Single Source Shortest Path

Shortest Path Problems

- Many problems can be modeled using graphs with weights assigned to their edges
- representing cities by vertices and flights by edges
- assigning distances between cities to the edges
- assigning flight times to edges
- assigning fares to the edges

Graphs that have a number assigned to each edge

Used to model:

- Communication networks
- Communication costs
- Response times of the computers over these lines
- Distance between computers

Shortest Path Algorithm

- Generalize distance to weighted setting
- Digraph G = (V,E) with weight function W: E \rightarrow R (assigning real values to edges)
- Weight of path $p = v1 \rightarrow v2 \rightarrow ... \rightarrow vk$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

- Shortest path = a path of the minimum weight
- Applications
 - static/dynamic network routing
 - robot motion planning
 - map/route generation in traffic

Shortest Path Problems

- Single-source (single-destination). Find a shortest path from a given source (vertex s) to each of the vertices. The topic of this lecture.
- **Single-pair.** Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.
- Unweighted shortest-paths BFS.

For this...

We'll have Dijkstra's Algorithm as an example.

Dijkstra's Algorithm

Edsger Wybe Dijkstra

May 11, 1930 – August 6, 2002

Dutch computer scientist from Netherlands

Received the 1972 A. M. Turing Award

Known for his many essays on programming

Single-Source Single Path Problem

• The problem of finding shortest paths from a source vertex ν to all other vertices in the graph.

Weighted graph G = (E,V)

Source vertex $s \in V$ to all vertices $v \in V$

Solution to Single-Source Single Path Problem

- Works on both directed and undirected graphs.
- All edges must have nonnegative weights.
- Graph must be connected

Output of Dijkstra's Algorithm

Original algorithm outputs value of shortest path not the path itself

Value: $\delta(1,5) = 7$

Path: {1,3,5}

Implementation

Edge Relaxation

• Relaxing an edge, (a concept you can find in other shortest-path algorithms as well) is trying to lower the cost of getting to a vertex by using another vertex.

Edge Relaxation

Consider an edge (u,v)

If D[v] > D[u]+w(u,v) then D[v]=D[u]+w[u,v]

Edge Relaxation

Maintain value D[u] for each vertex

Each starts at infinity, and decreases as we find out about a shorter path from v to u (D[v] = 0)

Maintain priority queue, Q, of vertices to be relaxed

Use D[u] as key for each vertex

Remove min vertex from Q, and relax its neighbors

Dijkstra's

```
dist[s] \leftarrow 0
                                        (distance to source vertex is zero)
for all v \in V-\{s\}
     do dist[v] \leftarrow \infty
                                        (set all other distances to infinity)
S←Ø
                                        (S, the set of visited vertices is initially empty)
Q \leftarrow V
                                        (Q, the queue initially contains all vertices)
while Q ≠Ø
                                        (while the queue is not empty)
do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                        (add u to list of visited vertices)
     for all v \in neighbors[u]
          do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                  then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                  (if desired, add traceback code)
return dist
```


А	В	С	D	Е
Clon	low	Con	Clon	Clon

	A	В	C	D	E
	Hom	Clon	low	lon	lon
Α	0	7 A	2 A	Con	Con

	A	В	C	D	E
	Close	Con	Con	Clon	Close
Α	0	7 A	2 A	love	Con

	A	В	C	D	E
	Hom	Clon	low	low	low
Α	0	7 A	2 A	Close	Close
С	0	4 C	2 A	10 C	7 C

	A	В	C	D	E
	How	Clon	low	low	lon
Α	0	7 A	2 A	√ low	Clove
С	0	4 C	2 A	10 C	7 C

	A	В	C	D	E
	Com	Con	○ ✓ow	Close	Clon
Α	0	7 A	2 A	Close	New
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Con	Con	Cove	Clon	Close
Α	0	7 A	2 A	Close	New
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Com	Clon	Con	Clon	Close
Α	0	7 A	2 A	Con	Clove
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C

	A	В	С	D	E
	low	Clon	low	lon	lon
Α	0	7 A	2 A	Conc	Clove
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Close	Clon	Con	Con	Clon
Α	0	7 A	2 A	Con	Con
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Close	Clon	Cow	Con	Clon
Α	0	7 A	2 A	Con	Con
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Close	Clon	Con	Con	Clon
Α	0	7 A	2 A	Con	Con
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

Solution

	A	В	C	D	E
	Close	low	Cow	Con	Clon
Α	0	7 A	2 A	(Ion)	Clove
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Close	Clon	Con	Con	Clon
Α	0	7 A	2 A	Con	Con
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

	A	В	C	D	E
	Close	Clon	Con	Con	Clon
А	0	7 A	2 A	Con	Con
С	0	4 C	2 A	10 C	7 C
В	0	4 C	2 A	5 B	7 C
D	0	4 C	2 A	5 B	7 C
E	0	4 C	2 A	5 B	7 C

Looking for the minDistance is O(V)

```
dist[s] \leftarrow 0
                                                   (distance to source)
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                                        ces to infinity)
                                                   (set all other
           S←Ø
                                                                 sited vertices is initially empty)
                                                   (S, the set
           Q \leftarrow V
                                                            deue initially contains all vertices)
           while Q ≠Ø
                                                       e the gueue is not empty)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S \leftarrow S \cup \{u\}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                             (if desired, add traceback code)
           return dist
```

```
dist[s] \leftarrow 0
                                                           (distance to source vertex is zero)
                  for all v \in V - \{s\}
        O(V)
                         do dist[v] \leftarrow \infty
                                                          (set all other distances to infinity)
                   S←Ø
                                                          (S, the set of visited vertices is initially empty)
                   Q \leftarrow V
                                                          (Q, the queue initially contains all vertices)
                   while Q ≠Ø
        O(V)
                                                          (while the queue is not empty)
                   do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
Continue
                       S \leftarrow S \cup \{u\}
                                                          (add u to list of visited vertices)
looping
                        for all v \in neighbors[u]
until queue
                             do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                                     then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
is empty
                                                                    (if desired, add traceback code)
                   return dist
```

Looking for the minDistance is O(V)

```
dist[s] \leftarrow 0
                                                   (distance to source
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                   (set all other
                                                                        ces to infinity)
           S←Ø
                                                                 sited vertices is initially empty)
                                                   (S, the set
           Q \leftarrow V
                                                           deue initially contains all vertices)
           while Q ≠Ø
                                                    (while the queue is not empty)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S \leftarrow S \cup \{u\}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                             (if desired, add traceback code)
           return dist
```

```
dist[s] \leftarrow 0
                                                   (distance to source vertex is zero)
          for all v \in V - \{s\}
O(V)
                do dist[v] \leftarrow \infty
                                                  (set all other distances to infinity)
           S←Ø
                                                  (S, the set of visited vertices is initially empty)
           Q \leftarrow V
                                                  (Q, the queue initially contains all vertices)
  O(V) while Q \neq \emptyset
                                                  (while the queue is not empty)
          do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S←SU{u}
                                                  (add u to list of visited vertices)
               for all v ∈ neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
       O(E)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                            (if desired, add traceback code)
           return dist
```

Total time $O(|V^2| + |E|) = O(|V^2|)$

```
dist[s] \leftarrow 0
                                                    (distance to source vertex is zero)
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                   (set all other distances to infinity)
           S←Ø
                                                   (S, the set of visited vertices is initially empty)
           Q \leftarrow V
                                                   (Q, the queue initially contains all vertices)
           while Q ≠Ø
                                                   (while the queue is not empty)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S \leftarrow S \cup \{u\}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                             (if desired, add traceback code)
```

return dist

```
dist[s] \leftarrow 0
                                                   (distance to source vertex is zero)
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                   (set all other distances to infinity)
           S←Ø
                                                   (S, the set of visited vertices is initially empty)
           Q \leftarrow V
                                                   (Q, the queue initially contains all vertices)
           while Q ≠Ø
                                                   (while the queue is not empty)
O(V)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S \leftarrow S \cup \{u\}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                             (if desired, add traceback code)
           return dist
```

Looking for the minDistance is O(log(V)) using removeMin()

```
dist[s] \leftarrow 0
                                                   (distance to source
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                   (set all other
                                                                       ces to infinity)
           S←Ø
                                                                 sited vertices is initially empty)
                                                   (S, the set
           Q \leftarrow V
                                                          deue initially contains all vertices)
           while Q ≠Ø
                                                   (while the queue is not empty)
O(V)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S \leftarrow S \cup \{u\}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                             then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                                                             (if desired, add traceback code)
           return dist
```

return dist

```
dist[s] \leftarrow 0
                                                  (distance to source vertex is zero)
          for all v \in V-\{s\}
O(V)
                do dist[v] \leftarrow \infty
                                                 (set all other distances to infinity)
          S←Ø
                                                 (S, the set of visited vertices is initially empty)
          Q \leftarrow V
                                                 (Q, the queue initially contains all vertices)
  O(V) while Q ≠Ø
                                                 (while the queue is not empty)
                                    O(logV)
          do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S←SU{u}
                                                 (add u to list of visited vertices)
               for all v ∈ neighbors[u]
                    do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
       O(E)
                            then d[v] \leftarrow d[u] + w(u, v)
                                                                  (set new value of shortest path)
                                                           (if desired, add traceback code)
```

```
dist[s] \leftarrow 0
                                                    (distance to source vertex is zero)
          for all v \in V-\{s\}
O(V)
                 do dist[v] \leftarrow \infty
                                                   (set all other distances to infinity)
           S←Ø
                                                   (S, the set of visited vertices is initially empty)
           Q \leftarrow V
                                                   (Q, the queue initially contains all vertices)
  O(V) while Q \neq \emptyset
                                                   (while the queue is not empty)
                                      O(logV)
           do u \leftarrow mindistance(Q, dist) (select the element of Q with the min. distance)
               S←SU{u}
                                                   (add u to list of visited vertices)
                for all v \in neighbors[u]
                     do if dist[v] > dist[u] + w(u, v)
                                                                       (if new shortest path found)
       O(E)
                             then d[v] \leftarrow d[u] + w(u, v)
                                                                       (set new value of shortest path)
                                                             (if desired, add traceback code)
           return dist
                            Total time O(VlogV + ElogV) = O((V+E) logV)
```

Bellman-Ford

Mark A as visited

Mark C as Visited

Mark B as Visited

Should be a shorter but will not be reconsidered anymore

Bellman-Ford

• Given some graph, G = (V, E), and some starting node S ∈ V, the BellmanFord algorithm will find the shortest paths (or paths with minimum weight) from S to all other nodes in V. Note that G must not contain any negative weight cycles.

No Well-Defined Shortest Path

Because you can keep lowering the total cost indefinitely, there is no "shortest" path
to nodes reachable through the negative cycle — the cost can be made arbitrarily
negative.

Bellman-Ford algorithm

```
Bellman-Ford(G, s)
     for all v \in V
               dist[v] \leftarrow \infty
               prev[v] \leftarrow null
 4 \quad dist[s] \leftarrow 0
    for i \leftarrow 1 to |V| - 1
                for all edges (u, v) \in E
 6
                           if dist[v] > dist[u] + w(u,v)
                                      dist[v] \leftarrow dist[u] + w(u,v)
 8
                                     prev[v] \leftarrow u
     for all edges (u, v) \in E
11
                if dist[v] > dist[u] + w(u, v)
                           return false
12
```


	Cost	Previous
Α		
В		
С		
D		
F		
Н		

AB AF BC BF DB DC DH FD HF F

	Cost	Previous
Α	0	
В		
С		
D		
F		
Н		

AB AF BC BF DB DC DH FD HF

	Cost	Previous
Α	0	
В	7	Α
С		
D		
F	6	Α
Н		

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D		
F	6	Α
Н		

	Cost	Previous
Α	0	
В	7	Α
C	13	В
D		
F	6	Α
Н		

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D	8	F
F	6	Α
Н		

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D	8	F
F	6	Α
Н		

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D	8	F
F	6	Α
Н		

Second Iteration

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D	8	F
F	6	Α
Н		

Second Iteration

	Cost	Previous
Α	0	
В	7	Α
С	13	В
D	8	F
F	6	Α
Н		

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

Third Iteration

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

Check for negative cycles

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF

Let's trace the path

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
н	10	D

AB AF BC BF DB DC DH FD HF HO

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF HC

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF HC

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB	AF	ВС	BF	DB	DC	DH	FD	HF	НС
----	----	----	----	----	----	----	----	----	----

	Cost	Previous
Α	0	
В	3	D
С	5	D
D	8	F
F	6	Α
Н	10	D

AB AF BC BF DB DC DH FD HF HC

How does bellman-ford detect negative cycles?

Why this works

- If all shortest paths were found in V-1 iterations, no edge should need further relaxation.
- If further relaxation is possible, it means a **path can be made cheaper** which is only possible if there's a **cycle with a net negative weight**.

```
Bellman-Ford(G, s)
               for all v \in V
                                                                                Initialize all the
                          dist[v] \leftarrow \infty
O(V)
                                                                                distances
                          prev[v] \leftarrow null
               dist[s] \leftarrow 0
               for i \leftarrow 1 to |V| - 1
                          for all edges (u, v) \in E
           6
                                     if dist[v] > dist[u] + w(u,v)
                                                dist[v] \leftarrow dist[u] + w(u,v)
           8
                                               prev[v] \leftarrow u
               for all edges (u, v) \in E
                          if dist[v] > dist[u] + w(u, v)
          11
                                     return false
          12
```

```
Bellman-Ford(G, s)
                for all v \in V
                          dist[v] \leftarrow \infty
O(V)
                          prev[v] \leftarrow null
                dist[s] \leftarrow 0
                for i \leftarrow 1 to |V| - 1 O(V)
                           for all edges (u, v) \in E O(E)
O(VE)
                                      if dist[v] > dist[u] + w(u, v)
                                                dist[v] \leftarrow dist[u] + w(u,v)
                                                prev[v] \leftarrow u
                for all edges (u, v) \in E
                           if dist[v] > dist[u] + w(u, v)
           11
                                      return false
           12
```

iterate over all edges/vertices and apply update rule

```
Bellman-Ford(G, s)
                for all v \in V
                          dist[v] \leftarrow \infty
O(V)
                           prev[v] \leftarrow null
               dist[s] \leftarrow 0
                for i \leftarrow 1 to |V| - 1
                           for all edges (u, v) \in E
O(VE)
                                      if dist[v] > dist[u] + w(u,v)
                                                dist[v] \leftarrow dist[u] + w(u,v)
            8
                                                prev[v] \leftarrow u
                for all edges (u, v) \in E
                           if dist[v] > dist[u] + w(u, v)
           11
           12
                                      return false
```

```
Bellman-Ford(G, s)
               for all v \in V
                dist[v] \leftarrow \infty
O(V)
               prev[v] \leftarrow null
            4 \quad dist[s] \leftarrow 0
               for i \leftarrow 1 to |V| - 1
                          for all edges (u, v) \in E
O(VE)
                                    if dist[v] > dist[u] + w(u,v)
                                              dist[v] \leftarrow dist[u] + w(u,v)
            8
                                              prev[v] \leftarrow u
                for all edges (u, v) \in E
                                                                               check for negative
O(V)
                          if dist[v] > dist[u] + w(u, v)
                                                                               cycles
                                    {\bf return}\ false
```