Name : Chansinee Mueangnu Student ID : 63070501221 Room_2A____

Homework1_2AB (20 marks)

(04 August 2022)

1.Design and select the minimum PLC modules (Siemens S7-300 modular type) for process control system comprise of the sensors and actuators as list below. (10 marks)

2 emergency stop switch \rightarrow 2 DI (example) 3 push button switches → 3 DI 2 Inductive sensors → 2 DI 3 Photo sensors → 3 DI 1 ultrasonic sensor → 1 Al 2 Temperature sensors → 2 AI 2 Temperature switches High → 2 DI 1 Temperature switch Low → 1 DI 2 pressure sensors → 2 Al 1 Flow sensor → 1 AI 1 Pressure switch High → 1 DI 1 Pressure switch Low → 1 DI 4 On/off Valves → 4 DO 1 linear control valve → 1 AO 2 On/off Motors → 2 DO 2 VFD pumps \rightarrow 2 AO 2 heaters → 2 AO 2 double acting cylinder (Pneumatic) → 2 DO 3 Pilot lamps \rightarrow 3 DO 1 horn \rightarrow 1 DO

จากโจทย์ ต้องการเลือก minimum PLC modules จึงได้ทำการจำแนกประเภท input/output ของอุปกรณ์ต่าง ๆ ไว้ข้างต้น และพบว่าต้องใช้จำนวน input/output ดังนี้

• DI 15 bit

2 Ventilation fans → 2 DO

- DO 14 bit
- Al 6 bit
- AO 5 bit

PLC modules (Siemens S7-300 modular type) ประกอบไปด้วย

- 1. Power supply
- 2. CPU
- 3. Interface module
- 4. SM: DI, DO, AI, AO

โดย CPU เราจะอ้างอิงจากในห้องเรียน นั่นคือจะใช้ CPU 313C-2 DP (6ES7 313-6CF03-0AB0) V2.6 และจะ design minimum PLC modules โดยการเลือก SM ที่เหมาะสม นั่นคือเราต้องการ DI 15 bit, DO 14 bit, AI 6 bit และ AO 5 bit

Slot		Module	Order number	Firmware	MPI address	I address	Q address
1		PS 307 5A	6ES7 307-1EA00-0AA0				
2	S	CPU 313C-2 DP	6ES7 313-6CF03-0AB0	V2.6	2		
1/2		DF				1023"	
22		DI16/D016				124125	124125
24		Count				768783	768783

รูปที่1: HW config (PS and CPU)

จากรูปที่ 1 จะเห็นได้ว่า ภายใน CPU 313-2 DP มี DI16/DO16 ให้อยู่แล้ว เราจึงต้องการ signal module เพิ่มเติม เพียงแค่ AI และ AO ในที่นี้เราต้องเลือกใช้การ์ดให้น้อยที่สุด นั่นคือจะใช้ SM: AI 8x12 bit และ SM: AO 8x12 bit ตามรูปที่ 2 ซึ่งเพียงพอต่อการใช้งานแล้ว

Slot	Module	Order number	Firmware	MPI address	I address	Q address
1	PS 307 5A	6ES7 307-1EA00-0AA0				
2	CPU 313C-2 DP	6ES7 313-6CF03-0AB0	V2.6	2		
1/2	DF				1023"	
22	D/16/D016				124125	124125
24	Count				768783	768783
3						
4	Al8x12Bit	6ES7 331-7KF00-0AB0			256271	
5	A08x12Bit	6ES7 332-5HF00-QAB0				272287

รูปที่2: HW config (เพิ่มการ์ด AI และ AO ใน slot4-5)

2. Write S7-300 ladder programming for Exclusive OR function (5 marks)

รูปที่3: XOR logic gate

🕨 หากพิจารณา XOR logic gate ดังรูปที่3 จะสามารถเขียน ladder for XOR function ได้ดังนี้

รูปที่4: สร้าง XOR function (FC1)

รูปที่5: เรียกใช้ FC1 (XOR Function) ใน OB1

3. Write S7-300 ladder programming for reversing- after-stop motor control (5 marks) โรสร้างปุ่ม เพื่อใช้ในการกดให้มอเตอร์นมุนตามทิศที่ต้องการ (จะเปลี่ยนทิศ ต้องกดปุ่ม Stop ก่อนเสมอ)

รูปที่6: สร้าง motor control function (FC2)

รูปที่7: เรียกใช้ FC2 (motor control Function) ใน OB1