Math 100b Winter 2025 Homework 4

Due 2/7/2025 at 5pm on Gradescope

Reading

All references will be to Artin Algebra, 2nd edition. Reading: Sections 12.1-12.2.

Assigned Problems

Write up neat and complete solutions to these problems.

- 1. Let F be a field. Prove that F[x] has infinitely many monic irreducible polynomials, and conclude that F[x] has infinitely many distinct maximal ideals. (Hint: recall Euclid's proof that \mathbb{Z} has infinitely many primes: If p_1, \ldots, p_n are distinct prime numbers, then any prime factor of $(p_1p_2 \ldots p_n) + 1$ is different from all of the p_i .)
- 2. Let p be a prime number, and let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the field with p elements. Consider the polynomial $f(x) = x^{p-1} 1$ in the ring $\mathbb{F}_p[x]$.
 - (a) Show that every nonzero element of \mathbb{F}_p is a root of f(x).
 - (b) Write f(x) as a product of irreducible polynomials in $\mathbb{F}_p[x]$ and justify your answer.
- (c) By comparing the constant term of f(x) with the constant term of its factorization into irreducibles in (b), prove Wilson's theorem, which states that when p is a prime number then $(p-1)! \equiv -1 \pmod{p}$.
- 3. Let F be a field and let $g(x) \in F[x]$ be a polynomial of degree $n \ge 1$. Consider the factor ring R = F[x]/(g(x)).
- (a) Show that each element of R can be written as a coset r(x) + (g(x)) for a unique polynomial r(x) such that $\deg r < \deg g$ or r = 0.

- (b). Suppose that $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements. Prove that the ring $\mathbb{F}_p[x]/(g(x))$ has exactly p^n elements.
 - 4. Let $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ be the field with 3 elements.
 - (a). Show that $E = \mathbb{F}_3[x]/(x^2+1)$ is a field with 9 elements.
- (b). Consider the set of nonzero elements in the field E from (a), that is $E^{\times} = E \{0\}$. E^{\times} is a an abelian group under multiplication with 8 elements. Show that it is a cyclic group.
 - (c). Find a field with 27 elements.
 - 5. Let F be a field. Let R be the following subring of F[x]:

$$R = \{ f(x) = a_0 + a_2 x^2 + a_3 x^3 + \dots + a_n x^n | a_i \in F \}.$$

In other words, R consists of all polynomials with no x term. Think about why R is a subring but you don't have to prove it. Note that R is an integral domain because it is a subring of F[x].

- (a). Show that x^2 and x^3 are irreducible elements of R.
- (b). By considering the factorization of x^6 in R, show that R is not a unique factorization domain (UFD).
- 6. Let R be an integral domain. Suppose that S is a subset of R such that $0 \notin S$, $1 \in S$, and if $s, t \in S$ then $st \in S$. Such a subset is called a *multiplicative system*. Let F be the field of fractions of R.
 - (a). Let $RS^{-1} = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\}$, considered as a subset of F. Prove this is a subring of F.
- (b). Show that RS^{-1} has the following universal property: If T is another ring and there is a homomorphism $\phi: R \to T$ such that $\phi(s)$ is a unit in T for all $s \in S$, then there is a unique homomorphism $\widehat{\phi}: RS^{-1} \to T$ such that $\widehat{\phi}\left(\frac{r}{1}\right) = \phi(r)$ for all $r \in R$.
- 7. Let $R = \mathbb{Z}$, let p be a prime number, and let $S = \{1, p, p^2, p^3, \dots\}$ be the set of powers of p. Fix an integer $n \geq 2$. Let RS^{-1} be the ring from problem 6.

How many ring homomorphisms $\phi: RS^{-1} \to \mathbb{Z}/n\mathbb{Z}$ are there? (The answer may depend on p and n).