## Midterm Practice Exam

Spring 2021

March 4, 2021

1. Given the table below which was created using the Smith-Waterman algorithm for local alignment, (a) identify the local alignment score, and (b) perform trace-back to find the optimal alignment.

|   |   | T              | Т            | A               | C                         | Т                | G                       | Т              | G                | T                |
|---|---|----------------|--------------|-----------------|---------------------------|------------------|-------------------------|----------------|------------------|------------------|
|   | 0 | 0              | 0            | 0               | 0                         | 0                | 0                       | 0              | 0                | 0                |
| С | 0 | 0              | 0            | 0               | <b>\sqrt{5}</b>           | $\leftarrow$ 4.5 | ←4                      | ←3.5           | ←3               | $\leftarrow 2.5$ |
| A | 0 | 0              | 0            | <b>₹</b> 5      | $\leftarrow \uparrow 4.5$ | <u></u>          |                         | <b>\_</b> ←↑3  | <u></u>          | <u></u>          |
| C | 0 | 0              | 0            | ↑4.5            | ₹10                       | ←9.5             | ←9                      | ←8.5           | ←8               | ←7.5             |
| С | 0 | 0              | 0            | <u>↑</u> 4      | <b>₹</b> ↑9.5             | <b>~</b> ←↑9     | <b>\_</b> ←↑8.5         | <b>\</b> ←↑8   | <b>\</b> ←↑7.5   | <b>\</b> ←↑7     |
| C | 0 | 0              | 0            | ↑3.5            | <b>₹</b>                  | <b>\_</b> ←↑8.5  | <u></u> <u></u> <u></u> | <b>△</b> ←↑7.5 | <u></u>          | <b>\_</b> ←\↑6.5 |
| С | 0 | 0              | 0            | †3              | <b>₹</b> \↑8.5            | <b>~</b> ←↑8     | <b>△</b> ←↑7.5          | <u></u>        | <b>\_</b> ←\↑6.5 | <b>~</b> ←↑6     |
| Т | 0 | abla 5         | $\nwarrow 5$ | ←4.5            | <b>↑</b> 7.5              | ₹13.5            | ←13                     | <u></u>        | ←12              | <-11.5           |
| G | 0 | ↑4.5           | ↑4.5         | <u></u>         | <b>↑</b> 7                | ↑13              | ₹18.5                   | ←18            | <u></u> <-17.5   | ←17              |
| Т | 0 | $\nwarrow 5$   | 59.5         | ←9              | $\leftarrow 8.5$          | ↑12.5            | ↑18                     | ₹23.5          | ←23              | <u></u> ←22.5    |
| G | 0 | $\uparrow 4.5$ | ↑9           | <b>\</b> ←\↑8.5 | <b>\_</b> ←↑8             | ↑12              | <b>₹</b> 17.5           | ↑23            | ₹28.5            | ←28              |

Optimal Local Alignment Score:

Optimal Local Alignment (note not all of the spaced will be used)

2. Given the Needleman-Wunsch table below, find the optimal global alignment for the two sequences.

|   |              | T                         | T                         | A                | С              | T              | G           | T              | G        | T                                  |
|---|--------------|---------------------------|---------------------------|------------------|----------------|----------------|-------------|----------------|----------|------------------------------------|
|   | 0            | ←-0.5                     | ←-1                       | ←-1.5            | <b>←-2</b>     | ←-2.5          | ←-3         | ←-3.5          | ←-4      | ←-4.5                              |
| C | ↑-0.5        | <u></u>                   | <b>\_</b> ← <b>\</b> -1.5 | <u></u>          | $\nwarrow 3.5$ | ←3             | ←2.5        | ←2             | ←1.5     | ←1                                 |
| A | ↑-1          | <b>\_</b> ← <b>\</b> -1.5 | <u></u>                   | ₹3.5             | <b>←</b> ↑3    | ~\←\^2.5       | <u></u>     | <b>\</b> ←↑1.5 | <u></u>  | $\nwarrow \leftarrow \uparrow 0.5$ |
| C | <b>↑-1.5</b> | <b>\_</b> ← <b>\</b> -2   | <b>\_</b> ←↑-2.5          | †3               | ₹8.5           | ←8             | ←7.5        | ←7             | ←6.5     | ←6                                 |
| C | <b>↑-2</b>   | <b>\_</b> ←\↑-2.5         | <b>\</b> ←↑-3             | ↑2.5             | <b>₹</b>       | <u></u>        | <u></u>     | <u></u>        | <u> </u> | $\nwarrow \leftarrow \uparrow 5.5$ |
| C | <b>↑-2.5</b> | <sup>^</sup> ←↑-3         | <b>\\</b> ←\↑-3.5         | <b>†</b> 2       | <b>₹</b> ↑7.5  | <u></u>        | <u> </u>    | <u>~</u> ←↑6   | <u> </u> | <u> </u>                           |
| С | <b>↑-</b> 3  | <b>\\</b> ←\↑-3.5         | <u></u>                   | ↑1.5             | <b>\</b> ↑7    | <u></u> <-↑6.5 | <u> </u>    | <u></u>        | <u> </u> | $\nwarrow \leftarrow \uparrow 4.5$ |
| Т | <b>↑-3.5</b> | $\nwarrow 2$              | <u></u>                   | <b>←</b> ↑1      | ↑6.5           | ₹12            | ←11.5       | <-11           | ←10.5    | <u></u>                            |
| G | <b>↑-</b> 4  | ↑1.5                      | <u> </u>                  | <u></u>          | <b>†</b> 6     | ↑11.5          | ₹17         | ←16.5          | <u> </u> | ←15.5                              |
| Т | ↑-4.5        | <b>\</b> ↑1               | ₹6.5                      | ←6               | <b>←</b> ↑5.5  | <b>\</b> ↑11   | ↑16.5       | ₹22            | ←21.5    | <-21                               |
| G | <b>↑-</b> 5  | ↑0.5                      | <b>†</b> 6                | <b>\\</b> ←\↑5.5 | <b>\</b> ←\↑5  | <b>†</b> 10.5  | <b>₹</b> 16 | †21.5          | ₹27      | $\leftarrow 26.5$                  |

Optimal Global Alignment (note not all of the spaced will be used)

3. (a) Compute the Z-Values for ACTAACTAAC. (b) how are the values of  $Z_2, Z_3, ... Z_{i-1}$  used in computing  $Z_i$ . (c) what does the value of  $Z_i$  mean?

4. From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; and (b) find the longest common substring between the set of sequences, and explain your reasoning.



5. What is the sum-of-pairs score of the following multiple sequence alignment using the global scoring with affine scoring model with the following parameters:

| match    | 10 |
|----------|----|
| mismatch | -3 |
| indel    | -1 |
| gap      | -3 |

ACCTGCC
-C-TGCA
AGCGGCA
ACCT--A

6. Given the pairwise alignments between the 4 sequences, and using sequence B as the star-center, create the multiple alignment using the center-star method.

7. How would we modify the Smith-Waterman algorithm if we wanted to find a disjoint set of substrings of S to align to a substring of T.

For example when aligning S = GGAGCGGCTTGG with T = AAAACCTTTT, an optimal alignment would align  $S[3..5] \cdot S[8..10]$  to T[3...8]:

AGCCTT

AACCTT.

The concept can be though of as "skipping" S[6..7] when computing the optimal local alignment. Note that the  $\cdot$  operator is for concatenation.

8. (2 point) Given the following partially completed computation of the Z-value algorithm, compute the rest of the values using the O(n) time algorithm we discussed in class. Describe how you arrived at each value.

|                | C | G | Т | C | G | Т | A | С | G | Т  | C  | G  | Α  | C  |
|----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| $\overline{i}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| $Z_i$          | _ | 0 | 0 | 3 | 0 | 0 | 0 | 5 |   |    |    |    |    |    |

9. (3 points) From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; (b) find the longest substring that occurs in all of the sequences *twice*, and explain your reasoning; (c) list the missing suffix links.



10. (2 points) How would we modify the Needleman-Wunsch algorithm if we wanted to allow for any character in S to be repeated aligned as many times as we want in place.

For example when aligning S= AGA with T= GGGGGA, an optimal alignment would repeat the G in S 5 times to give the alignment:

AGGGGGA
-GGGGGA

In reality, the middle G is is being aligned with all of the Gs in T.