MATH1564-K1/K2/K3 – Linear Algebra with Abstract Vector Spaces Homework 1

- 1. Let $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 5\}$ and $C = \{2, 4, 5\}$.
 - i. Find the following sets:

$$A \cup B$$
, $A \cap B \cap C$, $(A \cap C) \cup B$.

ii. Assume that A, B, and C all belong to the universal set $U = \{x \in \mathbb{N} : x \leq 6\}$. Find the following sets:

$$(B \cup C)^c$$
, $A^c \cap B^c \cap C^c$, U^c .

iii. Find how many elements are in each one of the following sets (these are called the *cardinalities* of the sets):

$$(B \cap C)^c$$
, $(B \cup C)^c$, $\{X : X \subseteq B\}$, $\{X : X \subseteq A \text{ and } X \text{ has at most two elements } \}$.

- 2. Draw a sketch of the following subsets of \mathbb{R}^2 :
 - i. $\{(x,y): x \le 2y+1\}$.
 - ii. $\{(x,y): x^2 + y^2 \le 1\}^c$.
 - iii. $\{(x, f(x)) : f(x) = e^x\}.$
 - iv. $\{t(1,2): t \in \mathbb{R}\}.$
 - v. $\{(-1,1) + t(1,2) : t \in \mathbb{R}\}.$
 - vi. $\{s(1,2) + t(-1,1) : s, t \in \mathbb{R}\}.$
 - vii. $\{s(1,2) + t(2,4) : s, t \in \mathbb{R}\}.$
 - viii. $\{t(1,2) : 0 < t\}$.
- 3. Express the following sets without the use of 'three dots' nor the use of \cap , \cup , or complement.
 - i. $\{4, 16, 36, 64, 100, \ldots\}$
 - ii. $\{..., \frac{2}{9}, \frac{2}{3}, 2, 6, 18, ...\}$
 - iii. $\{3n : n \in \mathbb{Z}\} \cap \{2n+1 : n \in \mathbb{Z}\}.$
- 4. In each of the following parts you are given a basic definition regarding operations on sets. Use this definition to solve the questions that follow it.
 - i. Given two sets, A and B, the difference between A and B is the set

$$A \setminus B = \{ x \in A : x \notin B \}.$$

- a. For the sets A, B and C given in Q1, find the following: $B \setminus C$, $C \setminus B$, $A \setminus (B \cup C)$.
- b. Draw a sketch in \mathbb{R}^2 of the set

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\} \setminus \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 1\}$$

- ii. Given two sets, A and B, the Cartesian product of A and B is the set $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}.$
 - a. For the sets A,B and C given in Q1, find the following: $C\times B,$ $B\times C,$ $A\times \emptyset.$
 - b. Draw a sketch in \mathbb{R}^2 of the set $[0,1] \times [0,1]$. (Recall that $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$).
 - c. Draw a sketch in \mathbb{R}^2 of the set $([0,4] \times [0,4]) \setminus ([1,2] \times [2,5])$
- 5. Let A,B and C all be sets with a universal set U. In each of the following parts, a statement is written about these sets (or some of them). We consider such a statement **true** if it is true for every possible sets A,B,C and U. We consider it **false** if there is at least one example of sets A,B,C and U for which the statement does not hold. Determine for each one of the following statements if it is **true** or **false**. If you claim that it is **false** then provide an example for which the statement fails ("counterexample"). If you claim that the statement is **true** then **prove** your claim as best you can.
 - i. $(A \cap B) \cup C = A \cap (B \cup C)$.
 - ii. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.
 - iii. $B = A \cup B$ if and only if $A \subseteq B$.
 - iv. $(A \setminus B) \cup (B \setminus A) = A \cup B$.
 - v. If $B \subseteq C$ then $(A \times B) \subseteq (A \times C)$.
- 6. Negate the following statements
 - i. For every integer n there exists a rational number a such that a = n.
 - ii. For every x > 0, $x^2 + y^2 > 0$ for all y.
- 7. Rewrite each of the following statements using the quan- tifiers "for all" and "there exists" as appropriate.
 - i. Not all continuous functions are differentiable.
 - ii. There is no largest real number.
 - iii. There are infinitely many primes.
- 8. Let $A = \mathbb{R}^2 \setminus \{(0,0)\}$. For $p, q \in A$, define $p \sim q$ if p = q or the line through the distinct points p and q passes through the origin.
 - i. Prove that \sim defines an equivalence relation on A.
 - ii. Find the equivalence classes of \sim