

Semester II 2024/2025

Subject : PROBABILITY & STATISTICAL DATA ANALYSIS

(SECI 1143/SCST 1223)

Task : ASSIGNMENT 4 - Chapter 7 (60%) & Chapter 8 (40%)

Due Date : JUNE 2025 (before 5 pm)

1 week after release (please refer to the section's lecturer)

INSTRUCTION:

1. This is a **GROUP** assignment. Please clearly write the group members **NAME G MATRIC NUMBER** in the front page of the submission.

- 2. This assignment contributes to 5% of overall course marks.
- 3. Only **HANDWRITTEN** submission is accepted:
 - a. Submissions using any reporting or statistical tools (e.g.: MS Word, MS Excel, etc.,) will be **REJECTED**.
 - b. Make sure the submission is neatly written. Any submission with handwriting that is unreadable, will be **REJECTED**.
 - c. For answer that need to draw graphs, using graph paper is optional. You can use plain paper.
 - d. Round your answers to **THREE** decimal places.
 - e. Please scan/snapshot your work and save as a PDF file.
- 4. Submission via eLearning only **ONE** group member needs to submit on behalf of the group.

NAME	MATIRC NO.
IZWAN AZIZ BIN ISMAIL @ ABD MALEK	SX241894ECJHF01
YUARAJ A/L PARTHIPAN	SX241919ECRHF01
SITI NURNAJIHAH BINTI MOHAMAD ANUAR	SX232351ECRHF04
FATIN SYAHIRAH BINTI NOR RASHID	SX241920ECRHF01
ASWINI A/P CHANDRASAGARAN	SX242452ECRHF01

PART 1 CHAPTER 7: CORRELATION AND REGRESSION (60%)

QUESTION 1 (10 MARKS)

A bakery production manager wants to investigate the linear relationship between the number of pastries produced and the production cost. To pursue his/her objective, the manager recorded the data on the number of pastries produced per day and the production cost per day (in thousands of Malaysian Ringgit) for 10 consecutive days as depicted in **Table 1**.

Table 1: Daily pastries produced and production cost for 10 consecutive days

Days	1	2	3	4	5	6	7	8	G	10
Number of pastries, x	35	50	45	60	70	55	40	65	75	80
Production cost, y	48	65	60	72	83	62	50	75	90	95

a) Calculate the correlation coefficient, *r*.

(8 marks)

b) Based on the correlation coefficient, r obtained, make a conclusion on the linear relationship between the number of pastries produced and the production cost.

(2 marks)

$$r = \frac{\sum xy - (\sum x \sum y)}{\sqrt{(\sum x^2 - (\sum x)^2)} (\sum y^2 - (\sum y)^2)}}$$

a) calculate the correlation coefficient r.

$$\begin{cases} 2x = 575 \end{cases}$$

$$\begin{cases} 2y = 700 \end{cases}$$

$$\begin{cases} xy = 42125 \end{cases} = \begin{cases} 2xy - (2x)(2y) / n \end{cases}$$

$$\begin{cases} 2x^2 = 35125 \end{cases} = \begin{cases} 42125 - (575 \times 700) / 10 \end{cases}$$

$$\begin{cases} 2x^2 = 35125 \end{cases} = \begin{cases} 42125 - 40250 \end{cases}$$

$$\begin{cases} 2x^2 = 50576 \end{cases}$$

donominator =
$$\int (\xi x^2 - (\xi x)^7/n) * (\xi y^2 - (\xi y)^7/n)$$

= $\int (35125 - 33065/10) * (50576 - 490000/10)$
= $\int (35125 - 33062.5) * (50576 - 49000)$
= $\int 2052.5 * 1576$
= $\int 3236760$
 ≈ 1798.54

b) conclusion

Since the corretation $r\approx 0.986$ is very close to 1, we conclude that there is very strong positive linear relationship between the number of pashies produced and the production cost. As the number of paines increase, the production cost also increase is a nearly linear fashion.

QUESTION 2 (25 MARKS)

A social media analytics company is investigating the relationships between various factors to understand how they influence the engagement on posts. The company has collected data on the following variables (**Table 2**) for 6 different social media posts:

- **Number of Likes**: The number of likes received by the post.
- **Number of Comments**: The number of comments received by the post.
- **Number of Shares**: The number of times the post was shared.
- Post Length: The length of the post in characters.
- **Engagement Score**: A score (from 1 to 100) representing the overall engagement on the post.
- **Sentiment Score**: An ordinal variable representing the sentiment of the post (1: Very Negative, 2: Negative, 3: Neutral, 4: Positive, 5: Very Positive).

Post ID	Likes	Comments	Shares	Post Length	Engagement Score	Sentiment Score
1	150	20	30	200	85	4
2	100	10	20	100	70	3
3	200	25	40	250	90	5
4	80	8	15	150	60	2
5	170	22	35	220	88	5
6	120	15	25	180	75	2

Table 2: Factors influencing engagement on posts

- a) Compute the correlation coefficient for Engagement and Sentiment Score variables. Interpret the result. (9 marks)
- b) Compute the correlation coefficient for Likes and Share. Interpret the result.
 (9 marks)
- c) Test the null hypothesis that there is no correlation between 'Engagement Score' and 'Sentiment Score' against the alternative hypothesis that there is a significant correlation. Use a significance level of 0.05 and provide the test statistics and p- values. (7 marks)

	variables. Interpret the v	conii.	Transit II V		
		Year of			
5	correlation coefficient		Eny - (22 2	1)/n	n=engagement score
	correlation coefficient	TELEN	1)-(En)2/n][(2	(2y2)-(2y)2/n]	y= continent occre
	- 10 m	0 1 1	(4)	- 2	2
	Engagement Score (21)	Sentineut		72	y ²
10	85	4	340	7225	9
907	70	3	2(0	4900	
	90	5	450	8100	25
4	60	2	120	3600	1
	88	5	440	7744	, 25
15	75	3	225	5625	9
Σ.	468	22	1785	37,194	88
in Line s		AND THE	Bon story	2014 10 10 12	to the second
		10	296		
	V	785 - (468)	x 22)/6	69 13	- 0-970
20	JE(37194)-(40	68)2/6][(88)-(22)2/6	71.132	
	r= \(\sqrt{\(\sqrt{37194} \) - (40) \\ \(\sqrt{27194} \) - (40) \\ \(\sqrt{27194} \) - (40)	36, sey] [7 333	le Top.	energy in E
	Correlation coefficient of engagement score and se	0.970 shows	a very Arong	positive linear	velationship between
		almout com	o del man	10 00 H. 0	1 - 1 1 7

	likes (n)	shaves (y)	ny	n^2	y ²	
	150	30	4500	22800	900	
	100	26	2000	10 000	400	
* 1	200	40	8000	40000	1600	
	80	15	1200	6400	225	
	170	35	5950	28,900	1225	
10	120	25	3000	14400	625	
2	820	165	24,650	122,200	4,975	
	r-	24.650 /[(122,200)-(5-(820X16	5)/6	2100 _ 0.997	
	14.7 PM 29.	[[(122,200)-(820)2/6][(4	,975)-(165)2/0	2105.548	
		3-10,133	-33	4375		
e)					five linear relationship bes 8 fends to be showed free Engagement score and 5 a stanificant correlate	
c)					s tends to be showed free 'Engagement score and 's a significant correlation is the showed and	
e)	Test the null hy 'Sentiment sucre' Use a significance	polhesis that the against he alto	ere's no corre			
e) 20	To8 ¹ the null hy 'Sentiment surve' Use a significance $H_0: \rho = 0$	poshesis flust the against be attended to the constant of the	ere's no corre comative hypothe and provide correlation)			
e) 20	To8 ¹ the null hy 'Sentiment surve' Use a significance $H_0: \rho = 0$	polhesis that the against he alto	ere's no corre comative hypothe and provide correlation)			
20 25	To82 the null hy 'Sewiment score' Use a significance Ho: P=(poshesis that the against he attended to 0.05 3 (no linear correct	ere's no correctionative hypothecorrelation) which exists)	elation between lesis that there the fest stan		
20	To82 the null hy 'Sewiment score' Use a significance Ho: P=(poshesis that the against he attended to 0.05 3 (no linear correct	ere's no correctionative hypothecorrelation) which exists)	elation between lesis that there the fest stan		
20 25	To82 the null hy 'Sewiment score' Use a significance Ho: P=(poshesis that the against he attended to 0.05 I evel of 0.05 O (no linear correct	ere's no correctionative hypothecorrelation) which exists)	elation between lesis that there the fest stan		
20	To82 the null hy 'Sewiment score' Use a significance Ho: P=(poshesis flust the against be attended to the constant of the	ere's no correctionative hypothecorrelation) which exists)	elation between lesis that there the fest stan		
20 25	To8 ¹ the null hy 'Sentiment score' Use a significance Ho: P = 0 HA: P ≠ 0	poshesis that the against he attended to 0.05 I evel of 0.05 O (no linear correct	ere's no correlation) correlation) orion emists) 1.97 -0.97 ² 0.0591	dation between lesis that there the fest star 7-980	Engagement Love and so a significant correlated listics and p-values.	
20 20 30 30	To82 the null by 'Sewiment score' Use a significance Ho: P = (HA: P \neq () t =	profles is fluf the against be attended of 0.05. 3 (no linear correct r c	ere's no correctionative hypothecorrelation) which emists)	elation between lesis that there the fest stan	Engagement Love and so a significant correlated listics and p-values.	
25 25 39 39 39	To82 the null by 'Sewiment score' Use a significance Ho: P = (HA: P \neq () t =	poshesis that the against he attended of 0.05 3 (no linear correct $\frac{r}{r} = \frac{c}{r^2}$ $\frac{1}{r^2}$ lavel (α): 0.05	ere's no correctionative hypothecorrelation) which emists)	dation between lesis that there the fest star 7-980	Engagement Love and so a significant correlated listics and p-values.	

QUESTION 3 (25 MARKS)

A software development company wants to predict the time required to complete new software projects based on the estimated lines of code (LOC). The company has collected data on the development time (in weeks) and LOC for previous projects. Using this data presented in **Table 3**, answer the following questions in 2 decimal places:

Table 3: Length of code (LOC) and development time

Project ID	LOC (K)	Development Time (week)
1	150	40
2	100	35
3	200	50
4	80	30
5	170	45
6	120	38
7	160	42
8	90	28
9	250	55
10	130	37

a) Plot a scatter plot of the data with LOC on the x-axis and Development Time on the y-axis. (3marks)

b) Calculate the correlation coefficient between LOC and Development Time. (8 marks)

r (LOC)	y (bevelopment time)	24	2.	42
150	40	6000	22500	1600
100	35	3500	10000	1225
200	50	10000	40000	2500
80	30	0096	6400	900
170	45	7650	28400	2025
120	38	4560	19400	1444
160	42	6720	25600	17 64
90	28	2520	8100	P84
250	55	13750	62500	3025
130	37	4810	16 900	1369
1450	400	61910	235300	16636
	$\sum x\lambda - (\sum x \sum \lambda)$,
	$\sum x\lambda - (\sum x \sum \lambda)$			*
	$(\Sigma x_x) - (\Sigma x)_x$ [U][(ΣA_x	1)-(14)2/15		,
		(400)		
	10 (eidio) - (ideo	(400)		
J	$[(\Sigma x^{2}) - (\Sigma x)^{2}]_{h}][(\Sigma y^{2})_{h}][(\Sigma y^$	(400)		
J	$\frac{(\Sigma x^2) - (\Sigma x)^2}{10 (61910) - (1450)^2} \frac{1}{10}$ $\frac{(10 (335300) - (1450)^2}{100}$	(400)		
	$\frac{(\Sigma x^2) - (\Sigma x)^2}{10 (61910) - (1450)^2} \frac{1}{10}$ $\frac{(10 (335300) - (1450)^2}{100}$	(400)		
= \(\lambda \)	$\frac{[(\Sigma x^2) - (\Sigma x)^2]_n}{[0 (61910) - (1450)^2]_{10}}$ $\frac{[0 (535300) - (1450)^2]_{10}}{[10 (535300) - (1450)^2]_{10}}$	(400)		
= \(\(\)	$\frac{(\Sigma x^2) - (\Sigma x)^2}{10 (61910)} - \frac{(1450)}{10 (235300)} - \frac{(1450)^2}{10}$ $\frac{(10(235300) - (1450)^2}{100}$ $\frac{(19100 - 580000)}{250500}$ $\frac{250500}{39100}$	(400)		

c) Fit a simple linear regression model using LOC as the independent variable and Development Time as the dependent variable. Provide the regression equation and interpret the coefficients. (5marks)

$\sum_{b_1} x_1 - \frac{\sum_{x} \sum_{y}}{n} = 61910 - \frac{(1450)(400)}{10}$ $b_1 = \sum_{x} x_2 - \frac{(\sum_{x})^2}{n} = 335300 - \frac{(1450)^2}{10}$ $= 61910 - 58000$ $= 235300 - 210250$ $= 0.15609$ $b_0 = \overline{1} - b_1 \overline{x}$ $= 40 - 0.156 \times 145$ $= 17.367 + 11$ $= 17.367 + 11$ $= 13.367 + 11$	()	Provide the regression equation and interpret the coefficients.
$= 61910 - 58000$ $= 0.15609$ $= 0.15609$ $= 40 - 0.156 \times 145$ $= 17.367 \%$ $= 13.367 \%$ $= 13.364 / 13 \text{ the estimates development time if Loc is 0.}$ $= 0.15609 \text{ (b1) estimated change in the development time as a}$		
= $61910 - 58000$ 235300 - 210250 = 0.15609 bo = $\overline{1} - b_1 \overline{x}$ = $40 - 0.156 \times 145$ = $17.367 + 11$ 7.367 / 13 the estimates development time if LoC is 0. $0.15609 (b_1)$ estimated change in the development time as a		$bx = \sum x^2 - (\sum x)^2$ 235300 - (1450)
$= 0.15609$ $= 0.15609$ $= 40 - 0.156 \times 145$ $= 17.367 #$ $= 13.367 #$ $= 13.367 / #$ $= 13.367$		10
$= 0.15609$ $= 0.15609$ $= 40 - 0.156 \times 145$ $= 17.367 #$ $= 13.367 #$ $= 13.367 (ba) estimates development time if LoC is 0.$		
$bo = 7 - b_1 \bar{x}$ $= 40 - 0.156 \times 145$ $= 13.367 \%$ 13.367% $0.15609 (b_1) estimated change in the development time as a$		= 61910 - 58000
bo = $\overline{1}$ - bi \overline{x} = $40 - 0.156 \times 145$ = 13.367 ff = 13.367 ff 13.367,13 the estimates development time if LOC is 0. 0.15609 (b2) estimated change in the development time as a		235300- 210250
bo = $\overline{1}$ - $\overline{b_1}$ \overline{x} = $40 - 0.156 \times 145$ = $17.367 + 11$ 13.367,13 the estimates development time if LOC is 0. 0.15609 (b1) estimated change in the development time as a		
bo = $\overline{1}$ - $\overline{b}_1 \overline{x}$ = $40 - 0.156 \times 145$ = $13.367 + 11$ 19.367 is the estimates development time if LoC is 0. 0.15609 (b1) estimated change in the development time as a		= 0.15609
= 40 - 0.156 x 145. = 13.367 # 13.367,13 the estimates development time if Loc is 0. 0.15609 (b2) estimated change in the development time as a		Switzer C. D. Gode Process. The S. R. P. P. C. Said S.
17.367 # 17.367		bo = 1 - b1 X
0.15609 (bz) estimated change in the development time as a		= 40 - 0.156 x 145
17.367,13 the estimates development time if LOC is 0. 0.15609 (bz) estimated change in the development time as a		= 17-367 #
0.15609 (bz) estimated change in the development time as a		
0.15609 (bz) estimated change in the development time as a		
		17.367,13 the estimates development time if LOC is 0.
result of a one -unit change in LOC.		0.15609 (b1) estimated change in the development time as a
		result of a one -unit change in LOC.

d) Use the regression model to predict the development time for a new project with an estimated 180K LOC. (2marks)

4)	regression model to predict (180 k) LOC .
	11 = bo + bi X
	= 17.37 + 0.15609 x 180
	≈ 45 · 466 ≥
	Barry A 1 gard
	thus . the predicted development time is 45.466 (weeks).

e) Find value of SSR, SST and R-Squared. Interpret value of R-Squared. (6 marks)

(1)	Find SSR, SST and R-square, Interpret value of R-square.
t	SST = 636
I	= Σ (4-4),
	= (40-40) + (35-40) + (50-40) + (30-40) + (45-40) + (35-40) + (42-40)
	+ (28-40)2 + (55-40)2 + (37-40)2
	= 0 + 25 + 100 + 100 + 25 + 4 + 4 + 14 + 225 + 9
L	= 636 #
L	
L	SSR
L	$= \sum (\hat{q} - \bar{q})^{\perp}$
L	<u> </u>
ŀ	Ŷ = 17.37 + 0.15609 x (X)
ŀ	SSR = (40:78 - 40)2 + (32.98 -40)2 + (48.59 -40)2 + (29.85 -40)2 +
	(43.91 - 40)2 + (36.10 - 40)2 + (42.34 - 40)2 + (31.42 - 40)2 +
	(56.39-90)2 + (37.66-90)2
	= 0.61 + 49.28 + 73.79 + 103.02 + 15.29 + 15.21 + 5.48 +
	73.62 + 262-63 + 5.48
	= 610 41 #
	<u> </u>
ő	R - squared .
	SSR
	$R^2 = SST$
	= 610.41
	636
Ĺ	= 0.960 #

PART 2 CHAPTER 8: ANOVA (40%)

QUESTION 4 (20 MARKS)

A local agricultural researcher is conducting a study to determine whether different types of fertilizers affect plant height after 30 days. Three fertilizers (A, B, and C) are applied to separate groups of plants. Each group contains 5 plants, and all other growing conditions (light, water, soil) are kept constant. **Table 4** below shows the height (in cm) of plants after 30 days.

Table 4: Plant Heights after 30 Days (cm)

Fertilizer A	Fertilizer B	Fertilizer C
262	235	223
246	271	223
266	255	233
288	230	201
244	250	204

Conduct the ANOVA test for the above data by;

a)	Define the hypothesis statement.	(2m)
b)	Calculate mean and variance.	(3m)
c)	Calculate the test statistics.	(10m)
d)	Calculate numerator and denominator degree of freedom. Use α = 0.05	(2m)
e)	State the critical value.	(1m)

f) Test the claim and state the conclusion. (2m)

Subject Q 4	No.
a)	1390
· Null Hypothosis (Ha):	
MA= MB = MC	
(there are no diffrence in plant has	opt)
- Alternative Hypothesis (H.)	
At least the group mean is sign	Acantly diffrent
5) Group means	
Mean 4 = 262 + 246 + 266 + 26	88 + 244 _ 1306 = 260.8
Wieen A =	
Mean b = 235 + 271 +255 +	230 + 250 1241
5	5 248-2
Wean , = 223 + 223 + 233 +	201 + 204 - 1084 = 216.8
mean e = 223 + 223 + 233 +	5
Giroup Varionces.	
5(0, 5)	2
g ² , Σ(zì-元)	
n - 1	
Fertilizer A:	+ (244 - 260.8) ²
\	72 1 6 21 12 1
	$(266 - 260.8)^2 + (288 - 260.6)^2$
54	1 - 700 8ti 1 000 8ti 1001 4t
	4 1739.84 1282.24 = 1271.46
Forth Tertilizer 3:	= 269,42*
82B=(235-2482) +(271-2482)	+ (255-248.2) + (230-248.2) 2 +
(250 - 248.2)2	, , ,
9	vs. + a -
174-24 + 522-72 + 46-24	
9	4 269 42
CS scanned with Camscanner	•

CS Scanned with CamScanne

Degræs sfø freedom. Between groups: df1 = K-1=3-1=2	
Between groups: dil = K-1=3-1=2	
Within groups: dfz=N-k=15-3=12	
	· · · · · · · · · · · · · · · · · · ·
Mean squares	
MSR _ SSB _ SIS9 .85 _ 25-79 .93	
MeB = SSB = SB9 :85 = 25-79 :93 df, 2	
msw = 35w - 4580.36 381.70	
df2 12	
F-Ratio	
$+ = \frac{\text{mSB}}{\text{mSw}} = \frac{2579}{391.70} = 6.76$	
d) Numerator (between groups) - df = 2	
Denominator (within groups)=dfz=12	
e), f - distribution table with $\alpha l = 0.05$, $dH = 2$, $df2 = 12$, 1
\$ F-critical = 3.89	
f) Since	
F calculated = 6.76 7 T- critical = 3-89	
We reject the null hypothes is.	
Conclusion: There is significant evidence to conclude that	
one fertilizer produces a diffrent effect on plant height aft	or 30 days.

QUESTION 5 (20 MARKS)

f)

Test the claim and state the conclusion.

A car manufacturer wants to test the effectiveness of four different brands of brake tires. The stopping distances (in meters) under identical conditions were measured using 5 test runs for each tire brand:

Table 4: Plant Heights after 30 Days (cm)

Tire Brand	Stopping Distance (meters)
L	35.5, 34.8, 36.1, 35.2, 34.9
M	38.2, 37.7, 38.5, 37.9, 38.0
N	33.9, 34.2, 33.7, 34.0, 33.5
0	36.8, 37.0, 36.5, 36.9, 37.1

At the 0.05 significance level, conduct the ANOVA test whether the mean stopping distances are the same for all four tire brands.

a)	Define the hypothesis statement.	(2m)
b)	Calculate mean and variance.	(3m)
c)	Calculate the test statistics.	(10m)
d)	Calculate numerator and denominator degree of freedom. Use α = 0.05	(2m)
e)	State the critical value.	(1m)

(2m)

	Aswini Alp Chandrasagaran No. Date		
	Assemment 4		
	Question 5		
a)	Null Hypothesis (Ho) =		
	The mean shipping distances for all four fire brands are equal.		
	Ho: hr = hw = ho = no		
	o fee - faith		
	Alternative Hypotheris (Hi):		
	At least one of the mean stopping distances is different.		
	4, 2 Notall means are equal.		
p)	L= 35.5+34.8+36.1+35.2+34.9 _ 176.5 _ 35.3		
	5		
	M = 33.2 + 37.7 + 38.5 + 37.9 + 38.0 = 190.3 = 38.060		
	3		
	N= 33.9+34.2+33.7+34.0+33.5 = 169.3 = 33.860		
	5		
	0 = 36.8 + 37.0 + 36.5 + 38.9 + 37.1 = 184.3 = 36.860		
	(x-353) ² 5		
	5-1		
==	$\frac{5-1}{(35.5-35.3)^{2}+(34.8-35.3)^{2}+(36.1-35.3)^{2}+(35.2-35.5)^{2}+(34.9-35.3)^{3}}$ 0.2+5		
W	Mx-38.06)2		
	3-1		
	(38.2-38.06)2+(3+.7-38.06)2+(38.5-38.06)2+(37.9-38.06)2+(38.0+38.06)2		
N	0.093 (Nx-33.86)2		
14	5-1		
=	(33.9-33.86)2+(34.2-33.86)2+(33.7-33.86)2+(34.0-33.86)2+(33.5-33.86)2		
	(0x - 35-86)2 (-1		
0	(36.8-33.862)+(37.0-33.86)2(36.5-33.86)2+(36.9-53.86)2+(37.1-33.86)2		
= =	(36.0 - 25.00)+(37.0 52.00)+(36.4 - 35.00)+(36.4 - 35.00)+(37.1 - 35.36)		

0)	176.5+190.3+169.3+184.3 = 920.4 = 36.02
	90
	=5135.3-36.0272+5(38.06-36.02)2+5(33.86-36.02)2+5(36.96-36.02)
	=5(0.5184)+5(4.1604)+5(4.6656)+5(0.7056)
	= 50.250
	25W
	=4(0.275)+4(0.093)+4(0.073)+4(0.053)
	=1.100+0-372+0-292+0-212=1.976
	between = k-1 = 4-1 = 3; within N-k = 20-4 = 16.
	50-250 = 16.750 1.976 = 0.12475.
	3 16
	F= 16.750 = 134.256 H
	0-12475
(b	Nume rator (between groups) dt = 3
	Denominator (within groups) of = 16
e)	3.24
t)	Fcalculated = 134.256 > Fcatical = 3.24.
	there is a significant difference in mean stopping distances among four
	tire brands.