Non-stationary spectral analysis

Joaquín Rapela

Gatsby Computational Neuroscience Unit University College London

January 25, 2024

Contents

- Time-frequency uncertainty

Complex numbers

A complex number a + ib is a vector in the complex plane.

- a and b are the real and imaginary parts, respectively.
- A is the magnitude.
- ϕ_X is the phase.
- using the **Euler's formula** $a + ib = A(\cos(\phi_X) + i\sin(\phi_X)) = Ae^{i\phi_X}$.

Four types of Fourier transforms

FT ¹		$x(t) = \frac{1}{2\pi} \int x(j\Omega) e^{j\Omega t} d\Omega$	continuous	$x(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$
FS ²	periodic (T)	$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{j\frac{2\pi}{T}kt}$	discrete (inf)	$X[k] = \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}kt} dt$
DTFT ³	discrete (inf)	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$	periodic (2π)	$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$
DFT ⁴	discrete (finite)	$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$	discrete (finite)	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$

• how does ω of the DTFT relates to Ω of the FT?

$$x[n] \sim x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

$$X_s(j\Omega) = \int_{-\infty}^{\infty} x_s(t)e^{j\Omega t}dt = \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)\right)e^{j\Omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} x[n]\left(\int_{-\infty}^{\infty} \delta(t-nT)e^{j\Omega t}dt\right) = \sum_{n=-\infty}^{\infty} x[n]e^{j\Omega nT} = X_s(\omega)|_{\omega=\Omega T}$$

Four types of Fourier transforms

FT ⁵		$x(t) = \frac{1}{2\pi} \int x(j\Omega) e^{j\Omega t} d\Omega$	continuous	$x(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$
FS ⁶	periodic (T)	$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{j\frac{2\pi}{T}kt}$	discrete (inf)	$X[k] = \int_{-T/2}^{T/2} x(t) e^{-j\frac{2\pi}{T}kt} dt$
DTFT ⁷	discrete (inf)	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$	periodic (2π)	$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$
DFT ⁸	discrete (finite)	$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$	discrete (finite)	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$

• how to find the frequency in Hz corresponding to a DFT coefficient k?

$$\omega = \frac{2\pi}{N} k$$

$$\Omega = \frac{\omega}{T} = 2\pi \frac{k}{NT}$$

Thus, the coefficient k corresponds to the frequency $\frac{k}{NT}$ Hz.

• what is the **frequency resolution** of a Fourier transform? It is the distance in Hz between two neighboring frequencies, i.e., frequency resolution = $\frac{1}{NT} = \frac{1}{\text{signal duration}}$.

Time-frequency uncertainty

frequency resolution
$$=\frac{1}{NT}=\frac{1}{\text{signal duration}}$$

(a) High temporal resolution

(b) High frequency resolution

Tradeoff between frequency and time resolution.

Contents

- Time-frequency uncertainty
- Spectral coherence interpretation
- 3 Understanding the plots we will generate in the next worksheet

Spectral measures for multiple time series

• The cross-power is

$$S_{XY}(f) = \sum_{\tau = -\infty}^{\infty} R_{XY}(\tau) e^{-i2\pi f \tau}$$
$$= X(f)Y^*(f)$$

• The multi-trial spectral coherence is

$$C_{XY}(f) = \frac{|\langle S_{XY,k}(f) \rangle|^2}{\langle S_{XX}(f) \rangle \langle S_{YY}(f) \rangle}$$

The spectral coherence is

$$C_{XY}(f) = \frac{|S_{XY}(f)|^2}{S_{XX}(f)S_{YY}(f)}$$

Multi-trial spectral coherence: intuition

Figure 2: Spectral coherence measures constant phase difference between two times series at a given frequency.

define

$$X(f) = A(f)e^{j\phi_X(f)}$$
$$Y(f) = B(f)e^{j\phi_Y(f)}$$

then

$$S_{XY,k}(f) = X_k Y_k^*$$

$$= A_k e^{j\phi_{xk}} \left(B_k e^{j\phi_{yk}} \right)^*$$

$$= A_k e^{j\phi_{xk}} \left(B_k e^{-j\phi_{yk}} \right)$$

$$= A_k B_k e^{j(\phi_{xk} - \phi_{yk})}$$

Left: X(f) and Y(f).

Right: Cross-power: $X(f) \times Y(f)^*$.

$$\phi_k = \phi_{X,k} - \phi_{Y,k}$$
.

Given its definition, multi-trial spectral coherence

$$C_{XY}(f) = \frac{\left| < S_{XY,k}(f) > \right|^2}{< S_{XX}(f) > < S_{YY}(f) >}$$

corresponds to averaging the cross-power vectors and normalizing the result by the corresponding power spectrum terms.

Multi-trial spectral coherence at frequency f is large when the phase difference at frequency f is approximately constant across trials.

Contents

- Time-frequency uncertainty
- Spectral coherence interpretation
- 3 Understanding the plots we will generate in the next worksheet

Understanding the plots we will generate in the next worksheet

Please refer to the plots in the next worksheet.

Summary

Bibliography