1 Ito integral

Construction of Ito integral Ito integral $\int_0^1 B_s dB_s$ Ito integral $\int_0^1 s dB_s$ Ito integral $\int_0^1 s B_s dB_s$

2 High school integral

Construction of high school integral High school integral $\int_0^1 B_s ds$ High school integral $\int_0^1 s ds$ High school integral $\int_0^1 s B_s ds$

Construction of Ito integral

Stock price at beginning of day s B_s

Stock position at beginning of day s $f(s, B_s)$

P&L of 1 stock at end of day s $dB_s = B_{s+ds} - B_s$

P&L of stock position at end of day s $f(s, B_s)dB_s$

Cumulative P&L of stock positions up to end of day $t = \int_0^t f(s, B_s) dB_s$

Ito integral $\int_0^1 B_s dB_s$

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following Ito integral.

$$\int_0^1 B_s dB_s$$

$$\int_0^1 B_s dB_s = \frac{-3}{10}$$

Figure 1: Simulation of an Ito integral sample path $\int_0^1 B_s dB_s$ using a fair coin.

```
clear all; close all; clc; rng('default');
M=1; % Number of simulation
n=10; % Number of days per year
T=1; % Number of years in simulation
% Choice of coin
c=[1 1 -1 1 -1 -1 1 1 1 -1]';
increment=c/sqrt(n);
S=cumsum(increment); S=[zeros(1,M); S];
PL_Per_Share=increment; PL_Per_Share=[zeros(1,M); PL_Per_Share];
% Choice of stock position
position=1;
switch position
    case 1; p=[zeros(1,M); S(1:end-1,:)]; % B_s
    case 2; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n]; % s
    case 3; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n].*[zeros(1,M); S(1:end-1,:)]; % sB_s
end
PL=p.*PL_Per_Share;
Cumlative_PL=cumsum(PL);
plot(0:1/n:T,S,0:1/n:T,Cumlative_PL,'r'); grid on
xlabel('t'); ylabel('Us Dollar');
legend('Stock price sample path','Cumlative P&L sample path')
title('Simulation of an Ito integral sample path using a fair coin')
```


Figure 2: Five different Ito integral sample paths $\int_0^1 B_s dB_s$

```
clear all; close all; clc; rng('default');
M=5; % Number of simulation
n=252; % Number of days per year
T=1; % Number of years in simulation
% Choice of coin
coin=2;
switch coin
    case 1; c=randn(n*T,M); % normal coin
    case 2; c=2*random('bino',ones(n*T,M),0.5*ones(n*T,M))-1; % fair coin
    case 3; c=(random('bino',ones(n*T,M),.4*ones(n*T,M))-0.4)/sqrt(.4*.6); % unfair coin
end
increment=c/sqrt(n);
S=cumsum(increment); S=[zeros(1,M); S];
PL_Per_Share=increment; PL_Per_Share=[zeros(1,M); PL_Per_Share];
% Choice of stock position
position=1;
switch position
    case 1; p=[zeros(1,M); S(1:end-1,:)]; % B_s
    case 2; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n]; % s
    case 3; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n].*[zeros(1,M); S(1:end-1,:)]; % sB_s
end
PL=p.*PL_Per_Share;
Cumlative_PL=cumsum(PL);
% Plot of five different Ito integral sample paths with 250 days per year
color='rgbkm';
for i=1:M
    plot(0:1/n:T,Cumlative_PL(1:length(0:1/n:T),i),color(i));
    grid on; hold on
end
xlabel('t'); ylabel('Us Dollar');
title('Five different Ito integral sample paths')
```

Ito integral $\int_0^1 s dB_s$

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following Ito integral.

$$\int_0^1 s dB_s$$

$$\int_0^1 s dB_s = \frac{5}{(10)^{3/2}}$$

Figure 3: Simulation of an Ito integral sample path $\int_0^1 s dB_s$ using a fair coin.

Figure 4: Five different Ito integral sample paths $\int_0^1 s dB_s$

Ito integral $\int_0^1 sB_s dB_s$

Time

Therefore,

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following Ito integral.

$$\int_0^1 s B_s dB_s$$

0/10 1/10

3/10

4/10

5/10

 $\int_{0}^{1} sB_{s}dB_{s} = \frac{-17}{10^{2}}$

Figure 5: Simulation of an Ito integral sample path $\int_0^1 sB_sdB_s$ using a fair coin.

Figure 6: Five different Ito integral sample paths $\int_0^1 s B_s dB_s$

Construction of high school integral

Stock price at beginning of day s B_s

 $f(s, B_s)$ MMA position at beginning of day s

ds = (s + ds) - (s)P&L of 1 MMA at end of day s

P&L of MMA position at end of day s

 $f(s, B_s)ds$ $\int_0^t f(s, B_s)ds$ Cumulative P&L of MMA positions up to end of day t

High school integral $\int_0^1 B_s ds$

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following high school integral.

$$\int_0^1 B_s ds$$

Time Coin flip Conversion Cum sum B_t (Stock price) $dt = dt$ (P&L/Bond share) $f(t, B_t) = B_{t-dt}$ (Bond position) $f(t, B_t)dB_t$ (P&L) $\int_0^t f(s, B_s)dB_s$ (Cum P&L)	0/10 - 0 0 - - - -	$ \begin{array}{c} 1/10 \\ H \\ 1 \\ \hline 1 \\ \hline \sqrt{\frac{1}{10}} \\ \hline 0 \\ 0 \\ 0 \\ \end{array} $	$ \begin{array}{c} 2/10 \\ H \\ 1 \\ 2 \\ \frac{2}{\sqrt{10}} \\ \frac{1}{10} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{(10)^{3/2}} \\ \frac{1}{(10)^{3/2}} \end{array} $	$ \begin{array}{r} 3/10 \\ T \\ -1 \\ 1 \\ \frac{1}{\sqrt{10}} \\ \frac{1}{10} \\ \frac{2}{\sqrt{10}} \\ \frac{2}{(10)^{3/2}} \\ \frac{3}{(10)^{3/2}} \end{array} $	$4/10$ H 1 2 $\frac{2}{\sqrt{10}}$ $\frac{1}{10}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{(10)^{3/2}}$ $\frac{4}{(10)^{3/2}}$	$5/10$ T -1 1 $\frac{1}{\sqrt{10}}$ $\frac{1}{10}$ $\frac{2}{\sqrt{10}}$ $\frac{1}{(10)^{3/2}}$ $\frac{6}{(10)^{3/2}}$
Time Coin flip Conversion Cum sum B_t (Stock price) $dt = dt$ (P&L/Bond share) $f(t, B_t) = B_{t-dt}$ (Bond position) $f(t, B_t)dB_t$ (P&L) $\int_0^t f(s, B_s)dB_s$ (Cum P&L)		$\begin{array}{c} 6/10 \\ T \\ -1 \\ 0 \\ \frac{0}{\sqrt{10}} \\ \frac{1}{10} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{(10)^{3/2}} \\ \frac{7}{(10)^{3/2}} \end{array}$	$7/10$ H 1 $\frac{1}{\sqrt{10}}$ $\frac{\frac{1}{10}}{\sqrt{0}}$ $\frac{0}{\sqrt{10}}$ $\frac{0}{(10)^{3/2}}$ $\frac{7}{(10)^{3/2}}$	$\begin{array}{c} 8/10 \\ H \\ 1 \\ 2 \\ \frac{2}{\sqrt{10}} \\ \frac{1}{10} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{(10)^{3/2}} \\ \frac{8}{(10)^{3/2}} \end{array}$,	$ \begin{array}{c} 10/10 \\ T \\ -1 \\ 2 \\ \frac{2}{\sqrt{10}} \\ \frac{1}{10} \\ \frac{3}{\sqrt{10}} \\ \frac{3}{(10)^{3/2}} \\ \frac{13}{(10)^{3/2}} \end{array} $

$$\int_0^1 B_s ds = \frac{13}{(10)^{3/2}}$$

Figure 7: Simulation of a high school integral sample path $\int_0^1 B_s ds$ using a fair coin.

```
clear all; close all; clc; rng('default');
M=1; % Number of simulation
n=10; % Number of days per year
T=1; % Number of years in simulation
% Choice of coin
c=[1 1 -1 1 -1 -1 1 1 1 -1]';
increment=c/sqrt(n);
S=cumsum(increment); S=[zeros(1,M); S];
PL_Per_Bond_Share=[(1/n)*ones(1,M); (1/n)*ones(n*T,M)];
% Choice of bond position
position=1;
switch position
    case 1; p=[zeros(1,M); S(1:end-1,:)]; % B_s
    case 2; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n]; % s
    case 3; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n].*[zeros(1,M); S(1:end-1,:)]; % sB_s
end
PL=p.*PL_Per_Bond_Share;
Cumlative_PL=cumsum(PL);
plot(0:1/10:1,S,0:1/10:1,Cumlative_PL,'-r'); grid on
xlabel('t'); ylabel('Us Dollar');
legend('Stock price sample path','Cumlative P&L sample path')
title('Simulation of a high school integral sample path using a fair coin')
```


Figure 8: Five different high school integral sample paths $\int_0^1 B_s ds$

```
clear all; close all; clc; rng('default');
M=5; % Number of simulation
n=252; % Number of days per year
T=1; % Number of years in simulation
% Choice of coin
coin=2;
switch coin
    case 1; c=randn(n*T,M); % normal coin
    case 2; c=2*random('bino',ones(n*T,M),0.5*ones(n*T,M))-1; % fair coin
    case 3; c=(random('bino',ones(n*T,M),.4*ones(n*T,M))-0.4)/sqrt(.4*.6); % unfair coin
end
increment=c/sqrt(n);
S=cumsum(increment); S=[zeros(1,M); S];
PL_Per_Bond_Share=[(1/n)*ones(1,M); (1/n)*ones(n*T,M)];
% Choice of bond position
position=1;
switch position
    case 1; p=[zeros(1,M); S(1:end-1,:)]; % B_s
    case 2; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n]; % s
    case 3; p=[zeros(2,M); cumsum(ones(ceil(n*T)-1,M))/n].*[zeros(1,M); S(1:end-1,:)]; % sB_s
end
PL=p.*PL_Per_Bond_Share;
Cumlative_PL=cumsum(PL);
% Plot of five high school integral sample paths with 250 days per year
color='rgbkm';
for i=1:M
    plot(0:1/n:T,Cumlative_PL(1:length(0:1/n:T),i),color(i));
    grid on; hold on
end
xlabel('t'); ylabel('Us Dollar');
title('Five different high school integral sample paths')
```

High school integral $\int_0^1 s ds$

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following high school integral.

$$\int_0^1 s ds$$

Time	0/10	1/10	2/10	3/10	4/10	5/10
Coin flip	, —	H	H	T	H	T
Conversion	_	1	1	-1	1	-1
Cum sum	0	1	2	1	2	1
B_t (Stock price)	0	$\frac{1}{\sqrt{10}}$	$ \frac{\frac{2}{\sqrt{10}}}{\frac{1}{10}} $ $ \frac{1}{10}$	$ \frac{\frac{1}{\sqrt{10}}}{\frac{\frac{1}{10}}{\frac{2}{10}}} $	$\frac{2}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$
dt = dt (P&L/Bond share)	_	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$
$f(t, B_t) = t - dt$ (Bond position)	_	0	$\frac{10}{10}$	$\frac{\frac{10}{2}}{10}$	$ \begin{array}{c} \frac{1}{10} \\ \frac{3}{10} \\ 3 \\ 3 \end{array} $	$\frac{\frac{10}{4}}{10}$
$f(t, B_t)dB_t \text{ (P&L)}$	_	0	$\frac{1}{(10)^2}$	$\frac{2^{10}}{(10)^2}$	$\frac{3^{10}}{(10)^2}$	$ \begin{array}{c} \frac{1}{10} \\ \frac{4}{10} \\ \frac{4}{(10)^2} \end{array} $
$\int_0^t f(s, B_s) dB_s \text{ (Cum P&L)}$	_	0	$\frac{1}{(10)^2}$	$\frac{3}{(10)^2}$	$\frac{6}{(10)^2}$	$\frac{10}{(10)^2}$
Time		6/10	7/10	8/10	9/10	10/10
Time Coin flip		6/10 T	7/10 H	8/10 <i>H</i>	9/10 H	$\frac{10/10}{T}$
		,	,	,	,	,
Coin flip		T	H	H 1 2	H	T -1 2
Coin flip Conversion		T -1 0 0	H 1 1	H 1 2	H 1 3	$ \begin{array}{c} T \\ -1 \\ 2 \\ \frac{2}{\sqrt{10}} \end{array} $
Coin flip Conversion Cum sum		$ \begin{array}{c} T \\ -1 \\ 0 \\ \frac{0}{\sqrt{10}} \end{array} $	$\begin{array}{c} H \\ 1 \\ 1 \\ \frac{1}{\sqrt{10}} \end{array}$	H 1 2	$ \begin{array}{c} H \\ 1 \\ 3 \\ \frac{3}{\sqrt{10}} \end{array} $	$ \begin{array}{c} T \\ -1 \\ 2 \\ \frac{2}{\sqrt{10}} \end{array} $
Coin flip Conversion Cum sum B_t (Stock price)		$ \begin{array}{c} T \\ -1 \\ 0 \\ \frac{0}{\sqrt{10}} \end{array} $	$\begin{array}{c} H \\ 1 \\ 1 \\ \frac{1}{\sqrt{10}} \end{array}$	H 1 2	$ \begin{array}{c} H \\ 1 \\ 3 \\ \frac{3}{\sqrt{10}} \end{array} $	$ \begin{array}{c} T \\ -1 \\ 2 \\ \frac{2}{\sqrt{10}} \end{array} $
Coin flip Conversion Cum sum B_t (Stock price) $dt = dt$ (P&L/Bond share)		T -1 0 0	H 1 1	H	H 1 3	T -1 2

Therefore,

$$\int_0^1 s ds = \frac{45}{(10)^2} = 0.45$$

Remember we take only 10 ticks in a year. If we takes many ticks, this integral will converge to 0.5, which is a well-known integral in high school.

$$\int_{0}^{1} s ds = 0.5$$

Figure 9: Simulation of a high school integral sample path $\int_0^1 s ds$ using a fair coin.

Figure 10: Five different high school integral sample paths $\int_0^1 s ds$

High school integral $\int_0^1 s B_s ds$

We flips a fair coin 10 times and we get

HHTHTTHHHT

Using these coin flips construct a Brownian motion sample path B_t up to 1 year and then the following high school integral.

$$\int_0^1 s B_s ds$$

Time	0/10	1/10	2/10	3/10	4/10	5/10
Coin flip	_	H	H	T	H	T
Conversion	_	1	1	-1	1	-1
Cum sum	0	1	2	1	2	1
B_t	0	$\frac{1}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$
dt = dt	_	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$	
$h(t, B_t) = t - dt$	_	0	$\frac{\frac{1}{10}}{\frac{1}{10}}$	$\frac{\frac{1}{10}}{\frac{2}{10}}$	$\frac{\frac{3}{3}}{10}$	$\frac{\frac{1}{10}}{\frac{4}{10}}$
$g(t, B_t) = B_{t-dt}$	_	0	$\frac{1}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$
$f(t, B_t) = h(t, B_t)g(t, B_t)$	_	0	$\frac{1}{(10)^{3/2}}$	$\frac{4}{(10)^{3/2}}$	$\frac{3}{(10)^{3/2}}$	$\frac{8}{(10)^{3/2}}$
$f(t, B_t)dB_t$	_	0	$\frac{1}{(10)^{5/2}}$	$\frac{4}{(10)^{5/2}}$	$\frac{3}{(10)^{5/2}}$	
$\int_0^t f(s, B_s) dB_s$	_	0	$\frac{1}{(10)^{5/2}}$	$\frac{5}{(10)^{5/2}}$	$\frac{8}{(10)^{5/2}}$	
Time	(6/10	7/10	8/10	9/10	10/10
Coin flip		T	H	H	H	T
Conversion		-1	1	1	1	-1
Cum sum		0	1	2	3	2
B_t		$\frac{0}{\sqrt{10}}$	$\frac{1}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$	$\frac{3}{\sqrt{10}}$	$\frac{2}{\sqrt{10}}$
dt = dt		$\frac{1}{10}$	1	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$
$h(t, B_t) = t - dt$		$\frac{10}{5}$	$\frac{\overline{10}}{\frac{6}{10}}$	$\frac{10}{7}$	$\frac{\frac{10}{8}}{\frac{10}{10}}$	$\frac{9}{10}$
$g(t, B_t) = B_{t-dt}$		$\frac{10}{\sqrt{10}}$	$\frac{0}{\sqrt{10}}$	$\frac{10}{\sqrt{10}}$	$\frac{2^{10}}{\sqrt{10}}$	$\frac{3^{10}}{\sqrt{10}}$
$f(t, B_t) = h(t, B_t)g(t, B_t)$)	5	0	1	16	$\frac{\sqrt{10}}{(10)^{2/2}}$
$f(t,B_t)dB_t$, (1	5	()	$\frac{(10)^{3/2}}{7}$	$\frac{\overline{(10)^{3/2}}}{\frac{16}{(10)^{5/2}}}$	$\frac{(10)^{3/2}}{27}$
		$\frac{0)^{5/2}}{21}$	$\frac{10)^{5/2}}{21}$	$\frac{10)^{5/2}}{28}$	$(10)^{5/2}$ 44	$\frac{(10)^{5/2}}{71}$
$\int_0^t f(s, B_s) dB_s$	(1	$\frac{21}{0)^{5/2}}$	$\frac{21}{(10)^{5/2}}$	$\frac{28}{(10)^{5/2}}$	$\frac{44}{(10)^{5/2}}$	$\frac{71}{(10)^{5/2}}$

$$\int_0^1 s B_s ds = \frac{71}{(10)^{5/2}}$$

Figure 11: Simulation of a high school integral sample path $\int_0^1 s B_s ds$ using a fair coin.

Figure 12: Five different high school integral sample paths $\int_0^1 s B_s ds$