-	вариант	ф.	номер	група	поток	курс	от	предишна	година?
	${f A}$								
	Име:								

Устен изпит по Изчислимост и сложност, 12.02.2016 спец. Компютърни науки, III курс, избираем

- 1 зад. а) Дефинирайте изображенията $\Pi:N^2 \to N$ и $\Pi_n:N^n \to N, n \geq 1.$
- б) Определете обратните функции L и R за Π и J_k^n за Π_n . Докажете, че всяка от функциите $\Pi,\,L,\,R,\,\Pi_n$ и J_k^n е примитивно рекурсивна.
- **2 зад.** Нека $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$, където \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.
- а) Кажете какво означава Г да е ефективен оператор.
- б) Формулирайте и докажете НДУ за ефективност на оператора $\Gamma.$
- в) Посочете пример за ефективен оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ (като проверите ефективността му с критерия от подточка б)).
- **3 зад.** а) Дайте определение за разрешимо и полуразрешимо множество.
- б) Формулирайте максимално много твърдения, отнасящи се до разрешими и полуразрешими множества.
- в) Докажете поне 8 от изброените по-горе твърдения.
- **4 зад.** Нека $\mathcal K$ е клас от едноместни изчислими функции. $\mathcal K$ наричаме *ефективно изброим*, ако съществува рекурсивна функция h, такава че $\mathcal K=\{\varphi_{h(n)}:n\in N\}.$
- а) Докажете, че класът $\mathcal K$ има универсална функция точно тогава, когато $\mathcal K$ е ефективно изброим.
- б) Вярно ли е, че ако $\mathcal K$ е ефективно изброим, то проблемът " $\varphi_a \in \mathcal K$?" е полуразрешим? Обосновете се.

Приятна работа и успех :)!

вариант	ф.	номер	група	поток	курс	от	предишна	година?
${f A}$								
Име:								

Устен изпит по Изчислимост и сложност, 12.02.2016 спец. Компютърни науки, III курс, избираем

- 1 зад. а) Дефинирайте изображенията $\Pi:N^2 \to N$ и $\Pi_n:N^n \to N, n \geq 1.$
- б) Определете обратните функции L и R за Π и J_k^n за Π_n . Докажете, че всяка от функциите $\Pi,\,L,\,R,\,\Pi_n$ и J_k^n е примитивно рекурсивна.
- **2 зад.** Нека $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$, където \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.
- а) Кажете какво означава Г да е ефективен оператор.
- б) Формулирайте и докажете НДУ за ефективност на оператора Г.
- в) Посочете пример за ефективен оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ (като проверите ефективността му с критерия от подточка б)).
- **3 зад.** а) Дайте определение за разрешимо и полуразрешимо множество.
- б) Формулирайте максимално много твърдения, отнасящи се до разрешими и полуразрешими множества.
- в) Докажете поне 8 от изброените по-горе твърдения.
- **4 зад.** Нека $\mathcal K$ е клас от едноместни изчислими функции. $\mathcal K$ наричаме *ефективно изброим*, ако съществува рекурсивна функция h, такава че $\mathcal K=\{\varphi_{h(n)}:n\in N\}$.
- а) Докажете, че класът \mathcal{K} има универсална функция точно тогава, когато \mathcal{K} е ефективно изброим.
- б) Вярно ли е, че ако $\mathcal K$ е ефективно изброим, то проблемът " $\varphi_a \in \mathcal K$?" е полуразрешим? Обосновете се.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
\mathbf{A}								
Име:						•		

Устен изпит по Изчислимост и сложност, 12.02.2016 спец. Компютърни науки, III курс, избираем

- 1 зад. а) Дефинирайте изображенията $\Pi:N^2\to N$ и $\Pi_n:N^n\to N, n\ge 1.$
- б) Определете обратните функции L и R за Π и J^n_k за Π_n . Докажете, че всяка от функциите $\Pi,\,L,\,R,\,\Pi_n$ и J^n_k е примитивно рекурсивна.
- **2 зад.** Нека $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$, където \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.
- а) Кажете какво означава Г да е ефективен оператор.
- б) Формулирайте и докажете НДУ за ефективност на оператора $\Gamma.$
- в) Посочете пример за ефективен оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ (като проверите ефективността му с критерия от подточка б)).
- **3 зад.** а) Дайте определение за разрешимо и полуразрешимо множество.
- б) Формулирайте максимално много твърдения, отнасящи се до разрешими и полуразрешими множества.
- в) Докажете поне 8 от изброените по-горе твърдения.
- **4 зад.** Нека $\mathcal K$ е клас от едноместни изчислими функции. $\mathcal K$ наричаме $e \phi e \kappa m u \varepsilon h o$ из $\delta p o u M$, ако съществува рекурсивна функция h, такава че $\mathcal K = \{ \varphi_{h(n)} : n \in N \}.$
- а) Докажете, че класът ${\cal K}$ има универсална функция точно тогава, когато ${\cal K}$ е ефективно изброим.
- б) Вярно ли е, че ако $\mathcal K$ е ефективно изброим, то проблемът " $\varphi_a \in \mathcal K$?" е полуразрешим? Обосновете се.

Приятна работа и успех :)!

1	вариант	ф.	номер	група	поток	курс	ОΤ	предишна	година?
	${f A}$								
	Име:								

Устен изпит по Изчислимост и сложност, 12.02.2016 спец. Компютърни науки, III курс, избираем

- ${\bf 1}$ зад. a) Дефинирайте изображенията $\Pi:N^2\to N$ и $\Pi_n:N^n\to N, n\ge 1.$
- б) Определете обратните функции L и R за Π и J_k^n за Π_n . Докажете, че всяка от функциите $\Pi,\ L,\ R,\ \Pi_n$ и J_k^n е примитивно рекурсивна.
- **2 зад.** Нека $\Gamma:\mathcal{F}_1\longrightarrow\mathcal{F}_1$, където \mathcal{F}_1 е множеството на едноместните частични функции в естествените числа.
- а) Кажете какво означава Γ да е ефективен оператор.
- б) Формулирайте и докажете НДУ за ефективност на оператора $\Gamma.$
- в) Посочете пример за ефективен оператор $\Gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ (като проверите ефективността му с критерия от подточка б)).
- **3 зад.** а) Дайте определение за разрешимо и полуразрешимо множество.
- б) Формулирайте максимално много твърдения, отнасящи се до разрешими и полуразрешими множества.
- в) Докажете поне 8 от изброените по-горе твърдения.
- **4 зад.** Нека $\mathcal K$ е клас от едноместни изчислими функции. $\mathcal K$ наричаме *ефективно изброим*, ако съществува рекурсивна функция h, такава че $\mathcal K=\{\varphi_{h(n)}:n\in N\}.$
- а) Докажете, че класът ${\cal K}$ има универсална функция точно тогава, когато ${\cal K}$ е ефективно изброим.
- б) Вярно ли е, че ако \mathcal{K} е ефективно изброим, то проблемът " $\varphi_a \in \mathcal{K}$?" е полуразрешим? Обосновете се.

Приятна работа и успех :)!