#### Testing against a high-dimensional alternative

Aldo Solari

Statistical Learning

These slides have been borrowed from Prof. Jelle Goeman and Prof. Hans van Houwelingen. Thanks!





# Testing against a high-dimensional alternative

Jelle Goeman Hans van Houwelingen

Department of Medical Statistics Leiden University Medical Center

Lancaster, 2006-10-31





#### **Outline**

- High-Dimensional Alternatives
- A Locally Most Powerful Test
  - A random regression coefficient model
  - Derivation of the test statistic
- 3 Applications
  - Theoretical: the linear model
- Summary





## **Outline**

- High-Dimensional Alternatives
- A Locally Most Powerful Test
  - A random regression coefficient model
  - Derivation of the test statistic
- Applications
  - Theoretical: the linear model
- Summary





- Response vector y ( $n \times 1$ ) and design matrix X ( $n \times p$ )
- Model:  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$
- Regression coefficients  $\beta$  ( $p \times 1$ ) and variance  $\sigma^2$  unknown
- How to test  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta \neq \mathbf{0}$ ?





- Response vector y ( $n \times 1$ ) and design matrix X ( $n \times p$ )
- Model:  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$
- Regression coefficients  $\beta$  ( $p \times 1$ ) and variance  $\sigma^2$  unknown
- How to test  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta \neq \mathbf{0}$ ?
- Well-known solution: the F-test





- Response vector y ( $n \times 1$ ) and design matrix X ( $n \times p$ )
- Model:  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$
- Regression coefficients  $\beta$  ( $p \times 1$ ) and variance  $\sigma^2$  unknown
- How to test  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta \neq \mathbf{0}$ ?
- Well-known solution: the F-test
- This works well for p (much) smaller than n
- What if p is close to n?





- Response vector y ( $n \times 1$ ) and design matrix X ( $n \times p$ )
- Model:  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$
- Regression coefficients  $\beta$  ( $p \times 1$ ) and variance  $\sigma^2$  unknown
- How to test  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta \neq \mathbf{0}$ ?
- Well-known solution: the F-test
- This works well for p (much) smaller than n
- What if p is close to n?
- What if p is larger than n?





## Motivation: microarray data







## What is a microarray?

- Microarray measures 'gene expression'
- Central dogma of molecular biology

$$DNA \rightarrow RNA \rightarrow protein$$

- DNA is the same in every cell at every time But need for proteins is different
  - → amount of RNA is different
- Gene expression ≈ concentration of RNA of a specific gene
- Microarray: simultaneous measurement of gene expression of around 20,000 genes in one tissue





## A typical microarray experiment

- Make microarrays of tissue samples of n patients
- Sample size n usually between 10 and 300.
- Typical research question: Which genes are associated with the response?

#### **Typical procedure**

**High-Dimensional Alternatives** 

- Do 20,000 univariate tests
- Correct for multiple testing
- Report a list of associated genes





## Alternative: focus on pathways

- Pathway = set of genes with a similar function in the cell
  - Apoptosis: programmed cell death
  - Cell Cycle: the process of cell division
  - Angiogenesis: generation of blood vessels
- Our research question: which "pathways" are associated with y?
- More general: take any predefined set of genes
  - Genes with similar annotation in Gene Ontology / KEGG
  - Genes with similar chromosomal location
  - All genes on the microarray
- p = #genes: anything from 1 to 20,000 or more





# Testing association of a pathway with a response

- Gene set = a set of covariates  $(x_1, ..., x_p)$  $\rightarrow$  design matrix X  $(n \times p)$
- How to test for association  $(x_1, \ldots, x_p)$  and y?
- $(x_1, ..., x_p)$  and y are associated  $\iff$  part of the variance of y can be predicted using  $(x_1, ..., x_p)$
- In a linear model:  $y \sim \mathcal{N}(X\beta, \sigma^2 I)$
- No association:

$$H_0: \beta = 0$$

Some association:

$$H_A: \beta \neq \mathbf{0}$$





## **Outline**

- High-Dimensional Alternatives
- A Locally Most Powerful Test
  - A random regression coefficient model
  - Derivation of the test statistic
- Applications
  - Theoretical: the linear model
- Summary





## The alternative hypothesis

Alternative: "at least one  $\beta_i \neq 0$ ": very general if p large

#### Statistical problems

**High-Dimensional Alternatives** 

- Classical tests break down if p > n
- There are  $\beta \neq \mathbf{0}$  which have  $\mathbf{r} = X\beta = \mathbf{0}$ 
  - → it is impossible to have power against all alternatives





## Focus the power

**High-Dimensional Alternatives** 

- Focus the power using a distribution on  $\beta$ :
- Larger density of β
  - = alternative  $\beta$  is more interesting to detect

#### **General Unprejudicedness Assumptions:**

- Alternative  $\beta$  as interesting as  $-\beta$
- ② Alternative  $\beta$  as interesting as permutation  $\pi(\beta)$





## Focus the power

- Focus the power using a distribution on  $\beta$ :
- ullet Larger density of eta
  - = alternative  $\beta$  is more interesting to detect

#### **General Unprejudicedness Assumptions:**

- Alternative  $\beta$  as interesting as  $-\beta$
- ② Alternative  $\beta$  as interesting as permutation  $\pi(\beta)$ 
  - Consequence: take  $\beta$  with  $E(\beta) = 0$  and  $E(\beta \beta') = \tau^2 I$
  - The distribution of  $\beta$  may have any shape
    - → We don't want to assume any shape





## Marginal model

- Let  $L(\beta; y)$  be the likelihood of  $\beta$  for given y
- Let  $E_{\beta|\tau^2}(\cdot)$  denote the expectation over the chosen distribution of  $\beta$  for given  $\tau^2$
- The marginal density of y is then

$$\bar{\mathbf{L}}(\tau^2; \mathbf{y}) = \mathbf{E}_{\boldsymbol{\beta}|\tau^2} \{ \mathbf{L}(\boldsymbol{\beta}; \mathbf{y}) \}$$

which can be interpreted as the likelihood of  $\tau^2$  in a new marginal model of y

• In the new model, rejecting  $H_0: \tau^2 = 0$  implies rejecting the old  $H_0: \beta = \mathbf{0}$  as the two imply the same distribution of y





## A model with random regression coefficients

Inference via the marginal model: integrate  $\beta$  out  $\rightarrow p$  parameters in  $\beta$  become one parameter  $\tau^2$ 

#### **New alternative**

**High-Dimensional Alternatives** 

Test  $H_0$ :  $\tau^2 = 0$  against  $H_A$ :  $\tau^2 > 0$ 





## A model with random regression coefficients

Inference via the marginal model: integrate  $\beta$  out  $\rightarrow p$  parameters in  $\beta$  become one parameter  $\tau^2$ 

#### **New alternative**

Test  $H_0: \tau^2 = 0$  against  $H_A: \tau^2 > 0$ 

#### **Model interpretation 1: Empirical Bayes**

Look at the distribution of  $\beta$  as a prior to Inference on  $\beta$  goes through hyperparameter  $\tau^2$ 





# A model with random regression coefficients

Inference via the marginal model: integrate  $\beta$  out  $\rightarrow p$  parameters in  $\beta$  become one parameter  $\tau^2$ 

#### **New alternative**

Test  $H_0$ :  $\tau^2 = 0$  against  $H_A$ :  $\tau^2 > 0$ 

#### Model interpretation 2: Penalized likelihood

ullet The distribution of eta gives a penalty to the likelihood

$$\log L(y, \beta) = \log L(y|\beta) + \log L(\beta)$$

- Do maximum likelihood on penalized likelihood
- Normal β: Ridge regression
- Double exponential β: LASSO



# A model with random regression coefficients

Inference via the marginal model: integrate  $\beta$  out  $\rightarrow p$  parameters in  $\beta$  become one parameter  $\tau^2$ 

#### **New alternative**

Test  $H_0: \tau^2 = 0$  against  $H_A: \tau^2 > 0$ 

#### Model interpretation 3: Random effects model

- $\beta$  random  $\rightarrow$  linear predictor  $\mathbf{r} = X\beta$  random
- Moments:  $E(\mathbf{r}) = \mathbf{0}$ ;  $E(\mathbf{r}\mathbf{r}') = XX'$
- Look at  $r_1, \ldots, r_n$  as a random subject effect
- Similar gene expressions → correlated random effect
- Similar gene expressions → correlated response





## The Neyman Pearson Lemma

• Why integrate out the  $\beta$  parameters?

#### The Neyman-Pearson lemma:

The likelihood ratio test of  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta = \beta_A$  has optimal power to detect  $H_A$  among all tests of at most the same size





**High-Dimensional Alternatives** 

## The Neyman Pearson Lemma

• Why integrate out the  $\beta$  parameters?

#### The Neyman-Pearson lemma:

The likelihood ratio test of  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta = \beta_A$  has optimal power to detect  $H_A$  among all tests of at most the same size

#### **Corollary to Neyman-Pearson:**

The likelihood ratio test of  $H_0: \tau^2 = 0$  against  $H_A: \tau^2 = \tau_A^2$  has optimal expected power to detect  $H_A: \beta = \beta_A$  among all tests of at most the same size  $\alpha$ 

• Expectation is taken over the distribution of  $\beta_A$  under  $H_A$ 





## The Neyman Pearson Lemma

• Why integrate out the  $\beta$  parameters?

#### The Neyman-Pearson lemma:

The likelihood ratio test of  $H_0: \beta = \mathbf{0}$  against  $H_A: \beta = \beta_A$  has optimal power to detect  $H_A$  among all tests of at most the same size

#### **Corollary to Neyman-Pearson:**

The likelihood ratio test of  $H_0: \tau^2=0$  against  $H_A: \tau^2=\tau_A^2$  has optimal expected power to detect  $H_A: \beta=\beta_A$  among all tests of at most the same size  $\alpha$ 

- Expectation is taken over the distribution of  $\beta_A$  under  $H_A$
- Drawback: distribution of  $\beta$  must be fully specified



**High-Dimensional Alternatives** 

- Score test always one-sided:  $H_0: \theta = 0$  against  $H_A: \theta > 0$
- Score test = limit for  $\theta_1 \downarrow 0$  of the LR test of  $H_0$  against  $H_{\Delta}: \theta = \theta_1$





**High-Dimensional Alternatives** 

- Score test always one-sided:  $H_0: \theta = 0$  against  $H_A: \theta > 0$
- Score test = limit for  $\theta_1 \downarrow 0$  of the LR test of  $H_0$  against  $H_A : \theta = \theta_1$
- Test statistic:

$$\lim_{\theta_1\downarrow 0} \frac{\log L(\theta_1) - \log L(0)}{\theta_1} = \frac{d}{d\theta} log L(0)$$





- Score test always one-sided:  $H_0: \theta = 0$  against  $H_A: \theta > 0$
- Score test = limit for  $\theta_1 \downarrow 0$  of the LR test of  $H_0$  against  $H_A : \theta = \theta_1$
- Test statistic:

$$\lim_{\theta_1\downarrow 0} \frac{\log L(\theta_1) - \log L(0)}{\theta_1} = \frac{d}{d\theta} \log L(0)$$

Score test also "locally most powerful test"

#### **Corollary 2 to Neyman-Pearson:**

The score test of  $H_0: \theta=0$  has optimal slope of the power function in  $\theta=0$  among all tests of at most the same size





- Score test always one-sided:  $H_0: \theta = 0$  against  $H_A: \theta > 0$
- Score test = limit for  $\theta_1 \downarrow 0$  of the LR test of  $H_0$  against  $H_A : \theta = \theta_1$
- Test statistic:

$$\lim_{\theta_1\downarrow 0} \frac{\log L(\theta_1) - \log L(0)}{\theta_1} = \frac{d}{d\theta} \log L(0)$$

Score test also "locally most powerful test"

#### **Corollary 2 to Neyman-Pearson:**

The score test of  $H_0: \theta = 0$  has optimal slope of the power function in  $\theta = 0$  among all tests of at most the same size

• Practical advantage: no need to estimate  $\theta$ 



# The locally most powerful test

- Back to our model with random parameters
- Instead of a Likelihood Ratio test we do a score test





## The locally most powerful test

- Back to our model with random parameters
- Instead of a Likelihood Ratio test we do a score test

#### **Corollary 3 to Neyman-Pearson:**

The score test of  $H_0: \tau^2=0$  against  $H_A: \tau^2>0$  has optimal expected slope of the power function in  $\beta=\mathbf{0}$  among all tests of at most the same size

- Expectation is w.r.t. uniformly choosing a random direction in p-space
- Practical advantage: no need to estimate  $\tau^2$





# The high dimensional score test statistic

- Test statistic is S=S(0) with  $S( au^2)=rac{\mathrm{d}}{\mathrm{d} au^2}\log\mathrm{E}_{eta| au^2}L(eta;y)$
- Is equal to:

$$S = \frac{1}{2}s's - \frac{1}{2}\operatorname{trace}(\mathbf{I})$$

- $s = \frac{\partial}{\partial \beta} \log L(0; y)$ , the score of  $\beta$ •  $I = -\frac{\partial^2}{\partial \beta \partial \beta'} \log L(0; y)$  is the observed Fisher inform. of  $\beta$
- Nice properties:
  - —Easy: no evaluation of p-dimensional integrals
  - —Test statistic only depends on the first two moments of  $\beta$





## The high dimensional score test statistic

- Test statistic is S=S(0) with  $S( au^2)=rac{\mathrm{d}}{\mathrm{d} au^2}\log\mathrm{E}_{eta| au^2}L(eta;y)$
- Is equal to:

$$S = \frac{1}{2}s's - \frac{1}{2}\operatorname{trace}(I)$$

- $s = \frac{\partial}{\partial \beta} \log L(0; y)$ , the score of  $\beta$ •  $I = -\frac{\partial^2}{\partial \beta \partial \beta'} \log L(0; y)$  is the observed Fisher inform. of  $\beta$
- Nice properties:
  - —Easy: no evaluation of p-dimensional integrals
  - —Test statistic only depends on the first two moments of  $\beta$
- Difficult part: What is the distribution of S?
  - —Solved for linear (exact), GLM, Cox PH (asymptotic)
  - -Alternative: permutations





#### **Outline**

**High-Dimensional Alternatives** 

- **High-Dimensional Alternatives**
- A Locally Most Powerful Test
  - A random regression coefficient model
- **Applications** 
  - Theoretical: the linear model
- **Summary**





## Back to the linear model

- What is the locally most powerful test in the linear model?
- Get rid of the nuisance parameter  $\sigma^2 \rightarrow$  profile likelihood
- For  $\beta$  with  $E\beta = 0$  and  $E(\beta\beta') = \tau^2 I$ :

$$S = \frac{y'XX'y}{y'y}$$

• For  $\beta$  with  $E\beta = \mathbf{0}$  and  $E(\beta\beta') = \tau^2\Sigma$ : Score test statistic:

$$S_{\Sigma} = \frac{y' X \Sigma X' y}{y' y}$$





#### The F-test revisited

- The F-test is only defined when p < n
- Equivalent test statistic  $F = \frac{y'X(X'X)^{-1}X'y}{y'y}$  (beta distributed)





## The F-test revisited

- The F-test is only defined when p < n
- Equivalent test statistic  $F = \frac{y'X(X'X)^{-1}X'y}{y'y}$  (beta distributed)

#### The F-test as a score test

F-test is equivalent to a score test with  $\Sigma = (X'X)^{-1}$ 

- S = F in an orthogonal design (i.e.  $X'X \propto I$ )
- F-test optimizes power over a prior for  $\beta$  with  $E(\beta\beta') = \tau^2(X'X)^{-1}$  (g-prior) for  $\tau^2$  small





## **Outline**

- High-Dimensional Alternatives
- A Locally Most Powerful Test
  - A random regression coefficient model
  - Derivation of the test statistic
- Applications
  - Theoretical: the linear model
- Summary





## Discussion: gene expression data

#### Analyzing micorarray data in terms of pathways

- Enables use of prior biological knowledge
- Alleviates the multiple testing problem
- Gives better reproducible results across platforms
- Global Test opens door to real inference:
  - $\rightarrow$  testing hypotheses on biological mechanisms based on theory or past research





## Discussion: high dimensional testing

#### A locally most powerful test in high dimensions

- Useable whatever the dimensionality
- Good power against interesting alternatives
- Useful applications in and outside microarray data analysis
- Applicable in survival analysis and generalized linear models





## Read more?









