Optical Metrology and Sensing – Seminar 1

Task 1: Basic Metrology Principles

- a) What is the meaning of 'confidence interval' of measured values?
- b) Explain the meaning of the sensitivity and the resolution of an instrument.

Task 2 Sampling Theory

- a) For an object of 2cm dimension, what is the minimum spatial resolution (in cm) when the object is digitized into an array of 512 samples?
- b) How many harmonics will be present in the Fourier transform of the digitized object?
- c) What is the lowest (but not DC) spatial frequency involved in the transform of the object described above and what is the highest?

Task 3: Fourier Theory

Prove the following Fourier transform theorems: Note * symbol stand for convolution

a)
$$\mathcal{F}\{\mathcal{F}\{g\ (x\ ,y\)\}\}=\mathcal{F}^{-1}\mathcal{F}^{-1}\{g\ (x\ ,y\)\}=g\ (-x\ ,-y\)$$
 at all points of continuity of g

b)
$$\mathcal{F}\lbrace g(x,y)h(x,y)\rbrace = \mathcal{F}\lbrace g(x,y)\rbrace * \mathcal{F}\lbrace h(x,y)\rbrace$$

Task 4: Fourier Theory

The expression

$$p(x,y) = g(x,y) * [comb(\frac{x}{Y})comb(\frac{y}{Y})]$$

Defines the periodic function with period X in the x direction and Y in the y direction.

a) Show that the Fourier transform of p can be written

$$P(f_X, f_Y) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} G(\frac{n}{y}, \frac{m}{y}) \delta(f_X - \frac{n}{y}, f_Y - \frac{m}{y})$$

Where G is the fourier transform of g

b) Sketch the function p(x,y) when,

$$g(x, y) = rect(2\frac{x}{X})rect(2\frac{y}{Y})$$

And find the corresponding Fourier transform P(fx,fy)

Optical Metrology and Sensing – Seminar 1

Task 5: Two-Beam Interference

Consider two monochromatic plane waves propagating in x-direction

$$\vec{E}_1 = \vec{e}_1 \sqrt{I_1} \exp(i(kx + \varphi_1))$$

$$\vec{E}_2 = \vec{e}_2 \sqrt{I_2} \exp(i(kx + \varphi_2))$$

with real-valued intensities l_1 , l_2 and complex-valued polarization vectors \vec{e}_1 , \vec{e}_2 such that $\vec{e}_1 \neq \vec{e}_1^*$, $\vec{e}_2 \neq \vec{e}_2^*$. Assume $|\vec{e}_1| = |\vec{e}_2| = 1$.

a) Show that the intensity distribution $I_{\text{tot}} = \vec{E}_{\text{tot}} \cdot (\vec{E}_{\text{tot}})^*$ for superimposed fields \vec{E}_1 and \vec{E}_2 can be written as:

$$I_{\text{tot}} = I_1 + I_2 + 2\sqrt{I_1I_2} \cdot Real \left\{ \vec{e}_1 \vec{e}_2^* \exp(i(\varphi_1 - \varphi_2)) \right\}$$

b) Use the result from a) to prove that circular polarized plane waves with opposite handedness do not interfere.