Maria Beatriz Lourenço e Sá de Ferreira Moreira - 47797 - MIEI Mark: 2.9/5 (total score: 2.9/5)

•			+27/1/	'8 +
	Departamento de Matemá Criptografia	itica 8/7/2	Faculdade de Ciências o	e Tecnologia — UNI Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1 1		imero de aluno preenchendo grelha ao lado () e escre ixo.	
	2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5		Beamiz Morcia	
	6 6 6 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9	marque a resposta cer tivo () com caneta cada resposta errada d questão. Se a soma da	por 10 questões de escolha ta preenchendo completame azul ou preta, cada respostalesconta 0,2 valores e marcaços classificações das questões será atribuído 0 valores com	múltipla. Nas questões ente o quadrado respec- a certa vale 0,5 valores, ções múltiplas anulam a de escolha múltipla der
	Questão 1 Considere o g sc, c só se:	rupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se o	definir uma multiplicação	tal que \mathbb{F}_n é um corpo
-0.2/0.5	n é um número primo n é um número primo n	ímpar.	n é uma potência de n é um número par.	um número primo.
	Questão 2 Os princípios o satisfazer. Um princípio de K deve depender:		cípios que todos os sistemas diz que <i>a segurança de un</i>	
0.5/0.5	só da chave, mas não d só do segredo do algori do segredo da chave e d só da complexidade da	thmo, mas não do seg lo segredo do algoritu	redo da chave.	
	Questão 3 Qual destes p	rotocolos criptográfico	os é assimétrico?	
0.5/0.5	☐ DES ☐ Vigenère		☐ AES ElGamal	
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	ongruência $g^x \equiv h \pmod p$) é:
0.5/0.5			Determine x , dados g Determine h , dados g	

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.5/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
-0.2/0.5	 Duas mensagens podem ser codificadas pelo mesmo ciphertext. A encriptação torna-se lenta. Dois ciphertexts podem encriptar a mesma mensagem. A quebra do protocolo é fácil.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
0.5/0.5	 O protocolo pode ser quebrado em tempo exponencial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts. O protocolo pode ser quebrado em tempo polinomial.
	A probabilidade de um plaintext é independente do ciphertext. Questão 9 O funcionamento do RSA é baseado no seguinte:
-0.2/0.5	 Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e divisão é difícil. Mulitplicação é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0.5/0.5	 A exponenciação é mais rápida sobre curvas elípticas do que em F_p[*]. A operação de "adição" é mais complicada sobre curvas elípticas do que em F_p[*]. A solução do DLP é mais complicada sobre curvas elípticas do que em F_p[*]. A operação de "adição" é mais fácil sobre curvas elípticas do que em F_p[*].

Maria Bernardo Courelas Lobo da Silva - 47363 - MIEI Mark: 2.3/5 (total score: 2.3/5)

	•		+74/1/34+	
	Departamento de Mater Criptografia	mática 8/7/1	Faculdade de Ciências e Tecnologia — UNI 2018 Exame Final	
	Número de aluno 0 0 0 0 0 1 1 1 1 1		número de aluno preenchendo completamente os qua a grelha ao lado () e escreva o nome completo, o nixo.	
	2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5		Runardo Countian 1000 da Silva Número de aluno: .47363.	
	6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9	O exame é composto marque a resposta co tivo () com caneta cada resposta errada questão. Se a soma d	o por 10 questões de escolha múltipla. Nas questões erta preenchendo completamente o quadrado respecta azul ou preta, cada resposta certa vale 0,5 valores, desconta 0,2 valores e marcações múltiplas anulam a las classificações das questões de escolha múltipla der a será atribuído 0 valores como resultado final.	,
	Questão 1 Considere se, e só se:	o grupo $\mathbb{Z}/n\mathbb{Z}$. Pode-se	definir uma multiplicação tal que \mathbb{F}_n é um corpo)
-0.2/0.5			n é um número par. n é um número primo ímpar.	
		-	ncípios que todos os sistemas criptográficos devem al diz que a segurança de um sistema criptográfico	
0.5/0.5	do segredo da chave	o do segredo do algorita e do segredo do algorita porithmo, mas não do se da encriptação.	mo.	
	Questão 3 Qual deste	s protocolos criptográfi	cos é assimétrico?	
0.5/0.5	ElGamal Uigenère		☐ DES ☐ AES	
	Questão 4 O Discrete Logarithm	Problem (DLP) para a	congruência $g^{\mathbf{r}} \equiv h \pmod{p}$ é:	
0.5/0.5	Determine h , dados Determine p , dados		Determine g , dados h , $p \in x$. Determine x , dados g , $h \in p$.	
	_			

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam número
0.5/0.5	secretos $a \in b$ para calcular números $A \in B$ que são depois trocados. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $g^{ab} \pmod{p}$. A é calculado por $a^g \pmod{p}$, B por $b^g \pmod{p}$ e a chave comum secreta é $(ab)^g \pmod{p}$. A é calculado por $g^a \pmod{p}$, B por $g^b \pmod{p}$ e a chave comum secreta é $A \cdot B$.
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> Para recuperar a mensagem m , Alice calcula:
0/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0/0.5	 Duas mensagens podem ser codificadas pelo mesmo ciphertext. Dois ciphertexts podem encriptar a mesma mensagem. A encriptação torna-se lenta. A quebra do protocolo é fácil.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
0.5/0.5	A probabilidade de um plaintext é independente do ciphertext. O protocolo pode ser quebrado em tempo polinomial. O protocolo pode ser quebrado em tempo exponencial. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0/0.5	 Exponenciação em F_p[*] é fácil e factorização é difícil. Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0/0.5	☐ A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^{\bullet} . ☐ A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^{\bullet} . ☐ A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^{\bullet} . ☐ A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^{\bullet} .

Mauricio Daniel Flores Landos - 45511 - MIEI Mark: 1.4/5 (total score: 1.4/5)

•			+76/1/30+	
	Departamento de Matemá Criptografia	tica 8/7/20	Faculdade de Ciências e Tecr 018	nologia — UNL Exame Final
	Número de aluno 0 0 0 0 0 1 1 1 1	Nome: MIEI Curso: MIEI O exame é composto marque a resposta certivo () com caneta cada resposta errada é questão. Se a soma da	mero de aluno preenchendo complegrelha ao lado () e escreva o receiva o receiva de la completa del completa de la completa del completa de la completa de la completa de la completa de l	ola. Nas questões quadrado respectivale 0,5 valores, últiplas anulam a olha múltipla der
0/0.5	Questão 1 Considere o g se, e só se: $n \in \text{um número primo}$ $n \in \text{um número primo}$		definir uma multiplicação tal que n é um número par. n é uma potência de um n	
8	Questão 2 Os princípios o satisfazer. Um princípio de K deve depender:	de <i>Kerckhoff</i> são princ Kerckhoff fundamental	cípios que todos os sistemas cript diz que a segurança de um siste	ográficos devem
0.5/0.5	do segredo da chave e d só da chave, mas não d só da complexidade da só do segredo do algori Questão 3 Qual destes p	lo segredo do algoritm encriptação.	redo da chave.	
-0.2/0.5	⊠ ElGamal □ Vigenère		☐ DES ② AES	
	Questão 4 O Discrete Logarithm Pro	oblem (DLP) para a c	congruência $g^x \equiv h \pmod{p}$ é:	
0.5/0.5	Determine x , dados g , Determine g , dados h ,		Determine h , dados g , p e Determine p , dados g , h e	

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0/0.5	☐ A é calculado por g^a (mod p), B por g^b (mod p) e a chave comum secreta é $A \cdot B$. ☐ A é calculado por a^g (mod p), B por b^g (mod p) e a chave comum secreta é $(ab)^g$ (mod p). ☐ A é calculado por a^g (mod p), B por b^g (mod p) e a chave comum secreta é g^{ab} (mod p). ☐ A é calculado por g^a (mod p), B por g^b (mod p) e a chave comum secreta é g^{ab} (mod p).
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
-0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.5/0.5	 ☐ A quebra do protocolo é fácil. ☑ Duas mensagens podem ser codificadas pelo mesmo ciphertext. ☐ Dois ciphertexts podem encriptar a mesma mensagem. ☐ A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de <i>total secrecy</i> , se, e só se: O protocolo pode ser quebrado em tempo polinomial.
-0.2/0.5	 O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts. A probabilidade de um plaintext é independente do ciphertext. O protocolo pode ser quebrado em tempo exponencial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0.5/0.5	 Mulitplicação é fácil e factorização é difícil. Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p[*] é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0/0.5	\boxtimes A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	A operação de "adição" é mais fácil sobre curvas elípticas do que em \mathbb{F}_p^* .
	\square A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* .

Miguel Alexandre Figueiredo - 48182 - MIEI Mark: 2.2/5 (total score: 2.2/5)

+84/1/14+

	Departamento de Matemá Criptografia	tica 8/7/2	Faculdade de Ciências e Tecnologia — UNL 018 Exame Final
	Número de aluno 0 0 0 0 0 1 1		imero de aluno preenchendo completamente os qua- grelha ao lado () e escreva o nome completo, o ixo.
	2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5		Alexandra Eigenired
	6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9	O exame é composto marque a resposta cer tivo () com caneta	por 10 questões de escolha múltipla. Nas questões ra preenchendo completamente o quadrado respecazul ou preta, cada resposta certa vale 0,5 valores, desconta 0,2 valores e marcações múltiplas anulam a
	Questão 1 Considere o g se, c só se:	um número negativo, s	s classificações das questões de escolha múltipla der será atribuído 0 valores como resultado final. definir uma multiplicação tal que \mathbb{F}_n é um corpo
-0.2/0.5	otin n é uma potência de un $ otin n$ é um número par.	n número primo.	n é um número primo ímpar. n é um número primo.
			cípios que todos os sistemas criptográficos devem diz que a segurança de um sistema criptográfico
0.5/0.5	só da complexidade da só da chave, mas não de só do segredo do algorit do segredo da chave e d	o segredo do algoritm	redo da chave.
	Questão 3 Qual destes pr	rotocolos criptográfico	os é assimétrico?
0.5/0.5	☐ DES ☐ ElGamal		☐ AES ☐ Vigenère
	Questão 4 O Discrete Logarithm Pro	blem (DLP) para a c	ongruência $g^x \equiv h \pmod{p}$ é:
0.5/0.5	Determine p , dados g , h Determine x , dados g , h		Determine h , dados g , $p \in x$. Determine g , dados h , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam números secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> . Para recuperar a mensagem m , Alice calcula:
0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
0.2/0.5	 Dois ciphertexts podem encriptar a mesma mensagem. A quebra do protocolo é fácil. A encriptação torna-se lenta.
	Duas mensagens podem ser codificadas pelo mesmo ciphertext. Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
	 O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
0.5/0.5	A probabilidade de um plaintext é independente do ciphertext. O protocolo pode ser quebrado em tempo exponencial. O protocolo pode ser quebrado em tempo polinomial.
	Questão 9 O funcionamento do RSA é baseado no seguinte:
0.2/0.5	 Exponenciação em F_p[*] é fácil e factorização é difícil. Exponenciação em F_p[*] é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e divisão é difícil. Mulitplicação é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
0.5/0.5	 A exponenciação é mais rápida sobre curvas elípticas do que em F_p[*]. A solução do DLP é mais complicada sobre curvas elípticas do que em F_p[*]. A operação de "adição" é mais complicada sobre curvas elípticas do que em F_p[*]. A operação de "adição" é mais fácil sobre curvas elípticas do que em F_p[*].

Miguel Balão Candeias - 50647 - MIEI Mark: 0/5 (total score: -1.3/5)

+87/1/8+

	Departamento de Matemá Criptografia		Faculdade de Ciências e Tecnologia — UNL '2018 Exame Final
	Número de aluno 0 0 0 0 1 1 1 1 1	← Marque o seu i drados respectivos d número e o curso ab	número de aluno preenchendo completamente os qua- la grelha ao lado () e escreva o nome completo, o aixo.
	2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4	Nome: M.GU	VEL BALAO CANDEIAS
	5 5 5 5 6 6 6 7 7 7 7	Curso: M.EI	Número de aluno: 5064) por 10 questões de escolha múltipla. Nas questões
	88888	marque a resposta con tivo () com caneta cada resposta errada questão. Se a soma d	erta preenchendo completamente o quadrado respec- a azul ou preta, cada resposta certa vale 0,5 valores, desconta 0,2 valores e marcações múltiplas anulam a las classificações das questões de escolha múltipla der , será atribuído 0 valores como resultado final.
	Questão 1 Considere o g se, c só se:		definir uma multiplicação tal que \mathbb{F}_n é um corpo
-0.2/0.5	igstyle n é uma potência de un $igstyle n$ é um número primo í		$n \in \text{um número primo.}$ $n \in \text{um número par.}$
	Questão 2 Os princípios d satisfazer. Um princípio de K deve depender:	de <i>Kerckhoff</i> são prin erckhoff fundamenta	cípios que todos os sistemas criptográficos devem l diz que <i>a segurança de um sistema criptográfico</i>
-0.2/0.5	só da chave, mas não do do segredo da chave e d só da complexidade da c só do segredo do algorit	lo segredo do algorita encriptação.	mo.
	Questão 3 Qual destes pr	rotocolos criptográfic	cos é assimétrico?
-0.2/0.5	☐ Vigenère ☐ DES		ElGamal AES
	Questão 4 O Discrete Logarithm Prod	blem (DLP) para a c	congruência $g^x \equiv h \pmod p$ é:
-0.2/0.5			Determine h , dados g , $p \in x$. Determine g , dados h , $p \in x$.

	Questão 5 No protocolo de troca de chaves de Diffie-Hellman, Alice e Bob usam número secretos a e b para calcular números A e B que são depois trocados.
0.5/0.5	
	Questão 6 No protocolo <i>ElGamal</i> , Bob usa a chave pública da Alice $A \equiv g^a \pmod{p}$ para enviar um <i>ciphertext</i> (c_1, c_2) com $c_1 \equiv g^k \pmod{p}$ e $c_2 \equiv mA^k \pmod{p}$; k uma chave <i>ephemeral</i> Para recuperar a mensagem m , Alice calcula:
-0.2/0.5	
	Questão 7 — O algoritmo de Miller-Rabin devolve um número primo com probablidade elevada. No caso improvável do número devolvido p não ser primo, o que pode acontecer no protocolo criptográfico de $ElGamal$ que usa este número para a escolha de \mathbb{F}_p^* :
-0.2/0.5	 ✓ Duas mensagens podem ser codificadas pelo mesmo ciphertext. ✓ Dois ciphertexts podem encriptar a mesma mensagem. ✓ A quebra do protocolo é fácil. ✓ A encriptação torna-se lenta.
	Questão 8 Um protocolo criptográfico tem a propriedade de total secrecy, se, e só se:
-0.2/0.5	 O protocolo pode ser quebrado em tempo polinomial. A probabilidade de um plaintext é independente do ciphertext. O conjunto das chaves possíveis tem a mesma cardinalidade que o conjunto dos potenciais ciphertexts.
	O protocolo pode ser quebrado em tempo exponencial. Questão 9 — O funcionamento do RSA é baseado no seguinte:
-0.2/0.5	 Questão 9 O funcionamento do RSA é baseado no seguinte: Mulitplicação é fácil e divisão é difícil. Exponenciação em F_p* é fácil e factorização é difícil. Exponenciação em F_p* é fácil e o Discrete Logarithm Problem é difícil. Mulitplicação é fácil e factorização é difícil.
	Questão 10 Curvas elípticas são importantes em criptografia, porque (empiricamente):
-0.2/0.5	A solução do DLP é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* . A operação de "adição" é mais complicada sobre curvas elípticas do que em \mathbb{F}_p^* . \square A exponenciação é mais rápida sobre curvas elípticas do que em \mathbb{F}_p^* .
	A operação de "adição" é mais fácil sobre curvas elípticas do que em F*.