NCEA Level 3 Calculus (Integration)

21. Integration by Parts

Goal for this week

To practice integrating functions by undoing the product rule.

The substitution rule is the inverse of the chain rule; similarly, there is an inverse of the product rule.

$$\frac{\mathrm{d}}{\mathrm{d}x} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

$$\iff \int f'(x)g(x) + f(x)g'(x) \, \mathrm{d}x = f(x)g(x)$$

$$\iff \int f(x)g'(x) \, \mathrm{d}x = f(x)g(x) - \int f'(x)g(x) \, \mathrm{d}x$$

Mnemonically,

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Example. Consider $\int x \sin x \, dx$, which does not yield to any obvious change of variable. Let u = x, and let $dv = \sin x \, dx$. So du = dx, and $v = -\cos x$. Hence:

$$\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + C,$$

where C is an arbitrary constant. Check that $(-x\cos x + \sin x)' = x\sin x$.

The aim is to end up with an easier integral than the one that was started with. A good choice for u is usually (in descending order of usefulness):

- 1. Logarithms
- 2. Powers of x
- 3. Exponentials
- 4. Trig functions

Questions

- 1. Compute the following indefinite integrals.
 - (a) $\int xe^x dx$
 - (b) $\int x^2 e^{2x} dx$
 - (c) $\int \ln x \, dx$
 - (d) $\int p^5 \ln p \, \mathrm{d}p$
 - (e) $\int t^3 e^{-t^2} \, \mathrm{d}t$
 - (f) $\int \sin \ln y \, dy$
 - (g) $\int x \tan^2 x \, dx$
- 2. Prove that

$$\int \cos^n x \, dx = \frac{1}{n} \sin x \cos^{(n-1)} x + \frac{n-1}{n} \int \cos^{(n-2)} x \, dx$$

3. If $I_n = \int_0^n x^n e^x dx$, write down an explicit general formula for I_n .

4. Evaluate $\int (\ln x)^2 dx$.

5. Compute $\int_0^{\lambda} t e^{-\lambda t} dt$.

6. Suppose that f(1) = 2, f(4) = 7, f'(1) = 5, and f'(4) = 3. Evaluate $\int_{1}^{4} x f''(x) dx$.

- 7. A particle moving in one dimension has a velocity function $v(t) = t^2 e^{-t}$ (where t is in seconds). What is its displacement from its starting position after three minutes?

8. Find the area bounded by $y = x^2 \ln x$ and $y = 4 \ln x$

- 9. Scholarship 2012:
 - (a) Find $\frac{d}{dx}[x\cos x]$ and use this result to find $\int x\sin x\,dx$.

(b) Hence find the value of $\int_0^{n\pi} x \sin x \, dx$ for integer values of n.

10. Scholarship 2016:

(a) A function f(x), where x is a real number, is defined implicitly by the formula

$$f(x) = x - \int_0^{\pi/2} f(x)\sin(x) dx.$$

Find the explicit expression for f(x) in simplest form.

- (b) A curve passing through the point (1,1) has the property that at each point (x,y) on the curve, the gradient of the curve is x - 2y; that is, $\frac{dy}{dx} = x - 2y$.
 - i. Show that $\frac{d}{dx}e^{2x}y = xe^{2x}$.
 - ii. Hence, or otherwise, find the equation of the curve.
- 11. It is well known that

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Using this result, show that

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

12. Find $I = \int e^x \cos x \, dx$.

13. Recall that $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$. Find $\int \tan^{-1} x \, dx$.

14. We integrate $\int 1/x \, dx$ by parts:

$$\int \frac{1}{x} dx = \frac{1}{x} \cdot x - \int -\frac{1}{x^2} \cdot x dx = 1 + \int \frac{1}{x} dx$$

Cancelling the indefinite integral from both sides, we have 0 = 1. Explain.