

Semantische Segmentation in der Histopathologie

Neural Networks, U-Net, Glands -

Jonas Heinke, 7. Dezember 2021

Erstprüfer: Herr Prof. Dr. Christian Herta

Zweitprüfer: Herr M.Sc. Patrick Baumann

University of Applied Sciences

	Inhalt	Folie
1	Ziele und Schwerpunkte der Arbeit	3
2	Auswahl geeigneter Datensets	4
3	Bewertungskennzahlen (BWK) "The GlaS Challenge Contest"	5
4	Projekt von Pinckaers - Auswahl des Netzwerkes	6
4	Das U-Net nach Ronneberger - Verfahren der Segmentation	7
5	U-Net-Architekturen - Vergleich -	8, 9
6	Eigene Projektentwicklung	10 - 13
9	Projektergebnisse zur Segmentation von CRAG_v2	14-17
9	Vergleich der Projektergebnisse WARWICK-QU	18
10	Ergebnisse und Ausblick	19

Ziele und Schwerpunkte der Arbeit

- Semantische Segmentation von Gewebeproben in der Histopathologie.
- Recherche zum aktuellen Erkenntnisstandes.
- Sichtung und Auswahl geeigneter Datensets und Netzwerke.
- Geeignete Bewertungskennzahlen sind auszuwählen.
- Durchführung eigene Experimente mit eigener Software
- Bestimmung optimaler Trainingsparameter.

Auswahl geeigneter Datensets

Eigenschaften: WARWICK-QU (2015)				
Anzahl der Trainingssamples	85			
Anzahl der Testsamples	A: 60 B:20			
Auflösung der Originalbilder 775 x 522 Pixel				
Maximale Drüsenanzahl je Bild	enanzahl je Bild 32			
Die Einfärbung der Bilder ist intensiv.				
Die Drüsen der Masken sind indiziert.				
Verwendet bei "The GlaS Challenge Contest"				

Eigenschaften: CRAG-v2 (2019)				
Anzahl der Trainingssamples	173			
Anzahl der Testsamples	40			
Auflösung der Originalbilder	1500 x 1516 Pixel			
Maximale Drüsenanzahl je Bild	95			
Die Einfärbung der Bilder ist mittelmäßig.				
Die Drüsen der Masken sind indiziert.				
Kein Zugriff – Krebsgrad				

Bewertungskennzahlen (BWK) "The GlaS Challenge Contest"

Dice-Index auf Objektebene

$$Dice(G,S) = \frac{2 |G \cap S|}{|G| + |S|}$$

 $G-Pixel\ der\ tats \"achlichen\ Dr\"use$ $S-Pixel\ der\ prognostizierten\ Dr\"use$ $|G\cap S|-Schnittmenge$ $|G|+|S|-Pixelsumme\ beider\ Dr\"usen$

Definitionsbereich:

$$D_f = \{Dice \ \in R \mid 0 \ \leq Dice \ \leq 1\}$$

Der Dice-Index ist das pixelbezogene Verhältnis der Schnittmenge zur Gesamtmenge beider Drüsen. Der Wert liegt zwischen 0 und 1.

F1-Score

TP=2, FP=1, FN=2
P=0.66, R=0.5, F1=0.54
$$P = \frac{TP}{TP + FP} \qquad R = \frac{TP}{TP + FN}$$
$$F1 = \frac{2 P R}{P + R}$$

- p Präzision
- R Recall
- TP Anzahl gefundenen Objekte positiv, Dice $\geq 50\%$ (+)
- FP Anzahl gefundener Objekte
 negativ, Dice < 50% (-)
- FN Anzahl tatsächlich vorhandener Objekte negativ (-)&(--)

Weighted-Shape (Formähnlichkeitskennzahl, Hausdorf-Abstand)

 $H(G,S) = \max \left\{ \sup_{g \in G} \inf_{s \in S} d(g,s), \sup_{s \in S} \inf_{g \in G} d(g,s) \right\}$

d-Abstand

sup – Suprema: kleinste obere Schranke

(Maximum als Sonderfall)

inf – Infima: größte untere Schranke(Minimum als Sonderfall)

Der Weighted-Shape ist Maß für die Übereinstimmung der Konturen. Nicht normalisiert.

Projekt von Pinckaers

Auswahl des Netzwerkes

Zeitschriftenaufsatz

[H. Pinckaers und G. Litjens, "Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands," 2019]

- Objektbezogene Kenngrößen

Methode	Dice-Index	F1-Score 50%	Weighted Shape	Training
U-NET	0,868	0,841	69,6	
U-ResNet	0,757	0,689	122	
U-NODE	0,881	0,868	59,5	

Projektlauf mit Originaldatenset, Originalprogramm und Originalparametern (Adam-Optimierer, 600 Epochen, Auflösung 352 x 512 Pixel, Eingangsfilter 64)

- Objektbezogenen Kenngrößen

Methode	Dice- Index	F1-Score 50%	Weighted Shape	Training t in Minuten
U-NET Lernrate: 0.0001	0,840 / 0,847 / 0,860 / 0,848	0,613 / 0,589 / 0,630 / 0,594	393 / 398 / 420 / 382	56
U-ResNet Lernrate: 0.001	0,816 / 0,809	0,536 / 0,566	396 / 387	42
U-NODE Lernrate: 0.001	0,858	0,624	371	304

Projektlauf von Pinckaers mit den Datasets WARWICK-QU und CRAG-v2 (Adam, Ir=0.001/0.0001, ep=600, ft=64, open=8x8)

Netz(Auflösung in Pixel)

Das U-Net nach Ronneberger

Verfahren der Segmentation

Das U-Net eignet sich zur Segmentation auf Pixelebene. Es besteht aus einem Kontraktionspfad (Down) und einem Expansionspfad (Up). Typisch für die Blöcke des Kontraktionspfades sind Faltungs- und Maxpooling-Operationen. Die Blöcke des Expansionspfades sind durch transponierte Faltungsoperationen (up-conv) miteinander verbunden. Querverbindungen hängen Kopien der Feature-Maps des Expansionspfades an die Feature-Maps des Expansionspfades an.

U-Net-Architekturen

- Vergleich -

	U-Net des Projektes von Pir	nckaers (Auszug)		U-Net nach Schmidt des eigenen Projektes (Auszug)		
1. Abwärtsblock	Conv2d-1 ReLU-2 Conv2d-3 ReLU-4 MaxPool2d-5	[-1, 64 , 350 , 510] [-1, 64, 350, 510] [-1, 64, 348, 508] [-1, 64, 348, 508] [-1, 64, 174, 254]	1. Abwärtsblock	├─ModuleList: 1 []		
2.	Conv2d-6	[-1, 128, 172, 252]	2.	L→DownBlock: 2-2 [-1, 64, 256, 256] L→Conv2d: 3-8 [-1, 64, 512, 512]		
Letzter Aufwärtsblock	ConvTranspose2d-44 Conv2d-45 ReLU-46 Conv2d-47 ReLU-48 LevelBlock-49 (Klasse von Pinckae)	[-1, 64, 168, 328] [-1, 64, 166, 326] [-1, 64, 166, 326] [-1, 64, 164, 324] [-1, 64, 164, 324] [-1, 64, 164, 324] rs → ruft Methoden recursiv auf)	Letzter Aufwärtsblock	□UpBlock: 2-7		
Out	Conv2d-50	[-1, 2, 164, 324]	Out	├─Conv2d: 1-1 [-1, 2, 1024, 1024]		

Eigene Projektentwicklung

- 5_Eigenes_Projekt_Segmentation_CRAG
 - datasets
 - CRAG_v2
 - Warwick QU Dataset (Released 2016_07_08)
 - > I models
 - MODULE
 - JH
 - image_processing.py
 - img_array_transform.py
 - prediction.py
 - subdivide_pictures.py
 - visualize.py
 - JS Johannes Schmidt
 - PL Hans Pinckaers und Geert Litjens

Eigenes Softwarekonzept

- configuration_CRAG.py
- P5-01_dataset_visualization_CRAG.ipynb
- P5-02_unterteilen.ipynb
- P5-03_training_CRAG.ipynb
- P5-04_prognose_CRAG.ipynb
- P5-05_result_visualization_CRAG.ipynb

Steuert den Programmablauf

Visualisierung des Datensets

Zerschneiden Bild-Masken-Paare

Training mit Validierung

Prognose, Nachbearbeitung

Bewertung und Visualisierung

Bild-Array-Operationen

Transformationen

Prognose

Bilder zerschneiden

Bildhafte Darstellung

Der modulare Aufbau des Projektes unter Verwendung einer Konfigurationsdatei ermöglicht eine flexible Anpassung und Parametervariation. Teilprojekte lassen sich separat abarbeiten. Die Ergebnisse der Experimente werden fortlaufend protokolliert.

🕨 📜 result

Protokolle der Experimente (Prognoseergebnisse)

Eigene ProjektentwicklungKonfiguration "Configuration_ CRAG .py"

```
class Inputs():
    ''' 1. Definition of the input images and masks'''
    # Original images
    h_org = 1516
    w_org = 1511
    h_res = 512 # Resize to ...,
    w_res = 512
    c_res = 3 # Input channels
```

```
class CfgModel():
    ''' 2. Configuration parameters of the model '''
    name_experiment='CRAG(2021-10-10)' # Key
    c_out= 2 # Output channels
    # Model parameters
    lernrate = 0.001 # Learning rate
    epochen = 500 # Number epochs
    ft=64
    n_blocks = 5 # Number of blocks of the U-Net
    batches = 2 # Number of samples in a batch
    optimizer = 'Adam' #{SGD, Adam}
```

Aufgaben der Konfiguration:

- Steuert den Ablauf aller Programme
- Unterstützt das Einlesen der Bild-Masken-Paare
- Definiert Parameter, Quellpfade, Zielpfade und
- einen Schlüssel zur Ergebnisdokumentation.

```
''' Name / key of the experiment '''
EXPERIMENT = f'{CfgModel.name_experiment}_blocks{CfgModel.n_blocks}\
   _cout{CfgModel.c_out}_opt{CfgModel.optimizer}\
   _lr{CfgModel.lernrate}_ep{CfgModel.epochen}_h{Inputs.h_res}\
   _w{Inputs.w_res}_ft{CfgModel.ft}'
```


Prinzip zur Segmentation der Drüsen

Bewertung der Segmentationsergebnisse

Legende

NB – Nachbearbeitet

KB – Klassenbezogen

OB – Objekt- bzw. Drüsenbezogen

BWK – Bewertungskennzahlen (Dice-Index, F1-Score, Weighted-Shape)

Projektergebnisse zur Segmentation von CRAG_v2

- Parameter und Einstellungen -

Parameter	Kurz- zeichen	Werte, Einstellungen
Optimierer	opt	SGD, Adam
Lernrate	lr	0.001, 0.1
Epochenanzahl	ер	150, 600
Anzahl der Blöcke des U-Net	bl	4, 5, 6, 7
Auflösung der Bild-Masken-Paare am Eingang des Netzwerkes	h x w	256x256, 512x512, 1024x1024
Startfilter des U-Net	ft	32, 64
Morphologische Operation während der Nachbearbeitung der prognostizierten Masken, Opening	open	2x2, 8x8, 10x10, 16x16, 32x32

Die Parameter wurden in Anlehnung an vorhandene Literaturquellen so gewählt, dass die Experimente mit vertretbarem Zeitaufwand durchgeführt sind.

Eigenes Projekt zur Segmentation

- Beispiele des Datenset CRAG v2 -

Sample	Dice- Index	F1-Score (≥50 %)	Weighted- Shape	Bemerk	ungen
Schlechte	0,849	1,0	179	KB	Legende
Stichprobe,	0,857	1,0	154	NB, KB	NB – Nachbearbeitet
Index= 6	0,691	0,686	113	NB, OB	KB – Klassenbezogen
Mittelmäßige	0,934	1,0	119	KB	OB – Objektbezogen
Stichprobe,	0,934	1,0	119	NB, KB	OB OBJEREBEZOGEN
Index=19	0,840	0,757	103	NB, OB	
Cuto Sticharoha	0,960	1,0	24	KB	
Gute Stichprobe,	0,963	1,0	24	NB, KB	
Index=16	0,936	1,0	14	NB, OB	
Mittalwart das	0,912	1,0	123	KB	
Mittelwert des	0,914	1,0	116	NB, KB	
Datensets	0,833	0,713	123	NB, OB	

Optimierer: opt=Adam, Lernrate Ir=0,001, Epochen ep=600, Blöcke des U-Net bl=7, Auflösung der Eingangsbild-Masken-Paare hxw=1024x1024 Pixel, Startfilter des U-Net ft=32, Strukturelement der Opening-Operation open=10x10

Eigenes Projekt zur Segmentation

- Ergebnisse, Datenset CRAG_v2 -

Einfluss der Auflösung der Bild-Masken-Paare auf den Dice-Index - Objektbezogen, ft=32, open=10x10

Eigenes Projekt zur Segmentation

- Ergebnisse, Datenset CRAG_v2 -

Einfluss der Blockanzahl des U-NET auf den Dice-Index - Adam, Ir=0.001, ep=600, 1024 x 1024 Pixel, ft=32, open=10x10

Reproduzierbarkeit der Experimente und Konfidenzintervall

Parametersatz: SGD, lr=0.1, ep=150, bl=6, ft=32, 768x768 Pixel, open=10x10

Mittelwert der Prognoseabweichung	$\overline{\Delta P} = 23,30 \%$
Standardabweichung	S = 1,74 %
Spannweite aller Einzelwerte	R = 5,13 %
Konfidenzgrenzen, zweiseitig $t_{95\%,zweiseitig} = 2,201$	$u_2 = \pm 3,84 \%$
Konfidenzgrenze, einseitig $t_{95\%, einseitig} = 1,796$	$u_1 = +3,13 \%$
Konfidenzintervall, zweiseitig	$19,46 \% \le \Delta P \le 27,14 \%$ $0,729 \le Dice \le 0,805$
Konfidenzintervall, einseitig	Δ <i>P</i> ≤ 26,43 %

Die Prognoseabweichung kann bis zu $\Delta P \leq 3.2\%$ schlechter ausfallen, als in einem Einzelexperiment ermittelt. Für die Reproduzierbarkeit des Dice-Index gilt eine Unsicherheit von $u \leq \pm 0.04$.

Annahme: Werte sind normalverteilt, Wahrscheinlichkeitswert $\alpha = 95\%$.

Vergleich der Projektergebnisse

- Datenset: WARWICK-QU -- 18 -

Das Projekt von Pinckaers und das eigene Projekt liefern für das Datenset WARWICK-QU ähnlich gute Segmentationsergebnisse.

Image 51

Aktual mask 51

Post-processed 51

Predicted glands 51

Images with contours 5:

Ergebnisse und Ausblick

Ergebnisse:

- Die Kennzahlen zur Bewertung der Prognoseergebnisse (Dice-Index, F1-Score, Weighted-Shape) lassen sich sowohl auf eine Klasse von Drüsen (Klassenbezogen) als auch auf die Drüsen einer Klasse (Objektbezogen) anwenden.
- Das Projekt von Pinckaers liefert sehr gute Segmentationsergebnisse für das Datenset WARWICK-QU. Es ist nicht auf das Datenset CRAG-v2 anwendbar.
- Ein eigenes Projekt, auf Basis eines U-Netzes liefert gute bis sehr gute Segmentationsergebnisse sowohl für das Datenset CRAG-v2 als auch für das Datenset WARWICK-QU.
- Das eigene Projekt lässt sich über eine Konfigurationsdatei einfach und flexibel parametrieren. Die bisherigen Ergebnisse lassen darauf schließen, dass das Projektkonzept auch auf andere Datensets anwendbar ist.
- Diese Arbeit leistet einen Beitrag zur Verbesserung der semantischen Segmentation von Drüsen des Darms in der Histopathologie.

Ausblick:

- Einbeziehung weiterer Parameter, insbesondere Verwendung alternativer Optimierer (z. B. AdaDelta).
- Optimierung der Vorverarbeitung und der Nachbearbeitung.
- Anwendung auf alternative Datensets mit mehr als zwei Klassen.
- Verwendung größerer Datensets auf leistungsfähiger Hardware.

Semantische Segmentation in der Histopathologie

Vielen Dank für die Unterstützung während der Anfertigung, für die Betreuung der Arbeit und für ihre Aufmerksamkeit!

University of Applied Sciences

Semantische Segmentation in der Histopathologie

Supplement

Neural Networks, U-Net, Glands

Jonas Heinke, 7. Dezember 2021

Erstprüfer: Herr Prof. Dr. Christian Herta

Zweitprüfer: Herr M.Sc. Patrick Baumann

University of Applied Sciences

Projekt von Pinckaers

Verlustfunktion und Dice-Index

Datenset(Auflösung in Pixel)