

Analyse des messages textuels pour l'apprentissage de la programmation : le cas du pair programming distribué

BOIREAU-DEVIER Chloé

L3 MIDL

Université de Toulouse Institut de Recherche en Informatique de Toulouse (IRIT)

20 juin 2025

Sommaire

1. Introduction

2. État de l'art

3. Classification

4. Conclusion

Contexte

"Analyse des messages textuels pour l'apprentissage de la programmation : le cas du pair programming distribué"

- Qu'est ce que le pair programming ?
- Pair programming distribué : les rôles de Driver et Navigator
- Place de mon travail au sein de l'IRIT : la thèse de José Colin
- Objectifs de production

État de l'art

- Parcours des articles par la bibliographie
- 16 articles résumés sous forme de tableaux

Article: Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive tutors: lessons learned. J. Learning Sci., 4, 167–207.

Contexte: Revue de l'histoire du développement de tuteurs basé sur la théorie ACT (Anderson, 1983, 1993).

Type de message : texte, visuel (texte gras)

Interaction Humain-Machine, le feedback est donné par la machine, à la demande de l'apprenant ou instantanément.

Type de tuteurs	Description
Immediate feedback	Le feedback est instantané et oblige l'apprenant à corriger son erreur. Possibilité de demander de l'aide sur comment atteindre son but.
No advice	L'apprenant peut demander à savoir si sa réponse est correcte ou non.
Error-flagging tutor	Identifie les erreurs dès qu'elles apparaissent, les marque en gras, sans message. Il n'y a pas besoin de corriger tout de suite le problème. L'étudiant peut demander un message de feedback. Possibilité de demander de l'aide sur comment atteindre son but.
Demand tutor	Pas d'assistance tant que ce n'est pas demandé : à ce moment, dans ce cas, le tuteur envoie le feedback correspondant à la première erreur. Possibilité de demander de l'aide sur comment atteindre son but.

État de l'art

- Comparaison des classifications
- Arborescence des attributs de la littérature

Aboutissement

Attributs retenus (et nombre de valeurs possibles):

- Forme grammaticale du Feedback (4)
- Source (2)
- Taille du message (-)
- Nombre de mots (-)
- Ton du message (2)

- Groupe du message (3)
- Forme du contenu (3)
- Contenu du Feedback (4)
- Nature du Feedback (9)

Classification

- Attributs simples à calculer :
 - Nombre de mots, nombre de caractères, source...
- Méthode few-shots :
 - Ton, forme grammaticale
 - Contenu, forme du contenu, nature

Méthode few-shots

Presented with xmine

Figure: Graphique expliquant la méthode few-shots

Méthode few-shots - prompt system

Exemple de prompt

```
Categorie **Attribut**
      Pour la categorie, **Attribut**, les directives sont :
      - **valeur1**
        - **Directives :** ...
        - **Exemples :** ...
      - **valeur2**
        - **Directives :** ...
        - **Exemples :** ...
10
11
12
```


Résultats

- Évaluation du modèle : calcul du Kappa de Cohen
- Corpus de 25 messages

Figure: Kappa de Cohen entre des messages annotés par un être humain et un LLM utilisant la méthode few-shots

Résultats

Résultats

Résultats - comparaison de deux LLMs

Résultats - comparaison de deux LLMs

Perspectives

- Exploration des liens entre patterns de types de messages et évolutions du code produit
- Aide au Navigator dans le soutien du Driver

Questions?

Merci de votre attention!

