EJERCICIOS IMPRESCINDIBLES

▶ Teoremas

- (1) **PAEU2014S**, apartado a. Enunciar e interpretar geométricamente el Teorema de Rolle.
- (2) **PAEU2013S**, apartado a. Enunciar el teorema del valor medio de Lagrange. Dar su interpretación geométrica.

▶ Regla de L'Hôpital

- (3) **PAEU2005J.** Calcúlese $\lim_{x\to\infty} \frac{x \ln x}{e^x}$.
- (4) **PAEU2006J.** Calcúlese el valor de $\lim_{x\to 0} \frac{\ln(\cos(2x))}{x^2}$.
- (5) **PAEU2007J.** Calcular $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} \frac{1}{x}\right)$.
- (6) **PAEU2008S.** Calcular los valores del número real a sabiendo que

$$\lim_{x \to 0} \frac{e^{ax} - 1 - ax}{x^2} = 8$$

- (7) **PAEU2009S.** Calcular el límite $\lim_{x\to 0} \frac{\ln(2^{\sin x})}{e^x 1}$.
- (8) PAEU2013S. Estudiar la continuidad de la función

$$f(x) = \begin{cases} e^{1/x} & \text{si } x < 0\\ k & \text{si } x = 0\\ \frac{1 - \cos x}{\sin x} & \text{si } x > 0 \end{cases}$$

en el intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, según los valores de k.

- (9) Calcula $\lim_{x\to 1} x^{\frac{1}{1-x}}$
- (10) Calcula $\lim_{x \to \infty} (1 e^{-x})^{e^x}$

► Crecimiento y decrecimiento

(11) Estudia el crecimiento/decrecimiento de las siguientes funciones:

$$a) \ y = ax + b$$

$$c) \ \ y = \frac{1}{x}$$

$$d) y = e^x$$

b)
$$y = ax^2 + bx + c$$

$$e) y = \ln x$$

(12) **PAEU2009J.** Estudiar los intervalos de crecimiento y decrecimiento de la función $f(x) = \frac{\ln x}{x}$ en su dominio de definición.

► Máximos y mínimos

- (13) PAEU2013J.
 - a) Estudiar el crecimiento de la función $f(x) = x^3 + 3x^2 3$.
 - b) Probar que la ecuación $x^3 + 3x^2 3 = 0$ tiene exactamente tres soluciones reales.
- (14) **PAEU2004J, apartado a.** Sea la función $y=2e^{-2|x|}$. Estúdiese su monotonía, extremos relativos y asíntotas.

▶ Optimización

- (15) Un granjero dispone de 100 metros de tela metálica para construir 3 lados de una cerca rectangular. ¿Qué dimensiones son las que hacen máxima el área del cercado?
- (16) Descompón un número en 2 sumandos a y b tales que la suma $a^2 + 6b$ sea mínima.
- (17) De todos los conos de revolución que tienen por generatriz $\sqrt{3}$ haya el volumen del que lo tiene máximo.
- (18) Con una cuerda de 900 metros de longitud se desea cercar 2 jardines, uno cuadrado y otro circular. Halla la longitud que se debe de dar a cada trozo para que la suma de las superficies sea mínima.
- (19) **PAEU 2010J.** Se desea construir una caja cerrada de base cuadrada con una capacidad de $270 \ cm^3$. Para la tapa y la superficie lateral se usa un material que cuesta $5 \ euros/cm^2$ y para la base un material un 50 % más caro. Hallar las dimensiones de la caja para que el coste sea mínimo.
- (20) **PAEU 2011S.** Hallar la ecuación de la recta que pasa por el punto (1,2) y determina en el primer cuadrante con los ejes coordenados un triángulo de área mínima. Calcular dicha área.
- (21) **PAEU2014J, apartado b.** Sea la función $f(x) = +2\sqrt{x}$. Calcular el punto de la gráfica de f(x) más cercano al punto (4,0).

► Representación de funciones

(22) PAEU2006S.

- a) Estúdiense los intervalos de crecimiento y decrecimiento de $f(x) = xe^{-x}$, sus máximos y mínimos relativos, asíntotas y puntos de inflexión. Demuéstrese que para todo x se tiene que $f(x) \leq \frac{1}{e}$.
- b) Pruébese que la ecuación $3x = e^x$ tiene alguna solución en $(-\infty, 1]$.
- (23) **PAEU2008S.** Sea $f(x) = 2 x + \ln x \text{ con } x \in (0, +\infty)$.
 - a) Determinar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad. Esbozar la gráfica de f.
 - b) Probar que existe un punto $c \in \left(\frac{1}{e^2}, 1\right)$ tal que f(c) = 0
- (24) **PAEU2009S, apartado a.** Sea la función $f(x) = \frac{x^3}{x^2 + 1}$. Hallar su dominio, intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (25) **PAEU2010S.** Dada la función $f(x) = \frac{(x+3)^2}{e^x}$, se pide determinar:
 - a) El dominio, los puntos de corte con los ejes y las asíntotas.
 - b) Los intervalos de crecimiento y decrecimiento, y los extremos relativos.
 - c) La gráfica de f.
- (26) **PAEU2011J.** Sea $f(x) = \frac{x^2 3x + 3}{x 1}$
 - a) Determinar los intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad y sus asíntotas.
 - b) Esbozar su gráfica.
- (27) **PAEU2011S.** Dada la función $y = \frac{\ln x}{x}$, determinar su dominio de definición, sus asíntotas, extremos relativos y puntos de inflexión. Hacer un esbozo de su representación gráfica.

► Varios

- (28) La cerca de un solar vale 100 euros el metro lineal. Se desea adquirir una parcela de forma rectangular de superficie 1500 m^2 con la condición de que el coste sea mínimo. ¿Cuánto costará en este caso la cerca?
- (29) Dada la función $f(x) = ax^3 + bx^2 + cx + d$ calcula a, b, c y d sabiendo que admite un máximo y = 1 para x = 1, y un mínimo y = -2 para x = 2.
- (30) Descompón el número 44 en 2 sumandos tales que 5 veces el cuadrado del primero más 6 veces el cuadrado del segundo sea mínimo.

- (31) ¿Cuál es el número positivo cuya suma con 25 veces su recíproco (su inverso respecto la multiplicación) sea mínima?
- (32) Calcula la altura que debe de tener un cilindro de revolución inscrito en una esfera de 6 metros de diámetro para que su volumen sea máximo.
- (33) Calcula la longitud de una cuerda de circunferencia de 2 cm de radio de modo que al girar 360° alrededor del diámetro paralelo a ella engendre una superficie de área máxima.
- (34) Se quiere construir un cilindro metálico cerrado de base circular y de $V=16\pi~cm^3$. Halla las dimensiones que ha de tener para que el material utilizado sea mínimo.
- (35) De todos los triángulos isósceles cuya base y altura suman 20 metros ¿qué base tiene el área máxima?
- (36) Determina p y q de manera que la función $x^2 + px + q$ pase por el punto (-2,1) y f(x) presente un mínimo para x = -3.
- (37) Halla las dimensiones del rectángulo inscrito en un triángulo isósceles de 10 cm de base y 15 cm de altura de tal manera que el rectángulo tenga el área mayor posible.
- (38) **PAEU2007J.** Sea la función $f(x) = x + e^{-x}$.
 - a) Hallar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas. Esbozar su gráfica.
 - b) Demostrar que existe algún número real c tal que $c + e^{-c} = 4$.
- (39) **PAEU2012J.** Se considera la función $f(x) = e^x + \ln x$, $x \in (0, \infty)$ donde $\ln x$ denota el logaritmo neperiano.
 - a) Estudiar la monotonía y las asíntotas de f(x).
 - b) Demostrar que la ecuación $x^2e^x-1=0$ tiene una única solución c en el intervalo [0,1].
 - c) Deducir que f presenta un punto de inflexión en c. Esbozar la gráfica de f.
- (40) **PAEU2012S.** Sea la función $f(x) = (2x^2 + 3)e^x$.
 - a) Estudiar asíntotas, crecimiento, decrecimiento, extremos relativos, concavidad, convexidad y puntos de inflexión.
 - b) Esbozar su gráfica.
- (41) **PAEU2013J.** Sea la función $f(x) = \frac{x-2}{x+2}$.
 - a) Calcular sus asíntotas y estudiar su crecimiento y decrecimiento.
 - b) Dibujar el recinto comprendido entre la recta y = 1, la gráfica de la función f(x), el eje OY y la recta x = 2; calcular el área de dicho recinto.

- (42) **PAEU2013S.** Sea $f(x) = (x+1)e^{-x}$. Determinar los intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (43) **PAEU2014J.** Sea la función $f(x) = e^{-x^2}$. Calcular sus intervalos de crecimiento y decrecimiento, extremos relativos, puntos de inflexión y asíntotas. Esbozar su gráfica.
- (44) **PAEU2015J.** Dada la función $f(x) = \frac{x}{\ln x}$, determinar su dominio, asíntotas, intervalos de crecimiento y decrecimiento y extremos relativos. Esbozar su gráfica.