

Projet informatique

Le robot à guidage thermique

Julien CHAVAS - Clément DEVEVEY - Alexandre HUMBERT

SOMMAIRE

Présentation du projet 01

Introduction des fonctionnalités et contraintes du robot.

Gestion de projet

Organisation et répartition des tâches. Réalisation des fonctionnalités

Méthodes, algorithmes, difficultés et solutions.

Conclusion

Fonctionnalités à implémenter + bilan personnel et global.

01

Présentation du projet

Fonctionnalités et contraintes

1.1 Contraintes matérielles

1.2 Contraintes logicielles

1.3 Les objectifs du projet

- Buildroot et NFS
- UART BeagleBone <-> Teensy
- Faire rouler le robot
- I2C: capteurs (ultrason et infrarouge)
- Afficher les images du capteur infrarouge
- Suivre une personne
- Ne pas approcher à + de 15 cm
- Détecter et contourner les obstacles

02

Réalisation des fonctionnalités

Méthodes, algorithmes, difficultés et solutions

2.1 Faire rouler le robot

- Ajouter l'UART1 au device-tree
- Téléverser le programme sur la Teensy
- Ajouter de commandes

Difficultés:

- Moteurs grippés et sous-alimentés
- L'asservissement ne fonctionne pas

Solutions:

- Réécrire le programme de la carte Teensy
- Changer la source d'alimentation des moteurs

2.2 Suivre un utilisateur

- Ajouter l'I2C-1 au device-tree
- Récupérer et traiter les informations du capteur

Difficultés:

- Soudures du capteur défaillantes
- Capteur mal positionné
- Présence de bruit

Solutions:

- Nouvelles soudures
- Nouveau support
- Moyennage

2.3 Détection et contournement d'obstacles

- Ajouter l'I2C-2 au device-tree
- Récupérer et traiter les informations du capteur

Difficultés:

- Blocage du code :
 - Temps d'attente entre envoi et retour ultrason
 - Utilisation de usleep()

Solutions:

Utilisation de timer

2.4 Interface web

- Ajouter le paquet BOA
- Configurer le serveur

- Récupérer les informations de tous les capteurs
- Afficher une image thermique en temps réel
- Piloter les moteurs
- Utiliser les fonctions de débogage

2.5 Algorigramme Début Initialisation Acquisition des données Oui Non Distance > 15 cm ? Oui Non Somme pixel Oui Non Source > seuil ? chaleur? Pivoter sur Arrêt Suivre Contournement soi-même moteurs

Démo

03 Gestion de projet

Organisation et répartition des tâches

3.1 Organisation

Roulement pour le partage du robot (distanciel)

- Travail en distanciel (discord)
- Travail en présentiel
 - Réalisation des tests
- Découpage du travail

3.2 Répartition des tâches

- Parties logicielles
- Parties matérielles

Difficultés:

- Priorités bloquantes
- Un seul robot pour tester

04

Conclusion

Améliorations possibles Bilan global/personnel

4.1 Améliorations possibles

Seuils adaptatifs automatiques:

- Pour détecter une source chaude lors de la détection d'obstacles

Ajout du Wifi

- Pour communiquer avec le robot en déplacement

4.2 Bilan

Tous les objectifs prévus initialement ont été réalisés.

Projet très enrichissant:

- Logiciel (C, buildroot, site web)
- Matériel (Moteur, capteurs, ...)
- Travail en groupe (organisation)
- Ecriture d'une documentation technique

MERCI!

Temps des questions

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

