SLCO4A - Aula Prática 9

Sumário

Propriedades da série de Fourier	1
Linearidade	. 1
Deslocamento temporal	.3
Reversão temporal	6
Escalonamento temporal	
Multiplicação de sinais	
Simetria	
Simetria par	11
Simetria impar	12
Identidade de Parseval	
Critério de aproximação de sinais por série de Fourier	

Propriedades da série de Fourier

Linearidade

Suponha que os coeficientes da série de Fourier exponencial complexa dos sinais periódicos x(t) e y(t) sejam denotados por a_k e b_k , respectivamente. Além disto z_1 e z_2 denotam dois números complexos. Então,

```
z_1x(t) + z_2y(t) \leftrightarrow z_1a_k + z_2b_k
```

Exercício 1: Considere os sinais periódicos $x(t) = \cos(t)$ e $y(t) = \sin(2t)$ e os escalares $z_1 = 3 + 2i$ e $z_2 = 2$. Considere 11 termos para o cômputo da série de Fourier.

```
% Prop. Serie Fourier
%Linearidade
%Cálculo z_1x(t)+z_2y(t)
t0=0;
T=2*pi;
w=2*pi/T;
syms t
z1=3+2i; z2=2;
x=cos(t); y=sin(2*t);
f=z1*x+z2*y;
k=-5:5;
left=(1/T)*int(f*exp(-j*k*w*t),t,t0,t0+T);
left=eval(left);
figure
subplot(211);
stem(k,abs(left));
legend('Magnitude');
title('Coeficientes de z_1x(t)+z_2y(t)');
subplot(212);
stem(k,angle(left));
legend('Fase');
```



```
%z_1*ak+z_2*bk
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
b=(1/T)*int(y*exp(-j*k*w*t),t,t0,t0+T);
right=z1*a+z2*b;
figure
subplot(211);
right=eval(right);
stem(k,abs(right),'r');
legend('Magnitude');
title('Coeficientes de z_1a_k+z_2b_k');
subplot(212);
stem(k,angle(right),'r');
legend('Fase');
```


Deslocamento temporal

Um deslocamento temporal de um sinal periódico resulta em uma mudança de fase dos coeficientes da série de Fourier. Então se $x(t) \leftrightarrow a_k$, a relação de deslocamento temporal resulta em

$$x(t-t_1) \leftrightarrow e^{-\mathrm{jk}\omega_0 t_1} a_k$$

Exercício 2: Considere o sinal periódico $x(t) = te^{-5t}$, $0 \le t \le 10$. Além disto, considere $t_1 = 3$.

Consequentemente, o sinal $x(t - t_1)$ é dado por $x(t - t_1) = x(t - 3) = (t - 3)e^{-5(t - 3)}$. Considere 11 termos para o cômputo da série de Fourier.

```
%deslocamento temporal

t0=0;
T=10;
w=2*pi/T;
syms t
x=t*exp(-5*t);
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
a1=eval(a);
figure
subplot(211);
```

```
stem(k,abs(a1));
title(' Coeficientes de x(t)=te^-^5^t');
legend('Magnitude');
subplot(212);
stem(k,angle(a1));
legend('Fase');
```



```
%Calculando coef. a partir de e^{-j*k*w0*t1}*ak
t1=3;
right=exp(-j*k*w*t1).*a;
right=eval(right);
figure
subplot(211);
stem(k,abs(right),'g');
legend('Magnitude');
title('e^{-j*k*w0*t1}*ak');
subplot(212);
stem(k,angle(right),'g');
legend('Fase');
```



```
%Calculando os coef. de x=(t-3)e^{-5*(t-3)}
x=(t-t1).*exp(-5*(t-t1));
a=(1/T)*int(x*exp(-j*k*w*t),t,t0+t1,t0+T+t1);
coe=eval(a);
figure
subplot(211);
stem(k,abs(coe),'g');
legend('Magnitude');
title(' Coeficientes (t-3)exp(-5(t-3)) ');
subplot(212);
stem(k,angle(coe),'g');
legend('Fase');
```


Reversão temporal

Se $x(t) \leftrightarrow a_k$, a expressão matemática é

$$x(-t) \leftrightarrow a_{-k}$$

Exercício 3: Considere um sinal periódico dado por $x(t) = t \cos(t)$, $0 \le t \le 2\pi$. Considere 11 termos para o cômputo da série de Fourier.

```
% Reversão temporal

t0=0;
T=2*pi;
w=2*pi/T;
syms t
x=t*cos(t);
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
a1=eval(a);
figure
subplot(211);
stem(k,real(a1));
hold on
subplot(212);
```

```
stem(k,imag (a1));
hold on

%reversão temporal de x(t)
x_=-t*cos(-t);
b=(1/T)*int(x_*exp(-j*k*w*t),t,t0-T,t0);
b1=eval(b);
subplot(211);
stem(k,real(b1));
legend('Re[a_k]','Re[b_k]');
subplot(212);
stem(k,imag (b1));
legend('Im[a_k]','Im[b_k]');
```


Escalonamento temporal

Os coeficientes da série de Fourier de uma versão escalonada $x(\lambda\,t)$ de x(t)não muda, exceto o período fundamental da versão escalonada que torna-se $\frac{T}{\lambda}$ e o período fundamental torna-se $\lambda\,\omega_0$.

```
x(\lambda t) \leftrightarrow a_k
```

Exercício 4: Considere um sinal periódico dado por $x(t) = t \cos(t)$, $0 \le t \le 2\pi$. Efetue um escalonamento $\lambda = 2$. Considere 11 termos para o cômputo da série de Fourier.

```
% Time scaling
```

```
syms t
t0=0;
T=2*pi;
w=2*pi/T;
x=t*cos(t);
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
a1=eval(a);
figure
subplot(211);
stem(k,abs(a1));
legend('Magnitude');
title('Coeficientes de x(t)');
subplot(212);
stem(k,angle(a1));
legend('Fase');
```



```
%Escalonamento de x(t)
lambda=2;
w=2*pi*lambda/T;
x= lambda*t*cos(lambda*t) ;
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
a1=eval(a);
figure
```

```
subplot(211);
stem(k,abs(a1));
legend('Magnitude');
title(' Coeficientes de x(2t)');
subplot(212);
stem(k,angle(a1));
legend('Fase');
```


Multiplicação de sinais

Os coeficientes da série de Fourier do produto de dois sinais é igual a convolução dos coeficientes da Série de Fourier de cada sinal. Suponha que $x(t) \leftrightarrow a_k$ e $y(t) \leftrightarrow b_k$. Então,

```
x(t)y(t) \leftrightarrow a_k * b_k
```

Exercício 5: Considere os sinais periódicos dados por $x(t) = \cos(t)$ e $y(t) = \sin(t)$, $0 \le t \le 2\pi$. Avalie os coeficientes do produto z(t) = x(t)y(t). Considere 11 termos para o cômputo da série de Fourier de x(t) e y(t).

```
% multiplicação de sinais

syms t
t0=0;
T=2*pi;
w=2*pi/T;
x=cos(t);
k=-5:5;
```

```
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
a1=eval(a);
y=sin(t);
b=(1/T)*int(y*exp(-j*k*w*t),t,t0,t0+T);
b1=eval(b);

%Calculo dos coeficientes do produto por meio da conv.
right=conv(a1,b1);
figure
subplot(211);
stem(-10:10,abs(right));
legend('Magnitude');
title(' a_k*b_k');
subplot(212);
stem(-10:10,angle(right));
legend('Fase');
```



```
%Calculo dos coeficientes do produto por meio da mult. temporal
%z(t)=x(t)y(t)
z=x*y;
k=-10:10;
c=(1/T)*int(z*exp(-j*k*w*t),t,t0,t0+T);
c1=eval(c);
figure
subplot(211);
stem(k,abs(c1));
```

```
legend('Magnitude');
title(' Coeficientes de x(t)y(t)');
subplot(212);
stem(k,angle(c1));
legend('Fase');
```


Simetria

Simetria par

Na representação trigonométrica

$$x(t) = a_0 + \sum_{n=1}^{\infty} b_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} c_n \operatorname{sen}(n\omega_0 t), \ t \in [t_0, t_0 + T]$$

onde os coeficientes da série de Fourier na forma trigonométrica são dados por

$$a_0 = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t) dt$$

$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} x(t) \cos(n\omega_0 t) dt$$

$$c_n = \frac{2}{T} \int_{t_0}^{t_0 + T} x(t) \operatorname{sen}(n\omega_0 t) dt$$

Se um sinal x(t) = x(-t)é par, então, $c_n = 0$.

E da representação por série de Fourier complexa obtém-se que $a_k = a_{-k}$.

Exercício 6: Considere o sinal periódico e com simetria par dado por $x(t) = t^2$, $-2 \le t \le 2$. Avalie os coeficientes da série de Fourier para 11 termos.

```
t0=-2;
T=4;
w=2*pi/T;
syms t
x=t^2;
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
figure
stem(k,eval(a))
legend('a_k')
```


Simetria ímpar

Se um sinal x(t) = x(-t)é ímpar, então, $b_n = 0$.

E da representação por série de Fourier complexa obtém-se que $a_k = -a_{-k}$.

Exercício 7: Considere o sinal periódico e com simetria ímpar dado por x(t) = t, $-2 \le t \le 2$. Avalie os coeficientes da série de Fourier para 11 termos.

```
t0=-2;
T=4;
w=2*pi/T;
syms t
x=t;
k=-5:5;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
figure
stem(k,imag(eval(a)))
legend('a_k')
```


Identidade de Parseval

A potência média de um sinal periódico x(t) com período T é igual a soma dos quadrados dos coeficientes da série de Fourier da forma exponencial complexa. A expressão matemática é

$$P_x = \frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Se o sinal for real,

$$P_x = \frac{1}{T} \int_T |x(t)|^2 dt = a_0 + 2 \sum_{k=1}^{\infty} |a_k|^2$$

Exercício 8: Considere o sinal periódico x(t) = sen(t), $0 \le t \le 2\pi$. Avalie os coeficientes da série de Fourier para 13 termos.

```
% Potencia media de x(t)=\sin(t)
syms t
x=sin(t);
T=2*pi;
t0=0;
P=(1/T)*int(abs(x)^2,t0,t0+T);
P=eval(P)
P = 0.5000
%Calculo pelo coeficientes da serie de Fourier
w=2*pi/T;
k=-6:6;
a=(1/T)*int(x*exp(-j*k*w*t), t,t0,t0+T)
a =
(0 \ 0 \ 0 \ 0 \ 0 \ \frac{5734161139222659 \pi i}{2}
                                        \frac{5734161139222659 \pi i}{0} 0 0 0 0 0
                                         36028797018963968
eval(a)
ans = 1 \times 13 complex
  0.0000 + 0.0000i
                    0.0000 + 0.0000i
                                       0.0000 + 0.0000i
                                                         0.0000 + 0.0000i · · ·
P=sum((abs(a)).^2);
eval(P)
ans = 0.5000
%Calculo considerando sinal real
a0=(1/T)*int(x,t0,t0+T);
P=a0^2+ 2*sum((abs(a(8:13)).^2));
eval (P)
```

ans = 0.5000

Critério de aproximação de sinais por série de Fourier

Um critério de "qualidade" de uma aproximação de representação de função por meio de série de Fourier é por meio do valor percentual de potência média que 2K + 1 componentes dos termos de uma série de Fourier correspondem.

A expressão do percentual de aproximação é

$$\left(\sum_{n=-K}^{K} \frac{|a_n|^2}{P_x}\right) 100\%$$

Exercício 9: Considere o sinal periódico $x(t) = t^3$, $-1 \le t \le 1$. Avalie os coeficientes da série de Fourier para a seguinte quantidade de termos: 7, 41, 101, bem como o percentual de aproximação das funções, respectivamente.

```
% x(t)=t^3 , -1<t<1
syms t
x=t^3;
t0=-1;
T=2;
w=2*pi/T;
Px=(1/T)*int(abs(x)^2,t0,t0+T);
fplot(x,[-1 1]);
grid on
legend('x(t)')</pre>
```



```
% Aproximação por SF e percentual de aproximação
% 7 termos
k=-3:3;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
xx7=sum(a.*exp(j*k*w*t));
figure
fplot(xx7,[-1 1]);
grid on
legend('Aproximação para k=-3:3')
```



```
% Pa=(abs(a)).^2;
% percentage=sum(Pa/Px);
% eval(percentage)
% or alternatively
Pa=sum((abs(a)).^2);
per=Pa/Px;
eval(per)
```

ans = 0.6101

```
%41 termos
k=-20:20;
a=(1/T)*int(x*exp(-j*k*w*t), t,t0,t0+T);
xx41=sum(a.*exp(j*k*w*t));
figure
fplot(xx41,[-1 1]);
grid on
legend( 'Aproximação para k=-20:20');
```



```
Pa=sum((abs(a)).^2);
per=Pa/Px;
eval(per)
```

ans = 0.9309

```
%101 termos
k=-50:50;
a=(1/T)*int(x*exp(-j*k*w*t),t,t0,t0+T);
xx101=sum(a.*exp(j*k*w*t));
figure
fplot(xx101,[-1 1]);
grid on
legend('Aproximação para k=-50:50');
```



```
Pa=sum((abs(a)).^2);
per=Pa/Px;
eval(per)
```

ans = 0.9719

```
figure
fplot(x,[-1 1]);
hold on
fplot(xx7,[-1 1]);
fplot(xx41,[-1 1]);
fplot(xx101,[-1 1]);
legend('x(t)','Aproximação para k=-3:3','Aproximação para k=-20:20','Aproximação
para k=-50:50','Location','bestoutside')
```

