LABEL-FREE NODE CLASSIFICATION ON GRAPHS WITH LARGE LANGUAGE MODELS (LLMS)

Graph data are everywhere

Social Graphs

Molecular Graphs

Transportation Graphs

Web Graphs

Brain Graphs

Gene Graphs

Node Classification is a crucial task for graph

Paper Categorization

Product Classification

Fraud Detection

Semi-supervised node classification on graphs

Semi-supervised node classification on graphs

Graph neural networks work well for this task with abundant ground truth labels

Two assumptions

Actively select training nodes based on some strategies

Studied by graph A fixed training set active learning

Overlook the data selection process

Overlook the intricacy of (graph) data annotation

How can we get high-quality annotations?

The old story: Human Annotation

Crowdsourcing platform (like Amazon MTurk) is one of the most popular ways to do annotations

Annotating graph data is challenging

^{*} Zhu, Qi, et al. "Shift-robust gnns: Overcoming the limitations of localized graph training data." *Advances in Neural Information Processing Systems* 34 (2021): 27965-27977.

LLMs as annotators for graphs?

In recent literature*, LLMs present promising zeroshot performance on node classification tasks

Cannot utilize graph structure Limitations Performance gap to well-trained GNNs

Expensive & slow for inference

Using LLMs as annotators for GNNs seems a plausible way to harness the strength of both GNNs and LLMs!

Chen, Zhikai, et al. "Exploring the potential of large language models (Ilms) in learning on graphs." arXiv preprint arXiv:2307.03393 (2023).

New challenges

Optimize the trained GNN performance

Label-free node classification on graphs with LLMs

Implementation

LLM-GNN supports flexible component design

The key part is how to consider the following two factors simultaneously (we show one possible implementation)

- Diversity & Representativeness

 Can be addressed by graph active learning

 Annotation quality

 We propose
 - 1. Difficulty-aware active selection
- 2. Confidence-aware prompt + Post filtering

Implementation

Difficulty-aware active node selection

In the selection stage, only feature and structure is available

We induce the difficulty of annotation by the rule of thumb

The difficulty of annotation can be induced from density of nodes in the feature space

Distance of nodes to their closest clustering centers (CC)

Difficulty-aware active node selection

If we group and sort nodes with their distances to each one's CC

difficulty) to those nodes closer to their CC

Intuition: Closer to CC indicating nodes with more "common" features, it may be easier for LLMs to annotate "common" nodes

Difficulty-aware active node selection

Our methods: Combining difficulty-aware metrics with traditional graph active learning metrics

$$f_{act}(v_i) = \frac{1}{1 + ||x_{v_i} - x_{CC_i}||}$$

Then, use ranking aggregation to combine metrics considering, more robust to scale differences

$$f_{act}(v_i) = \alpha_0 r_{f_{act}(v_i)} + \alpha_1 r_{CDensity(v_i)}$$

With proper hyper-parameters, we can get a good trade-off between diversity/representativeness and annotation difficulty

Confidence aware prompts + post filtering

We sort nodes with their confidence and the higher confidence, the higher annotation quality, which shows the effectiveness of our hybrid strategy

Post filtering

We may further use confidence to post-select nodes

However, directly selecting nodes with top confidence may cause problems

Diversity of the selected set is overlooked

In post-filtering stage, we can directly use label distributions to measure diversity

Post filtering

We propose a new metric *Change of Entropy* \tilde{y} : LLMs' annotations; V_{sel} : the selected set of nodes; H: Shannon's entropy

$$COE(v_i) = H(\widetilde{y}_{V_{sel} - \{v_i\}}) - H(\widetilde{y}_{V_{sel}})$$

Then, we still use rank aggregation to combine COE and LLMs' confidence

$$f_{filter}(v_i) = \beta_0 r_{f_{conf}(v_i)} + \beta_1 r_{COE(v_i)}$$

Each time, the node with the smallest f_{filter} will be dropped and COE will be recomputed, until a ratio γ is reached

Overview of the experimental results

RQ1: Difficulty-aware active selection (DA), Post filtering (PS), and combining DA with PS, which one is most effective?

RQ2: How does our pipeline compare to other label-free classification methods

RQ3: Advantages and limitations of our methods

How to combine DA, PS, and graph active learning to achieve the best results?

Observation 0: Directly using C-Density to select nodes will suffer from the diversity problem

	CORA	CITESEER	Ривмер	WikiCS	OGBN-ARXIV	OGBN-PRODUCTS
Random	70.48 ± 0.73	65.11 ± 1.12	75.64 ± 2.15	62.30 ± 1.73	64.59 ± 0.16	70.59 ± 0.60
C-Density	42.22 ± 1.59	64.98 ± 1.15	39.76 ± 0.00	57.77 ± 0.85	44.08 ± 0.39	8.29 ± 0.00
PS-Random	69.83 ± 0.81	66.62 ± 0.72	73.77 ± 4.08	62.92 ± 2.18	64.18 ± 0.08	71.60 ± 0.34

C-Density can get very good annotation quality: near 90% accuracy across datasets, however, the label distribution will be imbalanced

Observation 1: integrating DA and PS can both enhance the performance of graph active learning methods

	CORA	CITESEER	Ривмер	WIKICS	OGBN-ARXIV	OGBN-PRODUCTS
Pagerank	70.31 ± 0.42	61.21 ± 0.11	68.58 ± 0.14	67.13 ± 0.46	59.52 ± 0.03	69.87 ± 0.32
DA-Pagerank Pagerank	$\begin{array}{c} 72.79 \pm 0.29 \\ 72.92 \pm 0.26 \\ 12.19 \pm 0.37 \end{array}$	60.44 ± 0.40 61.87 ± 0.15 60.30 ± 0.15	$\frac{75.02 \pm 0.77}{757 \pm 0.31}$	67.13 ± 0.80	58.82 ± 0.52 19.30 ± 0.21 10.12 ± 0.23	48.11 ± 0.13 72.57 ± 0.38 1.48 ± 0.39
PS-DA-Pagerank	72.19 ± 0.37	60.36 ± 0.13	/5.41 ± 0.19	69.14 ± 0.2		
result in DA-AGE	Dette 7.30 71.56 ± 0.37	57.18 ± 0.72	62.81 ± 1.84	58.67 ± 0.31	48.21 ± 0.80	Sty63+0d 5 60.03 ± 0.11
PS-DA-AGE	62.3 ± 0.19	60.94 ± 0.05 56.38 ± 0.14	64.61 ± 0.29	59.74 ± 0.19	$\frac{10.010 \pm 0.00}{50.33 \pm 0.39}$	67.21 ± 0.39
T We tue	9603 Ham 9	0.33±0.40	3.97 ± 0.94			ross _{OOT}
datasets.	72.06 + 0.35 72.34 15.9 S	C 2.4 D ±0.25	76.97 ± 0.29 71.769 0.29	68 56 +0 39		y leveraging
the base of the ba	Separab 69.4 ± 2.08	69.39 ± 1.05	78. Ped 11 67.36 ± 4.31	71.32 ± 0.81	hence re	quiring
PS-DA Graph Part		78.00± P.S 63.570± 4.14	78.45 ± 1.11 66.78 ± 4.14	5674 #116e 69.10 ± 2.46	ringorso i	t requires
PS-FeatProp	75.54 ± 0.34	69.06 ± 0.32	ong ing 3 74.98 ± 0.35	as 7 effe 66.09 ± 0.35	$ \begin{array}{c} 1 & 0.07 \\ \underline{66.14 \pm 0.27} \end{array} $	74.04 ± 0.15 74.91 ± 0.17

Observation 3: combining FeatProp with PS presents promising performance and efficiency

	CORA	CITESEER	PUBMED	WIKICS	OGBN-ARXIV	OGBN-PRODUCTS
Pagerank	70.31 ± 0.42	61.21 ± 0.11	68.58 ± 0.14	67.13 ± 0.46	59.52 ± 0.03	69.87 ± 0.32
DA-Pagerank	$\frac{72.79 \pm 0.29}{22.02 \pm 0.26}$	60.44 ± 0.40	$\frac{75.02 \pm 0.77}{65.02 \pm 0.31}$	67.13 ± 0.80	58.82 ± 0.52	48.11 ± 0.13
PS-Pagerank	72.92 ± 0.26	63.87 ± 0.15	67.57 ± 0.31	70.22 ± 0.41	59.30 ± 0.21	70.57 ± 0.38
PS-DA-Pagerank	72.19 ± 0.37	60.36 ± 0.14	73.41 ± 0.19	69.14 ± 0.29	60.12 ± 0.29	51.48 ± 0.39
AGE	69.15 ± 0.38	54.25 ± 0.31	74.55 ± 0.54	55.51 ± 0.12	46.68 ± 0.30	65.63 ± 0.15
DA-AGE	71.56 ± 0.37	57.18 ± 0.72	62.81 ± 1.84	58.67 ± 0.31	48.21 ± 0.80	60.03 ± 0.11
PS-AGE	72.30 ± 0.13	63.04 ± 0.18	70.84 ± 0.76	64.00 ± 0.37	50.63 ± 0.19	68.69 ± 0.13
PS-DA-AGE	71.53 ± 0.19	56.38 ± 0.14	64.61 ± 0.29	59.74 ± 0.19	50.55 ± 0.39	67.21 ± 0.39
RIM	68.28 ± 0.38	63.06 ± 0.11	76.48 ± 0.16	67.06 ± 0.16	OOT	OOT
DA-RIM	75.00 ± 0.35	60.33 ± 0.40	63.97 ± 0.94	66.95 ± 0.01	OOT	OOT
PS-RIM	72.96 ± 0.35	62.43 ± 0.25	76.97 ± 0.29	68.56 ± 0.39	OOT	OOT
PS-DA-RIM	72.34 ± 0.19	65.21 ± 0.17	71.76 ± 0.29	$\overline{63.23 \pm 0.29}$	OOT	OOT
GraphPart	69.54 ± 2.18	66.59 ± 1.34	78.52 ± 1.34	67.28 ± 0.87	OOT	OOT
DA-GraphPart	69.34 ± 2.08	69.39 ± 1.05	67.36 ± 4.31	71.32 ± 0.81	OOT	OOT
PS-GraphPart	69.26 ± 0.19	70.00 ± 0.35	78.45 ± 1.12	$\overline{67.74 \pm 0.32}$	OOT	OOT
PS-DA-GraphPart	66.64 ± 2.26	$\overline{63.57 \pm 4.14}$	66.78 ± 4.14	$\overline{69.10 \pm 2.46}$	OOT	OOT
FeatProp	72.82 ± 0.08	66.61 ± 0.55	76.28 ± 0.13	64.17 ± 0.18	66.06 ± 0.07	74.04 ± 0.15
PS-FeatProp	75.54 ± 0.34	69.06 ± 0.32	74.98 ± 0.35	66.09 ± 0.35	66.14 ± 0.27	74.91 ± 0.17

Observation 4: PS is more robust to hyper-parameter selection compared to DA

	CORA	CITESEER	Ривмер	WIKICS	OGBN-ARXIV	OGBN-PRODUCTS
		ct identica	a lé vé ight f	or eath pa	rtg which m	ea 6887 ± 0.32
DA-Pagerank Pageran 1	$\frac{72.79 \pm 0.29}{72.92 \pm 0.26}$	60.44 + 0.40 $63.87 + 0.15$	75.02 ± 0.77 -67.57 SONC	67 13 ± 0.80	58.82 ± 0.52 no.yalidat i	48.11 ± 0.13 On 7 6.0 ± 0.38
PS-DA-Pagerank	72.19 ± 0.37	60.36 ± 0.14	73.41 ± 0.19	69.14 ± 0.29	60.12 ± 0.29	$\overline{51.48 \pm 0.39}$
AGE	69.15 ± 0.38	54.25 ± 0.31	74.55 ± 0.54	55.51 ± 0.12	46.68 ± 0.30	65.63 ± 0.15
DA-AGE	71.56 ± 0.37	57.18 ± 0.72	62.81 ± 1.84	58.67 ± 0.31	$\frac{48.21 \pm 0.80}{50}$	60.03 ± 0.11
PS-DA-AGE	71.53 ± 0.19	56.38 ± 0.14		60acros 59.74 ± 0.19	50.55 ± 0.39	568 44 h 1.6 67.21 ± 0.39
DANOTTEN	needs	PESPER 1	iyaşı _{o. P} a	aramete	r towork	Well _{OT}
DA-RIM	75.00 ± 0.35	60.33 ± 0.40	63.97 ± 0.94	66.95 ± 0.01	OOT	OOT
PS-RIM	72.96 ± 0.35	62.43 ± 0.25	76.97 ± 0.29	68.56 ± 0.39	OOT	OOT
PS-DA-RIM	72.34 ± 0.19	65.21 ± 0.17	71.76 ± 0.29	63.23 ± 0.29	OOT	OOT
Werfind fo	r ⁶ p foper	hýper-pa	rameters	tuned on	testata	set), DA -
DA GraphPart AGE ap P	69 34 ± 2 08		67.36 ± 4.31 e%.9 5 g 0.02d	71.32 ± 0.81	oot ance acros	s datasets
PS-DA-GraphPart	66.64 ± 2.26	63.57 ± 4.14	66.78 ± 4.14	69.10 ± 2.46	OOT	OOT
FeatProp	72.82 ± 0.08	66.61 ± 0.55	76.28 ± 0.13		66.06 ± 0.07	74.04 ± 0.15
PEUPWtPLQ TI	n <u>a.sprop</u> e	<u> 69 param</u>	eter miti	icut a.Va	lication 5	et <u>mor±b/A</u>

is a future direction

RQ2 Comparison to other label-free baselines

Obparietion & Graphared to traditional label free lassifines based on filth and smaller scale Lampute in prasent much better performance methods with * are taken from Li & Hooi (2023). Notably, the time cost of LLMs is proportional to the expenses.

Compared to LLM-based baselines, our pipeline can achieve similar with results with wear costs and scale costs.

massive datasets	Acc	Cost	Acc	Cost
SES(*)	13.08	N/A	6.67	N/A
TAG-Z(*)	37.08	N/A	47.08	N/A
BART-large-MNLI	13.2	N/A	28.8	N/A
LLMs-as-Predictors	73.33	79	75.33	1572
LLM-GNN	66.14	0.63	74.91	0.74

RQ3 Advantages and limitations of our methods

Observation 5: The characteristic of our method is that it can achieve a decent model with a very low annotation cost.

Conclusion

We propose a new pipeline LLM-GNN which can harness the strength of both LLMs and GNNs

We present an implementation of the pipeline with difficultyaware selection, confidence-aware prompts, and postfiltering

Our methods present promising effectiveness across different datasets and scale to large datasets with very low costs

Future Directions

Extended to more types of graphs without text attributes. (A recent paper* provides a solution)

Combined with weak supervision to handle more challenging annotations tasks

Hybrid annotation with both human beings and LLMs

* Zhao, Jianan et al. "GraphText: Graph Reasoning in Text Space." (2023).

