Basics

Notations

• $\binom{V}{k} := \{A : A \subseteq V \land |A| = k\}$ • $[n] := \{1, \dots, n\} \subset \mathbb{N}$ • Power set $2^X := \{A : A \subseteq X\}$

Graphs

- **Definition**: G = (V, E) with $E \subseteq V^2, V \cap E = \emptyset$
- Vertex: $v \in V$ for graph G = (V, E)
 - $\circ \ \ v \ \textit{incident with} \ e \Longleftrightarrow v \in e$
 - $\circ v_1, v_2$ ends of $e \Leftrightarrow e = v_1 v_2$
 - $v_1, v_2 \ adjacent/neighbors \iff v_1 v_2 \in E$
- Edge: $e = \{x, y\} \in E$ for graph G = (V, E) (short e = xy)
- $\circ \ e \ edge \ at \ v \iff v \ \text{incident with } e$
- \circ e joins $v_1, v_2 \Leftrightarrow e = v_1 v_2$
- $\circ \ \ xy \text{ is X-Y-edge} \Longleftrightarrow x \in X \land y \in Y$
- $e_1, e_2 \ adjacent/neighbors \iff \exists \ v : v \in e_1 \land v \in e_2$
- Vertex sets:
- $\circ V(G) = V \text{ for graph } G = (V, E)$
- o $X \in V(G)$ independent \Leftrightarrow no $x_1, x_2 \in X$ are adjacent
- neighborhood of $v \in V(G)$: $N(v) = \{u \in V(G) : uv \in E(G)\}$
- Edge sets:
- \circ E(G) = E for graph G = (V, E)
- E(X,Y): set of edges between $X \in V(G)$ and $Y \in V(G)$
- E(x, Y): set of edges between vertex $x \in V(G)$ and $Y \subset V(G)$
- \circ E(v): set of edges at $v \in V(G)$
- Order: = |V(G)|, short |G|
- Size: = |E(G)|, short ||G||
- Trivial graph: graph of order 0 or 1
- Isomorphic (G_1 to another graph G_2 , write $G_1 \cong G_2$ or even $G_1 = G_2$): \exists bijection $f: V_1 \rightarrow V_2: \{u, v\} \in E_1 \Leftrightarrow \{f(u), f(v)\} \in E_2$ • Graph union: $G \cup G' = (V(G) \cup V(G'), E(G) \cup E(G'))$
- Graph intersection: $G \cap G' = (V(G) \cap V(G'), E(G) \cap E(G'))$
- Graph multiplication: G * G': join all $v \in G$ with all $v' \in G'$ (with $V(G) \cap V(G') = \emptyset$)
- Subgraph G' of G (write $G' \subseteq G$): if $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$
- G contains G'
- G' proper subgraph of G: if $G' \subseteq G$ and $G' \neq G$ G' induced subgraph of G: $G' \subseteq G$ and E(G') contains all edges of G with both ends in V(G'), V(G') induces G', write G' = G[X] (with X = V(G'))
- Edge-induced subgraph: subgraph induced by $X \subseteq E(G)$, note G[X]
- \circ G' spanning subgraph of G: V(G') = V(G)
- Supergraph: G of G' (write G ⊇ G'): as above.
- Vertex cover: $V' \subseteq V(G)$ s.t. any $e \in E(G)$ is incident to a vertex in V'
- · Graph subtraction:
- o $G U = G[V(G) \setminus U]$ for some vertex set U
- $\circ \ G v = G[V(G) \setminus \{v\}] \text{ for some vertex } v \\ \circ \ G G' = G[V(G) \setminus V(G')] \text{ for some graph } G'$
- Edge addition: $G+F=(V(G),V(E)\cup F)$ for some $F\subseteq V(G)^2$ Complement: $\overline{G}=(V(G),V^2\setminus E(G))$
- Line graph of $G: L(G) = (E(G), \{xy \in E(G)^2 : x, y \text{ adjacent in } G\})$ Complete graph: (X, X^2) with vertex set X
- K_n : complete graph on n vertices

Vertex degrees

- Degree of $v \in V$: $d(v) = \deg(v) = |N(v)|$
- $v \in V(G)$ isolated: d(v) = 0
- $v \in V(G)$ leaf: d(v) = 1
- o number of vertices of odd degree is even
- Minimum degree of graph $G: \delta(G) = \min\{d(v) : v \in V(G)\}$
- Maximum degree of graph $G: \Delta(G) = \max\{d(v) : v \in V(G)\}$
- Degree sum: $\sum_{v \in V(G)} \deg(v) = 2|E(G)|$
- Average degree of graph $G: d(G) = \frac{1}{|G|} \sum_{v \in V} d(v)$
- \circ $\delta(G) \leq d(G) \leq \Delta(G)$
- k-regular graph: $\forall v \in V(G) : d(v) = k$
- o cubic graph: 3-regular graph
- Vertex-Edge-ratio of graph G: $\varepsilon(G) = \frac{||G||}{||G||}$
 - $\circ \ \varepsilon(G) = \frac{1}{2}d(G)$
 - every graph with $||G|| \ge 1$ has $H \subseteq G$ with $\delta(H) > \varepsilon(H) \ge \varepsilon(G)$

Paths

- Path: $(\{v_1,\ldots,v_n\},\{\{v_1,v_2\},\ldots,\{v_{n-1},v_n\}\})$ (read: v_0v_n -path)
 - \circ shorthand: $v_1 \dots v_n$
 - $\circ v_0, v_n$ linked by path
 - $\circ v_0$, v_n end-vertices/ends of path
 - $\circ v_1, \ldots, v_{n-1}$ inner vertices of path
- Length: $|E(P)| \neq |V(P)|$
- Shorthands $(0 \le i \le j \le k)$:
- $P = x_0 \dots x_k, \mathring{P} = x_1 \dots x_{k-1}$
- $\circ \ Px_i = x_0 \dots x_i, P\mathring{x_i} = x_0 \dots x_{i-1}$
- $\circ \ x_iP = x_i\dots x_k, \mathring{x_i}P = x_{i+1}\dots x_k$
- $\circ \ x_i P x_j = x_i \dots x_j, \mathring{x_i} P \mathring{x_j} = x_{i+1} \dots x_{j-1}$
- Path concatenation: $Px \cap xQy \cap yR = PxQyR$
- A-B-path: $V(P) \cap A = \{x_0\} \land V(P) \cap B = \{x_n\}$
- **H-path**: graph H, P meets H exactly in its ends
- **Independent**: two ab-paths are independent \Leftrightarrow they only share a and b
- Path existence: Every G with $\delta(G) \ge 2$ contains path of length $\delta(G)$
- Distance: $d_G(x, y) = \min(\{k : \exists x y \text{path of length } k\} \cup \{\infty\})$
- Central: $v \in V(G)$ where cen = $\max\{d_G(v,x) : v \neq x \in V(G)\}$ is minimal
- Radius: $\operatorname{rad}(G) = \min_{x \in V(G)} \max_{y \in V(G)} d_G(x, y)$
- Diameter of G: diam $(G) = \max\{d_G(x,y) : x,y \in V(G)\}$
- $\circ \ \mathit{radius-diameter-relation} \colon \mathrm{rad}(G) \le \mathrm{diam}(G) \le 2\mathrm{rad}(G)$
- o radius-degree-vertex-restriction:

$$\operatorname{rad}(G) \leq k \wedge \Delta(G) \leq d \geq 3 \Rightarrow |G| \leq \frac{d}{d-2}(d-1)^k$$
• Walk: alternating sequence $v_0e_0\dots e_{k-1}v_k$ s.t. $e_i = v_iv_{i+1} \ (\forall i < k)$

- \circ closed walk: $v_k = v_0$
- o walk-path-relation: all vertices in walk distinct → path
- $\circ \ \textit{walk-path-induction} \colon \exists \ v_0 v_k \text{-walk} \Rightarrow \ \exists \ v_0 v_k \text{-path}$

Cycles

- Cycle: $C = P + x_{k-1}x_0$ with path $P = x_0 \dots x_{k-1}$ $(k \ge 3)$
- \circ shorthand: $x_0 \dots x_{k-1} x_0$
- Length: = |C| = ||C||
- **k-cycle**: C_k = cycle of length k
- Girth of graph $G: g(G) = \min (\{k : G \text{ contains } C_k\} \cup \{\infty\})$
- \circ girth-diameter-relation: $g(G) \le 2 \operatorname{diam}(G) + 1$
- girth-vertex-relation: $\delta(G) \ge 3 \Rightarrow g(G) < 2\log|G|$
- Circumference of graph $G: = \max (\{k : G \text{ contains } C_k\} \cup \{0\})$
- Chord of cycle $C \subseteq G$: = $xy \in E(G)$ with $xy \notin E(C)$, but $x, y \in V(C)$
- **Induced cycle**: induced subgraph of G that is a cycle (= cycle in G with no chords)
- Cycle existence: Every G with $\delta(G) \ge 2$ contains cycle of length $\ge \delta(G) + 1$ • Odd closed walk, odd cycle: G has odd closed walk \Rightarrow G has odd cycle

Connectivity

- Connected graph $G: \forall x, y \in V(G): \exists xy$ -path
- connected subset $U \subseteq V(G)$: if G[U] is connected
- **Vertex enumeration**: G connected \Rightarrow vertices can be enumerated v_1, \ldots, v_n s.t. $G_i \coloneqq G[v_1, \dots, v_i]$ is connected $(\forall i \le n)$
- · Component: maximal connected subgraph
 - graph partitioning: components partition G
- **Subgraph separation**: $X \subset V(G)$ separates $A, B \subset V(G) \Leftrightarrow$ any A-B-path has vertex in X
- separator X
- Cut-Vertex: vertex separating two other vertices of the component
- Bridge: edge separating its ends (= edges of component not lying on any cycle)
- k-connected: if $|G| > k \land G X$ is connected $\forall X \subseteq V(G)$ with |X| < k
- $\,\,\rightarrow\,\,$ no two vertices in G are separated by fewer than k other vertices
- Connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- 1-edge-connected: if $|G| > 1 \land G F$ is connected $\forall F \subseteq E(G)$ with |F| < l
- Edge-connectivity: $\kappa'(G) = \lambda(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Connectivity and smallest degree: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Connectivity and average degree: $d(G) \ge 4k \Rightarrow G$ has k-connected subgraph

Rest

- Degree sequence: multiset of degrees of vertices in V(G)
- o graphic: deg. seq. (d_1,\ldots,d_n) , iff

 - 2. $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=1}^{k} i = k+1^n \min(d_i, k) \quad (\forall 1 \le k \le n)$
- Adjacency matrix: $A(G) = \mathbb{R}^{n \times n} \ni A_{i,j} = \begin{cases} 1, & ij \in E \\ 0, & \text{else} \end{cases}$
- Incidence graph of $G: IG = (V \cup E, \{\{v,e\} : v \in e, e \in E\})$
- · Eulerian: if it contains an Eulerian tour
- · Connected: for any two vertices there is a link between them
 - \circ spanning tree: if G is connected, then it has a spanning tree

• peeling leaves: vertices can be ordered v_1,\ldots,v_n s.t. $G[\{v_1,\ldots,v_i\}]$ is connected for $i\in\{1,\ldots,n\}$

Digraph

- Definition: G = (V, E) with vertex set V and edge set $E \subseteq \{(u, v) : u, v \in V, u \neq v\}$

Multigraph

• **Definition**: G = (V, E) with vertex set V and multiset E of V-pairs

Hypergraph

• **Definition**: G = (V, E) with vertex set V and edge set $E \subseteq 2^V = \{A : A \subseteq V\}$

Walk

• Definition: non-empty alternating sequence of vertices and edges

 $\begin{aligned} &v_0e_0\dots e_{k-1}v_k\\ \text{with } e_i &= v_iv_{i+1}, \text{length } k \in \mathbb{N}\\ &\circ \textit{closed}\text{: if } v_0 &= v_k \end{aligned}$

 \circ even: if k is even

o odd: if k is odd

• Eulerian tour:

o Definition: closed walk with

– no edges of G are repeatedly used

- all edges of G are used

• Even degrees: G connected has Euler tour $\Leftrightarrow \forall v \in V(G) : \deg(v)$ even

Connected component

• **Definition**: maximal connected subgraph (connected, but any supergraph isn't)

Block

- Block: maximal 2-connected subgraph or bridge
- share ≤ 1 vertices with one another
- Block-cut-vertex graph
- $\circ V = \text{set of blocks} \cup \text{set of vertices}$
- $\circ \ E = \{\{v, B\} : v \in V(B), \text{cut-vertex } v, \text{block } B\}$
- $\circ \;\;$ block-cut-vertex graph of connected graph is tree

Acyclic graph, Forest

• Definition: Graph with no cycle as subgraph

Tree

- **Definition**: Graph that is connected and acyclic
 - $\circ \Leftrightarrow G$ is connected and $\forall e \in E(G) : G e$ is disconnected (minimal-connected)
 - $\circ \Leftrightarrow G$ is acyclic and $\forall xy \notin E(G): G \cup xy$ has cycle (maximal-acyclic)
 - $\circ \iff G \text{ is connected and } 1\text{-degenerate} \, (\forall G' \subseteq G : \delta(G') \leq 1)$
 - $\circ \iff G$ is connected and $\|G\|$ = |G| 1
 - $\circ \iff G$ is acyclic and ||G|| = |G| 1
- $\circ \Leftrightarrow \forall u, v \in V(G) \exists \text{ unique } uv\text{-path}$
- · Special trees: path, star, spider, caterpillar, broom
- Leaf existence: Tree T, $|T| \ge 2 \Rightarrow T$ has leaf
- Edge count: Tree T, $|T| = n \Rightarrow ||T|| = n 1$

Bipartite graph

- Definition: G is bipartite

 G contains no cycles of odd length
 complete bipartite: K_{m,n} = (A ∪ B, {a, b} : a ∈ A, b ∈ B)
- Matchings:
- $\begin{array}{l} \circ \ \textit{saturating:} \ G = (A \cup B, E) \ \text{has matching saturating} \ A \\ \iff \forall S \subseteq A : N(S) \geq |S| \ \ (N(S) \coloneqq \{b \in B : ab \in E, a \in S\}) \\ \circ \ \textit{nearly:} \ G = (A \cup B, E), \ \forall S \subseteq A : |N(S)| \geq |S| d \ \ (d \geq 1). \end{array}$
 - $\Rightarrow \ \exists \ \mathrm{matching} \ M$ saturating all but at most d vertices of A
- Matching vs vertex cover: size of largest matching = size of smallest vertex cover

Matching

- **Definition**: graph with $\delta(G) = \Delta(G) = 1$
- **Perfect matching:** spanning + matching subgraph of G (aka 1-factor)

• existence: G has perfect matching $\Leftrightarrow \forall S \subseteq V(G): q(G-S) \leq S$ (q(G) = number of components in G with odd order)

Factors

- **k-factor**: spanning k-regular subgraph (easy to find)
- f-factor: spanning subgraph $H \subseteq G$ with $\deg_H(v) = f(v)$, $f: V(G) \to \{0, 1, \dots\}$ with $f(v) \le \deg(v) \quad (\forall v \in V)$
- H-factor (aka perfect H-packing): spanning subgraph s.t. each component is $\cong H$ existence: if $\delta(G) \ge \left(1 \frac{1}{k}|V(G)|\right)$ and k divides |G|, then G has K_k -factor

Connectivity

- k-connected: if |G| > k and deleting < k vertices does not disconnect G
- k-linked: if for any 2k vertices $(s_1,\ldots,s_k,t_1,\ldots,t_k)$ \exists pairwise disjoint s_it_i -paths (note: k-connected $\neq k$ -linked)
- Vertex-connectivity: $\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}$
- l-edge-connected: if deleting < l edges does not disconnect G
- Edge-connectivity: $\kappa'(G) = \max\{l : G \text{ is } l\text{-edge-connected}\}$
- Vertex- vs Edge-connectivity: $\kappa(G) \le \kappa'(G) \le \delta(G)$
- Three-connected + contraction: 3-connected $\Leftrightarrow \exists$ separate G_0,\ldots,G_k with $G_0=K_4,\ G_k=G,\ G_i=G_{i+1}\circ xy$ with $\deg(x),\deg(y)\geq 3$
- Three-connected + decontraction: all 3-connected graphs can be built by iteratively de-contracting vertices of ${\cal K}_4$
- Average degree ≥ 4 : has k-connected subgraph ($k \geq 2$)

Cuts

- Cut-Set: $X \subseteq V(G) \cup E(G)$ s.t. #components in (G X) greater than in G
- Cut-Vertex: Cut-Set consisting of single vertex
- Cut-Edge (or bridge): Cut-Set consisting of single edge
- Menger's theorem: for A, B ⊆ V(G):
 min # of vertices separating A and B = max # of disjoint A-B-paths
- · Menger global:
- 1. k-connected $\Leftrightarrow \forall a, b \in V(G) \exists k$ pairwise independent ab-paths
- 2. k-edge-connected $\iff \forall a,b \in V(G) \; \exists \; k$ pairwise edge-disjoint ab-paths

Ear-decomposition

- **Definition**: G has ear-decomposition $\iff \exists$ sequence of graphs G_0, \ldots, G_k with $G_k = G, G_0 = \operatorname{cycle}, G_{i+1}$ obtained from G_i by attaching "ear" (path that shares only endpoints with G_i)
- 2-connected $\Leftrightarrow \forall$ cycles C in G there is ear-decomposition starting at C

Edge contraction

· Contraction:

$$G \circ xy = ((V \setminus \{x,y\}) \cup v_{xy},$$

$$(E \setminus \{e : x \in E \lor y \in e\}) \cup \{v_{xy}z : z \in (N_G(x) \cup N_G(y)) \setminus \{x,y\}\})$$
 with $xy \in E(G)$

• De-contraction: if $\exists \ xy \in E(G) : \kappa(G \circ xy) \ge 3$ (for G with $\kappa(G) \ge 3$, $|G| \ge 5$)

Planar graph tools

- Homeomorphism: $f: \mathbb{R}^n \to \mathbb{R}^n$ continuous s.t. f^{-1} is also continuous
- Arc: homeomorphic image of [0,1] in \mathbb{R}^2 under f
- endpoints: f(0) and $f(1) \rightarrow$ arc "joins" endpoints
- o polynomial arc: arc that is union of finitely many straight line segments
- Region $Y \subseteq \mathbb{R}^2 \setminus X$: any two points $\in Y$ could be joined by arc and Y is maximal $(X \subseteq \mathbb{R}^2)$
- Boundary of $X \subseteq \mathbb{R}^2$:
 - $\delta X = \{y \mid \forall \varepsilon > 0 : B(y, \varepsilon) \text{ contains points of } X \text{ and not of } X\}$
- Jordan curve theorem: If $X \subseteq \mathbb{R}^2$ and homeomorphic to $\{\overline{x} : \operatorname{dist}(\overline{x}, 0) = 1\}$ (unit circle), then $\mathbb{R}^2 \setminus X$ has two regions R_1 , R_2 and $\delta R_1 = X = \delta R_2$.

Plane graph

- Definition: graph such that E(G) is set of arcs in \mathbb{R}^2 and endpoints of arcs in E(G) are vertices and:
 - $\forall e, e' \in E, e \neq e' : e$ and e' have distinct sets of edge sets
- o $\forall e \in E, \mathring{e} = e \setminus \{\text{endpoints}\}\ \text{doesn't contain any vertices and points from other arcs}$
- Faces: regions of $\mathbb{R}^2 \setminus (\bigcup_{e \in E} e \cup V)$
- · Maximally plane: no edges can be added without breaking planarity
 - \circ plane triangulation: every face is bounded by triangle \Leftrightarrow graph is maximally plane

- Edge limitation 1: Plane graph: $|G| \ge 3 \Rightarrow ||G|| \le 3n 6$
- Edge limitation 2: Plane graph with no \triangle : $||G|| \le 2|G| 4$
- **Properties**: Let G be plane graph and $H \subseteq G$.
- face inheritance: $\forall f \in F(G) \exists f' \in F(H) : f' \supseteq f$
- \circ border inheritance: $\delta f \subseteq H \Rightarrow f' = f$
- $\circ \ \textit{edge-border relations} : e \in E(G), f \in F(G) \Rightarrow e \subseteq \delta f \vee \delta f \cap \mathring{e} = \varnothing$
- o edges in circles:
 - $e \in E(G)$ is edge of a cycle $\Rightarrow e$ is on boundary of exactly 2 faces

not edge of a cycle $\Rightarrow e$ is on boundary of exactly 1 face

- faces in cycles: $f_1, f_2 \in F(G)$. $f_1 \neq f_2 \land \delta f_1 = \delta f_2 \Rightarrow G$ is cycle
- cyclic boundaries: $\kappa(G) \ge 2 \Rightarrow$ each face is bounded by cycle
- plane forests: plane forests have exactly 1 face
- **Dual multigraph**: Given plane G:
- 1. Insert vertex in each face
- 2. Put edge \tilde{e} between vertices if respective faces share e (s.t. \tilde{e} and e cross once)
- 3. Result: Dual graph G' of G (plane multigraph)
- \rightarrow faces of G properly k-colored $\iff \exists$ proper k-coloring of vertices of G'

Planar graph

- **Definition**: graph s.t. \exists plane graph G' and bijection $f:V(G) \to V(G')$ s.t. $\forall u, v \in V(G), \ uv \in E(G): f(u), \ f(v)$ are endpoints of arc in G'
- Planar embedding of G: f from the definition
- · Planar because of minors: The following statements are equivalent:
- $\circ G$ is planar
- \circ $G \not\supseteq MK_5 \land G \not\supseteq MK_{3,3}$
- \circ $G \not\supseteq TK_5 \land G \not\supseteq TK_{3,3}$
- Euler's formula: If G is connected plane graph with f faces, then $|G|-\|G\|+f=2$
- $\delta(G)$ **limitation**: Planar graph $\delta(G) \leq 5$
- Non-planar graphs: K_5 and $K_{3,3}$ are not planar
- · Kuratowski's lemmas:
- 1. $(TK_5 \subseteq G \vee TK_{3,3} \subseteq G) \Leftrightarrow MK_5 \subseteq G \vee MK_{3,3} \subseteq G$
- 2. $\kappa(G) \ge 3 \land MK_5 \not\subseteq G \land MK_{3,3} \not\subseteq G \Rightarrow G$ is planar
- 3. $\kappa(G) \geq 3$, G edge-maximal wrt not containing TX. If S is vertex-cut of G, $|S| \leq 2 \wedge G = G_1 \cup G_2$, $S = V(G_1) \cap V(G_2)$, then G_i is edge-maximal with no TX and S induces an edge
- 4. $|G| \ge 3$, G edge-maximal wrt not containing TK_5 and $TK_{3,3} \Rightarrow \kappa(G) \ge 3$
- 2-cell (embedding of G on surface S): any closed simple curve in any region of S-G is continuously contractible into a point
- Euler characteristic: G embedded on surface $S \Rightarrow n-e+f$ = Euler characteristic is invariant
- Euler genus: $n-e+f=2-2\gamma \Rightarrow$ Euler genus 2γ of S
- Heawood's formula: $\chi(G) \leq \left\lfloor \frac{7+\sqrt{1+48\gamma}}{2} \right\rfloor$ $f(\gamma)$, Heawoods number

(for G embedded on S with Euler char $(2-2\gamma)$

• Klein bottle: $K_{f(\gamma)}$ is embeddable on S, unless S is klein bottle

Minors

- MH: $G \stackrel{(\star)}{=} MH$ is minor of H if
- $\circ \ V(G) = V_1 \stackrel{\cdot}{\cup} \cdots \stackrel{\cdot}{\cup} V_n \text{ with } n = |H|$
- $\circ G[V_i]$ connected $(\forall i = 1, \dots, n)$
- o $\mbox{ If }V(H) = \{v_1, \dots, v_n\} \mbox{ and } v_iv_j \in E(H) \mbox{, then } \exists \mbox{ edge between } V_i \mbox{ and } V_j$
- (\star) : Notation abuse: MH is class of graphs
- Branch sets: V_i 's from above
- · Extended branch graph: Branch set together with incident edges
- Minor (H of G, noted $H \leq G$): $\iff MH \subseteq G$
 - \rightarrow $H \leq G \iff H$ can be obtained by edge/vertex deletions + contractions.
- Topological minor: H is topological minor if $TH\subseteq G$ where TH is built from H by subdividing edges
- Note: $TH \subseteq MH$

Coloring

- Co-clique number: $\alpha(G)$ = size of largest independent set
- Clique number: $\omega(G)$ = size of largest clique
- Proper coloring: = $c: V(G) \to [k]$ with $c(u) \neq c(v) \quad (\forall uv \in E(G))$
- Equitable coloring: proper coloring + color classes have almost (±1) equal size
 existence: any graph has equitable coloring in (Δ(G) + 1) colors
- 4-color-theorem: G planar $\Rightarrow \chi(G) \le 4$
- ij-flip: $c':V(G) \to [k]$ is ij-flip at $v \in V(G)$

 $\Leftrightarrow c'$ obtained by flipping colors i and j in max. conn. component containing v

Chromatic number

- **Definition**: $\chi(G) = \min\{k : G \text{ has proper coloring with } k \text{ colors}\}$
- Examples: $\chi(C_{2n}) = 2$, $\chi(C_{2n+1}) = 3$
- · Properties:
- $\circ \ \chi(G) \ge \omega(G)$
- $\circ \ \chi(G) \ge \frac{|G|}{\alpha(G)}$
- $\circ \chi(G) \leq \Delta(G) + 1$ (greedy coloring)
- o $\ G$ connected, not complete, no odd cycles $\Rightarrow \chi(G) \leq \Delta(G)$

Perfect graph

- **Definition**: $\forall H \subseteq G : \chi(H) = \omega(H)$
- Perfect complement: G is perfect $\Longleftrightarrow \overline{G}$ is perfect
- Perfect graph conjecture: G is perfect \Leftrightarrow

$$C_{2k+1} \not\subseteq G$$
 for $k \ge 2 \land \frac{1}{C_{2k+1}} \not\subseteq G$

Posets

- Definition: antisymmetric, reflexive, transitive relation on X (write x ≤ y instead of (x, y))
- Incidence poset of G: poset whose cover diagram is represented by IG with vertices all below the edges
- Poset dimension: $\dim(R)$ = smallest $k \in \mathbb{N}$: R is intersection of k total orders
- Poset dimension in planar graphs: G planar \Leftrightarrow dim(incidence poset) ≤ 3

List-colorings

- L-list-colorable: if $\exists c: V \to \mathbb{N} \ \forall v \in V: c(v) \in L(v)$ (for *list of colors* $L(v) \subseteq \mathbb{N}$ for each vertex, adjacent vertices receive different colors)
- **k-list-colorable/-choosable**: if G is L-list-colorable for each list L
- List chromatic number: $\chi_l(G) = \operatorname{ch}(G)$ = $\min \left\{ k : G \text{ is L-colorable } \forall L : V \to 2^{\mathbb{N}} : |L(v)| = k \forall v \in V(G) \right\}$
- $\chi_l(G) \ge \chi(G)$ because we can choose $L(v) = \{1, \dots, k\}$ ($\forall v \in V(G)$) • often $\chi_l(G) \gg \chi(G)$ (see $K_{m,n}: \chi = 2, \chi_l \approx \log n$)
- Planar graphs: $\chi_l(G) \leq 5$
- Locally planar graphs: $\chi_l(G) \le 5$