EQUATIONS ET INÉQUATIONS

I. EQUATIONS

THÉORÈME

- Si l'on ajoute ou si l'on soustrait un même nombre à chaque membre d'une équation, on obtient une équation équivalente (c'est à dire qui possède les mêmes solutions).
- Si l'on multiplie ou si l'on divise chaque membre d'une équation par un même nombre **non nul**, on obtient une équation équivalente.

REMARQUE

Pour résoudre une équation du type ax + b = 0 on soustrait b à chaque membre de l'égalité :

$$ax + b - b = 0 - b$$
 c'est à dire $ax = -b$.

Puis:

- si a est **non nul** on divise chaque membre par $a: \frac{ax}{a} = -\frac{b}{a}$ soit $x = -\frac{b}{a}$ donc $S = \left\{-\frac{b}{a}\right\}$
- si a = 0:
 - si b = 0 l'équation se réduit à 0 = 0. Elle est toujours vérifiée donc $S = \mathbb{R}$
 - si $b \neq 0$ l'équation se réduit à b = 0. Elle n'est jamais vérifiée donc $S = \emptyset$

THÉORÈME (ÉQUATION PRODUIT)

Un produit de facteurs est nul si et seulement si au moins un des facteurs est nul.

En particulier, une équation du type $A(x) \times B(x) = 0$ est vérifiée si et seulement si :

$$A(x) = 0$$
 ou $B(x) = 0$

EXEMPLE

Soit l'équation (3x-5)(x+2) = 0

Cette équation est équivalente à 3x - 5 = 0 ou x + 2 = 0.

C'est à dire $x = \frac{5}{3}$ ou x = -2.

L'ensemble des solutions de l'équation est donc $S = \left\{-2; \frac{5}{3}\right\}$

REMARQUES

- Lorsqu'on a affaire à une équation du second degré (ou plus), on fait "passer" tous les termes dans le membre de gauche que l'on essaie de factoriser et on utilise le théorème précédent.
- On rappelle les identités remarquables qui peuvent être utiles dans ce genre de situations :

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a+b)(a-b) = a^{2} - b^{2}$$

THÉORÈME

Un quotient est **défini** si et seulement si son **dénominateur** est **non nul**.

S'il est défini, un quotient est **nul** si et seulement si son **numérateur** est **nul**.

EXEMPLE

Soit l'équation
$$\frac{2x-4}{x+1} = 0$$

Cette équation a un sens si $x + 1 \neq 0$ donc si $x \neq -1$

Sur l'ensemble $\mathbb{R} \setminus \{-1\}$ cette équation est équivalente à 2x - 4 = 0 donc à x = 2. L'ensemble des solutions de l'équation est donc $S = \{2\}$

PROPRIÉTÉ

Soit f une fonction définie sur D de courbe représentative \mathscr{C}_f .

Les solutions de l'équation f(x) = m sont les **abscisses** des points d'intersection de la courbe \mathcal{C}_f et de la droite horizontale d'équation y = m

EXEMPLE

Sur la figure ci-dessus, l'équation f(x) = 2 possède deux solutions qui sont -1 et 3

THÉORÈME

L'équation $x^2 = a$:

- admet deux solutions $x = \sqrt{a}$ ou $x = -\sqrt{a}$ si a > 0
- admet une unique solution x = 0 si a = 0
- n'admet aucune solution réelle si a < 0

EXEMPLE

- L'équation $x^2 = 1$ admet deux solutions qui sont x = -1 et x = 1
- L'équation $x^2 + 1 = 0$ est équivalente à $x^2 = -1$ et n'admet donc aucune solution

II. INÉQUATIONS

THÉORÈME

- Si l'on ajoute ou si l'on soustrait un même nombre à chaque membre d'une inéquation, on obtient une inéquation équivalente (c'est à dire qui à les mêmes solutions).
- Si l'on multiplie ou si l'on divise chaque membre d'une inéquation par un même nombre **strictement positif**, on obtient une inéquation équivalente.
- Si l'on multiplie ou si l'on divise chaque membre d'une inéquation par un même nombre strictement négatif, on obtient une inéquation équivalente en changeant le sens de l'inégalité.

EXEMPLE

Pour résoudre l'inéquation -3x+5>0 on soustrait 5 à chaque membre de l'inéquation :

$$-3x+5-5>0-5$$
 c'est à dire $-3x>-5$.

Puis comme -3 est négatif on divise chaque membre par -3 en changeant le sens de l'inégalité:

$$\frac{-3x}{-3} < \frac{-5}{-3}$$

$$x < \frac{5}{3}$$

Donc
$$S = \left[-\infty; \frac{5}{3} \right]$$

REMARQUES

En appliquant le théorème précédent à l'expression ax + b on obtient :

$$ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow x > -\frac{b}{a}$$
 si a est strictement positif

et
$$ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow x < -\frac{b}{a}$$
 si a est strictement négatif.

On peut alors regrouper ces deux cas dans le tableau de signe suivant :

x	-∞		$-\frac{b}{a}$		+∞
ax + b		signe de − <i>a</i>	0	signe de <i>a</i>	

THÉORÈME (INÉQUATION PRODUIT)

Un produit de facteurs A(x)B(x) est **positif ou nul** si et seulement si les deux facteurs A(x) et B(x) sont de **même signe**.

Ce produit est **négatif ou nul** si et seulement si les deux facteurs A(x) et B(x) sont de **signes contraires**.

REMARQUES

Lorsqu'on a affaire à une inéquation du second degré (ou plus), on fait "passer" tous les termes dans le membre de gauche que l'on essaie de factoriser puis on utilise un tableau de signe.

EXEMPLE

Soit l'inéquation $(x-5)(-3x+4) \ge 0$

Le signe de x-5 est donné par le tableau :

x	-∞		5		+∞
x-5		-	0	+	

Le signe de -3x + 4 est donné par le tableau :

x	-∞		$\frac{4}{3}$		+∞
-3x+4		+	0	-	

On regroupe ces résultats dans un unique tableau et on utilise la règle des signes pour obtenir le signe du produit :

x	-∞		$\frac{4}{3}$		5		+∞
x-5		-		-	0	+	
-3x + 4		+	0	-		_	
(x-5)(-3x+4)		-	0	+	0	-	

(x-5)(-3x+4) est positif ou nul sur l'intervalle $\left[\frac{4}{3};5\right]$

Pour plus de détails et d'autres exemples, consulter la fiche méthode : Dresser un tableau de signes &

THÉORÈME (INÉQUATION QUOTIENT)

Un quotient $\frac{A(x)}{B(x)}$ est **défini** si et seulement si son **dénominateur** B(x) est **non nul**.

S'il est défini, il est **positif ou nul** si et seulement si A(x) et B(x) sont de **même signe** et il est **négatif ou nul** si et seulement si les deux facteurs A(x) et B(x) sont de **signes contraires**.

EXEMPLE

Soit l'inéquation
$$\frac{2x-5}{x+2} \ge 0$$

Cette inéquation a un sens si $x + 2 \neq 0$ donc si $x \neq -2$

Le tableau de signe de $\frac{2x-5}{x+2}$ est :

x	-∞		-2		$\frac{5}{2}$		+∞
2x-5		-		_	0	+	
x + 2		-	0	+		+	
$\frac{2x-5}{x+2}$		+		_	0	+	

$$\frac{2x-5}{x+2}$$
 est positif ou nul sur l'ensemble $]-\infty;-2[\cup \left[\frac{5}{2};+\infty\right[$

PROPRIÉTÉ

Soit f une fonction définie sur D de courbe représentative \mathscr{C}_f et m un nombre réel.

- Les solutions de l'inéquation $f(x) \le m$ sont les **abscisses** des points de la courbe \mathscr{C}_f situés **au dessous** de la droite horizontale d'équation y = m(On inclut les points d'intersection si l'inégalité est large, on les exclut si l'inégalité est stricte.)
- De même, les solutions de l'inéquation $f(x) \ge m$ sont les **abscisses** des points de la courbe \mathscr{C}_f situés **au dessus** de droite horizontale d'équation y = m

EXEMPLE

Sur la figure ci-dessus, l'inéquation $f(x) \le m$ a pour solution l'intervalle $[x_1; x_2]$