Name :: Gayatri Manikchand Deshmukh

Class :: BE A Roll No.:: 38

Problem Statement

Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset. Determine the number of clusters using the elbow method. Dataset link: https://www.kaggle.com/datasets/kyanyoga/sample-sales-data (https://www.kaggle.com/datasets/kyanyoga/sample-sales-data)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

In [4]:

```
df = pd.read_csv('sales_data_sample.csv', encoding='Latin-1')
```

In [5]:

```
df.head()
```

Out[5]:

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERD/		
0	10107	30	95.70	2	2871.00	2/24/2		
1	10121	34	81.35	5	2765.90	5/7/2003 (
2	10134	41	94.74	2	3884.34	7/1/2003 (
3	10145	45	83.26	6	3746.70	8/25/2 (
4	10159	49	100.00	14	5205.27	10/10/2 (
5 rows × 25 columns								

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype						
0	ORDERNUMBER	2823 non-null	int64						
1	QUANTITYORDERED	2823 non-null	int64						
2	PRICEEACH	2823 non-null	float64						
3	ORDERLINENUMBER	2823 non-null	int64						
4	SALES	2823 non-null	float64						
5	ORDERDATE	2823 non-null	object						
6	STATUS	2823 non-null	object						
7	QTR_ID	2823 non-null	int64						
8	MONTH_ID	2823 non-null	int64						
9	YEAR_ID	2823 non-null	int64						
10	PRODUCTLINE	2823 non-null	object						
11	MSRP	2823 non-null	int64						
12	PRODUCTCODE	2823 non-null	object						
13	CUSTOMERNAME	2823 non-null	object						
14	PHONE	2823 non-null	object						
15	ADDRESSLINE1	2823 non-null	object						
16	ADDRESSLINE2	302 non-null	object						
17	CITY	2823 non-null	object						
18	STATE	1337 non-null	object						
19	POSTALCODE	2747 non-null	object						
20	COUNTRY	2823 non-null	object						
21	TERRITORY	1749 non-null	object						
22	CONTACTLASTNAME	2823 non-null	object						
	CONTACTFIRSTNAME	2823 non-null	object						
24	DEALSIZE	2823 non-null	object						
$\frac{1}{1}$									

dtypes: float64(2), int64(7), object(16)

memory usage: 551.5+ KB

```
In [7]:
```

```
df.isnull().sum()
Out[7]:
ORDERNUMBER
                          0
QUANTITYORDERED
                          0
                          0
PRICEEACH
ORDERLINENUMBER
                          0
                          0
SALES
                          0
ORDERDATE
                          0
STATUS
QTR_ID
                          0
                          0
MONTH ID
YEAR_ID
                          0
PRODUCTLINE
                          0
                          0
MSRP
PRODUCTCODE
                          0
                          0
CUSTOMERNAME
PHONE
                          0
                          0
ADDRESSLINE1
ADDRESSLINE2
                       2521
CITY
                          0
STATE
                       1486
POSTALCODE
                         76
COUNTRY
                          0
TERRITORY
                       1074
CONTACTLASTNAME
                          0
CONTACTFIRSTNAME
                          0
DEALSIZE
                          0
dtype: int64
In [8]:
df.columns
Out[8]:
Index(['ORDERNUMBER', 'QUANTITYORDERED', 'PRICEEACH', 'ORDERLINENUMBER',
        'SALES', 'ORDERDATE', 'STATUS', 'QTR_ID', 'MONTH_ID', 'YEAR_ID', 'PRODUCTLINE', 'MSRP', 'PRODUCTCODE', 'CUSTOMERNAME', 'PHONE',
        'ADDRESSLINE1', 'ADDRESSLINE2', 'CITY', 'STATE', 'POSTALCODE',
        'COUNTRY', 'TERRITORY', 'CONTACTLASTNAME', 'CONTACTFIRSTNAME',
        'DEALSIZE'],
       dtype='object')
In [10]:
x = df.iloc[:, [1, 2]].values
```

In [11]:

```
print(x)

[[ 30. 95.7 ]
  [ 34. 81.35]
  [ 41. 94.74]
  ...
  [ 43. 100. ]
  [ 34. 62.24]
  [ 47. 65.52]]
```

In [12]:

```
from sklearn.cluster import KMeans
```

In [15]:

```
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
```

In [17]:

```
plt.plot(range(1,11), wcss)
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```


In [19]:

```
kmeans = KMeans(n_clusters = 5, init = "k-means++", random_state = 42)
y_kmeans = kmeans.fit_predict(x)
```

In [20]:

```
y_kmeans
```

Out[20]:

array([3, 1, 0, ..., 0, 2, 1])

In [27]:

```
plt.scatter(x[y_kmeans==0,0],x[y_kmeans==0,1],s=60,c='red', label = 'Cluster1')
plt.scatter(x[y_kmeans==1,0],x[y_kmeans==1,1],s=60,c='blue', label = 'Cluster2')
plt.scatter(x[y_kmeans==2,0],x[y_kmeans==2,1],s=60,c='green', label = 'Cluster3')
plt.scatter(x[y_kmeans==3,0],x[y_kmeans==3,1],s=60,c='violet', label = 'Cluster4')
plt.scatter(x[y_kmeans==4,0],x[y_kmeans==4,1],s=60,c='yellow', label = 'Cluster5')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'blu
plt.xlabel('Quantity Ordered')
plt.ylabel('Price Each')
plt.legend()
```

Out[27]:

<matplotlib.legend.Legend at 0x25cc87f47c0>

In []:		