1)

a)

Potential Data Setup:

Variable Name	Role	Type
Price	Target	Numeric
Mileage	Feature	Numeric
days old	Feature	Numeric
service necessary	Feature	Categorical
accident-free	Feature	Categorical
• • •		

b)

We can assume, that negative mileage or age are not possible, therefore the feature space is given as $\mathcal{X} = \mathbb{R}_0^+ \times \mathbb{R}_0^+$ and the target space as $\mathcal{Y} = \mathbb{R}$ (negative prices maybe quite uncommon, yet not impossible if we consider recycling).

c)

$$\mathcal{H} = \{ f | f(x) = \theta^{\top} x = \theta_0 + \theta_1 \cdot mileage + \theta_2 \cdot age \}$$

 \mathbf{d}

 $\theta_i, \ i=0,1,2$ need to be learned, each $\theta_i \in \mathbb{R}$, which leads us to: $\Theta = \mathbb{R}^3$.

e)

$$\mathcal{L}_i(\theta) = (y_i - \theta^\top x_i)^2 = (y_i - \theta_0 - \theta_1 \cdot mileage_i + \theta_2 \cdot age_i)^2$$

f)

The optimization problem is then:

$$\hat{\theta} = \underset{\theta \in \Theta}{arg \ min} \sum_{i=1}^{n} \mathcal{L}_{i}(\theta) = \underset{\theta \in \Theta}{arg \ min} \ \mathcal{L}(\theta)$$

To minimize $\mathcal{L}(\theta)$ we want to set $\frac{d\mathcal{L}(\theta)}{d\theta} = 0$.

For the Linear Model, there exists a closed form solution as long as X has full rank:

We can rewrite
$$\mathcal{L}(\theta)$$
 as $(y - X\theta)^{\top}(y - X\theta) = y^{\top}y - y^{\top}X\theta - \theta^{\top}X^{\top}y + \theta^{\top}X^{\top}X\theta$ and get to $\frac{d\mathcal{L}(\theta)}{d\theta} = \theta^{\top}X^{\top}X - y^{\top}X$. Next we obtain $\theta^{\top}X^{\top}X = y^{\top}X \iff X^{\top}X\theta = X^{\top}y$.

Thus obtaining the Ordinary Least Squares Estimator $\hat{\theta}_{OLS} = (X^\top X)^{-1} X^\top y$