

Available at
www.elsevierComputerScience.com
POWERED BY SCIENCE @ DIRECT[®]
Artificial Intelligence 150 (2003) 331–339

Artificial Intelligence

www.elsevier.com/locate/artint

Master Index—Volumes 141–150

(For the sake of simplicity and uniformity, all names beginning with articles or prepositions are listed as if written as single words.)

Akın, H.L., see Say, A.C.C. **149** (2003) 251–266

Al-Kofahi, K., see Jackson, P. **150** (2003) 239–290

Aler, R., D. Borrajo and P. Isasi
Using genetic programming to learn and improve control knowledge **141** (2002) 29– 56

Aleven, V.
Using background knowledge in case-based legal reasoning:
A computational model and an intelligent learning environment **150** (2003) 183–237

Anderson, M. and R. McCartney
Diagram processing: Computing with diagrams **145** (2003) 181–226

Anderson, M.L.
Embodied Cognition: A field guide **149** (2003) 91–130

Anderson, M.L.
Representations, symbols, and embodiment (Response) **149** (2003) 151–156

Ashley, K.D. and E.L. Rissland
Law, learning and representation **150** (2003) 17– 58

Ashley, K.D., see Rissland, E.L. **150** (2003) 1– 15

Backer, E., see Veenman, C.J. **145** (2003) 227–243

Banerjee, A., see Macskassy, S.A. **143** (2003) 51– 77

Barro, S., see Félix, P. **148** (2003) 103–140

Beck, J.C., see Watson, J.-P. **143** (2003) 189–217

Ben-Eliyahu-Zohary, R., E. Gudes and G. Ianni
Metaqueries: Semantics, complexity, and efficient algorithms **149** (2003) 61– 87

Bench-Capon, T. and G. Sartor
A model of legal reasoning with cases incorporating theories and values **150** (2003) 97–143

Bench-Capon, T.J.M., see Dunne, P.E. **141** (2002) 187–203

Bench-Capon, T.J.M., see Dunne, P.E. **149** (2003) 221–250

Benferhat, S. and S. Kaci
 Logical representation and fusion of prioritized information based on guaranteed possibility measures: Application to the distance-based merging of classical bases
148 (2003) 291–333

Bessière, C., P. Meseguer, E.C. Freuder and J. Larrosa
 On forward checking for non-binary constraint satisfaction (Research Note)
141 (2002) 205–224

Bloch, I., T. Géraud and H. Maître
 Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition—Application to 3D brain imaging
148 (2003) 141–175

Bojinov, H., A. Casal and T. Hogg
 Multiagent control of self-reconfigurable robots
142 (2002) 99–120

Borgelt, C. and R. Kruse
 Operations and evaluation measures for learning possibilistic graphical models
148 (2003) 385–418

Borrajo, D., see Aler, R.
141 (2002) 29– 56

Bos, A., see Tonino, H.
142 (2002) 121–145

Boutilier, C., T. Dean and S. Koenig
 Editorial
147 (2003) 1– 4

Branting, L.K.
 A reduction-graph model of precedent in legal analysis
150 (2003) 59– 95

Broxvall, M. and P. Jonsson
 Point algebras for temporal reasoning: Algorithms and complexity
149 (2003) 179–220

Bulitko, V. and D.C. Wilkins
 Qualitative simulation of temporal concurrent processes using Time Interval Petri Nets
144 (2003) 95–124

Campbell, M., see Schetter, T.
145 (2003) 147–180

Casal, A., see Bojinov, H.
142 (2002) 99–120

Castellini, C., E. Giunchiglia and A. Tacchella
 SAT-based planning in complex domains: Concurrency, constraints and nondeterminism
147 (2003) 85–117

Chan, T.Y.T.
 Unifying metric approach to the triple parity
141 (2002) 123–135

Chen, L. and N. Tokuda
 Robustness of regional matching scheme over global matching scheme (Research Note)
144 (2003) 213–232

Chrisley, R.
 Embodied artificial intelligence
149 (2003) 131–150

Cimatti, A., M. Pistore, M. Roveri and P. Traverso
 Weak, strong, and strong cyclic planning via symbolic model checking
147 (2003) 35– 84

Condon, A., see Madani, O.
147 (2003) 5– 34

Console, L., C. Picardi and M. Ribaudo	
Process algebras for systems diagnosis	142 (2002) 19– 51
Cross, C.B.	
Nonmonotonic inconsistency	149 (2003) 161–178
Das, S., see Grosz, B.J.	142 (2002) 147–177
da Silva Neves, R., see Raufaste, E.	148 (2003) 197–218
Dayanik, A.A., see Macskassy, S.A.	143 (2003) 51– 77
Dean, T., see Boutilier, C.	147 (2003) 1– 4
Dean, T., see Givan, R.	147 (2003) 163–223
Dean, T., see Kim, K.-E.	147 (2003) 225–251
Delgado, J.	
Emergence of social conventions in complex networks (Research Note)	141 (2002) 171–185
Denecker, M., V.W. Marek and M. Truszczyński	
Uniform semantic treatment of default and autoepistemic logics	143 (2003) 79–122
de Weerdt, M., see Tonino, H.	142 (2002) 121–145
Dimopoulos, Y., B. Nebel and F. Toni	
On the computational complexity of assumption-based argumentation for default reasoning	141 (2002) 57– 78
Dubois, D., H. Fargier and P. Perny	
Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach	148 (2003) 219–260
Dubois, D. and H. Prade	
Fuzzy set and possibility theory-based methods in artificial intelligence (Editorial)	148 (2003) 1– 9
Dunne, P.E. and T.J.M. Bench-Capon	
Coherence in finite argument systems (Research Note)	141 (2002) 187–203
Dunne, P.E. and T.J.M. Bench-Capon	
Two party immediate response disputes: Properties and efficiency	149 (2003) 221–250
Durfee, E., S. Kraus, H. Nakashima and M. Tambe	
Editorial	142 (2002) 95– 97
Eiter, T., W. Faber, N. Leone, G. Pfeifer and A. Polleres	
A logic programming approach to knowledge-state planning, II: The DLV ^K system	144 (2003) 157–211
Eiter, T. and T. Lukasiewicz	
Complexity results for structure-based causality	142 (2002) 53– 89
Faber, W., see Eiter, T.	144 (2003) 157–211
Falappa, M.A., G. Kern-Isberner and G.R. Simari	
Explanations, belief revision and defeasible reasoning	141 (2002) 1– 28

Faratin, P., C. Sierra and N.R. Jennings
 Using similarity criteria to make issue trade-offs in automated negotiations **142** (2002) 205–237
148 (2003) 219–260

Fargier, H., see Dubois, D.

Félix, P., S. Barro and R. Marín
 Fuzzy constraint networks for signal pattern recognition **148** (2003) 103–140
146 (2003) 77–123
141 (2002) 205–224

Furbach, U.
 AI—A multiple book review (Book Review) **145** (2003) 245–252

Géraud, T., see Bloch, I. **148** (2003) 141–175

Gillispie, S.B. and M.D. Perlman
 The size distribution for Markov equivalence classes of acyclic digraph models **141** (2002) 137–155

Giunchiglia, E., M. Narizzano and A. Tacchella
 Backjumping for Quantified Boolean Logic satisfiability **145** (2003) 99–120
147 (2003) 85–117

Givan, R., T. Dean and M. Greig
 Equivalence notions and model minimization in Markov decision processes **147** (2003) 163–223
144 (2003) 251–263

Gobet, F., see Lane, P.C.R.

Grabisch, M.
 Temporal scenario modelling and recognition based on possibilistic logic **148** (2003) 261–289
147 (2003) 163–223

Grosz, B.J., S. Kraus, D.G. Sullivan and S. Das
 The influence of social norms and social consciousness on intention reconciliation **142** (2002) 147–177
149 (2003) 61– 87

Ha, V. and P. Haddawy
 Similarity of personal preferences: Theoretical foundations and empirical analysis **146** (2003) 149–173
146 (2003) 149–173
147 (2003) 5– 34

Haddawy, P., see Ha, V.

Hanks, S., see Madani, O.

He, J. and X. Yao
 Towards an analytic framework for analysing the computation time of evolutionary algorithms **145** (2003) 59– 97

Helmert, M.
 Complexity results for standard benchmark domains in planning **143** (2003) 219–262
144 (2003) 125–156
143 (2003) 51– 77
142 (2002) 99–120

Hirayama, K., see Walsh, W.E.

Hirsh, H., see Macskassy, S.A.

Hogg, T., see Bojinov, H.

Howe, A.E., see Watson, J.-P. **143** (2003) 189–217

Hüllermeier, E. **148** (2003) 335–383

Possibilistic instance-based learning **148** (2003) 335–383

Ianni, G., see Ben-Eliyahu-Zohary, R. **149** (2003) 61– 87

Isasi, P., see Aler, R. **141** (2002) 29– 56

Ishida, T., see Shimbo, M. **146** (2003) 1– 41

Jackson, P., K. Al-Kofahi, A. Tyrrell and A. Vachher **150** (2003) 239–290

Information extraction from case law and retrieval of prior cases **150** (2003) 239–290

Janhunen, T. **144** (2003) 233–250

Evaluating the effect of semi-normality on the expressiveness of defaults (Research Note) **146** (2003) 43– 75

Jégou, P. and C. Terrioux **142** (2002) 205–237

Hybrid backtracking bounded by tree-decomposition of constraint networks **148** (2003) 53–102

Jennings, N.R., see Faratin, P. **142** (2002) 1– 17

Jennings, N.R., see Luo, X. **149** (2003) 179–220

Jönsson, H. and B. Söderberg **141** (2002) 157–170

An information-based neural approach to generic constraint satisfaction **149** (2003) 179–220

Jonsson, P., see Broxvall, M. **141** (2002) 157–170

Jøsang, A. **141** (2002) 157–170

The consensus operator for combining beliefs (Research Note) **148** (2003) 291–333

Kaci, S., see Benferhat, S. **141** (2002) 1– 28

Kern-Isberner, G., see Falappa, M.A. **147** (2003) 225–251

Kim, K.-E. and T. Dean **147** (2003) 253–279

Solving factored MDPs using non-homogeneous partitions **147** (2003) 1– 4

Koenig, S., C. Tovey and Y. Smirnov **142** (2002) 95– 97

Performance bounds for planning in unknown terrain **142** (2002) 147–177

Koenig, S., see Boutilier, C. **148** (2003) 385–418

Kraus, S., see Durfee, E. **148** (2003) 385–418

Kraus, S., see Grosz, B.J. **148** (2003) 385–418

Kruse, R., see Borgelt, C. **148** (2003) 385–418

Laborie, P. **143** (2003) 151–188

Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results **144** (2003) 251–263

Lane, P.C.R. and F. Gobet **141** (2002) 79–121

Developing reproducible and comprehensible computational models (Research Note) **144** (2003) 251–263

Lang, J., P. Liberatore and P. Marquis **141** (2002) 79–121

Conditional independence in propositional logic **141** (2002) 79–121

Larrosa, J., see Bessière, C. **141** (2002) 205–224

Lee, J.H.-m., see Luo, X. **148** (2003) 53–102

Leone, N., see Eiter, T. **144** (2003) 157–211

Leung, H.-f., see Luo, X. **148** (2003) 53–102

Levesque, H.J., see Scherl, R.B. **144** (2003) 1– 39

Li, S. and M. Ying
Region Connection Calculus: Its models and composition table **145** (2003) 121–146

Liau, C.-J.
Belief, information acquisition, and trust in multi-agent systems—A modal logic formulation **149** (2003) 31– 60

Liberatore, P., see Lang, J. **141** (2002) 79–121

Littman, M.L., see Majercik, S.M. **147** (2003) 119–162

Loui, R.P., see Rissland, E.L. **150** (2003) 1– 15

Lukasiewicz, T., see Eiter, T. **142** (2002) 53– 89

Luo, X., N.R. Jennings, N. Shadbolt, H.-f. Leung and J.H.-m. Lee
A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-competitive environments **148** (2003) 53–102

Macskassy, S.A., H. Hirsh, A. Banerjee and A.A. Dayanik
Converting numerical classification into text classification **143** (2003) 51– 77

Madani, O., S. Hanks and A. Condon
On the undecidability of probabilistic planning and related stochastic optimization problems **147** (2003) 5– 34

Maître, H., see Bloch, I. **148** (2003) 141–175

Majercik, S.M. and M.L. Littman
Contingent planning under uncertainty via stochastic satisfiability **147** (2003) 119–162

Mali, A.D.
On the evaluation of agent behaviors **143** (2003) 1– 17

Marek, V.W., see Denecker, M. **143** (2003) 79–122

Marín, R., see Félix, P. **148** (2003) 103–140

Mariné, C., see Raufaste, E. **148** (2003) 197–218

Marquis, P., see Lang, J. **141** (2002) 79–121

Matsubara, S. and M. Yokoo
Defection-free exchange mechanisms based on an entry fee imposition **142** (2002) 265–286

McCartney, R., see Anderson, M. **145** (2003) 181–226

McLaren, B.M.
Extensionally defining principles and cases in ethics: An AI model **150** (2003) 145–181

Meseguer, P., see Bessière, C. **141** (2002) 205–224

Miguel, I. and Q. Shen
Fuzzy rrDFCSP and planning **148** (2003) 11– 52

Nakashima, H., see Durfee, E. **142** (2002) 95– 97

Narizzano, M., see Giunchiglia, E. **145** (2003) 99–120

Nayak, A.C., M. Pagnucco and P. Peppas **146** (2003) 193–228
Dynamic belief revision operators

Nebel, B., see Dimopoulos, Y. **141** (2002) 57– 78

Osman, L.M., see Reiter, E. **144** (2003) 41– 58

Pagnucco, M., see Nayak, A.C. **146** (2003) 193–228

Peppas, P., see Nayak, A.C. **146** (2003) 193–228

Perlmutter, M.D., see Gillispie, S.B. **141** (2002) 137–155

Perny, P., see Dubois, D. **148** (2003) 219–260

Pfeifer, G., see Eiter, T. **144** (2003) 157–211

Picardi, C., see Console, L. **142** (2002) 19– 51

Pino-Pérez, R. and C. Uzcátegui **149** (2003) 1– 30
Preferences and explanations

Pistore, M., see Cimatti, A. **147** (2003) 35– 84

Plaisted, D.A. and A. Yahya **144** (2003) 59– 93
A relevance restriction strategy for automated deduction

Polleres, A., see Eiter, T. **144** (2003) 157–211

Prade, H., see Dubois, D. **148** (2003) 1– 9

Raufaste, E., R. da Silva Neves and C. Mariné **148** (2003) 197–218
Testing the descriptive validity of possibility theory in human judgments of uncertainty

Refanidis, I. and I. Vlahavas **145** (2003) 1– 32
Multiobjective heuristic state-space planning

Reinders, M.J.T., see Veenman, C.J. **145** (2003) 227–243

Reiter, E., R. Robertson and L.M. Osman **144** (2003) 41– 58
Lessons from a failure: Generating tailored smoking cessation letters

Ribaudo, M., see Console, L. **142** (2002) 19– 51

Rissland, E.L., K.D. Ashley and R.P. Loui **150** (2003) 1– 15
AI and Law: A fruitful synergy

Rissland, E.L., see Ashley, K.D. **150** (2003) 17– 58

Robertson, R., see Reiter, E. **144** (2003) 41– 58

Roveri, M., see Cimatti, A. **147** (2003) 35– 84

Sandholm, T. and S. Suri **145** (2003) 33– 58
BOB: Improved winner determination in combinatorial auctions and generalizations

Sandholm, T. and Y. Zhou **142** (2002) 239–264
Surplus equivalence of leveled commitment contracts

Sartor, G., see Bench-Capon, T. **150** (2003) 97–143

Say, A.C.C. and H.L. Akin **149** (2003) 251–266
Sound and complete qualitative simulation is impossible

Scherl, R.B. and H.J. Levesque
 Knowledge, action, and the frame problem **144** (2003) 1– 39

Schetter, T., M. Campbell and D. Surka
 Multiple agent-based autonomy for satellite constellations **145** (2003) 147–180

Schwartz, D.G.
 Agent-oriented epistemic reasoning: Subjective conditions of knowledge and belief **148** (2003) 177–195

Sen, S.
 Believing others: Pros and cons **142** (2002) 179–203

Shadbolt, N., see Luo, X. **148** (2003) 53–102

Shen, Q., see Miguel, I. **148** (2003) 11– 52

Shimbo, M. and T. Ishida
 Controlling the learning process of real-time heuristic search **146** (2003) 1– 41

Sierra, C., see Faratin, P. **142** (2002) 205–237

Simari, G.R., see Falappa, M.A. **141** (2002) 1– 28

Smirnov, Y., see Koenig, S. **147** (2003) 253–279

Söderberg, B., see Jönsson, H. **142** (2002) 1– 17

Srebro, N.
 Maximum likelihood bounded tree-width Markov networks **143** (2003) 123–138

Stewart, I.A.
 The complexity of achievement and maintenance problems in agent-based systems **146** (2003) 175–191

Sullivan, D.G., see Grosz, B.J. **142** (2002) 147–177

Sun, Y. and R. Fisher
 Object-based visual attention for computer vision **146** (2003) 77–123

Suri, S., see Sandholm, T. **145** (2003) 33– 58

Surka, D., see Schetter, T. **145** (2003) 147–180

Tacchella, A., see Castellini, C. **147** (2003) 85–117

Tacchella, A., see Giunchiglia, E. **145** (2003) 99–120

Tambe, M., see Durfee, E. **142** (2002) 95– 97

Teh, Y.W., see Welling, M. **143** (2003) 19– 50

Terrioux, C., see Jégou, P. **146** (2003) 43– 75

Tokuda, N., see Chen, L. **144** (2003) 213–232

Toni, F., see Dimopoulos, Y. **141** (2002) 57– 78

Tonino, H., A. Bos, M. de Weerdt and C. Witteveen
 Plan coordination by revision in collective agent based systems **142** (2002) 121–145

Tovey, C., see Koenig, S. **147** (2003) 253–279

Traverso, P., see Cimatti, A. **147** (2003) 35– 84

Truszczyński, M., see Denecker, M. **143** (2003) 79–122

Tyrrell, A., see Jackson, P. **150** (2003) 239–290

Uzcátegui, C., see Pino-Pérez, R. **149** (2003) 1– 30

Vachher, A., see Jackson, P. **150** (2003) 239–290

Veenman, C.J., M.J.T. Reinders and E. Backer
Establishing motion correspondence using extended temporal scope (Research Note) **145** (2003) 227–243

Verheij, B.
Artificial argument assistants for defeasible argumentation **150** (2003) 291–324

Vlahavas, I., see Refanidis, I. **145** (2003) 1– 32

Walsh, W.E., M. Yokoo, K. Hirayama and M.P. Wellman
On market-inspired approaches to propositional satisfiability **144** (2003) 125–156

Watson, J.-P., J.C. Beck, A.E. Howe and L.D. Whitley
Problem difficulty for tabu search in job-shop scheduling **143** (2003) 189–217

Welling, M. and Y.W. Teh
Approximate inference in Boltzmann machines **143** (2003) 19– 50

Wellman, M.P., see Walsh, W.E. **144** (2003) 125–156

Whitley, L.D., see Watson, J.-P. **143** (2003) 189–217

Widmer, G.
Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries **146** (2003) 129–148

Wilkins, D.C., see Bulitko, V. **144** (2003) 95–124

Witteveen, C., see Tonino, H. **142** (2002) 121–145

Yahya, A., see Plaisted, D.A. **144** (2003) 59– 93

Yao, X., see He, J. **145** (2003) 59– 97

Ying, M., see Li, S. **145** (2003) 121–146

Yokoo, M., see Matsubara, S. **142** (2002) 265–286

Yokoo, M., see Walsh, W.E. **144** (2003) 125–156

Zhou, Y., see Sandholm, T. **142** (2002) 239–264

Zhou, Z.-H.
Three perspectives of data mining (Book Review) **143** (2003) 139–146

ELSEVIER

Available at
www.elsevierComputerScience.com
POWERED BY SCIENCE @ DIRECT[®]
Artificial Intelligence 150 (2003) 341–345

Artificial Intelligence

www.elsevier.com/locate/artint

Subject Index—Volumes 141–150

A* search	(150) 145	Autonomy	(143) 1
Abduction	(141) 57, (149) 1	Bargaining	(142) 239
Achievement agent design problems	(146) 175	Bargaining under uncertainty	(142) 239
Action	(144) 1	Bayesian network	(141) 137
Actual cause	(142) 53	Behaviors	(143) 1
Acyclic digraph	(141) 137	Behavioural tests	(144) 251
Adaptation	(142) 179	Belief	(141) 157, (148) 177, (149) 31
Adaptive learning	(146) 1	Belief revision	(141) 1
Advanced mean field methods	(143) 19	Bidding with synergies	(145) 33
Agency	(143) 1	Binary decision diagrams	(147) 35
Agent-based systems	(146) 175	Bisimulation	(147) 163
Agent-centered search	(147) 253	Boltzmann machines	(143) 19
Agent-oriented reasoning	(148) 177	Boolean connection algebra	(145) 121
Agents	(142) 179, (148) 177	Bounded rationality	(144) 95
AI and Law	(150) 183	Brain imaging	(148) 141
AI and Medicine	(144) 41	Breach	(142) 239
AI methodology	(144) 41	Breach of contract	(142) 239
AI planning	(143) 151, (148) 11	Case history	(150) 239
Analogical reasoning	(145) 181	Case law	(150) 239
Analogy	(150) 59, (150) 145	Case-based reasoning	(146) 149, (150) 17, (150) 59, (150) 97, (150) 183
Analysis of algorithms	(147) 253	Causal model	(142) 53
Answer sets	(144) 157	Causality between variables	(142) 53
Approximate reasoning	(148) 177	Change theory	(141) 1
Approximations	(143) 79	Characterization of diagnosis	(142) 19
Argument	(150) 17	Clinical trials	(144) 41
Argument systems	(141) 187, (149) 221	Coherence	(141) 187
Argumentation	(141) 57	Collaborative systems	(142) 147
Argumentation software	(150) 291	Combinatorial auction	(145) 33
Artificial intelligence and law	(150) 291	Complexity	(142) 53
Artificial neural networks	(141) 123, (142) 1	Complexity of planning	(143) 219
Assumption-based planning	(147) 253	Component-centered qualitative models	(142) 19
Assumption-based reasoning	(141) 57	Computability	(147) 5
Auctions	(144) 125, (145) 33	Computational complexity	(141) 57, (141) 187, (146) 175, (147) 5
Autoepistemic logic	(143) 79		
Automated contracting	(142) 239		
Automated negotiation	(142) 205, (142) 239, (148) 53		
Automated reasoning	(145) 99		

Computational models (144) 251
 Computer vision (145) 227
 Concurrency (147) 85
 Conditional independence (141) 79
 Conditional planning (147) 35
 Conflict (141) 157
 Conflicting evidence (149) 161
 Conformant planning (144) 157
 Connectionist (142) 1
 Consensus operator (141) 157
 Constraint networks (146) 43
 Constraint programming (143) 151
 Constraint satisfaction (141) 205, (142) 1, (148) 11, (149) 179
 Constraint satisfaction problems (148) 103
 Contingent planning (147) 119
 Contracting (142) 239
 Conventions (141) 171
 Convergence process (146) 1
 Cooperation (142) 179
 Coordination (141) 171
 Counting hierarchy (142) 53
 Credulous reasoning (141) 187
 Cumulative resources (143) 151
 Cumulativity (149) 161

Dag (141) 137
 Damage control (144) 95
 Data mining (143) 139, (146) 129, (149) 61
 Databases (143) 139
 Decision making (144) 213, (148) 197
 Decision theory (146) 149
 Decision under uncertainty (148) 219
 Decision-theoretic planning (147) 119
 Deductive planning system (144) 157
 Default logic (143) 79, (144) 233, (149) 161
 Default reasoning (141) 57
 Defeasible argumentation (150) 291
 Defeasible reasoning (141) 1
 Dempster's rule (141) 157
 Diagnosis (148) 197
 Diagrammatic reasoning (145) 181
 Dialogue game (149) 221
 Discounted (147) 5
 Disjunctive logic programming (144) 157
 Distributed constraint satisfaction (144) 125
 Distributed control (142) 99
 Distributed resource allocation (142) 121
 Dual-leveled semantics (148) 177
 Dynamic A* (D*) (147) 253
 Dynamic CSP (148) 11

E-business (148) 53
 Electronic commerce (142) 265
 Emergent behavior (141) 171
 Empirical evaluation (146) 43
 Engineering ethics (150) 145
 Ensemble methods (146) 129
 Entrenchment kinematics (146) 193
 Entropy decomposition (143) 123
 Envisionment-based control policies (144) 95
 Epistemic logic (148) 177
 Essential graph (141) 137
 Ethical principles (150) 145
 Evaluation (143) 1, (144) 41
 Evaluation measures (148) 385
 Event causality (142) 53
 Evolutionary algorithms (145) 59
 Explanations (141) 1
 Explanatory reasoning (149) 1
 Expressive music performance (146) 129
 Expressive power (144) 233
 Extensional definitions (150) 145
 Extensionality (145) 121

Factored Markov decision processes (147) 225
 Factored state spaces (147) 163
 Feature point tracking (145) 227
 First hitting time (145) 59
 Fixpoint semantics (143) 79
 Flexible CSP (148) 11
 Flexible planning (148) 11
 Forward checking (141) 205
 Frame problem (144) 1
 Fusion (148) 291
 Fuzzy classification (148) 141
 Fuzzy constraint satisfaction (148) 53
 Fuzzy fusion (148) 141
 Fuzzy logic (148) 177
 Fuzzy mathematical morphology (148) 141
 Fuzzy pattern recognition (148) 141
 Fuzzy set theory (148) 335
 Fuzzy sets (148) 103
 Fuzzy similarity (142) 205
 Fuzzy spatial relationships (148) 141

Game theory (142) 239, (142) 265
 Genetic programming (141) 29
 Gentzen system (149) 221
 Global matching (144) 213
 Graph algorithms (147) 253
 Graph coloring (142) 1
 Graph counting (141) 137
 Graphical Markov model (141) 137
 Graphical models (148) 385

Greedy mapping (147) 253
 Grouping salience (146) 77
 Guaranteed possibility measure (148) 291

Hardness (143) 123
 Heterogeneous knowledge representation (148) 141
 Heuristic search (145) 1, (147) 253
 Heuristics (142) 1, (147) 253
 Hierarchical selectivity (146) 77
 Hilbert's tenth problem (149) 251
 Hybrid algorithms (146) 43
 Hyper-trees (143) 123

Incomplete information (144) 157
 Incomplete knowledge (147) 119
 Inconsistency (149) 161
 Inductive inference (149) 161
 Inference (143) 19
 Infinity-horizon (147) 5
 Information (142) 1
 Information acquisition (149) 31
 Information extraction (150) 239
 Information goods (142) 265
 Information retrieval (143) 51
 Instance-based learning (148) 335
 Integrated competition (146) 77
 Intelligent agents (149) 31
 Intelligent learning environments (150) 183
 Intelligent systems (144) 95
 Intelligent tutoring systems (150) 183
 Intention reconciliation (142) 147
 Interpretive case-based reasoning (150) 145
 Iterated belief change (146) 193

Job-shop scheduling (143) 189
 Judgment (148) 197

Knowledge (144) 1, (148) 177
 Knowledge acquisition (144) 41
 Knowledge discovery (149) 61
 Knowledge representation (141) 1, (145) 181, (147) 163, (148) 177, (148) 261
 Knowledge-states (144) 157

Lattice operators (143) 79
 Lazy learning (150) 17
 Learning from data (148) 385
 Legal information retrieval (150) 17
 Legal knowledge representation (150) 17
 Legal publishing (150) 239
 Legal reasoning (150) 17, (150) 59, (150) 97, (150) 291

Lexicographic revision (146) 193
 Local search (143) 189
 Loopy belief propagation (143) 19

Machine learning (143) 51, (143) 139, (146) 129, (148) 335
 Maintenance agent design problems (146) 175
 Market-oriented programming (144) 125
 Markov chain (145) 59
 Markov decision processes (147) 5, (147) 163
 Markov equivalence class (141) 137
 Markov networks (143) 123
 Markov random fields (143) 123
 Mean-field annealing (142) 1
 Mechanism design (142) 239
 Meta-learning (146) 129
 Metaqueries (149) 61
 Methodology (144) 251
 Mobile robotics (147) 253
 Modal logic (149) 31
 Model-based reasoning (142) 19
 Model-based structural recognition (148) 141
 Modeling argumentation (150) 183
 Modular robots (142) 99
 Modular translations (144) 233
 Motion correspondence (145) 227
 Multi-agent planning (142) 121
 Multi-agent systems (141) 171, (142) 99, (142) 205, (142) 239, (142) 265, (145) 33, (145) 147, (149) 31
 Multi-dimensional assignment problem (145) 227
 Multi-frame optimization (145) 227
 Multi-item auction (145) 33
 Multi-object auction (145) 33
 Multi-strategy learning (141) 29
 Multi-target tracking (145) 227
 Multiobjective search (145) 1
 Multiple criteria (145) 1
 Multiple inheritance with exceptions (149) 161
 Multiple satellite autonomy (145) 147

Natural language generation (144) 41
 Natural language processing (144) 41
 Nearest neighbor classification (148) 335
 Negative results (144) 41
 Noise (144) 213
 Non-binary constraints (141) 205
 Non-homogeneous partitioning method (147) 225
 Nonmonotonic reasoning (141) 57, (149) 161
 Normal defaults (144) 233
 Novelty (141) 79

Object-based visual attention	(146) 77	Reduction graph	(150) 59
On-line graph search	(147) 253	Reflective adjustment	(150) 17
Online fraud	(142) 265	Region Connection Calculus	(145) 121
Operationalization	(150) 145	Regional matching	(144) 213
Ordering relations	(148) 219	Relationships	(142) 179
Parent bound	(141) 137	Relevance	(141) 79, (144) 59
Parity problems	(141) 123	Relevance metrics	(144) 59
Partial models	(146) 129	Resource-boundedness	(146) 1
Partial observability	(147) 5	Robot navigation	(147) 253
Partial parsing	(150) 239	Robotics	(143) 1
Partially observable Markov decision processes	(147) 119	Rule discovery	(146) 129
Pattern recognition	(144) 213	SAT-based planning	(147) 85
Petri nets	(144) 95	Satisfiability	(147) 85, (144) 125
Plan representation	(142) 121	Satisfiability testing	(145) 99
Planning	(141) 29, (145) 1	Sceptical reasoning	(141) 187
Planning benchmarks	(143) 219	Scheduling	(143) 151
Planning domains	(143) 219	Secure planning	(144) 157
Planning in nondeterministic domains	(147) 35, (147) 253	Semi-normal defaults	(144) 233
Planning under uncertainty	(147) 85, (147) 225	Separability	(141) 79
Planning with incomplete information	(147) 253	Signal pattern recognition	(148) 103
Planning-as-satisfiability	(147) 119	Similarity assessment	(150) 183
Point algebras	(149) 179	Similarity measures on preferences	(146) 149
Poole systems	(149) 161	Simulations	(144) 251
Possibilistic networks	(148) 385	Situation calculus	(144) 1
Possibilistic reasoning	(148) 261	Smoking cessation	(144) 41
Possibility theory	(148) 197, (148) 219, (148) 291, (148) 335	Social choice	(148) 219
Preference criteria for selecting explanations	(149) 1	Software agents	(145) 147, (148) 53
Preference elicitation	(146) 149	Sorted inference	(144) 59
Preferential entailment	(149) 161	Spacecraft autonomy	(145) 147
Prerequisite-free defaults	(144) 233	Speedup learning	(141) 29
Probabilistic causal model	(142) 53	Spurious behaviors	(149) 251
Probabilistic causality	(142) 53	Stability	(144) 213
Probabilistic planning	(147) 5, (147) 119	State abstraction	(147) 163
Probability	(148) 335	Statistics	(143) 139
Probability of success	(147) 119	Stochastic optimization	(147) 5
Problem difficulty	(143) 189	Stochastic planning	(147) 163
Process algebras	(142) 19	Stochastic satisfiability	(147) 119
Proof complexity	(149) 221	Structural mapping	(150) 145
Qualitative reasoning	(149) 251	Subjective logic	(141) 157
Qualitative simulation	(144) 95, (149) 251	Supervised learning	(141) 123
Qualitative Spatial Reasoning	(145) 121	Support	(149) 61
Quantified Boolean Logic	(145) 99	Symbolic model-checking	(147) 35
Rational agent	(146) 1	Tabu search	(143) 189
Real-time decision making	(144) 95	Teamwork	(142) 147
Real-time heuristic search	(146) 1	Teamwork and cooperation	(142) 121
Reciprocity	(142) 179	Temporal reasoning	(144) 95, (148) 103, (148) 261, (149) 179
		Text classification	(143) 51
		Theorem proving	(144) 59
		Theory construction	(150) 97
		Time complexity	(145) 59

Time-space	(146) 43	Unobservability	(147) 5
Trade-off algorithm	(142) 205	Unsupervised learning	(141) 123
Transformation systems	(141) 123	User modelling	(144) 41
Transportation problems	(143) 219		
Tree-decomposition	(146) 43	Version spaces	(150) 17
Tree-width	(143) 123	Visual attention	(146) 77
Trust	(142) 179, (149) 31	Voting	(144) 213
Unary revision	(146) 193		
Uncertainty	(147) 119, (148) 197	Weak cause	(142) 53
Undecidability	(147) 5	Weak composition table	(145) 121
Undirected graphical models	(143) 123	Winner determination	(145) 33
Unifying metric approach	(141) 123	Worst-case analysis	(147) 253