山东大学计算机科学与技术学院

大数据分析实践课程实验报告

```
姓名: 刘爽
学号: 202300130178
                                           班级: 23 数据
实验题目:数据采样方法实践
                                  实验日期: 2025.9.18
实验学时: 4
实验目标:
利用 Pandas 库实现多种数据采样和过滤的方法
实验环境:
python3.9, jupyter notebook
实验过程:
① 库的导入与数据的读入
import pandas as pd
                                                    A 43
import numpy as np
# 直接使用GBK编码(中文Windows系统常用)
data = pd.read_csv( filepath_or_buffer: "data.csv", encoding='gbk')
      from_dev from_port from_city ... to_level
                                               traffic
                                                         bandwidth
                                        网络核心 49636052613 1.000000e+11
 0
           47
                    71
                    74
                                        网络核心 50056871412 1.000000e+11
                    240
                                        网络核心 49453581081 1.000000e+11
 2
                                        网络核心 49733361585 1.000000e+11
                    241
                                        一般节点 50492573662 1.000000e+11
           47
                    242
                             通辽 ...
 1113
          1129
                    546
                                        网络核心 48731433404 1.000000e+11
                                        一般节点 50060666120 1.000000e+11
 1114
         1129
                    514
 1115
         36036
                    499
                             长春 ...
                                        网络核心 50545082113 1.000000e+11
 1116
         36422
                    346
                                        网络核心 50628787089 1.000000e+11
 1117
          2701
                    619
                             大连 ...
                                        网络核心 48753971761 1.000000e+11
 [1118 rows x 10 columns]
 (2) 删除多余的空行并过滤掉 traffic 不等于 0 且 from_level=一般节点的数据
data_cleaned=data.dropna(how='any')
#过滤traffic! =0 f一般
filtered_data1 = data_cleaned.loc[(data_cleaned['traffic'] != 0) ]
filtered_data=filtered_data1.loc[(data_cleaned['from_level'] == '一般节点')]
 #显示清理空行的数据
 print(data_cleaned)
 print(filtered_data)
```

删除空行: from_port from_city ... to_level 网络核心 49636052613 1.000000e+11 74 网络核心 50056871412 1.000000e+11 240 网络核心 49453581081 1.000000e+11 241 网络核心 49733361585 1.000000e+11 4 一般节点 50492573662 1.000000e+11 1113 网络核心 48731433404 1.000000e+11 546 1114 1129 514 一般节点 50060666120 1.000000e+11 1115 36036 网络核心 50545082113 1.000000e+11 499 1116 36422 346 网络核心 50628787089 1.000000e+11 1117 2701 网络核心 48753971761 1.000000e+11 [1118 rows x 10 columns]

过滤 traffic 不等于 0 且 from_level=一般节点的数据:

[1110	10W3 X 10	COCOMITS							
	from_dev	from_port	from_city	to_	level	traffic	bandwidth		
0	47	71	通辽		网络核心	49636052613	1.000000e+11		
1	47	74	通辽		网络核心	50056871412	1.000000e+11		
2	47	240	通辽		网络核心	49453581081	1.000000e+11		
3	47	241	通辽		网络核心	49733361585	1.000000e+11		
4	47	242	通辽		一般节点	50492573662	1.000000e+11		
1097	2473	1460	吉林		一般节点	48409925693	1.000000e+11		
1103	36036	18	长春		网络核心	48663350759	1.000000e+11		
1104	63	6	通辽		一般节点	50355678076	1.000000e+11		
1107	36036	52	长春		网络核心	49345226162	1.000000e+11		
1115	36036	499	长春		网络核心	50545082113	1.000000e+11		
[550 rows x 10 columns]									

(3) 对数据进行抽样

采取不同的采样方式采取 50 个样本并比较采样结果

① 加权采样: to_level 的值为一般节点与网络核心的权重之比为 1 : 5

```
#加权抽象
data_before_sample=filtered_data.copy()
columns=data_before_sample.columns
weight_sample=data_before_sample.copy()
#添加权重行
weight_sample['weight']=0
#设置权重
for i in weight_sample.index:
    if weight_sample.at[i,'to_level']=='一般节点':
        weight=1
    else:
        weight=5
    weight_sample.at[i,'weight']=weight
```

采取 50 个样本并比较采样结果

#抽取50个样本

```
weight_sample_finish=weight_sample.sample(n=50_weights='weight')
weight_sample_finish=weight_sample_finish[columns]
print(weight_sample_finish)
```

3 24	90	125	时和宿村 •••	网络核心	47003707000	1.000000e+11
304	63	230	通辽	网络核心	50504074996	1.000000e+11
902	96	141	呼和浩特	网络核心	51273380868	1.000000e+11
609	96	391	呼和浩特	网络核心	48978587445	1.000000e+11
424	591	560	绥化	网络核心	48754882922	1.000000e+11
587	96	141	呼和浩特	网络核心	47941844052	1.000000e+11
121	474	1269	哈尔滨	网络核心	50312177853	1.000000e+11
1005	36036	499	长春	网络核心	49116324777	1.000000e+11
80	180	200	呼和浩特	网络核心	51884294458	1.000000e+11
81	180	202	呼和浩特	网络核心	49867223584	1.000000e+11
1103	36036	18	长春	网络核心	48663350759	1.000000e+11
1107	36036	52	长春	网络核心	49345226162	1.000000e+11
15	47	425	通辽	网络核心	50796899329	1.000000e+11
[50 row	s x 10 colu	Jmns]				

② 随机抽样

```
#随机抽样
```

```
random_sample_filtered_data
random_sample_finish_random_sample.sample(n=50)
random_sample_finish_random_sample_finish[columns]
print(random_sample_finish)
```

```
160
          591
                   1258
                              绥化 ...
                                           一般节点 50322958171 1.000000e+11
344
          180
                    34
                            呼和浩特 ...
                                           网络核心 50352242512 1.000000e+1
                                           网络核心 49665987866 1.000000e+12
324
                            呼和浩特
          96
                    152
330
          96
                    336
                            呼和浩特 ...
                                           网络核心 51277669375 1.000000e+11
165
          591
                   1290
                                          网络核心 49758461056 1.000000e+11
340
          180
                    20
                            呼和浩特 ...
                                           网络核心 51392475128 1.000000e+11
308
          63
                                          一般节点 50067368970 1.000000e+11
                    286
384
          474
                             哈尔滨 ...
                                          网络核心 51647234796 1.000000e+11
                    671
368
          180
                    276
                            呼和浩特 ...
                                          网络核心 51651922009 1.000000e+1
103
          474
                    472
                                          网络核心 49236653925 1.000000e+11
47
          96
                    136
                            呼和浩特 ...
                                          网络核心 49292630301 1.000000e+1
                                           网络核心 51023900961 1.000000e+12
66
                            呼和浩特 ...
          180
                    26
806
                    20
                            呼和浩特
                                           一般节点 50581993828 1.000000e+11
          180
72
                                           一般节点 49293665157 1.000000e+11
          180
                    42
                            呼和浩特 ...
          474
                                          一般节点 50437152432 1.000000e+11
390
                    683
                             哈尔滨 ...
```

[50 rows x 10 columns]

③ 分层抽样:根据 to level 的值进行分层采样,根据比例一般节点抽 17 个,网络核心抽 33 个

```
#分层抽样 一般节点17 网络核心节点33
```

```
ybjd=filtered_data.loc[filtered_data['to_level']=='一般节点']
wlhx=filtered_data.loc[filtered_data['to_level']=='网络核心']
fc_sample=pd.concat([ybjd.sample(17),wlhx.sample(33)])
print(fc_sample)
```

537	47	314	通辽	网络核心	49136293957	1.000000e+11
29	63	230	通辽	网络核心	50037668767	1.000000e+11
669	63	286	通辽	网络核心	50318390185	1.000000e+11
75	180	84	呼和浩特	网络核心	49100967003	1.000000e+11
341	180	26	呼和浩特	网络核心	48797633450	1.000000e+11
587	96	141	呼和浩特	网络核心	47941844052	1.000000e+11
8	47	251	通辽	网络核心	50755299504	1.000000e+11
533	47	252	通辽	网络核心	52135271000	1.000000e+11
1059	47	252	通辽	网络核心	50358481161	1.000000e+11
430	591	1082	绥化	网络核心	49355162407	1.000000e+11
351	180	90	呼和浩特	网络核心	49446475351	1.000000e+11

[50 rows x 10 columns]

(4) 系统抽样,等距抽样:

固定间隔从有序排列的总体中抽取样本,核心步骤如下:

排序总体:将总体中的所有个体按某种顺序(如自然顺序、编号顺序)排列;

计算间隔:根据总体规模 N和样本量 n,计算抽样间隔 k=N/n(即每隔 k个个体抽一个样本);

```
随机起点:在第 1 个到第 k 个个体中随机选择一个作为起始点;
抽取样本:从起始点开始,每隔 k 个个体抽取一个,直到抽满 n 个样本。
```

```
# 系统抽样(等距抽样)

1 usage

def systematic_sampling(data, n):

    N = len(data)
    k = N // n # 计算抽样问隔

# 随机选择起始点

start = np.random.randint(low: 0, k)

# 选择样本索引

indices = [start + i * k for i in range(n) if (start + i * k) < N]

return data.iloc[indices]

# 进行系统抽样

systematic_sample = systematic_sampling(data_before_sample, n: 50)

systematic_sample = systematic_sample[columns]

print(systematic_sample)
```

420	591	100	绥化	 网络核心	51157112955	1.000000e+1
431	591	1104	绥化	网络核心	49411244329	1.000000e+1
442	787	51	玉溪	网络核心	50594027588	1.000000e+1
453	787	326	玉溪	一般节点	51285240797	1.000000e+1
492	47	250	通辽	网络核心	49014089485	1.000000e+1
531	47	250	通辽	网络核心	48844966451	1.000000e+1
542	63	10	通辽	一般节点	49716409605	1.000000e+1
553	63	230	通辽	网络核心	50530328860	1.000000e+1
564	96	117	呼和浩特	网络核心	49468205759	1.000000e+
604	96	134	呼和浩特	一般节点	49201392181	1.000000e+
640	47	252	通辽	一般节点	48030989242	1.000000e+1
686	63	70	通辽	网络核心	50424129643	1.000000e+1
728	2473	946	吉林	网络核心	52184126133	1.000000e+1
770	474	672	哈尔滨	一般节点	51263599555	1.000000e+1
799	180	52	呼和浩特	一般节点	49553070694	1.000000e+
836	180	20	呼和浩特	一般节点	49701796126	1.000000e+
888	36036	20	长春	网络核心	48987594976	1.000000e+1
931	4069	1205	宁波	网络核心	52060473597	1.000000e+1
979	2473	1043	吉林	一般节点	49176857434	1.000000e+1
1021	2473	762	吉林	网络核心	47991126091	1.000000e+1
1059	47	252	通辽	网络核心	50358481161	1.000000e+1
1107	36036	52	长春	网络核心	49345226162	1.000000e+1

[50 rows x 10 columns]

整群抽样将总体划分为若干个群(Cluster),每个群包含若干个体,然后随机抽取部分群,对选中的群内所有个体进行调查,核心步骤如下:

划分群:将总体按某种规则(如地理区域、时间区间等)分成若干个互不重叠的群;

随机抽群:从所有群中随机选择n个群;

全群调查:对选中的每个群内的所有个体进行抽样

```
整群抽样(假设按某个字段分组抽样)
ge
cluster_sampling(data, n, cluster_column):
# 获取所有唯一的群
clusters = data[cluster_column].unique()
# 随机选择n个群
selected_clusters = np.random.choice(clusters, size=min(n, len(clusters)), replace=False)
# 选择这些群的所有数据
cluster_sample = data[data[cluster_column].isin(selected_clusters)]
return cluster_sample
```

本实验中按照 to_level 列进行整群抽样

```
# 按'to_level'列进行整群抽样
data_with_clusters = data_before_sample.copy()
data_with_clusters['to_level'] = data_with_clusters.index // 10 # 每10行一个群

cluster_sample = cluster_sampling(data_with_clusters, n: 5, cluster_column: 'to_level') # 使用
cluster_sample = cluster_sample[columns]

print("按'to_level'列整群抽样结果:")
print(cluster_sample)
```

13.1	i a a contrat	tray LL DV / L m							
按'to_level'列整群抽样结果:									
	from_dev	from_port	from_city .	to_level		traffic	bandwidth		
50	96	155	呼和浩特		5	51538493830	1.000000e+11		
51	96	156	呼和浩特		5	50654404568	1.000000e+11		
52	96	157	呼和浩特		5	50096366926	1.000000e+11		
53	96	158	呼和浩特		5	51342500152	1.000000e+11		
54	96	159	呼和浩特		5	51625089370	1.000000e+11		
55	96	336	呼和浩特		5	51600306541	1.000000e+11		
56	96	346	呼和浩特		5	47759033178	1.000000e+11		
57	96	379	呼和浩特		5	49400869697	1.000000e+11		
58	96	383	呼和浩特		5	50609333179	1.000000e+11		
59	96	391	呼和浩特		5	51570663870	1.000000e+11		
90	180	260	呼和浩特		9	48006842653	1.000000e+11		
91	180	264	呼和浩特		9	50106121660	1.000000e+11		
92	180	272	呼和浩特		9	52854391127	1.000000e+11		
93	180	276	呼和浩特		9	51775514286	1.000000e+11		
94	180	485	呼和浩特		9	52460156321	1.000000e+11		
95	474	359	哈尔滨		9	51299508559	1.000000e+11		

结论与体会:

(一) 数据预处理的重要性

实验初期的数据清洗步骤(删除空行、过滤无效数据)是保证抽样质量的基础。原始数据中存在的空行和不符合条件的记录(如 traffic=0、from_level 非 "一般节点")若不处理,会直接影响抽样结果的准确性。通过 dropna 方法和条件过滤,得到了干净、有效的分析数据集,为后续抽样工作奠定了良好基础。

(二) 不同抽样方法的效果对比

- 1. **加权抽样**:通过为 "网络核心" 节点赋予 5 倍于 "一般节点" 的权重,最终样本中 "网络核心" 节点的占比显著提高,能够突出重点关注对象的特征。这种方法适合需 要强化特定类别样本代表性的场景,能按照预设权重比例获取样本。
- 2. **随机抽样**:完全基于概率的抽样方式,样本中"一般节点"和"网络核心"节点的比例与总体分布基本一致,具有无偏性特点。该方法实现简单,在没有特殊研究目标时,能较好地反映总体的真实情况。
- 3. **分层抽样**:按照预设比例(一般节点 17 个,网络核心 33 个)从不同层中分别抽样,再将结果组合。这种方法保证了每层样本的代表性,能精确控制各层样本量,适合总体中不同类别差异较大的情况。
- 4. **系统抽样与整群抽样**:系统抽样通过固定间隔抽样,样本在总体中分布均匀;整群抽样将数据按索引划分为若干群,抽取整群作为样本,效率较高。两种方法各有侧重,系统抽样适合总体有序且无周期性的数据,整群抽样适合可按自然群体划分的数据。