What is claimed is:

1	1.	In an electrically-powered device having a liquid-crystal display (LCD)			
2	comprising a driver and a plurality of pixels, wherein the optical characteristics of the liquid				
3	crystal associated with each pixel are defined by the selective local application of an electrical				
4	charge, a method of conserving electrical power comprising the steps of:				
5		receiving, in a driver of the LCD, data containing an image for display on the			
6	LCD;				
₽7		determining that power-conservation mode is appropriate according to			
₽ ₽ ₽	predetermined	l criteria;			
∔ ↓ 9		analyzing the image data in a microprocessor of the LCD driver to determine the			
ロ7 ロ8 F ロ9 面9	pixel-charging	g sequence required to produce the image associated with the image data;			
		entering power-conservation mode by modifying the pixel-activation sequence to			
11 12 13	reduce the number of pixels to which voltage is to be supplied; and				
<u>⊨</u> <u>□</u> 13		displaying on the LCD an image created by the modified pixel-activation			
14	sequence.				

- 1 2. The method of claim 1, wherein the predetermined criteria for entering power-
- 2 conservation mode is receipt of a user-entered instruction to enter power-conservation mode.
- 1 3. The method of claim 1, wherein the predetermined criteria for entering power
- 2 conservation mode is a low-power indication generated within the device.

1

2

- 1 4. The method of claim 1, wherein the predetermined criteria for entering a power conservation mode is a reduce-power signal received through a communications network.
- 1 5. The method of claim 1, further comprising the steps of:
- determining that leaving power-consumption mode is appropriate according to
- 3 predetermined criteria; and
- 4 leaving power consumption mode by returning to full power for all pixels.
 - 6. The method of claim 1, further comprising the step of selectively alternating the subset of no-power pixels.
 - 7. The method of claim 1, wherein the predetermined criteria for entering powerconservation mode includes an indication of the level of ambient light.
 - 8. The method of claim 1, wherein the predetermined criteria for entering power conservation mode includes an automatically-generated timing signal.
- 1 9. The method of claim 1, wherein the subset of no-power pixels is selected
- 2 according to the image being displayed.

4	4.0	4 T OT		
1	10.	Anl('I) es	ratam	comprising:
1	11/.		SICILI	COMBUISHIE.

- an LCD display having a plurality of pixels that are variably activated to create a
- 3 video image; and
- an LCD driver for receiving power from a power supply and selectively providing
- 5 power to activate the display pixels;
- 6 power-conservation circuitry coupled to the LCD driver for selectively applying
- 7 pre-determined power-conservation criteria by reducing from full power the power level
- 8 supplied to a selected subset of pixels.
 - 11. The LCD system of claim 10, wherein the power-reduction applied to a selected subset of pixels causes no power to be sent to the selected pixel subset.
 - 12. The system of claim 11, wherein the subset of no-power pixels is selected based on the image being displayed.

1

2

1

2

3

16.

13. An improved portable electronic device for communicating with a 1 2 communications network comprising: a receiver for receiving information from the communications network; 3 a liquid-crystal display (LCD) comprising a plurality of pixels for displaying 4 5 images according to the information received from the communications network; an LCD driver for receiving the received information and translating at least a 6 portion of the information into instructions for selectively activating the pixels in order to 7 _ 8 produce an image, wherein the LCD driver determines if a power-conservation mode has been 9 FUDFD 1 CDUFD 1 selected and, if so, modifies the instructions accordingly. The device of claim 13, wherein the selection of power-conservation mode is 14. done automatically. The device of claim 14, wherein the automatic selection of power-conservation 15. 2 mode is responsive to a low-battery indication.

17. The device of claim 16, wherein the signal received from the communications network is generated by the network upon detecting a device transmission strength lower than a pre-determined threshold.

mode is responsive to a signal received from the communications network.

The device of claim 14, wherein the automatic selection of power-conservation

- 1 18. The device of claim 13, wherein the instruction modification performed if power-
- 2 conservation mode has been selected includes omitting a predetermined number of pixel-
- 3 activations.
- 1 19. The device of claim 19, wherein the number of omitted pixel-activations is
- 2 determined as a first selected percentage of the total number of pixels to be charged during a first
- 3 defined portion of the pixel-activation sequence.
 - 20. The device of claim 19, wherein approximately fifty percent of the pixel-activations are omitted.
 - 21. The device of claim 19, wherein a second selected percentage of the total number of pixels to be activated determines the omitted pixel-activations in a second defined portion of the pixel-activation sequence.