1

Universitatea Politehnica din București. Concurs de admitere iulie 2002 FA, varianta E (Soluții)

- 1. Căldura specifică la volum constant a unui gaz ideal se poate scrie sub forma $c_V = \frac{C_V}{\mu} = \frac{R}{\mu(\gamma 1)} = 650 \text{ J/kgK}$. *Răspuns corect c*.
- 2. Lungimea de undă la rezonanță a circuitului oscilant este $\lambda_0 = vT = 2\pi v\sqrt{LC}$, iar în cazul măririi capacității condensatorului, $\lambda_1 = 2\pi v\sqrt{4LC} = 2\lambda_0$. *Răspuns corect b.*
- 3. Poziția corpului la momentul $t_1 = 1$ s este $x_1 = 6$ m, iar la momentul $t_2 = 5$ s este dată de coordonata $x_2 = -26$ m. Viteza medie este egală cu $v_m = \frac{x_2 x_1}{t_2 t_1} = -8$ m/s. *Răspuns corect a*
- 4. Din expresiile intensității curentului în cele două cazuri, $I_1 = \frac{U}{\sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}} \quad \text{și respectiv } I_2 = \frac{U}{\omega L \frac{1}{\omega C}}, \text{ rezultă expresia rezistenței}$

electrice, $R=U\sqrt{\frac{1}{I_1^2}-\sqrt{\frac{1}{I_2^2}}}$, astfel că valoarea intensității curentului la rezonanță

este egală cu $I_{rez} = \frac{U}{R} = \frac{1}{\sqrt{\frac{1}{I_1^2} - \sqrt{\frac{1}{I_2^2}}}} = 3,75 \text{ A. } \text{Răspuns corect } \boldsymbol{a}$

5. Ecuația transformării se poate scrie sub forma unei politrope, $pV^{-1}=$ const., a cărui indice este $n=-1=\frac{C-C_p}{C-C_V}$, de unde căldura molară la gazului în această transformare este egală cu

$$C = \frac{1}{2} \left(C_V + C_p \right) = \frac{1}{2} \left(\frac{R}{\gamma - 1} + \frac{\gamma R}{\gamma - 1} \right) = \frac{R \left(\gamma + 1 \right)}{2 \left(\gamma - 1 \right)} . \ \textit{Răspuns corect } \boldsymbol{e}$$

- 6. Raportul energiilor cinetică și potențială la momentul $t_1 = \frac{T}{4} = \frac{1}{2}$ s este egal cu $\frac{E_c}{E_p} = \text{tg}^2\left(\frac{\pi}{2} + \frac{\pi}{4}\right) = 1$, unde perioada $T = \frac{2\pi}{\omega} = 2$ s. *Răspuns corect e*
- 7. Densitatea de energie electrică înmagazinată în dielectricul condensatorului este $w_{el} = \frac{W_{el}}{V} = \frac{\epsilon SU^2}{2d^2S} = \frac{1}{2} \epsilon E^2$. *Răspuns corect f*

2004

8. Masa molară a amestecului de gaze este egală cu $\mu_{am} = \frac{m_1 + m_2}{v_1 + v_2} = \frac{m_1 + m_2}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}} = \frac{\mu_1 \mu_2 (m_1 + m_2)}{m_1 \mu_2 + m_2 \mu_1} = 5,5 \cdot 10^{-3} \text{ kg/mol. } Răspuns \ corect \ f$

- 9. Din legea lui Ohm, scrisă în cele două cazuri, $I_1 = \frac{3E}{R+3r}$ și respectiv $I_2 = \frac{I_1}{1,4} = \frac{2E}{R+2r}$ rezultă pentru rezistența internă valoarea $r=5\Omega$. Răspuns corect d
 - **10**. Într-un ciclu Carnot, $\frac{Q_1}{|Q_2|} = \frac{T_1}{T_2}$, de unde $|Q_2| = 1500$ J. *Răspuns corect d*
 - 11. Răspuns corect a
 - 12. La legarea în paralel a rezistoarelor, $\frac{1}{R_{ech}} = \frac{n_1}{R_1} + \frac{n_2}{R_2} = 1$, de unde

 $R_{ech} = 1\Omega$. Răspuns corect d

- 13. Răspuns corect f
- 14. Conform teoremei de variație a energiei cinetice, $L = \Delta E_c = \frac{\left(3\,p_1\right)^2}{2m} \frac{p_1^2}{2m} = 8E_{c1} = 160\,\mathrm{J}, \text{ unde am utilizat pentru energia cinetică}$ relația $E_c = \frac{1}{2}mv^2 = \frac{m^2v^2}{2m} = \frac{p^2}{2m}$. Răspuns corect e
- 15. Transformare izobară se poate scrie sub forma $VT^{-1} = \text{const.}$, de unde n = -1. *Răspuns corect a*
- 16. Din expresia perioadei oscilatorului, $T=2\pi\sqrt{\frac{m}{k}}$, rezultă masa acestuia, $m=\frac{kT^2}{4\pi^2}=0,2$ kg. *Răspuns corect d*
 - 17. Din condiția ca $G_{\mathrm{tan}} \leq F_{\mathit{frec}}$ rezultă $\mu \geq \mathrm{tg}\alpha$. $\mathit{R\check{a}spuns\ corect\ e}$
 - 18. Răspuns corect d.