Comisión:

Turno tarde - Tema A

Apellido: Nombre:

DNI:

- 1. (10 pts.) Enunciar la fórmula del binomio de Newton.
- 2. (10 pts.) Enunciar el principio de buena ordenación.
- 3. (15 pts.) Sea $\{a_n\}$ la sucesión definida recursivamente como sigue:

$$a_1 = 1, a_2 = 1, a_3 = 1$$

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}, \quad \forall n \ge 4.$$

Demostrar que $a_n \leq 3^n$.

4. (20 pts.) Demostrar que se cumple que

$$\sum_{j=1}^{n} \frac{2}{(j+1)(j+2)} = \frac{n}{n+2} \quad \text{para todo } n \in \mathbb{N}.$$

- 5. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justifique apropiadamente.
 - (a) (5 pts.) $(101)_{13} > (1100001)_2$.
 - (b) (5 pts.) Para todo $n,k\in\mathbb{N},\,k\leq n$ se satisface $\binom{n}{k}=\binom{n}{n-k}.$
 - (c) (5 pts.) Si $a, b, c, d \in \mathbb{Z}$ verifican que a < b y c < d entonces se cumple que ac < bd.
- 6. Se quiere formar una contraseña de 9 dígitos. Contamos con 26 letras del alfabeto, números del 0 al 9, y 21 símbolos *especiales* del tipo &, ; , ?, ;, etc. Cuantas formas hay de crear la constraseña si:
 - (a) (10 pts.) No hay ninguna restricción.
 - (b) (10 pts.) La contraseña no contiene más de 3 símbolos especiales.
 - (c) (5 pts.) La contraseña contiene al menos un número impar.
 - (d) $(5 \ pts.)$ Si una computadora puede chequear 10^{10} contraseñas por segundo, puede hackear una contraseña del punto (b) en menos de 1 día ?

Algunas recomendaciones:

- 1. Ordene y numere las páginas.
- 2. Coloque bien su nombre y dni.
- 3. Tache en la grilla los ejercicios que no han sido resueltos.
- 4. Ordene los ejercicios en orden ascendente.

1	2	3	4	5(a)	5(b)	5(c)	6(a)	6(b)	6(c)

6(d)	Total	Nota