Representation	η_Φ	Zero Modes	Representation	η_Φ	Zero Modes
$(5, \ \overline{5})$	+1	(XD, XD^c)	$(5, \ \overline{5})$	-1	$(XL, \ XL^c)$
$(10, \ \overline{10})$	+1	$(XU, XU^c), (XE, XE^c)$	$(10, \ \overline{10})$	-1	(XQ, XQ^c)
$(15, \ \overline{15})$	+1	$(XT, XT^c), (XS, XS^c)$	$({f 15},\ {f \overline{15}})$	-1	(XQ, XQ^c)
24	+1	$XG, \ XW$	24	-1	(XY, XY^c)

TABLE I: The possible vector-like particles which remain as zero modes after orbifold projections in the orbifold SU(5) models.

Representation	η_Φ	Zero Modes	Representation	η_{Φ}	Zero Modes
10	+1	Xh	10	-1	\overline{Xh}
$(16, \ \overline{16})$	+1	(XF, \overline{XF})	$({\bf 16},\ {\bf \overline{16}})$	-1	$(Xf, \overline{Xf}), (Xl, \overline{Xl})$
45	+1	XGW, XN	45	-1	(XX, \overline{XX})

TABLE II: The possible vector-like particles which remain as zero modes after orbifold projections in the orbifold SO(10) models where the gauge symmetry is broken down to the flipped $SU(5) \times U(1)_X$ gauge symmetries.

C. F-Theory SU(5) Models with Generic Vector-Like Particles

We first briefly review the F-theory model building [20–24]. The twelve-dimensional F theory is a convenient way to describe Type IIB vacua with varying axion-dilaton $\tau = a + ie^{-\phi}$. We compactify F-theory on a Calabi-Yau fourfold, which is elliptically fibered

Representation	η_Φ	Zero Modes	Representation	η_Φ	Zero Modes
10	+1	$XD\overline{D}$	10	-1	$XL\overline{L}$
$(16, \ \overline{16})$	+1	(XFL, \overline{XFL})	$(16, \ \overline{16})$	-1	(XFR, \overline{XFR})
45	+1	XG4, XWL, XWR	45	-1	XZ

TABLE III: The possible vector-like particles which remain as zero modes after orbifold projections in the orbifold SO(10) models where the gauge symmetry is broken down to the Pati-Salam $SU(4)_C \times SU(2)_L \times SU(2)_R$ gauge symmetries.