

4th Scientific School on Blockchain & DLTs

Introduction to IOTA

Can Umut Ileri

Research Scientist IOTA Foundation

Comparison to Blockchains

Block creation some node is *elected/chosen* to add new block (PoW puzzle, PoS,...)

Tip Selection blockchain is a DAG (network latency, attacker, ...): new block produced has to choose a *tip*. For example, PoW chooses longest chain; PoS may continue on all *branches*.

The Tangle

Tangle Explorer

https://explorer.iota.org/mainnet/visualizer/

Why DAG?

THE IOTA TANGLE SCALES!

Challenges of the Tangle

Non-linearity only partial ordering

Asynchronous / Local Tangles there is no such thing as *THE Tangle*

Finality find practicable and secure rule for fast confirmation

Sybil protection

Realities ledger state

Managing the Tangle

Blocks - vertices of the Tangle

Parents reference some previous blocks, constitute the edges of the Tangle

Issuer ID identifies the node that issued the block

Timestamp records issuing time of block, has to be higher than the one of the parents

Payload contains the actual content of the block

Signature proves that Issuer issued the above elements

Block layout Header **Slot Commitment Latest Finalized Slot Issuer ID Timestamp Content Payload Node's Signature**

UTXO - value transfer

UTXO

UTXO (unspent transaction output) can be spent once. Total balance of Inputs must equals total balance of outputs.

Inputs referencing unspent outputs to collect funds, contains also input types

Outputs creating new outputs, contains also output types

Timestamp issuing time of transaction; must be higher than the one of *transporting* block

Unlocking signatures for each Input

Transaction layout

UTXO - value transfer

UTXO

UTXO (unspent transaction output) can be spent once. Total balance of Inputs must equals total balance of outputs.

Transaction layout

UTXO DAG

UTXO (unspent transaction output) can be

- 1) spent once
- 2) merged
- 3) split

No conflict

UTXO has at most one child edge

UTXO DAG

UTXO (unspent transaction output) can be

- 1) spent once
- 2) merged
- 3) split

Double spend output spent multiple times

Conflict

3

UTXO has more than one child edge

Branch DAG

Double spend output spent multiple times

Conflict set double spending transactions get an entry in a conflict set

Branch a transaction that is in a conflict set is linked to a branch

Blocks

Data structure
Virtual votes propagation

Transactions

History of value transfers

Possible outcomes

History of conflicts

Branches and Realities

Liked branch a winning branch

Disliked branch a losing branch

Liked reality collection of non-conflicting liked branches

Disliked reality collection of disliked branches

Collapse of Realities

Branch DAG superpositions give an intuition about what happens on the Branch DAG

UTXO DAG not affected

Tangle DAG some messages and transaction need to be picked up to guarantee liveness

Availability - Finality

What does a user expect from a distributed ledger?

1.

Assurance that the submitted data will eventually find a place on the ledger

2

Assurance that, once included, the fate of your data will be definitively determined.

No distributed ledger can simultaneously satisfy both expectations.

Unreliability of Networks

Ensuring finality: Voting-based consensus protocols

Assumptions:

- Each node participating in the consensus protocol has knowledge of the total number of nodes in the protocol.
- There is an upper bound on the number of adversarial nodes, which is known to all participants. (Note: It has been theoretically proven that consensus is not achievable when more than one-third of the nodes are adversarial.)

Algorand

a Tendermint

Ensuring availability: Proof-based consensus protocols

- Nakamoto consensus: inception of the blockchain revolution.
- Participants don't have to know how many miners exist in the network.
- Protocol continues even if there is only one miner.
- Longest chain wins.

How can you be sure whether what you know is the longest?

Probabilistic Finality

A transaction in a Bitcoin block that is six rounds older than the newest block may be successfully reverted with a probability between 0.11% and 0.16% by an adversary controlling 10% of the mining power.

Gaži, Ren, and Russell. Practical Settlement Bounds for Proof-of-Work Blockchains (2022)

Flexible Consensus: Picking The Best of Both Worlds

Level of Safety and Caution

Revisiting the Tangle Explorer

https://explorer.iota.org/mainnet/visualizer/

Programmability

Can only be spent if Alice permits

Basic UTxO

Extended UTxO

Script Address = Hash(Binary Output (Plutus SC))

User specific arguments

- Arbitrary user data
- Can be used as a local script state
- Using its full potential is up to developers
- Only hash of the datum is provided by the locker

validator(Datum, Redeemer, ScriptContext) → {True, False}

validator(LockerInput, UnlockerInput, ScriptContext) → {True, False}

IOTA L2 Smart Contracts

- A platform that brings scalable and flexible smart contracts into the IOTA ecosystem. It
- Allows anyone to spin up a smart contract blockchain and anchor it to the IOTA Tangle.
- Supports EVM and WASM (Experimental)

Conclusion . . .

Classification

References

Popov, Buchanan, **FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures**, *Journal of Parallel and Distributed Computing, Volume 147, January 2021, pages 77-86.*

Capossele, Müller, Penzkofer, **Robustness and efficiency of leaderless probabilistic consensus protocols within Byzantine infrastructures**, *Blockchain: Research and Applications Volume 2, Issue 1, April 2021*

Müller, Penzkofer, Kuśmierz, Camargo, Buchanan, **Fast Probabilistic Consensus with Weighted Votes**, *Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2. FTC 2020.*

Popov, Müller, Voting-based probabilistic consensuses and their applications in distributed ledgers, accepted in Annals of Telecommunications

Moog, https://husqy.medium.com/a-new-consensus-the-tangle-multiverse-part-1-da4cb2a69772

Müller, https://iota.cafe/t/on-tangle-voting-with-fpcs/1218

Theis, https://iota.cafe/t/dislike-switch/1219/10

Nitchai, Popov, Müller, Fast Probabilistic Consensus on a Set, work in progress

IOTA Research Team, On Tangle Voting with metastability breaking work in progress

Questions

