Breast Cancer Type Classification

Outline

- Motivation and background information
- Data set specifications
- Machine Learning models used
- Evaluation of the model
- Results

Motivation and Background

The main goal of the project was to accurately determine whether the breast cancer is malignant or benign using a Fine Needle Aspiration procedure (FNA).

The taken sample is tinted and put under a microscope to take images that are then processed.

Characteristics such as size, shape and texture are measured from the images.

Sample Analysis

Data Set

- 569 data samples
- 357 Benign
- Splitting the data set:

 - 15 % Validation
 - 15 % Test

10.38

17.77

21.25

122.80

132.90

130.00

Ou	ilipio	01 (.110	Dut	ч	J
			an and the same			

Sa	mple of th	ie Data Sei	t					
gnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean

0.11840

0.08474

0.10960

0.27760

0.07864

0.15990

0.3001

0.0869

0.1974

0.14710

0.07017

0.12790

1001.0

1326.0

1203.0

symmetry_mean

0.2419

0.1812

0.2069

gnosis	radius_mean	texture_mea

17.99

20.57

19.69

M

M

M

70 % Training

30 features and target

212 Malignant

Data Analysis

Correlation Pair Plots

Distribution plots

Clustering using PCA

Machine Learning: Classification

Algorithm	Validation f-1		
Logistic Regression	97%		
Support Vector Machine	94%		
Naive Bayes	93%		
K-Nearest Neighbors	95%		
Decision Tree	90%		

Model selection was done over the validation set using confusion matrix and precision recall.

Logistic Regression

- The dependant variable needs to be binary (Benign or Malignant)
- Estimates the probability of of a binary response based on one or more independent variables
- Measures each independent variable's partial contribution to variations in the dependent variable
- The goal is to correctly predict the category of the outcome
- Logistic regression is like linear regression, but it's predicting probabilities between 0 and 1 instead of numbers.

Model Evaluation and Results

Confusion Matrix

Classification Report

	precision	recall	f1-score	support
В	0.98	0.96	0.97	50
М	0.95	0.97	0.96	36
avg / total	0.97	0.97	0.97	86

Model Evaluation and Results

Conclusion

- ML models can be used to classify inconclusive FNA test results with high precision
- 5 Classification ML models were applied
- The best results: Logistic Regression and K Nearest Neighbors
- All of the models above 90% accurate
- Computer are better at classifying cancer type where humans are unable to distinguish between malignant or benign.

