Załączniki

Tabela A1 Informacje o eksperymentach, z których korzystano w niniejszej pracy.

Numer eksperymentu	Linia komórkowa	LET [keV · μm ⁻¹]	Energia [MeV]	Referencja
1	V79-753B	200kV		
2	V79-753B	7.7 5.01		(P. W. J. 2000)
3	V79-753B	11.0	3.20	(Belli et al., 2009)
4	V79-753B	20.0	1.41	
5	C3H10T1/2	⁶⁰ Co γ	– rays	
6	C3H10T1/2	11.0	3.18	(Bettega et al.,
7	C3H10T1/2	19.7	1.46	2009)
8	C3H10T1/2	28.8	0.87	
9	V79-379A	240kV		
10	V79-379A	10.1	10.1 3.66	
11	V79-379A	17.8	1.83	
12	V79-379A	27.6	1.07	
13	HF19	¹³⁷ Cs γ		
14	HF19	7.7	5.04	(Belli, 2000)
15	HF19	19.5	1.49	
16	HF19	29.0	0.88	

17	M10	⁶⁰ Co γ ·		
18	M10	9.1	4.05	
19	M10	21.4	1.35	
20	SCC25	⁶⁰ Co γ ·	– rays	
21	SCC25	7.7	5.04	
22	SCC25	19.7	1.49	
23	SCC25	29.5	0.88	
24	SQ20B	⁶⁰ Co γ – rays		
25	SQ20B	7.7	5.04	
26	SQ20B	19.8	1.49	
27	SQ20B	30	0.88	
28	C1-1	⁶⁰ Co γ – rays		
29	C1-1	7.7	5.04	(Sgura, 2000)
30	C1-1	27.6	0.88	
31	DLD1	⁶⁰ Co γ		
32	DLD1	7.7	5.04	(Baggio et al.,
33	НСТ116	⁶⁰ Co γ – rays		2002)
34	HCT116	7.7	5.04	

Tabela A2 Parametry modelu liniowo-kwadratowego wyznaczone w niniejszej pracy wraz z ich kowariancjami i korelacjami.

		Wyznaczone pa	rametry modelu		
Numer eksperymentu	Ilość punktów pomiarowych	$\sigma_{\alpha} \left[\frac{1}{Gy} \right]$	$\sigma_{\beta} \left[\frac{1}{Gy^2} \right]$	Kowariancja	Korelacja parametrów α i β
1	10	0.016524	0.004518	-7.2E-05	-0.97
2	7	0.027544	0.008033	-0.0002	-0.906
3	7	0.026938	0.007319	-0.00018	-0.927
4	6	0.023963	0.006364	-0.00014	-0.936
5	5	0.049381	0.012873	-0.00063	-0.986
6	6	0.033747	0.008245	-0.00026	-0.945
7	6	0.051587	0.011773	-0.00059	-0.97
8	5	0.070839	0.017833	-0.00122	-0.963
9	6	0.020181	0.003386	-6.4E-05	-0.943
10	7	0.025246	0.005336	-0.00013	-0.944
11	9	0.055136	0.010929	-0.00056	-0.935
12	8	0.038547	0.006897	-0.00025	-0.932
13	7	0.092311	0.021476	-0.00197	-0.991
14	6	0.04306	0.011851	-0.00049	-0.958
15	6	0.070887	0.025799	-0.00177	-0.966
16	7	0.07342	0.01855	-0.00131	-0.963
17	8	0.08162	0.01108	-0.00087	-0.965

18	6	0.090239	0.015535	-0.00134	-0.958
19	5	0.072666	0.024112	-0.00169	-0.963
20	8	0.08535	0.045663	-0.00377	-0.968
21	5	0.070846	0.016692	-0.00114	-0.962
22	6	0.074673	0.025784	-0.00173	-0.899
23	6	0.104481	0.029906	-0.00297	-0.951
24	10	0.086796	0.019188	0.001589	0.954
25	6	0.040402	0.007142	-0.00028	-0.976
26	6	0.022219	0.003799	-8.1E-05	-0.963
27	7	0.016656	0.003688	-5.8E-05	-0.95
28	7	0.00899	0.003431	-2.9E-05	-0.933
29	6	0.022363	0.006654	-0.00014	-0.96
30	5	0.020158	0.006988	-0.00013	-0.95
31	8	0.079753	0.022348	-0.00163	-0.913
32	7	0.075113	0.030509	-0.00207	-0.901
33	8	0.105631	0.024168	-0.00242	-0.946
34	8	0.060052	0.020434	-0.00116	-0.948

Tabela A3 Parametry modelu liniowo-kwadratowego α i β zebrane w pracy Wedenberg, dostępne w bazie PIDE oraz wyznaczone w niniejszej pracy.

Numer	Parametry użyte przez Wedenberg		Wyznaczone parametry modelu		PIDE	
eksperyme ntu	$\alpha \left[\frac{1}{Gy}\right]$ Wedenberg	$\beta \left[\frac{1}{Gy^2} \right]$ Wedenberg	$\alpha \left[\frac{1}{Gy}\right]$	$\beta \left[\frac{1}{Gy^2}\right]$	$\alpha \left[\frac{1}{Gy}\right]$	$\beta \left[\frac{1}{Gy^2}\right]$
1	0.129±0.012	0.046±0.003	0.119±0.017	0.049±0.005	0.106	0.052
2	0.289±0.023	0.024±0.006	0.291±0.025	0.024±0.006	0.286	0.025
3	0.372±0.032	0.036±0.009	0.381±0.027	0.029±0.007	0.438	0.022
4	0.469±0.029	0.043±0.009	0.503±0.028	0.036±0.008	0.502	0.033
5	0.240±0.060	0.016±0.013	0.266±0.034	0.013±0.008	0.340	0.000
6	0.470±0.060	0.019±0.014	0.482±0.071	0.019±0.018	0.420	0.031
7	0.430±0.060	0.038±0.013	0.444±0.052	0.037±0.012	0.404	0.042
8	0.550±0.120	0.053±0.031	0.535±0.049	0.054±0.013	0.464	0.073
9	0.130±0.022	0.048±0.003	0.119±0.020	0.051±0.003	0.133	0.050
10	0.320±0.058	0.039±0.011	0.242±0.039	0.053±0.007	0.295	0.046
11	0.450±0.035	0.028±0.006	0.439±0.055	0.032±0.011	0.461	0.026
12	0.740±0.025	0.011±0.004	0.723±0.025	0.017±0.005	0.775	0.008
13	0.640±0.020	-	0.608±0.043	0.009±0.012	0.561	0.018
14	0.550±0.010	-	0.488±0.072	0.014±0.018	0.553	0.000
15	0.540±0.020	-	0.541±0.070	0.000±0.010	0.528	0.000
16	0.520±0.010	-	0.513±0.092	0.000±0.022	0.691	-0.037
17	0.520±0.020	-	0.500±0.082	0.000±0.011	0.065	-0.019

18	0.490±0.020	-	0.449±0.090	0.006±0.016	0.502	0.000
19	0.500±0.030	-	0.499±0.073	0.00±0.024	0.499	0.000
20	0.570±0.050	0.031±0.012	0.525±0.071	0.041±0.017	0.646	0.020
21	0.410±0.110	0.092±0.036	0.342±0.104	0.108±0.030	0.530	0.061
22	0.870±0.050	-	0.835±0.074	0.009±0.026	0.978	-0.030
23	0.810±0.030	-	0.799±0.085	0.000±0.046	0.801	0.000
24	0.130±0.020	0.017±0.002	0.091±0.040	0.023±0.007	0.101	0.024
25	0.150±0.050	0.011±0.012	0.132±0.017	0.015±0.004	0.162	0.009
26	0.230±0.040	0.004±0.007	0.252±0.022	0.000±0.004	0.258	0.000
27	0.570±0.050	-	0.373±0.087	0.000±0.019	0.576	-0.034
28	0.230±0.042	0.030±0.008	0.231±0.022	0.030±0.007	-	-
29	0.194±0.072	0.023±0.021	0.177±0.020	0.028±0.007	-	-
30	0.539±0.027	-	0.542±0.009	0.000±0.003	-	-
31	0.370±0.090	0.120±0.020	0.353±0.08	0.121±0.022	0.487	0.093
32	0.470±0.050	-	0.416±0.075	0.000±0.031	0.344	0.000
33	1.390±0.060	0.020±0.020	1.347±0.105	0.031±0.024	0.958	0.090
34	0.320±0.080	0.060±0.030	0.341±0.060	0.058±0.020	0.452	0.027

Tabela A4 Krzywe przeżywalności dla danych eksperymentalnych, z dopasowanym modelem liniowo-kwadratowym.

Tabela A5 Rozkłady parametrów α i β modelu LQ dopasowanego do danych eksperymentalnych.

Bibliografia

- Baggio, L., Cavinato, M., Cherubini, R., Conzato, M., Cucinotta, F., Favaretto, S., Gerardi, S., Lora, S., Stoppa, P., & R. Williams, J. (2002). Relative biological effectiveness of light ions in human tumoural cell lines: role of protein p53. *Radiation Protection Dosimetry*, 99(1-4), 211-214.
- Belli, D. B., P. Calzolari, F. Cera, R. Cherubini, M. Dalla Vecchia, M. Durante, S. Favaretto, G. Gialanella, G. Grossi, M. (2000). Inactivation of human normal and tumour cells irradiated with low energy protons. *International Journal of Radiation Biology*, 76(6), 831-839.
- Belli, F., Cera, R., Cherubini, M., & Dalla, M. (2009). RBE-LET relationships for cell inactivation and mutation induced by low energy protons in V79 cells: further results at the LNL facility. *International Journal of Radiation Biology*, 74(4), 501-509. https://doi.org/10.1080/095530098141375
- Bettega, D., Calzolari P., & Marchesini, R. (2009). Inactivation of C3H10T1/2 cells by low energy protons and deuterons. *International Journal of Radiation Biology*, *73*(3), 303-309. https://doi.org/10.1080/095530098142400
- Folkard, M. (1996). Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. *International Journal of Radiation Biology*, 69(6), 729-738.
- Sgura, A. A., R. Cherubini, M. Dalla Vecchia, P. Tiveron, F. Degrassi, C. Tanzarella, A. (2000). Micronuclei, CREST-positive micronuclei and cell inactivation induced in Chinese hamster cells by radiation with different quality. *International Journal of Radiation Biology*, 76(3), 367-374.