Introduction to Real-Time Systems

Minsoo Ryu

RTCC Lab. at Hanyang University

What is Real-Time Computing?

■ Misconceptions

- Real-time computing is equivalent to fast computing
- The objective of real-time computing is to minimize the response time of a given set of tasks

☐ Theoretical definition

- The correctness of computing depends not only on the correctness of its logical result but also on the result delivery time
- In addition, real-time computing must be predictable

Classification of Timing Requirements

☐ Three types of timing requirements

- Freshness -> deadline
 - The time delay for data to flow through the system
- Separation -> period
 - The time interval between two consecutive activations (completions)
- Correlation -> synchronization
 - The time skew between several inputs to produce an output

Typical Real-Time Systems

- ☐ Automatic control systems -> deadline,period
- Such systems monitor and control their environment
- □ Inevitably associated with hardware devices
 - Sensors: Collect data from the system environment
 - Actuators: Change (in some way) the system's environment
- □ Time is critical
 - Real-time systems MUST respond within specified times

Real-Time Control System Structure

A Simple RT Control System Model

SISO (Single Input Single Output) control loop

Control Loop Implementation

☐ Pseudo code for the SISO control system

```
set timer to interrupt periodically with period T; at each timer interrupt \mathbf{do} do analog-to-digital conversion to get y; compute control output u; output \underline{\mathbf{u}} and do digital-to-analog conversion; \mathbf{od}
```

- T (sampling period)
 - Design choice between a lower bound and an upper bound
- ☐ Timing requirements
 - Control systems have periodicity requirements, and therefore deadline requirements to complete periodic jobs

Other Applications

- ☐ Air traffic and flight control
 - Hierarchy model
- □ Other applications include
 - Radar surveillance system
 - Robot control system
 - Cruise control system

```
1. requirement
real time
time req 가
```

2. design

behavior (real time scheduling)

3. implementation

time analysis

-> worst case

2. binary

, cache miss & branch

4. v&v(verification&validation) time requirement

Hard and Soft Real-Time Systems

- ☐ Hard deadline
 - A deadline miss results in a catastrophe
 - Probabilistic perspective: deadline miss probability is zero
- ☐ Soft deadline
 - Deadline misses are allowed, but degrades system performance
 - Probabilistic perspective: deadline miss probability is small
- ☐ Firm deadline
 - Completing a task after its deadline is not useful and may even be harmful

Hard and Soft Real-Time Systems

□ Guaranteed service

- The user wants guarantees on services
- Hard real-time or soft real-time guarantees
- Hard real-time applications
 - Control systems
 - Database systems
- Soft real-time applications
 - Multimedia and network applications with service guarantees

☐ Best-effort service

The system attempts to provide best services with no guarantees

RT Scheduling: RM (Rate Monotonic)

☐ Assumptions

Processes have periods, worst-case execution times (WCETs), and deadlines

☐ Scheduling policy

- Give higher priorities to tasks with shorter periods
- Preemptive static priority scheduling

Optimality

 If a feasible static priority assignment exists for some process set, the RM priority assignment is feasible for that process set

RT Scheduling: RM (Rate Monotonic)

☐ Consider the following tasks

- Process XIII: period = 20, WCET = 10, deadline = 20
- Process Y□: period = 30, WCET = 8, deadline = 30
- Process Z□: period = 40, WCET = 4, deadline = 40

☐ Schedulability test

- **CPU utilization:** $U = \sum_{i=1}^{m} e_i / p_i$
- A set of m processes is schedulable if $U \le m(2^{1/m} 1)$
 - For large m, $m(2^{1/m} 1) \approx \ln 2 \approx 0.69$

RT Scheduling: EDF (Earliest Deadline First)

- □ Scheduling policy
 - Give higher priorities to tasks with earlier absolute deadlines
 - Preemptive dynamic priority scheduling
- Optimality
 - If a feasible dynamic priority assignment exists for some process set, the EDF priority assignment is feasible for that process set
- □ Schedulability test
 - A set of m processes is schedulable if and only if $U \le 1$

RT Scheduling: EDF (Earliest Deadline First)

☐ Consider the following tasks

- Process XIII: period = 20, WCET = 10, deadline = 20
- Process Y□: period = 30, WCET = 10, deadline = 30
- Process Z□: period = 40, WCET = 5, deadline = 40

Non-schedulable Behavior

☐ Consider the following tasks

- Process XII: period = 20, WCET = 10, deadline = 20
- Process Y□: period = 30, WCET = 8, deadline = 30
- Process Z□: period = 40, WCET = 15, deadline = 40

