

2011270314 컴퓨터정보학과 서인석

목차

개요 (1/2)

프로젝트의 목적

과거 다른 소비자들의 선택을 학습하여, 해당 소비자의 취향에 맞도록 차량의 선택을 추측하여 차량을 추천해 주는 시스템을 구현한다.

개요 (2/2)

21세기인 현재, 차는 선택이 아닌 필수라고 해도 과언이 아닐 만큼 굉장히 중요한 존재가 되었다. 그만큼 개인 자가용의 구입이 늘게 되었으며, 자동차 회사와 선택 할 수 있는 차량의 종류 또한 늘게 되었다.

○ 차량 추천 시스템의 필요성

- 개인마다 취향이 다르기에 차를 선택하는 기준이 다르다!
- 기존의 추천 시스템은 인터넷이나 주변 지인들의 경험담, 혹은 소문에 의존하여 차를 추천 받아 선택하는, 수동적인 시스템이다!

그러므로 차량선택에 고민하는 소비자에게 소비자의 개인에 취향에 맞는 차량을 추천하는 시스템이 있다면, 이를 활용하여 소비자는 차량선택에 있어 시간과 수고를 덜 수 있고, 기업은 소비자들의 취향에 따라 자사의 차량을 홍보하는데 도움이될 것이다.

기계학습단계에 따른 적용 과정(1/2)

데이터 수집

차량선택을 예측, 추천하기 위해 기존 소비자들의 취향 특징과 선택한 차량의 정보의 데이터가 필요

데이터 준비와 탐구

얻은 데이터를 입력하고, 알고리즘에 맞도록 전처리 과정을 거친 뒤 훈련데이터 와 테스트데이터로 나눔

데이터에 대한 모델 훈련

전처리 한 테스트 데이터를 알고리즘에 적용하여 모델을 만듬

기계학습단계에 따른 적용 과정(2/2)

모델 성능 평가

테스트데이터를 만든 모델에 적용하여 모델의 성능을 평가 하고, 가장 성능이 좋은, 최적의 알고리즘을 선택

모델 성능 향상

모델의 성능을 향상시키기 위해 선택한 알고리즘에 맞게 데이터를 조정하여 성 능을 향상

학습 과정 (데이터 수집)

기계학습에 적용하기 위해 기존 소비자들의 차량 취향의 정보와 차량선택의 정보가 있는 데이터가 필요하다.

(choice	college	hsg2	coml5	type1	type2	type3	type4	type5	type6	fuel1	fuel2	fuel3	fuel4	fuel5	fuel6	price1	price2	price3	price
1 0	choice1		0	0	0 van	regcar	van	stwagon	van	truck	cng	cng	electric	electric	gasoline	gasoline	4.175345	4.175345	4.817706	4.81
2 0	choice2		1	1	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	3.310947	3.310947	3.586859	3.58
3 (choice5		0	1	0 regcar	truck	regcar	van	regcar	stwagon	cng	cng	electric	electric	gasoline	gasoline	4.039575	4.039575	2.777208	2.77
4 (choice5		0	0	1 regcar	truck	regcar	van	regcar	stwagon	methanol	methanol	cng	cng	electric	electric	7.065968	7.065968	7.387149	7.38
5 0	choice5		0	1	0 regcar	truck	regcar	van	regcar	stwagon	cng	cng	electric	electric	gasoline	gasoline	5.794157	5.794157	6.345981	6.34
6	choice5		0	0	0 truck	regcar	truck	van	truck	stwagon	cng	cng	electric	electric	gasoline	gasoline	3.532984	3.532984	4.175345	4.17
7 (choice2		1	1	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	1.927082	1.927082	0.963541	0.96
8 (choice5		1	0	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	6.070069	6.070069	6.345981	6.34
9 0	choice5		0	0	0 sportuv	sportcar	sportuv	regcar	sportuv	truck	methanol	methanol	electric	electric	gasoline	gasoline	3.067467	3.067467	3.834333	3.83
10 0	choice2		1	0	0 regcar	truck	regcar	van	regcar	stwagon	methanol	methanol	cng	cng	electric	electric	3.801738	3.801738	2.459948	2.45
11 (choice1		1	0	0 regcar	truck	regcar	van	regcar	stwagon	methanol	methanol	cng	cng	electric	electric	4.138684	4.138684	4.414596	4.41
12 0	choice2		1	1	0 truck	stwagon	truck	regcar	truck	van	methanol	methanol	electric	electric	gasoline	gasoline	3.323736	3.323736	3.798555	3.79
13 0	choice5		1	0	0 sportcar	truck	sportcar	sportuv	sportcar	regcar	methanol	methanol	cng	cng	gasoline	gasoline	5.460066	5.460066	6.102427	6.10
14 (choice5		0	0	0 regcar	stwagon	regcar	truck	regcar	van	methanol	methanol	electric	electric	gasoline	gasoline	1.284722	1.284722	1.605902	1.60
15 0	choice3		1	0	0 regcar	stwagon	regcar	truck	regcar	van	methanol	methanol	electric	electric	gasoline	gasoline	4.690508	4.690508	3.586859	3.58
16	choice6		1	0	0 truck	van	truck	stwagon	truck	regcar	methanol	methanol	cng	cng	gasoline	gasoline	1.931386	1.931386	1.931386	1.93
17 (choice3		1	1	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	8.437131	8.437131	5.45932	5.4
18 (choice2		0	0	0 regcar	truck	regcar	van	regcar	stwagon	methanol	methanol	cng	cng	electric	electric	1.022489	1.022489	1.1503	1
19 (choice3		1	1	0 van	regcar	van	stwagon	van	truck	methanol	methanol	cng	cng	electric	electric	3.310947	3.310947	3.586859	3.58
20 0	choice5		1	0	1 regcar	stwagon	regcar	truck	regcar	van	methanol	methanol	electric	electric	gasoline	gasoline	3.310947	3.310947	4.138684	4.13
21 (choice5		0	1	1 regcar	stwagon	regcar	truck	regcar	van	methanol	methanol	electric	electric	gasoline	gasoline	5.955622	5.955622	7.444527	7.44
22 (choice6		1	0	0 sportuv	truck	sportuv	sportcar	sportuv	regcar	methanol	methanol	cng	cng	gasoline	gasoline	4.856822	4.856822	5.368067	5.36
23 (choice5		0	0	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	4.690508	4.690508	3.035035	3.03
24 (choice3		1	0	0 regcar	truck	regcar	van	regcar	stwagon	methanol	methanol	cng	cng	electric	electric	4.690508	4.690508	3.035035	3.03
25 (choice1		1	0	0 truck	regcar	truck	van	truck	stwagon	methanol	methanol	cng	cng	electric	electric	7.065968	7.065968	7.387149	7.38
26 0	choice3		1	0	1 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	4.138684	4.138684	4.414596	4.41
27 (choice5		1	0	0 regcar	van	regcar	stwagon	regcar	truck	methanol	methanol	cng	cng	gasoline	gasoline	3.392783	3.392783	2.19533	2.1
28 (choice5		0	0	0 truck	regcar	truck	van	truck	stwagon	cng	cng	electric	electric	gasoline	gasoline	0.963541	0.963541	1.124131	1.12
29 6	choice1		1	n	1 reggar	van	reggar	stwagon	reggar	truck		methanol	cna	cna	nasoline	nasoline	6 621294	6 621 894	4 690508	460

(출처: https://vincentarelbundock.github.io/Rdatasets/datasets.html)

학습 과정 (데이터 전처리)

- 데이터를 학습하기 위해 미리 준비한 데이터인 Car.csv를 읽어 데이터 프레임으로 저장한다.
- 데이터 프레임으로 저장한 데이터를 알고리즘에 적용하기 위해 전처리 과정을 거친다.

```
car <- read.csv( Car.csv , stringsAsFactors = IKUI
car_train <- car[1:3000,]
car_test <- car[3001:4654,]
car_int <- car
car_int$choice <- as.integer(car_int$choice)</pre>
View(car_int)
view(car_int)
car_int_train <- car_int[1:3000,]
car_int_test <- car_int[3001:4654]
car_int_test <- car_int[3001:4654,]
save.image("~/project.RData")
savehistory("~/.Rhistory")
load("~/project.RData")
normal <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
       <- as data frame(lannly(car int normal))</pre>
```

학습 과정 (데이터에 대한 모델훈련)

• 전처리 과정을 거친 데이터를 여러 알고리즘에 적용한다.

Naivebayes 알고리즘

```
car_Naive_m <- naiveBayes(car_train,car_train$choice)
car_Naive_p <- predict(car_Naive_m,car_test)</pre>
```

c5.0 알고리즘 (DST)

```
car_DST_m <- C5.0(car_train[-2],car_train$choice )
car_DST_m
summary(car_DST_m)
car_DST_p <- predict(car_DST_m,car_test)</pre>
```

CART 알고리즘(회귀 트리)

```
car_CART_m <- rpart(choice ~ ., data = car_train)
car_CART_m
car_CART_p <- predict(car_CART_m, car_test)</pre>
```

○ Naivebayes 알고리즘 성능 평가

	predicted						
actual	choice1	choice2	choice3	choice4	choice5	choice6	Row Total
choice1	266 0.908 0.950	0.000 0.000 0.000	18 0.061 0.038	0.000 0.000	2 0.007 0.004	7 0.024 0.059	293 0.177
choice2	1 0.009 0.004	87 0.821 0.897	6 0.057 0.013	0.000 0.000	9 0.085 0.016	3 0.028 0.025	106 0.064
choice3	2 0.004 0.007	2 0.004 0.021	437 0.890 0.926	0.000 0.000	42 0.086 0.074	8 0.016 0.067	491 0.297
choice4	1 0.008 0.004	0.000 0.000 0.000	0.032 0.008	105 0.847 0.890	0.089	3 0.024 0.025	124 0.075
choice5	5 0.010 0.018	5 0.010 0.052		10 0.019 0.085		0 0.000 0.000	526 0.318
choice6	5 0.044 0.018	3 0.026 0.031	0.018 0.004	3 0.026 0.025	3 0.026 0.005	98 0.860 0.824	114 0.069
Column Total	280 0.169	97 0.059	472 0.285	118 0.071	568 0.343	119 0.072	1654

Decision Tree

655 811(27.0%) <<

Errors

학습 과정 (모델 성능 평가)

o c5.0 알고리즘 (DST) 성능 평가

(a)	(b)	(c)	(d)	(e)	(f)	<-classified as
437	2	66	6	80	3	(a): class choice1
23	86	28	6	18	2	(b): class choice2
40	8	707	9	87	3	(c): class choice3
31	5	40	115	33	1	(d): class choice4
55	12	103	22	774	7	(e): class choice5
25	8	41	9	38	70	(f): class choice6

	predicted						
actual	choice1	choice2	choice3	choice4	choice5	choice6	Row Total
choice1	57 0.195 0.208	15 0.051 0.211	86 0.294 0.177	0.065	102 0.348 0.161	14 0.048 0.292	 293 0.177
choice2	23 0.217 0.084	10 0.094 0.141	24 0.226 0.049		37 0.349 0.058	4 0.038 0.083	106 0.064
choice3	74 0.151 0.270	9 0.018 0.127	174 0.354 0.357	0.108		11 0.022 0.229	491 0.297
choice4	18 0.145 0.066	11 0.089 0.155	42 0.339 0.086	0.081	40 0.323 0.063	3 0.024 0.062	124 0.075
choice5	88 0.167 0.321	20 0.038 0.282	129 0.245 0.265		236 0.449 0.372	13 0.025 0.271	526 0.318
choice6	14 0.123 0.051	6 0.053 0.085	32 0.281 0.066	10 0.088 0.071	49 0.430 0.077	3 0.026 0.062	114 0.069
Column Total	274 0.166	71 0.043	487 0.294		634 0.383	48 0.029	1654

○ CART 알고리즘(회귀 트리) 성능 평가(1/2)

```
TI= 3UUU
       CP nsplit rel error
                              xerror
               0 1.00000 1.0009608 0.01644004
1 0.012105
2 0.010000
                2 0.97579 0.9886709 0.01697059
Variable importance
type6 cost3 cost4 type4 type2 cost5 cost6 type1 type3 type5
              15
                    13
                          11
                                 8
Node number 1: 3000 observations,
                                    complexity param=0.012105
 mean=3.464333, MSE=2.576061
  left son=2 (2253 obs) right son=3 (747 obs)
  Primary splits:
      cost3 < 7
                    to the left, improve=0.011279980, (0 missing)
     cost4 < 7 to the left, improve=0.011279980, (0 missing)
     type6 splits as RLRLRL,
                                    improve=0.010156270, (0 missing)
     range1 < 225
                       to the right, improve=0.009807567, (0 missing)
     range2 < 225
                       to the right, improve=0.009807567, (0 missing)
  Surrogate splits:
     cost4 < 7 to the left, agree=1.000, adj=1.000, (0 split) cost5 < 3 to the right, agree=0.880, adj=0.519, (0 split)
      cost6 < 3 to the right, agree=0.880, adj=0.519, (0 split)
      price3 < 0.666855 to the right, agree=0.752, adj=0.004, (0 split)
      price4 < 0.666855 to the right, agree=0.752, adj=0.004, (0 split)
                                    complexity param=0.012105
Node number 2: 2253 observations,
 mean=3.366178, MSE=2.501066
  left son=4 (1453 obs) right son=5 (800 obs)
  Primary splits:
     type6 splits as RLRLRL, improve=0.01773332, (0 missing)
```

○ CART 알고리즘(회귀 트리) 성능 평가 (2/2)

Naivebayes 알고리즘

• 약 90%의 정확도를 보인다

c5.0 알고리즘 (DST)

• 학습률은 73%이며 약 28% 정확도를 보인다.

회귀트리 알고리즘(CART)

- cor() 함수를 이용하여 상관관계를 측정한 결과 0.114의 결과를 보인다.
- ◆ 이중 가장 높은 정확도를 보이는 Naivebayes 알고리즘 을 사용한다!

학습 과정 (모델 성능 향상)

모델의 성능을 향상시키기 위해 모델을 훈련할 때 라플라스 측정기에 대한 값을 설정한다

car_Naive2_m <- naiveBayes(car_train,car_train\$choice,laplace = 1)
car_Naive2_p <- predict(car_Naive2_m,car_test)
CrossTable(car_test\$choice, car_Naive_p,prop.chisq = FALSE , prop.t = FALSE , dnn = c('actual', 'predicted'))</pre>

	predicted							
actual	choice1	choice2	choice3	choice4	choice5	choice6	Row Total	
choice1	243 0.829 0.924	4 0.014 0.035	18 0.061 0.040	1 0.003 0.008	2 0.007 0.004	25 0.085 0.152	293 0.177	
choice2	0.009 0.004	84 0.792 0.730	5 0.047 0.011	0.009 0.008	8 0.075 0.015	7 0.066 0.043	106 0.064	
choice3	6 0.012 0.023	0.010 0.043	418 0.851 0.935	7 0.014 0.056	31 0.063 0.058	24 0.049 0.146	491 0.297	
choice4	0.032 0.015	0.008 0.009	0.008 0.002	99 0.798 0.786	7 0.056 0.013	12 0.097 0.073	124 0.075	
choice5	4 0.008 0.015	15 0.029 0.130	0.008 0.009	15 0.029 0.119	488 0.928 0.905	0.000 0.000	526 0.318	
choice6	5 0.044 0.019	6 0.053 0.052	0.009 0.002	3 0.026 0.024	3 0.026 0.006	96 0.842 0.585	114 0.069	
Column Total	263 0.159	115 0.070	447 0.270	126 0.076	539 0.326	164 0.099	1654 1654 	

라플라스 측정기의 값을 1로 설정한 후, 예측의 정확도는 약 86%이다. 이후 측정기의 값을 변화 해도 초기 설정 값(0) 보다 높은 정확도는 나오지 않는다.

라플라스 측정기의 값이 0인 초기의 모델을 선정한다!

결과

사람들의 선호도와 선택을 학습하여 소비자의 취향에 따라 차를 추천해 주는 시스템

ㆍ 기대 효과

기업은 소비자의 취향 특징을 알아내, 그 특징을 부각시키거나 개발을 통하여 소비자들에게 어필 할 수 있으며, 소비자는 보다 객관적이고 정확하게 자신의 취향에 맞는 차를 추천 받아, 시간과 수고를 덜 수 있다.

기계 학습을 통하여 약 90%의 정확도를 가지는 모델을 생성하여 그 성능을 확인하였다! Q&A