Tehnici de Optimizare Curs 3

Facultatea de Matematica si Informatica
Universitatea Bucuresti

Department Informatica-2021

Verificare convexitate

Sub non-diferentiabilitate: e.g. ||Ax - b||, $\max\{f_1(x), ..., f_m(x)\}$, etc.

Exemplu:
$$||Ax - b||_{\infty} = \max\{|A_1x - b_1|, ..., |A_mx - b_m|\}$$

Verificam conditia de ordin 0:

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Sub diferentiabilitate: e.g. $\frac{1}{2}x^THx + q^Tx$, $\log(a^Tx + b)$, etc.

Verificam conditia de ordin II: $\nabla^2 f(x) \ge 0$, $\forall x$

Conditii de extrem

THEOREM 1 (Fermat). Let x^* be a minimum point of f(x) on R^n and let f(x) be differentiable at x^* . Then

$$\nabla f(x^*) = 0. (1)$$

PROOF. Suppose $\nabla f(x^*) \neq 0$. Then

$$f(x^* - \tau \nabla f(x^*)) = f(x^*) - \tau \|\nabla f(x^*)\|^2 + o(\tau \nabla f(x^*))$$
$$= f(x^*) - \tau (\|\nabla f(x^*)\|^2 + \tau^{-1}o(\tau)) < f(x^*)$$

Conditii de extrem

• Demonstratia sugereaza de o metoda de constructie a unui punct pentru a descreste valoarea functiei:

$$x^+ = x - \alpha \nabla f(x)$$

• Pentru o alegere potrivita a lui α , avem $f(x^+) < f(x)$

Conditii ordin I suficiente

THEOREM 2. Let f(x) be a convex function differentiable at a point x^* and let $\nabla f(x^*) = 0$. Then x^* is a global minimum point of f(x) on \mathbf{R}^n .

PROOF. The proof follows immediately from formula (26) of Section 1.1 since $f(x) \ge f(x^*) + (\nabla f(x^*), x - x^*) = f(x^*)$ for any $x \in \mathbb{R}^n$. \square

Sub convexitate, orice punct de extrem este punct de minim GLOBAL!!!

Conditii necesare de ordin II

• Reamintim:

Differentiabilitate:
$$f(x + \tau d) = f(x) + \tau \nabla f(x)^T d + o(\tau d)$$

Dublu dif:
$$f(x + \tau d) = f(x) + \tau \nabla f(x)^T d + \tau^2 d^T \nabla^2 f(x) d + o(\tau^2 d)$$

Conditii necesare de ordin II

THEOREM 3. Let x^* be a minimum point of f(x) on R^n and let f(x) be twice differentiable at x^* . Then

$$\nabla^2 f(x^*) \ge 0. \tag{2}$$

PROOF. By Theorem 1, $\nabla f(x^*) = 0$ and hence for an arbitrary y and a sufficiently small τ

$$f(x^*) \le f(x^* + \tau y) = f(x^*) + \tau^2(\nabla^2 f(x^*)y, y)/2 + o(\tau^2),$$
$$(\nabla^2 f(x^*)y, y) \ge o(\tau^2)/\tau^2.$$

Passing to the limit as $\tau \not > 0$, we obtain $(\nabla^2 f(x^*)y, y) \ge 0$. Since y is arbitrary, $\nabla^2 f(x^*) \ge 0$. \square

•
$$f: R^2 \to R$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

• Care punctele stationare? Se poate gasi un minim local?

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

• Care punctele stationare? Se poate gasi un minim local?

$$\nabla f(x) = \begin{bmatrix} x_1^3 - x_1^2 \\ x_2^3 - x_2^2 \end{bmatrix}$$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

• Care sunt punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\nabla f(x) = \begin{bmatrix} x_1^3 - x_1^2 \\ x_2^3 - x_2^2 \end{bmatrix} = 0$$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

Care punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\nabla f(x) = \begin{bmatrix} x_1^3 - x_1^2 \\ x_2^3 - x_2^3 \end{bmatrix} = 0 \Rightarrow x_1^*, x_2^* \in \{0, 1\}$$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

Care punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

Care punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$\nabla^2 f(x) = \begin{bmatrix} 3x_1^2 - 2x_1 & 0 \\ 0 & 3x_2^2 - 2x_2 \end{bmatrix}$$

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

• Care punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Toate punctele stationare satisfac:
$$\nabla^2 f(x) = \begin{bmatrix} 3x_1^2 - 2x_1 & 0 \\ 0 & 3x_2^2 - 2x_2 \end{bmatrix} \geqslant 0$$

Conditii suficiente de ordin II

THEOREM 4. At a point x^* , let $f^*(x)$ be twice differentiable, let a first-order necessary condition hold (i.e., $\nabla f(x^*) = 0$) and let

$$\nabla^2 f(x^*) > 0.$$
(3)

Then x^* is a local minimum point.

PROOF. Let y be any vector with unit norm. Then

$$f(x^* + \tau y) = f(x^*) + \tau^2(\nabla^2 f(x^*)y, y)/2 + o(\tau^2 ||y||^2)$$

$$\geq f(x^*) + \tau^2 \ell/2 + o(\tau^2),$$

where $\ell > 0$ is the smallest eigenvalue of $\nabla^2 f(x^*)$ and the function $o(\tau^*)$ does not depend on y. Hence we can find a τ_0 such that for $0 \le \tau \le \tau_0$ we have $\tau^2 \ell/2 \ge o(\tau^2)$, i.e., $f(x^* + \tau y) \ge f(x^*)$. \square

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x) = \frac{1}{4}(x_1^4 + x_2^4) - \frac{1}{3}(x_1^3 + x_2^3)$

• Care punctele stationare? Se poate gasi un minim local?

Puncte stationare:
$$\left\{\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$$

Doar $[1\ 1]^T$ satisface cond. sufc.: $\nabla^2 f([1,1]) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} > 0 \Rightarrow Minim local!$

Proprietati ale punctelor de extrem

• Ce solutie are problema:

$$\min_{x} f(x) = \frac{1}{1+x^2}$$

Proprietati ale punctelor de extrem

• Ce solutie are problema:

$$\min_{x \ge \frac{1}{2}} f(x) = \frac{1}{1 + x^2}$$

Convexitate:
$$\nabla^2 f(x) = \frac{8x^2 - 2}{(1 + x^2)^2} \ge 0$$
 (pe multimea fezabila)

Proprietati ale punctelor de extrem

• Ce solutie are problema:

$$\min_{x \ge \frac{1}{2}} f(x) = \frac{1}{1 + x^2}$$

Convexitate: $\nabla^2 f(x) = \frac{8x^2 - 2}{(1 + x^2)^2} \ge 0$ (pe multimea fezabila)

Desi este convexa (pe mul. fez.), nu are puncte de minim!

Clasificare metode de optimizare

Informatia ce indica comportamentul unei functii $f \in \mathbb{R}^n \to \mathbb{R}$ intr-un punct $x \in \mathbb{R}^n$ se poate clasifica:

- ▶ Informatie de ordin 0: f(x)
- ▶ Informatie de ordin 1: f(x), $\nabla f(x)$
- ▶ Informatie de ordin 2: f(x), $\nabla f(x)$, $\nabla^2 f(x)$
- **.**...

Fie algoritmul iterativ definit de $x_{k+1} = \mathcal{M}(x_k)$; in functie de ordinul informatiei utilizate in expresia lui \mathcal{M} :

- ▶ Metode de ordin 0: $f(x_k)$
- ▶ Metode de ordin 1: $f(x_k)$, $\nabla f(x_k)$
- ▶ Metode de ordin 2: $f(x_k)$, $\nabla f(x_k)$, $\nabla^2 f(x_k)$

Metoda Gradient

► Interpretare: iteratia metodei gradient se obtine din minimizarea unei aproximari patratice a functiei obiectiv f

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^n} f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} ||x - x_k||^2$$

$$\nabla f(x^k) + \frac{1}{\alpha_k} (x - x^k) = 0$$
$$x - x^k = -\alpha_k \nabla f(x^k)$$
$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Metoda Gradient

Cea mai "simpla" metoda de ordinul I: Metoda Gradient

- Prima aparitie in lucrarea [1] a lui Augustin-Louis Cauchy, 1847
- Cauchy rezolva un sistem neliniar de ecuatii cu 6 necunoscute, utilizand Metoda Gradient

[1] A. Cauchy. Methode generale pour la resolution des systemes dequations simultanees. C. R. Acad. Sci. Paris, 25:536-538, 1847

Imbunatatiri

Rata de convergenta slaba a metodei gradient reprezinta motivatia dezvoltarii de alte metode de ordin I cu performante superioare

- Metoda de Gradienti Conjugati autori independenti Lanczos, Hestenes, Stiefel (1952)
 - QP convex solutia in *n* iteratii

Metoda de Gradient Accelerat dezvoltata de Yurii Nesterov (1983)

Continuitate Lipschitz

Fie o functie continuu diferentiabila f (i.e. $f \in C^1$), atunci gradientul ∇f este **continuu Lipschitz** cu parametrul L > 0 daca:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \quad \forall x, y \in \mathsf{dom} f \tag{1}$$

Teorema 2: Relatia de Lipschitz (1) implica

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} ||x - y||^2 \quad \forall x, y$$

Observatie: aceasta relatie este universal folosita in ratele de convergenta ale algoritmilor de ordinul I!

Teorema 3: In cazul functiilor de doua ori diferentiabile, relatia de Lipschitz (1) este echivalenta cu

$$\|\nabla^2 f(x)\| \le L \quad \forall x \in \mathsf{dom} f$$

Continuitate Lipschitz

• Daca f are gradient Lipschitz atunci:

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2$$

Fie $f: \mathbb{R}^n \to \mathbb{R}$ o functie patratica, i.e.

$$f(x) = \frac{1}{2}x^T Qx + \langle q, x \rangle.$$

Observam expresia gradientului $\nabla f(x) = Qx + q$.

Aproximam constanta Lipschitz a functiei f:

$$||Qx + q - Qy - q|| = ||Q(x - y)|| \le ||Q|| ||x - y|| = L||x - y||$$

In concluzie, pentru functiile patratice constanta Lipschitz este:

$$L = ||Q|| = \lambda_{\mathsf{max}}(Q)$$

Fie $f: \mathbb{R}^n \to \mathbb{R}$ definita de

$$f(x) = \log\left(1 + e^{a^T x}\right).$$

Observam expresia gradientului si a matricii Hessiene

$$\nabla f(x) = \frac{e^{a^T x}}{1 + e^{a^T x}} a$$
 $\nabla^2 f(x) = \frac{e^{a^T x}}{(1 + e^{a^T x})^2} a a^T$

Pentru orice constanta pozitiva c>0 avem $\frac{c}{(1+c)^2}\leq \frac{1}{4}$, deci

$$\|\nabla^2 f(x)\| = \frac{e^{a^T x}}{(1 + e^{a^T x})^2} \|aa^T\| \le \frac{\|a\|^2}{4} = L$$

Convexitate tare

• Daca f este tare convexa atunci:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||y - x||^2$$

Garantii de convergenta

- Fie f diferentiabila cu ∇f Lipschitz continuu (constanta Lipschitz L > 0)
- ▶ Alegem lungimea pasului $\alpha_k = \frac{1}{L}$

Atunci rata de convergenta globala a sirului x_k generat de metoda gradient este subliniara, data de:

$$\min_{0\leq i\leq k} \|\nabla f(x_i)\| \leq \frac{1}{\sqrt{k}} \sqrt{2L(f(x_0)-f^*)}$$

Garantii de convergenta

Sub presupunerea ca ∇f Lipschitz continuu avem:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \quad x, y \in \text{dom} f.$$

Considerand $x = x_k, y = x_{k+1} = x_k - (1/L)\nabla f(x_k)$ avem:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2.$$

Insumam dupa $i = 0, \dots k - 1$ si rezulta

$$\frac{1}{2L} \sum_{i=0}^{k-1} \|\nabla f(x_i)\|^2 \le f(x_0) - f(x_k) \le f(x_0) - f^*$$

In concluzie, observam

$$k \min_{0 \le i \le n} \|\nabla f(x_i)\|^2 \le \sum_{i=0}^{k-1} \|\nabla f(x_i)\|^2 \le 2L(f(x_0) - f^*)$$

- Fie f diferentiabila cu ∇f Lipschitz continuu (constanta Lipschitz L > 0)
- Exista un punct de minim local x*, astfel incat Hessiana in acest punct satisface

$$\sigma I_n \preceq \nabla^2 f(x^*) \preceq L I_n$$

Punctul initial x_0 al iteratiei metodei gradient cu pas $\alpha_k = \frac{2}{\sigma + L}$ este suficient de aproape de punctul de minim, i.e.

$$||x_0 - x^*|| \le \frac{2\sigma}{L}$$

Atunci rata de convergenta locala a sirului x_k generat de metoda gradient este liniara (i.e de ordinul $\mathcal{O}\left(\log(\frac{1}{\epsilon})\right)$), data de:

$$||x_k - x^*|| \le \beta \left(1 - \frac{2\sigma}{L + 3\sigma}\right)^k \qquad \text{cu } \beta > 0$$

- Fie f diferentiabila cu ∇f Lipschitz continuu (constanta Lipschitz L > 0)
- Exista un punct de minim local x*, astfel incat Hessiana in acest punct satisface

$$\sigma I_n \preceq \nabla^2 f(x^*) \preceq L I_n$$

Punctul initial x_0 al iteratiei metodei gradient cu pas $\alpha_k = \frac{2}{\sigma + L}$ este suficient de aproape de punctul de minim, i.e.

$$||x_0 - x^*|| \le \frac{2\sigma}{L}$$

Atunci rata de convergenta locala a sirului x_k generat de metoda gradient este liniara (i.e de ordinul $\mathcal{O}\left(\log(\frac{1}{\epsilon})\right)$), data de:

$$||x_k - x^*|| \le \beta \left(1 - \frac{2\sigma}{L + 3\sigma}\right)^k \qquad \text{cu } \beta > 0$$

Fie f functie convexa, diferentiabila cu ∇f Lipschitz continuu (constanta Lipschitz L > 0). Daca alegem lungimea pasului constanta $\alpha_k = \frac{1}{L}$, atunci rata de convergenta globala a sirului x_k generat de metoda gradient este subliniara, data de:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||^2}{2k}$$

▶ Daca in plus functia este tare convexa cu constanta $\sigma > 0$, atunci rata de convergenta globala a sirului x_k generat de metoda gradient cu pas $\alpha_k = \frac{1}{L}$ este liniara, data de:

$$||x_k - x^*||^2 \le \left(\frac{L - \sigma}{L + \sigma}\right)^k ||x_0 - x^*||^2$$

 $\mu = rac{L}{\sigma}$ (numarul de conditionare al problemei) determina viteza algoritmilor de ordin I

Cand μ este mare, atunci MG necesita un numar mare de iteratii! Cand μ este mic, atunci MG necesita un numar mic de iteratii!