Лабораторная работа №1

Шифры простой замены

Яковлев Артём Александрович, НФИмд-01-22

Содержание

Цель работы	٠
Задание	(
Теоретическое введение Шифр Цезаря	
Выполнение лабораторной работы Реализация шифра Цезаря с произвольным ключом k	10
Выводы	12

Список таблиц

Список иллюстраций

0.1	функция шифра Цезаря	9
0.2	функция шифра Атбаш	10
0.3	результат Цезаря	11
0.4	результат Атбаш	11

Цель работы

Цель данной работы — изучить и программно реализовать шифры простой замены.

Задание

Заданием является:

- Реализовать шифр Цезаря с произвольным ключом k;
- Реализовать шифр Атбаш.

Теоретическое введение

Шифр простой замены представляет собой замену каждой буквы в исходном слове на определенное число, которому соответствует данная буква. В основе функционирования шифров простой замены лежит следующий принцип: для получения шифртекста отдельные символы или группы символов исходного алфавита заменяются символами или группами символов шифроалфавита.

Шифр Цезаря

Шифр Цезаря является моноалфавитной подстановкой, т.е. каждой букве открытого текста ставится соответствие одна буква шифротекста.

Математическая процедура шифрования описывается как

$$T_m = \{T^j\}, j = 0, 1, \cdots, m - 1,$$

$$T^j(a) = (a+j) \mod m$$
,

где m - длина алфавитаа, j - произвольный ключ (величина сдвига от изначальной позиции буквы), a - текущая позиция буквы в алфавите.

Для латинского алфавита длина составляет 26 символов, а формулу можно привести к виду:

$$T^k(i) = (i+k) \mod 26,$$

где i,k соответствуют a,j, а m=26.

Сам же Цезарь обычно использовал подстановку $T^3.$

Шифр Атбаш

Шифр Атбаш является сдвигом на всю длину алфавита. Правило шифрования состоит в замене i-й буквы алфавита буквой с номером n-i+1, где n — число букв в алфавите.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация шифра Цезаря с произвольным ключом k

Шифр Цезаря реализуем в виде функции ceasar следующего вида:

```
alphabet1= list(map(chr, range(97,123)))
print(alphabet1)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm'
def ceaser(t,alphabet1,key):
    res = ""
    for c in t:
        if c not in alphabet1:
            res += c
        else:
            c_{index} = ord(c) - ord('a')
            c shifted = (c index+key)%26 + ord('a')
            c_{new} = chr(c_{shifted})
            res+=c new
    return res
print(ceaser("dream team",alphabet1, 6))
jxkgs zkgs
```

Рис. 0.1: функция шифра Цезаря

На вход она принимает переменные t (текст для шифрования), key (произвольный

ключ), alphabet (алфавит в виде списка).

В ходе обработке мы работаем с индексами элементов массива-строки, предварительно проверяя, является ли символ частью передаваемого алфавита. Если да, то мы вызываем вложенную функцию для расчета сдвига и выполняем к ней операцию деления с остатком (исходя из формулы в теоретическом введении).

Реализация шифра Атбаша

Шифр Атбаш реализуем в виде функции atbash следующего вида:

```
alphabet2 = list(map(chr, range(97,123)))
alphabet2.append(chr(32))
print(alphabet2)

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'y', 'z', '']

def atbash(t,alphabet2):
    res = ""
    for c in t:
        if c not in alphabet2:
            res +=c
        else:
            c_new = alphabet2[len(alphabet2)-1-alphabet2.index(c)]
            res += c_new
    return(res)
print(atbash("xjw oahw o", alphabet2))

dream team
```

Рис. 0.2: функция шифра Атбаш

На вход она принимает те же переменные, что и функция Шифра Цезаря, исключая произвольный ключ.

Шифруется символ засчет вычитания из длины алфавита индекс символа, над которым производится шифрование.

Возвращается также зашифрованный символ.

Тестирование

Запустив наш программный код, получим следующие результаты:

```
print(ceaser("dream team",alphabet1, 6))
jxkgs zkgs

Puc. 0.3: результат Цезаря

print(atbash("xjw oahw o", alphabet2))
dream team
```

Рис. 0.4: результат Атбаш

Видим, что шифрование проведено корректно.

Выводы

В рамках выполненной лабораторной работы мы изучили и реализовали следующие шифры простой замены: шифр Цезаря (с произвольным ключом k) и шифр Атбаш.