Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра комплексной информационной безопасности электронновычислительных систем (КИБЭВС)

ИССЛЕДОВАНИЕ РАЗВЕТВЛЕННОЙ ЦЕПИ ПОСТОЯННОГО ТОКА Отчет по лабораторной работе №2 по дисциплине «Электроника и схемотехника»

Выполнили
Студенты гр. 728-2
Д.Р.Геворгян
М.С.Морошкин
Принял
Ассистент кафедры
КИБЭВС
Семенов А.С.

1 Введение

Цепью лабораторной работы является экспериментальная проверка расчетов, проводимых классическими методами (контурных токов, узловых потенциалов, наложения, двух узлов), на примере разветвленной цепи с тремя источниками питания. Вариант 13.

2 Теоретический материал

Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения. Соединение элементов электрической цепи наглядно отображается ее схемой. С электрической схемой связаны понятия ветвь, узел, контур

Ветвь – часть электрической схемы, состоящая из одного или нескольких последовательно соединенных источников и приемников энергии, ток в которых один и тот же. Ветви могут быть активными, содержащими источники энергии, и пассивными, состоящими из одних приемников.

Узел – это точка в схеме, где сходятся не менее трех ветвей.

Тогда ветвь – участок схемы от одного узла до другого узла.

Контур – любой замкнутый по ветвям схемы путь.

Закон Ома для участка цепи. В зависимости от того содержит ли исследуемый участок цепи источники энергии или нет, можно записать закон Ома в одной из двух форм.

Первое правило Кирхгофа. 1-е правило Кирхгофа сформулировано для узла. При использовании ЭВМ для ввода исходных данных узлами выделяют каждый элемент схемы замещения. Эти узлы называют ложными или устранимыми.

Алгебраическая сумма токов ветвей, сходящихся в любом узле равна нулю.

Второе правило Кирхгофа относится к контуру. Алгебраическая сумма напряжений на приемниках в любом контуре равна алгебраической сумме ЭДС, действующих в этом же контуре.

Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в не преобразованной части цепи должны оставаться неизменными, т.е. такими, каким они были до преобразования. В результате преобразований расчет цепи упрощается и часто сводится к элементарным арифметическим операциям. При использовании данного метода необходимо знать, как осуществляется преобразование при последовательном и параллельном соединении для различных элементов.

R1, Ом	R2, Ом	R3, Ом	R4,Ом	R5,Ом	
300	150	150	300	200	l

E1, B	E2, B	E3, B
6	2	3

3 Ход работы

3.1 Рассчитать токи всех ветвей методом контурных токов

Были рассчитаны токи всех ветвей методом контурных токов с помощью формул:

$$\begin{cases} I_{11}(R_1 + R_2) - I_{22}R_2 = E_1 - E_2 \\ -I_{11}R_2 + I_{22}(R_2 + R_3 + R_4) - I_{33}R_4 = E_2 - E_3 \\ -I_{22}R_4 + I_{33}(R_4 + R_5) = E_3 \end{cases}$$

3.2 Экспериментально определить токи всех ветвей

Для определения тока какой-либо ветви замерить с помощью вольтметра напряжение на соответствующем резисторе и, зная сопротивление резистора, пересчитать напряжение в ток по закону Ома.

$$I_{\mathbf{l}} = \frac{U_{R_{\mathbf{l}}}}{R_{\mathbf{l}}}.$$

При измерениях необходимо учитывать полярность напряжений и токов, то есть каждый из двух шнуров вольтметра одинаково подключать к каждому из резисторов в соответствии с размеченными на рисунке2 направлениями токов.

Результаты были занесены в таблицу 1.

Элемент	R1	R2	R3	R4	R5
Сопротивление, Ом	300	150	150	300	200
Напряжение, В	3,31	0,79	0,9	1,09	1,88
Ток (эксперимент), мА	11,03	5,27	6	3,63	9,4
Ток (расчет), мА	10,8	5,1	5,7	3,69	9,46

Таблица 1 – Элементы R

3.3 Рассчитать потенциалы всех узлов

Были рассчитаны потенциалы всех узлов при помощи формулы:

$$\begin{cases} \varphi_{2}(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}) - \varphi_{5}\frac{1}{R_{3}} = \frac{E_{1}}{R_{1}} + \frac{E_{2}}{R_{2}} \\ -\varphi_{2}\frac{1}{R_{3}} + \varphi_{5}(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}) = \frac{E_{3}}{R_{4}} \end{cases}$$

3.4 Замерить потенциалы всех узлов

Были замеры потенциалы всех узлов. Результаты представлены в таблице 2.

	φ2, B	ф 3, В
Расчет	2,76	1,9
Эксперимент	2,75	1,87

Таблица 2 – Потенциалы

3.5 Проверить экспериментально выполнение второго правила Кирхгофа для контура $4,\,2,\,5,\,4$

Были проверены экспериментально выполнение второго правила Кирхгофа для контура 4, 2, 5, 4.

Результаты измерений занести в таблицу 3:

E2, B	E3, B	Алгебраическая сумма э.д.с., В	U _{R2} , B	U _{R3} , B	U _{R4} , B	Алгебраическая сумма напряжений, В
2	3	-1	-0,79	0,9	-1,09	-0,98

Таблица 3 – Второе правило Кирхгофа

3.6 Экспериментально проверить метод наложения

Было экспериментально проверен метод наложения. Результаты измерений и подсчетов занести в таблицу 4.

		R1	R2	R3	R4	R5
Сопротивление, Ом		300	150	150	300	200
Схема на	Напряжение, В	4,57	1,48	0,84	-0,66	0,66
рисунке 3	Ток, мА	15,23	9,867	5,6	-2,2	3,3
Схема на	Напряжение, В	-0,93	-1	0,53	-0,41	0,41
рисунке 4	Ток, мА	-3,1	-6,67	3,53	-1,367	2,05
Схема на	Напряжение, В	-0,31	0,31	-0,48	2,15	0,8
рисунке 5	Ток, мА	-1,03	2,067	-3,2	7,167	4
Алгебраическая сумма ч тичных токов, мА		11,1	5,264	5,93	3,6	9,35
Экспериментальное значение тока из таблицы 3, мА		11,03	5,27	6	3,63	9,4

Таблица 4 - Метод наложения

3.7 Рассчитать методом двух узлов

Методом двух узлов были рассчитаны соотношения:

$$\phi_{2}(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3} + R_{5}}) = \frac{E_{1}}{R_{1}} + \frac{E_{2}}{R_{2}};$$

$$I_{1} = \frac{-\phi_{2} + E_{1}}{R_{1}};$$

$$I_{2} = \frac{-\phi_{2} + E_{2}}{R_{2}};$$

$$I_{3} = \frac{\phi_{2}}{R_{3} + R_{5}}.$$

3.8 Экспериментально определить токи цепи

Экспериментально были определены токи цепи. Результаты были представлены в таблице 5.

	R1	R2	R3
Сопротивление, Ом	300	150	150
Напряжение, В	3,48	-0,64	1,13
Ток, мА	11,6	-4,27	7,53
Расчетное значение тока, мА	10,8	-5	7,8

Таблица 5 - Токи цепи

4 Заключение

В ходе лабораторной работы была произведена экспериментальная проверка расчетов, проводимых классическими методами (контурных токов, узловых потенциалов, наложения, двух узлов), на примере разветвленной цепи с тремя источниками питания.