# Lecture Note of Mechanics I

Jack J. Shi Department of Physics & Astronomy, University of Kansas

## Chapter 1. Newton's Laws of Motion

### 1.1 The Foundation of Newtonian Physics

### • Reference Frame

Reference frame is a set of the origin and axes for space and time for describing the dynamics of a system.

### • Space and Time for Newtonian Mechanics

In Newtonian physics, time is considered to be absolute, *i.e.* independent of space, and space is Euclidean. In three-dimensional Euclidean space, vectors can be written as

$$\vec{A} = A_1 \vec{e}_1 + A_2 \vec{e}_2 + A_3 \vec{e}_3 \tag{1}$$

where  $\vec{e}_1$ ,  $\vec{e}_2$ , and  $\vec{e}_3$  are three perpendicular unit vectors, called based vector, that represent the directions of coordinate axes, *i.e.* 

$$|\vec{e}_i| = 1$$
,  $\vec{e}_i \cdot \vec{e}_j = \delta_{ij}$  and  $\vec{e}_i \times \vec{e}_j = \epsilon_{ijk} \vec{e}_k$ 

where  $\delta_{ij}$  is the Kronecker delta and  $\epsilon_{ijk}$  is the permutation (Levi-Civita) symbol. For the Cartesian coordinates,

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = (\hat{x}, \hat{y}, \hat{z})$$

The magnitude or norm of vector  $\vec{A}$  in the Euclidean space is defined as

$$A = |\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}} = \sqrt{A_1^2 + A_2^2 + A_3^2} \tag{2}$$

In the Euclidean space, the norm of a vector is independent of the choice of  $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ , *i.e.*  $|\vec{A}|$  is invariant under rotational or translational transformations of the coordinates, if

$$\vec{A} = A_1 \vec{e}_1 + A_2 \vec{e}_2 + A_3 \vec{e}_3 = A_1' \vec{e}_1' + A_2' \vec{e}_2' + A_3' \vec{e}_3'$$

then

$$\sqrt{A_1^2 + A_2^2 + A_3^2} = \sqrt{A_1^{\prime 2} + A_2^{\prime 2} + A_3^{\prime 2}}$$

invariance of Euclidean distance

### Operations of Vectors

addition and subtraction  $\vec{A} \pm \vec{B}$ 

$$\vec{A} \pm \vec{B} = (A_1 \pm B_1) \vec{e}_1 + (A_2 \pm B_2) \vec{e}_2 + (A_3 \pm B_3) \vec{e}_3$$

multiplication of vector with scalar  $\alpha \vec{A} = (\alpha A_1) \vec{e}_1 + (\alpha A_2) \vec{e}_2 + (\alpha A_3) \vec{e}_3$ 

dot-product  $\vec{A} \cdot \vec{B} = A_1 B_1 + A_2 B_2 + A_3 B_3 = AB \cos \theta$ 

cross-product 
$$\vec{A} \times \vec{B} = \det \begin{pmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{pmatrix}$$

$$= (A_2 B_3 - A_3 B_2) \vec{e}_1 + (A_3 B_1 - A_1 B_3) \vec{e}_2 + (A_1 B_2 - A_2 B_1) \vec{e}_3$$
where  $|\vec{A} \times \vec{B}| = AB \sin \theta$ 

### Position, Velocity, and Acceleration

For each point P in the three-dimensional space, the position vector is

$$\vec{r} = r_1 \vec{e}_1 + r_2 \vec{e}_2 + r_3 \vec{e}_3 = x \hat{x} + y \hat{y} + z \hat{z} = (x, y, z)$$
(3)

The velocity of point P moving in the space is defined as

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$= \dot{r}_1 \vec{e}_1 + r_1 \dot{\vec{e}}_1 + \dot{r}_2 \vec{e}_2 + r_2 \dot{\vec{e}}_2 + \dot{r}_3 \vec{e}_3 + r_3 \dot{\vec{e}}_3 \qquad \longleftarrow \text{in general coordinates}$$

$$= \dot{x} \vec{e}_x + \dot{y} \vec{e}_y + \dot{z} \vec{e}_z \qquad \longleftarrow \text{in Cartesian coordinates}$$

$$(4)$$

where  $\dot{\vec{e}}_x = \dot{\vec{e}}_y = \dot{\vec{e}}_z = 0$  in the Cartesian coordinates, and the acceleration is defined as

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

$$= \ddot{r}_1 \vec{e}_1 + \dot{r}_1 \dot{\vec{e}}_1 + r_1 \ddot{\vec{e}}_1 + \ddot{r}_2 \vec{e}_2 + \dot{r}_2 \dot{\vec{e}}_2 + r_2 \ddot{\vec{e}}_2 + \ddot{r}_3 \vec{e}_3 + \dot{r}_3 \dot{\vec{e}}_3 + r_3 \ddot{\vec{e}}_3$$
(5)

### • Inertial Frames

These are the reference frames that move with a constant velocity with respect to each other. Newton's laws are only true in the inertial frames. Newton's law in the inertial frame,

$$\vec{F} = m\vec{a} \tag{6}$$

where  $\vec{F}$  and m are the net force on and the mass of an object, respectively.

**Example.** You are studying the motion of spring-block in a train that moves with speed  $v_0$ 



(a) 
$$v_0 = constant$$
 (b)  $v_0 = a_0 t$  
$$x = x' + x_0 \quad \text{and} \quad x_0 = v_0 t$$
 
$$x = x' + x_0 \quad \text{and} \quad x_0 = \int v_0 dt$$
 
$$v = v' + v_0$$
 
$$v = v' + v_0$$
 
$$v = v' + v_0$$
 
$$\frac{dv}{dt} = \frac{dv'}{dt} \implies a = a'$$
 
$$\frac{dv}{dt} = \frac{dv'}{dt} + a_0 \implies a = a' + a_0$$
 
$$F = ma \quad \text{and} \quad F \neq ma'$$
 
$$F = ma \quad \text{and} \quad F \neq ma'$$

### • Two Postulates of Galilean Relativity — The Foundation of Newtonian Physics

- (a) Physics laws are invariant in inertial frames.
- (b) The space geometry of physics is Euclidean space and the Euclidean distance

$$dr^2 = dr_1^2 + dr_2^2 + dr_3^2$$
 with  $d\vec{r} = dr_1 \vec{e}_1 + dr_2 \vec{e}_2 + dr_3 \vec{e}_3$  (7)

is invariant under physics transformations. The Galilean transformation between two inertial frames K and K' is simply

$$\vec{r}' = \vec{r} - \vec{v}_0 t$$
 and  $t' = t$  (8)

where  $\vec{v}_0$  is the constant velocity between the two frames.

HW. Show that the Euclidean distance is invariant for the Galilean transformation.

### 1.2 Newton's Equation in Cartesian Coordinates

$$\vec{F} = m\frac{d^2\vec{r}}{dt^2} \qquad \Longrightarrow \qquad \begin{cases} F_x = m\ddot{x} = \dot{p}_x \\ F_y = m\ddot{y} = \dot{p}_y \\ F_z = m\ddot{z} = \dot{p}_z \end{cases}$$

$$\dot{\vec{e}}_x = 0 \;, \; \dot{\vec{e}}_y = 0 \;, \; \dot{\vec{e}}_z = 0$$



where  $\vec{p} = m\vec{v}$  is the linear momentum.

Conservation of Momentum:

If 
$$F_i = 0$$
,  $p_i = constant$ 

### Example 1. A block sliding down an incline



The Newton's equation is

$$\begin{cases} F_x = mg\sin\theta - \mu N = m\ddot{x} \\ F_y = N - mg\cos\theta = 0 \end{cases}$$

which yields j

$$\ddot{x} = g(\sin\theta - \mu\cos\theta)$$

The solution of the equation of motion is

$$x(t) = x(0) + v(0)t + \frac{1}{2}g(\sin\theta - \mu\cos\theta)t^2$$

### 1.3 Newton's Equation in Cylindrical Coordinates



The transformation between the Cartesian (x, y, z) and cylindrical  $(\rho, \phi, z)$  coordinates is

$$\begin{cases} x = \rho \cos \phi \\ y = \rho \sin \phi \end{cases} \quad \text{and} \quad \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \arctan(y/x) \end{cases}$$
 (9)

The transformation of the base vectors

$$(\vec{e}_x\,,\,\vec{e}_y\,,\,\vec{e}_z\,) \longleftrightarrow (\vec{e}_\rho\,,\,\vec{e}_\phi\,,\,\vec{e}_z\,)$$

between the Cartesian and cylindrical coordinates is

$$\begin{cases} \vec{e}_{\rho} = \vec{e}_x \cos \phi + \vec{e}_y \sin \phi \\ \vec{e}_{\phi} = -\vec{e}_x \sin \phi + \vec{e}_y \cos \phi \\ \vec{e}_z = \vec{e}_z \end{cases}$$

which can be written as

$$\begin{pmatrix} \vec{e}_{\rho} \\ \vec{e}_{\phi} \\ \vec{e}_{z} \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \vec{e}_{x} \\ \vec{e}_{y} \\ \vec{e}_{z} \end{pmatrix} = \mathbf{T} \begin{pmatrix} \vec{e}_{x} \\ \vec{e}_{y} \\ \vec{e}_{z} \end{pmatrix}$$



and

$$\begin{pmatrix} \vec{e}_x \\ \vec{e}_y \\ \vec{e}_z \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} \vec{e}_\rho \\ \vec{e}_\phi \\ \vec{e}_z \end{pmatrix} \quad \text{where} \quad \mathbf{T}^{-1} = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

With  $\dot{\vec{e}}_x = \dot{\vec{e}}_y = \dot{\vec{e}}_z = 0$ , the time-derivatives of the base vectors of the cylindrical coordinates can be calculated as

$$\begin{cases}
\dot{\vec{e}}_{\rho} = \dot{\phi} \left( -\vec{e}_x \sin \phi + \vec{e}_y \cos \phi \right) = \dot{\phi} \, \vec{e}_{\phi} \\
\dot{\vec{e}}_{\phi} = \dot{\phi} \left( -\vec{e}_x \cos \phi - \vec{e}_y \sin \phi \right) = -\dot{\phi} \, \vec{e}_{\rho}
\end{cases} \tag{10}$$

Since

$$\vec{r} = x \vec{e}_x + y \vec{e}_y + z \vec{e}_z = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} \vec{e}_x \\ \vec{e}_y \\ \vec{e}_z \end{pmatrix} = \begin{pmatrix} x & y & z \end{pmatrix} \mathbf{T}^{-1} \begin{pmatrix} \vec{e}_\rho \\ \vec{e}_\phi \\ \vec{e}_z \end{pmatrix}$$

$$= (x \cos \phi + y \sin \phi) \vec{e}_\rho + (-x \sin \phi + y \cos \phi) \vec{e}_\phi + z \vec{e}_z$$

$$= \rho \vec{e}_\rho + z \vec{e}_z$$
(11)

the velocity and acceleration in the cylindrical coordinates can then be calculated as

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{\rho} \, \vec{e}_{\rho} + \rho \, \dot{\vec{e}}_{\rho} + \dot{z} \, \vec{e}_{z} = \dot{\rho} \, \vec{e}_{\rho} + \rho \dot{\phi} \, \vec{e}_{\phi} + \dot{z} \, \vec{e}_{z}$$
(12)

i.e.

$$(v_{\rho}, v_{\phi}, v_{z}) = (\dot{\rho}, \rho \dot{\phi}, \dot{z})$$

and

$$\frac{d\vec{v}}{dt} = \ddot{\rho}\vec{e}_{\rho} + \dot{\rho}\dot{e}_{\rho} + \dot{\rho}\dot{\phi}\vec{e}_{\phi} + \rho\ddot{\phi}\vec{e}_{\phi} + \rho\ddot{\phi}\dot{e}_{\phi} + \ddot{z}\vec{e}_{z}$$

$$= (\ddot{\rho} - \rho\dot{\phi}^{2})\vec{e}_{\rho} + (\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi})\vec{e}_{\phi} + \ddot{z}\vec{e}_{z}$$

$$\Rightarrow \begin{cases}
F_{\rho} = m(\ddot{\rho} - \rho\dot{\phi}^{2}) \\
F_{\phi} = m(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi})
\end{cases}$$

$$F_{\rho} = m(\ddot{\rho} - \rho\dot{\phi}^{2})$$

### Example 2. An Oscillating Skateboard

For an object sliding inside a half cylinder, the problem is two-dimensional in the polar coordinates  $(\rho, \phi)$  with  $\rho = const.$  The Newton's equation is



$$\begin{cases} F_{\rho} = mg\cos\phi - N = m(\ddot{\rho} - \rho\dot{\phi}^2) \\ F_{\phi} = -mg\sin\phi = m(\rho\ddot{\phi} + 2\dot{\rho}\dot{\phi}) \end{cases}$$

With  $\rho = R$ , the equation of motion is reduced to the equation of a pendulum,

$$\ddot{\phi} = -\omega^2 \sin \phi$$
 where  $\omega = \sqrt{g/R}$ 

For a small-angle oscillation  $\phi << 1, \ \sin \phi \simeq \phi \,,$ 

This is the equation for a harmonic oscillator and its solution is

$$\phi(t) = A\sin(\omega t) + B\cos(\omega t)$$

The normal force can be calculated from the Newton's eq. as

$$N(t) = mg\cos\phi(t) + mR\dot{\phi}^2$$

# Characteristic Equation Let's try $\phi = e^{\lambda t}$ $\Rightarrow \lambda^2 \phi = -\omega^2 \phi$ $\Rightarrow \lambda = \pm i\omega$ $\phi = Ae^{-i\omega t} + Be^{i\omega t}$

### Example 3. Pendulum

The equation of motion for a pendulum is

$$\ddot{\phi} = -\omega^2 \sin \phi$$
 where  $\omega = \sqrt{g/l}$ 

which can be solved as

$$\dot{\phi} \frac{d\dot{\phi}}{dt} = -\left(\omega^2 \sin \phi\right) \dot{\phi} \implies \frac{1}{2} \frac{d\dot{\phi}^2}{dt} = \omega^2 \frac{d \cos \phi}{dt}$$

Therefore

$$\frac{d}{dt}\left(\frac{1}{2}\dot{\phi}^2 - \omega^2\cos\phi\right) = 0 \qquad \Longrightarrow \qquad \frac{1}{2}\dot{\phi}^2 - \omega^2\cos\phi = const.$$

where the constant of motion is the mechanic energy,

Energy = 
$$\frac{1}{2}m(l\dot{\phi})^2 + mgl(1-\cos\phi) = \frac{1}{2}mv_{tan}^2 + mg(l-y)$$

with  $v_{tan} = l\dot{\phi}$  and  $y = l\cos\phi$ . Therefore, the trajectory of a pendulum satisfies

$$E = \frac{1}{2}\dot{\phi}^2 - \omega^2\cos\phi = \frac{1}{2}\dot{\phi}^2(0) - \omega^2\cos\phi(0) \qquad \Longrightarrow \qquad \dot{\phi} = \pm\sqrt{2(E + \omega^2\cos\phi)}$$

where  $E < \omega^2$  is for the libration,  $E > \omega^2$  is for the rotation, and  $E = \omega^2$  is the separatrix that divides two phases of motion. For the libration, the maximal oscillation angle (turning



point) is at

$$\dot{\phi} = 0 \implies E = -\omega^2 \cos \phi_{max}$$

which yields

$$\phi_{max} = \cos^{-1}\left(E/\omega^2\right)$$

The t-dependence of  $\phi$  can be obtained from

$$t = \int_{\phi(0)}^{\phi} \frac{d\phi}{\sqrt{2(E + \omega^2 \cos \phi)}}$$



### 1.4 Newton's Equation in Spherical Coordinates

The transformation between the Cartesian (x, y, z)and spherical  $(r, \theta, \phi)$  coordinates is

$$x = r \sin \theta \cos \phi$$
,  $y = r \sin \theta \sin \phi$ ,  $z = r \cos \theta$ 

where 
$$r^2 = x^2 + y^2 + z^2$$
 and

$$\vec{r} = x \, \vec{e}_x + y \, \vec{e}_y + z \, \vec{e}_z = r \, \vec{e}_r$$

Therefore

$$\vec{e}_r = \vec{e}_x \sin \theta \cos \phi + \vec{e}_y \sin \theta \sin \phi + \vec{e}_z \cos \theta$$



Transformation of Base Vectors  $(\vec{e}_x\,,\,\vec{e}_y\,,\,\vec{e}_z\,)\longleftrightarrow(\vec{e}_r\,,\,\vec{e}_\theta\,,\,\vec{e}_\phi\,)$ 











The transformations of the base vectors are therefore

$$\begin{cases}
\vec{e}_r = \vec{e}_x \sin \theta \cos \phi + \vec{e}_y \sin \theta \sin \phi + \vec{e}_z \cos \theta \\
\vec{e}_\phi = -\vec{e}_x \sin \phi + \vec{e}_y \cos \phi \\
\vec{e}_\theta = \vec{e}_\rho \cos \theta - \vec{e}_z \sin \theta = \vec{e}_x \cos \theta \cos \phi + \vec{e}_y \cos \theta \sin \phi - \vec{e}_z \sin \theta
\end{cases}$$
(14)

which can be written as

$$\begin{pmatrix} \vec{e}_r \\ \vec{e}_\theta \\ \vec{e}_\phi \end{pmatrix} = \mathbf{T} \begin{pmatrix} \vec{e}_x \\ \vec{e}_y \\ \vec{e}_z \end{pmatrix} \quad \text{where} \quad \mathbf{T} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix}$$
(15)

and

$$\begin{pmatrix} \vec{e}_x \\ \vec{e}_y \\ \vec{e}_z \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} \vec{e}_r \\ \vec{e}_\theta \\ \vec{e}_\phi \end{pmatrix} \quad \text{where} \quad \mathbf{T}^{-1} = \begin{pmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{pmatrix}$$
(16)

The time-derivatives of the base vectors  $(\vec{e}_r, \vec{e}_\theta, \vec{e}_\phi)$  can then be calculated as

$$\begin{split} \dot{\vec{e}_r} &= (\dot{\theta}\cos\theta\cos\phi - \dot{\phi}\sin\theta\sin\phi)\,\vec{e}_x + (\dot{\theta}\cos\theta\sin\phi + \dot{\phi}\sin\theta\cos\phi)\,\vec{e}_y - (\dot{\theta}\sin\theta)\,\vec{e}_z \\ &= \dot{\theta}\,(\vec{e}_x\cos\theta\cos\phi + \vec{e}_y\cos\theta\sin\phi - \vec{e}_z\sin\theta) + \dot{\phi}\,(-\vec{e}_x\sin\theta\sin\phi + \vec{e}_y\sin\theta\cos\phi) \\ &= \dot{\theta}\,\vec{e}_\theta + (\dot{\phi}\sin\theta)\,\vec{e}_\phi \\ \dot{\vec{e}_\theta} &= -(\dot{\theta}\sin\theta\cos\phi + \dot{\phi}\cos\theta\sin\phi)\,\vec{e}_x - (\dot{\theta}\sin\theta\sin\phi - \dot{\phi}\cos\theta\cos\phi)\,\vec{e}_y - (\dot{\theta}\cos\theta)\,\vec{e}_z \\ &= -\dot{\theta}(\vec{e}_x\sin\theta\cos\phi + \vec{e}_y\sin\theta\sin\phi + \vec{e}_z\cos\theta) - \dot{\phi}(\vec{e}_x\cos\theta\sin\phi - \vec{e}_y\cos\theta\cos\phi) \\ &= -\dot{\theta}\,\vec{e}_r + (\dot{\phi}\cos\theta)\,\vec{e}_\phi \\ \dot{\vec{e}_\theta} &= -(\dot{\phi}\cos\phi)\,\vec{e}_x - (\dot{\phi}\sin\phi)\,\vec{e}_y = -(\dot{\phi}\sin\theta)\,\vec{e}_r - (\dot{\phi}\cos\theta)\,\vec{e}_\theta \end{split}$$

The velocity and acceleration can be calculated from the position  $\vec{r} = r\vec{e}_r$  as

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{r}\,\vec{e}_r + r\,\dot{\vec{e}}_r = \dot{r}\,\vec{e}_r + r\dot{\theta}\,\vec{e}_\theta + (r\dot{\phi}\sin\theta)\,\vec{e}_\phi \tag{17}$$

 $i.e. \ v_r = \dot{r} \, , \ v_\theta = r \dot{\theta} \, , \ v_\phi = r \dot{\phi} \sin \theta ,$  and

$$\frac{d\vec{v}}{dt} = \ddot{r}\vec{e}_r + (\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e}_\theta + (\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta)\vec{e}_\phi + \dot{r}\dot{\vec{e}}_r + r\dot{\theta}\dot{\vec{e}}_\theta + (r\dot{\phi}\sin\theta)\dot{\vec{e}}_\phi$$

$$= \ddot{r}\vec{e}_r + (\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e}_\theta + (\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta)\vec{e}_\phi$$

$$+ \dot{r}\left[\dot{\theta}\vec{e}_\theta + (\dot{\phi}\sin\theta)\vec{e}_\phi\right] + r\dot{\theta}\left[-\dot{\theta}\vec{e}_r + (\dot{\phi}\cos\theta)\vec{e}_\phi\right]$$

$$+ (r\dot{\phi}\sin\theta)\left[-(\dot{\phi}\sin\theta)\vec{e}_r - (\dot{\phi}\cos\theta)\vec{e}_\theta\right]$$

$$= \vec{e}_r\left(\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta\right) + \vec{e}_\theta\left(2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta\right)$$

$$+ \vec{e}_\phi\left(2\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta\right)$$
(18)

The Newton's equation in the spherical coordinates is then

$$\begin{cases}
F_r = m \left( \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta \right) \\
F_{\theta} = m \left( r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \sin \theta \cos \theta \right) \\
F_{\phi} = m \left( r\ddot{\phi} \sin \theta + 2\dot{r}\dot{\phi} \sin \theta + 2r\dot{\phi}\dot{\theta} \cos \theta \right)
\end{cases} (19)$$

### Example 4. Motion Under a Central Force



In the central-force problem, the net force on an object is either parallel or anti-parallel to  $\vec{e}_r$  and depends only on r. The equations of motion in the spherical coordinates becomes

$$\begin{cases}
\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta &= F(r)/m \\
r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \sin \theta \cos \theta &= 0 \\
r\ddot{\phi} \sin \theta + 2\dot{r}\dot{\phi} \sin \theta + 2r\dot{\phi}\dot{\theta} \cos \theta &= 0
\end{cases} (20)$$

where  $F_{\theta} = F_{\phi} = 0$ . Multiplying r to the  $\theta$ -component of the Newton's equation (2nd equation) yields

the  $\theta$ -component:

$$r\left(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta\right) = \frac{d}{dt}(r^2\dot{\theta}) - r^2\dot{\phi}^2\sin\theta\cos\theta$$

The  $\theta$ -component of the Newton's equation can thus be written as

the 
$$\theta$$
-component: 
$$\frac{d}{dt}(r^2\dot{\theta}) - r^2\dot{\phi}^2\sin\theta\cos\theta = 0$$
 (21)

Multiplying  $r \sin \theta$  to the  $\phi$ -component of the Newton's equation (3rd equation) yields

the 
$$\phi$$
-component:  $r \sin \theta \left( r \ddot{\phi} \sin \theta + 2 \dot{r} \dot{\phi} \sin \theta + 2 r \dot{\phi} \dot{\theta} \cos \theta \right) = \frac{d}{dt} \left( r^2 \dot{\phi} \sin^2 \theta \right) = 0$ 

The first integral of the  $\phi$ -component of the Newton's equation is then

$$r^2 \dot{\phi} \sin^2 \theta = constant \implies p_{\phi} = m |\vec{\rho} \times (v_{\phi} \vec{e}_{\phi})| = constant$$
 (22)

where  $\rho = r \sin \theta$ ,  $v_{\phi} = r \dot{\phi} \sin \theta$ , and  $p_{\phi}$  is the angular (canonical) momentum conjugate to  $\phi$  (we will study a lot of the canonical momentum late.) Equation (22) is the conservation of angular momentum  $p_{\phi}$  because  $F_{\phi} = 0$ . Since the orientation of the coordinate, the directions of base vectors  $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ , can be chosen arbitrarily for the initial condition of the motion, this constant of the motion can be determined by chosen a special direction of  $\vec{e}_z$  such that

at 
$$t = 0$$
,  $\theta(0) = 0 \implies p_{\phi}(t) = r^{2}(t)\dot{\phi}(t)\sin^{2}\theta(t) = 0$  (23)



where  $p_{\phi}(t) = 0$  requires r(t) = 0,  $\dot{\phi}(t) = 0$ , or  $\theta(t) = 0$ . It can be seen from the original Newton's equation that r(t) or  $\theta(t)$  cannot be zero at all t, otherwise  $\dot{\theta}(t) = 0$  and there would be no planetary motion at all. Therefore,  $p_{\phi}(t) = 0$  requires

$$\dot{\phi}(t) = 0$$
 and  $\phi(t) = constant$ 

Since  $\theta(0) = 0$ , the initial value of  $\phi$  has no physical meaning and we can simply choose  $\phi(0) = \phi(t) = 0$ . The motion is then limited in the

x-z plane — a two-dimensional motion. With  $\dot{\phi}=0$  and  $\ddot{\phi}=0$ , the original Newton's equations in Eq. (20) becomes

$$\begin{cases}
\ddot{r} - r\dot{\theta}^2 = F(r)/m \\
\frac{d}{dt}(r^2\dot{\theta}) = 0
\end{cases}
\implies
\begin{cases}
\ddot{r} - \frac{p_{\theta}^2}{m^2r^3} = \frac{1}{m}F(r) \\
r^2\dot{\theta} = \frac{p_{\theta}}{m} = constant
\end{cases}$$
(24)

where

$$p_{\theta} = mr^2\dot{\theta} = m|\vec{r} \times (v_{\theta}\vec{e}_{\theta})| = constant$$
 with  $v_{\theta} = r\dot{\theta}$ 

is the angular momentum conjugate to  $\theta$  and conserved because of  $F_{\theta} = 0$ . Because  $\phi = 0$  during the motion, the motion in the central-force problem is 2-dimensional on the x-z plane in the coordinates that Newton's equation in Eq. (20) is based on and  $p_{\theta}$  is the angular momentum with the y-axis as the rotation axis. Since the motion is 2-dimensional, we can relabel the z-axis as the y-axis and then the motion is in the x-y plane and  $p_{\theta}$  is the traditionally-called angular momentum in the z direction.

The final one-dimensional equation for the r component in Eq. (24) can easily be solved as the following,

$$m\ddot{r} = \frac{p_{\theta}^2}{mr^3} + F(r) = Q(r) \qquad \Longrightarrow \qquad m\dot{r}\frac{d\dot{r}}{dt} = \frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2\right) = Q(r)\frac{dr}{dt}$$

Let

$$V(r) = -\int Q(r)dr$$
 or  $dV(r) = -Q(r)dr$ 

then

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2\right) = -\frac{dV(r)}{dt} \implies \frac{1}{2}m\dot{r}^2 + V(r) = E = constant$$

The solution of the trajectory of the motion under a central-force can be obtained as

$$\frac{dr}{dt} = \sqrt{2[E - V(r)]/m} \qquad \Longrightarrow \qquad t = \int_{r_0}^r \frac{dr}{\sqrt{2[E - V(r)]/m}}$$

$$\frac{d\theta}{dt} = \frac{M}{mr^2} \qquad \Longrightarrow \qquad \theta(t) = \frac{M}{m} \int_{0}^t \frac{dt}{r^2(t)}$$
(25)

or

$$\theta = \frac{M}{\sqrt{2m}} \int_{r_0}^{r} \frac{dr}{r^2 \sqrt{E - V(r)}}$$
 (26)

where  $r_0 = r(0)$  and  $\theta(0) = 0$  are the initial condition of the motion.

 $Chapter \ 1-SHI$ 

# Homework for Chapter 1

| Assig. | Problem                            | Covered Subject                                |
|--------|------------------------------------|------------------------------------------------|
| 1.1    | nine problems from 1.1 to 1.9      | vector calculation                             |
| 1.2    | 1.10, 1.12, 1.24, 1.25, 1.26       | circular and helix motion, ODE, inertial frame |
| 1.3    | 1.36, 1.37, 1.40, 1.43, 1.44, 1.45 | 2nd law in Cartesian: incline, projectile      |
|        |                                    | motion in polar coordinate                     |
| 1.4    | 1.47,  1.48,  1.49                 | cylindrical coordinate                         |