OPTIMAL CHUNKING OF LARGE MULTIDIMENSIONAL ARRAYS FOR DATA WAREHOUSING

Reading club – Big Data Infrastructures for Neuroinformatics laboratory, Concordia University

CONTEXT

Numerous applications in scientific domains such as Physics, Astronomy, Geology, Earth Sciences, Statistics, etc., map their problems space onto matrices and multi-dimensional arrays on which mathematical tools such as linear, non-linear equations solvers and differential equation solvers can be applied.

Such arrays are required to be:

- persistent on disks
- accessed efficiently for scientific analysis

MOLAP?

OLAP

- Online analytical processing
- To analyze multidimensional data interactively
- Comprises business intelligence, data mining, databases

MOLAP

- « M » for multidimensional
- Classic form of OLAP
- Stores data in an optimized multi-dim. array storage
- As opposed to storage in relational databases

INTRODUCTION

ARRAY STORAGE OPTIONS

- Naive: seek into one file containing all the data
- Persistent storage is typically done by chunking

CHUNKS

Units of transfers between disk and memory Two properties:

- Chunk size
- Chunk shape

INTRODUCTION

CHUNKING

- Multidimensional array divided into chunks
- Each chunk stored on disk contiguously
- Layout of the chunks can be done using other linear mapping Example linear mapping: space-filling curves

BENEFITS

- array chunks with all zero entries are not stored
- chunks with few entries can be compressed.
- allows arbitrary array expansions without storage reorganization

INTRODUCTION – MORTON ORDER

Logical Indices

Morton Order

Layout

Illustration of the Morton order, indexed using the Z-curve.

INTRODUCTION

COST OF A QUERY

Related to the number of chunks that overlap the sub-array defined by the query.

CHUNK SIZE PROBLEM

- large chunk sizes => unnecessary reads
- small chunk sizes => more disk accesses

Figure 2: Example of a query and chunks retrieved by it.

OPTIMAL CHUNK PROBLEM

Given chunk size, which chunk shape to use to minimize expected number of chunks crossed by query

CONTRIBUTIONS

- Development of two accurate mathematical models of the problem
- Derivation of optimal solutions
- Experiments using synthetic workloads
- Experiments using real life datasets.

RELATED WORK

Problem introduced by Sarawagi and Stonebraker

- gave an approximate solution to this problem
- only approximate answer
- can deviate significantly from the true answer

Nearly all applications using disk resident large scale multidimensional arrays and MOLAP use chunking for physical organization.

RELATED WORK

- Chunks of size the block size of the disk storage system as tie breaker for the **chunk shape size problem**
- Chunk compression is further used to improve storage utilization
- Chunking schemes not driven by the query access pattern.
- Some research on handling extendibility in chunked arrays

The Block Compressed Row storage (BCRS)

- basis of a typical chunk addressing method
- Each block has a coordinate index <i,j>
- Linear mapping function maps coordinates to integer
- Reverse function used for computing neighbors

RELATED WORK

Prediction of query access patterns

- Based on query statistics (query history logs, sampling, etc.)
- Can be efficiently used to select chunk dimensions
- Significant reduction in the cost of answering queries

Query represented as <A1,A2,...,Ak>

I-Independent Attribute Range (IAR)

- Compute probabilistic distribution of the possible range values
- · query range in each dimension is independent from each other

II-Query Shape (QS)

- From Sarawagi and Stonebraker
- Probability distribution of complete query shapes

Example workload ----

 Table 2: Queries

 Query number
 Query
 shape

 1
 <1:3,2:5|> <2|3|>

 2
 <4:7,6:10> <3|4|>

 3
 <5:9;3:6> <4|3|>

 4
 <6:8,4:7> <2|3|>

Table 3: Individual range probabilities under model (IAR)

Dimension	Range	Appears	Range	
#	value	in query#	probability	
1	2	1,4	1/2	
1	3	2	1/4	
1	4	3	1/4	
2	3	1,3,4	3/4	
2	4	2	1/4	

Example workload -

First model

 $\begin{array}{|c|c|c|c|c|c|} \hline \textbf{Table 2: Queries} \\ \hline \textbf{Query number} & \textbf{Query} & \textbf{shape} \\ \hline 1 & <1:3,2:5|> & <2.3> \\ \hline \end{array} >$

Table 4: Shape probabilities under the two models

Query	Prob.	In	Prob.
Shape	Model (IAR)	Query #	(QS)
< 2, 3 >	$1/2 \times 3/4 = 3/8$	1,4	1/2
< 2, 4 >	$1/2 \times 1/4 = 1/8$	-	0
< 3, 3 >	$1/4 \times 3/4 = 3/16$	-	0
< 3, 4 >	$1/4 \times 1/4 = 1/16$	2	1/4
< 4, 3 >	$1/4 \times 3/4 = 3/16$	3	1/4
< 4, 4 >	$1/4 \times 1/4 = 1/16$	_	0

Second model

MOTIVATING EXAMPLE

- 3D dataset
- Query shape: <40,60,120>
- Block size constraint of 212=4096.

2 chunk shapes tested

Formula of Sarawagi et al

Formula found in this study

Table 1: Cost summary						
Option	Chunk Shape			Relative		
		Eqn 4.1	Eqn 4.2	Error		
1	< 8,64,8 >	75	179.2449	139%		
2	< 8, 16, 32 >	80	129.95	62%		

According to Sarawagi and Stonebraker we should use chunk shape 1

Average query cost in Sarawagi and Stonebraker

Average query cost in this study

$$\sum_{j=1}^{q} p_{j} \prod_{i=1}^{k} \left(\frac{A_{ij} - 1}{c_{i}} + 1 \right); \tag{4.2}$$
 Chunk shape

MINIMIZATION PROBLEMS - IAR

Average query cost ———

We want to find the optimal chunk shape s.t. minimizes query cost and of size disk block

$$\sum_{i=1}^{q} p_j \prod_{i=1}^{k} \left(\frac{A_{ij} - 1}{c_i} + 1 \right); \tag{4.2}$$

The chunk overlap minimization problem we wish to solve can be stated as follows:

$$\min \prod_{i=1}^{k} \left(\frac{\bar{A}_i}{c_i} + 1 \right) \tag{4.1}$$

Subject to

$$\prod_{i=1}^{k} c_i \le C \tag{4.2}$$

$$\bar{A}_i = \sum_{j=1}^{m_i} p_{ij} (A_{ij} - 1)$$

MINIMIZATION PROBLEMS - QS

Average query cost
$$\sum_{j=1}^{q} p_j \prod_{i=1}^{k} \left(\frac{A_{ij} - 1}{c_i} + 1 \right);$$
 (4.2)

$$\min \sum_{j=1}^{q} p_j \prod_{i=1}^{k} \left(\frac{A_{ij}}{2^{y_i}} + 1 \right); \quad s.t. \sum_{i=1}^{k} y_i \le C'; \ \mathbf{y} \in S \quad (4.4)$$

with
$$C' = \log_2 C$$
 and let $y_i = \log_2 C_i$

OPTIMAL SOLUTIONS

Analysis of the Independent Attribute Range (IAR) Model

closed form of optimization problem solved

Analysis of the shape model

- no closed form solution
- used greedy algorithm

A **greedy algorithm** is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage [wikipedia]

EXPERIMENTAL RESULTS - SIMULATION

- Using QS model: current study VS [Sarawagi and Stonebraker]
- Under an assumption of equal probability of shapes
- Same c
- Random values of A
- Tested the accuracy relative to the real number of overlaping chunks
- Random queries on 2, 3, 4 and 5 dimensions

Environment

- 1.8 GHz AMD Athlon 64 microprocessor
- 1 GB main memory
- Ubuntu 6.06.1 LTS Linux

EXPERIMENTAL RESULTS - SIMULATION

Figure 3: Bar Charts of Percentage Errors for Number of Chunks Retrieved

Dataset

- Sloan Digital Sky Survey (SDSS)
- astronomical survey project
- 168 million records
- 500 attributes

« maps one quarter of the entire sky in order to determine the positions and absolute brightnesses of more than 100 million celestial objects »

Feature selection

- selected 4 <u>representative</u> attributes -> most commonly used
- extensive study of the real query workloads from astronomers
- extracted 5,000 queries

Figure 4: Comparison of Optimal and Symmetric chunking

Symmetric chunking: « chuck shapes in which all dimensions have equal sizes »

Table 8: Chunk sizes for different block sizes for SDSS data

CONLUSION

- Development of two accurate mathematical models of the problem
- Derivation of optimal solutions
- Experiments using synthetic workloads
- Experiments using real life datasets.