

A negative ion of $_{53}^{131}I$ contains 78 neutrons and 54 electrons.

- 34 X is a non-cyclic ketone with a single carbonyl group and no other functional groups. Ketone X has the following properties.
 - When ketone X is treated with NaBH₄, the organic product has a M_r 2.3256% greater than the M_r of ketone X.
 - Ketone X gives a yellow precipitate with alkaline I₂(aq).

How many isomeric ketones could be ketone X?

A 1

B 2

C 3

D 4

35 Compound Y:

- changes the colour of acidified K₂Cr₂O₇ from orange to green
- has no effect on Fehling's reagent
- produces an orange precipitate with 2,4-dinitrophenylhydrazine reagent.

What is compound Y?

36 The product of the reaction between propanone and hydrogen cyanide is hydrolysed under acidic conditions.

What is the formula of the final product?

- A CH₃CH(OH)COOH
- B CH₃CH₂CH₂COOH
- C (CH₃)₂CHCONH₂
- D (CH₃)₂C(OH)COOH

37 P is a carboxylic acid with molecular formula C₅H₁₀O₂.

Carboxylic acid P reacts with an excess of LiAlH₄ to form compound Q.

Which pairs of molecules could be carboxylic acid P and compound Q?

2	carboxylic acid P	compound Q
1	CH ₃ (CH ₂) ₃ COOH	CH ₃ (CH ₂) ₃ OH
2	CH ₃ (CH ₂) ₃ COOH	CH ₃ (CH ₂) ₃ CHO
3	(CH ₃) ₃ CCOOH	(CH ₃) ₃ CCH ₂ OH

A 1 and 2

B 1 and 3

C 2 and 3

D 3 only

38 Compound X is treated with an excess of dilute aqueous potassium hydroxide.

What is the structure of the organic product?

39 A section showing two repeat units of an addition polymer is shown.

What is the identity of the monomer that produced this polymer?

- A 2-chloro-3-methylbutane
- B 2-chloro-3-methylbut-2-ene
- C 2-chloropent-2-ene
- **D** 2,4-dichloro-3,3,4,5-tetramethylhexane

40 The relative atomic mass of antimony is 121.76.

Antimony has **two** isotopes. The mass numbers of the two isotopes differ by two. The isotope with the lower mass number is the more abundant.

What is the percentage abundance of the isotope with the higher mass number?

- **A** 12%
- **B** 38%
- **C** 62%
- **D** 88%

BLANK PAGE

BLANK PAGE

BLANK PAGE

Important values, constants and standards

<u></u>	
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment, Cambridge Assessment is the brand name of the University of Cambridge

The Periodic Table of Elements

	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	131.3	98	R	radon	118	Og	oganesson -										
	17				6	Щ	fluorine 19.0	17	Cl	chlorine 35.5	35	B	bromine 79.9	53	П	iodine 126.9	85	Αt	astatine _	117	<u>L</u>	tennessine -										
	16				80	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium	116	_	livermorium -										
	15				7	z	nitrogen 14.0	15	<u>а</u>	phosphorus 31.0	33		arsenic 74.9					<u>B</u>		115	Mc	moscovium										
	14										9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	ŀΙ	flerovium				
	13				2	В	boron 10.8	13	Νſ	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	l_l	thallium 204.4	113	R	nihonium —										
										12	30	Zu	zinc 65.4	48	ပ္ပ	cadmium 112.4	80	윈	mercury 200.6	112	ပ်	copernicium										
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium										
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	풉	platinum 195.1	110	Ds	darmstadtium -										
Gro										တ	27	ပိ	cobalt 58.9	45	R	rhodium 102.9	77	Ţ	iridium 192.2	109	Μ	meitnerium -										
		-	I	hydrogen 1.0						∞	26	Ьe	iron 55.8	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium -										
				Te					7	25	Mn	manganese 54.9	43	JC	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium											
																	pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg
				Key	atomic number	atomic symbol	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium —										
						atc	rek			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	士	hafnium 178.5	104	¥	rutherfordium -										
										က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89-103	actinoids											
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ഗ്	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium _										
	-				က	<u>'</u>	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	<u>ٿ</u>	francium										

S
0
0
9
ŧ
岩

actinoids

71	3	lutetium 175.0	103	۲	lawrencium	1
70	Υp	ytterbium 173.1	102	9	nobelium	1
69	T	thulium 168.9	101	Md	mendelevium	3
89	ш	erbium 167.3	100	Fm	fermium	1
29	웃	holmium 164.9		Es	einsteinium	ī
99	ò	dysprosium 162.5	86	ರ	californium	1
65	Tp	terbium 158.9	26	ă	berkelium	1
64	gq	gadolinium 157.3	96	Cm	curium	ī
63	En	europium 152.0	95	Am	americium	1
62	Sm	samarium 150.4	94	Pu	plutonium	1
61	Pm	promethium -	93	ď	neptunium	ī
09	ρN	neodymium 144.4	92	⊃	uranium	238.0
59	Ā	praseodymium 140.9	91	Ра	protactinium	231.0
58	Ce	cerium 140.1	06	Th	thorium	232.0
25	Га	lanthanum 138.9	88	Ac	actinium	1

40 Measles is an infectious disease caused by a virus.

The graph shows the number of cases of measles each year in a country before and after a vaccine was introduced.

What could have caused the decrease in the number of cases of measles after vaccination was introduced?

	vaccines provided artificial active immunity in people	vaccines provided artificial passive immunity in people	fewer people are able to act as hosts for the virus	
Α	✓	×	✓	key
В	×	✓	✓	✓ = yes
С	X	✓	×	x = no
D	✓	×	×	

8 The graph shows the boiling points of the hydrogen compounds of Group 16 elements.

Which statement correctly explains why water does not fit the trend of the other compounds?

A There are fewer electrons in the oxygen atoms so there is less shielding of the nuclear charge.

B There are strong hydrogen bonds in water but **not** in the other compounds.

C The covalent bonds in water are much stronger than in the other compounds.

D The water molecules are smaller and so have stronger van der Waals' forces.

9 An energy cycle is shown.

The energy changes involved are X, Y and Z.

The numerical value of energy change Y is either –890 or +890.

The numerical value of energy change Z is either –964 or +964.

Which of the three values are negative?

- A X and Z
- **B** X only
- C Y and Z
- D Y only

13 An alcohol, ROH, reacts reversibly with ethanoic acid to produce an ester.

$$ROH(I) + CH_3COOH(I) \rightleftharpoons CH_3COOR(I) + H_2O(I)$$

3.0 mol of ROH, 2.0 mol of ethanoic acid and 1.0 mol of water are mixed together. At equilibrium, 1.5 mol of CH₃COOR is present.

What is the value of the equilibrium constant, K_c , for this reaction?

- **A** 0.20
- **B** 0.25
- **C** 2.00
- **D** 5.00
- 14 Graphs can be drawn to show the percentage of ammonia at equilibrium when nitrogen and hydrogen are mixed at different temperatures and pressures.

Which diagram correctly represents these two graphs?

15 The Boltzmann distribution for the hydrogenation of an alkene at a particular temperature in the absence of a catalyst is shown.

Which row correctly describes the effects of adding a nickel catalyst to the reaction vessel?

	the shape of the Boltzmann distribution	activation energy, <i>E</i> _a
Α	changes	decreases
В	changes	increases
С	does not change	decreases
D	does not change	increases

16 Elements Y and Z are both in Period 3 of the Periodic Table.

When the chloride of element Y is added to water, it reacts and a solution of pH 2 is produced.

When the chloride of element Z is added to water, it dissolves and a solution of pH 7 is produced.

Which statement explains these observations?

- A Both chlorides hydrolyse in water.
- **B** Element Y is magnesium and element Z is sodium.
- C Element Y is phosphorus and element Z is aluminium.
- **D** Element Y is silicon and element Z is sodium.

17 Aluminium, silicon and phosphorus are elements in Period 3 of the Periodic Table. Each element forms an oxide.

Which row is correct?

	Al_2O_3	SiO ₂	P ₄ O ₁₀		
Α	basic	amphoteric	acidic		
В	giant ionic	giant ionic	simple molecular		
С	high melting point	high melting point	low melting point		
D	vigorous reaction with water	slight reaction with water	vigorous reaction with water		

- 18 Which statement is correct?
 - A The atomic radius of silicon is larger than that of aluminium.
 - B The boiling point of chlorine is higher than that of silicon.
 - C The first ionisation energy of sulfur is greater than that of phosphorus.
 - **D** The electrical conductivity of magnesium is greater than that of sodium.
- 19 All solubility data in this question is given at the same temperature.

The table gives some data for compounds of calcium and for compounds of X, an unidentified element in Group 2.

element	decomposition temperature of carbonate/°C	solubility of sulfate /mol per 100 g of water	solubility of hydroxide /mol per 100 g of water
Ca	840	4.66×10^{-3}	1.53×10^{-3}
Х	1150		

What is the missing data for element X?

	solubility of sulfate /mol per 100 g of water	solubility of hydroxide /mol per 100 g of water
Α	7.11×10^{-5}	2.00×10^{-5}
В	7.11×10^{-5}	3.37×10^{-3}
С	1.83×10^{-1}	2.00×10^{-5}
D	1.83×10^{-1}	3.37×10^{-3}

- 20 What is the total volume of gas produced, measured at room conditions, when 0.010 mol of anhydrous magnesium nitrate is completely decomposed by heating?
 - **A** $240 \, \text{cm}^3$
- **B** 480 cm³
- **C** 600 cm³
- **D** $720 \, \text{cm}^3$

21 A solid sodium halide, NaX, is reacted with concentrated sulfuric acid. The lowest oxidation state of sulfur in the products is +4.

Halogen Y₂ is less volatile than halogen X₂.

What are the identities of sodium halide NaX and halogen Y₂?

	sodium halide NaX	halogen Y ₂
Α	sodium bromide	chlorine
В	sodium bromide	iodine
С	sodium iodide	bromine
D	sodium iodide	astatine

22 Compound Q dissolves in water. Q(aq) does not react with dilute sulfuric acid.

Q(aq) forms a precipitate when aqueous silver nitrate is added. This precipitate is partially soluble in aqueous ammonia.

What could be compound Q?

- A barium bromide
- **B** barium iodide
- C magnesium bromide
- D magnesium iodide

23 Nitrogen dioxide is a gas that contributes to air pollution. It is produced in internal combustion engines.

Which statement is correct?

- A Nitrogen dioxide acts as a catalyst in the atmospheric oxidation of sulfur dioxide to sulfur trioxide.
- B Nitrogen dioxide reacts to form nitrogen monoxide in the catalytic converter of a car exhaust system.
- C PAN forms when nitrogen dioxide reacts with the gases formed by complete combustion of the fuel.
- D Under high pressure in an internal combustion engine, nitrogen dioxide forms from impurities in the fuel.

24	What is the bond angle in the ammonium ion?									
	Α	90°	В	107°	С	109.5°	D	120°		

25 Structural isomerism and stereoisomerism should be taken into account when answering this question.

The structure of 3-methylcyclobutene is shown.

3-methylcyclobutene

A mixture containing all stereoisomers of 3-methylcyclobutene is treated with HBr. This produces a mixture of isomeric bromomethylcyclobutanes.

How many stereoisomers does 3-methylcyclobutene have, and how many isomeric bromomethylcyclobutanes are present in the product mixture?

	3-methylcyclobutene	bromomethylcyclobutanes
Α	2	4
В	2	6
С	4	4
D	4	8

26 The diagram shows the structure of X.

Which row is correct?

	number of σ bonds in X	type of hybridisation of the carbon atoms in X
Α	4	sp and sp ²
В	4	sp ² and sp ³
С	6	sp and sp ²
D	6	sp ² and sp ³

citric acid

What is the molecular formula of citric acid?

- $A C_6H_8O_7$
- $B C_6H_4O_7$
- C $C_8H_8O_7$
- $C_{10}H_8O_7$
- 28 Which reaction occurs when ethane and chlorine are mixed in diffused sunlight?
 - A a free-radical substitution with hydrogen given off
 - B a free-radical substitution with hydrogen chloride given off
 - C a free-radical substitution with no gas given off
 - D a nucleophilic substitution with hydrogen chloride given off

29 A molecule of geraniol is shown.

geraniol

What is formed when geraniol is reacted with an excess of cold dilute acidified MnO₄⁻?

Α

B

C

П

30 Q is either a primary or a tertiary halogenoalkane. Q undergoes hydrolysis with aqueous sodium hydroxide.

The first step in the mechanism of this reaction involves two species reacting together.

Which row is correct?

	Q	behaviour of hydroxide ion
Α	primary halogenoalkane	electrophile
В	primary halogenoalkane	nucleophile
С	tertiary halogenoalkane	electrophile
D	tertiary halogenoalkane	nucleophile

31 2-bromopropane is converted to 1,2-dibromopropane in a pathway involving two reactions.

reaction 1 reaction 2 reaction 2 → compound X → 1,2-dibromopropane

What are the reagents and conditions for the two reactions?

G.		
	reaction 1	reaction 2
Α	heat under reflux with aqueous NaOH	HBr(g) at room temperature
В	heat under reflux with aqueous NaOH	Br ₂ (I) at room temperature
С	heat under reflux with ethanolic NaOH	HBr(g) at room temperature
D	heat under reflux with ethanolic NaOH	Br ₂ (I) at room temperature

32 Compound X is a single, pure, optical isomer. Compound X is heated with an excess of concentrated H₂SO₄. Only **one** organic product is formed.

What is compound X?

- 33 Which reagents could be used to form 2-bromobutane from butan-1-ol?
 - A bromine and ultraviolet light
 - B concentrated sulfuric acid with potassium bromide, under reflux
 - C concentrated sulfuric acid followed by bromine
 - D concentrated sulfuric acid followed by hydrogen bromide