Réseaux, information et communications (INFO-F303)

Partie Théorie de l'Information

3. Entropie et codage efficace

Christophe Petit

Université libre de Bruxelles

Plan du cours

- 1. Notion de code
- 2. Source aléatoire et codes efficaces
- 3. Entropie et codage efficace
- 4. Compression sans perte
- 5. Canal bruité
- 6. Codes correcteurs d'erreurs
- 7. Codes linéaires
- 8. Quelques familles de codes linéaires
- A. Rappels mathématiques (chapitre 7.1 du syllabus)

Entropie et codage efficace

- ▶ But : quantifier l'information d'une source en fonction de la loi de probabilité
- ► Entropie : définitions et propriétés
- ► Inégalité de Gibbs
- Extension de la source
- Premier théorème de Shannon :
 - ► Entropie = mesure du codage le plus efficace
 - ► On peut se rapprocher asymptotiquement de l'efficacité maximale (par extension de la source)

Contexte

- Source aléatoire, indépendante identiquement distribuée
 - ► Chaque symbole s_i est associé à une probabilité $p_i > 0$, avec $\sum_{i=1}^q p_i = 1$
 - ► Indépendance :

$$\mathbb{P}[s_{i_1}s_{i_2}\ldots s_{i_n}]=p_{i_1}\cdot p_{i_2}\cdot \cdots \cdot p_{i_n}$$

► Comment *quantifier* l'information associée à un symbole ou une source?

Quantité d'information et probabilité d'occurence

- ▶ Quelle quantité d'information contenue dans "e", "z", "as" et "wo" pour un texte en français?
- ► Intuition : quantité d'information plus grande pour les symboles plus rares

Quantité d'information d'un symbole

Fonction de la probabilité associée au symbole

$$\mathcal{I}^*(\{s_i\}) = \mathcal{I}(p_i)$$

que l'on veut

- ▶ Positive $\mathcal{I}(p_i) \ge 0$
- ► Additive : \mathcal{I}^* ({ s_i, s_j }) = $\mathcal{I}(p_i \cdot p_j) = \mathcal{I}(p_i) + \mathcal{I}(p_j)$
- ► Continue

$$\mathcal{I}(p) = -\log_b p, \qquad b > 1$$

► Corollaire (Shannon, 1948) :

$$\mathcal{I}(p) = \mathcal{I}_b(p) = -\log_b p$$

avec b > 1

Démonstration

- ▶ On montre $\mathcal{I}(p^{\alpha}) = \alpha \cdot \mathcal{I}(p)$ pour tout $\alpha \in \mathbb{R}$
 - ▶ Vrai pour $\alpha = n \in \mathbb{Z}$, par l'axiome d'additivité
 - ▶ S'étend à $\alpha = 1/n$ avec $n \in \mathbb{Z}$ par manipulations
 - ▶ S'étend à $\alpha \in \mathbb{Q}$
 - ▶ S'étend à $\alpha \in \mathbb{R}$ par continuité
- ▶ On déduit $\mathcal{I}(p) = k \ln p$
- ▶ De plus k < 0 car $\mathcal{I}(p)$ positif et $p \le 1$

Entropie

L'entropie en base b d'une source / variable aléatoire S de distribution p_1, p_2, \ldots, p_q est la **quantité** d'information moyenne

$$H_b(S) = H_b(p_1, p_2, \dots, p_q) = -\sum_{i=1}^q p_i \log_b p_i$$

▶ Par continuité, on pose $0 \cdot \log 0 = 0$

Entropie d'une source binaire

▶ Pour une source binaire $p_1 = p$ et $p_2 = 1 - p$, on a

$$\mathcal{H}_2(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

Crédit image : Wikipedia

Propriétés de l'entropie

- 1. *H* est positive : $H(p_1, ..., p_q) \ge 0$
- 2. $H(p_1, \ldots, p_q) = H(p_1, \ldots, p_q, 0)$
- 3. $H(p_1, ..., p_q)$ est continue et symétrique en ses q variables
- 4. $H(p_1,\ldots,p_q) \leq H\left(\frac{1}{q},\ldots,\frac{1}{q}\right)$
- 5. H est cohérente : $H(p_1, ..., p_q) = H((p_1+p_2), p_3, ..., p_q) + (p_1+p_2)H(\frac{p_1}{p_1+p_2}, \frac{p_2}{p_1+p_2})$
- 6. On a $0 \le H_b(S) \le \log_b q$; entropie nulle ssi $\exists i : p_i = 1$; entropie maximale ssi $\forall i : p_i = \frac{1}{q}$

NB: propriétés 1-5 définissent l'entropie

Choix de l'unité d'information

- ► Entropie $H_b(S) = H_b(p_1, p_2, \dots, p_q) = -\sum_{i=1}^q p_i \log_b p_i$
- ▶ Choix de *b* arbitraire, détermine l'unité d'information
- Choix usuels
 - ightharpoonup b = q: entropie pour symboles équiprobables vaut 1
 - ightharpoonup b=2: unité est appelée le bit
 - ightharpoonup b = e: unité est appelée le nat

Fonction d'entropie généralisée

• q symboles; $p_1=1-p$ and $p_i=rac{p}{q-1}$ for i
eq 1

$$\mathcal{H}_q(p) = -p \log_q \frac{p}{q-1} - (1-p) \log_q (1-p)$$

Analogie : entropie en thermodynamique

- ► En théorie de l'information, l'entropie est une mesure de la **quantité d'information** contenue dans une variable aléatoire
 - ▶ Entropie minimale si un seul symbole a une probabilité 1
 - Entropie maximale si tous les symboles équiprobables
- ► En thermodynamique, l'entropie est une mesure du désordre (H=Heat=chaleur)
 - ► Entropie minimale si les molécule sont immobiles, la matière est dans un seul état stable
 - ► Entropie maximale si molécules en mouvement

Entropie et codage optimal

▶ La longueur moyenne minimum $L_{min}(S)$ d'un code pour une source S de distribution p_1, p_2, \ldots, p_q satisfait

$$H_r(S) \leq L_{\min}(S) \leq H_r(S) + 1.$$

(rappel : r = taille de l'alphabet)

- ► Preuve : voir ci-dessous
 - ► Borne supérieure satisfaite par le code de Shannon
 - ▶ Borne inférieure satisfaite pour tout code univoque

Entropie et codage optimal : borne supérieure

▶ Rappel : pour le code de Shannon $\ell_i = \lceil -\log_2 p_i \rceil$. La longeur moyenne vaut

$$\sum_{i=1}^{q} p_i \cdot \lceil -\log_2 p_i \rceil \leq \left(-\sum_{i=1}^{q} p_i \log_2 p_i \right) + 1$$

$$= H_2(\{p_1, p_2, \dots, p_q\}) + 1$$

► En particulier, la longueur moyenne minimum d'un code est bornée supérieurement par cette valeur

Théorème de Gibbs

Pour toute source S de q symboles suivant une loi de probabilité $\{p_i\}$ et pour toute fonction $f(s_i) = f_i$ réelle positive définie sur ces mêmes symboles, on a

$$\sum_{i=1}^{q} f_i \leq 1 \quad \Rightarrow \quad \sum_{i=1}^{q} p_i \log_b \frac{f_i}{p_i} \leq 0$$

NB : on peut réécrire l'inégalité de droite comme

$$-\sum_{i=1}^{q} p_{i} \log_{b} f_{i} \geq -\sum_{i=1}^{q} p_{i} \log_{b} p_{i} = H_{b}(\{p_{i}\})$$

(entropie est le minimum de $-\sum_{i=1}^{q} p_i \log_b f_i$ sur les fonctions f de L_1 norme bornée par 1)

Démonstration (théorème de Gibbs)

- ▶ Il suffit de prouver le résultat pour b = e
- ▶ Lemme : $\ln x < x 1$
- On développe

$$\sum_{i=1}^{q} p_i \log_b \frac{f_i}{p_i} \leq \sum_{i=1}^{q} p_i \left(\frac{f_i}{p_i} - 1\right)$$

$$= \sum_{i=1}^{q} f_i - \sum_{i=1}^{q} p_i$$

$$< 1 - 1 = 0$$

Entropie et codage optimal : borne inférieure

▶ Pour toute source S et pour tout code univoque K, la longueur moyenne du code $L_K(S)$ satisfait

$$H_r(S) \leq L_K(S)$$

Démonstration (borne inférieure)

- ▶ Notons ℓ_i les longueurs des mots de K
- ▶ De $\ell_i = -\log_r r^{-\ell_i}$, on a

$$H_{r}(S) - L_{K}(S) = -\sum_{i=1}^{q} p_{i} \log_{r} p_{i} - \sum_{i=1}^{q} p_{i} \ell_{i}$$

$$= -\sum_{i=1}^{q} p_{i} \log_{r} p_{i} + \sum_{i=1}^{q} p_{i} \log_{r} r^{-\ell_{i}}$$

$$= \sum_{i=1}^{q} p_{i} \log_{r} \frac{r^{-\ell_{i}}}{p_{i}}$$

- ▶ On a $\sum_{i=1}^{q} r^{-\ell_i} < 1$ par l'inégalité de Kraft
- L'inégalité de Gibbs donne le résultat

Entropie et codage optimal

▶ La longueur moyenne minimum $L_{\min}(S)$ d'un code pour une source S de distribution p_1, p_2, \ldots, p_q satisfait

$$H_r(S) \leq L_{\min}(S) \leq H_r(S) + 1.$$

(rappel : r = taille de l'alphabet)

Parfois $L_{min}(S)$ est proche de $H_r(S) + 1$ (Exemple : $p_1 = \epsilon$, $p_2 = 1 - \epsilon$ avec ϵ très petit) Peut-on faire mieux?

Extension de la source

- ▶ Une **extension d'une source** S de longueur n est l'ensemble S^n constitué des n-uplets de S muni de sa loi de probabilité : $\mathbb{P}[s_{i_1}s_{i_2}\dots s_{i_n}] = p_{i_1} \cdot p_{i_2} \cdot \dots \cdot p_{i_n}$
- ▶ Plutôt que de coder chaque symbole individuellement, on peut alors définir un mot du code pour chaque n-uplet et calculer l'entropie résultante $H(S^n)$
- ▶ On obtient facilement :

$$H(S^n) = nH(S)$$

Premier théorème de Shannon (1948)

- "Théorème du codage sans bruit de la source" (Noiseless Coding Theorem)
- ▶ La longueur moyenne minimum $L_{\min}(S)$ d'un code pour une source S de distribution p_1, p_2, \ldots, p_q satisfait

$$H_r(S) \leq L_{\min}(S) \leq H_r(S) + 1$$

- ▶ Borne supérieure atteinte uniquement pour une source dégénérée ($\exists i : p_i = 1$), pour laquelle H = 0 et L = 1
- De plus,

$$\lim_{n\to\infty}\frac{L_{\min}(S^n)}{n}=H_r(S)=\frac{H(S)}{\log_a r}$$

Premier théorème de Shannon : signification

► Si l'on choisit un code *efficace* pour une source étendue, la longueur moyenne *par symbole* est *asymptotiquement* celle de l'entropie de la source

$$\lim_{n\to\infty}\frac{L_{\min}\left(S^n\right)}{n}=H_r(S)$$

	n = 1							
İ	Symboles:			0	1			
Ī	Probabiltés:		s:	3/4	1/4			
İ	Mots du code		de:	0	1			
İ	Longueur:		r:	$1/1 \cdot 4/4 = 1$				
Г,	n = 2							
Syn	Symboles:		00	01	10	11		
			9/16	3/1	5 3/16	1/16		
Mots	Mots du code		0	11	100	101		
Lor	Longueur:		1/2 · 27/16 = 0.84375					
			n =	3				
000	001	010	0	100	011	101	110	111
27/64	9/64	9/6	4 9	64	3/64	3/64	3/64	1/64
1	001	010	0	011	00000	00001	00010	00011
1/3 · 158/64 = 0.82291666								
$n = \infty$ Entropie: $2 - \frac{3}{2} \log 3 \approx 0.811278124459$								
	Prot Mots Lor 000 27/64	Symboles: Symboles: Probabiltés Mots du cod Longueur: 000 001 27/64 9/64 1 001	Probabilité Mots du co Longueu Symboles Probabilités Probabilités Mots du code: Longueur	Symboles: Probabilités: Mots du code: Longueur:	Symboles: 0 Probabilités: 3.4 Mots du code: 0 Longueur: 1/12 Symboles: 00 0 01 Probabilités: 9.66 3.4 Mots du code: 0 11 Longueur: 1/2 ≥ 27 000 001 010 100 27.64 9.64 9.64 9.64 1 001 010 011 1/3 :158 /64 1 2 0 1 10 010 112	Symboles: 0 1 Probabilités: 3A/4 1/4 Mots du code: 0 1 Longueur: 1/1 - 4/4 = 1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Crédit image : syllabus Y Roggeman

Démonstration (Noiseless Coding Theorem)

- ▶ $H_r(S) \le L_{\min}(S) \le H_r(S) + 1$ prouvé ci-dessus
- ▶ Borne supérieure atteinte si $\exists i : p_i = 1$
- ► Si $\forall i : p_i < 1$ la borne supérieure est stricte pour le code de Shannon
- ▶ On construit un code pour *S*ⁿ

$$\begin{array}{ll} \textit{H}(\textit{S}^\textit{n}) \leq & \textit{L}_{min}(\textit{S}^\textit{n}) & \leq \textit{H}(\textit{S}^\textit{n}) + 1 \\ \textit{nH}(\textit{S}) \leq & \textit{L}_{min}(\textit{S}^\textit{n}) & \leq \textit{nH}(\textit{S}) + 1 \\ \textit{H}(\textit{S}) \leq & \frac{\textit{L}_{min}(\textit{S}^\textit{n})}{\textit{n}} & \leq \textit{H}(\textit{S}) + 1/\textit{n}, \end{array}$$

et donc $\lim_{n\to\infty} \frac{L_{\min}(S^n)}{n} = H(S)$, par le théorème du sandwich

Questions?

?

Crédits et remerciements

- Mes transparents suivent fortement les notes de cours développées par le Professeur Yves Roggeman pour le cours INFO-F303 à l'Université libre de Bruxelles
- Une partie des transparents et des exercices ont été repris ou adaptés des transparents développés par le Professeur Jean Cardinal pour ce même cours
- Je remercie chaleureusement Yves et Jean pour la mise à disposition de ce matériel pédagogique, et de manière plus large pour toute l'aide apportée pour la reprise de ce cours
- Les typos et erreurs sont exclusivement miennes (merci de les signaler!)