导入数据进行主成分分析

得到主向量:

0.532456	0.558647	0.489608	0.189288	0.328206	0.0947973	0.110235
-0.302602	-0.0318648	-0.223899	0.278935	0.364256	0.589206	0.547389
-0.0739652	0.728162	-0.516356	0.126275	-0.419969	0.0524974	-0.0510952
0.59596	-0.35595	-0.0995157	0.227029	-0.46248	0.488363	-0.0655788
-0.514067	0.0786769	0.596697	0.284208	-0.349196	0.30618	-0.277559
0.00297143	-0.0802815	-0.270494	0.571598	0.434766	-0.0563422	-0.633607
0.00321531	-0.131693	0.0664174	0.641388	-0.241614	-0.552878	0.450338

并且得到主成分分析之后的数据(仍然是**20000*7**的),我们对每个数据只取前两个分量(主向量上的分量)。将它们散布在特征空间上。

得到如下图像:

训练集在两个最主成分构成的特征空间中的分布第二主成分

将它们按照标签"1"或者"0"赋予不同的颜色,得到:

训练集在两个最主成分构成的特征空间中的分布第二主成分

