A BAYESIAN BELIEF NETWORK TO PRIORITIZE CONSERVATION NEED AMONG DIVERSE AQUATIC TAXA

DIVERSE AQUATIC TAXA

CRITICALLY ENDANGERED?

Investigators

DAVID A. SCHUMANN

MICHAEL E. COLVIN

ENDANGERED?

NEAR
THREATENED?

LEAST CONCERN?

Need for Conservation Priorities

Conservation maintains
"representative" biodiversity
within administrative boundaries

- Aesthetic & economic values
- Ecosystem services
- Intrinsic value of life

- Financial resources are limited
 - Need to prioritize geographic areas, species, or populations

Given resources to conserve few species, which do you choose?

How do you decide?

Establishing Conservation Priorities

- State and federal legislation list threatened & endangered species
 - Relatively few target species
- Many conservation-prioritization frameworks exist
 - Use similar biological criteria & known threats
 - Assess extinction risk most vulnerable and irreplaceable
 - Inform management decisions

Need for a New Approach

- No universally applicable conservation prioritization model
 - 1. Unable to represent uncertainty
 - 2. Operate at fixed spatial scales
 - Unknown sensitivity to biological criteria
 - 4. High resource & labor demands
- Aquatic taxa feature especially poorly
 - Extinction risk: Aquatic > terrestrial taxa
 - Relatively understudied worldwide
 - Often excluded despite potential conservation significance

Data Deficiencies

44% of Upper Yangtze River species

Current conservation status assigned to only ~20% of fishes

~32,000 fish species are unassigned

Introducing Flexibility – Bayesian Belief Network

Objective: Demonstrate the utility of a Bayesian network analysis to identify fishes in need of conservation attention

- Accessible biological criteria & well-known threats
 - Ex. Life-history traits & museum databases
- Consistent with the concepts of redundancy, resiliency & representation (US Fish and Wildlife Service)

Improvements to future status assessments:

- 1. Uncertainty
 - Method to assess potentially rare but poorly known taxa
- 2. Spatial Scale
 - Applicable at different administrative & geographic scales
- 3. Sensitivity to specific biological criteria
 - Identify components driving status designation

Bayes Net - A Probabilistic Model

Uncertainty & Expert Elicitation

Representation

<u>Definition</u>: The ability to adapt to changing environmental conditions over time

- Breadth of genetic & environmental diversity within & among populations
- Adequate: risk is spread among genetically diverse populations in diverse habitats

Continuous variable: represents diversity at the species, genus & family level

Calculation:

Inverse of the product of the number of cladogram branches at the genus, family & order nodes

Resiliency

<u>Definition</u>: The ability to withstand environmental stochasticity & localized disturbance events

Related to population demographics, species ecology & life-history traits

• Adequate: abundant individuals occupy habitats patches of suitable quality

to maintain survival & reproduction Incleasing seasonality of flows Increasing stability of flows PERIODIC Fecur ju_{venile} 33 Moderate time High Maximum_Length survivorship generation Small 33.3 fecundity 33.3 Medium 33.3 **Trophic Level** Large **OPPORTUNISTIC EQUILIBRIUM** Piscivore 33.3 Population Size 33.3 Invertivore Other 33.3 Increasing variability, decreasing predictability of flows Empirical 50.0 Resiliency Adequate Inadequate

Redundancy

<u>Definition</u>: The ability to withstand catastrophic events

- Related to the number, distribution & connectivity of populations
- Adequate: risk is spread among multiple, interacting populations

Redundancy – Quantifying Population Connectivity

Example Outputs for One Mississippi Basin

Upper Big Black basin, Mississippi

Museum Database – 3,671 records

228 sample events

• Years: 1934 – 2017

~92 species

Johnny Darter

Conservation Status				
Critically Endangered	6.62			
Endangered	11.5			
Imperiled	15.3			
Near Threatened	27.0			
Least Concern	39.6	:		

More threatened: Recapture rate at historic sites

Piebald Madtom

Conservation Status			
Critically Endangered	26.6		
Endangered	26.1		
Imperiled	18.3		
Near Threatened	19.4		
Least Concern	9.65		

More threatened: Number and extent of populations

Upper Big Black (HUC-8), MS

Piebald Madtom - Model Walkthrough

Piebald Madtom - Model Walkthrough

Piebald Madtom - Model Walkthrough

What happens if we change the scale?

Upper Big Black (HUC-8), MS

Piebald Madtom Status

Conservation Status			
Critically Endangered	26.6		
Endangered	26.1		
Imperiled	18.3		
Near Threatened	19.4		
Least Concern	9.65		

Upper Big Black basin

Conservation Status			
Critically Endangered	21.3		
Endangered	23.6		
Imperiled	18.1		
Near Threatened	21.3		
Least Concern	15.8		

Mississippi

Prioritizing Conservation Efforts for Aquatic Taxa

A new tool to identify species in need of conservation attention

- Addresses concerns with other prioritization systems when applied to aquatic species
 - 1. Uncertainty poorly known species & data limitations
 - 2. Spatial Scale any spatial or administrative scale
 - 3. Straightforward parameterization & prompt decision
- Broad applicability to diverse aquatic taxa
 - Ex. Panama City Crayfish

Moving forward:

- Further validation of the model structure
 - Federal partners assessing assigned & petitioned aquatic taxa
 - Training the model using species designated by USFWS

