

1-of-8 Decoder/ Demultiplexer

High-Performance Silicon-Gate CMOS

The 74HC138 is identical in pinout to the LS138. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC138A decodes a three-bit Address to one-of-eight active-low outputs. This device features three Chip Select inputs, two active-low and one active-high to facilitate the demultiplexing, cascading, and chip-selecting functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output; one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states.

• Outputs Directly Interface to CMOS, NMOS and TTL

• Operating Voltage Range: 2.0 to 6.0 V

• Low Input Current: 1.0 μA

• High Noise Immunity Characteristic of CMOS Devices

 In Compliance with the Requirements Defined by JEDEC Standard No. 7A

• Chip Complexity: 100 FETs or 29 Equivalent Gates

FUNCTION TABLE

		Inp	uts						Ou	tput	S		
CS1	CS2	CS3	A2	A 1	Α0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Х	Н	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	н
L	Χ	Χ	Χ	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high level (steady state); L = low level (steady state); X = don't care

PIN ASSIGNMENT

A0 [1 ●		v _{cc}
A1 [2	15] Y0
A2 [3	14] Y1
CS2 [4	13] Y2
CS3 [5	12] _{Y3}
CS1 [6	11] Y4
Y7 🛚	7	10] _{Y5}
GND [8	9] Y6

ORDERING INFORMATION

Device	Package	Shipping
74HC138N	DIP-16	2000 / Box
74HC138M/TR	SOP-16	2500 / Reel

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C

SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 .W/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
VCC	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		Vcc	V
TA	Operating Temperature, All Package Types	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	/ 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	Guaranteed Limit		
Symbol	Parameter	Test Conditions	V _{CC}	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
VIL	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
VOH	Minimum High–Level Output Voltage	$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{aligned} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & I_{\text{Out}} \leq 2.4 \text{ mA} \\ & I_{\text{Out}} \leq 4.0 \text{ mA} \\ & I_{\text{Out}} \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{CC}	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
VOL	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{split} V_{in} = V_{IH} \text{ or } V_{IL} & I_{Out} \leq 2.4 \text{ mA} \\ & I_{Out} \leq 4.0 \text{ mA} \\ & I_{Out} \leq 5.2 \text{ mA} \end{split}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
lin	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
ICC	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μА

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

			Gu	Guaranteed Limit			
Symbol	Parameter	V _{CC}	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit	
^t PLH [,] [†] PHL	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 4)	2.0 3.0 4.5 6.0	135 90 27 23	170 125 34 29	205 165 41 35	ns	
tPLH, tPHL	Maximum Propagation Delay, CS1 to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 85 22 19	140 100 28 24	165 125 33 28	ns	
tPLH, tPHL	Maximum Propagation Delay, CS2 or CS3 to Output Y (Figures 3 and 4)	2.0 3.0 4.5 6.0	120 90 24 20	150 120 30 26	180 150 36 31	ns	
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 4)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns	
C _{in}	Maximum Input Capacitance		10	10	10	pF	

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	55	pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

*Includes all probe and jig capacitance

PIN DESCRIPTIONS

ADDRESS INPUTS A0, A1, A2 (Pins 1, 2, 3)

Address inputs. These inputs, when the chip is selected, determine which of the eight outputs is active—low.

CONTROL INPUTS CS1, CS2, CS3 (Pins 6, 4, 5)

Chip select inputs. For CS1 at a high level and CS2, CS3 at a low level, the chip is selected and the outputs follow the

Address inputs. For any other combination of CS1, CS2, and CS3, the outputs are at a logic high.

OUTPUTS

Y0 - Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)

Active-low Decoded outputs. These outputs assume a low level when addressed and the chip is selected. These outputs remain high when not addressed or the chip is not selected.

74HC138 EXPANDED LOGIC DIAGRAM

