

Propositions and logical operations Main concepts: • propositions • truth values • propositional variables • logical operations

Propositions and logical operations

- A proposition is the most basic element of logic
- It is a declarative sentence that is either true or false

Propositions and logical operations

Examples of propositions:

- Grass is green.
- The Moon is made of green cheese.
- Sacramento is the capital of California.
- 1 + 0 = 1
- 0 + 0 = 2

Propositions and logical operations

Examples that are **not** propositions

- Sit down!
- · What time is it?
- x + 1 = 2
- x + y > z

Propositions and logical operations

- Every proposition has a truth value (T or F)
- The value may be:
 - known/widely accepted as true
 - known/widely accepted as false
 - unknown
 - a matter of **opinion** (true for some people)
 - or even a false belief

Propositions and logical operations

• All these are propositions:

Proposition	Truth value
1 + 1 = 2	True
1 + 1 = 1	False
It will rain tomorrow	Unknown
Logic is boring	Opinion
The sun orbits around the earth	False belief

Constructing Propositions

- To avoid writing long propositions we use propositional variables
- A propositional variable is typically a single letter (p, q, r, ...)
- It can denote arbitrary propositions
- Examples:
 - p: it is raining
 - p represents the proposition "it is raining"
 - q: the streets are wet
 - q represents the proposition "the streets are wet"

Compound Propositions

- A logical operation combines propositions using certain rules
- Example:
 - The operation denoted by "A" means "and"
 - "p ∧ q" means "it is raining and the streets are wet"
 - If both p and q are true then p ∧ q is true
 - If either p or q (or both) are false then p \wedge q is false
- "A" is called the **conjunction**

Constructing Propositions

- Operations to construct compound propositions:
 - Conjunction ∧ AND
 - Disjunction V OR
 - Negation ¬ NOT
 - Implication \rightarrow IF-THEN
 - Biconditional ↔ IFF

Truth Tables

- Any proposition can be represented by a truth table
- It shows truth values for all combinations of its constituent variables
- Example: proposition r involving 2 variables p and q

all possible c of truth value		truth values of compound proposition r
р	q	r
true	true	
true	false	
false	true	
false	false	

Conjunction

- The **conjunction** of propositions p and q is denoted by $p \wedge q$
- Its truth table is:

р	q	рΛq
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Example:

- p: I am at home
- q: It is raining
- p ∧ q: I am at home **and** it is raining

Disjunction

- The disjunction of propositions p and q is denoted by p V q
- Its truth table is:

р	q	рVq
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example:

- p: I am at home
- q: It is raining
- p V q: I am at home or it is raining

Ambiguity of "or" in English

- In natural languages "or" has two distinct meanings
- Inclusive Or:
 - $\bullet \ p \ \lor q \ \ \text{is true if either} \ p \ \ \text{or} \ q \ \ \text{or} \ \text{both} \ \text{are true}$
- Example:
 - "Math 10a or Math 12 may be taken as a prerequisite for CS 6"
 - · Meaning: take either one but may also take both

Ambiguity of "or" in English

- Exclusive Or (Xor)
 - Denoted as "⊕"
 - $p \oplus q$ is true if either p or q but **not both** are true

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Example:

- "Soup or salad comes with this entrée"
- Meaning: do not expect to get both

Negation

- The **negation** of a proposition p is denoted by ¬p
- Its truth table is:

Example:

- p: The earth is round
- ¬p: It is **not true** that the earth is round
 or more simply: The earth is **not** round

Constructing truth tables

- · A proposition can involve any number of variables
- Each row corresponds to a possible combination of variables
- With n variables the truth table has:
 - n+1 columns (1 for each of the n variables and 1 for the compound expression)
 - 2ⁿ rows (plus a header)

Constructing truth tables

- To construct the truth table for a given proposition:
 - 1. Create a table with 2ⁿ rows and n+1 columns
 - 2. Fill in the first n columns with all possible combinations
 - 3. Determine and enter the truth value for each combination

Conditional statements

- If p and q are propositions then
 - $p \rightarrow q$ is a conditional statement or implication
- It means: if p then q
- p is the **hypothesis** (premise) and q is the **conclusion** (consequence)
- Example:
 - p: It is raining
 - q: The streets are wet
 - $p \rightarrow q$: If it is raining then streets are wet
- From a false premise anything can be implied!

р	q	$p \rightarrow q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

Understanding Implication

- View logical conditional as an obligation or contract:
- Example: "If you get 100% on the final then you will earn an A"

 $p \rightarrow q$

1	q: earn A	¬q: don't get A
p: get 100%	$p \rightarrow q = T$	$p \rightarrow q = F$
¬p: don't get 100%	$p \rightarrow q = T$	$p \rightarrow q = T$

- F → T does **not** violate the contract
- The **only** time the contract is broken is when $T \rightarrow F$

Understanding Implication

- In $p \rightarrow q$ there may not be any **connection** between p and q
- Examples of valid but counterintuitive implications:
 - If the moon is made of green cheese then you get a PhD in physics
 - True!
 - If Juan has a smartphone then 2 + 3 = 6:
 - False if Juan does have a smartphone
 - True if he does NOT

Different Ways of Expressing $p \rightarrow q$ if p then q If it's raining then streets are wet if p, q If it's raining, streets are wet p implies q Rain implies that streets are wet p only if q q if p q **when** p Streets are wet when it's raining q whenever p Streets are wet whenever it's raining q follows from p Streets being wet follows from there being a rain p is sufficient for q q is necessary for p

Different Ways of Expressing $p \rightarrow q$

 $p \rightarrow q$: It is raining \rightarrow streets are wet Which statements are equivalent?

q if p	Streets are wet if it's raining = T	
q only if p	Streets are wet only if it's raining = F	
p if q	It's raining if streets are wet = F	
p only if q	It's raining only if streets are wet = T	

Last statement is awkward but consider a different example: (n is even \rightarrow n+1 is odd) \equiv (n is even **only if** n+1 is odd)

Remember: $(q \text{ if } p) \equiv (p \text{ only if } q) \not\equiv (p \text{ if } q) \equiv (q \text{ only if } p)$

Sufficient versus Necessary

p is sufficient for q
Rain is sufficient for streets being wet

q is necessary for p

Wet streets are necessary for there being rain

- "Necessary condition" is counter-intuitive in English
- It suggest that wet streets are a requirement for rain
- Better: implicitly read "necessary result of" or "necessary consequence of"

Converse, Inverse, Contrapositive

• From $p \rightarrow q$ we can form new conditional statements:

q o p is the **converse** of p o q $\neg p o \neg q$ is the **inverse** of p o q $\neg q o \neg p$ is the **contrapositive** of p o q

- How are these statements related to the original?
- How are they related to each other?
- Are any of them equivalent?

Converse, Inverse, Contrapositive

- Example
 - implication: it's raining → streets are wet True
 - converse: streets are wet → it's raining False
 - 3. inverse: it's not raining → streets are not wet False
 - contrapositive: streets are not wet → it's not raining
 True

Only 1 = 4 and 2 = 3

Biconditional

- The biconditional proposition p ↔ q means: p if and only if q
- Other ways to say this:
 - p iff q
 - if p then q, and conversely
 - p is necessary and sufficient for q

р	q	$p \leftrightarrow q$
Т	Т	T
Т	F	F
F	Т	F
F	F	Т

Biconditional

- Example
 - p: You buy an airline ticket
 - q: You can take a flight
 - $p \leftrightarrow q : \mbox{You can take a flight iff you buy an airline ticket}$
 - True only if you do both or neither
 - Doing only one or the other makes the proposition false

Compound Propositions

- All logical operations can be applied to build up arbitrarily complex compound propositions
- Any proposition can become a term inside another proposition
- Examples:
 - p, q, r, t are simple propositions
 - p V q and $r \rightarrow t$ combine simple propositions
 - (p ∨ q) → t and (p ∨ q) ∧ (t ∨ r) combine simple and compound propositions into more complex compound propositions
- · Parenthesis indicate the order of evaluation

Precedence of Logical Operations

To reduce number of parentheses use precedence rules

Operation	Precedence
٦	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Examples:

- p ∨ q ∧ r means: p ∨ (q ∧ r)
- (p V q) \wedge r requires the parentheses
- $p \lor q \rightarrow \neg r$ means: $(p \lor q) \rightarrow (\neg r)$
- $p \lor (q \rightarrow \neg r)$ requires parentheses

Logical Equivalence

• A tautology is a proposition that is always true

Example: p ∨ ¬p

р	¬р	р∨¬р
Т	F	Т
F	Т	Т

• A contradiction is a proposition that is always false

Example: p ∧ ¬p

р	¬р	р∧¬р
Т	F	F
F	Т	F

Equivalent Propositions

- Two propositions are logically equivalent if they always have the same truth value
- We write this as $p \equiv q$
- Formally:

p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology

Showing Equivalence

- One way to determine equivalence is to use truth tables
- **Example**: show that $\neg p \lor q$ is equivalent to $p \to q$

р	q	¬р	¬р∨q	$p \rightarrow q$
Т	Т	F		
Т	F	F		
F	Т	Т		
F	F	Т		

Showing Non-Equivalence

- Find at least one row where values differ
- **Example**: Show that neither the *converse* nor the *inverse* of an implication are equivalent to the implication

р	q	¬р	¬q	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$
Т	Т	F	F	Т		
Т	F	F	Т	F		
F	Т	Т	F	Т		
F	F	Т	Т	Т		

Showing Equivalence

- Truth tables with many variable become cumbersome
- Use laws of logic to transform propositions into equivalent forms
- To prove that $p \equiv q$, produce a series of equivalences leading from p to q:

$$p \equiv p_1$$

$$p_1 \equiv p_2$$
...
$$p_n \equiv q$$

• Each step follows one of the equivalence laws

Laws of Propositional Logic

10		
Idempotent laws	$p \lor p \equiv p$	$p \wedge p \equiv p$
Associative laws	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
Commutative laws	$p \lor q \equiv q \lor p$	$p \wedge q \equiv q \wedge p$
Distributive laws	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

Laws	of	Propositiona	Logic

Identity laws	$p \vee F \equiv p$	$p \wedge T \equiv p$
Domination laws	$p \wedge F \equiv F$	$p \lor T \equiv T$
Double negation	$\neg \neg p \equiv p$	
Complement laws	$p \land \neg p \equiv F \qquad \neg T \equiv F$	$p \lor \neg p \equiv T \qquad \neg F \equiv T$

Laws of Propositional Logic

De Morgan's laws	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Absorption laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Conditional identities	$p \to q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Equivalence Proofs

Example: Show that $\neg(p \lor (\neg p \land q)) \equiv (\neg p \land \neg q)$

Solution:

$\neg(p \lor (\neg p \land q))$	given proposition
$\neg p \land \neg (\neg p \land q)$	De Morgan's law
$\neg p \land (\neg \neg p \lor \neg q)$	De Morgan's law
$\neg p \land (p \lor \neg q)$	Double negation law
$(\neg p \land p) \lor (\neg p \land \neg q)$	Distributive law
F ∨ (¬p ∧ ¬q)	Complement law
$(\neg p \land \neg q) \lor F$	Commutative law
$\neg p \land \neg q$	Identity law

Predicate Logic

- Propositional logic is not sufficient to express many concepts
- Example 1 (due to Aristotle):
 - · Given the statements:

"All men are mortal"

"Socrates is a man"

- It follows that: "Socrates is mortal"
- This can't be represented in propositional logic
- Need formalism to express objects and properties of objects

Predicate Logic

- Example 2:
 - Statements such as "x is a perfect square" are **not** propositions
 - The truth value depends on the value of x
 - I.e., the truth value is a **function** of x
- We need a more powerful formalism: Predicate logic

Predicate Logic

• Variables: x, y, z, ...

These represent objects, not propositions

- Variables take on values from a given domain
 This is the set of all possible values a variable may take
- Predicates: P, Q, ...

These express properties of objects

- Example:
 - let x be an integer (domain)
 - let P denote the property "is a perfect square"
 - then P(x) means "x is a perfect square"

Predicate Logic

- Predicates are generalizations of propositions
- They are functions that return T or F depending on their variables
- They become propositions (have truth values) when their variables are replaced by actual values
- Example:
 - let x be an integer
 - let P denote the property "is a perfect square"
 - P(9) is a true proposition, P(8) is a false

Predicate Logic

- A predicate can depend on more than one variable
- Examples:
 - Let P(x, y) denote "x > y"; then:

$$P(-3, -3) \equiv (-3 > -3)$$
 is F

$$P(1, 0) \equiv (1 > 0) \text{ is } T$$

• Let R(x, y, z) denote "x + y = z"; then:

$$R(2, -1, 5) \equiv 2 - 1 = 5$$
 is F

$$R(3, 4, 7) \equiv 3 + 4 = 7 \text{ is } T$$

$$R(1, 3, z) \equiv 1 + 3 = z$$
 is **not** a proposition

Predicate Logic

- Logical operations from propositional logic carry over to predicate logic
- Example:

If P(x) denotes "x > 0," then:

- $P(3) \vee P(-1) \equiv (3 > 0) \vee (-1 > 0) \equiv T \vee F \equiv T$
- $P(3) \land P(-1) \equiv F$
- P(3) A P(y) is not a proposition
 It becomes a proposition when y is assigned a value or when used with quantifiers

Quantifiers

- Quantifiers express the meaning of the words all and some:
 - "All men are mortal"
 - "Some cats do not have fur"
- The two most important quantifiers are:
 - Universal Quantifier, "For all," symbol: ∀
 - Existential Quantifier, "There exists," symbol: ∃

Charles Peirce (1839-1914)

Quantifiers

- Quantifiers are applied to values in a given domain U:
- ∀x P(x) asserts that P(x) is T for every x in U
 P(x) is a universally quantified statement
- $\exists x \ P(x)$ asserts that P(x) is T for some x (at least one) in U P(x) is an existentially quantified statement
- The truth values of quantifiers depend on both the function P(x) and the domain U

Universal Quantifier

Examples:

- If P(x) denotes "x > 0" and
 U is the domain of integers, then
 ∀x P(x) ≡ F
- If P(x) denotes "x > 0" and
 U is the domain of positive integers, then
 ∀x P(x) ≡ T

Existential Quantifier

Examples:

- If P(x) denotes "x < 0" and
 U is integers, then
 - $\exists x P(x) \equiv T$
- If P(x) denotes "x < 0" and
 U is positive integers, then

$$\exists x P(x) \equiv F$$

Quantifiers

- A proposition with ∀ is equivalent to a conjunction of propositions without quantifiers
 - $\forall x P(x) \equiv P(a_1) \land P(a_2) \land ... \land P(a_n)$ where $\{a_1, a_2, ..., a_n\}$ is the domain
- A proposition with \exists is equivalent to a **disjunction** of propositions without quantifiers
 - $\exists x P(x) \equiv P(a_1) \lor P(a_2) \lor ... \lor P(a_n)$ where $\{a_1, a_2, ..., a_n\}$ is the domain
- Even if the domains are **infinite**, we can still think of the quantifiers in this way

Quantified Statements

- Logical operations from propositional logic $(\neg \land \lor \rightarrow \leftrightarrow)$ can also be applied to quantified statements
- Example:

```
If P(x) denotes "x > 0" and Q(x) denotes "x is even" then:

\exists x \ (P(x) \land Q(x)) \equiv T

\forall x \ (P(x) \Rightarrow Q(x)) \equiv F
```

Quantified Statements

- Quantifiers are applied **before** other logical operations
- Example:

U: integers

P(x): "x is even"

Q(x): "x is divisible by 2"

 $\forall x (P(x) \rightarrow Q(x))$:

"for all integers x, if x is even then x is divisible by 2"

 $\forall x P(x) \rightarrow Q(x)$:

"if all integers are even then x is divisible by 2" (x undefined)

Quantified Statements

- A variable is free if it can take on any value
- A variable is **bound** if it is within the scope of a quantifier
- Examples:

 $\exists x P(x)$

x is bound

the expression is a proposition

 $\exists x \ Q(x, y), \exists x \ P(x) \land R(y)$

x is bound but y is free

these expressions are not propositions

Translating Quantified Statements

- Given a statement in natural language
 - determine the domain U
 - define predicates to capture the attributes of the statement
 - apply quantifiers and logical operations to form an expression

Translating Quantified Statements

Example 1: Translate: "Every student has taken a course in Java."

- The solution will depend on the choice of the domain
- Solution 1: U = {all students}

define J(x) as: "x has taken a course in Java"

translation: $\forall x J(x)$

• Solution 2: U = {all people}

define S(x) as: "x is a student" and J(x) as before

result: $\forall x (S(x) \rightarrow J(x))$.

• Note: $\forall x (S(x) \land J(x))$ is **not** correct. What does it mean?

Translating Quantified Statements

Example 2: Translate: "Some student has taken a course in Java."

- Solution again depends on the choice of domain
- Solution 1:

If U = {all students} then $\exists x J(x)$

Solution 2:

If U = {all people} then $\exists x (S(x) \land J(x))$

• Note: $\exists x (S(x) \rightarrow J(x))$ is **not** correct. What does it mean?

Negating Quantified Expressions

• De Morgan's Laws for negating quantifiers:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

· What is the intuition behind these laws?

Negating Quantified Expressions

- Example 1: "Every student has taken a course in Java"
 - U = {students}
 - J(x): "x has taken a course in Java"
 - statement: $\forall x J(x)$
- Negation: "It is not the case that every student has taken Java"
 - $\neg \forall x J(x)$
- This implies that: "There is a student who has not taken Java"

$$\exists x \neg J(x)$$

Negating Quantified Expressions

- Example 2: "There is a student who has taken a course in Java" $\exists x \ J(x)$
- Negation: "It is not true that there is a student who has taken Java" $\neg \exists x \ J(x)$
- This implies that: "No student has taken Java" $\forall x \, \neg J(x)$

Nested Quantifiers

- Needed to express statements with multiple variables
- Example 1: quantifiers of the same type
 "x + y = y + x for all real numbers"
 ∀x∀y (x + y = y + x)
 where the domains of x and y are real numbers
- Example 2: quantifiers of different type "Every real number has an inverse" $\forall x \exists y \ (x+y=0)$ where the domains of x and y are real numbers

Nested Quantifiers

Nested Quantifiers	When True
∀x∀y P(x, y)	P(x, y) is true for every pair x, y
$\exists x \exists y \ P(x, y)$	There is a pair x, y for which P(x, y) is true
∀x∃y P(x, y)	For every x there is a y for which P(x, y) is true
∃x∀y P(x, y)	There is an x for which P(x, y) is true for every y

Order of Quantifiers

- With quantifiers of the same type, order does not matter
- Example 1: nested universal quantifiers

$$P(x, y)$$
: "x + y = y + x"

P(x, y) is true for any pair of x and y

I.e.,
$$\forall x \forall y \ P(x, y) \equiv T$$

$$\equiv \forall y \forall x P(x, y) \equiv T$$

Order of Quantifiers

• Example 2: nested existential quantifiers

```
U = {integers}

P(x, y, z): "x^2 + y^2 = z^2"

P(x, y, z) is true for (3, 4, 5)

I.e., \exists x \exists y \exists z P(x, y, z)

\equiv \exists z \exists y \exists x P(x, y, z)

\equiv \exists x \exists z \exists y P(x, y, z) \equiv ... \equiv T
```

Order of Quantifiers

- With quantifiers of different type, order does matter
- Example

U = {real numbers}
Q(x, y): "x + y = 0"
$$\forall x \exists y \ P(x, y) \equiv T$$
because for every x there is always an inverse y
$$\exists y \forall x \ P(x, y) \equiv F$$
because for a given y not every x will add up to zero

Negating Nested Quantifiers

- · Apply De Morgan's laws successively from left to right
- Example:

```
\neg \exists x \ \forall y \ \exists z \ P(x, y, z) \equiv
\equiv \forall x \ \neg \forall y \ \exists z \ P(x, y, z)
\equiv \forall x \ \exists y \ \neg \exists z \ P(x, y, z)
\equiv \forall x \ \exists x \ \forall z \ \neg P(x, y, z)
```

- In general:
 - move negation to the right past all quantifiers
 - replace each \exists with \forall , and vice versa

Moving Quantifiers

- A quantifier can be moved to the left past expressions that do not include the quantified variable
- Example

$$\forall x \exists y (\neg L(x, y) \land \forall z ((z \neq y) \rightarrow \neg L(x, z)))$$

 $\forall x \exists y \forall z (\neg L(x, x) \land ((z \neq y) \rightarrow \neg L(x, z)))$

Translating Complex Statements

Follow these steps as appropriate:

- 1. Determine domains of variables
- 2. Rewrite the statement to make "for all" and "there exists" explicit
- 3. Introduce variables and define predicates
- 4. Introduce quantifiers and logical operations

Translating Complex Statements

Example 1: A mathematical statement

"The sum of two positive integers is always positive"

- 1. The domain:
 - positive integers
- 2. Rewrite the statement:

"For every two positive integers, their sum is positive"

- 3. Introduce variables and predicate:
 - "For all positive integers x and y, x + y is positive"
- 4. Introduce quantifiers and logical operations:

$$\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$$

Translating Complex Statements

Example 2: "Brothers are siblings"

- 1. Domain: all people
- 2. Rewrite:

"for any two people, if they are brothers then they are siblings"

- 3. Variables and predicates:
 - B(x, y): "x and y are brothers"
 - S(x, y): "x and y are siblings"
- 4. Quantifiers and logical operations:

$$\forall x \forall y (B(x, y) \rightarrow S(x, y))$$

Translating Complex Statements

- Example 3: "Everybody loves somebody"
 - Domain: all people
 - Variables and Predicate: L(x, y): "x loves y"
 - Expression: $\forall x \exists y \ L(x, y)$
- Example 4: "There is someone who is loved by everyone"
 - $\exists y \forall x L(x, y)$
- Example 5: "There is someone who loves someone"
 - $\exists x \exists y \ L(x, y)$
- Example 6: "Everyone loves himself/herself"

$$\forall x L(x, x)$$

Excluding Self

Previous example: "Everybody loves somebody": $\forall x \exists y \ L(x, y)$

• This allows for L(x, x)

	а	b	С
а	F	Т	F
b	F	T	Т
С	F	F	Т

- How to express: "Everybody loves somebody else"
 (i.e., at least one other person)
- · How to exclude self

Excluding Self

"Everybody loves somebody else"

 $\forall x \exists y ((x \neq y) \land L(x, y))$

	а	b	С
а	F	Т	F
b	F	Т	Т
С	F	Т	Т

- Everybody loves at least one other person
- but it does not **exclude** self: L(x, x)

Excluding Self

• "Everybody loves somebody other than self"

 $\forall x \exists y (L(x, y) \land \neg L(x, x))$

	а	b	С
а	F	Т	F
b	F	F	Т
С	Т	Т	F

- Note: this allows multiple y's for any x
- How to express: "Exactly one"

Excluding Multiples

"Everybody loves exactly one other person (not self)"

 $\forall x \exists y (L(x, y) \land \forall z ((z \neq y) \rightarrow \neg L(x, z)))$

а		b	С
a	F	Т	F
b	F	F	Т
С	F	Т	F

• Move quantifier to the front:

$$\forall x \exists y \forall z \ (L(x, y) \land ((z \neq y) \rightarrow \neg L(x, z)))$$

Exclude Self w/ Universal Quantifiers

Example: "Everybody loves everybody"

 $\forall x \forall y L(x, y)$

	а	b	С
а	Т	Т	Т
b	Т	Т	Т
С	Т	Т	Т

• How to express: "Everybody loves everybody else" (excluding self)

Exclude Self w/ Universal Quantifiers

Example: "Everybody loves everybody else"

$$\forall x \forall y ((x \neq y) \rightarrow L(x, y))$$

	а	b	С
а	?	Т	Т
b	Т	?	Т
С	Т	Т	?

- Diagonal could be T or F
- How to exclude self

Exclude Self w/ Universal Quantifiers

Example: "Everybody loves everybody else" (and not self)

$$\forall x \forall y \ (\ (\ (x \neq y) \rightarrow L(x, y)\) \land \neg L(x, x)\)$$

	а	b	С
a	F	Т	Т
b	Т	F	Т
С	Т	Т	F

Logical Reasoning

- Logic allows us to formally prove logical statements
- An **argument** is a sequence of propositions, where:
 - All but the final proposition are hypotheses (or premises)
 - The last statement is the conclusion
- The argument is **valid** if the hypotheses **imply** the conclusion

Logical Reasoning

Example

- hypotheses:
 - "All men are mortal"
 - "Socrates is a man"
- conclusion:
 - "Socrates is mortal"

Argument Forms

- To avoid natural language we use argument forms
 - abstract formulation of an argument
 - uses propositional variables
 - it is true regardless of its instantiation

Argument Forms

Example

Natural language argument	Argument form
If it is raining then streets are wet	$p \rightarrow q$
It is raining	p
∴ Streets are wet	∴ q

· Any argument that matches the form is valid

Natural language argument	Argument form
If you study then you pass the course	$p \rightarrow q$
You study	<u>p</u>
∴ You pass the course	∴ q

Logical Reasoning

• Formal notation of an argument

 p_1

• hypotheses are above the line

 p_2

• conclusion is below the line

 $\frac{\mathsf{p}_{\mathsf{n}}}{\mathrel{\therefore} \mathsf{c}}$

• the symbol "∴" reads: therefore

How can we conclude c from some combination of the p_i's

Logical Reasoning

- Truth tables can establish validity of an argument
- $p \rightarrow q$

• make one column for each variable

p V q

• fill in all **combinations** of T/F values

- ∴q
- make one column for each hypothesis (fill in T/F)
- make one column for the **conjunction** of all hypotheses
- if the conjunction implies the conclusion, the argument is valid

p q	$p \rightarrow q$	p∨q	$(p \rightarrow q) \land (p \lor q)$
: :		:	

Logical Reasoning

Example

you work hard → you become successful you are successful

 $\mathsf{p}\to\mathsf{q}$

q · n

∴ you worked hard

	10° Committee (10° Co				
р	q	$p \rightarrow q$	$(p \rightarrow q) \land q$		
Т	Т	Т	Т		
Т	F	F	F		
F	Т	Т	Т		
F	F	Т	F		

Argument is not valid

Rules of Inference

To avoid truth tables we construct logical proofs:

- sequences of steps leading from hypotheses to conclusions
- at each step we may apply rules of inference:
 - simple argument forms shown to be true (e.g. using truth tables)
 - they become building blocks in constructing incrementally more complex arguments

Modus Ponens

 $p \rightarrow q$

р

Example:

p: "It is snowing"

q: "I will study math"

"If it is snowing then I will study math"

"It is snowing"

"Therefore I will study math"

Modus Tollens

 $p \rightarrow q$

Example:

p: "It is snowing"

q: "I will study math"

"If it is snowing, then I will study math"

"I will not study math"

"Therefore, it is not snowing"

Conjunction

Example:

<u>q</u> ∴ p ∧ q

p: "I will study math"

q: "I will study literature"

"I will study math"

"I will study literature"

"Therefore, I will study math and literature"

Simplification

 $p \wedge q$ ∴q

Example:

p: "I will study math"

q: "I will study literature"

"I will study math and literature"

"Therefore, I will study math"

Addition

Example:

p: "I will study math"

q: "I will visit Las Vegas"

"I will study math"

"Therefore, I will study math or I will visit Las

Vegas"

Hypothetical Syllogism

 $\mathsf{p}\to\mathsf{q}$

Example:

 $q \rightarrow r$

p: "It snows"

q: "I will study math"

r: "I will get an A"

"If it snows, then I will study math"
"If I study math, then I will get an A"

"Therefore, if it snows, I will get an A"

Disjunctive Syllogism

p V q

Example:

_b

p: "I will study math" q: "I will study literature"

"I will study math or I will study literature"

"I will not study math"

"Therefore, I will study literature"

Resolution

pVq

 $\neg p V r$

∴qVr

Example:

p: "It is sunny"

q: "It is raining"

r: "It is snowing"

"It is sunny or it is raining"

"It is not sunny or it is snowing"

"Therefore, it is raining or it is snowing"

Valid Arguments

- To show an argument is valid we construct a logical proof:
 - sequence of steps where each step can be:
 - · a hypothesis, or
 - it must **follow** from previous steps by applying:
 - rules of inference, and
 - · laws of logic
 - each step must be properly justified
 - if the last step is the conclusion then the argument is valid

Valid Arguments

- If argument is in English then first transform it into an argument form
 - Choose a variable for each simple proposition
 - Replace each English phrase by corresponding logical expression
 - Write argument form in formal notation

Valid Arguments

Example

Hypotheses:

"It is not sunny and it is colder than yesterday"

 $\neg p \land q$

• "We will go swimming only if it is sunny"

 $r \rightarrow p$

"If we do not go swimming, then we will take a canoe trip"

 $\neg r \rightarrow s$

• "If we take a canoe trip, then we will be home by sunset"

 $\frac{s \to t}{\cdot \cdot \cdot}$

Conclusion: "We will be home by sunset"

∴t

p: "It is sunny"

s: "We will take a canoe trip"

q: "It is colder than yesterday"

t: "We will be home by sunset"

r: "We will go swimming"

Valid Arguments

· Construct a logical proof

 $\neg p \land q$ $r \rightarrow p$ $\neg r \rightarrow s$ $s \rightarrow t$ $\therefore t$

	step	justification	
1.	¬р∧ q	Hypothesis	
2.	¬р	Simplification, 1	
3.	$r \rightarrow p$	Hypothesis	
4.	¬r	Modus Tollens, 2, 3	
5.	$\neg r \rightarrow s$	Hypothesis	
6.	S	Modus ponens, 4, 5	
7.	$s \rightarrow t$	Hypothesis	
8.	t	Modus ponens, 6, 7	

Rules of Inference with Quantifiers

- Before rules of inference can be applies, quantifiers must be removed
 - ∀x P(x) means that P is true for all elements of the domain we can assume an arbitrary element c and assert that P(c) is true
 - ∃x P(x) means that P is true for some element of the domain we can assume a **particular** element c and assert that P(c) is true
 - Based on these observations we can derive rules of inference to remove or reintroduce quantifiers

Universal Instantiation (UI)

c is an element of the domain $\forall x P(x)$ $\therefore P(c)$

• Example:

domain = {all dogs}

1. "Fido is a dog"

Hypothesis

2. "All dogs are cuddly"

Hypothesis

3. "Therefore, Fido is cuddly"

UI, 1, 2

• This rule removes the universal quantifier

Universal Generalization (UG)

c is an arbitrary element of the domain P(c)

 $\overline{\cdot \cdot \forall x P(x)}$

• Example:

H = {all horses}

1. let h be an element of H

Hypothesis

2. Herbivore(h)

Hypothesis

3. $\forall x \text{ Herbivore}(x)$

UG, 1, 2

• This rule **introduces** a universal quantifier

Existential Instantiation (EI)

$\exists x P(x)$

∴ (c is a particular element of the domain – a constant) ∧ P(c)

• Example:

S = {all students in the course}

1. "There is someone who got an A in the course" Hypothesis

2. Introduce a constant c:

"c is an element of S and c got an A" EI, 1

• This rule **removes** the existential quantifier

Existential Generalization (EG)

c is a particular element of the domain P(c)

∴ ∃x P(x)

• Example:

S = {all students in the class}

1. "Michelle is a student in the class"

Hypothesis

2. "Michelle got an A in the class"

Hypothesis

3. "Therefore, there is someone who got an A in the class" EG, 1, 2

• This rule introduces an existential quantifier

Returning to the Socrates Example

domain = {physical entities}
predicates:

Man(x): "x is a man" Mortal(x): "x is mortal"

 $\forall x (Man(x) \rightarrow Mortal(x))$ Man(Socrates)

∴ Mortal(Socrates)

	step	justification
1.	$\forall x (Man(x) \rightarrow Mortal(x))$	Hypothesis
2.	Socrates is an element of domain	Hypothesis
3.	Man(Socrates) → Mortal(Socrates)	UI, 1, 2
4.	Man(Socrates)	Hypothesis
5.	Mortal(Socrates)	MP, 3, 4