Problem

Chef considers a permutation P of $\{1,2,3,\ldots,N\}$ End Sorted if and only if $P_1=1$ and $P_N=N$.

Chef is given a permutation P.

In one operation Chef can choose any index i $(1 \leq i \leq N-1)$ and swap P_i and P_{i+1} . Determine the minimum number of operations required by Chef to make the permutation P End Sorted.

Note: An array P is said to be a permutation of $\{1,2,3,\ldots,N\}$ if P contains each element of $\{1,2,3,\ldots,N\}$ exactly once.

Input Format

- ullet The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of two lines of input.
 - \circ The first line of each test case contains a single integer N, denoting the length of the permutation P.
 - \circ The second line contains N space-separated integers $P_1, P_2, P_3, \ldots, P_N$, denoting the permutation P.

Output Format

For each test case, output minimum number of operations required by Chef to make the permutation P End. Sorted.

Constraints

- 1 < T < 1000
- $2 \le N \le 10^5$
- P is a permutation of $\{1,2,3,\ldots N\}$
- The sum of N over all test cases does not exceed $3\cdot 10^5$.

For each test case, output minimum number of operations required by Chef to make the permutation $P \ {\tt End} \ {\tt Sorted}.$

Constraints

- 1 < T < 1000
- $2 < N < 10^5$
- P is a permutation of $\{1, 2, 3, \dots N\}$
- The sum of N over all test cases does not exceed $3\cdot 10^5\,.$

Sample 1:

Input	Output
4	0
4	3
1 3 2 4	1
3	1
3 2 1	
2	
2 1	
3	
213	

Explanation:

 $\textbf{Test case } 1 \mathpunct{:} P \text{ is already End Sorted}.$

Test case 2: P can be made End Sorted using 3 operations as follows: $[3,2,1] \to [\mathbf{2},\mathbf{3},1] \to [\mathbf{2},\mathbf{1},\mathbf{3}] \to [\mathbf{1},\mathbf{2},3]$. It can be shown that achieving this in fewer than 3 moves is impossible.

Test case 3:P can be made End Sorted using one operation, by swapping 1 and 2.

Test case 4: P can be made End Sorted using one operation, by swapping 1 and 2.