

Analizando reseñas de Google Play Store con Inteligencia Artificial

Elaborado por Naomi Neumann para Bootcamp UDD - Ciencia de Datos & IA

\ Contenidos \

- 1. Contexto
- 2. La solución
- 3. ¿Cómo funciona?
- 4. Herramientas utilizadas
- 5. Metodología
- 6. Resultados
- 7. Ejemplos

1. Contexto

El problema

Las apps reciben miles de reseñas diarias en Google Play Store, pero analizar manualmente cada una es:

- Muy lento: Una persona puede analizar solo 50-100 reseñas por hora.
- Costoso: Requiere equipos dedicados trabajando constantemente.
- Propenso a errores: El cansancio y subjetividad afectan la precisión.
- Sin métricas claras: Difícil obtener estadísticas precisas y en tiempo real.

El impacto

Sin un análisis eficiente de sentimientos, las empresas pierden oportunidades valiosas para:

- Mejorar sus productos (apps) basándose en feedback real.
- Responder rápidamente a problemas críticos.
- Entender mejor a sus usuarios.
- Tomar decisiones basadas en datos.

2. La solución

Sistema automatizado de Análisis de Sentimientos que puede:

Clasificar automaticamente reseñas entre: Positiva, Neutral o Negativa

Proporcionar nivel de confianza en cada predicción

Ser accesible vía API

3. ¿Cómo funciona?

Ejemplo:

Texto de entrada: "This app is absolutely amazing! I love using it every day."

Resultado: Reseña positiva (90% de confianza)

4. Herramientas utilizadas

Lenguaje de programación líder en ciencia de datos e IA

Scikit-learn

Biblioteca de machine learning más utilizada del mundo

NLTK

Herramientas avanzadas para procesamiento de lenguaje natural

Flask

Framework web para crear APIs rápidas y eficientes

TF-IDF

Técnica para convertir texto en números que la IA puede entender

Joblib

Optimización para modelos de machine learning de alto rendimiento

5. Metodología

Para garantizar los mejores resultados, se probaron diferentes tipos de algoritmos de Inteligencia Artificial y se seleccionó el que mejor rendimiento demostró:

Red Neuronal:

Algoritmo inspirado en el cerebro humano, potente para patrones complejos

Regresión Logística:

Algoritmo clásico y eficiente, excelente para problemas de clasificación

Random Forest:

Algoritmo que utiliza múltiples árboles de decisión para mayor robustez

Modelo Ensamble:

Combinación de Regresión Logística + Red Neuronal

6. Resultados

Modelo	Exactitud general (Accuracy)	Equilibrio (F-1 Score)
Red Neuronal	89.43%	89.46%
Regresión Logística	90.31%	90.29%
Ensamble (Reg. Logística + Red Neuronal)	89.82%	89.84%
Random Forest	82.65%	82.56%

Regresión logística

- Mejor rendimiento general: Superó a todos los demás modelos en todas las métricas
- Velocidad superior: Predicciones más rápidas que redes neuronales
- Simplicidad: Más fácil de mantener y actualizar
- Eficiencia de recursos: Requiere menos memoria y procesamiento

7. Ejemplos

Pruebas realizadas mediante Talend API Tester

