Opracowywanie danych liczbowych i ich graficzna prezentacja

Zadanie 1 Za pomocą funkcji SUMA wyznaczyć:

a)
$$1+2+3+\cdots+150$$
 b) $1+4+7+\cdots+298$ c) $1+2+4+8+\cdots+2048$

d)
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{199} + \frac{1}{200}$$
 e) $\frac{1}{3} + \frac{4}{6} + \frac{7}{9} + \dots + \frac{298}{300}$.

Należy zwrócić uwagę: w jaki sposób wprowadzamy serię danych, jak używać funkcji SUMA i jaka jest jej składnia, jak budujemy formuły.

Zadanie 2 Za pomocą odpowiedniej funkcji statystycznej wyznaczyć srednią arytmetyczną liczb:

a)
$$1, 9, 25, \dots, 2401, 2601$$
 b) $-1, 4, -9, 16, \dots, -2401, 2500.$

Należy zwrócić uwagę w jaki sposób korzystamy z kreatora funkcji.

Zadanie 3 W tabeli przedstawiono dzisiejsze zakupy Adama, który na każdy produkt uzyskał rabat w wysokości 12%. Uzupełnij tabelę, używając adresowania względnego i bezwzględnego. Rabat ma być uwzględniony w każdej wartości. Tabela ma być sformatowana tak jak na ilustracji.

	А	В	С	D	E	F
1	Produkt	llość	Cena	Wartość		
2	Cukier	1	3,60 zł		Rabat	12,00%
3	Jogurt	4	1,90 zł			
4	Sok	2	2,50 zł	1		
5	Chleb	1	2,40 zł			
6	Czekolada	2	3,50 zł			
7	Masło	1	3,95 zł			
8			Razem			

Należy zwrócić uwagę w jaki sposób formatujemy dane oraz na sposób adresowania względnego i bezwzględnego.

Zadanie 4 Utwórz tabliczkę mnożenia 10x10, korzystając z adresowania mieszanego. Należy napisać jedną formułę, która po skopiowaniu do odpowiednich komórek, da tabliczkę mnożenia.

Należy zwrócić uwagę na sposób adresowania mieszanego.

Zadanie 5 Ciało porusza się ruchem jednostajnie przyspieszonym z prędkością początkową V_0 i przyspieszeniem a. Opracuj tabelę przedstawiającą jaką drogę przebędzie ciało w ciągu pierwszych 5 minut ruchu (tabela ma przedstawiać przebytą drogę w odstępach 10 sekundowych). Sporządź wykres liniowy zależności przebytej drogi od czasu. Arkusz ma być tak zaprojektowany, aby zmiana wartości V_0 i a była automatyczne uwzględniana w obliczeniach i na wykresie.

Należy zwrócić uwagę w jaki sposób wstawiamy i odpowiednio formatujemy wykres.

Zadanie 6 Każdy z graczy rzuca kostką 2 razy. Mamy 15 graczy. Wykorzystując arkusz kalkulacyjny sporządź tabelę z odpowiednimi formułami liczącymi:

1. symulacja rzutów; (wykorzystacj funkcję LOS.ZAOKR(dolna granica; górna granica)

- 2. suma oczek wyrzuconych;
- 3. dodatkowa premia za wyrzucone razem 10 oczek ((wykorzystaj funkcję JEŻELI) 3 pkt.;
- 4. dodatkowa premia za każdą wyrzuconą "6" w postaci 5 pkt.; (wykorzystaj zagnieżdzoną funkcję JEŻELI)
- 5. obliczyć sumę punktów zdobytych przez zawodników;
- 6. obliczyć średnią ilość wyrzuconych oczek przez zawodników;
- 7. wyznaczyć, ile razy została wyrzucona: 6, 5, 4, 3, 2, 1 (wykorzystaj funkcję LICZ.JEŻELI(zakses; kryterium)). Należy zwrócić uwagę na składnie funkcji JEŻELI oraz LICZ.JEŻELI.

	Α	В	С	D	E	F	G	Н
1	Nr Gracza	Rzut 1	Rzut 2	Suma	premia za "6"	premia za 10 oczek	suma pkt.	średnia I. Oczek
2	1	3	4	7	0	0	7	3,5
3	2	2	1	3	0	0	3	1,5
4	3	6	1	7	5	0	12	3,5
5	4	2	5	7	0	0	7	3,5
6	5	2	4	6	0	0	6	3
7	6	3	3	6	0	0	6	3
8	7	6	1	7	5	0	12	3,5
9	8	2	3	5	0	0	5	2,5
10	9	2	1	3	0	0	3	1,5
11	10	4	2	6	0	0	6	3
12	11	4	2	6	0	0	6	3
13	12	6	6	12	10	0	22	6
14	13	4	3	7	0	0	7	3,5
15	14	1	3	4	0	0	4	2
16	15	5	2	7	0	0	7	3,5
17	Y							1
18	lle razy wyrzucona							
19	1	5						
20	2	8						
21	3	6						
22	4	5						
23	5	2						
24	6	4						
		1000						

Zadanie 7 W klasie mamy 10 uczniów, rejestrujemy oceny semestralne z 10 przedmiotów: j. polski, j. angielski, j. niemiecki, matematyka, historia, biologia, geografia, fizyka, chemia, informatyka. Wykorzystując arkusz kalkulacyjny wprowadź dane do tabeli i wykonaj następujące zadania:

- 1. obliczyć średnią ocen dla każdego ucznia;
- 2. zliczyć ilości poszczególnych ocen dla poszczególnych uczniów;
- 3. obliczyć średnią ocen dla każdego przedmiotu;
- 4. zliczyć ilości poszczególnych ocen dla poszczególnych przedmiotów;
- 5. obliczyć średnią ocen dla klasy;
- 6. zliczyć ilość osób, których średnia ocen przekracza 4,5;
- 7. wyświetlić wszystkie osoby, których średnia ocen przekracza 4,5;
- 8. sporządzić diagram kołowy prezentujący jaki procent ze wszystkich ocen stanowią oceny celujące, bardzo dobre itd.

Zadanie 8 Utwórz arkusz kalkulacyjny, który będzie obliczał "kredyt"według następujących zasad:

Kwota kredytu 20000,00 zł.

Czas kredytowania 3 lata.

Oprocentowanie w skali roku od faktycznego zadłużenia $22{,}5\%.$

Raty stałe.

Odsetki malejace.

Kredyt ma być obliczany miesięcznie (oddzielnie rata, odsetki i razem).

Zadanie 9 Rozwiąż zadanie fundusze. Treść zadania i plik z danymi w formacie txt pobierz ze strony www. Należy zwrócić uwagę w jaki sposób eksportujemy dane do arkusza kalkulacyjnego.

Matematyka w arkuszu kalkulacyjnym

Zadanie 10 Przygotuj arkusz, który po wprowadzeniu liczb a i b, będzie podawał odpowiedź na pytanie

- a) Czy liczba a jest podzielna przez liczbę b?
- b) Czy suma liczb a i b jest liczba nieparzysta?
- c) Czy liczby a i b są liczbami nieparzystymi?
- d) Czy liczba a lub b jest liczba nieparzysta?

Należy zwrócić uwagę na użycie funkcji: MOD, I, LUB.

Zadanie 11 Przygotuj arkusz, który będzie podawał

- a) ile dzielników ma dana liczba naturalna z zakresy od 1 do 2000;
- b) sprawdzał czy ta dana liczba jest liczbą pierwszą;
- c) sprawdzał czy ta liczbą jest liczbą doskonałą (liczba doskonała to taka liczba, że suma wartości jej dzielników właściwych równa się jej samej np. 28 jest liczbą doskonałą bo 28 = 1 + 2 + 4 + 7 + 14).

Wskazówka: Użyj funkcji MOD(liczba; dzielnik), JEŻELI(test logiczny; wartość jeśli prawda; wartość jeśli fałsz), ILE.LICZB(wartość1; wartość2;...) i SUMA(zakres).

Α	В	C	D	Е	F	G		Н			
			Podaj liczbę naturalną z zakresu od 1 do 2000.								
				n=	6						
Liczba dziel	ników liczby	n:	4								
Czy liczba n	jest pierwsz	za?	NIE								
Czy liczba n	jest doskon	ała?	TAK								
•	.iczba dziel Czy liczba n	iczba dzielników liczby Czy liczba n jest pierwsz	A B C Liczba dzielników liczby n: Czy liczba n jest pierwsza? Czy liczba n jest doskonała?	Liczba dzielników liczby n: 4 Czy liczba n jest pierwsza? NIE	Podaj liczbę naturalną n= Liczba dzielników liczby n: 4 Czy liczba n jest pierwsza? NIE	Podaj liczbę naturalną z zakresu n= 6 Liczba dzielników liczby n: 4 Czy liczba n jest pierwsza? NIE	Podaj liczbę naturalną z zakresu od 1 do 2 n= 6 Liczba dzielników liczby n: 4 Czy liczba n jest pierwsza? NIE	Podaj liczbę naturalną z zakresu od 1 do 2000. n= 6 Liczba dzielników liczby n: 4 Czy liczba n jest pierwsza? NIE			

Zadanie 12 Przygotuj arkusz, w którym liczba naturalna z przedziału od 1 do 65535 przedstawiona zostanie w zapisie dwójkowym. Wzór arkusza zostanie przedstawiony na ekranie. Wykorzystaj możliwość ukrywania wierszy bądź kolumn w arkuszu.

Wskazówka: Użyj funkcji MOD(liczba; dzielnik) i CZ.CAŁK.DZIELENIA(liczba; dzielnik).

4	Α	В	С	D	E	F	G	Н	l i	J	K	L	M	N	0	Р
1																
2					ZAPIS LI	CZBY DZIE	ESIĘTNEJ W S	YSTEMIE	DWÓJKO	MYM						
3																
4						Podaj liczb	ę dziesietną z za	akresu od 1	do 65535:							
5																
6							n=	13								
7																
8	Zapis liczb	y n w syste	emie dwójk	owym:												
10																
11	a16	a15	a14	a13	a12	a11	a10	a9	a8	a7	a6	a5	a4	a3	a2	a1
13	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1

Zadanie 13 Wyznaczyć kolejnych wyrazów ciągu $x_{n+1} = (n+1)x_n$ dla $n \ge 0$, $x_0 = 1$. Co definiuje dany ciąg?

Już sumeryjscy matematycy jakieś 4000 lat temu znali algorytm wyznaczania pierwiastka kwadratowego. A mianowicie:

Ciąg dany wzorem rekurencyjnym $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ jest zbieżny kwadratowo do \sqrt{a} dla dowolnego $x_0 > 0$ tzn. wybieramy dowolną liczbę dodatniom i liczymy kolejno x_1, x_2 itd. Kolejne liczby będą coraz bardziej bliskie \sqrt{a} .

Błąd bezwzględny – różnica pomiędzy wartością przybliżoną x_n a wartością rzeczywistą \sqrt{a} . **Błąd względny** – iloraz błędu bezwzględnego i wartości dokładnej \sqrt{a} .

Uzasadnienie geometryczne

Jeśli przyjmiemy, że liczba podpierwiastkowa a jest polem kwadratu, to bok tego kwadratu wynosi \sqrt{a} . Można przyjąć początkową wartość jednego boku x_0 jako pewne przybliżenie szukanego pierwiastka. Wtedy drugi bok musi być równy $\frac{a}{x_0}$, aby pole prostokąta było równe a. Jeśli $x_0 = \frac{a}{x_0}$ to dany prostokąt jest kwadratem i x_0 jest równe \sqrt{a} . W przeciwnym razie jako kolejne przybliżenie boku przyjmujemy średnią arytmetyczną x_0 i $\frac{a}{x_0}$, czyli $x_1 = \frac{1}{2} \left(x_0 + \frac{a}{x_0} \right)$ itd.

Zadanie 14 Stosując powyższy wzór wyznaczyć w arkuszu kalkulacyjnym 10 pierwszych przybliżeń liczby $\sqrt{2}$. Obliczyć błąd względny i bezwględny. Narysować wykres liniowy na którym będzie zaznaczone kolejne przybliżenia $\sqrt{2}$ i błąd względny.

Uwaga: Do zaznaczania zakresów możemy użyć kombinacji shift + strzałki, aby zaznaczyć komórki nieprzylegające do siebie należy użyć klawisza ctrl.

Zadanie 15 Metoda Newtona wyznaczenia pierwiastka równania f(x) = 0 polega na przybliżeniu go za pomocą ciągu

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

gdzie jako x_0 wybieramy dowolne przybliżenie szukanego pierwiastka. Metoda ta przy odpowiednich założeniach jest zbieżna do szukanego pierwiastka.

- a) Za pomocą metody Newtona znaleźć przybliżenie liczby $\sqrt[3]{a}$ (liczba a jest podawana w osobnej komórce). W tym celu wyznaczyć wzór Newtona dla odpowiedniej funkcji f. Wyznaczyć 15 kolejnych wyrazów tego ciągu w arkuszu.
- b) Wyznaczyć błąd względny i bezwzględny kolejnych przybliżeń.
- c) Uzasadnij geometrycznie otrzymany wzór.

Zadanie 16 Dane jest równanie $4x^5 + 4x^2 - 1 = 0$.

- a) Uzasadnić wzór Newtona dla równania w postaci f(x) = 0.
- b) Znaleźć graficznie przybliżenia pierwiastków tego równania.
- c) Wyznaczyć ciągi Newtona, które będą zbieżne do każdego z pierwiastków tego równania. Czym się różną te ciągi od siebie?

Ciekawy fraktal został skonstrułowany przez wybitnego polskiego matematyka **Wacława Sierpińskiego** (stąd nazwa **trójkąt Sierpińskiego**). Konstrukcja trójkąra Sierpińskiego, nazywana również uszczelką Sierpińskiego, została opracowania w 1915 roku, jeszcze przed wprowadzeniem samego pojęcia fraktali.

Etapy powstawania trójkąta Sierpińskiego:

- 1) Rysujemy trójkat równoboczny. (zobacz rysunek)
- 2) Dzielimy każdy bok trójkąta na pół i łączymy boki trójkąta (w efekcie otrzymujemy 4 mniejsze trójkąty).
- 3) Pomijamy środkowy trójkąt, a w każdym z trzech pozostałych trójkatów dzilimy boki na pół i łączymy środki, aby powstały kolejne trójkaty itd.

Fraktale możemy również otrzymać w sposób wydawałoby się, zupełnie nieoczekiwany– jako wynik **losowego** eksperymentu gry w chaos.

Gra w chaos polega na tym, że startujemy z pewnego punktu x_0 i wyznaczamy jego kolejne iteracje za pomocą wzoru $x_{n+1} = f^m(x_n)$, gdzie f^m jest jedną z funkcji iterowanych, wybieraną niezależnie i losowo dla każdej iteracji.

Zasady gry w chaos dla trójkąta Sierpińskiego

Wybieramy trzy punkty na płaszczyznie i oznaczamy je numerami 1, 2, i 3. Są to tzw. **punkty bazowe**. Następnie wybieramy jeszcze jeden punkt tzw. **punkt wiodący**.

Krok 1 Losujemy jedną z trzech liczb będących numerami punktów bazowych. Jeśli otrzymamy np. liczbę 3, wyznaczamy odcinek pomiędzy punktem wiodącym a punktem bazowym o numerze 3 i znajdujemy jego środek (zaznaczamy ten punkt). Punkt ten będzie teraz nowym punktem wiodącym.

Krok 2 Znów losujemy jedną z liczb 1, 2 lub 3 i, postęstępując jak w poprzednim kroku, wyznaczamy kolejny punkt wiodący itd.

Zadanie Przeprowadź na kartce kilka pierwszych kroków gry w chaos. Przyjrzyj się efektom.

Zadanie 17 Przeprowadź w arkuszu kalkulacyjnym symulacje gry w chaos dla 100, 1000, 3000 i 5000 punktów (należy na wykresie zmiejszyć wymiary punktów). Jako punkty bazowe wybierz (-1;0), (1;0) i (0;1,5). Jako pierwszy punkt bazowy wybierz jeden z wylosowanych punktów bazowych. Przykładowy arkusz znajduje się na kolejnym slajdzie.

LOS.ZAKR(zakres) – losujeje liczbę z podanego zakresu np. LOS.ZAKR(1;3) – podaje wylosowaną liczbę z zakresu od 1 do 3.

INDEKS (zakres; numer z zakresu) – funkcja ta podaje punkt o podanym numerze z zakresu np. INDEKS (B1:B3;A6) – wskasuje zawartość komórki z zakresu od B1 do B3, której komórki został podany w A6.

Uwaga: Obraz dla każdej liczby punktów należy zapisać w osobnym pliku.

Fraktal zwany **paprotką Barsnsleya**, o kształcie przypominającym liść paproci, odkrył Michael F. Barsnsley. Fraktal ten może być opisany za pomocą przekształceń afinicznych.

Przekształcenie afiniczne to wzajemnie jednoznaczne przekształcenie geometryczne, w której obrazem prostej jest inna prosta. Przekształcenami afinicznymi na płaszczyźnie są np.: symetria osiowa, symetria środkowa, przesunięcie równoległe, obrót, jednokładność, powinowactwo prostokątne i każde złożenie tych przekształceń. Przekształcenie afniczne na płaszczyźnie opisują następujące zależności:

$$x' = ax + by + e$$

$$y' = cx + dy + f$$

gdzie

a; b; c; d; e; f - współczynniki przekształcenia ($ad \neq bc$),

x; y - współrzędne punktów przed przekształceniem,

 $x';\,y'$ - współrzędne punktów po przekształceniu.

W przypadku paprotki Barnsleya gra w chaos sprowadza się do przekształcenia współrzędnych punktu wiodącego za pomocą jednego z czterech przekształceń afinicznych opisanymi współczynnikami opisanymi w tabeli 1. W tabeli podano też prawdopodobieństwo wylosowania danego przekształcenia.

	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N
l	Los	Nr	X	Y			a	b	С	d	е	f	Prawdopodobieństwo	Prawdopodobieństwo skumulowane
)	0,74	2	0,520	0,000		1	0,849	0,037	-0,037	0,849	0,075	0,183	0,73	0,73
3	0,12	1	0,516	0,164		2	0,197	-0,226	0,226	0,197	0,400	0,049	0,13	0,86
1	0,22	1	0,520	0,303		3	-0,150	0,283	0,260	0,237	0,575	-0,084	0,11	0,97
)	0,52	1	0,527	0,421		4	0,000	0,000	0,000	0,160	0,500	0,000	0,03	1,00
-	0.85	2	0.409	0 251										

tabela 1

Zadanie 18 Aby narysować paprotkę barnsleya w arkuszu kalkulacyjnym, wyznaczamy odpowiednio dużą liczbę współrzędnych punktu wiodącego, poddanego przekształceniom afinicznym, opisanymi współczynnikami ujętymi w tabeli 1. Dla każdego punktu losujemy przy użyciu funkcji LOS() liczbę, która posłuży do wyboru jednego przekształcenia (kolumna A).

Następnie za pomocą funkcji JEŻELI() sprawdzamy, w którym z przedziałów prawdopodobieństw mieści się wylosowana liczba, wybierając w ten sposób numer przekształcenia (kolumna B).

W kolumnach C i D, korzystając ze wzorów na przekształcenie afiniczne, obliczamy nowe współrzędne punktu

wiodącego (w wierszu 2 za pomocą klawiatury wpisujemy jego początkowe współrzędne).

Wszystkie obliczone współrzędne punktów przedstawiamy na wykresie XY (punktowy), wybierając, odpowiedni dla paprotki, zielony kolor.

Zadanie 19 Zmodyfikować tak wartości parametrów z poprzedniego zadania, aby w arkuszu powstał :

- a) trójkąt Sierpińskiego. Wyjanić matematyczne znaczenie zdefiniowanych przekształceń.
- b) Prostokątny trójkąt Sierpińskiego.
- c) Bliźniacza choinka.