Unreadable code often leads to bugs, inefficiencies, and duplicated code. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Programming languages are essential for software development. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. One approach popular for requirements analysis is Use Case analysis. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. There exist a lot of different approaches for each of those tasks. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Following a consistent programming style often helps readability. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Normally the first step in debugging is to attempt to reproduce the problem. There are many approaches to the Software development process. Following a consistent programming style often helps readability. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Integrated development environments (IDEs) aim to integrate all such help. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware.