常微分方程第一次作业

闫磊

September 10, 2016

1 P27.3

验证下列各函数是相应微分方程的解

1.1 (7)

 $y=x^2+1, y'=y^2-(x^2+1)y+2x$ 解: 把 y 求导可得 $\frac{dy}{dx}=2x$ 计算方程右边可得 $(x^2+1)^2-(x^2+1)^2+2x=2x$ 这样方程两边相等 $y=x^2+1$ 是微分方程的解。

1.2 (8)

$$y = \frac{g(x)}{f(x)}, y' = \frac{f'(x)}{g(x)}y^2 - \frac{g'(x)}{f(x)}$$

解: 对 y 求导得 $y' = \frac{f'(x)g(x) - g'(x)f(x)}{f^2(x)}$ 计算右边式子 $\frac{f'(x)}{g(x)}y^2 - \frac{g'(x)}{f(x)}$ 可以发现和左边相等,故 $y = \frac{g(x)}{f(x)}$ 是微分方程的解

2 P27.4

给定一阶微分方程 $\frac{dy}{dx} = 2x$

2.1 (1)

求出它的通解

解: 两边积分得 $y = x^2 + c$ 其中 c 为常数

2.2(2)

求出通过点 (1,4) 的特解

解: 代入得 c=3, 特解是 $y=x^2+3$.

2.3 (3)

求出与直线 y = 2x + 3 相切的解解:相切意味着方程组

$$\begin{cases} y = x^2 + c \\ y = 2x + 3 \end{cases} \tag{1}$$

有且仅有一个解,即 $\Delta = 0$,解得 c = 4 故相切的解为 y = 2x + 4

2.4(4)

求出满足条件 $\int_0^1 y \, dx = 2$ 的解解: $\int_0^1 (x^2 + c) \, dx = \frac{1}{3} + c$ 解 $\frac{1}{3} + c = 2$ 可得 $c = \frac{5}{3}$, 故解为 $y = 2x + \frac{5}{3}$.

2.5 (5)

绘出(2)(3)(4)中解的图形. 解: 见图(1)-(3)

3 P42.1

求下列方程的解

3.1(6)

$$x\frac{dy}{dx} - y + \sqrt{x^2 - y^2} = 0$$

解: 移项可得 $xy' - y + \sqrt{x^2 + y^2} = 0$
若 $x^2 \neq y^2$
有 $y' = \frac{y}{x} - \sqrt{1 - \frac{y^2}{x^2}}$
令 $z = \frac{y}{x}$, 那么 $y = zx$
故 $y' = z'x + z$, 代入有: $z'x + z = z - \sqrt{1 - z^2}$
分离变量有 $\frac{dz}{\sqrt{1 - z^2}} = \frac{-1}{x}dx$
积分有: $\arcsin\frac{y}{x} + \ln|x| = c$; 若 $x^2 = y^2$
代入可验证 $y^2 = x^2$ 也是方程的解.
综上, $y^2 = x^2$, $\arcsin\frac{y}{x} + \ln|x| = c$ 是解

3.2 (7)

 $\tan y dx - \cot x dy = 0$ 解: 当 $\tan y \neq 0, y \neq k\pi$ (k 为常数) 时 分离变量得 $\tan x dx = \cot y dy$ 两边积分 $\int \tan x dx = \int \cot y dy$ 得到 $\ln |\sin x| = -\ln |\cos x| + c_1$ 即 $\sin x \cos x = c, c = \pm e^c_1$ 若 $y = k\pi$ 时 代入可以发现也是解 综上 $\sin x \cos x = c, c = \pm e^c_1, y = k\pi$ 是解

4 P43.2

作适当的变量变换求解下列方程

4.1 (6)

$$\begin{array}{l} \frac{dy}{dx} = \frac{y^6 - 2x^2}{2xy^5 + x^2y^2} \\ \text{解:} \quad \diamondsuit \ u = y^3 \\ \text{代入化简得} \ \frac{3y^6 - 6x^2}{2xy^3 + x^2} = \frac{du}{dx} \\ \diamondsuit \ v = \frac{u}{x} \\ \text{代入化简} \ x \frac{dv}{dx} + v = \frac{3v^2 - 6}{2v + 1} \\ \text{分离变量得} \ \frac{dx}{x} = \frac{2v + 1}{v^2 - v - 6} dv \\ \text{两边积分得} \ cx^5 = (v - 3)^7 (v + 2)^3 \\ \text{代回原变量} \ (y^2 - 3x)^7 (y^3 + 2x)^3 = cx^{15} \\ \text{c} \ \ \ \ \, \ \, \ \, \ \, \ \, \end{array}$$

4.2 (7)

$$\frac{dy}{dx} = \frac{2x^3 + 3xy^2 + x}{3x^2y + 2y^3 - y}$$
解: 两边乘 $\frac{y}{x}$ 得
$$\frac{ydy}{xdx} = \frac{2x^2 + 3y^2 + 1}{3x^2 + 2y^2 - 1}$$
令 $u = x^2 - 1, v = y^2 + 1$ 则原式化为 $\frac{dv}{du} = \frac{2u + 3v}{3u + 2v}$ 令 $z = \frac{v}{u}$ 代入化简,分离变量有
$$\frac{du}{u} = \frac{2z + 3}{2 - 2z^2} dz$$
两边积分得 $u^4 (1 - z)^5 = c(1 + z)$ 代入原变量 $(x^2 - y^2 - 2)^5 = c(x^2 + y^2)$ c 为任意常数.

Figure 1: (2)

证明题 **5**

已知 $y_1(t)$ 是 $\frac{dy}{dt} = f(y), y(0) = y_0$ 的解证明: $y_2(t) = y_1(t-t_0)$ 是 $\frac{dy}{dt} = f(y), y(t_0) = y_0$ 的解。证:做变量代换 $v = t - t_0$,条件只是改变了初值,代入新变量就可验证。(PS: 我不会证,瞎蒙的-.-)

Figure 2: (3)

Figure 3: (4)