Onlinevorkurs Mathematik (Betaversion)

www.ve-und-mint.de

Zurück

Einführung Wurzelfunktionen

Weiter

Onlinekurs Mathematik - Elementare Funktionen - Potenzfunktionen

6.3.1 Wurzelfunktionen

Mein Kurs

Finstellungen

Eingangstest

Das KII

Beispiel 6.3.1

Untersucht man einen Körper, der sich im freien Fall im homogenen Gravitationsfeld der Erde befindet, so kann man folgenden Zusammenhang zwischen seiner Fallzeit und seinem zurückgelegten Weg feststellen:

Fallzeit
$$t$$
 in Sekunden 0 $\sqrt{\frac{2}{g}}$ $\sqrt{\frac{2}{g}} \cdot 1.5$ $\sqrt{\frac{2}{g}} \cdot 2$ $\sqrt{\frac{2}{g}} \cdot 3$ zurückgelegter Weg s in Metern 0 1 2.25 4 9

Dabei ist $g\approx 9.81 \, {{\rm m}\over {{\rm s}^2}}$ die physikalische Konstante der Fallbeschleunigung. Trägt man nun diese Werte in einem Diagramm mit t auf der Hochachse und s auf der Querachse auf erhält man:

Dies legt nahe, dass man den Zusammenhang zwischen t und s, mit s als Veränderlicher, mathematisch durch die Funktion

$$t: \quad \left\{ egin{array}{lll} [0,\infty) & \longrightarrow & \mathbb{R} \ & s & \longmapsto & \sqrt{rac{2}{g}} \cdot \sqrt{s} \end{array}
ight.$$

beschreiben kann, also eine Funktion, in deren Abbildungsvorschrift die Wurzel (genauer gesagt die Quadratwurzel) der Veränderlichen vorkommt. Deren Graph beinhaltet dann die obigen gemessenen Punkte:

Dieses Beispiel zeigt, dass Funktionen mit Abbildungsvorschriften, die Wurzeln der Veränderlichen enthalten, natürlicherweise in Anwendungen der Mathematik auftauchen.

Für natürliche Zahlen $n\in\mathbb{N},\,n>1$ bezeichnet man die Funktionen

$$f_n: egin{array}{ccc} D_{f_n} & \longrightarrow & \mathbb{R} \ x & \longmapsto & \sqrt[n]{x} \end{array} = x^{rac{1}{n}}$$

als die Klasse der Wurzelfunktionen. Diese beinhalten offenbar die Quadratwurzel $f_2(x)=\sqrt{x}$, die dritte - BETAVERSION -

Lizenz: CC BY-SA 3

Onlinevorkurs Mathematik (Betaversion)

www.ve-und-mint.de

Zurüd

Kursinhalt

Zurück Einführung Wurzelfunktionen Weiter

Wurzelzeichen und stattdessen mit Hilfe von Exponenten aufzuschreiben. Lösung

Aufgabe 6.3.3

Welche Funktion f_n ergäbe sich für n=1? Lösung

Von großem Interesse ist nun der größtmögliche Definitionsbereich D_{f_n} , der für diese Wurzelfunktionen möglich ist. Denn offenbar kommt es auf den Wurzelexponenten n an, welche Werte man für x in die Abbildungsvorschriften einsetzen darf, um reelle Werte als Ergebnisse zu erhalten. So erkennen wir, dass bei der Quadratwurzel $\sqrt{}$ nur nicht-negative Werte ein reelles Ergebnis liefern. Betrachten wir allerdings die Kubikwurzel $\sqrt[3]{}$, so erhalten wir in diesem Fall, dass alle reellen Zahlen eingesetzt, wieder reelle Zahlen als Ergebnis liefern, so etwa $\sqrt[3]{-27}=-3$. Allgemein gilt:

Info 6.3.4

Für die Wurzelfunktionen

$$f_n: egin{array}{ccc} D_{f_n} & \longrightarrow & \mathbb{R} \ x & \longmapsto & \sqrt[n]{x} \end{array}$$

mit $n\in\mathbb{N}$, n>1 gelten die folgenden größtmöglichen Definitionsbereiche:

$$D_{f_n} = \bigcirc$$

Suche

Eingangstest

Feedback

Damit erhält man folgendes Aussehen für die Graphen der ersten vier Wurzelfunktionen f_2,f_3,f_4,f_5 :

Aus dem Verlauf der Graphen sieht man, dass alle Wurzelfunktionen streng monoton wachsend sind.

Aufgabe 6.3.5

Bestimme für die Wurzelfunktionen

$$f_n: egin{array}{ccc} D_{f_n} & \longrightarrow & \mathbb{R} \ x & \longmapsto & \sqrt[n]{x} \end{array}$$

mit $n\in\mathbb{N}$, n>1, den Wertebereich W_{f_n} , in Abhängigkeit davon ob n gerade oder ungerade ist.

Lizenz: CC BY-SA 3 - BETAVERSION -