TITULNÍ LIST

Namísto této stránky vložte **titulní list** (s logem) vygenerovaný v IS VUT.

ZADÁNÍ
Namísto této stránky vložte stránku **zadání FEKT** vygenerovanou v IS VUT.

#### **ABSTRAKT**

Abstrakt práce v originálním jazyce TODO

#### KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce TODO

#### **ABSTRACT**

Překlad abstraktu TODO (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

#### **KEYWORDS**

Překlad klíčových slov TODO (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.09; https://latex.fekt.vut.cz/



# Prohlášení autora o původnosti díla

Jméno a příjmení autora:

Jakub Charvot

| VUT ID autora:                                                                                                                                                                                                                                                                                             | 240844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typ práce:                                                                                                                                                                                                                                                                                                 | Semestrální práce                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Akademický rok:                                                                                                                                                                                                                                                                                            | 2023/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Téma závěrečné práce:                                                                                                                                                                                                                                                                                      | Autonomní akvárium                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cí/ho závěrečné práce a s použitím o které jsou všechny citovány v práci a u Jako autor uvedené závěrečné práce d závěrečné práce jsem neporušil autor nedovoleným způsobem do cizích aut a jsem si plně vědom následků porušel kona č. 121/2000 Sb., o právu autorska o změně některých zákonů (autorska) | sem vypracoval samostatně pod vedením vedoudborné literatury a dalších informačních zdrojů, vedeny v seznamu literatury na konci práce.  ále prohlašuji, že v souvislosti s vytvořením této ská práva třetích osob, zejména jsem nezasáhl orských práv osobnostních a/nebo majetkových ní ustanovení § 11 a následujících autorského zákém, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně lývajících z ustanovení části druhé, hlavy VI. díl 4 |
|                                                                                                                                                                                                                                                                                                            | podpis autora*                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

<sup>\*</sup>Autor podepisuje pouze v tištěné verzi.

| PODĚKOVÁNÍ                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rád bych poděkoval vedoucímu bakalářské/diplomové/disertační práce panu Ing. XXX<br>YYY, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci. TODO |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |
|                                                                                                                                                                          |

# Obsah

| U            | vod   |                                         | 21         |
|--------------|-------|-----------------------------------------|------------|
| Cí           | le pr | ráce                                    | 23         |
| 1            | Zák   | ladní teorie akvaristiky                | <b>2</b> 5 |
|              | 1.1   | Historie                                | 25         |
|              |       | 1.1.1 Počátky                           | 25         |
|              |       | 1.1.2 Věda a technika                   | 25         |
|              | 1.2   | Rozdělení akvárií                       | 25         |
|              | 1.3   | Současná akvaristická technika          | 26         |
|              |       | 1.3.1 Dostupná komerční řešení          | 26         |
| 2            | Náv   | vrh řešení                              | 27         |
|              | 2.1   | Požadavky                               | 27         |
|              | 2.2   | Koncepční schéma                        | 27         |
|              | 2.3   | Návrh komunikačního rozhraní            | 27         |
|              | 2.4   | Výběr komponent                         | 27         |
|              |       | 2.4.1 Řídící jednotka                   | 27         |
|              |       | 2.4.2 Periferie                         | 27         |
| 3            | Tvo   | rba elektrického schématu               | 29         |
|              | 3.1   | Řídící jednotka                         | 29         |
|              | 3.2   | Modul pro LED osvětlení                 | 29         |
|              | 3.3   | Senzory                                 | 29         |
|              |       | 3.3.1 Teploměr                          | 29         |
|              |       | 3.3.2 Senzor výšky hladiny              | 29         |
|              | 3.4   | Modul pro ovládání 230 V periferií      | 29         |
| Zá           | ivěr  |                                         | 31         |
| Li           | terat | ura                                     | 33         |
| Se           | znan  | n symbolů a zkratek                     | 35         |
| Se           | znan  | n příloh                                | 37         |
| $\mathbf{A}$ | Něk   | steré příkazy balíčku thesis            | 39         |
|              | A.1   | - · · · · · · · · · · · · · · · · · · · | 39         |
|              | A.2   | Příkazy pro sazbu symbolů               | 39         |

| В            | Druhá příloha                                       | 41           |
|--------------|-----------------------------------------------------|--------------|
| $\mathbf{C}$ | Příklad sazby zdrojových kódů  C.1 Balíček listings | <b>43</b> 43 |
| D            | Obsah elektronické přílohy                          | 47           |

# Seznam obrázků

| B.1 Alenčino zrcadlo | 4 | ₽1 |
|----------------------|---|----|
|----------------------|---|----|

# Seznam tabulek

| A.1 | Přehled | příkazů |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 36 |
|-----|---------|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
|-----|---------|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|

# Seznam výpisů

| C.1 | Ukázka sazby zkratek                                     | 43 |
|-----|----------------------------------------------------------|----|
| C.2 | Příklad Schur-Cohnova testu stability v prostředí Matlab | 44 |
| C.3 | Příklad implementace první kanonické formy v jazyce C    | 45 |

# Úvod

V dnešní době, kdy jsou na vzestupu fenomény jako chytrá domácnost, IoT (Internet of Things) nebo Průmysl 4.0, se na trhu objevuje stále více výrobků, které se snaží automatizovat a zjednodušit různé oblasti našeho života. Tento trend se dnes dotýká nejedné volnočasové aktivity a to včetně akvaristiky. Tu lze samozřejmě provozovat na různé úrovni, ale i majitelé malých domácích akvárií potřebují k provozu svého koníčku relativně velké množství elektroniky. Běžnou praxí je, že každé z použitých zařízení je ovládáno buďto zcela ručně nebo, pokud disponuje možností vzdáleného přístupu a automatizace, má svou samostanou aplikaci a uživatel tak provoz akvária musí ovládat z několika různých míst, což může být značně nepohodlné a nepřehledné.

Na trhu samozřejmě existují také velmi sofistikované a komplexní systémy, ty ovšem svou cenou vysoce přesahují rozpočet běžného "domácího"akvaristy. Tato práce se věnuje návrhu a tvorbě zařízení, které má za cíl nabídnout pohodlnou kontrolu a ovládání všech potřebných součástí domácího akvária, a to při zachování jednoduchosti a nízké pořizovací ceny.

# Cíle práce

 ${\rm M\'a}$ tato kapitola existovat a nebo mám cíle podrobněji rozebrat v úvodu?

## 1 Základní teorie akvaristiky

#### 1.1 Historie

#### 1.1.1 Počátky

Akvaristika v různých podobách provází lidstvo téměř od prvopočátku. Nejprve se jednalo spíše o chov ryb užitkových, tedy rybářství, ovšem už ve starověké Mezopotámii docházelo také k chovu ryb okrasných. Počátky akvaristiky byly prováděny spíše metodou pokusů a omylů, protože lidem nebyla známa velká část přírodních zákonitostí – životní potřeby chovaných ryb, způsob jejich rozmnožování a v neposlední řadě také procesy, odehrávající se v přírodním ekosystému, zajišťující jeho rovnováhu. Základem udržení chovaných ryb naživu byla zejména častá výměna vody, ani tak ale dlouho nebylo možné udržet ryby při životě dlouhodobě.

V období středověku se poprvé objevuje také dovoz exotických okrasných rybek z cizích zemí, pro naprostý nedostatek znalostí ale často brzo hynou, např. jen proto, že chovatele nenapadne je nakrmit.

#### 1.1.2 Věda a technika

Na konci 18. století dochází k rozvoji vědy a několika objevům, které historii akvaristiky zásadně ovlivnili. Poprvé byl izolován kyslík, byl objasněn princip dýchání živočichů a následně také fotosyntéza. Akvaristika, v tehdejší době umělý chov ryb za účelem pozorování a výzkumu, byla provozována zejména na vědecké půdě a byl zde zájem o zdokonalení používaných technik a postupů. V roce 1837 S. H. Ward prakticky prokázal, že osvětlené akvárium obsahující jak rybky, tak i rostliny, vydrží velmi dlouho bez nutnosti výměny vody [1]. Pricip výměny plynů byl významným milníkem ve snaze dosáhnout v akváriu rovnováhy podobné přírodnímu prostředí.

Při stále nových poznatcích o životních potřebách ryb a o akvarijní rovnováze bylo nutné přijít s různými technickými řešeními. Akvária 19. a 20. století už byla vytápěná a uměle okysličovaná. Původní mechanická řešení a lihové kahany byly postupně nahrazovány elektrickými přístroji. V pozdějších letech pak přibylo i umělé osvětlení a systémy filtrace vody.

### 1.2 Rozdělení akvárií

Akvária je možné rozdělit na základě mnoha různých parametrů jako je např. velikost, materiál a tvar anebo jejich funkce. Pro účely této práce jsou však relevantní zejména rozdělení, která jsou zásadní pro rozsah použité akvaristické techniky.

V jednoduchosti tedy můžeme akvária rozdělit podle biotopu [2]:

- Sladkovodní
- Brakická salinita přibližně 5 až 15 ‰
- Mořská salinita přibližně 30 až 40 ‰

Asi není potřeba vysvětlovat, že pro akvária mořská a brakická nestačí použít běžnou kohoutkovou vodu, ale je potřeba ji před použitím upravit. Pokud chceme systém automatizovat, je potřeba přidat zařízení, které bude salinitu průběžně monitorovat a upravovat. Komplexní profesionální systémy (např. GHL, Neptune Apex, ...) tyto možnosti nabízejí, ale pořizovací cena je relativně vysoká. Můžeme tedy říci, že po technické stránce je provoz sladkovodních akvárií jednodušší než provoz akvárií mořských.

Další dělení akvárií je možné z hlediska jejich obsazení:

- Čistě rostlinná akvária
- S běžnými druhy ryb
- Se speciálními druhy zvýšené nároky na parametry vody

Rozsah použité akvaristické techniky a zejména požadavek na její přesnost je závislý na volbě umístěných druhů rostlin a živočichů. Každý druh má své optimální životní podmínky a zatímco některým živočichům se bude dařit ve vodě o teplotě v rozsahu klidně i 15 °C, jiné vyžadují téměř konstantní teplotu v rozsahu třeba jen 2 °C, to zásadně ovlivní požadavky na přesnost měření teploty i způsob její regulace. Stejně tak je tomu i s dalšími parametry.

Zařízení vytvořené v rámci této práce bude určeno pro použití v menším sladkovodním akváriu osazeném běžnými druhy rostlin a živočichů bez speciálních životních potřeb – tedy scénář běžného domácího akvaristy s omezeným rozpočtem. Není ale vyloučeno jeho budoucí rozšíření i pro náročnejší aplikace.

### 1.3 Současná akvaristická technika

### 1.3.1 Dostupná komerční řešení

TODO

## 2 Návrh řešení

Tato část práce popisuje proces tvorby návrhu výsledného zařízení, věnuje se konkretizaci požadavků na zařízení a následnému hledání vhodných technických řešení pro tyto požadavky včetně výběru odpovídajících komponent.

- 2.1 Požadavky
- 2.2 Koncepční schéma
- 2.3 Návrh komunikačního rozhraní
- 2.4 Výběr komponent
- 2.4.1 Řídící jednotka
- 2.4.2 Periferie

- 3 Tvorba elektrického schématu
- 3.1 Řídící jednotka
- 3.2 Modul pro LED osvětlení
- 3.3 Senzory
- 3.3.1 Teploměr
- 3.3.2 Senzor výšky hladiny
- 3.4 Modul pro ovládání  $230\,\mathrm{V}$  periferií

# Závěr

Shrnutí studentské práce.

## Literatura

- [1] Jiří Vítek. Akvaristika včera, dnes a zítra, rok vydání neuveden. URL: https://www.akvarijni.cz/texty/historie\_akvaristiky.htm.
- [2] Barbora Hásková. Společenstva prvoků a bezobratlých živočichů ve slad-kovodních akváriích a možnosti jejich využití ve výuce, 2011. URL: https://dspace.cuni.cz/bitstream/handle/20.500.11956/39224/BPTX\_ 2010\_2\_\_0\_258158\_0\_107901.pdf?sequence=1&isAllowed=y.

# Seznam symbolů a zkratek

**Šířka levého sloupce Seznamu symbolů a zkratek** je určena šířkou parametru prostředí **acronym** (viz řádek 1 výpisu zdrojáku na str. 43)

**IoT** Internet of Things

DSP číslicové zpracování signálů – Digital Signal Processing

 $f_{\rm vz}~$ vzorkovací kmitočet

# Seznam příloh

| A            | Některé příkazy balíčku thesis           | 39 |
|--------------|------------------------------------------|----|
|              | A.1 Příkazy pro sazbu veličin a jednotek | 39 |
|              | A.2 Příkazy pro sazbu symbolů            | 39 |
| В            | Druhá příloha                            | 41 |
| $\mathbf{C}$ | Příklad sazby zdrojových kódů            | 43 |
|              | C.1 Balíček listings                     | 43 |
| D            | Obsah elektronické přílohy               | 47 |

## A Některé příkazy balíčku thesis

### A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

| Příkaz | Příklad         | Zdroj příkladu                          | Význam              |
|--------|-----------------|-----------------------------------------|---------------------|
|        | $\beta_{\max}$  | <pre>\$\beta_\textind{max}\$</pre>      | textový index       |
|        | U <sub>in</sub> | <pre>\$\const{U}_\textind{in}\$</pre>   | konstantní veličina |
|        | $u_{ m in}$     | <pre>\$\var{u}_\textind{in}\$</pre>     | proměnná veličina   |
|        | $u_{ m in}$     | <pre>\$\complex{u}_\textind{in}\$</pre> | komplexní veličina  |
|        | y               | \$\vect{y}\$                            | vektor              |
|        | $\mathbf{Z}$    | \$\mat{Z}\$                             | matice              |
|        | kV              | $\$ \unit{kV}\ \tilde{ci} \unit{kV}     | jednotka            |

### A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem<sup>1</sup>: μ,
- \uppi sazba symbolu  $\pi$  (stojaté řecké pí, na rozdíl od \pi, což sází  $\pi$ ).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

<sup>&</sup>lt;sup>1</sup>znak pochází z balíčku textcomp

# B Druhá příloha



Obr. B.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v ĽTĘXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TĘXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

## C Příklad sazby zdrojových kódů

### C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
  balíček \href{https://www.ctan.org/pkg/listings}%
  {\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
  sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

#### 6 \begin{acronym}[]

Šířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky  $f_{vz}$  je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

```
21 \acro{symfvz}  % název
22 [\ensuremath{f_\textind{vz}}] % symbol
23 {vzorkovací kmitočet}  % popis
```

Ukončení seznamu je provedeno ukončením prostředí:

26 \end{acronym}

#### Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
2
  % koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola pomoci korenu polynomu:');
  zx = roots( a);
  if ( all( abs( zx) < 1))
      disp('System i je i stabilni')
10
  else
11
      disp('Systemujeunestabilniunebounaumeziustability');
12
  end
13
14
15 disp('u'); disp('KontrolaupomociuSchur-Cohn:');
16 ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for(k = 1:length(a)-2)
18
      aa = ma(k, 1: end - k + 1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
      disp('System _ je _ stabilni')
25
26
  else
      disp('System je nestabilni nebo na mezi stability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
{
  static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
  int x, y, accu;
                                                                    5
  short k;
                                                                    6
                                                                    7
                                                                    8
  x = sample;
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl(accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
                                                                    24
                                                                    25
  return( y);
                                                                    26
}
```

## D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

| / | kořenový adresář přiloženého archivu                                   |
|---|------------------------------------------------------------------------|
| ļ | logologa školy a fakulty                                               |
|   | BUT_abbreviation_color_PANTONE_EN.pdf                                  |
|   | BUT_color_PANTONE_EN.pdf                                               |
|   | FEEC_abbreviation_color_PANTONE_EN.pdf                                 |
|   | FEKT_zkratka_barevne_PANTONE_CZ.pdf                                    |
|   | UTKO_color_PANTONE_CZ.pdf                                              |
|   | UTKO_color_PANTONE_EN.pdf                                              |
|   | VUT_barevne_PANTONE_CZ.pdf                                             |
|   | VUT_symbol_barevne_PANTONE_CZ.pdf                                      |
|   | VUT_zkratka_barevne_PANTONE_CZ.pdf                                     |
| - | obrazkyostatní obrázky                                                 |
|   | soucastky.png                                                          |
|   | spoje.png                                                              |
|   | ZlepseneWilsonovoZrcadloNPN.png                                        |
|   | ZlepseneWilsonovoZrcadloPNP.png                                        |
| ļ | pdf pdf stránky generované informačním systémem                        |
|   | student-desky.pdf                                                      |
|   | student-titulka.pdf                                                    |
|   | student-zadani.pdf                                                     |
| ļ | <u>text</u> zdrojové textové soubory                                   |
|   | literatura.tex                                                         |
|   | prilohy.tex                                                            |
|   | reseni.tex                                                             |
|   | uvod.tex                                                               |
|   | vysledky.tex                                                           |
|   | zaver.tex                                                              |
|   | zkratky.tex                                                            |
| - | <u>sablona-obhaj.tex</u> hlavní soubor pro sazbu prezentace k obhajobě |
| - | sablona-prace.texhlavní soubor pro sazbu kvalifikační práce            |
| ļ | thesis.stybalíček pro sazbu kvalifikačních prací                       |