1 Πρόβλημα

Στο πρόβλημα του εκκρεμούς με απόσβεση και εξωτερική περιοδική δύναμη να πάρετε:

$$\omega_0 = 1$$
, $\omega = 2$, $\gamma = 0.2$

και να μελετήσετε την κίνηση του εκκρεμούς όταν το πλάτος (ανάλογο της δύναμης) A μεταβάλλεται στο διάστημα [0.2,5.0]. Να πάρετε διακριτές τιμές του A χωρίζοντας το παραπάνω διάστημα σε διαστήματα πλάτους $\delta A=0.002$. Για κάθε τιμή του A, να καταχωρήσετε σε ένα αρχείο την τιμή του A, της γωνιακής θέσης και γωνιακής ταχύτητας του εκκρεμούς όταν $t_k=k\pi$ με $k=k_{trans},k_{trans}+1,k_{trans}+2,\ldots,k_{max}$:

$$A \qquad \theta(t_k) \qquad \dot{\theta}(t_k)$$

Η επιλογή του k_{trans} γίνεται έτσι ώστε να παραλειφθεί η μεταβατική συμπεριφορά (transient behavior) και να είστε βέβαιοι πως μελετάτε τη μόνιμη κατάσταση του εκκρεμούς. Μπορείτε να πάρετε $k_{max}=500$, $k_{trans}=400$, $t_i=0$, $t_f=500\pi$, και να χωρίσετε τα διαστήματα $[t_k,t_k+\pi]$ σε 50 υποδιαστήματα. Διαλέξτε $\theta_0=3.1$, $\dot{\theta}_0=0$.

- 1. Φτιάξτε τη γραφική παράσταση του διαγράμματος διακλάδωσης που προκύπτει τοποθετώντας σε διάγραμμα τα σημεία $(A, \theta(t_k))$.
- 2. Επαναλάβατε τοποθετώντας σε διάγραμμα τα σημεία $(A, \dot{\theta}(t_k))$.
- 3. Εξετάστε αν τα αποτελέσματά σας εξαρτώνται από την επιλογή των $\theta_0,\ \dot{\theta}_0$ επαναλαμβάνοντας για διαφορετικές τιμές, λ.χ. $\theta_0=0,\ \dot{\theta}_0=1.$
- 4. Μελετήστε την περιοχή που ξεκινάει η χαοτική συμπεριφορά: Πάρτε $A\in[1.0000,1.0400]$ με $\delta A=0.0001$ και $A\in[4.4300,4.4500]$ με $\delta A=0.0001$ και βρείτε με τη δεδομένη ακρίβεια την τιμή A_c που ξεκινάει η χαοτική συμπεριφορά.
- 5. Στη συνέχεια να αναπαραστήστε γραφικά τα σημεία $(\theta(t_k),\dot{\theta}(t_k))$ για A=1.034,1.040,1.080,1.400,4.450,4.600. Τοποθετήστε 2000 σημεία για κάθε τιμή του A και σχολιάστε πότε η χαοτική συμπεριφορά είναι εντονότερη.

2 Πρόβλημα

Στο πρόβλημα του εκκρεμούς με απόσβεση και εξωτερική περιοδική δύναμη να πάρετε:

$$\omega_0 = 1$$
, $\omega = 2$, $\gamma = 0.2$

Η κίνηση του συστήματος για $A=0.60,\ A=0.75$ και A=0.85 είναι περιοδική μετά από τη μεταβατική συμπεριφορά (transient behavior). Να μετρήσετε την περίοδο της κίνησης με ακρίβεια 3 σημαντικών δεκαδικών ψηφίων σε κάθε περίπτωση και να τη συγκρίνετε με την φυσική περίοδο του εκκρεμούς και την περίοδο της εξωτερικής δύναμης. Ως αρχικές συνθήκες να πάρετε $(\theta_0,\dot{\theta}_0)=(3.1,0.0),\,(2.5,0.0),\,(2.0,0.0),\,(1.0,0.0),\,(0.2,0.0),\,(0.0,1.0),\,(0.0,3.0),\,(0.0,6.0)$ και να επιβεβαιώσετε πως η περίοδος είναι ανεξάρτητη των αρχικών συνθηκών.