LATENT VARIABLE MODELS

Session 1 - Introduction

Dr. Zsuzsa Bakk & Dr Mathilde Verdam Methodology and Statistics Unit Leiden University

z.bakk@fsw.leidenuniv.nl

A course overview has been provided under 'Contents' > 'Course Overview' on Brightspace page.

Class outline

- General administrative stuff
- Introduction to SEM
 - Latent variable models introduced next week
- Selected topics (also from chapter 2 of Beaujean)
 - □ From familiar regression models to SEM
 - Path models
 - Covariance matrices
- Exercises

Course schedule

Week	Topics, chapters & deadlines
46	Introduction: SEM or path models with observed variables only (Ch. 2)(ZB)
47	Basic latent variable models: Confirmatory factor analysis (Ch. 3)(MV)
	Available on Brightspace: Assignment 1
48	Multiple group analyses: Equality restrictions on model parameters
	between groups (Ch. 4) (MV)
49	Latent class analysis (separate articles on Brightspace)(ZB)
	Due date: Turn in Assignment 1 (10-12-2022)
	Available on Brightspace: Assignment 2
50	No class
	Grades and feedback: Assignment 1

Course schedule

Week Topics, chapters & deadlines

Item response theory models: Similarities and differences between IRT and SEM/CFA (Ch. 6)(ZB)

Due date: Turn in Assignment 2 (05-01-2023)

Available on Brightspace: Assignment 3

- 52-1 No class: Christmas & New Years
 - 2 Hierarchical latent variable models: Multiple layers of latent variables (Ch. 9)(MV)

Grades and feedback: Assignment 2

3 Missing data, sample size, miscellaneous topics (Ch. 7, Ch. 8)(ZB)

31-01-23 Due date: Assignment 3

Final course grade

- □ Final grade determined by the weighted average:
 - □ First and second assignment: structured (each 25%)
 - Fitting SEMs / LVMs to data
 - Interpreting results
 - Theoretical / insight questions
 - □ Third assignment: much less structured (50%)
 - Choose SEM or LVM analysis to perform on dataset of own choosing
 - analysis should be advanced (e.g., multigroup analysis, LC/IRT model with covariates, hierarchical CFA, CFA and LCA combined, etc.)
 - Report should be written according to APA standards (introduction, method, results, discussion), with report focusing on
 - Selecting an appropriate method for answering a substantial research question
 - Performing and describing the LVM analysis
 - Providing a correct and substantial interpretation of the results

Course prerequisites

- Knowledge of statistics
 - Statistical testing (e.g., chi-square & normal distributions)
 - Regression (GLMs)
 - Var, cov, cor, mean
- Knowledge of psychometrics
 - Validity
 - PCA, EFA, CFA
 - Reliability
 - IRT
- Matrix algebra
 - Addition, multiplication, diagonal, inverse
- Programming in R

Course materials

Book(s):

- □ Beaujean, A. A. (2014). Latent variable modeling using
 R: A step-by-step guide.
 - Good as a starting guide, not an authorative standard
- Kaplan, D. (2009). Structural Equation Modeling: Foundations and Extensions.
 - Authorative standard. But more technical and not focused on specific software, so less practical.

Brightspace materials:

- Lecture slides
- Markdown files for examples and exercises

Book examples

- You are strongly advised to copy and run R code from examples in Beaujean book and from Brightspace:
 - They give you a step-by-step guide on how to perform analyses
 - They give you a starter for making the exercises
 - If you make a mistake, you will get an error or warning message, from which you learn A LOT! (But only you read and try to decipher! <u>Just remember: red =</u> <u>good!)</u>

LVM class structure

- Preparation: Read chapter(s) of the Beaujean book
 & watch recorded lecture
- □ Lab session:
 - Q&A on lecture
 - On current weeks topic
 - Questions (on current and past topics)
 - Work individually on exercises
- □ Homework:
 - Complete exercises at home
 - Check with worked out answers on Brightspace

- □ SEM: the modeling of structural equations
 - **Modeling:** we are constructing models (hypotheses, theories) of reality. The models (theory, hypothesis) can be statistically tested. That is: rejected by the data (or not), but never proven 'true' or 'right'.
 - In fact, all models are wrong, but some are useful approximations to reality. So a statistic (e.g., p-value) itself does not decide whether a model is right or wrong. <u>We</u> have to decide whether a fitted model or parameter estimate provides useful information
 - **Structural**: the model is used to explain the interrelations between (that is, the structure of) observed variables
 - **Equations**: the interrelations between variables in the model are described using mathematical formulae (equations)

SEMS are graphically represented using the following building blocks:

- The arrows in SEM denote regression relationships, of the linear type
- Therefore, all generalized linear models (GLMs) can also be formulated as SEM models, e.g.,
 - t-test
 - ANOVA
 - Multiple linear regression
 - Multiple logistic regression
 - **-**
- Also, SEM can be used to models for multilevel or longitudinal data (i.e., GLMMs, or generalized linear mixedeffects models)

Example dataset

Variables in the model:

grade

ethnicity

homework

SES

Prev_ach

- □ GPA in 10th grade
- Ethnicity
- Homework (8th grade)
- Socio-economic status
- Previous achievement (8th grade)
- Sample covariance matrix 5:

```
homwrk prv_ch ethnct SES
          grade
grade
           2.185
homework
           0.335
                  0.649
prev_ach 6.429 2.067 79.092
ethnicity 0.081 0.028 1.201
                                 0.175
SE<sub>5</sub>
           0.338
                   0.176
                        3.541
                                 0.106
                                         0.690
```

Model: Univariate regression

grade

- Dependent:
 - □ GPA in 10th grade
- □ Independent:
 - ethnicity (0=ethnic minority; 1=ethnic majority)
- Regression coefficient easy to calculate by hand:

$$\hat{b}_{xy} = \frac{cov_{x,y}}{var_x} = \frac{0.0814}{0.1752} = 0.4646$$

 \Box standardized $\hat{b}_{xy} = \hat{\rho}_{xy} = \frac{cov_{x,y}}{s_x s_y} = s_x \frac{\hat{b}_{xy}}{s_y} = 0.132$

ethnicity

 \square Measure of fit or (strength of) association: ${\widehat{
ho}_{\chi\gamma}}^2$

Model: Multiple regression

- Dependent:
 - □ GPA in 10th grade
- Independent:
 - Ethnicity
 - Homework (8th grade)
 - Previous achievement (8th grade)
 - Socio-economic status

- Regression estimates are now a vector of partial regression coefficients, need matrix algebra to compute: $\widehat{m{eta}} = (X^TX)^{-1}X^Ty$
- \square Measure of fit: multiple correlation (R=.512), or variance explained (R²=.262)
- Measure of (strength of) association: \hat{b}_{xy} or standardized $\hat{b}_{xy} = s_x \frac{\hat{b}_{xy}}{s_y}$ (where \hat{b}_{xy} is now a partial regression coefficient)

Model: SEM

- Endogenous variables:
 - □ GPA in 10th grade
- Exogenous variables:
 - Ethnicity
 - Homework (8th grade)
 - Previous achievement (8th grade)
 - Socio-economic status
 - (disturbance/error/residual) of GPA in 10th grade

Regression estimates are still a vector of partial regression coefficients,
 need matrix algebra and optimization to compute

79.09

- Measure of (strength of) associations: Partial regression coefficients
- Overall model fit: How well are the observed variables' (co)variances reproduced by the model?
 - lacktriangle Quantified by a χ^2 value and model fit indices

Model: SEM

- Endogenous variables:
 - Homework (8th grade)
 - Previous achievement (8th grade)
 - GPA in 10th grade
- Exogenous variables:
 - Ethnicity
 - Socio-economic status
 - (disturbances/errors/residuals of
 - Homework (8th grade)
 - Previous achievement (8th grade)
 - GPA in 10th grade

- Measure of (strength of) associations: partial regression coefficients
- Overall model fit: How well are the observed variables' (co)variances reproduced by the model?
 - lacktriangle Quantified by a χ^2 value and model fit indices

- Overall model fit: How well are the observed variables' (co)variances reproduced by the model?
 - lacktriangle Quantified by a χ^2 value and model fit indices

19

SEM using lavaan

To fit a SEM in R with lavaan, we need two things:

- A dataset, which can be:
 - Raw data, which is often an external file (e.g., .sav, .xls) which needs to be loaded into R (most often the case in practice)
 - Covariance or correlation matrix, which can be an external file, or can be entered manually (most often the case in the book's examples and exercises)
- 2. A model specification:
 - A long character string that specifies whether population parameters (associations) are restricted (e.g., to a constant like 1 or 0, or to equality) or should be freely estimated, using lavaan model syntax

Lavaan model syntax

Syntax	Command	Example
~	Regress onto	Regress B onto A: B ~ A
~~	(Co)variance	Variance of A: A ~~ A
		Covariance of A and B: A ~~ B
~1	Constant/mean/intercept	Regress B onto A, and and include the
		intercept in the model: $B \sim 1 + A$ or
		B ~ A
		B ~ 1
=~	Define reflective latent variable	Define Factor 1 by A-D:
		F1 =~A+B+C+D
<~	Define formative latent variable	Define Factor 1 by A-D:
		F1 <~ 1*A+B+C+D
;=	Define non-model parameter	Define parameter u2 to be twice the
		square of u:
		u2 := 2*(u^2)
*	Label parameters	Label the regression of Z onto X as b:
	(the label has to be pre-multiplied)	Z ~b*X
1	Define the number of thresholds	Variable u has three thresholds:
	(for categorical endogenous variables)	u t1 + t2 + t3

grade

ethnicity

homework

SES

Prev_ach

22

Syntax	Command	Example
-	Regress onto	Regress B onto A: B ~ A
~~	(Co)variance	Variance of A: A ~~ A
		Covariance of A and B: A ~~ B

Q: How do we specify these models in lavaan syntax?

Computation time!

Example 2.4.1

□ get PDF from Brightspace

Make Exercise 2.1:

- □ Get Exercises_week_1.pdf from Brightspace
- These are adjusted version of the exercises in the Beaujean book

- Fitted model is used to explain the structure of, or the interrelations between observed variables
- That is, to explain covariances between observed variables:

$$cov_{xy} = \left(\frac{1}{N-1}\right)\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

$$cov_{xy} = r_{xy}SD_{x}SD_{y}$$

■ Note: means, and skewness & kurtosis can be also be involved in SEM (discussed later in course)

- With SEM, we obtain a fitted model that minimizes the difference between
 - sample matrix of observed covariances S and
 - lacksquare population matrix of model-implied covariances $\widehat{oldsymbol{\Sigma}}$
 - In addition, we try to keep the model parsimoneous through applying restrictions (i.e., specifying the model) so that not all possible paths are estimated
- These covariance matrices contain all (co)variances of the observed variables in the model. Note that:
 - Covariance matrices are always symmetric, because cov(x,y)=cov(y,x)
 - □ Covariance matrices have the variance of the observed variables on the diagonal. I.e., cov(x,x) = var(x)

Variables in the model:

grade ethnicity homework SES Prev_ach

Observed covariance matrix 5:

```
homwrk prv_ch ethnct SES
grade
           2.185
           0.335
homework
                  0.649
prev_ach 6.429 2.067 79.092
ethnicity
           0.081
                  0.028 1.201
                                 0.175
           0.338
                   0.176 3.541
                                  0.106
SE<sub>5</sub>
                                         0.690
```

 \square Once the model is estimated, the model-implied covariance matrix $\widehat{\Sigma}$ can be calculated using path analysis, or equivalently, matrix algebra

Path analysis:

- Model-implied covariance between variables X and Y can be computed as follows:
 - Find all paths leading from X to Y
 - □ Multiply all parameter values along a given path from X to Y, but:
 - No loops: may not go through same variable more than once
 - May switch forward/backward direction only once within a path
 - May go through double-headed arrow only once within a path
 - Summing all values thus obtained
- Variances of variables are calculated as follows:
 - For exogenous variables, model-implied variances are equal to sample variances, so are given (not computed)
 - For endogenous variables, variances are computed like covariances (rules above)

Model:

0.18 0.69 SES ethnicity 0.01 0.25 4.50 homework 0.60 58.19 0.28 0.07 grade 1.62

Parameter estimates:

```
1hs op
                   rhs
                          est
    grade ~
                        0.074
              prev_ach
    grade
              homework
                        0.281
 homework
           ~ ethnicity
                        0.007
 homework
                        0.254
                   SES
 prev_ach ~ ethnicity
                        4.147
 prev ach ~
                        4.496
                   SES
 homework ~~ prev_ach
                        1.158
    grade ~~
                        1.616
                 grade
homework ~~
             homework
                        0.604
prev_ach ~~ prev_ach 58.190
ethnicity ~~ ethnicity
                        0.175
ethnicity ~~
                        0.106
                   SES
      SES ~~
                   SES
                        0.690
```

model-implied cov(SES, grade)?

Model-implied (c

Note that Beaujean's examples in section 2.1.3 seem more simple, because he uses the standardized soluttion. Then all variances of exogenous variables equal 1 and can be omitted, which simplifies calculations.

model-implied cov(SES,grade)=

var(SES) * b(SES, homework) * b(homework, grade) +

var(SES) * b(SES, prev_ach) * b(prev_ach, grade) +

cov(SES, ethnicity) * b(ethnicity, homework) * b(homework, grade) +

cov(SES, ethnicity) * b(ethnicity, prev_ach) * b(prev_ach, grade) =

```
.690 * .254 * .281 +
.690 * 4.496 * .074 +
.106 * .007 * .281 +
.106 * 4.147 * .074 =
0.3115514
```

```
1hs op
                  rhs
                         est
   grade ~ prev_ach
                       0.074
   grade ~ homework
                       0.281
homework ~ ethnicity
                       0.007
homework ~
                       0.254
                  SES
prev_ach ~ ethnicity
                       4.147
prev_ach ~
                       4.496
                  SES
homework ~~ prev_ach
                       1.158
   grade ~~
                       1.616
                grade
homework ~~
             homework
                       0.604
prev_ach ~~ prev_ach 58.190
ethnicity -- ethnicity 0.175
ethnicity ~~
                  SES
                       0.106
     SES ~~
                  SES
                       0.690
```

- A SEM is a system of linear equations, which we can represent by matrices
 - Although non-linear SEM also exists, but is outside the scope of this course
- The tracing rules represent matrix algebra but more tedious/confusing/error prone
- Beaujean's book hardly involves formulas, and no matrix notation. To get a good understanding of SEM, you need to know about underlying matrices and vectors

- In lavaan, the (co)variance stucture of a fitted model is given by four parameter matrices
- Matrix algebra gives us the model-implied covariance matrix:

$$\widehat{\Sigma} = \Lambda (I - \beta)^{-1} \psi [(I - \beta)^{-1}]^{T} \Lambda^{T} + \Theta$$

 \square Today, our models assume no measurement error, so Λ is an identity matrix and Θ all zeros. Thus, the above formula simplifies to:

$$\widehat{\Sigma} = (\mathbf{I} - \boldsymbol{\beta})^{-1} \, \boldsymbol{\psi} \big[(\mathbf{I} - \boldsymbol{\beta})^{-1} \, \big]^{\mathrm{T}}$$

- \Box Let p be the number of observed variables in the model
- If we have observed variables only:
 - $f \beta$ is a p x p matrix of regression coefficients, relating predictor to criterion variables
 - 'Contains' single-headed (directed) arrows, therefore non-symmetric
 - The columns reflect the variables as predictors, the rows reflect the variables as responses
 - $\mathbf{\Psi}$ is a p x p matrix of (co)variances not explained by the regression equations
 - 'Contains' double headed (undirected) arrows, therefore symmetric
- \Box ψ and β describe the **structural** model
- $\hfill\Box$ Often, SEM models also involve a **measurement** model (described by Λ and Θ , which will be introduced next week)

Structural and measurement model

- □ Two main components of SEMs are distinguished:
 - the <u>structural model</u> contains causal regression relationships between endogenous and exogenous variables
 - path models (without measurement errors) can be viewed as SEMs that contain only the structural model
 - the <u>measurement model</u> contains the associations between latent variables and their indicators
 - confirmatory factor analysis models contain only the measurement part
 - starts next week, not this week

Model:

Parameter estimates:

```
Ths op
                   rhs
                          est
    grade ~
                        0.074
              prev_ach
    grade
              homework
                        0.281
 homework
           ~ ethnicity
                        0.007
 homework
                   SES
                        0.254
prev_ach ~ ethnicity
                        4.147
 prev ach ~
                        4.496
                   SES
 homework ~~
              prev_ach
                        1.158
    grade ~~
                 grade
                        1.616
 homework ~~
              homework
                        0.604
 prev_ach ~~ prev_ach 58.190
ethnicity ~~ ethnicity
                        0.175
ethnicity ~~
                        0.106
                   SES
      SES ~~
                        0.690
                   SES
```

Model-implied covariance matrix $\widehat{\Sigma}$:

```
homwrk prv_ch ethnct SES
          grade
grade
           2.185
homework
           0.335
                  0.649
prev_ach
           6.429
                  2.067 79.092
ethnicity
           0.097
                  0.028
                          1.201
                                 0.175
           0.311
                   0.176
                          3.541
                                 0.106
SES
                                         0.690
```

Model:

Parameter estimates:

```
1hs op
                  rhs
                         est
   grade ~ prev_ach
                       0.073
   grade ~
            homework
                      0.271
   grade ~ ethnicity -0.119
   grade ~
                  SES 0.063
   grade ~~
                grade 1.612
prev_ach ~~ prev_ach 79.092
prev_ach ~~ homework
prev_ach ~~ ethnicity
                       1.201
 prev_ach ~~
                      3.541
 homework -- homework
                      0.649
homework ~~ ethnicity 0.028
 homework ~~
                       0.176
ethnicity -- ethnicity 0.175
ethnicity ~~
                  SES
                       0.106
     SES ~~
                  SES 0.690
```

Model-implied covariance matrix $\widehat{\Sigma}$:

```
grade prv_ch homwrk ethnct SES
grade
           2.185
prev_ach
           6.429 79.092
homework
          0.335 2.067
                         0.649
ethnicity 0.081
                 1.201
                         0.028
                                0.175
                         0.176 0.106
SES
           0.338
                  3.541
```


Which model fits data best (i.e., approximates sample covariances best)?

Which is most parsimonious (i.e., estimates lowest number of population parameters)?

S =

Variances of exogenous variables often not explicitly depicted

Figure 2.2 Path model of a multiple regression with three predictor (exogenous) variables.

Mean structure often omitted

(co)variance structure only all means omitted (i.e., assumed zero) $Y = aX_1 + bX_2 + cX_3 + error$

(co)variance and mean structure means freely estimated $Y = g + aX_1 + bX_2 + cX_3 + error$

Figure 2.2 Path model of a multiple regression with three predictor (exogenous) variables.

Error terms

- Errors are latent variables: they are hypothetical,
 not directly observed
- Error is defined as the difference between observed (sample) variance and variance explained by other variables in the model
 - Therefore, a variable that has an error/disturbance term is an endogenous variable
 - Errors/disturbance terms are always exogenous (have no incoming directional arrows)

Causation

 Causation is a function of the research design, and cannot be determined statistically

- □ Both models above will fit the observed data equally well, it is up to the researcher to decide on the direction of the arrows
 - In the SEM model, it is merely a matter of scaling:

$$b_x = \frac{cov_{xy}}{var_x}$$
 and $b_y = \frac{cov_{xy}}{var_y}$

Path & partial regression coefficients

- Path coefficients (a, b, c, g and 1) are partial regression coefficients
- That is, the expected increase in the response variable, when the predictor variable increases by 1, controlling for (= keeping constant) all the other predictor variables
 - Note that the intercept is always 1, so cannot in- or decrease

Standardized coefficients

- Parameter estimates (path coefficients) can be standardized and unstandardized
 - Unstandardized: Interpret like regression coefficients
 - Expected increase in Y if X increases by 1
 - Standardized: Interpret like correlation coefficients
 - Expected increase in SDs of Y if X increases by 1 SD
 - 0: no linear association; -1: perfect negative association; 1: perfect positive association
 - squared standardized coefficient = prop. of variance in Y explained by X (vice versa)

Lavaan model syntax

Syntax	Command	Example
_	Regress onto	Regress B onto A: B ~ A
~~	(Co)variance	Variance of A: A ~~ A
		Covariance of A and B: A ~~ B
~1	Constant/mean/intercept	Regress B onto A, and and include the
		intercept in the model: $B \sim 1 + A$ or
		B ~ A
		B ~ 1
=~	Define reflective latent variable	Define Factor 1 by A-D:
		F1 =~A+B+C+D
<~	Define formative latent variable	Define Factor 1 by A-D:
		F1 <~ 1*A+B+C+D
:=	Define non-model parameter	Define parameter u2 to be twice the
		square of u:
		$u2 := 2*(u^2)$
*	Label parameters	Label the regression of Z onto X as b:
	(the label has to be pre-multiplied)	Z ~b*X
1	Define the number of thresholds	Variable u has three thresholds:
	(for categorical endogenous variables)	u t1 + t2 + t3

Lavaan syntax exercise

- 1) How do we write the model below in lavaan syntax?
- 2) How can we label and refer to the indirect effect from A on D via C in lavaan syntax?

3) What do the beta and psi matrices for this model look like?

B

Note that Beaujean often labels paths in lavaan syntax, but that is not required - I never do it, unless there are indirect effects that I want to explicitly define in the model. It does not make a difference for the estimated parameters and model fit.

Homework

- □ Exercises 2.2 and 2.3 (see PDF on Brightspace)
- See Example-2.4.1.pdf on Brightspace for instructions on extracting beta and psi matrices