Using data-driven exercises in General Chemistry to assess self-regulation and tolerance of ambiguity

Xavier Prat-Resina
Center for Learning Innovation

http://goo.gl/55EFop

University of Minnesota Rochester

President's Council of Advisors on Science and Technology (PCAST) 2010:

instructors during the first two years of college must focus on deeper and transferable knowledge

Quoting the NRC "Framework for Science Education":

"Analyzing and interpreting data", "engaging in argumentation from evidence", and "evaluating information" can all be seen as distinct components of critical thinking.

J. Chem. Educ. 2016, 93, 799–800

P. Atkins. Pure Appl. Chem., Vol. 71, No. 6, pp. 927-929, 1999.

"...we should teach them to judge between conflicting influences. That is the essence of our subject, for it is rare that a single property governs the outcome of a reaction. We need to train our students to judge the likely outcome of conflict"

"...I assume there are exceptions to this rule because there is an exception to pretty much every rule in chemistry." **Gen Chem student.**

Outline

Curriculum

Structure-property relationships in General Chemistry

Objectives

Low order

Higher order cognitive skills (HOCS)

Control Variable Strategy (CVS)

Self-regulation

Tolerance of ambiguity

Implementation

Data-driven exercises on the web. ChemEd X Data

"Conflicting factors" questions

Analysis

Cheminformatics tools

Sankey diagrams Cluster analysis

Structure-property relationships in 1st semester of General Chemistry

Properties of Substance Substances Electronic or molecular structure

Y \(\to \) \(\text{Y} \)

(it's never one single factor
... and sometimes they come into conflict)

- Electronic ground state of elements ↔ Aufbau principle + Hund's rule
- Atomic size and ionization energy

 → Nuclear charge + shielding + orbital size
- Ionic lattice energy of crystal solids

 → Cation's and anion's size and charge
- Boiling point of molecular solids

 → Intermolecular forces + shape + mass
- Heat capacity of molecular solids

 → Intermolecular forces + bonds + mass

 University of Minnesota

Assignments for HOCS in structureproperty relationships: Y = AX

- [Y,A] → X Self-regulation
 Given a set of substances (A) and their properties (Y)
 discover what the deciding structural factors are (X).
- [Y,A] ⇔ [X] Ambiguity+Conf. factors

 Given a set of factors that may intervene in the property of substances [A], identify the deciding factor that prevails.
- [A,X] → [Y] Ambiguity+Conf. factors
 Given a set of substances (A) and their structural factors
 (X), identify the cases when you can't predict (Y).
- [X,Y] → A Self-regulation

 Given that a property (Y) is affected by factors (X), come up with a list of substances (A) that show evidence of the relationship

 University of Minnesota

Higher order skills in Gen. Chem.

Properties of Substance

Boiling points +

Substances

Electronic or molecular structure

 $Y \leftrightarrow A X$

Tolerance of ambiguity: conflicting factors

Atomic size and ionization

Nuclear charge **Electronic shielding**

Orbital size

Mass

Shape

Intermolecular forces

Example Radius:

r(O) < r(CI)

r(Li) > r(Mg)

Example BP:

 $CH_2F_2 > CF_4$

 $CH_2CI_2 < CCI_4$

Self-regulation: control of variables strategy and interpretation

Using unstructured data, easy to navigate, select and represent to build "controlled experiments" and identify trends and exceptions.

ChemEd X Data http://chemdata.r.umn.edu J. Chem. Educ., 91(9), 1501-1504, 2014

http://chemdata.r.umn.edu

Order and filter

Select all Select None Click to select rows					
Search: Name	Image	Mol.Wt.	Nymb. Carbons	Labels	Boiling point (K)
methanol	HO - CH ₃	32.0	1	alcohols, linear	337.8
ethanol	HO CH ₃	46.1	2	alcohols, linear	351.5
propanol	HO CH ₃	60.1	3	alcohols, linear	370.3
1- butanol	HO CH ₃	74.1	4	alcohols, linear	390.6
1- pentanol	HOCH3	88.1	5	alcohols, linear	411.
1-	^^^	102.2	6	alcohols,	430

Fur

Molecular Properties

Popup window

Take a picture

Take a picture

Popup window

http://chemdata.r.umn.edu

Periodic table for easy selection

ChemEd X Data http://chemdata.r.umn.edu
J. Chem. Educ., 91(9), 1501-1504, 2014

Can students do CVS and analysis?

Assignment: Select a set of compounds that help us understand the effect of mass and molecular shape on the boiling point.

Builds a valid
"controlled
experiment"

Interpretation of
data is consistent
with selection?

	Effect of mass			
Y	69.8 % 30.2		2%	
	yes	no		
/	88%		12	
	yes		%	
2			no	

	Shape effect: linear/branched			
40 % yes		60% no		
	40% yes	44% ambiguous	16% contradict	

Mass: 58.1222; BP=273.

Mass: 58.1222; BP=262.

Mass: 72.14878; BP=309.2

Mass: 72.14878; BP=301.1

Mass: 60.09502; BP=370.3

Mass: 72.10572; BP=336.

Mass: 86.1323; BP=365

Mass: 100 15888: BP=30

CVS and identify limit of predictability

Name	Mass	BP (°C)
Methanol	32	338
Butane	58	273
Octane	114	399

http://chemdata.umr.umn.edu/chemedXdata/index.html#stamp=1470068542409

Assignment: What has a stronger influence, a heavy molecule with a weak intermolecular force or a light molecule with a strong intermolecular force? Are there exceptions?

Provide valid evidence of their statement?

Mass vs IMF			
60.3 %	39.7%		
mass	no		
50.8%	49.2%		
yes	no		

- 39.7% was inconclusive.
- 9% say no exceptions.
- The "new site" effect may add noise to the results

Can students recognize "conflicting factors"?

Clustering survey results

		Group B n = 28	Group C n = 17	Group A n = 14
	Course Grade	81.0±9.2	79.0±6.2	88.0±5.5
\				
)	lonic energy survey	62.7±14.2	31.7±9.3	88.1±12.9
3				
	Conflicting factors questions	14.3±26.2	8.8±19.1	85.7±22.6

Hierarchical cluster analysis (Ward's minimum variance method) using the results for the "lonic lattice energy" survey

Conclusions

- We have used data-driven exercises to address "controlled variable skills" and "self-regulation.
 - It is challenging to offer students "unstructured data" without a steep learning curve to navigate it.
 - ChemEdXData is now available on GSpreadSheets.
- Identifying conflicting factors and the limit of predictability depends on previous knowledge and it is a HOCS.
 - With a Sankey diagram we can see the progression
 - With clustering analysis we can group the students and see how HOCS relates to their grade

ChemEdXData on GSpreadsheets

