Analysis 3 - Exercise Sheet 12

Publication date: January 18, 2023 Due date: January 25, 2023

Exercise 12.1 (20 pts) Seien M,N eingebettete, reguläre, lokal parametrisierte Flächen und $F:M\to N$ differenzierbar. Wir betrachten die Ableitung von F als lineare Abbildung analog zur Ableitung im \mathbb{R}^d . Die Ableitung $DF(p):T_pM\to T_qN$ für $p\in M,\ q=F(p)$ sei wie folgt definiert: Sei $w\in T_pM$ und γ Kurve in U mit $\gamma(0)=x$, sodass $w=\frac{d}{dt}f\circ\gamma(t)|_{t=0}$. Definiere $DF(p)(w)\coloneqq\frac{d}{dt}F\circ f\circ\gamma(t)|_{t=0}$. Beweise, dass DF(x) wohldefiniert, insbesondere auch unabhängig von der Parametrisierung f und der Kurve γ , und linear ist.

Exercise 12.2 (20 pts) Beweisen Sie die Kettenregel für zwei hintereinander ausgeführte Abbildungen zwischen erklpf.

Exercise 12.3 (20 pts) Sei $F: M \to N$ eine Abbildung zwischen zwei erklpf.

- Sei F die Einschränkung einer linearen Abbildung $\bar{F}: \mathbb{R}^d \to \mathbb{R}^d$, $\bar{F}(x) = Ax$, $A \in \mathbb{R}^{d \times d}$. Berechnen Sie DF(p)w für beliebieges $p \in M$ und $w \in T_pM$.
- F^{-1} existiere und sei differenzierbar. Stelle $D(F^{-1})$ in geeigneter Weise durch F, DF dar.

Exercise 12.4 (20 pts) Seien $0 < r_1, r_2 < R$ und S_1, S_2 die Tori gegeben durch

$$f_i(\phi, \psi) = \begin{pmatrix} (R + r_i \cos(\phi)) \cos \psi \\ (R + r_i \cos(\phi)) \sin \psi \\ r_i \sin(\phi) \end{pmatrix}, \quad (\phi, \psi) \in [0, 2\pi)^2, \quad i = 1, 2.$$

Definiere $F: S_1 \to S_2$ über $f_1(\phi, \psi) \mapsto f_2(\phi, \psi)$. Bestimmen Sie für ein $x = f_1(\phi, \psi), (\phi, \psi) \in (0, 2\pi)^2$ die Matrixdarstellung von DF bzgl. der Parametrisierungen f_i .

Exercise 12.5 (20 pts) Sei M das Ellipsoid

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1\}$$

für a,b,c>0. Wir wissen vom letzten Übungszettel, dass $F:M\to S^2,\ F(x,y,z)=(\frac{x}{\sqrt{a}},\frac{y}{\sqrt{b}},\frac{z}{\sqrt{c}})$ ein Diffeomorphismus ist. Berechne die Ableitung von F.