Sparse Representation Method for Whole Graph Embedding

Oral Comprehensive Exam Kaveen Liyanage

Dr. Bradley Whitaker
Dr. Rob Maher

Graphs are helpful

- (a) E-commerce recommendation HG [20].
- (b) Intent recommendation HG [19].

(c) User Profiling HG [126].

Fig. 3: The representative HGs in E-commerce.

(a) Malware detection [7].

(b) Key player identification [99].

(c) Drug trafficker identification [101].

Fig. 4: The representative HGs in cybersecurity applications.

Overview

Introduction Motivation / Problem Goal **Objectives** Background

Graph embedding Sparse representation Feature ranking

Workflow

Preliminary work Proposed timeline **Future directions**

Malware detection by Control Flow Graphs (CFG) of binary files

Binary File

Control Flow Graph (CFG)

Graph embedding is an important process

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs.

Overview of binary file analysis using CFGs

Unsupervised clustering of binary files using CFGs

Goal

Incorporate Sparse representation and its features for whole graph embedding.

A Graph is represented as one sparse vector and two graphs with similar sub-structure are embedded to be closer.

The Graph can be

Directed

Cyclic

Have node feature

Objectives

 To develop a sub-tree pattern based sparse graph embedding method WL+KSVD

2. Framework for Identifying important sub-tree patterns

3. Develop a sparse graph representation in hyperbolic space

Objectives overview

Objectives overview

Overview

Introduction Motivation / Problem Goal Objectives

Background

Graph embedding
Sparse representation
Feature ranking

Workflow

Preliminary work
Proposed timeline
Future directions

Graph embedding

Fig. 2. Graph embedding taxonomies by problems and techniques.

Graph embedding types

Graph embedding techniques

Graph2Vec overview

Weisfeiler-Lehman subtree hash

Node	Word
Start	2, hash(2,4)
check	4, hash(2,2,2,4)
Load	2, hash (2,2)
Save	2, hash(4,4)
Print	2, hash(2,4)
Sub_func	4, hash(2,2,4,4)

Word2Vec

Figure 3: The skip-gram model.

https://ronxin.github.io/wevi/

Poincare map

Sparse Representation

Sparse Representation

- Input signals : $Y = [y_1, y_2, ..., y_N] \in R^{n \times N}$
- Dictionary elements : $d_i \in \mathbb{R}^n$
- Dictionary : $\mathbf{D} = [d_1, d_2, ..., d_K] \in \mathbb{R}^{n \times K}$
- Resulting signal : $\alpha = [\alpha_1, \alpha_2, ..., \alpha_N] \in R^{K \times N}$
- Sparsity : *S*

$$\underset{D,\alpha}{\operatorname{argmin}} ||\mathbf{Y} - \mathbf{D}\alpha||_2^2 \ s.t. \forall i, ||\alpha_i||_0 \le S,$$

Learned dictionary is in the same input space

Dictionary based Feature Ranking metrics

Dictionary mapping

$$\mathbf{D}_{\text{map}}(j) = \sum_{i=1}^{m} \text{Proj}(D_i)^2 = \sum_{i=1}^{m} \mathbf{D}_{(j,i)}^2$$

Dictionary utilization

$$\mathbf{D}_{\mathrm{util}}(j) = \sum_{i=1}^{m} \operatorname{Proj}_{j}(D_{i} \cdot \sum_{k=1}^{n} |\alpha_{j,k}|)$$

Sparse coding-based FR

Pros

Model agnostic

Calculated Sparse coefficients can be used with different models

Simple relationship

More intuitive mapping

Non-myopic manner

Take into consideration correlations and redundancies

Cons

Time must be spent to compute the sparse coefficients

Time spent learning sparse coefficients is not wasted

Overview

Introduction

Motivation / Problem

Goal

Objectives

Background

Graph embedding

Sparse representation

Feature ranking

Workflow

Preliminary work

Proposed timeline

Future directions

Graph2Vec

WL+KSVD

Preliminary results

Table 2. Linear SVM accuracy with N=1024 embedding

	MU	PTC	PROT	NCI1	NCI109
G2V	68.55	55.23	67.30	59.30	56.46
	± 10.03	±5.9	± 0.87	± 4.46	± 2.82
GL2V	74.92	52.04	69.09	64.52	62.98
	±7.8	±6.5	±1.38	±1.99	± 2.97
SF	83.47	57.59	70.98	61.90	61.96
	± 4.15	±9.34	± 1.00	± 3.24	± 2.40
WL+	72.38	54.36	64.60	64.16	62.93
KSVD	± 3.20	± 2.31	±2.00	±2.19	± 0.24

Pipeline

Identifying vulnerable subtree structures

Conceptual authentication bypass vulnerability

Hyperbolic space

Figure 1. Left: Embedding of a binary tree in the Poincaré disk. Right: Geodesics and distances. As x and y move towards the outside of the disk (i.e., letting $||x||, ||y|| \to 1$), the distance $d_H(x, y)$ approaches $d_H(x, O) + d_H(O, y)$.

Hyperbolic space dictionary learning

Subtree embedding in Hyperbolic

Chami, I., Gu, A., Chatziafratis, V. and Ré, C., 2020. From trees to continuous embeddings and back: Hyperbolic hierarchical clustering. *Advances in Neural Information Processing Systems*, 33, pp.15065-15076.

SVD in hyperbolic

Onn, R., Steinhardt, A.O. and Bojanczyk, A., 1989, August. The hyperbolic singular value decomposition and applications. In *Proceedings of the 32nd Midwest Symposium on Circuits and Systems*, (pp. 575-577). IEEE.

K-means in hyperbolic

Djeddal, H., Touzari, L., Giovanidis, A., Phung, C.D. and Secci, S., 2021. Hyperbolic K-means for traffic-aware clustering in cloud and virtualized RANs. *Computer Communications*, *176*, pp.258-271.

Pursuit algorithms in hyperbbolic

Tabaghi, P. and Dokmanić, I., 2020, August. Hyperbolic distance matrices. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 1728-1738).

Q&A Summary

Objectives

Sparse dictionary learning on subtree patterns Feature ranking of subtree patterns Sparse representation on Hyperbolic space

Advantage

Linear relationship Simpler (Low order) ML model Intuitive

Outcomes

Publicly available python package

Graph Kernels

Graph Kernel selection guideline

Guidelines for prioritizing kernels for consideration based on known properties of the graph learning problem.

Typical CFG for a given program

```
void error(char *error)
  puts(error);
void alpha()
 puts("alpha");
 error("alpha!");
void beta()
 puts("beta");
 error("beta!");
void main()
 alpha();
 beta();
```


Conceptual authentication bypass vulnerability

WL subtree hash relabeling

WL graph hash algorithms' first iteration in the context of CFG

Supervised dictionary learning

Feature selection

Overview

Introduction Motivation Problem Goal

Background

Graph embedding
Sparse representation
Feature ranking

Objectives

Sparse dictionary learning on subtree patterns Feature ranking of subtree patterns Sparse representation on Hyperbolic space