Note on binding of an association particle to semantic particles D. Gueorguiev 11/25/21

Primitive semantic particles

Let us consider two primitive semantic particles - V_i and V_j connected through association particle (link) $A_{i,j}$.

$$V_i$$
---- V_j

The particles V_i and V_j are represented by their semantic signatures \mathbf{V}_i and \mathbf{V}_j . The association link $A_{i,j}$ is represented with its association matrix $\mathbf{A}_{i,j}$ and semantic significance vector $\mathbf{W}_{i,j}$.

The association matrix $\mathbf{A}_{i,j}$ captures the affinity force $F(V_i,V_j,t)$ between the particles V_i and V_j at the time t of constructing the compound structure involving those particles. Note that the magnitude of affinity force between the particles may change as their semantic positions and signatures are altered in the future. A change in the affinity force $F(V_i,V_j,t+\Delta t)$ at a future moment $t+\Delta t$ may change the matrix $\mathbf{A}_{i,j}$ of the association link between the altered particles. Altering the semantic position of a particle will require reevaluating the semantic links of this particle with the relevant enclosing contexts.

The association matrix has the following structure:

 $\mathbf{A}_{i,j} = \left[\mathbf{a}_{p_1,q_1} \dots \ \mathbf{a}_{p_m,q_n}\right]$ where the pairs p,q denote all relevant property pairs where the left property belongs to V_i and the right property belongs to V_j . Let us denote with $\mathcal P$ the set of property indices which belong to V_i and with Q the set of indices which belong to V_j . Then $p \in \mathcal P$ and $q \in \mathcal Q$. Note that the map $\mathcal P \to \mathcal Q$ is many-to-many. That is, the same index p may appear multiple times with different $q \in \mathcal Q$ and the same index p may appear multiple times with different $p \in \mathcal P$. The property association matrices $\mathbf{a}_{p,q}$ have the following structure:

$$\mathbf{a}_{p,q} = \begin{bmatrix} \mathbf{r}_{1}^{p} & \mathbf{r}_{1}^{q} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{r}_{2}^{p} & \mathbf{r}_{2}^{q} \\ \mathbf{0} & \mathbf{0} \\ \vdots & \vdots \\ \mathbf{0} & \mathbf{0} \\ \mathbf{r}_{k}^{p} & \mathbf{r}_{l}^{q} \end{bmatrix}$$

So $\mathbf{a}_{p,q}$ is a two-column matrix of size $N \times 2$ with non-zero regions in each column denoted by the vectors \mathbf{r}_i where $\sum_{i=1}^k \operatorname{size}(\mathbf{r}_{i=1}^p) \leq N$ and $\sum_{j=1}^l \operatorname{size}(\mathbf{r}_j^q) \leq N$. The non-zero regions \mathbf{r}_i^p and \mathbf{r}_j^q are also known as the *active regions* of the association link between the two properties $P_p \in ptree(V_i)$ and $P_q \in ptree(V_j)$ at time t. For details refer to Note On Binding Of An Association Property to Semantic Properties.