Introducción a la Lógica y la Computación - Examen Final 3/8/2015

Apellido y Nombre:

(1)

- (a) Mostrar que en toda álgebra de Boole vale la siguiente propiedad: si $x \leq y^c$, entonces $y \leq x^c$.
- (b) Decidir si existen dos reticulado L_1 y L_2 tales que L_1 no es isomorfo a L_2 , pero $Irr(L_1)$ sea isomorfo a $Irr(L_2)$. Si existen dar un ejemplo de ellos; si no existen, explicar por qué.
- (c) Decida si las siguientes afirmaciones valen en todo reticulado. Demostrarlas o refutarlas con un contraejemplo.
 - (i) Si $x \leq y$, entonces $(x \vee z) \wedge y \leq x \vee (z \wedge y)$.
 - (ii) Si $z \le w$, entonces $x \lor z \le (x \lor z) \land (x \lor w)$.
- (2) Sea Δ un conjunto consistente maximal tal que $\{\neg(p_1 \lor p_2), p_1 \lor p_3, \neg p_2 \to p_4, \neg p_4 \to p_5\} \subseteq \Delta$.
 - (a) ¿Se puede afirmar que $p_5 \in \Delta$? Justifique su respuesta.
 - (b) Suponga además que $p_4 \to P \in \Delta$. Pruebe que $P \in \Delta$.
- (3) (a) Encuentre una derivación, sin usar RAA, de $P \lor \neg P \vdash (\neg P \to \neg Q) \to (Q \to P)$.
 - (b) Decidir si la siguiente afirmación es verdadera o falsa, justificando su respuesta. Si $\{R,Q\} \models P$, entonces $\neg P \vdash \neg Q \lor \neg R$.
- (4) Proponga una expresión regular cuyo lenguaje sean las palabras sobre $\{0,1\}$ con una cantidad par de 0s.
 - (a) Utilice el algoritmo para obtener un NFA a partir de esa expresión regular.
 - (b) Realice la determinización del NFA para obtener un DFA.
- (5) Sea $L = \{ \alpha \beta \mid \alpha = 0^n, \beta = 1^{n+k} \}.$
 - (a) Decidir si L es regular.
 - (b) Si L es regular, dar una gramática regular que lo genere. Si L no es regular, dar una gramática libre de contexto que lo genere.

Ejercicios para alumnos libres:

- (1) Sea Δ un conjunto consistente maximal. Explique qué significa que Δ realiza la disyunción y demuéstrelo.
- (2) Sean L_1 y L_2 dos lenguajes regulares. Demostrar que L_1L_2 también lo es.