1 Borel-Cantelli Lemma and Its Application

This section covers Borel-Cantelli Lemma, Borel 0-1 Law and some applications of the 0-1 law.

Lemma 1.1 (Borel-Cantelli). Let $\{A_n\}$ be a sequence of events on a probability space $(\Omega, \mathcal{A}, P)^{-1}$.

i. If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then $P(A_n, i.o.) = 0$.

ii. Assume further that $\{A_n\}$ are independent. If $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(A_n, i.o.) = 1$.

Proof.

Proof of i. This is easy since

$$P(A_n, i.o.) = P\left(\limsup_{n} A_n\right) = P\left(\lim_{k} \bigcup_{n \ge k} A_n\right)$$
$$= \lim_{k} P\left(\bigcup_{n \ge k} A_n\right) \le \lim_{n} \sum_{n=k}^{\infty} P(A_n) = 0,$$

where we have used the upper continuity of probability (or finite) measure.

Proof of ii. Also not hard by using the elementary inequality

$$1 - x < e^{-x}, \quad x \in \mathbb{R}. \tag{1}$$

Then

$$P(A_n, i.o.) = \lim_{k} P\left(\bigcup_{n \ge k} A_n\right) = 1 - \lim_{k} \lim_{N} P\left(\bigcap_{n=k}^{N} A_n^c\right)$$
$$\ge 1 - \lim_{k} \lim_{N} \prod_{n=k}^{N} (1 - P(A_n)) = 1 - \exp\left(-\lim_{k} \sum_{n=k}^{\infty} P(A_n)\right) = 1,$$

where we used (1) to overcome the difficulty of bounding products of the form $\prod_i (1 - a_i)$.

Remark 1.2 (Comments on the condition of Lemma 1.1(ii)). If $\{A_n\}$ are strongly depend, then the result of Borel-Cantelli Lemma (ii) cannot hold. For example, take $A_n = A$. However, the independent assumption can be reduced to pairwise sense, [1, Theorem 4.2.5.].

We can understand Borel-Cantelli Lemma as the following "0-1 law".

Corollary 1.3 (Borel 0-1 Law). Let $\{A_n\}$ be pairwise independent events. Then $P(A_n, i.o.) = 0$ iff $\sum_n P(A_n) < \infty$; $P(A_n, i.o.) = 1$ iff $\sum_n P(A_n) = \infty$. The probability of $\{A_n, i.o.\}$ is either 0 or

In particular, if $A_n \to A$, then P(A) equals either 0 or 1.

¹We may omit the probability space in the following.

Proof. Suppose $P(A_n, i.o.) = 0$. Since $\sum_{n=1}^{N} P(A_n)$ is an positive sequence, we must have either it converge or diverge. It must converge otherwise it is a contradiction.

Under the condition of pairwise independence, convergence in probability fast enough is equivalent to almost-sure convergence. We state this as a corollary of Borel 0-1 law to emphesis its condition.

Corollary 1.4. Let $\{X_n\}$ be pairwise independent.

Then
$$X_n \to 0$$
 a.s. iff $\sum_n P(|X_n| \ge \epsilon) < \infty$ for all $\epsilon > 0$.

Proof. "
$$\sum_n P(|X_n| \ge \epsilon) < \infty$$
 for all $\epsilon > 0$ " iff " $P(\{|X_n| \ge \epsilon, i.o.\}) = 0$ for all $\epsilon > 0$ " iff " $|X_n| < \epsilon$ utimately a.s. for all $\epsilon > 0$ " iff " $X_n \to 0$ a.s.".

Under the condition of pairwise independence, finiteness of r-moment is equivalent to growth less than order $n^{1/r}$, r > 0. We again state this as a corollary of Borel 0-1 law to emphesis its condition.

Corollary 1.5. Let $\{X, X_n\}$ be pairwise independent and identially distributed. Then for r > 0, $\mathbb{E}|X|^r < \infty$ iff $X_n = o(n^{1/r})$ a.s.

Proof. We need a result to equivalently characterize $E|X| < \infty$ in general situation first.

Lemma 1.6. Let X be a r.v. $E|X| < \infty$ iff $\sum_{n} P(|X| > n) < \infty$.

Proof of Lemma. Let $n \in \mathbb{N}$. For $x \in [n-1, n]$, $P(|X| \ge n) \le P(|X| \ge x) \le P(|X| \ge n-1)$, so that

$$P(|X| \ge n) \le \int_{n-1}^{n} P(|X| \ge x) dx \le P(|X| \ge n - 1).$$

Take summation on n,

$$\sum_{n \ge 1} P(|X| \ge n) \le \int_0^\infty P(|X| \ge x) dx \le \sum_{n \ge 1} P(|X| \ge n - 1) = 1 + \sum_{n \ge 1} P(|X| \ge n),$$

The result follows by the well-known result deduced by Fubini's Theorem.

It is enough to show the case r=1. "E $|X|<\infty$ " iff " $\sum_n P(|X|\geq \epsilon n)<\infty$ " by Lemma iff " $\sum_n P(|X_n|/n\geq \epsilon)<\infty$ " by the identification of distribution "iff $|X_n|/n\to 0$ a.s." by the equivalence between convergence in probability fast enough and almost-sure convergence.

References

[1] K.L. Chung. A Course in Probability Theory. Elsevier Science, 2001.