

XGBoost, origines et applications

Damien DouTEAUX

SOMMAIRE

Applications Conclusion

Sommaire Aspects théoriques

Mise en œuvre

Aspects théoriques Mise en œuvre

Applications

Conclusion

OUTILS DE VEILLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Moteurs de recherche

Alertes mails

Réseaux sociaux

GÉNÉRALITÉS SUR XGBOOST

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion XGBoost: EXtreme Gradient Boosting

- Flexibilité Régression, classification,...
- Portabilité Windows, Linux, OS X
- Multi-langages Python, R, JAVA, C++, Scala,...
- Distribué Yarn, Spark, Flink, AWS, Azure,...
- Performance Optimisé et expensif

LE BOOSTING

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Une stratégie adaptative.
- Convertir des règles peu performantes en (très) bonne prédiction.
- Réduction variance et biais.
- Convergence rapide.
- Sensible au bruit.

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PREMIER MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

DEUXIÈME MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

TROISIÈME MODÈLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

VOTE MAJORITAIRE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

UN ARBRE SIMPLE (CART)

Does the person like computer games

Source: https://xqboost.readthedocs.io/en/latest/model.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PLUSIEURS ARBRES VALLENT MIEUX QU'UN

Source: https://xqboost.readthedocs.io/en/latest/model.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

CHOIX DE L'ARBRE À AJOUTER

 $\bullet \quad \textbf{Fonction objectif} \quad \text{obj}(\theta) = \textit{L}(\theta) + \Omega(\theta)$

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

CHOIX DE L'ARBRE À AJOUTER

• Fonction de perte
$$L(t) = \sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right]$$

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

CHOIX DE L'ARBRE À AJOUTER

$$\bullet \quad \text{Le gain} \quad \frac{1}{2} \left[\frac{G_{\text{L}}^2}{H_{\text{L}} + \lambda} + \frac{G_{\text{R}}^2}{H_{\text{R}} + \lambda} - \frac{(G_{\text{L}} + G_{\text{R}})^2}{H_{\text{L}} + H_{\text{R}} + \lambda} \right] - \gamma$$

$$G_L = g_1 + g_4$$

$$G_R = g_2 + g_3 + g_5$$

Source: https://xqboost.readthedocs.io/en/latest/model.html

Plus qu'une méthode de Boosting

Sommaire

Aspects théoriques

Mise en

Applications

Conclusion

- Prise en compte de la régularisation.
- Calcul en parallèle.
- Support de Hadoop.
- Possibilité d'adaptation des fonctions objectifs.
- Prise en charge des valeurs manquantes.
- Version améliorée de l'élagage
- Cross-validation native

PERFORMANCES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion La rapidité est le but initial de XGBoost :

- Mémoire Pas de mémoire dynamique.
- Cache Utilisation respectueuse.
- Amélioration modèle Voir précédemment.
- Conception Parallélisation en arrière plan.

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

SUR LE BOOSTING

1989 Boosting (R. Schapire)

1996 AdaBoost (Y. Freund et R. Schapire)

o 1999 GBM (L. Breiman puis J. Friedman)

2014 XGBoost (T. Chen)

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

POUR XGBOOST

- Mars 2014 Premières release
- Mai 2014 Python

SOUTCE: http://homes.cs.washington.edu/Eqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

POUR XGBOOST

- Mars 2014 Premières release
- Mai 2014 Python
- Septembre 2014 Parallélisation, R
- Mai 2015 YARN, gestion HDFS, SKLearn wrapper

scikit-learn
gridsearch

scikit-learn
classifier API

XGBoost Python

XGBoost

XGboost

R. caret
grid search
caret xgboost
adaptor

XGBoost R

XGboost

Source: http://homes.cs.washington.edu/tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xqboost.html

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Pour XGBoost

- Mars 2014 Premières release
- Mai 2014 Python
- Septembre 2014 Parallélisation, R
- Mai 2015 YARN, gestion HDFS, SKLearn wrapper
- Janvier 2016 API JAVA, amélioration R et Python
- Juillet 2016 C++11, JVM Package (JAVA et Scala)

SOUICE: http://homes.cs.washington.edu/tochen/2016/03/10/storv-and-lessons-behind-the-evolution-of-xaboost.html

DES SYNTAXES PROCHES

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

TROIS FAMILLES DE PARAMÈTRES

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

PARAMÈTRES GÉNÉRIQUES

Pour définir par exemple quelle méthode Boosting sera utilisée.

PARAMÈTRES LIÉS AU BOOSTING

Pour paramétrer le booster choisi.

PARAMÈTRES LIÉS À L'APPRENTISSAGE

Dépend de la tâche d'apprentissage (classification,...).

PARAMÈTRES GÉNÉRIQUES

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Booster Linéaire ou arbre.
- Silent Affichage de messages.
- Nthread Par défaut le maximum possible.

PARAMÈTRES LIÉS AU BOOSTING

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion Pour celui sur les arbres. Douze paramètres utiles...

- eta Contrôle du niveau d'apprentissage.
- Min_child_weight Pour contrôler l'over/under-fitting
- Max_depth Pour contrôler l'over-fitting.
- Subsample Fraction d'observations à utiliser pour les arbres.
- Lambda Pour de la régularisation.
- **⊙ ..**.

PARAMÈTRES LIÉS À L'APPRENTISSAGE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- Objective Fonction objectif à minimiser (linéaire, softmax, softprob,...).
- Eval_metric Métrique d'évaluation (erreur MSE, MAE, LogLoss, AUC,...).
- Seed Pour l'aléatoire.

QUELQUES BONNES PRATIQUE

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- 1. Fixer un niveau d'apprentissage élevé
- 2. Trouver le nombre optimal d'arbres
- 3. Gérer les paramètres des arbres.
- 4. Gérer les paramètres de régularisation.
- 5. Réduire le niveau d'apprentissage.

MÉDICAL: EXEMPLE DE LA GRIPPE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

Source: https://shiring.github.io/machine_learning/2016/12/02/flu_outcome_ML_2_post

CHALLENGES KAGGLE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion

- 1er Knowledge Discovery and Data Mining Cup 2016 (V. Sandulescu).
- 1er et 3ème CERN LHCb experiment Flavour of Physics competition 2015 (V. Mironov).
- 1er Caterpillar Tube Pricing competition (M. Filho).
- 2ème Airbnb New User Bookings (K. Kuroyanagi).
- 2ème Allstate Claims Severity (A. Noskov).
- 10% Higgs Boson Competition (T. Chen).
- ⊙ ...

UN EXEMPLE CONCRET

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Source: http://blog.kaggle.com/2017/02/27/all state-claims-severity-competition-2nd-place-winners-interview-alexey-noskov/severity-competition-2nd-place-winners-interview-alexey-noskov-severity-competition-2nd-place-winners-interview-alexey-noskov-severity-competition-2nd-place-winners-interview-alexey-noskov-severity-competition-2nd-place-winners-interview-alexey-noskov-severity-competition-2nd-place-winners-interview-alexe-winners-interview-alexe-winners-intervie

EN ENTREPRISE

Sommaire

Aspects théoriques

Mise en œuvre

Applications Conclusion Des données difficiles à obtenir...

- ODPS Cloud Service (Alibaba)
- Tencent (QQ)
- AutoHome
- AXA, Expedia, Amazon,...

CONCLUSION

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Une implémentation récente (2 ans).
- Une forte portabilité et de bonnes performances.
- Une utilisation industrielle qui semble se développer.
- Savoir-faire nécessaire pour la configuration

CONCLUSION

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

- Une implémentation récente (2 ans).
- Une forte portabilité et de bonnes performances.
- Une utilisation industrielle qui semble se développer.
- Savoir-faire nécessaire pour la configuration

Une solution qui semble avoir de l'avenir!

QUESTIONS

Sommaire

Aspects théoriques

Mise en œuvre

Applications

Conclusion

Merci pour votre attention Et place aux questions!

