1. Consider the finite difference approximation

$$f'(x) \approx \frac{1}{2h} [-3f(x) + 4f(x+h) - f(x+2h)]$$

for $f(x) = e^x$ at the point x = 1. Using the matlab function Num_der_err.m to fill in the Table 1. Then compute the convergence order based on the formula

$$order = \log_2 \left(\frac{Err_h}{Err_{h/2}} \right)$$

h Err_h	$Err_{h/2}$	order	
0.1 0.098	0,0024	7 0548	
0.01 9.12926-05	2.27376-09	2.0054	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e+07 2.2661e-07	2000	
0.0001 7.06978-0	8 277298-0	9 1.9965	

2. Consider the polynomial interpolation on the interval [-1,1] with two types of f(x):

$$f_1(x) = \sin(x), \qquad f_2(x) = \frac{1}{1 + 25x^2}.$$

The matlab script for polynomial interpolation of $f_1(x)$ is given by Err_f1.m. Try to revise the matlab script to $f_2(x)$ and fill in the Table 2.

Hint: Using the element-wise division ./ and the element-wise power .~

n	$f_1(x)$ Vandermonde Err Lagrange Err		$f_2(x)$	
5 10 20	6.9967e-05 87300e-10	Lagrange Err 6.99676 -05 8.78956 -10	Vandermonde Err	Lagrange Err
40	4.7063e-09 7.0079	5.4384e-13 1.0558e-07	11.93490+05	1.834601