ML/DL for Everyone Season2

02 - Simple Linear Regression

다루고자 하는 주제

- Regression
- Linear Regression
- Hypothesis
- Which hypothesis is better?
- Cost, Cost function
- Goal: Minimize cost

Regression

"Regression toward the mean"

Sir Francis Galton (1822 ~ 1911)

Linear Regression

https://en.wikipedia.org/wiki/Linear_regression

Predicting exam score: regression

x (hours)	y (score)
10	90
9	80
3	50
4	30

Regression

Х	У
1	1
2	2
3	3

Regression

Х	у
1	1
2	2
3	3

Hypothesis (Linear)

Which hypothesis is better?

$$H(x) = Wx + b$$

Which hypothesis is better?

$$H(x) = Wx + b$$

Cost

Cost

How fit the line to our (training) data

$$\frac{\left(H(x_1) - y_1\right)^2 + \left(H(x_2) - y_2\right)^2 + \left(H(x_3) - y_3\right)^2}{3}$$

$$cost(W) = rac{1}{m} \sum_{i=1}^m \left(Wx_i - y_i
ight)^2$$

Cost function

$$cost(W) = rac{1}{m} \sum_{i=1}^m (Wx_i - y_i)^2$$
 $H(x) = Wx + b$

$$cost(W,b) = rac{1}{m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

Goal: Minimize cost

$$egin{aligned} minimize\ cost(W,b) \ W, b \end{aligned}$$

Summary

- Regression
- Linear Regression
- Hypothesis H(x) = Wx + b
- Cost function $cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) y_i)^2$
- Goal: Minimize cost

What's Next?

How to minimize cost