Women Who Code

Databases with

Python: Quickstart

Python Track

An Overview of SOL: Concents Structure and more

An Overview of SQL: Concepts, Structure and more

WELCOME WOMEN WHO

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

OUR TARGET

Engineers with two or more years of experience looking for support and resources to strengthen their influence and levelup in their careers.

CODE OF CONDUCT

WWCode is an inclusive community, dedicated to providing an empowering experience for everyone who participates in or supports our community, regardless of gender, gender identity and expression, sexual orientation, ability, physical appearance, body size, race, ethnicity, age, religion, socioeconomic status, caste, creed, political affiliation, or preferred programming language(s).

Our events are intended to inspire women to excel in technology careers, and anyone who is there for this purpose is welcome. We do not tolerate harassment of members in any form. Our **Code of Conduct** applies to all WWCode events and online communities.

Read the full version and access our incident report form at womenwhocode.com/codeofconduct

250,000+ Members

In 95 cities and 122 countries with 70 networks, 10K+ events, \$1025 daily Conference tickets, \$2M Scholarships and Access to jobs + resources Infinite connections

OUR MOVEMENT

As the world changes, we can be a connecting force that creates a sense of belonging while the world is being asked to isolate.

AGENDA

Database

- What is a database?
- Motivation behind a database
- Roles in a database environment

Relational Database

- What is a data model?
- What makes data model special?
- Designing a relational database: procedure and steps
 SQL: Structured Query Language + Databases
- What is SQL?
- Examples of SQL Databases

username

products you've

bought

clicked

pages you've

occupation

For this data to be meaningful and useful, we need a good way to store it.

- Common problems in tech:
- Data storage
- Data management
- Data organization
- This is where databases come in!

0": \$2408500-afd8-66ac-9745-8101-

Fileschartdata new. 3500-144020620jm9trmd2s3n7w284-

An example of messy data

Database

What is a database?

- An organized collection of data
- Similar to an information system
- Can save, organize, protect and deliver data
- For example, library is a database of books; folders in a computer

101 0 10010 1010010 10010 1A database icon

Database Management Systems

Motivation behind a DBMS

- File based systems are too slow to search, too messy and not consistent
- Database allows you to easily manage, access and update the information within a second second
- Data security

□ inewerstuff

☐ (a) current_stuff

□ i very_current_stuff

☐ (a) priority 0

⊟ ives_depend_on_it
⊟ image: a gwerty

□ (asdf

□ Mew Folder

copied stuff

not_sure_if_safe_to_delete

priority 1

Data integrity

□ 🛅 stuff

Branch 2

Branch 3 Branch 4

Database Management Systems

So what is a DBMS?

- A heavy piece of software meant to store, retrieve, define, and manage data in a database.
- There are multiple popular DBMS adopted by companies worldwide.
- Some examples: MySQL, PostgreSQL, SQLite, Oracle (mainly enterprises)

Database

Roles in a database environment

- Database designer
- Database administrator
 - Responsible for managing data resources, physical database design and implementation and data security
- Developers
 - Responsible for optimize database systems performance efficiency, troubleshoot database issues, and ensure data quality and integrity
- End Users
 - From accessing the database permitted by database administrator, end users usually
 perform querying, updating and generating reports

Relational Database

According to Oracle, a

Relational Database is "a database structured to

recognize relations among

stored items of

tags ratings user_id movie id movie id movies id

users

Relational Database

A Relational Database is a special kind of database.

- Data is usually in the form of tables.
- These tables have rows of data (records).
 - The rows are defined according to the column labels (attributes).

10	employee_ID	firstname	lastname	address	000
	E43001101010101011	John 0101010101010101	Smith 001 101 100 101	New York 101001 100	100
	E45021	Jane 1001 101 101 101 101 101 101 101 101 1	Doe 01001010101010101010101010101010101010	Los Angeles	

Relational Databases follow a data model

What is a data model?

- A data model determines the rules to standardize data and how each table is related to each other
- Describes how data can be represented and accessed

What makes a data model special?

Support the development of information systems by providing the definition and format of data

Example of data model mapping

Structured Query Language (SQL)

What is SQL?

- Allows you to access and manipulate data from databases
- Users are able to create, query, update and delete data (with given permissions)
- Basically the language we use to interact with the database.

To use SQL, we need to understand:

- Its syntax
- How it works with the database

Structured Query Language (SQL)

Examples of SQL in Database

- **SELECT**
 - attendee_name **FROM**

event_registered WHERE location == "Amsterdam"

ORDER BY registered date ASC

Let's see an example of SQL in action

Sample database:

Chinook database

Source:

https://github.com/lerocha/ch inook-database/

Schema for the Chinook database

PostalCode

Phone

Fax

Email

BillingCity

BillingState

Total

BillingCountry

BillingPostalCode

PostalCode

SupportRepId

Phone

Fax

Email

So, how do we design a relational database?

- Procedure of designing the database
- 1. Think about your data.
 - What objects do I have? What do I know about those objects? How are these objects related to each other?
- 1. List these objects and their attributes.
 - Think about the attribute types while you're at it.

- B. Define your tables.
 - Start setting up sample data.
 - Draw your schema.
 - You can get away without doing this for a small project, but it's good practice to get used to the

1. Think about your data.

What objects do I have? What do I know about those objects? How are these objects related to each other?

Our objects: Client, bank account, credit card, employee that handled the

What do I know about these objects?

Client: first name, last name, age, employee that handled the client, bank accounts

Bank account: client, cards associated with the bank account, account number

Credit card: card number, account to which the credit card is associated

Employee: first name, last name, age.

2. List these objects and their attributes.

Think about the attribute types while you're at it.

Client: clientID, firstname, lastname, age, employeeID (bank accounts)

Credit card: cardID, accountID

Employee: employeeID, firstname, lastname, age

Bank account: accountID, clientID (cards)

In teal are the primary keys.

Primary keys are unique identifiers for a specific record

3. Define your tables.

Start setting up sample data.

Client

clientID	firstname 1	lastname	age 1 1	employeeID
24001	John 0 0101	Smith 101	43 10110	301 01 01 01 01 01
24002	Jane 101010	Doe 11010	45 10 10	(301010010100
24334 1010	Mary 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Jane 1	032 00101 01 0010	302 101 00 1010

1001010010: 1010100101

Foreign

Employee

000	employeeID	firstname 1	lastname 01	age 10010
000	1301 010010 10 001 100	Karen 1010	1W1001010 101001011	50 10 1
000	302	Hala 101	S 100100101	00101001 55010010
000	303 010 100	Ramya 10 0	1N)1001011 100101001	(32010100

4. Draw your schema.

You can get away without doing this for a small project, but it's good practice to get used to the formalism.

Let's continue with the rest of our data.

3. Define your tables.

11 100 to the street of the Asian Color

Start setting up sample data.

clientID	firstname 1	lastname	age 1 1	employeeID
24001	John 0 0101	Smith 101	43 10110	301 01 01 01 01 01
24002	Jane 101010	Doe 11010	45 10 10	(301010010100
24334 1010	Mary 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Jane 1	032 00101 01 0010	302 101 00 1010

01010010101 10010100101

Foreign

employeelD firstname lastname a

0	employeeID	firstname	lastname 01	age
0	1301 0 0 0 1 0 10 0 0 1 0 0	Karen 1010	1W1001010 101001011	50 10 1
0	302	Hala 010100	S 10100101 101001010	00101001 5501001
0	303)010100	Ramya 0 0	1N01010111 100101001	(32) 1 0 1 0

Let's continue with the rest of our data.

3. Define your tables.

Start setting up sample data.

Client

1	clientID	firstname	lastname	age 010100	employeeID
10	24001	John 1001	Smith 1001) 43 101001 10010100	(301
01	24002	Jane 1000	Doe	45 010110	301 101 10010
101	24334	Mary	Jane 1010	32 10 100 10	302101001010

accountID	clientID
552 10101	24002
553 010101	24334

Bank Account

Let's continue with the rest of our data.

Define your tables.

Start setting up sample data

Credit Card

cardID 10100 01010010	accountID
BZGH	552
OFGHJO 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	552 00101
ASDF	554 10010

0	Bank Account					
0	accountID	clientID				
1	552 1010	24002				
010	553	24334				
1	5540101010	24334				

	clientID	firstname	lastname	age 10010	employeeID
0:00	24001	John 1001	Smith 010	431 10010	3010
0(1	24002	Jane 01010	Doe 0100	45 00 10 10 0 10 10 00 1	301 01001
1010	24334	Mary 101	Jane	32	302 001 11
1	10 00101	001010010:	101001010	01010010	1001010010

Credit Car	.010010101 101010010 010001011 d00101010	010 101 010 100 010	0101010100 01001010101 1001010101 1010101001	1010101001 1001010101 0010100101 0101010001 010010	01010 00010 00101 01101
cardID 100	accountID	010	Bank Acc	1010010101 1000101101 ount 010001	0100
BZGH10101	552 1011 1001010	100	accountID 10	clientID 1	0101
FGHJ	55201000	01 101	552	24002	00010 01001
ASDF 0100	1554 01 01 0 001 01	101 010 010	553 1 0 1 1 0 1	24334	01000 10010
1010010101 0100101010 0101001010	.010001011 100101010 101001010	010 100 101	554 ₀₁₀₁₀₁	24334	00101 01101 00101

Client

1	clientID	firstname	lastname	age 1001	employeeID
	24001	John 01001	Smith 010	43 ¹ 01001	30101010010
1(1)	24002	Jane 10 10 Jane 10 11	Doe 101	45 ₁₀ 1001	301 010 10
1(24334 01	Mary100	Jane 1 1 (32 10010	302 0 0 0 1 0 1
	10100101	001010010	101001010	01010010	10010100101

Employee				
employeelD	firstname 1	lastname	age	
301 010010 010 001 100	Karen 1010	1W1001010 101001011	0500100101 010101001	
302	Hala 0101	S10100101 101001010	55 100101	
303	Ramya	1N1001011 100101001	(32)101001 01 010110	

4. Draw your schema. Final Design

You can get away without doing this for a small project, but it's good practice to get used to the formalism.

Wrap Up!

Database 100

- What is a database?
- Motivation behind a database
- Roles in a database environment

Relational Database

- What is a data model?
- What makes data model special?

SQL: Structured Query Language + Databases

- What is SQL?
- Examples of SQL Databases

JOIN US ON SOCIAL MEDIA!

@WWCODEPYTHON

WOMENWHOCODE.COM/PYTHON

TOTOT		
01010	010100	1010
01001	010010	1001
01001	010100	1010
10100		0100
10101	001010	1101
		1010
01010	010110	1010
10101	001010	
01010		1010
01010	010100	1010
10101	001010	1101
01001	010010	1003
01010	010100	

Upcoming Events

