

# Mestrado Farmácia Qui-Quadrado

Carina Silva

<u>carina.silva@estesl.ipl.pt</u>

## **SUMÁRIO**

## Testes de hipóteses não-paramétricos

Teste de Independência do Qui-quadrado Teste de Homogeneidade do Qui-quadrado Teste Exato de Fisher

### Teste do Qui-quadrado

Uma das preocupações de muitos investigadores é saber que variáveis estão associadas, de que forma e intensidade. O teste do Qui-quadrado é uma forma de analisar a relação entre variáveis qualitativas (exclusivamente). Quando as variáveis são quantitativas, pode-se proceder a uma categorização e assim aplicar o teste do Qui-quadrado.

Este teste é adequado para testar se:

- Duas ou mais variáveis são independentes Teste do qui-quadrado para a independência
- A homogeneidade de duas ou mais populações relativamente a uma variável –Teste do qui-quadrado para a homogeneidade

Ambas as situações têm as mesmas propriedades, o que difere é a formulação das hipóteses e como consequência as conclusões.

Os dados são apresentados numa tabela de contingência de dupla entrada ou bidimensional (por se estar a considerar apenas duas variáveis).

Tabela do tipo r×c:

|           |                           | Variável 1       |     |                           |     | n <sub>j.</sub> |                 |
|-----------|---------------------------|------------------|-----|---------------------------|-----|-----------------|-----------------|
|           |                           | $\mathbf{B}_{1}$ | ••• | $\mathbf{B}_{\mathrm{j}}$ | ••• | B <sub>c</sub>  |                 |
|           | $\mathbf{A}_{1}$          | O <sub>11</sub>  | ••• | $O_{1j}$                  | ••• | O <sub>1c</sub> | O <sub>1.</sub> |
| Variável2 | •••                       | ••               | ••• | •••                       | ••• | •••             | •••             |
|           | $\mathbf{A}_{\mathbf{k}}$ | O <sub>k1</sub>  | ••• | $O_{kj}$                  | ••• | O <sub>kc</sub> | O <sub>k.</sub> |
|           | •••                       | •••              | ••• | •••                       | ••• | •••             | •••             |
|           | A <sub>r</sub>            | O <sub>r1</sub>  | ••• | $O_{rj}$                  | ••• | O <sub>rc</sub> | O <sub>r.</sub> |
|           | n <sub>.k</sub>           | O <sub>.1</sub>  |     | O <sub>-j</sub>           |     | O <sub>-c</sub> | n               |

Onde n é a dimensão da amostra e  $n = \sum_{j=1}^{c} O_{.j} = \sum_{k=1}^{r} O_{k.} = \sum_{k=1}^{r} \sum_{j=1}^{c} O_{kj}$ ,  $O_{kj}$  são as frequências observadas. As frequências relativas são dadas por  $f_{kj} = \frac{O_{kj}}{n}$   $f_{k.} = \frac{O_{k.}}{n}$   $f_{.j} = \frac{O_{.j}}{n}$ 

Para cada célula pode-se calcular as frequências esperadas:  $\hat{e}_{kj} = \frac{O_{k.} \times O_{.j}}{n}$ 

A discrepância entre as frequências observadas e as esperadas são dadas pela estatística:

$$\chi^{2} = \sum_{k=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{kj} - e_{kj}\right)^{2}}{e_{kj}} \cap \chi^{2}_{(r-1)(c-1)}$$

Teste do qui-quadrado para a independência

#### Hipóteses:

 $H_0$ : As variáveis X e Y são independentes vs.  $H_1$ : As variáveis X e Y não são independentes

Variáveis independentes ⇔ não existe associação entre X e Y

Teste do qui-quadrado para a homogeneidade

#### Hipóteses:

HO: As populações (grupos) são homogéneas relativamente ao critério X

VS.

H1: As populações (grupos) não são homogéneas relativamente ao critério X

### Estatística de teste sob as condições da H<sub>0</sub>:

$$\chi_0^2 = \sum_{k=1}^r \sum_{j=1}^c \frac{\left(O_{kj} - e_{kj}\right)^2}{e_{kj}}$$

#### Condições de aplicabilidade:

Numa tabela **2×2** todas as frequências esperadas são maiores ou iguais a 5. Caso esta condição não se verifique pode-se aplicar o **Teste Exato de Fisher**.

- •Numa tabela 2×c ou r×2 todas as frequências esperadas são maiores ou iguais a 1.
- •Numa tabela **r**×**c** menos de 20% do n.º total das células da tabela com frequências esperadas inferiores a 5 e nenhuma célula com frequência esperada inferior a 1.

Sempre que as condições não se verifiquem, o investigador, poderá agregar categorias das variáveis sempre que ache adequado.

#### Regra de decisão clássica:

se 
$$\chi_0^2 \ge \chi_{(\mathbf{r}-1)(\mathbf{c}-1);1-\alpha}^2$$
 então rejeitamos H0 ao nível de significância  $\alpha$  fixado

Regra de decisão que utiliza o valor\_p: 
$$valor_p = P(\chi^2 \ge \chi_0^2) = 1 - P(\chi^2 < \chi_0^2)$$

## Exemplo 1:

## O CHORO DOS BEBÉS

A experiência tem demonstrado que os bebés prematuros choram muito. Uma das razões sugeridas para tal facto é que estes bebés sentem falta do ambiente pré-natal.

Uma prática recente consiste em gravar os sons do interior do corpo da mãe antes do parto e posteriormente passar a gravação sempre que o bebé chora.

Interessado em estudar a relação entre a idade de um bebé e a sua reação ao ouvir a gravação, um obstetra realizou a experiência em bebés com 1, 5, 10 e 20 semanas de idade, obtendo os

| idade do | bebé * | reacção | Crosst | abulation |
|----------|--------|---------|--------|-----------|
|----------|--------|---------|--------|-----------|

|         |            |                | reacção               |                                      |       |
|---------|------------|----------------|-----------------------|--------------------------------------|-------|
|         |            |                | continuou<br>a chorar | parou<br>imediatament<br>e de chorar | Total |
| idade   | 1 semana   | Count          | 7                     | 34                                   | 41    |
| do bebé |            | Expected Count | 16,9                  | 24,1                                 | 41,0  |
|         | 5 semanas  | Count          | 15                    | 29                                   | 44    |
|         |            | Expected Count | 18,2                  | 25,8                                 | 44,0  |
|         | 10 semanas | Count          | 17                    | 19                                   | 36    |
|         |            | Expected Count | 14,9                  | 21,1                                 | 36,0  |
|         | 20 semanas | Count          | 23                    | 6                                    | 29    |
|         |            | Expected Count | 12,0                  | 17,0                                 | 29,0  |
| Total   |            | Count          | 62                    | 88                                   | 150   |
|         |            | Expected Count | 62,0                  | 88,0                                 | 150,0 |

Teste ao nível de significância de 5%, se a idade do bebé é independente da reação.

## **RESOLUÇÃO:**

### HIPÓTESES:

H0: A idade do bebé e a reacção são independentes

VS.

H1: A idade do bebé e a reacção não são independentes

Caminho no SPSS: analyse $\rightarrow$ descriptive statistics $\rightarrow$ crosstabs $\rightarrow$ statistics $\rightarrow$ chi-square...

## **Output:**

### **Chi-Square Tests**

|                                 | Value               | df | Asymp. Sig.<br>(2-sided) |
|---------------------------------|---------------------|----|--------------------------|
| Pearson Chi-Square              | 28,666 <sup>a</sup> | 3  | ,000                     |
| Likelihood Ratio                | 30,108              | 3  | ,000                     |
| Linear-by-Linear<br>Association | 28,311              | 1  | ,000                     |
| N of V <mark>a</mark> lid Cases | 150                 |    |                          |

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 11,99.

### **Exemplo 2:**

Pretende-se estudar o efeito de duas vacinas da gripe em dois grupos distintos de indivíduos, um grupo do Norte do país e o outro do Sul. Após se ter aplicado a vacina registaram-se os dados relativamente ao facto de terem ou não contraído o vírus da gripe durante o Inverno:

gripe \* grupo Crosstabulation

|       |     |                | grupo |       |        |
|-------|-----|----------------|-------|-------|--------|
|       |     |                | norte | sul   | Total  |
| gripe | não | Count          | 3     | 18    | 21     |
|       |     | Expected Count | 8,9   | 12,1  | 21,0   |
|       |     | % of Total     | 3,8%  | 23,1% | 26,9%  |
|       | sim | Count          | 30    | 27    | 57     |
|       |     | Expected Count | 24,1  | 32,9  | 57,0   |
|       |     | % of Total     | 38,5% | 34,6% | 73,1%  |
| Total |     | Count          | 33    | 45    | 78     |
|       |     | Expected Count | 33,0  | 45,0  | 78,0   |
|       |     | % of Total     | 42,3% | 57,7% | 100,0% |

Para um nível de significância de 5%, diga se os dois grupos são homogéneos relativamente ao sucesso da vacina.

## **RESOLUÇÃO:**

### HIPÓTESES:

HO: A contração do vírus da gripe é homogénea nas duas zonas do país

H1: A contração do vírus da gripe não é homogénea nas duas zonas do país

## **Chi-Square Tests**

|                                 | Value              | df | Asymp. Sig. (2-sided) | Exact Sig. (2-sided) | Exact Sig.<br>(1-sided) |
|---------------------------------|--------------------|----|-----------------------|----------------------|-------------------------|
| Pearson Chi-Squa                | 9,245 <sup>b</sup> | 1  | ,002                  |                      |                         |
| Continuity Correct              | 7,741              | 1  | ,005                  |                      |                         |
| Likelihood Ratio                | 10,192             | 1  | ,001                  |                      |                         |
| Fisher's Exact Tes              |                    |    |                       | ,004                 | ,002                    |
| Linear-by-Linear<br>Association | 9,126              | 1  | ,003                  |                      |                         |
| N of Valid Cases                | 78                 |    |                       |                      |                         |

a. Computed only for a 2x2 table

b. 0 cells (,0%) have expected count less than 5. The minimum expected 8,88.

Exercícios 5 e 6 da Ficha 3 Base de dados: GLICEMIA\_CEREBRO.sav