

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Electrónica y Automática Industrial

TRABAJO FIN DE GRADO

Integración de un brazo robótico en una red domótica

José Luis Grande Morón

Cotutor: Miguel Hernando

Gutiérrez

 $Departamento: \ Ingeniería$

Eléctrica, Electrónica,

Automática y Física Aplicada

Tutor: Alberto Brunete González

Departamento: Ingeniería

Eléctrica, Electrónica,

Automática y Física Aplicada

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Electrónica y Automática Industrial

TRABAJO FIN DE GRADO

Integración de un brazo robótico en una red domótica

Firma Autor

Firma Tutor

Copyright ©2019. José Luis Grande Morón.

Esta obra está licenciada bajo la licencia Creative Commons

Atribución-NoComercial-SinDerivadas 3.0 Unported (CC BY-NC-ND 3.0). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, EE.UU. Todas las opiniones aquí expresadas son del autor, y no reflejan necesariamente las opiniones de la Universidad Politécnica de Madrid.

Titulo: Integración de un brazo robótico en una red domótica

Autor: José Luis Grande Morón Tutor: Alberto Brunete González Cotutor: Miguel Hernando Gutiérrez

EL TRIBUNAL

Presidente:
Vocal:
Secretario:
Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día de de en, en la Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid, acuerda otorgarle la CALIFICACIÓN de:

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

Agradezco a

X AGRADECIMIENTOS

Resumen

Este proyecto se resume en.....

 ${\bf Palabras\ clave:}\quad {\bf palabraclave 1},\ {\bf palabraclave 2},\ {\bf palabraclave 3}.$

XII RESUMEN

i

Índice general

Aş	grade	ecimientos	IX
Re	esum	en	XI
Ín	dice	2	ΚΙV
1.	Intr	oducción	1
	1.1.	Motivación del proyecto	1
	1.2.	Objetivos	2
	1.3.	Materiales utilizados	4
		1.3.1. Componentes hardware	4
		1.3.2. Componentes software	5
	1.4.	Estructura del documento	6
2.	Mai	co Teórico	7
	2.1.	Conceptos de la comunicación serial	7
		2.1.1. Características	7
		2.1.2. Problemas	9
		2.1.3. Usos y aplicaciones	10
	2.2.	Conceptos de la comunicación por radiofrecuencia	11
		2.2.1. Características	11
		2.2.2. Problemas	15
		2.2.3. Usos y aplicaciones	16
3.	Esta	ado del arte	17
	3.1.	¿En qué consiste el Estado del Arte?	17
4.	Cón	no escribir en Latex	19
	4.1.	Estilo	19
	4.2.	Citas	19
	4.3.	Listas	19
	4.4.	Tablas	19
	4.5.	Referencia a una sección	20
	4.6.	Texto	20
	4.7.	Figuras	20
	4.8.	Código software	20
	4 Q	Pie de página	91

XIV	ÍNDICE GENERAL

5.			s y disc																23
	5.1.	Result	ados																23
			ión																
6.			el proye																25
	6.1.	Ciclo o	de vida																25
	6.2.	Planifi	cación .																25
		6.2.1.	Planific	ación	inicia	ıl.													25
		6.2.2.	Planific	ación	final														25
	6.3.	Presup	ouesto .																25
		6.3.1.	Persona	al															25
		6.3.2.	Materia	al															25
		6.3.3.	Resume	en de	costes					•			•						25
7.	Con	clusion	nes																27
	7.1.	Conclu	isión																27
	7.2.	Desarr	ollos fut	uros															27
Α.	Ane	хо																	29
	A.1.	Lorem	ipsum																29
Bibliografia													31						

Índice de figuras

1.1.	Estructura RoboHealth	2
1.2.	Raspberry Pi 3 model B	4
1.3.	Arduino Uno R3	4
1.4.	XBee Shield	5
1.5.	XBee Module	5
1.6.	Arduino Mega	5
1.7.	Interfaz de edición de Node-RED	6
2.1.	Formato serie marca/espacio	7
2.2.	Transmisión serial síncrona	8
2.3.	Transmisión serial asíncrona	9
2.4.	Ejemplo de radiotransmisor AM	1
2.5.	Modulación de la señal	2
2.6.	Modulación de fase	3
2.7.	Banda estrecha vs DSSS	4
2.8.	Radiocomunicación simplex a una frecuencia	4
2.9.	Radiocomunicación simplex a dos frecuencias	5
2.10.	Radiocomunicación semiduplex	5
2.11.	Radiocomunicación duplex	.5
4.1.	Logotipo de la UPM	20

Índice de tablas

4.1	Ejemplo de tabla																														1	9
т. т.	Ejempio de tabla	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		J

Capítulo 1

Introducción

El presente documento corresponde a la realización de un Trabajo Final del Grado en Electrónica Industrial y Automática basado en la conexión e integración de un brazo robótico en una red domótica. A continuación, se recoge de manera ordenada y detallada el desarrollo e implementación del proyecto; así como los resultados obtenidos y las conclusiones a kas que es posible llegar.

1.1. Motivación del proyecto

El punto de partida es el proyecto Robohealth. Consiste en un conjunto de entidades en colaboración para el desarrollo de soluciones relacionadas con la robótica y la domótica con el fin de introducir mejoras en el sistema sanitario. Como se puede observar, entre estas entidades está, además de otras dos universidades públicas de la Comunidad de Madrid, la Universidad Politécnica de Madrid.

Los resultados del proyecto están orientados a pacientes con enfermedades crónicas o capacidades cognitivas limitadas, pacientes en una situación de dependencia a los que es posible mejorar la calidad de vida. Estas mejoras se obtienen a través del diseño y fabricación de robots de asistencia, tanto para pacientes como para sus cuidadores, y la implementación de entornos inteligentes.

En la figura 1.1, se pueden observar los diferentes paquetes de trabajo y subproyectos en los que se trabaja dentro de la estructura de RoboHealth, repartidos entre las entidades colaboradoras. En la Universidad Politécnica de Madrid, encargada del desarrollo de entornos inteligentes de asistencia y rehabilitación, se ha venido trabajando en distintas herramientas enmarcadas en Trabajos Finales de Grado durante los últimos años.

Dentro del marco previamente expuesto, se han desarrollado dos plataformas que sirven de base para el proyecto objetivo de este documento.

- RoboHealth Arm es un brazo robótico de tres grados de libertad (actualmente, cuenta con sólo dos grados de libertad operativos) diseñado para sustentar una tablet en su extremo, haciendo más acesible su uso para pacientes y cuidadores. Está basado en un sitema de cuerdas y poleas accionado por tres servomotores.
- Por otro lado, existe una aplicacion de Node-RED que integra los diferentes dispositivos y proyectos desarrollados en una red domótica. Incluye una inter-

Figura 1.1: Estructura RoboHealth

faz gráfica que facilita su interacción vía internet, posibilitando controlar los dispositivos desde cualquier lugar.

La idea es continuar el proceso de integración de los diferentes dispositivos en Node-RED con la intención de controlar todo desde la misma interfaz. En ese contexto, surge el proyecto de hacerlo con el brazo RoboHealth Arm. Con el fin de tratar de explorar todas las tecnologías posibles, se comprueba que la radiofrecuencia aún no habia sido y existen soluciones económicas en el mercado.

Así, el planteamient del Trabajo Final de Grado tomó forma, defiendose como la conexión mediante el uso de radiofrecuencia del brazo RoboHealth Arm a la interfaz de Node-RED. Para la radiofrecuencia, se usarán dispositivos XBee.

1.2. Objetivos

Como se ha indicado con anterioridad, el **objetivo global** del proyecto es la completa integración de un control a través de internet del brazo robótico. Los comandos se lanzan desde la interfaz de Node-Red y el ordenador de la sala transmite la orden vía radiofrecuencia al brazo.

Posteriormente, se pueden establecer pequeños **objetivos parciales** que resulten en la consecución completa del proyecto. Estos objetivos secundarios están más orientados al correcto funcionamiento de cada una de las etapas y tecnologías utilizadas, así como de la correcta interacción entre estas y su posterior integración. Es este el procedimiento que se ha seguido a lo largo de todo el trabajo: hacer funcionar cada etapa de manera individual, para después ir integrándolas paso a paso.

Los objetivos parciales mencionados son los siguientes, yendo desde el lado de Node-RED hacia el lado del RoboHealth Arm:

 Un programa de flujos en Node-RED debe correr sin errores en la Raspberry Pi, generando un nuevo apartado en la actual interfaz para controlar el RoboHealth Arm. 1.2. OBJETIVOS 3

Desarrollar una user interface para comandar el brazo desde Node-RED. El objetivo no es otro que permitir configurar las coordenadas articulares del brazo, parámetros necesarios en el frame que posteriormente deberá recibir el RoboHealth Arm. Una vez configurados, se tendrá acceso a un botón encargado de poner en marcha la transmisión de información.

- La orden enviada desde la interfaz de Node-RED pondrá en marcha un script programado en Python que tomará como parámetros la configuración previamente establecida y enviará por uno de los puertos serie el frame generado de acuerdo a las especificaciones de diseño de la comunicación del RoboHealth Arm y el encapsulamiento de las comunicaciones vía radiofrecuencia. Toda la gestión de la ejecución de este script ha sido programada en Node-RED.
- El firmware cargado a los dispositivos XBee debe hacerlos compatibles entre ellos, de acuerdo a las características y casos de uso a los que cada uno se va a enfrentar.
- La configuración de los módulos XBee es vital para su comunicación. Esta configuración debe habilitar la comunicación entre los dos dispositivos XBee sin dejar de permitir la comunicación serial con el RoboHealth Arm ni con la Raspberry Pi. Es decir, los módulos XBee deben ser configurados de tal manera que esta configuración sea intersección entre la compatible con el brazo robótico y la compatible con la Raspberry Pi.
- Un dispositivo XBee ha sido configurado para enviar el frame de datos recibido por comunicación serial. Al poder concentrarse todo el procesamiento de la información correspondiente al emisor en el anteriormente mencionado script, no se precisa de ningún microcontrolador adicional que funcione junto al módulo de radiofrecuencia. Así pues, el módulo XBee funciona de manera exclusiva como un traductor entre la información en el puerto serie correspondiente y las ondas de radiofrecuencia.
- El dispositivo XBee receptor de la información que comanda el brazo robótico esta situado en el mismo. Su objetivo es ser capaz de captar el mensaje de radio específicamente diseñado para él y transmitirlo al microcontrolador del brazo. De la misma manera que en el otro XBee, su función será la de traductor de las ondas de radio (excusivamente de las destinadas a él) en información en el puerto serial. Por tanto, no es necesario procesar en ningún caso la información recibida a traves de radiofrecuencia, evitando un segundo microcontrolador que escuche y adapte constantemente el módulo XBee. Esto es posible gracias al prediseño de los frames de información de acuerdo a las especificaciones y protocolos de comunicación del brazo.
- El RoboHealth Arm debe ser capaz de leer e interpretar de manera correcta la información depositada en el adecuado puerto serial. Se debe provocar la reacción esperada en el brazo, moviendo sus servos hasta las coordenadas articulares especificadas.

1.3. Materiales utilizados

Con el fin de facilitar al lector una visión global de los campos objeto del presente proyecto, a continuación se indican los componentes del mismo.

1.3.1. Components hardware

■ Raspberry Pi 3 Model B (figura 1.2). Ordenador central donde corre la red domótica de toda la habitación

Figura 1.2: Raspberry Pi 3 model B

■ Arduino Uno R3 o clon (figura 1.3). Plataforma necesaria para el uso de la XBee Shield.

Figura 1.3: Arduino Uno R3

■ **Xbee Shield** (figura 1.4 ¹). *Add-on* que permite la interacción sencilla con el módulo XBee a través de Arduino.

 $^{^1\}mathrm{La}$ imagen contiene el módulo X Be
e además de la X Bee Shield

Figura 1.4: XBee Shield

■ XBee S2 (figura 1.5). Módulo de radiofrecuencia para la transmision inalámbrica de datos

Figura 1.5: XBee Module

■ Arduino Mega (figura 1.6). Microcontrolador sobre le que se monta RoboHealth Arm.

Figura 1.6: Arduino Mega

1.3.2. Components software

• Raspbian. Sistema operativo instalado sobre la Raspberry Pi.

- **Python script**. Programa escrito en lenguaje Phyton para ser ejecutado por la Raspberry Pi.
- Node-RED (figura 1.7). Aplicación programable que es capaz de integrar múltiples dispositivos hardware.

Figura 1.7: Interfaz de edición de Node-RED

■ RHA. Software del RoboHealth Arm.

1.4. Estructura del documento

A continuación, y para facilitar la lectura del documento, se detalla el contenido de cada capítulo.

- En el capítulo 1 se realiza una introducción al proyecto. Un breve comentario sobre la idea y componentes del trabajo.
- En el capítulo 2 se exponen los fundamentos teóricos que pueden facilitar la lectura posterior del desarrollo del proyecto.
- En el capítulo 3 se encuenta el estado del arte, un repaso a la tecnología actualmente desarrollada incluida en el proyecto, para conocer con mayor precisión el punto de partida del mismo.
- En el capítulo 4 se detalla el desarrollo del trabajo. Se exploran las soluciones hardware, software, montaje...
- En el capítulo 5 se exponen y discuten las pruebas y los resultados del proyecto.
- En el capítulo 6 se describe la gestion del proyecto; incluyendo la planificación, el presupuesto, ciclo de vida...
- Para finalizar, en el capítulo 7 se termina con las conclusiones sacadas del proyecto y potenciales desarrollos futuros.

Capítulo 2

Marco Teórico

El marco teórico del proyecto se limita al estudio de la naturaleza de las comunicaciones usadas. El trabajo emplea dos tipos de comunicaciones: raciofrecuencia y serial. La radiofrecuencia es la comunicación usada entre los módulos XBee. Por otro lado, la comunicación entre los módulos mencionados y sus correspondientes dispositivos de control se realiza por método serial. A continuación se comentan los conceptos básicos para comprender ambos métodos de comunicación.

2.1. Conceptos de la comunicación serial

La comunicación serie (o serial) es un método de transmisión de datos consistente en el envío de un único bit en un mismo instante de forma secuencial por una simple línea de transmisión. Lo simple de este método ha hecho que la comunicación serial se extienda masivamente entre los dispositivos comerciales, siendo actualmente un método común para comunicar ordenadores con distintos periféricos.

Se opone a la llamada comunicación paralela, que precisa de una línea de transmisión por cada bit de datos a cambio de un aumento de las prestaciones. Es bastante usual usar ocho líneas de datos, correspondiente a un byte. El uso de un número elevado de líneas de datos además de las líneas de control, hace notablemente mas caro el uso de comunicación paralela. Sumado a esto, la comunicación serie se ha desarrollado bajo un marco de estandarización mucho más extendido que en la comunicación paralela [1]; yendo esta característica en contra de implantar sistemas paralelos.

2.1.1. Características

Los bits secuenciales son transmitidos a partir del uso de dos niveles lógicos que pueden ser de tensión (más usual) o de corriente. Estos niveles se corresponden en el llamado formato marca espacio (figura 2.1) con los niveles lógicos "0z". Al nivel lógico "0" se le denomina espacio mientras que al nivel lógico "1" se le llama marca.

Figura 2.1: Formato serie marca/espacio

Existen varias configuraciones de las lineas de comunicación [1], cada uno optimiza sus prestaciones en relación a los requerimientos de la aplicación.

- La configuración simplex únicamente precisa de un hilo de comunicación y, pese a su ligero menor coste de producción, no es muy usado debido a sus limitaciones. Estas limitaciones son, en primer lugar, la escasa flexibilidad resultado de la necesidad de establecer una relación emisor-receptor permanente; es decir, uno de los dispositivos será siempre emisor y el otro será siempre receptor. Por otro lado, no se permite la comprobación de la recepción de la informacion, posibilitando comunicaciones deficientes.
- La configuración semi duplex utiliza igualmente una línea de comunicación pero conmutando la etiqueta de emisor y receptor entre los dispositivos de manera periódica. Uno de los dispositivos emite la información para pasar a recibirla a continuación. Esto soluciona los problemas de la configuración simplex, permitiendo hacer una comprobación de errores en la transmisión de datos.
- La mayoría de casos de uso de la comunicación serie emplean la configuración full duplex que permite la transmisión y recepción simultánea de datos por parte de ambos dispositivos. Para ello, se hace uso de dos líneas de comunicación, una destinada a la transmisión y otra a la recepción.

La base del funcionamiento de la comunicación es la sincronización. Para resolver esta cuestión en el caso de la comunicación serie, se estandarizan varios bits (o series de bits) y parametros entre emisor y receptor con el fin de determinar cuál es la información.

Existen dos modos de transmisión:

■ El modo **síncorno** no usa bits de sincornización y todos los componentes de la transmisión se agrupan en bloques consecutivos, existiendo una secuencia de sincronización al inicio de cada bloque. El emisor indica al receptor que se va a iniciar una comunicación mediante el envío de un octeto de bits "sync" (figura 2.2).

Figura 2.2: Transmisión serial síncrona

■ Por otro lado, el modo asíncrono no utiliza una línea de reloj, por lo que deben coincidir las características de la comunicación, como la velocidad de transmisión de datos, entre los dispositivos conectados. Para conseguir la sincronización en la comunicación, se hace uso de, por ejemplo, bits de inicio o parada (figura 2.3). Hay que tener en cuenta que la frecuencia a la que estos dispositivos leen el estado del frame es mucho mayor que la frecuencia a la que cambian de estado los propios bits del frame. En las siguientes líneas se definen conceptos relacionados con este tipo de comunicación, que es la utilizada a lo largo del proyecto.

Figura 2.3: Transmisión serial asíncrona

La indicación del inicio de la comunicación del frame transmitido se realiza mediante el **start bit**. Este bit genera un flanco negativo (transición de nivel marca a nivel espacio) cuando la linea de datos está a nivel marca ("1"lógico) mientras no se transmita información (figura 2.3).

Existen varios parámetros que especifican y definen la comunicación serial [6], y que deberán ser comunes entre los dispositivos partícipes de la transmisión de datos. A continuación se enumeran los principales parámetros configurables. Una diferencia en la configuración de los dispositivos impedirá su comunicación.

- La llamada **Baud rate** o, en castellano, tasa de baudios, se trata de la cuantificación de las símbolos por segundo de una comunicación y sirve para medir la velocidad de transmisión de la información.Coincide con los bits por segundo siempre que un símbolo de transmisión contenga un bit. Sin embargo, esto no tiene porqué cumplirse y el número de bits transmitidos por segundo pueden ser mayores que los baudios. La velocidad de transmisión se limita con el ancho de banda y la potencia de la señal.
- El número de bits de datos que se precisan para codificar un símbolo de información transmitido. Se suele tender a estandarizar el número de bits entre 5 y 8 bits.
- El Parity bit es opcional y se usa para la detección de errores. Se incrusta en medio del frame de bits de tal modo que es comprobable la correcta recepción del mismo. Se puede configurar como un bit de paridad par o impar. En el primer caso tendrá el valor necesario para hacer que la suma de los bits en nivel lógico "1çorrespondiente a los datos y al propio bit de paridad sea par. En el segundo caso ocurre lo contrario, el número de bits en estado alto debe ser impar.
- Los llamados Stop bits son bits que emplean una tensión positiva para informar de la finalización del frame hasta el siguiente flanco negativo. Suelen ser uno o dos los bits de paradas

2.1.2. Problemas

Los defectos más notables relacionados con la comunicación serial vienen de a mano de la sinconización y de la pérdida de bits.

La sincronización se consigue haciendo que los dispositivos conectados "hablen el mismo idioma". Para ello, hay que hacer coincidir toda una ristra de parámentos, cuyos principales exponentes han sido comentados previamente. Cualquier tipo de discrepancia hará que se pierda información o, si la información perdida viene relacionada con los delimitadores de la información comunicada, no se pueda producir la transmisión de datos.

En cuanto a la pérdida de información, existen mecanismos que posibilitan su detección y permiten actuar en consecuencia (por ejemplo, solicitando un nuevo envío de la información).

- Los generadores y detectores de paridad comparan el bit de paridad con la información enviada, tanto en la emisión de los datos como en la recepción de los mismos. Si existen incoherencias, se genera un bit de error que, posteriormente, es usado para actuar en consecuencia. La paridad, como se ha detallado previamente, puede ser par o impar y este marco debe ser común a lo largo de toda la comprobación del error.
- El método **checksum** soluciona de manera sencilla la potencial circunstancia en la que dos bits se transmiten de manera errónea y compensan mutuamente su error, siendo indetectables mediante el método de paridad. El checksum se trata de un bit añadido al final de la transmisión que contiene la información resultante del complemento a dos de la suma binaria de todos los bytes transmitidos en el mensaje. El receptor sumará los bytes recibidos, incluyendo el checksum, y el resultado debería ser cero si la comunicación ha sido la correcta.

2.1.3. Usos y aplicaciones

La comunicación serial es ampliamente utilizada en la comunicación de ordenadores con sus periféricos a través de los puertos USB. Existen una serie de estándares de comunicación serial. Los principales son los siguientes:

- El enlace TTL utiliza los típicos niveles de 0 y 5 voltios para definir sus estados lógicos. No es recomendable para la transmisión de datos a medias y largas distancias (no a más de 5 metros).
- El lazo de 20mA tiene la particulariadad de funcionar con niveles de intensidad. El nivel lógico de marca se logra con 20mA, mientras que la ausencia de corriente corresponde al nivel de espacio. El trabajar a intensidad permite la comunicación a largas distancias (no superiores a 1.6 kilómetros).
- Una de las normas que regulan el uso de la comunicación serial más utilizadas a lo largo de la historia es la RS232. Se trata de un protocolo de comunicación serie desarrollado a lo largo de los 70 que fue implementado en los ordenadores de la época. Hoy en día, ha sido ampliamente superado por la conexión USB, iniciando su declive.

La tensión de funcionamiento oscila entre los 12V y el mismo valor negativo. Existe un rango entre 3 y -3 voltios que está restingido al uso por comunicación serial RS232 y que absorbe errores de comunicación o ruido, evitando caer en indeterminaciones en la señal.

2.2. Conceptos de la comunicación por radiofrecuencia

La comunicación por radiofrecuencia hace uso de ondas de radio para transmitir información a distancia. Estas ondas se basan en la interacción de campos eléctricos y magnéticos.

2.2.1. Características

Las ondas de radio son un tipo de ondas electromagnéticas cuyas longitudes de onda son mayores que la luz infrarroja. El espectro de las longitudes de onda de las ondas de radio se sitúa entre loas 100 micrómetros y los 100 kilómetros. Es interesante mencionar que la naturaleza produce ondas de este tipo mediante fenómenos como el rayo por lo que, en su generación artificial, es importante aislar la comunicación del ruido externo. La naturaleza de estas ondas hacen que sus propiedades físicas sean variables con la frecuencia; en función de la aplicación, será más conveniente una frecuencia u otra.

El transmisor de radio (figura 2.4) es un dispositivo electrónico cuyo fin es tomar una señal a enviar, codificarla (modularla) y emitirla en forma de onda electromagnética por una antena. Por su parte, un receptor de radio se encarga de aprovechar la inducción electromagnética producida por las ondas de radio amplificándola y decodificandola de acuerdo al procedimiento seguido por el emisor. La forma de la transmisión, preacordada entre emisor y receptor, es vital para facilitar la distinción entre señal y ruido.

Las transmisión de ondas de radio se basa en la modificación de una onda base de acuerdo a la señal que se desea transmitir. Este proceso se denomina **modulación**. Este mecanismo de modulación maximiza la cantidad de información transmitible de manera simultánea, a la vez que incrementa la robustez haciendo al sistema más resistente a ruidos, interferencias y perturbaciones. El proceso opuesto a la modulación es la llamada demodulación cuyo fin es la obtención de la señal transmitida previamente y suele ser realizada por el mismo receptor de la información.

La onda base a la que se ha hecho referencia previamente se denomina **onda portadora**. Usualmente se trata de una onda sinusoidal que puede ser modificada en alguno de sus parámetros durante el proceso de modulación previo a la transmisión [7].

Figura 2.4: Ejemplo de radiotransmisor AM

Figura 2.5: Modulación de la señal

Existen numerosas técnicas de modulación. Algunas forman parte del lenguaje popular debido a su extendido uso y otras, de un desarrollo más reciente, tienen aplicaciones más específicas. En función del parámetro sobre el que se actúe, se puede dar con diferentes tipos de modulación. A continuación se listan algunos y se comentan aquellos que tienen un uso más extendido o que tienen aplicación en el actual proyecto.

Técnicas de modulación analógica:

- La amplitud modulada, comúnmente denominada AM, es una técnica que incide en la modificación de la amplitud de la onda portadora (figura 2.5). El resultado es una onda de igual frecuencia que la onda portadora pero que ve su amplitud variable a lo largo del tiempo en función de la señal a transmitir. Su simpleza hizo que fuera el primer método usado para tener éxito en la transmisión de audio vía telefónica.
- La frecuencia modulada, o FM, se trata de una técnica de modulación focalizada en la variación de la frecuencia de la onda portadora [5] (figura 2.5). Si hablamos de aplicaciones analógicas, tras la modulación se obtiene una onda cuyo valor de la frecuencia es proporcional a la señal a transmitir. Es frecuente emplear un condensador variable denominado varactor (junto a un cristal piezoeléctrico) que varíe ligeramente la frecuencia del oscilador en función de la señal a transmitir.
- La modulación de fase, también denominada PM, modifica de manera proporcional la fase de la onda portadora con la señal moduladora (figura 2.6). Es menos utilizada que las anteriores porque presenta ciertos problemas de ambigüedad en los extremos del rango de modulación y, especialmente, porque el coste y la complejidad de los equipos de recepción requeridos es superior.
- Modulación de amplitud en cuadratura [5], o QAM.
- Modulación de doble banda lateral [5], o DSB.
- Modulación de banda lateral única [5], o SSB.

Técnicas de modulación digital:

Figura 2.6: Modulación de fase

- La modulación por desplazamiento de fase, también denominada por sus siglas en inglés PSK, consiste en la variación de la fase de la onda portadora entre una determinada variedad de valores discretos. Es, en resumen, la técnica análoga a la PM pero con la particularidad de usar una salida discreta con un número limitado de estados.
- Modulación por desplazamiento de amplitud, o ASK.
- Modulación por desplazamiento de frecuencia, o FSK.

La técnica de modulación de espectro ensanchado se basa en la expansión de la señal a transmitir a lo largo de una banda muy ancha de frecuencias. Lógicamente, este método no es el más eficiente en cuanto al uso del ancho de banda pero es combinable con otros métodos que hagan uso de un ancho de banda mucho más estrecho. El receptor, al interpretar la información que llega, va a ver su ruido muy ligeramente incrementado al cohexistir con estas otras señales debido a que se dedicará a escuchas un ancho de banda muy amplio Existen varias técnicas principales de ensanchado del espectro:

• El ensanchamiento de espectro por secuencia directa (figura 2.7), o DSSS, incrusta un patron de bits (pseudorruido) reduntantes entre cada uno de los bits

Figura 2.7: Banda estrecha vs DSSS

que componen la señal a transmitir. Cuanto mayor sea este patrón de bits, más se parece la señal modulada al ruido y, consecuentemente, más interpretable como tal será por los dispositivos a los que no se dirija la información. La resistencia a interferencias es proporcional al tamaño del patron de bits. La secuencia de bits que se utiliza para modular la señal se conoce como secuencia de Barker y deberá ser conocida por el receptor para poder demodular la señal y obtener la información. Se han estandarizado dos tipos de modulación para la técnica de espectro ensanchado por secuencia directa. Una de ellas es la modulación de fase binaria (DBPSK) y la otra es la modulación de fase por cuadratura en offset (OQPSK). Ambas técnicas de modulación son casos específicos de la modulación por desplazamiento de fase mencionada previamente. Los módulos XBee usados en el proyecto trabajan bajo esta estandarización.

• Ensanchamiento de espectro por salto de frecuencia, o FHSS.

Como sucedía en el caso de la comunicación serial, en cuanto a la transmisión vía radio frecuencia también se puede hablar de diferentes configuraciones de la línea de comunicación [3]. De forma análoga, uno se puede encontrar con las siguientes configuraciones:

■ El modo de comunicación **simplex a una frecuencia** (figura 2.8) consta de un emisor al que todos los equipos receptores estan escuchando. Es barato pero puede ocasionar problemas de interferencias o de captura de comunicación.

Figura 2.8: Radiocomunicación simplex a una frecuencia

• El modo **simplex a dos frecuencias** (figura 2.9) trata de evitar la interferencia entre dos dispositios emisores cercanos.

Figura 2.9: Radiocomunicación simplex a dos frecuencias

• El modo **semiduplex** (figura 2.10) usa un duplexor para retransmitir hacia los receptores lo que recibe de otro emisor.

Figura 2.10: Radiocomunicación semiduplex

■ El modo duplex (figura 2.11) emplea un duplexor para cada dispositivo con el fin de que todos los dispositivos funcionen de emisores y receptores con el contra de elevar el coste

Figura 2.11: Radiocomunicación duplex

2.2.2. Problemas

De igual manera que en cuanto a la comunicación serial el principal problema venía de la sincronización de la información, en el caso de la radiofrecuencia se puede afirmar que el principal problema proviene de las interferencias y el ruido.

Al igual que otros aspecto de la radiocomunicación como el alcance o la potencia son adaptables, existiendo un amplio rango de elección y habiendo un importante número de dispositivos muy versátiles en el mercado; el ruido electromagnético es una cuestión inevitable porque su naturaleza es igual a la de la información recibida y su existencia es inherente al entorno. Aún asi, existen formas de reducir al mínimo la influencia de este ruido.

El elemento de la antena purifica la transmisión de la señal. El uso de una alta frecuencia portadora limita su coste y tamaño manteniendo un diseño adecuado.

Varios métodos de modulación, en especial aquellos relacionados con la modulación en frecuencia, tienden a ser más inmunes a la interferencia y al ruido. Esto es debido a que un patron variado de frecuencias conocidas es más fácil de distinguir del ruido que una frecuencia permanente durante toda la transmisión. Ahí tenemos

la explicación a por qué la escucha de radio FM es usualmente mas estable y de mayor calidad que la radio AM. La contra partida a esto es que la eficiencia del ancho de banda se reduce.

Por otro lado, en la etapa de modulación, se viene comprobando que, en general, conforme los procesos de transmisión y modulación se vuelven más complejos o incluyen un aumento de la velocidad de transmisión de los datos; se pierde rendimiento de la comunicación, tanto a nivel de inmunidad ante las perturbaciones, como en cuanto a la cobertura [7].

2.2.3. Usos y aplicaciones

La versatilidad de la radiocomunicación ha hecho que su uso se expanda en multitud de campos. A lo largo de su extensa historia, las aplicaciones han sido variadas y a continuación se listan algunas de las más representativas:

- Quizás la primera aplicación de las ondas de radio fue el establecimiento de redes de radioayuda que permitieran el envío de información en el conocido código morse, especialmente en el ámbito naval. Hoy en día también se implementa en la aeronavegación
- La radio, como medio de comunicación desde que se implementara en Buenos Aires, lleva más de un siglo funcionando [8]. Su influencia en el desarrollo del siglo XX es incalculable.
- El heredero como rey de los medios de comunicación de la radio fue la televisión y también usaba esta tecnología. Hasta hace escasos años la señal de televisión se hacía llegar a las casas a través de ondas analógicas de radio que ocupaban las bandas VHF y UHF.
- Multitud de radioaficionados y comunidades usan esta tecnología como medio de comunicación independiente a nivel local.
- Las redes inalámbricas se han vuelto recientemente muy populares al mismo tiempo que usando, entre otros, radiofrecuencia, han ido sustituyendo a los cables. El presente proyecto viene a ser una aplicación específica de este uso.
- Servicios de transmisión de audio y vídeo
- Telefonía móvil

Capítulo 3

Estado del arte

En este capítulo...

3.1. ¿En qué consiste el Estado del Arte?

Tal y como indica Wikipedia ¹, en el ámbito de la investigación científica, el SoA (por sus siglas en inglés) hace referencia al estado último de la materia en términos de I+D, refiriéndose incluso al límite de conocimiento humano público sobre la materia.

Dentro del ambiente tecnológico industrial, se entiende como "estado del arte", "estado de la técnica" o "estado de la cuestión", todos aquellos desarrollos de última tecnología realizados a un producto, que han sido probados en la industria y han sido acogidos y aceptados por diferentes fabricantes.

Es muy importante no confundir el estado del arte con un marco teórico o una guía de tecnologías o productos. En el estado del arte se sitúa al lector en el marco tecnológico en el que se ha desarrollado el TFG, comparándolo con desarrollos o productos parecidos.

¹https://es.wikipedia.org/wiki/Estado_del_arte

Cómo escribir en Latex

4.1. Estilo

Al ser un documento científico-técnico, debe ser expuesto en tercera persona del singular. También se admite usar la primera persona cuando son apreciaciones personales del autor.

4.2. Citas

Esto es un ejemplo de cita de un artículo [4]. Y este para una página web [2]. Se recomienda usar un archivo que contenga la bibliografía (.bibtex), aunque también se puede incluir la bibliografía directamente en el .tex mediante \bibtem.

4.3. Listas

Ejemplo de lista de puntos:

- Ejemplo1.
- Ejemplo2.

Y lista numerada:

- 1. Elemento 1
- 2. Elemento 2

4.4. Tablas

Ejemplo de tabla. Como se aprecia en la tabla 4.1...

Tabla 4.1: Ejemplo de tabla

One	Two	Three
F1A	F1B	F1C
F2A	F2B	F2C

Figura 4.1: Logotipo de la UPM

4.5. Referencia a una sección

Ejemplo de referencia a la sección 4.5

4.6. Texto

Texto en **negrita** y cursiva.

4.7. Figuras

Ejemplo de referencia a figura (figura 4.1). Es importante que todas las figuras que aparezcan estén referenciadas, así como las tablas. En general las figuras se colocarán al principio o al final de cada página ([tb] en latex), a no ser que por alguna necesidad se deban colocar en una posición exacta ([h]).

Muy importante!: Todas las figuras no originales que aparezcan en la memoria deben ir referenciadas.

4.8. Código software

Existen muchas formas de escribir código en el TFG. Aquí se muestra una de ellas. En general es interesante numerar las líneas para que sean referenciables y destacar palabras clave del lenguaje correspondiente. Ver código 4.1.

Código 4.1: Hola Mundo

```
#include <iostream>
using namespace std;

int main(int argc, char *argv[]) {
   cout << ''Hola mundo'' << endl;
   return 0;
}</pre>
```

En general no se debe incluir mucho código en la memoria. El código debe ir en el Anexo.

4.9. Pie de página

Esto es un pie de página $^1.$ Y para usar direcciones web y no tener problemas con caracteres especiales (como el "_"), se usa el comando url 2

¹Pie de página

²https://es.wikipedia.org/wiki/Estado_del_arte

Resultados y discusión

En este capítulo...

5.1. Resultados

Los resultados son una parte imprescindible del TFG. Muestran lo que realmente se ha hecho y deben ser explicados con rigor y claridad

5.2. Discusión

Una vez expuestos los resultados en la sección anterior, aquí se deben comentar y analizar su validez.

Gestión del proyecto

En este capítulo se describe la gestión del proyecto: ciclo de vida, planificación, presupuesto, etc.

6.1. Ciclo de vida

Explicación de las fases del proyecto: definición, análisis, diseño, construcción, pruebas, implementación, validación, documentación. Ejemplo: diagrama de Pert.

6.2. Planificación

Se puede indicar mediante un diagram de Gantt.

- 6.2.1. Planificación inicial
- 6.2.2. Planificación final
- 6.3. Presupuesto
- 6.3.1. Personal
- 6.3.2. Material
- 6.3.3. Resumen de costes

Conclusiones

Se presentan a continuación las conclusiones...

7.1. Conclusión

Una vez finalizado el proyecto...

7.2. Desarrollos futuros

Un posible desarrollo...

Apéndice A

Anexo ...

En este apéndice...

A.1. Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas ornare erat nisl, a laoreet purus pellentesque id. Duis laoreet ipsum posuere est hendrerit, quis ornare nisi iaculis. Quisque imperdiet gravida egestas. Maecenas in mauris felis. Quisque quis imperdiet enim. Curabitur dignissim eget nisi lobortis placerat. Donec et magna rutrum, tempor magna a, consectetur tortor. Donec faucibus sodales sem, eu iaculis leo eleifend id. Nam semper lectus nisl, sed molestie erat pharetra quis. Quisque vestibulum metus elit, id interdum ligula dignissim a.

Praesent eu velit ac lectus tristique tristique vitae et tellus. Mauris dignissim feugiat orci, vitae luctus dolor finibus ut. Ut congue bibendum lectus, vitae congue ligula. Donec commodo, lacus ac iaculis scelerisque, nunc purus finibus diam, at lacinia sem justo non quam. Aenean tempor urna vitae quam pretium porta. Sed in lacinia ipsum. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Integer ut tristique est. Nam vitae interdum ligula, ac sodales dolor. Nulla mollis bibendum urna, sit amet interdum est aliquet at. Sed sagittis mi vel tellus posuere, eu rutrum arcu tristique.

Vestibulum aliquet orci pharetra justo auctor, pharetra viverra felis finibus. Ut ac gravida quam. Donec egestas turpis nisi, nec elementum orci feugiat at. In hac habitasse platea dictumst. Praesent mollis sem in felis feugiat, dapibus finibus metus scelerisque. Aliquam ultricies ante quis nibh laoreet, ac aliquam justo maximus. Etiam rhoncus pharetra imperdiet.

Nullam at libero quis augue tristique luctus eget placerat lorem. Donec pretium, dui scelerisque dapibus feugiat, ex lacus auctor ipsum, in ultricies odio justo in eros. Proin sodales velit non accumsan tempor. Mauris at consectetur est. Donec aliquam porttitor tortor, id malesuada nunc euismod vel. Ut id ullamcorper turpis, nec feugiat sapien. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi aliquam tempus tortor, et gravida lectus iaculis non. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Integer non maximus felis. Nullam ac tempor augue. Vestibulum in efficitur mauris. Sed in nulla ultrices, pharetra ligula et, blandit nunc. Quisque dictum magna eget diam maximus, ac pulvinar nisi tempor. Pellentesque quis feugiat elit.

Integer euismod in urna id placerat. Etiam urna elit, tempor et turpis venenatis, volutpat viverra lacus. In luctus arcu sit amet lectus rutrum, id ultricies mi pellentesque. Nulla bibendum, orci in elementum aliquam, mi purus sollicitudin orci, quis ornare nulla arcu placerat urna. Integer consequat, risus ac elementum pellentesque, nulla est lobortis justo, sed mattis nibh ligula nec velit. Integer sem mauris, luctus vitae venenatis a, tincidunt egestas purus. In et lectus semper, dapibus massa sed, ultrices nisi. Ut sit amet dolor porta, accumsan lectus ut, semper tellus. Praesent velit odio, facilisis quis sodales vel, molestie at risus. In sollicitudin mauris risus, ullamcorper ullamcorper ligula commodo sed. Ut libero tortor, rhoncus ut sagittis quis, fringilla nec nunc. Ut efficitur nisi id leo feugiat ultrices. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Sed at malesuada arcu.

Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Sed consectetur, justo nec scelerisque accumsan, leo erat dictum odio, id feugiat nibh felis vel ipsum. Duis urna ante, commodo vitae neque varius, congue egestas turpis. Donec condimentum ullamcorper dapibus. Nulla sed sapien eu diam commodo finibus. Nulla fringilla lectus vitae augue rutrum volutpat. Nulla in accumsan orci. Suspendisse eget diam massa.

Bibliografía

- [1] Dispositivos lógicos programables la comunicación serie. url: http://perso.wanadoo.es/pictob/comserie.htm#conexion_de_un_microcontrolador_al_puerto_serie_del_pc.
- [2] Google. url: https://www.google.es (visitada el 15/06/2018).
- [3] Sistemas de radiocomunicaciones moviles. url: https://personal.us.es/murillo/docente/radio/documentos/tema9.pdf.
- [4] A. Brunete, M. Hernando, and E. Gambao. Offline ga-based optimisation for heterogeneous modular multi-configurable chained micro-robots. *Transactions on Mechatronics*, 18(2):578 585, 2013.
- [5] Real Academia de Ingeniería de España. Diccionario Español de Ingeniería. 1 edition, 2014.
- [6] National Instruments. LabVIEW Graphical Programming Course. National Instruments, Elizabeth Gregory, Malan Shiralkar, Harika Basana, 4.6 edition, 2004.
- [7] Cisco Systems. Fundamentos de Redes Inalámbricas. Pearson Educación, S.A., 1 edition, 2006.
- [8] Diego M. Zigiotto. Las mil y una curiosidades de Buenos Aires. Grupo Norma, 2008.