The installation of vasp

Shuai Qu (Dated: September 19, 2019)

The Vienna Ab initio Simulation Package, better known as VASP, is a package for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set. The basic methodology is density functional theory (DFT), but the code also allows use of post-DFT corrections such as hybrid functionals mixing DFT and Hartree-Fock exchange, many-body perturbation theory (the GW method) and dynamical electronic correlations within the random phase approximation.

INTEL COMPILER

First of all, we need to install intel comiler with parallel studio from https://software.intel.com/zh-cn/ parallel-studio-xe.

```
1 tar -xzvf parallel_studio (Tab)
```

- 2 cd parallel_studio (Tab)
- 3 su root
- 4 ./install_GUI.sh

The destination folder is /opt/intel. The serial number

$$S4ZD - XRZCDJ6Z$$
 (1)

Then we configurate the environment as root in \sim /.bashrc.

- 1 su root
- 2 source /opt/intel/parallel_studio (Tab) /psxevars.sh
- 3 source /opt/intel/bin /compilervars.sh intel64
- 4 source /opt/intel/impi/2019 (Tab) /intel64/bin/mpivars.sh
- 5 gedit ~/.bashrc
- add at the end
- (1) #for mkl mpi
- (2) source /opt/intel/parallel_studio (Tab) (14) FC = mpiifort /psxevars.sh
- (3) source /opt/intel/bin /compilervars.sh intel64
- (4) source /opt/intel/impi/2019 (Tab) /intel64/bin/mpivars.sh
- (5) #end

The (Tab) means auto-completion.

FAST FOURIER TRANSFORM ALGORITHM

Before we install vasp, we need to install FFT.

1 su root 2 cd /opt/intel /compilers_and_libraries_2019 (Tab) /linux/mkl/interfaces/fftw3xf 3 make libintel64

- We suggest that you download fftw from http://www. fftw.org at the same time.
- 1 su root
- 2 tar -xzvf fftw -3.3.8.tar.gz
- 3 cd ffte -3.3.8
- 4 ./configure prefix=/opt/fftw/ CC=icc F77=ifort MPICC=mpiicc ---enable-mpi
- 5 make
- 6 make install

VASP INSTALLATION

VASP is business software not open source. We suggest you purchase it through formal channels.

At the beginning, we need to modify the makefile.include. You could use https://cms.mpi.univie. ac.at/wiki/index.php/Installing_VASP as a reference.

- 1 su root
- 2 tar -xzvf vasp.5.4.4.tar.gz
- 3 cd vasp.5.4.4
- 4 cp arch/makefile.include.linux.intel makefile.include
- 5 gedit makefile.include change the content
- (15) FCL =mpiifort -mkl
- (20) OFLAG = -02 -xhost
- (25) BLAS = -L\$ (MKLPATH) $-lmkl_intel_lp64$ -lmkl_sequential -lmkl_core -lpthread
 - -lmkl_blacs_intelmpi_lp64
 - -lmkl_scalapack_lp64
- (30) OBJECTS = fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o \
- (31) /opt/fftw/lib/libfftw3_mpi.a
- (32) INCS =-I/opt/fftw/include

Then we install the vasp.

- 1 su root
- 2 make all
- 3 cd vasp.5.4.4/bin
- 5 gedit ~/.bashrc add at the end

#for vasp export PATH=\$PATH:/home/qs/vasp.5.4.4/bin #end After the installation, there are vasp_gam, vasp_ncl, vasp_std. And you need INCAR, KPOINTS, POSCAR, POTCAR, before run vasp.

 $1 \hspace{0.1cm} mpirun \hspace{0.1cm} -np \hspace{0.1cm} 4 \hspace{0.1cm} vasp_std$