Wymiar Murray'a - von Neumanna

Uwaga 1. Chcemy zdefiniować \dim_G na Hilbertowskich G-modułach t, że:

- $\dim_G M \geqslant 0$
- $\dim_G M = 0 \iff M = 0$
- $\dim_G M = \dim_G N$ jeśli $M \simeq N$
- $\dim_G M \oplus N = \dim_G M + \dim_G N$
- $\dim_G M \leq \dim_G N$ jeśli $M \leq N$
- $\dim_G \ell_2(G) = 1$
- $\bullet \ \dim_G M = \frac{1}{|G|} \dim_{\mathbb{R}} M$ dla G skończonej
- $\bullet \ \dim_G M = \frac{1}{[G:S]} \dim_G M$ jeśli $S \leqslant G$ podgrupa skończonego indeksu

Definicja 2 (algebra von Neumanna). Algebrą von Neumanna grupy G nazywamy algebrą $\mathcal{N}(G)$ ograniczonych (lewo-) G-ekwiwariantnych operatorów $T: \ell_2(G) \to \ell_2(G)$ (takich, że $\forall_{g \in G} T \lambda_g = \lambda_g T$).

 $\ell_2(G)$ jest bimodułem nad $\mathbb{R}G$ (przez prawe i lewe działanie).

Uwaga 3. $\mathbb{R}G \subseteq \mathcal{N}(G)$.

Stwierdzenie 4. $\phi \in \mathcal{N}(G) \implies \phi^* \in \mathcal{N}(G)$

Wniosek 5. $\mathcal{N}(G)$ jest \mathbb{C}^* -algebrą.

Uwaga 6. Na $\mathbb{R}G$, $*: \sum r(g)g \mapsto \sum r(g)g^{-1}$.

Uwaga 7. Elementy $\mathbb{R}G$ jako macierze |G| na |G| są stałe na przekątnych $\{(g,h):g^{-1}h=\gamma\}$.

Definicja 8 (ślad). $\varphi \in \mathcal{N}(G)$, to $\operatorname{tr}_G(\varphi) = \langle \varphi(1), 1 \rangle$

Uwaga 9. Na $\mathbb{R}G$, $\varphi = \sum r(g)g$, $\operatorname{tr}_G(\varphi) = r(e)$.

Uwaga 10. Jeśli G skończona, to $\mathbb{R}G = \ell_2(G) = \mathcal{N}(G)$, φ odpowiada macierz M_{φ} stała na przekątnych, $\operatorname{tr}_G(\varphi) = \frac{1}{|G|}\operatorname{tr}(M_{\varphi})$.

Stwierdzenie 11. $\operatorname{tr}_G(\varphi) = \operatorname{tr}_G(\varphi^*)$

Lemat 12. \mathbb{R} -liniowe przekształcenie $\theta : \mathcal{N}(G) \to \ell_2(G), \ \theta(\varphi) = \varphi(1)$ jest włożeniem oraz $\theta(\varphi^*) = \overline{\varphi(1)}, \ gdzie \ \overline{f}(x) = f(x^{-1}).$

Wniosek 13. tr_G jest śladem na $\mathcal{N}(G)$, czyli $\operatorname{tr}_G(\varphi \circ \psi) = \operatorname{tr}_G(\psi \circ \varphi)$.

Ćwiczenie 14. Znaleźć opis $\mathcal{N}(G)$ oraz tr_G dla $G = \mathbb{Z}^n$.

Definicja 15. Niech $M_n(\mathcal{N}(G))$ algebra ograniczonych (lewo-) G-ekwiwariantnych operatorów na $\ell_2(G)^n$.

Operator $F \in M_n(\mathcal{N}(G))$ jest wyznaczony przez macierz $[F_{ij}]$, gdzie $F_{ij} \in \mathcal{N}(G)$ i spełnia $F(a_1, \ldots, a_n) = (\sum F_{1k}a_k, \ldots, \sum F_{nk}a_k) \in \ell_2(G)^n$.

Uwaga 16. Mamy $(F^*)_{ij} = F^*_{ji}$.

Definicja 17 (ślad). $\operatorname{tr}_G(F) = \sum_{i=1}^n \operatorname{tr}_G(F_{ii})$

Lemat 18. Jeśli $F = F^* \in M_n(\mathcal{N}(G)), F^2 = F, \text{ to } \operatorname{tr}_G(F) = \sum_{i,j} ||F_{ij}(1)||^2.$

Wniosek 19. $F \in M_n(\mathcal{N}(G))$ samosprzężony idempotentny, to $\operatorname{tr}_G F \geqslant 0$ oraz $\operatorname{tr}_G F = 0 \implies F = 0$.

Uwaga 20. To samo jest prawdą dla każdego F idempotentnego, bo wtedy dla π rzutu ortogonalnego na im F mamy ${\rm tr}_G\pi={\rm tr}_GF$.

Stwierdzenie 21. Jeśli $P \in \mathcal{N}(G)$ idempotentny, to $\operatorname{tr}_G(P) + \operatorname{tr}_G(\operatorname{Id} - P) = 1$, czyli $\operatorname{tr}_G P \leq 1$ oraz $\operatorname{tr}_G(P) = 1 \iff P = \operatorname{Id}$.

Uwaga 22. Jeśli $P \in \mathbb{Z}G$ idempotentny, to $\operatorname{tr}_G P = 0$ lub $\operatorname{tr}_G P = 1$.

Wniosek 23. Jedynymi idempotentami w $\mathbb{Z}G$ są 0 oraz 1.

Hipoteza 24 (Kaplonsky). G beztorsyjna, to 0 i 1 są jedynymi idempotentami $w \mathbb{R}G$.

Fakt 25. $V \subseteq \ell_2(G)^n - G$ -niezmiennicza domknięta podprzestrzeń, π_V rzut ortogonalny z $\ell_2(G)$ na V.

Wtedy $\pi_V \in M_n(\mathcal{N}(G))$.

Definicja 26 (wymiar von Neumanna). V domknięta podprzestrzeń $\ell_2(G)^n$, to $\dim_G V = \operatorname{tr}_G \pi_V$

Stwierdzenie 27. π_B idempotent, czyli $\dim_G V \geqslant 0$ oraz $\dim_G V = 0 \implies V = 0$.

Definicja 28 (wymiar von Neumanna). Niech M-G-moduł Hilbertowski, ustalmy G-ekwiwariatną izometrię $\alpha: M \to V$, na $V \subseteq \ell_2(G)^n$ domkniętą podprzestrzeń.

Wtedy $\dim_G M = \dim_G V$.

Uwaga 29. Ta definicja nie zależy od wyboru α .

Wniosek 30. $\dim_G M \ge 0$ $\dim_G M = 0 \iff M = 0$

Wniosek 31. $\dim_G(M \oplus N) = \dim_G M + \dim_G N$

Wniosek 32. $\dim_G M = \frac{1}{[G:S]} \dim_S M \text{ dla } S \subseteq G, [G:S] < \infty.$

Definicja 33. Kompleks łańcuchowy G-modułów Hilbertowskich $V_*: \ldots \to V_{i+1} \to V_i \to V_{i-1} \to \ldots$ nazywamy $\ell_2(G)$ -kompleksem łańcuchowym, jeśli dla każdego $i, d_i: V_i \to V_{i-1}$ jest ograniczonym G-ekwiwariantnym operatorem.

Wówczas zredukowane kohomologie V_* są G-modułami Hilbertowskimi $\bar{H}_i(V_*) = \ker d_i / \operatorname{im} d_{i+1}$, zaś V_* nazywa się słabo-dokładny, jeśli $\forall_i \bar{H}_i(V_*) = 0$.

Definicja 34. $V_*, W_* - \ell_2(G)$ -kompleksy łańcuchowe.

- 1. Morfizmem $\phi_*: V_* \to W_*$ nazywamy morfizm kompleksów łańcuchowych $\{\phi_i: V_i \to W_i\}$, w którym operatory są G-ekwiwariantne i ograniczone.
- 2. Dwa morfizmy $\phi_*, \psi_*: V_* \to W_*$ są $\ell_2(G)$ -homotopijne, jeśli są homotopijne łańcuchowo przez homotopię łańcuchową składającą się z operatorów ograniczonych G-ekwiwariantnych.
- 3. Kompleksy V_*, W_* są $\ell_2(G)$ -homotopijne, jeśli istnieją morfizmy $\phi_* : V_* \to W_*, \psi_* : V_* \to W_*$ takie, że $\phi_*\psi_*$ i $\psi_*\phi_*$ są $\ell_2(G)$ -homotopijne z identycznością.

Wniosek 35. Morfizm $\phi_*: V_* \to W_*$ indukuje ograniczone G-ekwiwariantne operatory $\bar{H}_i(V_*) \to \bar{H}_i(W_*)$, które zależą jedynie od klasy homotopii ϕ_* .

Wniosek 36. Jeśli $\ell_2(G)$ -kompleksy łańcuchowe V_*, W_* są $\ell_2(G)$ -homotopijne, to moduły Hilbertowskie $\bar{H}_i(V_*), \bar{H}_i(W_*)$ są izomorficzne dla wszystkich i.

Definicja 37. Ciąg $U \to V \to W$ G-modułów Hilbertowskich nazywa się krótkim ciągiem słabo-dokładnym, jeśli $0 \to U \to V \to W \to 0$ jest słabo-dokładnym $\ell_2(G)$ -kompleksem łańcuchowym.

Fakt 38. Jeśli $\alpha:V\to W$ to G-ekwiwariantny operator G-modułów Hilbertowskich, to G-moduły Hilbertowskie $\overline{\alpha(V)}\subseteq W$, $(\ker\alpha)^\perp\subseteq V$ są izomorficzne oraz $(\ker\alpha)^\perp\simeq V/_{\ker\alpha}$.

Wniosek 39. $\dim_G V = \dim_G \ker \alpha + \dim_G \overline{\alpha(V)} = \dim_G \ker \alpha + \dim_G \left(V / \ker \alpha \right)$

Wniosek 40. $U \to V \to W$ słabo-dokładny krótki ciąg G-modułów Hilbertowskich, to $\dim_G V = \dim_G U + \dim_G W$.

Wniosek 41. Jeśli $V_*: 0 \to V_n \to \ldots \to V_0 \to 0$ jest $\ell_2(G)$ -kompleksem łańcuchowym G-modułów Hilbertowskich, to $\sum_i (-1)^i \dim_G V_i = \sum_i (-1)^i \dim_G \bar{H}_i(V_*)$.

Y to Δ -kompleks z wolnym kozwartym symplicjalnym działaniem grupy G.

Stwierdzenie 42. $C_*(Y) = \ell_2(G) \otimes_G K_*(Y)$ jest $\ell_2(G)$ -kompleksem łańcuchowym.

Definicja 43 (liczby Bettiego). $\beta_i(Y,G) = \dim_G \bar{H}_i(Y)$.

Stwierdzenie 44. 1. $\beta_i(Y,G)$ jest niezmiennikiem G-homotopii Y, jest też niezmiennikiem homotopii X = Y/G.

- 2. Jeśli $S \subset G$ podgrupa indeksu m, to $\beta_i(Y, S) = m\beta_i(Y, G)$.
- 3. $|G| < \infty$, to $\beta_i(Y, G) = \frac{1}{|G|} b_i(Y)$. W szczególności dla Y spójnego $\beta_0(Y, G) = \frac{1}{|G|}$.
- 4. Jeśli $|G| = \infty$, Y spójny, to $\beta_0(Y, G) = 0$.

Definicja 45 (liczby Bettiego). X spójny skończony Δ -kompleks, ℓ_2 -liczbą Bettiego $\beta_i(X)$ nazywamy $\beta_i(\tilde{X}, G)$, gdzie \tilde{X} nakrycie uniwersalne, $G = \pi_1(X)$ grupa podstawowa X.