Теорема Клини. Окончание. Минимизация ДКА

Теория формальных языков $2023 \ z$.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, (\alpha_i|\epsilon), M_i \rangle$, где $q_i \in Q, \alpha_i \in \Sigma, M_i \in 2^Q$;
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

Сокращаем: $\langle q_1, \alpha, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, \alpha, M \rangle \in \delta \& q_2 \in M$.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A}=\langle Q, \Sigma, \mathfrak{q}_0, \mathsf{F}, \delta \rangle.$

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{l} \bullet \ q \overset{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \xrightarrow{\alpha_1} p_1 \ \& \ p_{k-1} \xrightarrow{\alpha_k} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \xrightarrow{\alpha_{i+1}} p_{i+1})). \end{array}$

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$.

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $q \xrightarrow{\alpha_1 \dots \alpha_k} q' \Leftrightarrow \exists p_1, \dots, p_{k-1}(q \xrightarrow{\alpha_1} p_1 \& p_{k-1} \xrightarrow{\alpha_k} q' \& \forall i, 1 \leqslant i < k 1(p_i \xrightarrow{\alpha_{i+1}} p_{i+1})).$

Определение

Язык \mathscr{L} , распознаваемый НКА \mathscr{A} — это множество слов $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q, \alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $\bullet \ q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

 ϵ -переходов нет \Rightarrow q $\stackrel{\alpha}{\longrightarrow}$ q' \Leftrightarrow \langle q, α , q' \rangle \in δ .

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q, \alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

$$\epsilon$$
-переходов нет \Rightarrow q $\stackrel{\mathfrak{a}}{\longrightarrow}$ q' \Leftrightarrow \langle q, \mathfrak{a} , q' \rangle \in δ .

Язык \mathscr{L} , распознаваемый \mathscr{A} — это множество слов $\{w \mid \exists \mathsf{q} \in \mathsf{F}(\mathsf{q}_0 \overset{w}{\longrightarrow} \mathsf{q})\}.$

Sink/trap state (состояние–ловушка)

«Ловушка» — не конечное состояние с переходами лишь в себя. Нужны для корректного задания ДКА, но иногда по умолчанию не описываются.

Автомат Томпсона

- Единственное начальное состояние
- Единственное конечное состояние
- Не больше двух переходов из каждого состояния

НКА можно описать посредством трёх матриц: вектор начальных состояний (в классическом определении оно одно); матрица переходов между состояниями; и вектор конечных состояний. Если принять первое состояние НКА стартовым, и допустить отсутствие переходов в стартовое состояние, то НКА представится следующей матрицей.

$$\left\langle \begin{pmatrix} 1 & \dots & 0 \end{pmatrix} & \begin{pmatrix} 0 & J_1 & \dots & J_n \\ 0 & F_{1,1} & \dots & F_{1,n} \\ & & \dots & \\ 0 & F_{n,1} & \dots & F_{n,n} \end{pmatrix} & \begin{pmatrix} c \\ U_1 \\ U_2 \\ \dots \\ U_n \end{pmatrix} \right\rangle$$

Тогда естественно строить объединение, конкатенацию и итерацию НКА посредством матричных операций.

7 / 50

$$\begin{split} A &= \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_1 & \dots & J_n \\ 0 & F_{1,1} & \dots & F_{1,n} \\ \dots & \dots & \dots & \dots \\ 0 & F_{n,1} & \dots & F_{n,n} \end{pmatrix} & \begin{pmatrix} c \\ u_1 \\ \dots \\ u_n \end{pmatrix} \right\rangle \\ B &= \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & K_1 & \dots & K_m \\ 0 & G_{1,1} & \dots & G_{1,m} \\ \dots & \dots & \dots & \dots \\ 0 & G_{m,1} & \dots & G_{m,m} \end{pmatrix} & \begin{pmatrix} d \\ \nu_1 \\ \dots \\ \nu_m \end{pmatrix} \right\rangle \\ A \mid B &= \left\langle \begin{pmatrix} 1 \dots 0 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_1 \dots & J_n & K_1 & \dots K_m \\ 0 & F_{1,1} \dots & F_{1,n} & 0 & \dots 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 \dots & 0 & G_{1,1} & \dots G_{1,m} \\ 0 & 0 \dots & 0 & G_{m,1} & \dots G_{m,m} \end{pmatrix} & \begin{pmatrix} c \mid d \\ u_1 \\ \dots \\ u_n \\ \nu_1 \\ \dots \\ \nu_m \end{pmatrix} \right\rangle \end{split}$$

$$\begin{split} A &= \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_1 & \dots & J_n \\ 0 & F_{1,1} & \dots & F_{1,n} \\ \dots & \dots & \dots & \dots \\ 0 & F_{n,1} & \dots & F_{n,n} \end{pmatrix} & \begin{pmatrix} c \\ u_1 \\ \dots \\ u_n \end{pmatrix} \right\rangle \\ B &= \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & K_1 & \dots & K_m \\ 0 & G_{1,1} & \dots & G_{1,m} \\ \dots & \dots & \dots & \dots \\ 0 & G_{m,1} & \dots & G_{m,m} \end{pmatrix} & \begin{pmatrix} d \\ v_1 \\ \dots \\ v_m \end{pmatrix} \right\rangle \\ A \cdot B &= \left\langle \begin{pmatrix} 1 \dots 0 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_1 \dots & J_n & c \cdot K_1 & \dots c \cdot K_m \\ 0 & F_{1,1} \dots & F_{1,n} & u_1 \cdot K_1 & \dots u_1 \cdot K_m \\ \dots & \dots & \dots & \dots \\ 0 & F_{n,1} \dots & F_{n,n} & u_n \cdot K_1 & \dots u_n \cdot K_m \\ 0 & 0 \dots & 0 & G_{1,1} & \dots G_{1,m} \\ 0 & 0 \dots & 0 & G_{m,1} & \dots G_{m,m} \end{pmatrix} & \begin{pmatrix} c \cdot d \\ u_1 \cdot d \\ \dots & \dots & \dots \\ u_n \cdot d \\ v_1 \\ \dots & \dots & \dots \\ v_m \end{pmatrix} \right\rangle \end{split}$$

$$A = \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_{1} & \dots & J_{n} \\ 0 & F_{1,1} & \dots & F_{1,n} \\ 0 & F_{n,1} & \dots & F_{n,n} \end{pmatrix} & \begin{pmatrix} c \\ u_{1} \\ \dots \\ u_{n} \end{pmatrix} \right\rangle$$

$$B = \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & K_{1} & \dots & K_{m} \\ 0 & G_{1,1} & \dots & G_{1,m} \\ \dots & \dots & \dots & \dots \\ 0 & G_{m,1} & \dots & G_{m,m} \end{pmatrix} & \begin{pmatrix} d \\ v_{1} \\ \dots \\ v_{m} \end{pmatrix} \right\rangle$$

$$A^{*} = \left\langle \begin{pmatrix} 1 \dots 0 \end{pmatrix} & \begin{pmatrix} 0 & J_{1} & \dots & J_{n} \\ 0 & H_{1,1} & \dots & H_{1,n} \\ \dots & \dots & \dots & \dots \\ 0 & H_{n,1} & \dots & H_{n,n} \end{pmatrix} & \begin{pmatrix} 1 \\ u_{1} \\ \dots \\ u_{n} \end{pmatrix} \right\rangle$$

Здесь $H_{i,j} = (U_i \cdot J_j) \mid F_{i,j}$. Таким образом, можно определить автомат для всех стандартных операций над базовыми автоматами, и конструкция рекурсивно распространяется на все регулярные выражения.

7 / 50

Линеаризация

Определение

Если регулярное выражение $r \in \mathcal{RE}$ содержит п вхождений букв алфавита Σ , тогда линеаризованное регулярное выражение Linearize(r) получается из r приписыванием i-ой по счёту букве, входящей в r, индекса i.

Пример

Рассмотрим регулярное выражение:

$$(ba | b)aa(a | ab)^*$$

Его линеаризованная версия:

$$(b_1a_2 \mid b_3)a_4a_5(a_6 \mid a_7b_8)^*$$

Множества First, Last, Follow

Определение

Пусть $r \in \Re \mathcal{E}$, тогда:

- множество First это множество букв, с которых может начинаться слово из $\mathcal{L}(r)$ (если $\varepsilon \in \mathcal{L}(r)$, то оно формально добавляется в First);
- множество Last это множество букв, которыми может заканчиваться слово из $\mathcal{L}(\mathbf{r})$;
- множество Follow(c) это множество букв, которым может предшествовать с. Т.е. $\{d \in \Sigma \mid \exists w_1, w_2(w_1cdw_2 \in \mathscr{L}(r))\}$.

Множество Follow в теории компиляции обычно определяется иначе — это множество символов, которые могут идти за выводом из определённого нетерминального символа. Два этих определения можно унифицировать, если рассматривать каждую букву в r как «обёрнутую» (в смысле, например, н.ф. Хомского).

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (ba \mid b)aa(a \mid ab)^*.$

Начнём с исходного регулярного выражения.

Исходное регулярное выражение

- $First(r) = \{b\}.$
- Last $(r) = \{a, b\}.$
- $\bullet \ Follow_r(a) = \big\{a,b\big\}; Follow_r(b) = \big\{a\big\}.$

Хотя данные множества описывают, как устроены слова из $\mathscr{L}(r)$ локально, однако они не исчерпывают всей информации о языке, поскольку разные вхождения букв в регулярное выражения никак не различаются.

Например, по множествам First и Last можно предположить, что $b \in \mathcal{L}(r)$, хотя это не так.

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (ba \mid b)aa(a \mid ab)^*$.

Вспомним, что $r_{Lin} = (b_1 a_2 \mid b_3) a_4 a_5 (a_6 \mid a_7 b_8)^*$.

Линеаризованное выражение

- First(r_{Lin}) = $\{b_1, b_3\}$.
- Last $(r_{Lin}) = \{a_5, a_6, b_8\}.$
- $$\begin{split} \bullet \ \, & \text{Follow}_{r_{\text{Lin}}}(b_1) = \big\{a_2\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_2) = \big\{a_4\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(b_3) = \big\{a_4\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_4) = \big\{a_5\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_5) = \big\{a_6, a_7\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_6) = \big\{a_6, a_7\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_7) = \big\{b_8\big\}; \, \text{Follow}_{r_{\text{Lin}}}(b_8) = \big\{a_6, a_7\big\}. \\ \end{aligned}$$

В описании данных множеств содержится исчерпывающая информация о языке $\mathcal{L}(r_{\mathsf{Lin}})$.

Конструкция автомата Глушкова

Алгоритм построения Glushkov(r)

- Строим линеаризованную версию r: $r_{\mathsf{Lin}} = \mathsf{Linearize}(r)$.
- ullet Ищем ${\sf First}(r_{\sf Lin})$, ${\sf Last}(r_{\sf Lin})$ и ${\sf Follow}_{r_{\sf Lin}}(c)$ для всех $c\in \Sigma_{r_{\sf Lin}}.$
- Все состояния автомата, кроме начального (назовём его S), соответствуют буквам $c \in \Sigma_{r_{\rm Lin}}$.
- Из начального состояния строим переходы в те состояния, для которых $c \in \text{First}(r_{\text{Lin}})$. Переходы имеют вид $S \stackrel{c}{\to} c$.
- Переходы из состояния с соответствуют элементам d множества Follow_{T₁} (c) и имеют вид $c \stackrel{d}{\to} d$.
- Конечные состояния такие, что $c \in \text{Last}(r_{\text{Lin}})$, а также S, если $\varepsilon \in \mathcal{L}(R)$.
- Теперь стираем разметку, построенную линеаризацией, на переходах автомата. Конструкция завершена.

Пример автомата Глушкова

Исходное регулярное выражение:

$$(ba | b)aa(a | ab)^*$$

Линеаризованное регулярное выражение:

$$(b_1a_2 | b_3)a_4a_5(a_6 | a_7b_8)^*$$

Автомат Глушкова:

Подграфы, распознающие регулярные выражения, являющиеся подструктурами исходного, не имеют общих вершин. Это свойство автомата Глушкова используется в реализациях match-функций некоторых библиотек регулярных выражений.

Свойства автомата Глушкова

- Не содержит ε-переходов.
- Число состояний равно длине регулярного выражения (без учёта регулярных операций), плюс один (стартовое состояние).
- В общем случае недетерминированный.

Примечание

Для 1-однозначных регулярных выражений r автомат Glushkov(r) является детерминированным. Эту его особенность активно используют в современных библиотеках регулярных выражений, например, в RE2. Выигрыш может получиться колоссальным: например, Thompson $((\mathfrak{a}^*)^*)$ является экспоненциально неоднозначным, а Glushkov $((\mathfrak{a}^*)^*)$ однозначен и детерминирован!

Построим НКА, распознающий $(a \mid (ab))^*b^+$.

- Линеаризуем: $E' = (a_1 \mid (a_2b_3))^*b_4^+$.
- Порождаем множества First, Last, Next:

$$\begin{aligned} & \mathsf{First}(\mathsf{E}') = \big\{ a_1, a_2, b_4 \big\} \\ & \mathsf{Last}(\mathsf{E}') = \big\{ b_4 \big\} \\ & \mathsf{Next}(\mathsf{E}') = \big\{ a_1 a_1, a_1 a_2, a_2 b_3, b_3 a_1, b_3 a_2, a_1 b_4, b_3 b_4, b_4 b_4 \big\} \end{aligned}$$

• Строим конечный автомат:

14 / 50

- Один из шагов детерминизации.
- Может пониматься в разных смыслах: удаление только переходов без изменения числа состояний, и построение состояний, замкнутых относительно ε-переходов (то есть аналогично детерминизации, но только по ε-переходам).

Результаты этих преобразований будут различны, причём первое сохраняет недетерминированные переходы, а второе может их детерминизировать.

Рассмотрим следующий автомат.

 ϵ -замыкание q_0 — это $\{q_0, q_1, q_2\}$. ϵ -замыкание q_3 — это $\{q_3, q_5\}$. ϵ -замыкание q_4 — это $\{q_4, q_5\}$. Остальные состояния ϵ -замкнуты собой. Результат первого преобразования:

Результат второго преобразования:

Результат первого преобразования:

Результат второго преобразования:

В первом случае q_3 и q_4 стали финальными, потому что из них есть путь по ϵ -переходам в финальное состояние. Дополнительно добавились переход из q_0 в q_5 по а (поскольку такой путь есть из ϵ -достижимого из q_0 состояния q_1) и аналогичный переход в q_5 по b. После чего все ϵ -переходы были удалены. Для завершения построения, следует ещё удалить недостижимые состояния q_1 и q_2 . Автомат остался недетерминированным.

Результат первого преобразования:

Результат второго преобразования:

Во втором случае є-замыкания состояний исходного автомата сразу же рассматривались как состояния нового автомата. Это привело к тому, что удалось сэкономить одно состояние, и результат оказался детерминированным.

Производные $\Re \mathcal{E}$

Множество $a^{-1}U = \{w \mid aw \in U\}$ называется производным Бзрозовски множества U относительно а. Если $\varepsilon \in \mathfrak{a}^{-1} U$, тогда а распознаётся выражением U.

 Λ_{F} положим равным $\{\epsilon\}$, если $\epsilon\in\mathsf{E}$, и пустым множеством иначе.

- $a^{-1}\varepsilon = \emptyset$, $a^{-1}\emptyset = \emptyset$:
- $a^{-1}a = \{\epsilon\}, a^{-1}b = \emptyset;$
- $a^{-1}(\Phi \mid \Psi) = a^{-1}(\Phi) \cup a^{-1}(\Psi)$;
- $a^{-1}(\Phi \Psi) = a^{-1}(\Phi)\Psi \cup \Lambda_{\Phi}a^{-1}(\Psi)$;
- $a^{-1}(\Phi^*) = a^{-1}(\Phi)\Phi^*$.

С помощью последовательного взятия производных можно свести задачу $w \in \mathcal{L}(\mathsf{R})$ к задаче $\varepsilon \in w^{-1}\mathsf{R}$. На этом построен ещё один способ преобразования $\Re \mathcal{E}$ к автомату.

Пример преобразования

Рассмотрим всё то же выражение $(a \mid (ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

- $a^{-1}(a \mid (ab))^*b^+ = (a^{-1}(a \mid (ab))^*)b^+ \cup (a^{-1}b^+)$, но второе очевидно пусто, поэтому $a^{-1}(a \mid (ab))^*b^+ = (\epsilon \mid b) \ (a \mid (ab))^*b^+;$
- $b^{-1}(a \mid (ab))^*b^+ = (b^{-1}(a \mid (ab))^*)b^+ \cup (b^{-1}b^+)$, и здесь как раз пусто первое, поэтому производная равна b^* .
- $a^{-1}b^* = \emptyset$; $b^{-1}b^* = b^*$.
- $a^{-1}((\varepsilon \mid b) (a \mid (ab))*b^+)$ вынуждает первую альтернативу в $(\varepsilon \mid b)$ и порождает само себя.
- $b^{-1}((\varepsilon \mid b) (a \mid (ab))^*b^+)$ порождает $(a \mid (ab))^*b^+ \mid b^*$.
- $a^{-1}((a \mid (ab))^*b^+ \mid b^*)$ порождает $(\epsilon \mid b) (a \mid (ab))^*b^+,$ $b^{-1}((a \mid (ab))^*b^+ \mid b^*)$ порождает $b^*.$
- Переходы замкнулись. Осталось собрать производные в состояния автомата.

Пример преобразования

Рассмотрим всё то же выражение $(a \mid (ab))^*b^+$. Построим по нему автомат с помощью производных Брзозовски.

Состояние	Производная
q_1	$(a \mid (ab))^*b^+$
q_2	$(\varepsilon \mid b) (a \mid (ab))^*b^+$
q_3	b*
q ₄	$(a (ab))^*b^+ b^*$
q_1 q_2 q_3 p	

Частичные производные Антимирова

 $\alpha_{c}(R)$ — это регулярное выражение R' такое, что если $w \in \mathcal{L}(R')$, то с $w \in \mathcal{L}(R)$. Обратное не обязательно выполняется. Вычислить частичные производные можно по следующему рекурсивному алгоритму.

$$\begin{array}{lll} \alpha_c(c) &=& \{\epsilon\} \\ \alpha_c(c') &=& \varnothing \\ \alpha_c(\epsilon) &=& \varnothing \\ \alpha_c(r_1\,r_2) &=& \begin{cases} \{r\,r_2 \mid r \in \alpha_c(r_1)\} \cup \alpha_c(r_2) & \text{если } \epsilon \in \mathscr{L}(r_1) \\ \{r\,r_2 \mid r \in \alpha_c(r_1)\} & \text{иначе} \end{cases} \\ \alpha_c(\bot) &=& \varnothing \\ \alpha_c(r_1|r_2) &=& \alpha_c(r_1) \cup \alpha_c(r_2) \\ \alpha_c(r*) &=& \{r'r* \mid r' \in \alpha_c(r)\} \end{array}$$

Автомат Антимирова аналогичен автомату Брзозовски, но состояния представляют собой элементы α_w , а не δ_w . Упрощать по АСІ состояния не требуется — их множество и так конечно.

Пример автомата Антимирова

Положим $R_1 = (ab|b)^*ba$.

Тогда (производные, равные пустому множеству, здесь опущены):

$$lpha_a(R_1) = \{b(ab|b)^*ba\}$$
 — положим $R_2 = b(ab|b)^*ba$ $lpha_b(R_1) = \{(ab|b)^*ba, a\}$ — положим $R_3 = a$ — тут ничего нового $lpha_a(R_3) = \{\epsilon\}$ — положим $R_4 = \epsilon$

Соответствующий автомат имеет состояния R_i и один недетерминированный переход.

Детерминизация НКА

\mathbf{O} т \mathscr{A} к $\mathsf{D}(\mathscr{A})$

Состояния DFA D(\mathscr{A}) — это состояния $\mathfrak{m}_i \in 2^Q$, где Q — состояния NFA \mathscr{A} .

- $m_0 = \{q_i \mid q_0 \stackrel{\epsilon}{\longrightarrow} q_i\};$
- $\bullet \ m_i \in F_D \Leftrightarrow \exists q_i, q_i \big\{ q_i \in m_i \ \& \ q_j \in F(\mathscr{A}) \ \& \ q_i \overset{\epsilon}{\to} q_j \big\};$
- $\bullet \ \langle \mathfrak{m}, \mathfrak{a}, \mathfrak{m}' \rangle \in \delta_D \Leftrightarrow \mathfrak{m}' = \big\{ q_\mathfrak{i} \mid \exists q_\mathfrak{j} \in \mathfrak{m}(q_\mathfrak{j} \stackrel{\mathfrak{a}}{\longrightarrow} q_\mathfrak{i}) \big\}.$

20 / 50

Пример детерминизации

$$\begin{array}{c} \bullet \ \left\{q_0\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_8\right\}, \\ \left\{q_0\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_9\right\}; \end{array}$$

$$\begin{split} \bullet & \left\{ q_1, q_8 \right\} \stackrel{\alpha}{\longrightarrow} \left\{ q_1, q_2 \right\}, \\ & \left\{ q_1, q_8 \right\} \stackrel{b}{\longrightarrow} \left\{ q_3 \right\}; \left\{ q_1, q_8 \right\} \sim m_1. \end{split}$$

$$\begin{split} \bullet & \left\{ q_1, q_2 \right\} \stackrel{\alpha}{\longrightarrow} \left\{ q_1, q_2 \right\}, \\ & \left\{ q_1, q_2 \right\} \stackrel{b}{\longrightarrow} \left\{ q_3 \right\}; \left\{ q_1, q_2 \right\} \sim m_2. \end{split}$$

$$\bullet \ \left\{q_3\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1,q_2\right\}, \left\{q_3\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\};$$

$$\begin{array}{c} \bullet \quad \left\{q_4,q_9\right\} \stackrel{b}{\longrightarrow} \left\{q_4,q_6\right\}, \\ \left\{q_4,q_9\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}; \left\{q_4,q_9\right\} \sim m_3; \end{array}$$

$$\begin{array}{l} \bullet \ \left\{q_4,q_6\right\} \stackrel{b}{\longrightarrow} \left\{q_4,q_6\right\}, \\ \left\{q_4,q_6\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}; \left\{q_4,q_6\right\} \sim m_4. \end{array}$$

$$\bullet \ \{q_5\} \stackrel{b}{\longrightarrow} \{q_4, q_6\}, \{q_5\} \stackrel{\alpha}{\longrightarrow} \{q_5\}.$$

Пример детерминизации

$$\begin{array}{c} \bullet \ \left\{q_0\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_8\right\}, \\ \left\{q_0\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_9\right\}; \end{array}$$

$$\begin{array}{c} \bullet \ \left\{q_1, q_8\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ \left\{q_1, q_8\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_8\right\} \sim m_1. \end{array}$$

$$\begin{split} \bullet & \left\{q_1, q_2\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ & \left\{q_1, q_2\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_2\right\} \sim m_2. \end{split}$$

$$\bullet \ \left\{q_3\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1,q_2\right\}, \left\{q_3\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\};$$

$$\begin{array}{c} \bullet \quad \left\{q_4, q_9\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_6\right\}, \\ \left\{q_4, q_9\right\} \stackrel{a}{\longrightarrow} \left\{q_5\right\}; \left\{q_4, q_9\right\} \sim m_3; \end{array}$$

$$\begin{array}{c} \bullet & \left\{q_4, q_6\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_6\right\}, \\ & \left\{q_4, q_6\right\} \stackrel{a}{\longrightarrow} \left\{q_5\right\}; \left\{q_4, q_6\right\} \sim m_4. \end{array}$$

$$\bullet \ \left\{q_5\right\} \stackrel{b}{\longrightarrow} \left\{q_4, q_6\right\}, \left\{q_5\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_5\right\}.$$

Замыкания регулярных языков

Гомоморфизм над свободной полугруппой (множеством слов) полностью определяется значениями на буквах, поскольку по определению $h(a_1 \circ a_2 \circ \cdots \circ a_n) = h(a_1) \circ h(a_2) \circ \cdots \circ h(a_n)$. Здесь \circ —конкатенация.

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма h язык $\big\{ \mathfrak{h}(w) \mid w \in \mathscr{L} \big\};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\{w \mid {\mathsf h}(w) \in {\mathscr L}\}.$

Замыкания регулярных языков

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\big\{{\mathsf h}(w)\ |\ w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма h язык $\big\{ w \mid {\mathsf h}(w) \in {\mathscr L} \big\}.$

Рассмотрим ДКА $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий \mathscr{L} . Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, Q\setminus F, \delta \rangle$. Тогда $w\notin \mathscr{L} \Leftrightarrow w\in \mathscr{L}(\mathscr{A}')$.

Замыкания регулярных языков

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\big\{{\mathsf h}(w)\ |\ w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык ${\mathsf w} \mid {\mathsf h}({\mathsf w}) \in {\mathscr L} \}.$

Рассмотрим регулярное выражение R такое, что $\mathscr{L}(R) = \mathscr{L}$. Заменим в нём все $\mathfrak{a}_i \in \Sigma$ на $h(\mathfrak{a}_i)$. Полученное таким образом выражение R' также регулярно, причём $\mathscr{L}(R') = h(\mathscr{L})$.

22 / 50

Замыкания регулярных языков

Утверждение

Пусть \mathscr{L} — регулярный язык над Σ . Тогда регулярны:

- язык $\Sigma^* \setminus \mathscr{L}$;
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\big\{{\mathsf h}(w)\mid w\in\mathscr{L}\big\};$
- ullet для любого гомоморфизма ${\mathsf h}$ язык $\{w \mid {\mathsf h}(w) \in {\mathscr L}\}.$

Рассмотрим ДКА $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий $\mathscr{L}.$ Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, F, \delta' \rangle$ такой, что $\langle q_i, \alpha, q_j \rangle \in \delta' \Leftrightarrow q_i \stackrel{h(\alpha)}{\longrightarrow} q_j$ в исходном автомате $\mathscr{A}.$

Примеры

Рассмотрим язык $\mathscr{L}' = \big\{ a^n b^m \mid n \neq m \big\}.$ Предположим, \mathscr{L}' регулярен. Тогда $a^*b^* \setminus \mathscr{L}' = \big\{ a^n b^n \big\}$ также регулярен, а мы знаем, что это не так. \bot

23 / 50

Примеры

Рассмотрим язык $\mathscr{L}'=\left\{a^nb^m\mid n\neq m\right\}.$ Предположим, \mathscr{L}' регулярен. Тогда $a^*b^*\setminus \mathscr{L}'=\left\{a^nb^n\right\}$ также регулярен, а мы знаем, что это не так. \bot

Рассмотрим язык $\mathscr{L}^f = \big\{ (abaabb)^n b^n \big\}.$ Попытка доказать его нерегулярность леммой о накачке породит перебор по накачиваемым строкам $(abaabb)^+$, $(abaabb)^*a$, $(abaabb)^*ab$, $(abaabb)^*aba$, $(abaabb)^*aba$, $(abaabb)^*abaa$, Рассмотрим гомоморфизм h(a) = abaabb, h(b) = b. $h^{-1}(\mathscr{L}^f) = \big\{ a^n b^n \big\}$, который был бы регулярен, если бы L^f был регулярен. \bot

23 / 50

Labelled Transition Systems

Понятие бисимуляции возникло в контексте систем размеченных переходов (LTS).

Определение

Labelled Transition System — тройка $\langle S, \Sigma, Q \rangle$, где S — множество состояний, Σ — множество меток, Q — множество переходов (троек из $S \times \Sigma \times S$).

LTS похожи на конечные автоматы, но допускают бесконечные множества S и Q. Кроме того, в LTS нет начальных и финальных состояний.

Трансформационный моноид также строится в контексте LTS, то есть без учёта финальности состояний. Поэтому из ДКА, по которому строится трансформационный моноид, предварительно удаляются все ловушки, иначе в нём могут появиться правила переписывания, не имеющие никакого отношения к языку ДКА.

Симуляция и бисимуляция

Определение

Если \precsim — симуляция для LTS = $\langle S, \Sigma, Q \rangle$, то

$$\forall \mathfrak{p},\mathfrak{q} \in S(\mathfrak{p} \precsim \mathfrak{q} \Rightarrow (\exists \mathfrak{p}',\mathfrak{a}((\mathfrak{p} \overset{\alpha}{\longrightarrow} \mathfrak{p}') \Rightarrow \exists \mathfrak{q}'(\mathfrak{q} \overset{\alpha}{\longrightarrow} \mathfrak{q}' \And \mathfrak{p}' \precsim \mathfrak{q}'))$$

Если одновременно выполняются условия $p \lesssim q$ и $q \lesssim p$, то говорят, что p и q находятся в отношении бисимуляции (обозначается $p \sim q$).

Можно считать, что если р \lesssim q, то множество путей в LTS, стартующих в р, вкладывается в множество путей с началом в q. Бисимуляция состояний в единственной LTS легко обобщается и на бисимуляцию между двумя разными LTS. Поскольку в них нет начальных состояний, и они не обязаны быть связными, можно рассматривать несколько LTS как одну LTS с несколькими компонентами и искать бисимуляцию между элементами этих компонент.

Бисимилярность НКА

Чтобы определить отношение бисимуляции на конечных автоматах, к отношению бисимуляции на LTS нужно добавить ограничения на бисимуляцию начальных и конечных состояний. Более точно, для бисимуляции НКА \mathcal{A}_1 и \mathcal{A}_2 необходимы следующие условия:

- каждому состоянию \mathcal{A}_1 бисимилярно состояние \mathcal{A}_2 , и наоборот;
- **2** стартовому состоянию \mathcal{A}_1 бисимилярно стартовое состояние \mathcal{A}_2 ;
- **3** каждому финальному состоянию \mathcal{A}_1 бисимилярно финальное состояние \mathcal{A}_2 , и наоборот.

Лемма

Бисимилярные НКА распознают равные языки.

Пример бисимилярных НКА

Рассмотрим следующие два автомата, распознающие язык $\mathfrak{a}^*\mathfrak{b}$. Автомат \mathscr{A}_1 :

Их бисимуляция:

$$\{\langle S, S' \rangle, \langle T, S' \rangle, \langle F, F' \rangle\}$$

Состояния S и T бисимилярны одному и тому же состоянию S'.

Автомат \mathcal{A}_2 :

Бисимуляция и равенство

В равных НКА состояния бисимилярны, однако только условия существования бисимуляции и биекции бисимилярных состояний недостаточно, чтобы гарантировать равенство.

Пример неравных бисимилярных НКА

(автор примера: А. Д. Дельман)

Следующие два автомата бисимилярны и имеют одинаковое число состояний, однако не равны:

Бисимилярность состояний в НКА

Определение

Состояния q_i q_j в НКА \mathscr{A} бисимилярны $(q_i \sim_{\mathscr{A}} q_j)$, если они связаны LTS-бисимуляцией и имеют одинаковую финальность в \mathscr{A} .

- С учётом определения выше, бисимуляцию НКА можно переформулировать как отношение бисимуляции состояний НКА такое, что стартовые состояния бисимилярны.
- Отношение ~ имеет важное свойство: бисимилярные состояния в автомате можно объединить без изменения его семантики. Это преобразование часто позволяет существенно упростить НКА.

Бисимилярность состояний в НКА

Определение

Состояния q_i q_j в НКА $\mathscr A$ бисимилярны $(q_i \sim_\mathscr A q_j)$, если они связаны LTS-бисимуляцией и имеют одинаковую финальность в $\mathscr A$.

Пример

Все состояния-ловушки в любом полном автомате (т.е. с явно присутствующими переходами по всем буквам алфавита) бисимилярны друг другу. Все финальные состояния без переходов из них (кроме как в ловушки) также бисимилярны.

Пример слияния по бисимуляции

Исходный автомат:

Итоговый автомат:

Бисимуляция:
$$\left\{\left\{q_3,q_6\right\}, \bigcup_{i \neq 3\& i \neq 6}\left\{q_i\right\}\right\}$$

Кроме q₃ и q₆, все состояния не бисимилярны никаким другим.

Например, $q_1
ightharpoonup q_5$, поскольку $q_1 \xrightarrow{b} q_0$, $q_5 \xrightarrow{b} q_6$, но $q_0 \xrightarrow{a} q_1$ (и q_1 — не финальное), а из q_6 есть переход только в финальное состояние q_2 . 30/50

Трансформационный моноид

Функции переходов по слову в ДКА

Правила перехода в ДКА \mathscr{A} над алфавитом Σ и множеством состояний Q определяются функцией $\Sigma \times Q \to Q$. Если специализировать её по первому аргументу, получится функция $F_{\xi}:Q\to Q$ ($\xi\in\Sigma$). Эту функцию можно продолжить на строки, положив $F_{\xi}\circ F_{\eta}=F_{\eta\,\xi}$.

Пусть мы строим функцию переходов по слову ab в автомате \mathcal{A} . Сначала определим функции F_a , F_b , определяющие его поведение на буквах a и b. Тогда поведение переходов на слове ab получится композицией F_a и F_b .

	q_0	q_1	q_2
а	q_1	q_2	q_2
b	q ₂	q_1	q_1
ab	q_1	q_1	q_1

Функции переходов по слову в ДКА

Свойства множества функций переходов ДКА А

- Существует единичная функция F_{ϵ} такая, что $F_{\epsilon} \circ F_{\xi} = F_{\xi} \circ F_{\epsilon} = F_{\xi}.$
- Композиция о ассоциативна.

Таким образом, функции переходов по словам из Σ^* в ДКА \mathscr{A} образуют моноид относительно композиции.

Если ДКА представлен в краткой (trim) форме, некоторые переходы могут вести «в никуда». На самом деле они ведут в (единственное!) состояние-ловушку, существование которого неявно подразумевается. Однако наличие нескольких ловушек в ДКА повлечёт ошибки при построении функции переходов.

Определение и свойства

Определение

Трансформационный моноид $\mathcal{M}_{\mathscr{A}}$ для ДКА \mathscr{A} — это моноид функций F_ξ таких, что $\mathsf{F}_\xi(\mathsf{q}_\mathfrak{i}) = \mathsf{q}_\mathfrak{j} \Leftrightarrow (\mathsf{q}_\mathfrak{i} \overset{\xi}{\longrightarrow} \mathsf{q}_\mathfrak{j} \ \mathsf{B}$ $\mathscr{A}).$ Иначе можно сказать, что трансформационный моноид $\mathcal{M}_\mathscr{A}$ определяется множеством классов эквивалентности $\left\{w \mid w \in \Sigma^+\right\}$ таким, что $w_\mathfrak{i} = w_\mathfrak{j} \Leftrightarrow \mathsf{F}_{w_\mathfrak{i}} = \mathsf{F}_{w_\mathfrak{j}}.$

Определение и свойства

- $\mathcal{M}_{\mathscr{A}}$ определяется фактормножеством классов эквивалентности и правилами переписывания, задающими эквивалентность. ε обычно не включается в множество w_i .
- Поскольку множество функций F_{w_i} в случае ДКА конечно, то $\mathcal{M}_{\mathscr{A}}$ содержит конечное число классов эквивалентности (верно и обратное: каждый такой моноид определяет ДКА).
- Трансмоноид строится для ДКА без ловушек; переход в ловушку обозначается в таблице переходов просто прочерком.
- Для единообразия записи трансформаций и перестановок в алгебре, в таблице переходов пишут только номера состояний \mathscr{A} .

Построение трансф. моноида

Определим соответствие между буквами и множествами переходов по ним и будем расширять этот список новыми словами в лексикографическом порядке. Если очередное слово задаёт такую же трансформацию, как и уже рассмотренное, порождаем соответствующее правило переписывания.

Классы э	кви	вал	ентности	Правила переписывания
	0	1	2	
a	1	1	1	
b	0	2	2	
С	_	1	2	

Построение трансф. моноида

				U	
Классы эн	квин	вале	ентности	Правила пер	еписывания
	0	1	2		
a	1	1	1	$aa \rightarrow a$	$\alpha c \to \alpha$
b	0			ba o a	$bb \to b$
c	_	1	2	$cb \rightarrow bc$	cc ightarrow c
ab	2	2	2	abc o ab	$bca \to ca$
bc	_	2	2	$cab \rightarrow bc$	
са	_	1	1		

Всего классов эквивалентности: 6

Синтаксический моноид

Определим отношение синтаксической конгруэнтности слов:

$$w_i \sim_{\mathscr{L}} w_j \Leftrightarrow \forall x, y(xw_i y \in \mathscr{L} \Leftrightarrow xw_j y \in \mathscr{L})$$

Синтаксический моноид $\mathcal{M}(\mathscr{L})$ — это множество его классов эквивалентности относительно \mathscr{L} . То есть такая полугруппа с единицей над $w \in \Sigma^*$, что $w_i = w_j \Leftrightarrow w_i \mathscr{L} w_j$ (равенство здесь понимается в алгебраическом смысле: как возможность преобразовать w_i и w_j к одному и тому же слову).

Лемма

Синтаксический моноид регулярного языка \mathscr{L} совпадает с трансф. моноидом минимального ДКА, его распознающего.

Синтаксический моноид (так же, как и минимальный ДКА) — атрибут *языка*, а трансф. моноид — атрибут *конкретного ДКА*.

Суффиксная конгруэнтность

Предшествующие понятия рассматривали структуру переходов

автомата без учёта начальных и конечных состояний, хотя неявно они использовались, чтобы удалить недостижимые состояния и состояния-ловушки при подготовке к построению моноида. Однако если чуть-чуть специализировать отношение $\sim_{\mathscr{L}}$, положив возможные префиксы пустыми, получится отношение эквивалентности, напрямую зависящее от положения стартовых и

Определим отношение эквивалентности по Нероуду как:

финальных состояний в минимальном ДКА.

$$w_i \equiv_{\mathscr{L}} w_j \Leftrightarrow \forall y (w_i y \in \mathscr{L} \Leftrightarrow w_j y \in \mathscr{L})$$

Обозначение $\sim_{\mathscr{L}}$ может использоваться в литературе как в смысле синтаксической конгруэнции, так и в смысле эквивалентности по Нероуду. Лучше дополнительно уточнить.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

 \Rightarrow : Пусть $\mathscr L$ регулярен. Тогда он порождается некоторым DFA $\mathscr A$ с конечным числом состояний N. Значит, множество $\left\{q_i \mid q_0 \stackrel{w}{\longrightarrow} q_i\right\}$ конечно, а для каждых двух w_1, w_2 таких, что $q_0 \stackrel{w_1}{\longrightarrow} q_i$ и $q_0 \stackrel{w_2}{\longrightarrow} q_i$, выполняется $w_1 \equiv_{\mathscr L} w_2$.

 \Leftarrow : Пусть все слова в Σ^* принадлежат N классам эквивалентности A_1, \ldots, A_n по $\equiv_{\mathscr L}$. Построим по ним DFA $\mathscr A$, распознающий $\mathscr L$. Классы A_i сопоставим состояниям:

- Начальным объявим класс эквивалентности A_0 такой, что $\epsilon \in A_0$.
- Конечными объявим такие A_j , что $\forall w \in A_j (w \in \mathcal{L})$.
- Если $w \in A_i$, $w \, a_k \in A_j$, тогда добавляем в δ правило $\langle A_i, a_k, A_j \rangle$.

Трансформационный моноид и $\equiv_{\mathscr{L}}$

- Классы эквивалентности по Майхиллу–Нероуду можно извлечь из трансформационного моноида минимального ДКА для языка £: они являются подмножеством факторслов, которые переводят стартовое состояние в какое-то другое (непустое) состояние.
- Для каждой пары таких факторслов w_i и w_j , переводящих стартовое состояние в разные состояния q_i и q_j , в синтаксическом моноиде обязательно найдётся различающий суффикс (т.е. класс эквивалентности и такой, что w_i $u \in \mathcal{L}$ & w_j $u \notin \mathcal{L}$, либо наоборот).
- Если в ДКА существует ловушка (возможно, неявная), то в трансформационном моноиде найдётся класс эквивалентности, переводящий в неё стартовое состояние. Таких классов может быть несколько, но с точки зрения эквивалентности по Майхиллу–Нероуду, они не различаются.

Пример

Включим в число факторслов ε и выделим по одному факторслову для каждого состояния q_i , переводящему стартовое слово в q_i . Для каждого из них определим множество суффиксов, которые оставляют слова этих классов в языке. После этого достаточно собрать вместе все суффиксы и префиксы и выкинуть из полученной таблицы дубли столбцов.

-			1	TD /				
	Факторслова-префиксы			Таблица клас	сов	ЭКВІ	ивале	нтности
-	префикс	0 →?	суффиксы		ε	b	ab	
	ε	0	ab	ε	_	_	+	
	а	1	b, ab	a	_	+	+	
	ab	2	ε, b, ab	ab	+	+	+	

Минимизация ДКА

- **1** Построим таблицу всех двухэлементных множеств $\{q_i, q_j\}, q_i, q_j \in Q.$
- **2** Пометим все множества $\{q_i, q_j\}$ такие, что одно из q_i, q_j из F, а второе нет.
- \mathbf{g} Пометим все множества $\left\{q_i,q_j\right\}$ такие, что $\exists \mathfrak{a}(q_i \overset{\mathfrak{a}}{\longrightarrow} q_1' \& q_j \overset{\mathfrak{a}}{\longrightarrow} q_2' \& \left\{q_1',q_2'\right\}$ помеченная пара).
- Продолжаем шаг 3, пока не будет появляться новых помеченных пар.

Пары, оставшиеся непомеченными, можно объединить.

$\overline{\mathfrak{m}_1}$						
m_2						
q ₃	√	√	√			
m_3				√		
m_4				√		
q_5	√	√	√		√	√
	q ₀	m_1	m_2	q ₃	m_3	m_4

$\overline{m_1}$						
\mathfrak{m}_2						
q ₃	√	√	√			
m_3				√		
m ₄				√		
q_5	√	√	√		√	√
	q ₀	m_1	m_2	q ₃	m_3	m_4

$$m_1, m_2$$
 $\xrightarrow{\alpha} m_2 \quad \{m_1, m_2\} \xrightarrow{b} q$

\mathfrak{m}_1	√					
m_2	✓					
q_3	✓	√	√			
m_3				√		
m ₄				√		
q_5	√	√	√		√	√
	q_0	m_1	m_2	q ₃	m_3	m_4

$$q_0 \xrightarrow{a} m_1, m_3 \xrightarrow{a} q_5$$
 $q_0 \xrightarrow{a} m_1, m_4 \xrightarrow{a} q_5$ $m_1 \xrightarrow{a} m_2, m_3 \xrightarrow{a} q_5$ $m_2 \xrightarrow{a} m_2 \xrightarrow{a} m_3 \xrightarrow{a} q_5$

$$q_0 \xrightarrow{\alpha} m_1, m_4 \xrightarrow{\alpha} q_5$$

$$q_0 \xrightarrow{a} m_1, m_3 \xrightarrow{a} q_5$$
 $q_0 \xrightarrow{a} m_1, m_4 \xrightarrow{a} q_5$ $m_1 \xrightarrow{a} m_2, m_3 \xrightarrow{a} q_5$ $m_2 \xrightarrow{a} m_2, m_3 \xrightarrow{a} q_5$ $m_1 \xrightarrow{a} m_2, m_4 \xrightarrow{a} q_5$ $m_2 \xrightarrow{a} m_2, m_4 \xrightarrow{a} q_5$

$\overline{m_1}$	√					
m_2	√					
q ₃	√	√	√			
m_3	\checkmark	√	√	√		
m ₄	√	√	√	√		
q ₅	√	√	√		√	√
	q ₀	m_1	m_2	q ₃	m_3	m ₄

$$\begin{cases}
m_3, m_4 \\ \xrightarrow{a} q_5 \\ q_3 \xrightarrow{a} m_2, q_5 \xrightarrow{a} m_4
\end{cases}
\begin{cases}
m_3, m_4 \\ \xrightarrow{b} m_4
\end{cases}$$

m_1	√					
m_2	√					
q_3	√	√	√			
m_3	√	√	√	√		
m_4	√	√	√	√		
q ₅	√	√	√	√	√	√
	q ₀	m_1	\mathfrak{m}_2	q ₃	m_3	m ₄

Можно объединить состояния m_1 и m_2 и состояния m_3 и m_4 .

m_1	√					
\mathfrak{m}_2	✓					
q_3	✓	√	√			
m_3	✓	√	√	√		
m_4	√	√	√	√		
q_5	√	√	√	√	√	√
	q_0	m_1	m_2	q ₃	m_3	m ₄

Меньше чем пятью состояниями не обойтись. Рассмотрим слова ε , α , b, αb , $b \alpha$. Каждые два из них различаются по $\equiv_{\mathscr{L}}$ при выборе одного из трёх z: ε , α или b.

Связь М.- N. и производных

Пусть $w^{-1}U$ — это производная U по w, т.е. $\{v \mid wv \in U\}$. Тогда выполнено $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$.

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.

Связь М.– N. и производных

Пусть $w^{-1}U$ — это производная U по w, т.е. $\{v \mid wv \in U\}$. Тогда выполнено $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$.

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.

Но проблема с правилами переписывания (АСІ):

- $(w_1 | w_2) | w_3 = w_1 | (w_2 | w_3)$
- $w_1 | w_2 = w_2 | w_1$
- $w \mid w = w$

Пример проблемного выражения: а*а*.

Применение теоремы M.- N.

Задача

Дан язык \mathscr{L} . Показать, что он не регулярен, пользуясь теоремой Майхилла–Нероуда.

Стандартный подход

- Подобрать бесконечную последовательность префиксов w_1, \ldots, w_n, \ldots
- **②** Подобрать бесконечную последовательность суффиксов z_1, \ldots, z_n, \ldots , такую, что $w_i +\!\!\!\!+ z_i \in \mathscr{L}$.
- **3** Доказать, что в таблице конкатенаций все строки различны (значит, $\forall i, j \exists k(w_i z_k \in \mathcal{L} \& w_j z_k \notin \mathcal{L})$).

Диагональная конструкция

Рассмотрим язык $L = \{a^nb^n\}$. Положим $w_i = a^i, z_i = b^i$. Тогда таблица конкатенаций w_i, z_j будет выглядеть следующим образом. Здесь + — это то же, что « $\in \mathcal{L}$ », — читаем как « $\notin \mathcal{L}$ ».

	$z_1 = b$	$z_2 = b^2$	$z_3 = b^3$	$\dots z_n = b^n$.	
$w_1 = a$	+	_	_	_	
$w_2 = a^2$	_	+	_	_	
$w_3 = a^3$	_	_	+	_	
$w^n = a^n$	_	_	_	+	

44 / 50

Доказательство минимальности

Так же можно обосновывать минимальность DFA. Рассмотрим минимальный автомат из примера выше. Его язык — слова в $\{a,b\}^*$, начинающиеся и заканчивающиеся одной и той же буквой. Построим таблицу классов эквивалентности по $w_i \in \{\epsilon,a,b,ab,ba\}$.

	ε	a	b
ε	+	+	+
а	+	+	_
b	+	_	+
ab	_	+	_
ab ba	—	_	+

В этой таблице все строчки различны, значит, выбранные w_i действительно лежат в различных классах эквивалентности, и DFA, распознающий язык \mathcal{L} , не может иметь меньше пяти состояний.

При доказательстве минимальности DFA достаточно подобрать $[\log_2 n] + 1$ различающих суффиксов z_i , где n — число состояний автомата.

О порождении новых алгоритмов

Допустим существование нескольких начальных состояний у КА. Пусть \mathscr{A} — НКА. Тогда $\det(\text{reverse}(\det(\text{reverse}(\mathscr{A}))))$ — минимальный ДКА, эквивалентный \mathscr{A} .

Многие алгоритмы для порождения малых (не минимальных) NFA являются комбинациями нескольких базовых операций.

- Обращение автомата
- Детерминизация
- Удаление ε-правил
- Минимизация
- Разметка

Несколько конструкций

- Автомат Глушкова: rmeps(Th(R));
- Автомат Антимирова: rmeps(deannote(minimize(rmeps(annote_eps(Th(R)))));
- Автомат Илия-Ю: deannote(minimize(rmeps(annote(Th(R))))).