$$f(\chi) = \chi^4 + p\chi^2 + q\chi + r.$$

$$K = F(\alpha_1, ..., \alpha_4)$$

Then Gal (L/F) = S3 or Z3

(i) $D \notin F$. Then $Gal(U/F) \stackrel{\sim}{=} S_3$ So |G| > 6. Also 4|G|, So $either G \stackrel{\sim}{=} A_4$ or S_4 . $Since D \notin F$, $G \notin A_4$ $So G \stackrel{\sim}{=} S_4$.

(ii) $abla \in F$. Then $Gal(L/F) \cong \mathbb{Z}_3$.

But 4|16|, so |6| > 17.

And $6 \leq A_4$ so $6 \cong A_4$.

Case 2: R splits completely: θ_1 , θ_2 , $\theta_3 \in F$. Then L = F so $G = Gal(K/L) = V_4$

Case 3: $R = (\chi - \theta_1) R_2$, $\Theta_1 \in F$, R_2 is irreducible over F.

then Gal (L/F) = 7/2. Gal (K/L) = Vy.

So |Gal(K/F)| = 8 or 4. $(H_i \cong D_g \text{ or } C_i \cong Z_4).$

 $H_1 = \langle (12), (1324) \rangle$ } 6 is \cong +0 one of these.

If f is irr-le over
$$F(JD)$$
, $G = H_1 = D_8$
Otherwise $G = C_1 = \mathbb{Z}_4$.

$$f$$
-irr-le \Rightarrow $|K:L| \gg 4$ so $|K:F| \gg 8$, so $G = H_1$.
 $\Rightarrow |K:L| \gg 4$ so $|K:F| \gg 8$ so $G = H_1$

$$f$$
 -reducible $\Rightarrow f = f_1 f_2$, $f_1, f_2 \in F(VD)(x)$
Quadratic

If
$$G = H$$
, tun $G \cap V_H$ acts transitively on $\{\alpha_1, \dots, \alpha_4\}$
So they are conjugate over $L = F(V_0)$,
So f is irr-le over $F(V_0)$.

$$\frac{\sum_{x \in \mathbb{Z}} x_{\text{out}} \log x}{(\text{over } \mathbb{Q})} \qquad x^3 - x - 1 \qquad -\text{in-le.} \qquad D = -23,$$

$$\chi^3 - 3\chi - ($$
 -irr-le, $D = 81 = 9^2$, $G \cong \mathbb{Z}_3$.

$$\chi^4-\chi-1$$
 -irele our \mathbb{Z}_2 so our \mathbb{Z} so our \mathbb{Z} so our \mathbb{Z} so our \mathbb{Z} by Gauss luma.
$$D=-283 \ , \ R=\chi^3+4\chi+1 \quad \text{irr-le} \ , \ So \ G\cong S_4.$$
 Wiley $\Theta_1=\alpha_1\alpha_2+\alpha_3\alpha_4$

$$\chi^{4} + 8\chi + 12 - i\%$$
 $D = 576^{2}$ $R = \chi^{3} - 48\chi + 64 - i\%$ $G = A_{4}$

$$\chi^{4} + 36\chi + G3$$
 D=4320²

Then
$$Gal(f/Z_p) \leq Gal(f/Q)$$
.

$$\text{ut} \quad f = f, \dots f_{\kappa}$$

Let A; be the set of roots of fi, |Ail=degfi.

Then Gal(f/Zp)

(o) istransitive on each of Ai.

Then σ has cycle type $n_i, n_2, ..., n_k$ where $n_i = dg f_i$.

So G = Gal(f/a) contains an element of this yell type.

Final: Friday, April 26, 12-2, Baken or Tuesday, April 30, 10-12, Enason

Examples from Kerth Comad