APM 462 Lecture 01 Ian 6th R. Jerrard 250 Huran, 1001B

Office his T, Th 3:30-4:30 (by appointment)

rjerrard @mach. torondo,ca Linear and nonlinear Programming 3rd ed, by D. Lwenberger & Y. Ye.

— unconstrained uptimization (ch 7,9,11,12,13,15)

— constrained Nonlinear Ob4 online lecture notes: L.C. Evans (ch 1-5) uptimal control theory (pdf) got it. I midtern blanch 3rd 2h.

I final 3h

assignments every 2 weeks marking scheme 32% 10% 48/ 74/3 20% 24/4 Review of some calculus one with maybe new notations. (depending on "little on" notation. If h is a variable,

o(h) cleades a quantity that

is negligible compared to h as how. This means | quantity | >0 # as h >0. E.g.

Spo g is a c' function of a single variable.

Definition of derivative: gexth-god=hg'(xx) + o(h) (*)

To see this, divide by h:

$$\frac{g(x+h)-g(x)}{h} = \frac{g(x)}{h}$$

$$g(x+h)-g(x)-hg(x)=\frac{g(x)}{h}$$

This means
$$\lim_{h\to 0}\left|\frac{---}{h}\right|=0$$

$$\lim_{h\to 0}\left|\frac{g(x+h)-g(x)}{h}-\frac{g'(x)}{h}\right|=0$$

Another true statement: "2nd order Taylor Series"

If
$$g$$
 is C^2 then
$$g(x+h) = g(x) + hg'(x) + \pm h^2g''(x) + o(x)$$

$$\lim_{h \to 0} \frac{g(x+h) - [g(x) + hg'(x) + \pm h^2g'(x)]}{h^2} = 0$$

$$\lim_{h \to 0} \frac{g(x+h) - [g(x) + hg'(x) + \pm h^2g'(x)]}{h^2} = 0$$
Some $\theta \in (0, 1)$

that the Netation in Textook.

$$E'' = \frac{\text{column}}{\text{row}} \text{ vector } w/n \text{ components}$$

$$E_n = \frac{\text{row}}{\text{vector}} \text{ vector } w/n \text{ components}$$

Mattipivariable Taylor expansions (1st order and 2nd order) Spo fie a C'function on E', xis a point in E', and v EE" Chaim: $f(x+v) = f(x) + \nabla f(x) \vee + o(|v|)$ Notation: ∇f is always a row vector Idea of $(x \times y)^{\frac{1}{2}} = (\sum_{i=1}^{n} v_i^2)^{\frac{1}{2}}$ Idea of (**). Since I'm interested in small v, let's make h is a number write u=hd disa vector . |d|=1 i.e. h=1/1 define g(h) = f(x+hd)-X n=|v| g is a function of a single variable, so we can use earlier Taylor expunsion $g(h) = g(0) = h \cdot g'(0) + o(h)$ I want to rewrite this to get (**) g(h) = f(x+hd) = f(x+u)g(o) = f(x), = since h = |v|, o(h) = o(|v|)Also, $g'(o) = \frac{d}{dh} f(x+hd)|_{h=0} = \frac{d}{dh} f(x_1+hd_1,...,x_n+hd_n)$ = $\frac{\partial f}{\partial x}$ (x+hd) $d_1 + \cdots = \frac{\partial f}{\partial x}$ (x+hd) d_1 set h=0, then $g'(x) = \begin{bmatrix} \frac{\partial f}{\partial x_i}, & \frac{\partial f}{\partial x_i} \end{bmatrix} = cf(x) \vee$

Reading week: Feb. 17-21

2nd order Teylor expansion in E?
x fixed, v small,
2nd order Teylor expansion in E^{2} . $\propto fixed \cdot v small$. $f(x+v) = f(x) + \sigma f(x) v + \frac{1}{2} v^{2} f(x) v + o(v ^{2})$
where of = matrix of 2nd derivatives.
is entry is off (2)
Compare, for a function of a single variable. $g(x+h) = g(x) + hg'(x) + \frac{1}{2}h^2g'(x) + o(h^2)$
idea: as before, $v=h\cdot d$, $d=unit$ vector $h= v $
a(h)=f(x+hd)
write down 2nd a order expansion for a and
then translate to f.
write down 2nd a order expansion for g and then translate to f. Only new part: hi g'(co).
can check that in fact: hg co) = VTofcx)V
Final calculus fact:
we saw that for C' for f on En.
Final columns fact: we saw that for C' for f on E'. $f(x+v) = f(x) + f(x) + o(v)$
Conversely, X is any point in E", and peEn
Conversely, x is any point in E", and peEn S.t. $f(x+u) = f(x) + p(x) + o(u)$ than in fact $p = \nabla f(x)$
True because:
we want to show $(B) = p = \sqrt{f(x)}$ equivalent to show $0 \neq \sqrt{f(x)} \Rightarrow (B)$ not true
equivalent to show a ± 2f(x) => 100 not true

lets try to do this: if P = vf(x), then f(x+v)-[f(x)+pv]= = fcx + ofcor + o(1v1) $= (\nabla f(x) - P) \vee + o(|V|)$ Is it true that this compression is a(U)? No, because $\lim_{N\to 0} \frac{(\nabla f(x) - p)v + \alpha(v)}{|v|} = \lim_{N\to 0} \left[(\nabla f(x) - p)\frac{v}{|v|} \right]$, depends only on the direction of v, and v its size direction of up ie if we write v=hd, with |d|=1, & h=N), this is lim (ofa)-p)d, ind. of h. If ofco-p +0, then there is a d such that cohunn vector (of(n)-p)d≠0. Unconstrained optimization. Basic problem given function fon E & DSE minimize f in Ω Definition: x* is a local me on relative minimum & E>0, such that $f(x) \leq f(x)$ for all $x \in \Omega$ such that $|x-x^*| < E$. If a* in interior Strict local minimum if strict inquality where x = x* a * local min,

ax (strict local min)

but not strict

 x^* is global min of foren Ω if $f(x^*) = f(x) \forall x \in \Omega$.

Strict global min if $f(x^*) = f(x)$ for $\forall x \in \Omega$. $x = x^*$.

Basic problem, rewrite n:

find x^* , a global minimum of f oven Ω .

 \mathcal{L}

We will wouldy consider 52=E?

Goal: necessary conditions for minima: Definition:

If $x^* \in \Omega$, a vector of is a feasible direction at x^* if \exists some number $\exists >0$ such that $x^* + \bigcap_{\alpha \in \Omega} \in \Omega$ whenever $0 < \alpha < \lambda$

Note: if x* interior, every direction is feasible.

Proposition (1st order necessary conditions)

If x^* is a relative minimum point for f over Ω , and if f is C', then $\nabla f(x^*) d \ge 0$ for every after all feasible direction id.

Cordleng: if $\Omega = E^n$, and x^* is a local min, pt for f, then $\nabla f(x^*) = 0$

Proof of proposition: for any feasible d, $f(x^*+hd) \ge f(x^*) \text{ if } o < h < \alpha, \text{ and } h < \text{Id}$ where ε comes from def of local minimum.

But $f(x^*+hd) = f(x^*) + \nabla f(x^*) \cdot hd + o \in \text{Hall}$ rewrite $f(x^*+hd) - f(x^*) = \nabla f(x^*) \cdot hd + |d| \circ (h)$ nonnegative

255 college street.

1	
	So lim (lefthardside) = of (x*)d =0
	Point is $f(x^*+hd) = f(x^*) + h(f(x^*) \cdot d) + o(h) d $
	if negetive then near x*,
	for decreases as h increases
	o a the adjust:
	Proof of cordlary: If $\Omega \in E^{\circ}$, then every d is feasible, so
	Also for every dd is feasible direction.
	This so of(x*)d=0. for all d.
	So $\nabla f(x^*) = 0$.
	Proposition and and order necessary conditions
	Sps f is a C ² function on E ² , and χ^* is a local min point for f. then $d^T \nabla^2 f(x^*) d \ge 0$ for all $d \in \mathbb{R}^n$
	of the form ()
	Pf. f(x*)d) = f(x*) + h[\f(x*)d] + \f(x*)d] + \f(x*)d +
***************************************	=0 by the 1st order conditions
	order conditions
	This $\pm h^2 d^7 \sqrt{f(x^*)} d + o(h^2) \ge 0$ for all sufficiently small h. divide by $h^2 & \text{let } h \to 0$ to find $d^7 \sqrt{f(x^*)} d \ge 0$
	$d^{T} = \int_{-\infty}^{\infty} f(x^{*}) d > 0$

f"cx*)>0 @ cornerse is false: can happen that p'(x*)=0,f"(x*)>0 but α* not a local min. However, $f(x^*)=0$ => x^* is a local min. For @, e.g. # f(x)=x3 f'(0) = f'(0) = 0, but not a local min. We have sour for f function on E' x* boal min => Vf(x*)=0, orf(x*) positive sem-definite Goy definition, this means do of all d. Also true that converse is false, Can happen that Vf(x*)=0 vf(x*) pos semi-definite e.g. $f(x_1, -, x_n) = x_1^3 t - t x_n^3$ of (0)=0, of(0)=0,..., v/(0)=0. but o not a boal min. Analog of 3rd fact also holds: $\nabla f(x^*)=0$ $\nabla^2 f(x^*) = 0$ ∇ Cip. dTo2fCx*id>0 whenever d nonzero vector)

Recoll 1st year cabulus.

Docal min => f'(x*)=0

Why true? f(x*+hd) ==f(x*)+hof(x*)d + \frac{h^2}{2}d \frac{1}{2}d \frac{1}{2}d + o(h^2) neg ligible compared to h? for h. small for h small Example: Sps g is an unknown function of a single variable and suppose we measure g at points xi - Xin

Goal: find polynomial of function pox of degree a

which is a good fit for g. What is a good fit?? Let's say, we want to minimize $\sum_{k=0}^{\infty} (p(x_k) - g(x_k))^2$ Here the polynomial p has the form p(x) = 90+0,2+...+9,x" We must make best choice ig of coefficient a_0, \dots, a_m and $a_n = \sum_{k=1}^{\infty} (p(x_k) - g(x_k))^2$ $= \sum_{k=1}^{\infty} \left[\left(\hat{a}_0 + a_1 x_k + \cdots + a_n x_k \right) - g(x_k) \right]^2$ Let's rewrite f: introduce notation: a \in $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ \in E^{n+1} For k=1, m, let $w_k = (1, x_k, -1, x_k) \in E$ Then $f = \sum_{k=1}^{m} \left[a^T w_k - g(x_k) \right]^2$ Q = Z Wrally continue to rewrite: $\overline{f = \sum_{k=1}^{n} (a^T w_k)^2 - 2a^T w_k g(x_k) + g(x_k)^2}$ Note: \(\sum_{k=1}^{\textsuper} \left(a^T w_k \right)^2 = \sum_{k=1}^{\textsuper} \left(a^T w_k \right) \left(\end{array} w_k \textsuper a = a^T \textsuper a \)

Proced Proceeding in this way: $f = a \Omega a - 2b a + C$ Ω as above, $b = 2\Sigma W_k g(x_k)$, $C = \Sigma g(x_k)^2$ So finally we want to minimize f. 10 first order condition need of (Claim: of Ca) = 20 TQ - 26 T If the claim is true then every candidates for a minimum must satisfy $0 = \nabla f(a^*) = 2(a^*)^T (Q - b^T)$ (Q is a symmetre mashix) Why is daim true? f (a+v) = (a+v) TQ(a+v) -25 (a+b) +C 7 aTQa + aTQU +VTQa +VTQV (25Ta)-25TV (C 3 terms are fla)" $= \left(\int a^{\dagger} a^{\dagger} + \left(a^{\dagger} Q v + v^{\dagger} Q a - 2b^{\dagger} v \right) + v^{\dagger} Q v \right)$ this can be rewritten f(a+v) = f(a) + [2a Q-25]v + O(|v|) (cusing $Q^T = Q$, which follows from definition) so this gives best linear approximation hence equals vf(a).

_	
	Loctine 100 Too 12th
	Lecture 02 Jan 13th
	luteral
	Lecture 02 Jan 13th Tutoral Office hour W Th 3-6 5-6
	3-6 5-7
	Today's const 1 to
	Livery Convex frictions.
	110 cointenested be for a conex fundam one of but
	We we intoested by for a conex fuction, every local minimum is
	a global minimum.
	Det A set 12 SE is conver of A xyell and account.
•	$ \partial x + (1 - \theta)u \in \Omega $
	This many that if on the Hon on the line consent
	Det $A = \Omega \subseteq E^n$ is corner if $\forall x, y \in \Omega$ and $\alpha \in [0,1]$. $ \frac{ \partial x + (1 - \partial)y \in \Omega }{ \partial x + (1 - \partial)y \in \Omega } $ This means that if $x, y \in \Omega$, then at the line segment yourney $x \notin Y$ is contained in Ω .
	joining & & H is contained in SZ.
	100
	$\theta x + (1-\theta)y = \pi + (1-\theta)(y-\pi)$
· .	between Off (1-8) (y-x)
<u> </u>	(1-0)cg-N)
and the second s	since as picture shows, the set of points
	[OX+(1-θ)y: 0 ≤ θ ≤ 1] is exceptly the line segment
	from x to y.
	() () () () () () () () () ()
	Yes () (WNOT)
-	(//// www.
	Tes CONOT LONGX YES.
· · · · · · · · · · · · · · · · · · ·	at their in VIII a during it man
	X-comis in X-y coordinate is conex.
-	
	A function of on a convex set OEF is nower if
_	A function of on a convex set DEE" is convex if for any
	$3,4 \in \Omega$ and $0 \in [0,1]$.
	So (f (Ax+1/10) My) < A(10) +1/10) f()
	20 1 (0 x 10-0) my = 0 [0) 10-0) TWI
	-Strictly corner of flox+(+0)4) < A+(x) +11-12)+/4)
اد ســـرف	So $f(\theta x + (1-\theta)) = \theta f(x) + (1-\theta) = 0$ Strictly corner if $f(\theta x + (1-\theta)) = 0$
	(note strict inex)
	V-

STA 300 Level +)x(302)? MARKET MAT327 IN203? = evening W17357 MAT315 STA304? F of is concare if -f is convex strictly concere if is strictly comex. of on the line sognest joining & and y line segment that each pts. ie. is below De Remark: f is a convex function iff

((x, z) \in \mathbb{E}^{n+1}: \mathbb{Z} > f(\infty) \) is a convex set. To prove 1) Assume the function is convex and show that the set is convex. Curring defor of convext set & convex 2) Assure set is omex, deduce that function is comex. Properties of onex functions.

DIf fichely are connex functions (always understood to be defined on a convex set I) Than fit fz is comex. I must show that for only ×y in \$2, any \$ €[0,1] (fi+f=)(0×+(1-0)y) €0(fi+f=)(x)+(1-0)(fi+f=)(y)

x fick y (x)

eg

True because: $(f_1+f_2)(\partial x+(h\theta)y) = f_1(\theta x+(h\theta)y) + f_2(\theta x+(h\theta)y)$ $\leq \theta f_1(x) + (1-\theta)f_1(y)$ $+ \theta f_2(x) + (h-\theta)f_2(y)$ $= \theta f_1+f_2(x) + (h-\theta)f_1+f_2(y)$

	DIffis convex and a > 0, then a.f. o is convex. Pf: similar but earler
0	Note: by combining the above: if fig. fk are comex and a, -, ux >0 then a,f,++axfx is comex.
	Then $\alpha_1 f_1 + \cdots + \alpha_k f_k$ is comex. = 3 It fis a comex function on convex set Ω , then for y number C ; $f \times \in \Omega$: $f(x) \in C$ is a comex set.
Λ	
	Pf: Sps x,y ∈ {z∈Q! f(z) < c} ie.f(x) ≤ c, f(y) ≤ c
	Then for any $\theta \in [0,1]$, by one for convexity $f(\theta \times (1-\theta)y) \leq \theta f(\pi) + (1-\theta)f(y) \leq \theta \cdot c + (1-\theta) \cdot c = c$
	$f(\partial x (i-\theta)y) \leq \theta f(x) + (i-\theta)f(y) \leq \theta \cdot c + (i-\theta) \cdot c = c$ So $\partial x + (i-\theta)y \in \{ z \in \Omega : f(z) \leq c \}$. So this set is comex.
	Note:
fcx	Conver functions need not "curre up" in all directions
• 5	(x) x

Since not hard to check that (Chark 1+!) this proves (4) 1 / f (x+U-0)(y-X)) Now we assume () I try to show that f is Fix x and y & so and & Eto, 1) let Xo= 解 0x+(1-0)y. $\chi_{\theta} = \theta \times t(1-\theta)$ By condition (2): $f(x_0) \neq f(x_0) + \nabla f(x_0)(x - x_0)$ for>fixe)+of(xe)(1)/xe) Also, 7-1/2= (1-6)(1/20)(2-4) and y-x0= () (() (y-x) So: $\theta(x-\phi) + (1-\theta)(y-x_0)=0$ $\theta(egn 1) + (1-\theta)(egn^2) = >$ of(x)+(1-0)f(y)>f(x0) so f is conex. (3) If f is a C² function on a convex set Ω, then f is convex iff V^T∇²f(x)V≥0 ∀ x∈Ω, and V∈E" | (2) | (2 Proof: Dcomerity = (AUS) Sufficient to show that if the not true => f not comex (contrapositive) HAP not true then there is x ESI and v EE"

such that \$ v Tofax v < 0. By Taylon's Theorem f(x+hv)=f(x)+hof(x)+ \frac{1}{2}h^2v^To^2f(x).u+\alpha(h^2|u|^2) This implies that if h is small enough. 支かででかかしのんり120 50 f(x+hv) < f(x)+of(x)(hv) so f is non-comex by property (4) Now assume (We'll she that properly @ holds. Fix xy. God: f(y) > f(x) + of (x) (y-x). Let g(s)=f(x+s(y-x) Then f(y)=g(1) f(x)=960) By MVT, 9(1)-9(0) = 9'(A) for some & e(0,1) ie g(1)-g(2)-g(6) (1-0) g(1)-g(0)=g'(0)=g'(0)+g'(0)-g'(0)= θ + θ θ (S) for some $S \in (0, \theta)$ then one can check that $g'(0) = \nabla f(x)(y-x)$ and $g'(0) = (y-x)^T \nabla^2 f(x+s(y-x))$. has the form VTVJ(Z)V SO >0

Put together to get f(y)-f(x) > Df(x)(y-x) Thm! If f is a convex function on a convex set Ω , then $O \Gamma = \{x \in \Omega: f(x) = \inf_{x \in \Gamma} f\}$ is comex, and Devent local min is a global min. Pf. DLet c=infsf

Then [=[xesz:fwec] and this is conox by property 3 Next: 2 she sufficient to show that if x is not a plotal win then x is not a local min. If x is not a global min, then I y s.t. fy)<f(x). So $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta) f(y) \leq f(x)$, $\forall \theta \in [0,1]$ which implies that x is not a local min. Thm2: If f is convex on se and x* is a point where TOF(x*) (y-x*)>0 for all y ∈ se, then x* is a global Pf: If this holds, by property & .

fly>=f(x*)+>f(x*)(y-x*) =>f(x*), ty. Corollery: if Delin of (x*) =0 => x* global min.

Review of linear algebra. 1) transpose of matrix. $(AB)^T = B^TA^T$ 2). I mear depodent / independent 3) determinants, eigenvectures, eigenvalues. det (ab)=ad-bc=|ab| A not invertible (=> det A == 0 <=> there soe is some norzero vedon V sit. Au=0. A number 2 and vector v are eigenvalue and eigenvector if $AV = \lambda V$. NSN = 200if Av= lv. Cexirclently (A-AI)v=0 where I= Identity moths $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$ Combining the above. I is on organishe <=> det (A-XI)=0 1th-order polymonial in variable 1. Strategy for finding e-values/vectors. D compute phynomial det (A-)[)

2) find nots λ_i , \cdots λ_k there are eigenstones & For each λ_i , finds all solutions of $Av_i = \lambda_i v$ Def: A matrix S is symmetric if $S^{T}=S$. as $S=\nabla^{2}f(x)$ important fact.

if S symmetric, then all eigenelies are real.

there is an orthonormal basis of eigenectors. E-8. S=(5-1-1) Find eigenvalues & elyanectors.

() = | 5-2 -1 -1 |

() = eigenvalues & det(S-21) = | 5-2 -1 |

-1 -1 -1 | $= (5-\lambda)^3 - (5-\lambda) \cdot = -()/-3)()-6)_{3}$ - Find eigenvectors: i. $\lambda=3$. must solve (S-3I)V=0 $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 7 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ U1=U2=U3=1· SOV=(1) where is a constant. ii. $\lambda=6$ $S-6I = \begin{pmatrix} 1 & -1 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & 1 \end{pmatrix} = -\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ V= (3) is an eigmenter if ()-61)v=0 i.e. => VI tU 2+V3 = 0

ine. u orthogonat to (i)

So any vector v sits v, + v2 + v3 = 0 is an eigentector w/1=6.
But I have to think about a bit to find orthogonal eigenvectors.
So any vector v s.t. $v, +v_2 +v_3 = 0$ is an eigentector $w/1=6$. But I have to think about a bit to find orthogonal eigenvectors. e.g. $v=(-\frac{1}{2})$ and $(\frac{1}{2})$ an
but not onthogonal.
But () & (!) are askingind.
Orthonormal basis of a eigenvolve edons
$\overline{V3}(1), \overline{V2}(0), \overline{V6}(1)$
Def: A symmetric matrix S is positive semidetinito
positive definite if VISV>0 for all nonzero UEE.
Fact: Ste possessive definites all eigenvalues 20
· S positive definite (=> all eigendres >0.
Why? Fix S symmetric and let him. In eigenvalues, and WI, - Wh = orthonormal basis of eigenvalues.
i.e. WTWK = S. = S / if i-
i.e. $W^TW_k = S_{jk} = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if not} \end{cases}$

Any vector V=a linear combination of W1,-su eg. V=a, W, + -- +anwn. so vTv=(a,w,T+-+anwn) (a,w,+-+anwn) =ai+...+an²

and UTSU = (a, w, T+... + an wnT) S (a, w, +... + anwn) (1+ > (a, Swi+:-+an Swn) = (ii) cailiwi+ - andnwn) $V^{T}SV = \lambda_{1}\alpha_{1}^{2} + \cdots + \lambda_{n}\alpha_{n}^{2}$ Recall bust week: To find optimal polynomial approximation to affaction in g. given g(x,), -, g(xm). we tried to minimize fa)= \(\sum_{k=1} \left(a_0 + a_1 \times_k + \cdots + a_n \times_k^n - g(\times_k) \right)^2 ue me reunite as fa)=aTQa-2bTa-c for some mutrix Q vectors mben Q is this function convey?