ESP32+LoRa Workshop

Hands-on Tutorial

LoRa Basics

- PHY for Low Power Wide Area Networks (LPWAN)
- Chirp Spread Spectrum (CSS)
- 433 MHz ISM, 868 MHz (EU) SRD, 915 MHz (US) ISM
- 0.3 kbit/s to 50 kbit/s
- Range $\approx 1-5$ km (city/urban), > 10km (LoS, rural)
- EU 868 MHz: Tx Power and Duty Cycle restrictions!

Frequency (F)
Bandwidth (BW)
Spreading Factor (SF)
Coding Rate (CR)
Sync Word (SW)

EU 868 / Germany Legal Stuff

• "Short Range Device" (SRD) Band — 863-870 MHz

Subband (MHz)	TX Power	Duty Cycle
863,0–865,0	25 mW	≤0,1 %
865,0–868,0	25 mW	≤1 %
868,0–868,6	25 mW	≤1 %
868,7–869,2	25 mW	≤0,1 %
869,4–869,65	500 mW	≤10 %
869,7–870,0	5/25 mW	≤10% / ≤1%

 $https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/FunkanlagenGeringerReichweite/2018_05_SRD_pdf.pdf?__blob=publicationFile&v=7$

Heltec ESP32 WiFi LoRa v3

- 32bit dual-core microcontroller from Espressif (ESP32-S3FN8)
- WiFi (802.11 b/g/n), Bluetooth 5, LoRa (SX1262)
- USB-C, Battery Interface, 0.96" 128x64 OLED display
- Development choices
 - C/C++: Espressif IoT Development Framework (ESP-IDF)
 - C/C++(alike): Arduino Core SDK (builds upon ESP-IDF)

for the pros!

More info: https://www.espboards.dev/bloq/esp-idf-vs-arduino-core/

Working with Platform.IO

Main Classes

main.cpp

- setup() → called first
- loop() → continuous call after finished setup
- click_callback()→ PRG button
- callback_lora_action()→ "something happens"

SX1262_wrapper.h

- Setup for SX1262 chip
- RadioLib
- Simple duty cycle check
- Send function

Pick your device ID

0x11

0x22

0x33

0x44

0x55

0x66

0x77

0x88

0x99

OXAA

0xBB

0xCC

OXDD

OXEE

OXFF

First Reception

- Setup device with given LoRa parameters and your ID
- Implement callback function
 - → set flag for received msg
 - → check received in loop()
- Receive message from sender *0xC1* (sent every 10 seconds)
- Put to console and/or display

Frequency: 866.5 Mhz Bandwidth: 250.0 kHz Spreading Factor: 10 Coding Rate: 4/5 Sync Word: 0x36

Serial.println(String(rssi));
display.drawString(0, 0, String(rssi));

Don't forget to put your radio back to listen after reception and sending! radio.startReceive();

Gotta complete 'em all!

