MEMORY HIERARCHY

Memory Hierarchy is to obtain the highest possible access speed while minimizing the total cost of the memory system

MAIN MEMORY

RAM and ROM Chips

Typical RAM chip

CS1	CS2	RD	WR	Memory function	State of data bus
0	0	х	х	Inhibit	High-impedence
0	1	X	X	Inhibit	High-impedence
1	0	0	0	Inhibit	High-impedence
1	0	0	1	Write	Input data to RAM
1	0	1	X	Read	Output data from RAM
1	1	Х	X	Inhibit	High-impedence

Typical ROM chip

MEMORY ADDRESS MAP

Address space assignment to each memory chip

Example: 512 bytes RAM and 512 bytes ROM

	Hexa	Address bus									
Component	address	10	9	8	7	6	5	4	3	2	1
RAM 1	0000 - 007F	0	0	0	Х	X	Х	Х	Х	Х	Х
RAM 2	0080 - 00FF	0	0	1	X	X	X	X	X	X	X
RAM 3	0100 - 017F	0	1	0	X	X	X	X	X	X	X
RAM 4	0180 - 01FF	0	1	1	X	X	X	X	X	X	X
ROM	0200 - 03FF	1	X	X	X	X	X	X	X	X	X

Memory Connection to CPU

- RAM and ROM chips are connected to a CPU through the data and address buses
- The low-order lines in the address bus select the byte within the chips and other lines in the address bus select a particular chip through its chip select inputs

Auxiliary Memory

- Most common auxiliary memory devices used in computer systems are magnetic disks and tapes.
- not used as frequently, are magnetic drums, magnetic bubble memory, and optical disks.
- important characteristics of any device are its access mode, access time, transfer rate, capacity, and cost.
- What do you mean by access time?
- Seek time ? Transfer rate?

Magnetic disk

- A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material.
- Bits are stored in the magnetized surface in spots along concentric circles called tracks.
- The tracks are commonly divided into sections called sectors.
- A disk system is addressed by address bits that specify the disk number, the disk surface, the sector number and the track within the sector.
- Disks that are permanently attached to the unit assembly and cannot be removed by the occasional user are called hard disks.
- A disk drive with removable disks is called a floppy disk.

Magnetic Tap

- A magnetic tape transport consists of the electrical, mechanical, and electronic components.
- tape is a strip of plastic coated with a magnetic recording medium.
- Bits are recorded as magnetic spots on the tape along several tracks.seven or nine bits are recorded simultaneously to form a character together with a parity bit.

Associative Memory

- Data processing applications-searching a item-searching algorithms-search by specifying address or location.
- A memory unit accessed by content is called an associative memory or content addressable memory (CAM).
- Memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location.

- When a word is written in an associative memory, no address is given.
- The memory is capable of finding an empty unused location to store the word.
- When a word is to be read from an associative memory, the content of the word, or part of the word, is specified.
- The memory locates all words which match the specified content and marks them for reading.
- More expensive than RAM.Why?
- Where used??

Hardware organization of Associative Memory

- suppose that the argument register A and the key register K have the bit configuration shown below.
 Only the three leftmost bits of A are compared with memory words because K has 1's in these positions.
- A 110 100011K 111 000000
- Word 1 110 010110 Match
- word i ilo o lo ilo mater
- Word 2 101 011101 No Match