

FAST CMOS OCTAL TRANSPARENT LATCHES

IDT54/74FCT373/A/C IDT54/74FCT533/A/C IDT54/74FCT573/A/C

FEATURES

- IDT54/74FCT373/533/573 equivalent to FAST™ speed and drive
- IDT54/74FCT373A/533A/573A up to 30% faster than FAST
- Equivalent to FAST output drive over full temperature and voltage supply extremes
- IOL = 48mA (commercial) and 32mA (military)
- CMOS power levels (1mW typ. static)
- Octal transparent latch with 3-state output control
- · JEDEC standard pinout for DIP and LCC
- Product available in Radiation Tolerant and Radiation Enhanced versions
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION

The IDT54/74FCT373/A/C, IDT54/74FCT533/A/C and IDT54/74FCT573/A/C are octal transparent latches built using an advanced dual metal CMOS technology. These octal latches have 3-state outputs and are intended for bus oriented applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the set-up time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the high-impedance state.

FUNCTIONAL BLOCK DIAGRAMS

IDT54/74FCT373 AND IDT54/74FCT573

IDT54/74FCT533

The IDT logo is a registered trademark of Integrated Device Technology, Inc. FAST is a trademark of National Semiconductor Co.

2602 cnv* 02

PIN CONFIGURATIONS

IDT54/74FCT373

IDT54/74FCT573

IDT54/74FCT533

2602 cnv* 03-08

FUNCTION TABLE (FCT533)⁽¹⁾

	Inputs		Outputs
Dn	LE	ŌĒ	Ōn
Н	Н	L	L
L	Н	L	Н
X	X	Н	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

FUNCTION TABLE (FCT373 and FCT573)(1)

	Inputs						
Dn	LE	ŌĒ	On				
Н	Н	L	Н				
L	Н	L	L				
X	X	Н	Z				

NOTE:

2602 tbl 05

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

PIN DESCRIPTION

Pin Names	Description			
Dn	Data Inputs			
LE Latch Enable Input (Active HIGH)				
ŌĒ	Output Enable Input (Active LOW)			
On	3-State Outputs			
Ōи	Complementary 3-State Outputs			

2602 tbl 07

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	–0.5 to VCC	–0.5 to Vcc	V
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	–65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	–65 to +150	°C
Рт	Power Dissipation	0.5	0.5	W
lout	DC Output Current	120	120	mA

NOTES:

2602 tbl 01

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- Input and Vcc terminals only.
 Outputs and I/O terminals only.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

2602 tbl 02

2602 tbl 06

This parameter is measured at characterization but not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V Commercial: TA = 0°C to +70°C, VCC = 5.0V \pm 5%; Military: TA = -55°C to +125°C, VCC = 5.0V \pm 10%

Symbol	Parameter	Test Cor	Test Conditions ⁽¹⁾				Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH	H Level	2.0	-	_	٧
VIL	Input LOW Level	Guaranteed Logic LOW	/ Level	_		0.8	V
Iгн	Input HIGH Current	Vcc = Max.	VI = VCC	_		5	μΑ
			VI = 2.7V	_		5 ⁽⁴⁾	
liL	Input LOW Current		VI = 0.5V	_		-5 ⁽⁴⁾	
			Vı = GND	_		- 5	
lozн	Off State (High Impedance)	Vcc = Max.	Vo = Vcc	_	_	10	μΑ
	Output Current		Vo = 2.7V	_	_	10 ⁽⁴⁾	
lozL]		Vo = 0.5V		_	-10 ⁽⁴⁾	
			Vo = GND	_	_	-10	
VIK	Clamp Diode Voltage	Vcc = Min., In = -18mA	Vcc = Min., In = -18mA				V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GN	ID	-60	-120	_	mA
Voн	Output HIGH Voltage	Vcc = 3V, Vin = VLc or	VHC, IOH = -32μA	Vнс	Vcc	_	V
		Vcc = Min.	Іон = –300μА	Vнс	Vcc	_	
		VIN = VIH or VIL	IOH = -12mA MIL.	2.4	4.3	_	
			IOH = -15mA COM'L.	2.4	4.3	_	
VoL	Output LOW Voltage	Vcc = 3V, Vin = VLc or	Vcc = 3V, Vin = VLc or VHc, IoL = 300μA		GND	VLC	V
		Vcc = Min.	IOL = 300μA	_	GND	VLC ⁽⁴⁾	
		VIN = VIH or VIL	IOL = 32mA MIL.	_	0.3	0.5	
			IOL = 48mA COM'L.	_	0.3	0.5	

NOTES:

2602 tbl 03

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

VLC = 0.2V; VHC = VCC - 0.2V

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Icc	Quiescent Power Supply Current	Vcc = Max. Vin ≥ Vhc; V in ≤ Vlc		_	0.2	1.5	mA
ΔΙCC	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OE = GND One Input Toggling 50% Duty Cycle	VIN ≥ VHC VIN ≤ VLC	_	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fi = 10MHz 50% Duty Cycle OE = GND LE = Vcc One Bit Toggling	$VIN \ge VHC$ $VIN \le VLC$ (FCT) $VIN = 3.4V$ $VIN = GND$	_	2.0	5.0	mA
		Vcc = Max. Outputs Open fi = 2.5MHz	Vin ≥ VHC Vin ≤ VLC (FCT)	_	3.2	6.5 ⁽⁵⁾	
		50% Duty Cycle OE = GND LE = Vcc Eight Bits Toggling	Vin = 3.4V Vin = GND	_	5.2	14.5 ⁽⁵⁾	

NOTES:

2602 tbl 04

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$
 - Icc = Quiescent Current
 - ΔICC = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - fi = Input Frequency
 - Ni = Number of Inputs at fi
 - All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE FOR FCT373/A/C/FCT573/A/C

				FCT3	73/573		FCT373A/573A				FCT373C/573C				
			Con	ı'l. ⁽²⁾	Mi	.(2)	Con	ո'l. ⁽²⁾	Mi	.(2)	Com	'l. ⁽²⁾	Mi	l. ⁽²⁾	
Symbol	Parameter	Conditions ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH tPHL	Propagation Delay Dn to On	$CL = 50pF$ $RL = 500\Omega$	1.5	8.0	1.5	8.5	1.5	5.2	1.5	5.6	1.5	4.2	1.5	5.1	ns
tPLH tPHL	Propagation Delay LE to On		2.0	13.0	2.0	15.0	2.0	8.5	2.0	9.8	2.0	5.5	2.0	8.0	ns
tPZH tPZL	Output Enable Time		1.5	12.0	1.5	13.5	1.5	6.5	1.5	7.5	1.5	5.5	1.5	6.3	ns
tPHZ tPLZ	Output Disable Time		1.5	7.5	1.5	10.0	1.5	5.5	1.5	6.5	1.5	5.0	1.5	5.9	ns
tsu	Set-up Time HIGH or LOW, Dn to LE		2.0	_	2.0	_	2.0	_	2.0	_	2.0	_	2.0	_	ns
tH	Hold Time HIGH or LOW, Dn to LE		1.5		1.5	_	1.5		1.5	_	1.5	_	1.5	_	ns
tw	LE Pulse Width HIGH		6.0		6.0	_	5.0	_	6.0	_	5.0	_	6.0	_	ns

2602 tbl 08

SWITCHING CHARACTERISTICS OVER OPERATING RANGE FOR FCT533/A/C

				FCT	533		FCT533A				FCT533C				
			Con	า'l. ⁽²⁾	Mi	l. ⁽²⁾	Con	n'l. ⁽²⁾	Mi	. ⁽²⁾	Con	า'l. ⁽²⁾	Mi	I. ⁽²⁾	
Symbol	Parameter	Conditions ⁽¹⁾	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH tPHL	Propagation Delay Dn to On	$CL = 50pF$ $RL = 500\Omega$	1.5	10.0	1.5	12.0	1.5	5.2	1.5	5.6	1.5	4.7	1.5	5.1	ns
tPLH tPHL	Propagation Delay LE to On		2.0	13.0	2.0	14.0	2.0	8.5	2.0	9.8	2.0	6.9	2.0	8.0	ns
tpzh tpzl	Output Enable Time		1.5	11.0	1.5	12.5	1.5	6.5	1.5	7.5	1.5	5.5	1.5	6.3	ns
tPHZ tPLZ	Output Disable Time		1.5	7.0	1.5	8.5	1.5	5.5	1.5	6.5	1.5	5.0	1.5	5.9	ns
tsu	Set-up Time HIGH or LOW, Dn to LE		2.0	ı	2.0	1	2.0	ı	2.0	ı	2.0	ı	2.0	_	ns
tH	Hold Time HIGH or LOW, Dn to LE		1.5		1.5		1.5	_	1.5	_	1.5	_	1.5		ns
tw	LE Pulse Width HIGH		6.0		6.0		5.0	_	6.0	_	5.0	_	6.0	_	ns

NOTES:

1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

2602 tbl 09

TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

2537 tbl 10

 $\mathsf{CL} = \mathsf{Load}$ capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zo∪T of the Pulse Generator.

SET-UP, HOLD AND RELEASE TIMES

PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

NOTES 2537 drw 04

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Zo \leq 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.

ORDERING INFORMATION

2602 cnv* 14