Bootstrap

12/10/2017

```
# lib
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.4.2
## -- Attaching packages ------ tidyverse 1.2.1 --
## <U+221A> ggplot2 2.2.1
                            <U+221A> purrr 0.2.4
## <U+221A> tibble 1.3.4
                           <U+221A> dplyr
                                            0.7.4
                           <U+221A> stringr 1.2.0
## <U+221A> tidyr 0.7.2
## <U+221A> readr 1.1.1 <U+221A> forcats 0.2.0
## Warning: package 'tidyr' was built under R version 3.4.2
## Warning: package 'purrr' was built under R version 3.4.2
## Warning: package 'dplyr' was built under R version 3.4.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(boot)
# load the data
data_bootstrap = read.csv("./data/data_no_outliers.csv") %>%
 select(-X, -postalcode,-facilityname,-facilityzip, -patientid, -visitid, -date) %>%
 mutate(is30dayreadmit = as.factor(is30dayreadmit), icu_flag = as.factor(icu_flag)) %>%
 select(log_length_of_stay,
        is30dayreadmit,
        cindex,
        evisit,
        age,
        gender,
        maritalstatus,
        temperature_cat,
        insurancetype,
        heartrate_transformed,
        respirationrate_transformed,
        mean_arterial_pressure)
# final model
\# model\_sw\_0.10 = lm(log\_length\_of\_stay \sim is30dayreadmit + cindex
#
                       + evisit + age + gender + maritalstatus + temperature_cat
#
                       + insurancetype + heartrate_transformed
#
                       + respirationrate_transformed
                       + mean_arterial_pressure)
# bootstrap to obtain the distribution
# code 1: raw code
\# boot\_res1 =
```

Table 1: Bootstrap

term	statistic	bias	std.error
(Intercept)	2.5444567	-0.0002083	0.1920116
is30dayreadmit1	0.1801712	-0.0002694	0.0421892
$\operatorname{cindexmoderate}$	0.1323495	-0.0001276	0.0476890
$\operatorname{cindexnormal}$	0.0251459	0.0000472	0.0345832
cindexsevere	0.1775025	-0.0006796	0.0428682
evisit	0.0642347	0.0001129	0.0095534
age	0.0096015	0.0000127	0.0009287
genderMale	0.0611153	0.0003365	0.0295831
maritalstatusNot Married	0.0885007	-0.0000767	0.0293569
$temperature_catlow$	-0.0593297	0.0005501	0.0906106
$temperature_catnormal$	-0.2456611	0.0003272	0.0584033
in surance type Medicare	-0.1447609	-0.0009221	0.0722351
insurance type Private	-0.1855449	-0.0002085	0.0681488
$heartrate_transformed$	-2061.1985080	0.0079740	301.2852763
$respiration rate_transformed$	-178.7334811	-0.0165204	30.1096161
$mean_arterial_pressure$	-0.0058527	-0.0000044	0.0008342

```
# data_bootstrap %>%
#
  modelr::bootstrap(n = 10000) \%>\%
  mutate(models = map(strap, ~lm(log_length_of_stay ~ ., data = .x) ),
           results = map(models, broom::tidy)) %>%
#
  select(-strap, -models) %>%
#
#
  unnest() %>%
   select(id = `.id`, term, estimate) %>%
   spread(key = term, value = estimate)
# code 2: boot function
boot.fn = function(data, index){
  return(coef(lm(log_length_of_stay ~ ., data = data, subset = index)))
}
boot_res2 = boot(data_bootstrap, boot.fn, 10000)
# table for bootstrapping results
broom::tidy(boot_res2) %>%
  knitr::kable(format = "latex",
              caption = "Bootstrap",
              booktabs = TRUE) %>%
 kableExtra::kable_styling(latex_options = "scale_down")
# plot
plot(boot_res2)
```

Histogram of t


```
boot.ci(boot.out = boot_res2, type = c("norm", "basic"))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_res2, type = c("norm", "basic"))
##
## Intervals :
## Level Normal Basic
## 95% ( 2.168,  2.921 ) ( 2.167,  2.926 )
```

Calculations and Intervals on Original Scale