Deep Learning for Business Deep Learning Project with TensorFlow Playground

Prof. Jong-Moon Chung

Deep Learning for Business

Deep Learning Project with TensorFlow Playground Introduction to TensorFlow Playground

TensorFlow Playground

- Web application written in d3.js
- Best web application to learn about
 NNs (Neural Networks) without math
- In your web browser, you can create a NN and immediately see your results
- Licensed under the Apache License 2.0,
 January 2004 (http://www.apache.org/licenses/)

- Creators of TensorFlow Playground
 - Daniel Smilkov and Shan Carter
- Based on a continuation of many previous works
 - Most notably Andrej Karpathy's convnet.js demo and Chris Olah's articles on NNs (Neural Networks)
- Contributing members
 - D. Sculley for help with the original idea
 - Fernanda Viégas and Martin Wattenberg and the Big Picture and Google Brain teams for feedback and guidance
- Thank you for making this great web application!

Go to http://playground.tensorflow.org

Epoch, Learning rate, Activation,
 Regularization rate, Problem type

 Every time training is conducted for a whole training set, the Epoch number increases

- Learning rate determines the learning speed
- Select the appropriate learning rate

- Activation function type needs to be selected
- More information on activation functions are in the lectures of Module 4

Review of Module 4

ANN (Artificial Neural Network) Neuron

Activation Function with Hard Output

Review of Module 4

Soft Output Activation Functions

- ReLU (Rectified Linear Unit) g(y) = max(0, y)

- Tanh (Hyperbolic Tangent)
$$t(y) = \frac{1 - \exp(-2y)}{1 + \exp(-2y)}$$

- Sigmoid (Logistic Sigmoid)
$$\sigma(y) = \frac{1}{1 + \exp(-y)}$$

- Linear (e.g.,
$$\alpha=1$$
) $l(y) = \alpha y$

Review of Module 4

Soft Output Activation Functions

ReLU (Rectified Linear Unit)

- Regularization is used to prevent overfitting
- TensorFlow Playground provides two types of regularization: L1, L2

Regularization L1 and L2

- Regularization slowly increases/reduces the weights of strong/weak connections to make the pattern classification sharper
- L1 and L2 are popular regularization methods
- Dropout is also a regularization method
 - Dropout is explained in the lectures of Module 5
 "Deep Learning with CNN (Convolutional Neural Network)"

L1 Regularization

- L1 is effective in sparse feature spaces, where there is a need to select a few among many
- L1 will make selections and assign big weight values, and will make the weights of the non-selected ones very small (or zero)

L2 Regularization

- L2 is effective with inputs that are correlated
- L2 will control the weight values corresponding to the level of correlation

A higher Regularization Rate will make the weights more limited in range

- Select among the two types of problems
 - Classification
 - Regression

Select the type of Data set
Picture of the Data set type

Four types of Classification

Two types of Regression

- Blue and orange dots form data sets
 - Orange dot = -1, Blue dot = +1
- Using the Ratio of training to test data, the percentage of the training set can be controlled

- Noise level of the data set can be controlled
 - Data pattern becomes more irregular as the noise increases

Batch size determines the data amount to use
 for each training iteration

- Example of X_1 and X_2
 - This dot (approximately) has $X_1 \approx 3.1$ and $X_2 \approx 4$

- Hidden layer structure
 - Up to 6 hidden layers can be set
 - Up to 8 neurons per hidden layer can be set

Pressing the arrow ▶ button starts the NN training
 Epoch will be increased by one
 Backpropagation will be used to train the NN

- Pressing the arrow ▶ button starts the NN training
 - Epoch will be increased by one
 - Backpropagation will be used to train the NN

- NN minimizes the Test Loss and Training Loss
- Test Loss (black) and Training Loss (grey) changes
 will be shown in small performance curves
- If the Loss is reduced, the curves will go down

Deep Learning for Business

Deep Learning Project with TensorFlow Playground

References

References

- A Neural Network Playground TensorFlow [Online]. Available: http://playground.tensorflow.org
- Google Cloud Big Data and Machine Learning Blog [Online]. Available: https://cloud.google.com/blog/big-data/2016/07/understanding-neural-networks-with-tensorflow-playground
- Google Open Source [Online]. Available:
 https://opensource.google.com/projects/tensorflow-playground