Convolutional Neural Network

CSE 849 Deep Learning Spring 2025

Zijun Cui

Outline

History of CNN

- General architecture of CNN
 - Convolutional layer
 - Pooling layer
 - Downsampling and upsampling

How do animals see

- How do animals see?
 - What is the neural process from eye to recognition?
- Research:
 - how the brain processed images

NeoCognitron

Kunihiko Fukushima

 Visual system consists of a hierarchy of modules, each comprising a layer of "S-cells" followed by a layer of "C-cells"

Figures from Fukushima, '80

NeoCognitron

- The complete network
- U₀ is the retina
- In each subsequent module, the planes of the S layers detect plane-specific patterns in the previous layer (C layer or retina)
- The planes of the C layers "refine" the response of the corresponding planes of the S layers

S cell and C cell

- S-cells respond to the signal in the previous layer; C-cells confirm the S-cells' response
- Only S-cells are "plastic" (i.e. learnable), C-cells are fixed in their response
- S cells: RELU like activation
- C cells: Also RELU like, but with an inhibitory bias
 - Fires if weighted combination of S cells fires strongly enough

Learning in the neocognitron

Unsupervised learning

- Ensures different planes learn different features
 - E.g. Given many examples of the character "A" the different cell planes in the S-C layers may learn the patterns shown
 - Given other characters, other planes will learn their components
 - Going up the layers goes from local to global receptor fields

Neocognitron – finale

For an input digit, the model activates a specific neuron that represents the category of that digit.

- Fukushima showed it successfully learns to cluster semantic visual concepts
 - E.g. number or characters, even in noise

Adding Supervision

- The neocognitron is fully unsupervised
 - Semantic labels are automatically learned
- Can we add external supervision?
- Various proposals:
 - Temporal correlation: Homma, Atlas, Marks, '88
 - TDNN: Lang, Waibel et. al., 1989, '90
- Convolutional neural networks

Supervising the neocognitron

- Add an extra decision layer after the final C layer
 - Produces a class-label output
- We now have a fully feed forward MLP with shared parameters
 - All the S-cells within an S-plane have the same weights
- Simple backpropagation can now train the S-cell weights in every plane of every layer
 - C-cells are not updated

Supervising the neocognitron

- S planes of cells are modelled by a scan (convolution) over image planes by a single neuron
 - Convolutional layer
- C planes are emulated by cells that perform a max over groups of S cells
 - Pooling layer
- Giving us a "Convolutional Neural Network"
 LeNet (Lecun, Y, 1998)

Convolutional Neural Networks

The general architecture of a CNN

- A convolutional neural network comprises "convolutional" and "pooling" layers
 - Convolutional layers comprise neurons that scan their input for patterns
 - Correspond to S planes
 - Pooling layers perform max operations on groups of outputs from the convolutional layers
 - Correspond to C planes
 - The two may occur in any sequence, but typically they alternate
- Followed by an MLP with one or more layers

The general architecture of a CNN

- Convolutional layers and the MLP are *learnable*
 - Their parameters must be learned from training data for the target classification task
- Pooling layers are fixed and generally not learnable

A convolutional layer

- A convolutional layer comprises of a series of "maps"
 - Corresponding the "S-planes" in the Neocognitron
 - Variously called feature maps or activation maps

A convolutional layer

- Each activation map has two components
 - An affine map, obtained by convolution over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates on the output of the convolution

A convolutional layer: affine map

All the maps in the previous layer contribute to each convolution

A convolutional layer: affine map

- All the maps in the previous layer contribute to each convolution
 - In the following, we consider the contribution of a single map

What is a convolution

Example 5x5 image with binary pixels

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Input Map

- Scanning an image (generally speaking, a feature map) with a "filter"
 - Note: a filter is really just a perceptron, with weights and a bias

Jargon: filters are often called "Kernels"

What is a convolution

Filter					
1	0	1			
0	1	0			
1	0	1			

Input Map

Convolved Feature

- Scanning an image with a "filter"
 - At each location, the "filter and the underlying map values are multiplied component wise, and the products are added along with the bias

$$z(i,j) = \sum_{k=1}^3 \sum_{l=1}^3 w(k,l) \cdot I(i+l-1,j+k-1) + b$$

With multiple maps

- Each filter has multiple channels (corresponding to the number of input maps).
- Each channel processes
 one input map, and the
 results are summed up to
 produce one output map

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

$$z(1,i,j) = \sum_{m} \sum_{k=1}^{3} \sum_{l=1}^{3} w(1,m,k,l) I(m,i+l-1,j+k-1) + b$$

Typically, filters are of the same size for one CNN

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

A different view

Filter applied to kth layer of maps (convolutive component plus bias)

• .. A stacked arrangement of planes

bias

 We can view the joint processing of the various maps as processing the stack using a three-dimensional filter

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

 The computation of the convolutional map at any location sums the convolutional outputs at all planes

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

 The computation of the convolutional map at any location sums the convolutional outputs at all planes

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

 The computation of the convolutional map at any location sums the convolutional outputs at all planes

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

• The computation of the convolutional map at any location *sums* the convolutional outputs *at all planes*

The size of the convolution

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Input Map

Convolved Feature

- Image size: 5x5
- Filter: 3x3
- Output size = ?

The size of the convolution

- Image size: $N \times N$
- Filter: $M \times M$
- Output size = (N-M)+1 on each side

Convolution Size

- Simple convolution size pattern:
 - Image size: $N \times N$
 - Filter: $M \times M$
 - Output size (each side) = (N M) + 1
 - Assuming you're not allowed to go beyond the edge of the input
- Results in a reduction in the output size
 - Sometimes not considered acceptable

Solution

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

- Zero-pad the input
 - Pad the input image/map all around
 - Pad as symmetrically as possible, such that...
 - The result of the convolution is the same size as the original image

Zero padding

- For an *L* width filter:
 - Odd L: Pad on both left and right with (L-1)/2 columns of zeros
 - Even L: Pad one side with L/2 columns of zeros, and the other with $\frac{L}{2}-1$ columns of zeros
 - The resulting image is width N+L-1
 - The result of the convolution is width N
- The top/bottom zero padding follows the same rules to maintain map height after convolution

Convolution Summary

- Convolutional layers "scan" the input using a bank of "filters"
 - A "filter" is just a neuron in a scanning layer
- Each filter jointly scans the maps in the previous layer to produce an output "map"
 - As many output maps as *filters* (one output map per filter)
 - Regardless of the number of input maps
- Number of channels of a filter equals to the number of input maps
- We may have to pad the edges of the input maps to ensure that the output maps are the same size as input maps
 - If not, convolution loses rows/columns at the edges of the scan

A convolutional layer

- The convolution operation results in an affine map
- An Activation is finally applied to every entry in the map

The other component: Pooling

- Convolution (and activation) layers are followed intermittently by "pooling" layers
 - Typically (but not always) "max" pooling
 - Often, they alternate with convolution, though this is not necessary

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

- Max pooling scans with a stride of 1 confer jitter- robustness
 - Typically performed with a stride > 1, whereupon it also results in "downsampling"

Alternative to Max pooling: Mean Pooling

• Compute the mean of the pool, instead of the max

Alternative to Max pooling: p-norm

Single depth slice

P-norm with 2x2 filters and p = 5

$$y = \sqrt[p]{\frac{1}{K^2} \sum_{i,j} x_{ij}^p}$$

4.86	

• Compute a p-norm of the pool

У

Other options

- The pooling may even be a learned filter
 - The same network is applied on each block
 - (Again, a shared parameter network)

Pooling Summary

- Pooling layers "scan" the input using a "pooling" operation
 - E.g. selecting the max from a K x K block of input
- Each "pooling filter" scans an individual maps in the previous layer to produce an output "pooled map"
 - As many output maps as input maps
- For pooling we do not generally pad the edges
 - The zeros may result in incorrect pooled values, e.g. when all inputs are negative, and we apply max pooling

The types of layers considered so far

- So far we have only considered layers where the output size is approximately equal to input size
- There are two other operations that change the size of the output

The Downsampling Layer

- A downsampling layer simply "drops" S=1 of S rows and columns for every map in the layer
 - Effectively reducing the size of the map by factor S in every direction

Downsampling in practice

- In practice, the downsampling is combined with the layers just before it
 - Which could be convolutional or pooling layers

1	1	1	0	0
0	1	1	1	0
0	0	1 x1	1 ×0	1 ×1
0	0	1 x0	1 ×1	0 _{x0}
0	1	1 ×1	0 _{x0}	0 _{x1}

For an input of size $N \times N$ and filters of size $M \times M$ and stride S, the output size will be $\left\lfloor \frac{N-M}{S} \right\rfloor + 1$ on every side

Downsampling and Pooling

 Downsampling after a pooling layer can be merged with it to obtain pooling with stride S

• Find the max in each block and stride by 2

max pool with 2x2 filters and stride 2

6	8

• Find the max in each block and stride by 2

X

Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	

• Find the max in each block and stride by 2

X

Max Pooling

3

max pool with 2x2 filters and stride 2

6	8
3	4

• Find the max in each block and stride by 2

4

Mean Pooling

• Compute the mean of the pool, instead of the max

Downsampling: Size of output

- An $N \times N$ picture compressed by a $P \times P$ pooling filter with stride D results in an output map of side $\lceil (N-P)/D \rceil + 1$
 - Typically do not zero pad

The Upsampling Layer

- A *upsampling* (or dilation) layer simply introduces S-1 rows and columns for every map in the layer
 - Effectively *increasing* the size of the map by factor S in every direction
- Used explicitly to increase the map size by a uniform factor

The Upsampling Layer

- A upsampling layer is generally followed by a CNN layer
 - It is **not** useful to follow it by a pooling layer
 - It is also **not** useful as the *final* layer of a CNN

The Upsampling Layer

- Upsampling layers followed by a convolutional layer are also often viewed as convolving with a fractional stride
 - Upsampling by factor S is the same as striding by factor 1/S

Resampling Summary

- Map sizes can be changed by downsampling or upsampling
 - Downsampling: Drop S-1 of S rows and columns
 - Upsampling: Insert S-1 zeros between every two rows / columns
- Downsampling typically follows convolution or pooling
 - Reduces the size of the maps
- Upsampling occurs before convolution
 - Increases the size of the map
 - Does not generally occur before pooling layers