Examen parcial de Física - ELECTRÒNICA 5 de desembre de 2018

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Indiqueu quina resposta és correcta si la tensió llindar dels dos díodes del circuit de la figura és de 0.7 V.
- a) $V_B = 4.3 \text{ V}$ b) $V_A = 8.6 \text{ V}$ c) $V_B V_A = 4.3 \text{ V}$ d) $I_1 = 1 \text{ mA}$

- **T2)** Si pel díode Zener de la figura circula una intensitat de 5 mA, R ha de valer
 - a) $5 \text{ k}\Omega$

b) $4 \text{ k}\Omega$

c) $2 k\Omega$

d) $1 \text{ k}\Omega$

- T3) Tenint en compte que el circuit de la figura s'ha dissenvat de forma que el transistor treballi o bé a la zona òhmica o bé a la de tall, determineu quina porta lògica implementa aquest circuit quan les tensions a les entrades valen 0 o 5 V.
 - a) NAND

b) AND

c) NOR

d) OR

- T4) Digueu quina de les següents afirmacions és correcta per un transistor NMOS, amb tensió de tall V_T , pel qual les diferències de potencial porta-font i drenador-font són respectivament V_{GS} i V_{DS} , i pel que circula una intensitat de drenador I_D .
 - a) A la regió òhmica la resistència font-drenador r_{DS} disminueix quan V_{GS} augmenta.
 - b) A la regió òhmica I_D no varia amb V_{DS} .
 - c) Està en tall quan $V_{GS} > V_T$.
 - d) A la regió de saturació I_D disminueix quan V_{DS} augmenta.
- **T5)** Si les entrades d'aquesta porta CMOS són $V_A =$ V_{DD} i $V_B = 0$, els transistors que estan en tall (OFF) són
 - a) T1, T4, T6
- b) T1, T2, T5
- c) T3, T2, T6
- d) T2, T3, T5

Examen parcial de Física - ELECTRÒNICA 5 de desembre de 2018

Model B

 $V_{DD} = 5 V$

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Tenint en compte que el circuit de la figura s'ha dissenyat de forma que el transistor treballi o bé a la zona òhmica o bé a la de tall, determineu quina porta lògica implementa aquest circuit quan les tensions a les entrades valen 0 o 5 V.
 - a) NAND

b) AND

c) NOR

- d) OR
- **T2)** Si les entrades d'aquesta porta CMOS són $V_A =$ V_{DD} i $V_B = 0$, els transistors que estan en tall (OFF) són
 - a) T1, T4, T6
- b) T1, T2, T5
- c) T3, T2, T6
- d) T2, T3, T5

T3) Indiqueu quina resposta és correcta si la tensió llindar dels dos díodes del circuit de la figura és de 0.7 V.

a)
$$V_B = 4.3 \text{ V}$$

b) $V_A = 8.6 \text{ V}$
c) $V_B - V_A = 4.3 \text{ V}$
d) $I_1 = 1 \text{ mA}$

- T4) Si pel díode Zener de la figura circula una intensitat de 5 mA, R ha de valer
 - a) $5 \text{ k}\Omega$

b) $4 \text{ k}\Omega$

c) $2 k\Omega$

d) $1 \text{ k}\Omega$

- T5) Digueu quina de les següents afirmacions és correcta per un transistor NMOS, amb tensió de tall V_T , pel qual les diferències de potencial porta-font i drenador-font són respectivament V_{GS} i V_{DS} , i pel que circula una intensitat de drenador I_D .
 - a) A la regió òhmica la resistència font-drenador r_{DS} disminueix quan V_{GS} augmenta.
 - b) A la regió òhmica I_D no varia amb V_{DS} .
 - c) Està en tall quan $V_{GS} > V_T$.
 - d) A la regió de saturació I_D disminueix quan V_{DS} augmenta.

Examen de Física - ELECTRÒNICA 5 de desembre de 2018

Problema: 50% de l'examen

Considereu el circuit PMOS de la figura, amb característiques $\beta=1.5\,\mathrm{mA/V^2}$ i $V_T=-2\,\mathrm{V}$.

- a) Sabent que $V_{GS} = -4$ V, calculeu els valors de V_D , V_G , V_S , I_D , I_1 , I i R, suposant que el transistor està en saturació. Demostreu que aquest règim de treball és el correcte.
- b) Si en el mateix circuit fixem $R=1\,k\Omega$ i modifiquem la resistència R_3 , trobeu quin és el valor de R_3 que farà que el transistor treballi amb $V_{GS}=-4.5\,\mathrm{V}$, tot conduint en règim òhmic amb $I_D=1.5\,\mathrm{mA}$. Determineu els valors de V_G i V_S .

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	c	c
T2)	d	a
T3)	c	c
T4)	a	d
T5)	a	a

Resolució del Model A

- T1) El díode que té la regió P connectada a 10 V està polaritzat directament. Llavors, $V_B = 10 0.7 = 9.3V$. Com que el díode connectat a A està inversament polaritzat, $V_A = 5V$, de manera que $V_B V_A = 4.3V$. Finalment, per la resistència de 2 k Ω circula $I_1 = V_B/2 K\Omega = 4.65$ mA.
- **T2)** Si $I_Z=5\,\mathrm{mA},$ el díode Zener està en conducció i per tant $V_N-V_P=10\,\mathrm{V}$ i $I(2\,K\Omega)=10V/2\,K\Omega=5\,\mathrm{mA}.$

Per la llei de nusos sabem que $I(R) = I_Z + I(2 K\Omega) = 10 \text{ mA}$.

L'equació de malla 20V = 10V + RI(R) ens porta a

$$R = \frac{20V - 10V}{10\,mA} = 1\,K\Omega$$

- T3) El díode connectat a una tensió d'entrada de 5V està en polarització directa, i el potencial de la seva regió N val $V_N=5$ V_γ . Per tant, com que $V_{GS}=V_N$, el transistor està en conducció (en regió òhmica) i $V_O\approx 0$. Només quan s'aplica una tensió d'entrada zero a tots dos díodes, cap dels dos condueix i el transistor està en tall i per tant, $I_D=0$ i $V_O=V_{DD}$. En conseqüència, es tracta d'una porta NOR.
- **T4)** A la regió òhmica, la resistència font-drenador val $r_{DS} = 1/(\beta \cdot (V_{GS} V_T))$. Per tant, r_{DS} disminueix quan V_{GS} augmenta.
- **T5)** Els transistors NMOS estaran en tall si $V_{GS}=0$. Els transistors PMOS estaran en tall si $V_{GS}=5$ V. Per tant, T1 i T4 estaran en tall. D'altra banda, com que T3 no està en tall, està en la regió òhmica i $V_{DS}\approx 0$. De manera que per T6 tenim que $V_{GS}=0$ i, per tant, també està en tall.

Resolució del Problema

a) Suposarem que el PMOS treballa en règim de saturació. En tal cas, es satisfà que:

$$I_D = \beta \frac{(V_{GS} - V_T)^2}{2} = \frac{\beta}{2} (-4 + 2)^2 = 3 \text{ mA}.$$

Tenim que $V_D = R_3 I_D = 3 V$ i també sabem que

$$V_{GS} = -4 = -R_2 I_1 \rightarrow I_1 = 4 \text{ mA}.$$

Així, resulta $I = I_D + I_1 = 7$ mA. A més, $V_G = R_1 I_1 = 4$ V i $V_S = V_G - V_{GS} = 8$ V. Finalment, tenim que $15 - V_S = IR$, per la qual cosa $R = 1000 \Omega$.

Comprovació del règim de treball: $V_{DS} = -5 \text{ V} < V_{GS} - V_T = -2 \text{ V}.$

b) La doble condició $V_{GS}=-4.5\,\mathrm{V}$ i $I_D=1.5\,\mathrm{mA},$ amb el transistor treballant en zona òhmica, implica que

$$I_D = 1.5 \, mA/V^2 \, \left((V_{GS} - V_T)V_{DS} \right) - \frac{V_{DS}^2}{2} \right) = 1.5 \, mA \, \left((-2.5)V_{DS} \right) - \frac{V_{DS}^2}{2} \right) = 1.5 \, mA$$

Aquesta equació ens porta a $2=(-5V_{DS}-V_{DS}^2)$ que té la doble solució $V_{DS}=-4.56V$, $V_{DS}=-0.44V$. Donat que la condició de regió òhmica per a un PMOS és $V_{GS}-V_T < V_{DS}$, només es acceptable $-2.5V < V_{DS}$, per tant descartem la primera i concloem que $V_{DS}=-0.44\,V$, i $I_D=1.5\,\mathrm{mA}$ en règim òhmic.

D'altra banda, $V_{GS}=-4.5$ V implica que $I_1=4.5\,V/1\,K\Omega=4.5\,\text{mA}$, que juntament amb $I_D=1.5\,\text{mA}$, estableix que $I=6\,\text{mA}$. Així, trobem $V_S=15-I\,R=15-6=9\,\text{V}$ i $V_G=I_1\,R_1=4.5\,\text{V}$, en concordança amb la condició $V_{GS}=-4.5\,\text{V}$.

Finalment, trobarem el valor de R_3 a partir de $R_3 = V_D/I_D$ amb $V_D = V_S + V_{DS} = 9 V - 0.44 V = 8.56 V$, i per tant $R_3 = 8.56 V/1.5 mA = 5.71 K\Omega$.