Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 1

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- a) 0 10010000 1101001000000000000000000
- b) 1 10000100 0010001001000000000000000 $_{(2)}$
- c) 1 10011101 1011001100000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$\mathtt{BX} = \mathtt{EFA1}_{(16)}, \quad \mathtt{CX} = \mathtt{627E}_{(16)}, \quad \mathtt{DX} = \mathtt{76F2}_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} {\tt VAR1} &=& 92 + (35 - {\tt DX}) \\ {\tt VAR2} &=& (({\tt DX} + {\tt DX}) + ({\tt CX} \wedge 48)) - {\tt BX} \\ {\tt VAR3} &=& ({\tt BX} - (90 - {\tt CX})) \vee {\tt CX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin DX. Psh. nëse është variabla VAR2 atëherë në regjistrin DX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 15 dhe numrit 31 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin CX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $97_{(16)} \wedge A0_{(16)}$
- b) $CF_{(16)} OB_{(16)}$
- c) $3A_{(16)} \vee 83_{(16)}$
- d) $81_{(16)} + 3A_{(16)}$
- e) $2B_{(16)} 00_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 8 bajtëshe. Cache memoria L1 ka kapacitet prej 1024KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$13209BF7_{(16)}$$
, AD03D60E₍₁₆₎, 8EB4FD69₍₁₆₎

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku w_0 w_1 w_2 w_3 w_4 w_6 w_7

$\overline{B_0}$	7C	59	79	23	91	39	A9	CC
B_1	26	1C	49	9C	BE	F7	3D	D2
B_2	0E	DF	13	01	92	28	65	FO
B_3	83	9B	02	81	8C	CA	3D	56
B_4	C1	19	6B	20	21	AD	3D	ΟE
B_5	6C	В5	8C	55	49	88	OB	DA
B_6	79	70	OC	E2	1F	65	27	AD
B_7	OA	2A	46	62	EB	92	6F	57
B_8	D9	3C	4C	4A	3C	62	10	7D
B_9	0E	E6	CB	3F	7F	44	57	9D
B_A	D7	59	D6	66	FE	2C	29	64
B_B	62	80	7A	15	D3	DF	40	79
B_C	61	62	A2	7C	F5	BE	86	95
B_D	5C	F8	16	74	3F	7F	0E	DA
B_E	38	5E	EB	DC	C7	5B	20	88
B_F	6E	BF	72	60	FF	E5	6D	1B

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?