

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2023

Práctica 8: Aproximación de funciones por polinomios.

1. Halle los polinomios de Taylor (del orden indicado y en el punto indicado) para cada una de las siguientes funciones:

a)
$$f_1(x) = xe^x$$
, $n = 5, a = 1$.

b)
$$f_2(x) = x^5 + x^3 + x$$
, $n = 4$, $a = 0$

c)
$$f_3(x) = \int_0^x \frac{dt}{\sqrt{1+t^2}}, \quad n = 3, \ a = 0.$$

d)
$$f_4(x) = x \sin x$$
, $n = 9$, $a = 0$.

2. Escriba cada uno de los siguientes polinomios en x como polinomios en (x-1). Ayuda: Piense en el polinomio de Taylor alrededor de 1.

a)
$$x^2 - 4x - 9$$

b)
$$x^4 - 12x^3 - 44x^2 + 2x + 1$$
 c) x^5

3. Muestre que los polinomios de Taylor asociados a las siguientes funciones en el punto 0, verifican las igualdades correspondientes:

a) Para
$$f_1(x) = \text{sen}(3x)$$
 $P_{2n-1,0}(x) = P_{2n,0}(x) = \sum_{k=0}^{n-1} \frac{(-1)^k 3^{2k+1}}{(2k+1)!} x^{2k+1}$

b) Para
$$f_2(x) = \operatorname{senh}(x)$$
 $P_{2n-1,0}(x) = T_{2n,0}(x) = \sum_{k=0}^{n-1} \frac{1}{(2k+1)!} x^{2k+1}$

c) Para
$$f_3(x) = (1+x)^{\alpha}$$
 $P_{n,0}(x) = \sum_{k=0}^{n} {\alpha \choose k} x^k$, donde ${\alpha \choose k} = \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$

d) Para
$$f_4(x) = \sin^2(x)$$
 $P_{2n,0}(x) = \sum_{k=1}^n \frac{(-1)^{k+1} 2^{2k-1}}{(2k)!} x^{2k}$. Recuerde que: $\cos(2x) = 1 - 2 \sin^2 x$

- 4. Suponga que a_i y b_i son los coeficientes de Taylor en a de f y g respectivamente. Es decir $a_i = \frac{f^{(i)}(a)}{i!}$ y $b_i = \frac{g^{(i)}(a)}{i!}$.
 - a) Halle los coeficientes c_i de los polinomios de Taylor en a de las siguientes funciones en términos de a_i b_i :

(a)
$$f + g$$
, (b) f' , (c) $h_1(x) = \int_a^x f(t) dt$.

- b) Mostrar que si f es una función par (impar), el polinomio de Taylor de f alrededor de 0 de cualquier orden está formado sólo por potencias de exponentes pares (impares).
- c) Halle el polinomio de Taylor de la función de ley $h_2(x) = f(cx)$, alrededor del punto a.
- d) Utilizando los polinomios de Taylor de las funciones seno, coseno y exponencial vistos en clases de teoría, y los dos apartados anteriores, vuelva a concluir las expresiones halladas en las partes a), b) y d) del Ejercicio 3.
- 5. A partir de la igualdad válida para todo $x \neq 1$

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^{n-1} + x^n + \frac{x^{n+1}}{1-x}$$

obtenga los polinomios de Taylor asociados a las siguientes funciones en el punto 0 y una expresión del resto correspondiente:

$$f_1(x) = \frac{1}{1+x}$$
 $f_2(x) = \frac{2+x-x^2}{1-x}$ $f_3(x) = \frac{x}{1-x^2}$ $f_4(x) = \ln\sqrt{\frac{1+x}{1-x}}$

- 6. a) Si a_i son los coeficientes de Taylor en a de f, hallar la expresión del polinomio de Taylor de la función de ley $g(x) = (x a)^k f(x)$, para $k \in \mathbb{N}$, fijo.
 - b) Encontrar los polinomios de Taylor de orden 8 y alrededor del origen, de las funciones $g_1(x) = x^2 \operatorname{sen}(3x)$ y $g_2(x) = x^{20} \operatorname{senh}(x)$.
- 7. Sea la función

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- a) Obtenga el polinomio de Taylor de orden 9 de f alrededor del origen. (Ayuda: Tal vez lo más conveniente no sea calcular las derivadas... revise la teoría para obtener un polinomio conveniente.)
- b) Calcule $f^{(9)}(0)$.

- 8. Algunas veces en el modelado de fenómenos de oscilación, se recurre a la simplificación sen $\theta \approx \theta$, para ángulos pequeños. Determine el error en esta aproximación, para ángulos (medidos en grados sexagesimales) de 5°, 10°, 15° y 20°.
- 9. Para cada una de las funciones dadas:
 - a) Halle la forma integral y la forma de Lagrange de los restos de la fórmula de Taylor asociada a dichas funciones en el punto 0, indicando el conjunto de validez de la expresión obtenida.
 - b) Demuestre que los restos obtenidos en la parte i) verifican las acotaciones indicadas.

a)
$$f(x) = \cosh x$$
, $|R_{2n,0,f}(x)| = |R_{2n+1,0,f}(x)| \le \frac{1}{(2n+2)!} \cosh(x) |x|^{2n+2}$

b)
$$f(x) = \ln(1+x)$$
, $|R_{n,0,f}(x)| \le \begin{cases} \frac{1}{n+1}x^{n+1} & \text{si } x > 0\\ \frac{1}{n+1}\frac{1}{(1+x)^{n+1}}|x|^{n+1} & \text{si } -1 < x < 0 \end{cases}$
c) $f(x) = \cos x$, $|R_{2n+1,0,f}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!}$

c)
$$f(x) = \cos x$$
, $|R_{2n+1,0,f}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!}$

- 10. Demuestre que $0,493957 < \int_0^{1/2} \frac{1}{1+x^4} dx < 0,493959.$
- a) Si $0 \le x \le \frac{1}{2}$, demuestre que sen $x = x \frac{x^3}{3!} + r(x)$, donde $|r(x)| \le \frac{1}{2^5 \cdot 5!}$.
 - b) Halle un valor aproximado de la integral $\int_0^{\sqrt{2}/2} \sin x^2 dx$, acotando el error cometido.
- 12. Halle un valor aproximado de los siguientes números con error menor que $\frac{1}{2}10^{-6}$.
 - a) $e^{-0.1}$
- b) $\cos\left(\frac{\pi}{36}\right)$
- c) sen(0,5)
- 13. Demuestre que la ecuación $x^2 \cos(x) = 0$, tiene exactamente dos soluciones. Utilice un adecuado polinomio de Taylor para probar que las soluciones son aproximadamente $\pm \sqrt{\frac{2}{3}}$ y obtener cotas para el error cometido.
- 14. Calcule el orden del polinomio de Taylor necesario para obtener las siete primeras cifras decimales del número $\ln(1,5)$ utilizando la formula de Taylor correspondiente a las funciones: $f(x) = \ln(x+1)$ y $g(x) = \ln\left(\frac{1+x}{1-x}\right)$ y compare la cantidad de términos necesarios en las dos aproximaciones.
- 15. Los polinomios de Taylor de la función arcotangente trabajados permiten aproximar el valor del número π con tantas cifras decimales como se desee.
 - a) Utilizando la fórmula $4\arctan 1=\pi$, dar una expresión que permita hallar el valor de π con un error menor a 10^{-10} . Ésta, con los infinitos términos, es el desarrollo de Leibniz del número π .

b) Demuestre las fórmulas

$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
 y $4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right) = \frac{\pi}{4}$.

Ayuda: calcule y tome argumentos en los respectivos complejos (2+i)(3+i) y $\frac{(5+i)^4}{239+i}$

- c) Utilizando cada una de las fórmulas anteriores, dar nuevamente expresiones para aproximar π con un error menor a 10^{-10} . Sugerencia: aproximar a cada sumando con un error menor a $10^{-10}/2$.
- d) Compare la cantidad de términos necesarios en las tres aproximaciones.
- 16. Justifique la existencia de cada integral y calcule un valor aproximado con error menor que 10^{-5} .

a)
$$\int_0^1 e^{-x^2} dx$$
 b) $\int_0^1 \frac{dx}{1+x^3}$ c) $\int_0^1 \frac{1^x-1}{x} dx$

17. (a) Demuestre que si f''(a) existe, entonces

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}.$$

El límite de la derecha es denominado derivada segunda de Schwarz de f en a.

Ayuda: Utilice el polinomio de Taylor de orden 2 con x = a + h y con x = a - h.

(b) Sea $f(x) = x^2$ para $x \ge 0$ y $-x^2$ para $x \le 0$. Demuestre que

$$\lim_{h \to 0} \frac{f(0+h) + f(0-h) - 2f(0)}{h^2},$$

existe, a pesar de no existir f''(0).

- (c) Demuestre que si f tiene un máximo local en a, entonces la derivada segunda de Schwarz de f en a es ≤ 0 .
- (d) Demuestre que si f'''(a) existe, entonces

$$\frac{f'''(a)}{3} = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f'(a)}{h^3}.$$

4