

Übung 5

Die Abgabe erfolgt als Datei-Upload in Moodle, **gruppenweise** bis spätestens **13.12.2020** um **24:00**. Beschriften Sie die Abgaben mit Vor- und Nachnamen von beiden Gruppenmitgliedern. Das Übungsblatt gilt als bestanden, wenn mindestens 10 der maximal 20 Punkte erreicht werden. Die zu erreichenden Punkte werden schwerpunktmäßig auf den Rechenweg gegeben.

Aufgabe 1: Minimierung zu Ehren Maurice Karnaugh......4 Punkte

Gegeben ist die Wahrheitstabelle mit den drei Variablen x_1, x_2 und x_3 , und den Funktionen $f(x_1, x_2, x_3)$ und $g(x_1, x_2, x_3)$:

x_3	x_2	$ x_1 $	$f(x_1, x_2, x_3)$	$g(x_1, x_2, x_3)$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

- a) Bilden Sie die DKNF und die KKNF für die $f(x_1, x_2, x_3)$ und $g(x_1, x_2, x_3)$
- b) Bestimmen Sie mit Hilfe eines KV-Diagramms die vollständig minimierte DNF für die Funktion $f(x_1, x_2, x_3)$.
- c) Bestimmen Sie mit Hilfe eines KV-Diagramms die vollständig minimierte KNF für die Funktion $g(x_1, x_2, x_3)$.

Aufgabe 2: Moment - Warum eigentlich minimieren? 4 Punkte Gegeben ist die Funktion $f(x_1, x_2, x_3, x_4)$ mit $(x_1x_2x_3x_4)$ als vorzeichenlose Dualzahl.

$$f(x_1,x_2,x_3,x_4) = \begin{cases} 1 & \text{falls } (x_1x_2x_3x_4)_{10} \bmod 4 = 1 \\ 1 & \text{falls die Quersumme von } (x_1x_2x_3x_4)_{10} = 6 \text{ ist} \\ 1 & \text{falls } (x_1x_2x_3x_4)_{10} \bmod 2 = 0 \\ 1 & \text{falls } (x_1x_2x_3x_4)_{10} = 3 \\ 0 & \text{sonst} \end{cases}$$

- a) Geben Sie die Wertetabelle der Funktion $f(x_1, x_2, x_3, x_4)$ an.
- b) Stellen Sie die DKNF der Funktion f(x) auf.
- c) Stellen Sie die KKNF der Funktion f(x) auf.
- d) Minimieren Sie die Funktion f(x) mittels KV.
- e) Vergleichen Sie die kanonischen Normalformen der Funktion $f(x_1,x_2,x_3,x_4)$ mit der minimierten Lösung. Nennen Sie 3 Vorteile der Minimierung.

Aufgabe 3: A B C-MOS 6 Punkte

In Abbildung 1 ist eine digitale Logik als Transistorschaltung in NMOS Technologie gegeben. In dieser Schaltung bezeichnen die digitalen Signale x_1 bis x_3 die Eingänge und $f(x_1, x_2, x_3)$ repräsentiert den Ausgang.

Abbildung 1: NMOS Transistorschaltung

- a) Bestimmen Sie die Boolesche Funktion bestehend aus den Variablen x_1, x_2 und x_3 , die die Transistorschaltung in Abbildung 1 realisiert.
- b) Stellen Sie die Wertetabelle der Funktion auf.
- c) Wandeln Sie die Schaltung aus Abbildung 1 in eine PMOS-Transistorschaltung um.
- d) Worin besteht der Vorteil von CMOS im Gegensatz zu N- und P-MOS Gattern?

Aufgabe 4: Noch mehr CMOS 6 Punkte

Die nächste Seite zeigt eine CMOS Transistorschaltung. Dabei sind die digitalen Signale a bis d sind die Eingaben der Schaltung und f(a,b,c,d) ist der Ausgang.

- a) Geben Sie die Gatterschaltung an, welche die Transistorschaltung abbildet.
- b) Geben Sie die Wahrheitstabelle sowie die boolsche Formel der Schaltung an.
- c) Minimieren Sie die Funktion mithilfe eines KV-Diagramms und zeichnen Sie die minimierte Schaltung.
- d) Zeichnen Sie nun die Transistorschaltung der minimierten Funktion in CMOS-Technik.

