Markov Categories and Entropy

Paolo Perrone, IEEE Transactions on Information Theory, 2023

Utku Boduroğlu, Drew McNeely, and Nico Wittrock

Adjoint School 2024

April 11, 2024

What Markov categories are not

Definition

A symmetric monoidal category with

objects: commutative comonoids $(X, del_X, copy_X)$

morphisms: morphisms of comonoids

What Markov categories are not

Definition

A symmetric monoidal category with

objects: commutative comonoids $(X, del_X, copy_X)$

morphisms: morphisms of comonoids

 $f: X \to Y$ preserves comultiplication iff

What Markov categories are not

Definition

A symmetric monoidal category with

objects: commutative comonoids $(X, del_X, copy_X)$

morphisms: morphisms of comonoids

 $f: X \to Y$ preserves comultiplication iff

run f twice with same input

run f once and copy output

Determinism in Markov categories

Definition

 $f: X \to Y$ is deterministic if

Recall: $p: I \rightarrow A := \{a, b, c\}$ is a distribution $\{p(a), p(b), p(c)\}$.

Example

is <u>not</u> deterministic:

Recall: $p: I \rightarrow A := \{a, b, c\}$ is a distribution $\{p(a), p(b), p(c)\}$.

Recall: $p: I \rightarrow A := \{a, b, c\}$ is a distribution $\{p(a), p(b), p(c)\}$.

Example

Recall: $p: I \rightarrow A := \{a, b, c\}$ is a distribution $\{p(a), p(b), p(c)\}$.

Recall: $f: X \to Y$ has distributions f_X on Y.

Proof.

f is deterministic \Leftrightarrow all f_x of form

 \Leftrightarrow f corresponds to Set-function

Determinism and Products

Theorem

Let C be a Markov category.

The deterministic morphisms form Markov subcategory $C_{det} \subset C$.

Determinism and Products

Theorem

Let C be a Markov category.

The deterministic morphisms form Markov subcategory $C_{det} \subset C$.

 C_{det} is cartesian monoidal (i.e. \otimes is product functor).

Determinism and Products

Theorem

Let C be a Markov category.

The deterministic morphisms form Markov subcategory $C_{det} \subset C$.

 C_{det} is cartesian monoidal (i.e. \otimes is product functor).

Example

 $\mathsf{FinStoch} \supset \mathsf{FinStoch}_{\mathsf{det}} \cong \mathsf{FinSet}$

Products and Determinism

Theorem

Let C be cartesian monoidal (i.e. \otimes is product functor).

C is Markov.

All morphisms are deterministic.

Products and Determinism

Theorem

Let C be cartesian monoidal (i.e. \otimes is product functor).

C is Markov.

All morphisms are deterministic.

Example (Markov categories without uncertainty)

Set, FinSet, Meas, BorelMeas, . . .

...introduce uncertainty to cartesian Markov categories

Theorem

For a cartesian monoidal category C with monad $T:C\to C$ which is compatible with I (\leadsto powerset monad was adjusted) compatible with \otimes

its Kleisli category C_T is Markov.

Uncertainty captured by morphisms!

Example (Powerset Monad)

Set is cartesian monoidal \Rightarrow morphisms are deterministic

Powerset monad
$$2^{\bullet}$$
: Set \rightarrow Set,

$$X \mapsto 2^X := \{M \subseteq X\}$$

Kleisli category Set₂• has morphisms:

$$f: X \to 2^Y$$
 i.e. $f(x) \subseteq Y$

As Pablo stated: describes possibility

Example (Powerset Monad)

Problem: Kleisli category Set₂• has morphism:

$$f: X \to 2^Y$$
 with $f(x_i) = \emptyset$

Example (Powerset Monad)

Problem: Kleisli category Set₂• has morphism:

$$f: X \to 2^Y$$
 with $f(x_i) = \emptyset$

 \Rightarrow Set₂• is <u>not</u> Markov!

$$\rightsquigarrow$$
 adjust monad $T : \mathsf{Set} \to \mathsf{Set}$,

$$X \mapsto 2^X - \emptyset$$

 \Rightarrow Set_T =: Poss is Markov.

Example (Powerset Monad)

Problem: Kleisli category Set₂• has morphism:

$$f: X \to 2^Y$$
 with $f(x_i) = \emptyset$

 \Rightarrow Set₂• is <u>not</u> Markov!

$$\rightsquigarrow$$
 adjust monad $T : \mathsf{Set} \to \mathsf{Set}$,

$$X \mapsto 2^X - \emptyset$$

 \Rightarrow Set_T =: Poss is Markov. With uncertainty.

Outline

This is just me fooling around with Beamer to get a feel for it. None of the contents should be taken seriously at this point.

- Introduction to Markov Categories
- Useful ways to construct Markov categories
 - Randomness in Markov categories
 - Introducing Uncertainty by Probability Monads
- Properties and additional axioms
- Bonus Slides
 - Powerset monad
- Markov Categories
 - Axioms
 - Examples
- 6 Enriched Categories
- Divergences
 - Entropy

Definition of Markov Category

Definition

A Markov category is a semi-Cartesian category in which every object is a commutative comonoid.

Example Markov category

Okay if we create an example, it absolutely needs to involve the cloud cover forecast during the total solar eclipse.

Enriched Categories

So yeah an enriched category is like a category with more structure on the morphisms. Instead of having hom-sets, ya got yourself some hom-objects.

Divergence

Aight, so a divergence is like a metric for probability distributions... Except it ain't a metric, cause it ain't symmetric.

Entropy

Entropy is a measure of how "random" a probability distribution is, given through the divergence between both sides of the defining equation for deterministic kernels. Neat!!