Package 'fungible'

November 16, 2018	
Version 1.75	
Date 2018-11-16	
Title Psychometric Functions from the Waller Lab	
Author c(person(``Niels", ``Waller", role = c(``aut", ``cre"), email=``nwaller@umn.edu"), person(``Jeff",``Jones", role = ``ctb"))	
Maintainer Niels G. Waller <nwaller@umn.edu></nwaller@umn.edu>	
Depends R (>= 3.0)	
Imports clue, e1071, GPArotation, lattice, MASS, methods, mvtnorm, nleqslv, psych, Rcsdp, RSpectra, stringr	
 Description Computes fungible coefficients and Monte Carlo data. Underlying theory for these functions is described in the following publications: Waller, N. (2008). Fungible Weights in Multiple Regression. Psychometrika, 73(4), 691-703, <doi10.1007 s11336-008-9066-z="">.</doi10.1007> Waller, N. & Jones, J. (2009). Locating the Extrema of Fungible Regression Weights. Psychometrika, 74(4), 589-602, <doi10.1007 s11336-008-9087-7="">.</doi10.1007> Waller, N. G. (2016). Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research. Multivariate Behavioral Research, 51(4), 554-568, <doi10.1080 00273171.2016.1178566="">.</doi10.1080> Jones, J. A. & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: theoretical extensions and finite sample behavior. Psychometrika, 80, 365-378, <doi10.1007 s11336-013-9380-y="">.</doi10.1007> Waller, N. G. (2018). Direct Schmid-Leiman transformations and rank-deficient loadings matrices. Psychometrika, 83, 858-870. <doi 10.1007="" s11336-017-9599-0="">.</doi> 	
License GPL (>=2)	
NeedsCompilation no	
R topics documented:	
adfCor adfCov BadRBY BadRJN BadRKtB BadRLG	

FAD	 8
gen	 10
rSample	 12
rSmooth	 13
r	 14
p	 14
gGen	16
hancement	17
f	18
Align	19
ls	22
MAP	23
Sort	25
MP	26
MPMonotonicityCheck	29
ngible	30
ngibleExtrema	31
ngibleL	33
ngibleR	35
JP	39
n4PMData	42
nCorr	43
nFMPData	44
S9Var	46
`	47
mDescriptives	 48
rt	 50
onte	 51
onte1	 58
rmalCor	 59
rmF	 60
ot.monte	 61
d	 61
rc	 62
one	63
Or	64
llipsoid	65
stScore	66
rivens	68
IAP	69
isd	70
npdMAP	71
1	74
Beta	
BetaCor	75
BetaFixed	77
ew	78
noothAPA	79
noothBY	81
noothKB	83
noothLG	84
mmary.monte	 85
mmary montel	87

adfCor 3

Index		93
	vnorm	
	tetcorQuasi	
	tetcor	
	svdNorm	88

adfCor

Asymptotic Distribution-Free Covariance Matrix of Correlations

Description

Function for computing an asymptotic distribution-free covariance matrix of correlations.

Usage

```
adfCor(X, y = NULL)
```

Arguments

X Data matrix.

y Optional vector of criterion scores.

Value

adfCorMat

Asymptotic distribution-free estimate of the covariance matrix of correlations.

Author(s)

Jeff Jones and Niels Waller

References

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. *British Journal of Mathematical and Statistical Psychology*, *37*, 62–83.

Steiger, J. H. and Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. *British Journal of Mathematical and Statistical Psychology, 35*, 208–215.

```
## Generate non-normal data using monte1 set.seed(123) ## we will simulate data for 1000 subjects N <- 1000 ## R = the desired population correlation matrix among predictors R <- matrix(c(1, .5, .5, 1), 2, 2) ## Consider a regression model with coefficient of determination (Rsq): Rsq <- .50
```

4 adfCov

```
## and vector of standardized regression coefficients
Beta <- sqrt(Rsq/t(sqrt(c(.5, .5))) %*% R %*% <math>sqrt(c(.5, .5))) * sqrt(c(.5, .5))
## generate non-normal data for the predictors (X)
## x1 has expected skew = 1 and kurtosis = 3
## x2 has expected skew = 2 and kurtosis = 5
X \leftarrow monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
            kurtvec = c(3, 5))$data
## generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)
## Create ADF Covariance Matrix of Correlations
adfCor(X, y)
                                          23
               12
                            13
#> 12 0.0012078454 0.0005331086 0.0004821594
#> 13 0.0005331086 0.0004980130 0.0002712080
#> 23 0.0004821594 0.0002712080 0.0005415301
```

adfCov

Asymptotic Distribution-Free Covariance Matrix of Covariances

Description

Function for computing an asymptotic distribution-free covariance matrix of covariances.

Usage

```
adfCov(X, y = NULL)
```

Arguments

X Data matrix.

y Optional vector of criterion scores.

Value

adfCovMat

Asymptotic distribution-free estimate of the covariance matrix of covariances

Author(s)

Jeff Jones and Niels Waller

References

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. *British Journal of Mathematical and Statistical Psychology*, *37*, 62–83.

BadRBY 5

Examples

```
## Generate non-normal data using monte1
set.seed(123)
## we will simulate data for 1000 subjects
N <- 1000
## R = the desired population correlation matrix among predictors
R \leftarrow matrix(c(1, .5, .5, 1), 2, 2)
## Consider a regression model with coefficient of determination (Rsq):
Rsq < -.50
\#\# and vector of standardized regression coefficients
Beta <- sqrt(Rsq/t(sqrt(c(.5, .5))) %*% R %*% sqrt(c(.5, .5))) * <math>sqrt(c(.5, .5))
## generate non-normal data for the predictors (X)
## x1 has expected skew = 1 and kurtosis = 3
## x2 has expected skew = 2 and kurtosis = 5
X \leftarrow monte1(seed = 123, nvar = 2, nsub = N, cormat = R, skewvec = c(1, 2),
           kurtvec = c(3, 5))$data
## generate criterion scores
y <- X %*% Beta + sqrt(1-Rsq)*rnorm(N)
## Create ADF Covariance Matrix of Covariances
adfCov(X, y)
                    12
                             13
                                       22
           11
#> 11 3.438760 2.317159 2.269080 2.442003 1.962584 1.688631
#> 12 2.317159 3.171722 2.278212 3.349173 2.692097 2.028701
#> 13 2.269080 2.278212 2.303659 2.395033 2.149316 2.106310
#> 22 2.442003 3.349173 2.395033 6.275088 4.086652 2.687647
#> 23 1.962584 2.692097 2.149316 4.086652 3.287088 2.501094
#> 33 1.688631 2.028701 2.106310 2.687647 2.501094 2.818664
```

BadRBY

Improper correlation matrix reported by Bentler and Yuan

Description

Example improper R matrix reported by Bentler and Yuan (2011)

Usage

```
data(BadRBY)
```

Format

A 12 by 12 non-positive definite correlation matrix.

6 BadRKtB

Source

Bentler, P. M. & Yuan, K. H. (2011). Positive definiteness via off-diagonal scaling of a symmetric indefinite matrix. Psychometrika, 76(1), 119–123.

Examples

data(BadRBY)

BadRJN

Improper R matrix reported by Joseph and Newman

Description

Example NPD improper correlation matrix reported by Joseph and Newman

Usage

data(BadRJN)

Format

A 14 by 14 non-positive definite correlation matrix.

Source

Joseph, D. L. & Newman, D. A. (2010). Emotional intelligence: an integrative meta-analysis and cascading model. Journal of Applied Psychology, 95(1), 54–78.

Examples

data(BadRJN)

BadRKtB

Improper R matrix reported by Knol and ten Berge

Description

Example improper R matrix reported by Knol and ten Berge

Usage

data(BadRKtB)

Format

A 6 by 6 non-positive definite correlation matrix.

BadRLG 7

Source

Knol, D. L. and Ten Berge, J. M. F. (1989). Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika, 54(1), 53-61.

Examples

data(BadRKtB)

BadRLG

Improper R matrix reported by Lurie and Goldberg

Description

Example improper R matrix reported by Lurie and Goldberg

Usage

data(BadRLG)

Format

A 3 by 3 non-positive definite correlation matrix.

Source

Lurie, P. M. & Goldberg, M. S. (1998). An approximate method for sampling correlated random variables from partially-specified distributions. Management Science, 44(2), 203–218.

Examples

data(BadRLG)

BadRRM

Improper R matrix reported by Rousseeuw and Molenberghs

Description

Example improper R matrix reported by Rousseeuw and Molenberghs

Usage

data(BadRRM)

Format

A 3 by 3 non-positive definite correlation matrix.

8 BiFAD

Source

Rousseeuw, P. J. & Molenberghs, G. (1993). Transformation of non positive semidefinite correlation matrices. Communications in Statistics—Theory and Methods, 22(4), 965–984.

Examples

data(BadRRM)

BiFAD

Bifactor Analysis via Direct Schmid Leiman Transformations

Description

Bifactor Analysis via Direct Schmid Leiman Transformations

Usage

```
BiFAD(R, B = NULL, nGroup = NULL,
    factorMethod = "minres",
    rotation="oblimin", salient = .25,
    maxitFA = 5000,
    maxitRotate = 5000,
    gamma = 0)
```

Arguments

R Input correlation matrix.

B Bifactor target matrix. If B=NULL the program will create an empirically de-

fined target matrix.

nGroup Number of group factors in bifactor solution.

factorMethod Factor extraction method. Options include: minres (minimum residual), ml

(maximum likelihood), pa (principal axis), gls (generalized least squares).

rotation Factor rotation method. Current options include: oblimin, geominQ, quartimin,

promax.

salient Threshold value for creating an empirical target matrix.

maxitFA Maximum iterations for the factor extraction method.

maxitRotate Maximum iterations for the gradient pursuit rotation algorithm.

gamma Optional tuning parameter for oblimin rotation.

Value

B User defined or empirically generated target matrix.

BstarSL Direct S-L solution.

BstarFR Direct full rank bifactor solution.

rmsrSL Root mean squared residual of (B - BstarSL).
rmsrFR Root mean squared residual of (B - BstarFR).

BiFAD 9

Author(s)

Niels Waller

References

Waller, N. G. (2018). Direct Schmid Leiman transformations and rank deficient loadings matrices. *Psychometrika*, 83, 858-870.

```
cat("\nExample 1:\nEmpirical Target Matrix:\n")
# Mansolf and Reise Table 2 Example
Btrue \leftarrow matrix(c(.48, .40, 0,
                 .51, .35, 0,
                                    0,
                 .67, .62, 0, 0, 0,
                 .34, .55, 0,
                               0, 0,
                 .44, 0, .45,
                               0,
                 .40, 0, .48,
                               0,
                                    0,
                               0,
                                    0,
                 .32, 0, .70,
                 .45, 0, .54, 0,
.55, 0, 0, .43,
                                    0,
                                    0,
                 .33, 0,
                          0, .33,
                                     0,
                 .52, 0,
                           0, .51,
                 .35, 0,
                           0, .69,
                                    0,
                 .32, 0,
                           0, 0, .65,
                 .66, 0, 0, 0, .51,
                 .68, 0, 0, 0, .39,
                 .32, 0, 0, 0, .56), 16, 5, byrow=TRUE)
Rex1 <- Btrue %*% t(Btrue)</pre>
diag(Rex1) <- 1
out.ex1 <- BiFAD(R = Rex1, B = NULL, nGroup = 4,
                factorMethod = "minres",
                rotation="oblimin", salient = .25,
                maxitFA = 5000,
                maxitRotate = 5000,
                gamma = 0)
cat("\nRank Deficient Bifactor Solution:\n")
print( round(out.ex1$BstarSL, 2) )
cat("\nFull Rank Bifactor Solution:\n")
print( round(out.ex1$BstarFR, 2) )
cat("\nExample 2:\nUser Defined Target Matrix:\n")
Bpattern <- matrix(c( 1, 1, 0,
                     1, 1, 0,
                                 0,
                                      0,
                     1, 1, 0,
                                 0,
                                      0,
                     1, 1, 0,
                                 0,
                                      0,
                     1, 0, 1,
                                0,
                                      0,
                     1, 0, 1,
                                0,
                                      0,
                     1, 0, 1,
                                0,
                                      0,
                     1, 0, 1,
                                0,
                                      0,
                     1, 0, 0, 1,
                                      0,
```

10 bigen

```
0,
                               0,
                                         0,
                                   1,
                          0,
                      1, 0,
                         0,
                               0,
                                     0,
                                         1,
                          0,
                               0,
                                     0,
                                         1,
                               0,
                                     0, 1), 16, 5, byrow=TRUE)
out.ex2 <- BiFAD(R = Rex1, B = Bpattern, nGroup = NULL,</pre>
                 factorMethod = "minres",
                 rotation="oblimin", salient = .25,
                 maxitFA = 5000,
                 maxitRotate = 5000,
                 gamma = 0)
cat("\nRank Deficient Bifactor Solution:\n")
print( round(out.ex2$BstarSL, 2) )
cat("\nFull Rank Bifactor Solution:\n")
print( round(out.ex2$BstarFR, 2) )
```

bigen

Generate Correlated Binary Data

Description

Function for generating binary data with population thresholds.

Usage

```
bigen(data, n, thresholds = NULL, Smooth = FALSE, seed = NULL)
```

Arguments

data Either a matrix of binary (0/1) indicators or a correlation matrix.

n The desired sample size of the simulated data.

thresholds If data is a correlation matrix, thresholds must be a vector of threshold cut points.

Smooth (logical) Smooth = TRUE will smooth the tetrachoric correltion matrix.

seed Default = FALSE. Optional seed for random number generator.

Value

data Simulated binary data

r Input or calculated (tetrachoric) correlation matrix

Author(s)

Niels G Waller

bigen 11

```
## Example: generating binary data to match
## an existing binary data matrix
## Generate correlated scores using factor
## analysis model
## X <- Z *L' + U*D
## Z is a vector of factor scores
## L is a factor loading matrix
## U is a matrix of unique factor scores
## D is a scaling matrix for U
N <- 5000
# Generate data from a single factor model
# factor patter matrix
L \leftarrow matrix(rep(.707, 5), nrow = 5, ncol = 1)
# common factor scores
Z <- as.matrix(rnorm(N))</pre>
# unique factor scores
U <- matrix(rnorm(N *5), nrow = N, ncol = 5)</pre>
D <- diag(as.vector(sqrt(1 - L^2)))
# observed scores
X <- Z %*% t(L) + U %*% D
cat("\nCorrelation of continuous scores\n")
print(round(cor(X),3))
# desired difficulties (i.e., means) of
# the dichotomized scores
difficulties <-c(.2, .3, .4, .5, .6)
# cut the observed scores at these thresholds
# to approximate the above difficulties
thresholds <- qnorm(difficulties)</pre>
Binary <- matrix(0, N, ncol(X))</pre>
for(i in 1:ncol(X)){
 Binary[X[,i] <= thresholds[i],i] <- 1</pre>
}
cat("\nCorrelation of Binary scores\n")
print(round(cor(Binary), 3))
## Now use 'bigen' to generate binary data matrix with
## same correlations as in Binary
z \leftarrow bigen(data = Binary, n = N)
cat("\n\nnames in returned object\n")
print(names(z))
cat("\nCorrelation of Simulated binary scores\n")
```

12 corSample

```
print(round(cor(z$data), 3))

cat("Observed thresholds of simulated data:\n")
cat(apply(z$data, 2, mean))
```

corSample

Sample Correlation Matrices from a Population Correlation Matrix

Description

Sample correlation (covariance) matrices from a population correlation matrix (see Browne, 1968; Kshirsagar, 1959)

Usage

```
corSample(R, n)
```

Arguments

R A population correlation matrix.

n Sample correlation (covariance) matrices will be generated assuming a sample

size of n.

Value

```
cov.sample Sample correlation matrix.

Sample covariance matrix.
```

Author(s)

Niels Waller

References

Browne, M. (1968). A comparison of factor analytic techniques. *Psychometrika*, 33(3), 267-334.

Kshirsagar, A. (1959). Bartlett decomposition and Wishart distribution. *The Annals of Mathematical Statistics*, 30(1), 239-241.

```
R <- matrix(c(1, .5, .5, 1), 2, 2)
# generate a sample correlation from pop R with n = 25
out <- corSample(R, n = 25)
out$cor.sample
out$cov.sample</pre>
```

corSmooth 13

corSmooth

Smooth a Non PD Correlation Matrix

Description

A function for smoothing a non-positive definite correlation matrix by the method of Knol and Berger (1991).

Usage

```
corSmooth(R, eps = 1E8 * .Machine$double.eps)
```

Arguments

R A non-positive definite correlation matrix.

eps Small positive number to control the size of the non-scaled smallest eigenvalue

of the smoothed R matrix. Default = 1E8 * .Machine\$double.eps

Value

Rsmoothed A Smoothed (positive definite) correlation matrix.

Author(s)

Niels Waller

References

Knol, D. L., and Berger, M. P. F., (1991). Empirical comparison between factor analysis and multi-dimensional item response models. *Multivariate Behavioral Research*, 26, 457-477.

```
## choose eigenvalues such that R is NPD
1 <- c(3.0749126, 0.9328397, 0.5523868, 0.4408609, -0.0010000)

## Generate NPD R
R <- genCorr(eigenval = 1, seed = 123)
print(eigen(R)$values)

#> [1] 3.0749126 0.9328397 0.5523868 0.4408609 -0.0010000

## Smooth R
Rsm<-corSmooth(R, eps = 1E8 * .Machine$double.eps)
print(eigen(Rsm)$values)

#> [1] 3.074184e+00 9.326669e-01 5.523345e-01 4.408146e-01 2.219607e-08
```

14 eap

d2r

Convert Degrees to Radians

Description

A simple function to convert degrees to radians

Usage

d2r(deg)

Arguments

deg

Angle in degrees.

Value

Angle in radians.

Examples

d2r(90)

eap

Compute eap trait estimates for FMP and FUP models

Description

Compute eap trait estimates for items fit by filtered monotonic polynomial IRT models.

Usage

```
eap(data, bParams, NQuad = 21, priorVar = 2, mintheta = -4, maxtheta = 4)
```

Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data.

bParams A p-by-9 matrix of FMP or FUP item parameters and model designations. Columns

1 - 8 hold the (possibly zero valued) polynomial coefficients; column 9 holds the

value of k.

NQuad Number of quadrature points used to calculate the eap estimates.

prior Var Variance of the normal prior for the eap estimates. The prior mean equals 0.

mintheta, maxtheta

NQuad quadrature points will be evenly spaced between mintheta and maxtheta

Value

eap trait estimates.

eap 15

Author(s)

Niels Waller

```
## this example demonstrates how to calculate
## eap trait estimates for a scale composed of items
## that have been fit to FMP models of different
## degree
NSubjects <- 2000
## Assume that
## items 1 - 5 fit a k=0 model,
## items 6 - 10 fit a k=1 model, and
## items 11 - 15 fit a k=2 model.
 itmParameters <- matrix(c(</pre>
                            b4 b5, b6, b7, k
               b2 b3
  # b0 b1
  -1.05, 1.63, 0.00, 0.00, 0.00, 0,
                                     0, 0,
                                                 0, #1
  -1.97, 1.75, 0.00, 0.00, 0.00, 0,
                                        0, 0,
                                                 0, #2
  -1.77, 1.82, 0.00, 0.00, 0.00, 0,
                                        0, 0,
                                                 0, #3
  -4.76, 2.67, 0.00, 0.00, 0.00, 0,
                                        0, 0,
                                                 0, #4
  -2.15, 1.93, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #5
  -1.25, 1.17, -0.25, 0.12, 0.00, 0,
                                       0, 0,
                                                 1, #6
  1.65, 0.01, 0.02, 0.03, 0.00, 0,
                                       0, 0,
                                                 1, #7
  -2.99, 1.64, 0.17, 0.03, 0.00, 0,
                                       0, 0,
                                                 1, #8
  -3.22, 2.40, -0.12, 0.10, 0.00, 0,
                                       0, 0, 1, #9
  -0.75, 1.09, -0.39, 0.31, 0.00, 0,
                                        0, 0, 1, #10
  -1.21, 9.07, 1.20, -0.01, -0.01, 0.01, 0, 0, 2, #11
  -1.92, 1.55, -0.17, 0.50, -0.01, 0.01, 0, 0, 2, #12
  -1.76, 1.29, -0.13, 1.60, -0.01, 0.01, 0, 0, 2, #13
  -2.32, 1.40, 0.55, 0.05, -0.01, 0.01, 0, 0,
                                                 2, #14
  -1.24, 2.48, -0.65, 0.60, -0.01, 0.01, 0, 0,
                                                 2),#15
  15, 9, byrow=TRUE)
# generate data using the above item parameters
ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,</pre>
                   seed = 345)$data
## calculate eap estimates for mixed models
thetaEAP<-eap(data = ex1.data, bParams = itmParameters,</pre>
                  NQuad = 25, priorVar = 2,
                  mintheta = -4, maxtheta = 4)
## compare eap estimates with initial theta surrogates
if(FALSE){
              #set to TRUE to see plot
  thetaInit <- svdNorm(ex1.data)</pre>
  plot(thetaInit,thetaEAP, xlim = c(-3.5, 3.5),
                        ylim = c(-3.5, 3.5),
                        xlab = "Initial theta surrogates",
```

16 eigGen

```
ylab = "EAP trait estimates (Mixed models)")
}
```

eigGen

Generate eigenvalues for R matrices with underlying component struc-

Description

Generate eigenvalues for R matrices with underlying component structure

Usage

```
eigGen(nDimensions = 15, nMajorFactors = 5, PrcntMajor = 0.8, threshold = 0.5)
```

Arguments

nDimensions Total number of dimensions (variables).

 ${\tt nMajorFactors} \quad Number\ of\ major\ factors.$

PrcntMajor Percentage of variance accounted for by major factors.

threshold Minimm difference in eigenvalues between the last major factor and the first

minor factor.

Value

A vector of eigenvalues that satisfies the above criteria.

Author(s)

Niels Waller

enhancement 17

```
type = "b",
main = plotTitle,
ylim = c(0, maxy),
xlab = "Dimensions",
ylab = "Eigenvalues",
cex.main = .9)
```

enhancement

Find OLS Regression Coefficients that Exhibit Enhancement

Description

Find OLS regression coefficients that exhibit a specified degree of enhancement.

Usage

```
enhancement(R, br, rr)
```

Arguments

br Model R-squared = b' r. That is, br is the model coefficient of determination:

b'Rb = Rsq = br

rr Sum of squared predictor-criterion correlations (rxy). That is, $rr = r'r = Sum(rxy^2)$

Value

b Vector of standardized regression coefficients.

r Vector of predictor-criterion correlations.

Author(s)

Niels Waller

References

Waller, N. G. (2011). The geometry of enhancement in multiple regression. *Psychometrika*, 76, 634–649.

```
## Example: For a given predictor correlation matrix (R) generate
## regression coefficient vectors that produce enhancement (br - rr > 0)
## Predictor correlation matrix
R <- matrix(c( 1, .5, .25, .5, 1, .30, .25, .30, 1), 3, 3)
## Model coefficient of determination</pre>
```

18 erf

```
Rsq <- .60
output<-enhancement(R, br = Rsq, rr = .40)
r <- output$r
b <- output$b
##Standardized regression coefficients
print(t(b))
##Predictor-criterion correlations
print(t(r))
##Coefficient of determinations (b'r)
print(t(b) %*% r)
##Sum of squared correlations (r'r)
print(t(r) %*% r)</pre>
```

erf

Utility fnc to compute the components for an empirical response func-

Description

Utility function to compute empirical response functions.

Usage

```
erf(theta, data, whichItem, min = -3, max = 3, Ncuts = 12)
```

Arguments

theta Vector of estimated latent trait scores.
data A matrix of binary item responses.

whichItem Data for an erf will be generated for whichItem.

min Default = -3. Minimum value of theta.

max Default = 3. Maximum value of theta.

Ncuts Number of score groups for erf.

Value

probs A vector (of length Ncuts) of bin response probabilities for the empirical re-

sponse function.

centers A vector of bin centers.

Ni Bin sample sizes.

se.p Standard errors of the estimated bin response probabilities.

Author(s)

Niels Waller

faAlign 19

Examples

```
NSubj <- 2000
#generate sample k=1 FMP data
b <- matrix(c(</pre>
    #b0
          b1
                 b2
                       b3
                                b4 b5 b6 b7 k
  1.675, 1.974, -0.068, 0.053, 0, 0, 0,
  1.550, 1.805, -0.230, 0.032, 0, 0,
                                       0,
  1.282, 1.063, -0.103, 0.003, 0, 0, 0,
  0.704, 1.376, -0.107, 0.040, 0, 0, 0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
  1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
  0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
   0.429, \ 1.480, \ -0.008, \ 0.061, \quad 0, \quad 0, \quad 0, \quad 0, \quad 1, \\
 0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
 -0.516, 1.013, 0.016, 0.023, 0.143, 1.315, -0.011, 0.136,
                               0, 0,
                                           0, 1,
                               0,
                                   0.
                                           0, 1,
  0.347, 0.733, -0.121, 0.041, 0, 0,
                                           0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0,
                                       0,
                                           0, 1,
  0.630, 1.484, -0.001, 0.000, 0, 0, 0,
  nrow=23, ncol=9, byrow=TRUE)
theta <- rnorm(NSubj)</pre>
data<-genFMPData(NSubj = NSubj, bParam = b, theta = theta, seed = 345)$data</pre>
erfItem1 <- erf(theta, data, whichItem = 1, min = -3, max = 3, Ncuts = 12)
plot( erfItem1$centers, erfItem1$probs, type="b",
      main="Empirical Response Function",
      xlab = expression(theta),
      ylab="Probability",
      cex.lab=1.5)
```

faAlign

Align the columns of two factor loading matrices

Description

Align factor loading matrices across solutions using the Hungarian algorithm to locate optimal matches. faAlign will match the factors of F2 (the input matrix) to those in F1 (the target matrix) to minimize a least squares discrepancy function or to maximize factor congruence coefficients (i.e., vector cosines).

Usage

```
faAlign(F1, F2, Phi2 = NULL, MatchMethod = "LS")
```

20 faAlign

Arguments

F1 target Factor Loadings Matrix.

F2 input Factor Loadings Matrix. F2 will be aligned with the target matrix, F1.

Phi2 optional factor correlation matrix for F2 (default = NULL).

MatchMethod "LS" (Least Squares) or "CC" (congruence coefficients).

Value

F2 re-ordered and reflected loadings of F2.
Phi2 reordered and reflected factor correlations.

FactorMap a 2 x k matrix (where k is the number of columns of F1) structured such that row

1: the original column order of F2; row 2: the sorted column order of F2.

UniqueMatch (logical) indicates whether a unique match was found.

MatchMethod "LS" (least squares) or "CC" (congruence coefficients, i.e., cosines).

CC Congruence coefficients for the matched factors.

LS Root-mean-squared-deviations (least squares criterion) for the matched factors.

Note

The Hungarian algorithm is implemented with the clue (Cluster Ensembles, Hornik, 2005) package. See Hornik K (2005). A CLUE for CLUster Ensembles. *Journal of Statistical Software*, *14*(12). doi: 10.18637/jss.v014.i12 (URL: http://doi.org/10.18637/jss.v014.i12).

Author(s)

Niels Waller

References

Kuhn, H. W. (1955). The Hungarian Method for the assignment problem. *Naval Research Logistics Quarterly*, 2, 83-97.

Kuhn, H. W. (1956). Variants of the Hungarian method for assignment problems. *Naval Research Logistics Quarterly*, *3*, 253-258.

Papadimitriou, C. & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs: Prentice Hall.

```
# This example demonstrates the computation of
# non-parametric bootstrap confidence intervals
# for rotated factor loadings.

library(GPArotation)

data(HS9Var)

HS9 <- HS9Var[HS9Var$school == "Grant-White",7:15]

# Compute an R matrix for the HSVar9 Mental Abilities Data
R.HS9 <- cor(HS9)</pre>
```

faAlign 21

```
varnames <- c( "vis.per", "cubes",</pre>
            "lozenges", "paragraph.comp",
            "sentence.comp", "word.mean",
            "speed.add", "speed.count.dots",
            "speed.discr")
# Extract and rotate a 3-factor solution
# via unweighted least squares factor extraction
# and oblimin rotation.
NFac <- 3
NVar <- 9
B <- 200
              # Number of boostrap samples
NSubj <- nrow(HS9)</pre>
# Unrotated 3 factor uls solution
F3.uls <- fals(R = R.HS9, nfactors = NFac)
# Rotate via oblimin
F3.rot <- oblimin(F3.uls$loadings,
                       gam = 0,
                       normalize = FALSE)
 F3.loadings <- F3.rot$loadings
 F3.phi <- F3.rot$Phi
 # Reflect factors so that salient loadings are positive
 Dsgn <- diag(sign(colSums(F3.loadings^3)))</pre>
 F3.loadings <- F3.loadings %*% Dsgn
 F3.phi <- Dsgn %*% F3.phi %*% Dsgn
 rownames(F3.loadings) <- varnames</pre>
 colnames(F3.loadings) <- paste0("f", 1:3)</pre>
 colnames(F3.phi) <- rownames(F3.phi) <- paste0("f", 1:3)</pre>
 cat("\nOblimin rotated factor loadings for 9 Mental Abilities Variables")
 print( round(F3.loadings, 2))
 cat("\nFactor correlation matrix")
 print( round( F3.phi, 2))
  # Declare variables to hold bootstrap output
  Flist <- Philist <- as.list(rep(0, B))</pre>
  UniqueMatchVec <- rep(0, B)</pre>
  rows <- 1:NSubj</pre>
  # Analyze bootstrap samples and record results
  for(i in 1:B){
    cat("\nWorking on sample ", i)
    set.seed(i)
    # Create bootstrap samples
    bsRows <- sample(rows, NSubj, replace= TRUE)</pre>
    Fuls <- fals(R = cor(HS9[bsRows, ]), nfactors = NFac)</pre>
```

22 fals

```
# rotated loadings
  Fboot <- oblimin(Fuls$loadings,</pre>
                             normalize = FALSE)
  out <- faAlign(F1 = F3.loadings,</pre>
                  F2 = Fboot$loadings,
                  MatchMethod = "LS")
  Flist[[i]] <- out$F2 # aligned version of Fboot$loadings</pre>
  UniqueMatchVec[i] <- out$UniqueMatch</pre>
cat("\nNumber of Unique Matches: ",
    100*round(mean(UniqueMatchVec),2),"%\n")
# Make a 3D array from list of matrices
arr <- array( unlist(Flist) , c(NVar, NFac, B) )</pre>
# Get quantiles of factor elements over third dimension (samples)
F95 <- apply( arr , 1:2 , quantile, .975 )
F05 <- apply( arr , 1:2 , quantile, .025 )
Fse <- apply( arr , 1:2, sd )
cat("\nUpper Bound 95% CI\n")
print( round(F95,3))
cat("\n\nLower Bound 95% CI\n")
print( round(F05,3))
# plot distribution of bootstrap estimates
# for example element
hist(arr[5,1,], xlim=c(.4,1),
     main = "Bootstrap Distribution for F[5,1]",
     xlab = "F[5,1]")
print(round (F3.loadings, 2))
cat("\nStandard Errors")
print( round( Fse, 2))
```

fals

Unweighted least squares factor analysis

Description

Unweighted least squares factor analysis

Usage

```
fals(R,
    nfactors,
    TreatHeywood = TRUE)
```

faMAP 23

Arguments

R Input correlation matrix.

nfactors Number of factors to extract.

TreatHeywood If TreatHeywood = TRUE then a penalized least squares function is used to

bound the commonality estimates below 1.0. Default(TreatHeywood = TRUE).

Value

loadings Unrotated factor loadings. If a Heywood case is present in the initial solution

then the model is re-estimated via non-iterated principal axes with max(rij^2) as

fixed communaility (h2) estimates.

h2 Vector of final commonality estimates.
uniqueness Vector of factor uniquenesses, i.e. (1 - h2).

Heywood (logical) TRUE if a Heywood case was produced in the LS solution.

TreatHeywood (logical) Value of the TreatHeywood argument.

converged (logical) TRUE if all values of the gradient are sufficiently close to zero.

MaxAbsGrad The maximum absolute value of the gradient at the solution.

Author(s)

Niels Waller

Examples

famap Velicer's minimum partial correlation method for determining the

number of major components for a principal components analysis or

a factor analysis

Description

Uses Velicer's MAP (i.e., matrix of partial correlations) procedure to determine the number of components from a matrix of partial correlations.

Usage

```
faMAP(R, max.fac = 8, Print = TRUE, Plot = TRUE)
```

Arguments

R input data in the form of a correlation matrix.

max.fac maximum number of dimensions to extract.

Print (logical) Print = TRUE will print complete results.

Plot (logical) Plot = TRUE will plot the MAP values.

24 faMAP

Value

MAP	Minimum partial correlations
MAP4	Minimum partial correlations
fm	average of the squared partial correlations after the first m components are partialed out.
fm4	see Velicer, Eaton, & Fava, 2000.
PlotAvgSq	A saved object of the original MAP plot (based on the average squared partial r's.)
PlotAvg4th	A saved object of the revised MAP plot (based on the average 4th power of the partial r's.)

Author(s)

Niels Waller

References

Velicer, W. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3):321–327.

Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In R. D. Goffin & E. Helmes (Eds.). Problems and Solutions in Human Assessment: Honoring Douglas N. Jackson at Seventy (pp. 41-71. Boston, MA: Kluwer Academic.

```
# Harman's data (1967, p 80)
# R = matrix(c(
# 1.000, .846, .805, .859, .473, .398, .301, .382,
 .846, 1.000, .881, .826, .376, .326, .277, .415,
 .805, .881, 1.000, .801, .380, .319, .237, .345,
# .859, .826, .801, 1.000, .436, .329, .327, .365,
# .473, .376, .380, .436, 1.000, .762, .730, .629,
# .398, .326, .319, .329, .762, 1.000, .583, .577,
  .301, .277, .237, .327, .730, .583, 1.000, .539,
  .382, .415, .345, .365, .629, .577, .539, 1.000), 8,8)
  F \leftarrow matrix(c(.4, .1, .0,
                 .5, .0, .1,
                 .6, .03, .1,
.4, -.2, .0,
                 0, .6, .1,
                 .1,
                     .7, .2,
                 .3, .7, .1,
                 0, .4, .1,
                 0, 0, .5,
                 .1, -.2, .6,
                 .1, .2, .7,
                -.2, .1, .7),12,3)
  R <- F %*% t(F)
  diag(R) <- 1
  faMAP(R, max.fac = 8, Print = TRUE, Plot = TRUE)
```

faSort 25

|--|

Description

faSort takes an unsorted factor pattern or structure matrix and returns a sorted matrix with (possibly) reflected columns. Sorting is done such that variables that load on a common factor are grouped together for ease of interpretation.

Usage

```
faSort(fmat, phi = NULL, salient = .25, reflect = TRUE)
```

Arguments

fmat	factor loadings (pattern or structure) matrix.
phi	factor correlation matrix. Default = NULL. If reflect = TRUE then phi will be corrected to match the new factor orientations.
salient	factor markers with loadings >= abs(salient) will be saved in the markers list. Note that a variable can be a marker of more than one factor.
reflect	(logical) if reflect = TRUE then the factors will be reflected such that salient loadings are mostly positive.

Value

loadings	sorted factor loadings matrix.
phi	reflected factor correlation matrix when phi is given as an argument.
markers	A list of factor specific markers with loadings >= abs(salient). Markers are sorted by the absolute value of the salient factor loadings.
sortOrder	sorted row numbers.
SEmat	The SEmat is a so-called Start-End matrix that lists the first (start) and last (end) row for each factor in the sorted pattern matrix.

Author(s)

Niels Waller

See Also

fals

26 FMP

```
0, .7,
                  0, .6), nrow = 8, ncol = 2, byrow=TRUE)
Rex1 <- F %*% t(F); diag(Rex1) <- 1</pre>
Items <- c("1. I am often tense.\n",</pre>
            "2. I feel anxious much of the time.\n",
           "3. I am a naturally curious individual.\n",
           "4. I have many fears.\n",
           "5. I read many books each year.\n",
           "6. My hands perspire easily.\n",
           "7. I have many interests.\n",
           "8. I enjoy learning new words.\n")
exampleOut <- fals(R = Rex1, nfactors = 2)</pre>
# Varimax rotation
Fload <- varimax(exampleOut$loadings)$loadings[]</pre>
# Add some row labels
rownames(Fload) <- paste0("V", 1:nrow(Fload))</pre>
cat("\nUnsorted fator loadings\n")
print(round( Fload, 2) )
# Sort items and reflect factors
out1 <- faSort(fmat = Fload,</pre>
               salient = .25,
               reflect = TRUE)
FloadSorted <- out1$loadings
cat("\nSorted fator loadings\n")
print(round( FloadSorted, 2) )
# Print sorted items
cat("\n Items sorted by Factor\n")
cat("\n",Items[out1$sortOrder])
```

FMP

Estimate the coefficients of a filtered monotonic polynomial IRT model

Description

Estimate the coefficients of a filtered monotonic polynomial IRT model.

Usage

```
FMP(data, thetaInit, item, startvals, k, eps = 1e-06)
```

Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data. thetaInit Initial theta (θ) surrogates (e.g., calculated by svdNorm).

FMP 27

Item number for coefficient estimation.
 Start values for function minimization. Start values are in the gamma metric (see Liang & Browne, 2015)
 k Order of monotonic polynomial = 2k+1 (see Liang & Browne, 2015). k can equal 0, 1, 2, or 3.
 eps Step size for gradient approximation, default = 1e-6. If a convergence failure

occurs during function optimization reducing the value of eps will often produce

a converged solution.

Details

As described by Liang and Browne (2015), the filtered polynomial model (FMP) is a quasi-parametric IRT model in which the IRF is a composition of a logistic function and a polynomial function, $m(\theta)$, of degree 2k+1. When k=0, $m(\theta)=b_0+b_1\theta$ (the slope intercept form of the 2PL). When k=1, 2k+1 equals 3 resulting in $m(\theta)=b_0+b_1\theta+b_2\theta^2+b_3\theta^3$. Acceptable values of k=0,1,2,3. According to Liang and Browne, the "FMP IRF may be used to approximate any IRF with a continuous derivative arbitrarily closely by increasing the number of parameters in the monotonic polynomial" (2015, p. 2) The FMP model assumes that the IRF is monotonically increasing, bounded by 0 and 1, and everywhere differentiable with respect to theta (the latent trait).

Value

b

gamma Polynomial coefficients in gamma metric (see Liang & Browne, 2015).

FHAT Function value at convergence.

Counts Number of function evaluations during minimization (see optim documentation for further details).

AIC Pseudo scaled Akaike Information Criterion (AIC). Candidate models that pro-

Vector of polynomial coefficients.

Pseudo scaled Akaike Information Criterion (AIC). Candidate models that produce the smallest AIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled AIC by sample

size.

BIC Pseudo scaled Bayesian Information Criterion (BIC). Candidate models that

produce the smallest BIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled BIC by sample

size.

convergence Convergence = 0 indicates that the optimization algorithm converged; conver-

gence=1 indicates that the optimization failed to converge.

Author(s)

Niels Waller

References

Liang, L. & Browne, M. W. (2015). A quasi-parametric method for fitting flexible item response functions. *Journal of Educational and Behavioral Statistics*, 40, 5–34.

28 *FMP*

```
## Not run:
## In this example we will generate 2000 item response vectors
## for a k = 1 order filtered polynomial model and then recover
## the estimated item parameters with the FMP function.
k <- 1 # order of polynomial
NSubjects <- 2000
## generate a sample of 2000 item response vectors
## for a k = 1 FMP model using the following
## coefficients
b <- matrix(c(</pre>
  #b0
          b1
                  b2
                         b3 b4 b5 b6 b7 k
  1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
  1.550, 1.805, -0.230, 0.032, 0, 0,
                                      0.
                                          0, 1,
                                      0, 0, 1,
  1.282, 1.063, -0.103, 0.003, 0, 0,
 0.704, 1.376, -0.107, 0.040, 0, 0,
                                      0, 0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0, -0.008, 1.349, -0.195, 0.144, 0, 0,
                                       0,
                                          0, 1,
                                       0.
                                           0, 1,
                                  0,
  0.512, 1.538, -0.089, 0.082, 0,
                                       0,
                                           0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0,
                                       0,
 1.801, 1.211, 0.015, 0.000, 0, 0,
                                      0,
                                          0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0,
                                          0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
 1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
  0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
  0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
 0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
 -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
 0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
 0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0, 0,
                                          0, 1,
 0.630, 1.484, -0.001, 0.000, 0, 0, 0,
                                          0, 1),
  nrow=23, ncol=9, byrow=TRUE)
ex1.data<-genFMPData(NSubj = NSubjects, bParams = b, seed = 345)$data
## number of items in the data matrix
NItems <- ncol(ex1.data)
# compute (initial) surrogate theta values from
# the normed left singular vector of the centered
# data matrix
thetaInit <- svdNorm(ex1.data)</pre>
## earlier we defined k = 1
  if(k == 0) {
           startVals <- c(1.5, 1.5)
```

```
bmat <- matrix(0, NItems, 6)</pre>
          colnames(bmat) <- c(paste("b", 0:1, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
  if(k == 1) {
            startVals <- c(1.5, 1.5, .10, .10)
            bmat <- matrix(0, NItems, 8)</pre>
         colnames(bmat) <- c(paste("b", 0:3, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
  }
  if(k == 2) {
            startVals <- c(1.5, 1.5, .10, .10, .10, .10)
            bmat <- matrix(0, NItems, 10)</pre>
         colnames(bmat) <- c(paste("b", 0:5, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
  if(k == 3) {
            startVals <- c(1.5, 1.5, .10, .10, .10, .10, .10, .10)
            bmat <- matrix(0, NItems, 12)</pre>
         colnames(bmat) <- c(paste("b", 0:7, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
  }
# estimate item parameters and fit statistics
  for(i in 1:NItems){
    out <- FMP(data = ex1.data, thetaInit, item = i, startvals = startVals, k = k)</pre>
    Nb <- length(out$b)
    bmat[i,1:Nb] <- out$b</pre>
    bmat[i,Nb+1] <- out$FHAT</pre>
    bmat[i,Nb+2] <- out$AIC</pre>
    bmat[i,Nb+3] <- out$BIC</pre>
    bmat[i,Nb+4] <- out$convergence</pre>
  }
# print output
print(bmat)
## End(Not run)
```

FMPMonotonicityCheck Utility function for checking FMP monotonicity

Description

Utility function for checking whether candidate FMP coefficients yield a monotonically increasing polynomial.

Usage

```
FMPMonotonicityCheck(b, lower = -20, upper = 20, PLOT = FALSE)
```

Arguments

```
b A vector of 8 polynomial coefficients (b) for m(\theta) = b_0 + b_1\theta + b_2\theta^2 + b_3\theta^3 + b_4\theta^4 + b_5\theta^5 + b_6\theta^6 + b_7\theta^7. lower, upper \theta bounds for monotonicity check. PLOT Logical (default = FALSE). If PLOT = TRUE the function will plot the original polynomial function for \theta between lower and upper.
```

30 fungible

Value

increasing Logical indicating whether function is monotonically increasing.

minDeriv Minimum value of the derivative for the polynomial.

minTheta Value of θ at derivative minimum.

Author(s)

Niels Waller

Examples

```
## A set of candidate coefficients for an FMP model. ## These coefficients fail the test and thus ## should not be used with genFMPdata to generate ## item response data that are consistent with an ## FMP model. b <- c(1.21, 1.87, -1.02, 0.18, 0.18, 0, 0, 0) FMPMonotonicityCheck(b)
```

fungible

Generate Fungible Regression Weights

Description

Generate fungible weights for OLS Regression Models.

Usage

```
fungible(R.X, rxy, r.yhata.yhatb, sets, print = TRUE)
```

Arguments

R. X p x p Predictor correlation matrix.

rxy p x 1 Vector of predictor-criterion correlations.

r.yhata.yhatb Correlation between least squares (yhatb) and alternate-weight (yhata) compos-

ites.

sets Number of returned sets of fungible weights.

print Logical, if TRUE then print 5-point summaries of alternative weights.

Value

a Number of sets x p matrix of fungible weights.

k Number of sets x p matrix of k weights.

b p x 1 vector of LS weights. u p x 1 vector of u weights.

r.yhata.yhatb
 correlation between yhata and yhatb.
 cov.a
 cov.a
 Expected covariance matrix for a.
 cor.a
 Expected correlation matrix for a.

fungibleExtrema 31

Author(s)

Niels Waller

References

Waller, N. (2008). Fungible weights in multiple regression. Psychometrika, 73, 69–703.

Examples

```
## Predictor correlation matrix
R.X \leftarrow matrix(c(1.00, .56, .77,
                 .56, 1.00, .73,
                 .77, .73, 1.00), 3, 3)
## vector of predictor-criterion correlations
rxy <- c(.39, .34, .38)
## OLS standardized regression coefficients
b <- solve(R.X) %*% rxy
## Coefficient of determination (Rsq)
OLSRSQ <- t(b) %*% R.X %*% b
## theta controls the correlation between
## yhatb: predicted criterion scores using OLS coefficients
## yhata: predicted criterion scores using alternate weights
theta <- .01
## desired correlation between yhata and yhatb
r.yhata.yhatb <- sqrt( 1 - (theta)/OLSRSQ)</pre>
## number of returned sets of fungible weight vectors
Nsets <- 50
output <- fungible(R.X, rxy, r.yhata.yhatb, sets = Nsets, print = TRUE)</pre>
```

fungibleExtrema

Locate Extrema of Fungible Regression Weights

Description

Locate extrema of fungible regression weights.

Usage

```
fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts, MaxMin)
```

32 fungibleExtrema

Arguments

R.X p x p Predictor variable correlation matrix.
 rxy p x 1 Vector of predictor-criterion correlations.
 r.yhata.yhatb Correlation between least squares (yhatb) and alternate-weight (yhata) composites.
 Nstarts Maximum number of (max) minimizations from random starting configurations.
 MaxMin Character: "Max" = maximize cos(a,b); "Min" = minimize cos(a,b).

Value

cosine between OLS and alternate weights. cos.ab extrema of fungible weights. а k k weights. z weights: a normalized random vector. z b OLS weights. p x 1 vector of u weights. Correlation between yhata and yhatb. r.yhata.yhatb Correlation between y and yhatb. r.y.yhatb Gradient of converged solution. gradient

Author(s)

Niels Waller and Jeff Jones

References

Koopman, R. F. (1988). On the sensitivity of a composite to its weights. *Psychometrika*, 53(4), 547–552.

Waller, N. & Jones, J. (2009). Locating the extrema of fungible regression weights in multiple regression. *Psychometrika*, 74, 589–602.

fungibleL 33

```
## r.yhata.yhatb <- sqrt( 1 - (theta)/OLSRSQ)
r.yhata.yhatb <- .90
set.seed(5)
output <- fungibleExtrema(R.X, rxy, r.yhata.yhatb, Nstarts = 500,</pre>
                         MaxMin = "Min")
## Scale to replicate Koopman
a <- output$a
a.old <- a
aRa <- t(a) %*% R.X %*% a
## Scale a such that a' R a = .68659
## vc = variance of composite
vc <- aRa
## sf = scale factor
sf <- .68659/vc
a <- as.numeric(sqrt(sf)) * a</pre>
cat("\nKoopman Scaling\n")
print(round(a,2))
## End(Not run)
```

fungibleL

Generate Fungible Logistic Regression Weights

Description

Generate fungible weights for Logistic Regression Models.

Usage

Arguments

Χ	An n by nvar matrix of predictor scores without the leading column of ones.
У	An n by 1 vector of dichotomous criterion scores.
Nsets	The desired number of fungible coefficient vectors.
method	Character: "LLM" = Log-Likelihood method. "EM" = Ellipsoid Method. Default: method = "LLM".
RsqDelta	The desired decrement in the pseudo-R-squared - used when method = "LLM".
rLaLb	The desired correlation between the logits - used when method = "EM".
S	Scale factor for random deviates. s controls the range of random start values for the optimization routine. Recommended $0 \le s \le 1$. Default: $s = 0.3$.
Print	Boolean (TRUE/FALSE) for printing output summary.

Details

fungibleL provides two methods for evaluating parameter sensitivity in logistic regression models by computing fungible logistic regression weights. For for additional information on the underlying theory of these methods see Jones and Waller (in press).

34 fungibleL

Value

model A glm model object.

call The function call to glm().

ftable A data frame with the mle estimates and the minimum and maximum fungible

coefficients.

lnLML The maximum likelihood log likelihood value.lnLf The decremented, fungible log likelihood value.

pseudoRsq The pseudo R-squared.

fungibleRsq The fungible pseudo R-squared.

fungiblea The Nsets by Nvar + 1 matrix of fungible (alternate) coefficients.

rLaLb The correlation between the logits.

maxPosCoefChange

The maximum positive change in a single coefficient holding all other coeffi-

cients constant.

maxNegCoefChange

The maximum negative change in a single coefficient holding all other coeffi-

cients constant.

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A. & Waller, N. G. (in press). Fungible weights in logistic regression. *Psychological Methods*.

```
# Example: Low Birth Weight Data from Hosmer Jr, D. W. & Lemeshow, S.(2000).
\# low : low birth rate (0 >= 2500 grams, 1 < 2500 grams)
\# race: 1 = white, 2 = black, 3 = other
\mbox{\tt\#} ftv : number of physician visits during the first trimester
library(MASS)
attach(birthwt)
race <- factor(race, labels = c("white", "black", "other"))</pre>
predictors <- cbind(lwt, model.matrix(~ race)[, -1])</pre>
# compute mle estimates
BWght.out <- glm(low ~ lwt + race, family = "binomial")
# compute fungible coefficients
fungible.LLM <- fungibleL(X = predictors, y = low, method = "LLM",</pre>
                           Nsets = 10, RsqDelta = .005, s = .3)
# Compare with Table 2.3 (page 38) Hosmer Jr, D. W. & Lemeshow, S.(2000).
# Applied logistic regression. New York, Wiley.
print(summary(BWght.out))
print(fungible.LLM$call)
```

fungibleR 35

fungibleR

Generate Fungible Correlation Matrices

Description

Generate fungible correlation matrices. For a given vector of standardized regression coefficients, Beta, and a user-define R-squared value, Rsq, find predictor correlation matrices, R, such that Beta' R Beta = Rsq. The size of the smallest eigenvalue (Lp) of R can be defined.

Usage

```
fungibleR(R, Beta, Lp = .00, eps = 1e-08, Print.Warnings = TRUE)
```

Arguments

R A p x p predictor correlation matrix.

Beta A p x 1 vector of standardized regression coefficients.

Lp Controls the size of the smallest eigenvalue of RstarLp.

eps Convergence criterion.

Print.Warnings Logical, default = TRUE. When TRUE, convergence failures are printed.

Value

R Any input correlation matrix that satisfies Beta' R Beta = Rsq.

Beta Input vector of std reg coefficients.

Rstar A random fungible correlation matrix.

RstarLp A fungible correlation matrix with a fixed minimum eigenvalue (RstarLp can be

PD, PSD, or ID).

s Scaling constant for Rstar. sLp Scaling constant for RstarLp.

Delta Vector in the null space of vecp(Beta Beta').

Q Left null space of Beta.

FrobNorm Frobenius norm ||R - Rstarll_F.

FrobNormLp Frobenius norm ||R - RstarLp||_F given random Delta.

converged An integer code. 0 indicates successful completion.

36 fungibleR

Author(s)

Niels Waller

References

Waller, N. (2016). Fungible Correlation Matrices: A method for generating nonsingular, singular, and improper correlation matrices for Monte Carlo research. Multivariate Behavioral Research.

```
library(fungible)
## ===== Example 1 =====
## Generate 5 random PD fungible R matrices
## that are consistent with a user-defined predictive
## structure: B' Rxx B = .30
set.seed(246)
## Create a 5 x 5 correlation matrix, R, with all r_i = .25
R.ex1 <- matrix(.25, 5, 5)
diag(R.ex1) <- 1
## create a 5 x 1 vector of standardized regression coefficients,
## Beta.ex1
Beta.ex1 <- c(-.4, -.2, 0, .2, .4)
cat("\nModel Rsq = ", t(Beta.ex1) %*% R.ex1 %*% Beta.ex1)
## Generate fungible correlation matrices, Rstar, with smallest
## eigenvalues > 0.
Rstar.list <- list(rep(99,5))</pre>
i <- 0
while(i \le 5){
 out <- fungibleR(R = R.ex1, Beta = Beta.ex1, Lp = 1e-8, eps = 1e-8,
                  Print.Warnings = TRUE)
  if(out$converged==0){
   i < -i + 1
   Rstar.list[[i]] \leftarrow out$Rstar
  }
}
## Check Results
cat("\n *** Check Results ***")
for(i in 1:5){
  cat("\nRstar", i,"\n")
 print(round(Rstar.list[[i]], 2),)
 cat("\neigenvalues of Rstar", i,"\n")
  print(eigen(Rstar.list[[i]])$values)
 cat("\nBeta' Rstar",i, "Beta = ",
     t(Beta.ex1) %*% Rstar.list[[i]] %*% Beta.ex1)
}
```

fungibleR 37

```
## ===== Example 2 =====
## Generate a PD fungible R matrix with a fixed smallest
## eigenvalue (Lp).
## Create a 5 x 5 correlation matrix, R, with all r_i = .5
R \leftarrow matrix(.5, 5, 5)
diag(R) <- 1
## create a 5 x 1 vector of standardized regression coefficients, Beta,
## such that Beta_i = .1 for all i
Beta \leftarrow rep(.1, 5)
## Generate fungible correlation matrices (a) Rstar and (b) RstarLp.
## Set Lp = 0.12345678 so that the smallest eigenvalue (Lp) of RstarLp
## = 0.12345678
out <- fungibleR(R, Beta, Lp = 0.12345678, eps = 1e-10, Print.Warnings = TRUE)
## print R
cat("\nR: a user-specified seed matrix")
print(round(out$R,3))
cat("\nRstar: A random fungible correlation matrix for R")
print(round(out$Rstar,3))
cat("\nCoefficient of determination when using R\n")
print( t(Beta) %*% R %*% Beta )
cat("\nCoefficient of determination when using Rstar\n")
print( t(Beta) %*% out$Rstar %*% Beta)
## Eigenvalues of R
cat("\nEigenvalues of R\n")
print(round(eigen(out$R)$values, 9))
## Eigenvalues of Rstar
cat("\nEigenvalues of Rstar\n")
print(round(eigen(out$Rstar)$values, 9))
## What is the Frobenius norm (Euclidean distance) between
## R and Rstar
cat("\nFrobenious norm ||R - Rstar||\n")
print( out$FrobNorm)
## RstarLp is a random fungible correlation matrix with
## a fixed smallest eigenvalue of 0.12345678
cat("\nRstarLp: a random fungible correlation matrix with a user-defined
smallest eigenvalue\n")
print(round(out$RstarLp, 3))
## Eigenvalues of RstarLp
cat("\nEigenvalues of RstarLp")
print(eigen(out$RstarLp)$values, digits = 9)
cat("\nCoefficient of determination when using RstarLp\n")
print( t(Beta) %*% out$RstarLp %*% Beta)
```

38 fungibleR

```
## Check function convergence
if(out$converged) print("Falied to converge")
## ===== Example 3 =====
## This examples demonstrates how fungibleR can be used
## to generate improper correlation matrices (i.e., pseudo
## correlation matrices with negative eigenvalues).
library(fungible)
## We desire an improper correlation matrix that
## is close to a user-supplied seed matrix. Create an
## interesting seed matrix that reflects a Big Five
## factor structure.
set.seed(123)
minCrossLoading <- -.2
maxCrossLoading <- .2</pre>
F1 <- c(rep(.6,5),runif(20,minCrossLoading, maxCrossLoading))
F2 <- c(runif(5,minCrossLoading, maxCrossLoading), rep(.6,5),
      runif(15,minCrossLoading, maxCrossLoading))
F3 <- c(runif(10,minCrossLoading,maxCrossLoading), rep(.6,5),
      runif(10,minCrossLoading,maxCrossLoading) )
F4 <- c(runif(15,minCrossLoading,maxCrossLoading), rep(.6,5),
      runif(5,minCrossLoading,maxCrossLoading))
F5 <- c(runif(20,minCrossLoading,maxCrossLoading), rep(.6,5))
FacMat \leftarrow cbind(F1,F2,F3,F4,F5)
R.bfi <- FacMat %*% t(FacMat)
diag(R.bfi) <- 1
## Set Beta to a null vector to inform fungibleR that we are
## not interested in placing constraints on the predictive structure
## of the fungible R matrices.
Beta \leftarrow rep(0, 25)
## We seek a NPD fungible R matrix that is close to the bfi seed matrix.
## To find a suitable matrix we generate a large number (e.g., 50000)
\mbox{\tt \#\#} fungible R matrices. For illustration purposes I will set Nmatrices
## to a smaller number: 10.
Nmatrices<-10
## Initialize a list to contain the Nmatrices fungible R objects
RstarLp.list <- as.list( rep(0, Nmatrices ) )</pre>
## Initialize a vector for the Nmatrices Frobeius norms ||R - RstarLp||
FrobLp.vec <- rep(0, Nmatrices)</pre>
## Constraint the smallest eigenvalue of RStarLp by setting
## Lp = -.1 (or any suitably chosen user-defined value).
## Generate Nmatrices fungibleR matrices and identify the NPD correlation
## matrix that is "closest" (has the smallest Frobenious norm) to the bfi
## seed matrix.
BestR.i <- 0
BestFrob <- 99
i <- 0
```

FUP 39

```
set.seed(1)
while(i < Nmatrices){</pre>
  out<-fungibleR(R = R.bfi, Beta, Lp = -.1, eps=1e-10)
  ## retain solution if algorithm converged
  if(out$converged == 0)
    i < -i + 1
  ## print progress
    cat("\nGenerating matrix ", i, " Current minimum ||R - RstarLp|| = ",BestFrob)
    tmp <- FrobLp.vec[i] <- out$FrobNormLp #Frobenious Norm ||R - RstarLp||</pre>
    RstarLp.list[[i]]<-out$RstarLp</pre>
    if( tmp < BestFrob )</pre>
      BestR.i <- i
                     # matrix with lowest ||R - RstarLp||
      BestFrob <- tmp # value of lowest ||R - RstarLp||</pre>
 }
}
# CloseR is an improper correlation matrix that is close to the seed matrix.
CloseR<-RstarLp.list[[BestR.i]]</pre>
plot(1:25, eigen(R.bfi)$values,
     type = "b",
     lwd = 2,
     main = "Scree Plots for R and RstarLp",
     cex.main = 1.5,
     ylim = c(-.2,6),
     ylab = "Eigenvalues",
     xlab = "Dimensions")
points(1:25,eigen(CloseR)$values,
       type = "b",
       lty = 2,
       1wd = 2,
       col = "red")
   abline(h = 0, col = "grey")
legend(legend=c(expression(paste(lambda[i]~" of R",sep = "")),
                expression(paste(lambda[i]~" of RstarLp", sep = ""))),
       1ty=c(1,2),
       x = 17, y = 5.75,
       cex = 1.5,
       col=c("black","red"),
       text.width = 5.5,
       1wd = 2)
```

FUP

Estimate the coefficients of a filtered unconstrained polynomial IRT model

Description

Estimate the coefficients of a filtered unconstrained polynomial IRT model.

40 FUP

Usage

```
FUP(data, thetaInit, item, startvals, k)
```

Arguments

 $\begin{tabular}{ll} data & $N(\text{subjects})$-by-p(items) matrix of $0/1$ item response data. \\ thetaInit & Initial theta surrogates (e.g., calculated by $vdNorm). \\ \end{tabular}$

item number for coefficient estimation. startvals start values for function minimization.

k order of monotonic polynomial = 2k+1 (see Liang & Browne, 2015).

Value

b Vector of polynomial coefficients.FHAT Function value at convergence.

counts Number of function evaluations during minimization (see optim documentation

for further details).

AIC Pseudo scaled Akaike Information Criterion (AIC). Candidate models that pro-

duce the smallest AIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled AIC by sample

size.

BIC Pseudo scaled Bayesian Information Criterion (BIC). Candidate models that

produce the smallest BIC suggest the optimal number of parameters given the sample size. Scaling is accomplished by dividing the non-scaled BIC by sample

size.

convergence Convergence = 0 indicates that the optimization algorithm converged; conver-

gence=1 indicates that the optimization failed to converge.

.

Author(s)

Niels Waller

References

Liang, L. & Browne, M. W. (2015). A quasi-parametric method for fitting flexible item response functions. *Journal of Educational and Behavioral Statistics*, 40, 5–34.

FUP 41

```
1.417, 1.413, 0.021, 0.000, 0, 0, 0, 0, 1,
 -0.008, 1.349, -0.195, 0.144, 0, 0, 0, 0, 1,
 0.512, 1.538, -0.089, 0.082, 0, 0, 0, 0, 1,
 0.122, 0.601, -0.082, 0.119, 0, 0, 0, 0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0, 0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0, 0, 1,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0, 0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
 1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
  0.140, 1.209, 0.082, 0.148, 0, 0, 0, 0, 1,
  0.429, 1.480, -0.008, 0.061, 0, 0, 0, 0, 1,
 0.089, 0.785, -0.065, 0.018, 0, 0, 0, 0, 1,
 -0.516, 1.013, 0.016, 0.023, 0, 0, 0, 0, 1,
 0.143, 1.315, -0.011, 0.136, 0, 0, 0, 0, 1,
 0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
 0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
 nrow=23, ncol=9, byrow=TRUE)
# generate data using the above item parameters
ex1.data<-genFMPData(NSubj = NSubjects, bParams = b, seed = 345)$data
NItems <- ncol(ex1.data)
# compute (initial) surrogate theta values from
# the normed left singular vector of the centered
# data matrix
thetaInit <- svdNorm(ex1.data)</pre>
# Choose model
k < -1 \# order of polynomial = 2k+1
# Initialize matrices to hold output
if(k == 0) {
  startVals <- c(1.5, 1.5)
  bmat <- matrix(0,NItems,6)</pre>
  colnames(bmat) <- c(paste("b", 0:1, sep = ""),"FHAT", "AIC", "BIC", "convergence")</pre>
if(k == 1) {
  startVals <- c(1.5, 1.5, .10, .10)
  bmat <- matrix(0,NItems,8)</pre>
  colnames(bmat) <- c(paste("b", 0:3, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
if(k == 2) {
  startVals <- c(1.5, 1.5, .10, .10, .10, .10)
  bmat <- matrix(0,NItems,10)</pre>
 colnames(bmat) <- c(paste("b", 0:5, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
if(k == 3) {
  startVals <- c(1.5, 1.5, .10, .10, .10, .10, .10, .10)
  bmat <- matrix(0,NItems,12)</pre>
  colnames(bmat) <- c(paste("b", 0:7, sep = ""), "FHAT", "AIC", "BIC", "convergence")</pre>
```

42 gen4PMData

```
# estimate item parameters and fit statistics
for(i in 1:NItems){
   out<-FUP(data = ex1.data,thetaInit = thetaInit, item = i, startvals = startVals, k = k)
   Nb <- length(out$b)
   bmat[i,1:Nb] <- out$b
   bmat[i,Nb+1] <- out$FHAT
   bmat[i,Nb+2] <- out$AIC
   bmat[i,Nb+3] <- out$BIC
   bmat[i,Nb+4] <- out$convergence
}

# print results
print(bmat)

## End(Not run)</pre>
```

gen4PMData

Generate item response data for 1, 2, 3, or 4-parameter IRT models

Description

Generate item response data for or 1, 2, 3 or 4-parameter IRT Models.

Usage

```
gen4PMData(NSubj, abcdParams, D = 1.702, seed = NULL, theta = NULL, thetaMN = 0, thetaVar = 1)
```

Arguments

NSubj the desired number of subject response vectors.

abcdParams a p(items)-by-4 matrix of IRT item parameters: a = discrimination, b = difficulty,

c = lower asymptote, and d = upper asymptote.

D Scaling constant to place the IRF on the normal ogive or logistic metric. Default

= 1.702 (normal ogive metric)

seed Optional seed for the random number generator.

theta Optional vector of latent trait scores. If theta = NULL (the default value) then

gen4PMData will simulate theta from a normal distribution.

thetaMN Mean of simulated theta distribution. Default = 0. thetaVar Variance of simulated theta distribution. Default = 1

Value

data N(subject)-by-p(items) matrix of item response data.

theta Latent trait scores.

seed Value of the random number seed.

genCorr 43

Author(s)

Niels Waller

Examples

```
## Generate simulated 4PM data for 2,000 subjects
# 4PM Item parameters from MMPI-A CYN scale
Params<-matrix(c(1.41, -0.79, .01, .98, #1
                 1.19, -0.81, .02, .96, #2
                 0.79, -1.11, .05, .94, #3
                 0.94, -0.53, .02, .93, #4
                 0.90, -1.02, .04, .95, #5
                 1.00, -0.21, .02, .84, #6
                  1.05, -0.27, .02, .97, #7
                  0.90, -0.75, .04, .73, #8
                  0.80, -1.42, .06, .98, #9
                  0.71, 0.13, .05, .94, #10
                 1.01, -0.14, .02, .81, #11
                  0.63, 0.18, .18, .97, #12
                 0.68, 0.18, .02, .87, #13
0.60, -0.14, .09, .96, #14
                  0.85, -0.71, .04, .99, #15
                  0.83, -0.07, .05, .97, #16
                  0.86, -0.36, .03, .95, #17
                  0.66, -0.64, .04, .77, #18
                 0.60, 0.52, .04, .94, #19
                  0.90, -0.06, .02, .96, #20
                  0.62, -0.47, .05, .86, #21
                  0.57, 0.13, .06, .93, #22
                  0.77, -0.43, .04, .97),23,4, byrow=TRUE)
 data <- gen4PMData(NSubj=2000, abcdParams = Params, D = 1.702,</pre>
                     seed = 123, thetaMN = 0, thetaVar = 1)$data
 cat("\nClassical item difficulties for simulated data")
 print( round( apply(data,2,mean),2) )
```

genCorr

Generate Correlation Matrices with User-Defined Eigenvalues

Description

Uses the Marsaglia and Olkin (1984) algorithm to generate correlation matrices with user-defined eigenvalues.

Usage

```
genCorr(eigenval, seed='rand')
```

44 genFMPData

Arguments

eigenval A vector of eigenvalues that must sum to the order of the desired correlation

matrix. For example: if you want a correlation matrix of order 4, then you need 4 eigenvalues that sum to 4. A warning message will display if sum(eigenval)

!= length(eigenval)

seed Either a user supplied seed for the random number generator or 'rand' for a

function generated seed. Default seed='rand'.

Value

Returns a correlation matrix with the eigen-stucture specified by eigenval.

Author(s)

Jeff Jones

References

Jones, J. A. (2010). GenCorr: An R routine to generate correlation matrices from a user-defined eigenvalue structure. *Applied Psychological Measurement*, 34, 68-69.

Marsaglia, G., & Olkin, I. (1984). Generating correlation matrices. *SIAM J. Sci. and Stat. Comput.*, 5, 470-475.

Examples

genFMPData

Generate item response data for a filtered monotonic polynomial IRT model

Description

Generate item response data for the filtered polynomial IRT model.

genFMPData 45

Usage

```
genFMPData(NSubj, bParams, theta = NULL, thetaMN = 0, thetaVar = 1, seed)
```

Arguments

NSubj the desired number of subject response vectors.

bParams a p(items)-by-9 matrix of polynomial coefficients and model designations. Columns

1 - 8 hold the polynomial coefficients; column 9 holds the value of k.

theta A user-supplied vector of latent trait scores. Default theta = NULL.

thetaMN If theta = NULL genFMPdata will simulate random normal deviates from a

population with mean thetaMN and variance thetaVar.

thetaVar If theta = NULL genFMPData will simulate random normal deviates from a

population with mean thetaMN and variance thetaVar.

seed initial seed for the random number generator.

Value

theta theta values used for data generation

data N(subject)-by-p(items) matrix of item response data.

seed Value of the random number seed.

Author(s)

Niels Waller

```
# The following code illustrates data generation for
# an FMP of order 3 (i.e., 2k+1)
# data will be generated for 2000 examinees
NSubjects <- 2000
## Example item paramters, k=1 FMP
b <- matrix(c(</pre>
   #b0
         b1
                 b2
                       b3
                              b4
                                   b5 b6 b7
  1.675, 1.974, -0.068, 0.053, 0,
                                  0, 0,
                                          0, 1,
  1.550, 1.805, -0.230, 0.032, 0,
                                  0,
                                      0,
  1.282, 1.063, -0.103, 0.003,
                              0,
                                  0,
                             0,
  0.704, 1.376, -0.107, 0.040,
                                  0.
 1.417, 1.413, 0.021, 0.000, 0,
                                  0,
 -0.008, 1.349, -0.195, 0.144, 0,
                                  0,
                                      0,
 0.512, 1.538, -0.089, 0.082, 0,
                                  0,
                                      0,
 0.122, 0.601, -0.082, 0.119, 0,
                                  0,
                                      0,
 1.801, 1.211, 0.015, 0.000, 0, 0,
                                      0.
                                          0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0,
                                          0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0, 0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0, 0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0, 0, 1,
  1.030, 1.525, 0.200, 0.076, 0, 0, 0, 0, 1,
```

46 HS9Var

```
0.140, 1.209, 0.082, 0.148, 0, 0,
                                     0,
 0.429, 1.480, -0.008, 0.061, 0, 0,
 0.089, 0.785, -0.065, 0.018, 0, 0,
                                     0,
                                         0, 1,
 -0.516, 1.013, 0.016, 0.023, 0, 0, 0,
 0.143, 1.315, -0.011, 0.136, 0, 0, 0,
 0.347, 0.733, -0.121, 0.041, 0, 0, 0, 0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0, 0, 0, 1,
 0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
 nrow=23, ncol=9, byrow=TRUE)
# generate data using the above item paramters
data<-genFMPData(NSubj = NSubjects, bParams=b, seed=345)$data</pre>
```

HS9Var

9 Variables from the Holzinger and Swineford (1939) Dataset

Description

Mental abilities data on seventh- and eighth-grade children from the classic Holzinger and Swineford (1939) dataset.

Usage

```
data("HS9Var")
```

Format

A data frame with 301 observations on the following 15 variables.

```
id subject identifier
sex gender
ageyr age, year part
agemo age, month part
school school name (Pasteur or Grant-White)
grade grade
x1 Visual perception
x2 Cubes
x3 Lozenges
x4 Paragraph comprehension
x5 Sentence completion
```

- x6 Word meaning
- x7 Speeded addition
- x8 Speeded counting of dots
- x9 Speeded discrimination straight and curved capitals

Source

These data were retrieved from the lavaan package. The complete data for all 26 tests are available in the MBESS package.

irf 47

References

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifactor solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. *Psychometrika*, *34*, 183-202.

Examples

```
data(HS9Var)
head(HS9Var)
```

irf

Plot item response functions for polynomial IRT models.

Description

Plot model-implied (and possibly empirical) item response function for polynomial IRT models.

Usage

Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data.

bParams p(items)-by-9 matrix. The first 8 columns of the matrix should contain the FMP

or FUP polynomial coefficients for the p items. The 9th column contains the value of k for each item (where the item specific order of the polynomial is

2k+1).

item The IRF for item will be plotted.

plotERF A logical that determines whether to plot discrete values of the empirical re-

sponse function.

thetaEAP If plotERF=TRUE, the user must supply previously calculated eap trait estimates

to thetaEAP.

minCut, maxCut If plotERF=TRUE, the program will (attempt to) plot NCuts points of the em-

pirical response function between trait values of minCut and maxCut Default

minCut = -3. Default maxCut = 3.

NCuts Desired number of bins for the empirical response function.

Author(s)

Niels Waller

48 itemDescriptives

```
NSubjects <- 2000
NItems <- 15
itmParameters <- matrix(c(</pre>
                                    b6, b7, k
 # b0 b1 b2 b3
                           b4 b5,
-1.05, 1.63, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #1
 -1.97, 1.75, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #2
 -1.77, 1.82, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #3
 -4.76, 2.67, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #4
 -2.15, 1.93, 0.00, 0.00, 0.00, 0,
                                       0, 0,
                                                 0, #5
 -1.25, 1.17, -0.25, 0.12, 0.00, 0,
                                                 1, #6
                                      0, 0,
 1.65, 0.01, 0.02, 0.03, 0.00, 0,
                                      0, 0,
                                                1, #7
-2.99, 1.64, 0.17, 0.03, 0.00, 0,
                                       0, 0,
                                                1, #8
 -3.22, 2.40, -0.12, 0.10, 0.00, 0,
                                       0, 0,
                                                1, #9
 -0.75, 1.09, -0.39, 0.31, 0.00, 0,
                                       0, 0,
                                                1, #10
 -1.21, 9.07, 1.20, -0.01, -0.01, 0.01, 0, 0,
                                                 2, #11
 -1.92, 1.55, -0.17, 0.50, -0.01, 0.01, 0, 0,
                                                 2, #12
 -1.76, 1.29, -0.13, 1.60, -0.01, 0.01, 0, 0,
                                                 2, #13
 -2.32,\ 1.40,\quad 0.55,\ 0.05, -0.01,\quad 0.01,\quad 0,\quad 0,\quad \  \  2,\ \#14
 -1.24, 2.48, -0.65, 0.60, -0.01, 0.01, 0, 0,
                                                2),#15
15, 9, byrow=TRUE)
ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,</pre>
                    seed = 345)$data
## compute initial theta surrogates
thetaInit <- svdNorm(ex1.data)</pre>
## For convenience we assume that the item parameter
## estimates equal their population values. In practice,
## item parameters would be estimated at this step.
itmEstimates <- itmParameters</pre>
## calculate eap estimates for mixed models
thetaEAP <- eap(data = ex1.data, bParams = itmEstimates, NQuad = 21,
               priorVar = 2,
               mintheta = -4, maxtheta = 4)
## plot irf and erf for item 1
irf(data = ex1.data, bParams = itmEstimates,
   item = 1,
   plotERF = TRUE,
    thetaEAP)
## plot irf and erf for item 12
irf(data = ex1.data, bParams = itmEstimates,
   item = 12,
   plotERF = TRUE,
   thetaEAP)
```

itemDescriptives 49

Description

Compute basic descriptives for binary item analysis

Usage

```
itemDescriptives(X, digits=3)
```

Arguments

X a matrix of binary (0/1) item responses.

digits number of digits to print.

Value

alpha Coefficient alpha for the total scale.

means item means.

standard deviations

item standard deviations.

pt. biserial correlations

corrected item-total point biserial correlations.

biserial correlations

corrected item-total point biserial correlations.

corrected.alpha

corrected (leave item out) alpha coefficients.

Author(s)

Niels Waller

```
## Example 1: generating binary data to match
## an existing binary data matrix
##
## Generate correlated scores using factor
## analysis model
## X \leftarrow Z *L' + U*D
## Z is a vector of factor scores
## L is a factor loading matrix
## U is a matrix of unique factor scores
## D is a scaling matrix for {\sf U}
Nsubj <- 2000
L \leftarrow matrix(rep(.707,5), nrow = 5, ncol = 1)
Z <-as.matrix(rnorm(Nsubj))</pre>
U <-matrix(rnorm(Nsubj * 5),nrow = Nsubj, ncol = 5)</pre>
tmp \leftarrow sqrt(1 - L^2)
D<-matrix(0, 5, 5)
diag(D) <- tmp</pre>
X <- Z %*% t(L) + U%*%D
cat("\nCorrelation of continuous scores\n")
print(round(cor(X),3))
```

50 kurt

```
thresholds <-c(.2,.3,.4,.5,.6)
Binary<-matrix(0,Nsubj,5)</pre>
for(i in 1:5){
  Binary[X[,i]<=thresholds[i],i]<-1</pre>
cat("\nCorrelation of Binary scores\n")
print(round(cor(Binary),3))
## Now use 'bigen' to generate binary data matrix with
## same correlations as in Binary
z <- bigen(data = Binary, n = 5000)</pre>
cat("\n\nnames in returned object\n")
print(names(z))
cat("\nCorrelation of Simulated binary scores\n")
print(round( cor(z$data), 3))
cat("Observed thresholds of simulated data:\n")
cat( apply(z$data, 2, mean) )
itemDescriptives(z$data)
```

kurt

Calculate Univariate Kurtosis for a Vector or Matrix

Description

Calculate univariate kurtosis for a vector or matrix (algorithm G2 in Joanes & Gill, 1998).

Usage

kurt(x)

Arguments

Х

Either a vector or matrix of numeric values.

Value

Kurtosis for each column in x.

Author(s)

Niels Waller

References

Joanes, D. N. & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. *The Statistician*, 47, 183-189.

See Also

skew

Examples

```
x <- matrix(rnorm(1000), 100, 10)
print(kurt(x))</pre>
```

monte

Simulate Clustered Data with User-Defined Properties

Description

Function for simulating clustered data with user defined characteristics such as: within cluster indicator correlations, within cluster indicator skewness values, within cluster indicator kurtosis values, and cluster separations as indexed by each variable (indicator validities).

Usage

Arguments

seed	Required: An integer to be used as the random number seed.
nvar	Required: Number of variables to simulate.
nclus	Required: Number of clusters to simulate. <i>Note</i> that number of clusters must be equal to or greater than 2.
clus.size	Required: Number of objects in each cluster.
eta2	Required: A vector of indicator validities that range from 0 to 1. Higher numbers produce clusters with greater separation on that indicator.
cor.list	Optional: A list of correlation matrices. There should be one correlation matrix for each cluster. The first correlation matrix will represent the indicator correlations within cluster 1. The second correlation matrix will represent the indicator correlations for cluster 2. Etc.
random.cor	Optional: Set to TRUE to generate a common within cluster correlation matrix.
skew.list	Optional: A list of within cluster indicator skewness values.
kurt.list	Optional: A list of within cluster indicator kurtosis values.
secor	Optional: If 'random.cor = TRUE' then 'secor' determines the standard error of the simulated within group correlation matrices.
compactness	Optional: A vector of cluster compactness parameters. The meaning of this option is explained Waller et al. (1999). Basically, 'compactness' allows users some control over cluster overlap without changing indicator validities. See the example below for an illustration.
sortMeans	Optional: A logical that determines whether the latent means will be sorted by taxon. Default = TRUE

Value

data	The simulated data. The 1st column of 'data' denotes cluster membership.
lmn	The cluster indicator means.
fl	The factor loading matrix as described in Waller, et al. 1999.
fs	The unique values of the linearized factor scores.
call	The call.
nclus	Number of clusters.
nvar	Number of variables.
cor.list	The input within cluster correlation matrices.
skew.list	The input within cluster indicator skewness values.
kurt.list	The input within cluster indicator kurtosis values.
clus.size	The number of observations in each cluster.
eta2	Vector of indicator validities.
seed	The random number seed.

Author(s)

Niels Waller

References

Fleishman, A. I (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532.

Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465-471.

Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. Multivariate Behavioral Research, 34, 123-142.

```
## Example 1
## Simulating Fisher's Iris data
# The original data were reported in:
# Fisher, R. A. (1936) The use of multiple measurements in taxonomic
      problems. Annals of Eugenics, 7, Part II, 179-188.
# This example includes 3 clusters. Each cluster represents
# an Iris species: Setosa, Versicolor, and Virginica.
# On each species, four variables were measured: Sepal Length,
# Sepal Width, Petal Length, and Petal Width.
# The within species (cluster) correlations of the flower
# indicators are as follows:
# Iris Type 1:
      [,1] [,2] [,3] [,4]
# [1,] 1.000 0.743 0.267 0.178
# [2,] 0.743 1.000 0.278 0.233
# [3,] 0.267 0.278 1.000 0.332
```

```
# [4,] 0.178 0.233 0.332 1.000
# Iris Type 2
       [,1] [,2] [,3] [,4]
# [1,] 1.000 0.526 0.754 0.546
# [2,] 0.526 1.000 0.561 0.664
# [3,] 0.754 0.561 1.000 0.787
# [4,] 0.546 0.664 0.787 1.000
# Iris Type 3
       [,1] [,2] [,3] [,4]
# [1,] 1.000 0.457 0.864 0.281
# [2,] 0.457 1.000 0.401 0.538
# [3,] 0.864 0.401 1.000 0.322
# [4,] 0.281 0.538 0.322 1.000
\mbox{\tt\#} 'monte' expects a list of correlation matrices
#create a list of within species correlations
data(iris)
cormat <- cm <- lapply(split(iris[,1:4], iris[,5]), cor)</pre>
# create a list of within species indicator
# skewness and kurtosis
 sk.lst < -list(c(0.120, 0.041, 0.106, 1.254),
                c(0.105, -0.363, -0.607, -0.031),
                c(0.118, 0.366, 0.549, -0.129))
kt.lst \leftarrow list(c(-0.253, 0.955, 1.022, 1.719),
                c(-0.533, -0.366, 0.048, -0.410),
                c( 0.033, 0.706, -0.154, -0.602) )
#Generate a new sample of iris data
my.iris <- monte(seed=123, nvar = 4, nclus = 3, cor.list = cormat,
                clus.size = c(50, 50, 50),
                eta2=c(0.619, 0.401, 0.941, 0.929),
                random.cor = FALSE,
                skew.list = sk.lst,
                kurt.list = kt.lst,
                secor = .3, compactness=c(1, 1, 1),
                sortMeans = TRUE)
summary(my.iris)
plot(my.iris)
# Now generate a new data set with the sample indicator validities
# as before but with different cluster compactness values.
my.iris2<-monte(seed = 123, nvar = 4, nclus = 3,</pre>
               cor.list = cormat, clus.size = c(50, 50, 50),
               eta2 = c(0.619, 0.401, 0.941, 0.929), random.cor = FALSE,
               skew.list = sk.lst ,kurt.list = kt.lst,
               secor = .3,
```

```
compactness=c(2, .5, .5),
              sortMeans = TRUE)
summary(my.iris2)
# Notice that cluster 1 has been blow up whereas clusters 2 and 3 have been shrunk.
plot(my.iris2)
### Now compare your original results with the actual
## Fisher iris data
library(lattice)
data(iris)
super.sym <- trellis.par.get("superpose.symbol")</pre>
splom(~iris[1:4], groups = Species, data = iris,
     #panel = panel.superpose,
     key = list(title = "Three Varieties of Iris",
                columns = 3,
                points = list(pch = super.sym$pch[1:3],
                col = super.sym$col[1:3]),
                text = list(c("Setosa", "Versicolor", "Virginica"))))
## Example 2
## Simulating data for Taxometric
## Monte Carlo Studies.
## In this four part example we will
## generate two group mixtures
## (Complement and Taxon groups)
## under four conditions.
##
## In all conditions
## base rate (BR) = .20
## 3 indicators
## indicator validities = .50
## (This means that 50 percent of the total
## variance is due to the mixture.)
##
##
## Condition 1:
## All variables have a slight degree
## of skewness (.10) and kurtosis (.10).
## Within group correlations = 0.00.
##
##
##
## Condition 2:
## In this conditon we generate data in which the
## complement and taxon distributions differ in shape.
## In the complement group all indicators have
## skewness values of 1.75 and kurtosis values of 3.75.
## In the taxon group all indicators have skewness values
## of .50 and kurtosis values of 0.
```

```
## As in the previous condition, all within group
## correlations (nuisance covariance) are 0.00.
##
## Conditon 3:
## In this condition we retain all previous
## characteristics except that the within group
## indicator correlations now equal .80
## (they can differ between groups).
##
## Conditon 4:
## In this final condition we retain
## all previous data characteristics except that
## the variances of the indicators in the complement
## class are now 5 times the indicator variances
## in the taxon class (while maintaining indicator skewness,
## kurtosis, correlations, etc.).
##-----
library(lattice)
Condition 1
in.nvar <- 3 ##Number of variables</pre>
in.nclus <-2 ##Number of taxa
in.seed <- 123
BR <- .20
             ## Base rate of higher taxon
## Within taxon indicator skew and kurtosis
in.skew.list <- list(c(.1, .1, .1), c(.1, .1, .1))
in.kurt.list <- list(c(.1, .1, .1), c(.1, .1, .1))
## Indicator validities
in.eta2 <- c(.50, .50, .50)
## Groups sizes for Population
BigN <- 100000
in.clus.size <- c(BigN*(1-BR), BR * BigN)
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
               nvar=in.nvar,
               nclus = in.nclus,
               clus.size = in.clus.size,
               eta2 = in.eta2,
               skew.list = in.skew.list,
               kurt.list = in.kurt.list)
output <- summary(sample.data)</pre>
```

```
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])</pre>
z[,2:4] \leftarrow scale(z[,2:4])
names(z) <- c("id","v1","v2","v3")
#trellis.device()
trellis.par.set( col.whitebg() )
print(
cloud(v3 \sim v1 * v2,
      groups = as.factor(id),data=z,
      subpanel = panel.superpose,
      zlim=c(-4, 4),
      xlim=c(-4, 4),
      ylim=c(-4, 4),
      main="",
      screen = list(z = 20, x = -70)),
   position=c(.1, .5, .5, 1), more = TRUE)
Condition 2
## Within taxon indicator skew and kurtosis
in.skew.list <- list(c(1.75, 1.75, 1.75), c(.50, .50, .50))
in.kurt.list <- list(c(3.75, 3.75, 3.75), c(0, 0, 0))
## Generate Population of scores with "monte"
sample.data <- monte(seed = in.seed,</pre>
              nvar = in.nvar,
              nclus = in.nclus,
              clus.size = in.clus.size,
              eta2 = in.eta2,
              skew.list = in.skew.list,
              kurt.list = in.kurt.list)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace=FALSE),])</pre>
z[,2:4] \leftarrow scale(z[, 2:4])
names(z) <-c("id", "v1", "v2", "v3")
print(
cloud(v3 \sim v1 * v2,
      groups = as.factor(id), data = z,
      subpanel = panel.superpose,
      zlim = c(-4, 4),
      xlim = c(-4, 4),
      ylim = c(-4, 4),
      main="",
      screen = list(z = 20, x = -70),
      position = c(.5, .5, 1, 1), more = TRUE)
```

Condition 3

Set within group correlations to .80 cormat <- matrix(.80, 3, 3)</pre> diag(cormat) <- rep(1, 3)</pre> in.cor.list <- list(cormat, cormat)</pre> ## Generate Population of scores with "monte" sample.data <- monte(seed = in.seed,</pre> nvar = in.nvar, nclus = in.nclus, clus.size = in.clus.size, eta2 = in.eta2, skew.list = in.skew.list, kurt.list = in.kurt.list, cor.list = in.cor.list) output <- summary(sample.data)</pre> z <- data.frame(sample.data\$data[sample(1:BigN, 600,</pre> replace = FALSE),]) $z[,2:4] \leftarrow scale(z[, 2:4])$ $names(z) \leftarrow c("id", "v1", "v2", "v3")$ ##trellis.device() ##trellis.par.set(col.whitebg()) print($cloud(v3 \sim v1 * v2,$ groups = as.factor(id),data=z, subpanel = panel.superpose, zlim = c(-4, 4),xlim = c(-4, 4),ylim = c(-4, 4),main="", screen = list(z = 20, x = -70), position = c(.1, .0, .5, .5), more = TRUE) Condition 4 ## Change compactness so that variance of ## complement indicators is 5 times ## greater than variance of taxon indicators $v \leftarrow (2 * sqrt(5))/(1 + sqrt(5))$ in.compactness <- c(v, 2-v)## Generate Population of scores with "monte" sample.data <- monte(seed = in.seed,</pre> nvar = in.nvar, nclus = in.nclus, clus.size = in.clus.size, eta2 = in.eta2,

> skew.list = in.skew.list, kurt.list = in.kurt.list,

```
cor.list = in.cor.list,
                compactness = in.compactness)
output <- summary(sample.data)</pre>
z <- data.frame(sample.data$data[sample(1:BigN, 600, replace = FALSE), ])</pre>
z[, 2:4] \leftarrow scale(z[, 2:4])
names(z) <- c("id", "v1", "v2", "v3")
print(
  cloud(v3 \sim v1 * v2,
       groups = as.factor(id),data=z,
       subpanel = panel.superpose,
       zlim = c(-4, 4),
       xlim = c(-4, 4),
       ylim = c(-4, 4),
       main="".
       screen = list(z = 20, x = -70)),
 position = c(.5, .0, 1, .5), more = TRUE)
```

monte1

Simulate Multivariate Non-normal Data by Vale & Maurelli (1983) Method

Description

Function for simulating multivariate nonnormal data by the methods described by Fleishman (1978) and Vale & Maurelli (1983).

Usage

```
monte1(seed, nvar, nsub, cormat, skewvec, kurtvec)
```

Arguments

seed An integer to be used as the random number seed. nvar

Number of variables to simulate.

nsub Number of simulated subjects (response vectors).

cormat The desired correlation matrix.

skewvec A vector of indicator skewness values. A vector of indicator kurtosis values. kurtvec

Value

data The simulated data.

call The call.

Number of subjects. nsub Number of variables. nvar

cormat The desired correlation matrix.

skewvec The desired indicator skewness values. kurtvec The desired indicator kurtosis values.

seed The random number seed. normalCor 59

Author(s)

Niels Waller

References

Fleishman, A. I (1978). A method for simulating non-normal distributions. *Psychometrika*, 43, 521-532.

Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. *Psychometrika*, 48, 465-471.

See Also

```
monte, summary.monte, summary.monte1
```

Examples

normalCor

Compute Normal-Theory Covariances for Correlations

Description

Compute normal-theory covariances for correlations

Usage

```
normalCor(R, Nobs)
```

Arguments

R a p x p matrix of correlations.

Nobs Number of observations.

Value

A normal-theory covariance matrix of correlations.

60 normF

Author(s)

Jeff Jones and Niels Waller

References

Nel, D.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. *Linear algebra and its applications*, 67, 137–145.

See Also

adfCor

Examples

```
data(Harman23.cor)
normalCor(Harman23.cor$cov, Nobs = 305)
```

normF

Compute the Frobenius norm of a matrix

Description

A function to compute the Frobenius norm of a matrix

Usage

normF(X)

Arguments

Χ

A matrix.

Value

The Frobenius norm of X.

Author(s)

Niels Waller

```
data(BadRLG)
out <- smoothLG(R = BadRLG, Penalty = 50000)
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print( round(out$RLG,8) )
cat("\nFrobenius norm of (NPD - PSD) matrix\n")
print(normF(BadRLG - out$RLG ))</pre>
```

plot.monte 61

plot.monte

Plot Method for Class Monte

Description

plot method for class "monte"

Usage

```
## S3 method for class 'monte'
plot(x, ...)
```

Arguments

An object of class 'monte', usually, a result of a call to monte.

. . . Optional arguments passed to plotting function.

Value

The function plot.monte creates a scatter plot of matrices plot (a splom plot). Cluster membership is denoted by different colors in the plot.

Examples

```
#plot(monte.object)
```

r2d

Convert Radians to Degrees

Description

Convert radian measure to degrees.

Usage

```
r2d(radian)
```

Arguments

radian

Radian measure of an angle

Value

Degree measure of an angle

```
r2d(.5*pi)
```

62 rarc

rarc

Rotate Points on the Surface on an N-Dimensional Ellipsoid

Description

Rotate between two points on the surface on an n-dimensional ellipsoid. The hyper-ellipsoid is composed of all points, B, such that B' Rxx B = Rsq. Vector B contains standardized regression coefficients.

Usage

```
rarc(Rxx, Rsq, b1, b2, Npoints)
```

Arguments

Rxx	Predictor correlation matrix.
Rsq	Model coefficient of determination.
b1	First point on ellipsoid. If b1 and b2 are scalars then choose scaled eigenvectors $v[b1]$ and $v[b2]$ as the start and end vectors.
b2	Second point on ellipsoid. If b1 and b2 are scalars then choose scaled eigenvectors $v[b1]$ and $v[b2]$ as the start and end vectors.
Npoints	Generate "Npoints" +1 OLS coefficient vectors between b1 and b2.

Value

b N+1 sets of OLS coefficient vectors between b1 and b2.

Author(s)

Niels Waller and Jeff Jones.

References

Waller, N. G. & Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

rcone 63

```
N <- 200
b \leftarrow rarc(Rxx = R, Rsq, b1 = 1, b2 = 3, Npoints = N)
## compute validity vectors
r <- Rxx %*% b
N < -N + 1
Rsq.r \leftarrow Rsq.unit \leftarrow rep(0, N)
for(i in 1:N){
## eval performance of unit weights
 Rsq.unit[i] <- (t(sign(r[,i])) %*% r[,i])^2 /
             (t(sign(r[,i])) %*% R %*% sign(r[,i]))
## eval performance of correlation weights
 Rsq.r[i] \leftarrow (t(r[,i]) %*% r[,i])^2 /(t(r[,i]) %*% R %*% r[,i])
}
cat("\nAverage relative performance of unit weights across elliptical arc:",
      round(mean(Rsq.unit)/Rsq,3) )
cat("\n\nAverage relative performance of r weights across elliptical arc:",
      round(mean(Rsq.r)/Rsq,3) )
plot(seq(0, 90, length = N), Rsq.r, typ = "1",
          ylim = c(0, .20),
          xlim = c(0, 95),
          1wd = 3,
          ylab = expression(R^2),
          xlab = expression(paste("Degrees from ",b[1]," in the direction of ",b[2])),
          cex.lab = 1.25, lab = c(10, 5, 5))
 points(seq(0, 90, length = N), Rsq.unit,
          type = "1",
          1ty = 2, 1wd = 3)
 legend(x = 0, y = .12,
        legend = c("r weights", "unit weights"),
        1ty = c(1, 2),
        1wd = c(4, 3),
        cex = 1.5)
```

rcone

Generate a Cone of Regression Coefficient Vectors

Description

Compute a cone of regression vectors with a constant R-squared around a target vector.

Usage

```
rcone(R,Rsq,b,axis1,axis2,deg,Npoints=360)
```

Arguments

R

Predictor correlation matrix.

64 rcor

Rsq	Coefficient of determination.
b	Target vector of OLS regression coefficients.
axis1	1st axis of rotation plane.
axis2	2nd axis of rotation plane.
deg	All vectors b.i will be 'deg' degrees from b.
Npoints	Number of rotation vectors, default = 360.

Value

b.i Npoints values of b.i

Author(s)

Niels Waller and Jeff Jones

References

Waller, N. G. & Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

Examples

```
R <- matrix(.5, 4, 4)
diag(R) <- 1

Npoints <- 1000
Rsq <- .40
NumDeg <- 20
V <- eigen(R)$vectors

## create b parallel to v[,3]
## rotate in the 2 - 4 plane
b <- V[,3]
bsq <- t(b) %*% R %*% b
b <- b * sqrt(Rsq/bsq)
b.i <- rcone(R, Rsq,b, V[,2], V[,4], deg = NumDeg, Npoints)

t(b.i[,1]) %*% R %*% b.i[,1]
t(b.i[,25]) %*% R %*% b.i[,25]</pre>
```

rcor

Generate Random PSD Correlation Matrices

Description

Generate random PSD correlation matrices.

Usage

```
rcor(Nvar)
```

rellipsoid 65

Arguments

Nvar

An integer that determines the order of the random correlation matrix.

Details

rcor generates random PSD correlation matrices by (1) generating Nvar squared random normal deviates, (2) scaling the deviates to sum to Nvar, and then (3) placing the scaled values into a diagonal matrix L. Next, (4) an Nvar x Nvar orthogonal matrix, Q, is created by performing a QR decomposition of a matrix, M, that contains random normal deviates. (5) A PSD covariance matrix, C, is created from Q L Q^T and then (6) scaled to a correlation metric.

Value

A random correlation matrix.

Author(s)

Niels Waller

See Also

genCorr

Examples

```
R <- rcor(4)
print( R )</pre>
```

rellipsoid

Generate Uniformly Spaced OLS Regression Coefficients that Yield a User-Supplied R-Squared Value

Description

Given predictor matrix R, generate OLS regression coefficients that yield a user-supplied R-Squared value. These regression coefficient vectors will be uniformly spaced on the surface of a (hyper) ellipsoid.

Usage

```
rellipsoid(R, Rsq, Npoints)
```

Arguments

R A p x p predictor correlation matrix.

Rsq A user-supplied R-squared value.

Npoints Desired number of generated regression vectors.

Value

b A p x Npoints matrix of regression coefficients

66 restScore

Author(s)

Niels Waller and Jeff Jones.

References

Waller, N. G. and Jones, J. A. (2011). Investigating the performance of alternate regression weights by studying all possible criteria in regression models with a fixed set of predictors. *Psychometrika*, 76, 410-439.

Examples

```
## generate uniformly distributed regression vectors
## on the surface of a 14-dimensional ellipsoid
N <- 10000
Rsq < - .21
# Correlations from page 224 WAIS-III manual
# The Psychological Corporation (1997).
wais3 <- matrix(</pre>
 c(1, .76, .58, .43, .75, .75, .42, .54, .41, .57, .64, .54, .50, .53,
 .76, 1, .57, .36, .69, .71, .45, .52, .36, .63, .68, .51, .47, .54,
 .58, .57, 1, .45, .65, .60, .47, .48, .43, .59, .60, .49, .56, .47,
 .43, .36, .45, 1, .37, .40, .60, .30, .32, .34, .35, .28, .35, .29,
 .75, .69, .65, .37, 1, .70, .44, .54, .34, .59, .62, .54, .45, .50,
 .75, .71, .60, .40, .70, 1, .42, .51, .44, .53, .60, .50, .52, .44,
 .42, .45, .47, .60, .44, .42, 1, .46, .49, .47, .43, .27, .50, .42,
 .54, .52, .48, .30, .54, .51, .46, 1, .45, .50, .58, .55, .53, .56,
 .41, .36, .43, .32, .34, .44, .49, .45, 1, .47, .49, .41, .70, .38,
 .57, .63, .59, .34, .59, .53, .47, .50, .47, 1, .63, .62, .58, .66,
 .64, .68, .60, .35, .62, .60, .43, .58, .49, .63, 1, .59, .50, .59,
 .54, .51, .49, .28, .54, .50, .27, .55, .41, .62, .59, 1, .48, .53,
 .50, .47, .56, .35, .45, .52, .50, .53, .70, .58, .50, .48,
                                                              1, .51,
 .53, .54, .47, .29, .50, .44, .42, .56, .38, .66, .59, .53, .51, 1),
 nrow = 14, ncol = 14)
R \leftarrow wais3[1:6,1:6]
b <- rellipsoid(R, Rsq, Npoints = N)</pre>
b <- b$b
plot(b[1,],b[2,])
```

restScore

Plot an ERF using rest scores

Description

Plot an empirical response function using rest scores.

Usage

```
restScore(data, item, NCuts)
```

restScore 67

Arguments

data N(subjects)-by-p(items) matrix of 0/1 item response data.

item Generate a rest score plot for item item.

NCuts Divide the rest scores into NCuts bins of equal width.

Value

A restscore plot with 95% confidence interval bars for the conditional probability estimates.

item The item number.

bins A vector of bin limits and bin sample sizes.
binProb A vector of bin conditional probabilities.

Author(s)

Niels Waller

```
NSubj <- 2000
#generate sample k=1 FMP data
b <- matrix(c(</pre>
   #b0
          b1
                 b2
                       b3
                               b4
                                   b5 b6 b7 k
  1.675, 1.974, -0.068, 0.053, 0,
                                  0, 0,
                                          0, 1,
  1.550, 1.805, -0.230, 0.032,
                              0,
                                  0,
                                      0,
                                          0, 1,
 1.282, 1.063, -0.103, 0.003, 0, 0,
                                      0,
                                          0, 1,
 0.704, 1.376, -0.107, 0.040, 0, 0,
                                      0,
                                          0, 1,
 1.417, 1.413, 0.021, 0.000, 0, 0,
                                      0,
                                          0, 1,
 -0.008, 1.349, -0.195, 0.144, 0, 0,
                                      0,
                                          0.1.
 0.512, 1.538, -0.089, 0.082, 0, 0, 0,
                                          0.1.
 0.122, 0.601, -0.082, 0.119, 0, 0, 0,
                                          0, 1,
 1.801, 1.211, 0.015, 0.000, 0, 0, 0,
                                          0, 1,
 -0.207, 1.191, 0.066, 0.033, 0, 0, 0,
 -0.215, 1.291, -0.087, 0.029, 0, 0, 0,
                                          0, 1,
 0.259, 0.875, 0.177, 0.072, 0, 0, 0,
                                          0, 1,
 -0.423, 0.942, 0.064, 0.094, 0, 0, 0,
                                          0, 1,
 0.113, 0.795, 0.124, 0.110, 0, 0, 0,
                                          0, 1,
  1.030, 1.525, 0.200, 0.076, 0, 0,
                                      0.
                                          0, 1,
  0.140, 1.209, 0.082, 0.148, 0,
                                  0.
                                      0.
                                          0.1.
  0.429, 1.480, -0.008, 0.061, 0,
                                  0,
                                      0,
                                          0, 1,
 0.089, 0.785, -0.065, 0.018,
                              0,
                                  0,
                                           0, 1,
                              0,
 -0.516, 1.013, 0.016, 0.023,
                                   0,
                                      0.
 0.143, 1.315, -0.011, 0.136, 0,
                                  0,
                                      0,
 0.347, 0.733, -0.121, 0.041, 0,
                                  0,
                                      0,
 -0.074, 0.869, 0.013, 0.026, 0,
                                  0,
                                      0,
 0.630, 1.484, -0.001, 0.000, 0, 0,
                                      0,
  nrow=23, ncol=9, byrow=TRUE)
data<-genFMPData(NSubj = NSubj, bParam = b, seed = 345)$data</pre>
## generate a rest score plot for item 12.
## the grey horizontal lines in the plot
## respresent pseudo asymptotes that
## are significantly different from the
```

68 rGivens

```
## (0,1) boundaries
restScore(data, item = 12, NCuts = 9)
```

rGivens

Generate Correlation Matrices with Specified Eigenvalues

Description

rGivens generates correlation matrices with user-specified eigenvalues via a series of Givens rotations by methods described in Bendel & Mickey (1978) and Davis & Higham (2000).

Usage

```
rGivens(eigs, Seed = NULL)
```

Arguments

eigs A vector of eigenvalues that must sum to the order of the desired correlation

matrix. A fatal error will occur if sum(eigs) != length(eigs).

Seed Either a user supplied seed for the random number generator or 'NULL' for a

function generated seed. Default Seed = 'NULL'.

Value

R A correlation matrix with desired spectrum.

Frob The Frobenius norm of the difference between the initial and final matrices with

the desired spectrum.

convergence (Logical) TRUE if rGivens converged to a feasible solution, otherwise FALSE.

References

Bendel, R. B. & Mickey, M. R. (1978). Population correlation matrices for sampling experiments, Commun. Statist. Simulation Comput., B7, pp. 163-182.

Davies, P. I, & Higham, N. J. (2000). Numerically stable generation of correlation matrices and their factors, BIT, 40 (2000), pp. 640-651.

rMAP69

```
#[3,] -0.2451233   0.3356437   1.00000000   -0.02935466   -0.2024926
#[4,] 0.4649737 -0.4664016 -0.02935466 1.00000000 0.6225880
#[5,] 0.2392817 -0.7645915 -0.20249261 0.62258797 1.0000000
#$Frob
#[1] 2.691613
##$S0
#
          [,1]
                     [,2]
                                [,3]
                                          [,4]
#[1,] 1.0349665 0.22537748 -0.46827121 -0.10448336 -0.24730565
#[2,] 0.2253775 0.31833805 -0.23208078 0.06591368 -0.14504161
#[3,] -0.4682712 -0.23208078 2.28911499 0.05430754 0.06964858
#[5,] -0.2473056 -0.14504161 0.06964858 -0.14439623 0.40873606
#$convergence
#[1] TRUE
```

rMAP

Generate Correlation Matrices with Specified Eigenvalues

Description

rMAP uses the method of alternating projections (MAP) to generate correlation matrices with specified eigenvalues.

Usage

```
rMAP(eigenval, eps, maxits, Seed = NULL)
```

Arguments

eigenval A vector of eigenvalues that must sum to the order of the desired correlation matrix. A fatal error will occur if sum(eigenval) != length(eigenval). eps Convergence criterion. Default = 1e-12. maxits Maximm number of iterations of MAP.

Seed

Either a user supplied seed for the random number generator or 'NULL' for a

function generated seed. Default Seed = 'NULL'.

Value

A correlation matrix with the desired spectrum. R

Eigenvalues of the returned matrix, R. evals

(Logical) TRUE if MAP converged to a feasible solution, otherwise FALSE. convergence

Author(s)

Niels Waller

70 rmsd

References

Waller, N. G. (2016). Generating correlation matrices with specified eigenvalues using the method of alternating projections.

Examples

```
## Example
## Generate a correlation matrix with user-specified eigenvalues
R \leftarrow rMAP(c(2.5, 1, 1, .3, .2), Seed = 123)R
print(R, 2)
       [,1]
                [,2]
                     [,3]
                              [,4]
                                     [,5]
#[1,] 1.000 0.5355 -0.746 -0.0688 -0.545
#[2,] 0.535 1.0000 -0.671 -0.0016 -0.056
#[3,] -0.746 -0.6711 1.000 0.0608 0.298
#[4,] -0.069 -0.0016 0.061 1.0000 0.002
#[5,] -0.545 -0.0564 0.298 0.0020 1.000
eigen(R)$values
#[1] 2.5 1.0 1.0 0.3 0.2
```

rmsd

Root Mean Squared Deviation of (A - B)

Description

Calculates the root mean squared deviation of matrices A and B. If these matrices are symmetric (Symmetric = TRUE) then the calculation is based on the upper triangles of each matrix. When the matrices are symmetric, the diagonal of each matrix can be included or excluded from the calculation (IncludeDiag = FALSE)

Usage

```
rmsd(A, B, Symmetric = TRUE, IncludeDiag = FALSE)
```

Arguments

A A possibly non square matrix.

B A matrix of the same dimensions as matrix A.

Symmetric Logical indicating whether A and B are symmetric matrices. (Default: Symmet-

ric = TRUE

IncludeDiag Logical indicating whether to include the diagonals in the calculation. (Default:

IncludeDiag = FALSE).

Value

Returns the root mean squared deviation of (A - B).

RnpdMAP 71

Author(s)

Niels Waller

Examples

```
A <- matrix(rnorm(9), nrow = 3)
B <- matrix(rnorm(9), nrow = 3)

( rmsd(A, B, Symmetric = FALSE, IncludeDiag = TRUE) )</pre>
```

RnpdMAP

Generate Random NPD R matrices from a user-supplied population R

Description

Generate a list of Random NPD (pseudo) R matrices with a user-defined fixed minimum eigenvalue from a user-supplied population R using the method of alternating projections.

Usage

Arguments

Rpop input (PD or PSD) p x p Population correlation matrix.

Lp desired minimum eigenvalue in the NPD matrices.

NNegEigs number of eigenvalues < 0 in Rnpd.

NSmoothPosEigs number of eigenvalues > 0 to smooth: the smallest NSmoothPosEigs > 0be

smoothed toward 0.

NSubjects sample size (required when NSamples > 0) parameter used to generate sample

correlation matrices. Default = NULL.

NSamples generate NSamples sample R matrices. If NSamples = 0 the program will at-

tempt to find Rnpd such that $\|\mbox{Rpop} - \mbox{Rnpd}\| \mbox{$_ 2$}$ is minimized.

MaxIts maximum number of projection iterations.

PRINT (logical) If TURE the program will print the iteration history for Lp. Default =

NULL.

Seed Optional seed for random number generation.

72 RnpdMAP

Value

Rpop population (PD) correlation matrix.

R sample correlation matrix.

Rnpd NPD improper (pseudo) correlation matrix.

Lp desired value of minimum eigenvalue.

minEig observed value of minimum eigenvalue of Rnpd.

convergence 0 = converged; 1 = not converged in MaxIts iterations of the alternating projec-

tions algorithm.

feasible logical) TRUE if $max(abs(r_ij)) \le 1$. If FALSE then one or more values in

Rnpd > 1 in absolute value.

Seed saved seed for random number generator.

prbs1 vector probabilities used to generate eigenvalues < 0.

prbs2 vector of probabilities used to smooth the smallest NSmoothPosEigs towards

zero.

Author(s)

Niels G. Waller

```
library(MASS)
Nvar = 20
Nfac = 4
NSubj = 600
Seed = 123
set.seed(Seed)
## Generate a vector of classical item difficulties
p <- runif(Nvar)</pre>
cat("\nClassical Item Difficulties:\n")
print(rbind(1:Nvar,round(p,2)) )
summary(p)
## Convert item difficulties to quantiles
b <- qnorm(p)
## fnc to compute root mean squared standard deviation
RMSD <- function(A, B){</pre>
  sqrt(mean( ( A[lower.tri(A, diag = FALSE)] - B[lower.tri(B, diag = FALSE)] )^2))
## Generate vector of eigenvalues with clear factor structure
  L <- eigGen(nDimensions = Nvar,</pre>
```

RnpdMAP 73

```
nMajorFactors = Nfac,
            PrcntMajor = .60,
            threshold = .50)
## Generate a population R matrix with the eigenvalues in L
  Rpop <- rGivens(eigs = L)$R</pre>
## Generate continuous data that will reproduce Rpop (exactly)
 X \leftarrow mvrnorm(n = NSubj, mu = rep(0, Nvar),
               Sigma = Rpop, empirical = TRUE)
if( any(colSums(X) == 0) ){
  stop("One or more variables have zero variance. Generate a new data set.")
 }
\#\# Cut X at thresholds given in b to produce binary data U
 U <- matrix(0, nrow(X), ncol(X))</pre>
  for(j in 1:Nvar){
   U[X[,j] \le b[j],j] < -1
## Compute tetrachoric correlations
  Rtet <- tetcor(U, Smooth = FALSE, PRINT = TRUE)$r</pre>
  # Calculate eigenvalues of tetrachoric R matrix
 Ltet <- eigen(Rtet)$values
  if(Ltet[Nvar] >= 0) stop("Rtet is P(S)D")
## Simulate NPD R matrix with minimum eigenvalue equal to
  # min(Ltet)
  out <- RnpdMAP(Rpop,
               Lp = Ltet[Nvar],
               NNegEigs = Nvar/5,
               NSmoothPosEigs = Nvar/5,
               NSubjects = 150,
               NSamples = 1,
               MaxIts = 15000,
               PRINT = FALSE,
               Seed = Seed)
## RLp is a NPD pseudo R matrix with min eigenvalue = min(Ltet)
  RLp <- out[[1]]$Rnpd</pre>
## Calculate eigenvalues of simulated NPD R matrix (Rnpd)
  Lnpd <- eigen(RLp, only.values = TRUE)$values</pre>
## Scree plots for observed and simulated NPD R matrices.
  ytop <- max(c(L,Lnpd,Ltet))</pre>
  pointSize = .8
  plot(1:Nvar, L, typ = "b", col = "darkgrey", lwd=3,
       1ty=1.
       main =
       "Eigenvalues of Rpop, Tet R, and Sim Tet R:
       \nSimulated vs Observed npd Tetrachoric R Matrices",
       ylim = c(-1, ytop),
       xlab = "Dimensions",
```

74 seBeta

```
ylab = "Eigenvalues",
    cex = pointSize,cex.main = 1.2)
points(1:Nvar, Lnpd, typ="b",
        col = "red", lwd = 3, lty=2, cex=pointSize)
points(1:Nvar, Ltet, typ="b",
        col = "darkgreen", lwd = 3, lty = 3, cex= pointSize)

legend("topright",
        legend = c("eigs Rpop", "eigs Sim Rnpd", "eigs Emp Rnpd"),
        col = c("darkgrey", "red", "darkgreen"),
        lty = c(1,2,3),
        lwd = c(4,4,4), cex = 1.5)

abline(h = 0, col = "grey", lty = 2, lwd = 4)

cat("\nRMSD(Rpop, Rtet) = ", round(rmsd(Rpop, Rtet), 3))
cat("\nRMSD(Rpop, RLp) = ", round(rmsd(Rpop, RLp), 3))
```

seBeta

Standard Errors and CIs for Standardized Regression Coefficients

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients

Usage

```
seBeta(X, y, cov.x = NULL, cov.xy = NULL, var.y = NULL, Nobs = NULL, alpha = 0.05, estimator = "ADF", digits = 3)
```

Arguments

X	Matrix of predictor scores.
У	Vector of criterion scores.
cov.x	Covariance or correlation matrix of predictors.
cov.xy	Vector of covariances or correlations between predictors and criterion.
var.y	Criterion variance.
Nobs	Number of observations.
alpha	Desired Type I error rate; default = .05.
estimator	'ADF' or 'Normal' confidence intervals - requires raw X and raw y ; default = 'ADF'.
digits	Number of significant digits to print; default = 3.

seBetaCor 75

Value

cov.Beta	Normal theory or ADF covariance matrix of standardized regression coefficients.
se.Beta	standard errors for standardized regression coefficients.
alpha	desired Type-I error rate.
CI.Beta	Normal theory or ADF (1-alpha)% confidence intervals for standardized regression coefficients.
estimator	estimator = "ADF" or "Normal".

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A, and Waller, N. G. (2015). The Normal-Theory and Asymptotic Distribution-Free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. *Psychometrika*, 80, 365-378.

Examples

seBetaCor Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Description

Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients from Correlations

Usage

```
seBetaCor(R,rxy, Nobs, alpha=.05, digits=3, covmat = 'normal')
```

76 seBetaCor

Arguments

R A	Архр	predictor	correlation	matrix.
-----	------	-----------	-------------	---------

rxy A p x 1 vector of predictor-criterion correlations

Nobs Number of observations.

alpha Desired Type I error rate; default = .05.

digits Number of significant digits to print; default = 3.

covmat String = 'normal' (the default) or a (p+1)p/2 x (p+1)p/2 covariance matrix of

correlations. The default option computes an asymptotic covariance matrix under the assumption of multivariate normal data. Users can supply a covariance matrix under asymptotic distribution free (ADF) or elliptical distributions when

available.

Value

cov.Beta Covariance matrix of standardized regression coefficients.

se.Beta Vector of standard errors for the standardized regression coefficients.

alpha Type-I error rate.

CI.Beta (1-alpha)% confidence intervals for standardized regression coefficients.

Author(s)

Jeff Jones and Niels Waller

References

Jones, J. A, and Waller, N. G. (2013). The Normal-Theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Technical Report (052913)[TR052913]

Nel, D.A.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. *Linear Algebra and its Applications*, 67, 137-145.

Yuan, K. and Chan, W. (2011). Biases and standard errors of standardized regression coefficients. *Psychometrika*, 76(4), 670–690.

seBetaFixed 77

seBetaFixed	Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors

Description

Computes Normal Theory Covariance Matrix and Standard Errors for Standardized Regression Coefficients for Fixed Predictors

Usage

```
seBetaFixed(X, y, cov.x = NULL, cov.xy = NULL, var.y = NULL, var.error = NULL, Nobs = NULL)
```

Arguments

X	Matrix of predictor scores.
у	Vector of criterion scores.
cov.x	Covariance or correlation matrix of predictors.
cov.xy	Vector of covariances or correlations between predictors and criterion.
var.y	Criterion variance.
var.error	Optional argument to supply the error variance: var(y - yhat).
Nobs	Number of observations.

Value

cov.Beta	Normal theory covariance matrix of standardized regression coefficients for fixed predictors.
se.Beta	Standard errors for standardized regression coefficients for fixed predictors.

Author(s)

Jeff Jones and Niels Waller

References

Yuan, K. & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. *Psychometrika*, 76(4), 670-690.

See Also

seBeta

78 skew

Examples

```
## We will generate some data and pretend that the Predictors are being held fixed
library(MASS)
R <- matrix(.5, 3, 3); diag(R) <- 1
Beta <- c(.2, .3, .4)
rm(list = ".Random.seed", envir = globalenv()); set.seed(123)
X \leftarrow mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
y <- X %*% Beta + .64*scale(rnorm(200))</pre>
seBetaFixed(X, y)
# $covBeta
               b1
                            b2
# b1 0.003275127 -0.001235665 -0.001274303
# b2 -0.001235665  0.003037100 -0.001491736
# b3 -0.001274303 -0.001491736 0.002830157
# $seBeta
#
         b1
                     b2
                                b3
# 0.05722872 0.05510989 0.05319922
## you can also supply covariances instead of raw data
seBetaFixed(cov.x = cov(X), cov.xy = cov(X, y), var.y = var(y), Nobs = 200)
# $covBeta
               b1
                            b2
# b1 0.003275127 -0.001235665 -0.001274303
# b2 -0.001235665  0.003037100 -0.001491736
# b3 -0.001274303 -0.001491736 0.002830157
# $seBeta
        b1
                    b2
                                b3
# 0.05722872 0.05510989 0.05319922
```

skew

Calculate Univariate Skewness for a Vector or Matrix

Description

Calculate univariate skewness for vector or matrix (algorithm G1 in Joanes & Gill, 1998).

Usage

skew(x)

Arguments

Χ

Either a vector or matrix of numeric values.

smoothAPA 79

Value

Skewness for each column in x.

Author(s)

Niels Waller

References

Joanes, D. N. & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. *The Statistician*, 47, 183-189.

See Also

kurt

Examples

```
x <- matrix(rnorm(1000), 100, 10)
skew(x)</pre>
```

smoothAPA

Smooth a NPD R matrix to PD using the Alternating Projection Algorithm

Description

Smooth a Non positive defnite (NPD) correlation matrix to PD using the Alternating Projection Algorithm with Dykstra's correction via Theory described in Higham 2002.

Usage

```
smoothAPA(R, delta = 1e-06, fixR = NULL, Wghts = NULL, maxTries = 1000)
```

Arguments

R	A p x p indefinite matrix.
delta	Desired value of the smallest eigenvalue of smoothed matrix, RAPA. (Default = 1e-06).
fixR	User-supplied integer list that instructs the program to constrain elements in RAPA to equal corresponding elements in RAPA. For example if fixR = $c(1,2)$ then smoothed matrix, RAPA[1:2,1:2] = R[1:2,1:2]. Default (fixR = NULL).
Wghts	A p-length vector of weights for differential variable weighting. Default (Wghts = NULL).
maxTries	Maximum number of iterations in the alternating projections algorithm. Default $(maxTries = 1000)$.

80 smoothAPA

Value

RAPA A smoothed matrix.

delta User-supplied delta value.

Wghts User-supplied weight vector.

fixR User-supplied integer list that instructs the program to constrain elements in

RAPA to equal corresponding elements in R.

convergence A value of 0 indicates that the algorithm located a feasible solution. A value of

1 indicates that no feasible solution was located within maxTries.

Author(s)

Niels Waller

data(BadRKtB)

```
## Replicate analyses in Table 2 of Knol and ten Berge (1989).
## n1 = 0,1
out<-smoothAPA(R = BadRKtB, delta = .0, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.0, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=0, Wghts = NULL, maxTries=1e06)</pre>
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## Replicate analyses in Table 3 of Knol and ten Berge (1989).
## n1 = 0,1
```

smoothBY 81

```
out<-smoothAPA(R = BadRKtB, delta = .05, fixR = NULL, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 2
out<-smoothAPA(R = BadRKtB, fixR =c(1,2), delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 4
out<-smoothAPA(R = BadRKtB, fixR = 1:4, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## n1 = 5
out<-smoothAPA(R = BadRKtB, fixR = 1:5, delta=.05, Wghts = NULL, maxTries=1e06)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
## This example illustrates differential variable weighting.
## Imagine a scenerio in which variables 1 & 2 were collected with
## 5 times more subjects than variables 4 - 6 then . .
## n1 = 2
out<-smoothAPA(R = BadRKtB, delta=.0, fixR = NULL, Wghts = c(5, 5, rep(1,4)), maxTries=1e5)
S <- out$RAPA
round(S - BadRKtB,3)
normF(S - BadRKtB)
eigen(S)$val
```

smoothBY

Smooth an NPD R matrix to PD using the Bentler Yuan 2011 method

Description

Smooth a NPD correlation matrix to PD using the Bentler and Yuan method.

Usage

```
smoothBY(R, const = .98, eps = 1E-03)
```

82 smoothBY

Arguments

R Indefinite Matrix.

const is a user-defined parameter that is defined as k in Bentler and Yuan (2011).

If 0 < const < 1, then const is treated as a fixed value. If const = 1 then the program will attempt to find the highest value of const such that R is positive

(semi) definite.

eps If const = 1 then the program will iteratively reduce const by eps until either (a)

the program converges or (b) const ≤ 0 .

Value

RBY smoothed correlation matrix.

constant The final value of const.

convergence (Logical) a value of TRUE indicates that the function converged.

outStatus Convergence state for Rcsdp::csdp function.

0:

Success. Problem solved to full accuracy

1:

Success. Problem is primal infeasible

2:

Success. Problem is dual infeasible

3:

Partial Success. Solution found but full accuracy was not achieved

4:

Failure. Maximum number of iterations reached

5:

Failure. Stuck at edge of primal feasibility

6:

Failure. Stuch at edge of dual infeasibility

7:

Failure. Lack of progress

8:

Failure. X or Z (or Newton system O) is singular

smoothKB 83

9:

Failure. Detected NaN or Inf values

glb Greatest lower bound reliability estimates.

eps Default value (eps = 1E-03) or user-supplied value of eps.

Author(s)

Code modified from that reported in Debelak, R. & Tran, U. S. (2011).

References

Bentler, P. M. & Yuan, K. H. (2011). Positive definiteness via off-diagonal scaling of a symmetric indefinite matrix. *Psychometrika*, 76(1), 119–123.

Debelak, R. & Tran, U. S. (2013). Principal component analysis of smoothed tetrachoric correlation matrices as a measure of dimensionality. *Educational and Psychological Measurement*, 73(1), 63–77.

Examples

```
data(BadRBY)

out<-smoothBY(R = BadRBY, const = .98)
cat("\nSmoothed Correlation Matrix\n")
print( round(out$RBY,8) )
cat("\nEigenvalues of smoothed matrix\n")
print( eigen(out$RBY)$val )</pre>
```

smoothKB

Smooth a Non PD Correlation Matrix

Description

A function for smoothing a non-positive definite correlation matrix by the method of Knol and Berger (1991).

Usage

```
smoothKB(R, eps = 1E8 * .Machine$double.eps)
```

Arguments

R A non-positive definite correlation matrix.

eps Small positive number to control the size of the non-scaled smallest eigenvalue

of the smoothed R matrix. Default = 1E8 * .Machine\$double.eps

Value

RKB A Smoothed (positive definite) correlation matrix.

eps Small positive number to control the size of the non-scaled smallest eigenvalue

of the smoothed R matrix.

84 smoothLG

Author(s)

Niels Waller

References

Knol, D. L., & Berger, M. P. F., (1991). Empirical comparison between factor analysis and multidimensional item response models. *Multivariate Behavioral Research*, 26, 457-477.

Examples

```
data(BadRLG)
## RKB = smoothed R
RKB<-smoothKB(R=BadRLG, eps = 1E8 * .Machine$double.eps)$RKB
print(eigen(RKB)$values)</pre>
```

smoothLG

Smooth NPD to Nearest PSD or PD Matrix

Description

Smoothing an indefinite matrix to a PSD matrix via theory described by Lurie and Goldberg

Usage

```
smoothLG(R, start.val = NULL, Wghts = NULL, PD = FALSE,
Penalty = 50000, eps=1e-07)
```

Arguments

R	Indefinite Matrix.
start.val	Optional vector of start values for Cholesky factor of S.
Wghts	An optional matrix of weights such that the objective function minimizes wij(rij - sij)^2, where wij is Wghts[i,j].
PD	Logical (default = FALSE). If PD = TRUE then the objective function will smooth the least squares solution to insure Positive Definitness.
Penalty	A scalar weight to scale the Lagrangian multiplier. Default = 50000.
eps	A small value to add to zero eigenvalues if smoothed matrix must be PD. Default = 1e-07.

Value

RLG	Lurie Goldberg smoothed matrix.
RKB	Knol and Berger smoothed matrix.
convergence	0 = converged solution, $1 = $ convergence failure.
start.val	Vector of start.values.
gr	Analytic gradient at solution.

summary.monte 85

Penalty Scalar used to scale the Lagrange multiplier.

PD User-supplied value of PD.

Wghts Weights used to scale the squared euclidean distances.

eps Value added to zero eigenvalue to produce PD matrix.

Author(s)

Niels Waller

Examples

```
data(BadRLG)
out<-smoothLG(R = BadRLG, Penalty = 50000)</pre>
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print( round(out$RLG,8) )
## Rousseeuw Molenbergh example
data(BadRRM)
out <- smoothLG(R = BadRRM, PD=TRUE)
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print( round(out$RLG,8) )
## Weights for the weighted solution
W <- matrix(c(1, 1, .5,
             1, 1, 1,
.5, 1, 1), nrow = 3, ncol = 3)
tmp <- smoothLG(R = BadRRM, PD = TRUE, eps=.001)</pre>
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print( round(out$RLG,8) )
print( eigen(out$RLG)$val )
## Rousseeuw Molenbergh
## non symmetric matrix
T <- matrix(c(.8, -.9, -.9,
            -1.2, 1.1, .3,
            -.8, .4, .9), nrow = 3, ncol = 3,byrow=TRUE)
out <- smoothLG(R = T, PD = FALSE, eps=.001)</pre>
cat("\nGradient at solution:", out$gr,"\n")
cat("\nNearest Correlation Matrix\n")
print( round(out$RLG,8) )
```

summary.monte

Summary Method for an Object of Class Monte

Description

summary method for class "monte"

86 summary.monte

Usage

```
## S3 method for class 'monte'
summary(object, digits = 3, compute.validities = FALSE, Total.stats=TRUE, ...)
```

Arguments

object An object of class monte, usually, a result of a call to monte.

digits Number of digits to print. Default = 3.

compute.validities

Logical: If TRUE then the program will calculate the indicator validities (eta^2)

for the generated data.

Total.stats Logical: If TRUE then the program will return the following statistics for the to-

tal sample: (1) indicator correlation matrix, (2) indicator skewness, (3) indicator

kurtosis.

... Optional arguments.

Value

Various descriptive statistics will be computed within groups including"

- 1. clus.size Number of objects within each group.
- 2. centroids Group centroids.
- 3. var.matrix Within group variances.
- 4. Ratio of within group variances (currently printed but not saved.
- 5. cor.list Expected within group correlations.
- 6. obs.cor Observed within group correlations.
- 7. skew.list Expected within group indicator skewness values.
- 8. obs.skew Observed within group indicator skewness values.
- 9. kurt.list Expected within group indicator kurtosis values.
- 10. obs.kurt Observed within group indicator kurtosis values.
- 11. validities Observed indicator validities.
- 12. Total.cor Total sample correlation matrix.
- 13. Total.skew Total sample indicator skewness.
- 14. Total.kurt Total sample indicator kurtosis.

summary.monte1 87

summary.monte1

Summary Method for an Object of Class Montel

Description

summary method for class "monte1"

Usage

```
## S3 method for class 'monte1'
summary(object, digits=3, ...)
```

Arguments

object An object of class monte1, usually, a result of a call to monte1.

Number of significant digits to print in final results.

Additional argument affecting the summary produced.

Value

Various descriptive statistics will be computed including"

- 1. Expected correlation matrix.
- 2. Observed correlation matrix.
- 3. Expected indicator skewness values.
- 4. Observed indicator skewness values.
- 5. Expected indicator kurtosis values.
- 6. Observed indicator kurtosis values.

88 svdNorm

svdNorm

Compute theta surrogates via normalized SVD scores

Description

Compute theta surrogates by calculating the normalized left singular vector of a (mean-centered) data matrix.

Usage

```
svdNorm(data)
```

Arguments

data

N(subjects)-by-p(items) matrix of 0/1 item response data.

Value

the normalized left singular vector of the mean centered data matrix. svdNorm will center the data automatically.

Author(s)

Niels Waller

```
NSubj <- 2000
```

```
## example item parameters for sample data: k=1 FMP
b <- matrix(c(</pre>
   #b0
          b1
                  b2
                        b3
                                b4
                                    b5 b6 b7 k
  1.675, 1.974, -0.068, 0.053, 0, 0, 0, 0, 1,
  1.550, 1.805, -0.230, 0.032, 0, 0, 0,
                                           0, 1,
  1.282, 1.063, -0.103, 0.003, 0, 0, 0,
                                           0, 1,
                                   0,
                                       0,
 0.704, 1.376, -0.107, 0.040, 0,
                                            0, 1,
 1.417, 1.413, 0.021, 0.000, 0,
                                   0,
                                       0,
                                            0, 1,
 -0.008, 1.349, -0.195, 0.144, 0,
                                   0,
                                        0.
                                            0, 1,
                               0,
 0.512, 1.538, -0.089, 0.082,
                                   0.
                                        0.
                                            0, 1,
 0.122, 0.601, -0.082, 0.119,
                               0,
                                   0,
                                        0,
                                            0, 1,
 1.801, 1.211, 0.015, 0.000, -0.207, 1.191, 0.066, 0.033,
                               0,
                                    0,
                               0,
                                    0,
                                        0,
 -0.215, 1.291, -0.087, 0.029,
                               0,
                                    0,
                                        0,
 0.259, 0.875, 0.177, 0.072,
                               0,
                                    0,
                                        0,
 -0.423, 0.942, 0.064, 0.094,
                               0,
                                   0,
                                        0,
 0.113, 0.795, 0.124, 0.110, 0,
                                   0,
                                        0,
                                            0, 1,
  1.030, 1.525, 0.200, 0.076, 0,
                                   0,
                                        0,
                                            0, 1,
  0.140, 1.209, 0.082, 0.148, 0,
                                        0,
                                   0,
                                            0, 1,
  0.429, 1.480, -0.008, 0.061, 0,
                                   0,
                                        0.
                                            0, 1,
 0.089, 0.785, -0.065, 0.018, 0,
                                   0,
                                        0,
                                            0, 1,
 -0.516, 1.013, 0.016, 0.023, 0, 0,
                                            0, 1,
 0.143, 1.315, -0.011, 0.136, 0, 0,
                                        0,
                                            0, 1,
 0.347, 0.733, -0.121, 0.041, 0, 0,
                                       0,
                                            0, 1,
 -0.074, 0.869, 0.013, 0.026, 0, 0,
```

tetcor 89

```
0.630, 1.484, -0.001, 0.000, 0, 0, 0, 0, 1),
nrow=23, ncol=9, byrow=TRUE)

# generate data using the above item paramters
data<-genFMPData(NSubj=NSubj, bParam=b, seed=345)$data

# compute (initial) surrogate theta values from
# the normed left singular vector of the centered
# data matrix
thetaInit<-svdNorm(data)</pre>
```

Default = TRUE

tetcor

Compute ML Tetrachoric Correlations

Description

Compute ML tetrachoric correlations with optional bias correction and smoothing.

Usage

```
tetcor(X, y = NULL, BiasCorrect, stderror, Smooth = TRUE, max.iter, PRINT = TRUE)
```

Arguments

Χ	Either a matrix or vector of (0/1) binary data.
у	An optional(if X is a matrix) vector of (0/1) binary data.
BiasCorrect	A logical that determines whether bias correction (Brown & Benedetti, 1977) is performed. Default = TRUE.
stderror	A logical that determines whether standard errors are calulated. Default = FALSE.
Smooth	A logical which determines whether the tetrachoric correlation matrix should be smoothed. A smoothed matrix is always positive definite.
max.iter	Maximum number of iterations. Default = 50.
PRINT	A logical that determines whether to print progress updates during calculations.

Value

If stderror = FALSE, tetcor returns a matrix of tetrachoric correlations. If stderror = TRUE then tetcor returns a list the first component of which is a matrix of tetrachoric correlations and the second component is a matrix of standard errors (see Hamdan, 1970).

Author(s)

Niels Waller

References

Brown, M. B. & Benedetti, J. K. (1977). On the mean and variance of the tetrachoric correlation coefficient. *Psychometrika*, 42, 347–355.

Divgi, D. R. (1979) Calculation of the tetrachoric correlation coefficient. *Psychometrika*, 44, 169-172.

Hamdan, M. A. (1970). The equivalence of tetrachoric and maximum likelihood estimates of rho in 2 by 2 tables. *Biometrika*, *57*, 212-215.

90 tetcorQuasi

Examples

```
## generate bivariate normal data
library(MASS)
set.seed(123)
rho <- .85
xy \leftarrow mvrnorm(100000, mu = c(0,0), Sigma = matrix(c(1, rho, rho, 1), ncol = 2))
# dichotomize at difficulty values
p1 <- .7
p2 <- .1
xy[,1] <- xy[,1] < qnorm(p1)
xy[,2] <- xy[,2] < qnorm(p2)
print(apply(xy,2,mean), digits = 2)
#[1] 0.700 0.099
tetcor(X = xy, BiasCorrect = TRUE,
       stderror = TRUE, Smooth = TRUE, max.iter = 5000)
# $r
# [,1]
            [,2]
# [1,] 1.0000000 0.8552535
# [2,] 0.8552535 1.0000000
# $se
# [,1]
               [,2]
# [1,] NA
                 0.01458171
# [2,] 0.01458171 NA
# $Warnings
# list()
```

tetcorQuasi

Correlation between a Naturally and an Artificially Dichotomized Variable

Description

A function to compute Ulrich and Wirtz's correlation of a naturally and an artificially dichotomized variable.

Usage

```
tetcorQuasi(x, y = NULL)
```

Arguments

```
x An N x 2 matrix or an N x 1 vector of binary responses coded 0/1.
```

y An optional (if x is a vector) vector of 0/1 responses.

vcos 91

Value

A quasi tetrachoric correlation

Author(s)

Niels Waller

References

Ulrich, R. & Wirtz, M. (2004). On the correlation of a naturally and an artificially dichotomized variable. *British Journal of Mathematical and Statistical Psychology*, *57*, 235-252.

Examples

```
set.seed(321)
Nsubj <- 5000
## Generate mvn data with rxy = .5
R \leftarrow matrix(c(1, .5, .5, 1), 2, 2)
X \leftarrow MASS::mvrnorm(n = Nsubj, mu = c(0, 0), Sigma = R, empirical = TRUE)
## dichotomize data
thresholds <- qnorm(c(.2, .3))
binaryData <- matrix(0, Nsubj, 2)</pre>
for(i in 1:2){
  binaryData[X[,i] <= thresholds[i],i] <- 1
## calculate Pearson correlation
cat("\nPearson r: ", round(cor(X)[1,2], 2))
## calculate Pearson Phi correlation
cat("\nPhi r: ", round(cor(binaryData)[1,2], 2))
## calculate tetrachoric correlation
cat("\nTetrachoric r: ", round(tetcor(binaryData)$r[1,2], 2))
## calculate Quasi-tetrachoric correlation
cat("\nQuasi-tetrachoric r: ", round(tetcorQuasi(binaryData), 2))
```

vcos

Compute the Cosine Between Two Vectors

Description

Compute the cosine between two vectors.

Usage

```
vcos(x,y)
```

92 vnorm

Arguments

Value

```
Cosine between x and y
```

Examples

```
x <- rnorm(5)
y <- rnorm(5)
vcos(x, y)</pre>
```

vnorm

Norm a Vector to Unit Length

Description

Norm a vector to unit length.

Usage

```
vnorm(x)
```

Arguments

Х

An n by 1 vector.

Value

```
the scaled (i.e., unit length) input vector
```

Author(s)

Niels Waller

```
x <- rnorm(5)
v <- vnorm(x)
print(v)</pre>
```

Index

*Topic BiFAD	fungibleR, 35
BiFAD, 8	RnpdMAP, 71
*Topic Statistics	*Topic statistics
adfCor, 3	BadRBY, 5
adfCov, 4	BadRJN, 6
corSmooth, 13	BadRKtB, 6
d2r, 14	BadRLG, 7
eigGen, 16	BadRRM, 7
faAlign, 19	eap, 14
fals, 22	erf, 18
kurt, 50	faMAP, 23
normalCor, 59	FMP, 26
r2d, <u>61</u>	FMPMonotonicityCheck, 29
rcor, 64	FUP, 39
seBeta, 74	gen4PMData, 42
seBetaCor, 75	genFMPData, 44
seBetaFixed, 77	irf,47
skew, 78	itemDescriptives, 48
smoothKB, 83	normF, 60
tetcor, 89	restScore, 66
tetcorQuasi, 90	smoothAPA, 79
vcos, 91	smoothBY, 81
*Topic Statstics	smoothLG, 84
faSort, 25	svdNorm, 88
*Topic datagen	vnorm, 92
bigen, 10	*Topic stats
corSample, 12	rmsd, 70
enhancement, 17	adfCor, 3, 60
genCorr, 43	adfCov, 4
monte, 51	aurcov, 4
monte1, 58	BadRBY, 5
rarc, 62	BadRJN, 6
rcone, 63	BadRKtB, 6
rellipsoid, 65	BadRLG, 7
rGivens, 68	BadRRM, 7
rMAP, 69	BiFAD, 8
*Topic datasets	bigen, 10
HS9Var, 46	
*Topic fungible	corSample, 12
faAlign, 19	corSmooth, 13
fungible, 30	d2r 14
fungibleExtrema, 31	d2r, 14
fungibleL, 33	eap, 14
1 4116 10101, 22	55p, 11

94 INDEX

eigGen, 16 enhancement, 17 erf, 18	smoothBY, 81 smoothKB, 83 smoothLG, 84
faAlign, 19 fals, 22, 25 faMAP, 23	summary.monte, 59, 85 summary.monte1, 59, 87 svdNorm, 26, 40, 88
faSort, 25 FMP, 26 FMPMonotonicityCheck, 29	tetcor, 89 tetcorQuasi, 90
fungible, 30 fungibleExtrema, 31 fungibleL, 33 fungibleR, 35 FUP, 39	vcos, 91 vnorm, 92
gen4PMData, 42 genCorr, 43, 65 genFMPData, 44	
HS9Var, 46	
irf, 47 itemDescriptives, 48	
kurt, 50, 79	
monte, 51, 59 monte1, 58	
normalCor, 59 normF, 60	
<pre>plot.monte, 61 print.summary.monte (summary.monte), 85 print.summary.monte1 (summary.monte1),</pre>	
r2d, 61	
rarc, 62 rcone, 63	
rcor, 64	
rellipsoid, 65 restScore, 66	
rGivens, 68	
rMAP, 69 rmsd, 70	
RnpdMAP, 71	
seBeta, 74, 77 seBetaCor, 75 seBetaFixed, 77 skew, 51, 78 smoothAPA, 79	
SINOCHALA, 17	