Esercizi del 2 maggio

Esercizio 4.2

A meno di restringere νK , operazione che preserva il tipo di omotopia di M, possiamo supporre che la chiusura di νK sia contenuta nella parte interna di un intorno tubolare compatto $D^2 \times S^1 \subseteq S^3$ di K.

■ Consideriamo gli aperti U = int M, $V = \text{int}(D^2 \times S^1)$ di S^3 . Osserviamo che U è omotopicamente equivalente a M, V è omotopicamente equivalente a S^1 , e $U \cap V$ è omotopicamente equivalente a T^2 . Scriviamo una parte della successione esatta di Mayer-Vietoris relativa a U e V:

$$H_2(S^3) \longrightarrow H_1(T^2) \longrightarrow H_1(S^1) \oplus H_1(M) \longrightarrow H_1(S^3),$$

da cui

$$0 \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus H_1(M) \longrightarrow 0.$$

Poiché $H_1(M)$ è abeliano e finitamente generato (M è compatta), segue immediatamente che $H_1(M) \simeq \mathbb{Z}$.

- Mostriamo che l'omomorfismo $H_1(T^2) \to H_1(M)$ indotto dall'inclusione è suriettivo.
 - Vale $H_1(S^3, \overline{\nu K}) = 0$. Infatti dalla successione esatta lunga in omologia relativa per la coppia $(S^3, \overline{\nu K})$ otteniamo

$$H_1(S^3) \longrightarrow H_1(S^3, \overline{\nu K}) \longrightarrow \widetilde{H}_0(\overline{\nu K}),$$

da cui (osservando che $H_1(S^3) = \widetilde{H}_0(\overline{\nu K}) = 0$) la tesi.

- Vale $H_1(M, T^2) = 0$. Poiché $M = S^3 \setminus \nu K$ e $T^2 = \overline{\nu K} \setminus \nu K$, per escissione otteniamo $H_1(M, T^2) = H_1(S^3 \setminus \nu K, \overline{\nu K} \setminus \nu K) \simeq H_1(S^3, \overline{\nu K}) = 0$.
- L'omomorfismo $H_1(T^2) \to H_1(M)$ è suriettivo. Infatti dalla successione esatta lunga della coppia (M, T^2) otteniamo

$$H_1(T^2) \longrightarrow H_1(M) \longrightarrow H_1(M, T^2) = 0.$$

Ma allora il nucleo di questo omomorfismo è un sottogruppo ciclico di $H_1(T^2) \simeq \mathbb{Z} \oplus \mathbb{Z}$ generato da un elemento primitivo, diciamo $\alpha \in H_1(T^2)$. Sappiamo che tale α è rappresentato (a meno dell'orientazione) da un'unica classe di isotopia di curve semplici chiuse, il che permette di definire la longitudine.

■ Si vede facilmente che l'omomorfismo $H_1(T_2) \to H_1(D^2 \times S^1)$ è suriettivo, poiché ogni curva chiusa in $D^2 \times S^1$ che rappresenta un generatore di $H_1(D^2 \times S^1)$ è omotopa a una curva con supporto contenuto in T_2 . Allora, esattamente come nel punto precedente, il nucleo di tale omomorfismo è generato da un elemento primitivo di $H_1(T^2)$, al quale corrisponde (a meno dell'orientazione) un'unica classe di isotopia di curve semplici chiuse. Questo permette di definire il meridiano.

Esercizio 4.3

Ricordiamo che una struttura iperbolica sul complementare del nodo figura otto è data dall'incollamento secondo il seguente schema di due tetraedri ideali regolari iperbolici (le facce dello stesso colore vengono identificate, in modo da rispettare le orientazioni e i colori rappresentati sugli spigoli).

Per fissare la notazione, siano M il complementare del nodo figura otto, T_1 , T_2 i due tetraedri, \sim la relazione di equivalenza descritta dall'incollamento, in modo che $M=T_1\sqcup T_2/\sim$. Ricordiamo che, in un tetraedro ideale regolare, ogni permutazione dei vertici è indotta da un'unica isometria di \mathbb{H}^n . Sia allora $h_1\colon T_1\to T_1$ l'isometria che induce la permutazione $\sigma=(1\ 2)(3\ 4)$ (più precisamente, $a_i\mapsto a_{\sigma(i)}$); definiamo in modo analogo $h_2\colon T_2\to T_2$. Sia infine $s\colon T_1\sqcup T_2\to T_2\sqcup T_2$ l'applicazione che "scambia" T_1 e T_2 mediante l'identità, ossia manda $x\in T_1$ in $x\in T_2$ e viceversa.

Definiamo

$$f = (h_1 \sqcup h_2) \circ s \colon T_1 \sqcup T_2 \longrightarrow T_1 \sqcup T_2.$$

In altre parole, f scambia T_1 e T_2 , e poi applica su ognuno dei tetraedri l'isometria che induce la permutazione sopra descritta. È facile verificare che f è compatibile con la relazione di equivalenza \sim : poiché h_1 e h_2 agiscono allo stesso modo, l'unico fatto non ovvio è la compatibilità sugli spigoli, ma si può vedere per verifica diretta che f manda spigoli rossi in spigoli blu e viceversa, preservandone l'orientazione. Segue che f induce un'applicazione al quoziente $\overline{f}: M \to M$ che risulta essere un'isometria, in quanto composizione di isometrie. Verifichiamo che \overline{f} non ha punti fissi.

- Se x appartiene alla parte interna di T_1 , allora non è un punto fisso di \overline{f} , poiché f(x) appartiene alla parte interna di T_2 . Lo stesso vale ovviamente per i punti della parte interna di T_2 .
- Poiché σ agisce senza punti fissi sull'insieme delle facce di un tetraedro, se x appartiene alla parte interna di una faccia allora non può essere un punto fisso di \overline{f} , in quanto f(x) appartiene alla parte interna di un'altra faccia.
- Come già osservato, f manda spigoli rossi in spigoli blu e viceversa, dunque non ci sono punti fissi per \overline{f} sugli spigoli.

Osserviamo infine che \overline{f} ha ordine 2. Possiamo allora definire $N = M/\langle \overline{f} \rangle$, che risulta essere una 3-varietà iperbolica completa, non compatta e di volume finito, doppiamente rivestita dal complementare del nodo figura otto. L'immagine di T_1 mediante la proiezione al quoziente fornisce una tassellazione di N con un tetraedro ideale regolare iperbolico. Dalla costruzione che abbiamo effettuato, è facile risalire esplicitamente alla suddetta tassellazione, che riportiamo per completezza.

Esercizio 4.4

Ricordiamo la costruzione, vista a lezione, di una 3-varietà iperbolica tassellata da quattro tetraedri ideali regolari iperbolici. Dopo aver colorato le facce degli ottaedri a scacchiera, le identifichiamo secondo il seguente schema, utilizzando come mappa di incollamento l'identità.

Seguiamo ora un approccio simile a quello dell'esercizio precedente. Siano O_1 , O_2 , O_3 , O_4 gli ottaedri, $M = O_1 \sqcup O_2 \sqcup O_3 \sqcup O_4/\sim$ la varietà ottenuta mediante l'incollamento. Definiamo l'applicazione

$$f \colon O_1 \sqcup O_2 \sqcup O_3 \sqcup O_4 \longrightarrow O_1 \sqcup O_2 \sqcup O_3 \sqcup O_4$$

che prima scambia $O_1 \leftrightarrow O_4$ e $O_2 \leftrightarrow O_3$, e poi applica a ogni ottaedro la "mappa antipodale", ossia l'isometria che scambia ogni vertice con quello diametralmente opposto. È immediato verificare che f passa al quoziente, definendo un'isometria $f \colon M \to M$. Tale isometria, inoltre, non ha punti fissi: infatti l'unico punto fisso della mappa antipodale appartiene alla parte interna dell'ottaedro, ma ovviamente f agisce in modo libero su $\{O_1, O_2, O_3, O_4\}$, dunque nessun punto nelle parti interne degli ottaedri può essere fissato.

Osserviamo infine che \overline{f} ha ordine 2, dunque possiamo definire la 3-varietà iperbolica $N=M/\langle \overline{f} \rangle$. Le immagini di O_1 e O_2 mediante la proiezione al quoziente forniscono una tassellazione di N con due ottaedri ideali regolari iperbolici. Dalla costruzione che abbiamo effettuato, è facile risalire esplicitamente alla suddetta tassellazione, che riportiamo per completezza.