

SÍLABO ALGORITMOS Y ESTRUCTURAS DE DATOS I

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

CICLO: II Ing. Computación y Sistemas

CURSO DE VERANO 2017

III Ing. Industrial III Ing. Electrónica

I. CÓDIGO DEL CURSO : 090053

II. CRÉDITOS : 05

III.REQUISITOS : 090032 Introducción a la Computación (Ing. Industrial)

090032 Introducción a la Computación (Ing. Electrónica) 091114 Introducción a la Programación (Ing. Computación y

Sistemas)

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

Es de naturaleza formación básica, dirigido a que el alumno desarrolle programas para computadora haciendo uso de las características básicas de la programación orientada a objetos y almacenando datos en arreglos y archivos. Los principales temas a tratar son: Clases y objetos, atributos y métodos, encapsulamiento, arreglos y archivos.

Unidades: Entorno de Desarrollo Integrado (IDE) y elaboración de métodos. Fundamentos de la Teoría Orientada a Objetos (TOO). Procesamiento de datos utilizando arreglos y archivos.

VI. FUENTES DE CONSULTA

Bibliográficas

- Ceballos Sierra, Francisco Javier (2013). Enciclopedia de Microsoft Visual C#. 4ª edición. Ed. RA-MA. México D.F.
- Dorman, Scott (2013). C# 5.0 y Visual C# 2012. Ed. Anaya Multimedia. Madrid.
- Hugon, Jérome (2014). C# 5: Desarrolle aplicaciones Windows con Visual Studio 2013. Ediciones ENI. Barcelona.
- Flores Cueto, Juan José (2014). Método de las 6'D: modelamiento-algoritmo-programación. Ed. Macro. Lima.
- Deitel, Paul; Deitel, Harvey (2012). Cómo programar en java. 9na edición. Ed. Pearson. México D.F.
- Schildt, Herbert (2012). Java 7. Ed. Anaya Multimedia. Madrid.

VI. UNIDADES DE APRENDIZAJE

UNIDAD I. ENTORNO DE DESARROLLO INTEGRADO Y ELABORACIÓN DE MÉTODOS

OBJETIVOS DE APRENDIZAJE:

- Elaborar programas haciendo uso del Entorno de Desarrollo Integrado (IDE).
- Conocer los diferentes tipos de métodos definidos por usuario.
- Diseñar y programar Interfaces Gráficas de Usuario (GUI) utilizando componentes visuales y métodos.

PRIMERA SEMANA

Primera sesión

Presentación del contenido de la asignatura. Principales características del lenguaje de programación a utilizar. Tipos de dato y operadores. Estructuras selectivas y repetitivas.

Segunda sesión

Operaciones con números y con cadenas de caracteres. Generación de números aleatorios (enteros y con parte decimal).

Laboratorio

El Entorno de Desarrollo Integrado (IDE) a utilizar. Principales controles visuales. Diseño y programación de soluciones haciendo uso del IDE.

SEGUNDA SEMANA

Primera sesión

Métodos: Definición y clasificación. Métodos definidos por usuario. Métodos que no retornan valor y no reciben parámetros.

Segunda sesión

Métodos que no retornan valor pero reciben parámetros.

Laboratorio

Diseño y programación de soluciones utilizando métodos que no retornan valor (ambos tipos).

TERCERA SEMANA

Primera sesión

Métodos que retornan valor pero no reciben parámetros.

Segunda sesión

Métodos que retornan valor y reciben parámetros. Ejercicios con diferentes tipos de dato.

Laboratorio

Diseño y programación de soluciones utilizando los cuatro tipos de métodos y con diferentes tipos de dato.

CUARTA SEMANA

Primera sesión

Desarrollo de soluciones utilizando variables globales, variables locales, todos los tipos de métodos y con diferentes tipos de dato.

Segunda sesión

Práctica Calificada Nº 01.

Laboratorio

Evaluación de Laboratorio Nº 01.

UNIDAD II. FUNDAMENTOS DE LA TEORÍA ORIENTADA A OBJETOS (TOO)

OBJETIVOS DE APRENDIZAJE:

- Conocer los conceptos de clase, objeto, instancia y atributo.
- Reconocer la importancia de la reutilización del código y el encapsulamiento de datos.
- Desarrollar programas implementando métodos de acceso.

QUINTA SEMANA

Primera sesión

Definición de Clase y objeto. Miembros de una clase. Declaración de atributos e implementación de métodos.

Segunda sesión

Atributos de clase y atributos de instancia. Métodos de clase y métodos de instancia.

Laboratorio

Desarrollo de soluciones creando objetos, accediendo a sus atributos e invocando a los métodos.

SEXTA SEMANA

Primera sesión

Encapsulamiento. Modificadores de acceso: público y privado. Métodos de acceso: setters y getters. **Segunda sesión**

Método Constructor. Implementación de clases con atributos privados y métodos públicos.

Laboratorio

Desarrollo de soluciones implementando clases que contengan un constructor, atributos privados y métodos públicos.

SÉPTIMA SEMANA

Primera sesión

Implementación de clases con miembros de instancia y miembros de clase, miembros privados y miembros públicos.

Segunda sesión

Práctica Calificada Nº 02.

Laboratorio

Evaluación de Laboratorio Nº 02.

OCTAVA SEMANA

Exámenes parciales.

UNIDAD III. PROCESAMIENTO DE DATOS UTILIZANDO ARREGLOS Y ARCHIVOS

OBJETIVOS DE APRENDIZAJE:

- Desarrollar programas que permitan procesar datos almacenados en arreglos.
- Grabar datos en un archivo de tipo texto.
- Leer datos desde un archivo de tipo texto.

NOVENA SEMANA

Primera sesión

Arreglos: Definición y clasificación. Arreglos unidimensionales: Declaración y creación. Formas de almacenamiento de datos. Visualización del contenido de un Vector.

Segunda sesión

Operaciones sobre un Vector: Búsqueda, modificación, eliminación y ordenamiento.

Laboratorio

Desarrollo de soluciones con operaciones de búsqueda, modificación, eliminación y ordenamiento de los elementos de un Vector.

DÉCIMA SEMANA

Primera sesión

Arreglos bidimensionales: Declaración y creación. Almacenamiento de datos y visualización del contenido de una Matriz. Recorrido de una Matriz.

Segunda sesión

Operaciones en una Matriz: Por filas y por columnas. Matrices cuadradas.

Laboratorio

Desarrollo de soluciones con operaciones sobre los elementos de una Matriz (por fila y/o por columna).

DECIMOPRIMERA SEMANA

Primera sesión

Archivos: Definición y clasificación. Grabación de datos en un Archivo de tipo texto. Lectura de datos desde un Archivo de tipo texto.

Segunda sesión

Práctica calificada Nº 03.

Laboratorio

Desarrollo de soluciones con operaciones sobre un Archivo de tipo texto: Grabación y lectura de datos.

DECIMOSEGUNDA SEMANA

Primera sesión

Operaciones de búsqueda con los datos grabados en un Archivo de tipo texto.

Segunda sesión

Operaciones con datos grabados en un Archivo de tipo texto: Búsqueda y modificación.

Laboratorio

Desarrollo de soluciones con operaciones sobre un Archivo de tipo texto: Búsqueda y modificación.

DECIMOTERCERA SEMANA

Primera sesión

Almacenamiento de objetos en un Vector. Visualización del contenido de un Vector de objetos.

Segunda sesión

Operaciones sobre un Vector de objetos: Búsqueda, modificación, eliminación y ordenamiento.

Laboratorio

Desarrollo de soluciones con operaciones de búsqueda, modificación, eliminación y ordenamiento de objetos almacenados en un Vector.

DECIMOCUARTA SEMANA

Primera sesión

Grabación de datos en un archivo de tipo texto, desde un Vector de objetos. Lectura de datos desde un archivo de tipo texto, hacia un Vector de objetos.

Segunda sesión

Operaciones con datos grabados en un Archivo de tipo texto: Ordenamiento y eliminación.

Laboratorio

Evaluación de Laboratorio Nº 03.

DECIMOQUINTA SEMANA

Primera sesión

Elaboración de métodos que incluyan operaciones con números, caracteres y matrices.

Segunda sesión

Elaboración de métodos que incluyan operaciones con vectores y archivos.

Laboratorio

Desarrollo de soluciones con operaciones sobre los datos grabados en un archivo de tipo texto: búsqueda, modificación, eliminación y ordenamiento.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

- a. Matemática y Ciencias Básicas 0
- b. Tópicos de Ingeniería5
- c. Educación General 0

IX.PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- Equipos: Computadora, ecran y proyector multimedia.
- Materiales: Material elaborado por los docentes, prácticas dirigidas de laboratorio y textos (ver fuentes de consultas).
- Software: Software de Programación.

XI. EVALUACIÓN

El promedio final (PF) se obtiene de la siguiente manera:

PF = PE*0.40 + PL*0.30 + EF*0.30 Donde: PE = Promedio de Evaluaciones

PL = Promedio de Laboratorio

EF = Examen Final

El promedio de evaluaciones (PE) se obtiene de la siguiente manera:

PE = P1*0.30 + P2*0.35 + P3*0.35 Donde: P1 = Práctica calificada N° 01

P2 = Práctica calificada N° 02 **P3** = Práctica calificada N° 03

El promedio de laboratorio (LC) se obtiene de la siguiente manera:

LC = X1*0.20 + X2*0.30 + X3*0.50 Donde: X1 = Evaluación de Laboratorio N° 01

X2 = Evaluación de Laboratorio N° 02

X3 = Evaluación de Laboratorio N° 03

XII. APORTE DEL CURSO AL LOGRO DE LOS RESULTADOS DEL ESTUDIANTE

El aporte del curso al logro de los resultados (Outcomes), para los estudiantes de las Escuelas Profesionales de Ingeniería Industrial e Ingeniería Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	R
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	K
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	R
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	К

El aporte del curso al logro de los Resultados del Estudiante (*Student Outcomes*) en la formación del graduado en Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

Componente	Resultados del Estudiante	
Ciencias básicas y de Computación	a. Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R
Análisis en Computación	b. Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	

Diseño en Computación		c. Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	R
Práctica de la Computación		 i. Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación. 	R
		j. Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	
		e. Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
Habilidades genéricas		d. Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
		f. Habilidad para comunicarse con efectividad con un rango de audiencias.	
		g. Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
		h. Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	2	3

b) **Sesiones por semana:** 3 sesiones.

c) **Duración**: 7 horas académicas de 45 minutos.

XIV. DOCENTE DEL CURSO

Ing. Wilbe Cerdán Chávarry

XV. FECHA

La Molina, enero de 2017.