Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 9. 27 kwietnia i 8 maja 2017

[Do zadań 1–3] Zakładamy, że zmienne X_1, X_2, X_3 są niezależne i mają ten sam ciągły rozkład o dystrybuancie F(x) i gęstości f(x). Tworzymy nowe zmienne losowe, mianowicie: $X_{(1)} = \min\{X_1, X_2, X_3\}, \ X_{(2)}$ to druga co do wielkości wartość, $X_{(3)} = \max\{X_1, X_2, X_3\}$.

- 1. Udowodnić, że $f_{(2)}(x) = 6 \cdot F(x) \cdot (1 F(x)) \cdot f(x)$. [Do zadań 2–3] Dodatkowo zakładamy, że $X_k \sim \mathrm{U}[0,a], \ k=1,2,3$.
- 2. Niech $Y_1 = \frac{X_1 + X_2 + X_3}{3}$, $Y_2 = X_{(2)}$, $Y_3 = \frac{X_{(1)} + X_{(3)}}{2}$. Udowodnić, że wartości oczekiwane są takie same: $\mathrm{E}\left(Y_1\right) = \mathrm{E}\left(Y_2\right) = \mathrm{E}\left(Y_3\right) = \frac{a}{2}$. WSK.: $\mathrm{E}\left(Y_1\right)$ z własności wartości oczekiwanej, $\mathrm{E}\left(Y_2\right)$ całkowanie, $Y_3 = \frac{3Y_1 Y_2}{2}$.
- 3. Wykazać, że : $V(Y_1) = \frac{a^2}{36}$, $V(Y_2) = \frac{a^2}{20}$. Wsk.: Wariancja sumy niezależnych zmiennych losowych, $E(Y_2^2)$ poprzez całkowanie.
- 4. Niech (X,Y) oznacza wybrany losowo punkt na płaszczyźnie. Załóżmy, że współrzędne X i Y są niezależne i podlegają rozkładowi N(0,1). Od zmiennej (X,Y) przechodzimy do zmiennej (R,Θ) , gdzie R i Θ są współrzędnymi biegunowymi punktu (X,Y). Wykazać, że gęstość zmiennej (R,Θ) określona jest wzorem

$$g(r,\Theta) = \frac{1}{2\pi} r \cdot \exp\left\{-\frac{r^2}{2}\right\}, \quad \text{gdzie} \quad 0 < \Theta < 2\pi, \ 0 < r < \infty.$$

5. (2 p.) Znaczenie zmiennej (X,Y) niech będzie takie, jak w poprzednim zadaniu. Niech

$$D=R^2=X^2+Y^2, \quad \Theta=\tan^{-1}\frac{Y}{X}.$$

- (a) Udowodnić, że gęstość zmiennej (D,Θ) to: $f(d,\Theta) = \frac{1}{2} \exp\left\{-\frac{d}{2}\right\} \frac{1}{2\pi}$, gdzie $0 < d < \infty$, $0 < \Theta < 2\pi$.
- (b) Sprawdzić czy zmienne D i Θ są niezależne.
- (c) Jaki rozkład ma zmienna D?
- 6. (2 p.) Załóżmy, że niezależne zmienne losowe X,Y mają rozkłady, odpowiednio, Gamma(b,p) i Gamma(b,q). Niech U=X+Y oraz $V=\frac{X}{X+Y}$. Wykazać, że
 - (a) Zmienne U i V są niezależne.
 - (b) X + Y ma rozkład Gamma(b, p + q).
 - (c) Zmienna V ma rozkład Beta(p,q), tzn. $f(x) = \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1}, x \in [0,1].$

- 7. Niech zmienne X_1, X_2, \ldots, X_n będą niezależne i niech mają ten sam rozkład $\text{Exp}(\lambda)$. Niech $Y_i = X_1 + \ldots + X_i$, dla $i = 1, \ldots, n$. Wykazać, że dla gęstości zmiennej (Y_1, \ldots, Y_n) zachodzi wzór $f_{Y_1, \ldots, Y_n}(y_1, \ldots, y_n) = \lambda^n \exp(-\lambda y_n)$, gdzie $0 < y_1 < y_2 < \ldots < y_n$.
- 8. Dla gęstości $f_{Y_1,...,Y_n}(y_1,...,y_n)$ z poprzedniego zadania wykazać, że gęstość brzegowa względem zmiennej Y_n wyraża się wzorem $f_{Y_n}(y_n) = \lambda^n \frac{y_n^{n-1}}{(n-1)!} \exp(-\lambda y_n)$, gdzie $0 < y_n$.

Witold Karczewski