

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboraciónParticipantesObservaciones (Cambios y justificaciones)Cancún, Qroo. 18 de Noviembre de 2009MC David Flores Granados Ing. Mónica René Larrosa MC Juan Felipe Pérez VázquezActualización del Plan de la carrera de Ingeniería Industrial.

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s) a) Laboratorio de circuitos eléctricos	No aplica
Tema(s) a) Electricidad	

Nombre de la asignatura Departamento o Licenciatura

Ingeniería eléctrica de instalaciones Ingeniería Industrial

Ciclo	Clave	Créditos	Area de formación curricular
3 - 4	II3475	6	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Materia	48	0	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir las características funcionales de los elementos que conforman una instalación eléctrica industrial para la comprensión de las necesidades básicas de las instalaciones eléctricas.

Objetivo procedimental

Bosquejar mediante diagramas, diseños de instalaciones eléctricas industriales para la implementación de circuitos electrónicos industriales simples.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad para la resolución de prácticas de ingeniería.

Unidades y temas

Unidad I. INTRODUCCIÓN

Describir los conceptos eléctricos fundamentales en las instalaciones eléctricas industriales para la comprensión de su simbología asociada en el diseño.

- 1) Conceptos y definiciones
- 2) Simbología
- 3) Tipos de diagramas: De bloques. De conexiones. Unifilar

Unidad II. CÁLCULO DE CORRIENTES DE CORTOCIRCUITO

Revisar las situaciones donde se presentan cortocircuitos en instalaciones eléctricas industriales para la creación de los mecanismos en la prevención de cortos circuitos.

- 1) Definición, tipos, causas y efectos del cortocircuito
- 2) Cortocircuito trifásico de: Un transformador. Una línea eléctrica.
- 3) Estudio del cortocircuito trifásico en una red Sin derivaciones y con derivaciones
- 4) Elementos de conexión y desconexión
- 5) Seccionadores. Interruptores. Disyuntores. Tipos comerciales

Unidad III. ESTUDIO DE PROTECCIONES ELÉCTRICAS

Usar los principales componentes de instalaciones eléctricas industriales para su protección.

1) Perturbaciones de un sistema eléctrico
2) Elementos de un dispositivo de protección (relés de protección)
3) Descripción y funcionamiento de los diferentes tipos de relés.
a) Relé Fusible
b) Relé térmico
c) Relé electromagnético
d) Relé de inducción
e) Relé diferencial (de intensidad)
f) Relé electrónico
4) Protección:
a) Contra sobrecargas y cortocircuitos
b) De generadores eléctricos
c) De transformadores
d) De motores eléctricos contra contactos directos de personas
e) Sincronizadores

Unidad IV. INSTALACIONES INTERIORES

Resolver circuitos de instalaciones eléctricas interiores para el cálculo de potencia y carga total.

1) Introducción

2) Cálculo de la potencia total necesaria en una instalación eléctrica y centros de carga
3) Carga total correspondiente a un edificio de viviendas
4) Carga total correspondiente a un edificio comercial, de oficinas o de una o varias industrias
Unidad V. INSTALACIONES ELÉCTRICAS INDUSTRIALES
Aplicar los principios de cálculo de potencia eléctrica para el diseño e implementación de instalaciones eléctricas industriales.
1) Instalaciones eléctricas en baja y alta tensión
a) Balances de carga
b) Subestación eléctrica
c) Sistemas de tierras
d) Factor de potencia
2) Corrientes de cortocircuito
3) Seguridad
a) Protección frente a contactos directos e indirectos
b) Protección contra sobre-intensidades y sobretensiones.
4) Facturación de la energía eléctrica
5) Normas

Docente Estudiante

Lecturas dirigidas y comentadas Visitas a empresas industriales para indagar su

Ejercicios resueltos en pequeños equipos funcionamiento

Ilustraciones: diagramas funcionales Preparación de exposiciones

Ideas previas Lectura

Proyecto de instalaciones eléctricas Resúmenes

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Prácticas	30
Proyecto	30
Ejecicios	10
Total	100

Fuentes de referencia básica

Bibliográficas

Fraile Mora. (1993). Introducción a las instalaciones eléctricas. Colegio de Ingenieros de Caminos y Puertos.

García Pascual, Antoni. (2005). Instalaciones eléctricas. Marcombo. ISBN 8426713777

Lladonosa Giró, Vicent. (2004). Instalaciones eléctricas de interior. Marcombo. ISBN 8426713491

Montané, Paulino. (1993). Protección en las instalaciones eléctricas. Ed. Marcombo.

Roeper, Richard. (1985). Corrientes de cortocircuito en redes trifásicas. Ed. Marcombo.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Toledano. (1993). Tarifas eléctricas. Mc Graw Hill.

Seip, G.G. (1989). Instalaciones Eléctricas (2ª ed.). Siemens. 3 Volúmenes.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en ingeniería industrial o afines. Preferentemente nivel maestría.

Docentes

Tener experiencia docente de tres años mínimo a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia en puestos que aplican lo eléctrico en instalaciones en el sector de lo industrial.