GASP Codes for Secure Distributed Matrix Multiplication

Rafael G.L. D'Oliveira Salim El Rouayheb David Karpuk

Rutgers University and Universidad de los Andes

User

Servers

- User
 - ▶ Has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
 - Wants the product $AB \in \mathbb{F}_q^{r \times t}$
- Servers

User

- ▶ Has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
- Wants the product $AB \in \mathbb{F}_q^{r \times t}$

Servers

- We denote the number of servers by N.
- Each receives two matrices and outputs their product.
- Honest but curious.

User

- ▶ Has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
- Wants the product $AB \in \mathbb{F}_q^{r \times t}$

Servers

- We denote the number of servers by N.
- Each receives two matrices and outputs their product.
- Honest but curious.

▶ Goal:

- Use servers to compute AB.
- Reveal no information about A or B to any server.
- At most T servers collude.
- Minimize communication costs.

▶ The user has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.

- ▶ The user has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
 - ▶ Generate random matrices $R \in \mathbb{F}_q^{r \times s}$ and $S \in \mathbb{F}_q^{s \times t}$.
 - Generate polynomials

$$f(x) = A + Rx$$
 and $g(x) = B + Sx$.

- ▶ The user has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
 - ▶ Generate random matrices $R \in \mathbb{F}_q^{r \times s}$ and $S \in \mathbb{F}_q^{s \times t}$.
 - Generate polynomials

$$f(x) = A + Rx$$
 and $g(x) = B + Sx$.

▶ Let h(x) = f(x).g(x). Then,

$$h(x) = AB + (AS + RB)x + RSx^2.$$

- ▶ The user has two matrices $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$.
 - ▶ Generate random matrices $R \in \mathbb{F}_q^{r \times s}$ and $S \in \mathbb{F}_q^{s \times t}$.
 - Generate polynomials

$$f(x) = A + Rx$$
 and $g(x) = B + Sx$.

▶ Let h(x) = f(x).g(x). Then,

$$h(x) = AB + (AS + RB)x + RSx^2.$$

▶ With 3 evaluations of *h*, we can reconstruct *h* and compute

$$h(0) = AB$$
.

- f(x) = A + Rx.
- ightharpoonup g(x) = B + Sx.
- ► $h(x) = f(x).g(x) = AB + (AS + RB)x + RSx^2$.

$$f(x) = A + Rx.$$

$$ightharpoonup g(x) = B + Sx.$$

►
$$h(x) = f(x).g(x) = AB + (AS + RB)x + RSx^2$$
.

- f(x) = A + Rx.
- g(x) = B + Sx.
- ► $h(x) = f(x).g(x) = AB + (AS + RB)x + RSx^2$.

- f(x) = A + Rx.
- ightharpoonup g(x) = B + Sx.
- ► $h(x) = f(x).g(x) = AB + (AS + RB)x + RSx^2$.

▶ If $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$, computing AB takes O(rst) operations.

- ▶ If $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$, computing AB takes O(rst) operations.
- Consider the following matrix partitioning.

$$A = egin{bmatrix} A_1 \ dots \ A_K \end{bmatrix}$$
 and $B = egin{bmatrix} B_1 & \cdots & B_L \end{bmatrix}$.

- ▶ If $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$, computing AB takes O(rst) operations.
- Consider the following matrix partitioning.

$$A = egin{bmatrix} A_1 \ dots \ A_K \end{bmatrix}$$
 and $B = egin{bmatrix} B_1 & \cdots & B_L \end{bmatrix}$.

► The product *AB* is given by

$$AB = \begin{bmatrix} A_1B_1 & \cdots & A_1B_L \\ \vdots & \ddots & \vdots \\ A_KB_1 & \cdots & A_KB_L \end{bmatrix}$$

- ▶ If $A \in \mathbb{F}_q^{r \times s}$ and $B \in \mathbb{F}_q^{s \times t}$, computing AB takes O(rst) operations.
- Consider the following matrix partitioning.

$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_K \end{bmatrix}$$
 and $B = \begin{bmatrix} B_1 & \cdots & B_L \end{bmatrix}$.

► The product AB is given by

$$AB = \begin{bmatrix} A_1B_1 & \cdots & A_1B_L \\ \vdots & \ddots & \vdots \\ A_KB_1 & \cdots & A_KB_L \end{bmatrix}$$

► Computing A_iB_i takes $O(\frac{rst}{KL})$ operations.

Previous Work: Polynomial Codes for Stragglers

- Originally introduced in [Yu, Maddah-Ali, Avestimehr, '17].
- Different Setting: mitigating stragglers
- Other Work: [Yu, Maddah-Ali, Avestimehr, '18], [Dutta, Fahim, Haddadpour, Jeong, Cadambe, Grove, '18], [Sheth, Dutta, Chaudhari, Jeong, Yang, Kohonen, Roos, Grove, '18], [Li, Maddah-Ali, Yu, Avestimehr, '18],

► Three works consider secure distributed multiplication from the information theoretic point of view.

- Three works consider secure distributed multiplication from the information theoretic point of view.
- ► [Chang, Tandon, '18]: presents a scheme for K = L with download rate

$$\mathcal{R} = \frac{K^2}{(K+T)^2}$$

- Three works consider secure distributed multiplication from the information theoretic point of view.
- ► [Chang, Tandon, '18]: presents a scheme for *K* = *L* with download rate

$$\mathcal{R} = \frac{K^2}{(K+T)^2}$$

 [Kakar, Ebadifar, Sezgin, '18]: presents a scheme with download rate

$$\mathcal{R} = \frac{KL}{(K+T)(L+1)-1}$$

- Three works consider secure distributed multiplication from the information theoretic point of view.
- ► [Chang, Tandon, '18]: presents a scheme for *K* = *L* with download rate

$$\mathcal{R} = \frac{K^2}{(K+T)^2}$$

[Kakar, Ebadifar, Sezgin, '18]: presents a scheme with download rate

$$\mathcal{R} = \frac{KL}{(K+T)(L+1)-1}$$

► [Yang, Lee, '19]: presents a scheme for *T* = 1 with download rate

$$\mathcal{R} = \frac{KL}{KL + K + L}$$

Gap Additive Secure Polynomial Codes

We present "GASP Codes for Secure Distributed Matrix Multiplication", soon on Arxiv.

Gap Additive Secure Polynomial Codes

We present "GASP Codes for Secure Distributed Matrix Multiplication", soon on Arxiv.

Theorem

GASP codes outperform all previous schemes in terms of communication cost.

Partition A and B as follows.

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}$$

► The product *AB* is given by

$$AB = \begin{bmatrix} A_1B_1 & A_1B_2 & A_1B_3 \\ A_2B_1 & A_2B_2 & A_2B_3 \\ A_3B_1 & A_3B_2 & A_3B_3 \end{bmatrix}$$

Can't Choose Any Polynomial

$$f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$$

$$g(x) = B_1 + B_2 x + B_3 x^2 + S_1 x^3 + S_2 x^4$$

▶ Let h(x) = f(x)g(x). Then,

$$h(x) = A_1B_1 + (A_1B_2 + A_2B_1)x + (A_1B_3 + A_2B_2 + A_3B_1)x^2 + \dots$$

► Can't retrieve A₁B₂, for example.

Partition A and B as follows.

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}$$

▶ The product AB is given by

$$AB = \begin{bmatrix} A_1B_1 & A_1B_2 & A_1B_3 \\ A_2B_1 & A_2B_2 & A_2B_3 \\ A_3B_1 & A_3B_2 & A_3B_3 \end{bmatrix}$$

Partition A and B as follows.

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}$$

► The product *AB* is given by

$$AB = \begin{bmatrix} A_1B_1 & A_1B_2 & A_1B_3 \\ A_2B_1 & A_2B_2 & A_2B_3 \\ A_3B_1 & A_3B_2 & A_3B_3 \end{bmatrix}$$

$$f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$$

$$g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$$

▶ Then, A_iB_j appear in distinct terms of h = fg.

Partition A and B as follows.

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}$$

The product AB is given by

$$AB = \begin{bmatrix} A_1B_1 & A_1B_2 & A_1B_3 \\ A_2B_1 & A_2B_2 & A_2B_3 \\ A_3B_1 & A_3B_2 & A_3B_3 \end{bmatrix}$$

$$f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$$

$$g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$$

- ▶ Then, A_iB_i appear in distinct terms of h = fg.
- We need $N = \deg h + 1 = 19$ servers.

Previously:

- $f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$
- $g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$
- $N_h = \deg h + 1 = 19$ servers.

Previously:

- $f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$
- $g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$
- ▶ $N_h = \deg h + 1 = 19$ servers.

- $f^*(x) = A_1 + A_2x + A_3x^2 + R_1x^9 + R_2x^{12}$
- $g^*(x) = B_1 + B_2 x^3 + B_3 x^6 + S_1 x^9 + S_2 x^{10}$
- $deg h^* = 22$

Previously:

- $f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$
- $g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$
- ▶ $N_h = \deg h + 1 = 19$ servers.

- $f^*(x) = A_1 + A_2x + A_3x^2 + R_1x^9 + R_2x^{12}$
- $g^*(x) = B_1 + B_2 x^3 + B_3 x^6 + S_1 x^9 + S_2 x^{10}$
- $deg h^* = 22 > 18 = deg h$

Previously:

- $f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$
- $g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$
- $N_h = \deg h + 1 = 19$ servers.

- $f^*(x) = A_1 + A_2x + A_3x^2 + R_1x^9 + R_2x^{12}$
- $g^*(x) = B_1 + B_2 x^3 + B_3 x^6 + S_1 x^9 + S_2 x^{10}$
- $deg h^* = 22 > 18 = deg h$
- ▶ But h* has gaps in the degrees.
- No term of degrees 13, 14, 16, 17 or 20.

Previously:

- $f(x) = A_1 + A_2x + A_3x^2 + R_1x^3 + R_2x^4$
- $g(x) = B_1 + B_2 x^5 + B_3 x^{10} + S_1 x^{13} + S_2 x^{14}$
- ▶ $N_h = \deg h + 1 = 19$ servers.

- $f^*(x) = A_1 + A_2x + A_3x^2 + R_1x^9 + R_2x^{12}$
- $g^*(x) = B_1 + B_2 x^3 + B_3 x^6 + S_1 x^9 + S_2 x^{10}$
- $deg h^* = 22 > 18 = deg h$
- ▶ But *h** has gaps in the degrees.
- No term of degrees 13, 14, 16, 17 or 20.
- ▶ Thus, only 18 points needed to interpolate h^* .
- $ho N_{h^*} = 18 < 19 = N_h.$

What is it about?

It is about the number of terms in the polynomial.

What is it about?

- ▶ It is about the number of terms in the polynomial.
- ▶ Consider the polynomial $f(x) = ax^6 + bx^5 + cx$.
- ▶ We need $3 < \deg f + 1$ points to interpolate this polynomial.

What is it about?

- ▶ It is about the number of terms in the polynomial.
- ▶ Consider the polynomial $f(x) = ax^6 + bx^5 + cx$.
- ▶ We need $3 < \deg f + 1$ points to interpolate this polynomial.
- Not any points! What does f(0) tell you?

How many terms does f(x)g(x) have?

►
$$f(x) = A_1 x^{\alpha_1} + A_2 x^{\alpha_2} + A_3 x^{\alpha_3}$$

► $g(x) = B_1 x^{\beta_1} + B_2 x^{\beta_2} + B_3 x^{\beta_3}$
Then $h(x) = f(x)g(x)$ will be
$$h(x) = A_1 B_1 x^{\alpha_1 + \beta_1} + A_1 B_2 x^{\alpha_1 + \beta_2} + A_1 B_3 x^{\alpha_1 + \beta_3} + A_2 B_1 x^{\alpha_2 + \beta_1} + A_2 B_2 x^{\alpha_2 + \beta_2} + A_2 B_3 x^{\alpha_2 + \beta_3} + A_3 B_1 x^{\alpha_3 + \beta_1} + A_3 B_2 x^{\alpha_3 + \beta_2} + A_3 B_3 x^{\alpha_3 + \beta_3}$$

The Degree Table

We begin with an example.

•
$$f(x) = A_1 x^{\alpha_1} + A_2 x^{\alpha_2} + A_3 x^{\alpha_3}$$

$$g(x) = B_1 x^{\beta_1} + B_2 x^{\beta_2} + B_3 x^{\beta_3}$$

Then terms in *h* appear in the following table.

The Degree Table

We begin with an example.

•
$$f(x) = A_1 x^{\alpha_1} + A_2 x^{\alpha_2} + A_3 x^{\alpha_3}$$

$$g(x) = B_1 x^{\beta_1} + B_2 x^{\beta_2} + B_3 x^{\beta_3}$$

Then terms in *h* appear in the following table.

We call this a degree table.

Revisiting the Previous Examples

▶ Previously:

$$f(x) = A_1 + A_2x^1 + A_3x^2 + R_1x^3 + R_2x^4$$

$$g(x) = B_1 + B_2x^5 + B_3x^{10} + S_1x^{13} + S_2x^{14}$$

h	0	5	10	13	14
0	0	5	10	13 14 15 16 17	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

Revisiting the Previous Examples

▶ Previously:

			10		
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	10 11 12 13 14	17	18

Consider:

$$f^*(x) = A_1 + A_2 x^1 + A_3 x^2 + R_1 x^9 + R_2 x^{12}$$

$$g^*(x) = B_1 + B_2 x^3 + B_3 x^6 + S_1 x^9 + S_2 x^{10}$$

h*	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2 9	5	8	11	12
9	9	12	15	18	19
12	10	15	18	21	22

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

Decodability: Red cells unique.

_ <i>h</i> *	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	10	15	18	21	22

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

•	Decodability: Red cells
	unique.

Security A: Green cells distinct.

h*	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2 9	5	8	11	12
9	9	12	15	18	19
12	10	15	18	21	22

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

_ <i>h</i> *	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	10	15	18	21	22

- Decodability: Red cells unique.
- Security A: Green cells distinct.
- Security B: Blue cells distinct.

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

_ <i>h</i> *	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	10	15	18	21	22

- Decodability: Red cells unique.
- Security A: Green cells distinct.
- Security B: Blue cells distinct.

Goal: Minimize distinct cells.

How Many Terms?

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

ightharpoonup |terms h| = Purple Area = 19

How Many Terms?

h	0	5	10	13	14
0	0	5	10	13	14
1	1	6	11	14	15
2	2	7	12	15	16
3	3	8	13	16	17
4	4	9	14	17	18

_h*	0	3	6	9	10	_
0	0	3	6	9	10	
1	1	4	7	10	11	
2	2	5	8	11	12	•
9	9	12	15	18	19	
12	10	15	18	21	22	
	,					

 $|terms h^*| = Purple Area = 18$

Problem Restatement: The Degree Table

	β_1		$eta_{ extsf{L}}$	β_{L+1}	• • •	β_{L+T}
α_1	$\alpha_1 + \beta_1$		$\alpha_1 + \beta_L$	$\alpha_1 + \beta_{L+1}$		$\alpha_1 + \beta_{L+T}$
÷	÷	:	:	:	:	:
α_{K}	$\alpha_K + \beta_1$		$\alpha_{K} + \beta_{L}$	$\alpha_{K} + \beta_{L+1}$		$\alpha_K + \beta_{L+T}$
α_{K+1}	$\alpha_{K+1} + \beta_1$		$\alpha_{K+1} + \beta_L$	$\alpha_{K+1} + \beta_{L+1}$	• • •	$\alpha_{K+1} + \beta_{L+T}$
:	:	:	:	:	:	:
α_{K+T}	$\alpha_{K+T} + \beta_1$		$\alpha_{K+T} + \beta_L$	$\alpha_{K+T} + \beta_{L+1}$		$\alpha_{K+T} + \beta_{L+T}$

- Goal: Minimize number of distinct terms.
- Subject to:
 - Decodability: Numbers in the red region are all unique.
 - ▶ A-Security: Numbers in the green region are all distinct.
 - ▶ B-Security: Numbers in the blue region are all distinct.

▶ Consider K = L = 3 and T = 1

	0	3	6	
0	0	3	6	
1	1	4	7	
2	2	5	8	

▶ Consider K = L = 3 and T = 1

	0	3	6	9
0	0	3	6	
1	1	4	7	
2 9	2	5	8	
9				

▶ Consider K = L = 3 and T = 1

	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

▶ Consider K = L = 3 and T = 1

	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

► *N* = 15.

▶ Consider K = L = 3 and T = 2

	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
10	10	13	16	19	20

► *N* = 19.

▶ Consider K = L = 3 and T = 3

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19	20
10	10	13	16	19	20	21
11	11	14	17	20	21	22

► *N* = 23.

GASP_{big} (Gap Additive Secure Polynomial)

▶ For $L \le K$, GASP_{big} is the following scheme.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\beta_1 = 0$		$\beta_L = K(L-1)$	$\beta_{L+1} = KL$	$\beta_{L+2} = KL + 1$		$\beta_{L+T} = KL + T - 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_1 = 0$	0		K(L-1)	KL	<i>KL</i> + 1		KL + T - 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>:</u>	:	٠.,		÷	:	14.	:
$\alpha_{K+2} = KL + 1 \qquad KL + 1 \qquad \cdots \qquad 2KL - K + 1 \qquad 2KL + 1 \qquad 2KL + 2 \qquad \cdots \qquad 2KL + T$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$	$\alpha_K = K - 1$	K – 1		<i>KL</i> – 1	KL + K - 1	KL + K		KL + K + T - 2
	$\alpha_{K+1} = KL$	KL		2KL – K	2KL	2KL + 1		2KL + T - 1
	$\alpha_{K+2} = KL + 1$	KL + 1		2KL - K + 1	2 <i>KL</i> + 1	2KL + 2		2KL + T
$\alpha_{K+T} = KL + T - 1$ $KL + T - 1$ \cdots $2KL - K + T - 1$ $2KL + T - 1$ $2KL + T$ \cdots $2KL + 2T - 2$:	:	٠.,	:	:	:	1.	:
	$\alpha_{K+T} = KL + T - 1$	<i>KL</i> + <i>T</i> − 1		2KL - K + T - 1	2KL + T - 1	2KL + T		2KL + 2T - 2

▶ For K < L, permute α and β .

<i>T</i> = 1	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

T=1	0	3	6	9	<i>T</i> = 2	0	3
0	0	3	6	9	0	0	3
		4			1		
		5			2	2	5
_	_	_	_		9 10	9	12
9	9	12	15	18	10	10	13

<i>T</i> = 1	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

<i>T</i> = 3	0	3	6	9	10	11
0	0	3 4	6	9	10	11
1	1	4	7	10	11	12
2	2	5 12	8	11	12	13
9	9	12	15	18	19	20
10	10				20	
11	11	14	17	20	21	22

<i>T</i> = 2	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
10	10	13	16	19	20

T = 1	1 1	0	3	6		9	_	T=2	2	0	3	6	Ş	9	10
		0	3	6		9		0		0	3	6	(9	10
1		1	4	7		10		1		1	4	7	1	0	11
1								2		2	5	8	1	1	12
2		2	5	8		11		9		9	12	15	1	8	19
9	!	9	12	15	5	18		10		10	13	16	1	9	20
<i>T</i> = 3	0														
	_	3	6	9	10	11	7	T = 4	0	3	6	9	10	11	
0	0	3	6	9	10	11	. <u>-1</u>	0	0	3	6	9	10	11	12
0 1	0	_	_	_	_		. <u>-1</u>	0	0	3 4	6 7	9	10	11 12	12 13
-	_	3	6	9	10	11	. <u>-1</u>	0 1 2	0 1 2	3 4 5	6 7 8	9 10 11	10 11 12	11 12 13	12 13 14
1	1	3	6 7	9	10	11 12		0 1 2 9	0 1 2 9	3 4 5 12	6 7 8 15	9 10 11 18	10 11 12 19	11 12 13 20	12 13 14 21
1 2	1 2	3 4 5	6 7 8	9 10 11	10 11 12	11 12 13		0 1 2	0 1 2	3 4 5	6 7 8	9 10 11	10 11 12	11 12 13	12 13 14

<i>T</i> = 1	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

<i>T</i> = 3	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11		13
9	9	12	15	18	19	20
10	10		16		20	
11	11	14	17	20	21	22

<i>T</i> = 5	0	3	6	9	10	11	12	13
0	0	3 4 5	6	9	10	11	12	13
1 2 9	1	4	7	10	11	12	13	14
2	2	5	8	11	12	13	14	15
9	9	12	15	18	19	20	21	22
10	10	13	16	19	20	21	22	23
		14						
12 13	12	15	18	21	22	23	24	25
13	13	16	19	22	23	24	25	26

<i>T</i> = 2	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
10	10	13	16	19	20

<i>T</i> = 4	0	3	6	9	10	11	12
	0						
1	1	4	7	10	11	12	13
2	2	5	8	11	12	13	14
9	9	12	15	18	19	20	21
10	10	13	16	19	20	21	22
11	11	14	17	20	21	22	23
12	12	15	18	21	22	23	24

<i>T</i> =	: 1	0)	3		6		9
0		(1	3		6		9
_				_				-
1		-	1	4		7		10
2		2	2	5		8		11
9		ç)	12	-	15		18
·		"				. •		. •
T=3	3	0	3	6	9	1	10	11
0		0	3	6	9	1	10	11
1		1	4	7	10		11	12
2		2	5	8	11		12	13
9		9	12	15	18		19	20
10		10	13	16	19		20	21
11		11	14	17	20		21	22
				• •		_		
T = 5	0	3	•	•	10		12	10
_	-	_	6	9	_	11		13
0	0	3	6 7	9	10	11	12 13	13
1	1	4 5	8	11	12	13	14	
9	9	12	15	18	19	20	21	22
10	10	13	16	19	20	21	22	23
11	11	14	17	20	21	22	23	24
12	12	15	18	21	22	23	24	25
13	13	16	19	22	23	24	25	26

$$ightharpoonup R_1 = K \times L$$

- R₁ = K × L
 R₂ = 1 × T

- $ightharpoonup R_1 = K \times L$
- $R_2 = 1 \times T$
- $P_3 = (K-1) \times 1$

- $ightharpoonup R_1 = K \times L$
- $ightharpoonup R_2 = 1 \times T$
- $P_3 = (K-1) \times 1$
- ▶ $R_4 = 1 \times 1$ if $L \ge 2$

$$ightharpoonup R_1 = K \times L$$

$$ightharpoonup R_2 = 1 \times T$$

▶
$$R_3 = (K - 1) \times 1$$

▶
$$R_4 = 1 \times 1$$
 if $L \ge 2$

$$P_5 = \min\{T, K\} \times \max\{(L-2), 0\}$$

$$ightharpoonup R_1 = K \times L$$

$$ightharpoonup R_2 = 1 \times T$$

▶
$$R_3 = (K - 1) \times 1$$

▶
$$R_4 = 1 \times 1 \text{ if } L \ge 2$$

$$P_5 = \min\{T, K\} \times \max\{(L-2), 0\}$$

$$P_6 = 1 \times \min\{T, K\}$$

- $ightharpoonup R_1 = K \times L$
- $ightharpoonup R_2 = 1 \times T$
- ▶ $R_3 = (K 1) \times 1$
- ► $R_4 = 1 \times 1$ if $L \ge 2$

- $P_5 = \min\{T, K\} \times \max\{(L-2), 0\}$
- $R_6 = 1 \times \min\{T, K\}$
- $P_7 = (T-1) \times 1$

- $ightharpoonup R_1 = K \times L$
- $ightharpoonup R_2 = 1 \times T$
- ▶ $R_3 = (K 1) \times 1$
- ▶ $R_4 = 1 \times 1 \text{ if } L \ge 2$

- $P_5 = \min\{T, K\} \times \max\{(L-2), 0\}$
- $R_6 = 1 \times \min\{T, K\}$
- ▶ $R_7 = (T-1) \times 1$

Theorem

 $N = |\text{terms in GASP}_{\text{big}}| = R_1 + \ldots + R_7.$

Number of Terms

Theorem

The number of terms in GASP_{biq}, for $L \leq K$, is

$$N = \left\{ \begin{array}{ll} 2K + T & \text{if } L = 1, T < K \\ K + 2T & \text{if } L = 1, T \ge K \\ (K + T)(L + 1) - 1 & \text{if } L \ge 2, T < K \\ 2KL + 2T - 1 & \text{if } L \ge 2, T \ge K \end{array} \right.$$

Theorem

The number of terms in GASP_{biq}, for $L \leq K$, is

$$N = \left\{ \begin{array}{ll} 2K + T & \text{if } L = 1, T < K \\ K + 2T & \text{if } L = 1, T \ge K \\ (K + T)(L + 1) - 1 & \text{if } L \ge 2, T < K \\ 2KL + 2T - 1 & \text{if } L \ge 2, T \ge K \end{array} \right.$$

▶ For big T, N = 2KL + 2T - 1.

Theorem

The number of terms in GASP_{biq}, for $L \leq K$, is

$$N = \left\{ \begin{array}{ll} 2K + T & \text{if } L = 1, T < K \\ K + 2T & \text{if } L = 1, T \ge K \\ (K + T)(L + 1) - 1 & \text{if } L \ge 2, T < K \\ 2KL + 2T - 1 & \text{if } L \ge 2, T \ge K \end{array} \right.$$

- ▶ For big T, N = 2KL + 2T 1.
- ▶ The download rate is $\mathcal{R} = KL/N$.

How good is GASP_{big}?

Theorem

GASP_{biq} outperforms all previous schemes for all parameters.

How good is GASP_{big}?

Theorem

GASP_{biq} outperforms all previous schemes for all parameters.

Can we do better?

GASP_{small}

▶ For $K \le L$, GASP_{small} is the following scheme.

	$\beta_1 = 0$		$\beta_L = K(L-1)$	$\beta_{L+1} = KL$	$\beta_{L+2} = KL + 1$		$\beta_{L+T} = KL + T - 1$
$\alpha_1 = 0$	0		K(L – 1)	KL	KL + 1		KL + T - 1
:	:	1.	:	:	:	٠.,	÷
$\alpha_K = K - 1$	K – 1		KL – 1	KL + K - 1	KL + K		KL + K + T - 2
$\alpha_{K+1} = KL$	KL		2KL – K	2KL	2KL + 1		2KL + T - 1
$\alpha_{K+2} = KL + K$	KL + K		2KL	2KL + K	2KL + K + 1		2KL+K+T-1
	:	٠.	:	:	:	٠.	:
$\alpha_{K+T} = KL + K(T-1)$	KL + K(T-1)		2KL + K(T-2)	2KL + K(T-1)	2KL + K(T-1) + 1		2KL + (K+1)(T-1)

0	3	6	9
0	3	6	9
1	4	7	10
2	5	8	11
9	12	15	18
	0 1 2	0 3 1 4 2 5	0 3 6 1 4 7 2 5 8

<i>T</i> = 2	0	3	6	9	10
0	0	3	6	9	
1	1	4		10	
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

<i>T</i> = 3	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5			12	13
9	9	12	15	18	19	20
12	12	15	18	21	22	23
15	15	18	21	24	25	26

<i>T</i> = 4	0	3	6	9	10	11	12
0	0	3	6	9	10	11	12
1	1	4	7	10	11	12	13
2	2	5	8	11	12	13	14
				18			
12	12	15	18	21	22	23	24
				24			
18	18	21	24	27	28	29	30

<i>T</i> = 5	0	3	6	9	10	11	12	13
0 1 2	0	3	6	9	10	11	12	13
1	1	4	7	10	11	12	13	14
2	2	5	8	11	12	13	14	15
9	9	12	15	18	19	20	21	22
12	12	15	18	21	22	23	24	25
15	15	18	21	24	25	26	27	28
18	18	21	24	27	28	29	30 33	31
21	21	24	27	30	31	32	33	34

<i>T</i> = 6	0	3	6	9	10	11	12	13	14
0	0	3	6	9	10	11	12	13	14
1	1	4	7	10	11	12	13	14	15
2	2	5	8	11	12	13	14	15	16
9	9	12	15	18	19	20	21	22	23
12	12	15	18	21	22	23	24	25	26
15	15	18	21	24	25	26	27	28	29
18	18	21	24	27	28	29	30	31	32
21	21	24	27	30	31	32	33	34	35
24	24	27	30	33	34	35	36	37	38

<i>T</i> =	3	0		3	6	(9	10	1	1	T = 0	4	0	;	3	6	9		10	11		
		0		3	6	-	`	10	4	1	0	T	0	:	3	6	9		10	11	-	1
0		_					9				1		1		4	7	10)	11	12		
1		1		4	7		0	11		2	2		2		5	8	11		12	13		
2		2		5	8	1	1	12	1	3	9		9		2	15	18		19	20	_	
9		9		12	15	1	8	19	2	20	12		12		5	18	21		22	23		
12		12	,	15	18	2	1	22	2	23	15		15		8	21	24		25 25	26		
15		15		18	21		4	25		26												
13	'	13	,	10	21	_	4	25		.0	18		18	2	. 1	24	27		28	29	١ (
T = 5	()	3	6	9	10	1	1 1	2	13	<i>T</i> = 6	0) :	3	6	9	10	11	1	2 1	13	
0	()	3	6	9	10	1	1 1	2	13	0	C) ;	3	6	9	10	-11	1	2 1	13	
1			4	7	10	11	12			14	1	- 1		4	7	10	11	12			4	
2	2	2	5	8	11	12	13		-	15	2	2		5	8	11	12	13			15	
9	9		12	15	18	19	20			22	9	9			15	18	19	20			22	
12	1	2	15	18	21	22	23	3 2	4	25	12	12			18	21	22	23			25	
15	1		18	21	24	25	26			28	15 18	111			21 24	24 27	25 28	26			28 31	
18	1	-	21	24	27	28	29			31	21	2			24 27	30	31	32	_		34	
21	2		24	27	30	31	32			34	24	2			30	33	34	35			37	
	1											1 -			-	-	٠.	-			••	
_												_	_	_	_							
T = 7	0	3	6	9	10	11	12	_	14	15	T = 8	0	3	6	9	10	11	12	13	14	15	
0	0	3	6 7	9	10	11	12	13 14	14	15	1	0	3	7	10	10	11	13	14	15	16	
1 2	1 2	4 5	8	10 11	12	13	14	15	15 16	16 17	2	2	5	8	11	12	13	14	15	16	17	ı
9	9	12	15	18	19	20	21		23	24	9	9	12	15	18	19	20	21	22	23	24	
12	12	15	18	21	22	23	24		26	27	12	12	15	18	21	22	23	24	25	26	27	
15	15	18	21	24	25	26	27	28	29	30	15 18	15 18	18 21	21 24	24 27	25 28	26 29	27 30	28 31	29 32	30	
18	18	21	24	27	28	29	30	31	32	33	21	21	24	27	30	31	32	33	34	35	36	
21	21	24	27	30	31	32	33	34	35	36	24	24	27	30	33	34	35	36	37	38	39	
24	24	27	30	33	34	35	36	37	38	39	27	27	30	33	36	37	38	39	40	41	42	
27	27	30	33	36	37	38	39	40	41	42	30	30	33	36	39	40	41	42	43	44	45	

$$ightharpoonup R_1 = K \times L$$

- $ightharpoonup R_1 = K \times L$
- $R_2 = 1 \times T$

- $ightharpoonup R_1 = K \times L$
- $R_2 = 1 \times T$
- ▶ $R_3 = (K 1) \times 1$

$$ightharpoonup R_1 = K \times L$$

$$R_2 = 1 \times T$$

▶
$$R_3 = (K - 1) \times 1$$

►
$$R_4 = 1 \times \max\{L - \left| \frac{T-2}{K} \right| -2, 0\}$$

$$ightharpoonup R_1 = K \times L$$

$$R_2 = 1 \times T$$

▶
$$R_3 = (K-1) \times 1$$

$$P_4 = 1 \times \max\{L - \left\lfloor \frac{T-2}{K} \right\rfloor - 2, 0\}$$

▶
$$R_5 = 1 \times \min\{T, KL - K + 1\}$$

$$ightharpoonup R_1 = K \times L$$

$$R_2 = 1 \times T$$

•
$$R_3 = (K-1) \times 1$$

►
$$R_4 = 1 \times \max\{L - \left| \frac{T-2}{K} \right| -2, 0\}$$

$$P_5 = 1 \times \min\{T, KL - K + 1\}$$

$$P_6 = (T-1) \times \min\{T, K\}$$

$$ightharpoonup R_1 = K \times L$$

$$ightharpoonup R_2 = 1 \times T$$

▶
$$R_3 = (K - 1) \times 1$$

►
$$R_4 = 1 \times \max\{L - \left| \frac{T-2}{K} \right| - 2, 0\}$$

▶
$$R_5 = 1 \times \min\{T, KL - K + 1\}$$

$$P_6 = (T-1) \times \min\{T, K\}$$

Theorem

$$N = |\text{terms in GASP}_{\text{big}}| = R_1 + \ldots + R_6.$$

Theorem

The number of terms in GASP_{small}, for $K \leq L$, is

$$N = \left\{ \begin{array}{ll} 2K + T^2 & \text{if } L = 1, T < K \\ KT + K + T & \text{if } L = 1, T \ge K \\ KL + K + L & \text{if } L \ge 2, 1 = T < K \\ KL + K + L + T^2 + T - 3 & \text{if } L \ge 2, 2 \le T < K \\ KL + KT + L + 2T - 3 - \left\lfloor \frac{T - 2}{K} \right\rfloor & \text{if } L \ge 2, K \le T \le K(L - 1) + 1 \\ 2KL + KT - K + T & \text{if } L \ge 2, K(L - 1) + 1 \le T \end{array} \right.$$

Theorem

The number of terms in GASP_{small}, for $K \leq L$, is

$$N = \left\{ \begin{array}{ll} 2K + T^2 & \text{if } L = 1, T < K \\ KT + K + T & \text{if } L = 1, T \ge K \\ KL + K + L & \text{if } L \ge 2, 1 = T < K \\ KL + K + L + T^2 + T - 3 & \text{if } L \ge 2, 2 \le T < K \\ KL + KT + L + 2T - 3 - \left \lfloor \frac{T - 2}{K} \right \rfloor & \text{if } L \ge 2, K \le T \le K(L - 1) + 1 \\ 2KL + KT - K + T & \text{if } L \ge 2, K(L - 1) + 1 \le T \end{array} \right.$$

► For big T, N = 2KL + (K + 1)T - K.

Theorem

The number of terms in GASP_{small}, for $K \leq L$, is

$$N = \left\{ \begin{array}{ll} 2K + T^2 & \text{if } L = 1, T < K \\ KT + K + T & \text{if } L = 1, T \ge K \\ KL + K + L & \text{if } L \ge 2, 1 = T < K \\ KL + K + L + T^2 + T - 3 & \text{if } L \ge 2, 2 \le T < K \\ KL + KT + L + 2T - 3 - \left \lfloor \frac{T - 2}{K} \right \rfloor & \text{if } L \ge 2, K \le T \le K(L - 1) + 1 \\ 2KL + KT - K + T & \text{if } L \ge 2, K(L - 1) + 1 \le T \end{array} \right.$$

- ▶ For big T, N = 2KL + (K + 1)T K.
- This is worse than GASP_{big}.

Theorem

The number of terms in GASP_{small}, for $K \leq L$, is

$$N = \left\{ \begin{array}{ll} 2K + T^2 & \text{if } L = 1, T < K \\ KT + K + T & \text{if } L = 1, T \ge K \\ KL + K + L & \text{if } L \ge 2, 1 = T < K \\ KL + K + L + T^2 + T - 3 & \text{if } L \ge 2, 2 \le T < K \\ KL + KT + L + 2T - 3 - \left \lfloor \frac{T - 2}{K} \right \rfloor & \text{if } L \ge 2, K \le T \le K(L - 1) + 1 \\ 2KL + KT - K + T & \text{if } L \ge 2, K(L - 1) + 1 \le T \end{array} \right.$$

- ▶ For big T, N = 2KL + (K + 1)T K.
- This is worse than GASP_{big}.
- Is GASP_{small} always worse?

GASP_{small} outperforms GASP_{big} for small T. (K = L = 3, T = 2)

GASP_{big}

	0	3	6	9	10	_
0	0	3	6	9	10	
1	1	4	7	10	11	• (
2 9	2	5	8	11	12 19	
9	9	12	15	18	19	,
12	12	15	8 15 18	21	22	

GASP_{small}

$$N = \text{Purple Area} = 18$$

What is small *T*?

Theorem

GASP_{small} outperforms GASP_{big} for $T < \min\{K, L\}$.

Best of Both Worlds

Definition

$$\mathsf{GASP} = \left\{ \begin{array}{ll} \mathsf{GASP}_{\mathsf{small}} & \mathsf{if} \ \mathit{T} < \mathsf{min}\{\mathit{K},\mathit{L}\} \\ \mathsf{GASP}_{\mathsf{big}} & \mathsf{if} \ \mathsf{min}\{\mathit{K},\mathit{L}\} \leq \mathit{T}. \end{array} \right.$$

Best of Both Worlds

Theorem

GASP codes outperform all previous schemes in terms of communication cost.

▶ Is GASP optimal?

- Is GASP optimal?
- ► Is GASP asymptotically optimal? (2 servers per collusion)

- Is GASP optimal?
- ► Is GASP asymptotically optimal? (2 servers per collusion)
- How about total communication cost.

- Is GASP optimal?
- ► Is GASP asymptotically optimal? (2 servers per collusion)
- How about total communication cost.
- Other matrix divisions.

- Is GASP optimal?
- ► Is GASP asymptotically optimal? (2 servers per collusion)
- How about total communication cost.
- Other matrix divisions.
- Are polynomial codes optimal?

- Is GASP optimal?
- ► Is GASP asymptotically optimal? (2 servers per collusion)
- How about total communication cost.
- Other matrix divisions.
- Are polynomial codes optimal?
- Other applications for the degree table (ex. Tensor Products).

- Is GASP optimal?
- ▶ Is GASP asymptotically optimal? (2 servers per collusion)
- How about total communication cost.
- Other matrix divisions.
- Are polynomial codes optimal?
- Other applications for the degree table (ex. Tensor Products).
- Apply GASP to gradient descent.

Danke schön

GASP vs World

GASP_{big} vs World

GASP_{big} vs GASP_{small}

Fixed number of workers (N = 50)

