题目 1. 证明 $(C(M), \rho)$ 为完备的度量空间. $(\rho(f, g) = \max_{x \in M} |f(x) - g(x)|$,列紧集 M 上的度量记为 d)

证明. 首先证明 $(C(M), \rho)$ 为度量空间,由于 ρ 满足度量的基本性质,只需证明 ρ 的定义有意义,也就是证明 $\forall f \in C(M)$,f(M) 能取到最大值和最小值,下证 f(M) 为紧集.

 $\forall f \in C(M)$,取点列 $\{y_n\} \subset f(M)$,则 $\exists x_i \in M$ 使得 $f(x_i) = y_i$,则 $\{x_n\} \subset M$,由于 M 为紧集,则存在收敛子列 $x_{n_k} \to x_0 \in M$,由 f 的连续性可知, $f(x_{n_k}) \to f(x_0) \in f(M)$. 令 $y_0 = f(x_0)$,则 $y_{n_k} \to y_0$,则 f(M) 为 $\mathbb R$ 中的紧集,蕴含 f(M) 为有界闭集的数集,则 f(M) 能取到最大值和最小值,故 $(C(M), \rho)$ 为度量空间.

其次证明完备性,设 $\{\varphi_n\}$ 为 C(M) 中的 Cauchy 列,则 $\rho(\varphi_n,\varphi_m) = \max_{x \in M} |\varphi_n(x) - \varphi_m(x)| \to 0$, $(n,m \to \infty)$,任取 $x_0 \in M$,令 $y_n = \varphi_n(x_0)$,则 $|y_n - y_m| \leqslant \max_{x \in M} |\varphi_n(x) - \varphi_m(x)| \to 0$, $(n,m \to \infty)$,所以 $\{y_n\}$ 为 $\mathbb R$ 中的 Cauchy 列,由于 $\mathbb R$ 是完备的,则 $y_n \to y_0 \in \mathbb R$,令 $\varphi(x_0) = y_0 = \lim_{n \to \infty} \varphi_n(x_0)$,由于 x_0 的任意性, $\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$.

下证 $\varphi(x) \in C(M)$, $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n \geqslant N$ 有 $|\varphi(x) - \varphi_n(x)| < \frac{\varepsilon}{3}$, 由 φ_n 的连续性, $\forall x_0 \in M$, $\exists \delta > 0$ 使得 $\forall d(x, x_0) < \delta$, 有 $|\varphi_n(x) - \varphi_n(x_0)| < \frac{\varepsilon}{3}$, 则

$$|\varphi(x) - \varphi(x_0)| \le |\varphi(x) - \varphi_n(x)| + |\varphi_n(x) - \varphi_n(x_0)| + |\varphi_n(x_0) - \varphi(x_0)| < \varepsilon$$

所以 $\varphi(x) \in C(M)$, 故 $(C(M), \rho)$ 为完备的度量空间.

题目 2. 在度量空间 $l^p(1 \le p < \infty)$ 中, $A \subset l^p$ 是列紧集, 当且仅当, A 有界, 且 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\xi = \{x_n\} \subset A$.

证明. 充分性,A 为列紧集,则 A 为完全有界集,故 A 有界,且存在 ε -网 $\{\xi_1,\cdots,\xi_{N_\varepsilon}\}$ 使得 $A\subset\bigcup_{i=1}^{N_\varepsilon}B(\xi_i,\varepsilon)$,则 $\forall \varepsilon>0$, $\exists N_i>0$,使得

$$\sum_{j \ge N_i} |x_j^{(i)}|^p < \varepsilon, \quad (1 \le i \le N_\varepsilon, \xi_i = \{x_n^{(i)}\})$$

取 $N = \max_{1 \leqslant i \leqslant N_{\varepsilon}} N_i$,则 $\sum_{j \geqslant N} |x_j^{(i)}|^p < \varepsilon$, $(\xi_i = \{x_n^{(i)}\})$. $\forall \xi \in l^p$,令 $\xi = \{x_n\}$,则 $\exists 1 \leqslant i_0 \leqslant N_{\varepsilon}$ 使得 $\xi \in B(\xi_{i_0}, \varepsilon)$ 则

$$\sum_{i=N}^{\infty} |x_i|^p \leqslant \sum_{i=N}^{\infty} |x_i - x_i^{(i_0)}|^p + \sum_{i=N}^{\infty} |x_i^{(i_0)}|^p < \varepsilon^p + \varepsilon$$

必要性,先证明 l^p 是完备的,令 $\{\xi_n\}$ 为 l^p 中的 Cauchy 列,即 $\xi_i = \{x_n^{(i)}$,则 $\rho(\xi_n, \xi_m) = \left(\sum_{i=1}^{\infty} |x_i^{(n)} + x_i^{(m)}|^p\right)^{\frac{1}{p}} \to 0$,则 $|x_i^{(n)} - x_i^{(m)}| \to 0$, $(i \geqslant 1, \ n, m \to \infty)$. 由于 $\mathbb R$ 是完备的,则 $\exists x_i \in \mathbb R$ 使得 $\lim_{m \to \infty} x_i^{(m)} = x_i$.

令 $\xi = \{x_1, x_2, \cdots\}$,由于 $\{x_n^{(m)}\} \subset l^p$,则 $\forall \varepsilon > 0$, $\exists N_m > 0$,使得 $\sum_{i > N} |x_i^{(m)}|^p < \varepsilon$,于是有

$$\sum_{i\geqslant N_m}|x_i|^p\leqslant \sum_{i\geqslant N_m}|x_i-x_i^{(m)}|^p+\sum_{i\geqslant N_m}|x_i^{(m)}|^p\to 0,\quad (m\to\infty)$$

所以 $\xi \in l^p$. $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n \ge N$, 有 $|x_i^{(n)} - x_i| < \frac{\varepsilon^p}{2^{\frac{1}{n}}}$,则

$$\rho(\xi, \xi_n) = \left(\sum_{i=1}^{\infty} |x_i - x_i^{(n)}|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{\infty} \frac{\varepsilon^p}{2^i}\right)^{\frac{1}{p}} = \varepsilon.$$

所以 $\lim_{n\to\infty} \xi_n = \xi$, 故 l^p 是完备的.

下面证明 A 是完全有界集, $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\sum_{i \in N} |x_i|^p < \varepsilon$, $(\forall \{x_n\} \subset A)$,记 S = $\{(x_1,x_2,\cdots,x_N):\{x_n\}\subset A\}\subset \mathbb{R}^n$,由于 A 有界,则 S 有界,由于 \mathbb{R}^N 中有界点列必有收敛子 列,则 S 为列紧集,蕴含 S 为完全有界集,存在 ε -网, $\{(x_1^{(1)},\cdots,x_N^{(1)}),\cdots,(x_1^{(N_\varepsilon)},\cdots,x_N^{(N_\varepsilon)})\}$, 令 $\{x_n^{(i)}\}$ 为 ξ_i 在前 N 项的截断. 下证 $\{\xi_1, \cdots, \xi_{N_\varepsilon}\}$ 构成 A 的 ε' -网.

 $\forall \xi \in A$, 令 $\xi = \{x_n\}$, 由于 $(x_1, \dots, x_N) \in S$, 则 $\exists i_0 \in [1, N_{\varepsilon}]$, 使得 $\left(\sum_{i=1}^{N} |x_i - x_i^{(i_0)}|^p\right)^p < \varepsilon$, $\Leftrightarrow \varepsilon' = (\varphi^p + 2\varepsilon)^{\frac{1}{p}}$,所以有

$$\rho(\xi, \xi_{i_0}) = \left(\sum_{i=1}^{\infty} |x_i - x_i^{(i_0)}|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{N} |x_i - x_i^{(i_0)}|^p + \sum_{i=N}^{\infty} |x_i|^p + \sum_{i=N}^{\infty} |x_i^{(i_0)}|^p\right)^{\frac{1}{p}} < (\varepsilon^p + 2\varepsilon)^{\frac{1}{p}} = \varepsilon'.$$

故 A 为列紧集.

题目 3. 令 $W_0^{1,2}(0,1)$ 是 $C_0^1(0,1)$ 在 $\rho(f,g) = \left(\int_0^1 (|f-g|^2 + |f'-g'|^2) \, \mathrm{d}x\right)^{\frac{1}{2}}$ 下的完备化空间. 证明: $S = \{u \in C_0^1(0,1), \rho(u,0) < M < \infty\}$ 是 C[0,1] 中的列紧集.

题目 4. (1.2.3)设 F 是只有有限项不为 0 的实数列全体,在 F 上引进距离 $\rho(\xi,\eta)=\sum |x_n-y|$ y_n |, 其中 $\xi = \{x_n\} \in F$, $\eta = \{y_n\} \in F$, 求证: (F, ρ) 不完备,并指出它的完备化空间.

证明. \diamondsuit $\xi_1 = (1,0,0,\cdots), \xi_2 = (1,\frac{1}{2},0,\cdots),\cdots, \xi_n = (1,\frac{1}{2},\cdots,\frac{1}{n},0,\cdots),$ 于是 $\{x_n\} \subset F$,且 $\forall n, m > 0$,不妨令 m > n,有 $\rho(\xi_n, \xi_m) = \frac{1}{n+1} \to 0$, $(n, m \to \infty)$,所以 $\{\xi_n\}$ 为 Cauchy 列, 但是 $\lim_{n\to\infty} \xi_n \notin F$,所以 $\{\xi_n\}$ 不收敛,则 F 不完备. 下证 F 的完备化空间为 $G = \{\{x_n\} : \lim_{n\to\infty} |x_n| = 0\}$.

 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n \geqslant N$ 有 $|x_n| < \varepsilon$, 令 $\xi = \{x_1, x_2, \cdots, x_N, 0, \cdots\} \in F$, 则 $\rho(\xi,\eta) = \sup_{n>N} |x_n| < \varepsilon, \text{ 所以 } F \text{ 在 } G \text{ 中稠密}.$

任取 Cauchy 列 $\{\eta_n\}\subset G$,令 $\eta_i=\{y_n^{(i)}\}$,则 $\rho(\eta_n,\eta_m)=0,\;(n,m\to\infty).\;\forall \varepsilon>0$, $\exists N>0$ 使得 $\forall n,m>N$ 有 $\rho(\eta_n,\eta_m)<\varepsilon$,则 $\forall i\geqslant 1$ 有 $|x_i^{(n)}-x_i^{(m)}|<\varepsilon$,有 $\mathbb R$ 的完备性可知 $\exists x_i\in\mathbb R$ 使得 $\lim_{n\to\infty} x_i^{(n)} = x_i$,令 $\eta = \{x_1, x_2, \cdots\}$,存在充分大的 m 使得 $|x_i^{(m)} - x_i| < \varepsilon$,由于 $\eta_m \in G$, 则 $\exists N_m > 0$ 使得 $\forall i \geq N_m$ 有 $|x_i^{(m)}| < \varepsilon$. 于是 $\forall i \geq N_m$ 有 $|x_i| \leq |x_i - x_i^{(m)}| + |x_i^{(m)}| < 2\varepsilon$,则 $\eta \in G$,且 $\lim_{n \to \infty} \eta_n = \eta$,故 G 为完备空间.

故 F 在恒等变换下同构于完备空间 G 中的稠密子集,所以 G 为 F 的完备化空间.

题目 5. (1.2.5)在完备的度量空间 (X, ρ) 中给定点列 $\{x_n\}$,若 $\forall \varepsilon > 0$,存在 Cauchy 列 $\{y_n\}$,使得 $\rho(x_n, y_n) < \varepsilon$, $(n \in \mathbb{N})$,求证: $\{x_n\}$ 收敛.

证明. $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n, m \ge N$ 有 $\rho(y_n, y_m) \le \varepsilon$,由题意可知

$$\rho(x_n, x_m) \leqslant \rho(x_n, y_n) + \rho(y_n, y_m) + \rho(y_m, x_m) < 3\varepsilon,$$

则 $\{x_n\}$ 为 Cauchy 列,由 X 的完备性可知 $\{x_n\}$ 收敛.

题目 6. (1.3.1)在完备的度量空间 (X, ρ) 中求证:子集 A 列紧的充要条件是对 $\forall \varepsilon > 0$,存在 A 的列紧的 ε -网.

证明. 充分性, $\forall \varepsilon > 0$,存在有限 ε -网 $\{x_1, \dots, x_N\}$,在 \mathbb{R} 中有界闭集即为列紧集,则 $\{x_1, \dots, x_N\}$ 为列紧的 ε -网.

必要性, $\forall \varepsilon>0$,令 V 为 A 的列紧的 $\frac{\varepsilon}{2}$ -网,则 $A\subset\bigcup_{y\in V}B(y,\frac{\varepsilon}{2})$,由于 V 是列紧的,则 V

是完全有界集,则存在有限的 $\frac{\varepsilon}{2}$ -网 $\{y_1,\cdots,y_N\}$ 使得 $V\subset\bigcup_{i=1}^N B(y_i,\frac{\varepsilon}{2})$,则 $\forall a\in A$, $\exists y\in V$ 使得 $\rho(a,y)<\frac{\varepsilon}{2}$, $\exists 1\leqslant i_0\leqslant N$ 使得 $\rho(y,y_{i_0})<\frac{\varepsilon}{2}$,则 $\rho(a,y_{i_0})\leqslant\rho(a,y)+\rho(y,y_{i_0})<\varepsilon$,由 a 的任意性可知 $A\subset\bigcup_{i=1}^N B(y_i,\varepsilon)$,则 $\{y_1,\cdots,y_N\}$ 为 A 的有限 ε -网,于是 A 为完全有界集,又由于 X 是完备的,故 A 为列紧集.

题目 7. (1.3.2)在度量空间 (X, ρ) 中求证:紧集上的连续函数必是有界的,并且达到它的上、下确界.

证明. (与题目 1 证明完全相同)设 $M \subset X$ 为紧集, $\forall f \in C(M)$,取点列 $\{y_n\} \subset f(M)$,则 $\exists x_i \in M$ 使得 $f(x_i) = y_i$,则 $\{x_n\} \subset M$,由于 M 为紧集,则存在收敛子列 $x_{n_k} \to x_0 \in M$,由 f 的连续性可知, $f(x_{n_k}) \to f(x_0) \in f(M)$. 令 $y_0 = f(x_0)$,则 $y_{n_k} \to y_0$,所以 f(M) 为 $\mathbb R$ 中的 紧集,蕴含 f(M) 为有界闭集的数集,则 f(M) 能达到它的上、下确界.

题目 8. (1.3.4)设 (X, ρ) 为度量空间, F_1, F_2 为它的两个紧子集,求证: $\exists x_i \in F_i (i = 1, 2)$,使 得 $\rho(F_1, F_2) = \rho(x_1, x_2)$,其中

$$\rho(F_1, F_2) := \inf \{ \rho(x, y) : x \in F_1, y \in F_2 \}.$$

证明. 令 $\rho(F_1, F_2) = A$,则存在 $\{(x_n, y_n)\}$ 使得 $\rho(x_n, y_n) \to A$,由于 F_1, F_2 为紧集,则 F_1, F_2 为自列紧集,则存在子列 $x_{n_k} \to x_0 \in F_1, y_{n_k} \to y_0 \in F_2$,则

$$A \leq \rho(x_0, y_0) \leq \rho(x_0, x_{n_k}) + \rho(x_{n_k}, y_{n_k}) + \rho(y_{n_k}, y_0) \to A, \quad (k \to \infty)$$

则
$$\rho(x_0, y_0) = A$$
.

题目 9. (1.3.6) $E = \{\sin nt\}_{n=1}^{\infty}$, 求证: $E \in C[0,\pi]$ 中不是列紧的.

证明. 只需证明 E 在 $C[0,\pi]$ 中不是等度连续的. 令 $\varepsilon = \frac{1}{2}$, $\delta = \frac{2}{n}$, 取 $t_1 = 0, t_2 = \frac{\pi}{2n}$, 则 $\forall n > 0$, 有 $|t_1 - t_2| = \frac{\pi}{2n} < \frac{2}{n} = \delta$, 且 $|\sin nt_2 - \sin nt_1| = 1 > \varepsilon$, 所以 E 在 C[0,1] 中不是等度连续,则 E 在 $C[0,\pi]$ 中不是列紧集.

题目 10. (1.3.7) $S = \{\xi = \{x_n\} : x_i \in \mathbb{C}, i \ge 1\}$,则 S 在度量

$$\rho(\xi,\eta) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}, \quad (\xi = \{x_n\}, \eta = \{y_n\})$$

下是完备的. 设 $A \subset S$,则 A 是列紧的充要条件为: $\forall n \in \mathbb{N}, \exists C_n > 0$,使得对于 $\forall \xi = \{x_n\} \in A$ 有 $|x_n| \leq C_n$.

证明. 充分性,反设, $\exists n_0 \in \mathbb{N}$ 使得 $\forall m > 0$, $\exists \xi_m = \{x_n^{(m)}\} \in A$ 有 $|x_{n_0}^{(m)}| = m$,则在点集 $E = \{\xi_n\}$ 中, $\forall n, m \in \mathbb{N}, n \neq m$,有

$$\rho(\xi_n, \xi_m) \geqslant \frac{1}{2^{n_0}} \frac{1}{\frac{1}{|m-n|} + 1} \geqslant \frac{1}{2^{n_0}} \frac{1}{2} = \frac{1}{2^{n_0+1}},$$

则点集 E 中无收敛子列,与 A 是列紧集矛盾,故原命题成立.

必要性,由于 (S, ρ) 是完备的,只需证明 A 是完全有界集. $\forall N > 0$,令 $E = \{(x_1, \dots, x_N) : \xi = \{x_n\} \in A\} \in \mathbb{R}^N$,由于 $\forall n \in \mathbb{N}$, $\exists C_n > 0$ 使得 $\forall \xi = \{x_n\} \in A$ 有 $|x_n| \leqslant C_n$,则

$$E \subset [-C_1, C_1] \times [-C_2, C_2] \times \cdots \times [-C_N, C_N],$$

于是 E 为 \mathbb{R}^N 中的有界闭集,则 E 为紧集, $\forall \varepsilon > 0$,存在 ε -网 $\{(x_1^{(1)}, \cdots, x_N^{(1)}), \cdots, (x_1^{(N_\varepsilon)}, \cdots, x_N^{(N_\varepsilon)})\}$,则 $\exists \xi^{(i)} \in A$ 使得 $(x_1^{(i)}, \cdots, x_N^{(i)})$ 为 $\xi^{(i)}$ 的前 N 项截断.

 $\forall \xi \in S$,令 $\xi = \{x_n\}$,则 $(x_1, \dots, x_N) \in E$,则 $\exists 1 \leqslant i_0 \leqslant N_{\varepsilon}$,使得 $\left(\sum_{i=1}^{N} (x_i - x_i^{(i_0)})\right)^{\frac{1}{2}} < \varepsilon$,

$$\rho(\xi, \xi_{i_0}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{1}{\frac{1}{|x_k - x_k^{(i_0)}|} + 1}$$

$$= \sum_{k=1}^{N} \frac{1}{2^k} \frac{1}{\frac{1}{|x_k - x_k^{(i_0)}|} + 1} + \sum_{k=N+1}^{\infty} \frac{1}{2^k} \frac{1}{\frac{1}{|x_k - x_k^{(i_0)}|} + 1}$$

$$\leq \sum_{k=1}^{N} \frac{\varepsilon}{2^k} + \sum_{k=N+1}^{\infty} \frac{1}{2^k} = \frac{2^N - 1}{2^N} \varepsilon + \frac{1}{2^N} \to \varepsilon \quad (N \to \infty)$$

则 E 为 A 的 ε -网,则 A 为完全有界集,故 A 为列紧集.

则

题目 11. (1.3.9) (M,ρ) 为紧度量空间, $E\subset C(M)$,E中函数一致有界,且满足下列 Hölder 条件

$$|x(t_1) - x(t_2)| \le C\rho(t_1, t_2)^{\alpha}, \quad (\forall x \in E, \forall t_1, t_2 \in M)$$

其中 $0 < \alpha \le 1$, C > 0. 求证: $E \times C(M)$ 中是列紧集.

证明. 只需证 E 等度连续的, $\forall \varepsilon > 0$,取 $\delta < \left(\frac{\varepsilon}{C}\right)^{\frac{1}{\alpha}}$,使得 $\forall \rho(t_1,t_2) < \delta$,有

$$|x(t_1) - x(t_2)| \leqslant C\delta^{\alpha} < \varepsilon,$$

所以 E 是等度连续的, 所以 E 在 C(M) 中是列紧集.