

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

SPX

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/029,413	12/20/2001	Nadia Malouf	421/29/2	3695
25297	7590	08/11/2004	EXAMINER	
JENKINS & WILSON, PA 3100 TOWER BLVD SUITE 1400 DURHAM, NC 27707			MURPHY, JOSEPH F	
			ART UNIT	PAPER NUMBER
			1646	

DATE MAILED: 08/11/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/029,413	MALOUF ET AL.
	Examiner	Art Unit
	Joseph F Murphy	1646

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 08 June 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-62 is/are pending in the application.
- 4a) Of the above claim(s) 1-7,12,18-33,38-41 and 43-62 is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 8-11,13-17,34-37 and 42 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date <u>5/17/2003</u> .	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input checked="" type="checkbox"/> Other: <u>Sequence Comparison A, b.</u>

DETAILED ACTION

Election/Restrictions

Applicant's election with traverse of Group XXI in the reply filed 6/8/2004 is acknowledged. The traversal is on the ground(s) that there would not be a burden to search SEQ ID NO: 1-8, 28, 29. In reply to this argument, SEQ ID NO: 1-8, 28, 29 will be searched together.

The requirement is still deemed proper and is therefore made FINAL.

Specification

The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed. Applicant should restrict the title to the claimed invention.

Claim Objections

Claims 8 and 42 are objected to because of the following informalities: They are dependent on non-elected claims. Appropriate correction is required.

Claim Rejections - 35 USC §§ 101, 112, first paragraph

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 8-17, 34-37, 42 are rejected under 35 U.S.C. § 101 because they are drawn to an invention with no apparent or disclosed patentable utility. The instant application has provided a description of an isolated DNA encoding a protein and the protein encoded thereby. The instant application does not disclose the biological role of this protein or its significance. The claimed invention is not supported by either a specific and substantial asserted utility or a well established utility. Novel biological molecules lack well-established utility and must undergo extensive experimentation. Applicant is directed to the Utility Examination Guidelines, Federal Register, Vol. 66, No. 4, pages 1092-1099, Friday January 5, 2001.

It is clear from the instant specification that the nucleic acid encoding the VDCC- α 1 polypeptide has been assigned a function because of its similarity to known proteins (Specification at 18, Table 1). However, it is commonly known in the art that sequence-to-function methods of assigning protein function are prone to errors (Doerks et al. 1998). These errors can be due to sequence similarity of the query region to a region of the alleged similar protein that is not the active site, as well as homologs that did not have the same catalytic activity because active site residues of the characterized family were not conserved (Doerks et al. page 248, column 3, fourth and fifth paragraphs). Inaccurate use of sequence-to-function methods have led to significant function-annotation errors in the sequence databases (Doerks et al. page 250, column 1, third paragraph). Furthermore, Brenner (1999, Trends in Genetics 15:132-133) argues that accurate inference of function from homology must be a difficult problem since, assuming there are only about 1000 major gene superfamilies in nature, then most homologs must have different molecular and cellular functions. Finally, Bork et al. (1996, Trends in Genetics 12:425-427) add that the software robots that assign functions to new proteins often

assign a function to a whole new protein based on structural similarity of a small domain of the new protein to a small domain of a known protein. Such questionable interpretations are written into the sequence database and are then considered facts.

The specification asserts several allegedly patentable utilities for the claimed nucleic acid encoding VDCC- α 1 polynucleotide. The Specification asserts that the nucleic acid of the instant application can be used in diagnostic assays to detect VDCC- α 1 polypeptide or mRNA expression in a biological sample (Specification at 6). However, this asserted utility is substantial but not specific. Hybridization probes can be designed from any polynucleotide sequence. Further, the specification does not disclose specific cDNA or DNA targets.

The specification further asserts that the nucleic acid of the instant application can be used in screening assays to identify agents which modulate VDCC- α 1 receptor signal activity, VDCC- α 1 ligands, or levels of mRNA encoding VDCC- α 1 (Specification at 7). However, this asserted utility is not specific or substantial. Such assays can be performed with any polynucleotide. Nothing is disclosed about how the polynucleotide is affected by the compounds, which in turn affect production of mRNA and polypeptide. Additionally, the specification discloses nothing specific or substantial for the mRNA and polypeptide produced in this method. Since this asserted utility is also not present in mature form, so that it could be readily used in a real world sense, the asserted utility is not substantial.

After complete characterization, this protein may be found to have a patentable utility. This further characterization, however, is part of the act of invention and until it has been undertaken Applicant's claimed invention is incomplete. The instant situation is directly analogous to that which was addressed in *Brenner v. Manson*, 148 USPQ 689 (Sup. Ct., 1966), in

which a novel compound which was structurally analogous to other compounds which were known to possess anticancer activity was alleged to be potentially useful as an antitumor agent in the absence of evidence supporting this utility. The court expressed the opinion that all chemical compounds are "useful" to the chemical arts when this term is given its broadest interpretation. However, the court held that this broad interpretation was not the intended definition of "useful" as it appears in 35 USC § 101, which requires that an invention must have either an immediately obvious or fully disclosed "real world" utility. The court held that:

"The basic quid pro quo contemplated by the Constitution and the Congress for granting a patent monopoly is the benefit derived by the public from an invention with substantial utility", "[u]nless and until a process is refined and developed to this point-where specific benefit exists in currently available form-there is insufficient justification for permitting an applicant to engross what may prove to be a broad field", and "a patent is not a hunting license", "[i]t is not a reward for the search, but compensation for its successful conclusion."

The instant claims are drawn to a nucleic acid encoding a polypeptide which has an as yet undetermined function or biological significance. Until some actual and specific significance can be attributed to the protein identified in the specification as VDCC- α 1, the instant invention is incomplete. The polypeptide encoded by the nucleic acids of the instant invention is known to be structurally analogous to proteins that are known in the art as voltage dependent calcium channels. In the absence of knowledge of the natural substrate or biological significance of this

flow blockages (pages 126-128, section 6-3A and page 230, column 2, first paragraph). Additionally, Yan et al. teaches that in certain cases, a change of only two-amino acid residues in a protein results in switching the binding of the protein from one receptor to another (Yan et al., Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. *Science* 290: 523-527, 2000). Since the claims encompass nucleic acids encoding variant polypeptides and given the art recognized unpredictability of the effect of mutations on protein function, it would require undue experimentation to make and use the claimed invention. See *In re Wands*, 858 F.2d at 737, 8 USPQ2d at 1404. The test of enablement is not whether any experimentation is necessary, but whether, if experimentation is necessary, it is undue. Here, the claims do not set forth a functional limitation for the encoded variant polypeptides. Since the amino acid sequence of a polypeptide determines its structural and functional properties, and the predictability of which amino acids can be substituted is extremely complex and outside the realm of routine experimentation, because accurate predictions of a polypeptide's structure from mere sequence data are limited. Since detailed information regarding the structural and functional requirements of the polynucleotide and the encoded polypeptide are lacking, it is unpredictable as to which variations, if any, meet the limitations of the claims. Applicant is required to enable one of skill in the art to make and use the claimed invention, while the claims encompass polynucleotides and encoded polypeptides which the specification only teaches one skilled in the art to test for functional variants. It would require undue experimentation for one of skill in the art to make and use the claimed polypeptides. Since the claims do not enable one of skill in the art to make and use the claimed polypeptides, but only teaches how to screen for the claimed polypeptides, and since detailed information

protein, there is no immediately obvious patentable use for it. To employ a protein of the instant invention in the identification of substances which inhibit its activity is clearly to use it as the object of further research which has been determined by the courts to be a non-patentable utility. Since the instant specification does not disclose a "real world" use for VDCC- α 1 then the claimed invention is incomplete and, therefore, does not meet the requirements of 35 USC § 101 as being useful.

Claims 8-17, 34-37, 42 are also rejected under 35 U.S.C. 112, first paragraph.

Specifically, since the claimed invention is not supported by either a specific and substantial asserted utility or a well established utility for the reasons set forth above, one skilled in the art clearly would not know how to use the claimed invention.

Even if, *arguendo*, a patentable utility is found for the claimed nucleic acid, claims 8-11, 13-17, 34-37, 42 are rejected under 35 U.S.C. 112, first paragraph, because the specification, which would be enabling for a nucleic acid of SEQ ID NO: 1, or a nucleic acid encoding a full-length polypeptide of SEQ ID NO: 2, does not reasonably provide enablement for a nucleic acid encoding a polypeptide which is substantially identical to SEQ ID NO: 2, or a nucleic acid encoding a polypeptide cross-reactive with a polypeptide of SEQ ID NO: 2. The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention commensurate in scope with these claims.

The claims are drawn to nucleic acids encoding a polypeptide which is substantially identical to SEQ ID NO: 2, or nucleic acids encoding a polypeptide cross-reactive with a polypeptide of SEQ ID NO: 2. The claims are overly broad since insufficient guidance is

provided as to which of the myriad of variant polypeptides will retain the characteristics of VDCC- α 1. The claims are directed to variant nucleic acids encoding variant polypeptides. However, Applicants do not disclose any actual or prophetic examples on expected performance parameters of any of the possible variants of VDCC- α 1. It is known in the art that even single amino acid changes or differences in the amino acid sequence of a protein can have dramatic effects on the protein's function. For example, As an example of the unpredictable effects of mutations on protein function, Mickle et al. (Mickle JE et al. Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am. 2000 May;84(3):597-607) teaches that cystic fibrosis is an autosomal recessive disorder caused by abnormal function of a chloride channel, referred to as the cystic fibrosis transmembrane conductance regulator (CFTR) (page 597). Several mutations can cause CF, including the G551D mutation. In this mutation a glycine replaces the aspartic acid at position 551, giving rise to the CF phenotype. In the most common CF mutation, delta-F508, a single phenylalanine is deleted at position 508, giving rise to the CF phenotype. Thus showing that even the substitution or deletion of a single amino acid in the entire 1480 amino acid CFTR protein sequence can have dramatic and unpredictable effects on the function of the protein. Additionally, it is known in the art that even a single amino acid change in a protein's sequence can drastically affect the structure of the protein and the architecture of an entire cell. For example, Voet et al. (Voet et al. Biochemistry. 1990. John Wiley & Sons, Inc. pages 126-128 and 228-234) teaches that a single Glu to Val substitution in the beta subunit of hemoglobin causes the hemoglobin molecules to associate with one another in such a manner that, in homozygous individuals, erythrocytes are altered from their normal discoid shape and assume the sickle shape characteristic of sickle-cell anemia, causing hemolytic anemia and blood

regarding the structural and functional requirements of the polypeptides are lacking, it is unpredictable as to which variations, if any, meet the limitations of the claims. Thus, since Applicant has only taught how to test for nucleic acids encoding polypeptide variants of VDCC- α 1, and has not taught how to make polypeptide variants of VDCC- α 1, it would require undue experimentation of one of skill in the art to make and use the claimed nucleic acids.

Claims 8-17, 34-37, 42 are rejected, under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Applicant is directed to the Guidelines for the Examination of Patent Applications Under the 35 U.S.C. 112, ¶ 1 "Written Description" Requirement, Federal Register, Vol. 66, No. 4, pages 1099-1111, Friday January 5, 2001.

The claims are drawn to nucleic acids encoding a polypeptide which is substantially identical to SEQ ID NO: 2, or nucleic acids encoding a polypeptide cross-reactive with a polypeptide of SEQ ID NO: 2. These are genus claims because the claims are directed to variant nucleic acids encoding variant polypeptides. The specification and claim do not indicate what distinguishing attributes shared by the members of the genus. The scope of the claim includes numerous structural variants, and the genus is highly variant because a significant number of structural differences between genus members is permitted. The specification and claim do not

provide any guidance as to what changes should be made. Structural features that could distinguish compounds in the genus from others in the protein class are missing from the disclosure. No common structural attributes identify the members of the genus. The general knowledge and level of skill in the art do not supplement the omitted description because specific, not general, guidance is what is needed. Since the disclosure fails to describe the common attributes or characteristics that identify members of the genus, and because the genus is highly variant, SEQ ID NO: 2 is insufficient to describe the genus. The written description requirement for a claimed genus may be satisfied through sufficient description of a representative number of species by actual reduction to practice, reduction to drawings, or by disclosure of relevant identifying characteristics, i.e. structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between structure and function structure, or by a combination of such identifying characteristics, sufficient to show the applicant was in possession of the claimed genus. In the instant case, the specification fails to provide sufficient descriptive information, such as definitive structural or functional features of the genus of polypeptides. There is no description of the conserved regions that are critical to the structure and function of the genus claimed. There is no description of the sites at which variability may be tolerated and there is no information regarding the relation of structure to function. Structural features that could distinguish the compounds in the genus from other seven transmembrane region compounds are missing from the disclosure. Furthermore, the prior art does not provide compensatory structural or correlative teachings sufficient to enable one of skill to isolate and identify the polynucleotides and polypeptides encompassed. Thus, no identifying characteristics or properties of the instant polypeptides are

provided such that one of skill would be able to predictably identify the encompassed molecules as being identical to those instantly claimed. One of skill in the art would reasonably conclude that the disclosure fails to provide a representative number of species to describe the genus. Thus, applicant was not in possession of the claimed genus.

Claim Rejections - 35 USC § 112 second paragraph

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim 11 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "substantially" in claim 11 is a relative term that renders the claim indefinite. The term "substantially" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the metes and bounds of the invention.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 8-17, 42 are rejected under 35 U.S.C. 102(b) as being anticipated by WO 95/04822 (Harpold et al.).

The claims are drawn to nucleic acid molecules encoding polypeptides which are cross reactive with antibodies to SEQ ID NO: 2 or 4, these nucleic acids in a vector, and host cells comprising these nucleic acids. The Harpold reference teaches the cloning and expression of nucleic acids encoding voltage dependent calcium channels (see page 6), and these nucleic acids cloned into vectors and expressed in host cells (see page 39). The nucleic acids of Harpold et al. meet the limitations of the instant claims because the nucleic acids of Harpold are 62.7% identical to SEQ ID NO: 2 (see Sequence Comparison A, attached), and encode a protein with stretches of amino acids that are long enough to cross react with antibodies to SEQ ID NO: 2. Additionally, the Harpold reference teaches a nucleic acid which is 98.3% identical to SEQ ID NO: 4 (see Sequence Comparison B, attached), and the encoded polypeptide would cross react with antibodies to SEQ ID NO: 4.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later

invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 8-10, 13-17, 34-37, 42 are rejected under 35 U.S.C. 103(a) as being unpatentable over WO 95/04822 (Harpold et al.) in view of the Stratagene catalog (1988, page 39).

The claims are drawn to nucleic acid molecules encoding polypeptides which are cross reactive with antibodies to SEQ ID NO: 2 or 4, these nucleic acids in a vector, and host cells comprising these nucleic acids. The Harpold reference teaches the cloning and expression of nucleic acids encoding voltage dependent calcium channels (see page 6), and these nucleic acids cloned into vectors and expressed in host cells (see page 39). The nucleic acids of Harpold et al. meet the limitations of the instant claims because the nucleic acids of Harpold are 62.7% identical to SEQ ID NO: 2 (see Sequence Comparison A, attached), and encode a protein with stretches of amino acids that are long enough to cross react with antibodies to SEQ ID NO: 2. Additionally, the Harpold reference teaches a nucleic acid which is 98.3% identical to SEQ ID NO: 4 (see Sequence Comparison B, attached), and the encoded polypeptide would cross react with antibodies to SEQ ID NO: 4. However, the Harpold et al. reference does not teach the use of a kit. The Stratagene catalog does teach a motivation to combine reagents of use into a kit (page 39, column 1). It would have been *prima facie* obvious to one having ordinary skill in the art at the time the invention was made to combine the labeled nucleic acid molecule as taught by Harpold et al. into a kit as taught by Stratagene since the Stratagene catalog teaches a motivation for combining reagents of use in any assay into a kit. It states that "Each kit provides two services: 1) a variety of different regents have been assembled and premixed specifically for a defined set of experiments. Thus one need not purchase gram quantities of 1 different reagents,

Art Unit: 1646

each of which is needed in only microgram amounts, when beginning a series of experiments. When one considers all of the unused chemicals that typically accumulate in weighing rooms, desiccators, and freezers, one quickly realizes that it is actually far more expensive for a small number of users to prepare most buffer solutions from the basic reagents. Stratagene provides only the quantities you will actually need, premixed and tested. In actuality, the kit format saves money and resources for everyone by dramatically reducing waste. 2) The other service provided in a kit is quality control" (page 39, column 1).

Conclusion

No claim is allowed.

Advisory Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Joseph Murphy whose telephone number is (571) 272-0877. The examiner can normally be reached Monday through Friday from 7:30 am to 5:00 pm. A message may be left on the examiner's voice mail service. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Brenda Brumback can be reached on (571) 272-0961.

The fax number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Joseph F. Murphy, Ph. D.
Patent Examiner
Art Unit 1646
August 4, 2004

JOSEPH MURPHY
PATENT EXAMINER

Sequence Comparison A
SEQ ID NO: 2

RESULT 9
AAR71003
ID AAR71003 standard; protein; 2163 AA.
XX
AC AAR71003;
XX
DT 25-MAR-2003 (revised)
DT 30-NOV-1995 (first entry)
XX
DE Human neuronal calcium channel subunit alpha 1c-1.
XX
KW Calcium channel subunit; antagonist; agonist; diagnosis;
KW Lambert Eaton Syndrome.
XX
OS Homo sapiens.
XX
PN WO9504822-A1.
XX
PD 16-FEB-1995.
XX
PF 11-AUG-1994; 94WO-US009230.
XX
PR 11-AUG-1993; 93US-00105536.
PR 05-NOV-1993; 93US-00149097.
XX
PA (SALK) SALK INST BIOTECHNOLOGY IND ASSOC.
XX
PI Harpold MM, Ellis SB, Williams ME, Mccue AF, Gillespie A;
XX
DR WPI; 1995-090900/12.
DR N-PSDB; AAQ84655.
XX
PT DNA encoding human calcium channel sub-unit(s) - used for developing
PT prods. for studying calcium channels, e.g. for obtaining agonists and
PT antagonists.
XX
PS Disclosure; Page 127-137; 285pp; English.
XX
CC Numerous alpha 1c-specific cDNA clones were isolated in order to
CC characterise the alpha 1c coding sequence, the initiation of translation
CC and an alternatively spliced region. AAQ84655 sets forth one alpha 1c
CC coding sequence (alpha 1c-1) and AAR71003 sets out its deduced AA
CC sequence. AAQ87834 and AAR72607 set out another splice variant,
CC designated alpha 1c-2. AAQ84656 encodes an alternative exon for the IV S3
CC transmembrane domain. Other alpha 1c variants can be constructed by
CC selecting alternative amino terminal ends in place of the ends in
CC AAQ84655 and AAQ87834 and/or inserting the alternative exon in the
CC appropriate location (see AAQ84655 FT). In addition, a nt. sequence (see
CC AAQ84655 FT) can be deleted or inserted to produce an alternative alpha
CC 1c splice variant. (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ Sequence 2163 AA;

Query Match 62.7%; Score 6045.5; DB 2; Length 2163;
Best Local Similarity 59.6%; Pred. No. 0;
Matches 1244; Conservative 239; Mismatches 362; Indels 243; Gaps 37;

Qy 4 SSPQDEGLRKQPKPVPEILP RPPR ALFCLTLENPLRKACISIVEWKPFETI ILLTIFA 63
||| : : ||| ||||| ||||:||:||:||| ||||| ||||| |||||
Db 77 SSTQRKRQQYGP KPKQG STTATR PPR ALLC LKNPI RRACISIVEWKPFETI ILLTIFA 136

Qy 64 NCVALAVYLPMPE DNN NSLNL GLEKLEYFFLIVFSIEAAMKIIAYGFLFH QDAYL RSGWN 123
|||||:||:| ||||:|:| ||:||:| ||||:||:|| :||| ||| :|||:|||
Db 137 NCVALAIYIYPFPE DDSNATNSN LERVEYLFLIIIFTVE AFLKVIAYGLLFHPNAYL RNGWN 196

Qy 124 VLDFTIVFLGVFTVILEQVNVIQSHTAPMSSKGAGLDVKALRAFRVLRLVSGVPSLQ 183
Db 197 LLDFTIVVVGLSAILEQATKADGANA-LGGKGAGFDVKALRAFRVLRLVSGVPSLQ 255

Qy 184 VVLSNIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYFIGTDIVATVENE-EP 242
Db 256 VVLSNIKAMVPOLLHIALLVFIIYAIIGLELFMGKMHKTCY--NQEGLADVPAEDDP 313

Qy 243 SPCA-RTGSGRRCTINGSECRRGGCPGPNHGITHFDNFGFSMLTVYQCITMEGWTDVLYWV 301
Db 314 SPCALETGHGRQCQ-NGTVCKPGWDGPKHITNFDNFAFAMLTVFQCITMEGWTDVLYWV 372

Qy 302 NDAIGNEWPVWYFVTLLLGSSFFILNLVGVLSGEFTKEREKAKSRTFQKLREKQQLDE 361
Db 373 NDAVGDRDWPWYFVTLLIGSFFVNLVGVLSGEFSKEREKAKGDFQKLREKQQLEE 432

Qy 362 DLRGYMSWITQGEVMDE-----DFREGKLS-----LDEG 391
Db 433 DLKGYLDWITQAEDIDPENEDEGMDEEKPRNRGTPAGMLDQKKGFAWFSHSTETHVSMP 492

Qy 392 GSDTESLY-----EIAGLN-----KIIQFIRHWRQWNRIFRWKCHDIVKSKVFY 435
Db 493 TSETESVNTENVAGGDIEGENCGARLAHRISKSKFSRYWRRWNRFCRKCRAAVKSJVY 552

Qy 436 WLVLIVALNTLSIASEHHNQPHWLTRLQDIANRVLLSLFTTEMLMKMYGLGLRQYFMSI 495
Db 553 WLVLFLVFLNLTLSIASEHYNQPNWLTEVQDTANKALLALFTAEMLLKMYSLGLQAYFVSL 612

Qy 496 FNRDFCFVVCSCILEILLVESGAMTPLGISVLRICIRLLRIFKITKYWTSLSNLVASLLNS 555
Db 613 FNRDFCFVVCSCILEILLVESGAMTPLGISVLRICIRLLRIFKITTRYWNSLSNLVASLLNS 672

Qy 556 IRSIASLLLLLFLFIVIFRLLGMQLFGGRYDFEDTEVRRSNFDNFPQALISVFQVLTGED 615
Db 673 VRSTIASLLLLLFLFIIIFSLLGMQLFGGKFNQDEMTRRSTFDNFPQSLLTVFQILTGED 732

Qy 616 WTSMYNGIMASSGPSYPGMLVCIYFIILFCGNYILLNVFLIAVDNLAEAESLTSAQK 675
Db 733 WNSVMDGIMAYGGPSFPGMLVCIYFIILFCGNYILLNVFLIAVDNLADAESLTSAQK 792

Qy 676 AKAEEKKRRKMSK-GLPDKSEE--EKSTMAKKLEQK-----PKGEGIPTTAKLKIDEF 725
Db 793 EEEEKERKKLARTASPEKKQELVEKPAGESKEEIELKSITADGESPPAT-KINMDDL 851

Qy 726 ESNVNEVKDPYPSADFPGDDEDEPEIPLSPRPRPLAELQLKEKAVPIPEASSFFIFSPT 785
Db 852 QPNENEDKSPYPNPETTGEDEEEPEMPVGPRPRPLSELHLKEKAVPMPPEASAFFIFSSN 911

Qy 786 NKIRVLCHRIVNATWFTNFIILFILLSSAALAEDPITRADSMRNQILKHFIDGFTSVFTV 845
Db 912 NRFLQLCHRIVNDTIFTNLILFFILLSSISLAAEDPVQHTSFRNHILFYFDIVFTTIIFTI 971

Qy 846 EIVLKMUTTYGAFLHKGSFCRNYFNMLDLLVAVSLISMGLESSAISVVKILRVLRLRPL 905
Db 972 EIALKMTAYGAFLHKGSFCRNYFNILDLLVSVSLSISFGIQSSAINVVKILRVLRLRPL 1031

Qy 906 RAINRAKGLKHVARCMFVAISTIGNIVLTLLQFMFACIGVQLFKGKFFRCTDLSKMTE 965
Db 1032 RAINRAKGLKHVQCVFVAIRTIGNIVLTLLQFMFACIGVQLFKGKLYCTSDSSKQTE 1091

Qy 966 EECRGYYVYKDGDPMQIELRHREWVHSDFHDNVLSAMMSLFTVSTFEGWPQLLYKAID 1025
Db 1092 AECKGNYITYKDGEVDHPIIQPRSWENSKPFDNVLAAMMALFTVSTFEGWPPELLYRSID 1151

Qy 1026 SNAEDVGPPIYNRRVEMAIFIYIILIAFFMMNIFVGFBVTFQEQGETEYKNCELDKNQ 1085
Db 1152 SHTEDKGPIYNRVEISIFFIYIIIAFFMMNIFVGFBVTFQEQGEQYKNCELDKNQ 1211

Qy 1086 RQCQVYALKARPLRCYIPKNPYQYQWYIVTSSYFEYLMFALIMLNTICLGMQHYNQSEQ 1145
Db 1212 RQCQVYALKARPLRRYIPKNQHQYKVWYVWNSTYFEYLMFVLILLNTICLAMQHYGOSCL 1271

Qy 1146 MNHISDILNVAFTIIFTLEMILKLMASFKARGYFGNPWNVDFLIVIGSIIDVILSEID-- 1203
 :|||: || :||:||||:||| :||| :||||||||| :|||
 Db 1272 FKIAMNILNMLFTGLFTVEMILKLIAFKPKGYFSDPWNVFDFLIVIGSIIDVILSETNPA 1331
 :|||: || :||:||||:||| :||| :||||||||| :|||
 Qy 1204 -----DPDESARISSAFFRLFRVMRLIKLLSRAEGVRTLLWTFIKSFQALPYVALL 1254
 : :||:||| :|||:|||:||| :||| :|||:|||:|||
 Db 1332 EHTQCSPSMNAEENSRSITFFRLFRVMRLVKLLSRGEGIRTLWTFIKSFQALPYVALL 1391
 :|||:|||:|||:|||:|||:|||:|||:|||:|||
 Qy 1255 IVMLFFIYAVIGMQMFGKIALVDGTQINRNNNFQTFPQAVLLLFRCATGEAWQEILLACS 1314
 |||||:|||:|||:|||:|||:|||:|||:|||:|||:|||
 Db 1392 IVMLFFIYAVIGMQVFGKIALNDTTEINRNNNFQTFPQAVLLLFRCATGEAWQDIMLACM 1451
 :|||:|||:|||:|||:|||:|||:|||:|||:|||
 Qy 1315 YGKLCDPESDYAPGE--EYTCGTFAYYYFISFYMLCAFLVINLFVAVIMDNFDYLTRDW 1372
 |||:|||: :||| .:||| :|||:|||:|||:|||:|||
 Db 1452 PGKKCAPESEPSNSTEGETPCVSSFAVFYFISFYMLCAFLIIINLFVAVIMDNFDYLTRDW 1511
 :|||:|||:|||:|||:|||:|||:|||:|||:|||
 Qy 1373 SILGPHHLDEFKAIWAELYDPEAKGRIKHLDVVTLLRIQPPLGFGKFCPHRVACKRLVGM 1432
 |||||:|||:|||:|||:|||:|||:|||:|||:|||
 Db 1512 SILGPHHLDEFKRIWAELYDPEAKGRIKHLDVVTLLRIQPPLGFGKLCPHRVACKRLVSM 1571
 :|||:|||:|||:|||:|||:|||:|||:|||
 Qy 1433 NMPLNSDGTVTFNATLFALVRTALKIKTEGNFEQANEELRAIIKKIKRTSMKLLDQVIP 1492
 |||||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 1572 NMPLNSDGTVMFNATLFALVRTALKIKTEGNLEQANEELRAIIKKIKRTSMKLLDQVIP 1631
 :|||:|||:|||:|||:|||:|||:|||:|||
 Qy 1493 PIGDDEVTVGKFYATFLIQEHFRKFMRQEE--YYGYRPKIDIVQIQAGLRTLIEEAAPEI 1551
 |||||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 1632 PAGDDEVTVGKFYATFLIQEYFRKFKKRKEQGLVGKPSQRNALSLQAGLRTL-HDIGPEI 1690
 :|||:|||:|||:|||:|||:|||:|||
 Qy 1552 CRTVSGDLAAEEEELERAM---VEAAMEEGIFRRRTGGLFGQVDNFLER--TNSLPPVMANQ 1606
 | :|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 1691 RRAISGDLTAEEELDKAMKEAVSAASEDDIFRRAGGLFGNHVSYYQSDGRSAFPQTFTQ 1750
 :|||:|||:|||:|||:|||:|||:|||
 Qy 1607 RPLQF--AEIEMEEMESP---VFLEDFPQDPRTNPLARANTNNN----- 1646
 |||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 1751 RPLHINKAGSSQGDTESPSHEKLVDFSTFTPSSYSSTGSNANINNANNTALGRLPRPAGYP 1810
 :|||:|||:|||:|||:|||:|||:|||
 Qy 1647 -----ANVAY---ANSNHSNSHVFSVHYEREFPEET-----ET 1677
 |||:|||:|||:|||:|||:|||:|||:
 Db 1811 STVSTVEGHGPPLSPAIRVQEVAWLSSNRCHSRESQAAMARQEETSQDETYEVKMNHDT 1870
 :|||:|||:|||:|||:|||:|||
 Qy 1678 PA-----TRGRALGQP-----CRSLGPHSKPCVEMLK 1704
 | :|||:|||:|||:|||:|||:
 Db 1871 EACSEPSLLSTEMLSYQDDENRQLTLPEDKRDIRQSPKRGLRSASLGRRASFHLECLK 1930
 :|||:|||:|||:|||:|||
 Qy 1705 -----GL--LTQR----AMPRGQA-----P 1718
 |||:|||:|||:|||:|||:|||:
 Db 1931 RQKDGGDISQKTVLPLHLVHHQALAVAGLSPLLQRSHSPASFPFRPFATPPATPGSRGWP 1990
 :|||:|||:|||:|||:|||
 Qy 1719 PAPCQCPRVESSMPEDRKSSTPGSLH----EETP-----HSRSTRENT----SRC SAP 1763
 |||:|||:|||:|||:|||:|||:|||:|||:
 Db 1991 PQPVPTLRLEGVESSEKLNSSFPSIHCGSWAETPPGGGSSAARRVRPVSLMVPSQAGAP 2050
 :|||:|||:|||:|||:|||
 Qy 1764 -----ATALLIQKALVRGGGLGTLAADANFIMATGQALGDAQCQMEPEEVEIMATELLKG- 1816
 : :|||:|||:|||:|||:|||:|||:|||:
 Db 2051 GRQFHGSASSLVEAVLISEGLGQFAQDPKFIEVTTQELADACDMTIEEMESAADNILSGG 2110
 :|||:|||:|||:|||:|||
 Qy 1817 -REAPDG-MASSLGCLNLGSSLGSLDQHQG-----SQETLIPPR 1854
 ::|||:|||:|||:|||:|||:
 Db 2111 APQSPNGALLPFVNCRDAGQDRAGGEEDAGCVRARGRPSEEELQDSRV 2158
 :|||:|||:|||:|||

10029413 Results

SEQ ID NO: 2

Result No.	Score	Query Match Length	DB	ID	Description
1	9644	100.0	1854	5 ABG32658	Abg32658 Human pla
2	8864.5	91.9	1873	2 AAW18390	Aaw18390 Rabbit ca
3	8864.5	91.9	1873	2 AAW37711	Aaw37711 Rabbit sk
4	8864.5	91.9	1873	3 AAY77544	Aay77544 Rabbit sk
5	8858.5	91.9	1873	2 AAR73055	Aar73055 Rabbit sk
6	8837.5	91.6	1873	1 AAP95645	Aap95645 Rabbit se
7	6054.5	62.8	2163	3 AAB10570	Aab10570 Human cal
8	6054.5	62.8	2163	5 AAE24783	Aae24783 Human cal
9	6045.5	62.7	2163	2 AAR71003	Aar71003 Human neu
10	6025	62.5	2138	2 AAR72607	Aar72607 Human neu
11	6025	62.5	2138	3 AAB10593	Aab10593 Human cal
12	6025	62.5	2138	5 AAE24805	Aae24805 Human cal
13	5998	62.2	2166	5 ABG32659	Abg32659 Human pla
14	5996.5	62.2	2157	5 ABB78220	Abb78220 AlphalC s
15	5982.5	62.0	2161	2 AAR71002	Aar71002 Human neu

RESULT 2

AAW18390

ID AAW18390 standard; protein; 1873 AA.

XX

AC AAW18390;

XX

DT 25-MAR-2003 (revised)

DT 05-AUG-1997 (first entry)

XX

DE Rabbit calcium channel alpha-1 subunit.

XX

KW Rabbit; skeletal muscle; calcium channel; alpha-2; subunit; alpha-1;

KW transformation; reporter gene; screening assay; agonist; antagonist.

XX

OS Oryctolagus cuniculus.

XX

FH Key Location/Qualifiers

FT Region 52. .70

FT /note= "Transmembrane region"

FT Modified-site 79

FT /note= "N-linked glycosylation site"

FT Region 89. .108

FT /note= "Transmembrane region"

FT Region 121. .139

FT /note= "Transmembrane region"

FT Region 161. .179

FT /note= "Transmembrane region"

FT Region 199. .218

FT /note= "Transmembrane region"

FT Modified-site 257

FT /note= "N-linked glycosylation site"

FT Region 310. .334

FT /note= "Transmembrane region"

FT Region 433. .451

FT /note= "Transmembrane region"

FT Region 467. .486

FT /note= "Transmembrane region"

FT Region 495. .513

FT /note= "Transmembrane region"

FT Region 524. .542

FT /note= "Transmembrane region"

FT Region 562. .581

FT /note= "Transmembrane region"

FT Region 637. .661

FT /note= "Transmembrane region"

FT Modified-site 687

FT /note= "Potential cAMP-dependent phosphorylation site"

FT Modified-site 797
FT /note= "N-linked glycosylation site"
FT Region 800. .818
FT /note= "Transmembrane region"
FT Region 835. .854
FT /note= "Transmembrane region"
FT Region 893. .912
FT /note= "Transmembrane region"
FT Region 931. .950
FT /note= "Transmembrane region"
FT Region 967. .885
FT /note= "Transmembrane region"
FT Region 1041. .1065
FT /note= "Transmembrane region"
FT Region 1119. .1137
FT /note= "Transmembrane region"
FT Region 1153. .1172
FT /note= "Transmembrane region"
FT Region 1181. .1199
FT /note= "Transmembrane region"
FT Region 1232. .1250
FT /note= "Transmembrane region"
FT Region 1270. .1289
FT /note= "Transmembrane region"
FT Region 1357. .1381
FT /note= "Transmembrane region"
FT Modified-site 1464
FT /note= "N-linked glycosylation site"
FT Modified-site 1502
FT /note= "Potential cAMP-dependent phosphorylation site"
FT Modified-site 1552
FT /note= "Potential cAMP-dependent phosphorylation site"
FT Modified-site 1575
FT /note= "Potential cAMP-dependent phosphorylation site"
FT Modified-site 1674
FT /note= "N-linked glycosylation site"
FT Modified-site 1757
FT /note= "Potential cAMP-dependent phosphorylation site"
FT Modified-site 1772
FT /note= "Potential cAMP-dependent phosphorylation site"
FT Modified-site 1854
FT /note= "Potential cAMP-dependent phosphorylation site"
XX
PN US5618720-A.
XX
PD 08-APR-1997.
XX
PF 15-FEB-1995; 95US-00404354.
XX
PR 04-APR-1988; 88US-00176899.
PR 04-APR-1989; 89WO-US001408.
PR 08-NOV-1990; 90US-00603751.
PR 13-JUL-1992; 92US-00914231.
PR 28-SEP-1994; 94US-00314083.
XX
PA (SIBI-) SIBIA NEUROSCIENCES INC.
XX
PI Schwartz A, Williams ME, Brenner R, Harbold MM, Ellis SB;
XX
DR WPI; 1997-225431/20.
DR N-PSDB; AAT70228.
XX
PT Eukaryotic cell expressing heterologous calcium channel - comprising
PT alpha-1 and alpha-2 sub:units; used in drug screening assays.
XX
PS Claim 3; Col 17-30; 50pp; English.
XX
CC This sequence represents the rabbit skeletal muscle calcium channel alpha
CC -1 subunit. This protein comprises twenty-four potential transmembrane
CC regions and has a molecular weight of 212143. The protein contains four
CC internal repeated segments. Each repeat comprises five hydrophobic

CC segments and one segment with strong positive charge. The alpha-1 protein
CC lacks a hydrophobic amino terminal sequence characteristic of a signal
CC peptide and it is thought that the four internal repeats represent the 24
CC transmembrane segments and that the N- and C-termini are extracellular.
CC This sequence may be used, in conjunction with the alpha-2 subunit coding
CC sequence (see also AAT70227) to transform a eukaryotic cell. The cell may
CC be used optionally with a reporter gene, in screening assays for Ca²⁺
CC channel agonists or antagonists. (Updated on 25-MAR-2003 to correct PF
CC field.) (Updated on 25-MAR-2003 to correct PR field.)

XX

SQ Sequence 1873 AA;

Query Match 91.9%; Score 8864.5; DB 2; Length 1873;
Best Local Similarity 91.2%; Pred. No. 0;
Matches 1707; Conservative 58; Mismatches 88; Indels 19; Gaps 1;

Qy 1 MEPSSPQDEGLRKKQPKKPVPEILPRPPRALFCLTLENPLRKACISIVEWKPFETIILLT 60
Db 1 MEPSSPQDEGLRKKQPKKPVPEILPRPPRALFCLTLENPLRKACISIVEWKPFETIILLT 60

Qy 61 IFANCVALAVYLPMPEDDNNNSLNGLLEKLEYFFLIVFSIEAMKIIAYGFLFHQDAYLRS 120
Db 61 IFANCVALAVYLPMPEDDNNNSLNGLLEKLEYFFLIVFSIEAMKIIAYGFLFHQDAYLRS 120

Qy 121 GWNVLDFTIVFLGVFTVILEQNVNIQSHTAPMSSKGAGLDVKALRAFRVLRPLRLVSGVP 180
Db 121 GWNVLDFIIVFLGVFTAILEQNVNIQSNTAPMSSKGAGLDVKALRAFRVLRPLRLVSGVP 180

Qy 181 SLQVVLNSIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYFIGTDIVATVENE 240
Db 181 SLQVVLNSIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYFIGTDIVATVENE 240

Qy 241 EPSPCARTGSRRCTINGSECRGGCPGPNGITHFDNFGFSMLTVYQCITMEGWTDVLYW 300
Db 241 KPSPCARTGSGRPCTINGSECRGGWPGPNGITHFDNFGFSMLTVYQCITMEGWTDVLYW 300

Qy 301 VNDAIGNNEWPWIYFVTLLILGSFFILNLVLGVLSGEFTKEREAKSRGTQQLREKQQLD 360
Db 301 VNDAIGNNEWPWIYFVTLLILGSFFILNLVLGVLSGEFTKEREAKSRGTQQLREKQQLD 360

Qy 361 EDLRGYMSWITQGEVMDVEDFREGKLSLDEGGSDTESLYEIAGLNKIIQFIRHWRQWNRI 420
Db 361 EDLRGYMSWITQGEVMDVEDLREGKLSLEEGGSDETESLYEIEGLNKIIQFIRHWRQWNRI 420

Qy 421 FRWKCHDIVKSKVFYWLVLIVALNTLSIASEHHNQPHWLTRLQDIANRVLLSLFTTEML 480
Db 421 FRWKCHDLVKSRYFYWLVLIVALNTLSIASEHHNQPLWLTHLQDIANRVLLSLFTTEML 480

Qy 481 MKMYGLGLRQYFMSIFNRFCDFVCSGILEILLVESGAMTPLGISVLRICIRLLRIFKITK 540
Db 481 LKMYGLGLRQYFMSIFNRFCDFVCSGILELLLVESGAMTPLGISVLRICIRLLRIFKITK 540

Qy 541 YWTSLSNLNVASLLNSIRSASISSLFFFILFIVIFRLLGMQLFCGRYDFDFTEVRRSNFDNF 600
Db 541 YWTSLSNLNVASLLNSIRSASISSLFFFILFIIIFALLGMQLFCGRYDFDFTEVRRSNFDNF 600

Qy 601 PQALISVFQVLGEDWTSMMYNGIMASSGPSYPGMLVCIYFIILFVCGNYILLNVFLAIA 660
Db 601 PQALISVFQVLGEDWNSVMYNGIMAYGGPSYPGVLVCIYFIILFVCGNYILLNVFLAIA 660

Qy 661 VDNLAAEESLTSAQAKAEEKKRRKMSKGLPDKSEEKSTMAKKLEQPKGEGIPTTAKL 720
Db 661 VDNLAAEESLTSAQAKAEEKKRRKMSRGLPDKTEEKSVMAKKLEQPKGEGIPTTAKL 720

Qy 721 KIDEFESNVNEVKDPYPSADFPGDDEDEPEIPLSPRPRPLAELQLKEKAVPIPEASSFF 780
Db 721 KVDEFESNVNEVKDPYPSADFPGDDEDEPEIPVSPRPRPLAELQLKEKAVPIPEASSFF 780

Qy 781 IFSPTNKIRVLCHRIVNATWFTNILLFILLSSAALAAEDPIRADSMRNQILKHFDIGFT 840
Db 781 IFSPTNKVRVLCHRIVNATWFTNILLFILLSSAALAAEDPIRAESVRNQILGYFDIAFT 840

Qy 841 SVFTVEIVLKMTRYGAFLHKGSFCRNYFNMLDLLVAVSLISMGLESSAISVVKILRVL 900
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 841 SVFTVEIVLKMTRYGAFLHKGSFCRNYFNILDLLVAVSLISMGLESSTISVVKILRVL 900
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 901 VLRPLRAINRAKGLKHVARCMFVAISTIGNIVLVTLLQFMFACIGVQLFKGKFFRCTDL 960
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 901 VLRPLRAINRAKGLKHVVQCVFVAIRTIGNIVLVTLLQFMFACIGVQLFKGKFFSCNDL 960
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 961 SKMTEEECRGYYYYVKDGDPMQIELRHREWVHSDFHFDNVLSAMMSLFTVSTFEGWPQLL 1020
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 961 SKMTEEECRGYYYYVKDGDPTQMELRPRQWIHNDHFHDNVLSAMMSLFTVSTFEGWPQLL 1020
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1021 YKAIDSNAEDVGPIYNNRVEMAIFFIIYIILIAFFMMNIFVGFVIVTFQEQQGETEYKNCE 1080
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1021 YRAIDSNEEDMGPVYNNRVEMAIFFIIYIILIAFFMMNIFVGFVIVTFQEQQGETEYKNCE 1080
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1081 LDKNQRQCQYALKARPLRCYIPKNPYQYQWYIVTSSYFEYLMFALIMLNTICLGMQHY 1140
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1081 LDKNQRQCQYALKARPLRCYIPKNPYQYQWYIVTSSYFEYLMFALIMLNTICLGMQHY 1140
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1141 NQSEQMNHSIDILNVAFTIIFTLEMILKLMFKARGYFGNPWNVFDFLIVIGSIIDVILS 1200
 :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1141 HQSEEMNHISIDILNVAFTIIFTLEMILKLLAFKARGYFGDPWNVFDFLIVIGSIIDVILS 1200
 :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1201 EID-----DPDESARISSAFFRLFRVMRLIKLLSRAEGVRTLLWTF 1241
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1201 EIDTFLASSGGLYCLGGCGNVDPDESARISSAFFRLFRVMRLIKLLSRAEGVRTLLWTF 1260
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1242 IKSFQALPYVALLIVMLFFIYAVIGMQMFGKIALVDGTQINRNNNFQTPQAVLLLFRCA 1301
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1261 IKSFQALPYVALLIVMLFFIYAVIGMQMFGKIALVDGTQINRNNNFQTPQAVLLLFRCA 1320
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1302 TGEAWQEILLACSYGKLCDPESDYAPGEEYTCGTNFAYYYFISFYMLCAFVINLFVAVI 1361
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1321 TGEAWQEILLACSYGKLCDPESDYAPGEEYTCGTNFAYYYFISFYMLCAFLLINLFVAVI 1380
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1362 MDNFODYLTRDWSILGPHHLDEFKAIWAELYDPEAKGRIKHLDVVTLLRIQPPLGFGKFCP 1421
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1381 MDNFODYLTRDWSILGPHHLDEFKAIWAELYDPEAKGRIKHLDVVTLLRIQPPLGFGKFCP 1440
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1422 HRVACKRLVGMNMPNLSNDGTVTFNATLFLALVRTALKIKTEGNFEQANEELRAIKKIWKR 1481
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1441 HRVACKRLVGMNMPNLSNDGTVTFNATLFLALVRTALKIKTEGNFEQANEELRAIKKIWKR 1500
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1482 TSMKLLDQVIPPIGDDEVTVGKFYATFLIQEHFRKFMKRQEYYGYRPKKDIVQIQAGLR 1541
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1501 TSMKLLDQVIPPIGDDEVTVGKFYATFLIQEHFRKFMKRQEYYGYRPKKDTVQIQAGLR 1560
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1542 TIEEEAAPEICRTVSGDLAAEEEELERAMVEAAMEEGIFRRRTGGLFGQVDNFLERTNSLPP 1601
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1561 TIEEEAAPEIRRTISGDLTAEEEELERAMVEAAMEERIFRRRTGGLFGQVDTFLERTNSLPP 1620
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1602 VMANQRPLQFAEIEMEEMESPVFLDFPQDPRTNPLARANTNNANANVAYANSNHSNSHV 1661
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1621 VMANQRPLQFAEIEMEELSPVFLDFPQDARTNPLARANTNNANANVAYGNSNHSNNQM 1680
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1662 FSSVHYEREFPPEETETPATRGALGQPCRSLSGPSPKPCVEMLKGLTQRAMPQAPPAP 1721
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1681 FSSVHCEREFPGEAETPAAGR GALSHSHRALGPSPKPCAGKLNGQLVQPGMPINQAPPAP 1740
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1722 CQCPRVESSMPEDRKSSTPGSLHEETPHSRSTRENTSRCSAPATALLIQKALVRGGLGTL 1781
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1741 CQQPSTDPPERGQRRSLTGSQDQEAPQRSSSEGSTPRRPAPATALLIQEALVRGGLDTL 1800
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1782 AADANFIMATGQALGDACQMEPEEEVIMATELLKGREAPDGMASSLGCLNLGSSLGSLDQ 1841
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1801 AADAGFVMATSQALVDACQMEPEEEVVAATELLKERESVQGMASVPGSLSRSSLGSLDQ 1860
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Qy 1842 HQGSQETLIPPR 1853
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||

Db 1861 VQGSQETLIPPR 1872

RESULT 6
AAP95645
ID AAP95645 standard; protein; 1873 AA.
XX
AC AAP95645;
XX
DT 27-AUG-2003 (revised)
DT 25-MAR-2003 (revised)
DT 21-MAR-1990 (first entry)
XX
DE Rabbit skeletal muscle alpha-1 sub-unit gene product.
XX
KW Skeletal muscle.
XX
OS Sylvilagus sp.
XX
PN WO8909834-A.
XX
PD 19-OCT-1989.
XX
PF 04-APR-1989; 89WO-US001408.
XX
PR 04-APR-1988; 88US-00176899.
XX
PA (SALK) SALK INST BIOLOGICAL STUDIES.
XX
PI Ellis SB, Williams ME, Harpold MM, Schwartz A, Sartor J;
XX
DR WPI; 1989-324236/44.
DR N-PSDB; AAN91778.
XX
PT New DNA encoding alpha-2 sub-unit of animal calcium channel - also new
PT protein product and eukaryotic cells for testing cpds. for calcium
PT agonist or antagonist activity.
XX
PS Disclosure; Page 16-1 to 18-3; 68pp; English.
XX
CC Also used to diagnose Lambert-Eaton syndrome by reacting test serum with
CC alpha-1 and alpha-2 subunits. Labelled fragments can be used as probes.
CC (Updated on 25-MAR-2003 to correct PF field.) (Updated on 25-MAR-2003 to
CC correct PA field.) (Updated on 27-AUG-2003 to correct OS field.)
XX
SQ Sequence 1873 AA;

Query Match 91.6%; Score 8837.5; DB 1; Length 1873;
Best Local Similarity 90.9%; Pred. No. 0;
Matches 1702; Conservative 59; Mismatches 92; Indels 19; Gaps 1;

QY 1 MEPSSPQDEGLRKKKPKKPVPEILPRPPRALFCILTLENPLRKACISIVEWKPFETIILLT 60
|||:|||||:|||||:|||||:|||||:|||||:|||||:|||||:
Db 1 MEPSSPQDEGLRKKKPKKPVPEVLPRPPRALFCILTQNPLRKACISIVEWKPFETIILLT 60

QY 61 IFANCVALAVYLPMPEDNNNSLNGLLEKLEYFFLIVFSIEAAMKIIAYGFLFHQDAYLRS 120
|||:|||||:|||||:|||||:|||||:
Db 61 IFANCVALAVYLPMPEDNNNSLNGLLEKLEYFFLTVFSIEAAMKIIAYGFLFHQDGYLR 120

QY 121 GWNVLDFITVFLGVFTVILEQVNVIQSHTAPMSSKGAGLDVKALRAFRVRLPLRLVSGVP 180
|||:|||||:|||||:
Db 121 GWNVLDFITVFLGVFTAILEQVNVIQSNTAPMSSKGAGLDVKALRAFRVRLPLRLVSGVP 180

QY 181 SLQVVLNSIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYFIGTDIVATVENE 240
|||:|||||:
Db 181 SLQVVLNSIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYIGTDIVATVENE 240

QY 241 EPSPCARTGSGRRCTINGSECRGCPGPNGITHFDNFGFSMLTVYQCITMEGWTDVLYW 300
:|||||:
Db 241 KPSPCARTGSGRPCTINGSECRGWPGPNGITHFDNFGFSMLTVYQCITMEGWTDVLYW 300

Qy 301 VNDAIGNEWPIWYFVTLLGGSFFILNLVLGVLSGEFTKEREKA
KSRGTFQKLREKQQLD 360
Db 301 VNDAIGNEWPIWYFVTLLGGSFFILNLVLGVLSGEFTKEREKA
KSRGTFQKLREKQQLE 360

Qy 361 EDLRGYMSWITQGEVMDVEDFREGKLSLD
EGGSDETELYIEAGLNKIIQFIRHWRQNRI 420
Db 361 EDLRGYMSWITQGEVMDVEDLREGKLSLE
EGGSDETELYIEAGLNKIIQFIRHWRQNRL 420

Qy 421 FRWKCHDIVKS
KFVYWLVLIVL
VALNTLSIASEHHNQP
HWLTRLQDIANRVLLSLFT
TEML 480
Db 421 FRWKCHDLVKS
RWFVYWLVLIVL
VALNTLSIASEHHNQP
WLTHLQDIANRVLLSLFT
IEML 480

Qy 481 MKMYGLGLRQYFMSIFNRFD
CFVVCSGILEILL
VESGAMTPLGISV
LRCIRLLRIFKITK 540
Db 481 LKMYGLGLRQYFMSIFNRFD
CFVVCSGILELL
VESGAMTPLGISV
LRCIRLLRIFKITK 540

Qy 541 YWTSLSNL
VASL
NSIRS
IASLLL
FLFIVI
FRLLGMQLFG
GRYDF
FEDTE
EVRRSNFDNF 600
Db 541 YWTSLSNL
VASL
NSIRS
IASLLL
FLFIII
FALLGMQLF
AGRYDF
FEDTE
EVRRSNFDNF 600

Qy 601 PQALISVFQVL
TGEDW
TSMMYNGIM
ASSG
PSYP
GMLVC
IYIFI
ILF
VCGNY
ILLNV
FLAIA 660
Db 601 PQALISVFQVL
TGEDW
NSVMYNGIM
AYGG
PSYP
GVLC
IYIFI
ILF
VCGNY
ILLNV
FLAIA 660

Qy 661 VDNLAE
AESL
TSAQ
KAKA
EEKK
RKR
KMS
KGLP
DKS
SEE
EKST
MAKK
LEQ
QPK
KGEG
IPPT
TAKL 720
Db 661 VDNLAE
AESL
TSAQ
KAKA
EEER
KRR
KMSR
GLP
DKTE
EEEK
SVM
MAKK
LEQ
QPK
KGEG
IPPT
TAKL 720

Qy 721 KIDEF
ESNV
NEVK
DPY
PSAD
FPGD
DEE
DEPE
IPL
SPR
PRPL
AEL
QL
KE
KAV
PIPE
AESSFF 780
Db 721 KVDEF
ESNV
NEVK
DPY
PSAD
FPGD
DEE
DEPE
IPV
SPR
PRPL
AEL
QL
KE
KAV
PIPE
AESSF 780

Qy 781 IFSP
TNK
IRVL
CHR
IVN
ATW
FTN
FILL
FILL
SSA
ALA
AED
PI
RAD
SMRN
QIL
KHFD
IGFT 840
Db 781 IFSP
TNK
IRVL
CHR
IVN
ATW
FTN
FILL
FILL
SSA
ALA
AED
PI
RA
ESVR
NQIL
GYFD
IAFT 840

Qy 841 SVFT
VEIV
LKMT
TYGA
FLHK
GSFC
CRNY
FNML
LLVV
AVSL
ISM
GLE
SSA
ISV
VKIL
RVL
R 900
Db 841 SVFT
VEIV
LKMT
TYGA
FLHK
GSFC
CRNY
FNIL
LLVV
AVSL
ISM
GLE
SSA
ISV
VKIL
RVL
R 900

Qy 901 VLRPL
RAINRA
KGLK
HVAC
RMFVA
ISTI
GNIV
LVTT
LLQ
QMF
ACIG
VQL
FKG
KFF
RCTDL 960
Db 901 VLRPL
RAINRA
KGLK
HVVC
QCVF
VAIR
TIGN
IVLV
TTLL
QMF
ACIG
VQL
FKG
KFF
SCNDL 960

Qy 961 SKM
TEEE
CRG
YYV
KDGP
MQI
ELRH
REWV
HSDF
HFD
NVLS
SAMMS
LFT
VST
FEG
WPQLL 1020
Db 961 SKM
TEEE
CRG
YYV
KDGP
TQMEL
RPRQW
IHND
HFD
NVLS
SAMMS
LFT
VST
FEG
WPQLL 1020

Qy 1021 YKA
IDS
NAED
VGPI
YNN
RVE
MA
IFF
II
YLIA
AFF
MMNI
FVG
FV
VTF
FQE
QGET
EYKNCE 1080
Db 1021 YRA
IDS
NEED
MGPV
YNN
RVE
MA
IFF
II
YLIA
AFF
MMNI
FVG
FV
VTF
FQE
QGET
EYKNCE 1080

Qy 1081 LDKNQRQC
VQY
ALK
KAR
PLRC
YIP
KPN
PYQ
QV
WY
IVT
SSY
FEY
LMF
ALI
MLNT
ICL
GMQHY 1140
Db 1081 LDKNQRQC
VQY
ALK
KAR
PLRC
YIP
KPN
PYQ
QV
WY
VVT
SSY
FEY
LMF
ALI
MLNT
ICL
GMQHY 1140

Qy 1141 NQE
SQMN
HIS
DIL
NVA
FTI
IFT
LEM
ILK
LMA
KARG
YFG
NP
PW
VFD
FL
LIV
IGSI
IDV
ILS 1200
Db 1141 HQSE
EMNH
HIS
DIL
NVA
FTI
IFT
LEM
ILK
LAF
KARG
YFG
DP
PW
VFD
FL
LIV
IGSI
IDV
ILS 1200

Qy 1201 EID-----
DP
DES
ARI
SSA
FRL
F
R
M
R
L
I
K
L
S
R
A
E
G
V
R
T
L
L
W
T
F 1241
Db 1201 EIDT
FLASS
GGLY
CLGG
GCN
VP
D
P
DES
ARI
SSA
FRL
F
R
M
R
L
I
K
L
S
R
A
E
G
V
R
T
L
L
W
T
F 1260

Qy 1242 IKSF
QAL
PY
VALL
IVML
LFFF
IYAV
IGM
QMFG
K
IAL
VDGT
Q
IN
RNN
N
FQT
FP
QA
V
LL
FR
CA 1301
Db 1261 IKSF
QAL
PY
VALL
IVML
LFFF
IYAV
IGM
QMFG
K
IAL
VDGT
Q
IN
RNN
N
FQT
FP
QA
V
LL
FR
CA 1320

Qy 1302 TGEAW
QE
ILL
ACSY
GK
LCD
P
ESD
YAP
G
EE
Y
TC
GT
NF
A
YYY
F
IS
FY
ML
CA
FL
V
IN
LF
V
A
V
I 1361
Db 1302 TGEAW
QE
ILL
ACSY
GK
LCD
P
ESD
YAP
G
EE
Y
TC
GT
NF
A
YYY
F
IS
FY
ML
CA
FL
V
IN
LF
V
A
V
I 1361

Db 1321 TGEAWQEILLACSYGKLCDPESDYAPGEDYTCGTNFAYYYFISFYMLCAFLIIINLFVAVI 1380
 Qy 1362 MDNFDYLTRDWSILGPHHLDEFKAIAEYDPEAKGRIKHLDVTLRRIQPPLGFGKFCP 1421
 |||||
 Db 1381 MDNFDYLTRDWSILGPHHLDEFKAIAEYDPEAKGRIKHLDVTLRRIQPPLGFGKFCP 1440
 |||||
 Qy 1422 HRVACKRLVGMNMPLNSDGTVTFNATLFALVRTALKIKTEGNFEQANEELRAIJKKIWKR 1481
 |||||
 Db 1441 HRVACKRLVGMNMPLNSDGTVTFNATLFALVRTALKIKTEGNFEQANEELRAIJKKIWKR 1500
 |||||
 Qy 1482 TSMKLLDQVIPPIGDDEVTVGFYATFLIQEHFRKFMKRQEYYGYRPKKDIVQIQAGLR 1541
 |||||
 Db 1501 TSMKLLDQVIPPIGDDEVTVGFYATFLIQEHFRKFMKRQEYYGYRPKKDTVQIQAGLR 1560
 |||||
 Qy 1542 TIEEEAAPEICRTVSGDLAAEELERAMVEAAMEEGIFRRTGGLFGQVDNFLERTNSLPP 1601
 |||||
 Db 1561 TIEEEAAPEIRRTISGDLTAEEELERAMVEAAMEERIFRRTGGLFGQVDTFLERTNSLPP 1620
 |||||
 Qy 1602 VMANQRPLQFAEIEMEEMESPVFLLEDFPQDPRTNPLARANTNNANANVAYANSNHSNSHV 1661
 |||||
 Db 1621 VMATQRPLQFAEIEMEELESPVFLLEDFPQDARTNPLARANTNNANANVAYGNSNHSNNQM 1680
 |||||
 Qy 1662 FSSVHYEREFPEETETPATRGALGQPCRSLGPHSKPCVEMLKGLTQRAMPQAPPAP 1721
 |||||
 Db 1681 FSSVHCEREFPGEAETPAAGRGALSHRALGPHSKPCAGKLNGQLVQPGMPINQAPPAP 1740
 |||||
 Qy 1722 CQCPRVESSMPEDRKSSTPGSLHEETPHSRSTRENTSRC SAPATALLIQLKALVRGGLGTL 1781
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1741 CQQPSTDPPERGQRRTSLTGSQDEAPQRSSSEGSTPRPAPATALLIQLQEA LVRGGLDTL 1800
 |||||
 Qy 1782 AADANFIMATGQALGDAQCMEPEEEVEMATELLKGREAPDGMASSLGCLNLGSSLGSLDQ 1841
 ||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
 Db 1801 AADAGFVMATSQALVDACQCMEPEEEVVAATELLKERESVQGMASVPGSLSRRSSLGSLDQ 1860
 |||||
 Qy 1842 HQGSQETLIPPR 1853
 |||||
 Db 1861 VQGSQETLIPPR 1872

RESULT 9

AAR71003

ID AAR71003 standard; protein; 2163 AA.

XX

AC AAR71003;

XX

DT 25-MAR-2003 (revised)

DT 30-NOV-1995 (first entry)

XX

DE Human neuronal calcium channel subunit alpha 1c-1.

XX

KW Calcium channel subunit; antagonist; agonist; diagnosis;

KW Lambert Eaton Syndrome.

XX

OS Homo sapiens.

XX

PN WO9504822-A1.

XX

PD 16-FEB-1995.

XX

PF 11-AUG-1994; 94WO-US009230.

XX

PR 11-AUG-1993; 93US-00105536.

PR 05-NOV-1993; 93US-00149097.

XX

PA (SALK) SALK INST BIOTECHNOLOGY IND ASSOC.

XX

PI Harpold MM, Ellis SB, Williams ME, Mccue AF, Gillespie A;

XX

DR WPI; 1995-090900/12.

DR N-PSDB; AAQ84655.

XX

PT DNA encoding human calcium channel sub-unit(s) - used for developing

PT prods. for studying calcium channels, e.g. for obtaining agonists and
PT antagonists.

PS Disclosure: Page 127-137; 285pp; English.

Numerous alpha 1c-specific cDNA clones were isolated in order to characterise the alpha 1c coding sequence, the initiation of translation and an alternatively spliced region. AAQ84655 sets forth one alpha 1c coding sequence (alpha 1c-1) and AAR71003 sets out its deduced AA sequence. AAQ87834 and AAR72607 set out another splice variant, designated alpha 1c-2. AAQ84656 encodes an alternative exon for the IV S3 transmembrane domain. Other alpha 1c variants can be constructed by selecting alternative amino terminal ends in place of the ends in AAQ84655 and AAQ87834 and/or inserting the alternative exon in the appropriate location (see AAQ84655 FT). In addition, a nt. sequence (see AAQ84655 FT) can be deleted or inserted to produce an alternative alpha 1c splice variant. (Updated on 25-MAR-2003 to correct PN field.)

SO Sequence 2163 AA:

Query Match 62.7%; Score 6045.5; DB 2; Length 2163;
Best Local Similarity 59.6%; Pred. No. 0;
Matches 1244; Conservative 239; Mismatches 362; Indels 243; Gaps 37;

Qy 4 SSPQDEGLRKKKQPKKPVPPEILPRLPRPRAFLCCLTLENLRLRKACISIVEWKPFETIILLTIFA 63
 || : | : : || : || : || : || : || : || : || : || : || : || : || : || : || : ||
 Pb 77 SSTOPKROOYCKPKOCSTTATRPRRALCLCTLKNPDRPACTSIVEWKPFETIILLTIFA 136

Qy 64 NCVALAVYLPMPEDDNNSLNLGEKLEYFFLIVFSIEAAMKIIAYGFLFHQDAYLRSGWN 123
|||||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
Pb 127 NCVALAVYLPMPEDDNNSLNLGEKLEYFFLIVFSIEAAMKIIAYGFLFHQDAYLRSGWN 196

Qy 124 VLDFTIVFLGVFTVILEQVNVIQSHTAPMSSKGAGLDVKALRAFRVLRPLRLVSGVPSLQ 183
.:||||| :||: |||| | : ||||| ||||| ||||| |||||

Qy 184 VVLNSIFKAMLPLFHIALLVLFMVIYAIIGLELFKGKMHKTCYFIGTDIVATVNE-EP 242
|||||:|||:|||||::|||||||:||||| : :|| | | :|

Qy 243 SPCA-RTGSGRRCTINGSECRGCPGPNHGITHFDNFGFSMLTVYQCITMEGWTDVLYWV 301
||||| ||||| | ||: | : | | | | | |: | | | | | : | | | | : | | | | | | | | | | | | | | |

Qy 302 NDAIGNEWPIYFVTLILLGSFFILNLVLGVLSGEFTKEREKAKSRGTFOQLREKQLDE 361

Db 373 NDAVRDWPWIYFVTLIIIGSFFVNLVLGVLSGEFSKEREKAKARGDFQKLREKQQLEE 432
Qv 362 DLRGYSMSWITQGEVMDVE-----DREGKILS-----LDEG 391

D_b 433 DLKGYLDWITQAEDIDPENEDEGMDEEKPRNRGTPAGMLDQKKGKFAWFSHSTETHVSMP 492

QY 392 GSDTESET-----ETAGLEN-----RTIQPTIKWQRQWNKTFWKWHDIVRSKVFY 455
| : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
Db 493 TSETESVNTENVAGGDIEGENCGARLAHRISKSKFSRYWRRWNRFCCRKCRAAVKSNFY 552

Qy 436 WLVI1VALNTLTIASEHHNQPNWL1TREQDTANKVLLS1FT1EMLLKKMYSGLQAYFMSI 495
|||| : ||| : |||| : |||| : |||| : |||| : |||| : |||| : |||| : |||| : |||| : |||| :
Db 553 WLVI1FLVFLNTLTIASEHYNQPNWLTEVQDTANKALLALFTAEMLLKKMYSGLQAYFVSL 612

Qy 496 FNRFDCCVVCGILEILLVESGATPLGISVLRCVRLRIFKITKYWTSLSNLVASLLNS 555
||||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :||| :|||
Db 613 FNRFDCCVVCGILETILVETKIMSPPLGISVLRCVRLRIFKITRYWNLSLSNLVASLLNS 672

Qy 616 WTSMMYNGIMASSGPGSPYPMGLVCIYFIILFVCGNYILLNVFLAIAVDNLAEASITSAQK 675
| : |
Db 733 WNSWVMDGTIMAYGGPSPEPMGLVCIYFIILFVCGNYILLNVFLAIAVDNLADAESITSAOK 792

SEQ ID NO: 4

Result	Query						Description
	No.	Score	Match	Length	DB	ID	
<hr/>							
1	11391	100.0	2166	5	ABG32659		Abg32659 Human pla
2	11373.5	99.8	2181	5	ABG61941		Abg61941 Prostate
3	11373.5	99.8	2181	7	ADB75226		Adb75226 Prostate
4	11373.5	99.8	2182	7	ADD48699		Add48699 Human Pro
5	11202.5	98.3	2161	2	AAR71002		Aar71002 Human neu
6	11202.5	98.3	2161	2	AAW63149		Aaw63149 Human cal
7	11168.5	98.0	2161	2	AAR71001		Aar71001 Human neu
8	11168.5	98.0	2161	2	AAW63137		Aaw63137 Human cal
9	11168.5	98.0	2161	3	AAB10568		Aab10568 Human cal
10	11168.5	98.0	2161	5	AAE24781		Aae24781 Human cal
11	11157.5	98.0	2161	7	ADE62196		Ade62196 Human Pro
12	11157.5	98.0	2161	7	ADE62200		Ade62200 Human Pro
13	11138.5	97.8	2161	2	AAR33545		Aar33545 Sequence
14	11036.5	96.9	2203	7	ADE62194		Ade62194 Rat Prote
15	11036.5	96.9	2203	7	ADD48697		Add48697 Rat Prote

RESULT 5

AAR71002

ID AAR71002 standard; protein; 2161 AA.

xx

AC AAR71002;

XX

DT 25-MAR-2003 (revised)

DT 30-NOV-1995 (first entry)
MM

xx

DE Human neuronal calcium channel subunit alpha 1D including alternative.
DE exon encoding the IS6 transmembrane domain.
xx

16

KW Calcium channel subunit; antagonist; agonist; diagnosis;
KW Lambert Eaton Syndrome.
XX

85

OS HOMO sapiens.

101
FH

TH Key Location/Qualifiers
FT Misc-difference 373 406

FT /label= ev

xx

PN

XX
PD 16-FEB-1995.
XX
PF 11-AUG-1994; 94WO-US009230.
XX
PR 11-AUG-1993; 93US-00105536.
PR 05-NOV-1993; 93US-00149097.
XX
PA (SALK) SALK INST BIOTECHNOLOGY IND ASSOC.
XX
PI Harpold MM, Ellis SB, Williams ME, Mccue AF, Gillespie A;
XX
DR WPI; 1995-090900/12.
DR N-PSDB; AAQ84654.
XX
PT DNA encoding human calcium channel sub-unit(s) - used for developing
PT prods. for studying calcium channels, e.g. for obtaining agonists and
PT antagonists.
XX
PS Disclosure; Page 126-127; 285pp; English.
XX
CC The alpha 1D subunit cDNA has been isolated using fragments of the rabbit
CC skeletal muscle calcium channel alpha 1 subunit cDNA as a probe to screen
CC a cDNA library of human neuroblastoma cell line IMR32, to obtain clone
CC alpha1.36. This clone was used as a probe to screen additional IMR32 cell
CC cDNA libraries to obtain overlapping clones, which were then employed for
CC screening until a sufficient series of clones to span the length of the
CC nt sequence encoding the human alpha 1D subunit was obtd. Full-length
CC clones were then constructed by ligating partial clones. AAQ84653 shows
CC the nt sequence of the cDNA encoding the alpha 1D subunit. The Alpha 1D
CC protein has a calculated Mr of 245,163. It contains four putative
CC internal repeated sequence regions which represent 24 putative
CC transmembrane segments. It mediates DHP-sensitive high-voltage, long-
CC lasting calcium channel activity. AAQ84654 shows an alternative exon
CC encoding the IS6 transmembrane domain. The difference occurs in AAs 373-
CC 406. (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ Sequence 2161 AA;

Query Match 98.3%; Score 11202.5; DB 2; Length 2161;
Best Local Similarity 98.3%; Pred. No. 0;
Matches 2144; Conservative 1; Mismatches 1; Indels 35; Gaps 3;

Qy 1 MMMMMMKM**QHQRQQQADHANEANYARGTRLPLSGEGPTSQPNSSKQT**VLWQAAIDAA 60
Db 1 MMMMMMKM**QHQRQQQADHANEANYARGTRLPLSGEGPTSQPNSSKQT**VLWQAAIDAA 60

Qy 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQYAKSKKQGNSSNSRPARALFCLSLNNPI**RACI 120
Db 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQYAKSKKQGNSSNSRPARALFCLSLNNPI**RACI 120

Qy 121 SIVEKPF**DIFILLAIFANCVALAIYIPFPEDDSNSTHNLEKVEAFLIIIFTVETFLKI** 180
Db 121 SIVEKPF**DIFILLAIFANCVALAIYIPFPEDDSNSTHNLEKVEAFLIIIFTVETFLKI** 180

Qy 181 IAYGLLLHPNAYVRNGWNLLDFVIVIVGLFSVILEQLT**KETEGGNHSSGKSGGF**DVKALR 240
Db 181 IAYGLLLHPNAYVRNGWNLLDFVIVIVGLFSVILEQLT**KETEGGNHSSGKSGGF**DVKALR 240

Qy 241 AFRVLRPLRLVSGVPSL**QVVLNSIIKAMVPLLHIALLVLFVIIYAIIGLELF**IGKMHT 300
Db 241 AFRVLRPLRLVSGVPSL**QVVLNSIIKAMVPLLHIALLVLFVIIYAIIGLELF**IGKMHT 300

Qy 301 CFFADSDIVAEEDPAPCAF**SGNGRQCTANGTECRSGWVGPNGGITNFDNFAFAMLTVFQC** 360
Db 301 CFFADSDIVAEEDPAPCAF**SGNGRQCTANGTECRSGWVGPNGGITNFDNFAFAMLTVFQC** 360

Qy 361 ITMEGWTDVLYWVND**AIGWEWPWVYFVSLIIILGSFFVVLNLVGVLSGEFSKEREKAKARG** 420
Db 361 ITMEGWTDVLYWVND**AIGWEWPWVYFVSLIIILGSFFVVLNLVGVLSGEFSKEREKAKARG** 420

Qy	421 DFQKLREKQQLEEDLKGYLDWITQAEDIDPENEEGGEKGRTNSMPTSETESVNTEVS 	480
Db	421 DFQKLREKQQLEEDLKGYLDWITQAEDIDPENEEGGEKGRTNSMPTSETESVNTEVS 	480
Qy	481 GEGENRGCCGSILWCWRRRGAAKAGPSGCRWGQAISKSRLWRWNRFNRRRCRAAV 	540
Db	481 GEGENRGCCGSLS-----C---QAISKSRLWRWNRFNRRRCRAAV -----	520
Qy	541 KSVTFYWLIVLVFLNTLTISSEHYNQPDWLTQIQDIANKVLLALFTCEMLVKMYSLGQ 	600
Db	521 KSVTFYWLIVLVFLNTLTISSEHYNQPDWLTQIQDIANKVLLALFTCEMLVKMYSLGQ 	580
Qy	601 AYFVSLFNRFDCFVCGGITETILVELEIMSPLGISVFRCVRLLRIFKVTRHWTSLSNLV 	660
Db	581 AYFVSLFNRFDCFVCGGITETILVELEIMSPLGISVFRCVRLLRIFKVTRHWTSLSNLV 	640
Qy	661 ASLLNSMKSIASLLLLLFLIIIFSLLGMQLFGGKFNFDETQTKRSTFDNFPQALLTVFQ 	720
Db	641 ASLLNSMKSIASLLLLLFLIIIFSLLGMQLFGGKFNFDETQTKRSTFDNFPQALLTVFQ 	700
Qy	721 ILTGEDWNAVMYDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 	780
Db	701 ILTGEDWNAVMYDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 	760
Qy	781 LNTAQKEEAEKERKKIARKESLENKKNNKPEVNQIANSNDNKVTIDDYREEDEDKDPP 	840
Db	761 LNTAQKEEAEKERKKIARKESLENKKNNKPEVNQIANSNDNKVTIDDYREEDEDKDPP 	820
Qy	841 CDVPVGEEEEEEDEPEVPAGPRPRRISELMKKEIAPIPEGSAFFILSKTNPIRVGCH 	900
Db	821 CDVPVGEEEEEEDEPEVPAGPRPRRISELMKKEIAPIPEGSAFFILSKTNPIRVGCH 	880
Qy	901 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 	960
Db	881 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 	940
Qy	961 FGAFLHKGAFCRNYFNLLDMLVVGVSLVSFGIQSSAISVVKILRVLVRPLRAINRAKG 	1020
Db	941 FGAFLHKGAFCRNYFNLLDMLVVGVSLVSFGIQSSAISVVKILRVLVRPLRAINRAKG 	1000
Qy	1021 LKHVVQCVFVAIRTIGNIMIVTTLLQFMFACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 	1080
Db	1001 LKHVVQCVFVAIRTIGNIMIVTTLLQFMFACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 	1060
Qy	1081 LYKGDGDVDPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 	1140
Db	1061 LYKGDGDVDPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 	1120
Qy	1141 IYNHRVEISIFFIYIIIVAFFMMNIIVFGFVIVTFQEQGEKEYKNCELDKNQRQCVEYAL 	1200
Db	1121 IYNHRVEISIFFIYIIIVAFFMMNIIVFGFVIVTFQEQGEKEYKNCELDKNQRQCVEYAL 	1180
Qy	1201 KARPLRRYIPKNPYQYKFWYVVNSSPFEYMMFVLIMLNTLCLAMQHYEQSKMFNDAMDIL 	1260
Db	1181 KARPLRRYIPKNPYQYKFWYVVNSSPFEYMMFVLIMLNTLCLAMQHYEQSKMFNDAMDIL 	1240
Qy	1261 NMVFTGVFTVEMVLKVIACKPKGYFSDAWNTFDSSLIVIGSIIDVALSEAD----- 	1310
Db	1241 NMVFTGVFTVEMVLKVIACKPKGYFSDAWNTFDSSLIVIGSIIDVALSEADPTEENVVP 	1300
Qy	1311 -----NSEESNRISITFFRLFRVMRLVKLLSRGEGERTLWTFIKSFQALPYVALLIAML 	1365
Db	1301 TATPGNSEESNRISITFFRLFRVMRLVKLLSRGEGERTLWTFIKFFQALPYVALLIAML 	1360
Qy	1366 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTFPQAVLLLFRCATGEAWQEIMLACLPGKL 	1425
Db	1361 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTFPQAVLLLFRCATGEAWQEIMLACLPGKL 	1420
Qy	1426 CDPESDYNPGEEYTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 	1485
Db	1421 CDPESDYNPGEEHTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 	1480

Qy 1486 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRRIQPLGFGKLCPHRVACKRLVAMNMPLNS 1545
 |||||||
 Db 1481 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRRIQPLGFGKLCPHRVACKRLVAMNMPLNS 1540
 |||||||
 Qy 1546 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVVPPAGDDE 1605
 |||||||
 Db 1541 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVVPPAGDDE 1600
 |||||||
 Qy 1606 VTVGKFYATFLIQDYFRKFKKRKEQGLVGKYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1665
 |||||||
 Db 1601 VTVGKFYATFLIQDYFRKFKKRKEQGLVGKYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1660
 |||||||
 Qy 1666 DLQDDEPEETKREEEDDVFKRNGALLGNHVNNSDRRDSLQQTNTTHRPLHVQRPSIPP 1725
 |||||||
 Db 1661 DLQDDEPEETKREEEDDVFKRNGALLGNHVNNSDRRDSLQQTNTTHRPLHVQRPSIPP 1720
 |||||||
 Qy 1726 ASDTEKPLFPPAGNSVCHNHHHNHSIGKQVPTSTANLNNAAMSAAHGKRPSIGNLEHV 1785
 |||||||
 Db 1721 ASDTEKPLFPPAGNSVCHNHHHNHSIGKQVPTSTANLNNAAMSAAHGKRPSIGNLEHV 1780
 |||||||
 Qy 1786 SENGHSSHKHDREPQRRSSVKRTRYETYIIRSDSGDEQLPTICREDPEIHYFRDPHCL 1845
 |||||||
 Db 1781 SENGHSSHKHDREPQRRSSVKRTRYETYIIRSDSGDEQLPTICREDPEIHYFRDPHCL 1840
 |||||||
 Qy 1846 GEQEYFSSEECYEDDSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1905
 |||||||
 Db 1841 GEQEYFSSEECYEDDSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1900
 |||||||
 Qy 1906 DSRRSPRRRLLPPTPASHRRSSNFECLRRQSSQEEVPSSPIFPHRTALPLHLMQQQIMA 1965
 |||||||
 Db 1901 DSRRSPRRRLLPPTPASHRRSSNFECLRRQSSQEEVPSSPIFPHRTALPLHLMQQQIMA 1960
 |||||||
 Qy 1966 VAGLDSSKAQKYSPSHSTRSWATPPATPPYRDWTPCYTPLIQUIVEQSEALDQVNGLPSLH 2025
 |||||||
 Db 1961 VAGLDSSKAQKYSPSHSTRSWATPPATPPYRDWTPCYTPLIQUIVEQSEALDQVNGLPSLH 2020
 |||||||
 Qy 2026 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2085
 |||||||
 Db 2021 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2080
 |||||||
 Qy 2086 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGYSDE 2145
 |||||||
 Db 2081 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGYSDE 2140
 |||||||
 Qy 2146 EPDPGRDEEDELADEMICKITL 2166
 |||||||
 Db 2141 EPDPGRDEEDELADEMICKITL 2161

RESULT 6

AAW63149

ID AAW63149 standard; protein; 2161 AA.

XX

AC AAW63149;

XX

DT 25-MAR-2003 (revised)

DT 12-OCT-1998 (first entry)

XX

DE Human calcium channel alpha-1D subunit.

XX

KW Alpha-1D subunit; human; calcium channel; assay; detection;

KW characterisation; Lambert Eaton Syndrome; LES; diagnosis.

XX

OS Homo sapiens.

XX

PN US5792846-A.

XX

PD 11-AUG-1998.

XX

PF 31-MAY-1995; 95US-00455543.

XX
 PR 04-APR-1988; 88US-00176899.
 PR 04-APR-1989; 89WO-US001408.
 PR 20-FEB-1990; 90US-00482384.
 PR 08-NOV-1990; 90US-00603751.
 PR 30-NOV-1990; 90US-00620250.
 PR 15-AUG-1991; 91US-00745206.
 PR 04-APR-1994; 94US-00223305.
 XX
 PA (SIBI-) SIBIA NEUROSCIENCES INC.
 XX
 PI Brenner R, Ellis SB, Williams ME, Feldman DH, Mccue AF;
 PI Harpold MM;
 XX
 DR WPI; 1998-456192/39.
 DR N-PSDB; AAV42697.
 XX
 PT DNA encoding human calcium channel alpha 1B sub:unit protein - useful for
 PT recombinant production of the channel for screening of its modulators,
 PT and diagnosis of Lambert Eaton Syndrome.
 XX
 PS Disclosure; Col 271-284; 166pp; English.
 XX
 CC The present sequence represents the alpha-1D subunit of a human calcium
 CC channel. Calcium channels are membrane-spanning, multi-subunit proteins
 CC that allow controlled entry of calcium ions into cells. This leads to
 CC depolarisation events required for muscle contraction. The recombinant
 CC subunit, when expressed with nucleic acids encoding the complete calcium
 CC channel, can be used in assays for the detection and characterisation of
 CC compounds that modulate the channel. The DNA encoding the subunits can be
 CC alternatively spliced when transcribed, giving more than one form of the
 CC protein from the same transcript, each having slightly different
 CC properties. In addition, the reactivity of the alpha 1 subunit with IgG
 CC molecules from the serum of an individual with Lambert Eaton Syndrome
 CC (LES) can be used as a diagnostic for the disease. (Updated on 25-MAR-
 CC 2003 to correct PR field.)
 XX
 SQ Sequence 2161 AA;

 Query Match 98.3%; Score 11202.5; DB 2; Length 2161;
 Best Local Similarity 98.3%; Pred. No. 0;
 Matches 2144; Conservative 1; Mismatches 1; Indels 35; Gaps 3;

 Qy 1 MMMMMMKM**QHQRQQ**QADHANEANYARGTRLPLSGEGPTSQPNSKQT~~VLSWQAIDAA~~ 60
 |||||
 Db 1 MMMMMMKM**QHQRQQ**QADHANEANYARGTRLPLSGEGPTSQPNSKQT~~VLSWQAIDAA~~ 60

 Qy 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQY**AKSKKKQGNSSNSRPARALFCLSNNPIRRACI 120
 |||||
 Db 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQY**AKSKKKQGNSSNSRPARALFCLSNNPIRRACI 120

 Qy 121 SIVEKPF**DIFILLAI**FANCVALAIYIPFPEDDSNSTHNLEKVEAFLIIIFTVETFLKI 180
 |||||
 Db 121 SIVEKPF**DIFILLAI**FANCVALAIYIPFPEDDSNSTHNLEKVEAFLIIIFTVETFLKI 180

 Qy 181 IAYGLLHPNAYVRNGWNLLDFVIVVGLFSVILEQLTKETEGGNHSSGKSGGF**DVKALR** 240
 |||||
 Db 181 IAYGLLHPNAYVRNGWNLLDFVIVVGLFSVILEQLTKETEGGNHSSGKSGGF**DVKALR** 240

 Qy 241 AFRVLRLPRLVSGVPSL**QVVVLNSII**KAMVPLL**HIALLVLFVII**YAIIGLELF**IGKMHKT** 300
 |||||
 Db 241 AFRVLRLPRLVSGVPSL**QVVVLNSII**KAMVPLL**HIALLVLFVII**YAIIGLELF**IGKMHKT** 300

 Qy 301 CFFADSDIVAEEDPAPCAFSGNGRQ**CTANGTECRSGWVGPN**GGITNFDNFAFAMLTVFQC 360
 |||||
 Db 301 CFFADSDIVAEEDPAPCAFSGNGRQ**CTANGTECRSGWVGPN**GGITNFDNFAFAMLTVFQC 360

 Qy 361 ITMEGWT**DVLYWVNDAIGWEWPWVYFVSLIILGSFFVNLVLGVLSGEFSKEREKAKARG** 420
 |||||
 Db 361 ITMEGWT**DVLYWVNDAIGWEWPWVYFVSLIILGSFFVNLVLGVLSGEFSKEREKAKARG** 420

Qy 421 DFQKLREKQQLEEDLKGYLDWITQAEDIDPENEEGGEKGKRNTSMPTSETESVNTENVS 480
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 421 DFQKLREKQQLEEDLKGYLDWITQAEDIDPENEEGGEKGKRNTSMPTSETESVNTENVS 480

Qy 481 GEGENRGCCGSLWCWRRRGAAKAGPSGCRWGQAISKSCLSRRRNRFNRRRCRAAV 540
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 481 GEGENRGCCGSL-----C-----QAISKSCLSRRRNRFNRRRCRAAV 520

Qy 541 KSVTFYWLVIVLVLFLNLTISSEHYNQPDWLQTQIDIANKVLIALFTCEMLVKMYSGLQ 600
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 521 KSVTFYWLVIVLVLFLNLTISSEHYNQPDWLQTQIDIANKVLIALFTCEMLVKMYSGLQ 580

Qy 601 AYFVSLFNRFDCFVVCGGITETILVELEIMSPLGISVFRCVRLLRIFKVTRHWTSLSNLV 660
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 581 AYFVSLFNRFDCFVVCGGITETILVELEIMSPLGISVFRCVRLLRIFKVTRHWTSLSNLV 640

Qy 661 ASLLNSMKSIASSLFLFIIIFSLLGMQLFGKFNFDTQTKRSTFDNFQALLTVFQ 720
||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 641 ASLLNSMKSIASSLFLFIIIFSLLGMQLFGKFNFDTQTKRSTFDNFQALLTVFQ 700

Qy 721 ILTGEDWNAVMYDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 780
||| ||| ||| ||| ||| ||| ||| ||| |||
Db 701 ILTGEDWNAVMYDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 760

Qy 781 LNTAQKEEAEKERKKIARKESLENKNNKPEVNQIANSDNKVTIDDYREEDEDKDPP 840
||| ||| ||| ||| ||| ||| ||| |||
Db 761 LNTAQKEEAEKERKKIARKESLENKNNKPEVNQIANSDNKVTIDDYREEDEDKDPP 820

Qy 841 CDVPVGEEEEEEDEPEVPAGPRPRISELMKEKIAPIEGSAFFLSKTNPIRVGCH 900
||| ||| ||| ||| ||| ||| ||| |||
Db 821 CDVPVGEEEEEEDEPEVPAGPRPRISELMKEKIAPIEGSAFFLSKTNPIRVGCH 880

Qy 901 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 960
||| ||| ||| ||| ||| ||| ||| |||
Db 881 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 940

Qy 961 FGAFLHKGAFCRNYFNLLDMLVVGVSLVSGIQSSAISVVKILRVLRLPRAINRAKG 1020
||| ||| ||| ||| ||| ||| ||| |||
Db 941 FGAFLHKGAFCRNYFNLLDMLVVGVSLVSGIQSSAISVVKILRVLRLPRAINRAKG 1000

Qy 1021 LKHVVQCVFAIRTIGNIMIVTTLLQFMACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 1080
||| ||| ||| ||| ||| ||| |||
Db 1001 LKHVVQCVFAIRTIGNIMIVTTLLQFMACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 1060

Qy 1081 LYKDGDVSPVVRERIWQNSDFNDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1140
||| ||| ||| ||| ||| ||| |||
Db 1061 LYKDGDVSPVVRERIWQNSDFNDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1120

Qy 1141 IYNHRVEISIFFIIYIIIVAFFMMNIFVGFBVTFQEQGEKEYKNCELDKNQRQCVEYAL 1200
||| ||| ||| ||| ||| ||| |||
Db 1121 IYNHRVEISIFFIIYIIIVAFFMMNIFVGFBVTFQEQGEKEYKNCELDKNQRQCVEYAL 1180

Qy 1201 KARPLRRYIPKNPYQYKFYVVNSSPFYMMFVILMLNTLCLAMQHYEQSKMFNDAMDIL 1260
||| ||| ||| ||| ||| ||| |||
Db 1181 KARPLRRYIPKNPYQYKFYVVNSSPFYMMFVILMLNTLCLAMQHYEQSKMFNDAMDIL 1240

Qy 1261 NMVFTGVFTVEMVLKVIACKPKGYFSDAWNTFDLIVIGSIIDVALSEAD----- 1310
||| ||| ||| ||| ||| ||| |||
Db 1241 NMVFTGVFTVEMVLKVIACKPKGYFSDAWNTFDLIVIGSIIDVALSEADPTEENVVPV 1300

Qy 1311 -----NSEESNRISITFFRLFRVMRLVKLLSRGEHIRTLWTFIKSFQALPYVALLIAML 1365
||| ||| ||| ||| ||| ||| |||
Db 1301 TATPGNSEESENRSITFFRLFRVMRLVKLLSRGEHIRTLWTFIKFFQALPYVALLIAML 1360

Qy 1366 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTFPQAVLLLFRCATGEAWQEIMLACLPGL 1425
||| ||| ||| ||| ||| ||| |||
Db 1361 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTFPQAVLLLFRCATGEAWQEIMLACLPGL 1420

Qy 1426 CDPESDYNPGEEYTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1485
||| ||| ||| :||| ||| ||| ||| ||| ||| |||
Db 1421 CDPESDYNPGEEHTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1480

QY 1486 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRACKRLVAMNMPLNS 1545
 |||||
 Db 1481 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRRIQPPLGFGKLCPHRACKRLVAMNMPLNS 1540
 |||||
 QY 1546 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVVPPAGDDE 1605
 |||||
 Db 1541 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVVPPAGDDE 1600
 |||||
 QY 1606 VTVGKFYATFLIQDYFRKFKKRKEQGLVKGYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1665
 |||||
 Db 1601 VTVGKFYATFLIQDYFRKFKKRKEQGLVKGYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1660
 |||||
 Qy 1666 DLQDDEPEETKREEEDDVFKRNGALLGNHVNHNVDNSRRDSLQQTNTHRPLHVQRPSIPP 1725
 |||||
 Db 1661 DLQDDEPEETKREEEDDVFKRNGALLGNHVNHNVDNSRRDSLQQTNTHRPLHVQRPSIPP 1720
 |||||
 Qy 1726 ASDTEKPLFPPAGNSVCHNHHNHNSIGKQVPTSTNANLNNSKAAGKRPSSIGNLEHV 1785
 |||||
 Db 1721 ASDTEKPLFPPAGNSVCHNHHNHNSIGKQVPTSTNANLNNSKAAGKRPSSIGNLEHV 1780
 |||||
 Qy 1786 SENGHHSSHKHDREPQRSSVKRTRYYETYIERSDSGDEQLPTICREDPEIHGYFRDPHCL 1845
 |||||
 Db 1781 SENGHHSSHKHDREPQRSSVKRTRYYETYIERSDSGDEQLPTICREDPEIHGYFRDPHCL 1840
 |||||
 Qy 1846 GEQEYFSSEECYEDDSSPTWSRQNYYRSYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1905
 |||||
 Db 1841 GEQEYFSSEECYEDDSSPTWSRQNYYRSYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1900
 |||||
 Qy 1906 DSRRSPRRLLPPTPASHRRSSFNFECLRRQSSQEEVPSSPIFPHTALPLHLMQQIMA 1965
 |||||
 Db 1901 DSRRSPRRLLPPTPASHRRSSFNFECLRRQSSQEEVPSSPIFPHTALPLHLMQQIMA 1960
 |||||
 Qy 1966 VAGLDSSKAQKYSKSHSTRSWATPPATPPYRDWTPCYTPLIOVEQSEALDQVNGLPSLH 2025
 |||||
 Db 1961 VAGLDSSKAQKYSKSHSTRSWATPPATPPYRDWTPCYTPLIOVEQSEALDQVNGLPSLH 2020
 |||||
 Qy 2026 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2085
 |||||
 Db 2021 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2080
 |||||
 Qy 2086 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGBSDE 2145
 |||||
 Db 2081 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGBSDE 2140
 |||||
 Qy 2146 EPDPGRDEEDLADEMICITTL 2166
 |||||
 Db 2141 EPDPGRDEEDLADEMICITTL 2161

RESULT 7

AAR71001

ID AAR71001 standard; protein; 2161 AA.

XX

AC AAR71001;

XX

DT 25-MAR-2003 (revised)

DT 30-NOV-1995 (first entry)

XX

DE Human neuronal calcium channel subunit alpha 1D.

XX

KW Calcium channel subunit; antagonist; agonist; diagnosis;
KW Lambert Eaton Syndrome.

XX

OS Homo sapiens.

XX

PN WO9504822-A1.

XX

PD 16-FEB-1995.

XX

PF 11-AUG-1994; 94WO-US009230.

XX
 PR 11-AUG-1993; 93US-00105536.
 PR 05-NOV-1993; 93US-00149097.
 XX
 PA (SALK) SALK INST BIOTECHNOLOGY IND ASSOC.
 XX
 PI Harpold MM, Ellis SB, Williams ME, McCue AF, Gillespie A;
 XX
 DR WPI; 1995-090900/12.
 DR N-PSDB; AAQ84653.
 XX
 PT DNA encoding human calcium channel sub-unit(s) - used for developing
 PT prods. for studying calcium channels, e.g. for obtaining agonists and
 PT antagonists.
 XX
 PS Disclosure; Page 116-126; 285pp; English.
 XX
 CC The alpha 1D subunit cDNA has been isolated using fragments of the rabbit
 CC skeletal muscle calcium channel alpha 1 subunit cDNA as a probe to screen
 CC a cDNA library of human neuroblastoma cell line IMR32, to obtain clone
 CC alpha1.36. This clone was used as a probe to screen additional IMR32 cell
 CC cDNA libraries to obtain overlapping clones, which were then employed for
 CC screening until a sufficient series of clones to span the length of the
 CC nt sequence encoding the human alpha 1D subunit was obtained. Full-length
 CC clones were then constructed by ligating partial clones. AAQ84653 shows
 CC the nt sequence of the cDNA encoding the alpha 1D subunit. The Alpha 1D
 CC protein has a calculated Mr of 245,163. It contains four putative
 CC internal repeated sequence regions which represent 24 putative
 CC transmembrane segments. It mediates DHP-sensitive high-voltage, long-
 CC lasting calcium channel activity. (Updated on 25-MAR-2003 to correct PN
 CC field.)
 XX
 SQ Sequence 2161 AA;

Query Match 98.0%; Score 11168.5; DB 2; Length 2161;
 Best Local Similarity 98.0%; Pred. No. 0;
 Matches 2138; Conservative 5; Mismatches 3; Indels 35; Gaps 3;

Qy	1	MMMMMMMKMHQQRQQADHANEANYARGTRLPLSGEGPTSQPNSSKQTVLWSWQAAIDAA	60
Db	1	MMMMMMMKMHQQRQQADHANEANYARGTRLPLSGEGPTSQPNSSKQTVLWSWQAAIDAA	60
Qy	61	RQAKAAQTMSTSAPPVGSLSRKRQQYAKSKKQGNSSNSRPARALFCLSLNNPIRRACI	120
Db	61	RQAKAAQTMSTSAPPVGSLSRKRQQYAKSKKQGNSSNSRPARALFCLSLNNPIRRACI	120
Qy	121	SIVEWKPDFIFILLAIIFANCVLAIYIPFPEDDSNSTHNLEKVEYAFLIIFTVETFLKI	180
Db	121	SIVEWKPDFIFILLAIIFANCVLAIYIPFPEDDSNSTHNLEKVEYAFLIIFTVETFLKI	180
Qy	181	IAYGLLLHPNAYVRNGWNLLDFVIVIVGLFSVILEQLTKETEGGNHSSGKSGGF DVKALR	240
Db	181	IAYGLLLHPNAYVRNGWNLLDFVIVIVGLFSVILEQLTKETEGGNHSSGKSGGF DVKALR	240
Qy	241	AFRVLRLPLRLVSGVPQLQVVLNSIKAMVPLLHIALLVLFVIIYAIIGLEFIGKMHKT	300
Db	241	AFRVLRLPLRLVSGVPQLQVVLNSIKAMVPLLHIALLVLFVIIYAIIGLEFIGKMHKT	300
Qy	301	CFFADSDIVAEEDPAPCAFSGNGRQCTANGTECRSGWVGPNGGITNFDNFAFAMLT VFQC	360
Db	301	CFFADSDIVAEEDPAPCAFSGNGRQCTANGTECRSGWVGPNGGITNFDNFAFAMLT VFQC	360
Qy	361	ITMEGWTDVLYWVNDAIGWEWPWVYFVSLIILGSFFVNLVLGVLSGEFSKEREKAKARG	420
Db	361	ITMEGWTDVLYWMNDAMGFELPWVYFVSLIFGSFFVNLVLGVLSGEFSKEREKAKARG	420
Qy	421	DFQKLREKQQLEEDLKGYLDWITQAEDIDPENE EGGEEGKRNTSMPTSETESVN TENV S	480
Db	421	DFQKLREKQQLEEDLKGYLDWITQAEDIDPENE EGGEEGKRNTSMPTSETESVN TENV S	480
Qy	481	GEGENRGCCGSLWCWRRRGAAGAGPSGCR RGQAISKS KLSRRWRRWNRFNRRRCRAAV	540

Db 481 GEGENRGCCGSL-----C---QAIISKSKLSRRWRRWNRFNRRRCRAAV 520
Qy 541 KSVTFYWLIVLVFLNTLTISSEHYNQPDWLTQIQDIANKVLLALFTCEMLVKMYSGLQ 600
Db 521 KSVTFYWLIVLVFLNTLTISSEHYNQPDWLTQIQDIANKVLLALFTCEMLVKMYSGLQ 580
Qy 601 AYFVSLFNRDFCFVVCGGITETILVELEIMSPPLGISVFRCVRLLRIFKVTRHWTSLSNLV 660
Db 581 AYFVSLFNRDFCFVVCGGITETILVELEIMSPPLGISVFRCVRLLRIFKVTRHWTSLSNLV 640
Qy 661 ASLLNSMSMKSIASLLLLLFLFIIIFSLLGMQLFGGKFNFDETQTKRSTFDNFQPQALLTVFQ 720
Db 641 ASLLNSMSMKSIASLLLLLFLFIIIFSLLGMQLFGGKFNFDETQTKRSTFDNFQPQALLTVFQ 700
Qy 721 ILTGEDWNAVMDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 780
Db 701 ILTGEDWNAVMDGIMAYGGPSSSGMIVCIYFIILFICGNYILLNVFLAIAVDNLADAES 760
Qy 781 LNTAQKEEAEKERKKIARKESLENKNNKPEVNQIANSDNKVTIDDYREEDEDKDPPYPP 840
Db 761 LNTAQKEEAEKERKKIARKESLENKNNKPEVNQIANSDNKVTIDDYREEDEDKDPPYPP 820
Qy 841 CDVPVGEEEEEEDEPEVPAGPRPRRISELMNKKEKIAPIPEGSAFFILSKTNPIRVGCH 900
Db 821 CDVPVGEEEEEEDEPEVPAGPRPRRISELMNKKEKIAPIPEGSAFFILSKTNPIRVGCH 880
Qy 901 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 960
Db 881 KLINHHIFTNLILVFIMLSSAALAAEDPIRSHSFRNTILGYFDYAFTAIFTVEILLKMTT 940
Qy 961 FGAFLHKGAFCRNYFNLLDMLVGVSLVSFGIQSSAISVVKILRVLRLRPLRAINRAKG 1020
Db 941 FGAFLHKGAFCRNYFNLLDMLVGVSLVSFGIQSSAISVVKILRVLRLRPLRAINRAKG 1000
Qy 1021 LKHVVQCVFVAIRTIGNIMIVTTLLQFMFACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 1080
Db 1001 LKHVVQCVFVAIRTIGNIMIVTTLLQFMFACIGVQLFKGKFYRCTDEAKSNPEECRGLFI 1060
Qy 1081 LYKDGDVDSPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1140
Db 1061 LYKDGDVDSPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1120
Qy 1141 IYNHRVEISIFFIYIIIVAFFMMNIIVGVFIVTFQEQGEKEYKNCELDKNQRQCVEYAL 1200
Db 1121 IYNHRVEISIFFIYIIIVAFFMMNIIVGVFIVTFQEQGEKEYKNCELDKNQRQCVEYAL 1180
Qy 1201 KARPLRRYIPKNPYQYKFWYVVNSSPFEYMMFVILMLNTLCIAMQHYEQSKMFNDAMDIL 1260
Db 1181 KARPLRRYIPKNPYQYKFWYVVNSSPFEYMMFVILMLNTLCIAMQHYEQSKMFNDAMDIL 1240
Qy 1261 NMVFTGVFTVEMVLKVIAPKPKGYFSDAWNTFDSLIVIGSIIDVALSEAD----- 1310
Db 1241 NMVFTGVFTVEMVLKVIAPKPKGYFSDAWNTFDSLIVIGSIIDVALSEADPTEENVVPV 1300
Qy 1311 ----NSEESNRISITFFRLFRVMRLVKLLSRGEGIRTLWTFIKSFQALPYVALLIAML 1365
Db 1301 TATPGNSEESNRISITFFRLFRVMRLVKLLSRGEGIRTLWTFIKFFQALPYVALLIAML 1360
Qy 1366 FFIIYAVIGMQMFGKVAMRDNNQINRNNNNFQTFPQAVLLLFRCATGEAWQEIMLA CLPGKL 1425
Db 1361 FFIIYAVIGMQMFGKVAMRDNNQINRNNNNFQTFPQAVLLLFRCATGEAWQEIMLA CLPGKL 1420
Qy 1426 CDPESDYNPGEETYCGSNFAIIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1485
Db 1421 CDPESDYNPCEEHTCGSNFAIIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1480
Qy 1486 HLDEFKRIWSEYDPEAKGRIKHLDDVVTLLRIQPPLGFGLCPHRVACKRLVAMNMPLNS 1545
Db 1481 HLDEFKRIWSEYDPEAKGRIKHLDDVVTLLRIQPPLGFGLCPHRVACKRLVAMNMPLNS 1540

Qy 1546 DGTVMFNATLFALVRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVPPAGDDE 1605
|||
Db 1541 DGTVMFNATLFALVRTALKIKTEGNLEQANEELRAVIKKIWKKTSMKLLDQVPPAGDDE 1600

Qy 1606 VTVGKFYATFLIQDYFRKFKKRKEQLVKGYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1665
|||
Db 1601 VTVGKFYATFLIQDYFRKFKKRKEQLVKGYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1660

Qy 1666 DLQDDEPEETKREEEDDVFKRNGALLGNHVNHSRDSLQQTNTHRPLHVQRPSIPP 1725
|||
Db 1661 DLQDDEPEETKREEEDDVFKRNGALLGNHVNHSRDSLQQTNTHRPLHVQRPSIPP 1720

Qy 1726 ASDTEKPLFPPAGNSVCHNHHHNHSIGKQVPTSTANLNANMSKAAGKRPSSIGNLEHV 1785
|||
Db 1721 ASDTEKPLFPPAGNSVCHNHHHNHSIGKQVPTSTANLNANMSKAAGKRPSSIGNLEHV 1780

Qy 1786 SENGHSSHKHDREPQRRSSVKRTRYETYIRSDSGDEQLPTICREDPEIHGYFRDPHCL 1845
|||
Db 1781 SENGHSSHKHDREPQRRSSVKRTRYETYIRSDSGDEQLPTICREDPEIHGYFRDPHCL 1840

Qy 1846 GEQEYFSSEECYEDDSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1905
|||
Db 1841 GEQEYFSSEECYEDDSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1900

Qy 1906 DSRRSPRRLLPPTPASHRSSFNFECLRRQSSQEEVPSSPIFPHTALPLHLMQQQIMA 1965
|||
Db 1901 DSRRSPRRLLPPTPASHRSSFNFECLRRQSSQEEVPSSPIFPHTALPLHLMQQQIMA 1960

Qy 1966 VAGLDSSKAQKYSRSHSTRSWATPPATPYRDWTPCYTPLIQQVEQSEALDQVNGSLPSLH 2025
|||
Db 1961 VAGLDSSKAQKYSRSHSTRSWATPPATPYRDWTPCYTPLIQQVEQSEALDQVNGSLPSLH 2020

Qy 2026 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2085
|||
Db 2021 RSSWYTDEPDISYRTFTPASLTVPSSFRNKNSDKQRSADSLVEAVLISEGLGRYARDPKF 2080

Qy 2086 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGBSDE 2145
|||
Db 2081 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGBSDE 2140

Qy 2146 EPDPGRDEEDLADEMICITTL 2166
|||
Db 2141 EPDPGRDEEDLADEMICITTL 2161

Sequence Comparison B

SEQ ID NO: 4

RESULT 5
AAR71002
ID AAR71002 standard; protein; 2161 AA.
XX
AC AAR71002;
XX
DT 25-MAR-2003 (revised)
DT 30-NOV-1995 (first entry)
XX
DE Human neuronal calcium channel subunit alpha 1D including alternative.
DE exon encoding the IS6 transmembrane domain.
XX
KW Calcium channel subunit; antagonist; agonist; diagnosis;
KW Lambert Eaton Syndrome.
XX
OS Homo sapiens.
XX
FH Key Location/Qualifiers
FT Misc-difference 373..406
FT /label= encoded by alternative exon
XX
PN WO9504822-A1.
XX
PD 16-FEB-1995.
XX
PF 11-AUG-1994; 94WO-US009230.
XX
PR 11-AUG-1993; 93US-00105536.
PR 05-NOV-1993; 93US-00149097.
XX
PA (SALK) SALK INST BIOTECHNOLOGY IND ASSOC.
XX
PI Harpold MM, Ellis SB, Williams ME, McCue AF, Gillespie A;
XX
DR WPI; 1995-090900/12.
DR N-PSDB; AAQ84654.
XX
PT DNA encoding human calcium channel sub-unit(s) - used for developing
PT prods. for studying calcium channels, e.g. for obtaining agonists and
PT antagonists.
XX
PS Disclosure; Page 126-127; 285pp; English.
XX
CC The alpha 1D subunit cDNA has been isolated using fragments of the rabbit
CC skeletal muscle calcium channel alpha 1 subunit cDNA as a probe to screen
CC a cDNA library of human neuroblastoma cell line IMR32, to obtain clone
CC alpha1.36. This clone was used as a probe to screen additional IMR32 cell
CC cDNA libraries to obtain overlapping clones, which were then employed for
CC screening until a sufficient series of clones to span the length of the
CC nt sequence encoding the human alpha 1D subunit was obtained. Full-length
CC clones were then constructed by ligating partial clones. AAQ84653 shows
CC the nt sequence of the cDNA encoding the alpha 1D subunit. The Alpha 1D
CC protein has a calculated Mr of 245,163. It contains four putative
CC internal repeated sequence regions which represent 24 putative
CC transmembrane segments. It mediates DHP-sensitive high-voltage, long-
CC lasting calcium channel activity. AAQ84654 shows an alternative exon
CC encoding the IS6 transmembrane domain. The difference occurs in AAs 373-
CC 406. (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ Sequence 2161 AA;

Query Match 98.3%; Score 11202.5; DB 2; Length 2161;
Best Local Similarity 98.3%; Pred. No. 0;
Matches 2144; Conservative 1; Mismatches 1; Indels 35; Gaps 3;

Qy 1 MMMMMMKM**QHQRQQADHANEANYARGTRLPLSGEGPTSQPNSSKQT**VLWSWQAIDAA 60
Db 1 MMMMMMKM**QHQRQQADHANEANYARGTRLPLSGEGPTSQPNSSKQT**VLWSWQAIDAA 60

Qy 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQYAKSKKQGNSSNRPARALFCLS**LNNPIRRACI 120
Db 61 RQAKAAQTMSTSAPPVGSL**SQRKRQQYAKSKKQGNSSNRPARALFCLS**LNNPIRRACI 120

Qy 121 SIVEWKPF**DIFILLAI**FANCVALAIYIPFPEDDSNSTNHNL**EKV**YEAFLIIFTVETFLKI 180
Db 121 SIVEWKPF**DIFILLAI**FANCVALAIYIPFPEDDSNSTNHNL**EKV**YEAFLIIFTVETFLKI 180

Qy 181 IAYGLLHP**N**AYVRNGWNLLDFVIVVGLFSVILEQLTKETEGGNHSSGKSGGF**DVK**ALR 240
Db 181 IAYGLLHP**N**AYVRNGWNLLDFVIVVGLFSVILEQLTKETEGGNHSSGKSGGF**DVK**ALR 240

Qy 241 AFRVLRPLRLVSGVPSL**QVVLNSI**KAMVPLL**HIALLVLFVII**IYAIIGLELF**IGKMHKT** 300
Db 241 AFRVLRPLRLVSGVPSL**QVVLNSI**KAMVPLL**HIALLVLFVII**IYAIIGLELF**IGKMHKT** 300

Qy 301 CFFADSDIV**AEEDPAPCAFSGNGRQCTANGTECRSGWVGPNGITNF**DNFAFAMLT**VFC**Q 360
Db 301 CFFADSDIV**AEEDPAPCAFSGNGRQCTANGTECRSGWVGPNGITNF**DNFAFAMLT**VFC**Q 360

Qy 361 ITMEGWT**DVLYWVND**AI**GWEWPWVYF**VSLIILGSFFVNLNLGVLSGEFSKEREKAKARG 420
Db 361 ITMEGWT**DVLYWVND**AI**GWEWPWVYF**VSLIILGSFFVNLNLGVLSGEFSKEREKAKARG 420

Qy 421 DFQKLRE**KQQLEEDLKGYLDWIT**Q**AEDIDPNEEEGGEEGKRNTSMPTSETESVN**TENVS 480
Db 421 DFQKLRE**KQQLEEDLKGYLDWIT**Q**AEDIDPNEEEGGEEGKRNTSMPTSETESVN**TENVS 480

Qy 481 GEGENRGCCGSL**WCWRRRGAAKAGPSGCRRWGQAI**SKSLSRRWRWNRFNRRRCRAAV 540
Db 481 GEGENRGCCGSL-----C---Q**AISKS**SKSLSRRWRWNRFNRRRCRAAV 520

Qy 541 KSVTFYWLVIVLVFLNTLT**ISSEHYNQPDWL**TQ**IDIANKVL**LAFTCEMLVKMYS**LG**Q 600
Db 521 KSVTFYWLVIVLVFLNTLT**ISSEHYNQPDWL**TQ**IDIANKVL**LAFTCEMLVKMYS**LG**Q 580

Qy 601 AYFVSLFNR**RDCFVVCGGITETILVE**LEIMSP**LGI**SVFRCV**RLRIFKVTRHWT**SLNV 660
Db 581 AYFVSLFNR**RDCFVVCGGITETILVE**LEIMSP**LGI**SVFRCV**RLRIFKVTRHWT**SLNV 640

Qy 661 ASLLNSM**KSIAS**LLLLFLIII**FSLLGMQLFGKFN**DET**QTKRSTFDNF**PQALLTVFQ 720
Db 641 ASLLNSM**KSIAS**LLLLFLIII**FSLLGMQLFGKFN**DET**QTKRSTFDNF**PQALLTVFQ 700

Qy 721 ILTGEDWNA**VMYDGIMAYGGPSSSGMIVCIYFI**ILFICGNY**ILLNVFLAIAVDNLADAES** 780
Db 701 ILTGEDWNA**VMYDGIMAYGGPSSSGMIVCIYFI**ILFICGNY**ILLNVFLAIAVDNLADAES** 760

Qy 781 LNTAQKEEAEK**ERKKI**ARKESLENK**NNKPEV**N**QIANSDNKVT**IDDYREEED**KDPYPP** 840
Db 761 LNTAQKEEAEK**ERKKI**ARKESLENK**NNKPEV**N**QIANSDNKVT**IDDYREEED**KDPYPP** 820

Qy 841 CDVPVGEEEEEDEPEVPAGPRPRRI**SELNMKEKIAPIEGSAFFILSKTNPIRVGCH** 900
Db 821 CDVPVGEEEEEDEPEVPAGPRPRRI**SELNMKEKIAPIEGSAFFILSKTNPIRVGCH** 880

Qy 901 KLINHH**IFTNL**LV**FIMLSSA**ALA**EDPIRSHSFRNT**IL**GYFDY**AFT**TAIFTVE**ILL**KMTT** 960
Db 881 KLINHH**IFTNL**LV**FIMLSSA**ALA**EDPIRSHSFRNT**IL**GYFDY**AFT**TAIFTVE**ILL**KMTT** 940

Qy 961 FGAFLHK**GAFCRNYFNLLDML**LV**VGVSLSFGIQSSA**ISVVKILRVL**VLPLRAINRAKG** 1020
Db 941 FGAFLHK**GAFCRNYFNLLDML**LV**VGVSLSFGIQSSA**ISVVKILRVL**VLPLRAINRAKG** 1000

Qy 1021 LKHVVQC**VFAIR**T**IGNIMIVTTLLQFM**FA**CIGVQLFKGKF**Y**RCTDEA**KNP**EECRGLFI** 1080
Db 1001 LKHVVQC**VFAIR**T**IGNIMIVTTLLQFM**FA**CIGVQLFKGKF**Y**RCTDEA**KNP**EECRGLFI** 1060

Qy 1081 LYKDGDVDSPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1140
|||
Db 1061 LYKDGDVDSPVVRERIWQNSDFNFDNVLSAMMALFTVSTFEGWPALLYKAIDSNGENIGP 1120

Qy 1141 IYNHRVEISIFFIYIIIVIAFFMMNIIVFGFIVTFQEQQEKEYKNCELDKNQRQCVEYAL 1200
|||
Db 1121 IYNHRVEISIFFIYIIIVIAFFMMNIIVFGFIVTFQEQQEKEYKNCELDKNQRQCVEYAL 1180

Qy 1201 KARPLRRYIPKNPYQYKFVWYVVNSSPFEYMMFVLIMLNTLCIAMQHYEQSKMFNDAMDIL 1260
|||
Db 1181 KARPLRRYIPKNPYQYKFVWYVVNSSPFEYMMFVLIMLNTLCIAMQHYEQSKMFNDAMDIL 1240

Qy 1261 NMVFTGVFTVEMVLKVIAPKPKGYFSDAWNTFDSLIVIGSIDIALSEAD----- 1310
|||
Db 1241 NMVFTGVFTVEMVLKVIAPKPKGYFSDAWNTFDSLIVIGSIDIALSEADPTESENPVPV 1300

Qy 1311 -----NSEESNRISITFFRLFRVMRLVKLLSRGEIRTLWTFIKSFQALPYVALLIAML 1365
|||
Db 1301 TATPGNSEESNRISITFFRLFRVMRLVKLLSRGEIRTLWTFIKSFQALPYVALLIAML 1360

Qy 1366 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTPQAVLLLFRCATGEAWQEIMLACLPGKL 1425
|||
Db 1361 FFIYAVIGMQMFGKVAMRDNNQINRNNNFQTPQAVLLLFRCATGEAWQEIMLACLPGKL 1420

Qy 1426 CDPESDYNPGEEYTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1485
|||
Db 1421 CDPESDYNPGEEHTCGSNFAIVYFISFYMLCAFLIINLFVAVIMDNFDYLTRDWSILGPH 1480

Qy 1486 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRIQPPLGFGLCPHRVACKRLVAMNMPLNS 1545
|||
Db 1481 HLDEFKRIWSEYDPEAKGRIKHLDVVTLLRIQPPLGFGLCPHRVACKRLVAMNMPLNS 1540

Qy 1546 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIKWKKTSKMLLDQVPPAGDDE 1605
|||
Db 1541 DGTVMFNATLFAVLRTALKIKTEGNLEQANEELRAVIKKIKWKKTSKMLLDQVPPAGDDE 1600

Qy 1606 VTVGKFYATFLIQDYFRKFKKRKEQGLVGKYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1665
|||
Db 1601 VTVGKFYATFLIQDYFRKFKKRKEQGLVGKYPAKNTTIALQAGLRTLHDIGPEIRRAISC 1660

Qy 1666 DLQDDEPEETKREEEEVDVKRNGALLGNHVNHSRDRDSLQQTTTTHRPLHVQRPSIPP 1725
|||
Db 1661 DLQDDEPEETKREEEEVDVKRNGALLGNHVNHSRDRDSLQQTTTTHRPLHVQRPSIPP 1720

Qy 1726 ASDTEKPLFPAGNSVCHNHHNHNSIGKQVPTSTNANLNNAAMSAAHGKRPSIGNLEHV 1785
|||
Db 1721 ASDTEKPLFPAGNSVCHNHHNHNSIGKQVPTSTNANLNNAAMSAAHGKRPSIGNLEHV 1780

Qy 1786 SENGHSSHKHIREPQRRSSVKRTRYETYIIRSDSGDEQLPTICREDPEIHGYFRDPHCL 1845
|||
Db 1781 SENGHSSHKHIREPQRRSSVKRTRYETYIIRSDSGDEQLPTICREDPEIHGYFRDPHCL 1840

Qy 1846 GEQEYFSSEPCYEDDSSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1905
|||
Db 1841 GEQEYFSSEPCYEDDSSPTWSRQNYGYYSRYPGRNIDSERPRGYHHPQGFLEDDDSPVCY 1900

Qy 1906 DSRRSPRRLLPPTPASHRRSSNFECLRRQSSQEEVPSSPIFPHRTALPLHLMQQQIMA 1965
|||
Db 1901 DSRRSPRRLLPPTPASHRRSSNFECLRRQSSQEEVPSSPIFPHRTALPLHLMQQQIMA 1960

Qy 1966 VAGLDSSKAQKYSRSHSTRSWATPPATPPYRDWTPCYTPLIQVEQSEALDQVNGSLPSLH 2025
|||
Db 1961 VAGLDSSKAQKYSRSHSTRSWATPPATPPYRDWTPCYTPLIQVEQSEALDQVNGSLPSLH 2020

Qy 2026 RSSWYTDEPISYRTFTPASLTVPSSFRNKSNDKQRSADSLVEAVLISEGLGRYARDPKF 2085
|||
Db 2021 RSSWYTDEPISYRTFTPASLTVPSSFRNKSNDKQRSADSLVEAVLISEGLGRYARDPKF 2080

Qy 2086 VSATKHEIADACDLTIDEMESAASTLLNGNRPRANGDVGPLSHRQDYELQDFGPGYSDE 2145
|||

Db 2081 VSATKHEIADACDLTIDEMESAASTLLNGNVRPRANGDVGPLSHRQDYELQDFGPGYSDE 2140
Qy 2146 EPDPGRDEEDLADEMAGICITTL 2166
| | | | | | | | | | | | | | | |
Db 2141 EPDPGRDEEDLADEMAGICITTL 2161