Presentation for Bachelor Thesis

Bernhard Gstrein

Introduction

- ► Materials with certain properties → How do we find them?
 - ► Naïve approach: Dig for it in the earth
 - ► More systematic: Create them ourselves
- lacktriangle Need to understand underlying physical processes better ightarrow Simulate a solid
 - Analog: Arrange atoms in lattice in the lab → Most promising for now
 - ▶ Digital: On a computer → Limitations of classical computers, quantum computers won't be there in the near future

Introduction

▶ Before any experiment: Theoretical model needed

Our goal:

- ► Establish a theoretical model arranging atoms in a lattice
- ► Check validity of that model with simulations

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min)

Special Thanks (1 min)

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min)

Special Thanks (1 min)

Creating an artificial solid

How do we make atoms arrange in a lattice pattern?

- Two counter-propagating laser beams, $\omega_{\rm l} << \omega_{\rm a}$
- Optical cavities: Coerce atoms into creating their own trapping potential
- ► Light and atoms: Composite system $\psi_{\text{total}} = \psi_{\text{light}} \otimes \psi_{\text{atom}}$

Figure 1: Counter-propagating lasers.

Figure 2: Optical cavity.

Cold atoms in cavities

- ▶ Problem: Motion of one atom affects cooling of another
- ► Solution: Transversal pumping

Paper: Collective Cooling and Self-Organization of Atoms in a

Cavity [1]

Figure 3: Longitudinal pump.

Figure 4: Transversal pump.

The Hamiltonians

Longitudinal pump ($\lambda/2$ -periodic):

$$H_{\text{long}} = \frac{p^2}{2m} + V_{\text{ext}}(x) - \hbar \Delta_{\text{c}} a^{\dagger} a + \hbar \eta (a + a^{\dagger}) + \hbar U_0 \cos(kx)^2 a^{\dagger} a$$
(1)

Transversal pump (λ -periodic):

$$H_{\text{transv}} = \frac{p^2}{2m} + V_{\text{ext}}(x) - \hbar \Delta_c a^{\dagger} a + \hbar \eta \cos(kx)(a + a^{\dagger}) + + \hbar U_0 \cos(kx)^2 a^{\dagger} a$$
 (2)

Transversal pump: Superposition

When we do simulations we obtain a superposition of two symmetric states

Figure 5: Lattice.

Figure 6: Wave function densities.

Our expectations

Paper: Self-organization of a Bose-Einstein condensate in an optical cavity [2]

Figure 7: Order parameter.

Figure 8: Lattice potential.

Our expectations

- ► Atoms are localized in "valleys" of optical potential
- ► Momenta:
 - ► Longitudinal: $p = 2n\hbar k$
 - ► Transversal: $p = n\hbar k$
- ► The more we pump, the more photons we will get
- ► Abrupt self-organization with transversal pumping

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min)

Special Thanks (1 min)

The Julia language and QuantumOptics.jl

- ► High-performance languages like C, Fortran cumbersome to program
- ▶ Julia: high level convenience, low-level performance [3]
- ► How to program it into computer?
 - ► Starting from scratch: redundant
 - More convenient: QuantumOptics.jl: Quantum optics simulation framework [4]

Code snippet: Longitudinal pump

```
using QuantumOptics
\eta = 10 * \omega r
b_position = PositionBasis(0, 1, 32)
b fock = FockBasis(16)
p = momentum(b_position)
a = destroy(b_fock) \otimes one(b_position)
ad = dagger(a)
potential = x \rightarrow U0*cos(k*x)^2
H_{int} = (one(b_{fock}) \otimes potential operator(b_{position}, potential)) * ad * a
H_{kin} = (one(b_{fock}) \otimes p^2) / k^2
H_cavity = -\Delta c*ad*a
H_{pump} = \eta * (a + ad)
H = H_int + H_kin + H_cavity + H_pump
E, \psi_states = eigenstates((H + dagger(H))/2, 3)
```

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min

Special Thanks (1 min)

Position wave function densities

Figure 9: Longitudinal.

Figure 10: Transversal.

Components of the wave function

$$\psi(k) = \frac{1}{N} \sum_{l} c_{l} \exp(likx) =$$

$$= \frac{1}{N} \left(c_{0} + c_{\pm 1} \exp(ikx) + c_{\pm 2} \exp(2ikx) + \dots \right)$$
(3)

c_l	wave number	momentum
c_0	0	0
$c_{\pm 1}$	$k \to \exp(ikx)$	$\hbar k$
$c_{\pm 2}$	$2k \to \exp(2ikx)$	$2\hbar k$
$c_{\pm 3}$	$3k \to \exp(3ikx)$	$3\hbar k$
:		

Table 1: Wave function coefficients.

Momentum distribution

Figure 11: Longitudinal.

Figure 12: Transversal.

Photon number distribution

Figure 13: Longitudinal.

Figure 14: Transversal.

Husimi Q representation

Figure 15: Longitudinal.

Figure 16: Transversal.

Breaking the symmetry

Figure 17: Longitudinal.

Figure 18: Transversal.

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min)

Special Thanks (1 min)

Recap

What we discussed in this presentation...

- ► Why are we doing quantum simulations and how
 - ► Most promising for now: Analog quantum simulations
- ► Arrange atoms in lattice to simulate solid
 - Use laser to trap atoms
 - Make use of cavity
 - Transversal pumping
- ▶ Does our theoretical model make sense → Simulations
 - ► Atoms localized in "valleys" of potential
 - Specific momenta with longitudinal, transversal pump
 - ► More pumping → More photons
 - ► Abrupt self-organization with transversal pumping

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min

Special Thanks (1 min)

Special Thanks

Helmut Ritsch

for Opportunity, Subject

Stefan Ostermann

for Guidance, Discussion

Thank You!

Introduction / Motivation (4 min)

Setting up our model (9 min)

Setting up the simulation (4 min)

Results and Discussion (10 min)

Recap / Conclusion (2 min

Special Thanks (1 min)

- Peter Domokos and Helmut Ritsch.
 Collective cooling and self-organization of atoms in a cavity.

 Physical review letters, 89(25):253003, 2002.
- D. Nagy, G. Szirmai, and P. Domokos.

 Self-organization of a bose-einstein condensate in an optical cavity.
 - The European Physical Journal D, 48(1):127–137, Jun 2008.
 - Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah.
 - Julia: A fresh approach to numerical computing. *SIAM Review*, 59(1):65–98, January 2017.

- Sebastian Krämer, David Plankensteiner, Laurin Ostermann, and Helmut Ritsch.
 - Quantumoptics.jl: A julia framework for simulating open quantum systems.
 - Computer Physics Communications, 227:109 116, 2018.