Closure in DBMS | Steps to Find Closure

► Database Management System

Closure of an Attribute Set-

- The set of all those attributes which can be functionally determined from an attribute set is called as a closure of that attribute set.
- Closure of attribute set {X} is denoted as {X}⁺.

Steps to Find Closure of an Attribute Set-

Following steps are followed to find the closure of an attribute set-

Step-01:

Add the attributes contained in the attribute set for which closure is being calculated to the result set.

Step-02:

Recursively add the attributes to the result set which can be functionally determined from the attributes already contained in the result set.

Example-

Consider a relation R (A , B , C , D , E , F , G) with the functional dependencies-

 $A \rightarrow BC$

 $BC \rightarrow DE$

$$D \,\to\, F$$

Now, let us find the closure of some attributes and attribute sets-

Closure of attribute A-

$$A^{+} = \{A\}$$

$$= \{A, B, C\} (Using A \rightarrow BC)$$

$$= \{A, B, C, D, E\} (Using BC \rightarrow DE)$$

$$= \{A, B, C, D, E, F\} (Using D \rightarrow F)$$

$$= \{A, B, C, D, E, F, G\} (Using CF \rightarrow G)$$

Thus,

$$A^{+} = \{ A, B, C, D, E, F, G \}$$

Closure of attribute D-

$$D^{+} = \{ D \}$$

$$= \{ D, F \} (Using D \rightarrow F)$$

We can not determine any other attribute using attributes D and F contained in the result set.

Thus,

$$D^+ = \{ D, F \}$$

Closure of attribute set {B, C}-

$${B,C}^+={B,C}$$

= ${B,C,D,E}$ (Using BC \rightarrow DE)

$$= \{B, C, D, E, F\} (Using D \rightarrow F)$$
$$= \{B, C, D, E, F, G\} (Using CF \rightarrow G)$$

Thus,

$${B,C}^{+} = {B,C,D,E,F,G}$$

Finding the Keys Using Closure-

Super Key-

- If the closure result of an attribute set contains all the attributes of the relation, then that attribute set is called as a super key of that relation.
- Thus, we can say-

"The closure of a super key is the entire relation schema."

Example-

In the above example,

- The closure of attribute A is the entire relation schema.
- Thus, attribute A is a super key for that relation.

Candidate Key-

 If there exists no subset of an attribute set whose closure contains all the attributes of the relation, then that attribute set is called as a candidate key of that relation.

Example-

In the above example,

- No subset of attribute A contains all the attributes of the relation.
- Thus, attribute A is also a candidate key for that relation.

Also Read- How To Find Candidate Keys?

PRACTICE PROBLEM BASED ON FINDING CLOSURE OF AN ATTRIBUTE SET-

Problem-

Consider the given functional dependencies-

$$AB \ \to \ CD$$

 $AF \rightarrow D$

DE → F

 $C \rightarrow G$

 $F \rightarrow E$

 $G \ \to \ A$

Which of the following options is false?

$$(A) \{ CF \}^+ = \{ A, C, D, E, F, G \}$$

(B)
$$\{ BG \}^+ = \{ A, B, C, D, G \}$$

$$(C) \{ AF \}^+ = \{ A , C , D , E , F , G \}$$

(D)
$$\{AB\}^+ = \{A, C, D, F, G\}$$

Solution-

Let us check each option one by one-

Option-(A):

$$\{CF\}^+ = \{C, F\}$$

$$= \{C, F, G\} (Using C \rightarrow G)$$

$$= \{C, E, F, G\} (Using F \rightarrow E)$$

$$= \{A, C, E, E, F\} (Using G \rightarrow A)$$

$$= \{A, C, D, E, F, G\} (Using AF \rightarrow D)$$

Since, our obtained result set is same as the given result set, so, it means it is correctly given.

Option-(B):

$$\{BG\}^+ = \{B, G\}$$

= $\{A, B, G\}$ (Using $G \rightarrow A$)
= $\{A, B, C, D, G\}$ (Using $AB \rightarrow CD$)

Since, our obtained result set is same as the given result set, so, it means it is correctly given.

Option-(C):

$$\{AF\}^+ = \{A, F\}$$

$$= \{A, D, F\} (Using AF \rightarrow D)$$

$$= \{A, D, E, F\} (Using F \rightarrow E)$$

Since, our obtained result set is different from the given result set, so, it means it is not correctly given.

Option-(D):

$${AB}^{+} = {A, B}$$

= ${A, B, C, D} (Using AB \rightarrow CD)$
= ${A, B, C, D, G} (Using C \rightarrow G)$

Since, our obtained result set is different from the given result set, so, it means it is not correctly given.

Thus,

Option (C) and Option (D) are correct.

Next Article- 10 Different Kinds of Keys in DBMS

Get more notes and other study material of **Database Management System (DBMS)**.

Watch video lectures by visiting our YouTube channel **LearnVidFun**.

Article Name Closure in DBMS | Steps to Find

Closure

Description Closure in DBMS is a set of

attributes that can be functionally determined from an attribute set. How to find closure in DBMS- The given steps are followed to find the

closure of an attribute set.

Author Akshay Singhal

Publisher Name Gate Vidyalay

Publisher Logo

