<DATA SCIENCE TOOLBOX :PYTHON PROGRAMMING>

Electric_Vehicle_Population

(Project Semester January-April 2025)

(Population of Electric Vehicle)

Submitted by

(Anand kumar)

Registration No- 12309788

Programme and Section – K23ED Course Code - 375

Under the Guidance of

(Dr. Dhiraj Kapila)

Discipline of CSE/IT

Lovely School of computer science and engineering

Lovely Professional University, Phagwara

CERTIFICATE

This is to certify that (student's name) bearing Registration no has completed
supervision. To the best of my knowledge, the present work is the result of his/her original
development, effort and study.
Signature and Name of the Supervisor
Designation of the Supervisor
School of
Lovely Professional University
Phagwara, Punjab.
Phagwara, Punjab.

DECLARATION

I, Anand kumar, student of Computer Science and Engineering under CSE/IT Discipline at, Lovely Professional University, Punjab, hereby declare that all the information furnished in this project report is based on my own intensive work and is genuine.

Date: 11-04-2025 Signature Anand kr.

Registration No.- 12309788 Name of the student

ANAND KUMAR

Below I attached the code and the output generated by the code

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import probplot
from statsmodels.graphics.gofplots import qqplot
plt.style.use('seaborn-v0 8')
sns.set theme()
print(plt.style.available)
['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-gallery-nogrid'
, 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'petroff10', 'seaborn-v0_8', 'seaborn-v0_8-bright', 'seaborn-v0_8-color
blind', 'seaborn-v0 8-dark', 'seaborn-v0 8-dark-palette', 'seaborn-v0 8-darkgrid
', 'seaborn-v0 8-deep', 'seaborn-v0 8-muted', 'seaborn-v0 8-notebook', 'seaborn-
v0 8-paper', 'seaborn-v0 8-pastel', 'seaborn-v0 8-poster', 'seaborn-v0 8-talk',
'seaborn-v0 8-ticks', 'seaborn-v0 8-white', 'seaborn-v0 8-whitegrid', 'tableau-c
olorblind10'1
df = pd.read csv("C:\\Users\\Nishu\\Downloads\\Electric Vehicle Population Data
print(f"Dataset shape: {df.shape}")
Dataset shape: (235692, 17)
print("\nFirst 5 rows:")
print(df.head())
```

```
First 5 rows:

VIN (1-10) ... 2020 Census Tract
5 5yJ3E1EBXK ... 5.303301e+10
5yJYGDEE3L ... 5.303509e+10
KM8KRDAF5P ... 5.303509e+10
SUXTA6C0XM ... 5.303509e+10
JTMAB3FV7P ... 5.306701e+10
```

```
print("\nMissing values by column:")
print(df.isnull().sum())
```

```
Missing values by column:
VIN (1-10)
                                                         0
County
                                                          3
                                                          3
City
State
                                                          0
Postal Code
                                                          3
Model Year
                                                          0
Make
                                                          0
Model
                                                          0
Electric Vehicle Type
                                                         0
Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                         0
Electric Range
                                                        36
Base MSRP
                                                        36
Legislative District
                                                        494
DOL Vehicle ID
                                                         0
Vehicle Location
                                                        10
Electric Utility
                                                         3
2020 Census Tract
                                                         3
dtype: int64
```

```
categorical cols = ['County', 'City', 'State', 'Electric Vehicle Type',
                     'Clean Alternative Fuel Vehicle (CAFV) Eligibility', 'Electric Utility']
for col in categorical cols:
    df[col] = df[col].\overline{fillna}(df[col].mode()[0])
df['Electric Range'] = df['Electric Range'].fillna(df['Electric Range'].median())
df = df.dropna(subset=['Make', 'Model', 'Model Year'])
df.columns = df.columns.str.strip()
plt.figure(figsize=(10, 6))
ev type counts = df['Electric Vehicle Type'].value counts()
ev type counts.plot(kind='bar', color=['#4C72B0', '#DD8452'])
plt.title('Distribution of Electric Vehicle Types', fontsize=14, fontweight='bold')
plt.xlabel('Vehicle Type', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight layout()
plt.show()
```



```
# Prepare data
```

```
top_makes = df['Make'].value_counts().nlargest(10)
top_makes_df = top_makes.reset_index()
top_makes_df.columns = ['Make', 'Count']
```

Plot

```
plt.figure(figsize=(12, 6))
sns.barplot(data=top_makes_df, x='Make', y='Count', hue='Make', palette='viridis', legend=False)
plt.title('Top 10 Electric Vehicle Manufacturers', fontsize=14, fontweight='bold')
plt.xlabel('Manufacturer', fontsize=12)
plt.ylabel('Number of Vehicles', fontsize=12)
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
# Prepare data
yearly counts = df['Model Year'].value counts().sort index()
yearly df = pd.DataFrame({'Year': yearly counts.index, 'Count': yearly counts.values})
# Set plot style
sns.set style("whitegrid")
plt.figure(figsize=(14, 7))
# Line plot
ax = sns.lineplot(data=yearly df, x='Year', y='Count', marker='o', linewidth=2.5, color='#4C72B0')
# Gradient fill under the line
ax.fill between(yearly df['Year'], yearly df['Count'], alpha=0.3, color='#4C72B0')
# Highlight peak point
max year = yearly df.loc[yearly df['Count'].idxmax()]
plt.annotate(f"Peak: {int(max year['Year'])}\n({max year['Count']:,})",
            xy=(max year['Year'], max year['Count']),
             xytext=(max year['Year'], max year['Count'] + 500),
             ha='center',
             arrowprops=dict(arrowstyle='->', color='gray'))
```

```
# Add title and labels
plt.title('Electric Vehicle Adoption Over Time', fontsize=16, fontweight='bold')
plt.xlabel('Model Year', fontsize=13)
plt.ylabel('Number of Vehicles', fontsize=13)

# Format ticks
plt.xticks(yearly_df['Year'], rotation=45)
plt.grid(True, linestyle='--', alpha=0.6)

# Remove top and right spines
sns.despine()
plt.tight_layout()
plt.show()

range_by_type = df.groupby('Electric Vehicle Type')['Electric Range'].mean()
range_df = range_by_type.reset_index()
range_df.columns = ['Type', 'Range']
```


CAFV Eligibility Distribution


```
top counties = df['County'].value counts().nlargest(10)
top counties df = top counties.reset index()
top counties df.columns = ['County', 'Count']
# Set Seaborn style
sns.set style("whitegrid")
plt.figure(figsize=(12, 8))
# Horizontal barplot
ax = sns.barplot(
    data=top counties df,
    x='Count',
    y='County',
    hue='County',
    palette='mako',
    legend=False
)
# Add value labels to bars
for container in ax.containers:
   ax.bar label(container, fmt='%d', label type='edge', padding=5, fontsize=10)
# Add titles and labels
plt.title('Top Counties by Electric Vehicle Count', fontsize=16, fontweight='bold')
plt.xlabel('Number of Vehicles', fontsize=13)
plt.ylabel('County', fontsize=13)
# Clean up the chart
plt.grid(axis='x', linestyle='--', alpha=0.6)
sns.despine(left=True, bottom=True)
plt.tight layout()
plt.show()
```



```
import matplotlib.font manager as fm
emoji font = fm.FontProperties(fname="C:/Windows/Fonts/seguiemj.ttf")
plt.rcParams['font.family'] = [emoji font.get name()]
# Set Seaborn style
sns.set style("whitegrid")
plt.figure(figsize=(16, 10))
# Clean column names in case of extra spaces
df.columns = df.columns.str.strip()
# Check and create 'price_data' safely
if 'Electric Vehicle Type' in df.columns and 'Base MSRP' in df.columns:
   price data = df[['Electric Vehicle Type', 'Base MSRP']].dropna()
   raise KeyError("Required columns 'Electric Vehicle Type' or 'Base MSRP' not found in the dataset.")
# Convert to boxplot (fixes palette warning using `hue`)
ax = sns.boxplot(
   x='Electric Vehicle Type',
   y='Base MSRP',
   data=price data,
   hue='Electric Vehicle Type',
   palette='Set2',
   showfliers=False,
   linewidth=2
# Remove legend (redundant)
if ax.legend is not None:
    ax.legend .remove()
# Add jittered stripplot (optional)
sns.stripplot(
    data=price data,
    x='Electric Vehicle Type',
    y='Base MSRP',
    color='gray',
    alpha=0.4,
    jitter=True,
    size=3
)
# Labels and titles
plt.title('Base MSRP by Electric Vehicle Type', fontsize=20, fontweight='bold')
plt.xlabel('Electric Vehicle Type', fontsize=15)
plt.ylabel('Base MSRP ($)', fontsize=15)
plt.xticks(rotation=20, fontsize=12)
plt.yticks(fontsize=12)
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt.tight layout()
plt.show()
```

