambda}$ est une valeur propre de M de vecteur propre associé $\overline{v} \in \mathbb{C}^n$.

II- Soit la matrice à coefficients dans \mathbb{R} :

$$A = \left(\begin{array}{ccc} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{array}\right).$$

1- Calculer le polynôme caractéristique de A.

Réponse : $P_A(X) = X^3 + 4X = X(X^2 + 4)$. (1 pt)

2- Est ce que A est inversible?. Justifier.

Réponse : Non, 0 est une valeur propre de A. (0.5 pt)

3- Dire pourquoi A n'est pas diagonalisable sur \mathbb{R} .

Réponse : A n'admet pas 3 valeurs propres dans \mathbb{R} . (0.5 pt)

4- Dire pourquoi A est diagonalisable sur \mathbb{C} .

Réponse : A admets 3 valeurs propres simples. (0.5 pt)

5- On note les valeurs propres de A sur \mathbb{C} par : α, β et δ où $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{C} \setminus \mathbb{R}$ de partie imaginaire positive.

a- Déterminer un vecteur propre non nul v associé à la valeur propre β .

Réponse: $\beta = 2i$, on résoud $(A - 2iI_3) X = 0$, on obtient : v = (-1, i, 1). (1 pt)

b- En déduire un vecteur propre non nul w associé à la valeur propre δ .

Réponse : $\delta = \overline{\beta}$, et d'après la question I-2 $w = \overline{v} = (-1, -i, 1).(1 \text{ pt})$

 ${\bf c}\text{-}$ Déterminer une matrice inversible P – telle que :

Réponse : Il reste à déterminer un vecteur propre z non nul associé à $\alpha=0$. On Résoud AX=0, on trouve z=(1,0,1). **(0.5 pt)**

Ainsi:

$$P = \left(egin{array}{ccc} 1 & -1 & -1 \ 0 & i & -i \ 1 & 1 & 1 \end{array}
ight). \;\; extbf{(0.5 pt)}$$

Exercice 2:

Soit la matrice:

$$A_m = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix} \in M_3(\mathbb{R}).$$

1- Déterminer le déterminant de A_m

Réponse : $\det A_m = 2m$. (1 pt)

2- Soient a, b et $c \in \mathbb{R}$ et soit le système linéaire (S) suivant : $A_m.X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

a- Pour quelles valeurs de a, b, c et m le système (S) est-il de Cramer.

Réponse: (S) est de Cramer si et seulement si det $A_m \neq 0$ si et seulement si $m \neq 0$. (1 pt)

b- Pour quelles valeurs de a, b, c et m le système (S) est-il incompatible.

Réponse :

c- Pour quelles valeurs de a, b, c et m le système (S) admet-il une infinité de solutions. Résoudre le système (S) dans ce cas.

3- Déterminer les valeurs propres de A_m .

Réponse: Les valeurs propres de A_m sont : 1, 2, m. (1 pt)

4- Discuter, suivant les valeurs de m, la diagonalisation de A_m .

Réponse :

Cas1: $m \notin \{1, 2\}$, A_m admet trois valeurs propres simples donc A_m est diagonalisable. (0.5 pt)

Cas2: m = 1, donc la valeur 1 est une valeur propre double, d'où :

$$A_1$$
 diagonalisable $\Leftrightarrow rg(A_1 - I) = 1$

mais : $A_1 - I = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ est de rang 2, d'où A_1 n'est pas diagonalisable. (1 pt)

 $\mathbf{Cas3}$: m=2, donc la valeur 2 est une valeur propre double, d'où :

$$A_2$$
 diagonalisable $\Leftrightarrow rg(A_1 - 2I) = 1$

et:
$$A_2 - 2I = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 est de rang 1, d'où A_2 est diagonalisable. (1 pt)

Conclusion: A_m est diagonalisable si et seulement si $m \neq 1$. (0.5 pt)

Exercice 3: (2 pts)

Soit $n \in \mathbb{N}^*$ et $M \in M_n(\mathbb{R})$ telle que n est impair et M est antisymétrique.

Déterminer $\det M$.

Réponse : On a :

$${}^{t}M = -M \Rightarrow \det({}^{t}M) = \det(-M)$$

$$\Rightarrow \det({}^{t}M) = (-1)^{n} \det(M)$$

$$\Rightarrow \det(M) = -\det(M)$$

$$\Rightarrow 2 \det(M) = 0$$

D'où : $\det(M) = 0$.