

Projet 4: Anticipez les besoins en consommation électrique de bâtiments

QUENTIN STEPNIEWSKI

Sommaire

- 1. Introduction Présentation de la problématique
- 2. Présentation des données utilisées
- 3. Nettoyage de la base de données
- 4. Mise en place de modèles de prédiction
- 5. Comparaison des différents modèles
- 6. Conclusion sur les modèles et la problématique

1. Introduction – Présentation de la problématique

Problématique principale

- Prédire les performances énergétiques de bâtiments situés à Seattle
- <u>Se passer des relevés faits sur place</u> (opérations très coûteuses et fastidieuses)

- Prédire la consommation en énergie des bâtiments
- Prédire les émissions en CO₂ des bâtiments
- Evaluer l'intérêt de « l'ENERGYSTARScore* »

*ENERGYSTARScore:

- Indicateur à échelle nationale permettant de refléter les performances énergétiques d'un bâtiment
- Score allant de 1 (mauvaise performance) à 100 (excellente performance)
- Un score de 50 représente la médiane nationale

2. Présentation des données utilisées

2 bases de données concernant les bâtiments de Seattle :

- Données de 2015 :
 - 3340 lignes
 - 47 colonnes
- Données de 2016 :
 - 3376 lignes
 - 46 colonnes

2. Présentation des données utilisées

Information générales

- Nom
- ID
- Date de construction
- Localisation

• Type de bâtiment

Catégories

Type d'activité

Caractéristiques du bâtiment

- Surface globale
- Surface par activité
- Nombre d'étages
- Nombre de bâtiments

Données énergétiques

- Consommation globale
- Emissions de CO₂
- Consommation par type d'énergie
- EnergyStarScore

2. Présentation des données utilisées

Gestion des targets

Fusion des 2 datasets (2015 – 2016):

- Suppression des colonnes non communes
- Gestion des features identiques avec un nom différent

Choix et gestion des variables cibles :

Rappel des objectifs du projet

 Prédire la consommation d'énergie

SiteEnergyUseWN(kBtu)

Prédire les émissions de CO₂

GHGEmissions(MetricTonsCO2e)

^{*} Suppression de toutes les autres variables concernant les émissions/la consommation

Gestion des targets

Gestion des doublons

	max	min	diff_perc
OSEBuildingID			
1	249.98	249.43	0.220018
2	295.86	263.51	10.934226
3	2089.28	2061.48	1.330602
5	1936.34	286.43	85.207660
8	507.70	505.01	0.529840
50049	8.70	7.97	8.390805
50055	31.46	30.69	2.447552
50057	627.97	395.26	37.057503
50058	5.46	5.42	0.732601
50059	6.74	6.74	0.000000

study_duplicates['OSEBuildingID'].value_counts().describe()

count	3284.0	=> 1642 bâtiments présents à la
mean	2.0	-> 1042 batiments presents and
std	0.0	fois en 2015 et 2016
min	2.0	10.0 0.1 2020 0.2020
25%	2.0	
50%	2.0	
75%	2.0	
max	2.0	

Name: OSEBuildingID, dtype: float64

Gestion des targets

Gestion des doublons

•Gestion des valeurs aberrantes (émission et/ou consommation nulle)

•Gestion de l'échelle des targets

Gestion des features

- Suppression des bâtiments dont l'ENERGYSTARScore n'est pas renseigné
- Gestion de valeurs aberrantes (NumberOfBuilding = 0 ou NumberOfFloor = 0)
- Suppression des variables inutiles (PropertyName, State, Comments, ...)
- Etude des corrélations entre les variables

nnées

pas renseigné umberOfFloor = 0)

omments, ...)

Corrélation importante entre les différentes variables de surface :

- PropertyGFATotal
- Building
- LargestPropertyUseTypeGFA

=> Variables à inspecter entre elles par la suite

Gestion des features

- Suppression des bâtiments dont l'ENERGYSTARScore n'est pas renseigné
- Gestion de valeurs aberrantes (NumberOfBuilding = 0 ou NumberOfFloor = 0)
- Suppression des variables inutiles (PropertyName, State, Comments, ...)
- Etude des corrélations entre les variables
- Gestion des outliers sur les surfaces.

Vérification: PropertyGFATotal = GFABuilding + GFAParking OK: On pourra donc supprimer PropertyGFATotal

```
Vérification:

PropertyGFATotal

= LargestTypeGFA + SecondTypeGFA
+ ThirdTypeGFA

NOK: Suppression des
bâtiments dont la
différence entre ces
valeurs est > 99%
```

Gestion des features

- Suppression des bâtiments dont l'ENERGYSTARScore n'est pas renseigné
- Gestion de valeurs aberrantes (NumberOfBuilding = 0 ou NumberOfFloor = 0)
- Suppression des variables inutiles (PropertyName, State, Comments, ...)
- Etude des corrélations entre les variables
- Gestion des outliers sur les surfaces
- Création de 2 variables :
 - BuildingAge (DataYear YearBuilt)
 - Volume (BuildingGFA * Hauteur moyenne d'un étage [8 feet, trouvée sur internet])

Réduction du nombre de catégories pour les variable 'UseType' (Réduction à ~10 catégories)

typedict = {'Other - Entertainment/Public Assembly':'Entertainment', 'Fitness Center/Health Club/Gym': 'Entertainment', 'Museum': 'Entertainment', 'Worship Facility': 'Entertainment', 'Movie Theater': 'Entertainment', 'Convention Center': 'Entertainment', 'Other - Recreation': 'Entertainment', 'Swimming Pool': 'Entertainment', 'Entertainment': 'Entertainment', 'Medical Office': 'Hospital', 'Hospital (General Medical & Surgical)': 'Hospital', 'Other/Specialty Hospital': 'Hospital', 'Urgent Care/Clinic/Other Outpatient': 'Hospital', 'Outpatient Rehabilitation/Physical Therapy': 'Hospital', 'Hospital': 'Hospital', 'Hotel': 'Hotel', 'Multifamily Housing': 'Hotel', 'Senior Care Community': 'Hotel', 'Residence Hall/Dormitory': 'Hotel', 'Residential Care Facility': 'Hotel', 'Other - Lodging/Residential': 'Hotel', 'Prison/Incarceration': 'Hotel', 'Single Family Home': Hotel', 'Mid-Rise Multifamily': 'Hotel', 'Low-Rise Multifamily': 'Hotel', 'High-Rise Multifamily': 'Hotel', 'Residence Hall': 'Hotel', 'Manufacturing/Industrial Plant': 'Manufacturing', 'Manufacturing': 'Manufacturing', 'Police Station':'Office', 'Office':'Office',

de données

```
Score n'est pas renseigné

ng = 0 ou NumberOfFloor = 0)

1e, One Hot Encoding sur ces features :
```

=> Transformation d'une feature à n catégories en

e [8 feet, trouvée sur internet])

n features booléennes

Gestion des features

- Suppression des bâtiments dont l'ENERGYSTARScore n'est pas renseigné
- Gestion de valeurs aberrantes (NumberOfBuilding = 0 ou NumberOfFloor = 0)
- Suppression des variables inutiles (PropertyName, State, Comments, ...)
- Etude des corrélations entre les variables
- Gestion des outliers sur les surfaces
- Création de 2 variables :
 - BuildingAge (DataYear YearBuilt)
 - Volume (BuildingGFA * Hauteur moyenne d'un étage [8 feet, trouvée sur internet])
- Re-catégorisation des variables PropertyUseType + OneHotEncoding
- Target Encoding de la variable BuildingType

Dataset après fusion 2015-2016

- 6716 lignes
- 46 colonnes

DataSet Final

- 3478 lignes
- 46 colonnes (dont 2 targets et 33 OHE features)

*TargetEncoding:

Remplacer chaque catégorie d'une variable par la valeur de la moyenne de la target pour cette catégorie

Principe mis en place pour la prédiction :

Optimisation mise en place pour chaque modèle et chaque target

4. Mise en place

GridSearchCV Ediction

Crossvalidation

Optimisation des hyperparamètres du modèle

		Score				
Split 1	Validation	Train	Train	Train	Train	$R^2 = 0.92$
Split 2	Train	Validation	Train	Train	Train	$R^2 = 0.89$
Split 3	Train	Train	Validation	Train	Train	$R^2 = 0.81$
Split 4	Train	Train	Train	Validation	Train	$R^2 = 0.86$
Split 5	Train	Train	Train	Train	Validation	$R^2 = 0.90$
IEST Dataset						$R^2 = 0.88$

<u>oour</u> la pré

ediction:

*Hyperparamètres:

Paramètres intrinsèques d'un modèle (ex: le nombre de voisin à observer pour un KNN Classifier)

=> GridSearchCV va construire un modèle pour chaque combinaison d'hyperparamètres

Optimisation mise en place pour chaque modèle et chaque target

Test final de prédiction sur des données inconnues du modèle

4. Mise en place

GridSearchCV Ediction

Crossvalidation

Optimisation des hyperparamètres du modèle

	Train Set				Modèle 1	Modèle 2	Modèle 3	•••	
Split 1	Validation	Train	Train	Train	Train	$R^2 = 0.92$	$R^2 = 0.84$	$R^2 = 0.86$	
Split 2	Train	Validation	Train	Train	Train	$R^2 = 0.89$	$R^2 = 0.91$	$R^2 = 0.86$	
Split 3	Train	Train	Validation	Train	Train	$R^2 = 0.81$	$R^2 = 0.83$	$R^2 = 0.92$	
Split 4	Train	Train	Train	Validation	Train	$R^2 = 0.86$	$R^2 = 0.91$	$R^2 = 0.92$	
Split 5	Train	Train	Train	Train	Validation	$R^2 = 0.90$	$R^2 = 0.87$	$R^2 = 0.91$	
וכטו שמומטכון						$R^2 = 0.88$	$R^2 = 0.87$	$R^2 = 0.89$	

<u>oour la prédiction :</u>

Test final de prédiction sur des données inconnues du modèle

Optimisation mise en place pour chaque modèle et chaque target

Principe mis en place pour la prédiction :

Modèles étudiés :

- ElasticNet
- SVR
- MLP
- Bagging (RandomForest)
- Boosting (GradientBoosting)

Bagging (RandomForestRegressor)

*Bagging:

- entraîner plusieurs modèles (ici plusieurs arbres de décision) sur une portion aléatoire du dataset (Bootstrapping)
- prendre le résultat moyen des modèles

- Chaque modèle sera un 'apprenant fort' (biais faible mais forte variance)
- La foule de modèle va permettre de réduire cette variance pour obtenir un résultat de prédiction plus robuste
- RandomForest se base sur des arbres de décision, les hyperparamètres :
 - n_estimators (nombre d'arbres)
 - max_depth (profondeur max de l'arbre)
 - min_samples_leaf (nombre mini d'individus à avoir à gauche ET à droite d'un nœud)
 - Max_feature (nombre de features à observer au moment de faire une séparation)

Boosting (GradientBoostingRegressor)

*Boosting:

- Entrainer des modèles de manière séquentielle (les uns après les autres)
- Chaque modèle cherche à s'améliorer sur les erreurs faites par le modèle précédent

- Ici, les modèles sont plutôt des 'apprenants faibles' (biais important)
- La foule de modèles va permettre de réduire ce biais et donc créer des modèles performants
- GradientBoosting se base également sur des arbres de décision: mêmes hyperparamètres.
 On rajoute simplement l'aspect de learning_rate pour notre descente de gradient:
 - Learning_rate (le 'pas' utilisé pour la descente de gradient)

ElasticNet	SVR	MLP	RandomForest	GradienBoosting
Alpha logspace[10 ⁻⁵ : 10 ⁵]	Gamma logspace[10 ⁻⁵ : 10 ⁵]	Hidden_layer_size [(10,10,10), (20,20,20), (30,30,30)]	N_estimators [10, 50, 100, 150, 200, 250, 300]	N_estimators [10, 50, 100, 150, 200, 250, 300]
L1_ratio [0 , 0.1 , 0.2 , , 0.9 , 1]	C[1,10,100, 1000]	Max_iter [50 , 100 , 200 , 500]	Max_depth linspace[10:110]	Max_depth linspace[10:110]
Tol [0.1, 0.01, 0.001, 0.0001]	Epsilon [0.001, 0.01, 1]	Batch_size [100, 200, 500]	Min_samples_leaf [1, 3, 5, 7, 9, 11]	Min_samples_leaf [1, 3, 5, 7, 9, 11]
		Learning_rate_init [0.0005 , 0.001 , 0.005]	Max_features ['auto','sqrt']	Learning_rate [0.08 ,0.1 ,0.12 ,0.15],

Résultats obtenus :

Consor	nmati	on	E of Median based Model for Con	sumption: 1.1747302901939065
	r2	best_param_	r2 neg_root_mean_squared_error	best_param_neg_root_mean_squared_error
ElasticNet	0.567912	{'alpha': 0.029470517025518096, 'l1_ratio': 0.	0.70129	{'alpha': 0.04714866363457394, 'l1_ratio': 0.0
SVR	0.711884	{'gamma': 0.004281332398719391, 'C': 10, 'eps	0.572557	{'gamma': 0.004281332398719391, 'C': 10, 'epsi
MLP	0.756861	('batch_size': 100, 'hidden_layer_sizes': (20,	0.532793	('batch_size': 100, 'hidden_layer_sizes': (30,
RandomForest	0.810972	('n_estimator': 200, 'max_depth': 95.714285714	0.461663	{'n_estimator': 250, 'max_depth': 38.571428571
GradientBoosting	0.81658	{'n_estimator': 150, 'max_depth': 65.0, 'min_s	0.45415	{'n_estimator': 100, 'max_depth': 110.0, 'min
Emi	ssion	RMS	E of Median based Model for Emi	ssion: 1.8646778855508095
	r2	best_param_	_r2	best_param_neg_root_mean_squared_error
ElasticNet	0.424899	('alpha': 0.018420699693267165, 'I1_ratio': 0)1.03131	{'alpha': 0.018420699693267165, 'l1_ratio': 0
SVR	0.529505	{'gamma': 0.004281332398719391, 'C': 10, 'eps	si0.932794	{'gamma': 0.004281332398719391, 'C': 10, 'epsi
MLP	0.692366	{'batch_size': 100, 'hidden_layer_sizes': (30),0.776892	('batch_size': 100, 'hidden_layer_sizes': (30,
RandomForest	0.68594	('n_estimator': 150, 'max_depth': 110.0, 'min	0.760681	('n_estimator': 300, 'max_depth': 38.571428571
GradientBoosting	0.691715	{'n_estimator': 150, 'max_depth': 80.0, 'min_	s0.753731	{'n_estimator': 100, 'max_depth': 110.0, 'min

Comparaison des modèles :

Ici, on choisira donc le modèle GradientBoosting qui démontre les meilleurs performances :

- Validation score consommation (RMSE= 0,45)
- Validation score émission (RMSE= 0,75)
- Parmi les meilleurs en temps d'exécution

Comparaison des modèles :

- Parmi les meilleurs en temps d'exécution

Évalution de l'intérêt de l'ENERGYSTARScore :

Modèle GradientBoosting avec EnergyStarScore:

- Meilleur score de validation en consommation (RMSE= 0,36)
- Meilleur score de validation en émission (RMSE= 0,70)

~20% d'amélioration

~7% d'amélioration

Recursive feature Elimination (sklearn + fonction créée pour le projet) :

	Feature_name	Rank_feature
5	LargestPropertyUseTypeGFA	1
4	PropertyGFABuilding(s)	2
43	Volume	3
8	ENERGYSTARScore	4
2	NumberofFloors	5
0	BuildingType_Consumption	6
9	BuildingAge	7
6	SecondLargestPropertyUseTypeGFA	8
17	LargestPropertyUseType_Storage	9
3	PropertyGFAParking	10
14	LargestPropertyUseType_Retail	11
7	ThirdLargestPropertyUseTypeGFA	12
12	LargestPropertyUseType_Hotel	13
13	LargestPropertyUseType_Office	14
16	LargestPropertyUseType_Special Storage	15

6. Conclusion sur les modèles et la problématique

Prédiction des émissions et de la consommation sans passer par le relevé annuel :

	Conson	nmation	Emission		
	GradientBoosting (sans ESS)	GradientBoosting (avec ESS)	GradientBoosting (sans ESS)	GradientBoosting (avec ESS)	
Score Validation (RMSE)	0,45	0,36	0,75	0,70	
Score Test (RMSE)	0,39	0,31	0,71	0,66	

- D'après ce tableau, on voit qu'il y a un impact non-négligeable de l'ENERGYSTARScore sur nos prédictions.
- Son utilisation semble donc très importante, il pourrait être intéressant d'évaluer (avec le métier) un ratio effort/gain pour cet indicateur afin de statuer définitivement sur son maintien.
- On pourrait également songer à mettre en place des solutions moins coûteuses pour obtenir des features permettant d'améliorer notre précision (questionnaire sur les sources d'énergies?)

Merci de votre attention