HW #2 (Due: Mar 06, 2023)

Instructor: Prof. Tian Lan

Problem 1.

Consider two-bandit problem with the following reward distributions:

$$R(a^1) \sim Uniform[0\ 1.4]$$

$$R(a^2) \sim \mathcal{N}(\mu = 0.5, \sigma = 1)$$

- a) Compute the optimal $Q^*(a^1)$, $Q^*(a^2)$ and π^* .
- b) Consider the reward distributions are unknown. Use the learning rate $\alpha=0.5$ to estimate $Q(a^1), Q(a^2)$ and π given the following:

	k=1	k=2	k=3	k=4	k=5
Action	a ¹	a^2	a^1	a^2	a^1
Reward	1	0.5	0	1.25	1.35

c) Repeat part b for optimistic initial value Given $Q(a^1) = Q(a^2) = 5$.

Problem 2.

Given the following interaction and reward sequence, set $\alpha = 0.5$, $H_1(a^1) = H_1(a^2) = 0$ and use the gradient-bandit policy to compute $H_4(a^1)$, $H_4(a^2)$, $\pi_4(a^1)$ and $\pi_4(a^2)$.

	k=1	k=2	k=3
Action	a^1	a^2	a^1
Reward	1	0.5	0