Х

NPTEL

reviewer3@nptel.iitm.ac.in ▼

Courses » Computational Systems Biology

Announcements Course Ask a Question Progress Mentor FAQ

Unit 8 - Week

Course outline	Assignment 4	
	The due date for submitting this assignment has passed.	
How to access the portal	As per our records you have not submitted this assignment. Due on 2018-09-05, 23:5	9 IST.
Pre-requisite Assignment	1) Protein-protein interaction networks are most commonly modelled as	1 point
MATLAB Access	undirected graphs hypergraphs	
	directed graphs	
MATLAB Learning Modules	cyclic graphs	
wodules	No, the answer is incorrect.	
Week 1	Score: 0	
Week 2	Accepted Answers: undirected graphs	
Week 3	2) Consider the following phylogenetic profile for five proteins, across four organisms:	1 point
Week 4	ABCDE	
20 Notwork	1 0 1 0 1	
28 - NetworkBiology: Recap	0 1 1 1 0	
	1 0 1 0 1	
29 - Lab: Network Models &	0 0 1 1 0	
Perturbations	Which of the following statement(s) is/are true?	
30 - Lab: Network	A and D are complementary proteins	
Models & Perturbations	B and C proteins always occur together but do not participate in the same pathway	
3 1 -	C is a conserved protein	
Reconstruction of Gene Regulatory	A and E always occur together and are likely required for the functioning of the same pathway	

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

G+

A project of

Funded by

of Signalling Networks	3) Metabolic networks can be represented with	point
34 - Reconstruction	metabolites as nodes, and edges between the metabolites depending on the reactions to participate in	hey
of Metabolic Networks	metabolites and reactions as nodes, with edges between metabolite and metabolite, rea	ction
Quiz : Assignment 4	metabolites and reactions as nodes, with edges between metabolite and reaction, reaction and metabolite	on
Week 4 Feedback	reactions as nodes, with edges between the reactions based on the common set of	
Week 5	metabolites produced by the reactions	
Week 6	No, the answer is incorrect. Score: 0	
Week 7	Accepted Answers: metabolites as nodes, and edges between the metabolites depending on the reactions they pai	rticipate
Week 8	metabolites and reactions as nodes, with edges between metabolite and reaction, reaction and reactions as nodes, with edges between the reactions based on the common set of metabolites	
Week 9	by the reactions	
Week 10	4) Consider a toy model with 5 reactions namely R1, R2, R3, R4, R5, of which the reactions 4 pc R1, R3, R4 and R5 are found to be essential. The GPRs for each of the reaction is given below:	oints
Week 11	R1 = gene1 OR gene2	
Week 12	R2 = NOT (gene2 OR gene3) R3 = (gene4 OR gene5) AND (gene1 OR gene3)	
DOWNLOAD VIDEOS	R4 = NOT (gene6) R5 = gene5 OR gene7	
	What is the minimal set of genes that is necessary for the survival of the organism?	
	gene1	
	gene2	
	gene3	
	gene4	
	gene5	
	gene6	
	gene7	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	gene1 gene5	
		point
	Gene-regulatory networks	
	Co-expression networks	
	Gene interaction networks	
	Transcriptional regulatory networks	
	Gene expression network	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	

Gene-regulatory networks Transcriptional regulatory networks	
6) Which of the following statements are true: 1 points	ıt
Motifs are recurring patterns in networks that occur less frequently than in random networks	
The number of connections within modules is much larger than the number of connections between modules	
Most biological systems exhibit modularity	
Motifs in a network can be independent	
No, the answer is incorrect. Score: 0	
Accepted Answers: The number of connections within modules is much larger than the number of connections between modules Most biological systems exhibit modularity	
7) How can the reaction graph be constructed from the binarised stoichiometric matrix (S)? 1 points	ıt
$S.S^T$ $S.S^T.S$ $S.S$ $S.S$	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
S^T .S	
8) What is the maximum number of edges in a directed graph with n nodes, if there are no self 1 poi tops?	ìt
nC_2 n^2 n^2 -n n^2 -n None of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers: n^2 - n	
9) We learnt that protein-protein interaction networks are built using different computational 1 point nethods such as gene neighbourhoods and phylogenetic profiling. Which of the following are true?	ıt
Proteins A and B are found to present together in genomes indicating they might be present in the same neighbourhood.	
Proteins A and B are found to present together in genomes but they might be not be present in the same neighbourhood.	

Protein P1 and P2 are necessary for growth and contain different domains. In their absence P3 with any one of the domains is sufficient for survival.	
Coevolution is studied using multiple genomes from the same species.	
Genomes with P1 show absence of P2 and vice versa. P1 and P2 have the same phylogenetic profile.	
No, the answer is incorrect. Score: 0	
Accepted Answers: Proteins A and B are found to present together in genomes indicating they might be present in the sai neighbourhood. Proteins A and B are found to present together in genomes but they might be not be present in the sai neighbourhood.	
10)The correct order of the key steps in metabolic reconstruction is: 1 point	
Gene functional annotations > model construction > model refinement > model simulation > evaluate model	
Gene functional annotations > model refinement > model simulation > evaluate model > model construction	
Gene functional annotations > model construction > model simulation > model refinement > evaluate model	
Gene functional annotations > model refinement > model construction > model simulation > evaluate model	
Gene functional annotations > model construction > model simulation > evaluate model > model refinement	
No, the answer is incorrect. Score: 0	
Accepted Answers: Gene functional annotations > model construction > model refinement > model simulation > evaluate	тс
11)Given a stoichiometric matrix S of dimensions a x b 1 point	
Number of metabolites are b	
Number of reactions are a	
Number of reactions are b	
\square If v is the vector of fluxes,s.v=0 at steady state	
Negative values in the matrix signifies reactants for a given reaction	
No, the answer is incorrect. Score: 0	
Accepted Answers: Number of reactions are b	
If \mathbf{v} is the vector of fluxes,s. \mathbf{v} =0 at steady state Negative values in the matrix signifies reactants for a given reaction	
12Programming assignment: Construct a regular lattice with 100 nodes, where each node is connected to 12 nearest neighbours.	
What is the characteristic path length of this lattice? Enter your answer, correct up to 4 decimals.	
<u>⊕</u> ▼	
No, the answer is incorrect.	

