Изучение экспериментальных погрешностей на примере физического маятника

Солодилов Михаил Б01-307 9.10.2023

Содержание

Аннотация

Цель работы:

- 1. на примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями;
- 2. проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения;
- 3. убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника;
- 4. оценить погрешность прямых и косвенных измерений и конечного результата.

В работе используются: металлический стержень с опорной призмой; дополнительный груз; закреплённая на стене консоль; подставка с острой гранью для определения цента масс маятника; счётчик колебаний электронный; линейки металлические различной длины; штангенциркуль; электронные весы.

Теоретические сведения

Физическим маятником называют твёрдое тело, способное совершать колебания в вертикальной плоскости, будучи подвешено за одну из своих точек в поле тяжести. Основное отличие физического маятника от математического в том, что маятник не является точечным объектом, а представляет собой совокупность жёстко связанных точечных масс. В данной работе в качестве такого маятника используется тонкий однородный металлический стержень, подвешиваемый в некоторой точке с помощью небольшой опорной призмы (см. рис. 1). Острое ребро призмы, опирающееся на подставку, задаёт ось качания (или вращения) маятника.

Рис. 1: стержень как физический маятник

Момент инерции J однородного стержня длиной l, массой m относительно его центра масс выражается следующим образом:

$$J_c = \frac{ml^2}{12}.$$

А момент инерции стержня, подвешенного на расстоянии a от центра масс, может быть вычислен по теореме Γ юйгенса—Штейнера:

$$J = \frac{ml^2}{12} + ma^2. (1)$$

В частности, если подвесить стержень за один из концов, то $a=\frac{l}{2}$ и $J=\frac{ml^2}{3}$.

Стержень как физический маятник

Вернёмся к рассмотрению колебаний физического маятника — стержня, подвешенного в поле тяжести (Рис. 1). Маятник подвешен в точке O на расстоянии a до центра масс C. При отклонении стержня от вертикального положения равновесия на угол ϕ возникает момент силы тяжести, стремящийся вернуть стержень в исходное положение. Плечо этой силы, приложенной к точке C, относительно оси подвеса O равно $a \sin \phi$,

поэтому при небольших углах отклонения $\phi \ll 1$ возвращающий момент равен:

$$M = -mqa\sin\phi \approx -mqa\phi$$

Таким образом, на маятник действует возвращающий момент сил, пропорциональный величине его отклонения от равновесия. Отсюда можно сделать вывод, что при малых *амплитудах* отклонения движение свободного физического маятника будет иметь характер *гармонических колебаний*, аналогично колебаниям груза на пружине или математического маятника.

Чтобы получить формулу периода колебаний физического маятника, воспользуемся аналогией с пружинным маятником, период колебаний которого равен, как известно, $T=2\pi\sqrt{\frac{m}{k}}$. Здесь роль массы m, как мы уже обсудили, играет момент инерции тела J, а роль коэффициента жёсткости пружины k — коэффициент пропорциональности между моментом силы и величиной отклонения mga. Таким образом, приходим к следующей общей формуле для периода колебаний произвольного физического маятника:

$$T = 2\pi \sqrt{\frac{J}{mga}} \tag{2}$$

А для стержня длиной l, подвешенного на расстоянии a от центра, с учётом (1) получаем:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}} \tag{3}$$

Сравним результат с известной формулой для математического маятника:

$$T_M = 2\pi \sqrt{\frac{l}{q}} \tag{4}$$

Видно, что (3) также *не зависит от массы* маятника, однако зависимость от длины подвеса более сложная.

Определим так называемую *приведённую длину* физического маятника:

$$l_{reduced} = a + \frac{l^2}{12}. (5)$$

Смысл этой длины в том, что физический маятник длиной l, подвешенный в точке a, имеет тот же период малых колебаний, что и математический маятник длиной $l_{reduced}$.

С понятием «приведённой длины» связана следующая теорема (Γ юйгенса). Рассмотрим точку O', отстоящую от точки опоры O на расстояние $l_{reduced}$ вдоль стержня (эту точку иногда называют uentaurempom качания физического маятника). Оказывается, если маятник подвесить за

Рис. 2: к теореме Гюйгенса

точку O', то период его качания не изменится. Иными словами, точка опоры и центр качания маятника взаимно обратимы.

Экспериментальная установка

Тонкий стальной стержень длиной $l \sim 1$ м и массой $m \sim 1$ кг (точные параметры определяются непосредственными измерениями) подвешивается на прикреплённой стене консоли с помощью небольшой призмы. Диаметр стержня много меньше его длины $d \sim 12$ мм $\ll l$. Небольшая призма крепится на стержне винтом и острым основанием опирается на поверхность закреплённой на стене консоли. Острие ребра призмы образует ось качания маятника. Возможны две схемы реализации установок.

Установка А. Призму можно перемещать вдоль стержня, изменяя длину a — расстояние от центра масс до точки подвеса. Период колебаний измеряется непосредственно с помощью секундомера.

Установка Б. Подвесная призма остаётся неподвижной (a = const), а на стержень маятника насаживается дополнительное тело небольшого размера («чечевица» или цилиндр), положение которого можно изменять, изменяя таким образом момент инерции маятника. Период колебаний маятника в этой схеме измеряется электронным счетчиком импульсов, расположенном у нижнего конца стержня.

Расстояния во всех установках измеряются линейками и штангенциркулем. Положение центра масс маятника может быть определено с помощью балансирования маятника на вспомогательной Т-образной подставке с острой верхней гранью.

Измеряя зависимости периода малых колебаний от положения стержня или дополнительного тела на нём, можно экспериментально вычислить значение ускорения свободного падения g. Формулу (3) можно про-

верить, откладывая по осям величины $u=T^2a$ и $v=a^2$. В этих координатах график u(v) должен иметь вид прямой линии, угловой коэффициент которой пропорционален $g,\ a$ вертикальное смещение — моменту инерции стержня относительно центра масс.

Измерение периода колебаний

Мы используем электронный счётчик колебаний, поэтому случайная погрешность крайне мала. Остаётся систематическая погрешность, равная половине последней десятичной цифры, $\sigma_t = 0.005$ с. Также мы проводим измерения большого количества колебаний (n=20), из-за чего погрешность одного колебания, то есть σ_T уменьшается в n раз, то есть $\sigma_T = \frac{\sigma_t}{n}$.

Особенности маятника с перемещаемым грузом

Если на стержень насадить груз, то момент инерции маятника, а значит и период его колебаний, будет зависеть от положения груза относительно оси качания.

В качестве подвижного груза в работе используется металлический цилиндр или «чечевица». Масса груза $m_g \approx 300 \div 400$ г, диаметр $d_g \sim 6$ см. Поскольку размер груза мал по сравнению с длиной стержня, его можно считать закреплённой на стержне точечной массой. Обозначим за y расстояние от точки подвеса O до центра масс груза (см. Рис. 3). Тогда момент инерции маятника будет равен:

$$J = J_o + m_g y^2,$$

Рис. 3: маятник с грузом

где J_0 – момент инерции маятника без груза, определяемый по формуле (1). Поскольку точка подвеса в схеме Б фиксирована, величина J_0 в опыте остаётся постоянной.

Заметим, что величину y на практике измерить напрямую затруднительно, поскольку положение центра масс груза точно не известно. Вместо этого можно измерить положение центра масс маятника с грузом и без него. Пусть x_{c0} – расстояние от точки подвеса (острия призмы) до центра масс маятника без груза. Тогда центр масс маятника с грузом находится в точке

$$x_c = \frac{m_0 x_{c0} + m_g y}{M},$$

где m_0 - масса мятника без груза (стержня вместе с призмой), $M=m_0+m_g$ — полная масса маятника. Положения центра масс x_c и x_{c0} могут быть измерены с помощью подставки. Отсюда находим формулу для вычисления положения центра масс груза:

$$y = \frac{Mx_c - m_0 x_{c0}}{m_q} \tag{6}$$

Заметим, что положение центра масс груза достаточно измерить только один раз, а затем измерять смещение Δy груза относительно некоторого исходного положения y_0 .

Из общей формулы (2) найдём период колебаний маятника грузом:

$$T = 2\pi \sqrt{\frac{J_0 + m_g y^2}{q M x_c}} \tag{7}$$

Отсюда видно, что если построить зависимость величины $u = T^2 x_c$ от $v = y^2$, то график должен иметь вид прямой линии. По её наклону можно определить ускорение свободного падения g, а по вертикальному смещению – момент инерции J_0 маятника.

Задание

Счётчик колебаний: $\sigma_t = 0.005 \text{ c}$

Линейка: $\sigma_l = 0.05 \text{ см}$

Погрешность g зависит от точности измерения длин и периода колебаний. Длины измеряли линейкой. Наименьшее измеренное расстояние 18 см, а наибольшее – 98 см. Абсолютная погрешность линейки: $\sigma_l=0.05$ см. Тогда относительная погрешность длин составляет порядка $\varepsilon_{max}=\frac{0.05}{18}\approx 0.3\%$.

Вывод: используемые в работе инструменты позволяют вести измерения длин с точностью вплоть до 0.3%. Для получения конечного результата с данной точностью период колебаний следует измерять с той же относительной погрешностью: не хуже, чем $\varepsilon_{max}\approx 0.3\%$.

Далее проведём основные измерения:

	Значение	Погрешность
Длина стержня l , см	98.24	0.05
Длина стержня до призмы z , см	71.94	0.05
Положение центра масса от призмы a , см	26.30	0.05
Масса стержня т, г	890.90	0.05
$Macca$ призмы m_{pr} , гр	75.90	0.05
Масса груза m_g , гр	315.80	0.05
Центр масс стержня с призмой x_{c0} , см	50.04	0.05

По формуле 1 посчитаем $J_0,\ J_0=\frac{ml^2}{12}+ma^2=\frac{0.89090\cdot 0.9824^2}{12}+0.89090\cdot 0.2630^2\approx 0.1333kg\cdot m^2$

Теперь замерим 20 колебаний маятника без груза:

t, c	n	<i>T</i> , c
30.74	20	1.537

из формулы (3):

$$g = \frac{4\pi^2(\frac{l^2}{12} + a^2)}{aT^2} \approx \frac{4 \cdot 3.14^2(\frac{0.98^2}{12} + 0.26^2)}{0.26 \cdot 1.537^2} \approx 9.49 \frac{m}{s^2}$$

Относительная погрешность ε_g получилась $\approx 3\%$.

Теперь будем вешать груз на разном расстоянии от призмы и будем замерять период колебаний.

Выведем формулу для g из формулы (7):

$$g = \frac{4\pi^2(J_0 + m_g y^2)}{T^2 M x_c} \tag{8}$$

N эксперимента	t, c	n	T, c	y, cm	$g, \frac{m}{s^2}$
1	28.24	20.0	1.4120	26.7737	9.1572
2	28.31	20.0	1.4155	29.2106	9.1605
3	28.54	20.0	1.4270	34.8966	9.2040
4	29.19	20.0	1.4595	43.0194	9.2150
5	28.64	20.0	1.4320	12.9649	9.1194
6	28.37	20.0	1.4185	16.2140	9.1545
7	28.29	20.0	1.4145	23.1184	9.0957

Построим зависимость u(v), где $u=T^2x_c,\,v=y^2$:

Рис. 4: T^2x_c от y^2 .

Из формулы (8):

$$T^{2}x_{c} = \frac{4\pi^{2}(J_{0} + m_{g}y^{2})}{Mq} = \frac{4\pi^{2}J_{0}}{Mq} + \frac{4\pi^{2}m_{g}y^{2}}{Mq}.$$
 (9)

To есть k наклона есть:

$$k = \frac{4\pi^2 m_g}{Mg}.$$

Тогда:

$$g = \frac{4\pi^2 m_g}{Mk}. (10)$$

Красная линия была подобрана для лучшего совпадения с графиком. Её коэффициент наклона k=1, а значит по формуле (10) $g\approx 9.72\frac{m}{s^2}$.

Рассчитаем погрешность ε_g по табличному значению $g_0 \approx 9.81$ тогда:

$$\varepsilon_g = (9.81 - 9.72)/(9.81) \cdot 100\% \approx 0.92\%$$

Вывод

Метод с использованием график оказался сильно точнее (в 3 раза) чем используя формулу и одно измерение, однако формула всё ещё довольно хорошо описывает период колебаний маятника, так как полученный график действительно оказался почти прямой.