Ondes Electromagnétiques sur les lignes de transmissions

1. Différents types de ligne

Les 3 types de structures guides d'ondes en ligne sont la ligne bifilaire, la ligne coaxiale et les lignes microrubans.

Ces lignes propagent le « mode principal », que l'on appelle le mode TEM (Transversal Electric and Magnétic fields). Cela signifie que \overrightarrow{E} et \overrightarrow{H} sont toujours **transverses** (perpendiculaires) par rapport à la direction de propagation.

Ligne coaxiale

Ligne microruban

2. Phénomènes de propagation le long de lignes électriques

2.1. Modélisation de la ligne

Soit une ligne de transmission de longueur ℓ , alimentée à une extrémité par un générateur de tension H.F. qui délivre une onde de longueur d'onde λ et fermée à l'autre extrémité sur une impédance Z_R .

En haute fréquence, dès que la ligne n'est pas de longueur très faible devant λ , on ne peut la modéliser par un quadripôle unique qui représenterait le comportement électrique de la ligne prise dans sa totalité.

 \Rightarrow On ne peut plus écrire $u_R = u_G$

On convient alors de décomposer la ligne en une suite de quadripôles élémentaires de longueur très petite devant λ . On peut alors donner un modèle à **constantes localisées**:

R, L, C et G sont appelés **paramètres primaires** de la ligne avec :

- R: résistance linéïque élémentaire, représentant la résistance de la ligne par unité de longueur (Ω / m). Elle dépend de la section et de la nature du conducteur (conductivité). Elle représente la perte de puissance active dans les conducteurs.
- L: inductance linéïque (H / m), modélisant la présence de champ électrique inter et intra-structures électriques conductrices.
- *C* : capacité linéïque (F / m), caractérisant la capacité du diélectrique constituant la ligne.
- G: perditance linéïque (Ω^{-1}/m), représentant les pertes diélectriques et les défauts d'isolation de la ligne.

2.2. Domaine de validité

Les seules lignes pour lesquelles il sera possible de calculer les paramètres primaires sont les lignes dites **T.E.M** où les notions de courant et de tension gardent un sens . Les lignes coaxiales, bifilaires et triplaques en sont de bons exemples.

2.3. Paramètres secondaires de la ligne

Les 2 paramètres secondaires de la ligne sont :

$$Z_C = \sqrt{\frac{R + j \cdot L\omega}{G + j \cdot C\omega}}$$

 Z_C est l'impédance caractéristique de la ligne

et

$$\gamma = \sqrt{(R + j \cdot L\omega) \cdot (G + j \cdot C\omega)}$$

γ est le coefficient de propagation de la ligne.

On note aussi que $\gamma = \alpha + j\beta$

 \Rightarrow α est la **constante d'atténuation** (en dB/m ou Neper/m ; 1Np = 0,1151dB)

 $\Rightarrow \beta$ est la constante de phase.

2.4. Réflexion sur les lignes

Pour l'étude de la réflexion, on prend les conventions suivantes :

On montre que **le coefficient de réflexion en bout de ligne** est donné par

$$\widetilde{\Gamma} = \frac{Z_R - Z_C}{Z_R + Z_C}$$

 $\widetilde{\Gamma} = \left| \widetilde{\Gamma} \right| \cdot e^{j \cdot \varphi}$ peut être un nombre complexe.

Et que **l'impédance équivalente de la ligne** vue du générateur est

$$Z = Z_C \cdot \frac{Z_R + Z_C \cdot \tanh(\gamma \cdot \ell)}{Z_C + Z_R \cdot \tanh(\gamma \cdot \ell)}$$

2.5. Régime de la ligne

On dit qu'une ligne est en **régime adapté** lorsqu'il n'y a pas de réflexion sur celle-ci.

Ceci équivaut à $\widetilde{\Gamma} = 0$.

Or,

$$\widetilde{\Gamma} = \frac{Z_R - Z_C}{Z_R + Z_C}$$

où

- Z_R est l'impédance de la charge
- Z_C est l'impédance caractéristique de la ligne

Donc la ligne est adaptée si :

$$Z_R = Z_C$$

Dans ce cas l'impédance équivalente d'une longueur l de ligne vue du générateur est :

$$Z(\ell) = Z_C \ \forall \ell$$

 \Rightarrow l'impédance vue du générateur est égale à l'impédance caractéristique de la ligne Z_C .

Dans ce cas, nous avons des ondes progressives.

 \mathbb{Z} Dans le cas où $1 > |\tilde{\Gamma}| > 0$, il apparait des **ondes semi-stationnaires** sur la ligne.

 \mathbb{Z} Dans le cas où $|\widetilde{\Gamma}| = 1$, il y a des **ondes stationnaires** sur la ligne. L'énergie électrique ne se propage alors pas sur la ligne.

2.1. Rapport d'ondes stationnaires

Pour mesurer le régime sur la ligne on utilise le Rapport d'Ondes Stationnaires (ROS ou SWR en Anglais) :

$$\rho = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{1 + \left|\widetilde{\Gamma}\right|}{1 - \left|\widetilde{\Gamma}\right|}$$

Où

- U_{max} est l'amplitude maximale de la tension mesurée le long de la ligne
- U_{min} est l'amplitude minimale de la tension mesurée le long de la ligne

¤ Dans le cas de la ligne adaptée :

 $\widetilde{\Gamma} = 0 \Rightarrow \rho = 1$ et $U_{max} = U_{min}$. Il n'y a pas de variation de l'amplitude de la tension le long de la ligne.

$$\mathbb{Z}$$
 Si $1 > |\tilde{\Gamma}| > 0$ alors $+\infty > \rho > 1$

On considère que si $2 > \rho > 1$, le fonctionnement de la ligne est correct.

Simulateur:

https://phyanim.sciences.univnantes.fr/Ondes/ondes_stationnaires/stationnaires.php