Assignment 1

Samuel Fraley Dmitrii Kuptsov Felipe Manzi

 $September\ 29,\ 2025$

Contents

Question 1

(a) Describe, in one precise sentence, what term (1) captures. Term 1, $E(y_i \mid d_i = 1)$, captures the expected value of of y_i given $d_i = 1$, specifically the expected monthly pay of a person given they have a college degree $(d_i = 1)$

- (b) What sign would you expect for (1) (2)? Briefly justify.
 - Term 1 is the expected monthly pay of individuals with a college degree, while Term 2 is the expected monthly pay of those without a college degree. Generally we would expect those with a college degree to, on average, have a higher monthly pay, so Term 1 would be larger than Term 2. As a result, we would expect (1) (2) to be positive.
- (c) Describe what does term (3) capture. Be specific.
- (d) Explain how the sample can be used to provide information for term (1) (2) but not (3) or (4).
- (e) What would it mean for term (4) to be positive?
- (f) What are the implications of term (4) being positive for measuring the effect of a degree on earnings?

Question 2

Discrete random variables X and Y can take 10 equally likely pairs:

$$(1,2), (1,4), (1,6), (2,1), (2,3), (2,5), (3,2), (3,4), (3,6), (3,8).$$

Verify the Law of Total Expectations: E[E(Y|X)] = E(Y). Answer: ...

Question 3

Variable $X \sim N(0,1)$ and $Y = X^2 - 1$. Show how this example illustrates that uncorrelated $\not\Rightarrow$ independent. **Answer:** . . .

Question 4

Joint pdf: $f(x,y) = \frac{3(x^2+y)}{11}$ for $0 \le x \le 2, 0 \le y \le 1$.

- (a) Find the best linear approximation to the CEF.
- (b) Plot the CEF and linear fit (include code + figure).

Question 5

Simple regression model: $y = \beta_1 + \beta_2 x^2 + \epsilon$.

- (a) Prove β_1, β_2 solve the least squares problem.
- (b) Reverse regression $x^2 = \alpha_1 + \alpha_2 y + v$: write expressions for α_1, α_2 .
- (c) When does $\alpha_2 = 1/\beta_2$? Justify.