Análise e Projeto de Sistemas

Introdução

Prof. Laudelino Cordeiro Bastos

sistema feito por Qual o maior vocês?

de Projeto Por que fazer Análise e Sistemas?

Causas Principais de Sucesso ou Falha de

Projetos:

Um estudo do European Software Process Improvement Training Initiative (ESPITI), de 1995, identifica a importância relativa de vários tipos de problemas de software (LEFINGWELL; WIDRIG, 2002). As 3800 respostas levaram ao seguinte:

Minor problem Nanaging customers requirements Major problem Requirements specifications 55% 45% 335% 205% 10% 10% 0%

Laudelino Cordeiro Bastos

- ☼ Formação Acadêmica ➡ Doutor pela POLI-USP, na área de Sistemas de Informação Hospitalar (2002).
- Mestre pelo CEFET-PR, na área de Processamento de Imagens (1995). Engenheiro de Computação pela PUCPR (1991).

- ♣ Atividades Profissionais
 Telepar, Nutron, Equitel-Siemens (Engenheiro de Computação), PUCPR (coordenador do curso de Engenharia de Computação e do PPGTS) e UCPRR (coordenador do curso de Engenharia de Computação, professor do PPGCA).
 SBEB, SBIS, SBC.
 104* turma na UTFPR.
- Lattes: http://lattes.cnpq.br/1231141260610815

de e Projeto Por que fazer Análise **Sistemas?**

- *Exemplo:
- ■A SAP (Systems, Applications and Products in Data Processing) faturou 14,23 bilhões de euros em 2011.
 - Seu sistema para gestão de negócios, tem mais de 400 milhões de linhas de código.
- ■É inviável desenvolver um sistema desse porte sem análise e projeto.

Projeto de Sistemas: 0 Análise **Ementa**

- 👣 Introdução.
- 👣 Teoria Geral de Sistemas.
- Conceitos de Análise e Projeto de Sistemas.
- Paradigmas de Análise e Projeto de Sistemas.
- Ferramentas da Análise e Projeto de Sistemas.
- Critérios em Projetos de Sistemas.
- Estágios e Objetivos do Projeto.
- Técnicas de documentação.

Bibliografia

- ♦ PRESSMAN, Roger S. Engenharia de Software Uma Abordagem Profissional, 7^a edição, Porto Alegre: AMGH, 2011.
- SOMMERVILLE, Ian. Engenharia de Software, São Paulo: Pearson Addison Wesley, 9ª edição. 2011.
 FAIRLEY, Richard E. Software Engineering Concepts. McGraw-Hill, 1985.
 SARSON, Trish; GANE, Chris. Análise Estruturada de Sistemas. Rio de Janeiro. LTC. 1984.
 YOURDON, Edward. Análise Estruturada Moderna. Rio de Janeiro. Campus. 1990.
 DAVIS, William S. Análise e Projeto de Sistemas Uma Abordagem Estruturada. Rio de Janeiro. 17C. 1994.

Método de avaliação

Software

Bibliografia

- HEUSER, Carlos A. Projeto de Banco de Dados. Ed. Sagra Luzzatto, Porto Alegre, 2001, 4a. edição.
 SILBERSCHATZ, Abraham; KORTH, Henry F. e SUDARSHAN, S. Sistemas de Bancos de Dados. São Paulo: Makron Books, 1999. 3ª edição.
 TEOREY, Toby; LIGHTSTONE, Sam; NADEAU, Tom. Projeto e Modelagem de Banco de Dados. Rio de Janeiro: Elsevier, 2007. 276p.
- BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. UML: Guia do Usuário. Rio de Janeiro: Campus, 2006. 472 p.
 GROFF, James R; WEINBERG, Paul N; EBRARY, Inc. SQL, the complete reference. 2nd ed Berkeley, Calif.: McGraw-Hill Professional, 2002. 1082 p.

Tópicos da Aula

- Software:
- 🗖 Definição.
- Características.
- Análise e Projeto de Sistemas:
 - 🗖 Definições.

Lembrando: Dado, Informação Conhecimento

4 Dado: Informação:

40°C

Conhecimento: O paciente está com febre

Tomar uma decisão

é Software? Que 0

- Possíveis definições:
- ⊑É um programa (instruções) de computador.
- ■Aquilo que pode ser executado por um equipamento.
 - ■Um produto que consiste de um sistema de rotinas e
- 👣 Pergunta: mas será que é apenas isso?

Válvulas: ENIAC (Electronic Numerical Integrator and Computer)

- ☼ Em 1943 teve início o trabalho de construção do ENIAC, um equipamento com a capacidade de realizar até 5000 adições por segundo, sendo finalizado em 1946, tarde demais para ser usado durante a Segunda Guerra Mundial.
 - (aluno de pós-graduação) e Eckert (aluno de pós-graduação) da Universidade da Pensilvânia propuseram a sua criação.
 - Seria primeiramente utilizado para fazer tabelas de trajetoria para novas armas.
- (*) Primeira tarefa: ajudar a verificar se a bomba H poderia ser construída.

 (*) Utilizado até 1955 pelo Laboratório de Pesquisas Balísticas do exército dos EUA.

ENIAC

Evolução do Software (1950-1965)

- O hardware sofreu mudanças contínuas nesse período.
- Software era uma tarefa secundária, para a qual havia poucos métodos sistemáticos.
- O hardware era de propósito geral.
- O software era específico para cada aplicação.
- ©Os programas eram geralmente executados em batch.
 - Não havia documentação.
- 🕏 A rotatividade dos empregos era baixa.

ENIAC: Detalhes

- 🕏 Decimal (não binário)
- 🕏 20 acumuladores de 10 dígitos.
- Programado manualmente por chaves.
 - 🕏 18,000 válvulas.
- 🕏 1500 relês.
- 30 toneladas.

- 140 metros quadrados.
 Consumo de 140 kW de energia elétrica.
 Em 1952, mais de 19.000 válvulas haviam sido substituídas.

Transitores (1)

- 🕏 Substituíram as válvulas.
- Menores
- Mais baratos.
- 👣 Menor dissipação de calor.
- Dispositivos de estado sólido.
 - Feitos de Silício (Areia)
- 🕏 Inventados pela Bell Labs em 1947

Transistores (2)

- Aparecimento de um software para controle do sistema
- 🕏 Uso de linguagens de alto nível
- Aparecimento da Digital Equipment Corporation (DEC) em 1957 com o lançamento do PDP-1 (Programmed Data Processors) que inicia o fenômeno do mini-computador.

Evolução do Software (1965[.] 1975) (1)

- Multiprogramação e sistemas multiusuários.
- Técnicas interativas.
- Sistemas de tempo real.
- Primeira geração de SGBD.
- Produtos de software feitos por Software Houses.
- Cresce o número de sistemas baseado em computador.

Cls com Alta Densidade d Componentes

- LSI (Large-Scale Integration) até 10.000 componentes podem ser colocados em um único circuito integrado (após 1972).
- NLSI (Very Large-Scale Integration) mais de 10.000 componentes podem ser colocados em um único circuito integrado (após 1978).

Circuitos Integrados (CIs)

- (*)Cada transistor utilizado era um dispositivo individual que deveria ser soldado na placa de circuito impresso. Assim, conforme o número de circuitos aumentaram, o trabalho de montagem se tornou cada vez mais difícil.
- A invenção dos circuitos integrados em 1958 iniciam a era da microeletrônica.

Evolução do Software (1965[.] 1975) (2)

- 🕏 A necessidade de manutenção aumentou muito.
- A natureza personalizada de muitos programas tornava a manutenção muito difícil, devido a falta de documentação e ao número reduzido de pessoas para tal tarefa.
- (*) Por volta de 1970, Tom DeMarco desenvolveu a Engenharia de Software baseada em modelos, técnica que possibilita aos usuários a visualização do funcionamento de um sistema futuro antes que o mesmo seja construído. Quebrou assim o paradigma do "começar já codificando".

Fatos Históricos

- Em 1971, a Intel Iança o primeiro chip que contêm todos os componentes de uma CPU, o 4004, iniciando a era dos microprocessadores.
- Em 1972 a Intel langa o primeiro microprocessador de 8 bits, o Intel 8008.
- Em 1974 é lançado o Intel 8080, o primeiro microprocessador de uso não específico, desenvolvido para ser usado em computadores de uso geral.
 - (*) Em 1976 é lançado o Cray-1, primeiro supercomputador de uso comercial. Continha 200 mil circuitos integrados.

Cray-1

Evolução dos Microprocessadores Intel

(*) 2005: versão do Dual-Core Itanium 2 com dois núcleos e mais de 1 bilhão de transistores.

⑤ 2006: microprocessadores com 4 núcleos. Quad-Core Intel Xeon com 820 milhões de transistores à 3,7 GHz.

Evolução dos Microprocessadores Intel

\$2008: i7 Roda a 3,33 GHz, com de 731 milhões a 1,17 bilhões de transistores.

Evolução dos Microprocessadores Intel

- ☼ Velocidade de clock: de 108 KHZ (4004 de 1971) à 2,4 GHz e mais (Pentium IV).
- (*) Número de transistores: 2.300 no 4004; 29000 no 8086 em 1978, 134.000 no 80286 em 1982; 275.000 no 80386 em 1985; 1.200.000 no 80486 em 1989; 3.100.000 no Pentium em 1993; 42 milhões no Pentium 4 em 2001; 220 milhões no Itanium 2 em 2002; 500 milhões na versão "Madison" do Itanium 2 em 2002.
- © 2004: microprocessadores com mais de um núcleo. A justificativa é o custo extremamente alto para fazer o arrefecimento dos microprocessadores.
 - ♣ 2005: versão "Montecito" do Itanium 2 com dois núcleos e mais de 1 bilhão de transistores.

Evolução dos Microprocessadores Intel

- (\$2007: Pesquisadores da Intel construíram um chip de 80 núcleos. Rodando a 3,16 GHz, o chip chega a 1,01 teraflops de computação.
- Modelip tem 275
 milímetros quadrados
 (o tamanho de uma
 unha) e utiliza apenas
 62 watts de energia,
 menos que um chip
 para desktop.

Evolução do Software (1975 até hoje)

- Sistemas distribuídos.
- Redes locais e globais
- ♦Uso generalizado de microprocessadores e computadores pessoais.
- Criação de produtos inteligentes, como automóveis, forno de microondas, etc.
- Hardware de baixo custo gerando aumento no consumo de computadores.

Evolução do Software (1985 - até hoje)

- Tecnologias orientadas a objetos.
- Sistemas especialistas, software de inteligência artificial utilizados na prática, multi-agentes.
- Agentes móveis.
- Redes neurais artificiais.
- Algoritmos genéticos.
- ₩WW.
- Computação Paralela.

Então, pelo que é formado o Software?

- ♣É formado por:
- ■Instruções (programas de computador) que quando executadas produzem a função e o desempenho desejados.
 - Estruturas de Dados que possibilitam que os programas manipulem adequadamente a informação.
- Documentos que descrevem a operação e o uso dos programas.

Curva de Falhas de Hardware

Evolução do Software (1950 até hoje)

Características do Software

- *Ele é desenvolvido ou projetado por engenharia, mas não é manufaturado no sentido clássico:
- ■Os custos do software estão concentrados no trabalho de engenharia. Isso significa que os projetos de software não podem ser geridos como se fossem projetos de manufatura.
 - Não se "desgasta", mas se deteriora devido as modificações feitas durante sua vida útil (ver slides seguintes).
- (*)A maioria é feita sob medida em vez de ser montada a partir de de componentes existentes.

Curva Idealizada de Falhas de Software

Curva Real de Falhas de Software, em função das mudanças de Requisitos

Segundo Brooks (1995), ao se corrigir um defeito, há de 20% a 50% de chance de se introduzir um defeito no software.

Brooks, Frederick. The Mythical Man Month. Addison-V Publishing Company, 1995, 214 p.

Comparação entre Hardware e Software

- Quando um componente de hardware se desgasta ele é substituído por uma "peça de reposição".
- 🔊 Não existe "peça de reposição" para software:
- ■Toda falha indica um erro no projeto ou no processo de tradução para o código executável.
 - ■A manutenção de software é mais complexa do que a de hardware.

O que é Análise?

- *Derivado do grego analýein (desatar, soltar), significa: dissolução de um conjunto em suas partes.
- Análise é um estudo de um problema, que antecede uma ação para resolvê-lo. O seu propósito é modelar um sistema de forma que ele possa ser entendido.

Curva Real de Falhas de Software

Definições

O que é Processo?

Série de fenômenos sucessivos com relação de causa e efeito. Por exemplo, uma empresa é uma série de causas - matérias primas, recursos humanos, tecnologia - que geram um efeito, no caso, os produtos.

O que é Sistema? Definições:

- sejam interdependentes, formando um todo Um grupo de itens que interagem entre si ou unificado. dne
- Um conjunto organizado de doutrinas, idéias ou princípios, habitualmente previsto para explicar a organização ou funcionamento de um conjunto sistemático.
- Um procedimento organizado ou estabelecido.

Tipos de Sistemas (1)

- Naturais ou feitos pelo homem.
- Sistemas Naturais:
- Sistemas Estelares (ver slides):Galáxias, sistemas solares, etc.
- Sistemas Geológicos:
- 🖫 Rios, cadeias de montanhas, etc.

Sistemas Moleculares:

Organizações complexas de átomos.

- Tipos de Sistemas (3)
- Sistemas feitos pelo homem:
- Sistemas de Manufatura:
- 🖫 Fábricas, linhas de montagem, etc. Sistemas Financeiros:
- Sontabilidade, inventários, controle de estoque, etc.

 Inventários controle de estoque, etc.

 Contabilidade, inventários controle de estoque, etc.

 Contabilidade estoque, estoque, etc.

 Contabilidade estoque, estoque,
 - Sistemas Automatizados:
- Hardware de computadores, software, etc.

Teoria Geral de Sistemas

- A Teoria Geral de Sistemas teve como um dos precursores o biólogo austríaco Ludwig von Bertalanffy.
- Auxiliou a criação da Análise e Projeto Estruturado de Sistemas (Tom Demarco e Edward Yourdon).
 BERTALANFFY, L. Von. General Theory of Systems: Foundations, Development, Applications, New York: George Braziller, 1968.

Tipos de Sistemas (2)

- Sistemas feitos pelo homem:
- Sistemas Sociais:
- 🖫 Organizações de leis, doutrinas, costumes, etc.
 - Sistemas de Transporte:
- FRedes rodoviárias, canais, linhas aéreas, petroleiros, semelhantes, etc.
 - Sistemas de Comunicação:
- 🖫 Telefone, telex, sinais de fumaça, sinais manuais, etc.

Tipos de Sistemas (4)

- Concretos: compostos por objetos reais como equipamentos, instalações, hardware
- Abstratos: compostos por conceitos, idéias como planos, teorias, software.

Tipos de Sistemas (5)

- *Fechados: não recebem nenhuma influencia do ambiente que os circunda. Não recebem nenhum recurso externo e nada produzem que seja enviado para fora. Exemplo: a Teoria da Relatividade de Einstein não será alterada em função do surgimento de novas teorias.
- Abertos: são sistemas que apresentam trocas com o ambiente ao redor, através de entradas e saídas. Exemplo: software.

Tipos de Sistemas (7)

🕏 Sistema Teleológicos. Casa do castor:

Disponível em: http://www.saudeanimal.com.br/castor.htm

O que é Análise e Projeto de Sistemas?

(*) Representa o estudo detalhado (análise) de uma área de trabalho (processo) e o desenvolvimento (projeto) de um conjunto de softwares integrados (sistema) destinado à execução, controle e acompanhamento do processo.

Tipos de Sistemas (6)

- *Emergentes:
- Surgem naturalmente. Exemplo: ecossistemas.
- *Teleológicos:
- São planejados, sendo dirigidos por objetivos. Exemplo: residências, fábricas, plantações, hardware, software.
 - ■Não são exclusividade dos seres humanos.

O que é Análise de Sistemas?

Representa o estudo detalhado de uma área de trabalho (processo), que antecede uma ação que, quase sempre, implica no desenvolvimento de um conjunto de softwares integrados (sistema) destinado à execução, controle e acompanhamento do processo.

Participantes: Responsabilidades do Analista e do Usuário

- (3) O usuário, que será o utilizador do sistema. Ele é o responsável pela decisão de integração do sistema dentro das operações da empresa, ou não. Somente ele pode aceitar ou não o sistema.
- O cliente, que normalmente é quem contrata os serviços da empresa desenvolvedora de software.
 - O analista, que é o responsável por: estudos de viabilidade e alternativas, relações custo/beneficio, especificações, prazos e testes de aceitação.

Problemas no Desenvolvimento de Sistemas

- Produtividade.
- Demanda reprimida.
- Tempo necessário para desenvolvimento.
 Descontinuidade no desenvolvimento.
- Confiabilidade.
 Manutenção.
 Eficiência.
 Portabilidade.

- 🕏 Segurança.

Obrigado.