MPI* Physique

TD Chimie des solutions

Réaction acido-basiques

Olivier Caffier

1 Équilibre acido-basique et avancement

L'acide acétylsalicylique 1 , $C_8O_2H_7COOH$, appartient à un couple acide-base avec $pK_a = 3,5$.

- 1. Quel est le nom courant de cette molécule?
- 2. Quelle est, d'après vous, sa base conjuguée?
- 3. Le système comporte initialement C_0 d'acide acétylsalicylique en solution. Montrez que l'avancement volumique prend à l'équilibre une valeur x qui est à la racine d'un certain polynôme.
- 4. Faites une approximation raisonnable pour calculer x sans résoudre le polynôme. Application numérique : calculez le pH pour $C_0 = 1$ mol.L $^{-1}$. Discutez la qualité de l'approximation.
- 5. Calculez le taux de dissociation de l'acide et le taux de recombinaison de la base (ces taux sont définis comme des rapports de concentration).

Corrigé:

- 1. Il s'agit de l'aspirine.
- 2. Sa base conjuguée est: ACOO-
- 3. On a le tableau d'avancement suivant :

	ACOOH	+	H_2O	=	ACOO-	+	H_3O^+
EI(C)	C_0		solvant		0		0
<i>t</i> (<i>C</i>)	$C_0 - x$		solvant		\boldsymbol{x}		\boldsymbol{x}

On écrit alors le quotient réactionnel :

$$Q_r = \frac{a(\text{H}_3\text{O}^+) a(\text{ACOO}^-)}{a(\text{ACOOH}) a(\text{H}_2\text{O})}$$
$$= \frac{[\text{H}_3\text{O}^+][\text{ACOO}^-]}{C^0[\text{ACOOH}]}$$

Maintenant, deux choses:

- $Q_r(EI) = 0 < K^0$: la réaction se produit dans le sens direct;
- À un instant t quelconque : $Q_r(t) = \frac{x^2}{(C_0 x)C^0}$

Dès lors, si l'on suppose l'équilibre atteint, $Q_r(\text{EQ}) = \frac{x_{\text{eq}}^2}{(C_0 - x_{\text{eq}})C^0} = K^0$.

Avec la contrainte $0 < x < C_0$, on a le polynôme suivant :

$$x_{\text{eq}}^2 = K^0 C^0 (C_0 - x_{\text{eq}})$$

^{1.} long comme un lundi le nom

4. On a d'abord $K^0 = K_a^0 = 10^{-pK_a} = 10^{-3.5} \ll 1.^2$ Dès lors, $x_{eq} \ll C_0$, on en déduit alors que :

$$x_{\rm eq} \approx \sqrt{K^0 C^0 C_0} \approx 10^{-1.75} \,{\rm mol.L^{-1}}$$

Enfin, on a pH =
$$-\log([H_3O^+]) = -\log(x_{eq})$$
, d'où:

$$pH = 1,75$$

2 Dosage d'une solution d'ammoniac

On réalise le titrage d'une solution d'ammoniac (volume initial $V_0 = 20$ mL, concentration C_0) par de l'acide chlorhydrique (concentration $C_a = 0.5$ mol.L⁻¹). La courbe de pH résultante est donnée figure 1. Donnée : l'ammoniac est la base du couple NH₄⁺/NH₃, et

FIGURE 1 – Courbe de pH en fonction du volume V d'acide versé.

c'est une base faible.

- 1. Faites un schéma du dispositif expérimental, en identifiant en particulier les solutions titrée et titrante.
- 2. Donnez la réaction de dosage. Quelles caractéristiques doit-elle avoir? Ces caractéristiques seront supposées réalisées dans la suite.

 Faites le tableau d'avancement, en distinguant les cas avant équivalence et après
 - Faites le tableau d'avancement, en distinguant les cas avant équivalence et après équivalence.
- 3. À l'aide de la figure 1, déterminez la concentration C_0 de l'ammoniac dans la solution initiale.

^{2.} Ainsi, $1/K^0 \gg 1$ donc la réaction inverse est quasi-totale.

4. Grâce au tableau d'avancement, justifiez que la demi-équivalence permet de déterminer le pK_a de l'ammoniac. Donnez sa valeur.

Corrigé:

- 1. La solution titrée est le NH₃ et la solution titrante est le HCl.
- 2. La réaction du dosage est la suivante :

$$NH_3 + H^+ = NH_4^+$$

Elle doit respecter les conditions suivantes :

- Rapide: directement;
- **Unique** : On pourrait se méfier d'une autre réaction de H⁺ sur H₂O, mais les calculs montreraient qu'elle est négligeable devant celle qu'on étudie;
- Totale: On a

$$K^0 = \frac{[\text{NH}_4^+]}{[\text{NH}_3][\text{H}^+]} = \frac{1}{K_a^0}$$

Maintenant si on se réfère au point d'inflexion de la courbe, on a pH = pK_a qui se situe entre 8 et 10.

On a alors K_a^0 qui se situe entre 10^{-10} et 10^{-8} , donc $K^0 \gg 1$: la réaction est bien totale.

Enfin, on a le tableau suivant:

	NH ₃	+	H^+	=	$\mathrm{NH_4^+}$
EI	C_0V_0		C_aV		0
t	$C_0V_0-\xi(t)$		$C_a V - \xi(t)$		$\xi(t)$
avant équiv.	$C_0V_0-C_aV$		0		C_aV
équiv.	0		0		$C_0 V_0 = C_a V_a$
après équiv.	0		$C_a V - C_0 V_0$		C_0V_0

3. On a

$$C_0 = \frac{C_{\text{eq}V_{\text{eq}}}}{V_0}$$

et avec une lecture graphique du saut de pH, on trouve $V_{\rm eq}$ = 12 mL, d'où :

$$C_0 = \frac{C_{\text{eq}V_{\text{eq}}}}{V_0} = 0,30 \text{ mol.L}^{-1}$$

4. La demi équivalence est

$$V_{1/2} = \frac{V_{\text{eq}}}{2}$$

Le pH se lit alors à V = 6 mL:

$$pH = 9,3$$

3 Dosage d'un mélange chloré

(Centrale MP 2018) Une solution aqueuse de volume $V_0 = 20$ mL est constituée d'acide chlorhydrique à la concentration C_1 et d'acide hypochloreux HClO à la concentration C_2 . Ce dernier est un acide très faible dans l'eau.

FIGURE 2 – Courbe du dosage pH-métrique

On titre cette solution par de la soude à la concentration $C_b = 10.10^{-3} \text{ mol.L}^{-1}$, ce qui conduit à la courbe pH-métrique de la figure 2.

- 1. Déterminez C_1 et C_2 .
- 2. Déterminez le pK_a du couple faisant intervenir l'acide hypochloreux.
- 3. Soit $n(H_3O^+)$ la quantité de matière de H_3O^+ à un instant quelconque et $n_i(H_3O^+)$ sa valeur initiale, et de même pour HClO et ClO $^-$. Donnez les allures des courbes suivantes en fonction du volume V_h de soude versée :

$$\frac{n(\text{H}_3\text{O}^+)}{n_i(\text{H}_3\text{O}^+)}$$
 $\frac{n(\text{HClO})}{n_i(\text{HClO})}$ $\frac{n(\text{ClO}^-)}{n_i(\text{ClO}^-)}$

Corrigé:

1. On a, pour le premier dosage, le tableau d'avancement suivant :

Insérer tableau.

Dès lors, pour la première équivalence :

$$\xi_{\text{eq},1} = C_1 V_0 = C_b V_{\text{eq},1}$$

et le graphique nous dit que $V_{\rm eq,1}=10~{\rm mL}$, d'où

$$C_1 = \frac{C_b V_{\text{eq},1}}{V_0} = 5.10^{-3} \text{ mol.L}^{-1}$$

Pour le deuxième dosage, on arrive au tableau suivant :

	HClO	+	OH^-	=	ClO-	+	H_2O
EI	C_2V_0		$C_b(V-V_{\text{eq},1})$		0		solvant
t	$C_2V_0-\xi$		$C_b(V-V_{\text{eq},1})-\xi$		ξ		solvant

Dès lors, à la deuxième équivalence :

$$\xi_{\text{eq},2} = C_2 V_0 = C_b (V_{\text{eq},2} - V_{\text{eq},1})$$

La lecture graphique nous permet alors de dire que $V_{\rm eq,2}$ = 20 mL, d'où :

$$C_2 = \frac{C_b(V_{\text{eq},2} - V_{\text{eq},1})}{V_0} = 5.10^{-3} \text{ mol.L}^{-1}$$

2. On se réfère à la demi-équivalence du $2^{\text{ème}}$ dosage : V = 15 mL et pH = 7,5.

