BCD to GRAY CONVERSION

Navya Valmeekam

August 2022

 $\mathbf{2}$

Assignment No.1 Valmeekam Navya

Contents

1 BCD to GRAY Conversion

2 Karnaugh Map

Abstract

This manual explains BCD to GRAY code conversion by finding boolean equations.

1 BCD to GRAY Conversion

The BCD to GRAY code converter takes the numbers 0, 1, . . . , 9 in binary as inputs and generates the converted number as output. Make connections as shown in table 1. Gray code – also known as Cyclic Code, Reflected Binary Code (RBC), Reflected Binary (RB) or Grey code.

Problem : - Implement BCD to GRAY conversion

Connections :-

Arduino	2	3	4	5	6	7	8		
Display	a	b	c	d	е	f	g		
TD 11 1									

Figure 1

2 Karnaugh Map

Using Boolean logic or kmaps, G0, G1, G2, G3 in the truth table can be expressed in terms of the inputs A,B,C,D

11,2,0,2											
$\setminus CD$											
AB	00	01	11	10							
00	0	1	0	1							
01	0	1	0	1							
11	0	0	0	0							
10	0	1	0	0							

Kmap for G0

$$G0 = A'C'D + A'CD' + AB'C'D$$
 (1)

kmap for G2

$$G2 = A'B + AB'C' \tag{3}$$

AB cL	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	0	0	0	0	
10	1	1	0	0	

Kmap for G3

$$G3 = AB'C' \tag{4}$$

$$G1 = A'BC' + A'B'C \tag{2}$$

Using Boolean logic or kmaps, a,b,c,d,e,f,g in the truth table can be expressed in terms of G0,G1,G2,G3 as:

$$a = G0'G1'G2G3' + G0G1'G2'G3'$$

$$b = G0'G1'G2G3 + G0'G1G2G3' +$$

$$G0G1'G2G3' (6)$$

$$c = G0'G1G2'G3' + G0'G1'G2G3 \ \ (7)$$

$$d = G0'G1'G2G3' + G0G1G2G3'$$

Kmap for e

$$e = G0G3' + G0G2G3' (9)$$

Kmap for f

$$f = G0G2'G3' + G1G2'G3' + G0G1G3'$$
(10)

Kmap for g

$$g = G1'G2'G3' + G1'G2G3 + G0G1G2G3'$$
(11)

Truth Table :-

			utii	Tabl	·-									
A	В	С	D	G3	G2	G1	G0	a	b	$^{\mathrm{c}}$	d	e	f	g
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1	1	0
0	0	1	1	0	0	1	0	0	0	1	0	0	1	0
0	1	0	0	0	0	1	1	0	1	0	0	0	0	0
0	1	0	1	0	1	1	1	0	0	0	1	1	1	1
0	1	1	0	0	1	0	1	0	1	0	0	1	0	0
0	1	1	1	0	1	0	0	1	0	0	1	1	0	0
1	0	0	0	1	1	0	0	0	1	1	0	0	0	1
1	0	0	1	1	1	0	1	0	0	0	0	0	0	1

Make the connections and execute the following code. And verify the truth table.

https://github.com/NavyaValmeekam/Assignment- $1/\text{blob/main/A1}_g ray/src/main.cpp$