

1.A. BACKGROUND

- Cost benefit analysis
 - Infrastructure investments (e.g., high-speed trains)
 - Operation planning (e.g., <u>commuter train timetabling</u>)

- Valuations perspectives
 - Consumer (individual/self-interested)
 - (Stated or revealed) preference of travellers
 - Organisation (citizen/social) preferences
 - (Implicit) preference of PTAs (e.g., SLL)

1.B. PROBLEM(S)

- Cost-benefit analysis for operation planning
 - What is the societally optimal frequency of commuter train services?
 - Are commuter train timetables consistent with stated (consumer/passenger) preferences?

- Revealed citizen preferences (e.g., waiting time and crowding)
 - If not consistent, can this anomaly be explained?
 - Possible explanation: (by revealing) the implicit PTA's (vs stated passenger's) valuations.

2.A. FORMULATION

N number of trains per hour, i.e., service frequency

Total societal costs

$$TC(N) = PC(N) + CC(N)$$

$$TC(N) = KN + \sum_{\substack{\text{station } i \\ \text{train } k}} \beta \frac{1}{2N} B_i^k + \sum_{\substack{\text{link } i \\ \text{train } k}} \alpha \left(1 + \gamma \left(\frac{F_i^k}{S} \right)^{\theta} \right) t_i F_i^k$$

Other parameters

- S train seat capacity
- B_i^k and A_i^k are number of passengers at station i boarding and alighting train k, respectively.
- F_i^k passengers in the link after station i onboard train k

$$F_i^k = \sum_{l \in i} (B_l^k - A_l^k); \ \forall i, k$$

Costs parameter	Notation
Production	K
Waiting time	β
In-vehicle crowding	γ and $ heta$
Travel time	α

2.B. OPTIMAL FREQUENCY

• Given valuation parameters (γ, β, θ) , optimal frequency is

$$N^* = N^*(\gamma, \beta, \theta) = \underset{N \in \mathbb{N}^*}{\operatorname{argmin}} \operatorname{TC}(N)$$

• Example with $\theta=0$ or $\gamma=0$ (i.e., no crowding) - square root principle by Mohring (1972)

$$\frac{d \text{ TC}}{d N}(N^*) = K - \frac{\beta B}{(N^*)^2} = 0 \Rightarrow N^* = \sqrt{\frac{\beta B}{K_{PC}}}$$

where $\mathcal{B} := \sum_{i,k} B_{i,k}$

- General case → No analytic formula!
 - E.g., integer values $\theta \ge 4$, in theory (Abel's impossibility theorem), no closed form exist (Abel, 1824)

3.A. DATA (1/3)

- Commuter train network
 - Stockholm, 2015 pendeltåg (i.e., pre-Citybanan)
 - Focus first on Kungsängen (Kän) → Västerhaninge (Vhe)

Time interval	Regular frequency 4	Extra departures 😃	SL's total frequency N
Morning peak (6:00 - 9:00)	Every 15min	Every 20min	7.0
Mid-day off-peak (10:00 - 13:00)	Every 15min	-	4.0
Afternoon peak (15:00 - 18:00)	Every 15min	Every 30min	6.0

[☐] Certain trains are running parts or beyond the studied line, e.g. to Älvsjö or Nynäshamn, from Jakobsberg.

^[2] The provided frequency for extra departures is an average since not all operate with even intervals.

3.A. DATA (2/3)

- OD matrix and timetable (normal working day Sept 2015)
 - Passenger onboard each train
- Seating capacity

3.A. DATA - COST PARAMETERS (3/3)

Parameter	Value	Reference
Travel time	$\alpha = 65.5$ SEK per hour	Average 57 SEK/h (leisure) and 74 SEK/h (commutes), Eliasson and Borjesson (2014)
Waiting time	$\beta=80$ SEK per hour	Assumption: average waiting time is less than 10 min (i.e. hourly train frequency higher than 3). Hence, average 86 SEK/h (leisure) and 74 SEK/h (commuting), Algers et al. (2010)
(in-vehicle) Crowding	$ \gamma = 0.085 \\ \theta = 3 $	Curve fitting (i.e. parameter estimation), using results by Björklund and Swärdh (2017) of SP crowding valuation study in Stockholm (and two other Swedish large cities)
Operation	$K_{distance} = 30 \text{ SEK per wagon} - \text{km}$ $K_{time} = 2 000 \text{ SEK per wagon} - \text{hour}$ $K_{fixed} = 3 205 \text{ SEK per wagon} - \text{hour}$ $K_{overhead} = 9 \%$	All parameter values for the producer costs are from (SLL, 2017). The reported fixed costs are 5.000.000 SEK per year-wagon. Assumption: each wagon is operated 6 h per day and 260 days per year.

3.B. RESULTS (1/4)

• Societal costs (as a function of service frequency)

Societally optimal frequency

Time interval	Optimal frequency (in trains/h)	SL's frequency (in trains/h)	
Morning	5.7	7.0	
Mid-day – long trains	3	4.0	
Mid-day – short trains	4.3	-	
Afternoon	5.3	6.0	

3.B. RESULTS (2/4)

Waiting time

Implicit values

Time interval	Revealed waiting time valuation $(oldsymbol{eta}_{ASEK}=80~ extsf{SEK/h})$
Morning	144
Mid-day	144
Mid-day (short)	(60)
Afternoon	156

3.B. RESULTS (3/4)

• Crowding (in-vehicle)

Implicit values

Time interval	Revealed crowding factor $(\gamma_{ASEK} = 0.085)$	Revealed crowding exponent $(\theta_{ASEK} = 3)$	
Morning	0.281	9	
Afternoon	0.196	10	

3.B. RESULTS (4/4)

Joint analysis (waiting time and crowding)

• Other lines and directions (optimal frequency)

	SL	Kän → Vhe (Southwards)	Vhe → Kän (Northwards)	Upv → Tu (Southwards)	Tu → Upv (Northwards)
Morning	7.0	5.7	5.7	6.7	<mark>7.3</mark>
Mid-day (long)	4.0	3.0	3.3	3.3	3.3
Mid-day (short)	-	4.3	5.0	5.3	5.3
Afternoon	6.0	5.3	5.7	<mark>6.7</mark>	<mark>6.3</mark>

4.A. CONCLUSIONS

- We showed the use of CBA for operation planning
- Studied the societally optimal service frequency
 - Generally, slightly lower than PTA's choices
 - Other factors, e.g., infrastructure constraints and punctuality.
- Revealed (implicit) PTA's valuation of waiting time and crowding
 - Can be explained mainly by PTA's higher (implicit) valuation of waiting time
 - Crowding valuation has no (off-peak) to negligible (peak) effect compared to waiting time.

4.B. FUTURE WORKS

- Optimisation of commuter traffic (planned work)
 - Cost benefit analysis (this study) + timetable optimisation
 - Different types of timetables (period, skip-stop)

- Other ideas
 - Different (or combination of) modes, e.g., bus, metro.
 - Also consider e.g.,
 - Delays, interchanges and capacity restrictions (infrastructure problems, maintenance possessions)
 - Trip distribution (OD) over multiple days (average, variance)

