Equation aux dérivées partielles

Soit Ω un ouvert non vide de \mathbb{R}^2 et $\lambda \in \mathbb{R}$.

On note $\mathcal{C}^1(\Omega,\mathbb{R})$ l'ensemble des fonctions réelles de classe \mathcal{C}^1 définies sur Ω .

Pour $\lambda \in \mathbb{R}$, on considère l'équation aux dérivées partielles $E_{\lambda}: x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \lambda f(x,y)$.

On note $F_{\lambda}(\Omega)$ l'ensemble des fonctions réelles de classe \mathcal{C}^1 définies et solutions de E_{λ} sur Ω .

Partie I – Etude générale

- 1.a Soit $\lambda \in \mathbb{R}$. Etablir que $F_{\lambda}(\Omega)$ est un sous-espace vectoriel de $\mathcal{C}^{1}(\Omega, \mathbb{R})$.
- 1.b Observer que les applications $p_x:(x,y)\mapsto x$ et $p_y:(x,y)\mapsto y$ appartiennent à $F_1(\Omega)$.
- 2.a Soit $\lambda \in \mathbb{R}$ et $f \in F_{\lambda}(\Omega)$ de classe \mathcal{C}^2 .

 Montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ appartiennent à $F_{\lambda-1}(\Omega)$.
- 2.b Soit $\lambda, \mu \in \mathbb{R}$. Observer que si $f \in F_{\lambda}(\Omega)$ et $g \in F_{\mu}(\Omega)$ alors $fg \in F_{\theta}(\Omega)$ pour un réel θ que l'on précisera en fonction λ et μ .
- 2.c Soit $\lambda \in \mathbb{R}$, $\alpha \in \mathbb{R}$ et $f \in F_{\lambda}(\Omega)$ telle que $\forall (x,y) \in \Omega, f(x,y) > 0$. Montrer que la fonction $f^{\alpha}: (x,y) \mapsto \big(f(x,y)\big)^{\alpha}$ appartient à $F_{\alpha\lambda}(\Omega)$.
- 3. Dans cette question $\Omega = \mathbb{R}^2 \left\{ (0,0) \right\}$. Pour $\lambda \in \mathbb{R}$, on note $r_{\lambda} : \Omega \to \mathbb{R}$ la fonction définie par $r_{\lambda}(x,y) = \left(\sqrt{x^2 + y^2} \right)^{\lambda}$.
- 3.a Justifier que $r_{\lambda} \in F_{\lambda}(\Omega)$.
- 3.b A quelle condition sur λ , peut-on prolonger r_{λ} par continuité en (0,0)?

Partie II – Résolution sur
$$\Omega = \mathbb{R} \times \mathbb{R}^{+*}$$
.

Dans cette partie $\Omega = \mathbb{R} \times \mathbb{R}^{+*}$.

- 1.a Justifier que Ω est un ouvert de \mathbb{R}^2 .
- 1.b Justifier que l'application $\Phi: \Omega \to \mathbb{R}^2$ définie par $\Phi(u,v) = (uv,v)$ réalise une bijection de Ω sur luimême. Exprimer l'application réciproque de Φ .
- 2. Soit $f \in \mathcal{C}^1(\Omega, \mathbb{R})$ et $g : \Omega \to \mathbb{R}$ définie par $g = f \circ \Phi$.
- 2.a Montrer que g est de classe \mathcal{C}^1 et exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- 2.b Justifier que $f \in F_{\lambda}(\Omega)$ ssi g est solution sur Ω de l'équation : $v \frac{\partial g}{\partial v}(u,v) = \lambda g(u,v)$.
- 2.c Résoudre cette dernière et décrire $f \in F_0(\Omega)$.

Partie III – Résolution de
$$E_{\lambda}$$
 sur $\Omega = \mathbb{R}^2 - \{(0,0)\}$.

Dans cette partie $\Omega = \mathbb{R}^2 - \{(0,0)\}$.

1. Soit $f \in C^1(\Omega, \mathbb{R})$.

- 1.a Soit $(x,y) \in \Omega$ fixé. Pour $t \in \mathbb{R}^{+*}$, on pose $\varphi(t) = f(tx,ty)$. Justifier que φ est de classe \mathcal{C}^1 et calculer $\varphi'(t)$.
- 1.b Etablir: $f \in F_0(\Omega) \Leftrightarrow \forall (x,y) \in \Omega, \forall t > 0, f(tx,ty) = f(x,y)$.
- 1.c En déduire que les solutions de $E_{\scriptscriptstyle 0}\,$ sur $\Omega\,$ sont les fonctions de la forme :

$$(x,y) \mapsto \varphi\!\left(\!\frac{x}{\sqrt{x^2+y^2}},\!\frac{y}{\sqrt{x^2+y^2}}\right) \text{ où } \varphi \in \mathcal{C}^1(\Omega,\mathbb{R})\,.$$

- 2. Soit $f:\Omega \to \mathbb{R}$. Notons $g:\Omega \to \mathbb{R}$ définie par $g(x,y) = \frac{f(x,y)}{\left(\sqrt{x^2+y^2}\right)^{\lambda}}$.
- 2.a Montrer que $f \in F_{\lambda}(\Omega) \Leftrightarrow g \in F_{0}(\Omega)$.
- 2.b Déterminer les fonctions solutions de $\,E_{\scriptscriptstyle\lambda}\,$ sur $\,\Omega\,.$