Nima Maghooli

Research Assistant at Advanced Robotics and Automated Systems (ARAS) Laboratory | Hi-Tech Robotic Solutions

CONTACT INFORMATION

Advanced Robotics and Automated Systems (ARAS) Laboratory, Center of Excellence in Robotics and Control, Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran. Website: nima-maghooli.github.io/ LinkedIn: In/nima-maghooli/ Email: nima.maghooli@ut.ac.ir Cell Phone: +98-937-635-6611

EDUCATION

• M.Sc. in Mechanical Engineering (majoring in Dynamics and Control), K. N. Toosi University of Technology Sep 2020 - Present Tehran, Iran

- Thesis title: Data-Driven Modeling and Controller Design with Implementation for Tendon-Driven Continuum Robots (TDCRs) using Vision-Based Deep Reinforcement Learning,
- Seminar title: Learning-Based Modeling & Control for TDCRs,
- GPA: 18.87 (out of 20), Rank: 1st,
- Supervisor: Prof. S. Ali A. Moosavian.
- B.Sc. in Mechanical Engineering, University of Tehran

Sep 2015 - Sep 2020 Tehran, Iran

- Internship: Mapna Turbine Engineering and Manufacturing Company (TUGA),
- GPA for the last two semesters (43 units): 17.78 (out of 20),
- GPA: 15.24 (out of 20),
- Supervisor: Dr. Tara Farizeh.

RESEARCH AND TEACHING EXPERIENCE

- Research Assistant (K. N. Toosi University of Technology)
 - Advanced Robotics and Automated Systems Laboratory (Sep 2021 Present)
- Teaching Assistant (K. N. Toosi University of Technology)
 - Advanced Robotics (Control of Robots), Prof. S. Ali A. Moosavian (Spring 2022, Spring 2023)
 Kinematics, Kinetics/Dynamics, Planning, Position Control, Force & Impedance Control
 - Advanced Dynamics, Prof. S. Ali A. Moosavian (Fall 2021, Fall 2022)
 Classical Dynamics, Motion of Celestial Bodies, Analytical Dynamics, Stability Analysis
- Teaching Assistant (Scientific Association of Mechanical Engineering, University of Tehran)
 - MATLAB & Simulink Workshop (Jun 2020)
 Control System Design and Optimization for Linear & Nonlinear Dynamic Systems

RESEARCH INTERESTS

- Data-Driven and Intelligent Control
- Vision-Based Sensing for Closed-Loop Control
- Deep Reinforcement Learning Application for Learning-Based Control
- System Identification and Parameters Estimation
- Dynamics Modeling, Simulation, and Implementation of Robotic Systems

- N. Maghooli, F. S. Tabatabaee-Nasab, and S. Ali A. Moosavian, "Self-Tuning Robust Tracking Control for Autonomous Underwater Vehicles," 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2022, pp. 279-284, doi: 10.1109/ICRoM57054.2022.10025058. [Link]
- N. Maghooli, O. Mahdizadeh, and S. Ali A. Moosavian, "Adaptive Gain-Tuning using Fuzzy Inference System for Model-Free Control of Tendon-Driven Continuum Robotic Arm", [to be submitted]
- N. Maghooli, O. Mahdizadeh, M.Bajelani, and S. Ali A. Moosavian, "Intelligent Model-Free Control for Tendon-Driven Continuum Robotic Arm based on Deep Reinforcement Learning", [in preparation]
- N. Maghooli, O. Mahdizadeh, and S. Ali A. Moosavian, "Model Reference Adaptive Control for Tendon-Driven Continuum Robotic Arm", [in progress]

SKILLS SUMMARY in

- CAE: MATLAB-Simulink (Advanced), ADAMS (Intermediate), ROS (Basic)
- CAD and CAM: CATIA (Advanced), LATEX (Intermediate), Prezi (Basic)
- Programming Languages: Python (Intermediate), C++ (Basic), HTML (Basic)
- Languages: Persian (Native), English (Rather Fluent, IELTS Test will be taken on Summer 2023)

HONORS AND AWARDS

- Rank in M.Sc.
 - 1st out of 30 students of Mechanical Engineering (Dynamics and Control), K. N. Toosi University of Technology, 2023.

COURSES

- Advanced Robotics (19.5/20)
- Reinforcement Learning (20/20)
- Artificial Intelligence & Expert Systems (20/20)
- Automatic Control (19.1/20)
- Advanced Engineering Mathematics (20/20)
- Fuzzy Logic & Neuro-Fuzzy Control (Volunteer)
- Nonlinear Control (19/20)
- Advanced Control Systems (18.5/20)
- Advanced Dynamics (18.5/20)
- Robotics (18.5/20)
- Computer-Aided Design (17/20)
- System Identification (Volunteer)

ACADEMIC PROJECTS

- Dynamics Modeling, Planning and Control for 5-DoF Rail-Mounted Industrial Robot [Link]
 - Advanced Robotics, Instructor: Prof. S. Ali A. Moosavian Spring 2021 Analytical Modeling (Forward & Inverse Kinematics, Jacobian, and Kinetics/Dynamics Model), Path Planning, Control System Design for Trajectory Tracking (PID, IDC, TJ, MTJ, SMC, MRAC), and Force Interaction with Environment (IC, OIC, MIC)
- Performance Comparison of FLC & PID Controllers for 3R Spatial Robotic Arm [Link]
 - Artificial Intelligence & Expert Systems, Instructor: Dr. Esmaeil Najafi Spring 2022 Coding GA-PSO Hybrid Evolutionary Algorithm for finding the Optimal Gains for PID Controller, and Optimal Membership Functions Parameters and Rule-Base for Fuzzy Logic Controller

• Agent Navigation in Discrete Environments by Reinforcement Learning Algorithms [Link]

Reinforcement Learning, Instructor: Dr. S. Hossein Khasteh
 Spring 2022
 Implementation of Dynamic Programming, Monte Carlo, and Temporal Difference (Q-Learning & SARSA)
 Algorithms for the Agent Navigation in Discrete Environments

• Data-Driven Modeling for Tendon-Driven Continuum Robot as a MIMO System [Link]

System Identification, Instructor: Dr. Mahdi Aliyari-Shoorehdeli (Volunteer Student)
 Fall 2021
 Dynamics Modeling for TDCR using Linear & Nonlinear Identification techniques for MIMO Systems, such as ARX, ARMAX, OE, BJ, NARX, ANFIS, and MLP Neural Network

• Design and Optimization of Fuzzy Logic Controller for Tendon-Driven Continuum Robot [Link]

Fuzzy Logic & Neuro-Fuzzy Control, Instructor: Prof. Ali Ghaffari (Volunteer Student)
 Fall 2021
 Optimization of Membership Functions Parameters and Rule-Base for FLC by GA-PSO Algorithm and Replacing the Designed Controller with Adaptive Neuro-Fuzzy Inference System (ANFIS) for Computational Cost Reduction

• PID Controller Design for Ball & Beam System Actuated by the Servo-Motor [Link]

Automatic Control, Instructor: Dr. Tara Farizeh
 Control System Design, Gain Tuning, and Optimization by MATLAB-Simulink Toolboxes

• Analytical Kinematics & Dynamics/Kinetics Modeling and Verification [Link]

Robotics, Instructor: Dr. Kambiz Ghaemi Osgouie
 Spring 2020
 Analysis and Sketching of the PUMA-560 Manipulator (6-DoF) by CATIA and MATLAB

VOLUNTEER AND EXECUTIVE EXPERIENCE

• Member of Conference Organising Committee

May 2017

 The Conference of Future of Electric Vehicles, Challenges and Opportunities, Department of Mechanical Engineering, University of Tehran.

REFERENCES

• Prof. S. Ali A. Moosavian

Professor

Department of Mechanical Engineering, K. N. Toosi University of Technology

Tehran, Iran

- Email: moosavian@kntu.ac.ir

- Phone: (+98 21) 84063-238

• Prof. Mansour Nikkhah Bahrami

Retired Professor

Department of Mechanical Engineering, University of Tehran

Tehran, Iran

- Email: mbahrami@ut.ac.ir

- Phone: (+98 21) 61114-009

• Dr. Tara Farizeh

Assistant Professor

Department of Mechanical Engineering, University of Tehran

Tehran, Iran

- Email: tara.farizeh@ut.ac.ir

- Phone: (+98 21) 44608-604

• Dr. Rahele Rostamian

Guest Postdoctoral Researcher

Department of Chemistry, University of Zurich

Zurich, Switzerland

- Email: r.rostamian@ut.ac.ir