Heywood Cases on the Latent Variable

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

Erin BuchananProfessor

Heywood Cases

- Correlations that are out of bounds
- Negative variances

A Latent Variable Example

```
epi.model <- 'extraversion =~ V3 + V7 + V11 + V15
    neuroticism =~ V1 + V5 + V9 + V13
    lying =~ V4 + V8 + V12 + V16'
epi.fit <- cfa(model = epi.model, data = epi)</pre>
```

How to Find the Error

```
summary(epi.fit, standardized = TRUE,
    fit.measures = TRUE)
```

```
Covariances:
               Estimate Std.Err z-value P(>|z|) Std.lv Std.all
 extraversion ~~
   neuroticism -0.011 0.002 -6.822
                                       0.000 - 0.894 - 0.894
   lying -0.012
                        0.002 - 6.801
                                       0.000 - 0.777 - 0.777
 neuroticism ~~
   lying
                0.012
                        0.002
                               7.023
                                       0.000
                                              0.982
                                                      0.982
```


How to Fix the Error

```
#original model
epi.model <- 'extraversion =~ V3 + V7 + V11 + V15
    neuroticism =~ V1 + V5 + V9 + V13
    lying =~ V4 + V8 + V12 + V16'</pre>
```

```
#respecify the model
epi.model2 <- 'extraversion =~ V3 + V7 + V11 + V15
    neuroticism_lie =~ V1 + V5 + V9 + V13 + V4 + V8 + V12 + V16'

epi.fit2 <- cfa(model = epi.model2, data = epi)
summary(epi.fit2, standardized = T, fit.measures = T)</pre>
```

How to Fix the Error (2)

```
Covariances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all extraversion ~~

neuroticism_li -0.011 0.002 -6.939 0.000 -0.843 -0.843
```


Let's practice!

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

Heywood Cases on the Manifest Variables

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

Erin BuchananProfessor

Why Negative Variances?

- Reasons a negative variance might occur:
 - The model might be misspecified or under identified
 - Smaller sample size or sampling fluctuations
 - Manifest variables have different scales
 - Data is skewed or otherwise non-normal

Negative Variance Example

```
negative.model <- 'latent1 =~ V1 + V2 + V3
    latent2 =~ V4 + V5 + V6'
negative.fit <- cfa(negative.model, data = negative_data)</pre>
```

```
Warning message:
In lavaan::lavaan(model = negative.model,
  data = negative_data, :
  lavaan WARNING: model has NOT converged!
```


Summarize to View Heywood Case

```
summary(negative.fit, standardized = TRUE,
    fit.measures = TRUE, rsquare = TRUE)
```

```
** WARNING ** lavaan (0.5-23.1097) did
NOT converge after 10000 iterations
** WARNING ** Estimates below are most likely unreliable
```

```
Variances:

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

.V2 -3949.334 NA -3949.334 -211.745

.V5 11885.910 NA 11885.910 615.668
```


Investigate R-Square Output

```
R-Square:

Estimate

V1 0.001

V2 NA

V3 0.000

V4 -0.000

V5 -614.668

V6 -0.000
```

```
var(negative_data$V2)
```

18.83833

Update the Model

```
negative.model <- 'latent1 =~ V1 + V2 + V3</pre>
    latent2 =\sim V4 + V5 + V6
    V2 ~~ 18.83833*V2'
negative.fit <- cfa(negative.model,</pre>
                      data = negative_data)
summary(negative.fit,
        standardized = TRUE,
        fit.measures = TRUE,
        rsquare = TRUE)
```

New Updated Output

Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.V2	18.838				18.838	0.962
.V1	7.655	1.145	6.687	0.000	7.655	0.772
.V3	16.100	1.580	10.189	0.000	16.100	0.848
. V4	13.866	1.017	13.638	0.000	13.866	0.876
.V5	8.851	5.472	1.617	0.106	8.851	0.400
. V6	12.336	0.599	20.596	0.000	12.336	0.956
laten	t1 2.261	1.128	2.004	0.045	1.000	1.000
laten	t2 1.956	0.875	2.236	0.025	1.000	1.000

Negative Variance Example (5)

```
R-Square:

Estimate

V2 0.038

V1 0.228

V3 0.152

V4 0.124

V5 0.600

V6 0.044
```


Let's practice!

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

Create Diagrams with semPaths()

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

Erin BuchananProfessor

semPlot and semPaths()

```
library(lavaan)
library(semPlot)
twofactor.model <- 'text =~ x4 + x5 + x6
    speed =~ x7 + x8 + x9'
twofactor.fit <- cfa(model = twofactor.model,
                     data = HolzingerSwineford1939)
semPaths(object = twofactor.fit)
```

semPaths() Default Output

Editing the Picture

Picture Layout

Picture Rotation

Color Visualization

Let's practice!

STRUCTURAL EQUATION MODELING WITH LAVAAN IN R

