AN 0 - REVISIONS

1 Calcul intégral

f et g sont des fonctions continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} . a et b sont des réels de I.

 \boxtimes Théorème fondamental d'intégration (TFI) :

La fonction $F: x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a.

- ⊠ Propriétés
 - Relation de Chasles : Pour tout réel $c \in I$, $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$.
 - Linéarité : Pour tous réels λ et μ , $\int_a^b (\lambda f(t) + \mu g(t)) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt$.
 - Positivité : Si $f \ge 0$, alors $\int_{I} f(t) dt \ge 0$.
 - Si $\int_I |f(t)| dt = 0$, alors f est identiquement nulle.
 - Croissance

Si
$$f \leq g$$
, alors $\int_{I} f(t) dt \leq \int_{I} g(t) dt$.

•
$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \le \int_a^b |f(t)| \, \mathrm{d}t.$$

⊠ Inégalité de Cauchy Schwarz :

$$\left(\int_a^b fg\right)^2 \le \left(\int_a^b f^2\right) \, \left(\int_a^b g^2\right)$$

oximes Théorème d'intégration par parties

Si f et g de classe C^{1} sur I, alors

$$\int_a^b fg' = [fg]_a^b - \int_a^b f'g$$

oximes Théorème de changement de variable

Soit φ de classe C^1 , strictement monotone sur un intervalle J d'extrémités α et β tel que $\varphi(J) = I$; alors $\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$.

 \boxtimes Formule de Taylor avec reste intégral :

Si f est de classe C^{n+1} sur I, alors :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

$\mathbf{2}$ Séries numériques

 (u_n) est une suite réelle ou complexe.

SI la série
$$\sum u_n$$
 converge, ALORS $\lim_{n \to +\infty} u_n = 0$.

ATTENTION!!! La réciproque est fausse.

Exemple fondamental : La série $\sum_{n=0}^{\infty} \frac{1}{n}$, appelée série harmonique, est divergente.

⊠ Séries dont on sait calculer la somme :

Séries géométriques

La série géométrique $\sum q^n$ converge si et seulement si |q| < 1. Dans ce cas sa somme vaut

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

• Séries télescopiques

Pour $n \ge n_0$, on pose $v_n = u_{n+1} - u_n$. Alors la série télescopique $\sum_{n=1}^{\infty} v_n$ converge si et seulement si la suite (u_n) converge. Dans ce cas sa somme vaut

$$\sum_{n=n_0}^{+\infty} v_n = -u_{n_0} + \lim_{n \to +\infty} u_n$$

Les séries de Riemann sont de la forme $\sum_{n>0} \frac{1}{n^{\alpha}}$, où $\alpha \in \mathbb{R}$.

Une série de Riemann converge si et seulement si $\alpha > 1$

⊠ Théorème de comparaison :

Si (u_n) et (v_n) sont deux suites à termes POSITIFS, telles que $u_n \leq v_n$ (pour $n \geq n_0$), alors :

$$\rightsquigarrow$$
 Si $\sum v_n$ converge, alors $\sum u_n$ converge. \rightsquigarrow Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

$$\rightsquigarrow$$
 Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

⊠ Critère de Riemann :

Si la suite (u_n) est à termes POSITIFS, et s'il existe un réel $\alpha > 1$ tel que $\lim_{n \to +\infty} n^{\alpha} u_n = 0$, alors la série $\sum u_n$ converge.

⊠ Critère de d'Alembert :

Si la suite (u_n) est à termes POSITIFS, et telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=L$, alors :

$$\leadsto$$
 Si $L < 1$, $\sum u_n$ converge.
 \leadsto Si $L > 1$, $\sum u_n$ diverge.

$$\rightsquigarrow$$
 Si $L > 1$, $\sum u_n$ diverge.

3 Equations différentielles linéaires

3.1 Premier ordre

On note (E): a(t)y' + b(t)y = c(t), une équation différentielle linéaire du premier ordre (a, b, c) sont des fonctions continues sur un intervalle I), et (H): a(t)y' + b(t)y = 0, l'équation homogène associée.

⊠ Structure de l'ensemble des solutions :

L'ensemble des solutions de (H) sur I est :

$$S_H = \left\{ \varphi : t \mapsto C e^{-\int \frac{b}{a}}, \ C \in \mathbb{K} \right\}$$

Etant donnée une solution particulière y_P de (E), toute solution de (E) est la somme de y_P et d'une solution de (H).

oxtimes Variation de la constante :

Pour trouver une solution particulière de (E), on cherche une solution sous la forme $y_P = \lambda h$ où λ est une fonction dérivable et h est une solution de (H).

3.2 Second ordre

On note (E): y'' + ay' + by = c(t), une équation différentielle linéaire du second ordre (a et b sont des réels, et c est une fonction continue sur un intervalle I), et (H): y'' + ay' + by = 0, l'équation homogène associée.

On note (EC): $r^2 + ar + b = 0$, l'équation caractéristique.

\boxtimes Structure de l'ensemble des solutions :

 \rightarrow Si (EC) a deux solutions réelles distinctes r_1 et r_2 , alors

$$S_H = \{ \varphi : t \mapsto Ae^{r_1t} + Be^{r_2t}, (A, B) \in \mathbb{R}^2 \}$$

 \rightarrow Si (EC) a deux solutions complexes conjuguées, $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$, alors

$$S_H = \{ \varphi : t \mapsto e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t)), (A, B) \in \mathbb{R}^2 \}$$

 \rightsquigarrow Si (EC) a une solution double r_0 , alors

$$S_H = \{ \varphi : t \mapsto e^{r_0 t} (At + B), (A, B) \in \mathbb{R}^2 \}$$

Etant donnée une solution particulière y_P de (E), toute solution de (E) est la somme de y_P et d'une solution de (H).

⊠ Recherche d'une solution particulière :

Lorsque c est une fonction de la forme $t \mapsto e^{mt}P(t)$ où $m \in \mathbb{C}$, et P est un polynôme de degré $n \in \mathbb{N}$:

- \leadsto Si m, n'est pas une solution de (EC), alors (E) admet une solution de la forme $t \mapsto e^{mt}Q(t)$, où Q est un polynôme de degré n.
- \leadsto Si m, est une solution simple de (EC), alors (E) admet une solution de la forme $t \mapsto e^{mt} t Q(t)$, où Q est un polynôme de degré n.
- \leadsto Si m, est une solution double de (EC), alors (E) admet une solution de la forme $t \mapsto e^{mt} t^2 Q(t)$, où Q est un polynôme de degré n.