Hochschule Reutlingen Fakultät Technik Studiengang Mechatronik Bachelor

Praktikum - Regelungstechnik II

Versuch 1 – Grundlagen

Name:	
Gruppe:	
Mitarbeiter:	
Endtestat:	
Datum:	

Praktikum durchzuführen mit Simulationssoftware WinFact

<u>Abtasten</u>	zeitko	ntinuie	erlicher	Signale	:

Ein zeitkontinuierliches Sinussignal mit der Funktion $x(t) = \sin(wt)$ und der Kreisfrequenz ω =50 Hz soll mittels eines Abtast-Haltegliedes so abgetastet werden, dass es eindeutig rekonstruiert werden kann.

a) Wie lautet die Bedingung, nach der laut Abtasttheorem ein zeitkontinuierliches

Signal durch seine Abtastwerte <u>eindeutig</u> rekonstruiert werden kann?
b) Berechnen Sie die Abtastzeit mit der das Sinussignal mindestens abgetastet
werden muss um es eindeutig zu beschreiben.
c) Simulieren sie die Abtastung für die Abtastintervalle $T_A = 0.12 \text{ s}$, $T_A = 0.09 \text{ s}$,
$T_A = 0.06 \text{ s und } T_A = 0.02 \text{ s.}$
Drucken Sie für jedes Abtastintervall den Zeitverlauf des Eingangssignals und des
abgetasteten Signals (in einem Diagramm) aus.
d) Welcher Effekt lässt sich hierbei beobachten und wodurch wird er hervorgerufen?

e) Simulieren	Sie mit \	WinFact die	e Abtastun	ig des S	Sinussi	gnals im	Zeitber	eich v	on
[0;1sec],	wobei da	ıs abgetast	ete Signal	mittels	eines	Tiefpassf	ilters 1	.Ordnu	ıng
wieder als z	zeit- konti	nuierliches	Signal mit	ausgeg	eben w	erden so	II.		

Verwenden Sie ein Tiefpasselement für das gilt: $G(s) = \frac{1}{sT_I + 1}$ mit $T_1 = 0.05 \, s; T_A = 0.02 \, s$

f)	Welcher Unterschied ist zwischen Eingangs- und Ausgangssignal bezüglich des
	zeitlichen Verlaufs festzustellen?

Digitale Übertragungsglieder

Modellieren und testen Sie folgende digitalen Übertragungsglieder (Filter) in WinFact.

- 1. Tiefpass 1.Ordnung (IIR) -> PT1-Glied mit $K_p = 3$ und $T_1 = 4s$
- 2. Hochpass 1. Ordnung (IIR) -> DT1-Glied mit K_D =3s und T_1 =4s

Vorgehensweise:

- Aufstellen der Übertragungsfunktionen im s-Bereich inklusive Halteglied
- Transformation in den z-Bereich über Korrespondenztabelle (normierte Darstellung)
- Darstellung als Strukturplan (Direktstruktur 2)
- Aufbau eines Simulationsmodells in WinFact
- Test mit je zwei sinnvollen Testsignalen
- 3. **PID- Regler (IIR)** mit $K_P=3$ und $T_N=4s$ und $T_V=1s$

Vorgehensweise:

- Aufstellen der Übertragungsfunktion im s-Bereich (additive Darstellung)
- Transformation in den Z-Bereich über die Rechteckregel Typ II
- Aufstellen des Bildungsalgorithmus
- Darstellung als Strukturplan (Direktstruktur 2)
- Aufbau eines Simulationsmodells in WinFact
- Test mit je zwei sinnvollen Testsignalen

4. Gleitender Mittelwertbilder über 4 Werte (FIR)

- Aufstellen Bildungsalgorithmus
- Darstellung als Strukturplan
- Aufbau eines Simulationsmodells in WinFact
- Test mit je zwei sinnvollen Testsignalen

Notieren Sie ihre Berechnungen / Ergebnisse der **Punkte 1-4** jeweils auf einem Zusatzblatt und kommentieren Sie kurz ihre Ergebnisse. Speichern Sie bitte sämtliche Winfact- Programme ab und drucken Sie die Sprungantwort jedes Übertragungsgliedes aus.

Hinweise:

- Verwenden sie zur Modellierung den von ihnen erstellten Strukturplan
- Passen Sie die Simulationsparameter (Simulationsschrittweite, Simulationsdauer) jeweils an.
- Verwenden sie als **Abtastzeit T = 0,5s**.
- Zur Überprüfung ihrer Ergebnisse: Vergleichen sie s- und z-Bereich in der Simulation