Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по дисциплине «Вычислительные комплексы» по лабораторной работе №1 «Расстояние Фреше»

Выполнил студент группы 3630102/60201

Чепулис М.А.

Преподаватель: Баженов А.Н.

Санкт-Петербург

Оглавление

Постановка задачи	3
Теория	
Реализация	
Результаты	2
Вычисление Расстояния Фреше для незамкнутых кривых	4
Вычисление Расстояния Фреше для «звёздных» множеств	5
Обсуждение	5
Литература	6
Приложение	7
' Код программы на Python	

Постановка задачи

Построить ломаные кривые

Вычислить для них расстояние Фреше

Показать, на каких элементах реализуется данное расстояние

Теория

При решении задач, для решения которых необходимо учитывать геометрические свойства множеств, возникает необходимость количественной оценки сходства форм областей.

Рассмотрим метрическое пространство с заданной на нём метрикой- (V,d)

Стандартный подход к вычислению расстояния Фреше между кривыми- вычисления дискретного расстояния Фреше для ломаных, которые приближают исходные кривые.

Пусть $P: [0, n] \rightarrow V$ — ломаная кривая

Q – Ломаная кривая

L– Сопряжение между двумя кривыми

Тогда Дискретное расстояние Фреше:

$$\delta_{dF}(P,Q) = min||L||$$

Реализация

Все задания были выполнены на языке программирования Python в среде разработки PyCharm

[1]

Работа с числами и массивами данных осуществлялась при помощи библиотеки Python – NumPy

Графики строились функциями библиотеки Python - matplotlib

Для проверки аппроксимации полученного решения из множества удаляются точки, на которых достигается расстояние Фреше и, вновь, проводится вычисление

Результаты

Вычисление Расстояния Фреше для незамкнутых кривых

P = [[0, 0], [4, 2], [6, 5], [12, 6], [15, 7], [15, 10], [18, 13]]

Q = [[1, 1], [2, 5], [7, 7], [8, 12], [13, 14], [15, 16]]

Тогда $\delta_{dF}(P,Q) = 7.280109889280518$

Между точками P[4] = (15, 7), и Q[4] = (13, 14)

Исключим полученные точки из множества и ещё раз измерим расстояние Фреше (dist_2)

P' = [[0, 0], [4, 2], [6, 5], [12, 6], [15, 10], [18, 13]]

Q' = [[1, 1], [2, 5], [7, 7], [8, 12], [15, 16]]

Тогда $\delta_{dF}(P',Q')=7.211102550927978$

Между точками P'[3] = (12, 9), и Q'[3] = (8, 12)

Figure 1 Расстояние Фреше для двух незамкнутых кривых

Вычисление Расстояния Фреше для «звёздных» множеств

P = [[2, 2], [3, 4], [2, 7], [5, 6], [9, 8], [8, 5], [10, 1], [6, 3], [2, 2]]

Q = [[12, 1], [10, 3], [6, 6], [9, 7], [10, 9], [12, 6], [15, 5], [13, 3], [12, 1]]

Тогда $\delta_{dF}(P,Q) = 10.04987562112089$

Между точками P[0] = (2, 2), и Q[0] = (12, 1)

Исключим полученные точки из множества и ещё раз измерим расстояние Фреше (dist_2)

P' = [[3, 4], [2, 7], [5, 6], [9, 8], [8, 5], [10, 1], [6, 3], [2, 2]]

Q' = [[10, 3], [6, 6], [9, 7], [10, 9], [12, 6], [15, 5], [13, 3], [12, 1]]

Тогда $\delta_{dF}(P',Q') = 7.0710678118654755$

Между точками P'[0] = (3, 4), и Q'[0] = (10, 3)

Figure 2 Расстояние Фреше для двух "звёздных" множеств

Обсуждение

Результаты вычислений совпадают ожидаемыми(примерами)

При данной схеме вычислений наиболее трудоёмкая операция – перебор всех вариантов при вычислении

$$\max\left(\min\left(d\left(a_{k_{i-1}},b_{m_{j}}\right),d\left(a_{k_{i-1}},b_{m_{j-1}}\right),d\left(a_{k_{i}},b_{m_{j-1}}\right),d\left(a_{k_{i}},b_{m_{j}}\right),\right)\right)$$

Если учитывать, что полученные на вход ломанные являются аппроксимациями неких кривых, то крайне сложно что-то утверждать о точности вычислений.

То что для первого примера расстояние Фреше мало изменилось — чистая случайность. Пример тому можно увидеть на втором примере. Из чего можно сделать вывод о том, что точность использованного метода крайне сильно зависит от точности аппроксимации.

Однако, т.к. дискретное расстояние Фреше — это расстояние между какими-то определёнными узлами, то погрешности самих вычислений являются минимальными.

Литература

- [1] Документация библиотеку Python numpy [Электронный ресурс] Режим доступа: http://www.numpy.org/ (дата обращения сентябрь 2019)
- [2] Пособие к Лабораторным работам [электронный ресурс, облачное хранилище] Режим доступа: https://cloud.mail.ru/public/4ra6/5wwqBzMBC/LabPractics.pdf (дата обращения сентябрь 2019)

Приложение

Код программы на Python

```
import matplotlib.pyplot as plt
            self.ca.append([])
            self.ind matrix.append([])
```

```
def get ind(self, index):
return solver.frechet()
             contains (P[d index[0]]):
   tmp P.remove(P[d index[0]])
```

```
x.append(elem[0])
y.append(elem[1])
```