Escrever um programa para controlar a velocidade de um motor DC através de PWM.

•Utilizar o *Timer1_A* e o *ADC* para gerar o PWM

•Frequencia do *DCO* = 16MHz

Acionamento do Motor

Geração de *PWM* através do *Timer1_A - UP Mode*

Geração de PWM através do Timer1_A - UP Mode

TA1CCR1: Utilizar o valor lido do canal 5 ADC, com referência Vcc

Iniciar uma conversão do ADC à cada 10ms Temporização de 10ms através do Timer0_A

15	14	13	12	11	10	9	8	
	SREFx			0SHTx	ADC10SR	REFOUT	REFBURST	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC	
rw•0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
	Can be modi	ified only when ENC =	= 0					
ADC108 R	Bit 10	ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. O Reference buffer supports up to ~200 ksps Reference buffer supports up to ~50 ksps						
REFOU	Bit 9	Reference output 0 Reference	output off					
		1 Reference	(3.97)					
REFBURST	Bit 8	Reference burst.						
		0 Reference	buffer on continuo	ously				
		1 Reference	buffer on only dur	ring sample-and-o	conversion			
MSC	Bit 7	Multiple sample and	conversion. Valid	d only for sequen	ce or repeated mo	odes.		
		0 The sampli	ng requires a risir	ng edge of the SH	ll signal to trigger	each sample-and	d-conversion.	
		The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed						

15	14	13	12	11	10	9	8
	SREFx	SREFx		ADC10SHTx		REFOUT	REFBURST
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
MSC	REF2_5V	REFON	ADC100N	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)	rw-(0)	rw-(1)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	Can be modified	d only when ENC =	0	\			
			\	\			
			\	\			
REF2_5V	Bit 6	Reference-ge	nerator voltag	e. REFON mus	st also be set.		
		0 1.5 V	/	\ \			
		1 2.5 V	/	\			
REFON	Bit 5	Reference ge	nerator on				
		0 Refe	rence off				
		1 Refe	rence on	\			
ADC100N	Bit 4	ADC10 on	—		\		
		0 ADC	10 off				
		1 ADC	10 on				
ADC10IE	Bit 3	ADC10 interr	upt enable		\		
			rupt disabled		\		
			rupt enabled				

15	14	13	12	11	10	9	8
	SREFx			ADC10SHTx		REFOUT	REFBURST
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
MSC	REF2_5V	REFON	ADC100N	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(3)	n (0)
	Can be modified only when ENC = 0						
							/

ADC10IFG	Bit 2	ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed.
		0 No interrupt pending
		1 Interrupt pending
ENC	Bit 1	Enable conversion
		0 ADC10 disabled
		1 ADC10 enabled
ADC10SC	Bit 0	Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with one instruction. ADC10SC is reset automatically.
		0 No sample-and-conversion start
		1 Start sample-and-conversion

15	14	13	12	11		10	9	8
	INCHx		5	SHSx		ADC10DF	ISSH	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	1	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3		2	1	0
	ADC10DIVx			SSELx		CON	SEQx	ADC10BUSY
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		rw-(0)	rw-(0)	r-0
	Can be modified only	when EN	C = 0			1		
						1		
SHSx	Bits 11-10	Samp	le-and-hold sour	ce select		1		
		00	ADC10SC bit					
		01						
			Timer_A.OUT					
		10	Timer_A.OUT	0				
		11	Timer_A.OUT	2 (Timer_A.C	TUC	1 on MSP4	30x20x2 devic	es)
ADC10DF	Bit 9	ADC1	0 data format					
		0	Straight binary	,				
		1	2s complemen	nt				
ISSH	Bit 8	Invert	signal sample-ar	nd-hold				
		0	The sample-in	put signal is	not	inverted.		
		1	The sample-in	put signal is	inve	erted.		

15	14	13	12	11	10	9	8		
	INCH	(SH	ISx	ADC10DF	ISSH		
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6	5	4	3	2	1	0		
	ADC10DIVx		ADC10	SSELx	CON	ISEQx	ADC10BUSY		
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r -0		
C	an be modified on	ly when ENC	= 0						
CONSEQX	Bits 2-1	Conve	ersion sequence	e mode selec	t				
		00	O Single-channel-single-conversion						
		01	Sequence-of	-channels					
		10	Repeat-singl	e-channel					
		11	Repeat-sequ	ence-of-char	nnels				
ADC10BUSY	Bit 0	ADC1	0 busy. This bit	indicates an	active samp	le or convers	ion operation		
0 No operation is active.									
	active.								

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

Canal 5:

ADC10AE0: 00100000

22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format

15	14	13	12	11	10	9	8
0	0	0	0	0	0	Conversion Results	
r0	r0	r0	r0	r0	r0	r	r
7	6	5	4	3	2	1	0
			Conversi	on Results			
r	r	r	r	r	r	r	r
Conversion Results	Bits 15-0	The 10-bit conversio always 0.	n results are right	justified, straight-b	oinary format. Bit	9 is the MSB. Bits	15-10 are

22.3.6 ADC10MEM, Conversion-Memory Register, 2s Complement Format

15	14	13	12	11	10	9	8
			Conversi	on Results			
r	r	r	r	r	r	r	r
7	6	5	4	3	2	1	0
Conversion Results 0			0	0	0	0	0
r	r	r0	r0	r0	r0	r0	r0
Conversion Results	Bits 15-0	The 10-bit conversion 0.	n results are left-j	ustified, 2s comple	ement format. Bit 1	5 is the MSB. Bits	s 5-0 are alwa

Vetores de Interrupções do MSP430G2553

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	OFFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TA1CCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TA1CCR2 TA1CCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
Comparator_A+	CAIFG ⁽⁴⁾	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TA0CCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TA0CCR2 TA0CCR1 CCIFG, TAIFG	maskable	0FFF0h	24
USCI_A0/USCI_B0 receive USCI_B0 I2C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10 (MSP430G2x53 only)	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18

Rotinas de Interrupção

