МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)

Факультет информатики и кибернетики Кафедра программных систем

Дисциплина **Вычислительная математика**

ОТЧЕТ

по лабораторной работе №1 «Численное дифференцирование функции»

Вариант №23

Студент: Фадеев А.Ф. Группа: 6201-020302D
Преподаватель: Ледкова Т.А
Оценка:
Дата:

Исходная функция

$$f(x, h) = (\frac{\cos(x)}{x^2 + x + 1})e^{\cos(x)}$$

График функции

Задание

- 1. Построить график функции, соответствующей индивидуальному заданию.
- 2. Выбрать точку x, для которой будет производиться численное вычисление производных.
- 3. С помощью программных средств пакета MATHCAD найти аналитические выражения для производных (до четвертого порядка включительно) заданной функции.
- 4. На основании формул численного дифференцирования задать функции для приближенных оценок производных (до четвертого порядка включительно).
- 5. Задать функции для определения относительной погрешности вычисления производных.
- 6. Построить графики функций $\varepsilon_k(h)$. Уменьшая шаг h, приближенно оценить значения шага ho, при которых сравниваются методическая и вычислительная погрешности. Это можно определить по характерному резкому увеличению относительной погрешности.

Постановка задачи

Пусть на интервале [a,b] задана непрерывная функция f(x). Данная функция может быть задана в виде некоторого аналитического выражения или алгоритмически, то есть имеется возможность вычислять значения функции при заданном значении аргумента. Разобьем интервал точками $x_i = a + ih$, где i = 0,1..N; h = (b-a)/N.

Необходимо определить первую – четвертую производные известной функции с помощью формул численного дифференцирования и сравнить их значения с точными значениями производных, вычисленных программными средствами **MATHCAD**, исследовать зависимость погрешности определения производных от шага дискретизации и оценить влияние вычислительной погрешности, которая неизбежно возникает при малом шаге дискретизации.

Основные используемые формулы

• Аналитические выражения для производных 1 – 4 порядка заданной функции:

$$f1t(x) := \frac{d}{dx}f(x) \qquad \qquad f2t(x) := \frac{d^2}{dx^2}f(x) \qquad \qquad f3t(x) := \frac{d^3}{dx^3}f(x) \qquad f4t(x) := \frac{d^4}{dx^4}f(x)$$

• Формула численного дифференцирования (центральная разностная производная):

$$f1c(x, h) = \frac{f(x+h)-f(x-h)}{2H}$$

• Формулы численного дифференцирования (леворазностная производная):

$$f1l(x, h) = \frac{f(h)-f(x+h)}{h}$$

• Формулы численного дифференцирования (праворазностная производная):

$$f1p(x, h) = \frac{f(x+h)+f(x)}{h}$$

• Формулы численного дифференцирования второго порядка:

$$f2(x, h) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

• Формулы численного дифференцирования третьего порядка:

$$f3(x, h) = \frac{f(x+2h)-2^*f(x+h)+2^*f(x-h)-f(x-2^*h)}{2^*h^3}$$

• Формулы численного дифференцирования четвертого порядка:

$$f4(x, h) = \frac{f(x+2h)-4*f(x+h)+6f(x)-f*f(x-h)+f(x-2h)}{h^4}$$

Погрешность формул численного дифференцирования:

$$\begin{aligned}
\varepsilon 1p(h) &= \left| \frac{ft1(x0) - f1p(x0, h)}{ft1(x0)} \right| \\
\varepsilon 1c(h) &= \left| \frac{ft1(x0) - f1c(x0, h)}{ft1(x0)} \right| \\
\varepsilon 1l(h) &= \left| \frac{ft1(x0) - f1l(x0, h)}{ft1(x0)} \right| \\
\varepsilon 2(h) &= \left| \frac{ft2(x0) - f2(x0, h)}{ft2(x0)} \right| \\
\varepsilon 3(h) &= \left| \frac{ft3(x0) - f3(x0, h)}{ft3(x0)} \right| \\
\varepsilon 4(h) &= \left| \frac{ft4(x0) - f4(x0, h)}{ft4(x0)} \right| \\
\text{Точка x0:} \\
x0 &= 1
\end{aligned}$$

Рисунок 2 — Зависимость погрешности вычисления первой производной от шага дискретизации по формуле центральной разностной производной

Рисунок 3 — Зависимость погрешности вычисления первой производной от шага дискретизации по формуле левой разностной производной

Рисунок 4 — Зависимость погрешности вычисления второй производной от шага дискретизации

Рисунок 5 — Зависимость погрешности вычисления третьей производной от шага дискретизации

Рисунок 6 – Зависимость погрешности вычисления четвертой производной от шага дискретизации

Таблица 1 – Результаты вычислений

Порядок производной	h_min (мин. шаг дискретности)	є_min (вычисл. погрешность)
1 (центр.)	8.32e-006	2.349e-012
1 (лев.)	2.536e-008	1.077e-009
2	9.12e-005	1.146e-005
3	0.0009	1.381e-011
4	0.00136	1.803e-006

Выводы

- с увеличением порядка производной увеличивается минимальный шаг дискретизации;
- с увеличением порядка производной увеличивается вычислительная погрешность;
- формула центральной разностной производной, имеющая второй порядок аппроксимации относительно шага h, дает большую точность (имеет меньшую погрешность), чем формула левой разностной производной, имеющая первый порядок аппроксимации.