AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ KIERUNEK STUDIÓW: FIZYKA TECHNICZNA

METODY MONTE CARLO

Laboratorium 13

Propagacja fali termicznej w gazie - problem Riemanna

zrealizował

Przemysław Ryś

1 Opis zagadnienia

W laboratorium przeprowadzono symulację propagacji fali termicznej w gazie przy użyciu metody Monte Carlo. Podczas eksperymentu, gaz z początkowo różnymi temperaturami w dwóch częściach układu zostaje połączony, co powoduje szybki przepływ cząsteczek z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Zjawisko to nazywane jest propagacją fali termicznej, której dynamikę zasymulowano za pomocą klasy DSMC 2D.

Opis rozwiązania problemu Riemanna

Problem Riemanna, czyli propagacja fali termobarycznej, został rozwiązany analitycznie. Wyniki uzyskane metodą Monte Carlo są porównywane z rozwiązaniami analitycznymi, chociaż ze względu na ograniczenia sprzętowe nie jest możliwe uzyskanie dokładnych rezultatów dla małej liczby symulowanych czastek.

Preparacja pliku wejściowego

Rozkład cząstek w lewej i prawej części układu został wygenerowany zgodnie z rozkładem Maxwella-Boltzmanna, a następnie został on zapisany do odpowiednich plików. Następnie pliki te scalono i wykorzystano w celu przygotowania układu w stanie składającym się z dwóch różnych inicjalizacji, co w efekcie ma symulować falę termiczną.

Parametry wspólne

Ustawiłem wspólne parametry dla obu podukładów w pliku wejściowym "i.dat":

- Liczba komórek w osi x (nx): 300
- Liczba komórek w osi y (ny): 75
- Stała Boltzmanna (k_B): 1
- Warunki Neumanna (tempi[0-3]): -1
- Liczba mieszania (n_{mix}): 1
- Masa czastki (mc1): 1.0
- Efektywny promień cząsteczki (rc1): 10^{-4}
- Liczba wezłów (nodes): 0

Parametry k_B i mc1 są nierealistyczne, ale zostały przyjęte ze względu na zbyt małą liczbę cząstek w symulacji. Parametr rc1 określa efektywny promień cząsteczki obliczeniowej.

Początkowy rozkład cząstek w całym układzie

Po przygotowaniu rozkładów w lewym i prawym podukładzie, połączyłem oba pliki, tworząc wejściowy plik startowy do właściwej symulacji:

```
rv_left.dat + rv_right.dat -> pos_vel_start.dat
```

Rozkład ten będzie wykorzystany jako początkowy stan cząstek w całym układzie do dalszej symulacji metodą DSMC.

2 Wyniki

Parametry Symulacji

- $x_{min} = 0, x_{max} = 2.0$
- $y_{min} = 0, y_{max} = 0.5$
- Liczba cząstek $N=N_1+N_2=9\cdot 10^5$
- Rozkład początkowy: $init_dist = 0$ (program wczytuje dane z pliku "pos_vel_start.dat")
- Maksymalna liczba iteracji: 2000

Symulacja Gazu

Przeprowadzono symulację gazu z maksymalną liczbą iteracji równą 2000. Ze względu na dużą liczbę cząstek symulacja trwała kilka godzin, proces usprawniła biblioteka umożliwiająca uruchanianie procesu na wielu wątkach logicznych procesora. Wyniki zostały zapisane w katalogu "data" w plikach "nptv_iteracja.dat" w formacie: x, gęstość, ciśnienie, temperatura, $\langle V^2 \rangle$, $j_x = \langle v_x n(x) \rangle$ (składowa x-owa strumienia gęstości cząstek).

Analiza Wyników

Rys. 1: Rozkład prędkości teoretyczny oraz symulowany.

Rozkład prędkości teoretyczny opisuje prawdopodobieństwo prędkości cząsteczki w gazie idealnym:

$$f(v) = \sqrt{\frac{m}{2\pi k_B T}} \exp\left(-\frac{mv^2}{2k_B T}\right)$$

gdzie m to masa cząsteczki, k_B - stała Boltzmanna, T - temperatura.

Rozkład prędkości symulowany jest wizualizacją danych uzyskanych z symulacji komputerowej.

Poniżej przedstawiono zmiany przestrzenne parametrów gazu w wybranych chwilach czasowych.

Rys. 2: Gęstość w zależności od położenia x w różnych chwilach czasu.

W początkowej fazie symulacji obserwuje się wysoką wartość gęstości w lewym podukładzie. W miarę upływu czasu gęstość stabilizuje się w całym układzie, tworząc bardziej jednorodny rozkład.

Rys. 3: Ciśnienie w zależności od położenia x w różnych chwilach czasu.

Ciśnienie również podlega zmianom w czasie. Początkowo wzrasta w lewym podukładzie w wyniku przemieszczania się fali ciśnienia. Po dotarciu fali do prawego brzegu układu, ciśnienie w prawym podukładzie zaczyna rosnąć.

Rys. 4: Temperatura w zależności od położenia x w różnych chwilach czasu.

Fala termiczna powoduje wzrost temperatury w miejscu, gdzie jest największa koncentracja energii kinetycznej cząstek. W miarę przemieszczania się fali termicznej przez układ, temperatura zmienia się w różnych częściach, co można zaobserwować na wykresach.

Rys. 5: Prędkość w zależności od położenia x w różnych chwilach czasu.

Rozkład prędkości cząstek pokazuje, że czoło fali porusza się o wiele szybciej od reszty gazu. Jest to efekt charakterystyczny dla propagacji fali termicznej, gdzie energia kinetyczna jest przekazywana z szybszych cząstek na wolniejsze.

Rys. 6: Strumień cząstek w zależności od położenia \boldsymbol{x} w różnych chwilach czasu.

Analiza strumienia cząstek pokazuje, jak energia i masa przemieszczają się przez układ w czasie. Zmiany w strumieniu cząstek są związane z przepływem cząstek i ich dyfuzją w odpowiedzi na zmieniające się warunki w układzie.

Zmiany gestości gazu w lewym podukładzie

Na podstawie wykresów rozkładów prędkości można zauważyć, że czoło fali porusza się znacznie szybciej niż reszta gazu. Prędkość czoła fali zależy od różnicy w energii kinetycznej i oddziaływaniach międzycząsteczkowych, co powoduje, że gęstość cząstek w obszarze czoła jest mniejsza niż za nim. To prowadzi do zmniejszenia gęstości gazu w lewym podukładzie w miarę przemieszczania się fali.

Zmiany temperatury i ciśnienia

Gdy fala termiczna dotrze do prawego brzegu układu, następuje kilka istotnych zmian:

- Temperatura: Na prawym brzegu układu temperatura może wzrosnąć, co jest zauważalne na wykresach rozkładu temperatury w funkcji czasu.
- Ciśnienie: Gdy fala ciśnienia dotrze do prawego brzegu, ciśnienie lokalnie wzrasta, co można obserwować na wykresach zmian ciśnienia w czasie.

3 Podsumowanie

Symulacja gazu metodą DSMC pozwala na szczegółową analizę zachowania się gazów w różnych warunkach. W lewym podukładzie, na początku symulacji, gęstość gazu wzrasta gwałtownie, co jest związane z szybkim ruchem cząstek w kierunku prawego brzegu. W miarę jak symulacja postępuje, gęstość gazu stabilizuje się, tworząc bardziej równomierny rozkład w układzie. Fala termiczna powstaje w wyniku przemieszczania się czoła wysokoenergetycznych cząstek, podczas gdy fala ciśnienia jest związana z dynamicznymi zmianami ciśnienia w gazie. Zmiany przestrzenne: Gęstość, ciśnienie, temperatura oraz prędkość oraz strumień cząstek zmieniają się w czasie. Gęstość i ciśnienie rosną w miejscach przemieszczenia się fali termicznej i ciśnienia.