Carbenes and Carbenoids: Alpha-Elimination

• When chloroform is treated with strong base, **dichlorocarbene** (:CCl₂) is formed. Can you write a curved-arrow mechanism for this reaction?

$$H - C - CI$$

$$CI$$

$$CI$$

$$CI$$

$$CI$$

$$CI$$

• Identify the structure, hybridization, and frontier orbitals in dichlorocarbene.

• When CH₂I₂ is treated with a zinc-copper couple (Zn-Cu), the Simmons-Smith reagent I–CH₂–ZnI is formed. This reagent is similar to a Grignard reagent. What are the frontier orbitals in the Simmons-Smith reagent? Why is this species called a *carbenoid*?

Reading: Section 9.8

Reactions of Carbenes with Alkenes

• Carbenes react with alkenes in a reaction that is highly reminiscent of the reaction of bromine with alkenes. Draw in the curved-arrow mechanisms and predict the products of each of the following:

• What structures are formed by the addition of carbenes (or carbenoids) to alkenes?

Reading: Section 9.8

Test Yourself Now!

• Determine the primary product and identify any secondary products for each of the following reactions:

Dehydration of Alcohols

• Predict the product and show a mechanism for each of the following reactions:

Making Alcohols Leave: Part 1-The Problem

• Explain why each of the following reactions is not effective:

Reading: Section 10.2

Making Alcohols Leave: Part 2-Using Acid

• We can convert an alcohol into a good leaving group by **protonating** the alcohol in strong acid. Let's see how this works:

Making Alcohols Leave: Part 2-Acid Is A Problem

• Strong acids are not *generally* useful for converting alcohols into good leaving groups. What is the problem with each of the following reactions?

Reading: Section 10.2

Making Alcohols Leave: Part 3-Using Tosylates

• Show the mechanism for the following reaction, in which an alcohol is converted into a good leaving group known as a *tosylate*:

$$\begin{array}{c} \text{OH} \\ \text{OH} \\$$

• What can we do with a tosylate?

Making Alcohols Leave: Part 3-Reactions of Tosylates

• For each of the following reactions, predict the product and show stereochemistry:

Making Alcohols Leave: Part 4-SOCl₂ and PBr₃

• Provide complete curved-arrow mechanisms for the following reactions:

Chemistry S-20ab Week 2

Making Alcohols Leave: Part 4-Stereochemistry

• For each of the following reactions, predict the product and show stereochemistry:

• What reagents are needed to carry out the following transformations?

Reading: Section 10.3