

Ускоренные градиентные методы

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 8

Ускорения градиентного спуска

Семинар

Оптимизация для всех! ЦУ

Воспоминания с лекции

Скорости сходимости градиентного спуска

$$\min_{x \in \mathbb{R}^n} f(x) \hspace{1cm} x_{k+1} = x_k - \alpha_k \nabla f(x_k) \hspace{0.5cm} \kappa = \frac{L}{\mu}$$

	выпуклая и гладкая	выпуклая и сильно выпуклая (или PL)		
Верхняя оценка	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{k}\right)$	$\ x_k - x^*\ ^2 \approx \mathcal{O}\left(\left(\frac{\kappa - 1}{\kappa + 1}\right)^k\right)$		
Нижняя оценка	$f(x_k) - f^* \approx \Omega\left(\frac{1}{k^2}\right)$	$\begin{split} \ x_k - x^*\ ^2 &\approx \mathcal{O}\left(\left(\frac{\kappa - 1}{\kappa + 1}\right)^k\right) \\ \ x_k - x^*\ ^2 &\approx \Omega\left(\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k\right) \end{split}$		

• Градиентный спуск

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Перемещаем точку x_k в направлении $-\nabla f(x_k)$ на $\alpha_k \|\nabla f(x_k)\|$ единиц.

• Градиентный спуск

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Перемещаем точку x_k в направлении $-\nabla f(x_k)$ на $\alpha_k \|\nabla f(x_k)\|$ единиц.

• Градиентный спуск

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Перемещаем точку x_k в направлении $-\nabla f(x_k)$ на $\alpha_k \|\nabla f(x_k)\|$ единиц.

• Метод тяжелого шарика

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

Выполняем GD, перемещаем обновленный x в направлении предыдущего шага на $eta_k \| x_k - x_{k-1} \|$ единиц.

• Градиентный спуск

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Перемещаем точку x_k в направлении $-\nabla f(x_k)$ на $\alpha_k \|\nabla f(x_k)\|$ единиц.

• Метод тяжелого шарика

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

Выполняем GD, перемещаем обновленный x в направлении предыдущего шага на $eta_k \| x_k - x_{k-1} \|$ единиц.

• Градиентный спуск

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Перемещаем точку x_k в направлении $-\nabla f(x_k)$ на $\alpha_k \|\nabla f(x_k)\|$ единиц.

• Метод тяжелого шарика

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

Выполняем GD, перемещаем обновленный x в направлении предыдущего шага на $eta_k \|x_k - x_{k-1}\|$ единиц.

• Ускорение Нестерова

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k + \beta_k (x_k - x_{k-1})) + \beta_k (x_k - x_{k-1})$$

или

$$y_{k+1} = x_k - \beta_k(x_k - x_{k-1}),$$

$$x_{k+1} = y_{k+1} - \alpha_k \nabla f(y_{k+1}).$$

Перемещаем не обновленный x в направлении предыдущего шага на $eta_k \|x_k - x_{k-1}\|$ единиц, выполняем GD на сдвинутом x.

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Рассмотрим семейство первого порядка, где

$$\begin{aligned} x^{k+1} &\in x^0 + \operatorname{span}\left\{\nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k)\right\} & f - \operatorname{smooth} \\ x^{k+1} &\in x^0 + \operatorname{span}\left\{g_0, g_1, \dots, g_k\right\}, \text{ where } g_i \in \partial f(x^i) & f - \operatorname{non-smooth} \end{aligned}$$

5

(1)

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Рассмотрим семейство первого порядка, где

$$\begin{split} x^{k+1} &\in x^0 + \operatorname{span}\left\{\nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k)\right\} & f - \operatorname{smooth} \\ x^{k+1} &\in x^0 + \operatorname{span}\left\{g_0, g_1, \dots, g_k\right\}, \text{ where } g_i \in \partial f(x^i) & f - \operatorname{non-smooth} \end{split} \tag{1}$$

Чтобы построить нижнюю оценку, нам нужно найти функцию f из соответствующего класса, такую что любой метод из семейства 1 будет работать не быстрее нижней оценки.

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет:

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

• Не важно, какой метод первого порядка вы используете, всегда существует функция f, на которой метод будет сходиться не быстрее чем $\mathcal{O}\left(\frac{1}{L^2}\right)$.

i Theorem

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- Не важно, какой метод первого порядка вы используете, всегда существует функция f, на которой метод будет сходиться не быстрее чем $\mathcal{O}\left(\frac{1}{12}\right)$.
- Ключом к доказательству является явное построение специальной функции f.

1 Theorem

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- Не важно, какой метод первого порядка вы используете, всегда существует функция f, на которой метод будет сходиться не быстрее чем $\mathcal{O}\left(\frac{1}{12}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта оценка $\mathcal{O}\left(\frac{1}{k^2}\right)$ не совпадает со скоростью сходимости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:

1 Theorem

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- Не важно, какой метод первого порядка вы используете, всегда существует функция f, на которой метод будет сходиться не быстрее чем $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта оценка $\mathcal{O}\left(\frac{1}{k^2}\right)$ не совпадает со скоростью сходимости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.

1 Theorem

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- Не важно, какой метод первого порядка вы используете, всегда существует функция f, на которой метод будет сходиться не быстрее чем $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта оценка $\mathcal{O}\left(\frac{1}{k^2}\right)$ не совпадает со скоростью сходимости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.
 - b. Градиентный метод не является оптимальным для этой задачи.

Метод тяжелого шарика для квадратичной задачи

Какая стратегия шага используется для GD?

Рисунок 1. GD vs. HBM with fixed β .

Наблюдение: для хорошей f (со сферическими уровнями), GD уже достаточно хорош, и HBM добавляет небольшой эффект. Однако, для плохой f (с эллиптическими уровнями), HBM лучше в некоторых случаях.

Метод тяжелого шарика для квадратичной задачи

Наблюдение: то же самое. Если хорошая f (с сферическими уровнями), GD уже достаточно хорош. Если плохая f (с эллиптическими уровнями), HBM лучше в некоторых случаях.

NAG для DL

NAG как метод импульса

• Начнем с установки $k=0, a_0=1, x_{-1}=y_0, y_0$ в произвольном параметре, итерации

Обновление градиента
$$x_k = y_k - \alpha_k \nabla f(y_k)$$
 (2)

Вес экстраполяции
$$a_{k+1} = \frac{1+\sqrt{1+4a_k^2}}{2}$$
 (3)

Экстраполяция
$$y_{k+1} = x_k + \frac{a_k - 1}{a_{k+1}}(x_k - x_{k-1})$$
 (4)

Обратите внимание, что здесь используется фиксированный шаг: $\alpha_k = \frac{1}{L} \ \forall k.$

1 Theorem

Если f является L-гладкой и выпуклой, последовательность $\{f(x_k)\}_k$, генерируемая NAG, сходится к оптимальному значению f^* с скоростью $\mathcal{O}(\frac{1}{k^2})$ как

$$f(x_k) - f^* \le \frac{4L\|x_k - x^*\|^2}{(k+2)^2}$$

NAG для DL ¹

task	$0_{(SGD)}$	0.9N	0.99N	0.995N	0.999N	0.9M	0.99M	0.995M	0.999M	$\mathrm{SGD}_{\mathrm{C}}$
Curves	0.48	0.16	0.096	0.091	0.074	0.15	0.10	0.10	0.10	0.16
Mnist	2.1	1.0	0.73	0.75	0.80	1.0	0.77	0.84	0.90	0.9
Faces	36.4	14.2	8.5	7.8	7.7	15.3	8.7	8.3	9.3	NA

Рисунок 3. Таблица сообщает о квадратичных ошибках на задачах для каждой комбинации β_{max} и типа импульса (NAG=N, HB=M). Когда β_{max} равен 0, выбор между NAG и HB не имеет значения, поэтому ошибки обучения представлены в одном столбце. Для каждого выбора β_{max} используется наиболее эффективный шаг обучения. Столбец SGD $_C$ содержит результаты Chapelle & Erhan (2011), которые использовали 1,7 млн. шагов SGD и сети tanh.

¹Ссылка

Скорости сходимости

Сходимость метода тяжелого шарика 2

i Theorem

Предположим, что f является гладкой и выпуклой и что

$$\beta \in [0,1), \quad \alpha \in \left(0, \frac{2(1-\beta)}{L}\right).$$

Тогда, последовательность $\{x_k\}$, генерируемая итерацией тяжелого шарика, удовлетворяет

$$f(\overline{x}_T) - f^\star \leq \left\{ \begin{array}{l} \frac{\|x_0 - x^\star\|^2}{2(T+1)} \left(\frac{L\beta}{1-\beta} + \frac{1-\beta}{\alpha}\right), & \text{if} \quad \alpha \in \left(0, \frac{1-\beta}{L}\right], \\ \frac{\|x_0 - x^\star\|^2}{2(T+1)(2(1-\beta)-\alpha L)} \left(L\beta + \frac{(1-\beta)^2}{\alpha}\right), & \text{if} \quad \alpha \in \left[\frac{1-\beta}{L}, \frac{2(1-\beta)}{L}\right), \end{array} \right.$$

где \overline{x}_T является средним по Чезаро итераций, т.е.

$$\overline{x}_T = \frac{1}{T+1} \sum_{k=0}^T x_k.$$

 $^{^2}$ Сходимость метода тяжелого шарика для выпуклой оптимизации, Euhanna Ghadimi et.al.

Сходимость метода тяжелого шарика

i Theorem

Предположим, что f является гладкой и сильно выпуклой и что

$$\alpha \in (0,\frac{2}{L}), \quad 0 \leq \beta < \frac{1}{2} \bigg(\frac{\mu \alpha}{2} + \sqrt{\frac{\mu^2 \alpha^2}{4} + 4(1 - \frac{\alpha L}{2})} \bigg).$$

Тогда, последовательность $\{x_k\}$, генерируемая итерацией тяжелого шарика, сходится линейно к уникальному оптимальному значению x^\star . В частности,

$$f(x_k) - f^\star \leq q^k (f(x_0) - f^\star),$$

где $q \in [0, 1)$.

³Сходимость метода тяжелого шарика для выпуклой оптимизации, Euhanna Ghadimi et.al.

Сходимость NAG

1 Theorem

Предположим, что $f:\mathbb{R}^n \to \mathbb{R}$ является выпуклой и L-гладкой. Алгоритм Nesterov Accelerated Gradient Descent (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0=y_0\in\mathbb{R}^n$ и $\lambda_0=0$. Алгоритм выполняет следующие шаги:

Экстраполяция: $y_{k+1} = x_k + \beta(x_k - x_{k-1})$

Обновление градиента: $x_{k+1} = y_{k+1} - \frac{1}{L} \nabla f(y_{k+1})$

Вес экстраполяции: $\lambda_{k+1} = \frac{1+\sqrt{1+4\lambda_k^2}}{2}$

Вес экстраполяции: $\beta_k = \frac{1-\lambda_k}{\lambda_{k+1}}$

Последовательности $\{f(x_k)\}_{k\in\mathbb{N}}$, генерируемые алгоритмом, сходятся к оптимальному значению f^* с скоростью $\mathcal{O}\left(\frac{1}{k^2}\right)$, в частности:

$$f(x_k) - f^* \leq \frac{2L\|x_0 - x^*\|^2}{k^2}$$

Сходимость NAG

1 Theorem

Предположим, что $f:\mathbb{R}^n o\mathbb{R}$ является μ -сильно выпуклой и L-гладкой. Алгоритм Нестерова (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0=y_0\in\mathbb{R}^n$ и $\lambda_0=0$. Алгоритм выполняет следующие шаги:

Экстраполяция:
$$y_{k+1} = x_k + \beta(x_k - x_{k-1})$$

Обновление градиента:
$$x_{k+1} = y_{k+1} - \frac{1}{L} \nabla f(y_{k+1})$$

Вес экстраполяции:
$$\gamma_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

Последовательности $\{f(x_k)\}_{k\in\mathbb{N}}$, генерируемые алгоритмом, сходятся к оптимальному значению f^* линейно:

$$f(x_k) - f^* \leq \frac{\mu + L}{2} \|x_0 - x^*\|_2^2 \exp\left(-\frac{k}{\sqrt{\kappa}}\right)$$

Практика

Хоббиты

Давайте напишем код! **@**Colab

Логистическая регрессия

Давайте напишем код! **@**Colab

• Изображения для НВМ взяты из презентации. Посетите сайт для большего количества туториалов.

- Изображения для НВМ взяты из презентации. Посетите сайт для большего количества туториалов.
- Почему импульс действительно работает. Ссылка.

- Изображения для НВМ взяты из презентации. Посетите сайт для большего количества туториалов.
- Почему импульс действительно работает. Ссылка.
- Запустите код в **@**Colab. Код взят из **Q**.

- Изображения для НВМ взяты из презентации. Посетите сайт для большего количества туториалов.
- Почему импульс действительно работает. Ссылка.
- Запустите код в **@**Colab. Код взят из **(?)**.
- Важность инициализации и импульса в глубоком обучении. Ссылка.

Дополнительно

NAG для квадратичной задачи

Рассмотрим следующую квадратичную задачу оптимизации:

$$\min_{x \in \mathbb{R}^d} q(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x, \text{ where } A \in \mathbb{S}^d_{++}.$$

Каждая симметричная матрица A имеет разложение на собственные значения

$$A = Q \mathrm{diag}\left(\lambda_1, \dots, \lambda_n\right) Q^T = Q \Lambda Q^T, \quad Q = [q_1, \dots, q_n].$$

и, как по соглашению, мы будем считать, что λ_i 's отсортированы, от наименьшего λ_1 до наибольшего λ_n . Очевидно, что λ_i соответствует **кривизне** вдоль соответствующих направлений собственных векторов.

Мы можем перепараметризовать q(x) с помощью матричного преобразования Q и оптимизировать y=Qx с помощью целевой функции

$$p(y) \equiv q(x) = q(Q^\top y) = y^\top Q(Q^\top \Lambda Q) Q^\top y/2 - b^\top Q^\top y = y^\top \Lambda y/2 - c^\top y,$$

где c = Qb.

Мы можем еще раз переписать p как

$$p(y) = \sum_{i=1}^n [p]_i([y]_i),$$

где
$$[p]_i(t) = \lambda_i t^2/2 - [c]_i t$$
.

NAG для квадратичной задачи

¶ Теорема 2.1 из [1].

Пусть $p(y) = \sum_{i=1}^n [p]_i([y]_i)$ такой, что $[p]_i(t) = \lambda_i t^2/2 - [c]_i t$. Пусть α будет произвольным и фиксированным. Обозначим через $\mathrm{HBM}_x(\beta,p,y,v)$ и $\mathrm{HBM}_v(\beta,p,y,v)$ вектор параметров и вектор скорости соответственно, полученные применением одного шага HBM (т.е. уравнения 1 и затем уравнения 2) к функции p в точке y, со скоростью v, коэффициентом импульса β и шагом обучения α . Определим NAG_x и NAG_v аналогично. Тогда для $z \in \{x,v\}$:

$$\begin{aligned} \operatorname{HBM}_z(\beta,p,y,v) &= \begin{bmatrix} \operatorname{HBM}_z(\beta,[p]_1,[y]_1,[v]_1) \\ \vdots \\ \operatorname{HBM}_z(\beta,[p]_n,[y]_n,[v]_n) \end{bmatrix} \\ \operatorname{NAG}_z(\beta,p,y,v) &= \begin{bmatrix} \operatorname{HBM}_z(\beta(1-\alpha\lambda_1),[p]_1,[y]_1,[v]_1) \\ \vdots \\ \operatorname{HBM}_z(\beta(1-\alpha\lambda_n),[p]_n,[y]_n,[v]_n) \end{bmatrix} \end{aligned}$$

NAG для квадратичной задачи. Доказательство (1/2)

Доказательство:

Легко показать, что если

$$\begin{split} x_{i+1} &= \mathrm{HBM}_x(\beta_i, [q]_i, [x]_i, [v]_i) \\ v_{i+1} &= \mathrm{HBM}_v(\beta_i, [q]_i, [x]_i, [v]_i) \\ \\ y_{i+1} &= \mathrm{HBM}_x(\beta_i, [p]_i, [y]_i, [w]_i) \\ \\ w_{i+1} &= \mathrm{HBM}_v(\beta_i, [p]_i, [y]_i, [w]_i) \end{split}$$

то для $y_i = Qx_i, w_i = Qv_i$

. Тогда, рассмотрим один шаг ${\sf HBM}_v$:

$$\begin{split} & \operatorname{HBM}_v(\beta, p, y, v) = \beta v - \alpha \nabla p(y) \\ &= (\beta[v]_1 - \alpha \nabla_{[y]_1} p(y), \dots, \beta[v]_n - \alpha \nabla_{[y]_n} p(y)) \\ &= (\beta[v]_1 - \alpha \nabla[p]_1([y]_1), \dots, \beta[v]_n - \alpha \nabla[p]_n([y]_n)) \\ &= (\operatorname{HBM}_v(\beta_1, [p]_1, [y]_1, [v]_1), \dots, \operatorname{HBM}_v(\beta_i, [p]_i, [y]_i, [v]_i)) \end{split}$$

Это показывает, что один шаг HBM_v на p точно эквивалентен n одновременным применениям HBM_v к одномерным квадратичным $[p]_i$, все с одним и тем же β и α . Аналогично, для HBM_r .

NAG для квадратичной задачи. Доказательство (2/2)

Далее мы покажем, что NAG, примененный к одномерной квадратичной задаче с коэффициентом импульса β , эквивалентен HBM, примененному к той же квадратичной задаче и с тем же шагом обучения, но с коэффициентом импульса $\beta(1-\alpha\lambda)$. Мы покажем это, раскрыв NAG $_v(\beta,[p]_i,y,v)$ (где y и v являются скалярами):

$$\begin{split} \mathsf{NAG}_v(\beta,[p]_i,y,v) &= \beta v - \alpha \nabla [p]_i (y+\beta v) \\ &= \beta v - \alpha (\lambda_i (y+\beta v) - c_i) \\ &= \beta v - \alpha \lambda_i \beta v - \alpha (\lambda_i y - c_i) \\ &= \beta (1-\alpha \lambda_i) v - \alpha \nabla [p]_i (y) \\ &= \mathsf{HBM}_v (\beta (1-\alpha \lambda_i),[p]_i,y,v). \end{split}$$

ч.т.д.

Наблюдения:

• НВМ и NAG становятся **эквивалентными** когда α мал (когда $\alpha\lambda\ll 1$ для каждого собственного значения λ матрицы A), поэтому NAG и НВМ отличаются только когда α достаточно велико.

NAG для квадратичной задачи. Доказательство (2/2)

Далее мы покажем, что NAG, примененный к одномерной квадратичной задаче с коэффициентом импульса β , эквивалентен HBM, примененному к той же квадратичной задаче и с тем же шагом обучения, но с коэффициентом импульса $\beta(1-\alpha\lambda)$. Мы покажем это, раскрыв NAG $_v(\beta,[p]_i,y,v)$ (где y и v являются скалярами):

$$\begin{split} \mathsf{NAG}_v(\beta,[p]_i,y,v) &= \beta v - \alpha \nabla [p]_i (y + \beta v) \\ &= \beta v - \alpha (\lambda_i (y + \beta v) - c_i) \\ &= \beta v - \alpha \lambda_i \beta v - \alpha (\lambda_i y - c_i) \\ &= \beta (1 - \alpha \lambda_i) v - \alpha \nabla [p]_i (y) \\ &= \mathsf{HBM}_v(\beta (1 - \alpha \lambda_i),[p]_i,y,v). \end{split}$$

ч.т.д.

Наблюдения:

- HBM и NAG становятся **эквивалентными** когда α мал (когда $\alpha\lambda\ll 1$ для каждого собственного значения λ матрицы A), поэтому NAG и HBM отличаются только когда α достаточно велико.
- Когда α относительно велико, NAG использует меньший эффективный импульс для направлений с высокой кривизной, что **предотвращает колебания** (или расхождение) и, таким образом, позволяет использовать большее β , что допускает СМ при заданном α .