COHOMOLOGIE ET GÉOMÉTRIE ALGÉBRIQUE

JEAN-PIERRE SERRE

De nombreux problèmes de géométrie algébrique classique peuvent être formulés et étudiés de la façon la plus commode au moyen de la théorie des faisceaux: c'est ce que montrent clairement les travaux récents de Kodaira-Spencer (cf. [3], [4], ainsi que d'autres notes publiées en 1953 aux Proc. Nat. Acad. Sci. USA) et de Hirzebruch [2]. Il était naturel d'essayer d'étendre ces méthodes à la géométrie algébrique "abstraite", sur un corps de caractéristique quelconque; dans ce qui suit, je me propose de résumer rapidement les principaux résultats que j'ai obtenus dans cette direction.

1. Propriétés générales des faisceaux algébriques cohérents sur une variété projective.

Dans toute la suite, le corps de base k sera un corps commutatif, algébriquement clos, de caractéristique quelconque. Dans l'espace projectif $P_r(k)$, de dimension r sur k, nous choisirons une fois pour toutes un système de coordonnées homogènes t_0, \ldots, t_r .

Soit X une sous-variété de $P_r(k)$, c'est-à-dire l'ensemble des zéros communs à une famille de polynômes homogènes en t_0,\ldots,t_r . Une sous-variété de X sera appelée un sous-ensemble fermé; X se trouve ainsi muni d'une topologie, la topologie de Zariski, qui en fait un espace quasi-compact (le théorème de Borel-Lebesgue est valable). La notion de faisceau sur X se définit, comme d'ordinaire, par la donnée d'une famille de groupes abéliens \mathscr{F}_x , $x \in X$, et d'une topologie sur l'ensemble \mathscr{F} , somme des \mathscr{F}_x ; la projection canonique $\pi: \mathscr{F} \to X$ doit être un homéomorphisme local, et l'application $(f,g) \to f-g$ doit être continue là où elle est définie (cf. [6], n°. 1).

Soit $\mathscr{F}(X)$ le faisceau des germes de tonctions sur X, à valeurs dans k. Si x est un point de X, soit S_x l'ensemble des fractions rationnelles en t_0,\ldots,t_r qui peuvent s'écrire f=P/Q, où P et Q sont des polynômes homogènes de même degré, et $Q(x)\neq 0$; S_x n'est autre que l'anneau local de x sur $P_r(k)$. L'opération de restriction à X est un homomorphisme $\varepsilon_x:S_x\to\mathscr{F}(X)_x$ dont nous désignerons l'image par \mathscr{O}_x ; l'anneau \mathscr{O}_x est l'anneau local de x sur X; lorsque x parcourt X, les \mathscr{O}_x forment un sous-faisceau du faisceau $\mathscr{F}(X)$, que nous désignerons par \mathscr{O} (ou par \mathscr{O}_X lorsque nous voudrons préciser la variété X); le faisceau \mathscr{O} est appelé le faisceau des anneaux locaux de X.

Un faisceau F sur X est appelé un faisceau algébrique si c'est un fais ceau de \mathcal{O} -modules, c'est-à-dire si chaque \mathscr{F}_x est muni d'une structure de \mathcal{O}_x -module unitaire, variant continûment avec x. Désignons par \mathcal{O}^p (p entier ≥ 0) la somme directe de p faisceaux isomorphes à O; un faisceau algébrique \mathcal{F} est dit cohérent si l'on peut recouvrir X par des ouverts U tels que, au-dessus de chacun d'eux, il existe une suite exacte de faisceaux:

 $\mathcal{C}^p \stackrel{\varphi}{\to} \mathcal{C}^q \stackrel{\psi}{\to} \mathcal{F} \to 0$ (\$\phi\$ et \$q\$ étant des entiers convenables), où φ et ψ soient des homomorphismes \mathcal{O} -linéaires définis au-dessus de U. Les faisceaux algébriques cohérents jouissent des mêmes propriétés formelles que les faisceaux analytiques cohérents de la théorie de Cartan-Oka (voir [6], Chap. I, § 2 et Chap. II, § 2).

Les groupes de cohomologie $H^q(X, \mathcal{F})$ de l'espace X à valeurs dans un faisceau F se définissent par le procédé de Cech. Plus précisément, soit $\mathfrak{U} = \{U_i\}_{i \in I}$ un recouvrement ouvert de X; une q-cochaîne de \mathfrak{U} à, valeurs dans \mathscr{F} est, par définition, un système $f_{i_0 \dots i_q}$, où chaque $f_{i_0 \dots i_q}$ est une

section de \mathscr{F} au-dessus de U_i $\bigcap_{j=q+1}^{n}U_{i_q}$ on pose $(dl)_{i_0...i_{q+1}} = \sum_{j=0}^{n} (-1)^j /_{i_0...i_j...i_{q+1}}^{n}$ Les q-cochaînes de \mathfrak{U} (q=0,1,...) ainsi que l'opérateur d, constituent un complexe $C(\mathfrak{U},\mathscr{F})$, dépendant du recouvrement \mathfrak{U} . On définit alors $H^q(X,\mathscr{F})$ comme la limite inductive des groupes de cohomologie des complexes $C(\mathfrak{U}, \mathscr{F})$. Les groupes $H^q(X, \mathcal{F})$ jouissent des propriétés habituelles des groupes de cohomologie; en particulier, $H_1^0(X, \mathcal{F})$ est canoniquement isomorphe au groupe $\Gamma(X,\mathscr{F})$ des sections de \mathscr{F} au-dessus de X. A toute suite exacte de faisceaux - O December 1 1 ... O > A > A > B > C > O was a property of the legitor

où A est un faisceau algébrique cohérent, est attachée une suite exacte de cohomologie ([6], no.,47): A , See , com p of from B , so $H^{q}(X,\mathscr{B}) \hookrightarrow H^{q}(X,\mathscr{B}) \hookrightarrow H^{q+1}(X,\mathscr{A}) \hookrightarrow H^{q+1}(X,\mathscr{B}) \hookrightarrow \dots$

Lorsque F est un faisceau algébrique cohérent sur X; les groupes de cohomologie $H^q(X, \mathcal{F})$ possèdent des propriétés particulières importantes. TOPIN TO 11 1 1 1 TO STAR On a tout d'abord ([6], no 66): .: :: ·

Théorème 1. Les groupes $H^q(X, \mathcal{F})$ sont des espaces vectoriels de dimension finite sur kinnels pour q > dim X. I ho De - , ho de or iop

Avant d'éhoncer le théorème 2, introduisons une notation. Soit-U. l'énsémble des points $x \in X$ où $t_i \neq 0$; les U_i , $0 \leq i \leq r$, forment un recouvrement ouvert de X. Si F est un faisceau algébrique cohérent sur X, soit F, la restrict tion de \mathscr{F} à $U_{\mathcal{D}}^{(c)}$ n étant un entier quelconque, la multiplication par $(t_i/t_i)^m$ est i un isomorphisme Transfer of telephone of the formation of the granden O cet appel in policina was the stages see O défini au-dessus de $U_i \cap U_j$; comme l'on a $\theta_{ij}(n)$ o $\theta_{jk}(n) = \theta_{ik}(n)$ au-dessus de $U_i \cap U_j \cap U_k$, on peut définir un faisceau $\mathscr{F}(n)$ à partir des \mathscr{F}_i par recollement au moyen des isomorphismes $\theta_{ij}(n)$. Au-dessus de U_i , \mathscr{F} et $\mathscr{F}(n)$ sont isomorphes, ce qui montre que $\mathscr{F}(n)$ est un faisceau algébrique cohérent. Le théorème suivant ([6], n°. 66) indique quelles sont les propriétés de $\mathscr{F}(n)$ lorsque n tend vers $+\infty$:

Théorème 2. Pour n assez grand, on a:

- a) $H^0(X, \mathcal{F}(n))$ engendre le \mathcal{O}_x -module $\mathcal{F}(n)_x$ quel que soit $x \in X$.
- b) $H^q(X, \mathcal{F}(n)) = 0$ pour tout q > 0.

On peut également étudier $H^q(X, \mathcal{F}(n))$ pour n tendant vers $-\infty$. On obtient ([6], n°. 74):

Théorème 3. Soit q un entier ≥ 0 . Pour que $H^q(X, \mathcal{F}(-n))$ soit nul pour n assez grand, il faut et il suffit que $\operatorname{Ext}_{S_-}^{r-q}(\mathcal{F}_x, S_x)$ soit nul pour tout $x \in X$.

Dans l'énoncé ci-dessus, \mathscr{F}_x est considéré comme un S_x -module, au moyen de l'homomorphisme $\varepsilon_x: S_x \to \mathscr{O}_x$ défini plus haut; les Ext sont relatifs à l'anneau S_x (pour leur définition, voir [1]).

2. Le théorème de dualité.

Nous supposerons à partir de maintenant que X est une variété sans singularités, irréductible, et de dimension m.

Si p est un entier ≥ 0 , nous noterons $W^{(p)}$ l'espace fibré des p-covecteurs tangents à X; c'est un espace fibré algébrique, à fibre vectorielle, et de base X (pour la définition de ces espaces, voir [7], ainsi que [5], n°. 4 et [6], n°. 41). Si V est un espace fibré algébrique à fibre vectorielle quelconque, nous noterons $\mathcal{S}(V)$ le faisceau des germes de sections régulières de V; nous désignerons par V^* l'espace fibré dual de V, et par \tilde{V} l'espace fibré $V^* \otimes W^{(m)}$. Le faisceau $\mathcal{S}(W^{(p)})$ n'est autre que le faisceau Ω^p des germes de formes différentielles de degré p; le faisceau $\mathcal{S}(\tilde{V})$ est canoniquement isomorphe à Hom $(\mathcal{S}(V), \Omega^m)$.

Lemme. $H^m(X, \Omega^m)$ est un espace vectoriel de dimension 1 sur k.

Lorsque X est une courbe (m=1), ce résultat est une conséquence classique du théorème des résidus. A partir de là, on raisonne par récurrence sur m. Si C désigne le diviseur découpé sur X par un polynôme homogène de degré n, suffisamment "général", on définit (cf. [4]) une suite exacte de faisceaux:

$$0 \to \Omega^m \to \Omega^m(n) \to \Omega_C^{m-1} \to 0$$
,

où Ω_C^{m-1} désigne le faisceau des germes de formes différentielles de degré m-1 sur la variété C. Pour n assez grand, le théorème 2 montre que $H^q(X, \Omega^m(n)) = 0$ si $q \neq 0$; la suite exacte de cohomologie montre alors que $H^m(X, \Omega^m)$ est isomorphe à $H^{m-1}(C, \Omega_C^{m-1})$, d'où le résultat, compte tenu de l'hypothèse de récurrence.

Soit maintenant V un espace fibré algébrique à fibre vectorielle, de base X. Puisque $\mathscr{S}(\tilde{V})$ est isomorphe à Hom $(\mathscr{S}(V), \Omega^m)$, on a un homomorphisme canonique:

 $\mathscr{S}(V) \otimes \mathscr{S}(\tilde{V}) \to \Omega^m;$

cet homomorphisme donne naissance à un cup-produit qui est une application bilinéaire de $H^q(X, \mathcal{S}(V)) \times H^{m-q}(X, \mathcal{S}(\tilde{V}))$ dans $H^m(X, \Omega^m)$. D'après le lemme précédent, $H^m(X, \Omega^m)$ est une espace vectoriel de dimension 1 sur k; on obtient donc ainsi une forme bilinéaire sur $H^q(X, \mathcal{S}(V)) \times H^{m-q}(X, \mathcal{S}(\tilde{V}))$, définie à la multiplication près par un scalaire.

Théorème 4. La forme bilinéaire définie ci-dessus met en dualité les espaces vectoriels $H^q(X, \mathcal{S}(V))$ et $H^{m-q}(X, \mathcal{S}(\tilde{V}))$.

Ce théorème est l'analogue, dans le cas abstrait, du "théorème de dualité" de [5]. On le démontre par récurrence sur $m=\dim X$; pour m=1, il résulte facilement de la dualité entre différentielles et classes de répartitions; le passage de m-1 à m se fait au moyen de suites exactes analogues à celle utilisée dans la démonstration du lemme ci-dessus; les théorèmes 2 et 3 y jouent un rôle essentiel.

Un cas particulier important est celui où V est l'espace fibré associé à un diviseur D de X (cf. [7], ainsi que [5], n°. 16). Dans ce cas, $\mathscr{S}(V)$ est isomorphe au faisceau $\mathscr{S}(D)$ défini de la manière suivante: un élément de $\mathscr{S}(D)_x$ est une fonction rationnelle f sur X, dont le diviseur (f) vérifie l'inégalité (f) $\geq -D$ au voisinage de x. On a alors $\mathscr{S}(\tilde{V}) = \mathscr{S}(K-D)$, K désignant un diviseur de la classe canonique de X (cf. [8]), et le théorème 4 prend la forme suivante:

Corollaire. Les espaces vectoriels $H^q(X, \mathcal{L}(D))$ et $H^{m-q}(X, \mathcal{L}(K-D))$ sont en dualité.

3. Caractéristiques d'Euler-Poincaré et formule de Riemann-Roch.

Si ${\mathcal F}$ est un faisceau algébrique cohérent sur X, nous poserons:

$$h^q(X,\mathscr{F})=\dim_k H^q(X,\mathscr{F}) \quad ext{ et } \quad \chi(X,\mathscr{F})=\sum_{q=0}^{q=m}(-1)^qh^q(X,\mathscr{F}).$$

On montre facilement ([6], n°. 80) que $\chi(X, \mathcal{F}(n))$ est un polynôme en n, de degré $\leq m$. D'après le théorème 2, $\chi(X, \mathcal{F}(n)) = h^0(X, \mathcal{F}(n))$ pour n assez grand; appliquant ceci au faisceau $\mathcal{F} = \mathcal{O}$, on voit que $\chi(X, \mathcal{O}(n))$ est égal, pour tout n, à la fonction caractéristique de Hilbert de la variété X (voir [8], § 10). En particulier, $\chi(X, \mathcal{O})$ est égal au terme constant de la fonction caractéristique, d'où ([6], n°. 80):

Théorème 5. $\chi(X, \mathcal{O})$ est égal au genre arithmétique de X.

(Nous appelons genre arithmétique la quantité notée $1+(-1)^m p_a(X)$ dans [8]).

A partir de maintenant, nous écrirons $\chi(X)$ au lieu de $\chi(X, \mathcal{O})$.

Si H est une sous-variété de X, sans singularités et de dimension m-1, on a une suite exacte de faisceaux:

$$0 \to \mathcal{L}(-H) \to \mathcal{O} \to \mathcal{O}_H \to 0.$$

La suite exacte de cohomologie associée à cette suite exacte de faisceaux montre que $\chi(X, \mathcal{O}) = \chi(H, \mathcal{O}_H) + \chi(X, \mathcal{L}(-H))$, autrement dit:

$$\chi(H) = \chi(X) - \chi(X, \mathcal{L}(-H)).$$

Considérons alors un diviseur D quelconque, et soit $\chi_X(D)$ son genre arithmétique virtuel ([8], § 11). Si E est une section hyperplane de X, on voit aisément que $\chi_X(D+nE)$ est un polynôme en n; il en est de même de $\chi(X)-\chi(X,\mathscr{L}(-D-nE))$; de plus, la formule ci-dessus montre que ces deux expressions sont égales pour n assez grand. Elles le sont donc pour tout n, ce qui donne:

Théorème 6. Pour tout diviseur D, on a $\chi_X(D) = \chi(X) - \chi(X, \mathcal{L}(-D))$.

En remplaçant D par -D, on peut écrire le théorème précédent sous la forme:

Formule de Riemann-Roch. $\chi(X, \mathcal{L}(D)) = \chi(X) - \chi_X(-D)$.

Appliquons cette formule au cas m = 2. On a

$$h^0(X, \mathcal{L}(D)) = \dim_{\mathbb{R}} \Gamma(X, \mathcal{L}(D)) = l(D),$$

et $h^2(X, \mathcal{L}(D)) = h^0(X, \mathcal{L}(K-D)) = l(K-D)$, d'après le théorème de dualité. On obtient donc:

$$l(D) - h^{1}(X, \mathcal{L}(D)) + l(K - D) = \chi(X) - \chi_{X}(-D).$$

On retrouve donc bien l'inégalité de Riemann-Roch ([8], § 13):

$$l(D) + l(K - D) \ge \chi(X) - \chi_X(-D),$$

et l'on voit en outre que $h^1(X, \mathcal{L}(D))$ n'est pas autre chose que la superabondance de D.

Remarque. D'après le théorème de dualité, on a:

$$\chi(X, \mathcal{L}(K-D)) = (-1)^m \chi(X, \mathcal{L}(D)).$$

En particulier, $\chi(X, \mathcal{L}(K)) = (-1)^m \chi(X)$, ce qui, joint au théorème 6, donne:

$$\chi_{X}(-K) = \begin{cases} 2\chi(X) & \text{si } m \text{ est impair} \\ 0 & \text{si } m \text{ est pair.} \end{cases}$$

Avec les notations de [8], § 13, ceci s'écrit $P_a(X)=p_a(X)$, conformément à une conjecture de Severi.

4. Questions non résolues.

Nous venons d'étendre au cas abstrait quelques uns des résultats connus

dans le cas classique. Mais il y en a d'autres dont l'extension paraît plus difficile. Citons notamment:

a) Soit $h^{p,q} = \dim_k H^q(X, \Omega^p)$. A-t-on $h^{p,q} = h^{q,p}$? La dimension de la variété de Picard de X est-elle égale à $h^{1,0}$?

(Signalons que le théorème de dualité entraı̂ne l'égalité de $h^{p,q}$ et de $h^{m-p, m-q}$).

b) Si V est un espace fibré algébrique, à fibre vectorielle, de base X, $\chi(X, \mathcal{S}(V))$ est-il égal à un polynôme en les classes canoniques de V et de la structure tangente à X (cf. [2])?

On peut également se demander si les $B_n = \sum_{p+q=n} h^{p,q}$ coïncident avec les "nombres de Betti" qui interviennent dans les conjectures de Weil relatives à la fonction zêta de X (la variété X étant supposée définie sur un corps fini).¹)

BIBLIOGRAPHIE

- [1] H. CARTAN and S. EILENBERG. Homological Algebra. Princeton Math. Ser., no. 19.
- [2] F. HIRZEBRUCH. Arithmetic genera and the theorem of Riemann-Roch for algebraic varieties. Proc. Nat. Acad. Sci. USA, 40, 1954, p. 110—114.
- [3] K. KODAIRA and D. C. SPENCER. On arithmetic genera of algebraic varieties. Proc. Nat. Acad. Sci. USA, 39, 1953, p. 641—649.
- [4] K. KODAIRA and D. C. SPENCER. On a theorem of Lefschetz and the lemma of Enriques-Severi-Zariski. Proc. Nat. Acad. Sci. USA, 39, 1953, p. 1273—1278.
- [5] J.-P. Serre. Un théorème de dualité. Comment. Math. Helv., 29, 1955, p. 9-26.
- [6] J.-P. Serre. Faisceaux algébriques cohérents. Ann. of Math. 61, 1955, p. 197—278.
- [7] A. Weil. Fibre-spaces in algebraic geometry (Notes by A. Wallace). Chicago Univ., 1952.
- [8] O. ZARISKI. Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi. Ann. of Math., 55, 1952, p. 552—592.

¹) J. Igusa vient de résoudre négativement deux des questions posées ci-dessus: il a construit une variété X avec $h^{0,1}=h^{1,0}=2$, alors que la dimension de la variété de Picard de X est 1 et que le premier nombre de Betti de X (au sens de Weil) est 2.

Cf. J. Igusa. On some problems in abstract algebraic geometry. Proc. Nat. Acad. Sci. USA, 41, 1955.