定理 3.49 $\forall Z_1, \forall Z_2 \in S'$ i 対 $17 = \{n_i\}_{i=1}^{\infty}$ s.t $\lim_{i \to \infty} \mathcal{Y}_{\rho}^{n_i}(Z_1) = Z_2$ i.e $\forall \mathcal{E} > 0$, $\forall i > 3i_{\mathcal{E}} \Rightarrow |\mathcal{Y}_{\rho}^{n_i}(Z_1) - Z_2| < \mathcal{E}$

[証明] 背理法による.

 $\exists Z_{1}, \exists Z_{2} \in S' \text{ institut} \quad \forall \{n_{i}\}_{i=1}^{\infty} \text{ institut} \quad \forall \{n_{i}\}_{i=1}^{\infty} \text{ institut} \quad \exists \lim_{i \to \infty} \varphi_{\rho}^{n_{i}}(Z_{i}) + Z_{2}$ $i.e \quad \exists \mathcal{E}_{\beta^{2}} \mid 0 \quad , \quad \exists i \quad \forall i \in_{\beta^{2}} \text{ s.t.} \quad | \varphi_{\rho}^{n_{i}}(Z_{i}) - Z_{2} | \geq \mathcal{E}_{\beta^{2}} \mid 0$ $\mathcal{E} = \inf \{ | \varphi_{\rho}^{n}(Z_{i}) - Z_{2} | | n \in \mathbb{Z} \} \quad (3.47)$

 $I = \{z \in S' \mid |z - z_2| < \epsilon\} \qquad \forall J \delta.$

補題3.50 $\forall n \neq m$ に対け、 $\mathcal{Y}_{\rho}^{n}(I) \cap \mathcal{Y}_{\rho}^{m} = \phi$.

[証明] 肯理法による。 $= n + = m + q_n^m(I) \cap q_n^m(I) + \phi = m > n$ と打る。 m - n = r + v 打ると、

 $I \cap \mathcal{Y}_{\rho}^{r}(I) = \mathcal{Y}_{\rho}^{-n}(\mathcal{Y}_{\rho}^{n}(I)) \cap \mathcal{Y}_{\rho}^{-n}(\mathcal{Y}_{\rho}^{m}(I)) \supset \mathcal{Y}_{\rho}^{-n}(\mathcal{Y}_{\rho}^{n}(I) \cap \mathcal{Y}_{\rho}^{m}(I))$ $\neq \mathcal{Y}_{\rho}^{-n}(\phi) = \phi$

: In 4; (I) + p.