Espectroscopia β

Mestrado em Engenharia Física Tecnológica LFAOFR

Gonçalo Castro ¹, António Costa ², Miguel Gonçalves ³, Pedro Pereira ⁴

Instituto Superior Técnico

 $^{1}_{78497} \ ^{2}_{78653} \ ^{3}_{78850} \ ^{3}_{78889}$

14 de Janeiro de 2016

Decaimento β

$$n \to p + e^- + \overline{\nu_e}$$

2 % (EC) 98 % β 97 98 % β 98 % β 97 98 % β

(a) Esquema Decaimento $^{137}_{55}$ Cs

(b) Esquema Decaimento 81 TI

(c) Esquema Decaimento ²⁰⁷₈₃ Bi

$$E_{e^-} = E_X - E_{L_j} \tag{1}$$

Espectro de $^{137}_{55}$ Cs

Calibração

Calibração canal-tensão

Calibração

$$\overline{c} = \frac{\sum_{n=1}^{n} c_i n_i}{A} \tag{2}$$

$$A = \sum_{n=1}^{n} n_i \tag{3}$$

$$\sigma_{\overline{c}} = \frac{\sqrt{\sum_{n=1}^{n} (c_i - \overline{c})^2 \cdot n_i}}{A} \tag{4}$$

Calibração canal-tensão

Calibração

	Tensão(V)	Canal	Contagens	Canal Médio	Contagens Totals
		41	106		
		42	1028		
		43	1180		
	0.2	44		42.54 ± 0.01	2429 ± 10
		45	1		
		46	1		
		85	12		
		86	604		
	0.4	87		86.88 ± 0.01	2427 ± 3
		88	328		
		89	6		
		131	40		
		132	699		
	0.6		1424	132.79 ± 0.01	2427 ± 6
		134	260		
		135	4		
		174	6		
		175	224		
	0.8		1434	176.23 ± 0.01	2428 ± 2
		177	735		
		178	29		
		219	2		
		220	229		
	1	221		221.26 ± 0.01	2428 ± 1
		222	791		
		223	38		
		260	33		
		261	95		
		262	1054		
	1.2	263	1137	262.49 ± 0.01	2427 ± 2
		264	108		

Espectro de ²⁰⁴₈₁ TI

Endpoint de $^{204}_{81}TI$

Ajuste de Kurie

Endpoint de $^{204}_{81}TI$

Ajuste de Kurie

Endpoint de $^{204}_{81}TI$