Distributed reasoning by Clause - Diffusion: the Peers-mcd.d prover

MARIA PAOLA BONACINA

DEPT. OF COMPUTER SCIENCE
THE UNIVERSITY OF IOWA

Outline

Motivation

Modified Clause - Diffusion

The Peers-med.d prover Experiments

Discussion

<u>Automated</u> Reasoning

Study mechanical forms of Pogical reasoning

- · HW/SW verification
- · Program generation
- · intelligent agents

A.R. works:

[1990-2000]

- · Moufang identities in zings
- · Axioms Lukasiewicz many-valued logic
- . Single axioms for groups
- · Robbins algebras are Boolean
- · Program synthesis in astronomy
- · Vezification czyptographic protocols
- · Vezification message-passing Unix

Meanwhile:

multi-agent paradigm

"Disembodied" agent: A.R. program

Distributed reasoning

· More power:

```
faster proofs (performance)
more proofs (applicability)
```

· Study new forms of reasoning and search:

Search plan design multi-agent context

Research program

Center: Automated Reasoning

Emphasis: Control of deduction

Some directions:

* Combination of forward and backward reasoning, e.g.,

Target-oriented equational reasoning Lemmatization in semantic strategies

* Distributed automated deduction, e.g.,

Clause - Diffusion methodology

Modified Clause - Diffusion

A60 - criteria

Combination of distributed and multi-search

Systems: Aquarius, Peers, Peers-med. *

* Strategy analysis, e.g.,

Search space reduction by contraction

Distributed search for contraction-based strate

[gies

The Modified Clause - Diffusion

methodology

ATP: inference + search problem

Input data: S= Hulip} formulae, e.g., clauses

Desized output: a proof

refutation

Operations to get there:
inference rules

Examples

P(
$$f(f(a))$$
)
$$f(x) = x$$

$$P(f(a)), f(x) = x$$

$$P(f(a)), f(x) = x$$

$$P(f(a)), f(x) = x$$

$$P(a)$$

$$P(a), f(x) = x$$

$$P(a)$$

- I) Expansion rules
- II) Contraction rules
 (>: well-founded ordering)

Theorem - proving strategy

I: imference system

E: search plan

- selection of premises

- selection of rules

(e.g., eager contraction)

Derivation:

 $S_0 + S_1 + \ldots + S_i + S_{i+1} + \ldots$

Background: parallelism & deduction

Fine-grain paraffelism

one search, sequential inferences

paraffel inner algorithms

Medium-grain parallelism one search, parallel inferences

Coarse-grain parallelism many searches, parallel derivations

distributed Seazch

multi-search

with homogeneous/Reterogeneous I's

Modified Clause - Diffusion

Parallel search by N concurrent asynchronous, communicating processes.

Peer processes: no master-staves.

N separate derivations: only one needs to succeed.

N separate databases:

Separate memories => mo confeicts.

$$P_{i}: S_{o}^{i} + S_{i}^{i} \dots S_{n}^{i} + S_{n+1}^{i} \dots i \in [0, N-1]$$

Distributed search in MCD

Subdivide search space:

MCD: dynamic partition of generated clauses => subdivision of inferences

Every y is assigned to a unique p: :

7Avp=q "betongs" to p:

$$7A \lor p[s] = q \qquad s = t$$

$$7A \lor p[t] = q$$

affowed only to Pi

Generation/Diffusion of a clause

4,4,65 Pi Yz belongs to Pi forward contraction subdivision criterion id=< j,i, e> < 4; id> broadcast < 43, id> A A E Z. backward contraction

Remarks

- · No need of master/scheduler for Subdivision:
 - every process subdivides the clauses it generates.
- · No need of master for communication: asynchronous broadcasting.
- · Forward / backward contraction: Keep pach Si inter-reduced.

What about backward-contraction?

Backward contraction

<p,id> <p,id> <p,id> <p,id> <p,id> <p',id'> <p',id'<p',id'> <p',id'<p',id'> <p',id'> <p',id'> <p',id'> <p',id'> <p',id'> <p',id'> <p'

Too Pittle contraction: redundancy

Redundancy by duplication + ambiguous naming scheme

Solution in MCD

<p,id> ... <p,id> ... <p,id> defeted defeted <p', id'> defeted <p'

P₀ ... P₁: owner ... P_{N-1}

Advantages:

- · mo redundancy by fack of contraction
- · minimize redundancy by duplication
- · unambiguous naming scheme
- · uniform treatment of raw clauses

Fairness of distributed derivations

Refutational completeness of I+ Fairness of E' = Completeness of E'

Vz persistent non-zedumdant Vf expansion zule

3 Ph such that

- 1) Pr has & (fairness of communication)
- 2) Pk is allowed to apply of to 72 (fairness of subdivision)
- 3) and all local derivations are fair
- => the distributed derivation is fair.

TR.: MCD satisfies (1),(2),(3).

Th.: if Pi generates 11 it can reconstruct the proof based on its final state

The Peers-mcd.d

Prover

Major features

- · Inference system:
 - (AC) paramodulation
 - (AC) simplification
 - functional subsumption
 - Practical feature: defetion by weight
- · AGO subdivision criteria
- · Combination of distributed search and multi-search

The AGO criteria

Infinite search space of equations from input + inference systems

Search graph (hypergraph)

Finite ancestor-graphs

Use ancestor-graphs to assign equations to processes in such a way to limit overlap in an intuitive sense

The AGO criteria "parents"

Idea: proximity of equations in space

Example:

$$id(y_1) \rightarrow f$$
 owner of $id(y_2) \rightarrow f$

- · Various &
- · Various notions of "parents"

The AGO criteria "parents"

Para-parents:

$$id(y_1) + id(y_2) \mod N$$

if paramodulation

otherwise

All-parents:

$$id(\psi_1) + id(\psi_2) \mod N$$

if paramodulation

Y

id(y) mod N

if backward-simplification

O otherwise

The AGO criterion "majority"

Assign p to Pn active near p

(proximity of equations and processes)

PK

· Pa

ancestor-graph
of p

q to Pn => increase overlap

Thus:

q to Pa

Three modes

- · Pure distributed search:

 Search space subdivided,

 all processes use same search plam.
- · Pure multi-search:

 mo subdivision,

 every process executes different plan.
- · Hybrid: search space subdivided, different search plans.

Different search plans

2) Plag DivERSE-Pick = 1

Pick-GIVEN-RATIO = 2: breadth-first instead
of best-first selection every x+1 choices
Pk rese ts it to x+k

Pk uses
$$\begin{cases}
h_0 & \text{if } k \mod 3 = 0 \\
h_1 & \text{if } k \mod 3 = 1 \\
h_2 & \text{if } k \mod 3 = 2
\end{cases}$$

Experiments

For most experiments there exists an AGO criterion which feads

Peers-med to speed-up over EQP

For most experiments with strategy
start-m-pair there is an AGO criterion
which emables some configuration of
Peers-mcd to obtain super-limear speed-up

Fastest known proofs of three hard lemmas in Robbins algebra.

First mechanical proof (fully automated) of the Levi Commutator problem.

Moufang identities without cancellation.

Robbins algebra

Huntington axiom } Boolean algebra

AC of +

Robbins axiom
AC of +

Robbins algebra

Robbins axiom ? Huntington axiom

Yes: EQP 1996

Robbins axiom

Second Winker Condition

First Winker Condition

Huntington axiom

Lemma: FWC implies H

Strategy	Criterion	EQP0.9	1-Peers	2-Peers	4-Peers	$6 ext{-}Peers$	8-Peers
start-n-pair	rotate	4,857	4,904	3,557	1,177	3,766	2,675
start-n-pair	para-parents	4,857	4,904	1,437	2,580	3,934	2,158
start-n-pair	all-parents	4,857	4,904	1,534	2,588	1,819	519
start-n-pair	majority	4,857	4,904	872	709	707	1,809

4-Peers: speed-up = 6.8 efficiency = 1.7

Another formulation: FWC implies Bytxx+y=x

Strategy	Criterion	EQP0.9	1-Peers	2-Peers
start-n-pair	rotate	3,649	3,809	2,220
start-n-pair	para-parents	3,649	3,809	1,591
start-n-pair	all-parents	3,649	3,809	1,086
start-n-pair	majority	3,649	3,809	485

2-Peers: Speed-up = 7.5 efficiency = 3.7

Max-weight = 30 for all processes

Lemma: SWC implies FWC

Sequential time: almost 6 days

Max-weight = 34 for all processes

				·				_
Strategy	Criterion	EQP0.9	1-Peers	2-Peers	4-Peers	$6 ext{-}Peers$	8-Peers	
start-n-pair	rotate	518,393	520,336	265,145	71,416	6,391	5,436	
start-n-pair	para-parents	518,393	520,336	10,162	108,975	7,792	3,283	
start-n-pair	all-parents	518,393	520,336	10,023	122,719	7,598	3,357	
start-n-pair	majority	518,393	520,336	161,779	54,660	68,919	7,415	

Most efficient: 2-Peens with all-parents

time: 2 hr 47' 3"

Speed-up: ~52

efficiency: ~26

Fastest proof: 8-Peers with para-parents

time: Ohr 54' 43"

Speed-up: ~ 158

efficiency: ~ 20

Robbins axiom implies SWC

Another strategy: basic \$ -4-pair

Max-weight = 50 for all processes

SGI ONYX shared memory machine:

Sequential time: 149,404 sec oz 1 day 17hz 30'4" oz 41 hz 30'4"

2-Peers with majority: 84,0004 sec or 23 hz 33'26"

speed-up = 1.76 efficiency = 0.88

HP C360 (1G):

Sequential time: 87,007 sec 02 24 hz 10'7"

2-Peers with all-parents: 34,931 sec oz 9 hz 42'11"

speed-up = 2.49 efficiency = 1.24

Results

Levi Commutatoz Problem

Axioms in Sos max-weight 60

	EQP	2-Peers
Time to 0	60.28 sec	22.51 Jec
Wall-clock time	64 sec	77 sec
Equations generated	32,553	18, 374
Equations Kept	4,491	2,831
Proof length	215	88
	1	

Speed-up = 2.37 Efficiency = 1.18

(HP B132L+ with 256M)

Lest Monsang identity

Mode	Search plan	EQP0.9d	1-Peer	2-Peers	4-Peers	6-Peers	8-Peers
D	given(32)	Т	Т	598	91	187	40
Н	given-h(32)	Т	415	230	57	42	9
D	pair(32)	3,215	3,277	551	109	51	83
D	4-pair(32)	956	1,068	126	38	56	58
D	2-pair(32)	88	130	66	39	109	25
Н	2d-diverse-h(32)	88	147	84	75	41	25

Right Moufang identity

Mode	Search plan	EQP0.9d	1-Peer	2-Peers	4-Peers	6-Peers	8-Peers
Н	given-h(32)	T	437	268	162	100	28
D	pair(32)	Т	${ m T}$	865	356	161	105
Н	4d-diverse-h(32)	1,558	1,638	75	32	27	47

Analysis of experiments

Super-linear speed-up:

much fewer clauses generated

effective subdivision of the space

In some cases, e.g. SWC -> FWC:
higher % clauses Kept
same contraction
search may be better focused

Contraction time:
most of time for both EQP and Peers-mcd

Proofs: majority of equations in common difference: parallel search

Scalability: size of problem dynamic subdivision

Discussion and future work

Use of paraffetism to provide new forms of search for reasoning.

High-performance deduction meeds many tools: parallel search by distributed processes is one.

Design / implementation:

FOL + =

more experiments

Theozy:

Semantically-guided distributed deduction

Other current / future work

Strategy analysis of Subgoal-reduction strategies

Application to planning

Application to biology?

A book on Automated Reasoning