Wordnet y Deep Learning: Una posible unión Trabajo de fin de grado

Autor: Raquel Leandra Pérez Arnal

Directores: Dario Garcia Gasulla y Claudio Ulises Cortés García

Universidad Politécnica de Cataluña Facultad de Matemáticas y Estadística

raquelpa93@gmail.com

22/01/18

Tabla de contenidos

- Conocimientos Previos
- Trabajo Relacionado
- Enfoque
- **Análisis**
- Conclusiones

- Conocimientos Previos

Una Neurona

Pesos Entrada

Figura 1: Ejemplo de una neurona

Red Neuronal

Figura 2: Ejemplo de red neuronal compuesta por capas completas

Redes Convolucionales

Figura 3: Ejemplo de convolución y de feature

Transfer Learning

Definición

Transfer learning es el campo de estudio que reutiliza el lenguaje de representación de un problema (que llamaremos problema origen o *Source*) para resolver otro (que llamaremos objetivo o *Target*).

- Fine Tuning
- Feature Extraction

Figura 4: Estructura básica que se suele utilizar en feature extraction

Importancia del Transfer Learning

- Permite aplicar métodos de Deep Learning a conjuntos de datos de cualquier tamaño.
- No requiere tiempo y poder computacional.
- No requiere ajustar los hiper-parámetros.

- Trabajo Relacionado

Full-Network Embedding

Partes del algoritmo:

- Fordward Pass
- Spatial Pooling
- Feature Standarization
- Feature Discretization

Figura 5: Estructura del full-network embedding

Wordnet

Figura 6: Ejemplo de las relaciones sintácticas de Wordnet

Imagenet

En nuestro caso hemos utilizado el subconjunto del reto de Imagenet 2012:

	Cantidad	Clases
Entrenamiento	1.2 M	1000
Validación	50,000	1000

- Enfoque

Datos iniciales

Figura 7: Muestra de una sección del embedding (de tamaño total $50,000 \times 12,416$).

Objetivos

- Analizar el embedding dado y el comportamiento de las features en las distintas capas.
- Analizar si hay alguna relación entre el embedding y los synsets seleccionados.

Figura 8: Conjuntos de synsets que estudiaremos

Estadísticas del embedding

Figura 9: Cantidad de features de cada categoría

13 / 30

Estadísticas del embedding

Figura 10: Distribución del número de *features* con los distintos valores categóricos, para las 50,000 imágenes

Distribución de los synsets en el embeding

Figura 11: Cantidad de imágenes de cada synset respecto al embedding total

Hipótesis

- Las características se distribuyen de diferente manera en las capas convolucionales y los completos.
- ② La cantidad de features representativas aumenta con la profundidad.
- Quanto más concreto es un synset, más features representativas.
- Se puede ver una relación entre los embeddings de synsets hipónimos.

- Análisis

Distribución por tipo de capa

Figura 12: Distribución del número de features con los distintos valores categóricos distinguiendo las capas convolucionales de las fully-connected

Comportamiento respecto a la profundidad

	conv1	conv2	conv3	conv4	conv5	fc6	fc7
Proporción de -1	0.47	0.44	0.46	0.49	0.55	0.77	0.76
Proporción de 0	0.18	0.17	0.17	0.17	0.17	0.05	0.06
Proporción de 1	0.36	0.39	0.37	0.34	0.28	0.18	0.18

Figura 13: Cantidad de features de cada categoría por capa - -

Sub-matriz

Figura 14: Ejemplo de una sub-matriz de un synset.

Distribución por tipo de capa entre los synsets

Figura 15: Distribución del número de *features* con los distintos valores categóricos distinguiendo las capas convolucionales de las *fully-connected* del *synset* seres vivos

Distribución de las features entre los synsets

	Ser Vivo	Mamífero	Perro	Perro de Caza	Artefacto	Instrumento	Transporte	Vehículo
-1	0.69	0.69	0.70	0.70	0.66	0.67	0.66	0.65
0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
1	0.22	0.22	0.21	0.21	0.24	0.24	0.25	0.26

Figura 16: Cantidad y proporción de features de cada categoría por synset

Representante

Figura 17: Ejemplo de un representante de synset.

Distribución de las features entre los representantes

Figura 18: Cantidad de *features* de cada tipo de los representantes de los distintos *synsets*

Distribución de las features entre los representantes por capa

Figura 19: Cantidad de *features* de cada tipo del representante del *synset* Vehículo por capa.

Matrices de cambio

Figura 20: Matriz de cambios general

Pseudo-Métrica

$$T = C_{(1,-1)}(s_1,s_2) + C_{(1,0)}(s_1,s_2) + C_{(1,1)}(s_1,s_2) + C_{(1,1)}(s_1,s_2) + C_{(0,1)}(s_1,s_2) + C_{(-1,1)}(s_1,s_2)$$

$$d(s_1, s_2) = 1 - \frac{C_{(1,1)}(s_1, s_2)}{T}$$

	Instrumento	Vehículo	Perro de Caza
Ser Vivo	0.9965	0.9333	0.5520
Perro	0.9671	0.8753	0.1614
Transporte	0.2201	0.2192	0.9124

Ejemplos

(a) Spaniel

(b) Greyhound

(c) Water Spaniel

Figura 21: Ejemplos de razas

	Spaniel	Grayhound	Water Spaniel
Spaniel	0	0.7371	0.6442
Grayhound	0.7371	0	0.8330
Water Spaniel	0.6442	0.8330	0

Figura 22: Ejemplo de Árbol del *synset* perro con distancias normalizadas según la métrica comentada.

- Conclusiones

Conclusiones

- Las capas fully-connected tienen una distribución diferente de las convolucionales.
- Todas las *features* contienen información que caracteriza el espacio de representación.
- Las proporciones de las *features* se mantienen respecto a las profundidad de las capas.
- La proporción de las features de las tres categorías se mantiene respecto a los diferentes synsets.
- El embedding detecta similitud a nivel de synset.
- Utilizando la pseudo-métrica definida podemos medir esta distancia y representarla gráficamente.

Gracias por vuestra atención.

Podéis encontrar el código utilizado en el trabajo en: github.com/RaquelLeandra/TFG-WordnetDeepLearning