Artificial Intelligence II Winter term 2020/2021 October 30, 2020

Daniel Wulff wulff@rob.uni-luebeck.de

Exercise sheet 0

Submission deadline: November 6, 10:00 - This sheet will be corrected, but not be graded!

Task 1: Matlab Introduction

Prepare a MATLAB script called *myIntroduction* and perform the following tasks:

- a) Create the vectors $a,b \in \mathbb{R}^{1 \times 5}$ with uniformly distributed random numbers.
- b) Multiply the vectors a and b to get $c \in \mathbb{R}$ and $A \in \mathbb{R}^{5 \times 5}$. Transpose the vectors if necessary.
- c) Perform element-wise multiplication with a and b to get vector $e \in \mathbb{R}^{1 \times 5}$.
- d) Extract the elements at locations (1,2) and (2,3) from A
- e) Extract and concatenate the elements in the upper and lower rows from A.
- f) Set every value < 0.5 in A to 0 using logical indexing.
- g) Create a diagonal matrix $B \in \mathbb{R}^{3 \times 3}$ using magic().
- h) Solve Bx = f with $f = (1, 2, 3)^T$
- i) Compute the eivenvalues of B

Task 2: Nearest Neighbor

Add the following tasks to your MATLAB script *myIntroduction*. You received the following training data labeled with the classes 0 or 1:

x_1	2	2	2	3	3	4	4	5	7	7	8	9
x_2	5	6	8	4	6	5	9	9	7	9	8	7
y	0	0	0	0	0	0	1	1	1	1	1	1

You want to classify new datapoints U using nearest neighbor classification.

- a) Import the data into your matlab script and visualize it in a scatter plot. (Hint: use doc gscatter)
- b) Create the function [v, pred] = bruteForce(X, Y, U) and implement a brute force algorithm to classify U using a for-loop. The function returns the distance vector v that contains all distances between U and dataset X and the final classification pred. Use the function to classify the datapoints $U_1=(4,7)$ and $U_2=(7,5)$.
- c) Use the MATLAB function knnsearch() to perform a nearest neighbor classification of the datapoints U_1 and U_2 using a kd-tree. Compare the result to task b).

Please prepare all of your submissions in english!