Análise Matemática Gleberson Antunes

22 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Análise Real, das provas de admissão ao Mestrado em Matemática na UFSM. As resoluções são desprentesiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Sumário	. 1
1 Prova de seleção para o Mestrado em Matemática 2009.1	. 2

1 Prova de seleção para o Mestrado em Matemática 2009.1

22 de Setembro de 2023

Exercício 1. Responda Verdadeiro (V) ou Falso (F) nos intens abaixo, justificando suas respostas.

- (a) Seja $A \subset \mathbb{R}$ tal que A possui um elemento máximo a. Então sup A = a.
- (b) A sequência $a_n = \sqrt{n+1} \sqrt{n}, n \ge 1, n \in \mathbb{N}$ é convergente.
- (c) Seja $f:[-L,L] \longrightarrow \mathbb{R},\, L>0$ uma função par. Então

$$\int_{-L}^{L} f(x)dx = 2\int_{0}^{L} f(x)dx.$$

(d)
$$\lim_{x \to 0^+} \left[\cos\left(\frac{1}{x}\right) \right] = 1.$$

Demonstração.

- (a) Verdadeiro. Óbvio.
- (b) Verdadeiro. Basta notar que, para todo $n \in \mathbb{N}$, temos

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0.$$

(c) Sabemos que

$$\int_{-L}^{L} f(x)dx = \int_{-L}^{0} f(x)dx + \int_{0}^{L} f(x)dx$$
$$= \int_{-L}^{0} f(-x)dx + \int_{0}^{L} f(x)dx$$

Tomando u=-x, obtemos du=-dx. Note que $x=-L \Rightarrow u=L$. Assim, temos

$$\int_{-L}^{L} f(x)dx = -\int_{L}^{0} f(u)du + \int_{0}^{L} f(x)dx$$
$$= \int_{0}^{L} f(u)du + \int_{0}^{L} f(x)dx$$
$$= 2\int_{0}^{L} f(x)dx.$$

(d) Falso. Suponhamos que a afirmação seja verdade. Então, para toda sequência de pontos $x_n \in [0, \infty) - \{0\}$ que é tal que $x_n \longrightarrow 0$, $\cos\left(\frac{1}{x_n}\right) \longrightarrow 1$. Considere então as sequências $\left(\frac{1}{2n\pi}\right)$ e $\left(\frac{2}{\pi + 4n\pi}\right)$, que claramente convergem para 0. Note porém que

$$cos\left(\frac{1}{\frac{1}{2n\pi}}\right) = cos(2n\pi) \longrightarrow 1,$$

 \mathbf{e}

$$cos\left(\frac{1}{\frac{2}{\pi+4n\pi}}\right) = cos\left(\frac{\pi}{2} + 2n\pi\right) \longrightarrow 0,$$

o que é absurdo. $\hfill\Box$

Exercício 2.

(a) Prove que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{3}{4}$$

.

(b) Prove que $\forall a, b \in \mathbb{R}$ vale $|\sin b - \sin a| \le |b - a|$.

Demonstração.

(a) Podemos decompor $\frac{1}{n(n+2)}$ em frações parciais. Nesse caso teríamos

$$\frac{1}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$$

$$\Rightarrow \frac{1}{n(n+2)} = \frac{A(n+2) + Bn}{n(n+2)} = \frac{(A+B)n + 2A}{n(n+2)}$$

$$A + B = 0$$

$$A = \frac{1}{2}$$

$$\Rightarrow B - \frac{1}{2}.$$
(1)

Assim

$$\frac{1}{n(n+1)} = \frac{1}{2n} - \frac{1}{2(n+2)}.$$

Notemos que

$$\left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{8} - \frac{1}{12}\right) + \dots + \left(\frac{1}{2(n-2)} - \frac{1}{2n}\right) + \left(\frac{1}{2(n-1)} - \frac{1}{2(n+1)}\right) \\ + \left(\frac{1}{2n} - \frac{1}{2(n+2)}\right) + \left(\frac{1}{2(n+1)} - \frac{1}{2(n+3)}\right)$$

$$= \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}.$$

Segue daí que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \lim_{x \to \infty} \frac{1}{2} + \frac{1}{4} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}.$$

(b) Sabemos que a função

$$sin: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto sin(x),$$

é derivável em toda reta. Escolhamos dois números reais a e b arbitrários. Tome então o intervalo fechado [a,b] (poderá ser [b,a] ou consitirá em um único ponto, dependendo da escolha desses números). O **Teorema do Valor Médio** nos garante que existe $c \in (a,b)$ tal que

$$\frac{\sin b - \sin a}{b - a} = \cos c.$$

Em módulo temos que

$$\left| \frac{\sin b - \sin a}{b - a} \right| = |\cos c| \le 1$$

$$\Rightarrow |sin \ b - sin \ a| \le |b - a|,$$

como queríamos provar.

Exercício 3.

- (a) Mostre que $e^x \ge 1 + x$, para todo x real não negativo.
- (b) Mostre que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^3 sin(\frac{1}{x}), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

é derivável com derivada primeira contínua.

(c) Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua. Mostre que existe $c \in (a,b)$ tal que

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Demonstração.

(a) Notemos que

$$e^x \ge 1 + x \Leftrightarrow x \ge ln(1+x).$$

Provaremos a segunda afirmação, e portanto, a equivalência. Sabemos que a função

$$ln: (0, \infty) \longrightarrow \mathbb{R}$$

 $x \longmapsto \int_{1}^{x} \frac{1}{t} dt,$

é monótona crescente e derivável. Para todo $x \in (0, \infty)$ o **Teorema do Valor Médio** nos garante que existe $c \in (1, 1+x)$ tal que

$$\frac{ln(1+x) - ln(1)}{(x+1) - 1} = \frac{1}{c} < 1.$$

$$\frac{\ln(1+x)}{x} = \frac{1}{c} < 1.$$

$$\Rightarrow ln(1+x) < x.$$

Segue daí que

$$1 + x < e^x,$$

para todo $x \in (0, \infty)$.

(b) Se $x \neq 0$, então

$$f'(x) = -x \cdot cos\left(\frac{1}{x}\right) + 3x^2 \cdot sin\left(\frac{1}{x}\right)$$

Se x = 0, então

$$\lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x - 0} = \lim_{x \to 0} \frac{x^3 \cdot \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x^2 \cdot \sin\left(\frac{1}{x}\right) = 0.$$

Provaremos agora que f'(x) é contínua. Considere então a função

$$f'(x) = \begin{cases} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right), & \text{se } x \neq 0. \\ 0, & \text{se } x = 0. \end{cases}$$

Se $x \neq 0$, então

$$f''(x) = \frac{\sin\left(\frac{1}{x}\right)}{x} - 4 \cdot \cos\left(\frac{1}{x}\right) + 6x \cdot \sin\left(\frac{1}{x}\right).$$

Se x=0, então

$$\lim_{x \to 0} -x \cdot \cos\left(\frac{1}{x}\right) + 3x^2 \cdot \sin\left(\frac{1}{x}\right) - f'(0) = 0,$$

uma fez que $\sin\left(\frac{1}{x}\right)$ e $\cos\left(\frac{1}{x}\right)$ são funções limitadas. Logo f' é contínua em \mathbb{R} . Isso se dá pois f' é derivável em todo ponto $x \neq 0$, e daí ela será contínua em $\mathbb{R} - 0$. Por outro lado, $\lim_{x\longrightarrow 0} f'(x) = f'(0)$ nos garante a continuidade de f' no ponto x = 0.

(c) Sabemos que toda função contínua é integrável. Pelo **Teorema Fundamental do Cálculo**, sabemos que toda função contínua possui uma primitiva. Considere então a função

$$F: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f(x) dx.$$

Essa função é contínua e derivável, com F'(x) = f(x), para todo $x \in [a, b]$. Pelo **Teorema do Valor Médio**, existe $c \in (a, b)$ tal que

$$\frac{1}{b-a} \cdot \left(\int_a^b f(x) dx - \int_a^a f(x) dx \right) = F'(c)$$

$$\Rightarrow \frac{1}{b-a} \cdot \left(\int_a^b f(x)dx - 0 \right) = f(c)$$

$$\Rightarrow \int_{a}^{b} f(x)dx = f(c)(b-a).$$