CSE 330: Summer 2024 Assignment-2 [CO3]

Total Marks: 25

1. Consider the following table of data points/nodal points:

Time t (sec)	Velocity (ms^-1) v(t)
2	10
4	20
6	25

- a. [4+1 marks] Find an interpolating polynomial of velocity that goes through the above data points by using Vandermonde Matrix method. Also compute an approximate value of acceleration at Time, t=7 sec.
- **b. [4 marks]** Find an interpolating polynomial of velocity that goes through the above data points by using **Lagrange** method.
- c. [2 marks] If a new data point is added in the above scenario, which method should you use in finding a new interpolating polynomial? Also what will be the degree of that new polynomial?

2. Read the following and answer accordingly:

- a. (4 marks) Consider the nodes $[-\pi/2, 0, \pi/2]$. Find an interpolating polynomial of appropriate degree by using **Newton's divided-difference** method for $f(x) = x \sin(x)$. b. (2 marks) Use the interpolating polynomial to find an approximate value at $\pi/4$, and compute the percentage relative error at $\pi/4$.
- c. (4 marks) Add a new node π to the above nodes, and find the interpolating polynomial of appropriate degree.
- 3. Consider the quadratic equation, $2x^2 60x + 3 = 0$. Below calculate up to 6 significant figures.
 - a. (3 marks) Find out where the loss of significance occurs when you calculate the roots?
 - b. (3 marks) Show that the roots evaluated in the previous part do not satisfy the

fundamental properties of a polynomial.