pinout

Real op-amp

Google search for LM741 specs sheet

1) Pin outs for LM 741

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage (VDD-GND)	LM741, LM741A	±10	±15	±22	
	LM741C	±10	±15	±18	V
Temperature	LM741, LM741A	– 55		125	۰.
	LM741C	0		70	

V+ & V- to 15 V & -15 V respectively.

We choose fx, R such that RF/R=100

Vout Saturates to + 13.6 or -13.6

Max ratings

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)

over operating nee-an temp	erature range (unless otherwise noted)				
		MIN	MAX	UNIT	
Supply voltage	LM741, LM741A 🚛		±22	٧	
	LM741C		±18		
Power dissipation ⁽⁴⁾		_	500	mW	
Differential input voltage			+30	V	
Input voltage (5)			±15	V	
Output short circuit duration	utput short circuit duration		Continuous		
Operating temperature	LM741, LM741A	-50	125	°C	
	LM741C	0	70	C	
Junction temperature	LM741, LM741A		150	°C	
	LM741C		100	-0	
Soldering information	PDIP package (10 seconds)		260	°C	
	CDIP or TO-99 package (10 seconds)		300	°C	
Storage temperature, T _{stg}		-65	150	°C	

6.5 Electrical Characteristics, LM741(1)

PARAM	ETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input offset voltage		R _S ≤ 10 kΩ	T _A = 25°C		1	5	mV
			$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset volta adjustment rang		T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current		T _A = 25°C			20	200	nA
		$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	
Input bias current		T _A = 25°C			80	500	nA
		$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μA
Input resistance		T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range		$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13		V
Large signal voltage gain		$V_S = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L \ge 2$ $k\Omega$	T _A = 25°C	1 50	200		V/mV
			$T_{AMIN} \le T_A \le T_{AMAX}$	25			
Output voltage e	wina	V = 145 V	R _L ≥ 10 kΩ	±12	±14		V
Output voltage swing		V _S = ±15 V	R _L ≥ 2 kΩ	±10	±13		_ v
Output short circuit current		T _A = 25°C			25		mA
Common-mode rejection ratio		$R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$		80	95		dB
Supply voltage rejection ratio		V_S = ±20 V to V_S = ±5 V, R_S ≤ 10 Ω , T_{AMIN} ≤ T_A ≤ T_{AMAX}		86	96		dB
Transient response	Rise time	T _A = 25°C, unity gain			0.3		μs
	Overshoot	1 _A = 25 C, unity gain			5%		_
Slew rate		T _A = 25°C, unity gain			0.5		V/µs
Supply current		T _A = 25°C			1.7	2.8	mA
Power consumption		V _S = ±15 V	T _A = 25°C		50	85	
			$T_A = T_{AMIN}$		60	100	mW
			$T_A = T_{AMAX}$		45	75	

It is the rate at which the output Yo(lage inereases) as a function of time $SR = \Delta Y \over \Delta t$

SR is problematic with an imput which is frequency dependent

l.g. sine wave

now to avoid dipping in the frequency response.

52 for a she wave

SR = 2TFV

f = maximum signal frequency Hz V = maximum peak Voltage in V

Example: Compute the desired ster rate for an amplifier to handle a peak voltage of 10 V at a frequency of 15 KUz

 $SR = 2\pi FV = 2\pi (15 \times 10^3) (10)$ = 942 \times 10^3 V/s SR = 0.94 V/ps

Gain vs frequency

G) Gain Boudwidth product
This is the ratio of open loop gain
to the boundwidth at that gain

From speed sheet GBP = 200 V/N

$$= \frac{200}{10^{3}} \text{ V/V}$$

$$= 2 (10^{5}) \text{ V/V}$$
open 100P

For in resting amplifier $\frac{\text{Vowt}}{\text{Vin}} = -\frac{\text{Rf}}{\text{R}}$

$$\frac{2 - 100}{\text{Closed loop}}$$

Bandwid M for the particular anuplitier gain is
$$0 - 10^4 \text{ Hz}$$
 $0 - 10 \text{ KHz}$

Example on how to use this spee

Compute the values of R_F, R such that voltage gain is -2. The output Short circuit current is 25 mA.

We derived
$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R} = -2$$

$$R_f = 2R$$

(I out) max =
$$25 \text{ mA}$$

 $5 - \text{Vic} = \text{I in } R = \text{fout } R$
 $\text{Vic} = \text{Vi} = \text{Vi} = 0$

$$R = \frac{5}{100t} = \frac{5}{25} = 200 \Omega$$

$$R = 200 \Omega \text{ (minimum)}$$
 $R_{r} = 2 R = 400 \Omega \text{ (minimum)}$