Thomas M. Klapötke
Energetic Materials Encyclopedia

Also of interest

The Properties of Energetic Materials.

Sensitivity, Physical and Thermodynamic Properties
M. H. Keshavarz, T. M. Klapötke, 2018
ISBN 978-3-11-052187-0, e-ISBN (PDF) 978-3-11-052188-7, e-ISBN (EPUB) 978-3-11-052195-5

Combustible Organic Materials.

Determination and Prediction of Combustion Properties
Mohammad Hossein Keshavarz, 2018
ISBN 978-3-11-057220-9, e-ISBN (PDF) 978-3-11-057222-3,
e-ISBN (EPUB) 978-3-11-057233-9

Chemistry of High-Energy Materials. Thomas M. Klapötke, 2019 ISBN 978-3-11-062438-0, e-ISBN (PDF) 978-3-11-062457-1, e-ISBN (EPUB) 978-3-11-062469-4

High Explosives, Propellants, Pyrotechnics. Ernst-Christian Koch, 2021 ISBN 978-3-11-066052-4, e-ISBN (PDF) 978-3-11-066056-2, e-ISBN (EPUB) 978-3-11-066059-3

Energetic Compounds.

Methods for Prediction of their Performance
M. H. Keshavarz, T. M. Klapötke, 2020
ISBN 978-3-11-067764-5, e-ISBN (PDF) 978-3-11-067765-2, e-ISBN (EPUB) 978-3-11-067775-1

Thomas M. Klapötke

Energetic Materials Encyclopedia

E-N

Author

Prof. Dr. Thomas M. Klapötke

Department of Chemistry
Ludwig Maximilian University Munich
Butenandstr. 5-13 (Building D)
81377 Munich, Germany
tmk@cup.uni-muenchen.de
and
Department of Chemistry
University of Rhode Island
Beaupre Center
140 Flagg Road
Kingston, RI 02881
USA

ISBN 978-3-11-067242-8 e-ISBN (PDF) 978-3-11-067256-5 e-ISBN (EPUB) 978-3-11-067269-5

Library of Congress Control Number: 2020949538

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2021 Walter de Gruyter GmbH, Berlin/Boston Cover image: ThomasVogel/iStock/Getty Images Plus Typesetting: Integra Software Services Pvt. Ltd. Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Contents

E
Erythritol tetranitrate —— 657
Ethanolamine dinitrate —— 665
Ethriol trinitrate —— 667
Ethylenediamine dinitrate —— 670
Ethylene dinitramine —— 674
Ethylene glycol dinitrate —— 684
Ethyl nitrate —— 695
N-Ethyl-N-(2-nitroxyethyl)nitramine —— 700
Ethyl picrate — 702
Ethyltetryl — 704
F
FOX-7 — 707
FOX-12 —— 724
Furazano-1,2,3,4-tetrazine-1,3-dioxide —— 732
Turazano-1,2,3,4-tetrazme-1,3-uloxide —— 732
G
Glycerol acetate dinitrate —— 737
Glycerol 1,2-dinitrate —— 739
Glycerol 1,3-dinitrate —— 741
Glycerol-2,4-dinitrophenyl ether dinitrate —— 743
Glycerol nitrolactate dinitrate —— 745
Glycerol trinitrophenyl ether dinitrate — 747
Glycidyl azide polymer —— 749
Guanidinium 1-aminotetrazol-5-oneate —— 756
Guanidinium nitrate —— 758
Guanidinium perchlorate —— 764
Guanidinium picrate — 769
Guanylurea nitrate —— 771
н
Heptanitrocubane — 773
Heptryl —— 775
Hexakis(azidomethyl)benzene —— 777
Hexamethylenetetramine dinitrate — 780
Hexanitroazobenzene — 782
Hexanitrobenzene — 787
2,4,6,2′,4′,6′-Hexanitrobiphenyl —— 794
2 / 6 2' // 6'-Hevanitrodinhenylamine — 700

```
Hexanitrodiphenylaminoethyl nitrate — 805
Hexanitrodiphenylglycerol mononitrate — 807
2,4,6,2',4',6'-Hexanitrodiphenyl oxide — 808
2,4,6,2',4',6'-Hexanitrodiphenylsulfide — 810
2,4,6,2',4',6'-Hexanitrodiphenylsulfone — 813
Hexanitroethane — 817
Hexanitrohexaazatricyclododecanedione — 820
Hexanitrooxanilide — 823
Hexanitrostilbene — 826
Hexogen — 849
HMTD — 922
Hydrazine — 932
Hydrazine 5.5'-bitetrazole-1.1'-diolate - 936
3-Hydrazinium-4-amino-1H-1,2,4-triazolium di(5-nitramino-tetrazolate) — 937
3-Hydrazinium-4-amino-1H-1,2,4-triazolium di(5-nitro-tetrazolate) — 938
3-Hydrazinium-4-amino-1H-1,2,4-triazolium 1H,1'H-5,5'
-bitetrazole-1.1'-diolate — 939
3-Hydrazinium-4-amino-1H-1,2,4-triazolium Nitrotetrazolate — 940
3-Hydrazino-4-amino-2H-1,2,4-triazolium 1H,1'H-5,5'-azotetrazole
-1,1'-diolate —— 941
Hydrazinium azide — 942
Hydrazinium nitrate — 944
Hydrazinium nitroformate — 949
Hydrazinium perchlorate — 963
5,5'-Hydrazotetrazole — 966
Isosorbitol dinitrate — 969
Κ
Keto-RDX — 973
L
Lead azide — 983
Lead 2,4-dinitroresorcinol — 1046
Lead picrate — 1049
Lead styphnate — 1052
M
p-Mannitol hexanitrate — 1071
Melaminium dinitrate — 1077
Mercury fulminate —— 1079
```

```
Mercury nitrotetrazolate — 1098
Methylene dinitramine — 1100
Methyl ethyl ketone peroxide —— 1102
Methyl nitrate —— 1105
N-Methyl-4-nitroaniline —— 1109
Metriol trinitrate —— 1112
Monomethylhydrazine — 1116
N
5-Nitraminotetrazole — 1119
5-Nitriminotetrazole — 1121
Nitroaminoguanidine — 1123
6-Nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide —— 1126
Nitrocellulose — 1129
Nitroethane — 1153
Nitroethylpropanediol dinitrate — 1155
Nitroglycerine — 1157
Nitroglycide — 1184
Nitroguanidine — 1186
Nitroisobutylglycerol trinitrate — 1213
Nitromethane — 1219
Nitromethyl propanediol dinitrate — 1230
5-Nitrotetrazole — 1232
2-Nitrotoluene — 1234
3-Nitrotoluene — 1236
4-Nitrotoluene — 1238
5-Nitro-2,4,6-triaminopyrimidine-1,3-dioxide —— 1240
3-Nitrotriazole — 1243
4-Nitrotriazole — 1246
3-Nitro-1,2,4-triazole-5-one — 1248
5-Nitro-2,4,6-tris(picrylamino)pyrimidine — 1264
Nitrourea — 1266
N-(2-Nitroxyethyl)methylnitramine — 1269
N-(2-Nitroxyethyl)nitramine — 1272
Nonanitroterphenyl --- 1274
```

Erythritol tetranitrate

Name [German, acronym]: Erythritol tetranitrate, butane-1,2,3,4-tetrayl

tetranitrate, meso-erythritol tetranitrate, erythritetetranitrate, tetranitroerythrite, nitro-*i*-erythrite, 1,2,3,4-butanetetrol tetranitrate, nitroerythrite, erythrol tetranitrate, tetranitrol, tetranitrin, nitroerythrite, cardilate, cardiloid

[ETN, ErTN, ErTeN]

Main (potential) use: Improvised explosive, suggested as an addition to

smokeless powders^[13], melt-castable explosive^[17]

$$O_2$$
NO ONO $_2$
ONO $_2$

	ETN
Formula	C ₄ H ₆ N ₄ O ₁₂
Molecular mass [g mol ⁻¹]	302.11
Appearance at room temperature (RT)	Colorless plates, white solid ^[13, 14] , leaflets (from EtOH) ^[21, 22]
IS [J]	3 (100–500 µm), 24.0 cm with 4 kg mass (LLNL-apparatus, Bruceton method) ^[2] , 20 cm (2 kg mass, B.M.) ^[5] , 3.28 (impact energy for 50% probability of initiation, Kast apparatus, crystalline ETN) ^[9] , 3.79 (impact energy for 50% probability of initiation, Kast apparatus, melt-cast ETN) ^[9] , similar to NG ^[14] , DH ₅₀ = 24.0 cm (4 kg mass, Bruceton method, 35 mg sample, 120 grit sandpaper, LLNL small-scale apparatus) ^[2] , H_{50} = 38 cm (design no. 3 apparatus) ^[24] , H_{50} = 4.6 cm (design no. 12 apparatus, 6 units cf. TNT = 100 units) ^[24] DH ₅₀ (ERL apparatus, type 12 tool, 2.5 kg mass, 150 grit paper): 6.4 ± 2 cm (crystals from MeOH) ^[7] , 6.3 ± 2 cm (small crystals from acetone/EtOH) ^[7] , 6.2 ± 2 cm (solid precipitate) ^[7] , 6.4 ± 2 cm (crystal sheets) ^[7]

FS [N]	60 (100–500 µm), 38.9 (friction force for 50% probability of initiation, crystalline ETN) ^[9] , 47.7 (friction force for 50% probability of initiation, melt-cast ETN) ^[9] $F_{50} \text{ (BAM apparatus, } 2-5 \text{ mg samples): } 57 \pm 11 \text{ (crystals from MeOH)}^{[7]}, 52 \pm 15 \text{ (small crystals from acetone)}^{[7]}, 54 \pm 15 \text{ (solid precipitate)}^{[7]}, 48 \pm 11 \text{ (crystal sheets)}^{[7]}, 67 \pm 7 \text{ (crash precipitate)}^{[7]}$						
ESD [J]	0.15						
		rysta	ls from ac	cetone/EtOH) ^[7]	, 0.0625	5 (crystals from MeOH) ^[7] , (solid precipitate) ^[7] ,	
N [%]	18.55						
Ω(CO ₂) [%]	+5.30						
T _{m,p.} [°C]	slowly grown frr solid precipitate 10 °C/min) ^[12] , 6 pinhole cover) ^{[1} 59.6–61.0 (crue (recryst. from 2	$61^{[5, 13, 14, 16, 21, 22]}$, 63.5 (melt) (DSC @ 10 °C/min, under N_2 flow, crystals slowly grown from $CH_3OH)^{[7]}$, 61.5 (melt) (DSC @ 10 °C/min, under N_2 flow, solid precipitate from $CH_3CN/H_2O)^{[7]}$, 58.7 (onset), 60.5 (endo) (DSC @ 10 °C/min) ^[12] , 61.2 (onset), 63.7 (peak max), 66.0 (end 7) (DSC @ 10.0 K/min, pinhole cover) ^[15] , $58-59$ (crude from mixed nitration) ^[2] , $60-61$ (recryst.) ^[2] , $59.6-61.0$ (crude ETN from nitration with acetyl nitrate) ^[2] , $60.5-61.0$ (recryst. from 2-propanol) ^[2]					
	Heating rate (K/min)	n	Mass (mg)	Endotherm, T _{min} (°C)	ΔH_{fus} (J/g)		
	20	4	0.203	60	113		
	10	5	0.200	62	107		
	9	6	0.288	63	105		
	8	5	0.244	63	102		
	7	4	0.255	61	117		
	6	1	0.232	63	102		
	5	2	0.226	59	116		
	4	2	0.219	62	104		
	3	3	0.255	60	114		
	2	2	0.281	61	99		
	1	6	0.292	59	109		
	61.2 (endo, ons	set), 6	3.7 (end	o, peak max.) (I	DSC 10 k	(/min) ^[25]	

T_{dec.} [°C]

162.5 (onset), 200.2 (peak max.) (DSC @ 10 °C/min, under N_2 flow, crystals slowly grown from $CH_3OH)^{[7]}$, 164.2 (onset), 198.4 (peak max.) (DSC @ 10 °C/min, under N_2 flow, solid precipitate from $CH_3CN/H_2O)^{[7]}$, 192.6 (DSC @ 10 °C/min)^[12], 184.8 (onset), 196.3 (peak max), 211.6 (end 7) (DSC @ 10.0 K/min, pinhole cover)^[15], 200 (DTA, max mass loss @ 10 K/min, 8–10 mg sample, open Pt pan)^[2]

DSC, flame sealed in glass microampules, N₂, @ 50 mL/min^[2]:

Heating rate	n	Mass	Exotherm,	Exotherm,	ΔН
(K/min)		(mg)	T _{min} (°C)	T _{max} (°C)	(J/g)
20	4	0.203	184	199	2,233
10	5	0.200	182	193	2,795
9	6	0.288	183	192	2,592
8	5	0.244	182	191	2,437
7	4	0.255	182	186	3,181
6	1	0.232	181	185	2,418
5	2	0.226	176	180	3,253
4	2	0.219	176	180	2,948
3	3	0.255	171	173	2,957
2	2	0.281	168	169	2,551
1	6	0.292	155	156	3,130

Nonisothermal TG data^[25]:

β (Κ	T _{ot}	T _i	Mass loss (%)		L _{max}	T _p (°C)	T _{oe} (°C)
min ⁻¹)			Stage 1	Residue (%)	(% min ⁻¹)		
5.0	157.1	98.6	97.60	0.64	-21.65	174.6	184.1
7.0	160.5	99.3	99.67	0.22	-28.03	177.6	192.4
10.0	165.4	100.2	99.46	0.09	-39.95	183.1	196.3
15.0	169.3	101.2	99.87	0.43	-59.63	186.2	202.8

 $T_{\rm ot}$ = onset T of dec., $T_{\rm oe}$ = onset T of end of dec., $T_{\rm i}$ = initial T for thermal dec., $T_{\rm p}$ = peak T of mass loss rate, stage 1 = from initial T to end T of DTG peak, $L_{\rm max}$ = max. mass loss rate

184.8 (exo, onset), 196.3 (exo, peak max) (DSC 10 K/min)^[25]

ho [g cm $^{-3}$]

1.840 (@ 100 K), 1.759 (@ 291 K), 1.774 (@ 298 K, gas pycnometer), 1.851 (crystal @ 140 K) $^{[7]}$, 1.50 (loading ρ) $^{[5]}$, 1.773 (@ TMD) $^{[17]}$, 1.7219 (pycnometer) $^{[2]}$, 1.55 (X-ray) $^{[2]}$

Heat of formation	376 cal/g (@ C^{V}) ^[5] , -474.8 kJ/mol ($\Delta_{\rm f}$ H) ^[2, 16] , 369.2 kcal/kg (Q) ^[18] , 130.5 cal (molecular heat of formation) ^[22] , -114.76 kcal/mol (Δ H _{$\rm f°)[23]$}				
Heat of combustion	1,546 cal/g (@ <i>C^V</i>) ^{[5}	$^{5,18]}$, 2,790.9 kJ/mol ($\Delta H_{\rm c}$, heat	of comb.) ^[25]		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,105	10.11 kJ cm ⁻³ (@ 1.773 g cm ⁻³ , 96% TMD, total energy of det., $\Delta H_{\rm f}$ = 376 cal/g, calcd., CHEETAH 6.0, JWL) ^[17]	6,025 [H ₂ O (g)] ^[3] $Q_e^P = 1,467.7 \text{ kcal/kg}^{[6]}$ $Q_e^V = 1,486.0 \text{ kcal/kg}^{[6]}$		
		154.7 kcal/100 g (@ 1.50 g cm ⁻³ , constant volume) $[H_2O(I)]^{[19]}$ 1414 cal/kg (heat of explosion @ constant volume, $H_2O(g))^{[22]}$			
T _{ex} [K]	4,225	4,565 ^[5]	$T_e^P = 4,729.8 {}^{\circ}C^{[6]}$		
		4,565 °C (@ 1.50 g cm ⁻³) ^[19]	$T_e^{V} = 4,759.0 \text{ °C}^{[6]}$		
p _{C-J} [kbar]	301	26.77 GPa (@ 1.7219 g cm ⁻³ (pycnometry density), heat of formation = -474.8 kJ/mol, Cheetah 6.0) ^[2]			
		3.274 GPa (@ 0.69 g cm ⁻³ (small-scale explosivity device (SSED) density), heat of formation = -474.8 kJ/mol, Cheetah 6.0) ^[2]			

1		
8,540	8,300 (@ 1.760 g cm ⁻³ , calcd. K-J) ^[15]	8,100 (@ 1.6 g cm ⁻³) ^[4]
	8,113 (@ 1.773 g cm ⁻³ , 96% TMD, $\Delta H_{\rm f}$ = 376 cal/g,	4,240 (@ 0.83 g cm ⁻³ , hand-pressed, crystalline powder, ionization probes and
		digital oscilloscope) ^[9]
	8,206 (@ 1.7219 g cm ⁻³ (pycnometry density), heat of formation = -474.8 kJ/mol,	4,630 (@ 0.86 g cm ⁻³) ^[9]
	CHEETAH 6.0) ^[2]	7,940 (@ 1.65 g cm ⁻³ , melt cast) ^[9]
	3,998 (@ 0.69 g cm ⁻³ (SSED density), heat of formation = -474.8 kJ/mol, CHEETAH 6.0) ^[2]	8,030 (@ 1.70 g cm ⁻³ , melt cast) ^[9]
		$8.03 \pm 0.04 \text{ mm } \mu \text{s}^{-1}$ (@ $1.74 \text{ g} \pm 0.01 \text{ cm}^{-3}$, 98% TMD, small scale, unconfined
		detonation rate stick @ 6.35 ± 0.03 mm pellet diameter) ^[17]
		7.97 ± 0.02 mm µs ⁻¹ (@ 96% TMD, average exptl. value) ^[17]
		$7.887 \pm 0.007 \text{ mm } \mu \text{s}^{-1}$ (@ $1.682 \text{ g} \pm 0.019 \text{ cm}^{-3}$, 94.9% TMD, Cu 0.5 in cylinder test) ^[17]
		$7.994 \pm 0.022 \text{ mm } \mu s^{-1}$ (@ $1.704 \text{ g} \pm 0.010 \text{ cm}^{-3}$, $96.1\% \text{ TMD, Cu } 0.5 \text{ in}$ cylinder test) ^[17]
		7.90 ± 0.13 mm µs ⁻¹ (@ 1.74 g ± 0.01 cm ⁻³ , 98% TMD, small scale, unconfined detonation rate stick @ 3.00 ± 0.03 mm pellet diameter) ^[17]
	8,540	calcd. K-J) ^[15] 8,113 (@ 1.773 g cm ⁻³ , 96% TMD, ΔH_f = 376 cal/g, calcd., CHEETAH 6.0) ^[17] 8,206 (@ 1.7219 g cm ⁻³ (pycnometry density), heat of formation = -474.8 kJ/mol, CHEETAH 6.0) ^[2] 3,998 (@ 0.69 g cm ⁻³ (SSED density), heat of formation = -474.8 kJ/mol,

V ₀ [L kg ⁻¹]	767	70.5 L/100 g (@ 1.50 g cm ⁻³ , @ STP)	704 (@ 1.7 g cm ⁻³) ^[1] 704.8 ^[6] 705 ^[8, 15]	
I _{sp} [Ns g ⁻¹]	2.34 (calcd., ISPBKW code) ^[23] , 2.43 (calcd., empirical) ^[23]			

Critical diameter [cm]	<3 mm (small	scale, und	onfined d	etonation	rate stick:	s) ^[17]
Critical <i>T</i> for thermal dec. [°C]	162.5 (TG) ^[15] , critical T for thermal dec. = 162.6 °C ^[25]					
Trauzl test [cm³, % TNT]	550 cc (10 g s	sample, cf.	. 285 cc fo	r TNT) ^[5] , 5	50 ^[20]	
Sand test [g]	132-143% TN	NT ^[10]				
Ballistic mortar test	151% TNT ^[10]					
5 s explosion T [°C] Explosion T [°C]	220 (205) ^[5] 275/0.108 s (205/4.95 s (3					
Thermal stability	Nonisotherma $T_p = \text{peak } T, T_0$ $\text{dec.}^{[15]}$:					· .
	β (°C/min)	T _{ei} (°C)	T _p (°C)	T _{oe} (°C)	T _b (°C)]
	5.0	157.1	174.6	184.1	162.5	1
	7.0	160.5	177.6	192.4		1
	10.0	165.4	183.1	196.3]
	15.0	169.3	186.2	202.8]
Vapor pressure [atm. @ °C]	3.19 × 10 ⁻³ Pa	a @ 25 °C	[2]			
Burn rate [mm/s]	Should not be small sample					ement of a
Solubility [g/mL]	Can be recrystallized from $EtOH^{[13]}$, soluble in $EtOH^{[17]}$, soluble in MeOH, $EtOH$, 2-propanol, acetone and acetonitrile ^[2] , soluble in $EtOH$, Et_2O , glycerol ^[21] , insoluble in water ^[21] , insoluble in cold water ^[22]					
ΔH _{melting} [J/g]	-297.7 (heat	absorptio	n, DSC @	10 K/min,	pinhole c	over) ^[15]
$\Delta H_{ m dec}[J/g]$		364.3 (heat release, DSC @ 10 K/min, pinhole cover) ^[15] , 137.4 kJ/mol $(\Delta H_d$, heat of dec.) ^[25]				
ΔH _{sub} [J/g]	117.7 ^[2]					

SSED	British.303 cartridge, 2 g explosive, RP-3 EBW ^[2] :					
	Charge depth (mm)	Tap density (g mL ⁻¹)	Mass cartridge (g)	Mass remaining (g)	Fraction remaining (%)	
	18	0.71	11.027	3.0412	27.6	
	25	0.91	10.9242	3.0325	27.8	
	9	0.58	11.1935	3.1628	28.3	
	14	0.64	11.2962	2.994	26.5	
	29	1.07	10.987	3.3665	30.6	
	30	1.07	11.2383	3.1386	27.9	

	Erythritol tetranitrate ^[7]	Erythritol tetranitrate ^[7]	Erythritol tetranitrate ^[8]
Chemical formula	C ₄ H ₆ N ₄ O ₁₂	C ₄ H ₆ N ₄ O ₁₂	C ₄ H ₆ N ₄ O ₁₂
Molecular weight [g mol ⁻¹]	302.13	302.13	302.13
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P 2 ₁ /c (no. 14)	P 2 ₁ /c (no. 14)	P 2 ₁ /c (no.14)
a [Å]	16.132(6)	15.893(6)	15.9681(10)
<i>b</i> [Å]	5.314(2)	5.1595(19)	5.1940(4)
c [Å]	14.789(6)	14.731(5)	14.7609(12)
α [°]	90	90	90
β [°]	116.78(4)	116.161(3)	116.238(6)
γ [°]	90	90	90
<i>V</i> [ų]	1,132(1)	1,084.2(7)	1,098.10(15)
Z		4	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.773	1.851	1.827
<i>T</i> [K]	RT	140	−123 °C

ETN crystallizes out of EtOH as leaflets^[22]

- [1] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [2] J. C. Oxley, J. L Smith, J. E. Brady, A. C. Brown, *Propellants, Explosives and Pyrotechnics*, **2012**, 37, 24–39.
- [3] W. C. Lothrop, G. R. Handrick, *Chem. Revs.*, **1949**, 44, 419–445.
- [4] P. W. Cooper, *Explosives Engineering*, Wiley-VCH, New York, **1996**.

- [5] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1972.
- [6] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [7] V. W. Manner, B. C. Tappan, B. L. Scott, D. N. Preston, G. W. Brown, *Crystal Growth and Design*, 2014, 14, 6154–6160.
- [8] R. Matyáš, M. Künzel, A. Růžička, P. Knotek, O. Vodochodský, Propellants, Explosives, Pyrotechnics, 2015, 40, 185–188.
- [9] M. Künzel, R. Matyáš, O. Vodochodský, J. Pachman, Centr. Eur. J. Energet. Mater., 2017, 14, 418–429.
- [10] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [12] J. C. Oxley, D. Furman, A. C. Brown, F. Dubnikova, J. L. Smith, R. Kosloff, Y. Zeiri, J. Phys. Chem. C, 2017, 121, 16145–16157.
- [13] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 235–236.
- [14] T. Urbański, Ch. 7 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [15] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [16] E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, in Energetic Materials from Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [17] V. W. Manner, D. N. Preston, B. C. Tappan, V. E. Sanders, G. W. Brown, E. Hartline, B. Jensen, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 460–462.
- [18] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [19] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [20] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [21] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [22] P. Naoúm, Nitroglycerin und Nitroglycrinsprengstoffe (Dynamite), mit Besonderer Berücksichtigung der dem Nitroglycerin Verwandten und Homologen Salpetersäureester, Springer-Verlag, 1924.
- [23] D. Frem, J. Aerosp. Technol. Manag., 2018, 10, e3318.
- [24] H. D. Mallory, The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945, NAVORD Report 4236, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 16th March 1956.
- [25] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.

Ethanolamine dinitrate

Name [German, acronym]: Ethanolamine dinitrate, 2-nitratoethylammonium

nitrate, ethanolamine nitric ester nitrate

[monoethanolamindinitrat]

Main (potential) use: Structural formula:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_3N
 O_3N

	Ethanolamine dinitrate					
Formula	C ₂ H ₇ N ₃ O ₆	$C_2H_7N_3O_6$				
Molecular mass [g mol ⁻¹]	169.09					
Appearance at RT	Solid ^[3]					
N [%]	24.85					
Ω(CO ₂) [%]	-14.2					
T _{m.p.} [°C]	103 ^[1, 3]					
ρ [g cm ⁻³]	1.53 ^[1]					
Heat of formation						
	Calcd. (EXPLO5 6.04)	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		5,247 [H ₂ O (l)] ^[1]				
	4,557 [H ₂ O (g)] ^[1]					
T _{ex} [K]						
p _{C-J} [GPa]						
VoD [m s ⁻¹]						
$V_0 [L \text{ kg}^{-1}]$		927 ^[1, 2]				

Trauzl test [cm³, % TNT]	430 cm ^{3[3]}

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, p. 125.
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [3] T. Urbański, Ch. 19 in *Chemistry and Technology of Explosives*, vol. II, **1965**, Pergamon Press, Oxford.

Ethriol trinitrate

Name [German, acronym]: 2-Ethyl-2-(hydroxymethyl)-1,3-propanedioltrinitrate,

trimethylolpropane trinitrate [TMPTN]

Main (potential) use: propellant charge

	Ethriol trinitrate
Formula	$C_6H_{11}N_3O_9$
Molecular mass [g mol ⁻¹]	269.17
Appearance at RT	Solid ^[6] , colorless crystals ^[3]
N [%]	15.61
Ω(CO ₂) [%]	-50.5
T _{m.p.} [°C]	50.3 ^[1] , 51 ^[3] , 50.3 (onset), 53.6 (peak max.), 58.4 (end 7) (DSC @ 10.0 K/min, pinhole cover) ^[5] , 50.3 (endo, onset), 53.6 (endo, peak max.) (DSC 10 K/min) ^[7]
T _{dec.} [°C]	181.9 ^[1] , 181.9 (onset), 206.4 (peak max.), 221.8 (end <i>T</i>) (DSC @ 10.0 K/min, pinhole cover) ^[5] , 181.9 (exo, onset), 206.4 (exo, peak max.) (DSC 10 K/min) ^[7]

	Nonisothermal TG data ^[7] :								
	β (K	T _{ot}	T _i	Mas	s loss (%)	L _{max} .	T _p (°C) 7	T _{oe} (°C)	
	min ⁻¹)			Stage 1	Residue (%)	(% min ⁻¹)			
	5.0	159.7	95.7	99.05	0.56	-20.71	178.8	186.6	
	7.0	167.1	96.3	98.24	1.84	-27.48	185.7	197.8	
	10.0	170.7	97.2	99.15	0.12	-37.42	191.0	203.4	
	15.0	180.5	98.5	98.99	0.18	-62.25	196.8	211.6	
	$T_p = peak$	$T_{\text{ot}} = \text{onset } T \text{ of dec.}, T_{\text{oe}} = \text{onset } T \text{ of end of dec.}, T_{\text{i}} = \text{initial } T \text{ for thermal dec.},$ $T_{\text{p}} = \text{peak } T \text{ of mass loss rate, stage 1} = \text{from initial } T \text{ to end } T \text{ of DTG peak,}$ $L_{\text{max.}} = \text{max. mass loss rate}$							
$ ho$ [g cm $^{-3}$]	1.454±0	1.454±0.06 (@ 293.15 K) ^[2] , 1.5 ^[3]							
Heat of formation	-426 kcal/kg (enthalpy of form.) ^[3] , -1,783 kJ/kg (enthalpy of form.) ^[3] , -479.9 kJ/mol (enthalpy of form., exptl.) ^[6] , -451.2 kJ/mol (enthalpy of form., calcd., emp.) ^[6] , -461.6 kJ/mol (enthalpy of form., calcd., S-D method) ^[6]								
Heat of combustion	2,175.5	2,175.5 kJ/mol (ΔH_c , heat of comb.) ^[7]							
	Calcd. (EXPLO5 6.04) Lit. values Exptl.								
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,834 1,449.9 (calcd., K-J) ^[4] 4,244 [H ₂ O (J)] ^[3] 3,916 [H ₂ O (g)] ^[3]								
<i>T</i> _{ex} [K]	3,237								
p _{C-J} [Gpa]	19.6			26.65 (0	calcd., K-J) ^[4]				
VoD [m s ⁻¹]	7,097 (@ 1.5 g cm ⁻³ ; $\Delta_f H = -480 \text{ kJ mol}^{-1}$)		7,490 (@ 1.5 g cm ⁻³ , calcd., K-J) ^[1]		6,440 confin	(@ 1.48 ed) ^[3]	g cm ⁻³ ,		
V_0 [L kg ⁻¹]	804 1,009 ^[3]								

Thermal stability	Nonisothermal TG data, $\beta = {^{\circ}C/min}$, $T_{ei} = onset T$ of TG peaks, $T_p = peak T$, $T_{oe} = endset T$ of TG peaks, $T_b = critical T$ for thermal dec. [5]:						
	β (°C/min)	T _{ei} (°C)	<i>T</i> _p (°C)	T _{oe} (°C)	T _b (°C)		
	5.0 159.7 178.8 186.6 119.1						
	7.0 167.1 185.7 197.8						
	10.0 170.7 191.0 203.4						
	15.0 180.5 196.8 211.6						
	Critical T for thermal dec. = 169.3 °C ^[7]						
ΔH _{melt} [J/g]	-114.8 (heat absorption) ^[5]						
ΔH _{dec.} [J/g]	1,105 (heat re	elease) ^[5] ,	499.7 kJ/n	nol ($\Delta H_{\rm d}$, h	eat of dec	.)[7]	

- [1] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartoskova, *Thermochimica Acta*, **2013**, *566*, 137–148
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 126.
- [4] M.-M. Li, G.-X. Wang, X.-D. Guo, Z.-W. Wu, H.-C. Song, *Journal of Molecular Structure: THEOCHEM*, **2009**, *900*, 90–95.
- [5] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [6] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.
- [7] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.

Ethylenediamine dinitrate

Name [German, acronym]: Ethylenediamine dinitrate, ethylenediammonium

dinitrate, diamin [PH-Salz, EDD, EDAD, EDDN]

Main (potential) use: Used as ingredient of fusible mixtures containing AN

(PH-Salz) in World War $II^{[14]}$, was used as a bursting charge $^{[10, 17]}$, phlegmatized EDD was used as bursting charge in anticoncrete shells $^{[18]}$, was used as cast charge in eutectic mixtures with $AN^{[10]}$, mixtures with

wax used in boosters in World War $\mathrm{II}^{[10]}$

	EDD
Formula	C ₂ H ₁₀ N ₄ O ₆
Molecular mass [g mol ⁻¹]	186.12
Appearance at RT	White crystals ^[10] , crystalline solid, colorless when pure ^[17]
IS [J]	10 Nm ^[1] , 75 cm (B.M.) ^[10] , 9 in (P.A.) ^[10] , FI = 120% PA ^[11] , $H_{50\%}$ = 2.50 m (10 kg mass, mouton, French test) ^[11] , $H_{50\%}$ = 34.2 cm (2.5 kg mass, B.M. model 2, 35 mg sample, 80–325 mesh, 180 grit paper, Bruceton test) ^[13] , $H_{50\%}$ = 18.0 cm (5.0 kg mass, B.M. model 2, 35 mg sample, 80–325 mesh, 180 grit paper, Bruceton test) ^[13]
FS [N]	>353 ^[1]
ESD [J]	$E_{50\%} = 0.64 \pm 0.06 \text{ (Bruceton method)}^{[15]}$
N [%]	30.10
Ω(CO ₂) [%]	-25.8
T _{m.p.} [°C]	188.6 ^[2] , 185–187 ^[10, 11, 17] , 188.1 ^[13] , 185 ^[18]
T _{dec.} [°C]	275 ^[3] , 270 (dec. with liberation of brown fumes) ^[17]
$ ho$ [g cm $^{-3}$]	1.577 ^[1] , sp. gr. = 1.595 (@ 25/40) ^[10] , 1.595 ^[4,13] , 1.603 (pycnometry) ^[13] , sp. gr. = 1.595 (@ 25/4°) ^[11] , 1.49 (pelleted under a pressure of 1,500 kg cm², Kast) ^[14]
Heat of formation	-653.5 kJ/mol ^[4] , 156.1 kcal/mol ^[10,11] , $-3,511.2$ kJ/kg ^[4] , -839.2 kcal/kg (enthalpy of form.) ^[1,9] , 803.6 kcal/kg (Q) ^[19] , -839.0 kcal/kg (enthalpy of form.) ^[16] , 117.29 kcal/mol ($-\Delta H_f$ (heat of form. @ standard conditions)) ^[21]

Heat of combustion	-374.7 kcal/mol ^[11] , 374.7 kcal/mol (@ <i>C</i> ^p) ^[10] , 2,020 kcal/kg (@ <i>C</i> [*]) ^[19]					
	Exptl. heat of combustion data ^[21] :					
	$-\Delta U_{\rm B/M}$ (cal/g)	-ΔU _B (kcal/mol)	-Δ <i>U</i> _R	(kcal/mol tm. and ant vol.)	$-\Delta H_R$ (kcal/ mol @ 1 atm. and constant pressure)	
	2,016.26 ± 0.7	9 375.29	374.7	'0	373.22	
	Calcd. Lit. values (EXPLO5 6.04)			Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		3,447 (calcd.,	K-J) ^[5]	3,814 [H ₂	O (l)] ^[1, 5]	
		931 kcal/kg (@ 1.550 g cm	-3	3,091 [H ₂	O (g)] ^[1]	
		calcd.) $[H_2O \text{ vapor}]^{[16]}$		890 kcal/	kg [H ₂ O (g)] ^[9]	
				127.9-15	9.3 kcal/mol ^[10, 11]	
				890 kcal/kg (@ 1.550 g cm ⁻³) [H ₂ O vapor] ^[16]		
T _{ex} [K]		1,670 (calcd.,	K-J) ^[6]			
p _{C-J} [GPa]		24.233 (calcd.	, K-J) ^[4]			
VoD [m s ⁻¹]		7,930 VoD can reach 6,800 (30 diameter cardboard tube) ^[6] 6,800 (@ 1.53 g cm ⁻³ ,		cardboard tube) ^[14]		
		8,090 (@ 1.60 g cm ⁻⁵	:	confined)		
		(TMD)) ^[12]		7,550 ^[6]		
				7,690 (@	1.60 g cm ⁻³) ^[7]	
				ı	sp. gr. = 1.0, e method) ^[10, 11]	
					sp. gr. = 1.33, e method) ^[10, 11]	
		6,915 (@ sp. gr. = 1.50, Dautrische method) ^[10, 11]				
V_0 [L kg ⁻¹]				1,071 ^[1,8]		

Trauzl test [cm³, % TNT]	120-125% TNT ^[10] , 125% TNT ^[10, 11] , 115% PA ^[11] , 345 cm ^{3[14]} , 350 ^[20]
Sand test [g]	96% TNT ^[10]
Ballistic mortar test	114% TNT ^[11]
Ballistic pendulum test	114% TNT ^[10]
Initiation efficiency	0.10 g tetryl minimum detonating charge (sand test) ^[10] , 2 g MF required for initiation of 50 g sample of sp. gr. = 1.23 in paper cylinder with 30 mm diameter ^[10]
Gap test	3.75 cm between paper cartridges each containing 50 g sample (@ 0.75 g cm $^{-3}$) $^{[10, 11]}$
5 s explosion T [°C] 1 s ignition test [°C] 6 s ignition T [°C] Explosion T test [°C]	430 ^[10, 11] 370 ^[10, 11] 445 ^[10]
Thermal stability	Vaporizes and condenses without dec. when heated in vacuum ^[10] , autocatalytic dec. on heating between 230–360 °C under 100 mm pressure in nitrogen atmosphere ^[10] , 0.38% weight loss after 14 days @ 75 °C ^[14] , no explosion on heating up to 350 °C ^[14]
Vacuum stability test [cm³/h]	5 mL gas evolved @ 120 °C ^[10]
Burn rate [mm/s]	Ignited by open flame after 60 s and continues burning at rate of 1.5 cm/min ^[10]
Solubility [g/mL]	Soluble in water but insoluble in $\rm Et_2O$ or $\rm EtOH^{[10]}$, eutectic formed with $\rm AN^{[10]}$, immiscible with molten $\rm TNT^{[10]}$, readily soluble in $\rm H_2O^{[17]}$
Hygroscopicity	1.24% @ 25 °C and 90% RH ^[10] , hygroscopic ^[14]
Rifle bullet impact test	No detonations with bullet velocities >960 m/s (sp. gr. of charge = 1.0) ^[10] , incomplete detonations with bullet velocities ~1,000 m/s (sp. gr. of charge = 1.0) ^[10]
Plate dent test	Essentially identical with the values of TNT ^[10]

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 126–127.
- [2] Y.-H. Kong, Z.-R. Liu, Y.-H. Shao, C.-M. Yin, W. He, Thermochimica Acta, 1997, 297, 161–168.
- [3] T. P. Russell, T. B. Brill, A. L. Rheingold, B. S. Haggerty, *Propellants Explosives Pyrotechnics*, **1990**, *15*, 81–86.
- [4] J. Lee, A. Block-Bolten, *Propellants Explosives Pyrotechnics*, **1993**, *18*, 161–167.
- [5] M. H. Keshavarz, *Propellants Explosives Pyrotechnics*, **2012**, *37*, 93–99.
- [6] T.-Z. Wang, G.-G. Xu, J.-P. Xu, Y.-J. Liu, Journal Beijing Institute of Technology 2000, 9, 341–346.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.

- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, Indian J. Engineering and Mater. Sci., 2015, 22, 701–706.
- [9] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action estimate. Individual explosives and their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [10] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [12] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [13] R. L. McKenney, S. R. Struck, R. A. Hildreth, J. A. Fryling, J. Energet. Mater., 1987, 5, 1–25.
- [14] T. Urbański, Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [15] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [16] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [17] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [18] *Handbook of Foreign Explosives*, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [19] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [20] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [21] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.

Ethylene dinitramine

Name [German, acronym]: 1,4-Dinitro-1,4-diazabutane, ethylenedinitramine, N,N-

dinitroethanediamine, s-bisnitroaminoethane ethylene dinitroamine, N,N'-dinitroethylene diamine, haleite, halite, 1,2-dinitrodiaminoethane, N,N'-dinitro-1,1-ethane-diamine [äthylendinitramin, EDNA]

Main (potential) use: Component of ednatol^[1, 11], boosters, bursting charge^[11]

	EDNA
Formula	$C_2H_6N_4O_4$
Molecular mass [g mol ⁻¹]	150.09
Appearance at RT	White solid ^[22] , white – buff-colored crystalline solid ^[34] , white crystals of rhombic shape ^[37]
IS [J]	8 Nm ^[1] , 8.33 ^[5,8,9] , 9.42 (B.M.) ^[11,12] , 6.98 (P.A.) ^[11,12,13] , $\log H_{50\%} = 1.53^{[18]}$, $H_{50\%} = 34$ cm (US-NOL) ^[19] , 14 in (2 kg mass, 17 mg sample, P.A.) ^[11,20,38] , 48 cm (20 mg sample, B.M.) ^[11,20,21] , $H_{38\%} = 1.5$ m (5 kg mass, French test) ^[21] , 10 in (2 kg mass, explodes) ^[29] , 36 cm (NOL) ^[30] , $H_{50} = 34$ cm (2.5 kg mass, type 12 tool) ^[32] , 6.98 (48 cm, 2 kg mass, 20 mg sample, B.M) ^[13] , 14 in (2 kg mass, 17 mg sample, P.A.) ^[13] , 32 cm (B.M.) ^[38] IS of various crystal habits (2 kg mass, B.M) ^[13] : first plate = 55 cm, second plate = 55 cm, bipyramid = 71 cm, Bracydome = 66 cm, sphenoid = 46 cm ^[13] 65 cm (ERL #3, sample in brass cup 0.308 in inside diameter, 0.01 in thick, $\frac{7}{8}$ in height, 5 kg mass) ^[43] , 35 cm (ERL #5, sample in cylindrical cavity $\frac{1}{16}$ in deep, 0.376 in inside diameter, 5 kg mass) ^[43] , 38 cm (ERL #12, sample on square of Flint paper, $\frac{2}{2}$ kg mass) ^[43] , $H_{50\%} = 32$ cm (4 kg mass, B.M. design 5) ^[43] , 30 cm (sensitivity to glancing impact, Hercules sliding rod, sandblasted surfaces, 45° slide angle, 10 lb rod, 30 mg sample) ^[43] , $H_{50} = 42.7 \pm 0.04$ cm (type 12, ERL apparatus) ^[44] , $H_{50} = 34$ cm ^[47]

	Design no. 3 apparatus ^[48] :					
	Drop height (cm)	Trials	% explosions			
	15	20	% explosions			
	20	20	0			
		?				
	30	1	5			
	40	20	17			
	45	20	25			
	50	20	40			
	70	20	50			
	80	40	47			
	85	40	70			
	90	40	67			
	95	20	80			
	$H_{50} = 76 \text{ cm (design no. 3 apparatus, 5 kg hammer)}^{[48]}, H_{50} = 30-40 \text{ cm (design no. 3 apparatus)}^{[48]}, H_{50} = 35 \text{ cm (design no. 5 apparatus)}^{[48]}, H_{50} \text{ (average)} = 121 \text{ cm (design no. 9 apparatus, 2.5 kg hammer)}^{[48]}, H_{50} = 133 \text{ cm (sand-blasted surfaces, 2.5 kg hammer, design no. 10 apparatus)}^{[48]}, H_{50} = 248 \text{ cm (sand-blasted surfaces, nonflush, 2.5 kg hammer, design no. 10 apparatus)}^{[48]}, H_{50} = 33 \text{ cm (2.5 kg hammer, design no. 11 apparatus)}^{[48]}, H_{50} = 31.5 \text{ cm (design no. 12 apparatus, 42 units cf.}$					
FS [N]	47.4 ^[7,8,9] , unaffected by steel shoe (friction pendulum test) ^[13,22,38] , unaffected by fiber shoe (friction pendulum test) ^[13,22] , $H_{50\%} = 22$ cm (friction pendulum, 30 mg sample, sandblasted surface, 2 in ball, 5 kg weight, 8° angle of incidence) ^[43]					
N [%]	37.33					
Ω(CO ₂) [%]	-32.0					
T _{m.p.} [°C]	$180^{[2]}$, dec. >175 ^[13] , 174–178 (dec.) ^[20, 34] , 177.30 (dec.) ^[11, 22] , 177–179 (dec. starts @ 175) ^[21] , 174–176 ^[29] , 175–176 ^[37] , 176.2 (dec., Mettle mpt. apparatus, @ 1 K/min beginning at 10 K beneath the mpt.) ^[41]					
T _{dec.} [°C]	186 (DSC @ 5 °C/min) ^I	^[2] , 175+ ^[13]	, 175 (starts) ^[21] , 1	174-176 ^[29]		

ρ [g cm ⁻³]	1.65 (@ 298.15 K) ^[2] , 1.749 ^[6] , 1.71 (@ TMD) ^[13] , 1.75 (@ 20 °C) ^[20] 1.55–1.77 (crystal, depending on solvent used for recryst.) ^[22] , sp. gr. = 1.71 (crystal) ^[21] , 1.71 (crystal) ^[13, 38] , sp. gr. = 1.75 ^[37]					
	ρ (g cm ⁻³)		Pressure (psi)			
	1.28 ^[13, 21, 22]		5,000			
	1.38 ^[13, 22] , 1.39 ^[21]		10,000			
	1.41 ^[13, 21, 22]		12,000			
	1.44 ^[13, 21, 22]		15,000			
	1.49 ^[13, 21, 22]		20,000			
	1.56 ^[21]		40,000			
	Loading ρ (g cm ⁻³)		Pressure ((kpsi)		
	1.39 ^[23, 38]		5			
	1.46 ^[23, 38]		10			
	1.51 ^[23, 38]		15			
	1.55 ^[23, 38]		20			
	1.72 ^[23]		(crystal)			
Heat of formation	$-103.8 \text{ kJ/mol } (\Delta_t H^0)^{[3]}, 134 \text{ cal/g}^{[13,19]}, -691.6 \text{ kJ/kg (enthalpy of form.)}^{[1,3]}, \\ -661.1 \text{ kJ/kg}^{[6]}, -169.0 \text{ kcal/kg } (\Delta_t H)^{[17]}, 20.11 \text{ kg cal/mol}^{[22]}, -169.0 \text{ kcal/kg } (\text{enthalpy of form.})^{[31]}, -25 \pm 0.40 \text{ kcal/mol } (\Delta_t H^{298})^{[41]}, -20.13 \text{ kcal/mol } (\Delta_t H)^{[41]}, -103.7 \text{ kJ/mol (enthalpy of form., exptl.})^{[42]}, -88.5 \text{ kJ/mol (enthalpy of form., calcd., emp.})^{[42]}, -103.8 \text{ kJ/mol (enthalpy of form., calcd., S-D method})^{[42]}, -103.0 \pm 1.5 \text{ kJ/mol } (\Delta H_t^o, (c))^{[45]}, -24.81 \text{ kcal/mol } (\Delta H_t^o)^{[46]}$					
Heat of combustion	2,477 cal/g ^[13, 19, 21] , 369 kcal/mol ^[21] , 2,506 (Q_c^p) ^[20] , 2,477 cal/g (@ C^p) ^[22] , $\Delta Q_c = 369 \pm 0.40$ kcal/mol (exptl.) ^[41] , heat of comb. = 369.7 kcal/mol (@ 1 atm.) ^[43]					
	Calcd. (EXPLO5 6.04)	Lit. values		Exptl.		
$-\Delta_{\rm ex}U^{\rm o} [{\rm kJ} {\rm kg}^{-1}]$	4,995	4,648 (calcd.	, K-J) ^[4]	4,699 [H ₂ O (l)] ^[1]		
	1,133 kcal/kg			4,278 [H ₂ O (g)] ^[1]		
		(@ 1.700 g cr calcd.) [H ₂ O v		1,276 cal/g ^[13, 19, 21, 22]		
		1,194 cal/g (ca		981 kcal/kg ^[16]		
				1,100 kcal/kg [H ₂ O (g)] ^[17]		

			1,100 kcal/kg (@ 1.700 g cm ⁻³ , calcd.) $[H_2O \text{ vapor}]^{[31]}$
			1,276 kcal/kg ^[37]
<i>T</i> _{ex} [K]	3,187	4,300 (calcd.) ^[19]	
p _{C-J} [kbar]	29.97	26.72 GPa (calcd., K-J) ^[2]	273 ^[9]
		231 (calcd.) ^[19]	265.9 ^[19]
		229 (@ 1.663 g cm ⁻³	266 (@ 1.532 g cm ⁻³) ^[28]
		calcd., empirical, Xiong) ^[27]	273 (@ 1.562 g cm ⁻³) ^[28]
		242 (@ 1.532 g cm ⁻³ , calcd., K-J) ^[28]	
		252 (@ 1.562 g cm ⁻³ , calcd., K-J) ^[28]	
VoD [m s ⁻¹]	8,336 (@ 1.75 g cm ⁻³ , $\Delta_t H = -103.834 \text{ k}$	7,890 (@ 1.65 g cm ⁻³ , calcd., K-J) ^[2]	7,639 (@ 1.532 g cm ⁻³ , pressed) ^[19]
	mol ⁻¹)	6,368 (@ 0.98 g cm ⁻³ , calcd., BKWR) ^[25]	7,570 (@ 1.65 g cm ⁻³) ^[1, 15]
			8,230 (@ 1.71 g cm ⁻³) ^[10]
		6,029 (@ 0.98 g cm ⁻³ , calcd., BKWS) ^[25]	7,570 (@ 1.49 g cm ⁻³ ,
		7,620 (@ 1.5 g cm ⁻³ , average lit. value) ^[24]	1.0 in charge diameter, pressed, unconfined) ^[13, 20]
	average iii. vi		7,680 (calcd. based on
		8,391 (@ 1.710 g cm ⁻³ , calcd.) ^[21]	sand test with 1,700 g bomb) ^[24]
		8,310 (@ 1.71 g cm ⁻³ (TMD), calcd., R-P method) ^[26]	7,570 (@ 1.49 g cm ⁻³ , pressed, unconfined, 1.0 diameter) ^[21]
		8,640 (@ 1.71 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[26]	7,580 (@ 1.50 g cm ⁻³ , Blatt) ^[21, 22]
		8,280 (@ 1.71 g cm ⁻³ (TMD), calcd., K-J) ^[26]	5,650 (@ 1.0 g cm ⁻³ , Blatt) ^[21, 22]
		8,179 (@ 1.663 g cm ⁻³ , calcd., empirical, <i>Xiong</i>) ^[27]	6,600 (@ 1.25 g cm ⁻³ , Fischeroulle) ^[21]

			7,137 (@ 1.50 g cm ⁻³ , Fischeroulle) ^[21]
			7,883 (@ 1.55 g cm ⁻³) ^[22]
			8,235 (@ 1.663 g cm ⁻³) ^[27]
			24,000-25,400 ft/s (@ 1.5 g/mL) ^[34]
			7,750 (@ 1.55 g cm ⁻³) ^[37]
			7,550 (@ 1.50 g cm ⁻³) ^[43]
V_0 [L kg ⁻¹]	860		1,017 ^[1, 14]
			908 ^[13, 20, 21, 37]
/ _{sp} [Ns g ⁻¹]	2.46 (calcd., ISPBKW code) ^[46] , 2.48 (calcd., empirical) ^[46]		

Trauzl test [cm³, % TNT]	122-143% TNT ^[22] , 122% TNT ^[11, 13, 20, 21] , 118% PA ^[21] , 410 ^[40]
Sand test [g]	48.4 g sand crushed (1,700 g bomb) ^[24] , 52.3 g sand crushed (cf. 48 g for TNT) (109% TNT) ^[11, 13, 20, 21] , 109–119% TNT ^[22]
Ballistic mortar test	136-140% TNT ^[22] , 139% TNT ^[11, 13, 20, 21, 43] , 136% TNT ^[21]
Initiation efficiency	0.21 g MF minimum detonating charge $^{[13,22]}$, 0.13 g LA minimum detonating charge $^{[13,22,38]}$
US NOL gap test	Gap value = 6.35 cm (@ 1.551 g cm^{-3} , pressed) ^[19]
Gap test	14 cm distance between two paper cartridges each containing 50 g EDNA of ρ = 0.80 g cm ^{-3[21, 22]}
LSGT [cm]	60 mm (NOL) ^[30]
	$ ho = 1.551 \mathrm{g/cc}$, 90.7% TMD, 50% point no. cards 250, regular test, charge conditioned and fired @ 25 °C ^[39]
1 s explosion T [°C] 5 s explosion T [°C] 10 s explosion T [°C] 5 s ignition T [°C] Dec. T [°C]	216 ^[20] 189 (dec.) ^[13, 20] , 189 (detonates) ^[11] , 189 (dec., cook-off) ^[38] 178 ^[13, 20, 38] 189 (dec., USA value) ^[19, 38] , 190 (Russian value) ^[19] 20 s @ 170 ^[21] , 15 s @ 173 ^[21] , 10 s @ 178 ^[21] , 5 s @ 189 ^[21] 265 (0.1 s, no cap used) ^[13, 21, 22] , 216 (1 s, no cap used) ^[13, 21] , 205
Explosion T[°C]	(1 s, Blatt) ^[21] , 265 (0.1 s) ^[38] , 216 (1 s) ^[38]

	Ignition or deflagration occurred, 25 mg sample: 0.166 sec. exposure time @ $314^{[21]}$, 0.45 s exposure time @ $251^{[21]}$, 1.18 s exposure time @ $203^{[21]}$, 4.88 s exposure time @ $180^{[21]}$, 37.1 s exposure time @ $162^{[21]}$, 120 s exposure time @ $158^{[21]}$, 793 s exposure time @ $149^{[21]}$, no action @ $142^{[21]}$ $190^{[22]}$, explodes @ 180 °C on heating ^[29] , 173 (15 s) ^[13] , 170 (20 s) ^[13] T (°C), time to explosion (s), 25 mg sample ^[33] :				
T (°C) Time to explosio			T(°C)	Time to explosion (s)	
	314	0.166	180	4.88]
	286	0.242	176	6.80	
	266	0.333	169	13.5	
	251	0.450	162	37.1	
	232	0.554	158	120]
	221	0.750	149	793]
	192	2.08	142	No explosion	
International heat test	0.01% mass loss in 48 h @ 75 °C ^[20]				
100 °C heat test [% mass loss]	0.2% mass loss in first 48 $h^{[13, 20, 22]}$, 0.3% mass loss in second 48 $h^{[13, 20, 22]}$, no explosions occurred in 100 $h^{[13, 20, 22]}$				
75 °C int. heat test	0.01% mass loss in 48 h ^[13, 22]				
Thermal stability	Dry EDNA unaffected after 5 months storage @ 65 °C[11,22], dry EDNA unaffected after 30 months storage @ 50 °C[11,22], withstands 120 °C stability test as well as tetryl[29], dry EDNA is thermally stable but moisture causes dec. @ 7 > 50 °C[37]				
Vacuum stability test [cm³/h]	$\begin{array}{c} 0.5 \text{ g cm}^3 \text{ gas evolved} \ @ \ 100 \text{ °C in } 48 \text{ h } (5 \text{ g sample})^{[22]}, \\ 1.5-2.4 \text{ cc}/48 \text{ h } \ @ \ 120 \text{ °C } (5 \text{ g sample})^{[22]}, \ 11+\text{cc}/48 \text{ h } \ @ \ 135 \text{ °C} \\ (5 \text{ g sample})^{[22]}, \ 1.5 \text{ cm}^3 \ @ \ 120 \text{ °C}, \ 40 \text{ h}^{[38]}, \ 0.5 \text{ cc gas evolved in} \\ 40 \text{ h } \ @ \ 100 \text{ °C}^{[13, 20]}, \ 1.5 \text{ cc gas evolved in } 40 \text{ h } \ @ \ 120 \text{ °C}^{[13, 20]}, \\ 11+\text{ cc gas evolved in } 40 \text{ h } \ @ \ 150 \text{ °C}^{[13, 20]}, \ 0.5 \text{ cc}/5 \text{ g in} \\ 48 \text{ h } \ @ \ 100 \text{ °C}^{[21]}, \ 1.5 \text{ cc}/5 \text{ g in } 48 \text{ h } \ @ \ 120 \text{ °C}^{[21]}, \ 11+\text{cc}/5 \text{ g in} \\ 48 \text{ @ \ } \ 135 \text{ °C}^{[21]}, \ 5 \text{ mL gas (max.) in } 40 \text{ h } \ @ \ 120 \text{ °C} \text{ (>}90\% \text{ purity)}^{[22]} \\ \end{array}$				
Volatility	0 ^[13, 20, 21] , 0.05%/h @ 100 °C in open dish ^[22]				

Solubility [g/mL]	Solubility values (g/100 g solvent) ^[13] :						
	w	Water Alcohol					
	°C	%	°C	%			
	20	0.25	20	1.00			
	40	0.75	40	2.46			
	60	2.13	60	5.29			
	80	6.38	78	10.4			
	100	> 20					
	Solubility in water (100 g): 0.10 g @ 10 °C, 0.25 g @ 20 °C, 1.25 g @ 50 °C, 5.0 g @ 75 °C, 16.4 g @ 95 °C $^{[22]}$. Solubility in 95% EtOH (100 g): 0.55 g @ 10 °C, 1.00 g @ 20 °C, 3.50 g @ 50 °C, 10.07 g @ 75 °C, 11.5 g @ 78.5 °C $^{[22]}$, insoluble in $Et_2O^{[22]}$, 8.2 g dissolve in 100 g acetone @ 20 °C $^{[22]}$, soluble in nitromethane, nitrobenzene and dioxane $^{[22]}$, sparingly soluble in H_2O : ~ 100 parts 100 g 100 c 100 g. Soluble in 100 g acetone 100 g 100 c 100 g 1						
	T(°C) Solubility g/100 g solvent						
		Water		Ethyl alco		<u> </u> 	
	25	0.3	_	1.25	J1101		
	50	1.25	\dashv	3.45		!	
	75	4.95	1	10.1			
	95	16.4		_			
Hygroscopicity	Virtually nonhygroscopic absorbs only 0.01% moisture @ 30 °C with 90% RH $^{[11]}$, 0.01% $^{[13]}$, 0.01% @ 90% RH $^{[22]}$, slightly hygroscopic $^{[34]}$, may hydrolyze slightly in presence of $H_2O^{[34]}$, nonhygroscopic $^{[37]}$						
Compatibility	Dry EDNA does not react with most metals ^[11] , reacts with brass, cadmium, copper, nickel, mild steel and zinc if moist ^[11] Dry: Cu, brass, Al, mild steel, stainless steel, mild steel coated with acid-proof black paint, mild steel plated with copper nickel, cadmium or zinc are unaffected ^[13] , Mg and Mg–Al alloy are slightly affected ^[13] Wet: Cu, brass, Al, mild steel coated with acid-proof black paint, mild steel plated with copper, cadmium, nickel or zinc are heavily corroded ^[13] , Al is slightly affected ^[13] , stainless steel is unaffected ^[13]						

	May hydrolyze slightly in presence of H ₂ O ^[34] , when dry does not react with most common metals ^[34] , reacts with most common metals (considerable corrosion) except Al and stainless steel in the presence of moisture ^[34] , dec. on addition to hot dil. sulfuric acid ^[13] , dec. by addition to excess 20% aq. NaOH soln. ^[13] Dry EDNA: no corrosion of Al, brass, Cu, mild steel, stainless steel, Cd, Ni or Zn ^[22] , mild corrosion of Mg and Mg alloys ^[22] , wet EDNA (≥0.5% moisture) heavily corrodes Cu, brass, mild steel, Cd, Ni and Zn ^[22] , wet EDNA does not corrode stainless steel ^[22] , stable in alkaline soln. but dec. in acid and neutral soln. ^[37]
Rifle bullet impact test	0% explosions, 60% partial detonations, 20% burned, 20% unaffected ^[13, 22] , 90 (% detonations, pressed sample, reg disk bomb, ³ / ₁₆ in steel disk) ^[43] , 100 (% detonations, pressed sample, Reg disk bomb, ³ / ₁₆ in steel disk) ^[43]
Plate dent test	Brisance = 122% TNT, ρ = 1.49 g cm ⁻³ , charge diameter = 1.0 in, pressed, unconfined ^[13] , 133–122% TNT ^[22]
Plate cutting test	Brisance equal to that of TNT ^[22]
Booster sensitivity test	Condition = pressed, 100 g tetryl, 2.09 in wax for 50% detonation, $\rho = 1.42 \text{ g cm}^{-3[13, 38]}$, pressed EDNA, $\rho = 1.42 \text{ g cm}^{-3}$, 50% gap = 2.09 in ^[38]
Fragmentation test	3 in HE, M42A1 projectile, lot KC-5: 95:5 EDNA:wax, ρ = 1.56 g cm ⁻³ , total no. of fragments = 514, total no. of fragments for EDNA = 600 (117% as many fragments as TNT) ^[13, 22] , 136–147% as many fragments as TNT ^[22]
Heat of decomposition [cal/g]	573 (est.) ^[36]
Flash point [°C]	180 ^[37]
$C_{\rm p}$ [cal mol ⁻¹ K ⁻¹]	$C_{\rm p}^{298} = 41.9^{[41]}$

	EDNA ^[35]
Chemical formula	C ₂ H ₆ N ₄ O ₄
Molecular weight [g mol ⁻¹]	150.09
Crystal system	Orthorhombic
Space group	Pbca (61)
a [Å]	10.67
<i>b</i> [Å]	8.67
c [Å]	6.16
α [°]	90
β [°]	90

γ [°]	90
<i>V</i> [ų]	
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	
<i>T</i> [K]	

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 127-128.
- [2] C. B. Aakeröy, T. K. Wijethunga, J. Desper, Chemistry A European Journal, 2015, 21, 11029–11037.
- [3] A. Salmon, D. Dalmazzone, Journal of Physical and Chemical Reference Data, 2007, 36, 19-58.
- [4] M. H. Keshavarz, M. Ghorbanifaraz, H. Rahimi, M. Rahmani, *Propellants, Explosives, Pyrotechnics*, **2011**, *36*, 424–429.
- [5] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [6] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [7] M. H. Keshavarz, M. Hayati, S. Ghariban-Lavasani, N. Zohari, ZAAC, 2016, 642, 182–188.
- [8] M. Jungová, S. Zeman, A. Husárová, *Chinese J. Energetic Mater.*, **2011**, *19*, 603–606.
- [9] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, in S. N. Bulusu (ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic Publishers, Dordrecht, 1999, p. 605.
- [10] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [11] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [12] B.M. abbreviation for Bureau of Mines apparatus; P.A. abbreviation for Picatinny Arsenal apparatus.
- [13] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [14] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [15] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [16] H. D. Mallory (ed.), The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945, 16th March 1965, AD Number AD-116 – 878, US Naval Ordnance Laboratory, White Oak, Maryland.
- [17] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and Their Mixtures, Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [18] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem Inf. Comput. Sci., 1996, 36, 804-810.
- [19] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [20] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [21] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol.* 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [22] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.

- [23] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [24] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [25] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651–659.
- [26] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [27] W. Xiong, J. Energet. Mater., 1985, 3:4, 263-277.
- [28] R. Gill, L. Asaoka, E. Baroody, J. Energet. Mater., 1987, 5, 287-307.
- [29] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 393–394.
- [30] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [31] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [32] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [33] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1–38.
- [34] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [35] F. J. Llewellyn, F. E. Whitmore, J. Chem. Soc., 1948, 1316-1323.
- [36] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61–97, 1st September 1961.
- [37] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [38] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [39] D. Price, A. R. Clairmont, J. O. Erkman, *The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results*, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March **1974**.
- [40] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [41] G. Krien, H. H. Licht, J. Zierath, *Thermochim. Acta*, **1973**, *6*, 465–472.
- [42] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [43] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [44] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [45] J. B. Pedley, R. D. Naylor, S. P. Kirby, *Thermochemical Data of Organic Compounds*, 2nd edn., Chapman and Hall, **1986**.
- [46] D. Frem, J. Aerosp. Technol. Manag., 2018, 10, e3318.
- [47] G.-D. Wang, Y.-C. Liu, Chinese J. Energet. Mater., 2008, 16, 167–174.
- [48] H. D. Mallory, *The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945*, NAVORD Report 4236, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 16th March **1956**.

Ethylene glycol dinitrate

Name [German, acronym]: Ethylene glycol dinitrate, nitroglycol, dinitroglycol,

dinitromethylene, ethylene dinitrate, glycol dinitrate

[EGDN, EGcDN, NGc, NGL, GDN]

Main (potential) use: Secondary (high) explosive, ingredient of nonfreezing

dynamite^[2, 17]

	Ethylene glycol dinitrate
Formula	$C_2H_4N_2O_6$
Molecular mass [g mol ⁻¹]	152.06
Appearance at RT	Transparent liquid ^[15] , colorless liquid ^[16] , slightly syrupy liquid ^[24] , yellow liquid ^[2] , yellow oily liquid ^[26] , transparent, free-flowing liquid ^[27]
IS [J]	1, 20–25 cm with 2 kg mass ^[4] , FI = 20% PA ^[9] , 110 cm (minimum fall, 5 kg mass, B.M.) ^[9] , 20–25 cm (sample absorbed on filter paper, 2 kg mass, Kast app.) ^[9, 16] , 4 in (20 mg sample, 1 lb mass, P.A.) ^[9] , steel weight of 1 kg tests positive for all heights ^[7] , DH ₅₀ = 3.763 cm (0.3542 kg, Bruceton method) ^[7] , DH _{50min} = 2.810 cm (0.3542 kg, Bruceton method) ^[7] , E_{min} = 0.099 (0.3542 kg, Bruceton method) ^[7] , E_{max} = 0.133 (0.3542 kg, Bruceton method) ^[7] , explodes on 2 kg mass falling 20–25 cm ^[15] , 110 cm (500 g mass, Rinkenbach using small drop machine) ^[16] , 0.2 Nm ^[19] , 4 cm (1 lb mass, 20 mg sample, B.M.) ^[2] , explodes if 2 kg mass is dropped from 10–12 cm ^[27] , 20–25 cm (2 kg mass) ^[30] , $H_{100\%}$ = 7 cm (5 kg mass, 10–11 °C, 0.1 g sample) ^[30]
FS [N]	>360, very sensitive $^{[30]}$, detonates when ground in porcelain mortar $^{[30]}$, all samples detonate in 10 friction pendulum tests $^{[30]}$
N [%]	18.42
Ω(CO ₂) [%]	0.00
T _{m.p.} [°C]	$-22^{[23]}$, -21.7 (freezing point) ^[27] , -22.3 or -22.8 (freezing point) ^[15] , -22.3 (freezing point) ^[16] , $-23^{[19]}$, $-22.8^{[21]}$, $-22.3^{[25]}$, $-20^{[2]}$, -22.3 – -22.80 (freezing point) ^[30]
T _{b.p.} [°C]	$197.5^{[15, 30]}$, 105.5 (@ 19 mm Hg) $^{[15]}$, 70 (@ 2 mm Hg) $^{[15]}$
T _{dec.} [°C]	184.51 (onset), 189.36 (max.) (DSC @ 1 °C/min) ^[7] , 191.93 (onset), 202.73 (max.) (DSC @ 3 °C/min) ^[7] , 199.88 (onset), 208.8 (max.) (DSC @ 5 °C/min) ^[7] , 201.01 (onset), 214.12 (max.) (DSC @ 8 °C/min) ^[7] , explodes @ 215 °C if rapidly heated ^[9] , 78 (TGA midpoint) ^[19]

ρ [g cm ⁻³] Heat of formation	$ \begin{array}{l} 1.489\ (\textcircled{@}\ 2\ {}^{\circ}C)^{[4,30]},\ 1.481\ ((()),\ \textcircled{@}\ 298\ K)^{[2]},\ sp.\ gr. = 1.488\ (\textcircled{@}\ 20/4^{\circ})^{[9]},\ sp.\ gr. = 1.480\ (\textcircled{@}\ 25^{\circ})^{[9]},\ 1.5176\ (\textcircled{@}\ 0\ {}^{\circ}C)^{[15]},\ 1.496\ (\textcircled{@}\ 15\ {}^{\circ}C)^{[15]},\ 1.489\ (\textcircled{@}\ 20\ {}^{\circ}C)^{[15]},\ d_4{}^{20} = 1.4918^{[16]},\ sp.\ gr.\ (X^{\circ}/15^{\circ}) = 1.5176\ (\textcircled{@}\ 0^{\circ})^{[16]},\ sp.\ gr.\ (X^{\circ}/15^{\circ}) = 1.5176\ (\textcircled{@}\ 0^{\circ})^{[16]},\ sp.\ gr.\ (X^{\circ}/15^{\circ}) = 1.4890\ (\textcircled{@}\ 20^{\circ})^{[16]},\ 1.489^{[20]},\ 1.489^{[20]},\ 1.492\ (pycnometry)^{[23]},\ sp.\ gr. = 1.496^{[24]},\ 1.48\ (liquid)^{[2]},\ sp.\ gr. = 1.491\ (25/4\ {}^{\circ}C)^{[26]},\ sp.\ gr.\ d^{20^{\circ}}_{20^{\circ}} = 1.489^{[27]} \\ -55.58\ kcal/mol^{[9]},\ -67.7\ kcal/mol\ (\Delta_f\mathcal{H})^{[15]},\ -382\ kJ/kg\ (enthalpy\ of\ form.)^{[18]},\ -243.01\ kJ/mol^{[23]},\ -366\ cal/g^{[2]},\ -1,529.3\ J/g\ (\textcircled{@}\ constant\ volume)^{[30]},\ -232.6\ kJ/mol\ (enthalpy\ of\ form.,\ calcd.,\ emp.)^{[31]} \\ 1,764\ cal/g^{[2]},\ 1,763.9\ cal/g\ (\textcircled{@}\ C^{\circ})^{[9]},\ 268.22\ kcal/mol\ (\textcircled{@}\ C^{\circ})^{[9]},\ 1,752.5 \\ +2.46\ (C_1)^{[10]},\ C^{\circ}(A)^{[10]},\ C^{\circ$		
combustion		g (@ constant pressure) ^{[30}	C ^P) ^[9] , 7,380.6 J/g (@ constant volume) ^[30] ,
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,563	1,580.9 cal/g [H ₂ O (g)] ^[9]	1,620 kcal/kg [H ₂ O (g)] ^[3]
		1,705.3 cal/g [H ₂ O (l)] ^[9]	6,610.72 J/g [H ₂ O (g)] ^[4, 30]
		1,615 kcal/kg	7,133.72 J/g [H ₂ O (g)] ^[4]
		(@ 1.492 g cm ⁻³ ,	1,578 kcal/kg [H ₂ O (g)] ^[5]
		calcd.) [H ₂ O vapor] ^[18]	1,580 kcal/kg [H ₂ O (g)] ^[15]
		7,289 J/g [H ₂ O (l)] (calcd., ICT	1,705 kcal/kg [H ₂ O (l)] ^[15]
		Thermodynamic code) ^[19]	1,578 kcal/kg (@ 1.492 g cm ⁻³) [H ₂ O vapor] ^[18]
		1,655 kcal/kg ^[27]	7,133.72 [H ₂ O (l)] ^[30]
		176.6 kcal/100 g (@ 1.496 g cm ⁻³ , constant volume) $[H_2O(l)]^{[28]}$	
<i>T</i> _{ex} [K]	4,541	4,209 °C ^[9]	
		5,090 (calcd.) ^[8]	
		4,830 °C (@ 1.496 g cm ⁻³) ^[28]	
		4,553 K ^[30]	

p _{C-J} [kbar]	212	200 (calcd.) ^[8]	
pc, [nodi]		20.37 GPa (@ 1.492 g cm ⁻³ (pycnometry density), heat of formation = -243.01 kJ/mol, CHEETAH 6.0) ^[23] 3.594 (@ 0.69 g cm ⁻³ (SSED density), heat of formation = -243.01 kJ/mol, CHEETAH 6.0) ^[23]	
VoD [m s ⁻¹]	7,576	7,490 (@ 1.48 g cm ⁻³	7,300 (@ 1.48 g cm ⁻³) ^[1, 14]
	(@ TMD)	(TMD), calcd., R-P method) ^[13]	7,360 (@ 1.50 g cm ⁻³) ^[3]
		7,500 (@ 1.5 g cm ⁻³ , calcd.) ^[8]	7,780 (0.36 loading diameter, steel tube 2.5 mm wall thickness, direct initiation by no. 8 detonator) ^[4]
		7,517 (@ 1.492 g cm ⁻³ (pycnometry density), heat of formation = -243.01 kJ/mol, CHEETAH 6.0) ^[23]	7,960 (0.38 loading diameter, steel tube 2.5 mm wall thickness, 80 g mandelic acid as booster charge and directly by no. 8 detonator) ^[4]
		4,198 (@ 0.69 g cm ⁻³ (SSED density), heat of formation =	8,100 (0.45 loading diameter, steel tube 2.5 mm wall thickness, 80 g mandelic acid as booster charge and directly by no. 8 detonator) ^[4]
		-243.01 kJ/mol, CHEETAH 6.0) ^[23]	1,830 (0.60 loading diameter, porcelain crucible, open, directly by no. 8 detonator) ^[4]
		7,300 (@ 1.485 g cm ⁻³) ^[30]	7,980 (0.60 loading diameter, porcelain crucible, cool down to –70 °C, directly by no. 8 detonator) ^[4]
		EGDN can detonate with high or low	7,400 (@ 1.5 g cm ⁻³) ^[8]
		velocity ^[15]	7,390 ^[6]
			7,300 (@ 1.485 g cm ⁻³ , liq., glass tubes, 1 cm diameter, 1 mm wall thickness) ^[9]
			1,600–1,900 (@ 1.6 g cm $^{-3}$, liq., glass tubes, 0.39 in diameter) $^{[g]}$
			7,700 (@ 1.485 g cm^{-3} , liq., steel tube, 1.15 in diameter) $^{[9]}$

7,830 (liq., loaded in iron pipe, 32-38 mm diameter, initiated by No. 8 detonator)[15]

8,200-8,300 (liq., loaded in iron pipe, 32-38 mm or 35-43 in diameter, initiated by 80 g PA)^[15]

1,000-3,000 (liq., loaded in crucible, initiated by No. 8 detonator)[15]

>8,000 (solid, -70 °C, loaded in crucible, initiated by No. 8 detonator)[15]

Correlation between the detonation velocity of glycol dinitrate and the loading condition, data from^[30]:

Loading condition/	Material of Container	Initiation approach	Detonation velocity (m/s)
Loading diameter φ36 mm	Seamless steel tube (2.5 mm wall thickness)	Directly by #8 detonated	7,780
Loading diameter φ38 mm	Seamless steel tube (2.5 mm wall thickness)	80 g mandelic acid as Booster charge, and directly by #8 Detonated	7,960
Loading diameter φ45 mm	Seamless steel tube (2.5 mm wall thickness)	80 g mandelic acid as booster charge, and directly by #8 detonated	8,100
φ60 mm porcelain crucible	Open	Directly by #8 detonated	1,830
φ60 mm porcelain crucible	Cool down to -70 °C	Directly by #8 detonated	7,980

V ₀ [L kg ⁻¹]	811	483 (without H ₂ O @ 25 °C) ^[19]	
		737 ^[27]	
		73.7 l/100 g (@ 1.496 g cm ⁻³ , @ STP) ^[28]	
		737.2 ^[30]	

Detonation failure diameter, d_f [mm]	1.9 mm (neat EGDN in glass capillaries) ^[20]
Trauzl test [cm³, % TNT]	600 cc (10 g sample with water tamping, cf. 590 cc for NG), 110% $NG^{[9]}$, 170% $PA^{[9]}$, 650 cm 3 (i.e., 110% NG) $(H_2O \ tamping)^{[15, 16, 30]}$, 600 cc $^{[27]}$, 620 $^{[29]}$
Sand test [g]	62.7 g ^[30]
Lead cylinder	Brisance = 22–24 mm compression ^[30]
5 s explosion T [°C] 5 s ignition T [°C] Explosion T [°C] Autoignition T [°C]	$257^{[2, 9, 30e]}$ $237^{[8]}$ heating to 195–200 usually provokes an explosion ^[15] , $195-200^{[30]}$ $270^{[26]}$
100 °C heat test [% mass loss]	Usually fails heat test @ 72 °C ^[15]
Abel test	30 min (heat resistance) ^[30]
Thermal stability	4.2% began to dec. in 12 days @ 75 °C, 35.0% in 18 days @ 75 °C (loosely covered weighing dish) ^[9] , no dec. after 260 h @ 75 °C ^[30]
Vapor pressure [atm. @ °C]	$\begin{array}{c} 0.0044 \text{ mm Hg @ 0 °C^{[2]}, 0.038 mm Hg @ 20 °C^{[2]},} \\ 0.26 \text{ mm Hg @ 40 °C^{[2]}, 1.3 mm Hg @ 60 °C^{[2]},} \\ 5.9 \text{ mm Hg @ 80 °C^{[2]}, 22.0 mm Hg @ 100 °C^{[2]},} \\ 0.031 \text{ Torr @ 15 °C^{[10]}, 0.058 Torr @ 22 °C^{[10]},} \\ 0.078 \text{ Torr @ 25 °C^{[10]}, 0.196 Torr @ 35 °C^{[10]},} \\ 0.448 \text{ Torr @ 45 °C^{[10]}, 0.648 Torr @ 50 °C^{[10]}, 0.26 \text{ Torr }} \\ \text{@ 40 °C^{[11]}, 1.3 Torr @ 60 °C^{[11]}, 5.9 \text{ Torr @ 80 °C^{[11]}}} \end{array}$

<i>T</i> [°C]	Vapor pressure (Torr) ^[12]
15	0.23 ^[12]
22	0.053 ^[12]
25	0.71 ^[12]
35	0.219 ^[12]
45	0.443 ^[12]
50	0.652 ^[12]

<i>T</i> [°C]	Vapor pressure (mm Hg) ^[9]
22	0.0565 ^[9]
20	0.0490 ^[9]
50	0.0665 ^[9]
15	0.02330 ^[9]
25	0.07059 ^[9]
35	0.2190 ^[9]
45	0.44250 ^[9]
55	0.9619 ^[9]

0.3 mm Hg @ 20 °C (Moreschi) $^{[15]}$, 0.0565 mm Hg @ 22 °C (Rinkenbach) $^{[15]}$

Vapor pressure values from Marshall cited in [15]:

Vapor pressure (mm Hg) ^[15]	T (°C)
0.0044	0
0.038	20
0.26	40
1.3	60
5.9	80
22.0	100

Vapor pressure values from Bronder cited in $^{[15]}$:

Vapor pressure (mm Hg) ^[15]	T (°C)
0.048	20
0.125	30
0.299	40
0.648	50

 $\begin{array}{l} 0.07 \text{ mm Hg @ 0 °C}^{[16]}, \, 0.0565 \text{ mm Hg @ 22 °C}^{[16]}, \\ 0.0706 \text{ Torr @ 25 °C}^{[21]}, \, 1.2 \times 10^5 \text{ ppb}_v \text{ (equilibrium vapor pressure @ 300 K)}^{[22]}, \, 7.2 \times 10^{-2} \text{ mm} \\ \text{Hg @ 25 °C}^{[25]}, \, 0.030 \text{ mm Hg @ 15 °C}^{[26]}, \, 0.040 \text{ mm} \\ \text{Hg @ 20 °C (est.)}^{[26]}, \, 0.072 \text{ mm Hg @ 25 °C}^{[26]}, \\ 0.180 \text{ mm Hg @ 35 °C}^{[26]}, \text{ saturated air contains} \\ 95 \text{ ppm vapor by volume @ 25 °C and 760 mm Hg}^{[26]} \end{array}$

T(°C)	Vapor pressure (mm Hg) ^[27]
0	0.044
20	0.038
40	0.26
60	1.3
80	5.9
100	22.0

T(°C)	Vapor pressure (mm Hg) ^[30]
0	0.0044
20	0.046
30	0.125
40	0.289
50	0.735
60	1.302
70	3.986
80	5.976
90	13.972
100	22.062

Volatility

Mass loss from 15 g sample (open dish, 65 mm diameter, 40 mm high)^[9, 30]: @ 20 °C: 0.14% after 24 h^[9, 30], 0.37% after 48 h^[9, 30],

1.63% after 7 days^[9, 30], 2.06% 0.37% after 12 days^[9, 30], 6.91% after 30 days^[9, 30], 47.0% after 6 months^[9, 30] @ 35 °C: 3.6% after 24 h^[9, 30], 8.1% after 48 h^[9, 30], 21.7% after 7 days^[9, 30], 46.6% after 12 days^[9, 30], 68.5% after 20 days^[9, 30], 100% after 40 days^[9, 30]

2.2 mg/cm 2 /h $^{[15]}$, 20 times more volatile than NG $^{[30]}$, 2.2 mg/cm 2 /h $^{(60)}$ 60 °C $^{(30)}$

Flame sensitivity $ \begin{array}{c} \text{ignites with hissing on contact with flame while local overheating may result in explosion}^{[27]}, \text{ very sensitive}^{[30]}, \text{ stable combustion } @ \text{ atmospheric pressure in contact with flames}^{[30]} \\ \text{Solubility [g/mL]} \\ \hline \\ 6.2 \text{ g/L H}_2\text{O} @ 15 °\text{C}^{[2]}, 6.8 \text{ g/L H}_2\text{O} @ 0°\text{C}^{[2]}, 9.2 \text{ g/L H}_2\text{O} @ 50°\text{C}^{[2]}, \text{ fairly soluble in most common organic solvents}^{[15]}, \text{ less soluble in CCL}_a \text{ and petrol}^{[15]}, 0.62 \text{ g dissolves in 100 mL H}_2\text{O} @ 15°\text{C}^{[15]}, 0.68 \text{ g dissolves in 100 mL H}_2\text{O} @ 20°\text{C}^{[15]}, 0.92 \text{ g dissolves in 100 mL H}_2\text{O} @ 50°\text{C}^{[16]}, 0.92 \text{ g dissolves in 100 mL H}_2\text{O} @ 0°\text{C}^{[16]}, 6.8 \text{ g dissolves in 1 L H}_2\text{O} @ 50°\text{C}^{[16]}, 9.2 \text{ g dissolves in 1 L H}_2\text{O} @ 50°\text{C}^{[16]}, aqueous solubility = 5,600 \text{ mg/L} @ 25°\text{C}^{[27]}, 5,200 \text{ mg/in H}_2\text{O} @ 25°\text{C}^{[25]}, 0.45\% \text{ (w/v) in water } @ 21°\text{C}^{[26]}, soluble in CCL_4, EtOH, acetone, benzene, toluene and methanol[26], slightly soluble in dil. alkali[26], readily soluble in tetryl and methyl alcohols, Et_2\text{O}, CHCl}_3, acetone benzene, nitrobenzene and toluene[27], poorly soluble in CCL_4^{[27]}, 0.52 g dissolves in 100 g H_2\text{O} @ 60°\text{C}^{[27]}, slightly soluble in water \text{M}^{[30]} soluble in water \text{M}^{[30]} soluble in water \text{M}^{[30]} soluble in most organic solvents \text{M}^{[30]} soluble in most organic solvents \text{M}^{[30]} soluble in water \text{M}^{[30]} solublity in water \text{M}^{[30]} solublity in water data from \text{M}^{[30]} solubility in \text{M}^{[30]} solubility in \text{M}^{[30]} solubility in \text{M}^{[30]} s$			
(for white light, commercial sample) ^[16] Dielectric constant \$\varepsilon_2 = 28.26^{[15, 16]}\$ Dipole moment, \$\mu[D]\$ 4.00^{[15, 16, 30]}\$, 3.28 (soln. in benzene) ^[30] Burn rate [mm/s] cannot be burned under pressure of 230 mm Hg but is easily detonated (4 mm diameter glass tube, 14–15 °C) ^[3] Flame sensitivity ignites with hissing on contact with flame while local overheating may result in explosion ^[27] , very sensitive ^[30] , stable combustion @ atmospheric pressure in contact with flames ^[30] Solubility [g/mL] 6.2 g/L H ₂ O @ 15 °C ^[2] , 6.8 g/L H ₂ O @ 20 °C ^[2] , 9.2 g/L H ₂ O @ 50 °C ^[2] , fairly soluble in most common organic solvents ^[15] , less soluble in CCL, and petrol ^[15] , 0.68 g dissolves in 100 mL H ₂ O @ 15 °C ^[15] , 0.69 g dissolves in 100 mL H ₂ O @ 20 °C ^[15] , 0.92 g dissolves in 100 mL H ₂ O @ 50 °C ^[16] , 6.8 g dissolves in 100 mL H ₂ O @ 20 °C ^[16] , 6.8 g dissolves in 100 mL H ₂ O @ 20 °C ^[16] , 9.2 g dissolves in 11 L H ₂ O @ 50 °C ^[16] , aqueous solubility = 5,600 mg/L @ 25 °C ^[21] , 5,200 mg/l in H ₂ O @ 25 °C ^[23] , 0.45% (w/v) in water @ 21 °C ^[26] , soluble in CCL, ETOH, acetone, benzene, not under and methanol ^[26] , slightly soluble in dil. alkali ^[26] , readily soluble in CCL, ETOH, acetone, benzene, not benzene, nitrobenzene and toluene ^[27] , poorly soluble in CCL, ²⁷ , 0.52 g dissolves in 100 g H ₂ O @ 05 °C ^[27] , 0.85 g dissolves in 100 g H ₂ O @ 05 °C ^[27] , 0.85 g dissolves in 100 g H ₂ O @ 06 °C ^[27] , slightly soluble in most organic solvents ^[30] , slightly soluble in most organic solvents ^[30] , slightly soluble in CCL, and gasoline ^[30] , solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water @ 20 °C is four times higher than that o	Viscosity [Poises]	0.0363 @ 20 °C ^[9] , 0.08056 @ 15 °C ^[15, 30] , 0.02831 @ 40 °C ^[15, 30] , 0.0363 @ 23.6 °C ^[15, 30] , 0.042 @ 20 °C ^[15, 30] , $\eta_{20} = 4.61$ cP ^[15, 16] , only slightly	
Dipole moment, μ [D] Burn rate [mm/s] cannot be burned under pressure of 230 mm Hg but is easily detonated (4 mm diameter glass tube, 14–15 °C) ^[3] Flame sensitivity ignites with hissing on contact with flame while local overheating may result in explosion ^[27] , very sensitive ^[30] , stable combustion @ atmospheric pressure in contact with flames ^[30] Solubility [g/mL] 6.2 g/L H ₂ O @ 15 °C ^[2] , 6.8 g/L H ₂ O @ 20 °C ^[2] , 9.2 g/L H ₂ O @ 50 °C ^[2] , fairly soluble in most common organic solvents ^[15] , less soluble in CCl ₄ and petrol ^[15] , 0.62 g dissolves in 100 mL H ₂ O @ 15 °C ^[15] , 0.92 g dissolves in 100 mL H ₂ O @ 50 °C ^[15] , 0.57 g dissolves in 100 mL H ₂ O @ 50 °C ^[16] , 9.2 g dissolves in 100 mL H ₂ O @ 50 °C ^[16] , 9.2 g dissolves in 11 L D ₂ O © 50 °C ^[16] , aqueous solubility = 5,600 mg/L @ 25 °C ^[21] , 5,200 mg/j in H ₂ O @ 25 °C ^[23] , 0.45% (w/) in water @ 21 °C ^[26] , soluble in CCl ₄ , EtOH, acetone, benzene, toluene and methanol ^[26] , slightly soluble in dil. alkali ^[26] , readily soluble in Ctyl and methyl alcohols, Et ₂ O, CHCl ₃ , aceton benzene, nitrobenzene and toluene ^[27] , poorly soluble in CCl ₄ ^[27] , 0.52 g dissolves in 100 g H ₂ O @ 60 °C ^[27] , slightly soluble in water ^[30] , soluble in most organic solvents ^[30] , slightly soluble in CCl ₄ and gasoline ^[30] , solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water data from ^[30] : $T(°C) = g EGDN/100 g H2O = 0.68$	Index of refraction		
Burn rate [mm/s] cannot be burned under pressure of 230 mm Hg but is easily detonated (4 mm diameter glass tube, 14–15 °C) ³ ignites with hissing on contact with flame while local overheating may result in explosion ¹²⁷ , very sensitive ^[30] , stable combustion @ atmospheric pressure in contact with flames ^[30] Solubility [g/mL] 6.2 g/L H ₂ O @ 15 °C ^[2] , 6.8 g/L H ₂ O @ 20 °C ^[2] , 9.2 g/L H ₂ O @ 50 °C ^[2] , fairly soluble in most common organic solvents ^[15] , less soluble in CL ₄ and petrol ^[15] , 0.62 g dissolves in 100 mL H ₂ O @ 10 °C ^[15] , 0.68 g dissolves in 100 mL H ₂ O @ 20 °C ^[15] , 0.92 g dissolves in 100 mL H ₂ O @ 50 °C ^[15] , 0.92 g dissolves in 100 mL H ₂ O @ 00 °C ^[15] , 6.8 g dissolves in 1 L H ₂ O @ 50 °C ^[16] , aqueous solubility = 5,600 mg/L @ 25 °C ^[21] , 5,200 mg/l in H ₂ O @ 20 °C ^[25] , 0.45% (w/v) in water @ 21 °C ^[26] , soluble in CCL ₄ , EtOH, acetone, benzene, toluene and methanol ^[26] , slightly soluble in dil. alkall ^[26] , readily soluble in tetryl and methyl alcohols, Et ₂ O, ChCl ₃ , acetone benzene, nitrobenzene and toluene ^[27] , poorly soluble in CCL ₄ ^[27] , 0.52 g dissolves in 100 g H ₂ O @ 05 °C ^[27] , 0.85 g dissolves in 100 g H ₂ O @ 05 °C ^[27] , o.85 g dissolves in 100 g H ₂ O @ 05 °C ^[27] , slightly soluble in mater ^[30] , soluble in most organic solvents ^[30] , slightly soluble in CCL ₄ and gasoline ^[30] , solubility in water @ 20 °C is four times higher than that of NG ^[30] Solubility in water data from ^[30] .	Dielectric constant	$\varepsilon_{20} = 28.26^{[15, 16]}$	
easily detonated (4 mm diameter glass tube, 1Å–15 °C) ^[3] Flame sensitivity ignites with hissing on contact with flame while local overheating may result in explosion ^[27] , very sensitive ^[30] , stable combustion @ atmospheric pressure in contact with flames ^[30] Solubility [g/mL] 6.2 g/L H ₂ O @ 15 °C ^[2] , 6.8 g/L H ₂ O @ 20 °C ^[2] , 9.2 g/L H ₂ O @ 50 °C ^[2] , fairly soluble in most common organic solvents ^[15] , less soluble in CCl ₄ and petrol ^[15] , 0.68 g dissolves in 100 mL H ₂ O @ 20 °C ^[15] , 0.57 g dissolves in 100 mL H ₂ O @ 00 °C ^[15] , 0.57 g dissolves in 100 mL H ₂ O @ 00 °C ^[16] , 6.8 g dissolves in 100 mL H ₂ O @ 20 °C ^[16] , 9.2 g dissolves in 1 L H ₂ O @ 20 °C ^[16] , 9.2 g dissolves in 1 L H ₂ O @ 50 °C ^[16] , aqueous solubility = 5,600 mg/L @ 25 °C ^[27] , 200 mg/l in H ₂ O @ 25 °C ^[27] , 500 mg/l in H ₂ O @ 25 °C ^[27] , 500 mg/l in H ₂ O @ 25 °C ^[27] , 0.45% (w/v) in water @ 21 °C ^[28] , soluble in CCl ₄ , EtOH, acetone, benzene, toluene and methanol ^[26] , slightly soluble in dil. alkali ^[26] , readily soluble in tetryl and methyl alcohols, Et ₂ O, CHCl ₃ , acetom benzene, nitrobenzene and toluene ^[27] , poorty soluble in CCl ₄ ^[27] , 0.52 g dissolves in 100 g H ₂ O @ 25 °C ^[27] , 0.85 g dissolves in 100 g H ₂ O @ 60 °C ^[27] , slightly soluble in water ^[30] , soluble in most organic solvents ^[30] , slightly soluble in most organic solvents ^[30] , slightly soluble in most organic solvents ^[30] , slightly soluble in water data from ^[30] : T(°C) g EGDN/100 g H ₂ O 0 0.57 15 0.62 20 0.68	Dipole moment, μ [D]	4.00 ^{[15, 16, 30],} 3.28 (soln. in benzene) ^[30]	
local overheating may result in explosion [27], very sensitive [30], stable combustion @ atmospheric pressure in contact with flames [30] $6.2 \text{ g/L H}_2\text{ O} \text{ @ 15 °C}^{[2]}, 6.8 \text{ g/L H}_2\text{ O} \text{ @ 20 °C}^{[2]}, 9.2 \text{ g/L H}_2\text{ O} \text{ @ 50 °C}^{[2]}, fairly soluble in most common organic solvents [15], less soluble in CCl4 and petrol [15], 0.62 g dissolves in 100 mL H2O @ 15 °C [15], 0.62 g dissolves in 100 mL H2O @ 00 °C [15], 0.92 g dissolves in 100 mL H2O @ 50 °C [15], 0.92 g dissolves in 100 mL H2O @ 50 °C [15], 0.92 g dissolves in 110 mL H2O @ 00 °C [15], 0.92 g dissolves in 11 H2O @ 50 °C [16], aqueous solubility = 5,600 mg/L @ 25 °C [21], 5,200 mg/l in H2O @ 25 °C [25], 0.45% (w/v) in water @ 21 °C [26], soluble in CCl4, EtOH, acetone, benzene, toluene and methanol [126], slightly soluble in dil. alkali [26], readily soluble in tetryl and methyl alcohols, Et2O, CHCl3, acetone benzene, nitrobenzene and toluene [27], poorly soluble in CCl4 [27], 0.52 g dissolves in 100 g H2O @ 25 °C [27], 0.85 g dissolves in 100 g H2O @ 60 °C [27], slightly soluble in water [30], soluble in most organic solvents [30], slightly soluble in CCl4 and gasoline [30], solubility in water @ 20 °C is four times higher than that of NG [30] Solubility in water data from [30]: $	Burn rate [mm/s]	cannot be burned under pressure of 230 mm Hg but is easily detonated (4 mm diameter glass tube, 14–15 °C) ^[30]	
$\begin{array}{c} H_2O \ @ \ 50 \ ^{\circ}C^{[2]}, \ fairly \ soluble \ in \ most \ common \ organic \ solvents^{[15]}, \ less \ soluble \ in \ CCl_4 \ and \ petrol^{[15]}, \ 0.62 \ g \ dissolves \ in \ 100 \ mL \ H_2O \ @ \ 15 \ ^{\circ}C^{[15]}, \ 0.68 \ g \ dissolves \ in \ 100 \ mL \ H_2O \ @ \ 20 \ ^{\circ}C^{[15]}, \ 0.68 \ g \ dissolves \ in \ 100 \ mL \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 0.57 \ g \ dissolves \ in \ 100 \ mL \ H_2O \ @ \ 0 \ ^{\circ}C^{[15]}, \ 0.57 \ g \ dissolves \ in \ 100 \ mL \ H_2O \ @ \ 0 \ ^{\circ}C^{[15]}, \ 0.57 \ g \ dissolves \ in \ 1 \ L \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.2 \ g \ dissolves \ in \ 1 \ L \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.2 \ g \ dissolves \ in \ 1 \ L \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.2 \ g \ dissolves \ in \ 1 \ L \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.20 \ mg/li \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.20 \ mg/li \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.20 \ mg/li \ H_2O \ @ \ 50 \ ^{\circ}C^{[15]}, \ 9.20 \ mg/li \ H_2O \ @ \ 50 \ ^{\circ}C^{[27]}, \ 9.20 \ mg/li \ H_2O \ @ \ 50 \ mg/li \ H_2O \ @ \ \ 9.20 \ mg/li \ H_2O \ @ \ \ 9.20 \ mg$	Flame sensitivity	local overheating may result in explosion ^[27] , very sensitive ^[30] , stable combustion @ atmospheric	
0 0.57 15 0.62 20 0.68	Solubility [g/mL]	pressure in contact with flames [30] $6.2 \text{ g/L H}_2\text{O} @ 15 ^{\circ}\text{C}^{[2]}, 6.8 \text{ g/L H}_2\text{O} @ 20 ^{\circ}\text{C}^{[2]}, 9.2 \text{ g/L} \\ \text{H}_2\text{O} @ 50 ^{\circ}\text{C}^{[2]}, \text{ fairly soluble in most common organic solvents}^{[15]}, less soluble in CCl_4 and petrol^{[15]}, 0.62 \text{ g} \\ \text{dissolves in } 100 \text{mL H}_2\text{O} @ 15 ^{\circ}\text{C}^{[15]}, 0.68 \text{ g} \text{dissolves} \\ \text{in } 100 \text{mL H}_2\text{O} @ 20 ^{\circ}\text{C}^{[15]}, 0.92 \text{g} \text{dissolves in } 100 \text{mL} \\ \text{H}_2\text{O} @ 50 ^{\circ}\text{C}^{[15]}, 0.57 \text{g} \text{dissolves in } 100 \text{mL H}_2\text{O} @ 0 ^{\circ}\text{C}^{[15]} \\ \text{6.2 g} \text{dissolves in } 1 \text{L} \text{@ } 15 ^{\circ}\text{C}^{[16]}, 6.8 \text{g} \text{dissolves in } 1 \text{L} \\ \text{H}_2\text{O} @ 20 ^{\circ}\text{C}^{[16]}, 9.2 \text{g} \text{dissolves in } 1 \text{L H}_2\text{O} \text{@ } 50 ^{\circ}\text{C}^{[16]}, \\ \text{aqueous solubility} = 5,600 \text{mg/L} \text{@ } 25 ^{\circ}\text{C}^{[21]}, 5,200 \text{mg/L} \\ \text{in H}_2\text{O} \text{@ } 25 ^{\circ}\text{C}^{[25]}, 0.45\% (\text{w/v}) \text{in water} \text{@ } 21 ^{\circ}\text{C}^{[26]}, \\ \text{soluble in CCl}_4, \text{EtOH}, \text{acetone, benzene, toluene and methanol}^{[26]}, \text{slightly soluble in dil. alkali}^{[26]}, \text{readily soluble in tetryl and methyl alcohols, Et}_2\text{O}, \text{CHCl}_3, \text{acetone, benzene, nitrobenzene and toluene}^{[27]}, \text{poorly soluble} \\ \text{in CCl}_4^{[27]}, 0.52 \text{g} \text{dissolves in } 100 \text{g} \text{H}_2\text{O} \text{@ } 25 ^{\circ}\text{C}^{[27]}, \\ 0.85 \text{g} \text{dissolves in } 100 \text{g} \text{H}_2\text{O} \text{@ } 60 ^{\circ}\text{C}^{[27]}, \text{ slightly} \\ \text{soluble in water}^{[30]}, \text{ soluble in most organic solvents}^{[30]}, \\ \text{slightly soluble in CCl}_4 \text{and gasoline}^{[30]}, \text{ solubility in} \\ \text{water} \text{@ } 20 ^{\circ}\text{C} \text{ is four times higher than that of NG}^{[30]}$	
15 0.62 20 0.68		7(°C) g EGDN/100 g H ₂ O	
20 0.68		0 0.57	
		15 0.62	
		20 0.68	
50 0.92		50 0.92	
60 0.85		60 0.85	

	Solubility dissolved		l in nit	ric acid, w	eight of E	GDN
	T(°C) Concentration of nitric acid (%)		d (%)			
		0	4.9	3 9.99	19.6	7 29.58
	0	0.57	0.7	7 1.02	1.52	2.03
	20	0.631	0.8	1 1.10	1.61	2.24
	Solubility	/ in aq. s	odium	carbonate	e soln. @	20 °C ^[30] :
	Na ₂ CO ₃	content	(%)	Solubilit	ty (%)	
	1.39			0.48		
	12.5			1.14		
Hygroscopicity	Nonhygro hygrosco		^{6, 30]} , 0	.0% @ 30	°C, 90%	RH ^[2] , low
Compatibility	Readily gelatinized by collodion @ RT ^[27] , readily hydrolyzed when heated with aq. NaOH or KOH soln. ^[30] , vigorous reaction in contact with EtOH soln. of KOH ^[30] , hydrolyzed in hot water ^[30] , can dec. on contact with acid for prolonged periods of time ^[30]					
Diffusion coefficient [cm²/s]	0.084 (air) ^[21] , 8.72 × 10 ⁻⁶ (water) ^[21]					
Log K _{ow}	1.16 ^[21, 25]					
Log K _{oc}	1.28 ^[21]					
Refractive index	$n^{D}_{25} = 1.4$	452 ^[2]				
	T(°C)	0		15	25	35
	Refracti index	ve 1.	4546	1.4491	1.4454	1.4417
ΔH _{melting} [J/g]	125.52 (latent heat of melting) ^[30]					
Closed bomb test	Gas vol. produced on explosion of 1 kg = 736.93 L (@ 0 °C and 760 mm Hg) ^[9] , gas vol. produced on explosion of 1 kg calcd. to temperature of explosion 4,209 °C = 12,099 L ^[9] , pressure developed on explosion of 1 kg in 1 L = 12,498 kg/cm ^{2[9]}					

- [1] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [2] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [3] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [4] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [5] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [6] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [7] H. Fettaka, M. Lefebvre, *Investigation of Commercial Precursors for the Synthesis of Liquid Nitroesters*, NTREM 17, 9th–11th April **2014**, pp. 195–208.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [10] J. D. Brandner, J. Soc. Chem. Ind., 1938, 30, 681–684.
- [11] A. Marshall, J. Soc. Chem. Ind., 1930, 49, 34 T.
- [12] W. D. Crater, J. Soc. Chem. Ind., 1929, 24, 674.
- [13] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [14] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [15] T. Urbański, Ch. 5 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [16] T. Urbański, Ch. 1 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [17] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 223–226.
- [18] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [19] U. Schaller, V. Weiser, T. Keicher, H. Krause, Investigation of the Nitrate-Based EIL 4-Amino-1methyl-1,2,4-triazolium Nitrate As Plasticizer, ICT 2014, Karlsruhe, Germany, pp. 100-1–100-9.
- [20] V. M. Raikova, G. D. Kozak, E. A. Likholatov, *The Failure Diameter of Detonation of Nitroesters Solutions*, ICT **2003**, Karlsruhe, Germany, pp. 117-1–117-10.
- [21] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [22] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203-232.
- [23] J. C. Oxley, J. L. Smith, J. E. Brady, A. C. Brown, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 24–39.
- [24] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [25] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [26] Ethylene Glycol Dinitrate (Nitroglycol, Dinitroglycol, EGDN, EGN, Ethylene Nitrate) C₂H₄(ONO₂)₂, American Industrial Hygiene Association Journal, 1966, 27, 574–577.
- [27] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.

- [28] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [29] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [30] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [31] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Ethyl nitrate

Name [German, acronym]: Ethyl nitrate, ethanol nitrate

Main (potential) use: Improvised explosive, rocket propellants, has

been used as an ingredient of liquid rocket fuels^[9], component of liquid rocket fuel^[20], in combination with other oxidants act as mixed explosives for engineering

blasting^[20]

	Ethyl nitrate
Formula	$C_2H_5NO_3$
Molecular mass [g mol ⁻¹]	91.07
Appearance at RT	Liquid $^{[9]}$, colorless liquid $^{[10]}$, transparent oily liquid with slightly aromatic odor $^{[20]}$
IS [J]	$2 \text{ kg} \ @ 500 \text{ mm}^{[4]}, \text{H}_{50\%} = 50 \text{ cm} (2 \text{ kg mass})^{[9]}, 1-2 \text{ kg cm (ERL apparatus)}^{[11]}, 44 \text{ cm (median height, Rotter apparatus)}^{[18]}, 50\% \text{ explosion caused by dropping 2 kg mass from 50 cm}^{[20]}$
FS [N]	>360
N [%]	15.38
Ω(CO ₂) [%]	-61.49
T _{m.p.} [°C]	-95 ^[3] , -102 ^[5]
T _{b.p.} [°C]	87 ^[9, 10, 20] , 86 (@ 760 mm Hg) ^[11] , 87.5 ^[12] , 88 ^[20]
T _{dec.} [°C]	175 (exo, DSC @ 10 °C/min, sealed pan)[11]
ρ [g cm ⁻³]	1.11 (@ 293 K), 1.12 ^[4, 20] , 1.10 ^[5, 11] , sp. gr. = 1.044 (@ 25 °C) ^[6] , sp. gr. = 1.116 (@ 15 °C) ^[6] , sp. gr. = 1.12 ^[9] , sp. gr. = 1.1159 (15°/15°, @ 15°) ^[10] , sp. gr. = 1.1044 (25°/25°, @ 25°) ^[10] , sp. gr. = 1.105 @ 20 °C ^[12]
Heat of formation	$\begin{array}{l} -190.4 \pm 1.2 \ \text{kJ/mol} \ (\Delta_{\text{f}} H^{\circ}, \text{liq.})^{[8]}, -122 \pm 1.3 \ \text{kJ/mol} \ (\Delta_{\text{f}} H^{\circ}, \text{gas})^{[8]}, \\ -37 \ \text{kcal/mol} \ (\Delta_{\text{f}} H^{\circ} \text{gas})^{[1]}, -2,091 \ \text{kJ/kg} \ (\text{enthalpy of form.})^{[5]}, \\ 48.5 \ \text{kcal/mol}^{[6]}, 33.7 \ \text{kcal/mol}^{[6]}, -47 \ \text{kcal/mol} \ (\Delta_{\text{f}} H)^{[11]}, -37.0 \ \text{kcal/mol} \ (\Delta_{\text{f}} H, \text{calcd. based on thermochemical data})^{[9]}, -45.7 \ \text{kcal/mol} \ (\text{@ 25 °C, calcd.,}) \\ \text{based on thermochemical data})^{[10, 15]}, 45.32 \ \text{kcal/mol} \ (\text{calcd.})^{[15]} \end{array}$
Heat of combustion	ΔH_c (est.) = -324.04 kcal/mol ^[9] , Q_c = 313.59 kcal/mol (calcd.) ^[15] , Q_c = 313.2 kcal/mol (obs.) ^[15] , combustion heat = 1,347.25 kJ/mol ^[20] , - $\Delta H_{combustion}$ = 1,355.78 kJ/mol ^[20]

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	[kJ kg ⁻¹] 4,712 816.3 kcal/kg (@ C ^V , $\Delta_t H = 48.5$ kcal/mol)		4,154 [H ₂ O (I)] ^[5]
			3,431-3,473 [H ₂ O (g)] ^[3]
		712.6 kcal/kg (@ C^{V} , $\Delta_{f}H = 48.5$ kcal/mol) $[H_{2}O (g)]^{[6]}$	3,568.95 [H ₂ O (l)] ^[20]
		5.17 MJ/kg (calcd., SD method) ^[17]	
<i>T</i> _{ex} [K]	3,130	3,128 (calcd., SD method) ^[17]	
p _{C-J} [kbar]	123	132 (calcd., TIGER) ^[11]	
		114 (calcd., K-J) ^[11]	
VoD [m s ⁻¹]	6,321 (@ TMD)		6,000–7,000 (wide tubes, indirectly measured in EtONO ₂ / Kieselguhr mixtures) ^[4]
			5,800 (@ 1.1 g cm ⁻³ , confined) ^[5]
			5,800 (steel tube, 27 mm diameter) ^[4]
			6,020 (steel tube, 60 mm diameter) ^[4]
			6,000–7,000 (in wider diameter tubes) ^[9]
			5,800 (thick-walled metal tube, 27 mm inner diameter, detonated by ~40 g PETN) ^[9]
			6,020 (thick-walled metal tube, 60 mm inner diameter, detonated by ~40 g PETN) ^[9]
			6,010 (@ 1.11 g cm ⁻³ , D_i ; D_i = ideal detonation velocity, steel tube) ^[17]

		No detonation observed in steel tube of 10 mm ^[4]
		6000–7000 in wide tubes (no ρ specified) ^[20]
		5,800 in steel tube with 27 mm diameter (no $ ho$ specified) $^{[20]}$
		6,020 in steel tube with 60 mm (no ρ specified) ^[20]
		Detonation did not occur in steel tube with 10 mm diameter ^[20]
V ₀ [L kg ⁻¹]	976	1,101 ^[2, 5]

Trauzl test [cm³, % TNT]	345 cc (10 g sample, initiated by No. 8 blasting cap, underwater tamping) $^{[6]}$, 345 cm 3 (H $_2$ O tamping) $^{[9,20]}$, ~20% greater than that of PA $^{[9,20]}$, 420 $^{[19]}$
Sand test [g]	58% NG ^[10]
Ballistic mortar test	123% TNT ^[5, 6]
Initiation efficiency	Can be detonated in thick-walled metal tubes by ~40 g PETN ^[9] , attempts to detonate in glass tubes (10 mm diameter) unsuccessful ^[9] , not detonated by No. 8 blasting cap unless ethyl nitrate tamped or confined ^[10]
Gap test	Scale I (detonator = standard commercial No. 8 Briska type, donor = 2×20 g pellets of tetryl pressed to $\rho = 1.5$ g mL, each 10 g in weight, gap = stack of cards, 3 in square and 0.050 in thick, charge case = 6 in length of mild steel electrical conduit of 27 mm inner diameter and 31 mm outer diameter, faced end is sealed with Durofix cement) critical card value = $2^{[14]}$ Scale III (donor = 2×20 g pellets of tetryl pressed to $\rho = 1.5$ g ml, each 1.5 in in diameter, Gap = 4 in square cards, charge case = 3 in length of $1\frac{1}{2}$ in steam pipe faced at both ends, hooks, test plate = 3 in square of 16 gage mild steel placed on top of the filled charge case) critical card value = $43^{[14]}$

	Probable critica	ıl card values [[]	14]:		
	Card value	Probability	Ca	rd value	Probability
	41	0.021	44		0.316
	42	0.135>44	0.0)71	
	43	0.458			
5 s explosion T[°C]	Explosive dec. o	on superheati	ng ^[12]		
Vapor pressure [atm. @ °C]	Exptl. determin	ed values ^[9] :			
	Vapor pressur	ro (mm Ha)	T (°C)		
	16.3	е (шш пу)	0	\dashv	
	49.9		20	\dashv	
	81.8		30	\dashv	
	129		40		
	197		50	\dashv	
	292		60	\dashv	
	292		60		
	3.40 atm. @ 12	.80 atm. @ 10 8.3 °C ^[16] , 5.1	03.8 °C 0 atm.	^[16] , 2.24 at @ 144.0 °	tm. @ 112.5 °C ^[16] ,
Enthalpy of vaporization [kJ mol ⁻¹]	36.3 \pm 0.4 $(\Delta_{v,s}H^o)^{[8]}$, latent heat of evaporation (ΔH_v) @ 25 °C = 8.7 kcal/mol (calcd. based on thermochemical data) ^[9]				
Solubility [g/mL]	Scarcely miscible with $H_2O^{[9]}$ readily dissolved by common organic solvents ^[9] , soluble in water, EtOH and $Et_2O^{[12]}$, slightly soluble in water ^[20] , miscible with alcohols and most organic solvents ^[20]				
Wedge test	>100% PETN energy in donor required to initiate EN in a long, thin wedge @ 1/8 in thickness in receptor end ^[11]				
Flame T[K]	1,470 ((g) @ 0.1 MPa) ^[13]				

- [1] M. Jaidann, D. Nandlall, A. Bouamoul, H. Abou-Rachid, *Defence Research Reports*, DRDC-RDDC-2014-N35, 12th March **2015**.
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 22, 2015, 701–706.
- [3] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [4] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 128.

- [6] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [8] L. M. Kostikova, E. A. Miroshnichenko, J. O. Inozemtcev, Y. N. Matyushin, Efficient Energies of Interaction of Functional Groups and Energies of Dissociation Bonds in Alkylnitrates, 32nd ICT, 3rd-6th July 2001, pp. 104-1-104-9.
- [9] T. Urbański, Ch. 6 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [10] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 194–195.
- [11] M. E. Hill, J. M. Guimont, Desensitization of Explosive Materials, ADA082893, Office of Naval Research, Maryland, USA, April 9th 1980.
- [12] A. V. Topchiev, *Nitration of Hydrocarbons and Other Organic Compounds and Other Organic Compounds*, Pergamon Press, **1959**.
- [13] N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion, Wiley, 2002.
- [14] R. Pape, E. G. Whitbread, Sensitiveness of Solid and Liquid Explosives, Part 3: The Application of the Gap Test to Liquid Explosives, Technical Memorandum No. 21/M/52, Ministry of Supply Explosives Research and Development Establishment, Essex, U.K., March 1953.
- [15] K. J. Laidler, Can. J. Chem., 1956, 34, 626-648.
- [16] A. G. Whittaker, Rev. Scientific Instr., 1957, 28, 360-364.
- [17] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581–586.
- [18] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [19] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [20] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

N-Ethyl-N-(2-nitroxyethyl)nitramine

Name [German, acronym]: N-Ethyl-N-(2-nitroxyethyl)nitramine, 1-(N-ethyl)-

nitramino-2-ethanol nitrate, *N*-(β-nitroethyl)-ethylnitramine, *N*-(2-nitratoethyl)-ethylnitramine, 2-[ethyl(nitro)amino]ethyl nitrate, ethyl-2-nitratoethyl

nitramine [EtNENA]

Main (potential) use: Plasticizer for propellant applications $^{[1,8]}$

	EtNENA			
Formula	$C_4H_9N_3O_5$			
Molecular mass [g mol ⁻¹]	179.13			
Appearance at RT	Liquid ^[6, 7, 8] , pale yellow oil			
N [%]	23.46			
Ω(CO ₂) [%]	-67.0			
T _{m.p.} [°C]	4-5.5 ^[2, 3] , 5 ^[1, 7] , 1-5 ^[4, 5] , 1 ^[6]	, 2–4 (freezing point) ^[8]		
T _{dec.} [°C]	210 (exo, DSC) ^[4, 5]			
$ ho$ [g cm $^{-3}$]	1.32 (@ 298.15 K) ^[2] , sp. gr.	1.32 (@ 298.15 K) ^[2] , sp. gr. = 1.32 (@ 25/4°) ^[2, 3] , 1.32 ^[4, 5, 6]		
Heat of formation	-177.9 kJ/mol (enthalpy of form.) ^[1] , -993.14 kJ/kg (enthalpy of form.) ^[1] , 784 kJ/mol ($\Delta_f H$) ^[4, 5] , -39.204 cal/mol ($\Delta_f H$) ^[6]			
	Calcd. (EXPLO5_V6.05.02)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg $^{-1}$]	4,882	784 cal/g (@ 0.20 g/cc, calcd., Blake code) ^[6] 784 cal/g (calcd.) ^[7]		
<i>T</i> _{ex} [K]	3,106	2,461 (@ 0.20 g/cc, calcd., Blake code) ^[6]		

p _{C-J} [GPa]	15.8	
VoD [m s ⁻¹]	6,858 (@ TMD)	
V_0 [L kg ⁻¹]	889	

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 128-129.
- [2] A. T. Blomquist, F. T. Fiedorek, Nitramines, US Patent 2,485,855, 25th October 1949.
- [3] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [4] E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, in Energetic Materials From Cradle to Grave, M. K. Shukta, V. M. Bodelu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 23–65.
- [5] A. Provatos, Energetic Polymers and Plasticisers for Explosive Formulations A Review of Recent Advances, DSTO-TR-0966, DSTO, Melbourne, Australia, 2000.
- [6] R. L. Simmons, Energetic Liquid Azido Nitramines, ICT 1999, Karlsruhe, Germany, 3-1-3-13.
- [7] E. H. Zeigler, Stable Plasticizers for Nitrocellulose/Nitroguanidine-Type Compositions, European Patent EP 0 490 258 A1, 4th December 1991.
- [8] J. V. Urenovitsch, Low Vulnerability Propellant Plasticizers, US Patent 5482581, 9th January 1996.

Ethyl picrate

Name [German, acronym]: 2-Ethoxy-1,3,5-trinitrobenzene, ethyl picrate, 2,4,6-

trinitrophenetole, trinitrophenylethyl ether, picryl ethyl ether [ethylpikrat, pikrinsäureäthyläther, 2,4,6-TNPhⁱt]

Main (potential) use: Component of explosive mixtures

$$O_2N$$
 O_2N
 O_2N

	Ethyl picrate		
Formula	$C_8H_7N_3O_7$		
Molecular mass [g mol ⁻¹]	257.16		
Appearance at RT	Yellow crystals ^[10] , ligh	t yellow solid ^[11] , cry	stalline substance ^[12]
N [%]	16.34		
Ω(CO ₂) [%]	-77.8 ^[8]		
T _{m.p.} [°C]	78 ^[1]		
ρ [g cm ⁻³]	1.554 ± 0.06 (@ 293.1	5 K) ^[2] , 1.52 ^[3]	
Heat of formation	-200.8 kJ/mol (enthalpy of form., exptl.) ^[12] , -222.2 kJ/mol (enthalpy of form., calcd., emp.) ^[12] , -196.7 kJ/mol (enthalpy of form., calcd., S-D method) ^[12] , -781 kJ/kg (enthalpy of form.) ^[3]		
Heat of combustion	936 kcal/mol $(Q_c^{V})^{[8]}$		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,420 (calcd., K-J) ^[4]		3,515 [H ₂ O (l)] ^[3, 6]
			3,369 [H ₂ O (g)] ^[3]
<i>T</i> _{ex} [K]			
p _{C-J} [GPa]	16.9		

VoD [m s ⁻¹]	6,844 (@ TMD)	6,310 (@ 1.60 g cm ⁻³ (TMD), calcd. R-P method) ^[9] 6,500 (@ 1.55 g cm ⁻³) ^[11]	6,500 (@ 1.55 g cm ⁻³ , confined) ^[3] 6,800 (@ 1.60 g cm ⁻³) ^[5] ~6,880 ^[8]
V_0 [L kg ⁻¹]	668		859 ^[3, 7]

Trauzl test [cm³, % TNT]	Almost as powerful as TNT, slightly less powerful than PA ^[8]
--------------------------	--

- [1] R. C. Farmer, J. Chem. Soc., 1959, 3430-3433.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 129–130.
- [4] M. H. Keshavarz, *Thermochimica Acta*, **2005**, *428*, 95–99.
- [5] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [7] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [9] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [10] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [11] P. W. Cooper, Explosives Engineering, Wiley, 1996.
- [12] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Ethyltetryl

Name [German, acronym]: N-Ethyl-N,2,4,6-tetranitroaniline, ethyltetryl, (2,4,

6- trinitrophenylethylnitramine) ethane, *N*-ethyl-*N*-nitro-2,4,6-trinitroaniline, ethylpicrylnitroamine, 2,4,6-trinitrophenylethylnitramine, [*N*-nitro-*N*-äthyl-

2,4,6-trinitroanilin]

Main (potential) use: Component of energetic pourable mixtures^[1]

$$O_2N$$
 NO_2
 NO_2
 NO_2

	Ethyltetryl
Formula	C ₈ H ₇ N ₅ O ₈
Molecular mass [g mol ⁻¹]	301.17
Appearance at RT	Green-yellow crystals ^[1] , crystalline solid ^[11]
IS [J]	5 Nm ^[1] , FI = 92% PA ^[6] , 48% detonations with 2 kg mass falling 2.5 m ^[6]
FS [N]	>353 ^[1]
N [%]	23.25
Ω(CO ₂) [%]	-61.1
T _{m.p.} [°C]	95.8 $^{[1,2]}$, 95–96 $^{[6,10]}$, 96 $^{[9,11]}$, 94 (recryst. twice from nitric acid and once from EtOH) $^{[9]}$
T _{dec.} [°C]	
ρ [g cm ⁻³]	$1.63^{[1]}$, 1.713 ± 0.06 (@ 293.15 K) ^[3] , sp. gr. = 1.644 (@ 10°) ^[6]
Heat of formation	$0 \pm 1.0 \text{ kcal/mol } (\Delta H_1^{298})^{[2]}, -7.70 \text{ kcal/mol } (\Delta_1 H_2)^{[2]}, -59.8 \text{ kJ/kg}$ (enthalpy of form.) ^[13] , 18.0 kJ/mol (enthalpy of form., exptl.) ^[13] , -34.0 kJ/mol (enthalpy of form., calcd., emp.) ^[13] , -55.1 kJ/mol (enthalpy of form., calcd., S-D method) ^[13]
Heat of combustion	994 ± 1.0 kcal/mol (ΔQ_c , isochore) ^[2] , 990.41 kcal/mol (ΔQ_c) ^[2]

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [k] kg ⁻¹]	4,132 (calcd., K-J) ^[4]		4,058 [H ₂ O (l)] ^[1] 3,930 [H ₂ O (g)] ^[1]
T _{ex} [K]			
p _{C-J} [GPa]	22.9		
VoD [m s ⁻¹]	7,482 (@ TMD)		6,200 (@ sp. gr. = 1.10) ^[6]
V ₀ [L kg ⁻¹]	674		874 ^[1, 5]

Trauzl test [cm³, % TNT]	325 cm ³ (10 g sample) ^[1] , 114% TNT ^[7] , 325 cm ^{3[12]}
Ballistic mortar test	111% TNT ^[7]
Fugacity	104% PA ^[11]
ΔH_{melt} [kcal/mol]	5.62 ± 0.11 ^[2]
$C_{\rm p}^{298}$ [cal mol ⁻¹ K ⁻¹]	79.4 ^[2] , 113.0 ± 1.4 (C _p liq.) ^[2]

	Ethyltetryl ^[8]		
Chemical formula	C ₈ H ₇ N ₅ O ₈		
Molecular weight [g mol ⁻¹]	301.19		
Crystal system	Monoclinic		
Space group	P2 ₁ /c (no. 14)		
a [Å]	15.020(10)		
<i>b</i> [Å]	7.5040(10)		
c [Å]	10.6610(10)		
α [°]	90		
β [°]	93.160(10)		
γ [°]	90		
<i>V</i> [Å ³]	1,202.3(2)		
Z	4		
$ ho_{\rm calc}$ [g cm ⁻³]	1.664		
T[K]	293		

- R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 130–131.
- [2] G. Krien, H. H. Licht, J. Zierath, *Thermochimica Acta*, **1973**, *6*, 465–472.
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [4] M. H. Keshavarz, M. Ghorbanifaraz, H. Rahimi, M. Rahmani, *Propellants, Explosives, Pyrotechnics*, **2011**, *36*, 424–429.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [8] Z. G. Aliev, A. V. Shastin, S. M. Aldoshin, Zh. Strukt. Khim., 2015, 56, 1203; Russ. J. Struct. Chem. (Engl. Transl.), 2015, 56.
- [9] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York, p. 183.
- [10] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [11] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [12] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [13] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.

FOX-7

Name [German, acronym]: 1,1-Diamino-2,2-dinitroethene, 2,2-dinitroethene-1,1-

diamine [FOX-7, DADNE]

Main (potential) use: Secondary (high) explosive, thermally stable

explosive^[36], in explosive compositions which need to have low sensitivity to external stimuli^[41], possible new explosive ingredient in insensitive munition (IM)

compliant explosive compositions^[49]

	FOX-7
Formula	$C_2H_4N_4O_4$
Molecular mass [g mol ⁻¹]	148.08
Appearance at room temperature (RT)	Yellow solid ^[24]
IS [J]	25 (<100 μm), 15–40 Nm ^[1] , 25 ^[2] , 120 cm with 2.5 kg hammer ^[6] , >25 Nm ^[9] , Rotter FoI = 110–140 (powder) ^[13] , 63–79 cm (powder, US drop hammer) ^[13] , 11.5 (DADNE _{coarse-grain} , H = 23 cm, 5 kg hammer, highest drop height at which no reaction observed) ^[16] , 14 (DADNE _{coarse-grain} /DADNE _{fine-grain} , 70/30, H = 28 cm, 5 kg hammer, highest drop height at which no reaction observed) ^[16] , 26.5 (DADNE _{vit} (DADNE phlegmatized by Viton), H = 53 cm, 5 kg hammer, highest drop height at which no reaction observed) ^[16] , H ₅₀ = 72 cm ^[17] , 24.7 Nm ((H ₅₀ Wg) ⁻¹) ^[18] , H ₅₀ = 126 cm (30.9)) ^[19] , 126 cm (2 kg mass, BAM) ^[23, 24] , 20 Nm (ball milled) ^[25] , 20 Nm (Fox-7 processed by PCA) ^[25] , 79 cm (highest drop height without reaction, recryst. Fox-7, <70 μm) ^[26] , 63 cm (highest drop height without reaction, recryst. Fox-7, <70 μm) ^[26] , Rotter impact F of I = 100 ^[27] , Rotter impact Fol = 110 (Fox-7/PE-wax (98.75/1.25)) ^[27] , 15 Nm (large particle) ^[29] , 35 Nm (small particle) ^[29] , 15–30 (BAM) ^[30] , 28% probability of explosion @ 25 cm (10 kg mass, 50 mg powder, WL-1 apparatus) ^[31] , H ₀ = 23 cm (11.3 J, highest drop height at which no reaction was observed, 5 kg hammer) ^[32] , H ₅₀ = 35.2 cm (17.3 J, 5 kg hammer) ^[32] , 15.5 (crystals 250–355 μm, 2 kg hammer) ^[32] , 12.4

(crystals <70 μ m, 2 kg hammer)^[32], 24.7 (50% probability, 2 kg drop weight, crystalline Fox-7)^[32], 31.2 (50% probability, 2 kg drop weight, recrystallized Fox-7)^[32], $Ed_{min} = 20$ (BAM, 5 kg mass, RT)^[33], 15 Nm^[34], 126 cm (2 kg mass, BAM)^[35], 6% (10 kg, 25 cm)^[42], $H_{50\%} = 89.1$ cm (5 kg mass)^[42], Fol = 100 (Bofors nonrecryst., Rotter impact)^[42], Fol = 100 (Bofors, recryst., Rotter impact)^[42], 110–140 (DSTO, nonrecryst., Rotter impact)^[42], 79 cm (highest drop height at which no reaction occurs, 2 kg mass, recryst. Fox-7, 250–355 μ m)^[42], 63 cm (highest drop height at which no reaction occurs, 2 kg mass, recryst. Fox-7, <70 μ m)^[42], $H_{41} = 16\%$, $H_{42} = 72\%$, LL = 1.2 m, $H_{50} = 1.8$ m, $H_{50} = 1.8$

IS (5 kg mass, BAM, H = highest drop height at which no reaction was observed, $E_i =$ impact energy at this drop height)^[41]:

	Fox-7 _c	Fox-7 _f	Fox-7
	100% coarse Fox-7, particle size = 250-500 μm	100% fine Fox-7, particle size = 5–11 μm	30% Fox- _f , 70% Fox- _c , mixture of fine and coarse Fox-7
H (cm)	23	39	28
<i>E</i> _i (J)	11.5	19.5	14

Solvents used affect the IS of Fox-7^[42]:

Property	NMP/H ₂ O	NMP/H ₂ O + antisolvent
Mean particle size (μm)	213	273
Span (90/10)	1.445	0.506
IS (Nm)	25	35

4% (recryst. from DMSO/ H_2O)^[48], 4% (recryst. from DMF/ H_2O)^[48], 8% (recryst. from cyclohexanone)^[48], 110–140 (Rotter FoI, uncrystallized, average gas evolution = 5.7 mL cf. Rotter FoI = 80 for RDX with 11.9 mL average gas evolution)^[49], 126–159 cm (recryst., 2 kg mass, BAM)^[49]

FS [N]

>360 (<100 µm), 216^[1], >350^[2], >360^[9], $P_{\rm fr,LL}$ = 330 MPa^[12, 47], $P_{\rm fr,50\%}$ = 450 MPa^[12, 47], >350 (Julius–Petri)^[23, 24], 144 (ball milled)^[25], 288 (Fox-7 processed by PCA)^[25], 240 (BAM)^[27], 216 (Fox-7/PE-wax (98.75/1.25))^[27], 216 (large particle)^[29], 192 (small particle)^[29], 160–240 (BAM)^[30], 40% probability of explosion (WM-1 apparatus)^[31], >353 (Julius-Peters)^[32], $G_{\rm min}$ = 360 (BAM Julius-Peters, max. level with six consec. negative runs)^[32], 252^[34], 350^[35], >353 (Fox-7_c, coarse particles, 250–500 µm)^[41], >353 (Fox-7_f, fine particles, 5–11 µm)^[41], >353 (Fox-7, 30% fine particles, 70% coarse particles)^[41], 10% (3.92 MPa, 90°)^[42], 240 (Bofors, necryst., BAM)^[42], 166–288 (DSTO, nonrecryst., BAM)^[42], 4% (recryst. from DMSO/H₂O)^[48], 4% (recryst. from DMF/H₂O)^[48], 48% (recryst. from cyclohexanone)^[48], 168–288 (unrecrystallized, Julius-Peters BAM)^[49], >350 (purified, Julius-Petri apparatus)^[49]

	Solvents used affect the FS of Fox-7 ^[42] :					
	Property	NMP/H ₂ O	NMP/H ₂ O	+ antisolvent		
	Mean particle size (µm)	m) 213 273				
	Span (90/10)	1.445	0.506			
	FS (N)	240	192			
ESD [J]	1.0 (<100 µm), ~4.5 ^[2] , 4.5 ^[27] , $V_{50} = 13.13$ kV (JGY apparatus) ^[31] , $E_{50} = 2.642$ (JGY apparatus) ^[31] , energy in capacitors = 625 mJ, spark duration = short ^[39] , ignition @ 4.5, no ignition @ 0.45 (Bofors nonrecryst.) ^[42] , ignition @ 4.5, no ignition @ 0.45 (Bofors, recryst.) ^[42] , ignition @ 4.5, no ignition @ 0.45 (DSTO, non-recryst.) ^[42] , ignition @ 4.5 but not @ 0.45 ^[49]					
N [%]	37.84					
Ω(CO ₂) [%]	-21.61					
T _{m.p.} [°C]	Deflagration above 240 °C ^{[1}	[]] , 205 ^[43] , no	mpt. observed i	n DSC @ 5 °C/m	in ^[49]	
T _{phase transition}	DTA (@ 2 °C/min), endotherm peaks ^[10] :					
	Fox-7 sample recryst. From	n	T (°C) (onset)	T (°C) (onset)		
	H₂O, mix of crystals		113	178		
	Acetone, mix of crystals		115	158		
	Acetone, tetrahedral prisn	ns	112	160		
	H ₂ O-acetone mix, tetrahe	dral prisms	115	158		
	H ₂ O-acetone mix, trimetri	ic crystals	114	155		
	Particle size versus $T_{\rm dec.}^{[24]}$: 116 (endo), 158 (endo) (DSC, single crystal, 1.5 mg sample) ^[24, 37] , 119 (endo, peak max.) (DSC, very fine powder, 1.5 mg sample) ^[24] , phase change <100 °C suggested based on X-ray powder diffraction ^[37] Data from ^[24] :					
	α -Fox-7 $\frac{\sim 80 ^{\circ}\text{C}}{(i)}$ β-Fox-7 $\frac{115 ^{\circ}\text{C}}{(ii)}$ γ-Fox-7 $\frac{156 ^{\circ}\text{C}}{}$ δ-Fox-7 $\frac{225 ^{\circ}\text{C}}{}$					
	(i) Particle size strongly aff that is, fine particles @ requires 3 h and the tim phase transition ^[24]	~78 °C, large	er particle @ ~95	oC, phase trans	ition	

(ii) Phase transition is not influenced by particle size. But particle size influences time required for the phase transition, that is, fine particles require 10 h, larger particles require 14 h, very slow kinetically for reverse and takes up to 4 weeks for y-Fox-7 to revert back to α -Fox- $7^{[24]}$

 $\alpha\text{-phase}$ occurs @ ambient $\textit{T}^{[36]}$, reversible $\alpha\text{-}\to\beta\text{-phase}$ transition @ ~113 °C $^{[36]}$, phase transition @ ~160 or ~170 $^{[36]}$

Fox-7 crystallizes in α -phase (stable up to 112 °C) from H₂O, acetone or DMF^[36], crystals contain 0.1–1% solvent which is released @ phase transition^[36] samples recryst. from H₂O, acetone or DMF undergo β - \rightarrow γ - @ 150–170 °C; or @ 175–185 °C for very fine crystalline sample obtained by pouring hot DMF soln. into H₂O and which contains no solvent inclusion^[36]

~105–115 (endo), ~175–185 °C (endo)^[38], one polymorphous modification of Fox-7 is stable at T > 215 °C but the transition occurs parallel with some dec. (DADNE-T)^[38], first endo peak @ 105–115 °C regardless of solvent used for recryst.^[38], onset of second endo peak depends on solvent used for recryst.

Assumed polymorphous transitions in Fox-7^[38]:

$$\alpha \xrightarrow{105-115 \text{ °C}} \beta \xrightarrow{175-185 \text{ °C}} \gamma \xrightarrow{210-215 \text{ °C}} +\Delta E \atop \text{dec.}$$
* = Crystallized Fox-7

Phase transitions as reported by *Bemm* and *Eriksson* cited in [37]:

Phase	Formation T (°C)	Comments
α-		Monoclinic, $P2_1/n$, $\rho = 1.91 \text{ g cm}^{-3}$
β-	~ 85	Orthorhombic, 4.3% vol. increase from α -, α - \rightarrow β - Second order monoclinic \rightarrow Orthorhombic transition, occurs over 75–95 °C T interval but is not visible by DSC
γ-	~ 115	formed directly from α- @ high heating rates
δ-	~ 155	

Uncertainty over whether broad feature in DSC ~ 150 °C is baseline or δ - \rightarrow γ - transition^[37], reversion @ 75 °C on cooling rate of 3 °C/min (or @ 50 °C with cooling rate of 30 °C/min) is direct transformation from δ - \rightarrow α - phase^[37], ~114 °C (β - \rightarrow γ -) and ~159 °C (β - \rightarrow γ -) both detected @ ambient pressure and @ 8.85 MPa (modified heat flow calorimeter (HFC)) Fig. 8^[37]

Fig. 8: Cyclic heating and cooling of FOX-7 at 30 °C/min (left) and 3 °C/min (right)[37].

Summary of phase transition data @ various heating rates (DSC)[37]:

Heating rate (°C/min)	$\beta\text{-}\to\gamma\text{-}$		$\gamma\text{-}\to\delta\text{-}$	
	T _p (°C)	Δ <i>H</i> (J/g)	<i>T</i> _p (°C)	Δ <i>H</i> (J/g)
0.1	114.5	25.3	158.5	15.0
0.35	114.9	21.3	158.9	14.6
1.0	115.8	18.7	160.4	16.8
3.0	118.1	21.9	164.7	21.0
10	119.7	21.5	163.8	18.7
30	122.3	20.7	165.3	20.0

387 K (onset), 388 K (peak max.) $\alpha \rightarrow \beta$ - (DSC)^[42], ~430 K (onset), ~435 K (peak max.) $\beta \rightarrow \gamma$ - (DSC)^[42], γ - stable up to 504 K^[42], 390 K $\alpha \rightarrow \beta$ -^[42], 440 K $\beta \rightarrow \gamma$ -^[42]

Phase transitions not altered by solvent crystals are obtained from (solvents used = DMF/H₂O, DMSO/H₂O and NMP/H₂O): α - is crystal phase @ RT^[46], α - \rightarrow β - @ 120 °C^[46], β - \rightarrow γ - @ 185 °C^[46]

 $\alpha\textsc{-}\textsc{Fox-7}$ obtained on recryst. from DMSO/H $_2\textsc{O}$, glacial acetic acid, cyclohexanone, acetonitrile and DMF/H $_2\textsc{O}^{[48]}$, 112–115 (minor endo), 165–172 (minor endo) (DSC @ 5 °C/min)^{[49]}

 $T_{\text{dec.}}$ [°C]

219 (DSC @ 5 °C/min) $^{[10]}$, 215 (dec. onset) $^{[20]}$, 283.15 (onset), 283.83 (peak max.) (DSC) $^{[35]}$

DTA (@ 2 °C/min), exotherm peaks^[10]:

Fox-7 sample recryst. from	T (°C) (onset)	T (°C) (onset)	
	dec. stage 1 dec. stage		
H ₂ O, mix of crystals	207	277	
Acetone, mix of crystals	213	279	
Acetone, tetrahedral prisms	226	273	
H ₂ O-acetone mix, tetrahedral prisms	213	278	
H ₂ O-acetone mix, trimetric crystals	213	279	

T corresponding to max. rate of decomposition^[16, 41]:

Heating rate	DAI	DNE	l	DADNE Phlegmatized by Viton	
(°C/min)	First stage (°C)	Second stage (°C)	First stage (°C)	Second stage (°C)	
1	215.9	274.0	215.7	276.0	
2	220.4	278.3	219.8	278.3	
3	222.7	277.0	223.3	277.7	
4	224.9	275.3	224.8	278.3	
5	227.4	274.4	228.1	276.5	

Particle size versus $T_{\rm dec.}^{[24]}$: ~235 (exo, DSC, single crystal, 1.5 mg sample)^[24], ~220 (exo, peak max.), ~258 (exo, peak max.), ~280 (exo peak max.) (DSC, very fine powder, 1.5 mg sample)^[24]

Two step dec.: @ ~215 (peak max., @ 0.5 K/min, ~40% mass loss), @ 280 (peak max., @ 0.5 K/min, ~45% mass loss) $^{[36]}$

TGA/DTA (@ 2 °C/min up to 230 °C, open 100 μ m Pt pans, He flow of 50 cm³/min) causes complete dec. only in the Fox-7 sample obtained by slow-cooling crystallization from DMF; other samples showed mass loss of ~30% regardless of crystallization conditions^[36], only partial dec. or on heating to 230 °C for fine Fox-7 crystals precipitated from hot Fox-7 soln. in DMF after pouring into water, crystals contain no solvent, dec. peak max. occurs @ ~10 °C lower than 230 °C^[36]

Fox-7 recryst. from $\rm H_2O$ and heated @ 160 °C for 10 h shows similar dec. profile as sample without preheating @ 160 °C [36], onset of first exo peak depends on solvent used for recryst. (DTA)[38], onset of second exo peak @ ~270–280 °C regardless of solvent used for recryst. (DTA)[38], shapes, areas and observed dec. T of the two dec. peaks @ ~235 °C and ~280 °C vary with different batches and sources of the sample – sometimes, these two peaks are merged into one (DSC)[37]

Summary of thermal dec. data @ different heating rates (DSC unless otherwise indicated) $^{[37]}$:

Heating rate (°C/min)	First exotherm		Second exotherm		Total	First DTG	Second DTG
	T _p (°C)	-Δ <i>H</i> (kJ/g)	T _p (°C)	-Δ <i>H</i> (kJ/g)	-Δ <i>H</i> (kJ/g)	T _p (°C)	T _p (°C)
0.10	202.3	1.98	261.7	0.61	2.59	201	260
0.35	210.6	1.20	271.7	0.99	2.19	209	269
1.0	217.3	1.20	278.6	1.14	2.34	217	277
3.0	226.2	0.85	277.2	0.96	1.82	_	_
10	238.3	0.52	274.0	1.40	1.92	_	_
30	249.5	0.52	278.8	1.39	1.91	_	_

233 (one sharp exo peak, modified HFC, @ 0.07 MPa (ambient pressure)) $^{[37]}$, 239 and 244 (two exo peaks , modified HFC, @ 8.85 MPa (ambient pressure)) $^{[37]}$, two major exothermic peaks @ 214–238 °C and 250–276 °C which occassionally merge into almost one peak (two-stage thermal dec., DSC @ 5 °C/min) $^{[49]}$

921.1 cal/g (calcd., K-W)^[4] 4,091 J/g [H₂O (g)]^[9]

ρ [g cm ⁻³]	1.8934 (@ 298 K), 1.850 (gas pycnometer), 1.89 (α -polymorph) ^[9] , 1.80 (β -polymorph) ^[9] , 1.885 ^[17, 20, 42] , 1.878 (X-ray) ^[24] , 1.885 (powder diffraction) ^[24, 49] , 1.907 (@ 298 K) ^[30] , 1.878 (crystal density) ^[49] , 1.86–1.87 (He pycnometry) ^[49]						
Heat of formation	$-134 \text{ kJ/mol } (\Delta_i H)^{[4]}, -119 \text{ kJ/mol } (\Delta_i H)^{[1]}, -32 \text{ kcal/mol } (\Delta_i H (s))^{[17, 42]}, +130.0 \text{ kJ/mol } (\text{enthalpy of form.})^{[20]}, -209.0 \text{ kcal/kg (enthalpy of form.})^{[21]}, -134 \text{ kJ/mol } (\Delta_i H)^{[30]}, -32 \text{ kcal/mol (exptl. bomb calorimetry})^{[49]}$						
	Calcd. (EXPLO5 6.03)	Lit. values Exptl.					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,958	1,200 cal/g (calcd. K-J) ^[4] 4,442 J/g [H ₂ O (L)] ^[9]					

		921.1 cal/g (calcd., mod. K-W) ^[4]	1,090 kcal kg ⁻¹ [H ₂ O (g)] ^[8]
		1.20 kcal/g (<i>Q</i> _{max} , calcd.) ^[17]	1,090 kcal/kg (@ 1.810 g cm ⁻³) [H ₂ O vapor] ^[21]
		4,860 ^[20]	4,860 ± 60 J/g (heat of detonation, 5 dm³ calorimetric
		1,064 kcal/kg (@ 1.810 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[21]	bomb, filled with Ar @ 2 MPa, 20 g charge, detonated by electric fuse) ^[32]
		724.4 kJ/mol (Δ _{ex} H) ^[30]	1,090 kcal/kg (@ 1.81 g cm $^{-3}$, $Q_{\rm exp}$) $^{[40]}$
		4.892 kJ g ⁻¹ $(\Delta_{ex}H)^{[30]}$	
		4,774 J/g (calcd., BKWC, CHEETAH) ^[32]	
		4,849 J/g (calcd., BKWR, CHEETAH) ^[32]	
T _{ex} [K]	3,318	2,917 (@ 1.885 g cm ⁻³ , $\Delta H_{\rm f} = -133.9 \text{ kJ/mol,}$ calcd., JAGUAR) ^[45]	
p _{C-J} [kbar]	335	37.08 GPa (@ 1.885 g cm ⁻³ , calcd., CHEETAH 2.0) ^[3]	29.2 GPa (@ 1.780 g cm ⁻³ , calcd. from eqn. based on water test values) ^[22]
		340 (calcd., K-J) ^[4] 340 (calcd., K-W) ^[4]	28.4 GPa (@ 1.780 g cm ⁻³ , calcd. from eqn. based on water test values) ^[22]
		340 (calcd., mod. K-W) ^[4]	28.4 (@ 1.780 g cm ⁻³ , cylinder test no. 3) ^[22]
		34.0 GPa (@ 1.885 g cm ⁻³ ; $\Delta_i H = -53.4 \text{ kJ mol}^{-1}$, calcd. CHEETAH 1998) ^[15]	
		338 (@ 1.885 g cm ⁻³ , calcd.) ^[17]	
		29.34 (@ 1.780 g cm ⁻³ , calcd., CHEETAH) ^[22]	
		34.0 GPa (@ 1.885 g cm ⁻³ , $\Delta H^{o}_{f} = -53.4 \text{ kJ/mol},$ calcd., CHEETAH) ^[33]	

	1	т	,
		28.4 GPa (@ 1.780 g cm ⁻³) ^[42]	
		35.0 GPa (@ 1.885 g cm ⁻³ , $\Delta H_f = -133.9 \text{ kJ/mol},$ calcd., JAGUAR) ^[45]	
VoD [m s ⁻¹]	8,877 (@ TMD)	9,126 (@ 1.885 g cm ⁻³ , calcd., CHEETAH 2.0) ^[3]	8,869 (@ 1.89 g cm ⁻³) ^[4] 8,335 (@ 1.76 g cm ⁻³) ^[7]
		8,630 (@ 1.89 g cm ⁻³ , calcd., K-J) ^[4]	8,450 (@ 1.780 g cm ⁻³ , water test) ^[22]
		8,630 (@ 1.89 g cm ⁻³ , calcd., K-W) ^[4]	8,375 (@ 1.780 g cm ⁻³ , water test) ^[22]
		8,630 (@ 1.89 g cm ⁻³ , calcd., mod. K-W) ^[4]	8,325 (@ 1.780 g cm ⁻³ , cylinder test no. 3) ^[22]
		8,683 (@ 1.78 g cm ⁻³ , calcd. BKWR) ^[14]	8,290 (@ 1.780, Cu cylinder test, short-circuit sensors,
		8,558 (@ 1.78 g cm ⁻³ , calcd. BKWS) ^[14]	300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[32]
		8,870 (@ 1.885 g cm ⁻³ ; $\Delta_i H = -53.4 \text{ kJ mol}^{-1}$, calcd. CHEETAH 1998) ^[15]	8,300 (@ 1.780, Cu cylinder test, short-circuit sensors, 300 mm long tube, 25 mm
		8,610 (@ 1.885 g cm $^{-3}$, calcd.) $^{[17]}$	internal diameter, 2.5 mm wall thickness) ^[32]
		8,453 (@ 1.780 g cm ⁻³ , calcd. CHEETAH) ^[22]	8,325 ± 80 (@ 1.780 g cm ⁻³) ^[32]
		8,870 (@ 1.88 g cm ⁻³) ^[23]	8,047 (@ 1.696 g cm ⁻³) ^[42]
		8,453 (@ 1.780 g cm ⁻³ , calcd., BKWC, CHEETAH) ^[32]	
		8,451 (@ 1.780 g cm ⁻³ , calcd., BKWS, CHEETAH) ^[32]	
		8,870 (@ 1.885 g cm ⁻³ , $\Delta H^{\circ}_{f} = -53.4 \text{ kJ/mol},$ calcd., CHEETAH) ^[33]	

		8,226 (@ 1.756 g cm ⁻³ , calcd., CHEETAH, BKWC) ^[42] 8,800 (@ 1.885 g cm ⁻³ , $\Delta H_{\rm f} = -133.9$ kJ/mol, calcd., JAGUAR) ^[45]	8.335 ± 0.025 mm/ μ s (@ 1.756 g cm ⁻³ , FOX-7 containing 1.5 wt.% wax, 300 mm length, 30.2 mm diameter, 2.52 mm shell thickness) ^[42] 8.325 ± 50 (based on cylinder test data) ^[42]
V_0 [L kg ⁻¹]	781		779 ^[5]

Critical diameter [cm]	Critical detonation diameter d_{c0} [mm] and specific surface area, S_g [cm ² g ⁻¹] @ rel. high density $(0.98-0.995)^{[20]}$:								
	$S_{\rm g}$ (cm ² g ⁻¹)	$S_{\rm g} ({\rm cm^2 g^{-1}}) d_{\rm c0} ({\rm mm}) S_{\rm g} ({\rm cm^2 g^{-1}}) d_{\rm c0} ({\rm mm})$							
	650	2.85	2,900	1.00					
	1,500	1.90	8,000	0.75					
	d _{c0} (mm) @ me	an crystal s	ize (μm) ^[20] : 0.5	55 @ 3, 1.05	5 @ 10, 1.60 @ 20 ^[20]				
Critical pressure of initiation of explosive [GPa]	$P_{\rm cr} = 1.05^{[40]}, \sigma_{\rm ult} = 75 \mathrm{MPa}^{[40]}$								
Koenen test	Type F reaction (explosion) @ 6 mm nozzle diameter ^[24, 49] , 6 mm/type F (tube fragmented into 3 or more large pieces, which in some cases may be connected to each other by a narrow strip) ^[30]								
Gap test	Gap = 56 mm, gap = 57 mm (fine grain) ^[16] , gap = 68 mm, gap = 69 mm (coarse grain) ^[16] , gap = 57 mm, gap = 58 mm (Fox-7 phlegmatized by Viton) ^[16]								
LSGT [cm]	$P_{50} = 4-6.5$ GPa (NOL-LSGT, shock sensitivity decreases with increasing particle size) ^[30]								
SSGT [cm]	18.5 mm (Fox-7/PTFE, 90/10, ρ = 1.84 g cm ⁻³ , BICT-SSGT) ^[44] , implies low sensitivity to shock stimuli ^[49] , 6.22 mm (recryst., NOL SSGT) ^[49]								
5 s explosion T[°C] Ignition T[°C]	$285^{[42]}, 274.0 \text{ (crystals from DMF/H}_2\text{O})^{[46]}, 274.0 \text{ (crystals from DMSO/H}_2\text{O})^{[46]}, 269.0 \text{ (crystals from NMP/H}_2\text{O})^{[46]} \\ 215 \text{ (Wood's metal bath)}^{[24,49]}, 226^{[27]}, 236 \text{ (Fox-7/PE-wax (98.75/1.25))}^{[27]}, \\ 217 \text{ (Bofors, nonrecryst.)}^{[42]}, 226 \text{ (DSTO, non-recryst.)}^{[42]}, 225 \text{ (heating rate 5 °C/min)}^{[49]}$								

Thermal stability	DTA: Fox-7 shows two exothermic peaks @ ~210 °C (onset) and ~275 °C (onset), 30–35% mass loss after completion of first exothermic process ^[38] , total mass loss = 83% in He (two-step dec. process, TG-DTA-FTIR-MS @ 5 °C/min, also minor mass loss @ 161 °C assumed due to impurities in sample) ^[37] , total mass loss = 93% in air (two-step dec. process, TG-DTA-FTIR-MS @ 5 °C/min, also minor mass loss @ 205 °C assumed due to impurities in sample) ^[37]						
Vacuum stability test [cm³/h]	0.14 mL/5 g @ nonrecryst.) ^[42] ,						
Vapor pressure [atm. @ °C]	1.04 × 10 ⁻³ mm	Hg (solid)	[43]				
Solubility [g/mL]	~1.6 g / 100 g $\rm H_2O$ @ 100 °C ^[32] , NMP (<i>N</i> -methyl-2-pyrrolidone) is one of the best solvents for Fox-7 ^[32] , Fox-7 can be recrystallized from $\rm H_2O$, acetone or DMF, however, Fox-7 recrystallized as a hot DMF soln. poured into $\rm H_2O$ shows a 10 °C lower $T_{\rm dec.}$ than Fox-7 recryst. from $\rm H_2O$ or acetone ^[36] , 1.00 × 10 ⁶ mg/L in $\rm H_2O^{[43]}$, poorly soluble in common organic solvents and water ^[49] , readily dissolves in aprotic solvent, for example, DMSO, DMF and NMP ^[49] , can be recryst. from dil. hydrochloric acid, γ -butyrolactone or water ^[49] , can be recryst. by dissolving in hot DMF or NMP (@ 70 °C) and then adding 4–5 equivalents of hot EtOH, MeOH or water to precipitate Fox-7 ^[49] solubility in $\rm H_2O$ (conc. of Fox-7 (% wt.) @ T (°C)): ~0.02 @ 20 °C, ~0.1 @ 40 °C, ~0.2 @ 60 °C, ~0.55 @ 80 °C, ~1.6 @ 100 °C ^[36] , saturated aq. soln. @						
Compatibility	Thermal stabilit	y and com	patibility of	f Fox-7 with diffe	erent polyn	ners ^[24] :	
	Polymer or plasticizer	<i>E</i> _b (J/g)	C _{ab} (J/g)	Polymer or plasticizer	<i>E</i> _b (J/g)	C _{ab} (J/g)	
	CAB (BF900)	0.38	-0,38	Krasol LBH	0.24	0.13	
	ESTANE	0.27	-0.26	VITON	0.10	0.03	
	GAP	2.57	-0.44	Butyl-NENA	1.07	0.16	
	HTPB 1.89 3.89 K-10 0.41 0.44 (R-45HT)						
	Excellent compatibility with typical components of explosive formulations and propellants ^[36] , Fox-7 should not be recrystallized form a hot DMF solution by pouring into water since it results in a lowering of the dec. <i>T</i> by ~10 °C cf. Fox-7 recrystallized from H ₂ O or acetone ^[36] , compatibility assessed by heat flows in microcalorimeter ^[49] : excellent compatibility with GAP, HMDI, Butyl-NENA and K-10 ^[49] , very low compatibility with HTPB ^[49] , 1:1 mixture of TNT and Fox-7 showed same stability as individual components under same conditions (vacuum thermal stability, 100 °C, 48 h) ^[49]						
pK _a	10.6 ^[23]						

ARC (accelerated rate calorimetry) [°C]	Runaway reaction @ ~230 ^[24] , 210 (onset) (ϕ = 8.66) ^[30] , 221 ± 2 (reaction onset 7), 230 ± 1 (runaway 7) ^[49] T range 150–400 °C, onset and runaway 7 @ 150 °C and 180 °C ^[24] :							
	Fox-7	Wait tin	ne 5 min	Wait tim	 e 10 min	wait tim	e 15 min	
	Start T (°C)	Start T (°C) 150 180 150 18					180	
	Onset T (°C)	222	222	222	219	223	223	
	Runaway T (°C)	230	231	230	229	230	230	
	Detectable hea (isothermal, 20 sample runawa runaway after 1	00 mg sa ay after 4	mple in A 1 h (isoth	r, @ 200 ^c ermal, 20	C, 96 h, c 0 °C, 1 g s	losed sys	tem) ^[37] ,	mple
Average particle size [µm]	25 (scale-up ba	atches, g	ranular) ^{[2}	4]				
Heat capacity, C_p [J g ⁻¹ K ⁻¹]	1.455 ^[30]							
Specific heat [J mol ⁻¹ K ⁻¹]	Exptl. values ^[42] : 266.6 @ 283 K ^[42] , 272.0 @ 288 K ^[42] , 277.1 @ 293 K ^[42] , 281.9 @ 298 K ^[42] , 286.4 @ 303 K ^[42] , 290.7 @ 308 K ^[42] , 294.7 @ 313 K ^[42] , 298.4 @ 318 K ^[42] , 301.8 @ 323 K ^[42] , 305.0 @ 328 K ^[42] , 307.9 @ 333 K ^[42] , 310.5 @ 338 K ^[42] , 312.8 @ 343 K ^[42] , 314.9 @ 348 K ^[42] , 316.7 @ 353 K ^[42]							
ODTX [°C/s]	260/15 (Fox-7/Viton® A, 95:5) ^[30]							
Gurney energy [kJ/kg]	3,568 (@ 1.780 g cm $^{-3}$, cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) $^{[32]}$, 3,672 (@ 1.780 g cm $^{-3}$, cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) $^{[32]}$, 3,540 ± 100 $^{[42]}$							
Gurney velocity [m/s]	2,671 (@ 1.780 g cm $^{-3}$, cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) $^{[32]}$, 2,710 (@ 1.780 g cm $^{-3}$, cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) $^{[32]}$, 2,660 \pm 40 $^{[42]}$							
Activation energy to thermal dec. [kcal/mol]	~50–90 in T range ~200–250 °C[^{38]} , 238.3 kJ/mol (first exotherm, Kissinger's method, DSC) ^[37] , 322.4 kJ/mol (second exotherm, Kissinger's method, DSC) ^[37] , ΔH = -1.65 kJ g $^{-1}$ (one sharp exo peak @ 233 °C, modified HFC, @ 0.07 MPa (ambient pressure) ^[37] , ΔH = -2.10 ± 0.06 kJ/g (@ ~230 °C, DSC shows two exo peaks) ^[37] , ΔH = -3.04 ± 0.06 kJ/g @ 239 and 244 °C (two exo peaks, modified HFC, @ 8.85 MPa (ambient pressure) ^[37] , 191 \pm 4 kJ/mol (initial activation energy of dec., isothermal TG-DTA-FTIR-MS) ^[37]							
Log K _{ow}	-2.86 (SMILES $K_{ow} = 0.0014$ l/		ed, EPI) ^{[42}	-2.86 (5	SMILES an	d MP, pre	dicted, EP	l) ^[42] ,

Koc	30.6 L/kg ^[43]
Half life in soil [days]	15.8 ^[43]
Half life in water [days]	15.8 ^[43]
Beckford fuze	Ignition (Bofors, nonrecryst.) ^[42] , fails to ignite (DSTO, nonrecryst.) ^[42] , no ignition ^[49]
Train test	Ignition (Bofors, nonrecryst.) ^[42] , fails to ignite (DSTO, nonrecryst.) ^[42] , ignited and supported the train steadily ^[49]

	Fox-7 ^[11]	Fox-7 ^[42]	β-Fox-7 ^[42]	γ-Fox-7 ^[42]
Chemical formula	C ₂ H ₄ N ₄ O ₄	C ₂ H ₄ N ₄ O ₄	C ₂ H ₄ N ₄ O ₄	C ₂ H ₄ N ₄ O ₄
Molecular weight [g mol ⁻¹]	148.09	148.09	148.09	148.09
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P 2 ₁ / n	P 2 ₁ / n	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ / n
a [Å]	6.922(1)	6.941(1)	6.986/(1)	13.354(3)
<i>b</i> [Å]	6.501(1)	6.569(1)	6.660(2)	6.895(1)
c [Å]	11.262(1)	11.315(2)	11.674(3)	12.050(2)
α [°]	90	90	90	90
β [°]	90.485(1)	90.55(2)	90	111.102(8)
γ [°]	90	90	90	90
<i>V</i> [ų]	506.77	515.9(1)	543.1(2)	1,035.0(3)
Z	4	4	4	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.941	1.907	1.811	1.901
T[K]	100	173	403	200

Recryst. from dil. hydrochloric acid produces hexagonal-shaped crystals, 100 microns diameter^[49]

Sample	Unit cell parameters						
	<i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) β (°)						
α-Fox-7	6.94	6.56	11.31	90.55			
α-Fox-7	6.94	6.64	11.34	90.61			
α-Fox-7	6.93	6.62	11.23	89.48			
α-Fox-7	6.92	6.55	11.27	90.06			

Unit cell parameters of Fox-7 recrystallized under different conditions^[36]:

Sample	Unit cell parameters					
	a (Å) b (Å) c (Å) β (°)					
Fox-7 recryst. from H ₂ O	6.946	6.627	11.339	90.54		
Fox-7 recryst. from acetone	6.937	6.268	11.317	90.54		
Fox-7 recryst. from DMF	6.943	6.627	11.333	90.57		
Fox-7 recryst. from DMF/H ₂ O	6.935	6.623	11.319	90.58		
α-Fox-7 (simulated)	6.939	6.651	11.349	90.65		

Effect of ultrasound on Fox-7 recrystallization^[27]:

Method			Particle size (μm)			Morphology
Application of ultrasound	Scale (g)	Cooling rate (°C/min)	d(0.1)	d(0.5)	d(0.9)	
None	10	0.5	113	278	543	Blocky, jagged
None	100	2.0	86	213	445	Blocky
45 kHz continuous	10	0.5	30	59	105	Rounded, rhombic
45 kHz continuous	10	1.0	-	<60 [†]	-	Blocky
45 kHz continuous with surfactant	10	0.5	45	94	183	Rhombic
45 kHz pulsed @ 15 min intervals	100	0.5	48	98	186	Smooth, rhombic
20 kHz continuous	100	0.5	65	105	170	Blocky
20 kHz continuous	100	2.0	27	59	121	Blocky

[†]est. value, agglomeration of particles

Crystallization from H_2O , acetone, DMF is possible and produces α -Fox- $7^{[36]}$, cooling crystallization produces crystals with solvent inclusions with a lower ρ and thermal stability^[36]. Heating a crystal with solvent inclusions @ 160 °C shows loss of solvent and β - \rightarrow γ -phase transition^[36]. Product of partial decomposition of Fox-7 recryst. from H_2O shows similar XRD pattern as that of γ -Fox- $7^{[36]}$

Single crystals can be obtained by slow cooling of Fox-7 solns. in formic acid, acetone, ethanol or a $\rm H_2O/acetone\ mixture^{[38]}$

Crystals of $100-600 \, \mu m$ diameter obtained from H_2O/N -methyl-2-pyrrolidone (75/25) with 0.3 K/min cooling rate, vigorous mechanical stirring^[42]

Crystals of particle diameter 2–18 μ m on recryst. from NMP into H₂O @ ambient temperature^[42] Effect of solvent on morphology of Fox-7 crystals; 20 kHz ultrasound was used, 3 g Fox-7 produced^[42]:

Solvent	Particle size (µm)			Morphology
	d(0.1) d(0.5) d(0.9)			
NMP/H ₂ O (50:50)	10	29	66	Sharp blocks
GBL	7	16	30	Rounded plates
DMF	3	11	25	Rounded oblongs
DMF/H ₂ O (75:25)	12	35	78	Sharp blocks
CH₃CN	30	59	103	Rounded blocks

- [1] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [2] T. M. Klapötke, Chemistry of High-Energy Materials, 3rd edn., De Gruyter, Berlin, 2015.
- [3] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [4] P. Politzer, J. S. Murray, Centr. Eur. J. Energ. Mater., 2014, 11, 459-474.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] M. Pospíšil, P. Vávra, Study of Electron Density of Molecules, Intermolecular Forces and Impact Sensitivity of Explosives, Final Proceedings for New Trends in Research of Energetic Materials, NTREM 7, S. Zeman (ed.), 20th–22nd April 2004, Pardubice, pp. 600–605.
- [7] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [8] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [9] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 91.
- [10] N. V. Garmasheva, I. V. Chemagina, V. P. Filin, M. B. Kazalova, B. G. Loboiko, *Investigation of Diaminodinitroethylene (DADNE*), NTREM 7, April 20th⁻22nd **2004**, pp. 115–121.
- [11] A. Meents, B. Dittrich, S. K. Johnas, V. Thome, E. F. Weckert, Acta Cryst., 2008, B64, 42-49.
- [12] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [13] A. P. Jardine, D. M. Williamson, S. Gymer, N. E. Taylor, S. M. Walley, S. J. P. Jardine, *Optical Diagnostics to Study Impact Initiation Meachanisms in Modern Energetic Materials*, NTREM 17, 9th–11th, April **2014**, pp. 243–252.

- [14] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651–669.
- [15] S. Ek, K. Dudek, J. Johansson, N. Natypov, Scale-Up and Characterisation of 3(5),4-Dinitropyrazole (DNP) for its Use as a Melt-Cast Matrix, NTREM 17, 9th-11th April 2014, pp. 180-188.
- [16] W. A. Trzciński, S. Cudziło, Z. Chyłek, L. Szymańczyk, Investigation of Detonation Characteristics and Sensitivity of DADNE-Based Phlegmatized Explosives, ICT 2010, Karlsruhe, Germany, pp. 101-1–101-15.
- [17] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [18] S. Ye, K. Tonokura, M. Koshi, Combustion and Flame, 2003, 132, 240-246.
- [19] P. Politzer, J. S. Murray, *Some Perspectives on Sensitivity to Initiation of Detonation*, Ch. 3 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**, p. 48.
- [20] A. A. Kotomin, S. A. Dushenok, A. S. Kozolov, D. A. Barannik, N. P. Shirokova, M. A. Il'yushin, Russ. J. Appl. Chem., 2016, 89, 793–799.
- [21] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [22] W. A. Trzciński, S. Cudziło, Z. Chyłek, L. Szymańczyk, *Determination of the Expanding Isentrope* for Detonation Products of Fox-7, ICT **2007**, Karlsruhe, Germany, pp. 142-1–142-8.
- [23] A. J. Bellamy, P. Goede, C. Sandberg, N. V. Latypov, *Substitution Reactions of 1,1-Diamino-2,2-dinitroethane (Fox-7)*, ICT **2002**, Karlsruhe, Germany, pp. 3-1–3-9.
- [24] H. Östmark, H. Bergman, U. Bemm, P. Goede, E. Holmgren, M. Johansson, A. Langlet,
 N. V. Latypov, A. Pettersson, M.-L. Pettersson, N. Wingborg, C. Vörde, H. Stenmark,
 L. Karlsson, M. Hihkiö, 2,2-Dinitro-ethene-1,1-diamine (FOX-7) Properties, Analysis and Scale
 Up, ICT 2001, Karlsruhe Germany, pp. 26-1–26-21.
- [25] I. Plaksin, J. Campos, R. Mendes, J. Ribeiro, S. Plaksin, L. Rodrigues, J. Gois, S. Almada, M. Herrmann, H. Kröber, H. Krause, M. Kaiser, *Shock Sensitivity of PBX Formulations Based on the RS-RDX, RS-HMX and Fine/Ultrafine HE Particles Bonded with the Inert Binders: Real Time Measurements from the Registration of the Reaction Front Radiation Growth and Emission Absorption*, ICT **2008**, Karlsruhe, Germany, pp. 28-1–28-17.
- [26] C. Edlsäter, H. Edvinsson, M. Johansson, A. Pettersson, C. Sandberg, Formulation of PBX's Based on 1,1-Diamino-2,2-Dinitroethylene (FOX-7), ICT 2002, Karlsruhe, Germany, pp. 63-1-63-14.
- [27] M. A. Daniel, P. J. Davies, I. J. Lochert, FOX-7 for Insensitive Boosters, DSTO-TR-2449, DSTO Defense Science and Technology Organisation, Australia, August 2010.
- [28] P. Golding, I. Ridpath, Formulation and Initial Characterisation of a FOX-7/Polyphosphazene Based PBX, ICT **2012**, Karlsruhe, Germany, pp., 2-1–2-12.
- [29] P. Gerber, A. Kessler, A. Kretschmer, T. Fischer, Characterisation of High Explosive Formulations Based on Fox-12, ICT 2012, Karlsruhe, Germany, pp. 101-1–101-7.
- [30] E.-C. Koch, Nitroguanidine (NQ) An Underestimated Insensitive Energetic Material for High Explosives and Propellants, ICT **2018**, Karlsruhe, Germany, pp. 3-1–3-13.
- [31] H. Cai, L. Tian, B. Huang, J. Sun, H. Huang, *Host-Guest Insensitive Energetic Materials*, ICT **2013**, Karlsruhe, Germany, pp. 85-1–85-6.
- [32] W. A. Trzcinski, S. Cudzilo, Z. Chylek, L. Szymanczyk, *Investigation of Sensitivity and Detonation Properties of Fox-7*, ICT **2006**, Karlsruhe, Germany, pp. 57-1–57-10.
- [33] J. Ritums, C. Oscarson, M. Liljedahl, P. Goede, K. Dudek, U. Heiche, *Evaluation of* 3,(5),4-Dinitropyrazole (DNP) as a New Melt Cast Matrix, ICT **2014**, Karlsruhe, Germany, pp. 2-1–2-12.

- [34] P. Gerber, A. Happ, T. Heinz, *Gap Test Results of Formulations Based on Coated Nitramin Particles*, ICT **2013**, Karlsruhe, Germany, pp. 80-1–80-4.
- [35] K.-H. Chung, E. M. Goh, J. R. Cho, *Synthetic Modification and Scale-Up Process for 1,1-Diamino-2,2-Dinitroethene (Fox-7)*, ICT **2005**, Karlsruhe, Germany, pp. 52-1–52-13.
- [36] S. Cudziło, Z. Chyłek, R. Diduszko, *Crystallization and Characterization of 1,1-Diamino-2, 2-Dinitroethene (DADNE)*, ICT **2005**, Karlsruhe, Germany, pp. 160-1–160-11.
- [37] A. K. Burnham, R. K. Weese, R. Wang, Q. S. M. Kwok, D. E. G. Jones, *Thermal Properties of FOX-7*, ICT **2005**, Karlsruhe, Germany, pp. 150-1–150-12.
- [38] N. V. Garmasheva, I. V. Chemagina, V. P. Filin, M. B. Kazakova, Y. A. Shakhtorin, N. P. Taybinov, V. M. Lagutina, B. G. Loboiko, Research of Thermal Decomposition of Dianminodinitroethylene (Fox-7), ICT 2005, Karlsruhe, Germany, pp. 87-1–87-8.
- [39] D. Jarman, W. Prinse, R. Bouma, *Electrostatic Discharge Initiation of CL-20: Effect of Discharge Time and Spark Energy*, ICT **2003**, Karlsruhe, Germany, pp. 71-1–71-11.
- [40] Y. N. Matyushin, G. T. Afanas'ev, V. P. Lebedev, M. N. Mahov, V. I. Pepekin, TATB and Fox-7: Thermochemistry, Performance, Detonability, Sensitivity, ICT 2003, Karlsruhe, Germany, pp. 119-1–119-13.
- [41] W. A. Trzciński, S. Cudziło, Z. Chyłek, L. Szymańczyk, J. Energet. Mater., 2013, 31, 72-85.
- [42] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, FOX-7 (1,1-Diamino-2,2-Dinitroethylene), Ch. 3 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, 2018.
- [43] M. A. Dewey, Synthesis, Evaluation, and Formulation Studies on New Oxidizers as Alternatives to Ammonium Perchlorate in DoD Missile Propulsion Applications, SERDP final report, 23rd April 2007.
- [44] E.-C. Koch, State of the Art Insensitive Explosives, MSIAC Workshop on Sensitivity of Energetic Materials, 11th–12th May 2010.
- [45] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [46] C. Zhou, J.-L. Huang, B.-Z. Wang, L.-Y. Zhang, Q. Ma, X.-Z. Li, Chinese J. Explosives Propellants, 2016. 39, 19–22.
- [47] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [48] Q. Zhou, Z.-Q. Chen, C.-M. Zheng, B.-Z. Wang, X.-N. Ren, K.-Y. Wang, M. Wang, C. Zhou, *Chinese J. Expl. Prop.*, **2014**, *37*, 67–70.
- [49] I. J. Lochert, Fox-7 A New Insensitive Explosive, DSTO-TR-1238, Department of Defence, DSTO Aeronautical and Maritime Research Laboratory, Australia, November 2001.

FOX-12

Name [German, acronym]: Guanylurea dinitramide, N-guanylurea dinitramide

[FOX-12, GUDN]

Main (potential) use: Secondary (high) explosive, air-bag gas

generators, promising ingredient for gas generator propellants^[10, 11, 20], suitable for melt-cast explosives^[11], gun propellants^[11], proposed as new ingredient for insensitive high explosive formulations^[12], promising oxidizer for propellants, insensitive munitions and

airbags^[13, 20]

$$\begin{bmatrix} \mathsf{NH} & \mathsf{O} \\ \mathsf{H}_2 \mathsf{N} & \mathsf{NH}_2 \end{bmatrix} \begin{bmatrix} \mathsf{HN} & \mathsf{NO}_2 \\ \mathsf{HN} & \mathsf{NO}_2 \end{bmatrix}$$

	FOX-12
Formula	$C_2H_7N_7O_5$
Molecular mass [g mol ⁻¹]	209.12
Appearance at RT	Colorless crystals ^[11] , white crystalline ^[14] , white crystalline powder ^[20] , colorless crystalline solid ^[22]
IS [J]	31 Nm $^{[6]}$, >90 $^{[1]}$, drop height >159 cm (BAM apparatus, 2 kg mass) $^{[3, 4]}$, 159 cm $^{[7]}$, 35–50 cm (BAM, depends on morphology) $^{[11]}$, 30 Nm (class 4) $^{[12]}$, 40 Nm (class 1) $^{[12]}$, 50 Nm $^{[13]}$, 35 Nm $^{[13]}$, no reaction under 90 J (BAM) $^{[14]}$, 31 (BAM) $^{[16]}$, 40 Nm $^{[17]}$, >49 (BAM, RT) $^{[18]}$, 49 $^{[19, 21]}$, >35 (BAM) $^{[22]}$, 50 (class 4) $^{[22]}$, 35 (propellant grade) $^{[22]}$, 2 m (2 kg mass, BAM) $^{[20]}$, 31 $^{[23]}$
FS [N]	>360 ^[6, 11, 13, 17] , >352 ^[1] , >350 (Julius-Petri apparatus) ^[3, 4, 7] , <360 (class 4) ^[12] , >360 (class 1) ^[12] , no reaction under 350 N (BAM) ^[14] , >352 (BAM) ^[16] , >353 (Julius Peters, porcelain plate and peg) ^[18] , >353 ^[19, 21] , >36 kp (Julius-Peters) ^[20] , >360 (BAM) ^[23]
ESD [J]	ca. 4.5, >3 ^[1]
N [%]	46.86
Ω(CO ₂) [%]	-19.13
T _{m.p.} [°C]	215 ^[6] , 215 (dec.) ^[16, 23] , dec. ^[19] , no mpt. but dec. @ ~180 °C ^[20]
T _{phase transition} [°C]	No phase transitions were found on heating (DSC) ^[13]

T _{dec.} [°C]		[^[20] , 215 ^[7] , 214.8 (DSC, onse				
	E _a = 277 kJ/mol between 200–255 °C) ^[11] , 216.4 (exo, onset), 217.67 (exo, peak max.) (DSC) ^[13] , 206.46 (exo, onset), 210.46 (exo, peak max.) (DSC) ^[13] , 206 (onset, air, DSC @ 10 K/min, propellant grade GUDN) ^[22] , 216 (onset, air, DSC @ 10 K/min, class 4, coarser grade GUDN) ^[22]					
ρ [g cm ⁻³]	diffraction) ^[3, 4] , 1.75 (X-1.7545 (crystal, X-ray) ^{[3}	(bulk crystal density from po -ray) ^[8] , 1.75 (bulk crystal der ^{11]} , 1.7525 (crude, class 2 NS (@ 298 K) ^[16] , 1.755 (crystal) [[]	nsity @ 20 °C) ^[10] , iG 120, He			
Heat of formation	$-322 \text{ kJ/mol (energy of } (\Delta_f H)^{[16, 22]}, -355 \text{ kJ/mo}$	of form.) ^[6] , $-355 \text{ kJ/mol (boil)}$ form.) ^[6] , $-1,700 \text{ kJ/kg } (H_f)^{[1]}$, $-355.6 \text{ kJ/mol (heat of foot)}$	^{0]} , –356 kJ/mol			
Heat of combustion	$\Delta H_c^{\circ} = 1,432 \text{ kJ/mol}^{[22]}$					
	Calcd.	Lit. values	Exptl.			
	(EXPLO5 6.03)		,			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,512	2,998 [H ₂ O (L)] (ICT-code) ^[6]				
		3,441 [H ₂ O (g)] (ICT-code) ^[6]				
		3.78 k/g (calcd., CHEETAH) ^[12]				
		792.2 kJ/mol ($\Delta_{ex}H$) ^[16] ,				
		3.789 kJ g ⁻¹ ($\Delta_{ex}H$) ^[16]				
	$\Delta_{ex}H^{o} = -811 \text{ kJ/mol}$ (@ 1.76 g cm ⁻³) [H ₂ O (L)] ^[22]					
<i>T</i> _{ex} [K]	2,600	2,887 (@ 1.76 g cm ⁻³ , calcd., CHEETAH 2.0) ^[22]				
		2,894 (@ 1.75 g cm ⁻³) ^[23]				
p _{C-J} [kbar]	267	37.5 GPa (calcd., CHEETAH 2.0) ^[3]	260			
	25.5 GPa (@ 1.75 g cm ⁻³ , calcd., CHEETAH) ^[12] 261 (@ 1.667 g cm ⁻³) ^[11]					

		25.7 GPa (@ TMD, calcd.) ^[21] 25.89 GPa (@ 1.76 g cm ⁻³ , calcd., CHEETAH 2.0) ^[22] 25.1 GPa (@ 1.75 g cm ⁻³) ^[23]	
VoD [m s ⁻¹]	8,380	8,176 (@ 1.666 g cm ⁻³ , calcd., BKWR) ^[9] 8,009 (@ 1.666 g cm ⁻³ , calcd., BKWS) ^[9] 8,210 (@ 1.75 g cm ⁻³ , calcd., BKWS) ^[3, 4] 8,192 (@ 1.75 g cm ⁻³ , calcd. CHEETAH) ^[12] 8,210 (@ TMD, calcd.) ^[21] 8,235 (@ 1.76 g cm ⁻³ , calcd., CHEETAH 2.0) ^[22] 8,194 (@ 1.75 g cm ⁻³) ^[23]	7,900 7,870 (@ 1.66 g cm ⁻³ , 52 × 52 mm uniaxially pressed cylindrical charge) ^[3, 11] 7,870 (@ 1.66 g cm ⁻³) ^[23]
V ₀ [L kg ⁻¹]	880		910 ^[2] 785 ^[6]

Exptl. and theoretical detonation performance of beat GUDN compared to the calculated values (CHEETAH 2.0) (* = in copper tube with 6 mm wall thickness) $^{[22]}$:

Density (g cm ⁻³)	Experimental			Calcu	lated
	<i>V</i> _{CJ} (m/s)	P _{CJ} (GPa)		$V_{\rm CJ}({\rm m/s})$	P _{CJ} (GPa)
1.670	No det.	No det.	@ 22 mm diameter	7,848	22.57
1.660	7,870	-	@ 52.15 mm diameter	7,806	22.22
1.666	7,966	26.11	@ 60 mm*	7,831	22.43

Critical diameter [cm]	Range of 22–54 mm (@ 1.67 g cm ⁻³) ^[22]					
Initiation sensitivity	60 g PETN/FO booster unable to detonate a charge of pressed FOX-12 (Ø = 52.15 mm, ρ = 1.66 g cm ⁻³) ^[11] , detonation on increasing booster charge to 300 g ^[11]					
	pressed charges: no detonation observe			g boosters ^[14] ,		
Koenen [mm/type]	2/F ^[16]					
LSGT [cm]	LSGT, donor charge	= RDX pressed ess = 3.2 mm,	l with 4% wax, thickness of P	s) (based on US NOL , $\rho = 1.66 {\rm g \ cm^{-3}},$ PMMA disk = 1.5 mm) ^[11] ,		
	50% probability init 1.66 g cm ⁻³) ^[22]	iation gap dis	tance = 18-25	5 mm (59–69 kbar, @		
	50% probability of o	letonation gap	= 18-22.5 m	m Gap (FOI-style LSGT) ^[23]		
5 s explosion T[°C] Explosion T[°C]	192 (Woods metal bath, E_a = 149 kJ/mol between 190–240 °C) ^[4, 8, 11] , 215 ^[23] No ignition <190 (Wood's metal bath) ^[11] , 200–225 ^[16] , 200 ^[19] , 216 ^[21]					
Ignition T[°C]	110 °C/400 h ^[19, 21]	oou s metat ba	, 200–2	25. 3, 200. 3, 216. 3		
Thermal stability						
Slow cook-off test (SCO)	Cook-off @ 144 °C (Fox-12 uniaxially pressed into two cylindrical charges, ~50 mm charge diameter and height, mass of charges = 167 g and 154 g, ρ = 1.66 g cm ⁻³ , temperature sensors inside charges, charges enclosed in steel cylinders, heated from 45 °C until reaction @ 3.3 °C/h; type V reaction, that is, burning with no fragmentation of steel cylinder) ^[11] IM signature of various GUDN containing stores, Swedish Defence Standard FSD-243, GUDN samples uniaxially pressed into two cylindrical charges, cylinders integrated into steel test vehicles, sample was preheated to 45 °C, then heating @ 3.3 K/h. Samples showed type V reaction, internal T = 144 °C ^[22] :					
	Parameter	Charge 1	Charge 2]		
	Height (mm)	51.52	47.02			
	Diameter (mm)	49.89	49.87]		
	Weight (g)	166.92	153.76			
	Density (g cm ⁻³)	1.66	1.67			

Burn rate [mm/s]	$ 6.0 \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $									
Flame temperature [K]	2,680 (c	2,680 (calcd.) ^[11]								
Specific impulse (I _{sp}) [s]	213.1 (c	213.1 (calcd.) ^[11] , 196 (formulation with 30% GAP-based binder, calcd.) ^[11]								
Impetus [J/g]	953 (cal	cd.) ^[11]								
Particle size [µm]	class 1,	NSG 110	= 20-	50, cla	ss 2, N	SG	120 = 8	llant grad 0–150, c ess = 15–	lass 4,	
Solubility [g/mL]	5 g/L in solubility	3.4 g/L in $H_2O @ 20 °C^{[11]}$, more or less insoluble in $H_2O^{[13]}$, 5 g/L in $H_2O @ 20 °C^{[19]}$, very low solubility in cold water ^[20] , moderate solubility in hot water ^[20] , only slightly soluble in water, 3.4 g/L @ 20 °C ^[22] , solubility in DMF = 170 g/L @ 20 °C ^[22] Solubility of Fox-12 (g Fox-12/g solvent) @ different temperatures ^[17] :								
	T (°C)				Solv	ent				
		DMF	H ₂ O	Ace	etone	Et	hanol	Isoprop	anol	
	0			0.0)					
	10			0.0)					
	20	0.18	0.0	0.0)			0.0		
	30	0.22	0.01	0.0)			0.0		
	40	0.25	0.02	0.0)			0.0		
	50	0.28	0.03	0.0)	0.	0	0.0		
	60	0.30	0.04	0.0)	0.	0	0.0		
	70	0.32	0.07	0.0)	0.	0	0.0		
	solubility (g GUDN/g solvent) in DMF and H_2O @ different $T^{[22]}$:									
	T (°C)	DMF		H ₂ O	T (°0	C)	DMF	H ₂ O		
	20	0.17 <	0.01	50	0.28	8	0.02			
	30	0.21		0.01	60		0.29	0.03		
	40	0.25		0.01	70		0.31	0.05		
Hygroscopicity	Nonhuar	osconic ^{[1}	13, 20]	0200/	@ 20	ەر	vith 25	_750/ DU	[19]	
публозсорісіту	opicity Nonhygroscopic ^[13, 20] , 0.020% @ 20 °C with 25–75% RH ^[19]									

Compatibility	TAM microcalorimeter @ 75 °C, 19 days, 1:1 weight ratio (substance:Fox12), heat flow limit must remain <63.1 μW/g during 19 days to be considered compatible ^[11] :						
	Fillers Binders F		Plasticize	rs			
	ADN H	TPB		TEGDA	\neg		
	RDX 3	M GA	AΡ	GAPA			
	HMX G	AP 70	6504				
	Fox-7						
	AP						
	Cl-20						
				11			
pK_a/pK_b	pK_a (guanylu				1		
ARC [°C]	164 (onset), self-heating)				¹, 165 (onse	t for adiaba	tic
Propellant performance	Vielle's law fo	or ne	at GUDN ^{[2}	22].			
	Pressure ra	nge	Α	n	Particle siz	ze .	
	4-40 MPa		0.106	0.989	_	-	
			1.460	0.73	20 μm (pro	20 μm (propellant grade)	
Combustion performance	Theoretical co			formance	of neat GUD	N as calcula	ited with
	Unit	1	МРа	0.1	1	10	100
	Temperatur	e l	(2,126	2,132	2,134	2,135
	γ	T		1.2310	1.2386	1.2412	1.2417
	MW	8	gmol ⁻¹	23.216	23.229	23.235	23.248
	СО	ı	Mol%	15.499	15.524	15.532	15.518
	CO ₂	ı	Mol%	6.704	6.692	6.689	6.706
	H ₂	I	Mol%	12.214	12.231	12.233	12.184
	H ₂ O	Ī	Mol%	26.559	26.619	26.639	26.648
	N ₂	1	Mol%	38.855	38.878	38.885	38.885
Laser ignition	No ignition w				N = 801 nm,	$M_{\lambda} = 3.9 \text{ kW}$	/ cm ⁻²) of

Commercially available crystal grades of GUDN from EURENCO, data from ref. [22]:

Туре	Specific surface area (m² g ⁻¹)	Particle size range (µm)
Propellant grade	0.4-0.6	10-25
Class 1	0.1	25-50
Class 2		80-150
Class 3		Tbd.
Class 4	0.1	250-400

	Fox-12 ^[5]	Fox-12 ^[13]	Fox-12 ^[13]
Chemical formula	$C_2H_7N_7O_5$	$C_2H_7N_7O_5$	$C_2H_7N_7O_5$
Molecular weight [g mol ⁻¹]	209.12	209.12	209.12
Crystal system	Orthorhombic		
Space group	P n a 2 ₁ (no. 33)		
a [Å]	13.660(10)	13.582	13.591
<i>b</i> [Å]	9.3320(10)	9.317	9.308
c [Å]	6.1360(10)	6.238	6.243
α [°]	90		
β [°]	90		
γ [°]	90		
<i>V</i> [Å ³]	782.53(16)	789.35	789.82
Z	4		
$ ho_{ m calc}$ [g cm $^{-3}$]	1.775	1.76	1.76
<i>T</i> [K]	173		

- [1] T. M. Klapötke, Chemistry of High-Energy Materials, 4th edn., De Gruyter, Berlin, 2017.
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [3] H. Östmark, A. Helte, T. Carlsson, "N-Guanyl-Dinitramide (Fox-12) A New Extremely Insensitive Energetic Material for Explosives Applications", Proc. 13th Deton. Symp., Norfolk-Virginia, USA, 2006.
- [4] H. Östmark, U. Bemm, H. Bergman, A. Langlet, *Thermochim. Acta*, **2002**, *384*, 253–259.
- [5] U. Bemm, CSD Communication, 2000.
- [6] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 158–159.

- [7] D. McAteer, J. Akhavan, A. Contini, *The Development of Novel, Low Sensitivity, Gas-Generating Fomulations for Hotwire Ignited Devices*, NTREM 17, 9th–11th, April **2014**, pp. 323–336.
- [8] H. Stenmark, H. Östmark, H. Bergman, Fox-12 (GuDN): An IM Ingredient Candidate Where Are We Today?, Eurenco presentation.
- [9] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651–669.
- [10] S. Eisele, K. Menke, Gasgenerator Propellants Based on GUDN, ICT 2010, Karlsruhe, Germany, pp. 43-1–43-10.
- [11] M. Liljedahl, J. Ritums, H. Östmark, Fox-12: From Synthesis to IM-Application, ICT 2017, Karlsruhe, Germany, pp. 22-1–22-19.
- [12] P. Gerber, A. Kessler, A. Kretschmer, T. Fischer, Characterisation of High Explosive Formulations Based on Fox-12, ICT 2012, Karlsruhe, Germany, pp. 101-1–101-7.
- [13] P. B. Kempa, M. Herrmann, I. Fuhr, H. Östmark, *Crystal Structure and Thermal Expansion of Fox-12*, ICT **2009**, Karlsruhe, Germany, pp. 40-1–40-11.
- [14] P. Sjöberg, A.-M. Amnéus, H. Östmark, *GUNTOL A Low Cost Melt Cast for IM*, ICT **2009**, Karlsruhe, Germany, pp. 71-1–71-6.
- [15] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [16] E.-C. Koch, Nitroguanidine (NQ) An Underestimated Insensitive Energetic Material for High Explosives and Propellants, ICT **2018**, Karlsruhe, Germany, pp. 3-1–3-13.
- [17] P. Gerber, A. Happ, T. Heinz, *Gap Test Results of Formulations Based on Coated Nitramin Particles*, ICT **2013**, Karlsruhe, Germany, pp. 80-1–80-4.
- [18] M. Liljedahl, A. Lindborg, C. Oscarson, M. Skarstind, Co-Crystallized ADN/GUDN-Prills, ICT 2014, Karlsruhe, Germany, pp. 67-1-67-7.
- [19] J. Dahlberg, P. Sjöberg, Dinitramides Applications and Availability, NDIA Meeting, 14th–17th November 2004, San Francisco, USA.
- [20] A. Langlet, Guanylurea Dinitramide, *An Explosive, Propellant, Rocket Motor Charge and Gas Generator*, US Patent 6,291,711 B2, 18th September **2001**.
- [21] GUDN (Fox-12), EURENCO fact sheet, http://www.eurenco.com/wp-content/uploads/2013/07/ FOX-12-GUDN.pdf, accessed on 15.10.2018.
- [22] E.-C. Koch, Insensitive Explosive Materials: VII. Guanylurea Dinitramide GUDN, MSIAC unclassified report L-175, NATO Headquarters, Brussels, 2011.
- [23] E.-C. Koch, State of the Art Insensitive Explosives, MSIAC Workshop on Sensitivity of Energetic Materials, 11th⁻12th May **2010**.

Furazano-1,2,3,4-tetrazine-1,3-dioxide

Name [German, acronym]: [1,2,5]Oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-di-

N-oxide, furazano[3,4-*e*]tetrazine-4,6-dioxide,

5,6-(3,4-furazano)-1,2,3,4-tetrazine-1,3-dioxide [FTDO]

Main (potential) use: Promising candidate for increasing the momentum

of propellants and as a component of energetic

plasticizers^[3, 6]

	FTDO
Formula	C ₂ N ₆ O ₃
Molecular mass [g mol ⁻¹]	156.06
Appearance at RT	Bright yellow crystals $^{[1]}$ orange-yellow needle-like crystals $^{[5]}$, yellow – orange needle-like crystals from recryst. from EtOH/H $_2$ O (2:3), 20–80 μ m diameter and 1,000–10,000 μ m length $^{[13]}$
IS [J]	Extremely sensitive ^[6] , impact on pressed charge (charge height = 0.17 mm, rel. ρ = 95%), K-44-PI test machine (load weight = 10 kg, 25 cm drop height) results in detonation in impact region, partial destruction and deformation of rollers, fractured winding of strain gauge ^[6] , H_0 = 30–70 mm (instrument no. 2, lower limit @ P = 2 kg) ^[13]
FS [N]	120 MPa (under impact shear loading, K-44-II instrument, lower limit) ^[13]
N [%]	53.85
Ω(CO ₂) [%]	-10.25
T _{m.p.} [°C]	$ \begin{array}{l} 110-112 \ (dec.,\ crystals;\ 95-103\ crude\ product)^{[1,\ 11]},\ 114\ (commercial,\ crystals,\ \geq 99.0\%)^{[5]},\ 112-113^{[5]},\ 112.8\ (endo\ peak\ max.,\ DSC\ @\ 10\ ^{\rm C/min},\ N_2\ atm.,\ 1.12\ mg\ sample)^{[9]},\ 111.5\ (DSC\ @\ 2\ ^{\rm C/min},\ 1-1.2\ mg\ sample,\ N_2\ atmosphere)^{[9]},\ 112.0\ (DSC\ @\ 8\ ^{\rm C/min},\ 1-1.2\ mg\ sample,\ N_2\ atmosphere)^{[9]},\ 112.0\ (DSC\ @\ 16\ ^{\rm C/min},\ 1-1.2\ mg\ sample,\ N_2\ atmosphere)^{[9]},\ 113.0\ (DSC\ @\ 32\ ^{\rm C/min},\ 1-1.2\ mg\ sample,\ N_2\ atmosphere)^{[9]},\ 112-113.5\ (DTA\ @\ 5\ K/min)^{[11]},\ 111-113^{[12]},\ 112-114\ (crystals\ from\ EtOH/H_2O\ (2:3))^{[13]},\ 113.4\ (DSC\ @\ 1\ ^{\rm C/min})^{[13]} \end{array} $
T _{b.p.} [°C]	426 K ^[2] , 200 (@ atmospheric pressure) ^[9]

T _{phase transition} [°C]	Polymorphic transfor	rmations not observed during heating	g up to melting ^[13]			
<i>T</i> _{dec.} [°C]	140–190 (172.8 °C exo peak max., DSC @ 10 °C/min, N ₂ atm., 1.12 mg sample) ^[9] , 153 (exo peak max., DSC @ 2 °C/min, 1–1.2 mg sample, N ₂ atmosphere) ^[9] , 159 (exo peak max., DSC @ 4 °C/min, 1–1.2 mg sample, N ₂ atmosphere) ^[9] , 172 (exo peak max., DSC @ 8 °C/min, 1–1.2 mg sample, N ₂ atmosphere) ^[9] , 179 (exo peak max., DSC @ 16 °C/min, 1–1.2 mg sample, N ₂ atmosphere) ^[9] , 190 (exo peak max., DSC @ 32 °C/min, 1–1.2 mg sample, N ₂ atmosphere) ^[9] , 146 (DTA @ 5 K/min) ^[11] , 155.8 (DSC @ 1 °C/min) ^[13] , 135 (onset of extensive dec.) ^[13]					
$ ho$ [g cm $^{-3}$]		^[2] , 1.832±0.0011 (@ 20°C, He pycno 0°C, He pycnometer) ^[5] , 1.85 ^[6] , 1.84 [[]				
Heat of formation	$(\Delta H_{\rm f} (298, {\rm liq.}), {\rm calco}$ G4MP2 method) ^[2] , 6 178.2 kcal/mol (enthod) ^[2] , 6 (298 K) (g), calcolor, ccCA-PS3) ^[3] , 4,200 kJ/kg (enthalpolor), 995 kcal/k average calcd. value) mol ($\Delta H_{\rm f}^{\rm gas}$ 298, calcd. 172.2 kcal/mol ($\Delta H_{\rm f}^{\rm gas}$ 30] ^[7] , 185.0 kcal/mol 164.4 kcal/mol ($\Delta H_{\rm f}^{\rm gas}$ 4 kcal/mol ($\Delta H_{\rm f}^{\rm gas}$ 5 mol ($\Delta H_{\rm o}^{\rm gas}$ 1,1 for aclcd., ccCA-P) ^[14] , 17 mol ($\Delta H_{\rm f}$ (g)°, calcd.,	98, liq.), calcd., G3MP2 method) ^[2] , 78.3 kJ/mol ($\Delta H_{\rm f}$ (298, liq.), calcd., G nalpy of form., calcd., ccCA-P) ^[3] , 174. d., ccCA-S3) ^[3, 11] , 176.5 kcal/mol ($\Delta H_{\rm f}$ (298 K) (g), calcd. or of form.) ^[4] , 1,010 ± 26 kcal/kg (entleg (enthalpy of form.) ^[6] , 172.6 kcal/mol ($\Delta H_{\rm f}$ (298 K) (g), calcd. or of form.) ^[7] , 173.9 kcal/mol ($\Delta H_{\rm f}$ (298, calcd., G3) ^[7] , 170.5 kcal/mol ($\Delta H_{\rm f}$ (298, calcd., G3) ^[7] , 170.5 kcal/mol ($\Delta H_{\rm f}$ (298, calcd., G2) ^[7] , 171.7 kcal/mol ($\Delta H_{\rm f}$ (298, calcd., G2) ^[7] , 171.7 kcal/mol ($\Delta H_{\rm f}$ (298, calcd., B3LYP), atomizatio (298, calcd., B3LYP), atomizatio (298, calcd., B3LYP) ^[7] , $\Delta H_{\rm of}$ = 158 ± 4 calcd. in combination with $\Delta H_{\rm subl}$) ^{[7, 11} , 3.2 kJ/mol ($\Delta H_{\rm f}$ (9, exptl.) ^[13] , 178.2 kcal/mol ($\Delta H_{\rm f}$ (9)°, calcd., ccCA-ScCCA-PS3) ^[14] , 178.3 kcal/mol ($\Delta H_{\rm f}$ (9)°, [16]	298, liq.), calcd., 4 method) ^[2] , 7 kcal/mol (f°(298 K) (g), d., G3) ^[3, 11] , halpy of form., ol (ΔH _f ^{gas} ₂₉₈ , G2) ^[7] , 178.5 kcal/ cd., CBS-QB3) ^[7] , ωH _f ^{gas} ₂₉₈ , calcd., n reaction) ^[7] , kcal/mol [1], 160.9 kcal/ l/mol (ΔH _f (g)°, 3) ^[14] , 176.5 kcal/			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		7,530 (Q _{cal} , calcd.) ^[15]				
T _{ex} [K]						
p _{C-J} [kbar]		40.35 GPa (@ 1.85 g cm ⁻³ , heat of form. = 673.7 kJ/mol, calcd.) ^[2]				
		40.3 GPa (@ 1.852 g cm ⁻³ , calcd.) ^[15]				

VoD [m s ⁻¹]		9,220 (@ 1.85 g cm ⁻³ ; heat of form. = 673.7 kJ/mol, calcd.) ^[2] 9,700 (@ 1.84 g cm ⁻³ (single crystal ρ), calcd.) ^[9] 9,600 (@ 1.852 g cm ⁻³ , calcd.) ^[15]		9,600 (@ 1.55 g cm ⁻³ (ρ of pressing), polyethylene tubes 5 mm diameter, 60 mm length) ^[13]
V_0 [L kg ⁻¹]				
I _s [Ns g ⁻¹]	2.95 (calcd., ISPBKW	code) ^[16] , 2.85 (calcd., en	npirical) ^[16]	
Critical initiation pressure	0.37 ± 0.02 GPa (disi	ntegrating shell method) [[]	6, 13]	
LSGT [cm]	$P_{\rm cr} = 0.3$ GPa (critical	pressure of detonation in	itiation, ca	lcd., LSGT) [15]
Thermal stability	Can be stored @ 0 °C for a long time ^[1] , crystals (commercial sample, \geq 99.0%) stored for >8 years in hermetically sealed glass cans closed with covers with Teflon gasket in dessicator over silica gel @ 18–27 °C showed essentially unchanged properties except decreased $\rho^{[5]}$ Effect of storage (under laboratory conditions) on ρ (He pycnometer 20 °C) ^[5] :			
	Storage time (years) Weighed portion (g)	ρ (g cm ⁻³)	
	0	1.0114	1.832 ± 0	.0011
		1.0409	1.828 ± 0	.0010
	3	0.9909	1.809 ± 0	.0020
		1.0545	1.810 ± 0	.0010
	8	0.8169	1.788 ± 0	.0013
		1.0813	1.787 ± 0	.0010
	Est. extent of dec.: 0.11% dec. during 1,385 days ^[5] , 0.23% in 8 years (@ 22 °C, extrapolation based on kinetic data) ^[5] (See additional table below detailing the variation in cell parameters on storage time)			
Vapor pressure [Pa]	Vapor pressure above liquid FTDO: $ln(p [atm]) = -6.391/T + 13.56^{[9]}$			
Volatility	Able to sublime readily @ RT ^[13] , noticeable weight loss occurs @ 60 °C when the saturation vapor pressure >10 Torr ^[13]			
Burn rate [mm/s]	Combustion @ all pressures accompanied by bright flame ^[9] , in pressure range 0.1–10 MPa combustion law: $u = 18.9p^{0.7}$ [mm/s] ^[9]			

	Approx. values from graph ^[9] :				
	u (mm/s)	p (MPa)	u (mm/s)	p (MPa)	
	4	0.1	55	3	
	5	0.2	54	4	
	10	0.4	56	5	
	16	0.6	60	6	
	21	1	80	9	
	18	1.2	82	10	
	45	2.1			
Solubility [g/mL]	g FTDO/100 g solvent @ 20 °C ^[11] : 66.7 in EtOAc ^[11] , 80 in acetone ^[11] , 89.0 in CH ₃ CN ^[11] , <0.6 in CCl ₄ ^[11] , ~0.1 in hexane ^[11] , 0.2 in octane @ 20 °C ^[11] , ~1 in octane @ 80 °C ^[11] ~45 in 95.6% EtOH ^[11] , 20.0 in 1,2-dichloroethane ^[11] , 17.0 in CH ₂ Cl ₂ ^[11] , solubility in H ₂ O/EtOH mixtures increases as EtOH content increases ^[11] , readily soluble in MeOH, EtOH, [†] PrOH, Me ₂ CO, CH ₂ Cl ₂ , CHCl ₃ , C ₂ H ₄ Cl ₂ , ethyl acetate, DMF and blended nitramine–nitro ester and nitramine–nitrotriazole plasticizers ^[13] , moderately soluble in benzene, toluene and H ₂ O ^[13] , poorly soluble in pentane, hexane, heptane and CCl ₄ ^[13]				
Compatibility	Partial dec. after heating @ 60 °C in DMF, tetramethylurea or hexamethylphosphoramide for 6 h (UV spec.) ^[10] , dec. occurs actively @ $T < 0$ °C in more basic solvents such as tributylamine or N-methylmorpholine and sometimes with a flash @ higher T (UV spec.) ^[10] , no noticeable dec. in alphatic acids after 6 h @ 60 °C ^[10] , no reaction with anhydrous alcohols, DMSO or organochlorine solvents after 3 h @ 60 °C (UV spec.) ^[10] , stability in aq. solns. depends on T : no changes in UV after several hours @ 20 °C, essentially no dec. after 3–4 days (UV spec.) ^[10] , inertness in acidic media ^[11] , FTDO forms FTDO-arene solvate systems with, for example, benzene, toluene, o -xylene, nitrobenzene ^[11] , forms solid solns., eutectics and complexes with 2,4-di-nitro-2,4-diazapentane, N , N -bis(β -nitroxyethyl)-nitramine, nitraminopropionitrile, and 4,5-dinitro-2-ethyl-1,2,3-triazole that crystallize from melts ^[13]				
ΔH _{dec} [J/g]	$ \begin{array}{l} 494 \ cal/g \ (DSC \ @ \ 10 \ ^{\circ}C/min)^{[9]}, \ Q_{dec.} = 335 \ cal/g \ (DSC \ @ \ 4 \ ^{\circ}C/min, \\ 1-1.2 \ mg \ sample, \ N_2 \ atmosphere)^{[9]}, \ Q_{dec.} = 805 \ cal/g \ (DSC \ @ \ 8 \ ^{\circ}C/min, \\ 1-1.2 \ mg \ sample, \ N_2 \ atmosphere)^{[9]}, \ Q_{dec.} = 1,047 \ cal/g \ (DSC \ @ \ 16 \ ^{\circ}C/min, \\ 1-1.2 \ mg \ sample, \ N_2 \ atmosphere)^{[9]}, \ Q_{dec.} = 1,011 \ cal/g \ (DSC \ @ \ 32 \ ^{\circ}C/min, \\ 1-1.2 \ mg \ sample, \ N_2 \ atmosphere)^{[9]}, \ 201.14 \ kJ/mol \ (DSC \ @ \ 1 \ ^{\circ}C/min)^{[13]} \end{array} $				
Effect of excitation by electron beam	pressed @ 4 probability o 320 µm thic	00 MPa up lepends or kness shov 80 µm did	to $\rho = 1.44$ n sample thic v initiation p not explode	g cm ⁻³) ^[4] , e kness: @ <i>F</i> robability <i>F</i>	≥ 0.09 J/cm² (FTDO sample explosion initiation H = 0.27 J/cm², sample with P = 1 ^[4] , but samples with O sample pressed @ 400

$\Delta H_{\text{subl}}[\text{kcal/mol}]$	15.1 ± 0.8 (Burdon manometer, <i>T</i> range 40–80 °C) ^[7, 9]
$\Delta H_{\text{melting}} [\text{cal/g}]$	−15.5 (DSC @ 10 °C/min) ^[9] , 7.41 kJ/mol ^[13]
ΔH_{evap} [kcal/mol]	12.7 (based on heat of melting from DSC) ^[9]

Variation of unit cell parameters with time of storage under laboratory conditions (X-ray diffraction powder data), crystals obtained by sublimation prior to storage^[5]:

Parameter	Storage time (days)			
	0	14	860	1,385
a (Å)	19.893	19.880	20.009	20.061
c (Å)	9.9359	9.9137	10.0259	10.0486
V (ų)	3,405.17	3,393.12	3,475.16	3,502.20
Z	24	24	24	24
ρ (g cm ⁻³)	1.826	1.833	1.789	1.776

- [1] A. M. Churakov, S. L. loffe, V. A. Tartakovsky, Mendeleev Commun., 1995, 5, 227–228.
- [2] K. O. Christe, D. A. Dixon, M. Vasiliu, R. I. Wagner, R. Haiges, J. A. Boatz, H. L. Ammon, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 463–468.
- [3] K. R. Jorgensen. G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583-589.
- [4] V. I. Oleshko, V. E. Zarko, V. V. Lysyk, V. P. Tsipilev, P. I. Kalmykov, Int. Congress Energy Fluxes, Radiation Effects (EFRE 2014), J Physics: Conf. Series, 2014, 552, 012044.
- [5] N. V. Chukanov, I. P. Kalmykov, G. V. Shilov, A. V. Shastin, V. V. Nedelko, S. A. Vozchikova, B. L. Korsunskii, Russ. J. Appl. Chem., 2016, 89, 566-569.
- [6] V. A. Teselkin, Comb., Explosion, Shock Waves, 2009, 45, 632–633.
- [7] V. G. Kiselev, N. P. Gritsan, V. E. Zarko, P. I. Kalmykov, V. A. Shandakov, *Comb., Explosion, Shock Waves*, **2007**, *43*, 562–566.
- [8] V. I. Pepekin, Comb., Explosion, Shock Waves, 2010, 4, 954–962.
- [9] V. P. Sinditskii, A. V. Burzhava, V. Y. Egorshev, A. B. Sheremetev, V. P. Zelenov, Comb., Explosion, Shock Waves, 2013, 49, 117–120.
- [10] V. P. Zelenov, A. A. Lobanova, N. I. Lyukshenko, S. V. Sysolyatin, A. I. Kalashnikov, Russ. Chem. Bull. Int. Ed., 2008, 57, 1384–1389.
- [11] V. P Zelenov, P. I. Kalmykov, A. I. Kalashnikov, Russ. J. Phys. Chem. A, 2013, 87, 767-771.
- [12] V. P. Zelenov, A. A. Lobanova, S. V. Sysolyatin, N. V. Sevodina, Russ. J. Org. Chem., 2013, 49, 455–465.
- [13] A. S. Zharkov, P. I. Kalmykov, Y. N. Burtsev, N. P. Kuznetsova, I. A. Merzhanov, N. V. Chukanov, V. V. Zakharov, G. V. Romanenko, K. A. Sidorov, V. E. Zarko, *Russ. Chem. Bull. Int. Ed.*, 2014, 63, 1785–1800.
- [14] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583–589.
- [15] A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Centr. Eur. J. Energet. Mater., 2011, 8, 233-247.
- [16] D. Frem, J. Aerosp. Technol. Manag., 2018, 10, e3318.

Glycerol acetate dinitrate

Name [German, acronym]: Glycerol acetate dinitrate, dinitroacetin, acetyl

glycerine dinitrate [acetyldinitroglycerin]

Main (potential) use: Additive to nitroglycerine in order to depress its

solidification point^[1]

	Glycerol acetate dinitrate
Formula	$C_5H_8N_2O_8$
Molecular mass [g mol ⁻¹]	224.13
Appearance at room temperature (RT)	Colorless and odorless oil (pure) ^[4]
IS [J]	Very insensitive ^[4]
N [%]	12.50
Ω(CO ₂) [%]	-42.83
T _{m.p.} [°C]	Not frozen at -20 °C (commercial mixture of isomers) ^[3] , <-20 (freezing point) ^[5]
<i>T</i> _{b.p.} [°C]	147 (@ 15 mm Hg, commercial mixture of isomers) ^[3] , 147 (@ 15 mm Hg, with dec.) ^[4] , 147 (@ 15 mm Hg) ^[5]
T _{dec.} [°C]	160 (onset, commercial, mixture of isomers, vigorous dec. @ 170–180 °C) $^{[3]}$, 160 (onset on slow heating in glass tube) $^{[4]}$, 170–180 (vigorous dec. on slow heating in glass tube) $^{[4]}$, 160 (dec. begins) with vigorous dec. @ 179–180 °C $^{[5]}$
ρ [g cm ⁻³]	1.412 ^[1] , 1.462 ± 0.06 (@ 293.15 K) ^[2] , 1.42 (@ 15 °C, commercial, mixture of isomers) ^[3, 5] , sp. gr. = 1.412 (@ 15 °C) ^[4] , sp. gr. = 1.45 (@ 15 °C) ^[4]
Heat of formation	

	Calcd. (K-J)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		2,761.4 J/g (explosion heat) ^[5] 2,761.4 J/g (explosion heat, commercial, mixture of isomers) ^[3]	2,761.4 J/g ^[3] 657 cal/kg [H ₂ O (gas) @ C^{V}] ^[4]
<i>T</i> _{ex} [K]			
p _{C-J} [GPa]			
VoD [m s ⁻¹]			
$V_0 [L kg^{-1}]$			

Trauzl test [cm³, % TNT]	145 cc (gelatinized: 92% glycerol acetate dinitrate, 8% collodion wool) ^[4] , 200 cm³ (detonated with no. 8 detonator) ^[3, 5] , 145 cm³ (blasting gelatin made of 92% acetyl glycerine dintirate) ^[3, 5]
100 °C heat test [% mass loss]	1.4 % mass loss in 24 h @ 75 °C ^[4]
Thermal stability	Significant dec. after 24 h @ 75 °C ^[5, 3]
Volatility	Less volatile than dinitrochlorhydrin ^[4] but higher than that of dinitroglycerine or NG ^[4] , commercial product is higher than that of NG but lower than that of chloroglycerine dinitrate ^[5] , more volatile than NG (commercial, mixture of isomers) ^[3]
Solubility [g/mL]	Insoluble in $H_2O^{[4]}$, easily soluble in EtOH, Et_2O , acetone, conc. $HNO_3^{[4]}$, miscible in all amounts with $NG^{[4]}$, miscible with water ^[5] , dissolves NC readily ^[5]
Compatibility	Gelatinized with collodion wool, can be ignited by impact even at RT [4]
Abel test	Onset after ca. 10 min ^[4]
Explosion strength	92% that of NG ^[3]

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, p. 152.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [4] P. Naoúm, Nitroglycerin und Nitroglycerinsprengstoffe (Dynamite): Mit Besonderer Berücksichtigung der dem Nitroglycerin Verwandten und Homologen Salpetersäureester, Springer-Verlag GmbH, Berlin Heidelberg, 1924.
- [5] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

Glycerol 1,2-dinitrate

Name [German, acronym]: Glycerol 1,2-dinitrate*, glyceryl dinitrate, dinitroglycerin,

β-isomer of glyceryl dinitrate [glycerin-1,2-dinitrat,

1,2-dinitroglycerin]

Main (potential) use: Gelatinizer of certain types of nitrocelluloses^[1], in

mixtures for nonfreezing dynamites^[5]

Structural formula:

* Glycerol dinitrate often consists of a mixture of the two isomers: 1,2-glycerol dinitrate and 1,3-glycerol dinitrate^[5]

	Glycerol 1,2-dinitrate		
Formula	$C_3H_6N_2O_7$		
Molecular mass [g mol ⁻¹]	182.09		
Appearance at RT	Colorless, odorless oil ^[5]		
IS [J]	1.5 Nm ^[1] , 7–10 cm (2 kg hamme specified) ^[7] , 30–40 cm (β-isome		
N [%]	15.38		
Ω(CO ₂) [%]	-17.6		
T _{m.p.} [°C]	40 (freezing point, 1,2- or 1,3-isomer not specified) ^[7]		
T _{dec.} [°C]	Distillate hardly decomposed @ 146 °C under 15 mm Hg (1,2- or 1,3-isomer not specified) ^[7]		
ρ [g cm ⁻³]	1.51 ^[1] , 1.594 ± 0.06 (@ 293.15 K) ^[2] , 1.47 (1,2- or 1,3-isomer not specified) ^[7]		
Heat of formation	$-350.6 \text{ kJ/mol } (\Delta_i H^o)^{[3]}, -1925.4 \text{ kJ/kg } (\Delta_i H^o)^{[3]}, -472.4 \text{ kJ/mol}$ (enthalpy of form., exptl.) ^[8] , -509.6 kJ/mol (enthalpy of form., calcd., emp.) ^[8]		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,702		
T _{ex} [K]	3,803		

p _{C-J} [GPa]	26.1	
VoD [m s ⁻¹]	7,888 (@ TMD)	3,320 (92% glyceryl dinitrate gel, 1,2- or 1,3-isomer not specified) ^[7]
V ₀ [L kg ⁻¹]	795	

Trauzl test [cm³, % TNT]	153% TNT ^[4] , 450 (1,2 or 1,3 isomer not specified) ^[6] , 500 (cf. 82% NG, 1,2- or 1,3-isomer not specified) ^[7]
5 s explosion $T[^{\circ}C]$ Explosion $T[^{\circ}C]$	>170 (1,2- or 1,3-isomer not specified) ^[7]
Solubility [g/mL]	Readily soluble in most organic solvents (1,2- or 1,3-isomer not specified) ^[7] , insoluble in CCl ₄ and gasoline (1,2- or 1,3-isomer not specified) ^[7] , solubility in water @ 20 °C = 8.6% (1,2- or 1,3-isomer not specified) ^[7]
Abel test	Signs of dec. only after 16 days heating (1,2- or 1,3-isomer not specified) ^[7]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 152–153.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] G. M. Khrapkovskii, T. F. Shamsutdinov, D. V. Chachkov, A. G. Shamov, *Journal of Molecular Structure (Theochem)*, **2004**, *686*, 185–192.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [5] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [7] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [8] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.

Glycerol 1,3-dinitrate

Name [German, acronym]: Glycerol 1,3-dinitrate*, glyceryl dinitrate, dinitroglycerin,

glycerine dinitrate, α -isomer of glyceryl dinitrate

[glycerin-1,3-dinitrat, 1,3-dinitroglycerin]

Main (potential) use: Gelatinizer of certain types of nitrocelluloses^[1], in

mixtures for nonfreezing dynamites^[6]

Structural formula:

* Glycerol dinitrate often consists of a mixture of the two isomers: 1,2-glycerol dinitrate and 1,3-glycerol dinitrate $^{[6]}$

	Glycerol 1,3-dinitrate		
Formula	$C_3H_6N_2O_7$		
Molecular mass [g mol ⁻¹]	182.09		
Appearance at RT	Colorless, odorless oil ^[6]		
IS [J]	1.5 Nm ^[1] , 90–100 cm for 2 kg weight (α -isomer, hydrate crystals) ^[5,8] , 30–40 cm for 2 kg weight (β -isomer, liquid) ^[5] , 7–10 cm (2 kg hammer, 1,2- or 1,3-isomer not specified) ^[8]		
N [%]	15.38		
Ω(CO ₂) [%]	-17.6		
T _{m.p.} [°C]	26 ^[2] , 40 (freezing point, 1,2- or 1,3-isomer not specified) ^[8]		
T _{dec.} [°C]	Distillate hardly decomposed @ 146 °C under 15 mm Hg (1,2- or 1,3-isomer not specified) ^[8]		
ρ [g cm ⁻³]	1.51 ^[1] , 1.594 ± 0.06 (@ 293.15 K) ^[3] , 1.47 (@ 20 °C) ^[5] , 1.47 (1,2- or 1,3-isomer not specified) ^[8]		
Heat of formation	$-351.7 \text{ kJ/mol } (\Delta_{\rm f} H^{\circ})^{[4]}, -1,931.5 \text{ kJ/kg } (\Delta_{\rm f} H^{\circ})^{[4]}$		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,695		
T _{ex} [K]	3,800		

p _{C-J} [GPa]	26.1	
VoD [m s ⁻¹]	7,886 (@ TMD)	3,320 (92% glyceryl dinitrate gel, 1,2- or 1,3-isomer not specified) ^[8]
V_0 [L kg ⁻¹]	795	

Trauzl test [cm³, % TNT]	$450 (1,2- \text{ or } 1,3- \text{isomer not specified})^{[7]}, 500$ (cf. 82% NG, 1,2 – or 1,3- isomer not specified) ^[8]
5 s explosion T [°C] Explosion T [°C]	>170 (1,2- or 1,3-isomer not specified) ^[8]
Solubility [g/mL]	Readily soluble in most organic solvents (1,2- or 1,3-isomer not specified) ^[8] , insoluble in CCl ₄ and gasoline (1,2- or 1,3-isomer not specified) ^[8] , solubility in water @ 20 °C = 8.6% (1,2- or 1,3-isomer not specified) ^[8]
Abel test	Signs of dec. only after 16 days heating (1,2- or 1,3-isomer not specified) ^[8]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 152–153.
- [2] "PhysProp" data were obtained from Syracuse Research Corporation of Syracuse, New York (US).
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [4] G. M. Khrapkovskii, T. F. Shamsutdinov, D. V. Chachkov, A. G. Shamov, *Journal of Molecular Structure (Theochem)*, **2004**, *686*, 185–192.
- [5] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [6] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, 1943, John Wiley and Sons Inc., New York, pp. 214–217.
- [7] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [8] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

Glycerol-2,4-dinitrophenyl ether dinitrate

Name [German, acronym]: Glycerol-2,4-dinitrophenyl ether dinitrate

[dinitrophenylglycerinetherdinitrat, dinitryl]

Main (potential) use: Gelatinizer of nitrocellulose $^{[1]}$

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N

	Dinitryl		
Formula	C ₉ H ₈ N ₄ O ₁₁		
Molecular mass [g mol ⁻¹]	348.18		
Appearance at RT			
IS [J]	8 Nm ^[1]		
N [%]	16.09		
Ω(CO ₂) [%]	-50.5		
T _{m.p.} [°C]	124 ^[1]		
ρ [g cm ⁻³]	1.667 ± 0.06 (@ 293.15 K) ^[2]		
Heat of formation			
	Calcd. (K-J)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [GPa]			

VoD [m s ⁻¹]	
$V_0 [L \text{ kg}^{-1}]$	

Trauzl test [cm³, % TNT] 320 cm³[3]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 153.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446–2451.

Glycerol nitrolactate dinitrate

Name [German, acronym]: Glycerol nitrolactate dinitrate, glycerol monolactate

trinitrate [dinitroglycerinnitrolactat, GLTN]

Main (potential) use: Gelatinizer of nitrocellulose^[1, 5]

$$O_2N$$
 O_2N O_2N

	Glycerol nitrolactate dinitrate		
Formula	C ₆ H ₉ N ₃ O ₁₁		
Molecular mass [g mol ⁻¹]	299.15		
Appearance at RT			
IS [J]	15 cm (1 lb mass, 20 mg sample	e, B.M.) ^[5]	
FS [N]	Unaffected by steel shoe (frictio by fiber shoe (friction pendulum		
N [%]	14.05		
Ω(CO ₂) [%]	-29.4		
ρ [g cm ⁻³]	1.47 ^[1, 3] , 1.580 ± 0.06 (@ 293.15 K) ^[2] , 1.47 (liq.) ^[5]		
Heat of formation			
Heat of combustion	2407 cal/g ^[5]		
	Calcd. (K-J)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,837 [H ₂ O (l)] ^[3]	
		4,455 [H ₂ O (g)] ^[3]	
<i>T</i> _{ex} [K]			
p _{C-J} [GPa]			
VoD [m s ⁻¹]			
<i>V</i> ₀ [L kg ^{−1}]		905 ^[3]	

Sand test [g]	13.1 g (200 g bomb) ^[5]
Ballistic mortar test	114% TNT ^[4]
5 s explosion T[°C]	223 ^[5]
100 °C heat test [% mass loss]	2.5% mass loss in first 48 $h^{[5]}$, 1.8% mass loss in second 48 $h^{[5]}$, no explosion in 100 $h^{[5]}$
Vacuum stability test [cm³/h]	5.9 cc/40 h @ 100 °C ^[5]
Volatility [mg/cm²/h]	28 @ 60 °C ^[5]
Solubility [g/mL]	<0.01 g/100 g H ₂ O @ 25 °C ^[5] , >0.015 g in 100 g H ₂ O @ 60 °C ^[5]
compatibility	Hydrolysis: 10 days @ 22 °C, 0.021 % acid ^[5] , 5 days @ 60 °C, 0.014% acid ^[5]
Refractive index	$n^{\rm D}_{25} = 1.464^{[5]}$

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 153–154.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–201**7 ACD/Labs).
- [3] J. Köhler, R. Meyer, A. Homburg, Explosivstoffe, 10th edn., Wiley-VCH, Weinheim, 2008, p. 150.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [5] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.

Glycerol trinitrophenyl ether dinitrate

Name [German, acronym]: Glycerol trinitrophenyl ether dinitrate

[trinitrophenylglycerinetherdinitrat]

Main (potential) use: Structural formula:

$$O_2N$$
 O_2N
 O_2N
 O_2N

	Glycerol trinitrophenyl ether dinitrate		
Formula	C ₉ H ₇ N ₅ O ₁₃		
Molecular mass [g mol ⁻¹]	393.18		
Appearance at RT			
IS [J]	4 Nm ^[1]		
N [%]	17.81		
Ω(CO ₂) [%]	-34.6		
T _{m.p.} [°C]	124 ^[2]		
T _{dec.} [°C]	150 ^[2]		
$\rho [\mathrm{g} \mathrm{cm}^{-3}]$	1.782 ± 0.06 (@ 293.15 K) ^[3]		
Heat of formation			
	Calcd. (K-J)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [GPa]			
VoD [m s ⁻¹]			
V_0 [L kg ⁻¹]			

|--|

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 154.
- [2] J. J. Blanksma, P. G. Fohr, *Recueil des TravauxChimiques des Pays-Bas et de la Belgique*, **1946**, 65, 711–721.
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [4] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446–2451.

Glycidyl azide polymer

Name [German, acronym]: Main (potential) use:

Glycidyl azide polymer [glycidylazidpolymer, GAP] Energetic binder for composite propellants^[1, 35], energetic polymer^[11, 16], active energetic binder in rocket propellants^[14], energetic binder/plasticizer in rocket propellant and gas generator applications^[15]

$$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix}_{N_3}$$

	GAP
Formula	Structural unit: C ₃ H ₅ N ₃ O
Molecular mass [g mol ⁻¹]	Structural unit: 99.09; mean: $2,000^{[2]}$, $500-5,000^{[7]}$, $\sim 700^{[15]}$, $1,700 \pm 300 \text{ (GAPdiol)}^{[30]}$, $\geq 900 \text{ (GAPtriol)}^{[30]}$, $508.46 \text{ (GAP-A, azido-terminated GAP polymer)}^{[36]}$
Appearance at RT	Viscous yellow oil (fluid with specific mass of ~1.3 \times 10 ³ kg/m ³ ; H-[-O-CH(-CH ₂ -N ₃)-CH ₂ -] _n OH with $n = 20$, uncured GAP) ^[13, 14] , liquid ^[33] , light yellowish viscous liquid (uncured) ^[35]
IS [J]	7.9 Nm ^[1] , >170 cm ^[4] , 200 kg/cm ^[6] , 300 kg/cm ^[7]
FS [N]	>360 ^[1] , 32.4 kg ^[6]
ESD [J]	6.25 ^[2, 6]
N [%]	42.41 (monomer unit)
Ω(CO ₂) [%]	-121.1
T _{m.p.} [°C]	177.1 (DSC) ^[26] , 150 (dec.) ^[35]
T _{dec.} [°C]	253.53 (DSC @ 10 °C min ⁻¹) ^[3] , 250 (DSC) ^[6] , 255 (TG) ^[6] , 217–218 (ARC combined with DSC) ^[7] , 240 (first stage dec.) and 260–500 (second stage dec.) ^[7] , 215 (RSFTIR @ atmospheric pressure) ^[7] DTA/TG (He atmosphere, 10.1 MPa, heating rate = 0.167 K/s): 202–227 (exothermic peak, dec. and gasification rxns., corresponds to first stage weight loss of 40% in TG), 227 (second stage weight loss begins without heat liberation) ^[7] , T_i = 187, T_f = 259 (TG, @ 2 °C/min, first stage, GAP prepolymer) ^[28] , T_i = 173, T_f = 254 (TG, @ 2 °C/min, first stage, cross-linked GAP) ^[28]

DTA/TG (dynamic nitrogen atmosphere, 5 °C/min)^[10]:

Heating rate	First stage		Second stage	
(°C/min)	Peak <i>T</i> (°C)	Weight loss (%)	Peak <i>T</i> (°C)	Weight loss (%)
1	215.4	37.8	314.7	25.1
2	222.9	37.6	323.6	25.2
3	225.6	37.4	325.1	25.1
5	228.9	37.9	334.7	25.3
Average		37.7		25.2

DTA/TG : two-stage dec. process; (i) 475–573 K (exo, 42% mass loss), (ii) T> 537 K (exo)^[14]

dec. @ 1 bar in Ar, @ 2–5 K/min shows 3 maxima: ~498 K (36 % mass loss), (ii) 608 K, (iii) 698 K (37% more mass loss in stages (ii) and (iii)) $^{[14]}$

184.4 ($T_{\rm e}$, onset 7), 253.7 ($T_{\rm p}$, peak max) (DSC @ 10 °C/min, N₂ atmosphere)^[19]

Stages of dec.[19]:

Stage 1 dec.		Stage 2 dec.			
DTG		TG	DTG		TG
T _{p1} (°C)	T (°C)	Mass loss (%)	T _{p2} (°C)	T (°C)	Mass loss (%)
238.7	277.7	39.3	337.3	850.0*	57.8

^{*} This value may be incorrect.

DSC @ different pressures^[19]: 253.7 (exo, peak max, DSC @ 0.1 MPa pressure, $10\,^{\circ}\text{C/min})^{[19]}$, 252.7 (exo, peak max, DSC @ 2 MPa pressure, $10\,^{\circ}\text{C/min})^{[19]}$, 249.6 (exo, peak max, DSC @ 6 MPa pressure, $10\,^{\circ}\text{C/min})^{[19]}$

Heating rate (°C/min)	Dec. onset T(°C)	Dec. T(°C)	Dec. final T(°C)
1	192	223	240
1.5	195	228	242
2	196	229	245
2.5	200	235	251

TGA^[29]: T_m (max reaction 7), T_o (onset 7), DSC @ 10 °C/min^[29]: T_o = 233, T_m = 251 (GAP prepolymer, uncured)^[29], T_o = 233, T_m = 240 (GAP binder, cured)^[29]

T _{glass transition} [°C]	$-43^{[7]}$, $-20 - 50$ (linear) ^[7] , -49.2 ± 0.4 (DSC, GAP average MW = 1534 g/mol) ^[12] , $-48^{[23,24]}$, 228 K (DSC @ 20 °C/min) ^[29] , -45 (GAP diol) ^[30] , -45 (GAP triol) ^[30] , $-50^{[32]}$, -78.8 (GAP-A, azido-terminated GAP) ^[36]				
ρ [g cm ⁻³]	$1.29^{[1,35]}$, $1.30^{[2,7,11,31,32]}$, 1.3 (n = 20, uncured) ^[14] , 1.27 (GAP polymer $C_{3.3}H_{5.6}O_{1.12}N_{2.63}$) ^[16] , $1.27^{[25]}$, 1.29 (GAP diol) ^[30] , 1.29 (GAP triol) ^[30] , 1.27 (GAP-A, azido-terminated GAP polymer) ^[36]				
	Values cited in ref. ^[27] :1.275 ^[27] , 1.27 ^[27] , 1.23 ^[27] , 1.28 ^[27] , 1.3 ^[27]				
Heat of formation	114 kJ/mol (enthalpy of form.) ^[1] , 1150 kJ/kg (enthalpy of form.) ^[1] , 176 kJ/mol (^[31] , 67.89 kcal/mol (dimer unit, $\Delta H_{\rm f}({\rm g})$) ^[9] , 340 kcal/mol ($\Delta H_{\rm f}({\rm l})$), 2,200 g/mol polymer, exptl. value) ^[9] , 746.79 kcal/mol ($\Delta H_{\rm f}({\rm g})$, 2,200 g/mol polymer, calcd. value) ^[9] , 169.7 kcal/mol ($\Delta H_{\rm f}({\rm g})$, 500 g/mol polymer, calcd. value) ^[9] , 584.90 kcal/mol ($\Delta H_{\rm f}({\rm l})$, 2200 g/mol polymer, calcd. value) ^[9] , 120.96 kcal/mol ($\Delta H_{\rm f}({\rm l})$, 500 g/mol polymer, calcd. value) ^[9] , 0.23 kcal/kg ($\Delta H_{\rm f}$) ^[15] , 0.28 kcal/kg ($\Delta H_{\rm f}$) ^[15] , 0.33 kcal/kg ($\Delta H_{\rm f}$) ^[15] , 957 kJ/kg ($\Delta H_{\rm f}$) ^[16,27] , 957 kJ/kg ^[11] , 0.25 kJ/g ($\Delta H_{\rm f}$)°, GAP 900) ^[17] , 0.34 kJ/g ($\Delta H_{\rm f}$ °, GAP 1300) ^[17] , 1.15 kJ/g ($\Delta H_{\rm f}$ °, GAP 2,900) ^[17] , 1.170 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, <i>Frankel</i>) ^[17] , 0.957 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, <i>Kubota</i>) ^[17] , 1.394 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, <i>Rhein</i>) ^[17] , 1.423 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, <i>Meyer</i>) ^[17] , 1.201 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, <i>Phatak</i>) ^[17] , 1.434 kJ/g ($\Delta H_{\rm f}$ °, GAP prepolymer, CHEETAH 2.0) ^[17] , 957 kJ/kg ^{[23} , 24], 1.50.2 kJ/kg ^[25] , 117 kcal/mol (GAP diol) ^[30] , 117 kcal/mol (GAP triol) ^[30] , 117 kJ/mol ^[32] , 0.957 MJ/kg ($\Delta H_{\rm f,r}$, 293 K, GAP prepolymer) ^[33] , 114 kJ/mol (enthalpy of form.) ^[35] , 141.0 kJ/mol (enthalpy of form., exptl.) ^[37] , 109.8 kJ/mol (enthalpy of form., calcd., emp.) ^[37]				
Heat of combustion	957 kJ/kg (monomer) ^[8] , 474 cal/g ^[7] , 28.4 kcal/mol (linear) ^[7] , 42 kcal/mol (branched) ^[7] , 4.78 kcal/g (500 g/mol polymer, calcd.) ^[9] , 4.8 kcal/g (500 g/mol polymer, exptl.) ^[9] , 5,010 \pm 15 cal/g ^[7] , -20.0 kJ/g ($\Delta_c H^o$, GAP 900) ^[17] , -20.1 kJ/g ($\Delta_c H^o$, GAP 1300) ^[17] , -20.3 kJ/g ($\Delta_c H^o$, GAP 2900) ^[17]				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
	1				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,824	3,430 [H ₂ O (l)] ^[35]	3,429 [H ₂ O (l)] ^[1]		
T _{ex} [K]	2,469				
p _{C-J} [GPa]	12.9				
VoD [m s ⁻¹]	6,597 (@ 1.293 g cm ⁻³)				
V ₀ [L kg ⁻¹]	793 946 ^[1, 5]				

Thermal stability	GAP is stable up to ~343 K, but begins to slowly lose weight above this $\mathcal{T}^{[15]}$					
	Gas evolution from GAP sample $[OCH_2CH(CH_2N_3)]_nOH$ (average molecular weight of sample = 2,300, synthesized @ 115 °C, time of PECH azidation = 8 h, gas evolution is highly dependent on sample preparation process and average molecular weight) ^[18] :					
	@ 80 °C	Time (min)	Gas evolution $(\Delta V, \text{cm}^3/\text{g})$	@ 95 °C	Time (min)	Gas evolution (ΔV, cm³/g)
		0	0		0	0
		1,000	~ 0.06		~ 300	~ 0.075
		2,000	0.1		~ 500	~0.13
		5,000	~1.6		~ 600	~ 0.2
		7,000	~ 1.9		~1500	~0.28
		~8,750	~ 2.1		~ 2,000	~0.31
Vacuum stability test [cm³/h] Burn rate [mm/s]	$0.4\pm0.1~\text{mL/g}^{[21]}$ $2.2~\text{mm/s}~(\text{@ 4.5 bar})~-11~\text{mm/s}~(\text{@ 80 bar})~(\text{initial }\textit{T, T}_0=293~\text{K, cured}$ $\text{GAP in N}_2~\text{atmosphere})^{[14]},~18.3~(\text{uncured GAP in Ar @ 1 bar, quartz vial,}$ $8~\text{mm diameter})^{[14]}$					
	GAP binder ^[16] :					
	Burn rate × 10 ³ (m/s) Pressure (MPa) ~5.5 ~ 0.65 ~6 ~ 0.8 ~7 ~ 1 ~9 ~ 2					
]		
	~10	~10 ~2.5]		
	1.35 (@ 1 atm., SMATCH/FTIR spectroscopy) ^[34] , 1.7 (@ 1 atm., strand burner) ^[34]					
Flame T [K]	$1,300^{[15]},1,365\ @\ 735\ psi^{[15]},1,465\ (@\ 5\ MPa)^{[16]},1,365\ (@\ 5\ MPa,GAP\ polymer,C_{3.3}H_{5.6}O_{1.12}N_{2.63})^{[16]},1,890\ (GAP\ binder)^{[16]},1,470\ (@\ 5\ MPa,GAP\ prepolymer)^{[33]},1,370\ (@\ 5\ MPa,GAP\ copolymer)^{[33]}$					

Surface T during combustion [K]	700-765 ^[15] , 710-750 ^[15] , 813 ^[15]			
Viscosity [cP]	500-5,000 ^[7] , 2.4 × 10 ³ @ 25 °C ^[23]			
Hygroscopicity	Hygroscopic ^[12]			
	Moisture content of GAP as function of environmental exposure time ^[12] :			
	Time (h)	Moisture (%)		
	0	~0.25		
	~0.5	~ 0.35		
	~1	~ 0.45		
	~1.5	0.065		
	~24	~0.13		
	192	>0.5		
Compatibility	Incompatible with CL-20 (lowers thermal stability of CL-20) ^[21] , CL-20 unstable when mixed with isocyanate-cured GAP ^[21] , CL-20 is compatible with GAP ^[21] , good compatibility with high-energy oxidizers like AP and ADN ^[24]			
ARC (accelerated rate calorimetry)	m/g = 0.1, T_0 (onset T) = 163 ± 4 °C, $-\Delta M$ (mass loss) = 34%, P_r (residual pressure) = 0.4 MPa, E (activation energy) = 110 ± 4 kJ mol ⁻¹ , ln(Z/min ⁻¹) (Z = preexponential factor) = 26 ± 1 ^[22]			
Thermal conductivity [cal/cm-s-K]	$3.5 \times 10^{-4[27]}$, $5.76 \times 10^{-4[27]}$			
Heat capacity [cal/g-K]	0.45 ^[27]			
Activation energy for initial dec. stage [kcal/mol]	Values cited in ref. $^{[27]}$: 43 (TG) $^{[27]}$, 41.5 (DSC) $^{[27]}$, 41.6 (DTA, TG) $^{[27]}$, 37 (TGA) $^{[27]}$, 39.9 and 41.9 (theoretical) $^{[27]}$, 32.4 (TGA, DSC) $^{[27]}$, 39.4 ± 0.3 (TGA) $^{[27]}$, 43.2 ± 2.8 (SMATCH) $^{[27]}$, 42.2 (MS) $^{[27]}$, 43.5 (DSC) $^{[27]}$, 39.3 (MBMS) $^{[27]}$			
Dec. enthalpy, Δ <i>H</i> [J/g]	440 (cross-linked GAP, DSC @ 2 °C/min) ^[28] , 550 cal/g (DSC @ 10 °C/min, GAP prepolymer, uncured) ^[29] , 474 cal/g (DSC @ 10 °C/min, GAP binder, cured) ^[29]			

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 154.
- [2] M. B. Frankel, L. R. Grant, J. E. Flanagan, Journal of Propulsion and Power, 1992, 8, 560-563.
- [3] R. R. Soman, J. Athar, N. T. Agawane, S. Shee, G. M. Gore, A. K. Sikder, *Polymer Bulletin*, 2016, 73, 449–461.
- [4] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, L. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro (eds.), Springer, 2017.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] K. Kishore, K. Sridhara, Solid Propellant Chemistry: Condensed Phase Behavior of Ammonium Perchlorate-Based Solid Propellants, Defence Research and Development Organisation, Ministry of Defence, New Delhi, India, 1999.
- [7] A. N. Nazare, S. N. Asthana, H. Singh, J. Energet. Mater., 1992, 10, 43–63.
- [8] N. Kubota, I. Aoki, Propellants, Explosives, Pyrotechnics, 2000, 25, 168–171.
- [9] S. Ringuette, X. Lafleur-Lambert, R. Stowe, H. Abou-Rachid, M. Jaidann, R. P. Lima, C. Dubois, Molecular Modeling of Hybrid Metal-Polymer Materials, ICT 2011, Karlsruhe, Germany, pp. 19-1–19-11.
- [10] S.-F. Lu, Mechanisms and Kinetics of Thermal Degradation of Glycidyl Azide Polymer, ICT 2016, Karlsruhe, Germany, pp. 41-1–41-12.
- [11] J. Gu, A.-M. Pang, X.-P. Zhang, B.-W. Yin, Q. Song, Y.-F. He, *Application of Graphene Supported Burning-Rate Catalyst in GAP Propellant*, ICT **2017**, Karlsruhe, Germany, pp. 49-1–49-8.
- [12] C. B. Dall Agnol, R. C. L. Dutra, S. N. Cassu, Moisture Influence in Polyurethane Obtained From Reaction of Glycidyl Azide Polymer With Toluene Diisocyanate, ICT 2015, Karlsruhe, Germany, pp. 71-1-71-9.
- [13] L. V. Kuibida, O. P. Korobeinichev, A. G. Shmakov, E. N. Volkov, A. A. Paletsky, *Combustion and Flame*, **2001**, *126*, 1655–1661.
- [14] O. P. Korobeinichev, L. V. Kuibida, E. N. Volkov, A. G. Shmakov, *Combustion and Flame*, **2002**, 129, 136–150.
- [15] H. Arisawa, T. B. Brill, Combustion and Flame, 1998, 112, 533-544.
- [16] N. Kubota, I. Aoki, Characterization of Heat Release Process of Energetic Materials, ICT 1999, Karlsruhe, Germany, 13-1–13-8.
- [17] E. Diaz, P. Brousseau, G. Ampleman, R. E. Prud'homme, Propellants, Explosives, Pyrotechnics, 2003, 28, 101–106.
- [18] V. G. Produkin, V. V. Chorskii, A. I. Kuzaev, N. V. Chukanov, B. C. Fedorov, G. M. Nazin, Side GAP Thermal Decomposition Reaction, ICT 2000, Karlsruhe, Germany, pp. 56-1–56-8.
- [19] F.-Q. Zhao, P. Y. D. Chen, S.-W. Li, C.-M. Yin, Effects of Metal Powder with Different Particle Sizes on Thermal Decomposition Characterisatics of Glycidyl Azide Polymer, ICT 2000, Karlsruhe, Germany, pp. 58-1–58-7.
- [20] G. Santhosh, S. Venkatachalam, A. U. Francis, K. Krishnan, K. B. Catherine, K. N. Ninan, Thermal Decomposition Kinetic Studies on Ammonium Dinitramide (ADN) – Glycidyl Azide Polymer (GAP) System, ICT 2002, pp. 64-1-64-14.
- [21] P. Brousseau, S. Thiboutot, G. Ampleman, S. Côté, P. Béland, *Behaviour of CL-20 in TNT-Based Explosives*, ICT **2007**, Karlsruhe, Germany, pp. 27-1–27-12.
- [22] S. Singh, Q. S. M. Kwok, C. M. Badeen, B. Acheson, R. Turcotte, P. Brousseau, *Compatibility of CL-20 with TNT and GAP-Based ETPE*, ICT **2007**, Karlsruhe, Germany, pp. 131-1–131-12.
- [23] T. Keicher, M. Dörich, U. Förter-Barth, C. Grünfelder, H. Krause, U. Schaller, S. Steinert, Preparation and Properties of Energetic Thermoplastic Elastomers from GAP and Poly-BAMO, ICT 2012, Karlsruhe, Germany, pp. 8-1–8-10.

- [24] T. Keicher, W. Janitschek, U. Schaller, H. Krause, Synthesis and Properties of Random Co-Polymer Poly-(GA/BAMO) As Energetic Binder, ICT 2014, Karlsruhe, Germany, pp. 101-1–101-14.
- [25] K. Menke, M. Bohn, P. B. Kempa, AN/PolyGLYN Propellants Minimum Smoke Propellants with Reduced Sensitivity, ICT 2006, Karlsruhe, Germany, pp. 14-1–14-14.
- [26] I. Komai, W. Sato, Reaction Mechanisms in Slow Cook-Off Tests of GAP/AP Propellants, ICT 2005, Karlsruhe, Germany, pp. 99-1–99-11.
- [27] K. V. Puduppakkam, M. W. Beckstead, *Glycidyl Azide Polymer Combustion Modeling*, ICT **2003**, Karlsruhe, Germany, pp. 24-1–24-17.
- [28] S. Reshmi, T. L. Varghese, K. Krishnan, S. S. Rao, K. N. Ninan, *Thermo Analytical Investigation on Glycidyl Azide Polymer Based Propellant*, ICT 2003, Karlsruhe, Germany, pp. 98-1–98-12.
- [29] S.-M. Shen, A.-L. Lu, S.-I. Chen, H.-C. Yeh, *Thermochim. Acta*, 1991, 80, 251–268.
- [30] A. J. Paraskos, Energetic Polymers: Synthesis and Applications, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [31] J. P. Agrawal, Propellants, Explosives, Pyrotechnics, 2005, 30, 316-328.
- [32] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, Defence Science Journal, 2010, 60, 137-151.
- [33] N. Kubota, *Propellants and Explosives Thermochemical Aspects of Combustion*, Wiley-VCH, **2002**.
- [34] T. B. Brill, Surface Chemistry of Energetic Materials at High Temperature, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 269–280.
- [35] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to 0*, Pyrotechnic Reference Series No.5, Journal of Pyrtocehnics Inc., Whitewater, Colorado, USA, **2012**, p. 568.
- [36] M. F. Lemos, M. A. Bohn, The Effect of Plasticizers on the Glass-to-Rubber Behavior of Desmophen® 2200 Based Elastomers Used for Composite Propellants, ICT 2015, Karlsruhe, Germany, pp. 22-1–22-26.
- [37] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Guanidinium 1-aminotetrazol-5-oneate

Name [German, acronym]: Guanidinium 1-aminotetrazol-5-oneate [ATO-G]

Main (potential) use: Secondary (high) explosive

	ATO · G			
Formula	C ₂ H ₈ N ₈ O			
Molecular mass [g mol ⁻¹]	160.16			
Appearance at RT	White powder ^[1]			
IS [J]	>40 ^[1]			
N [%]	69.97			
Ω(CO ₂) [%]	-74.0			
T _{m.p.} [°C]	184.5 (DSC-TG @ 10 °C/min) ^[1]			
T _{dec.} [°C]	224.8 (DSC-TG @ 10 °C/min) ^[1]			
$ ho$ [g cm $^{-3}$]	1.569 (@ 298 K) ^[1]			
Heat of formation	286.5 kJ/mol (Δ _f H°) ^[1] , 1790.6 kJ/kg (Δ _f H°) ^[1]			
	Calcd. (EXPLO5 6.04)	Calcd. (K-J)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,691			
T _{ex} [K]	2,436			
p _{C-J} [GPa]	25.4	25.0 ^[1]		
VoD [m s ⁻¹]	8,614 (@ 1.569 g cm ⁻³ , $\Delta_f H = 286.5 \text{ kJ mol}^{-1}$)	7,830 ^[1]		
V ₀ [L kg ⁻¹]	938			

	ATO-G ^[1]
Chemical formula	$C_2H_8N_8O$
Molecular weight [g mol ⁻¹]	160.16
Crystal system	Monoclinic
Space group	C2/c
a [Å]	12.7785(11)
<i>b</i> [Å]	6.4100(6)
c [Å]	16.5787(15)
α [°]	90
β [°]	93.3030(10)
γ [°]	90
V [ų]	1,355.7(2)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.569
T[K]	298

^[1] X. Yin, J.-T. Wu, X. Jin, C.-X. Xu, P. He, T. Li, K. Wang, J. Qin, J.-G. Zhang, RSC Adv., 2015, 5, 60005-60014.

Guanidinium nitrate

Name [German, acronym]: Main (potential) use:

Guanidine nitrate [guanidinnitrat, GuN] Precursor in the synthesis of nitroguanidine^[1, 11], ingredient of some blasting explosives, component of fusible explosive mixtures containing $AN^{[10]}$, important intermediate product in the commercial manufacture of NQ and aminoguanidine^[10], main use is in propellant compositions^[15], has been used as component of high explosive mixtures^[15] smoke and gas generating pyrotechnic compositions^[18], starting material for production of $NQ^{[18]}$

	Guanidine nitrate
Formula	CH ₆ N ₄ O ₃
Molecular mass [g mol ⁻¹]	122.08
Appearance at RT	Crystalline $^{[10,11]}$, white crystalline material $^{[15]}$, white granules $^{[16]}$, colorless crystals/white powder $^{[18]}$
IS [J]	>5 Nm ^[1] , no detonation on 10 kg mass falling 3.1 m ^[8] , \ge 135 kJ/m ² (pure sample) ^[19] , 71 kJ/m ² (technical grade) ^[19]
FS [N]	>353 ^[1] , 844 MPa @ 2.4 m/s (pure sample) ^[19] , ≥729 MPa @ 2.4 m/s (technical grade) ^[19] , ≥847 MPa @ 3.0 m/s (technical grade) ^[19]
ESD [J]	1.26 (pure sample) ^[19] , 0.075 (technical grade) ^[19]
N [%]	45.89
Ω(CO ₂) [%]	-26.2
T _{phase transition} [°C]	296 K (GuN-I → GuN-II) ^[20] , 348 K (GuN-II → GuN-III) ^[20]
T _{m.p.} [°C]	213 ^[2,9] , 215 ^[1] , 468 K ^[7] , 214.2 (crystals) ^[8] , 215–216 ^[10,11] , 213 (endo, onset), 217 (endo, peak max.) (DSC @ 20 °C/min) ^[14] , 206–216 ^[15] , 206–212 ^[16] , 220 ^[18]

T _{dec.} [°C]	302 (DSC @ 5 °C/min) ^[2] , (DSC @ 20 °C/min) ^[14]	354 (exo, onset), 401 (ex	o, peak max.)	
ρ [g cm ⁻³]	1.436 ^[1] , 1.44 ^[3, 18] , sp. gr.	.=1.436 (@ 30°) ^[8]		
Heat of formation	-407.2 kJ/mol (enthalpy (enthalpy of form., exptl. S-D method) ^[4] , $-3,170.1$ 88–97 kcal/mol ^[8] , -92.4 ($\Delta H^{\rm o}_{\rm f}$, calcd.) ^[12] , -92.48 (enthalpy of form.) ^[18]) ^[4] , –348.6 kJ/mol (entha kJ/kg (enthalpy of form.) 8 kcal/mol (ΔH° _f , exptl.) [[]	lpy of form., calcd., ^[1] , 712.8 kcal/kg ^[17] , ^{12]} , –91.94 kcal/mol	
Heat of combustion	1,715 cal/g (@ C^{V} , H ₂ O (l)) ^[8] , 1,716 kcal/kg (@ C^{V}) ^[17]			
	Calcd. (EXPLO5 6.04) Lit. values Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,216 1,870 [H ₂ O (g)] ^[18] 2,455 [H ₂ O (l)] ^[1]			
	1,871 [H ₂ O (g)] ^[1]			
<i>T</i> _{ex} [K]	3,370			
p _{C-J} [GPa]	23.1			
VoD [m s ⁻¹]	7,075 (@ 1.43 g cm ⁻³ ; $\Delta_i H = -390 \text{ kJ mol}^{-1}$)		Not determined since only partial detonation could be achieved [10] 3,700 (@ 1.9 g cm ⁻³ , brought to detonation in steel tube (36/42 mm) by using 50 g NP/Mn (95/5))[10]	
V ₀ [L kg ⁻¹]	1,002		1,083 ^[1]	

Trauzl test [cm³, % TNT]	10% TNT ^[8] , 140 cm ^{3[10]} , 110 cm ³ (<i>Kast</i>) ^[10]
Initiation efficiency	Can only be detonated with difficulty ^[10]
Vapor pressure [atm. @ °C]	2.66 × 10 ⁻¹⁸ Pa @ 25 °C ^[9]
Solubility [g/mL]	Readily soluble in ${\rm EtOH^{[11]}}$, very readily soluble in ${\rm H_2O^{[11,18]}}$, soluble in ${\rm H_2O}$ (4.64 g in 100 mL ${\rm H_2O)^{[10]}}$, soluble in ${\rm EtOH^{[10]}}$, readily soluble in ${\rm H_2O^{[15]}}$, moderately soluble in ${\rm EtOH^{[15]}}$

Hygroscopicity	not deliquescent ^[11] , nonhygroscopic ^[16]
Heat of melting [J/g]	186 (DSC @ 20 °C/min) ^[14]
Heat of dec. [J/g]	1,979 (DSC @ 20 °C/min) ^[14]
Dust explosion	≥4.1 kg/m³ (technical grade) ^[19]

Transition and propagation data from ref. [19]:

Sample	Initiation source	Simulated mix	Test sensing	Temperature	Container size (in)	Critical ht. or critical diam. (in)	Velocity	Remarks
					Transition	Сн		
Technical- grade GN	12 g bag igniter	Dryer	Visual	Ambient	1 × 24 (2.54 cm × 61 cm)	≥24 (61 cm)	-	Smoke, muffle noise, sample scattered
Technical- grade GN	12 g bag igniter	Dryer	Visual	Ambient	2 × 24 (5.1 × 61 cm)	≥24 (61 cm)	-	Smoke, muffle noise, sample scattered

Detonation velocity of technical grade guanidine nitrate – witness plate data, data from ref. [19]:

Alum (62 mls)	Approx. diam. of depression inches	Guanidine nitrate (GMS)	Approx. depth of depression inches	Time over 1 ft in ms (1×10^{-6})	Rate (m/s)	Results
No	1.125 (2.86 cm)	140	0.195 (0.50 cm)	111.2	2.741	Hi order Lg frag
No	1.125 (2.86 cm)	146	0.175 (0.44 cm)	109.2	2.791	Hi order Lg frag
No	1.063 (2.70 cm)	148	0.165 (0.42 cm)	108.6	2.807	Hi order Lg frag

Yes	1.000 (2.54 cm)	145	0.130 (0.33 cm)	109.7	2.778	Hi order Lg frag
Yes	0.750 (1.91 cm)	146	0.100 (0.25 cm)	111.6	2.731	Hi order Lg frag
Yes	1.000 (2.54 cm)	142	0.120 (0.30 cm)	112.0	2.721	Hi order Lg frag

2.762 m/s average

Propagation characteristics of guanidine nitrate/water mixtures, data from ref. [19]:

Mixture composition (wt.%)		Propagation test results pipe, diameter (in)			
GN	H ₂ O	1.0	11/2	2	21/2
100	0	у	у	у	у
95	5	n*			
85	15	n	у*		
80	20			у	
75	25			у	
70	30			n	
60	40			n	

n* = did not propagate or incomplete propagation; y = detonated completely

	GuN ^[5]	[9]Nn9	GuN ^[6]	^[9] Nn9	^[9] Nn9	^[9] Nn9	[z]Nn9	GuN ^[7]	GuN ^[7]	GuN ^[7]
							Diamond anvil cell, 0.36 GPa pressure	Diamond anvil cell, 0.68 GPa pressure		1.51 GPa pressure
Chemical formula	$CH_6N_4O_3$	CH ₆ N₄O₃	CH ₆ N ₄ O ₃	CH ₆ N ₄ O ₃	CH ₆ N ₄ O ₃	CH ₆ N ₄ O ₃				
Molecular weight [g mol ⁻¹]	122.10	122.10	122.10	122.10	122.10	122.10	122.10	122.10	122.10	122.10
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	C m (no. 8)	<i>C m</i> (no. 8)	C 2/ m (no. 12)	<i>C m</i> (no. 8)	<i>C m</i> (no. 8)	<i>C m</i> (no. 8)	C 2/m	P c (no. 7)	C m (no. 8)	P c (no. 7)
a [Å]	12.686(3)	12.545(5)	12.616(33)	12.714(5)	12.706(7)	12.710(6)	12.340(3)	4.8990(10)	12.686(8)	4.8670(10)
b [Å]	7.274(2)	7.303(4)	7.283(5)	7.273(3)	7.260(4)	7.268(4)	7.2110(14)	4.9170(10)	7.272(4)	4.8450(10)
c [Å]	3.629(1)	7.476(4)	7.592(20)	3.5356(9)	3.6077(9)	3.5561(4)	7.3900(15)	10.350(2)	3.6291(18)	10.140(2)
α [٥]	90	90	90	90	90	90	90	90	90	06
[₉] β	120.85(2)	124.93(5)	123.88(29)	121.28(3)	121.01(4)	121.18(4)	125.00(3)	100.80(3)	120.85(6)	102.91(3)
γ [°]	90	90	90	90	90	90	90	90	90	06
V [ų]	287.5	561.535	579.128	279.41	285.23	281.046	538.67(19)	244.90(9)	287.425	233.06(8)
Z	2	4	4	2	2	2	4	2	2	2
$ ho_{ m calc}$ [g cm ⁻³]		1.444	1.4	1.451	1.421	1.443	1.506	1.656	1.411	1.740
7 [K]		295	391	153	257	185	295	295	295	295

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 156–157.
- [2] X. Mei, Y. Cheng, Y. Li, X. Zhu, S. Yan, X. Li, *Journal of Thermal Analysis and Calorimetry,* 2013, 114, 131–135.
- [3] H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, Journal of Physical Chemistry C, 2007, 111, 10718–10731.
- [4] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [5] A. Katrusiak, M. Szafranski, Acta Cryst., 1994, C50, 116–1163.
- [6] A. Katrusiak, M. Szafranski, J. Molec. Struct., 1996, 278, 205–223.
- [7] A. Katrusiak, M. Szafranski, M. Podsiadlo, Chem., Comm., 2011, 2107-2109.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [9] J. Oxley, J. L. Smith, J. Brady, S. Naik, Propellants, Explosives, Pyrotechnics, 2010, 35, 278-283.
- [10] T. Urbański, Ch. 19 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [11] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 374–380.
- [12] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1–44-15.
- [13] Y. N. Matyushin, T. S. Kon'kova, A. B. Vorob'ev, Y. A. Lebedev, *Thermochemical Properties of Salts of Dinitroamide*, ICT **2005**, Karlsruhe, Germany, pp. 92-1–92-9.
- [14] J. C. Oxley, J. L. Smith, S. Naik, J. Moran, J. Energet. Mater., 2008, 27, 17–39.
- [15] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [16] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [17] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [18] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to 0*, Pyrotechnic Reference Series No.5, Journal of Pyrtocehnics Inc., Whitewater, Colorado, USA, **2012**, pp. 578–579.
- [19] J. W. Leach, Detonation of Guanidine Nitrate and Nitroguanidine Manufactured via U/AN and BAF Processes, US Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, Dover, New Jersey, USA, August 1979.
- [20] M. Szafranski, P. Czarnecki, W. Dollhopf, G. W. H. Hoehne, G. Brackenhofer, W. Nawrocik, Journal of Physics: Condensed Matter 1993, 5, 7425-7434.

Guanidinium perchlorate

Name [German, acronym]: Guanidine perchlorate [guanidinperchlorat]
Main (potential) use: Suggested as an ingredient of explosive mixtures

Structural formula:

 $(H_2N)_3C^+ClO_4^-$

	Guanidinium perchlorate		
Formula	CH ₆ N ₃ O ₄ Cl		
Molecular mass [g mol ⁻¹]	159.53		
Appearance at RT	Colorless crystals ^[16]		
IS [J]	50 cm (2 kg mass, B.M.) ^[5] , $H_{50\%}$ 605 explosions for 2 kg mass fal for 124 kg cm ^[15]	=>5 cm (2 kg mass, B.M.) ^[14] , lling 250 mm ^[15] , 50% explosions	
N [%]	26.34		
Ω(CO ₂) [%]	-10.0		
T _{phase transition} [°C]	180–182 (endotherm, DTA, observed as exotherm in DTA cooling curve) ^[15] , cubic crystals above and below transition $T^{[15]}$, 180 (DTA, Ar atmosphere, cubic → cubic) ^[16]		
T _{m.p.} [°C]	248 ± 2 ^[1, 5] , 240 ^[4, 15, 16] , 526 K ^[8] , 250 ^[11] , 248 ± 2 (endo, DTA) ^[15] , 237 ^[15] , 255 (DTA, Ar atmosphere) ^[16]		
T _{dec.} [°C]	337 ^[2] (explodes ~367) ^[5] , 300 (slow dec., DTA) ^[15] , 392 (exotherm, DTA) ^[15] , 275–325 (TG, Ar atmosphere) ^[16] , 310 (DTA, Ar atmosphere) ^[16]		
$ ho$ [g cm $^{-3}$]	1.1398 (@ 298.15 K) ^[3] , 1.82 ^[4] , sp. gr. = 1.1–1.67 ^[5] , 1.772 (calcd., X-ray) ^[15] , 1.743 (measured) ^[15]		
Heat of formation	-311.1 kJ/mol (enthalpy of form.) ^[4] , -1950.0 kJ/kg (enthalpy of form.) ^[4] , -74.10 ± 0.55 kcal/mol ^[15] , -74.25 kcal/mol (ΔH° _f , exptl.) ^[13] , -75.25 kcal/mol (ΔH° _f , calcd.) ^[13] , -74.10 ± 0.55 kcal/mol (ΔH _f) ^[15]		
	Calcd. (EXPLO5 6.03) Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,091		
<i>T</i> _{ex} [K]	3,499		
p _{C-J} [GPa]	9.5		

VoD [m s ⁻¹]	5,632 (@ TMD)	7,150 (@ 1.67 g cm ⁻³) ^[10]
		6,000 (@ 1.15 g cm ⁻³) ^[11, 12]
		6,000 (@ sp. gr. = 1.15) ^[5]
		7,150 (@ sp. gr. = 1.67) ^[5]
V_0 [L kg ⁻¹]	914	

Trauzl test [cm³, % TNT]	130% TNT ^[10] ,	440 cc (10 g sampl	e) ^[5] , 400 cm ^{3[11, 12]}		
Ballistic mortar test	124% TNT ^[10]				
Shock sensitivity	Moderately se	nsitive ^[11] , similar s	ensitivity cf. PA ^[11]		
5 s explosion T [°C] Explosion T [°C] Ignition T [°C]	Explosive dec. 367 ^[15]	if heated >300 °C ^{[1}	1]		
Thermal stability	hours @ 1 atm	ss occurs on heatin . pressure ^[15] , comp stable crystals ^[16]			
Flame T	Calcd. flame T as monopropellant and as a component of stoichiometric mixtures with a high-grade paraffin as fuel ((CH ₂) _n with $\Delta H_{\rm f}$ = -5.971 kcal/mol @ 298 K) ^[15] :				
	Monopropellant combustion Stoichiometric combustion				
	<i>T</i> (K), 1 atm	<i>T</i> (K), 1,000 psi	T(K), 1,000 psi	S. I., lb s lb ⁻¹	
	2,253	 			
Solubility [g/mL]	31% by wt. in water @ 25 °C ^[15] , 40.3% by wt. in acetone @ 25 °C ^[15] , insoluble in nonpolar solvents ^[15]				
Hygroscopicity	Nonhygroscop	ic ^[11, 15, 16]			
Compatibility	Not hydrolyzed oxides ^[15]	d in aqueous soln. ^{[1}	^[5] , thermal dec. ca	talyzed by metal	

	Guanidinium perchlorate ^[6,7]	Guanidinium perchlorate ^[8]								
Chemical formula	CH ₆ N ₃ O ₄ Cl									
Molecular weight [g mol ⁻¹]	159.54	159.54	159.54	159.54	159.54	159.54	159.54	159.54	159.54	159.54
Crystal system	Rhombohedral	Hexagonal								
Space group	R 3 (no. 146)	R 3 m (no. 160)	R 3 m (no. 160)	R 3 m (no. 160)	R3 m (no. 160)	R3 m (no. 160)	R 3 m (no. 160)	R 3 m (no. 160)	R 3 m (no. 160)	R 3 m (no. 160)
a [Å]	7.606(2)	7.5826(3)	7.56586(15)	7.5940(6)	7.57142(15)	7.5566(2)	7.5590(2)	7.5643(3)	7.58491(19)	7.6045(3)
<i>b</i> [Å]	7.606(2)	7.5826(3)	7.56586(15)	7.5928(5)	7.57142(15)	7.5566(2)	7.5590(2)	7.5643(3)	7.58491(19)	7.6045(3)
c [Å]	9.121(2)	9.0356(4)	8.8972(3)	9.1179(7)	8.9748(2)	8.8263(3)	8.8537(3)	8.9165(4)	9.0692(3)	9.1725(59)
α [º]	90	90	90	90	90	90	90	90	90	06
[ο]	90	90	90	90	90	90	90	06	90	06
y [°]	120	120	120	120	120	120	120	120	120	120
V [ų]	456.968	449.91(3)	441.065(18)	455.30(6)	445.565(17)	436.47(2)	438.11(2)	441.84(3)	451.86(2)	459.37(4)
Z	3	3	3	3	3	3	3	3	3	3
$\rho_{\rm calc}$ [g cm ⁻³]	1.739	1.766	1.802	1.746	1.784	1.821	1.814	1.799	1.759	1.730
7 [K]	295	250	150	300	210	100	125	175	270	325

	Guanidinium perchlorate ^[8]	Guanidinium perchlorate ^[8]	Guanidinium perchlorate ^[9]	Guanidinium perchlorate ^[9]	Guanidinium perchlorate ^[9]	Guanidinium perchlorate ^[9]	Guanidinium perchlorate ^[9]
			Diamond anvil cell, 0.38 GPa pressure	Diamond anvil cell, 0.57 GPa pressure	Diamond anvil cell, 1.03 GPa pressure	Diamond anvil cell, 1.35 GPa pressure	Diamond anvil cell, 1.73 GPa pressure
Chemical formula	CH ₆ N ₃ O ₄ Cl	CH ₆ N₃O₄Cl	CH ₆ N ₃ O ₄ Cl				
Molecular weight [g mol ⁻¹]	159.54	159.54	159.54	159.54	159.54	159.54	159.54
Crystal system	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	R 3 m (no. 160)	R 3 m (no. 160)	R 3 m (no. 160)				
a [Å]	7.6180(4)	7.6428(15)	7.5595(6)	7.5534(4)	7.5310(4)	7.5123(4)	7.4965(3)
<i>b</i> [Å]	7.6180(4)	7.6428(15)	7.5595(6)	7.5534(4)	7.5310(4)	7.5123(4)	7.4965(3)
c [Å]	9.2280(7)	9.277(4)	8.7694(10)	8.6935(17)	8.4767(18)	8.3522(7)	8.2508(6)
α [°]	90	06	06	90	90	90	90
β [°]	06	06	06	90	90	90	96
γ [°]	120	120	120	120	120	120	120
V [ų]	463.83(5)	469.3(2)	434.00(7)	429.55(9)	416.36(9)	408.21(5)	401.55(4)
Z	3	3	3	3	3	3	3
$ ho_{ m calc}$ [g cm $^{-3}$]	1.713	1.693	1.831	1.850	1.909	1.947	1.979
7 [K]	350	375	295	295	295	295	295

- [1] K. V. Titova, V. Y. Rosolovskii, Zhurnal Neorganicheskoi Khimii, 1965, 10, 446-450.
- [2] V. Sivashankar, R. Siddheswaran, P. Murugakoothan, *Materials Chemistry and Physics*, **2011**, 130, 323–326.
- [3] A. Kumar, Journal of Solution Chemistry, 2001, 30, 281–290.
- [4] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 157–158.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [6] Z. Pajak, M. Grottel, A. E. Koziol, J. Chem. Soc. Faraday Trans. 2, 1982, 78, 1529–1538.
- [7] A. E. Koziol, *Z. Kristallographie*, **1984**, *168*, 313–315.
- [8] M. Szafranski, J. Phys. Chem. B, **2011**, 115, 8755–8762.
- [9] M. Szafranski, Cryst. Eng. Comm., 2014, 16, 6250-6256.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] T. Urbański, Ch. 20 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [12] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, p. 366.
- [13] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1–44-15.
- [14] J. J. Byrne, Propellant Containing Guanidine Perchlorate-Lithium Perchlorate Eutectic in Homogeneous Phase with Polymeric Binder, US Patent 3531338, 29th September 1970.
- [15] G. S. Pearson, Perchlorates: A Review of Their Thermal Decomposition and Combustion, with an Appendix on Perchloric Acid, R. P. E. Technical Report No. 68/11, Rocket Propulsion Establishment Westcott, Ministry of Technology, London, October 1968.
- [16] M. R. Udupa, *Propellants, Explosives, Pyrotechnics*, **1983**, *8*, 109–111.

Guanidinium picrate

Name [German, acronym]: Guanidine picrate [guanidinpikrat, GuPicr, GuP]
Main (potential) use: Can be used as a filler for armor-piercing shells

$$(H_2N)_3C^{\bigoplus}$$

$$O_2N$$

$$NO_2$$

$$NO_2$$

	Guanidine picrate*			
Formula	C ₇ H ₈ N ₆ O ₇			
Molecular mass [g mol ⁻¹]	288.18			
Appearance at RT	Yellow, finely crystalline solid ^[5] , yell	ow crystals ^[7]		
N [%]	29.16			
Ω(CO ₂) [%]	-61.1			
T _{m.p.} [°C]	>300 ^[1] , 310–333 ^[4] , 318.5–319.5 (with dec.) ^[5] , >300 (melts with dec.) ^[7]			
T _{dec.} [°C]	325 ^[2] , 280 ^[4]			
$ ho$ [g cm $^{-3}$]	sp. gr. = ~1.5 ^[4]			
Heat of formation	$-396.60 \pm 2.47 \text{ kJ/mol } (\Delta H^{\circ}_{f})^{[3]}, -1,376.22 \pm 8.57 \text{ kJ/kg } (\Delta H^{\circ}_{f})^{[3]}$			
	Calcd. (K-J) Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		12,204.7 ± 8.4 ^[3]		
T _{ex} [K]				
p _{C-J} [GPa]				
VoD [m s ⁻¹]		6,500 (@ 1.50 g cm ⁻³) ^[7]		
		6,500 ^[4]		
V ₀ [L kg ⁻¹]				

^{*} Exists in two stereoisomeric forms: labile and stable (usually mixtures are formed) $^{[8]}$

Initiating efficiency	1,000 lb in ² p	ressure required to ng cap ^[6] , 0.13 g H <i>l</i>	detonate 0.4 g G	compressed under uP: 0.30 g fulminate ng cap ^[6] , 0.15 g HMTD
Solubility [g/mL]		uble in EtOH or H ₂ C) (can be recrystall	ized from H₂O) ^[5]
	T (°C)	Water	EtOH	Acetone
	0 0.005 0.077 0.455			
	10	0.038	0.093	0.525
	20	0.605		
	30 0.100 0.153 0.695 40 0.150 0.200 0.798			
	50	0.230	0.255	0.920
	60	0.350	0.321	1.075
	70	0.480	0.413	
	80	0.700	0.548	
	90	1.010		
	100	1.380		

- [1] J. P. Horwitz, C. C. Rila, J. Am. Chem. Soc., 1958, 80, 431–437.
- [2] C. Boyars, M. J. Kamlet, *Explosive Composition Containing Guanidinium Picrate*, US Patent 4,094,710 A, **1978**.
- [3] T. S. Kon'kova, Y. N. Matyushin, Russian Chemical Bulletin, 1998, 47, 2387-2390.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [5] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 1, **1941**, John Wiley and Sons Inc., New York, pp. 168–169.
- [6] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York, p. 452.
- [7] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [8] V. v. Cordier, Verh. d. Ges. Deutsch. Ntf. u. Aerzte, 1904, II, 105-108.

Guanylurea nitrate

Name [German, acronym]: Guanylurea nitrate, urea *N*-(aminoiminomethyl)-nitrate

(1:1) [guanylurea-nitrat, guanylharnstoff-nitrat, GUN]

Main (potential) use: Possible substitute for nitroguanidine in propellants,

 $possible\ component\ of\ gas\text{-}generant\ composition\ for$

automotive air bags^[2]

$$\begin{array}{c} \oplus \operatorname{NH}_2 & \operatorname{O} \\ & & \operatorname{NH}_2 \\ & & \operatorname{NO}_3 \end{array}$$

	Guanylurea nitrate			
Formula	C ₂ H ₇ N ₅ O ₄			
Molecular mass [g mol ⁻¹]	165.14			
Appearance at RT				
IS [J]	58 in (2 kg mass) ^[1] , >40 (BAM) ^[4] ,>30 (BAM) ^[5]		
FS [N]	>360 (BAM) ^[4, 5]			
ESD [J]	Insensitive to Tesla coil V-24 ^[4] , insensitive (Tesla coil, ~20 kV) ^[5]			
N [%]	42.4			
Ω(CO ₂) [%]	-33.91			
T _{m.p.} [°C]	216 (crystals, dec.) ^[1] , 20	3 (mpt. with dec., DSC @	5 °C/min) ^[5]	
T _{dec.} [°C]	216 ^[2] , 203 (DSC @ 5 °C/	min) ^[4] , 203 (mpt. with de	c., DSC @ 5 °C/min) ^[5]	
ρ [g cm ⁻³]	1.54 ^[1] 1.567 (pycnometry) ^[4]			
Heat of formation	$-880 \text{ cal/g}^{[2]}$, -102.1 kcal/mol (Δ H_f) ^[3] , $-2,392 \text{ kJ/kg}$ (Δ U^o_f) ^[4] , $-2,512 \text{ kJ/kg}$ (Δ H_f^o , calcd., MP2) ^[4] , $-4,242 \text{ kJ/kg}$ (Δ U_f , back calculated from Δ H_{comb} value) ^[5] , -721 kJ/mol (Δ H^o_f) ^[5]			
Heat of combustion	-1,987 cal/g $(\Delta U_{\text{comb}})^{[4]}$, -1,546 cal/g $(\Delta H_{\text{comb.}}$, exptl., bomb calorimetry) ^[5]			
	Calcd. (EXPLO5)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	927 cal/g ($\Delta H_{\rm ex}$, calcd., ICT code) ^[4]		364 cal/g ^[1]	

<i>T</i> _{ex} [K]	2,624 (@ 1.567 g cm ⁻³) ^[4]	
	1,577 (@ 1.567 g cm ⁻³ ,	
1	$\Delta U^{\circ}_{f} = -4.242 \text{ k}/\text{kg})^{[5]}$	
1		
J. C.) [a]	17.4 GPa (@ 1.567 g cm ⁻³) ^[4]	
	(@ 1.507 g till)*	
	10.6 GPa	
	(@ 1.567 g cm ⁻³ ,	
	$\Delta U^{\circ}_{f} = -4,242 \text{ kJ/kg}^{[5]}$	
VoD [m s ⁻¹]	7,004 (@ 1.567 g cm ⁻³) ^[4]	
	5,734 (@ 1.567 g cm ⁻³ ,	
	$\Delta U^{\circ}_{f} = -4,242 \text{ kJ/kg})^{[5]}$	
 	858 (@ 1.567 g cm ⁻³) ^[4]	
VO[LKS]	000 (@ 1.507 g cm)	
	849 (@ 1.567 g cm ⁻³ ,	
	$\Delta U^{\circ}_{f} = -4,242 \text{ kJ/kg}^{[5]}$	
I _{sp} [s]	177 ^[4]	
Explosion T[°C]	320 ^[1]	
100 °C heat test [%	0.17/48 ^[1]	
mass loss/h]		
Vacuum stability	1.54 mL per 5 g sample @ 120 °C in 40 h	
test [cm ³ /h]	·	
Solubility [g/mL]	Soluble in DMSO ^[5]	
Flame test	-	
riame test	Burns (response to fast heating in flame test) ^[4] , rapid burning with no	

- [1] S. M. Kaye, H. L. Herman, *Encyclopedia of Explosives and Related Items*, vol. 10, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1983**.
- [2] I. V. Mendenhall, *Guanylurea Nitrate in Gas Generation*, US Patent 6,550,808 B1, April 22nd 2003
- [3] D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Baily, R. H. Schumm, Selected Values of Chemical Thermodynamic Properties: Tables for the First Thirty-Four Elements in the Standard Order of Arrangement, NBS Technical Note 270-3, U. S. Department of Commerce, National Bureau of Standards, Washington, USA, January 1968.
- [4] T. M. Klapötke, C. Sabate, *ZAAC*, **2010**, *636*, 163–175.
- [5] T. M. Klapötke, C. M. Sabate, Heteroatom Chem., 2008, 19, 301–306.

Heptanitrocubane

Name [German, acronym]: Main (potential) use:

Heptanitrocubane [heptanitrocuban, HpNC]
Intermediate in the synthesis of octanitrocubane (ONC)^[1], possible future powerful explosive and/or

monopropellant^[3]

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N

	Heptanitrocubane			
Formula	C ₈ HN ₇ O ₁₄			
Molecular mass [g mol ⁻¹]	419.14			
Appearance at room temperature (RT)	Colorless, solvent-free fuming nitric acid with	crystals obtained from dil sulfuric acid ^[2, 3]	uting a soln. of HpNC in	
N [%]	23.39			
Ω(CO ₂) [%]	-9.54			
T _{dec.} [°C]	Well above 200 ^[3]			
$ ho$ [g cm $^{-3}$]	2.028 ^[1] , 2.028 (@ 21 °C, single crystal, X-ray) ^[2, 3]			
Heat of formation				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Solubility [g/mL]	Easily soluble in polar solns. in MeOH turn ye	solvents, for example, ace llow ^[2]	etone, THF, $\mathrm{CH_2Cl_2}^{[2]}$,	

Compatibility	Solns. in MeOH turn yellow, however after addition of trifluoroacetic acid and evaporation of solvent non-decomposed HpNC was obtained ^[2] , sensitive to base, can be deprotonated ^[2] , NaF in MeOH catalyzed HpNC dec. as did amines such as 2,2,6,6-tetramethylpiperidine ^[2] , powerful
	deflagration on addition of a microdrop of pyridine to dry HpNC solid ^[2]

	Heptanitrocubane ^[2]
Chemical formula	C ₈ HN ₇ O ₁₄
Molecular weight [g mol ⁻¹]	419.16
Crystal system	Orthorhombic
Space group	Pbcn
a [Å]	23.5942(13)
<i>b</i> [Å]	8.1735(7)
c [Å]	14.2642(5)
α [°]	90
β [°]	90
γ [°]	90
<i>V</i> [ų]	2,750.8(3)
Z	8
$\rho_{\rm calc}$ [g cm ⁻³]	2.028
<i>T</i> [K]	21 °C

Colorless, solvent-free crystals obtained from diluting a soln. of HpNC in fuming nitric acid with sulfuric acid $^{[2]}$

- [1] J. P. Agrawal, R. D. Hodgson, *Organic Chemistry of Explosives*, John Wiley and Sons Ltd., **2007**, pp. 73–74.
- [2] M.-X. Zhang, P. E. Eaton, R. Gilardi, Angew. Chem. Int. Ed., 2000, 39, 401–404.
- [3] P. E. Eaton, M.-X. Zhang, R. Gilardi, N. Gelber, S. Iyer, R. Surapaneni, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 1–6.

Heptryl

Name [German, acronym]: Heptryl, N-(2,4,6 trinitrophenyl-N-nitramino)-

trimethylolmethane trinitrate, N-(2,4,6-trinitrophenyl)-(tris-nitroxymethyl-methyl)-nitramine, N-nitro-N-picryl-

trimethylol methyl-amine trinitrate

Main (potential) use: Structural formula:

$$O_2N$$
 O_2
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N

	Heptryl			
Formula	C ₁₀ H ₈ N ₈ O ₁₇			
Molecular mass [g mol ⁻¹]	512.21			
Appearance at RT				
IS [J]	Detonation of sample in tin foil iron anvil but not if concrete any	*		
N [%]	21.88	21.88		
Ω(CO ₂) [%]	-21.9			
T _{m.p.} [°C]	154–157 (dec.) ^[4] , 154 (with dec.) ^[5]			
T _{dec.} [°C]	154–157 (dec.) ^[4] , ignites@ 180 ^[4] , explodes @ 360 ^[4]			
$ ho$ [g cm $^{-3}$]	1.924±0.06 (@ 293.15 K) ^[1]			
Heat of formation	$-405.0 \text{ kJ/kg (energy of formation)}^{[2]}$, 57.3 kcal mol $^{-1}$ (ΔH°_{r}) $^{[4]}$			
Heat of combustion	1,160.7 kcal/mol $(Q_c^{V})^{[4]}$			
	Calcd. (K-J)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		9,480.5 ^[2]		
T _{ex} [K]				

p _{C-J} [GPa]	
VoD [m s ⁻¹]	
V ₀ [L kg ⁻¹]	787 ^[2, 3]

Ballistic mortar test	143% TNT ^[4]
5 s explosion T [°C] Ignition T [°C]	180 ^[4, 5] Does not explode <360 ^[5]
Thermal stability	Exploded within 13 min in closed container @ 135 °C ^[4]

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 168.
- [3] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [4] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, *Encyclopedia of Explosives and Related Items*, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [5] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.

Hexakis(azidomethyl)benzene

Name [German, acronym]: Hexakis(azidomethyl)benzene [hexakis(azidomethyl)

benzol, HAB]

Main (potential) use: Proposed as possible substitute for LA in less sensitive

bridgewire detonators and as a substitute for tetrazene

in percussion detonators^[1, 2]

	нав
Formula	$C_{12}H_{12}N_{18}$
Molecular mass [g mol ⁻¹]	408.35
Appearance at RT	White powder ^[2] , light tan-colored solid ^[3]
IS [J]	$H_{50\%}=1-2$ in (ball drop, 7 g steel ball, 0.5 mm thick layer of HAB) ^[2] , $H_{10\%}=5$ in (2 kg hammer, P.A.) ^[2] , >120 in.oz (0.850 Nm) in M-42 primer cup-and-anvil assembly (120 in.oz is the max. attainable impact with the apparatus) and no increase in sensitivity on "sensitizing" HAB with 5% carborundum grit or 5% carborundum grit with 1% KClO ₄) ^[2]
FS [N]	
ESD [J]	0.01 (minimum energy)
N [%]	61.8
Ω(CO ₂) [%]	-117.55
T _{m.p.} [°C]	162–165 (with dec., capillary mpt., uncorrected) ^[2] , 164 (onset, endo, DTA @ 2.5 °C/min) ^[2] , 165–168 (light tan colored solid) ^[3]
T _{dec.} [°C]	162–165 (melts with dec., capillary method, uncorrected) ^[2] , 186 (exo, onset), 212 (exo, peak max) (DTA @ 2.5 °C/min) ^[2]
$ ho$ [g cm $^{-3}$]	1.460 (calcd., Cady's method) ^[2] , 1.392 (pycnometry in 95% EtOH) ^[2] , 1.222 (@ 16,000 psi/110 MPa) ^[2] , 1.251 (@ 25,000 psi/172 MPa) ^[2]

Heat of formation	438.4 kcal/mol ($\Delta H_{\rm f}^{\rm o}$, calcd., using $\Delta H_{\rm c}$ value determined in oxygen and ρ = 1.460 g cm ⁻³) ^[2]					
Heat of combustion	25 atm. oxygen	-4,841.3 cal/g (measured, hot-wire ignition of HAB powder under 25 atm. oxygen pressure) ^[2] , -1,171.4 cal/g (measured, hot-wire ignition of HAB powder in air) ^[2]				
	Calcd. (EXPLO5 6.03)	<i>lit</i> . values		exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]				5,773 (@ 1.15 g/mL) ^[2]		
V ₀ [L kg ⁻¹]						
SSGT [cm]	4.51 DB _g (@ 1.2	22 g/mL test density,	@ 16,000	psi/110 MPa) ^[2]		
5 s explosion T[°C] 1 s explosion T[°C] Autoignition T[°C]	255 ^[2] 317 ^[2] 173 ^[2]					
Thermal stability	Thermally and h	ydrolytically stable ^[1]				
Vacuum stability test [cm³/h]	<5 mL gas/5.0 g	sample after 40 h @ :	100 °C ^[2]			
Burn rate [mm/s]	extremely fast a	nd did not detonate ev nd extremely slow bur iformity in pellet: 760	ning rates	observed, probably		
Solubility [g/mL]	Data from ^[2] :					
	Solvent	g/100 mL solvent	T (°C)			
	Water	< 0.05	100			
	MeOH	< 0.05	65			
	Isopropanol	<0.1	80			
	Toluene	2.0	95			
	Acetone	<1.0	25			
	Acetone	12.3	56			
	Dioxane	<1.0	25			
	Dioxane	16.0	95			
	THF	0.7	25			
	THF	5.3	67			
	DMF	34.0	85			
	NMR measured in CDCl ₃ or DMSO ^[3]					

Photosensitivity	Gradually darkens on exposure to sunlight and more rapid darkening on exposure to UV light $^{\![2]}$
Compatibility	Unaffected by stirring in distilled water for 168 h @ 60 °C ^[2] , reacts violently with 96% sulfuric acid @ RT ^[2] , dec. in 80% sulfuric acid @ RT ^[2] , negligible reactivity @ 100 °C vacuum stability test in presence of Al 6061-T-6, stainless steel 303, low carbon steel or copper ^[2]
Laser sensitivity	Complete dec. in the beam of a pulsed tunable CO_2 laser (1 pulse, 28 J/cm ² , focused @ 9.75 μ m), but no dec. occurred with unfocussed beam ^[2]
Stab sensitivity test	<2 in.ozf (inch ounce-force)/ 2.9×10^{-3} Nm (50% fire level, 25 mg HAB pressed into M-55 detonator cup @ 70,000 psi and backed with barium nitrate @ 10,000 psi) ^[2]
Minimum priming charge test	No dent in witness block using 100 mg loose HAB ignited by electric match ^[2] , no dent in witness block using 100 mg HAB pressed @ 10 psi and ignited by electric match ^[2] , no dent in witness block using 200 mg HAB pressed @ 10 psi and ignited by electric match ^[2] , no dent in witness block using 300 mg HAB pressed @ 10 psi and ignited by electric match ^[2]

^[1] J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 2010, p. 134.

^[2] E. E. Gilbert, W. E. Voreck, *Propellants, Explosives, Pyrotechnics*, **1989**, 14, 19–23.

^[3] J. V. Gavette, A. L. Sargent, W. E. Allen, J. Org. Chem., 2008, 73, 3582-3584.

Hexamethylenetetramine dinitrate

Name [German, acronym]: Hexamethylenetetramine dinitrate, hexamine dinitrate

[hexamethylentetramindinitrat]

Main (potential) use: Precursor for hexogen production by Bachmann

process^[1], not used as an explosive^[5]

	Hexamethylenetetramine dinitrate					
Formula	C ₆ H ₁₄ N ₆ O ₆	$C_6H_{14}N_6O_6$				
Molecular mass [g mol ⁻¹]	266.21					
Appearance at RT						
IS [J]	15 Nm ^[2]					
FS [N]	240 ^[2]					
N [%]	31.57					
Ω(CO ₂) [%]	-78.1					
T _{m.p.} [°C]	170.5 ^[3] , 158 ^[2] , 16	0 ^[5]				
T _{dec.} [°C]	174.0 (DSC @ 10°	C min ⁻¹) ^[3]				
ρ [g cm ⁻³]	1.57 ^[2]					
Heat of formation	$-382.9 \text{ kJ/mol } (\Delta H^{\circ}_{f})^{[4]}, -1,438.3 \text{ kJ/kg } (\Delta H^{\circ}_{f})^{[4]}, -1417.7 \text{ kJ/kg} $ $(\Delta H^{\circ}_{f})^{[2]}, -377.4 \text{ kJ/mol } (\text{enthalpy of form., exptl.})^{[6]}, -405.6 \text{ kJ/mol } (\text{enthalpy of form., calcd., emp.})^{[6]}, -382.9 \text{ kJ/mol } (\text{enthalpy of form., calcd., S-D method})^{[6]}, 96.70 \text{ kcal/mol } (-\Delta H_{f} \text{ (heat of form. @ standard conditions)})^{[7]}$					
Heat of combustion	Exptl. heat of comb	Exptl. heat of combustion data ^[7] :				
	−ΔU _{B/M} (cal/g)	–ΔU _B (kcal/ mol)	-ΔU _R (kcal/m @ 1 atm constan	n. and	−ΔH _R (kcal/mol @ 1 atm. and constant pressure)	
	3,571.93 ± 0.74	950.92	949.83		948.35	
	Calcd. (EXPLO5 6.03) Exptl.					

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,528	2,642 [H ₂ O (l)] ^[2]
		2,434 [H ₂ O (g)] ^[2]
T _{ex} [K]	2,407	
р _{с-J} [GPa]	19.1	
VoD [m s ⁻¹]	7,375 (@ TMD)	
V ₀ [L kg ⁻¹]	863	1,081 ^[2]

Trauzl test [cm³, % TNT]	220 cm³ (10 g sample) ^[2]
Solubility [g/mL]	Soluble in water ^[2] , insoluble in CHCl ₃ , Et ₂ O, EtOH, acetone ^[2]

- [1] W. E. Bachmann, J. C. Sheehan, J. Am. Chem. Soc., 1949, 71, 1842–1845.
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 169-170.
- [3] H. Turhan, T. Atalar, N. Erdem, C. Özden, B. Din, N. Gül, E. Yildiz, L. Türker, *Propellants*, *Explosives, Pyrotechnics*, **2013**, *38*, 651–657.
- [4] A. Salmon, D. Dalmazzone, Journal of Physical and Chemical Reference Data, 2007, 36, 19-58.
- [5] T. Urbański, Ch. 19 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press,
- [6] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.
- [7] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.

Hexanitroazobenzene

Name [German, acronym]: 2,2',4,4'6,6'-Hexanitroazobenzene, bis(2,4,6)-

trinitrophenyl diazine, hexanitroazobenzene

[hexanitroazobenzol, HNAB]

Main (potential) use: Suggested for use in boosters and compound

detonators^[16]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	Hexanitroazobenzene
Formula	$C_{12}H_{4}N_{8}O_{12}$
Molecular mass [g mol ⁻¹]	452.21
Appearance at room temperature	Blood-red prisms if recryst. from nitrobenzene, glacial acetic acid or conc. nitric acid ^[7] , orange crystals (if recrystallized from acetone) ^[16] , orange ^[8]
IS [J]	9.07 (12 tool, 2.5 kg) ^[4] , 7.85 (12B tool, 2.5 kg) ^[4] , $\log H_{50\%} = 1.57^{[5]}$, 8.57 ^[6] , FI = 67% PA, 8.56 (1st reaction) ^[17] , 7.85 (sound) ^[17] , 32 cm (50% point, type 12 tool, 2.5 kg mass, sandpaper) ^[19]
ESD [J]	8.20 ^[6] , 8.2 ^[22]
N [%]	24.78
Ω(CO ₂) [%]	-49.5
T _{phase transition} [°C]	Five polymorphs have been identified (hot-stage optical microscopy) $^{[15]}$; HNAB-I and HNAB-III are stable from RT $-$ 185 °C, HNAB-II is stable from RT $-$ 205 °C $^{[11, 15]}$ HNAB-IV and HNAB-V are only formed in the melt during supercooling $^{[11]}$. HNAB-II and HNAB-III transform rapidly through melt phase to HNAB-I $^{[11]}$, above 478 K solid $-$ solid phase transitions occur; bulk HNAB (regardless of polymorphs present) melts at 496 K $^{[14]}$
<i>T</i> _{m.p.} [°C]	215–216 $^{[1,7,8]}$, 220 $^{[4]}$, 220–221 $^{[9,18]}$, 221–222 $^{[10]}$, 223 (bulk samples regardless of polymorphic forms present) $^{[11]}$, 215 $^{[16]}$

T _{dec.} [°C]	515 K (DTA onset) ^[17]	515 K (DTA onset) ^[17]			
$ ho$ [g cm $^{-3}$]	2.15 ± 0.1 (@ 293.15 K) ^[2] , 1.799 (phase I) ^[4] , 1.750 (phase II) ^[4] , $1.79^{[7]}$, 1.775 ^[20] , 1.799 (TMD, obs., HNS-1) ^[8] , 1.750 (TMD, obs., HNS-II) ^[8] , 1.718 (TMD, obs., HNS-III) ^[8]				
Heat of formation	@ 1 atm. and 298 K)[8]	279 kJ/mol (EXPLO5 6.04 database), 535 kJ/kg (heat of form., $\Delta_i H$ @ 1 atm. and 298 KJ ^[8] , 241.8 kJ/mol (heat of form., $\Delta_i H$ @ 1 atm. and 298 KJ ^[8] , 58–67.9 kcal/mol ^[7] , 67.9 kcal/mol ($\Delta_i H^o$, exptl.) ^[20] , +67.9 kcal/mol ^[21]			
Heat of combustion	$\Delta H^{\circ}_{c} = -1,333.2 \text{ kcal/}$	mol ^[20]			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,150	1.47 kcal/kg [H ₂ O (l)] ^[8]	1.47 kcal/g [H ₂ O (l)] ^[7]		
		1.47 kcal/g [H ₂ O (l)] ^[7]	1.42 kcal/g [H ₂ O (g)] ^[7]		
		1.42 kcal/g [H ₂ O (g)] ^[8]			
	1.42 kcal/g [H ₂ O (g)] ^[7]				
7 _{ex} [K]	3,875	3,900 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[21]			
		4,620 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[21]			
p _{C-J} [GPa]	263	222 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[21]	205 ^[4]		
		204 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[21]	205 (@ 1.60 g cm ⁻³) ^[7, 21]		
VoD [m s ⁻¹]	7,838 (@ 1.799 g cm ⁻³ , $\Delta_t H = 279 \text{ kJ mol}^{-1}$)	7,220 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[21]	7,600-7,700 (0.1-0.3 in diameter column) ^[8]		
	<u> </u>	7,090 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[21]	7,250 (@ 1.77 g cm ⁻³) ^[7]		
		,	7,311 (@ 1.60 g cm ⁻³) ^[4, 13]		
			7,310 (@ 1.6 g cm ⁻³) ^[3, 21]		
V_0 [L kg ⁻¹]	636				

Trauzl test [cm³, % TNT]	123% TNT ^{[7}	123% TNT ^[7]						
SSGT [cm]	(sensitivity, @ 1.601 g	6.38 mm (sensitivity, @ 1.774 g cm ⁻³ , NSWC SSGT) ^[7] , 12.04 mm (sensitivity, @ 1.383 g cm ⁻³ , NSWC SSGT) ^[7] , 5.6 mm (sensitivity, @ 1.601 g cm ⁻³ pressed, LANL SSGT) ^[7] Coarse-grade HNAB, lab sample under alcohol, IS: $H_{50\%}$ = 32 cm (2.5 kg mass, type 12 tool, sandpaper) ^[19] :						
	Loading	De	nsity (g/c	m³)		Sensitivit	y (DBG)	
	pressure (kpsi)	Avg.	. 5		Avg.	G	S _m	N
	8	1.47	76 0.0	060	3.486	0.0142	0.0348	18
	32	1.67	71 0.0	051	4.848	0.0189	0.0318	12
	64	1.76	66 0.0	059	6.182	0.0611	0.0363	10
	EBW (exploding bridgewire)-grade HNAB under EtOH/water ^[19] : Loading Density (g/cm ³) Sensitivity (DBG) Remar						Remarks	
	pressure (kpsi)	Avg.	S	Avg.	g	s _m	N	
	4	1.383	0.0066	3.24	4 0.005	1 0.0034	23	
	8	1.480	0.0039	3.25	1 -	-	1 1	No mixed response zone
	16	1.582	0.0133	3.54	9 0.055	4 0.0304	23	
	32	1.687	0.0030	4.38	2 0.057	4 0.0502	23	
	64 1.774 0.0054 6.003 0.0512 0.0292 23							
Vacuum stability test [cm³/h]	@ 200 °C (total cm³ of gas evolved/no. of days): $0.4/2$, $2.0/7$, $9.8/14$, $27.8/21^{[12]}$, @ 175 °C (total cm³ of gas evolved/no. of days): $0.1/2$, $0.3/7$, $0.6/14$, $0.8/21$, $0.9/28$, $1.1/35$, $1.2/42$, $8.5/49$, $9.2/56$, $9.7/63$, $10.6/70$, $11.4/77$, $12.5/84$, $13.4/91^{[12]}$, @ 150 °C (total cm³ of gas evolved/no. of days): $0.1/2$, $0.2/7$, $0.2/14$, $0.3/21$, $0.3/28$, $0.4/35$, $0.4/42$, $0.5/49$, $0.5/56$, $0.6/63$, $0.6/70$, $0.7/77$, $0.7/84$, $0.7/91^{[12]}$							

Thermal stability			erforming thin-layer cl	hromatography on (s) to aterial remained ^[10] :
	Time (min)	T (°C)	% Decomposition]
	720	230	14	1
	4,380	230	100	
	342	245	32	
	540	245	44	
			1	
	61	260	15	_
	130	260	23	
	187	260	42	
	240	260	68	
	288	260	73	
	360	260	100	
		,		_
	30	280	10	
	60	280	49	
	92	280	60]
	118	280	100	
Vapor pressure [atm. @ °C]	1 × 10 ⁻⁷ mm F	lg @ 100 '	°C[8]	
Specific heat [cal/g/°C]	0.3 ^[7, 20]			

	HNAB-I ^[8, 11]	HNAB-II ^[8, 11]	HNAB-III ^[14]
Chemical formula	C ₁₂ H ₄ N ₈ O ₁₂	C ₁₂ H ₄ N ₈ O ₁₂	C ₁₂ H ₄ N ₈ O ₁₂
Molecular weight [g mol ⁻¹]	452.23	452.23	452.23
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /c (no. 14)	P2 ₁ /a	P2 ₁
a [Å]	10.149(4)	10.632(4)	15.4015(8)
<i>b</i> [Å]	8.263(3)	21.869(7)	5.5240(3)

c [Å]	10.055(4)	7.585(3)	22.1182(11)
α [°]	90	90	90
β [°]	97.29(4)	102.56(4)	110.367(2)
γ [°]	90	90	90
<i>V</i> [ų]			1,764.13(16)
Z	2	4	4
$ ho_{ m calc}$ [g cm ⁻³]	1.795	1.744	1.703
<i>T</i> [K]	23 °C	23 °C	298

- [1] H. Leemann, E. Grandmougin, *Berichte der Deutschen Chemischen Gesellschaft*, **1908**, *41*, 1295–1305.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [4] B. M. Dobratz, P. C. Crawford, *LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants*, Lawrence Livermore National Laboratory, January 31st **1985**.
- [5] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem. Inf. Comput. Sci., 1996, 36, 804-810.
- [6] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, Central Eur. J. Energ. Mater., 2016, 13, 427-443.
- [7] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [8] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [9] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [10] J. C. Hoffsommer, J. S. Feiffer, Thermal Stabilities of Hexanitroazobenzene (HNAB) and Hexanitrobiphenyl (HNB), Naval Ordnance Laboratory, Maryland, USA, NOLTR 67–74, 23rd June 1967.
- [11] E. J. Graeber, B. Morosin, Acta Cryst., 1974, B30, 310-317.
- [12] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.
- [13] J. R. Stine, J. Energet. Mater., 1990, 8, 41–73.
- [14] M. A. Rodriguez, C. F. Campona, A. D. Rae, E. Graeber, B. Morosin, Acta Cryst., 2005, C61, 0127.
- [15] W. C. McCrone, *Crystallographic Study of Hexanitroazobenzene (HNAB)*, Sandia National Laboratories, Alberquerque, USA, **1967**.
- [16] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York, pp. 189–190.
- [17] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [18] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [19] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [20] P. E. Rouse, J. Chem. Engineering Data, **1976**, *21*, 16–20.
- [21] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [22] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Hexanitrobenzene

Name [German, acronym]: Main (potential) use:

Hexanitrobenzene, [hexanitrobenzol, HNB]

Not stable enough for practical applications due to the fact that it decomposes in presence of moisture^[9], practical use hindered by chemical instability^[12]

$$\begin{array}{c|c} & NO_2 \\ O_2N & NO_2 \\ O_2N & NO_2 \end{array}$$

	Hexanitrobenzene	2			
Formula	C ₆ N ₆ O ₁₂				
Molecular mass [g mol ⁻¹]	348.10				
Appearance at RT	Yellow prism cryst	als on recryst. from CHCl ₃ ^[12]			
IS [J]	$\begin{split} & \text{IS}_{\text{LL}} = 0.3 \text{ m}^{[1]}, H_{50\%} = 11 \text{ cm (B.M., type 12 tool, 2.5 kg mass, 35 mg sample,} \\ & \text{garnet paper})^{[7]}, H_{50} = 11 \text{ cm (2.5 kg mass, type 12 tool)}^{[14]}, A_{d1} = 100\%, \\ & \text{$LL = 0.3 \text{ m}^{[18]}, H_{50} = 15.6 \pm 0.03 \text{ cm (type 12, ERL apparatus)}^{[24]},} \\ & H_{50} = 16.8 \pm 0.04 \text{ cm (type 12B, ERL apparatus)}^{[24]}, H_{50} = 0.12 \text{ m}^{[25]},} \\ & H_{50\%} = 11 \text{ cm (2.5 kg mass, type 12 tool, 35 mg sample in conical pile, 1 in}^2 \\ & \text{garnet paper})^{[27]}, H_{50\%} = 11 \text{ cm (2.5 kg mass)}^{[28]} \end{split}$				
N [%]	24.14				
Ω(CO ₂) [%]	0	0			
T _{m.p.} [°C]	246-262 ^[5, 12, 21] , 2	245–246 (recryst.) ^[17]			
T _{dec.} [°C]					
ρ [g cm ⁻³]	1.965 ^[13] , 2.02 (@	TMD) ^[15] , 1.99 ^[19, 27]			
Heat of formation	47.5 kcal mol ⁻¹ (exptl.) ^[8] , 420.7 kJ/kg ($\Delta H_{\rm f}$, ICT thermochemical database) ^[10] , 1,57.0 kcal/kg (enthalpy of formation) ^[11] , 15.7 kcal/mol ($\Delta H_{\rm f}$) ^[13] , 65.69 kJ/mol ^[15] , 39.7 kJ/mol ($\Delta H_{\rm f}$) ^[19] , 10.0 kcal/mol ^[23] , -36.4 kcal/mol ($\Delta H_{\rm f}$ (g) @ 25 °C, calcd., MINDO/3) ^[26]				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	1,620 kcal/kg (calcd.) [H ₂ O vap		; cm ⁻³ ,	1,651 kcal/kg (@ 1.640 g cm ⁻³) [H_2O vapor] ^[11]
	$-\Delta H_{\text{det}} = 6.89 \text{ k}$	$J/g^{[19]}$		
	Data from ^[20] (HN $\Delta H_{\rm f}^{\circ} = 200.8 \text{ k}$)		3 g/cm³,	
	BKW-RDX	7.33		
	BKW-R	7.24		
	BKW-RR	7.18		
	[8]	7.36		
	[9]	6.88		
	[9]	7.36		
	Heat of explosi (@ 2.0 g cm ⁻³)		O cal g ⁻¹	
T _{ex} [K]	5,183 (@ 2.0 g	cm ⁻³ , calo	cd.) ^[8]	
	4,509 (calcd.,	CT code) ^{[1}	0]	
	7,203 (calcd.,	CT code) ^{[1}	0]	
	4,942 (@ 1.96 KLRR/C, THEOS		calcd.,	
	5,297 (@ 1.96 BKWC, THEOST		calcd.,	
	4,422 (@ 1.96 BKWR, THEOST		calcd.,	
	HNB $\rho = 1.973$ § $\Delta H_{\rm f}^{\circ} = 200.8 \text{ kJ}_{\rm f}$		from ^[20] :	
	BKW-RDX	3,244]	
	BKW-R	4,631		
	BKW-RR	4,587		
	4,360 (@ 1.97 calcd. BKWR) ^[2]			
	5,470 (@ 1.97 calcd. BKWS) ^[2]			

p _{C-J} [kbar]	389 (@ 1.973 g cm ⁻³ ,		420 (@ 1.973 g cm ⁻³) ^[6]
	calcd. emp.) ^[6]		430 (@ 1.965 g cm ⁻³) ^[13]
	473.6 (@ 2.0 g cm ⁻³ , ca	lcd.) ^[8]	
	128.3 MPa (calcd., ICT o	ode) ^[10]	
	393 (@ 1.965 g cm ⁻³ , ca KLRR/C, THEOSTAR-T) ^{[13}		
	370 (@ 1.965 g cm ⁻³ , ca BKWC, THEOSTAR-T) ^[13]	alcd.,	
	378 (@ 1.965 g cm ⁻³ , ca BKWR, THEOSTAR-T) ^[13]	alcd.,	
	51.31 GPa (@ 2.07 g cm calcd., K-J) ^[16]	1 ⁻³ ,	
	Data from ^[20] (HNB ρ = 1.9). $\Delta H_{\rm f}^{\rm o}$ = 200.8 kJ/mol; [‡] by basic eqns. of hydrod detonation model ^[20] , va in GPa:	= calcd. dynamic	
	BKW-RDX	42.1	
	BKW-R	39.2	
	BKW-RR	37.7	
	single crystal $\rho_3 d_4^{20}$ of 2.00 g/cm ³	39.4	
	cited lit. values	40.9	
	cited lit. values	42.5	
	$ Q_{calc} = Q_{max} $	35.6	
	Expt. ‡	40	
	44 GPa (@ 2.0 g cm ⁻³) ^{[2.}	2]	
	382 (@ 1.97 g cm ⁻³ , calcd. BKWR) ^[23]		
	329 (@ 1.97 g cm ⁻³ , calcd. BKWS) ^[23]		
	393 (@ 1.97 g cm ⁻³ , cal	cd.) ^[27]	

	1	ı		ı
VoD [m s ⁻¹]		9,110 (@ TMD (2.1 g cn calcd. R-P method) ^[4]	n ⁻³),	9,450 (@ 2.00 g cm ⁻³) ^[3] ,
				9,300
		9,340 (@ 1.973 g cm ⁻³	,	(@ 1.973 g cm ⁻³) ^[6]
		calcd. emp.) ^[6]		
				9,500 (@ 2.0 g cm ⁻³) ^[8]
		9,630 (@ 2.0 g cm ⁻³ , ca	alcd.) ^[8]	
			•	9,340
		9,410 (@ 1.965 g cm ⁻³	,	(@ 1.965 g cm ⁻³) ^[13]
		calcd., KLRR/C, THEOST		
				9,300 (@ 1.97 g cm ⁻³ ,
		9,160 (@ 1.965 g cm ⁻³	,	calcd. BKWR) ^[23]
		calcd., BKWC, THEOSTA		,
			,	
		8,830 (@ 1.965 g cm ⁻³ ,	,	
		calcd., BKWR, THEOSTA		
			•	
		10,330 (@ 2.07 g cm ⁻³ , ca	lcd-, K-J) ^[16]	
		LIND - 4.072 / 3		
		HNB $\rho = 1.973 \text{ g/cm}^3$,		
		$\Delta H_{\rm f}^{\rm o} = 200.8 \text{kJ/mol}^{[20]} (1 = 10.08 \text{kJ/mol}^{[20]})$		
		crystal ρd^{20}_{4} of 2.00 g/cm		
		‡= calcd. by basic eqns. o		
		hydrodynamic detonation		
		$\S = @Q_{\text{calc}} = Q_{\text{max}}$, values		
		in mm/μs ^[20] :		
		BKW-RDX	9.31	
		BKW-R	8.94	
		BKW-RR	8.76	
		<u>†</u>	9.11	
		cited lit. values	9.35	
		cited lit. values	9.40	
		§	8.48	
		Expt. ‡	~ 9.3	
		9,450 (@ 2.0 g cm ⁻³) ^{[22}]	
		8,890 (@ 1.97 g cm ⁻³ , calcd. BKWR) ^[23]		
		calcu. Br.wr.j.		
		8,470 (@ 1.97 g cm ⁻³ ,		
		calcd. BKWS) ^[23]		
		9,100 (@ 1.97 g cm ⁻³ , ca	alcd.) ^[27]	

V ₀ [L kg ⁻¹]						
I _{rel}		Data from ^[20] ($t = @$ single crystal ρ d^{20}_4 of 2.00 g/cm ³ ; \ddagger = calcd. by basic eqns. of hydrodynamic detonation model, $\S = @ Q_{calc} = Q_{max})^{[20]}$:				
		BKW-RDX	129.9			
		BKW-R	126.0			
		BKW-RR	123.8			
		†	124.6			
		cited lit. values	125.9			
		cited lit. values	132.7			
		§	115.9			
		Expt. ‡	12.8			
Thermal stability	Some lowering of mpt. and slight dec. on prolonged storage @ 25 °C ^[21]					
Missile capacity	105.5% ^[22]					
Dipole moment, μ [D]	0.07 (gas @ 25 °C,	, calcd., MINDO/3) ^{[26}	, 0.01 (gas	@ 25°	C, calcd., MNDO) ^[26]	

Summary of experimental copper cylinder wall velocity data, PETN with a density of 1.763 g/cm 3 is the reference explosive, data from $^{[15]}$:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/µs) at 25.4 mm diameter for <i>R</i> – <i>R</i> ₀ equal to			Velocity-squared cf. with PETN for the same configuration, $\%$ comparison $R-R_0$ equal to		
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm
1.965	19.05	1.950	1.700	1.880	1.955	18.8	21.6	19.3

Summary of code calculations with measure detonation velocities and detonation energies derived from JWL's $^{[15]}$:

Initial density	PETN-adjusted BKWR Tiger, LLNL library, θ = 1850 K, at v		JCZ3, LLNL library, v			CHEQ V2.4, at v			
(g/cm ³)	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm
1.965	-2	-2	0	-2	-5	-4	-11	-12	-10

Derivation of the total energy of detonation, E_0 from the measured heat of detonation. The final state is assumed to at one atmosphere for all gaseous products including water at 298 K. Code calculated energies with the 1,800 K freeze are also included, data from [15]:

Measured	Measured	Density	Density Heat of detonation using density from ^[87]						
density (g/cm³)	confined heat of	from ^[87]					Free	eze at 1,80	00 K
(3/ 5)	detonation (kJ/cm³)			heat of detonation	Tiger BKWR	Tiger JCZ3	CHEQ		
1.918	-13.27	1.965	-13.59	-13.7	-13.8	-13.5	-13.1		

JWL cylinder coefficients data from^[15]:

density,	l "	Energy of detonation, E_0 (kJ/cm ³)	pressure	A (GPa)	<i>B</i> (GPa)	C (GPa)	R ₁	R ₂	ω	Υсј
1.965	9.34	-13.20	43.0	1,047.883	7.982396	1.396122	4.472	0.85	0.28	2.986

	Hexanitrobenzene ^[2]
Chemical formula	C ₆ N ₆ O ₁₂
Molecular weight [g mol ⁻¹]	348.10
Crystal system	Monoclinic
Space group	/2/c (no. 15)
a [Å]	13.220(15)
<i>b</i> [Å]	9.130(40)
c [Å]	9.680(30)
α [°]	90
β [°]	95.50(50)
γ [°]	90
<i>V</i> [ų]	1,162.98
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.988
<i>T</i> [K]	295

- [1] A. Smirnov, O. Voronko, J. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1–8.
- [2] Z. A. Akopyan, Y. T. Struchkov, V. G. Dashevii, Zhurnal Strukt. Khimii, 1966, 7, 408-416.
- [3] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, Pardubice, Czech. Rep., 9th–11th April 2014, pp. 24–37.
- [4] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [5] A. T. Nielsen, R. L. Atkins, W. P. Norris, J. Org. Chem., 1979, 7, 1181–1182.
- [6] W. Xiang, J. Energet. Mater., 1985, 3:4, 263-277.
- [7] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319–348.
- [8] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp, 54-4-54-7.
- [9] T. Urbański, Ch. 7 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [10] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [11] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [12] Dictionary of Organic Compounds, 6th edn., Chapman and Hall, 1996, vol. 4, pp. 3514–3515.
- [13] S. B. Victorov, S. A. Gubin, I. V. Maklashova, I. I. Revyakin, *Thermodynamic TDS Code:*Application to Detonation Properties of Condensed Explosives, ICT **2001**, Karlsruhe, Germany, pp. 69-1-69-15.
- [14] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [15] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175-183.
- [16] H. Du, H. Lui, Y. Liu, J. Zhang, F. Wang, X. Gong, Chinese J. Chem., 2011, 29, 455–462.
- [17] R. L. Atkins, A. T. Nielsen, C. Bergens, W. S. Wilson, J. Org. Chem., 1984, 49, 503-507.
- [18] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [19] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November – 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [20] A. M. Astakhov, R. S. Stepanov, A. Y. Babushkin, Combust., Explosion, Shock Waves, 1998, 34, 85–87.
- [21] A. T. Nielsen, W. P. Norris, R. L. Atkins, W. R. Vuono, J. Org. Chem., 1983, 48, 1056-1059.
- [22] N. N. Makhova, A. S. Kulikov, Russ. Chem. Rev., 2013, 82, 1007-1033.
- [23] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [24] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [25] X. Cao, B. Xiang, C.-Y. Zhang, *Chinese J. Energet. Mater.*, **2012**, *20*, 643–649.
- [26] R. M. Guidry, L. P. Davis, MINDO/3 and MNDO Calculations for Nitro Compounds, FJSRL-TR-83-0012, Air Force Systems Command, Unites States Air Force, Colorado, USA, 13th January 1983.
- [27] W. S. Wilson, D. E. Bliss, S. L. Christian, D. J. Knight, Explosive Properties of Polynitroaromatics, NWC TP 7073, Naval Weapons Center, China Lake, USA, April 1990.
- [28] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341-4346.

2,4,6,2',4',6'-Hexanitrobiphenyl

Name [German, acronym]: 2,4,6,2',4',6'-Hexanitrobiphenyl, hexa, 2,2',4,4',6,6'-

hexanitro-1,1'-biphenyl, 2,4,6,2',4',6'-hexanitrodiphenyl, hexanitrodiphenyl [hexanitrobiphenyl, HNB*, HNBP,

HNBPh]

 $\mbox{Main (potential) use:} \qquad \mbox{Detonating composition component}^{[26]}$

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N

^{*} For HNB see also hexanitrobenzene

	2 /r C 2/ /r/ C/ Hovenityshiphonyl				
	2,4,6,2',4',6'-Hexanitrobiphenyl				
Formula	$C_{12}H_4N_6O_{12}$				
Molecular mass [g mol ⁻¹]	424.19				
Appearance at RT	Light yellow, thick crystals if recrystallized from toluene (contains half a molecule of toluene of crystallization) ^[19]				
IS [J]	$18.64^{[3]}, 2.79 \text{ (first reaction)}^{[6,21]}, 20.92 \text{ (sound)}^{[6,21]}, \log H_{50\%} = 1.93^{[7]}, \\ 2.79 \text{ (Julius-Peters apparatus)}^{[8]}, H_{50\%} = 85 \text{ cm}^{[9]}, H_{50\%} = 70 \text{ cm (B.M., type 12 tool, 2.5 kg mass, 35 g sample, garnet paper)}^{[10]}, 20.92 \\ \text{ (Bruceton method)}^{[18,25]}, H_{50} = 70 \text{ cm (2.5 kg mass, type 12 tool)}^{[23]}, \\ \log(H_{50}) = 1.929 \text{ (Kamlet/Adolph)}^{[24]}, H_{50\%} = 90 \text{ cm (2.5 kg mass, type 12 tool, ERL method)}^{[27]}, H_{50\%} = 70 \text{ cm (2.5 kg mass)}^{[31]}$ $\text{Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample, data from $^{[30]}$:}$				
	Rotter impact data US data				
	F of I Gas evolved (mL) NSWC/NOL, NWC B.M. Type 12 ERL type 12				
	110 14.1 85 70				
ESD [J]	5.03 ^[3-5, 32] , 286.7 mJ ^[4]				

N [%]	19.81				
Ω(CO ₂) [%]	-52.8				
T _{phase transition} [°C]	128-130 ^[15]				
T _{m.p.} [°C]	(Thomas Hoover capilla	263 ^[1, 12, 19] , 239.3–240.8 ^[11] , 238 ^[12, 20] , 242 ^[12] , 241–242 ^[13] , 239.3–240.8 (Thomas Hoover capillary melting point apparatus @ 2 °C/min) ^[22] , 282 (DTA, exotherm, onset) ^[25]			
T _{dec.} [K]	534 (DTA @ 5 °C/min) ^{[6}	, ^{21]} , >320° (ignites) ^[12]			
ρ [g cm ⁻³]	$1.6^{[1]}, 1.878\pm 0.06 (@ 293.15 K)^{[2]}, 1.74 (crystal)^{[14]}, \sim 1.61$ (compressed under a pressure of 2,500 atm.) $^{[20]}$				
Heat of formation	14.6 kcal/mol (Δ _f H°, exptl.) ^[14]				
Heat of combustion	$-1,279.9$ kcal/mol (ΔH_c °, exptl.) ^[14]				
	Calcd. (EXPLO5 6.04) Lit. values Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,654 MJ•kg ⁻¹ (Q _{real} @ TMD) ^[18, 25]			
T _{ex} [K]					
p _{C-J} [GPa]	244 ^[14]				
VoD [m s ⁻¹]		7,500 (@ 1.74 g cm ⁻³) ^[14] 7,480 (@ TMD, calcd., K-J) ^[18, 25]	7,100 (@ 1.60 g cm ⁻³) ^[18, 25]		
V ₀ [L kg ⁻¹]					

Critical T[K]	890 (explosion in 250 μs) ^[27]						
Trauzl test [cm³, % TNT]	360 cm ^{3[20]} , 344 cm ^{3[29]}						
SSGT [cm]	Recrystallized HNBP data from ^[28] :						
	Loading	Density (g/cm³)		Sensitivity (DBG)			
	pressure (kpsi)	Avg.	s	Avg.	g	S _m	N
	8	1.248	Illegible	4.331	0.0470	0.0279	20
	8	-	-	4.376	0.0013	0.0012	20
	32	1.570	0.0148	5.080	0.0422	0.0276	20
5 s explosion T [°C] Ignition T [°C]	354 ^[18, 25] , >3	320 ^[20]					

Vacuum stability test [cm³/h]	@ 200 °C, total vol. of gas evolved in cm³/no. of days $^{[17]}$: 0.6/2, 1.5/7, 2.2/14, 3.0/21, 3.6/28, 4.4/35, 4.8/42, 6.8/49, 7.6/56, 8.4/63, 9.1/70, 9.8/77, 10.9/84, 11.8/91 $^{[17]}$ @ 175 °C, total vol. of gas evolved in cm³/no. of days $^{[17]}$: 0.4/2, 0.6/7, 0.8/13, 1.1/21, 1.2/28, 1.4/35, 1.5/42, 1.7/49, 1.8/56, 2.0/63, 2.2/70, 2.4/77, 2.6/84, 2.8/91 $^{[17]}$ @ 150 °C, total vol. of gas evolved in cm³/no. of days $^{[17]}$: 0.2/2, 0.3/7, 0.3/14, 0.4/21, 0.4/28, 0.5/35, 0.5/42, 0.5/49, 0.6/56, 0.6/63, 0.7/70, 0.7/77, 0.8/84, 0.8/91 $^{[17]}$				
Thermal stability	Values obtained by analyzing solid using thin-layer chromatography to analyze how much undecomposed sample remains ^[13] :				
	Time (min)				
	1,305 230 5				
	7,222 230 9				
	1,934	250	38		
	168 280 36				
	295 280 54				
	389 280 96				
	0.9 cc/g/h gas evolved @ 260 °C ^[27]				
Solubility [g/mL]	Insoluble in H ₂ C) ^[19] , sligh	tly soluble in I	EtOH, acetone, benzene, toluene ^[19]	

	Hexanitrobiphenyl ^[16]
Chemical formula	C ₁₂ H ₄ N ₆ O ₁₂
Molecular weight [g mol ⁻¹]	424.21
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	8.1860(7)
<i>b</i> [Å]	12.1370(8)
c [Å]	16.2040(12)
α [°]	93.728(6)
β [°]	93.101(6)
γ [°]	104.688(6)

<i>V</i> [ų]	1,532.05
Z	4
$ ho_{\rm calc}$ [g cm ⁻³]	1.839
<i>T</i> [K]	150

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 171.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [4] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [5] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [6] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM **2002**, April 24th–25th, pp. 434–443.
- [7] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem. Inf. Comput. Sci., 1996, 36, 804–810.
- [8] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 249-255.
- [9] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [10] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319-348.
- [11] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [13] J. C. Hoffsommer, J. S. Feiffer, *Thermal Stabilities of Hexanitroazobenzene (HNAB) and Hexanitrobiphenyl (HNB)*, Naval Ordnance Laboratory, Maryland, USA, NOLTR 67–74, 23rd June 1967.
- [14] P. E. Rouse, J. Chem. Engineering Data, **1976**, *21*, 16–20.
- [15] J. C. Dacons, Heat Resistant Explosives XXII. The Preparation of 2,2',2",2",4",4",4",4",6,6',6",6"Dodecanitroquarterphenyl, DODECA, NOLTR 65–223, US Naval Ordnance Laboratory, Maryland,
 USA, 28th January 1966.
- [16] M. Rohac, S. Zeman, A. Ruzicka, *Chem. Mater.*, **2008**, *20*, 3105–3109.
- [17] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [18] S. Zeman, M. Roháč, Chinese J. Energet. Mater., 2006, 14, 361–366.
- [19] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York, pp. 158–159.
- [20] T. Urbański, Ch. 10 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [21] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308-313.
- [22] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [23] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [24] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [25] S. Zeman, Z. Friedl, M. Roháč, *Thermochim. Acta*, **2006**, *451*, 105–114.

- [26] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [27] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61-97, 1st September 1961.
- [28] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [29] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [30] R. J. Spear, L. Montelli, *An Investigation of the Material Hazard of Some Insensitive High Explosives*, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, **1991**.
- [31] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341-4346.
- [32] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

2,4,6,2',4',6'-Hexanitrodiphenylamine

Name [German, acronym]: Bis(2,4,6-trinitrophenyl) amine, 2,2',4,4',6,6'-

> hexanitrodiphenylamine, hexanitrodiphenylamine, dipicrylamine, 2,4,6-trinitro-*N*-(2,4,6-trinitrophenyl) benzenamine, 2,4,6,2',4',6'-hexanitrodiphenylamine, hexite, hexamite, hexil [hexanitrodiphenylamin, hexa,

hexamin, hexyl, HNDPhA, HNDP, DPA]

Component of underwater explosives^[1], component Main (potential) use:

> of fusible compositions with TNT (with or without ammonium nitrate) for filling torpedoes, bombs or marine mines in World War I and World War II^[20], was used as component of hexanite^[26], booster explosive^[29], was used as booster and bursting charge in World

War II^[30]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	HNDP
Formula	C ₁₂ H ₅ N ₇ O ₁₂
Molecular mass [g mol ⁻¹]	439.21
Appearance at RT	Yellow needles ^[20] , small yellow needles ^[22] , yellow – orange crystalline solid ^[26] , yellow – brown solid as manufactured ^[26] , yellow prisms from acetic acid or 93% nitric acid ^[28] , yellow crystals ^[28, 29] , yellow – brownish-yellow crystals ^[30] , yellow crystalline powder ^[31] , may be loose, dense, or finely crystalline depending on the production method ^[31] , yellow prisms ^[33]
IS [J]	7.5 Nm ^[1] , 11.77 ^[5] , 10.16 (1st reaction) ^[7, 13, 23] , 11.81 (sound) ^[7, 23] , $H_{50} = 48 \text{ cm}^{[12]}$, $H_{50\%} = 48 \text{ cm}^{[14]}$, 35 cm (max. fall for $^0/_5$ shots, 2 kg mass, B.M.) ^[15] , 9 in (2 kg mass, P.A.) ^[15] , lower than that of tetryl, but higher than that of PA ^[20] , 40 cm (2 kg mass, <i>Kast</i>) ^[20] , 10 cm (10 kg mass, <i>Kast</i>) ^[20] , slightly less sensitive than tetryl and tetranitroaniline ^[22] , $H_{50\%} = 45 \text{ cm}$ (5 kg mass, several decigrams sample, sample contained in small iron cup (0.2 mm thick) covered with 0.2 mm thick iron disk) ^[22] , $H_{50} = 48 \text{ cm}$ (2.5 kg mass, type 12 tool) ^[25]

FS [N]	>353 ^[1]			
	5,02[5, 6, 34]			
ESD [J]	3102			
N [%]	22.32			
Ω(CO ₂) [%]	-52.8			
T _{m.p.} [°C]	233–235 ^[2] , 240–241 ^[1] , 245 (with dec.) ^[31] , 243–245 (with dec.) ^[20, 26, 28] , 243.0–244.5 (with dec.) ^[22] , ~240 ^[28] , >238 (with dec.) ^[29, 33] , 240–245 ^[30] , 238.5–239.5 (crude) ^[31]			
T _{dec.} [K]	513 (DTA @ 5 °C n	nin ⁻¹) ^[7, 23]		
ρ [g cm ⁻³]	1.64 ^[1] , 1.938 ± 0.	06 (@ 293.15 K) ^[3] , sp. gr. =	1.653 (crystal) ^[20]	
	ho under pressing ^[20] : 1.43 (@ <330 kg/cm ²) ^[20] , 1.56 (@ <660 kg/cm ²) ^[20] , 1.59 (@ <1,000 kg/cm ²) ^[20] , 1.60 (@ <1,330 kg/cm ²) ^[20] $ ho$ under pressing (pellets of HNDP mixed with 1% stearic acid) ^[22] : 1.43 (@ 5,000 lb/in ²) ^[22] , 1.56 (@ 10,000 lb/in ²) ^[22] , 1.59 (@ 15,000 lb/in ²) ^[22] , 1.60 (@ 20,000 lb/in ²) ^[22]			
Heat of formation	50.9 kJ/mol (enthalpy of form., calcd., emp.) ^[4] , 44.6 kJ/mol (enthalpy of form., exptl.) ^[4] , -84.8 kJ/mol (enthalpy of form., calcd., S-D method) ^[4] , -10.3 kcal/mol ^[15] , 94.3 kJ/kg (enthalpy of form.) ^[1] , -4.6 kcal/kg ^[20] , -25.0 kcal/kg (enthalpy of form.) ^[24]			
Heat of combustion	1,314.1 kcal/mol ^l	15]		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,995	327.1-405.6 kcal/mol ^[15]	4,075 [H ₂ O (l)] ^[1, 9]	
		1,035 kcal/kg (<i>Kast</i>) ^[20]	4,004 [H ₂ O (g)] ^[1]	
	1,054 kcal/kg (@ 1.700 g cm ⁻³ , calcd.) [H_2O vapor] ^[24] 1,080 kcal/kg [H_2O (g)] ^[11] 1,080 kcal/kg (@ 1.700 g cm ⁻³) [H_2O vapor] ^[24]			
	1,035 cal/g (@ 1.67 g cm ⁻³) ^[28] 1,080 kcal/kg ^[31]			
T _{ex} [K]	3,574	3,450 °C (<i>Kast</i>) ^[20]	3,450 °C (@ 1.67 g cm ⁻³) ^[28]	
p _{C-J} [GPa]	29.6			

VoD [m s ⁻¹]	8,207 (@ TMD)	6,898 (@ 1.58 g cm ⁻³) ^[15, 22]	7,200 (@ 1.60 g cm ⁻³) ^[1]
		7,150 (@ 1.67 g cm ⁻³) ^[15, 20, 22]	7,200 (@ 1.64 g cm ⁻³) ^[8]
		6,900 (@ 1.58 g cm ⁻³) ^[20]	7,400 (@ 1.64 g cm ⁻³) ^[17]
		7,100 (@ 1.64 g cm ⁻³ , <i>Kast</i>) ^[20]	22,600 ft/s (@ 1.6 g/mL) ^[26]
		6,995 (@ 1.58 g cm ⁻³) ^[28]	7,000 (@ 1.6 g cm ⁻³) ^[28]
		7,145 (@ 1.67 g cm ⁻³) ^[28]	7,150 (@ 1.67 g cm ⁻³) ^[28, 29]
			6,900 (@ 1.58 g cm ⁻³) ^[29]
			7,145 (@ 1.60 g cm ⁻³) ^[31]
V_0 [L kg ⁻¹]	595	675 (Kast) ^[20]	791 ^[1, 10]
			675 (@ 0 °C and 760 mm Hg, @ 1.67 g cm ⁻³) ^[28]
			675 ^[31]

Trauzl test [cm³, % TNT]	320 cc (standard 10 g charge) ^[16] , 102–108% TNT ^[17] , 325–350 cm ^{3[20]} , 13.3 cc (small Trauzl test) ^[27] rel. strength cf. TNT = $1.09^{[27]}$, 320 cc ^[28] , 325 cm ^{3[32]}
Sand test [g]	117–120% TNT ^[17] , 0.5 g HNDP crushed 49.5 g sand cf. 48.0 g for TNT, that is, 103% TNT ^[15] , 60.2 g (amount of sand crushed finer than 30 mesh, by total charge consisting of base charge of 0.50 g HNDP and 0.30 g priming charge of MF) ^[27] , 48.5 g (amount of sand crushed finer than 30 mesh, by base charge of 0.50 g HNDP) ^[27] , rel. strength cf. TNT = $1.11^{[27]}$
Ballistic mortar test	111-115% TNT ^[15, 17]
Initiation efficiency	0.18 g (minimum charge of fulminate-chlorate (90:10) necessary to completely detonate HNDP) ^[22, 31] Minimum initiating charge of primary explosive required for
	detonation (0.5 g charge HNDP in No. 8 detonator capsule with reinforcing cap, charges compressed under 3,400 lb/in² pressure) ^[21] : 0.165 g MF ^[21] , 0.075 g DDNP ^[21] , 0.05 g LA ^[21] , no detonation resulted by DDNP if no reinforcing cap used ^[21]

	Minimum initiating charge of primary explosive required for detonation (0.4 g charge HNDP in detonator capsule, charges compressed under 1,000 lb/in² pressure) ^[21] : 0.05 g (HMTD) ^[21] , 0.05 g (HMTD without reinforcing cap) ^[21] , similar sensitivity to initiation as pentryl and tetryl ^[21] Minimum weight of priming charge which causes complete detonation of the base charge ^[27] : 0.075 g DDNP ^[27] , 0.165 g MF ^[27] , 0.005 g LA ^[27] , can be detonated using detonators containing MF ^[28]
5 s explosion T [°C] Explosion T [°C] Initiation T [°C] Detonating T [°C]	250 (heating rate @ 5 °C/min) ^[15] , instantaneous explosion>360 ^[15] , 250–260 ^[28] 250 (@ heating rate 2 °C/min) ^[20] , 258 (heated from 100 °C @ 20 °C/min) ^[22] , 250 (heated form 100 °C @ 5 °C/min) ^[22] ~237 ^[26]
Thermal stability	Unchanged after heating for 30 days @ 95 $^{\circ}$ C[20], stable in storage at elevated temperatures[28], no dec. after heating for 3 h @ 40 $^{\circ}$ C[28], no dec. after heating for 3 h @ 160 $^{\circ}$ C[28], no dec. after heating for 3 h @ 180 $^{\circ}$ C[28]
Vacuum stability test [cm³/h]	4.4 mL gas evolved from 5 g sample in 48 h @ 120 °C ^[15]
Burn rate [mm/s]	Burns underwater ^[26]
Solubility [g/mL]	Poorly soluble in most common organic solvents ^[20] , soluble in hot acetic acid, nitrobenzene, acetone ^[20] , insoluble in CHCl ₃ ^[22] , soluble in EtOH, acetone ^[22] , sparingly soluble in $\text{Et}_2\text{O}^{[22]}$, soluble in acetone, warm glacial acetic acid, nitric acid and aq. alkaline solutions (except aq. KOH) ^[26] , almost insoluble in water or chloroform ^[28] , slightly soluble in Et_2O or cold acetic acid ^[28] , moderately soluble in $\text{EtOH}^{[28]}$, readily soluble in acetone, warm acetic acid or alkalies except aq. KOH ^[28] , insoluble in water and common organic solvents ^[31] , can be recryst. from acetone, glacial acetic acid and conc. nitric acid ^[31] , insoluble in water, acetone, EtOH , $\text{Et}_2\text{O}^{[33]}$, soluble in alkalies, glacial acetic acid ^[33]
Hygroscopicity	Only slightly hygroscopic @ $RT^{[20]}$, 0.09% moisture absorbed when exposed to air saturated with water vapor [20], slightly hygroscopic [26], 0.09% [31]
Photosensitivity	Turns brown on exposure to sunlight ^[26, 31]
Flash point [°C]	250 ^[31]
Kast brisance	4.9 mm ^[31]
Fugacity	320 cc ^[31]

	DPA ^[16]	DPA ^[18]	DPA ^[19]
Chemical formula	C ₁₂ H ₅ N ₇ O ₁₂	C ₁₂ H ₅ N ₇ O ₁₂	C ₁₂ H ₅ N ₇ O ₁₂
Molecular weight [g mol ⁻¹]			
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁ (no. 19)	P2 ₁ 2 ₁ 2 ₁ (no. 19)	P2 ₁ 2 ₁ 2 ₁ (no. 19)
a [Å]	11.692	11.72	7.3586(1)
<i>b</i> [Å]	18.991	19.84	11.6401(2)
c [Å]	7.381	7.37	18.7345(4)
α [°]	90	90	90
β [°]	90	90	90
γ [°]	90	90	90
<i>V</i> [ų]	1,638.9	1,713.71	1,604.7
Z		4	4
$ ho_{ m calc}$ [g cm $^{-3}$]		1.702	1.818
<i>T</i> [K]	295	295	100

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 172-173.
- [2] V. L. Zbarskii, G. M. Shutov, V. F. Zhilin, E. Y. Orlova, Zhurnal Organicheskoi Khimii, 1965, 1, 1237-1239.
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs).
- [4] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.
- S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25-60.
- M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342. [6]
- S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro [7] Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th-25th, pp. 434-443.
- [8] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [9] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [10] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, Indian J. Engineering and Mater. Sci., 2015, 22, 701-706.
- [11] A. Smirnov, M. Kuklja, On the use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [12] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, NATO Advanced Study Institute on Chemistry and Physics of Molecular Processes in Energetic Materials, LA-UR-89-2936.

- [13] S. Zeman, M. Krupka, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 249–253.
- [14] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [16] C. Dickinson, J. R. Holden, Crystal Structures of Hexanitrodiphenolamine and its Potassium Salt, in American Crystallographic Association, Series 2, 1977, 5, 55 (Abstracts, American Crystallographic Association Summer Meeting, August 1977, Michigan, Abstract PA7).
- [17] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [18] S. Furberg, P. Larssen, Acta Chem. Scand., 1952, 6, 965–966.
- [19] K. Wozniak, P. R. Mallinson, C. C. Wilson, E. Hovestreydt, E. Grech, J. Phys. Chem., 2002, 106A, 6897–6903.
- [20] T. Urbański, Ch. 17 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [21] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [22] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [23] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [24] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [25] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [26] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [27] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554–557.
- [28] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [29] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [30] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [31] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [32] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [33] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [34] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Hexanitrodiphenylaminoethyl nitrate

Name [German, acronym]: β(Hexanitrodiphenylamino)ethyl nitrate, 2-[bis(2,4,6-

> trinitrophenyl)amino-ethanol] nitrate, dipicrylaminoethylol nitrate [hexanitrodiphenylaminoethylnitrat]

Main (potential) use: Suggested as base charge in compound detonators,

possible uses as booster or component of reinforced

detonators^[5]

	β(Hexanitrodiphenylamino)ethyl nitrate			
Formula	C ₁₄ H ₇ N ₈ O ₁₅			
Molecular mass [g mol ⁻¹]	528.26	528.26		
Appearance at RT	Pale-yellow glistening p	olates ^[3, 4] , yellow crystals [[]	5]	
IS [J]		35 cm (max. fall for $^0/_5$ shots, 2 kg mass) $^{[1]}$, 35 cm (max fall for $^0/_5$ explosions, 2,000 g weight, 0.02 g sample, BM small impact device) $^{[4]}$		
FS [N]	No detonation when subjected to steel anvil and steel shoe, type B pendulum friction device, modification 1, 5 kg weight added to shoe ^[4]			
N [%]	21.21	21.21		
Ω(CO ₂) [%]	-51.5			
T _{m.p.} [°C]	184 ^[-4]			
$ ho$ [g cm $^{-3}$]	1.69 ^[1] , 1.27 (@ 3400 lb/sq.in) ^[1] , 1.69 (true ρ) ^[4] , 0.39 (apparent ρ when placed in cylinder and tapped) ^[4] , 1.27 (pressed in detonator shell under reinforcing capsule under pressure of 239.0 kg/cm ²) ^[4] , sp. gr. = 1.69 ^[5]			
Heat of formation				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				

p _{C-I} [kbar]		
VoD [m s ⁻¹]		
V ₀ [L kg ⁻¹]		
Trauzl test [cm ³ , % TNT]	134% TNT ^[1] , ~3% more effective than pentryl (small Trauzl test) ^[3] , 16.3 (expansion of cavity in block, small Trauzl block) ^[4] , rel. strength = 1.34 of TNT (small Trauzl block) ^[4]	
Sand test [g]	51.1 (0.5 g sample)/120% TNT ^[1] , ~7% less effective than pentryl ^[3] , 62.8 g (by total charge consisting of base charge of 0.50 g of test explosive and 0.30 g MF priming charge, no. 2 sand test bomb, sand crushed finer than 30 mesh, BM method) ^[4] , 51.1 g (by base charge of 0.50 g of test explosive, no. 2 sand test bomb, sand crushed finer than 30 mesh, BM method) ^[4] , rel. strength cf. TNT = 1.20 ^[4]	
Initiation efficiency	Minimum detonating charge of primary explosive required to cause complete detonation: 0.05 g DDNP, 0.16 g MF, 0.04 g LA	
5 s explosion T [°C] Ignition T [°C]	$390-400^{[1]}$, $390-400$ (if rapidly heated) ^[3-5] Using molten metal bath (chromel-alumel couple) ^[4] : instantaneously @	
	$450 {}^{\circ}\text{C}^{[4]}, 0.25 - 0.5 \text{s} @ 440 {}^{\circ}\text{C}^{[4]}, 0.5 \text{s} @ 430 {}^{\circ}\text{C}^{[4]}, 1 - 1.5 \text{s} @ 420 {}^{\circ}\text{C}^{[4]}, \\ 1.5 - 2 \text{s} @ 400 {}^{\circ}\text{C}^{[4]}, \text{failed to ignite in 5 trials} @ 390 {}^{\circ}\text{C}^{[4]}$	
Thermal stability	Stored in the dry state for 6 months without discoloration or visible signs of dec. [4]	
100 °C heat test [% mass loss]	Slight discoloration but no mass loss after 48 h (international 100 °C heat test) ^[4]	
International 75 °C heat test	No discoloration or mass loss in 48 h @ 75 °C in international thermal stability test $^{[1,4]}$	
Solubility [g/mL]	Soluble in acetone ^[3, 4] , very soluble in nitrobenzene, 1,4-dioxane, nitric acid, pyridine, aniline and hot ethylene glycol ^[4] , less soluble in xylene, acetone and acetic anhydride ^[4] , slightly soluble in EtOH, ethyl ether, ethylene dichloride, ethyl acetate, amyl acetate, MeOH and benzene ^[4]	
Compatibility	Stored in the dry state for 6 months without discoloration or visible signs of dec. ^[4]	

- [1] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 173.
- [3] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York.
- [4] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [5] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.

Hexanitrodiphenylglycerol mononitrate

Name [German, acronym]: Hexanitrodiphenylglycerol mononitrate

[heptanitrophenylglycerin]

Main (potential) use: Structural formula:

	Hexanitrodipheny	lglycerol mononitrate
Formula	C ₁₅ H ₉ N ₇ O ₁₇	
Molecular mass [g mol ⁻¹]	559.27	
Appearance at room temperature		
IS [J]	23 Nm ^[1]	'
N [%]	17.52	
Ω(CO ₂) [%]	-50.1	
T _{m.p.} [°C]	160-175 ^[1]	
Heat of formation		
	Calcd. (K-J)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
T _{ex} [K]		
p _{C-J} [GPa]		
VoD [m s ⁻¹]		
V_0 [L kg ⁻¹]		

Critical diameter [cm]	
Trauzl test [cm³, % TNT]	355 ^[2]

^[1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 173–174.

^[2] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.

2,4,6,2',4',6'-Hexanitrodiphenyl oxide

Name [German, acronym]: 2,4,6,2',4',6'-Hexanitrodiphenyl oxide, 2,4,6,2',4',6'-

hexanitrodiphenyl ether, dipicrylether, dipicryloxide

[hexanitrodiphenyloxid, HNDPO]

Main (potential) use: Detonating composition component^[5]

$$O_2N$$
 O_2
 O_2N
 O_2
 O_2
 O_2
 O_2
 O_2
 O_3
 O_4
 O_4
 O_5
 $O_$

	2,4,6,2',4',6'-Hexanitrodiphenyl oxide		
Formula	C ₁₂ H ₄ N ₆ O ₁₃		
Molecular mass [g mol ⁻¹]	440.19		
Appearance at RT	White plates ^[5]		
IS [J]	8 Nm ^[1] , does not detonate [[]	4]	
N [%]	19.09		
Ω(CO ₂) [%]	-47.3	-47.3	
T _{m.p.} [°C]	269 ^[1, 5]		
ρ [g cm ⁻³]	1.70 ^[1] , 1.905 ± 0.06 (@ 293.15 K) ^[2]		
Heat of formation			
	Calcd. (K-J) Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [GPa]			
VoD [m s ⁻¹]		7,180 (@ 1.65 g cm ⁻³ , confined) ^[1]	
		7,180 (@ 1.70 g cm ⁻³) ^[3]	
V ₀ [L kg ⁻¹]			

Trauzl test [cm³, % TNT]	373 cm ^{3[6]}
Ballistic mortar test	63.6% of blasting gelatin ^[4]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 174.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [5] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.

2,4,6,2',4',6'-Hexanitrodiphenylsulfide

Name [German, acronym]: 2,4,6,2',4',6'-Hexanitrodiphenylsulfide, bis(2,4,6-

trinitrophenylsulfide, picryl sulfide, hexasulphide,

hexide, 1,1'-thiobis(2,4,6-trinitrobenzene) [hexanitrodiphenylsulfid, dipicrylsulfid, DIPS,

HNDPhS]

Main (potential) use: Used in explosive mixtures in World War I and World

War II bombs^[9], component in some bursting charges, proposed for use in reinforced detonators^[15], used in World War I in drop bombs mixed with TNT^[15], suggested for use to make closed spaces untenable due

to SO₂ production on explosion^[15]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	2,4,6,2',4',6'-Hexanitrodiphenylsulfide
Formula	$C_{12}H_4N_6O_{12}S$
Molecular mass [g mol ⁻¹]	456.25
Appearance at RT	Golden crystals ^[14] , golden-yellow leaflets if recryst. from acetone ^[15] , yellow crystals ^[17]
IS [J]	6 Nm ^[1] , 7.30 (sound) ^[7] , 2.94 (1st reaction) ^[7, 10, 16] , 6.00 (sound) ^[7, 16] , less sensitive than PA; FI = 83% PA ^[9] , more sensitive than tetryl ^[9] , $^{0}/_{6}$ shots = 36–39 cm (2 kg mass, Kast apparatus) ^[9] , lower than that of tetryl, but higher than that of PA ^[14]
ESD [J]	2.54 ^[5] , 125.5 mJ ^[5] , 2.56 ^[6, 18]
N [%]	18.42
Ω(CO ₂) [%]	-56
T _{m.p.} [°C]	$226^{[2]}$, $234^{[1, 9, 14]}$, 234 (golden-yellow leaflets recryst. from acetone) ^[15] , $230-231^{[17]}$
T _{dec.} [°C]	227–228 ^[3] , (detonates @ 320 ^[9]), 525 K (DTA @ 5 °C/min) ^[7, 16]
$ ho$ [g cm $^{-3}$]	$1.65^{[1]}$, 1.96 ± 0.1 (@ 293.15 K) ^[4] , sp. gr. = 1.70 (@ 3,000 kg/sq cm) ^[9]

Heat of formation	14 kcal/mol ^[9]		
Heat of combustion	1,425 cal/mol (@ C ^V) ^[9]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			3,682 [H ₂ O (g)] ^[8]
T _{ex} [K]			
p _{C-J} [GPa]			
VoD [m s ⁻¹]			6,890 (@ 1.60 g cm ⁻³) ^[11]
			7,200 (@ 1.72 g cm ⁻³) ^[11]
			7,000 (@ 1.61 g cm ⁻³ , confined) ^[1]
V ₀ [L kg ⁻¹]			

Trauzl test [cm³, % TNT]	107% $PA^{[9]}$, 110% $^{[12]}$, 325 cc (10 g charge) $^{[13]}$, 325–350 cm $^{3[14]}$, equal to or slightly larger than that of $PA^{[14]}$
5 s explosion T [°C] Explosion T [°C]	319 (@ heating rate of 20 °C/min) ^[9] , 302 (@ heating rate of 5 °C/min) ^[9]
Initiation T [°C] Ignition T [°C]	302–319 (depending on the rate of heating) ^[14] 319 (heated from 100 °C @ 20 °C/min) ^[15] , 302 (heated from 100 °C @ 5 °C/min) ^[15] , deflagrates @ $290^{[17]}$
Thermal stability	No dec. in 30 days heating (8 h per day) @ 95 $^{\circ}$ C ^[9] , unchanged after 30 days @ 95 $^{\circ}$ C ^[14]
Solubility [g/mL]	Poorly soluble in most common organic solvents ^[14] , sparingly soluble in EtOH, ${\rm Et_2O^{[15]}}$, more soluble in acetone ^[15]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 174-175.
- [2] D. F. Twiss, J. Chem. Soc., Transactions, 1914, 105, 1672–1678.
- [3] M. Pezold, R. S. Schreiber, R. L. Shriner, J. Am. Chem. Soc., 1934, 56, 696-697.
- [4] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs).
- [5] S. Zeman, J. Majzlík, *Central Europ. J. Energ. Mat.*, **2007**, *4*, 15–24.
- M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [7] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th-25th 2002, pp. 434-443.
- W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [9] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1972.
- [10] S. Zeman, M. Krupka, Propellants, Explosives, Pyrotechnics, 2003, 28, 249-255.

- [11] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, *Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives*, NTREM 17, 9th–11th April **2014**, pp. 24–37.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [14] T. Urbański, Ch. 16 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [16] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [17] Dictionary of Organic Compounds, 6th edn., Chapman and Hall, 1996, vol. 4.
- [18] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

2,4,6,2',4',6'-Hexanitrodiphenylsulfone

Name [German, acronym]: 1,3,5-Trinitro-2-[(2,4,6-trinitrophenyl)sulfonyl]-benzene,

> bis(2,4,6-trinitrophenyl) sulfone, 2,4,6,2',4',6'hexanitrodiphenylsulfone, dipicrylsulfone, hexanitrodiphenylsulfone [hexanitrosulfobenzid,

DIPSO, HNDPhSO]

Main (potential) use: Filling shells, bombs, torpedoes, used with TNT in

> aerial bombs in World War II^[7], detonating composition component, used in mixtures with TNT and sometimes in mixtures with TNT and AN for filling bombs in World

War I^[11]

	2,4,6,2',4',6'-Hexanitrodiphenylsulfone
Formula	C ₁₂ H ₄ N ₆ O ₁₄ S
Molecular mass [g mol ⁻¹]	488.25
Appearance at room temperature	Yellow crystals ^[11] , pale yellowish crystals ^[12]
IS [J]	3.86 (1st reaction) $^{[6, 8, 13]}$, 8.44 (sound) $^{[6, 13]}$, FI = 70% PA $^{[7]}$, max. fall for $^{0}/_{6}$ shots = 43 cm (2 kg mass, Kast apparatus) $^{[7]}$, similar to that of tetryl $^{[11]}$
ESD [J]	10.24 ^[4] , 186.7 mJ ^[4] , 10.54 ^[5, 15]
N [%]	17.21
Ω(CO ₂) [%]	-46
T _{phase transition} [°C]	≥70 (as suspension, orthorhombic → monoclinic) ^[3] , orthorhombic crystals formed @ 38 °C but above separation of solid from nitric acid >40 °C produces only monoclinic crystals ^[3]
<i>T</i> _{m.p.} [°C]	307 ^[1,7,12] , 226 ^[7] , >254 ^[7] , 307 (dec.) ^[11] , 307 (uncorrected, after recryst. from alcoholic acetone) ^[3] , 338–345 (with dec., needle-like, orthorhombic crystals prepared from DIPS/CrO ₃ /nitric acid) ^[3] , 335–345 (with dec., DIPSO prepared from novel method) ^[3]
T _{dec.} [K]	530 (DTA) ^[6, 13] , explodes @ 290 °C ^[7] , 370 ^[11]

ρ [g cm ⁻³]	1.962 ± 0.06 (@ 293.15 K) ^[2] , 0.86 (bulk ρ , needle-like, orthorhombic crystals prepared from DIPS/CrO ₃ /nitric acid) ^[3] , 1.1 (bulk ρ of DIPSO prepared from novel method) ^[3]	
Heat of formation		
	Calcd. (K-J)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
<i>T</i> _{ex} [K]		
р _{с-J} [GPa]		
VoD [m s ⁻¹]		5,210 (@ 1.1 g cm ⁻³) ^[3] 4,760 (1.2 grain per foot train of DIPS contained in metal sheath, DIPSO prepared from DIPS/CrO ₃ /nitric acid) ^[3] 5,210 (1.2 grain per foot train of DIPS contained in metal sheath, DIPSO prepared from novel method) ^[3]
V ₀ [L kg ⁻¹]		

Trauzl test [cm³, % TNT]	115% TNT ^[9] ,107% PA ^[7]
Sand test [g]	70% PETN (DIPSO prepared from DIPS/CrO ₃ /nitric acid) ^[3]
5 s explosion T [°C] Explosion T [°C] Initiation T [°C] Ignition T [°C]	297 (@ heating rate of 5 °C/min) ^[7] , 290 ^[7] 297–308 (depending on heating rate) ^[11] 308 (heated form 100 °C @ 20 °C/min) ^[12] , 297 (heated from 100 °C @ 5 °C/min) ^[12]
Thermal stability	No dec. after 30 days heating @ 95 °C (8 h per day) ^[7] , long-term storage @ 130 °C showed no dec. ^[7] , unchanged after heating @ 95 °C for 3 days ^[11] , 3.5 h @ 450°F (DIPSO prepared from DIPS/CrO ₃ /nitric acid) ^[3] , 7.5 h @ 450°F (DIPSO prepared from novel route) ^[3]
Vacuum stability test [cm³/h]	@ 200 °C ^[10] : 2.4 cm ³ in 2 days ^[10] @ 175 °C ^[10] : 0.3/2 days, 0.7/7 days, 2.4/14 days, 7.1/21 days, 20.5/28 days ^[10] @ 150 °C ^[10, 14] : 0.1/2 days, 0.2/7 days, 0.2/14 days, 0.3/21 days, 0.3/28 days, 0.3/35 days, 0.4/42 days, 0.5/49 days, 0.5/56 days, 0.6/63 days, 0.7/70 days, 0.9/77 days, 1.1/84 days, 1.3/91 days ^[10, 14]
Solubility [g/mL]	Poor solubility in most common organic solvents ^[11]

	DIPSO ^[3]	DIPSO ^[3]
Chemical formula	C ₁₂ H ₄ N ₆ O ₁₄ S	C ₁₂ H ₄ N ₆ O ₁₄ S
Molecular weight [g mol ⁻¹]		
Crystal system	Monoclinic	Orthorhombic
Space group	C ⁵ _{2h}	D ⁹ _{2h}
a [Å]	10.75	9.37
<i>b</i> [Å]	17.75	19.08
c [Å]	9.58	19.70
α [°]	90	90
β [°]	105.5	90
γ [°]	90	90
<i>V</i> [ų]		
Z	4	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.841	1.84
T[K]		
	DIPSO prepared from novel method ^[3]	Needle-like crystals, DIPSO prepared using oxidation of DIPS using chromium trioxide and nitric acid ^[3]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 174.
- Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] J. E. Hughes, D. N. Thatcher, Explosive, US Patent 2,952,708, 13th September 1960.
- S. Zeman, J. Majzlík, *Central Europ. J. Energ. Mat.*, **2007**, 4, 15–24.
- [5] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro [6] Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th-25th, pp. 434-443.
- [7] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1972.
- [8] S. Zeman, M. Krupka, Propellants, Explosives, Pyrotechnics, 2003, 28, 249-255.
- [9] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [10] J. C. Baytos, High Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [11] T. Urbański, Ch. 16 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.

- [12] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 1, **1941**, John Wiley and Sons Inc., New York, pp. 187–188.
- [13] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [14] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives* for Downhole Well Applications, US Patent US 2002/0129940 A1, 19th September 2002.
- [15] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Hexanitroethane

Name [German, acronym]: Hexanitroethane [hexanitroethan, HNE]

Main (potential) use: Oxidizer in propellants^[1]

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2

	HNE				
Formula	$C_2N_6O_{12}$				
Molecular mass [g mol ⁻¹]	300.05				
Appearance at room temperature	Colorless crystalline sol	id ^[20]			
IS [J]	4.7 ^[2] , comparable with	PETN ^[14] , often >1 m (2 kg ha	mmer) ^[20]		
FS [N]	240 ^[3]				
N [%]	28.01				
Ω(CO ₂) [%]	+42.7				
T _{m.p.} [°C]	$150^{[1]}$, $147^{[3]}$, 142 (with partial dec. and sublimation) ^[14] , 142 (with rapid dec.) ^[19] , $142^{[20]}$, 155 (with dec.) ^[20]				
T _{dec.} [°C]	136.61 (DSC @ $10 ^{\circ}$ C min $^{-1}$) $^{[4]}$, 142 (melting with rapid dec.) $^{[19]}$				
ρ [g cm ⁻³]	2.169 ± 0.06 (@ 293.15 K) ^[5] , 2.248 ^[8] , 1.848 (cubic crystal @ 293 K) ^[11] , 2.075 (monoclinic crystal, @ 145 K) ^[12] , 1.85 ^[3]				
Heat of formation	80.3 ± 0.4 kJ/mol ^[6] , 267.7 ± 1.4 kJ/kg ^[6] , 397.5 kJ/kg ^[8] , 399.1 kJ/kg (enthalpy of form.) ^[3] , 33.8 kcal/mol ($\Delta_i H^o$ (g), exptl.) ^[17] , -46.0 kcal/mol ($\Delta_i H^o$ (g), calcd.) ^[17] , 19.0 kcal/mol ($\Delta_i H^o$ (cryst.)) ^[17] , 19.2 ± 0.1 kcal/mol ($\Delta_i H^o$ (c)) ^[15] , 34.0 ± 0.2 kcal/mol ($\Delta_i H^o$ (g)) ^[15] , 20.0 kcal/mol ($\Delta_i H^o$) ^[16]				
$\Delta_{c}H^{o}$ [kcal mol ⁻¹]	$-207.3 \pm 0.1^{[15]}, -207.1^{[17]}$				
	Calcd. (EXPLO5 6.04) Lit. values Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,944	2,944 2,805.6 (calcd., K-J) ^[1] 3,021.7 ^[1]			
	750 cal/g ^[20] 3,102 ^[10]				
			2,884 ^[3]		

T _{ex} [K]	2,931	6,048 (calcd., K-J) ^[7] 2,440 (@ 1.86 g cm ⁻³ , calcd.) ^[16]	
p _{C-J} [GPa]	22.3	6.29 (calcd., K-J) ^[7] 235.5 kbar (@ 1.86 g cm ⁻³ , calcd.) ^[16]	
VoD [m s ⁻¹]	7,457 (@ 1.86 g cm ⁻³ , $\Delta_i H = 83.7 \text{ kJ mol}^{-1}$)	4,907 (@ TMD) (calcd., K-J) ^[7] 7,540 (@ 1.86 g cm ⁻³ , calcd.) ^[16]	4,950 (@ 0.91 g cm ⁻³) ^[1] 7,580 (@ 1.86 g cm ⁻³) ^[16]
V ₀ [L kg ⁻¹]	727		734 ^[1, 3, 9] 672 ^[10]

Trauzl test [cm³, % TNT]	115% TNT ^[14] , 117% TNT ^[20]
Ballistic mortar test	108% TNT ^[13, 14]
Thermal stability	Storable @ 25 °C but begins to dec. @ 75 °C and rapid dec. @ mpt. $(142 ^{\circ}\text{C})^{[19]}$
Enthalpy of vaporization [kcal mol ⁻¹]	14.8 ± 0.1 ^[15]
ΔH _{sub} [kJ/mol]	70.7 (exptl.) ^[18] , 96.0 (calcd., QSPR) ^[18]

	HNE ^[11]	HNE ^[11]	HNE ^[12]
Chemical formula	C ₂ N ₆ O ₁₂	C ₂ N ₆ O ₁₂	C ₂ N ₆ O ₁₂
Molecular weight [g mol ⁻¹]	300.05	300.05	300.05
Crystal system	Orthorhombic	Cubic	Monoclinic
Space group	Not specified	13	P 2 ₁ / c (no. 14)
a [Å]	12.02	8.14(3)	10.152(2)
<i>b</i> [Å]	5.46	8.14(3)	9.311(2)
c [Å]	13.83	8.14(3)	10.251(2)
α [°]	90	90	90
β [°]	90	90	97.54(1)
γ [°]	90	90	90

<i>V</i> [ų]	907.652	539.353	960.6
Z	4	2	4
$ ho_{\rm calc}$ [g cm ⁻³]	Not given	1.848	2.075
T[K]	Not given	293	145

- P. Noble Jr., W. L. Reed, C. J. Hoffman, J. A. Gallaghan, F. G. Borgardt, AIAA Journal, 1963, 1, 395–397.
- [2] K. A. McDonald, J. C. Bennion, A. K. Leone, A. J. Matzger, *Chemical Communications*, 2016, 52, 10862–10865.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 175–176.
- [4] H. Huang, Y. Shi, J. Yang, J. Energet. Mater., 2015, 33, 66-72.
- [5] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [6] E. A. Miroshnichenko, T. S. Kon'kova, Y. O. Inozemtsev, Y. N. Matyushin, *Russ. Chem. Bull., Int. Ed.*, 2010, 59, 890–895.
- [7] N. Desbiens, V. Dubois, C. Matignon, R. Sorin, J. Phys. Chem. B, 2011, 115, 12868-12874.
- [8] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [9] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [10] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17-33.
- [11] G. Krien, H. H. Licht, F. Trimborn, *Explosivstoffe*, **1970**, *18*, 203–207.
- [12] D. Bougeard, R. Boese, M. Polk, B. Woost, B. Schrader, J. Physics Chem. Solids, 1986, 47, 1129–1137.
- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [14] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [15] E. A. Miroshnichenko, T. S. Kon'kova, J. O. Inozemtcev, V. P. Vorob'eva, The Laws of Energies of Dissociation of Bonds in the Nitroderivatives of Alkanes, ICT 2011, Karlsruhe, Germany, pp. 65-1-65-11.
- [16] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp, 54-4-54-7.
- [17] Y. N. Matyushin, V. P. Lebedev, E. A. Miroshnichenko, L. M. Kostikova, Y. O. Inozemcev, Energy of Interaction NO₂-Groups in Nitroderivatives Methane and Ethane, ICT 2000, Karlsruhe, Germany, pp. 51-1–51-8.
- [18] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [19] A. T. Nielsen, W. P. Norris, R. L. Atkins, W. R. Vuono, J. Org. Chem., 1983, 48, 1056-1059.
- [20] J. A. Gallaghan, B. Lomond, W. L. Reed, Synthesis of Hexanitroethane, US Patent 3,101,379, August 20th 1963.

Hexanitrohexaazatricyclododecanedione

Name [German, acronym]: Cis-syn-cis-2,6-dioxo-1,3,4,5,7,8-hexanitrodecahydro-

1*H*,5*H*-diimidazo[4,5-*b*:4',5'-*e*]pyrazine, [HHTDD]

Main (potential) use: Potential submunition fill^[1], (highest ρ reported for C,

H, N, O explosive up to year 2002^[2])

	HHTDD		,		
Formula	C ₆ H ₄ N ₁₂ O ₁₄	C ₆ H ₄ N ₁₂ O ₁₄			
Molecular mass [g mol ⁻¹]	468.17				
Appearance at RT	Light-brown solid (cr CH ₃ CN/CHCl ₃ ^[4]	ude product) ^[4] , colorless solid after	recryst. from		
N [%]	35.90				
Ω(CO ₂) [%]	0				
T _{m.p.} [°C]	215 ^[1]				
T _{dec.} [°C]	210 (explosively) ^[2, 4]				
$ ho$ [g cm $^{-3}$]	2.07 ^[1] , 2.071 ^[3]				
Heat of formation	$-33.5 \text{ kJ/kg} (\Delta H_{\text{f}}^{\text{o}})^{[3]}$				
	Calcd.(EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		5,774 (Q _{cal} , calcd.) ^[3]			
<i>T</i> _{ex} [K]					
p _{C-J} [kbar]		46.2 GPa ^[1]			
	42.5 GPa (@ 2.071 g cm ⁻³ , calcd.) ^[3]				
VoD [m s ⁻¹]	~9,750 ^[1]				
	9,800 (@ 2.071 g cm ⁻³ , calcd.) ^[3]				
V_0 [L kg ⁻¹]					

LSGT [cm]	P_{cr} = 1.2 GPa (critical pressure of detonation initiation, calcd., LSGT) ^[3]			
Thermal stability	Safe lifetime of ~55 years @ 20 °C ^[1]			
Solubility [g/mL]	Recryst. from CH ₃ CN/CHCl ₃ , dry acetone/dry benzene ^[4] , soluble in CH ₃ CN ^[4]			
Compatibility	Dec. in humid air (85% RH) according to $(t_{50} = 0.90 \text{ days})^{[1]}$:			
	Time (days)	R _t (%)		
	0	100		
	0.375	87.407		
	0.9375	51.424		
	1.458	13.679		
	2.354	0		
	4.792	0		
		is $t_{50} = \sim 0.016$ days (@ 23 °C, 25% wt. water/soil) ^[1] % air RH) according to $(t_{50} = 217 \pm 15 \text{ days})^{[1]}$:		
	Time (days)	R _t (%)		
	0	100		
	5.858	99.277		
	33.800	98.174		
	47.035	94.759		
	60.975	91.615		
	74.778	93.573		
	125.808	84.492		
	Dec. in dry soil (28°	% air RH) according to $(t_{50} = 294 \pm 64 \text{ days})^{[1]}$:		
	Time (days)	R _t (%)		
	0	100		
	5.865	97.564		
	11.812	94.375		
	17.977	94.802		
	33.859	92.495		
	47.077	91.092		
	61.003	91.293		
	74.803	86.282		
	125.822	87.185		
	Easily decomposed	I by H ₂ O ^[2]		

- [1] R. D. Chapman, *Cyclic Dinitroureas as Self-Remediating Munition Charges*, SERDP project WP-1624, February **2009**.
- [2] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, 187-204.
- [3] A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Centr. Eur. J. Energet. Mater., 2011, 8, 233-247.
- [4] M. Vedachalam, V. T. Ramakrishnan, J. H. Boyer, I. J. Dagley, K. A. Nelson, H. G. Adolph, R. Gilardi, C. George, J. L. Flippen-Anderson, J. Org. Chem., 1991, 56, 3413–3419.

Hexanitrooxanilide

Name [German, acronym]: Hexanitrooxanilide, 2,2',4,4',6,6'-hexanitrooxanilide,

[hexanitrodiphenyloxamid, HNO]

Main (potential) use: Pyrotechnic compositions^[6], igniter powder^[6], none

because it undergoes hydrolysis readily^[10]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	HNO				
Formula	C ₁₄ H ₆ N ₈ O ₁₄	$C_{14}H_6N_8O_{14}$			
Molecular mass [g mol ⁻¹]	510.24				
Appearance at RT	Almost white so	lid ^[13]			
ıs [j]		, confined, he	ction) ^[5, 9, 12] , 7.50 (sound) ^[5, 12] , 15 in (P.A.) ^[7] , ight of no detonation, P.A.) ^[14] , 7.48 (15 in,		
FS [N]	unaffected by st shoe (friction pe		on pendulum test) ^[6] , unaffected by fiber		
ESD [J]	14.58 ^[3, 15] , 14.8	5 ^[4]			
N [%]	21.96				
Ω(CO ₂) [%]	-53.3	-53.3			
T _{m.p.} [°C]	295-300 ^[1, 10, 11]	295-300 ^[1, 10, 11]			
T _{dec.} [°C]	304 ^[1] , 302 ^[6] , 55	304 ^[1] , 302 ^[6] , 550 K (DTA @ 5 °C min ⁻¹) ^[5, 12]			
$ ho$ [g cm $^{-3}$]	2.004 ± 0.06 (@	293.15 K) ^[2]			
Heat of formation					
	Calcd. Lit. values Exptl. (EXPLO5 6.04)				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [GPa]					

VoD [m s ⁻¹]		5,100 (@ 0.90 g cm ⁻³ , pressed product mixed with 2% dinitrotoluene) ^[10]
		5,500 (@ 1.20 g cm ⁻³ , pressed product mixed with 2% dinitrotoluene) ^[10]
		6,800 (@ 1.47 g cm ⁻³ , pressed product mixed with 2% dinitrotoluene) ^[10]
V ₀ [L kg ⁻¹]		

Trauzl test [cm³, % TNT]	76% TNT ^[8]			
Sand test [g]	134% TNT ^[8] , 52.1 g (200 g bomb) ^[6]			
Initiation efficiency	0.30 g LA minimum deto detonating charge ^[6]	0.30 g LA minimum detonating charge ^[6] , 0.25 g tetryl minimum detonating charge ^[6]		
5 s explosion T [°C]	384 ^[6, 7]			
100 °C heat test [% mass loss]	0.07% mass loss in first 48 h ^[6, 7] , no explosion in	t 48 h ^[6, 7] , 0.05% mass loss in second n 100 h ^[6, 7]		
Vacuum stability test [cm³/h]	0.40 cc/40 h @ 100 °C ^{[(}	6, 7]		
Solubility [g/mL]	solubility values from ^[6] :	:		
	Solvent	Solubility		
	Nitrobenzene < 3 g in 100 cc @ 23 °C, ~ 5 g in 100 cc @ 210 °C			
	Water 0.10 g in 100 cc @ 100 °C			
	Ethyl alcohol Insoluble			
	Acetone Insoluble			
	Benzene Insoluble			
	Butyl acetate	Insoluble		
	CCl ₄	Insoluble		
	DMF	very soluble		
	Et ₂ O	Insoluble		
	Acetic acid Insoluble			
	Nitric acid soluble			
	Crystalline form long rectangular glistening plates from nitrobenzene			
	soluble in nitric acid ^[13] , very soluble in DMF ^[13]			
Hygroscopicity	0.19% @ 25 °C, 90% RI	H _[6]		

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 177.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [4] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335–342.
- [5] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th, pp. 434–443.
- [6] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [7] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [9] S. Zeman, M. Krupka, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 249–255.
- [10] T. Urbański, Ch. 17 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [11] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 1, **1941**, John Wiley and Sons Inc., New York, p. 188.
- [12] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [13] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [14] H. W. Voigt, Impact Resistant Pressable Explosive Composition of High Energetic Material Content, US Patent 4,251,301, February 17th 1981.
- [15] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Hexanitrostilbene

Name [German, acronym]: 2,2',4,4'6,6'-Hexanitrostilbene, hexanitrostilbene,

1,2-bis-(2,4,6-trinitrophenyl) ethylene,

hexanitrodiphenylethylene, 1,1'-(1,2-ethenediyl)bis-

(2,4,6-trinitrobenzene) [HNS]*

Main (potential) use: Secondary (high) explosive, thermostable, heat-

resistant explosive, perforating the source rocks in gas and petroleum wells^[38], space applications (e.g., stage operation on Apollo programme)^[47], detonating fuses^[47], HNS-I and HNS-II used in detonating fuses^[47], HNS-IV used as initiator^[47], booster explosives^[47, 57], heat-resistant booster explosives^[21], PBXs^[21], mild detonating fuse end couplers^[21], boosters^[21]

Structural formula:

* HNS is available in four grades[39]:

HNS-I: obtained from reaction of TNT with aq. NaOCl in THF/MeOH, purity = ≥98.5%, main impurity usually DPE (dipicrylethane)^[39]

HNS-II: obtained from recryst. of HNS-I, therefore usually much purer than HNS-I

HNS-FP: corresponds to HNS-fine particle, formed from crash precipitation of a DMF soln. of HNS into H_2O ; contains 0.5-1.0% DMF solvent trapped in the particles which can be removed by washing with dioxane followed by MeOH; surface area usually 6 m²/g^[39]

HNS-IV: crash precipitated material with surface areas of 10–15 ms/g, solvent concentration of up to 0.5% DMF possible^[39]

HNS-I: very fine crystalline substance purified by extraction of impurities^[47], thin fluffy plates^[47]

HNS-II: obtained by recryst. of HNS-I, larger particle size, high bulk density, free-flowing solid cf. HNS-I^[47], orthorhombic crystals^[47]

HNS-IV: superfine particles, surface area = $5.0-25.0 \text{ m}^2/\text{g}^{[47]}$, crash precipitated from HNS-II, HNS-II must be prior recryst. from DMF^[47]

HNS-IIA: refers to HNS material which has been recrystallized to a controlled bulk density (0.55 g/cm^3) from a mixed solvent refluxed over HNS-I^[62]

	HNS	HNS				
Formula	C ₁₄ H ₆ N ₆ O	$C_{14}H_6N_6O_{12}$				
Molecular mass [g mol ⁻¹]	450.23	450.23				
Appearance at RT	tan-yellov pale-yello	Yellow needles on recryst. from nitrobenzene ^[21] , yellow solid ^[44] , tan-yellow crystalline solid, exact color varies with particle size ^[49] , pale-yellow needles ^[57] , grade I HNS: light tan powder with small particle size and low $\rho^{[58]}$				
IS [J]	(ERL, HNS 15.56 (ER tool, 510 apparatu 5 Nm ^[17] , 61 cm (HI (d _{50.3} = 0. (2.5 kg m (HNS-II, N sandpape 99.7% th mass, sai mass, sai 40 cm (ty 45 cm (ty tetryl = 3: (type 12 to Rotter im	size and low $\rho^{[58]}$ 5 (<100 µm), 11.50 ^[1] , 3.64 (1st reaction) ^[3, 34] , 11.50 (sound) ^[3, 34] , 13.24 (ERL, HNS-I) ^[7, 8] , 10.79 (ERL, HNS-I) ^[7, 8] , 13.24 (ERL, HNS-II) ^[7, 8] , 15.56 (ERL, HNS-II) ^[7, 8] , $H_{50\%} = 44$ cm (NOL-ERL apparatus, type 12 tool, 510 sandpaper, 2.5 kg mass, HNS-I) ^[12, 47] , $H_{50\%} = 61$ cm (NOL-ERL apparatus, type 12 tool, 510 sandpaper, 2.5 kg mass, HNS-II) ^[12, 47] , $H_{50\%} = 61$ cm (NOL-ERL apparatus, type 12 tool, 510 sandpaper, 2.5 kg mass, HNS-II) ^[12, 47] , $H_{50\%} = 1.13^{[19]}$, $H_{51} = 0.7$ m ^[20] , $H_{50\%} = 2.0$ m ^[20] , $H_{50\%} = 1.13^{[19]}$, $H_{50\%} = 112.2$ cm ^[30] , $H_{50\%} = 2.0$ m ^[20] , $H_{50\%} = 1.0$ mm ($H_{50,3} = 1.3$ mm) ^[42] , $H_{50\%} = 1.0$ cm ($H_{50,3} = 0.34$ µm, ball milled) ^[42] , $H_{50} = 22$ cm (5 kg mass) ^[43] , $H_{50} = 39$ cm (2.5 kg mass, type 12 tool) ^[46] , $H_{50\%} = 1.0$ cm (HNS-II, NOL apparatus) ^[21] , $H_{50\%} = 1.0$ cm ($H_{50,3} = 1.0$ cm) ^[40] , $H_{50\%} = 1.0$ cm ($H_{50,3} = 1.0$ cm) ^[40] , $H_{50\%} = 1.0$ cm ($H_{50,3} = 1.0$ cm) ^[40] , $H_{50\%} = 1.0$ cm ($H_{50,3} = 1.0$ cm) ^[40] , $H_{50\%} = 1.0$ cm) ^{[4}				
	HNS	HNS Rotter impact data US data				
	type	FofI	Gas evolved (mL)	NSWC/NOL, ERL type 12		
	ı	90	7	54		
	II	90	12			

FS [N]	>360 (<100 µm), 440 kg/cm ($^{10}/_{10}$ no fires, HNS-I, HNS-II)[121 , >240[177], 440 kg/cm (HNS-I)[211 , 440 kg/cm (HNS-II)[211 , F_{50} = 28.8 kgf ($^{1}/_{6}$)[191 , 440 kg per cm (HNS-I and HNS-II)[211 , $P_{\rm fr.LL}$ = 200 MPa[201 , $P_{\rm fr.50\%}$ = 350 MPa[201 , P = 28%[301 , 240 ($d_{50.3}$ = 13.7 µm)[421 , 192 ($d_{50.3}$ = 0.34 µm, ball milled)[421 , 28% (raw HNS)[431]
ESD [J]	1.0 (<100 µm), $6.62^{[1]}$, $5.32^{[2,65]}$, fires above 0.001 µfd (@ 8 kv, HNS-I) ^[12,21] , fires above 0.0001 µfd (@ 17 kv, HNS-II) ^[12,21] , $E_{50\%} = 7.040$ (@ 293 K) ^[19] , $E_{50\%} = 5.947$ (@ 333 K) ^[19] , $E_{50\%} = 0.66 \pm 0.04$ (Bruceton method) ^[32] , $E_{50} = 1.11^{[43]}$
N [%]	18.67
Ω(CO ₂) [%]	-67.52
<i>T</i> _{m,p.} [°C]	$317^{[49]}, 315 (\text{HNS-I})^{[7]}, 325 (\text{HNS-I})^{[7]}, 316 (\text{HNS-I})^{[12,21,22]}, 318 (\text{HNS-II})^{[7,22]}, 325 (\text{HNS-II})^{[7]}, 319 (\text{dec., HNS-II})^{[12,21]}, 321 (\text{sample in sealed cell})^{[19]}, 316 (\text{dec. and explosions occur @ mpt.})^{[21]}, 320.4 (\text{DSC})^{[30]}, 211 (\text{no dec.})^{[31]}, 316 (\text{dec., HNS-I, Thomas Hoover capillary melting point apparatus @ 2 °C/min})^{[36]}, 318 (\text{dec., HNS-II, Thomas Hoover capillary melting point apparatus @ 2 °C/min})^{[36]}, 316-321 (\text{lit. values})^{[38]}, 320 (\text{DSC @ all heating rates from 2.5-20 °C/min})^{[38]}, 319.8 (\text{DSC, T_{max}, synthesized HNS, $d_{50} = 50 \mu\text{m}})^{[40]}, 320.7 (\text{DSC, T_{max}, purified HNS, $d_{50} = 300 \mu\text{m}})^{[40]}, 320.0 (\text{DSC, T_{max}, HNS prepared by SDP (spray drying process), $d_{50} = 3 \mu\text{m}})^{[40]}, 319.8 (\text{DSC, raw HNS})^{[43]}, 315-316^{[44]}, 315-320 (\text{DTA, standard sample})^{[44]}, 315-316 (\text{dec.})^{[44]}, 319 (\text{aged sample})^{[44]}, 316 (\text{dec., crystals, recryst. from nitrobenzene, microscope hot stage})^{[57]}, 312-314 (\text{dec., grade I})^{[58]}, 314-316 (\text{dec., recryst. from nitrobenzene})^{[58]}, 318-319 (\text{dec., grade I})^{[58]}, 322 (\text{HNS-IIA, DTA/TGA})^{[62]}, 323 (\text{HNS-IIA after undergoing two sterilization cycles @ 125 °C for 64 heach, DTA/TGA})^{[62]}$
T _{dec.} [°C]	320 (DSC @ 5 °C/min), 544 K (DTA) ^[3, 34] , 315 (HNS-I) ^[7, 12] , 325 (HNS-II) ^[7, 12] , 315 (exo, onset, DTA, HNS-I) ^[21] , 325 (exo, onset, DTA, HNS-II) ^[21] , 316 ^[57] , 344 (HNS-IIA, DTA/TGA) ^[62] , 342 (HNS-IIA after undergoing two sterilization cycles @ 125 °C for 64 h each, DTA/TGA) ^[62] @ 8 °C min: $T_{\rm idb}$ = 323.9, $T_{\rm w}$ = 324.0, $T_{\rm max}$ = 328.9 ^[24] @ 16 °C min: $T_{\rm idb}$ = 328.2, $T_{\rm w}$ = 345.0, $T_{\rm max}$ = 351.1 ^[24] $T_{\rm cr}$ = 320–321 ^[24] 349.9 (DSC, $T_{\rm max}$, synthesized HNS, d_{50} = 50 µm) ^[40] , 349.4 (DSC, $T_{\rm max}$, purified HNS, d_{50} = 300 µm) ^[40] , 343.7 (DSC, $T_{\rm max}$, HNS prepared by SDP (spray drying process), d_{50} = 3 µm) ^[40] , 317.9 (onset), 342.3 (peak max) (TGA, ultrafine spherical HNS) ^[40] , 350.1 (TG-DSC, raw HNS) ^[43] , ~304 (dec. onset, aged sample, $T_{\rm db}$, TGA) ^[44] , 333 (intensive dec. onset, $T_{\rm idb}$, aged sample, TGA) ^[44] , 330–335 (intensive dec. onset, $T_{\rm idb}$, standard sample, DTA) ^[44] , 312–314 (mpt. with dec., grade I) ^[58] , 314–316 (mpt. with dec., recryst. from nitrobenzene) ^[58] , 318–319 (mpt. with dec., grade II) ^[58]

$ ho$ [g cm $^{-3}$]	1.718 (@ 150 K), 0.32–0.45 (bulk HNS-I) ^[12,47] , 0.45–1.0 (bulk, HNS-I) ^[12,47] , 1.681 (@ 298 K, calcd.), 1.740 (@ TMD) ^[9] , 1.74 (@ TMD) ^[17,44] , 1.74 (@ TMD) ^[51] , 1.740 (HNS-type I, TMD) ^[21] , 1.740 (crystal) ^[23,47] , 1.72 (nominal) ^[21,44] , 1.601 ± 0.007 (SPD HNS pellets of height 0.203 ± 0.004 cm, using an Instron) ^[45] , 1.74 @ 25 °C ^[47] , 1.740 (crystal, flotation method) ^[57] , 0.25–0.30 (bulk ρ of Grade I powder) ^[58] , 0.20–0.25 (bulk ρ of thin needles obtained on recryst.) ^[58] , 0.4–0.62 (bulk ρ , grade II) ^[58] , 0.25 (bulk ρ , HNS-I) ^[58] , 0.24 (bulk ρ , recryst. from nitrobenzene) ^[58] , 0.55 (bulk ρ , grade II) ^[58]								
Heat of formation	58.1 ($\Delta H_{\rm f}$, @ 1 atm. and 298 K) ^[13] , 173.8 kJ/kg (enthalpy of form.) ^[17] , -13.89 kcal/mol (enthalpy of form., (s)) ^[47] , 129 kJ/kg ($\Delta H_{\rm f}$, @ 1 atm and 298 K) ^[13] , 41.5 kcal/kg ($\Delta H_{\rm f}$) ^[19] , 18.7 kcal/mol (enthalpy of form.) ^[44] , 13.9–18.7 kcal/mol ^[21] , 78.24 kJ/mol ^[51]								
Heat of combustion	3,451 cal/g (HNS-I) ^[12, 21] , 3,451 cal/g (HNS-II) ^[12, 21] , enthalpy of comb. = $-1,535.34 \pm 1.08$ kcal/mol ^[47]								
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.						
-Δ _{ex} <i>U</i> ° [kJ kg ⁻¹]	4,612	1,428.4 J/g (@ 1.82 g cm ⁻³ , calcd., K-)) ^[28] 142 kcal/g [H ₂ O (J)] ^[13] 136 kcal/g [H ₂ O (g)] ^[13] 1,058 kcal/kg (@ 1.790 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[35]	4,088 [H ₂ O (I)] ^[6,17] 4,008 [H ₂ O (g)] ^[17] 1,090 kcal/kg [H ₂ O (g)] ^[11] 1.42 kcal/g [H ₂ O (I)] ^[21] 1.36 kcal/g [H ₂ O (g)] ^[21] 4,532 J/g (@ 1.655 g cm ⁻³ , det. energy, cylinder test) ^[33] 3,596 J/g (@ 1.001 g cm ⁻³ , det. energy, cylinder test) ^[33] 4,601 J/g (@ 1.649 g cm ⁻³ , heavily confined charges) [H ₂ O (I)] ^[33] 4,432 J/g (@ 1.649 g cm ⁻³ , heavily confined charges) [H ₂ O (g)] ^[33]						

			3,676 J/g (@ 1.017 g cm ⁻³ , heavily confined charges) [H ₂ O (I)] ^[33] 3,550 J/g (@ 1.017 g cm ⁻³ , heavily confined charges) [H ₂ O (g)] ^[33] 1,090 kcal/kg (@ 1.790 g cm ⁻³) [H ₂ O vapor] ^[35]
T _{ex} [K]	3,486	3,580 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[63] 4,150 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[63] 3,500 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[63] 4,120 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[63]	3,059 K (@ 1.74 g cm ⁻³) (HNS-I) ^[7] 3,059 K (@ 1.74 g cm ⁻³) (HNS-II) ^[7]
p _{C-J} [kbar]	200	25.75 GPa (@ 1.82 g cm ⁻³ , calcd., K-J) ^[28] 230 (@ 1.74 g cm ⁻³ , calcd., K-J) ^[23] 206 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[63] 187 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[63] 236 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[63]	200 (@ 1.60 g cm ⁻³) (HNS-I) ^[7] 241 (@ 1.74 g cm ⁻³) (HNS-I) ^[7] 200 (@ 1.60 g cm ⁻³) (HNS-II) ^[7] 215 (@ 1.65 g cm ⁻³) (HNS-II) ^[7] 21.5 GPa (@ 1.655 g cm ⁻³) ^[33, 52] 7.3 GPa (@ 1.001 g cm ⁻³) ^[33, 52]

VoD [m s ⁻¹]	7,014 (@ TMD)	6,840 (@ 1.74 g cm ⁻³ (TMD), R-P method) ^[26] 7,499 (@ TMD, calcd. CHEETAH v8.0) ^[27] 7,590 (@ 1.82 g cm ⁻³ , calcd., K-I) ^[28] 7,270 (@ 1.74 g cm ⁻³ , calcd., K-I) ^[23] 7,000 (@ 1.70 g cm ⁻³) ^[44] 6,960 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[63] 6,880 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[63] 7,260 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[63] 7,220 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[63]	6,800 (@ 1.6 g cm ⁻³) ^[4, 6, 7] 7,130 (@ 1.74 g cm ⁻³) ^[5] 7,000 (@ 1.70 g cm ⁻³) ^[29] 7,000 (@ 1.74 g cm ⁻³) (HNS-I) ^[7, 23] 7,410 (@ 1.74 g cm ⁻³) (HNS-I) ^[7] 7,000 (@ 1.70 g cm ⁻³) (HNS-I) ^[12, 47] 7,000 (@ 1.70 g cm ⁻³) (HNS-I) ^[7], 9, 12, 47] 6,800 (@ 1.60 g cm ⁻³) (HNS-I) ^[9] 7,200 (exptl. est., LASEM method) ^[27] 7,200 (@ TMD, large-scale test) ^[27] 7,030 (@ 1.655 g cm ⁻³) ^[33, 52] 5,100 (@ 1.001 g cm ⁻³) ^[33, 52] 6,800 (@ 1.60 g cm ⁻³) ^[63] 7,000 (@ 1.70 g cm ⁻³) ^[63]
V ₀ [L kg ⁻¹]	619	247.57 cm ³ /mol (@ 1.82 g cm ⁻³ , calcd., K-J) ^[28]	766 ^[10]

Summary of experimental copper cylinder wall velocity data for homogeneous HNS, all samples have a wall thickness/diameter ratio of 0.1. All cylinders were 305 mm long. PETN with a density of $1.763 \, \text{g/cm}^3$ is the reference explosive^[51]:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	@ 25	l velocity (m .4 mm diam <i>R–R</i> 0 equal t	eter for	Velocity squared cf. with PETN for the same configuration, $\%$ comparison, $R-R_0$ equal to			
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm	
1.681	25.44	2.590	1.255	1.385	1.458	-35.3	-34.0	-33.7	
1.655	25.44	2.590	1.228	1.362	1.433	-38.0	-36.2	-35.9	
1.610	25.44	2.590	1.210	1.335	1.393	-39.8	-38.7	-39.4	
1.597	25.44	2.590	1.229	1.340	1.413	-37.9	-38.2	-37.7	
1.504	25.44	2.590	1.170	1.297	1.368	-43.8	-42.1	-41.6	
1.402	25.44	2.590	1.081	1.207	1.266	-52.0	-49.9	-50.0	
1.200	25.44	2.590	0.959	1.073	1.145	-62.2	-60.4	-59.1	
1.001	25.44	2.590	0.817	0.931	0.981	-72.6	-70.2	-70.0	

Derivation of the total energy of detonation, E_0 , from the measured heat of detonation (the final state is assumed to be at 1 atm for all gaseous products, including water @ 298 K. Code calculated energies with the 1800 K freeze are also included^[51]:

Measured	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Energy of detonation, E_0 (kJ/cm ³)				
1 '			From	freeze @ 1,800 K				
de		(3/ 2)	, i	heat of detonation	TIGER BKWR	TIGER JCZ3	CHEQ	
1.649	-7.58	1.655	-7.61	-7.5	-7.3	-6.7	-7.0	
1.017	-3.74	1.001	-3.68	-3.7	-3.7	-3.5	-3.8	

JWL cylinder coefficients as determined in [51]:

Initial density, ρ_0 (g/cm ³)	Detonation velocity, D (mm/µs)	Energy of detonation, E_0 (kJ/cm ³)	l '	A (GPa)	<i>B</i> (GPa)	C (GPa)	R ₁	R ₂	ω	Υсј
1.655	7.03	-7.50	21.5	423.7580	3.131467	1.704155	4.332	1.00	0.40	2.804
1.001	5.10	-3.60	7.3	138.8149	2.779832	0.694139	4.657	1.00	0.35	2.567

Critical diameter [cm]	0.5 mm (0.0	20 in) ^[21]						
Critical T [°C]	320–321 (ex	κptl.) ^{[37, 48}	³ , 316 (cal	cd.) ^[37, 48]				
Trauzl test [cm³, % TNT]	301 cm ^{3[56]}							
USGT (underwater small scale gap test)	USGT critical	length <i>L</i>	_c = 4 mm ^{[19}]				
SSGT [cm]	Critical lengt	$L_{c} = 4$	mm (under	water sm	all-scale	gap test) ^[1]	9]	
	Values from [[]	21]:						
		Dens	ity (g/cm³)	Perce	nt voids	Sensitivit	y (mm)	
	NSWC SSG	Т						
	HNS-I	1.69	4	2.6		5.18		
		1.12	2	35.5		7.06		
	HNS-II	1.72	5	0.9		5.46		
		1.64	4			7.52		
		1.322				24 9.53		
	LANL SSGT					,		
	HNS-I	1.66	9	4.1		5.28		
		1.56	6	10		5.84		
		1.37	6	20.9		6.71		
		1.84	0 (pressed)	2.1		2.31		
	HNS recrysta	ıllized slo	owly from H	INS-I ^[55] :				
	Loading pressure	Density	Density (g/cm³) Avg. s 1.339 0.0052		Ser	sitivity (DE	BG)	
	(kpsi)	Avg.			Avg.	S _m	N	
	4	1.339			4.332	0.0076	23	
	16	1.524 0.0049 8		87.6	4.833	0.0235	23	
	64	1.707	0.0043	95.1	6.458	0.0234	23	

HNS-1, TMD = 1.74 g cm⁻³, (1) = no mixed response zone, (2) = test @ $-65^{\circ}F^{[55]}$:

Loading	Density	Density (g/cm³)		Sensitivity (DBG)				
pressure (kpsi)	Avg.	S	TMD	Avg.	g	s _m	N	
4	1.116	0.0136	64.1	5.507	0.0536	0.0322	20	
8	1.226	0.0122	70.5	5.561	-	-	20 (1)	
16	1.377	0.0067	79.1	5.779	0.0161	0.0198	20	
32	1.537	0.0083	88.3	6.263	0.0240	0.0191	20	
32	1.542	0.0088	88.6	6.322	-	-	20 (1)	
32	1.541	0.0049	88.6	7.368	0.0167	0.0208	20 (2)	
64	1.669	0.0034	95.9	6.820	0.0266	0.0224	20	

HNS-I, TMD = 17.4 g cm⁻³, (1) = no mixed response zone^[55]:

Loading pressure (kpsi)	Density (g/cm³)		%	Sensitivity (DBG)				
	Avg.	s	TMD	Avg.	g	s _m	N	
4	1.156	0.0071	66.4	5.441	-	-	20 (1)	
8	1.267	0.0128	72.8	5.620	0.0069	0.0184	20	
16	1.404	0.0100	80.7	5.850	0.0530	0.0315	20	
32	1.529	0.0065	87.9	6.123	0.0076	0.0137	20	
64	1.682	0.0026	96.7	7.173	0.0389	0.0256	20	

HNS-1, TMD = $1.74 \text{ g cm}^{-3[55]}$:

Loading	Density	(g/cm ³)	%	Sensitivity (DBG)				
pressure (kpsi)	Avg.	S	TMD	Avg.	g	S _m	N	
4	1.144	0.0109	65.7	5.843	0.0231	0.0198	20	
8	1.259	0.0102	72.4	5.615	0.0140	0.0267	20	
16	1.409	0.0059	81.0	5.735	0.0257	0.0174	20	
32	1.555	0.0056	89.4	6.234	0.0226	0.0171	20	
32	1.539	0.0045	88.4	6.058	0.0360	0.0269	18	
32	1.546	0.0069	88.9	6.263	0.1345	0.0692	21	
64	1.681	0.0033	96.6	7.173	0.0408	0.0267	20	

Tested @ -315°F, HNS-1, TMD = 1.74 g cm^{-3[55]}:

Loading Density (g/cm ³)	%	Sensitivity (DBG)					
pressure (kpsi)	Avg.	S	TMD	Avg.	g	s _m	N
8	1.236	0.0136	71.0	5.724	0.1075	0.0622	19
32	1.535	0.0041	88.2	7.126	0.2234	0.1385	17

HNS-B = the sample passed the SSGT sensitivity test of WS $5003^{[55]}$:

Loading	Density	Density (g/cm³)		Sensitivity (DBG)				
pressure (kpsi)	Avg.	S	TMD	Avg.	g	s _m	N	
4	1.192	0.0134	68.5	5.058	0.0324	0.0260	20	
8	1.298	0.0103	74.6	5.177	0.0727	0.0423	20	
16	1.439	0.0067	82.7	5.382	0.0271	Illegible	20	
28	1.527	0.0043	87.8	6.202	0.0496	0.0312	20	
32	1.590	0.0084	91.4	6.399	0.0332	0.0239	20	
64	1.691	0.0026	97.1	6.900	0.0536	0.0338	20	

HNS-I-B = the sample passed the SSGT sensitivity test of WS 5003; (1) = no mixed response zone^[55]:

Loading	Density	/ (g/cm³)	%	, , ,					
pressure (kpsi)	Avg.	s	TMD	Avg.	g	s _m	N		
4	1.122	0.0204	64.5	5.556	_	_	18 (1)		
8	1.237	0.0176	71.1	5.627	_	_	18 (1)		
16	1.378	0.0184	79.2	5.856	0.0179	0.0416	18		
32	1.519	0.0101	87.3	6.235	0.0292	0.0192	18		
64	1.662	0.0029	95.5	7.003	0.0194	0.0167	18		

HNS-I-B = the sample passed the SSGT sensitivity test of WS 5003; (1) = no mixed response zone^[55]:

Loading	Density	/ (g/cm ³)	%	Sensitivity (DBG)				
pressure (kpsi)	Avg.	s	TMD	Avg.	g	S _m	N	
8	1.351	0.0067	77.6	5.541	0.0654	0.0411	20	
16	1.458	0.0044	83.8	5.856	0.0920	0.0511	20	
32	1.586	0.0042	91.1	6.057	_	_	7 (1)	
64	1.694	0.0060	97.4	6.903	0.0259	0.0255	18	

HNS-I^[55]:

Loading	Density	/ (g/cm³)	g/cm ³) %		Sensitivity (DBG)			
pressure (kpsi)	Avg.	S	TMD	Avg.	g	s _m	N	
32	1.546	0.0039	88.9	6.245	0.0249	0.0190	25	

HNS-II, TMD = $1.74 \text{ g cm}^{-3[55]}$:

Loading	Density	/ (g/cm³)	%	Sensitivity (DBG)				
pressure (kpsi)	Avg.	S	TMD	Avg.	g	S _m	N	
32	1.629	0.0034	93.6	5.386	-	-	10	
32	1.639	0.0038	94.2	5.351	-	1	9	
32	1.639	0.0034	94.2	5.295	0.0206	0.0287	10	
32	1.644	0.0044	94.5	5.340	1	1	10	
32	1.623	0.0035	93.3	5.412	0.0147	0.0314	10	
32	1.635	0.0027	94.0	5.312	-	-	10	

HNS-II, TMD = $1.74 \text{ g cm}^{-3[55]}$:

Loading	Density	/ (g/cm³)	%		Sensitivity	y (DBG)	
pressure (kpsi)	Avg.	s	TMD	Avg.	g	S _m	N
32	1.624	0.0076	93.3	5.268	0.0634	0.0374	18
32	1.634	0.0060		5.366	0.0279	0.0209	20
32	1.649	0.0037	94.8	5.269	0.0546	0.0343	18
32	1.636	0.0042	94.0	5.186	-	-	19
32	1.630	0.0047	93.7	5.239	0.0251	0.0173	20
32	1.628	0.0036	93.6	5.230	0.0281	0.0195	23

HNS-II, (1) = no mixed response zone $^{[55]}$:

Loading	Density	y (g/cm³)	%	Sensitivity (DBG)				
pressure (kpsi)	Avg.	s	TMD	Avg.	g	s _m	N	
4	1.322	0.0107	76.0	4.264	0.0084	0.0132	18	
8	1.423	0.0073	81.8	4.444	-	-	18 (1)	
16	1.545	0.0044	88.8	4.767	0.0187	0.0243	18	
32	1.644	0.0025	94.5	5.354	0.0168	0.0227	18	
64	1.25	0.0018	99.1	6.684	0.0354	0.0274	18	

	HNS-II, (1):	= test @	-315°F ^[55]	:					
	Loading	Density	y (g/cm ³)	%		Sensitivit	y (DBG)		
	pressure (kpsi)	Avg.	5	TMD	Avg.	g	s _m	N	
	32	1.627	0.0041	93.5	5.192	0.0455	0.0258	23	
	32	1.627	0.0040	93.5	6.757	0.1761	0.0857	23 (1)	
	·	Recrystallized HNS-II ^[55] :							
	Loading pressure	Density	y (g/cm³) I	% TMD		Sensitivity (DBG)			
	(kpsi)	Avg.	5	TIND	Avg.	g	s _m	Ν	
	20	1.632	0.0020	93.8	5.306	0.0102	0.0054	20	
	32	1.623	0.0035	93.3	5.412	0.0147	0.0314	10	
	32	1.671	0.0021	96.0	5.876	0.0015	0.0010	23	
	32	1.628	0.0039	93.6	5.322	0.0099	0.0051	20	
	32	1.633	0.0021	93.9	5.539	0.0049	0.0029	20	
	32	1.646	0.0038	94.6	5.480	0.0350	0.0230	20	
Shock wave sensitivity	50% gap th thickness =				HNS) ^[59] ,	50% gap			
5 s explosion T [°C] Ignition T [°C] Ignition T , 30 s delay [°C]	354–358 ^[44] 354 (before storage) ^[44] , 358 (after 16 years storage in multilayered paper bags) ^[44]								
Autoignition point [°C]	325 (HNS-I) ^[21] , 325 (HNS-II) ^[21]								
LLNL reactivity test	0.01 cm ³ ga	as evolve	d per 0.25	g sam	ole @ 12	0 °C in 22	h ^[13]		

Thermal stability

HNS-I: 0.1% dec. per h @ 260 °C $^{[12]}$, HNS-II: 0.1% dec. per h @ 260 °C $^{[12]}$

Mass loss as function of T for all TGA expts., performed with constant heating rates (mass difference in %, all approx. values)^[38]:

Heating		T(°C)									
rate (K/min)	250	270	290	300	320	340	350	370	390	400	
0.05	0	0	-19	61	-67	-71	-72	-74	>-75	>-75	
0.2	0	0	-5	-10	-64	-70	-72	-74	>-75	>-75	
5	0	0	0	0		-32	-54	-62	-65		
10	0	0	0			-10	-29	-59	-65		
20	0	0	0			-5	-20	-52	-62		
40	0	0	0	0	0	-2	-7	-34	-62	-65	

Mass loss as function of time for TGA expts., performed with constant T (mass difference in %, all approx. values)^[38]:

T (°C)		Time (min)					
	0	120	240	360	480	600	
254	0	-1	-1	-1	-1	-2	
274	0	-3	-4	-7	-10	-12	
289	0	-5	-13	-25	-34	-57	
304	0	-37	-64	-66	-67	-68	

Stable @ 260 °C but dec. @ higher $T^{[49]}$, 0.1%/h dec. rate @ 260 °C (HNS-I) $^{[21]}$, 0.1%/h dec. rate @ 260 °C (HNS-II) $^{[21]}$, 0.50 cc/g/h @ 260 °C for 2 $h^{[57]}$

No significant weight loss occurs using accelerated aging measurements in vacuum @ 84 °C (Quartz spring balance apparatus) over 297 days for HNS-IIA (equivalent to 9.9 years @ 66 °C) $^{[62]}$, no significant changes in DTA of HNS-IIA after 183 of accelerated aging (equivalent to 6.1 years) $^{[62]}$, no significant changes in DTA of HNS-IIA which had undergone two rounds of sterilization cycles (125 °C for 64 h each) prior to 94 days of accelerated aging equivalent to 3.1 years $^{[62]}$

Vacuum stability test [cm³/h]

@ 200 °C total vol. of gas (cm³) evolved/no. of days^[25]: 0.4/2, 0.7/7, 1.0/14, 1.2/21, 1.4/28, 1.6/35, 1.7/42, 1.8/49, 2.0/56, 2.3/63, 2.5/70, 2.6/77, 2.8/84, 3.0/91^[25]

@ 175 °C total vol. of gas (cm³) evolved/no. of days $^{[25]}$: 0.2/2, 0.4/7, 0.5/14, 0.6/21, 0.7/28, 0.8/35, 0.8/42, 0.9/49, 1.0/56, 1.1/63, 1.1/70, 1.2/77, 1.2/84, 1.2/91 $^{[25]}$

	HNS-I ^[12, 21]	HNS-II ^[12, 21]
@ 260 °C: First 20 min (cc/g/h)	1.8	0.3
@ 260 °C: Additional 2 h (cc/g/h)	0.6	0.2
@ 280 °C	2.7	2.7

1.68 cc/g/h @ 260 °C (grade I)^[58], 0.50 cc/g/h @ 260 °C (recryst. from nitrobenzene)^[58], 0.23 cc/g/h @ 260 °C (grade II)^[58], 0.5 cc/g/h, 82 h period) @ 260 °C^[61]

Vapor pressure [atm. @ °C]

 $\begin{array}{l} 1\times10^{-9}~\text{mm Hg} @~100~^{\circ}\text{C}~(\text{HNS-II})^{[13]},~2.88\times10^{-14}~\text{Torr} @~66~^{\circ}\text{C}^{[18]},\\ 1.33\times10^{-7}~\text{Pa} @~20~^{\circ}\text{C}^{[47]},~\text{HNS-I:}~2.9\times10^{-8}~\text{mm Hg} @~160~^{\circ}\text{C}^{[12,21]},\\ \text{HNS-II:}~2.9\times10^{-8}~\text{mm Hg} @~160~^{\circ}\text{C}^{[12,21]},~0.396\times10^{-7}~\text{Torr} @~161.4~^{\circ}\text{C}^{[47]},\\ 0.592\times10^{-7}~\text{Torr} @~166.4~^{\circ}\text{C}^{[47]},~2.15\times10^{-7}~\text{Torr} @~177.3~^{\circ}\text{C}^{[47]},\\ 4.97\times10^{-7}~\text{Torr} @~185.8~^{\circ}\text{C}^{[47]},~39.4\times10^{-7}~\text{Torr} @~206.3~^{\circ}\text{C}^{[47]} \end{array}$

Values from^[50]:

T (°C)	Vapor pressure (x 10 ⁷ Torr)	wt. loss (g × 10³)	Time (sec)
161.4	0.396	4.10	688,680
166.4	0.592	12.8	578,880
177.3	2.15	22.9	288,000
185.8	4.97	12.25	168,480
206.3	39.4	36.55	64,800

Sublimation rates used to calculate the vapor pressure (HNS-IIA)^[62]:

T (°C)	wt. loss rate (mg/h)	Sublimation (g/cm²/sec)	Vapor pressure (Torr)
132	6.24 × 10 ⁻⁴	2.63 × 10 ⁻¹ 0	4.28 × 10 ⁻⁹
139	2.75 × 10 ⁻²	1.02 × 10 ⁻⁸	1.67 × 10 ⁻⁷
150	3.75 × 10 ⁻²	1.42 × 10 ⁻⁸	2.34 × 10 ⁻⁷

Solubility [g/mL]

Fairly insoluble in most common organic solvents^[39], soluble in DMF, NMP (*N*-Methylpyrrolidinone), CH₃CN, THF^[39], 0.22 mg/L in H₂O @ 20/25 °C^[47]

Solubility g/100 mL solvent @ 25 °C^[47]: 1.940 in NMP, 1.310 in DMF, 1.210 in DMS0, 0.569 in NMP & 5% H $_2$ O, 0.541 in 4-Butyrolactone, 0.475 in propylene carbonate, 0.452 in 25% ACN & 75% DMF, 0.261 in NMP & 2.5% H $_2$ O, 0.195 in acetophenone, 0.175 in 50% ACN & 50% DMF, 0.124 in cyclohexanone, 0.069 in 75% ACN % 25% DMF, 0.064 in 1,2-dimethoxyethane, 0.062 in ACN, 0.056 in bis(2-methoxyethyl) ether, 0.047 in p-dioxane, 0.044 in methyl ethyl ketone, 0.037 in ethyl acetate, 0.030 methyl formate, 0.024 ethyl formate, 0.017 n-propyl formate, 0.014 in 2-methoxyethanol, 0.011 in ethoxybenzene, 0.007 in 1,2-dichloroethane, 0.006 in dichloromethane, 0.006 in ethyl lactate, 0.04 in 3-methylphenol, 0.003 in 2-chloroethanol, 0.002 in chlorobenzene, 0.02 in 2-ethoxy ethanol, 0.002 in propanol, 0.001 in CHCl $_3$, 0.001 in cylcohexanol, 0.000 in EtOH, 0.000 in MeOH $_{}^{[47]}$

Solubility @ 30 °C, 40 °C and 60 °C in g/100 mL solvent^[47]:

Solvent	T=30 °C	T=40 °C	T=60 °C
Nitrobenzene	0.059	0.072	0.094
Methyl ethyl ketone	0.035	0.052	0.061
Acetone	0.064	0.075	0.131
MeOH	0.003	0.006	0.008
DMF	1.312	1.703	2.198
CH₃CN	0.043	0.064	0.084
Cyclohexanone	0.118	0.156	0.206

Soluble in hot nitrobenzene and DMF^[49], slightly soluble in hot glacial acetic acid, acetone or methyl ethyl ketone^[49], soluble in DMF^[21], slightly soluble in hot acetone, methyl ethyl ketone and glacial acetic acid^[21]

Solubility of HNS (g/10 g solvent) after 5 min stirring (* @ bpt. of solvent) $^{[53]}$:

Solvent	25 °C	60 °C	80 °C	98 °C
DMSO	1.4	2.4	3.6	9.1
DMF	1.5	3.2	4.6	7.0
<i>N</i> -Methylpyrrolidinone	2.4	4.6	6.4	8.4
Butyrolactone	0.4			3.2
Dimethylacetamide	1.2			5.4
Acetone	<0.1	0.4*		
Nitrobenzene	<0.1			0.8
Hexamethylphosphoramide				3.3
Cyclohexanone				1.1

Soubility in binary solvent mixtures @ 25 °C (g HNS/100 g solvent) after 5 min stirring^[53]:

Solvent	Solubility (g HNS/100 g solvent)
DMSO	1.4
NMP	2.4
NMP 79.2% DMSO 20.8%	2.3
DMF	1.5
DMF 71.7% DMSO 28.3%	1.7
Butyrolactone	0.4

Comparison of solubilties (g/100 g solvent) in DMSO after 5 and 30 min stirring @ $25 \, ^{\circ}C^{[53]}$: 1.4 g HNS after 5 min^[53], 1.4 g HNS after 30 min^[53]

Recryst. from nitrobenzene^[57], slightly soluble in acetone and boiling acetone^[57], soluble in hot nitrobenzene, DMF, almost insoluble in cold nitrobenzene or DMF^[57], slightly soluble in hot glacial acetic acid, acetone or methyl ethyl ketone^[57], insoluble in MeOH and hexane^[57], recryst. from DMF^[57], extremely low solubility in most common organic solvents^[58]

Surface area		surface area re		recipitation into H ₂ O of	f HNS
	Crash solven	precipitation t	Specific surface area (m²/g)	Solvent content (wt.%)	
	DMF		9–19	0.2-1.2	
	NMP [†]		16-21	0.6-0.9	
	CH₃CN		6-12	0.1	
	THF		16-20	0.2-0.3	
	† = N-Me	thylpyrrolidino	one		
Short duration shock wave sensitivity [mJ]	metal-fo		spray drying, electri ^{40]} , 960 (synthesized ven flyer) ^[40]		
Cook-off (T _c) [°C]	jump, p	-	•	f registered as temper I, curve has no plateau	
K _{ow}	112 ^[47]				
K _{oc}	86 ^[47]				
Enthalpy of sublimation [kcal/mol]			l.) ^[21] , 43.01 ^[47] , 43.0 al/g (specific heat o	1 kcal (molar heat of f sublimation) ^[50]	
Sublimation rate				est period showed no $0^{[62]}$. At $T \ge 132 {}^{\circ}C^{[62]}$:	
	T(°C)	wt. loss rate (mg/h)	Sublimation (g/cm²/s)	Vapor pressure (Torr)	
	132	6.24 × 10 ⁻⁴	2.63 × 10 ⁻¹ 0	4.28 × 10 ⁻⁹]
	139	2.75 × 10 ⁻²	1.02 × 10 ⁻⁸	1.67 × 10 ⁻⁷]
	150	3.75 × 10 ⁻²	1.42 × 10 ⁻⁸	2.34 × 10 ⁻⁷	
Enthalpy of vaporization [kcal/mol]	19.9 (ca	lcd.) ^[47]			
Diffusion [m²/s]	4.5 × 10	0 ⁻⁶ @ 20 °C (in	air) ^[47] , 3.9 × 10 ⁻⁹ @	20 °C (in water) ^[47]	
Particle size	1-5 mic	rons (HNS-I) ^{[21}	, 100-300 microns ((HNS-II) ^[21]	
Bridge wire				e with 1 mF capacitor: / (@ 0.9 g cm ⁻³ , HNS-II) ^[21]

Laser ignition	Ignition power threshold, ignition and full burn delay times (@ 45 W for HNS IV and its mixtures with the dye and CB (continuous wave diode laser, CB = carbon black powder, dye with molecular formula $C_{54}H_{54}N_2O_4S$ with an absorption band at 811 ± 25 nm, HNS V mean particle size = $44 \mu m$) ^[54] :							nuous wave cular formula
	Sample	Sample for ignition HNS HNS Pure H						Pure HNS IV
	Thresh	old power [W] ± 0).2	4		4	- 1	lot ignited up o 45 W
	11 ~	Ignition delay [ms] ± 10% 2.1 1.2 (@ 45 W)				-		
	11	Full burn time [ms] ± 10% 2.6 (@ 45 W)				2.8 -		
Fragment sensitivity		y of fragment ser for HNS ^[60] :	ısitivi	ty, cl	hemica	l assa	ıy and	surface area
	HNS	Approx. 50%			IPLC as	say		Surface
	type	fire acceptor closure thickness (in)	% HNS	5	% HNBi	- 1	5 TNB	area analysis (cm²/cm³)
	ı	0.020	99.	5	0.5	N	one	128,336
	ı	0.020	93.0)	6.7	N	one	67,297
		0.020 97.8 1.9				0	.3	
	11'	0.020	۰٬۰۰۱	٠ ا	1 0.020 94.5 4.6			
					4.6	0	.1	52,165 47,929
				5	4.6 0.6	+		
	1	0.020	94.	5		Tı	.1	47,929
	1	0.020	94.5	5	0.6	Tı	.1 race	47,929 26,818

	HNS ^[13, 14, 57]	HNS ^[15]	HNS ^[16, 47]	HNS-I ^[17]
Chemical formula	C ₁₄ H ₆ N ₆ O ₁₂	C ₁₄ H ₆ N ₆ O ₁₂	C ₁₄ H ₆ N ₆ O ₁₂	C ₁₄ H ₆ N ₆ O ₁₂
Molecular weight [g mol ⁻¹]	450.23	450.23	450.23	450.23
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic
Space group		P 2 ₁ / c (no. 14)	P 2 ₁ / c (no. 14)	

a [Å]	20.93	22.326(7)	22.083(6)	22.13
<i>b</i> [Å]	5.57	5.5706(9)	5.554(1)	5.57
c [Å]	14.67	14.667(2)	14.634(3)	14.67
α [°]	90	90	90	90
β [°]	90	110.04(1)	108.45(2)	90
γ [°]	90	90	90	90
<i>V</i> [ų]		1,713.68	1,702.59	
Z		4	4	
$ ho_{ m calc}$ [g cm ⁻³]		1.745, $D_{\rm m} = 1.74(1)$	1.756	
<i>T</i> [K]		295	295	

Crystal expansion of HNS at different temperatures, X-ray powder diffraction^[47]:

T(°C)	a (Å)	b (Å)	c (Å)	β (°)	V (ų)	ρ (g cm ⁻³)
30	22.3472	5.5753	14.6698	110.05	1,716.98	1.7418
60	22.3927	5.5851	14.6740	110.00	1,724.51	1.7342
90	22.4400	5.5961	14.6798	109.96	1,732.67	1.7260
120	22.4915	5.6076	14.6864	109.92	1,741.49	1.7172
150	22.5382	5.6174	14.6889	109.88	1,748.94	1.7099
180	22.5931	5.6300	14.6947	109.83	1,758.29	1.7008
210	22.6501	5.6431	14.7015	109.79	1,768.10	1.6914
240	22.7062	5.6542	14.7025	109.74	1,776.61	1.6833
210	22.6465	5.6422	14.6987	109.79	1,767.19	1.6923
180	22.5928	5.6308	14.6954	109.83	1,758.58	1.7006
150	22.5403	5.6190	14.6891	109.87	1,749.63	1.7093
120	22.4833	5.6059	14.6796	109.91	1,739.58	1.7191
90	22.4370	5.5960	14.6740	109.95	1,731.85	1.7268
60	22.3901	5.5855	14.6684	110.00	1,723.83	1.7348
30	22.3450	5.5757	14.6640	110.043	1,716.34	1.7424

- S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [2] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [3] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th, pp. 434–443.
- [4] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [5] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [7] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.
- [8] Determined using the Explosive Research Laboratory apparatus.
- [9] B. M. Dobratz, P. C. Crawford, *LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants*, Lawrence Livermore National Laboratory, January 31st **1985**.
- [10] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [11] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [13] B. M. Dobratz, *Properties of Chemical Explosives and Explosive Simulants*, UCRL-51319, LLNL, December 15th **1972**.
- [14] K. G. Shipp, J. Org. Chem., 1964, 29, 2620–2623.
- [15] F. Gerard, A. Hardy, *Acta Cryst.*, **1988**, *C44*, 1283–12987.
- [16] H.-C. Chang, C.-P. Tang, Y.-J. Chen, C.-L. Chang, Int. Ann. Conf. Fraunhofer Inst. Chemische Tech., 1987, 18, 51.
- [17] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 177–178.
- [18] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions*, NASA CR-132373.
- [19] F. Hosoya, K. Shiino, K. Itabashi, Propellants, Explosives, Pyrotechnics, 1991, 16, 119-122.
- [20] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [21] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [22] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251–273.
- [23] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16–20.
- [24] A. A. Gidaspov, E. V. Yurtaev, Y. V. Moschensky, V. Y. Avdeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th–11th April 2014, pp. 658–661.
- [25] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.
- [26] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [27] J. L. Gottfried, T. M. Klapötke, T. G. Witkowski, *Propellants, Explosives, Pyrotechnics*, **2017**, *42*, 353–359.
- [28] W. Gui-Xiang, S. Chun-Hong, G. Xue-Dang, X. He-Ming, J. Phys. Chem., 2009, 113A, 1318–1326.
- [29] J. R. Stine, J. Energet. Mater., 1990, 8, 41–73.

- [30] Y. Liu, P. Deng, J. Xu, S. Li, J. Li, Z. Wang, *Structural Characterization and Thermal Properties of a Spherical Reaction Product of 2,2,4,4,6,6-Hexanitrostilbene and Piperazine*, ICT **2017**, Karlsruhe, Germany, pp. 39-1–39-2.
- [31] T. Urbański, Ch. 10 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [32] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [33] M. Sućeska, Calculation of Heat of Detonation by EXPLO5 Computer Code, ICT 1999, Karlsruhe, Germany, pp. 50-1–50-14.
- [34] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [35] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [36] E. G. Kayser, Analysis Methods For Explosive Materials I. Polynitro Compounds, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March 1962.
- [37] R. Petersen, L. R. Rothstein, J. H. Smith, *Thermochemistry and the Demilitarization of Explosives*, NWSY TR 76–2, Naval Weapons Station, Virginia, USA, July **1976**.
- [38] T. Rieckmann, L. Lichtblau, R. Schirra, S. Völker, Formal Kinetics of the Thermal Decomposition of Hexanitrostilbene by Thermal Analysis and Multivariate Regression, ICT 2001, Karlsruhe, Germany, pp. 13-1–13-13.
- [39] S. M. Harris, S. E. Klassen, W. T. Quinlin, D. M. Cotes, R. Thorpe, Hexanitrostilbene (HNS) Development for Modern Slapper Detonators, ICT 2001, Karlsruhe, Germany, pp. 24-1-24-12.
- [40] J. Wong, H. Huang, Q. Jiao, L. Lei, J. Hua, N. Yun, Y. Zhang, Modification of Ultrafine HNS Explosive by Spray Drying Process, ICT 2009, Karlsruhe, Germany, pp. 59-1–59-12.
- [41] C. A. van Driel, A. R. A. van Gijzel, A. E. D. M. van der Heijden, *Crystallisation and Characterisation of HNS-IV*, ICT **2002**, Karlsruhe, Germany, pp. 123-1–123-9.
- [42] I. Plaksin, J. Campos, R. Mendes, J. Ribeiro, S. Plaksin, L. Rodrigues, J. Gois, S. Almada, M. Herrmann, H. Kröber, H. Krause, M. Kaiser, *Shock Sensitivity of PBX Formulations Based on the RS-RDX, RS-HMX, and Fine/Ultrafine HE Particles Bonded with the Inert Binders: Real Time Measurements from the Registration of the Reaction Front Radiation Growth and Emission Absorption*, ICT **2008**, Karlsruhe, Germany, pp. 28-1–28-17.
- [43] Y. Liu, S. Huang, S. Li, J. Xu, J. Li, Z. Wang, *Synthesis and Properties of Energetic HNS Co-Crystals Regularly Constructed by H-Bonding, π-π Stacking and van der Waals Interactions*, ICT **2018**, Karlsruhe, Germany, pp. 25-1–25-8.
- [44] V. P. Filin, P. Y. Detkov, N. V. Garmasheva, V. T. Timofeev, I. V. Chemagina, Y. A. Shakhtorin, N. P. Taibinov, N. G. Bagavetdinov, B. G. Loboiko, *Influence of the Long-Term Storage on Thermal Stability of PETN and HNS*, ICT 2006, Karlsruhe, Germany, pp. 98-1–98-9.
- [45] M. Andrews, J. Akhavan, D. McAteer, A. Hazelwood, *Development of Pressing Methodologies for Spray Dried 2,2',4,4',6,6'-Hexanitrostilbene (SPD HNS) Using an Instron*, ICT **2014**, Karlsruhe, Germany, pp. 3-1–3-1.
- [46] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [47] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, Hexanitrostilbene (HNS), Ch. 6 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, 2018.
- [48] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1-38.
- [49] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [50] J. M. Rosen, C. Dickinson, J. Chem. Engineering Data, 1969, 14, 120–124.
- [51] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175-183.
- [52] M. Sućeska, *Propellants, Explosives, Pyrotechnics*, **1999**, 24, 280–285.

- [53] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers from Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.
- [54] X. Fang, A. R. Ahmad, Central Eur. J. Energet. Mater., 2016, 13, 103-115.
- [55] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [56] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [57] K. G. Shipp, *Heat Resistant Explosives. XIV. Synthesis and Properties of 2,2',4,4',6,6'-Hexanitrostilbene, HNST*, NOLTR 62–107, 15th June **1962**.
- [58] F. Taylor, R. E. Oesterling, *Heat Resistant Explosives XX. Production of Grade II HNS*, NOLTR-65-142, US Nava Ordnance Laboratory, White Oak, Maryland, USA, 26th August **1965**.
- [59] N. Zohari, M. H. Keshavarz, S. A. Seyedsadjadi, Centr. Eur. J. Energet. Mater., 2013, 10, 135-147.
- [60] E. E. Kilmer, Hexanitrostilbene (HNS): Review of Sielded Mild Detonating Cord (SMDC) Performance Under Biased Conditions of Fabrication, in Proc. 7th Int. Pyrotech. Seminar, vol. 1, Colorado, USA, 14th–18th July 1980, pp. 233–251.
- [61] M. E. Sitzmann, J. Energet. Mater., 1988, 6, 129-144.
- [62] L. L. Rouch, J. N. Maycock, Explosive and Pyrotechnic Aging Demonstration, National Aeronautics and Space Administration, Washington D. C., USA, February, 1976.
- [63] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [64] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.
- [65] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Hexogen

Name [German, acronym]: 1,3,5-Trinitro-1,3,5-triazacyclohexane, 1,3,5-trinitro-

> 1,3,5-triazinane, cyclotrimethylenetrinitramine, hexahydro-1,3,5-trinitro-1,3,5-triazine, cyclonite, royal demolition explosive [hexogen, RDX, E-Salz, K-Salz,

KA-Salz, SH-Salz, W-Salz, T4, CTMTN][†]

Main (potential) use: Secondary (high) explosive, presently used in munitions

> fillers such as composition A, composition B, composition C and cyclotols^[156], ingredient in plastic explosives^[156].

explosive "fill" in most types of munitions

compounds^[156], component of bursting charges for aerial bombs, mines and torpedoes^[156], used alone as base charge in detonators^[159], if desensitized as subbooster, booster or bursting charge^[159], mainly used in mixtures (compositions A, B, B-2, C, C-2, C-3 and C-4), Torpex, PTX-1 and PTX-2^[169], can be used on its own as booster, subbooster and bursting charge^[169], extensively as base charge in detonators^[20], ingredient in castable

TNT-based binary explosives for example, composition

B^[20], primary ingredient in plastic bonded explosives for example, composition A or composition C^[20]

Structural formula:

[†] Type A and type B RDX are made by different manufacturing processes, type A contains no HMX whereas type B contains 8–12% HMX impurities^[19], RDX type A is made by the nitric acid process, type B is made by the acetic anhydride process^[43], RS-RDX refers to reduced-sensitivity RDX^[111]; RDX-Type I is prepared by the Woolwich process[111]; type A must have minimum mpt. of 200 °C and max. aciditiy of 0.05% (as nitric acid)[169], type B must have minimum mpt, of 190 °C and max acidity of 0.02% (as acetic acid)^[169]; type B is less pure than type A (HMX is main impurity)^[169]

	RDX
Formula	$C_3H_6N_6O_6$
Molecular mass [g mol ⁻¹]	222.12

	(52)
Appearance at RT	White crystals ^[80] , recryst. from nitrobenzene as needles ^[80] , recryst. from hot acetone as sparkling prisms ^[80] , white crystalline solid ^[153, 156] , colorless, orthorhombic crystals ^[159] , colorless or white solid ^[169] , white, odorless and tasteless crystals ^[172] , colorless polycrystalline solid ^[20]
	7.5 (<100 µm), $5.90^{[1]}$, $7.4 \text{Nm}^{[2]}$, $7.5^{[4,112]}$, 6.69 (1st reaction) ^[7,96] , 5.90 (sound) ^[7,96] , $5.58^{[9,10]}$, 300% as sensitive as TNT ^[19] , 7 (BAM, 2 kg) ^[39] , $H_{50} = 24 \text{ cm}^{[10]}$, $34^{[27]}$, $H_{50\%} = 24 \text{ cm}$ (2.5 kg hammer, 35 mg sample, US Naval lab) ^[84] , $H_{50} = 22 \text{ cm}$ (tool type 12) ^[20] , $H_{50\%} = 24 \text{ cm}$ (Lost by pe 12) ^[20] , $H_{50\%} = 24 \text{ cm}$ (Lost by pe 12) ^[20] , $H_{50\%} = 28 \text{ cm}$ (tool type 12, 5 kg mass) ^[24] , $H_{50\%} = 24 \text{ cm}$ (LaSt test) ^[23] , $8-9 \text{ in}$ (18 mg sample, 2 kg mass, P.A.) ^[29] , $34-40 \text{ cm}$ (RDX type B, 2 kg mass, B.M.) ^[29] , 42 cm (2 kg mass, European impact machines) ^[29] , drop energy required for 50% initiation probability = $6.69 \text{ (25 mg sample, Julius-Peters apparatus)}^{36]}$, drop weight = $3.5-7.5 \text{ Nm}^{37]}$, 25 cm (B.M., tool type 12, 2 kg) ^[41] , $Ed_{\min} = 25 \text{ (BAM, 5 kg mass, max. level with six consecutive negative runs)}^{[43]}$, Rotter FOI = 80 ^[44] , $30-35 \text{ cm}$ (US drophammer) ^[44] , 28 cm (ERL+Lype 12) ^[50] , $23-28 \text{ cm}$ (ERL-LASt type 12) ^[26] , $32-42 \text{ cm}$ (B.M., 2 kg mass) ^[26] , 30 cm (ERL) ^[67] , $3.5 \text{ (BAM, Julius-Peters)}^{[68]}$, $H_{50} = 26 \text{ cm}^{[73]}$, $3.5 \text{ (micron-sized}$ RDX) ^[76] , 3.5 2c (nanosized RDX) ^[76] , 29.8 cm (7.3 J) ^[77] , 22 cm (NEDED) ^[78] , 46 cm (NOL) ^[78] , 24 cm (MR) ^[86] , 49.50% = 25.3 cm (10 µm, ABL app.) ^[81] , $(H_{50}\text{Wg})^{-1} = 7.4 \text{ km}^{[86]}$, $H_{50\%} = 16-33 \text{ cm}^{[89]}$, $H_{50\%} = 25-30 \text{ cm}$ (500 g hammer) ^[84] , 24 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, $5/0 \text{ sandpaper}$, 25 trials) ^[88] , 38 cm (2 kg mass, BAM) ^[103] , 4.0 Nm (ball milled) ^[121] , 7.5 Nm (RDX processed by PCA method (precipitation by the compressed fluid antisolvent)) ^[122] , $H_{50} = 24.2 \text{ cm}$ (Bruceton method, NOL machine, type 12 tool, 2.5 kg mass, 1.5 cg sample, $5/0 \text{ sandpape}$) ^[127]
	-

Rotter FoI = $80^{[26]}$, gas evolution = 18 mL^[26], average powder explosiveness = $51^{[26]}$

IS at various temperatures using P.A. apparatus (2 kg mass)^[19, 164]: 9 in @ RT^[19, 164], 8 in @ 32.2 °C^[19, 164], 5 in @ 104 °C^[19, 164]
IS at various temperatures using P.A. apparatus^[19]: 9 in @ 20 °C^[19], 8 in @ 88 °C^[19], 5 in @ 105 °C^[19]

RDX (standard): median height = 104 cm (5 kg mass, 30 mg sample, Rotter apparatus) $^{[33]}$

RDX (military grade): median height = 98 cm (5 kg mass, 30 mg sample, Rotter apparatus)^[33]

Powdered samples: $H_{50\%}$ = 24 cm (NOL), $H_{50\%}$ = 22 cm (LASL), $H_{50\%}$ = 79 cm (B.M. ERL), $H_{10\%}$ = 32 cm (P.A., BM), $H_{10\%}$ = 8 in (P.A.)

Aging samples (aging was performed as isothermal @ 70 °C for 113 days in absence of air and moisture)^[23]: fresh RDX $E_{50} = 8.0$ (BAM)^[23], aged RDX $E_{50} = 8.3$ ^[23]

7 ($H_{50} = 14$ cm, phlegmatized RDX, 5 kg hammer, $H_{50} = \text{highest drop}$ height at which no reaction was observed)^[64]

Size, density and sensitivity of RDX crystalline particles (C-RDX = commonly used RDX, D-RDX = desensitized RDX)^[65]:

Material	Mean size d ₅₀ (μm)	Average crystal ρ @ 20 °C (g cm ⁻³)	Exploding probability hammer: 10 kg sample: 50 mg drop height: 25 cm
C-RDX	186	1.7913±0.0005	80% (0.61, 0.90) _{0.95}
D-RDX	283	1.7992±0.0003	70% (0.50, 0.87) _{0.95}

Drop height = 1.05 m, sample thickness = 1.0-2.0 mm, drop weight = Al alloy plate with mass ~5.5 kg, impact velocity from max. drop height = ~ 4.5 ms⁻¹ producing a max. impact pressure of ~ 1 GPa^[83]:

Material	Pellet diameter (mm)	ρ (%TMD)	No. of tests	% positive
Conventional RDX	4	90	3	0
(powders with grain sizes of	8	83	3	0
10-200 μm)	4	46-49	3	0
	6	50-57	5	60
Ultrafine RDX	8	44-51	3	0
(powders with micron-sized grain sizes)	4	87-92	3	0
	8	75-80	3	0

Drop height = 1.3 m, sample thickness = 1.0-2.0 mm, drop weight = Al alloy plate with mass \sim 5.5 kg $^{[83]}$:

Material	Pellet diameter (mm)	ρ (%TMD)	No. of tests	% positive
Conventional RDX	4	78-94	22	9
(powders with grain sizes of	6	77-90	3	0
10-200 μm)	8	79-82	3	0
	4	38-65	10	60
	6	40-59	5	40
Ultrafine RDX	8	42-49	3	0
(powders with micron-sized grain sizes)	4	72-92	21	10
	6	83-85	3	0
	8	74-78	3	0

Particle size data and IS for RDX powders^[126]:

RDX sample	Particle size data (µm)		IS [†]		
	Median	16-84% prob. range	Rotter Fol	Gas evolved (mL)	
Grade A, 250–300 µm sieve cut	250	220-30	75	14.5	
Grade A, 125–150 µm sieve cut	138	95–179			
Grade A, 75–106 µm sieve cut	100.0	73.3–138.0			
Grade E	21.5	10.8-36.0			
Ball-milled	3.9	~1-9.4	85	17	

RDX grade A = Albion Explosives Factory, H_2O wet supplied, dried before use; RDX grade E = Weapons Systems Research Laboratory (WSRL), H_2O wet supplied, dried before use, RDX ball-milled = nominal size 4, supplied H_2O wet by WSRL, ball-milling carried out on grade A RDX under inert solvent; † Rotter apparatus, 5 kg mass, Bruceton method, (values rel. to RDX grade G = 80), height for 50% initiation probability [126]

Comparison of IS data of ERL and B.M.[130]:

RDX sample type manufacturer	NSWC data, H ₅₀ (cm)	NAVAIR data H ₅₀ (cm)	AFRL data H ₅₀ (cm)
ADI (Australia)	20	20	19
BAE HSAAP OSI (USA)	22	19	23
BAE-RO (UK)	21	23	19
Dyno Type II (Norway)	21	20	18
Dyno RS-RDX (Norway)	16	21	17.5
I-RDX	19	20	17
MI-RDX	24	17	22

IS for different RDX samples^[143]:

RDX type	Manufacturer	X _{50.3} (μm)	IS (Nm)
Type 1, class 1	Dyno Nobel ASA	194.5	7.5
Type 1, class 5	Dyno Nobel ASA	17.6	10
RS-RDX type 1 class 1	Dyno Nobel ASA	205.2	7.5
RS-RX, type 1, class 5	Dyno Nobel ASA	9.7	10
Hexogen, i-RDX, class 1	Eurenco, Groupe SNPE	225.4	7.5
Hexogen, i-RDX M3C	Eurenco, Groupe SNPE	10.5	7.5

RDX/wax (ERL apparatus, No. 12): 34 (99/1), 35 (98/2), 43 (97/3), 47 (95/5)^[174]

RDX/calcium stearate (ERL apparatus, No. 12): 23 (98.6/1.4), 37 (98.0/2.0), 32 $(97.2/2.8)^{[174]}$

IS as a function of RDX type and particle diameter, H_{50} (cm), approx. values^[189]:

	Particle diameter			
	200 nm 500 nm 4 μm			
Wax-coated RDX	47	63	27	
Uncoated RDX	DX 58 73 33		33	

IS with Rotter apparatus, 5 kg mass, cf. Fol for RDX = 80 as standard $^{[198]}$:

Explosive	Median height	Fol
RDX military grade	98	75
RDX standard	104	80
RDX/wax, 91/9	127	98
RDX/TNT, 60/40	137	105
RDX/TNT/wax	152	117
RDX/TNT/Al/wax	190	146

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; data from [200]:

Rotter impact data		US data	
FofI	gas evolved (mL)	NSWC/NOL, ERL type 12	NWC B.M. type 12
80	17.9	24	19

Rotter impact data, 20 drop expts., $H_{50\%}$ = median drop height, each drop expt. has the no. of ignitions out of 20 (n_g) , the fraction of ignitions (P_g) , average gas volume evolved per ignition (V_g) and calcd. powder explosiveness at each level (X), RDX grade A, $H_{50\%}$ = 105 cm, data from [200]:

Drop height multiple of $H_{50\%}$	No. of fires out of 20 drops (n _g)	$P_{\rm g} = n_{\rm g}/20$	Average gas evolved, V_g (ml)	Explosiveness at each level, × (%)
0.67	1	0.05	17.0	62.3
0.75	1	0.05	18.0	63.3
1.0	10	0.5	14.0	50.4
1.5	20	1.0	13.1	47.8
2.0	10/10	1.0	13.7	53.9

FS [N]

120 (<100 um), 120^[2, 4, 112], 148.5^[8-10], 20 (P.A.)^[15, 16], 13.73 (E.R.L.)^[15, 16], $P_{\text{fr.LL}} = 270 \text{ MPa}^{[22]}, P_{\text{fr.50\%}} = 480 \text{ MPa}^{[22]}, 120 \text{ (up-down method)}^{[39]},$ 407 lbs (ABL pendulum friction test)^[41], $G_{min.} = 160 \text{ N}$ (BAM, Julius-Peters, max. level with six consecutive negative runs)[43], Rotter mean figure of friction (FOF) = $3.0^{[35]}$, BAM (mean limiting load) = 173^[35], >360 (BAM)^[26], 193 (BAM, Julius-Peters)^[68], 250 Nm (50% value, BAM)^[69], 160 (micron-sized RDX)^[76], >360 (nanosized RDX)^[76], $168^{[77]}$, 130 psi @ 4 ft/s (10 μ)^[81], Rotary FoF = 3.0^[94], Rotary FoF = 3.4^[94], 173 (BAM, limiting load)[94], 120 (BAM, limiting load)[94], torpedo friction = 10-20 cm (1 kg @ 80 °C, 0.5 m/s)^[84, 157], 120 (Julius-Petri)^[103], 120 (ground RDX)^[117], 120^[121], 96 (ball milled)^[121], 96 (RDX processed by PCA method (precipitation by the compressed fluid antisolvent))[121], >360 (nanostructured RDX)[128], >360 (nanostructured RDX/wax composite)[128], 76% explosion probability (powder sample between one fixed and one movable stainless steel plate, 25 tests, WM-1 apparatus)^[132], $H_{50} = 29.4$ cm $(\sigma = 0.326 \text{ cm}, \text{ raw RDX crystal}, \text{ mean particle size} = 127 \,\mu\text{m}, 5 \,\text{kg hammer},$ Bruceton method)^[133], $H_{50} = 44.5$ cm ($\sigma = 0.205$ cm, granular-shaped RDX, mean particle size = 2.5 μ m, 5 kg hammer, Bruceton method)^[133], $H_{50} = 34.9$ cm ($\sigma = 0.537$ cm, irregular-shaped RDX, mean particle size = 4.5 μ m, 5 kg hammer, Bruceton method)^[133], 191^[136], G_{min} = 160 (BAM Julius Peters, max level with 6 consec. negative runs)[138],

120 (raw RDX, $X_{50.3} = 21.7 \ \mu m$, 1.902 g cm⁻³)^[142], 96 (milled RDX using annular gap ball mill, $X_{50.3} = 0.66 \ \mu m$, 1.942 g cm⁻³)^[142], 96 (RDX micronization by PCA process, $X_{50.3} = 10.8 \ \mu m$, 1.811 g cm⁻³)^[142], explodes with steel shoe (friction pendulum test)^[19, 164], unaffected by fiber shoe (friction pendulum test)^[19, 164], no detonation with fiber shoe, detonates if struck with steel shoe (B.M.)^[80], partial deflagration occurs if rubbed in unglazed porcelain mortar^[19], explodes with steel shoe in Picatinny friction test^[174], 216 (micro-RDX)^[187], 216 (nano-RDX, milling method)^[187], 216 (nano-RDX, RESS method)^[187], 160 (raw material, microsized)^[189], >360 (nanostructured)^[189], 120 (conventional RDX)^[189], >360 (submicrometer, 499 nm diameter, cryst. using electrospray technique)^[189], 144 (conventional RDX)^[189], >360 (submicrometer RDX, 500 nm diameter, plasma method)^[189], 120^[194]

Mallet FS^[35]: steel on steel = $50\%^{[35]}$, nylon on steel = $0\%^{[35]}$, wood on softwood = $0\%^{[35, 181]}$, wood on hardwood = $0\%^{[35, 181]}$, wood on Yorkstone = $0\%^{[35, 181]}$

Influence of humidity on FS[41]:

T / °C	Rel. humidity (%)	Abs. humidity (kPa)	Load for 50% ignitions (kg)
22	84	2.22	5
22	50	1.32	2
22	20	0.53	0.5
30	50	2.12	2
30	20	0.85	0.5
40	28	2.07	1

Aging samples (aging was performed as isothermal @ 70 °C for 113 days in absence of air and moisture)^[23]: fresh RDX F_{50} = 182 (BAM)^[23], aged RDX F_{50} = 172^[23]

FS for different RDX samples[143]:

RDX type	Manufacturer	X _{50.3} (μm)	FS (N)
Type 1, class 1	Dyno Nobel ASA	194.5	160
Type 1, class 5	Dyno Nobel ASA	17.6	168
RS-RDX type 1 class 1	Dyno Nobel ASA	205.2	160
RS-RX, type 1, class 5	Dyno Nobel ASA	9.7	144
Hexogen, i-RDX, class 1	Eurenco, Groupe SNPE	225.4	96
Hexogen, i-RDX M3C	Eurenco, Groupe SNPE	10.5	112

ESD [J]

0.15-0.20, $2.49^{[1,3]}$, 216.4 mJ $^{[3]}$, $0.2^{[4]}$, >0.25 (ERL apparatus) $^{[41]}$, spark sensitivity: 0.2 (3 mil foil)^[50], 0.037^[67], 180-≥726 ml^[68], 119.42 ml (micron-sized RDX)^[76], 268.69 mJ (nanosized RDX)^[76], $E_{50\%} = <0.03 (10 \mu)^{[81]}$, >156 ml (closed container)[123], >156 ml (open container)[123]. 215.34 mJ (nanostructured RDX)[128], 374.09 mJ (nanostructured RDX/wax composite)^[128], $E_{50} = 1.11$ (average diameter in cubage of RDX = 132.65 μ m, rel. surface area = 803 m² kg⁻¹, discharging distance = 0.5 mm, GJ B736 11-90 standard method, capability of capacitance = 0.212 μ F, @ 20 °C, rel. humidity = 48%)^[131], $E_{0.01} = 0.37$ (average diameter in cubage of RDX = 132.65 µm, rel. surface area = $803 \text{ m}^2 \text{ kg}^{-1}$, discharging distance = 0.5 mm, GJ B736 11–90 standard method, capability of capacitance = 0.212 µF, @ 20 °C, rel. humidity = 48%)^[131], E_{50} = 0.3551 (V_{50} = 4.824 kV, JGY-50 apparatus)^[132], 0.32-1.8 mJ (old equipment, different particle sizes), >5,600 mJ (medium particle size of 192 μ m, new equipment)^[141], 0.25 (micro RDX)^[187], 0.25 (nano-RDX, milling method)[187], 0.25 (nano RDX, RESS method)[187], 120 mJ (raw material, micro sized)[189], 270 mJ (nanostructured)[189], >250 mJ[194]

Spark sensitivity: 0.22 (brass electrode, 3 mils Pb foil thickness)^[20], 0.55 (brass electrode, 10 mils Pb foil thickness)^[20], 0.12 (steel, 1 mil Pb foil thickness)^[20], 0.87 (steel, 10 mils Pb foil thickness)^[20]

Min. equivalent voltages @ 0.0003 mfd; local ignition 14,950 (RDX pulverized or crystalline), no ignition @ 12,300 (RDX pulverized or crystalline) $^{[29]}$

Aging samples (aging was performed as isothermal @ 70 °C for 113 days in absence of air and moisture): fresh RDX E_{50} = 55 mJ^[23], aged RDX E_{50} = 67 mJ^[23]

 $E_{50\%} = 0.15 \pm 0.03$ (Bruceton formula)^[85], $E_{50\%} = 0.12 \pm 0.03$ (Bruceton formula)^[85], $E_{50\%} = 0.21$ (LANL using 0.008 cm Pb foil confinement)^[85]

No ignitions @ 12,300 V, but local ignitions @ 14,950 V (circuit with capacitance of 0.0003 mF, pulverized or crystalline sample) $^{[19]}$

0.100 (20,000 voltage, for zero ignition, 500 MMF capacitance, 0.005" gap setting)^[195], 0.144 (24,000 voltage, RDX/acetylene black (90/10), for zero ignition, 500 MMF capacitance, 0.005" gap setting)^[195], 0.256 (32,000 voltage, RDX/acetylene black (75/25), for zero ignition, 500 MMF capacitance, 0.005" gap setting)^[195]

Highest energy (J) for zero ignition probability[195]:

Results	Bureau of	Bureau of	Bureau of	NOL, 1959
from ^[195]	Mines 1943	Mines 1946	Mines 1954	
0.100	0.62	-	-	0.80

	Data from ^[196] :				
	Material	50% poi	int energy (J)	% expl.	
		3-mil foil	10-mil foil]	
	RDX (impact std)	0.21	0.96	0	
	RDX (Wabash Ground	d), heated ex	oplosives, data	from ^[196] :	
	Temperature (°C)	50% poin	nt energy (J)	% expl.	
		3-mil foil	10-mil foil		
	22	0.27	1.88	8.3	
	75	0.18	1.05	7.7	
	125	0.18	0.93	23.0	
	175	0.10	0.37	92.0	
	b = Teflon holder, da Temperature (°C)		nt energy (J)	% expl.	
		3-mil foil	10-mil foil	1	
	22	0.77	1.50	50ª	
	75	0.53	1.14	O _p	
	125	0.45	1.01	35 ^b	
	175	0.43	1.02	31 ^b	
N [%]	37.84				
Ω(CO ₂) [%]	-21.61				
T _{phase transitions} [°C]	RT, P>17.8 GPa: ortl				> 3.9 GPa: form (RDX-d ₆)

Phase diagram showing the stability fields for the various polymorphs [150]: β -RDX is a metastable form [150], α -RDX (orthorhombic) is the room temperature stable orthorhombic form which undergoes a phase transition @ RT @ ~4.0 GPa with 1.6% reduction in volume (Fig. 7)[150, 191]

Fig. 9: Pressure versus temperature phase diagram of RDX^[150].

α-phase is stable ambient orthorhombic phase, y-phase (orthorhombic) is high-pressure phase stable > 3.8 GPa and β -phase is high-temperaturehigh-pressure phase stable > 2.7 GPa and 488 K and @ pressure of ~1 atm it reverts back to α -phase^[150] (Fig. 9), α - \rightarrow y- occurs @ RT and ~3.8 GPa (reversible)[150], no dec. of y-phase observed in pressure-temperature ranges of 1.4 < GPa < 6.9 or 478 < K < 508 because it always transformed to β -phase before dec. occurred^[150], α - = stable, ambient orthorhombic phase^[191], y-= high pressure phase, stable >3.8 GPa^[191], β -= hightemperature-high-pressure phase stable >2.7 GPa and 225 °C[191], no solid-solid phase transitions observed for α - @ atmospheric pressure – 2.5 GPa^[191], α - phase melt/dec. occurs @ 215–225 °C up to 2.5 GPa^[191], reversible $\alpha \rightarrow \beta$ - solid \rightarrow solid phase transition between 2.5–3.8 GPa @ 225 °C^[191], $\alpha \rightarrow \gamma$ - (orthorhombic) @ 3.8 GPa @ RT^[191], α -/ γ - phase boundary essentially Tindependent @ 3.8 GPa to 225 °C^[191],>225 °C unidirectional solid/solid phase transition between y- and \beta- up to 7.0 GPa^[191], β- melt/dec. occurs @ 225-275 °C and 2.5-7.0 GPa^[191], β- and y- can be retrieved to ambient T@ pressure >3.8 GPa[191], @ RT β- and y- transform to α- when pressure is decreased^[191], y- reverts to α- near 3.5 GPa^[191], β - reverts to α - @ pressure near 1 atm.^[191], RDX is orthorhombic and also has a very unstable polymorph which has only been isolated in very small quantities during fusion^[20]

<i>T</i> _{m.p.} [°C]	204.1 (Type I, no HMX impurities) $^{[15,19,20]}$, 192 (Type II, contains 8–12% HMX impurities) $^{[15,19,20]}$, 201 $^{[21]}$, 203.5 $^{[27]}$, 205 (with dec.) $^{[29]}$, 204 $^{[40,61,100,125,162,164,169,181]}$, 205 $^{[21,149]}$, 204 (with dec.) $^{[48,68]}$, 205 (single crystal, nanocalorimetric curve, thermocycler @ 2,500 °C/s) $^{[63]}$, 200 (melting/exotherm reaction) $^{[69]}$, 204.1 $^{[70,168]}$, 202 $^{[80,153]}$, 203.48 (DSC @ 5 °C/min, 5 mg sample, Al pan, Al cover without crimping, under N ₂ , dec. occurs immediately after melting) $^{[90]}$, TGA/DTA (@ 1 K/min, 10 mg sample, in air, open Al pans): 198 (mpt.) $^{[93]}$, DSC (@ 10 °C/min, RDX after storing @ 65.5 °C for 16 weeks): 204.6 (endo peak max) $^{[93]}$, 204 (dec., Thomas Hoover capillary melting point apparatus @ 2 °C/min) $^{[100]}$, 202.83 (DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans, endo) $^{[108]}$, 202.86 (onset, DSC, BSE HSAAP OSI (manufacturer) by NAVAIR) $^{[130]}$, 204.69 (endo peak max, DSC, @ 5 K/min, RDX type 1, class 1, Dyno Nobel ASA, $X_{50.3} = 194.5 \mu m$) $^{[143]}$, 204.88 (endo peak max, DSC, @ 5 K/min, RDX type 1, class 5, Dyno Nobel ASA, $X_{50.3} = 17.6 \mu m$) $^{[143]}$, 205.14 (endo peak max, DSC, @ 5 K/min, RS-RDX type 1, class 5, Dyno Nobel ASA, $X_{50.3} = 17.6 \mu m$) $^{[143]}$, 205.14 (endo peak max, DSC, @ 5 K/min, RS-RDX type 1, class 5, Dyno Nobel ASA, $X_{50.3} = 9.7 \mu m$) $^{[143]}$, 206 (endo, peak T, DSC, inert atmosphere) $^{[144]}$, 206 (endo, peak T, DSC, inert atmosphere, open pan) $^{[144]}$, 205.5 $^{[154]}$, 205.35 $^{[154]}$, 204–206 $^{[156,168]}$, 204 (crystals) $^{[159]}$, 205 $^{[163,168]}$, 202–203 (type A) $^{[19]}$, 192–193 (type B) $^{[19]}$, 204.5 $^{[168]}$, 204.5 $^{[168]}$, 204.5 $^{[168]}$, 204 (crystals) $^{[159]}$, 205 $^{[163,168]}$, 202–203 (type A) $^{[19]}$, 192–193 (type B) $^{[19]}$, 204.5 $^{[168]}$, 204.5 $^{[168]}$, 204.5 $^{[168]}$, 205.6 $^{[163,168]}$, 202.7 $^{[185]}$, 478.5 K $^{[193]}$
T _{b.p.} [°C]	dec. $^{[70,156]}$, 546. $^{[154]}$, 626.6 K (T_{nbp} , est., Stein–Brown method) $^{[193]}$
T _{dec.} [°C]	208 (DSC @ 5 °C/min), $210^{[4]}$, $216^{[26]}$, $219^{[77]}$, 260 (@ 5 °C/s) ^[15] , 239 (@ 10 °C/s) ^[15] , 478 K (DTA) ^[7,96] , 285 (exotherm peak max., DSC @ 20 °C/min) ^[40] , 205 (exotherm, heating rate not specified, DTA) ^[50] , 200 (melting/exotherm reaction) ^[69] , $210-250$ (exo, DSC @ 5 °C/min, 5 mg sample, Al pan, Al cover without crimping, under N_2 , dec. occurs immediately after melting) ^[90] , 205 (dec. onset) ^[92] , 207.84 (DSC @ 10 °C/min, $1-10$ mg sample, unsealed but covered Al pans, exo, onset) ^[108] $T_{idb} = 220.9$ (@ 8 °C/min) ^[46] , $T_{w} = 232.2$ (@ 8 °C/min) ^[46] , $T_{max} = 247.8$ (@ 8 °C/min) ^[46] , $T_{idb} = 228.8$ (@ 16 °C/min) ^[46] , $T_{w} = 245.4$ (@ 16 °C/min) ^[46] , $T_{max} = 256.9$ (@ 16 °C/min) ^[46] , $T_{cr} = 215-217^{[46]}$, 219.5 (exo peak, DTA) ^[115]

TGA/DTA (@ 1 K/min, 10 mg sample, in air, open Al pans): 145 (start of mass loss), 196 (3% mass loss), 198 (mpt.), 201 (start of exo dec.), 215 (exo peak max., DTA)^[93], DSC (@ 10 °C/min, RDX after storing @ 65.5 °C for 16 weeks): 242.5 (exo peak max)^[93]

233.04 (exo peak max, DSC, @ 5 K/min, RDX type 1, class 1, Dyno Nobel ASA, $X_{50.3} = 194.5 \ \mu m)^{[143]}$, 232.85 (endo peak max, DSC, @ 5 K/min, RDX type 1, class 5, Dyno Nobel ASA, $X_{50.3} = 17.6 \ \mu m)^{[143]}$, 234.28 (endo peak max, DSC, @ 5 K/min, RS-RDX type 1, class 1, Dyno Nobel ASA, $X_{50.3} = 205.2 \ \mu m)^{[143]}$, 232.67 (endo peak max, DSC, @ 5 K/min, RS-RDX type 1, class 5, Dyno Nobel ASA, $X_{50.3} = 9.7 \ \mu m)^{[143]}$, 220 (T_{onsel}), 242 ($T_{inflection}$), 255 (T_{endsel}) (TG-DTG, inert atmosphere, pierced lid, 98.4% dec.) $T_{inflection}$, 244 (DSC, insert atmosphere, pierced lid) $T_{inflection}$, 246 (exo peak $T_{inflection}$), 247 ($T_{inflection}$), 240 ($T_{inflection}$), 250 ($T_{inflection}$), 250 ($T_{inflection}$), 240 ($T_{inflection}$), 250 ($T_{inflection}$), 250 ($T_{inflection}$), 250 ($T_{inflection}$), 240 ($T_{inflection}$), 240 ($T_{inflection}$), 250 ($T_{inflection}$), 250 ($T_{inflection}$), 240 ($T_{inflection}$), 240 ($T_{inflection}$), 250 ($T_{inflection}$), 240 ($T_{inflection}$), 250 ($T_$

t see table at end of section

ρ [g cm⁻³]

1.858 (@ 90 K, crystal), 1.841 (@ 100 K, crystal), 1.824 (@ 173 K, crystal), 1.806 (crystal) $^{[15,19,26]}$, 1.818 (@ 25 °C) $^{[27]}$, 1.816 (crystal) $^{[29,159]}$, 1.785 (@ 298 K, gas pycnometer), 1.799 $^{[20]}$, 1.82 $^{[11,155,168,194]}$, 1.816 $^{[67,77]}$, 1.85 $^{[68]}$, 1.806 $^{[73,92]}$, 1.73 (pressed, 38,200 psi loading pressure, 96.0% TMD) $^{[89]}$, 1.81 $^{[90]}$, 1.7881 (standard RDX, 75–355 μm fraction, Dyno Nobel) $^{[121]}$, 1.7919 (sieved RS-RDX, 75–355 μm fraction, Dyno Nobel) $^{[121]}$, 1.7761 (RS-RDX recryst. from *y*-butyrolactone then sieved, 75–355 μm fraction, TNO) $^{[121]}$, 1.7996 ± <0.0006 (apparent crystal ρ , density gradient tube) $^{[129]}$, 1.125 (tap ρ , average particle size = 315.4 μm) $^{[129]}$, 0.931 (tap ρ , average particle size = 276.4 μm, D-RDX (ICM)) $^{[129]}$, 0.931 (tap ρ , average particle size = 536.6 μm, C-RDX (coarse commercial RDX)) $^{[129]}$, 1.83 $^{[149]}$ specific gravity = 1.82 g/mL @ 20 °C $^{[156]}$, 1.70 (compressed to 30,000 psi) $^{[159]}$, 1.767 (pycnometry) $^{[162]}$, 1.82 (crystal) $^{[164]}$, 1.802 (crystal)

Loading p: 1.52 @ 5,000 psi^[19, 29], 1.60 @ 10,000 psi^[19, 29], 1.68 @ 20,000 psi^[19, 29], 1.70 @ 25,000 psi^[19, 29], 1.72 @ 30,000 psi^[19, 29]

Loading ρ : 1.46 @ 3,000 psi^[164, 174], 1.52 @ 5,000 psi^[164, 174], 1.60 @ 10,000 psi^[164, 174], 1.63 @ 12,000 psi^[174], 1.65 @ 15,000 psi^[164, 174], 1.68 @ 20,000 psi^[164, 174]

1.402 (Ø 4 mm, mechanically stable pellet, pressed @ 100 MPa, nanostructures RDX)^[128], 1.463 (Ø 4 mm, mechanically stable pellet, pressed @ 100 MPa, nanostructured RDX)^[128], sp. gr. = $1.816^{[172]}$, 0.8-0.9 (gravimetric density)^[172], 1.73 (on pressing @ 2,000 kg/cm²)^[172], 1.806 (X-ray data)^[20], 1.799 (direct measurement @ 22.8° C)^[20]

	Pressed charges, pressures required will vary with particle size distribution, time under pressure and $T^{[20]}$:				
	Pressure (psi)	ρ (g/cm ³)			
	5,000	1.52			
	10,000	1.60			
	20,000	1.68			
	30,000	1.70			
Heat of formation	14.71 kg cal/mol $^{[15, 17, 19, 26]}$, 14.7 kcal/mol (heat of form., $\Delta H^{\circ}_{f})^{[20]}$, 14.69 kcal mol $^{-1}$ (ΔH_{f} , crystal @ 25 °C) $^{[27]}$, 86.3 kJ/mol ($\Delta H_{f}^{\circ})^{[4]}$, 70 kJ/mol ($H_{f}^{\circ})^{[67]}$, 70 kJ/mol (enthalpy of form.) $^{[68]}$, 18.9 kcal/mol ($\Delta H_{f}^{\circ})^{[73]}$, 60.2 kcal/mol ($\Delta H_{f}^{\circ})^{[74]}$, 16.7 kJ mol $^{-1}$ ($\Delta H_{f}^{\circ})^{[77]}$, 70 kJ/mol $^{[91]}$, $^{-70}$ kJ/mol $^{[162]}$, 301.4 kJ/kg (ΔH_{f}° , ICT thermochemical database) $^{[95]}$, 70.1 kJ/mol (enthalpy of form.) $^{[92]}$, $^{-96}$ cal/g $^{[164]}$, 299.7 kJ/kg (enthalpy of form.) $^{[11]}$, 66.0 kcal/kg (enthalpy of form.) $^{[99]}$, 17 ± 1.2 kcal/mol (ΔH_{f}°) $^{[298]}$) $^{[185]}$, 15.64 kcal/mol (ΔH_{f}°) $^{[298]}$) $^{[185]}$, 24.17 kcal/mol (ΔH_{f}°) $^{[185]}$, 14.7 kcal/mol (ΔH_{o}°) $^{[20]}$				
Heat of combustion	507.3 kcal/mol (@ constant volume, H ₂ O (I)) ^[29] , 501.8–507.3 kcal/mol (@ C ^v , with H ₂ O (I)) ^[19] , $\Delta H^{o}_{c} = -501.8$ kcal/mol ^[20] , 2285 kcal/kg ^[30, 164] , $\Delta H_{c} = -9,450$ kJ/kg ^[69] , 2307.2 cal/g (@ C ^p) ^[19] , $\Delta Q_{c} = 506 \pm 1.2$ kcal/mol ^[185] , $\Delta Q_{c} = 506.9$ kcal/mol ^[185] , $\Delta Q_{c} = 507.5$ kcal/mol ^[185] , $\Delta Q_{c} = 508.9$ kcal/mol ^[185]				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,807	6,190 ^[4]	1,370 cal/g (@ const. vol.) [H ₂ O (l)] ^[29]		
		1,365 kcal/kg ^[5]	1.62 kcal/g [H ₂ O (l)] ^[19]		
		5,647 [H ₂ O (l)]			
		(ICT-code) ^[11, 95]	1.48 kcal/g [H ₂ O (g)] ^[19]		
		5,297 [H ₂ O (g)] (ICT-code) ^[11]	1.51 kcal/g (@ 1.7 g/cc, measured calorimetrically)		
		1,280 kcal/kg ^[30, 164] 1.50 kcal/g	6,322 [H ₂ O (l)] (heat of det.) ^[11]		
		(<i>Q_{max}</i> , calcd.) ^[73] 5392 ^[92]	1,190 kcal/kg (@ 1.100 g cm ⁻³) [H ₂ O vapor] ^[99]		
			1,290 kcal/kg (@ 1.700 g cm ⁻³) [H ₂ O vapor] ^[99]		

		1,215 kcal/kg (@ 1.100 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[99] 1298 kcal/kg (@ 1.700 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[99] 1,228 cal/g (calcd.) ^[171]	1,320 kcal/kg (@ 1.70 g cm ⁻³ , $Q_{\rm exp}$) ^[146] 1,500 cal/g (@ 1.7 g cm ⁻³ loading ρ) ^[159] 1,320 kcal/kg ^[172] 2,330 cal/cm ³ (voidless, volumetric heat of explosion) [174] 2,050 cal/cm ³ (pressed @ 10,000 psi, volumetric heat of explosion) ^[174]
T _{ex} [K]	3,800	3,400 ^[5]	2,587 (@ 1.8 g cm ⁻³) ^[15]
		3,425.4 (@ 1.816 g cm ⁻³ , calcd. CHEETAH 6.0) ^[77]	3,380 °C ^[19, 29]
		4,000 (calcd., ICT-code) ^[95]	3,600 (@ 1.0 g cm ⁻³) ^[15]
		4,129 (@ 1.77 g cm ⁻³ ,	4,320 (@ 1.66 g cm ⁻³) ^[17]
		$\Delta H_{\rm f} = 14.7 \text{ kcal/mol},$	4,610 (@ 1.20 g cm ⁻³) ^[17]
		calcd., BKWC, THEOSTAR-T) ^[106]	4,600 (@ 1.00 g cm ⁻³) ^[17]
		3,349 (@ 1.77 g cm ⁻³ , $\Delta H_{\rm f} = 14.7$ kcal/mol, calcd., BKWR, THEOSTAR-T) ^[106]	3,700 °C (@ $1.7~{ m g~cm^{-3}}$ loading $ ho$) $^{[159]}$
		3,434 (@ 100% TMD, calcd., CHEETAH-6) ^[139]	
		2,587 (@ 1.80 g cm ⁻³ , $\Delta H_f^0 = 639.9 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[166]	
		3,708 (@ 1.816 g cm ⁻³ , $\Delta H_{\rm f} = 70 \text{ kJ/mol, calcd.,}$ JAGUAR) ^[186]	
		3,220 (@ 1.80 g cm ⁻³ , calcd. BKWR) ^[17]	

3,260 (@ 1.77 g cm ⁻³ , calcd. BKWR) ^[17]	
3,330 (@ 1.72 g cm ⁻³ , calcd. BKWR) ^[17]	
3,400 (@ 1.66 g cm ⁻³ , calcd. BKWR) ^[17]	
3,480 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[17]	
3,630 (@ 1.46 g cm ⁻³ , calcd. BKWR) ^[17]	
3,690 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[17]	
3,780 (@ 1.29 g cm ⁻³ , calcd. BKWR) ^[17]	
3,840 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[17]	
3,890 (@ 1.10 g cm ⁻³ , calcd. BKWR) ^[17]	
3,920 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[17]	
3,920 (@ 0.95 g cm ⁻³ , calcd. BKWR) ^[17]	
4,060 (@ 0.70 g cm ⁻³ , calcd. BKWR) ^[17]	
4,180 (@ 0.56 g cm ⁻³ , calcd. BKWR) ^[17]	
4,140 (@ 1.80 g cm ⁻³ , calcd. BKWS) ^[17]	
4,160 (@ 1.77 g cm ⁻³ , calcd. BKWS) ^[17]	
4,200 (@ 1.72 g cm ⁻³ , calcd. BKWS) ^[17]	
4,230 (@ 1.66 g cm ⁻³ , calcd. BKWS) ^[17]	

		4,280 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,360 (@ 1.46 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,390 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,430 (@ 1.29 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,460 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,480 (@ 1.10 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,490 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,490 (@ 0.95 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,450 (@ 0.70 g cm ⁻³ , calcd. BKWS) ^[17]	
		4,450 (@ 0.56 g cm ⁻³ , calcd. BKWS) ^[17]	
p _{C-J} [kbar]	340	380 ^[4]	347 (@ 1.80 g cm ⁻³) ^[15, 166]
		34.47 GPa (@ 1.80 g cm ⁻³ ,	338 (@ 1.767 g cm ⁻³) ^[24] 388 × 10 ³ atm.
		CHEETAH 2.0) ^[6]	(@ 1.785 g cm ⁻³) ^[30]
		33.12 GPa (@ 1.77 g cm ⁻³ , CHEETAH 2.0) ^[6]	333.5 (@ 1.767 g cm ⁻³) ^[15]
		340 (@ 1.767 g cm ⁻³ ,	108 (@ 1.9 g cm ⁻³) ^[15]
		calcd., K-J) ^[57]	34.1 GPa (@ 1.80 g cm ⁻³) ^[6, 17]
		353 (@ 1.80 g cm ⁻³ , calcd., K-J) ^[57]	33.79 GPa (@ 1.77 g cm ⁻³) ^[16, 17]
		336 (@ 1.755 g cm ⁻³ , calcd., K-J) ^[57]	33.79 ± 0.31 GPa (@ 1.767 ± 0.011 g cm ⁻³) ^[20]

274 (@ 1.59 g cm ⁻³ , calcd., K-J) ^[57]	313 (@ 1.72 g cm ⁻³) ^[17]
·	263 (@ 1.60 g cm ⁻³) ^[17]
211 (@ 1.40 g cm ⁻³ , calcd., K-J) ^[57]	211 (@ 1.46 g cm ⁻³) ^[17]
153 (@ 1.20 g cm ⁻³ , calcd., K-J) ^[57]	213 (@ 1.4 g cm ⁻³) ^[17]
288 (@ 1.63 g cm ⁻³ ,	166 (@ 1.29 g cm ⁻³) ^[17]
calcd., K-J) ^[57]	152 (@ 1.20 g cm ⁻³) ^[17]
292 (@ 1.64 g cm ⁻³ , calcd., K-J) ^[57]	122 (@ 1.10 g cm ⁻³) ^[17]
59.9 (@ 0.7 g cm ⁻³ ,	89 (@ 1.00 g cm ⁻³) ^[17]
calcd. thermochem.) ^[56]	96 (@ 0.95 g cm ⁻³) ^[17]
108 (@ 1.0 g cm ⁻³ , calcd. thermochem.) ^[56]	48 (@ 0.70 g cm ⁻³) ^[17]
	32 (@ 0.56 g cm ⁻³) ^[17]
152 (@ 1.2 g cm ⁻³ , calcd. thermochem.) ^[56]	12,600 kg/cm ^{2[19, 29]}
166.2 (@ 1.29 g cm ⁻³ , calcd. thermochem.) ^[56]	390 (@ 1.80 g cm ⁻³) ^[34]
209.8 (@ 1.46 g cm ⁻³ ,	347 (@ 1.80 g cm ⁻³) ^[34]
calcd. thermochem.) ^[56]	338 (@ 1.767 g cm ⁻³) ^[34]
259 (@ 1.59 g cm ⁻³ , calcd. thermochem.) ^[56]	366 (@ 1.755 g cm ⁻³) ^[34]
283.7 (@ 1.63 g cm ⁻³ ,	284 (@ 1.63 g cm ⁻³) ^[34]
calcd. thermochem.) ^[56]	287 (@ 1.59 g cm ⁻³) ^[34]
269 (@ 1.65 g cm ⁻³ , calcd. thermochem.) ^[56]	196 (@ 1.44 g cm ⁻³) ^[34]
·	213 (@ 1.40 g cm ⁻³) ^[34]
310 (@ 1.72 g cm ⁻³ , calcd. thermochem.) ^[56]	152 (@ 1.20 g cm ⁻³) ^[34]
347 (@ 1.8 g cm ⁻³ , calcd. thermochem.) ^[56]	104 (@ 1.00 g cm ⁻³) ^[34]
	95 (@ 1.03 g cm ⁻³) ^[34]
346.6 (@ 1.8 g cm ⁻³ , calcd., <i>Mader</i>) ^[60]	195.2 (@ 1.44 g cm ⁻³) ^[34]

I	T	
	200.0 (@ 1.4 g cm ⁻³ , calcd., <i>Mader</i>) ^[60]	338 (@ 1.767 g cm ⁻³) ^[57]
		390 (@ 1.80 g cm ⁻³) ^[57]
	34.6 GPa (@ TMD, calcd., CHEETAH 2.0) ^[54]	366 (@ 1.755 g cm ⁻³) ^[57]
	347 (@ 1.806 g cm ⁻³ , calcd.) ^[73]	287 (@ 1.59 g cm ⁻³) ^[57]
	,	213 (@ 1.40 g cm ⁻³) ^[57]
	33.2 GPa (@ 1.816 g cm ⁻³ , calcd. CHEETAH 6.0) ^[77]	152 (@ 1.20 g cm ⁻³) ^[57]
	360 katm (@ 1.82 g cm ⁻³ ,	283.7 (@ 1.63 g cm ⁻³) ^[57]
	calcd., TIGER, BKW) ^[81]	269 (@ 1.64 g cm ⁻³) ^[57]
	154.1 MPa (calcd., ICT-code) ^[95]	41.5 (@ 0.7 g cm ⁻³) ^[56]
		85.5 (@ 1.0 g cm ⁻³) ^[56]
	32.2 GPa (@ 1.77 g cm ⁻³ , $\Delta H_f = 14.7$ kcal/mol, calcd., BKWC,	127.4 (@ 1.2 g cm ⁻³) ^[56]
	THEOSTAR-T) ^[106]	149.7 (@ 1.29 g cm ⁻³) ^[56]
	34.0 GPa (@ 1.77 g cm ⁻³ , $\Delta H_{\rm f} = 14.7$ kcal/mol,	199.6 (@ 1.46 g cm ⁻³) ^[56]
	calcd., BKWR, THEOSTAR-T) ^[106]	245.8 (@ 1.59 g cm ⁻³) ^[56]
	330 (@ 100% TMD,	259.9 (@ 1.63 g cm ⁻³) ^[56]
	calcd., CHEETAH-6) ^[139]	268.6 (@ 1.65 g cm ⁻³) ^[56]
	31.56 GPa (@ 1.767 g cm ⁻³	296.0 (@ 1.72 g cm ⁻³) ^[56]
	(pycnometry density), heat of formation =	332.1 (@ 1.8 g cm ⁻³) ^[56]
	-70.00 kJ/mol, Cheetah 6.0) ^[162]	33.9 GPa (@ 1.77 g cm ⁻³) ^[106]
		354 cal/cm³ (voidless) ^[174]
	4.443 (@ 0.69 g cm ⁻³ (SSED density), heat of	257 cal/cm³ (pressed @
	formation = -70.00 kJ/mol, CHEETAH 6.0) ^[162]	10,000 psi) ^[174]
	34.7 GPa (@ 1.80 g cm ⁻³ ;	
	$\Delta H_{\rm f}^{0} = 639.9 \text{kJ/kg},$	
	calcd., FORTRAN BKW) ^[166]	

34.8 GPa $(@ 1.816 g cm^{-3},$ $\Delta H_{\rm f} = 70 \text{ kJ/mol},$ calcd., JAGUAR)[186] $364 (@ 1.80 g cm^{-3},$ calcd. BKWR)[17] 351 (@ 1.77 g cm⁻³, calcd. BKWR)[17] 329 (@ 1.72 g cm⁻³, calcd. BKWR)[17] $304 (@ 1.66 g cm^{-3},$ calcd. BKWR)[17] 281 (@ 1.60 g cm⁻³, calcd. BKWR)[17] 232 (@ 1.46 g cm⁻³, calcd. BKWR)[17] 214 (@ 1.40 g cm⁻³, calcd. BKWR)[17] 183 (@ 1.29 g cm⁻³, calcd. BKWR)^[17] 160 (@ 1.20 g cm⁻³, calcd. BKWR)[17] $138 (@ 1.10 g cm^{-3},$ calcd. BKWR)[17] $117 (@ 1.00 g cm^{-3},$ calcd. BKWR)[17] $107 (@ 0.95 g cm^{-3},$ calcd. BKWR)[17] $60 (@ 0.70 \text{ g cm}^{-3},$ calcd. BKWR)[17] $41 (@ 0.56 g cm^{-3},$ calcd. BKWR)[17]

22 (@ 1.77 g cm ⁻³ , alcd. BKWS) ^[17]
02 (@ 1.72 g cm ⁻³ , alcd. BKWS) ^[17]
79 (@ 1.66 g cm ⁻³ , alcd. BKWS) ^[17]
60 (@ 1.60 g cm ⁻³ , alcd. BKWS) ^[17]
16 (@ 1.46 g cm ⁻³ , alcd. BKWS) ^[17]
99 (@ 1.40 g cm ⁻³ , alcd. BKWS) ^[17]
72 (@ 1.29 g cm ⁻³ , alcd. BKWS) ^[17]
52 (@ 1.20 g cm ⁻³ , alcd. BKWS) ^[17]
30 (@ 1.10 g cm ⁻³ , alcd. BKWS) ^[17]
10 (@ 1.00 g cm ⁻³ , alcd. BKWS) ^[17]
00 (@ 0.95 g cm ⁻³ , alcd. BKWS) ^[17]
7 (@ 0.70 g cm ⁻³ , alcd. BKWS) ^[17]
8 (@ 0.56 g cm ⁻³ , alcd. BKWS) ^[17]
34 (@ 1.80 g cm ⁻³ , alcd. BKWS) ^[17]

VoD [m s ⁻¹]	8,882	8,983 ^[4]	8,833
Top [m 3]	(see also ^[12])		0,033
		8,400 (@ 1.7 g cm ⁻³) ^[5]	8,750
		8,920 (@ 1.80 g cm ⁻³) (CHEETAH 2.0) ^[6]	8,639 ^[6]
			8,750 (@ 1.76 g cm ⁻³) ^[11]
		8,807 (@ 1.77 g cm ⁻³) (CHEETAH 2.0) ^[6]	8,850 (@ 1.83 g cm ⁻³) ^[13]
		8,803 (@ TMD) (CHEETAH v8.0) ^[45]	8,750 (@ 1.8 g cm ⁻³) ^[17]
			8,639 ± 0.041
		8,800 (@ 1.81 g cm ⁻³ , calcd., K-J) ^[24]	$(@ 1.767 \pm 0.011 \text{ g cm}^{-3})^{[20]}$
		8,180 (@ 1.65 g cm ⁻³ ,	8,700 (@ 1.77 g cm ⁻³) ^[17, 14, 58]
		av. value from lit.) ^[28]	8,460 (@ 1.72 g cm ⁻³) ^[17]
		4,989 (@ 0.7 g cm ⁻³ , calcd. thermochem.) ^[56]	8,240 (@ 1.66 g cm ⁻³) ^[17]
			8,130 (@ 1.6 g cm ⁻³) ^[17]
		5,981 (@ 1.0 g cm ⁻³ , calcd. thermochem.) ^[56]	7,600 (@ 1.46 g cm ⁻³) ^[17]
		6,750 (@ 1.2 g cm ⁻³ , calcd. thermochem.) ^[56]	7,460 (@ 1.4 g cm ⁻³) ^[17]
			7,000 (@ 1.29 g cm ⁻³) ^[17]
		7,036 (@ 1.29 g cm ⁻³ , calcd. thermochem.) ^[56]	6,770 (@ 1.2 g cm ⁻³) ^[17]
		7,626 (@ 1.46 g cm ⁻³ , calcd. thermochem.) ^[56]	6,180 (@ 1.1 g cm ⁻³) ^[17]
			5,800 (@ 0.95 g cm ⁻³) ^[17]
		8,077 (@ 1.59 g cm ⁻³ , calcd. thermochem.) ^[56]	4,650 (@ 0.7 g cm ⁻³) ^[17]
		8,314 (@ 1.63 g cm ⁻³ , calcd. thermochem.) ^[56]	4,050 (@ 0.56 g cm ⁻³) ^[17]
			8,639 (@ 1.767 g cm ⁻³) ^[15]
		8,180 (@ 1.65 g cm ⁻³ , calcd. thermochem.) ^[56]	8,270 (@ 1.675 g cm ⁻³) ^[28]
		8,528 (@ 1.72 g cm ⁻³ , calcd. thermochem.) ^[56]	8,035 (@ 1.60 g cm ⁻³) ^[15]
			8,754 (@ approaching
		8,754 (@ 1.8 g cm ⁻³ , calcd. thermochem.) ^[56]	TMD) ^[34]

8,950 (@ 1.83 g cm ⁻³ (TMD), calcd., R-P	8,850 (LASEM method) ^[45]
method) ^[59]	8,833 (@TMD)
l lifetilou)	(large-scale det. test) ^[45]
8,950 (@ 1.83 g cm ⁻³	(large-scale det. test)
(TMD), calcd.,	8,049 (calcd. based on
Aizenshtadt) ^[59]	1700 g bomb sand test) ^[28]
Alzensiilauty	1700 g bollib salid test)
8,890 (@ 1.83 g cm ⁻³	6,000 (@ 1.03 g cm ⁻³) ^[34]
(TMD), calcd., K-J) ^[59]	0,000 (@ 1.05 g cm)
(2), catear, it ;;	7,530 (@ 1.44 g cm ⁻³) ^[34]
8,750 (@ 1.8 g cm ⁻³ ,	, , , , , , , , , , , , , , , , , , , ,
calcd., Mader)[60]	8,489 (@ 1.73 g cm ⁻³) ^[37]
	, (6
7,310 (@ 1.4 g cm ⁻³ ,	4,980 (@ 0.7 g cm ⁻³) ^[56]
calcd., <i>Mader</i>) ^[60]	
	5,938 (@ 1.0 g cm ⁻³) ^[56]
8,900 (@ TMD, calcd.,	
CHEETAH 2.0) ^[54]	6,578 (@ 1.2 g cm ⁻³) ^[56]
8,830 (@ 1.806 g cm ⁻³ ,	6,873 (@ 1.29 g cm ⁻³) ^[56]
calcd.) ^[73]	20.554
2	7,443 (@ 1.46 g cm ⁻³) ^[56]
8,840 (@ 1.816 g cm ⁻³ ,	-3)[54]
calcd., CHEETAH 6.0) ^[77]	7,864 (@ 1.59 g cm ⁻³) ^[56]
0.002 (0.1.02 =3	0 005 (© 1 (2 m cm ⁻³)[56]
8,802 (@ 1.82 g cm ⁻³ , calcd., TIGER, BKW) ^[81]	8,005 (@ 1.63 g cm ⁻³) ^[56]
Calcu., HGER, BRW)	8,070 (@ 1.65 g cm ⁻³) ^[56]
6,050 (@ 1 g cm ⁻³ ,	0,070 (@ 1.05 g cm)
calcd., Kamlet	8,315 (@ 1.72 g cm ⁻³) ^[56]
method) ^[101]	0,313 (@ 1., 2 g c)
	8,591 (@ 1.8 g cm ⁻³) ^[56]
8,100 (@ 1.6 g cm ⁻³ ,	, ,
calcd., Kamlet	8,489 (@ 1.73 g cm ⁻³) ^[92]
method) ^[101]	
	$6,030 (@ 1 g cm^{-3})^{[101]}$
5,560 (@ 1 g cm ⁻³ ,	
calcd., Urizar method) ^[101]	8,110 (@ 1.6 g cm $^{-3}$) $^{[101]}$
7,990 (@ 1.6 g cm ⁻³ ,	8,640 (@ 1.77 g cm ⁻³) ^[106]
calcd., Urizar method) ^[101]	
3	8,390 (@ 1.650 g cm ⁻³ ,
8,970 (@ 1.77 g cm ⁻³ ,	phlegmatized RDX (RDX/
$\Delta H_{\rm f} = 14.7 \text{ kcal/mol},$	(CH2)n 95/5), cylinder test,
calcd., BKWC,	impulse X-ray apparatus,
THEOSTAR-T) ^[106]	300 mm long tube, 25 mm
	internal diameter, 2.5 mm wall thickness) ^[137]
	watt tillekiless)

	8,990 (@ 1.77 g cm ⁻³ , $\Delta H_f = 14.7$ kcal/mol,	27,000 ft/s (@ 1.6 g/mL) ^[153]
	calcd., BKWR,	
	THEOSTAR-T) ^[106]	8,380 (@ 1.7 g cm $^{-3}$ loading $ ho$) $^{[159]}$
	8,650 (@ 1.767 g cm ⁻³	
	(pycnometry density), heat of formation =	$8,180 (@ 1.65 g cm^{-3}, 1.0 in charge diameter, pressed,$
	-70.00 kJ/mol,	no confinement) ^[164]
	CHEETAH 6.0) ^[162]	,
	. === (== = = = = = = = = = = = = = = =	8,100 (@ 1.61 g cm ⁻³ after
	4,738 (@ 0.69 g cm ⁻³ (SSED density), heat of	16 h @ –54 °C) ^[164]
	formation = -70.00 kJ/mol ,	8,050 (@ 1.62 g cm ⁻³ after
	CHEETAH 6.0) ^[162]	16 h @ 21 °C) ^[164]
	8,754 (@ 1.80 g cm ⁻³ ,	8,755 (@ 1.802 g cm ⁻³) ^[165]
	$\Delta H_f^0 = 639.9 \text{ kJ/kg},$	6,755 (@ 1.602 g till 1).
	calcd., FORTRAN BKW)[166]	8,754 (@ 1.80 g cm ⁻³) ^[166]
	8,760 (@ 1.816 g cm ⁻³ ,	8,180 (@ 1.65 g cm ⁻³) ^[169]
	$\Delta H_{\rm f} = 70 \text{ kJ/mol, calcd.,}$	0 (00 (0 4 7 -3)[172]
	JAGUAR) ^[186]	8,400 (@ 1.7 g cm ⁻³) ^[172]
	8,770 (@ 1.80 g cm ⁻³ ,	8,400 (@ 1.56 g cm ⁻³) ^[181]
	calcd. BKWR) ^[17]	6,080 (@ 1.0 g cm ⁻³) ^[183]
	8,670 (@ 1.77 g cm ⁻³ ,	0,000 (@ 1.0 g cm)
	calcd. BKWR) ^[17]	
	8,500 (@ 1.72 g cm ⁻³ ,	
	calcd. BKWR) ^[17]	
	8,300 (@ 1.66 g cm ⁻³ ,	
	calcd. BKWR) ^[17]	
	0.400 (0.4.60 =-2	
	8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[17]	
	Jacob Billing	
	7,640 (@ 1.46 g cm ⁻³ ,	
	calcd. BKWR) ^[17]	
	7,450 (@ 1.40 g cm ⁻³ ,	
	calcd. BKWR) ^[17]	
	7,120 (@ 1.29 g cm ⁻³ ,	
	calcd. BKWR) ^[17]	
·		

6,860 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[17]
6,580 (@ 1.10 g cm ⁻³ , calcd. BKWR) ^[17]
6,320 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[17]
6,190 (@ 0.95 g cm ⁻³ , calcd. BKWR) ^[17]
5,360 (@ 0.70 g cm ⁻³ , calcd. BKWR) ^[17]
4,840 (@ 0.56 g cm ⁻³ , calcd. BKWR) ^[17]
8,960 (@ 1.80 g cm ⁻³ , calcd. BKWS) ^[17]
8,840 (@ 1.77 g cm ⁻³ , calcd. BKWS) ^[17]
8,630 (@ 1.72 g cm ⁻³ , calcd. BKWS) ^[17]
8,380 (@ 1.66 g cm ⁻³ , calcd. BKWS) ^[17]
8,150 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[17]
7,630 (@ 1.46 g cm ⁻³ , calcd. BKWS) ^[17]
7,420 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[17]
7,060 (@ 1.29 g cm ⁻³ , calcd. BKWS) ^[17]
6,790 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[17]
6,490 (@ 1.10 g cm ⁻³ , calcd. BKWS) ^[17]

		6,210 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[17] 6,060 (@ 0.95 g cm ⁻³ , calcd. BKWS) ^[17] 5,250 (@ 0.70 g cm ⁻³ , calcd. BKWS) ^[17] 4,720 (@ 0.56 g cm ⁻³ , calcd. BKWS) ^[17]	
V ₀ [L kg ⁻¹]	793	908 (@ 0 °C) ^[5] 0.436 cm ³ /g (@ 1.8 g cm ⁻³ , calcd., <i>Mader</i>) ^[60] 0.523 cm ³ /g (@ 1.4 g cm ⁻³ , calcd., <i>Mader</i>) ^[60]	903 ^[18] 908 (@ 0 °C and 760 mm Hg) ^[19, 29, 159] 700 (@ 1.5 g cm ⁻³ , Dolgov's bomb) [H ₂ O (I)] ^[31, 32] 890 (@ 1.5 g cm ⁻³ , Dolgov's bomb) [H ₂ O (g)] ^[31, 32]

Sample name	Sca	ın rate 2	Scan rate 20 °C/min		Sca	an rate	Scan rate 10 °C/min		SG	an rate	Scan rate 5 °C/min		Sca	ın rate	Scan rate 1 °C/min	
	Endotherm (°C)	Heat (J/G)	Exotherm (°C)	Heat (J/G)	Endotherm (°C)	Heat (J/G)	Exotherm (°C)	Heat (J/G)	Endotherm (°C)	Heat (J/G)	Exotherm (°C)	Heat (J/G)	Endotherm (°C)	Heat (J/G)	Exotherm (°C)	Heat (J/G)
SIRDX	208	46	254	3,542	206	134	242	4,796								
	206	51	253	2,503	206	167	242	4,913								
Dyno Nobel	207	136	250	5,257	202	133	242	3,706	204	95	239	4,370	204	87	240	3,327
	207	142	252	4,902									201	55	220	4,158
Holston (lot 1)	205	37	253	3,008	200	114	241	4,434								
	208	54	257	1,519												
Holston (lot 2)	208	83	250	4,515	203	87	241	4,719	202	53	238	4,486	n.d.	n.d.	219	3,520
	207	149	256	2,785	202	172	248	10,507	201	54	240	2,770	191	55	220	3,542
Holston	207	142	249	6,079	205	105	247	2,533	189	99	244	3,693	188	39	222	3,982
unreprocessed	206	91	249	5,280					192	30	242	3,663	186	49	221	4,288

 † DSC of RDX samples at various scan rates $^{[147]}$

Critical diameter, d_{c} [cm]

Values from^[19]:

RDX/wax	ρ (g/cm ³)	Critical diameter
95/5	1.05	4.0 < d _c < 5.0
90/10	1.10	4.0 < d _c < 5.0
80/20	1.25	3.8 < d _c < 5.0
72/28	1.39	3.8 < d _c < 5.0

Values from^[87]:

Material	Particle size	ρ (% TMD)	d _c (mm)
RDX	25–150 μm (lightly confined in plastic tubing)	1.00 (55.4)	1.0 < d _c < 1.15
RDX/wax	91.8:8.2	1.695 (99.0)	< 2.2

Critical detonation diameter $d_{\rm c0}$ [mm] and specific surface area, $S_{\rm g}$ [cm² g⁻¹]^[92]:

S_{g} (cm ² g ⁻¹)	d _{c0} (mm)
Monodisperse RDX (fractions)	
280 (250-350 μm)	3.78
370 (200–250 μm)	3.31
600 (90–160 μm)	2.37
1310 (0–60 μm)	1.67
9000 (3–5 μm)	0.27

 d_{c0} (mm) @ mean crystal size (μm) $^{[92]}$: 0.25 @ 3, 0.60 @ 10, 0.85 @ $20^{[92]}$

Critical pressure of initiation of explosion

 P_{cr} = 0.70 ± 0.01 GPa (explosion initiation by impact of CL-20), σ_{ult} = 82 MPa (explosion initiation by impact of CL-20)^[122], P_{cr} = 1.10 ± 0.03 (commercial RDX, 10–30 μm)^[140], P_{cr} = 1.08 ± 0.03 (ultrafine RDX, ~1.0 μm)^[140], P_{cr} = 0.95^[146], σ_{ult} = 108 MPa^[146]

Critical pressure [bar]	58.01 (est., Joback-Stein method) ^[193] , 35.31 (Valderrama-Alveraz method) ^[193]						
Critical T [°C]	$217^{[20]}$, $215-217$ (exptl.) ^[124,152] , 217 (calcd.) ^[124,152] , 842.7 K (est., Joback-Stein method) ^[193] , $1,112.3$ K (Valderrama-Alveraz method) ^[193] , 840 K (<i>Maksimov</i>) ^[193]						
Trauzl test [cm³, % TNT]	151-170% TN 470 cc ^[172] , 46		T ^[28] , 157-168% TN 480 ^[182]	IT ^[29] , 157% TNT ^{[164}	, 169]		
Sand test [g]			T (using 200 g bom umple) ^[28] , 60.2 g (2		crushed		
Koenen test [mm]	8 (≥1 explosio	n from 3 tests)	[103]				
Plate dent test			deep crater ^[92] , bris ressed, confined) ^{[1}				
	Charge diameter (mr	Density n) (g/cm³)	Dent depth (mm)	Charge height (mm)			
	41.3	1.754	10.35	203			
	41.3	1.744	10.14	203			
	41.3	1.537	8.20	203			
Ballistic mortar test	150-161% TN	T ^[19] , 150% TN	T ^[28, 164, 169]				
Initiation efficiency	requires 0.17 g	MF for detona	sting cap if<14% wa ttion ^[80] , 0.19 g MF is num detonating cha	minimum detonati			
US NOL gap test	8.20 cm gap va (50% probabil	_	g cm ⁻³ (pressed RD	X) ^[30, 84] , 82 mm (32	3 cards)		
	Comparison of RDX-p = presse		ults with those of II	HE gap test,			
	Material	$ ho_0$ (g cm $^{-3}$)	IHE (50% gap, in)	LSGT (in × 10 ²)			
	RDX-p	1.64	323	285			
	No positive test @ 50 cards for a mixture of RDX and DMF containing a 50% excess of TNT cf. the amount of TNT required to give a saturated soln. in DMF @ 25 °C (NOL LSGT) ^[170] , a mixture of RDX and DMF (67% RDX by weight) gave a positive result @ 50 cards but failed @ 150 cards ^[170] , 336 cards (RDX @ 85.1% TMD, NOL LSGT) ^[170] , 323 cards (RDX @ 91.0% TMD, NOL LSGT) ^[170]						

Gap test	Gap test = 12.4 kbar, charge ρ = 1.62 g cm ⁻³ (RDX class E) ^[37] , gap test = 12.4 (class "E") kbar @ 1.73 g cm ^{-3[92]} gap = 66 mm, Gap = 67 mm (phlegmatized RDX) ^[64]						
LSGT [cm]	Gap ₅₀ = 7.02 mm, L_{95} = 0.10 mm (@ 1.09 g cm ⁻³) ^[20] , Gap ₅₀ = 6.17 mm, L_{95} = 0.01 mm (@ 1.750 g cm ⁻³) ^[20] , 67 mm (NOL) ^[78] , 61 mm (LANL) ^[78]						
	LSGT on baseline and age	ed (60	0°C) samp	oles ^[147] :			
	RDX sample		baseline [% HMX i	(kbar) mpurities]	60	°C (kbar)	
	SIRDX (insensitive RDX, Euren	co)	46.3 [0.0]		46	.0	
	Dyno Nobel		44.3 [0.1]		45	.2	
	Holston #1 (Holston RD) reprocessed, lot 1)	Х	43.4 [2.9]		39	.2	
	Holston #2 (Holston RDX reprocessed, lot 2) Holston		41.6 [1.9]			9.1	
			35.6 34.7		[15	5.5]	
	$\rho_0 = 1.53 \text{ g/cc}, 85.0\% \text{ TM}$	1D, 50	0% pressu	re (<i>P</i> _g) = 6.8	kbaı	r ^[180]	
SSGT [cm]	$\begin{aligned} & Gap_{50} = 7.82 \; mm, L_{95} = 0.15 \; mm \; (\textcircled{m} \; 1.00 \; g \; cm^{-3})^{[20]}, Gap_{50} = 8.86 \; mm, \\ & L_{95} = 0.15 \; mm \; (\textcircled{m} \; 1.11 \; g \; cm^{-3})^{[20]}, Gap_{50} = 0.50 \; mm, L_{95} = - \; mm \\ & (\textcircled{m} \; 1.704 \; g \; cm^{-3})^{[20]}, Gap_{50} = 5.18 \; mm, L_{95} = 0.18 \; mm \; (\textcircled{m} \; 1.735 \; g \; cm^{-3})^{[20]}, \\ & Gap_{50} = 0.36 \; mm, L_{95} = 0.01 \; mm \; (\textcircled{m} \; 1.752 \; g \; cm^{-3})^{[20]}, 7.4 \; mm \; (NOL)^{[78]}, \\ & 4.8 \; mm \; (LANL)^{[78]} \end{aligned}$ $MRL \; small\text{-scale} \; gap \; test, \; mild \; steel \; witness \; block, \; results \; give \; the \\ & thickness \; of \; brass \; shim \; (in \; mm) \; required \; to \; attenuate \; a \; standard \; shock \; to \\ & give \; a \; 50\% \; probability \; of \; detonation; \; values \; from^{[82]}; \end{aligned}$						
	material			shock sens	sitivi	ty	
			½ TMD)	M _{50%}		std. devia	tion
	RDX (250-350 μm, sieve cut)	00	3.76		0.12		
	RDX fine 90.04 3.79 0.15						
	$P_{90} = 10.97$ kbar (P_{90} = pressure to 90% of TMD, NSWC small-scale gap test) ^[98]						

shock sensitivity, NOL SSGT (MIL-STD-1751A, Method 1042), uncoated RDX samples, samples pressed into brass cylinders @ 16,000 psi, \sim 1.5 g sample required per cylinder, shock sensitivity given as shock pressure necessary for 50% initiation probability^[119]:

Material	Shock sensitivity (Dbg)	Shock sensitivity (kbar)	Sample ρ (g cm ⁻³)	% TMD
4.8 micron RDX	5.5	19.6	1.49	81.9
Type A nano RDX	5.65 ± 0.22	20.6	1.42	78.0
Type B nano RDX	6.38 ± 0.06	26.1	1.43	78.6

Shock sensitivity of RDX pellets pressed nominally to 90% TMD (90% TMD = 1.622 g/cm^3)^[126]:

RDX sample	Pellet ρ, mg/m³ (% TMD)		Shock sensitivity (mm) [†]			
	Mean	Std. devi.	M _{50%}	L _{95%}	std. dev.	
Grade A (250-300 μm sieve cut)	1.622 (90)	0.002	3.360	3.622	0.12	
Grade A (125-150 μm sieve cut)	1.622 (90)	0.001	3.513	3.553-3.470	0.019	
Grade A (75–106 µm sieve cut)	1.620 (89.9)	0.002	3.551	3.609-3.495	0.027	
Grade E	1.623 (90.0)	0.014	3.785	4.115-3.455	0.15	
Ball milled	1.624 (90.1)	0.009	3.742	3.795-3.688	0.025	

RDX grade A = Albion Explosives Factory, H_2O wet supplied, dried before use; RDX grade E = Weapons Systems Research Laboratory (WSRL), H_2O wet supplied, dried before use, RDX ball-milled = nominal size 4, supplied H_2O wet by WSRL, ball-milling carried out on grade A RDX under inert solvent; $^{\dagger}All$ figures are in mm of brass shim

	RDX, TMD = vacuum ^{[179}		2 g (cm³, type	B, clas	s B,	, (2) = r	material l	oaded un	der
	Loading	Den	sity ((g/cm³)	%		sensitivity (DBG)			
	pressure (kpsi)	Avg.		s	TMD	Av	g.	g	s _m	N
	10.0	1.54	6	0.0035	85.8	3.	250	0.0049	0.0041	43
	18.3	1.61	8	0.0054	89.8	3.	762	0.0385	0.0160	44
	31	1.70	2	0.0084	94.5	4.	413	0.0783	0.0289	46 (2)
	38.2	1.71	7	0.0050	95.3	5.	073	0.1639	0.0555	45
	RDX expod	-	_	wire grac	%	L		Sensitivi	ty (DBG)	
	pressure (kpsi)	Avg		s	TMD	A	vg.	g	s _m	N
	2.0	1.1	88	0.0162	65.9	3	.569	0.0305	0.0204	23
	$\rho_0 = 1.53 \text{ g}$	/cc, 8!	5.0%	5 TMD, 50)% pres	sur	e (<i>P</i> _g) =	9.3 kbar	(extrapol	ated) ^[180]
Small-scale gap (booster) sensitivity	Values from ^[89] :									
test	Pressed		@ 93% TMD		TMD		@	95% TM	D	
	composit	ion	DB	g Luc (mi	ite gap ls)		DBg	Lucite (mils)	gap	
	RDX		4.1	1 390)		5.0	316		
	DBg = 30-	10 log	(tes	st gap/ re	f. gap)[8	39]				
Small-scale cook- off bomb (SSCB) test	Fast cook-cook-cook-cook-cook-cook-cook-cook	20 mg 6 s, su	, tes ırfac	t sample e <i>T</i> = 240	= 4 × p °C ^[82]	elle	ets of 1	6 mm × 1	.6 mm): t	ime to
	of pellet = event = 16	20 mg	, tes	t sample	= 4 × p					
Impact initiation	Critical unconfined charge thickness = 0.25 mm, critical pressure = 7000 kg/cm^2 , min. impact force = $1.3 \times 10^5 \text{ kg}^{[46]}$									
SBAT (small-scale autoignition test, Thiokol) [°C]	189 ^[81]									

_				-	r ~ ~ 1
٠.	C	ΔVn	losion	- /	10/1
,	9	CAP	lusiuii		· ~ i

255–260 (ignites or deflagrates only) $^{[19,29]}$, 280 (type B RDX) $^{[29]}$, 225–235 $^{[30]}$, fumes @ 290 but no detonation up to 360 $^{[80]}$, 260 (dec.) $^{[164,174]}$, 273 (Wood's metal bath, 40 mg) $^{[183]}$, 250 (extrapolated from data for 30 mg powdered sample placed in No. 8 blasting cap, Wood's metal bath) $^{[190]}$

Explosion T[°C]

 $260^{[27]}$, 210 (DTA/TG @ 6 °C/min)^[37], 360 (with dec.)^[159], 405 (0.1 sec, no cap used)^[164], 316 (1 sec)^[164,174], 240 (10 s)^[164,174], 235 (15 s)^[164], 405 (0.1 s)^[174], 260 (dec., cook-off)^[174]

Temperature and time data for type 2 RDX class 1, 30 mg powdered sample placed in No. 8 blasting cap, Wood's metal bath [190]:

T (°C)	Time (s)	T (°C)	Time (s)
297	1.02	280	1.66
293	1.19	277	1.94
287	1.07	276	1.99
284	1.66	256	3.87
284	1.58	248	5.42
283	1.54	247	6.04
282	1.62	245	6.43
281	1.37	244	6.29

5 s ignition T [°C]

260–270 (dec.) (USA value)^[30], 230–260 (dec.)(Russian value)^[30], 260^[102], $\frac{1}{2}$

295 (2 s ignition T)[134]

Ignition T[°C]

 $210^{[54]},\,213^{[84]},\,215$ (calorimetric) $^{[102]},\,215-230^{[102]},\,220$ (Wood's metal bath) $^{[103]},\,222^{[112]},\,316$ (1 sec, deflagrates or ignites) $^{[19]},\,405$ (0.1 sec,

deflagrates or ignites)[19], 290 (fumes)[19]

Detonating T [°C]

~235^[153], 260 (5 s)^[169]

Thermal stability

No dec. @ 65 °C after 1 year^[19], no dec. @ 85 °C after 1 year^[19], no dec. after 2 months @ 100 °C^[19], no dec. in 8 h @ 132 °C^[19], no acid and no explosion after 300 min @ 135 °C^[19]

No. moles of gas/mole RDX @ 120 °C: 0 moles/22 h, 0 moles/72 $h^{[40]}$ No. moles of gas/mole RDX @ 220 °C: 2.92 moles/22 h, 3.9 moles/72 $h^{[40]}$

No. moles of gas/mole RDX @ 320 °C: 3.84 moles/22 h, 3.9 moles/72 $\rm h^{[40]}$

 $\rm H_2O$ content in mass % using the Karl-Fischer method and mass loss on storage $^{[93]}$:

sample	Storage time @ 65.5 °C	K-F value (mass %)	Mass loss after storage
RDX	None	0.09	-
RDX	4 months	0.04	0.07

TGA/DTA (@ 1 K/min, 10 mg sample, in air, open Al pans): 145 (start of mass loss), 196 (3% mass loss), 198 (mpt.), 201 (start of exo dec.), 215 (exo peak max., DTA)^[93]

DSC (@ 10 °C/min, RDX after storing @ 65.5 °C for 16 weeks): 204.6 (endo peak max), 242.5 (exo peak max)^[93]

Level of gas release during 40 h thermostating of RDX, LAVA apparatus, level of gas normalized to standard conditions^[102]:

Mass of sample (g)	Level of gas release, V (cm ³ /g)				
	@ 100 °C	@ 120 °C	@ 150 °C		
5	0.7	0.9	2.5		

0.19% @ 120 °C, 48 h TG^[115]

HPLC analysis of remaining RDX (Holston lot 1) during 200 °C thermolysis, rel. amount to standard/minutes @ 200 °C $^{[147]}$: 1.00/0 min, 0.95/5, 0.80/25, 0.85/30, 0.60/180 $^{[147]}$

Storage for 10 months @ 85 °C causes no reduction in its stability or explosive properties $^{[159]}$, highly stable in long-term storage under ambient conditions $^{[159]}$, stored @ 85 °C for 10 months without change in stability $^{[169]}$, highly stable and can be stored for months @ 50 °C without dec. $^{[172]}$, two step mass loss: major mass loss @ 170–260 °C followed by 10% mass loss @ 240–290 °C, total mass loss ~100% (TGA, open pan) $^{[184]}$, single step mass loss: >95% mass loss @ 210–270 °C (TGA, pierced pan) $^{[184]}$

100 °C heat test [% mass loss] 75 °C Int. heat test [% mass loss]	0.04% mass loss in first 48 h ^[19, 64] , 0.00% mass loss in second 48 h ^[19, 64] , no explosions after 100 h ^[19, 64] $0.03\% \text{ mass loss in 48 h}^{[19, 164]}$
Evaporation T [°C]	~300 (single crystal, nanocalorimetric curve, thermal cycle @ 2,500 °C/s) ^[63]
LLNL reactivity test	0.02-0.025 cm ³ gas evolved ^[19]
Vacuum stability test [cm³/h]	0.9 cm³ gas evolved after 40 h @ 120 °C (5 g sample) ^[19] , 2.5 cm³ gas evolved after 40 h (5 g sample) @ 150 °C ^[19] , 0.1–0.3 mL/g gas evolved after 48 h @ 120 °C ^[20] , 3.95 cc gas evolved/5 g sample after 40 h @ 150 °C ^[27] , 0.03 cm³ @ 110 °C, 20 h, ρ = 1.80 g cm ^{-3[107, 113]} , 0.53 mL/5 g @ 120 °C, 48 h ^[115] , 0.9 cm³ gas evolved after 40 h @ 120 °C ^[174] @ 175 °C: 4.2 cm³ gas evolved after 48 h ^[53] , 15.1 cm³ after 7 days ^[53] @ 150 °C: 3.2 cm³ gas evolved after 48 h ^[53] , 3.5 cm³ after 21 days, 16.8 cm³ after 28 days ^[53] fresh RDX: V = 0.22 mL (120 °C, 40 h) ^[23] , aged RDX: V = 0.44 mL (120 °C, 40 h) ^[23] 0.2–0.6 mL/5 g (120 °C, 40 h) ^[26] , 0.7 cc/40 h @ 100 °C ^[164] , 0.9 cc/40 h @ 120 °C ^[164] , 2.5 cc/40 h @ 150 °C ^[164]
Vapor pressure [atm. @ °C]	$\begin{array}{l} 1.32\times10^{-6}\text{Torr}(@\ 66\ ^\circ\text{C}^{[52]},\ 3.24-3.5\times10^{-7}\text{mm}\text{Hg}(@\ 55.7\ ^\circ\text{C})^{[20]},\\ 7.14-8.6\times10^{-7}\text{mm}\text{Hg}(@\ 62.6\ ^\circ\text{C})^{[20]},\ 69.30-78.7\times10^{-7}\text{mm}\text{Hg}\\ (@\ 78.2\ ^\circ\text{C})^{[20]},\ 667-735\times10^{-7}\text{mm}\text{Hg}(@\ 97.7\ ^\circ\text{C})^{[20]},\ 4.03\times10^{-9}\text{Torr}\\ @\ 25\ ^\circ\text{C}^{[149]},\ 1.1\times10^{-9}\text{mm}\text{Hg}(@\ 97.7\ ^\circ\text{C})^{[20]},\ 4.03\times10^{-9}\text{Torr}\\ @\ 25\ ^\circ\text{C}^{[156]},\ 1.1\times10^{-9}\text{mm}\text{Hg}(@\ 97.7\ ^\circ\text{C})^{[20]},\ 4.03\times10^{-9}\text{Gericle}\\ 0.0084\text{ppb}_{\nu}(\text{equilibrium}\text{vapor}\text{pressure}(@\ 300\text{K},\ \text{this}\text{value}\text{may}\\ \text{be}\text{too}\text{low})^{[158]},\ 8.2\text{ppb}_{\nu}(\text{equilibrium}\text{vapor}\text{pressure}(@\ 333\text{K})^{[158]},\ 2.1\times10^3\text{ppb}_{\nu}(\text{equilibrium}\text{vapor}\text{pressure}(@\ 400\text{K})^{[158]},\ 4.0\times10^{-9}\text{mm}\\ \text{Hg}(@\ 25\ ^\circ\text{C}^{[163,168]},\ 4.03\times10^{-9}\text{mm}\text{Hg}(\text{solid})^{[168]},\ 1.00\times10^{-9}\text{mm}\text{Hg}\\ (\text{solid})^{[168]},\ 4.1\times10^{-9}\text{mm}\text{Hg}(\text{solid})^{[168]},\ 1.95\times10^{-9}\text{mm}\text{Hg}(\text{solid})^{[168]},\ 3.30\times10^{-9}\text{Torr}(@\ 25\ ^\circ\text{C}^{[188]},\ 2.76\times10^{-6}\text{Torr}(@\ 70\ ^\circ\text{C}^{[188]},\ 9.92\times10^{-5}\\ \text{Torr}(@\ 100\ ^\circ\text{C}^{[188]}) \end{array}$

Values from^[160]:

T (°C)	Vapor pressure (x 10 ⁷ Torr)	Wt. loss (g × 10 ³)	Time (s)	Area (cm²)
55.7	3.50	9.63	424,080	1.355
55.7	3.24	5.05	424,080	0.766
55.7	3.42	5.06	424,080	0.728
62.6	8.21	7.63	144,900	1.351
62.6	7.14	11.54	144,900	2.35
62.6	8.63	15.02	144,900	2.53
78.2	69.3	45.09	177,300	0.791
78.2	78.7	20.79	72,000	0.791
85.3	155	53.90	57,600	1.317
97.7	735	108.48	24,120	1.355
97.7	667	55.72	24,120	0.766
97.7	702	55.68	24,120	0.728

@ RT (25 °C): 6.0 ppt (v/v) (i.e., 0.006 ppb)^[55], 4.2×10^{-9} Torr @ 20 °C^[70]

Values in Pa $^{[154]}$: 2.84×10^{-12} (@ $15 \, ^{\circ}\text{C})^{[154]}$, 3.91×10^{-10} (@ $15 \, ^{\circ}\text{C})^{[154]}$, 7.02×10^{-11} (@ $25 \, ^{\circ}\text{C})^{[154]}$, 1.79×10^{-4} (@ $25 \, ^{\circ}\text{C})^{[154]}$, 2.42×10^{-9} (@ $25 \, ^{\circ}\text{C})^{[154]}$, 1.08×10^{-9} (@ $35 \, ^{\circ}\text{C})^{[154]}$, 1.32×10^{-8} (@ $35 \, ^{\circ}\text{C})^{[154]}$, 3.58×10^{-9} (@ $40 \, ^{\circ}\text{C})^{[154]}$, 1.10×10^{-8} (@ $45 \, ^{\circ}\text{C})^{[154]}$, 6.51×10^{-8} (@ $45 \, ^{\circ}\text{C})^{[154]}$, 8.77×10^{-8} (@ $55 \, ^{\circ}\text{C})^{[154]}$, 2.90×10^{-7} (@ $55 \, ^{\circ}\text{C})^{[154]}$, 5.74×10^{-7} (@ $65 \, ^{\circ}\text{C})^{[154]}$, 1.188×10^{-6} (@ $65 \, ^{\circ}\text{C})^{[154]}$, 3.20×10^{-6} (@ $75 \, ^{\circ}\text{C})^{[154]}$, 4.47×10^{-6} (@ $15 \, ^{\circ}\text{C})^{[154]}$, 1.55×10^{-5} (@ $85 \, ^{\circ}\text{C})^{[154]}$, 3.27×10^{-5} (@ $90 \, ^{\circ}\text{C})^{[154]}$, 2.85×10^{-5} (@ $90 \, ^{\circ}\text{C})^{[154]}$, 1.33×10^{-4} (@ $100 \, ^{\circ}\text{C})^{[154]}$, 9.05×10^{-5} (@ $100 \, ^{\circ}\text{C})^{[154]}$

Values in mm Hg^[154]: 3.5×10^{-7} (@ 55.7 °C)^[154], 3.24×10^{-7} (@ 55.7 °C)^[154], 3.42×10^{-7} (@ 55.7 °C)^[154], 8.21×10^{-7} (@ 62.6 °C)^[154], 7.14×10^{-7} (@ 62.6 °C)^[154], 8.63×10^{-7} (@ 62.6 °C)^[154], 69.3×10^{-7} (@ 78.2 °C)^[154], 7.735×10^{-7} (@ 78.2 °C)^[154], 7.735×10^{-7} (@ 97.7 °C)^[154], 7.735×10^{-7}

Burn rate [mm/s]

Burning characteristics^[104]:

Parameter	Values (<i>Zenin</i>) cited in ^[104]	Values (<i>DeLuca</i>) cited in ^[104]
$\rho [\mathrm{g} \mathrm{cm}^{-3}]$	1.67	1.67
u (linear burning rate) [mm/s]	0.5	0.48
m (mass burning rate) [kg/m²s]	0.83	0.80
T_0 (initial T) [K]	293	300
$T_{\rm s}$ (surface T) [K]	593	593
Q _s (heat absorbed/evolved in condensed phase) [kJ/kg]	-0.41	-0.31

 $Q_{\rm m}$ (sum of latent heat of fusion and enthalpies of polymorphic transformations of the burning surface) = 161 kJ/kg^[104] Q (enthalpy of condensed phase chemical reactions taken with the inverse sign) = 0.8 MJ/kg^[104]

burn-rate characteristics^[105]: pressure interval = 0.1–0.2 MPa, pressure exponent = 0.825, burn rate @ 10 MPa = 17.8 mm/s, strand ρ = 1.75 g cm⁻³, adiabatic flame T@ 10 MPa = 3318 K^[105]

burns with bright white flame in open air leaving no residue but explodes on rapid $heating^{[172]}$

burning rate of RDX, Perspex tube assembly, throat diameter = 4.3 mm, gauze support, 6 mm bore diameter of Perspex tube, measured using blank nozzle with sealed lower end, *standard deviation of the mean in parenthesis^[173]:

Explosive	Method	Loading density (g cm ⁻³)	Pressure (atm.)	Apparent mass burning rate*
RDX approx. 5 μ	Paper tube	1.07	52.0	1.66 (0.8)
RDX approx.	Paper tube	1.16	52.0	33.3 (3.9)

Mass burning rates^[178]:

m, g cm ⁻² s ⁻¹					
1 atm 100 atm 200 atm 400 atm 1000 atm					
0.061	3.06	5.22	9.54	22.5	

Burn rate and equilibrium combustion temperature^[178]: $T_e = 3510 \text{ K}^{[178]}$, $m = 3.06 \text{ g cm}^{-2} \text{ s}^{-1} (100 \text{ atm})^{[178]}$

Dependence of burning rate on pressure, RDX, $\rho_{\text{max}} = 1.80 \text{ g/cm}^{3[178]}$:

$\delta = \rho/\rho_{\text{max}}$		icients in fom m^{-2} s ⁻¹) = a	pressure (atm.)	
	а	b	v	
~1.0	0.9	0.0216	1.0	100-1000
	-	0.072	0.82	10-1000

Dependence of mass burning rate on the relative density of the charge^[178]:

p (atm.)				т	(δ)			
1	δ	0.38	0.46	0.47	0.56	0.58	0.635	0.645
	m, g cm ⁻² s ⁻¹	0.040	0.045	0.045	0.047	0.047	0.048	0.048

0.38 (@ 1 atm., SMATCH/FTIR spectroscopy) $^{[192]}$, 0.38 (@ 1 atm., strand burner) $^{[192]}$

Pressure and temperature sensitivities of RDX burning rate @ 20 °C[135]:

p (MPa)	0.5	1	2	5	10
п	0.78	0.80	0.81	0.78	0.72
<i>b</i> •10², 1/K	0.20	0.22	0.19	0.15	0.13

Solubility [g/mL]

55 mg/L H₂O @ 25 °C^[66], 42 mg/L H₂O @ 20 °C^[70], almost insoluble in H₂O^[79, 159], good solubility in acetone^[79], insoluble in H₂O, EtOH, Et₂O, ethyl acetate, petroleum ether, CCl₄^[80], very slightly soluble in hot benzene^[80], soluble one part per 135 parts xylene^[80], readily soluble in hot aniline, phenol, ethylbenzoate, nitrobenzene^[80], moderately soluble in hot acetone (one part per eight parts acetone)^[80], aqueous solubility = 60 mg/L @ 25 °C^[149], moderately soluble in hot acetone^[153], readily soluble in hot phenol^[153], 0.060 g/L in H₂O @ 25 °C^[155], 59.7 mg/L in H₂O @ 25 °C^[156], practically insoluble in MeOH, EtOH, Et₂O, benzene, toluene, CCl₄ and CHCl₃^[159], readily soluble in acetone, ethyl acetate, cyclohexanone, methyl ethyl ketone, aniline and phenol^[159], 56.3 mg/L in H₂O @ 25 °C^[163], 6.0 × 10⁻² mg/mL in H₂O @ 25 °C^[188]

Can be recryst. from: cyclohexanone, acetone, γ -butyrolactone, cyclohexanone/H $_2O^{[88]}$; dec. after several days @ 50 °C of RDX in cyclohexanone or cyclohexanone/H $_2O^{[88]}$

Approximate solubility of RDX in DMF using different methods @ different temperatures (g (RDX)/g (DMF)) $^{[145]}$: 0.35 (HPLC @ 22 °C), 0.40 (refractometry @ 22 °C), 0.45 (HPLC @ 40 °C), 0.50 (density method @ 40 °C), 0.55 (refractometry @ 40 °C), 0.60 (HPLC @ 60 °C), 0.65 (density method @ 60 °C), 0.70 (spectroscopy @ 60 °C), 0.75 (refractometry @ 60 °C), 0.75 (HPLC @ 80 °C), 0.78 (gravimetric @ 80 °C), 0.85 (density method @ 80 °C), 0.90 (spectroscopy @ 80 °C), 0.95 (refractometry @ 80 °C) $^{[145]}$

Approximate solubility of RDX in PC (propylene carbonate) using different methods @ different temperatures (g (RDX)/g (PC))^[145]: 0.075 (gravimetric @ 20 °C), 0.080 (density method @ 20 °C), 0.085 (gravimetric @ 40 °C), 0.10 (HPLC @ 40 °C), 1.1 (spectroscopy @ 40 °C), 0.16 (gravimetric @ 60 °C), 0.70 (HPLC @ 60 °C), 0.175 (spectroscopy @ 60 °C), 0.230 (gravimetric @ 80 °C), 0.275 (density method @ 80 °C), 0.275 (spectroscopy @ 80 °C), 0.285 (HPLC @ 80 °C), 0.275 (refractometry @ 80 °C)^[145], 50 mg/l in $H_2O^{[168]}$, 42 mg/l in $H_2O^{[168]}$, 42.3 ± 0.6 mg/l in H_2O @ 20 °C ^[168], 59.9 ± 1.2 mg/l in H_2O @ 25 ± 0.2 °C ^[168], 59.9 ± 0.6 mg/l in H_2O @ 26.5 °C ^[168], 75.7 ± 1.1 mg/l in H_2O @ 30 °C ^[168], 60 mg/l in $H_2O^{[168]}$, 42.2 mg/l in H_2O @ 20 °C ^[168], 42.3 mg/l in H_2O @ 20 °C ^[168]

Solubility in water, mg/L^[154]: 26.63 (@ 15 °C)^[154], 23.32 (@ 15 °C)^[154], 29.67 (@ 15 °C)^[154], 30.47 (@ 25 °C)^[154], 40.94 (@ 25 °C)^[154], 59.7 (@ 25 °C)^[154], 56.35 (@ 25 °C)^[154], 33.4 (@ 35 °C)^[154], 55.01 (@ 35 °C)^[154], 34.9 (@ 40 °C)^[154], 61.57 (@ 40 °C)^[154], 36.85 (@ 45 °C)^[154], 41.21 (@ 55 °C)^[154], 46.62 (@ 65 °C)^[154], 53.24 (@ 75 °C)^[154], 61.26 (@ 85 °C)^[154], 65.88 (@ 90 °C)^[154], 76.49 (@ 100 °C)^[154]

Solubility of RDX in TNT^[19]:

T (°C)	g RDX/100 g TNT
81	4.5
85	4.7
90	5.0
95	5.8
100	6.5
105	7.3
110	8.2

Crude RDX cab be recryst. from acetone or cyclohexanone after washing crude product with water^[20]

Approximate values of RDX solubility, divergent values exist in the literature^[19]:

Solvent			g RDX	(/100 g s	olvent		
	0 °C	@ 20 °C	@ 30 ℃	@ 40°C	@ 60°C	@ 80 °C	@ 100°C
Acetic acid (50%)	-	-	0.12	-	0.50	1.25	-
Acetic acid (100%)	-	-	0.41	-	1.35	2.60	-
Acetic anhydride	-	4.0	4.80	6.0	9.30	_	_
Acetone	4.2	6.8	8.40	10.3	15.3	-	-
Acetonitrile	-	-	12.0	16.2	24.6	33.0	-
Alcohol, ethyl	0.04	0.10	-	0.24	0.60	1.20	-
Benzene	-	0.05	0.06	0.09	0.20	0.40	-
CCl ₄	0.0013	0.0022	0.0034	0.007	-	-	-
Chlorobenzene	0.20	0.33	0.44	0.56	-	-	-
CHCl ₃	-	0.015	-	-	-	-	-
Cyclohexanone	-	12.8 (@ 25°C)	-	_	-	-	25 (@ 97 °C)
Cyclopentanone	-	-	11.5 (@ 28°C)	-	-	-	37 (@ 90 °C)
DMF	-	25.5	27.3	29.1	33.3	37.7	42.6
Ether, diethyl	-	0.055	0.075	-	-	-	-
Beta-ethoxyethyl acetate	-	1.48	1.55	1.9	3.4	-	_
Isoamyl alcohol	-	0.026	0.04	0.06	0.21	0.50	1.33
Methanol	-	0.235	0.325	0.48	1.06	-	-
Methyl acetate	-	2.95	3.30	4.10	6.05 (@ 52°C)	-	-
Toluene	-	0.02	0.025	0.05	0.125	0.295	0.64
Trichloroethylene	-	0.20	0.21	0.22	0.23 (@ 52 °C)	-	-
TNT	-	-	-	-	-	4.4	7.0
Water	-	0.005	-	0.25 (@ 50°C)	-	-	0.28

Solubility of RDX (g/100 g solvent) after 5 min stirring $^{[170]}$:

Solvent	25 °C	40 °C	60 °C	80 °C	98 °C
DMSO	41	51	66	87	113
DMF	37	45	58	76	96
N-Methylpyrrolidone	40	47	58	72	84
Butyrolactone	14		28	41	61
Dimethylacetamide	33				
Acetone	8.2	12	17		
Cyclohexanone	7.7		15	23	33
Acetonitrile	5.5	8.8	14	26	
Cyclopentanone					38
Hexamethylphosphoramide	16				45
Aniline	1.9				

Solubilities in binary solvent mixtures @ 25 °C (g RDX/100 g solvent) after 5 min stirring $^{[170]}$:

Solvent	g RDX/100 g solvent
DMSO	41
NMP	40
NMP 79.2% DMSO 20.8%	41
DMF	37
DMF 71.7% DMSO 28.3%	39
Butyrolactone	14

Solubility of RDX in DMF (g RDX/100 g solvent) after 5 min stirring $^{[170]}$:

@ 0 °C	@ 25 °C	@ 60 °C	@ 80 °C	@ 98 °C
27	37	58	76	96

Comparison of solubilities (g/100 g) after 5 min and 30 min stirring @ 25 ${}^{\circ}C^{[170]}$:

Solvent	After 5 min stirring	After 30 min stirring
DMSO	41	41
DMF	37	36
Acetonitrile	5.5	5.5

Poorly soluble in water, $\rm Et_2O$, $\rm EtOH$, $\rm CHCl_3$ and dil. nitric acid^[172], readily soluble in acetone and conc. nitric acid^[172]

Solubility data from^[172]:

Solvent	T (°C)	Solubility (g/100 g solvent)
Water	15	0.01
	100	0.15
Acetone	20	7.413
	53	17.50
EtOH	20	0.104
MeOH	21	0.187
Benzene	21	0.015
Toluene	18	0.032
Chloroform	20	0.008
Anhydrous ether	20	0.038
CS ₂ and CCl ₄	18	does not dissolve
Cyclohexane	25	12.7
	97	27.0
Nitrobenzene	25	1.5
	97	12.4

Data from^[172]:

HNO ₃ concentration (%)	Hexogen solubility (%)
93	12.5
80	2.2
70	0.44
60	Traces

Data from^[172]:

T (°C)	30	40	60	80	95	106	135	140	154
Solubility in aniline (%)	0.40		2.55	3.65	4.20		4.74		5.12
Solubility in mononitrotoluene (%)		1.93	3.81		9.03	12.22	27.4	29.43	

Solubilities @ 25 °C and 100 °C[172]:

T (°C)	Solvent							
	Cellosolve	Methyl- cellosolve	Carbitol	Methyl- carbitol	Acetate- carbitol	Butyl- carbitol	DMF	
25	1.6	2.8	2.6	3.1	1.5	1.6	31.9	
100	9.3	13.3	10.0	13.5	7.9	6.4	71.1	

 $56.35\times 10^{-3}~g/L~in~H_2O^{[193]},~14.2\times 10^{-3}~g/L~in~H_2O~@~298.15~K~(est.,~Klopman)^{[193]},~12.6\times 10^{-3}~g/L~in~H_2O~@~298.15~K~(est.,~COSMOtherm)^{[193]}$

g RDX/100 g solvent @ various temperatures, data from^[20]:

Solvent	@ 20 °C	@ 40 °C	@ 60 °C	
99.6% acetic acid	0.46	0.56	1.22	
71.0% acetic acid	0.22	0.37	0.74	
Acetone	6.81	10.34	-	
Isoamyl alcohol	0.026	0.060	0.210	
Benzene	0.045	0.085	0.195	
Chlorobenzene	0.33	0.554	-	
Cyclohexanone	4.94	9.20	13.9	
DMF	-	41.5	60.6	
EtOH	0.12	0.24	0.58	
Methyl acetate	2.9	4.1	-	
Methylcyclohexanone	6.81	10.34	-	
Methyl ethyl ketone	3.23	-	-	
Toluene	0.020	0.050	0.125	
Trichloroethylene	0.20	0.24	_	
Water	0.005	0.0127	0.03	

Hygroscopicity	Nonhygroscopic ^[153, 172] , non-hygroscopic (pure compound) ^[159] , 0.02% @ 25 °C with 100% RH ^[164] , non-hygroscopic @ 30 °C and 90% RH ^[169]						
Photosensitivity	Aqueous RDX sol system as detern				UV irradiation in conti	nuous flow	
	UV exposure time (h)	LC RD	X (ppm)	рН	TLC detectable products		
	0	45.5		5.8	RDX		
	2	0		3.8	0		
	4	0		3.6	0		
	6	0		3.5	0		
	24	0		3.4	0		
	UV - 0.1% H ₂ O ₂ s	static sy	stem treat	ment	t of aqueous RDX soluti	ons ^[72] :	
	UV exposure tir	ne (h)	ppm H ₂ ()2	TOC analyzer		
	0		1000		12.8		
	0.5 > 5, < 100		2.37				
	2.5 ~ 3		-				
	3.0		0		-		
	RDX is readily degraded photochemically ^[149] , aqueous solns. of RDX are photolyzed slowly by sunlight ^[149] , phototransformation of RDX is the primary physical mechanism that degrades RDX in aqueous solns. ^[156] , phototransformation in soil is not significant ^[156]					is the	
Radiation sensitivity	Does not show extremely high resistance, but shows moderate resistance after exposure to γ-rays with intensity of 3 × 10 ⁴ Roentgens/h administering doses of 20 megaroentgens with respect to chemical stability and shows quite high chemical stability if the doses are <5 megaroentgens (cobalt-60 source) ^[159] , unaffected by solar radiation ^[172] RDX irradiated at ambient T using 0.41 MeV ¹⁹⁸ ₇₉ Au γ-rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose ^[199] :						
	gamma energy absorbed, 10 ⁷ R gas evolved (mL/g) @ STP						
	1	1 2			0.2		
	2				5	_	
	3			1		_	
	4			1.5	j		

Critical doses and T to initiate RDX by pulsed high-energy electrons, a = estimated 50% initiation dose^[199]:

Explosive	Critical d	lose (J/g)	ignition T (°C)		
	Calcd. Exptl. ^A		Calcd.	Exptl.	
RDX	1.61	>167	300	229-260	

Data from^[201]:

Exposure	Total	Vacuum s	Vacuum stability test		
rate (R/h) dose (R)	100 °C (cc/g/40 h)	200 °C (cc/2 g/2 h)			
_	control	0.09			
6.4 × 10 ⁵	1.0 × 10 ⁷	0.91	Deflagrated (10 min)		
	9.0 × 10 ⁷	11 + (16 h)	Deflagrated (12 min)		
	1.0 × 10 ⁹	Material stuck in vial			

DTA for irradiated RDX @ 20 $^{\circ}$ C/min^[201]:

Total	Endotherms		Exotherms				Comments		
dose (R)	19	st	2n	2nd		1st		ıd	
	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	
0	180	193		197	204	250			Decomp. dip
1.0 × 10 ⁷	180	194			206	252			
9.0 × 10 ⁷	175	184	190	194	205	251			Decomp. dip
1.06 × 10 ⁹	170	190			200	258			

TGA for irradiated RDX^[201]:

Total dose (R)	Heating rate (°C/ min)	Weight (mg)	Start of dec (°C)	10% weight loss <i>T</i> (°C)	Total weight loss (%)	Remarks
0	20	8.9	190	230	14 @ 240 °C	Deflagrated @ 240 °C
1.0 × 10 ⁷	20	8.4	160	224	23 @ 240 °C	Deflagrated @ 240 °C
9.0 × 10 ⁷	20	8.6	38	63	40 @ 240 °C	Deflagrated @ 240 °C

Effect of gamma radiation on the mpt. and color^[201]:

Total dose (R)	Mpt. (°C)	Color
0	197.5	White
1.0 × 10 ⁷	198	White
9.0 × 10 ⁷	203	White
1.06 × 10 ⁹	191 (Dec.)	White paste

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass) $^{[201]}$:

Total Co ⁶⁰ gamma dose (R)	Х̄ mean (in)	σ std. dev. (in)
0	14.75	3.86
1.0×10^7	14.30	0.63
9.0 × 10 ⁷	11.50	0.76

Effect of gamma radiation on explosion T (5 s explosion T in °C) and activation energy (kcal/mol)^[201]:

Total dose (R)	5 s explosion T (°C)	Apparent activation energy (kcal/mol)
0	261	14.15
9.0 × 10 ⁷	249	14.61

Effect of gamma radiation on rates of detonation^[201]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/sec)	Detonation pressure (kbar)		
0	1.69	-	8,380	297		
1.0 × 10 ⁷	1.70	1.68	8,360	294		
1.0 × 10 ⁸	1.70	Very fragile	6,935	-		
1.0 × 10 ⁹	Pellets crumbled					

Data obtained after exposure to gamma radiation^[174]:

Weight of sample (g)	5			
Vol. of gas produced (mL/g) in following times (days)				
10	0.16			
	0.10			
20	+			
30	0.87			
40	1.49			
50	-			
90	_			
Total irradiation time (days)	44			
Purity of sample by chemical analysis (%)				
Original material	-			
Irradiated material	_			
Melting points, corrected (°C)				
Original material	204.8			
Irradiated material	204.8			
IS (P.A. apparatus) (in)				
Original material	9			
Irradiated material	8			
IS (B.M. apparatus, 2 kg mass) (cm)				
Original material	40			
Irradiated material	25			

	1				
	Sand test, 200 g bomb, g of sand crushed when sample was ignited by black powder fuse only				
	Original material	_			
	Irradiated material				
	Sand test, 200 g bomb, g of sand crushed when sample was initiated by 0.30 g LA				
	Original material	61.7			
	Irradiated material	62.0			
Compatibility	Slowly hydrolyzed by boiling dil. sulfuric acid or sodium h slow dec. in conc. sulfuric acid if allowed to stand ^[19] , no corrold dil. $HCl^{[19]}$, dec. on heating RDX with $Ca(OH)_2$ (equal @ 60 °C for 4 h ^[19] , forms unstable compounds if mixed wi metal oxides such as those of Cu or $Fe^{[19]}$, no corrosion of dry RDX ^[19] , slight corrosion of Zn and Ni if 0.5% moisture dry or moist RDX causes very slight corrosion of Cu, brass or $Cd^{[19]}$, dec. after several days @ 50 °C of RDX in cycloheccyclohexanone/ $H_2O^{[88]}$ VST @ 110 °C, 20 h: RDX = 0.03 cm³ (ρ = 1.80 g cm ⁻³)[107], (60/40) = 0.13 cm³ (ρ = 1.72 g cm ⁻³ , 99.0% TMD)[107, 113], (60/40) = 0.10 cm³ (ρ = 1.78 g cm ⁻³ , 98.0% TMD)[107, 113] Not affected by moisture[153], slightly reacts with copperpsteel[153], mixtures of RDX with copper oxides or iron oxide @ T>212 °C[153], doesn't react with common metals or nitid dry RDX causes no corrosion of metals, in the presence of slight corrosion of metals occurs[159], doesn't react with Al steel[169], slightly reacts with Cu, brass, mild steel and Cdl slightly with Ni and Zn when damp[169], doesn't react with reacts with conc. sulfuric acid[172], hydrolyzes in alkali dis aqueous acetone[172]	lec. by hal parts) th heavy Ni or Zn present ^l , mild stexanone RDX/TN RDX/TNA clated es may ig ic acid [1] imoistur l or stain 169], reac dil. acid solved ir	ot / with 19], eel or T AZ gnite 533], e only less tts [1722],		

readily, D = reacts to form sensitive materials, H = heavy corrosion of metals, VS = very slight corrosion of metals, S = slight corrosion of metals,

 $N = \text{no corrosion}^{[174]}$:

	Material		Compatibility		Material	Compatibility		
	Mg		A, N, V	S	Cu plated steel	B, VS, VS		
	Al		Α		Ni plated steel	A, N, S		
	Zn				Zn plated steel	A, N, S		
	Fe		A		Sn plated steel	А		
	Steel		A, VS, S		Magnesium aluminum			
	Sn		Α		Monel metal			
	Cd				Brass	A, S, S		
	Cu		A, S, S		Bronze	А		
	Ni		A		18-8 stainless steel	A, N		
	Pb		Α		Т	N		
	Cd plate	d steel	VS, VS		Silver	N		
Heat of sublimation [kJ/mol]					nation) ^[20] , 128 ^[71] , g (specific heat of			
[kJ/mol] Activation energy	heat of sul 130 kJ/mo	blimatio ol ^[184]	n) ^[160] , 1	40.0 cal/		sublimation) ^[160] ,		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ	heat of sul 130 kJ/mc 48 (<i>T</i> inter	blimatio bl ^[184] rval 210- 2.53 × 10	n) ^[160] , 1 -250 °C	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C	g (specific heat of	sublimation) ^[160] , thod) ^[103]		
[kJ/mol] Activation energy for dec. [kcal/mol]	heat of sul 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻	blimatio ol ^[184] rval 210- 2.53 × 10	n) ^[160] , 1 –250 °C 0 ⁻⁴ cal ci inn) ^[125] ,	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10	g (specific heat of sing the ASTM med of a RT (Rogers)[12]	sublimation) ^[160] , thod) ^[103] $ ^{[5]}, 7 \times 10^{-4} $ 1[125]		
Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/	heat of sul 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10	blimatio $\text{pl}^{[184]}$ val 210- 2.53 × 10 -1 °C ⁻¹ (Zi -4 @ 1.20	-250 °C, -250 °C, 0 ⁻⁴ cal ci inn) ^[125] , 63 g cm	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10 -3[164], 6.9	g (specific heat of sing the ASTM met $^{-1}$ @ RT ($Rogers$) 12 $^{-4}$ cal cm $^{-1}$ s $^{-1}$ °C $^{-1}$	sublimation) ^[160] , thod) ^[103] ^[5] , 7 × 10 ⁻⁴ _{[1[25]} g cm ^{-3[164]}		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/sec/cm/°C]	heat of sui 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10	blimatio $pl^{[184]}$ val 210- 2.53 × 10 2.53 × 10 1 ° 0C ⁻¹ (Zi -4 @ 1.20	-250 °C. 0 ⁻⁴ cal cu inn) ^[125] , 63 g cm	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10 -3[164], 6.9	g (specific heat of sing the ASTM met $^{-1}$ @ RT (<i>Rogers</i>) 12 $^{0-4}$ cal cm $^{-1}$ s $^{-1}$ °C $^{-1}$	sublimation) ^[160] , thod) ^[103] ^[5] , 7 × 10 ⁻⁴ _{[1[25]} g cm ^{-3[164]}		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/sec/cm/°C]	heat of sul 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10 ⁻ 0.26 × 10 ⁻ 0.30 kcal/	blimatio $pl^{[184]}$ val 210- 2.53 × 10 2.53 × 10 1 ° 0C ⁻¹ (Zi -4 @ 1.20	-250 °C. -250 °C. 0 ⁻⁴ cal cr inn) ^[125] , 63 g cm °C ⁻¹ (@	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10 -3[164], 6.9	g (specific heat of sing the ASTM met $^{-1}$ @ RT (<i>Rogers</i>) 12 $^{0-4}$ cal cm $^{-1}$ s $^{-1}$ °C $^{-1}$	sublimation) ^[160] , thod) ^[103] ^[5] , 7 × 10 ⁻⁴ _{[1[25]} g cm ^{-3[164]}		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/sec/cm/°C]	heat of sui 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10 ⁻¹ 0.26 × 10 ⁻¹ 0.30 kcal/	blimatio col ^[184] rval 210- 2.53 × 10 2.53 × 10 -1 °C ⁻¹ (Zi -4 @ 1.20 cal/g°C Specifi	-250 °C. -250 °C. 0 ⁻⁴ cal cr inn) ^[125] , 63 g cm °C ⁻¹ (@	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10 -3[164], 6.9	g (specific heat of sing the ASTM met of a RT (Rogers) ¹¹² O ⁻⁴ cal cm ⁻¹ s ⁻¹ °C ⁻ 8 × 10 ⁻⁴ @ 1.533	sublimation) ^[160] , thod) ^[103] ^[5] , 7 × 10 ⁻⁴ _{[1[25]} g cm ^{-3[164]}		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/sec/cm/°C]	heat of sul 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10 ⁻ 0.26 × 10 ⁻ 0.30 kcal/ Values in c	blimatio $color blimatio color blimatic color blim$	-250 °C. -250 °C. 0 ⁻⁴ cal cr inn) ^[125] , 63 g cm °C ⁻¹ (@	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C' 6.22 × 10 -3[164], 6.9 0 RT) ^[125] , C	g (specific heat of sing the ASTM met of @ RT (Rogers) ^[12] 0-4 cal cm ⁻¹ s ⁻¹ °C ⁻¹ 8 × 10 ⁻⁴ @ 1.533 0.24 × 10 ⁻⁴ cal g ⁻¹ Specific heat (cal/g/°C)	sublimation) ^[160] , thod) ^[103] ^[5] , 7 × 10 ⁻⁴ _{[1[25]} g cm ^{-3[164]}		
[kJ/mol] Activation energy for dec. [kcal/mol] Heat conductivity, λ [W/(mK)] Thermal conductivity [cal/sec/cm/°C]	heat of sui 130 kJ/mc 48 (<i>T</i> inter 0.25 ^[104] , 2 cal cm ⁻¹ s ⁻ 6.91 × 10 0.26 × 10 0.30 kcal/ Values in o	blimatio col ^[184] rval 210- 2.53 × 10 2.53 × 10 1 ° ° ° ° (Zi -4 ° ° ° ° (Zi -4 ° ° ° ° ° ° (Zi -4 ° ° ° ° ° ° (Zi -4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	-250 °C. -250 °C. 0 ⁻⁴ cal cr inn) ^[125] , 63 g cm °C ⁻¹ (@	40.0 cal/ , calcd. us m ⁻¹ s ⁻¹ °C 6.22 × 10 -3[164], 6.9 PRT)[125], (C	g (specific heat of sing the ASTM methods) $^{-1}$ @ RT ($Rogers$) 12 $^{-4}$ cal cm $^{-1}$ s $^{-1}$ °C $^{-1}$ 8 × 10 $^{-4}$ @ 1.533 $^{-1}$ 0.24 × 10 $^{-4}$ cal g $^{-1}$ Specific heat (cal/g/°C) 0.406	sublimation) ^[160] , thod) ^[103] 2.5], 7 × 10 ⁻⁴ 1[125] g cm ^{-3[164]}		

	0 1/ (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
Latent heat of fusion [cal g ⁻¹]	35.5 cal/g (latent heat of melting) ^[20] , 38.4 ^[125]
Rifle bullet impact tests	More sensitive than Tetryl ^[159] , 100% explosions in trials ^[164, 174]
Bourdon manometer [mL/g]	0.22 @ 120 °C, 48 h ^[115]
Pressing loads required to form pellets of 90% TMD	250–300 μm sieve cut requires 1260 kg (76.6 MPa) ^[126] , 125–150 μm sieve cut requires 1,520 kg (92.4 MPa) ^[126] , 75–106 μm sieve cut requires 1,700 kg (103.3 MPa) ^[126] , grade E RDX requires 1000 kg (60.8 MPa) ^[126] , ball-milled requires 350 kg (21.3 MPa) ^[126] (<i>RDX grade E = Weapons Systems Research Laboratory (WSRL)</i> , H_2O wet supplied, dried before use, <i>RDX ball-milled = nominal size 4</i> , supplied H_2O wet by WSRL) ^[126]
Gurney energy [k]/kg]	3,734 (@ $1.650 \mathrm{g \ cm^{-3}}$, phlegmatized RDX (RDX/(CH ₂) _n 95/5), cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[137]
Gurney velocity [m/s]	2,733 (@ $1.650 \mathrm{g \ cm^{-3}}$, phlegmatized RDX (RDX/(CH ₂) _n 95/5), cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[137]
ΔH _{melting} [J g ⁻¹]	65.9 (DSC, endo peak, inert atmosphere, pierced lid) $^{[144]}$, 140.5 (DSC, endo peak, inert atmosphere, open pan) $^{[144]}$, 36 kJ/mol $^{[184]}$, 39.52 kJ/mol $^{[193]}$, 37.66 kJ/mol $^{[193]}$
Heat of fusion [cal/g]	38.26 ^[149] , 32.86 ^[149]
Δ <i>H</i> _{dec} [J g ⁻¹]	988 (DSC, exo peak, inert atmosphere, pierced lid) ^[144] , 543 (DSC, exo peak, inert atmosphere, open pan) ^[144] , 860 cal/g (est.) ^[171] , 2,250 (DSC, closed pan) ^[184]
ΔH _{vap} [kcal/mol]	35.02 (@ 25 °C) $^{[154]}$, 94 kJ/mol (est. based on heats of sublimation and fusion) $^{[184]}$, 127.1 kJ/mol $^{[188]}$
Heat of crystallization [kcal/mol]	21.3 ^[172]
Diffusion coefficient (air) [cm ² /s]	$0.074 \text{ (air)}^{[149, 168]}, 0.0931 \text{ (air)}^{[168]}, 7.15 \times 10^{-6} \text{ (water)}^{[149, 168]}, \\ 8.87 \times 10^{-6} \text{ (water)}^{[168]}$
Log K _{ow}	$\begin{array}{l} 0.87^{[149,156,188,193]}, 0.81^{[149]}, 0.86^{[149]}, 0.13 \ (@\ 15\ ^{\circ}C)^{[154]}, 0.917 \\ (@\ 15\ ^{\circ}C)^{[154]}, 0.39 \ (@\ 25\ ^{\circ}C)^{[154]}, 0.89 \ (@\ 25\ ^{\circ}C)^{[154]}, 0.87 \ (@\ 25\ ^{\circ}C)^{[154]}, \\ 0.64 \ (@\ 35\ ^{\circ}C)^{[154]}, 0.864 \ (@\ 35\ ^{\circ}C)^{[154]}, 0.75 \ (@\ 40\ ^{\circ}C)^{[154]}, 0.855 \\ (@\ 40\ ^{\circ}C)^{[154]}, 0.85 \ (@\ 45\ ^{\circ}C)^{[154]}, 1.03 \ (@\ 55\ ^{\circ}C)^{[154]}, 1.19 \ (@\ 65\ ^{\circ}C)^{[154]}, \\ 1.33 \ (@\ 75\ ^{\circ}C)^{[154]}, 1.44 \ (@\ 85\ ^{\circ}C)^{[154]}, 1.49 \ (@\ 90\ ^{\circ}C)^{[154]}, 1.58 \\ (@\ 100\ ^{\circ}C)^{[154]}, 0.87 \ (@\ 25\ ^{\circ}C)^{[155]}, 0.81-0.87 \ (@\ 25\ ^{\circ}C)^{[155]}, 0.90^{[163,193]}, \\ K_{ow} = 8.7\ \pm 0.28\ l/kg^{[168]}, K_{ow} = 7.2\ l/kg^{[168]}, K_{ow} = 8.1\ l/kg^{[168]}, K_{ow} = 8.6\ l/kg^{[168]}, K_{ow} = 7.41^{[188]}, 0.85 \\ (@\ 298.15\ K,\ Broto\ method)^{[193]}, 1.04 \ (@\ 298.15\ K,\ Ghose\ method)^{[193]}, \\ 0.90 \ (@\ 298.15\ K,\ COSMOtherm\ method)^{[193]} \end{array}$

Log K _{oc}	$ 2.00^{[149, 188]}, 1.80^{[156]}, K_{oc} = 2.00 \text{ L/kg}^{[168]}, K_{oc} = 2.13 \text{ L/kg}^{[168]}, K_{oc} = 0.89, \\ 1.87, 2.43 \text{ l/kg}^{[168]}, K_{oc} = 1.62, 2.10 \text{ L/kg}^{[168]}, K_{oc} = 420 \text{ L/kg}^{[168]}, \\ K_{oc} = 0.8 - 4.2 \text{ L/kg}^{[168]}, K_{oc} = 100^{[188]} $						
Biodegradability	Strongly resists biodegradation [149], RDX migrates slowly in soils [149], biodegrades very slowly under aerobic conditions [156], biodegradability soil (aerobic) = negligible [168], biodegradability soil (anaerobic) = significant co-metabolism [168]						
Half-life in soil [days]	13,140 ^[168] ,	13,140 ^[168] , 2.52 × 10 ^{6[168]} , 0.17-0.25 ^[168] , 323-3900 ^[168]					
Half-life in water [days]	6.62 ^[168] , 85	$6.62^{[168]}$, $85,045^{[168]}$, $7^{[168]}$, 3.21 @ 250 mV $^{[168]}$, $9 \times 10^{6[168]}$					
Fracture surface energy [J m ⁻²]	0.11 and 0.0	0.11 and 0.07 for two cleavage planes ^[161]					
Hardness	24.1 kg mm ⁻² (Vickers) ^[161] , 2.5 (Moh's scale, scratch hardness) ^[19] , 2.5 (Moh's) ^[164] , 24.1 \pm 0.8 kg mm ⁻² (single crystals, ~5 mm diameter, @ 20 °C, Vicker's hardness) ^[167]						
Small-scale explosivity device	British.303	cartridge, 2 g	explosive, RF	P-3 EBW ^[162] :			
(SSED)	Charge depth (mm) density cartridge remaining (g mL ⁻¹) (g) (g) (%) 30 1.07 11.3428 1.4285 12.6						
	30	1.07	11.208	1.3939	12.4		
	30	1.07	11.1956	1.1714	10.5		
Plate cutting test	Brisance = 125% TNT ^[19]						
Fragmentation test	Brisance = 1	Brisance = 141% TNT (51 g RDX, ρ = 1.50 g cm ⁻³ , 40 mm shell) ^[19]					
82.2 °C KI test	60 min ^[19]	60 min ^[19]					
Abel test	Withstands > 60 h @ 60 °C ^[172]						
Flash point [°C]	230 ^[172]						

Laser ignition	Successful detonation, if RDX sample compressed against glass plate (Ruby laser (6943 Å) both in free running and Q-switch modes) ^[174] Detonation conditions using laser-produced heat and shock ^[177] :							
	ρ or pressing force (g/cc)	Detonator type	Nominal wave- length (nm)	Spot diameter (microns)	Power or energy	Function time (µs)	Laser type	Pulse duration (µs)
	1.18	Confined	694	<3,000	1	3.98	Q-switced ruby	0.10
	1.18	Confined	694	<3,000	3.5	4.90	Q-switched ruby	0.25
	1.52	Confined	694	<3,000	3.8	3.62	Q-switched ruby	0.72
Critical air gap		(0.2 in dia 98.0/2.0)		^{74]} , 0.144	in (0.2 i	nch diam	eter, RDX/o	calcium
Critical Lucite gap	50% gap, 0.470 in, DB $_{\rm g}$ = 3.28 (donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) $^{[174]}$, 50% gap, 0.392 in, 4.07 DB $_{\rm g}$ (RDX/calcium stearate (99.3/0.7) donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) $^{[174]}$, 50% gap, 0.332 in, 4.79 DB $_{\rm g}$ (RDX/calcium stearate (98.6/1.4) donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) $^{[174]}$, 50% gap, 0.313 in, 5.04 DB $_{\rm g}$ (RDX/calcium stearate (98.0/2.0) donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) $^{[174]}$, 50% gap, 0.299 in, 5.25 DB $_{\rm g}$ (RDX/calcium stearate (97.2/2.8) donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) $^{[174]}$							
Small scale Lucite gap test	RDX @ $1.5649 \mathrm{~g~cm^{-3}}$ loading ρ , loading pressure = $10.0 \mathrm{~kpsi}$, sensitivity = $3.283 \mathrm{~DB_g^{[174]}}$, RDX @ $1.7373 \mathrm{~g~cm^{-3}}$ loading ρ , loading pressure = $38.2 \mathrm{~kpsi}$, sensitivity = $5.069 \mathrm{~DB_g^{[174]}}$							
Reflectance tests	Reflectance tests @ 10,600 Å (continuous wave yttrium garnet aluminum laser, pressed explosive) ^[176] : Particle size, mesh							
	Through 325		10	10		80.3		
	Throug	50	50 73.6					
Combustion T [K]	Burn rate and equilibrium combustion temperature ^[178] : $T_e = 3510 \text{ K}^{[178]}$, $m = 3.06 \text{ g cm}^{-2} \text{ sec}^{-1} (100 \text{ atm.})^{[178]}$							

Small-scale shock reactivity test (SSRT)	Used sample weight = 504 mg, dent = 589 mg SiO ₂ ^[197]
Gun propellant characteristics	Impetus = 1403 J/g ^[67] , flame temperature = 4122 K ^[67]

VoD calculated using various methods^[29]:

Kistiakowsky 5,380 m/s @ 1.0 g cm $^{-3[29]}$, 8,000 m/s @ 1.60 g cm $^{-3[29]}$

Kast 8,370 m/s @ 1.70 g cm⁻³ (cylindrical charge, 13.6 mm diameter, 75 mm long)^[29],

8360 m/s @ 1.67 g cm $^{-3[29]}$

Tonegutti 7,890 m/s @ 1.56 g cm^{-3} (charge diameter = 25 mm)^[29], 8210-8,225 m/s @

1.60 g cm^{-3[29]}

Unspecified $8,570 @ 1.80 g cm^{-3}$ with pressure = 341 kbar and temperature of explosion =

2,668 K^[30]

Luminosity method (exptl./eqn. combination): 8,800 m/s @ 1.79 g cm $^{-3}$, T=3700 K, Pressure = 390,000 atm. $^{[30]}$

VoD after storage, charges of sticks of $1^{-1}/_8$ in diameter and 18 in long, drum camera apparatus^[30]: RDX pellets, storage 16 h @ -65°F, ρ = 1.61 g cm⁻³, VoD = 8,100 m/s^[30] RDX pellets, storage 16 h @ +70°F, ρ = 1.62 g cm⁻³, VoD = 8,050 m/s^[30]

RDX burning characteristics:

RDX combustion parameters, sub-atmospheric, atmospheric and high pressure @ $T_0 = 20 \, ^{\circ}\text{C}^{[135]}$:

0.05	0.075	0.1	20	30
0.03	0.05	0.08	4.1	4.9
273	296	318	561	571
6.3	7	10	36	41
242	165	152	14	14
5	4.8	6	5	4
-116	-30	-10	226	232
400	270	190	19	17
200	170	130	20	18
5	5	6	31	33
1,600	1,800	2,100	2,870	2,875
1.0	1.5	1.0	0.15	0.13
20.6	16.4	12.7	1.7	1.5
200	130	80	2.0	1.7
5	12	13	75	76
0	0.23	0.3	0.96	0.98
-1.6	-0.7	-0.013	5870	8,080
3.2	-	3.5	550	850
	0.03 273 6.3 242 5 -116 400 200 5 1,600 1.0 20.6 200 5 0 -1.6	0.03 0.05 273 296 6.3 7 242 165 5 4.8 -116 -30 400 270 200 170 5 5 1,600 1,800 1.0 1.5 20.6 16.4 200 130 5 12 0 0.23 -1.6 -0.7	0.03 0.05 0.08 273 296 318 6.3 7 10 242 165 152 5 4.8 6 -116 -30 -10 400 270 190 200 170 130 5 5 6 1,600 1,800 2,100 1.0 1.5 1.0 20.6 16.4 12.7 200 130 80 5 12 13 0 0.23 0.3 -1.6 -0.7 -0.013	0.03 0.05 0.08 4.1 273 296 318 561 6.3 7 10 36 242 165 152 14 5 4.8 6 5 -116 -30 -10 226 400 270 190 19 200 170 130 20 5 5 6 31 1,600 1,800 2,100 2,870 1.0 1.5 1.0 0.15 20.6 16.4 12.7 1.7 200 130 80 2.0 5 12 13 75 0 0.23 0.3 0.96 -1.6 -0.7 -0.013 5870

RDX combustion parameters^[135]:

р (МРа)	0	0.5		1			2			5			10	
T ₀ (°C)	20	100	-100	20	100	-100	20	100	-100	20	100	-100	20	100
$m (g/cm^2c)$	0.28	0.35	0.40	0.48	9.0	2.0	0.84	1.0	1.54	1.76	2.0	2.48	2.88	3.2
T _s (°C)	389	403	412	424	441	452	465	625	609	517	521	533	541	547
$(dT/dx)_0 \bullet 10^{-4} \text{ (K/cm)}$	15	12	22	20	15	24	22	18	28	25	22	31	28	25
q (cal/g)	02	95	25	28	36	95	38	27	28	22	17	20	16	13
q_r (cal/g)	11	6	13	11	6	12	11	6	11	6	7	8	2	9
Q (cal/g)	94	95	145	122	120	188	158	145	234	197	173	254	215	190
/ (mkm)	80	100	55	09	20	35	07	55	25	30	40	18	20	30
<i>I_m</i> (mkm)	02	66	35	20	80	30	35	09	20	30	50	16	20	35
$k_{\rm s} \bullet 10^{-4} ({\rm cal/cm} \bullet {\rm K} \bullet {\rm s})$	6	16	9	12	17	10	13	22	15	13	32	18	23	38
<i>T</i> _f (°C)	2,500	2,550	2,500	2,600	2,700	2,600	2,700	2,800	2,700	2,820	2,300	2,750	2,860	2,950
7 (mm)	1.25	1.3	1.0	1.3	1.4	6.0	1.2	12.5	0.8	1.0	1.0	9.0	8.0	0.75
<i>I_R</i> (mkm)	8.5	16	5.0	7.0	10.4	3.7	5.2	9.0	1.7	1.5	4.0	1.3	1.7	3.0
d (mkm)	15	13	11	9.7	8	6.8	5.7	5	3.2	2.8	2.5	2	1.8	1.6
p/7	83	100	91	134	175	132	210	250	250	358	400	300	440	460
W	0.59	0.63	0.67	0.67	0.70	0.78	0.77	0.78	0.90	0.88	0.86	0.96	0.93	0.91
$F_{\rm s}$ (kcal/cm ³ s)	35	23	120	90	76	380	278	180	2,235	2,340	950	5,140	3,790	2,150
F_0 (kcal/cm ³ s)	14.5	I	ı	35	ı	ı	70	ı	ı	170	ı	ı	330	ı

Compatibility with polymers (DTA, calcd. values of activation energy and reaction order were used as indices for judging compatibility, HEM = RDX)^[152]:

Polymer	W (% HEM)	Dec. peak (°C)	п	E (kcal mol⁻¹)	$\Delta H_{\rm dec}$ (kcal g ⁻¹)	$\Delta H_{\rm l}$ (cal g ⁻¹)
-	100	240	0.8	80	0.49	30
PE	42	237	0.7	81	0.25	20
Epon 828 (anhydrous, cured)	42	220	1.9	107	0.54	_
Epon 828 (anhydrous, extracted)	43	-	_	_	-	8
Epon 828 (anhydrous, extracted)	42	224	1.7	105	-	6
PST	47	241	0.9	84	0.51	23
Epon 828 (BF ₃ cured)	33	238	0.8	79	0.52	29
PAA	51	241	0.9	84	0.51	23
PMMA	47	239	1.1	66	0.58	-
PIBM	54	237	1.0	76	0.48	20
PEMA	38	238	1.3	70	0.66	-
Gantrez	55	219	-	-	-	-
PODA	53	238	0.6	76	0.48	22

Solubilty of RDX (g/100 g solvent) values from [164]:

Solvent	%	°C
		_
Water	0.005	30
	0.025	50
	0.076	70
	0.19	90
	0.28	100
Alcohol	0.040	0
	0.105	20
	0.240	40
	0.579	60
	1.195	78
Acetone	7.3	20
	11.5	40
	18	60
Benzene	0.05	20
	0.09	40
	0.20	60
	0.41	80
Toluene	0.015	0
	0.02	20
	0.05	40
	0.13	60
	0.30	80
	0.65	100
Ethyl acetate	2.9	28
	18	94
CCl ₄	0.005	50
	0.007	60
	0.009	70

MeOH	0.14	0
	0.23	20
	0.47	40
	1.1	60
Ether	0.05	10
	0.056	20
	0.076	30
TNT	4.4	80
	5.0	85
	5.55	90
	6.2	95
	7.0	100
	7.9	105
Isoamyl alcohol	0.02	0
	0.03	20
	0.065	40
	0.22	60
	0.54	80
	1.35	100
Methyl acetate	2.9	20
	3.3	30
	4.1	40
	5.6	50
β-Ethoxyethyl	0.15	20
acetate	0.16	30
	0.19	40
	0.25	50
Chlorobenzene	0.33	20
	0.44	30
	0.56	40
	0.74	50

Trichloroethylene	0.20	20
	0.22	30
	0.24	40
	0.26	50
Tetrachloroethane	0.09	38
Isopropanol	0.18	38
Isobutanol	0.0	23
CHCl₃	0.01	20
Mesityloxide	3.2	27
	12.2	97
Cyclohexanone	12.7	25
	25	97
Nitroethane	3.6	28
	19	93
Cyclopentanone	11.5	28
	37	90
Acetonitrile	11	28
	33	82
Methyl ethyl	5.6	28
ketone	14	95

RDX crystal structures^[20, 21]:

	Hexogen ^[21, 42] Hexogen ^[34]		α-RDX ^[49]	RDX-I (α-) [19, 38]	β-RDX ^[47]	β-RDX ^[47]	γ-RDX ^[51]	RDX ^[48]	RDX ^[48]	RDX ^[48]	RDX ^[20]
	diffraction		X-ray, single crystal		*	*	*Single crystal of a-RDX compressed to 0.1 GPa under hydrostatic conditions in a diamond anvil cell, pressure then increased to 5.20 GPa and data collected at this pressure				
Chemical formula	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆	C ₃ H ₆ N ₆ O ₆
Molecular weight [g mol ⁻¹]	222.14	222.14	222.14	222.14	222.14	222.14	222.14	222.14	222.14	222.14	222.14
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic

Space group	<i>Р b са</i> (no. 61)		<i>Р b с а</i> (no. 61)	Р b с а (no. 61)	<i>P c a</i> 2 ₁ (no. 29)	<i>P c a</i> 2 ₁ (no. 29)	<i>P c a</i> 2 ₁ (no. 29)	<i>Р b с а</i> (no. 61)	<i>Р b с а</i> (no. 61)	Р b с а (no. 61)	
a [Å]	13.182(2)	13.22	11.4195(8)	13.18	15.1267(11)	15.0972(7)	12.5650(19)	11.3790(2)	11.4425(3)	11.6103(4)	13.18
<i>b</i> [Å]	11.574(2)	11.61	10.5861(7)	11.57	7.4563(6)	7.5463(4)	9.4769(6)	10.5694(2)	10.6106(3)	10.7291(3)	11.57
c [Å]	10.709(2)	10.72	13.1401(9)	10.71	14.3719(11)	14.4316(6)	10.9297(9)	13.1314(2)	13.1558(4)	13.2013(4)	10.71
α [₀]	06	06	06	06	06	06	06	06	06	06	06
[₀]	06	06	06	06	06	06	06	06	06	06	90
γ [⁰]	06	06	06	06	06	06	06	06	06	06	06
V [ų]			1588.48(19)	1633.2	1621.0(2)	1644.16(13)	1301.5(2)	1579.30	1597.27	1644.46	
Z	8		8	8	8	8	8	8	8	8	8
$ ho_{\rm calc}$ [g cm ⁻³]	1.806		1.858	1.80643	1.820	1.795	2.267	1.869	1.847	1.794	
7 [K]			Ub		150	273	293	20	120	298	

* Diamond anvil cell investigations show that β - and γ - forms of RDX exist at high pressures. γ -RDX is stable >3.8 GPa between RT and 225 °C, but spontaneously reverts to α-RDX if the pressure is reduced to pressures of 3.5 GPa. β-RDX is stable > 225 °C at pressures between 2.5–7 GPa. β-RDX reverts to α-RDX if the pressure is reduced to ca. 1 atmosphere.

Effects of temperature and pressure on the crystallization of RDX from cyclohexanone solution using supercritical CO_2 (sc CO_2) as the antisolvent^[133]:

Effect of pressure on the shape and size of RDX crystals @ 323 $\rm K^{[133]}$

Pressure (MPa)	Shape	Mean particle size (µm)	Pressure (MPa)	Shape	Mean particle size (µm)
9.8	Irregular	10.5	14.7	Granular	4.7
11.7	Irregular	11.9	15.7	Granular	5.2
12.7	Granular	6.5	17.6	Granular	4.5
13.7	Granular	5.1			

Effect of temperature on the shape and size of RDX crystals @ 13.7 $\mathrm{MPa}^{[133]}$

Temperature (K)	Shape	Mean particle size (μm)	Temperature (K)	Shape	Mean particle size (μm)
295	Plate-like	6.1	313	Granular	3.0
308	Irregular	8.7	323	Granular	2.9
311	Granular	2.9	353	Granular	2.9

Effect of flow rate ratio of $scCO_2$ to the solution on the shape and size of RDX crystals @ 13.7 MPa^[133]

Soln. flow rate (mL/min)	scCO ₂ flow rate (kg/h)	Flow rate ratio of scCO ₂ to the soln.	Shape	Mean particle size (µm)
0.1	0.91 0.81	160 142	Granular Granular	2.6 2.9
0.3	0.85 0.75	50 44	Granular Granular	2.8 3.0
0.5	0.82	29	Irregular	4.2
1.0	0.81	14	Irregular	4.2-5.0
3.0	0.81	5	Irregular	7.5
10.0 10.0 10.0	0.81 0.35 0	1.4 0.6 0	Irregular Needle-like Needle-like	None None None

Solvent used and crystalline form obtained^[164]:

Solvent	Crystalline form	Solvent	Crystalline form
Acetone	Hexagonal-thick	Methyl ethyl ketone	Coarse plates
Cyclohexanone	Cubic (massive form)	Nitroethane	Plates
Nitromethane	Plates	Isopropylacetate	Long prisms
Acetonitrile	Plates	Mesityloxide	Plates
1-Nitropropane	Short needles	N-Amylacetate	Prisms
2-Nitropropane	Short needles	Dimethylcarbonate	Plates
2,4-Pentanedione	Flat prisms	Diethylcarbonate	Prisms
Methylisobutylketone	Long prisms	Isoamylacetate	Prisms
N-Propylacetate	Long prisms, some cubic	Ethylpropionate	Fairly thick hexagonal plates
<i>N</i> -Butylformate	Long prisms	Methyl- <i>N</i> -butyrate	Needles
Ethyl Acetate	Hexagonal plates	Cyclopentanone	Hexagonal plates
N-Propylpropionate	Short prisms, some cubic	Acrylonitrile	Flat plates
Butylacetate	Long prisms	Methylcellosolveacetate	Massive hexagons and prisms

Monoclinic crystals obtained from recryst. from acetone $^{[172]}$, tetragonal crystals obtained from nitric $acid^{[172]}$

Failure diameters of lead and booster explosives^[174]:

Explosive	Confinement, in.			
	Fabric (detonating cord) Aluminum (0.006 walls) Lead (MDF			
RDX			<0.02	
RDX/calcium stearate, 98/2	0.14-0.17	0.08-0.12		

Fig. 10: ODTX results of ANPZ and TATB, HMX, RDX and PETN[175].

- [1] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [2] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [3] S. Zeman, V. Pelikán, J. Majzlík, Central Europ. J. Energ. Mat., 2006, 3, 27-44.
- [4] J. J. Sabatini, K.D. Oyler, *Crystals*, **2016**, *6*, 1–22.
- [5] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [6] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives

 Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [7] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th, pp. 434–443.
- [8] M. H. Keshavarz, M. Hayati, S. Ghariban-Lavasani, N. Zohari, ZAAC, 2016, 642, 182–188.
- [9] M. Jungová, S. Zeman, A. Husárová, Chinese J. Energetic Mater, 2011, 19, 603–606.
- [10] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, in S. N. Bulusu (ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic Publishers, Dordrecht, 1999, p. 605.
- [11] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 178–180.
- [12] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [13] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [14] A. Koch, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 365–368.
- [15] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.
- [16] Determined using the Bureau of Mines (B.M.) or Picatinny Arsenal (P.A.) or Explosive Research Laboratory (ERL) apparatus.

- [17] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [18] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*. 2015. 22, 701–706.
- [19] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [20] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [21] C. S. Choi, E. Prince, Acta Cryst., 1972, B28, 2857–2862.
- [22] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [23] J. Šelešovsky, J. Pachmáň, M. Hanus, *Changes in Sensitiveness of Flegmatized High Explosives After Artifical Aging*, NTREM 6, 22nd-24th April **2003**, pp. 309-321.
- [24] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [25] C. T. Afanas'ev, T. S. Pivina, D. K. Sukhachev, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 309–316.
- [26] I. G. Dagley, M. Kony, G. Walker, J. Energet. Mater., 1995, 13, 35-56.
- [27] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [28] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [29] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 3*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1966**.
- [30] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [31] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 5*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [32] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [33] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 7*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [34] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, *Vol. 9*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [35] R. K. Wharton, J. A. Harding, J. Energet. Mater., 1995, 13, 35-56.
- [36] S. Zeman, Propellants, Explosives, Pyrotechnics, 2000, 25, 66-74.
- [37] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [38] C.-O. Lieber, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 288–301.
- [39] P. Goede, N. Wingborg, H. Bergman, N. V. Latypov, *Propellants, Explosives, Pyrotechnics*, **2001**, 26, 365–368.
- [40] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [41] C. K. Lowe-Ma, R. A. Nissan, W. S. Wilson, "Diazophenols Their Structure and Explosive Properties", Report No. NWC TP 6810, 1987, Naval Weapons Center, China Lake, CA, USA.
- [42] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.
- [43] S. Ek, K. Dudek, J. Johansson, N. Latypov, *Scale-Up and Characterisation of* 3(5),4-Dinitropyrazole (DNP) for its Use as a Melt-Cast Matrix, NTREM 17, 9th–11th April, 2014, pp. 180–188.

- [44] A. P. Jardine, D. M. Williamson, S. Gymer, N. E. Taylor, S. M. Walley, S. J. Palmer, Optical Diagnostics to Study Impact Initiation Mechanisms in Modern Energetic Materials, NTREM 17, 9th–11th April 2014, pp. 243–252.
- [45] J. L. Gottfried, T. M. Klapötke, T. G. Witkowski, Propellants, Explosives, Pyrotechnics, 2017, 42, 353–359.
- [46] A. A. Gidaspov, E. V. Yurtaev, Y. V. Moschevskiy, V. Y. Avdeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th–11th April 2014, pp. 658–661.
- [47] D. I. A. Millar, I. D. H. Oswald, D. J. Francis, W. G. Marshall, C. R. Pulham, A. S. Cumming, *Chem. Comm.*, 2009, 56–60.
- [48] V. V. Zhurov, E. A. Zhurova, A. I. Stash, A. A. Pinkerton, Acta Cryst., 2011, A67, 160-173.
- [49] P. Hakey, W. Ouellette, J. Zubieta, T. Korter, Acta Cryst., 2008, E64, 01428.
- [50] K.-Y. Lee, M. M. Stinecipher, *Propellants, Explosives, Pyrotechnics*, **1989**, 4, 241–244.
- [51] A. J. Davidson, I. D. H. Oswald, D. J. Francis, A. R. Lennie, W. G. Marshall, D. I. A. Millar, C. R. Pulham, J. E. Warren, A. S. Cumming, *Cryst. Eng. Comm.*, 2008, 10, 162–165.
- [52] C. S. Gorzynski, J. N. Maycock, Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions, NASA-CR-132373, 1974.
- [53] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [54] H. Östmark, U. Bemm, H. Bergman, A. Langlet, *Thermochim. Acta*, **2002**, *384*, 253–259.
- [55] B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, J. Energet. Mater., 1986, 4, 447–472.
- [56] J. Bogdanov, Z. Bajić, R. Jeremić, R. Dimitrijević, M. Ugrčic, Prediction of High Explosives' Detonation Characteristics Using a Simplified Thermochemical Approach, NTREM 17, 9th–11th April 2014, pp. 572–577.
- [57] R. Gill, L. Asaoka, E. Baroody, J. Energet. Mater., 1987, 5, 287–307.
- [58] A. Koch, B. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365-368.
- [59] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [60] J. M. Short, H. F. Eccleston, E. E. Baroody, K. F. Mueller, M. J. Kamlet, *Propellants, Explosives, Pyrotechnics*, 1983, 8, 19–22.
- [61] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251–273.
- [62] D. Price, *Gap Tests and How They Grow*, from Ministries of the Explosives Safety Seminar (22nd), vol. 1, AD-A181 274, Anaheim, California, 26th–28th August **1986**.
- [63] N. Piazzon, A. Bondar, D. Anokhin, D. Hassler, D. Spitzer, D. A. Ivanov, Thermal Signatures of Explosives Studied by Nanocalorimetry, ICT 2011, Karlsruhe, Germany, pp. 7-1-7-8.
- [64] W. A. Trzciński, S. Cudziło, Z. Chyłek, L. Szymańczyk, Investigation of Detonation Characteristics and Sensitivity of DADNE-Based Phlegmatized Explosives, ICT 2010, Karlsruhe, Germany, pp. 101-1–101-15.
- [65] H. Hui, R. J. Xu, B. Kang, M. Huang, H. Z. Li, R. Xu, J. Sun, F. D. Nie, M. Li, Recent Advances on Reduced Sensitivity Energetic Crystals at Institute of Chemical Materials in China, ICT 2011, pp. 28-1–28-12.
- [66] P. Brousseau, S. Brochu, M. Brassard, G. Ampleman, S. Thiboutot, F. Cŏté, L.-S.- Lussier, E. Diaz, V. Tanguay, I. Poulin, M. Beauchemin, *Munitions With a Lower Environmental Impact: The Righttrac Project*, ICT 2010, Karlsruhe, Germany, pp. 3-1–3-12.
- [67] E. Rozumov, T. Manning, D. Park, J. O'Reilly, BDNPN as an Energetic Additive for Propellant Formulations, ICT 2010, Karlsruhe, Germany, pp. 11-1–11.
- [68] M. Golfier, H. Graindorge, Y. Longevialle, H. Mace, New Energetic Molecules and Their Applications in Energetic Materials, ICT 1998, pp. 3-1-3-18.

- [69] H. W. R. Sabel, E. Schonewille, Extrusion Trials with a TSK045 Twin Screw Extruder, ICT 1998, pp. 96-1–96-11.
- [70] S. Thiboutot, G. Ampleman, P. Dubé, J. Hawari, T. F. Jenkins, M. E. Walsh, Protocol for the Characterization of Explosives-Contaminated Sites, ICT 1998, pp. 127-1–127-14.
- [71] W. M. Hikal, J. T. Paden, B. L. Weeks, *Talanta*, **2011**, *87*, 290–294.
- [72] C. C. Andrews, J. L. Osmon, *The Effects of UV Light on TNT and Other Explosives in Aqueous Solution*, WQEC/C-77-32, Naval Weapons Support Center, Crane, Indiana, USA, December **1976**.
- [73] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [74] P. Marecek, J. Pokorna, P. Vavra, A Study of Some Insensitivie Explosives, ICT 1998, Karlsruhe, Germany, pp. 52-1–52-5.
- [75] M. Liljedahl, J. Ritums, H. Östmark, Fox-12: From Synthesis to IM-Application, ICT 2017, Karlsruhe, Germany, pp. 22-1–22-19.
- [76] M. Klaumünzer, F. Pessina, D. Spitzer, *Tracking Crystallization and Continuous Production of RDX by Spray Flash Evaporation*, ICT **2015**, Karlsruhe, Germany, pp. 35-1–35-9.
- [77] E. D. Cooke, A. J. Paraskos, P. R. Cook, P. E. Anderson, K. C. Caflin, *DATNBI: An Insensitive Replacement for RDX*, ICT **2016**, Karlsruhe, Germany, pp. 12-1–12-11.
- [78] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81-6, Naval Weapons Station, Virginia, USA, October 1981.
- [79] P. Gerber, B. Zilly, U. Teipel, Fine Grinding of Explosives, ICT 1998, pp. 71-1-71-12.
- [80] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York, pp. 396–399.
- [81] P. C. Braithwaite, W. W. Edwards, R. M. Hajik, T. K. Highsmith, G. K. Lund, R. B. Wardle, TEX: A Promisinig new Insensitive High Explosive, ICT 1998, Karlsruhe, Germany, pp. 62-1-62-7.
- [82] I. J. Dagley, R. P. Parker, D. A. Jones, L. Montelli, Comb. and Flame, 1996, 106, 428-441.
- [83] J. E. Balzer, J. E. Field, M. J. Gifford, W. G. Proud, S. M. Walley, Comb. and Flame, 2002, 130, 298–306.
- [84] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [85] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [86] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [87] R. J. Spear, M. G. Wolfson, Determination of Detonation Parameters of Booster Explosives at Small Charge Diameters, MRL Technical Report, MRL-TR-89-45, DSTO Materials Research Laboratory, Australia, 1990.
- [88] J. H. ter Horst, R. M. Geertman, A. E. van der Heijden, G. M. van Rosmalen, Crystal Growth Rate and Impurity Effect During RDX Crystallization, ICT 1999, Karlsruhe, Germany, pp. 42-1-42-15.
- [89] M. F. Murphy, N. L. Coleburn, *A Preliminary Investigation of TACOT, A New Heat Resistant Explosive*, NOLTR 61–155, US Naval Ordnance Laboratory, USA, **1961**.
- [90] M. Sućeska, M. Rajić, R. Čuljak, Characterisation and Quantitative Determination of Trinitrotoluene in Mixtures with Hexogen by Differential Scanning Calorimetry, ICT 1998, Karlsruhe, Germany, pp. 144-1–144-12.
- [91] S. Löbbecke, M. A. Bohn, A. Pfeil, H. Krause, *Thermal Behavior and Stability of HNIW (CL 20)*, ICT **1998**, Karlsruhe, Germany, pp. 145-1–145-15.
- [92] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, *Nitrotriazoles: Chemical Structure and Explosive Properties*, ICT **1998**, Karlsruhe, Germany, pp. 47-1–47-15.
- [93] M. A. Bohn, H. Pontius, S. Löbbecke, S. Wilkrer, G. Pantel, Investigation on the Stability and Reactivity of Pure NTO and Mixtures of NTO-TNT and NTO-RDX to Assess Their Safe Use, ICT 1998, Karlsruhe, Germany, pp. 147-1–147-33.

- [94] R. K. Wharton, D. Chapman, *Propellants, Explosives, Pyrotechnics*, 1997, 22, 71–73.
- [95] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [96] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [97] A. A. Kotomin, S. A. Dushenok, A. S. Kozolov, D. A. Barannik, N. P. Shirokova, M. A. Il'yushin, Russ. J. Appl. Chem., 2016, 89, 793-799.
- [98] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [99] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, Methodical Problems of Experimental Definition of Heat Of Explosive Transformation, ICT 2017, Karlsruhe, Germany, pp. 15-1–15-11.
- [100] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [101] D. Price, The Detonation Velocity-Loading Density Relation For Selected Explosives and Mixtures of Explosives, NSWC TR 82–298, Naval Surface Weapons Center, Maryland, USA, 26th August 1982.
- [102] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasov, *Devices for Analyzing Explosion Hazards*, ICT **2002**, Karlsruhe, Germany, pp. 69-1-69-13.
- [103] H. Östmark, H. Bergman, U. Bemm, P. Goede, E. Holmgren, M. Johansson, A. Langlet, N. V. Latypov, A. Pettersson, M.-L. Pettersson, N. Wingborg, C. Vörde, H. Stenmark, L. Karlsson, M. Hihkiö, 2,2-Dinitro-ethene-1,1-diamine (Fox-7) Properties, Analysis and Scale-Up, ICT 2001, Karlsruhe, Germany, pp. 26-1–26-21.
- [104] B. N. Kondrikov, S. Christoforetti, I. V. Grebenyuk, L. T. DeLuca, Gasification of Solid Propellants and Propellant Ingredients Under Influence of Thermal Radiation, ICT 2001, Karlsruhe, Germany, pp. 6-1-6-15.
- [105] V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, Study on Combustion of New Energetic Nitramines, ICT 2001, Karlsruhe, Germany, pp. 59-1-59-13.
- [106] S. B. Victorov, S. A. Gubin, I. V. Maklashova, I. I. Revyakin, *Thermodynamic TDS Code: Application to Detonation Properties of Condensed Explosives*, ICT 2001, Karlsruhe, Germany, pp. 69-1–69-15.
- [107] P. Mareček, K Dudek, P. Vávra, *Laboratory Testing of TNAZ Mixtures*, ICT **2001**, Karlsruhe, Germany, pp. 90-1–90-8.
- [108] M. Sućeska, M. Rajic, Analytical Application of Thermal Methods in the Field of Explosive Materials, ICT 2000, Karlsruhe, Germany, pp. 84-1–84-15.
- [109] S. Matsuzaki, Y. Fujigaki, Y. Kato, *Aging Evaluations of RS-RDX and PBX Formulations Based on RS-RDX*, ICT **2009**, Karlsruhe, Germany, pp. 76-1–76-7.
- [110] E. Francois, V. E. Sanders, J. Lloyd, J. Mong, *Shock Sensitivity of Diaminoazoxy Furazan (DAAF) Using an Instrumental Small Scale Gap Test*, ICT **2009**, Karlsruhe, Germany, pp. 17-1–17-10.
- [111] S. Matsuzaki, E. Yano, S. Suzuki, Y. Suzuki, T. Hasegawa, Y. Kato, *Reduced Sensitivity RDX* (RS-RDX): Effects of Crystal Quality and Shape on the Shock Sensitivity of RS-RDX Based PBXN-109 Formulation, ICT **2007**, Karlsruhe, Germany, pp. 130-1–130-10.
- [112] M. A. Radwan, Energetic Thin Sheet Materials Based on Polyisoprene and Polyurethane, ICT **2007**, Karlsruhe, Germany, pp. 123-1–123-8.
- [113] K. Dudek, P. Marecek, Z. Jalovy, *Some Properties of Cast TNAZ Mixtures*, ICT **2002**, Karlsruhe, Germany, pp. 53-1–53-7.
- [114] T. Halvorsen, Improved RDX, Properties and Processability, ICT 2002, Karlsruhe, Germany, pp. 93-1–93-15.
- [115] Q. Hu, Z. Lu, *The Discussion of Explosive Thermal Decomposition and its Sensitivity*, ICT **2002**, Karlsruhe, Germany, pp. 155-1–155-8.
- [116] M. Herrmann, I. Mikonsaari, H. Krause, M. Kaiser, R. Hühn, H. Sohn, M. H. Lefebvre, M. Alouamaari, C. Martin, A. E. D. M. van der Heijden, R. H. B. Bouma, J. Paap, J. Campos, I.

- Plaksin, J. Ribeiro, R. Mendes, J. Góis, S. Almada, *Particle Processing and Characterisation Part V: Correlation and Final Results*, ICT **2007**, Karlsruhe, Germany, pp. 42-1–42-15.
- [117] P. Brousseau, S. Thiboutot, G. Ampleman, S. Côté, P. Béland, *Behaviour of CL-20 in TNT-Based Explosives*, ICT **2007**, Karlsruhe, Germany, pp. 27-1–27-12.
- [118] S. Matsuzaki, S. Suzuki, Y. Suzuki, Y. Kato, Effect of Crystal Quality of Fine RDX Particle on the Shock Sensitivity of Cast Cured PBX Formulation Based on RS-RDX, ICT 2008, Karlsruhe, Germany, pp. 102-1–102-9.
- [119] V. Stepanov, V. Avglade, W. Balas, A. Bezmelnitsyn, L. N. Krasnoperov, *Processing and Characterization of Nanocrystalline RDX*, ICT 2008, Karlsruhe, Germany, pp. 54-1-54-14.
- [120] M. Herrmann, U. Förster-Barth, J. Mathieu, J. Patscheider, *Investigation of RS-RDX Sample, From the MSIAC-Round Robin by Means of X-ray Diffraction Rocking Curves*, ICT 2008, Karlsruhe, Germany, pp. 57-1–57-6.
- [121] I. Plaksin, J. Campos, R. Mendes, J. Ribeiro, S. Plaksin, L. Rodrigues, J. Gois, S. Almada, M. Herrmann, H. Kröber, H. Krause, M. Kaiser, *Shock Sensitivity of PBX Formulations Based on the RS-RDX, RS-HMX, and Fine/Ultra-Fine HE Particles Bonded with the Inert Binders: Real Time Measurements from the Registration of the Reaction Front Radiation Growth and Emission Absorption*, ICT **2008**, Karlsruhe, Germany, pp. 28-1–28-17.
- [122] V. A. Teselkin, *Peculiarities of Mechanical Explosion Initiation for Some Solid Explosives*, ICT **2009**, Karlsruhe, Germany, pp. 102-1–102-6.
- [123] D. E. G. Jones, P. D. Lightfoot, R. C. Fouchard, A. M. Turcotte, Z. Abdel-Qader, Q. S. M. Kwok, R. Bowes, Comparative Studies of the Thermal Properties of Aluminium Nanopowders, ICT 2002, Karlsruhe, Germany, pp. 13-1–13-14.
- [124] R. Petersen, L. R. Rothstein, J. H. Smith, *Thermochemistry and the Demilitarization of Explosives*, NWSY TR 76–2, Naval Weapons Station, Virginia, USA, July **1976**.
- [125] D. A. Jones, R. P. Parker, Simulation of Cookoff Results in a Small Scale Test, DSTO-TR-0090, Department of Defence, Melbourne, Australia, October 1994.
- [126] R. J. Spear, V. Nanut, Mechanism of and Particle Size Effects on the Shock Sensitivity of Hetergeneous Pressed Explosives: Preliminary Assessment of Binderless RDX in Fuze Trains, MRL-R-1077, Department of Defence, Melbourne, Australia, January 6th 1988.
- [127] M. Chaykovsky, H. G. Adolph, *Synthesis and Preparation of Trisubstituted Trinitrobenzenes, TATB Analogues*, NSWC TR-83-22, MSWC, Maryland, USA, March 1983.
- [128] D. Spitzer, B. Risse, F. Schnell, V. Pichot, D. Hassler, Preparation of Ultrafine Energetic Particles and Composites By the Flash-Evaporation Process, ICT 2013, Karlsruhe, Germany, pp. 36-1–36-12.
- [129] M. Li, T. Chen, H. Pang, M. Huang, Ruptures and Mesoscale Fractures of RDX Crystals, ICT 2013, Karlsruhe, Germany, pp. 84-1–84-8.
- [130] R. M. Doherty, L. A. Nock, D. S. Watt, *Reduced Sensitivity RDX Round Robin Programme Update*, ICT **2006**, Karlsruhe, Germany, pp. 5-1–5-9.
- [131] S.-Y. Xu, F.-Q. Zhao, S.-W. Li, H.-X. Hao, Q. Pei, H.-X. Gao, *The Mechanical and Electrostatic Spark Sensitivity of Composite Modified Double-Base Propellant Containing Hexanitrohexaazaisowurtzitane (CL-20)*, ICT **2006**, Karlsruhe, Germany, pp. 8-1–8-10.
- [132] H. Cai, L. Tian, B. Huang, J. Sun, H. Huang, *Host-Guest Insensitive Energetic Materials*, ICT **2013**, Karlsruhe, Germany, pp. 85-1–85-6.
- [133] S. Matsuzaki, T. Okitsu, K. Ouchi, K. Otake, T. Matsunaga, S. Fujiwara, Crystal Shape Control of RDX Using Supercritical Carbon Dioxide, ICT 2006, Karlsruhe, Germany, pp. 16-1-16-12.
- [134] M. A. Radwan, Sensitivity and Performance of Energetic Materials Based on Different Types of Energetic Binders, ICT 2006, Karlsruhe, Germany, pp. 56-1–56-12.
- [135] A. Zenin, S. Finjakov, *Characteristics of Octogen and Hexogen Combustion: A Comparison*, ICT **2006**, Karlsruhe, Germany, pp. 118-1–118-18.

- [136] N. V. Latypov, C. Oscarson, M. Liljedahl, P. Goede, *Evaluation of DETRA-D as a Melt-Cast Matrix*, ICT **2013**, Karlsruhe, Germany, pp. 3-1–3-8.
- [137] W. A. Trzcinski, S. Cudzilo, Z. Chylek, L. Szymanczyk, *Investigation of Sensitivity and Detonation Properties of Fox-7*, ICT **2006**, Karlsruhe, Germany, pp. 57-1–57-10.
- [138] J. Ritums, C. Oscarson, M. Liljedahl, P. Goede, K. Dudek, U. Heiche, Evaluation of 3,(5),4-Dinitropyrazole (DNP) as a New Melt Cast Matrix, ICT 2014, Karlsruhe, Germany, pp. 2-1–2-12.
- [139] A. L. Kuhl, *Emission Properties of Various High Explosive Charges*, ICT **2014**, Karlsruhe, Germany, pp. 19-1–19-14.
- [140] V. A. Teselkin, Mechanical Sensitivity of Metallized Explosive Nanocomposites, ICT 2005, Karlsruhe, Germany, pp. 81-1–81-11.
- [141] B. Berger, B. Haas, J. Mathieu, M. Tanner, J. Gyseler, *Improved Method for the Determination of the Sensitivity of Explosives to ESD*, ICT **2005**, Karlsruhe, Germany, pp. 120-1–120-13.
- [142] I. Mikonsaari, H. Kröber, K. Leisinger, K. Hartlieb, U. Teipel, Submicron Energetic Materials by Communition and Supercritical Fluid Technology, ICT 2005, Karlsruhe, Germany, pp. 166-1–166-11.
- [143] P. Gerber, I. Fuhr, I. Mikonsaari, A. Kretschmer, Shock Wave Sensitivity of Charges Containing Insensitive Nitramine, ICT 2005, Karlsruhe, Germany, pp. 139-1–139-10.
- [144] G. Singh, S. P. Felix, Effect of Binders on the Thermolysis of Plastic Bonded Explosives of RDX, ICT **2003**, Karlsruhe, Germany, pp. 60-1–60-12.
- [145] U. Teipel, H. Kröber, K. Leisinger, K. Hartlieb, Determination of Solubilities of Energetic Materials, ICT 2003, Karlsruhe, Germany, pp. 106-1–106-9.
- [146] Y. N. Matyushin, G. T. Afanas'ev, V. P. Lebedev, M. N. Mahov, V. I. Pepekin, TATB and Fox-7: Thermochemistry, Performance, Detonability, Sensitivity, ICT 2003, Karlsruhe, Germany, pp. 119-1-119-13.
- [147] J. Oxley, J. Smith, R. Buco, J. Huang, J. Energet. Mater., 2007, 25, 141–160.
- [148] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [149] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [150] G. J. Piermarini, S. Block, P. J. Miller, Effects of Pressure on the Thermal Decomposition Rates, Chemical Reactivity and Phase Behavior of HMX, RDX and Nitromethane, Ch. 3 in Chemistry and Physics of Energetic Materials, Suraya N. Bulusu (ed.), NATO ASI Series, Kluwer Academic Publishers, vol. 309, 1990.
- [151] J. Connor, Chemical Sensitization in Nitro, Nitramine and Nitrate Explosives, in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.
- [152] L. W. Collins, L. D. Haws, *Thermochim. Acta*, **1977**, *21*, 1–38.
- [153] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [154] V. M. Boddu, C. Costales-Nieves, R. Damavarapu, D. S. Viswanath, M. K. Shukla, *Physical Properties of Select Explosive Components for Assessing Their Fate and Transport in the Environmnet*, in *Energetic Materials from Cradle to Grave*, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, **2017**.
- [155] K. Dontsova, S. Taylor, High Explosives and Propellant Energetics: Their Dissolution and Fate in Soils, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, 2017.
- [156] EPA, United States Environmental Protection Agency, *Technical Fact Sheet Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)*, EPA 505-F-14-008, January **2014**.

- [157] S. Fordham, High Explosives and Propellants, 2nd edn., Pergamon Press, 1980.
- [158] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203-232.
- [159] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October 1965.
- [160] J. M. Rosen, C. Dickinson, J. Chem. Engineering Data, 1969, 14, 120–124.
- [161] J. T. Hagan, M. M. Chaudhri, J. Materials Sci., 1977, 12, 1055-1058.
- [162] J. C. Oxley, J. L. Smith, J. E. Brady, A. C. Brown, Propellants, Explosives, Pyrotechnics, 2012, 37, 24–39.
- [163] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [164] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [165] H. W. Voigt, Impact Resistant Pressable Explosive Composition of High Energetic Material Content, US Patent 4251301, February 17th 1981.
- [166] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1991, 16, 197–202.
- [167] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetic Materials, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [168] M. A. Dewey, Synthesis, Evaluation, and Formulation Studies on New Oxidizers as Alternatives to Ammonium Perchlorate in DoD Missile Propulsion Applications, SERDP final report, 23rd April 2007.
- [169] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [170] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers from Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.
- [171] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61–97, 1st September 1961.
- [172] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [173] J. W. Taylor, Trans. Faraday Soc., 1962, 58, 561-568.
- [174] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th Ianuary 1974.
- [175] P. C. Hsu, G. Hust, M. McClelland, M. Gresshoff, One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ, LLNL-TR-667280, Lawrence Livermore National Laboratory, California, USA, 25th April 1994.
- [176] V. J. Menichelli, L. C. Yang, Sensitivity of Explosives to Laser Energy, Technical Report 32–1474, NASA CR110133, Jet Propulsion Laboratory, California Institute of Technology, California, USA, 30th April 1970.
- [177] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, Light-Initiated Detonation Systems, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [178] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.

- [179] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [180] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [181] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [182] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [183] E. E. Gilbert, W. E. Voreck, Propellants, Explosives, Pyrotechnics, 1989, 14, 19-23.
- [184] G. T. Long, S. Vyazovkin, B. A. Brems, C. A. Wright, J. Phys. Chem. B, 2000, 104, 2570-2574.
- [185] G. Krien, H. H. Licht, J. Zierath, *Thermochim. Acta*, **1973**, *6*, 465–472.
- [186] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules, AIP Conf. Proc.*, **1979**, 15003-1-150033-5.
- [187] N. Zohari, M. H. Keshavarz, S. A. Seyedsadjadi, Centr. Eur. J. Energet. Mater., 2013, 10, 135-147.
- [188] R. A. Pesce-Rodriguez, L. B. Blaudeau, Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP, ARL-TN-0788, US Army Research Laboratory, Aberdeen Proving Ground, Maryland, USA, September 2016.
- [189] F. Pessina, D. Spitzer, Beilstein J. Nanotechnol., 2017, 8, 452-466.
- [190] T. Dolch, N. Mehta, E. Homentowski, Five-Second Explosion Temperature (U. S. Army ARDEC Method) Users Manual, Technical Report ARMET-TR-09015, June 2009.
- [191] T. P. Russell, P. J. Miller, G. J. Piermarini, S. Block, *Pressure/Temperature/Reaction Phase Diagrams For Several Nitramine Compounds*, in *Structure and Properties of Energetic Materials*,
 D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, *Materials Research Society Symposium Proceedings*, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 199–213.
- [192] T. B. Brill, Surface Chemistry of Energetic Materials at High Temperature, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 269–280.
- [193] V. M. Boddu, S. W. Maloney, R. K. Toghiani, H. Toghiani, Prediction of Physicochemical Properties of Energetic Materials for Identification of Treatment Technologies for Waste Streams, ERDC/CERL TR-10-27, US Army Corps of Engineers, Engineer Research and Development Center (ERDC), Champaign, USA, November 2010.
- [194] K. D. Oyler, N. Mehta, G. Cheng, Overview of Explosive Initiators, Technical Report ARMET-TR-15017, U. S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, New Jersey, USA, November 2015.
- [195] H. J. Jackson, A Study of the Electrical Characteristics of Some Explosives and Explosive Mixtures, Technical Memorandum 1288, Feltman Research Laboratories, Picatinny Arsenal, New Jersey, USA, October 1963.
- [196] T. E. Larson, P. Dimas, C. E. Hannaford, Electrostatic Sensitivity Testing of Explosives at Los Alamos, in 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [197] T. M. Klapötke, D. G. Piercey, J. Stierstorfer, M. Weyrauther, *Propellants, Explosives*, *Pyrotechnics*, 2012, 37, 527–535.
- [198] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [199] L. Avrami, J. Haberman, *Sensitivity to Heat and Nuclear Radiation*, Ch. 6 in *Energetic Materials* 2: *Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.

- [200] R. J. Spear, L. Montelli, *An Investigation of the Material Hazard of Some Insensitive High Explosives*, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, **1991**.
- [201] L. Avrami, H. J. Jackson, M. S. Kirshenbaum, *Radiation-Induced Changes in Explosive Materials*, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December **1973**.

HMTD

Name [German, acronym]: 3,4,8,9,12,13-Hexaoxa-1,6-diaza-bicyclo-

[4,4,4]-tetradecane, 1,6-diaza-3,4,8,9,12,13-

hexaoxabicyclo[4.4.4] tetradecane,

hexamethylenetriperoxidediamine [HMTD]

Main (potential) use: Improvised explosive, patented as primary explosive in

detonators but no widespread use due to stability and compatibility issues^[16], too reactive chemically and too

unstable for practical use^[19]

Structural formula:

	нмтр
Formula	C ₆ H ₁₂ N ₂ O ₆
Molecular mass [g mol ⁻¹]	208.17
Appearance at RT	Colorless crystals ^[16] , white orthorhombic crystals ^[1]
IS [J]	$2~(<100~\mu m),0.06~kg/m^{[3]},0.015~kg/m^{[3]},0.6^{[5]},0.06~kg~m~(lit.)^{[7]},0.015~kg~m~(BAM, lowest impact energy for ^0/_6 positive tests)^{[7]},3~cm~(2~kg~mass)^{[8,19]},impact sensitive when dry or wet^{[16]}, spontaneous explosion @ RT possible (no obvious external stimuli) for crystals obtained from CHCl_3^{[16]}, no spontaneous explosions reported for raw material ^{[16]}$
FS [N]	<5 (<100 µm), $0.63^{[4]}$, $0.1^{[5,11]}$, 0.01 (lit.) $^{[7]}$, <0.5 kgf (BAM, below detection limit of apparatus) $^{[7]}$
ESD [J]	0.003 (<100 μm), 0.0088 ^[5]
N [%]	13.46
Ω(CO ₂) [%]	-92.2
T _{m.p.} [°C]	Decomposes without melting (ignition temperature ~200 °C) ^[1] , 152–153 ^[10] , $145^{[14,21]}$, $152-153$ (dec. with explosion) ^[11] , $144-145$ (dec. with explosion) ^[11] , $160-165$ (dec. with explosion) ^[11]

T _{dec.} [°C]	119 (DSC @ 5 °C/min), 170 (DSC @ 20 °C/min) ^[3] , 150 ^[5] , 170 (exotherm peak, DSC @ 20 °C/min) ^[7] , 125–140 (onset, DTA/TG) ^[1] , 150 (onset) ^[11] , 150 (onset), 161 (exo peak max) (DSC @ 20 K/min, crude HMTD, sealed microampules) ^[20]				
ρ [g cm ⁻³]	1.582 (@ 295 K), 1.597 (crystal) ^[5, 14, 16] , 1.597 (crystal @ 150 K) ^[10] , 1.575 (crystal @ 295 K) ^[9] , 1.582 (crystal @ 21 °C) ^[8] , 1.57 (lit.) ^[16] , 1.57 (true density $(20^{\circ}/20^{\circ})^{[19]}$, 0.66 (apparent ρ after being placed in tube and tapped) ^[19] , 0.91 (ρ after being compressed in detonator capsule under pressure of 2,500 lb/in ²) ^[19] Loading ρ : 1.05 @ 100 atm. ^[14] , 1.15 @ 200 atm ^[14] , 1.30 @ 800 atm ^[14]				
		.66 (orthorhombic crystal bu o to 1.3 g cm ⁻³ , but coarse cr			
Heat of formation	mol (<i>Danilov</i>) ^[16] , -	$(9)^{[5]}$, 385 cal/ $g^{[14]}$, -363 kJ/m 360.2 kJ/mol (enthalpy of foorm., calcd., emp.) $(22)^{[22]}$, -526. method) $(22)^{[22]}$	rm., exptl.) ^[22] , -350.1 kJ/		
Heat of combustion	4,295 cal/g (@ C ^V	, H ₂ O (liq.)) ^[14]			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,713	1,058 kJ/mol ^[16]	5,080 ^[1, 5, 15]		
T _{ex} [K]	2,841				
p _{C-J} [kbar]	203				
VoD [m s ⁻¹]	7,372 2,820 (@ 0.38 g cm ⁻³) ^[16] 4,511 (@ 0.88 g cm ⁻³) 0.2 in diameter column) ^[14, 19]				
		4,500 (@ 1.05 g cm ⁻³) ^[16]	2,820 (@ 0.38 g cm ⁻³ , glass confinement) ^[15]		
	5,100 (@ 1.15 g cm ⁻³) ^[16] 4,510 (@ 0.88 g cm ⁻³) ^[1, 5, 6]				
	5,100 (@ 1.10 g cm ⁻³) ^[1, 12, 14]				
	4,500 (@ 0.88 g cm ⁻³) ^[5, 6]				
			16,700 ft/s (@ 1.1 g/mL) ^[21]		
V ₀ [L kg ⁻¹]	823	813 dm³ kg ^{-1[16]}	1,075 ^[2]		

Trauzl test [cm³, % TNT]	60% TNT $^{[12]}$, 60% TNT or 230% MF $^{[14]}$, 242 cm $^{3[16]}$, 330 cm 3 (110% TNT) $^{[16]}$, 330 (10 g sample) $^{[11]}$		
Sand test [g]	0.5 g HMTD @ 1,000 psi crushes 42.5 g sand (cf. 16.5 g MF) ^[14] , 71% TNT ^[16] , pulverizes 2.5–3 times as much sand as mercury fulminate ^[19]		
Initiating efficiency	0.05 g with reinforcing cap for tetryl ^[16] , 0.06 g without reinforcing cap for tetryl ^[16] , 0.08 g with reinforcing cap for TNT ^[16] , 0.10 g without reinforcing cap for TNT ^[16] , minimal charge in a No. 8 detonator towards tetryl = 0.05 g ^[1] Minimum initiating efficiency of HMTD to detonate 0.4 of high explosive, HMTD compressed in detonator capsule under pressure of 1,000 lb/in ^{2[19]} :		
	High explosive	Minimum initiating	charge (g) of HMTD
		With reinforcing cap	Without reinforcing cap
	TNT	0.08	0.10
	PA	0.06	
	Tetryl	0.05	0.06
	Ammonium picrate 0.30 0.30 Tetranitroaniline 0.05 0.05		
	Guanidinium picrate	0.13	0.15
	Trinitroresorcinol	0.08	0.10
	Hexanitrodiphenylamine	0.05	0.05
	Trinitrobenzaldehyde	0.08	0.10
Dead pressing	Not dead-pressed @ 76 MPa ^[16] , not dead-pressed @ 294 MPa ^[16] , explosions occur on pressing coarse crystals ≥20 MPa ^[16] , not dead-pressed by pressure of 11,000 lb/in ^{2[19]}		
5 s explosion T [°C] Explosion T [°C]	explodes instantly @ $200^{[14, 16]}$, explodes @ 130 when gradually heated ^[14] , small quantity decomposes without exploding when dropped onto molten metal @ 190 °C but instantly detonated if dropped onto 200 °C ^[19]		
5 s ignition T [°C] 3 s ignition T [°C]	<149 $^{[13]}$ 149 (0.05 g sample) $^{[16, 19]}$, ignites after 3 s @ 149 on being thrown onto heated metal surface $^{[14]}$		
Ignition T [°C]	200 (dropping on preheated 139 (@ 20 °C/min) ^[16] , 200		

Thermal stability	stable for considerable time if stored in air or in airtight containers ^[1] , stable if maintained under layer of water @ RT for ~4 weeks ^[1] , complete dec. after storage under water for 4 months ^[1]				
	Thermal stability in storage: 70% weight loss in 300 days @ 50 °C, 150 days @ 70 °C and 5–20 days @ 90 °C ^[14]				
	Thermal stability at different temperatures ^[19] :				
	% weight loss	60 °C	75 °C	100 °C	
	2 h	0.10	0.25	-	
	8 h	0.35	0.60	29.60	
	24 h	0.50	1.30	67.95	
	48 h	0.50	2.25	-	
	Slight hydrolysis if stored under H ₂				
Activation energy for dec. [kJ/mol]	-120 ^[17]				
Vapor pressure [atm @ °C]	5.3 × 10 ⁻⁶ Pa @ 20 °C (extrapolated form exptl. data) ^[17]				
Enthalpy of sublimation [kJ/mol]	-93.5 ± 3 (based on exptl. values) ^[17]				
Solubility [g/mL]	Essentially insoluble in water and organic solvents ^[1]				
	Solubility in solve	ents @ 22	°C ^[16] :		
	Solvent		Solubility (g/	100 g solvent)]
	EtOH		<0.01		1
	Acetone		0.33]
	CS ₂		< 0.01		
	CCl ₄		0.013]
	CHCl ₃		0.64]
	Et ₂ O 0.017]
	Ethyl-1,2-diyl di	0.90]	
	Glacial acetic acid		0.14]
	H ₂ O 0.01]	

	Slightly soluble in CH ₃ CN, DMSO, DMF, CHCl ₃ ^[16] , almost insoluble in H ₂ O and common organic solvents @ RT ^[19] , only limited solubility in even more polar solvents ^[20] , large volumes of ethyl acetate and acetone required for recryst. ^[20]					
Hygroscopicity	Slightly hygroscopic [[]	^{16]} , neglig	ible hygrosco	opicity ^[1]		
Compatibility	Slow dec. >40 °C in presence of moisture ^[1] , hydrolysis by acids and bases @ RT ^[1] , doesn't react with aqueous solns. of NaHNO ₃ , Na ₂ CO ₃ or NH ₃ ^[1] , slow dec. by traces of acids and metal ions ^[1] , readily reduced by Zn/HCl ^[1] , readily reduced by aqueous and alcoholic solns. of SnCl ₂ ^[1] , readily reduced by HBr or HI solns. ^[1] , dry HMTD doesn't react with metals but in the presence of moisture facile corrosion of metals occurs ^[1]					
	Effect of solid additiv 7 days @ 30% rel. hu				@ 60°C	Cfor
	HMTD solid additive	e (15%)	Average HM	TD remainir	ng (%)	
	None 87					
	NaHCO₃		87			
	KH ₂ PO ₄ 96					
	NaOH		75			
	KO ^t Bu		80			
	Citric acid		13			
	HMTD dec. by conc. mineral acid ^[18] , rapid dec. with aq. basic solns. ^[18] , after 2 weeks storage @ high humidity complete dec. ^[18] % HMTD remaining after storage @ 60 °C for various lengths of time under various rel. humidities ^[18] :					
	Rel. humidity (%)	1 week	2 weeks	4 weeks		
	0	100	85	60		
	30	90	85	25		
	75	35	0	0		
	100	1	0	0		

Effect of humidity on crude HMTD stored @ 60 °C^[18]:

Time (days)	Dry	75% rel. humidity
0	100	_
1	100	~ 95
2	-	~ 98
3	~ 98	~82
4	-	~ 65
5	-	~ 55
6	-	~ 52
7	~ 95	~ 45

Effect of humidity on recrystallized HMTD stored @ 60 °C^[18]:

Time (days)	Dry	75% rel. humidity
0	100	_
4	100	~85
6	_	~80
8		~60
10		~ 45
11	~ 91	-
12		20
15	~ 90	-

Destabilized by ${\rm H_2O}$ and citric acid $^{[20]}$

Effect of solid additives on HTMD stability, 30% rel. humidity, 15% solid additive, 60 °C, 1 week $^{[20]}$:

Solid additive	Average % HTMD remaining	Solid additive	Average % HTMD remaining
None	87	NaOH	75
NaHCO ₃	87	K ^t BuO	80
KH ₂ PO ₄	96	Citric acid	13

Effect of humidity on HTMD, % HTMD remaining after HTMD maintained @ 60 °C @ different relative humidity^[20]:

% rel. humidity	1 week	2 weeks	4 weeks	
0	100	82	58	
30	90	85	30	
75	35	HTMD completely degraded		
100	5	HTMD completely degraded		

Effect of humidity on crude HTMD, % crude HTMD remaining after being maintained @ 60 °C with 75% relative humidity or $dry^{[20]}$:

Time (days)	Dry conditions	75% rel. humidity
0	100	_
1	100	94
2	-	97
3	97	85
4	-	65
5	-	55
6	-	54
7	95	45

Effect of humidity on recryst. HTMD, % recryst. HTMD remaining after being maintained @ 60 °C with 75% relative humidity or $dry^{[20]}$:

Time (days)	Dry conditions	75% rel. humidity
0	100	_
4	100	85
6		80
8		65
10		40
11	95	-
12		20
15	92	

Effect of additives on $T_{\rm dec.}$ of crude HMTD (DSC @ 20 K/min, sealed micro ampules) $^{[20]}$:

Sample	T _{exo onset} (°C)	T _{exo peak}	Heat released (J/g)
HMTD crude	159	161	2,100
HMTD rec 70/30 EA/CAN	168	171	3,200
crude HMTD + a	queous so	lution	
HMTD + 2 µl H ₂ O	136	140	3,100
HMTD rec 70/30 EA/ACN + 2 ul H_2O	140	143	3,200
HMTD + 2 μl pH 4 buffer	126	129	3,700
HMTD + 2 μl pH 7 buffer	134	137	3,300
HMTD + 2 μl pH 10 buffer	137	139	3,100
crude HMT	D + solvent	:S	
HMTD + 2 μl ACN	152	178	3,000
HMTD + 2 μl benzene	166	172	3,200
HMTD + 2 μl EtOH	153	164	2,800
HMTD + 2 μl EtAc	156	169	2,800
crude HMTD	+ solid aci	ds	
HMTD + 15% H ₂ PO ₄	163	165	2,100
HMTD + 15% KH phthalate	156	157	1900
HMTD 15% benzoic acid	155	160	2,600
HMTD + 15% ascorbic acid	146	148	2,000
HMTD + 15% citric acid	134	137	2,800
HMTD + 15% sulfanilic acid	122	125	2,400
HMTD + 15% O phthalic acid	143	145	2,000
crude HMTD + solid bases			
HMTD + 15% melamine	158	159	2,000
HMTD + 15% NaHCO ₃	163	164	1,300
HMTD + 15% KH ₂ PO ₄	163	165	2,100
HMTD + 15% NaOH	160	161	2,300
HMTD + 30% NaOH	162	164	2,100
HMTD + 15% K tertbutoxide	159	160	2,200

	Loss of power on exposure to moisture, but power returns to maximum after drying ^[21]
Dipole moment [Debye]	0.68 (from quantum chemical calcs.) ^[17]
ΔH° _{sub} [kcal/mol]	15.6 ^[11]
Laser sensitivity	Threshold of initiation with beam of Q-switch neodymium glass laser (λ = 1.06 μ m, τ = 30 ns) = ~ 40 mJ/cm ^{2[1]}

Brisance: could not be evaluated due to HMTD's high sensitivity. HMTD could not be pressed and underwent spontaneous explosion during sample preparation^[7].

	HMTD ^[8]	HMTD ^[9]	HMTD ^[10]
Chemical formula	C ₆ H ₁₂ N ₂ O ₆	C ₆ H ₁₂ N ₂ O ₆	C ₆ H ₁₂ N ₂ O ₆
Molecular weight [g mol ⁻¹]	208.17	208.17	208.17
Crystal system	Rhombohedral	Rhombohedral	Rhombohedral
Space group	R 3 m (no. 160)	R 3 (no. 146)	R 3 m (no. 160)
a [Å]	10.417(5)	6.4603(2)	10.3982(4)
<i>b</i> [Å]	10.417(5)	6.4603(2)	10.3982(4)
c [Å]	6.975(3)	6.4603(2)	6.9332(4)
α [°]	90	107.80(3)	90
β [°]	90	107.80(3)	90
γ[°]	120	107.80(3)	120
<i>V</i> [ų]	655.481	219.461	649.203
Z	3	1	3
$\rho_{\rm calc}$ [g cm ⁻³]	1.582	1.575	1.597
<i>T</i> [K]	21 °C	295	150

- [1] M. A. Ilyushin, I. V. Tselinsky, Centr. Europ. J. Energ. Mat., 2012, 9, 293–327.
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [3] M. H. Lefebvre, B. Falmagne, B. Smedts, Sensitivies and Performances of Non-Regular Explosives, in Final Proceedings for New Trends in Research of Energetic Materials, NTREM 7, S. Zeman (ed.), 7th Seminar, 20th–22nd April 2004, Pardubice, pp. 157–164.
- [4] R. Matyáš, J. Šelešovský, T. Musil, J. Hazard. Mater., 2012, 213–214, 236–241.
- [5] N.-D. H. Gamage, "Synthesis, Characterization, and Properties of Peroxo-Based Oxygen-Rich Compounds For Potential Use As Greener High Density Materials", 2016, Wayne State University Dissertations, Paper 1372.
- [6] P. W. Cooper, *Explosives Engineering*, Wiley-VCH, New York, **1996**.
- [7] M. H. Lefebvre, B. Falmagne, B. Smedts, Sensitivies and Performances of Non-Regular Explosives, in Final Proceedings for New Trends in Research of Energetic Materials, S. Zeman (ed.), 7th Seminar, 20th–22nd April 2004, Pardubice, pp. 164–173.

- [8] W. P. Schaefer, J. T. Fourkas, B. G. Tiemann, J. Am. Chem. Soc., 1985, 107, 2461-2463.
- [9] J. L. Flippen-Anderson, R. D. Gilardi, C. F. George, *American Crystallographic Association, Abstracts Papers (Winter)*, **1985**, *13*, 53b.
- [10] A. Wierzbicki, E. A. Salter, E. A. Cioffi, E. D. Stevens, J. Phys. Chem. A, 2001, 105, 8763-8768.
- [11] T. M. Klapötke, T. Wloka, *Peroxide Explosives*, Ch. 12 in *Patai's Chemistry of Functional Groups, The Chemistry of Peroxides*, *Volume 3* Part 1, **2014**, A. Greer, J. F. Liebman (eds.) Wiley.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [14] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [15] V. V. Kuzmin, M. Y. Solov'ev, Y. B. Tuzkov, G. D. Kozak, Centr. Eur. J. Energet. Mater., 2008, 5, 77–85.
- [16] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2013.
- [17] M. J. Aernecke, T. Mendum, G. Geurtsen, A. Ostrinskaya, R. P. Kunz, J. Phys. Chem., 2015, 119A, 11514–11522.
- [18] J. C. Oxley, J. L. Smith, M- Porter, L. McLennan, K. Colizza, *Synthesis and Degradation of Hexamethylene Triperoxide Diamine*, ICT **2015**, Karlsruhe, Germany, pp. 16-1–16-12.
- [19] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 451–453.
- [20] J. C. Oxley, J. L. Smith, M. Porter, L. McLennan, K. Colizza, Y. Zeiri, R. Kosloff, F. Dubnikova, Propellants, Explosives, Pyrotechnics, 2016, 41, 334–350.
- [21] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [22] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Hydrazine

Name [German, acronym]: Hydrazine [hydrazin]

 $\label{eq:main potential} \mbox{Main (potential) use:} \qquad \mbox{Propellants for flight control rockets} \mbox{$^{[1]}$, component of}$

hypergolic systems^[8], fuel for some high-performance

rockets^[14]

Structural formula:

 H_2N —— NH_2

	Hydrazine
Formula	H_4N_2
Molecular mass [g mol ⁻¹]	32.05 (50.06 hydrate)
Appearance at room temperature	Colorless liquid with ammonia odor ^[10] , hydrate is a fuming colorless liquid ^[10] , clear fuming liquid ^[13] , colorless, fuming hygroscopic liquid with fishy odor ^[14] , colorless, oily liquid that fumes in air ^[15] , fuming, refractive liquid with faint odor (hydrazine hydrate) ^[15]
FS [N]	Completely insensitive ^[7]
ESD [J]	Completely insensitive ^[7]
N [%]	87.42 (55.95 hydrate)
Ω(CO ₂) [%]	-99.8
<i>T</i> _{m.p.} [°C]	2.01 ^[1] , 2.0 ^[2, 4, 15] , 1.54 ^[8] , 1.3 (freezing point) ^[10] , 1.4 (freezing point) ^[11] , -40 (freezing point of hydrate) ^[10] , 2 (freezing point) ^[13] , 2 ^[14] , -517 (hydrazine hydrate) ^[15] , 2.0 (freezing point) ^[16]
Τ _{b.p.} [°C]	$ \begin{array}{l} 113.5^{[8,10,13]},118.5\;(\text{hydrate})^{[10]},113^{[11]},114^{[14]},\text{bp}_{760}=113.5^{[15]},\\ \text{bp}_{71}=56^{[15]},\text{bp}_{5\text{atm.}}=170^{[15]},\text{bp}_{10\text{atm.}}=200^{[15]},\text{bpt}_{20\text{atm.}}=236^{[15]},\\ \text{bp}_{760}=118-119\;(\text{hydrazine hydrate})^{[15]},\text{bp}_{26}=47\;(\text{hydrazine hydrate})^{[15]} \end{array} $
T _{dec.} [°C]	199.85 ^[3]
$ ho$ [g cm $^{-3}$]	$\begin{array}{l} 1.004^{[1,8]},1.0065(@295.45\text{K})^{[4]},1.008^{[5]},\text{sp. gr.}=1.004\\ (@25^{\circ}/4^{\circ})^{[7]},1.008(@20^{\circ}\text{C})^{[11]},1.011(@\text{TMD},\text{liq. with }0.7\%\\ \text{H}_2\text{O})^{[12]},1.00^{[14,16]},d^{-5}{}_4=1.146^{[15]},d^{0}{}_4=1.0253^{[15]},d^{2}{}_4=1.024^{[15]},d^{15}{}_4=1.011^{[15]},d^{25}{}_4=1.0036^{[15]},d^{35}{}_4=0.9955^{[15]},1\text{gallon of commercial hydrazine weighs }8.38\text{lbs}^{[15]},n^{22.3}{}_{D}=1.46979^{[15]},n^{35}{}_{D}=1.46444^{[15]},d^{21}=1.03\text{(hydrazine hydrate)}^{[15]},n^{20}{}_{D}=1.42842\text{(hydrazine hydrate)}^{[15]} \end{array}$
Heat of formation	1,580 kJ/kg (enthalpy of form.) ^[1] , 376 cal/g ^[5] , 12.05 kcal/mol (@ 298.15 K) ^[11] , 50.63 kJ/mol (enthalpy of form.) ^[8, 14] , 46.23 kJ/mol (heat of form., with 0.7% $\rm H_2O)^{[12]}$

Heat of combustion	148.635 kcal/mol (liq.) ^[7]	
	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,388	
T _{ex} [K]	1,864	
p _{C-J} [GPa]	13.2	
VoD [m s ⁻¹]	7,700	
V ₀ [L kg ⁻¹]	1,347	
<i>I</i> _s [s]	294.0 ^[16] , $I_d = 444.0^{[16]}$	

Critical temperature [°C]	380 ^[11, 15]
Critical pressure [atm]	145 ^[11] , 14 atm. ^[15]
Initiating efficiency	liquid cannot be detonated by No. 8 blasting cap ^[10] , vapors sparked @ 1000 °C will explode ^[10]
5 s explosion T[°C] Detonating T[°C]	232 ^[10]
Thermal stability	Stable under the extremes of heat and cold experienced on long-term storage ^[11] , freezing does not affect its chemical properties ^[11] , in the presence of catalysts such as Cu, Mo or iron oxide dec. may occur @ RT ^[11] , explodes during distillation if traces of air are present ^[15] , can be stored for years if sealed in glass and stored in a cool, dark place ^[15]
Vapor pressure [atm. @ °C]	1.9 kPa @ 25 °C ^[8] , 0.204 psi @ 20 °C ^[11] , 2.806 psi @ 70 °C ^[11]
Viscosity [cp]	0.9736 @ 20 °C ^[11]
Burn rate [mm/s]	Burns with violet flame ^[15]
Solubility [g/mL]	Extremely soluble in water ^[10] , soluble in EtOH ^[10] , very soluble in water ^[14] , miscible with water, MeOH, EtOH, PrOH, ^[15] , forms azeotropic mixture with water ^[15] , hydrazine hydrate = miscible with water and EtOH, but insoluble in CHCl ₃ and Et ₂ O ^[15]
Hygrosopicity	Hygroscopic ^[13, 14]
Photosensitivity	Affected by UV ^[15]
Compatibility	Attacks rubber, cork, mild steel, some common metals ^[10] , generally stored in stainless steel tanks and drums, or PVC-lined or coated drums ^[10] , glass, iron or aluminum containers are not used for the hydrate ^[10] , in the presence of catalysts such as Cu, Mo or iron oxide dec. may occur @ RT ^[11] , compatible with stainless steel (303, 304, 316, service limited to 160°F, 321 and 347), Ni Al (3003, 5052, 5154, 1060 and 6061), Teflon, high-density polyethylene and unplasticized Kel-F ^[11] , some compatibility with Q-Seal lubricant ^[11] ,

	thermodynamically unstable and readily decomposes on some metal surfaces $e.g.$ rough stainless steel ^[13] , fumes in air ^[15] , hydrazine hydrate = very strong base, very corrosive, attacks glass, rubber, cork ut not stainless steel, V ₂ A steel, Allegheny stainless 304 and $347^{[15]}$, Mo steels such as Alleghany stainless 316 should not be used for hydrazine hydrate ^[15]
Decomposition activation energy [kJ/mol]	38.3 (gold pan, Kissinger method) ^[9] , 140.5 (glass capillary, Kissinger method) ^[9] , 41.0 (gold pan, Ozawa method) ^[9] , 140.7 (glass capillary, Ozawa method) ^[9]
Heat of vaporization [kcal/mol]	10.7 @ 25.0 °C ^[11]
Heat of fusion [kcal/mol]	3.025 (latent heat of fusion (mp)) ^[15]
Specific heat [cal/g]	0.738 @ 25 °C ^[11]
Flash point [°C]	38 ^[14] , 52 (flash and fire point) ^[15]
Autoignition T [°C]	270 ^[14]
Dipole moment	1.83-1.90 ^[15]
Dielectric constant	51.7 (25°) ^[15]
K ₁	~9 × 10 ⁻⁷ (@ 25°) ^[15]

	Hydrazine ^[6]
Chemical formula	H ₄ N ₂
Molecular weight [g mol ⁻¹]	32.05
Crystal system	Monoclinic
Space group	P 2 ₁ / m (no. 11)
a [Å]	3.56
<i>b</i> [Å]	5.78
c [Å]	4.53
α [°]	90
β [°]	109.5
γ [°]	90
<i>V</i> [ų]	
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	
Τ[K]	

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 183–184.
- [2] "Hazardous Substances Data Bank" data were obtained from the National Library of Medicine (US).
- [3] A. Plugatyr, T. M. Hayward, I. M. Svishchev, Journal of Supercritical Fluids, 2011, 55, 1014–1018.
- [4] L. D. Barrick, G. W. Drake, H. L. Lochte, J. Am. Chem. Soc., 1936, 58, 160–162.
- [5] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [6] R. L. Collin, W. N. Lipscomb, Acta Cryst., 1951, 4, 10–14.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 7*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [8] U. Schaller, T. Keicher, J. Hürttlen, V. Weiser, H. Krause, S. Schlechtriem, *Investigation of Gelled Ionic Liquid as Hypergolic Fuels*, ICT **2011**, Karlsruhe, Germany, pp. 87-1–87-7.
- [9] T. Mitsuya, W. Kowhakul, M. Kumasaki, T. Mizutani, M. Arai, *The Effect of Gold on the Thermal Decomposition of N*₂H₄, ICT **2006**, Karlsruhe, Germany, pp. 159-1–159-5.
- [10] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [11] P. J. von Doehren, *Propellant Handbook*, AFRPL-TR-66-4, Air Force Rocket Propulsion Laboratory Research and Technology Division, United States Air Force, California, USA, January **1966**.
- [12] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175–183.
- [13] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [14] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to 0*, Pyrotechnic Reference Series No.5, Journal of Pyrtocehnics Inc., Whitewater, Colorado, USA, **2012**, p. 611.
- [15] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [16] R. E. Bell, Propellant and Rocket Propulsion Method Employing Hydrazine with Amino Tetrazoles, US Patent 3,171,249, 29th November 1961.

Hydrazine 5,5'-bitetrazole-1,1'-diolate

Name [German, acronym]: Hydrazine 5,5'-bitetrazole-1,1'-diolate [HA.BTO]

Main (potential) use: Secondary explosive

Structural formula:

	HA.BTO	
Formula	$C_2H_6N_{10}O_2$ $[N_2H_6]^{2+}[C_2N_8O_2]^{2-}$	
Molecular mass [g mol ⁻¹]	202.17	
Appearance at RT		
IS [J]	28	
FS [N]	120	
N [%]	69.3	
Ω(CO ₂) [%]	-39.5	
T _{m.p.} [°C]		
T _{dec.} [°C]	207	
$\rho [\mathrm{g} \mathrm{cm}^{-3}]$	1.923 (@ 153 K), 1.913 (@ 298 K)	
Heat of formation	425.6 kJ/mol (Δ _f H°)	
	Calcd. (K-J)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
T _{ex} [K]		
p _{C-J} [kbar]	361	278 ^[10]
VoD [m s ⁻¹]	8931 (@ TMD)	
V ₀ [L kg ⁻¹]		

3-Hydrazinium-4-amino-1H-1,2,4-triazolium di(5-nitramino-tetrazolate)

Name [German, acronym]: 3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium di

(5-nitramino-tetrazolate), [HATr.2NATZ]

Main (potential) use: Secondary explosive

	HATr.2NATZ		
Formula	C ₄ H ₁₀ N ₁₈ O ₄ , [C ₂ H ₈ N ₆] ²⁺ [CHN ₆ O ₂]	C ₄ H ₁₀ N ₁₈ O ₄ , [C ₂ H ₈ N ₆] ²⁺ [CHN ₆ O ₂] ⁻ ₂	
Molecular mass [g mol ⁻¹]	374.11		
Appearance at RT			
IS [J]	4		
N [%]	67.3		
Ω(CO ₂) [%]	-38.49	-38.49	
T _{dec.} [°C]	211		
ρ [g cm ⁻³]	1.755 (contains crystal water), 1.795 (@ 298 K)		
Heat of formation	176.1 kJ/mol (Δ <i>H</i> _f °)		
	Calcd. (K-J)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]	286		
VoD [m s ⁻¹]	8039 (@ TMD)		
V ₀ [L kg ⁻¹]			

3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium di(5-nitro-tetrazolate)

Name [German, acronym]: 3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium

di(5-nitrotetrazolate) [HATr.2NTZ]

Main (potential) use: Secondary explosive

$$\begin{array}{c} + \\ NH_3 \\ N \longrightarrow NH_2 \end{array} \qquad \begin{array}{c} N \longrightarrow N \\ N \longrightarrow NO_2 \\ N \longrightarrow N \longrightarrow NO_2 \end{array}$$

	HATr.2NTZ			
Formula	$C_4H_8N_{16}O_4$, $[C_2H_8N_6]^{2+}[CN_5O_2]_2^{-}$	C ₄ H ₈ N ₁₆ O ₄ , [C ₂ H ₈ N ₆] ²⁺ [CN ₅ O ₂] ₂ ⁻		
Molecular mass [g mol ⁻¹]	344.09			
Appearance at RT				
IS [J]	4			
N [%]	65.11			
Ω(CO ₂) [%]	-37.20			
T _{dec.} [°C]	188			
ρ [g cm ⁻³]	1.711 (@ 298 K)			
Heat of formation	507.0 kJ/mol (ΔH _f °)			
	Calcd. (K-J)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]	253			
VoD [m s ⁻¹]	7,665 (@ TMD)			
V ₀ [L kg ⁻¹]				

3-Hydrazinium-4-amino-1H-1,2,4-triazolium 1H,1'H-5,5'-bitetrazole-1,1'-diolate

Name [German, acronym]: 3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium 1*H*,1'*H*-5,5'-

bitetrazole-1,1'-diolate [HATr.BTO]

Secondary explosive Main (potential) use:

	HATr.BTO			
Formula	$C_4H_8N_{14}O_2$, $[C_2H_8N_6]^{2+}[C_2N_8O_2]^{2-}$	$C_4H_8N_{14}O_2$, $[C_2H_8N_6]^{2+}[C_2N_8O_2]^{2-}$		
Molecular mass [g mol ⁻¹]	284.20			
Appearance at RT				
IS [J]	18			
N [%]	69.0			
Ω(CO ₂) [%]	-56.30			
T _{dec.} [°C]	249			
$ ho$ [g cm $^{-3}$]	1.722 (@ 298 K)			
Heat of formation	587.7 kJ/mol (Δ <i>H</i> _f °)			
	Calcd. (K-J)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]	224			
VoD [m s ⁻¹]	7,206 (@ TMD)			
V ₀ [L kg ⁻¹]				

3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium Nitrotetrazolate

Name [German, acronym]: 3-Hydrazinium-4-amino-1*H*-1,2,4-triazolium

nitrotetrazolate [HATr.NTZ]

Main (potential) use: Secondary explosive

$$NH_2$$
 $+$
 $+$
 $N-NH_2$
 $N-NH_2$

	HATr.NTZ		
Formula	C ₃ H ₇ N ₁₁ O ₂ , [C ₂ H ₇ N ₆] ⁺ [CN ₅ O ₂] ⁻		
Molecular mass [g mol ⁻¹]	284.20		
Appearance at RT			
IS [J]	8		
N [%]	61.4		
Ω(CO ₂) [%]	-42.22		
T _{dec.} [°C]	249		
$\rho [\mathrm{g} \mathrm{cm}^{-3}]$	1.657 (@ 298 K)		
Heat of formation	366.8 kJ/mol (ΔH _f °)		
	Calcd. (K-J) Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]	194		
VoD [m s ⁻¹]	6,720		
V_0 [L kg ⁻¹]			

3-Hydrazino-4-amino-2H-1,2,4-triazolium 1H,1'H-5,5'-azotetrazole-1,1'-diolate

Name [German, acronym]: 3-Hydrazino-4-amino-2*H*-1,2,4-triazolium 1*H*,1'*H*-5,5'-

azotetrazole-1,1'-diolate [2HATr.DHazo]

Main (potential) use: Secondary explosive

	2HATr.DHazo			
Formula	C ₆ H ₁₄ N ₂₂ O ₂ , [C ₂ H ₇ N ₆] ₂ ⁺ [C ₂ N ₁₀	$C_6H_{14}N_{22}O_2$, $[C_2H_7N_6]_2^+[C_2N_{10}O_2]^{2-}$		
Molecular mass [g mol ⁻¹]	426.17			
Appearance at RT				
IS [J]	25			
N [%]	72.28			
Ω(CO ₂) [%]	-63.82	-63.82		
T _{dec.} [°C]	183	183		
ρ [g cm ⁻³]	1.683 (@ 298 K)	1.683 (@ 298 K)		
Heat of formation	768.7 kJ/mol (ΔH _f °)	768.7 kJ/mol (Δ <i>H</i> _f °)		
	Calcd. (K-J)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]	244			
VoD [m s ⁻¹]	7,577 (@ TMD)			
V ₀ [L kg ⁻¹]				

Hydrazinium azide

Name [German, acronym]: Hydrazine azide, [Hydrazinium azid]
Main (potential) use: Has found use in rocket fuel technology^[1]

Structural formula:

 $N_2H_5^+N_3^-$

	Hydrazinium azide			
Formula	H ₅ N ₅	1		
Molecular mass [g mol ⁻¹]	75.09			
Appearance at RT	white solid			
IS [J]	Not sensitive ^[1]			
FS [N]				
ESD [J]				
N [%]	93.3			
Ω(CO ₂) [%]	-8.54			
T _{m.p.} [°C]	~70.5 ^[1]			
T _{dec.} [°C]	~90 ^[1]			
ρ [g cm ⁻³]	1.407 (X-ray) ^[2]	1.407 (X-ray) ^[2]		
Heat of formation				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Thermal stability	Explodes on heat shock ^[1]			
Solubility [g/mL]	190 g/100 mL H $_2$ O @ 23 °C $^{[1]}$, solubility: 6% in MeOH, 1% in EtOH $^{[1]}$, insoluble in Et $_2$ O $^{[1]}$			
Hygroscopicity	Very hygroscopic ^[1]			
Flame test	Burns in flame with explosion ^[1]			

	Hydrazinium azide ^[2]
Chemical formula	N ₅ H ₅
Molecular weight [g mol ⁻¹]	75.07
Crystal system	Monoclinic
Space group	P2 ₁ /b
a [Å]	5.663(2)
<i>b</i> [Å]	12.436(3)
c [Å]	5.506(2)
α [°]	90
β [°]	114.0 (0.1)
γ [°]	90
<i>V</i> [ų]	354.17
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.407
<i>T</i> [K]	

^[1] Energetic Materials 1: Physics and Chemistry of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.

^[2] G. Chiglien, J. Etienne, S. Jaulmes, P. Laruelle, *Acta Cryst.*, **1974**, *B30*, 2229–2233.

Hydrazinium nitrate

Name [German, acronym]: Hydrazine nitrate, hydrazine mononitrate

[hydrazinnitrat, HN, HzN]

Main (potential) use: Due to its low mpt. it can be used to prepare fusible

mixtures with AN^[18]

Structural formula:

 $N_2H_5^+ NO_3^-$

	Hydrazinium nitrate		
Formula	H ₅ N ₃ O ₃		
Molecular mass [g mol ⁻¹]	95.06		
Appearance at RT	Exists in two crystalline forms: (i) stable form and (ii) labile form ^[18]		
IS [J]	7.4 ^[1] , 50% probability @ 175 kg/cm (Bruceton method) ^[9] , 32 kg/cm (ERL, type 12 tool) ^[9] , 50 kg/cm (ERL, type 12 tool) ^[9] , similar to that of tetryl ^[18]		
FS [N]	similar to that of HMX ^[18]		
N [%]	44.21		
Ω(CO ₂) [%]	8.4		
T _{phase transition} [°C]	β- converts to α-form @ room temp. $(\Delta H_{transition} = 2.0 \text{ kcal/mol})^{[9]}$, exists in two crystalline forms: (i) stable form and (ii) labile form ^[18]		
T _{m.p.} [°C]	70.5 ^[2] , 62 (β -form) ^[9] , 70 (α -form) ^[9] , 70.7 (stable crystalline form) ^[18] , 62.1 (labile crystalline form) ^[18]		
T _{dec.} [°C]	229 ^[1] , dec. begins @ 180, rapidly increases above 240 and becomes explosive @ 270 ^[9]		
ho [g cm ⁻³]	1.64 ^[1] , 1.549 (@ 348.15 K) ^[2] , 1.661 ^[9] , 1.685 (@ TMD, liq.) ^[21] , 1.64 (compressed under pressure of 3,000 kg/cm ²) ^[18] $\rho \text{ at different pressures}^{[9]}:$		
	ρ (g cm ⁻³) pressure (kg/sq cm)		
	1.08 34		
	1.18 88		
	1.28 136		
	1.43 204		
	1.49 306		
	1.58 425		
	1.616 680		
	1.635 1020		
	1.64 1700		

Heat of formation	$ \begin{array}{l} -2,590.68\pm 10.12^{[3]},-2,597\ \text{kJ/kg}\ (\text{enthalpy of form.})^{[1]},-60.5\ \text{kcal/mol}\ (\Delta H_f)^{[9]},\ 56.7\ \text{kcal/kg}\ (\Delta H_f^\circ,\ \varpi\ C')^{[9]},\ 59.8\ \text{kcal/kg}\ (\Delta H_f^\circ,\ \varpi\ C^\circ)^{[9]},\ -56.86\ \text{kcal/mol}\ (\Delta H_f^\circ,\ \text{exptl.})^{[17]},\ -55.30\ \text{kcal/mol}\ (\Delta H_f^\circ,\ \text{exptl.})^{[17]},\ -58.86\ \text{kcal/mol}\ (\Delta H_f^\circ,\ \text{exptl.})^{[19]},\ -87.37\ \text{kcal/mol}\ (\Delta H_f^\circ,\ \text{calcd.})^{[19]},\ -58.86\pm 0.23\ \text{kcal/mol}\ (\Delta H_f^\circ,\ \text{exptl.})^{[20]},\ -246.9\ \text{kJ/mol}^{[21]},\ -247.0\ \text{kJ/mol}\ (\text{enthalpy of form.,\ calcd.},\ \text{emp.})^{[23]},\ -240.4\ \text{kJ/mol}\ (\text{enthalpy of form.,\ calcd.},\ \text{S-D\ method})^{[23]} \end{array} $			
Heat of combustion	112.1 kcal/kg (ΔH_{c} (ු C ^V) ^[9] , 111.1 kcal/kg	(ΔH _c @ C ^P) ^[9]	
	Calcd. (EXPLO5 6.04)	alcd. Lit. values Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,875	4,841 (calcd. K-J) ^[4]	4,979.8 ± 5.4 ^[3]	
		891 cal/g ^[15]	4,827 [H ₂ O (l)] ^[1]	
		3.87 MJ/kg (heat of explosion) ^[22]	3,735 [H ₂ O (g)] ^[1]	
T _{ex} [K]	2,682	1,218 (@ 1.68 g cm ⁻³ , calcd.) ^[13]		
p _{c-J} [GPa]	267	136 (calcd. K-J) ^[5]		
		290 (@ 1.68 g cm ⁻³ , calcd.) ^[13]		
		319 (@ 1.626 g cm ⁻³ , calcd., <i>Xiong</i>) ^[15]		
VoD [m s ⁻¹]	8,583 (@ 1.64 g cm ⁻³ , $\Delta_f H = -246.3 \text{ kJ}$	8,460 (@ 1.68 g cm ⁻³) ^[13]	8,500 (@ 1.6 g cm ⁻³ , pressed, 2 ½ in diameter cartridge, rotating mirror camera) ^[9]	
	Mol ⁻¹)	8,400 (@ 1.64 g cm ⁻³ (TMD), calcd. R-P method) ^[14]	5,640 (@ 1.25 g cm ⁻³ (max. value), 30 mm diameter cartridge, 170 mm long) ^[9]	
		8,980 (@ 1.64 g cm ⁻³ (TMD), calcd. <i>Aizenshtadt</i>) ^[14]	8,510 (@ 1.59 g cm ⁻³ , 6.3 cm diameter charge of pressed HzN) ^[9]	
			8,690 (@ 1.60 g cm ⁻³) ^[1]	
			8,500 (@ 75 °C (molten HzN), thin-film expts.) ^[9]	

		8,500 (@ 1.64 g cm ⁻³ (TMD), calcd., K-J) ^[14] 8,685 (@ 1.626 g cm ⁻³ , calcd. <i>Xiong</i>) ^[15]	5,200 (@ 1.6 g HzN, 1 in diamond rotating mirror 5,600 (@ 1.6 g HzN, 1 ⁵ / ₈ in dia cartridge) ^[9] 7,980 (@ 1.63	eter cartridge, camera) ^[9] cm ⁻³ , pressed ameter
			8,360 (@ 1.63	g cm ⁻³) ^[10]
			8,691 (@ 1.62	6 g cm ⁻³) ^[6, 15]
			8,690 (@ 1.62	6 g cm ⁻³) ^[7]
			HzN is readily of by an initiating cartridge, 30 m placed in cardb case ^[18] :	cap, VoD of m diameter
			ρ (g/cm ³)	VoD (m/s)
			1.00	3,900
			1.20	5,200
			1.25	5,640
			1.30	5,440
			1.45	5,000
			1.57	3,250
$V_0 [{\sf L} {\sf kg}^{-1}]$	1,093		1,001 ^[1,8]	

	HN ^[11] *	HN ^[12] *	
Chemical formula	H ₅ N ₃ O ₃	H ₅ N ₃ O ₃	
Molecular weight [g mol ⁻¹]	95.06	95.06	
Crystal system	Monoclinic	Monoclinic	
Space group	P 2 ₁ / n (no. 14)	P 2 ₁ / n (no. 14)	
a [Å]	7.9649(4)	8.015	
<i>b</i> [Å]	5.6569(3)	5.725	
c [Å]	8.1221(3)	8.156	

α [°]	90	90
β [°]	91.340(3)	92.3
γ [°]	90	90
<i>V</i> [Å ³]	365.85	373.94
Z		
$ ho_{ m calc}$ [g cm ⁻³]		
<i>T</i> [K]		

^{*} Two polymorphs are known: α-HN (stable) and β-HN (unstable)[9]

Critical diameter [cm]	Increases with increasing water content ^[9]
Trauzl test	120.4 ± 0.5 (cf. PA = 100) ^[9]
Brisance	82 (cf. TNT = 100) ^[9]
Gap test	Card gap sensitivity = 6.25 cm ^[9]
Burn rate [mm/s]	Supports combustion in the open air but flame was extinguished on removal of ignition source $^{[9]}$, addition of 10 wt. % $K_2Cr_2O_7$ necessary to achieve stable burning $^{[9]}$
Initiation sensitivity	Non-compressed HN with 0.5% moisture content detonated with cap containing 0.25 g MF ^[9] , compressed to ρ = 1.60 g cm ⁻³ required 1.5 g MF for detonation ^[9]
Flame T [°C]	2400 (equilibrium value of detonations) ^[9]
Compatibility	Ignites with permanganate, chromate or peroxides ^[9] , ignites with metallic Zn, Cu or their oxides, sulfides, nitrides or carbides at slightly above HN mpt. ^[9]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 184.
- [2] R. P. Seward, J. Am. Chem. Soc., 1955, 77, 905–907.
- [3] T. S. Kon'kova, Y. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob'ev, *Russian Chemical Bulletin, International Edition*, **2009**, *58*, 2020–2027.
- [4] T. M. Klapötke, C. M. Rienäcker, H. Zewen, ZAAC, 2002, 628, 2372–2374.
- [5] V. I. Pepekin, Doklady *Physical Chemistry*, **2009**, *429*, 227–228.
- [6] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [10] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th–11th April 2014, pp. 24–37.
- [11] M. S. Grigoriev, P. Moisy, C. D. Auwer, I. A. Charushnikova, Acta Cryst., 2005, 61E, i216-i217.
- [12] Y. Xie, J. Sun, Z. Mao, Z. Hong, B. Kang, Chinese J. Energet. Mater., 2008, 16, 73-76.

- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [14] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [15] X. Xiong, J. Energet. Mater., 1985, 3:4, 263-277.
- [16] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [17] L. Kostikova, Y. Matyushin, V. Playulin, T. Pivina, *The Enthalpy of Formation Study of Nitrate and Perchlorate Salts*, ICT **1999**, Karlsruhe, Germany, pp. 76-1–76-7.
- [18] T. Urbański, Ch. 19, in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [19] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1–44-15.
- [20] Y. N. Matyushin, T. S. Kon'kova, A. B. Vorob'ev, Y. A. Lebedev, *Thermochemical Properties of Salts of Dinitroamide*, ICT **2005**, Karlsruhe, Germany, pp. 92-1–92-9.
- [21] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175-183.
- [22] N. Kubota, *Propellants and Explosives Thermochemical Aspects of Combustion*, Wiley-VCH, **2002**.
- [23] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.

Hydrazinium nitroformate

Name [German, acronym]: Hydrazinium nitroformate [HNF] *

Main (potential) use: Possible new clean-burning, high-energy oxidizer

for solid rocket propellants; possible oxidizer in high burn rate, high $I_{\rm sp}$ and thixotropic propellants^[7], possible energetic oxidizer in high-performance, Cl-free solid propellant formulations^[10], HNF-based propellants suggested as possible new storable composite propellants^[10, 14], proposed as oxidizer in solid propellants since early 1970s^[11], possible likely

substitute for AP^[17]

$$N_2H_2^+ C(NO_2)_3^-$$

^{*}There are four commercial grades of HNF: HNF-S, HNF-C, HNF-E and HNF-P (see table at end of section for details)^[14]

	HNF
Formula	$CH_5N_5O_6$
Molecular mass [g mol ⁻¹]	183.08
Appearance at RT	Yellow, needle-shaped solid on recryst. from MeOH/CTC $^{[17,18]}$, yellow rods (HNF-P) $^{[19]}$, yellow needles (HNF-E) $^{[19]}$, yellow facetted dry rods (HNF-C) $^{[19]}$, diamond-shaped rods (HNF-S) $^{[19]}$
IS [J]	$4^{[1]}, H_{50\%} = 10 \text{ cm } (2.5 \text{ kg mass})^{[3]}, 15^{[4]}, 1.6 \text{ (BAM, Julius-Peters)}^{[6]}, \\ 2-5 \text{ Nm}^{[9]}, 2-3^{[10]}, 2 \text{ Nm } (\text{coarse HNF})^{[9]}, 4 \text{ Nm } (\text{ground HNF})^{[9]}, 2-4 \text{ Nm } (\text{HNF-C})^{[14]}, 2-4 \text{ Nm } (\text{HNF-S})^{[14]}, 2-4 \text{ Nm } (\text{HNF-E})^{[14]}, <0.5-2.5 \text{ Nm } (\text{ICI recrystallized HNF})^{[14]}, 3 \text{ (HNF-1, pilot-scale, isonated with ultrasound amplitude of 20 $\mu\text{m}, X_{\text{avg}} = 300 \ \mu\text{m}, L/D_{\text{avg}} = 2.6)^{[14]}, 2 \text{ (HNF-2, pilot scale, isonated with ultrasound amplitude of 30 $\mu\text{m}, X_{\text{avg}} = 320 \ \mu\text{m}, L/D_{\text{avg}} = 2.8)^{[14]}, 3 \text{ (BAM, HNF-C9})^{[15]}, 2-5 \text{ (general value for HNF batches)}^{[15]}, 2 \text{ Nm } \text{ (measured at ICT, } 98.8-99.6 \text{ mass } \% \text{ purity})^{[16]}, 2-5 \text{ Nm } \text{ (Aerospace Propulsion Products, Netherlands data, } 98.8-99.6 \text{ mass } \% \text{ purity})^{[16]}, 2-20 \text{ Nm } \text{ (BAM, range of results)}^{[18]}, 24.7 \text{ cm } \text{ (needles, BAM, Dixon's up and down method, } 50\% \text{ probability})^{[18]}, 11.6 \text{ cm } \text{ (granules, BAM, Dixon's up and down method, } 50\% \text{ probability})^{[18]}, 7.5 \text{ Nm}^{[18]}, 2-5 \text{ (BAM)}^{[19]}, \\ \text{Fol} = 33 \text{ (Rotter impact tester)}^{[19]}, 4 \text{ (BAM)}^{[20]}, 2-4^{[20]}$

	(sonocrystallization) ^[10] Ultrasound intensity (Tip amplitude, mu) 0 0.5 5.0	IS (J) 2 3 3	g the cooling crystallization of HNF
FS [N]	(HNF-C) ^[14] , 16–36 (HNF HNF) ^[14] , 12–14 (HNF-1, 20 μ m, X_{avg} = 300 μ m, L with ultrasound amplitu 24 (HNF-3, isonated wit L/D_{avg} = 3.3) ^[14] , 16 (BAI batches) ^[15] , 16 (measu (Aerospace Propulsion purity) ^[16] , 12–36 (BAM (needles) ^[18] , class 3 (gr (rotary friction tester) ^[15]	$^{-5}$) ^[14] , 16–3 pilot scale, $^{\prime}$ / D_{avg} = 2.6) ^{[1} ude of 30 µm th ultrasoun M, HNF-C9) ^[1] red at ICT, 9: Products, N-range of reservanules) ^[18] , 28 (BAM) ^[1] , 28 (BAM) ^[1]	NF) ^[9] , 20 (ground HNF) ^[9] , 16–36 16 (HNF-E) ^[14] , 16–31 (ICI recrystallized isonated with ultrasound amplitude of 14], 12–16 (HNF-2, pilot-scale, isonated n, $X_{avg} = 320 \mu m$, $L/D_{avg} = 2.8$) ^[14] , d amplitude of 20 μm , $X_{avg} = 320 \mu m$, 15], 12–36 (general value for HNF 8.8–99.6 mass % purity) ^[16] , 18–36 etherlands data, 98.8–99.6 mass % sults given in literature) ^[18] , class 3 24 ^[18] , 12–36 (BAM) ^[19] , FoF = 1.3–1.5 20], 16–36 ^[20] g the cooling crystallization of HNF
	Ultrasound intensity (tip amplitude, µ)	FS (N)	
	0	10	
	0.5	14	
	5.0	18	
	6.0	20	
ESD [J]	ignition @ 0.726 ^[18] , 1.7 down method, 50% pro	71 (electric : bability) ^[18] ,	ground HNF) ^[9] , ignition @ 4.5, no spark test, needles, Dixon's up and , 1.81 (electric spark test, granules, probability) ^[18] , 726–4,500 mJ ^[19]
N [%]	38.25		
Ω(CO ₂) [%]	13.11		

_	
1	106.1
m.n.	ı ~ı

128 (DSC @ 10 °C/min)^[1]. 115–120^[6]. ≥116 (HNF-C, measured by black body radiation app.)^[14], ≥115 (HNF-S, measured by black body radiation app.)^[14], ≥115 (HNF-E, measured by black body radiation app.)^[14], 124 (with dec.) (ICT-thermochemical database)^[16], 120 (purity>98%)^[17], values in range of 110-124 reported depending on the HNF purity^[18], 123 (microthermocouple)^[18], 128 (DSC @ 10 $^{\circ}$ C/min)^[20], 128^[20]

Onset of melting (DSC @ 10 °C/min, N₂ atmosphere, open Al cups)^[15]: 131.0 (HNF-C9)^[15], 130.8 (HNF-E8)^[15]

Onset of melting (TG/DTA @ 10 °C/min, N₂ atmosphere, open Al cups)^[15]: 131 (HNF-C9)^[15], 132 (HNF-E8)^[15]

Effect of using hydrazine hydrate (HZH) instead of purified anhydrous hydrazine (PAH) on HNF produced^[19]:

HZ used	I	PAH			100% HZH			
T _m (°C)		>111	115.2	116.2	116.2	116.0	116.8	115.9

$T_{\text{dec.}}$ [°C]

131 (DSC @ 10 °C/min)^[1], 124^[2], 123^[3], 121–129 (onset), 125–134 (peak) (DSC, ICI recrystallized HNF)[14]

Onset of dec. (DSC @ 10 °C/min, N₂ atmosphere, open Al cups)^[15]: 134.3 (HNF-C9)^[15], 134.2 (HNF-E8)^[15]

onset of dec. (TG/DTA @ 10 °C/min, N₂ atmosphere, open Al cups)^[15]: 134.5 (total mass decrease = 98.3 wt.%, HNF-C9)^[15], 135.7 (total mass $decrease = 97.4 \text{ wt.\%}, HNF-E8)^{[15]}$

Heating rate (°C/min)	T (°C)	Coarse HNF ^[9]	Ground HNF ^[9]
1	Onset	120.5	121.4
	Peak	121.7	121.8
	Extrapolated onset	121.1	121.7
2	Onset	123.5	124.1
	Peak	125.7	124.8
	Extrapolated onset	124.5	124.4
5	Onset	128.1	127.2
	Peak	130.0	128.3
	Extrapolated onset	128.7	127.6

TG-MS (two types of expts. performed: (i) scanning expts. = 1.8–4.5 mg sample, Al cup, 2 °C/min from 25–160 °C, MS run over entire range; (ii) isothermal = apparatus held @ constant T = 100 °C)^[13]:

Experiment type	Total mass decrease (wt.%)	dec. T (°C)
Scanning	84	120-125
Scanning	100	120-125
Scanning	94	120-125
Isothermal	95	-

Thermal stability of aged and nonaged HNF $^{[13]}$: ~135 (onset, exo, dec., DSC @ 10 °C/min, nonaged HNF, 3.4 mg sample) $^{[13]}$, ~145 (onset, exo, dec., DSC @ 10 °C/min, HNF aged @ 80 °C (slurry), 1.8 mg sample) $^{[13]}$

DSC (@ various heating rates, HNF>98% purity, N₂ atmosphere)^[17]:

Heating	First ex	otherm	Second exotherm			ΔΗ	
rate (°C/min)	<i>T</i> _i (°C)	T _{max} (°C)	T _f (°C)	<i>T</i> _i (°C)	T _{max} (°C)	T _f (°C)	(J/g)
5	127.6	130.2	132.3	132.3	133.3	176.7	-2,301
10	131.9	135.8	137.9	137.9	138.2	178.3	-2,676
15	134.2	139.8	142.1	142.1	143.6	192.2	-2,389
20	135.6	142.1	144.2	144.2	145.1	190.8	-2,954
25	137.2	144.7	146.5	146.5	147.9	200.2	-2,535

DTA/TG (@ 10 °C/min, HNF>98% purity, static air atmosphere)[17]:

	DTA					TG	
Peak details	T _i (°C)	T _{max} (°C)	T _f (°C)	Stages of dec.	Trange (°C)	loss in weight (%)	
First exotherm	130.7	133.5	135.5	First stage	105-142	72.5	
Second exotherm	135.5	137	171.2	Second stage	142-210	24.5	

	<pre><90 °C no mass change observed but ~1.4% mass change @ 90–105 °C, rapid dec. >105 °C (TG @ 4 °C/min, air, Hordijk)^[18], ~120 (strong exo, DTA @ 2 °C/min, McHale)^[18], ~109 (weak exo), 110 (T_{max}, exo), 134 (T_{max}, exo), 139 (T_{max}, exo) (DTA @ 10 °C/min, Shoyer)^[18], >131 (3 step dec., Toshiyukî)^[18], 110–125 (onset, exo, range of values in DSC)^[18], 131 (DSC @ 10 °C/min)^[20], 132^[20]</pre>					
ρ [g cm ⁻³]	1.88 (crystal @ 20 °C) ^[1] , 1.86 ^[6] , 1.87 ^[11] , 1.03 (bulk ρ , HNF-1, pilot-scale, isonated with ultrasound amplitude of 20 μm, $X_{avg} = 300$ μm, $L/D_{avg} = 2.6$) ^[14] , 1.05 (bulk ρ , HNF-2, pilot-scale, isonated with ultrasound amplitude of 30 μm, $X_{avg} = 320$ μm, $L/D_{avg} = 2.8$) ^[14] , 0.96 (bulk ρ , HNF-3, isonated with ultrasound amplitude of 20 μm, $X_{avg} = 320$ μm, $L/D_{avg} = 3.3$) ^[14] , 0.9 (bulk ρ , standard HNF-C produced under isonation) ^[14] , 1.24 (tap ρ after 400 taps, HNF-1, pilot-scale, isonated with ultrasound amplitude of 20 μm, $X_{avg} = 300$ μm, $L/D_{avg} = 2.6$) ^[14, 19] , 1.26 (tap ρ after 400 taps, HNF-2, pilot-scale, isonated with ultrasound amplitude of 30 μm, $X_{avg} = 320$ μm, $L/D_{avg} = 2.8$) ^[14, 19] , 1.16 (tap ρ after 400 taps, HNF-3, isonated with ultrasound amplitude of 20 μm, $X_{avg} = 320$ μm, $L/D_{avg} = 3.3$) ^[14, 19] , 1.06 (tap ρ after 400 taps, standard HNF-C produced under isonation) ^[14, 19] , 1.872 (X-ray) ^[15] , 1.87 (HNF-C9, He pycnometer @ 25 °C) ^[15] , 1.83 (HNF-E8, He pycnometer @ 25 °C) ^[15] , 1.869 (HNF-C9, Dodecane pycnometer @ 25 °C) ^[15] , 1.846 (measured @ ICT) ^[16] , 1.86 (Aerospace Propulsion Products, Netherlands data) ^[16] , range of 1.86–1.93 reported ^[18] , 1.88 (X-ray @ 25 °C) ^[20] , 1.86–1.94 (@ 25 °C) ^[20]					
Heat of formation	$ \begin{array}{l} -13 \text{ kcal mol}^{-1[1]}, -76.9 \text{ kJ/mol}^{[2]}, -420 \text{ J/g}^{[2]}, -18.4 \pm 0.3 \text{ kcal mol}^{-1} \\ \text{ (assuming H_2O (I) formed on combustion, exptl.)}^{[5]}, 7.6 \text{ kcal mol}^{-1} \\ \text{ (assuming H_2O (g) formed on combustion)}^{[5]}, -72 \text{ kJ/mol (enthalpy of form.)}^{[6]}, -17 \text{ kcal } (\Delta H_f^{9})^{[8]}, -72 \text{ kJ mol}^{-1} (\Delta H_f)^{[11]}, -18.38 \text{ kcal/mol} \\ (\Delta H_f^{\circ}, \text{ exptl.)}^{[12]}, -18.20 \text{ kcal/mol } (\Delta H_f^{\circ}, \text{ calcd.)}^{[12]}, -76.9 \text{ kJ/mol } (\Delta H_f^{\circ})^{[16]}, \\ -420.0 \text{ J/g } (\Delta H_f^{\circ})^{[16]}, \text{ heat of formation ranges from } -7172 \text{ kJ/mol}^{[18]}, \\ -13 \text{ kcal/mol } (\Delta H_f, \text{ calcd.}, \text{ Gaussian } 09)^{[20]}, 0.8-2.3 \text{ kcal/mol } (\Delta H_f^{\circ})^{[20]} \\ \end{array} $					
Heat of combustion	5,796 J/g (measured @ ICT) ^[16] , 5,824 J/g (Aerospace Propulsion Products, Netherlands data) ^[16, 18]					
	Calcd. (EXPLO5 5.02)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,451 (@ 1.938 g cm ⁻³) ^[5] 5,452 (@ 1.930 g cm ⁻³) ^[5]	5,579 (calcd., ICT-thermodynamic code) ^[2]				
	5,447 (@ 1.890 g cm ⁻³) ^[5]	[H ₂ O (g)] ^[16]				
	5,443 (@ 1.860 g cm ⁻³) ^[5]					
T _{ex} [K]	4,085 (@ 1.938 g cm ⁻³) ^[5]					
	4,057 (@ 1.930 g cm ⁻³) ^[5]					
	4,086 (@ 1.890 g cm ⁻³) ^[5]					
	4,107 (@ 1.860 g cm ⁻³) ^[5]					

p _{C-J} [kbar]	380 (@ 1.938 g cm ⁻³) ^[5]	35.4 (calcd.) ^[1]	
	368 (@ 1.930 g cm ⁻³) ^[5]	35.4 (calcd.,	
	354 (@ 1.890 g cm ⁻³) ^[5]	EXPLO5 V5.05) ^[20]	
	344 (@ 1.860 g cm ⁻³) ^[5]		
VoD [m s ⁻¹]	9,286 (@ 1.938 g cm ⁻³) ^[5]	8,858 (calcd.) ^[1]	
	9,146 (@ 1.930 g cm ⁻³) ^[5]	8,858 (no <i>p</i> specified, calcd., EXPLO5 V5.05) ^[20]	
	9,028 (@ 1.890 g cm ⁻³) ^[5]	taitu., EAFLOS V5.03)	
	8,948 (@ 1.860 g cm ⁻³) ^[5]		
V ₀ [L kg ⁻¹]	826 (@ 1.938 g cm ⁻³) ^[5]	568 (calcd., ICT-thermodynamic code) ^[2, 16]	

Critical diameter [cm]	<10 mm (test sample = 91% HNF, 9% wax, ρ = 1.680 g cm ⁻³) ^[18] , <10 mm ^[19]
Shock sensitivity	3 GPa (ϕ = 30 mm, test sample = 91% HNF, 9% wax, ρ = 1.680 g cm ⁻³) ^[18]
5 s explosion T[°C] Ignition T[°C] Autoignition T[°C]	400 (self-ignition) ^[8] , 260 (deflagration) ^[8] 131 (@ 5 °C/min, Wood's metal bath, HNF lot 1, APP, Netherlands, needle-like, mean particle size = ~240 μ m, 0.2 g sample) ^[16] , 129 (@ 5 °C/min, HNF lot 2, APP, Netherlands, needle-like, Wood's metal bath, 0.2 g sample) ^[16] , 129 (@ 5 °C/min, HNF lot 3, APP, Netherlands, spherical, mean particle size = 76 μ m, Wood's metal bath, 0.2 g sample) ^[16]
Thermal stability	Stable @ 77 °C for 40 h ^[7] Mass loss (%) as function of time (d) @ various T (°C) for HNF lot 1 (APP, Netherlands, needle-like, mean particle size = ~240 µm) ^[16] : @ 50 °C: 0.05%/7 d , 0.1/14, 0.2/25, 0.2/37.5, 0.2/60, 0.4/89, 0.4/114, 0.4/136 ^[16] @ 60 °C: 0.1%/7 d , 0.2/14, 1.0/25, 1.9/37.5, 3/45 ^[16] @ 70 °C: 0.5%/7 d , 1.4/14, 4.5/22.5 ^[16] @ 80 °C: 0.5%/1 d , 1.5/2.5, 3.5/5 ^[16] ML (%) as function of time (d) @ various T (°C) for HNF lot 2 (APP, Netherlands, needle-like) ^[16] : @ 65 °C: 0%/0 d , 0.05/2, 0.1/4, 0.2/6, 0.3/9, 0.5/12, 0.75/16, 1.0/17 ^[16]

@ 70 °C: 0%/0 d, 0.05/2, 0.3/4, 0.5/6, 0.75/8, 1/10, 1.5/12, 2.7/16^[16]

@ 75 °C: 0%/0 d, 0.2/2, 1.0/4, 2.5/6, 4.5/7^[16]

ML (%) as function of time (d) @ various T (°C) for HNF lot 3 (APP, Netherlands, spherical, mean particle size = 76 μ m)^[16]:

@ 65 °C: 0%/0 d, 0.1/2, 0.3/4, 0.5/6, 0.75/9, 0.9/11, 1.0/12, 1.3/14, 1.75/18^[16]

@ 70 °C: 0%/0 d, 0.1/2, 0.5/4, 1.0/6, 1.3/8, 1.6/9, 1.9/10, 2.25/11, 2.5/12, 3/13, 4.25714^[16]

@ 75 °C: 0%/0 d, 0.3/2, 0.7/3, 1.25/4, 2.3/5, 4.5/6^[16]

Decomposition rate of HNF and HNF stabilized by aldehydes @ 90 °C under vacuum, cc gas evolved per g sample, + = high dec. of >28 cc gas/g^[21]:

Specimen	'	oosition,	cc,
	20 h	30 h	40 h
Untrated HNF	28	28+	28+
HNF + 3% 2,4-dihydroxybenzaldehyde	0	2	23
HNF+3% benzaldehyde	0	1	5

Vacuum stability test [cm³/h]

0.22 mL/g (coarse HNF, Hg column, 48 h @ 60 °C)[9]†, 0.55 mL/g (ground HNF, Hg column, 48 h @ 60 °C)[9] †

[†]VST is higher in ground than coarse (received) HNF probably because of solvent residue evaporation due to solvent being used in grinding) $\leq 0.5 \text{ mL/g} (60 \,^{\circ}\text{C}, 48 \,\text{h}, \text{HNF-C})^{[14]}, \leq 1.8 \,\text{mL/g} (60 \,^{\circ}\text{C}, 48 \,\text{h}, \text{HNF-S})^{[14]},$ $\leq 0.2 \text{ mL/g}$ (60 °C, 48 h, HNF-E)^[14], 0.4–1.3 mL/g (60 °C, 48 h, ICI recrystallized HNF)^[14], 3.4-5.4 mL/g (80 °C, 24 h, ICI recrystallized HNF)^[14], 0.92 mL/g (70 °C, 48 h, sealed and evacuated test tube, HNF-E8)[15], 0.57 mL/g (70 °C, 48 h, sealed and evacuated test tube, HNF-C9)^[15]

@ 60 °C, ultrasound isonation during cooling crystallization, ultrasound vibrations up to 8 µm^[14]:

Time (h)	Gas production (mL/g)	Time (h)	Gas production (mL/g)
5	~ 0.5	25	~ 0.8
7	~ 0.6	31	~ 0.9
23	~ 0.7	48	~ 1.1

@ 60 °C, ultrasound no isonation during re-crystallization[14]:

Time (h)	Gas production (mL/g)	Time (h)	Gas production (mL/g)
5	~0.21	25	~ 0.29
7	~ 0.22	31	~ 0.3
23	~0.28	48	~ 0.36

@ 80 °C, ultrasound isonation during cooling crystallization, ultrasound vibrations up to 8 μ m^[14]:

Time (h)	Gas production (mL/g)	Time (h)	Gas production (mL/g)
5	~ 0.5	~ 70	~ 1.8
24	~ 1.2	100	~ 3.1
50	~1.3		

@ 80 °C, no ultrasound isonation during recrystallization[14]:

Time (h)	Gas production (mL/g)	Time (h)	Gas production (mL/g)
5	~ 1.0	~ 70	~ 2.3
24	~ 1.2	100	~ 5.4
~50	~ 1.8		

0.082 mL/g (@ 60 °C, 48 h, 2 g sample, HNF lot 1, APP, Netherlands, needle-like, mean particle size = \sim 240 µm)^[16], 0.084 mL/g (@ 60 °C, 48 h, 2 g sample, HNF lot 2, APP, Netherlands, needle-like)[16], 0.072 mL/g (@ 60 °C, 48 h, 2 g sample, HNF lot 3, APP, Netherlands, spherical, mean particle size = 76 μ m)^[16], 1.10 mL/g (@ 80 °C, 40 h, extrapolated, HNF lot 1, APP, Netherlands, needle-like, mean particle size = $\sim 240 \,\mu\text{m}$)^[16], 1.13 mL/g (@ 80 °C, 40 h, extrapolated, HNF lot 2, APP, Netherlands, needle-like)[16], 0.95 mL/g (@ 80 °C, 40 h, extrapolated, HNF lot 3, APP, Netherlands, spherical, mean particle size = 76 μ m)^[16], 4.4 mL/g (@ 90 °C, 40 h, extrapolated, HNF lot 1, APP, Netherlands, needle-like, mean particle size = \sim 240 µm)^[16], 4.5 mL/g (@ 90 °C, 40 h, extrapolated, HNF lot 2, APP, Netherlands, needle-like)[16], 3.8 mL/g (@ 90 °C, 40 h, extrapolated, HNF lot 3, APP, Netherlands. spherical, mean particle size = 76 μ m)^[16], 17.5 mL/g (@ 100 °C, 40 h, extrapolated, HNF lot 1, APP, Netherlands, needle-like, mean particle size = \sim 240 µm)^[16], 17.9 mL/g (@ 100 °C, 40 h, extrapolated, HNF lot 2, APP, Netherlands, needle-like)[16], 15.4 mL/g (@ 100 °C, 40 h, extrapolated, HNF lot 3, APP, Netherlands, spherical, mean particle $size = 76 \mu m)^{[16]}$

Gas evolution values of $2-10 \text{ cc/g} \otimes 60 \,^{\circ}\text{C}$, 48 h reported^[18], excessive gas evolution attributed to impurities^[18], 0.1–0.5 cc/g for recryst. HNF @ 60 °C, 48 h^[18]

Effect of using hydrazine hydrate (HZH) instead of purified anhydrous hydrazine (PAH) on HNF produced[19]:

HZ used	PAH	PAH	80% HZH	100% HZH	100% HZH	100% HZH	100% HZH
VTS @ 60 °C, 48 h (mL/g)	<2.5	1.0	0.34	0.34	0.28	0.29	0.41
VTS @ 80 °C, 100 h (mL/g)		stopped after 75 h because 20 mL/g already evolved	2.8	3.8	6.0	2.4	5.2

VTS @ 90 °C for various types of HNF^[19]:

gas evolution	Time to specified gas evolution (h) for HNF type				
(mL/g)	US Patent 1	US Patent 2	26	1	23
8	14.6	15.3	30.2	34	34.3
20	17.7	20	-	-	46.7
23.3	19	_	-	-	48

Experimentally determined activation energy for the slow dec. of HNF^[19]:

HNF batch	VTS gas production	Time until gas production is reached, h			E (kJ/ mol)	сс
		60 °C 80 °C 90 °C				
23	3 mL/g	2,675	102	25	157.2	0.9998
	Run away	4,000	190	50	147.3	0.9999
1	3 mL/g	2,225	99	20	157.0	0.9992
	Run away	3,000	170	35	147.8	0.9980

Burn rate [mm/s]	Pressed neat HNF: burning rate exponent $n = 0.95$ @ pressure <2 MPa ^[19] , $n = 0.85$ @ pressures >2 MPa-10 MPa ^[19] ; burning rate exponent $n = 0.92$ @ pressure <2 MPa (Sinditskii) ^[19] , $n = 0.76$ @ pressures >2 MPa-10 MPa (Sinditskii) ^[19]				
Solubility [g/mL]	Reasonable solubility only obtained in polar solvents ^[10] , insoluble in (cyclo)alkanes or aromates (e.g., toluene, xylene) ^[10] , solubility of HNF generally increases with increasing solvent polarity ^[10] , crystals obtained from MeOH, EtOH, 1-propanol, 2-propanol ^[10] , easily soluble in $\rm H_2O^{[16]}$, sparingly soluble in most common organic solvents ^[18] except alcohols in which it is moderately soluble ^[18] , highly soluble in $\rm H_2O^{(112.21\%)^{[18]}}$ T dependence of solubility ^[10] :				
	Solvent		Tempera	ature (°C)]
		20	°C	40 °C	
	MeOH	~ 2	20 wt.%	~ 30 wt.%]
	EtOH	~ 8	8 wt.%	~ 12 wt.%	
	1-propanol	~ 1	. wt.%	~ 4 wt.%	
	2-propanol	~ 1	. wt.%	~ 4 wt.%	
	1.14 (2-prop	inol) ^{[18}	, 1.12 (et	hyl acetate) ^[18] ,	$(18]^{[18]}$, 5.98 (ethanol) $(18]^{[18]}$, 112.21 $(H_2O)^{[18]}$ at various temperatures $(20)^{[20]}$:
	T (°C) M	:OH	EtOH		
	10 0.	L	0.025		
	20 0.	14	0.04		
	30 0.	175	0.06		
	40 0.	225	0.08		
	50 0.	0.3 0.1			
Hygroscopicity	Rel. low hygroscopicity ^[7] , hygroscopic ^[11] , easily soluble in $\rm H_2O^{[16]}$, nonhygroscopic ^[17, 18]				
Compatibility	GAP ^[18] and A	Incompatible with HTPB ^[18] and isocyanates ^[18] , compatible with $GAP^{[18]}$ and $Al^{[18]}$, HNF is stabilized by ~1–5 wt.% of benzaldehyde, dihydroxybenzaldehyde or a mixture of the two ^[21]			

Activation energy for dec. [kJ/mol]	132 (intr (autocata in ^[16] are melt/foa	insic dec. read insic dec. read alytic reaction for different H m layer, <i>Brill)[[]</i> entally determin	ction) ^[16] ,) ^[16] , 117 NF batch	159 (auto (autocata es) ^[16] , 15	ocatalytio alytic rea 50 ^[17] , 25	reaction ction; diff kcal/mol) ^[16] , 128 ferent valu (for dec. o	
	HNF batch	VTS gas production	Time un	itil gas ion is rea	ched, h	E (kJ/ mol)	"	
			60 °C	80 °C	90 °C			
	23	3 mL/g	2,675	102	25	157.2	0.9998	
		Run away	4,000	190	50	147.3	0.9999	
	1	3 mL/g	2,225	99	20	157.0	0.9992	
		Run away	3,000	170	35	147.8	0.9980	
Energy release during dec. [kJ/kg]	4,700 (DSC, <i>Hordijk</i>) ^[18] , 4800 (due to two exotherms, DSC, <i>Hatano</i>) ^[18]							
Drop ball test (cm)	Direct (50% probability): 2.75 cm (needle), 4.43 cm (granule) ^[18] ; indirect (50% probability): 0.25 cm (needle), 0.47 cm (granule) ^[18]							
Surface $T(T_s)$ [K]	Temperatures during burning in relation to pressure (pressed, neat HNF) ^[19] : 530 K @ 0.1 MPa, 560 K @ 0.2 MPa, 620 K @ 0.5 MPa, 675 K @ 1.0 MPa ^[19] , 553 K @ 0.1 MPa (loosely packed HNF, <i>McHale</i>) ^[19] , 615 K ± 11 K @ 0.1 MPa (<i>Sinditskii</i>) ^[19] , 750 K ± 10 K @ 2 MPa (<i>Sinditskii</i>) ^[19]							
Δ _{diss} Η [kJ/mol]	19.77 (ir	n MeOH) ^[20] , 25	5.35 (in Et	tOH) ^[20]		_		

	HNF ^[5]
Chemical formula	CH ₅ N ₅ O ₆
Molecular weight [g mol ⁻¹]	183.10
Crystal system	Monoclinic
Space group	P 2 ₁ / n (no. 14)
a [Å]	8.044(8)
<i>b</i> [Å]	5.4420(5)
c [Å]	14.5015(12)
α [°]	90
β [°]	98.785(8)
γ [°]	90

<i>V</i> [ų]	627.4(1)
Z	4
$ ho_{\rm calc}[{ m g~cm^{-3}}]$	1.938
<i>T</i> [K]	100

A detailed description of crystal morphology with respect to recrystallization is given in $^{[10]}$

Comparison of the four commercial grades of ${\sf HNF}^{[14,\ 19]}$:

Parameter	HNF-C ^[14, 19]	HNF-S ^[14, 19]	HNF-E ^[14, 19]	HNF-P ^[14, 19]
Process	(Obtained by cooling crystallization; soln. of HNF in MeOH is cooled below saturation point, seed crystals introduced)	(Solvent/ nonsolvent recryst. process; HNF dissolved in MeOH (solvent) and added to methylene chloride (antisolvent))	(Evaporative crystallization; NF dissolved in isopropyl alcohol, heated then isopropanol vaporized under vacuum while HNF-E crystallizes)	(Obtained when hydrazine is added to nitroform/ dichloroethane mixture)
[HNF] _{acid} [wt.%]	99.8–100.8	98.8-99.6	99.0-100.3	
[HNF] _{HZ} [wt.%]	97.9–100.0	97.2-99.6	97.8-99.3	
T _m (black body radiation apparatus) [°C]	≥116 (<116)	≥115	≥115	>115
VTS (60 °C, 48 h) [mL/g]	≤0.5 (<0.5)	≤1.8	≤0.2	<0.5
L/D	≤8 (<8)	≤8	-	1-4
X ₅₀ [μm]	400-900 (200-1,000)	50-150	_	300
X_{10}/X_{50}	≥0.5	≥0.6	-	
X_{90}/X_{50}	≤1.5	≤1.4	-	
FS (BAM) [N]	16-36	16-36	16-36	
IS (BAM)[Nm]	2-4	2-4	2-4	
$ ho_{ m tap}$ [kg m $^{-3}$]	(800-1,000)	400-600		

 X_{10} = particle size for which 10% of total size distribution is smaller; X_{50} = particle size for which 50% of total size distribution is smaller, particle size based on equivalent spherical diameter; X_{90} = particle size for which 90% of total size distribution is smaller; L/D = length over diameter ratio = aspect ratio; []_{acid} = conc. based on acid content; []_{HZ} = conc. based on HZ content

Some properties of cocrystallized HNF^[19]:

Property		Cocrystallized F	Ref. data for HNF	
	HNF	HNF+2% stabilizer	HNF+2% coating	
L/D	~1	~1	1-2	1-4 (HNF-C and HNF-S)
D (μm)	~10	~2	~3.5-~7	>40
VTS (60 °C, 48 h), mL/g	0.37	0.35	0.75	<1.8
VTS (80 °C, 24 h), mL/g	1.8	1.3	3.3	n/a
N ₂ H ₄ , wt.%	97.6	96.7	96.1	97.2-100.0
H ₃ O+, wt.%	100.3	101.6	98.7	98.8-100.8
Onset melt, °C	127.5	129	118	129
Onset dec., °C	128.9	128.9	127	129
FS, N	20	35	29	14-32
IS, Nm	2.5	2	3	>2

- [1] J. Kim, M.-J. Kim, B. S. Min, Synthesis and Crystallization of HNF (Hydrazinium Nitroformate) as an Eco-Friendly Oxidizer, in Proceedings of New Trends in Research of Energetic Materials, NTREM 18, Pardubice, 15th–17th April 2015, pp. 601–607.
- [2] M. A. Bohn, Review of Some Peculiarities of the Stability and Decomposition of HNF and ADN, Proceedings of New Trends in Research of Energetic Materials, Pardubice, NTREM 18, 15th–17th April 2015, p. 4–25.
- [3] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1978**.
- [4] P. S. Dendage, D. B. Sarwade, S. N. Asthana, H. Singh, J. Energet. Mater., 2001, 19, 41-78.
- [5] M. Göbel, T. M. Klapötke, ZAAC, 2007, 633, 1006–1017.
- [6] M. Golfier, H. Graindorge, Y. Langevialle, H. Mace, *New Energetic Molecules and Their Applications in Energetic Materials*, ICT **1998**, Karlsruhe, Germany, pp. 3-1–3-18.
- [7] J. R. Lovett, *Hydrazine Nitroform and Method of Preparation*, US Patent 3,378,594, April 16th 1968.
- [8] G. K. Williams, T. B. Brill, *Comb. and Flame*, **1995**, *102*, 418–426.
- [9] A. E. D. M. van der Heijden, A. B. Leeuwenburgh, Comb. and Flame, 2009, 156, 1359-1364.
- [10] M. I. Rodgers, A. E. D. M. van der Heijden, R. M. Geertman, W. H. M. Veltmans, *Improvement of Hydrazinium Nitroformate Product Characteristics*, ICT 1999, Karlsruhe, Germany, pp. 55-1–55-14.
- [11] C. Eldsäter, E. Malmström, *Binder Materials for Green Propellants*, Ch. 8 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**.
- [12] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1–44-15.
- [13] J. M. Bellerby, C. S. Blackman, M. van Zelst, A. E. D. M. van der Heijden, *Analysis of Hydrazinium Nitroformate (HNF)*, ICT **2000**, Karlsruhe, Germany, pp. 104-1–104-15.

- [14] W. H. M. Veltmans, A. E. D. M. van Heijden, J. M. Bellerby, M. I. Rodgers, *The Effect of Different Crystallization Techniques on Morphology and Stability of HNF*, ICT **2000**, Karlsruhe, Germany, pp. 22-1–22-14.
- [15] M. Zelst, A. E. D. M. van der Heijden, *Properties of Hydrazinium Nitroformate (HNF)*, ICT **2000**, Karlsruhe, Germany, pp. 8-1–8-9.
- [16] M. A. Bohn, Thermal Stability of HNF Investigated by Mass Loss and Heat Generation in the Temperature Range 50°C-80°C and Lifetime Predictions, ICT 2005, Karlsruhe, Germany, pp. 167-1-167-25.
- [17] P. S. Dendage, D. B. Sarwade, A. B. Mandale, S. N. Asthana, J. Energet. Mater., 2003, 21, 167–183.
- [18] P. S. Dendage, D. B. Sarwade, S. N. Asthana, H. Singh, J. Energet. Mater., 2001, 19, 41-78.
- [19] H. F. R. Schöyer, W. H. M. Welland-Veltmams, J. Louwers, P. A. O. G. Korting, A. E. D. M. van der Heijden, H. L. J. Keizers, R. P. van der Berg, *J. Propulsion Power*, **2002**, *18*, 131–137.
- [20] J. Kim, M. J. Kim, B. S. Min, J. Korean Soc. Prop. Engineers, 2015, 19, 69-76.
- [21] J. A. Brown, C. L. Knapp, Stabilization of Nitroform Salts, US Patent 3,384,674, May 21st 1968.

Hydrazinium perchlorate

Name [German, acronym]: Hydrazinium perchlorate, hydrazine Perchlorate [HP,

HPC]

Main (potential) use: Oxidizer for solid propellants^[1]

Structural formula:

N₂H₅⁺ CIO₄⁻

	Hydrazinium perchlorate				
Formula	H ₅ N ₂ O ₄ Cl				
Molecular mass [g mol ⁻¹]	132.50				
Appearance at RT	White crystalline solid ^[6]				
IS [J]	2 Nm ^[2] , H _{50%} = 1.2 cm (2 kg m kg mass, Rotter) ^[6] , more sens depends markedly on water c	itive than PETN, but sensitivity			
FS [N]	>10 ^[2]				
N [%]	24.15				
Ω(CO ₂) [%]	+18.1				
T _{m.p.} [°C]	$144^{[2]}$, $142.4^{[3]}$, $131-132^{[7,11]}$ obtained from aq. solns. has	, 137–138 ^[10] , N ₂ H ₅ ClO ₄ •¹/ ₂ H ₂ O mpt. = 85 ^[10] , 142 ^[6]			
T _{dec.} [°C]	145 (begins), complete dec. b (142 °C) ^[6]	145 (begins), complete dec. by $230^{[7]}$, dec. occurs near mpt. $(142 ^{\circ}\text{C})^{[6]}$			
ρ [g cm ⁻³]	1.84 ^[4] , 1.939 ^[7]				
Heat of formation	40.69 ± 0.36 kcal mol ⁻¹ (ΔH_f°) -42.05 kcal/mol (ΔH_f , (s)) ^[6] , -	-179.5 kJ/mol (ΔH_i^o , exptl.) ^[4] , $-1,331$ kJ/kg (enthalpy of form.) ^[2] , 40.69 ± 0.36 kcal mol ⁻¹ (ΔH_i^o) ^[7] , 42.9 ± 0.2 kcal/mol (ΔH_i^o) ^[7] , -42.05 kcal/mol (ΔH_i^o) ^[6] , -44.46 kcal/mol (ΔH_i^o), calcd.) ^[6] , -40.62 kcal/mol (ΔH_i^o) ^[12] , -41.78 kcal/mol (ΔH_i^o), calcd.) ^[12]			
	Calcd. (EXPLO5 6.03)	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,069	3,690 [H ₂ O (l)] ^[2]			
		3,033 [H ₂ O (g)] ^[2]			
T _{ex} [K]	2,640	2,275 ± 50 ^[5]			
p _{C-J} [GPa]	26.6				
VoD [m s ⁻¹]	7,990 (@ 1.939 g cm ⁻³)				
V ₀ [L kg ⁻¹]	922	838 ^[2]			
		864 ^[7]			

Trauzl test [cm³, % TNT]	120% TNT ^[9] , 113% PA ^[7] , 122% TNT ^[7]			
Shock sensitivity	Similar to that of MF ^[10]			
5 s explosion T[°C] Ignition T[°C]	277–283 (0.2 g sample heated from 100 °C @ 20 °C/min) ^[6] , 238 ^[6]			
Thermal stability	Weight loss on hold @ 180 °C ^[6] , 5.4% @ 97–99% used for su @ 180–235 °C show	240°0 ıblimati	on from melt to col	on @ 250 °C ^[6]
Burn rate [mm/s]	Pure HP burns smoothly when ignited ^[6] , powder samples packed into glass tube (1.05 cm inside diameter) did not ignite using white hot wire @ atmospheric pressure, sample only melted and ignited on surface layer ^[6] Effect of catalysts on combustion of Hydrazinium perchlorate at 1 atm ^[6] :			
	Catalyst	%	Density (g/cm³)	Burn rate (cm s ⁻¹)
	MnO ₂	5	1.27	0.13
	CoO	5	1.29	0.85
	Cu ₂ Cl ₂	5	1.27	1.5
	Cu ₂ Cl ₂ •2H ₂ O	5	Does not burn ste	eadily
	MgO	2	1.90	0.26
		5	1.91	0.31
		10	1.89	0.35
	Copper chromite	2.5	1.13	Does not deflagrate
		5	1.10	1.20
		5	1.93	0.72
	K ₂ Cr ₂ O ₇	2.5	1.17	Does not deflagrate
		5	1.19	0.75
	CaO	2	1.31	0.12
Solubility [g/mL]	23.6 g/100 g H ₂ 0 @	0 °C ^[6] ,	68.9 g/100 g H ₂ 0	@ 40 °C ^[6]
Heat of vaporization [kcal/mol]	29.2 ^[6]			
Heat of fusion [kcal/mol]	3.84 ^[6] , 1.68 ^[6]			

	HP ^[8]
Chemical formula	H ₅ N ₂ O ₄ Cl
Molecular weight [g mol ⁻¹]	132.50
Crystal system	Monoclinic
Space group	C 2/ c (no. 15)
a [Å]	14.412(7)
<i>b</i> [Å]	5.389(5)
c [Å]	12.797(3)
α [°]	90
β [°]	113.09(5)
γ [°]	90
<i>V</i> [ų]	914.2707
Z	8
$\rho_{\rm calc}$ [g cm ⁻³]	
<i>T</i> [K]	

- [1] K. Klager, R. K. Manfred, L. J. Rosen, *Internationale Jahrestagung Institut für Chemie der Treib- und Explosivstoffe*, **1978**, 359–381.
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 184–185.
- 3] L. T. Carleton, R. E. Lewis, J. Chem. Eng. Data, 1966, 11, 165–169.
- [4] H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C, 2007, 111, 10718-10731.
- [5] P. W. M. Jacobs, A. Russell-Jones, Can. J. Chem., 1966, 44, 2435–2443.
- [6] G. S. Pearson, Perchlorates: A Review of Their Thermal Decomposition and Combustion, With an Appendix on Perchloric Acid, R. P. E. Technical Report no. 68/11, October 1968, Ministry of Technology, London.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [8] J. W. Conant, R. B. Roof, Acta Cryst., 1970, B26, 1928–1932.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [10] T. Urbański, Ch. 20 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [11] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, p. 366.
- [12] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1-44-15.

5,5'-Hydrazotetrazole

Name [German, acronym]: 5,5'-Hydrazodi-(1*H*)-tetrazole, 1,2-bis(5,5'-tetrazolato)

hydrazine [5,5'-hydraotetrazol, 5,5'-HzTz, HAT]

Main (potential) use: Structural formula:

	НАТ			
Formula	C ₂ H ₄ N ₁₀	$C_2H_4N_{10}$		
Molecular mass [g mol ⁻¹]	168.12			
Appearance at RT	White amorphous p	owder ^[1]		
IS [J]			weight = 28 g, ball weight $_{50\%}$ = 20 cm ^[3] , 32 cm (2.5 kg	
FS [N]		s^{-1} , $W_{50} = 3.2 \text{ ms}^{-1}$ (loas) ^[1] , >3.7 m/s (Emery p	d weight = 4 kg, friction aper test) ^[3]	
ESD [J]	and vial = 2 cm, bas	Energy required for initiation = n/s ((not sensitive)gap between needle and vial = 2 cm, based on the variable gap technique) ^[1] , ignitions @ 0.045 J (standard test) ^[3] , ignition @ 42 µJ but not @ 32 µJ (test no. 7) ^[3]		
N [%]	83.31	83.31		
Ω(CO ₂) [%]	-57.10	-57.10		
T _{m.p.} [°C]				
T _{dec.} [°C]	non-isothermal con dec. = 2,089.2 ± 59.	521 K (DSC, 8 °C/min, Al_2O_3 added as dilutent to prevent explosions, non-isothermal conditions, steady flow rate of He/ N_2 , heat of dec. = 2,089.2 ± 59.5 kJ kg ⁻¹) ^[1] , 218 (onset, DSC @ 10 °C/min, with ignition @ 238 °C) ^[3]		
ρ [g cm ⁻³]	1.01 (bulk ρ) ^[1] , 1.85	1.01 (bulk $ ho$) ^[1] , 1.85 (calcd.) ^[3]		
Heat of formation				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				
p _{C-J} [kbar]				

VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			
Lead plate test	Charge weight (g): 35(F) (partial initiation), 20(N) (full initiation), 30(P) (pa)) (no initiation) ^[1]	rtial initiation), 25(P)
5 s explosion T [°C] Ignition T [°C] Explosion T [°C]	238 ^[3] , 215 (explodes in 229 ^[3]	T of I test) ^[3] , 239 (hot ba	r ignition 7) ^[4]
Thermal stability	78.0–79.0% weight loss in TG ^[1]		
Vacuum stability test [cm³/h]	6.9 @ 120 °C/40 h ^[3] , 1	.7 cc gas/48 h/100 °C ^[4]	
Blast wave characteristics	wave) positive phase im into mild steel test units	ressure $P_{\text{max}} = 3.4 \text{ kPa (morpulse } I^+ = 0.43 \text{ Pa s (meas 84.6 } \times 2.5 \times 2.5 \text{ cm)}, 0.5 \text{ and adhesive, mass or mae } \text{"E" fuzehead}^{[2]}$	n value) ^[2] (loose filled 9 cm hole diameter,

- [1] G. O. Reddy, A. K. Chatterjee, J. Hazard. Mater., 1984, 9, 291–303.
- [2] L. V. De Yong, G. Campanella, J. Hazard. Mater., 1989, 21, 125–133.
- [3] R. W. Millar, Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003, QinetiQ Ltd., Farnborough, U.K., May 2003.
- [4] F. Taylor, Primary Explosives Research: VI. 5,5'-Hydrazotetrazole and the Metal Salts of 5-Nitraminotetrazole, NAVORD Report 2800, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 4th March 1953

Isosorbitol dinitrate

Name [German, acronym]: Isosorbitol dinitrate, isosorbide dinitrate,

1,4:3,6-dianhydro-p-glucitol-2,5-dinitrate,

1,4;3,6-dianhydro-2,5-dinitrosorbitol, dinitrosorbide, isosorbide dinitrate, Carvanil, Carvasin, Cedocard, Cardis, Harrical, Iso-Bid, Isoket, Isosorbid, Isordil, Laserdil, Maycor, Rigedal, Sorbangil, Sorbidilat,

Sorbitrate, Sorquad, Vascardin, Vasorbate

[isosorbitdinitrat, ISDN]

Main (potential) use: pharmacy (angina pectoris)

	Isosorbitol dinitrate
Formula	$C_6H_8N_2O_8$
Molecular mass [g mol ⁻¹]	236.14
Appearance at room temperature	White crystals ^[4] , hard colorless crystals ^[7]
IS [J]	15 Nm ^[1] , 200 cm (0 sample fired, 5 kg mass) ^[5]
FS [N]	>160 ^[1] , 36 kg load (0 sample fired, Julius-Peters) ^[5]
N [%]	11.86
Ω(CO ₂) [%]	-54.2

<i>T</i> _{m.p.} [°C]	70 (dec.) ^[1] , 69–70 ^[5] , 340 K (pure ISDN, DSC @ 10 K/min, nonisothermal conditions, N_2 atmosphere, crimped in Al pans with hole in lid, 2–4 mg sample) ^[4] , 335.0 K (crude ISDN, DSC @ 10 K/min, nonisothermal conditions, N_2 atmosphere, crimped in Al pans with hole in lid, 2–4 mg sample) ^[4] , 72 (endo, DSC, peak max) ^[5]				
T _{dec.} [°C]	(pure ISDN, DSC crimped in Al pabroad dec. exo) 10 K/min, noniswith hole in lid, (exo peak max,	$70^{[1]}$, 443.0 K (onset, sharp dec. exo), 467.0 K (peak T), 482.0 K (end T) (pure ISDN, DSC @ 10 K/min, non-isothermal conditions, N_2 atmosphere, crimped in Al pans with hole in lid, 2–4 mg sample) ^[4] , 427.0 K (onset, broad dec. exo), 452 K (peak T), 480.0 K (end T) (crude ISDN, DSC @ 10 K/min, nonisothermal conditions, N_2 atmosphere, crimped in Al pans with hole in lid, 2–4 mg sample) ^[4] , 72 (endo, DSC, peak max) ^[5] , 223 (exo peak max, sharp peak, DSC) ^[5] , $70^{[7]}$ Thermal stability – effect of heating rate ^[4] :			
	Material	He	eating rate (K/min)	Peak T (K)	
	Pure ISDN	5		458.0	
	Pure ISDN	10)	467.0	
	Pure ISDN	20)	475.0	
	Pure ISDN	40)	481.0	
	Crude ISDN	5		440.0	
	Crude ISDN	10)	452.0	
	Crude ISDN	20)	472.0	
	Crude ISDN	40)	483.0	
ρ [g cm ⁻³]	1.65 ± 0.1 (@ 2	93.1	L5 K) ^[2]		
Heat of formation					
	Calcd. (EXPLO5 6.04)		Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [GPa]					
VoD [m s ⁻¹]				5,300 (@ 1.0	8 g cm ⁻³) ^[1]
					2 g cm ⁻³ , crude plastic tube, fired tonator) ^[4]

	3,849 (@ 0.87 g cm ⁻³ , crude ISDN and 5% H ₂ O, 25 mm plastic tube, fired with no. 6 detonator) ^[4] Cap failed (@ 0.92 g cm ⁻³ , crude ISDN and 10% H ₂ O, 25 mm plastic tube, fired with no. 6 detonator) ^[4] Cap failed (@ 1.04 g cm ⁻³ , crude ISDN and 20% H ₂ O, 25 mm plastic tube, fired with no. 6 detonator) ^[4] 4,021 (@ 0.49 g cm ⁻³ , pure ISDN, 25 mm plastic tube, fired with no. 6 detonator) ^[4]
	3,129 (@ 0.60 g cm ⁻³ , crude ISDN and 10% H ₂ O, 25 mm plastic tube, fired with no. 6 detonator) ^[4] Cap failed (@ 0.96 g cm ⁻³ , crude ISDN and 25% H ₂ O, 25 mm plastic
<i>V</i> ₀ [L kg ^{−1}]	tube, fired with no. 6 detonator) ^[A]

Trauzl test [cm³, % TNT]	304 mL (10 g sample) ^[5] , 311 cm ^{3[6]}
Ballistic mortar test	64.6% (10 g sample, Al used as wrapper) ^[5]
5 s explosion T [°C] Explosion T [°C]	180-185 ^[5]
Abel heat test	1 h @ 60 °C ^[5]
Thermal stability	TG, 10 K/min ^[4] :
	Material Trange (K) Weight loss (%)
	Pure ISDN 413.0-473.0 90.5
	Crude ISDN 393.0-493.0 84.8
Activation energies to decomposition [kJ/mol]	$E_{\rm act}$ = 87.36 (crude ISDN, DSC, Ozawa's method) ^[4] , $E_{\rm act}$ = 174.70 (pure ISDN, DSC, Ozawa's method) ^[4] , $E_{\rm act}$ = 68.75 (crude ISDN, TG, 10 K/min, Ozawa's method) ^[4] , $E_{\rm act}$ = 158.80 (pure ISDN, TG, 10 K/min, Ozawa's method) ^[4]

Heat of decomposition [J/g]	2319.0 (100% ISDN, DSC, 10 K/min, nonisothermal conditions, N_2 atmosphere, crimped in Al pans with hole in lid, 2–4 mg sample) ^[4]
Solubility [g/mL]	Sparingly soluble in water (1.0 g dissolves in 900 mL $\rm H_2O)^{[7]}$, freely soluble in common organic solvents such as EtOH, $\rm Et_2O$ and acetone ^[7]

	Isosorbitol dinitrate ^[3]
Chemical formula	$C_6H_8N_2O_8$
Molecular weight [g mol ⁻¹]	236.14
Crystal system	Orthorhombic
Space group	P22 ₁ 2 ₁ (no. 18)
a [Å]	5.7535(2)
<i>b</i> [Å]	10.9393(5)
c [Å]	14.6599(5)
α[°]	90
β [°]	90
γ [°]	90
<i>V</i> [ų]	922.683
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.7
T [K]	295

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 198.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] J. A. Kanters, A. Schouten, G. J. Sterk, M. H. de Jong, J. Mol. Struct., 1993, 298, 113–120.
- [4] G. O. Reddy, A. S. Rao, J. Hazard. Mater., 1992, 32, 87–104.
- [5] B. K. M. Murali, V. Ganesan, K. B. Rao, V. K. Mohan, *J. Hazard. Mater.*, **1979**, *3*, 177–182.
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, **2015**, 641, 2446–2451.
- [7] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Keto-RDX

Name [German, acronym]: 1,3,5-Trinitro-1,3,5-triazacyclohexane-2-one, 2-oxo-1,3,

5-trinitro-1,3,5-triazacyclohexane, 2-oxo-1,3,5-trinitro-1,3,5-triazacyclohexane, 1,3,5-trinitro-1,3,5-triazinan-2-one, 1,3,5-trinitro-hexahydro-1,3,5-triazin-2(1*H*)-one

[Keto-RDX, K-6]

Main (potential) use: Fuel component in inflatable vehicle occupant

protection devices with reduced smoke^[5]

Structural formula:

$$O_2N$$
 N
 N
 N
 N
 N
 N
 N
 N

	K-6
Formula	$C_3H_4N_6O_7$
Molecular mass [g mol ⁻¹]	236.10
Appearance at room temperature (RT)	White crystalline solid ^[5] , colorless crystals ^[13, 14] , white solid ^[14, 15]
IS [J]	11 cm (lower explosive limit, Kasta hammer, 5 kg mass) ^[2] , 27 cm (upper explosive limit, Kasta hammer, 5 kg mass) ^[2] , $H_{50\%} = 25$ cm (micro-K-6, BAM, 5 kg mass) ^[5] , $H_{50\%} = 30$ cm (nano-K-6, BAM, 5 kg mass) ^[5] , 1.5 ± 0.5 Nm (BAM) ^[9] , 12.5 (micro-K-6) ^[12] , 15.0 (nano-K-6) ^[12] , 15 cm ^[14] , 19 cm (K-6/Viton A, 95:5) ^[14] , $H_{50\%} = 7.5 \pm 2.5$ cm (2 kg mass, Bruceton method, BAM) ^[15] , $A_{d1} = 92\%$, LL = 0.5 m, $A_{50 \ d1} = 1.4$ m, $A_{50 \ d2} = 1.3$ ^[18]
FS [N]	9.6 kg (lower sensitivity limit, BAM) ^[2] , 16 kg (upper sensitivity limit, BAM) ^[2] , 12 kgf (nanocrystalline-K-6) ^[5] , 6.4 kgf (micro-K-6) ^[5] , 50 (micro-K-6, 1,000 particle size) ^[8] , 125 (micro-K-6, 1,000 particle size) ^[8] , 75 (nano-K-675 particle size) ^[8] , 10.8 \pm 2.4 kp ^[9] , 64 (50% load, micro-K-6) ^[12] , 120 (50% load, nano-K-6) ^[12] , 4.2 kg ^[14] , 4.2 kg (K-6/Viton A, 95:5) ^[14] , 10.8 \pm 2.4 kp (50% level, Julius-Petri) ^[15] , $P_{\rm fr.LL}$ = 250 MPa ^[18] , $P_{\rm fr.50\%}$ = 380 MPa ^[18]
ESD [J]	0.16 (nano-K-6, 75 nm particle size) [8], 0.09 (2.0 J @ 500 Ω) [14], 1.0 (K-6/Viton A, 95:5) [14]

N [%]	35.60	35.60						
Ω(CO ₂) [%]	-6.78							
<i>T</i> _{m.p.} [°C]	180–181 (cru bubble interac recryst. from a	184–185 (dec.) ^[2] , 177–179 (crude K-6) ^[14] , 184–185 (crystals) ^[14] , 180–181 (crude) ^[14] , 180–182 (recryst. from CH ₃ CN) ^[14] , no melting – gas bubble interacts with (s) phase and forms (l) phase ^[15] , 180–181 (single recryst. from acetone) ^[16] , no endothermic process (melting) observed (DTA, various conditions) ^[17]						
T _{sublimation} [°C]	No endotherm	ic proce	ess (sub	olimatio	on) observe	ed (DTA,	various conditions) ^[17]	
T _{dec.} [°C]	26 mg sample 2 °C/min, 26 r nano-K-6) ^[5] , 1: max, DSC @ 1 nano-K-6) ^[5] , 1: (onset of mass 187 (DTA, nand (onset, exother (exotherm, per two stage ther ~ 21.45% mas 98.5% purity of 188 (onset, exother) K-6 V 9010 = 9	184–185 (dec.) ^[2] , 173 (exo, onset), 181 (exo, peak max) (DSC @ 2 °C/min, 26 mg sample) ^[2] , 144.1 (onset, hydrolysis), 168.2 (exo, onset) (TG @ 2 °C/min, 26 mg sample) ^[2] , 189.57 (peak max, DSC @ 10 °C/min, nano-K-6) ^[5] , 186.17 (peak max, DSC @ 5 °C/min, nano-K-6) ^[5] , 193.47 (peak max, DSC @ 15 °C/min, nano-K-6) ^[5] , 196.37 (peak max, DSC @ 20 °C/min, nano-K-6) ^[5] , 196.73 (peak max, DSC @ 10 °C/min, micro-K-6) ^[5] , 155 (onset of mass loss, TG, nano-K-6) ^[5] , 165 (onset of mass loss, micro-K-6) ^[5] , 187 (DTA, nano-K-6) ^[5] , 195 (DTA, micro-K-6) ^[5] , 205 (exo, DSC) ^[6] , 188 (onset, exotherm), 195 (exotherm peak max) (DSC @ 5 °C/min) ^[9] , 211.4 (exotherm, peak max, DSC @ 10 °C/min, 0.1 MPa, 98.5% purity of K-6) ^[13] , two stage thermal dec. process: 189.61 °C and 213.78 °C (TG-DTG, ~21.45% mass loss in first stage, 77.83% mass loss in second stage, 98.5% purity of K-6) ^[13] , 204.9 (DSC) ^[14] , 203.0 (DSC, K-6/Viton A, 95:5) ^[14] , 188 (onset, exo), 195 (exo peak max) (DSC @ 5 °C/min) ^[15] TG-DTA @ 10 °C/min of K-6 and PBXs (K-6 V 9505 = 95% K-6, 5% Viton A; K-6 V 9010 = 90% K-6, 10% Viton A; K-6 K 9505 = 95% K-5, 5% Kel-F; K-6 K 9010 = 90% K-6, 10% Kel-F), T _i = onset T, T _s = inflection T, T _f endset T ^[17] :						
	Sample			TG		DTA		
		T _i (°C)	T _s (°C)	T _f (°C)	% mass loss	Exo peak	Integral normalized peak	
	V.C	1			<u></u>	<i>T</i> (°C)	area (°C² mg ⁻¹)	
	K-6	191	199	203	89.6	202		
	K-6 V 9505	191 186	199 193	203 197	89.6 87.9		area (°C² mg ⁻¹)	
		 	 		 	202	area (°C² mg ⁻¹) 183.2	
		186	193	197	87.9	202 195	area (°C² mg ⁻¹) 183.2 229.2	
		186 434	193 440	197 449	87.9 1.5	202 195 –	area (°C² mg ⁻¹) 183.2 229.2 -	
	K-6 V 9505	186 434 464	193 440 477	197 449 486	87.9 1.5 3.7	202 195 - 483	area (°C² mg ⁻¹) 183.2 229.2 - 450.0	
	K-6 V 9505	186 434 464 185	193 440 477 194	197 449 486 195	87.9 1.5 3.7 83.2	202 195 - 483 193	area (°C² mg ⁻¹) 183.2 229.2 - 450.0	
	K-6 V 9505	186 434 464 185 438	193 440 477 194 443	197 449 486 195 450	87.9 1.5 3.7 83.2 2.0	202 195 - 483 193 -	area (°C² mg ⁻¹) 183.2 229.2 - 450.0 214.5	
	K-6 V 9505	186 434 464 185 438 470	193 440 477 194 443 483	197 449 486 195 450 492	87.9 1.5 3.7 83.2 2.0 7.8	202 195 - 483 193 - 488	area (°C² mg ⁻¹) 183.2 229.2 - 450.0 214.5 - 397.6	
	K-6 V 9505	186 434 464 185 438 470	193 440 477 194 443 483	197 449 486 195 450 492 197	87.9 1.5 3.7 83.2 2.0 7.8 87.8	202 195 - 483 193 - 488 196	area (°C² mg ⁻¹) 183.2 229.2 - 450.0 214.5 - 397.6	
	K-6 V 9505 K-6 V 9010 K-6 K 9505	186 434 464 185 438 470 187 426	193 440 477 194 443 483 194 441	197 449 486 195 450 492 197 448	87.9 1.5 3.7 83.2 2.0 7.8 87.8 5.7	202 195 - 483 193 - 488 196 -	area (°C² mg ⁻¹) 183.2 229.2 - 450.0 214.5 - 397.6 280.8 -	

	`	95% K-6, 5 = 95% K-5	5% Viton A; , 5% Kel-F;	K-6 V 9010 = K-6 K 9010 =	sphere 90% K-6, 10% Vito 90% K-6, 10% Kel-	
	Sample	Sample TG (static air)			DTA (flowing air) Exo peak T (°C)	
		SDT (°C)	FDT (°C)	% of dec.]
	K-6	184	201	89.0	193]
	Vacuum	-	-	-	192]
	Sealed	-	-	-	196]
	K-6 V 9505	181	195	88.0	188]
	K-6 V 9010	180	192	81.7	186]
	K-6 K 9505	182	196	87.9	189]
	K-6 K 9010	179	195	82.0	186]
ho [g cm ⁻³]	1.932 ^[2, 3, 6] , 1.	93 ^[5] , 1.93	2 (crystal) ^{[1}	^{4]} , 1.930 ^[20]	,	
Heat of formation	$\begin{array}{l} -44.0 \text{ kcal/kg (enthalpy of form.)}^{[1]}, -41.8 \text{ kJ/mol } (\Delta H_f^o)^{[3,19]}, \\ -41.9 \pm 4.2 \text{ kJ/mol}^{[5]}, -45.46 \text{ kJ/mol } (\Delta H_f(s), \text{ calcd.)}^{[7]}, -10 \pm 1.0 \text{ kcal/mol (using exptl. heat of combustion)}^{[14]}, -58.0 \text{ kJ/mol (condensed phase enthalpy of form., calcd., EDPHT 2.0)}^{[19]}, -57.9 \text{ kJ/mol (condensed phase enthalpy of form., calcd., S-D method)}^{[19]}, -182 \text{ kJ/kg } (\Delta H_f^o)^{[20]} \end{array}$					se
	Calcd. (EXPLO5 6.04)		alues		Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		calcd	6 kcal/kg (@ .) [H₂O vapo = 5543 kJ/kg		1,325 kcal/kg (@ 1.587 g cm [H ₂ O vapor] ^[1]	
<i>T</i> _{ex} [K]		$\Delta H_{\rm f} =$	7 (@ 1.932 : –41.9 kJ/n AR) ^[10]	•		
p _{c-J} [kbar]			36.45 GPa (@ 1.86 g cm ⁻³ , calcd., K-J) ^[7]		379.8 (@ 1.857 g cm K-6/Viton, 95:	
			8 GPa (@ 1. l., K-J) ^[7]	93 g cm ⁻³ ,		
		$\Delta H_{\rm f} =$	GPa (@ 1.9 41.9 kJ/m AR) ^[10]	•		

		1
	396.8 (@ 1.898 g cm ⁻³ ; 98.5% TMD, K-6/Viton, 95:5, est. value) ^[14] 409 (@ 1.927 g cm ⁻³ ; 100% TMD, K-6/Viton, 95:5, est. value) ^[14]	
	36.0 GPa (@ 1.930 g cm ⁻³) ^[20]	
VoD [m s ⁻¹]	>9,000 ^[2] 8,970 (@ 1.86 g cm ⁻³ , calcd., K-J) ^[7] 8,814 (@ 1.93 g cm ⁻³ , calcd., K-J) ^[7] 9,280 (@ 1.932 g cm ⁻³ , $\Delta H_{\rm f} = -41.9$ kJ/mol, calcd., JAGUAR) ^[10] 8,690 (@ 1.86 g cm ⁻³ , K-6/Viton, calcd., JAGUAR) ^[10] 8,958 (@ 1.898 g cm ⁻³ , 98.5% TMD, K-6/Viton, 95:5, est. value) ^[14] 9,059 (@ 1.927 g cm ⁻³ , 100% TMD, K-6/Viton, 95:5, est. value) ^[14] 9,170 (@ 1.930 g cm ⁻³ ,	8,810 (@ 1.86 g cm ⁻³ , K-6/Viton, 95:5) ^[10] 8,814 (@ 1.857 g cm ⁻³ , K-6/Viton, 95:5) ^[14]
	calcd.) ^[20]	
V₀ [L kg ⁻¹]		

LSGT [cm]	$P_{\rm cr}$ = 2.0 GPa (critical pressure of detonation initiation, calcd., LSGT) ^[20]
5 s explosion T[°C]	170 (Wood's metal bath) ^[9, 15]
Ignition T [°C]	Ignition delay (t_{id}) and activation energy for thermal ignition (E^*) and correlation coefficient (r) for K-6 and PBXs measured using tube furnace technique ^[17] :

Sample	$t_{\rm id}$ (s) at T (°C)							
	200	200 250 300 350 500						
K-6	79.85	39.25	28.88	20.55	13.12			
K-6 V 9505	111.78	56.45	42.42	24.63	15.30			
K-6 V 9010	106.72	48.30	39.44	27.50	15.10			
K-6 K 9505	111.00	47.40	43.38	26.64	12.44			
K-6 K 9010	111.45	49.75	33.32	28.47	13.70			

Thermal stability

Total mass loss over 155–190 °C range = 92% (micro-K-6, TG-DTA)^[5], thermal stability of nano-K-6 is lower than that of micro-K-6^[5], unstable >130 °C and will self-heat to a self-sustained dec. if maintained at this temperature^[15]

Microcalorimetry @ 65 °C shows higher reactivity of K-6 cf. RDX^[15]:

Heat production (µW)	Time (days)	Heat production (µW)	Time (days)
44	1	16	20
44	5	11	25
30	10	10	30
22	15		

Rate constants and Arrhenius parameters for dec. of K-6 in different solvents (sample 1 = K-6 prepared by slow cooling of recryst. soln., 2 mm grain size results; sample 2 = fast crystallization, 0.035 mm grain size results)^[16]:

Medium		$10^{-6}k$ (s ⁻¹) at various T						logA [s ⁻¹]
	100 °C	110 °C	120°C	130°C	140°C	150°C		
Benzene	-	1.4	4.5	15	44	125	36.2	14.80
Diphenyl	_	_	4.1	_	38	_	35.9	14.58
<i>o</i> -Dichloro- benzene	_	_	2.0	7.2	22	62	36.5	14.65
Triacetin	-	_	7.7	22	61	162	33.4	13.46
Cumene	-	_	-	_	73	-	-	-
1,5-Dimethyl- naphthalene	_		-	_	71	-	_	-
Sample 1	0.012	0.044	-	0.44	1.28	-	35.4	12.84
Sample 2	-	-	-	-	1.87	-	-	-

Stability of K-6 @ 80 $^{\circ}$ C is two orders of magnitude lower than that of RDX $^{[16]}$

Burn rate [mm/s]	Burn rate characteristics: pressure interval = 0.1–10.1 MPa, pressure exponent = 0.961, burning rate @ 10 MPa = 55.6 mm/s, strand ρ = 1.74 g cm ⁻³ , adiabatic flame T @ 10 MPa = 3419 K ^[3]						
Solubility [g/mL]		Can be recryst. from ethyl acetate and $CH_3CN^{[2]}$, recryst. from $CH_3CN^{[14]}$, soluble in acetone (NMR) ^[14] , recryst. from ethyl acetate ^[15]					
Hygroscopicity	Hydrolysis be	egins @ 25 º	C ^[2]				
Compatibility	Sensitivity of	Sensitivity of Keto-RDX to hydrolysis ^[2] :					
	Condition o	Condition of Mass decrement Mass decrement hydrolysis (%)/time (%)/time					
	H ₂ O, 25 °C		4 %/4 day	/S	11%/11	days	
	H ₂ O, 50 °C		6%/3 h		17%/10	h*	
	H ₂ O, 100 °C	-	Complete	dec. in 30 m	in		
	1% aq. HN0	O₃, 50 °C	7 %/3 h				
	1% aq. NaC)H, 50 °C	7%/3 h				
	*Reaction wi	th fresh H ₂ O					
Activation	K-6 was recovacetic acid @ of the K-6 ^[14]	vered in 98% RT for 15 h a	[14], stirring and subseq	K-6 in water uent cooling	e mixture up to with 16% nitri to 4°C allowe	c acid and 16	
Activation energy to dec. [kJ/mol]	36.2 (in benz	ene) ^[5] , 35.4	(solid state)(s)			
Heat capacity [J mol ⁻¹]	_	0.85 @ 600 k	_	_	K, 180.72 @ 4 32 @ 800 K (s		
Laser ignition							
	Laser det.	Power (w)	Material	Function t	Energy (mJ)	Spot (mm)	
	10	10.8	K-6	17.08 ms	184.46	1.00	
	14	10.8	K-6	24.56 ms	265.26	1.00	
	16	10.8	K-6	19.03 ms	205.52	1.00	
	18	10.8	K-6	24.07 ms	259.96	1.00	
	13	10.8	K-6	24.17 ms	261.04	1.00	
			Mean	21.78 ms	235.25		
			Std. dev.	3.11 ms	33.58		

K-6 laser det. shots with a 800 μ diameter spot size, 0.1% HGN dopant level, doped K-6 pressed into a brass body into a 5 mm diameter, 3 mm long cavity @ ~ 75% bulk density with fused silica window (0.4 mm thick), that is AR coated for 810 nm laser diode, all with 10.8 W laser power and 0.80 mm spot size^[11]:

Laser det	Function t	Energy (mJ)
28	12.87 ms	139.00
12	16.70 ms	180.36
1	15.03 ms	162.32
2	17.13 ms	185.00
20	13.35 ms	144.18
21	15.99 ms	172.69
22	16.03 ms	173.12
17	13.07 ms	141.16
29	14.79 ms	159.73
25	14.87 ms	160.60
27	14.39 ms	155.41
3	14.07 ms	151.96
7	14.52 ms	156.82
24	12.12 ms	130.90
6	15.16 ms	163.73
8	15.37 ms	166.00
28	12.08 ms	130.46
31	12.27 ms	132.52
Mean	14.43 ms	155.89
Std. dev.	1.50 ms	16.23

CRT

 $\begin{array}{l} 0.031~cm^3/0.25~g @~80~^{\circ}C^{[14]},~0.44~cm^3/0.25~g @~120~^{\circ}C^{[14]},\\ 0.049~cm^3/0.25~g @~80~^{\circ}C~(\text{K-}6/\text{Viton A},~95:5)^{[14]},~0.886~cm^3/0.25~g @~120~^{\circ}C~(\text{K-}6/\text{Viton A},~95:5)^{[14]} \end{array}$

	K-6 ^[4]	Keto-RDX ^[13]	Keto-RDX ^[16]
Chemical formula	C ₃ H ₄ N ₆ O ₇	C ₃ H ₄ N ₆ O ₇	C ₃ H ₄ N ₆ O ₇
Molecular weight [g mol ⁻¹]	236.113	236.113	236.113
Crystal system		Orthorhombic	
Space group	Pna2(1)*	Pnma	Pna2(1)*
a [Å]	10.030(2)	10.057(17)	10.030(2)
<i>b</i> [Å]	5.970(1)	13.483(2)	5.970(1)
c [Å]	13.445(3)	5.982(10)	13.445(3)
α [°]	90	90	90
β [°]	99.00	90	99.00
γ [°]	90	90	90
<i>V</i> [Å ³]	805.1(3)	811.2(2)	805.1(3)
Z	4	4	4
$ ho_{ m calc}$ [g cm ⁻³]	1.948(3)	1.933	1.948(3)
<i>T</i> [K]		296	293
	* The Pna2 ₁ space group is orthorhombic, however a β angle of 99.0° and not 90° was given in the original paper	Crystals obtained from acetone/ H ₂ O soln. K-6 left standing for 3 days @ RT	* The $Pna2_1$ space group is orthorhombic, however a β angle of 99.0° and not 90° was given in the original paper

Nano-K-6 shows the same diffraction angles as micro-K6. [5]

- [1] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [2] H. Boniuk, W. Pilecki, T. Strawiński, M. Syczewski, *New Method of Synthesizing K-RDX Using Dinitrourea (DNU)*, ICT **2000**, Karlsruhe, Germany, pp. 46-1–46-8.
- [3] V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, *Study on Combustion of New Eneregtic Nitramines*, ICT **2001**, Karlsruhe, Germany, pp. 59-1–59-13.
- [4] N. N. Golovina, T. K. Gonacharov, V. V. Dubikhin, G. M. Nazin, G. B. Shilov, Y. Shu, *Structure and Stability of K-6*, ICT **2008**, Karlsruhe, Germany, pp. 43-1-43-9.
- [5] A. Shokrolahi, A. Zali, A. Mousaviazar, M. H. Keshavarz, H. Hajhashemi, *J. Energet. Mater.*, **2011**, *29*, 115–126.
- [6] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, 187-204.
- [7] R. Murugesan, C. Theivarasu, *Chem. Sci. Trans.*, **2015**, 4, 1163–1175.
- [8] B. Gao, Z. Qiao, G. Yang, *Review on Nanoexplosive Materials*, ch. 2 in *Nanomaterials in Rocket Propulsion Systems*, Q.-L. Yan, G.-Q. He, P.-J. Liu, M. Gozin (eds.), Elsevier, **2019**.

- [9] H. Bergman, K. Ekvall, A. Langlet, B. Persson, N. Roman, L. Sarholm, G. Åqvist, Keto-RDX Delrapport 1: En Syntesbeskrivning och Preliminära Känslighetsdata, FOA Rapport C20959-2.3, Försvarets Forskningsanstalt Huvudavdelningen för Vapensystem, Sundbyberg, Sweden 10th January 1994.
- [10] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [11] P. R. Wilkins, Laser Deflagration-to-Detonation in Keto-RDX Doped With Resonant Hollow Gold Nanoshells, LLNL-CONF-656673, 15th Int. Det. Symp., San Francisco, USA, 13th–18th July 2014.
- [12] N. Zohari, M. H. Keshavarz, S. A. Seyedsadjadi, Centr. Eur. J. Energet. Mater., 2013, 10, 135-147.
- [13] C. Zhou, Y. Zhou, B. Wang, H., Huo, F. Bi, P. Lian, X. Fang, *Chinese J. Org. Chem.*, **2012**, *32*, 75–80.
- [14] A. R. Mitchell, P. F. Pagoria, C. L. Coon, E. S. Jessop, J. F. Poco, C. M. Tarver, R. D. Breithaupt, G. L. Moody, *Propellants, Explosives, Pyrotechnics*, 1994, 19, 232–239.
- [15] H. Östmark, H. Bergman, K. Ekvall, A. Langlet, Thermochim. Acta, 1995, 260, 201-216.
- [16] N. N. Golovina, T. K. Gonacharov, V. V. Dubikhin, G. M. Nazin, G. B. Shilov, Y. Shu, Russ. J. Phys. Chem. B, 2009, 3, 896–900.
- [17] S. P. Felix, G. Singh, A. K. Sikder, J. P. Aggrawal, Thermochim. Acta, 2005, 426, 53-60.
- [18] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [19] M. H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, M. Ghanbarzadeh, J. Azarniamehraban, *Propellants, Explosives, Pyrotechnics*, 2013, 38, 95–102.
- [20] A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Centr. Eur. J. Energet. Mater., 2011, 8, 233-247.

L

Lead azide

Name [German, acronym]: Lead azide [Bleiazid, LA][†]

Main (potential) use: Primary explosive, initiating agent, technical LA

used in detonators^[20], often used as the main primary explosive in detonators and blasting caps^[23], primers and detonators but is usually coated with a layer of

sensitizer^[33]

Structural formula: $Pb(N_3)_2$

Dextrinated LA (DLA): LA in which dextrin is incorporated desensitizes the LA by

preventing the formation of large crystals; most common type of LA used commercially^[23,54], also known as Type I LA in which Dextrin is used as a colloidal agent^[8], least sensitive/best for handling, 93% with dextrin crystal modifier (spherical)^[45], safest-to-handle form and most commonly used commercially^[54], lower performance and more hygroscopic^[54], ~92% purity, made by adding 3% NaN₃ soln. made slightly alkaline (using NaOH and also containing potato dextrin approx. 6% of expected LA yield) to an equal volume of 7% lead acetate soln. maintained at 60 °C,

over time period of 30 min.[59]

Service LA (SLA): LA is not coated, acetic acid and sodium carbonate are added

to act as nucleating agent to precipitate LA in a spherical morphology which is less hazardous than the highly sensitive needle-shaped LA crystals^[23,54], LA crystals each contain a nucleus of lead carbonate, 96.1% LA^[8], has a higher explosive performance than DLA or RD1333/SPLA but is more sensitive^[54], phlegmatized LA, equant transparent crystals, made by near simultaneous addition of 1 M lead acetate soln. (added slightly in advance) and 2 M sodium azide soln. to kettle which contains some sodium carbonate soln.; lead carbonate is also produced which acts as a nucleating or seeding agent controlling crystal growth of LA; 96% pure, more energetic than DLA; more sensitive

than DLA^[59]

Special purpose LA (SPLA): LA is desensitized by the sodium salt of carboxymethylcellulose

(CMC), often used in military applications $^{[23]}$, both forms (SPLA = US developed; RD1333 = British developed) utilize the

sodium salt of CMC as the desensitizing agent^[54]

https://doi.org/10.1515/9783110672565-011

[†] Technical lead azide (LA): LA precipitated in presence of dextrin, 90–85% purity^[20]

On-demand LA: LA which meets specifications of SPLA and RD1333, produced in

on-demand process, qualified by US Army in 2012 and is currently

undergoing evaluation[54]

Colloidal lead azide (CLA): CLA, also known as Type II LA; non-DLA with very small particle

size, 99.9% LA^[8], purest form of LA used in the US^[54], made by mixing dil. solns. of lead and azide salts^[54], very fine particle size (~5 μ m) and extremely sensitive to ESD^[54], main use is as coating on electric bridge wires for commercial electric detonators^[54]; not

colloidal in its particle size [59]

Polyvinylalcohol (PVA)-LA: LA crystals coated with polyvinylalcohol, normal LA content is

93–96%^[8], high performance, 96% with polyvinyl alcohol as crystal modifier^[45], crystalline form precipitated in presence of PVA; well-defined, transparent crystals, 96% purity, may contain some PVA combined with lead; initiating efficiency equal to SLA

and similar sensitivity^[59]

RD-1333: Insensitive form of LA with nonpublished manufacture process,

98.7% LA^[8], most sensitive/high performance, 98.7% with CMC

added to control the particle characteristics^[45]

Dextrinated colloidal: LA with a very small particle size in the range of 1–2 μm, 92.7%–

LA (DCLA): 95.3 LA^[8]

RD1352: Spheroidal form of DLA, low dextrin content^[59]

(Detailed descriptions of the processes for the preparation of different types of LA can be found in reference^[59])

Types of LA used in reference^[34]:

	Dextrinated	RD 1333	PVA	Service	British colloidal
LA (%)	92.8	98.7	96.0	98.1	99.9
Particle size average (μm)	24.5	34.5	19.0	55.0	3.4

	LA
Formula	N ₆ Pb
Molecular mass [g mol ⁻¹]	291.3
Appearance at room temperature [RT]	Buff solid (DLA) ^[8] , white solid (SLA) ^[8] , white solid (CLA) ^[8] , white—buff solid (PVA-LA) ^[8] white—yellowish crystals ^[15] , white solid ^[20] , fine-grained crystalline material ^[29] , pure crystals are colorless ^[29] , DLA is yellow-white ^[29] , LA can vary from white—cream colored—gray ^[29] , white-buff solid ^[33] , white—buff (colloidal LA, 99.0 +% purity, average particle = 5 μ m) ^[60] , white—buff (special-purpose LA, RD1333, 98.5% purity, opaque, irregular, no translucent crystals) ^[60] , white — buff (DLA, 91.5% purity, average particle = 70 μ m, no needle-shaped crystals) ^[60]
IS [J]	10 cm (2 kg mass, 20 mg sample, B.M.) $^{[2,33]}$, 3 in (2 kg mass, 30 mg sample, P.A.) $^{[2,33]}$, 17 cm (DLA, 2 kg mass, 20 mg sample, B.M.) $^{[2,33]}$, 5 in (dextrinated, 2 kg mass, 28 mg sample, P.A.) $^{[2,33]}$, 2.5–4.0 $^{[3]}$, 2.5–4 Nm $^{[7,41]}$, 2 cm (2 kg mass) $^{[5]}$, 30–40 cm (500 g mass) $^{[5]}$, 35–40 cm (2 kg hammer) $^{[5]}$, 43 cm (B.M.) $^{[5]}$, 113 cm (median height, 2 kg mass, 30 mg sample, Rotter apparatus) $^{[6]}$, 0.089 (LA RD1333) $^{[23]}$, 0.089 ± 0.054 (LA RD1333) $^{[23]}$, 3 in (30 mg sample) $^{[36]}$, 75 cm (B.M.) $^{[36]}$, 100 cm (SLA) $^{[39]}$, 100 cm (BLA) $^{[39]}$, <15 kg-cm $^{[40]}$, 2.5–4 $^{[55]}$, 24 cm (100% fire, 400 g hammer, 20 mg sample) $^{[56]}$, 10.5 cm (100% no fire, 400 g hammer, 20 mg sample) $^{[56]}$, 10.5 cm (100% no fire, 400 g hammer, 20 mg sample) $^{[56]}$ Powdered samples: $H_{50\%}$ = 4 cm (NOL) $^{[6]}$, $H_{10\%}$ = 17 cm (B.M.) $^{[6]}$, $H_{10\%}$ = 5 in (P.A.) $^{[6]}$ $H_{50\%}$ = 15.24 cm (ball and disc impact test, SLA) $^{[16]}$, $H_{50\%}$ = 15.04 cm (ball and disc impact test, $^{[6]}$ Central conditions of mechanical mixes of different types of LA (ball and disc impact test) $^{[16]}$; $H_{50\%}$ = 15.24 cm (ball and disc impact test, SLA) $^{[16]}$, $H_{50\%}$ = 11.91 cm (ball and disc impact test, 90% service LA, 10% β-LA) $^{[16]}$, $H_{50\%}$ = 10.31 cm (ball and disc impact test, 90% SLA, 10% γ-LA) $^{[16]}$
	Sensitivity of LA increases as particle size increases. Crystals of 1 mm length are liable to spontaneously explode due to internal stresses. US Ordnance Department specifications allow LA to contain no needle-type crystals which are longer than 0.1 mm ^[20] . Crystalline SLA becomes more sensitive on storing under $\rm H_2O$ due to an increase in crystal size ^[20] . LA shows almost the same sensitivity to impact when it is wet as when it is $\rm dry^{[20]}$
	Minimum hot spot T for initiation by impact = 500-550 °C (in presence of grit) ^[21] , work = 4.76 kg•m•cm², drop weight = 975 mg, upper limit = 235 cm, lower limit = 65-70 cm ^[24]

Values from^[8]:

	DLA, type I, US	SLA	CLA, type II, US	PVA-LA, US	RD1333	DCLA
P.A., 2 kg mass	4-6 in	2 in	2-3 in	4-5 in	5 in	3-6 in
Mass of sample (mg)	28	37	25	30	23	18
B.M., 2 kg mass	13-28 cm	30 cm		13-16 cm	15 cm	
P.A., 500 g mass	12 in		6 in	18 in	15 in	
Mass of sample (mg)	28			31	21	
B.M., 500 g mass	100+ cm		35 cm	100+ cm	100+ cm	

All LA dextrinated, IS, 2 kg weight, values given in inches PA apparatus^[2]:

LA dry	LA + 25% H ₂ O	LA + 20% H ₂ O	LA + 20% ethyl alcohol
4	9	9	4

IS of wet and dry LA (2 kg mass, P.A.)[8]:

Composition (%)			Impact test (in)
LA	H ₂ O	EtOH	
100	-	ı	4
80	20	-	9
80	-	20	4
75	25	_	9

Ball drop IS (steel ball, ball weight = 8.36 g)^[34]:

Explosive	H _{50%} (cm)
Special-purpose LA	56.9 ± 5.3
RD1333 OMC2-2 LA	51.1 ± 8.9
Dextrinated LA 51-127	54.6 ± 8.4

10% point = 7 in (P.A., RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through 325) $^{[44]}$, 50% point = 8 in (P.A., RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through 325) $^{[44]}$, 10% point = 10 in (ball drop, RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through 325) $^{[44]}$, 0.050 ± 0.004 (ball drop, RD1333) $^{[45]}$, 0.089 ± 0.054 (ball drop, RD1333) $^{[45]}$, 21.5 in (50% response, ball drop, 7 g steel ball impacting 0.5 mm thick layer sample, DLA) $^{[47]}$, 5 in (2 kg mass, DLA, P.A.) $^{[47]}$, 20.1 in (50% response, ball drop, 7 g steel ball impacting 0.5 mm thick layer sample, RD1333 LA) $^{[47]}$, 54 ft.lb × 10^{-2} (50% detonation using 50 trials, 9 oz ball, SLA) $^{[53]}$, 69 ft.lb × 10^{-2} (50% detonation using 50 trials, 9 oz ball, DLA) $^{[57]}$

Ball drop test (8.35 g, $\frac{1}{2}$ in diameter steel ball, 35 mg sample)^[49]:

LA	Firing			Heigl	nts (in)		
	level (%)	Dry	Freon	Freon- 10% EtOH	EtOH, 95%	EtOH-H ₂ O, 50/50	H₂O only
Dextrinated	10	17	8.6	11	≥31	≥31	≥31
	50	20	19	22	≥42	≥42	≥42
RD1333	10	19	7.4	9	11	23	16
	50	26	10	13	14.6	28	37
PVA	10	16	5	7	7	10	11.6
	50	23	9	9	12	21	15
Spec. purp.	10	16	10	11.2	12	10.6	36
	50	22	12	14.4	16	13	40
Average and std. dev.	10	17 (1.5)	8 (2.3)	10 (2.2)	12 (5.5)		21
	50	23 (2.5)	12.5 (3.9)	15 (4.3)	17.5 (5.7)		30

Ball drop impact test (8.35 g, $\frac{1}{2}$ in diameter steel ball, 35 mg sample), height (in)/%^[49]:

LA	Dry	Wet with					
		Freon	Freon/10% EtOH	95% EtOH	50% H ₂ O/50% EtOH	H ₂ O	
Dextrinated	20/50	19/50	24/30	42/50	42/50	42/50	
	17/5	9/15	13/10, 13/10	42/10	42/10	42/10	
	18/20	10/15	14/15				
		11/15	15/30				
		12/15, 13/25	19/35				
		16/15, 17/30	20/50				
RD1333	26/50	10/50	13/50	20/50	28/50	38/50	
	17/10	6/5	8/10	10/5	22/10	21/25	
	19/15	7/5	9/10	11/10	23/10	24/30	
	20/10	8/15	10/10	12/35	24/10	26/30	
	21/15	9,725	11/20	13,730	25/25	29/25, 30/30	
PVA	23/50	11/50	12/50	18/50	21/50	25/50, 15/50	
	15/10	5/10	6/5	7/10	10/20	10/5	
	16/10, 16/10	6/5	7/5, 7/10	8/15	11/15	11/5	
	17/5	7/30	8/10	9/25	12/15	12/15	
	18/25	8/45, 9/50	9/35	10/20, 13/30, 14/55	13/25, 15/20, 16/25	13/25	
Special	22/50	12/50	17/50	16/50	13/50	40/50	
purpose	16/15	9/5	9/20	10/5	10/10	35/5	
	17/10	10/5	10/10	11/15	11/10, 11/15	36/15	
	18/25	11/15	14/50	13/15	12/25, 12/25	38/20	
	19/20	12/40	15/45	14/15, 15/30			

Property	Batch no. or product						
	1	2	3	4	5	DUP	KNK
Purity (%)	92.90	93.16	94.43	91.98	93.44	91.50	
Moisture (%)	0.46	0.61	0.57	0.66	0.74		
Bulk ρ (g/mL)	2.15	2.17	2.21	2.12	2.27	1.86	
IS:	IS:						
Ball drop (8.3 g/in)	37	39	32	34	29	32	40
Impact (2 kg/in)	7	5	5	4	5	7	

DUP = abbreviation for DuPont DLA; KNK = abbreviation for Kankakee Ordnance Works. USA.

113 cm (2 kg mass, median height, FoI = 20 (cf. lead 2,4-DNR = 11 (standard)), Rotter apparatus)^[61]

IS of LA as a function of weight and height (PA apparatus, 20 samples per data point), approx. values taken from graph [61]: $H_{5\%} = 3$ in (2.0 kg mass)[61], $H_{25\%} = 6$ in (2.0 kg mass)[61], $H_{60\%} = 9$ in (2 kg mass)[61], $H_{75\%} = 9$ in (2 kg mass)[61], $H_{100\%} = 15$ in (2 kg mass)[61], $H_{25\%} = 6$ in (3 kg mass)[61], $H_{60\%} = 6$ in (3 kg mass)[61], $H_{20\%} = 12$ in (1 kg mass)[61], $H_{30\%} = 12$ in (1 kg mass)[61], $H_{35\%} = 15$ in (1 kg mass)[61], $H_{50\%} = 15$ in (1 kg mass)[61], $H_{65\%} = 18$ in (1 kg mass)[61], $H_{70\%} = 21$ in (1 kg mass)[61], $H_{85\%} = 24$ in (1 kg mass)[61], $H_{90\%} = 27$ in (1 kg mass)[61], $H_{50\%} = 18$ in (500 g mass)[61], $H_{10\%} = 21$ in (500 g mass)[61], $H_{35\%} = 27$ in (500 g mass)[61], $H_{48\%} = 30$ in (500 g mass)[61], $H_{62\%} = 33$ in (500 g mass)[61]

Impact initiation delay, delay range for approx. 20 initiations^[61]:

Impact energy (J)	Average delay (μs)	Delay range (μs)
6.34	106	40-295
4.85	164	40-380
3.40	296	91–450
1.94	318	50-620
0.98	197	40-810
0.47	114	40-300

Ball and disc IS^[61]:

Explosive	Height for 50% reactions (cm)	Standard deviation (cm)
SLA	15.24	0.106
β-LA	15.04	0.078
γ-LA	7.35	0.121
90% SLA/10% β-LA	11.91	0.081
90% SLA/10% γ-LA	10.31	0.149

Effect of T on the IS (2 kg mass, rel. humidity = 60%, 20 samples per data point, Picatinny apparatus) approx. values from graph^[61]:

Temperature	% of samples reacting	Height (in)
RT	5	3
RT	15	5
RT	25	6
RT	35	7
RT	60	8
RT	75	9
RT	100	12
-100 °C	5	4
-100 °C	25	6
-100 °C	60	8
-100 °C	70	9
-100 °C	90	11
–100 °C	100	13

% of samples reacting, 2 kg mass, 70°F, rel. humidity = 55%, 20 samples per data point, Picatinny Arsenal apparatus, approx. values from graph $^{[61]}$:

Height (cm)		LA type					
	SPLA	Colloidal	PVA	RD1333	DLA		
5	12	4					
10	60	10		5	0		
15	95	25	0	10	10		
20	100	60	5	20	50		
25		65	15	35	95		
30		85	40	75	100		
35		95	75	90			
40			100	95			
45				98			

Height (in), $\frac{1}{2}$ in steel ball, 70°F, rel. humidity = 55%, 20 samples per data point, Picatinny Arsenal apparatus, approx. values from graph^[61]:

% samples		LA type	
reacting	PVA	RD1333	DLA
0	15	12	13
10	16.5	16.5	16
20	17	20	17.5
30	17.5	22	19
40	18	23.5	20
50	19	24	21
60	19.5	25	22
70	20	25.5	23
80	21	26	24
90	22	27	26

Sensitivity of LA to kinetic	energy and	l impulse.	data from ^[61]
------------------------------	------------	------------	---------------------------

Ball diam (in.)	Bal mass (g)	Height (cm)	е	Detonations (%)	Potential energy ^a	Net kinetic energy ^b (J)	Impulse ^c (J •s × 10 ⁻⁴)
7/8	44.66	90	0.615	10.9 (20)	0.394	0.230	0.310
	44.66	100	0.644	15.0 (20)	0.437	0.256	0.326
	44.66	110	0.613	17.5 (40)	0.482	0.281	0.342
	44.66	120	0.617	20.0 (20)	0.525	0.307	0.358
1	66.68	60	0.510	17.5 (40)	0.392	0.290	0.346
	66.68	80	0.513	35.0 (40)	0.523	0.386	0.403
	66.68	100	0.514	47.5 (78)	0.654	0.483	0.451
	66.68	120	0.509	57.0 (100)	0.784	0.579	0.493
11/8	95.04	100	0.372	80.0 (20)	0.933	0.804	0.580
	95.04	120	0.368	87.5 (40)	1.120	0.965	0.632

^aPotential energy = mgh; ^bNet kinetic energy = $mg(h_1 - h_2)$ = 980 mh_1 (1 $- e^2$): ^cImpulse or change in momentum = Ft = m ($u_1 - u_2$) = 44.3 $m(1 + e)h_1^{-1/2}$, where m = ball mass, g = gravitational constant, h_1 = initial fall height, h_2 = rebound height, $e = u_2/u_1 = (h_2/h_2)^{1/2}$ = coefficient of restitution, F = force, t = time over which ball goes from u_1 to u_2 , u_1 = falling velocity before duration of contact, u_2 = rebounding velocity after duration of contact

Effect of drying and humidity on IS of SPLA (2 kg mass, PA, 20 samples per data point), % of sample reacting @ specified height^[61]:

Sample air-dried for 24 h: 15% @ 4 in, 45% @ 5 in, 70% @ 7 in, 75% @ 8 in, 78% @ 10 in, 95% @ 13 in $^{[61]}$

Sample air-dried for 2 days: 10% @ 1 in, 40% @ 3 in, 70% @ 4 in, 95% @ 4.5 in $^{[61]}$

Vacuum dried @ 60 °C for 24 h: 5% @ 1 in, 10% @ 2 in, 45% @ 3 in, 75% @ 4 in, 85% @ 5 in $^{[61]}$

Sample dried in vacuum for 24 h @ 60 °C: 5% @ 3 in, 30% @ 4 in, 75% @ 5 in, 85% @ 7 in, 88% @ 6 in $^{[61]}$

Sample dried in vacuum for 24 h @ 60 °C then allowed to stand @ 65% RH for 24 h: 15% @ 3 in, 40% @ 4 in, 60% @ 5 in, 68% @ 7 in, 98% @ 10 in $^{[61]}$

FoI = 18–20 (RD1333 LA, Rotter machine) $^{\rm [61]}$, FoI = 21 (RD1343 LA, Rotter machine) $^{\rm [61]}$

 $H_{10\%}$ (RD1343 LA, PA): 12.7 cm (2 kg mass), 33 cm (1 kg mass), 50.8 cm (0.45 kg mass), 150 cm (0.23 kg mass)^[61], $H_{10\%}$ (RD1343 LA, ball drop): 83.8 cm (2 kg mass), 76.2 cm (1 kg mass), 58.4 cm (0.45 kg mass), 55.3 cm (0.23 kg mass)^[61]

DLA stored for ~25 years in 50:50 $\rm H_2O/EtOH$ had no significant change in $\rm IS^{[61]}$ Changes in IS of LA due to storage^[61]:

Sample		Storage time (months)						
	As red	ceived	6	.5	10).5	14.75	
	10%	50%	10%	50%	10%	50%	10%	50%
SPLA								
Lot 1	6.50	8.20	5.10	6.80	5.19	6.95	5.10	6.82
Lot 2	6.77	9.41	4.48	7.20	5.22	7.02	5.05	7.00
Lot 3	6.39	8.66	4.78	7.45	5.13	6.61	7.60	9.70
Lot 4	6.20	9.64	6.20	8.78	5.25	7.25	6.38	7.78
Lot 5	6.29	8.37	4.89	7.61	4.81	6.78	5.27	7.23
Lot 6	3.48	6.72	3.35	5.95	4.58	6.38	5.21	6.53
RD1333								
Lot 1	6.96	8.76	3.02	5.74	4.76	6.44	3.93	6.29
Lot 2	5.12	7.02					5.14	7.62

Effect of liquid nitrogen on the IS^[61]:

	DLA	PVA LA	RD1333 LA					
A) Mean height for 50% pr	A) Mean height for 50% probability of reactions							
Control (dry): height (cm)/σ	32.13/5.05	28.75/3.33	31.75/12.29					
LN ₂ test: height (cm)/σ	43.31/6.58	33.02/9.32	31.75/5.18					
B) Height for 10% probabi	B) Height for 10% probability of reactions*							
Control (dry): height (cm)	15.24 [†] (12.70)	12.70 (7.62)	12.70 (7.62)					
LN ₂ test: height (cm)	25.4	15.24	12.70					
C) Effect of temperature cycling @ 50% height [‡]								
In LN ₂ : % fire [§] 55 35 45								
Dry: % fire§	45	50	60					

^{*2} kg weight in modified PA apparatus for 10% point; †values in () indicate 10% point in regular PA test; †temperature cycling consisted of soaking sample in LN₂ for 15 min and the allowing to stand @ ambient *T* for 1 h for five cycles; 20 samples tested dry and 20 in LN₂; § % fire in cycled tests indicates % samples fired of 20 samples tested at control 50% fire height

Ball drop apparatus, DLA^[65]:

Ball diameter (in)	Ball mass (g)	Height (h_1) (cm)	Ε	Detonations (%)	<i>mhg</i> (ergs × 10 ⁻⁶)	Net kinetic energy (ergs × 10 ⁻⁶)	impulse (cgs units × 10 ⁻⁴)
⁷ / ₈	44.66	90	0.645	10.0	3.94	2.30	3.10
7/8	44.66	100	0.644	15.0	4.37	2.56	3.26
7/8	44.66	110	0.643	17.5	4.82	2.81	3.42
7/8	44.66	120	0.647	20.0	5.25	3.07	3.58
1	66.68	60	0.510	17.5	3.92	2.90	3.46
1	66.68	80	0.513	35.0	5.23	3.86	4.03
1	66.68	100	0.514	47.5	6.54	4.83	4.51
1	66.68	120	0.509	57.0	7.84	5.79	4.93
1-1/8	95.04	100	0.372	70.0	9.33	8.04	5.80
$1-^{1}/_{8}$	95.04	120	0.368	87.5	11.20	9.65	6.32

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; RD1343 LA, data from [66]

Rotter impact data		US data			
FofI	Gas evolved (mL)	NSWC/NOL, ERL type 12	NWC B.M. type 12		
20	13	12			

Rotter impact data, 20 drop expts., $h_{50\%}$ = median drop height, each drop expt. Has the no. of ignitions out of 20 $(n_{\rm g})$, the fraction of ignitions $(P_{\rm g})$, average gas volume evolved per ignition $(V_{\rm g})$ and calcd. powder explosiveness at each level (X), RD1343 LA, data from $^{[66]}$

Drop height multiple of $h_{50\%}$	No. of fires out of 20 drops (n _g)	$P_{\rm g} = n_{\rm g}/20$	Average gas evolved, $V_{\rm g}$ (mL)	explosiveness at each level, X (%)
0.67	0	0	0	0
0.75	3	0.15	13.4	100
1.0	8	0.40	13.1	100
1.5	12	0.60	12.9	100
2.0	10/10	1.0	12.0	100

Effect of grit on percussion sensitiveness of LA (% ignitions), weight of ball = 9 oz. [53]:

Impact oz, in	Service azide	Service azide + 9% emery	Dextrin azide	Dextrin azide + 9% emery
31	(2%)	44%	(2%)	10%
40	3%	46%	3%	10%

FS [N]

Explodes with steel shoe (friction pendulum test)^[2], 36 , explodes with fiber shoe (friction pendulum test)^[2], $0.1-1.0^{[3,55]}$, 4.46 ft/s (Emery paper test, service LA)^[16], 4.39 ft/s (Emery paper test, β -LA)^[16], 6.29 ft/s (Emery paper test, α -LA)^[16], FoF = 0.84 (rotary friction FoF)^[22], FoF = 0.07 (rotary friction FoF)^[22], 10 (BAM limiting load)^[22], 0.1 (BAM limiting load)^[22], 0.1 (LA RD1333)^[23], 0.098 (Explosion % of 25 samples under 588.40 kPa and 80° swing angle)^[56], 0.02 kgf^[57]

Sensitivities of mechanical mixes of different types of LA (Emery paper test) $^{[16]}$: 4.46 ft/s (SLA) $^{[16]}$, 3.61 ft/s (90% SLA, 10% β -LA) $^{[16]}$, 3.57 ft/s (90% SLA, 10% γ -LA) $^{[16]}$

Tested on porcelain and Emery paper (Julius-Peters, BAM)[19]:

Type of LA		Friction sensitivity (g)				
	Porcelain		Emer	y paper g	rades	
		P80	P100	P120	P180	P360
SLA (service LA)	10	75	20	30	50	50
NA98 (98% LA pure)	20	175	20	30	50	40
NA94 (94% LA phlegmatized)	75	90	50	30	100	200
DLA (dextrinated LA)	100	350	250	75	275	500

Sensitivity of LA increases as particle size increases. Crystals of 1 mm length are liable to spontaneously explode due to internal stresses. US Ordnance Department specifications allows LA to contain no needle-type crystals which are longer than 0.1 $\rm mm^{[20]}$

Minimum hot spot T for initiation by friction = 430-500 °C^[21]

 $F_{50} = 0.26$ (dry sample) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[28], $F_{50} = 2.47$ (5% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[28], $F_{50} = 8.04$ (10% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[28], $F_{50} = 9.44$ (excess water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[28], 250 g (basic LA)^[39], 50 g (SLA)^[39]

Friction pendulum test, all samples LA dextrinated^[2]:

	LA dry	LA + 25% H ₂ O		LA + 20% H ₂ 0	
Shoe	Fiber	Fiber	Steel	Fiber	Steel
No. of trials	1	10	12	10	1
Explosions	1	0	0	0	1
Cracklings		0	2	0	0
Unaffected	0	10	10	10	0

FS of wet and dry LA, pendulum friction test^[8]:

Com	Composition, %		Pendulum friction test			st
LA	H ₂ O	EtOH	fiber shoe		Ste	el shoe
			Trials	Detonation	Trials	Detonation
100	_	-	1	1	-	_
80	20	ı	10	0	4	1
80	_	20	1	1	-	_
75	25	-	10	0	12	0

Julius-Peters, BAM, porcelain plate and peg, Bruceton method^[34]:

Explosive	Initiation level	
	50% (g)	10% (g)
Colloidal LA	16±7	-
PVA LA	50 ± 22 < 10	
RD1333 OMC2-2 LA	81 ± 29	20
Dextrinated LA 51-127	157 ± 50	100
Dextrinated LA 51-126	167 ± 90	100

Tests performed on same lot of DLA (duPont) which was desiccated for 6 months, Julius-Peters, BAM, porcelain plate and peg, Bruceton method $^{[34]}$:

Date	50% initiation level (g)
15.10.1980	200.0 ± 022.6
27.10.1980	167.0 ± 088.0
16.01.1981	159.0 ± 045.0
09.03.1981	210.1 ± 147.0
16.03.1981	164.3 ± 048.0
24.04.1981	191.5 ± 052.7

A comparison of friction data at 10% probability of initiation^[34]:

	10% probability of initiation				
	Previous work in 6 trials (g) Present work in 10 trials (g)				
LA	10	20			

No fire @ 0 g but low fire @ 10 g (small BAM, RD1333) $^{[45]}$

Samples mixed with 25% glass, 2 oz weight, Bruceton method, test of 25 charges of samples, \bar{X} = height (in) which a 2 oz ball must be dropped to cause the firing of the sample in 50% of the tests^[52]:

Explosive	\bar{X} (in)
Dextrinated LA	8.80
RD1333 LA	2.08

Explodes in Picatinny Arsenal test^[61]

% ignitions in mallet FS data from [61]

Explosive	Standard wood mallet on anvils of			
	York stone	Softwood		
RD1333	100	100	100	
Dextrinated LA	100	100	100	
SLA	100	100	100	
RD1343	100	100	100	

Pendulum FS^[61]:

Explosive	Fiber shoe	Steel shoe
LA	Failed	Failed
Dextrinated LA	Failed	Failed

Emery paper FS^[61]:

Ignitions/trial at	Explosive			
strike velocity (ft/s)	SLA	RD1333	RD1343	Dextrinated LA
2.5	1/20	1/20	1/20	
3	3/20	2/20	2/20	
4	4/20	5/20	5/20	
5	15/20	8/20	8/20	
6	19/20	17/20	17/20	
8				0/10
9				2/10
10				2/10
11				4/10
Type of ignition	Complete	Complete	Complete	Complete

Emery paper FS, 50% values^[61]:

Explosive	Velocity of stroke for 50% reactions (ft/s)	Standard deviation, σ (ft/s)
SLA	4.46	0.184
β-LA	4.39	0.185
γ-LA	6.29	0.194
90% SLA/10% β-LA	3.61	0.206
90% SLA/10% γ-LA	3.57	0.242

Sliding block FS, *= with steel on steel surfaces, substantially the same results were obtained with a dead load of 40 lb instead of 6 lb on the tilting table^[61]:

Ignitions/trial	Explosive and surface*			
at velocity strike (ft/s)	SLA		DLA	
Strike (It/S)	Steel on steel	Emery	Steel on steel	Emery
5	0/10	4/10	0/10	
6	1/10	4/10	0/10	
7	0/10	9/10	0/10	
8	0/10	10/10	0/10	
9	0/10		0/10	0/10
10	0/10		0/10	1/10
11	0/10		0/10	1/10
12	0/10		0/10	5/10
13	0/10		0/10	6/10
14	0/10		0/10	10/10

Effects of liquids on sliding block FS, ignitions/trial at 6 lb load, number of ignitions at 14 ft/s; Perminal = sodium salt of isopropyl naphthalene sulfonic $acid^{[61]}$:

Desensitizer	SLA
Without desensitizer	10/10
Sprayed 20 s w/water or 2/20% glycerin soln.	6/10
Same, plus 0.1% perminal	8/10
Same, plus 0.1% turkey red oil	5/10
One drop EtOH	1/10
20 s spray butyl alcohol	6/10
One drop butyl alcohol	0/10

BAM FS^[61]:

Explosive	Reaction observed	Load on porcelain peg (g)	
		10	20
LA	No reaction	2	0
LA	Ignition	0	0
LA	Detonation	4	6

Friction initiation of LA in the presence of grit, height of fall = 60 cm, amount of sample = 25 mg with or without grit^[61]:

Grit	Hardness (Moh's scale)	mpt. (°C)	Explosive efficiency (%)
Nil			0
Silver nitrate	2-3	212	0
Silver bromide	2-3	434	0
Lead chloride	2-3	501	30
Silver iodide	2-3	550	100
Borax	3-4	560	100
Bismuthinite	2-2.5	685	100
Glass	7	800	
Chalococite	3-3.5	1,100	100
Galena	2.5-2.7	1,114	100
Calite	3	1,339	100

FS test using Yamada friction apparatus^[61]:

Explosive	Particle	Additive	Load for 50% ignitions (kg)		
	size (mm)		Emery	Ebonite	Copper
SLA	0.1 - ~0.3	_	1.7	66.0	МОО
		Ground glass 100 mesh	1.2	11.0	8.0

ESD [J]

0.0070^[2], 5.0 mJ (LA RD1333)^[23], 6.75 μ J (LA RD1333)^[23], 0.01 (max. static discharge @ which no ignition occurs)^[8], 0.007 (unconfined)^[36], 0.007 (confined)^[36], 0.0008 (spark insensitivity, basic LA)^[39], <3 kv (Sandia standard man model tester)^[40], 4.7 mJ^[41], 6.75 μ J (LEESA, RD1333)^[45], 0.003 (minimum energy, DLA)^[47], 0.0025 (minimum energy, RD1333 LA)^[47], 50,000 ergs (point of 50% fires, fixed-gap method, 0.005–0.010 in gap)^[52], 20 ergs (contact discharge, approaching electrode method)^[52], 150,000 ergs (RD-1333 LA @ 0.005 in, fixed-gap method)^[52], 0.6 ergs (RD1333 LA, contact discharge, approaching electrode method)^[52], 5.0 mJ^[54], <5 mJ^[55], 0.003^[56,57], 0.007 (unconfined)^[61], 0.007 (confined)^[61], 5.5 × 10⁻⁴ (RD1333 LA, approaching needle, spark discharge)^[62], 27 × 10⁻⁴ (RD1333 LA, approaching needle, spark discharge)^[62]

Contact electrostatic discharge sensitivity^[52]:

Explosive	Fires
Dextrinated LA	0/5 at 7,000 V, 300 MMF
	1/5 at 8,000 V, 300 MMF
RD1333 LA	1/5 at 20 V, 300 MMF
	4/5 at 50 V, 300 MMF
	5/5 at 100 V, 300 MMF

Discharge between two metallic electrodes, or one metallic electrode and the lower electrode is covered by a piece of conducting rubber $^{[16]}$:

Value	Service LA	β-LA	α-LA
ESD (M/M needle 250–500 μμF)	20 ergs	12 ergs	11 ergs
R/M minimum capacitance	~400 µµF	~400 µµF	~400 µµF
Minimum energy	2,250 ergs @ 1,500 μμF	2,500 ergs @ 1,000 μμF	3,000 ergs @ 1,000 μμF

Highest ESD energy @ 5,000 V for zero ignition probability $^{[7]}$:

Highest energy for zero ignition probability		Type of ignition		
Unconfined Confined		Unconfined	Confined	
0.0070	0.0070	deton.	deton.	

50 mJ (zero ignition probability, uncoated LA) $^{[35]}$, 32 mJ (zero ignition probability, PVP coated LA) $^{[35]}$

Ignition values^[35]:

Explosive	Capacitance (MF)	Voltage (kV)	Energy (J)	T(°C)	RH (%)	remarks
LA (PVP coated)	0.001	10.0	0.050	26.3	53	ignited
LA (PVP coated 97%)	0.01	6.8	0.231	26.1	57	ignited
LA (uncoated)	0.001	11.0	0.0605	26.1	57	ignited

Threshold ignition energies (energy value given is the energy (erg) stored on the capacitor, the energy dissipated in the gap is about one-tenth of this) data from [36]:

Material	Metal/metal electrodes (no added circuit resistance)		Rubber/metal electrodes (10 ⁵ ohm series resistance)		
	Contact sparks, Gaseous sparks, 500 pF 1,000 pF		Minimum energy	Minimum capacity, pF	
LA	20	10,000	2,250	500	

0.005 (P.A., RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through $325)^{[44]}$

Reproducibility of determinations using RD1333 LA (minimum fire point) approaching-electrode electrostatic sensitivity apparatus, 25 trials were carried out at each test level^[50]:

Needle plane	2 expts., 2 months apart (oscillatory discharge, series resistance = 0, storage capacitance = 1,176 pF) 1st expt.: 45,000 ergs 2nd expt.: 45,000 ergs
Needle plane	4 expts., 2 weeks between the first and second, one day between second and third, and eight months between the third and fourth (spark discharge: series resistance = $100 \text{ k}\Omega$; storage capacitance = 624 pF) 1st expt.: 7,300 ergs 2nd expt.: 5,800 ergs 3rd expt.: 5,800 ergs 4th expt.: 5,800 ergs
Plane-plane	2 expts., three weeks apart (oscillatory discharge, series resistance = 0, storage capacitance = 1,176 pF) 1st expt.: 45,000 ergs 2nd expt.: 45,000 ergs

Effect of spark starting position on results for RD1333 LA (R = 100 k Ω , C = 1,176 pF), approaching-electrode electrostatic sensitivity apparatus^[50]:

Base electrode material	Preset gap (mm)	Spark starting position with respect to sample	Energy (J × 10 ⁻³)
Steel	0.18	External	3.4
Steel	0.18	Within	2.8
Steel	0.63	External	3.6
Steel	0.63	Within	2.6
Stainless steel	0.18	External	4.2
Stainless steel	0.18	Within	3.3

Approaching electrode electrostatic sensitivity apparatus, RD1333 LA^[50]:

Discharge	Minimum energy (10 ⁻⁷ J)				
	Approaching (pin) needle Approaching (pin) plane to plane		Fixed gap, parallel plate		
Oscillatory	47,000	47,000	3,000		
Arc	20,000	19,000	1,700		
Spark	4,700 4,500		1,400		
	50% point				
Spark	27,000	5,500			

ESD of spheroidal and conventional DLA^[59]:

Property		Batch no. or product				
	1	2	3	4	5	DUP
Purity (%)	92.90	93.16	94.43	91.98	93.44	91.50
Moisture (%)	0.46	0.61	0.57	0.66	0.74	
Bulk ρ (g/mL)	2.15	2.17	2.21	2.12	2.27	1.86
Electrostatic sensitivity (J)	0.0032	0.0058	0.0053	0.0044	0.009	0.0096

DUP = abbreviation for DuPont dextrinated LA; KNK = abbreviation for Kankakee Ordnance Works, USA.

Effect of process parameters on LA^[59]:

Batch	СМС	Agitator (rpm)	T (°C)	Bulk ρ (g/mL)	ESD (J)
RD1333	MN83	200	25	1.33	0.0102
		300		1.49	0.0090
				1.49	0.0078
		350		1.46	0.0096
		125		1.01	0.0360
	7MSP	300		1.14	0.0048
	B50			1.48	0.0040
	4MP			2.11	0.0040

	B50			1.53	0.0029
	4M6F			2.02	0.0048
	4M6			2.04	0.0044
	B50			1.89	0.0044
	4NO		37/38	1.40	0.0053
	4M6F		25	2.05	0.0023
			20	2.00	0.0026
			30	2.13	0.0026
			40	1.88	0.0016
			35	1.90	0.0013
		200		1.88	0.0036
		100		1.11	0.0282
		350		2.13	0.0014
		300	25	1.95	0.0036
				2.09	0.0058
				0.85	0.0346
				1.77	0.0063
				2.09	0.0032
				1.81	0.0032
				1.05	0.0063
RD 1343	MN83	250		1.46	0.0038
				1.85	0.0040
	7MSP			1.11	0.0048
	4MP			1.27	0.0032
DuPont RD1333				1.49	0.0040
Special purpose				1.46	0.0063
	DuPont RD1333 Special	### AM6F #### 4M6 ##### B50 ###################################	### AM6F ### AM6 ### AM6 ### AM6 ### AM6 ### AM6F #### AM6F ### AM6F ###### AM6F ### AM6F ### AM6F ### AM6F #### AM6F ### AM6F ### AM6F ##	AM6F 4M6 B50 4NO 37/38 4M6F 25 20 30 40 35 200 100 350 300 25 RD 1343 MN83 250 7MSP 4MP DuPont RD1333 Special	## AM6F 2.02 ## AM6 2.04 ## B50 1.89 ## AN0 37/38 1.40 ## AM6F 25 2.05 ## 20 2.00 ## 30 2.13 ## 40 1.88 ## 35 1.90 ## 200 1.88 ## 100 1.11 ## 350 2.13 ## 300 25 1.95 ## 2.09 ## 0.85 ## 1.77 ## 2.09 ## 1.81 ## 1.05 ## RD 1343 MN83 250 1.46 ## TMSP 1.11 ## AMP 1.27 ## DuPont RD1333 ## Special 1.46 ## 1.49 ## Special 1.46 ## 1.49 ## 37/38 3.40 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.49 ## 1.40

Comparison of minimum initiation energy of LA with needle-plane and parallel-plate electrodes, RD1333 LA, constant capacitance of 330 pF used, ^bself-commutated by krypton switch^[62]:

Series	RC time	Energy in spark gap (J)		
resistance (12)	constant (m/s)	Needle plane	Parallel plate	
1.5 × 10 ⁻¹	b	1.3 × 10 ⁻³	3.3 × 10 ⁻⁴	
8.2 × 10 ¹	2.7 × 10 ⁻⁵	> 5.9 × 10 ⁻⁴	3.1 × 10 ⁻⁴	
1.0 × 10 ⁵	3.3 × 10 ⁻²	>3.1 × 10 ⁻⁴	3.1 × 10 ⁻⁴	
6.8 × 10 ⁵	2.2 × 10 ⁻¹	2.2 × 10 ⁻⁴	1.8 × 10 ⁻⁴	
1.2 × 10 ⁶	4.0 × 10 ⁻¹	2.0 × 10 ⁻⁴	1.1 × 10 ⁻⁴	

Comparison of 50% initiation values of RD1333 obtained for the spark starting within or external to the powder ($R = 100 \text{ k}\Omega$, C = 1,176 pF)^[62]:

Base electrode material	Preset gap (mm)	Spark starting position	Energy (J × 10 ⁻³)
Steel	0.18	External	3.4
Steel	0.18	Within	2.8
Steel	0.63	External	3.6
Steel	0.63	Within	2.6
Stainless steel	0.18	External	4.2
Stainless steel	0.18	Within	3.3

(See additional values at end of section)

N [%]	28.8
Ω [%]	-5.5
T _{m.p.} [°C]	Dec. ^[2, 36] , detonates before melting ^[29] , does not melt but undergoes dec. ^[30, 33]
T _{phase transition} [°C]	160 ($\alpha \rightarrow \beta$, irreversible) ^[15, 16] ($\Delta H = 0.30 \pm 0.05$ kcal mol ⁻¹ , crystalline state) ^[16]
T _{dec.} [°C]	585 K (DSC @ 0.33 K s ⁻¹ , covered Al pan, Ar atmosphere @ 168 kPa, 0.2–1.0 mg sample, β-LA; E_a = 110 ± 6 kcal mol ⁻¹ (Rogers and Morris method); E_a for α-LA = 30 kcal mol ⁻¹ (Kissinger method), 47.7 kcal mol ⁻¹ (Gomm)) ^[17] , 315 (DSC) ^[23, 54] , 320 (DSC, onset, LA RD1333) ^[23] , 240–250 ^[30] , 350 (basic LA) ^[39] , 325 (SLA) ^[39] , 315 (exo max, DSC) ^[41] , 332 (onset), 341 (peak) (DSC @ 20 °C/min, RD1333) ^[45] , 315 ^[55] , 463 K (onset), 618 (peak max) ^[57] , 317 (DTA-TGA, DLA) ^[58]

T of DTA exotherms for RD1333 LA (heating rate = $10 \, ^{\circ}$ C/min in He)^[63]:

T _{onset} (°C)	T _{peak} (°C)	Lead MP (°C)	Sample weight (mg)
287	305	317	2.4
289	305	316	2.6
288	305	320	1.1
293	305	320	1.0
294	306	321	0.8
290	304	320	0.4
288	304	320	0.4
290	304	316	0.4
287	302	316	0.5
290	303	320	0.3
287	302	320	0.3

DTA data, a sample detonated, from [63]:

Azide	Heating rate (°C/min)	Exotherm onset (°C)	Exotherm peak (°C)	Δ°C
PVA	5	285	303ª	18
DLA	5	290	296	6
RD1333	5	288	306	18
	5	297	308	11
PVA	10	296	312	16
DLA	10	298	306	8
RD1333	10	296	312	16
	10	301	317	16
high purity	10	287	302	15
PVA	20	298	316	18
DLA	20	302	314	12
RD1333	20	308	323	15
	20	320	320	10

ho [g cm $^{-3}$]

4.80 (crystal)^[2, 36], 4.38 (dextrinated)^[2], 4.8^[4, 23], ~4.8 (true ρ)^[20], ~1.2 (apparent ρ of loose powder)^[20], 2.58 (LA RD1333)^[23], 4.71 (orthorhombic, α-form)^[30], 4.93 (monoclinic, β-form)^[30], 1.83 (apparent density, DLA type I)^[8], 0.85 (apparent density, CLA type II US)^[8], 4.7 (crystal)^[41], 4.80^[54, 55], 4.38^[57]

Loading ρ (sample 1)^[6, 36]:

Pressure (kpsi)	Loading ρ (g cm ⁻³)
3	2.46 ^[6, 36]
5	2.69 ^[6, 36]
10	2.98 ^[6, 36]
12	3.05 ^[6, 36]
15	3.16 ^[6, 36]
20	3.28 ^[6, 36]
Crystal	4.68 ^[6, 36]

Loading ρ (sample 2)^[2, 6, 36]:

Pressure (kpsi)	Loading ρ (g cm ⁻³) ^[2, 6, 36]	
3	2.62 ^[2, 6, 36]	
5	2.71 ^[2, 6, 36]	
10	2.96 ^[2, 6, 36]	
15	3.07 ^[2, 6, 36]	

3.14 (@ 15,000 psi, DLA, type I, US) $^{[8]}$, 3.31 (@ 15,000 psi, SLA) $^{[8]}$, 3.81 (@ 15,000 psi, PVA-LA, US) $^{[8]}$

Data from^[34]:

Explosive	Crystal density (g/cc)
Colloidal LA	4.8
PVA LA	< 4.8
Special-purpose LA	4.8
Dextrinated LA 51-127	4.4
Dextrinated LA 51-126	4.4

	1.3 (bulk density, RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through 325) ^[44] Bulk densities of spheroidal and conventional DLA ^[59] :						
	Property		Е	atch no.	or produc	ct	
		1	2	3	4	5	DUP
	Purity (%)	92.90	93.16	94.43	91.98	93.44	91.50
	Moisture (%)	0.46	0.61	0.57	0.66	0.74	
	Bulk ρ (g/mL)	2.15	2.17	2.21	2.12	2.27	1.86
DUP = abbreviation for DuPont dextrinated LA							
Heat of formation	Enthalpy of form. = 1,637.7 kJ/kg ^[4] , energy of form. = 1,663.3 kJ/kg ^[4] , $-368 \text{ cal/g}^{[2]}$, $450.1 \text{ kJ/mol} (\Delta_f H_m)^{[55]}$, $469 \text{ kJ/mol}^{[57]}$, 115.5 kcal/mol (standard enthalpy of form., α -LA, cryst, @ 25 °C) ^[67] , 115.8 kcal/mol (standard enthalpy of form., β -LA, cryst, @ 25 °C) ^[67]						
Heat of combustion	630 kcal/kg ^[2, 12, 36] , 2,635 kJ/kg ^[57]						

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	1,575	367 kcal/kg ^[12]	367 cal/g ^[2, 36]
		Heat of explosion =	1,638 ^[4]
		1,610 kJ/kg ^[57]	367 cal/g [H ₂ O (g)] ^[8]
			260 cal/g (@ 4.6 g cm ⁻³) ^[30]
			1,450 cal/cm³ (voidless, volumetric heat of explosion, DLA) ^[36]
			970 cal/cm³ (pressed @ 10,000 psi, volumetric heat of explosion, DLA) ^[36]
			1,760 cal/cm³ (voidless, volumetric heat of explosion, pure LA ^[36]
			1,100 cal/cm³ (pressed @ 10,000 psi, volumetric heat of explosion, pure LA ^[36]

<i>T</i> _{ex} [K]	3,285	3,400 °C ^[12]				3,420 °C ^[5]
		5,600 ^[57]				3,450°C ^[5]
						3,484°C ^[5]
						3,420–3,484 °C ^[8]
						3,450 °C (@ 4.6 g cm ⁻³) ^[30]
p _{c.} [kbar]	349	$250 (@ 4.0 g cm^{-3}, calcd.)^{[6]}$; cm ⁻³ , calcd	.)[6]		33.4 GPa ^[3]
		360 (@ 4.8 g cm ⁻³ , calcd.) ^[6]	; cm ⁻³ , calcd	[9](:		94,930 kg/cm² (@ 3.0 g cm³, under 1,100 kg/cm² press) ^[5]
		33.8 GPa ^[55]				(1)
						94,930 kg/cm ^{2[8]}
		$16.1 \text{ GPa} (@ 3.9 \text{ g cm}^{-3})^{[57]}$	3.9 g cm ⁻³) [[]	22]		
						317 (voidless, DLA) ^[36]
		Exptl. and theoretical detonation pressures of LA, a p = 1 l $_a$ 0 2 $^{(64)}$:	eoretical det ^{.बा} :	onation pres	sures of LA,	158 cal/cm³ (pressed @ 10.000 psi, DLA) ^[36]
		ρ (g/mL) VoD	VoD	Peak pressure (kbar)	re (kbar)	36 \ \ 1 = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
			(km/ms)	Measured	Calcd. ^a	524 cal/ciii (Volutess, pare LA)
		3.25	4.35	126	154	161 cal/cm³ (pressed @ 10,000 psi, pure LA) $^{ m [36]}$
		3.60	4.80		207	0.922 Mbar ^[36]
		3.78	5.00	156	236	

			Exptl. and the $P = \frac{1}{4} \rho D^{2[64]}$:	neoretical de	Exptl. and theoretical detonation pressures of LA, a $P={}^1/_4\rho D^{2[64]};$	sures of L	A , a
			ρ (g/mL) VoD	VoD	Peak pressure (kbar)	e (kbar)	
				(km/Ms)	Measured	Calcd. ^a	
			3.25	4.35	126	154	
			3.60	4.80		207	
			3.78	5.00	156	236	
VoD [m s ⁻¹]	6,077 (@ 4.8 g cm ⁻³ ;	5,920 (@ 4.80 g/cm³) ^[55]	4,070 (@ 2.0 g cm $^{-3}$, pressed) $^{[2,33]}$	0 g cm ⁻³ , pre	essed) ^[2, 33]		
	다 450 KJ IIIOL)	4,630 (@ 3.0 cm ⁻³) ^[57]	4,630 (@ 3.0 g cm $^{-3}$, pressed) $^{[2,33]}$	0 g cm ⁻³ , pre	essed) ^[2, 33]		
			5,180 (@ 4.0 g cm $^{-3}$, pressed) $^{[2,33]}$	0 g cm ⁻³ , pre	essed) ^[2, 33]		
			5,876.8 (@ 4.80 g cm ⁻³) ^[3]	4.80 g cm ⁻³)	[3]		
			4,500 (@ 3.8 g cm $^{-3}$, confined) $^{[4,5]}$	8 g cm ⁻³ , co	nfined) ^[4, 5]		
			5,300 (@ 4.6 g cm $^{-3}$, confined) $^{[4,5]}$	6 g cm ⁻³ , co	nfined) ^[4, 5]		
			5,400 (@ max. ρ) ^[5]	ax. ρ) ^[5]			
			5,400 (@ TMD) ^[8]	(D) ^[8]			

	4,500 (@ 3.8 g cm ⁻³) ^[8]
2.	5,300 (@ 4.6 g cm ⁻³) ^[8,11]
	$5,100~(@~4.0~{ m g~cm}^{-3})^{12,47}$
	5,393 (calcd. based on sand expt.) ^[11]
	5,300 (@ 4.6 g cm $^{-3}$, calcd. based on sand expt.) $^{[11]}$
. 01	~8,000 $(\alpha\text{-Pb}(N_3)_2$ crystals of cross-section ≥ 2 mm \times 2 mm) ^[14]
	~3,000 (α -Pb(N ₃) $_2$ crystals of cross section ~1 mm) ^[14]
7 7	4,500 (@ 3.8 g cm $^{-3}$, loaded into detonator capsules with 7.7 mm internal diameter, Kast) $^{[20]}$
(-	17,000 ft/s (@ 4.0 g/mL) ^[29]
7	$4,500~(@~3.6~{ m g~cm^{-3}}~{ m (pressed)})^{[30]}$
	5,300 (@ 4.6 g cm ⁻³) ^[30]

			Effect of preheating @ 250 $^{\circ}$ C in the presence of water vapor on the subsequent VoD of compressed sheets of LA[16];	in the presence o	of water sheets
			Duration of heating (min)	VoD (km/s)	
			0	~5,500	
			5	~2,300	
			10	006~	
			15	~600	
			20	~400	
			25	~250	
			30	~<100	
V ₀ [L kg ⁻¹]	252	308 ^[57]	308 cc/g ^[2, 5, 8, 36]		
			231 ^[4]		
			310 (@ 0 °C and 760 mm Hg, @ 4.6 g cm $^{-3})^{\rm [30]}$	@ 4.6 g cm ⁻³) ^[30]	

Critical temperature of explosion	Critical te crystal (h)		e of therm	al explosi	on (T _c) with respect to t	he thickness of the planar		
[K]	<i>T</i> _c (K)	h (μm)	<i>T</i> _c (K)	<i>h</i> (µm)				
	~692	~5	~672	~17				
	~690	~6	~668	~22				
	~678	~9	~664	~34				
Critical pressure of explosion initiation [GPa]	$P_{\rm ult} = 0.38$	3±0.03 ^[25]	$P_{cr} = 0.38$	3±0.03 ^{[26,}	27, 51]			
Trauzl test [cm³, % TNT]	39% TNT ^[2, 33] , 89% LA, 80% MF, 40% TNT (DLA) ^[8] , 115 cc (10 g charge) ^[6] , 16% more net expansion cf. PETN ^[20] , 7.2 cc (1 g LA in no. 8 detonator capsule compressed under a reinforcing cap @ 3,400 lb/in ² and fired in small Trauzl block) ^[20]							
Sand test [g]	40% TNT (DLA) ^[8] , 95% pure LA (DLA) ^[8] , 18.6 g sand crushed (1,700 g bomb, 0.4 g LA) ^[11] , 19.0 g (200 g bomb) ^[33]							
	Weight (g) of sand pulverized finer than 30 mesh, no. 8 detonator capsule, pressed under reinforcing caps @ 3,400 lb/in², fired in no. 2 sand test bomb ^[20] :							
	Weight	(g) of cha	rge (LA)	Weigh	Weight (g) of sand pulverized			
	0.10			3.5	3.5			
	0.20			7.2				
	0.40			14.2	14.2			
	0.60			21.5				
	0.80			28.7				
	1.00			36.0				

Initiating efficiency

Initiating efficiency, (g) required to give complete initiation of [2]

HE	Dextrinated azide (g)
TNT	0.25
Tetryl	0.10
RDX	0.05
PETN	0.02

Minimum charge (mg) of LA required to initiate 60 mg RDX in M47 detonator: 90 (DLA, type I, US)^[8], 25 (SLA)^[8], 100+ (PVA-LA, US)^[8], 100+ (RD1333)^[8]

Minimum initiating charge (g) of LA required to initiate 0.5 g charge of high explosive (in no. 8 detonator capsule, reinforcing caps, charges compressed under 3,400 lb/in²)^[20]: 0.12 g for PA^[20], 0.16 g for TNT^[20], 0.03 g for tetryl^[20], 0.075 g for trinitroresorcinol^[20], 0.05 g for trinitrobenzaldehyde^[20], 0.05 g for tetranitroaniline^[20], 0.05 g for hexanitrodiphenylamine^[20], 0.035 g for pentryl (without reinforcing cap)^[20], 0.025 g for tetryl^[20], 0.025 g for PA^[20], 0.09 g for TNT^[20], 0.28 g for trinitroanisole^[20]

Minimum charges of LA required for initiating PETN (0.4 g), tamped down or pressed loosely into Cu capsules 6.2 mm inside diameter, primary charge pressed down loosely on top, weights of priming charges decreased until 1 failure in 10 tests occurred, or PETN compressed @ 2,000 kg/cm^{2[20]}:

Pressure on PETN (kg/cm²)	0	2,000	2,000	2,000	2,000
Pressure on initiator (kg/cm²)	0	0	500	1,000	1,500
Primary explosive	Minimum initiating charge (g)				g)
LA (technical)	0.04	0.170	0.05	0.05	0.04
LA (pure)	0.15	0.100	0.01	0.01	0.01

0.025~g (min. charge in no. 8 detonator for tetryl)^[41]

Initiating power, minimum amount of primary explosive needed to fully initiate 0.90 grain of high explosive, test piece = brass cup of 0.21 in diameter and 0.70 in $long^{[52]}$:

High explosive	Dextrinated LA (g)	RD1333 LA (g)
RDX	0.55	0.25
Tetryl	0.35	0.25
нмх	1.05	0.65
PETN	0.35	0.25

Weights of LA required for initiation of secondary explosives^[64]:

LA type			Wei	ght (mg)		
	RDX	нмх	Tetryl	Picric acid	PETN	TNT
DLA	90	300	100	260	30	270
SPLA	50					
PVA	25					
SLA	30					

Firing times of hot bridge wire initiators Sensitivity of LA in wire bridge initiators, W wire 0.030 in long fired @ $14-20\,V^{[36]}$: 340 Erg for 0.0001 in diameter [36], 1,340 Erg for 0.00029 in diameter [36]

50 mg loads of explosives, voltage of 450 V, times in μ s, data from ^[36]:

Explosive	Milling time (h)	C	Capacitance, p	F
		0.5	0.05	0.0047
Polyvinyl alcohol LA	24	1.12-1.26	1.09-1.38	1.41-5.00
Dextrinated LA	64	1.08-2.43	1.12-2.43	3.46-4.95

SSGT [cm]	DLA, TMD = $4.71 \text{ g/cm}^{3[43]}$:								
	Loading	Density	(g/cm³)	%		Sensitivit	y (DBG)		7
	pressure (kpsi)	AVG.	S	TMD	AVG.	g	S _m	N	1
	4	2.535	0.0280	53.8	-3.622	-	-	18	1
	8	2.775	0.0215	58.9	-0.302	0.3017	0.183	9 18	1
	16	3.074	0.0155	65.3	-0.239	0.1672	0.087	9 18	1
	32	3.361	0.0215	71.4	-0.227	0.0961	0.055	8 18	
	64	3.663	0.0237	77.8	-0.303	0.3370	0.212	20 18	
							'		
Dead pressing	Not easily dead pre ICM-103 is dead pr			lurability	/: <118 (or	78) MPa	(below th	iis value)
5 s explosion T[°C]	330–340 (explode: microcrystalline po (iron tube) ^[20] , by he (SLA) ^[8] , 344 (CLA, t 278 (DLA) ^[8] , 340 ^[33] sample) ^[63] , 326 (D sample) ^[63] , 344 (cc (RD1333, 10 mg sa sample, 327 °C = m 335 (RD1333 @ 5 °C = sexplosion <i>T</i> of s	wder, collecting from the property of the prop	mpressed m 315–36 6) ^[8] , 340 (l (cook-off) [[] g sample) 0 mg sam 340 (uns 349 (PVA,	into pell 50 in 5 s PVA-LA, I 36], 345 ^[53] , 350 ple) ^[63] , 3 pecified @ 5 °C/	lets weigh (30], 340 ^[2] , (JS) ^[8] , 34 ⁶ (340 (or (SLA, 10 m (S40 (PVA, type of LA min) ^[63] , 29	ing 0.02 g 340 (DLA 5 (RD1333 pen cup) ^{[63} ng sample 10 mg sar , 10 mg sa	g) ^[20] , 340 , type I, L g) ^[8] , 315– ¹ , 340 (DI c) ^[63] , 358 mple) ^[63] ,	JS) ^[8] , 3: -345 ^[8] . LA, 10 r (SLA, 2 345 []] , 342 (2	50 mg 0 mg
	Property Batch no. or product								
		1	2	3	4	5	DUP	KNK	
	Purity (%)	92.90	93.16	94.43	91.98	93.44	91.50		
	Moisture (%)	0.46	0.61	0.57	0.66	0.74			
	Bulk ρ (g/mL)	2.15	2.17	2.21	2.12	2.27	1.86		
	Explosion T (°C)	301	302	301	299	308	294	301	
	DUP = abbreviation Ordnance Works, U	•	nt dextrin	ated LA;	KNK = abl	breviation	for Kank	akee	
Explosion T[°C]	315 (pure LA) ^[5] , 33 may detonate spon dextrinated or RD1 50 mg sample) ^[63] , (unspecified type o	taneousl 333) ^[52] , 3 340 (uns	y if crysta 315–330 (pecified ty	ls >1 mm unspeci pe of LA	length ^[33] fied type o , 1 s igniti	, 383 (inst of LA, 300 on delay, 1	tantaneo s ignitior	us, pure 1 delay,	е,

Sensitization of SLA by preheating, a at bath T, b exploded on withdrawal $^{[63]}$:

Bath T (°C)	Preheat time (s) ^a	Ignition delay (s)
320	0	47
	15	34.8
	25	24.8
	30	24.8
	35	22.8
	43	22.2
	45	0*
330	0	20.3
	5	18.3
	8	16.4
	10	14.6
	15	12.3
	18	11.7
	19	11.3
	20	Op

Ignition
T[°C]

383 (dropped on preheated Wood's alloy) $^{[6]}$, 350 $^{[21]}$, 318 $^{[48]}$, 600 $^{[42]}$

DTA autoignition $T^{[34]}$:

Explosive	Autoignition T(K)
Colloidal LA	540
Special-purpose LA	553
RD1333	565
RD1333	557
RD1333	560
Dextrinated LA	557
Dextrinated LA	561

Service azide: ▲ lot 731, ■ lot 606. Dextrin azide: ⊙ lot D. 3, ⊡ lot A. 33, △ lot D. 783.

Fig. 11: Ignition curves of service and dextrin azides^[53].

343 (SLA, 5 s delay, extrapolated) $^{[53]}$, 551 (SLA, 10^{-3} s delay, extrapolated) $^{[53]}$, 735 (SLA, 10^{-5} s delay, extrapolated) $^{[53]}$

Effect of thermal sensitization of LA on subsequent ignition times (service LA, sample heated at a specific temperature for a time insufficient for detonation, sample then rapidly chilled, left to stand for ~1 hour, then heated until detonation resulted at the temperature of the test)^[53]:

T (°C)	Preheating time (s)	Subsequent time to ignition of sensitized azide (s)	Total heating time (s)	One stage time to ignition (s)
330	3	4	7	6.6
324	7	_	13	11.5

Percentage ignition, temperature limits for 100 and 0% ignitions^[53]:

Initiator	Amount (g)	0% ignitions below (°C)	100% ignition above (°C)
Service azide	0.02	316	326
Dextrin azide	0.01	285	305

	i					
Explosion T[°C]	Fig. 12 Data from ^{[5}	3]				
	100					
	<u>s</u> 80					
	fignii 60					
	tage 0		Ì			
	rcen	 -	√×			
	20 -		/			
	300 310	320 330 34		•		
	T ₁	emperature (°C)				
	■0.02 g. azide; C					0.007 g. glass.
	Fig. 12: Percentage	e failure-tempe	rature cu	rves for simple in	itiators ^[53] .	
Detonating T[°C]	Explosion <i>T</i> @ diffe 0.560 s @ 360 ^[13] ,	erent times of e	xposure	(3 mg samples, d	etonation) ^[13]	:
7 [*C]	335 (12 s) ^[20] , 345	(7 s, iron tube)	^[20] , 350 (4 s, iron tube) ^[20] ,	355 (0 s, iro	
	360 (0 s, iron tube 335 (10 s) ^[2] , 335 ([2, 36]	
	335 ^[29] , 623 K (def					
Thermal	335 (calcd.) ^[36]					
ignition T[°C]						
Autoignition	320 (DSC @ 10 °C	/min, sealed he	ermetic c	ups and lids) ^[40]		
T[°C]	0.34% mass loss i	n first 48 h ^[2] 0	05% ma	es loss in second	/8 h ^[2] no av	nlosion in
test	100 h ^[2]	,0	.03 /6 IIIa	33 (033 III 3ecolia	4011 ,110 62	piosion in
[% mass loss]	Values from ^[8] :					
			1			
		DLA, type I, US	SLA	CLA, type II, US	(PVA-LA), US	RD1333
	Loss in sample wt.(%) in 8 h		0.11	0.12	0.30	
	Loss in sample	0.34	0.08		0.13	0.30
	wt.(%) in 48 h	-				
	loss in sample wt.(%) in 96 h	0.39	0.16			0.30
	Explosion in 100 h	None	None		None	None

Vacuum stability test [cm³/h]

1.0 cc/40 h @ 100 °C (DLA) $^{[2]}$, 0.07 cc/40 h @ 120 °C (DLA) $^{[2]}$, 0.4 cc gas evolved in 40 h @ 100 °C $^{[5]}$

@ 100 °C gas evolved in mL/g: 0.32 (DLA, type I, US) $^{[8]}$, 0.20 (PVA-LA, US) $^{[8]}$ @ 120 °C gas evolved in mL/g: 0.46 (DLA, type I, US) $^{[8]}$, 0.44 (PVA-LA, US) $^{[8]}$, 0.43 (RD1333) $^{[8]}$

0.40 /g @ 150 °C, 40 h (RD1333 LA, granulation: 1% on 100, 5% on 140, 14% on 200, 42% on 325, 38% through 325) $^{\rm [44]}$

0.07 mL gas evolved after 40 h @ 120 ${}^{\circ}C^{[61]}$

Effect of heat of azides in vacuo^[63]:

Azide	T(°C)	Weight (g)	Time (h)	Gas evolved (mL, STP)
PVA LA	100	1.0	40	0.37
	150	0.2	40	0.32
DLA	100	1.0	40	0.34
	150	0.2	40	0.46
RD1333	120	0.2	40	0.40

Thermal stability

No change observed in purity or brisance after storage @ 50 °C for 25 months $^{[8]}$, no decrease in brisance after 15 months storage @ 80 °C $^{[8]}$, no change in purity or brisance observed after storage under an EtOH/water mixture @ RT $^{[8]}$, no dec. on storage for prolonged periods of time at moderately high temperatures $^{[33]}$, usually stored under water for long term storage but is usually dextrinated to prevent increase in crystal size $^{[33]}$, threshold of thermal stability = ~200 °C, charges in primers retain explosive properties after 6 h at this temperature $^{[41]}$, has a tendency to slowly decompose under ambient conditions $^{[54]}$

Decomposition of SLA^[16]:

	Dec. rate			
T(°C)	Humidity (% R.H.)	Other variables	Duration (months)	loss of azide % per month
60	Ambient	-	12	0.03
60	Ambient	RD1333	12	0.03
60	95	-	6	0.25
80	95	-	1	4–5
80	77	-	2	1
80	Ambient	-	1	0.05
90	50	-	0.5	5
90	Ambient	-	1	0.5-1.0
80	95	In proximity to Na ₂ CO ₃	1	55
80	95	In CO ₂	1	40

Stable in storage even at moderately elevated $T^{[29]}$, unchanged purity and brisance after 25 months storage @ 50 °C^[30], unchanged purity and brisance after storage under EtOH/H₂O mixture @ RT^[30], no decrease in brisance after storage @ 80 °C for 15 months^[30]

14.57% weight loss after 24 h @ 181 °C (RD1333)^[45]

0.15 mg (0.44%) mass loss of LA during 228 days accelerated aging @ 84 °C in vacuum (equivalent to 7.6 years at 66 °C) $^{[58]}$, thermal analysis of LA after 183 days of accelerated aging (equivalent to 6.1 years) shows no significant changes in DTA/TGA $^{[58]}$, DLA stored for ~25 years in 50:50 H $_2$ O/EtOH showed no significant change in sensitivity to heat $^{[61]}$

Sublimation rate

DLA, values marked with * are based on the data taken during the first 20 h of testing^[58]:

T(°C)	Wt. loss rate (mg/h)	Sublimation rate (g/cm²/s)
120	1.43 × 10 ⁻³	6.02×10^{-10}
140	2.0×10^{-3}	7.42×10^{-10}
160	5.0 × 10 ⁻² *	2.10 × 10 ⁻⁸ *
180	7.5 × 10 ⁻² *	2.78 × 10 ⁻⁸ *

Enthalpy of soln. [kcal/mol]

 $15.94\,(\alpha\text{-LA})^{[67]}$

Solubility [g/mL]

0.05 g/100 g $\rm H_2O$ @ 20 °C^[2], practically insoluble in cold $\rm H_2O$, NH $_3$ and most common organic solvents^[15], dec. in boiling $\rm H_2O^{[15]}$, soluble in sodium acetate solns., ammonium acetate solns., acetic acid, ethanolamine^[15], 0.02% w/w in $\rm H_2O^{[16]}$, sparingly soluble in cold $\rm H_2O^{[20]}$, hot $\rm H_2O$ dissolves enough LA to allow crystallization on cooling^[20], dissolves in aqueous ammonium acetate solutions^[20], some solubility in aq. ammonium acetate soln. ^[29], very slightly soluble in $\rm H_2O^{[29,30]}$, very soluble in acetic acid^[30], almost insoluble in Et₂O, acetone, EtOH, NH $_3$ and common organic solvents^[30], soluble in monoethanolamine or 50/50 monoethanolamine/NH $_3$ mixture^[30]

100 g H₂O @ 18 °C dissolve 0.03 g LA^[20], 100 g H₂O @ 80 °C dissolve 0.09 g LA^[20]

T (°C)	Solubility of LA (g) in 100 mL solvent ^[15]			
	H ₂ O ^[15] Conc. aq. sodium acetate soln. ^[15]			
18	0.023	1.54		
70	0.090	-		
80	_	2.02		

 K_1 (solubility product) = 1.8 × 10⁻⁹ @ 20 °C (solubility measurements)^[16], K_1 (solubility product) = 2.58 × 10⁻⁹ @ 25 °C (EMF measurements)^[16]

0.026 g/100 g H_2O @ 20 °C (colloidal LA, 99.0 +% purity)^[60], 1.0 g/100 g H_2O (special-purpose LA, RD1333, 98.5% purity)^[60], 1.0 g/100 g H_2O (DLA, 91.5% purity)^[60], soluble in ammonium acetate and acetic acid^[67]

Hygroscopicity

0.8% @ 30 °C with 90% RH (DLA)^[2], 0.03% @ 30 °C with 90% RH^[2], DLA is more hygroscopic than LA^[23], moderately hygroscopic^[29], only slightly hygroscopic (RD1333 LA)^[44]

@ RT, 90% RH, 56 h: 1.18 (DLA, type I, US) $^{[8]}$, 0.07 (SLA) $^{[8]}$, 0.02 (CLA, type II, US) $^{[8]}$, 0.03 (PVA-LA, US) $^{[8]}$

Hygroscopicity of spheroidal and conventional DLA^[59]:

Property		Batch no. or product					
	1	1 2 3 4 5 DU					
Purity (%)	92.90	93.16	94.43	91.98	93.44	91.50	
Moisture (%)	0.46	0.61	0.57	0.66	0.74		
Bulk ρ (g/mL)	2.15	2.17	2.21	2.12	2.27	1.86	
Hygroscopicity	1.00	0.98	0.63	1.19	0.99	0.87	

DUP = abbreviation for DuPont DLA

Photosensitivity

Light sensitive $^{[15]}$, turns yellow to dark gray in sunlight $^{[15]}$, darkens on exposure to $light^{[53]}$

Effect of photosensitivity on ignition temperature^[53]:

T(°C)	Normal induction period (s)	Induction period of exposed azide (s)
373	1.6	0.9
361	1.8	1.3
347	4.4	2.9

Irradiation of DLA had no effect on the thermal induction period but increased the % of ignitions @ 301 °C from 0% to 30% $^{[53]}$

Weak photoconductor^[67], critical light energy for ignition = ~29 J (light flash of ~50 μ s)^[67]

Radiation sensitivity

Low dosage X-ray dose causes deterioration of LA crystals $^{[8]}$, higher X-ray dose produces severe crystal damage $^{[8]}$, 98% destruction of SLA after X-ray dose of 3.5×10^8 Roentgen $^{[8]}$

Data obtained for explosives after exposure to gamma radiation^[36]:

Weight of sample (g)	2			
Vol. of gas produced (mL/g) in following times (days)				
10	1.10			
20	1.95			
30	2.90			
40	3.95			
50	5.30			
90	-			
Total irradiation time (days)	52			
Purity of sample by chemical analysis (%)	'			
Original material	93.08			
Irradiated material	89.04			
Melting points, corrected (°C)	'			
Original material	-			
Irradiated material	-			
IS (P.A. apparatus) (in)				
Original material	3			
Irradiated material	3			
IS (B.M. apparatus, 2 kg mass) (cm)*				
Original material	65			
Irradiated material	75			
Sand test, 200 g bomb, g of sand crushed when sample ignited by black powder fuse only	e was			
Original material	20.5			
Irradiated material	18.7			
Sand test, 200 g bomb, g of sand crushed when sample initiated by 0.30 g LA	e was			
Original material	-			
Irradiated material	-			

Slow neutron irradiation of lead azide^[63]:

Density (g/mL)	Flux (n/ cm²/s)	Total atoms (per mL)	Metal nuclei reacting (per s)	Nitrogen nuclei reacting (per s)	Nuclear reaction
1.875	2 × 10 ⁷	2.71 × 10 ²²	17	8 × 10 ⁵	lead reactions unimportant, nitrogen reaction

Fission-fragment irradiation of LA coated with 1 μ m 235 U $^{[63]}$:

T (°C)	flux (m/cm² s)	²³⁵ U atoms per mL coating	fissions per mL sample per h	Result
150	3 × 10 ⁷	7 × 10 ¹⁷	4 × 10 ⁷	No explosion
225	4 × 10 ⁷	7 × 10 ¹⁷	5 × 10 ⁷	No explosion
280	3 × 10 ⁷	7 × 10 ¹⁷	4 × 10 ⁷	No explosion
290	2 × 10 ⁷	7 × 10 ¹⁷	4 × 10 ⁷	No explosion

Pulsed reactor irradiation of LA/boron mixtures^[63]:

Ratio LA/Boron	Density (g/mL)	Neutron environment	Result
100:1	2.0	1.5 × 10 ¹⁵ nvt, <i>E</i> > 10 keV 0.5 × 10 ¹⁵ nvt, thermal	Detonation
	2.5		Detonation
	3.0		Detonation
	3.5		Detonation

Ratio LA/ Boron	Density (g/mL)	Neutron environment	Result
50:1	2.0	3.5 × 10 ¹⁴ nvt, <i>E</i> >10 keV 1.2 × 10 ¹⁴ nvt, thermal	No detonation
	2.5		No detonation
	3.0		No detonation
	3.5		No detonation
	2.0	3.0 × 10 ¹⁴ nvt, <i>E</i> >10 keV 1.0 × 10 ¹⁴ nvt, thermal	No detonation
	2.5		No detonation
	2.0	9.0 × 10 ¹⁴ nvt, <i>E</i> > 10 keV 3.0 × 10 ¹⁴ nvt, thermal	Detonation
	2.5		Detonation
10:1	3.0	3.0 × 10 ¹⁴ nvt, <i>E</i> >10 keV 1.0 × 10 ¹⁴ nvt, thermal	No detonation
	3.5		No detonation
	3.0	9.0 × 10 ¹⁴ nvt, <i>E</i> >10 keV 3.0 × 10 ¹⁴ nvt, thermal	Detonation
	3.5		Detonation

LA irradiated at ambient T using 0.41 MeV $^{198}_{79}$ Au y-rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose, total gamma dose that DLA received was 5.77×10^7 R $^{[63]}$:

Gamma energy absorbed, 10 ⁷ R	Gas evolved (mL/g) @ STP
1	1
2	2
3	3
4	4

Effect of gamma irradiation on various LA; a dose rate – 60 Co gamma, 3.2×10^5 R/h $^{[63]}$:

Lead azide	G	amma radiation d	ose (R) ^a
	Control	1.0 × 10 ⁸	1.16 × 10 ⁹
Dextrinated			•
Color: powder	White	Dark gray	Yellow
Color: pellet	White	Dark brown	Light brown
Weight loss (%): powder		-7.5	-14.5
Weight loss (%): pellet		-0.9	-9.2
IS, p.a., 10% reactions (in)	7	6>	36 (powder)
			>36 (pellet)
Vacuum stability (ml/g/40 h @ 100 °c)	0.47	1.35	0.57
RD1333			
Color: powder	White	Dark gray	Brown
Color: pellet	White	Dark brown	Light brown
Weight loss (%): powder		-6.4	
Weight loss (%): pellet			
IS, p.a., 10% reactions (in)	6	6	11 (powder) 16 (pellet)
Vacuum stability (ml/g/40 h @ 100 °c)	0.38	7.18	2.06
PVA			
Color: powder	White	Dark gray	Brown
Color: pellet	White	Dark brown	Brown
Weight loss (%): powder		-7.8	-14.0
Weight loss (%): pellet		-15	
IS, p.a., 10% reactions (in)	8	4	11 (powder) 21 (pellet)
Vacuum stability (ml/g/40 h @ 100 °c)	0.28	5.58	1.04

Effect of 60 MeV electron irradiation on explosives, ^aput on hot plate with T above explosion T, ^bsamples tested at 100 cm with NOL apparatus^[63]:

Weight (mg)	Dose (R)	Dose rate (R/s)	Weight loss	Color change	Test	Results
25.0	1.14 × 10 ⁹	1.6 × 10 ⁶	None	Dark brown	Heat ^a	Explosion
4.0	3.65 × 10 ¹⁰	2.9 × 10 ⁶	None		Heat	No explosion
11.0	2.94 × 10 ¹⁰	2.7 × 10 ⁶	None		Heat	No explosion
12.8	1.14 × 10 ¹⁰	1.1 × 10 ⁶			Impact ^b	No explosion
19.3	1.37 × 10 ¹⁰	2.3 × 10 ⁶	9%		Impact	No explosion

Critical doses and T to initiate LA by pulsed high-energy electrons, ^aestimated 50% initiation dose^[63]:

Explosive	Critical d	ose (J/g)	Igniti	ion T(°C)
	Calcd. Exptl.a		Calcd.	Exptl.
LA	158.2	46	57	327-360

Initiation of LA by pulsed electrons^[63]:

Type of LA	Sample		Responses produced		Average dose to LA (J/g)		
	Density (g/mL)	Thickness (in)	Gas pressure	Number initiated	Number surviving	High surviving sample	Lowest initiate sample
Dextrinated	2.78	0.030	1 atm	1	8	124.6	150.7
	2.80	0.060	1	6	9	92.1	83.7
	2.82	0.090	1	4	11	100.5	92.1
	2.80	0.060	2 μm	9	5	46.0	41.9
	2.82	0.090	2	11	2	6.7	10.0
RD1333	2.95	0.060	1 atm	3	9	92.1	96.3
	2.95	0.060	2 μm	3	0	0	23.0

Minimum ignition energies of LA by light flashes, asmall quantity placed in a heated aluminum block and exploded within 30 s^[63]:

Compound	Color	Thermal ignition $T(^{\circ}C)^{a}$	Electrical energy of flash, half-life 0.8 ms (J)	Light intensity (J/cm²)
LA	Yellow-white	350	240	2.0

Light-flash ignition energies for LA and its mixtures^[63]:

Explosive	Critical flash ignition energy (J)
LA	28.8
LA + 0.1% graphite	32.0
LA+0.35% graphite	34.0
LA + 1.65% graphite	52.0

Behavior of LA with a pulsed neodymium-glass (10, 600 Å) laser of 100 mW, emitting 30-nsec flashes, sensitivity to heat and nuclear reaction^[63]:

Compound	Average energy densities			
	No reaction (mJ/cm²) 100% initiation (mJ/cm²)			
LA	1.5	10		

Compatibility

Dry LA does not react with or corrode steel, Fe, Ni, Al, Pb, Zn, Cu, Sn, Cd, steel, stainless steel, brass, bronze unaffected by 6 years contact @ RT or 50 °C [2], dry LA does not affect Monel, chrome-nickel and Inconel in 2 ½ years @ RT or 50 °C [2], dry LA does not affect coatings of acid-proof black paint, oil or shellac [2], LA in the presence of moisture corrodes Zn and with Cu with which it forms copper azide [2], wet LA does not affect Monel, chrome-nickel or Inconel (0.5% moisture) after 29 months @ RT or 50 °C [2], wet LA (0.5% moisture) very slightly corrodes J-1 magnesium—aluminum alloy [2], LA corrodes Cu [8], dry LA does not affect metals [33], moist LA rapidly corrodes Zn and Cu [33], incompatible with HMX (DSC) [45]

Contact atmosphere and dec. compounds identified by X-ray diffraction^[16]:

Contact atmosphere	Compounds identified by X-ray diffraction				
	Residual LA	Basic lead azides	Lead carbonates	Others	
Air (30–40% rel. humidity)	Mainly	Zero	As SLA [†]	Zero	
Air and hydrochloric acid	Trace	Zero	_	Mainly PbCl ₂	
Air and acetic acid	Mainly	Zero	As SLA [†]	Considerable, unknown	
Air and nitric acid	Mainly	Zero	AsSLA [†]	Some, unknown	
Air and dinitroresorcinol	Mainly	Zero	As SLA [†]	Zero	
Air and ammonia	Mainly	Zero	As SLA [†]	Some, unknown	
Air and hydroxylamine	Mainly	Zero	AsSLA [†]	Zero	

[†] SLA = service lead azide

Contact atmosphere and dec. compounds identified by X-ray diffraction $^{[16]}$:

Contact atmosphere	Duration	Compo	unds identif	ied by X-ray d	iffraction
	of trial	Residual LA	Basic lead azides	Lead carbonates	Others
Air and water	4 weeks	Trace	Mainly	_	_
Air + H ₂ O + aq. HNO ₃	4 weeks	Trace	Mainly	_	_
Air+H₂O+ aq. Hcl	4 weeks	Some	Much	_	_
Air + H ₂ O	3 days	Some	Much	As SLA [†]	-
Air + H ₂ O + dinitroresorcinol	3 days	Some	Zero	As SLA [†]	D compound
Air + H ₂ O	1 day	Much	Much	As SLA [†]	Zero
Air + H ₂ O + acetic acid	1 day	Much	Much	As SLA [†]	Zero
Air + H ₂ O + acetic acid + CO ₂	1 day	Much	Trace	Much	Zero
Air + H ₂ O	1 week	Some	Mainly	As SLA [†]	Zero
Air + H ₂ O + ammonia	1 week	Zero	Trace	Mainly	Zero
Air + $H_2O + N$ -phenyl- β - naphthylamine	1 week	Zero	Mainly	As SLA [†]	Trace

[†] SLA = service lead azide

DLA stored underwater must be bacteria-free water that attacks dextrine^[29], may react with copper, zinc or alloys containing such metals to form azides which are more sensitive than LA^[29], LA corrodes copper in presence of moisture to form cupric azide, therefore direct contact with copper or its alloys must be avoided^[30]

Compatibility of DLA with black powder, 100 $^{\circ}$ C vacuum stability test, cc/40 $h^{[2]}$:

Sample wt. (g)	Material	сс
1.0	LA	0.50
1.0	Black powder	0.38
2.0	50/50 LA/black powder	1.26

compatibility of LA; A = no reaction, B = slight reaction, C = reacts readily, D = reacts to form sensitive materials, H = heavy corrosion of metals, VS = very slight corrosion of metals, S = slig

Magnesium Aluminum Zinc Iron Steel	A C	N N N
Zinc Iron		N
Iron	С	
		N
Steel		IN
	С	N
Tin	Α	N
Cadmium	С	
Copper	D	N
Nickel	С	
Lead		N
Cadmium plated steel		
Copper plated steel		N
Nickel plated steel		N
Zinc plated steel		N
Tin plated steel		N
Magnesium aluminum	VS	
Monel metal	С	N

	Brass			D	N				
	Bronze		\dashv		N				
	18-8 stainles	s steel		Α	N				
	Titanium				N				
	Silver				N				
	Typical compatibility of LA with various materials ^[63] :								
	Material		Comp	oatib	ility	Mat	erial	Compatib	ility
	L	A RD133	33				LA dex	trinated	
	Tungsten		Good	l		Zino	<u> </u>	Good	
	Molybdenum		Good	l		Sod	lium bicarbona	ate Good	
	Tungsten dist	ulfide	Fair			Ora	nge shellac		
	Boron nitrate		Good	l					
	Talc		Good	l					
	Molybdenum disulfide		Good						
	Aluminum sili hydrate	icate	Good	I					
Specific heat [cal/g/°C]	0.110 @ -50 °C	C ^[2] , 0.11	0 @ 0) °C ^{[2}	^{2]} , 0.11	0 @ 1	25 °C ^[2] , 0.110	@ 50 °C ^[2]	
Thermal conductivity [cal/s/cm/°C]	1.55 × 10 ^{-4[2]} , 4 density = 3.62 §		gs. u	nits ((press	ed pe	llet, mean $T=4$	45 °C, pellet	
Hardness [kg mm ⁻²]	119.7 ± 8.0 (α-L hardness) ^[31]	A, single	e cryst	tals,	~200	µm di	iameter, @ 20	°C, Vicker's	
Frictional properties	Frictional prope	rties @	20 °C	with	slidin	g vel	ocity of 0.20 m	ms ^{-1[24]} :	
	μ (coefficient of friction at high loads)	τ ₀ (cons	stant)	α ((consta	ant)	$\mu_{\rm cal}$ (Calcd. coefficient of friction at high loads)	μ (coefficient of friction for single crystal on single crystal)	-(l-m)
	0.28	2.9 × 1	0 ⁶ Pa	0.	26 ± 0.	04	0.26 ± 0.04		0.28

Dielectric constants	Dielectric consta	nts and losses	ersus cryst	al orientation	(α-LA) ^[32] :		
	Orientation	k'	k"	ω			
	<100>	17 ± 1.7	< 2 × 10 ⁻²	10 ² -10 ⁶			
	<010>	120 ± 12.0	< 2 × 10 ⁻¹	10 ² -10 ⁶			
	<001>	40 ± 4.0	< 4 × 10 ⁻²	10 ² -10 ⁶			
Reflectance tests	Reflectance tests pressed explosiv	_	ontinuous v	vave yttrium g	arnet alumini	um laser,	
	Material	Material Particle size Loa (mesh) (10			Reflectance	(%)	
	Dextrinated LA	Unknown	2		86.3		
		Unknown	10		79.3		
	Polyvinyl	Unknown	2		85.5		
	alcohol LA	Unknown	10		86.5		
Laser sensitivity	Mean energy and laser ^[37] :	d energy density	to initiate	LA (dextrinate	ed) with the ne	eodymium	
	Reflectance, %	unit		ull beam	Partia	ial beam	
			Short pulse (450	pulse	Short pulse) (450 µs)	Long pulse (1.5 ms)	
	36.3	1	Loadin	g pressure: 2	,000 psi		
		Energy, J	1.96	3.6	2.0	3.52	
		Energy density (J/i	31.4	32.2	32.1	31.5	
	79.3		Loadin	g pressure: 2	,000 psi		
		Energy, J	1.60	2.75	1.6	2.75	
		Energy density (J/i	25.7	24.6	25.7	24.6	

Mean energy and energy density to initiate polyvinyl alcohol LA with the neodymium laser, particle size = unknown^[37]:

Reflectance, %	unit	Full b	eam	Partial beam		
		Short pulse (450 µs)	Long pulse (1.5 ms)	Short pulse (450 µs)	Long pulse (1.5 ms)	
85.5	Loading pressure: 2,000 psi					
	Energy (J)	1.43	2.65	1.5	2.80	
	Energy density (J/in²)	22.9	23.7	24.1	25.0	
86.5	Loading pressure: 10,000 psi					
	Energy, J	1.30	2.15	1.22	2.12	
	Energy density, J/in ²	20.9	19.2	19.4	19.6	

LA can be successfully initiated using a UV excimer laser^[38]:

Pressing force (KN)	Detonator type	wavelength	density	Function time (micro-s)	Source	Pulse duration (µs)
1	Confined	249	0.2	0.5	Excimer laser	15
10	Confined	249	0.2	1.5	Excimer laser	15

Detonation conditions using laser-produced heat and shock; Neodynium/glass laser $^{[38]}$:

Density of pressing force (g/cc)	Detonator type	Nominal wavelength	Spot diameter (µm)		Function time (µs)	
2.0	Confined	1,060	600	0.004	262	250
2.0	Confined	1,060	600	0.080	170	250

Sensitiveness

4.76 N cm² (work)^[42]

M50 detonator
transition
charge test

Data from^[44]

Transition material	Charge weight (mg)	RDX weight (mg)	Test holder	Witness material	Indent depth (in)
LA	110	34	Brass	Aluminum	0.0548
LA	110	34	Brass	Aluminum	0.0483
LA	110	34	Brass	Aluminum	0.0485
LA	110	34	Brass	Lead	0.1975
LA	110	34	Brass	Lead	0.2144
LA	110	34	Plastic	Lead	0.1362
LA	110	34	Plastic	Lead	0.1429

Strong confinement test

LA, RD 1333, data from[44]:

Loading pressure (kpsi)	Average charge density (g/cm³)	Average dent (mils)
5	2.62	27.7
10	2.99	33.7
20	3.18	39.0
40	3.55	46.3

@ 10 kpsi loading pressure^[44]: ρ = 3.119 g cm⁻³, dent = 37.3 mils^[44]

Hot wire initiation test

30 unit Bruceton run with P-12 units loaded with 20 mg of test material; constant current Bruceton – current applied for 10 s. in steps of 10 mA, current constant to \pm 2%; capacitor discharge Bruceton – used 0.1 or 1.0 mfd capacitor and 0.3 log unit voltage steps, LA RD1333, data from [45]

Bridge	Co	onstant curre	nt	Cap di	scharge
Tophet C	Mean (amps)	AF 99.9% (amps)	NF 0.1% (amps)	Mean (V, mF)	Stored energy (mJ)
0.001	0.299± 0.009	0.326	0.272	79.99± 3.44, 1.0	3.20
0.0005	0.132 ± 0.008	0.157	0.108	143.55± 35.84, 0.1	1.03

	RD1333 L/	A, data fro	m ^[46]					
	Bridge	0	onstar	nt curre	ent	Capacitor dis	charge	
	(mm)	Mean (mA)	All 1 (99	fire .9%)	No fire (0.1%)	Mean (V, mF)	Stored energy (mJ)	
	0.0254	299±9	326	5 mA	272 mA	79.99 ± 1.04, 1.0	3.20	
	0.0127	132±8	157	7 mA	108 mA	143.55 ± 1.25, 0.1	1.03	
Priming ability	200 mg RDX, pressed @ 10 kpsi in Al cup, 0.01–0.10 g RD-1333 sample, plastic spacer to hold fuse, seal can at top of can, 1,020 steel plate dent block (1" outer diameter, 0.5" thick), PMMA holder (1.25" long, 1" outer diameter); loose charge of 0.010 g RD1333 insufficient to cause detonation of RDX charge, larger loads of 0.025 g or 0.40 g gave go no-go results [45]: level 50_0 (gms) = 0.0288, σ_0 = 0.0093 [45] Minimum primary charge = 10 mg, actual charge = 20–30 mg (5 mm thick lead plate, LA filled in no. 8 blasting cap, pressed by 32 MPa static pressure, fired by standard pyrotechnical igniter) [55]							
Ignition sensitivity by electric bridge		•	_	•	U	current (ampere); <i>s</i> , ig on time)) ^[48] :	nition time	
current	1 2.0	1.6	1.3	1.0				
	s 2.1	4.0	6.5	13.1	1			
	I^2s 8.4	10.2	11.0	13.1				
Flame test	Flame sen	sitivity H ₅₀	<8 cm	(H ₅₀ re	flects the r	eliability of ignition) ^{[55}	5]	

Initiation energies for electrostatic initiation of LA; $^{\rm a}$ kilohms, $^{\rm b}$ megaohms $^{\rm [62]}$:

9	8-1	0-5	9-0	-5	103	-5	0-3	0-4	1-4	03	-01	2.	.2	.2 0-3	0-3	.2 .2 .4 .4 .0 .0 .0	00-3 0-3 0-4 10	0-4 0-4 0-6 0-6 0-6	00-3 00-4 00-4 10 00-6 00-6
Energy (J)	<6 × 10 ⁻⁸	3.8×10^{-5}	3.0×10^{-6}	<3 × 10 ⁻⁵	3-6 × 10 ³	<5 × 10 ⁻⁵	3.6×10^{-3}	3.5 × 10 ⁻⁴	$<5 \times 10^{-4}$	$1-2 \times 10^3$		2×10^{-2}	2×10^{-2} 1.3×10^{-3}	2×10^{-2} 1.3×10^{-4} 2×10^{-4}	$ 2 \times 10^{-2} 1.3 \times 10^{-3} 2 \times 10^{-4} 3.3 \times 10^{-4} $	2×10^{-2} 1.3 × 10 ⁻³ 2×10^{-4} 3.3×10^{-4} 1.1 × 10 ⁻⁴	2×10 ⁻² 1.3×10 ⁻¹ 2×10 ⁻⁴ 3.3×10 ⁻⁴ 1.1×10 ⁻¹ 4×10 ⁻¹⁰	2×10^{-2} 1.3×10^{-3} 2×10^{-4} 2×10^{-4} 3.3×10^{-4} 1.1×10^{-4} 4×10^{-10} 2.0×10^{-6}	2×10^{-2} 1.3×10^{-3} 2×10^{-4} 3.3×10^{-4} 1.1×10^{-4} 4×10^{-10} 2.0×10^{-6} 1.6×10^{-6}
Rel. Humidity (%)	dry	7.5	40		12		Dry		40	Dry		55	55	55	55	40	40	55 40 9 9	55 40 9 9
Series Resistance (ohms)	0							100 K ^a		0				1.2 M ^b	1.2 M ^b	1.2 M ^b 0 1.2 M	1.2 M ^b 0 1.2 M	1.2 M ^b 0 1.2 M 0 0	1.2 Mb 0 1.2 M 0 0 0 0 20 K
Capacitance (pF)	300			1,000	3,000	95	2,000	1,200	1,000	300		10,000	10,000	10,000	330	330	330	330	10,000 330 50 100
Discharge	contact				Gaseous					Gaseous							Contact	Contact	Contact
Gap length (mm)	0				0.48	0.25	0.19	0.19	ż	0.25		1.1	1.1	1.1 0.13 0.13	1.1 0.13 0.13	1.1 0.13 0.19 0.19	1.1 0.13 0.19 0.19	1.1 0.13 0.19 0.03	1.1 0.13 0.19 0.09
Apparatus and electrodes	Approaching needle plane								Needle rubber	fixed gap needle plane					Parallel plate	Parallel plate	Parallel plate Vibrator needle	Parallel plate Vibrator needle Approaching needle plane	Parallel plate Vibrator needle Approaching needle plane
LA type	RD1333										_							Service	Service

	Needle rubber			200			1.0×10^{-3}
				1,500			2.2×10^{-4}
Dextrinated	Approaching needle plane	7	Gaseous	300	0	dry	$7-9.6 \times 10^{-3}$
		7		7			7.0×10^{-3}
		0	Contact		7		1.0×10^{-5}
		0.75	Gaseous	7	0		1.0×10^{-2}
		9		1,000			$3-4.5 \times 10^{-3}$
		?		20,000			1.0×10^{-2}
		?		1,000			$1-4.5 \times 10^{-3}$
	Plumb-bob plane	0	Contact	300			2.0×10^{-5}
	Needle rubber	7	Gaseous	10,000	100 K		8.0×10^{-2}
		7		10,000			$0.5-1.0 \times 10^{-1}$
	Plumb-bob rubber	7		6,000			2.0×10^{-3}
	Fixed gap needle plane	1.3		10,000	100		$2-3 \times 10^{-2}$
		1.1		10,000	0		2.0×10^{-2}
	Parallel plane	0.19		550	5.6 M		5.0×10^{-4}
PVA	Approaching needle plane	0	Contact	7	7		2.0×10^{-7}
		7	Gaseous	7	7		6.3×10^{-3}
	Needle (neg.) Rubber	7		400	100 K	40	2.2×10^{-4}
	Needle (pos.) Rubber	7		200			1.0×10^{-4}
	Fixed gap needle plane	1.1		10,000	0	55	2.0×10^{-2}
		1.3		1,000	100	40	$3-4 \times 10^{-3}$

	α -Pb(N ₃) ₂ ^[8, 9, 32]	β-Pb(N ₃) ₂ ^[9]	α -Pb(N ₃) ₂ ^[10]	β-Pb(N ₃) ₂ ^[10]	α -Pb(N ₃) ₂ ^[67]	β-Pb(N ₃) ₂ ^[67]
Chemical formula	N ₆ Pb	$N_{e}Pb$	$\sf N_6Pb$	N ₆ Pb	$N_{e}Pb$	N ₆ Pb
Molecular weight [g mol ⁻¹]	291.26	291.26	291.26	291.26	291.26	291.26
Crystal system	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic
Space group	Pcmn		<i>P n m a</i> (no. 62)	C 2 (no. 5)		
a [Å]	11.31	18.49	6.63	18.49	6.63	5.09
<i>b</i> [Å]	16.25	8.84	16.25	8.85	11.31	8.84
c [Å]	6.63	5.12	11.31	5.12	16.25	17.51
α [⁰]	06		06	96	90	06
[b]	06		06	107.6	90	90.10
y [º]	06		06	96	90	06
V [ų]	1,218.51		1,218.51	798.601		
Z	12		12	8	12	8
$ ho_{ m calc}$ [g cm $^{-3}$]	4.68	4.87	4.76267	4.84461		
7 [K]	RT		RT			

lead azide forms four allotropes: α -, β -, γ -, δ -^[15], however only the α - allotrope has found technical applications^[15], monoclinic (β -form) is much more sensitive than orthorhombic (α -form)^[30]

Crystals of orthorhombic α -form can be obtained from ammonium acetate or acetic acid soln.^[67], monoclinic β - form crystals can be obtained by allowing lead and azide ions to diffuse slowly together^[67]

Comparison of the properties of the four LA allotropes^[15]:

α	β	γ	δ
 Orthorhombic ρ = 4.68-4.716 (crystal) Formation of α allotrope promoted by addition of dextrin at precipitation point Most stable allotrope 	 Monoclinic ρ = 4.87-4.93 (crystal, dry) Long needles (crystals) Formation of β-allotrope promoted by presence of organic dyes (e.g., Eosin, erythrosine, neutral red) at precipitation point Stable Irreversible transformation to α-LA @~160 °c 	 Monoclinic ΔH_f is 1.25 kJ/mol higher than that of α-form obtained by maintaining pH in 3.5-7.0 range Usually precipitates simultaneously with δ-LA Forms in the presence of polyvinylalcohol 	 Triclinic Obtained by maintaining pH in 3.5–5.5 range Usually precipitates simultaneously with γ-LA

Known polymorphs^[16]: α (common rhombic form), $\rho = 4.7 \text{ g cm}^{-3}$

 β (monoclinic), $\rho = 4.9 \text{ g cm}^{-3}$ γ (monoclinic), $\rho = 4.7 \text{ g cm}^{-3}$

 δ (triclinic), $\rho = 4.6 \text{ g cm}^{-3}$

 α -Pb(N₃)₂, orthorhombic, space group probably $Pc2_1n^{[16]}$:

Z	a (Å)	b (Å)	c (Å)	ref.
12	11.34	16.25	6.64	Miles (1931)
	11.312	16.246	6.628	Pfefferkorn (1948)
	11.42	16.30	6.65	Duke (1951)
12	11.31	16.25	6.63	Azaroff (1956)
	11.41	16.31	6.67	Hattori and McCrone (1956)
	11.330	16.271	6.636	Lemnevik and Söderquist (1963)

 β -Pb(N₃)₂, monoclinic, *I*-centered cell, space group either I2/m or $I2^{[16]}$: I-centered cell^[16]:

Z	a (Å)	b (Å)	c (Å)	β (°)	Ref.
8	17.60	8.83	5.10	90.8	Miles (1931)
	17.508	8.844	5.090	90.2	Pfefferkorn (1948)
	17.569	8.837	5.113	90.29	Lemnevik and Söderquist (1963)

C-centered cell[16]:

Z	a (Å)	b (Å)	c (Å)	β (°)	Ref.
8	18.37	8.89	5.11	106.3	Duke (1951)
	18.49	8.84	5.12	107.6	Azaroff (1956)
	18.31	8.88	5.23	107.5	Hattori and McCrone (1956)
	18.323	8.837	5.113	106.5	Lemnevik and Söderquist (1963)

 γ -Pb(N₃)₂, monoclinic, formation of γ -Pb(N₃)₂ favored by low pH and/or presence of polyvinyl alcohol at appropriate rates of crystallization^[16]:

Z	a (Å)	b (Å)	c (Å)	β (°)	Space group	Ref.
8	12.17	10.51	6.55	98.5	P2 ₁ /a	Duke (1957)
	12.060	10.507	6.505	95.75	P2 ₁ /m or P2 ₁	Lemnevik and Söderquist (1964)

 δ -Pb(N₃)₂, triclinic, formation of δ -Pb(N₃)₂ favored by low pH and/or the presence of polyvinyl alcohol at appropriate rates of crystallization^[16]:

Z	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Ref.
8	15.163	10.532	6.531	90.53	98.12	112.67	Lemnevik and Söderquist (1964)

"We think, however, that there is an anomaly in the results for γ -lead azide ... A possible explanation may be that these two forms are related as polytypes, and that some degree of variability exists in the crystals^[16]"

Cubic phase^[16]: "it has not been possible to obtain this phase in a reproducible manner or in a pure state. Its identity is not known, it may or may not be lead azide; it is not lead nitrate (primitive cubic lattice, a=7.856)" (Duke, 1951, 1953 cited in ref.^[16]).

Basic lead azide^[16]: "Analysis agrees with the composition PbN₃OH, monoclinic, probably $P2_1/c$, a=15.25 Å, b=5.75 Å, c=14.47 Å, $\beta=114.7^{\circ}$ (crystal data), $\rho=6.19$ (observed), $\rho=6.14$ (calcd.) X-ray powder data^[16]

Spontaneous explosion during crystal growth of LA (LA dissolved in 50 mL of 5% aqueous ammonium acetate soln. @ 70 °C then allowed to cool to RT within 2 h without disturbance)^[16]:

LA (%)	Time to explosion (min)	LA (%)	Time to explosion (min)
1.0	40 ± 2	0.7	210
1.0	50	0.7	220
0.9	75	0.6	225
0.9	65	0.6	255
0.8	80	0.5 (10 expts.)	7 × exploded overnight (large α- crystals in intact containers)
0.8	85	0.4 (4 expts.)	No explosions after 4 days standing, no crystals separated

- [1] H. D. Mallory (ed.), *The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945*, 16th March **1965**, AD Number AD-116 878, US Naval Ordnance Laboratory, White Oak, Maryland.
- [2] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [3] L.-Y. Chen, Z.-N. Zhou, T.-L. Zhang, J.-G. Zhang, A Biography of Potassium Complexes as Versatile, Green Energetic Materials, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 226–243.
- [4] R. Meyer, J. Köhler, A. Homburg, Explosives, Wiley-VCH, Weinheim, 2016, pp. 200-201.
- [5] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, *Encyclopedia of Explosives and Related Items*, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [8] *Military Explosives*, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September **1984**.
- [9] C. S. Choi, H. P. Boutin, Acta Cryst., 1969, B25, 982–987.
- [10] C.-O. Lieber, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 288–301.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.

- [14] M. Chaudhri, W. L. Garrett, O. Sandus, N. Slagg, Propellants and Explosives, 1977, 2, 91–93.
- [15] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2013.
- [16] Proc. Symposium on Lead and Copper Azides, E.R.D.E., 25th-26th October 1966, Essex, UK, AD-A011026.
- [17] R G. Patel, M. M. Chaudhri, *Thermochim. Acta*, **1978**, *25*, 247–251.
- [18] A. V. Khaneft, *Influence of the Thickness of a Flat Crystal on the Temperature of a Thermal Explosion of Lead Azide*, ICT **2017**, Karlsruhe, Germany, pp. 66-1–66-12.
- [19] J. J. J. P. A. La Roux, *Propellants, Explosives, Pyrotechnics*, **1990**, *15*, 243–247.
- [20] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [21] P. A. Davis, J. Hazard. Mater., 1994, 38, 75-88.
- [22] R. K. Wharton, D. Chapman, Propellants, Explosives, Pyrotechnics, 1997, 22, 71-73.
- [23] K. D. Oyler, Green Primary Explosives, Ch. 5 in Green Energetic Materials, T. Brinck (ed.), Wiley, 2014.
- [24] C. Zhang, X. C. Wang, H. Huang, *Computational Treatment of the Structure-Sensitivity Relationships of Explosives*, ICT **2008**, Karlsruhe, Germany, pp. 99-1–99-9.
- [25] V. A. Teselkin, Peculiarities of Mechanical Explosion Initiation for Some Solid Explosives, ICT 2009, Karlsruhe, Germany, pp. 102-1–102-6.
- [26] V. A. Teselkin, Some Aspects of Explosion Initiation of Highly Energetic Materials Under Mechanical Stress, ICT 2008, Karlsruhe, Germany, pp. 96-1–96-12.
- [27] V. A. Teselkin, *Mechanical Sensitivity of Metallized Explosive Nanocomposites*, ICT **2005**, Karlsruhe, Germany, pp. 81-1–81-11.
- [28] R. Matyáš, J. Šelešovský, J. Energet. Mater., 2014, 32, 88-94.
- [29] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [30] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [31] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, *Mechanical Properties of Energetic Materials*, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [32] W. L. Garrett, P. J. Kemmey, *Dielectric Constant Measurements on Lead Azide Single Crystals*, Technical Report ARLCD-TR-80023, September **1980**.
- [33] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [34] J. Harris, *Friction Sensitivity of Primary Explosives*, Technical Report ARLCD-TR-82012, US Army Armament Research and Development Command, New Jersey, USA, 6th October **1982**.
- [35] M. B. Talawar, A. P. Agrawal, M. Anniyappan, D. S. Wani, M. K. Bansode, G. M. Gore, J. Hazard. Mater., 2006, B137, 1074–1078.
- [36] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [37] V. J. Menichelli, L. C. Yang, Sensitivity of Explosives to Laser Energy, Technical Report 32–1474, NASA CR110133, Jet Propulsion Laboratory, California Institute of Technology, California, USA, 30th April 1970.
- [38] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, Light-Initiated Detonation Systems, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [39] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, Defence Science Journal, 2010, 60, 137-151.

- [40] T. M. Massis, J. W. Fronabarger, W. B. Sanborn, New Explosive Materials and Pyrotechnic Formulations with Improved Safety and Sensitivity Properties, Sandia National Laboratories, Alberquerque, USA, August 1996.
- [41] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293-327.
- [42] M. Cartwright, J. Wilkinson, Propellants, Explosives, Pyrotechnics, 2010, 35, 326–332.
- [43] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [44] M. Bichay, J. Hirlinger, New Primary Explosives For Medium Caliber Stab Detonators, SERDP Final Report, 1st September 2004.
- [45] J. Fronabarger, M. Williams, M. Bichay, Environmentally Acceptable Alternatives to Existing Primary Explosives: Replacements for Lead Azide, Lead Styphnate and Tetrazene, Joint Armaments Conferences, Dallas, Texas, USA, 20th May 2010.
- [46] J. W. Fronabarger, M. D. Williams, W. B Sanborn, J. G. Bragg, D. A. Parrish, M. Bichay, *Propellants, Explosives, Pyrotechnics*, **2011**, *36*, 541–550.
- [47] E. E. Gilbert, W. E. Voreck, *Propellants, Explosives, Pyrotechnics*, **1989**, 14, 19–23.
- [48] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [49] B. D. Pollock, R. F. Gentner, Impact Sensitivity of Wetted Primary Explosives as Determined by the Ball Drop Test, Technical Report 4311, Picatinny Arsenal, New Jersey, USA, April 1972.
- [50] M. Kirshenbaum, Response of Primary Explosives to Gaseous Discharges in an Improved Approaching-Electrode Electrostatic Sensitivity Apparatus, Technical Report 4955, Picatinny Arsenal, New Jersey, USA, October 1976.
- [51] V. A. Teselkin, Combustion, Explosion, Shock Waves, 2009, 45, 632–633.
- [52] J. F. Kenney, Complex Crystalline Picrate Explosive Containing Entrapped Amounts of Lead Azide, US Patent 3,431,156, March 4th 1969.
- [53] J. L. Copp, S. E. Napier, T. Nash, W. J. Powell, H. Skelly, A. R. Ubbelohde, P. Woodward, *Trans. Roy. Soc.* (London) **1948**, *A241*, 204–216.
- [54] K. D. Oyler, N. Mehta, G. Cheng, Overview of Explosive Initiators, Technical Report ARMET-TR-15017, U. S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, New Jersey, USA, November 2015.
- [55] M. Deng, Y. Feng, W. Zhang, X. Qi, Q. Zhang, Nature Comm., 2019, 10, 1-8
- [56] Z. Shunguan, W. Youchen, Z. Wenyi, M. Jingyan, Propellants, Explosives, Pyrotechnics, 1997, 22, 317–320.
- [57] B. Hariharanath, K. S. Chandrabhanu, A. G. Rajendran, M. Ravindran, C. B. Kartha, *Defence Sci. J.*, **2006**, *56*, 282–289.
- [58] L. L. Rouch, J. N. Maycock, Explosive and Pyrotechnic Aging Demonstration, National Aeronautics and Space Administration, Washington D. C., USA, February, 1976.
- [59] T. Costain, F. B. Wells, Processes for the Manufacture of Lead and Silver Azide, Ch. 1 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [60] H. Kramer, Analysis of Azides for Assay, and in Complex Media, Ch. 2 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [61] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [62] M. S. Kirshenbaum, Electrostatic Sensitivity, Ch. 5 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.

- [63] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [64] W. Voreck, N. Slagg, L. Avrami, The Role of Azides in Explosive Trains, Ch. 7 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [65] N. R. S. Hollies, N. R. Legge, Can. J. Chem., 1953, 31, 746-754.
- [66] R. J. Spear, L. Montelli, *An Investigation of the Material Hazard of Some Insensitive High Explosives*, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, **1991**.
- [67] B. L. Evans, A. D. Yoffe, P. Gray, Chem. Revs., 1959, 59, 515-568.

Lead 2,4-dinitroresorcinol

Name [German, acronym]: Lead 2,4-dinitroresorcinate, [Blei 2,4-dinitroresorcinat,

PbDNR, 2,4-LDR, LDNR]

Main (potential) use: Primary explosive, ingredient of priming mixtures^[1],

component of compositions for electric detonators^[1, 4, 5],

patented for use as delay or priming composition^[9]

Structural formula:

	LDNR	LDNR					
Formula	PbC ₆ H ₂ N ₂ O ₆	PbC ₆ H ₂ N ₂ O ₆					
Molecular mass [g mol ⁻¹]	405.30						
Appearance at RT	crystals ^[3, 4] ,	Two forms known: (i) yellow solid, (ii) orange-red solid ^[1, 4] , red or yellow crystals ^[3, 4] , red or yellow solid ^[5] , precipitated as a mixture of colloidal (smaller quantity) and crystalline forms ^[9] , extremely free-flowing brown almost spherical granules ^[9]					
IS [J]	(2 kg mass, I sample, ERL 9 cm (2.5 kg	30 cm (1 kg hammer) ^[1] , 30 cm (1 kg mass, 20 mg sample, B.M.) ^[4] , 20 in (2 kg mass, P.A.) ^[4] , 30 cm (1 kg mass, B.M.) ^[5] , 63 cm (0.5 kg mass, 34 ± 1 mg sample, ERL machine) ^[7] , 22 cm (1.0 kg mass, 34 ± 1 mg sample, ERL machine) ^[7] , 9 cm (2.5 kg mass, 34 ± 1 mg sample, ERL machine) ^[7] , 61 cm (median height, Fol = 11 (standard), 2 kg mass, Rotter apparatus) ^[8]					
FS [N]	FS tested on	FS tested on porcelain and Emery paper (Julius-Peters, BAM) ^[2] :					
		Fi	riction sen	sitivity (g)			
	Porcelain	Porcelain Emery paper Grades					
		P80	P100	P120	P180	P360	
	115	150	100	125	330	550	
					•		·

	Emery pa	Emery paper FS ^[8] :										
	Ignition	s/trial a	t strike	velocit	y (ft/s	i)	Туре	of ig	nition			
	5	6	7	8	!	9						
	1/10	4/10	7/10	7/1	.0	3/10	Comp	lete				
	Sliding bl obtained											ts were
	Explosive	:		lgı	nitions	/trial a	t veloci	ty st	rike (ft	/s)		
	surface	5	6	7	8	9	10		11	12	13	14
	Steel on steel	0/10	3/10	5/10	8/10	10/1	0 10/	10				
	Emery				0/10	1/10	5/1	0	7/10	5/10	9/10	9/10
ESD [J]	Threshold Metal/m				lded.	Puk	her/m	notal	electr	odes (:	105	
		circuit r			ueu	Kul	,			tance)	105	
	Contact (500 pf)			ous sp 00 pf)	ous sparks Minimum 0 pf) energy							
	_		_			1,250)		25			
N [%]	6.91											
Ω(CO ₂) [%]	-32											
T _{m.p.} [°C]	265 (expl	odes) ^[6]										
T _{dec.} [°C]												
$ ho$ [g cm $^{-3}$]	3.2 (crystal) ^[4, 6] , 1.02 (bulk density of extremely free-flowing brown granules with average particle size of 0.10 mm) ^[9] , 0.95 (bulk density, average particle size of 0.10 mm) ^[9]											
Heat of formation	-396.01 kJ/mol (standard enthalpy of form.) ^[10]											
	Calcd. Lit. value (EXPLO5 6.04)			alues			Exp	otl.				
				_				lacksquare				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]								27	0 cal/s	S ^[4, 6]		

T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
V ₀ [L kg ⁻¹]						
Trauzl test [cm³, % TNT]	41.7% TNT ^[1]					
Sand test [g]	20 g (200 g bomb) ^[5]					
Initiating efficiency	0.4 g does not initiate tetryl ^[1] , 0.4 g does not initiate tetryl pressed @ 3,000 psi ^[4] , Sensitivity of LDR in wire bridge initiators, W wire 0.030 in long fired @ $14-20 \text{V}^{[6]}$: 138 Erg for 0.0001 in diameter ^[6] , 930 Erg for 0.00029 in diameter ^[6]					
5 s explosion T[°C]	265 ^[4, 5]					
100 °C heat test [% mass loss]	0.20% mass loss in first 48 $h^{[4]},0.02\%$ mass loss in second 48 $h^{[4]},$ no explosion in 100 $h^{[4]}$					
Vacuum stability test [cm³/h]	Explodes in 73 min @ 120 °C ^[4]					
Solubility [g/mL]	Insoluble in H_2O , acetone, benzene and other common organic solvents ^[1]					
Hygroscopicity	Stored wet ^[3] , 0.73% @ 30	Stored wet ^[3] , 0.73% @ 30 °C and 90% RH ^[4] , only slightly hygroscopic ^[5]				

- [1] R. Matyáš, J. Pachman, *Primary Explosives*, Springer Verlag, 2013.
- [2] J. J. P. A. Le Roux, Propellants, Explosives, Pyrotechnics, 1990, 15, 243-247.
- [3] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [4] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [5] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [6] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [7] G. Svadeba, *Impact Sensitivity of Primary Explosives*, NAVORD Report 2647, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 1st November 1952.
- [8] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in in *Energetic Materials* 2: *Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [9] G. W. C. Taylor, J. R. White, *Manufacture of Normal Lead 2,4-Dinitroresorcinate*, US Patent 3,301,882, January 31st **1967**.
- [10] J. R. Payne, *Thermochim. Acta*, **1995**, *265*, 73–87.

Lead picrate

Name [German, acronym]: Lead(II) 2,4,6-trinitrophenolate, [Bleipikrat, Blei(II)-

2,4,6-trinitrophenolat]

Main (potential) use: Component of ignition mixtures in the WW-II^[1],

component of mixtures for electric fuse heads^[1],

component of cap compositions for the manufacture of

electric fuses in the WW-II^[6]

Structural formula:

Normally lead picrate contains 1–5 molecules of $H_2O^{[1]}$; anhydrous lead picrate forms the monohydrate if exposed to air $^{[1]}$, heating the $\bullet H_2O$ or $\bullet 4H_2O$ salt @ 150 °C produces the anhydrous salt $^{[1,6]}$

	Lead picrate
Formula	C ₁₂ H ₄ N ₆ O ₁₄ Pb (anhydrous)
Molecular mass [g mol ⁻¹]	663.41
Appearance at RT	Anhydrous = yellow solid ^[1] , silky yellow needles (tetrahydrate) ^[6]
IS [J]	4 cm $(0.5 \text{ kg mass, anhydrous})^{[1]}$, higher sensitivity than MF ^[1] , anhydrous more sensitive than hydrates ^[1] , 97 cm (detonates, 750 g, air-dry condition of sample) ^[3]
N [%]	12.67
Ω(CO ₂) [%]	
T _{m.p.} [°C]	
T _{dec.} [°C]	
$ ho$ [g cm $^{-3}$]	
Heat of formation	

	Calcd. (EXPL	05 6 . 04)	Lit. v	/alues		Ex	ptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]								
T _{ex} [K]								
p _{C-J} [kbar]								
VoD [m s ⁻¹]								
$V_0 [L kg^{-1}]$								
		•						
Trauzl test [cm³, % TNT]	1 ''	Only partial explosion, no measureable expansion (small lead block, 6.5 mm bore, 1 g sample, pressed into cartridge shell no. 8 with interior cap) ^[3]						
5 s explosion T [°C] 1 s explosion T [°C] ignition T [°C]		281 ^[1] 263 ^[4] , 283 (instant) ^[4]						
Burn rate [mm/s]	gauge	Burning rate @ 100 atm. gauge = $26 \text{ cm/s}^{[2]}$, and @ 300 atm. gauge = $\sim 31 \text{ cm/s}^{[2]}$, below a certain pressure the burn rate rapidly decreases and burning is then extinguished @ 20 atm. ^[2]						
Solubility [g/mL]		Anhydrous lead picrate insoluble in H_2O , Et_2O , $CHCl_3$, benzene, toluene ^[1] , sparingly soluble in acetone, $EtOH^{[1]}$						
Ignition sensitivity by electric bridge current	Bridge current and ignition time (I = ignition current (ampere), s = ignition time ($1/1,000 s$), I^2s = (ignition current) 2 × (ignition time)) $^{[4]}$:							
	1	2.0	1.6	1.3	1.0	0.8	0.6]
	5	4.3	5.6	6.1	9.1	11.0	31.6]
	l ² s	17.2	14.4	10.5	9.1	7.0	11.4	

	[Pb ₂ (pic) ₄ (dmso) ₄] ^[5]
Chemical formula	$C_{32}H_{32}N_{12}O_{32}Pb_2S_4$
Molecular weight [g mol ⁻¹]	1,639.4
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	10.1003(6)
<i>b</i> [Å]	11.2872(9)
c [Å]	11.6147(9)
α [°]	77.868(2)

β [°]	89.884(2)
γ [°]	84.785(2)
<i>V</i> [ų]	1,289
Z	1 (dimer)
$ ho_{ m calc}$ [g cm $^{-3}$]	2.112
<i>T</i> [K]	ca. 153
	DMSO solvate of lead(II) picrate, clusters of yellow needle-like crystals

- [1] R. Matyáš, J. Pachman, *Primary Explosives*, Springer Verlag, **2013**.
- [2] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [3] E. Herz, Explosive and Process of Making Same, US Patent 1,443,328, January 23rd 1923.
- [4] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [5] F. Arnaud-Neu, J. M. Harrowfield, S. Michel, B. W. Skelton, A. H. White, *Supramolecular Chem.*, **2005**, *17*, 609–615.
- [6] A. E. Smith, Thermochemical and Kinetic Aspects of Metal Picrates, PhD Thesis, University of London, 1983.

Lead styphnate

Name [German, acronym]: Lead styphnate, lead(II) 2,4,6-trinitrobenzene-1,

3-bis(olate), lead trinitroresorcinate, lead salt of 2,4,6-Trinitrobenzene-1,3-diol [Bleistyphnat,

Bleitrizinat, Blei trinitroresorcinat, tricinate, LTNR, LS]

Main (potential) use: Primary explosive, igniting charge, in mixtures for

blasting caps^[11], component of pyrotechnic mixtures for primers^[11], fusehead composition component^[11], ingredient of priming layer that causes LA to explode from a flash^[13], mainly found in primers^[17], primary explosive used in friction-type primers^[19], in cap and

detonator compositions^[30]

Structural formula:

$$\mathsf{Pb}^{2+} \left[\begin{array}{c} \mathsf{O}_{2}^{\bigcirc} \mathsf{N} \\ \mathsf{NO}_{2} \\ \mathsf{NO}_{2} \end{array} \right]^{2-}$$

^{*} Normal lead styphnate forms as a hydrate^[11]

	LS
Formula	$C_6HN_3O_8Pb\cdot H_2O$
Molecular mass [g mol ⁻¹]	468.3
Appearance at RT	Orange reddish-brown solid ^[1] , yellow-orange or reddish-brown rhombic, needle-like crystals ^[2] , crystallizes as gold-orange or red-brown monohydrate crystals ^[11] , reddish-brown, short, rhombic crystals ^[13] , crystalline material varies in color from straw, deep yellow, orange-yellow or red-brown ^[19] , reddish-brown solid ^[21] , yellow – light brown small crystals ^[30]

IS [J]

17 cm (2 kg mass, B.M.) $^{[1,21]}$, 3 in (8 oz mass, P.A.) $^{[1]}$, 2.5–5 Nm $^{[3,28]}$, 3 in (2 kg mass, P.A.) $^{[21]}$, <20 kg-cm $^{[27]}$, 69 cm (median height, 2 kg mass, 30 mg sample, Rotter apparatus $^{[41]}$, anhydrous more sensitive than normal LS $^{[11]}$, storing LS for 60 days @ 75 °C increased the IS from 23 cm–5 cm (1 kg hammer) $^{[11]}$, 2.2 $^{[11]}$, 2.5 $^{[11]}$, 2.4 $^{[11]}$, 3.4 (B.M.) $^{[11]}$, ~3.5 $^{[11]}$, 5 $^{[11]}$, H_{50} = 2.16 (8.8 cm, 2.5 kg mass) $^{[11]}$, minimum hot spot T for initiation by impact = 500–550 °C (in the presence of grit) $^{[14]}$, 0.025 (basic LS) $^{[17]}$, 22.1 ± 4.1 cm (ball drop, steel ball, ball weight = 8.36 g, 50% height) $^{[22]}$, 8 in (22 mg sample, P.A.) $^{[24]}$, FoI = 25 $^{[30]}$, $H_{10\%}$ = 12 in (ball drop test, 8.35 g, 1 /2 in diameter steel ball, 35 mg sample) $^{[32]}$, 0.025 $^{[36]}$, 36 cm (100% fire, 400 g hammer, 20 mg sample) $^{[37]}$, 11.5 cm (100% no-fire, 400 g hammer, 20 mg sample) $^{[37]}$, 20.3 cm (P.A.) $^{[38]}$, 69 cm (median height, 2 kg mass, FoI = 12 cf. Pb 2,4-DNR = 11, Rotter apparatus) $^{[38]}$

Silver sand test (crystalline LTNR, 16.27 g falling mass)[31]:

Test T (°C)	50	40	30	-1	-11	-21	-30	-41
Critical	6.9	7.7	7.6	10.1	11.3	11.9	12.1	12.7
height (cm)								

Grain size and IS of lead trinitroresorcinol, silver sand test (@ RT, 16.27 g falling mass)[31]:

Grain size (sieve mesh)	Height of fall (cm)	No. of explosions (per 40 shots)	Critical height of fall (cm)
300 or more	13 11	22 16	12.0
300-200	11 9	23 19	9.5
200-150	15 12	23 15	13.8
150-80	15 12	22 16	14.0
80 or less	20 17	21 18	18.9

Impact initiation delay, delay range is for approx. 20 initiations^[38]:

Impact energy (J)	Average delay (μs)	Delay range (µs)
6.34	133	60-200
4.80	193	80-990
3.40	191	70-420

Effect of liquid nitrogen on the IS (2 kg mass, modified P.A. machine, 50% point, T cycling = soaking sample in LN₂ for 15 min. then allowing to stand at ambient T for 1 h for five cycles)^[38]:

	Height (cm) (standard deviation)				
Mean height for 50% probability of reaction					
Control (dry)	33.43 (13.39)				
LN ₂ test	32.16 (4.52)				
Height for 10% probability of reaction					
Control (dry)	15.24				
LN ₂ test	17.78				
Effect of t cycling at 50% height					
In LN ₂ , % fire	60				
Dry, % fire	30				

FS [N]

Detonates with steel shoe (friction pendulum test)^[1, 24], detonates with fiber shoe (friction pendulum test)^[1], minimum hot spot T for initiation by friction = 430–500 °C (in the presence of grit)^[14], <1 (basic LS)^[17], <1 kg (BAM)^[27], 0.1^[28], 1.45 (50% initiation probability)^[11], less sensitive than mercury fulminate^[30], <1^[36], 70% (explosion % of 25 samples under 588.40 kPa and 80° swing angle)^[37], explodes in Picatinny Arsenal friction test^[38]

FS tested on porcelain and Emery paper (Julius-Peters, BAM)[16]:

Friction sensitivity (g)					
Porcelain		Eme	ry paper gra	ades	
	P80	P100	P120	P180	P360
275	450	240	200	375	> 2,075

 $F_{50}=1.3$ (dry sample) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[18], $F_{50}=7.69$ (5% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[18], $F_{50}=20.05$ (10% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[18], $F_{50}=30.14$ (20% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[18], $F_{50}=28.56$ (excess water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg)^[18]

 $F_{50\%}=285\pm200$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method) $^{[22]}$, $F_{10\%}=100$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method) $^{[22]}$

Emery paper FS^[39]:

Ignitio	Ignitions/trial at strike velocity (ft/s)			
8	9	10	11	
0/10	3/10	7/10	9/10	complete

Sliding block F, with steel on steel surfaces, substantially the same results were obtained with a dead load of 40 lb instead of 6 lb on the tilting table^[39]:

Explosive			igni	tions/t	rial at v	elocity	strike (1	ft/s)		
and surface	5	6	7	8	9	10	11	12	13	14
LS steel on steel	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10	0/10
LS Emery					0/10	1/10	1/10	5/10	5/10	9/10

Effects of liquids on sliding block FS, sliding block friction tester with 6 lb load, no. of ignitions at 14 ft/s, Perminal = sodium salt of isopropyl naphthalene sulfonic acid^[39]:

Desensitizer	Ignitions/trial
Without desensitizer	10/10
Sprayed 20 s w/water or w/20% glycerin soln.	6/10
Same plus 0.1% perminal	6/10
Same, plus 0.1% turkey red oil	5/10
One drop EtOH	0/10

Yamada FS apparatus^[39]:

Explosive and additive	Load fo	r 50% initiati	ons (kg)
	Emery	Ebonite	Copper
LS	20.0	35.0	
LS, ground glass 100 mesh	15.5	32.0	100

	Highest elec				ω,		,	,				<5 kV ^[27] , $0.0009^{[1,37]}$, $0.001^{[2]}$, $0.04-0.14$ mJ ^[11] , 0.2 mJ (basic LS) ^[17] , 0.0009 (unconfined) ^[24,38] , 0.0009 (confined) ^[24,38] , 0.2 mJ ^[28,36]			
	Highest			Highest electrostatic discharge energy @ 5,000 V for zero ignition probability ^[7] :				lity ^[7] :							
	Highest energy (J) for zero ignition probability			ero	Type of ignition										
	Unconfined Confined				Unconfined Confin			Confined	I						
	0.0009 0.0009				de	ton			deton.						
	Ignition valu	es ^[23] :													
	Explosive	Capa (MF)	acitance	Volta: (kV)	ge	En (J)	ergy	T (°C)	RH (%)	Rema	rks				
	LS 0.001		3.7		0.0	007	30	54	Ignite	d					
	sensitiveness are continuous with LS; the energy value quoted is the energy (erg) stored on the capacitor – the energy dissipated in the gap is about one-tenth of this ^[24] : Material Metal/metal electrodes (no Rubber/metal electrodes														
	-		ed circuit			<u> </u>	`		series re		=)				
		Spark (500 p	s	Gaseo sparks (1,000	5		Minin energ			mum acity (pF	5)				
	LS	60 – 20 5													
N [%]	8.97														
Ω(CO ₂) [%]	-22.2														
T _{m.p.} [°C]	$260-310 \text{ (explodes)}^{[1, 20, 21, 24]}$, detonates before melting ^[19]														
T _{dec.} [°C]	260–310 (explodes) , detonates before meeting 260–310 (explodes, DSC @ 5 °C/min) ^[1] , 295.61 (DSC, LTNR prepared with batch experiment) ^[12] , 293.38 (DSC, LTNR prepared with segmented experiment) ^[12] , 304.99 (DSC, LTNR prepared with segmented experiment with 5% glycerin) ^[12] , 282 (DSC, basic LS) ^[17] , 282 (exo peak max, DSC) ^[28] , 282 (DSC) ^[36]														

Normal LS, exptl. features of the DSC traces ^[33] :
--

	Endotherm	Exotherm			
Heating rate = 2.5 K/min Mass of sample = 0.525 mg, 0.510 mg					
T _{onset} (K)	405	533			
T _{max} (K)	414	552			
Heat of reaction (J/g)	65	1,890			
Heating rate = 5 K/min Mass of sample = 0.486 mg,	0.508 mg				
T _{onset} (K)	416	542			
T _{max} (K)	425	560			
Heat of reaction (J/g)	59	1,930			
Heating rate = 10 K/min Mass of sample = 0.469 mg, 0.465 mg					
T _{onset} (K)	423	554			
T _{max} (K)	434	571			
Heat of reaction (J/g)	75	2,010			
Heating rate = 20 K/min Mass of sample = 0.463 mg,	0.447 mg				
T _{onset} (K)	436	564			
T _{max} (K)	447	580			
Heat of reaction (J/g)	69	2,010			

ho [g cm $^{-3}$]

3.02 (crystal)^[1, 2, 20, 24], 3.06–3.1 (crystal, normal LS)^[11], 2.9 (anhydrous LS)^[2, 11, 20], 3.00 (basic LS)^[17], 3.1 (crystal)^[22, 28], 2.47 @ 12,000 psi^[24], 3.09^[30], 3.00^[36] Loading ρ at different pressures^[5, 24]:

Pressure (kpsi)	Loading ρ (g cm ⁻³)
3	2.12 ^[5, 24]
5	2.23 ^[5, 24]
10	2.43 ^[5, 24]
15	2.57 ^[5, 24]
20	2.63 ^[5, 24]
crystal	3.1 ^[5, 24]

Heat of formation		•	g (energy of form.) ^[3] , /g ^[2] , 92 kcal/kg ^[9] , –835 kJ/mol
Heat of combustion	1,251 kcal/kg ^[1, 2, 9, 24]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,322	457 kcal/kg ^[9] 725 kJ/mol ^[11]	457 cal/g ^[1, 24] 460 cal/g [H ₂ O (g)] ^[2]
<i>T</i> _{ex} [K]	2,955	2,700 °C ^[9]	
p _{C-J} [kbar]	244		0.126 Mbar ^[24]
VoD [m s ⁻¹]	6,098 (@ 3.02 g cm ⁻³ , $\Delta_i H = -624 \text{ kJ mol}^{-1}$)	5,200 (@ 2.9 g cm ⁻³ , average value from lit.) ^[8] 2,100 (@ 0.93 g cm ⁻³) ^[11] 4,900 (@ 2.6 g cm ⁻³) ^[11] 5,200 (@ 2.9 g cm ⁻³) ^[11] 6,200 (@ 3.1 g cm ⁻³) ^[11]	5,200 (@ 2.9 g cm ⁻³) ^[1, 20, 21] 5,200 (@ 2.9 g cm ⁻³ , when initiated with blasting caps) ^[2] 4,802 (based on sand experiments) ^[8] 4,900 (@ 2.6 g cm ⁻³ , loaded into detonator capsules, 7.7 mm internal diameter, <i>Kast</i>) ^[13] 4,900 (@ 2.6 g cm ⁻³) ^[30]
V ₀ [L kg ⁻¹]	344	270 dm ³ /kg ^[11]	368 ^[1, 24]
			440 ^[2]

Trauzl test [cm³, % TNT]	40% TNT ^[1, 21] , more powerful than LA ^[2] , 42% TNT ^[2] , 130 cm ³ (10 g sample) ^[11] , 122 cm ³ (10 g sample) ^[11] , 40% TNT (10 g sample) ^[11]
Sand test [g]	27-53% TNT ^[2] , 10.9 g sand crushed (1,700 g bomb using 0.4 g LS) ^[8] , 24 g (200 g bomb) ^[1,21] , 10.5 g (initiation by black powder fuse) ^[2] , 24 g (initiated by small charge of MF) ^[2]

Initiating efficiency

Trace of MF is minimum detonating charge $^{[1]}$, trace of LA is minimum detonating charge $^{[1]}$, 0.001 g minimum detonating charge of LA $^{[24]}$, 2 g of LS does not initiate tetryl $^{[11]}$, minimum charges of LS required to initiate 0.4 g PETN (PETN tamped down or pressed loosely into Cu capsules, 6.2 mm inside diameter, LS pressed down loosely on top, values given for 1 failure in 10 tests achieved): 0.55 g $^{[13]}$, minimum charges of LS required to initiate 0.4 g PETN (PETN compressed @ 2,000 kg/cm 2), Cu capsules, 6.2 mm inside diameter, LS pressed down loosely on top: no detonation with 1 g LS $^{[13]}$, initiating ability = <0.5 g (minimum charge in a No. 8 detonator for tetryl) $^{[28]}$, LS is a relatively poor initiator of detonation: detonation of 60% dynamite and gelatin dynamite is possible $^{[2]}$, the only military explosive LS detonates is unpressed PETN, minimum detonating charge for unpressed PETN = 0.55 g $^{[2]}$, 0.001 g (minimum detonating charge of LA required to shock-initiate LS) $^{[38]}$

5 s explosion T[°C] Explosion T [°C]

 $282^{[1, 2, 21, 37]}$, $270-280^{[9]}$, 282 (cook-off)^[24], 282 (open cup)^[38]

276 (10 s)^[1, 24], 272 (15 s)^[1], 267 (20 s)^[1], instantaneous explosion @ 270 (*Kast*)^[11], 276 (glass tube, 20 °C/min)^[13], 277 (glass tube, 20 °C/min)^[13], 276 (iron tube, 20 °C/min)^[13], 265 (iron tube, 65 s)^[13], 270 (iron tube, 0 s)^[13]

Explosion T @ various times of exposure (3 mg samples, detonation)^[10]: 0.56 s @ 328, 4.47 s @ 301, 41.3 s @ 280, no action @ $275^{[10]}$

Time to explosion of LS as function of time (approx. values)[11]:

T(°C)	Time to explosion (min)
235	36
238	23
239	26
241	22
242	21
242	17
243	22
246	19
248	14
250	13
253	9
255	8

	267–268 (explodes, 0.05 g sample in test tube in Wood's metal bath, @ 20 °C/min) ^[13]
	282 (US value) ^[9, 24] , 265–280 (Russian value) (explodes) ^[9] , 280 (Danilov) ^[11]
5 s ignition T [°C] Ignition T [°C]	293 (dropping on preheated Wood's alloy) ^[5] , 255 (@ 5 °C/min) ^[11] , 275–277 (@ 20 °C/min) ^[11] , 250 ^[14] , ~250 (@ 5 °C/min) ^[30] , 295 (crystalline) ^[31] , 299 (powder) ^[31] , 300 (anhydrous) ^[31] , 298 (grain size = ≥ 300 sieve mesh) ^[31] , 297 (grain size = ≥ 300 –200 sieve mesh) ^[31] , 297 (grain size = ≥ 300 –150 sieve mesh) ^[31] , 298 (grain size = ≥ 300 –200 sieve mesh) ^[31] , 298 (grain size = ≥ 300 –30 sieve mesh) ^[31] , 530 K ^[33] , 324 (5 s, extrapolated) ^[35] , 440 (≥ 300 –3 s, extrapolated) ^[35] , 522 (≥ 300 –5 s, extrapolated) ^[35]
Detonating T[°C]	267 ^[19]
Autoignition T[K]	522 ^[22] , 280 °C (DSC @ 10 °C, hermetic sealed ups and lids) ^[27]
Thermal ignition T[°C]	250 ^[24]
100 °C heat test [% mass loss]	0.38% mass loss in first 48 h ^[1] , 0.73% mass loss in second 48 h ^[1] , no explosion in 100 h ^[1] , 1.5% mass loss (may be due to loss of crystal $\rm H_2O)^{[2]}$, 0.4 cc/40 h @ 100 °C ^[2] , 40 cc/40 h @ 120 °C ^[2]
Vacuum stability test [cm³/h]	0.4 cm 3 gas evolved in 40 h @ 100 °C $^{[1, 2]}$, 0.4 cm 3 gas evolved in 40 h @ 120 °C $^{[2]}$, 0.3 cm 3 gas evolved in 40 h @ 120 °C $^{[1, 24, 38]}$
Thermal stability	Loss in weight @ 105 °C: 0.02% after 3 h ^[1] , 0.23% after 6 h ^[1] , 0.23% after 9 h ^[1]
,	Effect of storage for 2 months @ 80 °C on (i) explosion temperature test value = $none^{[1]}$, (ii) sand test value = $none^{[1]}$, (iii) sensitivity to initiation = $none^{[1]}$
	Storage @ 80 °C caused no change in 100 °C VTS value ^[2] , normal LS (LS•H ₂ O) shows no change after 2 months @ 65–70 °C ^[11] , heating (LS•H ₂ O) >100 °C results in loss of crystal water ^[11] , dehydration of LS•H ₂ O after 16 h @ 115 °C ^[11] , dehydration of LS•H ₂ O after 7 h @ 135 °C ^[11] , dehydration of LS•H ₂ O after 4 h @ 145 °C ^[11] , 267–268 (explodes, 0.05 g sample in test tube in Wood's metal bath, @ 20 °C/min) ^[13] , detonates if steamed ^[19] , storage @ 80 °C doesn't affect its stability ^[20]

	T	(2)				
Burn rate [mm/s]	Linear and mass rates of burning @ 1 atm ^[29] : $u = 26-27$ cm/s ^[29] , $m = 100$ g cm ⁻² s ^{-1[29]} , $u = \approx 25-26$ cm/s @ 15 mm Hg pressure in bomb ^[29] , $u = \approx 33-35$ cm/s @ 50 atm. and remains unchanged @ 50–400 atm. ^[29]					
Solubility [g/mL]	0.1 g soluble in 100 g glycol diacetate @ $20-25$ °C ^[1] , 0.04 g/100 g H ₂ O @ 15 °C (slightly soluble) ^[2, 11] , 0.09 g/100 g H ₂ O @ 17 °C (slightly soluble) ^[11] , slightly soluble in MeOH, pyridine, amyl acetate ^[11] , practically insoluble in E_2 O, acetone, CHCl ₃ , CCl ₄ ^[11, 20] , soluble in formamide, ethanol diamine (30 g/100 g ethanol diamine @ 17 °C) ^[11] , slightly soluble in H_2 O ^[19] , less soluble in acetone ^[19] , some solubility in 10% aq. ammonium acetate soln. ^[19, 20] , practically insoluble in water, EtOH, carbon disulfide, benzene, toluene, hydrochloric acid and glacial acetic acid ^[20] , insoluble in E_2 O, CHCl ₃ , CCl ₄ , CS ₂ , benzene, toluene, conc. hydrochloric acid and glacial acetic acid ^[21] , soluble in aqueous ammonium acetate ^[2]					
Hygroscopicity	0.05% @ 25 °C with 100% RH $^{[1]}$, 0.02% @ 30 °C with 90% RH $^{[1]}$, normal LS is hygroscopic (LS•H $_2$ O) $^{[11]}$, heating (LS•H $_2$ O) 100 °C results in loss of crystal water $^{[11]}$, dehydration of LS•H $_2$ O after 16 h @ 115 °C $^{[11]}$, dehydration of LS•H $_2$ O after 7 h @ 135 °C $^{[11]}$, dehydration of LS•H $_2$ O after $^{(11)}$, slightly hygroscopic $^{[19]}$, only slightly hygroscopic $^{[21]}$					
Radiation sensitivity	Dec. on γ-irradiation, cobalt-60 @ 25 °C ^[11] Data obtained for explosives after exposure to gamma radiation ^[24] :					
	Weight of sample (g) 5					
	Vol. of gas produced (mL/g) in following times (days)					
	10 0.05					
	20 0.07					
	30 0.09					
	40 –					
	50 0.10					
	90 0.12					
	Total irradiation time (days) 90					
	Purity of sample by chemical ana	lysis (%)				
	Original material	-				
	Irradiated material	-				
	Melting points, corrected (°C)					
	Original material	_				
	Irradiated material	_				
l .	l -					

IS (P.A. apparatus) (in)				
Original material 6				
Irradiated material	6			
IS (B.M. apparatus, 2 kg mass) (cm)				
Original material	20			
Irradiated material 22				
Sand test, 200 g bomb, g of sand crus sample was ignited by black powder fu				
Original material	14.1			
Irradiated material	14.3			
Sand test, 200 g bomb, g of sand crushed when sample was initiated by 0.30 g LA				
Original material	-			
Irradiated material	_			

 $Effects\ of\ reactor\ irradiation,\ ^aaverage\ reactor\ exposure\ rates:\ fast\ neutrons\ \varphi\ >0.18\ MeV\ 1.4\times10^{13}\ n/cm^2\ s,\ thermal\ neutron\ \varphi\ >0.17\ eV\ 8.6\times10^{13}\ n/cm^2\ s,$ gamma 4.0 × 108 R/h (3.38 × 10^{10} ergs/g(C)(h gamma), ^bsample detonated, ^c200 °C^[40]:

Irradiation time (min)	Total ne	Total neutron dose	Total gamma (R) Weight 10% loss	Weight	10% loss	150° avg.	DTA peak	5 s explosion
	Fast (n/cm²)	Fast (n/cm²) Thermal (n/cm²)		(%) ssol	on TGA (°C)	loss (%) on TGA (°C) gas evolution or TGA (°C) (mL/g/hr)	exotherm @ 20 °C/min (°C)	7 (°C)
0					285	1.02€	287 ^b	299
~2	1.7×10^{15}	1.7×10^{15} 1.1×10^{15}	1.4 × 10 ⁷			Sample detonated	ted	
~1 ms	$ 7.3 \times 10^{13}$ $ 2.2 \times 10^{14}$		3.6 × 10 ⁶	0.26		2.53 ^c	280 ^b	268
~1 ms	3.5×10^{14} 1.6×10^{15}		1.5×10^{7}			Sample detonated	ted	

Radiation
sensitivity

LS irradiated at ambient T using 0.41 MeV 198 ₇₉Au γ -rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose $^{[40]}$:

Gamma energy absorbed, 10 ⁷ R	Gas evolved (mL/g) @ STP
1	<0.1
2	< 0.1
3	< 0.1
4	< 0.1

Effect of 60 MeV electron irradiation on explosives, ^aput on hot plate with T above explosion $T^{[40]}$:

Weight (mg)	Dose (R)	Dose rate (R/s)	Color change	Test	Results
25.0	1.14 × 10 ⁹	1.1 × 10 ⁶	Dark rust- brown	Heat ^a	Explosion
25.0	1.14 × 10 ⁹	1.6 × 10 ⁶		Heat	Explosion
3.3	3.65 × 10 ¹⁰	2.9 × 10 ⁶		Heat	No Explosion
7.9	2.96 × 10 ¹⁰	2.7 × 10 ⁶		Heat	Explosion
10.3	22.7 × 10 ¹⁰	2.9 × 10 ⁶		Heat	Explosion

Critical doses and T to initiate LS by pulsed high-energy electrons, ^aestimated 50% initiation dose^[40]:

Explosive	Critical d	ose (J/g)
	Calcd.	Exptl. ^a
LS	92.1	42

Compatibility

Compatible with RDX, tetryl, TNT when $dry^{[11]}$, slightly hygroscopic but not adversely affected by moisture^[19], can be stored under H_2O or under a mixture of $H_2O/EtOH^{[19]}$, does not react with copper, aluminum, stainless steel, LA or black powder^[19], detonates if steamed^[19], no reaction and no corrosion with $Al^{[24]}$, no reaction with $Cu^{[24]}$, no reaction with 18-8 stainless steel^[24]

Blast wave characteristics

Blast wave overpressure $P_{\text{max}} = 3.0 \text{ kPa (mean value)}^{[15]}$, blast wave positive phase impulse $I^* = 0.25 \text{ Pa s (mean value)}^{[15]}$ (loose-filled into mild steel test units $(4.6 \times 2.5 \times 2.5 \text{ cm})$, 0.9 cm hole diameter, sealed with a cork disc and adhesive, mass of material = 200-1,000 mg, initiated with an ICI type "E" fusehead)^[15], TNT equivalence = $0.42^{[15]}$

Specific heat [cal/cm/°C]

 $0.141 \ @ \ -50 \ ^{\circ}C^{[1]}, \ 0.158 \ @ \ 0 \ ^{\circ}C^{[1]}, \ 0.164 \ @ \ 25 \ ^{\circ}C^{[1]}, \ 0.167 \ @ \ 50 \ ^{\circ}C^{[1]}$

Firing times of hot bridge wire initiators	Firing times o times are in µ		dge wi	re initiato	rs, 50	0 mg	loads	s of exp	olos	ives, volta	ge of 450
	Milling time	es (h)	Capacitance (µF)								
			0.5		0.05		0.00	0.0047			
	24		11.8-	12.5	10.0-20.6		13.1-374.4				
	64		10.0-	13.7	10.6	0.6-13.1 10.0-381.2			81.2		
Reflectance tests	Reflectance to			Å (contin	uous	wave	yttri	um gar	net	aluminum	laser,
	Particle size (mesh)			ading pre	essur	e (10)³ psi)) Ref	lec	tance (%)	
	Through 100 2							65.	.3		
	Through 10	gh 100 10						76.	.8		
Laser sensitivity	Mean energy and energy density to initiate LS with the neodymium laser ^[25] :										
	Particle size		ctance	Unit		F	ull b	eam		Partia	l beam
	Particle size (mesh)	Refle (%)	ctance	Unit	p	Short pulse (450	t e	eam Long pulse (1.5 m	ıs)	Partia Short pulse (450 µs)	Long pulse (1.5 ms)
	11	(%)	ctance	Unit	p (-	Short pulse (450	t ; μs)	Long pulse (1.5 m		Short pulse	Long pulse
	(mesh)	(%)	ctance	Energy	p (Short pulse (450	i μs) ing p	Long pulse (1.5 m		Short pulse (450 µs)	Long pulse
	(mesh)	(%)	ctance		() p () () 0	Short pulse (450 Load	i μs) ing p	Long pulse (1.5 m		Short pulse (450 µs) ,000 psi	Long pulse (1.5 ms)
	(mesh)	(%)	ctance	Energy Energy density	(J) Q	Short pulse (450 Load 0.56 9.0	μs) ing p	Long pulse (1.5 m ressure 0.98 8.8	e: 2	Short pulse (450 μs) ,000 psi 0.58	Long pulse (1.5 ms)
	(mesh)	(%)	ctance	Energy Energy density	() () () () () () () () () () () () () (Short pulse (450 Load 0.56 9.0	ing p	Long pulse (1.5 m ressure 0.98 8.8	e: 2	Short pulse (450 μs) ,000 psi 0.58 9.3	Long pulse (1.5 ms)
	(mesh)	(%)	ctance	Energy Energy density (J/in²)	()) C	Short pulse (450 Load 0.56 9.0	μs) ing p	Long pulse (1.5 m ressure 0.98 8.8	e: 2	Short pulse (450 μs) ,000 psi 0.58 9.3	Long pulse (1.5 ms) 0.98
	(mesh)	(%)		Energy density (J/in²) Energy density (J/in²)	F	Short oulse (450 Load 0.56 9.0 oadii 77.2	t t t t t t t t t t t t t t t t t t t	Long pulse (1.5 m ressure 0.98 8.8 essure 0.85 7.6	e: 2	Short pulse (450 µs) ,000 psi 0.58 9.3 0,000 psi 0.53	Long pulse (1.5 ms) 0.98 8.8

Confined

Confined

10

249

249

0.6

0.6

220

750

Excimer laser 15

Excimer laser 15

Detonation conditions using laser-produced heat and shock $^{\left[26\right]}\!.$

Density or pressing force	Detonator type	Nominal wavelength (nm)	Spot diameter (μm)	Power or energy (J)	Energy density Function (J/M²) time (µs)	Function time (µs)	Laser type	Pulse duration (µs)
10.3 MPa	Confined	1,060	009	0.070	-	273	Neodymium 250 /glass	250
14 MPa	Confined	820	200	1	30	250	Diode	100,000
~1 g/cc	Confined	820	200	1	30	250	Diode	27,500

	Pulsed nedodymium-glass (10,600 Å) laser of 100 MW emitting 30 ns flashes ^[40] :										
		A	verage e	nergy de	nsities			7			
	No reac	tion (mJ/	cm²)	1009	% initiati	on (n	nJ/cm²)				
	100			1,20	0			1			
Ignition sensitivity by electric bridge	Bridge cu (1/1,000							re), <i>s</i>	= igniti	on time	
current	Crystall	ine lead	trinitrore	sorcinol							
	1	2.0	1.6	1.3	1.0	0.8	0.7	75			
	5	1.4	2.1	3.4	6.4	20.	.6				
	l ² s 5.6 5.4 5.7 6.4 13.2										
	Powder lead trinitroresorcinol										
	l 2.0 1.6 1.3 1.0 0.8 0.75										
	s 1.8 2.6 3.9 6.9 26.3										
	l ² s 7.2 6.7 6.6 6.9 16.8										
	Anhydrous lead trinitroresorcinol										
	1	2.0	1.6	1.3	1.0	0.8	0.7	75			
	s	1.7	2.7	4.0	8.3	22.	.0				
	l ² s 6.8 6.9 6.8 8.3 14.1										
Heat of dec. [J/g]	1890 (DSC @ 2.5 K/min) ^[33] , 1930 (DSC @ 5 K/min) ^[33] , 2010 (DSC @ 10 K/min) ^[33] , 2010 (DSC @ 20 K/min) ^[33] , 1960 ± 70 (average value, DSC) ^[33]										
Closed bomb data	$T_0 = \text{applied}$ pressure;								$e, T_{pk} = 1$	time to pea	ιk
	Sample	Τ ₀ –Τ _{po} (ms)	<i>T– T</i> _{pk} (ms)	T _{p0} - T _{pk} (ms)	Ignition time (ms)*	n	Peak pressur (psi)		narge eight ;)	Impetus (in lb/g)	
	NLA	0.785	1.034	0.250	0.734		1,361	0.	.238	3,488	

	Lead styphnate monohydrate*[4]
Chemical formula	C ₆ H ₃ N ₃ O ₉ Pb
Molecular weight [g mol ⁻¹]	468.3

	¥
Crystal system	Monoclinic
Space group	
a [Å]	10.06
<i>b</i> [Å]	12.58
c [Å]	8.05
α [°]	90
β [°]	91.90
γ [°]	90
<i>V</i> [ų]	1,018.21
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	3.055
<i>T</i> [K]	295

^{*} Normal LS forms a monohydrate and exists as two polymorphs: α and $\beta^{[11]}$

- [1] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [2] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 206–207.
- [4] W. C. McCrone, O. W. Adams, Analytical Chem., 1955, 27, 2014–2015.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [6] J. R. Payne, *Thermochim. Acta*, **1994**, *242*, 13–21.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [10] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [11] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2013.
- [12] S. Zhao, P. Zhu, H. Zia, Y. Yang, R. Shen, Y. Ye, *Micro Segmented Flow Synthesis of Crystal-Controlled and High-Quality Lead Trinitroresorcinate*, ICT **2017**, Karlsruhe, Germany, pp. 58-1–58-8.
- [13] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [14] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [15] L. V. De Yong, G. Campanella, J. Hazard. Mater., 1989, 21, 125–133.
- [16] J. J. J. P. A. Le Roux, *Propellants, Explosives, Pyrotechnics*, **1990**, *15*, 243–247.
- [17] K. D. Oyler, Green Primary Explosives, Ch. 5 in Green Energetic Materials, T. Brinck (ed.), Wiley, 2014.

- [18] R. Matyáš, J. Šelešovský, J. Energet. Mater., 2014, 32, 88-94.
- [19] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [20] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [21] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [22] J. Harris, *Friction Sensitivity of Primary Explosives*, Technical Report ARLCD-TR-82012, US Army Armament Research and Development Command, New Jersey, USA, 6th October **1982**.
- [23] M. B. Talawar, A. P. Agrawal, M. Anniyappan, D. S. Wani, M. K. Bansode, G. M. Gore, J. Hazard. Mater., 2006, B137, 1074–1078.
- [24] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [25] V. J. Menichelli, L. C. Yang, Sensitivity of Explosives to Laser Energy, Technical Report 32–1474, NASA CR110133, Jet Propulsion Laboratory, California Institute of Technology, California, USA, 30th April 1970.
- [26] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, *Light-Initiated Detonation Systems*, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [27] T. M. Massis, J. W. Fronabarger, W. B. Sanborn, New Explosive Materials and Pyrotechnic Formulations with Improved Safety and Sensitivity Properties, Sandia National Laboratories, Alberquerque, USA, August 1996.
- [28] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293–327.
- [29] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [30] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [31] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [32] B. D. Pollock, R. F. Gentner, *Impact Sensitivity of Wetted Primary Explosives as Determined by the Ball Drop Test*, Technical Report 4311, Picatinny Arsenal, New Jersey, USA, April 1972.
- [33] M. Maksacheff, D. J. Whelan, Thermochemistry of Normal and Basic Lead Styphnates using Differential Scanning Calorimetry, MRL-R-1000, Department of Defence, Melbourne, Australia, May 1986.
- [34] J. W. Fronabarger, M. D. Williams, *Lead-Free Primers*, US Patent 2012/0152140 A1, June 21st 2012.
- [35] J. L. Copp, S. E. Napier, T. Nash, W. J. Powell, H. Skelly, A. R. Ubbelohde, P. Woodward, *Trans. Roy. Soc. (London)*, **1948**, A241.
- [36] K. D. Oyler, N. Mehta, G. Cheng, Overview of Explosive Initiators, Technical Report ARMET-TR-15017, U. S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, New Jersey, USA, November 2015.
- [37] Z. Shunguan, W. Youchen, Z. Wenyi, M. Jingyan, *Propellants, Explosives, Pyrotechnics*, **1997**, 22, 317–320.

- [38] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [39] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [40] L. Avrami, J. Haberman, *Sensitivity to Heat and Nuclear Radiation*, Ch. 6 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [41] Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, United Nations, New York, **2009**, pp. 69–122.

D-Mannitol hexanitrate

Name [German, acronym]: D-Mannitol hexanitrate, nitromannite, nitromannitol,

mannitol hexanitrate, hexanitromannite, hexanitromannitol, Mannitol nitrate, Maxitate, Medemanol, Dilangil, Moloid, Mannitrin, Nitranitol,

Manexin [Nitromannit, MHN, HNMnt, HNM]

Main (potential) use: Improvised explosive, secondary charge in detonators

and blasting caps, its mixture with tetracene is a

powerful primary explosive^[15], high-explosive charge in compound detonators which contain DDNP as primary explosive^[15], secondary charge in detonators and in blasting caps designed to be initiated by a fuse^[4]

Structural formula:

	p-Mannitol hexanitrate
Formula	C ₆ H ₈ N ₆ O ₁₈
Molecular mass [g mol ⁻¹]	452.15
Appearance at room temperature [RT]	Crystallizes from EtOH as needles ^[14] , white crystals ^[15] , colorless crystals or white powder ^[17] , white crystalline powder (thin needles) ^[18] , long needles in regular clusters (from EtOH) ^[22]
IS [J]	1 (100–500 μm), 8–11 cm (B.M.) ^[8] , 4 in (P.A.) ^[8] , 11 cm (2 kg mass, 2.16 J, B.M.) ^[2, 3] , 4 in (2 kg mass, 1.99 J, P.A.) ^[2, 3] , similar to that of NG ^[14] , 4 cm (explosion, 2 kg mass) ^[14, 15] , explodes on concrete surface by hitting with hammer ^[15] , 11 cm (2 kg mass, 20 mg sample, B.M.) ^[4] , 4 in (2 kg mass, 11 mg sample, P.A.) ^[4] , $H_{50\%}$ = 15 cm (4 kg mass, B.M. design 5) ^[24] , $H_{50\%}$ = 12 cm (5 kg mass, plane sandblasted surfaces) ^[24] , 5.5 cm (sensitivity to glancing impact, Hercules sliding rod, sandblasted surfaces, 45° slide angle, 10 lb rod, 30 mg sample) ^[24]

FS [N]	30 (100–500 μ m), detonates with steel shoe (friction pendulum test) ^[4] , unaffected by fiber shoe (friction pendulum test) ^[4] , $H_{50\%}=1.1$ cm (friction pendulum, 30 mg sample, sandblasted surface, 2 in ball, 5 kg weight, 8° angle of incidence) ^[24]							
ESD [J]	0.15 (10)0-500 μ	ım)					
N [%]	18.59							
Ω(CO ₂) [%]	+7.08							
T _{m.p.} [°C]	109.5 (0	onset), 11 onset), 11	l 1.8 (pea	k max), 11	9 (after severa 13.9 (end 7) (I , onset), 111.	OSC @ 10.	0 K/min,	pinhole
T _{dec.} [°C]	heated) [[] 169.4 (o cover) ^{[16}	^{15]} , 150 (enset), 18	complete 31.4 (peal	dec., red f k max), 20 et), 181.4 (slow heating) [[] fumes, no crad 2.6 (end <i>T</i>) (Di (exo, peak ma	ckling, slo	w heating K/min, p	g) ^[18] , pinhole
	<i>β</i> /K	T _{ot}	T _i	Mas	s loss/%	L _{max} /%	T _p /°C	T _{oe} /°C
	min ⁻¹			Stage 1	Residue/%	min ⁻¹		
	7.0	155.0	127.4	96.73	0.32	-28.11	169.4	190.0
	10.0	160.2	129.7	95.82	0.74	-45.41	173.3	193.7
	15.0	164.2	132.3	96.83	0.79	-66.56	176.6	199.8
	20.0	166.2	136.9	98.46	0.22	-76.10	180.7	214.2
	$T_p = pea$ $L_{max} = m$	$T_{\text{ot}} = \text{onset } T \text{ of dec.}$, $T_{\text{oe}} = \text{onset } T \text{ of end dec.}$, $T_{\text{i}} = \text{initial } T \text{ for thermal dec.}$, $T_{\text{p}} = \text{peak } T \text{ of mass loss rate, stage 1} = \text{from initial } T \text{ to end } T \text{ of DTG peak,}$ $L_{\text{max}} = \text{max. mass loss rate}$						
ρ [g cm ⁻³]	1.894 (@ 173 K), 1.784 (gas pycnometer @ 298 K), 1.73 ^[4] , 1.604 ^[7] , 1.230–1.604 (crystal) ^[8] , sp. gr. = 1.604 ^[14, 17, 18]							
Heat of formation	$-165.2 \text{ kcal/mol}^{[8]}, -169.42 \pm 0.68 \text{ kcal/mol}^{[8]}, -1,494.4 \text{ (enthalpy of form.)}^{[7]}, \\ 337 \text{ cal/g}^{[4]}, 345 \text{ cal/g}^{[4]}, 366 \text{ cal/g}^{[4]}, -706.7 \pm 4.2 \text{ kJ/mol} (-\Delta H_{\rm f}^{ \rm o}, \text{(c))}^{[13]}, \\ 342.8 \text{ kcal/kg (heat of form., } \textit{Q)}^{[18]}, -169.42 \text{ kcal/mol}^{[8]}, 349 \text{ kcal/kg}^{[9]}, \\ -708.8 \text{ kJ/mol (enthalpy of form., exptl.)}^{[23]}, -662.6 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[23]}$							
Heat of combustion	1,520 kg -683.7	cal/kg ^[9] , kcal/mol	$-1,565$ (Q_c^P)[8], -	cal/g ^[8] , -1	-1,484.2 cal ,525 cal/g ^{[4, 8} /g ^[4, 8] , 1,512	^{3]} , –689.5	kcal/mol	

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,938	Heat of explosion = 1,458 kcal/kg ^[9] 1,512 kcal/kg ^[14]	1,390 cal/g ^[4] 1,454 cal/g ^[4,8]
		1,510 kcal/kg ^[18]	1,468 cal/g ^[4]
		151.6 kcal/100 g	1,520 cal/g ^[4]
		(@ 1.73 g cm ⁻³ , constant volume) $[H_2O(I)]^{[20]}$	6,380 ^[6]
		10100) [1120 (0]	5,855 [H ₂ O (g)] ^[7]
T _{ex} [K]	4,189	6,040 (@ 1.7 g cm ⁻³ , calcd.) ^[9]	
		4,590 °C (@ 1.73 g cm ⁻³) ^[20]	
p _{C-J} [kbar]	296	300 (@ 1.7 g cm ⁻³ , calcd.) ^[9]	
VoD [m s ⁻¹]	8,488 (@ TMD)	8,070 (calcd., R-P method) ^[12] 8,260 (@ 1.73 g cm ⁻³ , average value from lit.) ^[10]	7,000 (@ 1.5 g cm ⁻³ , iron pipe, 25 mm diameter, 5 mm wall thickness) ^[8]
		9,010 (@ 1.593 g cm ⁻³ ,	8,260 (@ 1.73 g cm ⁻³) ^[1, 2, 7]
		calcd., K-J) ^[16]	8,260 (@ 1.73 g cm ⁻³ , pressed, confined, 0.5 in charge diameter) ^[4, 5]
			8,260 (@ 1.7 g cm ⁻³) ^[10]
			8,294 (calcd. from 1,700 g bomb sand test) ^[10]
			5,600 (@ 0.9 g cm ⁻³ , Fe pipe, 25/35 mm diameter) ^[14]
			7,000 (@ 1.5 g cm ⁻³ , Fe pipe, 4 mm diameter) ^[14]
			8,260 (@ 1.75 g cm ⁻³ , Fe pipe, 12.8 mm diameter) ^[14, 15]

V ₀ [L kg ⁻¹]	755	69.4 l/100 g (@ 1.73 g cm ⁻³ , @ STP) ^[20]	755 ^[6]
		(@ 11, 5 g s , @ 5 ,	694 ^[7]
			723 ^[8]

Trauzl test [cm³, % TNT]		172% TNT $^{[2,4,8]}$, 150% PA, 102% NG $^{[8]}$, 172 $-$ 196% TNT $^{[10]}$, 560 cm 3 (H $_2$ O tamping) $^{[14]}$, 560 mL $^{[18]}$, 510 $^{[21]}$						
Sand test [g]	68.5 g (200 bomb, 0.4 g					g sand crus	shed (1,70	0 g
Ballistic mortar test	136–150%	TNT ^[10]						
Initiating efficiency	0.06 g LA m	inimum d	letonating	charge ^[4]				
SSGT [cm]	Nitromannit stored wet,		_				ceived and	
	Loading	Density	y (g/cm³)	% TMD		Sensitivit	y (DBG)	
	pressure (kpsi)	AVG.	S		AVG.	g	S _m	N
	1	0.957	0.0186	55.3	1.967	0.2514	0.1269	20
	2	1.113	0.0124	64.3	2.968	0.0426	0.0269	20
	4	1.293	0.0081	74.7	3.103	0.0531	0.0308	20
	8	1.458	0.0063	84.3	3.820	0.0401	0.0294	20
5 s explosion T[°C]	175 ^[2, 4]							
1 s ignition T [°C] Ignition T [°C] Explosion T [°C]	232 (US value) ^[4, 9] , 205 (Russian value) ^[9] 232 (dropping on heated Wood's alloy) ^[11] , $165^{[8]}$ 160–170 (0.1 s) ^[4] , 160 –170 (heating in test tube) ^[14] , 160 –170 (deflagration on heating larger samples) ^[15]							
100 °C heat test [% mass loss] International heat test@ 75 °C	Frothed in 48 $h^{[8]}$, exploded in 100 $h^{[8]}$ 0.4% mass loss in 48 $h^{[4,8]}$							
Thermal stability	Sample recr samples rec evolve) ^[14] , c stability car	ryst. less lec. after	often with few hours	stand 75 @ 75 °C (d	°C for onl covered g	y few hour lass vesse	s (brown fu l) ^[15] , low th	nermal

		Nonisothermal TG data, $\beta = {}^{\circ}C/\min$, $T_{ei} = \text{onset } T \text{ of TG peaks, } T_p = \text{peak } T$, $T_{oe} = \text{endset } T \text{ of TG peaks, } T_b = \text{critical } T \text{ for thermal dec.}^{[16]}$:					
	β (°C/min)	T _{ei} (°C)	T _p (°C)	T _{oe} (°C)	T _b (°C)		
	7.0	155.0	169.4	190.0	138.5		
	10.0	160.2	173.3	193.7			
	15.0	164.2	176.6	199.8			
	2ß.0	166.2	180.7	214.2			
		Stable enough to be used commercially but significantly less stable than nitroglycerol @ 75 °C ^[22] , critical T for thermal dec. = 113.2 °C ^[25]					
Vacuum stability test [cm³/h]	2.62 mL gas evolved after 1 h @ 100 °C $^{[8]}$, 3.69 mL gas evolved after 2 h @ 100 °C $^{[8]}$, 6.75 mL gas evolved after 3 h @ 100 °C $^{[8]}$						
Solubility [g/mL]	Immiscible with $H_2O^{[14]}$, dissolves readily in Et_2O , hot $EtOH^{[4, 14, 15, 17]}$, only slightly soluble in cold $EtOH^{[4, 15]}$, insoluble in water $^{[4, 15, 22]}$, slightly soluble in $Et_2O^{[4]}$, readily soluble in acetone, Et_2O and hot $EtOH^{[18]}$, weakly soluble in cold $EtOH^{[18]}$, insoluble in $H_2O^{[18]}$, soluble in $EtOH$ and $Et_2O^{[22]}$						
ΔH _{melt} [J/g]	–87.4 (heat absorption) ^[16]						
Hygroscopicity	0.17% @ 30 °C with 90% RH ^[4] , only slightly hygroscopic ^[2]						
ΔH _{dec.} [J/g]	631.2 (heat release) ^[16] , 285.4 kJ/mol ($\Delta H_{\rm d}$, heat of dec.) ^[25]						
65.5 °C KI test	6 min ^[4]	6 min ^[4]					

- [1] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [2] Ordnance Technical Intelligence Agency, *Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses*, Ordnance Liaison Group-Durham, Durham, North Carolina, **1960**.
- [3] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [4] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [5] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [6] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 213–214.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [9] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.

- [12] L. R. Rothstein, R. Petersen, *Propellants, Explosives, Pyrotechnics*, 1979, 4, 56–60.
- [13] L. M. Kostikova, E. A. Miroshnichenko, J. O. Inozemtcev, Y. N. Matyushin, Efficient Energies of Interaction of Functional Groups and Energies of Dissociation Bonds in Alkylnitrates, 32nd ICT Karlsruhe, Germany, 3rd-6th July 2001, pp. 104-1-104-9.
- [14] T. Urbański, Ch. 7 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [16] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [17] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [18] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [19] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [20] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [21] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [22] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [23] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [24] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [25] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.

Melaminium dinitrate

Name [German, acronym]: Melaminium dinitrate, [MDN]

Main (potential) use: Patented for possible use as high temperature stable

explosive^[1], possibly in wellbores^[1]

Structural Formula:

$$H_{2}$$
 H_{2} H_{2

	MDN	MDN					
Formula	C ₃ H ₈ N ₈ O ₆						
Molecular mass [g mol ⁻¹]	252.15						
Appearance at RT	Crystalline solid ^[1] , col	orless crystals ^[2, 3]					
IS [J]	>30 (BAM) ^[3, 4]						
FS [N]	>350 (BAM) ^[3, 4]						
N [%]	44.44						
Ω(CO ₂) [%]	-25.4						
T _{m.p.} [°C]							
T _{dec.} [°C]	330 (DSC @ 2 K/min) ^{[,}	4]					
$ ho$ [g cm $^{-3}$]	1.852 (X-ray @ 200 K)	[3, 4]					
Heat of formation	–149.8 kcal/mol (Δ <i>H</i> _f	(s)) ^[4]					
	Calcd.(EXPLO)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,977 ^[4]						
<i>T</i> _{ex} [K]	2,562 ^[4]						
p _{C-J} [kbar]	236 ^[4]	236 ^[4]					
VoD [m s ⁻¹]	7,723 (@ 1.852 g cm ⁻³) ^[4]	' '					
V ₀ [L kg ⁻¹]	803 ^[4]						

Thermal stability	Stable @ 137 °C for 48 h without detectable dec. $^{[1]}$, should be stable @ ~200 °C (wellbore temperature) for several hours $^{[1]}$, no dec. @ 137 °C (long-term stability measurements using RADEX) $^{[3]}$, stable for at least 48 h @ 140 °C (RADEX V5 oven, isothermal tempering) $^{[4]}$
Solubility	soluble in MeOH, water ^[4]

	Melaminium dinitrate ^[2]	Melaminium dinitrate ^[3]
Chemical formula	C ₃ H ₈ N ₈ O ₆	C ₃ H ₈ N ₈ O ₆
Molecular weight [g mol ⁻¹]	252.17	252.17
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)
a [Å]	7.7710(14)	7.758(5)
<i>b</i> [Å]	9.8924(18)	9.804(5)
c [Å]	12.186(2)	12.094(5)
α [°]	90	90
β [°]	101.198(9)	100.53(1)
γ [°]	90	90
<i>V</i> [Å ³]	919.0(3)	904.4(8)
Z	4	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.823	1.852
T [K]	100	200

- [1] P. Kneisel, Application of High Temperature Explosive to Downhole Use, US Patent, US 8,226,782 B2, July 24th **2012**.
- [2] L. Vella-Zarb, D. Braga, A. G. Orpen, U. Baisch, *CrystEngComm*, **2014**, *16*, 8147–8159.
- [3] R. Friedemann, M. Göbel, T. M. Klapötke, S. Scheutzow, *Synthesis and Characterization of the Oxygen-Rich Energetic Material Melaminium Dinitrate (MDN)*, NTREM 2007, Pardubice, Czech Republic, **2007**, pp. 876–882.
- [4] M. Göbel, Energetic Materials Containing the Trinitromethyl Pseudohalide Functionality, PhD Thesis, Ludwig-Maximilian University, Munich, 2009.

Mercury fulminate

Name [German, acronym]: Mercury fulminate [Quecksilberfulminat,

Knallquecksilber, MF]

Main (potential) use: Primary explosive^[17], detonators, component in

percussion priming mixtures (historically)^[12, 23], pyrotechnics (historically)^[12], blasting caps

(historically)^[12, 17], fuse detonators^[17, 23], detonators

either as pure compound or mixed with 10–20% $\mathrm{NO_3}^{-[20]}$

Structural formula:

Hg(CNO)₂

	Mercury fulminate
Formula	$C_2N_2O_2Hg$
Molecular mass [g mol ⁻¹]	284.6
Appearance	White–gray solid ^[1] , three forms known depending on the preparation route: (i) white, (ii) brown and (iii) gray ^[12] , MF crystallizes from H ₂ O as •¹/ ₂ H ₂ O crystals ^[13] , obtained anhydrous from EtOH ^[13] , heavy crystalline solid ^[17] , white if pure but usually has slight brown-yellow or gray color ^[17] , white (pure) or gray (manufactured) ^[19] , octahedral truncated crystals ^[19] , white solid (pure) ^[20] , grayish-yellow (lower purity) solid ^[20] , gray or brownish solid ^[23] , light yellowish-brown (crude, 97.10% purity) ^[29] , white (99.42% purity, crude MF treated with conc aq. NH ₃ and aq. acetic acid soln.) ^[24] , powder (crude MF soaked in water in mortar then carefully grind) ^[24] , white diamond-shape crystal (crude MF treated with conc. aq. NH ₃ and aq. acetic acid, left in dark to crystallize) ^[24]
IS [J]	5 cm (2 kg mass, B.M.) ^[1,8,20] , 35 cm (1 kg mass, B.M.) ^[1] , 2 in (2 kg mass, P.A.) ^[1,20] , 4 in (1 lb mass, P.A.) ^[1,8] , 0.62 (impact energy for 50% prob. of initiation) ^[7] , $H_{60\%} = 7.5$ cm (Wöhler app.) ^[4] , $1-2$ Nm ^[2] , 5 mm (20 mg sample, B.M.) ^[9] , 4 in (2.2 kg mass, P.A.) ^[9] , 5 cm (2 kg mass) ^[3] , 10.5 cm (500 g mass) ^[3] , range from ~0.2–2.0 ^[12] , minimum hot spot T for initiation by impact = $500-550$ °C (in presence of grit) ^[14] , $2-4$ cm (2 kg mass) ^[15,19] , 4.5 cm (2 kg mass) ^[13] , 127 mm (500 g mass required for detonation) ^[13] , $9-10$ in (8 oz weight required for explosion) ^[13] , F of $I=10^{[23]}$

Silver sand tester (28.5 g falling mass, white MF)^[24]:

Test T(°C)	Critical height (cm)	Test T (°C)	Critical height (cm)
50	15.4	-10	23.4
40	19.4	-21	23.6
30	20.5	-29	23.9
-2	23.4	-40	24.4

Silver sand tester (28.5 g falling mass, crude MF)^[24]:

Test T (°C)	Critical height (cm)	Test T (°C)	Critical height (cm)
50	15.7	-10	19.5
40	16.5	-21	19.9
30	17.5	-28	20.6
-1	18.6	-40	21.0

Silver sand tester (28.5 g falling mass, powder MF) $^{[24]}$:

Test T (°C)	Critical height (cm)	Test T (°C)	Critical height (cm)
50	15.4	-11	23.2
40	16.4	-17	23.2
30	17.2	-29	23.9
0	22.4	-40	24.6

Impact initiation delay, ^a for approx. 20 initiations^[27]:

Impact energy (J)	Average delay (µs)	Delay range (μs)ª
6.34	45	22-102
4.85	38	24-104
3.40	85	24-177
1.94	112	40-300
1.29	114	50-350
0.47	196	50-630
0.20	97	40-200

Ball drop apparatus, total impulse at 50% detonations = 2.6×10^4 cgs units, time of impact @ 50% detonations = 1.9×10^{-4} s, force = 1.37×10^8 dynes, impulsive pressure = $1.37 \times 10^8/0.88 \times 0.1 = 1.56 \times 10^9$ dyne cm^{-2[29]}:

Ball diameter (in)	Ball mass (g)	Height (h ₁) (cm)	Ε	Detonations (%)	mhg (ergs × 10 ⁻⁶)	Net kinetic energy (ergs × 10 ⁻⁶)	Impulse (cgs units × 10 ⁻⁴)
3/4	28.14	60	0.738	15.0	1.65	0.75	1.67
3/4	28.14	90	0.738	31.7	2.48	1.13	2.06
3/4	28.14	120	0.739	43.3	3.30	1.50	2.38
7/8	44.66	60	0.636	45.0	2.62	1.58	2.50
7/8	44.66	80	0.627	63.3	3.50	2.12	2.89
7/8	44.66	100	0.628	85.0	4.38	2.65	3.23

Fol = 10 (Rotter apparatus, cf.. RDX Fol = 80)^[30]

FS [N]

Explodes with steel shoe (friction pendulum test)^[1, 9], explodes with fiber shoe (friction pendulum test)^[1, 9], very sensitive^[23], 5.3 (friction force for 50% prob. of initiation)^[7], less sensitive than LA^[3], 6.48 (white MF)^[12], 7.47 (brown MF)^[12]

Sliding-block FS, with steel on steel surfaces, substantially the same results were obtained with a dead load of 40 lb instead of 6 lb on the tilting table $^{[27]}$:

Surface		Ignitions/trial at velocity strike (ft/s)							
	6	7	8	9	10	11	12	13	14
Steel on steel	0/10	1/10	5/10	8/10	8/10	7/10	9/10	10/10	10/10
Emery		0/10	1/10	4/10	4/10	7/10	9/10	10/10	10/10

Effect of liquids on sliding-block FS, sliding block tester with 6 lb load, no. of ignitions at 14 ft/s, Perminal is sodium salt of isopropyl naphthalene sulfonic acid^[27]:

Desensitizer	Ignitions/trial
Without desensitizer	10/10
Sprayed 20 s w/water or w/20% Glycerin soln.	2/10
Same, plus 0.1% Perminal	2/10
One drop EtOH	0/10

Emery friction: 50% fires @ 4.5 ft/s[30]

ESD [J]	0.025 ^[1] , 0.025 (electric spark sensitivity) ^[8] , 0.025–0.07 ^[9] , values range from 0.51–0.62 mJ to 25 mJ ^[12] , wet MF not exploded by spark, but is exploded by dry patches of MF ^[13] , metal/metal electrode: 150 µJ @ 5,000 pF ^[30] Highest electrostatic discharge energy @ 5,000 V for zero ignition probability ^[10] :				
	Highest energ		Type of ig	gnition	
	Unconfined	Confined	Unconfined	Confined	
	0.025	0.025	High order do	eflagration	
N [%]	9.8				
Ω(CO ₂) [%]	-16.86				
T _{m.p.} [°C]	Decomposition ^[1] , 160 (but explodes @ this temp.) ^[9] , detonates before melting ^[17]				
T _{dec.} [°C]	160 (but explodes @ this temp.) ^[9] , 190 (within 20 s, Wood's metal bath) ^[13]				
ρ [g cm ⁻³]	4.43 (crystal) ^[1, 9] , 4.42 (crystal) ^[2, 19] , 1.55–1.75 (apparent) ^[8] , 4.42–4.43 (crystal) ^[8, 12] , 4.467 (crystal) ^[12] , 1.35–1.55 (bulk ρ) ^[12] , sp. gr. = 4.45 ^[13] , ~1.75 (apparent ρ , gravimetric ρ) ^[13] , usually compressed in detonators to ~2.5 ^[13] , values up to 4.0 obtained by vigorous compression ^[13] , 4.45 ^[23] , 1.7 (bulk ρ) ^[23] , 3.5–4.0 (loaded ρ after being pressed into detonators) ^[23] ρ if subjected to different pressures ^[8] :				
	Pressure (psi) ρ (g cm ⁻³)				
	3,000	3.0 ^[1, 8]			
	5,000	3.20 ^[1]			
	10,000	3.60 ^[1,8]			
	12,000	3.70 ^[1]			
	15,000	3.82 ^[1]			
	20,000	4.0 ^[1, 8]			
	50,000	4.3 ^[8]			
	Dead-pressed if >25,000-30,00		25,000-30,00	00 psi ^[8, 19] , d	ead-pressed

	Density of MF as a function of loading pressure ^[9] :						
	Pressure (kpa)	Pressui	re (psi)	Density (g/o	:m³)]	
	20,685	3,000		3.0			
	68,450	10,000 3.6					
	137,900	20,000	1	4.0			
	344,750	50,000 4.3					
	ρ of MF as function of compacting pressure (specific surface = 754 cm ² /g) ^[12] :						
	Compacting ρ (g/cm ³) Compacting ρ (g/cm ³) pressure (MPa)						
	~0 ~1.25 ~50 ~3.55						
	~10 ~2.75 ~70				~3.7	7	
	~20	~3.1	~9	0	~3.8	3	
	~30	~3.3	~1	00	~3.9)	
	~40	~3.45					
Heat of formation	941 kJ/kg (enthalpy of form.) ^[2] , 226 cal/g ^[1,4,8] , 221–226 kg cal/mol ^[9] , –268 to –273 kJ/mol ^[12] , 1,543 kJ/kg [Hg (g)] ($\Delta_f U^o$, <i>Kast</i> , calorimetric bomb) ^[12] , 1,660 kJ/kg ($\Delta_f U^o$, <i>Wöhler</i> , calorimeter) ^[12] , 65.7 kcal/g mol ^[23] , 958 kJ/kg (energy of form.) ^[2]						
Heat of combustion	938 cal/g ^[1, 4, 8, 9]						
	Calcd. (EXPLO5 6.04)		Lit. valı	ues		Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,015		427 kc	al/kg ^[5]		427 c	al/g ^[1, 8, 9]
0.			1,540 l	kJ/kg [Hg (g)] ^{[1}	12]	1,735	5[2]
			1,803 l	kJ/kg [Hg (l)] ^[1]	2]	410 c	$al/g^{[4]}$
			410 ca	[13]		368 c	al/g ^[19]
<i>T</i> _{ex} [K]	4,394		4,400°	C (@ 4.0 g cm	⁻³) ^[5]	4,450) °C ^[19]
			3,530	PC ^[13]			

VoD [m s ⁻¹] $4,976$ $(@ 4.42 \text{ g cm}^{-3}, \Delta_f H^o = 268 \text{ kJ mol}^{-1})$ $6,910 (@ 4.0 \text{ g cm}^{-3})^{[5]}$ $6,000 (@ 4.41 \text{ g cm}^{-3})^{[5]}$ $4,250 (@ 3.0 \text{ g cm}^{-3}, pressed)^{[1, 9, 20]}$ $5,400 (@ 4.2 \text{ g cm}^{-3}, av. value from lit.)^{[4]}$ $5,000 (@ 4.0 \text{ g cm}^{-3})^{[9]}$ $5,400 (@ 4.2 \text{ g cm}^{-3}, av. value from lit.)^{[4]}$ $5,000 (@ 4.0 \text{ g cm}^{-3}, pressed)^{[1, 9, 20]}$ $5,400 (@ 4.42 \text{ g cm}^{-3})^{[9]}$ $5,400 (@ 4.42 \text{ g cm}^{-3})^{[9]}$ $5,400 (@ 4.42 \text{ g cm}^{-3})^{[4, 19]}$ $3,260 (av. value @ 1.69 \text{ g cm}^{-3}, 25 ^{\circ}\text{C}, powder, thin-walled Pb tubes, 12.5 mm diameter)^{[5]}$ $3,100 (av. value @ 1.69 \text{ g cm}^{-3}, -80 ^{\circ}\text{C}, powder, thin-walled Pb}$	p _{C-J} [kbar]	246	220 (@ 4.0 g cm ⁻³) ^[5]	
$ [m \ s^{-1}] \qquad (@ \ 4.42 \ g \ cm^{-3}, \\ \Delta_l H^o = 268 \ kJ \ mol^{-1}) \qquad 6,000 \ (@ \ 4.41 \ g \ cm^{-3})^{[5]} \qquad pressed)^{[1,\ 9,\ 20]} \qquad 4,250 \ (@ \ 3.0 \ g \ cm^{-3}, \\ pressed)^{[1,\ 20]} \qquad 4,250 \ (@ \ 3.0 \ g \ cm^{-3}, \\ pressed)^{[1,\ 20]} \qquad 4,200 \ (@ \ 3.0 \ g \ cm^{-3}, \\ pressed)^{[1,\ 9,\ 20]} \qquad 5,000 \ (@ \ 4.0 \ g \ cm^{-3}, \\ pressed)^{[1,\ 9,\ 20]} \qquad 5,000 \ (@ \ 4.0 \ g \ cm^{-3}, \\ pressed)^{[1,\ 9,\ 20]} \qquad 5,400 \ (@ \ 4.42 \ g \ cm^{-3})^{[4,\ 19]} \qquad 3,260 \ (av.\ value \ @ \ 1.69 \ g \ cm^{-3}, \\ 25 \ ^{\circ}\text{C}, \ powder, \ thin-walled Pb} \qquad 3,100 \ (av.\ value \ @ \ 1.69 \ g \ cm^{-3}, \\ -80 \ ^{\circ}\text{C}, \ powder, \ thin-walled Pb} $			264 (@ 4.41 g cm ⁻³) ^[5]	
tubes, 12.5 mm diameter) ^[5] 3,160 (av. value @ 1.69 g cm ⁻³ , -180 °C, powder, thin-walled Pb tubes, 12.5 mm diameter) ^[5] Powder, thin-walled Pb tubes, 12.5 mm diameter, @ 1.69 g cm ^{-3[5]} : $T = 25 °C $		(@ 4.42 g cm ⁻³ ,	6,910 (@ 4.0 g cm ⁻³) ^[5] 6,000 (@ 4.41 g cm ⁻³) ^[5] 5,000 (@ 4.0 g cm ⁻³) ^[5] 5,400 (@ 4.2 g cm ⁻³ ,	pressed) ^[1, 9, 20] 4,250 (@ 3.0 g cm ⁻³ , pressed) ^[1, 20] 4,200 (@ 3.0 g cm ⁻³) ^[9] 5,000 (@ 4.0 g cm ⁻³ , pressed) ^[1, 9, 20] 5,400 (@ 4.42 g cm ⁻³) ^[4, 19] 3,260 (av. value @ 1.69 g cm ⁻³ , 25 °C, powder, thin-walled Pb tubes, 12.5 mm diameter) ^[5] 3,100 (av. value @ 1.69 g cm ⁻³ , -80 °C, powder, thin-walled Pb tubes, 12.5 mm diameter) ^[5] 3,160 (av. value @ 1.69 g cm ⁻³ , -180 °C, powder, thin-walled Pb tubes, 12.5 mm diameter) ^[5] Powder, thin-walled Pb tubes, 12.5 mm diameter, @ 1.69 g cm ⁻³ [5]: T= 25 °C T= -80 °C T-180 °C 3,320 3,060 3,150
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				3,260 3,100 3,160 (av.) (av.) 3,160 (av.) 5,669 (calcd. value based on sand
3,260 3,100 3,160 (av.) 5,669 (calcd. value based on sand test) ^[4]				

			~4,000 (when loaded in commercial detonators and compressed under 3,000 lb/in², explodes from a spark) ^[13] 4,490 (@ 3.3 g cm ⁻³ , detonator capsules, 8.7 mm internal diameter) ^[13]
			16,500 ft/s (@ 4.00 g/mL) ^[17]
V_0 [L kg ⁻¹]	215	315 mL/g ^[9]	243 g cc ^[1]
		311 dm³ kg ^{-1[12]}	315 ^[3]
		314 (specific vol. = vol. of gaseous products @ 0 °C	314 ^[4]
		and 750 mm Hg) ^[13]	315 (@ 0 °C and 760 mm Hg) ^[19]

Critical pressure of explosion initiation [GPa]	$P_{\text{ult}} = 0.20 \pm 0.01^{[16]}, p_{\text{cr}} = 0.20 \pm 0.01 \text{ GPa}^{[25]}$					
Trauzl test [cm³, % TNT]	51–54% TNT ^[4] , 25.6 cc (PETN ^[13] , 8.1 cc (1 g MF ir reinforcing cap @ 3,400	${ m TNT}^{[8,9]}$, $110-150~{ m cc}$ (standard 10) ($2~{ m g~MF})^{[3]}$, $51\%~{ m TNT}^{[12]}$, $37-50\%~{ m Tn}$ in no. $8~{ m det}$ detonator capsule, compressib/in², fired in small Trauzl block ping) $^{[13]}$, $8.1~{ m cc}$ (small Trauzl block	NT ^[12] , 23% essed under) ^[13] , 150 cm ³			
Sand test [g]	1,700 g bomb) ^[4] , 17.9–2 for TNT, that is, 27.3–59' (200 g bomb) ^[20] No. 2 sand test bomb (No	19% TNT ^[4] , 22.5 g sand crushed (0.23.4 g sand crushed (0.4 g MF, 20 23.4 g sand crushed (0.4 g MF, 20 23.4 g sand crushed (0.4 g MF, 20 24.7 m TNT ^[12] , 49% 25.8 m TNT ^[12] , 49% 26.8 detonator capsule, pressed und pulverized finer than 30 mesh)	00 g bomb, cf. 48 g TNT ^[12] , 23.4 g nder reinforcing			
	Weight of charge (g)	Weight of sand pulverized (g)				
	0.10	3.1				
	0.20	6.5				
	0.40	17.0				
	0.60	27.5				
	0.80	38.0				
	1.00	48.4				

Sand test bomb (weight of sand pulverized finer than 30 mesh (g))[13]:

Weight of		Weight of sand pulv	erized (g)
charge (g)	MF	90:10 (fulminate:chlorate)	80:20 (fulminate:chlorate)
20,000	56.94	58.57	59.68
15,000	47.71	51.11	52.54
10,000	38.33	40.13	41.42
7,500	29.65	32.30	34.28
5,000	22.45	23.07	23.22
4,000	17.91	17.90	18.13
3,500	14.16	15.13	15.94
3,250	12.20	12.90	13.13
3,000	10.01	12.71	12.61
2,500	8.84	9.57	11.94
2,250	6.93	8.71	10.29
2,000	5.48	8.33	9.44

Sand crushing power (MF loaded into No. 6 detonator capsule, compressed @ 1000 lb/in^2)[13]:

Weight of charge (g)	Weight of sand crushed (g)
0.05	0.00
0.10	0.00
0.20	4.2
0.30	8.9
0.50	16.0
0.75	26.1
1.00	37.2

Sand test data from *Taylor* and *Rinkenbach*^[13]:

Weight of MF (g)	Weight of sand crushed (g)
0.200	3.8
0.400	12.2
0.600	20.1
0.800	28.2
1.000	36.8

18.0 g (amount of sand crushed finer than 30 mesh, by base charge of $MF)^{[18]}$

Initiating efficiency

Initiating efficiency: g required to give complete initiation of [1]

HE	Fulminate (g)
TNT	0.25
Tetryl	0.20
RDX	0.19
PETN	0.17

Max. reached @ $\rho = 3.2 \text{ g cm}^{-3[12]}$, dead-pressed @ $\rho = 3.6 \text{ g cm}^{-3[12]}$,

 $0.23 \text{ g}, 0.24 \text{ g}, 0.25 \text{ g}, 0.26 \text{ g}, 0.35 \text{ g}, 0.36 \text{ g}, 0.37 \text{ g for TNT}^{[12]}$

Influence of compacting pressure and specific surface on initiation efficiency (acceptor = 0.35 g TNT compressed by 76.5 MPa, reinforcing cap) $^{[12]}$:

Specific surface (cm ² /g)	Min. amount (g)	Compacting pressure (MPa)	Specific surface (cm²/g)	Min. amount (g)	Compacting pressure (MPa)
5,570	~0.48	~2	8,990	~0.5	~46
	~0.43	~15	754	~0.18	~1
	~0.5	~17		-	~14
8,990	~0.29	~1		-	~29
	~0.29	~14		-	~44
	~0.31	~29		_	~58
	~0.42	~44		_	~59

Influence of ρ and specific surface on initiation efficiency (acceptor = 0.35 g TNT compressed by 76.5 MPa, reinforcing cap)^[12]:

Specific surface (cm²/g)	ρ (g/cm ³)	Min. amount (g)	Specific surface (cm²/g)	ρ (g/cm ³)	Min. amount (g)
5,570	~2.2	~0.49	2,970	~3.75	~0.54
	~3.3	~0.47	754	~1.7	~0.19
	~3.4	~0.59		~2.8	~0.15
2,970	~2	~0.3		~3.4	~0.2
	~3.2	~0.295		~3.6	~0.305
	~3.5	~0.3		~3.7	~0.41
	~3.6	~0.41		~3.8	~0.48

Influence of reinforcing material (in brackets) on min. amount of MF required to detonate PETN with 50% probability^[12]: 0.45 g (none), 0.24 g (Al), 0.18 g (Cu), 0.145 g (brass), 0.125 g (Fe)^[12]

Minimum initiating charge (g) of MF for HEs (0.5 g HE in no. 8 detonator shell, primary added on top, both compressed under reinforcing capsule @ 3,400 lb/in 2) $^{[13]}$: 0.150 g for pentryl $^{[13]}$, 0.225 g for PA $^{[13]}$, 0.240 g for TNT $^{[13]}$, 0.165 g for tetryl $^{[13]}$, 0.25 g for trinitroresorcinol $^{[13]}$, 0.165 g for trinitrobenzaldehyde $^{[13]}$, 0.175 g for tetranitroaniline $^{[13]}$, 0.165 g for hexanitrodiphenylamine $^{[13]}$, <0.4 g for pentryl if there is no reinforcing cap $^{[13]}$, 0.525 g for PA (Clark) $^{[13]}$

Minimum initiating charge in g of MF for HEs (0.4 g HE in detonator capsule, pressing down, initiator added, covered with short reinforcing cap, pressing @ 2,000 atm/in 2) $^{[13]}$: 0.26 g for TNT $^{[13]}$, 0.21 g for PA $^{[13]}$, 0.24 g for tetryl $^{[13]}$, 0.20 g for tetranitroaniline $^{[13]}$, 0.85 g for ammonium picrate $^{[13]}$, 0.30 g for guanidine picrate $^{[13]}$, 0.20 g for trinitroresorcinol $^{[13]}$

0.29 g for tetry[$^{[13]}$, 0.30 g for PA[$^{[13]}$, 0.36 g for TNT[$^{[13]}$, 0.37 g for trinitroaniso[$^{[13]}$, 0.40 g for trinitroxylene[$^{[13]}$

Minimum charges of MF required to initiate explosion of PETN (0.4 g PETN tamped down or pressed loosely into Cu capsules, 6.2 mm inside diameter, MF pressed loosely on top): 0.30 g gray MF^[13], 0.30 g white MF^[13], 0.330 g (gray MF, PETN compressed @ 2,000 kg/cm²)^[13], 0.340 g (white MF, PETN compressed @ 2,000 kg/cm²)^[13], dead-pressed (white MF, PETN compressed @ 2,000 kg/cm², 500 kg/cm² pressure on initiator)^[13], dead-pressed (gray MF, PETN compressed @ 2,000 kg/cm², 500 kg/cm², 500 kg/cm² pressure on initiator)^[13]

	0.24 g MF causes detonation of 0.4 g TNT in no. 6 detonator capsule when charge was confined by reinforcing cap ^[13] ; 0.37 g MF when it was not confined ^[13]						
	No. of g of MF required for complete detonation of TNT: 0.25–0.36 g ^[9] , 0.20–0.29 g for tetryl ^[9] , 0.19 g for RDX ^[9] , 0.17 g for PETN ^[9] , 0.85 g for Explosive D ^[9]						
Dead-pressing	Dead-pres	ssed @ ρ = 3.6 g	cm ^{-3[12]} , on pressir	ng @ 25,000-30,000 lb/in ^{2[13]}			
5 s explosion T[°C] 1 s explosion T[°C]	215 (micro	•	90 ^[12, 13] , ~ 200 ^[12] , 7 ressed into pellets	205 ^[12] , 215 ^[12] , 5 of 0.2 g) ^[13] , 210 ^[20]			
0.1 s explosion T[°C]	263 (no ca	ap used) ^[1, 8]					
Ignition T[°C] 5 s ignition T[°C]	260 (dropped on preheated Wood's alloy) ^[11] , 170 ^[14] , 205 (powder MF) ^[24] , 208 (crude MF) ^[24] , 221 (white MF) ^[24] , 210 ^[30] 210 (US value, explodes) ^[5] , 175–210 (Russian value, explodes) ^[5] , 175–180 ^[5] explosion T @ various times of exposure (3 mg samples, detonation) ^[8] :						
Explosion T[°C]	T(°C)	Exposure time					
	304	0.108					
	238	1.03	7				
	200	7.55	7				
	176	105					
	170	No action					
Ignition T[°C]	Explosion on heating @ ~ $100 {}^{\circ}C^{[12]}$, ~ $105-110 {}^{\circ}C^{[12]}$ depends on the purity of MF ^[12] , 190 (Wood's meal bath, explosion within 20 s) ^[13] , $210^{[19]}$, $180^{[19]}$, $199 (10 s)^{[1]}$, $194 (15 s)^{[1]}$, $190 (20 s)^{[1]}$ Dependency of ignition temp. on heating ^[12] :						
	Heating	rate (°C/min)	Ignition T(°C)]			
	5		160-165				
	5		160-170	1			
	5		180-210]			
	20		166-175				
		Data from reference ^[26] : 208 (5 s, extrapolated) ^[26] , 437 (10^{-3} s, extrapolated) ^[26] , 683 (10^{-5} s, extrapolated) ^[26]					
Detonating T [°C]		70 (ignites with prolonged heati		:/min) ^[23] , may detonate @			

	Depende	dence of induction period on dilution, weight of fulminate = $0.02 g^{[26]}$:				
	T(°C)	induction period	I, pure fulminate (s)			
	193	5.7				
	183	14.4				
Flame sensitivity	1,000 M	Pa compacting pressure, 1 mm orifice diameter ^[12] :				
	Probab	ility of initiation	Time in hydrogen flame (ms)			
	0		~2.5			
	30		~3.2			
	60		~3.8			
	70		~4.5			
	0 MPa co	ompacting pressure, 3 mm orifice diameter ^[12] :				
	Probab	ility of initiation	Time in hydrogen flame (ms)			
	0		~1.5			
	30		~1.5			
	60		~1.75			
	100		~1.7			
100 °C heat test [% mass loss]	Explodes	s in 16 h ^[1, 8]				
75 °C int. heat loss test	0.18% ld	oss in 48 h ^[1]				
Vacuum stability test [cm³/h]	@ 100 °	C: explodes ^[1,8]				

Thermal stability

Effect of storage @ 50 °C (dry) on the purity (%) of MF^[1]:

Months		Recrysta	llized lots	5	Uncrysta	llized lots
storage	979	980	981	982	505.6-7/31	505.3-5/11
0	99.75	99.77	99.79	99.79	98.86	
4						98.7
6	99.38	99.45	99.54	99.47	95.95	98.7
8						97.4
9					94.5	
10						94.9
12	98.74	99.56	97.49	99.06	90.65	
13	98.26			98.79		
14	98.22					
15	97.52	99.30	99.30	98.19	83.76	
16	97.00		99.01	97.75		
17	95.70	98.66		96.69		
18	94.81	98.58	98.46	95.90	79.99	
23					74.52	
26					63.80	

Storage of 99.75% purity MF @ 50 °C for 24 months shows deterioration to $92\%^{[8]}$, ~7% mass loss within 45 days @ 75 °C^[12], slow dec. @ 60 °C within 1 month^[12], storage of 99.75% purity MF for 8 months @ 50 °C results in deterioration to 95% purity and after storage for 11 months deteriorates to 92% purity^[19]

Time required for MF to lose ignition ability $^{[12]}$: 3 years @ 35 °C, 9–10 months @ 50 °C, 10 days @ 80 °C $^{[12]}$, explodes in relatively short time @ T>85 °C $^{[9]}$

Effect of storage @ 50 °C on purity of recryst. MF^[12]:

Storage time (months)	Purity (%)
0	100
6	99
12	99
15	99
18	98

Effect of storage @ 50 °C on purity of nonrecryst. MF^[12]:

Storage time (months)	Purity (%)
0	100
6	98
8	~98
12	~90
15	~85
18	80
23	~75
26	~65

Storage under water: purity decreases from 99.6–98.3% within 5 years [12], 6% decrease in brisance after 5 years [12]

Storage under sea water: 10% decrease in brisance after 2 years storage^[12], 85% decrease in brisance after 3 years storage^[12]

Completely inert after ~3 years @ 35 $^{\circ}$ C^[13], completely inert after ~10 months @ 50 $^{\circ}$ C^[13]

Deterioration of MF: approx. times of storage required to cause deterioration to 92% and $95\%^{[9]}$:

Storage T(°C)	Time required to reduce purity to					
	95%			92%		
	Days	Months	Years	Days	Months	Years
80	0.5	-	-	1	-	-
50	_	8	-	-	11	-
30-35	_	-	1.7	-	-	5.8
20	_	-	7	-	_	9
10	-	-	8	-	-	10

MF will explode on storage @ $T \sim 100$ °C for ~ 16 h^[20], prolonged exposure to tropical temperatures results in slow deterioration and loss in detonation ability^[20], MF becomes inert on storage @ 35 °C for 3 years^[20], MF becomes inert on storage @ 50 °C for 10 months^[20], becomes completely insensitive after 9 days @ 80 °C (dry heating)^[23], becomes insensitive under tropical hot–wet conditions @ 50 °C after 3–4 months^[23]

Burn rate [mm/s]	0.05 (0.5 mm thic MF only burns ^[12]	k film) ^[12] , 8.5 ((2.75 mm thick film) ^[12] ,	@ low pressure		
	linear and mass rates of burning @ 1 atm ^[22] : $u = 1.55$ cm/s ^[22] , $m = 5.9$ g cm ⁻² s ^{-1[22]} burns without explosion if laid as a train in the open ^[23]					
Solubility [g/mL]	Solubility in 100 g H ₂ 0: 0.07 g @ 12 °C ^[1] , 0.18 g @ 49 °C ^[1] , 0.71 g/L in H ₂ O @ 12 °C ^[9] , 1.74 g/L in H ₂ O @ 49 °C ^[9] , 7.7 g/L H ₂ O @ 100 °C ^[9] , soluble in NH ₃ , pyridine, ethanolamine ^[12] , aq. NH ₃ , aq. KCN, pyridine ^[9, 19] , slightly soluble in EtOH, acetone ^[12] , very slightly soluble in hot Et ₂ O ^[12] , insoluble in CHCl ₃ , glycol, benzene ^[12] , 40 g/100 g diethanolamine @ 30 °C ^[12] , 28 g/100 g triethanolamine @ 30 °C ^[12]					
	T(°C) Solubil	C) Solubility (g/100 mL)				
	12 0.071					
	49 0.174					
	100 0.77					
	Soluble in EtOH, a soln. ^[17]	mmonium hyd	roxide (aq. NH₃) and aq	ı. sodium thiosulfate		
Hygroscopicity		-	t hygroscopic ^[12, 17] , how cally nonhygroscopic ^[20]			
Photosensitivity	Forms small amou UV light ^[12]	ints of Hg on ex	xposure to light, or elev	rated 7 ^[1] , dec. under		
	Photochemical se	nsitization of n	nercury fulminate ^[26] :			
	T (°C) Normal period (I	duction period of xposed initiator (s)			
	197 7.0	6.	.3			
	181 22.2	19	9.7			
Compatibility	Reacts rapidly with aluminum and magnesium when dry, slowly with copper and zinc, brass and bronze ^[1, 9, 17] (reaction with metals is faster when moist) iron and steel are not affected ^[1, 9, 17] , wet MF reacts immediately with Al and Mg ^[1] , wet MF reacts rapidly with Cu, Zn, brass and bronze ^[1] , wet MF does not affect iron or steel ^[1, 9] , since MF forms small amounts of Hg on exposure to light or elevated temperature, it readily forms amalgams with Cu, brass and bronze meaning these metals have to be protectively coated if used with MF ^[1, 9] , MF undergoes dec. in presence of aqueous solns. of carbonates, chlorides and others ^[1] , MF detonates if steamed ^[17] , reacts with conc. sulfuric acid ^[19] , pure MF does not react with metals ^[19] , standard grade MF contains ≤1% Hg which can cause slight erosion of Cu and its alloys ^[19] ,					

	reacts with co Cu, brass and bronze but do with metals ^{[2}	d bro oes n	nze ^[20] ,	wet MF	reacts ir	nmediately	with Cu, Zn,	brass and
Stab sensitivity	Values from ^{[1}	.]						
	Density (g/	Density (g/cc) Firing point (in-oz)						
		Ì	0%	50%	100%	7		
	3.91		3.2	4.3	5.5			
	4.26		1.6	2.6	5.5			
	4.32		1.6	2.6	4.0			
	4.50		1.6	2.5	4.0			
Specific heat [cal/g/°C]	1.1 ^[1]							
Thermal conductivity [cal/s/cm/°C]	1 × 10 ^{-4[1]}							
Laser sensitivity	MF can be su	ccess	sfully in	itiated	using a	UV excimer l	aser ^[21] :	
	Pressing force (kN)	Det typ	onator e	Nom wave (nm)	elength	Function time (µs)	Source	Pulse duration (µs.)
	<100	Cor	ıfined	249		3,500	Excimer laser	15
Radiation sensitivity	MF irradiated at ambient <i>T</i> using 0.41 MeV ¹⁹⁸ ₇₉ Au γ-rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose ^[28] : Gamma energy absorbed, 10 ⁷ R Gas evolved (mL/g) @ STP 1 0.2 2 0.8 2.5 2 3 > 4							

Minimum ignition energies of MF by light flashes, ^a = small quantity placed in
a heated aluminum block and exploded within 30 s ^[28] :

Compound	Color	1	Electrical energy of flash, half-life 0.8 ms (J)	Light intensity (J/cm²)
MF	light gray	190	200	1.65

Electric bridge wire

Bridge current and ignition time (I = ignition current (ampere), s = ignition time (1/1000 s), l^2s = (ignition current)² × (ignition time), crude MF)^[24]:

1	2.0	1.6	1.3	1.0	0.8
S	6.3	8.6	11.6	20.1	37.8
l ² s	25.2	22.0	19.6	20.1	23.8

Bridge current and ignition time (I = ignition current (ampere), s = ignition time (1/1000 s), $l^2s = (ignition current)^2 \times (ignition time)$, powder MF)^[24]:

I	2.0	1.6	1.3	1.0	0.8
S	2.8	4.0	6.1	10.5	18.7
l ² s	11.2	10.2	10.3	10.5	12.0

Bridge current and ignition time (I = ignition current (ampere), s = ignition time (1/1000 s), $l^2s = (ignition current)^2 \times (ignition time)$, white MF)^[24]:

1	2.0	1.6	1.3	1.0	0.8
S	2.9	3.7	5.2	7.2	15.4
l ² s	11.6	9.8	8.8	7.2	9.9

	Mercury fulminate ^[6]	Mercury fulminate ^[24]
Chemical formula	C ₂ N ₂ O ₂ Hg	C ₂ N ₂ O ₂ Hg
Molecular weight [g mol ⁻¹]	284.63	284.63
Crystal system	Orthorhombic	
Space group	<i>C m c a</i> (no. 64)	
a [Å]	5.3549(2)	7.71

<i>b</i> [Å]	10.4585(5)	5.48
c [Å]	7.5579(4)	10.43
α [°]	90	
β [°]	90	
γ [°]	90	
<i>V</i> [ų]	423.27(3)	
Z	4	4
$ ho_{ m calc}$ [g cm $^{-3}$]	4.467	
<i>T</i> [K]	100	

^{*} Yellow-white silky crystals: dissolving MF in boiling $m H_2O$ followed by decanting and cooling liquid $^{[12]}$

White crystals: recrystallization from aqueous NH₃ without neutralization^[12]

Pyramidal crystals: recrystallization from NH₃/H₂O/EtOH^[12]

Lustrous flakes: pouring a pyridine MF soln. into Et₂O^[12]

Large thin white rhomboids: brown or white MF dissolved in hot pyridine then left to cool^[12]

Crystallization of MF from water produces a hydrate: $Hg(CNO)_2 \cdot {}^{1}/{}_2 H_2O^{[9]}$, anhydrous MF is recrystallized form EtOH (usually truncated octahedral crystals)^[8]

- [1] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 215–216.
- [3] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [6] W. Beck, J. Evers, M. Göbel, G. Oehlinger, T. M. Klapötke, ZAAC, 2007, 633, 1417–1422.
- [7] M. Künzel, R. Matyáš, O. Vodochodský, J. Pachmáň, Centr. Eur. J. Energ. Mater., 2017, 14, 418-429.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [9] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [12] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2013.

- [13] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [14] P. A. Davies, J. Hazard. Mater., 1994, 28, 75-88.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [16] V. A. Teselkin, Peculiarities of Mechanical Explosion Initiation for Some Solid Explosives, ICT 2009, Karlsruhe, Germany, pp. 102-1–102-6.
- [17] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [18] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [19] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [20] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics,
 Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North
 Carolina, USA, 13th May 1960.
- [21] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, *Light-Initiated Detonation Systems*, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [22] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [23] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [24] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [25] V. A. Teselkin, Combustion, Explosion, Shock Waves, 2009, 45, 632–633.
- [26] J. L. Copp, S. E. Napier, T. Nash, W. J. Powell, H. Skelly, A. R. Ubbelohde, P. Woodward, *Trans. Roy. Soc. (London)*, **1948**, A241.
- [27] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [28] L. Avrami, J. Haberman, *Sensitivity to Heat and Nuclear Radiation*, Ch. 6 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [29] N. R. S. Hollies, N. R. Legge, Can. J. Chem., 1953, 31, 746-754.
- [30] P. H. Collins, K. J. Holloway, *Propellants and Explosives*, **1978**, *3*, 159–162.

Mercury nitrotetrazolate

Name [German, acronym]: Mercuric nitrotetrazole, [Quecksilbernitrotetrazolat]
Main (potential) use: Investigated as possible component of detonant/stab

sensitive composition

$$Hg^{2+} \begin{array}{c} \begin{array}{c} NO_2 \\ \\ N \end{array} \begin{array}{c} \\ N \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\$$

	Mercury nitrotetrazolat	Mercury nitrotetrazolate				
Formula	C ₂ HgN ₁₀ O ₄	C ₂ HgN ₁₀ O ₄				
Molecular mass [g mol ⁻¹]	428.68					
Appearance at RT	Heavy, granular crystal	powder ^[2]				
IS [J]	Ball and disc: 6 cm, 3/	50 fires ^[1] ; 5 cm, 0/50 fire	S ^[1]			
FS [N]	Emery friction (A polym 3 ft/s, 0/10 fires ^[1]	orph): 5 ft/s, 4/10 fires ^[1]	; 4 ft/s, 2/10 fires ^[1] ;			
ESD [J]	Minimum electrostatic (partials) ^[1]	Minimum electrostatic energy to fire metal/metal electrodes = 270 μ J (partials) ^[1]				
N [%]	32.7	32.7				
Ω(CO ₂) [%]						
T _{m.p.} [°C]						
T _{dec.} [°C]						
$ ho$ [g cm $^{-3}$]						
Heat of formation						
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						

V ₀ [L kg ⁻¹]					
Initiating efficiency	0.006 g for tetryl ^[2]				
5 s explosion T [°C] Ignition T [°C]	190 (@ 5 °C/min) ^[1] , ~215 (detonates) ^[2]				
Vacuum stability test [cm³/h]	0.06% mass loss @ 100 °C, 0.2 mm Hg vacuum for 1 week (A polymorph) $^{[1]}$				
Solubility [g/mL]	Difficultly soluble in water but more soluble in water than the Ag salt ^[2]				
Compatibility	Less compatible with sulfur-containing rubbers and Al than the corresponding silver salt is ^[1] , not attacked by nitric acid ^[2]				
Stab sensitivity	Insensitive ^[1]				
ERDET test [wt. found to detonate RDX in an ERDET]	30 mg ^[1]				
Dead pressing	Performance improves over 77 MN/m ^{2[1]}				

Only one type of mercury nitrotetrazolate was found using X-ray powder photography patterns: $A^{[1]}$

- [1] J. M. Jenkins, J. R. White, *The Salts of 5-Substituted Tetrazoles: Part 3: Further Investigations into the Preparation and Properties of Silver 5-Nitrotetrazole and Mercuric 5-Nitrotetrazole*, Technical Report No. 172, Explosives Research and Development Establishment, Waltham Abbey, Essex, UK, February **1974**.
- [2] E. von Herz, C-Nitrotetrazole Compounds, US Patent 2,066,954, January 5th 1937.

Methylene dinitramine

Name [German, acronym]: Methylene dinitramine, *N*,*N*-dinitromethanediamine,

[MEDINA]

Main (potential) use: unknown

	MEDINA				
Formula	CH ₄ N ₄ O ₄				
Molecular mass [g mol ⁻¹]	136.17				
Appearance at RT	10-11 in (P.A.) ^[1] , 14-2	1 cm (B.M.) ^[1]			
IS [J]					
FS [N]					
ESD [J]					
N [%]	41.18				
Ω(CO ₂) [%]	0.0				
T _{m,p.} [°C]	105-106 ^[1] , 104 ^[1] , 103.5-104.5 ^[1]				
T _{phase transition} [°C]	Phase I from soln. [1], phase II (unstable from melt)[1]				
T _{dec.} [°C]					
$ ho$ [g cm $^{-3}$]					
Heat of formation	-13.84 kcal/mol ^[1]				
Heat of combustion	-230.2 kcal/mol ^[1] , -21	16.35 kcal/mol (@ 25 °C) [[]	1]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					
p _{C-J} [kbar]					

VoD [m s ⁻¹]		8,500 (@ 1.68 g cm ⁻³) ^[2]			
		8,700 (no <i>p</i> given) ^[1]			
V ₀ [L kg ⁻¹]					
Trauzl test	681–727 cc (10 g samp	le) ^[1] , 188–210% TNT ^[2] , 5	72 ^[3]		
Sand test [sand crushed g]	71.9 (RDX = $58-61 \text{ g})^{[1]}$, 127–131% TNT ^[2]				
Ballistic mortar test (% power TNT)	198[1], 154–158[2]				
5 s explosion T [°C]	300-330 ^[1]				
100 °C heat test [% mass loss]	1.13–3.89% wt. loss after 72 h @ 80 °C ^[1] 2.77–6.54% wt. loss after 72 h @ 85 °C ^[1] 0.66% wt. loss after 4 h @ 75 °C ^[1]				
International heat test	1.47-2.24% wt. loss after 72 h @ 75 °C ^[1]				
Vacuum stability test [cm³/h]	1.92 mg/g gas evolved after 40 h (<i>T</i> not specified) ^[1] 0.89-0.98 mL/g/40 h (<i>T</i> not specified) ^[1]				

^[1] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, *vol. 8*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1978**.

^[2] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.

^[3] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, *ZAAC*, **2015**, *641*, 2446–2451.

Methyl ethyl ketone peroxide

Name [German, acronym]: 2,2'-Peroxydi(butane-2-peroxol), 2-butanone peroxide,

ethyl methyl ketone peroxide, 2-[(2-hydroperoxybutan-

2-yl)peroxy]butane-2-peroxol, 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane [MEKP]*

Main (potential) use: HME

	МЕКР						
Formula	C ₈ H ₁₈ O ₆						
Molecular mass [g mol ⁻¹]	210.23						
Appearance at RT	Liquid (9% active oxyge	en (AO)) ^[1] , liquid (11% AO) ^[1] ,				
IS [J]	35 mJ ^[3]						
N [%]	0.0						
Ω(CO ₂) [%]	-144.60						
T _{m.p.} [°C]	110 ^[3]	110 ^[3]					
T _{dec.} [°C]							
$ ho$ [g cm $^{-3}$]	1.17 ^[3]						
Heat of formation							
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]							
T _{ex} [K]							
p _{C-J} [kbar]							
VoD [m s ⁻¹]							
V ₀ [L kg ⁻¹]							

Ballistic mortar test	MEKP (9% A) MEKP (11% A						
Koenen and Ide BAM test	Values from [[]	1]					
	Parameter			MEKP (9% A	AO)	MEKP	(11% AO)
	Orifice diar	meter,		1.0		6.0	
	<i>t</i> ₁ (s)			18.0		14.0	
	t ₂ (s)			10.0		7.0	
	Time functi $\sqrt{t1/d} + t2/t$			14.2		2.68	
	Remarks			Steel case l into 4 piece		l	case broke pieces
Heavy confinement	Values from [[]	1]:					
cap tests	Test sampl	11 ' 1		age Rel. height (% NM)			Rel. height (% TNT)
	MEKP (9% AO)		6.1		25.0		26.2
	MEKP (11% AO)		7.8 32.7		32.7		34.2
Card gap test	Values from [[]	1]					
	Test				Results		
	sample	Gap (cm)	value	Velocity (m/s)	Acceptor plate dan		Nature of reaction
	MEKP (9% AO)	0		4,320, 1,420 [‡]	5.0 cm le of accept at top, no plate dan	or o	Only small part of sample reacted, incomplete reaction
	MEKP (11% AO)	0		1,973, 1,019 [‡]	10.0 cm l of accept at top, no damage	or	Only small part of sample reacted, incomplete reaction

DDT test	Values from ^[1] :					
	Test sample	No. of fragments	Remarks			
	MEKP (9% AO)	0	Pipe slightly bulged at one end, 1 cap ruptured into 2 pieces			
	MEKP (11% AO)	0	Pipe split open, both caps remain undamaged			
Bubble energies	MEKP (9% AO) = 3.7% TNT ^[1] , MEKP (11% AO) = 6.5% TNT ^[1]					
5 s explosion T [°C] Explosion T [°C]	123 (MEKP (9% AO), pipe damage: thermocouple plugs blew out, holes enlarged and pipe distorted) ^[1] , 93 (MEKP (11% AO), sample found to be incompatible with the configuration, pipe damage: 1 cap off, pipe splitopened up to 22 cm) ^[1]					
Deflagration properties	5 g sample, $Pb_3O_4(70 \text{ wt.\%}) - Si (30 \text{ wt.\%})$ igniter, firing with a nichrome wire or fusehead, brass rupture disk of 0.15 mm thickness ^[2] : MEKP purity = 56.6 wt.%, 10.30% AO, liquid, amount of igniter giving the apparent max. rate of pressure rise = 1 g, Δ_{time} = 97 ms @ 100–300 psi, Δ_{time} = 42 ms @ 300–500 psi ^[2]					

^{*} MEKP with 9% or 11% AO are known

- [1] V. K. Mohan, K. R. Becker, J. E. Hay, J. Hazard. Mater., 1982, 5, 197–220.
- [2] M. Tamura, H. Ishida, M. Itoh, T. Yoshida, M. Watanabe, K. Muranaga, T. Abe, S. Morisaki, J. Hazard. Mater., 1987, 17, 89–98.
- [3] T. M. Klapötke, T. Wloka, *Peroxide Explosives*, ch. 29 in *Patai's Chemistry of Functional Groups*, John Wiley and Sons Ltd., **2014**, pp. 1–28.

Methyl nitrate

Name [German, acronym]: Methyl nitrate [methylnitrat]

 $\label{eq:Main potential} \mbox{Main (potential) use:} \qquad \mbox{Not of practical use due to its physical properties} \mbox{$^{[1]}$,}$

mixed with H_2O_2 or N_2O_4 is used as liquid explosive or

propellant^[7], gas-generating agent in airbags^[7]

	Methyl nitra	nte			
Formula	CH ₃ NO ₃				
Molecular mass [g mol ⁻¹]	77.04				
Appearance at RT	Colorless lic	quid ^[1] , colorless oily liq	uid with slight fragrant odor ^[7]		
IS [J]	40 mm (2 kg	g mass; is therefore less	s sensitive than NG) ^[7]		
ESD [J]	Explodes on	heating @ 250–300 °	C in a closed system on exposure to spark ^[7]		
N [%]	18.18				
Ω(CO ₂) [%]	-10.4				
T _{m.p.} [°C]	-83 ^[10]	-83 ^[10]			
T _{b.p.} [°C]	65-66 ^[1,7] , 5 (@ 50 mm) ^[1] , 66 (@ 760 mm) ^[1] , 338.0 K ^[2] , 65 ^[7] , 64.6 ^[10]				
T _{dec.} [°C]	Vapors explode on heating to ~150 ^[1]				
ρ [g cm ⁻³]	sp. gr. = 1.2322 (@ 5 °C) ^[1] , sp. gr. = 1.2167 (@ 15 °C) ^[1] , sp. gr. = 1.2032 (@ 25 °C) ^[1] , sp. gr. = 1.21 ^[7] , 1.2075 ^[10]				
Heat of formation	$ \begin{array}{l} -122 \text{ kJ/mol } (\Delta_f H^o(g))^{[2]}, \Delta H_{f_f,r} = -1.91 \text{ MJ/kg}^{[5]}, -155.8 \text{ kJ/mol (enthalpy of form., exptl.)}^{[8]}, -187.5 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[8]}, -28.8 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ calcd., ccCA-P})^{[9]}, -30.5 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ calcd., ccCA-S}3)^{[9]}, \\ -29.7 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ calcd., ccCA-PS3})^{[9]}, -29.6 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ calcd., } G3)^{[9]}, -27.3 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ calcd., } G3(\text{MP2}))^{[9]}, -29.2 \pm 0.3 \text{ kcal/mol } (\Delta H_f(g)^o, \text{ exptl.})^{[9]} \end{array} $				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		6.29 MJ/kg (calcd., SD method) ^[3]				
		6.12 MJ/kg (heat of explosion) ^[5]				
		6,732.1-6,744.15 ^[7]				
<i>T</i> _{ex} [K]		4,290 (calcd., SD method) ^[3]				
p _{C-J} [kbar]						
VoD [m s ⁻¹]				red in tubes nat max VoD		
			Tube of	Internal diameter (mm)	External diameter (mm)	VoD (m/s)
			Rubber, canvas covered	5	12	1,616
			Glass	3	12	2,482
			Glass	3	7	2,191
			Glass	5	7	1,890
			Britannia metal	3	12.6	1230
			Steel	3	15	2,084
			Steel	3	15	2,094
			6,818 (@ 1 detonation	.22 g cm ⁻³ , velocity) ^[3]	D_i) (D_i = ide	al
				.22 g cm ⁻³ , critical deto		
			~8,000 in t no <i>p</i> specif	ube with 30 ied ^[7]	–40 mm dia	ameter,
				ube with sm out >6,000 in		
V_0 [L kg ⁻¹]						
Critical diameter [cm]	2.4 mm ^[3]					

Trauzl test [cm³, % TNT]	615 cc (10 g sample, H_2O tamping <i>c.f.</i> 600 cc by 10 g NG) ^[1] , $610^{[6]}$				
Small lead block test		24.5 mm (100 g sample, under slight confinement in shell of sheet Pb 1 mm thick, tamped with thin cork plates, cf. 30 mm by nitroglycol and 18.5 mm by NG) ^[1]			
Viscosity	less viscos than	$H_2O^{[1,7]}$			
Burn rate [mm/s]	0.143 g cm $^{-2}$ s $^{-1}$ @ 1 atm. $^{[4]}$, 4 times faster than that of NG $^{[7]}$, 0.12 cm/s in glass tube and burns slowly @ 0.15 MPa $^{[7]}$, @ pressures >0.4 MPa combustion escalates into detonation $^{[7]}$ Dependence of burning rate on pressure (MeONO ₂ , ρ_{max} = 1.21 g/cm 3) $^{[4]}$:				
					1
		a	В	V	
	1.0	0.01	0.133	1.0	0.175-2.0
		-	0.141	0.99	0.5-1.5
Solubility [g/mL]	Miscible with any alcohols ^[7] , 3.85 g/100 mL $H_2O @ 25 °C^{[7]}$, MeONO ₂ is good at dissolving cotton and high-nitrogen cellulose ^[7] , soluble in EtOH, $Et_2O^{[10]}$, slightly soluble in water ^[10]				
Heat capacity [J/mol K]	C_p (liq.) = 157.19 (@ 298 K, constant pressure) ^[2]				
Δ _{vap} H° [kJ/mol]	34.10 ^[2]				
Flame sensitivity	Vapor is flammable and explodes on heating to 150 °C ^[7] , heating @ 250–300 °C in closed system explodes on exposure to spark or UV radiation ^[7]				
Radiation sensitivity	Explodes on hear radiation ^[7]	Explodes on heating @ 250-300 °C in a closed system on exposure to UV radiation ^[7]			
n_{D}	1.3748 ^[10]				

- [1] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York.
- [2] P. J. Lindstrom, W. G. Mallard, *NIST Chemistry WebBook*, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg, USA, webbook.nist.gov.
- [3] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581–586.
- [4] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.

- [5] N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [7] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [8] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.
- [9] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., **2011**, 186, 583–589.
- [10] CRC Handbook of Chemistry and Physics, Internet version 2005, D. R. Lide (Editor-in-Chief), CRC Press, Boca Raton, FL, 2005.

N-Methyl-4-nitroaniline

Name [German, acronym]: *N*-Methyl-*p*-nitro aniline, 4-(methylamino)

nitrobenzene, 4-nitro-N-methylaniline, methyl(4-nitrophenyl)amine, p-nitro-N-methylaniline, N-methyl-4-nitro-benzenamine [N-methyl-4-nitroanilin, MNA]

Main (potential) use: Lowers mpt. of energetic materials in synthesis of

insensitive explosives $^{[1]}$, stabilizer in double-base and minimum smoke propellants $^{[1,\,2]}$, component of PAX-21 $^{[2]}$

	MNA				
Formula	$C_7H_8N_2O_2$	$C_7H_8N_2O_2$			
Molecular mass [g mol ⁻¹]	152.15				
Appearance at RT	Yellow crystalline plate	S ^[4]			
N [%]	18.41	'	'		
Ω(CO ₂) [%]	-168.26	'	,		
T _{m.p.} [°C]	423.15 K ^[1]	'			
T _{b.p.} [°C]	527 K ^[1]				
T _{dec.} [°C]					
$ ho$ [g cm $^{-3}$]	1.26 ^[1]				
Heat of formation					
Heat of combustion	$\Delta_c H^o \text{ (solid)} = -3,867 \text{ kg}$	I/mol ^[3]			
	Calcd. (EXPLO5 6.04) Lit. values Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					

p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Critical temperature [°C]	748 K ^[1]			
Critical pressure	41.7 bar ^[1]			
Solubility [g/mL]	1.17 mg/L @ 2	98.15 K ^[1]		
	Solubility in H_2O in presence of NaCl or $CaCl_2$ @ different $\mathcal{T}^{[1,2]}$:			
	Solvent		Solubility (mL/L)	
		@ 298.15 K	@ 308.15 K	@ 318.15 K
	H ₂ O	85.42 ± 0.85	111.51 ± 1.12	141.93 ± 1.42
	1% NaCl	79.49 ± 0.80	96.65 ± 0.97	128.17 ± 1.28
	1% CaCl ₂	82.82 ± 0.83	104.99 ± 1.05	134.81 ± 1.35
Log K _{ow}		9 @ 298.15 K ^[1, 2] , 1 6 @ 318.15 K ^[1, 2]	.9846±0.0305@	308.15 K ^[1, 2] ,
Enthalpy of fusion [kJ/mol]	18.85 ^[1]			

	MNA ^[4]
Chemical formula	C ₇ H ₈ N ₂ O ₂
Molecular weight [g mol ⁻¹]	152.15
Crystal system	Monoclinic
Space group	P2 ₁ /n (no. 14)
a [Å]	9.9223(8)
<i>b</i> [Å]	6.8557(5)
c [Å]	10.7606(9)
α [°]	90
β [°]	103.304(8)
γ [°]	90
<i>V</i> [Å ³]	712.34(10)
Z	4

$ ho_{\rm calc}[{ m g~cm^{-3}}]$	1.419
<i>T</i> [K]	150

- [1] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, *N-Methyl-4-Nitroaniline (MNA)*, Ch. 7 in *Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties*, Springer, **2018**.
- [2] V. M. Boddu, K. Abburi, S. W. Maloney, R. Damavarapu, J. Hazard. Mater., 2008, 155, 288–294.
- [3] W. E. Garner, C. L. Abernethy, *Proc. Roy. Soc. London A*, **1921**, 213–235.
- [4] K. Gazda, Z. Daszkiewicz, E. Kozubek, K. Ejsmont, B. Zarychta, *Cryst. Growth Des.*, **2014**, *14*, 5737–5748.

Metriol trinitrate

Name [German, acronym]: 1,1,1-Trimethylolethane trinitrate, nitropentaglycerin,

trimethylolethane trinitrate, ethane-1,1,1-

tris(hydroxymethyl) trinitrate, pentaglycerol trinitrate,

nitrometriol [TMETN, MtrT, MTN]

Main (potential) use: Erosion-reducing additive in propellants^[1], component

of commercial explosives^[1], ingredient of rocket and double-base propellants^[3], suggested as possible replacement for NG^[8], component of smokeless (double-base) powders in the WW-II^[8], nitrate-ester

plasticizer^[13]

$$\begin{array}{c} \text{ONO}_2 \\ | \\ \text{CH}_2 \\ | \\ \text{H}_3\text{C} \longrightarrow \text{C} \longrightarrow \text{C} \longrightarrow \text{ONO}_2 \\ | \\ \text{CH}_2 \\ | \\ \text{ONO}_2 \end{array}$$

	Metriol trinitrate
Formula	C ₅ H ₉ N ₃ O ₉
Molecular mass [g mol ⁻¹]	255.15
Appearance at RT	Slightly turbid viscos oil ^[1] , slightly turbid oil ^[3] , liquid @ RT ^[8]
IS [J]	4 cm (2 kg mass, B.M.) ^[1, 4] , 20 in (P.A.) ^[3, 4] , 0.59 kg/m (50% detonations) ^[6] , 47 cm (1 lb mass, B.M., 20 mg sample) ^[7] , similar to that of tetryl ^[8] , 47 cm (2 kg mass, 20 mg sample, B.M.) ^[3] , 4 cm (1 lb mass, 20 mg sample, B.M.) ^[3]
FS [N]	Explodes with steel shoe (friction pendulum test) $^{[1,3]}$, explodes with fiber shoe (friction pendulum test) $^{[1]}$
N [%]	16.41
Ω(CO ₂) [%]	-34.5
T _{m.p.} [°C]	-3 ^[1, 3, 4, 7] , 51 ^[8]
T _{glass transition} [°C]	-63.5 ^[11] , -45.2 (midpoint, DSC @ 10 °C/min, with 50% polyNIMMO) ^[13]
<i>T</i> _{b.p.} [°C]	182 (apparent b.p., corresponds to temperature at which dec. is vigorous enough to resemble boiling) $^{[1]}$

T _{dec.} [°C]	177.7 (onset), 198.6 (peak max), 219.0 (end 7) (DSC @ 10.0 K/min, pinhole cover) ^[10]			
ρ [g cm ⁻³]	1.47 (@ 22 °C) ^[1, 4, 7] , sp. gr. = 1.4685 (@ 20/4°) ^[6, 8] , 1.48–1.50 (after being fused it solidifies to a solid of this ρ) ^[8] , 1.47 (liquid) ^[3] , 1.49 ^[11]			
Heat of formation	$-1,666 \text{ kJ/kg}$ ($\Delta H_{\rm f}$, ICT to (enthalpy of form., exp	$-450.2 \text{ kJ/mol}^{[2]}$, -422 cal/g (@ C ^v) ^[1,4] , -446 cal/g (@ C ^p) ^[1,4] , $-1,666 \text{ kJ/kg}$ ($\Delta H_{\rm f}$, ICT thermochemical database) ^[9] , -425.0 kJ/mol (enthalpy of form., exptl.) ^[12] , -426.6 kJ/mol (enthalpy of form., calcd., emp.) ^[12] , -434.5 kJ/mol (enthalpy of form., calcd., S-D method) ^[12]		
Heat of combustion	-2,642 cal/g (@ C ^v , H ₂ 0	O (l)) ^[1, 4, 5, 7] , 674 kcal/mo	^[4] , 2,642 cal/g ^[3]	
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o} [{\rm kJ} {\rm kg}^{-1}]$		1,270 kcal/kg ^[8] 5,053 (calcd.,		
T _{ex} [K]		ICT-code) ^[9] 3,497 (calcd., ICT-code) ^[9]		
p _{C-J} [kbar]		140.9 MPa (calcd., ICT-code) ^[9]		
VoD [m s ⁻¹]		7,300 (@ 1.640 g cm ⁻³ , calcd., K-J) ^[10]	6,750 (@ 1.39 g cm ⁻³ , nonconfined nitrometriol cartridges, 30 mm diameter) ^[8] 7,040 (@ 1.48 g cm ⁻³ , nonconfined nitrometriol cartridges, 30 mm diameter) ^[8] 7,060 (@ 1.50 g cm ⁻³ , nonconfined nitrometriol cartridges, 30 mm diameter) ^[8]	
V ₀ [L kg ⁻¹]				
Trauzl test [cm³, % TNT]	140 ^[1, 3, 4] , ~85% penthr	140 ^[1, 3, 4] , ~85% penthrite ^[8] , ~115% PA ^[8]		
Sand test [g]	43.7 (200 g bomb) ^{[1, 3, 4}	43.7 (200 g bomb) ^[1, 3, 4, 7] , 91% TNT ^[1, 4]		

Ballistic mortar test	136% TNT ^[1, 3, 4]				
5 s explosion T[°C] Deflagration T[°C]	235 ^[1, 3, 4] , 235 (ignites) ^[3, 5, 7] 188 (@ 2 °C/min, with 50% polyNIMMO) ^[13]				
100 °C heat test [% mass loss]	2.5 in first 48 100 h ^[1, 3, 4, 7]	h ^[1, 3, 4, 7] , 1.8 i	n s 48 h ^{[1, 3, 4,}	^{7]} , no explosio	ns in first
Thermal stability	Nonisothermal TG data, $\beta = {^{\circ}C/min}$, $T_{ei} = onset\ T$ of TG peaks, $T_p = peak$ T , $T_{oe} = endset\ T$ of TG peaks, $T_b = critical\ T$ for thermal dec. [10]:				
	β (°C/min)	T _{ei} (°C)	T _p (°C)	T _{oe} (°C)	T _b (°C)
	5.0	158.8	178.3	208.9	169.3
	7.0	161.8	183.4	216.7	
	10.0 167.0 188.3 222.5				
	15.0	177.1	196.0	225.0	
Vacuum stability test [cm³/h]	1.9 cm ³ /40 h (@ 100 °C) ^[1, 3, 4]				
Volatility	24 mg/cm ² lost in 1 hour @ 60 °C ^[1, 3, 4]				
Solubility [g/mL]	Practically insoluble in water ^[1] , soluble in EtOH and many common organic solvents ^[1] , <0.015 g/100 g H_2O @ 25 °C ^[1, 3] , <0.015 g/100 g H_2O @ 60 °C ^[3] , 0.516 g/L H_2O @ 19 °C ^[8] , 0.685 g/L H_2O @ 36 °C ^[8]				
Hygroscopicity	0.07% @ 25 °C with 90% RH ^[1] , 0.14% @ 25 °C with 100% RH ^[1] , 0.07% @ 30 °C, 90% RH ^[3]				
Compatibility	Acid bath hydrolysis: 10 days @ 22 °C, 0.018% hydrolysis ^[1, 3] , 5 days @ 60 °C, 0.115% hydrolysis ^[1, 3]				
ΔH _{dec.} [J/g]	323.0 (heat release, value not reliable due to evaporation at low heating rates) ^[10]				
Refractive index	n ^D ₂₅ = 1.4752 ^[1, 3]				
Dutch test	1.50% (105 °C, 72 h, ≤2%, with 50% polyNIMMO) ^[13]				
Viscosity [Pa•s]	5.12 (with 50°	% polyNIMMO)[13]		

- [1] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [2] NIST Chemistry WebBook, NIST Standard Reference Database, P. J. Linstrom, W. G. Mallard (eds.), National Institute of Standards and Technology, Gaithersburg, USA: www.webbook.nist. gov/chemistry/
- [3] AMC Pamphlet Engineering Design Handbook: Explosive Series of Properties of Explosives of Military Interest, Headquarters, US Army Materiel Command, January 1971.
- [4] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.

- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [7] F. J. Pisacare, 1,2,4-Butanetriol: Analysis and Synthesis, NSWC TR 82-380, NSWC, 8th December 1982.
- [8] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [9] F. Volk, H. Bathelt, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [10] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [11] M. F. Lemos, M. A. Bohn, The Effect of Plasticizers on the Glass-to-Rubber Behavior of Desmophen® 2200 Based Elastomers Used for Composite Propellants, ICT **2015**, Karlsruhe, Germany, pp. 22-1–22-26.
- [12] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [13] D. Drees, D. Löffel, A. Messmer, K. Schmid, Propellants, Explosives, Pyrotechnics, 1999, 24, 159–162.

Monomethylhydrazine

Name [German, acronym]: Methylhydrazine, hydrazomethane, 1-methylhydrazine,

[monomethylhydrazin, MMH]

Main (potential) use: Component of hypergolic systems^[1]

	ммн				
Formula	CH_6N_2				
Molecular mass [g mol ⁻¹]	46.07	46.07			
Appearance at RT	Colorless liquid				
IS [J]	Stable to impact ^[2]				
FS [N]	Stable to friction ^[2]				
ESD [J]	MMH vapors within flan flame ^[2]	nmable limits can be expl	oded by a spark or		
N [%]	60.80				
Ω(CO ₂) [%]	-173.65				
T _{m.p.} [°C]	-52 ^[1] , (-52.4 freezing point ^[2])				
T _{b.p.} [°C]	87 ^[1] , 87.5 ^[2]				
T _{dec.} [°C]	1,828 K (adiabatic dec. <i>T</i> , calcd. CHEETAH) ^[3]				
$ ho$ [g cm $^{-3}$]	0.874 ^[1] , 0.8743 @ 25 °C ^[2]				
Heat of formation	54.18 kJ/mol (enthalpy of form.) ^[1] , 12.7 kcal/mol ^[2] , 54.14 kJ/mol ($\Delta_i H^o$ liq., calorimetry) ^[5] , 94.5 kJ/mol ($\Delta_i H^o$, gas) ^[5]				
Heat of combustion	$-28.37 \text{ kJ/g (exptl.)}^{[3]}, -1,305.2 \pm 0.59 \text{ kJ/mol } (\Delta_c H^o, \text{liq., static bomb calorimetry})^{[5]}, -1,305.2 \text{ kJ/mol } (\Delta_c H^o, \text{liq., calorimetry})^{[5]}$				
	Calcd. (EXPLO5 6.04) Lit. values Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					
p _{C-J} [kbar]					

VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			
Thermal stability	Stable under the extremes of heat and cold expected in long-term storage ^[2] , stable up to its atmospheric boiling point in absence of oxygen ^[2]		
Vapor pressure [atm. @ °C]	6.3 kPa @ 25 °C ^[1] , 49.63 mm Hg @ 25 °C ^[2]		
Viscosity [centistokes]	0.893 ^[2]		
Compatibility	Catalysts such as rust, Cu or copper alloys can cause dec. [2]		
Heat of vaporization [cal/mol]	9,648 @ 25 °C ^[2]		
Specific heat [cal/mol K]	32.35 @ 25 °C ^[2] , 134.93 J/mol K (constant pressure heat capacity of liq. @ 298.15 K) ^[5]		
ΔH _{dec} [kJ/mol]	-4.340~kJ/g (max. heat of dec., calcd., CHEETAH) ^[3] , $-22.01~kJ/g$ (heat of dec., calcd., CHEETAH) ^[3]		

	MMH ^[4]
Chemical formula	CH ₆ N ₂
Molecular weight [g mol ⁻¹]	46.07
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	10.043(10)
<i>b</i> [Å]	3.925(5)
c [Å]	7.670(8)
α [°]	90
β [°]	107.28(10)
γ[°]	90
V [Å ³]	288.7(6)
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.06
<i>T</i> [K]	179

- [1] U. Schaller, T. Keicher, J. Hürttlen, V. Weiser, H. Krause, S. Schlechtriem, *Investigation of Gelled Ionic Liquid as Hypergolic Fuels*, ICT **2011**, Karlsruhe, Germany, pp. 87-1–87-7.
- [2] P. J. von Doehren, *Propellant Handbook*, AFRPL-TR-66-4, Air Force Rocket Propulsion Laboratory Research and Technology Division, United States Air Force, California, USA, January **1966**.
- [3] S. G. Pakdehi, S. Rezaei, H. Motamedoshariati, M. H. Keshavarz, J. Loss Prevention in the Process Industries, 2014, 29, 277–282.
- [4] M. Foulon, N. Lebrun, M. Muller, A. Amazzal, M. T. Cohen-Adad, Acta Cryst., 1994, B50, 472-479.
- [5] P. J. Lindstrom, W. G. Mallard, *NIST Chemistry WebBook*, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg, USA, webbook.nist.gov.

N

5-Nitraminotetrazole

Name [German, acronym]: Nitraminotetrazole [5-nitraminotetrazol]

Main (potential) use: gas generant

Structural formula:

	5-Nitraminotetrazole			
Formula	CH ₂ N ₆ O ₂	CH ₂ N ₆ O ₂		
Molecular mass [g mol ⁻¹]	130.07			
Appearance at room temperature (RT)				
IS [J]		,		
FS [N]		'	,	
ESD [J]		'	,	
N [%]	64.61	64.61		
Ω(CO ₂) [%]	-12.30	-12.30		
T _{m.p.} [°C]				
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]	1.828 (X-ray @ 295 K) ^[2]			
Heat of formation				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				
p _{C-J} [kbar]				

VoD [m s ⁻¹]			
V_0 [L kg ⁻¹]			
Burn rate [mm/s]	Values from Russian FLAME database $^{[1]}$: 10.0 mm/s @ 3.5 atm pressure $^{[1]}$, 11.0 mm/s @ 10 atm $^{[1]}$, 50.0 mm/s @ 40 atm $^{[1]}$, 200.0 mm/s @ 110 atm $^{[1]}$		
Solubility [g/mL]			

	5-Nitraminotetrazole ^[2]
Chemical formula	CH ₂ N ₆ O ₂
Molecular weight [g mol ⁻¹]	130.02
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	9.40
<i>b</i> [Å]	5.56
c [Å]	9.36
α [°]	90
β [°]	105.00
γ [°]	90
<i>V</i> [ų]	472.522
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.828
<i>T</i> [K]	295

^[1] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy-Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.

^[2] J. H. Bryden, Acta Cryst., 1953, 6, 669–670.

5-Nitriminotetrazole

Name [German, acronym]: 5-Nitrimino-1,4*H*-tetrazole, [5-nitriminotetrazol]

Main (potential) use: Structural formula:

	5-Nitriminotetrazole			
Formula	CH ₂ N ₆ O ₂			
Molecular mass [g mol ⁻¹]	130.09			
Appearance at RT	Colorless crystals ^[1]			
IS [J]	1.5 (75–125 μm grain size	, BAM) ^[1]		
FS [N]	8 (75–125 μm grain size, Ε	BAM) ^[1]		
ESD [J]	0.19 ^[1]			
N [%]	64.61			
Ω(CO ₂) [%]	-12.3			
T _{m.p.} [°C]				
T _{dec.} [°C]	122 (exotherm, DSC @ 5 °C/min) ^[1]			
$ ho$ [g cm $^{-3}$]	1.867 (X-ray @ 100 K) ^[1]			
Heat of formation	322 kJ/mol (Δ _f H°) ^[1] , 264 kJ/mol (Δ _f H°) ^[1]			
Heat of combustion	-1,700 cal/g ^[1]			
	Calcd. (EXPLO5 5.02)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,746 ^[1]			
<i>T</i> _{ex} [K]	4,563 ^[1]			
p _{C-J} [kbar]	394 ^[1]			
VoD [m s ⁻¹]	9,450 (@ 1.867 g cm ⁻³) ^[1]			
V_0 [L kg ⁻¹]	800 ^[1]			

ΔH _{dec} [J/g]	2,638 (exptl.) ^[1]
p <i>K</i> _a	2.5 and 6.1 (dibasic acid) ^[1]
Long-term stability tests	Stable long-term, no exotherm in 48 h @ 80 °C (RADEX V5 oven) ^[1]

	5-Nitriminotetrazole ^[1]
Chemical formula	CH ₂ N ₆ O ₂
Molecular weight [g mol ⁻¹]	130.09
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	9.4010(3)
<i>b</i> [Å]	5.4918(1)
c [Å]	9.3150(3)
α [°]	90
β [°]	105.762(3)
γ [°]	90
<i>V</i> [ų]	462.84(2)
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.867
<i>T</i> [K]	100
	Colorless crystals from H ₂ O/HNO ₃

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.

Nitroaminoguanidine

Name [German, acronym]: N´-Nitrohydrazinecarboximidamide,

N´-nitro-*N*-aminoguanidine, 1-amino-3-nitro-guanidine,

aminonitroguanidine [NAGu, ANQ]

Main (potential) use: Oxidizer

Structural formula:

	NAGu			
Formula	CH ₅ N ₅ O ₂			
Molecular mass [g mol ⁻¹]	119.08			
Appearance at RT				
IS [J]	20 (BAM) ^[3] , 3 Nm ^[4] , 22 cm (2 kg	; mass) ^[5]		
FS [N]	144 (BAM) ^[3] , 240 ^[4]			
ESD [J]	0.15 (@ 100–500 μm grain size	, ESD 2010 EN) ^[3]		
N [%]	58.8			
Ω(CO ₂) [%]	-33.6			
T _{m.p.} [°C]	184 (dec.) ^[3, 5]	184 (dec.) ^[3, 5]		
T _{dec.} [°C]	$190^{[1]}$, 184 (DSC @ 5 °C/min, covered Al container with hole in lid) ^[3] , 184 (melts with dec.) ^[5] , 190 (explosion) ^[5]			
$ ho$ [g cm $^{-3}$]	1.71 (@ 298 K), 1.722 (crystal @ 173 K) ^[3]			
Heat of formation	$ \begin{array}{l} 161.7 \text{ kJ/mol } (\Delta_i H^o \text{ (g), calcd., CBS-4M)}^{[3]}, + 185.5 \text{ kJ/kg} \\ \text{ (enthalpy of form.)}^{[4]}, 76.9 \text{ kJ/mol } (\Delta_i H^o \text{ (s), calcd.)}^{[3]}, \\ 5.30 \text{ kcal/mol } (Q_f^{\text{V})^{[5]}}, -43.4 \text{ kcal/kg}^{[6]}, 22.1 \text{ kJ/mol (enthalpy of form., exptl.)}^{[7]}, -16.6 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[7]}, \\ 4.1 \text{ kJ/mol (enthalpy of form., calcd., S-D method)}^{[7]} \end{array} $			
Heat of combustion	270.14 kcal/mol $(Q_c^{V})^{[5]}$, 2,250 kcal/kg $(@C^{V})^{[6]}$			
	Calcd. (EXPLO5 5.04)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,915 (@ 1.722 g cm ⁻³) ^[3]	3,746 [H ₂ O (l)] ^[4]		
		3,418 [H ₂ O (g)] ^[4]		

T _{ex} [K]	3,310 (@ 1.722 g cm ⁻³) ^[3]	
p _{C-J} [kbar]	307 (@ 1.722 g cm ⁻³) ^[3]	
VoD [m s ⁻¹]	8,729 (@ 1.722 g cm ⁻³) ^[3]	
V ₀ [L kg ⁻¹]	878 (@ 1.722 g cm ⁻³) ^[3]	

Sand test [g]	39.8 g sand crushed (cf. 43.0 g for TNT) ^[3]
5 s explosion T[°C]	190 ^[3]
100 °C heat test [% mass loss]	0.12% mass loss in first 48 $h^{[3]}$, 0.15% in second 48 $h^{[3]}$, no explosion in 100 $h^{[3]}$
Vacuum stability test [cm³/h]	>11 cc gas produced in 16 h @ 120 °C ^[3]
Solubility [g/mL]	Poor solubility in water, can be recryst. from hot water ^[3] , recryst. from 40% HF in $\rm H_2O^{[3]}$, soluble in DMSO ^[3]

	NAGu ^[2]
Chemical formula	CH ₅ N ₅ O ₂
Molecular weight [g mol ⁻¹]	119.09
Crystal system	Tetragonal ^[2]
Space group	
a [Å]	17.063
<i>b</i> [Å]	17.063
c [Å]	5.155
α [°]	90
β [°]	90
γ [°]	90
<i>V</i> [ų]	
Z	
$\rho_{\rm calc}$ [g cm ⁻³]	
<i>T</i> [K]	

- [1] R. A. Henry, R. C. Makosky, G. B. L. Smith, J. Am. Chem. Soc., 1951, 73, 474–474.
- [2] S. R. Naidu, N. M. Bhide, K. V. Prabhakaran, E. M. Kurian J. Therm. Anal., 1995, 44, 1449–1462.
- [3] N. Fischer, T. M. Klapötke, J. Stierstorfer, Z. Naturforsch., 2012, 67b, 573–578.
- [4] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, p. 226.

- [5] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, *Encyclopedia of Explosives and Related Items*, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [6] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [7] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, 408, 248–258.

6-Nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide

Name [German, acronym]: 6-Nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide,

[ICM-103]

Main (potential) use: Possible future environmentally friendly primary

explosive^[1]

Structural formula:

	ICM-103				
Formula	C ₄ HN ₉ O ₃				
Molecular mass [g mol ⁻¹]	223.11				
Appearance at RT	Light yellow solid (crude) ^{[1}]			
IS [J]	4 (0.02 g sample, powder screw press @ 39.2 MPa p		ı, sample pressed with		
FS [N]	60 (20–30 mg sample, sample, sample, BAM) ^[1]	60 (20–30 mg sample, sample pre-treated @ 50 °C for 4 h, ceramic test plate, BAM) ^[1]			
ESD [J]	130 (20–30 mg sample, pi	130 (20–30 mg sample, pretreated @ 50 °C for 4 h) ^[1]			
N [%]	56.50				
Ω(CO ₂) [%]	-39.44				
T _{dec.} [°C]	160.3 (onset) 180.5 (exo peak max) (DSC @ 10 °C/min)[1]				
$ ho$ [g cm $^{-3}$]	1.86 (gas pycnometry @ 25 °C) ^[1] , 0.37 (bulk ρ @ 25 °C) ^[1]				
Heat of formation	744.75 kJ/mol (calcd., Byrd and Rice method) ^[1] , 739.40 kJ/mol (measured, heat of comb. expts.) ^[1]				
Heat of combustion	$\Delta_c U_m^{\theta} = -11,066 \text{ J/g } (-2,468.81 \text{ kJ/mol}) \text{ (exptl. constant vol. combustion energies)}^{[1]}$				
	Calcd. (EXPLO5 6.02)	Lit. values	Exptl.		

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	-5,964.86 (@ 1.86 g cm ⁻³ , heat of form. = 744.75 kJ/mol) ^[1]				
T _{ex} [K]	4,347 (@ 1.86 g cm ⁻³ , heat of form. = 744.75 kJ/mol) ^[1]				
p _{C-J} [kbar]	35.1 GPa (@ 1.86 g cm ⁻³ , heat of form. = 744.75 kJ/mol) ^[1]				
VoD [m s ⁻¹]	9,111 (@ 1.86 g cm ⁻³ , heat of form. = 744.75 kJ/mol) ^[1]				
V_0 [L kg ⁻¹]	709 (@ 1.86 g cm ⁻³ , heat of form. = 744.75 kJ/mol) ^[1]				
Initiation efficiency	Minimum primary charge = 60 mg, actual charge = 90–100 mg ICM-103 can detonate PET and RDX to bore through lead plate (5 mm thick lead plate, ICM-103 filled in no. 8 blasting cap, pressed by 32 MPa static pressure, fired by standard pyrotechnical igniter) ^[1]				
Thermal stability	Long-term stability test: <5 mg per ~ 2 g sample weight loss after 48 h @ 75 °C under atmospheric pressure, and no changes in appearance or particle morphology visible using optical microscopy ^[1]				
Solubility [g/mL]	Insoluble in water ^[1] , 0.08 g/100 mL H_2O @ 25 $^{\circ}C^{[1]}$				
Hygroscopicity	Nonhygroscopic ^[1] , 0.18 wt.% after 24 h in humidity chamber ^[1]				
Photosensitivity	Insensitive to light $^{[1]}$, maintains high purity even after long exposure to sunlight $^{[1]}$				
Compatibility	Insensitive to moisture ^[1]				
Flame test	Flame sensitivity $H_{50} \ge 60$ cm (H_{50} reflects the reliability of ignition) ^[1]				
Flowability	θ = 28.76°, satisfactory flowability ^[1]				
Dead pressed/ pressure durability	>100 MPa (below this value ICM-103 is dead pressed) ^[1]				

	ICM•H ₂ O ^[1]
Chemical formula	C ₄ H ₃ N ₉ O ₄
Molecular weight [g mol ⁻¹]	241.15
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)

a [Å]	9.931(5)
<i>b</i> [Å]	5.210(3)
c [Å]	19.767(7)
α [°]	90
β [°]	116.419(19)
γ [°]	90
<i>V</i> [ų]	915.9(8)
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.749
<i>T</i> [K]	173
	Crystals of hydrate from slow evaporation of soln. in methanol

^[1] M. Deng, Y. Feng, W. Zhang, X. Qi, Q. Zhang, Nature Comm., 2019, 10, Article nr. 1339.

Nitrocellulose

Name [German, acronym]: Nitrocellulose*, cellulose nitrate [Nitrozellulose,

Cellulosenitrat, Zellulosenitrat, Schießbaumwolle,

Bitzwatte, NC]

Main (potential) use: Blasting explosive, smokeless powder, component

for propellants, single base in small arms, grenade, artillery^[24], component of double-base powders in small arms, mortars and artillery rockets^[24], used as a component of multibase powders as cool burning gun

propellant^[24]

Structural formula:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N

Collodion (pyroxylin) is a NC with $\sim 8-12\%$ N and is soluble in Et₂O/EtOH^[18]; NC which contains 8-12.3% N^[28], pyroxylin is the only NC which is not used in explosives. ^[4]

Pyrocellulose contains 12.6% N [18]; NC with a N content of 12.60 ± 0.10%. [28]

Guncotton is NC containing \ge 13% N ^[18]; the grade of NC that contains the highest % N using mixed nitric and sulfuric acids as the nitrating agents, N content = 13.35–13.45%. ^[28]

CP₁ is NC which contains ~ 13% N. [18]

CP₂ is NC which contains ~ 12% N. [18]

Nitrocellulose (cellulose nitrate) is a mixture of nitrates obtained by nitrating cellulose. [28]

High nitrogen cellulose is NC which contains 13.75-14.14% N.[28]

Blended NC is a mixture of 60-65% guncotton (with 13.4% N content) and 35-40% pyrocellulose (with 12.6% N content)^[28]; two grades of NC are commonly used: (i) $13.15 \pm 0.05\%$ N content and (ii) $13.25 \pm 0.05\%$ N content.^[28]

^{*} Complete nitration forms cellulose trinitrate with 14.14% N[18]

	NC (some data refer to structural unit)				
Formula	C ₁₂ H ₁₄ N ₆ O ₂₂ (if o	omplete nit	ration occurs)		
Molecular mass [g mol ⁻¹]	Nitrocellulose (2 Nitrocellulose (2 Nitrocellulose(1	13.45): 572.	68		
Appearance at RT	flakes, pellets v brown or black ^{[7} pure but usually as flakes, strips	arying in col ^{24]} . Pyroxylin appears an sheets, pel olid polymer	or from translu : light yellow, r nber, brown or llets or perfora	cent pale ye natted filam black colore ted cylindric	forms such as strips, ellow to opaque ents ^[28] , white when d ^[4] , manufactured cal grains ^[4] , odorless cture fibers which are
IS [J]	Nitrocellulose (12.60% N): 8 cm (2 kg mass, 20 mg sample, B.M.) ^[4, 5, 6] , 3 in (2 kg mass, 5 mg sample, P.A.) ^[4, 5, 6] Nitrocellulose (13.45% N): 9 cm (2 kg mass, 20 mg sample, B.M.) ^[4, 5, 6] , 3 in (2 kg mass, 5 mg sample, P. A.) ^[4, 5, 6] Nitrocellulose (13.45% N, gun cotton): 3 in (2 kg mass, P.A.) ^[7] , 9 cm (B.M.) ^[7] Nitrocellulose (14% N): 3 in (2 kg mass, 5 mg sample, P.A.) ^[7] , 8 cm (B.M.) ^[7] Nitrocellulose (14.14% N): 1.57 (8 cm, 2 kg mass, 20 mg sample, B.M.) ^[6] , 1.50 (3 in, 2 kg mass, 5 mg sample, P.A.) ^[6] 8 cm (for all types of NC) ^[28]				
FS [N]	353				
ESD [J]	Highest ESD ene	ergy @ 5,030	V for zero ignit	ion probabil	ity (NC, 13.4% N) ^[9] :
	Highest E (J) fo		Type of igniti	on	
	Unconfined	Confined	Unconfined	Confined	
	0.061	3.1	Deflag.	Deflag.	
N [%]	Nitrocellulose (12.60): 12.60 Nitrocellulose (13.45): 13.45 Nitrocellulose(14.14): 14.14				
Ω(CO ₂) [%]	Nitrocellulose (12.60): -35 Nitrocellulose (13.45): -29 Nitrocellulose(14.14): -24				
<i>T</i> _{m.p.} [°C]	Nitrocellulose (2 Nitrocellulose (3 Nitrocellulose (3 NC powders (all >135 (with dec., (with dec. for gu	13.45): deco 12.60): deco types) do no , pyroxylin w	mposition ^[6] mposition ^[6] ot melt ^[24] , 206 ith 12% N cont	ent) ^[28] , >13	

T _{dec.} [°C]	206.57 (206.57 (DSC @ 10 °C/min, NC 12.52% N) ^[22]					
ρ [g cm ⁻³]	1.7092 (I 1.653 (TN	298K), $1.550^{[1]}$, $1.65-1.70 (\text{NC } 14.14\% \text{N})^{[6]}$, $1.66 (\text{NC } 12.56\% \text{N})^{[22]}$, $1.66 (\text{NC } 13.15\% \text{N})^{[26]}$, $1.66 (\text{NC } 12.6 \text{MD } $ for pyroxylin with $12\% \text{N } $ content) $^{[28]}$, $1.656 (\text{TMD } $ for gu MD for high nitrogen cellulose) $^{[28]}$, $1.65-1.66 (\text{with incr}_{333})$	% N) ^[26] , ncotton) ^[28] ,				
Heat of formation	Nitrocelli Nitrocelli Nitrocelli Nitrocelli -2,581.: -200 kca (high nitr	$\begin{split} -669.8 \text{ kJ/mol}^{[2]} \\ \text{Nitrocellulose } & (14.14\% \text{ N}): 617 \text{ cal/g}^{[6]}, \Delta H_{\rm f} = -653 \text{ kJ/mol}^{[26]} \\ \text{Nitrocellulose } & (13.45\% \text{ N}): 561 \text{ cal/g}^{[6]}, \Delta H_{\rm f} = -678 \text{ kJ/mol}^{[26]} \\ \text{Nitrocellulose } & (13.15\% \text{ N}): \Delta H_{\rm f} = -688 \text{ kJ/mol}^{[26]} \\ \text{Nitrocellulose } & (12.60\% \text{ N}): 617 \text{ cal/g}^{[6]}, \Delta H_{\rm f} = -708 \text{ kJ/mol}^{[26]} \\ -2,581.5 \text{ kJ/kg}^{[1]}, -216 \text{ kcal/mol } & (\text{pyroxylin with } 12\% \text{ N content})^{[28]}, \\ -200 \text{ kcal/mol } & (\text{guncotton with } 13.35\% \text{ N content})^{[28]}, -191 \text{ kcal/mol } \\ & (\text{high nitrogen cellulose with } 14.14\% \text{ N content})^{[28]} \\ & \text{Values for the enthalpy of formation from literature sources, cited in ref.}^{[19]}: \end{split}$					
	% N	% N Condition of preparation of samples $-\Delta H^{\circ}_{f}(NC)$ kcal/kg					
	10.24	10.24 Dried @ 110 °C in vacuum, 3 h, sealed in polyethylene packages					
	11.56	11.56 Dried @ 110 °C in vacuum, 3 h, sealed in polyethylene packages 696.3					
	12.28						
	13.41						
	13.49						
	13.65	Dried @ 110 °C in vacuum, 3 h, sealed in polyethylene packages	562.6				

Values for the	heat of formation	from literature	sources.	cited in[11]:

	·	Υ			· ·
% N content	Heat of formation (kcal/kg)	Comments	% N content	Heat of formation (kcal/kg)	Comments
7.66	958.9	Calcd., <i>Tomioka</i>	13.53	594	Calcd., Lenze et al.
10.14	804.1	Calcd., <i>Tomioka</i>	13.58	568.7	Calcd., Tomioka
11.06	742.3	Calcd., <i>Tomioka</i>	13.92	513	Calcd., Lenze et al.
12.45	645.2	Calcd., <i>Tomioka</i>	14.12	504	Calcd., Lenze et al.
12.88	616.5	Calcd., <i>Tomioka</i>			
10	759.6	No. of nitro groups in relation to $C_6 = 1.71$; MWt. of C_6 unit = 238.8	13	562.3	No. of nitro groups in relation to $C_6 = 2.58$; MWt. of C_6 unit = 278.3
11	694.3	No. of nitro groups in relation to $C_6 = 1.97$; MWt. of C_6 unit = 250.6	14	496.6	No. of nitro groups in relation to $C_6 = 2.94$; MWt. of C_6 unit = 294.6
12	628.1	No. of nitro groups in relation to $C_6 = 2.26$; MWt. of C_6 unit = 263.8			

^{-2,390} kJ/kg ($\Delta H_{\rm f},~NC$ = 13.4% N; ICT thermochemical database) $^{[20]},~-2,598$ kJ/kg ($\Delta H_{\rm f},~NC$ = 12.6% N; ICT thermochemical database) $^{[20]},~$

See additional values at end of section^[33] [†]See figure at end of this section^[14]

 $^{-2,859 \}text{ kJ/kg} (\Delta H_f, NC = 11.6\% \text{ N; ICT thermochemical database})^{[20]}$

Heat of combustion [kJ mol ⁻¹]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
	content	combustion (kcal/kg)	on		content	combustion (kcal/kg)	
	7.66	3,071		Calcd., Tomioka	13.53	2,236	Calcd., Lenze et al.
	10.14	2,717		Calcd., <i>Tomioka</i>	13.58	2,286	Calcd., Tomioka
	11.06	2,612		Calcd., Tomioka	13.92	2,239	Calcd., Lenze et al.
	12.45	2,434		Calcd., Tomioka	14.12	2,208	Calcd., Lenze et al.
	12.88	2,390		Calcd., <i>Tomioka</i>			
	Heat of combustion d values at end of the s				creasing N	content ^[33] , se	ee additional
	Calcd.		Lit. values		Exptl.		
	(EXPLO5 6	.03)				Expt.	
	NC 13.25%	%					
$-\Delta_{\rm ex}U^{\rm o} [{\rm kJ~kg^{-1}}]$	4,642		1,025 kcal/kg ^[3]		Nitrocellulose (12.6% N): 855 cal/g ^[6]		
			4,500 kJ/kg (NC 13.4% N, calcd. thermochem.) ^[13]		Nitrocellulose (13.45% N): 965 cal/g ^[6, 8]		
			3,385 kJ/kg (NC 11.2% N, calcd. thermochem.) ^[13]		Nitrocellulose (14.14% N): 1,058 cal/g ^[6]		
			(g	.,025 kcal/kg uncotton, 13. ast) ^[16]			se (14.14% d./exptl. not 2,228 cal/g ^[8]

973 cal/g (12.62% N, 1.16 kcal/g (Pyroxylin, 12% N) [H₂O (l)]^[28] calcd. based on exptl. values) [H₂O (l)]^[11] 1.02 kcal/g (Pyroxylin, 12% N) [H₂O (g)]^[28] 865 cal/g (12.62% N, calcd. based on exptl. values) [H₂O (g)]^[11] 1.16 kcal/g (guncotton, 13.35% N) [H₂O (l)]^[28] 1,025 cal/g (13.0% N, calcd. based on exptl. 1.02 kcal/g (guncotton, values) [H₂O (l)]^[11] 13.35% N) [H₂O (g)]^[28] 925 cal/g (13.0% N, 1.95 cal/mol (high calcd. based on exptl. nitrogen cellulose, 14.14% N) [H₂O (l)]^[28] values) [H₂O (g)]^[11] 1,046 cal/g (13.15% N, 1.81 kcal/mol (high calcd. based on exptl. nitrogen cellulose, values) [H₂O (l)]^[11] 14.14% N) [H₂O (g)]^[28] 946 cal/g (13.15% N, calcd. based on exptl. values) [H₂O (g)]^[11] 1,055 cal/g (13.2% N, calcd. based on exptl. values) [H₂O (l)]^[11] 955 cal/g (13.2% N, calcd. based on exptl. values) [H₂O (g)]^[11] 1,096 cal/g (13.45% N, calcd. based on exptl. values) [H₂O (l)]^[11] 955 cal/g (13.45% N, calcd. based on exptl. values) [H₂O (g)]^[11] 1,056 kcal/kg (est. based on exptl. values)[11] 4,409 J/g (NC 13.4% N, calcd., ICT code)^[20] 3,983 J/g (NC 12.6% N, calcd., ICT code)[20]

		3,480 J/g (NC 11.6% N,	
		calcd., ICT code) ^[20]	
		4,288.6 (NC 13.1% N) ^[33]	
		3,661 (NC 13.1% N, 16% H ₂ O) ^[33]	
T _{ex} [K]	3,325	3,100 ^[3]	
		3,447 (NC 13.4% N, calcd. thermochem.) ^[13]	
		2,586 (NC 11.2% N, calcd. thermochem.) ^[13]	
		3,100 °C (guncotton, 13.1% N, <i>Kast</i>) ^[16]	
		2,840 °C (12.62% N, calcd. based on exptl. values) ^[11]	
		3,025 °C (13.0% N, calcd. based on exptl. values) ^[11]	
		3,095 °C (13.15% N, calcd. based on exptl. values) ^[11]	
		3,130 °C (13.2% N, calcd. based on exptl. values) ^[11]	
		3,245 °C (13.45% N, calcd. based on exptl. values) ^[11]	
		3,388 (NC 13.4% N, calcd., ICT code) ^[20]	
		3,085 (NC 12.6% N, calcd., ICT code) ^[20]	
		2,683 (NC 11.6% N, calcd., ICT code) ^[20]	
		3,100 °C (NC 13.1% N) ^[33]	

	¥		-
		2,260 (NC 13.1% N, 16% H ₂ O) ^[33]	
		Increases with increasing N content ^[33]	
p _{C-J} [kbar]	23.4	121.8 MPa (NC 13.4% N, calcd., ICT code) ^[20]	
		115.7 MPa (NC 12.6% N, calcd., ICT code) ^[20]	
		106.3 MPa (NC 11.6% N, calcd., ICT code) ^[20]	
VoD [m s ⁻¹]	7,459	6,300 (@ 1.3 g cm ⁻³) ^[3]	Nitrocellulose
		6,300 (@ 1.3 g cm ⁻³ , NC 13.1% N) ^[33]	(13.45% N): 7,300 (@ 1.20 g cm ⁻³) ^[4, 6, 12]
		6,800 (@ 1.3 g cm ⁻³ , NC 13.1% N, 16% H ₂ O) ^[33]	6,300 (@ 1.30 g cm ⁻³ , guncotton) ^[11]
		NC 13.1 % N, 10 % H ₂ O)	6,800 (guncotton containing 16% H ₂ O) ^[11]
$V_0 [L kg^{-1}]$	709	765 (@ 0 °C) ^[3]	871
		765 (guncotton, 13.1% N, Kast) ^[16]	Nitrocellulose (12.6% N): 919 ^[6]
		900 cm ³ /g (12.62% N,	Nitrocellulose
		calcd. based on exptl. values) $[H_2O(I)]^{[11]}$	(13.45% N): 883 ^[6]
		880 cm 3 /g (13.0% N, calcd. based on exptl. values) [H $_2$ O (I)] $^{[11]}$	Nitrocellulose (14.14% N): 853 ^[6]
		874 cm 3 /g (13.15% N, calcd. based on exptl. values) [H $_2$ O (l)] $^{[11]}$	
		868 cm 3 /g (13.2% N, calcd. based on exptl. values) [H $_2$ O (I)] $^{[11]}$	
		857 cm 3 /g (13.45% N, calcd. based on exptl. values) [H $_2$ O (I)] $^{[11]}$	

	720 (NC 13.1% N, 16% H ₂ O) ^[33]	
	Decreases with increasing N content ^[33]	

Nitrocellulose 12.6% N:

 $Q_{\rm E}^{\rm V} = 941 \, {\rm cal/g^{[7]}}, \ V_0 = 0.04041 \, {\rm mol/g^{[7]}}, \ Q_{\rm E} \, ({\rm calcd./exptl.} \ {\rm not \, specified}) = 855 \, {\rm kcal/kg^{[7]}}, \ {\rm heat \, of \, formation} = 617 \, {\rm kcal/kg^{[7]}}, \ \rho = 1.655 \, {\rm g \, cm^{-3[7]}}$

Nitrocellulose 13.45% N:

 $Q_{\rm E} = 1,061 \, {\rm cal/g^{[7]}}, V_0 = 0.03854 \, {\rm mol/g^{[7]}}, \rho = 1.657 \, {\rm g \, cm^{-3[7]}}$

Nitrocellulose 13.45% N (guncotton):

VoD = 7,300 (@ 1.20 g cm⁻³)^[7], V_0 = 712 mL/g [H₂O (I)]^[7], V_0 = 883 mL/g [H₂O (g)]^[7], Q_E^V = 1,063 cal/g [H₂O (I)]^[7], Q_F^V = 982 cal/g [H₂O (g)]^[7], Q_F^V = 551 cal/g^[7]

Nitrocellulose 14% N:

 $V_0 = 688 \text{ mL/g } [\text{H}_2\text{O (I)}]^{[7]}, V_0 = 854 \text{ mL/g } [\text{H}_2\text{O (g)}]^{[7]}, V_0 \text{ (calcd.)} = 838 \text{ mL/g } [\text{H}_2\text{O (g)}]^{[7]}, Q_E^{\text{V}} = 1,137 \text{ cal/g } [\text{H}_2\text{O (I)}]^{[7]}, Q_E^{\text{V}} = 1,059 \text{ cal/g } [\text{H}_2\text{O (g)}]^{[7]}, Q_E^{\text{V}} \text{ (calcd.)} = 1,051 \text{ cal/g } [\text{H}_2\text{O (g)}]^{[7]}, Q_f^{\text{P}} = 516 \text{ cal/g}^{[7]}$

Nitrocellulose 14.14% N:

Heat of detonation (calcd./exptl. not specified) = 1,486 kcal/kg^[8], $Q_E = 1,160$ cal/g^[7], $V_0 = 0.03704$ mol/g^[7], $\rho = 1.659$ g cm^{-3[7]}

Data from^[33]:

	N content of NC (%)				
	12.62	13.0	13.15	13.2	13.45
Explosion heat (J/g) (liq. H ₂ O)	4,071	4,288.6	4,376.5	4,414.1	4,585.7
Explosion heat (J/g) (vapor H ₂ O)	3,619.2	3,870.2	3,958.1	3,995.7	4,029.2
Specific volume, V_0 (mL/g) (liq. H_2O)	900	880	874	868	857
Detonation T (°C)	2,840	3,025	2,095	3,130	3,245

The combustion heat and heat of formation of NC with different nitrogen contents $^{[33]}$:

N content of NC (%)	Combustion heat (J/g)	Heat of formation (J/g)
7.66	12,849.07	4,012
10.14	11,367.93	3,364.36
11.06	10,928.61	3,105.79
12.45	10,183.86	2,699.52
12.88	9,999.76	2,579.44
13.53	9,773.83	2,485.30
13.58	9,489.32	2,379.44
13.92	9,367.98	2,146.4
14.12	9,238.28	2,108.74

Detonation velocity of low-density nitrocellulose/nitroglycerine charges; PMMA = polymethyl methacrylate with 6 mm wall thickness, * average velocity over entire length of charge $^{[25]}$:

System	NC/NG ratio	Confine	ment	Foam	Explosive	Detonation
		Туре	I.D., cm	density (g/cc)	density (g/cc)	velocity (mm/µs)
Foamed NC/NG	50/50	РММА	2.54	0.255	0.191	Unstable
	50/50	Steel	5.08	0.134	0.121	0.66
	50/50	Steel	5.08	0.173	0.118	0.42
	50/50	Steel	5.08	0.103	0.083	0.62
	50/50	Steel	5.08	0.103	0.074	0.72
	50/50	Steel	5.08	0.130	0.057	0.70*
NC/NG mixture	97/3	РММА	2.54	_	0.191	2.6
	87/13	PMMA	2.54	-	0.191	2.6
	77/23	PMMA	2.54	-	0.191	2.7
	60/40	РММА	2.54	_	0.225	2.74
Fibrous NC	100/0	Aluminum	7.52	-	0.174	2.51
Expanded NC	100/0	PMMA	2.54	-	0.252	1.88
	100/0	РММА	2.54	_	0.141	2.31
	100/0	РММА	2.54	_	0.104	2.07

Calculated detonation pressure of low-density nitrocellulose/NG charges; PMMA = polymethyl methacrylate with 6 mm wall thickness, gage pressure was calcd. using equations^[25]:

System	Explosive ρ (g/cc)	Foam ρ (g/cc)	Minimum gage resistance (ohms)	Gage pressure (kbars)	PMMA pressure (kbars)	Detonation pressure (kbars)
Expanded NC	0.252	-	264	8.3	8.6	4.8
	0.141	-	324	4.6	5.1	2.8
	0.104	-	399	1.8	2.2	1.2
97/3 NC/NG	0.191	_	94.5	14.4	18.2	-
87/13 NC/NG	0.191	-	81.7	17.3	20.9	-
77/23 NC/NG	0.191	-	87.8	15.8	19.5	_
60/40 NC/NG	0.225	-	74.0	19.5	23.4	_

Trauzl test [cm³, % TNT]	325–420 cc (NC 13% N) ^[10] , 136–147% TNT (NC 13.2–13.4% N) ^[7, 28] , 373 cm ³ (NC, 13.4% N) ^[31] , 375 (NC 13.1% N) ^[33] , 280 cm ³ (NC 13.1% N, 16% $\rm H_2O$) ^[33]						
Sand test [g]	45.0 g (200 g bomb, NC 12.6% N) $^{[4, 6]}$, 49.0 g (200 g bomb, NC 13.45% N) $^{[4, 6]}$, 52.3 g (200 g bomb, NC 14.14% N) $^{[6]}$, comparable with that of TNT $^{[28]}$, 49 g sand crushed (NC 13.45% N, cf. 48 g for TNT) $^{[7]}$, 52 g sand crushed (cf. 48 g for TNT) $^{[7]}$, 109–120% TNT (NC ~ 14% N) $^{[7]}$, 105% TNT (NC 13.2–13.4% N) $^{[7]}$, 94–98% TNT (NC 12.6% N) $^{[7]}$						
Ballistic mortar test	125% TNT (NC 13.45% N) ^[4, 6, 7] , 118% TNT (NC 13.2–13.4% N) ^[7] , 118% TNT (guncotton) ^[28]						
LSGT [cm]	H = hydraulic press, regular test, all charges conditioned and fired at 25 °C ^[30] :						
	Material	Density		50% p	oint	Particle	Comments
		g/cc	% TMD	Cards	kbar	size (µm)	
	NC	1.45 H	91.8	197	(20)	314	Contains 12.6% N
Initiating efficiency	0.10 g LA m	NC 12.6% N: 0.10 g LA minimum detonating charge ^[6] , NC 13.45% N: 0.10 g LA minimum detonating charge ^[6] , NC 14.14% N: 0.10 g LA minimum detonating charge ^[6] , can be detonated by initiating compounds or boosters ^[24]					

5 s explosion T[°C] 5 s ignition T[°C] Explosion T[°C]	230 (NC 13.34% N) ^[7] , 170 (pyrocellulose) ^[28] , 200 (blended NC) ^[28] , 230 (guncotton) ^[28] 170 (dec., NC 12.6% N) ^[6, 8] , 222 (NC 13.3% N) ^[8] , 230 (NC 13.45% N) ^[6, 8] Explosion <i>T</i> @ various times of exposure (25 mg sample, ignition or deflagration) <i>T</i> (°C)/exposure time (s) ^[11] : NC 13.4% N: 292/0.38, 264/1.30, 234/5.80, 198/41.4, 174/120, 170/no action ^[11] NC 12.6% N: 350/1.48, 312/5.50, 286/16.6, 267/50.3, 260/no action ^[11]				
Ignition T[°C]	187 ^[17] T (°C) an	d time to ex	plosion (s	s), 25 mg sample,	13.4% N ^[23] :
	T(°C)	Time (s)	T (°C)	Time (s)]
	358	0.074	210	21.5	-
	331	0.100	198	41.1	-
	292	0.383	185	201	-
	264	1.30	180	440	1
	242	3.99	174	1,200	1
	234	5.80	170	No explosion	
	225	10.2			
	T (°C) an	d time to ex	plosion (s	s), 25 mg sample,	12.6% N ^[23] :
	T(°C)	Time (s)	T (°C)	Time (s)	
	325	0.143	210	21.5	
	287	0.442	192	76.5]
	246	2.87	188	102]
	243	4.20	180	458]
	227	8.17	170	No explosion]
	218	13.7]
100 °C heat test [% mass loss]	0.3% mass loss in first 48 h (NC 13.45% N) $^{[6,7]}$, 0.0% mass loss in second 48 h (NC 13.45% N) $^{[6,7]}$, no explosion in 100 h (NC 14.35% N) $^{[6]}$, 11 + cc in 24 h (NC 14% N) $^{[7]}$				
65.5 °C KI test	35 min (ı	minimum) (p	oyrocellul	lose) ^[28] , 35 min (n	ninimum) (blended NC) ^[28]
134 °C heat test	30 min (ı	30 min (minimum) (pyrocellulose) ^[28] , 30 min (minimum) (bonded NC) ^[28]			

Therma	l stahi	litv
HIICHIIIA	ι οιανι	ιιιν

Effect of heating on NC (from 1 g of guncotton)[15]:

Heating T(°C)	Heating time (h)	Vol. of (g) produced (cm ³)	Weight loss (%)	N loss (%)
125	150	162	49.7	64
135	150	236	61.8	83
140	40	310	66.5	91
150	20	325	70.2	98

Rapid dec. >100 °C $^{[28]}$, very slow dec. even @ RT $^{[28]}$ and rate of dec. increases 3.71 × per 10 °C temperature increase $^{[28]}$, can be stored <100 °C without dec. for long term $^{[33]}$

Storage lifetime predictions, NC used; viscosity average molecular weight = $511 \pm 7\%$, nitrogen content = $12.53 \pm 0.02\%$, degree of substitution = 2.42, crystallinity index = $22.9\%^{[34]}$:

		S1_NC				
	Years	Months	Days			
Unaged	10	10	29			
Aged 40 days	2	1	9			
Aged 80 days	_	1	25			
Aged 120 days	-	1	0			

Vacuum stability test [cm³/h]

NC 12.6% N: 0.17 cc/40 h @ 90 °C $^{[6]}$, 1.0 cc/40 h @ 100 °C $^{[6]}$, 11 + cc/16 h @ 120 °C $^{[6]}$

NC 13.45% N: 0.42 cc/40 h @ 90 °C $^{[6]}$, 1.5 cc/40 h @ 100 °C $^{[6]}$, 11 + cc/40 h @ 120 °C $^{[6]}$

NC 14.14% N: 1.46 cc/40 h @ 90 °C $^{[6]}$, 11 + cc/14 h @ 100 °C $^{[6]}$, 11 + cc/16 h @ 120 °C $^{[6]}$

1.5 cc gas evolved from 5 g sample (NC 13.45% N) $^{[7]}$, 1.46 cc gas evolved @ 90 °C $^{[7]}$, 2.84 mL/g (@ 100 °C, 48 h, NC = 12.56% N) $^{[22]}$

Heating CP₁ in vacuum @ 75 °C (all gas volumes have been reduced to 0 °C and 760 mm $Hg)^{[18]}$:

Duration of heating (days)	Total vol. (cm³)	cm³ gas per g per day
1st period, 5 days	2.25	0.0128
2nd period, 5 days	17.29	0.0088
3rd period, 5 days	18.55	0.00927
4th period, 5 days	18.34	0.0080
5th period, 5 days	18.19	0.0079
6th period, 5 days	18.3	0.0084

After 309 days heating @ 75 °C, oven was reduced to 40 °C (vacuum) and same sample is heated for 221 days. Total gas evolved during this time = 0.697 cc (i.e. 0.0001154 cc per gram per day). The sample was then heated in vacuum @ 100 °C $^{[18]}$:

Duration of heating (hours)	Total vol. (cm³)	cm³ gas per g per day
1st period @ 100 °C, 30 h	29.09	0.662
2nd period @ 100 °C, 8 ¹ / ₂ h	8.57	0.689
3rd period @ 100 °C, 9 h	8.09	0.614

6 cm³/48 h @ 120 °C (NC with 12% N content)^[28]

NC used; viscosity average molecular weight = $511 \pm 7\%$, nitrogen content = $12.53 \pm 0.02\%$, degree of substitution = 2.42, crystallinity index = $22.9\%^{[34]}$:

Designation	VST						
		V _{gases} rele	ased (mL/g)				
	UN	UN A40 days A80 days A120 days					
NC T=353.15 K	1.52	4.84	5.19	6.83			
T=363.15 K	1.60	6.85	7.98	9.88			
T=373.15 K	1.85	15.97	17.15	18.09			
T=383.15 K	4.06	18.51	23.24	25.07			

NC used; viscosity average molecular weight = $514.783 \pm 7\%$, nitrogen content = $12.56 \pm 0.03\%$, degree of substitution = 2.44, crystallinity index = 23.7%^[36]: Vol. released gases = 1.62 ± 0.02 mL/g

Vapor pressure [atm @ °C]	0.0 mm Hg @ 60 °C (NC 13.45% N) ^[7] , 0.0 mm Hg @ 60 °C (NC 14% N) ^[7]						
Volatility [mg/cm²/h]	0.0 @ 60 °C (NC 12.6% N) ^[6] , 0.0 @ 60 °C (NC 13.45% N) ^[6] , 0.0 @ 60 °C (NC 14.14% N) ^[6]						
Burn rate [mm/s]	7.0 @ 100 atm pressure ^[21] , 50.0 @ 100 atm ^[21] , 100.0 @ 2,000 atm ^[21] , NC powders burn rapidly and have detonated under confinement or when burned in deep piles, burn rate varies considerably with composition, initial <i>T</i> and pressure under which burning occurs ^[24] , pyroxylin is highly flammable ^[28] , 0.3 (@ 1 atm, SMATCH/FTIR spectroscopy, 13% N NC) ^[32] , 0.4 (@ 1 atm, strand burner, 13% N NC) ^[32]						
Solubility [g/mL]	Data from ^[6]						
		12.6% N	13.45% N	14.0% N			
	Solubility in H ₂ O (g	/100 g) at	•				
	25 °C	Insoluble	Insoluble	Insoluble			
	60 °c	Insoluble	Insoluble	Insoluble			
	Solubility (g/100 g)) @ 25 °C in	•				
	Ether Insoluble Insoluble Insoluble						
	Alcohol	Very slightly soluble	Practically insoluble	insoluble			
	2:1-Ether:alcohol	Soluble	Slightly soluble (6–11%)	Practically insoluble (1 +%)			
	Acetone	Soluble	Soluble	Soluble			
	Soluble in acetone, acetic esters ^[15] , collodion is soluble in Et_2O - $EtOH^{[18, 28]}$, guncotton is insoluble in ether-alcohol, soluble in acetone and ethyl acetate ^[18] , CP_1 is insoluble in ether-alcohol ^[18] , CP_2 is soluble in etheralcohol ^[18] , NC (with N content >11%) is rel. poorly soluble in alcohol ^[11] , acetone does not dissolve NC with N <10% [11], NC with N <10% dissolves in dilute aqueous NaOH ^[11] , NC with N ≥10% is completely soluble in ethyl acetate ^[11] , NC with 11.8% N shows 99.3% solubility in ether-alcohol ^[11] , NC with 12% N shows 99.5% solubility in ether-alcohol ^[11] , NC with 11.9% N shows 99.3% solubility in ether-alcohol ^[11] , NC with 11.8% N shows 98.5% solubility in ether-alcohol ^[11] , most NC powders are soluble in Et_2O / $EtOH$ mixture or acetone ^[24] , insoluble in Et_2O 0 (Mwt. = Et_2O 10) (Mwt. = Et_2O 11) (Mwt. = Et_2O 12) (Mwt. = Et_2O 11) (Mwt. = Et_2O 12) (Mwt. = Et_2O 11) (Mwt. = Et						
	Pyroxylin is soluble in acetone or glacial acetic $acid^{[28]}$ Pyrocellulose is insoluble in Et_2O and water $^{[28]}$, 99% dissolves in 2:1 soln. of $Et_2O/EtOH^{[28]}$, 21% dissolves in ethyl nitroacetate $^{[28]}$, 11% dissolves in $EtOH^{[28]}$, pyrocellulose is soluble in acetone, ethyl acetate, methyl acetate, propylene oxide, nitromethane and nitroethane $^{[28]}$						

Guncotton is insoluble in water and $Et_2O^{[28]}$, very slightly soluble in $EtOH^{[28]}$, 4–10% soluble in $Et_2O/EtOH$ (2:1) soln. [28], soluble in acetone, ethyl acetate and other common organic solvents [28]

High-nitrogen cellulose is insoluble in water, $\rm Et_2O$, n-propyl alcohol, and $^i\rm PrOH^{[28]}$, 0.6% soluble in EtOH, 1% soluble in MeOH, 1.4% soluble in $\rm Et_2O/EtOH$ (2:1) soln., 20% soluble in methyl acetate, 42% soluble in nitromethane, 86% soluble in 1-nitropropane and 100% soluble in acetone, ether acetate, propylene oxide and amyl acetate $^{[28]}$

Blended NC is 37% soluble in Et₂O/EtOH (2:1) soln.^[28]

Classes of compounds which can dissolve NC^[11]:

Class of compound	Examples	Class of compound	Examples
Alcohols	MeOH, EtOH, PrOH	Organic acid esters	Carbonates e.g,. ethylcarbonate, formats, acetates e.g., ethyl acetate, oxalates, maleates, carbamates
Aldehydes	Acetalaldehyde, benzaldehyde, furfural	N-substituted carbonamides	Acetanilide, urea derivatives
Ketones	Acetone, methyl ethyl ketone, propione, acetophenone, cyclohexanone, camphor	Aliphatic nitro	Nitroparaffins e.g., NM, nitroethane
Ethers	MeONO ₂ , Et ₂ O, Pr ₂ O Bu ₂ O, ethers in mixtures with alcohols	Aromatic nitro	Nitrobenzene, nitrotoluene, dinitrobenzene, dinitrotoluene, TNT, nitroanisoles, dinitroanisoles
Inorganic acid esters	Nitrates e.g MeONO ₂ , nitrogylcol, NG, silicate e.g., ethyl silicate, phosphates <i>e.g.</i> , triphenylphosphate	Heterocycles	Pyridine

	Best ether-alcohol mixtures for NC with different % N contents ^[11] : % N content = 11.80, optimum vol. ether:alcohol ratio = $50:50^{[11]}$, % N content = 12.20, optimum vol. ether:alcohol ratio = $53:47^{[11]}$, % N content = 12.55, optimum vol. ether:alcohol ratio = $70:30^{[11]}$ NC (12.2 or 12.6% N) is soluble, that is, miscible in all proportions with Et ₂ O/EtOH (2:1 v/v) ^[29] , NC (13.4% N) poorly soluble in Et ₂ O/EtOH (2:1 v/v) ^[29]							
Viscosity [s]	180 (% N content = 11.8) ^[11] , 160 (% N content = 12) ^[11] , 138 (% N content = 12) ^[11] , 102 (% N content = 11.9) ^[11] , 93 (% N content = 11.8) ^[11] , 447 (% N content = 9.09) ^[11] , 1,800 (% N content = 10.41) ^[11] , 16,200 (% N content = 12.48) ^[11] , 18,600 (% N content = 13.02) ^[11] , 322,500 (% N content = 13.5) ^[11] Influence of exposure to light on the viscosity of NC ^[11] :							
	Time of exposure to light (h)	Visc NC (osity of s)	Time o	of exposi nt (<i>h</i>)	- 1	iscosity of C (s)	
	_	335		480		2	70	
	24	320	320		900		40	
	48	305						
Hygroscopicity	3% @ 30 °C, 90% RH (NC 12.6% N) ^[6] , ~ 2% @ 30 °C, 90% RH (NC 13.45% N) ^[6] , ~ 1% @ 30 °C, 90% RH (NC 14.14% N) ^[6] , pyrocellulose: 3% @ 30 °C with 90% RH ^[28] , blended NC (13.15% N): 2.5% @ 30 °C with 90% RH ^[28] , guncotton (13.45% N): 2% @ 30 °C with 90% RH ^[28] , high nitrogen cellulose (14% N): 1% @ 30 °C with 90% RH ^[28] , NC is somewhat hygroscopic but hygroscopicity decreases with increasing nitrogen content ^[4] The lower the % N content of NC, the more hygroscopic it is ^[15] Tendency of NC powder to uptake moisture (on exposure to an atmosphere almost saturated with water) ^[18] :							
	Period of exposure	(h)	0	24	48	72	96	
	External moisture (%)	1.02	1.15	1.40	1.47	1.57	
	Effect of alcohol on colloided pyrocellulose powder: colloidal pyrocellulose absorbs alcohol from an atmosphere saturated with alcohol vapor [18]; values for sample of colloidal pyrocellulose powder before and after exposure to atmospheres saturated with $\rm H_2O$ or alcohol [18]:							

Method of determining external moisture and	Exposur residual	-	Exposure to alcohol residual solvent		
residual solvent	Before	After	Before	After	
1 h @ 100 °C in open oven	3.12	2.82	2.41	4.57	
6 h @ 100 °C in open oven	2.81	2.36	2.22	3.92	
6 h @ 55 °C in vacuum	2.91	2.54	2.27	4.10	
55 °C to constant weight in open oven	3.00	2.72	2.58	4.25	
Over sulfuric acid to constant weight	2.95	2.39	2.32	4.10	

Most NC powders are hygroscopic and moisture accelerates dec. [24]

Hygroscopicity of NC for NC used in propellants (saturated atmosphere @ 25 °C), data from [29]:

N in NC (%)	H ₂ O (%)
13.40	1.19
13.15	1.57
12.60	2.36
12.2ß	2.91

Photosensitivity

Influence of exposure to light on the viscosity of NC^[11]:

Time of exposure to light (h)	Viscosity of NC (s)	Time of exposure to light (h)	Viscosity of NC (s)
_	335	480	270
24	320	900	240
48	305		

Pyroxylin is dec. by light^[28]

Compatibility

Dec. by addition of NC to an excess of 10% aqueous NaOH solution @ $70\,^{\circ}\text{C}^{[6]}$, effect of alcohol of colloided pyrocellulose powder: colloidal pyrocellulose absorbs alcohol from an atmosphere saturated with alcohol vapor^[18], most NC powders are hygroscopic and moisture accelerates dec.^[24], pyroxylin with 11.13% N hydrolyzes @ 1.71% of available nitrogen in 240 h in boiling water^[28], pyrocellulose with 12.6% N hydrolyzes @ 1.22% of available nitrogen in 240 h in boiling water^[28], guncotton with 13.44% N hydrolyzes @ 1.03% of available nitrogen in 240 h in boiling water^[28], highly compatible with MENA, DPA but degree of incompatibility with ANA (NC used synthesized from Alfa grass fibers)^[35]

Decomposition of NC, thermal stability values under different conditions from $^{[28]}$:

Decomposition medium	% available nitric acid liberated per hou	
	50 °C	97.5 °C
Heat	0.0000045	0.0028
Water	0.0000111	0.0051
0.06% nitric acid soln.	0.0000325	
0.035% nitric acid soln.	-	0.0088
0.035% sodium carbonate soln.	0.0006870	0.1358
95% ethanol	0.0000290	

NC used; viscosity average molecular weight = $511 \pm 7\%$, nitrogen content = $12.53 \pm 0.02\%$, degree of substitution = 2.42, crystallinity index = $22.9\%^{[34]}$:

Designation		VST			Bergmann and Junk (T= 405.15 K)				
		V _{gas}	_{es} relea	ısed (m	L/g)	V _N (_{ox} relea	sed (m	L/g)
			A40 days	A80 days	A120 days	UN	A40 days	A80 days	A120 days
NC + MENA	<i>T</i> =353.15 K	1.16	1.38	1.50	1.61	0.63	1.01	1.20	1.48
	T=363.15 K	1.25	1.45	1.62	1.73				
	<i>T</i> =373.15 K	1.36	1.68	2.02	2.42				
	<i>T</i> =383.15 K	2.76	5.44	6.69	7.04				
NC + DPA	<i>T</i> =353.15 K	0.91	1.00	1.28	1.57	0.62	0.97	1.19	1.47
	<i>T</i> =363.15 K	0.99	1.15	1.32	1.64				
	<i>T</i> =373.15 K	1.18	1.38	1.90	2.31				
	<i>T</i> =383.15 K	2.10	4.85	5.94	6.38				
NC + (MENA +	<i>T</i> =353.15 K	1.02	1.11	1.32	1.61	0.59	0.86	1.07	1.38
DPA)	T=363.15 K	1.07	1.21	1.46	1.69				
	<i>T</i> =373.15 K	1.21	1.45	1.96	2.29				
	<i>T</i> =383.15 K	2.06	4.72	6.00	6.35				

Storage lifetime predictions, NC used; viscosity average molecular weight = $511 \pm 7\%$, nitrogen content = $12.53 \pm 0.02\%$, degree of substitution = 2.42, crystallinity index = $22.9\%^{[34]}$:

		NC		N	IC + MENA	٩		NC + DPA		NC+	(MENA+	DPA)
	Years	Months	Days	Years	Months	Days	Years	Months	Days	Years	Months	Days
Unaged	10	10	29	24	4	11	26	7	23	27	11	5
A_40 days	2	1	9	18	2	18	20	11	9	22	8	25
A_80 days	-	1	35	4	8	1	8	4	10	12	2	13
A_120 days	-	1	0	4	0	12	4	11	23	6	11	15

NC used; viscosity average molecular weight = $514.783 \pm 7\%$, nitrogen content = $12.56 \pm 0.03\%$, degree of substitution = 2.44, crystallinity index = 23.7%, Bergmann and Junk and VST obtained results^[36]:

Designation	Bergmanı	VST	
	V _{NaOH} (mL/g)	V_{NO} released (mL/g)	V released gases (mL/g)
NC	4.79 ± 0.09	1.07 ± 0.02	1.62 ± 0.02
NC + MENA	2.72 ± 0.04	0.61 ± 0.01	1.10 ± 0.02
NC + DPA	3.20 ± 0.08	0.72 ± 0.02	0.90 ± 0.02
NC + (MENA + DPA)	2.23 ± 0.04	0.50 ± 0.01	1.04 ± 0.02

Bergmann-Junk [mL/g]

1.08 (vol. of NO gas released, 0.5 g sample @ 132 °C for 5 h, NC 12.56% N) $^{\rm [22]}$

NC used; viscosity average molecular weight = $511 \pm 7\%$, nitrogen content = $12.53 \pm 0.02\%$, degree of substitution = 2.42, crystallinity index = $22.9\%^{[34]}$:

Bergmann & Junk (<i>T</i> = 405.15 K)					
V _{NOx} released (mL/g)					
UN	A40 days	A80 days	A120 days		
1.18	2.16	2.98	3.72		

NC used; viscosity average molecular weight = $514.783 \pm 7\%$, nitrogen content = $12.56 \pm 0.03\%$, degree of substitution = 2.44, crystallinity index = 23.7%^[36]:

Designation	Bergmann and Junk				
	$V_{\text{NaOH}} (\text{mL/g})$ V_{NO} released (mL/g)				
NC	4.79 ± 0.09	1.07 ± 0.02			

Specific heat [cal/g/°C]	Pyrocellulose = 0.3478 @ 25 °C ^[28] , guncotton (13.4% N) = 0.3408 @ 25 °C ^[28] , high nitrogen cellulose (14.14% N) = $0.3362^{[28]}$
Rifle bullet impact test	Detonation in 100% of trials ^[28]
LLNL test	1.0–1.2 cm ³ /0.25 g sample (NC) ^[28]

	NC trinitrocellulose ^[15]	NC intermediate structure for % N of 12.3–13.2 (<i>Trommel</i>) ^[15]	NC trinitrate structure (<i>Trommel</i>) ^[15]
Chemical formula			
Molecular weight [g mol ⁻¹]			
Crystal system	Orthorhombic		
Space group			
a [Å]	12.40	13.81	12.94
<i>b</i> [Å]	25.4	10.45	25.66
c [Å]	9.0	7.92	892
α [°]	90		
β [°]	90	90	
γ [°]	90		
<i>V</i> [ų]			
Z			
$ ho_{ m calc}$ [g cm ⁻³]			
<i>T</i> [K]			

Crystal cell dimensions along the (101) axis for various NCs (Miles)[15]:

Compound	% N	d/Å along (101) (eq.) axis
Cellulose nitrated to:	11.14	6.67
	12.77	6.85
	13.57	7.25
NC 13.75%, denitrates to	11.52	7.10
NC 13.75%, denitrates to	10.42	7.05

Fig. 13 from^[14]

Fig. 13: The dependence of the enthalpy of formation of NC on percentage nitrogen. [14]

- [1] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [2] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [3] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [4] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.

- [5] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [6] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [10] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1975.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [12] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [13] F. Volk, Propellants, Explosives, Pyrotechnics, 1985, 10, 139–146.
- [14] Y. N. Matyushin, T. S. Konkova, L. I. Korchatova, *To the Question of the Enthalpy of Formation for the Nitrocellulose*, ICT **1998**, Karlsruhe, Germany, pp. 179-1–179-8.
- [15] T. Urbański, Ch. 10 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [16] T. Urbański, Ch. 11 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [17] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [18] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 256–273.
- [19] Y. N. Matyushin, T. S. Konkova, L. I. Korchatova, *To the Question of the Enthalpy of Formation for the Nitrocellulose*, ICT **1998**, Karlsruhe, Germany, 179-1–179-8.
- [20] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [21] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [22] D. Trache, A. F. Tarchoun, S. Chelouche, *Compatibility Testing of Nitrocellulose With Organic Stabilizers*, ICT **2018**, Karlsruhe, Germany, pp. 37-1–37-12.
- [23] L. W. Collins, L. D. Haws, *Thermochim. Acta*, **1977**, *21*, 1–38.
- [24] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [25] J. L. Austing, A. J. Tulis, C. D. Johnson, *Detonation Characteristics of Very Low Density Explosive Systems*, in Proceedings (International) on Detonation (5th), Pasadena, California, USA, 18th–21st August 1970.
- [26] E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, in Energetic Materials from Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [27] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [28] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.

- [29] A. M. Ball, Explosives Series Solid Propellants, Part 1, Engineering Design Handbook, AMC Pamphlet AMCP 706–175, Headquarters, US Army Materiel Command, September 1964.
- [30] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [31] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [32] T. B. Brill, Surface Chemistry of Energetic Materials at High Temperature, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 269–280.
- [33] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [34] S. Chelouche, D. Trache, T. A. Fouzi, K. Khimeche, J. Energet. Mater., 2019, in press.
- [35] D. Trache, A. F. Tarchoun, S. Chelouche, K. Khimeche, *Propellants, Explosives, Pyrotechnics*, **2019**, 44, in press.
- [36] S. Chelouche, D. Trache, A. F. Tarchoun, A. Abdelaziz, K. Khimeche, *Thermochim. Acta*, **2019**, 673, 78–91.

Nitroethane

Name [German, acronym]: Nitroethane, nitrous acid ethyl ester, nitrous ether

[nitroethan]

Main (potential) use: Secondary (high) explosive, melt cast

	Nitroethane				
Formula	C ₂ H ₅ NO ₂				
Molecular mass [g mol ⁻¹]	75.07				
Appearance at RT	Colorless or yellowish clear, with characteristic burning	, flammable, highly volatile liquid sweet taste ^[6]			
N [%]	18.66				
Ω(CO ₂) [%]	-95.9				
T _{m.p.} [°C]	114	,			
T _{b.p.} [°C]	114.0 ^[5] , 114 ^[7]	,			
$ ho$ [g cm $^{-3}$]	1.05 ^[1] , 1.0352 (@ 293 K) ^[2] (@ 15 °C) ^[5] , d ¹⁵ ₁₅ = 0.90 ^[6]	1.05 ^[1] , 1.0352 (@ 293 K) ^[2] , 1.053 ^[3] , 1.041 ^[4] , sp. gr. = 1.047 (@ 15 °C) ^[5] , $d_{15}^{15} = 0.90^{[6]}$			
Heat of formation	-24.5 kcal/mol (Δ H_f (g)°, cald (g)°, calcd., ccCA-S3) ^[8] , -25.4 -25.5 kcal/mol (Δ H_f (g)°, cald	$ \begin{array}{l} -1,917.4 \text{ kJ/kg (enthalpy of form.)}^{[3]}, -1,849.3 \text{ kJ/kg}^{[4]}, \\ -24.5 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ calcd., ccCA-P})^{[8]}, -26.3 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ calcd., ccCA-S3})^{[8]}, -25.4 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ calcd., ccCA-PS3})^{[8]}, \\ -25.5 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ calcd., G3})^{[8]}, -23.8 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ calcd., G3})^{[8]}, -24.4 \pm 1.0 \text{ kcal/mol } (\Delta H_f(g)^\circ, \text{ exptl.})^{[8]} \end{array} $			
	Calcd. (EXPLO5 6.04)	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,930	1,686 [H ₂ O (l)] ^[3]			
		1,608 [H ₂ O (g)] ^[3]			
<i>T</i> _{ex} [K]	2,535				
p _{C-J} [kbar]	93.1				
VoD [m s ⁻¹]	5,798 (@ 1.045 g cm ⁻³ , $\Delta_f H = -142 \text{ kJ mol}^{-1}$)				
$V_0 [{\rm L kg^{-1}}]$	955				

Thermal stability	Gradual dec. on storage whereby dec. is increased by air, light and moisture ^[6]
Solubility [g/mL]	Readily soluble in benzene, toluene, xylene, EtOH and acetone ^[5] , slightly soluble in water (with dec.) ^[6] , miscible with EtOH, $\rm Et_2O^{[6]}$
Photosensitivity	Gradual dec. on storage is increased by exposure to light, store with protection from light ^[6]
Refractive index	1.3901 (@ 24 °C) ^[5]

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] G. A. Shvekhgeimer, Zh. Org. Khim., 1966, 10, 1852-1856.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 229.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [6] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [7] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [8] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583-589.

Nitroethylpropanediol dinitrate

Name [German, acronym]: 2-Nitro-2-ethyl-1,3-propanediol dinitrate, 1,1-dimethylol-

1-nitropropane dinitrate, 2-ethyl-2-nitro-1,3-propanediol

dinitrate [Nitroethylpropandiolnitrat]

Main (potential) use: Secondary (high) explosive, melt cast

	Nitroethylpropanediol dinitrate			
Formula	$C_5H_9N_3O_8$			
Molecular mass [g mol ⁻¹]	239.14			
Appearance at RT	Liquid ^[7]			
IS [J]	Slightly less sensitive than NG ^[5]	, lower than that of PA ^[7]		
N [%]	17.57			
Ω(CO ₂) [%]	-43.5			
T _{m.p.} [°C]	335.3 ± 37.0 ^[1]			
ρ [g cm ⁻³]	1.474 ± 0.06 (@ 293 K) ^[1] , 1.44 ^[3] , 1.443 (@ 20 °C) ^[4] , sp. gr. = 1.443 (@ 20/20°) ^[5]			
Heat of formation	$-367.2 \pm 4.2 \text{ kJ/mol } (\Delta_i H^o_{solid})^{[2]}, -82.7 \text{ kcal/kg } (\text{@ } C^V)^{[5]}, -88.5 \text{ kcal/kg } (\text{@ } C^P)^{[5]}, -367.4 \text{ kJ/mol } (\text{enthalpy of form., exptl.})^{[8]}, -364.6 \text{ kJ/mol } (\text{enthalpy of form., calcd., emp.})^{[8]}, -384.9 \text{ kJ/mol } (\text{enthalpy of form., calcd., S-D method})^{[8]}$			
Heat of combustion	$\Delta_c H^o_{solid} = -2,886.5 \pm 4.2 \text{ kJ/mol}^{[2]}, -693.5 \text{ kcal/kg } (@ C^V)^{[5]}, -691.5 \text{ kcal/kg } (@ C^P)^{[5]}$			
		r		
	Calcd. (EXPLO5 6.03) Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,012	4,340 [H ₂ O (l)] ^[3]		
T _{ex} [K]	3,416			
p _{C-J} [kbar]	20.1 GPa			

	VoD [m s ⁻¹]	7,205 (@ TMD)	
ĺ	V ₀ [L kg ⁻¹]	818	1,032 ^[3]

Trauzl test [cm³, % TNT]	125% PA ^[7]
Ballistic mortar test	92% of blasting gelatin ^[4, 6]
Thermal stability	Withstands 82.2 °C for 5 min ^[4, 6]
Volatility	10 g sample left in crystallizer @ 40 °C for several days showed an average loss of 1.08 mg per sq decimeter of surface ^[5]
Viscosity [cP]	49 (@ 20 °C) ^[5]

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [2] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, www.webbook.nist.gov.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 229–230.
- [4] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [6] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [7] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [8] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.

Nitroglycerine

Name [German, acronym]: 1,2,3-Propanetriol trinitrate, glycerol trinitrate

[nitroglycerin, nitroglyzerin, Sprengol, NG, PTTN]
Main (potential) use: Gelatinous industrial explosives, component of

powders, gun propellants and smokeless solid rocket propellants, main component of dynamites^[32], ingredient in mining explosives^[32], component of smokeless double-base propellants^[32], can be used directly as high-explosive^[50], blasting of oil wells^[50],

manufacture of dynamite and propellants^[50], propellant

compositions^[7], dynamites^[7], blasting explosive (in combination with non-explosive materials)^[7]

	NG
Formula	C ₃ H ₅ N ₃ O ₉
Molecular mass [g mol ⁻¹]	227.09
Appearance at RT	Colorless oily transparent liquid (pure) ^[7, 32, 55, 59] , commercial is usually yellowish or pale brown liquid ^[7, 32, 55] , stable form = dipyramidal rhombic crystals ^[33] , labile form = glassy-appearing triclinic crystals ^[33] , colorless-yellow-pale brown liquid, color depends on purity ^[50] , clear, colorless, odorless, oily liquid ^[20] , technical product is usually yellowish or yellow-brown oily liquid ^[59] , sweetish and burning taste and sweetish odor ^[59] , liquid ^[65] , colorless, oily liquid; industrial NG usually light yellow or light brown (depends on the purity of raw materials and production method) ^[69]

IS [J]

 $0.2 \, \text{Nm}^{[13, \, 43]}$, 15 cm (2.94 J, 2 kg mass, 20 mg sample, B.M.)^[7, 8, 9], 0.55 (1 cm. 1 lb mass, P.A.)^[8, 9], 2 cm (2 kg mass, Kast apparatus), 44 cm (2 kg mass)^[15], 4 cm (2 kg mass, B.M.)^[15], 15 cm (2 kg mass, B.M.)^[16], 1 in (1 lb mass, 20 mg sample, P.A.)[17], 8-10 cm (samples absorbed on filter paper, 2 kg mass, Kast apparatus)^[7], 70 cm = minimum fall (50 g mass, B.M.)^[17], 10-12 cm (2 kg mass, Stettbacher)[33], NG @ 90° requires only 50% of the drop[33], frozen NG requires three times as much drop as NG @ RT^[33], 8-10 cm (2 kg mass, drop absorbed on filter paper)[33], 70 cm (500 g mass, Rinkenbach using small drop machine)[33], 1 cm (Julius-Peters)[35], 20 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials)[37]. $H_{50} = 15 \text{ cm}^{[39]}$, < 1.0 Nm (1 kg hammer, 10 cm, lower testing value not possible on ICT apparatus, strong bang)[41], <1.0 Nm (1 kg hammer, 10 cm, lower testing value not possible on ICT apparatus, strong bang, liq., $^{6}/_{6}$ positive tests, @ 20 °C, 51% air humidity)[44], $H_{50} = 20$ cm (2.5 kg mass, type 12 tool)^[46], 3.5 cm (2 kg mass, \sim 25 mg sample)^[47], 20–30 cm (0.5 kg, NG powder)^[53], force of≥100 g/cm with 5 cm diameter weight (P.A.)^[20], frozen NG is much less sensitive than liquid NG and sensitivity increases as temperature increases^[20], most sensitive is NG crystals in contact with NG liquid^[20], readily detonated if iron strikes iron or if porcelain strikes porcelain^[59], 4 cm (2 kg mass), heated NG more sensitive^[59], $H_{50\%} = 4$ cm (2.5 kg mass)^[67]

Olin apparatus, liquid NG^[21]:

Dropping mass (kg) Drop height (cm)		No. of trials	No. of initiations
1 1.0		20	0
1.5	1.0	10	5
1 2.0		10	4
1 3.0		10	9

Olin apparatus, solid NG, carried out @ 5-10 °C[21]:

Dropping mass (kg)	Drop height (cm)	No. of trials	No. of initiations
2.0	32	20	0
3.0 32		18	1
3.0	48	10	2

Olin apparatus, solid/liquid mixtures of NG, carried out @ 5-10 °C[21]:

Dropping mass (kg)	Drop height (cm)	No. of trials	No. of initiations
2.0	32	10	0
2.0	48	10	1

NG/acetone mixtures, B.M.[20]:

Composition, %		Impact test (cm)	
100 0		16	
90 10		23	
80 20		41	
75 25		60	
73 27		64	
70 30		100+	

Data from[69]

Phase	Impact force (kg m/cm²)	Explosion rate (%)
Liquid	0.08	10
	0.11	50
	0.40	100
Stable crystallite	0.51	10
	0.65	50
	0.82	100
Unstable crystallite	0.63	10
	0.78	50
	0.93	100

FS [N]

Explodes with steel shoe (friction pendulum test)^[9], 360, >353^[13], sensitive on rubbing in a porcelain mortar with rough surface^[32], torpedo friction = >150 cm (1 kg @ 80 °C, 0.5 m/s)^[34], friction wheel = >50 kg (1 kg @ 80 °C, 0.5 m/s)^[34], minimum hot spot temperature for ignition by friction = 450–480 °C^[34], >36 kg (Julius-Peters)^[35], 112 (tiny flames)^[41], 112 (tiny flames, 1 /₆ positive tests, @ 20 °C, 51% air humidity)^[44], 18 lb @ 3 ft/s (ABL)^[4], >150 cm (NG powder, torpedo friction, 1 kg @ 80 °C)^[53], >50 kg (NG powder, friction wheel, 0.5 ms⁻¹)^[53], more sensitive to friction when frozen^[59], wood mallet on stone = 100%^[63], wood mallet on soft wood = 0%^[63], wood mallet on hard wood = 0%^[63], NG prepared with deionized water is less sensitive and can withstand the friction on the surface of a mortar^[69]

ESD [J]	>12.5 (unconfined) ^[9]					
	Highest ESD energy @ 5,000 V for zero ignition probability ^[16] :					
		Highest E (J)		Type of ignition		
		Unconfined	Confined	Unconfined	Confined	
	NG @ 25 °C > 12.5	0.90	None	Deton.		
	NG @ 60 °C	-	0.056	None	Deton.	
	NG (liquid) or satura kV spark from an 8 µ saturated in filter pa an 8 micro farad cap	F condenser ^[17] per does not ex	@ 50-60°C	NG liquid or N	IG liquid	
N [%]	18.50					
Ω(CO ₂) [%]	+3.5					
T _{m,p.} [°C]	13.2 (stable modification) ^[7, 9, 16, 35, 50, 55, 62] , 2.2 (unstable (labile) modification) ^[7, 9, 16, 35, 50, 55, 62] , lower mpt. = labile form ^[32] , higher mpt. = stable form ^[32] , 10.2–13.8 (visual mpt., purified) ^[18] , 9.6–13.2 (visual mpt., sample as received) ^[18] , 10.9 (onset endotherm, DSC @ 10 °C/min) ^[18] , 13.2–13.5 (stable form) ^[33] , 1.9–2.2 (labile form) ^[33] , 13.2 ^[39, 49] , 13 ^[43, 63] , 13.5 ^[57] , 13.5 (rhombic crystals, stable form) ^[20] , 2.8 (glassy triclinic crystals, labile form) ^[20] , 13 ^[67] , 189.5 (onset), 192.1 (peak max), 193.9 (end 7) (DSC @ 10.0 K/min, pinhole cover) ^[48]					
	Form Nau	ckhoff Kast	Hib	bert Ha	ckel	
	Labile – 2.1–2.2 1.9 1.9					
	Stable 12.4 13.2 13.0 13.0					
	Freezing point = 13.2 (stable form, rhombic crystals) ^[20] , freezing point = 2.1 (labile form, glassy triclinic crystals) ^[20] , freezing point (labile form) = $2.1 ^{\circ} C^{[59]}$, mpt. (labile) = $2.8 ^{\circ} C^{[59]}$, freezing point (stable form) = $13.2 ^{\circ} C^{[59,65]}$, mpt. (stable) = $13.5 ^{\circ} C^{[59]}$, 13.2 (solidification point, stable modification, orthorhombic) ^[65] , 2.2 (solidification point, less stable modification, triclinic) ^[65] , 2.1 (crystallization T of melt for α form) and 2.8 (mpt., α form) ^[66] , 13.2 (crystallization T of melt for β form) and 13.5 (mpt., β -form) ^[66]					

	Solidification	rates into the stable	form @ different T ^[69] :
		1 - , , , , ,	
	<i>T</i> (°C)	Rate (mm/min)	
	5	0.145	
	0	1.183	
	-5	0.267	
	-17	0.125	
T _{glass transition} (T _{g1/2}) [°C]			:/min) ^[18] , labile form does not readily freeze ^{42]} , NG (both forms) tends to supercool ^[59]
T _{phase transitions} [°C]	samples with produced by n –40 °C with vi cooled NG ind produced by n crystalline NG to melting ^[32] , la form NG did n (Hackel) ^[32] , fo polyurethane, centralite I, ce promote form: with crystals coolid NG is methe form in the (stable form), gradually convolubely con	lower purity usually nixing NG with wood gorous stirring ^[32] , ir uces crystallization nixing NG with wood and allowing it to so labile form converts abile – stable form cot convert to stable-rmation of labile-for collodion, nitrocott ntralite II ^[32] , admixtation of stable form for one form results in leted to just above it premelting form ^[33] but under certain coverts to stable form after 1–2 verezes more readily NG is harder to freezer mod ^[59] , labile NG constitting ^[59] , NG has to combic) ^[66]	resforms it into labile form of crystals, crystallize as stable form ^[32] , labile form meal or pulverized glass and cooled to obtroducing a crystal of labile form into of labile form ^[32] , stable crystalline form meal and AN or NaNO ₃ ^[32] , readily melting oblidify results in same crystalline form prior to stable form after 1–2 week storage onversion does not occur readily; labileform NG after storage @ 4 months @ 0 °C cm promoted by addition of urethane, on, cyclonite, tetryl, dinitrobenzene, ures of siliceous earth, TNB or TNT coling to –20–60 °C and seeding or crystallization of the seed form ^[33] , if so mpt. and then cooled, it will solidify in labile within 2 weeks ^[55] , gradual conversion weeks (heat of conversion = 28 cal/g) ^[20] , than pure NG and usually in the stable see than technical NG but always solidifies everts to stable form gradually within we crystalline modifications: α (triclinic)
<i>T</i> _{b.p.} [°C]	dec. [32], 180 @ 245 ± 5 @ 760 with ebullition but actually re to resemble b @ 2 Torr and 1	o 50 mm Hg ^{[32, 33, 55, 6}) mm Hg (most proba o of gaseous product presents T of nonex polling) ^[20] , true boiling 180 °C @ 5 Torr ^[20] , s 10 (with dec.) ^[69] , 189	ins, dec.) ^[32] , not determined due to ^{59]} , 125 @ 2 mm Hg ^[32, 33, 55, 69] , dec. ^[35] , able value) ^[33] , gradual dec. @ 145 °C ts so appears to boil ^[55] , 145 (apparent, plosive dec. which is vigorous enough ag occurs @ reduced pressure: 125 °C ome dec. even occurs under high vacuum 0.5 (endo, onset), 192.1 (endo, peak max)

T _{dec.} [°C]	$143^{[2]}$, $145-150$ (dec.) $^{[16]}$, begins to dec. as low as $50-60$ °C with rapid dec. @ 135 °C (reddish color) $^{[33]}$, 149 (TGA midpoint) $^{[43]}$, 170 (onset), 196 (peak max) (DSC @ 5 °C/h, hermetic sealed Al pans) $^{[47]}$, 197.4 (onset), 199.9 (peak max), 202.1 (end 7) (DSC @ 10.0 K/min, pinhole cover) $^{[48]}$, 145 (gradual with ebullition of gaseous products) $^{[55]}$, > 180 (boils with dec.) $^{[69]}$, 197.4 (exo, onset), 199.9 (exo, peak max) (DSC 10 K/min) $^{[70]}$							
	<i>β</i> /K	$T_{\rm ot}$	T _i	Mass	s loss/%	L _{max} /%	T _p /°C	T _{oe} /°C
	min ⁻¹			Stage 1	Residue/%	min ⁻¹		
	5.0	145.8	82.4	99.63	0.42	-20.74	165.8	169.2
	7.0	154.9	83.9	98.51	0.38	-24.79	177.4	182.8
	10.0	161.4	93.2	99.42	0.25	-31.74	183.8	185.5
	15.0	171.2	98.1	99.41	0.06	-55.25	191.9	203.1
21	$T_{\rm p} = {\rm pea}$ $L_{\rm max} = {\rm m}$	k <i>T</i> of ma ax. mass	ss loss loss ra	rate, Stage te	f end dec., T_i = e 1 = from initial	al T to end	T od DTG	i peak,
ρ [g cm ⁻³]	1.6009 (@ 288 K) ^[1] , 1.591 (liquid @ 25 °C) ^[2,9] , 1.596 (liquid @ 20 °C) ^[2,9,55] , 1.600 ^[3] , 1.60 (loading ρ @ 25 °C) ^[15,16] , 1.596 (@ TMD) ^[20] , sp. gr. = 1.591 (@ 25°) ^[16] , $d_4^{20} = 1.5931^{[32]}$, sp. gr. = 1.614 @ 4 °C ^[32,69] , sp. gr. = 1.600 @ 15 °C ^[32,69] , sp. gr. = 1.591 @ 25 °C ^[32] , sp. gr. = 1.5995 @ 15 °C ^[32] , sp. gr. = 1.735 @ 10 °C (stable form) ^[32] , sp. gr. = 1.6009 @ 15 °C ^[33] , sp. gr. = 1.5910 @ 25 °C ^[33] , 1.59 @ 27 °C ^[35] , 1.59 ^[39,49] , 1.596 ^[45] , 1.59 ^[51] , 1.6 ^[52] , sp. gr. = 1.596 (20/15) ^[20] , sp. gr. $d^{20^{\circ}}_{15^{\circ}} = 1.596^{[59]}$, 1.6009 @ 15 °C ^[59] , 1.5910 @ 25 °C ^[59] , sp. gr. = 1.735 (frozen NG) ^[59] , 1.59 (liquid @ 25 °C) ^[62] , 1.595 ^[63] , 1.60 (liq.) ^[67] , $d^{16}_{16} = 1.5985^{[69]}$, sp. gr. = 1.590 @ 25 °C ^[69] , sp. gr. = 1.735 (stable form @ 100 °C) ^[69]							
Heat of formation	$-400 \ \text{cal/g}^{[9]}, -90.8 \ \text{kcal mol}^{-1[10,20]}, -1,632 \ \text{J/g} \ (\Delta H_{\rm f})^{[39]}, -378.3 \ \text{kJ/mol} \ (\Delta_{\rm f} H^{\rm o})^{[45]}, -1,633 \ \text{kJ/kg}^{[2]}, -1,673.6 \ \text{kJ/kg}^{[3]}, 81.7 \ \text{kcal/mol}^{[17]}, 400 \ \text{cal/g}^{[16,19]}, 359.8 \ \text{cal/g}^{[17]}, 415 \ \text{kcal/kg} \ (\textit{Brunswig})^{[32]}, 416 \ \text{kcal/kg} \ (\textit{Kast})^{[32]}, 370 \ \text{kcal/kg} \ (\textit{Taylor})^{[32]}, 85.3 \ \text{kcal/mol} \ (-\Delta H_{\rm f}, \text{ heat of form., } \textit{Rinkenbach} \ \text{based on heat of combustion values})^{[32]}, -392 \ \text{cal/g} \ (\Delta H_{\rm f})^{[35]}, -1,632 \ \text{kJ/kg} \ (\Delta H_{\rm f}, \text{ICT thermochemical database})^{[36]}, -371 \ \text{kJ/mol} \ (\Delta H_{\rm f})^{[51]}, 88.63 \ \text{kcal/mol} \ (\text{heat of form., } \Delta H)^{[59]}, 362.3 \ \text{kcal/kg} \ (\text{heat of form., } (Q))^{[59]}, -392.0 \ \text{kcal/kg} \ (\text{enthalpy of form.})^{[38]}, -113 \ \text{kcal/mol} \ (\text{calcd.})^{[67]}, -356.9 \ \text{kJ/mol} \ (\text{enthalpy of form., } \Delta H_{\rm f})^{[69]}, -90.8 \ \text{kcal/mol}^{[10]}$							
Heat of combustion	1,622.1 (@ C' , R $\Delta H_c = 6$, cal/ $g^{[59]}$	cal/g (@ inkenbac 761 J/g ^{[3}) C ^p) ^[17] , (h) ^[32] , Δ (g), –6.7 (cal/kg (368.36 kc H _c = 1,623 2 kJ/g (exp	C') ^[17] , 270.5 l al mol ⁻¹ (@ C ^p kcal/kg (@ C ^c tl.) ^[58] , heat of .541.39 (heat) ^[17] , ΔH_{c} = , <i>Rinkenba</i> combustic	368.4 kc ach) ^[32] , on ΔH = 1	al/mol 1,622

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,099	6,213 ^[4, 69]	6,095
		1,486 cal/g ^[16]	16,00 cal/g ^[9, 16, 62]
		1.48 kcal/g ^[31, 59]	1,486 cal/g (heat of detonation) ^[9]
		1.59 kcal/g [H ₂ O (l)] ^[26]	
		1.48 kcal/g [H ₂ O (g)] ^[26]	1,589 cal/g (@ const. vol.) [H ₂ O (l)] ^[17]
		1,485 kcal/kg (calcd., <i>Naoúm</i>) ^[32]	1,470 cal/g (@ const. vol.) [H ₂ 0 (g)] ^[17]
		1,455 kcal/kg (calcd., <i>Kast</i>) ^[32]	1,486 cal/g [H ₂ O (g)] ^[20]
		1,470 kcal/kg (<i>Escoles</i>) ^[32]	1,590 cal/g [H ₂ O (l)] ^[20]
		1,478 kcal/kg (<i>Berthèlot</i>) ^[32]	6,671 [H ₂ O (l)] ^[13]
		1,580 cal (<i>Brunswig</i>) ^[33]	6,214 [H ₂ O (g)] ^[13]
		6,671 J/g (calcd., ICT code) ^[36]	1,472 kcal/kg (@ 1.593 g cm ⁻³) $[H_2O vapor]^{[38]}$
		1,487 kcal/kg (@ 1.593 g cm ⁻³ , calcd.) $[H_2O \text{ vapor}]^{[38]}$	
		6,669 J/g (ΔH _e) ^[39]	
		6,675 J/g [H_2O (l)] (calcd., ICT thermodynamic code) ^[43]	
		6.18 MJ/kg (calcd., SD method) ^[61]	
		161.6 kcal/100 g (@ 1.60 g cm ⁻³ , constant volume) [H ₂ O (l)] ^[63]	

<i>T</i> _{ex} [K]	4,316	4,250 ^[4]	4,554
		3,270 (@ 1.6 g cm ⁻³) ^[19]	4,177 °C ^[17]
		5,730 °C (@ 1.60 g cm ⁻³ ,	4,260 ^[10]
		calcd., hydrodynamic theory) ^[19]	4,645 °C ^[16]
		3,185 °C (calcd., <i>Naoúm</i>) ^[32]	~3,470 °C (calcd./ exptl. not specified) ^[16]
		4,250 °C (calcd., <i>Kast</i>) ^[32]	3,470 °C (@ 1.60 g cm ⁻³) ^[19]
		3,153 °C (<i>Gody</i>) ^[32]	4,577 °C ^[20]
		3,005 °C (Wuich) ^[32]	4,000 ^[31]
		3,470 °C (<i>Brunswig</i>) ^[33]	3,500 ^[31]
		3,887 (calcd., ICT code) ^[36]	3,500
		4,556 (calcd., SD method) ^[61]	
		4,645 °C (@ 1.60 g cm ⁻³) ^[63]	
		4,250 °C ^[69]	
		3,750 (@ 1.60 g cm ⁻³ ; calcd. BKWR) ^[10]	
		4,550 (@ 1.60 g cm ⁻³ ; calcd. BKWS) ^[10]	
p _{C-J} [kbar]	23.7	277 (@ 1.592 g cm ⁻³ , calcd., K-J) ^[30]	25.6 GPa
		256 (@ 1.6 g cm ⁻³) ^[19]	253 ^[10, 26]
		124.0 MPa	253 (@ 1.6 g cm ⁻³) ^[19, 31]
		(calcd., ICT code) ^[36]	253 (@ 1.59 g cm ⁻³) ^[20]
		260 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[10]	253 (@ 1.592 g cm ⁻³) ^[30]
		,	10,000 atm ^[20]
		250 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[10]	0.241 Mbar ^[62]

VoD [m s ⁻¹]	7,850	7,450 (@ 1.6 g cm ⁻³) ^[4]	7,804
		7,940 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[10]	7,630 (@ 1.6 g cm ⁻³ loading ρ) ^[19]
		8,010 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[10]	7,650 (@ 1.6 g cm ⁻³ loading ρ) ^[19]
		7,440 (@ 1.60 g cm ⁻³ (TMD), calcd., R-P method) ^[29]	7,700 (@ 1.6 g cm ⁻³) ^[5, 6, 10]
		7,800 (@ 1.60 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[29]	1,600–1,900 (@ 1.6 g cm ⁻³ , liquid, glass confinement, 0.39 in charge diameter) ^[7,9,16]
		8,060 (@ 1.60 g cm ⁻³ , calcd., hydrodynamic theory) ^[19]	7,700 (@ 1.6 g cm ⁻³ , liquid, steel confinement, 1.25 in
		8,310 (@ 1.593 g cm ⁻³ , calcd., K-J) ^[48]	charge diameter) ^[7, 9, 16]
		8,060 (@ 1.60 g cm ⁻³ ,	7,700 (@ 1.59 g cm ⁻³) ^[12]
		calcd., K-W eqn.) ^[53]	7,700 (@ 1.6 g cm ⁻³ , when properly initiated) ^[20]
			1,500–2,000 (when improperly initiated) ^[20]
			7,700 (@ 1.60 g cm ⁻³) ^[14, 25, 31]
			1,560 (30 mm loading diameter, lead tube, directly detonated by no. 8 detonator) ^[24]
			915 (3.0 mm loading diameter, Al tube, directly detonated by no. 8 detonator) ^[24]
			1,130 (9.0 mm loading diameter, Al tube, directly detonated by No. 8 detonator) ^[24]

	7,800 (28 mm loading diameter, Plexiglass tube, detonated by no. 8 detonator, 15 g tetryl as transmitted detonation pellets) ^[24]
	8,560 (40 mm loading diameter, #12 antirust Al tube, detonated by no. 8 detonator, 20 g tetryl as transmitted detonation pellets) ^[24]
	6,970 (30 mm loading diameter, #12 antirust Al tube, detonated by no. 8 detonator, 20 g tetryl as transmitted detonation pellets) ^[24]
	5,870 (20 mm loading diameter, #12 antirust Al tube, detonated by no. 8 detonator, 20 g tetryl as transmitted detonation pellets) ^[24]
	7,700 (@ 1.50 g cm ⁻³) ^[26]
	29,200 ft/s (@ 1.59 g/mL) ^[50]
	8,000 (@ 1.60 g cm ⁻³) ^[53]
	9,150 (stable form, steel tube of 22 mm diameter, no. 6 detonating cap) ^[59]
	7,649 (@ 1.60 g cm ⁻³ , D_i) (D_i = ideal detonation velocity) ^[61]
	$6,741$ (@ 1.60 g cm ⁻³ , D_f) (D_f = detonation velocity for critical detonation diameter) ^[61]
	7,700 (@ 1.60 g cm ⁻³) ^[63]

			VoD ranges from 100– 8,000 m/s depending on charge diameter and configuration ^[69]
			VoD of NG increases with increasing charge diameter ^[69]
			920 can only be reached with charge diameter < 5 mm ^[69]
			See additional tables at end of section
V_0 [L kg ⁻¹]	782	715 (@ 0 °C) ^[4]	714
		715.53 L (@ 0 °C, 760 mm Hg, calcd. to T _{ex} of	715 ^[9, 62]
		$4,177^{\circ} = 11,663 \text{ L})^{[17]}$	716 [11, 13]
		715.7 (calcd., <i>Naoúm</i>) ^[32]	717.7 mL/g ^[24]
		715.1 (calcd., <i>Kast</i>) ^[32]	715 mL/g ^[20]
		Specific volume = 712 L (Brunswig) ^[33]	
		512 (without H ₂ O @ 25 °C) ^[43]	
		716 ^[59]	
		71.5 l/100 g (@ 1.60 g cm ⁻³ , @ STP) ^[63]	
		715.7 ^[69]	

Luminosity method: VoD = 7,650 m/s, T = 4,000 K, pressure = 250,000 atm^[17] variation of VoD with cartridge diameter, NG powder^[53]:

Diameter (cm)	VoD (m/s)	Diameter (cm)	VoD (m/s)
1.9	1,830	10.2	3,290
3.2	2,250	12.7	3,440
5.1	2,610	15.2	_
6.4	-	21.6	3,920
7.6	3,150		

Relationships between detonation velocity and charge configuration and detonator $^{[69]}$:

Charge medium	Charge diameter (mm)	Detonation condition	Detonation velocity (m/s)
Lead tube	30	No. 8 detonator	1,560
Aluminum tube	3.0	No. 8 detonator	915
Aluminum tube	9.0	No. 8 detonator	1,130
30CrMnSi tube	30	No. 8 detonator	3,780
Glass tube (3.0 mm wall thickness)	22	No. 8 detonator	1,165
Organic glass tube	28	No. 8 detonator, 15 g tetryl booster	7,800
30CrMnSi tube (1.0 mm wall thickness)	37.5	No. 8 detonator, 2 g mercury(II) fulminate booster	8,520
Organic glass tube	25	No. 8 detonator, 50 g tetryl booster	7,410
30CrMnSi tube	22	No. 8 detonator, 75 g tetryl booster	7,760
#12 corrosion-resistant Al tube	40	No. 8 detonator, 20 g tetryl booster	8,560
#12 corrosion-resistant Al tube	35	No. 8 detonator, 20 g tetryl booster	7,830
#12 corrosion-resistant Al tube	30	No. 8 detonator, 20 g tetryl booster	6,970
#12 corrosion-resistant Al tube	25	No. 8 detonator, 20 g tetryl booster	6,100
#12 corrosion-resistant Al tube	20	No. 8 detonator, 20 g tetryl booster	5,870

Data from^[69]

H ₂ O:NG	Detonation condition	Detonation velocity (m/s)
0.75:1	No. 8 detonator, 15 g tetryl booster	6,370
1:1	No. 8 detonator, 15 g tetryl booster	5,520
1.5:1	No. 8 detonator, 15 g tetryl booster	5,150
2:1	No. 8 detonator, 15 g tetryl booster	4,300

Detonation failure diameter, $d_{\rm c}$ [mm]	2 mm (neat NG in glass capillary) ^[45] Measurements of d_c and initiation pressure (P_i) on homogeneous explosive ^[56] :						
	Material Form ρ_0 (g/cc) P_i (kbar) d_c (mm)						
	NG	Liq., 20 °C	1.59	85	2.1		
	2.0 mm ^[61]		•				
Trauzl test [cm³, % TNT]	$181^{[7,9]}, 185\% \text{TNT}^{[14]}, 590 \text{cc} (10 \text{g sample cf. } 300 \text{cc for TNT})^{[16]}, 590 \text{cc} (10 \text{g} \text{NG with water tamping})^{[17, 33]}, 115\% \text{TNT}^{[20]}, 515-563 \text{cc}^{[25]}, 390 \text{cc} (\text{stable form of NG})^{[17, 20]}, 560 \text{cc} (\text{labile form of NG})^{[17, 20]}, 518 \text{cc} (\text{liq. NG})^{[17, 20]}, 550 (10 \text{g sample, sand tamping})^{[33]}, 550 \text{mL}^{[59]}, 520^{[64]}, 542^{[64]}$ Lead block expansion (10 g sample in glass tube) ^[33] :						
	Sp. gr. @ 20)°C Sand	l tamping	H ₂ O tampin	g		
	1.596	550		595 cc			
	Lead block ex	pansion val	ues of NG d	etonated by o	lifferent det	onators ^[69] :	
	Detonator	Lead blo	ck expansio	n value (cm)			
	1	190			_		
	2	225					
	6	460			_		
	8	590					
	Lead block ex	pansion val	ues of NG d	etonation ^[69] :			
	NG phase	Pure NG	(cm²) S	and filling (cm	²) Water	filling (cm²)	
	Stable crystallite	-	3	80	540		
	Unstable NG – 390 525 crystallite						
	Liquid	iquid – 390 530					
Lead cylinder	18.5 mm ups	18.5 mm upset of lead cylinder when exploded by MF cap ^[59]					
Sand test [g]	51.5 g (200 g 48 g for TNT) [[]		id) ^[7, 9] , 120 ^c	% TNT ^[14, 20] , 5	1.5 g sand	crushed (cf.	

Ballistic mortar test	140% TNT ^[7, 9, 14, 16]					
Ballistic pendulum test	RDX and PETN are more powerful than NG ^[20]					
Koenen test	Exploded after 24 s	with nozzle pla	te containing a	hole of 24 mm diameter ^[58]		
Initiation efficiency	Can be fired with a c achieved using no.8 no. 8 cap to cause co	blasting cap ^{[50}), rel. insensiti	but full power only ve to detonation, requires		
Gap test	tubes and placed en Detonation of one tu following maximum (NH ₄) ₂ SO ₄ = detonati not transmitted ever	Blends of 15% NG and 85% inert salts packed into two 30–32 mm diameter tubes and placed end to end on dry sand at a specific distance apart. Detonation of one tube resulted in detonation of the other tube at the following maximum gaps: $NH_4Cl = 25$ cm, $NaCl = 11$ cm, $NaHCO_3 = 10$ cm, $(NH_4)_2SO_4 =$ detonation not transmitted even at 0 cm, $(NH_4)_2CO_3 =$ detonation not transmitted even at 0 cm, talc = detonation not transmitted even at 0 cm, talc = detonation not transmitted even at 0 cm.				
5 s explosion	200-205 ^[19] , 222 ^[7, 16]	6, 20, 62]				
T[°C] 5 s ignition T[°C] Explosion T[°C]	222 (US value) ^[9, 16, 19, 40] , 220–222 (Russian value, explodes) ^[16, 19] Explosion T @ various times of exposure (3 mg samples, detonation) ^[17] : 0.108 s @ 261 °C ^[17] , 0.675 s @ 230 °C ^[17] , 3.75 s @ 211 °C ^[17] , no action @ 205 °C ^[17] , 215–250 (NG dropped onto metal plate; if T >420 °C NG burns gently) ^[32] , 215 ^[33] , iron heated to red heat in contact with NG results in explosion ^[59] , explodes on rapid heating to 180 °C ^[59]					
Initiation T[°C] Ignition T[°C] Detonating T[°C]	200–205 (bath temp (calorimetric) ^[40] 188 ^[34] , 200 ^[33] 218 ^[50] , detonated by			g rate) ^[32, 40] , 155 apid heating to 200 °C ^[59]		
Thermal ignition T [°C]	200 ^[62]					
100 °C heat test [% mass loss]	3.6% in first 48 h ^{[9, 1}	^{6]} , 3.5% in sec	ond 48 h ^[9, 16] , ı	no explosion in 100 h ^[9, 16]		
Thermal stability	Gas evolved @ atmo	spheric pressu	ire, in cc ^[9] :			
	Sample wt. (g)	1.6	1.6			
	<i>T</i> (°C)	65	75			
	Time (h)	20	40			
	Vol. of gas (cc)	Nil	Nil			
	Stability @ 75 °C (loosely covered weighing dish): 28.0% began to dec. after 12 days ^[17] , 54.0% after 18 days ^[17] , complete dec. of 73.5% after 25 days ^[17] dec. begins @ $50-60$ °C ^[20] , NG is quite stable @ $T<50$ °C in storage tests over period of years but dec. increases rapidly higher $T^{[20]}$					

Moles of gas produced/mole compound on heating [27]: 2.54 after 22 h @ 120 °C [27], 3.2 mol after 72 h @ 120 °C [27], 3.55 after 22 h @ 220 °C [27], 3.50 after 72 h @ 220 °C [27], 3.96 after 22 h @ 320 °C [27], 4 after 72 h @ 320 °C [27]

11 cm $^3/g$ gas released @ 100 °C, 16 h, 1 g sample, thermostating with LAVA set-up $^{\rm [40]}$

Nonisothermal TG data, $\beta = {}^{\circ}C/\min$, $T_{ei} = \text{onset } T$ of TG peaks, $T_p = \text{peak } T$, $T_{pe} = \text{endset } T$ of TG peaks, $T_b = \text{critical } T$ for thermal dec. [48]:

β (°C/min)	T _{ei} (°C)	<i>T</i> _p (°C)	T _{oe} (°C)	T _b (°C)
5.0	145.8	165.8	169.2	114.2
7.0	154.9	177.4	182.8	
10.0	161.4	183.8	185.5	
15.0	171.2	191.9	203.1	

Stable indefinitely @ RT^[50], quite stable on storage @ 50 °C for several years^[55], rapid dec. @ T > 50 °C^[55], stable @ T < 50 °C, but higher T causes dec. which rapidly increases as T increases^[7], dec. with liberation of HNO₃ when steam distilled^[59], hydrolysis @ T > 80 °C in $H_2O^{[59]}$, stable @ RT but begins to dec. @ T > 50 °C^[59], converted to acidic compounds after 3–4 days @ 75 °C^[69], dec. can be slow if the dec. products are removed^[69], in sealed system, NO_x produced during decomposition catalyze the dec. reaction^[69], critical T for thermal dec. = 114.2 °C^[70]

Vacuum stability test [cm³/h]

1.6 cc/g/6 h @ 40 °C^[9], 11 + cc/g/16 h @ 100 °C^[9], 1.6 cc/g/5 h @ 90 °C^[16], 11 + cc/g/16 h @ 100 °C^[16], 0.519 mL/g @ 90 °C/40 h (1 g sample)^[47], 12 $\frac{3}{4}$ h (time required for >12 cc gas to be produced@ 100 °C, 2.4 g sample)^[60]

Vapor pressure [mm Hg/°C]

Vapor pressure values from [9]:

°C	mm Hg	°C	mm Hg
20	0.00025	60	0.0188
30	0.00083	70	0.043
40	0.0024	80	3.098
50	0.0073	90	0.23

 $\begin{array}{l} 0.00038/20^{[17]},\,0.0081/50^{[17]},\,0.00025/20^{[17]},\,0.00083/30^{[17]},\,0.0024/40^{[17]},\\ 0.0072/50^{[17]},\,0.0188/60^{[17]},\,0.043/70^{[17]},\,0.098/80^{[17]},\,0.29/93.3^{[17]},\\ 0.0015/20^{[26]},\,0.00130/15^{[17]},\,0.0177/25^{[17]},\,0.00459/35^{[17]},\,0.01294/45^{[17]},\\ 0.03587/55^{[17]},\,dec.\,begins\,\&\,50-60\,^{\circ}C^{[17]},\,580\,ppb\,\&\,26\,^{\circ}C\,(av.\,value,\,two\,different\,trapping\,methods)^{[28]},\,0.00012\,mm\,Hg\,\&\,25\,^{\circ}C\,(Chiaraviglio)^{[32]},\\ 0.011\,mm\,Hg\,\&\,20\,^{\circ}C\,(Nao\'um,\,dynamic\,method)^{[32]},\,0.036\,mm\,Hg\,\&\,60\,^{\circ}C\,(Nao\'um,\,dynamic\,method)^{[32]},\,0.036\,mm\,Hg\,\&\,60\,^{\circ}C\,(Nao\'um,\,dynamic\,method)^{[32]},\,0.00177\,Torr\,\&\,25\,^{\circ}C^{[49]},\,740\,ppb_{v}\,(equilibrium\,vapor\,pressure\,\&\,300\,K)^{[54]},\,5.1\times10^{6}\,ppb_{v}\,(equilibrium\,vapor\,pressure\,\&\,400\,K)^{[54]},\,2\times10^{-4}\,mm\,Hg\,\&\,25\,^{\circ}C^{[57]},\,0.0060\,mm\,\&\,60\,^{\circ}C^{[59]},\,0.0013\,Torr\,\&\,15\,^{\circ}C^{[20]},\,0.0015\,Torr\,\&\,20\,^{\circ}C^{[20]},\,0.00177\,Torr\,\&\,25\,^{\circ}C^{[20]},\,0.00459\,Torr\,\&\,35\,^{\circ}C^{[20]},\,0.0075\,Torr\,\&\,40\,^{\circ}C^{[20]},\,0.01294\,Torr\,\&\,45\,^{\circ}C^{[20]},\,0.03587\,Torr\,\&\,55\,^{\circ}C^{[20]},\,0.066\,Torr\,\&\,60\,^{\circ}C^{[20]} \end{array}$

Vapor pressure (Marshall, Peace)[32, 33, 69]:

Vapor pressure (mm Hg)	T (°C)	Vapor pressure (mm Hg)	T (°C)
0.00025	20	0.0188	60
0.00038	30	0.043	70
0.0024	40	0.098	80
0.0072	50	0.29	93.3

Vapor pressure according to *Brandner*^[32]:

Vapor pressure (mm Hg)	T (°C)	Vapor pressure (mm Hg)	T(°C)
0.0012	30	0.0047	45
0.0020	35	0.0081	50
0.0030	40		

Saturated vapor pressure (Pa) (statistical and dynamic gas chromatography) $^{[42]}$: 0.10 @ 25 °C, 0.17 @ 30 °C, 0.49 @ 40 °C, 1.16 @ 50 °C, 2.86 @ 60 °C $^{[42]}$

Vapor pressures of NG/diethyleneglycol dinitrate mixtures^[69]:

Diethyleneglycol	Total vapor pressure (mm Hg)				
dinitrate (%)	10 °C	30 °C	40 °C	50 °C	
10	0.0027	0.0186	0.0433	0.1002	
20	0.0051	0.0345	0.1159	0.1841	
40	0.0093	0.0624	0.1475	0.3314	
60	0.0137	0.0874	0.2417	0.6316	

Volatility

 $0.11~mg/cm^2/h~@~60~^{\circ}C^{^{[9,\,16,\,20,\,32]}},~0.153\times10^{-3}~g/cm^2/24~h~lost~@~25~^{\circ}C^{^{[15]}}$ Mass loss from 20 g NG in 24 h in an open dish of 70 mm diameter: 0.2% @ $50~^{\circ}C^{^{[17]}},~1.6\%$ @ $75~^{\circ}C^{^{[17]}},~10\%$ @ $100~^{\circ}C^{^{[17]}}$

Evaporation rate (20 g sample on 70 mm diameter watch-glass for 24 h, mass loss): 0.04 g (0.2%) @ 50 °C^[32], 0.32 g (1.6%) @ 75 °C^[32], ~ 2 g (~10%) @ 100 °C^[32]

0.1 mg \bullet cm² \bullet h $^{-1}$ (@ 60 °C)^[39], 0.45% mass loss in 10 days @ 20 °C^[59], 1.68% mass loss @ 50 °C in 10 days^[59]

Slightly volatile^[69], 0.11 mg/cm²/h @ 60 °C^[69]

20 g NG in glass tube, 70 mm diameter heated @ different T for 24 h^[69]:

T (°C)	T (°C) Volatile (g) % of volatile	
50	0.04	0.2
75	0.32	1.6
100	2.00	10.0

Burn rate [mm/s]

Not easily flammable^[50], unconfined NG in very small quantities burns without explosion^[55], very slight confinement of NG causes detonation with a loud noise if exposed to flame^[55], ignition of NG with gas flame or hot wire in 20 mm diameter glass tube only partially combusts NG and no explosion occurs^[69], igniting preheated NG can causes rapid explosion^[69], combustion velocity = ~ 0.075 cm/s up to 0.13 cm/s @ 98 °C under the critical pressure of 320 mm Hg^[69], NG can be combusted constantly under 400 mm Hg^[69], 0.23 cm/s under standard atmospheric pressure^[69]

Combustion velocity and pressure, approx. values from graph^[69]:

P (mm Hg)	v (cm/min)
200	5
400	6
600	8
800	13
900	23

Solubility [g/mL]

Values from $^{[9]}$: 1% in CS $_2$ @ ambient $\mathcal{T}^{[9]}$, infinite @ 25 °C in ether $^{[9]}$, >100% in 2:1 ether:alcohol @ 25 °C $^{[9]}$, soluble in all proportions in MeOH, acetone, ether, ethyl acetate, amyl acetate, methyl nitrate, ethyl nitrate, nitroglycol, tetranitrodiglycerine, acetic acid, benzene, toluene, phenol, pyridine, xylene, nitrobenzene, p-nitrotoluene, liquid DNT, chloroform, ethyl chloride, ethyl bromide, tetrachloroethylene, dichloroethylene and trimethyleneglycol dinitrate $^{[9]}$

Solubility in NG of^[9]:

Alc	ohol	DI	NT	TI	NT	W	ater
°C	%	°C	%	°C	%	°C	%
0	3.5	20	35	20	30	25	0.06
20	5.4						
50	∞						

Solubility of NG in [9]:

Wate	[9, 69]	Alcol	hol ^[9]	Trichloroe	ethylene ^[9]	CCI	[9] 4
°C	%	°C	%	°C	%	°C	%
15	0.16	0	37.5	Rm	22	Rm	2
20	0.18	20	54.0				
50	0.25						

 $0.173 \text{ g/L H}_2\text{O} @ 20 \,^{\circ}\text{C}^{[20]}, 0.191 \,^{\circ}\text{g/L H}_2\text{O} @ 30 \,^{\circ}\text{C}^{[20]}, 0.228 \,^{\circ}\text{g/L H}_2\text{O}$ @ 50 °C, 0.246 g/L H_2O @ 60 °C^[20], 37.5 g/100 g EtOH (abs.) @ 0 °C^[20], 54 g/100 g EtOH (abs.) @ 20 ${}^{\circ}$ C^[20], 40 g/100 g 96% EtOH @ 20 ${}^{\circ}$ C^[20], 20 mL/L CCl₄^[20], 20 parts/100 parts trichloroethylene^[20], 12.5 g/L CS₂ @ RT^[20], hot EtOH and NG are misicible in all proportions^[20], NG is miscible in all proportions with Et₂O, acetone, glacial acetic acid, ethyl acetate, benzene, toluene, phenol, nitrobenzene, CHCl₃, ethylene chloride and nitric esters such as glycol dinitrate^[20], 100 g/35 g dinitrotoluene @ 20 °C^[20], hardly miscible with $H_2O^{[32]}$, 1.6 g dissolves in 1 L H_2O @ 15 °C^[32], 1.8 g dissolves in 1 L H₂O @ 20 °C^[32], 2.5 g dissolves in 1 L H₂O @ 50 °C^[32], soluble in most common organic solvents^[32], NG acts as a good solvent^[32], completely miscible in all proportions @ RT with MeOH, ethylacetate, anhydrous CH₃COOH, benzene, toluene, xylenes, phenol, nitrobenzene, nitrotoluenes, pyridine, CHCl₃, dichloroethane^[32, 33], hot absolute EtOH, PrOH, iPrOH and amyl alcohol mix with NG in all proportions^[33], 37.5 g dissolved in 100 g abs. EtOH @ 0 °C^[33], 54.0 g dissolves in 100 g abs. EtOH @ 20 °C[33], NG dissolves aromatic nitro compounds such as DNT or TNT in all proportions when warm^[33], 100 g NG dissolves 3.4 g EtOH @ 0 °C^[33], 100 g NG dissolves 5.5 g EtOH @ 20 °C^[33], 1.8 g dissolves in 1 L H₂O @ 20 °C^[33], aqueous solubility = 1,950 mg/L @ 25 °C^[49], slightly soluble in CCl₄^[50], very soluble in acetone, Et₂O, EtOH and MeOH^[50], 1.95 g/L in H₂O @ 25 °C^[52], practically insoluble in cold water^[55], soluble in EtOH^[55], miscible in all proportions with organic solvents and nitric esters^[55], 1,800 mg/L in H₂O @ 25 °C^[57]

Solubility of NG in EtOH/H₂O mixtures^[32, 69]:

Solvent	T(°C)	NG (g) dissolved in 100 cm ³ solvent
Abs. EtOH	0	~ 30
Abs. EtOH	20	~ 43
96% EtOH	20	31.6
50% EtOH	20	1.8
25% EtOH	20	0.7

NG is miscible in any proportions @ RT with MeOH, acetone, Et₂O, amyl acetate, acetic ether, glacial acetic acid, benzene, toluene, xylene, phenol, pyridine, nitrobenzene, CHCl₃ and CH₂Cl₂^[59], insoluble in glycerin^[59], poorly soluble in EtOH @ RT but miscible in all proportions @ elevated $T^{[59]}$, solubility of NG in EtOH decreases with increasing dilution of EtOH and is poorly soluble in 50% EtOH and precipitates out of soln. at high dilutions^[59], poorly soluble in CS₂^[59], readily dissolves nitro compounds^[59], NG forms low-melting eutectic mixtures with many common nitro compounds^[59]. NG is readily miscible with many nitric esters^[59], solubility in H₂O: 0.14 parts per 100 parts H₂O @ 25 °C, 0.24 parts in 100 parts H₂O @ 60 °C^[59], slightly soluble in water^[69], 1.0 g/L in 8% aqueous sodium carbonate solns.^[69], misible with MeOH, ethyl acetate @ RT^[69], 20 parts NG dissolve in 100 parts trichloroethylene [69], almost insoluble in tetrachloroethylene and pentachloroethane^[69], solubility in EtOH depends on *T* and water content: solubility increases with increasing T, NG is miscible with 96% or anhydrous EtOH @ 50 °C^[69], slightly soluble in polyols^[69], partially soluble in propanol, isopropanol and pentanol @ RT and become miscible @ 90-100 °C[69], 20 g/100 g ethylene glycol @ 200 ${}^{\circ}$ C^[69], 12 g/100 g ethylene glycol @ 80 °C^[69], very low solubility in glycerol^[69], soluble in 65% acetic acid^[69], insoluble in CS₂^[69], slightly soluble in gasoline, crude oil, kerosene, paraffin oil, lubricants, petrolatum oil and other aliphatic hydrocarbons [69], miscible with vegetable oils^[69], slightly soluble in ammonia, NaOH, KOH aqueous solns. [69], highly soluble in conc. sulfuric acid [69], miscible with anhydrous nitric acid[69]

Solubility in aliphatic hydrocarbons^[69]:

Solvent	T (°C)	Solubility (g/100 g)
Crude oil	20	~ 1.5
	80	~6.0
Gasoline	20	~ 2
	80	~ 6
Refined oil	20	~ 4
	80	~ 9
Olive oil	20	20
	100	25
Castor oil	20	26
	100	30

Solubility of NG in water^[69]:

T(°C)	g NG/100 g water
10	0.14
20	0.15
30	0.16
40	0.18
50	0.21
60	0.25

Solubility in sodium carbonate soln. @ $20-22 \, {}^{\circ}C^{[69]}$:

Na ₂ CO ₃ (%)	NG in aq. phase	NG content after	
	after 1 h shaking	after 3 h shaking	3 h shaking and Et ₂ O extraction (%)
1.39	0.10	0.12	0.10
4.95	0.05	0.06	0.03
10.31	0.02	0.05	0.01

Viscosity [poises]	Values from	^[9] :	
	°C	Centipoises]
	10	69.2	1
	20	36.0]
	30	21.0	
	40	13.6]
	50	9.4	
	60	6.8	
	0.21 cP @ 3 1.033 @ 5.1 H ₂ O < NG << (Rinkenback	0 °C ^[20] , 0.094 cP @ L °C ^[32] , 0.352 @ 20.	${}^{\circ}C^{[17]}$, 0.0938 @ 50 ${}^{\circ}C^{[17]}$, 0.36 cP @ 20 ${}^{\circ}C^{[20]}$, 50 ${}^{\circ}C^{[20]}$, 0.068 cP @ 60 ${}^{\circ}C^{[20]}$, 57.38 cP ^[32] , 0 ${}^{\circ}C^{[32]}$, 0.0875 @ 55.0 ${}^{\circ}C^{[32]}$, viscosity: P @ 20 ${}^{\circ}C$ (de Kreuk) ${}^{[32]}$, 35.5 cP @ 20 ${}^{\circ}C$
	T (°C)	Viscosity (η)]
	5.1	1.033	1
	20.0	0.352]
	55.0	0.0875]
Dielectric constant, ε_{20}	10.25 ^[32] , 19	9.25 ^[69]	
Dipole moment, μ [D]		2 (pure) ^[69] , 3.16 (so achloromethane) ^[69]	ln. in benzene) ^[69] , 2.56 (in hexane) ^[69] ,
Heat of evaporation [kcal/mol]	calcd.) ^[32] , Δ	H _v = 20.38 @ 140 K nskii, calcd.) ^[32] , eva	$^{2]}$, $\Delta H_{v} = 20.64 @ 100 \text{ K}$ (<i>Roginskii</i> , (<i>Roginskii</i> , calcd.) ^[32] , $\Delta H_{v} = 20.11 @$ poration enthalpy = 79.1 kJ/mol ^[42]
	<i>T</i> (K)	Enthalpy of vaporiz	zation, Δ <i>H</i> (kJ/mol)
	100	86.36	
	140	85.27	
	180	84.14	

Heat of crystallization	33.2 (stable form) ^[32, 59] , 5.2 (labile form) ^[32, 59]				
[cal/g]	33.2 (stable form, formation of rhombic crystals) ^[20] , 5.2 (labile form, formation of glass triclinic crystals) ^[20]				
	Data from ^[69]				
	Phase		Heat of crystallization (J/g)		
	Stable NG 138.91				
	Unstable NG 21.76				
	Stable NG transformed from unst	able NG	117.20		
Heat of transformation [cal/g]	Liquid \rightarrow labile form = 5.2 ^[9] , labile \rightarrow stable form = 33.2 ^[9]	form → s	table form = 28.0 ^[9, 32, 59] , liquid		
Hygroscopicity	0.06% @ 30 °C with 90% RH ^[9] , moderately hygroscopic and presence of moisture increases decomposition ^[50] , nonhygroscopic ^[7] , 0.12% in 24 h @ 100% RH ^[59]				
Radiation sensitivity	Data obtained from explosives afte	r exposur	e to gamma radiation ^[62] :		
	Weight of sample (g)				
	Vol. of gas produced (mL/g) after:				
	10 days				
	20 days 5.0]		
	30 days	7.5]		
	40 days	9.0			
	50 days	10.8]		
	90 days	_]		
	Total irradiation time (days)	56			
	NG irradiated at ambient T using 0.41 MeV $^{198}_{79}$ Au γ -rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose ^[68] :				
	Gamma energy absorbed, 10 ⁷ R Gas evolved (mL/g) @ STP				
	1	1 2.5			
	2	5			
	3 6.5				

	Critical doses and T to initiate NG by pulsed high-energy electrons, a estimated 50% initiation dose ^[68] :					
	Explosive Critical dose (J/g) Ignition T (°C)				1	
		Calcd.	Exptl. ^a	Calcd.	Exptl.	1
	NG	90.4		255	215-218]
	Starts to dec. under UV irradiation within 1–2 min and stops dec. in 2–3 days ^[69] , instantly detonates on irradiation with 900 J of UV radiation @ 100 °C ^[69] , very sensitive to γ -rays and decomposes under γ -ray irradiation ^[69]					
Compatibility	Hydrolysis with acid: 10 days @ 22 °C <0.002% $^{[9]}$, 5 days @ 60 °C 0.005% $^{[9]}$, dec. by conc. sulfuric acid $^{[20]}$, rapid dec. by aq. NaOH soln. if EtOH is added $^{[20]}$, slight hydrolysis occurs with H_2O producing <0.02% acidity in 10 days @ 22 °C or 0.05% acidity in 5 days @ 60 °C $^{[20]}$, NG does not cause significant corrosion of metals $^{[20]}$, rust increases dec. of NG $^{[20]}$, presence of more than traces of free acid causes NG to be unstable with dec. within a few days $^{[20]}$, moderately hygroscopic and presence of moisture increases dec. $^{[50]}$, contact with free acids increases dec. $^{[50]}$, does not cause significant corrosion of metals $^{[55]}$, traces of free acid makes NG unstable with respect to dec. $^{[55]}$, dec. in acids $^{[59]}$, readily saponified by caustics $^{[59]}$, stability is affected by trace impurities especially metals $^{[69]}$, mixture of 0.3 g NG and 5% nitric acid in sealed glass tube explodes in 6 h $^{[69]}$, dec. starts in 30 h if water content >0.01% and in 2 h if 1.5% water content					
ΔH _{melt} [J/g]	-55.6 (absorption, unreliable value due to evaporation at low heating rates) ^[48]					
ΔH _{dec.} [J/g]	24.8 (heat release, unreliable value due to evaporation at low heating rates) $^{[48]}$, -6.37 kJ/g (max heat of dec., calcd. CHEETAH) $^{[58]}$, 0.012 kJ/g (heat value – heat of dec., calcd. CHEETAH) $^{[58]}$, 5.6 kJ/mol ($\Delta H_{\rm d}$, heat of dec.)					
Diffusion coefficient (air) [cm²/s]	0.070 ^[49]					
Diffusion coefficient (water) [cm²/s]	6.95 × 10 ^{-6[49]}					
Log K _{ow}	1.62 ^[49, 57] , 1.77 ^[49] , 1.62 @ 25 °C ^[52]					
Log K _{oc}	2.77 ^[49] , 1.66 ^[49]					
Biodegradation	Readily undergoes aerobic biodegradation ^[49]					
Refractive index	$n^{\rm D}_{20} = 1.4732^{\rm I}$	^{9, 20, 55, 69]} , <i>n</i> ^D ₂₅	$= 1.4713^{[9]}, n^{21}$	$_{\rm D} = 1.472^{[69]}$	P]	
Rifle bullet impact test	100% explosions in trials ^[9] , explodes on bullet impact ^[59]					
Specific heat [cal/g/°C]			d) ^[9] , 0.356 @ 3 rm) ^[69] , 1.318 J/			

82.1 °C KI test [min]	10 + [9]
Fragmentation test	Fragmentation test, 20 mm HE, Mark 1, projectile, total no. of fragments for $NG = 22^{[9]}$
Heat of crystallization [cal/g]	
Flash point [°C]	200-205 ^[59]

	Nitroglycerine ^{[22, 23]†}	β-NG (stable modification) ^[66]
Chemical formula	C ₃ H ₅ N ₃ O ₉	C ₃ H ₅ N ₃ O ₉
Molecular weight [g mol ⁻¹]	227.09	227.09
Crystal system	Orthorhombic	Orthorhombic
Space group	P n a 2 ₁ (no. 33)	P n a 2 ₁ (no. 33)
a [Å]	8.900(2)	8.900(3)
<i>b</i> [Å]	13.608(3)	13.608(3)
c [Å]	6.762(2)	6.762(2)
α [°]	90	90
β [°]	90	90
γ [°]	90	90
<i>V</i> [ų]	819.0	
Z	4	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.846	1.842
<i>T</i> [K]	153	
	Crystals grown from supercooled ether soln.	Crystals grown from supercooled ethereal soln. @ -3 °C

 $^{^{\}dagger}$ Two crystalline forms are known: (i) glassy, labile, triclinic and (ii) stable, orthorhombic $^{[17]}$; pure NG freezes to form dipyramidal rhombic crystals (stable form) $^{[20]}$, under some conditions, glass triclinic crystals are formed $^{[20]}$; crystals of labile form are triclinic $^{[59,65]}$, crystals of stable form are bipyramidalrhombic $^{[59]}$, exists in two crystalline modifications: α - (triclinic) and β - (orthorhombic).

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] T. Altenburg, T. Klapoetke, A. Penger, *Cent. Eur. J. Energ. Mater.*, **2009**, *6*, 255–275.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [5] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762–769.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.

- [7] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [8] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [9] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [10] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [11] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [12] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [13] R. Meyer, J. Köhler, A. Homburg, Explosives, Wiley-VCH, Weinheim, 2016, pp. 230-233.
- [14] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [15] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [16] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [17] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [18] E. C. Broak, J. Energet. Mater., 1990, 8, 21–39.
- [19] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [20] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [21] M. L. Jones, E. Lee, J. Energet. Mater., 1997, 15, 193-204.
- [22] A. A. Espenbetov, M. Y. Antipin, Y. T. Struchkov, V. A. Philippov, V. G. Tsirel'son, R. P. Ozerov, B. S. Sveltov, Acta Cryst., 1984, C40, 2096–2098.
- [23] A. A. Espenbetov, V. A Filippov, M. Y. Antipin, V. G. Tsirel'son, Y. T. Struchkov, B. S. Sveltov, *Izvestiya Rossiskya Akademii Nauk Seriya Khimicheskaya*, **1985**, 1558.
- [24] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [25] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1975.
- [26] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [27] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [28] B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, J. Energet. Mater., 1986, 4, 447–472.
- [29] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [30] R. Gill, L. Asaoka, E. Baroody, J. Energet. Mater., 1987, 5, 287–307.
- [31] J. R. Stine, J. Energet. Mater., 1990, 8, 41–73.
- [32] T. Urbański, Ch. 2 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [33] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York.
- [34] P. A. Davies, J. Hazard. Mater., 1994, 38, 75–88.
- [35] G. M. Gove, R. G. Bhatewara, K. R. Tipare, N. M. Walunj, V. K. Bhat, *BDNPA/F as Energetic Plasticizer in Propellant Formulations*, ICT **1998**, Karlsruhe, Germany, 136-1–136-12.

- [36] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [37] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [38] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [39] B. Wang, F. Chen, X. Liao, Z. Wang, B. Xu, D. Zhu, *RDX Based High-Energy TEGDN/NG Propellant For Tank Guns*, ICT **2015**, Karlsruhe, Germany, pp. 97-1–97-11.
- [40] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasvo, *Devices for Analyzing Explosion Hazards*, ICT **2002**, Karlsruhe, Germany, pp. 69-1–69-13.
- [41] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, *Synthesis and Characterization of Energetic ABA-Type Thermoplastic Elastomers for Propellant Formulations*, ICT **2006**, Karlsruhe, Germany, pp. 136-1–136-11.
- [42] Y. M. Lotmentsev, P. D. Nhan, D. V. Pleshakov, N. N. Kondakova, N. N. Il'icheva, A. S. Ermakov, D. B. Vinogradov, E. Y. Petrov, *Investigation of 2-Azidomethyl-N-Nitrooxazolidin as Plasticizer of Nitrates of Cellulose*, ICT 2005, Karlsruhe, Germany, pp. 61-1-61-8.
- [43] U. Schaller, V. Weiser, T. Keicher, H. Krause, Investigation of the Nitrate-Based EIL 4-Amino-1methyl-1,2,4-triazolium Nitrate As Plasticizer, ICT 2014, Karlsruhe, Germany, pp. 100-1–100-9.
- [44] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, Synthesis and Characterization of Energetic Oxetane-Oxirane-Polymers for Use in Thermoplastic Elastomer Binder Systems, ICT 2005, Karlsruhe, Germany, pp. 195-1–195-14.
- [45] V. M. Raikova, G. D. Kozak, E. A. Likholatov, *The Failure Diameter of Detonation of Nitroesters Solutions*, ICT **2003**, Karlsruhe, Germany, pp. 117-1-117-10.
- [46] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [47] N. Straessler, M. Lee, J. Energet. Mater., 2017, 35, 1-8.
- [48] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [49] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [50] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [51] E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, in Energetic Materials from Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [52] K. Dontsova, S. Taylor, *High Explosives and Propellant Energetics: Their Dissolution and Fate in Soils*, in *Energetic Materials From Cradle to Grave*, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, **2017**.
- [53] S. Fordham, *High Explosives and Propellants*, 2nd edn., Pergamon Press, **1980**.
- [54] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203–232.
- [55] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [56] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, Explosive Behavior of Dinitrotoluene, NOLTR 69–92, US Naval Ordnance Laboratory, Maryland, USA, 10th July 1969.
- [57] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [58] S. G. Pakdehi, S. Rezaei, H. Motamedoshariati, M. H. Keshavarz, J. Loss Prevention Process Industries, 2014, 29, 277–282.

- [59] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [60] A. T. Blomquist, F. T. Fiedorek, Nitramines, US Patent 2,485,855, 25th October 1949.
- [61] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581-586.
- [62] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [63] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [64] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [65] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.
- [66] I. A. Litvinov, Y. T. Struchkov, B. A. Abruzov, N. A. Makarova, B. T. Mukmenev, Russ. Chem. Bull., 1985, 34, 1425–1429.
- [67] O. H. Johnson, *Plasticized High Explosive and Solid Propellant Compositions*, US Patent 3,389,026, June 18th **1968**.
- [68] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [69] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [70] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.

Nitroglycide

Name [German, acronym]: Glycidol nitrate, 2-oxiranylmethyl nitrate, glycidyl

nitrate [nitroglycid]

Main (potential) use: Synthetic precursor

	Nitroglycide				
Formula	C₃H₅NO₄				
Molecular mass [g mol ⁻¹]	119.08				
Appearance at RT					
IS [J]	2 Nm ^[2] , 10–20 cm (2 kg to cause detonation) ^[6]	g mass) ^[3] , 10–20 cm (2 kg	g mass, average height		
N [%]	11.76				
Ω(CO ₂) [%]	-60.5				
T _{b.p.} [°C]	94 @ 20 mm Hg ^[3, 4, 6] , dec. if boiled under normal pressure @ 174–175 ^[3, 4] , 174–175 (boils and decomposes under atmospheric pressure) ^[6]				
T _{dec.} [°C]	195-200[2]				
$ ho$ [g cm $^{-3}$]	1.3186 (@ 293 K) ^[1] , sp. gr. = 1.332 (@ 20 °C) ^[3, 4] , 1.332 @ 20 °C ^[6]				
Heat of formation					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	824 kcal/kg ^[3]				
	3,447.62 ^[6]				
T _{ex} [K]					
p _{C-J} [kbar]					
VoD [m s ⁻¹]					
V ₀ [L kg ⁻¹]					

Trauzl test [cm³, % TNT]	430 cm 3 (H $_2$ O tamping) $^{[3, 6]}$, 430 cc (10 g sample, H $_2$ O tamping, no. 8 detonator) $^{[4]}$, 310 cm $^{3[5]}$
5 s explosion T[°C] Explosion T[°C]	195–200 ^[3, 6] , 195–200 (on rapid heating) ^[4]
Solubility [g/mL]	Slightly soluble in cold H_2O (5 g in 100 mL H_2O @ 20 °C) ^[3, 4, 6] , miscible in all proportions with EtOH ^[4] , $Et_2O^{[4]}$, acetone ^[4] , ethyl acetate ^[4] , $NG^{[4]}$
Hygroscopicity	Not hygroscopic ^[4]
Compatibility	Hydrolyzes in boiling water ^[6]

- [1] L. T. Eremenko, A. M. Korolev, Russ. Chem. Bull., 1967, 16, 1104-1106.
- [2] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 233–234.
- [3] T. Urbański, Ch. 4 in *Chemistry and Technology of Explosives*, vol. II, **1965**, Pergamon Press, Oxford.
- [4] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446–2451.
- [6] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

Nitroguanidine

Name [German, acronym]: 2-Nitroguanidine, guanylnitramine, picrite,

[nitroguanidin, G-Pulver, G-Salz, NQ, NGu]

Main (potential) use: Insensitive (high) explosive^[57], propellant ingredient

in triple-base propellants, reduced-erosion gun propellants, component of mixtures for mortar bombs in the WW-I^[50], in low-cost large diameter insensitive high explosives^[57], low erosion insensitive gun propellants^[57], ingredient in gun propellants^[19],

ingredient of flashless propellants^[87]

$$O_2N \underset{H}{\underbrace{\downarrow}}_{NH_2}^{NH}$$

	NQ
Formula	$CH_4N_4O_2$
Molecular mass [g mol ⁻¹]	104.07
Appearance at RT	NQ exists in two forms: (i) α -form and (ii) β -form ^[50]
	(i) α -form: commonly used in explosives, long, flat, thin, lustrous needles if recryst. from H ₂ O, obtained by dissolving guanidinium nitrate in conc. H ₂ SO ₄ then soln. poured into H ₂ O ^[50]
	(ii) β -form: produced in mixtures with α -form in variable amounts, fern-like clusters of small, thin, elongated plates if recryst. from H ₂ O, obtained by nitration of guanidinium sulfate/ammonium sulfate mixture which results from the hydrolysis of dicyanamide by sulfuric acid ^[50]
	Colorless, hollow needles with length:diameter ratio of ~ 10 with lowbulk density (LBD) on crystallization from aqueous solution ^[57] , colorless, spherical crystals with high-bulk density (HBD) on recrystallization from ethylene glycol, DMF or DMSO ^[57] , white crystalline powder which may be yellow when solid ^[61] , colorless crystals or white solid ^[10]
	Needles (length = $30-70~\mu m$, thickness = $3-6~\mu m$, LBD = low-bulk density) ^[73] , platelets (median diameter = $60~\mu m$, HBD = high-bulk density) ^[73] , spherical form (median diameter = $250~\mu m$, SHBD = spherical high bulk density) ^[73] , needles, prisms (α -form, usual stable form, from H ₂ O) ^[82] , colorless polycrystalline solid ^[19]

	·
IS [J]	>50 Nm ^[32, 68, 73] , 9.22 (1st reaction) ^[7, 51] , 43.45 (sound) ^[7, 51] , 47 cm (2 kg mass, 20 mg sample, B.M.) ^[10, 11, 13] , 26 in (2 kg mass, 7 mg sample, P.A.) ^[10, 11, 13] , 177 cm (2.5 kg hammer) ^[17] , 47 cm (2 kg, B.M.) ^[18, 21] 26 in (1 lb mass, P.A.) ^[18] , H_{50} >320 cm (tool type 12) ^[19] , H_{50} >320 cm (tool type 12B) ^[19] , FOI = 100 – 105 (Rotter apparatus) ^[21] , >320 cm (ERL-LASL, type 12) ^[21] , H_{50} =>177 cm (5 kg mass, tool type 12) ^[30] , I_{5L} = 5.0 m ^[20] , I_{5A50} = 9.0 m ^[20] , 27.8 in (P.A.) ^[33] , >320 cm (NEDED) ^[45] , >320 cm (NOL) ^[45] , >320 cm (LANL) ^[45] , >49 Nm ^[48] , >50 (BAM) ^[57] , >320 cm (50% point, NQ LBD, type 12 tool, 2.5 kg mass, sandpaper) ^[74] , A_{d1} = 0%, A_{d2} = 0%, LL = 5.0 m, A_{50d1} = 9.0 m, A_{50d2} = 5.0 ^[81] , ≥77.6 ft-lb/in ^{2[83]}
FS [N]	>360 ^[21, 32, 68, 73] , $P_{fr.LL} = 1,150 \text{ MPa}^{[20, 81]}$, $P_{fr.50\%} = 1,250 \text{ MPa}^{[20, 81]}$, >355 (BAM) ^[57] , unaffected by steel shoe (friction pendulum test) ^[13, 18] , unaffected by fiber shoe (friction pendulum test) ^[13, 18] , wood mallet on stone = $0\%^{[77]}$, wood mallet on softwood = $0\%^{[77]}$, wood mallet on hardwood = $0\%^{[77]}$, $\ge 722 \text{ MPa}$ @ $2.4 \text{ m/s}^{[83]}$
ESD [J]	$E_{50\%} = 0.60 \pm 0.10 \text{ (Bruceton)}^{[46]}, E_{50\%} = 0.80 \pm 0.13^{[46]}, 4.5^{[68]}, 0.5^{[83]}$
N [%]	53.84
Ω(CO ₂) [%]	-30.7
T _{m.p.} [°C]	$220-257^{[1]},232^{[13,18,72]},257^{[14]}$ (depends on heating rate $^{[18]}$), $246-247$ (with dec.) $^{[30]}$, 232 (if temp. is raised at moderate rate, values between 220 and 250 have been obtained) $^{[28]}$, 232 (for α - and β - forms with slow heating) $^{[50]}$, $220-250$ (values in this range have been obtained depending on the heating rate) $^{[50]}$, dec. immediately on melting cannot be obtained as liquid $^{[50]}$, 252 (dec.) $^{[57]}$, 245 (with dec.) $^{[59]}$, 232 (with dec. on moderate heating) $^{[61]}$, $239^{[67]}$, $232^{[10]}$, $232-250$ (with dec.) $^{[71]}$, $238^{[77]}$, 224.5 (dec., Mettle mpt. apparatus @ 1 K/min beginning 10 K beneath the mpt.) $^{[79]}$, $240-250$ (melting is usually preceded by dec.) $^{[19]}$, dec. without melting $^{[87]}$
T _{phase transition} [°C]	$β$ -NG can be converted to $α$ -NG by dissolving in conc. sulfuric acid and precipitating by addn. of water ^[18] , $β$ -NG can be converted to $α$ -NG by dec. of the nitrate or hydrochloride formed by $β$ -NG ^[18] , some $β$ -NG forms when $α$ -NG is decomposed by heat ^[18] , $α$ - and $β$ - cryst. forms reported ^[87] $β$ -form $\frac{dissolving\ in\ conc.\ H_2SO_4\ and\ pouring\ soln.\ into\ H_2O}{α}$, $α$ -form $[50]$ $β$ -form (usual stable form) converted to $α$ -form by dissolving in conc. sulfuric acid followed by pouring into iced water ^[82]
T _{dec.} [°C]	239 (dec. on melting) ^[18] , 246–247 (melting with dec.) ^[30]
	Heating rate of 8 °C/min: $T_{idb} = 224.0$, $T_{w} = 225.9$, $T_{max} = 229.4^{[31]}$ Heating rate of 16 °C/min: $T_{idb} = 230.5$, $T_{w} = 232.3$, $T_{max} = 240.0^{[31]}$, $T_{cr.} = 200-204^{[31]}$ 403 K (DTA onset) ^[51] , 245-250 (dec, onset) ^[73] , 257 (onset, DSC) ^[68] , 225-250 (α -form, usual stable form, depends on heating rate) ^[82] , reported to dec.

ρ [g cm ⁻³]	0.91 (@ 293 K) (bulk density) ^[2] , 1.72 (crystal) ^[13,72] , 1.775 ^[14] , 1.759 (crystal @ 193 K) ^[5] , 1.715 (crystal) ^[18] , 1.81 ^[18] , needle crystals (bulk ρ) = \sim 0.3 g/cm ^{3[27]} , spherical-type crystals (bulk ρ) = 0.9–1.0 g / cm ^{3[27]} , 1.55 (nominal) ^[30] , bulk ρ of NQ crystallized from H ₂ O as needles = 0.17 g cm ^{-3[29]} , bulk ρ of NQ crystallized from N,N-DMF (spherical crystals formed) = 0.59 g cm ^{-3[29]} , sp. gr. = 1.81 ^[28] , 1.750 (@ 298 K) ^[57] , 1.72 ^[59] , 1.76 ^[62,77] , 1.71 ^[63] , 1.81 (@ TMD) ^[18] , 1.55–1.75 (nominal) ^[18] , 0.95 (@ 3,000 psi) ^[18] , 1.77 ^[68] , 0.2–0.3 (gravimetric density of NQ crystals obtained from water) ^[71] , 1.78 (X-ray) ^[73] , 1.77 (floating density) ^[73] , 0.3 (LBD, needles, triple base propellants) ^[73] , 0.9 (HBD, platelets, rocket motors) ^[73] , 1.0 (SHBD, spherical form, IHE) ^[73] , 1.78 (X-ray) ^[19] , 1.77 (@ 25 °C, direct measurement) ^[19] , 1.70 (pressed @ 20,000 psi) ^[19] , 0.3 (hand packed density) ^[87] , 1.78 (true density) ^[87] , 0.96 (bulk density, pouring hot, saturated aqueous NQ soln. into MeOH) ^[87]					
Heat of formation	-94 kJ/mol ^[3] , -23.6 kcal/mol ($\Delta H_{\rm f}$ @ 1 atm and 298 K) ^[30] , -20.29 kcal/mol (heat of form., $\Delta H^{\rm o}_{\rm f}$) ^[18, 19] , -98.7 kJ/mol ($\Delta H_{\rm f}$) ^[30] , -23.6 kcal/mol ^[15, 30] , -22.1 kcal/mol ^[21] , -20.1 kcal mol ^{-1[12]} , -893 kJ/kg (ICT thermochemical database) ^[4] , -227 cal/g ^[13] , -86.61 kJ/mol (enthalpy of form.) ^[73] , 177.6 kcal/kg ^[70] , -93 kJ/mol ($\Delta H_{\rm f}$) ^[68] , -92 kJ/mol ($\Delta H_{\rm f}$) ^[62] , -92.4 kJ/mol ($\Delta H_{\rm f}$) ^[44] , -86 kJ/mol ($\Delta H_{\rm f}$) ^[57] , -22 ± 0.59 kcal/mol ($\Delta H_{\rm f}$) ²⁸⁸ , calcd. based on $\Delta Q_{\rm c}$ value) ^[79] , -23.58 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -21.86 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -23.58 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -21.86 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -23.96 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -23.58 kcal/mol ($\Delta H_{\rm f}$) ^[79] , -23.96 kcal/mol ($\Delta H_{\rm f}$)					
Heat of combustion	$ \begin{array}{l} 1,995 \; kcal/kg^{[13,28,34,72]}, \; 210.4 \; kcal/mol (@\;\mathit{C}^{P})^{[18]}, \; 2,023 \; kcal/kg \\ (@\;\mathit{C}^{V})^{[70]}, \; \Delta Q_{c} = 210 \pm 0.59 \; kcal/mol (exptl.)^{[79]}, \; \Delta Q_{c} = 211.6 \; kcal/mol^{[79]}, \; \Delta Q_{c} = 209.9 \; kcal/mol^{[79]}, \; \Delta Q_{c} = 209.2 \; kcal/mol^{[79]}, \; heat \; of \; comb. = 207.15 \; kcal/mol (@\;1 \; atm)^{[84]}, \; \Delta \textit{H}^{o}{}_{c} = -210.4 \; kcal/mol^{[19]}, \; 210 \; kcal/mol (heat \; of \; comb. \; @\; constant \; volume)^{[87]} \\ exptl. \; heat \; of \; combustion \; data^{[85]} : \end{array} $					
	−ΔU _{B/M} (cal/g)	$-\Delta U_{\rm B}$ (kcal/mol)	ol) $-\Delta U_R$ (kcal/mol $-\Delta H_R$ (kcal/mol @ 1 atm and constant vol.) and constant pressure)			
	2,005.51 ± 1.63	208.33 2,08.72 208.33 207.15				
	Calcd. (EXPLO5 6.03)	Lit. values exptl.				

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,490	3,815 (calcd., K-J) ^[12]	721 ^[13, 72]
		2,553 (calcd., K-W) ^[12]	1.06 kcal/g [H ₂ O (l)] ^[18, 30]
		3,815 (calcd., mod. K-W) [12]	880 cal/g [H ₂ O (g)] ^[18, 30]
		3,198 (calcd.	3,071 [H ₂ O (l)] ^[32]
		thermochem.) ^[27]	2,730 [H ₂ O (g)] ^[32]
		3,071 J/g (calcd., ICT code) ^[4]	721 kcal/kg ^[28]
		405.7 kJ/mol (Δ _{ex} H) ^[57]	
		3.898 kJ/g ($\Delta_{ex}H$) ^[57]	
<i>T</i> _{ex} [K]	2,505	~2,098 °C ^[28]	2,098 °C ^[18]
		1,385 (@ 1.78 g cm ⁻³ , calcd.) ^[34]	
		2,418 (calcd. thermochem.) ^[27]	
		2,098 °C (@ 0.20 g cm ⁻³ , calcd. value based on exptl. data) ^[50]	
		2,335 (calcd., ICT code) ^[4]	
		2,835 (@ 1.774 g cm ⁻³ , calcd., CHEETAH 2.0) ^[68]	
		2,811 (@ 1.77 g cm ⁻³) ^[73]	
		2,064 (@ 1.76 g cm ⁻³ , $\Delta H_{\rm f} = -92.3$ kJ/mol, calcd., JAGUAR) ^[80]	
		2,090 (@ 1.78 g cm ⁻³ , calcd. BKWR) ^[15]	
		2,130 (@ 1.72 g cm ⁻³ , calcd. BKWR) ^[15]	
		2,210 (@ 1.62 g cm ⁻³ , calcd. BKWR) ^[15]	
		2,260 (@ 1.55 g cm ⁻³ , calcd. BKWR) ^[15]	

		2,740 (@ 1.78 g cm ⁻³ , calcd. BKWS) ^[15]	
		2,760 (@ 1.72 g cm ⁻³ , calcd. BKWS) ^[15]	
		2,790 (@ 1.62 g cm ⁻³ , calcd. BKWS) ^[15]	
		2,830 (@ 1.55 g cm ⁻³ , calcd. BKWS) ^[15]	
p _{C-J} [kbar]	28.2	230 (@ 1.69 g cm ⁻³ , calcd., K-J) ^[12]	245 (@ 1.72 g cm ⁻³) ^[15]
			1.20 GPa (@ 0.40 g cm ⁻³) ^[39]
		224 (@ 1.69 g cm ⁻³ , calcd., K-W) ^[12]	25.8 GPa (@ 1.70 g cm ⁻³) ^[39]
		230 (@ 1.69 g cm ⁻³ , calcd., mod. K-W) ^[12]	0.160 Mbar ^[72]
		298 (@ 1.78 g cm ⁻³ , calcd.) ^[34]	26.8 GPa (@ 1.704 g cm ⁻³ , 95 wt.% NQ with 5 wt. % Estane) ^[19]
		105.7 MPa (calcd., ICT code) ^[4]	
		27.78 GPa	
		(@ 1.774 g cm ⁻³ ,	
		calcd., CHEETAH 2.0) ^[68]	
		27.1 GPa (@ 1.77 g cm ⁻³) ^[73]	
		30.2 GPa (@ 1.76 g cm ⁻³ , $\Delta H_{\rm f} = -92.3$ kJ/mol, calcd., JAGUAR) ^[80]	
		317 (@ 1.78 g cm ⁻³ , calcd. BKWR) ^[15]	
		292 (@ 1.72 g cm ⁻³ , calcd. BKWR) ^[15]	
		252 (@ 1.62 g cm ⁻³ , calcd. BKWR) ^[15]	
		227 (@ 1.55 g cm ⁻³ , calcd. BKWR) ^[15]	

		272 (@ 1.78 g cm ⁻³ , calcd. BKWS) ^[15]	
		250 (@ 1.72 g cm ⁻³ , calcd. BKWS) ^[15]	
		217 (@ 1.62 g cm ⁻³ , calcd. BKWS) ^[15]	
		198 (@ 1.55 g cm ⁻³ , calcd. BKWS) ^[15]	
VoD [m s ⁻¹]	8,734	7,430 (@ 1.69 g cm ⁻³ , calcd., K-J) ^[12]	8,200 (@ TMD) ^[32]
			8,590 (@ 1.78 g cm ⁻³) ^[8, 9, 15]
		7,330 (@ 1.69 g cm ⁻³ , calcd., K-W) ^[12]	7,930 (@ 1.62 g cm ⁻³) ^[8, 15]
		7,430 (@ 1.69 g cm ⁻³ , calcd., mod. K-W) ^[12]	7,650 (@ 1.55 g cm ⁻³) ^[8, 10, 13-15, 18, 30, 41, 77]
		8,380 (@ 1.78 g cm ⁻³ , calcd.) ^[34]	7,980 (@ 1.69 g cm ⁻³) ^[12]
		5,938 (@ 1.0 g cm ⁻³ , calcd., BKWR) ^[37]	5,360 (@ sp. gr = 1.0) ^[28]
		,	7,650 (@ sp. gr. = 1.5) ^[28]
		5,521 (@ 1.0 g cm ⁻³ , calcd., BKWS) ^[37]	8,100 (@ 1.70 g cm ⁻³) ^[18, 35]
		7,690 (@ TMD, calcd., K-J) ^[38]	8,160 (@ TMD) ^[38]
		8,270 (@ 1.72 g cm ⁻³ (TMD), calcd., R-P method) ^[38]	3,490 (@ 0.51 g cm ⁻³) ^[39]
			7,380 (@ 1.59 g cm ⁻³) ^[39]
		8,630 (@ 1.72 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[38]	7,720 (@ 1.74 g cm ⁻³) ^[39]
		4,040 (@ 0.6 g cm ⁻³ , calcd., K-W eqn.) ^[65]	2,990 (@ 0.40 g cm ⁻³) ^[39]
			7,360 (@ 1.70 g cm ⁻³) ^[39]
		8,394 (@ 1.774 g cm ⁻³ , calcd., CHEETAH 2.0) ^[68]	7,650 (@ 1.550 g cm ⁻³) ^[40]
		8,329 (@ 1.77 g cm ⁻³) ^[73]	25,100 ft/s (@ 1.6 g/mL) ^[61]
		8,770 (@ 1.76 g cm ⁻³ , $\Delta H_f = -92.3 \text{ kJ/mol},$	3,850 (@ 0.6 g cm ⁻³) ^[65]
		calcd., JAGUAR) ^[80]	7,920 (@ 1.56 g cm ⁻³) ^[71]

			· · · · · · · · · · · · · · · · · · ·
		8,830 (@ 1.78 g cm ⁻³ , calcd. BKWR) ^[15]	8,440 (@ 1.64 g cm ⁻³) ^[71]
			8,280 (@ 1.69 g cm ⁻³ ,
		8,580 (@ 1.72 g cm ⁻³ ,	95 NQ/5 Estane) ^[73]
		calcd. BKWR) ^[15]	-,
			7,060 (@ 1.50 g cm ⁻³) ^[84]
		8,170 (@ 1.62 g cm ⁻³ ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		calcd. BKWR) ^[15]	8,280 (@ 1.704 g cm ⁻³ ,
		catcu. bkwkj	
		7 000 (@ 1 55 ~ cm-3	95 wt.% NQ with 5 wt.%
		7,890 (@ 1.55 g cm ⁻³ ,	Estane) ^[19]
		calcd. BKWR) ^[15]	
		_	
		8,530 (@ 1.78 g cm ⁻³ ,	
		calcd. BKWS) ^[15]	
		8,260 (@ 1.72 g cm ⁻³ ,	
		calcd. BKWS) ^[15]	
		7,820 (@ 1.62 g cm ⁻³ ,	
		calcd. BKWS) ^[15]	
		7,520 (@ 1.55 g cm ⁻³ ,	
		calcd. BKWS) ^[15]	
		caica, DRW3)	
		5 3 (0 (© 1 0 ~ cm - 3)[87]	
		5,360 (@ 1.0 g cm ⁻³) ^[87]	
$V_0 [L kg^{-1}]$	925		1,042 ^[16]
			1,077 ^[13, 28, 18, 72]

exptl. values @ ρ_0 (absolute charge ρ) = 1.635 g cm⁻³, η (rel. charge ρ) = 0.918 g cm⁻³, D_1 (VoD measured @ distance L_1) = 8.25 km/s, D_2 (VoD measured @ distance L_2) = 7.94 km/s, VoD measured using contact foil gages, Q (heat of explosion) = 3,480 kJ/kg, P_{C_1} = 24.5 GPa (@ 1.72 g cm⁻³)^[53]

Critical diameter [cm]	$ \begin{array}{l} 1.27-1.43 \text{ mm } (\text{@ }1.52 \text{ g cm}^{-3})^{[18]}, 36.5 \text{ mm } (\text{NQ-h, HBD NQ after pressing to} \\ 90\% \text{ TMD, } \rho = 1.61 \text{ g cm}^{-3}, \text{LASL})^{[36]}, 13.2 \text{ mm } (\text{NQ-l, HBD NQ after pressing} \\ \text{to } 90\% \text{ TMD, } \rho = 1.61 \text{ g cm}^{-3}, \text{LASL})^{[36]}, 36.5/38.1 \text{ mm } (\text{@ }1.62 \text{ g cm}^{-3}, 91.0\% \\ \text{TMD, pressed NQ})^{[52]}, d_c = 50 \text{ mm } (\text{NQ-h } \text{@ }70\% \text{ TMD})^{[52]}, d_c = 36 \text{ mm } (\text{NQ-h } \text{@ }90\% \text{ TMD})^{[52]} \\ \text{@ }80\% \text{ TMD})^{[52]}, d_c = 36 \text{ mm } (\text{NQ-h } \text{@ }90\% \text{ TMD})^{[52]} \\ \text{critical diameter for detonation, } d_c \text{ (mm)}^{[66]}. \end{array} $							
	Material				% TMD			
		70 75 80 85 90 93 98						
	NQ-h (~100 μm) 49 41.5 36.5 35 36.5 > 37 > 37							

	The LBD NQ failu	re diamet	er as a	function	of charge d	ensity ^{[15}	9]:	
	charge density	(g/cm³)	ch	arge dia	meter (mm)			
			deton	ates	fails			
	1.0		25.4		_			
	1.21		15.9		14.3			
	1.52		14.3		12.7			
Critical T [°C]	200-204 (exptl.)) ^[55, 60] , 20	4 ^[55, 60] ,	198 (T _m)) ^[19]			
Trauzl test [cm³, % TNT]	101% TNT ^[10, 13] ,	78-101%	TNT ^{[18,}	^{35]} , 302 [[]	78]			
Sand test [g]	36.0 g (200 g bo crushed (cf. 48.0						, 36.0 g s	and
Ballistic mortar test	104% TNT ^{[10, 13, 1}	8, 28, 35, 84]						
Lead block	7 mm shortening	g (40 g NC	explod	ed on 6	7 mm diame	ter Pb b	lock) ^[50]	
Lead block compression test	73% TNT ^[18]	73% TNT ^[18]						
Koenen [mm/type]	<1/C (bottom of	tube split)) ^[57]					
Initiation efficiency	0.20 g LA or 0.10 varies with cryst containing 1.5 g minimum detona NQ completely d only be exploded	al size ^[18] , MF ^[18] , 0.: ating char etonates	large q 20 g LA ge ^[13] , 0 using d	uantitie: minimu .10 g tet etonator	s detonated m detonating tryl minimun	by blast g charge n detona	ting cap e ^[72] , 0.20 ating cha	g LA rge ^[13] ,
Gap test	gap test results	obtained v	with two	differe	nt donors ^[42]	:		
	Material				50% values			
		Donor		Gap (mm)	Shock velocity, U (mm/s)	ΔU (%)	P _u ' (kbar)	ΔP _u ' (%)
	NQ (@ 1.59 g/cc)	Tetryl po (@ 1.51		11.7	4.185		83.7	
	NQ	Pentolit		13.5	4.955		92.5	
	(@ 1.59 g/cc)	/cc) 50-50 pellets 4.885 ±1.4 ±5					± 5	
$G_{50} = 5.00 \text{ mm} (NQ @ 1.609 \text{ g cm}^{-3}, 90.4\% \text{ TMD})^{[56]}, NQ-l, \rho_0 = 0.90 \text{ g/cc},$ $50.3\% \text{ TMD}, 50\% \text{ pressure } (P_g) = 22.9 \text{ kbar (extrapolated})^{[76]}$								cc,

LSGT [cm]

 $G_{50} = 5.00$ mm, $L_{95} = 0.5$ mm (@ 1.609 g cm $^{-3}$)^[19], LSGT $^2 = 5.0$ mm (NQ-h, HBD NQ after pressing to 90% TMD, $\rho = 1.61$ g cm $^{-3}$, LASL)^[36], LSGT $^2 = 5.0$ mm (NQ-l, HBD NQ after pressing to 90% TMD, $\rho = 1.61$ g cm $^{-3}$, LASL)^[36], 0 mm (NOL)^[45], 8 mm (LANL)^[45], $P_{50} = 9.07$ GPa (@ 1.64 g cm $^{-3}$, NOL-LSGT)^[57], NQ-l, $\rho_0 = 0.90$ g/cc, 50.3% TMD, 50% pressure (P_g) = 21.2 kbar^[76]

Gap test results for NQ, LANL LSGT^[18]:

Density (g/cm³)	% voids	Sensitivity (mm)
1.715 (pressed)	3.5	No explosions
1.609 (pressed)	9.6	5.00

 $L_{\rm g}$ = 20 in. × 10² (@ 1.609 g cm⁻³, 90.4% TMD, pressed NQ, LASL LSGT)^[52], $L_{\rm g}$ = 47 in. × 10² (@ 1.61 g cm⁻³, 90.6% TMD, pressed NQ, NSWC LSGT)^[52]

NQ/NaCl (90/10) @ 93.8% TMD requires 100 kbar initiation pressure (6 mm) (cardboard cylinder with 42.5 mm inner diameter, LSGT cylinder with 36 mm inner diameter, 42 mm outer diameter, 140 mm length, 2 mm air gap to witness plate, RDX + 4% wax donor charge with diameter 42 mm and height 2 \times 21 mm, attenuator of PMMA disks of 42 mm diameter and 1.5 mm thickness)^[68]

50% gap, all charges isostatically pressed, ^b indicates HBD, ^c indicates LBD^[75]:

TMD (g cm ⁻³)	Exptl. ρ (g cm ⁻³)	% TMD	Gap (cards)
1.78	1.61 ^b	90.6	47
	1.63 ^c	91.4	35
	1.64 ^b	92.1	32
	1.64 ^b	92.1	36

NQ/NaCl (90/10), TMD = 1.81 g cm⁻³, exptl. ρ = 1.70 g cm⁻³, 93.8% TMD, gap = 27 cards^[75]

LBD = low-bulk density, HBD = high-bulk density, I = isostatic press, H = hydraulic press, P = packed by hand, regular test, all charges are conditioned and fired at 25 $^{\circ}$ C[76]:

Material	Der	sity	50% p	50% point		Comments
	g/cc	% TMD	Cards	kbar	size	
NQ-L (NQ, LBD)	0.56P	31.2	216±1	17		Crystals needle- like and frequently hollow, LBD = low- bulk density
	0.90P	50.6	194	21		
	1.201	67.4	121	48		
	1.401	78.5	84	61		
	1.511	85.0	60	73		
	1.631	91.4	35	90		
NQ	1.391	78.0	109	52	Fine	Ground, 50–60% 10 micron
NQ	1.441	81.0	98	56	Fine	
NQ	1.501	84.5	81	63	Fine	
NQ-H (NQ, HBD)	1.35 H	75.9	140	(41)	51	HBD = high-bulk density
	1.441	80.9	85	(61)	38	
	1.641	92.1	36	(89)	51	
NQ-H	1.16P	65.1	196	21	64	
NQ-H	1.33 H	74.7	128	46	64	
NQ-H	1.401	78.9	90-95	58	64	
NQ-H	1.511	85.1	68	69	64	
NQ-H	1.611	90.6	47	81	64	
NQ-H	1.641	92.1	32	93	64	
NQ-H	1.391	78.0	98	56	95	
NQ-H	1.441	80.7	80	63	95	
NQ-H	1.441	80.8	79	64	95	
NQ-H	1.521	85.4	68	69	95	
NQ-H	1.331	74.9	128	46	100	
NQ-H	1.39 H	77.9	100	55	100	
NQ-H	1.441	80.7	86	60	100	
NQ-H	1.421	79.7	94	59	100	Pentolite booster
NQ/NaCl, 90/10	1.701	93.6	27 ± 2	99	95/na	DLT went at 25 cards

SSGT [cm]	LANL SSGT ^[18] :							
	Density (g/cm³) % voids Sensitivity (mm)]				
	1.575 (pre	ssed)	11.8		No explo	sions		
	NQ, TMD = 1.78 g/cm ³ , (1) = no mixed response zone ^[74] :							
	Loading	Density	/ (g/cm³)	%		Sensitivi	ity (DBG)	
	pressure (kpsi)	AVG.	5	TMD	AVG.	g	S _m	N
	1.3	0.954	0.0105	53.6	6.387	0.0458	0.0244	28
	2.	1.021	0.0095	57.4	6.951	0.1016	0.0500	28
	4.1	1.161	0.0098	65.2	8.285	0.1379	0.0685	22
	8.	1.273	0.0062	71.5	9.689	-	-	28 (1)
5 s explosion T [°C] 5 s ignition T [°C] Ignition T [°C] Detonating T [°C]	275 ^[13, 18] , 275 (dec., cook-off) ^[72] 275 (US value), 270 (Russian value) (dec.) ^[34] 185 ^[47] , does not ignite ^[57] 275 ^[61] , 275 (5 s) ^[10]							
Thermal stability	Weight loss heating usin grain size, b $(0.132)^{\circ}$ C; 1 $(0.145)^{\circ}$ C; 1 $(0.145)^{\circ}$ C; 1 $(0.145)^{\circ}$ C; 2 $(0.145)^{\circ}$ C; 3 weight loss heating usin grain size (5 $(0.145)^{\circ}$ C; 2 $(0.145)^{\circ}$ C; 4 Weight loss using Al blobulk $(0.145)^{\circ}$ C; 1 $(0.145)^{\circ}$ C; 2 $(0.145)^{\circ}$ C; 4 $(0.145)^{\circ}$ C; 4 $(0.145)^{\circ}$ C; 6	If Al blood wilk $\rho = 0$ and	k thermos .3 g cm ⁻³ ($^{\circ}$	tats) No. 6% mass 5, 1.4/2 5, 8.9/2 7, 15, 23 9/15, 6 mt T (gl tats) No. 1.1 g cr 7/15, 22 7, 15, 6 mt T (gl needle s/no. 0 5, 2.0/2 5, 12.3/3/15, 37/15, 5	Q needle-to loss/no. 12, 1.4/28 12, 1.4/28 12, 1.4/28 12, 1.4/22, 24 13.0/22, 6 14 15/22, 27 1.4/22	ype crysta of days) ^[27] 8 ^[27] .7/28 ^[27] 3.3/28 ^[27] without gl nedral part sos loss/no .7/28 ^[27] .3/28 ^[27] 2.5/28 ^[27] 4.3/28 ^[27] with glass tals, 3.8–4	ass stoppe ticles, <50 . of days)[2	Pers, μm ^{7]} :

	Weight loss of NQ (%) @ different T (glass tubes with glass stoppers, heating using Al block thermostats) spherical NQ, 200–500 μ m grain size (50%), bulk ρ = ~ 1.0 g cm ⁻³ (% mass loss/no. of days) ^[27] : @ 132 °C; 1.6/1, 54.1/6, 68.0/15, 68.2/22 ^[27] @ 145 °C; 2.1/1, 63.7/6, 63.4/15, 63.4/22 ^[27] @ 160 °C; 2.5/1, 50.4/6, 50.6/15, 50.9/22 ^[27] @ 175 °C; 48.0/1, 50.7/6, 53.7/15, 57.3/22 ^[27] @ 190 °C; 61.1/1, 62.5/6, 62.5/15, 62.6/22 ^[27] Thermal stability is not impaired by moisture ^[61] Weight losses of NQ, when its solns. are heated in an autoclave at 120 °C for 48 h (in %) ^[71] :					
	In acid medium (pH = 3.9-6)	0.19]		
	In neutral medium (pH = 7-	9)	0.51			
	In alkaline medium (pH = 8-	-9)	2.74]		
100 °C heat test [% mass loss]	0.18% mass loss in first 48 h $^{[13]}$, 0.09% mass loss in second 48 h $^{[13]}$, no explosions in 100 h $^{[13]}$ 0.48% mass loss in first 48 h, 0.09% mass loss in second 48 h, no explosions in 100 h $^{[18,28]}$					
LLNL reactivity test	0.02-0.05 cm ³ gas evolved p	er 0.25 g	sample ^[18, 30]			
International heat test @ 75 °C	0.04% mass lost in 48 h ^[13, 18]	, 28]				
Vacuum stability test [cm³/h]	0.37 cc/40 h @ 100 °C ^[13] , 0.44 cc/40 h @ 120 °C ^[13,72] , 0.1 mL/5 g @ 120 °C, 40 h ^[21] , 0.37 cc gas evolved by 1 g in 48 h ^[28] , similar stability to TNT @ 120 °C ^[18] , 0.0–0.1 mL/g gas evolved after 48 h @ 120 °C ^[19] , similar stability with that of TNT ^[18] Data from ^[19]					
	Test	Results				
	Vacuum	Gas evo	lved after 48 h	@ 120 °C (mL/g)		
	NQ per MIL-N-494A	0.0-1.0				
	Water recryst. HBD NQ	ter recryst. HBD NQ 1.4–3.6				
	DMF recryst. HBD NQ	DMF recryst. HBD NQ 0.6–1.2				
Vapor pressure [atm @ °C]	1.43 × 10 ⁻¹¹ mm Hg @ 25 °C ^[49, 59, 67]					
Volatility	None ^[13, 28]					

Solubility [g/mL]

Solubility, g/100 g (%) in^[13]:

Solvent	°C	%
Water	25	0.44
	100	9.0
1.0 M KOH	25	1.2
40% sulfuric acid	0	3.4*
	25	8.0*

^{*} g/100 cc soln.

0.42-0.44 g/100 mL H $_2$ O @ 25 °C $^{[18]}$, 8.25 g/100 mL H $_2$ O @ 100 °C $^{[18]}$, both forms (α -NQ and β -NQ) are slightly soluble in EtOH and nearly insoluble in Et $_2$ O $^{[18]}$

Solubility of NQ in sulfuric acid^[18]:

Sulfuric acid % in water	T (°C)	g dissolved per 100 cc
0	0	0.12
	25	0.42
15	0	0.3
	25	0.55
20	0	0.45
	25	1.05
25	0	0.75
	25	1.8
30	0	1.3
	25	2.9
35	0	2.0
	25	5.2
40	0	3.4
	25	8.0
45	0	5.8
	25	10.9

g NQ dissolved in 100 g solvent^[19]:

Solvent	20 °C	40 °C	60 °C
Water	0.36	0.75	1.6
DMSO	24	25	28
DMF	14	-	20
MeOH	0.3	0.6	-
Methyl ethyl ketone	0.13	0.20	-
Butyl acetate	0.07	0.08	0.1
n-Octane	0.003	0.008	_

 $\label{eq:h2O} \begin{array}{l} \text{H}_2\text{O solubility} @\ 25\ ^{\circ}\text{C:}\ 3,200\ \text{mg/L}^{[43]},\ 4.4\ \text{g/L}\ \text{H}_2\text{O}\ @\ 25\ ^{\circ}\text{C}^{[50]},\ 82.5\ \text{g/L}\ \text{H}_2\text{O}\ @\ 100\ ^{\circ}\text{C}^{[50]},\ \text{aqueous solubility} = 4,200\ \text{mg/L}\ @\ 25\ ^{\circ}\text{C}^{[59]},\ \text{slightly soluble in cold water and EtOH}^{[61]},\ \text{moderately soluble in hot water}^{[61]},\ 2.6\ \text{g/L}\ \text{in H}_2\text{O}\ @\ 25\ ^{\circ}\text{C}\ (\textit{Haag})^{[63,\,64]},\ 4.4\ \text{g/L}\ \text{in H}_2\text{O}\ @\ 25\ ^{\circ}\text{C}\ (\textit{van der Schalie})^{[63]},\ 4,400\ \text{mg/L}\ \text{H}_2\text{O}\ @\ 25\ ^{\circ}\text{C}^{[67]} \end{array}$

Saturated solns. of NQ in sulfuric acid^[50]:

	i e		
Conc. of H ₂ SO ₄ solvent (%)	Solubility of NQ (g/100 cc)		
	@ 0 °C	@ 25 °C	
45	5.8	10.9	
40	3.4	8.0	
35	2.0	5.2	
30	1.3	2.9	
25	0.75	1.8	
20	0.45	1.05	
15	0.30	0.55	
0	0.12	0.42	

Solubility in binary solvent mixtures @ 25 °C (g/100 g of solvent) after 5 min stirring $^{[69]}$:

Solvent	NQ
DMSO	33
NMP	21
DMSO 20.8%	24
NMP 79.2%	15
DMF	
DMF 71.7%	21
DMSO 28.3%	

Solubility of NQ in DMF (g/100 g DMF) after 5 min stirring: 15 @ 25 °C $^{[69]}$, 20 @ 60 °C $^{[69]}$, 28 @ 98 °C $^{[69]}$

 $\beta\text{-NQ}$ is more soluble than $\alpha\text{-NQ}$ in water @ 25–100 °C but @ $\textit{T}\!<\!25$ °C the $\alpha\text{-form}$ is more soluble than the $\beta\text{-form}$ and @ $\textit{T}\!>\!100$ °C the $\alpha\text{-form}$ is more soluble than the $\beta\text{-form}^{[71]}$

Solubility of NQ (g) in 100 g solvent @ 20 ${}^{\circ}C^{[71]}$:

Solvent	Solubility (g)
Ether	0.04
Ethyl alcohol	0.18
Acetone	0.19
Methyl alcohol	0.50
Pyridine	1.75
Water	0.27
Water	1.18 @ 50 °c
Water	10.36 @ 100 °C

Solubility of NQ (g) @ 20 °C in 100 g acid^[71]:

HNO ₃ conc.	Solubility (g)
5	0.6
10	1.6
20	3.0
50	5.8
87	22.3

Solubility of NQ (g) in 100 cc sulfuric acid $^{[71]}$:

H ₂ SO ₄ conc.	NQ Solubility			
	0 °C	25 °C		
45	5.8	10.9		
40	3.4	8.0		
35	2.0	5.2		
30	1.3	2.9		
25	0.7	1.8		
20	0.4	1.0		
15	0.3	0.5		

4.4 g dissolves in 1 L H $_2O$ @ 25 °C $(\alpha\text{-NQ})^{[82]},$ 82.5 g dissolves in 1 L H $_2O$		-
@ 100 °C $(\alpha$ -NQ) ^[82] , slightly soluble in EtOH and MeOH $(<0.5\%, \alpha$ -NQ) ^[82] ,	l (<0.5%, α-NQ)) ^[82] ,
practically insoluble in Et_2O (α -NQ) ^[82] , soluble in conc. acids (α -form) ^[82] ,	acids (α-form)	[82]
soluble in cold alkaline solns. (with dec., $\alpha\text{-NQ})^{[82]}$		

Solubility in dil. sulfuric acid, values @ 0 °C and 25 °C calcd. from lit. data^[87]:

% H ₂ SO ₄	g NQ/100 g acid soln.			
	0 °C	13 °C	25 °C	
5.8		0.37		
17.0	0.399		0.623	
17.2		0.65		
20.0		0.72		
20.9	0.577		1.113	
24.8	0.640		1.525	
28.2		1.37		
29.8	1.235		2.225	
44.7	5.134		8.250	

Solubility in water in range 30–70 °C: log (solubility in g/100 g water) = $-1,963.2/T + 6.1255^{[87]}$, solubility in water >70 °C: log (solubility in g/100 g water) = -2,167.0/T + 6.7215 however hydrolytic autocatalysis occurs^[87], 0.050 g/100 mL ethyl acetate @ 19 °C^[87], 0.267 g/100 mL acetone @ 19 °C^[87], 0.166 g/100 mL 96% EtOH @ 19 °C^[87], 0.302 g/100 mL MeOH @ 19 °C^[87], 1.750 g/100 mL pyridine @ 19 °C^[87], insoluble in benzene, CHCl₃, CCl₄ and toluene^[87]

	benzene, Chci3, CCi4 and totalene
Batch sorption	$K_{ow} = 0.172 \pm 0.012^{[43]}$, K_d (sandy soil) = <0.02 L/kg ^[43] , K_d (clayed, organic-rich soil) = 0.38 \pm 0.04 L/kg ^[43]
Hygroscopicity	None @ 30 °C with 90% RH ^[13] , essentially nonhygroscopic ^[18, 61] , nonhygroscopic ^[10]
Photosensitivity	Undergoes photodegradation readily ^[59] , aqueous solns. of NQ more readily photolyzed than aqueous RDX solns. with UV irradiation (254 nm) ^[59] , photodegradation by sunlight of NQ in natural water similar to that of RDX ^[59]
Compatibility	Dec. in excess of 45% sulfuric acid ^[13] , chemically reactive but lit. indicates little or no reaction with metals ^[61] , partial hydrolysis in hot water ^[71] , intensive dec. in boiling water ^[71]

	Weight loss (9/	of NO whon:	te cone ar	o hos	ited in an auto	velave at 120 °C
	Weight loss (%) of NQ when its sons. are heated in an autoclave at 120 °C for 48 $h^{[71]}$:					
						1
	Soln. NQ weight loss		ss (%)			
	Acid medium	(ph 3.9-6)	0.19]
	Neutral medic	um (ph 7-9)	0.51			
	Alkaline medi	um (pH 8-9)	2.74			
ΔH° _{sublimation} [kJ/mol]	139.7 ± 2.3 ^[54] ,	142.7 (exptl.)	^[58] , 102.9	(calco	d., QSPR) ^[58]	
Heat capacity, C_p	$C_{\rm p}^{298}$ = 30.9 cal	mol ⁻¹ K ^{-1[79]}				
[J g ⁻¹ K ⁻¹]	Data from ^[19]					
	Material	Heat capacit		ınt	Trange (°C)]
	LBD NQ ^a	0.242 + 0.00	11 <i>T</i> (°C)		37 <i><t< i=""><167</t<></i>	
	HBD NQ ^b	0.269 + 0.00	007 T(°C)		37 <i><t< i=""><167</t<></i>	
	^a Low-bulk dens 494A, ^b high-bu diameter ~ 300	ılk density NQ			•	
Thermal conductivity, κ	LBD NQ = low-b	oulk density No	Q, data froi	m ^[19]		
[W m ⁻¹ K ⁻¹]	Material	Density	(g/cm³)		ductivity /cm-s-°C)	Trange (°C)
	LBD NQ	1.65		10.1	× 10 ⁻⁴	25 <t<50< td=""></t<50<>
		1.69		9.8	× 10 ⁻⁴	25 <t<50< td=""></t<50<>
Diffusion coefficient [cm²/s]	0.102 (air) ^[59] , 1	1.04 × 10 ⁻⁵ (w	ater) ^[59]			
Log K _{ow}	-0.83 ^[59] , -0.89 @ 25 °C ^[63,67] , 0.148 @ 25 °C ^[63] , -0.89-0.156 ^[64]					
Log K _{oc}	-0.356 ^[59] , 1.3 ^[64]					
Biodegradation	NQ is not biotransformed aerobically ^[59] , partial conversion to nitrosoguandine occurs on prolonged anaerobic treatment with activated sewage sludge containing nutrients ^[59] , NQ not biodegradable in soils unless high levels of glucose present ^[59]					
p <i>K</i> _a	12.8 (est.) ^[64]					
рН	5.5 (saturated aqueous soln. @ 25 °C) ^[18]					
Rifle bullet test	100% unaffecto	ed (5 trials) ^{[13,}	18]			

Plate dent test	Brisance = 95% TNT, ρ = 1.50 g cm ⁻³ , not confined, pressed, method A ^[13] , 95% TNT ^[18] Data from ^[19] :						
	Charge diameter (mm)	Density (g/cm³)	Dent depth (mm)	Cha heis	rge ght (mm)	
	12.7	0.25	0.56		76.	2	
	12.7	0.40	0.79	0.79 76		2	
Booster sensitivity test	Condition = presse ρ = 1.41 g cm ^{-3[13, 7]}		g, wax inch	es for 5	50% c	detonation = 0	0.67,
Combustion performance	Theoretical combus code ^[68] :	stion performa	ince of neat	NQ as	calcu	lated with NA	SA CEA
	Unit	0.1 MPa	1 MPa	10 M	Pa	100 MPa	
	Temperature, K	1,836	1,837	1,83	8	1,849	
	У	1.2693	1.2698		1.2642		
	MW, g mol ⁻¹	20.811	20.813	20.819		20.924	
	CO, mol%	16.883	16.886	16.8	86	16.746	
	CO ₂ , mol%	3.115	3.113	3.11	5	3.174	
	H ₂ , mol%	23.101	23.106	23.0	82	22.486	
	H ₂ O, mol%	16.886	16.886	16.8	86	17.112	
	N ₂ , mol%	39.995	39.998	39.9	99	40.115	
Fugacity	290-300 cc ^[71]						
Brisance	16.5 mm ^[71]						
Dust explosion	≥4.1 kg/m ^{3[83]}						
Wedge test	aNQ mean particle diameter = 300 μm , cubic crystals; bNQ as long needle crystals, needle diameter = few $\mu m^{[19]}$:					dle	
						Pressure range (GPa)	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	1.688 ^b $\log P = (1.51 \pm 0.02) - (0.26 \pm 0.03) \log x^*$ 21.2 < P < 27.1						

Manometric bomb

T=1,990 °C (@ 0.20 g cm⁻³, manometric bomb, 139 cc volume, $T_{\rm expl.}$ based on pressure measured)^[50], 907 °C (manometric bomb expts., NQ agglomerated under 3,600 kg/cm², broken up into grains of 2–3 mm diameter, fired in bomb of 22 cc capacity, *Patart's* value, considered to be too low) † [50], >1,773 °C (0.20 mm diameter Pt wire in bomb was melted by explosion) [50]

Patart's exptl. results from manometric bomb expts. [50]:

Loading ρ (g cm ⁻³)	Pressure (kg/cm²)
0.15	1304 1584 1416 } 1435
0.20	2060 } 2091
0.25	3092 3068 3 3080
0.30	4118 4038 } 4078

[†] calcd. from this data: covolume = 1.60, force = 7,140, T of explosion = 907 °C (considered too low by Patart)^[50]; if NQ is compressed too strongly, incomplete dec. can occur, 3,600 kg/cm² pressure is too high (Muraour and Aunis)^[50]

NQ compressed under 650 kg/cm², fired in manometric bomb, 22 cc vol., @ 0.20 g cm^{-3} , primer = 1 g black powder gave pressure = 1,737 kg/cm^{2[50]}

NQ compressed under 1,000 kg/cm², fired in manometric bomb, 22 cc vol., @ 0.20 g cm⁻³, primer = 1 g black powder gave pressure = 1,975 kg/cm^{2[50]}

Calcd. values based on exptl. data^[50]: $T_{\text{expl.}} = 2,098 \,^{\circ}\text{C}$, covolume = 1.077, force = 9,660, pressure = 2,463 kg/cm² (@ 0.20 g cm⁻³)^[50]

Radiation sensitivity

Vacuum stability test data from[86]:

	Exposure rate (R/h)	Total dose (R)	100 °C cc/g/40 h	120 °C cc/g/40 h	200 °C cc/2 g/2 h
Ī	8 × 10 ⁵	Control		0.47	11 + (15 min)
		1.3×10^{7}		0.49	11 + (10 min)
		1.1 × 10 ⁸		0.71	11 + (12 min)
		1.0 × 10 ⁹	12.15	11 + (30 mins)	

DTA for irradiated NGu @ 20 °C/min^[86]:

Total dose (R)	Endotherms		Exotherms	
	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)
0	230	240	240	249
1.3 × 10 ⁷	230	237	237	246
1.1 × 10 ⁸	233	235	235	241
1.05 × 10 ⁹	229	229	229	237
1.44 × 10 ⁹	225	226	226	234

TGA for irradiated NGu^[86]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec. (°C)	10% weight loss temp. (°C)	Total weight loss (%)	Remarks
0	20	7.7	205	248	14 @ 249 °C	Deflagrated @ 249 °C
1.3 × 10 ⁷	20	8.45	203	245	17 @ 249 °C	Deflagrated @ 249 °C
1.1 × 10 ⁸	20	8.0	185	231	22 @ 244 °C	Deflagrated @ 244 °C

Effect of gamma radiation on the mpt. and color^[86]:

Total dose (R)	mpt. (°C)	Color
0	239	White
1.3 × 10 ⁷	237	Off-white
1.1 × 10 ⁸	232	Yellowish white
1.0 × 10 ⁹		White

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass)^[86]:

Total Co ⁶⁰ gamma dose (R)	\overline{X} mean (in)	σ std. dev. (in)
0	27.78	2.22
1.3 × 10 ⁷	20.70	2.21
1.1 × 10 ⁸	24.83	1.49
1.0 × 10 ⁹	36+	

	Effect of gamma activation energ			(5 s explosion <i>T</i> ir	1 °C) and
	Total dose (R)	5 s exp	losion T(°C)	Apparent activat energy (kcal/mo	l l
	0	288		17.91	
	1.3 × 10 ⁷	282		14.72	
	1.1 × 10 ⁸	285		15.04	
	Effect of gamma	a radiation	radiation on rates of detonation ^[86] :		
	Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
	0	1.54	_	7,485	216
	1.3 × 10 ⁷	-	- 156 Would not o		t detonate
	1.1 × 10 ⁸	Pelle	ts crumbled		
Refractive indices	Light $\lambda = 5,893$ $\gamma = 1.81 \pm 0.01^{[i]}$	_	$\alpha = 1.526 \pm 0.$	002, $\beta = 1.694 \pm 0$	0.002,

Propagation characteristics of NQ/ $\rm H_2O$ mixtures, data from [83]:

Mixture compo	osition, wt. %			gation test re pe diameter (i		
NQ	H ₂ O	1.27 ½	3.81 1 ¹ / ₂	5.08 2	6.35 2 ¹ / ₂	7.62 cm 3 in
80	20	Υ				Υ
70	30	N		N		Υ
60	40			N		
40	60			N		

Y = yes, N = no incomplete

+	NQ ^[5, 30]	NQ ^[18, 23]	NQ ^[24]	NQ ^[25]	NQ ^[26]	NQ ^[19]	NQ ^[87]
Chemical formula	$CH_4N_4O_2$	$CH_4N_4O_2$	CH ₄ N ₄ O ₂				
Molecular weight [g mol ⁻¹]	104.07	104.07	104.07	104.07	104.07	104.07	104.07
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Fdd2 (no. 42)	Fdd2 (no. 42)	F d d 2 (no. 42)	F d d 2 (no. 42)	Fdd2 (no. 42)		
a [Å]	17.6181(14)	17.58(9)	17.6152(5)	17.6390(5)	17.64(3)	17.58	17.47
<i>b</i> [Å]	24.848(2)	24.82(12)	24.8502(7)	24.8730(7)	24.883(4)	24.84	24.50
<i>c</i> [Å]	3.5901(4)	3.58(2)	3.5880(1)	3.5903(1)	3.5950(5)	3.58	3.59
α [°]	06	06	06	90	06	06	06
[ο]	06	06	06	06	06	06	06
γ[°]	06	06	06	06	06	06	06
V [ų]	1,571.7(3)	1,562.08	1,570.62	1,575.19	1,578.2(4)		
Z	16	16	16	16	16	16	16
$ ho_{ m calc}$ [g cm $^{-3}$]	1.759(2)	1.77004	1.76	1.755	1.752		1.78
<i>T</i> [K]	293	295	295	295	293		

† Previous literature reported >1 polymorph, current literature reports only one crystal structure (orthorhombic) but that crystals can have two habits

 \geq 2 crystalline forms exist: α -NG and β -NG^[18] and the two forms can be separated by fractional crystallization from water^[18]:

α-NG ^[18]	β-NG ^[18]	
Precipitated on addition of H ₂ O to soln. of NG dissolved in conc. sulfuric acid	Cryst. from hot water	
Long, thin, lustrous flat needles	Fern-like clusters of small, thin, elongated plates	
Form most commonly used in explosives		
Obtained by reaction of guanidine with nitric acid followed by dehydration Obtained by nitration of guanidinium sulfate and (NH ₄) ₂ SO ₄ which results from hydrolysis of dicyanamide		
lpha-NG and eta -NG have the same mpt.		
lpha-NG and eta -NG have similar chemical and physical properties		
lpha-NG and eta -NG vary in solubilities		
Refractive index: α -NG = 1.52, β -NG = 1.694, γ	-NG = 1.81.	

Properties of crystalline NG: colorless, hollow needles with length:diameter ratio of ~10 with LBD on crystallization from aqueous nitrating solution^[57], improved bulk density (HBD) on work-up. Colorless, spherical crystals with high-bulk density SHBD on recrystallization from ethylene glycol, DMF or DMSO^[57]

Property	LBD	HBD	SHBD
Max. bulk ρ (g cm ⁻³)	0.3	0.9	1.15
Crystal ρ (g cm ⁻³)	1.71-1.73	1.75	1.76
Particle morphology	Fine/hollow needles	Plates, bundles	Spherical grains
Particle dimensions (μm)	Length: 30–70 Width: 3–6	Diameter: 60	Diameter: 250
Specific surface area (m² g ⁻¹)	20-25	3-4	<0.5
Predominant uses	Triple-base propellants	Rocket propellants	High explosives

Crystals of β -NQ which are crystallized from water are plate shaped^[71], if these β -NQ crystals are dissolved in sulfuric acid and the soln. is decanted into water then crystals of α -NQ are obtained^[71]

 α -NG and β -NG cryst. forms are both orthorhombic, elongated rod crystals with axial ratios a:b:c of 0.708:1:0.144; cleavage occurs parallel to c-axis; 16 molecules per unit cell^[87]

NQ crystallizes in slender needles which mat into a felt-like mass^[87]

NQ crystallized from dilute acetic acid produces crystals in which 70-80% have hollow cavities, only 10-20% of crystals are hollow aggregates when crystallized from water^[87]. Fine crystals obtained by spraying saturated aqueous NQ soln. into a countercurrent of dry air, or by adding saturated aqueous NQ soln. to cold water^[87].

- [1] A. M. Astakhov, K. P. Dyugaev, A. A. Kuzubov, V. A. Nasluzov, A. D. Vasiliev, É. S. Buka, *J. Struct. Chem.*, **2009**, *50*, 201–211.
- [2] G. W. C. Taylor, Ministry of Technology, GB1196731—1970-07-01, 1970.
- [3] H. Bathelt, F. Volk, M. Weindel, ICT-Database of Thermochemical Values, 7th Update, 2004.
- [4] F.Volk, H. Bathelt *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [5] R. K. Murmann, R. Glaser, C. L Barnes, J. Chem. Crystallogr., 2005, 35, 317–325.
- [6] D. R. Lide, CRC Handbook of Chemistry and Physics (88th edn.), 2007–2008, CRC Press.
- [7] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th, pp. 434–443.
- [8] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [9] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [10] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [11] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [12] P. Politzer, J. S. Murray, Centr. Eur. J. Energ. Mater., 2014, 11, 459-474.
- [13] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [14] B. M. Dobratz, P. C. Crawford, *LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants*, Lawrence Livermore National Laboratory, January 31st **1985**.
- [15] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [16] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Eng. Mater. Sci.*, 2015, 22, 701–706.
- [17] M. Pospíšil, P. Vávra, Study of Electron Density of Molecules, Intermolecular Forces and Impact Sensitivity of Explosives, in Final Proceedings for New Trends in Research of Energetic Materials, S. Zeman (ed.), NTREM 7, 20th-22nd April 2004, Pardubice, pp. 600-605.
- [18] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [19] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, USA, 1980.
- [20] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [21] I. J. Dagley, M. Kony, G. Walker, J. Energet. Mater., 1995, 13, 35-56.
- [22] L. R. Rothstein, R. Petersen, Predicting High Explosive Detonation Velocities From Their Composition and Structure, NWSY TR 78–3, September 1978.
- [23] J. H. Bryden, L. A. Burkhardt, E. W. Hughes, J. Donohue, *Acta Cryst.*, **1956**, *9*, 573–578.
- [24] C. S. Choi, Acta Cryst., 1981, B37, 1955–1957.
- [25] A. J. Bracuti, J. Chem. Crystallography, 1999, 29, 671–676.
- [26] R. K. Murmann, R. Glaser, C. L. Barnes, J. Chem. Crystallography, 2005, 35, 317–325.
- [27] F. Volk, *Propellants, Explosives, Pyrotechnics*, **1985**, 10, 139–146.
- [28] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [29] D. Powala, A. Orzeschowski, A. Maranda, J. Mowaczewski, *Spherical Nitroguanidine as Component of High Explosives*, NTREM 7, April 20th–22nd **2004**, pp. 606–613.
- [30] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.

- [31] A. A. Gidaspov, E. V. Yurtaev, Y. V. Moschenskiy, V. Y. Andeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th-11th April 2014, pp. 658-661.
- [32] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 236–237.
- [33] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [34] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [35] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [36] D. Price, J. Energet. Mater., 1985, 3:3, 239-254.
- [37] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651-659.
- [38] L. R. Rothstein, R. Petersen, Predicting High Explosive Detonation Velocities From Their Composition and Structure, NWSY TR 78–3, September 1978.
- [39] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th–11th April 2014, pp. 24–37.
- [40] J. R. Stine, J. Energet. Mater., 1990, 8, 41-73.
- [41] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [42] T. P. Liddard, D. Price, Recalibration of the Standard Card-Gap Test, NOLTR 65–43, US Naval Ordnance Laboratory, Maryland, USA, 20th August 1965.
- [43] P. Brousseau, S. Brochu, M. Brassard, G. Ampleman, S. Thiboutot, F. Cŏté, L.-S- Lussier, E. Diaz, V. Tanguay, I. Poulin, M. Beauchemin, *Munitions With a Lower Environmental Impact: The Righttrac Project*, ICT **2010**, Karlsruhe, Germany, pp. 3-1-3-12.
- [44] P. Marecek, J. Pokorna, P. Vavra, A Study of Some Insensitive Explosives, ICT 1998, Karlsruhe, Germany, pp. 52-1–52-5.
- [45] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [46] D. Skinner, D. Olson, A. Block-Bolten, *Propellants, Explosives, Pyrotechnics*, 1997, 23, 34–42.
- [47] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [48] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [49] T. Gorontzy, O. Drzyga, M. W. Kahl, D. Burns-Nagel, J. Breitung, E. von Loew, K. H. Blotevogel, Crit. Rev. Microbiol., 1994, 20, 265–284.
- [50] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [51] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [52] D. Price, Critical Parameters For Detonation Propagation and Initiation of Solid Explosives, NSWC TR 80–339, Naval Surface Weapons Center, Maryland, USA, 10th September 1981.
- [53] M. F. Gogulya, A. Y. Dolgoborodov, M. A. Brazhnikov, M. N. Makhov, V. I. Arkhipov, Explosive Performance of Aluminised NQ-Based Compositions, ICT 2001, Karlsruhe, Germany, pp. 77-1-77-14.
- [54] A. M. Astachov, A. A. Nefedov, L. A. Kruglyakova, A. D. Vasiliev, K. P. Dyugaev, R. S. Stepanov, 1-Alkyl-2-Nitroguanidines: Structure and Thermal Decomposition, ICT 2007, Karlsruhe, Germany, pp. 49-1–49-15.
- [55] R. Petersen, L. R. Rothstein, J. H. Smith, *Thermochemistry and the Demilitarization of Explosives*, NWSY TR 76-2, Naval Weapons Station, Virginia, USA, July **1976**.
- [56] T. Yepeng, The Effect of NQ and TATB to the Insensitivity of HMX, ICT 2002, Karlsruhe, Germany, pp. 54-1–54-7.
- [57] E.-C. Koch, Nitroguanidine (NQ) An Underestimated Insensitive Energetic Material for High Explosives and Propellants, ICT **2018**, Karlsruhe, Germany, pp. 3-1–3-13.

- [58] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, Predictive Studies on Various Physicochemical Properties of Explosive Molecules, ICT 2006, Karlsruhe, Germany, pp. 177-1–177-12.
- [59] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [60] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1-38.
- [61] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [62] E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, in Energetic Materials from Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [63] K. Dontsova, S. Taylor, High Explosives and Propellant Energetics: Their Dissolution and Fate in Soils, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, 2017.
- [64] S. Taylor, K. Dontsova, M. Walsh, Insensitive Munitions Formulations: Their Dissolution and Fate in Soils, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, 2017.
- [65] S. Fordham, *High Explosives and Propellants*, 2nd edn., Pergamon Press, **1980**, p. 20.
- [66] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, Explosive Behavior of Dinitrotoluene, NOLTR 69–92, US Naval Ordnance Laboratory, Maryland, USA, 10th July 1969.
- [67] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [68] E.-C. Koch, Insensitive Explosive Materials: VII. Guanylurea Dinitramide GUDN, MSIAC unclassified report L-175, NATO Headquarters, Brussels, 2011.
- [69] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers from Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.
- [70] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [71] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [72] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [73] E.-C. Koch, State of the Art Insensitive Explosives, MSIAC Workshop on Sensitivity of Energetic Materials, 11th-12th May 2010.
- [74] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [75] T. P. Liddiard, D. Price, The Expanded Large Scale Gap Test, NSWC TR 86–32, Naval Surface Weapons Center, Maryland, USA, March 1987.
- [76] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [77] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.

- [78] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [79] G. Krien, H. H. Licht, J. Zierath, *Thermochim. Acta*, **1973**, *6*, 465–472.
- [80] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, Detonation Performance Analyses for Recent Energetic Molecules, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [81] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, *Chinese J. Expl. Prop.*, **2015**, *38*, 1–8.
- [82] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [83] J. W. Leach, Detonation of Guanidine Nitrate and Nitroguanidine Manufactured via U/AN and BAF Processes, US Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, Dover, New Jersey, USA, August 1979.
- [84] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [85] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [86] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.
- [87] A. F. McKay, Chem. Revs., 1952, 51, 301-346.

Nitroisobutylglycerol trinitrate

Name [German, acronym]: [2-Nitro-3-(nitrooxy)-2-[(nitrooxy)methyl]propyl] nitrate,

> nitroisobutyl-glycerintrinitrate, nitroisobutylglycerine trinitrate, nitroisobutanetriol trinitrate, NIB-glycerine trinitrate [Nitroisobutylglycerintrinitrat, NIBTN, NIBGT,

NIBGTN]

Explosive, gelatinizing agent for nitrocellulose^[7], in Main (potential) use:

> gelignite^[18], suitable for low temperature applications especially in the production of liquid explosives^[18], plastic explosives, powder explosives, gun propellants

and rocket propellants^[18]

Structural formula:

$$O_2N$$
 O_2
 O_2N
 O_2
 $O_$

	NIBTN
Formula	$C_4H_6N_4O_{11}$
Molecular mass [g mol ⁻¹]	286.11
Appearance at RT	Liquid with low volatility and no odor @ RT ^[5] , oily liquid ^[12] , yellow oil, more viscous than NG ^[13] , slightly yellowish, viscous, syrupy, odorless but burning to taste liquid ^[15] , pale yellow viscous oily liquid ^[18] , industrial product dark yellow ^[18] , colorless or light yellow oily transparent liquid (NIBTN specification) ^[18]
IS [J]	$2 \text{ Nm}^{[7]}$, 4.9 (25 cm, 2 kg mass, 20 mg sample, B.M.) ^[3] , 15–25 cm (2 kg mass) ^[5] , 6 cm (2 kg mass) ^[8, 13] , 25 cm (2 kg mass) ^[8] , similar to that of NG ^[12] , 15 cm (2 kg hammer, lower explosion limit) ^[18] , 25 cm (2 kg hammer, 100% explosion) ^[18]
FS [N]	Friction pendulum test = 6% (cf. 16% for NG) ^[18]
N [%]	19.58
Ω(CO ₂) [%]	±0

T _{glass transition} [°C]	Highly viscous @ 0 °C and like the melted glass can be drawn into a wire ^[18] , hard wax like solid @ freezing point ^[18] , hard wax below freezing point ^[5]							
T _{m.p.} [°C]	-35, -39 ^[3, 18] , -39 (freezing point) ^[5] , <-35 (freezing point) ^[15] , -39 (freezes) ^[3, 12] , -35 (freezes) ^[5, 13, 18]							
T _{dec.} [°C]	pinhole min) ^[19]	179.9 (onset), 200.6 (peak max), 217.8 (end 7) (DSC @ 10.0 K/min, pinhole cover) ^[14] , 179.9 (exo, onset), 200.6 (exo, peak max) (DSC 10 K/min) ^[19] Nonisothermal TG data ^[19] :						
	β/К	$T_{\rm ot}$	T _i	mass los	s/%	L _{max} /%	T _p /°C	T _{oe} /°C
	min ⁻¹			Stage 1	Residue/%	min ⁻¹		
	7.0	163.4	124.7	99.78	0.03	-22.43	183.7	200.8
	10.0	171.0	126.9	99.86	0.06	-36.47	187.5	212.3
	15.0	180.9	129.3	96.71	1.07	-66.64	194.2	215.2
	20.0 184.7 132.2 96.96 1.20 -90.34 197.6 223						223.2	
ρ [g cm ⁻³]	$T_{\text{ot}} = \text{onset } T \text{ of dec.}, T_{\text{oe}} = \text{onset } T \text{ of end of dec.}, T_{\text{i}} = \text{initial } T \text{ for thermal dec.}, T_{\text{p}} = \text{peak } T \text{ of mass loss rate, stage 1 = from initial } T \text{ to end } T \text{ of DTG peak, } L_{\text{max}} = \text{max. mass loss rate}$ $1.735^{[1]}, 1.6171 \text{ (@ 20 °C)}^{[5,18]}, 1.68^{[7,8]}, 1.64 \text{ (@ 20 °C)}^{[3,8,9]}, \text{sp.}$							
,					gr. = 1.68 (@ 1			
Heat of formation		50.0 kcal/mol $(Q_f^{V)^{[9]}}$, 168.7 kcal/kg ^[15] , 200.83 kJ/mol (@ constant volume) ^[5, 18] , 226.35 kJ/mol (@ constant pressure) ^[5, 18]						
Heat of combustion	2,217.52 kJ/mol (@ constant volume) ^[5] , 530.5 kcal/mol (Q_c^{V}) ^[9] , 1,856 kcal/kg (@ C^{V}) ^[15] , heat of comb. = 2,217.51 kJ/mol (@ constant volume) ^[18] , heat of comb. = 7,765.5 J/g (@ constant volume) ^[18] , 2,205.2 kJ/mol (ΔH_c , heat of comb.) ^[19]							
	Calcd. (EXPLO5	6.03)	Lit. value	es	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,897 1,707 kcal/kg 6,924 [H ₂ O (g)] ^[5]							
	(explosive dec.) ^[12, 15] 7,389 [H ₂ O (l)] ^[5] 7.15 MJ/kg (heat of					[5]		
	explosion) ^[16] 7,755 ^[6] $6,924 [H2O (g)]^{[18]}$ 7,661 $[H2O (l)]^{[7]}$			[7]				
		7,389 $[H_2O(I)]^{[18]}$ 7,226 $[H_2O(g)]^{[7]}$						

T _{ex} [K]	4,634	4,870 °C ^[18]	4,870 °C ^[5]
p _{C-J} [kbar]	309		
VoD [m s ⁻¹]	8,604 (@ 1.68 g cm ⁻³)	7,780 (@ 1.64 g cm ⁻³ (TMD), calcd., R-P method) ^[11] 8,820 (@ 1.800 g cm ⁻³ , calcd., K-J) ^[14]	7,600 (@ 1.68 g cm ⁻³) ^[7] 7,860 (@ 1.64 g cm ⁻³) ^[2, 5, 13] 1,000–1,500 (@ 1.64 g/cc, glass tube, 10 mm diameter, 1 mm wall thickness) ^{[8]*} 7,860 (@ 1.64 g/cc, glass tube, 10 mm diameter, 1 mm wall thickness) ^{[8]*} 7,860 (@ 1.64 g/cc, glass tube, 10 mm diameter, 1 mm wall thickness) ^{[8]*} 7,860 (@ 1.64 g cm ⁻³) ^[9] 7,860 (@ 1.64 g cm ⁻³ , liq., 0.39 in charge diameter, confined in glass, 1 mm wall) ^[3]
V ₀ [L kg ⁻¹]	7,670	705 ^[18]	705 ^[4, 5, 7] 801 ^[6]

^{*} The VoD values are reported to be of high (7,860 m/s) or low (1,000 m/s) order depending on the method of initiation $^{[8]}$

Trauzl test [cm³, % TNT]	55% TNT ^[8] , 195-110% NG ^[12] , 540 ^[17]
Sand test [g]	28 g (200 g bomb, 0.2 g sample absorbed by 0.2 Kieselguhr) $^{[3]}$, 56 g sand crushed (cf. 52 g for NG) $^{[9]}$

Brisance compression heights	Caste brisance meter, galvanized steel sample container, 1 mm wall thickness, 40 g sample, no. 8 tetryl detonator as initiator, copper cylinder 10×15 mm without precompaction ^[5, 18] :						
	Compression height of Cu cylinder (mm)			Relative pressure (kg/cm²)			
	12.07			2,493			
	11.97			2,552			
	12.64			2,156			
	12.55			2,210			
5 s explosion T [°C] 5 s ignition T [°C] Initiation T [°C]	180–185 (dec./deflagration) ^[8] , 255 ^[18] 185 ^[3,10] , 255 ^[5] 180 ^[12]						
Thermal stability	Nonisothermal TG data, $\beta = {}^{\circ}\text{C/min}$, $T_{\text{ei}} = \text{onset } T$ of TG peaks, $T_{\text{p}} = \text{peak } T$, $T_{\text{oe}} = \text{endset } T$ of TG peaks, $T_{\text{b}} = \text{critical } T$ for thermal dec. [14]:						
	β (°C/min)	T _{ei} (°(C)	T _p (°C)	T _{oe} (°C) [T _b (°C)
	7.0	163.4	4	183.7	200.8		158.5
	10.0	171.0	0	187.5	212.3		
	15.0	180.9	9	194.2	215.2		
	20.0	184.	7	197.6	223.2		
	Less thermally stable than NG and slow dec. on storage ^[5, 18] , critical T for thermal dec. = 158.5 °C ^[19]					critical T for	
Vapor pressure	Lower than tha	t of NG	[18]				
[atm @ °C]	Vapor pressures @ different 7 ^[5, 18] :						
	T(°C)	4	40	50	60	70	80
	Vapor pressu (mm Hg)		2.74 × 10 ⁻⁴	5.00 × 10 ⁻⁴	14.8 × 10 ⁻⁴	33.6 × 10 ⁻⁴	79.3 × 10 ⁻⁴
Volatility	$\begin{array}{c} 0.127\times 10^{-3}\ g\ mg/cm^2/24\ h\ mass\ loss\ @\ 25\ ^{\circ}C^{[3,8]},\ less\ volatile\\ than\ NG^{[5,13,18]},\ slightly\ volatile\ @\ RT^{[18]},\ highly\ volatile\ @\ 50\ ^{\circ}C^{[18]},\\ 0.127\times 10\ mg/cm/24\ h\ @\ 25\ ^{\circ}C^{[18]},\ little\ volatility\ @\ RT\ and\ slightly\\ volatile\ @\ 30\ ^{\circ}C,\ volatile\ @\ 50\ ^{\circ}C^{[5]},\ 0.127\times 10\ mg/cm/day\ @\ 25\ ^{\circ}C^{[5]} \end{array}$						

	Volatilization lo	osses (%) @ dif	ferent <i>T</i> , ap	prox. value	es from gra	ph ^[18] :		
	Time (h)	T(°C)	7(°C)					
		68	70		80			
	2	0.02	0.0)3	0.1			
	4	0.03	0.5	5	0.15			
	6	0.04	0.0)7	0.25			
	8	0.05	0.1	<u>l</u>	0.3			
	10	0.06	0.1	13	0.4			
	12	0.07	0.1	15	0.5			
	14	0.08	0.1	16	0.55			
	16	0.09	0.1	17	0.65			
	18	0.1	0.1	19	0.75			
Solubility [g/mL] Compatibility	308.55 @ 20 °C ^[5, 18] , 8–9 times that of NG ^[18] , highly viscous @ 0 °C ^[5] Soluble in MeOH, EtOH, acetone, Et ₂ O, ethylene dichloride, CHCl ₃ and benzene ^[3] , insoluble in water, CS ₂ and petroleum ether ^[3] , 0.081% in water @ 20 °C ^[5, 18] , soluble in Et ₂ O, acetone, benzene, CCl ₄ , CH ₂ Cl ₂ , nitrobenzene and nitrotoluene as well as nitroaromatics ^[5] , very soluble in Et ₂ O, acetone ^[13] , soluble in EtOH, benzene, CHCl ₃ ^[13] , insoluble in ligroin ^[13] , immiscible with H ₂ O ^[12] , soluble in most common organic solvents except petroleum ether ^[12] , miscible with many organic solvents, for example, Et ₂ O, acetone, benzene, ethyl acetate, CCl ₄ , CH ₂ Cl ₂ , nitrobenzene, nitromethane ^[18] Hydrolyzed in dilute basic solns., hydrolyzation constant = 1.81 × 10 ^{-3[5]} , thermal dec. catalyzed by acids, bases, water and other impurities ^[5]							
ΔH _{dec.} [J/g]	569.8 (heat rel							
Refractive index	$n^{\rm D}_{25} = 1.4896^{[3]}$							
82.2 °C KI test	Minutes ^[3]							
Surface tension [dyne/cm]	Data from ^[18] :							
	T(°C)	20	30	40	50	60		
	Surface tension (dyne/cm)	on 56.62	55.87	55.13	54.38	53.64		
Abel test	>25 min @ 72 °	°C (NIBTN speci	fication) ^[18]					

- Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [2] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [3] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [4] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [5] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- 6] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [7] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 237–238.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [11] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56-60.
- [12] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [13] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 283–285.
- [14] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [15] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [16] N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
- [17] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [18] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [19] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.

Nitromethane

Name [German, acronym]: Nitromethane, nitrocarbol [nitromethan, NM]

 $\label{thm:main} \mbox{Main (potential) use:} \qquad \mbox{Component of binary explosives, synthetic intermediate}$

for synthesis of explosives, propellants, solvent, rocket fuel component $^{[42]}$, fuel in binary high explosives $^{[48]}$,

liquid rocket fuel^[48]

Structural formula:

H₃C-NO₂

	NM
Formula	CH ₃ NO ₂
Molecular mass [g mol ⁻¹]	61.04
Appearance at RT	Very pale yellow colored liquid, colorless liquid ^[42] , colorless liquid with fruity odor ^[48] , oily liquid with moderately strong, disagreeable odor ^[49]
IS [J]	>40, $40^{[7]}$,>78.5 (12 tool) ^[8] , 100 cm ^[15] , 640 mm (drop height, Rotter impact test) ^[35] , 361 mm (drop height, Rotter impact test + 5% DETA) ^[35] , 89 cm (median height, Rotter apparatus) ^[45] , dropping 10 kg weight from 25 cm results in 0–8% explosions ^[42] , $<^1/_{10}$ tests positive (25.0 cm drop height, 3.63 kg mass, B.M. apparatus) ^[52]
FS [N]	>360
N [%]	22.95
Ω(CO ₂) [%]	-39.32
T _{m.p.} [°C]	$-28^{[1]}$, $-29^{[8, 14, 49]}$, $-28.55^{[15]}$, -29 (freezing point) ^[42]
	Pressure dependence of the melting point (approx. values) $^{[34]}$: 300 °C/0.4 GPa, 322 °C/0.46 GPa, 330 °C/0.48 GPa, 362 °C/0.8 GPa, 380 °C/1.0 GPa, 420 °C/1.38 GPa $^{[34]}$
T _{b.p.} [°C]	$101.2^{[42]}, 101^{[42]}, 100^{[48]}, bp_{760} = 101.2^{[49]}, bpt_{100} = 46.6^{[49]}, bp_{40} = 27.5^{[49]}, \\ bp_{20} = 14.1^{[49]}, bp_{10} = 2.8^{[49]}, bp_{5} = -7.9^{[49]}, bp_{1.0} = -29^{[49]}, 101^{[50]}$
T _{dec} [°C]	>300 (DSC) ^[7] , dec. occurs >1.54 GPa and 433 K ^[34] , 3,418 K (Adiabatic dec. 7) ^[37]
$ ho$ [g cm $^{-3}$]	1.131 (@ 298 K) $^{[2]}$, 1.13130 (@ 298 K) $^{[3]}$, 1.313 (@ 298 K, TMD) $^{[8]}$, 1.13 (@ TMD, liquid) $^{[38]}$, sp. gr. = 1.132 (@ 15 °C) $^{[42]}$, 1.14 $^{[48]}$, d^{25}_4 = 1.1322 $^{[49]}$, 1 gallon weighs 9.5 lb $^{[49]}$,

	sp. gr. data from ^[42] :					
	Temperature (°C	$\rho (g/cm^3)$		Ostwald viscosity		
	10	1.1490		0.748		
	25	1.1287		0.625		
	40	1.1080		0.533		
Heat of formation	$-113\pm0.4\ k]/mol\ (\Delta_iH^o\ (liquid),\ exptl.,\ NIST\ database)^{[51]},\ -113.1\pm0.63\ k]/mol\ (\Delta_iH^o\ (liquid),\ exptl.,\ NIST\ database)^{[51]},\ -89.04\pm0.75\ k]/mol\ (\Delta_iH^o\ (liquid),\ exptl.,\ NIST\ database)^{[51]},\ -112.97\ k]\ mol^{-1}\ (standard\ heat\ of\ form.)^{[13]},\ -21.8\ kcal/\ mol^{[15]},\ -1,853.5\ k]/kg\ (lCT\ thermochemical\ database)^{[4]},\ -1,850.75\ J/g\ (standard\ heat\ of\ form.)^{[13]},\ -27.0\ kcal/mol^{[9]},\ -1,853.5\ k]/kg^{[5]},\ -19.3\ kcal/mol\ (\Delta H_f^o\ (g))^{[33]},\ -28.5\ kcal/mol\ (\Delta H_f^o\ (g))^{[33]},\ -27.0\ kcal/mol\ (\Delta H_f)^{[32]},\ 318.3\ kcal/\ kg^{[41]},\ -27.6\pm0.2\ kcal/mol\ (\Delta H_f^o\ (g))^{[25]},\ -17.8\ kcal/mol\ (\Delta H_f^o\ (g))^{[25]},\ -27.0\ kcal/\ mol\ (\Delta H_f^o\ (g))^{[26]},\ -113.1\ kJ/mol^{[38]},\ -113\ kJ/mol\ (enthalpy\ of\ form.)^{[48]},\ -17.4\ kcal/\ mol\ (\Delta H_f(g)^o,\ calcd.,\ ccCA-PS3)^{[53]},\ -18.1\ kcal/mol\ (\Delta H_f(g)^o,\ calcd.,\ ccCA-PS3)^{[53]},\ -17.7\ kcal/mol\ (\Delta H_f(g)^o,\ calcd.,\ G3)^{[53]},\ -16.0\ kcal/mol\ (\Delta H_f(g)^o,\ calcd.,\ G3(MP2))^{[53]},\ -17.8\pm0.2\ kcal/mol\ (\Delta H_f(g)^o,\ exptl.)^{[53]}$					
Heat of combustion	$\begin{split} \Delta H_c &= -1,69.5 \pm 0.2 \text{ kcal/mol (liq.)}^{[25,33]}, \text{ heat of comb.} = -11.63 \text{ kJ/g} \\ &(\text{exptl.)}^{[37]}, \text{ heat of comb.} = 2,881 \text{ kcal/kg (} @ C^{\text{V}})^{[41]}, \text{ heat of comb.} = 175.25 \text{ kcal/mol (} @ 25 ^{\circ}\text{C})^{[15]}, \Delta_c H^{\circ} (\text{liquid}) = -709.6 \pm 0.4 \text{ kJ/mol}^{[51]}, \Delta_c H^{\circ} (\text{liquid}) = -709.15 \pm 0.59 \text{ kJ/mol}^{[51]}, \Delta_c H^{\circ} (\text{liquid}) = -733.25 \pm 0.75 \text{ kJ/mol}^{[51]}, \Delta_c H^{\circ} (\text{liquid}) = -709.2 \text$					
	Calcd. (EXPLO5 6.03)	Lit. values	Ex	xptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,593	162 kcal/g [H ₂ O (l)]	[14] 3	.975 [H ₂ O (g)] ^[12]		
	7,323	136 kcal/g [H ₂ O (g)]		.539.6 J/g ^[13]		
		4,566 (calcd., ICT co	ode) ^[4] 1	23 kcal/g [H ₂ O (I)] ^[14]		
		5.1 GPa (detonation energy) ^[31]	1 10	06 kcal/g [H ₂ O (g)] ^[14]		
		5.29 MJ/kg (calcd., method) ^[43]	SD co	.23 kcal/g (highly onfined samples in alorimeter) $[H_2O(l)]^{[17]}$		
		4.54 MJ/kg (heat of explosion) ^[44]	1.	23 kcal/g [H ₂ O (l)] ^[18]		
		4,300 [H ₂ O (g)] ^[48]	h	$137 \text{ J/g } (@ 1.13 \text{ g cm}^{-3}, \text{eavily confined charge})$ $I_20 \text{ (I)}^{[28]}$		

			4,482 J/g [H ₂ O (g)] (@ 1.13 g cm ⁻³ , heavily confined charge) ^[28]
			4,381 J/g (@ 1.130 g cm ⁻³ , det. energy, cylinder test) ^[28]
			4.59 GPa (detonation energy calcd. from cylinder test data) ^[31]
<i>T</i> _{ex} [K]	3,126	2,960 (@ 1.128 g cm ⁻³) ^[16]	3,430 ^[9, 27]
		3,311 (@ 1.14 g cm ⁻³ , calcd.) ^[26]	3,380 (@ 1.128 g cm ⁻³) ^[16]
			3,700 ^[17]
		3,121 (@ 1.52439 g cm ⁻³ , calcd., THOR, C (g)) ^[27]	3,380 ^[17, 27]
		3,417 (@ 1.470588 g cm ⁻³ , calcd., THOR) ^[27]	3,400 (@ 1.13 g cm ⁻³) ^[32]
		3,430 (@ 1.515152 g cm ⁻³ , calcd., Monte Carlo simulation with carbon) ^[27]	
		3,274 (@ 1.531395 g cm ⁻³ , calcd., Monte Carlo simulation) ^[27]	
		3,513 (@ 1.531394 g cm ⁻³ , calcd., thermchemical) ^[27]	
		3,043 (calcd., ICT code) ^[4]	
		3,456 (@ 1.13 g cm ⁻³ , calcd., $\Delta H_{\rm f} = -27.0$ kcal/mol, KLRR/C, THEOSTAR-T) ^[32]	
		3,451 (@ 1.13 g cm ⁻³ , calcd., $\Delta H_f = -27.0$ kcal/mol, BKWC, THEOSTAR-T) ^[32]	

		3,138 (@ $1.13 \mathrm{g \ cm^{-3}}$, calcd., $\Delta H_{\mathrm{f}} =$ $-27.0 \mathrm{kcal/mol}$, BKWR, THEOSTAR-T)[32]	
		3,376 (calcd., SD method) ^[43]	
		3,220 (@ 1.13 g cm ⁻³ , calcd. BKWR) ^[9]	
		3,580 (@ 1.13 g cm ⁻³ , calcd. BKWS) ^[9]	
p _{C-J} [kbar]	130	58 (@ 1.16 g cm ⁻³ (TMD),	125 ^[8, 9, 27]
		calcd., R-P method) ^[20] 132 (@ 1.13 g cm ⁻³ ,	135 [11]
		calcd., BKW) ^[21]	13 GPa ^[13]
		141 (@ 1.135 g cm ⁻³ , calcd., Xiong) ^[22]	141 (@ 1.16 g cm ⁻³) ^[17]
			130 ^[14, 18]
		133 (@ 1.125 g cm ⁻³ , calcd., K-J) ^[23]	138 ^[20]
		137 (@ 1.14 g cm ⁻³ , calcd., K-J) ^[23]	133 ^[24]
			0.125 MPa ^[14]
		142 (@ 1.159 g cm ⁻³ , calcd., K-J) ^[23]	144 (@ 1.135 g cm ⁻³) ^[22]
		151 (@ 1.128 g cm ⁻³ , calcd.) ^[16]	140 (@ 1.125 g cm ⁻³) ^[23]
			133 (@ 1.14 g cm ⁻³) ^[23]
		141 (@ 1.14 g cm ⁻³ , calcd.) ^[26]	148 (@ 1.159 g cm ⁻³) ^[23]
		115 (@ 1.52439 g cm ⁻³ , calcd., THOR, C(g)) ^[27]	129 (@ 1.128 g cm ⁻³) ^[16]
			129 (@ 1.14 g cm ⁻³) ^[16]
		108 (@ 1.470588 g cm ⁻³ , calcd., THOR) ^[27]	130 (@ 1.128 g cm ⁻³) ^[16]
		118 (@ 1.515152 g cm ⁻³ , calcd., Monte Carlo	120 ^[27]
		simulation with carbon)[27]	141 ^[27]

		121 (@ 1.531395 g cm ⁻³ , calcd., Monte Carlo simulation) ^[27] 123 (@ 1.531394 g cm ⁻³ , calcd., Thermochemical) ^[27] 139.7 MPa (calcd., ICT code) ^[4] 12.6 GPa (@ 1.13 g cm ⁻³ , calcd., ΔH_f = -27.0 kcal/mol, KLRR/C, THEOSTAR-T) ^[32] 12.1 GPa (@ 1.13 g cm ⁻³ , calcd., ΔH_f = -27.0 kcal/mol, BKWC, THEOSTAR-T) ^[32]	12 GPa (@ 1.130 g cm ⁻³ , heavily confined charge) ^[28] 12.5 GPa (@ 1.128 g cm ⁻³ , cylinder test) ^[31] 12.5 GPa (@ 1.13 g cm ⁻³) ^[32] 12.0 GPa (@ 1.130 g cm ⁻³) ^[39]
		13.5 GPa (@ 1.13 g cm ⁻³ , calcd., $\Delta H_{\rm f}$ = -27.0 kcal/mol, BKWR, THEOSTAR-T) ^[32] 134 (@ 1.13 g cm ⁻³ , calcd. BKWR) ^[9]	
		130 (@ 1.13 g cm ^{-3,} , calcd. BKWS) ^[9]	
VoD [m s ⁻¹]	6,500 (@ TMD)	5,510 (@ 1.16 g cm ⁻³ (TMD), calcd., R-P method) ^[20]	6,350 (@ 1.13 g cm ⁻³) ^[6, 8, 9]
		6,910 (@ 1.16 g cm ⁻³ (TMD),	6,300 (@ 1.14 g cm ⁻³) ^[11, 16]
		calcd., Aizenshtadt) ^[20]	6,320 (@ 1.13 g cm ⁻³) ^[13]
		6,480 (@ 1.16 g cm ⁻³ (TMD), calcd., K-J) ^[20]	6,210 (glass tube, $^{1}/_{32}$ in diameter, no ρ given) ^[15]
		6,500 (@ 1.13 g cm ⁻³ , calcd., BKW) ^[21]	6,280 (Fe tube, no $ ho$ given) ^[15]
		6,412 (@ 1.135 g cm ⁻³ , calcd., <i>Xiong</i>) ^[22]	6,060 (Brass tube, no $ ho$ given) ^[15]
		6,871 (@ 1.128 g cm ⁻³ , calcd.) ^[16]	20,000 feet/s (stainless steel tube, $\frac{1}{2}$ in diameter, no ρ given)[15]
		6,480 (@ TMD, calcd., K-J) ^[24]	6,370 (@ 1.16 g cm ⁻³) ^[17]

		6,370 (@ 1.14 g cm ⁻³ , calcd.) ^[26]	6,290 (@ 1.14 g cm ⁻³) ^[19]
		6,325 (@ 1.52439 g cm ⁻³ , calcd., THOR, C(g)) ^[27]	6,200 (@ 1.13 g cm ⁻³ , aquarium test detonation, 2.5 cm, Teflon) ^[21]
		5,918 (@ 1.470588 g cm ⁻³ , calcd., THOR) ^[27]	6,320 (@ 1.135 g cm ⁻³) ^[22]
		((20 (0 4 545452 -3	6,280 (@ 1.128 g cm ⁻³) ^[14]
		6,438 (@ 1.515152 g cm ⁻³ , calcd., Monte Carlo simulation with carbon) ^[27]	6,290 (@ 1.128 g cm ⁻³) ^[16]
		((((0 4 524205 3	6,320 (@ TMD) ^[24]
		6,641 (@ 1.531395 g cm ⁻³ , calcd., Monte Carlo simulation) ^[27]	6,300 (@ 1.13 g cm ⁻³) ^[15]
			6,300 (@ 1.14 g cm ⁻³) ^[26]
		6,493 (@ 1.531394 g cm ⁻³ , calcd., Thermochemical) ^[27]	6,280 (@ 1.130 g cm ⁻³ , heavily confined charge) ^[28]
		6,350 (@ 1.13 g cm ⁻³ , calcd., $\Delta H_f = -27.0$ kcal/mol, KLRR/C, THEOSTAR-T) ^[32]	6,287 (@ 1.128 g cm ⁻³ , cylinder test) ^[31]
		6,280 (@ 1.13 g cm ⁻³ ,	6,350 (@ 1.13 g cm ⁻³) ^[32]
		calcd., $\Delta H_f = -27.0 \text{ kcal/mol}$, BKWC, THEOSTAR-T) ^[32]	6,280 (@ 1.130 g cm ⁻³) ^[39]
		6,670 (@ 1.13 g cm ⁻³ , calcd., $\Delta H_{\rm f}$ = -27.0 kcal/mol, BKWR, THEOSTAR-T) ^[32]	6,352 (@ 1.14 g cm ⁻³ , D_i) (D_i = ideal detonation velocity) ^[43]
		6,560 (@ 1.13 g cm ⁻³ , calcd. BKWR) ^[9]	6,067 (@ 1.14 g cm ⁻³ , D_f) (D_f = detonation velocity for critical detonation
		6,590 (@ 1.13 g cm ⁻³ , calcd. BKWS) ^[9]	diameter) ^[43]
		cated. DRW3)	6,290 (@ 1.138 g cm ⁻³ , confined) ^[48]
V ₀ [L kg ⁻¹]	1,004		1,059 [10]
			1,092 mL/g ^[13]

Copper cylinder wall velocity data, wall thickness/diameter ratio = 0.1, all cylinders were 305 mm long, PETN with ρ = 1.763 g cm⁻³ is the reference explosive^[38]:

Initial p (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity, mm/ μ s @ 25.4 mm diameter for $r-r_0$ equal to			Velocity-squared cf. with PETN for the same configuration, 5 comparison $r-r_0$ equal to		
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm
1.13	50.83	5.199	1.045	1.180	1.230	-55.1	-52.1	-52.8

Summary of code calculations with measured detonation velocities and detonation energies derived from JWL's^[38]:

Initial ρ,(g/cm³)	Tiger, I	djusted LLNL libr 550 K (v)		JCZ3, LLNL library (v)		ary (v)	CHEQ V2.4 (v)		
	2.2	4.1	6.5	2.2	4.1	6.5	2.2	4.1	6.5
1.13	7	4	7	0	-4	-2	-8	-9	-7

Derivation of the total energy of detonation, E_0 from the measured heat of detonation (the final state is assumed to be at 1 atmosphere for all gaseous products, including water, @ 298 K. Code calculated energies with the 1,800 K freeze are also included)^[38]:

Measured	Measured	Density	' I	Energy of detonation, E_0 (kj/cm ³)			
ρ (g/cm ³)	confined heat of	1	from ref. ^[38] detonation, density	From heat of detonation	Freeze @ 1,800 K		
	detonation (kJ/cm³)		from ref. ^[38]		Tiger BKWR	Tiger JCZ3	CHEQ
1.13	-5.80	1.13	-5.80	-5.2	-5.7	-5.3	-5.4

Comparison of measured "CJ" temperatures using optical pyrometry [38]:

Exptl.	Max.	Calcı	Wavelength		
ρ (g/cm ³)	measured t (k)	Tiger BKWR	Tiger JCZ3	CHEQ	(µm)
1.13	3,300-3,500	3,000	3,400	3,800	0.6-0.9

Critical diameter [cm]	25 mm (for detonation propagation in Fe tubes) ^[15] , 7 mm (for detonation propagation in Brass tubes) ^[15] measurements of d_c and initiation pressure, $P_i^{[36]}$:						
	Material	Material Form ρ_0 , g/cc P_i , kbar d_c , mm					
	NM	liq., 20 °C	1.13	82	18		
				ss) ^[43] , 13.5 mm .3.5 mm glass s	-		
Trauzl test [cm³, % TNT]	110-127% TN 430 mL/10 g ^{[47}		gacity) ^[42] , 345	cm ^{3[46]} , 400 cm	3[46]		
Sand test [g]	8.1 g sand crus	shed per 1 g N/	√ ^[15]				
Ballistic mortar test	134% TNT ^[15]						
Gap test	Scale I (detonator = standard commercial no. 8 Briska type, donor = 2×20 g pellets of tetryl pressed to $\rho = 1.5$ g/mL, each 10 g in weight, gap = stack of cards, 3 in square and 0.050 in thick, charge case = 6 in length of mild steel electrical conduit of 27 mm inner diameter and 31 mm outer diameter, faced end is sealed with Durofix cement) critical card value = $3^{[40]}$ Scale III (donor = 2×20 g pellets of tetryl pressed to $\rho = 1.5$ g/mL, each 1.5 in in diameter, gap = 4 in square cards, charge case = 3 in length of 1 ½ in steam pipe faced at both ends, hooks, test plate = 3 in square of 16 gage mild steel placed on top of the filled charge case) critical card value = $24^{[40]}$ UN gap test: apparent $\rho = 1,130$ kg/m³, fragmentation length = 0 cm, witness plate = no damage, result = negative[52]						
5 s explosion T[°C]	430 ^[15]						
Thermal stability	Half-life of 30 d @ 250 °C ^[15] , slow dec. @ 350 °C ^[15] , unexpected detonation possible > 300 °C ^[15]						
Vapor pressure [atm @ °C]	37 mm Hg @ 2	5 °C ^[14]					
Enthalpy of vaporization [kcal mol ⁻¹]	9.2 ± 0.1 ^[25]						
Dipole moment, μ [D]	3.46 (exptl. value) ^[30, 35]						
Dielectric constant, ε	35.9 (exptl. value) ^[30]						

Solubility [g/mL]	10.5 cc dissolve in 100 cc H_2O @ 100 °C ^[42] , readily soluble in benzene, toluene, xylene, EtOH and acetone ^[42] , soluble in water ~ 9% @ 20 °C ^[42] , miscible with almost all organic liquids ^[42] , 10% in water @ 20 °C ^[48] , slightly soluble in water (9.5% by vol. @ 20°) ^[49] , soluble in EtOH, Et ₂ O, DMF ^[49]					
Compatibility	,	emperatures and high presenses @ 260 °C ^[37] , reacts	•			
Heat of dec. [kJ/g]	–6.33 (max. heat of de dec., calcd. CHEETAH) ^{[3}	c., calcd. CHEETAH) ^[37] , 4.8	34 (heat value – heat of			
Refractive index	1.3935 @ 20 °C ^[42] , n ²²	_D = 1.38056 ^[49]				
Viscosity	Oswald viscosity values from ^[42]					
	Temperature (°C)	ρ (g/cm ³)	Ostwald viscosity			
	10	1.1490	0.748			
	25	1.1287	0.625			
	40	1.1080	0.533			
Heat capacity [cal/mole/°C]		22 J/mol K (@ 308 K, <i>C</i> _p (li 05.98 J/mol K (@ 298.15	q.)) ^[51] , 108.8 J/mol K K, C _p (liq.)) ^[51] , 100 J/mol K			
Hess brisance	25 mm (with an auxilia	ry TNT cap of 5–8 g) ^[42]				
2" steel tube test (UN A1)	Yes ^[47]					
Flash point [°C]	36 ^[48] , 112°F ^[49]	36 ^[48] , 112°F ^[49]				
Autoignition point [°C]	418 ^[48]					
рН	Aqueous solns. acidic to litmus ^[49] , 6.12 (0.01 M aq. soln.) ^[49]					
Koenen test	Limiting diameter < 1.0	Limiting diameter < 1.0 mm, negative result ^[18]				

- [1] I. Y. Bagryanskaya, Y. V. Gatilov, J. Struct. Chem., 1983, 24, 150-151.
- [2] V. D. Kiselev, H. A. Kashaeva, I. I. Shakirova, L.N. Potapova, A.I. Konovalov, J. Solution Chem., 2012, 41, 1375–1387.
- [3] D. C. Jones, L. Saunders, J. Chem. Soc., 1951, 2944–2951
- [4] F.Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141
- [5] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, 37, 489–497.
- [7] T. A. Roberts, M. Royle, Classification of Energetic Industrial Chemicals for Transport, ICHEME Symposium Series no. 124, April 1991, pp. 191–208.
- [8] B. M. Dobratz, P. C. Crawford, *LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants*, Lawrence Livermore National Laboratory, January 31st **1985**.

- [9] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [10] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [11] A. N. Dremin, On Materials' Capability to Detonate, in Final Proceedings for New Trends in Research of Energetic Materials, NTREM 7, S. Zeman (ed.), 20th–22nd April **2004**, Pardubice, pp. 13–22.
- [12] W. C. Lothrop, G. R. Handrick, *Chem. Revs.*, **1949**, 44, 419–445.
- [13] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [14] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [15] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [16] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [17] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [18] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [19] A. Smirnov, S. Smirnov, V. Babalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th–11th April 2014, pp. 24–37.
- [20] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [21] J. N. Johnson, C. L. Mader, S. Goldstein, Propellants, Explosives, Pyrotechnics, 1983, 8, 8-18.
- [22] X. Xiang, J. Energet. Mater., 1985, 3:4, 263-277.
- [23] R. Gill, L. Asaoka, E. Baroody, J. Energet. Mater., 1987, 5, 287-307.
- [24] L. R. Rothstein, R. Petersen, Predicting High Explosive Detonation Velocities From Their Composition and Structure, NWSY TR 78–3, September 1978.
- [25] E. A. Miroshnichenko, T. S. Kon'kova, J. O. Inozemtcev, V. P. Vorob'eva, *The Laws of Energies of Dissociation of Bonds in the Nitroderivatives of Alkanes*, ICT 2011, Karlsruhe, Germany, pp. 65-1-65-11.
- [26] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp, 54-4-54-7.
- [27] J. Quaresma, J. Campos, Condensed Products Formation From Detonation, Using THOR Code, With Condensed Species Optimized Parameters, ICT 2016, Karlsruhe, Germany, pp. 111-1–111-15.
- [28] M. Sućeska, Calculation of Detonation Heat by EXPLO5 Computer Code, ICT 1999, Karlsruhe, Germany, 50-1–50-14.
- [29] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [30] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [31] W. A. Trzciński, *Use of a Cylinder Test for Determining Some Characteristics of Explosives*, ICT **2001**, Karlsruhe, Germany, pp. 64-1–64-14.
- [32] S. B. Victorov, S. A. Grubin, I. V. Maklashova, I. I. Revyakin, *Thermodynamic TDS Code: Application to Detonation Properties of Condensed Explosives*, ICT 2001, Karlsruhe, Germany, pp. 69-1-69-15.
- [33] Y. N. Matyushin, V. P. Lebedev, E. A. Miroshnichenko, L. M. Kostikova, Y. O. Inozemcev, Energy of Interaction NO2-Groups in Nitroderivatives Methane and Ethane, ICT 2000, Karlsruhe, Germany, pp. 51-1-51-8.

- [34] G. J. Piermarini, S. Block, P. J. Miller, Effects of Pressure on the Thermal Decomposition Rates, Chemical Reactivity and Phase Behavior of HMX, RDX and Nitromethane, Ch. 3 in Chemistry and Physics of Energetic Materials, Suraya N. Bulusu (ed.), NATO ASI Series, Kluwer Academic Publishers, vol. 309, 1990.
- [35] J. Connor, Chemical Sensitization in Nitro, Nitramine and Nitrate Explosives, in Chemistry and Physics of Energetic Materials, Suraya N. Bulusu (ed.), NATO ASI Series, Kluwer Academic Publishers, vol. 309, 1990.
- [36] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, Explosive Behavior of Dinitrotoluene, NOLTR 69-92, US Naval Ordnance Laboratory, Maryland, USA, 10th July 1969.
- [37] S. G. Pakdehi, S. Rezaei, H. Motamedoshariati, M. H. Keshavarz, J. Loss Prevention in the Process Industries, 2014, 29, 277–282.
- [38] P. C. Souers, J. W. Kury, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 175–183.
- [39] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1999, 24, 280–285.
- [40] R. Pape, E. G. Whitbread, Sensitiveness of Solid and Liquid Explosives, Part 3: The Application of the Gap Test to Liquid Explosives, Technical Memorandum No. 21/M/52, Ministry of Supply Explosives Research and Development Establishment, Essex, U.K., March 1953.
- [41] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [42] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [43] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581-586.
- [44] N. Kubota, *Propellants and Explosives Thermochemical Aspects of Combustion*, Wiley-VCH, **2002**.
- [45] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [46] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [47] Sub-Committee of the Experts on the Transport of Dangerous Goods, *Explosives and Related Matters*, Secretariat of the United Nations, ST/SG/AC.10/C.3/2008/40, 11th April **2008**.
- [48] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 – F to O, Pyrotechnic Reference Series No. 5, Journal of Pyrtocehnics Inc., Whitewater, Colorado, USA, 2012, p. 791.
- [49] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [50] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [51] P. J. Lindstrom, W. G. Mallard, *NIST Chemistry WebBook*, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg, USA, webbook.nist.gov.
- [52] Recommendations on the Transport of Dangerous Goods Manual of Tests and Criteria, 4th revised edn., United Nations Publication, United Nations, 2003.
- [53] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583-589.

Nitromethyl propanediol dinitrate

Name [German, acronym]: 1,3-Propanediol-2-methyl-2-nitrodinitrate, 2-methyl-2-

nitro-1,3-propanediol dinitrate

Main (potential) use: Partial substitute for NG^[4]

$$O_2N$$
 O
 NO_2

	Nitromethyl propanedio	Nitromethyl propanediol dinitrate			
Formula	C ₄ H ₇ N ₃ O ₈	C ₄ H ₇ N ₃ O ₈			
Molecular mass [g mol ⁻¹]	225.11	225.11			
Appearance at RT	Waxy crystals ^[4]				
IS [J]	>50, FI = 86% rel. to PA [[] no. 5 apparatus, 2 kg m		_{50%} = 27–46 cm (Bruceton		
FS [N]	>360				
N [%]	18.67				
Ω(CO ₂) [%]	-24.9	-24.9			
T _{m.p.} [°C]	38 ^[4] , 37.4 ^[4]	38 ^[4] , 37.4 ^[4]			
T _{b.p.} [°C]	Dec. @ 200 °C ^[4]	Dec. @ 200 °C ^[4]			
T _{dec.} [°C]	Ignites > 240 ^[4] , dec. in 1	0 min @ 82.2 ^[4] , dec. @ 2	200 °C within 5 sec ^[4]		
ρ [g cm ⁻³]	1.545 (@ 293 K) ^[1]				
Heat of formation		y of form., exptl.) ^[5] , –340 []] , –379.6 kJ/mol (enthalp			
Heat of combustion	531.4 kcal/mol ^[3] , 531.4	4 kcal/mol $(Q^{c}_{v})^{[4]}$			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			5,295 [H ₂ O (l)] ^[3]		
			4,866 [H ₂ O (g)] ^[3]		
T _{ex} [K]					

p _{C-J} [kbar]		
VoD [m s ⁻¹]		
<i>V</i> ₀ [L kg ^{−1}]	935 (calcd., BKW-EOS) ^[2]	890 ^[2, 3]
	973 (calcd., JCZ3- EOS) ^[2]	
	896 (calcd., ProPEP code) ^[2]	
	913 (calcd., empirical) ^[2]	

Trauzl test [cm³, % TNT]	~160% TNT ^[4]
Sand test [g]	53 g sand crushed by 0.4 g (equivalent to tetryl) ^[3] , 53 g sand crushed cf. 478 g for TNT (110.5% TNT) ^[4]
Ballistic mortar test	134–138% TNT ^[3] , ~ 135% TNT ^[4]
5 s explosion T [°C] Explosion T [°C]	Ignited >240 °C ^[4]
100 °C heat test [% mass loss]	15–30 min in 135° heat test ^[4] , no explosion in 300 min in 130° heat test ^[4]
82.2° KI test	9–30 min ^[4] , comparable to NG ^[4]
Solubility [g/mL]	Slightly soluble in water $^{[4]}$, soluble in EtOH, acetone, $\mathrm{Et_2O}$, petrol ether $^{[4]}$
Power	Nearly as powerful as TNT ^[4]
Brisance	More brisant than tetryl ^[4]
Rifle bullet test	High order detonations ^[4]

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 239.
- [4] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1978**.
- [5] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.

5-Nitrotetrazole

Name [German, acronym]: Nitrotetrazole, 5-nitro-1*H*-tetrazole, [nitrotetrazol,

5-Nitro-1*H*-tetrazol, HNT]

Main (potential) use: For forming corresponding salts which are promising

low-toxicity, environmentally friendly, primary

explosives for blasting caps and commercial primers^[2]

	HNT				
Formula	CHN ₅ O ₂				
Molecular mass [g mol ⁻¹]	115.05	115.05			
Appearance at RT	Colorless crystalline so	lid ^[3]			
IS [J]	$H_{100\%} = 25 \text{ cm } (10 \text{ kg mass})$	ass) ^[3]			
FS [N]					
ESD [J]					
N [%]	60.87				
Ω(CO ₂) [%]	-6.95				
T _{m.p.} [°C]	101 ^[3]				
T _{dec.} [°C]	115–120 (DTA, intensiv	e dec. with 75% mass los	s) ^[3]		
$ ho$ [g cm $^{-3}$]					
Heat of formation	543 kcal/kg (Δ _f H°) ^[3] , 2,	273 kJ/kg (Δ _f H°) ^[2]			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					
p _{C-J} [kbar]					

VoD [m s ⁻¹]		8,500 (@ 1.7 g cm ⁻³) ^[3]	~8,900 (@ 1.73 g cm ⁻³) ^[2]		
V ₀ [L kg ⁻¹]					
		•			
Thermal stability	Intensive dec. with 75% mass loss @ 115–120 °C (DTA)[3]				
Burn rate [mm/s]	110 @ 100 atm (FLAME database) ^[1]				
Hygroscopicity	Very hygroscopic ^[3]				
p <i>K</i> _a	$-0.82^{[2,3]} (pK_{BH+} = -9.3^{[2]})$				

- [1] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [2] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293–327.
- [3] V. A. Ostrovskii, C. I. Koldobskii, Russ. Chem. J., 1997, 41, 84.

2-Nitrotoluene

Name [German, acronym]: 1-Methyl-2-nitrobenzene, o-nitrotoluene [nitrotoluol,

2-MNT]

Main (potential) use: Taggant for formulations, precursor/intermediate in

TNT synthesis

	2-MNT		
Formula	C ₇ H ₇ NO ₂		
Molecular mass [g mol ⁻¹]	137.14		
Appearance at RT	Yellowish liquid ^[2]		
IS [J]	>40		
FS [N]	>360		
N [%]	10.21		
Ω(CO ₂) [%]	-180.84		
T _{m.p.} [°C]	$-10^{[2]}$, -9.55 (needles) ^[1] , -2.9 (cryst. yellow liq.) ^[1]		
T _{b.p.} [°C]	222 ^[2] , 221.7 ^[1]		
ρ [g cm ⁻³]	1.629 (needles) ^[1] , d ¹⁹ ₁₅ = 1.1622 ^[2] ,		
Heat of formation	2.0 kcal/mol $(Q_{\rm f})^{[1]}$		
Heat of combustion	897.0 kcal/mol $(Q_c^{V})^{[1]}$		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,717		
Τ _{ex} [K]	1,878		
p _{C-J} [kbar]	57		
VoD [m s ⁻¹]	4,649 (@ TMD)		
V_0 [L kg ⁻¹]	593		

Solubility [g/mL]	Almost insoluble in water ^[2] , soluble in EtOH, benzene, petrol ether ^[1, 2]
Refractive index	$n^{20}_{D} = 1.5472^{[2]}, 1.5450$ (needles with mpt. = -9.5 °C) ^[1]
Flash point [°F]	223 ^[1]

- [1] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [2] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

3-Nitrotoluene

Name [German, acronym]: 3-Nitrotoluene, methylnitrobenzene, *m*-nitrotoluene

[nitrotoluol, 3-MNT]

Main (potential) use: Taggant for formulations

	3-MNT	
Formula	C ₇ H ₇ NO ₂	
Molecular mass [g mol ⁻¹]	137.14	
Appearance at RT	Liquid ^[1]	
IS [J]	>40	
FS [N]	>360	
N [%]	10.21	
Ω(CO ₂) [%]	-180.84	
T _{m.p.} [°C]	16, 15.5 ^[1]	
T _{b.p.} [°C]	243, $bp_{760} = 231.9^{[1]}$, $bp_{100} = 156.9^{[1]}$, $bp_{40} = 130.7^{[1]}$, $bp_{20} = 112.8^{[1]}$, $bp_{10} = 96.0^{[1]}$, $bp_{5} = 81.0^{[1]}$, $bp_{1.0} = 50.2^{[1]}$	
$ ho$ [g cm $^{-3}$]	1.157 (gas pycnometer), $d^{15}_{4} = 1.1630^{[1]}$, $d^{20}_{4} = 1.1581^{[1]}$, $d^{59}_{4} = 1.124^{[1]}$, $d^{121}_{4} = 1.063^{[1]}$	
Heat of formation	-44 kJ/mol (Δ _f H°), -233 kJ/kg (Δ _f U°)	
	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,618	
T _{ex} [K]	1,833	
p _{C-J} [kbar]	55	
VoD [m s ⁻¹]	4,602 (@ TMD)	
V ₀ [L kg ⁻¹]	591	

Solubility [g/mL]	0.498 g dissolve in 1 L $\rm H_2O$ @ 30 $^{\rm o}C^{[1]}$, miscible with EtOH, Et $_2O^{[1]}$, soluble in benzene $^{[1]}$
Refractive index	$n^{30}_{D} = 1.5426^{[1]}$

The Merck Index – An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz,
 S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey,
 USA, 1976.

4-Nitrotoluene

Name [German, acronym]: 4-Nitrotoluene, p-nitrotoluene, methylnitrobenzene

[nitrotoluol, 4-MNT]

Main (potential) use: Taggant for formulations, precursor in TNT synthesis

	4-MNT			
Formula	C ₇ H ₇ NO ₂			
Molecular mass [g mol ⁻¹]	137.14			
Appearance at RT	Yellow orthorhombic crystals ^[1]	Yellow orthorhombic crystals ^[1] , yellowish crystals ^[3]		
IS [J]	>40 (<100 μm)			
FS [N]	>360 (<100 μm)			
ESD [J]	>1.5 (<100 μm)			
N [%]	10.21			
Ω(CO ₂) [%]	-180.84			
T _{m.p.} [°C]	51, 54.5 ^[1] , 53-54 ^[3]			
T _{b.p.} [°C]	238.3 ^[1] , 234 (DSC @ 5 °C/min)	238.3 ^[1] , 234 (DSC @ 5 °C/min), 238 ^[3]		
ρ [g cm ⁻³]	1.353 (@ 100 K), 1.1038 (@ 75/4°) ^[1] , 1.293 (@ 298 K, gas pycnometer), 1.286 ^[3]			
Heat of formation	10.4 kcal/mol $(Q_{\rm f})^{[1]}$			
Heat of combustion	888.6 kcal/mol (Q _c ^V) ^[1]			
	Calcd. (EXPLO5 6.03)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,618			
<i>T</i> _{ex} [K]	1,833			
p _{C-J} [kbar]	55			
VoD [m s ⁻¹]	4,602 (@ TMD)			
V_0 [L kg ⁻¹]	591			

Solubility [g/mL]	Practically insoluble in water ^[3] , soluble in EtOH, benzene, Et ₂ O, CHCl ₃ , acetone ^[1, 3]
Flash point [°C]	106 ^[3] , 223°F ^[1]
Refractive index	1.5382 ^[1]

	4-Nitrotoluene ^[2]
Chemical formula	C ₇ H ₇ NO ₂
Molecular weight [g mol ⁻¹]	137.14
Crystal system	Orthorhombic
Space group	Pcab (no. 61)
a [Å]	6.43
<i>b</i> [Å]	14.07
c [Å]	15.66
α [°]	90
β[°]	90
γ [°]	90
V [ų]	1,416.76
Z	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.286
T[K]	295

- [1] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [2] J. V. Barve, L. M. Pant, Acta Cryst., 1971, B27, 1158–1162.
- [3] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

5-Nitro-2,4,6-triaminopyrimidine-1,3-dioxide

Name [German, acronym]: 5-Nitro-2,4,6-triaminopyrimidine-1,3-dioxide, [NTAPDO,

ICM-102, P6NAAA]

Main (potential) use: Future thermally stable explosive^[1], promising IHE^[2]

$$\begin{array}{c|c} & NO_2 \\ H_2N & NH_2 \\ O & \oplus & NH_2 \\ \end{array}$$

	NTAPDO		,	
Formula	C ₄ H ₆ N ₆ O ₄	$C_4H_6N_6O_4$		
Molecular mass [g mol ⁻¹]	202.13	202.13		
Appearance at RT	monohydrate @ 150 °C f	Yellow solid (monohydrate) ^[2] , orange solid (vacuum dehydration of monohydrate @ 150 °C for 5 h) ^[2] , darker orange solid (hot recryst. of monohydrate from DMSO/EtOAc 130 °C) ^[2]		
IS [J]	<60 (BAM) ^[2] , $H_{50} = 320 \text{ cm}$	m (2.5 kg hammer) ^[2]		
FS [N]	>360 (BAM) ^[2]			
ESD [J]	1.85 ^[2]		,	
N [%]	41.58		,	
Ω(CO ₂) [%]	-55.45		,	
T _{m.p.} [°C]				
T _{dec.} [°C]	284 (DSC) ^[2] Onset and peak temperatures from DSC ^[2] :			
	Heating rate (°C/min)	T _e (°C)	τ _p (°C)	
	5	264.6	280.5	
	10	271.9	283.7	
	15	274.4	286.7	
	0	252.5	277.1	
	T_{SADT}	T _b		
	252.5 °C	257.7 °C		

$ ho$ [g cm $^{-3}$]	1.95 (anhydrous, gas pycnometer @ 298 K) ^[2] , 1.92 (hydrate heated @ 150 °C under vacuum for 5 h) ^[2]			
Heat of formation	-8.1 kJ/mol (Δ _f /	–8.1 kJ/mol ($\Delta_{\rm f}H$, calcd., isodesmic) ^[2]		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]		34.3 GPa (@ 1.95 g cm ⁻³ , $\Delta H_f = -8.1$ kJ/mol, calcd., EXPLO5 6.02) ^[2]		
VoD [m s ⁻¹]		9,169 (@ 1.95 g cm ⁻³ , $\Delta H_f = -8.1$ kJ/mol, calcd., EXPLO5 6.02) ^[2]		
V ₀ [L kg ⁻¹]				
Critical temperature of thermal explosion, T_b [°C]	257.7 (calcd.) ^[2]			
Thermal stability	Heating sample from RT \rightarrow 200 °C showed almost no changes in IR and Raman spectra of sample $^{[2]}$			
Solubility [g/mL]	mg/100 mL solvent @ 25 °C $^{[2]}$: 220 H $_2$ O $^{[2]}$, 20 DMSO $^{[2]}$, 10 DMF $^{[2]}$, <8 EtOH $^{[2]}$, <8 MeOH $^{[2]}$, <8 acetone $^{[2]}$, <8 dichloromethane $^{[2]}$, <8 EtOAc $^{[2]}$			
T _{dehydration} [°C]	178 (DSC) ^[2]			
Self-accelerating decomposition temperature, T_{SADT} [°C]	252.5 (calcd.) ^[2]			

	ICM-102•H₂O ^[2]
Chemical formula	C ₄ H ₆ N ₆ O ₄ •H ₂ O
Molecular weight [g mol ⁻¹]	220.16
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	10.714(2)
<i>b</i> [Å]	8.8863(18)

c [Å]	18.946(4)
α[°]	90
β [°]	118.50(1)
γ [°]	90
V [ų]	1,585.2(6)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.845
T[K]	173

^[1] S. R. Ahmad, M. Cartwright, *Laser Ignition of Energetic Materials*, John Wiley and Sons Ltd., **2015**.

^[2] Y. Wang, Y. Liu, S. Song, Z. Yang, X. Qi, K. Wang, Y. Liu, Q. Zhang, Y. Tian, *Nature Comm.*, **2018**, *9*, 2444.

3-Nitrotriazole

Name [German, acronym]: 3-Nitro-1,2,4-triazole, [3-nitrotiazol]

Main (potential) use: Possible insensitive explosive candidate^[3]

	3-Nitro-1,2,4-triazole		
Formula	C ₂ H ₂ N ₄ O ₂		
Molecular mass [g mol ⁻¹]	114.08		
Appearance at RT	Yellow irregular block crystal	s (form I) ^[3] , white needle crystals (form II) ^[3]
IS [J]	>25 (BAM) ^[1] , >40 (Form I, BAI	M) ^[3] , >40 (Form II, BAM) ^[3]	
FS [N]	>36 kp (Julius-Peters) ^[1] , 360	(Form I, BAM) ^[3] , 360 (Form II, BAM) ^[3]
ESD [J]	29.24 (Form I) ^[3] , 29.24 (Form	II) ^[3]	
N [%]	49.1		
Ω(CO ₂) [%]	-42.08		
T _{m.p.} [°C]			
T _{phase transition} [°C]	diffraction) ^[3] , form I is more and II are both stable @ RT ^[3]	form II \rightarrow form I >98 °C (powder X-r stable than form II @ elevated $7^{[3]}$, , form I is stable up to 200 °C wher \rightarrow form I, DSC @ 5 °C/min, Al crud	forms I eas form II
T _{dec.} [°C]	_	5°C/min, Al crucible) ^[3] , 217 (exo, d er form II undergoes exo phase tran	
$ ho$ [g cm $^{-3}$]	1.72 ^[1] , 1.72 (form I, X-ray @	25 °C) ^[3] , 1.79 (form II, X-ray @ 25	°C) ^[3]
Heat of formation	97.9 (enthalpy of form.) ^[1] , 146.57 kJ/mol (heat of form. ΔH^o_f , calcd., for form I or form II) ^[3]		
	Calcd. Lit. values (EXPLO5 6.04)		Exptl.

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,786 (form I, calcd., EXPLO5 5.05) ^[3]	
		4,822 (form II, calcd., EXPLO5 5.05) ^[3]	
<i>T</i> _{ex} [K]		3,561 (form I, calcd., EXPLO5 5.05) ^[3]	
		3,530 (form II, calcd., EXPLO5 5.05) ^[3]	
p _{C-J} [kbar]		24.81 GPa (form I, calcd., EXPLO5 5.05) ^[3]	
		27.45 GPa (form II, calcd., EXPLO5 5.05) ^[3]	
VoD [m s ⁻¹]		7,947 (form I, calcd., EXPLO5 5.05) ^[3]	
		8,213 (form II, calcd., EXPLO5 5.05) ^[3]	
V_0 [L kg ⁻¹]			
5 s explosion T[°C] Explosion T[°C]	218 (DTA/TG @	6 °C/min) ^[1]	

	3-Nitrotriazole ^[2]	3-Nitrotriazole (form I) ^[3]	3-Nitrotriazole (form II) ^[3]
Chemical formula	C ₂ H ₂ N ₄ O ₂	C ₂ H ₂ N ₄ O ₂	C ₂ H ₂ N ₄ O ₂
Molecular weight [g mol ⁻¹]	114.08	114.08	114.08
Crystal system	Monoclinic	Tetragonal	Monoclinic
Space group	P2 ₁ /c (14)	P4 ₁ 2 ₁ 2 (92)	P2 ₁ /c (14)
a [Å]	8.7818(1)	6.8413(3)	8.7895(6)
<i>b</i> [Å]	10.0726(2)	6.8413(3)	10.0707(8)
c [Å]	9.9703(1)	18.8196(12)	9.9645(5)
α [°]	90	90	90
β [°]	107.081(1)	90	107.082(6)
γ [°]	90	90	90
<i>V</i> [ų]	843.03(2)	880.82(8)	843.11(10)
Z	8	8	8
$ ho_{ m calc}$ [g cm ⁻³]	1.798	1.720	1.797
T [K]	100	101.8	101.8

Crystallizes in two polymorphic forms: form $1 = \text{tetragonal } (P4_12_12)$ and form $II = \text{monoclinic } (P2_1/c)^{[3]}$, form II obtained on recrystallization of form I from methanol and ethyl acetate. [3]

- [1] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, *Nitrotriazole: Chemische Struktur und Explosive Eigenschaften*, ICT **1998**, 47-1–47-15.
- [2] M. Hemamalini, H.-K. Fun, Acta Cryst., 2011, E67, 015.
- [3] P. Zhang, X. Zhao, Y. Du, M. Gozin, S. Li, S. Pang, RSC Adv., 2018, 8, 24627–24632.

4-Nitrotriazole

Name [German, acronym]: 4-Nitrotriazole, [4-nitrotiazol]

Main (potential) use: analytical reagent

	4-Nitrotriazole		
Formula	$C_2H_2N_4O_2$		
Molecular mass [g mol ⁻¹]	114.06		
Appearance at RT			
IS [J]	4.5 (BAM) ^[1]		
FS [N]	29 kp (Julius-Peters) ^[1]		
N [%]	49.12		
Ω(CO ₂) [%]	-42.08		
T _{m.p.} [°C]			
T _{dec.} [°C]			
$ ho$ [g cm $^{-3}$]	1.73 ^[1]		
Heat of formation	167.0 kJ/mol (enthalpy of form	.)[1]	
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			

V ₀ [L kg ⁻¹]		
5 s explosion T[°C] Explosion T[°C]	218 (DTA/TG @ 6 °C/min) ^[1]	

[1] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, *Nitrotriazole: Chemische Struktur und Explosive Eigenschaften*, ICT **1998**, 47-1–47-15.

3-Nitro-1,2,4-triazole-5-one

Name [German, acronym]: 3-Nitro-1,2,4-triazole-5-one, 5-nitro-1,2,4-triazol-3-

one, 5-nitro-2,4-dihydro-3*H*-1,2,4-triazole-3-one, oxynitrotriazole, nitrotriazolone [NTO[†], ONTA]

Main (potential) use: Insensitive (high) explosive, oxidizer, investigated

as possible insensitive component to replace RDX in certain explosive and propellant compositions^[31], nonazide inflating propellant compositions for car air bags^[47] proposed for use in melt-castable, general-purpose formulations and PBXs^[45, 49], melt-castable explosives (NTO-TNT mixture)^[49], pressed explosives with a thermoplastic binder^[49], evaluated as insensitive component to replace RDX in bomb fill^[58], evaluated as

ingredient to replace NaN₃ in auto air bags^[58]

Structural formula:

 † NTO-B corresponds to NTO which was crystallized from an NTO/H $_2$ O/NMP/surfactant B (10/70/20/0.008) mixture; NTO-S corresponds to NTO produced in Scandinavia; NTO-W corresponds to NTO crystallized from H $_2$ O.

	NTO
Formula	$C_2H_2N_4O_3$
Molecular mass [g mol ⁻¹]	130.06
Appearance at RT	
IS [J]	>120 Nm ^[14] , 15.85 (1st reaction) ^[6,39] , 71.61 (sound) ^[39] , 7 (NTO-W, according to standard PN-EN 13,631–4, 0 / ₆ positive trials (minimum sensitivity), 5 kg mass, 0.02 g sample) ^[19] , 6 (NTO-S, according to standard PN-EN 13631-4, 0 / ₆ positive trials (minimum sensitivity), 5 kg mass, 0.02 g sample) ^[19] , 13 (NTO-B, according to standard PN-EN 13631-4, 0 / ₆ positive trials (minimum sensitivity), 5 kg mass, 0.02 g sample)) ^[19] , 71.61 (sound) ^[6] , 0.6 ((no units) based on TNT = 1) ^[9] , E_{50} = 61 J (Bruceton method, particle diameter 75–350 µm) ^[10] , 25.6 ^[11] , 25 Nm (BAM) ^[15,34] , >260 cm (ERL type 12) ^[16] , >280 cm (type 12 tool c.f. RDX= 22 cm) ^[18] , FoI = 80–90 (3–5 mL (g) evolution, 5 kg mass, 27 mg sample (Rotter apparatus) ^[17] , FoI = 25.3 (average powder

explosiveness, 5 kg mass, 27 mg sample (Rotter apparatus)[17], >280 cm (ERL-LASL (type 12))^[17], $H_{50} = 291$ cm^[26], 82.5 cm (20.2 J)^[29], $(H_{50}\text{Wg})^{-1} = >49 \text{ Nm}^{[32]}$, minor ignitions @ 1.3 m (glass anvil drop-weight machine, max, drop height = 1.3 m, 5 mg powder, @ 1.3 m compacted layer behaves brittle. Layer then gels compacted and compressed layers of NTO much less fragmented from lower drop heights, from 1.0 m drop-height ignition also occurs, the burning products flow around the sample @ ~ 250 ms⁻¹, sample was not completely consumed)^[33], $H_{50\%}$ = 43 in (250 µm, Thiokol app.)^[36], $H_{50\%} = 26$ cm (250 µm, ABL app.)^[36], $H_{50} = 90$ cm (5 kg hammer, $E_{d50} = 45.0$ J)^[44], $H_{50\%} = 291$ cm (recryst. NTO, US data)^[42], $H_{50\%} = 75-104$ cm (recryst. NTO, US data)^[42], 22 (recryst. NTO, French data)^[42], $H_{50} = 26.2$ cm (micro-NTO, WL-1 drop-weight machine, 2.5 kg mass, 35 mg sample) $^{[47]}$, $H_{50} = 26.2$ cm (nano-NTO, WL-1 drop-weight machine, 2.5 kg mass, 35 mg sample) $^{[47]}$, 22 (Julius-Peters apparatus) $^{[49]}$, Rotter Fol = 80–90 (ref. to RDX)^[49], Rotter FoI = 316 (ref. to RDX)^[49], >280 cm (US drop impact type 12)^[49], 293 cm (US drop impact type 12B)^[49], $H_{50} = 50$ cm (US impact sensitivity)[49], >4 m (30 kg hammer, nonreaction height)[49], >50[53], 6.6 (micro NTO)^[56], 8.9 (nano NTO)^[56], $A_{d1} = 8\%$, $A_{d2} = 84\%$, LL = 1.0 m, $A_{50 d1} = 4.3 \text{ m}, A_{50 d2} = 1.4^{[57]}$

Rotter FoI (mean mL of gas evolved) = 90 (3) (recryst. NTO)^[42], 80 (5) (recryst. NTO)^[42], 75 (6) (unrecryst. NTO)^[42], 70 (6) (unrecryst. NTO)^[42]

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; data from^[62]

Rotter impact data		US data	
FofI	Gas evolved (mL)	NSWC/NOL, ERL Type 12	NWC B.M. type 12
80-90	3-5	75–104	

Rotter impact data, 20 drop expts., $H_{50\%}$ = median drop height, each drop expt. has the no. of ignitions out of 20 ($n_{\rm g}$), the fraction of ignitions ($P_{\rm g}$), average gas volume evolved per ignition ($V_{\rm g}$) and calcd. powder explosiveness at each level (X), $H_{50\%}$ = 128 cm, NTO sub 850 μ m, data from [62]:

Drop height multiple of $H_{50\%}$	No. of fires out of 20 drops (n _g)	$P_{\rm g} = n_{\rm g}/20$	Average gas evolved, $V_{\rm g}$ (mL)	Explosiveness at each level, × (%)
0.67	0	0	0	0
0.75	3/40	0.075	3.1	10.6
1.0	13	0.65	2.9	10.1

			1		
	Drop height multiple of $H_{50\%}$	No. of fires out of 20 drops (n _g)	$P_{\rm g} = n_{\rm g}/20$	Average gas evolved, $V_{\rm g}$ (mL)	Explosiveness at each level, × (%)
	1.5	20	1.0	7.8	27.7
	2.0	10/10	1.0	10.0	38.2
	Rotter impact data, 20 drop expts., $H_{50\%}$ = median drop height, each drop expt. has the no. of ignitions out of 20 $(n_{\rm g})$, the fraction of ignitions $(P_{\rm g})$, average gas volume evolved per ignition $(V_{\rm g})$ and calcd. powder explosiveness at each level (X), $H_{50\%}$ = 114 cm, NTO sub 150 μ m data from 16				
	Drop height multiple of $H_{50\%}$	No. of fires out of 20 drops (n_g)	$P_{\rm g} = n_{\rm g}/20$	Average gas evolved, $V_{\rm g}$ (mL)	Explosiveness at each level, × (%)
	0.67	0	0	0	0
	0.75	3/30	0.10	3.7	12.7
	1.0	16	0.80	3.4	11.8
	1.5	18	0.90	11.0	39.1
	2.0	10/10	1.0	8.0	34.4
FS [N]	$0/_{10}$ positive triate trials) ^[19] , $P_{fr,LL}$ =	als) ^[19] ,>353 (N 400 MPa ^[21, 57] psi @ 8 ft/s (2	TO-B, Julius-P ^I , P _{fr.50%} = 540 50 µm, ABL a _l	(NTO-S, Julius-Pe leters apparatus MPa ^[21, 57] , >36 k pp.) ^[36] , >353 (SN	$^{0}/_{10}$ positive
ESD [J]	8.9 ^[13] , spark sensitivity = 0.91 (3 mil) ^[18, 49] , spark sensitivity = 3.40 (10 mil) ^[18, 49] , $E_{50\%}$ = 0.47 ± 0.04 (Bruceton eqn.) ^[30] , $E_{50\%}$ = 0.43 ± 0.05 ^[30] , $E_{50\%}$ = >8 ^[36] , >4.5 (no ignition, recryst. NTO, MRL data) ^[42] , 0.45 (no ignition, recryst. NTO, MRL data) ^[42] , 3.40 (recryst. NTO, US data) ^[42] , >4.5 (no ignition, unrecryst. NTO, MRL data) ^[42] , <4.5 (Australian data) ^[49] , 15 (South African data) ^[49] , >0.726 (SNPE data) ^[49] , 8.98 (Czech data) ^[49]				
N [%]	43.08				
Ω(CO ₂) [%]	-24.6				
T _{phase transition} [°C]	Crystalline NTO exists as α and β polymorphs, α -NTO is more stable [49], β -NTO recryst. from MeOH decomposed after 6 months @ RT ^[49] , α -NTO is metastable [49]				
7 _{m.p.} [°C]	270 ^[14] , 270–271 ^[1] , no melting point ^[22] , 255 (dec.) ^[9] , 260 (with dec.) ^[20] , 543 K ^[49] , 546 K ^[49] , 547.9 K ^[49] , 262 ^[51] , 270 (dec.) ^[53] , 539.35 K ^[60] , 547.9 K ^[60]				
T _{b.p.} [°C]	568 K ^[49] , 568.4	K (est. $T_{\rm nbp}$)[60]	l		
					<u> </u>

$T_{\text{dec.}}[K]$

507 K (DTA @ 5 °C/min)^[6, 39], 258^[17], >236 (DTA)^[18], NTO-B: 259.5 (onset), 262.7 (max. rate, 66% mass loss) (DSC @ 5 K/min, 3–5 mg sample, open Al₂O₃ crucibles)^[19], 267 (exo peak max., DSC @ 20 °C/min)^[22], 273^[29], ~270^[31], 236 (explosion, DTA/TG @ 6 °C/min)^[34], 215–280 (nonisothermal TGA, pierced pan, 78% mass loss, competes with sublimation)^[51], 255–270 (nonisothermal DSC @ 5 °C/min, exotherm, competes with sublimation)^[51], 254 (exo, onset), 260 (exo, peak max) (DTA)^[59]

TGA/DTA (10 mg sample, in air, 1 K/min, open Al pan): 179 (begin of mass loss), 219 (3% mass loss), 248 (start of exo dec.), \sim 258 (max. peak in DTA)^[37]

DSC (0.3–0.5 mg sample, 10 °C/min): 264.8 (exo peak onset), 270.1 (exo peak max.) $^{[37]}$

DSC (0.3–0.5 mg sample, after storing NTO @ 65.5 °C for 16 weeks, 10 °C/min): 272.5 (exo peak onset), 277.1 (exo peak max.)[37]

Dynamic DSC experiments^[28]:

Heating rate (°C/min)	Mass (mg)	T _{onset} (°C)	T _{peak} (°C)	$\Delta H_{\rm r} (J \bullet g^{-1})$
2	0.48	249.4	251.9	2,122.4
5	0.46	260.3	262.7	2,132.3
10	0.45	267.2	270.8	2,251.1
20	0.44	271.1	276.3	2,257.3

DSC experiments using interruption and rescanning method^[28]:

Heating rate (°C/min)	Mass (mg)	T _{onset} (°C)	T _{peak} (°C)	$\Delta H_{\rm r} (J \bullet g^{-1})$
10	0.40	_	267.2	2,280.0
10	0.44	254.1	263.2	1,789.5
10	0.51	256.0	257.6	1,500.9
10	0.48	257.1	250.9	1,247.9

	DSC experiments (Swiss method)[28]:						
	Doc experiments ((2002)					
	Heating rate (°C/min)	Mass (mg)	E _a (kJ mol⁻¹)	Ē _a (kJ mol ⁻¹)			
	2	0.48	314.8				
	5	0.46	501.8	528.7			
	10	0.45	769.6				
	data) ^[42] , 270–275	nin, recryst. NTO, Mf (recryst. NTO, US da · 130 (onset of mass	ta) ^[42] , 170 (onset o	of mass loss,			
T _{sublimation} [°C]	215–280 (nonisoth dec., strongly heat	nermal TGA, pierced rate dependent) ^[51]	pan, 78% mass lo	ss, competes with			
ρ [g cm ⁻³]		, 1.93 (crystal) ^[18, 53] neter 75–350 μm) ^{[10}		^{49]} , 1.911 ^[49] , 1.049			
	shaker)) ^[19]	e bulk $ ho)^{[19]}$, 1.072 ($ ho$ bulk $ ho)^{[19]}$, 1.160 (
Heat of formation	$\begin{array}{l} -96.7 \text{ kJ/mol}^{[5]}, -14.30 \text{ kcal mol}^{-1[17]}, -129.4 \text{ kJ mol}^{-1} (\Delta H_{\rm f})^{[29]}, -97 \text{ kJ/mol} \\ (\text{enthalpy of form.})^{[53]}, -112.3 \text{ kJ/mol}^{[11]}, -24.09 \text{ kcal/mol} (\Delta H_{\rm f}(s))^{[26]}, \\ -130 \text{ kJ/mol} (\Delta H_{\rm f})^{[27]}, -774.60 \text{ (enthalpy of form.})^{[14]}, -59.9 \text{ kJ mol}^{-1} \\ (\text{enthalpy of form.})^{[34]}, -130.0 \text{ kJ mol}^{-1} (\Delta H_{\rm f})^{[35]}, -775 \text{ kJ/kg} (\Delta H_{\rm f}, \text{ICT} \\ \text{thermochemical database})^{[38]}, -206.0 \text{ kcal/kg} \text{ (enthalpy of form.})^{[40]}, \\ -30.93 \text{ kcal/mol} \text{ (enthalpy of form. of (s))}^{[45, 49]}, -3.2 \text{ kcal/mol} \text{ (enthalpy of form.})^{[49]}, \\ \text{of form. of (g)}^{[45, 49]}, -5.7 \text{ kcal/mol} \text{ (enthalpy of form.})^{[49]}, \\ -59.83 \text{ kJ/mol} \text{ (enthalpy of form.})^{[49]}, \\ -117.21 \text{ kJ/mol} \text{ (enthalpy of form.})^{[49]}, \\ -112 \text{ kJ/mol} (\Delta H_{\rm f})^{[61]} \\ \end{array}$						
Enthalpy of combustion [kJ/mol]	-943.4 to -995.7 ^[49]						
	Calcd. (EXPLO5 5.04)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		0.982 kcal/g $(Q_{\text{max}}, \text{calcd.})^{[26]}$		g [H ₂ O (g)] ^[12]			
		3,148 (calcd.,	3,148 [H ₂ O	(1)] ^[14]			
		ICT code) ^[38]	2,993 [H₂O	(g)] ^[14]			

		012 keel/k-	7 100 MI/m³
		912 kcal/kg (@ 1.9470 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[40]	7,100 MJ/m ³ (E_0 , @ 1.77 g cm ⁻³ , det. energy based on cylinder test) ^[31, 41]
		4,100 kJ/mol (enthalpy of explosion) ^[49]	899 kcal/kg (@ 1.940 g cm $^{-3}$) [H_2O vapor] $^{[40]}$
		2,719 (@ 1.90 g cm ⁻³ , calcd., LOTUSES) ^[61]	
<i>T</i> _{ex} [K]		2,288.1 (@ 1.93 g cm ⁻³ , calcd. CHEETAH 6.0) ^[29]	
		2,956 (calcd., ICT code) ^[38]	
		2,389 (@1.93 g cm ⁻³ , $\Delta H_{\rm f} = -129.4 \text{ kJ/mol},$ calcd., JAGUAR) ^[55]	
		2,700 (@ 1.90 g cm ⁻³ , calcd., LOTUSES) ^[61]	
p _{C-J} [kbar]	311 ^[2]	349 (@ 1.93 g cm ⁻³ (100% TMD), calcd., BKW) ^[18]	Values from unconfined platedent tests ^[18] : 278 (@ 1.781 g cm ⁻³ , 4.13 cm charge diameter) ^[18, 42]
		284 (@ 1.781 g cm ⁻³ (92.2% TMD), calcd., BKW) ^[18]	260 (@ 1.853 g cm ⁻³ , 4.13 cm charge diameter) ^[18, 42]
		316 (@ 1.853 g cm ⁻³ (96% TMD), calcd., BKW) ^[18]	$240 \ (@\ 1.782\ g\ cm^{-3},\ 2.54\ cm$ charge diameter) $^{[18,\ 42]}$
		284 (@ 1.782 g cm ⁻³ (92.3% TMD), calcd.,	Failed (@ 1.855 g cm ⁻³ , 2.54 cm charge diameter) ^[18, 42]
		BKW) ^[18]	250 (@ 1.759 cm ⁻³ , 1.27 cm charge diameter) ^[18, 42]
		316 (@ 1.855 g cm ⁻³ (96.1% TMD), calcd., BKW) ^[18]	Failed (@ 1.824 cm ⁻³ , 1.27 cm charge diameter) ^[18, 42]
		271 (@ 1.759 g cm ⁻³ (91.1% TMD), calcd., BKW) ^[18]	29.9 GPa (@ 1.93 g cm ⁻³) ^[23]

		300 (@ 1.918 g cm ⁻³ , calcd.) ^[26]		ermined u test varian	
	33.1 GPa (@ 1.93 g cm ⁻³ , calcd. CHEETAH 6.0) ^[29]		Property	Shot no. 1	Shot no. 2
			ρ (g cm ⁻³)	1.78	1.78
		307 katm (@ 1.91, calcd. TIGER, BKW) ^[36]	P _{C-J} (GPa), H ₂ O test	24.6	24.6
		106.4 MPa (calcd., ICT code) ^[38] 24.98 GPa (@ 1.78 g cm ⁻³ , calcd., BKWC, CHEETAH 1.39) ^[41]	P _{C-J} (GPa), Calcd.	24.98	24.98
			Exponent γ, H ₂ O test	3.40	3.40
			Exponent γ, Calcd.	3.48	3.48
		28.3 GPa (@ 1.830 g cm ⁻³ , calcd., TIGER, BKWR, BKW eqn. of state) ^[48]		pressed @ -3) ^[31] @ 1.78 g (
		31.2 GPa (@ 1.93 g cm ⁻³ , calcd., Cheetah 2.0) ^[53]	24.6 GPa (@ 1.78 g cm ⁻³ , mod. aquarium test) ^[41] 24.6 GPa (est. based on cylinder test results)[48]		
		33.1 GPa (@ 1.93 g cm ⁻³ , calcd. CHEETAH 6.0) ^[29]			
		32.7 GPa (@ 1.93 g cm ⁻³ , $\Delta H_f = -129.4 \text{ kJ/mol}$, calcd., JAGUAR) ^[55]			
		37.46 GPa (@ 1.90 g cm ⁻³ , calcd., LOTUSES) ^[61]			
VoD [m s ⁻¹]	7,860 (@ 1.80 g cm ⁻³)	8,656 (@ TMD, calcd., CHEETAH v8.0) ^[24]	8,510 (@ 3	1.93 g cm⁻	·3) ^[7]
			8,520 (@ 3	1.91 g cm ⁻	³) ^[9]
	7,940 (@ 1.77 g cm ⁻³)	5,644 (@ 1.0 g cm ⁻³ , calcd., BKWR) ^[25]	7,940 (@ 3	1.77 g cm ⁻	·³) ^[11]
	8,558 ^[2]	5,266 (@ 1.0 g cm ⁻³ , calcd., BKWS) ^[25]			

	8,07 (@ 1 calc
	8,12 calc
	8,00 calco
	8,06 (@ 1 calco
	8,56 calco 2.0)
	8,64 Δ <i>H</i> _f : calc
	8,38 calc
	8,37 calc
	8,31 calc
	8,18 calc
	8,07

,070
$@ 1.918 \text{ g cm}^{-3},$
alcd.) ^[26]

8,120 (@ 1.91 g cm⁻³, calcd. TIGER, BKW)^[36]

8,000 (@ 1.78 g cm⁻³, calcd., BKWC, CHEETAH 1.39)^[41]

8,062 (@ 1.830 g cm⁻³, calcd., TIGER, BKWR, BKW eqn. of state)^[48]

8,564 (@ 1.93 g cm⁻³, calcd., Cheetah 2.0)^[53]

8,640 (@ 1.93 g cm⁻³, $\Delta H_f = -129.4 \text{ kJ/mol},$ calcd., JAGUAR)^[55]

8,380 (@ 1.87 g cm⁻³, calcd., JAGUAR)^[55]

8,370 (@ 1.87 g cm⁻³, calcd., JAGUAR)^[55]

8,310 (@ 1.86 g cm⁻³, calcd., JAGUAR)^[55]

8,180 (@ 1.83 g cm⁻³, calcd., JAGUAR)^[55]

8,070 (@ 1.8 g cm⁻³, calcd., JAGUAR)^[55]

8,752 (@ 1.93 g cm⁻³, calcd., LOTUSES)^[61]

7,959 (@	1.81 9	cm ⁻³) ^[15]
1,777 (@	1.01 5	, ciii <i>)</i>

7,790 (@ 1.77 g cm⁻³)^[23]

7,960 (@ 1.81 g cm⁻³)^[23]

8,200 (@ 1.93 g cm⁻³)^[23]

8,300 (exptl. est. LASEM method) $^{[24]}$

8,535 (@ TMD, large-scale detonation test)^[24]

7,740 (@ 1.83 g cm⁻³, cylinder test, Cu tube, 25 mm internal diameter, 2.5 mm wall thickness)^[48]

NTO pressed @ 1.80 g cm⁻³ in cylindrical pellet form, diameter: length ratio = 1, pellet diameters = 14.5, 16.0 mm, 20 mm, 25.0 mm, 30.0 mm, charges initiated by booster of phlegmatized RDX @ 1.6 g cm⁻³ with charge diameter and length of twice the diameter, unconfined charges^[31, 41]:

Diameter (mm)	ρ (g cm ⁻³)	VoD (m/s)
14.5	1.81	no go
16.0	1.80	7,650
20.0	1.81	7,800
25.0	1.80	7,820
30.0	1.80	7,860

7,940 (@ 1.77 g cm⁻³, Cu tube)^[31]

7,790 (@ 1.78 g cm ⁻³ , H variant) ^[31] 7,800 (@ 1.78 g cm ⁻³ , H variant) ^[31] 7,860 (@ 1.8 g cm ⁻³ , unconfined charges) ^[31] 7,940 (1.77 g cm ⁻³ , con in Cu tube used in cylino test) ^[31, 41] 8,001 (@ 1.82 g cm ⁻³) ^[34] 7,790 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 8,590 (@ 1.91 g cm ⁻³) ^[42]	₂O test
variant) ^[31] 7,860 (@ 1.8 g cm ⁻³ , unconfined charges) ^[31] 7,940 (1.77 g cm ⁻³ , con in Cu tube used in cylinc test) ^[31, 41] 8,001 (@ 1.82 g cm ⁻³) ^[34] 7,790 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41]	
unconfined charges) ^[31] 7,940 (1.77 g cm ⁻³ , con in Cu tube used in cylino test) ^[31, 41] 8,001 (@ 1.82 g cm ⁻³) ^[34] 7,790 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41]	₂O test
in Cu tube used in cylind test) ^[31, 41] 8,001 (@ 1.82 g cm ⁻³) ^[34] 7,790 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41]	
7,790 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41]	
aquarium test) ^[41] 7,780 (@ 1.78 g cm ⁻³ , m aquarium test) ^[41]]
aquarium test) ^[41]	od.
8,590 (@ 1.91 g cm ⁻³) ^{[42}	od.
]
7,400 (@ 1.69 g cm ⁻³ , 4 outer diameter Cu sheat	
7,770 (@ 1.71 g cm ⁻³ , 4 outer diameter Cu sheat	
8,220 (@ 1.87 g cm ⁻³) ^[55]]
8,180 (@ 1.87 g cm ⁻³) ^{[55}]
8,200 (@ 1.86 g cm ⁻³) ^{[55}	1
8,090 (@ 1.83 g cm ⁻³) ^{[55}]
8,020 (@ 1.8 g cm ⁻³) ^[55]	
V ₀ [L kg ⁻¹] 908 (@ 1.90 g cm ⁻³ , calcd., LOTUSES) ^[61] 855 ^[8]	
Critical 13–25 mm ^[20] , 16.0 mm ^[31] , 16.0 mm (mean particle size = 130 μ m, character [cm] pressed @ 1.8 g cm ⁻³) ^[31, 41]	arges
Critical 829 ^[49] , Henkin critical $T = 237$ °C ^[49] , Henkin critical $T = 216$ °C ^[49] , 828. Joback-Stein method) ^[60] , 1,291.6 (Valderrama-Alveraz method) ^[60]	

Critical pressure [bar]	86.05 (est., Joback-Stein method) ^[60] , 145.15 (Valderrama-Alveraz method) ^[60]
Plate dent test	5.72 mm (no crater) ^[34]
Gap test	Charge $\rho = 1.83 \text{ g cm}^{-3}$, gap test >50 kbar ^[15, 34]
LSGT [cm]	$m_{50\%}$ = 260 cards (NOL LSGT, ρ not specified cf. RDX = 310 cards, TATB = 190 cards) ^[42] , 260 (0.19 mm polymethylmethacrylate attenuation discs) ^[49]
5 s explosion $T[^{\circ}C]$ Explosion $T[^{\circ}C]$ Ignition $T[^{\circ}C]$ Autoignition $T[^{\circ}C]$	284 (DTA/TG @ 6 °C/min) ^[15] , 236 (DTA/TG @ 6 °C/min) ^[34] 258 (recryst. NTO, MRL data) ^[42, 49] , 270 (unrecryst. NTO, MRL data) ^[42] , 237 (US data, @ 0.64 mm, recryst. NTO) ^[42] , 280 (recryst. NTO, French data, SNPE) ^[42, 49] 538.2 K ^[49]
Small-scale autoignition test, Thiokol) [°C]	234 ^[36]
Thermal stability [no. moles (g) per mole NTO/ no. h]	@ 120 °C: 0/22, 0/72 ^[22] @ 220 °C: 2.13/22, 2.2/72 ^[22] @ 320 °C: 2.4/22, 2.3/72 ^[22]
Vacuum stability test [cm³/h]	0.0 mL/5 g @ 120 °C, 40 h ^[17] , 0.2 mL/g/48 h @ 100 °C ^[18, 29, 49] , 0.3 mL/g/48 h @ 120 °C ^[18] , 0.06 mL/g @ 100 °C, 20 h ^[35, 49] , 0.05 cm³/g @ 110 °C, 20 h $(p=1.93 \text{ g cm}^{-3})^{[44]}$, 0.0 mL/g/120 °C/40 h (recryst. NTO, MRL data) ^[42, 49] , 0.3 mL/g/120 °C/48 h (recryst. NTO, US data) ^[42, 49] , 1.45 cm³g ⁻¹ /150 °C/193 h ^[49] , 1.7 cm³/g/150 °C/193 h ^[49] , stable 0.0 cm³/g/150 °C/193 h ^[49] , 0.2139 mL/5 g @ 94 °C for 48 h ^[59]
Vapor pressure [atm @ °C]	0.03-0.3 @ 230-270 °C ^[45]
Burn rate [mm/s]	Window constant-pressure bomb, 1.5 L in 0.1–40 MPa pressure interval, samples prepared as pressed cylinders of 0.98 TMD (1.87 g cm $^{-3}$) confined in transparent acrylic tubes of 7 mm inner diameter prior to pressing ^[45] : 0.3 mm/s @ 0.4 MPa.
Solubility [g/mL]	$\begin{array}{c} 0.72\ g\ dissolve\ in\ 100\ mL\ H_2O\ @\ 4.85\ ^\circ C^{[42,49]},\ 1.28\ g\ dissolve\ in\ 100\ mL\ H_2O\ @\ 18.95\ ^\circ C^{[42,49]},\ 2.6\ g\ dissolve\ in\ 100\ mL\ H_2O\ @\ 43.3\ ^\circ C^{[42,49]},\ approx\\ 10\ g\ dissolve\ in\ 100\ mL\ H_2O\ @\ 100\ ^\circ C^{[42,49]},\ 1.68\ g\ dissolve\ in\ 100\ mL\ acetone\ @\ 18.95\ ^\circ C^{[42,49]},\ 0.28\ g\ dissolve\ in\ 100\ mL\ ethyl\ acetate\ @\ 18.95\ ^\circ C^{[42,49]},\ co.02\ dissolve\ in\ 100\ mL\ CH_2Cl_2\ @\ 18.95\ ^\circ C^{[42,49]},\ 18\ g/L\ in\ acetone^{[49]},\ 625\ g/L\ in\ DMSO^{[49]},\ 16,642.0\ mg/L\ in\ H_2O\ @\ 25\ ^\circ C^{[50]},\ can\ be\ reycryst.\ from\ boiling\ water^{[51]},\ 49\ g/l\ H_2O^{[58]},\ soluble\ in\ most\ organic\ solvents^{[58]},\ 9.99\ g/L\ in\ H_2O\ @\ 11.5\ K^{[60]},\ 19.99\ g/L\ in\ H_2O\ @\ 33.9\ ^\circ C^{[60]},\ 7.56\ g/L\ in\ H_2O\ @\ 298.15\ K\ (est.,\ Klopman\ method)^{[60]},\ 9.97\ g/L\ in\ H_2O\ @\ 298.15\ K\ (est.,\ COSMOtherm\ method)^{[60]} \end{array}$

	Values using o	ensity metho	od ^[46] :		
	Solvent	X[g _{NTO} /g _{sol}	vent]		
		@ 20 °C	@ 40 °C	@ 60 °C	@ 80 °C
	H ₂ O	0.021	0.035	0.063	0.120
	Ethanol	0.331	0.644	1.143	
	Aqueous solul	oility: 7.46 g/	L ^[49] , 9.97 g/L @ 2	5 °C ^[49] , 49 g/L	[49]
	10 °C, 5 g @ 1 Solubility (g/1 60 °C, 6 g @ 7	8°C, 6 g @ 3 ,000 g nitric 0°C, 7 g @ 7 ,000 g nitric	acid) in 33.3% nitı 5 °C ^[49] acid) in 51.8% nitı	ric acid ^[49] : 4 g (@ 45°C, 5g@
Photosensitivity	applied norma Complete dec.	l to the surfa of 150 mg/L	mpose using 7 ns p ce of the pellet @ NTO with 0.4 g/L ec. observed in ab	266 nm wavele ΓiO₂ in 3 h on ir	ngth ^[49] , radiation with
Compatibility	polycarbonate drop height, if then almost al	^[33] , polystyre one of the se l of the explo	TO sensitized by 60 ne ^[33] , or PMMA ^[33] ensitizers was distrative was consume arl-Fischer method	– ignition occuributed through	out the layer
	Storage time	@	K-F value (mass %)) Mass lo	oss after e (%)
	0		0.15	-	
	2 months		0.13	0.04	
	4 months		0.07	0.09	
	VST of NTO/TN	AZ (60/40) @	0 110 °C, 20 h, vol	. of gas evolved	$d = 0.02 \text{ cm}^3/\text{g}^{[44]}$
p <i>K</i> a	3.67 ^[43, 47, 49] , 3	3.78 ^[49] , 4.7 ±	0.20 ^[49] , 3.76 ^[50]		
Heat of sublimation [kcal/mol]	26.4 ^[45] , entha	lpy of subl =	110.5 kJ/mol ^[49]		
Heat of melting [kcal/mol]		/mol ^[49, 60] , e	28.0 kJ/mol ^[49] , en nthalpy of fusion =		
Heat of evaporation [kcal/mol]	19.7 ^[45] , entha	lpy of vap = 8	2.4 kJ/mol ^[49]		

Decomposition activation energy [kcal/mol]	40.7 (110–140 ^c interval, open ve TGA) ^[45] , 48.8 (in	essel, TGA) ^[45] , 4	4.5 (229–246	°C interval, op	
Flame <i>T</i> in combustion wave	T_s = surface tempose second flame ^[45]		mperature of f	First flame, T_2 =	temperature of
	Characteristic pressure (MPa)	<i>T</i> _s (K)	<i>T</i> ₁ (K)	T ₂ (K)	Adiabatic flame T(K)
	0.4	645	980	1,500	2,225
	0.5	639 ± 15	1,030 ± 20	1,667 ± 61	2,224
	0.6	624	1,100	1,750	2,224
	1.1	677 ± 10	1,150	1,780	2,224
	1.6	673	1,075	1,975	2,225
	2.1	700 ± 18	-	1,980 ± 20	2,225
Gurney energy [kJ/kg]	2,580 (est. base	d on cylinder te	est results) ^[48]		
Particle sizes	Large, rod-like, j H ₂ O ^[47] , finely divusing solvent/no spray-freezing ir 200–300 nm ler	vided particles v onsolvent meth nto liquid (SFL)	with 5.7 m²/cn od (<i>Kayser</i>) ^[47] , method – elon	n³ surface areas nano-NTO obta gated shape, 7	obtainable nined using
Log K _{ow}	0.82-1.19 ^[49] , 0. COSMOtherm m		.82 (est., Brot	o method) ^[60] , –	1.19 (est.
Log K _{oc}	1.0-4.24 @ pH	10-1 ^[49] , 1.1 (m	easured) ^[50] , 2	.1 (est.) ^[50]	
Heat capacity [J g ⁻¹ K ⁻¹]	1.46 ^[49] , standar		pacity = 141.5	3 J/mol/K ^[49]	
	T(K) (C_p (cal mol ⁻¹ K ⁻¹)) T(K)	$C_{\rm p}$ (cal	mol ⁻¹ K ⁻¹)
	300 2	28.1	2,000	58.1	
	400 3	34.2	2,500	59.2	
	500 3	39.1	3,000	59.9	
	600	12.9	3,500	60.3	
	800	¥8.1	4,000	60.6	
	1,000	51.4	4,500	60.8	
	1,500	55.9	5,000	61.0	
Biodegradation	Biodegradation	by Bacillus lich	eniformis ^[49]		
BIC test	NTO with 10% R	DX ^[54] :< <i>dp/dt</i> ≥2	.2 psi/μs ^[54]		

	α-NTO ^[3]	β-ΝΤΟ ^[4]	β-ΝΤΟ ^[4]	β-ΝΤΟ ^[4]	β-ΝΤΟ ^[4]	β-ΝΤΟ ^[4]	β-ΝΤΟ ^[58]	α-ΝΤΟ ^[58]
Chemical formula	C ₂ H ₂ N ₄ O ₃	$C_2H_2N_4O_3$	C ₂ H ₂ N ₄ O ₃	$C_2H_2N_4O_3$	$C_2H_2N_4O_3$	$C_2H_2N_4O_3$	C ₂ H ₂ N ₄ O ₃	$C_2H_2N_4O_3$
Molecular weight [g mol ⁻¹]	130.08	130.08	130.08	130.08	130.08	130.08	130.08	130.08
Crystal system	Triclinic*	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>p</i> -1	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	<i>P</i> -1
a [Å]	5.1233(8)	9.3129(4)	9.3185(4)	9.3220(4)	9.3233(4)	9.3207(4)	9.326(2)	5.12
<i>b</i> [Å]	10.314(2)	5.4458(2)	5.4615(2)	5.4791(2)	5.4977(2)	5.5215(2)	5.515(2)	10.30
c [Å]	17.998(3)	9.0261(4)	9.0475(3)	9.0685(3)	9.0885(3)	9.1102(3)	9.107(2)	17.9
α [₀]	106.610(2)	06	06	06	90	06	06	106.7
β [º]	97.810(2)	101.464(2)	101.3320(10)	101.1820(10)	101.0190(10)	100.8700(10)	100.77(2)	97.7
y [º]	90.130 (2)	06	06	06	06	06	06	90.2
V [ų]	902.1(2)	448.64(3)	451.48(3)	454.39(3)	457.26(3)	460.44(3)	460.2(2)	
7	8	4	4	4	4	4	4	8
$ ho_{ m catc}$ [g cm ⁻³]	1.916	1.926	1.914	1.901	1.889	1.876	1.878	1.92
7 [K]	298	100	150	200	250	298	294	
							crystal from cooling a hot aq. NTO soln.	

primitive cell gives an l-centered cell with space group l-1, nearly orthorhombic metrics, Z = 16, $\alpha = 90.030^\circ$, $\beta = 89.600^\circ$, $\gamma = 89.848^\circ$; If l-centered cell is * The crystals of α -NTO measured in ref. $^{[3]}$ are multiple twins that can be rationalized by stacking faults of identical layers. Transformation of the triclinic idealized to show an orthorhombic metric then a=5.1233, b=10.314, $c=34.143^{[52]}$.

Recrystallizes from H_2O as large, rod-like, jagged crystals which tend to agglomerate^[47], finely divided particles with 5.7 m²/cm³ surface areas obtainable using solvent/nonsolvent method $(Kayser)^{[47]}$, nano-NTO obtained using SFL method, nano-NTO shows same diffraction pattern as micro-NTO which is α -NTO^[47], α -NTO obtained by slow cooling of hot aqueous soln. followed by refrigeration (long needles)^[49], β -NTO obtained by recryst. from MeOH or mixed EtOH/CH₂Cl₂, or small quantities by cooling hot aqueous soln.^[49], β -NTO only found in recryst. product of NTO from MeOH/CH₂Cl₂ or EtOH/CH₂Cl₂ mixture, no solvent found for producing large enough quantities for preliminary sensitivity tests^[58]

- [1] H. Gehlen, J. Schmidt, Justus Liebigs Ann. Chem., 1965, 682, 123–135
- [2] Z.Zeng, H. Gao, B. Twamley, J. M. Shreeve, J. Mater. Chem., 2007, 17, 3819–3826
- [3] N. Bolotina, K. Kirschbaum, A. A. Pinkerton, *Acta Cryst.*, **2005**, *B61*, 577–584.
- [4] N. B. Bolotina, E. A. Zhurova, A. A. Pinkerton, J. Appl. Crystallogr., 2003, 36, 280-285.
- [5] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [6] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, Proceedings of New Trends in Research of Energetic Materials, NTREM, April 24th–25th 2002.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [9] J. Boileau, C. Fauquignon, B. Hueber, H. Meyer, Explosives, in Ullmann's Encylocopedia of Industrial Chemistry, 2009, Wiley-VCH, Weinheim.
- [10] J. Lasota, W. A. Trzciński, Z. Chyłek, M. Szala, J. Paszula, NTO-Based Melt-Cast Insensitive Compositions, in Proceedings of New Trends in Research of Energetic Materials, Pardubice, 15th–17th April 2015, pp. 157–167.
- [11] A. K. Hussein, A. Elbeih, S. Zeman, Performance Characteristics of a New Plastic Explosive
 Based on cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX) and 3-Nitro-1,2,4triazol5-one (NTO), Proceedings of the 20th Seminar on New Trends in Research of Energetic
 Materials, Pardubice, April 26th–28th, 2017, pp. 218–225.
- [12] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [13] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, *Central Eur. J. Energ. Mater.*, **2016**, 13, 427–443.
- [14] R. Meyer, J. Köhler, A. Homburg, Explosives, Wiley-VCH, Weinheim, 2016, pp. 241–242.
- [15] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [16] K.-Y. Lee, M. M. Stinecipher, Propellants, Explosives, Pyrotechnics, 1989, 14, 241–244.
- [17] I. J. Dagley, M. Kony, G. Walker, J. Energet. Mater., 1995, 13, 35–56.
- [18] K.-Y. Lee, L. B. Chapman, M. D. Coburn, J. Energet. Mater., 1987, 5, 27–33.
- [19] J. Lasota, Z. Chylek, W. A. Trzciński, *Methods for Preparing Spheroidal Particles of* 3-Nitro-1,2,4-Triazol-5-one (NTO), NTREM 17, 9th-11th April 2014, pp. 261-272.
- [20] A. Orzechowski, D. Powala, A. Maranda, J. Nowaczewski, Influence of Insensitive Additives on Detonation Parameters of PBX, NTREM 7, 20th-22nd April 2004, pp. 576-583.
- [21] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huoyhayo Xuebao, 2015, 38, 1-8.
- [22] J. C. Oxley, J. L. Smith, E. Rogers, X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [23] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th–11th April 2014, pp. 24–37.

- [24] J. L. Gottfried, T. M. Klapötke, T. G. Wirkowski, Propellants, Explosives, Pyrotechnics, 2018, 42, 353–359.
- [25] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651–659.
- [26] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [27] P. Mareček, J. Pokorná, P. Vávra, A Study of Some Insensitive Explosives, ICT 1998, Karlsruhe, Germany, pp. 52-1–52-5.
- [28] K. Wang, Research on the Autocatalytic Thermal Decomposition Properties and the Thermal Safety of NTO, ICT **2017**, Karlsruhe, Germany, pp. 48-1–48-3.
- [29] E. D. Cooke, A. J. Paraskos, P. R. Cook, P. E. Anderson, K. C. Caflin, *DATNBI: An Insensitive Replacement for RDX*, ICT **2016**, Karlsruhe, Germany, pp. 12-1–12-11.
- [30] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [31] S. Cudzillo, W. A. Trzcinski, J. Energet. Mater., 2001, 19, 1–21.
- [32] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [33] J. P. Agrawal, S. M. Walley, J. E. Field, Comb. and Flame, 1998, 112, 62-72.
- [34] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, *Energetic Materials Production*, *Processing*, and *Characterization*, ICT **1998**, Karlsruhe, Germany, pp. 47-1–47-15.
- [35] P. Mareček, J. Pokorná, P. Vávra, A Study of Some Insensitive Explosives, ICT 1998, Karlsruhe, Germany, pp. 52-1–52-5.
- [36] P. C. Braithwaite, W. W. Edwards, R. M. Hajik, T. K. Highsmith, G. K. Lund, R. B. Wardle, *TEX: A Promising New Insensitiive High Explosive*, ICT **1998**, Karlsruhe, Germany, pp. 62-1–62-7.
- [37] M. A. Bohn, H. Pontius, S. Löbbecke, S. Wilker, G. Pantel, *Investigation on the Stability and Reactivity of Pure NTO and Mixtures of NTO-TNT and NTO-RDX to Assess Their Safe Use*, ICT **1998**, Karlsruhe, Germany, pp. 147-1–147-13.
- [38] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [39] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308-313.
- [40] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [41] S. Cudzillo, W. A. Trzcinski, *A Study on Detonation Characteristics of Pressed NTO*, ICT **2000**, Karlsruhe, Germany, pp. 77-1–77-14.
- [42] R. J. Spear, C. N. Louey, M. G. Wolfson, *A Preliminary Assessment of NTO as an Insensitive High Explosive*, AD-A215 063, DSTO Materials Research Laboratory, Australia, **1989**.
- [43] R. W. Millar, S. P. Philbin, R. P. Claridge, J. Hamid, *Novel Insensitive High Explosive Compounds Based on Heterocyclic Nuclei: Pyridines, Pyrimidines, Pyrazines and their Benzo Analogues*, ICT **2002**, Karlsruhe, Germany, pp. 4-1–4-14.
- [44] K. Dudek, P. Marecek, Z. Jalovy, Some Properties of Cast TNAZ Mixtures, ICT 2002, Karlsruhe, Germany, pp. 53-1–53-7.
- [45] V. P. Sinditskii, S. P. Smirnov, V. Y. Egorshev, Thermal Decomposition of NTO: Explanation of High Activation Energy, ICT 2006, Karlsruhe, Germany, pp. 40-1-40-16.
- [46] U. Teipel, H. Kröber, K. Leisinger, K. Hartlieb, *Determination of Solubilities of Energetic Materials*, ICT 2003, Karlsruhe, Germany, pp. 106-1–106-9.
- [47] G. Yang, F. Nie, J. Li, Q. Guo, Z. Qiao, J. Energet. Mater., 2007, 25, 35-47.
- [48] J. Vagenknecht, P. Mareček, W. Trzciński, J. Energet. Mater., 2002, 20, 245–253.
- [49] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO), Ch. 5 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, 2018.

- [50] S. Taylor, K. Dontsova, M. Walsh, Insensitive Munitions Formulations: Their Dissolution and Fate in Soils, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, 2017.
- [51] G. T. Long, B. A. Brems, C. A. Wight, J. Phys. Chem. B, 2002, 106, 4022-4026.
- [52] D. Schwarzenbach, K. Kirschbaum, A. A. Pinkerton, Acta Cryst., 2006, B62, 944-948.
- [53] E.-C. Koch, State of the Art Insensitive Explosives, MSIAC Workshop on Sensitivity of Energetic Materials, 11th–12th May 2010.
- [54] C. S. Coffey, V. F. Devost, Impact Testing of Explosives and Propellants, AD-A267 391, Naval Surface Warfare Center, Maryland, USA, June 1992.
- [55] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, Detonation Performance Analyses for Recent Energetic Molecules, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [56] N. Zohari, M. H. Keshavarz, S. A. Seyedsadjadi, Centr. Eur. J. Energet. Mater., 2013, 10, 135-147.
- [57] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [58] K.-Y. Lee, R. Gilardi, NTO Polymorphs, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November – 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 237–242.
- [59] A. K. Sikder, G. M. Bhokare, D. B. Sarwade, J. P. Agrawal, Propellants, Explosives, Pyrotechnics, 2001, 26, 63–68.
- [60] V. M. Boddu, S. W. Maloney, R. K. Toghiani, H. Toghiani, Prediction of Physicochemical Properties of Energetic Materials for Identification of Treatment Technologies for Waste Streams, ERDC/CERL TR-10-27, US Army Corps of Engineers, Engineer Research and Development Center (ERDC), Champaign, USA, November 2010.
- [61] D. M. Badgujar, M. B. Talawar, S. F. Harlapur, S. N. Asthana, P. P. Mahulikar, J. Hazard. Mater., 2009, 172, 276–279.
- [62] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.

5-Nitro-2,4,6-tris(picrylamino)pyrimidine

Name [German, acronym]: 5-Nitro-2,4,6-tris(picrylamino)pyrimidine [NTPP]

Main (potential) use: Thermally stable explosive^[1]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	NTPP		
Formula	C ₂₂ H ₉ N ₁₅ O ₂₀		
Molecular mass [g mol ⁻¹]	803.40		
Appearance at RT			
IS [J]			
FS [N]			
ESD [J]			
N [%]	26.15		
Ω(CO ₂) [%]	-56.76		
T _{m.p.} [°C]			
T _{dec.} [°C]			
ρ [g cm $^{-3}$]			
Heat of formation			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
T _{ex} [K]		
p _{C-J} [kbar]		
VoD [m s ⁻¹]		
V ₀ [L kg ⁻¹]		

[1] S. R. Ahmad, M. Cartwright, *Laser Ignition of Energetic Materials*, John Wiley and Sons Ltd., **2015**.

Nitrourea

Name [German, acronym]: Nitrourea, 1-nitrourea, N-nitrocarbamide

[nitroharnstoff, NUr]

Main (potential) use: Structural formula:

$$O_2N\underset{H}{\underbrace{\hspace{1cm}}} O_{NH_2}$$

	Nitrourea		
Formula	CH ₃ N ₃ O ₃		
Molecular mass [g mol ⁻¹]	105.05		
Appearance at RT	Colorless platelets from EtOH/ EtOH and petrol ether) ^[17]	^{(Et₂O^[9], pearly leaflets^[13], platelets (from}	
IS [J]	18 in (incomplete explosion, P	P.A., 2 kg mass, cf. 14 in for TNT) ^[9]	
N [%]	40.00		
Ω(CO ₂) [%]	-7.61		
T _{m.p.} [°C]	154-159 ^[1] , 158.4-158.8 (dec.) ^[9] , 146-153 (dec.) ^[13] , 158.4-158.8 (pure nitrourea) ^[13]		
T _{dec.} [°C]	\sim 140 $^{[10]}$, 153 $-$ 155 (dec., no melting, mpt. apparatus, glass capillary) $^{[10]}$, 158.4 $-$ 158.8 $^{[17]}$		
$ ho$ [g cm $^{-3}$]	1.557 (@ 293 K) ^[2] , 1.73 ^[10]		
Heat of formation	$\begin{array}{l} -281 \text{ kJ/mol } (\Delta_{\rm f} H^{\rm o})^{[3]}, -2,688.4 \text{ kJ/kg } (\Delta_{\rm f} H^{\rm o})^{[4]}, -2,556.4 \text{ kJ/kg}^{[5]}, \\ -614.3 \text{ kcal/kg } (\text{energy of form.})^{[9]}, -639.7 \text{ kcal/kg } (\text{enthalpy of form.})^{[9]}, \\ -59.37 \pm 0.15 \text{ kcal/mol } (\Delta H_{\rm f}^{\rm o})^{[14]}, 1,245 \text{ kcal/kg}^{[15]}, -282.3 \text{ kJ/mol} \\ (\text{enthalpy of form., exptl.})^{[18]}, -281.7 \text{ kJ/mol (enthalpy of form., calcd.,} \\ \text{emp.})^{[18]}, -226.6 \text{ kJ/mol (enthalpy of form., calcd.,} \text{S-D method})^{[18]} \end{array}$		
Heat of combustion	133.56 cal/mol ^[9] , -129.56 ± 0.15 cal/mol ^[14] , 1,245 kcal/kg (@ C ^V) ^[15]		
	Calcd. (EXPLO5 5.04) Exptl.		
	Calcu. (LAFEO 3.04)	LAPIL	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,347	800 cal/kg [H ₂ O (g)] ^[7]	
		3,865 ^[8]	
		Heat of explosion = 789 kcal/kg ^[9]	
<i>T</i> _{ex} [K]	2,744		

p _{C-J} [kbar]	180	
VoD [m s ⁻¹]	7,150 (@ TMD)	
$V_0 [L \text{ kg}^{-1}]$	878	853 ^[6, 8, 9]

Trauzl test [cm³, % TNT]	105% TNT ^[12] , 310 cm ^{3[9, 16]} , 320 ^[16] , 94% PA ^[9]
Sand test [g]	28-30 g (0.4 g nitrourea sample) ^[9]
Initiation efficiency	Can be detonated by no. 8 MF cap ^[9]
Thermal stability	Explosion hazard when exposed to heat ^[9]
Solubility [g/mL]	Freely soluble in acetone, acetic acid, EtOH ^[9] , slightly soluble in benzene, CHCl ₃ , petroleum ether ^[9] , soluble in hot EtOH ^[13] , crystallizes on cooling EtOH soln. ^[13] , sparingly soluble in benzene, Et ₂ O, CHCl ₃ ^[13] , soluble in hot water but aqueous solns. are unstable ^[17] , freely soluble in acetone, EtOH, acetic acid ^[17] , sparingly soluble in petrol ether, CHCl ₃ , benzene ^[17]
Compatibility	Can react vigorously with oxidizing materials ^[9] , spontaneous dec. in presence of moisture ^[13] , soluble in hot water but aqueous solns. are unstable ^[17] , almost instantaneous dec. in alkaline solns. ^[17]
ΔH° _{sol} [kcal/mol]	$7.59 \pm 0.02^{[14]}$

	Nitrourea ^[11]
Chemical formula	CH ₃ N ₃ O ₃
Molecular weight [g mol ⁻¹]	105.06
Crystal system	Tetragonal
Space group	P 4 ₃ 2 ₁ 2 (no. 96)
a [Å]	4.8710(8)
<i>b</i> [Å]	4.8710(8)
c [Å]	32.266(6)
α [°]	90
β[°]	90
γ [°]	90
<i>V</i> [Å ³]	756.2
Z	8
$\rho_{\rm calc}$ [g cm ⁻³]	1.823
T[K]	100

- 1] A. A. Lobanova, S. G. Il'yasov, N. I. Popov, R. R. Sataev, Russ. J. Org. Chem., 2002, 38, 11–16.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] H. Bathelt, F. Volk, M. Weindel, ICT-Database of Thermochemical Values, 7th Update, 2004.
- [4] D. B. Lempert, I. N. Zyuzin, *Propellants, Explosives, Pyrotechnics*, **2007**, *32*, 360–364.
- [5] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [7] W. C. Lothrop, G. R. Handrick, *Chem. Revs.*, **1949**, 44, 419–445.
- [8] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [9] S. M. Kaye, H. L. Herman, Encyclopedia of Explosives and Related Items, vol. 10, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1983.
- [10] J. C. Oxley, J. L. Smith, S. Vadlamannati, A. C. Brown, G. Zhang, D. S. S. Wanson, J. Canino, Propellants, Explosives, Pyrotechnics, 2013, 38, 335–344.
- [11] T. T. Vo, D. A. Parrish, J. M. Shreeve, J. Am. Chem. Soc., 2014, 136, 11,934–11,937.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [13] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [14] Y. N. Matyushin, T. S. Konkova, *Combined Study of Thermochemical Properties of Nitrourea and its Salts*, ICT **2002**, Karlsruhe, Germany, pp. 87-1–87-10.
- [15] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [16] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [17] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [18] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.

N-(2-Nitroxyethyl)methylnitramine

Name [German, acronym]: N-Methyl-N-(2-nitroxyethyl)nitramine, [MeNENA]
Main (potential) use: Energetic plasticizers in modern gun propellant

formulations^[3]

$$\begin{array}{c} {\rm H_2C} - {\rm H_2 \atop C} - {\rm ONO_2} \\ {\rm O_2N} - {\rm N} \\ {\rm CH_3} \end{array}$$

	MeNENA			
Formula	C ₃ H ₇ N ₃ O ₅	C ₃ H ₇ N ₃ O ₅		
Molecular mass [g mol ⁻¹]	165.10			
Appearance at RT	Colorless crystalli	ne solid ^[3]		
IS [J]	>90 cm ^[1] , >35 (BAI	M, dec. but n	o det.) ^[3]	
FS [N]	120 (BAM, dec. bu	ıt no det.) ^[3]		
ESD [J]	0.6 (OZM apparati	us, dec. but r	10 det.) ^[3]	
N [%]	25.45			
Ω(CO ₂) [%]	-43.6	-43.6		
<i>T</i> _{m.p.} [°C]		39–40.5 (recryst. product) ^[1] , 36.5–38 (crude product) ^[1] , 38–40 ^[1, 2] , 31 (onset, DTA @ 5 °C/min, open glass tube) ^[3]		
T _{dec.} [°C]	218 (exotherm, DS tube) ^[3]	218 (exotherm, DSC) $^{[2]}$, 180 (onset exo, DTA @ 5 $^{\circ}$ C/min, open glass tube) $^{[3]}$		
$ ho$ [g cm $^{-3}$]		$D^{25}_4 = 1.40$ (pycnometer, liq.) ^[1] , $D^{25}_4 = 1.53$ (pycnometer, solid) ^[1] , $1.53^{[2]}$, 1.599 (crystals @ 173 K, X-ray) ^[3]		
Heat of formation		$-150.0 \text{ kJ/mol } (\Delta_t H^o)^{[3]}, 48.68 \text{ kcal/mol } (-\Delta H_t \text{ (heat of form. @ standard conditions))}^{[4]}$		
Heat of combustion	Exptl. heat of com	Exptl. heat of combustion data ^[4] :		
	$-\Delta U_{\rm B/M}$ (cal/g)	−ΔU _B (kcal/mol)	$-\Delta U_{\rm R}$ (kcal/mol @ 1 atm and constant vol.)	-ΔH _R (kcal/mol @ 1 atm and constant pressure)
	2,881.82 ± 0.76	475.82	475.17	473.84

	Calcd. (EXPLO5 5.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,919 ^[3]		
<i>T</i> _{ex} [K]	3,769 ^[3]		
p _{C-J} [kbar]	259 ^[3]		
VoD [m s ⁻¹]	8,050 (@ 1.60 g cm ⁻³) ^[3]		
V ₀ [L kg ⁻¹]	780 ^[3]		
Thermal stability	No explosion @ 360 ${}^{\circ}C^{[1]}$, volatizes rapidly, acid in 65 min @ 135 ${}^{\circ}C^{[1]}$		
Vacuum stability test [cm³/h]	7.38 cc/5 g/48 h @ 100 °C $^{[1]}$, 100 h required to exceed 12 cc using 2.4 g sample $^{[1]}$		
Solubility [g/mL]	Recryst. from Et ₂ O ^[3]		
Hygroscopicity	0.00% @ 90% RH ^[1] , 0.01% @ 1	.00% RH ^[1]	
pH	7.2 ^[1]		
Int. test @ 75 °C	0.13% volatility ^[1] , 0.10% volati	lity ^[1]	
ΔH _{sub} [kJ/mol]	58.9 (Trouton's rule) ^[3]		
Berthelot-Rot value (B _R) [kJ•m³]	11,819 ^[3]		

	Me-NENA ^[3]
Chemical formula	C ₃ H ₇ N ₃ O ₅
Molecular weight [g mol ⁻¹]	165.12
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	9.7280(10)
<i>b</i> [Å]	7.3794(7)
c [Å]	11.7814(15)
α [°]	90
β [°]	125.816(11)
γ [°]	90
V [ų]	685.82(16)
Z	4

$ ho_{ m calc}$ [g cm $^{-3}$]	1.599
τ[K]	173
	Recryst. from Et ₂ O

- [1] A. T. Blomquist, F. T. Fiedorek, Nitramines, US Patent 2,485,855, 25th October 1949.
- [2] A. Provatos, Energetic Polymers and Plasticisers for Explosive Formulations A Review of Recent Advances, DSTO-TR-0966, Department of Defence, DSTO, Melbourne, Australia, April **2000**.
- [3] D. Izsák, T. M. Klapötke, ZAAC, 2011, 637, 2135–2141.
- [4] G. Stegeman, *Heat of Combustion of Explosive Substances*, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July **1945**.

N-(2-Nitroxyethyl)nitramine

Name [German, acronym]: [NENA] Main (potential) use: Plasticizer

$$O_2NO \underbrace{C}_{H_2}^{H_2} NHNO_2$$

	NENA	NENA		
Formula	C ₂ H ₅ N ₃ O ₅	$C_2H_5N_3O_5$		
Molecular mass [g mol ⁻¹]	151.08	151.08		
Appearance at RT	Liquid ^[1] , pale yellov	v oil ^[1]	,	
IS [J]	$H_{50\%} = 191 \text{ cm}^{[1]}, H_{50\%}$	_{0%} = 107 cm ^[1]	,	
N [%]	27.81			
Ω(CO ₂) [%]	-15.9			
T _{m.p.} [°C]				
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]				
Heat of formation				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Thermal stability	No explosion @ 360	o °C ^[1] , acid formed in 7	5 min @ 135 °C ^[1]	

Volatility	Volatizes rapidly ^[1]
Solubility [g/mL]	Insoluble in water $^{[1]}$, soluble in/miscible with $\mathrm{Et_2O^{[1]}}$
рН	2.7 ^[1]
Power	133% TNT ^[1]

[1] A. T. Blomquist, F. T. Fiedorek, *Nitramines*, US Patent 2,485,855, 25th October **1949**.

Nonanitroterphenyl

Name [German, acronym]: 2,2^I,2^{II},4,4^I,4,6,6^I,6^{II}-Nonanitroterphenyl, tri-1,1':3,1"-

2,4,6-trinitrophenyl, 2,2',2",4,4',4",6,6',6"-Nonanitro-1,1':3',1"-terphenyl, 2,2',2",4,4',4",6,6',6"-Nonanitro-m-

terphenyl [Nonanitroterphenyl, NONA]

Main (potential) use: High thermal stability secondary explosive, component

of perforators or detonators in downhole well applications, possible spacecraft applications^[1], exploding foil initiators, boosters, shaped charges

	NONA
Formula	$C_{18}H_5N_9O_{18}$
Molecular mass [g mol ⁻¹]	635.31
Appearance at RT	Pale yellow solid ^[15]
IS [J]	$20-25 \text{ cm}^{[4]}$, $39 \text{ cm}^{[4]}$, $9.10^{[11]}$, $H_{50} = 39 \text{ cm}$ (2.5 kg mass, type 12 tool) ^[13] , 9.10 (Bruceton method) ^[14] , 39 cm (type 12 tool, 2.5 kg mass, ERL machine) ^[16]
FS [N]	300 (BAM) ^[4] , Fol (rotary friction) = 2.1 ^[10]
ESD [J]	16.44 ^[20]
N [%]	19.85
Ω(CO ₂) [%]	-51.63
T _{m.p.} [°C]	440 ^[3, 8, 10, 12] , 440–450 (dec.) ^[4, 7] , does not melt (TG-DSC @ 5 K/min, N ₂) ^[15]
T _{dec.} [°C]	309 (DTA, onset exotherm) ^[11, 14] , 364.8 (TG-DSC @ 5 K/min, N ₂) ^[15]
ρ [g cm ⁻³]	1.78 (crystal) ^[2, 4, 7, 10] , 1.816 (crystal @ 257 K) ^[15]

Heat of formation	31.6 kcal mol ^{-1[2]} , -148.2 kJ/mol (calcd.) ^[15] , 27.4 kcal/mol ^[18] , 27.4 kcal/mol (ΔH^{o}_{t}) ^[19]				
Heat of combustion	$-1,891.2 \text{ kcal mol}^{-1[2]}, \Delta H^{\circ}_{c} = -1,891.2 \text{ kcal/mol}^{[19]}$				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,751 MJ•kg ⁻¹ (@ TMD, Q _{real}) ^[11, 14]			
T _{ex} [K]		3,780 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[18]			
		4,510 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[18]			
p _{C-J} [kbar]		255 (calcd., K-J) ^[2]			
		26.58 GPa (@ 1.816 g cm ⁻³ , calcd., K-J) ^[15]			
		241 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[18]			
		221 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[18]			
VoD [m s ⁻¹]		7,610 (@ 1.78 g cm ⁻³ , calcd., K-J) ^[2]	7,560 (p not given) ^[2,6]		
		7,310 (@ 1.78 g cm ⁻³ , calcd. empirical, Rothstein method) ^[6]	7,560 (@ 1.78 g cm ⁻³) ^[9] 7,400 (@ 1.70 g cm ⁻³) ^[18]		
		7,600 (@ TMD, calcd., K-J) ^[11, 14]			
		7,720.66 (@ 1.816 g cm ⁻³ , calcd., K-J) ^[15]			
		7,350 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[18]			
		7,260 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[18]			
V_0 [L kg ⁻¹]					

5 s explosion T[°C] Ignition T[°C]	359 ^[11, 14]
Thermal stability	280 °C (threshold of thermal stability) $^{[11,14]}$, 87% mass loss in 350–430 °C range $^{[15]}$, max. rate of mass loss at 378.3 °C (–16.89%) $^{[15]}$
Vacuum stability test [cm³/days]	0.4 cc/g/h @ 260 °C ^[4] , 0.5 cc/g/h (2 h period) @ 260 °C ^[16] @ 200 °C (total cm³ of gas evolved): 0.4/2, 0.8/7, 1.1/14, 1.6/21, 2.0/28, 2.3/35, 2.8/42, 3.2/49, 3.6/56, 3.9/63, 4.3/70, 4.7/77, 5.1/84, 5.4/91 ^[1,17] @ 175 °C (total cm³ of gas evolved): 0.1/2, 0.1/7, 0.2/14, 0.2/21, 0.3/28, 0.4/35, 0.5/42, 0.6/49, 0.8/56, 0.9/63, 1.0/70, 1.1/77, 1.2/84, 1.3/91 ^[1] @ 260 °C: 0.43 cc/g gas evolved in 20 min surge, 0.16 cc/g/h for 2 h period, 0.18 cc/g/h for 19 h period ^[5]
	35% dec. of NONA after 78 h @ 260 °C ^[5]
Vapor pressure [atm @ °C]	Nonvolatile @ 210 °C ^[4]
Solubility [g/mL]	Soluble in acetone ^[15]
ΔH _{dec} [kJ/mol]	1,203.28 ^[15]

	NONA ^[15]		
Chemical formula	C ₁₈ H ₅ N ₉ O ₁₈		
Molecular weight [g mol ⁻¹]	635.31		
Crystal system	Orthorhombic		
Space group	Pbca (no. 61)		
a [Å]	16.8223(11)		
<i>b</i> [Å]	11.0573(6)		
c [Å]	23.0972(14)		
α [°]	90		
β [°]	90		
γ [°]	90		
V [ų]	4,645.99(50)		
Z	8		
$ ho_{ m calc}$ [g cm $^{-3}$]	1.81644		
T[K]	257		

- J. F. Baytos, High Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [2] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16–20.
- [3] J. Hamid, T. Griffiths, R. Claridge, T. Jordan, *Application of Novel Energetic Materials for Initiators and Explosive Trains*, NTREM, **2004**, pp. 132–141.
- [4] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [5] J. C. Dacons, Heat Resistant Explosives XXII. The Preparation of 2,2¹,2¹¹,4,4¹,4¹¹,4,4¹,4¹¹,6,6¹,6¹¹,6¹¹, Dodecanitroquarterphenyl, DODECA, NOLTR 65–223, 28th January 1966, US NOL, Maryland, USA.
- [6] L. R. Rothstein, *Propellants and Explosives*, **1981**, 6, 91–93.
- [7] J. P. Agarwal, *Prog. Energy Combust. Sci.*, **1998**, 24, 1–30.
- [8] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [9] J. R. Stine, J. Energet. Mater., 1990, 8, 41-73.
- [10] J. Hamid, T. Griffiths, R. Claridge, T. Jordan, Application of Novel Energetic Materials for Initiators and Explosive Trains, NTREM 7, April 20th—22nd 2004, pp. 132–140.
- [11] S. Zeman, M. Roháč, Chinese J. Energet. Mater., 2006, 14, 361–366.
- [12] E. G. Kayser, Analysis Methods For Explosive Materials I. Polynitro Compounds, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March 1962.
- [13] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., **2010**, 28, 45–76.
- [14] S. Zeman, Z. Friedl, M. Roháč, Thermochim. Acta, 2006, 451, 105-114.
- [15] F. Yang, Y.-X. Li, X.-X. Chai, X. Dang, Propellants, Explosives, Pyrotechnics, 2018, 43, 679-684.
- [16] M. E. Sitzmann, J. Energet. Mater., 1988, 6, 129-144.
- [17] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [18] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [19] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [20] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.