

Association Rule Basics

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- What is association rule mining?
- ☐ Frequent itemsets, support, and confidence
- Mining association rules
- ☐ The "Apriori" algorithm
- Rule generation

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories
- Applications
 - Basket data analysis
 - Cross-marketing
 - Catalog design
 - **>** ...

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Examples

```
\{bread\} \Rightarrow \{milk\}
\{soda\} \Rightarrow \{chips\}
\{bread\} \Rightarrow \{jam\}
```

☐ Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Itemset

- A collection of one or more items, e.g., {milk, bread, jam}
- k-itemset, an itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - $\sigma(\{\text{Milk, Bread}\}) = 3$ $\sigma(\{\text{Soda, Chips}\}) = 4$
- Support
 - Fraction of transactions that contain an itemset
 - s({Milk, Bread}) = 3/8
 s({Soda, Chips}) = 4/8
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

- \square Implication of the form $X \Rightarrow Y$, where X and Y are itemsets
- Example, $\{bread\} \Rightarrow \{milk\}$
- Rule Evaluation Metrics, Suppor & Confidence
- Support (s)
 - Fraction of transactions that contain both X and Y

$$s = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\# \text{ of transactions}} = 0.38$$

- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

$$c = \frac{\sigma(\{\text{Bread}, \text{Milk}\})}{\sigma(\{\text{Bread}\})} = 0.75$$

Support and Confidence

- □ Given a set of transactions T, the goal of association rule mining is to find all rules having
 - ▶ support ≥ minsup threshold
 - ▶ confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
- Brute-force approach is computationally prohibitive!

☐ All the above rules are binary partitions of the same itemset:

- Rules originating from the same itemset have identical support but can have different confidence
- We can decouple the support and confidence requirements!

Mining Association Rules: Two Step Approach

- □ Frequent Itemset Generation
 - ▶ Generate all itemsets whose support ≥ minsup
- Rule Generation
 - Generate high confidence rules from frequent itemset
 - ► Each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is computationally expensive

- Brute-force approach:
 - ► Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- ► Complexity \sim O(NMw) => Expensive since M = 2^d

- ☐ Given d unique items:
 - ► Total number of itemsets = 2^d
 - Total number of possible association rules:

$$\sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^d - 2^{d+1} + 1$$

► For d=6, there are 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - ▶ Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

- Apriori principle
 - ▶ If an itemset is frequent, then all of its subsets must also be frequent
- □ Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Support of an itemset never exceeds the support of its subsets

This is known as the anti-monotone property of support

Items (1-itemsets)

Item	Count
Bread	4
Peanuts	4
Milk	6
Fruit	6
Jam	5
Soda	6
Chips	4
Steak	1
Cheese	1
Yogurt	1

Minimum Support = 4

2-itemsets

2-Itemset	Count
Bread, Jam	4
Peanuts, Fruit	4
Milk, Fruit	5
Milk, Jam	4
Milk, Soda	5
Fruit, Soda	4
Jam, Soda	4
Soda, Chips	4

3-itemsets

3-Itemset	Count
Milk, Fruit, Soda	4

- \square Let k=1
- ☐ Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - ► Eliminate candidates that are infrequent, leaving only those that are frequent

```
C_k: Candidate itemset of size k
L_{\nu}: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k! = \emptyset; k++) do begin
    C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
        increment the count of all candidates in C_{k+1}
        that are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \cup_k L_k;
```

- Join Step
 - $ightharpoonup C_k$ is generated by joining L_{k-1} with itself
- Prune Step
 - ► Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

- □ Hard to get good performance out of pure SQL (SQL-92) based approaches alone
- Make use of object-relational extensions like UDFs, BLOBs, Table functions etc.
- Get orders of magnitude improvement
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. In SIGMOD'98

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- □ Transaction reduction: A transaction that does not contain any frequent kitemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

- □ Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules:
 ABC →D, ABD →C, ACD →B, BCD →A, A →BCD, B →ACD, C →ABD, D →ABC, AB →CD, AC → BD, AD → BC, BC →AD, BD →AC, CD →AB
- □ If |L| = k, then there are $2^k 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

How to efficiently generate rules from frequent itemsets?

- Confidence does not have an anti-monotone property
- \square c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)
- But confidence of rules generated from the same itemset has an anti-monotone property

► e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

□ Confidence is anti-monotone with respect to the number of items on the right hand side of the rule

- □ Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

■ Many real data sets have skewed support distribution

Support distribution of a retail data set

- ☐ If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
- ☐ If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- ☐ A single minimum support threshold may not be effective

- Association rules are implication of the form $X \Rightarrow Y$, where X and Y are itemsets (e.g., {bread} \Rightarrow {milk})
- An itemset is a collection of one or more items
- Support is the frequency of occurrence of an itemset
- □ The confidence of an association rule $X \Rightarrow Y$ measures how often items in Y appear in transactions that contain X
- Mining association rules find all the rules having
 - ▶ support ≥ minsup threshold
 - ▶ confidence ≥ minconf threshold
- Apriori exploits the anti-monotone property of support to reduce the number of candidate solutions