ЛЕКЦІЯ 11Властивості графів (продовження)

Графи й бінарні відношення

Відношенню R, заданому на множині V взаємно однозначно відповідає орієнтований граф $G\left(R\right)$ без кратних ребер з множиною вершин V, у якому ребро $\left(v_i,v_j\right)$ існує тільки тоді, коли виконано v_iRv_j .

Представимо на графах деякі бінарні відношення.

1. **Рефлексивність.** Відношення R на множині V **рефлексивне,** якщо для кожного елемента $v \in V$ справедливе $(v,v) \in R$. На графі це зображається петлею, а матриця суміжності графа з рефлексивними відношеннями містить одиниці на головній діагоналі.

Іншими словами, якщо відношення R рефлексивне, то граф G(R) без кратних ребер має петлі у всіх вершинах.

Приклад. На малюнку показаний приклад графа рефлексивного відношення.

Головна діагональ матриці суміжності G(R) складається з одиниць.

$$\mathbf{C} = \begin{bmatrix} \mathbf{1} & 1 & 0 & 0 & 0 \\ 1 & \mathbf{1} & 1 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 1 & 0 \\ 0 & 0 & 1 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 1 & \mathbf{1} \end{bmatrix}$$

2. **Антирефлексивність.** Якщо відношення R на множині V антирефлексивни, то для всіх елементів v множини V справедливе $(v,v) \not\in R$.

Якщо R антирефлексивне, то граф $G\!\left(R\right)$ без кратних ребер не має петель.

Приклад. На малюнку показаний граф антирефлексивного відношення

$$\mathbf{C} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 0 & 0 \\ 1 & \mathbf{0} & 1 & 0 & 0 \\ 1 & 1 & \mathbf{0} & 1 & 1 \\ 0 & 0 & 1 & \mathbf{0} & 1 \\ 0 & 0 & 1 & 1 & \mathbf{0} \end{bmatrix}$$

Головна діагональ матриці суміжності $G\!\left(R\right)$ складається з нулів.

3. Симетричність. Відношення R на V називають симетричним, якщо з $\left(v_i,v_j\right)\in R$ випливає $\left(v_j,v_i\right)\in R$ при $v_i\neq v_j$. Матриця суміжності симетричного відношення симетрична щодо головної діагоналі.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

4. **Антисиметричність.** Відношення R на V називають **антисиметричним**, якщо з $\left(v_i, v_j\right) \in R$ випливає $\left(v_j, v_i\right) \not\in R$ при $v_i \neq v_j$. Матриця суміжності антисиметричного відношення несиметрична щодо головної діагоналі. Антисиметричне відношення завжди представлене орграфом з дугами без повторень.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

5. **Транзитивність**. Відношення R на множині V називають **транзитивним**, якщо з $\left(v_i, v_j\right) \in R$, $\left(v_j, v_k\right) \in R$ випливає $\left(v_i, v_k\right) \in R$ при $v_i, v_j, v_k \in V$ і $v_i \neq v_j, v_j \neq v_k, v_i \neq v_k$. У графі, що задає транзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другий, існує транзитивно замикаюча дуга, що має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = egin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \ v_1 & 0 & 1 & 0 & 1 & 1 \ v_2 & 1 & 0 & 1 & 0 & 1 \ v_3 & 0 & 1 & 0 & 1 & 1 \ v_4 & 1 & 0 & 1 & 0 & 1 \ v_5 & 1 & 1 & 1 & 1 & 0 \ \end{bmatrix}$$

. . .

$$\begin{pmatrix} v_1, v_2 \end{pmatrix} \in R, \begin{pmatrix} v_2, v_5 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1, v_5 \end{pmatrix} \in R .$$

$$\begin{pmatrix} v_5, v_1 \end{pmatrix} \in R, \begin{pmatrix} v_1, v_2 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_5, v_2 \end{pmatrix} \in R .$$

. . .

Відношення R на множині вершин $V = \left\{v_1, v_2, ..., v_5\right\}$ транзитивне, оскільки для довільного ребра в графі виконується умова транзитивності.

6. **Антитранзитивність**. Відношення R на множині V називають **антитранзитивним**, якщо $\mathbf{3} \begin{pmatrix} v_i, v_j \end{pmatrix} \in R$, $\begin{pmatrix} v_j, v_k \end{pmatrix} \in R$ випливає $\begin{pmatrix} v_i, v_k \end{pmatrix} \not\in R$ при $v_i, v_j, v_k \in V$ і $v_i \neq v_j, v_j \neq v_k, v_i \neq v_k$. У графі, що задає антитранзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другої, не існує транзитивно замикаючої дуги, яка має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Відношення R на множині вершин $V = \left\{v_1, v_2, ..., v_5\right\}$ антитранзитивне, оскільки для довільних пар ребер виконується умова антитранзитивності.

Зв'язок між операціями над графами і операціями над відношеннями

1. Нехай \overline{R} – доповнення відношення R на V:

$$\overline{R} = U \setminus R$$
,

де U — універсальне (повне) відношення $U = V \times V$, тобто відношення, яке має місце між будь-якою парою елементів з V.

2. Граф $G\left(\overline{R}\right)$ є доповненням графа G(R) (до повного орграфа K з множиною вершин V і множиною ребер

$$E(K) = V \times V$$
).

Приклад. Нехай $V = \{v_1, v_2, v_3, v_4\}$.

$$U = \{(v_1, v_1), (v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_1), (v_2, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_1), (v_3, v_2), (v_3, v_3), (v_3, v_4), (v_4, v_1), (v_4, v_2), (v_4, v_3), (v_4, v_4)\}$$

$$R = \{(v_1, v_1), (v_1, v_2), (v_2, v_2), (v_2, v_3), (v_3, v_3), (v_3, v_4), (v_4, v_1), (v_4, v_4)\}$$

$$\overline{R} = \{(v_1, v_3), (v_1, v_4), (v_2, v_1), (v_2, v_4), (v_3, v_1), (v_3, v_2), (v_4, v_2), (v_4, v_3)\}$$

3. Граф зворотного відношення $G\left(R^{-1}\right)$ відрізняється від графа $G\left(R\right)$ тим, що напрямки всіх ребер замінені на зворотні. R R^{-1}

$$R = \{(v_1, v_2), (v_2, v_3), (v_4, v_1), (v_4, v_3)\}; R^{-1} = \{(v_2, v_1), (v_3, v_2), (v_1, v_4), (v_3, v_4)\}$$

4. Граф об'єднання двох відносин, заданих на V, $G\left(R_1 \cup R_2\right)$ є графом об'єднання двох графів $G\left(R_1\right)$ і $G\left(R_2\right)$:

5. Граф перетину відношень $R_1\cap R_2$ на V $G\big(R_1\cap R_2\big)$ є графом перетинання двох графів $G\big(R_1\big)$ і $G\big(R_2\big)$:

$$G(R_1 \cap R_2) = G(R_1) \cap G(R_2).$$

Багатозначні відображення

Пряме відображення першого порядку вершини $v_{\scriptscriptstyle i}$ – це множина таких вершин v_i графаG(V,E), для яких існує дуга (v_i, v_j) , тобто

$$\Gamma^{+}\left(\left.v_{i}\right.\right)=\left\{\left.v_{j}\right|\left(\left.v_{i},v_{j}\right.\right)\in E, i,j=1,2,...,n\right\}\text{,}$$

де $n = \left| V \right|$ – кількість вершин графа

$$i = 8 \quad v_i = v_8$$

$$\Gamma^{+}(v_{8}) = \{v_{2}, v_{11}, v_{10}\}$$

Пряме відображення другого порядку вершини v_i — це пряме відображення від прямого відображення першого порядку

$$\Gamma^{+2}\left(v_{i}\right) = \Gamma^{+}\left(\Gamma^{+1}\left(v_{i}\right)\right).$$

$$v_6$$
 $i = 8$, $v_i = v_8$
 $\Gamma^+(v_8) = \{v_2, v_{11}, v_{10}\}$

$$\Gamma^{+2}(v_8) = \{v_1, v_3, v_4, v_5, v_7, v_9\}$$

Аналогічно можна записати відображення 3-го порядку

$$\Gamma^{+3}\left(\left.v_{i}\right.\right)=\left.\Gamma^{+}\left(\left.\Gamma^{+2}\left(\left.v_{i}\right.\right)\right)=\right.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+1}\left(\left.v_{i}\right.\right)\right)\right),$$

Відображення для 4-го порядку

$$\Gamma^{+4}\left(\left.v_{i}\right.\right) = \left.\Gamma^{+}\left(\left.\Gamma^{+3}\left(\left.v_{i}\right.\right)\right) = \left.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+1}\left(\left.v_{i}\right.\right)\right)\right)\right)\right),$$

і т.д., для p-го порядку.

$$\Gamma^{+p}\left(\,v_{i}\,\right) = \,\Gamma^{+}\left(\,\Gamma^{+(p-1)}\left(\,v_{i}\,\right)\,\right)$$

Приклад. Знайдемо прямі багатозначні відображення для графа, показаного на малюнку:

$$\begin{split} &\Gamma^{+1}\left(v_{1}\right)=\left\{v_{2},v_{3}\right\},\\ &\Gamma^{+2}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{2},v_{3}\right)=\left\{v_{3},v_{5}\right\},\\ &\Gamma^{+3}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+2}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{5}\right)=\left\{v_{3},v_{1}\right\},\\ &\Gamma^{+4}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+3}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{1}\right)=\left\{v_{2},v_{3}\right\}. \end{split}$$

Далі легко помітити, що

$$\Gamma^{+1}(v_1) = \Gamma^{+4}(v_1) = \Gamma^{+7}(v_1)....$$

$$\Gamma^{+2}(v_1) = \Gamma^{+5}(v_1) = \Gamma^{+8}(v_1)....$$

$$\Gamma^{+3}(v_1) = \Gamma^{+6}(v_1) = \Gamma^{+9}(v_1)....$$

Аналогічно знаходимо відображення для інших вершин графа.

Зворотне відображення першого порядку вершини v_i — це множина таких вершин v_j графа $G\!\left(V,E\right)$, для яких існує дуга $\!\left(v_i,v_i\right)$, тобто

$$\Gamma^{-}\left(v_{i}\right)=\left\{ v_{j}\left|\left(v_{j},v_{i}\right)\in E,i,j=1,2,...,n\right.\right\} \text{,}$$

де n = |V| – кількість вершин графа

Зворотне відображення другого й наступних порядків вершини v_i — це зворотне відображення від зворотного відображення попереднього порядку

$$\begin{split} &\Gamma^{-2}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-1}\left(v_{i}\right)\right). \\ &\Gamma^{-3}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-2}\left(v_{i}\right)\right) = \Gamma^{-}\left(\Gamma^{-1}\left(v_{i}\right)\right) \\ &\cdots \\ &\Gamma^{-p}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-(p-1)}\left(v_{i}\right)\right) \end{split}$$

Приклад. Знайдемо зворотні багатозначні відображення для графа, показаного на рисунку :

$$\begin{split} &\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\},\\ &\Gamma^{-2}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-1}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{5}\right)=\left\{v_{2},v_{4}\right\},\\ &\Gamma^{-3}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-2}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{2},v_{4}\right)=\left\{v_{1}\right\},\\ &\Gamma^{-4}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-3}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\} \text{ і т.д.} \end{split}$$

Відображення множини вершин

Якщо розглянуте раніше відображення застосовується одночасно до всіх вершин графа, то воно може бути отримане з виразу:

$$\Gamma^{+}(V) = \bigcup_{v \in V} \Gamma^{+}(v).$$

Якщо $V = \left\{ V_1, V_2, ..., V_n \right\}$, то справедливі

співвідношення:

$$\Gamma^{+}\left(\bigcup_{i=1}^{n} V_{i}\right) = \bigcup_{i=1}^{n} \Gamma^{+}\left(V\right)_{i}$$

Визначення графа і його властивостей з використанням відображень

Граф. Говорять, що граф $Gig(V,\Gammaig)$ заданий однозначно, якщо задані:

- 1. Непуста множина V.
- 2. Відображення $\Gamma:V o V$.

Пари вершин v_i і v_j з'єднують ребром за умови, що $v_j \in \Gamma^+ \left(v_i \right)$.

Підграф. Підграфом графа $Gig(V,\Gammaig)$ називають граф виду $Gig(A,\Gamma_Aig)$, де $A\subset V$, а відображення Γ_A визначене в такий спосіб:

$$\Gamma_{A}^{+}\left(v
ight)=\Gamma^{+}\left(v
ight)\cap A$$
 ,

Тобто, відображеня Γ_A включає тільки ті вершини, що входять в множину A

Компонента зв'язності графа

Компонента зв'язності — деяка множина вершин графа, у якій між довільними двома вершинами існує шлях з однієї в іншу, і не існує жодного шляху з вершини цієї множини у вершину не з цієї множини.

Компонента зв'язності — це граф, породжений деякою множиною C_v , де C_v — множина, що включає вершину v і усі ті вершини графа, які можуть бути з'єднані з нею ланцюгом.

Теорема про розбиття графа. Різні компоненти графа $G(V,\Gamma)$ утворюють розбиття множини V, тобто

- 1. $C_v \neq \emptyset$,
- **2.** $v_i, v_j \in V, C_{v_i} \neq C_{v_j} \Rightarrow C_{v_i} \cap C_{v_j} = \varnothing$,
- 3. $\bigcup C_v = V$.

Теорема про зв'язний граф. Граф є зв'язним графом тоді й тільки тоді, коли він складається з одного компонента зв'язності.

Між будь-якою парою вершин зв'язного графа існує як мінімум один шлях.

Досяжні і контрдосяжні вершини

Визначення. Вершину w графа D (або орграфа) називають **досяжною** з вершини v, якщо w = v, або існує шлях з v у w (маршрут від v у w).

Визначення. Вершину w графа D (або орграфа) називають **контрдосяжною** з вершини v, якщо існує шлях з w у v (маршрут від w у v).

Матриця досяжності

Матрицею досяжності називається матриця $n \times n$ $R = \left(r_{ij}\right), i, j = 1, 2, ..., n$, де n – число вершин графа, а кожний елемент визначається в такий спосіб:

$$r_{ij} = \begin{cases} 1, & \text{якщо вершина } v_j \, \text{дос яжна } 3 \, v_i, \\ 0, & \text{у протилежному випадку.} \end{cases}$$

Множина досяжних вершин $R\left(v_{i}\right)$ графа G. Множина $R\left(v_{i}\right)$ вершин, досяжних із заданої вершини v_{i} , складається з таких елементів v_{j} , для яких елемент r_{ij} в матриці досяжності дорівнює 1.

Усі діагональні елементи r_{ii} в матриці R дорівнюють 1, оскільки кожна вершина досяжна з себе самої зі шляхом довжиною 0.

Відображення і досяжність

Пряме відображення 1-го порядку $\Gamma^{+1}\left(\,v_{i}\, ight)$ – це

множина таких вершин v_j , які досяжні з v_i з використанням шляхів довжиною 1.

Пряме відображення 2-го порядку — це множина $\Gamma^+ \left(\Gamma^{+1} \left(v_i \right) \right) = \Gamma^{+2} \left(v_i \right), \quad \text{яка складається з вершин,}$ досяжних з v_i з використанням шляхів довжиною 2.

Пряме відображення р-го порядку — це множина $\Gamma^{+p}\left(v_i\right)$, яка складається з вершин, досяжних із v_i за допомогою шляхів довжини p.

Визначення множини досяжності через відображення

Будь-яка вершина графа G, яка досяжна з v_i , повинна бути досяжна з використанням шляху (або шляхів) довжиною 0 або 1, або 2, ..., або p. Тоді множина вершин, досяжних з вершини v_i , можна представити у вигляді

$$R(v_i) = \{v_i\} \cup \Gamma^{+1}(v_i) \cup \Gamma^{+2}(v_i) \cup \ldots \cup \Gamma^{+p}(v_i).$$

Побудова матриці досяжності

Будуємо матрицю по рядках.

- 1. Знаходимо досяжні множини $R\!\left(v_i\right)$ для всіх вершин $v_i \in V$.
- 2. Для i-го рядка $r_{ij}=1$, якщо $v_j\in R\big(v_i\big)$, а якщо ж $v_j\not\in R\big(v_i\big)$, то $r_{ij}=0$.

Рисунок. Досяжність у графі: а – граф; б – матриця суміжності; в – матриця досяжності; г – матриця контрдосяжності.

Множини досяжностей знаходять у такий спосіб:

$$\begin{split} R\left(v_{1}\right) &= \left\{v_{1}\right\} \cup \Gamma^{+1}\left(v_{1}\right) \cup \Gamma^{+2}\left(v_{1}\right) \cup \Gamma^{+3}\left(v_{1}\right) = \\ &= \left\{v_{1}\right\} \cup \left\{v_{2}, v_{5}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} = \left\{v_{1}, v_{2}, v_{4}, v_{5}\right\} \\ R\left(v_{2}\right) &= \left\{v_{2}\right\} \cup \Gamma^{+1}\left(v_{2}\right) \cup \Gamma^{+2}\left(v_{2}\right) = \\ &= \left\{v_{2}\right\} \cup \left\{v_{2}, v_{4}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} = \left\{v_{2}, v_{4}, v_{5}\right\} \\ R\left(v_{3}\right) &= \left\{v_{3}\right\} \cup \Gamma^{+1}\left(v_{3}\right) \cup \Gamma^{+2}\left(v_{3}\right) \cup \Gamma^{+3}\left(v_{3}\right) = \\ &= \left\{v_{3}\right\} \cup \left\{v_{4}\right\} \cup \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{3}, v_{4}, v_{5}\right\} \\ R\left(v_{4}\right) &= \left\{v_{2}\right\} \cup \Gamma^{+1}\left(v_{2}\right) \cup \Gamma^{+2}\left(v_{2}\right) = \\ &= \left\{v_{4}\right\} \cup \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{4}, v_{5}\right\} \\ R\left(v_{5}\right) &= \left\{v_{5}\right\} \cup \Gamma^{+1}\left(v_{5}\right) = \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{5}\right\} \end{split}$$

$$\begin{split} R\left(\left.v_{6}\right.\right) &= \left\{\left.v_{6}\right.\right\} \cup \left\{\left.v_{3}, v_{7}\right.\right\} \cup \left\{\left.v_{4}, v_{6}\right.\right\} \cup \left\{\left.v_{3}, v_{5}, v_{7}\right.\right\} \cup \left\{\left.v_{4}, v_{5}, v_{6}\right.\right\} \cup \ldots \\ \cup \left\{\left.v_{4}, v_{5}, v_{6}\right.\right\} &= \left\{\left.v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.\right\}, \end{split}$$

$$R\left(v_{7}\right)=\left\{ v_{7}\right\} \cup \left\{ v_{4},v_{6}\right\} \cup \left\{ v_{3},v_{5},v_{7}\right\} \cup \left\{ v_{4},v_{5},v_{6}\right\} = \left\{ v_{3},v_{4},v_{5},v_{6},v_{7}\right\}.$$

Матриця контрдосяжності

Матриця контрдосяжності — це матриця $n \times n$

 $\mathbf{Q} = \left(q_{ij}\right), \, i,j = 1,2,3,...,n$, де n – число вершин графа, визначається в такий спосіб:

$$q_{ij} = egin{cases} 1, & \mbox{якщо з вершини } v_j & \mbox{може бути досягнута вершина } v_i, \\ 0, & \mbox{в протилежному випадку}. \end{cases}$$

Контрдосяжною множиною $Q\!\left(v_i\right)$ називають множину вершин, з яких можна досягти вершину v_i . Контрдосяжну множину $Q\!\left(v_i\right)$ визначають з виразу:

$$Q\left(\left.v_{i}\right.\right) = \left\{\left.v_{i}\right.\right\} \cup \left.\Gamma^{-1}\left(\left.v_{i}\right.\right) \cup \left.\Gamma^{-2}\left(\left.v_{i}\right.\right) \cup \ldots \right. \cup \left.\Gamma^{-p}\left(\left.v_{i}\right.\right)\right.$$

Співвідношення між матрицями досяжності і контрдосяжності

Визначення. Матриця контрдосяжності дорівнює транспонованій матриці досяжності $Q = R^T$.

Дане співвідношення походить з визначення матриць, оскільки стовпець v_i матриці Q збігається з рядком v_i матриці R.

Слід зазначити, що оскільки всі елементи матриць R і Q дорівнюють 1 або 0, те кожний рядок можна зберігати у двійковій формі, заощаджуючи витрати пам'яті комп'ютера. Матриці R і Q зручні для обробки на комп'ютері, тому що з обчислювальної точки зору основними операціями є швидкодіючі логічні операції.

Числа, що характеризують граф

Цикломатичне число Цикломатичним числом графа $G=\left(V,E\right)$

називається число

$$m=N-n+p,$$
 де $N=\left|E\right|$ — число ребер графа, $n=\left|V\right|$ — число вершин графа, p — число компонентів зв'язності графа.

Для зв'язного графа m = N - n + 1.

Теорема. Цикломатичне число графа дорівнює найбільшій кількості незалежних циклів.

Цикли в графі

Циклом називають шлях, у якім перша й остання вершини збігаються.

Довжина циклу – число складових його ребер.

Простий цикл – це цикл без повторюваних ребер.

Елементарний цикл – це простий цикл без повторюваних вершин.

Наслідок

Петля – елементарний цикл.

Вектор-цикл, незалежні цикли

Поставимо у відповідність циклу μ графа G деякий вектор.

Для цього додамо кожному ребру графа довільну орієнтацію.

Якщо цикл μ проходить через ребро e_k , де $1 \le k \le N$, у напрямку його орієнтації r_k раз і в протилежному напрямку s_k раз, то вважаємо $c^k = r_k - s_k$.

Вектор ${f c} = \left(c^1, c^2, c^3, ..., c^k, ..., c^N\right)$ називають вектором-**циклом**, відповідним до циклу μ .

Цикли μ_1 й μ_2 називають **незалежними**, якщо відповідні їм вектори $\mathbf{c}_1=\left(c_1^1,c_1^2,c_1^3,...,c_1^k,...,c_1^N\right)$ і $\mathbf{c}_2=\left(c_2^1,c_2^2,c_2^3,...,c_2^k,...,c_2^N\right)$ лінійно незалежні.

Властивості циклів

1. Зв'язний граф G не має циклів тоді й тільки тоді, коли цикломатичне число m=0. Такий граф є деревом.

2. Зв'язний граф G має єдиний цикл тоді й тільки тоді, коли цикломатичне число m=1.

Визначення цикломатичного числа

Цикломатичне число зв'язного графа можна визначити як число ребер, яке потрібно вилучити, щоб граф став деревом.

Визначення лінійної незалежності векторів-циклів.

3 курсу лінійної алгебри випливає, що вектори $\mathbf{c}_1=\left(c_1^1,c_1^2,c_1^3,...,c_1^k,...,c_1^N\right)$ й $\mathbf{c}_2=\left(c_2^1,c_2^2,c_2^3,...,c_2^k,...,c_2^N\right)$

можна представити як вектори в просторі R^N . Нехай α – деяка змінна $\alpha \in R$. Тоді

$$\begin{split} \alpha\mathbf{c}_1 &= \left(\alpha c_1^1, \alpha c_1^2, \alpha c_1^3, ..., \alpha c_1^k, ..., \alpha c_1^N\right) \mathbf{i} \\ \alpha\mathbf{c}_2 &= \left(\alpha c_2^1, \alpha c_2^2, \alpha c_2^3, ..., \alpha c_2^k, ..., \alpha c_2^N\right). \\ \mathbf{c}_1 &+ \mathbf{c}_2 &= \left(c_1^1 + c_2^1, c_1^2 + c_2^2, c_1^3 + c_2^3, ..., c_1^k + c_2^k, ..., c_1^N + c_2^N\right). \end{split}$$

Деяку множину $E \subset R^N$ називають векторним підпростором, коли

1.
$$\alpha \in R$$
 , $\mathbf{c} \in E \Rightarrow \alpha \mathbf{c} \in E$.

$$\mathbf{2.c}_1, \mathbf{c}_2 \in E \Rightarrow \mathbf{c}_1 + \mathbf{c}_2 \in E.$$

Говорять, що вектори $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_i$ з R^N лінійно незалежні, якщо

$$\alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 + \ldots + \alpha_i \mathbf{c}_i = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_i = 0.$$

Навпаки, якщо при $\alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 + ... + \alpha_i \mathbf{c}_i = 0$ деякі α_i одночасно не дорівнюють нулю, то говорять, що дані вектори лінійно залежні.

Якщо, наприклад, $\alpha_1 \neq 0$, то можна записати

$$\frac{\alpha_2}{\alpha_1}\mathbf{c}_2 + \frac{\alpha_3}{\alpha_1}\mathbf{c}_3 + \ldots + \frac{\alpha_i}{\alpha_1}\mathbf{c}_i = -\mathbf{c}_1.$$

У цьому випадку вектор \mathbf{c}_1 лінійно виражений через вектори $\mathbf{c}_2, \mathbf{c}_3, ..., \mathbf{c}_i$.

Для визначення факту лінійної залежності векторів необхідно розв'язати систему

$$\begin{split} &\alpha_{1}\mathbf{c}_{1}+\alpha_{2}\mathbf{c}_{2}+\ldots+\alpha_{i}\mathbf{c}_{i}=\\ &=\alpha_{1}\begin{pmatrix}c_{1}^{1}\\c_{1}^{2}\\c_{1}^{2}\\\vdots\\c_{1}^{N}\end{pmatrix}+\alpha_{2}\begin{pmatrix}c_{2}^{1}\\c_{2}^{2}\\\vdots\\c_{2}^{N}\end{pmatrix}+\ldots+\alpha_{i}\begin{pmatrix}c_{i}^{1}\\c_{i}^{2}\\c_{i}^{2}\\\vdots\\c_{i}^{N}\end{pmatrix}\\ &=\begin{cases}\alpha_{1}c_{1}^{1}+\alpha_{2}c_{1}^{2}+\ldots+\alpha_{i}c_{i}^{1}=0,\\\alpha_{1}c_{1}^{2}+\alpha_{2}c_{2}^{2}+\ldots+\alpha_{i}c_{i}^{2}=0,\\\ldots\\\alpha_{1}c_{1}^{N}+\alpha_{2}c_{2}^{N}+\ldots+\alpha_{i}c_{i}^{N}=0.\end{cases}$$

Приклад. Визначимо цикломатичне число графа, показаного на малюнку.

У розглянутому графі число вершин n=5, число ребер N=7.

Оскільки граф є зв'язним, то число компонентів зв'язності p=1.

Таким чином, m = N - n + p = 7 - 5 + 1 = 3.

Число внутрішньої стійкості

Нехай дано граф $G(V,\Gamma)$. Множину $S\subset V$ називають внутрішньо стійким, якщо ніякі дві вершини, що входять в S, не є суміжними. Іншими словами сформулюємо цю умову, використовуючи відображення першого порядку:

$$\Gamma^+(S) \cap S = \varnothing$$
.

Якщо позначити через Ф сімейство всіх внутрішньо стійких множин графа, то для нього будуть справедливі співвідношення:

- 1. $\varnothing \in \Phi$, $S \in \Phi$.
- 2. Якщо $A \subset S$, то $A \in \Phi$.

Визначення. Числом *внутрішньої стійкості* графа G є величина, яку визначають з виразу:

$$a = \max_{S \in \Phi} |S|.$$

Визначення $S \subset V$ називають множиною внутрішньої стійкості, якщо всі вершини з S не суміжні між собою. Потужність найбільшої множини внутрішньої стійкості називають числом внутрішньої стійкості.

Приклад. Знайдемо числа внутрішньої й стійкості графа.

Найбільша множина внутрішньої стійкості для нашого графа має вигляд $S = \left\{v_4, v_5, v_6\right\}$ (при додаванні будь-яких інших вершин будемо одержувати суміжні вершини). Відповідно, *число внутрішньої стійкості* графа G рівно a=3.

Число зовнішньої стійкості

Нехай даний граф $G\big(V,\Gamma\big)$. Говорять, що множина $T\subset V$ зовні стійка, якщо для кожної вершини $v\not\in T$ маємо $\Gamma^+\big(v\big)\cap T\neq\varnothing$, інакше кажучи $V\setminus T\subset \Gamma^{-1}\big(T\big)$.

Якщо Ψ – сімейство всіх зовні стійких множин графа, то для нього слушні такі співвідношення:

- 1. $T \in \Psi$.
- 2. Якщо $T\subset A$, то $A\in\Psi$.

Визначення

Число *зовнішньої стійкості* b графа G є величина, яку одержують з виразу:

$$b = \min_{T \in \Psi} |T|.$$

Зовні стійка множина — множина вершин Т таких, що будьяка вершина графа або належить Т або суміжна з вершиною з Т.

Приклад. Для представленого графа найменша множина зовнішньої стійкості має вигляд $T = \{v_1\}$ (тому що будьяка інша вершина (не приналежна T) з'єднана з вершиною v_1 з T).

Число зовнішньої стійкості графа G рівно b=1 .

