Informatica per le Biotecnologie Algoritmica Lezione 8

Gli alberi

Un albero è un grafo connesso aciclico

Se contiene n nodi, contiene n-1 archi

Albero binario completo

$$n = 2^h - 1 = 15$$
 $h = 4$

con questo ordinamento delle etichette dei nodi vi si esegue la ricerca binaria

Un albero radicato trasformato in binario si rappresenta con un insieme di vettori

E E L M Q E G H E

$$R = 0$$

indice i 0 1 2 3 4 5 6 7 8 9

NODO C D E F G H L P M Q

FIGL 1 2 -1 -1 -1 6 7 -1 -1 -1

FRAT -1 4 3 -1 5 -1 8 -1 9 -1

Indicazione del PADRE Valore degli ARCHI

valori degli archi: per esempio cd è il valore dell'arco C-D

Trasformazioni di un albero e impiego della lista libera LL

Inserzione di nodi


```
      R
      LL

      i
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      ...

      NODO
      C
      D
      E
      F
      G
      H
      L
      P
      M
      Q
      U
      V
      *
      *
      ...

      FIGL
      1
      2
      -1
      10
      -1
      6
      7
      -1
      -1
      -1
      -1
      -1
      +
      *
      ...

      FRAT
      -1
      4
      3
      -1
      5
      -1
      8
      -1
      9
      -1
      11
      -1
      13
      14
      ...
```

VISITA DI UN ALBERO Z

Un albero è un insieme di nodi tale che:

- un nodo di Z è destinato come radice;
- i rimanenti nodi di Z, se esistono, sono ripartiti in insiemi Z_1, \ldots, Z_m ciascuno dei quali è un albero.

CDEFGHLPMQ

PREORDER(i)

// visita in preorder del sottoalbero di radice NODO(i)

ESAMINA (NODO(i));

if $(FIGL(i) \neq -1)$ PREORDER(FIGL(I));

if $(FRAT(i) \neq -1)$ PREORDER(FRAT(I));

CHIAMATA PREORDER(R)

codice 0 1 2 3 4 5 6 7 8 9 10 11 12 nodo A<u>O</u> A1 A2 A3 A4 A5 Siam. <u>Gib</u>. Oran. Gori. <u>Scimp</u>. Neh. Homo codice 0 1 2 3 4 5 6 8 9 10 11 arco ~12 ~7 ~7 ~<u>5 ~</u>14 ~6 ~8 ~2 ~1 ~1

i	0	1	2	3	4	5	6	7	8	9	10	11	12
NODO	0	3	6	1	7	8	2	9	4	10	5	11	12
FIGL	1	2	<u>-</u> 1	5	-1	-1	7	-1	9	-1	11	-1	-1
FRAT	-1	3	4	<u>-</u> 1	-1	6	-1	8	-1	10	-1	12	-1
PADR	-1	0	1	0	1	3	3	6	6	7	8	10	10
ARCO	-1	0	1	3	2	4	5	6	7	8	9	10	11

Il primo albero filogenetico Charles Darwin, 1873: l'albero della vita

Come si costruisce un albero filogenetico

Per un insieme di n organismi esistenti e m caratteri, si costruisce una matrice di stato con organismi e caratteri rispettivamente associati alle righe e alle colonne.

	C 1	c2	с3	c 4	C 5	c 6
Α	1	1	0	0	0	0
В	0	0	0	1	1	0
С	1	1	0	0	0	1
D	0	0	1	1	0	0
Ε	1	0	0	0	0	0

Un esempio con caratteri binari:

- O indica il valore antico
- 1 Indica il valore attuale mutato

 c1
 c2
 c3
 c4
 c5
 c6

 A
 1
 1
 0
 0
 0
 0

 B
 0
 0
 0
 1
 1
 0

 C
 1
 1
 0
 0
 0
 1

 D
 0
 0
 1
 1
 0
 0

 E
 1
 0
 0
 0
 0
 0

L'albero corrispondente: sugli archi sono indicati i caratteri che hanno generato la diramazione

Definizione. Una filogenia perfetta ammette un albero T tale che, per ogni carattere c e per ogni suo stato s, l'insieme di tutti i nodi di T per cui c è nello stato s forma un sottoalbero di T

Lemma. Una matrice binaria corrisponde a una filogenia perfetta se e solo se, per ogni coppia di colonne c_i , c_j , gli insiemi U_i , U_j sono disgiunti o uno contiene l'altro.