PHY 211 Recitation

April 22, 2020

1

A rod of mass $M=5.0\,\mathrm{kg}$ and length $1.0\,\mathrm{m}$ is connected to a hinge that allows it to rotate about one end.

Hinge

- (a) If the rod is falling, is the angular acceleration constant? Try to answer without doing any math.
- (b) Find the torque due to gravity and the angular acceleration in each of the following scenarios:
 - (i) The rod is horizontal ($\theta = 0$)
 - (ii) The rod is at an angle $\theta=10^\circ$ above the horizontal
 - (iii) The rod is at an angle $\theta=45^{\circ}$
 - (iv) The rod is exactly vertical ($\theta = 90^{\circ}$)

$\mathbf{2}$

A seesaw has a total length of 4 m, supported by a pivot at the midpoint. A child of mass $m_1 = 14 \,\mathrm{kg}$ sits on one end, a distance of $d_1 = 2 \,\mathrm{m}$ from the pivot. A second child of mass $m_2 = 30 \,\mathrm{kg}$ wants to sit somewhere on the other side, at a distance d_2 away from the center.

(a) Make a sketch of the seesaw if it is horizontal, showing all forces acting on it. Make sure the tail of each force vector begins where the force acts.

- (b) Choose the pivot of the seesaw to analyze the torque. Write down the sum of the torques about this point, including the unknown distance d_2 . What is the angular acceleration of the seesaw in terms of the variables (including the unknown d_2)?
- (c) Solve for the distance d_2 if the seesaw is not accelerating.

(d) If the child is at the distance d_2 where the seesaw does not accelerate while horizontal, and someone comes and angles the seesaw by an angle θ , would its angular acceleration still be zero?

You are using a rope to hold open a trapdoor which is connected with a hinge to the floor. The door has a mass of 10 kg, a length $\ell=1.0\,\mathrm{m}$, and is currently at an angle of 60° with respect to the floor. You pull with a force parallel to the floor, $3\ell/4$ of the length away from the hinge.

(a) With how much force should you pull to keep the trapdoor at rest?

(b) If you then started to instead pull with a force of 40 N along the same direction, what will be the angular acceleration of the trapdoor? Be sure to specify if it is opening or closing.

Annular cylinder (or ring) about cylinder axis

$$I = \frac{M}{2} (R_1^2 + R_2^2)$$

$$I = \frac{Ml^2}{3}$$

Thin spherical shell about any