Симетрична група. Представяне на елементите като произведение на независими цикли, ред на елемент, спрягане, алтернативна група.

Носителят на пермутация $\sigma \in S_n$ е множеството $\mathrm{Supp}(\sigma) := \{i \mid \sigma(i) \neq i, 1 \leq i \leq n\}$ на числата от 1 до n, които не остават на място под действие на σ .

Определение 1. Цикъл с дължина k е пермутация $\zeta \in S_n$, чийто носител $\mathrm{Supp}(\zeta) = \{i_1, \ldots, i_k\}$ се състои от k различни числа и която действа по правилото $\zeta(i_s) = i_{s+1}$ за всички $1 \leq s \leq k-1$ и $\zeta(i_k) = i_1$. Бележим $\zeta = (i_1, \ldots, i_k)$.

Цикъл $\zeta = (i_1, \dots, i_k) \in S_n$ с дължина k е елемент на S_n от ред . От една страна, $\zeta^k = \varepsilon$ е тъждествената пермутация. От друга страна, $\zeta^r \neq \varepsilon$ за всички естествени r < k, защото

$$\zeta^r(i_1) = \zeta^{r-1}(i_2) = \ldots = i_{1+r} \neq i_1$$
 при $2 = 1 + 1 \leq r + 1 \leq (k-1) + 1 = k$.

Определение 2. Цикли (i_1, \ldots, i_k) и (j_1, \ldots, j_l) са независими, ако носителите им $\operatorname{Supp}(i_1, \ldots, i_k) = \{i_1, \ldots, i_k\}$ и $\operatorname{Supp}(j_1, \ldots, j_l) = \{j_1, \ldots, j_l\}$ не се пресичат, $\{i_1, \ldots, i_k\} \cap \mathbb{I}$ $\{j_1, \ldots, j_l\} = \emptyset$.

Независими цикли (i_1, \ldots, i_k) и (j_1, \ldots, j_l) комутират, защото действат върху непресичащите се подмножества $\{i_1, \ldots, i_k\}$ и $\{j_1, \ldots, j_l\}$ на $\{1, \ldots, n\}$.

Твърдение 3. Всяка нетъждествена пермутация $\sigma \in S_n \setminus \{\varepsilon\}$ има единствено с точност до реда на множителите разлагане в произведение на независими цикли.

Доказателство. Преди да докажем твърдението, да дадем един пример:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 5 & 2 & 1 & 8 & 9 & 10 & 7 & 6 \end{pmatrix} = (1,3,5)(2,4)(6,8,10)(7,9).$$

Съществуване: Ако $\sigma \in S_n \setminus \{\varepsilon\}$, то съществува $i_1 \in \operatorname{Supp}(\sigma)$, така че $\sigma(i_1) = i_2 \neq i_1$. Ако $\sigma(i_2) = i_1$, то отделяме цикъл (i_1, i_2) и продължаваме с разлагането на σ като пермутация на $\{1, \ldots, n\} \setminus \{i_1, i_2\}$. Ако $\sigma(i_2) = i_3 \notin \{i_1, i_2\}$, то при $\sigma(i_3) \in \{i_1, i_2, i_3\}$ имаме $\sigma(i_3) = i_1$ поради биективността на σ и това, че $i_2 = \sigma(i_1)$, $i_3 = \sigma(i_2)$ за различни i_1, i_2, i_3 . Ако $\sigma(i_3) = i_4 \notin \{i_1, i_2, i_3\}$, продължаваме по същия начин. Множеството $\{1, \ldots, n\}$ е крайно, така че след краен брой стъпки имаме $\sigma(i_k) \in \{i_1, \ldots, i_k\}$. За s < k е изпълнено $\sigma(i_s) = i_{s+1}$, така че $\sigma(i_k) = i_1$ поради биективността на σ . След отделяне на цикъла (i_1, \ldots, i_k) , който представя действието на σ върху $\{i_1, \ldots, i_k\}$, разглеждаме

 σ като пермутация на $\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$ и отделяме следващия цикъл от разлагането на σ . След краен брой стъпки представяме σ като произведение на независими цикли.

Единственост: Да предположим, че

$$\zeta_k \dots \zeta_1 = \sigma = \eta_m \dots \eta_1 \tag{1}$$

а две разлагания на σ произведение на независими цикли ζ_i, η_j . Без ограничение на общността можем да считаме, че $k \leq m$. Ако $\zeta_k = (i_1, \ldots, i_r)$, то съществува η_j с $i_1 \in \operatorname{Supp}(\eta_j)$. Поради независимостта на циклите $\eta_1, \ldots, \eta_m, \eta_j$ трансформира i_1 в i_2 , после i_2 в i_3 и т.н., $\zeta_k = \eta_j$. След преномерация на η_1, \ldots, η_m можем да считаме, че $\zeta_k = \eta_m$. След ляво умножение на (1) с ζ_k^{-1} получаваме $\zeta_{k-1} \ldots \zeta_1 = \eta_{m-1} \ldots \eta_1$. По индукционно предположение, оттук следва k-1 = m-1 и $\zeta_i = \eta_i$ за всички $1 \leq i \leq k-1$, след подходяща преномерация на $\eta_1, \ldots, \eta_{k-1}$.

Твърдение 4. Редът на пермутация $\sigma(r_1, \ldots r_s) \ldots (j_1, \ldots, j_l)(i_1, \ldots, i_k) = \in S_n \setminus \{\varepsilon\}$ е равен на най-малкото общо кратно на дължините s, \ldots, l, k на участващите в разлагането на σ независими цикли.

Доказателство. Нека $\sigma = (r_1, \dots r_s) \dots (j_1, \dots, j_l)(i_1, \dots, i_k)$ е разлагането на σ в произведение на независими цикли, а $m := \mathrm{LCM}(k, l, \dots, s) \in \mathbb{N}$ е най-малкото общо кратно на дължините на участващите в разлагането на σ цикли. Тогава

$$\sigma^m = (r_1, \dots, r_s)^m \dots (j_1, \dots, j_l)^m (i_1, \dots, i_k)^m,$$

съгласно комутирането на независимите цикли. Сега $(i_1,\ldots,i_k)^m=\varepsilon$, защото редът k на (i_1,\ldots,i_k) дели m. Аналогично, $(j_1,\ldots,j_l)^m=\varepsilon$, ..., $(r_1,\ldots,r_s)^m=\varepsilon$, защото редовете l,\ldots,s на тези цикли делят m. Следователно $\sigma^m=\varepsilon$ и редът $t:=\operatorname{ord}(\sigma)$ на σ дели m.

Обратно, от

$$\varepsilon = \sigma^t = (r_1, \dots, r_s)^t \dots (j_1, \dots j_l)^t (i_1, \dots, i_k)^t$$

получаваме $(r_1,\ldots,r_s)^t=\varepsilon,\ldots,(j_1,\ldots j_l)^t=\varepsilon,(i_1,\ldots,i_k)^t=\varepsilon,$ защото от независимостта на циклите в разлагането на σ следва, че носителите на t-тите степени на тези цикли са два по два непресичащи се. В резултат, редът s на (r_1,\ldots,r_s) дели t и т.н. l дели t и k дели t. Оттук, t е общо кратно на дължините k,l,\ldots,s на циклите от разлагането на σ и най-малкото общо кратно m на тези дължини дели t. От t дели m и m дели t за $m,t\in\mathbb{N}$ следва m=t.

Например, пермутацията $\sigma = (1,2,3)(4,5)(6,7,8)$ е от ред LCM(3,2,3) = 6

Лема 5. За произволен цикъл $(i_1, \ldots, i_k) \in S_n$ с дължина k и произволна пермутация $\rho \in S_n$ е в сила равенството

$$\rho(i_1, \dots, i_k)\rho^{-1} = (\rho(i_1), \dots \rho(i_k)).$$

Доказателство. За всяко $1 \le s \le k$, лявата страна на доказваното равенство трансформира $\rho(i_{s(\text{mod }k)})$ в

$$[\rho(i_1,\ldots,i_k)\rho^{-1}](\rho(i_{s(\text{mod }k)})) = \rho(i_1,\ldots,i_k)(i_{s(\text{mod }k)}) = \rho(i_{s+1(\text{mod }k)}),$$

както и дясната страна $(\rho(i_1), \dots \rho(i_k))$, която действа по правилото

$$(\rho(i_1), \dots \rho(i_k))(\rho(i_{s \pmod k})) = \rho(i_{s+1 \pmod k}).$$
 Ако $j \in \{1, \dots, n\} \setminus \{i_1, \dots, i_s\}$, то $\rho(j) \in \{1, \dots, n\} \setminus \{\rho(i_1), \dots, \rho(i_k)\}$ и
$$[\rho(i_1, \dots, i_k)\rho^{-1}](\rho(j)) = \rho(i_1, \dots, i_k)(j) = \rho(j) = (\rho(i_1), \dots \rho(i_k))(\rho(j))$$

показват, че както лявата, така и дясната страна оставят на място $\rho(j)$. Това доказва равенството $\rho(i_1,\ldots,i_k)\rho^{-1}=(\rho(i_1),\ldots\rho(i_k))$.

Например, $(1,3)(1,2)(1,3)^{-1} = (3,2)$.

Определение 6. Пермутации $\sigma, \tau \in S_n$ имат еднакъв цикличен строеж, ако в разлаганията им в произведение на независими цикли има един и същи брой цикли с една и съща дължина.

Ако $\sigma=(1,2,3)(4,5)(6,7,8), \tau=(2,4,6)(7,9)(1,3,5)$ и $\rho=(1,5)(2,4)(6,7,8),$ то σ и τ имат еднакъв цикличен строеж, а σ и ρ нямат еднакъв цикличен строеж.

Твърдение 7. Две пермутации σ и τ от S_n са спрегнати в S_n тогава и само тогава, когато имат еднакъв цикличен строеж.

Доказателство. Нека $\sigma = (r_1, \dots, r_s)(t_1, \dots, t_p) \dots (j_1, \dots, j_l)(i_1, \dots, i_k)$ е разлагането на $\sigma \in S_n \setminus \{\varepsilon\}$ в произведение на независими цикли. Тогава за всяка пермутация $\rho \in S_n$, спрегнатата на σ посредством ρ е

$$\rho\sigma\rho^{-1} = [\rho(r_1, \dots, r_s)\rho^{-1}][\rho(t_1, \dots, t_p)\rho^{-1}] \dots [\rho(j_1, \dots, j_l)\rho^{-1}][\rho(i_1, \dots, i_k)\rho^{-1}] =$$

$$= (\rho(r_1), \dots, \rho(r_s))(\rho(t_1), \dots, \rho(t_p)) \dots (\rho(j_1), \dots, \rho(j_l))(\rho(i_1), \dots, \rho(i_k))$$

и има еднакъв цикличен строеж със σ .

Ако

$$\sigma = (r_1, \dots, r_s)(t_1, \dots, t_p) \dots (j_1, \dots, j_l)(i_1, \dots, i_k)$$
 и
$$\tau = (r'_1, \dots, r'_s)(t'_1, \dots, t'_p) \dots (j'_1, \dots, j'_l)(i'_1, \dots, i'_k)$$

имат еднакъв цикличен строеж, то носителите на независимите цикли от разлагането на σ не се пресичат и

$$\rho = \begin{pmatrix} i_1 & \dots & i_k & j_1 & \dots & j_l & \dots & t_1 & \dots & t_p & r_1 & \dots & r_s & \{1, \dots, n\} \setminus \operatorname{Supp}(\sigma) \\ i'_1 & \dots & i'_k & j'_1 & \dots & j'_l & \dots & t'_1 & \dots & t'_p & r'_1 & \dots & r'_s & \{1, \dots, n\} \setminus \operatorname{Supp}(\tau) \end{pmatrix}$$

е коректно зададено изображение на множеството $\{1,\ldots,n\}$ в себе си. Биективността на ρ следва от независимостта на циклите от разлагането на τ , стига пермутация

на числата $\{1,\ldots,n\}\setminus \mathrm{Supp}(\sigma)$ да се трансформира биективно върху пермутация на числата $\{1,\ldots,n\}\setminus \mathrm{Supp}(\tau)$. Сега

$$\rho\sigma\rho^{-1} = (\rho(r_1), \dots, \rho(r_s))(\rho(t_1), \dots, \rho(t_p)) \dots (\rho(j_1), \dots, \rho(j_l))(\rho(i_1), \dots, \rho(i_k)) =$$

$$= (r'_1, \dots, r'_s)(t'_1, \dots, t'_p) \dots (j'_1, \dots, j'_l)(i'_1, \dots, i'_k) = \tau$$

доказва спрегнатостта на произволни пермутации $\sigma, \tau \in S_n$ с еднакъв цикличен строеж.

Пример 8. Подмножеството

$$K_4 = \{\varepsilon, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$$

на симетричната група S_4 е нормална подрупа на S_4 .

Доказателство. Преди всичко, K_4 е затворено относно композицията на пермутации, защото $\varepsilon \sigma = \sigma = \sigma \varepsilon$ за всяко $\sigma \in K_4$. Произволен елемент $\sigma \in K_4 \setminus \{\varepsilon\}$ е от вида $\sigma = (i,j)(k,l)$ за някаква пермутация i,j,k,l на 1,2,3,4 и $\sigma^2 = (i,j)^2(k,l)^2 = \varepsilon \in K_4$. Ако $\sigma \in K_4 \setminus \{\varepsilon\}$ и $\tau \in K_4 \setminus \{\varepsilon\}$ са различни елементи и $\sigma = (i,j)(k,l)$, то $\tau(i) \in \{k,l\}$. След евентуална размяна на k и l можем да считаме, че $\tau(i) = k$, откъдето $\tau = (i,k)(j,l)$ и $\tau \sigma = (i,l)(j,k) \in K_4$. Това доказва затвореността на K_4 относно композицията на пермутации.

Ясно е, че $\varepsilon^{-1}=\varepsilon\in K_4$. За всяко $\sigma\in K_4\setminus\{\varepsilon\}$ пресметнахме, че $\sigma^2=\varepsilon$, откъдето $\sigma^{-1}=\sigma\in K_4$ и K_4 е подгрупа на S_4 .

Понеже K_4 се състои от тъждествената пермутация ε и всички произведения на два независими цикъла с дължина 2, K_4 е нормална подгрупа на S_4 .

Определение 9. Циклите (i,j) с дължина 2 се наричат транспозиции.

Задача 10. За произволни естествени числа $1 \le i < j \le n$ пермутациите $\sigma \in S_n$ и $(i,j)\sigma \in S_n$ са с различна четност.

Доказателство. Първо ще разгледаме случая на транспозиция $(\sigma(p), \sigma(p+1))$ на съседни числа от редицата $\sigma(1), \ldots, \sigma(p), \sigma(p+1), \ldots, \sigma(n)$ от образите на σ . За произволни $q, r \in \{1, \ldots, n\} \setminus \{p, p+1\}$, транспозицията $(\sigma(p), \sigma(p+1))$ не променя взаимното положение на двойките числа $\sigma(q), \sigma(r)$, както и $\sigma(q), \sigma(p)$ или $\sigma(q), \sigma(p+1)$. При разместването на $\sigma(p)$ със $\sigma(p+1)$ се създава инверсия, ако $\sigma(p+1) > \sigma(p)$ или се унищожава инверсия, ако $\sigma(p+1) < \sigma(p)$.

В общия случай, транспозицията $(\sigma(p),\sigma(q))$ за $1 \leq p < q \leq n$ се разлага в произведение

$$(\sigma(p),\sigma(q)) = \underbrace{(\sigma(q),\sigma(p+1))\ldots(\sigma(q),\sigma(q-1))}_{q-1-p}\underbrace{(\sigma(p),\sigma(q))\ldots(\sigma(p),\sigma(p+1))}_{q-p}$$

на нечетен брой, т.е. 2(q-p)-1 транспозиции на съседни числа от съответните редици от образи, четени отдясно наляво. Умножението с всяка от тези 2(q-p)-1 транспозиции променя четността на съответната редица от образи, така че умножението на σ с $(\sigma(p), \sigma(q))$ променя четността на редицата от образите.

Твърдение 11. (i) Бсяка пермутация $\sigma \in S_n \setminus \{\varepsilon\}$ се разлага в произведение на транспозиции;

(ii) Бсеки две разлагания на $\sigma \in S_n \setminus \{\varepsilon\}$ в произведение на транспозиции имат една и съща четност на броя на множителите.

Доказателство. (i) Всяка пермутация $\sigma \in S_n \setminus \{\varepsilon\}$ се разлага в произведение на независими цикли. Затова е достатъчно да забележим, че произволен цикъл

$$(i_1,\ldots,i_k)=(i_1,i_k)(i_1,i_{k-1})\ldots(i_1,i_3)(i_1,i_2)$$

се разлага в произведение на транспозиции, четени отдясно наляво.

(ii) Ако $\zeta_k \dots \zeta_1 = \sigma = \eta_m \dots \eta_1$ са две разлагания на $\sigma \in S_n \setminus \{\varepsilon\}$ в произведение на транспозиции ζ_i , η_j , то четността на броя k на множителите на първото разлагане съвпада с четността на броя на инверсиите в редицата $\sigma(1), \dots, \sigma(n)$ от образите на σ . Аналогично, броят m на множителите във второто разлагане има същата четност като броя на инверсиите в редицата $\sigma(1), \dots, \sigma(n)$. Оттук, k и m имат една и съща четност.

Например, $(1,3)(1,2)(1,3)^{-1} = (3,2) = (1,3)(1,2)(1,3)$ са две разлагания на една и съща пермутация в произведение на транспозиции. Да забележим, че не само разлаганията са различни, но и броят на множителите в тези разлагания е различен - съответно, 1 и 3. И двете разлагания имат нечетен брой множители.

Твърдение 12. За всяко естествено число $n \geq 2$ множеството A_n на четните пермутации от S_n е нормална подгрупа на S_n с индекс 2. В частност, редът на A_n е

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}.$$

Доказателство. Ако $\sigma=(i_{2k},j_{2k})\dots(i_1,j_1), \tau=(i'_{2m},j'_{2m})\dots(i'_1,j'_1)\in A_n$ са четни пермутации, то

$$\sigma\tau^{-1} = [(i_{2k}, j_{2k}) \dots (i_1, j_1)][(i'_{2m}, j'_{2m}) \dots (i'_1, j'_1)]^{-1} =$$

$$= [(i_{2k}, j_{2k}) \dots (i_1, j_1)][(i'_1, j'_1)^{-1} \dots (i'_{2m}, j'_{2m})^{-1}] =$$

$$= [(i_{2k}, j_{2k}) \dots (i_1, j_1)](i'_1, j'_1) \dots (i'_{2m}, j'_{2m})] \in A_n$$

е четна пермутация, вземайки предвид $(i'_s, j'_s)^{-1} = (i'_s, j'_s)$ за произволна транспозиция (i'_s, j'_s) . Това доказва, че A_n е подгрупа на S_n .

За произволни фиксирани $1 \le i < j \le n$, лявото умножение

$$\mu_{(i,j)}: A_n \longrightarrow S_n \setminus A_n$$

с (i,j) е взаимно еднозначно изображение на множеството A_n на четните пермутации върху множеството $S_n \setminus A_n$ на нечетните пермутации. Аналогично, лявото умножение

$$\mu_{(i,j)}: S_n \setminus A_n \longrightarrow A_n,$$

с (i,j) е биективно изображение на множеството $S_n \setminus A_n$ на нечетните пермутации върху множеството A_n на четните пермутации. Следователно $S_n \setminus A_n = (i,j)A_n$ и

$$S_n = A_n \cup (i,j)A_n$$

е разлагането на S_n в леви съседни класове относно A_n . В резултат, A_n е подгрупа на S_n с индекс $[S_n:A_n]=2$. В частност, подгрупата A_n на S_n е нормална и по Теоремата на Лагранж, редът на A_n е

$$|A_n|=rac{|S_n|}{[S_n:A_n]}=rac{n!}{2}$$
 за всяко $n\geq 2.$