Mixed Tate Motives and Aomoto Polylogarithms

Berkay Kebeci

aberkay.github.io/motif.pdf

Outline

- ► Periods and motives
- Nori motives
- ► Mixed Tate motives
- ► Aomoto polylogarithms
- ► A construction of mixed Tate motives

Periods and Motives

Definition (Kontsevich, Zagier)

A *period* is a complex number whose real and imaginary parts are values of absolutely convergent integrals

$$\int_{\sigma} f(x_1,...,x_n)dx_1...dx_n,$$

where f is a rational function with rational coefficients and $\sigma \subseteq \mathbb{R}^n$ is given by polynomial inequalities with rational coefficients.

Examples

$$\begin{array}{ll} \sqrt{2} = \int_{2x^2 \leq 1} dx, & \pi = \int_{x^2 + y^2 \leq 1} dxdy, & \zeta(2) = \int_{1 \geq t_1 \geq t_2 \geq 0} \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2}, \\ \log(2) = \int_1^2 \frac{dx}{x}, & \zeta(2, 1) = \int_{1 \geq t_1 \geq t_2 \geq t_3 \geq 0} \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2} \frac{dt_3}{1 - t_3} \end{array}$$

- Periods form a subring of \mathbb{C} . We will denote the ring of periods by \mathcal{P}^{eff} .
- $ightharpoonup \mathcal{P}^{\text{eff}}$ is countable.
- $\blacktriangleright \ \mathbb{Z} \subset \mathbb{Q} \subset \bar{\mathbb{Q}} \subset \mathcal{P}^{eff} \subset \mathbb{C}.$

Definition

Let k be a subfield of \mathbb{C} . A k-variety is a reduced separated scheme of finite type over k.

Definition (Cohomological definition of periods)

Let X be a smooth \mathbb{Q} -variety, $Y\subseteq X$ a normal crossing divisor. The period isomorphism

$$H^i_{\mathsf{dR}}(X,Y) \otimes_{\mathbb{Q}} \mathbb{C} \to H^i_{\mathsf{B}}(X,Y;\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}$$

induces the period pairing

$$H^i_{\mathsf{dR}}(X,Y)\otimes H^\mathsf{B}_i(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Q}) o \mathbb{C} \ \omega\otimes\sigma\mapsto\int_\sigma\omega.$$

We call a *period* of (X, Y) any number in the image of this map.

Example

Let us consider the pair

$$(X,Y)=(\mathbb{P}^1_{\mathbb{Q}}\setminus\{0,\infty\},\{1,q\}),$$

with $q \in \mathbb{Q} \setminus \{0, 1\}$.

- First singular homology of $(X(\mathbb{C}), Y(\mathbb{C})) = (\mathbb{C}^*, \{1, q\})$ has a basis $\{\sigma_1, \sigma_2\}$, where σ_1 is a (counterclockwise) circle around 0 with radius $r < \min\{1, |q|\}$ and σ_2 is the straight line from 1 to q.
- First de Rham cohomology of $(X,Y)=(\operatorname{Spec}\mathbb{Q}[x,x^{-1}],\{1,q\})$ has a basis $\{\omega_1,\omega_2\}$, where $\omega_1=\frac{dt}{t},\omega_2=\frac{dt}{q-1}$.
- ► Hence this pair gives the matrix

$$\begin{pmatrix} \int_{\sigma_2} \omega_2 & \int_{\sigma_2} \omega_1 \\ \int_{\sigma_1} \omega_2 & \int_{\sigma_1} \omega_1 \end{pmatrix} = \begin{pmatrix} 1 & \log q \\ 0 & 2\pi i \end{pmatrix}$$

which shows that log of rational numbers are periods.

Cheking whether two complex numbers are equal or not is not easy. For example

$$\pi\sqrt{163}$$
 and $3 \cdot \log(640320)$

both have decimal expensions beginning

but they are not equal.

 $(e^{\pi\sqrt{163}}=262537412640768743.9999999999925007...$ is known as the Ramanujan constant.)

Conjecture (Period conjecture)

If a period has two integral representations, one can pass between them using only the following calculus rules.

— Additivity of integral:

$$\int_{\sigma} \omega_1 + \omega_2 = \int_{\sigma} \omega_1 + \int_{\sigma} \omega_2$$
$$\int_{\sigma_1 \cup \sigma_2} \omega = \int_{\sigma_1} \omega + \int_{\sigma_2} \omega$$

where $\sigma_1 \cap \sigma_2 = \emptyset$.

– Change of variables:

$$\int_{f(\sigma)} \omega = \int_{\sigma} f^* \omega$$

where f is invertible and defined by polynomial equations with rational coefficients.

– Stokes' formula:

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega.$$

The category of *mixed motives* MM(k) over a field k is a conjectural Tannakian category, together with a contravariant functor $h: Var_k \to MM(k)$ such that any Weil cohomology theory H factors through h:

► Singular cohomology and de Rham cohomology induce functors

$$f_B, f_{dR}: \mathsf{MM}(\mathbb{Q}) o \mathbb{Q} - \mathsf{Vect}$$
 .

▶ Then for any motive $M \in MM(\mathbb{Q})$, the period pairing yields a pairing

$$f_{dR}(M) \otimes f_B(M)^{\vee} \to \mathbb{C}$$
.

- ▶ Let $\mathcal{P}(M)$ be the subfield of \mathbb{C} generated by the image of the pairing.
- ► The following are equivalent.
 - The period conjecture holds.
 - ev : $\mathcal{P}_{\mathsf{KZ}} \to \mathbb{C}$ is injective.
 - $-\mathcal{P}_{KZ}$ is an integral domain and for any (Nori) motive M,

$$trdeg[\mathcal{P}(M):\mathbb{Q}]=\dim G_{mot}(M),$$

where $G_{mot}(M) = \operatorname{Aut}^{\otimes} H_{B|\langle M \rangle}$ is the Galois group of the Tannakian subcategory $\langle M \rangle$ of $\operatorname{MM}(\mathbb{Q})$ generated by M.

Nori Motives

Theorem

Let D be a diagram (quiver, directed graph), R be a ring and

$$T:D \to R-\mathsf{Mod}$$

be a (quiver) representation. Then, there is an R-linear abelian category $\mathcal{C}(D,T)$ with representation

$$\tilde{T}:D o \mathcal{C}(D,T)$$

and a faithful, exact, R-linear functor

$$f_T: \mathcal{C}(D,T) o R - \mathsf{Mod}$$

such that T factorises as

$$T: D \xrightarrow{\tilde{T}} \mathcal{C}(D, T) \xrightarrow{f_T} R - \mathsf{Mod}$$

and C(D, T) is universal with this property.

- $ightharpoonup \mathcal{C}(D,T)$ is called the *diagram category*.
- ▶ If *D* is finite,

$$C(D, T) = End(T) - Mod$$
.

► In general,

$$C(D, T) = 2 - \operatorname{colim}_F C(F, T|_F),$$

where F runs through finite full subdiagrams of D, i.e., the objects of $\mathcal{C}(D,T)$ are the objects of $\mathcal{C}(F,T|_F)$ for some F and the morphisms are

$$\mathsf{Mor}_{\mathcal{C}(D,T)}(X,Y) = \varinjlim_{F} \mathsf{Mor}_{\mathcal{C}(F,T|_F)}(X_F,Y_F),$$

where X_F is the image of $X \in \mathcal{C}(F', T|_{F'})$ in $\mathcal{C}(F, T|_F)$ for $F \supseteq F'$.

▶ Each object of C(D, T) is a subquotient of a finite direct sum of objects from $\{\tilde{T}p \mid p \in D\}$.

- ▶ Let X be a k-variety, $Y \subseteq X$ be a closed subvariety and $i \in \mathbb{Z}$. We call (X, Y, i) an *effective pair*.
- ► Let Pairs eff be the diagram whose vertices are effective pairs and edges are the following.
 - For any morphism f: X → X' such that f(Y) ⊆ Y', we have an edge (X', Y', i) → (X, Y, i).
 - − For any chain $X \supseteq Y \supseteq Z$ of closed subvarieties, an edge $(Y, Z, i) \rightarrow (X, Y, i + 1)$.
- The relative singular cohomology

$$H^*: \mathsf{Pairs}^{\mathsf{eff}} o \mathbb{Z} - \mathsf{Mod}$$

 $(X,Y,i) \mapsto H^i(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Z})$

is a representation.

▶ We define the category of effective mixed Nori motives as

$$\mathcal{MM}^{\mathsf{eff}}_{\mathsf{Nori}}(k) := \mathcal{C}(\mathsf{Pairs}^{\mathsf{eff}}, H^*).$$

 $\begin{array}{c} \blacktriangleright \ \, \mathcal{MM}^{\mathsf{eff}}_{\mathsf{Nori}} := \mathcal{MM}^{\mathsf{eff}}_{\mathsf{Nori}}(k) := \mathcal{C}(\mathsf{Pairs}^{\mathsf{eff}}, H^*). \\ \\ \mathsf{Pairs}^{\mathsf{eff}} & \xrightarrow{\tilde{\mathcal{T}}} & \stackrel{\mathcal{H}^*}{\longrightarrow} & \mathbb{Z} - \mathsf{Mod} \\ \\ & \stackrel{\tilde{\mathcal{T}}}{\longrightarrow} & \stackrel{f_{H^*}}{\longrightarrow} & \mathbb{Z} \end{array}$

- $\blacktriangleright \ H_{\mathsf{Nori}}^{i}\left(X,Y\right) := \tilde{T}(X,Y,i) \in \mathcal{MM}_{\mathsf{Nori}}^{\mathsf{eff}}.$
- $\blacktriangleright \ H^{i}_{\mathsf{Nori}}\left(X\right) := H^{i}_{\mathsf{Nori}}\left(X,\emptyset\right).$

Definition

- 1. We call an effective pair (X, Y, i) an effective good pair if $H^j(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Z}) = 0$ for $j \neq i$ and $H^i(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Z})$ is free.
- 2. An effective good pair is called an *effective very good pair* if X is affine, $X \setminus Y$ is smooth and either $\dim(X) = i$, $\dim(Y) = i 1$ or X = Y and $\dim(X) < i$.
- 3. We denote the full subdiagram of Pairs^{eff} with effective good pairs by Good^{eff}.
- 4. We denote the full subdiagram of Good^{eff} with effective very good pairs by VGood^{eff}.

Lemma (Nori)

Let X be an affine k-variety of dimension n and $Z \subseteq X$ is a Zariski closed subset with $\dim(Z) < n$. Then there is a Zariski closed subset Y with $Z \subseteq Y \subseteq X$ and $\dim(Y) < n$ such that (X, Y, n) is a good pair.

► By using this lemma iteratively, for any affine variety *X* of dimension *n*, we can find a filtration

$$\emptyset = F_{-1}X \subset F_0X \subset ... \subset F_{n-1}X \subset F_nX = X$$

such that each $(F_jX, F_{j-1}X, j)$ is very good.

► The induced chain complex

$$\cdots \to H^i\left(F_iX(\mathbb{C}),F_{i-1}X(\mathbb{C});\mathbb{Z}\right) \stackrel{\delta_i}{\to} H^{i+1}\left(F_{i+1}X(\mathbb{C}),F_iX(\mathbb{C});\mathbb{Z}\right) \to \cdots$$

computes the singular cohomology of X.

Theorem

 $\mathcal{MM}_{Nori}^{eff} = \mathcal{C}(\mathsf{Pairs}^{\mathsf{eff}}, H^*)$, $\mathcal{C}(\mathsf{Good}^{\mathsf{eff}}, H^*)$ and $\mathcal{C}(\mathsf{VGood}^{\mathsf{eff}}, H^*)$ are equvalent.

▶ For good pairs (X, Y, i) and (X', Y', i'), let

$$H_{\mathsf{Nori}}^{i}\left(X,Y
ight)\otimes H_{\mathsf{Nori}}^{i'}\left(X',Y'
ight):=H_{\mathsf{Nori}}^{i+i'}\left(X imes X',X imes Y'\cup X' imes Y
ight)$$

in the light of the Künneth formula.

- $ightharpoonup \mathcal{MM}^{\mathsf{eff}}_{\mathsf{Nori}} = \mathcal{C}(\mathsf{Good}^{\mathsf{eff}}, H^*)$ is a tensor category.
- ▶ $\mathbf{1}(-1) := H^1_{Nori} (\mathbb{G}_m, \{1\}).$
- ▶ The category $\mathcal{MM}_{Nori} := \mathcal{MM}_{Nori}(k)$ of mixed Nori motives is defined as the localization of $\mathcal{MM}_{Nori}^{eff}$ with respect to $\mathbf{1}(-1)$.

Theorem

 $\mathcal{MM}_{\mathit{Nori}}$ is a Tannakian category with the fiber functor H^* .

- $ightharpoonup \mathbf{1}(-n) := \mathbf{1}(-1)^{\otimes n}$, for $n \in \mathbb{Z}$.
- ▶ $M(-n) := M \otimes \mathbf{1}(-n)$, for $n \in \mathbb{Z}$ and $M \in \mathcal{MM}_{\mathsf{Nori}}$.
- $H_{\mathsf{Nori}}^{i}\left(\mathbb{P}^{N}\right) = \begin{cases} \mathbf{1}(-n), & \text{if } i = 2n \text{ and } N \geq n \geq 0\\ 0, & \text{otherwise.} \end{cases}$
- ▶ If Z is a projective variety of dimension n, then $H_{\text{Nori}}^{2n}(Z) = \mathbf{1}(-n)$.

▶ We work with $\mathcal{MM}_{\mathsf{Nori},\mathbb{Q}}$, the category of mixed Nori motives with rational coefficients (i.e. replace $\mathbb{Z}-\mathsf{Mod}$ by $\mathbb{Q}-\mathsf{Mod}$).

Definition

A motive $M \in \mathcal{MM}_{\mathsf{Nori},\mathbb{Q}}$ is called *pure of weight* $n \in \mathbb{Z}$ if it is a subquotient of $H^{n+2j}_{\mathsf{Nori}}(Y)(j)$ for some Y smooth and projective and $j \in \mathbb{Z}$. A motive is called *pure* if it is a direct sum of pure motives of some weights.

▶ 1(-n) is pure of weight 2n.

Theorem

On every motive $M \in \mathcal{MM}_{Nori,\mathbb{Q}}$, there is a unique bounded increasing filtration $(W_nM)_{n\in\mathbb{Z}}$ inducing the weight filtration under the Hodge realization. Moreover, every morphism of Nori motives is strictly compatible with this filtration.

▶ We call this filtration weight filtration and denote

$$\operatorname{gr}_n^W M := W_n M / W_{n-1} M.$$

 $ightharpoonup \operatorname{gr}_n^W M$ is pure of weight n.

Mixed Tate Motives

- ▶ A Nori motive $M \in \mathcal{MM}_{Nori,\mathbb{Q}}$ is called a *mixed Tate Nori motive* if $\operatorname{gr}_{2n}^W M$ is a direct sum of copies of $\mathbf{1}(-n)$.
- ▶ We denote the full subcategory of $\mathcal{MM}_{Nori,\mathbb{Q}}$ containing these objects by $\mathcal{MTM}_{Nori,\mathbb{Q}}$.
- \blacktriangleright $(\mathcal{MTM}_{\mathsf{Nori},\mathbb{O}},\mathbf{1}(1))$ is a mixed Tate category.

Example

Let $B \subseteq \mathbb{G}_m$ be such that $B = \{x_1, \dots, x_r\}$. We will find the weight structure of $H^1_{\text{Nori}}(\mathbb{G}_m, B)$. We have the following exact sequence

$$0 \to \underbrace{H^0_{\mathsf{Nori}}\left(\mathbb{G}_m\right)}_{\mathbf{1}(0)} \to \underbrace{H^0_{\mathsf{Nori}}\left(B\right)}_{\mathbf{1}(0)^{\oplus r}} \to H^1_{\mathsf{Nori}}\left(\mathbb{G}_m, B\right) \to \underbrace{H^1_{\mathsf{Nori}}\left(\mathbb{G}_m\right)}_{\mathbf{1}(-1)} \to 0$$

Then,

$$\begin{split} \operatorname{gr}_0^W H^1_{\operatorname{Nori}} \left(\mathbb{G}_m, B\right) &= \mathbf{1}(0)^{\oplus (r-1)} \\ \operatorname{gr}_2^W H^1_{\operatorname{Nori}} \left(\mathbb{G}_m, B\right) &= \mathbf{1}(-1) \end{split}$$

Therefore $H^1_{Nori}(\mathbb{G}_m, B)$ is mixed Tate.

Example

Let $B = M_0 \cup M_1 \cup M_2 \subseteq \mathbb{P}^2_{\mathbb{C}}$, where M_i are lines in $\mathbb{P}^2_{\mathbb{C}}$ in general position such that they are not axis lines $z_i = 0$. Then

$$egin{aligned} \mathsf{gr}_0^W H^1_{\mathsf{Nori}} \ (B \cap \mathbb{G}_m^2) &= \mathbf{1}(0) \ \mathsf{gr}_2^W H^1_{\mathsf{Nori}} \ (B \cap \mathbb{G}_m^2) &= \mathbf{1}(-1)^{\oplus s} \end{aligned}$$

where s is the number of intersection of B with $\{z_1 = 0\} \cup \{z_2 = 0\}$. Using the exact sequence

$$0 \to \underbrace{H^1_{\mathsf{Nori}}\left(\mathbb{G}_m^2\right)}_{\mathbf{1}(-1)^{\oplus 2}} \to H^1_{\mathsf{Nori}}\left(B \cap \mathbb{G}_m^2\right) \to H^2_{\mathsf{Nori}}\left(\mathbb{G}_m^2, B \cap \mathbb{G}_m^2\right) \to \underbrace{H^2_{\mathsf{Nori}}\left(\mathbb{G}_m^2\right)}_{\mathbf{1}(-2)} \to 0$$

we have

$$\operatorname{gr}_{0}^{W} H_{\operatorname{Nori}}^{2} \left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2} \right) = \mathbf{1}(0)
\operatorname{gr}_{2}^{W} H_{\operatorname{Nori}}^{2} \left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2} \right) = \mathbf{1}(-1)^{\oplus s - 2}
\operatorname{gr}_{4}^{W} H_{\operatorname{Nori}}^{2} \left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2} \right) = \mathbf{1}(-2)$$

and $s-2 \in \{0,1,2,3,4\}$. Here $\mathbf{1}(-2)$ is coming from the torus \mathbb{G}_m^2 and $\mathbf{1}(0)$ is coming from the triangle defined by B.

Aomoto Polylogarithms

► There is a generalization of logarithms called *polylogarithms* which is defined inductively by

$$\ell i_1(z) = -\log(1-z)$$

and

$$d\ell i_n(z) = \ell i_{n-1}(z) \frac{dz}{z},$$

with $\ell i_n(0) = 0$.

► They have the power series expansion

$$\ell i_n(z) = \sum_{1 \le m} \frac{z^m}{m^n},$$

for |z| < 1.

- ▶ Fix some $q \in \mathbb{Q} \setminus \{0,1\}$. Let z_i , i = 0,1,...,n, be the homogeneous coordinates on $\mathbb{P}^n_{\mathbb{Q}}$.
- ▶ Let L_i be the hyperplanes defined by $z_i = 0$ and M_i be the hyperlanes defined as $M_0 : z_0 = z_1; M_1 : z_0 = z_1 + z_2; M_i : z_i = z_{i+1}$ for $2 \le i < n$; and $M_n : qz_0 = z_n$.
- ▶ Let $M_q = \bigcup M_i$ and $L = \bigcup L_i$.
- \blacktriangleright $\ell i_n(q)$ is a period of the mixed Tate motive

$$H^n_{\mathsf{Nori}}$$
 ($\mathbb{P}^n_{\mathbb{Q}} \setminus L, M_q \setminus (L \cap M_q)$).

▶ We will call the configuration (L, M_q) as the *polylogarithmic* configuration of q.

 \blacktriangleright ℓi_2 is called *dilogarithm*. Its configuration is given by

$$M_0: z_0 = z_1$$

 $M_1: z_0 = z_1 + z_2$
 $M_2: qz_0 = z_2$.

Call $\mathcal{D}(q)$ for the triangle given by M_i . Then

$$\ell i_2(q) = \int_{\mathcal{D}(q)} \frac{dx}{x} \wedge \frac{dy}{y}.$$

- ▶ We call an n-simplex a family of n+1 hyperplanes $(L_0,...,L_n)$ of \mathbb{P}^n_k .
- ▶ A pair of simplices (*L*, *M*) is said to be *admissible* if they do not have a common face.
- ▶ Let (L, M) be admissible pair of simplices such that the hyperplanes of L and M are in general position. Let

$$\omega_L = d \log(z_1/z_0) \wedge ... d \log(z_n/z_0)$$

where $z_i = 0$ is a homogeneous equation of L_i . Let Δ_M be the simplex whose sides are M_i . Then

$$a(L,M) = \int_{\Lambda_M} \omega_L$$

is a period of

$$H^n_{Nori}$$
 ($\mathbb{P}^n \setminus L, M \setminus (L \cap M)$).

▶ $M = H_{Nori}^n (\mathbb{P}^n \setminus L, M \setminus (L \cap M))$ is a mixed Tate motive with

$$\operatorname{gr}_{2n}^{W}M = \mathbf{1}(-n),$$
$$\operatorname{gr}_{0}^{W}M = \mathbf{1}(0).$$

Definition

 $A_0(k) := \mathbb{Z}$. For n > 0, define $A_n(k)$ as the abelian group generated by (L; M) where (L, M) is an admissible pair of simplices in \mathbb{P}^n_k subject to the following relations:

- 1. If the hyperplanes of one of L or M is not in general position (i.e. degenerate), then (L; M) = 0.
- 2. For every $\sigma \in S_n$,

$$(\sigma L; M) = (L; \sigma M) = (-1)^{|\sigma|}(L; M)$$

where σL and σM , are defined by the natural action of S_n on a set indexed by 1, ..., n.

3. For every family of hyperplanes $L_0, ..., L_{n+1}$ and an n-simplex M,

$$\sum (-1)^j(\hat{L}^j;M)=0,$$

where $\hat{L}^j = (L_0, ..., \hat{L}_j, ..., L_{n+1})$, and the corresponding relation for the second component.

4. For every $g \in PGL_{n+1}(k)$,

$$(gL;gM)=(L;M).$$

$$A_1(k) \xrightarrow{\sim} k^{\times}$$

$$(L_0, L_1; M_0, M_1) \mapsto r(L_0, L_1, M_0, M_1)$$

- The multiplication map $\mu:A_{n'}\times A_{n''}\to A_n$, for n'+n''=n, is defined on the generators in the following way. Let (L',M') and (L'',M'') be two admissible pairs of non-degenerate simplices from $\mathbb{P}^{n'}$ and $\mathbb{P}^{n''}$, respectively. Also let L be a non-degenerate simplex from \mathbb{P}^n . Identify the affine spaces $\mathbb{P}^n\setminus L_0$ and $(\mathbb{P}^{n'}\setminus L'_0)\times (\mathbb{P}^{n''}\setminus L''_0)$. Then $M'\times M''$ can be seen in $\mathbb{P}^n\setminus L_0$ and hence in \mathbb{P}^n . Cutting this product into simplices in \mathbb{P}^n defines an element in A_n which is defined as the product of (L';M') and (L'';M'').
- $ightharpoonup A = \bigoplus A_n$ is a graded Hopf algebra.

▶ Let G be the Galois group of $\mathcal{MTM}_{Nori,\mathbb{Q}}$. Then

$$1 \to U \to G \to \mathbb{G}_m \to 1$$

is split exact.

- ▶ Here, $U = \operatorname{Spec} R$, where $R = \bigoplus_{d>0} R_d$ is a graded Hopf algebra.
- $ightharpoonup \mathcal{MTM}_{\mathsf{Nori},\mathbb{Q}}$ is equivalent to the category of graded R-comodules.

Conjecture (Beilinson)

There is a natural isomorphism of graded Hopf algebras

$$A\otimes\mathbb{Q}\xrightarrow{\sim} R.$$

A Construction of Mixed Tate Motives

- We will consider the motives coming from the following configurations.
- ▶ Fix $n \in \mathbb{N}^{>0}$. Let

$$B=\bigcup_{1\leq i\leq m}B_i,$$

where all B_i are hyperplanes in B that meet $x_{i_1} = ... = x_{i_k} = 0$ properly for all $\{i_1, ..., i_k\} \subseteq \{1, ..., n\}$.

- We call such B a nice divisor.
- ▶ We will be interested in the motives of the form

$$H_{\text{Nori}}^n (\mathbb{G}_m^n, B \cap \mathbb{G}_m^n).$$

 $ightharpoonup H^n_{Nori}\left(\mathbb{G}^n_m, B\cap\mathbb{G}^n_m\right)$ is a mixed Tate motive with

$$\operatorname{gr}_{2n}^W H_{\operatorname{Nori}}^n \left(\mathbb{G}_m^n, B \cap \mathbb{G}_m^n \right) = \mathbf{1}(-n).$$

Let

$$M = \bigoplus_{d \ge 0} M_d$$

where

$$M_d = \operatorname{gr}_{2n-2d}^W(arprojlim_{\mathcal{B}} H^n_{\operatorname{Nori}}\left(\mathbb{G}_m^n, \mathcal{B} \cap \mathbb{G}_m^n\right)) \otimes \mathbf{1}(n-d)$$

such that the limit is taken over all nice divisors B as in the beginning of the section.

► In particular,

$$M_0 = \mathbf{1}(0)$$

and

$$M_n = \operatorname{gr}_0^W(\varprojlim_{\overline{B}} H^n_{\operatorname{Nori}}\left(\mathbb{G}_m^n, B \cap \mathbb{G}_m^n\right)).$$

- Viewing M as a graded R-comodule, we have a linear map $\nu: M \to R \otimes M$. Let $\gamma_i: M \to M_i$ be the restriction map.
- ▶ Since $M_0 = \mathbf{1}(0)$ is realized as \mathbb{Z} , there is a natural map $\ell : M_0 \to \mathbb{Q}$.
- By composing

$$h: M \xrightarrow{\nu} R \otimes M \xrightarrow{\mathrm{id}_R \otimes \gamma_0} R \otimes M_0 \xrightarrow{\mathrm{id}_R \otimes \ell} R \otimes \mathbb{Q} \xrightarrow{\sim} R$$

we have a map $h: M \to R$ such that $h|_{M_0} = \ell$.

► This also gives

$$h|_{M_n}: M_n \to \bigoplus_{i+j=n} R_i \otimes M_j \to R_n \otimes M_0 \to R_n \otimes \mathbb{Q} \xrightarrow{\sim} R_n.$$

- Let $G_n := S_n \ltimes \mathbb{G}_m^n$, where S_n is the symmetric group of order n!, and the action be given by $\sigma \cdot (a_1, \ldots, a_n) = (\sigma(a_1), \ldots, \sigma(a_n))$.
- ▶ Then G_n acts on \mathbb{G}_m^n by

$$(\sigma \cdot a) \cdot x = (-1)^{|\sigma|} \sigma \cdot (ax)$$

for $\sigma \in S_n$, $a, x \in \mathbb{G}_m^n$.

► This action extends on

$$M_n = \operatorname{gr}_0^W(\varprojlim_{\mathcal{B}} H^n_{\operatorname{Nori}} (\mathbb{G}_m^n, B \cap \mathbb{G}_m^n)).$$

Let

$$R_n':=H_0(\textit{G}_n;\textit{M}_n)=\textit{M}_n/\langle \textit{g}\textit{x}-\textit{x}\mid \textit{g}\in \textit{G}_n,\textit{x}\in \textit{M}_n\rangle.$$

Proposition

 $h|_{M_n}$ induces a map $\varphi_n: R'_n \to R_n$.

Proof.

 $ightharpoonup R_n$ is given by the framed objects and the coaction $M_n \to R_n \otimes M_n$ is given by frames

$$\mathbf{1}(0) o \operatorname{\mathsf{gr}}^{W}_{0} H^{n}_{\operatorname{\mathsf{Nori}}} \left(\mathbb{G}^{n}_{m}, B \cap \mathbb{G}^{n}_{m}\right)$$

and it corresponds to the periods of $\operatorname{gr}_0^W H_{\operatorname{Nori}}^n(\mathbb{G}_m^n, B \cap \mathbb{G}_m^n)$.

- ightharpoonup WLOG assume $\operatorname{gr}_0^W H_{\operatorname{Nori}}^n (\mathbb{G}_m^n, B \cap \mathbb{G}_m^n) = \mathbf{1}(0)$.
- Its periods are scalar multiples of

$$\rho = \int_{B} \frac{dx_1}{x_1} \wedge \ldots \wedge \frac{dx_n}{x_n}.$$

 \triangleright ρ is invariant under the action of both S_n and \mathbb{G}_m^n .

34/41

- ▶ Let $R'_0 = \mathbb{Z}$ and $R' = \bigoplus_{n>0} R'_n$.
- ▶ Tensor product of motives defines a multiplication $R'_{n'} \otimes R'_{n''} \to R'_n$.

Lemma

Assume n' + n'' = n. Let $(L'; B') \in A_{n'}$ and $(L''; B'') \in A_{n''}$. Then $(L'; B') \times (L''; B'') = \sum_i (L; B_i)$, for some $(L; B_i) \in A_n$. Assume that L, L', L'' are given by axis hyperplanes. Then,

$$H_{Nori}^{n'}\left(\mathbb{G}_{m}^{n'},B'\cap\mathbb{G}_{m}^{n'}\right)\otimes H_{Nori}^{n''}\left(\mathbb{G}_{m}^{n''},B''\cap\mathbb{G}_{m}^{n''}\right)=H_{Nori}^{n}\left(\mathbb{G}_{m}^{n},B\cap\mathbb{G}_{m}^{n}\right),$$

where B is the nice divisor given by the union of simplices B_i .

Proof.

$$\begin{split} &H^{n'}_{\mathsf{Nori}}\left(\mathbb{G}_m^{n'}, B' \cap \mathbb{G}_m^{n'}\right) \otimes H^{n''}_{\mathsf{Nori}}\left(\mathbb{G}_m^{n'}, B'' \cap \mathbb{G}_m^{n''}\right) \\ = &H^n_{\mathsf{Nori}}\left(\mathbb{G}_m^n, \mathbb{G}_m^{n'} \times (B'' \cap \mathbb{G}_m^{n''}) \cup (B' \cap \mathbb{G}_m^{n'}) \times \mathbb{G}_m^{n''}\right) \\ = &H^n_{\mathsf{Nori}}\left(\mathbb{G}_m^n, (\mathbb{G}_m^{n'} \times B'' \cup B' \times \mathbb{G}_m^{n''}) \cap \mathbb{G}_m^n\right) \\ = &H^n_{\mathsf{Nori}}\left(\mathbb{G}_m^n, B \cap \mathbb{G}_m^n\right). \end{split}$$

by the definition of multiplication in A.

Theorem

There is an isomorphism of graded algebras $\phi: R' \to A$.

Idea of proof.

Let n > 0. Let $Z = (Z_0, ..., Z_n)$ be the *n*-simplex in \mathbb{P}^n given by $Z_i : z_i = 0$. Define A'_n as the abelian group generated by (B) where B is an *n*-simplex in \mathbb{P}^n such that (Z, B) is admissible, subject to the following relations:

- 1. If the hyperplanes of B are not in general position, then (B) = 0.
- 2. For every $\sigma \in S_n$,

$$(\sigma B) = (-1)^{|\sigma|}(B).$$

3. For every family of hyperplanes $B_0, ..., B_{n+1}$,

$$\sum (-1)^j (\hat{B}^j) = 0.$$

4. For every $g \in \mathbb{G}_m^n$,

$$(gB) = (B),$$

where the action of \mathbb{G}_m^n is as follows. For $g=(g_1,\ldots,g_n)\in\mathbb{G}_m^n$ and $p=(z_0:z_1:z_2:\ldots:z_n)\in\mathbb{P}^n$, let $g\cdot p=(z_0:g_1z_1:g_2z_2:\ldots:g_nz_n)$.

Idea of proof, cont'd.

▶ Then,

$$A'_n \to A_n$$

 $(B) \mapsto (Z; B).$

is an isomorphism.

- ▶ We will write an isomorphism $R'_n \to A'_n$.
- ightharpoonup We will consider the underlying \mathbb{Z} -modules of motives.
- ▶ We will work in the homological setting. The category of cohomological motives is isomorphic to the opposite category of homological motives. We denote by $H_n^{\text{Nori}}(X,Y)$ the corresponding object of $H_{\text{Nori}}^n(X,Y)$.

Idea of proof, cont'd.

► In this case,

$$M_n = \operatorname{gr}_0^W(\varinjlim_{B} H_n^{\operatorname{Nori}}(\mathbb{G}_m^n, B \cap \mathbb{G}_m^n)),$$

such that the colimit is taken over all nice divisors B.

- ▶ By adding any such B some hyperplanes, we can divide it into "independent" simplices B^i .
- ▶ So, $B \subseteq \bigcup B^i$.
- $\blacktriangleright \ \, \text{This gives } \operatorname{gr}^W_0H^n_{\operatorname{Nori}}\left(\mathbb{G}^n_m,B\cap\mathbb{G}^n_m\right) \to \bigoplus \operatorname{gr}^W_0H^{\operatorname{Nori}}_n\left(\mathbb{G}^n_m,B^i\cap\mathbb{G}^n_m\right).$
- Define

$$\psi_{\mathcal{B}^i}:\operatorname{\sf gr}^W_0H^n_{\operatorname{\sf Nori}}\left(\mathbb{G}^n_m,\mathcal{B}^i\cap\mathbb{G}^n_m
ight)=\mathbf{1}(0)=\mathbb{Z} o A'_n$$

as
$$\psi_{B^{i}}(1) = (B^{i})$$
.

► This extends a map

$$\psi: M_n \to A'_n$$

Idea of proof, cont'd.

- $\psi: M_n \to A'_n$ is surjective with kernel $\langle gx x \mid g \in G_n, x \in M_n \rangle$.
- ► Hence, this gives an isomorphism

$$\phi_n: R'_n = M_n/\langle gx - x \mid g \in G_n, x \in M_n \rangle \xrightarrow{\sim} A'_n \xrightarrow{\sim} A_n.$$

▶ By previous lemma, $\phi = \bigoplus_{n \geq 0} \phi_n$ respects multiplication. Thus ϕ is an isomorphism of graded algebras.

- ▶ The comultiplication on A can be carried to R'. This makes R' a Hopf algebra.
- ▶ Let $\varphi = \bigoplus \varphi_n : R' \to R$.

Conjecture

$$\varphi \otimes \mathbb{Q} : R' \otimes \mathbb{Q} \to R$$

is an isomorphism of graded Hopf algebras.

Thank you!

