1

LINEAR SYSTEMS AND SIGNAL **PROCESSING ASSIGNMENT 1**

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/ EE3900 VECTORS ASSIGNMENTS/blob/ main/VECTORS ASSIGNMENT1/ **VECTORS ASSIGNMENT1.tex**

Download all python codes from

https://github.com/VARSHITHAGANJI/ EE3900 VECTORS ASSIGNMENTS/blob/ main/VECTORS ASSIGNMENT1/ VEC1 CODE.py

QUESTION

Vectors 2.10

In each of the following, find the value of k for which the points are collinear

1)
$$\begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ k \end{pmatrix}$
2) $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$, $\begin{pmatrix} k \\ -4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$

SOLUTION

1) Let
$$\mathbf{A} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 3 \\ k \end{pmatrix}$
The direction vectors of $\mathbf{A}\mathbf{B}$ and $\mathbf{A}\mathbf{C}$ or

The direction vectors of AB and AC are

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -2\\3 \end{pmatrix} \tag{0.0.1}$$

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -4\\k+2 \end{pmatrix} \tag{0.0.2}$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{A} \end{pmatrix}^{\mathsf{T}} \tag{0.0.3}$$

Substituting (0.0.1) and (0.0.2) in (0.0.3), we get

$$\mathbf{M} = \begin{pmatrix} -2 & 3\\ -4 & k+2 \end{pmatrix} \tag{0.0.4}$$

We know that if $rank(\mathbf{M}) = 1$, the points are collinear.

Finding the rank of the matrix in the problem,

$$\mathbf{M} = \begin{pmatrix} -2 & 3 \\ -4 & k+2 \end{pmatrix} \stackrel{R_2 \to R_2 - 2R_1}{\longleftrightarrow} \begin{pmatrix} -2 & 3 \\ 0 & k-4 \end{pmatrix}$$

$$(0.0.5)$$

Since $rank(\mathbf{M}) = 1$, the number of non zero rows left after doing row operations should be equal to 1.

Since row 1 in (0.0.5) is non zero, elements row 2 should be equal to 0.

$$k = 4$$
 (0.0.6)

Fig. 1: Plot of the line

2) Let
$$\mathbf{A} = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} k \\ -4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$
The direction vectors of AB and AC are

 $\mathbf{B} - \mathbf{A} = \begin{pmatrix} k - 8 \\ -5 \end{pmatrix}$ (0.0.7)

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -6 \\ -6 \end{pmatrix} \tag{0.0.8}$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{B} - \mathbf{A} & \mathbf{C} - \mathbf{A} \end{pmatrix}^{\mathsf{T}} \tag{0.0.9}$$

Substituting (0.0.7) and (0.0.8) in (0.0.9), we get

$$\mathbf{M} = \begin{pmatrix} k - 8 & -5 \\ -6 & -6 \end{pmatrix} \tag{0.0.10}$$

We know that if $rank(\mathbf{M}) = 1$, the points are collinear.

Finding the rank of the matrix in the problem,

$$\mathbf{M} = \begin{pmatrix} k - 8 & -6 \\ -5 & -6 \end{pmatrix} \stackrel{R_2 \to 5R_2 - 6R_1}{\longleftrightarrow} \begin{pmatrix} k - 8 & -5 \\ 18 - 6k & 0 \end{pmatrix}$$
(0.0.11)

Since $rank(\mathbf{M}) = 1$, the number of non zero rows left after doing row operations should be equal to 1.

Since row 1 in (0.0.11) is non zero for any value of k, elements row 2 should be equal to 0.

$$k = 3$$
 (0.0.12)

Fig. 2: Plot of the line