北京大学电子学系 2019 年秋《电子线路分析与设计》期中考试 2

学号:		姓名:		试卷编号:	
(22)	7 (12)	<u> </u>	m ()	T (4-1)	34 J3/=

一 (30)	二 (10)	三 (20)	四 (25)	五 (15)	总成绩

一. 判断题(30分,每题 1.5分,请在题后的括号内画 ✓ 或 ×)

1.	实用的放大电路可以是有源的,也可以是无源的。	[×]
2.	测得某 BJT 电路中 BJT 三端直流电压分别为 1V、2V、3V,则它肯定不能正常放大。	[✓]
3.	FET 放大器中,因为 FET 的栅极不需要任何电流,所以其栅极并不需要偏置电路。	[×]
4.	放大器使用交流耦合就不能放大直流信号;使用直流耦合就不能放大交流信号。	[×]
5.	放大器开始稳定工作后,在线性区内调节静态工作点 Q,不会改变其 Av, Ri和 Ro。	[×]
6.	始终工作于线性区的放大器,即使正弦信号幅度有变化,电源平均功耗也几乎不变。	[✓]
7.	改变某放大器输入信号的幅度,则线性失真和非线性失真的严重程度都会变化。	[×]
8.	改变某放大器输入信号的带宽,则线性失真和非线性失真的严重程度都会变化。	[×]
9.	BJT 放大器的 f _H 主要由其某个结电容决定,受电路中电阻值的影响很小。	[×]
10.	为使放大电路的 f _L 较低,则耦合电容的电容值应尽量大些。	[✓]
11.	无论放大电路中有多少动态元件,其通带外的滚降都是 20dB/十倍频程。	[×]
12.	BJT 共射极放大电路中,因为密勒效应,使 C _{B'c} 产生等效变大很多倍的效果。	[✓]
13.	BJT 的 CE 放大器带宽增益积为 10MHz,则可将[9.95M~10.05MHz]的信号放大 100 倍。	[×]
14.	只要是低通放大器,就可以利用其阶跃响应的上升时间来推算其截止频率 f _H 。	[×]
15 .	差分放大器一般设计为:Avc << Avd,且 Ric << Rid。	[×]
16.	差分放大器的设计原则是:输入端应完全对称,输出端也应完全对称。	[×]
17.	在 BJT 差分放大器中以恒流源提供发射极偏置电流,可提高其共模抑制比 K _{CMR} 。	[✓]
18.	推挽放大器的效率与信号的波形和幅度都有关。输入最大幅度方波时,效率最高。	[✓]
19.	实际运放电路中,若运放两输入端电压都精确为零,则其输出电压一定为零 🗾	[×]
20.	镜像电流源正常工作时,其两个 BJT 的 Ic 近似相等,而 Vce 也近似相等。	[×]
		•

二. 单项选择题(10分,每题2分)

1. 下列电路中,一般情况下,哪种电路输出阻抗最小? (B)

A. 共源极放大电路 B. 共集电极放大电路

C. 共基极放大电路

D. 镜像电流源

- 2. 下面四种失真中,属于线性失真的是:(D)
 - A. 输入正弦波时,输出信号为顶部削平了的正弦波;
 - B. 输入正弦波时,输出信号在过零点出现了交越失真;
 - c. 输入正弦波时,输出信号近似为同周期的三角形波
 - D. 输入对称方波时,输出信号为同周期的正弦波

- 3. 当威尔逊电流源和串接电流源(均由 4 个 BJT 构成)正常工作时,它们各有几个 BJT 工作于"线 性区和饱和区的分界线上"? (D)
 - A. 2个,2个

B. 2个,3个

C. 3个,2个

- D. 3个,3个
- 4. 关于放大器电路中的温漂,下面的阐述正确的是: (B)
 - A. 分析温漂时,主要是考虑放大电路中偏置电阻的温度特性
 - B. 温漂可能影响放大电路的动态范围、也可能影响电路的功耗。
 - c. 温漂对直流耦合和交流耦合的放大器有相同的影响
 - D. 温漂对级联放大器的前级和后级有相同的影响
- 5. 下列电路均由两个 BJT 组成。哪组电路里,并不需要两个 BJT 的参数指标尽量一致 (A)
 - A. 达林顿电路
- B. 差分电路 C. 推挽电路
- D. 镜像电流源

- 三、填空(20分,每空2分)
- 1. 若某放大器的频响如右式所示,则是,则它的 中频增益为 32 dB, 带宽为 10K Hz。 [前空填 40 的给 1 分] [后空填 9999.8 也行]

$$\mathbf{A(f)} = \frac{10^{20} \mathbf{f}^2}{(1+j5\mathbf{f})^2 (10^7 + j\mathbf{f}) (10^4 + j\mathbf{f}) (10^6 + j\mathbf{f})}$$

2. 电流源电路如右图所示,已知三个 BJT 参数一致,且 β=100,为使得 R_L 所获得电流为 1mA,应取 R 为 $8.6K\Omega$; 在这种情况下,若 T_1 发 射极和地线之间改为 10κ Ω 电阻, T_2 发射极和地线之间改为 20κ Ω 电

<u>18.6mW__</u>;输出信号 Vout 的最大线性动态范围是__[-9.3,+9.3V]__。

4. 级联电路如右图所示。其三级放 大器的组态从左至右分别为:

认为 BJT 的 r_b足够小,r_e≈10Ω, rc足够大, β=100,则估算此电路 的输入电阻约为___17.5K Ω __; 其 输出电阻约为____; 其 总电压放大倍数 VRL / Vs 约为 __-250____。[填 250 的给 1 分]

四、(25 分) 已知 BJT 的输出特性曲线族如下面左图所示。其工作电路如下面右图,其中 V_{CC} = 10 V_{CC}

- a) 请在上面图中画出: 直流负载线和交流负载线
- b) 请根据电路图和输出特性曲线族估计 BJT 的参数: β、rc、re
- c) 请估算放大器输入电阻 R_i 和 输出电阻 R_o (估算时可认为 r_b足够小, r_c 足够大)
- d) 请估算放大器增益: $A_V = V_{RL} / V_S$ (估算时可认为 r_b 足够小, r_c 足够大)
- e) 请估计正弦波输入时的最大不失真输出电压
- f) 请估算放大器低半功率点 f_L 和高半功率点 f_H (估算时可认为 r_b足够小, r_c 足够大)
- g) 有哪些办法可以提升此放大器的通频带宽?
- a) 直流负载线: IcQ*R₂ + IEQ *R₄ + VcE = Vcc (右图蓝线)
 由 VBQ ≈ 2.7V → VEQ ≈ 2V → IcQ ≈ IEQ = 2V/R₄ = 2mA
 二者交点为 Q
 交流负载线: δIc*(R₂//R_L) = δVcE (右图红线)

- b) $\beta \approx 2mA/10uA = 200$ $r_c \approx 斜率倒数 = 8V / 0.4mA = 20KΩ$ $r_e \approx 26mV/2mA = 13$ 欧
- c) Ri = R₁//R₃//r_{be} = 73K//27K//(13*200) \approx 2.3K Ro \approx R2 = 1.5K
- d) $A_V = V_{RL} / V_S = -R_i / (R_i + R_s) * \beta * (R_2 / / R_L) / (1 + \beta) r_e \approx -2.3 / (2.3 + 1)) * (1.5 K / / 3 K) / 13 \approx -53.6$
- e) 从图中动态负载线上看,到截止前大约动态电压为 2V 可以从图上可以判断,也可以根据 V_{CQ} $V_{BQ} \approx 4.3V$,判断先发生截止失真,而非饱和失真最大不失真输出电压为 2V
- f) f₁: 比较三个大电容对应的时间常数:

CB: $C_B * (R_S + R_i) = 10uF * 2.3K$

CE: $CE * (R_4//(r_e + (R_1//R_3//R_s)/(1+\beta))) = 100uF * 17.7$

CC: $CC * (R_2 + R_L) = 10uF * 4.5K$

取最小的时间常数,即可得 f_L 估计值: $1/(2*\pi*100u*17.7) \approx 90.0Hz$

fu: 比较两个结电容对应的时间常数:

 $C_{B'E} : C_{B'E} * (R_1//R_3//R_s//r_{be})$

C_{B'C}: 密勒等效后: C_{B'C}*(1+77)*(R₁//R₃//R_s//r_{be})=

取最大的时间常数,即可得 f_H 估计值: $1/(2*\pi*10p*78*0.7k) \approx 292KHz$

【因密勒等效后,二者的外部电阻是相同的,所以直接忽略 CB'E 也可以】

g) 普遍减低电路中的偏置电阻;更换更好的 BJT;减小负载电阻(将降低增益);发射极外部串接电阻(将降低增益);【答案开放,回答出 3 点以上的给满分】

五、(15 分) 下图是一个未画完的运算放大器电路。它具有复合管构成的差分输入级和推挽输出级,且通过 V_{BE} 增强电路刚好消除交越失真。假设其中所有 BJT 的参数 (的绝对值) 均相同, R_4 = 100 Ω , R_5 =200 Ω ; R_6 = R_7 = 2 Ω 。

- a) 请根据题设判断各 BJT 的类型,在上图中补充画完各 BJT,并按题设连接完成整个电路;
- b) 当两个输入端电压均为 0 时,请按 Ic 从大到小的顺序,对 T₁~T₁₅进行排列。

 $T_1 {\approx} T_2 {\approx} T_{10} {\approx} T_9 \text{ > } T_{11} \text{ > } T_7 \approx T_8 \approx T_4 \approx T_5 \text{ > } T_3 \approx T_6 \text{ > } T_{13} \approx T_{15} \approx T_{12} \approx T_{14}$

- c) 请简要说明图中两个二极管的作用,以及它们发挥作用所需要满足的条件。
- 二极管起保护作用。

发挥保护作用需要 R₆或 R₇上产生 0.7V 的压降,即输出给负载的电流达到 350mA。

- d) 写出放大器的差模增益的近似表达式: A_{VD} = (V_{RL} / V_{id})| _{Vi1 = +Vid/2; Vi2 = -Vid/2; T4、T5 公共发射极处为动态地 → A_{VD} = -(V_{id}/2) / (r_{be6}+r_{be5}*(1+β)) * β² * 2 * β*β²*R_L / V_{id}≈ -β⁵*R_L /(r_{be6}+r_{be5}*(1+β))}
- e) 写出放大器的共模增益的表达式: $A_{VC} = (V_{RL}/V_{ic})|_{Vid=0}$ 和 共模抑制比 K_{CMR} 差分放大器不能输出共模信号,故 $AVC \approx 0$; $KCMR \approx \infty$