

1 Decay Scheme

Co-60 disintegrates by beta minus emissions to excited levels of Ni-60. Le cobalt 60 se désintègre par émission bêta moins vers des niveaux excités de nickel 60.

2 Nuclear Data

 $T_{1/2}(^{60}\text{Co})$: 5,2711 (8) a $Q^{-}(^{60}\text{Co})$: 2823,07 (21) keV

2.1 β ⁻ Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,3}^{-} \\ \beta_{0,2}^{-} \\ \beta_{0,1}^{-}$	317,32 (21) 664,46 (21) 1490,56 (21)	99,88 (3) 0,002 0,12 (3)	Allowed Unique 2nd Forbidden Unique 2nd Forbidden	7,51 14,7

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-4}) \end{array}$	$\begin{array}{c} \alpha_L \\ (10^{-4}) \end{array}$	$\begin{array}{c} \alpha_T \\ (10^{-4}) \end{array}$	$\begin{array}{c} \alpha_{\pi} \\ (10^{-5}) \end{array}$
$\begin{array}{c} \gamma_{3,2}(\text{Ni}) \\ \gamma_{2,1}(\text{Ni}) \\ \gamma_{3,1}(\text{Ni}) \\ \gamma_{3,0}(\text{Ni}) \\ \gamma_{2,0}(\text{Ni}) \\ \gamma_{3,0}(\text{Ni}) \end{array}$	347,14 (7) 826,10 (3) 1173,240 (3) 1332,508 (4) 2158,61 (3) 2505,748 (5)	0,0075 (4) 0,0076 (8) 99,85 (3) 99,9988 (2) 0,0012 (2) 0,0000020 (4)	[E2] M1+45%E2 E2(+M3) E2 E2 E2 E4	49,9 (15) 3,0 (4) 1,51 (7) 1,15 (5) 0,445 (14) 0,780 (3)	5,03 (15) 0,291 (17) 0,148 (4) 0,113 (3) 0,043 (2) 0,076 (3)	55,7 (17) 3,4 (4) 1,68 (4) 1,28 (5) 0,495 (15) 0,86 (3)	0,62 (7) 3,4 (4)

3 Atomic Data

3.1 Ni

 $\begin{array}{ccccc} \omega_K & : & 0.421 & (4) \\ \bar{\omega}_L & : & 0.0084 & (4) \\ n_{KL} & : & 1.388 & (4) \end{array}$

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}	$egin{array}{c} Klpha_2 \ Klpha_1 \ Keta_3 \ rac{1}{2} \ K ho_2 \ rac{1}{2} $	7,46097 7,47824 8,2647	}	51,24 100
$ m X_L$	$egin{array}{c} \mathrm{K}eta_5^{\prime\prime} & & & \\ \mathrm{L}\ell & & & \\ \mathrm{L}\gamma & & & \end{array}$	8,3287 $0,74$ $-0,94$	}	20,84

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	6,26-6,54 $7,20-7,47$	100 27,6
Auger L	8,10 - 8,32 $0,7 - 0,9$	1,9 329

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
${ m e_{AL}}$	(Ni)	0,7 - 0,9	0,0392 (12)
e _{AK}	(Ni) KLL KLX KXY	6,26 - 6,54 7,20 - 7,47 8,10 - 8,32	0,0154 (5) } } }
${\rm ec_{3,1~K}} \atop {\rm ec_{1,0~K}} \atop {\rm ec_{1,0~\alpha}}$	(Ni) (Ni) (Ni)	1164,895 (3) 1324,157 (6) 310,51 (1)	0,0151 (9) 0,0115 (6) 0,0034 (4)
$eta_{0,3}^- \ eta_{0,3}^-$	max:	317,32 (21) $95,6$ (1)	99,88 (3)
$\beta_{0,2}^{-}$ $\beta_{0,2}^{-}$	max:	664,46 (21) 274,8 (1)	0,002
$\beta_{\overline{0,1}}$ $\beta_{\overline{0,1}}$	max: avg:	$ \begin{array}{ccc} 1490,56 & (21) \\ 625,6 & (1) \end{array} $	0,12 (3)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL $XK\alpha_2$ $XK\alpha_1$	(Ni) (Ni) (Ni)	0.74 - 0.94 7.46097 7.47824	1	0,0002 0,00334 (12) 0,0065 (3)	} Kα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5'' \end{array}$	(Ni) (Ni) (Ni)	8,2647 8,3287	} } }	0,00136 (5)	$\operatorname{K}'\beta_1$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{3,2}({\rm Ni}) \\ \gamma_{2,1}({\rm Ni}) \\ \gamma_{3,1}({\rm Ni}) \\ \gamma_{1,0}({\rm Ni}) \\ \gamma_{2,0}({\rm Ni}) \\ \gamma_{3,0}({\rm Ni}) \end{array}$	347,14 (7) 826,10 (3) 1173,228 (3) 1332,492 (4) 2158,57 (3) 2505,692 (5)	0,0075 (4) 0,0076 (8) 99,85 (3) 99,9826 (6) 0,0012 (2) 0,0000020 (4)

6 Main Production Modes

Co - $59(n,\gamma)$ Co - 60 $\sigma: 18,7$ (5) barns Possible impurities: None.

7 References

- J.J.Livingood, G.T.Seaborg. Rev. Mod. Phys. 12 (1940) 30 (Half-life)
- E.Segrè, C.E.Weigand. Phys. Rev. 75 (1949) 39 (Half-life)
- G.L.Brownell, C.J.Maletskos. Phys. Rev. 80 (1950) 1102 (Half-life)
- W.K.SINCLAIR, A.F.HOLLOWAY. Nature 167 (1951) 365 (Half-life)
- J.Tobailem. Compt. Rend. 233 (1951) 1360 (Half-life)
- J.Kastner, G.N.Whyte. Phys. Rev. 91 (1953) 332 (Half-life)
- E.E.LOCKETT, R.H.THOMAS. Nucleonics 11,3 (1953) 14 (Half-life)
- G.L.Keister, F.H.Schmidt. Phys. Rev. 93 (1954) 140 (Beta emission probabilities)
- J.L.Wolfson. Can. J. Phys. 33 (1955) 886 (Gamma emission probabilities)
- J.L.Wolfson. Can. J. Phys. 34 (1956) 256 (Beta emission probabilities)
- K.W.GEIGER. Phys. Rev. 105 (1957) 1593 (Half-life)
- J.P.KEENE, L.A.MACKENKIE, C.W.GILBERT. Phys. in Med. Biol. 2 (1958) 360 (Half-life)
- D.C.Camp, L.M.Langer, D.R.Smith. Phys. Rev. 123 (1961) 241 (Beta emission probabilities)
- S.G.GORBICS, W.E.KUNZ, A.E.NASH. Nucleonics 21,1 (1963) 63 (Half-life)
- S.C.Anspach, L.M.Cavallo, S.B.Garfinkel, J.M.R.Hutchinson, C.N.Smith. NP-15663 (1965) (Half-life)
- F.Lagoutine, Y.Le Gallic, J.Legrand. Int. J. Appl. Radiat. Isotop. 19 (1968) 475 (Half-life)

- H.H.HANSEN, A.SPERNOL. Z. Phys. 209 (1968) 111 (Beta emission probabilities)
- J.R.Van Hise, D.C.Camp. Phys. Rev. Lett. 23 (1969) 1248 (Gamma emission probabilities)
- F.Rauch, D.M.Van Patter, P.F.Hinrichsen. Nucl. Phys. A124 (1969) 145 (Gamma-ray energies)
- E.J.Hoffman, D.G.Sarantites. Phys. Rev. 181 (1969) 1597 (Gamma-ray energies)
- S.Raman. Z. Phys. 228 (1969) 387 (Beta emission probabilities)
- W.R.Dixon, R.S.Storey. Can. J. Phys. 48 (1970) 483 (Gamma-ray emission energies, Gamma-ray emission probabilities)
- J.LEGRAND, C.CLEMENT. Int. J. Appl. Radiat. Isotop. 23 (1972) 225 (Gamma-ray emission probabilities)
- G.Harbottle, C.Koehler, R.Withnell. Rev. Sci. Instrum. 44 (1973) 55 (Half-life)
- S.Raman, N.B.Gove. Phys. Rev. C7 (1973) 1995 (lg ft)
- B.Erlandsson, J.Lyttkens, A.Marcinkowski. Z. Phys. A272 (1975) 67 (Gamma-ray energies)
- D.C.CAMP, J.R.VAN HISE. Phys. Rev. C14 (1976) 261 (Gamma-ray energies and emission probabilities)
- M.A.Lone, C.B.Bigham, J.S.Fraser, H.R.Schneider, T.K.Alexander, A.J.Ferguson, A.B.McDonald. Nucl. Instrum. Methods 143 (1977) 33 (Gamma emission probabilities)
- R.Vaninbroukx, G.Grosse. Int. J. Appl. Radiat. Isotop. 27 (1977) 727 (Half-life)
- M.Fujishiro. J. Nucl. Sci.Technol. 15 (1978) 237 (Gamma emission probabilities)
- P.Schlüter, G.Soff. At. Data. Nucl. Data Tables 24 (1979) 509 (Internal Pair Creation Coefficient)
- H.HOUTERMANS, O.MILOSEVIC, F.REICHEL. Int. J. Appl. Radiat. Isotop. 31 (1980) 153 (Half-life)
- A.Rytz. NBS-Special publication 626 (1982) 32 (Half-life)
- A.R.Rutledge, L.V.Smith, J.S.Merritt. Nucl. Instrum. Methods 206 (1983) 211 (Half-life)
- K.F.Walz, K.Debertin, H.Schrader. Int. J. Appl. Radiat. Isotop. 34 (1983) 1191 (Half-life)
- H.H.HANSEN. European App.Res.Rept.Nucl.Sci.Technol. 6, 4 (1985) 777 (ICC)
- M.M.King. Nucl. Data Sheets 48 (1986) 25 (Spin and Parity, Multipolarities)
- S.Seuthe, H.W.Becker, C.Rolfs, S.Schmidt, H.P.Trautvetter, R.W.Kavanagh, F.B.Waanders. Nucl. Instrum. Methods Phys. Res. A272 (1988) 814 (Gamma emission probabilities)
- M.P.Unterweger, D.D.Hoppes, F.J.Schima. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- E.Schönfeld, H.Janssen. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic Data)
- R.G.Helmer, C.van der Leun. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma ray energies)
- M.P.UNTERWEGER. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- I.M. BAND, M.B. TRZHASKOVSKAYA, C. W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data. Nucl. Data Tables 81 (2002) 1 (Theoretical ICC)
- G. Audi, A.H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337
 (Q)

