MADI

Inférences probabilistes dans les réseaux bayésiens

Pierre-Henri WUILLEMIN

DESIR LIP6 pierre-henri.wuillemin@lip6.fr

Une base de données

Soit une base de données présentée sous la forme d'un fichier tabulaire comportant 4 colonnes.

Α	В	С	D	
true	false	false	true	
true	false	true	true	
false	true	false	false	
true	true	false	true	
true	false	false	false	

- Il y a répétition d'évènements donc fréquences calculables donc représentable par un modèle probabiliste
- Chaque évènement est identifié par la liste des valeurs des variables $A \ a \ D$: modèle probabiliste factorisé
- Peut-on représenter ce système par un réseau bayésien?

MAD

Inférences probabilistes dans les réseaux bayésiens

2 / 4

Vers un réseau bayésien (1) : χ^2

Pour **construire** un réseau bayésien (différent de **apprendre**), il faut isoler les indépendances conditionnelles dans ce modèle probabiliste factorisé : le χ^2 !

Soit X et Y deux v.a. binaires,

si
$$X \perp \!\!\! \perp Y$$
 alors $\forall i, j, \ p(X = i, Y = j) = p(X = i) \cdot p(Y = j)$

Dans le cadre d'un test expérimental, on ne peut avoir que des estimations fréquentistes des probabilités : si $X \perp \!\!\! \perp Y$ alors $\forall i,j,\; p(X=i,Y=j) = \frac{n_{jj}}{n} = p(X=i) \cdot p(Y=j) = \frac{n_{j,}}{n} \cdot \frac{n_{j,j}}{n}$

Tester l'indépendance de X et Y revient donc à comparer $\frac{n_{ij}}{n}$ et $\frac{n_{i}}{n} \cdot \frac{n_{.j}}{n}$.

ightharpoonup Définition (χ^2 d'écart à l'indépendance)

$$d^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(n_{ij} - \frac{n_{i, \cdot} n_{.j}}{n}\right)^{2}}{\frac{n_{i, \cdot} n_{.j}}{n}}$$

alors $d^2 \le n \cdot \min(s-1, r-1)$ suit une loi du χ^2 .

Vers un réseau bayésien (2) : tableau de contingence

Première étape donc : calculer les n_{ij} : le tableau de contingence. En l'occurence, pour notre problème, ce sont des n_{ijkl} qu'il faut calculer (4 variables).

En supposant une base de données de 1000 expériences, on trouve :

		A=True		A=False	
		B=True	B=False	<i>B</i> =True	<i>B</i> =False
C=True	<i>D</i> =True	7	77	2	58
	D=False	5	307	2	230
C=False	<i>D</i> =True	65	19	22	14
	D=False	43	77	14	58

On peut vérifier que $7+77+2+58+5+307+2+230+65+19+22+14+43+77+14+58=1\,000$

MADI

Inférences probabilistes dans les réseaux bayésiens

4 / 4

Vers un BN (3) : $A \perp \!\!\! \perp B$?

ĽP

MADI

Inférences probabilistes dans les réseaux bayésiens

5 / 42

Vers un BN (4) : $A \perp \!\!\! \perp C \mid B$?

Vers un BN (5) : liste d'indépendances

- $\bullet A \perp \!\!\! \perp C \mid B$
- $\bullet A \perp \!\!\!\perp D \mid B$
- C ⊥⊥ D | B

MADI

Inférences probabilistes dans les réseaux bayésiens

7 / 4

Un réseau bayésien

MADI

Inférences probabilistes dans les réseaux bayésiens

8 / 42

Calcul dans un réseau bayésien

• Les quelques manipulations de base :

Décomposition
$$P(x, y \mid z) = P(x \mid y, z) \cdot P(y \mid z)$$

Chain rule
$$P(X_1, \dots, X_n) = \prod_{i=1}^{n} P(X_i \mid X_1, \dots, X_{i-1})$$

Indépendance
$$X \perp \!\!\! \perp Y \mid Z \Rightarrow P(x \mid y, z) = P(x \mid z)$$

Loi de Bayes $P(x \mid y, z) \propto P(y \mid x, z) \cdot P(x \mid z)$

• Dans un réseau bayésien :

Markov local
$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

MADI

MADI

Inférences probabilistes dans les réseaux bayésiens

Calcul dans un réseau bayésien (3) : $P(C|\overline{d})$?

 $P(c \mid \overline{d})$

MADI

Inférences probabilistes dans les réseaux bayésiens

14 / 42

MADI

Inférences probabilistes dans les réseaux bayésiens

Inférence dans les poly-arbres (graphes orientés sans cycle)

Les messages transitent de nœuds en nœuds dans le sens (π -messages) ou en remontant $(\lambda$ -messages) les arcs du graphe.

Une propagation de l'ensemble des messages sur la structure du graphe permet à tous les nœuds de connaître l'état global (toute l'information).

Si un nœud à n parents, il doit connaître les messages issus de n-1 de ses voisins pour pouvoir envoyer le message vers son $n^{\text{ème}}$ voisin.

ĽP

Inférences probabilistes dans les réseaux bayésiens

Algorithme de propagation de messages (version simplifiée sans information)

Version asynchrone

- Initialisation
 - les nœuds sans parents peuvent envoyer leurs messages π . les nœuds sans enfants peuvent envoyer leurs messages λ .
- Propagation : pour chaque nœud (avec n voisins),

 - si n-1 messages reçus alors envoi du message vers le $n^{\text{ème}}$ voisin.
 si n messages reçus alors envoi des messages restants à envoyer vers tous les voisins (et calcul de sa loi a posteriori).

On note que la complexité de cet algorithme est proportionnelle au nombre d'arcs dans le graphe.

MADI

Inférences probabilistes dans les réseaux bayésiens

Algorithme de propagation de messages (2)

Version centralisée

- Choix d'une racine
- Absorption

Tout nœud envoie son message vers la racine dès qu'il le peut

- Intégration
 - La racine a reçu les messages de tous ses voisins. Elle envoie donc ses messages vers tous ses voisins.
- Diffusion

Tout nœud ayant reçu le message venant de la racine a reçu tous ses messages et, donc, peut envoyer tous ses autres message

MADI

Inférences probabilistes dans les réseaux bayésiens

merchees productions and test research sujections

Problèmes dans un graphe avec cycles (mais toujours sans circuit)

$$P(E) = \sum_{A,B,C,D} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid B) \cdot P(E \mid C,D)$$

En utilisant l'algorithme des messages :

- **2** $\pi_C(A) = P(A)$

- $P(E) = \sum_{D,C} P(E \mid C,D) \cdot \pi_E(C) \cdot \pi_E(D)$

$$P(E) \neq \sum_{*} P(E \mid C, D) \cdot P(C \mid A) \cdot P(A) \cdot P(D \mid B) \cdot P(B \mid A') \cdot P(A')$$

MAD

Inférences probabilistes dans les réseaux bayésiens

23 / 42

Propager dans des graphes avec cycles (mais toujours sans circuit) ?

La propagation par messages qui permet ne fonctionne que dans un graphe sans cycles.

Se ramener à un graphe sans cycle

Méthodes multiples, par exemple (pour les plus connues) :

- Conditioning: Couper le graphe (retirer des arcs) jusqu'à obtenir un graphe sans cycle.
- Clustering : Regrouper (fusionner) les nœuds jusqu'à obtenir un graphe sans cycle.

ĽÞ

MAD

nférences probabilistes dans les réseaux bayésiens

Conditioning: méthode coupe-cycle

Conditionnement par S

Soit un réseau bayésien sur l'ensemble de variables V. Soient $S \subset V$ et s une instanciation des variables de S. Lors de la propagation de l'information s, tous les messages π issus d'une variable de S seront déterministes. Cette propagation est alors équivalente à la propagation dans un réseau bayésien où les arcs issus des nœuds de S seraient supprimés.

Ensemble de coupe

On appelle ensemble de coupe, un ensemble S de nœuds qui permet de supprimer les cycles du réseau bayésien.

MADI

Inférences probabilistes dans les réseaux bayésiens

25 / 4

Conditioning: méthode coupe-cycle (2)

On rappelle que $\forall S \subset V$, on a la propriété :

$$\forall x \in V, P(x) = \sum_{s} P(x \mid s).P(s)$$

Algorithme du coupe-cyle (global)

Soit un réseau bayésien G,

- Soit $S = \{S_1, \dots, S_n\}$ un ensemble de coupe sur G
- - Calculer $p_s = P(s)$.
 - ullet Calculer $P_s(x) = P(x \mid s)$ dans le réseau sans cycle.
- $P(x) = \sum_{s} (p_s \cdot P_s(x))$

Si on note $\#_i$ le nombre de modalité de la variable S_i , cet algorithme consiste donc à calculer $\prod_i \#_i$ inférences dans un graphe sans cycle.

MADI

Inférences probabilistes dans les réseaux bayésien

26 / 4

Osons le calcul des probabilités a priori

$$P(A, C, D, F, G, I) = P(A)P(C|A)P(F|C)P(D)P(G|D)P(I|F, G)$$

Calcul de P(I)?

Shafer-Shenoy brut

P(A, C, D, F, G, I) = P(A)P(C|A)P(F|C)P(D)P(G|D)P(I|F, G)

$$P(I) = \sum_{G} \left(\sum_{F} \left(\sum_{D} \left(\sum_{C} \left(\sum_{A} P(A, C, D, F, G, I) \right) \right) \right) \right)$$

$$\sum_{A} P(A, C, D, F, G, I) = \underbrace{\left(\sum_{A} P(A)P(C|A)\right)}_{P(C)} P(F|C)P(D)P(G|D)P(I|F, G)$$

$$\sum_{C} \sum_{A} P(A, C, D, F, G, I) = \underbrace{\left(\sum_{C} P(C)P(F|C)\right)}_{P(F)} P(D)P(G|D)P(I|F, G)$$

$$\sum_{C} \sum_{A} P(A, C, D, F, G, I) = \underbrace{\left(\sum_{C} P(C)P(F|C)\right)}_{P(F)} P(D)P(G|D)P(I|F, G)$$

Dissection du produit de deux probabilités

$$P(A,B|C) = \underbrace{\begin{pmatrix} 0.15 & 0.18 & 0.07 & 0.56 \\ 0.15 & 0.12 & 0.63 & 0.14 \end{pmatrix}^{b_1}_{b_2}}_{P(B|A,C)} \underbrace{\begin{pmatrix} a_1 & a_2 \\ c_1 & c_2 \\ c_2 & c_1 & c_2 \\ c_3 & c_2 & c_1 & c_2 \\ c_4 & c_2 & c_1 & c_2 \\ c_5 & c_2 & c_1 & c_2 \\ c_5 & c_2 & c_1 & c_2 \\ c_7 & c_7 & c_2 \\ c_7 & c_7 & c_7 \\ c_7 & c_7 \\ c_7 & c_7 & c_7 \\ c_7 & c_7 \\ c_7 & c_7 & c_7 \\ c_7 & c_7 & c_7 \\ c$$

$$P(I,C|B) = \begin{pmatrix} b_1 & b_2 & P(I|C) \\ \hline c_1 & c_2 & \hline c_1 & c_2 \\ \hline 0.48 & 0.08 & 0.48 & 0.08 \\ \hline 0.12 & 0.32 & 0.12 & 0.32 \end{pmatrix} i_1 = \begin{pmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{pmatrix} i_2$$

$$P(C)$$

$$C_1 & C_2$$

$$C_2 & C_2$$

$$C_3 & C_2$$

$$C_4 & C_2$$

$$C_4 & C_2$$

$$C_5 & C_2$$

$$C_7 & C_2$$

$$C_7$$

Shafer-Shenoy graphique (1/6)

Séquence d'élimination

A CDFG

$$P(A, C, D, F, G, I) = P(A)P(C|A) P(F|C)P(D)P(G|D)P(I|F, G)$$

somme sur
$$A \Longrightarrow P(C) = \sum_{A} P(A)P(C|A)$$

Shafer-Shenoy graphique (2/6)

Séquence d'élimination

ACDFG

$$P(C, D, F, G, I) = P(C)P(F|C) P(D)P(G|D)P(I|F, G)$$

$$P(A)P(C|A)$$

$$AC$$

$$C$$

$$FC$$

$$D$$

$$GD$$

$$IFG$$

$$P(C)$$

$$P(F|C)$$

$$P(D)$$

$$P(G|D)$$

$$P(I|F,G)$$

somme sur
$$C \Longrightarrow P(F) = \sum_{C} P(C)P(F|C)$$

MAD

Inférences probabilistes dans les réseaux bayésiens

Shafer-Shenoy graphique (3/6)

Séquence d'élimination

ACDFG

$$P(D, F, G, I) = P(F) P(D)P(G|D) P(I|F, G)$$

$$P(A)P(C|A) \qquad P(F|C)$$

$$AC \longrightarrow C \qquad FC$$

$$F \qquad D \qquad GD \qquad IFG$$

$$P(F) \qquad P(D) \quad P(G|D) \quad P(I|F,G)$$

$$\text{somme sur }D\Longrightarrow P(G)=\sum_{D}P(D)P(G|D)$$

MAD

Inférences probabilistes dans les réseaux bayésiens

32 / 4

Shafer-Shenoy graphique (4/6)

Séquence d'élimination

ACDFG

$$P(F,G,I) = P(F)P(I|F,G) P(G)$$

$$P(A)P(C|A) \qquad P(F|C) \qquad P(D)P(G|D)$$

$$AC \qquad FC \qquad GD$$

$$F \qquad G \qquad IFG$$

$$P(F) \qquad P(G) \qquad P(I|F,G)$$

somme sur
$$F \Longrightarrow P(I|G) = \sum_{F} P(F)P(I|F,G)$$

MAD

Shafer-Shenoy graphique (5/6)

Séquence d'élimination

ACDFG

P(G,I) = P(I|G)P(G)

$$\text{somme sur } G \Longrightarrow P(I) = \sum_G P(G)P(I|G)$$

MADI

Inférences probabilistes dans les réseaux bayésiens

34 / 4

Shafer-Shenoy graphique (6/6)

Le graphe final obtenu par Shafer-Shenoy

Algorithme de Shafer-Shenoy

- Se donner une séquence d'élimination des nœuds ⇒ join tree,
- 2 propager les impacts dans le sens des flèches :
 - dans les ellipses (cliques), on effectue des multiplications,
 - dans les rectangles (séparateurs), on effectue des additions (projections).

MADI

Inférences probabilistes dans les réseaux bayésien

5 / 43

Clustering : arbre de jonction et algorithme de Jensen

Il s'agit d'opérer sur des regroupements de variables... Mais lesquels?

$$P(s, l, d, f, v)$$
= $P(s) \cdot P(l \mid s) \cdot P(d \mid s) \cdot P(f \mid l) \cdot P(v \mid d, l)$
= $f(s, l) \cdot g(s, d) \cdot h(l, f) \cdot k(d, l, v)$
= $j(s, l, d) \cdot g(s, d) \cdot h(l, f) \cdot k(d, l, v)$

Arbre de jonction

Construction de l'arbre de jonction

ldée : création d'un graphe non-orienté à partir du réseau bayésien, dont les cliques (ensembles complets maximaux du graphe seront les nœuds de l'arbre de jonction.

Les termes $P(X \mid Parent_X)$ de la factorisation récursive font apparaître des sous-cliques nécessaires.

Moralisation

Le graphe moral d'un réseau bayésien est le graphe non orienté sous-jacent au réseau bayésien, auquel on ajoute des arêtes liant les parents de chaque nœud.

MAD

Inférences probabilistes dans les réseaux bayésiens

37 / 4

Construction de l'arbre de jonction (2)

L'existence de l'arbre de jonction n'est assuré que si le graphe est triangulé (c'est-à-dire : pas de cycle de longueur > 3 sans corde).

Triangulation

On obtient un graphe triangulé par élimination des variables :

- Supprimer itérativement tous les nœuds du graphe.
- Chaque suppression d'un nœud entraîne de relier tous ses voisins entre eux.
- Commencer par les nœuds n'appartenant qu'à une seul clique

un ordre d'élimination : F, V, T, S, L, D

ĽР

MAD

Inférences probabilistes dans les réseaux bayésiens

38 / 4

Construction de l'arbre de jonction (3)

 $L'arbre\ de\ jonction\ aura\ donc\ comme\ nœuds\ les\ cliques\ du\ graphe\ moralis\'e\ puis\ triangul\'e.\ Comment\ cr\'eer\ les\ arcs\ entre\ les\ cliques\ ?$

Arbre de jonction

- Énumérer chaque clique du graphe triangulé.
- ullet Pour chaque clique C_i , trouver la clique C_j (j < i) d'intersection maximale avec C_i .
- Relier C_i et C_j . Noter le séparateur $S_{ij} = C_i \cup C_j$.

Il n'y a pas unicité de l'arbre de jonction pour un réseau bayésien.

Une décomposition de $P({\it V})$ suivant les cliques :

$$P(v) = \underbrace{P(s) \cdot P(l \mid s)}_{\Phi_1(d,l,s)} \cdot \underbrace{P(t \mid s) \cdot P(d \mid t)}_{\Phi_2(s,t,d)} \cdot \underbrace{P(f \mid l)}_{\Phi_3(f,l)} \cdot \underbrace{P(v \mid l,d)}_{\Phi_4(v,l,d)}$$

Une autre décomposition :

$$P(v) = \frac{P(s,t,d) \cdot P(s,l,d) \cdot P(l,f) \cdot P(l,d,v)}{P(s,d) \cdot P(l) \cdot P(l,d)}$$

Factorisation de P

$$P(v) = \frac{\prod_{i} \Phi_{C_i}(c_i)}{\prod_{i < j} \Phi_{S_{ij}}(s_{ij})}$$

MADI

Inférences probabilistes dans les réseaux bayésiens

40 / 4

Propagation sur les potentiels dans l'arbre de jonction

But : Fournir à toutes les cliques (\mathcal{C}) /séparateurs (\mathcal{S}) un potentiel qui soit la loi jointe de ses variables.

Propagation dans l'arbre de jonction

• Initialisation :

 $\forall \textit{C}_i \in \textit{C}, \text{ \'enum\'er\'ese dans un ordre topologique,} \\ \Psi^0_{\textit{C}_i} = \prod_{X \in \textit{C}_i, X \notin \textit{C}_i, j < i} \textit{P}(X \mid \Pi_X)$

(et les observations associées)

 $\forall S \in \mathcal{S}, \ \Psi_S^0 = 1 \ \text{(fonction constante)}.$

• Collecte : soit une clique C_i dont toutes les cliques adjacentes C_k sauf une unique C_j ont calculé leurs $\Psi^1_{C_k}$. Alors

$$\Psi^1_{S_{ij}}(s) = \sum_{C_i \setminus S_{ij}} \Psi^1_{C_i}(c)$$

et

$$\Psi_{C_j}^1 = \Psi_{C_j}^0 \cdot \frac{\Psi_{S_{ij}}^1}{\Psi_{S_{ii}}^0}$$

 Distribution : le dernier nœud de l'étape précédente, racine de la propagation, distribue vers tous ses voisins (qui feront de même) en utilisant exactement les mêmes formules que ci-dessus.

$$\Psi^2_{S_{ij}}(s) = \sum_{C_i \setminus S_{ij}} \Psi^2_{C_i}(c)$$

et

$$\Psi_{C_j}^2 = \Psi_{C_j}^1 \cdot \frac{\Psi_{S_{jj}}^2}{\Psi_{S_{jj}}^1}$$

MADI

Inférences probabilistes dans les réseaux havésie

41 / 42

Petit guide sur Jensen et Lazy Propagation

Quelques références

- S.L. Lauritzen, D.J. Spiegelhalter (1988) Local computations with probabilities on graphical structures and their application to expert systems(with discussion), Journal of the Royal Statistical Society, Series B, 50, pp.157–224.
- F.V. Jensen, S.L. Lauritzen, K.G. Olesen (1990) Bayesian Updating in Causal Probabilistic Networks by Local Computations, Comp. Stat. Quarterly, 4, pp.269–282.
- A.L. Madsen, F.V. Jensen (1998) Lazy Propagation in Junction Trees, Proceedings d'UAI-98.
- A.L. Madsen, F.V. Jensen (1999) Lazy Propagation: A Junction Tree Inference Algorithm Based on Lazy Evaluation, Artificial Intelligence, 113, pp.203–245.