TMUA/MAT Graphs of Functions

Syllabus

Sketch common functions; transformations of graphs; stationary points / increasing / decreasing functions; intersection with coordinate axes / number of roots; graphs and simultaneous equations.

1. Sketch each of the following functions and find the range for the given domains:

a)
$$f(x) = x^2 - 8x + 13$$
 $x \in \mathbb{R}$ $x > 0$

$$x \in \mathbb{R}$$
 $x > 0$

b)
$$f(x) = \sqrt{x-2}$$
 $x \in \mathbb{R}$ $6 < x < 18$

$$x \in \mathbb{R} \qquad 6 < x < 18$$

c)
$$f(x) = \frac{2}{x+3} \qquad x \in \mathbb{R} \quad x \ge 1$$

$$x \in \mathbb{R}$$
 $x \ge 1$

d)
$$f(x) = \frac{1}{x-1} + 2$$
 $x \in \mathbb{R}$ $x > 2$

e)
$$f(x) = 15 - (x - 2)^2$$
 $x \in \mathbb{R}$ $0 \le x \le 4$

$$x \in \mathbb{R} \quad 0 < x < 4$$

f)
$$f(x) = 8 - x^3$$
 $x \in \mathbb{R}$ $0 \le x \le 2$

$$x \in \mathbb{R} \quad 0 \le x \le 2$$

g)
$$f(x) = 2 - e^x$$
 $x \in \mathbb{R}$ $x \le 0$

$$x \in \mathbb{R}$$
 $x \le 0$

h)
$$f(x) = 3 - e^{x+1}$$

$$x \in \mathbb{R}$$
 $x \ge -1$

i)
$$f(x) = 3 - \ln x \qquad x \in \mathbb{R} \quad 0 < x < 1$$

$$x \in \mathbb{R}$$
 $0 < x < 1$

2. Sketch each of the following graphs, stating any values of *x* for which the function is not defined

a)
$$y = |3x - 6|$$

b)
$$y = |x^2 - 3x - 4|$$

c)
$$y = \frac{1}{1 + x^2}$$

d)
$$y = \frac{x^2 + 1}{x - 1}$$

e)
$$y^2 = x^3$$

$$f) y = \sqrt[3]{x^3 - x}$$

3a) A sketch of the graph $y = x^3 - x^2 - x + 1$ appears on which of the following axes?

(d)

b) Which of the following graphs is a sketch of $y = \frac{1}{6x - x^2 - 10}$

(c)

Find the composite function fg(x) and sketch this function. 4. State any values of x for which the function fg(x) is not valid.

a)
$$f(x) = x^2 - 4$$

$$g(x) = 2x - 2$$

b)
$$f(x) = 2x^2 - 3$$
 $g(x) = \sqrt{x+4}$

$$g(x) = \sqrt{x+4}$$

c)
$$f(x) = 2e^{\frac{1}{2}x}$$

$$g(x) = ln(4x)$$

$$d) f(x) = \sin x$$

$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

d)
$$f(x) = \sin x$$
 $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ $g(x) = x - \frac{\pi}{2}$ $x \ge 0$

5. The figure shows the graph of the curve with equation y = f(x)

Sketch the graphs of the following functions and include the new coordinates of points *A* and *M*.

$$a) y = 2f(x) + 1$$

b)
$$y = f(x - 3)$$

$$c) y = f(-\frac{1}{2}x)$$

$$d) y = f(|x|)$$

$$e) y = -4f(x+1)$$

$$f) y = f(2x + 4)$$

6. The figure shows a cubic curve whose coefficient of x^3 is 1. The curve crosses the x-axis at A(a,0)and touches the x-axis at B(b,0) where a and b are positive constants such that a < b. The point C is a local maximum of the curve. Find the coordinate of D in terms of a and b.

7. Which one of the following equations could possibly be the graph below:

I
$$y = (3-x)^2(3+x)^2(1-x)$$

II
$$y = -x^2(x-9)(x^2-3)$$

II
$$y = -x^2(x-9)(x^2-3)$$

III $y = (x-6)(x-2)^2(x+2)^2$
IV $y = (x^2-1)^2(3-x)$

IV
$$y = (x^2 - 1)^2(3 - x)$$

8. The graphs of two functions are shown.

 $y = a^x$ is shown with a solid line where a is a positive real number.

y = f(x) is shown with a dashed line

Which of the following could be true?

I
$$f(x) = b^x$$
 for some $b > a$

II
$$f(x) = b^x$$
 for some $b < a$

III
$$f(x) = a^{kx}$$
 for some $k > 1$

IV
$$f(x) = a^{kx}$$
 for some $k < 1$