#### Ch1. An instructive example ST4240, 2016/2017 Version 0.1

Alexandre Thiéry

Department of Statistics and Applied Probability



lacktriangle Data  $y=(y_1,\ldots,y_n)$  are noisy observations of a function f,

$$y_i = f(x_i) + \varepsilon.$$

lacktriangle For simplicity, we suppose that f(x) is a polynomial

$$f(x) = \sum_{k=0}^{d} \beta_k^{\star} x^k.$$

■ In other words, we observe  $y = (y_1, ..., y_n)$  with

$$y_i = \sum_{k=0}^d \beta_k^{\star} \, x_i^k + \varepsilon_i$$

- lacksquare Our task is to reconstruct  $eta^\star = (eta_0^\star, \dots, eta_d^\star)$ .
- $\blacksquare$  Note that d is not known.

■ [Exercise] the linear model can be written as

$$y = X \beta^* + \varepsilon$$

with  $y \in \mathbb{R}^n$  and  $X \in \mathbb{R}^{n \times (d+1)}$  and  $\beta^\star \in \mathbb{R}^{d+1}$ .

■ The least square estimate  $\widehat{\beta}$  is

$$\widehat{\boldsymbol{\beta}} = \mathbf{argmin} \, \left\{ \boldsymbol{\beta} \mapsto \left\| \boldsymbol{Y} - \boldsymbol{X} \, \boldsymbol{\beta} \right\|^2 \right\}$$

lacktriangle We will see later in the course that  $\widehat{\beta}$  is given by

$$\widehat{\beta} = \left( X^{\top} X \right)^{-1} X^{\top} y.$$

lacksquare For a new value  $x \in \mathbb{R}$ , prediction is made through

$$\sum_{k=0}^{d} \widehat{\beta}_k \, x^k$$

■ Let us look at the predicted (or fitted) value on the data that have been used to construct  $\widehat{\beta}$ ; we have  $\widehat{y} = X\widehat{\beta}$ , which also reads

$$\widehat{y} = H y$$
 with  $H \equiv X \left( X^{\top} X \right)^{-1} X^{\top}$ ,

- $\blacksquare$  the matrix H is usually called the hat matrix.
- [Exercise] the matrix H is a projection:  $H^2 = H$ .
- [Exercise] the matrix H is such that  $H^{\top} = H$ .

## d too low



# d just right



# d too high



## Measuring performances

■ A common way of measuring performance is

(performance) = 
$$\sum_{i=1}^{n} \mathbf{Loss}(y_i, \widehat{y}_i)$$

where the Loss function Loss(·) measures how well the prediction  $\hat{y}_i$  approximate the true value  $y_i$ .

 A common choice, because this leads to tractable computations, is the squared error loss function

$$Loss(y, \widehat{y}) \equiv (y - \widehat{y})^2.$$

■ The resulting measure of performance is called the Residual Sum of Square,

$$\mathbf{RSS} = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2.$$

#### **MSE** as a function of d

■ The Mean Squared Error

$$\mathsf{MSE} = (1/n)\mathsf{RSS}$$

is equivalent to the Residual Sum of Square.



- **■** [Exercise] the MSE decreases as d increases.
- In most situations of interest, we are trying to do some predictions on data that have not indeed been used to train the model. In the above situations, the coefficient  $\widehat{\beta}$  has been determined by using the whole dataset  $\{y_i\}_{i=1}^n$  and the **MSE** has been estimated on the same dataset!

### Training and Validation sets

- One needs to test the procedure on data that have not been used to train the algorithm
- Split the whole dataset into a training set and a validation set.
- Train (i.e. find  $\widehat{\beta}$ ) on the training set
- Estimate performances (i.e. evaluate the MSE) on the validation set.

#### k-fold Cross Validation



#### Monte-Carlo Cross Validation

- $\blacksquare$  Dataset of size N
- $\blacksquare$  Randomly choose p% of the dataset as training set
- Use the remaining (100 p)% as training set
- Iterate as many times as necessary

### So how do we choose d?



## Least Square v.s. Maximum Likelihood

- Consider the linear model  $y = X \beta + \varepsilon$
- lacktriangle Assume that arepsilon is Gaussianly distributed
- [Exercise] show that the least square estimate  $\hat{\beta}$  is also the maximum likelihood estimate.