Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Motion and Kinematics

Overview

Motion and Kinematics

- Elements of motion
- Kinematics
- Motion in Graphs
- Kinematic Equations
- Free Fall
- Translational Motion
- Projectile motion sample

Elements of motion

- Speed vs Velocity
 - Speed is scalar, Velocity is a vector.

- Distance vs Displacement
 - Distance is a scalar.
 - "How much ground an object has covered" during its motion.
 - Displacement is a vector.
 - It is the object's overall change in position.

Kinematics

- The motion of points, bodies and systems of bodies.
 - Without consideration of the causes of motion!
- Kinematics is a branch of mechanics:
 - "Geometry of motion"
 - Describe the motion of objects...
 - Using: Words, diagrams, numbers, graphs and equations
 - Explain the motion of real world objects.

Velocity

- A vector that describes the direction and magnitude of the rate of change of the position of an object.
 - How the position changes with respect to time...

Velocity = (ΔPosition) / (ΔTime)

- Remember: △ means "change"
 - Difference Operator
 - Finite Difference

Speed

- Speed
 - Speed is the magnitude to the velocity vector.
 - It's a scalar quantity!
 - "How fast an object is moving"
 - speed = |Velocity|
 - speed = d/t
 - d is distance
 - t is time

Average speed and velocity

- Calculating Average Speed
 - AverageSpeed = DistanceTraveled / TimeOfTravel

- Calculating Average Velocity
 - AverageVelocity = Δ Position / time
 - AverageVelocity = displacement / time
- Instantaneous Speed
 - The speed at any given instant in time.

Acceleration

- Acceleration is a vector defined by the rate of change of the velocity vector.
 - Has magnitude and direction...
- Acceleration = (ΔVelocity) / (ΔTime)
- Acceleration = $(V_f V_i) / (\Delta Time)$
- SI Unit: Meters per second per second
 - (m/s^2) or (ms^{-2})
 - An object is accelerating if its velocity is changing...

Jerk

- Jerk
 - Jerk is a vector defined by the rate of change of the acceleration vector.
 - Has magnitude and direction...

- Jerk = (Δ Acceleration) / (Δ Time)

- Also known as:
 - Jolt, Surge, or Lurch...

Motion in graphs

- Position vs Time, Velocity vs Time, Time vs Acceleration Graphs
 - What do the following graphs look like?
 - 1. Constant Velocity
 - Changing Velocity (constant acceleration/ deceleration)
 - 3. Changing Velocity (changing acceleration/deceleration)

Motion in graphs: Position vs Time graphs

- The Slope of the line on the position vs time graph...
 - Is the velocity of the object!

- Slope: =
$$dy/dx = \Delta y/\Delta x$$

= $(y_2 - y_1)/(x_2 - x_1)$ = rise/run

Motion in graphs: Velocity vs Time graph

- Constant velocity:
 - Acceleration is zero.
- Increasing velocity:
 - Positive acceleration: positive velocity
 - Negative acceleration: negative velocity

- Slope of the graph is the acceleration of the object.
- Area on the graph is the displacement of the object.

Motion in graphs: Acceleration vs Time graph

- Constant acceleration
- Increasing acceleration

- Area of the graph is the velocity of the object.
- Slope is not meaningful within our context.

Kinematic Equations

Constant velocity motion:

$$- d = v * t$$

Four kinematic equations:

$$- d = v_i t + \frac{1}{2}at^2$$

$$-V_f = v_i + a t$$

$$-v_f^2 = v_i^2 + 2ad$$

$$- d = ((v_i + v_f) / 2)t$$

– Keep in mind:

• d: displacement

• t:time

• a : acceleration

• v_i: initial velocity

v_f: final velocity

Free Fall

- An object in free fall is an object under only the influence of gravity.
- Two motion characteristics:
 - Free-falling objects do not encounter a significant air resistance.
 - All free-falling objects on Earth accelerate downwards at a rate of 9.8ms⁻²
- Acceleration of Gravity!
 - Denoted as: g = 9.8
- Ticker Tape Diagrams/Oil drop diagrams
 - Ticker marks the tape at regular time intervals...

Falling with Air Resistance

- Air resistance is in the opposite direction of gravity
 - Slows the object down: deceleration
- Terminal Velocity:
 - Air resistance force becomes large enough to balance the force of gravity.
 - Net force of zero. The object stops accelerating.
 - Terminal velocity is a constant velocity.

Translational motion

- Motion in one dimension that does not deviate from a straight line.
- For projectiles: split the motion so that components of the motion can be analyzed linearly in one dimension.
 - Free fall is in one dimension.
 - The motion of a ball thrown vertically can be analyzed in two parts:
 one part until the highest position, the other starting from the highest position until ball hits the ground.
 - The motion of an artillery shot can be split into two dimensional motion; vertical motion and horizontal motion.

Projectile Motion Sample: Angry Birds (Rovio, 2009)

Fig 1: Angry Birds (Rovio, 2009)

Fig 1: http://www.pocketgamer.co.uk/FCKEditorFiles//angry-birds-easter-ipad-2.JPG

Angry Birds Analysis

Fig 2: Angry Birds Analysis http://communities.ptc.com/servlet/JiveServlet/showImage/ 102-2368-226702/376027_10150405827249928_314467614927_8272478_1598456321_n.jpg

Angry Birds Analysis: the bird

- Object leaves the catapult at a certain velocity
- Velocity has vertical and horizontal components
 - Horizontal component is constant.
 - The programmers probably ignored air resistance.
 - Vertical component subject to acceleration due to gravity.
 - Pulls the bird downward towards the Earth.
 - Kinematics rule!
- Distance is horizontal and vertical.
 - Simulate step-wise or with kinematics!
- The path travelled is parabolic.

Summary

Motion and Kinematics

- Elements of motion
- Kinematics
- Motion in Graphs
- Kinematic Equations
- Free Fall
- Translational Motion
- Projectile motion sample

