1. Ariketa

1. Bertsioa

A irudian adierazten den agindu formatua erabiltzen duen mikroprozesadorea dugu. Egin ditzakeen aginduak B irudian adierazten dira, eta kontrol-hitza nola eratzen den C irudian.

- a) Kontrol Unitatea mikroprogramatua edo kableatua da?
- b) Nolakoa izango litzateke oraingo helbidea baino 25 lerro beheragokora jauzi egiteko instrukzioa 3. erregistroa zero denean (R3 = 0 bada jauzi -25)? (D irudia, 1. lerroa)
- c) Kontrol-hitza lortu (D irudia, 2. lerroa).
- d) Nola geratzen da PCa agindua egin ondoren, PC = 30010 bada agindua exekutatu aurretik?

OHARRA: Emandako PC-ren balioa eta jauziaren tamaina hamartarrean.

Jauzia eta adarkatzea

A irudia. Aginduen formatua.

Agindua	Eragiketa kodea	Mnemonikoa	Helbidea	Deskribapena	Egoera bitak
A mugitu	0000000	MOV A	DA, AA	R[DA]←R[AA]*	N, Z
Gehitu	0000001	INC	DA, AA	R[DA]←R[AA]+1*	N, Z
Batu	0000010	ADD	DA, AA, BA	R[DA]←R[AA]+R[BA]*	N, Z
Kendu	0000101	SUB	DA, AA, BA	R[DA]←R[AA]-R[BA]*	N,Z
Murriztu	0000110	DEC	DA, AA	R[DA]←R[AA]-1*	N, Z
AND	0001000	AND	DA, AA, BA	R[DA]←R[AA]·R[BA]*	N, Z
OR	0001001	OR	DA, AA, BA	R[DA]←R[AA] + R[BA]*	N, Z
XOR	0001010	XOR	DA, AA, BA	R[DA]←R[AA]⊕R[BA]*	N, Z
NOT	0001011	NOT	DA, AA	R[DA]←/R[AA]*	N, Z
B mugitu	0001100	MOV B	DA, BA	R[DA]←R[BA]*	
Despl. Eskuin	0001101	SHR	DA, BA	R[DA]←sr R[BA]*	
Despl. Ezker	0001110	SHL	DA, BA	R[DA]←sl R[BA]*	
Kargatu erag.	1001100	LDI	DA, OP	R[DA]←OP*	
Batu eragigaia	1000010	ADI	DA, AA, OP	R[DA]←R[AA]+OP*	N, Z
Kargatu	0010000	LD	DA, AA	R[DA]←M[AA]*	
Biltegiratu	0100000	ST	AA, BA	M[AA]←R[BA]*	
Jauzi zero	1100000	BRZ	AA, AD	If R[AA]=0 PC←PC+AD else PC←PC+1	N, Z
Jauzi neg.	1100001	BRN	AA, AD	If R[AA]<0 PC←PC+AD else PC←PC+1	N, Z
Jauzi ez-bald.	1110000	JMP	AA	PC←R[AA]	

B irudia. Aginduak.

C irudia. Kontrol-unitatea.

[
					 _

D irudia. Agindu-formatua eta kontrol-hitza.

2. Bertsioa

- b) Nolakoa izango litzateke oraingo helbidea baino 25 lerro aurreragoko jauzi egiteko instrukzioa
- 2. erregistroa zero denean (R2 = 0 bada jauzi +25)? (D irudia, 1. lerroa)

•••

d) Nola geratzen da PCa agindua egin ondoren, PC = 30020 bada agindua exekutatu aurretik?

2. Ariketa

1. Bertsioa

Datu-bide bat begizta bat osatzen duten 4 elementuz osatuta dago (A, B, C eta D). Elementuak sartzen dituzten atzerapen-denborak honako hauek dira: A (3 ns), B (2 ns), C (2 ns) eta D (4 ns):

- a) Zein da agindu bat betetzeko denbora? Zein da sistemaren maiztasuna?
- b) Zenbat denbora behar da 6 agindu egiteko?
- c) Kanalizazioan exekuzio bat inplementatzeko 2 erregistro izanez gero, non tartekatuko lirateke makinaren errendimendua maximizatzeko? Zergatik?
- d) Pipe-line ezartzeko erabiltzen den erregistro bakoitzak 1 ns-ko atzerapena sartzen badu, zenbat denbora behar da 6 agindu egiteko?
- e) Infinitu agindu eginez gero, zein da agindu bat exekutatzeko beharko den batezbesteko denbora?
- f) Hobekuntzaren bat lortuko litzateke 2 erregistroen ordez 3 tartekatuz? Zergatik?

2. Bertsioa

Datu-bide bat begizta bat osatzen duten 4 elementuz osatuta dago (A, B, C eta D). Elementuak sartzen dituzten atzerapen-denborak honako hauek dira: A (4 ns), B (2 ns), C (2 ns) eta D (3 ns):

b) Zenbat denbora behar da 5 agindu egiteko?

d) Pipe-line ezartzeko erabiltzen den erregistro bakoitzak 1 ns-ko atzerapena sartzen badu, zenbat denbora behar da 5 agindu egiteko?

3. Ariketa

1. Bertsioa

Irudiko datuen arabera, zein izango dira memoria helbide efektiboa (datua daukan memoria helbidea) eta metagailuan (Acc) kargatuko den datua?

OHARRA: Emandako helbideak eta balioak hamartarrean, soluzioa ere hamartarrean.

200	Cód. Op. Modo	
201	ADRS ó NBR = 500	
202	Siguiente instrucción	
400	600	
500	800	
600	200	
702	150	
800	250	
900	350	

Modo de dir.		Dirección efectiva	Acc
Directo	LDA ADRS		
Inmediato	LDA #NBR		
Indirecto	LDA [ADRS]		
Relativo	LDA \$ADRS		
Indexado	LDA ADRS (R3)		
Registro	LDA R3		
Registro Indirecto	LDA (R3)		

PC = 202	
R1 = 100	
R2 = 300	
R3 = 400	
R4 = 500	

2. Bertsioa

200	Cód. Op. Modo
201	ADRS ó NBR = 500
202	Siguiente instrucción
400	600
500	800
600	200

702	250
800	350
900	450

Modo de dir.		Dirección efectiva	Acc
Directo	LDA ADRS		
Inmediato	LDA #NBR		
Indirecto	LDA [ADRS]		
Relativo	LDA \$ADRS		
Indexado	LDA ADRS (R3)		
Registro	LDA R3		
Registro Indirecto	LDA (R3)		

PC = 202
R1 = 100
R2 = 300
R3 = 400
R4 = 500

4. Ariketa

Programa Orokorra deituko dugun programa bat exekutatzen ari den mikroprozesadorea daukagu. Demagun A, F (Flag-ak), B, C, D eta E erregistroak baino ez ditugula.

Programan aldez aurretik etenaldien arreta aktibatu da. Programaren puntu batean kalkulu bat egin behar da. Kalkulu hori Kalkulu Azpierrutinean egiten da, eta aurretik adierazitako 6 erregistroen edukia pasatu behar da parametro gisa.

Etendura arretara Azpierrutina	pa	alkulu Azpierrutina rametro pasearekin
700	800	

- a) Zein aginduarekin amaitu dezakete bi azpierrutinak?
- b) Nola dakizu zein agindura itzuli behar duzun azpierrutinaren ondoren?
- c) Bi kasuetan, 6 erregistroen edukia pilan gorde behar da. Baina, non idatziko zenituzke erregistroak gordetzeko aginduak bi kasuetan?
- d) Ondo al legoke agindu-sekuentzia hau? Zergatik?

r./Subr. X
A en la Pila
lags en la Pila
r B en la Pila
ır A de la Pila
Flags de la Pila
ar B de la Pila

5. Ariketa

Irudian oinarrituta, bete esaldietako hutsuneak eta erantzun galderak:

a) Eskemak	unitateak hasitako bi gailuren arteko bidezko			
	irudikatzen du.			
b) 1 eta 2-k,	eta	unitateak adierazten dituzte, hurrenez hurren.		
c) 3-k	adierazten du.			
d) 4-k	adierazten du.			
e) 5 eta 6-k,	eta	seinaleak adierazten dituzte, hurrenez hurren.		
f) 7 eta 8-k,	eta	lerroak irudikatzen dituzte, hurrenez hurren.		
g) mekanismo batek erroreak detektatzen ditu datuen transferentzian.				
h) Adierazi kronologikoki zer gertatzen den 4., 5. eta 6. lerroetan adierazitakoaren arabera.				

6. Ariketa

1. Bertsioa

32k x 16-ko memoria behar dugu baina irudiaren moduko memoria-zirkuitu integratuak baino ez ditugu eskuragarri.

- a) Adierazi zenbat memoria-zirkuitu integratu beharko liratekeen.
- b) Zirkuitu integratuen eta sarrerako eta irteerako lineen arteko konexioak marraztu.

2. Bertsioa

64k x 8 memoria behar dugu baina irudiaren moduko memoria-zirkuitu integratuak baino ez ditugu eskuragarri.

3. Bertsioa

16k x 32 memoria behar dugu baina irudiaren moduko memoria-zirkuitu integratuak baino ez ditugu eskuragarri.