```
//ring counter code;
module ring1(clk,q);
input clk;
output[3:0]q;
wire [1:0]count;
wire en=1;
bitcounter2 one(clk,count[1:0]);
d2to4 two(en,count[1:0],q[3:0]);
endmodule
module dff11(clk,d,q);
input clk,d;
output q;
reg q;
always@(posedge clk)
begin
q=d;
end
endmodule
module d2to4(en,w,y);
input en;
input [1:0]w;
output [3:0]y;
reg [3:0]y;
always@(en or w)
begin
y=0;
if(en==1)
case(w)
0:y[3]=1;
```

```
1:y[2]=1;
2:y[1]=1;
```

3:y[0]=1;

endcase

end

endmodule

module bitcounter2(clk,q);

input clk;

output[1:0]q;

 $dff11 ffo(clk,q[1]^q[0],q[1]);$

dff11 ff1(clk, q[0], q[0]);

endmodule

Name:	Value:	820.0	ns 840.	Ons 860	0.0ns	880 _. 0ns	900 ₋ 0n	ıs 920.	Ons !	940 _. 0ns	960	.0ns	980.0ns	1.0
ii clk	0													
💿 q	B 0100	1000	X	0100		0010		X	0001			1000		0100
ounter2:one q	B 01	00		01	X	10	X		11	=X		00	X	01
	B 01	00	01		_X	10		11		=X $=$	00		X_	01
	B 0100	1000	0100		\square (0010		0001			1000		X	0100

Johnson counter

module john(clk,q);

input clk;

output [4:0]q;

dff1 ffo(clk, \sim q[4],q[0]);

dff1 ff1(clk,q[0],q[1]);

dff1 ff2(clk,q[1],q[2]);

dff1 ff3(clk,q[2],q[3]);

dff1 ff4(clk,q[3],q[4]);

endmodule

module dff1(clk,d,q);

input clk,d;
output q;
reg q;
always@(posedge clk)
begin
q=d;

endmodule

end

