W := you win at craps.

 $F_k :=$ the sum of face values on the *first* throw is k. $W_n :=$ you win on the nth throw.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

W := you win at craps.

 $F_k :=$ the sum of face values on the *first* throw is k. $W_n :=$ you win on the nth throw.

k	p_k
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mathbf{P}(\mathbf{W}) = \sum_{k=2}^{12} \mathbf{P}(\mathbf{W} \mid \mathbf{F}_k) \mathbf{P}(\mathbf{F}_k)$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Given:
$$P(F_k) = p_k$$
 $(k = 2, 3, ..., 12)$

$$\mathbf{P}(W) = \sum_{k=2}^{12} \mathbf{P}(W \mid F_k) \mathbf{P}(F_k)$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Given:
$$P(F_k) = p_k$$
 $(k = 2, 3, ..., 12)$
 $P(W | F_7) = P(W | F_{11}) = 1$

$$\mathbf{P}(\mathbf{W}) = \sum_{k=2}^{12} \mathbf{P}(\mathbf{W} \mid \mathbf{F}_k) \, \mathbf{P}(\mathbf{F}_k)$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Given:
$$P(F_k) = p_k$$
 $(k = 2, 3, ..., 12)$
 $P(W | F_7) = P(W | F_{11}) = 1$
 $P(W | F_2) = P(W | F_3) = P(W | F_{12}) = 0$

$$\mathbf{P}(\mathbf{W}) = \sum_{k=2}^{12} \mathbf{P}(\mathbf{W} \mid \mathbf{F}_k) \mathbf{P}(\mathbf{F}_k)$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Given:
$$P(F_k) = p_k$$
 $(k = 2, 3, ..., 12)$
 $P(W | F_7) = P(W | F_{11}) = 1$
 $P(W | F_2) = P(W | F_3) = P(W | F_{12}) = 0$

$$\mathbf{P}(W) = \sum_{k=2}^{12} \mathbf{P}(W \mid F_k) \mathbf{P}(F_k) = p_7 + p_{11} + \sum_{k \in \{4,5,6,8,9,10\}} \mathbf{P}(W \mid F_k) p_k$$

W := you win at craps.

 $F_k :=$ the sum of face values on the *first* throw is k. $W_n :=$ you win on the nth throw.

k	p_k
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$\mathbf{P}(\mathbf{W}) = \mathbf{p}_7 + \mathbf{p}_{11} +$		$P(W F_k)p_k$	
	$k \in \{4,5,6,8,9\}$	9,10}	

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

For
$$k \in \{4, 5, 6, 8, 9, 10\}$$
:
$$P(W \mid F_k)$$

$$\mathbf{P}(W) = p_7 + p_{11} + \sum_{k \in \{4,5,6,8,9,10\}} \mathbf{P}(W \mid F_k) p_k$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

 $W_n := \text{you win on the nth throw.}$

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mathbf{P}(W) = p_7 + p_{11} + \sum_{k \in \{4, 5, 6, 8, 9, 10\}} \mathbf{P}(W \mid F_k) p_k$$

$$\mathbf{P}(W \mid F_k) = \mathbf{P}\left(\bigcup_{n \ge 1} W_n \mid F_k\right)$$

For $k \in \{4, 5, 6, 8, 9, 10\}$:

(decomposition: you win by winning on some throw n)

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

 $W_n := \text{you win on the nth throw.}$

k	p_k
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$P(W) = p_7 + p_{11} + \sum_{k \in \{4,5,6,8,9,10\}} P(W \mid F_k) p_k$$
 For $k \in \{4,5,6,8,9,10\}$:

$$\mathbf{P}(W \mid F_k) = \mathbf{P}\left(\bigcup_{n \ge 1} W_n \mid F_k\right)$$
$$= \sum_{n \ge 1} \mathbf{P}(W_n \mid F_k)$$

(decomposition: you win by winning on some throw n)

(additivity: the events W_n are mutually exclusive)

 $=\sum \mathbf{P}(W_n \mid F_k)$

 $=\sum \mathbf{P}(W_n \mid F_k)$

n>1

W := you win at craps.

(additivity: the events W_n are mutually exclusive)

(domain knowledge: you cannot win on the first throw

 F_k := the sum of face values on the *first* throw is k.

unless you throw 7 or 11)

k	p_k
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$P(W) = \mathfrak{p}_7 + \mathfrak{p}_{11} + \sum_{k \in \{4,5,6,8,9,10\}} P(W \mid F_k) \mathfrak{p}_k$$
 For $k \in \{4,5,6,8,9,10\}$:
$$P(W \mid F_k) = P\Big(\bigcup_{i=1}^n W_i \mid F_k\Big) \qquad \text{(decomposition: you win by winning on some throw n)}$$

W := you win at craps.

 F_k := the sum of face values on the *first* throw is k.

 $W_n := \text{you win on the nth throw.}$

k	рk
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$P(W) = p_7 + p_{11} + \sum_{k \in \{4, 5, 6, 8, 9, 10\}} P(W \mid F_k) p_k$$
For $k \in \{4, 5, 6, 8, 9, 10\}$:

$$\begin{split} \mathbf{P}(W \mid F_k) &= \mathbf{P}\Big(\bigcup_{n \geq 1} W_n \mid F_k\Big) & \text{(decomposition: you win by winning on } \textit{some } \textit{throw } n) \\ &= \sum_{n \geq 1} \mathbf{P}(W_n \mid F_k) & \text{(additivity: the events } W_n \textit{ are mutually exclusive)} \end{split}$$

(domain knowledge: you cannot win on the first throw unless you throw 7 or 11)

Evaluate $P(W_n | F_k)$ when k = 4, 5, 6, 8, 9, or 10.

 $= \sum P(W_n \mid F_k)$