I. VIENMATĖS FUNKCIJOS

Funkcijų konvergavimas

1. Ištirti funkcijų sekos tolygų konvergavimą:

$$f_n(x) = 1 - nx, 0 \le x \le 1/n;$$

a)
$$f_n(x)=1+nx, -1/n \le x < 0$$
;

$$f_n(x) = 0, |x| > 1/n$$
;

b)
$$f_n(x) = x^n - x^{n+1}, 0 \le x \le 1$$
;

c)
$$f_n(x) = \frac{nx}{1+n+x}$$
, $x \in [0;1]$;

d) **ND**
$$f_n(x) = \sin\left(\frac{x}{n}\right), x \in \mathbb{R};$$

e) **ND** $f_n(x) = \sqrt[n]{1+x^n}, 0 \le x \le 2.$

e) **ND**
$$f_n(x) = \sqrt[n]{1+x^n}, 0 \le x \le 2$$

Neapibrėžtinis integralas

2. Suintegruokite:

a1)
$$\int \frac{dx}{1+x^2}$$
; a2) $\int \frac{xdx}{1+x^2}$;

b)
$$\int \frac{x^2 dx}{1+x^2}$$
;

c)
$$\int \frac{dx}{\sqrt{1-x^2}}$$
;

d)
$$\int \frac{xdx}{\sqrt{1-x^2}}$$
.

3. ND Suintegruokite:

a)
$$\int \sin^2(x)\cos(x)dx$$
;

b)
$$\int x^2 \sqrt[3]{1+x^3} dx$$
;

c)
$$\int xe^{-x^2}dx$$
.

d)
$$\int \frac{\ln^2(x)}{x} dx$$
;

e)
$$\int (3-x^2)^3 dx$$
.

4. Suintegruokite:

a)
$$\int |x| dx$$
;

b)
$$\int |x^2 - 2x| dx$$
. Kokios turėtų būti konstantų reikšmės, kad pirmykštė būtų tolydi?

5. Suintegruokite racionaliasias trupmenas:

a)
$$\int \frac{dx}{3x^2+2}$$
;

b)
$$\int \frac{xdx}{3x^2+2}$$
;

c)
$$\int \frac{dx}{3x^2 + x + 2};$$

d)
$$\int \frac{xdx}{3x^2+x+2}$$
;

e1)
$$\int \frac{dx}{3x^2-2}$$
; e2) žr. i)

f)
$$\int \frac{dx}{(x-1)^2}$$
;

g) **ND** (pabaigti)
$$\int \frac{x^{10} dx}{x^2 + x + 1}$$
;

h) **ND (pabaigti)**
$$\int \frac{3x+7}{x^4-3x^3+4x^2-3x+1} dx;$$

i) **ND**
$$\int \frac{xdx}{3x^2 - 2};$$

j) **ND (sprendėm)**
$$\int \frac{x+a}{x^2+px+q} dx;$$

k) ND (plačiau žr. E. Misevičiaus vadovėlį)
$$\int \frac{dx}{(x^2+1)^2}$$
; $\int \frac{dx}{(x^2+px+q)^n}$, $D < 0$, $n \in \mathbb{N}$;

1)
$$\int \frac{xdx}{(x-1)^3}.$$

a1)
$$\int \sin^2(x) dx$$
; a2) **ND** $\int \cos^2(x) dx$;

b) (plačiau žr. E. Misevičiaus vadovėlį)
$$\int \frac{dx}{2\sin(x) - \cos(x) + 5}$$

c) **ND**
$$\int \frac{\sin(x) dx}{\sin^3(x) + \cos^3(x)};$$

d) **ND**
$$\int \frac{\cos(x)dx}{\sin^2(x) - 4\cos^2(x)};$$

e)
$$\int \cos^5(x) \sqrt{\sin(x)} dx$$
;

f1) **ND**
$$\int tg(x)dx$$
; f2) **ND** $\int tg^2(x)dx$;

a1)
$$\int xe^{-x} dx$$
; a2) **ND** $\int x^{50} e^{-x} dx$;

b) **ND**
$$\int \ln(x) dx$$
;

c) **ND**
$$\int arctg(x)dx$$
;

d)
$$\int e^x \cos(x) dx$$
.

a) **ND**
$$\int \frac{dx}{1+\sqrt{x}}$$
;

b) **ND**
$$\int \frac{xdx}{\sqrt[3]{1-3x}};$$

c)
$$\int \frac{dx}{\sqrt[3]{1+x^3}};$$

d) **ND**
$$\int \frac{dx}{(1-x^2)^{3/2}}$$
;

e) **ND**
$$\int \frac{dx}{(1+x^2)^{3/2}}$$
;

f1)
$$\int \frac{dx}{1+x^2}$$
; f2) $\int \frac{dx}{(1+x^2)^2}$.

9. Suintegruokite naudodami Oilerio (Euler) keitinius:

a) **ND (4 keitiniais)**
$$\int \frac{dx}{x + \sqrt{x^2 + x + 1}}$$

b) **ND (2 keitiniais)**
$$\int \frac{dx}{1+\sqrt{1-2x-x^2}};$$

c) **ND (2 keitiniais)**
$$\int \frac{dx}{1+\sqrt{x(x+1)}};$$

Apibrėžtinis integralas

3

10. I dalis

Suintegruokite pagal apibrėžimą:

a)
$$\int_{0}^{1} x dx$$
;

b) **ND**
$$\int_{a}^{b} x dx;$$

c) **ND**
$$\int_{0}^{a} x^{2} dx, \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

Suintegruokite:

d)
$$\int_{-3}^{2} |x| dx$$
;

e)
$$\int_{1}^{y} |x| dx$$
;

f)
$$\int_{0}^{\pi} \sqrt{\cos^{2}(x)} dx$$
;

g) **ND**
$$\int_{0}^{1} xe^{-x} dx.$$

II dalis

a)
$$\int_{-1}^{1} x^2 dx$$
;

Suintegruokite naudodami netiesioginius integralus:

b)
$$\int_{0}^{\infty} xe^{-x} dx;$$

c) ND (suintegruoti be triuko)
$$\int_{\pi/2}^{\pi} \frac{dx}{\sin^4(x) + \cos^4(x)};$$

- 11. Integralo taikymai
- a) Raskite kreivių $x^2 + y^2 = 36, x = 3, x = 3\sqrt{3}$ apribotą plotą.
- b) Raskite kreivės $r^2 = asin(2 \, \varphi)$ apribota plota.
- **ND** Kaip reikėtų skaičiuoti kreivės lanko ilgi *l* ?
- c) **ND** Raskite kreivės $y=x^{3/2}$, $0 \le x \le 4$ lanko ilgį l. d) **ND** Raskite kreivės $x^{2/3}+y^{2/3}=a^{2/3}$, a>0 lanko ilgį l.
- **ND** Kaip reikėtų skaičiuoti kreivės apribota plota S?
- 12. Duota kreivėmis $f(x)=2x-x^2$, y=0 apribota plokščia figūra.
- a) Rasti tūri kūno, gauto figūra sukant apie Ox aši.
- a) Rasti tūrį kūno, gauto figūrą sukant apie Oy ašį.
- 13. Integralinis eilučių konvergavimo požymis
- a) Ištirti eilutės $\sum_{n=1}^{\infty} \frac{1}{n}$ konvergavimą.
- b) **ND** Kokiems α eilutė $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konverguoja ir kokiems diverguoja?

Funkcijų konvergavimas (tęsinys)

- 14. Naudodami Vejerštraso (Weierstrass) M-požymį (kitaip mažorantinį požymį) įrodykite, kad funkcijų eilutė $\sum_{n=1}^{\infty} f_n(x)$ tolygiai konverguoja aibėje \mathbb{R} , jei
- a) $f_n(x) = \frac{1}{x^2 + n^2}$;
- b) **ND** $f_n(x) = \frac{\sin(nx)}{n^{3/2}}$;
- c) $f_n(x) = \frac{x}{1+n^4 x^2}$;
- d) **ND** $f_n(x) = \frac{nx}{1 + n^5 x^2}$.
- 15. Raskite laipsninės eilutės konvergavimo spindulį ir ištirkite, ar eilutė konverguoja intervalo galuose:
- a) $\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$;
- b) ND (konvergavimas intervalo galuose) $\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$

II. DAUGIAMATĖS ERDVĖS

Vektorinės erdvės

- 1. \mathbb{R}^3 erdvės vektoriams x = (3;0;-1) ir rasti:
- a) vektorių 3x y;
- b) skaliarine sandauga $x \cdot y$;
- c) euklidinius ilgius $||x||_2$, $||y||_2$;
- d) euklidinį atstumą $\rho_2(x, y)$.

- 2. Irodyti, kad bet kuriems $x, y, z \in \mathbb{R}^d$ ir $\lambda, \mu \in \mathbb{R}$:
- a) $x \cdot x > 0$, jei $x \neq 0$;
- b) $x \cdot y = y \cdot x$;
- c) $x(\lambda y + \mu z) = \lambda x \cdot y + \mu x \cdot z$.
- 3. Tarkime $a, b, c \in \mathbb{R}, x, y \in \mathbb{R}^2$ ir $q(x, y) = a x_1 y_1 + b x_1 y_2 + b x_2 y_1 + c x_2 y_2$.

Su kokiais a, b, c funkcijai $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ galioja savybės:

- a) q(x,x)>0, jei $x\neq 0$;
- b) q(x, y) = q(y, x);
- c) $q(x, \lambda y + \mu z) = \lambda q(x, y) + \mu q(x, z)$.
- 4. Tarkime $x, y \in \mathbb{R}^d$. Parodyti, kad norma tenkina nelygybę $|||x|| ||y||| \le ||x y||$.
- 5. Įrodyti, kad funkcijos $||x||_1$ ir $||x||_{max}$ tenkina sąlygas:
- a) kiekvienam $x \in \mathbb{R}^d$, $||x|| \ge 0$;
- b) kiekvienam $x \in \mathbb{R}^d$, ||x|| = 0 tada ir tik tada, kai x = 0;
- c) visiems $x \in \mathbb{R}^d$ ir $\lambda \in \mathbb{R}$, $\|\lambda x\| = |\lambda| \|x\|$;
- d) visiems $x, y \in \mathbb{R}^d, ||x+y|| \le ||x|| + ||y||$.
- 6. Pavaizduoti aibes:
- a) $\{x \in \mathbb{R}^2, ||x||_2 = 1\}$;
- b) $\{x \in \mathbb{R}^2, ||x||_1 = 1\};$
- c) $\{x \in \mathbb{R}^2, ||x||_{max} = 1\};$

Vektorių sekų konvergavimas

7. Naudojant tik sekos konvergavimo apibrėžimą įrodyti, kad vektorių seka

$$(x_n), x_n = \left(\frac{n}{1+n}, \frac{1-n}{n}\right) \in \mathbb{R}^2$$
 konverguoja į vektorių $(1, -1)$.

- 8. Ar seka (x_n) , $x_n = (e^{-n}\sin(n), e^{-n}\cos(n)) \in \mathbb{R}^2$ turi ribą? Atsakymą pagrįskite.
- 9. Tarkime, kad erdvės \mathbb{R}^d elementų seka $x_n \to 0, n \to \infty$, o seka y_n aprėžta. Įrodyti, kad $x_n \cdot y_n \to 0, n \to \infty$.
- 10. Tarkime, kad erdvės \mathbb{R}^d elementų seka $x_n \rightarrow y$, $n \rightarrow \infty$, $y \in \mathbb{R}^d$. Įrodyti, kad bet kuris jos posekis $y_{n_k} \rightarrow y$, $n \rightarrow \infty$.
- 11. Parodyti, kad jei $||x_n x||_{max} \to 0, n \to \infty$, tai $||x_n||_{max} \to ||x||_{max}, n \to \infty$.
- 12. **ND** Tarkime $x_n = \left(\frac{n+1}{n}, \frac{(-1)^n}{n}\right) \in \mathbb{R}^2$. Rasti ribas, kai $n \to \infty$, atsakymą pagrįskite:
- a) $\lim x_n$;
- b) $\lim ||x_n||_2$;
- c) $\lim ||x_n||_1$;

d) $\lim ||x_n||_{max}$.

Aibės

- 13. Tarkime $a, b \in \mathbb{R}^d$, $a \le b$. Įrodyti, kad (uždarasis) stačiakampis [a, b] yra uždaroji aibė.
- 14. Tarkime A yra euklidinės erdvės \mathbb{R}^d aibė ir tegul Φ yra tokių šios erdvės uždarųjų aibių F rinkinys, kurioms $A \subseteq F$. Įrodyti, kad $\overline{A} = \wedge \Phi$ (sankirta).
- 15. Įrodyti, kad aibė $A \subset \mathbb{R}^d$ yra atviroji tada ir tik tada, kai $\forall x \in A \exists$ \exists toks atvirasis stačiakampis $(a,b) \subset A$, kad $x \in (a,b)$.
- 16. **ND** Tarkime $0 \le r \le R$. Įrodyti, kad aibė $\{x \in \mathbb{R}^d, r < ||x||_2 < R\}$ yra atviroji (vadinama atviruoju žiedu).
- 17. **ND** Tarkime A yra euklidinės erdvės \mathbb{R}^d aibė ir tegul Γ yra tokių šios erdvės atvirųjų aibių G rinkinys, kurioms $G \subset A$. Įrodyti, kad $A^o = \vee \Gamma$ (sąjunga).
- 18 **ND** Duotos aibės $A = \{x \in \mathbb{R}^2, ||x||_{max} \le 2\}$, $B = \{x \in \mathbb{R}^2, x_1^2 x_2^2 > 1\}$. Tarkime aibė $C = A \wedge B$ (sankirta).
- a) Ar aibė C yra atvira, uždara? Atsakymą pagrįskite.
- b) Rasti C^o .
- c) Rasti \overline{C} .
- 19. Ar aibių rinkinys $\{A_k, k \in \mathbb{Z}^d\}$, $A_k = \{x \in \mathbb{R}^d, \|x k\|_1 < 1\}$ yra euklidinės erdvės \mathbb{R}^d atvirasis denginys?
- 20. Įrodyti, kad bet kuri baigtinė aibė yra kompaktinė.
- 21. **ND** Imkime aibes A, B, C iš 18 uždavinio.
- a) Ar aibė C yra santykinai atvira aibės A atžvilgiu?
- b) Ar aibė C yra santykinai uždara aibės A atžvilgiu? Atsakymus pagrįskite.
- 22. **ND** Imkime aibes A, B, C iš 18 uždavinio.
- a) Ar taškas (-1;0) priklauso aibei C? Koks (vidinis, sąlyčio, ribinis ar izoliuotas šis taškas yra aibei C? Atsakymus pagrįskite.
- b) Jei įmanoma, sukonstruokite aibės $\,C\,$ taškų seką, konverguojančią į tašką $\,(-1\,;0)$. Jei neįmanoma tai įrodykite.
- 23. Tarkime $A = \{x \in \mathbb{R}^3, x_2 \ge 2, x_1^2 + x_3^2 = 1\}$.
- a) Rasti A^{o} .
- b) Rasti \overline{A} .
- c) Ar aibė A yra kompaktiška? Atsakymą pagrįskite.
- d) Sukonstruokite tokią aibės A taškų seką, kuri nekonverguotų.
- 24. **ND** Įrodyti , kad aibei $A \subset \mathbb{R}^d$ ekvivalentu:
- a) Aibė A yra aprėžta;

- b) \exists uždarasis stačiakampis $[a,b] \subset \mathbb{R}^d$ toks, kad $A \subset [a,b]$;
- c) $\exists R > 0$ toks, kad $\{x \in \mathbb{R}^2, ||x||_{max} = 1\}$;
- d) $\exists R > 0$ toks, kad $A \subset \{x \in \mathbb{R}^d, ||x||_1 \le R\}$.
- 25. Sukonstruoti tokį skaitų rinkinį kompaktinių aibių, kurių sąjunga nėra kompaktinė aibė.
- 26. Tarkime K yra euklidinės erdvės \mathbb{R}^d kompaktinė aibė. Įrodyti, kad $\exists u, v \in K$ tokie, kad $\forall x \in K ||u||_2 \le ||x||_2 \le ||v||_2$ (kompaktinėje aibėje egzistuoja didžiausias ir mažiausias elementai).
- 27. Tarkime K yra euklidinės erdvės \mathbb{R}^d kompaktinė aibė ir $y \notin K$. Įrodyti, kad $\exists u \in K$ toks, kad $||u-y||_2 \le ||x-y||_2 \forall x \in K$. (egzistuoja artimiausias y -kui aibės K elementas).

III. DAUGIAMATĖS FUNKCIJOS

Funkcijų konvergavimas

- 1. Jei egzistuoja, rasti ribą $\lim_{x \to 0, y \to 0} \frac{x^2 y^2}{x^4 + y^4}$.
- $\lim_{x \to 0, y \to 0} \frac{x^3 y^3}{x^3 + y^3}.$ 2. Jei egzistuoja, rasti riba
- $\lim_{x \to 0, y \to 0} f(x, y), f(x, y) = \frac{x^2 y^2}{|x| + |y|}, |x| \neq |y|, f(x, y) = 0, |x| = |y|.$ riba $\lim_{x \to 0, y \to 0} f(x, y), f(x, y) = (1 + x^2 + y^2)^{1/(x^2 + y^2)}.$ 3. Jei egzistuoja, rasti riba
- 4. **ND** Jei egzistuoja, rasti riba

5. 6.3 a) b) c)**ND** d)**ND** e)**ND**

6. Rasti ribas:

- $\lim_{x \to \infty, y \to \infty} \frac{x^2 + y^2}{x^4 + y^4};$
- b) $\lim_{x \to 0, y \to a} \sin \frac{(xy)}{x}$; c) **ND** $\lim_{x \to 0, y \to 0} (x^2 + y^2)^{x^2 y^2}$.
- d) **ND** $\lim_{x \to 1, y \to 0} \ln \frac{(x + e^y)}{\sqrt{x^2 + y^2}}$.
- 7. 6.5
- 8. ND 6.6

Tolydumas

- 9. Ar funkcija f tolydi? $f(x,y) = \frac{x^2 y^2}{x^4 + y^4}, x \neq 0, y \neq 0, f(x,y) = 0, x = y = 0$?
- 10. 7.2
- 11. **ND** 7.3

12. a) (su klaida) b) ND (be klaidos) 7.4	
13. ND (pabaigti) 7.5	
14. ND 7.6	
15. 7.7	
Tiesinės funkcijo	os
16. a) 8.1 b) ND 8.2	
17. 8.3	
18. 8.4	
19. a) 8.5 b) 8.6	
Iškilumas	
20. 9.1	
21. ND 9.2	
22. 9.3	
23. 9.4	
24. ND 9.5	
25. 9.6	
Funkcijų sekų konverg	gavimas
26. 10.1	
27. a) 10.2 b) ND 10.3	
28. a) 10.4 b) ND 10.5	
29. 10.6	

- 30. 10.7
- 31. **ND** 10.8
- 32. 10.9
- 33. 10.10
- 34. **ND** 10.11
- 35. **ND** 10.12

IV. DIFERENCIJAVIMAS

- 1. 12.1
- 2. 11.2
- 3. **ND** 11.3
- 4. 11.4
- 5. 11.5
- 6. **ND** 11.6
- 7. **ND** 11.7
- 8. **ND** 12.2
- 9. 12.3
- 10. 12.4
- 11. **ND** 12.5
- 12. 13.1
- 13. 13.3
- a) **ND** būtinumas
- b) pakankamumas
- 14. **ND**.13.4
- 15. 13.5
- 16. 13.6
- 17. **ND** 13.7

- 18. 13.8
- 19. 13.9
- 20. 13.10