ST IS SOUNT IN

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND
TECHNICAL INFORMATION
Hardcopy Microfiche
\$/.00 \$,50 2/pp.as
ARCHIVE COPY

NOLTR 65-209

Code 1

CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K

1 DECEMBER 1965

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOLTR 65-209

Distribution of this document is unlimited.

UNCLASSIFIED NOLTR 65-209

Ballistics Research Report 153

CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K

Prepared by: D. N. Bixler, R. Piacesi, and A. E. Seigel

ABSTRACT: Isentropic data for real hydrogen are calculated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. The effects of ionization, excitation, and dissociation are considered negligible because of the relatively low temperatures and high densities involved. The effects of the intermolecular force are accounted for by fitting a virial coefficient equation to low temperature high density experimental data. These calculated data in turn are fitted to an empirical entropic equation of state. This particular equation of state is convenient for describing many thermodynamic processes.

U. S. NAVAL ORDNANCE LABORATORY White Oak, Maryland

i UNCLASSIFIED

1 December 1965

CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K

Modern two-stage gun launchers use hydrogen as the propellant gas. The prediction of the performance of such launchers requires knowledge of the hydrogen gas thermodynamic data. This paper presents calculated thermodynamic data for hydrogen.

The authors acknowledge with gratitude the cooperation of Dr. Harold Woolley of the National Bureau of Standards. Dr. Woolley supplied the computer program with which the properties of hydrogen were calculated. The authors also thank Mrs. Louise Brown, who performed a great deal of the calculations for this report.

J. A. DARE Captain, USN Commander

R. KENNETH LOBB
By direction

CONTENTS

Page

A Brief Description of Reference 1 Extending the Calculation of Reference 1.	2
ILLUSTRATIONS	
Figure Title	
1 Empirical Constant B vs. T (Reference 2 Empirical Constant C vs. T (Reference 3 P-V Diagram for Real Hydrogen 4 Empirical Constant β vs. Entropy	ce 1) ce 1)
5 Empirical Constant $\frac{f}{v_0}$ vs. Entropy	
	Entropy
TABLES	
Table Title	
Properties of Hydrogen from Extended Woolley, Scott, and Brickwedde of Empirical Constants of Equation (1) Obtained from Three-Point Fits to	NBS (Reference 1) vs. Entropy S as
REFERENCES	
(1) Woolley, Harold W., Scott, Russell B. Brickwedde, F. G., "Compilation of Thof Hydrogen in its Various Isotopic a Modifications, "National Bureau of St Paper RP1932, Volume 41, November 194	nd Ortho-Para andards Research
(2) Seigel, A. E., "A Convenient and Accu Empirical Entropic Equation for use i Ballistic Calculations," NAVORD Repor February 1953	n Internal

(3) Seigel, A. E., "The Theory of High Speed Guns," Agardograph 91, May 1965

List of Symbols

```
pressure, in units of atmospheres
p
      density, in units of amagat
      (at 1 amagat, \rho=5.60648 x 10<sup>-3</sup> \frac{1 \text{bs}}{\text{ft}^3})
      specific volume, in units of \frac{ft^3}{1b}
      absolute temperature, in units of degrees Kelvin (OK)
T
R
      universal gas constant per pound of hydrogen
      (R=1381.35 \frac{ft}{o_K})
      specific heat at constant volume
C^{\Lambda}
      molecular volume, in units of \frac{ft^3}{1b}
b
B
f
      empirical constants for a given entropy
K
g
      entropy, in units of \frac{\text{cal}}{\text{mole } \circ K}
S
U
      internal energy
H
      enthalpy
      sound speed
      empirical constants for a given temperature
```

INTRODUCTION

Hydrogen gas is often used as the propellant in light gas guns. In the so-called "two stage guns" the hydrogen propellant may be compressed to densities as high as 2,000 amagats*. The temperature is increased relatively little, going from room temperature to as high as 3500° K. Under these conditions of high density, large intermolecular repulsive forces exist. The hydrogen gas no longer can be described by the ideal gas equation.

Unfortunately, there exists no reliable experimental data on the state properties of hydrogen at high pressures and temperatures. To approximate the behavior of the hydrogen gas at the high densities, the Abel-Noble or covolume equation of state is sometimes used. This equation is

$$p(v-b) = RT$$

With C_v taken to be a constant, the isentrope becomes

$$p(v-b)^{f} = K$$

However, the Abel-Noble equation becomes a poor approximation at the high densities.

Therefore, a calculation of hydrogen gas data has here been made which attempts to better account for the intermolecular forces due to high density. The method involves first extending the calculation of Woolley, Scott, and Brickwedde, reference 1, for the thermal properties of real hydrogen, beyond the realm of experimental data as reported in reference 1. Secondly, the resulting theoretical data are fitted to the semi-empirical entropic equation of Seigel, reference 2:

$$p^{(\beta-2)/\beta}(v-f) = K$$

where B, f, and K are constants for any given entropy.**

^{*}One amagat unit is the value of density at 1 atmosphere and $0^{\circ}C$.

^{**}This equation has been fitted successfully to argon, nitrogen, and hydrogen data at temperatures below 430°K and pressures up to 4,000 atm.

It is seen that this equation is equivalent to the Abel-Noble equation for a given entropy if $\beta/(\beta-2)$ is replaced by δ , and if f is replaced by b; these constants, however, will change for each different entropy. The semi-empirical equation may be fitted to real gas data with much greater accuracy than the Abel-Noble equation because of the fact that the parameters β , f, and K may vary with entropy. In addition, the equation is convenient to use to describe gas dynamic processes such as occur in the two-stage gum.

A BRIEF DESCRIPTION OF REFERENCE 1

In reference 1 the thermal properties of hydrogen are found for temperatures up to 5000°K, but at low densities where molecular interaction is negligible. These properties are then extended to somewhat higher densities by combining the low-density data with empirical real-gas data at intermediate densities. This is done by means of standard thermodynamic integrals taken along isotherms.

The empirical real-gas data of reference 1 were obtained in the following manner. The empirical equation

$$\frac{pv}{RT} = e^{(B\rho + c\rho^2)} \tag{1}$$

was used to account for the intermolecular forces. The coefficients B and C were assumed to be functions of the temperature only. (When the above exponential is expanded, B is found to be the second virial coefficient.) The effects of excitation, ionization, and dissociation are assumed negligible because of the relatively high density and low temperature.* The constants B and C were fitted to experimental hydrogen data in the realm of temperatures from 273°K to 672°K and densities up to 500 amagat. The best overall fit by a weighted method of least squares was found to be in reference 1:

$$B = 0.0055478T^{-1/4} - 0.036877T^{-3/4} - 0.022004T^{-5/4}$$

$$c = 0.004788 T^{-3/2} - 0.04053 T^{-2}$$

*The ionization and excitation energies are very high (15.4 e.v. and 13.5 e.v., respectively) and, hence, the effects are negligible; the dissociation energy (4.5 e.v.) is negligible because of the high densities which exist.

EXTENDING THE CALCULATION OF REFERENCE 1

In figures 1 and 2 the coefficients B and C are plotted over a temperature range of 273°K to 3500°K. Reference 1 carried the calculation only to 600°K, for this is the extent of the realm of reliable experimental data. Here we have extended the curves for these coefficients to 3500°K. Values of p, v, and T obtained by using these curves with equation (1) are listed in Table 1. Values of S calculated by the method of reference 1 are listed also.

As indicated above, the effects of dissociation, ionization, and excitation of the hydrogen are assumed negligible in the calculation. This is probably a good assumption, because of the relatively low temperatures and high densities considered. The Seigel semi-empirical equation

$$p^{(\beta-2)/\beta}(v-f) = K$$
 (2)

was here fitted to the new high-pressure data which were calculated above. The fitting was done as outlined in reference 2 by making a three-point fit of equation (2) to the data along a given isentrope, thus obtaining the empirical constants, β , f, and K. Once this procedure was repeated for a number of isentropes, the constants β , f, and K were obtained as functions of entropy S. Thus, equation (2) was fitted to the data of Table 1 at temperatures from 2730K to as high as 3500° K and entropies of 20, 22, 24, 26, 28, 30, 32, 34, 36, cal and 38 $\frac{\text{cal}}{\text{moleok}}$. Figure 3 is a plot of the P-V data of Table 1. In nearly all regions of this plot, agreement between the data and the semi-empirical fit is so close that a comparison cannot be shown in this figure. The constants β , f, and K as obtained from this particular three-point fit are listed in Table 2. These same constants are plotted against entropy in figures 4 through 6. Other thermodynamic variables, such as internal energy U, enthalpy H, or sound speed a can be derived from equation (2). The following expressions (see reference 2 or 3) result:

$$U = \frac{\beta - 2}{2} \operatorname{Kp}^{2/\beta} + g$$

$$H = \frac{\beta}{2} Kp^{2/\beta} + fp + g$$

$$a = \frac{\beta}{\beta - 2} p \frac{v^2}{v - f}$$

where g is a function of S only. The quantity g can be obtained in a manner similar to that of obtaining B, f, and K. Equation (2) is now an entropic or caloric equation of state from which all other thermodynamic variables can be derived in standard fashion. This procedure constitutes a rigorous method for describing the thermodynamics of a particular type of fluid.

In the case reported here, the empirical constants of equation (2) have been fitted to data in a region lacking experimental verification. Though this means of obtaining real hydrogen data does not have the desired experimental foundation, its virtue is in the fact that it continues the trend of the most accurately known hydrogen properties. In all likelihood its use yields a better approximation than previous techniques used to predict the behavior of this gas.

FIG. 1 EMPIRICAL CONSTANT B VS T (REFERENCE 1)

FIG. 2 EMPIRICAL CONSTANT C VS T (REFERENCE 1)

FIG. 3 P V DIAGRAM FOR REAL HYDROGEN

FIG. 4 FIG. 4 EMPIRICAL CONSTANT β VS ENTROPY

FIG. 5 EMPIRICAL CONSTANT $\frac{f}{V_0}$ VS ENTROPY

FIG. 6 EMPIRICAL CONSTANT $\frac{K}{P_0}$ ($\beta-2$)/ β V_0 VS ENTROPY

**

ŧ

r

٠.

TABLE I

Properties of Hydrogen from Extended Calculation of Woolley, Scott, and Brickwedde of NBS (ref. 1)

 $P_0=14.7psi.$ $v_0=178.365ft^3/1b.$

S cal moleok	P/Po	$^{\mathrm{v}}/_{\mathrm{v_o}}$	T (OK)
20	1066,42	1.741×10^{-3}	300
	3000	1.154×10^{-3}	395.570
	3130.29	1.136×10^{-3}	400
	6000	9.074×10^{-4}	473.285
	30,000	5.617×10^{-4}	694.486
22	397.050	3.464×10^{-3}	300
	1000	2.135×10^{-3}	388.616
	1110.28	2.029×10^{-3}	400
	3000	1.304×10^{-3}	524.577
	6000	9.958×10^{-4}	632,060
	30,000	5.856×10^{-4}	963 . 95 7
24	149.060	8.037×10^{-3}	300
	408.842	4.297×10^{-3}	400
	1000	2.593×10^{-3}	514.004
	3000	1.506×10^{-3}	696.100
	6000	1.117×10^{-3}	840.715
	30,000	6.212×10^{-4}	1289.86
26	55.4093	2.047×10^{-2}	300
	100	1.370×10^{-2}	355.417
	151.355	1.038×10^{-2}	400
	1000	3.202×10^{-3}	681.047
	3000	1.776×10^{-3}	921.428
	6000	1.277×10^{-3}	1109.88
	30,000	6.677×10^{-4}	1682.07

TABLE I (CONT.)

	INDDA	2 (002.20)	
S cal moleok	P/Po	v _{vo}	(\mathcal{F}_{K})
	20.4089	5.443×10^{-2}	300 .
28	55.7425	2.696×10^{-2}	400
	100	1.801×10^{-2}	472.335
	1000	4.004×10^{-3}	901.583
	3000	2.124×10^{-3}	1211.63
	6000	1.480×10^{-3}	1449.26
	30,000	7.253×10^{-4}	2153.86
30	7.48250	1.473×10^{-1}	300
30	10	1.200×10^{-1}	326,090
	20.4426	7.230×10^{-2}	400
	100	2.371×10^{-2}	627.815
	1000	5.038×10^{-3}	1186.74
	3000	2.560×10^{-3}	1575.86
	6000	1.731×10^{-3}	1868.39
	30,000	7.951×10^{-4}	2722.17
32	2.73810	4.015×10^{-1}	300
32	7.48178	1.963×10^{-1}	400
	10	1.597×10^{-1}	434.442
	100	3.123×10^{-2}	833.362
	1000	6.336×10^{-3}	1545.34
	3000	3.097×10^{-3}	2023.77
•	6000	2.036×10^{-3}	2379.57
	30,000	8.788×10^{-4}	3406.82
34	1.00124	1.097	300
	2.73602	5.356×10^{-1}	400
	10	2.123×10^{-1}	578.167
	100	4.099×10^{-2}	1100.39
	1000	7.934×10^{-3}	1986.51
	3000	3.748×10^{-3}	2568.45
	6000	2.405×10^{-3}	2998.87
	30,000	9.785×10^{-4}	4229.22
	•		

TABLE 1 (CONT.)

cal moleok	P/po	v/vo	т (°К)
36	0.36602	2.999	300
	1	1.464	399.974
	10	2.819×10^{-1}	768.423
	100	5.333×10^{-2}	1438.10
	1000	9.878×10^{-3}	2522.81
	3000	4.537×10^{-3} .	3226.76
	6000	2.850×10^{-3}	3745.12
38	0.13379	8.204	300
	0.36562	4.003	400
	1	1.949	532,505
•	10	3.728×10^{-1}	1016.94
	100	6.857×10^{-2}	1855.11
	1000	1.223×10^{-2}	3170.76
	3000	5.486×10^{-3}	4017.95

TABLE II

Empirical Constants of Equation (2) vs. Entropy S as
Obtained from Three-Point Fits to Curves of Figure 3

S cal moleok	В	$\frac{\mathbf{f}}{\mathbf{v_o}}$	$\frac{K}{p_{o}^{(\beta-2)/\beta}v_{o}}$
20	3.990	2.81×10^{-4}	0.04735
22	4.519	3.15×10^{-4}	0.08691
24	5.286	3.44×10^{-4}	0.1677
26	5.900	3.65×10^{-4}	0.2798
28	6.338	3.71×10^{-4}	0.4211
30	6.646	3.65×10^{-4}	0.5950
32	6.866	3.41×10^{-4}	0.8166
34	7.025	2.60×10^{-4}	1.100
36	7.168	4.00×10^{-5}	1.464
38	7.293	-3.53×10^{-4}	1.949

DISTRIBUTION

	Copies
Chief, Bureau of Naval Weapons	
Department of the Navy	
Washington, D. C. 20360	
Attn: Library, DLI-3	1
RRRE-4	1 1 1 1 1
RAAD-3	1
RAAD-2	1
RR-25	1
RMMO	1
RRMA	Ţ
RMGA-811	1
Defense Documentation Center	
Cameron Station	
Alexandria, Virginia	20
Office of Naval Research	
Washington, D. C. 20360	
Attn: Fluid Dynamics Branch	1 1
Structural Mechanics Branch, 4214 Main Navy	1
Commanding Officer	
Office of Naval Research	
Branch Office, Box 39	
Fleet Post Office, New York, New York 09510	5
U. S. Army Ballistics Research Laboratories	
Aberdeen Proving Ground, Maryland	
Attn: Technical Library, Bldg 313	1
E. D. Boyer, Chief, Transonic Range Facility	1 1 1
P. G. Baer	ī
Advanced Research Projects Agency	
Washington, D. C.	
Attn: Mr. Clifford E. McLain, Missile Phenomenology Branch	1
Branch	1
Arnold Engineering Development Center (ARO, Inc.)	
Arnold Air Force Station, Tennessee 37389	
Attn: Library/Documents	2
Mr. J. Lukasiewicz, Chief, VKF	1 1
Mr. A. J. Cable	1
U. S. Army Engineer Research and	
Development Laboratories	
Fort Belvoir, Virginia 22060	
Attn: Scientific and Technical Information Branch	1

	Copies
Commanding Officer and Director	
David Taylor Model Basin	
Washington, D. C. 20390 Attn: Library, Aerodynamics Laboratory	1
Acta. Biblary, Reloughances Baboratory	1
Director Defense Research and Engineering	
The Pentagon	
Washington, D. C.	
Attn: Library (Technical) 3C-128	1
Director	
U. S. Naval Research Laboratory	
Washington, D. C.	
Attn: Mr. Edward Chapin, Code 6303	1
- <i>'</i>	
Los Alamos Scientific Laboratory	
P. O. Box 1663	
Los Alamos, New Mexico Attn: Report Library	3
Attn: Report Library	1
National Aeronautics and Space Administration	
Lewis Research Center	
21000 Brookpark Road	
Cleveland, Ohio	
Attn: Mr. George Mandel, Chief, Library	1
National Aeronautics and Space Administration	
Goddard Space Flight Center	
Greenbelt, Maryland	
Attn: Library	1
Mr. E. F. Sargent, Code 671.2	1
National Aeronautics and Space Administration	
George C. Marshall Space Flight Center	
Huntsville, Alabama Attn: R-P&VE-PT, Mr. H. A. Connell	1
Dr. W. R. Lucas, R-P&VE-M	i
Aero-Astrodynamics Laboratory,	-
Dr. Ernst Geissler	1
National Aeronautics and Space Administration	
Langley Research Center	
Langley Station Hampton, Virginia 23365	
Attn: Librarian, MS 185	1
Mr. Mitchel H. Bertram, MS 243	1
Mr. Russell Honko PARD MS 213	<u>,</u>

	Copies
National Aeronautics and Space Administration Ames Research Center Moffett Field, California Attn: Mr. A. G. Boissevain	1
National Aeronautics and Space Administration Headquarters, MTG 400 Maryland Avenue, S. W. Washington, D. C. Attn: Dr. W. L. Haberman	1
National Aeronautics and Space Administration 600 Independence Avenue, S. W. Washington, D. C. Attn: Dr. H. H. Kurzweg, Director of Research	1
National Bureau of Standards Washington, D. C. Attn: Dr. Galen B. Schubauer Dr. Harold Woolley	1
Commanding Officer U. S. Naval Air Development Center Johnsville, Pennsylvania 18974 Attn: NADC Library	1
Commander U. S. Naval Missile Center Point Mugu, California Attn: Technical Library, Code N0322	1
Commander U. S. Naval Ordnance Test Station China Lake, California Attn: Code 406 Code 50704 Technical Library	1 1 1
Superintendent U. S. Naval Postgraduate School Monterey, California 93940 Attn: Library (Code 0384)	1
Director U. S. Naval Research Laboratory Washington, D. C. 20390 Attn: Code 2027 J. R. Baker Walter Adkins H. F. Swift, Impact Damage Section Edward Chanin Code 6303	1 1 1

	Copies
U. S. Navy Underwater Sound Laboratory	
Fort Trumbull	
New London, Connecticut	
Attn: Library	1
U. S. Naval Weapons Laboratory	
Dahlgren, Virginia	
Attn: Library	1
Code KE	1 1 1
Code TX	1
Scientific and Technical Information Facility	
P. O. Box 5700	
Bethesda, Maryland 20014	
Attn: NASA Representative (SAK/DL)	2
Aerospace Corporation	
P. O. Box 95085	
Los Angeles, California 90045	
Attn: Dr. J. S. Whittier	1
Mr. J. F. Mullen	1
Director	
Alden Hydraulic Laboratory	
Worcester Polytechnic Institute	
Worcester 9, Massachusetts	
Attn: Professor L. J. Hooper	1
Allegheny Ballistics Laboratory	
Hercules Powder Company	
Cumberland, Maryland	ų
Attn: Captain N. J. Kleiss	1
Applied Physics Laboratory	
The Johns Hopkins University	
8621 Georgia Avenue	
Silver Spring, Maryland	
Attn: Dr. Freeman Hill	1
Dr. L. L. Cronvich	1 4 1
Document Librarian	4
Mr. L. B. Weckesser	1
Avco-Everett Research Laboratory	
2385 Revere Beach Parkway	
Everett, Massachusetts 02149	
Attn: Dr. Kantrowitz	1

	copies
Commanding Officer U. S. Naval Underwater Ordnance Station Newport, Rhode Island 02844 Attn: Mr. R. J. Grady Mr. M. T. McGowan	1
AVCO/RAD Corporation 201 Lowell Street Wilmington, Massachusetts 01887 Attn: Dr. J. Eckerman	1
University of Denver Denver Research Institute Mechanics Division Denver, Colorado 90210 Attn: Mr. W. G. Howell	1
Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Attn: Remote Area Conflict Information Center Mr. Daniel E. Stohecker	1
The Boeing Company Aero-Space Division P. O. Box 3707 Seattle, Washington 98124 Attn: Ruth E. Peerenboom	,
Library Process Supervisor California Institute of Technology	1
Pasadena, California Attn: Professor T. Y. Wu Professor M. S. Plesset, Div. of Engineering	1
The Catholic University of America Washington, D. C. 20017 Attn: Dr. C. C. Chang Dept. of Space Science and Applied Physics	1
Ohio State University Department of Aero and Astronautical Engineering 2036 Neil Avenue	
Columbus, Ohio 43210 Attn: Professor Ting Yi Li	1

	Copies
Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo, New York	
Attn: Dr. Gordon Hall Mr. A. Hertzberg	1
Department of Mechanical Engineering University of Delaware Newark, Delaware	
Attn: Dr. James P. Hartnett	1
General Applied Sciences Laboratories, Inc Merrick and Stewart Avenues Westbury, New York	
Attn: Mr. Robert Byrne	1
General Electric Company Missile and Space Division	
P. O. Box 8555	
Philadelphia, Pennsylvania 19101 Attn: Mr. Lawrence I. Chasen	
Manager/MSD Libraries	2
General Dynamics/Convair P. O. Box 1950	
San Diego, California 92112 Attn: Mr. R. H. Oversmith, Chief	
ASW/Marine Sciences 6-107	1
Dr. Blaine R. Parkin, Mail Zone 6-114	1
General Electric Company Re-entry Systems Department	
P. O. Box 8555 Philadelphia, Pennsylvania 19101	
Attn: Mr. Jerome Persh (Rm. U-7039, VFSTC)	1
GM Defense Research Laboratories General Motors Corporation	
Box T Santa Barbara, California 93102	
Attn: Dr. A. C. Charters - No. 27	1
Wm I C Cuntic	7

	Copies
Jet Propulsion Laboratory	_
4800 Oak Grove Drive	
Pasadena, California	
Attn: Library, TDS - N. E. Devereux	1
Dr. L. Jaffee	1
Kaman Aircraft Corporation	
Nuclear Division	
Colorado Springs, Colorado	
Attn: Dr. A. P. Bridges	1
	_
Lockheed Missiles and Space Company '	
3251 Hanover Street	
Palo Alto, California 94304	
Attn: Mr. Paul E. Sandorff, 52-20/201/2	1
Inches Mingilar and Space Company	
Lockheed Missiles and Space Company	
Missile Systems Division P. O. Box 504	
Sunnyvale, California	
Attn: R. A. Fuhrman, Dept. 81-01, Bldg 181	7
R. W. Kermeen, Dept 51-35, Bldg 153 F/1	l l
it, ii. hermeen, bopt of brug 200 1/1	-
National Engineering Science Company	
711 South Fair Oaks Avenue	
Pasadena, California	
Attn: Dr. Gunner Bergman	1
North American Aviation, Inc.	
Space and Information Systems Division	
12214 Lakewood Boulevard	
Downey, California 90241	
Attn: Technical Information Center, D/096-722 (AJ01)	· 1
Sandia Corporation	
Albuquerque, New Mexico	_
Attn: Mr. R. C. Maydew, Aero-Thermodynamics Dept.	1 1
Mr. W. V. Hereford, Div 7215	1
Sandia Corporation	
Livermore Laboratory	
P. O. Box 969	
Livermore, California 94551	
Attn: Technical Library Reference	1
•	
Therm Advanced Research, Inc.	
100 Hudson Circle	7
Ithaca, New York 14851	1

	Copies
Director Southwest Research Institute Department of Mechanical Sciences San Antonio 6, Texas Attn: Library	1
Director St. Anthony Falls Hydraulic Laboratory University of Minnesota	
Minneapolis, Minnesota Attn: Professor E. Silberman	1
Stanford University Department of Aeronautics and Astronautics Stanford, California Attn: Dr. Daniel Bershader	1
United Aircraft Corporation Research Laboratories East Hartford, Connecticut	
Attn: Mr. H. J. Charette Mr. F. S. Owen	1
Space Systems Division Los Angeles Air Force Station Los Angeles, California 90045	1
University of California Lawrence Radiation Laboratory P. O. Box 808	
Livermore, California Attn: Mr. Carl Cline Mr. W. M. Wells, Propulsion Div., L-301	1
Colorado State University Fort Collins, Colorado Attn: Civil Engineering Hydraulics Laboratory	1
Hydronautics, Inc. Pindell School Road Howard County	
Laurel, Maryland Attn: Dr. P. Eisenberg Dr. M. P. Tulin	1
Technical Research Group, Inc. Route 110	
Melville, New York Attn: W. Graham	1

	Copies
The Johns Hopkins University	-
Baltimore, Maryland	
Attn: Professor F. H. Clauser	1
Union Carbide Corporation	
Stellite Division	
1020 Park Avenue	
Kokomo, Indiana 46901	
Attn: Mr. W. D. Manly	1
Shock Hydrodynamics, Inc.	
Sherman Oaks, California	
Attn: Dr. R. L. Bjork	1
University of Nebraska	
Lincoln, Nebraska 68508	
Attn: Dr. R. C. Nelson	1
Physics International Company	
2700 Merced Street	
St. San Leandro, California	
Attn: Dr. Charles Godfrey	1

Security Classification

	_			
DOCUMENT CO (Security classification of title, body of abstract and indexi	NTROL DATA - R&		he overall repost is classified)	
1 ORIGINATING ACTIVITY (Corporate cuthor)		Ze REPORT SECURITY CLASSIFICATION		
U. S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryla	nd	UNCL	ASSIFIED	
antie Oak, Stiver Spring, maryra	anu	N/A	•	
3 REPORT TITLE				
Calculated Thermodynamic Propert	ties of Real	Hydrog	en up to	
30,000 Atmospheres and 3500°K				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
N/A	····		·	
S AUTHOR(S) (Last name, first name, initial) Bixler, David N.				
Piacesi, Robert				
Seigel, Arnold E.				
6. REPORT DATE	78. TOTAL NO OF P	ASES	76. NO OF REFS	
1 December 1965	10		3	
SE CONTRACT OR GRANT NO.	9a. ORIGINATOR'S RE	PORT NUM	BER(S)	
b. PROJECT NO.	NOLTR 65-	209		
NOL-364				
c	9b. OTHER REPORT I	NO(5) (Any	other numbers that may be easigned	
d.	Ballistics	Resear	ch Report 153	
10. A VAIL ABILITY/LIMITATION HOTICES				
Distribution of this document is unli	mited.			
11 SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACTIV	VI) Y	
n/a				
11/ 12				
13 ABSTRACT		_		
Isentropic data for real hydrog pressures up to 30,000 atmospher				
The effects of ionization, excit				
considered negligible because of				
and high densities involved. Th	e effects of	the i	ntermolecular	
forces are accounted for by fitt				
to low temperature high density calculated data in turn are fitt	experimental	data,	These	
equation of state. This particular				
venient for describing many ther	modynamic pr	ocesse	S.	

DD 15AN 64 1473

The second of th

UNCLASSIF1ED
Security Classification

UNCLASSIFIED

14. KEY WORDS	LIN	KA	LINK B		LINK C		
	ROLE	wT	ROLE	WT	ROLE	WT	
Hydrogen State properties Thermodynamics Thermal							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES. The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 80 CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES. Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users snall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES. Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address-
- 13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shell be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS) (S), (C), or (U)

There is no limitation on the length of the abstract However, the suggested length is from 150 to 225 words.

14 KEY WORDS. Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

UNCLASSIFIED

Security Classification

Abstract card is launohers Title launohers Hydrogen Hydrogen dynamios dynamics Bixler, David N. Bixler, David N. unclassified Thermo-Project Thermo-Saries Series Title Abstract Gun Can Ħ. Isentropic data for real hydrogen are oaloulated in a range of pressures up to 30,000 at nospheres and temperatures up to 3500°K. Efficient or feets of ionization, excitation, and dissocial tion are negligible because of relatively low temperatures and high densities involved. Effects of the intermolecular forces are accounted for by fitting a virtal coefficient equation data. The calculated data are fitted Abs 'n temperatures and high densities involved. If-fects of the intermolecular forces are no-counted for by fitting a virial coefficient equation data. The calculated data are fitted Isentropic data for real hydrogen are daloulated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. Effects of ionization, excitation, and dissociation are negligible because of relatively low Naval Ordnance Laberatory, White Oak, Mil.
(NOL technica, report 65-209)
CALCULATED THERMODYNAMIC PROPERTIES OF REAL
HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K,
by D. N. Bixler and others. 1 Duo. 1965. 4p.
charts, tables. (Bullistics research report
153) NOL task 364. CALCULATED THERMODYNAMIC PROPERTIES OF REAL HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500 K, by D. N. Bixler and others. 1 Dec. 1965. 4P. UNCLASSIFIED (Ballistics research report to an empirical entropic equation of state, describe many thermodynamic processes to an empirical entropic equation of state, which describe many thermodynamic processes Naval Ordnance Laberatery, White Oak, Md. (NOL technical report 65-209) charts, tables. (B: 153) NOL task 364. 153) The calculated data are fitted Abstract card is launohers launobers Hydrogen unclassified. unclassified. Hydrogen dynamios Bixler, David N. dynamics Bixler, David N. Thermo-Thermo-Project Project Series Series ritle ritle S S Gun The calculated data are fitted Abstract HA. H. Isentropic data for real hydrogen are caloulated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. Effects of ionization, excitation, and dissociation are negligible because of relatively low temperatures and high densities involved. Effects of the intermolecular forces are ac-Isentropic data for real hydrogen are oaloulated in a range of pressures up to 30,000 atmospheres and temperatures up to 3500°K. Effects of ionization, excitation, and dissociation are negligible because of relatively low temperatures and high densities involved. Effects of the intermolecular forces are ac-Naval Ordnance Laberatory, White Oak, Md.
(NOL technical report 65-209)
CALCULATED THERMODYNAMIC PROPERTIES OF REAL
HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500 K,
by D. N. Bixler and others. 1 Dec. 1965. 4p. Naval Ordnance Laberatory, White Oak, M3.
(NOL technical report 65-209)
CALCULATED THERMODYNAMIC PROFERTIES OF REAL
HYDROGEN UP TO 30,000 ATMOSPHERES AND 3500°K,
by D. N. Bixler and others. I Doe. 1965. 4p. UNCLASSIFIED UNCLASSIFIED (Ballistics research report Ballistics research report describe many thermodynamic processes. which describe many thermodynamic processes. to an empirical entropic equation of state, to an empirical entropic equation of state, counted for by fitting a virial coefficient counted for by fitting a rirlal coefficient equation data. The calculated data are fit s, tables. (Ba NoL task 364, charts, tables. (B. 153) NOL task 364. tables. equation data. charts, 153) NO