

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:				
Samia Munmun UB Person Number:	Instructions:			
5 0 1 8 4 9 9 3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 8 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 			
1 2 3 4 5	6 7 TOTAL GRADE			

	10		16				26	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

b) Is the set
$$\{v_1, v_2, v_3\}$$
 linearly independent? Justily your answer.

a) as $W \in SPOM(V_1, V_2, V_3)$

$$-4 \left(\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right) + O\left(\begin{array}{c} -1 \\ 1 \\ -3 \end{array}\right) + 2\left(\begin{array}{c} 2 \\ 3 \\ 0 \end{array}\right) = \left(\begin{array}{c} -2 \\ 2 \\ 6 \end{array}\right)$$

b)
$$C_1 \begin{bmatrix} \frac{1}{2} \end{bmatrix} + C_2 \begin{bmatrix} -\frac{1}{3} \end{bmatrix} + C_3 \begin{bmatrix} \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $O(1 - C_2 + C_3 = 0)$ $O(1 - C_2 + C_3 = 0)$ $O(2 - C_3 = 0)$ $O(3 = 0$

$$\frac{1}{11} \frac{1}{12} \frac{2}{12} = \frac{3}{2} \frac{2}{12} = \frac$$

{V1/V2, V3} is linearly independent.

2. (10 points) Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute A^{-1} .

$$A^{-1} = \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{R_3 \to R_3 - 2R_2}{\Rightarrow} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 - R_3} = \begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} + R_{3} = \begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 2 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad \therefore A^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 & c_4 & c_7 \\ c_2 & c_5 & c_8 \\ c_3 & c_6 & c_9 \end{bmatrix} = \begin{bmatrix} 1 & 23 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -\frac{2}{3} \\ -\frac{2}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{2}{3} \end{bmatrix}$$

$$[(12) - [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1+2) = [-2]$$

$$(1$$

$$\therefore u = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1$$

$$\begin{bmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \\ \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

not necessary

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False.

b) If $T:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation and $u,v,w\in\mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Folse. True.