Nanopatterning and FET-Rectifying of Multilayer MoS₂ through Femtosecond Laser Micromachining

Pei Zuo

2018-07-17

Content

Literature exhibition

Experiment results

Future plans

Schematic outline of the MoS₂ growth patterning procedure.

MoS $_2$ size: 10 imes 10 μ m 2 , the scale bar is 33 μ m. Pattern: the scale bar is 80 μ m O2 plasma is applied \rightarrow Si bonds are broken \rightarrow O and H bonds to some dangling bonds \rightarrow imbalance of surface bonding increases the surface energy

Raman and PL spectra of bulk and selective MoS₂.

Optimization of the selective growth conditions with changing quantities of the MoO₃ powder.

Electrical properties with increasing size of the MoS₂ growth pattern.

Mobility increased by about 2.5 times from 0.044 to 0.116 cm² V⁻¹ s⁻¹ after increasing the MoS_2 grown size.

Grown size of MoS₂ increases, the grain size increases and the mobility increases.

Carrier scattering occurs in grain boundary and grain boundary decreases as grain size increases, so carrier scattering decreases, leading to an increase in mobility.

7

Arrays of 10 µm size MoS₂ flake pixels

Thin inner MoS₂ flakes Broken inner films

9

100 nm

HOPG stamp prepatterned by using nanoimprint lithography followed with plasma etching.

Graphene nanoribbons printed onto a plasma-charged SiO₂ substrate.

FET made from the inner flake of a printed MoS₂ pixel

FET made from the outer edge ribbon of a printed MoS₂ pixel

ACS nano, 2013, 7(7): 5870-5881.

PN junction formed by the partial etching of a MoS₂ pixel

ACS nano, 2013, 7(7): 5870-5881.

Experiment

Thining and nanoribbons

Nanoribbons with different width

EDX mapping of nanoribbons

Experiment

Proved penetration of nanogap

Experiment

FET relative calculation

On/Off= $I_{on}/I_{off}=I_{max}/I_{min}$ (according to transfer curve)

Mobility (cm²V⁻¹s⁻¹)
$$\mu = \frac{L}{W} \frac{d}{\varepsilon_0 \varepsilon_r} \frac{1}{V_{sd}} \frac{\partial I_{sd}}{\partial V_g}$$

SS (mV/dec)
$$SS = \frac{\Delta V_g}{\Delta log I_d}$$

Experiment FET rectifying by laser modification (b)¹⁰ (a³)0x10⁻⁶ (c) 80 P-MoS₂ P-MoS₂ P-MoS₂ 10⁻⁶ -6.0x10⁻⁶ 10⁻⁷ 20 -(A) 20/ $V_{\mathcal{G}}(\mathbf{V})$ (A) 4.0x10⁻⁶ **SS=14.3 (V/dec) 10V** 0.5V 10⁻⁹ On/Off= 2.84×10^3 -10V 2.0x10⁻⁶ **-40** · 10⁻¹⁰ - $\mu = 13.4$ -60 -0.05V 0.0 10⁻¹¹ 0.4 8.0 1.2 1.6 2.0 -60 -20 20 40 60 1E-8 0.0 1E-9 1E-7 1E-6 1E-5 $V_{DS}(V)$ $V_G(V)$ $I_{DS}(A)$ (d)^{0x10⁻⁷} (e) **(f)** FLT-MoS₂ FLT-MoS₂ FLT-MoS₂ 6.0x10 40 10⁻⁸ 5.0x10⁻⁷ 20 -₹ 4.0x10⁻⁷ \$3.0x10⁻⁷ $^{(A)}SG/$ 10⁻⁹ $V_{\mathcal{G}}(\mathbf{V})$ **10V** 0.5V **SS=9.4 (V/dec)** 10⁻¹⁰ -On/Off= 1.85×10^5 2.0x10⁻⁷ -10V 0.05V-40 -10-11 $\mu = 1.5$ 1.0x10⁻⁷ -60 10⁻¹² -0.0 -60 0.0 0.4 8.0 1.2 1.6 2.0 -40 -20 20 40 60 1E-9 1E-8 1E-7 1E-12 1E-11 1E-10 $V_G(V)$ $I_{DS}(A)$ $V_{Ds}(V)$

Experiment FET rectifying by laser modification (a)2x10⁻⁵ (b)10⁻⁷ (c)₈₀ P-MoS₂ P-MoS₂ P-MoS₂ 60 1.5V 9.0x10⁻¹⁰ **10V** 10⁻⁹ 40 (A) 80/6.0x10⁻¹⁰ VG(V) 0.75V **SS=18.5 (V/dec)** -10V 10⁻¹¹ On/Off= 1.13×10^{5} 3.0x10⁻¹⁰ 10⁻¹² -20 $\mu = 8.4 \times 10^{-2}$ 10⁻¹³ 0.2 -20 20 0.4 0.6 0.8 1.0 1.2 0 60 80 1E-12 1E-11 1E-10 1E-9 1E-8 $V_G(V)$ $V_{Ds}(V)$ $I_{DS}(A)$ (d₁)x10⁻⁹ **(f)** (e)¹º⁻̄ FLT-MoS₂ FLT-MoS₂ FLT-MoS₂ 10-8 1.5**V** 60 4.0x10⁻⁹ 10⁻⁹ 40 0.75V (A) 2.0x10-9 10₋₁₀ (A) $V_{\mathcal{G}}(V)$ **10V** 20 **SS=11.7 (V/dec)** 10⁻¹¹ --10V On/Off=1.13×10⁵ 10⁻¹² -20 $\mu = 8.8 \times 10^{-2}$ 0.0 10⁻¹³ 0.2 0.6 0.8 1.2 1E-9 1E-8 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 1E-12 1E-11 1E-10 $V_{Ds}(V)$

 $V_G(V)$

 $I_{DS}(A)$

Nanoribbon arrays for FET

Future plans

- Optimizing experimental results
- Reading literatures to analyze experimental results

Thanks for Attention!

SI

