Politechnika Wrocławska

Wydział Elektroniki

Wizualizacja Danych Sensorycznych

Wizualizacja rozkładu ciśnienia cieczy na podstawie symulacji komputerowej

Prowadzący:
Dr inż. Bogdan Kreczmer

Studenci:
Adam Balawender
Krzysztof Kwieciński

Semestr letni 2014/2015

1 Opis projektu

Zgodnie z tematem projektu zajmiemy się komputerową symulacją zachowania cieczy oraz wizualizacją jej stanu i rozkładu ciśnienia w zbiorniku z płynem.

Symulacja będzie obejmowała ruch cieczy w przekroju 2D wybranego naczynia. Ciecz zostanie przedstawiona na płaszczyźnie jako zbiór oddziaływujących ze sobą cząsteczek. Postaramy się, żeby jej zachowanie było możliwie zbliżone do rzeczywistego. Ruch płynu zostanie zamodelowany metodą numeryczną SPH (smoothed particle hydrodynamics - wygładzona hydrodynamika cząstek). Pozwoli to na realistyczne odwzorowanie zachowania cieczy. Możliwe będzie badanie cieczy o różnych parametrach, dlatego też modelowane będą jej właściwości fizyczne: gęstość i lepkość. Dodatkowo mierzone będzie ciśnienie cieczy i zostanie ono zwizualizowane jako odcień koloru płynu. Im będzie on ciemniejszy, tym wyższe ciśnienie będzie odzwierciedlał.

Najistotniejszymi funkcjonalnościami aplikacji będą:

- symulacja zachowania cieczy w zależności od zadanych warunków początkowych,
- możliwość przedefiniowania parametrów cieczy (gęstości, lepkości),
- możliwość obserwacji wyniku symulacji (położenia cząsteczek i rozkładu ciśnień).

2 Plan pracy

2.1 Podział obowiązków

Projekt zakłada powiązanie symulacji numerycznej (backend) z aplikacją prezentującą wyniki w formie graficznej (frontend). Za tę pierwszą odpowiedzialny będzie Adam Balawender, za drugą Krzysztof Kwieciński. Obie części powinny mieć możliwość uruchomienia niezależnego, co ułatwi ich testowanie na wstępnych etapach oraz ich ocenę na końcowym etapie projektu.

2.2 Harmonogram

Tydzień	Adam	Krzysztof
I	Opis projektu	
II	Przegląd bibliotek Qt, szkic GUI	
III	Zapoznanie się z metodą SPH (Smoothed Particle Hydrodynamics)	
IV	Ustalenie struktur danych oraz API modułów	
V	Implementacja klas zbiornika oraz czą- steczek cieczy	Stworzenie statycznej wizualizacji zbiornika
VI	Implementacja metod uaktualniania położenia cząsteczek	Dodanie wizualizacji położenia cząstek cieczy
VII	Analiza błędów działania programu	
VIII	Skorygowanie działania programu	
IX	Wyznaczanie ciśnienia w punkach zbiornika	Wizualizacja ciśnienia w punktach
X	Weryfikacja projektu z założeniami	
XI	Odpowiednie modyfikacje programu	
XII	Napisanie raportu końcowego	

2.3 Kamienie milowe

- K1. Przeanalizowanie artykułów na temat SPH i zapoznanie się z tą metodą
- K2. Zaimplementowanie struktur danych, modelu cieczy i relacji między cząsteczkami
- K3. Wizualizacja symulowanego stanu cieczy
- K4. Wizualizacja ciśnienia w poszczególnych punktach zbiornika
- K5. Skończona dokumentacja

2.4 Diagram Gantta

3 Notatka dla Prowadzącego

Szanowny Panie Doktorze, Przypominamy, że na drodze wyjątku zgodził się Pan przyjąć opis naszego projektu wzbogacony o podział harmonogramu między członków grupy z pominięciem kary za spóźnienie.

Rysunek 1: Diagram Gantta