N₁ Solides usuels

- D Définitions
- Un **solide** est un objet en relief. On ne peut pas le tracer en vraie grandeur sur une feuille de papier plane.
- Un **patron** permet de fabriquer le solide par pliage.
- La **perspective cavalière** permet de représenter le solide sur une feuille papier en donnant l'impression de la 3D.

D Solides usuels

Parallélépipède rectangle

 $V = largeur \times hauteur \times profondeur$

Le patron est composé de rectangles.

L'aire d'un rectangle est : $A = \text{Longueur} \times \text{largeur}$

Pyramides

 $\mathcal{V} = (\text{Aire de la base} \times \text{hauteur}) \div 3$

Le patron est composé d'un polygone et de triangles.

L'aire d'un triangle est : $A = (base \times hauteur) \div 2$

Cylindre de révolution

 $\mathcal{V} =$ Aire de la base \times hauteur

Le patron est composé d'un rectangle et de deux disques. L'aire d'un disque est : $\mathcal{A} = \pi \times \text{rayon}^2$

- Convertir $\frac{\pi}{5}$, $\frac{5\pi}{2}$ et $\frac{-\pi}{4}$ en degré puis les placer sur le cercle trigonométrique.
- Placer sur le cercle trigonométrique $-\frac{\pi}{3}$, $-\frac{\pi}{2}$, $\frac{11\pi}{8}$, $-\frac{5\pi}{8}$ et $\frac{17\pi}{6}$.
- Soit un point A tel que $(\overrightarrow{OI}, \overrightarrow{OA}) = -\frac{\pi}{2}$. Donner A mesures différentes de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OA})$.

Cône de révolution

Le patron est composé d'un disque et d'une portion de disque avec $\alpha = \text{rayon} \div \text{génératrice} \times 360^{\circ}$

 $\mathcal{V} = \text{Aire de la base} \times \text{hauteur} \div 3$

Sphère et boule

 $\mathcal{V} = \frac{4}{3}\pi \times rayon^3$

 $\mathcal{A} = 4 \times \pi \times \text{rayon}^2$

La sphère n'a pas de patron.

- Convertir $\frac{\pi}{5}$, $\frac{5\pi}{2}$ et $\frac{-\pi}{4}$ en degré puis les placer sur le cercle trigonométrique.
- Placer sur le cercle trigonométrique $-rac{\pi}{3}$, $-rac{\pi}{2}$, $rac{11\pi}{8}$, $-rac{5\pi}{8}$ et $rac{17\pi}{6}$.
- Soit un point A tel que $(\overrightarrow{OI}, \overrightarrow{OA}) = -\frac{\pi}{2}$. Donner A mesures différentes de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OA})$.

$n^{\circ}1$ Intersections de plans

On considère un parallélépipède rectangle

ABCDEFGH et I un point de [AB].

- Reproduire la figure ci-contre et y placer le point I.
- 2 Construire sur cette figure :
 - les intersections des plans (EHI) et (AFB);
 - les intersections des plans (*EHI*) et (*HDG*);
 - les intersections des plans (*EHI*) et (*BDF*);
 - les intersections des plans (EHI) et (FBC).

