MA329 Statistical linear models

Assignment 4 (Due date: Nov 26, 11pm. For late submission, each day costs 10 percent)

1. (10 marks) Let

$$Y_1 = \theta + \epsilon_1$$

$$Y_2 = 2\theta - \phi + \epsilon_2$$

$$Y_3 = \theta + 2\phi + \epsilon_3$$

where $E[\epsilon_i] = 0$ (i = 1; 2; 3). Find the least squares estimates of θ and ϕ .

- 2. (15 marks) In order to estimate two parameters θ and ϕ , it is possible to make observations of three types:
 - (a) the first type have expectation θ ,
 - (b) the second type have expectation $\theta + \phi$, and
 - (c) the third type have expectation $\theta 2\phi$.

All observations are subject to independent normal errors with zero means and common variance σ^2 . If m observations of type (a), m observations of type (b) and n observations of type (c) are made, find the least squares estimates $\hat{\theta}$ and $\hat{\phi}$. Prove that these estimates are uncorrelated if m = 2n.

3. (15 marks) Consider the linear regression model

$$y = X_{n \times p} \beta_{p \times 1} + \epsilon$$

where $\boldsymbol{\epsilon} \sim N(\mathbf{0}; \sigma^2 \boldsymbol{I})$. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimate of $\boldsymbol{\beta}$. Define $\tilde{\boldsymbol{\beta}} = c\hat{\boldsymbol{\beta}}$ where $c \leq 1$. The mean squared error (MSE) of $\tilde{\boldsymbol{\beta}}$ is

$$MSE(\tilde{\boldsymbol{\beta}}) = E(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}).$$

- (a) Prove that $MSE(\tilde{\boldsymbol{\beta}}) = c^2 \sigma^2 tr(\boldsymbol{X}'\boldsymbol{X})^{-1} + (c-1)^2 \boldsymbol{\beta}' \boldsymbol{\beta}$.
- (b) Let c^* be the value of c such that $MSE(\tilde{\boldsymbol{\beta}})$ is a minimum. Find c^* .
- (c) Let $p=5, \sigma^2=1, \boldsymbol{\beta'}=(1;2;3;4;5)$ and the eigenvalues of $\boldsymbol{X'X}$ be 1, 2, 3, 4, 5. Evaluate c^* .
- 4. (20 marks) Let

$$oldsymbol{X} = \left[egin{array}{c} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{array}
ight], \qquad oldsymbol{Y} = \left[egin{array}{c} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{array}
ight]$$

and assume that X and X_1 have full column rank. Consider the linear model

$$oldsymbol{Y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

where $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I})$. Let $\hat{\boldsymbol{\beta}}$ be the least squares estimator of $\boldsymbol{\beta}$ and $\hat{\boldsymbol{Y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = (\hat{\boldsymbol{Y}}_1, \hat{\boldsymbol{Y}}_2)'$. Further, for the linear model

$$Y_1 = X_1 \beta^* + \epsilon^*$$

where $\boldsymbol{\epsilon}^* \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I})$, the least squares estimator of $\boldsymbol{\beta}^*$ is $\hat{\boldsymbol{\beta}}^*$. Let

$$\hat{oldsymbol{Y}}^* = oldsymbol{X} \hat{oldsymbol{eta}}^* = \left[egin{array}{c} \hat{oldsymbol{Y}}_1^* \ \hat{oldsymbol{Y}}_2^* \end{array}
ight]$$

Define

$$oldsymbol{Y} - \hat{oldsymbol{Y}} = \left[egin{array}{c} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{array}
ight] - \left[egin{array}{c} \hat{oldsymbol{Y}}_1 \ \hat{oldsymbol{Y}}_2 \end{array}
ight] = \left[egin{array}{c} oldsymbol{e}_1 \ oldsymbol{e}_2 \end{array}
ight] \ oldsymbol{Q}_1 \ oldsymbol{Q}_1 \end{array}
ight] = \left[egin{array}{c} oldsymbol{e}_1 \ oldsymbol{e}_2 \end{array}
ight]$$

$$oldsymbol{Y} - \hat{oldsymbol{Y}}^* = \left[egin{array}{c} oldsymbol{Y}_1 \ oldsymbol{Y}_2 \end{array}
ight] - \left[egin{array}{c} \hat{oldsymbol{Y}}_1^* \ \hat{oldsymbol{Y}}_2^* \end{array}
ight] = \left[egin{array}{c} oldsymbol{e}_1^* \ oldsymbol{e}_2^* \end{array}
ight]$$

(a) Prove that

$$\hat{oldsymbol{eta}}-\hat{oldsymbol{eta}}^{*}=oldsymbol{M}_{1}^{-1}oldsymbol{X}_{2}^{'}oldsymbol{e}_{2}$$

where $M_1 = X_1' X_1$.

- (b) Express e_2 in terms of e_2^* and rewrite the expression of $\hat{\beta} \hat{\beta}^*$ in Part (a)
- (c) The following is a data set with sample size = 7

For the above data and with a simple linear regression model, the parameter estimate $\hat{\boldsymbol{\beta}}^* = (6, -2)'$.

Suppose an additional observation (x, y) = (4, 4) is obtained (You now have 8 pairs of (x, y) in your updated dataset), compute the new parameter estimate $\hat{\beta}$. (Hint: use Parts (a) and (b))