Lecture 1 – Functions, Exponential & Logarithms

Section 1.1 – Functions

A *set* is a collection of objects of some type, and the objects are called *elements* of the set.

Notation or Terminology	Meaning	Example
$a \in S$	\boldsymbol{a} is an element of \boldsymbol{S}	$3 \in \mathbb{Z}$
$a \notin S$	\boldsymbol{a} is not an element of \boldsymbol{S}	$\frac{3}{2} \notin \mathbb{Z}$
$S \subset T$	S is a <i>subset</i> of T Every element of S is an element of T	$\mathbb{Z} \subset \mathbb{R}$
Constant	A letter or symbol that represents a specific element of a set.	$5, \sqrt{2}, \pi$
Variable	A letter or symbol that represents any element of a set.	Let x denote any real number

Definition of a *Function*

A *function* is a relation between two variables such that to matches each element of a first set (called *domain*) to an element of a second set (called *range*) in such way that no element in the first set is assigned to two different elements in the second set.

The *domain* of the function is the set of all values of the independent variable for which the function is defined.

The *range* of the function is the set of all values taken on by the dependent variable.

H is not a function.

The **Domain** of a Function

1. Rational function:
$$\frac{f(x)}{h(x)}$$
 \Rightarrow **Domain**: $h(x) \neq 0$

Example:
$$f(x) = \frac{1}{x-3}$$
 Domain: $x \neq 3$

2. Irrational function:
$$\sqrt{g(x)}$$
 \Rightarrow **Domain**: $g(x) \ge 0$

Example:
$$g(x) = \sqrt{3-x} + 5$$
 $\Rightarrow 3-x \ge 0 \Rightarrow -x \ge -3$

Domain:
$$x < 3$$

3. Otherwise: *Domain* all real numbers

Example:
$$f(x) = x^3 + |x|$$
 Domain: All real numbers $(-\infty, \infty)$

(1) & (2)
$$\rightarrow$$
 Find the domain: $f(x) = \frac{x+1}{\sqrt{x-3}}$ \Rightarrow *Domain*: $x > 3$

$$ax^{2} + bx + c \ge 0 \rightarrow if \ a > 0 \Rightarrow x \le x_{1}, \ x \ge x_{2}$$

$$ax^{2} + bx + c \le 0 \rightarrow if \ a > 0 \Rightarrow x_{1} \le x \le x_{2}$$

Example

Let
$$g(x) = \frac{\sqrt{4+x}}{1-x}$$
. Find the domain of g .

Solution

$$\begin{cases} 4+x \ge 0 \Rightarrow x \ge -4 \\ 1-x \ne 0 \Rightarrow x \ne 1 \end{cases} \rightarrow \underline{\begin{bmatrix} -4, 1 \end{bmatrix} \cup (1, \infty)}$$

Difference Quotients

$$\frac{f(x+h)-f(x)}{(x+h)-x}$$

The difference quotient is given by: $\frac{f(x+h) - f(x)}{h}$

Example

For the function f given by $f(x) = 2x^2 - 3x$, find the difference quotient $\frac{f(x+h) - f(x)}{h}$

Solution

$$f(x+h) = 2(--)^2 - 3(--)$$

$$= 2(x+h)^2 - 3(x+h) \qquad (a+b)^2 = a^2 + 2ab + b^2$$

$$= 2\left(x^2 + 2xh + h^2\right) - 3x - 3h$$

$$= 2x^2 + 4xh + 2h^2 - 3x - 3h$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - (2x^2 - 3x)}{h}$$

$$= \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$$

$$= \frac{4xh + 2h^2 - 3h}{h}$$

$$= \frac{4xh}{h} + \frac{2h^2}{h} - \frac{3h}{h}$$

$$= 4x + 2h - 3$$

Sum
$$(f+g)(x) = f(x) + g(x)$$

Difference
$$(f-g)(x) = f(x) - g(x)$$

Product
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Quotient
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Let f(x) = 8x - 9 and $g(x) = \sqrt{2x - 1}$. Find (f + g)(x), (f - g)(x), $(f \cdot g)(x)$, and (f / g)(x) and give the domain

Solution

Domain of
$$f: (-\infty, \infty)$$

Domain of
$$g: 2x-1 \ge 0 \rightarrow 2x \ge 1 \Rightarrow x \ge \frac{1}{2}$$

a)
$$(f+g)(x)$$

$$(f+g)(x) = 8x-9+\sqrt{2x-1}$$

Domain:
$$x \ge \frac{1}{2}$$
 or $\left[\frac{1}{2}, \infty\right)$

b)
$$(f-g)(x)$$

$$(f-g)(x) = 8x-9-\sqrt{2x-1}$$

Domain:
$$x \ge \frac{1}{2}$$

c)
$$(fg)(x)$$

$$(fg)(x) = (8x-9)\sqrt{2x-1}$$

Domain:
$$x \ge \frac{1}{2}$$

d)
$$\left(\frac{f}{g}\right)(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{8x-9}{\sqrt{2x-1}}$$

$$2x-1>0 \rightarrow 2x>1 \Rightarrow x>\frac{1}{2}$$

Domain: $x > \frac{1}{2}$

Even and Odd Functions

Given the function f(x) then find f(-x) and simplify:

- If $f(-x) = f(x) \Rightarrow f$ is **even**, or
- If $f(-x) = -f(x) \Rightarrow f$ is **odd**
- Neither

Example

Decide whether each function is even, odd, or neither

a)
$$f(x) = 8x^4 - 3x^2$$

 $f(-x) = 8(-x)^4 - 3(-x)^2$
 $= 8x^4 - 3x^2$
 $= f(x)$

Function is Even

b)
$$f(x) = 6x^3 - 9x$$
$$f(-x) = 6(-x)^3 - 9(-x)$$
$$= -6x^3 + 9x$$
$$= -\left(6x^3 - 9x\right)$$
$$= -f(x)$$

Function is *Odd*

c)
$$f(x) = 3x^2 + 5x$$

 $f(-x) = 3(-x)^2 + 5(-x)$
 $= 3x^2 - 5x$

Function is Neither

Piecewise-Defined Functions

Function are sometimes described by more than one expression, we call such functions *piecewise-defined functions*.

Example

Graph each function

$$f(x) = \begin{cases} 2x+5 & \text{if} \quad x \le -1 \\ x^2 & \text{if} \quad |x| < 1 \\ 2 & \text{if} \quad x \ge 1 \end{cases}$$

Solution

Composition of Functions

The composite function $f \circ g$, the composite of f and g, is defined as

$$(f \circ g)(x) = f(g(x))$$

Where x is in the domain of g and g(x) is in the domain of f

Example

Let $f(x) = x^2 - 1$ and g(x) = 3x + 5

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- c) Find (f(g))(2) in two different ways: first using the functions f and g separately and second using the composite function $f \circ g$.

Solution

a)
$$(f \circ g)(x) = f(g(x))$$

 $= f(3x+5)$
 $= (_)^2 - 1$
 $= (3x+5)^2 - 1$
 $= 9x^2 + 30x + 25 - 1$
 $= 9x^2 + 30x + 24$

Domain: $(3x+5) \rightarrow \mathbb{R}$

Domain: $\left(9x^2 + 30x + 24\right) \rightarrow \mathbb{R}$

Domain of $f \circ g : \mathbb{R}$

b)
$$(g \circ f)(x) = g(f(x))$$

 $= g(x^2 - 1)$
 $= 3(x^2 - 1) + 5$
 $= 3x^2 - 3 + 5$
 $= 3x^2 + 2$

Domain: $(x^2 - 1) \rightarrow \mathbb{R}$

Domain: $(3x^2 + 2) \rightarrow \mathbb{R}$

Domain of $g \circ f : \mathbb{R}$

c)
$$g(2) = 3(2) + 5 = 11$$

 $(f \circ g)(2) = f(g(2))$
 $= f(11)$
 $= 11^2 - 1$
 $= 120$
 $(f \circ g)(x) = 9x^2 + 30x + 24$
 $(f \circ g)(2) = 9(2)^2 + 30(2) + 24 = 120$

Let $f(x) = x^2 - 16$ and $g(x) = \sqrt{x}$

- a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
- b) Find $(g \circ f)(x)$ and the domain of $g \circ f$

Solution

a)
$$(f \circ g)(x) = f(g(x))$$

$$= f(\sqrt{x})$$

$$= (\sqrt{x})^2 - 16$$

$$= x - 16$$
Domain: $(x - 16) \to \mathbb{R}$

Domain of $f \circ g : x \ge 0$

b)
$$(g \circ f)(x) = g(f(x))$$

 $= g(x^2 - 16)$
 $= \sqrt{x^2 - 16}$
Domain : $(x^2 - 1) \to \mathbb{R}$
 $= \sqrt{x^2 - 16}$
Domain : $(\sqrt{x^2 - 16}) \to |x| \ge 4$
Domain of $g \circ f : |x| \ge 4$ or $(-\infty, -4] \cup [4, \infty)$

Exercises

Section 1.1 – Functions

Find the Domain

1.
$$f(x) = 7x + 4$$

2.
$$f(x) = |3x - 2|$$

3.
$$f(x) = x^2 - 2x - 15$$

4.
$$g(x) = \frac{3}{x-4}$$

5.
$$y = \frac{2}{x-3}$$

6.
$$y = \frac{-7}{x-5}$$

7.
$$f(x) = 4 - \frac{2}{x}$$

8.
$$f(x) = \frac{1}{x^4}$$

9.
$$f(x) = \frac{x+5}{2-x}$$

10.
$$f(x) = \frac{8}{x+4}$$

11.
$$f(x) = \frac{1}{x^2 - 4x - 5}$$

12.
$$f(x) = \sqrt{8-3x}$$

13.
$$g(x) = \frac{2}{x^2 + x - 12}$$

14.
$$h(x) = \frac{5}{\frac{4}{x} - 1}$$

15.
$$y = \sqrt{x}$$

16.
$$y = \sqrt{4x+1}$$

17.
$$y = \sqrt{7 - 2x}$$

18.
$$f(x) = \sqrt{8-x}$$

19.
$$f(x) = \frac{\sqrt{x+1}}{x}$$

20.
$$g(x) = \frac{\sqrt{x-3}}{x-6}$$

21.
$$f(x) = \frac{\sqrt{x+4}}{\sqrt{x-1}}$$

22.
$$f(x) = \sqrt{x+4} - \sqrt{x-1}$$

23.
$$f(x) = \sqrt{2x+7}$$

24.
$$f(x) = \sqrt{9 - x^2}$$

25.
$$f(x) = \sqrt{x^2 - 25}$$

26.
$$f(x) = \frac{x+1}{x^3 - 4x}$$

27.
$$f(x) = \frac{4x}{6x^2 + 13x - 5}$$

28.
$$f(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$

29.
$$f(x) = \frac{\sqrt{4x-3}}{x^2-4}$$

30.
$$f(x) = \frac{x-4}{\sqrt{x-2}}$$

21.
$$f(x) = \frac{\sqrt{x+4}}{\sqrt{x-1}}$$
 31. $f(x) = \frac{1}{(x-3)\sqrt{x+3}}$

22.
$$f(x) = \sqrt{x+4} - \sqrt{x-1}$$
 32. $f(x) = \sqrt{x+2} + \sqrt{2-x}$

33.
$$f(x) = \sqrt{(x-2)(x-6)}$$

Find the difference quotient $\frac{f(x)-f(a)}{x-a}$, for the given function

34.
$$f(x) = \sqrt{x-3}$$
,

36.
$$f(x) = 9x + 5$$

38.
$$f(x) = 4x + 11$$

35.
$$f(x) = 2x^2$$

37.
$$f(x) = 6x + 2$$

39.
$$f(x) = 2x^2 - x - 3$$

40. Find
$$(f+g)(x)$$
, $(f-g)(x)$, $(f \cdot g)(x)$, and $(f/g)(x)$ and the domain of $f(x) = \sqrt{3-2x}$, $g(x) = \sqrt{x+4}$

41. Find
$$(f+g)(x)$$
, $(f-g)(x)$, $(f \cdot g)(x)$, and $(f/g)(x)$ and the domain of $f(x) = \frac{2x}{x-4}$, $g(x) = \frac{x}{x+5}$

42. Let $f(x) = \sqrt{4x-1}$ and $g(x) = \frac{1}{x}$. Find each of the following and give the domain

a)
$$(f+g)(x)$$
 b) $(f-g)(x)$ c) $(fg)(x)$

b)
$$(f-g)(x)$$

c)
$$(fg)(x)$$

$$d$$
) $\left(\frac{f}{g}\right)(x)$

- **43.** Given that f(x) = x + 1 and $g(x) = \sqrt{x + 3}$
 - a) Find (f+g)(x)
 - b) Find the domain of (f+g)(x)
 - c) Find: (f+g)(6)
- **44.** Given that $f(x) = x^2 4$ and g(x) = x + 2
 - a) Find (f+g)(x) and its domain
 - b) Find (f/g)(x) and its domain
- Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): $f(x) = 2x^2 + 3x 4$, g(x) = 2x 1
- **46.** Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): $f(x) = x^3 + 2x^2$, g(x) = 3x
- **47.** Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): f(x) = |x|, g(x) = -7
- **48.** Let $f(x) = x^2 3x$ and $g(x) = \sqrt{x+2}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- **49.** Let $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{x+5}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- **50.** Let $f(x) = \frac{3x+5}{2}$ and $g(x) = \frac{2x-5}{3}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- **51.** Let $f(x) = \frac{x-1}{x-2}$ and $g(x) = \frac{x-3}{x-4}$
 - a) Find $(f \circ g)(x)$ and the domain of $f \circ g$
 - b) Find $(g \circ f)(x)$ and the domain of $g \circ f$
- **52.** Given $f(x) = \sqrt{x}$ and g(x) = x + 3, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain.

- **53.** Given that $f(x) = \sqrt{x}$ and g(x) = 2 3x, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain.
- **54.** Given that $f(x) = \frac{1}{x-2}$ and $g(x) = \frac{x+2}{x}$, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain.
- **55.** Given that f(x) = 2x 5 and $g(x) = x^2 3x + 8$, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain then find $(f \circ g)(7)$
- **56.** Given that $f(x) = \sqrt{x}$ and g(x) = x 1, find
 - a) $(f \circ g)(x) = f(g(x))$
 - b) $(g \circ f)(x) = g(f(x))$
 - c) $(f \circ g)(2) = f(g(2))$
- 57. Given that $f(x) = \frac{x}{x+5}$ and $g(x) = \frac{6}{x}$, find
 - a) $(f \circ g)(x) = f(g(x))$
 - b) $(g \circ f)(x) = g(f(x))$
 - c) $(f \circ g)(2) = f(g(2))$

Determine whether f is even, odd, or neither

58.
$$f(x) = 3x^4 + 2x^2 - 5$$

59.
$$f(x) = 8x^3 - 3x^2$$

60.
$$f(x) = \sqrt{x^2 + 4}$$

61.
$$f(x) = 3x^2 - 5x + 1$$

62.
$$f(x) = \sqrt[3]{x^3 - x}$$

63.
$$f(x) = |x| - 3$$

64.
$$f(x) = x^3 - \frac{1}{x}$$

65.
$$f(x) = -x^3 + 2x$$

66.
$$f(x) = x^5 - 2x^3$$

67.
$$f(x) = .5x^4 - 2x^2 + 6$$

68.
$$f(x) = .75x^2 + |x| + 4$$

69.
$$f(x) = x^3 - x + 9$$

70.
$$f(x) = x^4 - 5x + 8$$

71.
$$f(x) = x^3 + x$$

72.
$$g(x) = x^2 - x$$

73.
$$h(x) = 2x^2 + x^4$$

74.
$$f(x) = 2x^2 + x^4 + 1$$

75.
$$f(x) = \frac{1}{5}x^6 - 3x^2$$

76.
$$f(x) = x\sqrt{1-x^2}$$

77.
$$f(x) = x^2 \sqrt{1 - x^2}$$

78.
$$f(x) = 5x^7 - 6x^3 - 2x$$

79.
$$f(x) = 5x^6 - 3x^2 - 7$$

80.
$$f(x) = x^2 + 6$$

81.
$$f(x) = 7x^3 - x$$

82.
$$h(x) = x^5 + 1$$

83.
$$f(x) = \begin{cases} 2+x & \text{if } x < -4 \\ -x & \text{if } -4 \le x \le 2 \\ 3x & \text{if } x > 2 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$

84.
$$f(x) = \begin{cases} -2x & \text{if } x < -3 \\ 3x - 1 & \text{if } -3 \le x \le 2 \\ -4x & \text{if } x > 2 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$

85. The graph of a function f with domain [0, 4] is shown:

a)
$$y = f(x+3)$$

b)
$$y = f(x-2)+3$$

$$c) \quad y = f\left(-\frac{1}{2}x\right)$$

$$d) \quad y = |f(x)|$$

86.
$$f(x) = \begin{cases} x^3 + 3 & \text{if } -2 \le x \le 0 \\ x + 3 & \text{if } 0 < x < 1 \end{cases}$$
 Find: $f(-5)$, $f(-1)$, $f(0)$, and $f(3)$
$$4 + x - x^2 \quad \text{if } 1 \le x \le 3$$

87.
$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$$
 Find: $h(5)$, $h(0)$, and $h(3)$

88. Graph the piecewise function defined by
$$f(x) = \begin{cases} 3 & \text{if } x \le -1 \\ x-2 & \text{if } x > -1 \end{cases}$$

89. Sketch the graph
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^3 & \text{if } -1 < x < 1 \\ -x+3 & \text{if } x \ge 1 \end{cases}$$

90. Sketch the graph
$$f(x) = \begin{cases} x-3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x+4 & \text{if } x \ge 1 \end{cases}$$

Section 1.2 – Polynomial Functions & Graphs

Polynomial Function

A *Polynomial function* P(x) in x is a sum of the form is given by:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Where the coefficients a_n , a_{n-1} , ..., a_2 , a_1 , a_0 are real numbers and the exponents are whole numbers.

Non-polynomial Functions: $\frac{1}{x} + 2x$; $\sqrt{x^2 - 3} + x$; $\frac{x - 5}{x^2 + 2}$

Degree of f	Form of f(x)	Graph of $f(x)$
0	$f(x) = a_0$	A horizontal line
1	$f(x) = a_1 x + a_0$	A line with slope a_1
2	$f(x) = a_2 x^2 + a_1 x + a_0$	A parabola with a vertical axis

All polynomial functions are *continuous functions*.

End Behavior $\left(a_n x^n\right)$

If n (degree) is even:

If $a_n < 0$ (in front x^n is negative), then the function falls from the left and right side

$$x \to -\infty \implies f(x) \to -\infty$$

$$x \to \infty \implies f(x) \to -\infty$$

a < 0

Rises right

a < 0

If $a_n > 0$ (in front x^n is positive), then the function rises from the left and right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to \infty$$

Rises left a > 0 n even

If n (degree) is odd:

If $a_n < 0$ (negative), then the function rises from the left side and falls from the right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to -\infty$$

Rises left

If $a_n > 0$ (positive), then the function falls from the left side and rises from the right side

$$x \to -\infty \implies f(x) \to -\infty$$

$$x \to \infty \implies f(x) \to \infty$$

Example

Determine the end behavior of the graph of the polynomial function $f(x) = -4x^5 + 7x^2 - x + 9$ *Solution*

Leading term: $-4x^5$ with 5th degree (*n* is odd)

$$x \to -\infty \implies f(x) = -(-)^5 = (-)(-) = + \to \infty \qquad f(x) \text{ rises left}$$

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

The intermediate value *Theorem*

For any polynomial function f(x) with real coefficients and $f(a) \neq f(b)$ for a < b, then f takes on every value between f(a) and f(b) in the interval [a, b]

f(a) and f(b) are the opposite signs. Then the function has a real zero between a and b.

Example

Using the intermediate value theorem, determine, if possible, whether the function has a real zero between a and b.

a)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -4$, $b = -2$

b)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -1$, $b = 3$

Solution

a)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -4$, $b = -2$
 $f(-4) = (-4)^3 + (-4)^2 - 6(-4) = -24$

$$f(-2) = (-2)^3 + (-2)^2 - 6(-2) = 8$$

f(x) has a zero between -4 and -2.

b)
$$f(x) = x^3 + x^2 - 6x$$
; $a = -1$, $b = 3$
 $f(-1) = (-1)^3 + (-1)^2 - 6(-1) = 6$
 $f(3) = (3)^3 + (3)^2 - 6(3) = 18$

Can't be determined.

Example

Show that $f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$ has a zero between 1 and 2.

Solution

$$f(1) = 1^5 + 2(1)^4 - 6(1)^3 + 2(1) - 3 = -4$$

$$f(2) = 2^5 + 2(2)^4 - 6(2)^3 + 2(2) - 3 = 17$$

Since f(1) and f(2) have opposite signs; therefore, f(c) = 0 for at least one real number c between 1 and 2.

15

Properties of Division

Long Division

Divide
$$(x^3 + 2x^2 - 5x - 6) \div (x + 1)$$

Quotient

$$x^2 + x - 6$$

$$x + 1)x^3 + 2x^2 - 5x - 6$$
Dividend

$$x^3 + x^2$$

$$x^2 - 5x$$

$$x^2 - 5x$$

$$x^2 - 6x$$

$$x^2 - 6$$

$$-6x - 6$$

$$-6x - 6$$

$$0$$
Remainder

$$Q(x) = x^2 + x - 6$$

$$R(x) = 0$$

Remainder Theorem

If a number c is substituted for x in the polynomial f(x), then the result f(c) is the remainder that would be obtained by dividing f(x) by x - c.

That is, if
$$f(x) = (x - c)Q(x) + R(x)$$
 then $f(c) = R$

Factor Theorem

A polynomial f(x) has a factor x-c if and only if f(c)=0

Synthetic Division

Use synthetic division to find the quotient and the remainder of $\left(4x^3 - 3x^2 + x + 7\right) \div (x - 2)$

The Rational Zeros Theorem

If the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ has integer coefficients and if $\frac{c}{d}$ is a rational zero of f(x) such that c and d have no common prime factor, then

- 1. The numerator c of the zero is a factor of the constant term a_0
- 2. The denominator d of the zero is a factor of the leading coefficient a_n

possible rational zeros =
$$\frac{\text{factors of the constant term } a_0}{\text{factors of the leading coefficient } a_n} = \frac{\text{possibilities for } a_0}{\text{possibilities for } a_n}$$

Example

Find all rational solutions of the equation: $3x^4 + 14x^3 + 14x^2 - 8x - 8 = 0$

Solution

possibilities for a_0	$\pm 1, \pm 2, \pm 4, \pm 8$
possibilities for a _n	±1, ±3
possibilities for c/d	± 1 , ± 2 , ± 4 , ± 8 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{4}{3}$, $\pm \frac{8}{3}$

Using the calculator, the result will show that -2 is a zero.

Hence, the polynomial has roots x = -2, $-\frac{2}{3}$, $-1 \pm \sqrt{3}$

Sketching

Example

Let $f(x) = x^3 + x^2 - 4x - 4$. Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

Solution

$$f(x) = x^{3} + x^{2} - 4x - 4$$

$$= x^{2}(x+1) - 4(x+1)$$

$$= (x+1)(x^{2} - 4)$$

$$= (x+1)(x+2)(x-2)$$

The zeros of f(x) (x-intercepts) are: -2, -1, and 2

Interval	$-\infty$ -2	2 –1	0 2	, ∞
Sign of $f(x)$	-	+	-	+
Position	Below x-axis	Above x-axis	Below x-axis	Above x-axis

We can conclude from the chart and the graph that:

$$f(x) > 0$$
 if x is in $(-2, -1) \cup (2, \infty)$

$$f(x) < 0$$
 if x is in $(-\infty, -2) \cup (-1, 2)$

Let $f(x) = x^4 - 4x^3 + 3x^2$. Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

Solution

$$f(x) = x^{2} (x^{2} - 4x + 3)$$
$$= x^{2} (x-1)(x-3)$$

The zeros are: 0, 1, 3. Since the factor x^2 is always positive, it has no factor

$-\infty$	1 :	2 3	3	8
+		_	+	

$$f(x) > 0$$
 if x is in $(-\infty, 0) \cup (0, 1) \cup (3, \infty)$
 $f(x) < 0$ if x is in $(1, 3)$

Fundamental Theorem of Algebra

If a polynomial f(x) has positive degree and complex coefficients, then f(x) has at least one complex zero.

Complete Factorization Theorem for Polynomials

If f(x) is a polynomial of degree n > 0, then there exist n complex numbers $c_1, c_2, ..., c_n$ such that:

$$f(x) = a(x-c_1)(x-c_2)...(x-c_n),$$

Where a is the leading coefficient of f(x). Each number c_k is a zero of f(x).

Example

f(x)	Factored From	Zeros of $f(x)$
$3x^2 - (12+6i)x + 24i$	3(x-4)(x-2i)	4, 2 <i>i</i>
$-6x^3 - 2x^2 - 6x - 2$	$-6\left(x+\frac{1}{3}\right)(x+i)(x-i)$	$-\frac{1}{3}$, $\pm i$

Example

Express $f(x) = x^5 - 4x^4 + 13x^3$ as a product of linear factors, and find the five zeros of f(x)

Solution

$$f(x) = x^{3} \left(x^{2} - 4x + 13\right)$$
 factor out x^{3}

$$x^{2} - 4x + 13 = 0 \rightarrow x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(1)(13)}}{2(1)}$$

$$= \frac{4 \pm \sqrt{-36}}{2}$$

$$= \frac{4 \pm 6i}{2}$$

$$= 2 \pm 3i$$

$$f(x) = x.x.x(x-2-3i)(x-2+3i)$$

The number 0 is a zero of multiplicity of 3. \therefore 0, 0, 0, 2-3i, 2+3i

Exercises Section 1.2 – Polynomial Functions & Graphs

Find the quotient and remainder if f(x) is divided by p(x)

1.
$$f(x) = 2x^4 - x^3 + 7x - 12$$
; $p(x) = x^2 - 3$ **3.** $f(x) = 7x + 2$; $p(x) = 2x^2 - x - 4$

3.
$$f(x) = 7x + 2$$
; $p(x) = 2x^2 - x - 4$

2.
$$f(x) = 3x^3 + 2x - 4$$
; $p(x) = 2x^2 + 1$

4.
$$f(x) = 9x + 4$$
; $p(x) = 2x - 5$

Use the remainder theorem to find f(c)

5.
$$f(x) = x^4 - 6x^2 + 4x - 8$$
; $c = -3$

$$f(x) = x^4 - 6x^2 + 4x - 8$$
; $c = -3$ **6.** $f(x) = x^4 + 3x^2 - 12$; $c = -2$

7. Use the factor theorem to show that
$$x-c$$
 is a factor of $f(x)$: $f(x) = x^3 + x^2 - 2x + 12$; $c = -3$

Use the synthetic division to find the quotient and remainder if the first polynomial is divided by the second

8.
$$2x^3 - 3x^2 + 4x - 5$$
; $x - 2$

10.
$$9x^3 - 6x^2 + 3x - 4$$
; $x - \frac{1}{3}$

9.
$$5x^3 - 6x^2 + 15$$
; $x - 4$

Use the synthetic division to find f(c)

11.
$$f(x) = 2x^3 + 3x^2 - 4x + 4$$
; $c = 3$ **13.** $f(x) = x^3 - 3x^2 - 8$; $c = 1 + \sqrt{2}$

13.
$$f(x) = x^3 - 3x^2 - 8$$
; $c = 1 + \sqrt{2}$

12.
$$f(x) = 8x^5 - 3x^2 + 7$$
; $c = \frac{1}{2}$

14. Use the synthetic division to show that
$$c$$
 is a zero of $f(x)$:

$$f(x) = 3x^4 + 8x^3 - 2x^2 - 10x + 4;$$
 $c = -2$

15. Use the synthetic division to show that
$$c$$
 is a zero of $f(x)$:

$$f(x) = 27x^4 - 9x^3 + 3x^2 + 6x + 1;$$
 $c = -\frac{1}{3}$

Find all values of k such that f(x) is divisible by the given linear polynomial:

16.
$$f(x) = kx^3 + x^2 + k^2x + 3k^2 + 11; x + 2$$

17.
$$f(x) = x^3 + k^3 x^2 + +2kx - 2k^4; x - 1.6$$

18.
$$f(x) = k^2 x^3 - 4kx + 3; x - 1$$

Find all solutions of the equation

19.
$$x^3 - x^2 - 10x - 8 = 0$$

21.
$$2x^3 - 3x^2 - 17x + 30 = 0$$

20.
$$x^3 + x^2 - 14x - 24 = 0$$

22.
$$12x^3 + 8x^2 - 3x - 2 = 0$$

23.
$$x^4 + 3x^3 - 30x^2 - 6x + 56 = 0$$

$$2x^4 - 9x^3 + 9x^2 + x - 3 = 0$$

24.
$$3x^5 - 10x^4 - 6x^3 + 24x^2 + 11x - 6 = 0$$

28.
$$8x^3 + 18x^2 + 45x + 27 = 0$$

25.
$$6x^5 + 19x^4 + x^3 - 6x^2 = 0$$

29.
$$3x^3 - x^2 + 11x - 20 = 0$$

26.
$$x^4 - x^3 - 9x^2 + 3x + 18 = 0$$

30.
$$6x^4 + 5x^3 - 17x^2 - 6x = 0$$

- **31.** If $f(x) = 3x^3 kx^2 + x 5k$, find a number k such that the graph of f contains the point (-1, 4).
- 32. If $f(x) = kx^3 + x^2 kx + 2$, find a number k such that the graph of f contains the point (2, 12).
- 33. If one zero of $f(x) = x^3 2x^2 16x + 16k$ is 2, find two other zeros.
- **34.** If one zero of $f(x) = x^3 3x^2 kx + 12$ is -2, find two other zeros.
- **35.** Find a polynomial f(x) of degree 3 that has the zeros -1, 2, 3; and satisfies the given condition: f(-2) = 80
- **36.** Find a polynomial f(x) of degree 3 that has the zeros -2i, 2i, 3; and satisfies the given condition: f(1) = 20
- **37.** Find a polynomial f(x) of degree 4 with leading coefficient 1 such that both -4 and 3 are zeros of multiplicity 2, and sketch the graph of f.

Find the zeros of the following functions and state the multiplicity of each zero

38.
$$f(x) = x^2 (3x+2)(2x-5)^3$$

41.
$$f(x) = (6x^2 + 7x - 5)^4 (4x^2 - 1)^2$$

39.
$$f(x) = 4x^5 + 12x^4 + 9x^3$$

42.
$$f(x) = x^4 + 7x^2 - 144$$

40.
$$f(x) = (x^2 + x - 12)^3 (x^2 - 9)^2$$

43.
$$f(x) = x^4 + 21x^2 - 100$$

Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f

44.
$$f(x) = x^4 - 4x^2$$

51.
$$f(x) = x^3 + 2x^2 - 5x - 6$$

45.
$$f(x) = x^4 + 3x^3 - 4x^2$$

52.
$$f(x) = x^3 + 8x^2 + 11x - 20$$

46.
$$f(x) = x^3 + 2x^2 - 4x - 8$$

53.
$$f(x) = x^4 + x^2 - 2$$

47.
$$f(x) = x^3 - 3x^2 - 9x + 27$$

54.
$$f(x) = x^4 - x^3 - 6x^2 + 4x + 8$$

48.
$$f(x) = -x^4 + 12x^2 - 27$$

55.
$$f(x) = 4x^5 - 8x^4 - x + 2$$

49.
$$f(x) = x^2(x+2)(x-1)^2(x-2)$$

56.
$$f(x) = 2x^4 - x^3 - 5x^2 + 2x + 2$$

50.
$$f(x) = 2x^3 + 11x^2 - 7x - 6$$

57.
$$f(x) = x^5 - 7x^4 + 19x^3 - 37x^2 + 60x - 36$$

58. A storage shelter is to be constructed in the shape of a cube with a triangular prism forming the roof. The length *x* of a side of the cube is yet to be determined.

- a) If the total height of the structure is 6 *feet*, show that its volume V is given by $V = x^3 + \frac{1}{2}x^2(6-x)$
- b) Determine x so that the volume is $80 ft^3$
- **59.** A canvas camping tent is to be constructed in the shape of a pyramid with a square base. An 8-foot pole will form the center support. Find the length x of a side of the base so that the total amount of canvas needed for the sides and bottom is $384 \, ft^2$

Section 1.3 – Rational Functions

A function f is a *rational function* if $f(x) = \frac{g(x)}{h(x)}$,

Where g(x) and h(x) are polynomials. The domain of f consists of all real numbers *except* the zeros of the denominator h(x).

Notation	Terminology	
$x \rightarrow a^-$	x approaches a from the left (through values less than a)	
$x \rightarrow a^+$	x approaches a from the right (through values greater than a)	
$f(x) \to \infty$	f(x) increases without bound (can be made as large positive as desired)	
$f(x) \to -\infty$	f(x) decreases without bound (can be made as large negative as desired)	

The Domain of a Rational Function

Example

Consider: $f(x) = \frac{1}{x-3}$

Find the domain and graph f.

Solution

$$x-3=0 \implies \boxed{x=3}$$

Thus the domain is: $\{x | x \neq 3\}$ or $(-\infty, 3) \cup (3, \infty)$

Function	Domain	
$f(x) = \frac{1}{x}$	$\left\{x\big x\neq0\right\}$	$(-\infty, 0) \cup (0, \infty)$
$f(x) = \frac{1}{x^2}$	$\left\{x \middle x \neq 0\right\}$	$(-\infty, 0) \cup (0, \infty)$
$f(x) = \frac{x-3}{x^2 + x - 2}$	$\left\{ x \middle x \neq -2 \text{ and } x \neq 1 \right\}$	$(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$
$f(x) = \frac{2x+5}{2x-6} = \frac{2x+5}{2(x-3)}$	$\left\{x \middle x \neq 3\right\}$	$(-\infty, 3) \cup (3, \infty)$

Asymptotes

Vertical Asymptote (VA) - Think Domain

The line x = a is a *vertical asymptote* for the graph of a function f if

$$f(x) \to \infty$$
 or $f(x) \to -\infty$

As x approaches a from either the left or the right

Example

Find the vertical asymptote of $f(x) = \frac{1}{x-2}$, and sketch the graph.

Solution

VA: x = 2

$$f(x) \to \infty$$
 as $x \to 2^+$
 $f(x) \to -\infty$ as $x \to 2^-$

Hole

Example

Sketch the graph of g if $g(x) = \frac{3x^2 + x - 4}{2x^2 - 7x + 5}$

Solution

$$g(x) = \frac{(3x+4)(x-1)}{(2x-5)(x-1)} = \frac{3x+4}{2x-5} = f(x)$$

g has a hole at $x = 1 \rightarrow f(1) = -\frac{7}{3}$

Horizontal Asymptote (*HA*)

The line y = c is a **horizontal asymptote** for the graph of a function f if

$$f(x) \rightarrow c$$
 as $x \rightarrow -\infty$ or $x \rightarrow -\infty$

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n x^n}{b_m x^m}$$
 be a rational function.

1. If the degree of numerator is less than of denominator $(n < m) \Rightarrow y = 0$

$$y = \frac{2x+1}{4x^2+5} \implies \boxed{y=0}$$

2. If the degree of numerator is equal of denominator $(n = m) \Rightarrow y = \frac{a_n}{b_m}$

$$y = \frac{2x^2 + 1}{4x^2 + 5} \implies \left| \underline{y} = \frac{2}{4} = \frac{1}{2} \right|$$

3. If the degree of numerator is greater than of denominator $(n > m) \Rightarrow$ No horizontal asymptote

$$y = \frac{2x^3 + 1}{4x^2 + 5} \implies No \ HA$$

$$f(x) \to b \text{ as } x \to -\infty$$

Slant or Oblique Asymptotes

When the degree of the numerator is one greater than the degree of the numerator, the graph has a slant or oblique asymptote and it is a line y = ax + b, $a \ne 0$. To find the slant asymptote, divide the fraction using long division. The quotient (not remainder) is the slant asymptote.

$$y = \frac{3x^2 - 1}{x + 2}$$

$$x + 2\sqrt{3x^2 + 0x - 1}$$

$$\frac{3x^2 + 6x}{-6x - 1}$$

$$\frac{-6x - 12}{R} = 11$$

$$y = \frac{3x^2 - 1}{x + 2} = (3x - 6) + \frac{11}{x + 2}$$

The *oblique asymptote* is the line y = 3x - 6

Example

Find all the asymptotes and sketch the graph of f if $f(x) = \frac{x^2 - 9}{2x - 4}$

Solution

Find all asymptotes for the graph of f, if it exists

a)
$$f(x) = \frac{3x-1}{x^2 - x - 6}$$

$$f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

a)
$$f(x) = \frac{3x-1}{x^2-x-6}$$
 b) $f(x) = \frac{5x^2+1}{3x^2-4}$ c) $f(x) = \frac{2x^4-3x^2+5}{x^2+1}$

Solution

a)
$$f(x) = \frac{3x-1}{x^2-x-6}$$

VA: x = -2, x = 3 *HA*: y = 0

Hole: n/a

Oblique asymptote: n / a

$$f(x) = \frac{5x^2 + 1}{3x^2 - 4}$$

$$3x^2 - 4 = 0 \rightarrow 3x^2 = 4 \rightarrow x^2 = \frac{4}{3} \rightarrow \boxed{x = \pm \frac{2}{\sqrt{3}}}$$

VA: $x = \pm \frac{2}{\sqrt{3}}$ $HA: y = \frac{5}{3}$

Hole: n/a

Oblique asymptote: n / a

c)
$$f(x) = \frac{2x^4 - 3x^2 + 5}{x^2 + 1}$$

VA: $x = \pm \frac{2}{\sqrt{3}}$

HA: n/a

Hole: n/a

Oblique asymptote: $y = 2x^2 - 5$

$$x^2 + 1 \overline{\smash{\big)}\, 2x^4 - 3x^2 + 5}$$

$$\frac{-2x^4 - 2x^2}{-5x^2 + 5}$$

Sketch the graph of f if $f(x) = \frac{3x+4}{2x-5}$

Solution

VA: $x = \frac{5}{2}$

HA: $y = -\frac{5}{3}$

Hole: n/a

Oblique asymptote: n/a

x	y
0	$-\frac{4}{5}$
$-\frac{4}{3}$	0
4	5.3

Sketch the graph of f if $f(x) = \frac{x^2}{x^2 - x - 2}$

Solution

VA: x = -1, 2

HA: y=1

Hole: n/a

Oblique asymptote: n/a

x	у
0	0
-4	0.88
-2	1
3	<u>9</u> 4

Sketch the graph of f if $f(x) = \frac{x-1}{x^2 - x - 6}$

Solution

VA: x = -2, 3

HA: y = 0

Hole: n/a

Oblique asymptote: n/a

x	y
-4	36
-3	67
0	$\frac{1}{6}$
1	0
4	.5
5	<u>2</u> 7

Exercises Section 1.3 – Rational Functions

Determine all asymptotes of the function

$$1. \qquad y = \frac{3x}{1-x}$$

8.
$$y = \frac{x-3}{x^2-9}$$

15.
$$f(x) = \frac{3-x}{(x-4)(x+6)}$$

2.
$$y = \frac{x^2}{x^2 + 9}$$

9.
$$y = \frac{6}{\sqrt{x^2 - 4x}}$$

16.
$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$$

$$3. \qquad y = \frac{x-2}{x^2 - 4x + 3}$$

10.
$$y = \frac{5x-1}{1-3x}$$

17.
$$f(x) = \frac{3x^2 + 5}{4x^2 - 3}$$

4.
$$y = \frac{3}{x-5}$$

11.
$$f(x) = \frac{2x - 11}{x^2 + 2x - 8}$$

18.
$$f(x) = \frac{x+6}{x^3+2x^2}$$

$$5. y = \frac{x^3 - 1}{x^2 + 1}$$

12.
$$f(x) = \frac{x^2 - 4x}{x^3 - x}$$

19.
$$f(x) = \frac{x^2 + 4x - 1}{x + 3}$$

6.
$$y = \frac{3x^2 - 27}{(x+3)(2x+1)}$$

13.
$$f(x) = \frac{x-2}{x^3 - 5x}$$

20.
$$f(x) = \frac{x^2 - 6x}{x - 5}$$

7.
$$y = \frac{x^3 + 3x^2 - 2}{x^2 - 4}$$

14.
$$f(x) = \frac{4x}{x^2 + 10x}$$

21.
$$f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$$

Determine all asymptotes and sketch the graph of

22.
$$f(x) = \frac{-3x}{x+2}$$

27.
$$f(x) = \frac{x^3 + 1}{x - 2}$$

32.
$$f(x) = \frac{2x^2 - 3x - 1}{x - 2}$$

23.
$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$

28.
$$f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$$

23.
$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$
 28. $f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$ **33.** $f(x) = \frac{2x + 3}{3x^2 + 7x - 6}$

24.
$$f(x) = \frac{2x^2 - 2x - 4}{x^2 + x - 12}$$
 29. $f(x) = \frac{x - 1}{1 - x^2}$

29.
$$f(x) = \frac{x-1}{1-x^2}$$

34.
$$f(x) = \frac{x^2 - 1}{x^2 + x - 6}$$

25.
$$f(x) = \frac{-2x^2 + 10x - 12}{x^2 + x}$$
 30. $f(x) = \frac{x^2 + x - 2}{x + 2}$ **35.** $f(x) = \frac{-2x^2 - x + 15}{x^2 - x - 12}$

30.
$$f(x) = \frac{x^2 + x - 2}{x + 2}$$

35.
$$f(x) = \frac{-2x^2 - x + 15}{x^2 - x - 12}$$

26.
$$f(x) = \frac{x^2 - x - 6}{x + 1}$$

31.
$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

Find an equation of a rational function f that satisfies the given conditions

36.
$$\begin{cases} vertical \ asymptote: \ x = 4 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 3 \end{cases}$$

37.
$$\begin{cases} vertical \ asymptote: \ x = -3, x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \ f(0) = -2 \\ hole \ at \ x = 2 \end{cases}$$

38.
$$\begin{cases} vertical \ asymptote: \ x = -4, x = 5 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: \ -2 \end{cases}$$

39.
$$\begin{cases} vertical \ asymptote: \ x = 5 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 2 \end{cases}$$

40.
$$\begin{cases} vertical \ asymptote: \ x = -2, \ x = 0 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ 2, \quad f(3) = 1 \end{cases}$$

41.
$$\begin{cases} vertical \ asymptote: \ x = -3, \ x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \quad f(0) = -2 \\ hole: \ x = 2 \end{cases}$$

42.
$$\begin{cases} vertical \ asymptote: \ x = -1, \ x = 3 \\ horizontal \ asymptote: \ y = 2 \\ x - intercept: \ -2, \ 1 \\ hole: \ x = 0 \end{cases}$$

Section 1.4 – Inverse Functions

Inverse Relations

Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation.

If a relation is defined by an equation, interchanging the variables produces an equation of the inverse relation

One-to-One Function

A function f is one-to-one (1-1) if different inputs have different outputs that is,

if
$$a \neq b$$
, then $f(a) \neq f(b)$

A function f is one-to-one (1-1) if different outputs the same, the inputs are the same – that is,

if
$$f(a) = f(b)$$
, then $a = b$

Example

Given the function f described by f(x) = 2x - 3, prove that f is one-to-one.

Solution

$$f(a) = f(b)$$

 $2a - 3 = 2b - 3$ Add 3 on both sides
 $2a = 2b$ Divide by 2
 $a = b$
 f is one-to-one

Example

If $g(x) = x^2 - 3$, prove that g is not one-to-one.

Solution

$$g(-1) \neq g(1)$$

$$1^{2} - 3 \neq (-1)^{2} - 3$$

$$-2 = -2$$

g is not one-to-one. In fact, since g is an even function that implies to g(-a) = g(a).

Theorem

A function that is increasing throughout its domain is one-to-one.

A function that is decreasing throughout its domain is one-to-one.

Definition of Inverse Function

Let f be one-to-one function with domain D and range R. A function g with domain R and range D is the *inverse function* of f, provided the following condition is true for every x in D and every y in R:

$$y = f(x)$$
 iff $x = g(y)$

Let f and g be two functions such that: f(g(x)) = x and g(f(x)) = x

$$x \xrightarrow{f} f(x) \qquad g(f(x)) = f^{-1}(f(x)) = x$$

If the inverse of a function f is also a function, it is named f^{-1} read "f – inverse"

The -1 in f^{-1} is not an exponent! And is not equal to

Definition

If a function f is one-to-one, then f^{-1} is the unique function such that each of the following holds.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$
 for each x in the domain of f , and
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
 for each x in the domain of f^{-1}

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
 for each x in the domain of f^{-1}

The condition that f is one-to-one in the definition of inverse function is important; otherwise, g will not define a function

35

Domain and **Range** of f and f^{-1}

domain of
$$f^{-1}$$
 = range of f
range of f^{-1} = domain of f

Example

Show that each function is the inverse of the other: f(x) = 4x - 7 and $g(x) = \frac{x + 7}{4}$

Solution

$$f(g(x)) = f\left(\frac{x+7}{4}\right)$$
$$= 4\left(\frac{x+7}{4}\right) - 7$$
$$= x + 7 - 7$$
$$= x$$

$$g(f(x)) = g(4x-7)$$

$$= \frac{4x-7+7}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

Finding the Inverse Function

Example

Finding an Inverse Function

$$f(x) = 2x + 7$$

- 1. Replace f(x) with y
- y = 2x + 7
- 2. Interchange *x* and *y*
- x = 2y + 7

3. Solve for *y*

x - 7 = 2y

$$\frac{x-7}{2} = \mathbf{y}$$

- 4. Replace y with $f^{-1}(x)$
- $f^{-1}(x) = \frac{x-7}{2}$

Guidelines for Finding f^{-1} in Simple Cases

- 1. Verify that f is a one-to-one function throughout its domain.
- **2.** Solve the equation y = f(x) for x in terms of y, obtaining an equation of the form $x = f^{-1}(y)$.
- **3.** Verify the following two conditions:

$$f^{-1}(f(x)) = x$$
 for every x in the domain of f, and

$$f(f^{-1}(x)) = x$$
 for every x in the domain of f^{-1}

Example

Let $f(x) = x^2 - 3$ for $x \ge 0$. Find the inverse function of f.

$$y = x^2 - 3$$

$$y + 3 = x^2$$

$$x^2 = y + 3$$

$$x = \pm \sqrt{y+3} \qquad Since \ x \ge 0$$

$$x = \sqrt{y+3}$$

$$f^{-1}(x) = \sqrt{x+3}$$

Exercises Section 1.4 – Inverse Functions

Determine whether the function is one-to-one

1.
$$f(x) = 3x - 7$$

4.
$$f(x) = \sqrt[3]{x}$$

7.
$$f(x) = (x-2)^3$$

2.
$$f(x) = x^2 - 9$$

$$5. f(x) = |x|$$

8.
$$y = x^2 + 2$$

$$3. \qquad f(x) = \sqrt{x}$$

6.
$$f(x) = \frac{2}{x+3}$$

6.
$$f(x) = \frac{2}{x+3}$$
 9. $f(x) = \frac{x+1}{x-3}$

Prove the f and g are inverse functions of each other, and sketch the graphs of f and g

10.
$$f(x) = 3x - 2$$
 $g(x) = \frac{x+2}{3}$

12.
$$f(x) = x^3 - 4$$
; $g(x) = \sqrt[3]{x + 4}$

11.
$$f(x) = x^2 + 5, x \le 0$$
 $g(x) = -\sqrt{x-5}, x \ge 5$

Determine the domain and range of f^{-1} (Hint: first find the domain and range of f)

13.
$$f(x) = -\frac{2}{x-1}$$
 14. $f(x) = \frac{5}{x+3}$

14.
$$f(x) = \frac{5}{x+3}$$

15.
$$f(x) = \frac{4x+5}{3x-8}$$

For the given functions

a) Is f(x) one-to-one function

b) Find $f^{-1}(x)$, if it exists

c) Find the domain and range of f(x) and $f^{-1}(x)$

16.
$$f(x) = 3x + 5$$

21.
$$f(x) = 2x^3 - 5$$

25.
$$f(x) = x^2 - 6x$$
; $x \ge 3$

17.
$$f(x) = \frac{1}{3x - 2}$$
 22. $f(x) = \sqrt{3 - x}$

22.
$$f(x) = \sqrt{3-x}$$

26.
$$f(x) = (x-2)^3$$

18.
$$f(x) = \frac{3x+2}{2x-5}$$
 23. $f(x) = \sqrt[3]{x}+1$

23.
$$f(x) = \sqrt[3]{x} + 1$$

27.
$$f(x) = \frac{x+1}{x-3}$$

19.
$$f(x) = 2 - 3x^2$$
; $x \le 0$ **24.** $f(x) = (x^3 + 1)^5$

24.
$$f(x) = (x^3 + 1)^5$$

28.
$$f(x) = \frac{2x+1}{x-3}$$

20.
$$f(x) = \frac{4x}{x-2}$$

29. Let $f(x) = x^3 - 1$ and $g(x) = \sqrt[3]{x+1}$, is g the inverse function of f?

30. Given that f(x) = 5x + 8, use composition of functions to show that $f^{-1}(x) = \frac{x - 8}{5}$

31. Given the function $f(x) = (x+8)^3$

a) Find $f^{-1}(x)$

b) Graph f and f^{-1} in the same rectangular coordinate system

c) Find the domain and the range of f and f^{-1}

Section 1.5 – Exponential Functions

Definition

The exponential function f with base b is defined by

$$f(x) = b^{x}$$
 or $y = b^{x}$

where b > 0, $b \ne 1$ and \boldsymbol{x} is any real number.

$$f(x) = 2^x$$
 $f(x) = \left(\frac{1}{2}\right)^{2x+1}$ $f(x) = 3^{-x}$ $f(x) = (-2)^{x}$

Example

If $f(x) = 2^x$, find each of the following. f(-1), f(3), $f\left(\frac{5}{2}\right)$

Solution

a)
$$f(-1) = 2^{-1} = 0.5$$

b)
$$f(3) = 2^3 = 8$$

c)
$$f\left(\frac{5}{2}\right) = 2^{\frac{5}{2}} = 5.6569$$

Theorem

Exponential Functions are One-to-One

The exponential function f given by:

$$f(x) = a^x$$
 for $0 < a < 1$ or $a > 1$

is one to one. Thus the following equivalent conditions are satisfied for ream numbers x_1 and x_2

If
$$x_1 \neq x_2$$
, then $a^{x_1} \neq a^{x_2}$

If
$$a^{x_1} = a^{x_2}$$
, then $x_1 = x_2$

Graphing Exponential

1. Define the Horizontal Asymptote $f(x) = b^x \pm d$

$$y = 0 \pm d$$

The exponential function always equals to 0

$$x \to \infty \ or \ x \to -\infty \Rightarrow f(x) \to 0$$

2. Define/Make a table

(Force your exponential to = 0, then solve for x)

	x	f(x)
	x-2	
	x-1	
\longrightarrow	\boldsymbol{x}	
	x + 1	
	x + 2	

Domain: $(-\infty,\infty)$

Range: (d, ∞)

Example

$$f(x) = 3^x$$

Asymptote: y = 0

х	f(x)
-2	1/9
-1	1/3
0	1
1	3
2	9

Example

Sketch
$$f(x) = \left(\frac{1}{3}\right)^x$$

Solution

$$f(x) = \left(3^{-1}\right)^{x}$$
$$= 3^{-x}$$

Reflected across y-axis

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Example

Sketch $f(x) = 3^{x-2}$

Solution

Shift right 2 unit

Asymptote: y = 0

х	f(x)
1	1/3
2	1
3	3
4	9

Domain: $(-\infty,\infty)$

Range: $(0, \infty)$

Example

Sketch the graph of $f(x) = 2^{-x^2}$

Solution

$$f(x) = \frac{1}{2^{x^2}}$$

Asymptote: y = 0

х	f(x)
±0	1
±1	$\frac{1}{2}$
±2	1 16

Function is increasing $(-\infty, 0)$

Function is decreasing $(0, \infty)$

The Number *e*

If n is a positive integer, then

$$\left(1 + \frac{1}{n}\right)^n \to e \approx 2.71828$$
 as $n \to \infty$

Natural Base *e*

The irrational number e is called natural base

 $f(x) = e^{x}$ is called natural exponential function

Example

Sketch $f(x) = e^{x}$

Solution

Asymptote: y = 0

x	f(x)
-2	.14
-1	.4
0	1
1	2.7
2	7.4

Example

Sketch $f(x) = e^{x+3}$

Solution

Shifted left 3 units

Asymptote: y = 0

Exercises **Section 1.5 – Exponential Functions**

Sketch the graph

1.
$$f(x) = 2^x + 3$$

$$3. \qquad f(x) = \left(\frac{2}{5}\right)^{-x}$$

3.
$$f(x) = \left(\frac{2}{5}\right)^{-x}$$
 5. $f(x) = -\left(\frac{1}{2}\right)^{x} + 4$
4. $f(x) = e^{x+4}$

2.
$$f(x) = 2^{3-x}$$

4.
$$f(x) = e^{x+4}$$

6. Simplify the expression
$$\frac{\left(e^x + e^{-x}\right)\left(e^x + e^{-x}\right) - \left(e^x - e^{-x}\right)\left(e^x - e^{-x}\right)}{\left(e^x + e^{-x}\right)^2}$$

7. Simplify the expression
$$\frac{\left(e^x - e^{-x}\right)^2 - \left(e^x + e^{-x}\right)^2}{\left(e^x + e^{-x}\right)^2}$$

- The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western 8. Great Lakes, f(x), in billions, x years after 1978. Project the gray population in the recovery area in 2012.
- The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 9. 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.

Section 1.6 – Logarithmic Functions and Properties

Logarithmic Function (Definition)

For x > 0 and $b > 0, b \ne 1$

 $y = \log_b x$ is equivalent to $x = b^y$

The function $f(x) = \log_b x$ is the logarithmic function with base b.

 $\log_b x : \underline{read} \log \text{base } b \text{ of } x$

$$log x$$
 means $log_{10} x$

Example

Write each equation in its equivalent exponential form:

$$a) \quad 3 = \log_7 x \qquad \Rightarrow x = 7^3$$

$$b) \quad 2 = \log_b 25 \qquad \Rightarrow 25 = b^2$$

Write each equation in its equivalent logarithmic form:

$$a) \quad 2^5 = x \qquad \Rightarrow 5 = \log_2 x$$

$$b) \quad 27 = b^3 \qquad \Rightarrow 3 = \log_b 27$$

Example

The number N of bacteria in a certain culture after t hours is given by $N = (1000)2^t$. Express t as logarithmic function of N with base 2.

44

$$\frac{N}{1000} = 2^t \implies t = \log_2 \frac{N}{1000}$$

Basic Logarithmic Properties

$$\log_b b = 1 \quad \to \quad b = b^1$$

$$\log_b 1 = 0 \longrightarrow 1 = b^0$$

Inverse Properties

$$\log_b b^{x} = x$$

$$\log_7 7^8 = 8$$

$$b^{\log b} = x$$

$$3^{\log_3 17} = 17$$

Example

Find the number, if possible

$$\log_{10} 100 = \log_{10} 10^2 = 2$$

$$\log_9 3$$

$$\log_9 3 = \log_9 \sqrt{9} = \log_9 9^{1/2} = \frac{1}{2}$$

$$\log_2 \frac{1}{32}$$

$$\log_2 \frac{1}{32} = \log_2 \frac{1}{2^5} = \log_2 2^{-5} = -5$$

Natural Logarithms

Definition

$$f(x) = \log_{e} x = \ln x$$

The logarithmic function with base e is called natural logarithmic function.

ln x read "el en of x"

$$\log(-1) = doesn't \ exist$$

$$\log 0 = doesn't \ exist$$

$$\log 0.5 \approx -0.3010$$

$$\log 1 = 0$$

$$\log 2 \approx 0.3010$$

$$\ln 2 \approx 0.6931$$

$$\log 10 = 1$$

$$\ln 2 \approx 0.6931$$

Change-of-Base Logarithmic

$$\log_b M = \frac{\log_a M}{\log_a b} \qquad \qquad \log_b M = \frac{\log M}{\log b} \quad \textit{or} \quad \log_b M = \frac{\ln M}{\ln b}$$

Evaluate

$$\log_7 2506 = \frac{\log 2506}{\log 7} \approx 4.02$$

$$\log_7 2506 = \frac{\ln 2506}{\ln 7} \approx 4.02$$

$$\ln(2506) / \ln(7)$$

Domain

The domain of a logarithmic function of the form $f(x) = \log_b x$ is the set of all positive real numbers. (*Inside* the log has to be > 0)

Range: $(-\infty,\infty)$

Example

Find the domain of

$$a) \quad f(x) = \log_4(x-5)$$

$$x-5>0 \implies x>5$$
 Domain: $(5,\infty)$

$$b) \quad f(x) = \ln(4 - x)$$

$$4 - x > 0$$

$$\Rightarrow x < 4$$

 $\Rightarrow x < 4$ **Domain**: $(-\infty, 4)$

$$c) \quad h(x) = \ln(x^2)$$

$$x^2 > 0 \Rightarrow$$
 all real numbers except 0.

Domain:
$$\{x \mid x \neq 0\}$$
 or $(-\infty,0) \cup (0,\infty)$

Graphs of Logarithmic Functions

Example

Graph $g(x) = \log x$

Solution

Asymptote: x = 0

(Force inside log to be equal to zero, then solve for x)

x	g(x)	
-0-		
0.5	3	
1	0	
2	.3	
3	.5	

Example

Graph
$$f(x) = \log_3 |x|$$
 for $x \neq 0$

Solution

$$f(-x) = \log_3 |-x| = \log_3 |x| = f(x)$$

Therefore; the graph is symmetric with respect to the *y*-axis.

Properties of Logarithms

Product Rule

$$\log_b MN = \log_b M + \log_b N$$
 For $M > 0$ and $N > 0$

Proof

$$\begin{cases} \log_b M = x \implies M = b^x \\ \log_b N = y \implies N = b^y \end{cases} \Rightarrow MN = b^x b^y = b^{x+y}$$

Convert back to logarithmic form: $\log_h MN = x + y$

$$\log_b MN = \log_b M + \log_b N$$

Power Rule

$$\log_h M^{p} = p \log_h M$$

Quotient Rule

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

Example

Express $\log_a \frac{x^3 \sqrt{y}}{z^2}$ in terms of logarithms of x, y, and z.

$$\log_a \frac{x^3 \sqrt{y}}{z^2} = \log_a x^3 y^{1/2} - \log_a z^2$$
Quotient Rule
$$= \log_a x^3 + \log_a y^{1/2} - \log_a z^2$$
Product Rule
$$= 3\log_a x + \frac{1}{2}\log_a y - 2\log_a z$$
Power Rule

Example

Express as one logarithm: $\frac{1}{3}\log_a(x^2-1)-\log_a y-4\log_a z$

$$\frac{1}{3}\log_{a}\left(x^{2}-1\right)-\log_{a}y-4\log_{a}z=\log_{a}\left(x^{2}-1\right)^{1/3}-\log_{a}y-\log_{a}z^{4} \qquad \textit{Power Rule}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}y+\log_{a}z^{4}\right) \qquad \textit{Factor (-)}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}yz^{4}\right) \qquad \textit{Product Rule}$$

$$=\log_{a}\frac{\sqrt[3]{x^{2}-1}}{yz^{4}} \qquad \textit{Quotient Rule}$$

Exercises Section 1.6 – Logarithmic Functions and Properties

Change to logarithm form

1.
$$4^3 = 64$$

3.
$$3^x = 4 - 1$$

$$5. 10^x = y + 1$$

7.
$$e^{2t} = 3 - x$$

2.
$$4^{-3} = \frac{1}{64}$$

1.
$$4^3 = 64$$
 3. $3^x = 4 - t$ **5.** $10^x = y + 1$ **7.** $e^{2t} = 3 - x$ **2.** $4^{-3} = \frac{1}{64}$ **4.** $5^{7t} = \frac{a+b}{a}$ **6.** $e^7 = p$

6.
$$e^7 = p$$

Change to exponential form

8.
$$\log_2 32 = 5$$

11.
$$\log_2 m = 3x + 4$$
 14. $\ln w = 4 + 3x$

14.
$$\ln w = 4 + 3x$$

9.
$$\log_3 \frac{1}{243} = -5$$

12.
$$\log x = 50$$

10.
$$\log_3(x+2) = 5$$

13.
$$\ln(z-2) = \frac{1}{6}$$

Find the number

15.
$$\log_{5} 1$$

17.
$$3^{\log_3 8}$$

19.
$$e^{2+\ln 3}$$

20.
$$\ln e^{-3}$$

16.
$$\log_{7} 7^2$$

21. Find $\log_5 8$ using common logarithms

Evaluate using the change of base formula (without a calculator)

22.
$$\frac{\log_{5} 16}{\log_{5} 4}$$

23.
$$\frac{\log_{7} 243}{\log_{7} 3}$$

Sketch the graph of

24.
$$f(x) = \log_4 (x-2)$$

$$f(x) = \log_{A} (x-2)$$
 25. $f(x) = \log_{A} |x|$

26.
$$f(x) = \left(\log_4 x\right) - 2$$

Find the domain of

27.
$$\log_5(x+4)$$

30.
$$\log(7-x)$$

33.
$$\log(x^2 - 4x - 12)$$

28.
$$\log_5(x+6)$$

31.
$$ln(x-2)^2$$

34.
$$\log(\frac{x-2}{x+5})$$

29.
$$\log(2-x)$$

32.
$$\ln(x-7)^2$$

35. Express $\log_a \frac{x^3 w}{x^2 z^4}$ in terms of logarithms of x, y, z, and w.

- **36.** Express $\log_a \frac{\sqrt{y}}{43/2}$ in terms of logarithms of x, y, and z.
- **37.** Express $\ln 4 \sqrt{\frac{x^7}{x^5}}$ in terms of logarithms of x, y, and z.
- **38.** Express $\ln x \sqrt[3]{\frac{y^4}{z^5}}$ in terms of logarithms of x, y, and z.

Express the following in terms of sums and differences of logarithms

$$39. \quad \log_b \left(\frac{x^3 y}{z^2} \right)$$

42.
$$\log_a \sqrt[4]{\frac{m^8 n^{12}}{a^3 b^5}}$$

$$45. \quad \log_a \sqrt[3]{\frac{a^2 b}{c^5}}$$

40.
$$\log_b \left(\frac{\sqrt[3]{x}y^4}{z^5} \right)$$

43.
$$\log_p \sqrt[3]{\frac{m^5 n^4}{t^2}}$$

46.
$$\log_b\left(x^4\sqrt[3]{y}\right)$$

41.
$$\log \left(\frac{100x^3 \sqrt[3]{5-x}}{3(x+7)^2} \right)$$
 44. $\log_b \sqrt[n]{\frac{x^3y^5}{z^m}}$

$$44. \quad \log_b \sqrt[n]{\frac{x^3 y^5}{z^m}}$$

$$47. \quad \log_5\left(\frac{\sqrt{x}}{25y^3}\right)$$

Write the expression as a single logarithm

48.
$$4 \ln x + 7 \ln y - 3 \ln z$$

49.
$$\frac{1}{3} \left[5 \ln(x+6) - \ln x - \ln(x^2 - 25) \right]$$

50.
$$\frac{2}{3} \left[\ln \left(x^2 - 4 \right) - \ln \left(x + 2 \right) \right] + \ln (x + y)$$

51.
$$\frac{1}{2}\log_b m + \frac{3}{2}\log_b 2n - \log_b m^2 n$$

52.
$$\frac{1}{2}\log_y p^3 q^4 - \frac{2}{3}\log_y p^4 q^3$$

53.
$$\frac{1}{2} \log_a x + 4 \log_a y - 3 \log_a x$$

54.
$$\frac{2}{3} \left[\ln \left(x^2 - 9 \right) - \ln \left(x + 3 \right) \right] + \ln \left(x + y \right)$$

55.
$$\frac{1}{4} \log_b x - 2 \log_b 5 - 10 \log_b y$$

56.
$$2\log_a x + \frac{1}{3}\log_a (x-2) - 5\log_a (2x+3)$$

57.
$$5\log_a x - \frac{1}{2}\log_a (3x - 4) - 3\log_a (5x + 1)$$

58.
$$\log(x^3y^2) - 2\log(x\sqrt[3]{y}) - 3\log(\frac{x}{y})$$

59.
$$\ln y^3 + \frac{1}{3} \ln \left(x^3 y^6 \right) - 5 \ln y$$

$$60. \quad 2\ln x - 4\ln\left(\frac{1}{y}\right) - 3\ln\left(xy\right)$$

On a study by psychologists Bornstein and Bornstein, it was found that the average walking **61.** speed w, in feet per second, of a person living in a city of population P, in *thousands*, is given by the function:

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- The population is 1,236,249. Find the average walking speed of people living in San Antonio.

62. The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

63. Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1), \quad t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?

Section 1.7 – Exponential and Logarithmic Equations

Exponential Functions are One-to-One

$$b^{\mathbf{M}} = b^{\mathbf{N}} \iff \mathbf{M} = \mathbf{N} \text{ for any } b > 0, \neq 1$$

Example

Solve
$$8^{x+2} = 4^{x-3}$$

Solution

$$\left(2^{3}\right)^{x+2} = \left(2^{2}\right)^{x-3}$$

$$2^{3(x+2)} = 2^{2(x-3)}$$

$$3(x+2) = 2(x-3)$$

$$3x + 6 = 2x - 6$$

$$3x - 2x = -6 - 6$$

$$x = -12$$

Using Natural Logarithms

- 1. Isolate the exponential expression
- 2. Take the natural logarithm on both sides of the equation
- 3. Simplify using one of the following properties: $\ln b^x = x \ln b$ or $\ln e^x = x$
- 4. Solve for the variable

Example

Solve the equation $3^x = 21$

1 st method		2 nd method	
$3^x = 21$	ln both sides	$3^x = 21 \Rightarrow x = \log_3 21$	Convert to log
$\ln 3^x = \ln 21$		form	
$x \ln 3 = \ln 21$		$x = \frac{\ln 21}{\ln 3}$	Change of base
$x = \frac{\ln 21}{\ln 3}$			

Example

Solve the equation $5^{2x+1} = 6^{x-2}$

Solution

$$\ln 5^{2x+1} = \ln 6^{x-2}$$

$$(2x+1)\ln 5 = (x-2)\ln 6$$

$$2x\ln 5 + \ln 5 = x\ln 6 - 2\ln 6$$

$$2x\ln 5 - x\ln 6 = -2\ln 6 - \ln 5$$

$$x(2\ln 5 - \ln 6) = -\ln 6^2 - \ln 5$$

$$x(\ln 5^2 - \ln 6) = -(\ln 36 + \ln 5)$$

$$x(\ln \frac{25}{6}) = -\ln(36 \times 5)$$

$$|x = -\frac{\ln(180)}{\ln \frac{25}{6}} \approx -3.64|$$

Example

Solve the equation $\frac{5^x - 5^{-x}}{2} = 3$

$$5^{x} - 5^{-x} = 6$$

$$5^{x} 5^{x} - 5^{-x} 5^{x} = 65^{x}$$

$$Multiply by 2 both sides$$

$$(5^{x})^{2} - 1 = 6(5^{x})$$

$$(5^{x})^{2} - 6(5^{x}) - 1 = 0$$

$$5^{x} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(1)(-1)}}{2(1)} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = \begin{cases} 3 + \sqrt{10} \\ 3 - \sqrt{10} < 0 \end{cases}$$

$$5^{x} = 3 + \sqrt{10}$$

$$\ln 5^{x} = \ln(3 + \sqrt{10})$$

$$x \ln 5 = \ln(3 + \sqrt{10})$$

$$|x = \frac{\ln(3 + \sqrt{10})}{\ln 5} \approx 1.13$$

Logarithmic Equations

- **1.** Express the equation in the form $\log_h M = c$
- **2.** Use the definition of a logarithm to rewrite the equation in exponential form:

$$\log_{\mathbf{h}} M = c \implies \mathbf{b}^{\mathbf{c}} = M$$

- 3. Solve for the variable
- **4.** Check proposed solution in the original equation. Include only the set for M > 0

Example

Solve: $\log x + \log(x-3) = 1$

Solution

$$\log[x(x-3)] = 1$$

$$x(x-3) = 10^{1}$$

$$x^{2} - 3x = 10$$

$$x^{2} - 3x - 10 = 0$$

$$\Rightarrow x = -2, 5$$
Product Rule

Convert to exponential form

Solve for x

Check:
$$x = -2 \implies \log(-2) + \log(x - 3) = 1$$

 $x = 5 \implies \log(5) + \log(5 - 3) = 1$

Example

Solve the equation $\log_2 x + \log_2 (x+2) = 3$

$$\log_2[x(x+2)] = 3$$
 Product Rule
$$x(x+2) = 2^3$$
 Change to exponential form
$$x^2 + 2x - 8 = 0$$
 Solve for x

$$x = -4 \quad x = 2$$

Check:
$$\log_2(-4) + \log_2(-4 + 2) = 3$$
 Not a solution (negative inside the log) $\log_2(2) + \log_2(2 + 2) = 3$ Only solution

Property of Logarithmic Equality

The logarithmic function with base b is 1-1. Thus the following equivalent conditions are satisfied for positive real numbers M and N.

For any
$$M > 0$$
, $N > 0$, $b > 0$, $\neq 1$
If $\log_b M = \log_b N \implies M = N$
If $M \neq N \implies \log_b M \neq \log_b N$

Example

Solve the equation $\log_{6} (4x-5) = \log_{6} (2x+1)$

Solution

$$\log_{6}(4x-5) = \log_{6}(2x+1)$$

$$4x-5 = 2x+1$$

$$4x-2x = 5+1$$

$$2x = 6$$

$$x = 3$$
Check:
$$\log_{6}(4(3)-5) = \log_{6}(2(3)+1)$$

$$\log_{6}(7) = \log_{6}(7)$$
True statement
$$\boxed{x=3}$$
 is a solution

Example

Solve the equation $\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$

$$\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$$

$$\ln(x+6) - \ln(x-1) = \ln 10 - \ln 2$$

$$\ln\left(\frac{x+6}{x-1}\right) = \ln\frac{10}{2}$$

$$\frac{x+6}{x-1} = 5$$

$$x+6 = 5(x-1)$$

$$x+6 = 5x-5$$

$$x - 5x = -5 - 6$$

$$-4x = -11$$

$$x = \frac{-11}{-4} = \frac{11}{4}$$

$$\frac{Check}{1} : \ln\left(\frac{11}{4} + 6\right) - \ln 10 = \ln\left(\frac{11}{4} - 1\right) - \ln 2$$

$$\ln\left(\frac{35}{4}\right) - \ln 10 = \ln\left(\frac{7}{4}\right) - \ln 2$$

$$x = \frac{11}{4}$$
 is the solution

Example

Solve the equation $\log \sqrt[3]{x} = \sqrt{\log x}$ for x.

$$\log x^{1/3} = \sqrt{\log x}$$

$$\left(\frac{1}{3}\log x\right)^2 = \left(\sqrt{\log x}\right)^2$$

$$\frac{1}{9}(\log x)^2 = \log x$$

$$(\log x)^2 = 9\log x$$

$$(\log x)^2 - 9\log x = 0$$

$$\log x(\log x - 9) = 0$$

$$\log x = 0 \qquad \log x - 9 = 0$$

$$\boxed{x = 1} \qquad \log x = 9$$

$$\boxed{x = 10^9}$$

$$Check: \quad x = 1 \implies \log \sqrt[3]{1} = \sqrt{\log 1} \rightarrow 0 = 0$$

$$x = 10^9 \implies \log \sqrt[3]{10^9} = \sqrt{\log 10^9} \rightarrow 3 = 3$$

The equation has two solutions:
$$x = 1, 10^9$$

Example (hyperbolic secant function)

Solve the equation $y = \frac{2}{e^x + e^{-x}}$ for x in terms of y.

$$y = \frac{2}{e^{x} + e^{-x}}$$

$$y(e^{x} + e^{-x}) = 2$$

$$ye^{x} + ye^{-x} = 2$$

$$ye^{x}e^{x} + ye^{-x}e^{x} = 2e^{x}$$

$$y(e^{x})^{2} - 2e^{x} + y = 0$$

$$e^{x} = \frac{2 \pm \sqrt{4 - 4y^{2}}}{2y}$$

$$= \frac{2 \pm \sqrt{4(1 - y^{2})}}{2y}$$

$$= \frac{2 \pm 2\sqrt{1 - y^{2}}}{2y}$$

$$= \frac{1 \pm \sqrt{1 - y^{2}}}{y}$$

$$\ln e^{x} = \ln\left(\frac{1 \pm \sqrt{1 - y^{2}}}{y}\right)$$

$$x = \ln\frac{1 \pm \sqrt{1 - y^{2}}}{y}$$

Exercises Section 1.7 – Exponential and Logarithmic Equations

Solve

1.
$$3^{5x-8} = 9^{x+2}$$

2.
$$7^{x+6} = 7^{3x-4}$$

3.
$$2^{-100x} = (0.5)^{x-4}$$

4.
$$4^x \left(\frac{1}{2}\right)^{3-2x} = 8.\left(2^x\right)^2$$

5.
$$5^{3x-6} = 125$$

6.
$$e^{x^2} = e^{7x-12}$$

7.
$$f(x) = xe^x + e^x$$

8.
$$f(x) = x^3 (4e^{4x}) + 3x^2 e^{4x}$$

9.
$$3^{x+4} = 2^{1-3x}$$

10.
$$3^{2-3x} = 4^{2x+1}$$

11.
$$7^{2x+1} = 3^{x+2}$$

12.
$$4^{x+3} = 3^{-x}$$

13.
$$2^{-x^2} = 5$$

14.
$$2^{-x} = 8$$

$$\mathbf{15.} \quad \log_{A} x = \log_{A} \left(8 - x \right)$$

16.
$$\log_{7}(x-5) = \log_{7}(6x)$$

17.
$$\ln x^2 = \ln (12 - x)$$

18.
$$e^{x \ln 3} = 27$$

19.
$$e^{2x} + 2e^x - 15 = 0$$

20.
$$\log_3 x - \log_9 (x + 42) = 0$$

21.
$$\ln \sqrt[4]{x} = \sqrt{\ln x}$$

$$22. \quad \sqrt{\ln x} = \ln \sqrt{x}$$

23.
$$\log(x^2+4) - \log(x+2) = 2 + \log(x-2)$$

24.
$$5^x + 125(5^{-x}) = 30$$

25.
$$4^x - 3(4^{-x}) = 8$$

26.
$$\log x^2 = (\log x)^2$$

27.
$$\log(\log x) = 2$$

28.
$$\log \sqrt{x^3 - 9} = 2$$

29.
$$\ln(-4-x) + \ln 3 = \ln(2-x)$$

30.
$$\log_6(2x-3) = \log_6 12 - \log_6 3$$

31.
$$\log_2(x+7) + \log_2 x = 3$$

32.
$$\log_3(x+3) + \log_3(x+5) = 1$$

33.
$$\ln x = 1 - \ln(x+2)$$

34.
$$\ln x = 1 + \ln (x+1)$$

35.
$$\log_3(x-2) = \log_3 27 - \log_3(x-4) - 5^{\log_5 1}$$

36.
$$\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$$

37.
$$\log_5(x-7) = 2$$

38.
$$\log_5 x + \log_5 (4x - 1) = 1$$

39.
$$\log x + \log(x - 3) = 1$$

40.
$$\log x - \log(x+3) = 1$$

41.
$$\log_3 x = -2$$

42.
$$\log(3x+2) + \log(x-1) = 1$$

43.
$$\log_5(x+2) + \log_5(x-2) = 1$$

44.
$$\log x + \log(x - 9) = 1$$

45.
$$\log_2(x+1) + \log_2(x-1) = 3$$

46.
$$\log_8(x+1) - \log_8 x = 2$$

47.
$$\log(x+6) - \log(x+2) = \log x$$

48.
$$\ln(x+8) + \ln(x-1) = 2\ln x$$

49.
$$\ln(4x+6) - \ln(x+5) = \ln x$$

50.
$$\ln(5+4x) - \ln(x+3) = \ln 3$$

51.
$$\ln(x-5) - \ln(x+4) = \ln(x-1) - \ln(x+2)$$

52.
$$ln(x-3) = ln(7x-23) - ln(x+1)$$

53.
$$\log_4 (5+x) = 3$$

54.
$$\log_5(2x+3) = \log_5 11 + \log_5 3$$

Use common logarithms to solve for x in terms of y

$$55. \quad y = \frac{10^x + 10^{-x}}{2}$$

56.
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

57.
$$y = \frac{e^x - e^{-x}}{2}$$

58.
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

59. Solve for *t* using logarithms with base *a*:
$$2a^{t/3} = 5$$

60. Solve for *t* using logarithms with base *a*:
$$K = H - Ca^t$$