5

2.37

Prove that $x^3 + x + 1$ is irreducible in $\mathbb{F}_2[x]$.

✓ Answer ∨

In order for x^3+x+1 to be irreducible, it must not be divisible by x or x+1. Since $x^3+x+1=(x^2+1)(x)+1=(x^2+x)(x+1)+1$, and 1 is not divisible by x or x+1, our polynomial is also not divisible.

Thus, our polynomial is irreducible.

2.38

The multiplication table for the field $\mathbb{F}_2[x]/(x^3+x+1)$ is given in Table 2.5, but we have omitted fourteen entries. Fill in the missing entries.

×	0	1	\boldsymbol{x}	x^2	1+x	$1+x^2$	x +
0	0	0	0	0	0	0	0
1	0	1	x	x^2	1+x	$1+x^2$	x +
x	0	x	x^2	1+x	$x + x^2$	1	1 +
x^2	0	x^2	1+x	$x + x^2$	$1 + x + x^2$	x	1+
1+x	0	1+x	$x + x^2$	$1 + x + x^2$	$1+x^2$	x^2	1
$1+x^2$	0	$1+x^2$	1	x	x^2	$1 + x + x^2$	1 +
$x + x^2$	0	$x + x^2$	$1 + x + x^2$	$1+x^2$	1	1+x	\boldsymbol{x}
$1+x+x^2$	0	$1+x+x^2$	$1+x^2$	1	x	$x + x^2$	x^2

(last column may be cut off in the pdf export, the table is diagonally symmetric however)