

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №1 по курсу «Архитектура ЭВМ»

на тему: «Изучение принципов работы микропроцессорного ядра

RISC-V»

Вариант: 17

Студент группы ИУ7-51Б		Савинова М. Г.
	(Подпись, дата)	(Фамилия И.О.)
Преподаватель	(Подпись, дата)	Ибрагимов С. В. (Фамилия И.О.)

Содержание

1	Цел	ІИ																										3
2	Зад	ания																										4
	2.1	Задание 1	•	•		•	•							•	•	٠	•	•		٠						•		4
	2.2	Задание 2		٠				•				•	•	٠			٠					•	•	•			•	8
	2.3	Задание 3	•																									9
	2.4	Задание 4	•		•				•															•				10
	2.5	Задание 5	•	•	•	•	•			•	•			•	•	•	•	•	•	•	•				•	•		11
3	Зак	лючение																										18

1 Цели

- 1) Ознакомиться с принципами функционирования построения и особенностями архитектуры суперскалярных конвейерных микропроцессоров;
- 2) Ознакомиться с принципами проектирования и верификации сложных цифровых устройств с использованием языка описания аппаратуры System Verilog и ПЛИС.

2 Задания

2.1 Задание 1

Содержимое файла *mine.s*, который соответсвует **варианту 17**:

```
section text
       .globl start;
2
3
       len = 9 #Размер массива
       enroll = 2 #Количество обрабатываемых элементов за одну итер
4
          ацию
       elem sz = 4 #Размер одного элемента массива
5
6
7
  start:
8
       la x1, x
9
       addi x20, x1, elem sz*len #Адрес элемента, следующего за пос
          ледним
10
       lw x31, 0(x1)
       addi x1, x1, elem sz*1
11
12 lp:
13
      lw x2, 0(x1)
      lw x3, 4(x1) #!
14
       bltu x2, x31, lt1
15
       add x31, x0, x2
16
           bltu x3, x31, lt2
17 | t1:
      add x31, x0, x3
18
19 | It 2 :
20
       add x1, x1, elem sz*enroll
       bne x1, x20, lp
21
22 lp2: j lp2
23
24
       section data
25 x: 4 byte 0x1
       .4 byte 0x2
26
27
       .4 byte 0x3
28
       .4 byte 0x4
29
       .4 byte 0x5
30
       4 byte 0x6
       .4 byte 0x7
31
32
       4 byte 0x8
33
       .4 byte 0x9
```

Псевдокод:

```
1 #define len 9
2 #define enroll 2
3 #define elem sz 4
5 | int x[] = [1, 2, 3, 4, 5, 6, 7, 8, 9];
7 void start() {
8
       int *x1 = x;
       int *x20 = x1 + elem_sz * len;
9
10
       int x31 = _x[0];
11
12
       int x1 += 1;
13
14
      do {
           x2 = x1[0];
15
           x3 = x1[1];
16
17
           if (x2 >= x31)
18
               x31 = x2;
19
20
21
           if (x3 >= x31)
               x31 = x3;
22
23
24
           x1 += enroll;
       } while (x1 != x20);
25
       while (1) {}
26
27 }
```

Результат выполнения компиляции:

```
1 Disassembly of section .text:
2
3 80000000 <_start >:
4 80000000:
                    00000097
                                               auipc
                                                        x1,0x0
5 80000004:
                    03808093
                                               addi
                                                        x1,x1,56 #
     80000038 <_x>
6 80000008:
                    02408a13
                                               addi
                                                        x20, x1, 36
7 8000000c:
                                               lw
                                                        x31,0(x1)
                   0000 a f 8 3
8 80000010:
                                               addi
                   00408093
                                                        x1, x1, 4
10 \mid 80000014 < | p > :
```

11	80000014:	0000 a 103	lw	x2,0(x1)
12	80000018:	0040 a 183	lw	x3 , 4 (x1)
13	8000001c:	01f16463	bltu	x2,x31,80000024
	< t1>			
14	80000020:	00200 fb3	add	x31 , x0 , x2
15				
16	80000024 < t1>:			
17	80000024:	01f1e463	bltu	x3, x31,8000002c
	< t2>			
18	80000028:	00300 fb3	add	x31 , x0 , x3
19				
20	8000002c < t2 >:			
21	8000002c:	00808093	addi	x1,x1,8
22	80000030:	ff4092e3	bne	x1,x20,80000014
	< p>			
23				
24	80000034 < lp2 >:			
25	80000034:	0000006 f	jal	x0,80000034
	< p2>			

Содержимое файла mine.hex:

```
1 00000097
2 03808093
3 02408a13
4 0000 a f 8 3
5 00408093
6 0000 a 103
7 0040a183
8 01f16463
9 00200 fb3
10 01f1e463
11 00300 fb3
12 00808093
13 ff4092e3
14 0000006 f
15 00000001
16 00000002
17 00000003
18 00000004
19 00000005
20 00000006
21 00000007
```

22 00000008 23 00000009

В регистре x31 в конце выполнения программы должно содержаться максимальное значение в массива. В нашем случае: 9.

2.2 Задание 2

 $A \partial pec$ команды: 80000020; итерация: 2.

Рисунок 2.1 – Выборка и диспетчерезация

2.3 Задание 3

 $A \partial pec$ команды: 8000002c; umepayus: 2.

Рисунок 2.2 – Декодирование и планирование

2.4 Задание 4

 $A \partial pec$ команды: 8000018c; итерация: 2.

Рисунок 2.3 – Выполнение

2.5 Задание 5

Адрес команды #!: 80000018

Рисунок 2.4 – Результат в регистре х31

Рисунок 2.5 – Выборка и диспетчерезация

Рисунок 2.6 – Декодирование и планирование

Рисунок 2.7 – Выполнение

Рисунок 2.8 – Трасса работы программы

Конфликты возникают из-за того, что мы обращаемся к значению в регистре, до того как оно было еще записано. Оптимизировать программу можно тем, что сначала загрузить одно значение, затем увеличить указатель, затем то же само сделать и для второго числа, и только после этого работать с регистрами.

Оптимизированная программа:

```
section text
1
2
       .globl _start;
3
       len = 9 #Размер массива
       enroll = 2 #Количество обрабатываемых элементов за одну итер
4
          ацию
5
       elem_sz = 4 #Размер одного элемента массива
6
7
  start:
8
       la x1, x
9
       addi x20, x1, elem sz*len #Адрес элемента, следующего за пос
         ледним
      lw x31, 0(x1)
10
       addi x1, x1, elem sz*1
11
12 lp:
      lw x2, 0(x1)
13
       addi x1, x1, elem sz
14
15
      lw x3, 0(x1) #!
       addi x1, x1, elem sz
16
       bltu x2, x31, lt1
17
18
       add x31, x0, x2
           bltu x3, x31, lt2
19 | lt1 :
       add x31, x0, x3
20
21 lt2:
       bne x1, x20, lp
22
23 lp2: j lp2
24
25
       section data
26 x: 4 byte 0x1
27
       .4 byte 0x2
28
       4 byte 0x3
29
       .4 byte 0x4
       .4 byte 0x5
30
       4 byte 0x6
31
32
       .4 byte 0x7
33
       4 byte 0x8
34
       .4 byte 0x9
```

Дизассемблированный код:

1 2	,	of section .text:						
3		start >						
4	_	00000097	auipc	×1 , 0 ×0				
5		03 c 08 0 9 3	· ·	x1,x1,60 #				
Ű	8000003 c		200.	7.2 7.2 0 C 11				
6		02408a13	a d d i	x20 , x1 , 36				
7		0000 a f 8 3	lw					
8		00408093	a d d i	, , ,				
9								
10	80000014 < p	>:						
11	80000014:	0000 a 103	lw	x2,0(x1)				
12	80000018:	00408093	a d d i	×1,×1,4				
13	8000001c:	0000a183	lw	x3,0(x1)				
14	80000020:	00408093	a d d i	×1 , ×1 , 4				
15	80000024:	01f16463	bltu					
	x2,x31,80	00002c < t1>						
16	80000028:	00200 fb3	add	x31 , x0 , x2				
17								
18	8000002c < lt	1 >:						
19		01f1e463	bltu					
	x3,x31,80	000034 < lt2 >						
20	80000030:	00300 fb3	add	x31 , x0 , x3				
21								
22	80000034 < lt	2 >:						
23		ff4090e3	bne					
		000014 < p>						
24								
25	' ·							
26		0000006 f	jal	x0,80000038				
	<lp2></lp2>							

Псевдокод:

```
28 #define len 9
29 #define enroll 2
30 #define elem_sz 4
31
32 | int _x[] = [1, 2, 3, 4, 5, 6, 7, 8, 9];
33
34 void start() {
       int *x1 = _x;
35
       int *x20 = x1 + elem_sz * len;
36
37
       int x31 = _x[0];
38
       int x1 += 1;
39
40
       do {
41
           x2 = x1[0];
42
           x1 += 1;
43
44
           x3 = x1[1];
45
           x1 += 1;
46
47
           if (x2 >= x31)
48
49
               x31 = x2;
50
           if (x3 >= x31)
51
52
               x31 = x3;
53
       } while (x1 != x20);
54
       while (1) {}
55
56 }
```

Трасса работы оптимизированной программы:

Рисунок 2.9 - Трасса работы оптимизированной программы

3 Заключение

В результате выполнения работы были изучены принципы функционирования, построения и особенности архитектуры суперскалярных конвейерных микропроцессоров.

На основе изученных материалов был найден способ оптимизировать программу.

Поставленная цель достигнута.