2024年《概率论与数理统计》期末试题

概率论与数理统计

注意事项:

- 1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。请认真核对监考员在答上所粘贴的条形码上 的姓名、准考证号与您本人是否相符。

一、选择题(共5题,每题3分,共15分)

1. 关于随机变量的以下说法正确的是().

A. 不相关一定独立	B. 边缘分布可以确定联合分布
C. 独立一定不相关	D. $D(X + Y) = D(X) + D(Y)$

2. 设 $X_1, X_2, ..., X_n$ 是总体 X 的简单随机样本, $E(X) = \mu$, $D(X) = \sigma^2$. 已知 $C\sum_{i=1}^n (X_i - |(X))^2$ 是 σ^2 的无偏估计量, 则 C = () .

A.
$$\frac{1}{n}$$
 B. $\frac{1}{n-1}$ C. $\frac{1}{2(n-1)}$ D. $\frac{1}{n+1}$

3. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P(2 \le X \le 4) = 0.3$, 则 P(X < 0) = ().

4. 设 $X_1, X_2, ..., X_{16}$ 是来自正态总体 N(0,1) 的样本, |(X) 是样本均值, 若 $P(|(X) \ge b) = 0.01$, 则 b=() . ($\Phi(2.33)=0.99$)

5. 设随机变量 X 的概率密度函数为 $f_{X(x)}$,则 Y=-2X+4 的概率密度函数为 ().

A.
$$-\frac{1}{2}f_X\left(-\frac{1}{2}y+2\right)$$
 B. $\frac{1}{2}f_X\left(-\frac{1}{2}y+2\right)$ C. $-2f_X\left(-\frac{1}{2}y+2\right)$ D. $2f_X\left(-\frac{1}{2}y+2\right)$

二、计算题

期望 E(X); (3) 方差 D(X).

2. (10 分) 病树的主人外出,委托邻居浇水。设已知如果不浇水,树死去的概率为 0.8。若浇水则树死去的概率为 0.15。有 0.9 的把握确定邻居会记得浇水。 (1) 求主人回来树还活着的概率; (2) 若主人回来树已死去,求邻居忘记浇水的概率。

3. (10 分) 设二维离散型随机变量 (X,Y) 的联合分布律如下表。

X Y	1	3
0	0	$\frac{1}{8}$
1	3 8	0
2	က ထ က ထ	0
3	0	$\frac{1}{8}$

- (1) 求 $P\{X=Y\}$; (2) 求 X,Y 的相关系数 ρ_{XY} ; (3) X,Y 是否不线性相关? 是否独立? 为什么?
- 4. (10 分) 设总体 X 的概率密度函数为 $f(x)=\left\{ egin{aligned} \lambda e^{-\lambda x},x>0, \\ 0,&x\leq 0 \end{aligned} ,X_1,X_2,...,X_n \right.$ 为来自总体 X 的简单随机样本,求 λ 的矩估计量。
- 5. (10 分) 根据以往经验, 某种电器元件的寿命服从参数为 $\lambda=0.01$ 小时的指数分布。现随机地取 16 只, 设它们的寿命是相互独立的, 求这 16 只元件的寿命的总和大于 1929 小时的概率。(注: $\Phi(0.8)=0.7881$)
- 6. (5分) 游客乘电梯参观电视塔顶层。电梯于每个整点的第 5 分钟、25 分钟和 55 分钟载客启动。一游客在八点到九点之间的任意时刻到达底层候梯处, 求他等候时间的数学期望。