

- A set is a collection of items
 - Example:
- "S is the set of all even numbers between 30 and 100, inclusive"
 - $S = \{ x \mid Even(x) \text{ and } 50 \le x \le 100 \}$
 - Standard Numerical Sets to know:

S	ymbol	Elements		Name of Set
	Ø	{}		Empty set
	N	{ 0, 1, 2, 3, }		Natural numbers
	\mathbb{Z}	{		Integers
	\mathbb{Z}^+	{ 1, 2, 3, 4, }		Positive integers
	\mathbb{Z}^-	{ -1, -2, -3, -4,	}	Negative integers
	\mathbb{Q}	$\{ x \mid \exists a \in \mathbb{Z} \ \exists b \in \mathbb{Z}^+ \ x = a/b \}$	}	Rationals
	\mathbb{R}	(don't try to list the elements)		Real numbers
_	\mathbb{R}^+	(don't try to list the elements)		Positive reals

A set is

either in the

at can have

BA set can have \$

6) A set on have zero elements

infinitely many elements

• $S \cap T$: "the *intersection* of S and T"

Set Operations

if domain is $\{0,1,2,3,4\}$, then $\bar{S} = \{0,3,4\}$

D. XES: X is an element of S X & S: x is not ...

The cardinality of a set S means the number of (15) 维和的哲/基 elements in S

$$|\{a, 22, dog\}| = 3$$

$$|\{x \mid x \in \mathbf{N} \text{ and } Prime(x)\}| = \infty$$

$$|\{a, \{e\}, \{i, o\}, u\}| = 4$$

$$|\{x \mid x \in \mathbb{N} \text{ and } x^2 = x\}| = 2$$

$$|\mathbf{R}| = \infty$$

The Cartesian product of sets A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$$

 $A = \{\text{soup, salad}\}\$ and $M = \{\text{tofu, chicken, steak}\}\$

 $A \times M = \{ (soup, tofu), (soup, chicken), (soup, steak), \}$

(salad, tofu), (salad, chicken), (salad, steak) }

$$|A \times M| = 2 \cdot 3 = 6$$

X

XXY = the set of all coordinates

in the Cortegian plane!

Relationships between Sets

"Every element of S is also in T"

T or F
$$\{a,b\} \subseteq \{a,b,c\}$$

T or
$$\mathbf{F}$$
 $b \subseteq \{a, b, c\}$

T or F
$$\emptyset \subseteq \{a, b, c\}$$

T or F $\{a, b, c\} \subseteq \{a, b, c\}$

 $S \subseteq T$

• {1,2} and {3,4} are disjoint

For a set S, the set of all subsets is called the **power set** of S, and is denoted as P(S).

Number of subsets, i.e., size of power set: $|\mathbf{f}| |\mathbf{S}| = \mathbf{n}$, then $|\mathbf{P}(\mathbf{S})| = 2^{\mathbf{n}}$

Examples:

- 1. $P(\{cat, dog\}) = \{ \emptyset, \{cat\}, \{dog\}, \{cat, dog\} \}$
- 2. $P(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$
- 3. $P(\emptyset) = \{ \emptyset \}$
- 4. $P(P(\emptyset)) = \{ \emptyset, \{\emptyset\} \}$

 $\overline{S \cup T} = \{x | x \notin (S \cup T)\}$

 $= \{x \mid \neg(x \in (S \cup T))\}\$ $= \{x \mid \neg (x \in S \lor x \in T)\}$

 $= \{x | x \notin S \land x \notin T\}$

 $= \{x | x \in \overline{S} \land x \in \overline{T}\}$

 $= \{x | x \in \overline{S} \cap \overline{T}\}$ $=\overline{S}\cap\overline{T}$

definition of \cup DeMorgan's law definition of complement

definition of ∉

another

definition of complement

definition of \cap

definition of ∈

Inclusion-Exclusion Principle

1. add individual

2 Generalization:

| U; Ai | = {individual sizes} - {pairwise (sizes} + {3 - wise (}) - {4-wise (}) + {5-wise (}) - (+ ad - even ...)

应的礼 二社的交

Double Subset Equality Proof

Handout

For an arb. x:

if $x \in S$,

then $x \in T$

Prove DeMorgan's Law for sets:

 $(23)\overline{A \cap B} = \overline{A} \cup \overline{B}$ by showing that each side is a subset of the other

Definition: $S \subseteq T$ means that, for all x, if $x \in S$, then $x \in T$.

Proof: goal is to prove $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- Let x be an arbitrary element of the domain.
- Assume $x \in \overline{A \cap B}$.
- So $x \notin A \cap B$
- So $x \notin A$ or $x \notin B$
- So $x \in \overline{A}$ or $x \in \overline{B}$
- Thus $x \in \overline{A} \cup \overline{B}$
- So $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$
- Assume $x \in \overline{A} \cup \overline{B}$.
- So $x \in \overline{A}$ or $x \in \overline{B}$
- So $x \notin A$ or $x \notin B$
- So $x \notin A \cap B$
- Thus $x \in \overline{A \cap B}$
- So $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$
- Since each side is a subset of the other, we have $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

if $x \in T$,

then $x \in S$

$A \subseteq B \land B \subseteq A \implies A = B!!$

Inclusion-Exclusion Exercise

How many integers between 1 and 300 (inclusive) are divisible by at least one of $\{2,3,5\}$?

Let S_m = Multiples of m from 1 to 300

- Question is asking: what is $|S_2 \cup S_3 \cup S_5|$?
- Answer:

Inclusion-Exclusion:

 $|S_2 \cup S_3 \cup S_5| = |S_2| + |S_3| + |S_5| - |S_2 \cap S_3| - |S_2 \cap S_5| - |S_3 \cap S_5| + |S_2 \cap S_3 \cap S_5|$ Add individual sizes Add 3-wise ∩ $= |S_2| + |S_3| + |S_5| - |S_{2:3}| - |S_{2:5}| - |S_{3:5}| + |S_{2:3:5}|$

$$= |S_2| + |S_3| + |S_5| - |S_{6}| - |S_{10}| - |S_{15}| + |S_{30}|$$

$$= |S_2| + |S_3| + |S_5| - |S_6| - |S_{10}| - |S_{15}| + |S_{30}|$$

$$= \frac{300}{2} + \frac{300}{3} + \frac{300}{5} - \frac{300}{6} - \frac{300}{10} - \frac{300}{15} + \frac{300}{30}$$

$$= 150 + 100 + 60 - 50 - 30 - 20 + 10$$

 $|S_2 \cup S_3 \cup S_5| = 310 - 100 + 10 = 220$

Review :

2. (Cartesian Product)
$$A \times B = \{(a,b) | a \in A, b \in B\}$$

$$A \times B \times ... \times N = \{(a,b,...,N) | a \in A, b \in B\}, ... \times N = \{(a,b,...,N) | a \in A, b \in B\}, ... \times N = \{(a,b,...,N) | a \in A, b \in B\}, ... \times N = \{(a,b,...,N) | a \in A, b \in B\}$$

10.
$$|A+B+C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

 $|\bigcup_i A_i|=\{\text{individual sizes}\}-\{\text{pairwise } \cap \text{sizes}\}+\{3\text{-wise } \cap \}$
 $-\{4\text{-wise } \cap \}+\{5\text{-wise } \cap \}-\dots$

Set Identities (FYI)

U = Universal set. i.e.the entire domain

Identity laws

$$A \cap U = A$$
$$A \cup \emptyset = A$$

Domination laws

$$\begin{array}{l}
A \cup U = U \\
A \cap \emptyset = \emptyset
\end{array}$$

Idempotent laws

$$A \cup A = A$$

$$A \cap A = A$$

Complementation law

$$\overline{(\overline{A})} = A$$

Commutative laws

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Definition of Set Minus (not in book) $A - B = A \cap \bar{B}$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

De Morgan's laws

$$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$
Absorption laws

$$A \cap (A \cup B) = A$$
$$A \cup (A \cap B) = A$$

Complement laws

$$\begin{array}{l}
A \cup \overline{A} = U \\
A \cap \overline{A} = \emptyset
\end{array}$$