

AOW482

80V N-Channel MOSFET SDMOS™

General Description

The AOW482 is fabricated with SDMOSTM trench technology that combines excellent R_{DS(ON)} with low gate charge and low Q_{rr}. The result is outstanding efficiency with controlled switching behavior. This universal technology is well suited for PWM, load switching and general purpose applications.

Product Summary

 $\begin{array}{ll} V_{DS} & 80V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 105A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 7.2 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 7V) & < 9 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

 ${\mathfrak C}$

TO-262

T_A=70℃

Junction and Storage Temperature Range

Power Dissipation A

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Symbol **Parameter** Maximum Units Drain-Source Voltage V_{DS} 80 Gate-Source Voltage ±25 V_{GS} $T_C = 25^{\circ}C$ 105 Continuous Drain I_D Current G T_C=100℃ 82 Α Pulsed Drain Current C 330 I_{DM} T_A=25℃ 11 Continuous Drain Α I_{DSM} T_A=70℃ Current 9 Avalanche Current C I_{AS} , I_{AR} 82 Α Avalanche energy L=0.1mH C $\mathsf{E}_{\mathsf{AS}},\,\mathsf{E}_{\mathsf{AR}}$ 336 mJ T_C=25℃ 333 P_D W T_C=100℃ Power Dissipation ^B 167 T_A=25℃ 2.1 P_{DSM} W

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	11	15	€/M				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	47	60	€/M				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.36	0.45	℃/W				

 T_J , T_{STG}

1.3

-55 to 175

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units				
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	80			V				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =80V, V _{GS} =0V	\ \		10 50	μА				
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 25V$	1		100	nA				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	2.5	3.1	3.7	V				
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	330			Α				
	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A		5.9	7.2	0				
		T _J =125°C	;	11	13	mΩ				
	Static Dialii-Source Oil-Resistance	V _{GS} =7V, I _D =20A								
				6.8	9	mΩ				
g _{FS}	Forward Transconductance V_{DS} =5V, I_{D} =20A			50		S				
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.64	1	V				
I _S	Maximum Body-Diode Continuous Curre			105	Α					
DYNAMIC	PARAMETERS									
C _{iss}	Input Capacitance		3240	4054	4870	pF				
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =40V, f=1MHz	320	458	600	pF				
C _{rss}	Reverse Transfer Capacitance		95	160	225	pF				
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.2	0.45	0.7	Ω				
SWITCHI	NG PARAMETERS									
Q _g (10V)	Total Gate Charge		53	66.8	81	nC				
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =40V, I_{D} =20A	16	20.8	25	nC				
Q_{gd}	Gate Drain Charge		12	20.2	30	nC				
t _{D(on)}	Turn-On DelayTime			26		ns				
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =40V, R_L =2 Ω ,		18		ns				
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		48		ns				
t _f	Turn-Off Fall Time			21		ns				
t _{rr}	Body Diode Reverse Recovery Time	e I _F =20A, dI/dt=500A/μs		26	34	ns				
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	75	108	140	nC				

A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev0: June 2010 www.aosmd.com Page 2 of 7

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=175$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$ °C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175°C. The SOA curve provides a single pulse ratin g.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25℃.

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

100

125

150

175

75

40

20 0

0

25

50

75

T_{CASE} (℃)

100

125

150

Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Figure 17: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current

Figure 18: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current

Figure 19: Diode Reverse Recovery Charge and Peak Current vs. di/dt

Figure 20: Diode Reverse Recovery Time and Softness Factor vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

