МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.6.1

Интерференция электромагнитных волн милиметрового диапазона

Выполнили: Гисич Арсений Айрапетян Микаел Б03-102

1 Аннотация

В данной работе изучается интерференция электромагнитных волн миллиметрового диапазона с применением двух оптических интерференционных схем, экспериментальное определение длины волны излучения и показателя преломления диэлектрика

2 Теоретические сведения

Если в некоторой точке пространства происходит суперпозиция двух когерентных одинаково поляризованных волн с интенсивностями I_1 и I_2 и с разностью фаз φ , то интенсивность I результирующего колебания определяется соотношением

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \varphi$$

Интенсивность максимальна при $\varphi = 2\pi m$, минимальна при $\varphi = (2m+1)\pi$ (m=0,1,2,... — порядок интерференции)

3 Экспериментальная установка

Источником миллиметровых волн является генератор на клистроне — специальной лампе, генерирующей сверхвысокочастотные колебания. Из клистрона энергия волны подается в прямоугольный волновод. Волноводом называется полая металлическая труба, используемая в СВЧ-диапазоне волн для передачи энергии. Клистрон возбуждает в волноводе электромагнитную волну, которая распространяется вдоль волновода и с помощью рупорной антенны излучается в пространство. Задача антенны заключается в том, чтобы сделать излучение более направленным. Направленность антенны характеризуют шириной её диаграммы направленности. Чем шире раскрыв рупорной антенны, тем уже ее диаграмма направленности.

Отражённое от препятствия электромагнитное излучение, попадая в рупорную антенну приемника, распространяется по волноводу, в котором имеется детектор высокочастотных колебаний, работающий в квадратичном режиме. Поэтому ток детектора пропорционален интенсивности I волны, попадающей в приемную антенну. Сигнал с выхода детектора усиливается и измеряется микровольтметром. Принципиальная схема приёмнопередающего тракта представлена на рис. 1.

Рис. 1: Приёмно-передающая система СВЧ-диапазона

Применяемый в настоящей работе передатчик излучает линейно поляризованную волну, электрический вектор **E** которой перпендикулярен широкой стенке волновода. Приемник также может принимать только линейно поляризованную волну. Для установления связи в системе, изображенной на рис. 1, необходимо, чтобы широкие стенки волноводов передатчика и приемника были параллельны друг другу. Если одну из антенн повернуть

относительно луча на некоторый угол α , интенсивность принимаемого сигнала будет изменяться по закону Малюса

$$I = I_0 \cos^2 \alpha$$

3.1 Интерференция радиоволн, отражённых от зеркала и решётки

Схема установки, используемой для этого опыта, приведена на рис. 2.

Металлическое зеркало З и проволочная решетка Р устанавливаются на некотором расстоянии d друг от друга с помощью специальных фиксаторов. Приемная и передающая антенны располагаются симметрично, так чтобы в приемник попадала отраженная волна. Волна, излучаемая передающей антенной, частично отражается от решетки, а частично проходит через нее и отражается от зеркала. Зеркало может перемещаться при помощи микрометрического винта.

Между волнами, отраженными от решетки и от зеркала, возникает разность хода, равная

$$\triangle = 2d\cos\theta$$
.

При изменении разности хода (при изменении d) интенсивность волны в точке приема изменяется в соответствии с формулой (1)

3.2 Интерферометр Майкельсона

В этом опыте используется установка, моделирующая оптический интерферометр Майкельсона (рис. 3). Зеркала З1 и З2 располагаются перпендикулярно осям передающей и приемной антенн, которые в свою очередь должны быть взаимно перпендикулярны. Решетка Р располагается на пересечении осей под углом 45° к ним. Волна от передающей антенны расщепляется на решетке на две волны, распространяющиеся в направлении зеркал З1 и З2. После отражения от зеркал обе волны возвращаются к решетке. Каждая из этих волн после вторичного расщепления на решетке Р частично попадает в приемную антенну.

Разность хода Δ возникает вследствие различия в расстояниях l_1 и l_2 между решеткой Р и зеркалами 31 и 32:

$$\triangle = 2(l_2 - l_1).$$

При изменении длины одного из плеч интерферометра (при перемещении соответствующего зеркала) интенсивность в точке приема изменяется в соответствии с формулой (1).

Если на пути одного из лучей поставить пластинку толщиной d_0 с диэлектрической проницаемостью ε , разность хода изменится на величину $2d_0(n-1)$, где $n=\sqrt{\varepsilon}$ — показатель преломления вещества, из которого сделана пластинка. Это приводит к изменению интенсивности в точке приема. Пусть в точке приема до внесения пластинки наблюдался интерференционный максимум. Для того чтобы получить тот же максимум при наличии пластинки, нужно зеркало свободного плеча интерферометра (плеча, в котором нет пластинки) отодвинуть на расстояние Δx_0 , определяемое выражением

$$\triangle x_0 = d_0(n-1).$$

Зная $\triangle x_0$, можно определить показатель преломления.

Рис. 2: Интерференция волн СВЧ в плоскопараллельной пластине

Рис. 3: Интерферометр Майкельсона на CBЧ

4 Используемое оборудование

- приёмно-передающая система радиоволн миллиметрового диапазона
- металлические зеркала
- микрометрический винт
- проволочная решётка
- пластина из диэлектрика

5 Результаты измерений и обработка данных

5.1 Проверка закона Малюса

- 1. Расположим рупоры как показано на рис. 2, настроим установку на максимум интенсивности методом последовательных приближений.
- 2. Снимем зависимость уровня сигнала I от угла поворота α приёмной антенны относительно луча, убедимся, что излучаемая электромагнитная волна линейно поляризована
- 3. Построим графики зависимости уровня сигнала I от $\cos^2 \alpha$, убедимся в справедливости закона Малюса (2)

Зависимость уровня сигнала I от угла поврота приёмной антенны lpha относительно луча

Рис. 4: Зависимость I от $\cos^2 \alpha$

5.2 Интерференция волн, отражённых от зеркала и решётки

- 1. Закрепим на фиксаторах перед зеркалом металлическую решётку, убедимся, что при перемещении зеркала уровень сигнала в точке приёма изменяется
- 2. Снимем зависимость интенсивности I от координаты x подвижного зеркала. Построим график зависимости I(x)

Рис. 5: График зависимости интенсивности сигнала от координаты подвижного зеркала Длина волны, определённая по этому графику — $\lambda_1=4.254$ мм. Длина волны по частотогенератору: $\lambda_0=8.152$ мм (частота 36.8 ГГЦ).

5.3 Интерферометр Майкельсона

- 1. Соберём схему интерферометра Майкельсона согласно рис. 3, настроим установку на максимум сигнала.
- 2. Перемещая подвижное зеркало 32, снимем зависимость координаты x_m в точке интерференционного максимума от номера максимума m, построим график зависимости $x_m = f(m)$

Рис. 6: График зависимости координаты подвижного зеркала от номера интерференционного максимума

По графику определим длину волны: $\lambda_2 = 7.834$ мм

- 3. Измерим интенсивности в плечах интерферометра $I_1=10$ мкВ, $I_2=14$ мкВ. Тщательно промерим один период интерференции.
- 4. Поместим перед подвижным зеркалом 32 тефлоновую пластину толщиной 3.2 мм. Смещение интерференционного максимума от прежнего положения составляет 2.57 мм. По формуле (5) определим показатель преломления тефлона: $n_1=1.8$. Табличное значение: $n_0=1.4$

Рис. 7: График Зависимости интенсивности от разности хода. Теоретическая и экспериментальная зависимость

6 Вывод

В ходе работы была изучена интерференция электромагнитных волн миллиметрового диапазона с помощью оптических схем. Несколькими способами определена длина волны:

$$\lambda_0 = 8.152$$
 мм (частотогенератор) $\lambda_1 = 4.254$ мм (интерференция с решёткой) $\lambda_2 = 7.834$ мм (интерферометр Майкельсона)

Существенное расхождение второго результата может быть связано с люфтом микрометрического винта на подставке зеркала или некорректной интерпретацией экспериментальных данных.

Также был определен показатель преломления тефлона:

$$n_{th} = 1.4 \qquad n_{ex} = 1.8$$