Data structures

CS 146 - Spring 2017

Review question

- What is the maximum height of a binary tree with n nodes?
- What is the minimum height of a binary tree with n nodes?

Homework tips

- Review lecture notes from the previous week
- Start early
- When getting help, come with specific questions
 - did you fully understand the question?
 - what did you try?
- Understand the reasoning that lead to the solution

Today

- Abstract data types
- Sorted set ADT

Why not matching?

```
List<Integer> li = new ArrayList<Integer>();
```

Abstract vs concrete data types

- ADT is defined by its interface or set of operations
- Can design algorithm
 by choosing an
 appropriate ADT based
 on functionality and
 without having to worry
 about details
- Many concrete types can implement the same ADT
- interchangeable concrete types within an algorithm using that ADT
- Different running time for each operation of each concrete type

Abstract data types

ADT	API	implementations
list	get(i)	linked list, array list
stack	push, pop	list
set	contains	hash table, BST
sorted set	predecessor, successor	binary search tree
map or dictionary	get (key) -> value	hash table, BST
sorted map	get(k), pred, succ	binary search tree
priority queue	extract min	linked list, heap
graph	neighbors (node)	map, adjacency matrix

How are these different from their math equivalent?

ADT in Java

ADT	Java interface	implementations
list	List	LinkedList, Stack, Vector, ArrayList
set	Set	HashSet, TreeSet
sorted set	SortedSet, NavigableSet	TreeSet
map or dictionary	Мар	HashMap, TreeMap
sorted map	SortedMap, NavigableMap	TreeMap
priority queue	-	PriorityQueue (heap)

Sorted set ADT

- boolean contains(E e)
- predecessor(E e), successor(E e)
- add(E e)
- remove(E e)

*in Java, predecessor = lower(), successor = higher()

randomized sorted set linked binary А В **ADT** list search tree $2\log_2 n$ $\log_2 n$ contains n n $2\log_2 n$ $\log_2 n$ add n n $2\log_2 n$ $\log_2 n$ n remove n $2\log_2 n$ $\log_2 n$ lower/higher n n

on expectation

Go to...

 https://paper.dropbox.com/doc/CS-146-introto-data-structuresbBW4AVrZ85GaYQmm7TpNr

ADTs are used as building blocks for

- algorithms
- other data structures

Problem solving process

- 1. understand the problem
- 2. brainstorm idea
- 3. carry out idea
- 4. evaluate, repeat if necessary

For more: How to solve it