Math 237: Algorithms for Finding the Echelon Form and Reduced Echelon Form

I Algorithm for obtaining the Echelon Form.

Let M be an $m \times n$ matrix with entries m_{ij} .

Step 1: Find the first (from the left) nonzero column.

Step 2: If the first nonzero column is the *j*th column use row operations to make $m_{1j} \neq 0$.

The entry m_{1j} will be a **pivot**.

Recommendation: Make $m_{1j} = 1$.

Step 3: Use row operations to make all entries in the column below the **pivot** equal to zero, i.e. make $m_{2j} = m_{3j} = ... = 0$.

Recommendation: Use only row operations of the type $R_i \leftrightarrow R_i + c \cdot R_1$, with i > 1.

Step 4: Let "new M" be the $(m-1) \times (n-j)$ matrix obtained from "old M" by deleting the first row and the first j columns.

Repeat Steps 1 through 4 for "new M" until the original matrix M is in Echelon Form.

II Algorithm for obtaining the Reduced Echelon Form or Row Canonical Form.

Let M be an $m \times n$ matrix with entries m_{ij} that is in Echelon Form.

Step 1: Use row operations to make all **pivots** equal to one.

Step 2: Identify the **lowest pivot**, the pivot closest to the bottom right corner of the matrix.

Step 3: If the lowest pivot is the entry m_{ij} , use row operations to make all entries in the column above the lowest pivot equal to zero, i.e. make $m_{1j} = m_{2j} = ... m_{i-1j} = 0$. Recommendation: Use only row operations of the type $R_k \leftrightarrow R_k + c \cdot R_i$, with k < i.

Step 4: Let "new M" be the $(i-1) \times (j-1)$ consisting of the first i-1 rows and j-1 columns of "old M".

Repeat **Steps 1** through **4** for "new M" until the original matrix M is in Reduced Echelon Form.