Course Notes

Real Functions and Measures

Alex Rutar

Contents

1	Basi	cs of A	bstract Measure Theory	3
	1.1	Reviev	v of Topology	3
		1.1.1	Basic Definitions	3
		1.1.2	Examples of Topological Spaces	3
		1.1.3	Other Definitions	4
		1.1.4	Functions and Continuity	5
	1.2		re Theory	6
		1.2.1	σ -algebras	6
		1.2.2	Sequences of Measurable Functions	9
		1.2.3	Measures	9
	1.3	Toward	ds Integration	11
		1.3.1	Simple Functions	11
		1.3.2	Integration of Positive Functions	12
		1.3.3	Lebesgue's Monotone Convergence Theorem	14
	1.4	Integra	al of Complex Valued Functions	17

Chapter 1

Basics of Abstract Measure Theory

Prof contact: simonp@caesar.elte.hu Grading: HW each week for 25% Midterm 30% Final 45%

1.1 Review of Topology

1.1.1 Basic Definitions

Def'n. 1.1.1 Let $X \neq \emptyset$ and $\tau \subseteq \mathcal{P}(X)$. We say that (X,τ) is a **topological space** if τ satisfies the following conditions:

- 1. $\emptyset \in \tau \ X \in \tau$
- 2. $V_1, V_2 \in \tau \Rightarrow V_1 \cap V_2 \in \tau$
- 3. $V_{\alpha} \in \tau$ for all $\alpha \in I \Rightarrow \bigcap_{\alpha \in I} V_{\alpha} \in \tau$

We call the elements of τ open sets.

Def'n. 1.1.2 $U \subseteq X$ is a **neighbourhood** of $x \in X$ if there is some $G \in \tau$ such that $x \in G \subset U$.

Def'n. 1.1.3 $F \subseteq X$ is **closed** if F^c is open.

Def'n. 1.1.4 The closure of a set $E \subset X$ is the smallest closed set containing E (denoted \overline{E}).

Def'n. 1.1.5 x is an accumulation point of H if all neighbourhoods of x contains infinitely points of H. Equivalently, x is a limit point of $H \setminus \{x\}$.

Def'n. 1.1.6 *If* $H \subseteq X$, we have a natural subspace topology $\tau|_H = \{G \cap H : G \in \tau\}$.

1.1.2 Examples of Topological Spaces

Topological spaces are a very general construction, so here are some of the standard examples:

- 1. \mathbb{R} along with the open sets (denoted τ_e , the Euclidean topology).
- 2. The discrete topology, $\tau = \mathcal{P}(X)$ for any $X \neq \emptyset$. This is the "finest" topology.

- 3. The antidiscrete topology, $\tau = \{\emptyset, X\}$ for any $X \neq \emptyset$ This is the "coarsest" topology.
- 4. One can define the extended real line, $X = \mathbb{R} \cup \{-\infty, +\infty\}$. Then

$$G \in \tau \Leftrightarrow \begin{cases} \forall x \in G \cap \mathbb{R} & \exists r > 0 \text{ s.t. } (x - r, x + r) \subset G \\ -\infty \in G & \exists b \in \mathbb{R} \text{ s.t. } (-\infty, b) \subset G \\ +\infty \in G & \exists a \in \mathbb{R} \text{ s.t. } (a, \infty) \subset G \end{cases}$$

The same can be done with a single symbol as well. In either case, the extended real line is a compact set.

- 5. Any metric spaces induces a topology. Consider a set $X \neq 0$ arbitrary, and let $d: X \times X \rightarrow \mathbb{R}$ such that
 - (a) $0 \le d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0 \Leftrightarrow x = y$.
 - (b) d(x,y) = d(y,x) for all $x, y \in X$
 - (c) $d(x,y) \le d(x,z) + d(z,y)$ for any $x,y,z \in X$

Then $G \in \tau$ if and only if for any $x \in G$, there exists r so that $B_r(x) \subset G$. There are many examples of metric spaces:

- (a) $X = \mathbb{R}, d(x, y) = |x y|$
- (b) $X = \mathbb{R}, d(x, y) = |\tan^{-1}(x) \tan^{-1}(y)|$
- (c) $X = \mathbb{R}^2$, $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
- (d) $X = \mathbb{R}^2$, $d(x, y) = (|x_1 y_1|^p + |x_2 y_2|^p)^{1/p}$ for $p \ge 1$.
- (e) and similarly for $X = \mathbb{R}^n$
- (f) X = C[0,1], $d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$.
- (g) normed space: X is a vector space over \mathbb{R} , $\|\cdot\|: X \to \mathbb{R}$ such that
 - i. ||x|| = 0 if and only if X = 0
 - ii. ||cx|| = |c| ||x||
 - iii. $||x + y|| \le ||x|| + ||y||$

If $\|\cdot\|$ is a norm, then $d(x,y) = \|x-y\|$ is a metric.

6. The cofinite topology: $\tau = \{U \in \mathcal{P}(X) : U^c \text{ is finite}\}.$

1.1.3 Other Definitions

Def'n. 1.1.7 $K \subset X$ is **compact** if every open cover of K contains a finite subcover.

Def'n. 1.1.8 A topological space is called **locally compact** if every point has a compact neighbourhood.

Prop. 1.1.9 C[0,1] with the sup norm is not locally compact.

Proof I'll do this later.

Def'n. 1.1.10 A topological space is called **Hausdorff** if for any $x \neq y$, there exists neighbourhoods $U \ni x$, $V \ni y$ so that $U \cap V = \emptyset$.

The anti-discrete topology is not Hausdorff.

- 1. On the discrete topology, *K* is compact if and only if *K* is finite.
- 2. On the anti-discrete topology, everything is compact (the only possible open cover consists of *X*).
- 3. On (\mathbb{R}, τ_e) , K is compact if and only if K is closed and bounded.
- 4. On (X, d) metric space, K is compact if and only if K is complete and totally bounded.

Prop. 1.1.11 1. Let $K \subset X$ be compact, let $F \subset K$ closed. Then F is also compact.

2. Compact sets in a Hausdorff space are closed.

PROOF 1. Let $F \subset \bigcup V_{\alpha}$. Then $K \subset F^{c} \cup (\bigcup V_{\alpha})$ is an open cover for K, so it has a finite subcover $F^{c} \cup V_{\alpha_{1}} \cup \cdots V_{\alpha_{n}}$. But then since $F \cap F^{c} = \emptyset$, $F \subset V_{\alpha_{1}} \cup \cdots V_{\alpha_{n}}$ is a finite subcover.

2. Let $K \subset X$ be compact, and prove that K^c is open. Thus let $x \in K^c$. For any $y \in K$, there exist U_y, V_y disjoint neighbourhoods of x and y respectively. Now consider the open cover $K \subset \bigcup_{y \in K} V_y$, and get our finite subcover $K \subset V_{y_1} \cup \cdots \cup V_{y_n}$. But then $U_{v_1} \cap \cdots \cap U_{v_n} \cap K = \emptyset$ and is open since it is a finite intersection.

Def'n. 1.1.12 $\Gamma \subseteq \tau$ *is a base for* τ *if every* $U \in \tau$ *can be written as a countable union of the elements of* Γ . Γ *is a countable base if* Γ *is countable.*

Prop. 1.1.13 \mathbb{R} has a countable base of intervals.

Proof Consider the collection $\{B_r(q): (r,q) \in \mathbb{Q} \times \mathbb{Q}\}$. To see this, for any open set U, one can write

$$S := \bigcup_{r \in U \cap \mathbb{Q}} \left(\bigcup_{\{r: B_r(q) \subseteq U\}} B_r(q) \right)$$

 $U \supseteq S$ is obvious, so let $x \in U$ be arbitrary, and let s be maximal so that $B_s(x) \subseteq U$. Then choose $q \in \mathbb{Q}$ so that |x - q| < s/3 and $r \in \mathbb{Q}$ so that 0 < r < s/2. Then by construction $B_r(q) \ni x$ and by the triangle inequality $B_{r/2}(q) \subseteq U$, so $x \in S$. Thus U = S as desired.

Note that the exact same argument (with some work) can be generalized to show that \mathbb{R}^n has a countable base of open hyperrectangles.

Prop. 1.1.14 Every metric space which is a countable union of compact sets has a countable base.

PROOF See my PMATH 351 notes.

1.1.4 Functions and Continuity

Many of the standard notions of limits and continuity extend naturally to topological spaces.

Def'n. 1.1.15 Let $(x_n) \subset X$ be a sequence and let $x \in X$. Then x is the **limit** of (x_n) if for any neighbourhood U of X, there exists $N \in \mathbb{N}$ such that $n > N \Rightarrow x_n \in U$.

Prop. 1.1.16 *If* $F \subset X$ *is closed, then for all convergent sequences in* F*, the limit is also in* F*.*

Proof See Homework.

Def'n. 1.1.17 Let $f: X \to Y$ be a function, and $x \in X$ an accumulation point of D(f). The limit of f at x is $y \in Y$ if for any neighbourhood V of y there exists a neighbourhood U of x such that $f(U \cap D(f) \setminus \{x\}) \subseteq V$.

Def'n. 1.1.18 Let $f: X \to Y$ be a function, and let $x \in D(f)$. Then f is **continuous at** x if for any neighbourhood V of f(x), then $f^{-1}(V)$ is a neighbourhood of x.

Def'n. 1.1.19 $f: X \to Y$ is called **continuous** if it is continuous at every point.

Prop. 1.1.20 $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open for all G open.

Proof Exercise.

Thm. 1.1.21 *Let* $f: X \to Y$ *be continuous and* $K \subset X$ *be compact. Then* f(K) *is compact.*

Proof Recall that continuous functions pull back open sets. Let $f(K) \subset \bigcup U_{\alpha}$ be an open cover. Then $\bigcup f^{-1}(U_{\alpha})$ is an open cover for K, and has a finite subcover $U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$. But then $f(f^{-1}(U_{\alpha_1})) \cup \cdots \cup f(f^{-1}(U_{\alpha_n}))$ is a subcover of f(K).

1.2 Measure Theory

1.2.1 σ -algebras

Def'n. 1.2.1 Let $X \neq \emptyset$ be a set. $\mathcal{M} \subset \mathcal{P}(X)$ is called a σ -algebra if

- 1. $X \in \mathcal{M}$
- 2. $A \in \mathcal{M} \Rightarrow A^c \in \mathcal{M}$
- 3. If $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$

The pair (X, \mathcal{M}) is called a **measurable space**. The elements of \mathcal{M} are called **measurable sets**.

Def'n. 1.2.2 Let (X, \mathcal{M}) be a measurable space, (Y, τ) be a topological space. Then $f: X \to Y$ is called **measurable** if $f^{-1}(V) \in \mathcal{M}$ for all $V \in \tau$.

Here are some simple examples of σ -algebras.

Ex. 1.2.3 1. $\mathcal{M} = \{\emptyset, X\}$ is a σ -algebra.

- 2. $\mathcal{P}(X) = \mathcal{M}$ is a σ -algebra.
- 3. $\mathcal{M} = \{A \subset X : A \text{ or } A^c \text{ is countable.} \}$. To see this, given $A_n \in \mathcal{M}$, if everything is countable, then $\bigcup A_n$ is countable. If some A_i is countable, then $(\bigcup A_n)^c = \bigcap A_n^c$ is countable, so $\bigcup A_n \in \mathcal{M}$.

We will later see some proper exaples, like the σ -algebra of Lebesgue measurable sets.

We have the following properties of σ -algebras.

Prop. 1.2.4 1. $\emptyset \in \mathcal{M}$

- 2. $A_1, A_2, \dots, A_n \in \mathcal{M} \Rightarrow A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{M}$
- 3. $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}$
- 4. $A, B \in \mathcal{M} \Rightarrow A \setminus B \in \mathcal{M}$
- 5. f is measurable, $H \subset Y$ is closed, then $f^{-1}(H) \in \mathcal{M}$.

Proof 1. $X \in \mathcal{M} \Rightarrow X^c \in \mathcal{M}$.

- 2. We can extend this to a countable union by introduction $A_{n+i} = \emptyset$ for $i \in \mathbb{N}$.
- 3. By DeMorgan's identities, $(\bigcap A_n)^c = \bigcup A_n^c \in \mathcal{M}$.
- 4. $A \setminus B = A \cap B^c \in \mathcal{M}$.
- 5. H^c is open implies $f^{-1}(H^c) \in \mathcal{M}$. Then $f^{-1}(H) = (f^{-1}(H^c))^c \in \mathcal{M}$.

Prop. 1.2.5 Let $f: X \to Y$ be measurable, let $g: Y \to Z$ be continuous, then $g \circ f: X \to Z$ is measurable.

PROOF Let $V \subset Z$ be open, so $g^{-1}(V) \subset Y$ is open, so $f^{-1}(g^{-1}(V)) \in \mathcal{M}$ which is $(g \circ f)^{-1}(V)$. \square

Prop. 1.2.6 Let (X, \mathcal{M}) be a measurable space, Y be a topological space. Let $\phi : \mathbb{R}^2 \to Y$ be continuous. If $u, v : X \to \mathbb{R}$ are measurable, then $h(x) = \phi(u(x), v(x))$ is measurable.

Proof Define $f: X \to \mathbb{R}^2$ by f(x) = (u(x), v(x)) We will see that f is measurable, so that $h = \phi \circ f$ is measurable since ϕ is continuous. Let $I_1, I_2 \subset \mathbb{R}$ be open intervals, so $R = I_1 \times I_2$ is an open rectangle. Then $f^{-1}(R) = u^{-1}(I_1) \cap v^{-1}(I_2) \in \mathcal{M}$. Let $G \subset \mathbb{R}^2$ be an open set, so there exist R_n open rectangles so that

$$G = \bigcup_{n=1}^{\infty} R_n \Rightarrow f^{-1}(G) = \bigcup_{n=1}^{\infty} f^{-1}(R_n) \in \mathcal{M}$$

so that *f* is measurable.

Cor. 1.2.7 1. If $u, v : X \to \mathbb{R}$ are measurable, then u + v and $u \cdot v$ are measurable.

- 2. $u + iv : X \to \mathbb{C}$ is measurable.
- 3. $f: X \to \mathbb{C}$ is measurable, $f = u + iv \Rightarrow u, v, |f|$ are measurable.

Prop. 1.2.8 Define

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

Then χ_E is measurable if and only if $E \in \mathcal{M}$.

PROOF Naturally, $\chi_E^{-1}(1) = E$ and $\chi_E^{-1}(0) = E^c$, so χ_E is measurable if and only if $E, E^c \in \mathcal{M}$. \square

Thm. 1.2.9 Let $\mathcal{F} \subset \mathcal{P}(X)$, then there exists a smallest σ -algebra containing \mathcal{F} . This is denoted by $S(\mathcal{F})$, the σ -algebra generated by \mathcal{F} .

Proof Let $\Omega = \{ \mathcal{M} : \mathcal{M} \text{ is a } \sigma\text{-algebra}, \mathcal{F} \subset M \}$. Certainly $\Omega \neq \emptyset$ since $\mathcal{P}(X) \in \Omega$. Let $S(\mathcal{F}) = \bigcap_{M \in \Omega} \mathcal{M}$. We will see that $S(\mathcal{F})$ is a σ -algebra.

(i) Since $X \in \mathcal{M}$, it follows that $X \in \cap \mathcal{M}$.

- (ii) If $A \in S(\mathcal{F})$, then $A \in \mathcal{M}$ for all \mathcal{M} . Thus $A^c \in \mathcal{M}$ for all \mathcal{M} and $A^c \in \cap \mathcal{M}$.
- (iii) In the same way, of $A_n \in S(\mathcal{F} \text{ for all } n, \text{ then } A_n \in \mathcal{M} \text{ for all } n, \mathcal{M}.$ Thus $\bigcup A_n \in \mathcal{M} \text{ for all } \mathcal{M} \text{ so } \bigcup A_n \in \mathcal{M} \in \bigcap \mathcal{M} = S(\mathcal{F}).$

By definition, $\mathcal{F} \subset \bigcap \mathcal{M}$. Finally, $S(\mathcal{F})$ is minimal, since if $\mathcal{F} \subset \mathcal{N}$ is a σ -algebra, then $\mathcal{N} \in \Omega \Rightarrow S(\mathcal{F}) \subset \mathcal{N}$, so we are done.

Def'n. 1.2.10 Let (X,τ) be a topological space. Then $\mathcal{B} = S(\tau)$ is called the **Borel** σ -algebra. Borel sets are the elements of $S(\tau)$. A function $f: X \to Y$ is Borel measurable if $f^{-1}(G) \in \mathcal{B}$ for all $G \subset Y$ open.

Prop. 1.2.11 1. If $F \subset X$ is closed, then $F \in \mathcal{B}$.

- 2. $G_n \subset X$ are open, then $\bigcap_{n=1}^{\infty} G_n \in B$. These are called G_{δ} -sets.
- 3. $F_n \subset X$ are closed, then $\bigcup_{n=1}^{\infty} F_n \in B$. These are called F_{σ} -sets.

Proof These follow directly from the definition of a σ -algebra.

Ex. 1.2.12 $X = \mathbb{R}$, τ_e , then $\mathcal{B} = S(\tau_e)$. Let $\Gamma_0 = \{(a,b) : a < b\}$ be a family of open intervals. We see that $S(\Gamma_0) = \mathcal{B}$. Since $\Gamma_0 \subset \tau$, $S(\Gamma_0) \subset S(\tau) = \mathcal{B}$. Conversely, let $G \in \tau$, then we have open intervals $G = \bigcup_{n=1}^{\infty} I_n$ so that $G \in S(\Gamma_0)$. Thus $S(\tau) \subset S(\Gamma_0)$ and $S(\Gamma_0) = \beta$.

Ex. 1.2.13 Let $\Gamma_{\infty} = \{(a, \infty) : a \in \mathbb{R}\}$. I claim that $S(\Gamma_{\infty}) = \mathcal{B}$. Certainly $S(\Gamma_{\infty}) \subset S(\tau) = \mathcal{B}$. Then $(-\infty, a] = (a_1, \infty)^c \in S(\Gamma_{\infty})$. Similarly, $(-\infty, a) = \bigcup_{n=1}^{\infty} (-\infty, a-1/n] \in S(\Gamma_{\infty})$. Thus $(a, \infty) \cap (-\infty, b) = (a, b) \in S(\gamma_0)$, and using the previous example, $\mathcal{B} = S(\Gamma_{\infty})$.

Prop. 1.2.14 Let (X, \mathcal{M}) be a measurable space, and let $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ with the eucildean topology. If $f^{-1}((\alpha, \infty]) \in \mathcal{M}$ for any $\alpha \in \mathbb{R}$, then f is measurable.

Proof Recall that f is measurable if its inverse image takes open sets to measurable sets. We have $f^{-1}([-\infty, \alpha]) = (f^{-1}((\alpha, \infty])^c \in \mathcal{M}$. Similarly,

$$f^{-1}([-\infty,\alpha)) = f^{-1}\left(\bigcap_{n=1}^{\infty} [-\infty,\alpha-1/n]\right) = \bigcup_{n=1}^{\infty} f^{-1}([-\infty,\alpha-1/n]) \in \mathcal{M}$$

We then have

$$f^{-1}((\alpha,\beta)=f^{-1}([-\infty,\beta)\cap(\alpha,\infty])=f^{-1}([-\infty,\beta))\cap f^{-1}((\alpha,\infty])\in\mathcal{M}$$

Recall that the open intervals are a base for τ_e . Thus if $G \subset \overline{\mathbb{R}}$ is open, then there exists open intervals so that $G = \bigcup_{n=1}^{\infty} I_n$ and

$$f^{-1}(G) = f^{-1}\left(\bigcup_{n=1}^{\infty} I_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(I_n) \in \mathcal{M}$$

as desired.

1.2.2 Sequences of Measurable Functions

Our goal is to prove that the pointwise limit of measurable functions is measurable. This does not hold for Riemann integrability! For example, a function with a finite number of discontinuities is Riemann integrable, but the dirichlet function is not Riemann integrable and is discontinuous only at a countable number of points.

Def'n. 1.2.15 Let $(a_n)_{n\in\mathbb{N}}\subset\overline{R}$ be a sequence, and $b_k=\sup\{a_k,a_{k+1},\ldots\}$. Then $\beta=\inf_{k\in\mathbb{N}}b_k$ is called the \limsup of (a_n) . We can similarly define $c_k=\inf\{a_k,a_{k+1},\ldots\}$ and \liminf = $\sup_{k\in\mathbb{N}}c_k$.

Def'n. 1.2.16 Let $f_n: X \to \overline{\mathbb{R}}$ be a sequence of functions. Then $(\sup f_n): X \to \overline{\mathbb{R}}$, $(\sup f_n)(x) = \sup f_n(x)$ for all $x \in X$. Similarly, $(\inf f_n): X \to \overline{\mathbb{R}}$, $(\inf f_n)(x) = \inf f_n(x)$ for all $x \in X$. Then $(\liminf f_n)(x) = \liminf f_n(x)$. If $\lim f_n(x)$ exists for all x, then we say $(\liminf f_n)(x) = \lim f_n(x)$.

Thm. 1.2.17 Let $f_n: X \to \overline{R}$ be measurable. Then $\sup f_n$, $\inf f_n$, $\limsup f_n$, $\liminf f_n$ are measurable.

Proof Let $g = \sup f_n$. It is enough to prove that $g^{-1}((\alpha, +\infty]) \in \mathcal{M}$ for all α . Let $H = g^{-1}((\alpha, +\infty]) = \{x \in X : \sup f_n(x) > \alpha\}$. Let $H_n = f_n^{-1}((\alpha, +\infty]) = \{x \in X : f_n(x) > \alpha\} \in \mathcal{M}$. We show that $H = \bigcup_{n=1}^{\infty} H_n$.

First let $x \in H$, so $\sup f_n(x) > \alpha$. Thus get N so that $f_N(x) > \alpha$, so $x \in H_N$ and x is in the union. The converse is obvious.

Thus g is measureable. In the exact same way, $\inf f_n$ is measurable. As well,

$$\limsup f_n = \inf_i \sup_{k \ge i} f_k$$

is measurable.

Cor. 1.2.18 *If* $\lim f_n$ *exists, then it is measurable.*

PROOF If $\lim f_n$ exists, then $\lim f_n = \limsup f_n$.

Cor. 1.2.19 If f, g are measurable, then $\max\{f,g\}$, $\min\{f,g\}$ are measurable.

Cor. 1.2.20 Let f be a function. Then $f_+ = \max\{f, 0\}$ and $f_- = -\min\{f, 0\}$ (the positive and negative parts of f) are measurable. Similarly, $|f| = f_+ + f_i$ is measurable.

1.2.3 Measures

Def'n. 1.2.21 Let (X, \mathcal{M}) be a measurable space. A function $\mu : \mathcal{M} \to [0, +\infty]$ is called a **(positive)** measure if it is countably additive and not constant $+\infty$. In other words,

1.
$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \text{ if } A_i \cap A_j = \emptyset$$

2. $\exists A \in \mathcal{M} \text{ so that } \mu(A) < \infty$

 (X, \mathcal{M}, μ) is called a **measure space**.

Prop. 1.2.22 1. $\mu(\emptyset) = 0$

2. If
$$A_i \cap A_j = \emptyset$$
 then $\mu\left(\sum_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$

- 3. $A \subset B$ implies $\mu(A) \leq \mu(B)$
- 4. $A_1 \subset A_2 \subset A_3 \cdots$ then $\lim_{n \to \infty} \mu A_n = \mu \left(\bigcup_{n=1}^{\infty} A_n \right)$
- 5. $A_1 \supset A_2 \supset A_3 \cdots$ and $\mu(A_i) < \infty$ then $|\lim_{n \to \infty} \mu(A_n) = \mu \left(\bigcap_{n=1}^{\infty} A_n \right)$

PROOF 1. Let $A \in \mathcal{M}$ so that $\mu(A) < \infty$, and fix $A_1 = A$, $A_2 = A_3 = \cdots = \emptyset$. Then $\bigcup A_n = A$ so $\mu(A) = \mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset)$ so $\mu(\emptyset) = 0$.

- 2. Obvious
- 3. Note that $B = A \cup (B \setminus A)$ is a disjoint union.
- 4. Define $B_1 := A_1$ and $B_i = A_i \setminus A_{i-1}$ for $i \ge 2$. Then $B_i \cap B_j = \emptyset$ and $\mu(A_n) = \mu\left(\bigcup_{i=1}^n B_i\right) = \sum_{i=1}^\infty \mu(B_i)$. Similarly, $\mu\left(\bigcup_{n=1}^\infty A_n\right) = \mu\left(\bigcup_{n=1}^\infty B_n\right) = \sum_{n=1}^\infty \mu(B_n)$ Therefore, $\lim_{n\to\infty} \sum_{i=1}^n \mu(B_i) = \sum_{n=1}^\infty \mu(B_n)$.
- 5. Let $C_n = A_1 \setminus A_n$, $C_1 = \emptyset$. Then $C_1 \subset C_2 \subset \cdots$ and $\mu(C_n) + \mu(A_n) = \mu(A_1)$. Let $A = \bigcap_{n=1}^{\infty} A_n$ so $A_1 \setminus A = \bigcup_{n=1}^{\infty} C_n$ and $(\bigcup C_n) \cup A = A_1$ is a disjoint union. But then $\mu(\bigcup A_n) + \mu(A) = \mu(A_1)$ so that

$$\mu(A_1) - \mu(A) = \mu(\bigcup C_n) = \lim_{n \to \infty} \mu(C_n) = \mu(A_n) - \lim \mu(A_n)$$

Since $\mu(A_1)$ is finite, we have $\mu(A) = \lim \mu(A_n)$.

Ex. 1.2.23 Here are a few examples of measures that exist on arbitrary sets.

1. X arbitrary, $\mathcal{M} = \mathcal{P}(X)$, and

$$\mu(E) = \begin{cases} |E| & \text{if } E \text{ is finite} \\ +\infty & \text{if } E \text{ is not finite} \end{cases}$$

It is easy to verify it is countably additive.

2. *X* arbitrary, $\mathcal{M} = \mathcal{P}(X)$. Fix $x_0 \in X$. Then

$$\mu(E) = \begin{cases} 1 & \text{if } x_0 \in E \\ 0 & \text{if } x_0 \notin E \end{cases}$$

1.3 Towards Integration

1.3.1 Simple Functions

Def'n. 1.3.1 $s: X \to \mathbb{R}$ or \mathbb{C} is called a simple function if its range is finite.

Prop. 1.3.2 Let s be a simple function, so that $R(s) = \{\alpha_1, \alpha_2, ..., \alpha_n\}$. Then $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$ where $A_i = s^{-1}(\{\alpha_i\})$ and s is measurable if and only if $A_i \in \mathcal{M}$.

Proof Obvious.

The following theorem is used later to define the integral. It is clear that we should define the integral of a simple function as the sum of the integrals of its characteristic functions, and this allows us to extend the integral by limits to the function f.

Thm. 1.3.3 *Let* $f: X \to [0, +\infty]$ *be nonnegative measurable functions. Then there exists a sequence* $s_n: X \to [0, +\infty]$ *of simple measurable functions with*

- 1. (s_n) is increasing and bounded above by f
- 2. $\lim s_n = f$ pointwise.

PROOF Let $n \in \mathbb{N}$, $t \ge 0$, and $k_n(t) = [2^n \cdot t]$ (i.e. $k_n(t) \le 2^n \cdot t < k_n(t) + 1$). Then define

$$\phi_n(t) = \begin{cases} k_n(t) \cdot 2^{-n} & \text{if } t \le n \\ n & \text{if } t > n \end{cases}$$

I've drawn ϕ_1 below:

Then $t - 2^{-n} \le \phi_n(t) \le t$, $\lim \phi_n(t) = t$, and $\phi_n \le \phi_{n+1}$. Define $s_n = \phi_n \circ f$, so for any $x \in X$, $\lim s_n(x) = \lim \phi_n \circ f(x) = f(x)$. Note that s_n is simple since it has finite range (from ϕ_n), and $s_n \le s_{n+1}$ because $\phi_n \le \phi_{n+1}$, and $s_n \le f$ since $\phi_n(t) \le t$. Furthermore, ϕ_n is measurable since its level sets are intervals, so $\phi_n \circ f$ is measurable.

1.3.2 Integration of Positive Functions

Let (X, \mathcal{M}, μ) be a measure space.

Def'n. 1.3.4 Let $S: X \to [0, +\infty)$ be a measurable simple function $s = \sum_{n=1}^{n} \alpha_i X_{A_i}$. Let $E \in \mathcal{M}$. Then define the **integral of** s over E be with respect to μ as

$$\int_{E} s \, \mathrm{d}\mu = \sum_{n=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

where we define $0 \cdot \infty = 0$.

Def'n. 1.3.5 Let $f: X \to [0, +\infty]$ be a measurable function. Let $E \in \mathcal{M}$. Then the (Lebesgue) integral of f over E with respect to μ is

$$\int_{E} f \, \mathrm{d}\mu = \sup \left\{ \int_{E} s \, \mathrm{d}\mu : 0 \le s \le f; \ s \ is \ simple \ measurable \right\}$$

Unlike the Riemann integral, we take the supremum over lower sums only. Let $f,g:X\to [0,+\infty]$ be measurable functions. Let $E,A,B\in\mathcal{M}$.

- 1. If $f \le g$ then $\int_E f \, d\mu$ and $\int_E g \, d\mu$
- 2. If $A \subset B$, then $\int_A f d\mu \leq \int_b f d\mu$
- 3. $\int_E c \cdot f \, d\mu = c \cdot \int_E f \, d\mu$ for all $c \ge 0$
- 4. If f(x) = 0 for all $x \in E$, then $\int_E f d\mu = 0$
- 5. If $\mu(E) = 0$, then $\int_{E} f \, d\mu = 0$
- 6. $\int_{E} f \, \mathrm{d}\mu = \int_{X} f \cdot \chi_{E} \, \mathrm{d}\mu.$

Proof 1. Note that

$$\left\{ \int_E s \, \mathrm{d}\mu : 0 \le s \le f \right\} \subset \left\{ \int_E s \, \mathrm{d}\mu : 0 \le s \le g \right\} Let$$

 $0 \le s \le f$ be simple measurable. Then

$$\int_{A} s \, \mathrm{d}\mu = \sum \alpha_{i} \mu(A \cap A_{i}) \le \sum \alpha_{i} \mu(B \cap A_{i}) = \int_{B} s \, \mathrm{d}mu$$

Take the supremum for all $0 \le s \le f$, then the result follows.

3. Let *S* be simple and measurable, so $s = \sum \alpha_i \chi_{A_i}$. Then

$$\int_{E} c \cdot s \, \mathrm{d}\mu = \sum_{i=1}^{n} \alpha_{I} \cdot c \cdot \mu(E \cap A_{i}) = c \cdot \sum_{i=1}^{n} \alpha_{i} \mu(E \cap A_{i}) = c \int_{E} s \, \mathrm{d}\mu$$

Thus

$$\int_{E} c \cdot f \, d\mu = \sup \left\{ \int_{E} s \, d\mu : 0 \le s \le cf \right\}$$

$$= \sup \left\{ \int_{E} c \cdot t \, d\mu : 0 \le t \le f \right\}$$

$$= c \cdot \sup \left\{ \int_{E} t \, d\mu : 0 \le t \le f \right\}$$

$$= c \cdot \int_{E} f \, d\mu$$

- 4. If $0 \le s \le f$, then $s = \sum \alpha_i \chi_{A_i}$. If $x \in A_i \cap E$, then $s(x) = \alpha_i$ and $\alpha_i = 0$. Then $\alpha_i \mu(A_i \cap E) = 0$ for all i: either $A_i \cap E = \emptyset$, or $A_i \cap E$ is not empty, and $\alpha_i = 0$. This is true for any $0 \le s \le f$, and taking supremums yields the result.
- 5. If $\mu(E) = 0$ then $\mu(A_i \cap E) = 0$, and $\int_E s \, d\mu = \sum \alpha_i \mu(A_i \cap E) = 0$ and taking supremums, the result holds.
- 6. Exercise. First prove if $0 \le s \le f \cdot \chi_E$, then $\int_X s \, d\{\mu\} = \int_E s \, d\mu$. Then prove $\{\int_E s \, d\mu : 0 \le s \le f \cdot \chi_E\} = \{|\int_E s \, d\mu : 0 \le s \le f\}$.

Prop. 1.3.6 Let s be a simple and measurable. Then $\phi(E) = \int_{e} s \, d\mu$ is a measure.

Proof $\phi(\emptyset) = 0$, so ϕ is not constant $+\infty$. Let $E = \bigcup_{n=1}^{\infty} E_n$ be a disjoint union. Then

$$\phi(E) = \sum_{i=1}^{m} \alpha_{i} \mu(A_{i} \cap E)$$

$$= \sum_{i=1}^{m} \alpha_{i} \mu \left(A_{i} \cap \left(\bigcup_{n=1}^{\infty} E_{n} \right) \right) = \sum_{i=1}^{m} \alpha_{i} \mu \left(\bigcup_{n=1}^{\infty} (A_{i} \cap E_{n}) \right)$$

$$= \sum_{i=1}^{m} \alpha_{i} \sum_{n=1}^{\infty} \mu(A_{i} \cap E_{n}) = \sum_{n=1}^{\infty} \sum_{i=1}^{m} \alpha_{i} \mu(A_{i} \cap E_{n})$$

$$= \sum_{n=1}^{\infty} \int_{E_{n}} s \, d\mu = \sum_{n=1}^{\infty} \phi(E_{n})$$

Prop. 1.3.7 Let s, t be nonnegative, measurable simple functions. Then

$$\int_X (s+t) \, \mathrm{d}\mu = \int_X s \, \mathrm{d}\mu + \int_X t \, \mathrm{d}\mu$$

Proof Write

$$s = \sum_{i=1}^{m} \alpha_i X_{A_i}, \quad t = \sum_{i=1}^{n} \beta_i X_{\beta_i}$$

and let $E_{ij} = A_i \cap B_j$, so $X = \bigcup_{i,j} E_{ij}$ is a disjoint union. We now have

$$\int_{E_{ij}} (s+t) d\mu = (\alpha_i + \beta_j) \mu(E_{ij}) = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij}) = \int_{E_{ij}} s d\mu + \int_{E_{ij}} t d\mu$$

Let $\mu(E) = \int_{E} (s+t) d\mu$, which is a measure as above. Thus

$$\int_{X} (s+t) d\mu = \phi(X) = \phi\left(\bigcup_{i,j} E_{ij}\right)$$

$$= \sum_{i,j} \phi(E_{ij}) = \sum_{i,j} \int_{E_{ij}} (s+t) d\mu$$

$$= \sum_{i,j} \left(\int_{E_{ij}} s d\mu + \int_{E_{ij}} t d\mu\right)$$

$$= \sum_{i,j} \phi(E_{ij}) + \sum_{i,j} \theta(E_{ij})$$

$$= \int_{X} s d\mu + \int_{X} t d\mu$$

where $\varphi(E) = \int_E s \, d\mu$, $\theta(X) = \int_E t \, d\mu$.

1.3.3 Lebesgue's Monotone Convergence Theorem

Thm. 1.3.8 (Lebesgue's Monotone Convergence) Let $f_n: X \to [0, +\infty]$ be measurable, such that

(i)
$$0 \le f_1 \le f_2 \le \cdots$$

(ii) $f(x) := \lim_{n \to \infty} f_n(x)$ for all $x \in X$ Then f is measurable, and $\int_X f d\mu = \lim_{x \to \infty} \int_R d\mu$.

Proof It was already proven that f is measurable. We have $\int_X f_n \, \mathrm{d}\mu \le \int_x f_{n+1} \, \mathrm{d}\mu$ for all n, so $\alpha := \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$ exists. We also have $f_n \le f$, so $\int f_n \le \int f$ and $\alpha \le \int_X f_n \, \mathrm{d}\mu$. Thus we wish to show $\alpha \ge \int_X f \, \mathrm{d}\mu$. It suffices to prove that $\alpha \ge \int_X s \, \mathrm{d}\mu$ for any simple $s \le f$. Let $c \in (0,1)$; it suffices to show that $\alpha \ge \int_X c \cdot s \, \mathrm{d}\mu$. Define $E_n = \{x \in X : f_n(x) \ge c \cdot s(x)\}$. We have $E_1 \subset E_2 \subset \cdots$ so that $\bigcup E_n = X$. Then

$$\int_{X} f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge \int_{E_n} c \cdot s \, \mathrm{d}\mu$$

Let $\phi(E) = \int_E s \, d\mu$, so $\int_{E_n} s \, d\mu = \phi(E_n) \rightarrow \phi(\cup E_n) = \phi(X) = \int_X s \, d\mu$. Thus

$$\alpha \ge c \cdot \lim_{n \to \infty} \phi(E_n) = c \cdot \int_X s \, \mathrm{d}\mu = \int_X cs \, \mathrm{d}\mu$$

as desired.

Ex. 1.3.9 Consider the function consisting of a triangle with base 2/n and height n. Then $\int_0^1 f_n = 1$ as a Riemannian integral. However, $\lim_{n \to \infty} f_n(x) = 0$ for any x, so $\int_0^1 f = 0 \neq 1 = \lim_{n \to \infty} \int_0^1 f_n$.

Thm. 1.3.10 Let $f,g:X\to [0,+\infty]$ measurable, then $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.

PROOF We proved that there exists increasing sequences of simple functions s_n , t_n such that $\lim s_n(x) = f(x)$, $\lim t_n(x) = g(x)$. Then $s_n(x) + t_n(x) \to f(x) + g(x)$ monotonically. But then

$$\int_{X} (f+g) d\mu = \int_{X} \lim_{n \to \infty} (s_{n} + t_{n}) d\mu$$

$$= \lim_{n \to \infty} \int_{X} (s_{n} + t_{n}) d\mu$$

$$= \lim_{n \to \infty} \left(\int_{X} s_{n} d\mu + \int_{X} t_{n} d\mu \right)$$

$$= \int_{X} \lim_{n \to \infty} s_{n} d\mu + \int_{X} \lim_{n \to \infty} t_{n} d\mu$$

$$= \int_{X} f d\mu + \int_{X} g(d\mu)$$

Cor. 1.3.11 *If* $f_n: X \to [0, +\infty]$ *is a sequence of measurable functions, then*

$$\sum_{n=1}^{\infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu$$

Ex. 1.3.12 Let $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(X)$, $\mu(E)$ is the counting measure. Let $a: X \to [0, \infty)$ be a function. This is a sequence. Every function is measurable. Let $s_n(i) = a(i)$ for $i \le n$ and 0 otherwise, which is a simple function, and $s_n \le s_{n+1}$. Then $\lim_{n\to\infty} s_n(i) = a(i)$ so $s_n \to a$ pointwise, so by LMC $\int_X s_n d\mu = \int_X a d\mu$. Also,

$$\int_{X} s_n \, \mathrm{d}\mu = \sum_{i=1}^{n} a(i)\mu(\{i\}) = \sum_{i=1}^{n} a(i)$$

so
$$\int_X a \, \mathrm{d}\mu = \sum_{n=1}^\infty a(n)$$
.

Lemma 1.3.13 (Fatou) *Let* $f_n: X \to [0, \infty)$ *be a sequence of measurable functions. Then*

$$\int_X \liminf f_n \, \mathrm{d}\mu \le \liminf \int_X f_n \, \mathrm{d}\mu$$

Proof Let $g_k = \inf\{f_k, f_{k+1}, \ldots\}$ so $\liminf f_n = \lim_{n \to \infty}$ and g_n is increasing. Note that $g_k \le f_k$ for any k, so $\int_X g_k \, \mathrm{d}\mu \le \int_X f_k \, \mathrm{d}\mu$. Thus

$$\int_{X} \liminf f_{n} d\mu = \int_{X} \lim g_{n} d\mu$$

$$= \lim \int_{X} g_{n} d\mu$$

$$= \lim \inf \int_{X} g_{n} d\mu$$

$$\leq \lim \inf \int_{X} f_{n} d\mu$$

Ex. 1.3.14 It is possible for the inequality to be strict. Define $f_{2n} = \chi_{[0,1]}$ and $f_{2n+1} = \chi_{[1,2]}$. Thus $\liminf f_n(x) = 0$ so $\int_{[0,2]} \liminf f_n \, d\mu = 0$ but $\inf_{[0,2]} \int_{[0,2]} f_n \, d\mu = 1$

Thm. 1.3.15 Let $f: X \to [0, \infty]$ be measurable. Let $\phi(E) = \int_E f \, d\mu$, $E \in \mathcal{M}$. Then ϕ is a measure and $\int_X g \, d\phi = \int_X g \cdot f \, d\mu$.

PROOF Certainly $\phi(\emptyset) = 0$, so $\phi \neq +\infty$. Thus let $E = \bigcup_{i=1}^{\infty} E_i$ be a disjoint union. Then $\chi_E f = \sum_{i=1}^{\infty} \chi_{E_i} f$. Thus we have

$$\phi(E) = \int_{E} f \, d\mu$$

$$= \int_{X} \chi_{E} f \, d\mu$$

$$= \int_{X} \sum_{i=1}^{\infty} \chi_{E_{i}} f \, d\mu$$

$$= \sum_{i=1}^{\infty} \int_{X} \chi_{E_{i}} f \, d\mu$$

$$= \sum_{i=1}^{\infty} \int_{E_{i}} d\mu$$

$$= \sum_{i=1}^{\infty} \phi(E_{i})$$

Now, we prove that $\int_X g \, d\mu = \int_X g f \, d\mu$.

First, we do this for $g = \chi_E$. Then $\int_X \chi_E d\mu = \phi(E)$ on the left, and $\int_X \chi_E f d\mu = \int_E f d\mu = \phi(E)$ and equality holds.

Now, let $g = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$ be a simple function. Then $\int_X \sum \alpha_i \chi_{A_i} d\phi = \sum \alpha_i \int_X \chi_{A_i} d\phi$ on the left and $\int_X \sum \alpha_i \chi_{A_i} f d\mu = \sum \alpha_i \int_X \chi_{A_i} f d\mu$.

Finally, let g be an arbitrary measurable function, and let $(s_n) \to g$ be an increasing sequence of simple functions. Note that $s_n f \to g f$. Thus

$$\int_{X} g \, d\phi = \int_{X} \lim s_{n} \, d\phi = \lim \int_{X} s_{n} \, d\phi$$

$$= \lim \int_{X} s_{n} f \, d\mu = \int_{X} \lim (s_{n} f) \, d\mu$$

$$= \int_{X} g \cdot f \, d\mu$$

as desired.

1.4 Integral of Complex Valued Functions

Def'n. 1.4.1 A function $f: X \to \mathbb{C}$ is called **Lebesgue integrable** if $\int_X |f| d\mu < \infty$. The collection of such functions is $L^1(\mu)$.

Def'n. 1.4.2 Let $f \in L^1(\mu)$. Then f = u + iv and denote u = Re f, v = Im f. Let $E \in \mathcal{M}$; then the integral of f over E with respect to μ is

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} u^{+} \, \mathrm{d}\mu - \int_{E} u^{-} \, \mathrm{d}\mu i \left(\int_{E} v^{+} \, \mathrm{d}\mu - \int_{E} v^{-} \, \mathrm{d}\mu \right)$$

Thm. 1.4.3 Let $f, g \in L^1(\mu)$, $\alpha, \beta \in \mathbb{C}$, so $\alpha f + = L^1(\mu)$ and

$$\int_{X} (\alpha f + \beta g) d\mu = \alpha \int_{X} f d\mu + \beta \int_{X} g d\mu$$

Proof Note that $\alpha f + \beta g$ is measurable, so $\int_X |\alpha f + \beta g| \, \mathrm{d}\mu \le |\alpha| \int_X |f| \, \mathrm{d}\mu + |\beta| \int_X |g| \, \mathrm{d}\mu < \infty$. For real measurable functions, $\int_X (f+g) \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu + \int_X g \, \mathrm{d}\mu$ directly by expanding the definition and using additivity over positive functions. We thus show $\int_X \alpha f \, \mathrm{d}\mu = \alpha \int_X f \, \mathrm{d}\mu$. If $\alpha \ge 0$, then

$$\int_{X} \alpha f \, \mathrm{d}\mu = \int_{X} \alpha(u + iv) = \int_{X} (\alpha u^{+} - \alpha u^{-} + i\alpha v^{+} - i\alpha v^{-}) \, \mathrm{d}\mu$$

$$= \int_{X} ((\alpha u)^{+} - (\alpha u)^{-} + (i\alpha v)^{+} - (i\alpha v)^{-}) \, \mathrm{d}\mu$$

$$= \int_{X} (\alpha u)^{+} \, \mathrm{d}\mu - \int_{X} (\alpha u)^{-} \, \mathrm{d}\mu + \int_{X} i(\alpha v)^{+} \, \mathrm{d}\mu - \int_{X} i(\alpha v)^{-} \, \mathrm{d}\mu$$

$$= \alpha \int_{X} u^{+} \, \mathrm{d}\mu - \alpha \int_{X} u^{-} \, \mathrm{d}\mu + \alpha \int_{X} iv^{+} \, \mathrm{d}\mu - \alpha \int_{X} iv^{-} \, \mathrm{d}\mu$$

$$= \alpha \int_{X} f \, \mathrm{d}\mu$$

and similarly for $\alpha = -1$, $\alpha = i$.

Thm. 1.4.4 Let $f \in L^1(\mu)$. Then $\left| \int_X f \, \mathrm{d}\mu \right| \leq \int_X |f| \, \mathrm{d}\mu$.

Proof Let $z = \int_X f \, d\mu$. Let $\alpha = \frac{|z|}{z}$ if $z \neq 0$, and $\alpha = 1$ otherwise. Then $\alpha \int_X f \, d\mu = |z|$. Let $u = \text{Re}(\alpha \cdot f) \leq |\alpha \cdot f| \leq |f|$ since $|\alpha| = 1$. Thus

$$\left| \int_{X} f \, d\mu \right| = \alpha \cdot \int_{X} f \, d\mu$$

$$= \int_{X} \alpha f \, d\mu$$

$$= \int_{X} \operatorname{Re}(\alpha f) \, d\mu$$

$$\leq \int_{X} |f| \, d\mu$$