

Figura 6.2.7 La imagen del rect ángulo D^* despu és de la transformación a coordenadas polares es el disco D.

Ejemplo 4

Calcular $\iint_D \log(x^2 + y^2) dx dy$, donde D es la región en el primer cuadrante comprendida entre los arcos de las circunferencias $x^2 + y^2 = a^2$ y $x^2 + y^2 = b^2$, donde 0 < a < b (Figura 6.2.8).

Figura 6.2.8 La aplicación de cambio a coordenadas polares transforma un rectángulo D^* en una parte de un anillo D.

Solución

Estas circunferencias tienen las siguientes ecuaciones en coordenadas polares r=a y r=b. Además, en el integrando aparace $r^2=x^2+y^2$. Por tanto, un cambio a coordenadas polares simplificará tanto el integrando como la región de integración. De acuerdo con el Ejemplo 7 de la Sección 6.1, la transformación a coordenadas polares

$$x = r\cos\theta, \qquad y = r\sin\theta$$

transforma el rectángulo D^* , dado por $a \le r \le b, 0 \le \theta \le \pi/2$ en la región D. Esta transformación es inyectiva en D^* y, por tanto, por la fórmula (7), tenemos

$$\iint_{D} \log (x^{2} + y^{2}) dx dy = \int_{a}^{b} \int_{0}^{\pi/2} r \log r^{2} d\theta dr$$
$$= \frac{\pi}{2} \int_{a}^{b} r \log r^{2} dr = \frac{\pi}{2} \int_{a}^{b} 2r \log r dr.$$