

Yale University Department of Mathematics

Field Equations from Homotopy Algebras of CFT

Anton M. Zeitlin

AMS Sectional Meeting (Raleigh, NC)

Special Session on Homotopical Algebra

with

Applications to Mathematical Physics 2009

- Motivation
- Reminder of Lian-Zuckerman (LZ) homotopy algebras
- Relation of LZ constructions to perturbed CFTs and σ -models
- Examples:
 - Einstein equations
 - Yang-Mills equations
 - Kodaira-Spencer equations via chiral de Rham complex
- Conclusions

Motivation

String theory:

2d Conformal Field Theory \longrightarrow

D-dimensional Quantum Field Theory

Linear classical field equations (Maxwell, Linearized Einstein) and their symmetries:

$$Q\Phi = 0, \qquad \Phi \longrightarrow \Phi + Q\lambda$$

Q is a semi-infinite cohomology operator for the Virasoro algebra.

What about nonlinear equations?

String Field Theory:

$$Q\Phi + \sum_{n} \mu_n(\Phi, \dots, \Phi) = 0$$
$$Q, \mu_n : A_{\infty}/L_{\infty}$$

The description of μ_n is too complicated. Something more explicit?

Natural mathematical tool to study 2d CFT: VOA (vertex operator algebra)

B.H. Lian, G.J. Zuckerman

"New Perspectives on the BRST-algebraic Structure of String Theory" Commun.Math.Phys.154 (1993) 613

LZ homotopy algebra (reminder)

Let V be the VOA. T(z) is a Virasoro element Semi-infinite complex : $C^* = V \otimes \Lambda$ Λ - VOA of "conformal ghosts":

$$b(z)c(w) \sim \frac{1}{z-w}$$

$$Q = \oint dz \ c(z)T(z) + : c\partial cb : (z)$$

semi-infinite cohomology (BRST) operator.

Let a(z) be a vertex operator for $a \in V \otimes \Lambda$ Operations:

$$\mu(a_1, a_2) \equiv P_0 a_1(\varepsilon) a_2$$

$$\{a_1, a_2\} \equiv (-1)^{|a_1|} \oint dz (b_{-1} a_1)(z) a_2$$

where P_0 is the projection on ε - independent component.

Proposition 1

(i)
$$\mu(a_1, a_2) - (-1)^{|a_1||a_2|} \mu(a_2, a_1) =$$

 $Qm(a_1, a_2) + m(Qa_1, a_2) + (-1)^{|a_1|} m(a_1, Qa_2)$

(ii)
$$\mu(\mu(a_1, a_2), a_3) - \mu(a_1, \mu(a_2, a_3)) =$$

 $Qn(a_1, a_2, a_3) + n(Qa_1, a_2, a_3) + (-1)^{|a_1|} n(a_1, Qa_2, a_3) + (-1)^{|a_1| + |a_2|} n(a_1, a_2, Qa_3),$

Lemma

$$(-1)^{|a_2|}\{a_1,a_2\} = b_0\mu(a_1,a_2) - \mu(b_0a_1,a_2) - (-1)^{|a_2|}\mu(a_1,b_0a_2)$$

Proposition 2

(i)
$$\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} = (-1)^{|a_1|-1} (Qm'(a_1, a_2) + m'(Qa_1, a_2) - (-1)^{|a_2|} m'(a_1, Qa_2))$$

(ii)
$$\{\{a_1, a_2\}, a_3\} - \{a_1, \{a_2, a_3\}\}\$$

 $+(-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, \{a_1, a_3\}\} = 0$

(iii)
$$\{a_1, \mu(a_2, a_3)\} = \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\})$$

$$(iv) \quad \{\mu(a_1, a_2), a_3\} - \mu(a_1, \{a_2, a_3\}) \\ -(-1)^{|(a_3|-1)|a_2|} \mu(\{a_1, a_3\}, a_2) = \\ (-1)^{|a_1|+|a_2|-1} (Qn''(a_1, a_2, a_3) - n''(Qa_1, a_2, a_3) - \\ (-1)^{|a_2|} n''(a_1, Qa_2, a_3) - (-1)^{|a_1|+|a_2|} n''(a_1, a_2, Qa_3))$$

Therefore $V \otimes \Lambda$ carry a structure of homotopy Gerstenhaber algebra.

One can generalize further:

$$\mathbf{C}^* = C^* \otimes \overline{C}^*$$

$$\mu^{\text{ext}}(a_1, a_2) = P_0 a_1(\epsilon) a_2, \quad \epsilon \notin \mathbb{R}$$

$$\{a_1, a_2\}^{\text{ext}} = P_0 \oint_{C_{\varepsilon,0}} a_1^{(1)} a_2,$$

where $a^{(1)} = dz(b_{-1}a)(z) + d\bar{z}(\bar{b}_{-1}a)(z)$.

 $\mu^{\rm ext}, \{\cdot, \cdot\}^{\rm ext}$ also satisfy the relations of homotopy Gerstenhaber algebra w.r.t. operator ${f Q}=Q+\bar Q$

Conjecture (L-Z) Operations μ , $\{\cdot, \cdot\}$ and μ ext, $\{\cdot, \cdot\}$ can be extended to the structure of G_{∞} algebra.

Attempts to prove:

Kimura, Voronov, Zuckerman

"Homotopy Gerstenhaber algebra and topological field theory" q-alg/9602009

Galvez, Gorbounov, Tonks

"Homotopy Gerstenhaber Structures and Vertex Algebras" math/0611231 What is the physical meaning of the associated Maurer-Cartan equations?

$$Q\Phi + \mu(\Phi, \Phi) + \sum_{n=3}^{\infty} \mu_n(\Phi, \dots, \Phi) = 0$$
$$Q\Psi + \frac{1}{2} \{\Psi, \Psi\} + \sum_{n=3}^{\infty} \frac{1}{n!} \{\Psi, \dots, \Psi\}_n = 0$$

We will show that

- a) they lead to nonlinear field equations and their symmetries
- b) can give rise to an "algebraic" definition of β -function for the perturbed CFT (σ -models in particular)

Perturbed CFTs

VOA \longrightarrow CFT with some action S_0 .

Perturbations: $S_0 \longrightarrow S = S_0 + V$

$$V = \int_{\Sigma} \Phi^{(2)}, \quad \Phi^{(2)} = dz \wedge d\bar{z}A(z), \quad A \in C^* \otimes \bar{C}^*$$

In general, the perturbed theory is <u>not</u> a CFT. Renormalization theory gives the condition for the theory to be conformal:

$$\beta(\Phi) = 0$$

Expand: $\Phi^{(2)} = t\Phi_1^{(2)} + t^2\Phi_2^{(2)} + \dots$

$$\beta_1(V) = 0 \iff Q\Phi_1^{(0)} = 0$$

$$\beta_2(V) = 0 \iff Q\Phi_2^{(0)} + \frac{1}{4\pi i} P_0 \oint_{C_{2,0}} \Phi_1^{(1)} \Phi_1^{(0)} = 0$$

where $\Phi_i^{(2)} = dz \wedge d\bar{z}[b_{-1}, [\bar{b}_{-1}, \Phi_i^{(0)}]]$

A. Sen (89,90); A.M.Z.

"BRST, Generalized Maurer-Cartan Equations and CFT", Nucl.Phys.B 794 (2006) 370, "Formal Maurer-Cartan Structures: From CFT to Classical Field Equations", JHEP0709:098(2007) Therefore one can replace $\beta(\Phi)$ by

$$\hat{\beta}(\Phi) = Q\Phi + \frac{1}{2}\{\Phi, \Phi\} + \sum_{n=3}^{\infty} \frac{1}{n!} \{\Phi, \dots, \Phi\}_n$$

where $\Phi^{(2)} = dz \wedge d\bar{z}[b_{-1}, [\bar{b}_{-1}, \Phi]]$

One can think of $\hat{\beta}(\Phi)$ as an "algebraic" definition of β -function.

The same applies to β -functions for the theories with boundary perturbations:

$$S_0 \longrightarrow S = S_0 + \int_{\partial \Sigma} \Phi^{(1)}$$

In this case "algebraic" β -function is:

$$\beta(\Phi) = Q\Phi + \mu(\Phi, \Phi) + \sum_{n=3}^{\infty} \mu_n(\Phi, \dots, \Phi)$$

where $\Phi^{(1)} = dz[b_{-1}, \Phi] + d\bar{z}[\bar{b}_{-1}, \Phi]$

σ -models

$$S = \frac{1}{2\pi h} \int_{\Sigma} d^2 z (G_{\mu\nu}(X) + B_{\mu\nu}(X)) \partial X^{\mu} \bar{\partial} X^{\nu}$$
$$+ \frac{1}{2\pi} \int_{\Sigma} R^{(2)} \phi(X) + \int_{\partial \Sigma} A_{\mu}(X) dX^{\mu}$$
$$\beta(G, B, \phi, A) = \sum_{n=1}^{\infty} h^n \beta_n(G, B, \phi, A)$$

 $\beta_1 = 0 \iff$ Einstein-Yang-Mills equations $\beta_n = 0 \ (n > 1)$ gives equations with higher derivatives

Complications:

i) $S = S_0 + V$ destroys the geometric background:

$$G_{\mu\nu} = \eta_{\mu\nu} + tg_{\mu\nu}^{(1)} + t^2g_{\mu\nu}^{(2)} + \dots$$

ii)
$$S_0 = \frac{1}{2\pi h} \int_{\Sigma} d^2 z \eta_{\mu\nu} \partial X^{\mu} \partial X^{\nu}$$

$$X^{\mu}(z) X^{\nu}(w) \sim h \eta^{\mu\nu} \ln|z - w|^2$$

logarithmic VOA

Nevertheless, if we neglect logarithms Maurer-Cartan equation

$$Q\Phi + \frac{1}{2}\{\Phi, \Phi\} + \dots = 0,$$
 $\Phi(G, B, \Phi)$

reproduces Einstein equations (H = dB):

$$R_{\mu\nu} = -\frac{1}{4} H_{\mu\lambda\rho} H_{\nu}^{\lambda\rho} + 2\nabla_{\mu} \nabla_{\nu} \phi,$$

$$\nabla_{\mu} H^{\mu\nu\rho} - 2(\nabla_{\lambda} \phi) H^{\lambda\nu\rho} = 0,$$

$$4(\nabla_{\mu} \phi)^2 - 4\nabla_{\mu} \nabla^{\mu} \phi + R + \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} = 0$$

and their symmetries up to the second order in t.

A.M.Z.

"Formal Maurer-Cartan Structures: from CFT to Classical Field Equations" JHEP0712:098(2007)

We need another formulation:

$$S = \frac{1}{2\pi h} \int_{\Sigma} d^{2}z \left(p_{i}\bar{\partial}X^{i} + p_{\bar{i}}\partial X^{\bar{i}} - (g^{i\bar{j}}p_{i}p_{\bar{j}} + \mu^{i}_{\bar{j}}p_{i}\bar{\partial}X^{\bar{j}} + \mu^{\bar{i}}_{\bar{j}}p_{i}\bar{\partial}X^{\bar{j}} + \mu^{\bar{i}}_{\bar{j}}p_{\bar{i}}\partial X^{j} + b_{i\bar{j}}\partial X^{i}\bar{\partial}X^{\bar{j}} \right) + \int_{\Sigma} R^{(2)}\hat{\phi}$$

A.S. Losev, A.V. Marshakov, A.M.Z.

"On first order formalism in string theory"

Phys.Lett.B 633(2006)375

Complication: $g, b, \mu, \bar{\mu}, \hat{\phi} \longrightarrow G, B, \phi$ nonlinear transformation:

$$G_{s\bar{k}} = g_{\bar{i}j}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} + g_{s\bar{k}} - b_{s\bar{k}},$$

$$B_{s\bar{k}} = g_{\bar{i}j}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} - g_{s\bar{k}} - b_{s\bar{k}},$$

$$G_{s\bar{i}} = -g_{i\bar{j}}\bar{\mu}_{s}^{\bar{j}} - g_{s\bar{j}}\bar{\mu}_{i}^{\bar{j}},$$

$$G_{\bar{s}\bar{i}} = -g_{\bar{s}j}\mu_{\bar{i}}^{j} - g_{\bar{i}j}\mu_{\bar{s}}^{j},$$

$$B_{s\bar{i}} = g_{\bar{i}j}\bar{\mu}_{\bar{s}}^{j} - g_{\bar{i}\bar{j}}\bar{\mu}_{\bar{s}}^{j},$$

$$B_{\bar{s}\bar{i}} = g_{\bar{i}j}\mu_{\bar{s}}^{j} - g_{\bar{s}j}\mu_{\bar{i}}^{j},$$

$$\phi = \log\sqrt{g} + \hat{\phi}.$$

Advantage:

$$S_0 = \frac{1}{2\pi h} \int_{\Sigma} d^2 z (p_i \bar{\partial} X^i + p_{\bar{i}} \partial X^{\bar{i}})$$

VOA:

$$X^{i}(z)p_{j}(w) \sim \frac{h\delta_{j}^{i}}{z-w}, \quad X^{\bar{i}}(z)p_{\bar{j}}(w) \sim \frac{h\delta_{\bar{j}}^{\bar{i}}}{\bar{z}-\bar{w}}$$

When $\mu, \bar{\mu}, b = 0$

$$G_{i\bar{j}} = -B_{i\bar{j}} = g_{i\bar{j}}, \qquad \phi = \hat{\phi} + \log\sqrt{g}$$

Resulting Einstein equations appear to be bilinear in $g^{i\bar{j}}$

$$\partial_{i}\partial_{\bar{k}}\Phi_{0} = 0, \quad \partial_{\bar{p}}d_{\bar{l}}^{\Phi_{0}}g^{\bar{l}k} = 0, \quad \partial_{p}d_{l}^{\Phi_{0}}g^{\bar{k}l} = 0,$$

$$2g^{r\bar{l}}\partial_{r}\partial_{\bar{l}}g^{i\bar{k}} - 2\partial_{r}g^{i\bar{p}}\partial_{\bar{p}}g^{r\bar{k}} - g^{i\bar{l}}\partial_{\bar{l}}d_{s}^{\Phi_{0}}g^{s\bar{k}} -$$

$$g^{r\bar{k}}\partial_{r}d_{\bar{j}}^{\Phi_{0}}g^{\bar{j}i} + \partial_{r}g^{i\bar{k}}d_{\bar{j}}^{\Phi_{0}}g^{\bar{j}r} + \partial_{\bar{p}}g^{\bar{k}i}d_{n}^{\Phi_{0}}g^{n\bar{p}} = 0,$$

where $d_i^{\Phi_0} g^{i\bar{j}} \equiv \partial_i g^{i\bar{j}} - 2\partial_i \Phi_0 g^{i\bar{j}}$ and $d_{\bar{i}}^{\Phi_0} g^{\bar{i}j} \equiv \partial_{\bar{i}} g^{j\bar{i}} - 2\partial_{\bar{i}} \Phi_0 g^{j\bar{i}}$.

They are equivalent to:

$$Q\Phi + \frac{1}{2}\{\Phi, \Phi\} = 0, \quad [b_{-1}, [\bar{b}_{-1}, \Phi]] = g^{i\bar{j}}p_i p_{\bar{j}}$$

at the order h^1 .

Symmetries (holomorphic):

$$\Phi \longrightarrow \Phi + Q\Lambda + \{\Phi, \Lambda\} + \{\Lambda, \Phi\}$$

A.M.Z.

"Perturbed β - γ Systems and Complex Geometry", Nucl.Phys.B 759(2006) 370

Yang-Mills equations

$$*d_A * F = 0,$$
 $F = dA + A \wedge A$

$$0 \to \Omega^0 \xrightarrow{\mathrm{d}} \Omega^1 \xrightarrow{\mathrm{d}*\mathrm{d}} \Omega^{D-1} \xrightarrow{\mathrm{d}} \Omega^D \to 0$$

Yang-Mills C_{∞} algebra:

$$0 \to \mathcal{F}^0 \xrightarrow{\mathcal{Q}_{\eta}} \mathcal{F}^1 \xrightarrow{\mathcal{Q}_{\eta}} \mathcal{F}^2 \xrightarrow{\mathcal{Q}_{\eta}} \mathcal{F}^3 \to 0$$

$$(\cdot,\cdot): \mathcal{F}^i \otimes \mathcal{F}^j \to \mathcal{F}^{i+j}$$

 $(\cdot,\cdot,\cdot): \mathcal{F}^i \otimes \mathcal{F}^j \otimes \mathcal{F}^k \to \mathcal{F}^{i+j+k-1}$

$$(\mathbf{A}, \mathbf{B}) = (\mathbf{A} \wedge *d\mathbf{B}) - (\mathbf{B} \wedge *d\mathbf{A}) + d * (\mathbf{A} \wedge \mathbf{B})$$
$$(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \mathbf{A} \wedge *(\mathbf{B} \wedge \mathbf{C}) - \mathbf{C} \wedge *(\mathbf{A} \wedge \mathbf{B})$$

$$*d_A * F = 0 \iff \mathcal{Q}_{\eta} \mathbf{A} + (\mathbf{A}, \mathbf{A}) + (\mathbf{A}, \mathbf{A}, \mathbf{A}) = 0$$

See e.g. A.M.Z.

"BV Yang-Mills as a Homotopy Chern-Simons via SFT", Int.J.Mod.Phys.A 24 (2009) 1309; "Conformal Field Theory and Algebraic Structure of Gauge Theory", arXiv:0812.1840

This algebra can be obtained from

$$S = \frac{1}{2\pi h} \int_D d^2z \partial X^{\mu} \bar{\partial} X^{\nu} \eta_{\mu\nu} + \int_{\partial D} A_{\mu}(X) dX^{\mu}$$

Complex $(\mathcal{F}^*, \mathcal{Q}_{\eta})$ is a subcomplex in the BRST complex (C^*, Q_{η}) of open string. LZ operations μ, ν reproduce operations (\cdot, \cdot) and (\cdot, \cdot, \cdot) at the level h^0 .

In order to get rid of logarithms we need introduce first order formulation:

$$S = \frac{1}{2\pi h} \int_{H^+} d^2 z (p_\mu \bar{\partial} X^\mu + \bar{p}_\mu \partial \bar{X}^\mu - \eta^{\mu\nu} p_\mu \bar{p}_\nu) + \int_{\mathbb{R}} dz (\mathcal{A}_\mu(X) \partial X^\mu + \mathcal{B}^\mu(X) p_\mu)$$

Boundary conditions:

$$p_{\mu}|_{\mathbb{R}} = \bar{p}_{\mu}|_{\mathbb{R}}, \ X^{\mu}|_{\mathbb{R}} = \bar{X}^{\mu}|_{\mathbb{R}}$$

VOA:

$$X^{\mu}(z)p_{\nu}(w) \sim \frac{h\delta^{\mu}_{\nu}}{z-w}$$

Gaussian integration:

$$F: \quad \mathcal{A}_{\mu}(X)\partial X^{\mu} + \mathcal{B}^{\mu}(X)p_{\mu} \to A_{\mu}(X)dX^{\mu},$$
where $A_{\mu}(X) = \mathcal{A}_{\mu}(X) + \eta_{\mu\nu}\mathcal{B}^{\nu}(X)$

Extended BRST operator of open string:

$$\hat{Q}_{\eta} = Q_{X,p} + \eta^{\alpha\beta} \mu(a_{\alpha}, \{a_{\beta}, \cdot\}), \quad F\hat{Q}_{\eta} = Q_{\eta}F$$

where $Q_{X,p}$ is a BRST operator for X-p VOA, and $a_{\alpha} = cp_{\alpha}$.

It is possible to deform μ w.r.t. $\eta^{\alpha\beta}$ in such a way that the new operation μ^{η} will be homotopy commutative and associative w.r.t. \hat{Q}_{η} . The complex $(\mathcal{F}^*, \mathcal{Q}_{\eta})$ lies in the kernel of L_0 (0th Virasoro mode of X-p VOA):

$$\rho_{u} = u(X), \quad \phi'_{\mathbf{A}} = cA_{\mu}(X)\partial X^{\mu},$$

$$\phi''_{\mathbf{B}} = c : B^{\mu}(X)p_{\mu} :,$$

$$\phi_{a} = \partial ca(X), \quad \psi'_{\mathbf{V}} = c\partial cV_{\mu}(X)\partial X^{\mu},$$

$$\psi''_{\mathbf{W}} = c\partial c : W^{\mu}(X)p_{\mu} :$$

$$\psi_{b} = c\partial^{2}cb(X), \quad \chi_{v} = c\partial c\partial^{2}cv(X).$$

Combining deformed μ^{η} , n^{η} we find that they reproduce YM C_{∞} algebra on $(\mathcal{F}^*, \mathcal{Q}_{\eta})$.

Relation to Courant/Dorfman algebroid:

$$\{\phi'_{\mathbf{A}} + \phi''_{\mathbf{B}}, \phi'_{\bar{\mathbf{A}}} + \phi''_{\bar{\mathbf{B}}}\} = h(\phi'_{L_B\bar{\mathbf{A}} - di_{\bar{\mathbf{B}}}\mathbf{A}} + \phi''_{[B,\bar{B}]_{Lie}})$$

$$\mathbf{A.M.Z.}$$

" β - γ systems and the deformations of BRST operator", to appear

Chiral de Rham complex and Kodaira-Spencer Theory

VOA(V):

$$X^{i}(z)p_{j}(w) \sim \frac{1}{z-w}, \qquad \psi^{i}(z)\chi_{j}(w) \sim \frac{1}{z-w}$$

Chiral de Rham cohomology operator:

$$Q = \frac{1}{2\pi i} \oint \psi^i p_i$$

Bilinear operation $\{a,b\} = \frac{(-1)^{|a|}}{2\pi i} \oint dz [Q,a](z) b$ satisfies Gerstenhaber algebra together with μ . $\{\cdot,\cdot\}$ reproduces Schouten bracket on the operators $f^{i_1...i_n}(x)\chi_{i_1}\ldots\chi_{i_n}$

F. Malikov

"Lagrangian approach to Sheaves on Vertex Algebras" Comm.Math.Phys. 278(2008) 487

Introducing antichiral part (\bar{V}) :

$$X^{\bar{i}}(z)p_{\bar{j}}(w) \sim \frac{1}{\bar{z} - \bar{w}}, \qquad \psi^{\bar{i}}(\bar{z})\chi_{\bar{j}}(\bar{w}) \sim \frac{1}{\bar{z} - \bar{w}}$$

Let us consider elements of the form

$$\xi_{\bar{j}_1\dots\bar{j}_n}^{i_1\dots i_n}(X,\bar{X})\chi_{i_1}\dots\chi_{i_n}\psi^{\bar{j}_1}\dots\psi^{\bar{j}_n}\in V\otimes \bar{V}$$
Then

 $\bar{Q}\mu + \{\mu, \mu\} = 0$, $\mu = \mu_{\bar{j}}^i(X, \bar{X})\chi_i\psi^{\bar{j}}$ coincides with Kodaira-Spencer equation.

Actually, most of Barannikov-Kontsevich formulas

S. Barannikov, M. Kontsevich

"Frobenius Manifolds and Formality of Lie algebras of Polyvector Fields", alg-geom/9710032

may be reproduced on VOA language.

Conclusions

- Physical interpretation of "higher homotopies" in Lian-Zuckerman construction.
- Construction of the field theory equations (Einstein, YM, Kodaira-Spencer) via the deformation theory of semi-infinite cohomology operator for certain VOAs.
- Algebraic approach to the study of β -function in σ -models.
- \bullet Relation of Courant/Dorfman algebroid and Yang-Mills $C_{\infty}\text{-algebra}.$