

Машинное обучение в гидрологии

Регрессия

Содержание лекции

- 1. Регрессия
- 2. Линейная регрессия
 - Постановка задачи
 - Оценка коэффициентов
 - MHK
 - Метод максимального правдоподобия
- 3. Оценка качества модели
- 4. Регуляризация
 - Гребневая регрессия
 - Лассо регрессия
- 5. Отбор признаков для модели

Как ставится задача регрессии

 $X = \mathbb{R}^n$ – множество объектов

 $Y = \mathbb{R}$ – множество ответов

 $y: X \rightarrow Y$ – неизвестная зависимость (target function)

Дано:

 $X_{obs} = \{x_1, \dots x_N\} \subset X$ – уже наблюдаемые объекты

 $y_i = y(x_i)$, $i = \{1, ... N\}$ — известные ответы

Найти:

 $a: X \to Y$ — алгоритм, решающую функцию (decision function) наилучшим образом приближающую **у** на всем множестве **X**

Задача предсказания расхода

Выборка: Наблюдения по которым достоверно известен расход

- $X_1, ... X_n \in \mathbb{R}^m$ наблюдения (вектора признаков)
- $y_1, ... y_n \in \mathbb{R}$ непрерывная целевая переменная (расход)
- Делаем допущение, что (X_i,y_i) , i=1,...n независимы и одинаково распределены

В чем особенности задачи?

- Может быть мало данных или данные с пропусками
- Расход может сильно варьироваться
- «Хвост» распределения может быть очень длинным

Какой метод выбрать?

Линейная регрессия

Предсказание расхода Деревья решений

Метод ближайших соседей

> Бустинг и другие..

Какой метод выбрать?

Линейная регрессия

Предсказание расхода Деревья решений

Метод ближайших соседей

> Бустинг и другие..

Линейная регрессия

Модель линейной регрессии

Основное предположение модели: у – линейная функция от признаков $(X_1, ... X_m)$

$$y = a_0 + a_1 X_1 + \dots + a_m X_m + \varepsilon$$

- a_0, a_1, \dots, a_m набор констант (веса модели или параметры)
- ε случайная величина (ошибка)

$$\Delta$$
ля і-ого наблюдения: $y_i = a_0 + a_1 * x_{i,1} + ... + a_m * x_{i,m} + \varepsilon_i$

Матричная запись:

$$y = Xa + \varepsilon$$
, $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, $a = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, $\varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$

$$X = \begin{bmatrix} 1 & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{n,m} \end{bmatrix} = \begin{bmatrix} x_{1,0} & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ x_{n,0} & \cdots & x_{n,m} \end{bmatrix}$$
, и $x_{i0} = 1$

Постановка задачи

- По наблюдениям построить оценки весов a_0 , a_1 , ... a_m
- Оценить ошибки весов и ошибку предсказаний модели

Когда можно применять модель линейной регрессии?

Признаки должны хоть отдаленно линейно зависеть от целевой переменной и не зависеть друг от друга)

<u>Что делать если это не так?</u>

- 1. Исключить такой признак из модели
- 2. Строить другую модель
- 3. Преобразовать «неподходящие» признаки
 - $x \to x^{\alpha}$ (полиномиальная модель)
 - $x \to \log(x)$
 - $x \rightarrow e^{\alpha x}$
- 4. Сделать несколько признаков из одного

Когда можно применять модель линейной регрессии?

Дополнительные условия

Дополнительно на модель надо наложить следующие ограничения (проверяется после подбора параметров модели):

• Математическое ожидание случайных ошибок равно 0

$$\forall i$$
: $E[\varepsilon_i] = 0$

 Дисперсия случайных ошибок одинакова и конечна (гомоскедастичность)

$$\forall i: Var(\varepsilon_i) = \sigma^2 < \infty$$

• Случайные ошибки не скоррелированы (независимы)

$$\forall i \neq j$$
: $cov(\varepsilon_i, \varepsilon_j) = 0$

Дополнительные условия

Гомоскедастичность

Гетероскедастичность

Оценка коэффициентов

Метод наименьших квадратов

Пусть \tilde{a} - некая оценка коэффициентов.

Квадратичный функционал ошибки:

$$Q(\tilde{a}) = ||\hat{\varepsilon}||^2 = ||\hat{y}(\tilde{a}) - y||^2 = ||X\tilde{a} - y||^2 = \frac{1}{2n}(y - Xa)^T(y - Xa)$$

MHK: минимизации $Q(\tilde{a})$

Оценка коэффициентов с помощью

МНК – значения аргументов, на которых квадратичный функционал ошибки принимает наименьшее значение

$$\hat{a} = \arg\min_{a} Q(a)$$

Метод наименьших квадратов

И на самом деле, в случае задачи линейной регрессии существует решение задачи минимизации в явном виде!

Верно следующее:

<u>Утверждение</u>: Если для матрицы X^TX существует обратная, то существует единственное решение задачи $Q(a) \to min$:

$$\hat{a} = (X^T X)^{-1} X^T y$$

Оценка коэффициентов

Покажу на простом примере =)

Будем искать зависимость у = ах+b

Квадратичный функционал ошибки:

$$Q(\tilde{a}) = ||\hat{\varepsilon}||^2 = ||\hat{y}(\tilde{a}) - y||^2 = ||ax + b - y||^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

Чтобы вычислить минимум что нужно сделать?

Покажу на простом примере =

Будем искать зависимость у = ах+b

Квадратичный функционал ошибки:

$$Q(\tilde{a}) = ||\hat{\varepsilon}|| = ||\hat{y}(\tilde{a}) - y|| = ||ax + b - y|| = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

Чтобы вычислить минимум что нужно сделать?

Посчитать производные и приравнять к 0 =)

Покажу на простом примере =

$$Q(\tilde{a}) = ||\hat{\varepsilon}|| = ||\hat{y}(\tilde{a}) - y|| = ||ax + b - y|| =$$

$$= \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

$$\begin{cases} \frac{\partial Q}{\partial a} = 0 \\ \frac{\partial Q}{\partial b} = 0 \end{cases} <=> \begin{cases} \sum 2x_i(ax_i + b - y_i) = 0 \\ \sum 2(ax_i + b - y_i) = 0 \end{cases}$$

Отсюда находим значения коэффициентов регрессии:

$$\hat{k} = \frac{\hat{b} = \bar{y} - \hat{k}\bar{x}}{\sum x_i y_i - \frac{1}{n} \sum y_i \sum x_i}$$
$$\sum x_i^2 - \frac{1}{n} (\sum x_i)^2$$

<u>Чем хороша полученная оценка?</u>

Пусть \hat{a} - оценка полученная с помощью МНК.

Тогда:

- 1. Оценки МНК несмещенные $E\hat{a}=a$
- 2. Оценки МНК эффективны в классе линейных оценок

Для любой линейной несмещенной оценки \hat{b}

$$D_a(\hat{a}) \le D_a(\hat{b})$$

3. Оценки МНК состоятельны $\widehat{a}_n \stackrel{P}{\to} a$ или $P(|\widehat{a_n} - a| > \varepsilon) \to 0, n \to \infty$

Вероятностная интерпретация

Метод максимального правдоподобия

Пусть $X_1, X_2, ..., X_n$ - независимые одинаково распределенные случайные величины (наблюдения), распределение которых задается параметром θ

Функция распределения $P_{\theta}(x) = P(x|\theta)$.

Правдоподобием \mathcal{L} называется вероятность появления фиксированной наблюдаемой выборки, как функции от параметра θ .

$$\mathcal{L}(\theta) = P(X_1 = x_1, ... X_n = x_n \mid \theta) = \prod_{i=1}^n P_{\theta}(x_i)$$

ММП заключается в максимизации функции правдоподобия по θ , т.е. поиска такого параметра θ , при котором появление наблюдаемой выборки будет наиболее вероятным.

Оценка $\hat{ heta}$,на которой достигается максимум, называется оценкой максимального правдоподобия

Метод максимального правдоподобия

Если предположить, что ошибки в модели $y=Xa+\varepsilon$ имеют нормальное распределение: $\varepsilon{\sim}N_n(\mathbf{0},\sigma^2\mathbf{I})$, то неизвестные параметры - a и σ^2 .

И для случайных величин - ошибок можно выписать правдоподобие:

$$\mathcal{L}(a,\sigma^2) = \prod_{i=1}^{n} P_{\theta}(x_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{e_i^2}{2\sigma^2}) = \frac{1}{(2\pi)^{0.5n}\sigma^n} \exp(-(y-Xa)^T(y-Xa)/2\sigma^2)$$

Максимизация правдоподобия эквивалентна минимизации логарифма правдоподобия. А следовательно верно следующее утверждение:

<u>Утверждение:</u> Если существует обратная к матрице X^TX , то оценка ММП существует и совпадает с оценкой МНК.

Оценка качества модели

Вспомним, что было в задаче классификации...

Критерии качества. Классификация

• Хотим предсказывать класс нашего наблюдения.

$$Y = \{-1, 1\}$$

- Составляется матрица ошибок
- Метрика, оценивающая качество модели, выбирается исходя из потребностей задачи

	Y = 1	Y = -1
$\widehat{Y}=1$	True Positive (TP)	False Positive (FP)
$\hat{Y} = -1$	False Negative (FN)	True Negative (TN)

Ошибка 2 рода «пропуск цели»

Метрики задач классификации

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP} = PPV$$

$$Recall = \frac{TP}{TP + FN} = TPR$$

$$F_1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2*recall*precision}{precision + recall}$$

А как на счет регрессии?

• Общая дисперсия зависимой переменной у имеет следующий вид (total sum of squares), где \bar{y} - выборочное среднее

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Сумма квадратов ошибок в оценке регрессии (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

• Общая дисперсия зависимой переменной у имеет следующий вид (total sum of squares), где \bar{y} - выборочное среднее

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Сумма квадратов ошибок в оценке регрессии (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

• Объясненная дисперсия (explained sum of squares)

$$ESS = \sum_{i=1}^{N} (\bar{y} - \hat{y}_i)^2$$

· R² - коэффициент детерминации

$$R^2 = 1 - \frac{RSS}{TSS}$$

• Общая дисперсия зависимой переменной у имеет следующий вид (total sum of squares), где \bar{y} - выборочное среднее

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Сумма квадратов ошибок в оценке регрессии (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

• Объясненная дисперсия (explained sum of squares)

$$ESS = \sum_{i=1}^{\infty} (\bar{y} - \hat{y}_i)^2$$

· R² - коэффициент детерминации

$$R^2 = 1 - \frac{RSS}{TSS}$$

В случае прогнозирования расходов это и есть знаменитый коэффициент Нэша Сатклиффа

y = -111,95x +931,75 R² = 0,7656 y = 9357,8x -^{2,1509} R² = 0,9406 • Ряд1 Линейный (Ряд1)

-Степенной (Ряд1)

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Метрика качества модели

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
, $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, $ESS = \sum_{i=1}^{n} (\bar{y} - \hat{y}_i)^2$, $R^2 = 1 - \frac{RSS}{TSS}$

Утверждения:

Если $\hat{y_i}$ - оценка МНК, то верны следующие свойства:

1.
$$TSS = ESS + RSS$$

$$2. \quad R^2 = 1 - \frac{RSS}{TSS} = \frac{ESS}{ESS + RSS}$$

3.
$$R^2=0\Leftrightarrow \mathrm{ESS}=0\Leftrightarrow \sum_{i=1}^n(\bar{y}-\hat{y_i})^2=0\Leftrightarrow \hat{y}=\bar{y}$$
 т.е. оценка – константа

4.
$$R^2=1\Leftrightarrow \mathrm{RSS}=0\Leftrightarrow \sum_{i=1}^n(y_i-\widehat{y_i})^2=0\Leftrightarrow \widehat{y_i}=y_i$$
 для $\forall i$; т.е. оценка - идеальна

 R^2 оценка качества модели. Чем выше R^2 — тем лучше модель

Как избежать переобучения?

Как избежать переобучения?

- Что делать если признаков слишком много?
- Или мы подбирали параметры модели и в какой-то момент случилось переобучение?

Строим полиномиальную модель. Оптимизируем степень полинома n.

$$n=2:x\to x,x^2$$

Строим полиномиальную модель. Оптимизируем степень полинома n.

$$n = 20: x \to x, x^2, \dots x^{20}$$

Строим полиномиальную модель. Оптимизируем степень полинома n.

$$n = 40: x \to x, x^2, \dots x^{40}$$

Что же получается?

Изначально модель действительно становилась лучше при увеличении степени полинома, но потом в погоне за точностью на обучающей выборке мы просто подстроились под наши данные.

Тем самым серьезно ухудшилось качество на тестовой выборке.

Несоответствие между правильностью на обучающем наборе и правильностью на тестовом наборе является явным признаком переобучения и поэтому мы должны попытаться найти модель, которая позволит нам контролировать сложность

Что делать в таких ситуациях??

В чем может выражаться переобучение?

- В погоне за точностью веса могут начать становится слишком большими
- Слишком большое количество признаков может сделать модель нестабильной
- Наличие скоррелированых признаков тоже может привести к переобучению

Большие веса модели – риск переобучения! Ограничим их! Введем систему штрафов!

Гребневая регрессия

Модифицируем функцию потерь. Добавим к функционалу ошибки регуляризатор и будем минимизировать уже получившуюся величину.

Было:

$$Q(\tilde{a}) = \left| |\hat{\varepsilon}| \right|^2 = \left| |\hat{y}(\tilde{a}) - y| \right|^2 = \left| |ax + b - y| \right|^2 \to min$$

Стало:

$$Q(\tilde{a}) + \alpha ||w||^2 \rightarrow min$$

$$\Gamma \Delta e ||w||^2 = \sum w_i^2$$

Это еще называется L2 регуляризацией

Гребневая регрессия

Посмотрим на α :

- $\alpha = 0$ обычная регрессия, никаких ограничений на коэффициенты нет (сложная модель)
- lpha=1 штраф за большие коэффициенты, следовательно модель имеет часть весов, близких к нулю (простая модель)
- $\alpha = 10$ штраф еще больше, еще больше таких весов

Более простая модель может давать меньшую правильность на обучающей выборке, но иметь лучшею обобщающую способность.

Гребневая регрессия

Чем больше альфа – тем проще модель и выше обобщающая способность. Но тут главное тоже не переборщить =)

Иллюстрация понятия переобучения: а - исходное множество экспериментальных измерений; б - максимально точный аппроксиматор сильно ошибается на новых измерениях

Иллюстрация метода регуляризации: в - регуляризованный аппроксиматор меньше ошибается на новых измерениях; ε - слишком сильно регуляризованный аппроксиматор

Иллюстрация понятия переобучения: α - исходное множество экспериментальных измерений; δ - максимально точный аппроксиматор сильно ошибается на новых измерениях

Иллюстрация метода регуляризации: в - регуляризованный аппроксиматор меньше ошибается на новых измерениях; г - слишком сильно регуляризованный аппроксиматор

Компромисс между слишком простой моделью и качеством на обучающей выборке можно определить с помощью параметра α . Нужен баланс.

Выбор α – например, по кросс валидации

Лассо регрессия регрессия

Альтернатива гребневой регрессии. Тоже сжимает веса модели, но несколько иным способом

$$Q(\tilde{a}) + \alpha \sum |w_i| \to min$$

Это еще называется L1 регуляризацией.

В чем отличие?

<u>Лассо регрессия регрессия</u>

Альтернатива гребневой регрессии. Тоже сжимает веса модели, но несколько иным способом

$$Q(\tilde{a}) + \alpha \sum |w_i| \to min$$

Это еще называется L1 регуляризацией.

В чем отличие? В результате такой регуляризации некоторые коэффициенты становятся равными точно нулю. Т.е. получается, что некоторые признаки полностью выкидываются из модели.

Параметр α определяет степень сжатия коэффициентов до нулевых значений

Лассо регрессия регрессия

- $\alpha = 1$ практически все веса = 0
- $\alpha = 0.0001$ практически нерегуляризованная модель

Критерии для проверки гипотез о значимости моделей и отдельных коэффициентов

Значимость всей модели в целом

Гипотеза H_0 :

 $a_i=0$ для всех i>0, т.е. модель в целом не значима

F – критерий:

F-статистика теста -
$$\frac{R^2/(m+1)}{(1-R^2)/(n-m-1)}$$

Если
$$\frac{R^2/(m+1)}{(1-R^2)/(n-m-1)} > f_{m+1,n-m-1}(\alpha)$$
, то гипотеза отвергается и модель значима

Критерии для проверки гипотез о значимости моделей и отдельных коэффициентов

Значимость отдельного коэффициента (признака)

Гипотеза H_0 :

 $a_i = 0$ для некоторого i > 0, т.е. коэффициент для признака с номером i не значим (сам признак не значим)

t - критерий:

†-СТАТИСТИКА ТЕСТА -
$$\frac{|\widehat{a_i}|}{\sqrt{s^2(X^TX)^{-1}}_{ii}}$$
, где $s^2=\frac{y^T\left(I-X\left(X^TX\right)^{-1}X^T\right)y}{n-m-1}$

Если
$$\frac{R^2/(m+1)}{(1-R^2)/(n-m-1)} > t_{n-m-1}\left(\frac{\alpha}{2}\right)$$
, то гипотеза отвергается и коэффициент значим

Отбор переменных. Алгоритмы forward, backward, stepwise

<u>Forward Selection</u>: Алгоритм основан на последовательном добавлении признаков в модель. На каждом шаге выбираем признак с минимальным p-value тестовой статистики значимости

Каждый раз добавляем признак, который дает наибольшее статистически значимое улучшение модели

Отбор переменных. Алгоритмы forward, backward, stepwise

<u>Backward Selection</u>: Алгоритм основан на последовательном исключении признаков из модели. На каждом шаге выбираем признак с максимальным p-value тестовой статистики значимости

Каждый раз удаляем переменную (если это необходимо), потеря которой приводит к наиболее статистически незначимому ухудшению соответствия модели

Отбор переменных. Алгоритмы forward, backward, stepwise

Stepwise Selection: Комбинация Forward и Backward. После каждого включения проверяем, можно ли исключить какой-либо признак из уже включенных

