Dynamic Policy Rules for Emergency Healthcare

Sondes Baccouri and Takoua Abdellatif
2024

1 Introduction

In emergency healthcare, real-time access to critical patient data is essential. The dynamic nature of such environments requires adaptable policy rules for varying contexts, such as healthcare professionals' roles and patient conditions. The BIG-ABAC framework addresses this need through dynamic policy generation and real-time updates, leveraging distributed data processing for low latency and high responsiveness. The complete implementation can be found in the GitHub repository: https://github.com/BaccouriSondes/BIG-ABAC.

2 Dynamic Policy Rules for Emergency Healthcare

BIG-ABAC adjusts access control policies in real-time, based on contextual attributes. This lightweight process minimizes the impact on processing time, even with numerous contextual variables. Policy updates respond to changes such as user location and medical emergencies, ensuring security and efficiency.

2.1 Policy Integration into Emergency Contexts

Table 1 presents dynamic policy rules integrated into emergency medical contexts.

Table 1: Integration into Emergency Medical Contexts

Rule	Description	Formula
Access Time	Request time must meet or exceed	$t_{request} \ge P$
	the context-defined time.	
Location	Access is allowed only within ap-	$user_location \in$
	proved geographic areas.	$approved_locations$
Medical Specialty	User must have the required spe-	$user_specialty$ \in
	cialty.	specialties
Consent	Access requires patient or autho-	$patient_consent = true \lor$
	rized representative consent.	$\int family_authorized = \int$
		$\mid true \mid$
Environmental	Access depends on the current envi-	$environmental_status =$
Conditions	ronmental status.	$\mid P \mid$
Medical Emergency	Special access is triggered by a med-	$emergency_detected =$
	ical emergency.	true
Ambulance Status	Access is based on the ambulance's	$ambulance_status =$
	status and location.	en_route \land
		$ user_location = user_location $
		$ambulance_location$
Session Duration	Access is limited to a specific time	$t_{session_end} \leq$
	after session start.	$t_{session_start} + P$

2.2 Rule Combinations for Actions

Table 2 outlines the rule combinations required for each action type.

Table 2: Rule Combinations for Each Action

Action	Policy
Read	$R1 \wedge R2 \wedge R3 \wedge R4 \wedge R5 \wedge R6$
Update	$R1 \wedge R2 \wedge R3 \wedge R4 \wedge R5 \wedge R7 \wedge R8$
Start ES	$R1 \wedge R2 \wedge R3 \wedge R9$
End ES	$R1 \wedge R2 \wedge R3 \wedge R4 \wedge R10$

Figure 1: Policies Decision Tree

2.3 Core Policy Rules

In emergency settings, rapid and secure access is crucial. The BIG-ABAC framework implements a "PERMIT unless DENY" algorithm, granting access by default unless a specific condition triggers a denial. This approach balances accessibility and security in urgent scenarios.

Example parameters include user role, emergency session status, and time of access. Table 3 outlines rule parameters with real-time context-specific values.

Table 3: Rule Parameters with Real-Time Context-Specific Values

Entity	Rule	Description	Logical Representation
Subject	R1	The emergency is detected.	emergency_detected=true
	R2	The healthcare professional	$user_specialty$ \in
		must have the required medi-	$\{ ext{cardiologist}, ext{ anesthetist},$
		cal specialty.	emergency_physician,}
	R3	The patient or authorized	<pre>patient_consent=true</pre>
		representative has given con-	family_authorized=true
		sent.	
Resource	R4	Only the EMR of the patient	$ exttt{patient_id} \in exttt{ES} \wedge exttt{team_id} \in$
		under emergency session (ES)	active_care_team
		must be available to the ac-	
		tive emergency care team.	
Action	R5	The request is made within	$ exttt{current_time} \in [exttt{access_start_time},$
		the authorized time period.	access_end_time]
	R6	The user is accessing from an	$user_ip \in \{hospital_ip_range\} \lor$
		approved location.	user_location=ambulance_location
	R7	The treatment is required for	treatment_required=true
		patient care.	
	R8	The request to update data	update_authorized=true \(\)
		is made by an authorized	within_time=true
		healthcare professional	
		within the specified time.	
	R9	The healthcare professional	emergency_detected=true
		has the right to start the	\land valid_specialty=true \land
		emergency session.	consent_or_authorization=true
	R10	The healthcare professional	emergency_detected=true
		from the hospital acute care	\land valid_specialty=true \land
		team has the right to end	consent_or_authorization=true
		the emergency session unless	\land within_time=true \land
		it was started by another pro-	not_starter=true
		fessional.	

3 Policy Examples

3.1 Emergency Physician Access

This policy grants an emergency physician access to a patient's EMR during an active emergency session, within the authorized time window and location.

```
"role": "emergency_physician",
      "status": "active"
    }
 ],
  "objects": [
      "resourceType": "EMR",
      "resourcePath": "/healthcare/emr/patient12345"
    }
 ],
  "conditions": {
    "emergencySession": "active",
    "timeOfAccess": "09:00-17:00",
    "location": "hospital, ambulance"
 },
  "actions": [
    "read", "write"
  "decision": "PERMIT"
}
```

3.2 Nurse Access During Emergency

This policy permits a nurse to read a patient's EMR during an emergency session.

```
"policyId": "policy456",
"policyName": "Nurse Access Control",
"subjects": [
  {
    "role": "nurse",
    "permissions": ["read"]
  }
],
"objects": [
  {
   '''latex
    "resourceType": "EMR",
    "resourcePath": "/healthcare/emr/patient56789"
  }
],
"conditions": {
  "emergencySession": "active",
  "timeOfAccess": "during_emergency"
},
"actions": [
 "read"
],
```

```
"decision": "PERMIT"
}
```

4 Conclusion

The BIG-ABAC framework enables real-time adaptation of access policies in emergency healthcare, ensuring healthcare professionals have appropriate access during critical situations. These dynamic policy rules are crucial for managing access to sensitive patient data efficiently and securely.

For more detailed examples and the full implementation, refer to the repository: https://github.com/BaccouriSondes/BIG-ABAC.