Data Science do ZERO

Capítulo 06 - Machine Learning

- Algoritmo utiliza aprendizado supervisionado.
- Classificador probabilístico baseado no teorema de Bayes.
- Assume que há uma independência entre as features.
- Por conta dessa caracteristica, recebe o nome de Naive.
- Possui poucos parâmetros e é um algoritmo simples e rápido.

Fluxo da tarefa de classificação

- Baseado no teorema de Bayes.
- Probabilidade Condicional

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

 $\frac{\text{posterior probability}}{\text{evidence}} = \frac{\text{conditional probability} \cdot \text{prior probability}}{\text{evidence}}$

- Entenda o porque do nome "Naive":
 I <u>love</u> my dog, but today it's <u>terrible</u>!!
- Essa frase poderá ter uma classificação positiva devido a independência de features.
- A probabilidade de cada palavra é independente das outras palavras.
- Essa independência de features é raramente encontrada em cenários reais.

- Cálculo probabilístico:
- Imagine um exemplo onde o objetivo é classificar algumas frases entre positivas ou negativas.
- Para isso eu tenho um dataset com frases e suas classes (positivo, negativo)
- Exemplo:
 - "I love dog!", 'positive'
 - "Dog is bad in house", 'negative'
 - o "The cat is love", 'positive'
 - "I hate cat and dogs", 'negative'

Palavra	Classe	
dog	positive	
love	negative	
bad	negative	
love	positive	
love	positive	
dog	positive	
house	positive	
cat	positive	
cat	negative	
cat	negative	
love	negative	
house	positive	
love	positive	

- Tabela de frequência:
- O próximo passo é criar uma tabela de frequência por classe.
- Essa tabela é importante para o cálculo de probabilidades a seguir..

Tal	Tabela de Frequência				
Palavra	Positive	Negative			
dog	2				
love	3	2			
bad		1			
cat	1	3			
house	2				
Total	8	6			

- Com a tabela de probabilidades das palavras e classe calcula-se as probabilidades de cada palavra para a base de dados.
- Quanto mais frequente a palavra for maior impacto no modelo.

Tabela de Probabilidades			
Palavra	Positive	Negative	
dog	2		2/14 = 0.14
love	3	2	5/14 = 0.35
bad		1	1/14 =0.071
cat	1	3	4/14 = 0.28
house	2		2/14 = 0.14
Total	8	6	
	8/14 = 0.57	6/14 = 0.42	v

- Com a distribuição de cada palavra,
 é possível calcular a probabilidade
 de uma palavra pertencer a uma classe.
- Calculando a probabilidade da palavra "love" ser positiva ou negativa.
- A probabilidade da palavra "love" ser positiva é maior.
- Importante: Em casos de não haver a palavra na base, este retornará a probabilidade de da classe com maior frequência.

P(positive|'love') = P('love'|positive) * P(positive) / P('love')
P(negative|'love') = P('love'|negative) * P(negative) / P('love')

Calculando:

P(love'|positive) = 3/8 = 0.37, P(positive) = 8/14 = 0.57, P(love') = 5/14 = 0.35

P(love'|negative) = 2/6 = 0.33, P(negative) = 6/14 = 0.42, P(love') = 5/14 = 0.35

Agora, P(positive|'love') = 0.37 * 0.57 / 0.35 = 0.60

Agora, P(negative|'love') = 0.33 * 0.42 / 0.35 = 0.39

Multinomial Naive Bayes:

- Utiliza a frequência de termos
- Muito utilizada em tarefas de classificação de textos.

Bernoulli Naive Bayes

- Variação do Algoritmo para valores para valores binários.
- Trabalha com a matriz de presença de valores. Exemplo (1, 0)

Gaussian Naive Bayes:

- Variação do Algoritmo para valores contínuos.
- Calcula-se a média e o desvio padrão dos valores de entrada para cada classe.
- Assume-se que os valores estão em uma forma normal.

Hands on!