MIT 18.06 Exam 2, Fall 2018 Johnson

Your name:			
Recitation:			

problem	score	
1	/33	
2	/34	
3	/33	
total	/100	

Problem 1 (33 points):

The matrix A has a nullspace N(A) spanned by

$$\left(\begin{array}{c}1\\0\\-1\end{array}\right)$$

and a left null space $N({\cal A}^T)$ spanned by

$$\left(\begin{array}{c}1\\1\\1\\1\end{array}\right), \left(\begin{array}{c}1\\1\\-1\\-1\end{array}\right).$$

- (a) What is the **shape** of the matrix A and its **rank**?
- (b) If we consider the vector

$$b = \left(\begin{array}{c} -1\\ \alpha\\ 0\\ \beta \end{array}\right),$$

for what value(s) of α and β (if any) is Ax = b solvable? Will the solution (if any) be unique?

(c) Give the orthogonal **projections** of

$$y = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

onto **two** of the four fundamental subspaces of A.

(blank page for your work if you need it)

Problem 2 (34 points):

You have a matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right).$$

- (a) Give the **ranks** of A, A^T , and A^TA , and also give **bases** for C(A), N(A), and $N(A^TA)$. (Look carefully at the columns of A—very little calculation is needed!)
- (b) Suppose we are looking for a least-square solution \hat{x} that minimizes $||b \hat{x}||$

Ax|| for $b = \begin{pmatrix} 0 \\ 2 \\ 1 \\ -1 \end{pmatrix}$. At this minimum, $p = A\hat{x}$ will be the projection

simplify the calculations.)

(blank page for your work if you need it)

Problem 3 (33 points):

Suppose that we apply Gram–Schmidt to the rows (in order from top to bottom) of a matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

in order to find three **orthonormal row vectors** q_1^T, q_2^T, q_3^T .

- (a) What is q_2 ?
- (b) Suppose that these orthonormal vectors are the **rows** of a matrix $U=\begin{pmatrix} q_1^T\\q_2^T\\q_3^T \end{pmatrix}$. Then:
 - (i) Circle any of the following that are true: $U^TU = I$ and/or $UU^T = I$?
 - (ii) Circle any of the following that are true: C(A) = C(U), N(A) = N(U), $C(A^T) = C(U^T)$, and/or $N(A^T) = N(U^T)$?
 - (iii) Which is **true**: A = BU or A = UB? Is B upper or lower triangular?

(blank page for your work if you need it)