Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2024-25

Πράξεις με δυαδικούς αριθμούς

(αριθμητικές πράξεις)

https://mixstef.github.io/courses/csintro/

Μ. Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις (το είδαμε στην προηγούμενη ενότητα)
 - Αριθμητικές πράξεις
- Υπενθύμιση: στις μονάδες επεξεργασίας
 - Οι πράξεις εκτελούνται σε ομάδες bits (bytes ή πολλαπλάσιά τους)

Σειρές από bits ως δυαδικοί αριθμοί

το περισσότερο σημαντικό bit το λιγότερο σημαντικό bit

1	1	1	1	0	0	1	1	
1x128	1x64	1x32	1x16	0x8	0x4	1x2	1x1	
128 -	⊦ 64	+ 32	+ 16	+ 0	+ 0	+ 2	+ 1	=
				243 (8	δεκαδικ	(ó)		

- Μετατροπή από το δυαδικό στο δεκαδικό σύστημα
 - Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2 στο αριστερό μέρος

Μετατροπή δεκαδικού σε δυαδικό

Πόσοι διαφορετικοί αριθμοί με *n* bits;

Δυαδικοί αριθμοί χωρίς πρόσημο (φυσικοί)

- Για αναπαράσταση διαφορετικών «πραγμάτων»
 - Ως μοναδικοί αναγνωριστικοί αριθμοί
 - Συχνά χωρίς αριθμητική έννοια
 - Παραδείγματα
 - Οι ξεχωριστές διευθύνσεις μνήμης
 - Οι χαρακτήρες σε ένα αλφάβητο
- Ξανά: με *n* bits απαριθμούνται έως και 2ⁿ διαφορετικά «πράγματα»

Φυσικοί αριθμοί (χωρίς πρόσημο)

Με κίτρινο φαίνεται ο ελάχιστος αριθμός bits που απαιτείται για την αναπαράσταση του αντίστοιχου αριθμού

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
••••	•••

- Με *n* bits περιγράφονται
 - Οι φυσικοί αριθμοί από θ έως και 2^n -1

Δεκαεξαδικό Σύστημα

- 16 ψηφία
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Αντιστοιχία με τους δεκαδικούς 0 έως 15
- Σε δυνάμεις του 16
 - 16ⁿ ...16⁴ 16³ 16² 16¹ 16⁰
 - $\Pi.\chi$. $16F(hex) = 1x16^2 + 6x16^1 + 15x16^0$
 - = 256 + 96 + 15 = 367 (δεκαδικό)
- Χρήσιμο μόνο ως «συντομογραφία» δυαδικών αριθμών

Δεκαεξαδικό Σύστημα

• Κάθε 4 δυαδικά ψηφία αντιστοιχούν σε ένα δεκαεξαδικό ψηφίο

0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	C
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Παράδειγμα στο δεκαεξαδικό σύστημα

Παράδειγμα: 1100100110010100
1100 1001 1001 0100

C 9 9 4 = C994(hex)

- Παράδειγμα: 100001010111110
 0010 0001 0101 1110
- 2 1 5 E = 215E (hex)
 - Συμπλήρωση με 0 στα αριστερά για να έχουμε 4άδες
 - Δεν αλλάζει τον αριθμό, όπως ακριβώς και στο δεκαδικό σύστημα

Ακέραιοι αριθμοί (με πρόσημο – signed)

- Πώς θα αναπαρασταθούν οι αρνητικοί;
 - Για να γίνονται εύκολα οι πράξεις
- Χρησιμοποιήθηκε παλαιότερα:
 - Ξεχωριστό bit πρόσημου

προσημο (1 οπ.)

Διάστημα τιμών για αριθμούς με n bits

$$-(2^{n-1}-1) \epsilon \omega \varsigma + (2^{n-1}-1) (\pi.\chi. \gamma \iota \alpha n=8, -127 ... +127)$$

- ένα χρήσιμο bit λιγότερο
- δυσκολία στις πράξεις
- 2 αναπαραστάσεις του 0

Ακέραιοι αριθμοί (με πρόσημο – signed)

- Μια ακόμα μορφή που δεν χρησιμοποιείται σήμερα:
 - Συμπλήρωμα ως προς 1
 - Αντιστροφή όλων των bits του θετικού αριθμού για να πάρουμε τον αρνητικό
 - Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Διάστημα τιμών για αριθμούς με n bits
 - $-(2^{n-1}-1) \cos \zeta + (2^{n-1}-1) (\gamma \iota \alpha \tau i;)$
 - Τα ίδια προβλήματα με την χρήση ξεχωριστού bit πρόσημου

Ακέραιοι αριθμοί (με πρόσημο – signed)

- Η μορφή που χρησιμοποιεί το υλικό (hardware) σήμερα
 - Κάθε αρνητικός αριθμός είναι το «συμπλήρωμα ως προς 2»
 του αντίστοιχου θετικού
- Συμπλήρωμα ως προς 2
 - Τι σημαίνει «συμπλήρωμα ως προς 2»;
 - Πώς υπολογίζεται;

Συμπλήρωμα ως προς 2

- Ίσο με το «συμπλήρωμα ως προς 1» + 1
- Εμπειρικός κανόνας:
 - Αντιστροφή όλων των bits εκτός από τα δεξιότερα συνεχόμενα 0 και το πρώτο 1 αριστερά από αυτά
- Συμπλήρωμα ως προς 2: παραδείγματα
 001011100 ⇒ 110100100
 011111111 ⇒ 10000001
- Προσοχή στο 0000...00 και στο 1000...00

Ακέραιοι σε συμπλήρωμα ως προς 2

• Διάστημα τιμών για αριθμούς με *n* bits

```
-(2^{n-1}) \epsilon \omega \varsigma + (2^{n-1}-1) \quad (\pi.\chi. \gamma \iota \alpha n=8, -128 ... +127)
```

- Υπάρχει μια ασυμμετρία: το $+(2^{n-1})$ δεν μπορεί να αναπαρασταθεί με n bits
- Ευκολία στις πράξεις
 - Το ίδιο κύκλωμα προσθέτει αριθμούς με και χωρίς πρόσημο
 - Αφαίρεση = πρόσθεση του συμπληρώματος ως προς 2
 - Μία και μοναδική αναπαράσταση του 0
- Πιο σημαντικό bit: 0 για θετικούς, 1 για αρνητικούς
 - Δεν είναι όμως bit προσήμου!

Μετατροπές ακεραίων δυαδικών σε δεκαδικό

- Γνωρίζουμε να μετατρέπουμε δυαδικούς χωρίς πρόσημο σε δεκαδικούς
 - Είδαμε π.χ. ότι το $11110011 = 2^7 + 2^6 + 2^5 + 2^4 + 2^1 + 2^0 = 128 + 64 + 32 + 16 + 2 + 1 = 243$ (δεκαδικός)
- Τι συμβαίνει όταν ο δυαδικός αριθμός έχει πρόσημο;

Μετατροπές ακεραίων δυαδικών σε δεκαδικό

- Εξετάζουμε το περισσότερο σημαντικό (αριστερότερο) bit
 - Αν είναι 0 → ο αριθμός είναι θετικός: μετατρέπουμε σε δεκαδικό όπως στους αριθμούς χωρίς πρόσημο
 - Π.χ. ο αριθμός 01101100 είναι θετικός = $2^6+2^5+2^3+2^2 = +108$
 - Αν είναι 1 → ο αριθμός είναι αρνητικός: πρώτα συμπληρώνουμε ως προς 2 για να βρούμε τον αντίστοιχο θετικό
 - Π.χ. ο 11110011 είναι αρνητικός, με θετικό τον 00001101= $2^3+2^2+2^0=+13$
 - Άρα ο ζητούμενος αρνητικός (11110011) είναι ο -13

Ζητήματα αναπαράστασης

- Προσοχή: η σειρά bits 11110011 έχει διαφορετική σημασία ανάλογα με την επιλεγμένη αναπαράσταση
 - Αν το 11110011 αναπαριστά αριθμό χωρίς πρόσημο τότε πρόκειται για τον δεκαδικό 243 (φυσικός αριθμός)
 - Αν το 11110011 αναπαριστά αριθμό με πρόσημο τότε πρόκειται για τον δεκαδικό -13 (ακέραιος αριθμός)
- Συνεπώς δεν μπορούμε να ξέρουμε με τι ισούται μια σειρά από bits παρά μόνο αν γνωρίζουμε την αναπαράσταση που ισχύει!

Επέκταση προσήμου

- Συχνά στους υπολογιστές υπάρχει ανάγκη να γράψουμε έναν δυαδικό αριθμό με μεγαλύτερο αριθμό bits απ'όσα έχει
 - Αν πρόκειται για αριθμό χωρίς πρόσημο, αρκεί να συμπληρώσουμε με 0 έως τον απαιτούμενο αριθμό bits
 - Π.χ. για να επεκτείνουμε τον 8-bit αριθμό 01101100 στα 16 bits
 θα προσθέσουμε στα αριστερά 8 μηδενικά: 0000000001101100
- Αν όμως ο δυαδικός αριθμός έχει πρόσημο και είναι αρνητικός, η προσθήκη μηδενικών αλλοιώνει τον αριθμό
 - Π.χ. το 0000000011110011 δεν είναι το -13 (έγινε θετικός!)

Επέκταση προσήμου

- Όταν ο αριθμός έχει πρόσημο (θετικός ή αρνητικός)
 συμπληρώνουμε τα bits που λείπουν με το πιο σημαντικό (αριστερότερο) bit του αρχικού αριθμού
 - $01101100 \rightarrow 0000000001101100$
 - $-11110011 \rightarrow 11111111111110011$
 - Η λειτουργία αυτή ονομάζεται επέκταση προσήμου

Αριθμητικές πράξεις

- Οι βασικές πράξεις
 - Πρόσθεση
 - Αφαίρεση
- Άλλες πράξεις
 - Πολλαπλασιασμός
 - Διαίρεση
 - Επίσης:
 - Τετραγωνική ρίζα, τριγωνομετρικές συναρτήσεις, εκθετικά, λογάριθμοι κλπ..
 - Υλοποίηση σε υλικό με διάφορες τεχνικές
 - Π.χ με πολυώνυμα

Προσθέτοντας 2 bits

bits	άθροισμα	κρατούμενο
0+0	0	0
0 + 1	1	0
1 + 0	1	0
1 + 1	0	1

Ημιαθροιστής (half-adder)

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

• Πώς γίνεται η πρόσθεση αριθμών με περισσότερα bits;

Προσθέτοντας δυαδικούς αριθμούς (χωρίς πρόσημο)

Κρατούμενο	,1,1,1
Α' Αριθμός (119)	0 1 1 1 0 1 1 1
Β' Αριθμός (88)	0 1 0 1 1 0 0 0
Άθροισμα (207)	1 1 0 0 1 1 1 1

- 1. Αριθμοί με ίδιο μήκος (ίσος αριθμός bits)
- 2. Αρχίζοντας από το λιγότερο σημαντικό bit (το δεξιότερο)
- 3. Προσθέτουμε ζεύγη bits και μεταφέρουμε το κρατούμενο (αν υπάρχει) προς τα αριστερά
 - Το προσθέτουμε στο επόμενο ζεύγος bits

Πλήρης αθροιστής (full-adder)

- Μία από τις πιθανές υλοποιήσεις
 - με δύο ημιαθροιστές

Πρόσθεση αριθμών με πλήρεις αθροιστές

- Πολλαπλά τμήματα πλήρους αθροιστή
 - Όμως: πόσο γρήγορα διαδίδεται το κρατούμενο; (ripple carry)
 - Τεχνικές πρόβλεψης κρατουμένου (carry look-ahead)

Προσθέτοντας δυαδικούς αριθμούς (χωρίς πρόσημο)

- Υπερχείλιση (overflow)
 - Στον υπολογιστή το πλήθος των bits ανά αριθμό είναι προκαθορισμένο
 - Το αποτέλεσμα της πρόσθεσης θα πρέπει να χωρά στα διαθέσιμα bits (π.χ. σε έναν καταχωρητή)
 - Αν όχι, έχουμε υπερχείλιση
- Αριθμοί χωρίς πρόσημο:
 - Αριθμός με N bits $\rightarrow \pi \epsilon \delta$ ίο τιμών [0 ... 2^N 1]
 - Π.χ. για αριθμούς με 8 bits, από 0 έως 255

Προσθέτοντας δυαδικούς αριθμούς (χωρίς πρόσημο)

Προσθέτοντας δυαδικούς αριθμούς (με πρόσημο)

• Ακέραιοι (με πρόσημο)

- Οι αρνητικοί αριθμοί είναι σε συμπλήρωμα ως προς 2
 - Το περισσότερο σημαντικό bit υποδηλώνει το πρόσημο
 - 0=θετικός, 1=αρνητικός
- Αριθμός με N bits \Rightarrow πεδίο τιμών [-2^{N-1} ...0... $+2^{N-1}$ 1]
 - π.χ. για αριθμούς με 8 bits, από -128 έως +127

• Πρόσθεση

- Οπως ακριβώς με τους αριθμούς χωρίς πρόσημο
- Αλλά: το τελικό κρατούμενο αγνοείται
 - Δεν είναι ένδειξη υπερχείλισης

Προσθέτοντας δυαδικούς αριθμούς (με πρόσημο)

Κρατούμενο	, 1
Α' Αριθμός (+17)	0 0 0 1 0 0 0 1
Β' Αριθμός (+22)	0 0 0 1 0 1 1 0
Άθροισμα (+39)	0 0 1 0 0 1 1 1

Προσθέτοντας δυαδικούς αριθμούς (με πρόσημο)

Κρατούμενο	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Α' Αριθμός (+24)	0 0 0 1 1 0 0 0
Β' Αριθμός (-17)	1 1 1 0 1 1 1
Άθροισμα (+7)	0 0 0 0 1 1 1

• το κρατούμενο αγνοείται

Υπερχείλιση σε αριθμούς με πρόσημο

Υπερχείλιση σε αριθμούς με πρόσημο

Κρατούμενο	1 , 1 , 1 , 1 , 1 , 1 , 1
Α' Αριθμός (+127)	0 1 1 1 1 1 1
Β' Αριθμός (+3)	0 0 0 0 0 1 1
Άθροισμα (-126;)	1 0 0 0 0 1 0

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Υπερχείλιση σε αριθμούς με πρόσημο

- Το άθροισμα αριθμών με ίδιο πρόσημο θα πρέπει να έχει επίσης το ίδιο πρόσημο
 - στην αντίθετη περίπτωση: υπερχείλιση

Κλασματικοί αριθμοί

• Θεωρητικά

Θα μπορούσαμε να επεξεργαζόμαστε ξεχωριστά το ακέραιο και το κλασματικό μέρος

Αλλά

Αδυναμία αναπαράστασης πολύ μεγάλων και πολύ μικρών αριθμών

• Η λύση

- Αριθμοί κινητής υποδιαστολής (floating point)
- Εύκολη αναπαράσταση τόσο του 1.000.000.000.000 όσο και του 0,0000000000000001
- Προσοχή: οι αριθμοί κινητής υποδιαστολής είναι προσεγγιστικοί
 - Η αναπαράσταση κάποιων αριθμών είναι «στο περίπου»

Αριθμοί κινητής υποδιαστολής

- 3 μέρη
 - Πρόσημο (Π) (1 bit)
 - 0 = + 1 = **-**
 - Εκθέτης (E) (8 ή 11 bits)
 - Η βάση είναι το 2 (εννοείται)
 - Θετικοί και αρνητικοί εκθέτες με πλεόνασμα 127 ή 1023 (π.χ. αντί -55, Ε= 55+127=72!)
 - Σημαινόμενο τμήμα (Σ) (23 ή 52 bits)
 - Κανονικοποίηση: μορφή 1,xxxxxxxxxxxx...
 - Το '1,' εννοείται και δεν αποθηκεύεται
- Τελικός αριθμός: -1^Π x 1.Σ x 2^{E-127} (ή 2^{E-1023)}
 - Ειδικοί αριθμοί: 0, ∞, NaN (Not a Number)
- Στις εφαρμογές ΑΙ χρησιμοποιούνται και μορφές με λιγότερα bits σε εκθέτη και σημαινόμενο τμήμα

Πράξεις με αριθμούς κινητής υποδιαστολής

- Σύνθετη διαδικασία
- Η γενική μορφή της πρόσθεσης:
 - 1. Σύγκριση προσήμων
 - αν είναι ίδια ⇒ πρόσθεση
 - αλλιώς ⇒ αφαίρεση
 - 2. Εξίσωση εκθετών
 - μετακίνηση υποδιαστολής
 - 3. Πρόσθεση ή αφαίρεση σημαινόμενων τμημάτων
 - ακέραιο και κλασματικό μέρος
 - 4. Κανονικοποίηση αποτελέσματος
 - 5. Έλεγχος για υπερχείλιση

Πράξεις με αριθμούς κινητής υποδιαστολής

```
132
                         Α' αριθμός:
               2^{132-127} \times 1,1011
                                   (+2^5 \times 1,1011)
                     130
                         Β' αριθμός:
              2^{130-127} \times 1,011 (+2^3 \times 1,011)
                              1,10110
                 +25
                             0,01011
+ B
                 +25
                        X
                             10,00001
                 +25
 я
                        X
                              1,000001
κανονικοποίηση
                 +2<sup>6</sup>
                       X
αποτέλεσμα:
                          000001000000000000000000
```