HEVC 和 H.264 视频压缩实验报告

胡洪宇 517021910310

2019年12月1日

1 实验一: HEVC 视频编码与解码

1.1 实验内容

参考代码 HM16.12 或以后版本。选择至少两个测试序列,具有不同空间分辨率、不同运动和纹理特性,对每个测试序列,分别设置两组不同的编码参数,进行编码和解码,给出相应的参数配置,给出若干关键帧的原始图像、以及相应的解码重建图像,给出每帧图像的PSNR 值。

1.2 实验原理

HEVC 是 High Efficiency Video Coding 的缩写,是一种新的视频压缩标准,用来以替代 H.264/AVC 编码标准。

EVC 使用了其他标准广泛应用的混合编码方法,即采用帧内、帧间预测和二维变换编码。HEVC 编码器首先将第一帧或随机存取点的某一 I 帧分割成多个块区域。当像素块仅依据当前帧的数据进行编码时,编码称作帧内编码。对于其他帧,使用了参考帧信息的编码方法称为帧间编码。预测运算和环路滤波结束后,重建图像储存于解码缓存中,可作为其他帧的参考帧。

为了应对不同应用场合,HEVC 设立了 GOP 的 3 种编码结构,即帧内编码、低延时编码和随机访问编码。在帧内编码结构中,每一帧图像都是按帧内方式进行空间域预测编码,不使用时间参考帧。在低时延 (Low Delay)编码结构中,只有第一帧图像按照帧内方式进行编码,并成为 IDR 帧,随后的各帧都作为一般的 P 帧和 B 帧进行编码。

1.3 实验操作与分析

参考代码版本: HM-16.18; 视频播放器: YUV Player; 实验环境: Visual Studio2019; 码流分析: Elecard HEVC Analyzer。

其中参考的两段视频为: "foreman-short-cif.yuv"每一帧大小为 352x288,内容为一个带安全帽的男人; CREW-352x288-15-orig-01.yuv"每一帧的大小为 352x288,内容为一段宇航员的视频。

1.3.1 序列一的第一种参数设定

对于第一个序列,使用 encoder-intra-main.cfg 作为编码参数设置文件,部分参数如下,该配置是一个全 I 帧的结构。

```
#====== Coding Structure =========

IntraPeriod : 1  # Period of I-Frame ( -1 = only first)

DecodingRefreshType : 1  # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery

Point SEI

GOPSize : 1  # GOP Size (number of B slice = GOPSize-1)

ReWriteParamSetsFlag : 1  # Write parameter sets with every IRAP

# Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal_id

#ref_pics_active #ref_pics reference pictures
```

图 1: configuration1

同时,注意量化参数中 QP 参数设为 28. 如果设为 51,虽然能够节省码流,但是压缩太多,会导致视频质量很差。

视频压缩过程如下:

```
Y-PSNR
38. 0938
                                                        U-PSNR
41. 4026
                                                                     V-PSNR
44. 1516
                             Bitrate
1483.6640
                                                                                 YUV-PSNR
39. 1363
         Total Frames
                             Bitrate
1483.6640
                                            Y-PSNR
38. 0938
                                                                                 YUV-PSNR
39. 1363
         Total Frames
                                                                     V-PSNR
                                                          41.4026
                                                                      44. 1516
         Total Frames
                                            Y-PSNR
                                                         U-PSNR
                                                                     V-PSNR
                                                                                 YUV-PSNR
                                                                        -nan(ind)
                                             -nan(ind)
                                                          -nan(ind)
        Total Frames
                                            Y-PSNR
                                                        U-PSNR
                                                                     V-PSNR
                                                                                 YUV-PSNR
                                                          -nan(ind)
                                            -nan(ind)
                                                                       -nan(ind)
RVM: 0.000
Sytes written to file: 185458 (1483.664 kbps)
                     126.431 sec.
Total Time:
```

图 2: 序列一参数的一过程

整个编码过程一共花费 126.431s,一共压缩了 30 帧,其信噪比(PSNR)值为 39.1363。通过查看资料,当 PSNR 值为 40 以上时,认为视频(图像)是高质量的,PSNR 在 30 至

40 间时是可以接受的。由此可见,从 PSNR 值反映出来的结果证明压缩过程是很成功的。

图 3: 第 1 帧 (I) 帧对比

图 4: 第 15 帧 (I) 帧对比

图 5: 第 30 帧 (I) 帧对比

由上述三帧关键帧的截取,对比原视频和编码解码之后的结果,可以发现:每一帧的图像和原始图像对比起来,总体质量相当,但是经过压缩之后还是有部分细节的损失,显得图片有些平滑和模糊。但是总体的效果还是算很好的。

虽然此时清晰度略有下降,但是可以看到,原视频大小为 4454KB,经过编码之后的文件仅为 182KB,整体压缩比为 24. 所以说明此时的压缩是很成功的。

图 6: 文件大小对比

1.3.2 序列一的第二种参数设定

此时采取另一种参数设置方式 encoder-lowdelay-P-main,这是一个第一帧为 I 帧、其余均为 P 帧编码方式。

```
#====== Coding Structure =========
IntraPeriod : -1  # Period of I-Frame ( -1 = only first)
DecodingRefreshType : 0  # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery
Point SEI
GOPSize : 4  # GOP Size (number of B slice = GOPSize-1)
ReWriteParamSetsFlag : 1  # Write parameter sets with every IRAP
```

图 7: configuration2

同时量化参数中 QP 参数采取默认的 32. 整个视频的压缩过程如下:

图 8: 序列一参数二的过程

整个过程花费时间 304.793s,一共压缩了 30 帧。由此可以看到,整体而言只有一帧为 I 帧,其他都为 P 帧。整体的 PSNR 值为 35.7664. 该信噪比的结果也是可以接受的。关键 帧截取的效果如下所示:

图 9: 第 1 帧 (I) 帧对比

图 10: 第 15 帧 (P) 帧对比

图 11: 第 30 帧 (P) 帧对比

编码后的压缩文件对比如下图所示:

rec.yuv

2019/11/30 14:28 2019/11/30 14:28 YUV 文件 BIN 文件 4,455 KB 17 KB

图 12: 文件大小对比

由此可以看见,此时的编码方式压缩比更高,更加节约空间。此时的压缩比可以达到 200 倍以上。

1.3.3 序列二的第一种参数设定

对第二个序列也采取相似的操作,第一种参数设定先只压缩 I 帧,采用 encoder-intramain.cfg 进行编码压缩。具体配置和序列一的第一种参数设定相同。具体的运行结果如下:

SUMMARY Total		Bitrate 1403.7600			
		Bitrate 1403.7600			
			-nan(ind)	-nan(ind	YUV-PSNR d) -nan(ind)
B Slices Total		Bitrate		U-PSNR	YUV-PSNR d) -nan(ind)
RVM: 0.000 Bytes written Total Time:	to file		760 kbps)		

图 13: 序列二参数一的过程

整个过程花费了 126.431s,一共压缩了 30 帧。整体的 PSNR 值为 39.1363。该信噪比的结果可以接受。关键帧截取的效果如下所示:

图 14: 第 1 帧 (I) 帧对比

图 15: 第 15 帧 (I) 帧对比

图 16: 第 30 帧 (I) 帧对比

此时的压缩效果和 PSNR 值都在可接受范围内。整体压缩之后的两个文件对比,压缩 比仍然在 25 左右。

2019/11/30 14:57 2019/11/30 14:57 YUV 文件 BIN 文件 4,455 KB 172 KB

图 17: 文件大小对比

1.3.4 序列二的第二种参数设定

对于第二种参数选择,仍然选择 encoder-lowdelay-P-main,这是一个第一帧为 I 帧、其余均为 P 帧编码方式。但是将压缩的参数调到了 28.

```
SUMMARY
          Total Frames | 30 a
                                                               U-PSNR
41.8028
                                                                             V-PSNR
40. 3933
                                                                                          YUV-PSNR
37. 5997
                                 Bitrate
376.2640
                                                  Y-PSNR
36. 7876
 Slices———Total Frames
                                                  Y-PSNR
40. 1911
                                                               U-PSNR
43. 9764
                                                                             V-PSNR
43. 3010
                                                                                          YUV-PSNR
41. 0645
                                 Bitrate
1261.4400
 Bitrate
345.7407
                                                               U-PSNR
41.7279
                                                                             V-PSNR
40. 2930
                                                                                          YUV-PSNR
37. 5181
                                                  Y-PSNR
                                                   36.6702
B Slices-----
Total Frames |
0 b
                                                 Y-PSNR U-PSNR V-PSNR YUV-PSNR -nan(ind) -nan(ind) -nan(ind) -nan(ind)
                                 Bitrate
                                   -nan(ind)
Bytes written to file: 47033 (376.264 kbps)
                       456.247 sec.
```

图 18: 序列二参数二的过程

整个过程花费了 456.247s, 压缩编码了 30 帧图像。其 PSNR 值为 37.5997. 该信噪比的结果可以接受。关键帧的截取效果如下。

图 19: 第 1 帧 (I) 帧对比

图 20: 第 15 帧 (P) 帧对比

图 21: 第 30 帧 (P) 帧对比

此时的压缩效果和 PSNR 值都在可接受范围内。整体压缩之后的两个文件对比,压缩 比只有 10 左右。

rec.yuv	2019/11/30 16:03	YUV 文件	4,455 KB
	2019/11/30 16:03	BIN 文件	46 KB

图 22: 文件大小对比

1.4 实验对比的分析

序列	参数选择	分辨率	编码帧数	编码前文件大小	编码后文件的大小	用时	PSNR 值
1	1	352x288	30	4455KB	182KB	126.431796s	$39.1363\mathrm{dB}$
1	2	352x288	30	4455KB	17KB	304.793s	$35.7664\mathrm{dB}$
2	1	352x288	30	4455KB	172KB	126.431s	$39.1363 \mathrm{dB}$
2	2	352x288	30	4455KB	46KB	456.247s	37.5997 dB

表 1: 不同编码参数对压缩结果的影响

除此之外,考虑分析上述两个序列的两种参数设定的细节,还可以发现如下规律:

1、对比序列一的参数二和序列二的参数二。对于相同的压缩形式(I 帧和 P 帧的设定方式),量化参数中的 QP 设定的越低,压缩解码的效果越好,但是压缩比越低,压缩用时越长。这一点可以从。由此,视频的清晰度和压缩比是一对折衷的指标,在实际运用中还要根据实际情况来考虑。为此特意验证,取序列 的参数 ,QP 值分别取 1 和 51,可以得到如下结果:

图 23: 不同 QP 值的对比

其中 QP=1 时,用时 600.451s, PSNR 达到了 60.212dB,压缩比为 3; QP=51 时,用时 70.124s, PSNR 仅为 26dB,压缩比为 2000。

2、对比第二个序列的两种不同的压缩方式,可以发现,第二种方式——这是一个第一帧为 I 帧、其余均为 P 帧编码方式比第一种方式——全为 I 帧的方式更花时间。

2 实验二: H.264 和 HEVC 视频编解码对比

2.1 实验内容

选择同一个测试序列,采用相同编码参数,分别进行 H.264 和 HEVC 压缩编码和解码; 对比分析两个不同编解码器的编码性能,给出相应的参数配置,给出若干关键帧的原始图 像、以及相应的解码重建图像,给出每帧图像的 PSNR 值。

2.2 实验原理

H.264,同时也是 MPEG-4 第十部分,是由 ITU-T 视频编码专家组(VCEG)和 ISO/IEC 动态图像专家组(MPEG)联合组成的联合视频组(JVT, Joint Video Team)提出的高度压缩数字视频编解码器标准。

2.3 实验操作与分析

仍然采用下列序列: "foreman-short-cif.yuv"每一帧大小为 352x288, 内容为一个带安全帽的男人; CREW-352x288-15-orig-01.yuv"每一帧的大小为 352x288, 内容为一段宇航员的视频。

2.3.1 参数———全 I 帧编码参数的对比分析

用 foreman-short-cif.yuv 序列进行 H.264 的编解码,编码 30 帧,其编码过程如下:

0000 (NVB) 0000 (IDR)	176						Frm/Fld	I D
0000 (IDR)	00000 0 00							
	62328 0 28	37.947	41.131	44. 158	1009	0	FRM	396
0001(I)	62344 0 28	37.960	41.185	44.332	1062	0	FRM	396
0002(I)	62320 0 28	37. 954	41.250	44. 164	1024	0	FRM	396
0003(I)	63120 0 28	37.963	41.272	44. 363	1009	0	FRM	396
0004(I)	63240 0 28	37.910	41.300	44.312	999	0	FRM	396
0005(I)	63808 0 28	37.873	41.254	44. 397	1078	0	FRM	396
0006(I)	64400 0 28	37.872	41. 223	44. 192	1075	0	FRM	396
0007(I)	64392 0 28	37.843	41.174	44.308	1015	0	FRM	396
(1)8000	64264 0 28	37.865	41.154	44. 121	1064	0	FRM	396
0009(I)	64584 0 28	37.752	41.076	44.034	1063	0	FRM	396
0010(I)	65640 0 28	37. 745	41. 181	43.809	1066	0	FRM	396
0011(I)	65872 0 28	37.727	41.106	43.964	1034	0	FRM	396
0012(I)	66712 0 28	37.769	41. 181	44.038	1027	0	FRM	396
0013(I)	67576 0 28	37.775	41.111	44.019	1057	0	FRM	396
0014(I)	67128 0 28	37.695	41.023	43.955	1078	0	FRM	396
0015(I)	67752 0 28	37.605	40.974	44.050	1106	0	FRM	396
0016(I)	69112 0 28	37. 500	40.993	44. 184	1034	0	FRM	396
0017(I)	69672 0 28	37.481	40.977	43.721	1035	0	FRM	396
0018(I)	69160 0 28	37. 396	40.944	44. 133	1040	0	FRM	396
0019(I)	69208 0 28	37.480	40.951	44. 195	1035	0	FRM	396
0020(I)	69120 0 28	37.464	41.013	44.093	1038	0	FRM	396
0021(I)	68544 0 28	37. 524	40.891	44. 119	1058	0	FRM	396
0022(I)	67792 0 28	37.574	40.869	44. 116	1083	0	FRM	396
0023(I)	67464 0 28	37.564	40.956	43.943	1031	0	FRM	396
0024(I)	68344 0 28	37. 525	41.032	44.040	1033	0	FRM	396
0025(I)	70096 0 28	37.488	41.111	44.022	1028	0	FRM	396
0026(I)	70688 0 28	37.429	41.107	44.010	1031	0	FRM	396
0027(1)	70984 0 28	37.421	41.063	44.094	1036	0	FRM	396
0028(I)	70408 0 28	37.379	41.052	44.079	1041	0	FRM	396
0029(I)	70976 0 28	37.461	40.986	44.059	1056	0	FRM	396

图 24: H.264 编码过程

编码对应的结果如下,其中用时 33.675s,编码 30 帧,PSNR 值为 $SNR_Y=37.66,SNR_U=41.08,SNR_V=44.10$

```
SNR Y(dB) : 37.66
SNR U(dB) : 41.08
SNR V(dB) : 44.10
Total bits : 2007224 (I 62328, P 1944720, NVB 176)
Bit rate (kbit/s) @ 30.00 Hz : 2007.22
Bits to avoid Startcode Emulation : 0
Bits for parameter sets : 176
```

图 25: 编码结果

对编码视频进行解码重建,HEVC 和 H.264 关键帧的对比如下(左边为 H.264 的结果,右边为 HEVC):

图 26: 第 1 帧 (I) 帧对比

图 27: 第 15 帧 (I) 帧对比

图 28: 第 30 帧 (I) 帧对比

而对比比较 HEVC 和 H.264 的文件大小和压缩比,对于同等参数的编码压缩,HEVC 的压缩比更高,二进制码流文件更小。

test.264	2019/11/30 17:04	264 文件	246 KB
test_dec.yuv	2019/11/30 17:13	YUV 文件	4,455 KB
test_rec.yuv	2019/11/30 17:04	YUV 文件	4,455 KB

图 29: H.264 文件大小

2019/11/30 13:47 YUV 文件 2019/11/30 13:47 BIN 文件

4,455 KB 182 KB

图 30: HEVC 文件大小

综上分析,在有 I 帧的时候, H.264 和 HEVC 编解码的效果相当。H.264 速度更快,但 是对应的二进制码流文件更大; HEVC 虽然过程较慢, 但是压缩比更高。

2.3.2 参数二——第一帧 I 帧, 其余 P 帧的对比分析

采用"CREW-352x288-15-orig-01.yuv"序列来进行第二个参数的对比在该参数条件下, 进行 H.264 的编码过程如下:

0000 (NVB)	176							
0000 (IDR)	46576 0 28	38.997	43.006	42.127	993	0	FRM	396
0001 (P)	10280 0 28	38. 373	42.766	41.851	1966	521	FRM	22
0002 (P)	17456 0 28	38. 217	42.840	41.806	2916	1031	FRM	98
0003 (P)	42392 0 28	37.848	40.969	40.440	3911	1569	FRM	274
0004 (P)	21688 0 28	38. 165	42.465	41.417	4666	2074	FRM	103
0005 (P)	21104 0 28	38.340	42.582	41.450	5593	2598	FRM	122
0006 (P)	14512 0 28	37. 954	42.399	41. 233	6480	3146	FRM	25
0007 (P)	22912 0 28	37.985	41.545	40.933	7425	3651	FRM	81
0008 (P)	19504 0 28	37.996	41.935	40.841	8396	4234	FRM	51
0009 (P)	20176 0 28	37. 785	42.004	40.853	9291	4707	FRM	66
0010 (P)	21720 0 28	37.666	41.778	40.928	10267	5271	FRM	64
0011 (P)	20864 0 28	37.645	41.863	40.816	10189	5226	FRM	68
0012 (P)	21984 0 28	37. 597	41.734	40.757	10256	5260	FRM	61
0013 (P)	20960 0 28	37. 572	41.683	40.668	10251	5313	FRM	51
0014 (P)	24544 0 28	37. 544	41.526	40.388	10441	5366	FRM	58
0015 (P)	25128 0 28	37. 308	41. 131	40. 196	10267	5237	FRM	41
0016 (P)	24272 0 28	37. 293	41.334	40.041	10355	5294	FRM	37
0017 (P)	26160 0 28	37. 306	41.055	39. 959	10328	5274	FRM	37
0018 (P)	25168 0 28	37. 183	41.063	39.917	10245	5242	FRM	43
0019 (P)	24192 0 28	37. 252	41. 229	40.047	10240	5263	FRM	43
0020 (P)	24648 0 28	37. 263	41. 181	39. 957	10424	5328	FRM	58
0021 (P)	24784 0 28	37. 219	41.381	39. 979	10339	5288	FRM	56
0022 (P)	23248 0 28	37. 040	41.065	39. 908	10275	5346	FRM	28
0023 (P)	26576 0 28	36. 945	40.963	39. 950	10308	5239	FRM	46
0024 (P)	29920 0 28	37. 111	40.962	39. 940	10255	5228	FRM	74
0025 (P)	34680 0 28	37. 113	40. 932	39. 934	10327	5279	FRM	126
0026 (P)	31728 0 28	37. 061	40. 919	39. 901	10501	5294	FRM	90
0027 (P)	28304 0 28	37. 193	40.684	39.874	10456	5292	FRM	66
0028 (P)	26152 0 28	37. 279	41. 119	39. 985	10312	5232	FRM	58
0029 (P)	25800 0 28	37. 317	40.970	40.056	10346	5254	FRM	48

图 31: H.264 编码过程

编码对应的结果如下,其中用时 258.019s,编码 30 帧,PSNR 值为 $SNR_Y=37.59,SNR_U=$ $41.57,SNR_V = 40.54$:

图 32: 编码结果

对编码视频进行解码重建,HEVC 和 H.264 关键帧的对比如下(左边为 H.264 的结果,右边为 HEVC)的结果:

图 33: 第 1 帧 (I) 帧对比

图 34: 第 15 帧 (P) 帧对比

图 35: 第 30 帧 (P) 帧对比

而比较 HEVC 和 H.264 的文件大小,对于同等参数的编码压缩,HEVC 的压缩比还是更高,二进制码流文件更小。

test.264	2019/11/30 18:56	264 文件	92 KB					
test_dec.yuv	2019/11/30 19:00	YUV 文件	4,455 KB					
test_rec.yuv	2019/11/30 18:56	YUV 文件	4,455 KB					
图 36: H.264 文件大小								
rec.yuv	2019/11/30 16:03	YUV 文件	4,455 KB					
	2019/11/30 16:03	BIN 文件	46 KB					

图 37: HEVC 文件大小

综上分析,在第二种编码方式——第一帧为 I 帧,其余为 P 帧时。H.264 和 HEVC 编解码效果相当。H.264 速度更快,压缩比低,HEVC 速度慢但压缩比更高。

2.3.3 综合分析与对比

序列	编码类型	编码前文件大小	编码后文件的大小	用时
1	HEVC	4455KB	182KB	126.4317s
1	H.264	4455KB	246KB	33.675s
2	HEVC	4455KB	46KB	456.247s
2	H.264	4455KB	92KB	258.019s

表 2: QP 值变化对于同一视频编码结果的影响

综上所述,根据了两种参数的对比分析。对于已知测试序列,其实 H.264 和 HEVC 的编码再解码的效果相当。但是 HEVC 的压缩比更高,这就说明了 HEVC 能够更高效的传输

较大的文件。这也是 HEVC 相比与 H.264 的一个巨大的优势。

3 实验感想

通过这一次实验,我对 HEVC 和 H.264 编解码的过程有了更深入的认识。同时也理解到了,HEVC 作为更新一代的技术,他的技术优点。通过动手实践,我也对视频压缩编码的过程和原理有了更多的了解。