```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: ds=pd.read_csv("D:\president_heights.csv")

In [3]: ds
```

Out[3]:		order	name	height(cm)
-	0	1	George Washington	189
	1	2	John Adams	170
	2	3	Thomas Jefferson	189
	3	4	James Madison	163
	4	5	James Monroe	183
	5	6	John Quincy Adams	171
	6	7	Andrew Jackson	185
	7	8	Martin Van Buren	168
	8	9	William Henry Harrison	173
	9	10	John Tyler	183
	10	11	James K. Polk	173
	11	12	Zachary Taylor	173
	12	13	Millard Fillmore	175
	13	14	Franklin Pierce	178
	14	15	James Buchanan	183
	15	16	Abraham Lincoln	193
	16	17	Andrew Johnson	178
	17	18	Ulysses S. Grant	173
	18	19	Rutherford B. Hayes	174
	19	20	James A. Garfield	183
	20	21	Chester A. Arthur	183
	21	23	Benjamin Harrison	168
	22	25	William McKinley	170
	23	26	Theodore Roosevelt	178
	24	27	William Howard Taft	182
	25	28	Woodrow Wilson	180
	26	29	Warren G. Harding	183
	27	30	Calvin Coolidge	178
	28	31	Herbert Hoover	182
	29	32	Franklin D. Roosevelt	188
	30	33	Harry S. Truman	175
	31	34	Dwight D. Eisenhower	179
	32	35	John F. Kennedy	183
	33	36	Lyndon B. Johnson	193
	34	37	Richard Nixon	182
	35	38	Gerald Ford	183
	36	39	Jimmy Carter	177
	37	40	Ronald Reagan	185
ling [MathJax]	38	41	George H. W. Bush	188

Loading [MathJax]

	order	name	height(cm)
39	42	Bill Clinton	188
40	43	George W. Bush	182
41	44	Barack Obama	185

```
In [3]: import seaborn as sns
```

```
In [7]: sns.barplot(x='name',y='height(cm)',data=ds)
plt.figure(figsize=(15,50))
```

 $\operatorname{Out}[7]$: <Figure size 1500x5000 with 0 Axes>

<Figure size 1500x5000 with 0 Axes>

```
In [8]: sns.barplot(x='name', y='height(cm)', data=ds)
  plt.xticks(rotation=270) #rotate xlabel by 90 deg
  plt.figure(figsize=(15,5))
```

Out[8]: <Figure size 1500x500 with 0 Axes>

<Figure size 1500x500 with 0 Axes>

```
In [20]: sns.barplot(x='name', y='height(cm)', data=ds)
    plt.xticks(rotation=90)
    plt.ylim(100, 200)
    plt.figure(figsize=(15,5))
    plt.show()
```


<Figure size 1500x500 with 0 Axes>

```
In [24]: sns.barplot(x='order',y='height(cm)',data=ds)
   plt.title('Presidence')
   plt.xticks(rotation=90)
   plt.ylim(100,200)
   plt.figure(figsize=(15,5))
   plt.show()
```


<Figure size 1500x500 with 0 Axes>

```
In [26]: sns.barplot(x='order',y='height(cm)',data=ds)
   plt.title('Presidence')
   plt.xticks(rotation=90)
   plt.ylim(100,200)
   plt.figure(figsize=(15,5))
   plt.show()
```


<Figure size 1500x500 with 0 Axes>

Loading [MathJax]/extensions/Safe.js

```
data=pd.Series([1.0,1.5,1.75,2.0],index=['a','b','c','d'])
In [28]:
                                                                         #creating index values
In [29]:
         data
              1.00
Out[29]:
              1.50
         С
              1.75
              2.00
         dtype: float64
         data['b']
In [30]:
Out[30]:
          'a' in data
In [31]:
         True
Out[31]:
          'f' in data
In [32]:
         False
Out[32]:
          data.keys()
In [33]:
         Index(['a', 'b', 'c', 'd'], dtype='object')
Out[33]:
In [34]:
         list(data.items())
         [('a', 1.0), ('b', 1.5), ('c', 1.75), ('d', 2.0)]
Out[34]:
In [42]: data.values
```

```
array([1. , 1.5 , 1.75, 2. , 2.25])
Out[42]:
In [44]:
         data['e']=2.25
In [45]:
         data
              1.00
         a
Out[45]:
              1.50
         С
              1.75
              2.00
         d
              2.25
         dtype: float64
In [46]:
         data['c':'e']
              1.75
         С
Out[46]:
              2.00
              2.25
         dtype: float64
In [47]: data[0:3]
              1.00
Out[47]:
              1.50
         С
              1.75
         dtype: float64
In [48]:
         data[(data>1.5)&(data<2.25)]
              1.75
Out[48]:
              2.00
         dtype: float64
In [49]:
         data[1]
         1.5
Out[49]:
In [50]:
         data[1:3]
              1.50
Out[50]:
              1.75
         dtype: float64
         area=({'Chennai':91, 'Banglore':92, 'Kerala':93, 'Mumbai':94, 'Delhi':96})
In [51]:
         area
In [52]:
         {'Chennai': 91, 'Banglore': 92, 'Kerala': 93, 'Mumbai': 94, 'Delhi': 96}
Out[52]:
In [53]:
         area.keys()
         dict_keys(['Chennai', 'Banglore', 'Kerala', 'Mumbai', 'Delhi'])
Out[53]:
          pop=area=pd.Series(({'Chennai':91,'Banglore':92,'Kerala':93,'Mumbai':94,'Delhi':96}))
In [55]:
In [56]:
         area
```

```
Chennai
                       91
Out[56]:
          Banglore
                       92
          Kerala
                       93
          Mumbai
                        94
          Delhi
                        96
          dtype: int64
          data=pd.DataFrame({'area':area,'pop':pop}) #convert to dataframe
In [57]:
In [58]:
          data
Out[58]:
                   area
                        pop
           Chennai
                     91
                          91
          Banglore
                     92
                          92
            Kerala
                     93
                          93
           Mumbai
                     94
                          94
             Delhi
                     96
                          96
In [59]:
          data[4]='Hydrebad'
In [60]:
          data
Out[60]:
                                    4
                   area
                        pop
           Chennai
                          91 Hydrebad
                     91
          Banglore
                     92
                          92 Hydrebad
            Kerala
                     93
                          93 Hydrebad
           Mumbai
                          94 Hydrebad
                     94
             Delhi
                          96 Hydrebad
                     96
In [61]:
          del data[4]
In [62]:
          data
Out[62]:
                   area
                        pop
           Chennai
                     91
                          91
          Banglore
                     92
                          92
            Kerala
                     93
                          93
           Mumbai
                     94
                          94
             Delhi
                     96
                          96
          data['density']=data['pop']+data['area'] #new column density
In [63]:
In [64]:
          data
```

```
Out[64]:
                   area
                        pop density
           Chennai
                     91
                         91
                                182
          Banglore
                     92
                         92
                                184
            Kerala
                     93
                         93
                                186
           Mumbai
                                188
                          94
                     94
             Delhi
                     96
                         96
                                192
          data.values
In [67]:
          array([[ 91,
                         91, 182],
Out[67]:
                  [ 92,
                         92, 184],
                         93, 186],
                  [ 93,
                  [ 94,
                         94, 188],
                  [ 96,
                         96, 192]], dtype=int64)
In [69]:
          data.values[3]
          array([ 94, 94, 188], dtype=int64)
Out[69]:
In [70]:
          data.values[:,1]
          array([91, 92, 93, 94, 96], dtype=int64)
Out[70]:
          data.iloc[0]
In [75]:
                       91
          area
Out[75]:
                       91
          pop
          density
                      190
          Name: Chennai, dtype: int64
          data.iloc[0][2]=160 #or data.values[0][2] or data.iloc[0,2]
In [81]:
In [82]:
          data
Out[82]:
                        pop density
                   area
           Chennai
                     91
                         91
                                160
          Banglore
                     92
                         92
                                184
            Kerala
                     93
                         93
                                186
           Mumbai
                     94
                         94
                                188
             Delhi
                     96
                         96
                                192
In [83]:
          data['density']
          Chennai
                       160
Out[83]:
          Banglore
                       184
          Kerala
                       186
          Mumbai
                       188
          Delhi
                       192
          Name: density, dtype: int64
In [84]:
          data[data['density']>180]
```

```
Kerala
                    93
                        93
                               186
           Mumbai
                    94
                        94
                               188
             Delhi
                    96
                        96
                               192
          data1=pd.Series([1,np.nan,2,None,3],index=['a','b','c','d','e'])
In [86]:
In [87]:
          data1
               1.0
          а
Out[87]:
               NaN
               2.0
          С
          d
               NaN
               3.0
          е
          dtype: float64
In [88]:
          data1.fillna(0) #null values replaced with 0.0
               1.0
Out[88]:
               0.0
               2.0
          С
          d
               0.0
               3.0
          dtype: float64
          data1.fillna(method='ffill') #null values replaced with value behind it
In [89]:
               1.0
Out[89]:
               1.0
               2.0
          С
          d
               2.0
               3.0
         dtype: float64
In [90]:
          data1.fillna(method='bfill') #null values replaced with value after it
               1.0
          а
Out[90]:
               2.0
          С
               2.0
          d
               3.0
               3.0
          dtype: float64
 In []:
```

Out[84]:

pop density

184

92

area

92

Banglore