

**(12) PATENT  
(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 199710186 B2**  
**(10) Patent No. 709747**

BEST AVAILABLE COPY

ABSTRACT

Electrochemical sensor, comprising a thin elongated insulating substrate (1) supporting two conductive strips (4, 5) of width  $L$  and  $L'$ , whose facing edges (4a, 5a) are insulated from each other by a space (6) of width  $\delta$ , a  
5 insulating covering film (2), comprising a connecting window (8) and at least one measurement window (11) provided with two openings (12, 13) separated by a portion (14) of said covering film (2), and delimiting the useful surfaces of measurement (16) and reference (17)  
10 electrodes, each opening (12, 13) having at any point dimensions measured perpendicularly to the median line (3) such that the furthest edge (12b, 13b) from the edge (4a, 5a) of the portion of the strip (4, 5) forming the electrode (17, 16) which said opening (12, 13) does not  
15 uncover is situated at a distance comprised between  $L + \delta$  and  $\delta$  (respectively  $L' + \delta$  and  $\delta$ ) and the closest edge (12a, 13a) at a distance greater than  $\delta$ .

Application to glucose sensors.

**AUSTRALIA**

*Patents Act 1990*

**COMPLETE SPECIFICATION**  
**FOR A STANDARD PATENT**

**ORIGINAL**

---

Name of Applicant: **Asulab S.A.**

Actual Inventors: **Erik Jan Frenkel, Eric Gagnebin and Jean-Paul Randin**

Address for service  
in Australia: **CARTER SMITH & BEADLE**  
2 Railway Parade  
Camberwell Victoria 3124  
Australia

Invention Title: **ELECTROCHEMICAL SENSOR WITHOUT  
CALIBRATION**

The following statement is a full description of this invention, including the best method of performing it known to us

---

ELECTROCHEMICAL SENSOR WITHOUT CALIBRATION

The present invention concerns an electrochemical sensor, intended to be disposable for measuring the concentration of a constituent in a sample of a solution, a fluid or an effluent by means of a portable electronic 5 measuring apparatus, without it being necessary to implement beforehand calibrating means which depend upon the manufacturing batch of said sensor.

The invention concerns more particularly a sensor of this type used for the ambulatory medical follow-up 10 treatment of a patient, requiring the measurement of the concentration of a constituent in a biological body fluid, such as the blood sugar level of a person suffering from diabetes.

Over the past ten years, disposable electrochemical 15 sensors intended to be used for biological measurements have undergone considerable development. Generally, they are formed by an insulating support of small dimensions, supporting at least two electrodes which are electrically separated and able to be connected to a measuring 20 apparatus, the measuring electrode being also coated with a specific reactant of the constituent whose concentration one wishes to measure. The measurement is effected by depositing the sample to be analysed onto a zone marked by an opening made in a covering film allowing the electrodes 25 and portions of the insulating substrate to appear. Such measurement is effected indirectly by the exploitation of an electric signal generated by the interaction between the reactant and the constituent whose concentration one wishes to measure. Amongst other parameters, the intensity 30 of this signal depends upon the surface of the electrodes.

Such exploitation of the electric signal generally consists of conductometric, voltammetric, conductimetric, coulometric or polarographic measurements allowing the electronic measuring apparatus to be calibrated as a

function of the intensity of the received electric signal so as to display directly on a display device the concentration of the constituent according to a determined mode (mg/dl, mmol/l). In order for the displayed value  
5 really to correspond to the concentration present in the sample, the interaction between the constituent and the reactant should be effected rigorously in the same way, i.e. the electric signal produced should be identical whichever sensor is used. In order for such sensors to be  
10 disposable, they must be inexpensive, and for this reason they can only be mass produced in batches. However much care is taken over the manufacture of such sensors, as regards both the construction and the dosage of the different components of the sensor, small variations from  
15 one batch to another are inevitably observed, such variations being prejudicial to the reliability of said sensors.

In other words, a specific calibration curve able to be selected from the specific calibration curves stored in  
20 a memory of the measuring apparatus corresponds to each manufactured batch. For this purpose, the packaging of sensors presently on the market comprises, either a code number which has to be introduced into the apparatus by means of a digital keyboard, or calibrating means which  
25 have to be put in place in the apparatus before the first measurement. The calibrating or data inputting means may be formed by a test-sensor having calibrated resistance, a small bar provided with a bar code able to be read by the apparatus, or by an electronic chip.

30 In addition to the fact that the risk of error cannot be ruled out, for example by omitting to perform a new calibration when one starts on a packaging containing sensors from a different batch to the preceding one, the calibrating means which are currently necessary  
35 substantially increase the cost of each sensor, i.e. eventually the cost of a medical treatment effected under monitoring of measurements effected by a sensor, for

example with a glucose sensor for persons suffering from diabetes.

An object of the present invention is to overcome the drawbacks of the prior art by providing a mass produced 5 sensor, but not necessitating the use of calibrating means, whatever the manufacturing batch from which said sensor comes, so long as the use expiry date is respected.

The invention therefore concerns an electrochemical sensor, being used to measure the concentration of a 10 constituent in a solution, in the form of a tongue of small dimensions comprising a thin elongated insulating substrate supporting on either side of its median line two conductive strips of width  $L$  and  $L'$ , whose facing edges are electrically insulated from each other by a space of 15 width  $\delta$ , widths  $L$  and  $L'$  and  $\delta$  being measured perpendicularly to the median line, said substrate and said conductive strips being covered by a insulating covering film, into which are cut at one end a connecting window, and close to the other end, at least one 20 measurement window formed of two openings separated by a portion of said covering film, each opening delimiting on a portion of each conductive strip the useful surfaces of a measurement electrode and of a reference electrode, characterised in that each opening has at any point 25 dimensions, measured perpendicularly to the median line, such that the furthest edge from the edge of the portion of the strip forming the electrode which said opening does not uncover is situated at a distance comprised between  $L + \delta$  and  $\delta$  (respectively  $L' + \delta$  and  $\delta$ ) and the closest edge 30 at a distance greater than  $\delta$ .

According to a preferred embodiment, in particular taking account of mass production in batches, the electrochemical sensor has an axial symmetry along its median line. The current collectors thus have the same 35 width and the useful surfaces of the electrodes are identical.

Although the openings of the measurement windows may have any shape, a simple geometrical shape will be preferred, in particular because of the limitations of mass production and the search for minimum production cost. According to a preferred embodiment, each opening has the shape of a circular sector having the same surface and the portion of covering film intended to separate the openings has the shape of a narrow strip parallel to the conductive strips, having a width greater than  $\delta$ , each of its edges covering a narrow portion of the two conductive strips.

The connecting and measurement windows may be cut into the covering film according to known techniques, but according to a preferred embodiment, such windows are cut by stamping said film. Tests carried out showed that stamping was the technique which allowed the most perfect reproducibility and thus the greatest precision to be obtained in the useful surfaces of the electrodes, whatever the manufacturing batch.

In a preferred application, the electrochemical sensor according to the invention allows the dosage of a constituent in a solution by further comprising on the measurement electrode a reactant containing at least one specific enzyme of the constituent whose concentration one wishes to measure and a chemical mediator allowing the electrons to be transferred.

As mediator, one of those described in US patent No 5 393 903 may be selected, namely mono, bis or tris 2,2' - substituted bipyridine complexes of ruthenium, osmium or vanadium, having at least one of the bipyridine ligands substituted by at least one electron donor group. Such mediators have the requisite properties as regards stability and mediation speed while not having any, or very little, influence on the deviation of a measurement as a function of the manufacturing batch of the sensor used.

In the application selected by way of example, namely the dosage of glucose in a patient's blood, the specific enzyme incorporated in the reactant will thus be glucose oxydase (GOD).

5 Other features and advantages of the invention will appear more clearly upon reading the detailed description which follows, concerning, by way of illustrative and non-limiting example, an electrochemical sensor comprising only one measurement window, such description being made  
10 with reference to the attached drawings in which:

- Figure 1 shows an enlarged top view of a sensor according to the invention, and

- Figure 2 shows the sensor of figure 1 along cross-section line II-II, on an even larger scale, the  
15 transverse dimensions having been exaggerated for better understanding.

Of course, the figures show the sensor in its ready to use form, i.e. after being cut out from its manufacturing batch, which may be either a strip or a  
20 sheet.

Referring to figures 1 and 2, there is shown a sensor for measuring the levels of glucose in the blood, i.e. an electrochemical sensor also comprising a reactant 18 the nature of which will be specified hereinafter. Such sensor  
25 has the shape of a thin tongue of small dimensions of a total thickness of between 0.25 and 0.75 mm, preferably approximately 0.5 mm; the width is between 6 and 12 mm, preferably approximately 8 mm; in the example selected comprising only one measurement window 11, its length is  
30 of the order of 40 mm.

Referring more particularly to the cross-section of figure 2, the sensor comprises a thin insulating substrate 1, made of a flexible but rigid material known to the man skilled in the art, such as PET.

35 Substrate 1 supports two conductive strips 4, 5 whose facing edges (4a, 5a) are electrically insulated by a space of width  $\delta$ . In the example shown, these strips 4, 5

are substantially of the same width  $L = L'$ . It has been noted that, whatever the quality of the conductive material used, and even in the case of a metal plated conductive material, there may exist slight local variations of width which result, in sensors of the prior art, in which the conductive strips pass through the measurement window, in significant variations in the useful surface of the electrodes, the consequence of which is a lack of reproducibility in the measurement. When the two conductive strips 4, 5 are formed by a metal plated insulating film, they are laminated onto substrate 1 in a symmetrical manner, parallel to the median line of the sensor, leaving between them a narrow insulating space 6 having the shape of a strip of width  $\delta$ .

The assembly thus formed by substrate 1 and conductive strips 4, 5 is covered by a thin insulating covering film 2 in which two windows 8 and 11 are cut, close to each end. Window 8 is a connecting window allowing portions of conductive strips 4, 5 to appear, said strips forming contacts 9, 10 which will allow the sensor to be connected to a portable electronic apparatus. As is seen in figure 1, the conductive strip portions pass across window 8 and allow a small strip of substrate 1 to appear close to their external ends. Window 11 is a measurement window having two openings 12, 13 which are symmetrical with respect to axis 3 of the sensor, and separated by a narrow portion 14 of the strip-shaped covering film. Openings 12, 13 delimit on portions of conductive strips 4, 5 the surface of each electrode 16, 17, the dimensions of each opening 12, 13 being such that no portion of substrate 1 appears. For this purpose, for opening 12, its edge 12b furthest from edge 5a of the portion of strip 5 forming electrode 17 which said opening 12 does not uncover is at a distance  $d_1$  such that  $1 + \delta > d_1 > \delta$  and its closest edge 12a from said edge 5a is situated at a distance  $d_2$  such that  $d_2 > \delta$ . Likewise, edge 13b of opening 13 is at a distance  $d'_1$  from edge 4a of the

portion of strip 4 forming electrode 16 which said opening 13 does not uncover such that  $L' + \delta > d'1 > \delta$ , and closest edge 13a is at a distance  $d'2$  such that  $d'2 > \delta$ . All of distances  $d_1$ ,  $d_2$ ,  $d'1$  and  $d'2$ , are measured 5 perpendicularly to median line 3.

In the symmetrical configuration shown,  $L = L'$ ,  $d_1 = d'1$  and  $d_2 = d'2$  and the openings have the shape of circular sectors separated by a strip 14 of width greater than  $\delta$ , which covers facing edges 4a, 5a of the two 10 portions of strips 4, 5 forming electrodes 16, 17, on a width substantially equal to the width of covering close to the furthest edges of each opening. Given the small dimensions of the sensor, this covering will be for example at the minimum of the order of 0.10 mm over all 15 the periphery of each opening. As is seen, the surface of each electrode is very precisely delimited by the surface of each opening, by eliminating any surface variation due, either to irregularity of the edges of the conductive strips, or to small positioning variations of covering 20 film 2 on substrate 1. Experience has shown that the greatest reproducibility in the surface of the openings is obtained by stamping film 2. The substrate and the covering film are kept attached to each other by known methods such as thermofusion of the facing surfaces, or 25 application of an adhesive material.

There is also shown in figure 2 reactant 18 which covers the entire useful surface of measurement electrode 16.

In the case of glucose dosage, such reactant will be, 30 for example, that described in US patent 5 378 628 giving optimisation conditions of a mixture comprising in particular glucose oxydase (GOD) and a mediator selected from the mono, bis or tris 2,2' - substituted bipyridine complexes of ruthenium, osmium or vanadium having a 35 bipyridine ligand substituted by at least one electron donor group. Such reactant which allows, in particular measurement to be carried out in optimum conditions in

order to have a high diffusion speed which renders the response variations of the sensor as a function of the manufacturing batch of the reactant, or variations in quantity deposited on the measurement electrode,  
5 negligible or zero.

The invention thus provides a sensor which may thus be presented to the user in packaging comprising no calibrating means. The packaging may at the most comprise an expiry date for use, as is common for consumer  
10 products, in particular in the pharmaceutical field.

22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
7010  
7011  
7012  
7013  
7014  
7015  
7016  
7017  
7018  
7019  
7020  
7021  
7022  
7023  
7024  
7025  
7026  
7027  
7028  
7029  
7030  
7031  
7032  
7033  
7034  
7035  
7036  
7037  
7038  
7039  
7040  
7041  
7042  
7043  
7044  
7045  
7046  
7047  
7048  
7049  
7050  
7051  
7052  
7053  
7054  
7055  
7056  
7057  
7058  
7059  
7060  
7061  
7062  
7063  
7064  
7065  
7066  
7067  
7068  
7069  
7070  
7071  
7072  
7073  
7074  
7075  
7076  
7077  
7078  
7079  
7080  
7081  
7082  
7083  
7084  
7085  
7086  
7087  
7088  
7089  
7090  
7091  
7092  
7093  
7094  
7095  
7096  
7097  
7098  
7099  
70100  
70101  
70102  
70103  
70104  
70105  
70106  
70107  
70108  
70109  
70110  
70111  
70112  
70113  
70114  
70115  
70116  
70117  
70118  
70119  
70120  
70121  
70122  
70123  
70124  
70125  
70126  
70127  
70128  
70129  
70130  
70131  
70132  
70133  
70134  
70135  
70136  
70137  
70138  
70139  
70140  
70141  
70142  
70143  
70144  
70145  
70146  
70147  
70148  
70149  
70150  
70151  
70152  
70153  
70154  
70155  
70156  
70157  
70158  
70159  
70160  
70161  
70162  
70163  
70164  
70165  
70166  
70167  
70168  
70169  
70170  
70171  
70172  
70173  
70174  
70175  
70176  
70177  
70178  
70179  
70180  
70181  
70182  
70183  
70184  
70185  
70186  
70187  
70188  
70189  
70190  
70191  
70192  
70193  
70194  
70195  
70196  
70197  
70198  
70199  
70200  
70201  
70202  
70203  
70204  
70205  
70206  
70207  
70208  
70209  
70210  
70211  
70212  
70213  
70214  
70215  
70216  
70217  
70218  
70219  
70220  
70221  
70222  
70223  
70224  
70225  
70226  
70227  
70228  
70229  
70230  
70231  
70232  
70233  
70234  
70235  
70236  
70237  
70238  
70239  
70240  
70241  
70242  
70243  
70244  
70245  
70246  
70247  
70248  
70249  
70250  
70251  
70252  
70253  
70254  
70255  
70256  
70257  
70258  
70259  
70260  
70261  
70262  
70263  
70264  
70265  
70266  
70267  
70268  
70269  
70270  
70271  
70272  
70273  
70274  
70275  
70276  
70277  
70278  
70279  
70280  
70281  
70282  
70283  
70284  
70285  
70286  
70287  
70288  
70289  
70290  
70291  
70292  
70293  
70294  
70295  
70296  
70297  
70298  
70299  
70300  
70301  
70302  
70303  
70304  
70305  
70306  
70307  
70308  
70309  
70310  
70311  
70312  
70313  
70314  
70315  
70316  
70317  
70318  
70319  
70320  
70321  
70322  
70323  
70324  
70325  
70326  
70327  
70328  
70329  
70330  
70331  
70332  
70333  
70334  
70335  
70336  
70337  
70338  
70339  
70340  
70341  
70342  
70343  
70344  
70345  
70346  
70347  
70348  
70349  
70350  
70351  
70352  
70353  
70354  
70355  
70356  
70357  
70358  
70359  
70360  
70361  
70362  
70363  
70364  
70365  
70366  
70367  
70368  
70369  
70370  
70371  
70372  
70373  
70374  
70375  
70376  
70377  
70378  
70379  
70380  
70381  
70382  
70383  
70384  
70385  
70386  
70387  
70388  
70389  
70390  
70391  
70392  
70393  
70394  
70395  
70396  
70397  
70398  
70399  
70400  
70401  
70402  
70403  
70404  
70405  
70406  
70407  
70408  
70409  
70410  
70411  
70412  
70413  
70414  
70415  
70416  
70417  
70418  
70419  
70420  
70421  
70422  
70423  
70424  
70425  
70426  
70427  
70428  
70429  
70430  
70431  
70432  
70433  
70434  
70435  
70436  
70437  
70438  
70439  
70440  
70441  
70442  
70443  
70444  
70445  
70446  
70447  
70448  
70449  
70450  
70451  
70452  
70453  
70454  
70455  
70456  
70457  
70458  
70459  
70460  
70461  
70462  
70463  
70464  
70465  
70466  
70467  
70468  
70469  
70470  
70471  
70472  
70473  
70474  
70475  
70476  
70477  
70478  
70479  
70480  
70481  
70482  
70483  
70484  
70485  
70486  
70487  
70488  
70489  
70490  
70491  
70492  
70493  
70494  
70495  
70496  
70497  
70498  
70499  
70500  
70501  
70502  
70503  
70504  
70505  
70506  
70507  
70508  
70509  
70510  
70511  
70512  
70513  
70514  
70515  
70516  
70517  
70518  
70519  
70520  
70521  
70522  
70523  
70524  
70525  
70526  
70527  
70528  
70529  
70530  
70531  
70532  
70533  
70534  
70535  
70536  
70537  
70538  
70539  
70540  
70541  
70542  
70543  
70544  
70545  
70546  
70547  
70548  
70549  
70550  
70551  
70552  
70553  
70554  
70555  
70556  
70557  
70558  
70559  
70560  
70561  
70562  
70563  
70564  
70565  
70566  
70567  
70568  
70569  
70570  
70571  
70572  
70573  
70574  
70575  
70576  
70577  
70578  
70579  
70580  
70581  
70582  
70583  
70584  
70585  
70586  
70587  
70588  
70589  
70590  
70591  
70592  
70593  
70594  
70595  
70596  
70597  
70598  
70599  
70600  
70601  
70602  
70603  
70604  
70605  
70606  
70607  
70608  
70609  
70610  
70611  
70612  
70613  
70614  
70615  
70616  
70617  
70618  
70619  
70620  
70621  
70622  
70623  
70624  
70625  
70626  
70627  
70628  
70629  
70630  
70631  
70632  
70633  
70634  
70635  
70636  
70637  
70638  
70639  
70640  
70641  
70642  
70643  
70644  
70645  
70646  
70647  
70648  
70649  
70650  
70651  
70652  
70653  
70654  
70655  
70656  
70657  
70658  
70659  
70660  
70661  
70662  
70663  
70664  
70665  
70666  
70667  
70668  
70669  
70670  
70671  
70672  
70673  
70674  
70675  
70676  
70677  
70678  
70679  
70680  
70681  
70682  
70683  
70684  
70685  
70686  
70687  
70688  
70689  
70690  
70691  
70692  
70693  
70694  
70695  
70696  
70697  
70698  
70699  
70700  
70701  
70702  
70703  
70704  
70705  
70706  
70707  
70708  
70709  
70710  
70711  
70712  
70713  
70714  
70715  
70716  
70717  
70718  
70719  
70720  
70721  
70722  
70723  
70724  
70725  
70726  
70727  
70728  
70729  
70730  
70731  
70732  
70733  
70734  
70735  
70736  
70737  
70738  
70739  
70740  
70741  
70742  
70743  
70744  
70745  
70746  
70747  
70748  
70749  
70750  
70751  
70752  
70753  
70754  
70755  
70756  
70757  
70758  
70759  
70760  
70761  
70762  
70763  
70764  
70765  
70766  
70767  
70768  
70769  
70770  
70771  
70772  
70773  
70774  
70775  
70776  
70777  
70778  
70779  
70780  
70781  
70782  
70783  
70784  
70785  
70786  
70787  
70788  
70789  
70790  
70791  
70792  
70793  
70794  
70795  
70796  
70797  
70798  
70799  
70800  
70801  
70802  
70803  
70804  
70805  
70806  
70807  
70808  
70809  
70810  
70811  
70812  
70813  
70814  
70815  
70816  
70817  
70818  
70819  
70820  
70821  
70822  
70823  
70824  
70825  
70826  
70827  
70828  
70829  
70830  
70831  
70832  
70833  
70834  
70835  
70836  
70837  
70838  
70839  
70840  
70841  
70842  
70843  
70844  
70845  
70846  
70847  
70848  
70849  
70850  
70851  
70852  
70853  
70854  
70855  
70856  
70857  
70858  
70859  
70860  
70861  
70862  
70863  
70864  
70865  
70866  
70867  
70868  
70869  
70870  
70871  
70872  
70873  
70874  
70875  
70876  
70877  
70878  
70879  
70880  
70881  
70882  
70883  
70884  
70885  
70886  
70887  
70888  
70889  
70890  
70891  
70892  
70893  
70894  
70895  
70896  
70897  
70898  
70899  
70900  
70901  
70902  
70903  
70904  
70905  
70906  
70907  
70908  
70909  
70910  
70911  
70912  
70913  
70914  
70915  
70916  
70917  
70918  
70919  
70920  
70921  
70922  
70923  
70924  
70925  
70926  
70927  
70928  
70929  
70930  
70931  
70932  
70933  
70934  
70935  
70936  
70937  
70938  
70939  
70940  
70941  
70942  
70943  
70944  
70945  
70946  
70947  
70948  
70949  
70950  
70951  
70952  
70953  
70954  
70955  
70956  
70957  
70958  
70959  
70960  
70961  
70962  
70963  
70964  
70965  
70966  
70967  
70968  
70969  
70970  
70971  
70972  
70973  
70974  
70975  
70976  
70977  
70978  
70979  
70980  
70981  
70982  
70983  
70984  
70985  
70986  
70987  
70988  
70989  
70990  
70991  
70992  
70993  
70994  
70995  
70996  
70997  
70998  
70999  
701000  
701001  
701002  
701003  
701004  
701005  
701006  
701007  
701008  
701009  
701010  
701011  
701012  
701013  
701014  
701015  
701016  
701017  
701018  
701019  
701020  
701021  
701022  
701023  
701024  
701025  
701026  
701027  
701028  
701029  
701030  
701031  
701032  
701033  
701034  
701035  
701036  
701037  
701038  
701039  
701040  
701041  
701042  
701043  
701044  
701045  
701046  
701047  
701048  
701049  
701050  
701051  
701052  
701053  
701054  
701055  
701056  
701057  
701058  
701059  
701060  
701061  
701062  
701063  
701064  
701065  
701066  
701067  
701068  
701069  
701070  
701071  
701072  
701073  
701074  
701075  
701076  
701077  
701078  
701079  
701080  
701081  
701082  
701083  
701084  
701085  
701086  
701087  
701088  
701089  
701090  
701091  
701092  
701093  
701094  
701095  
701096  
701097  
701098  
701099  
701100  
701101  
701102  
701103  
701104  
701105  
701106  
701107  
701108  
701109  
701110  
701111  
701112  
701113  
701114  
701115  
701116  
701117  
701118  
701119  
701120  
7

## THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Electrochemical sensor, being used to measure the concentration of a constituent in a solution, in the form of a tongue of small dimensions comprising a thin elongated insulating substrate (1) supporting on either side of its median line (3) two conductive strips (4, 5) of width  $L$  and  $L'$ , whose facing edges (4a, 5a) are electrically insulated from each other by a space (6) of width  $\delta$ , widths  $L$  and  $L'$  and  $\delta$  being measured perpendicularly to the median line (3), said substrate (1) and said conductive strips (4, 5) being covered by a insulating covering film (2), in which are cut out at one end a connecting window (8), and close to the other end, at least one measurement window (11) formed of two openings (12, 13) separated by a portion (14) of said covering film (2), each opening delimiting on a portion of each conductive strip (4, 5) the useful surfaces of a measurement electrode (16) and of a reference electrode (17), characterised in that each opening (12, 13) has at any point dimensions, measured perpendicularly to the median line (3), such that the furthest edge (12b, 13b) from the edge (4a, 5a) of the portion of the strip (4, 5) forming the electrode (17, 16) which said opening (12, 13) does not uncover is situated at a distance comprised between  $L + \delta$  and  $\delta$  (respectively  $L' + \delta$  and  $\delta$ ) and the closest edge (12a, 13a) at a distance greater than  $\delta$ .
2. Electrochemical sensor according to claim 1, characterised in that it has an axial symmetry with respect to its median line (3), the conductive strips (4, 5) having thus along their entire length substantially the same width  $L = L'$ , and the useful surfaces of the electrodes (16, 17) being thus identical.
3. Electrochemical sensor according to claim 2, characterised in that each opening (12, 13) has the shape of a circular sector and that the portion (14) separating

the two openings has the shape of a strip parallel to the conductive strips (4, 5).

4. Electrochemical sensor according to claim 1, characterised in that the windows (8, 11) are made by 5 stamping the covering film (2).

5. Electrochemical sensor according to claim 1, characterised in that the measurement electrode (16) is also covered with a reactant (18) containing at least one specific enzyme of the constituent present in the solution 10 and a chemical mediator capable of transferring the electrons.

6. Electrochemical sensor according to claim 5, characterised in that the mediator is selected amongst the mono, bis or tris 2,2' - substituted bipyridine complexes 15 of ruthenium, osmium or vanadium, at least one of the bipyridine ligands being substituted by at least one electron donor group.

7. Electrochemical sensor according to claims 5 or 6, characterised in that the enzyme is glucose oxydase 20 (GOD) for effecting the glucose dosage.

8. Electrochemical sensor substantially as hereinbefore described with reference to the accompanying drawings incorporating any one or more of the novel features herein disclosed.

DATED: 15 January 1997

CARTER SMITH & BEADLE

Patent Attorneys for the Applicant:

Asulab S.A.

Fig. 1



Fig. 2



**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: \_\_\_\_\_**

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**