Homomorfismo de Grupos

José Antônio O. Freitas

MAT-UnB

4 de novembro de 2020

Dados dois grupos (G,*)

Dados dois grupos (G,*) e (H,\triangle)

Dados dois grupos (G,*) e (H,\triangle) dizemos que uma função $f:G\to H$

Dados dois grupos (G,*) e (H,\triangle) dizemos que uma função $f\colon G\to H$ é um **homomorfismo de grupos** se

Dados dois grupos (G,*) e (H,\triangle) dizemos que uma função $f:G\to H$ é um **homomorfismo de grupos** se

$$f(x*y) =$$

Dados dois grupos (G,*) e (H,\triangle) dizemos que uma função $f:G\to H$ é um **homomorfismo de grupos** se

$$f(x * y) = f(x) \triangle f(y)$$

Dados dois grupos (G,*) e (H,\triangle) dizemos que uma função $f:G\to H$ é um **homomorfismo de grupos** se

$$f(x*y)=f(x)\triangle f(y)$$

para todos x, $y \in G$.

Sejam (G,*)

Sejam (G,*) , (H,\triangle) grupos

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

Sejam (G,*) , (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

1) Se
$$G = H$$
,

Sejam (G,*) , (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

1) Se G = H, neste caso $f: G \rightarrow G$

Sejam (G,*) , (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

1) Se G = H, neste caso $f: G \rightarrow G$ é chamado de um **endomorfimos** de grupos.

Sejam (G,*) , (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

- 1) Se G = H, neste caso $f: G \rightarrow G$ é chamado de um **endomorfimos** de grupos.
- 2) Se $f: G \rightarrow H$ é uma função injetora,

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

- 1) Se G = H, neste caso $f : G \rightarrow G$ é chamado de um **endomorfimos** de grupos.
- 2) Se f: G → H é uma função injetora, então dizemos que f é um **monomorfismo** de grupos.

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

- 1) Se G = H, neste caso $f : G \rightarrow G$ é chamado de um **endomorfimos** de grupos.
- 2) Se f: G → H é uma função injetora, então dizemos que f é um **monomorfismo** de grupos.

3) Se $f: G \rightarrow H$ é uma função sobrejetora,

3) Se $f: G \to H$ é uma função sobrejetora, então dizemos que f é um **epimorfismo** de grupos.

- 3) Se $f: G \to H$ é uma função sobrejetora, então dizemos que f é um **epimorfismo** de grupos.
- 4) Se $f: G \rightarrow H$ é uma função bijetora,

- 3) Se $f: G \to H$ é uma função sobrejetora, então dizemos que f é um **epimorfismo** de grupos.
- 4) Se $f: G \to H$ é uma função bijetora, então dizemos que f é um **isomorfismo** de grupos.

- 3) Se $f: G \to H$ é uma função sobrejetora, então dizemos que f é um **epimorfismo** de grupos.
- 4) Se f: G → H é uma função bijetora, então dizemos que f é um isomorfismo de grupos.
- 5) Se $f: G \rightarrow G$ é uma função bijetora,

- 3) Se $f: G \to H$ é uma função sobrejetora, então dizemos que f é um **epimorfismo** de grupos.
- 4) Se $f: G \to H$ é uma função bijetora, então dizemos que f é um **isomorfismo** de grupos.
- 5) Se $f: G \to G$ é uma função bijetora, então dizemos que f é um automorfismo de grupos.

1) A função $f: \mathbb{Z} \to \mathbb{C}^*$

1) A função $f: \mathbb{Z} \to \mathbb{C}^*$ dada por $f(x) = i^x$

1) A função $f: \mathbb{Z} \to \mathbb{C}^*$ dada por $f(x) = i^x$ é um homomorfismo de $(\mathbb{Z}, +)$

1) A função $f: \mathbb{Z} \to \mathbb{C}^*$ dada por $f(x) = i^x$ é um homomorfismo de $(\mathbb{Z}, +)$ em (\mathbb{C}^*, \cdot) .

2) A função $f: \mathbb{R}_+^* \to \mathbb{R}$

2) A função $f: \mathbb{R}_+^* \to \mathbb{R}$ dada por $f(x) = \ln(x)$

2) A função $f: \mathbb{R}_+^* \to \mathbb{R}$ dada por $f(x) = \ln(x)$ é um homomorfismo de (\mathbb{R}_+^*, \cdot)

2) A função $f: \mathbb{R}_+^* \to \mathbb{R}$ dada por $f(x) = \ln(x)$ é um homomorfismo de (\mathbb{R}_+^*, \cdot) em $(\mathbb{R}, +)$.

3) Sejam m um inteiro positivo fixo.

3) Sejam m um inteiro positivo fixo. A função $f:\mathbb{Z} \to \mathbb{Z}_m$

3) Sejam m um inteiro positivo fixo. A função $f: \mathbb{Z} \to \mathbb{Z}_m$ definida por $f(x) = \overline{x}$

3) Sejam m um inteiro positivo fixo. A função $f: \mathbb{Z} \to \mathbb{Z}_m$ definida por $f(x) = \overline{x}$ é um homomorfimos de $(\mathbb{Z}, +)$

3) Sejam m um inteiro positivo fixo. A função $f: \mathbb{Z} \to \mathbb{Z}_m$ definida por $f(x) = \bar{x}$ é um homomorfimos de $(\mathbb{Z}, +)$ em (\mathbb{Z}_m, \oplus) .

4) Sejam (G,*) um grupo,

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado e z^{-1} seu inverso.

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado e z^{-1} seu inverso. Então a aplicação

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado e z^{-1} seu inverso. Então a aplicação

$$f_z: G \to G$$

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado e z^{-1} seu inverso. Então a aplicação

$$f_z: G \to G$$

$$f_z(x) = z^{-1} * x * z,$$

4) Sejam (G,*) um grupo, $z \in G$ um elemento fixado e z^{-1} seu inverso. Então a aplicação

$$f_z: G \to G$$

 $f_z(x) = z^{-1} * x * z$,

para todo $x \in G$, é um isomorfismo de grupos.

Proposição Sejam (G, *),

Sejam (G,*), (H,\triangle) grupos

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo.

Sejam (G,*), (H,\triangle) grupos e $f\colon G\to H$ um homomorfismo. Denote por 1_G

Sejam (G,*), (H,\triangle) grupos e $f:G\to H$ um homomorfismo. Denote por 1_G e 1_H

i)
$$f(1_G) = 1_H$$

i)
$$f(1_G) = 1_H$$

ii)
$$[f(x)]^{-1} = f(x^{-1})$$

i)
$$f(1_G) = 1_H$$

ii)
$$[f(x)]^{-1} = f(x^{-1})$$
 para todo $x \in G$.

Sejam I é um subgrupo de H

Sejam I é um subgrupo de H e f : $G \rightarrow H$

Sejam I é um subgrupo de H e f : $G \rightarrow H$ um homomorfismo de grupos.

Sejam I é um subgrupo de H e f : $G \rightarrow H$ um homomorfismo de grupos. Então $f^{-1}(I)$

Sejam I é um subgrupo de H e f : $G \rightarrow H$ um homomorfismo de grupos. Então $f^{-1}(I)$ é um subgrupo de G.