Q1 In the circuit shown below, find k in the voltage transfer function vo = kvs.

Solution

Method-1

$$\frac{R_{3}}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

$$\frac{R_{3}}{R_{3}} + \frac{1}{R_{4}}$$

$$\frac{R_{3}}{R_{4}} + \frac{1}{R_{4}}$$

$$\frac{R_{3}}{R_{4}} + \frac{1}{R_{4}}$$

$$\frac{R_{3}}{R_{4}} + \frac{1}{R_{4}}$$

$$\frac{R_{4}}{R_{4}} + \frac{1}{R_{4}}$$

$$\frac{R_{4}}{$$

Q2 Calculate ix and vo in the circuit of Figure shown below. Find the power dissipated by the 60-k resistor.

Solution:

Let v_x = the voltage at the output of the op amp. The given circuit is a non-inverting amplifier.

$$v_x = \left(1 + \frac{50}{10}\right)(4 \text{ mV}) = 24 \text{ mV}$$

 $60 | 30 = 20 \text{k}\Omega$

By voltage division,

$$v_o = \frac{20}{20 + 20} v_x - \frac{v_x}{2} - 12 \text{mV}$$

$$i_x = \frac{v_x}{(20 + 20)k} - \frac{24 \text{mV}}{40k} - 600 \, \eta A$$

$$p = \frac{v_o^2}{R} - \frac{144 \times 10^{-6}}{60 \times 10^3} - 2.4 \eta W$$

3. Consider the full-wave rectifier circuit as shown below with $C=47\mu$ F and transformer winding ratio of 14:1. If the input voltage is 120 VAC (RMS) at 60 Hz, what is the load resistor value for a peak-to-peak ripple less than 0.5 V? What is the output DC voltage? Assume ideal diode.

Soln:

	2 31 60
Q.3	DATE :
Solution	
	Given transformer ratio 14:1, voltage across secondary
	Vm = 120/2 = 12.1V
	A
	As peak-to-peak ripple voltage is given,
	$\sqrt{x} = \frac{Vm}{2 \text{ forc}} = \frac{12.1}{2 \times 60 \times R \times (47 \times 10^{-6})}$
	R>4.29KD
	30, toad veststance should be greater than 429

If exact value calculated, then Output Dc voltage Vdc= Vm-Vr(pp)/2 = 12.1-0.25 =11.85

If range, then (11.85,12.1] for Vr<0.5

4. For the clipping circuit shown, find the output waveform v_o for the input voltage,

$$v_i = 5 \sin w_o t$$
.

The diode has the following characteristics: $r_d=15~\Omega;~V_d=0.7~\mathrm{V};~\mathrm{and}~r_r\approx\infty$

Solution #1:

Since $R_s \gg r_d$, the simplified output voltage result from Table 2.1 can be constructed. That is,

$$\begin{aligned} v_o &= V_d + V_{ref}, & v_i &> V_d + V_{ref} \\ v_o &= v_i, & v_i &\leq V_d + V_{ref}. \end{aligned}$$

Therefore, when $v_i > 2.7 \text{ V}$, $v_o = 2.7 \text{ V}$ and when $v_i < 2.7 \text{ V}$, $v_o = 5 \sin \omega_o t$. The output waveform is shown in Figure 2.15.

5. For the circuit shown in the figure, draw the waveform of output voltage V_o for the input voltage,

$$v_i = 5 \sin w_o t$$
.

Assume ideal diode D and lossless capacitor C.

Soln: Explanation 2.5 marks Input waveform

Output wave form

If cut in voltage of diode is neglected the input waveform = output waveform.

