Vorlesung 22 – 17.01.2024

- Temperierte Distributionen: Lineare stetige Abbildungen $T: \mathcal{S} \to \mathbb{C}$.
- $T: \mathcal{S} \to \mathbb{C}$ ist stetig, wenn für alle Folgen $\phi_k \in \mathcal{S}$ mit $\phi_k \stackrel{\mathcal{S}}{\to} \phi$ gilt, dass $T(\phi_k) \to T(\phi)$.
- Fourier-Transformation einer temperierten Distribution: $\mathcal{F}_x T(\phi) = T(\mathcal{F}_k \phi)$. Falls $f \in L^1(\mathbb{R}^n; \mathbb{C})$ ist $\mathcal{F}(Tf) = T_{\mathcal{F}f}$.
- Satz: Die Fouriertransformation $\mathcal{F}: \mathcal{S}' \to \mathcal{S}'$ hat die Eigenschaften $\mathcal{F}^{-1}(\mathcal{F}T) = T$, $\mathcal{F}(\partial_{x_j}T) = ik_j\mathcal{F}T$, $\partial_{k_j}\mathcal{F}T = \mathcal{F}(ix_jT)$, $\mathcal{F}(T*\phi) = \mathcal{F}T\mathcal{F}\phi$.
- Beispiele: $\mathcal{F}\delta_x = T_g \text{ mit } g(k) = e^{-ix \cdot k}$. Für $f(x) = e^{ik \cdot x}$ ist $\mathcal{F}(T_f) = (2\pi)^n \delta_k$. Für ein Polynom $P: \mathbb{R} \to \mathbb{C}$, $P(x) = \sum_{k=0}^n \alpha_k (ix)^k$ ist $\mathcal{F}(T_P) = \sum_{k=0}^n \alpha_k \partial^\alpha \delta_0$.