Методы предобработки текстовых данных для ускорения обучения языковых моделей

Сурков Максим Константинович

Научный руководитель: Ямщиков Иван Павлович

Санкт-Петербургская школа физико-математических и компьютерных наук НИУ ВШЭ СПБ

17 марта 2021 г.

Обработка естественного языка в реальной жизни

- социальные сети
- электронная почта
- службы доставки
- голосовые помощники
- переводчики
- чат боты

Задачи обработки естественного языка

- классификация последовательностей
 - спам
 - грубая речь¹
- генерация выходной последовательности из исходной
 - машинный перевод
 - ответы на вопросы
- выделение информации из последовательностей
 - ullet выделение именованных сущностей 2

¹G. H. Paetzold et al., SemEval'19 Task 5: Hate Speech Identification with RNN.

²Vikas Yadav et al., SemEval'19 Task 12: Deep-Affix Named Entity Recognition of Geolocation Entities. ACL'19

Современные методы решения задач обработки естественного языка

- Механизм внимания¹
- BERT (Google)²
- GPT-3 (OpenAI)³

¹Ashish Vaswani et al., Attention Is All You Need, 2017

²Jacob Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019

³Tom B. Brown et al., Language Models are Few-Shot Learners, 2020

BERT. Использование

BERT. Обучение

BERT. Требуемые ресурсы

количество параметров: 110M — 340M

 \bullet время на предобучение: от 2-4 дней до 1-2 недель 1

• мировой рекорд: 47 минут на **1472** V100 GPU²

• время на дообучение: 1-2 дня

• размеры данных:

Набор данных	Размер
Wikipedia	3-600M
HND	600k-2M
s140	1.6M
IWSLT	200-230k
QQP	364k
MNLI	393k

¹При использовании 1x-4x GPU Nvidia Tesla V100 32Gb

²https://developer.nvidia.com/blog/training-bert-with-gpus

BERT. Существующие методы оптимизации

- квантизация¹
- дистилляция²
- прунинг³

¹Sheng Shen et al., Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. 2019

²Victor Sanh et al., DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2020

³Hassan Sajjad et al., Poor Man's BERT: Smaller and Faster Transformer Models, 2020

Обучение с расписанием. Начало

Обучение с расписанием. Применение

 \bullet компьютерное зрение 1

- обучение с подкреплением²
- глубокое обучение³

¹Guy Hacohen, Daphna Weinshall, On The Power of Curriculum Learning in Training Deep Networks, 2019

²Sanmit Narvekar et al., Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey, 2020

³Mermer et al., Scalable Curriculum Learning for Artificial Neural Networks, 2017 990

- Задача: машинный первод
- Модель: BERT, LSTM
- Наборы данных: IWSLT'15, IWSLT'16, WMT'16
- Алгоритм:
- сортируем тексты по сложности (длина, логарифм веротности правдоподобия)
- $oldsymbol{2}$ в течение T шагов (рассмотрим шаг t)
 - ullet считаем $c(t) \in [0,1]$
 - строим батч из c(t) первых текстов корпуса
 - шаг обучения

E. A. Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation, ACL'19

• Задача: классификация

BERT

Наборы данных: SQuAD 2.0, NewsQA, GLUE

• Алгоритм: в течение Т шагов

Benfeng Xu et al., Curriculum Learning for Natural Language Understanding,

	MNLI-m	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	Avg
results on dev									
BERT Large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	84.1
BERT Large*	86.6	92.5	91.5	74.4	93.8	91.7	63.5	90.2	85.5
BERT Large+CL	86.6	92.8	91.8	76.2	94.2	91.9	66.8	90.6	86.4
results on test									
BERT Large	86.7	91.1	89.3	70.1	94.9	89.3	60.5	87.6	83.7
BERT Large*	86.3	92.2	89.5	70.2	94.4	89.3	60.5	87.3	83.7
BERT Large+CL	86.7	92.5	89.5	70.7	94.6	89.6	61.5	87.8	84.1

Обучение с расписанием в обработке языка. Направления для исследований

- Много важных задач обработки естественного языка с большими корпусами тренировочных данных
- Решаются с помощью тяжелых моделей, которые долго учатся
- Не исследованы метрики оценки сложности текста (длина текущий предел)
- Эксперименты проведены только на определенных задачах
 - ACL'19 только задача машинного перевода
 - ACL'20 только задача классификации¹
- Не исследовано влияние обучения с расписанием на этапе предобучения

¹Не совсем честное обучение с расписанием; Не ускоряет; Требует еще больших ресурсов

Цели и задачи

Цель: ускорить обучение языковой модели BERT с помощью обучения с расписанием за счет метрики оценки сложности текстовых данных на задачах предобучения, классификации и машинного перевода Задачи:

- Найти эффективные¹ метрики оценки сложности текста
- Реализовать механизм подсчета найденных метрик на больших наборах данных
- Сравнить найденные метрики с существующими метриками оценки сложности текста
- Исследовать влияние найденных метрик на скорость обучения языковой модели BERT

¹с точки зрения сокрости обучения модели

Поиск метрик

- длина, вероятность правдоподобия¹
- информационный поиск
 - tf-idf
 - энтропия, семантическая сложность²
- Отражении от станова и предложении от стан
- число определенных частей речи⁴
- теория информации

¹E. A. Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation, ACL'19

²Frans van der Sluis et al., Using Complexity Measures in Information Retrieval, 2010

³Xuan Zhang et al., An Empirical Exploration of Curriculum Learning for Neural Machine Translation, 2018

⁴Tom Kocmi, Ondrej Bojar, Curriculum Learning and Minibatch Bucketing in Neural Machine Translation, 2017

Поиск метрик

метрика	формула
Мультиинформация	$\sum_{v \in V} H_p(X_v) - H_p(X_V)$
Избыточная энтропия (EE)	$\left[\sum_{v\in V}H(X_{V\setminus\{v\}})\right]-(n-1)H(X_V)$
TSE	$\sum\limits_{k=1}^{n-1}rac{k}{n}C^{(k)}(X_V)$, где
	$C^{(k)}(X_V) =$
	$rac{n}{k\binom{n}{k}}\sum_{A\subseteq V, A =k}H(X_A)-H(X_V)$
Переходная информация	:(

$$V = \{1, \ldots, n\}, X_V = (X_1, \ldots, X_n)$$

Nihat Ay et al., A **Unifying** Framework for Complexity Measures of Finite Systems, 2006

Адаптация EE и TSE под задачи обработки языка

• Образование совместной случайной величины

$$T=(t_1,t_2,\ldots,t_{i-1},t_i,\ldots,t_n)$$
 $t_i o \xi_{t_i}^i=:\mu_i$ — бинарная случайная величина $iggle$ $\xi=(\xi_{t_1}^1,\xi_{t_2}^2,\ldots,\xi_{t_{i-1}}^{i-1},\xi_{t_i}^i,\ldots,\xi_{t_n}^n)$

Вычисление энтропии

$$H(\mu) = \sum_{i=1}^{n} H(\mu_i | \mu_1, \mu_2, \dots, \mu_{i-1}) = \sum_{i=1}^{n} H(\mu_i | \mu_{i-L}, \dots, \mu_{i-1})$$

3 L = 1

$$H(\mu) = H(\mu_1) + H(\mu_2|\mu_1) + \ldots + H(\mu_i|\mu_{i-1}) + \ldots + H(\mu_n|\mu_{n-1})$$

Вычисление метрик

- длина
- tf-idf

$$\sum_{i=1}^{n} f(X_i) \log \frac{|D|}{\{j : X_i \in X^{(j)}\}}$$

- ullet $x_i
 ightarrow$ число текстов, в которых есть x_i
- энтропия для вычисления ЕЕ, TSE
 - ullet длина o число текстов с такой длиной
 - $(i,x_i) o$ число текстов, где $t_i = x_i$
 - ullet $(x_i)
 ightarrow$ число текстов, где x_i является последним токеном
 - ullet $(i,x_{i-1},x_i) o$ число текстов, где на (i-1)-й позиции стоит x_{i-1} , а на i-й позиции стоит x_i
- EE,TSE ?

Вычисление ЕЕ

$$EE(X) = \left[\sum_{v \in V} H(X_{V \setminus \{v\}})\right] - (n-1)H(X_V) =$$

$$\left[\sum_{i=1}^n H(\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_n)\right] - (n-1)H(\mu)$$

- $\mathcal{O}(n^2)$
- O(n)

$$\sum_{i=1}^{n} H(\mu_{1}, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_{n}) =$$

$$= \sum_{i=1}^{n} H(\mu) - H(\mu_{i}|\mu_{i-1}) - H(\mu_{i+1}|\mu_{i}) + H(\mu_{i+1})$$

$$EE(X) = \sum_{i=2}^{n} H(\mu_{i}) - H(\mu_{i}|\mu_{i-1}) = \sum_{i=2}^{n} I(\mu_{i-1}: \mu_{i})$$

22 / 34

Вычисление TSE

$$\sum_{k=1}^{n-1} \frac{k}{n} C^{(k)}(X_V)$$

$$C^{(k)}(X_V) = \frac{n}{k \binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) - H(X_V) =$$

$$= \frac{n}{k} \left[\frac{1}{\binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) \right] - H(X_V)$$

Вычисление TSE

$$\frac{1}{\binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} H(\mu_{i_1}, \mu_{i_2}, \dots, \mu_{i_k})$$

- **1** $\mathcal{O}^*(2^n)$
- $\mathcal{O}(n^2)$ динамическое программирование
- \circ $\mathcal{O}(n)$

$$\sum_{i=1}^{n} A_{i}H(\mu_{i}) + \sum_{i=2}^{n} B_{i}H(\mu_{i}|\mu_{i-1})$$

$$A_{i} = \begin{cases} \binom{n-2}{k-1} / \binom{n}{k} = \frac{k(n-k)}{n(n-1)}, & i > 1\\ \binom{n-1}{k-1} / \binom{n}{k} = \frac{k}{n}, & i = 1 \end{cases}$$

$$B_{i} = \frac{\binom{n-2}{k-2}}{\binom{n}{k}} = \frac{k(k-1)}{n(n-1)}$$

Конфигурация экспериментов

• наборы данных

Набор данных	Размер
Hyperpartisan News Detection ¹	600k-2M
sentiment140	1.6M

- метрика качества модели точность
- модель BERT-base
- метод сравнения метрик сложности текста
 - фиксируем модель
 - фиксируем датасет
 - фиксируем семплер
 - 4 учим модели, используя сравниваемые метрики
 - анализируем график обучения модели

¹SemEval-2019 Task 4

Без семплера

семплер из АСС'19

семплер DB

гиперболический семплер

Влияние метрик на скорость обучения

TSE

Влияние метрик на скорость обучения

EE

Влияние метрик на скорость обучения

TF-IDF

Результаты

- Найдены метрики оценки сложности текста
 - метрики TSE и EE адаптированы под задачу обработки языка
 - (TSE \approx EE) > TF-IDF > длина
- Реализован механизм подсчета метрик на больших объемах данных
 - реализован механизм подсчета статистик для вычисления метрик
 - реализованы алгоритмы вычисления метрик
- Проведено сравнительное исследование метрик
 - задача классификации (sentiment140, HND)
 - показано, что влияние метрики зависит от семплера
 - показано ускорение обучения относительно существующих результатов¹ на задаче классификации
- Пока не удалось добиться существенного ускорения на задаче классификации относительно базового подхода

Дальнейший план работы

- исследовать отношения метрик и их влияние на скорость обучения на задаче машинного перевода
- ullet обобщить подход вычисления TSE и EE на большие k
- добиться ускорения обучения на задаче классификации
- добиться ускорения обучения на задаче дообучения