Devoir maison 10

► Exercice 1 : théorème de Cesàro

Si $(u_n)_{n\geqslant 1}$ est une suite à valeurs réelles, on appelle suite des moyennes de Cesàro associée à (u_n) la suite $(\sigma_n)_{n\geqslant 1}$ définie par :

$$\forall n \in \mathbf{N}^*, \ \sigma_n = \frac{u_1 + u_2 + \cdots + u_n}{n}$$

Partie I. Le théorème de Cesàro

- **1.** On suppose dans cette question que (u_n) converge vers 0. Soit $\varepsilon > 0$.
 - **a.** Justifier qu'il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \in \mathbb{N}^*$, $n \ge n_0 \Rightarrow |u_n| < \frac{\varepsilon}{2}$.
 - **b.** Prouver que pour tout $n \ge n_0$, on a

$$|\sigma_n| \leq \frac{|u_1| + |u_2| + \dots + |u_{n_0-1}|}{n} + \frac{|u_{n_0}| + \dots + |u_n|}{n}.$$

- c. En déduire que $(\sigma_n)_{n\geqslant 1}$ converge vers 0.
- 2. En utilisant la question précédente, et sans refaire de nouveaux calculs, justifier que si (u_n) converge vers un réel ℓ , alors $\sigma_n \underset{n \to +\infty}{\longrightarrow} \ell$.

Ce résultat est appelé le lemme de Cesàro.

- 3. Montrer que la réciproque de la question précédente est fausse, c'est-à-dire qu'on peut avoir (σ_n) convergente sans que (u_n) converge.
- **4.** Prouver que si $u_n \xrightarrow[n \to +\infty]{} +\infty$, alors $\sigma_n \xrightarrow[n \to +\infty]{} +\infty$.
- 5. Montrer que si (u_n) est croissante, alors la réciproque de la question 1. est vraie, c'est-à-dire que (σ_n) converge si et seulement si (u_n) converge.

Partie II. Quelques applications

- 6. Le lemme de l'escalier Soit a un réel, et soit $(a_n)_{n\geqslant 1}$ une suite telle que $\lim_{n\to +\infty} (a_{n+1}-a_n)=a$. Prouver que $\lim_{n\to +\infty} \frac{a_n}{n}=a$ (c'est le lemme de l'escalier).
- 7. Soit $(u_n)_{n\geqslant 1}$ une suite telle que $\begin{cases} u_1 \in \mathbf{R}_+^* \\ \forall n \in \mathbf{N}^*, \ u_{n+1} = \frac{u_n}{1 + u_n^2} \end{cases}$.
 - **a.** Prouver que $u_n \xrightarrow[n \to +\infty]{} 0$.
 - b. Soit (v_n) la suite définie par $v_n = \frac{1}{u_n^2}$. Prouver que $v_{n+1} v_n \underset{n \to +\infty}{\longrightarrow} 2$.
 - c. En déduire, à l'aide du lemme de l'escalier que $\lim_{n\to+\infty} u_n \sqrt{2n} = 1$.

Partie III (facultative). Le théorème taubérien faible de Hardy

Dans cette partie, on considère $(u_n)_{n\geqslant 1}\in \mathbf{R}^{\mathbf{N}^*}$, et on note encore $(\sigma_n)_n$ la suite de ses moyennes de Cesàro. On note également, pour $n\geqslant 1$, $x_n=u_{n+1}-u_n$. La question 2 prouve qu'il est possible que (σ_n) converge sans que ce soit le cas de (u_n) .

Nous cherchons ici à prouver que moyennant une hypothèse supplémentaire, la convergence de (σ_n) entraine celle de (x_n) .

- 8. Prouver que (u_n) converge si et seulement si $\lim_{n \to +\infty} (u_{n+1} \sigma_n) = 0$. En déduire que (u_n) converge si et seulement si $\lim_{n \to +\infty} \frac{x_1 + 2x_2 + \dots + nx_n}{n} = 0$.
- 9. On suppose que (σ_n) converge vers une limite ℓ , et que de plus, $n(u_{n+1} u_n) = nx_n \underset{n \to +\infty}{\longrightarrow} 0$. En utilisant le lemme de Cesàro, montrer que $u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

Le résultat reste vrai si on suppose seulement que $(nx_n)_n$ est bornée (ce qui est notamment le cas lorsque $nx_n \xrightarrow[n \to +\infty]{} 0$), mais la preuve en est considérablement plus difficile (c'est le théorème taubérien **fort** de Hardy).

Exercice 2 : calcul des puissances d'une matrice 3×3

Dans tout l'exercice, on note $A = \begin{pmatrix} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Le but de l'exercice est le calcul de A^n , pour $n \in \mathbf{N}$.

- 1. a. Résoudre le système AX = X, d'inconnue $X \in \mathcal{M}_{3,1}(\mathbf{R})$. En donner une solution C_1 dont le coefficient de la troisième ligne vaut 1.
 - b. Résoudre le système AX = 2X, d'inconnue $X \in \mathcal{M}_{3,1}(\mathbf{R})$. En donner une solution C_3 dont le coefficient de la troisième ligne vaut 1.
 - c. Montrer que pour $\lambda \in \mathbf{R} \setminus \{1, 2\}$, le système linéaire $AX = \lambda X$, d'inconnue $X \in \mathcal{M}_{3,1}(\mathbf{R})$ n'a pas de solution non nulle.
 - d. Déterminer une colonne $C_2 \in \mathcal{M}_{3,1}(\mathbf{R})$ de troisième coefficient égal à -1 pour laquelle $AC_2 = C_1 + C_2$.
- 2. On note désormais P la matrice de $\mathcal{M}_3(\mathbf{R})$ dont les colonnes sont C_1, C_2, C_3 , dans cet ordre.
 - a. Montrer qu'il existe une matrice triangulaire T, que l'on précisera, telle que AP = PT.
 - **b.** Prouver que *P* est inversible, et calculer son inverse.
 - **c.** Pour $n \in \mathbb{N}$, calculer T^n .
- **3.** Donner l'expression de A^n , pour $n \in \mathbb{N}$.