On pose $\varphi_n = \log ||A^n||$. Il suffit de montrer que (φ_n) est sous-additive.

On a, si $\|\cdot\|$ est une norme d'opérateur (i.e. $\|AB\| \leqslant \|A\| \|B\|$),

$$\varphi_{n+m}(x) = \log \|A^{n+m}(x)\|$$

$$= \log \|A(f^{n+m-1}(x)) \cdots A(f^{m-1}(x)) \cdots A(x)\|$$

$$= \log \|A(f^{n+m-1}(x)) \cdots A(f^{m-1}(x))\|$$

$$+ \log \|A(f^{m-1}(x)) \cdots A(x)\|$$

$$= \varphi_m(x) + \varphi_n(f^m(x)).$$

Le résultat pour la norme $\|\cdot\|$ est alors une conséquence du théorème ergodif sous-additif de Kingman.

Si $\|\cdot\|'$ est une autre norme, on a pour un C>0

$$\frac{\log(1/C)}{n} + \frac{1}{n}\log\|A^n\| \leqslant \frac{1}{n}\log\|A^n\|' \leqslant \frac{\log C}{n} + \frac{1}{n}\log\|A^n\|,$$

ce qui conclut.

- 1. La transformation R_{α} est ergodique, donc λ_{\pm} est constante.
- **2.** On a

$$\begin{pmatrix} \frac{1 + e^{2i\theta}}{2} & \frac{1 - e^{-2i\theta}}{2} \\ \frac{e^{2i\theta} - 1}{2i} & \frac{1 + e^{2i\theta}}{2} \end{pmatrix} = e^{i\theta} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

3. Rappel : $f: U \to \mathbb{R}$ est sous-harmonique si pour tout $z \in U$ et r > 0 tel que $B(z,r) \subset U$, on a

$$f(z) \leqslant \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) d\theta.$$

On note que si $\varphi: U \to \mathbb{C}$ est holomorphe et ne s'annule pas, alors $z \mapsto \log |\varphi(z)|$ est harmonique. En effet,

$$\partial_z \partial_{\bar{z}} \log |\varphi(z)| = \partial_z \partial_{\bar{z}} (\log \varphi(z) + \log \bar{\varphi}(z)) = 0.$$

Chaque coefficient de $C_n(z)$ dépend de manière holomorphe de z, et donc $z \mapsto |C_n(z)_{ij}|$ est harmonique pour tous ij.

En particulier si $||A|| = \max_{ij} |a_{ij}|$ on a que $z \mapsto \log ||C_n(z)||$ est sous-harmonique.

4. On a

$$\lambda_{+} = \lim_{n \to +\infty} \frac{1}{n} \int \log ||A^{n}(x)|| \, d\mu(x).$$

Mais

$$C_n\left(e^{2i\pi x}\right) = A_{\sigma}e^{2i\pi((n-1)\alpha+x)}R_{2\pi((n-1)\alpha+x)}\cdots A_{\sigma}e^{2i\pi x}R_{2\pi x}$$
$$= e^{2i\pi\tau(x)}A^n(x),$$

οù

$$\tau(x) = nx + \sum_{k=0}^{n-1} k\alpha = nx + \frac{n(n-1)}{2}\alpha.$$

Par la question 3. on a

$$\lim_{n} \frac{1}{n} \int_{0}^{1} \log \|C_{n}(e^{2i\pi x})\| dx \geqslant \lim_{n} \frac{1}{n} \log \|C_{n}(0)\|.$$

Or on a

$$C_n(0) = \left(A_{\sigma} \begin{pmatrix} \frac{1}{2} & \frac{1}{2i} \\ \frac{-1}{2i} & \frac{1}{2} \end{pmatrix} \right)^n$$

$$= \frac{1}{2^n} \left(A_{\sigma} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \right)^n$$

$$= \frac{1}{2^n} \underbrace{\begin{pmatrix} \sigma & -i\sigma \\ i\sigma^{-1} & \sigma^{-1} \end{pmatrix}}^n.$$

On a sp(B) = $\{0, \sigma + \sigma^{-1}\}$. Par suite

$$\frac{1}{n}\log\|C_n(0)\| = \frac{1}{n}\log\left\|\left(\frac{B}{2}\right)^n\right\| \underset{n\to+\infty}{\longrightarrow} \log\rho(B/2) = \log\frac{\sigma+\sigma^{-1}}{2}.$$

On note $f = \sigma$ le décalage sur $\Sigma = \{1, \ldots, m\}^{\mathbb{N}}$, et $\mu = (p_1, \ldots, p_m)^{\otimes \mathbb{N}}$. On définit alors $A : \Sigma \to \mathrm{GL}(d, \mathbb{R})$ par

$$A(x) = A_{x_0}, \quad x = (x_0, x_1, \dots) \in \Sigma.$$

Alors, avec les notations de l'Exercice 1., on a

$$A^n(x) = A_{x_{n-1}} \cdots A_{x_0}, \quad x = (x_k) \in \Sigma.$$

Alors par l'Exercice 1. on a

$$\frac{1}{n}\log\|A^n(x)\| \to \lambda \in \mathbb{R} \cup \{-\infty\}$$

avec λ une constante (car f est ergodique).

De plus $\lambda > -\infty$. En effet on a $\nu > 1$ tel que

$$\nu^{-n}||v|| \leqslant A^n(x) \leqslant \nu^n||v||, \quad v \in \mathbb{R}^d, \quad x \in \Sigma,$$

ce qui donne $\lambda \geqslant -\log \nu > -\infty$.

1. Si $A \in SL(2,\mathbb{R})$ on a $||A^{-1}||^{-1} = ||A||^{-1}$, et donc

$$-\lambda_+(x) = \lim \frac{1}{n} \log \|A^n(x)\|^{-1} = \lim \frac{1}{n} \log \|A^{-n}(x)\|^{-1} = \lambda_-(x).$$

2. On a

$$||A^{n}(x)||^{-1}||v|| = ||A^{n}(x)^{-1}||^{-1}||v||$$

$$\leq ||A^{n}(x)v||$$

$$\leq ||A^{n}(x)||||v||.$$

Donc

$$\frac{1}{n} \log \left(\|A^n(x)^{-1}\|^{-1} \|v\| \right) \ \geqslant \frac{1}{n} \log \|A^n(x)v\| \leqslant \frac{1}{n} \log \|A^n(x)\| \ \|v\|.$$

Cela donne

$$\lambda_{-}(x) \leqslant \liminf_{n} \frac{1}{n} \log \|A^{n}(x)v\| \leqslant \limsup_{n} \frac{1}{n} \log \|A^{n}(x)v\| \leqslant \lambda_{+}(x)$$

3. Fait : pour tout $B \in SL(2)$, il existe $u, v \in \mathbb{R}^2$ tels que $u \perp v$ et

$$||u|| = ||v|| = 1$$
, $||Bv|| = ||B||^{-1}$, $||Bu|| = ||B||$, $\langle Bu, Bv \rangle = 0$.

En effet, on prend (u, v) qui diagonalise $B^{\top}B$ avec $B^{\top}Bu = \lambda u$ et $B^{\top}Bv = \lambda^{-1}$ avec $\lambda \geqslant \lambda^{-1}$. On a alors $\lambda = ||B||$, ce qui conclut.

4. α_n est défini par

$$s_n(x) = \sin(\alpha_n)u_{n+1}(x) + \cos(\alpha_n)s_{n+1}(x).$$

On a

$$||A^{n+1}(x)s_n(x)|| \ge ||\sin(\alpha_n)A^{n+1}(x)u_{n+1}(x)||$$

= $|\sin(\alpha_n)|||A^{n+1}(x)||$.

D'autre part

$$||A^{n+1}(x)s_n(x)|| \le ||A(f^n(x))|| ||A^n(x)s_n(x)||$$

= ||A(f^n(x))|||A^n(x)||^{-1}

Il suit que

$$|\sin(\alpha_n)| \le \frac{\|A(f^n(x))\|}{\|A^{n+1}(x)\|\|A^n(x)\|}.$$

On a

$$\frac{1}{n}\log\|A(f^n(x))\| = \frac{1}{n}\log\|A(x)\| + \frac{1}{n}\sum_{k=0}^{n-1}\log\frac{\|A(f^{k+1}(x))\|}{\|A(f^k(x))\|}$$
$$= \frac{1}{n}\log\|A(x)\| + \frac{1}{n}\sum_{k=0}^{n-1}\psi(f^k(x)),$$

où $\psi(x) = \log ||A(f(x))|| - \log ||A(x)||$. Alors $\psi \in L^1(\mu)$ et donc le théorème ergodique de Birkhoff implique que la limite

$$\lim_{n} \frac{1}{n} \log ||A(f^{n}(x))||$$

existe pour μ -presque tout x.

D'autre part puisque $\log ||A|| \in L^1$ on a, pour tout $\varepsilon > 0$,

$$\mu\left(\left\{x : \frac{1}{n}\log\|A(f^n(x))\| > \varepsilon\right\}\right) \to 0, \quad n \to +\infty.$$

En conséquence $\frac{1}{n}\log \|A(f^n(\cdot))\| \to 0$ en probabilités quand $n \to +\infty$.

Comme $\frac{1}{n}\log \|A(f^n(\cdot))\|$ converge aussi μ -pp quand $n\to +\infty$, on a que $\frac{1}{n}\log \|A(f^n(\cdot))\|\to 0$ μ -pp.

Par conséquent

$$\frac{1}{n}\log|\sin(\alpha_n)| \leqslant \frac{1}{n}\log\|A(f^n(x))\| - \frac{1}{n}\log\|A^{n+1}(x)\| - \frac{1}{n}\log\|A^n(x)\|,$$

et donc

$$\limsup_{n} \frac{1}{n} |\sin(\alpha_n)| \le -2\lambda_+(x).$$

5. Soit $\varepsilon > 0$ tel que $\beta = 2\lambda_+(x) - \varepsilon > 0$. On a pour tout n assez grand

$$|\sin(\alpha_n)| \leq \exp(-\beta n)$$
.

Ceci implique pour tous $m \ge n \ge 0$

$$\operatorname{dist}_{\mathbb{R}P^1}(s_n(x), s_m(x)) \leqslant C \sum_{k=n}^{m-1} e^{-\beta k} \leqslant \frac{C e^{-\beta n}}{1 - e^{-\beta}},$$

ce qui conclut. Ici on a utilisé $\operatorname{dist}_{\mathbb{R}P^1}(u,v) \leqslant C \sin(\operatorname{angle}(u,v))$.