TRIGONOMETRY

CHapter 5

Razones Trigonométricas de un Ángulo Agudo

MOTIVATING | STRATEGY

◎1

¿ QUIÉN MIDIÓ POR PRIMERA VEZ EL RADIO DE LA TIERRA?

¿ QUÉ SE ENTIENDE POR RAZÓN TRIGONOMÉTRICA DE UN ÁNGULO AGUDO?

Es el COCIENTE entre las longitudes de dos lados de un triángulo rectángulo con respecto a uno de sus ángulos interiores agudos.

α: Ángulo agudo interior de referencia

H: Longitud de la hipotenusa

CO: Longitud del cateto opuesto a a

CA: Longitud del cateto adyacente a a

Teorema de Pitágoras: $H^2 = (CA)^2 + (CO)^2$

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO α

senα	cosα	tanα	cotα	secα	cscα
СО	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

EJEMPLO: Calcula las razones trigonométricas (RT) de α

senα	cosα	tanα	cotα	seca	csca
$\sqrt{2}$	$\sqrt{7}$	$\sqrt{2}$	$\sqrt{7}$	3	3
3	3	${\sqrt{7}}$	${\sqrt{2}}$	$\sqrt{7}$	$\overline{\sqrt{2}}$

1) Si sen $\alpha = \frac{3}{5}$ y α es un ángulo agudo de un triángulo rectángulo, efectúe:

$$H^{2} = (CA)^{2} + (CO)^{2}$$

$$5^{2} = (CA)^{2} + (3)^{2}$$

$$25 = (CA)^{2} + 9$$

$$16 = (CA)^{2} \longrightarrow CA = 4$$

Calculamos:
$$M = 1 + \left(\frac{4}{3}\right)^2$$

$$M = 1 + \frac{16}{9}$$

∴ M =
$$\frac{25}{9}$$

2) Siendo $tan\alpha = 2,4$ y α es un ángulo

agudo, efectúe: $P = csc\alpha + cot\alpha$

RESOLUCIÓN

$$\tan \alpha = \frac{co}{cA}$$
 $\csc \alpha = \frac{H}{co}$ $\cot \alpha = \frac{cA}{co}$

Dato:

$$\tan\alpha = \frac{24}{10} = \frac{12}{5} = \frac{C0}{CA}$$

$$H^{2} = (CA)^{2} + (CO)^{2}$$

$$H^{2} = (5)^{2} + (12)^{2} = 25 + 144$$

$$H = \sqrt{169} \qquad H = 13$$

Calculamos:
$$P = \frac{13}{12} + \frac{5}{12} = \frac{18}{12}$$

$$P = \frac{3}{2}$$

3) Del gráfico, halle el valor de x si tan $\alpha = \frac{8}{5}$

RESOLUCIÓN

Se observa que:

$$CO = 5x + 1$$
 $CA = 4x - 2$

Dato:
$$\tan \alpha = \frac{8}{5} = \frac{5x + 1}{4x - 2}$$

Luego:
$$8(4x-2)=5(5x+1)$$

$$32x - 16 = 25x + 5$$

 $7x = 21$

4) En un triángulo rectángulo ABC, recto en C, sabiendo que tanA = $\frac{2}{3}$,

calcule: senB.senA

RESOLUCIÓN

Graficamos el ⊾ACB:

Recordamos que:

$$\tan \alpha = \frac{CO}{CA}$$
 $\operatorname{sen} \alpha = \frac{CO}{H}$

Dato:
$$tanA = \frac{2}{3} = \frac{1}{3}$$

Teorema de Pitágoras :

$$c^2 = a^2 + b^2$$

$$c^2 = 2^2 + 3^2 = 4 + 9$$
 $c = \sqrt{13}$

Calculamos: E = senB.senA

$$\mathsf{E} = \left(\frac{3}{\sqrt{13}}\right) \left(\frac{2}{\sqrt{13}}\right)$$

••
$$E = \frac{6}{13}$$

es

5) En un triángulo rectángulo ABC (m ≮ C = 90°), se sabe que tanA = $\frac{5}{12}$ y la longitud de la hipotenusa

RESOLUCIÓN cule el perímetro del trián-

Graficamos el LACB:

Dato:
$$tanA = \frac{5 \text{ k}}{12 \text{ k}} = \frac{a}{b}$$

Teorema de Pitágoras:

$$c^2 = a^2 + b^2 = (5k)^2 + (12k)^2$$

 $c^2 = 25k^2 + 144k^2 = 169k^2$ $c = 13k$

Dato: $13 k = 39 m \implies K = 3 m$

Calculamos el perímetro del **▶**:

$$2p = 5k + 12k + 13k$$

 $2p = 30k = 30 (3 m)$

6) Irene le promete a José, por ser el mes de aniversario de su matrimo-nio, prepararle una pizza de forma triangular como representa la figura. Si Irene invirtió para preparar la pizza: M = 25(senθ + cosθ)soles. Calcule cuánto gastó Irene para engreír a su esposo.

sen
$$\theta = \frac{C0}{H}$$

 $\cos\theta = \frac{CA}{H}$
 $C = \frac{CA}{H}$
 $C = \frac{CO}{H}$

RESOLUCIÓN

Se observa que :

$$CO = 7$$
; $CA = 24$

$$H^2 = (CA)^2 + (CO)^2$$

$$H^2 = (24)^2 + (7)^2$$

$$H^2 = 576 + 49$$

$$H = \sqrt{625}$$
 \longrightarrow $H = 25$

Gastó: M = 25 (
$$\frac{7}{25} + \frac{24}{25}$$
) soles

7) Una escalera de 400 cm de longitud descansa sobre una pared lisa, tal como se muestra en la figura. Halle la distancia del pie de la escalera a la base de la pared. Considere cotα - ⁷/₂₄

RESOLUCIÓN

Recordamos que :
$$\cot \alpha = \frac{CA}{CO}$$

Dato:
$$\cot \alpha = \frac{7 \,\mathrm{k}}{24 \,\mathrm{k}} = \frac{\mathrm{CA}}{\mathrm{CO}}$$

$$H^2 = CA^2 + CO^2 = (7k)^2 + (24k)^2$$

$$H^2 = 49 k^2 + 576 k^2 = 625 k^2 \longrightarrow H = 25 k$$

Dato:
$$25 k = 400 cm$$
 K = 16 cm

Luego:
$$CA = 7 k = 7 (16 cm)$$