

LISTING OF CLAIMS

Claims 3-9, 12-17, and 20-28 are pending.

1-2. (canceled)

- 3. (previously presented)** A method for measuring an indication of attributes of materials containing a fluid state, the method comprising the steps of:
 - a. providing a single time-domain signal indicative of attributes of said materials;
 - b. constructing a time-domain averaged data train from said signal, the averaging being performed over two or more time intervals Δ_i , wherein at least two of said two or more time intervals Δ_i are different; and
 - c. computing an indication of attributes of said materials from the time-domain averaged data train.
- 4. (previously presented)** The method of claim 3 wherein the following expression is used to construct the time-domain averaged data train within a Δ_i time interval:

$$S_{\Delta_i} = \int_t^{t+\Delta_i} dt' S(t')/\Delta_i, \text{ where } S(t) \text{ is the provided time-domain signal.}$$

- 5. (previously presented)** The method of claim 3, wherein a portion of the time-domain averaged data train is constructed at times $t = t_0, t_0 + \Delta_i, t_0 + 2\Delta_i, \dots, t_0 + N\Delta_i$.
- 6. (previously presented)** The method of claim 3, wherein the time-domain signal is an NMR echo train.
- 7. (original)** The method of claim 6, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T_2 domain.
- 8. (previously presented)** The method of claim 7, wherein the T_2 distribution is estimated using the following expression $S_{\Delta_i}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta_i/T_2)) + Noise$, where $\phi(T_2)$ is the porosity corresponding to the exponential decay time T_2 .

9. (previously presented) The method of claim 3 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.

10-11. (canceled)

12. (previously presented) A method for measuring an indication of attributes of materials containing a fluid state in a formation surrounding a borehole, comprising the steps of:

- providing a single NMR echo-train indicative of attributes of materials in the formation surrounding the borehole;
- constructing a single time-domain averaged data train from said NMR echo train, the averaging being performed over two or more time intervals Δ_i , wherein at least two of said two or more time intervals Δ_i are different; and
- computing an indication of attributes of said materials from the time-domain averaged data train.

13. (previously presented) The method of claim 12 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.

14. (previously presented) The method of claim 12 wherein the following expression is used to construct the time-domain averaged data train: $Echo_{\Delta_i}(t) = \int_t^{t+\Delta_i} dt' Echo(t')/\Delta_i$, where $Echo(t)$ is the provided time-domain signal over a time interval Δ_i .

15. (previously presented) The method of claim 12, wherein a portion of the time-domain averaged data train is constructed at times $t = t_0, t_0 + \Delta_i, t_0 + 2\Delta_i, \dots, t_0 + N\Delta_i$.

16. (previously presented) The method of claim 15, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T_2 domain.

17. (previously presented) The method of claim 16, wherein the T_2 distribution is estimated using the following expression

$$Echo_{\Delta_i}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta_i/T_2)) + Noise, \text{ where } \phi(T_2) \text{ is the porosity}$$

corresponding to the exponential decay time T_2 .

18-19. (canceled)

- 20. (previously presented)** A method for increasing the spatial resolution of NMR logging measurements, comprising the steps of:
- providing a single NMR echo-train indicative of attributes of materials of interest; and
 - constructing a single time-domain averaged data train from said single NMR echo train, the averaging being performed over two or more time intervals Δ_i , wherein at least two of said two or more time intervals Δ_i are different.
- 21. (previously presented)** The method of claim 20 further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.
- 22. (previously presented)** The method of claim 20 wherein the following expression is used to construct the time-domain averaged data train: $Echo_{\Delta_i}(t) = \frac{1}{\Delta_i} \int_t^{t+\Delta_i} dt' Echo(t')$, where $Echo(t)$ is the provided time-domain signal.
- 23. (previously presented)** The method of claim 20, wherein the time-domain averaged data train is constructed at times $t = t_0, t_0 + \Delta_i, t_0 + 2\Delta_i, \dots, t_0 + N\Delta_i$.
- 24. (original)** The method of claim 23, wherein the step of computing an indication of attributes is performed using inversion of the constructed time-domain averaged data train into T_2 domain.
- 25. (previously presented)** The method of claim 24 wherein the T_2 distribution is estimated using the following expression
- $$Echo_{\Delta_i}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta_i/T_2)) + Noise, \text{ where } \phi(T_2) \text{ is the porosity}$$
- corresponding to the exponential decay time T_2 .
- 26. (previously presented)** A method for real-time processing of NMR logging signals, comprising the steps of:
- providing real-time data corresponding to a single NMR echo-train indicative of physical properties of materials of interest;
 - constructing a time-domain averaged data train from said NMR echo train, the averaging being performed over variable time interval Δ using the expression
- $$S_\Delta(t) = \frac{1}{\Delta} \int_t^{t+\Delta} dt' S(t'), \text{ where } S(t) \text{ is the provided measurement signal, and the time-}$$

domain averaged data train is constructed at times $t = t_0, t_0 + \Delta, t_0 + 2\Delta, \dots, t_0 + N\Delta$;
and

- c. computing in real time an indication of the physical properties of said materials based on the constructed time-domain averaged data train.

27. (original) The method of claim 26, further comprising the step of: inverting of the constructed time-domain averaged data train into the T_2 domain, wherein the T_2 distribution is modeled using the expression

$$Echo_{\Delta}(t) = \sum_{T_2} \phi(T_2) \exp(-t/T_2) (1 - \exp(-\Delta/T_2)) + Noise, \text{ where } \phi(T_2) \text{ is the porosity}$$

corresponding to the exponential decay time T_2 .

28. (original) The method of claim 26, further comprising the step of averaging two or more constructed time-domain averaged data trains to increase the signal-to-noise ratio (SNR) of the measurement.