CS 4110

Programming Languages & Logics

Command Equivalence

Intuitively, two commands are equivalent if they produce the same result under any store...

Definition (Equivalence of commands)

Two commands c and c' are equivalent (written $c \sim c'$) if, for any stores σ and σ' , we have

$$\langle \sigma, c \rangle \Downarrow \sigma' \iff \langle \sigma, c' \rangle \Downarrow \sigma'.$$

2

Command Equivalence

For example, we can prove that every **while** command is equivalent to its "unrolling":

Theorem

For all $b \in \mathbf{Bexp}$ and $c \in \mathbf{Com}$,

while b do $c \sim$ if b then (c; while b do c) else skip

Proof.

We show each implication separately...

• Q: Can you write a program that doesn't terminate?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.
- Q: How much space do we need to represent configurations during execution of an IMP program?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.
- Q: How much space do we need to represent configurations during execution of an IMP program?
- A: Can calculate a fixed bound!

Determinism

Theorem

 $\forall c \in \mathsf{Com}, \sigma, \sigma' \sigma'' \in \mathsf{Store}.$

if $\langle \sigma, c \rangle \Downarrow \sigma'$ and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

5

Determinism

Theorem

 $\forall c \in \mathsf{Com}, \sigma, \sigma' \sigma'' \in \mathsf{Store}.$

if $\langle \sigma, c \rangle \Downarrow \sigma'$ and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

Proof.

By structural induction on c...

5

Determinism

Theorem

 $\forall c \in \mathbf{Com}, \sigma, \sigma' \sigma'' \in \mathbf{Store}.$

if $\langle \sigma, c \rangle \Downarrow \sigma'$ and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

Proof.

By structural induction on c...

Proof.

By induction on the derivation of $\langle \sigma, c \rangle \Downarrow \sigma'$...

Derivations

Write $\mathcal{D} \Vdash y$ if the conclusion of derivation \mathcal{D} is y.

Derivations

Write $\mathcal{D} \Vdash y$ if the conclusion of derivation \mathcal{D} is y.

Example:

Given the derivation,

we would write: $\mathcal{D} \Vdash \langle \sigma, i := 42 \rangle \Downarrow \sigma[i \mapsto 42]$

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation \mathcal{D}' is an immediate subderivation of \mathcal{D} if $\mathcal{D}' \Vdash z$ where z is one of the premises used of the final rule of derivation \mathcal{D} .

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation \mathcal{D}' is an immediate subderivation of \mathcal{D} if $\mathcal{D}' \Vdash z$ where z is one of the premises used of the final rule of derivation \mathcal{D} .

In a proof by induction on derivations, for every inference rule, assume that the property *P* holds for all immediate subderivations, and show that it holds of the conclusion.

Large-Step Semantics

$$\begin{aligned} \mathsf{SKIP} & \frac{\langle \sigma, a \rangle \Downarrow n}{\langle \sigma, \mathsf{skip} \rangle \Downarrow \sigma} & \mathsf{ASSGN} \frac{\langle \sigma, a \rangle \Downarrow n}{\langle \sigma, x := a \rangle \Downarrow \sigma[x \mapsto n]} \\ & \mathsf{SEQ} \frac{\langle \sigma, c_1 \rangle \Downarrow \sigma' & \langle \sigma', c_2 \rangle \Downarrow \sigma''}{\langle \sigma, c_1; c_2 \rangle \Downarrow \sigma''} \\ & \mathsf{IF-T} \frac{\langle \sigma, b \rangle \Downarrow \mathsf{true} & \langle \sigma, c_1 \rangle \Downarrow \sigma'}{\langle \sigma, \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2 \rangle \Downarrow \sigma'} \\ & \mathsf{IF-F} \frac{\langle \sigma, b \rangle \Downarrow \mathsf{false} & \langle \sigma, c_2 \rangle \Downarrow \sigma'}{\langle \sigma, \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2 \rangle \Downarrow \sigma'} \\ & \mathsf{WHILE-T} \frac{\langle \sigma, b \rangle \Downarrow \mathsf{true} & \langle \sigma, c \rangle \Downarrow \sigma' & \langle \sigma', \mathsf{while} \ b \ \mathsf{do} \ c \rangle \Downarrow \sigma''}{\langle \sigma, \mathsf{while} \ b \ \mathsf{do} \ c \rangle \Downarrow \sigma''} \\ & \mathsf{WHILE-F} \frac{\langle \sigma, b \rangle \Downarrow \mathsf{false}}{\langle \sigma, \mathsf{while} \ b \ \mathsf{do} \ c \rangle \Downarrow \sigma''} \end{aligned}$$

8