EXERCISES GALOIS THEORY AND SOME SOLUTIONS

CARSTEN DIETZEL, SILVIA PROPERZI

1. Week 1

Exercise 1.1. Let $\sigma: K \to L$ be a field homomorphism, prove that σ is injective.

Solution. [using ring theory] We know that ker σ is an ideal of K. But K is a field so the only possibilities are that $\ker \sigma = \{0\}$ or $\ker \sigma = K$. As $\sigma(1) = 1 \neq 0$, we know that $1 \notin \ker \sigma$, hence $\ker \sigma = \{0\}$ which means that σ is injective.

Solution. [by hands] Let $a, b \in K$ such that $\sigma(a) = \sigma(b)$. Then

$$\sigma(a-b) = \sigma(a) - \sigma(b) = 0.$$

If we assume that $a \neq b$, then a - b is a non-zero element in a field, hence it is invertible. Then

$$1 = \sigma(1) = \sigma((a-b)(a-b)^{-1}) = \sigma(a-b)\sigma((a-b)^{-1}) = 0,$$

which is a contradiction. Therefore a = b and so σ is injective.

Exercise 1.2. Let K be a field, K_0 be its prime field and $\sigma: K \to K$ be a field homomorphism. Prove that $\sigma \in \text{Hom}(K/K_0, K/K_0)$.

Exercise 1.3. Let $\mathbb{Q}[i] = \{a + ib \mid a, b \in \mathbb{Q}\}, \ \mathbb{Q}[\sqrt{2}] = \{a + \sqrt{2}b \mid a, b \in \mathbb{Q}\}$ and $\mathbb{Q}(i) = \{\frac{a+ib}{c+di} \mid a, b, c, d \in \mathbb{Q}\}, \ \mathbb{Q}(\sqrt{2}) = \{\frac{a+\sqrt{2}b}{c+\sqrt{2}d} \mid a, b, c, d \in \mathbb{Q}\}.$

- (i) Prove that $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}(i) = \mathbb{Q}[i]$.
- (ii) Prove that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are not isomorphic.

Exercise 1.4.

- (i) Let $a = \sqrt{2}$ and $b = \sqrt[3]{3}$. Prove that ab is algebraic over \mathbb{Q} .
- (ii) Show that $\sqrt{2} + i$ is algebraic over \mathbb{Q} by finding a nonzero polynomial $f \in \mathbb{Q}[X]$ with $\deg(f) = 4$ such that $f(\sqrt{2} + i) = 0$. What are the other roots of f?

Solution.

- (i) Observe that $ab^6 = \sqrt{2}^6 \sqrt[3]{3}^6 = 8 \cdot 9 = 72$. Therefore ab is a root of the polynomial $X^6 - 72 \in \mathbb{Q}[X]$.
- (ii) let $\alpha = \sqrt{2} + i$. Then $\alpha^2 = 2 + 2\sqrt{2}i 1 = 1 + 2\sqrt{2}i$ and $\alpha^2 1 = 2\sqrt{2}i$. Squaring both sides of the last equality we have that

$$\alpha^4 - 2\alpha^2 + 1 = (\alpha^2 - 1)^2 = (2\sqrt{2}i)^2 = -8.$$

Therefore the polynomial

$$f(X) = X^4 - 2X^2 + 1 + 8 = X^4 - 2X^2 + 9 \in \mathbb{Q}[X]$$

is such that $f(\alpha) = 0$.

Looking for other roots of f means to find all $x \in C$ such that f(x) = 0, i.e. $x^4 - 2x^2 + 9 = 0$. Going back to how we construct f, this equation can also be written as $(x^2 - 1)^2 = (2\sqrt{2}i)^2$. Therefore $x^2 - 1 = 2\sqrt{2}i$ or $x^2 - 1 = -2\sqrt{2}i$. So

$$x^{2} = 2\sqrt{2}i + 1 = \alpha^{2}$$
 or $x^{2} = -2\sqrt{2}i + 1 = \overline{\alpha^{2}} = \overline{\alpha}^{2}$,

where $\overline{\alpha}$ indicates the complex conjugate of α . Thus $x = \pm \alpha$ or $x = \pm \overline{\alpha}$ and the 4 roots of f are

$$x_1 = \alpha = \sqrt{2} + i, x_2 = -\alpha = -\sqrt{2} - i,$$

 $x_3 = \overline{\alpha} = \sqrt{2} - i, x_4 = -\overline{\alpha} = -\sqrt{2} + i.$

Exercise 1.5. Let p be a prime number. Denote by $\binom{n}{k}$ the binomial coefficient "n over k".

- (i) Prove that p divides $\binom{p}{k}$ for $1 \le k \le p-1$.
- (ii) Let K be a field of characteristic p. Show that the map $\Phi: K \to K$; $x \mapsto x^p$ is a field endomorphism. This map is called the *Frobenius endomorphism* of K.

Exercise 1.6. Let L/K be a field extension and let M be a subring of L that contains K. Suppose that $\dim_K M < \infty$.

- (i) Prove that for any $\alpha \in M$, there is a nonzero $f \in K[X]$ with $f(\alpha) = 0$. Hint: The elements α^n $(n \ge 0)$ are linearly dependent.
- (ii) Prove that M is a field. Hint: For any $0 \neq \alpha \in K$, let $f \in \mathbb{Q}[X]$ be a nonzero polynomial with $f(\alpha) = 0$ whose degree is as small as possible. If $f = \sum_{i=0}^{\infty} a_i X^i$, prove that $a_0 \neq 0$ and use this to construct an inverse of α that lies in M.

Exercise 1.7. Let K be field.

- (i) Prove that K[X] is a PID.
- (ii) Let $I \neq \{0\}$ be an ideal of K[X], then there exists a unique monic polynomial that generates I as an ideal.

Exercise 2.1. Let L/K be a field extension and let $\alpha, \beta \in L$ such that

$$[K(\alpha) : K] = [K(\beta) : K] = 2.$$

Assume that the characteristic of K is not 2.

- (i) Prove that there is an $\alpha' \in L$ such that $K(\alpha') = K(\alpha)$ and $\alpha'^2 \in K$.
- (ii) Assume that $\alpha, \beta \in L$ satisfy $\alpha^2, \beta^2 \in K$. Prove that $K(\alpha) = K(\beta)$ if and only if $\frac{\alpha^2}{\beta^2}$ is a square in K.
- (iii) Prove that there is a bijective map

 $K^{\times}/(K^{\times})^2 \longrightarrow \{L \mid L/K \text{ is a field extension with } [L:K] \leq 2\}.$ Solution.

(i) Since $[K(\alpha):K]=2, \alpha \not\in K$ and the 3 elements $1,\alpha,\alpha^2$ are linearly dependent over K. Thus there exist $a_0, a_1, a_2 \in K$ not all zero such that

$$a_0 + a_1 \alpha + a_2 \alpha^2 = 0.$$

If $a_2 = 0$, then $a_0 + a_1 \alpha = 0$, hence either $a_1 = 0$ or $\alpha = -a_0/a_1$. If $a_1 = 0$, the also $a_0 = 0$. But this is not possible because $(a_0, a_1, a_2) \neq (0, 0, 0)$. On the other hand, if $\alpha = -a_0/a_1$, then $\alpha \in K$, a contradiction.

So we have that $a_2 \neq 0$ and we can divide by a_2 , obtaining

$$b + a\alpha + \alpha^2 = 0$$
, i.e. $\alpha^2 + a\alpha = -b$,

where $a=a_2^{-1}a_1\in K$ and $b=a_2^{-1}a_0\in K$. Since we assumed that K has not characteristic two, we can also complete the square:

$$(\alpha + a/2)^2 = \alpha^2 + a\alpha + a^2/4 = -b + a^2/4 \in K.$$

Therefore $\alpha' = \alpha + a/2$ is such that $\alpha'^2 = -b + a^2/4 \in K$. Moreover $\alpha' = \alpha + a/2 \in K(\alpha)$, so $K(\alpha') \subseteq K(\alpha)$ and $\alpha = \alpha' - a/2 \in K(\alpha')$ so $K(\alpha) \subseteq K(\alpha)$. Therefore $K(\alpha) = K(\alpha')$ and $\alpha'^2 \in K$.

(ii) Assume that $\frac{\alpha^2}{\beta^2}$ is a square in K, i.e. there is a $k \in K$ such that $\frac{\alpha^2}{\beta^2} = k^2$.

(Note that $k \neq 0$ otherwise $\alpha = 0 \in K$ and $[K(\alpha) : K] = [K : K] = 1$.) Then $\alpha = k^2 \beta^2$, hence $\alpha = \pm k\beta \in K(\beta)$. So $K(\alpha) \subseteq K(\beta)$. On the other hand, $\beta^2 = \frac{\alpha^2}{k^2}$, hence $\beta = \pm \frac{\alpha}{k} \in K(\alpha)$. So $K(\beta) \subseteq K(\alpha)$. Having proved both inclusions we deduce that $K(\alpha) = K(\beta)$.

Vice versa, assume that $K(\alpha) = K(\beta)$. Knowing that $[K(\alpha) : K] = 2$, we have that $\{1, \alpha\}$ is a generating set of the K-vector space $K(\alpha) = K(\beta)$. Therefore there exist $a, b \in K$ such that $\beta = a + b\alpha$. Squaring both sides of the equality, we get $\beta^2 = a^2 + 2ab\alpha + \alpha^2$. So $2ab\alpha = \beta^2 - a^2 - \alpha^2$ is a sum of elements in K. Hence $2ab\alpha \in K$, but $\alpha \notin K$. Therefore the only possibility is that 2ab = 0, i.e. (since we are not in characteristic 2) ab = 0. But $b \neq 0$, otherwise $\beta = a \in K$, which is not possible (otherwise and $[K(\beta):K]=[K:K]=1).$ Thus a=0, i.e. $\beta=b\alpha$ and so $\frac{\beta^2}{\alpha^2}=a^2$ is a square in K.

(iii) Let L/K be a field extension with [L:K]=2. Take $\alpha\in L\setminus K$, then

$$1 < [K(\alpha) : K] \le [L : K] = 2.$$

Hence $L = K(\alpha)$. Moreover, the first part of this exercise allows us to choose α such that $\alpha^2 \in K$. Now we can define the following map

 $\psi: \{L \mid L/K \text{ is a field extension with } [L:K] \leq 2\} \to K^{\times}/(K^{\times})^2$

as $\psi(K)=[1]$ and for [L:K]=2 as $\psi(L)=[\alpha^2]\in K^\times/(K^\times)^2$, for $\alpha \in L \setminus K$ (so $L = K(\alpha)$) such that $\alpha^2 \in K$.

This map is well-defined: take L/K of degree 2 and $\alpha, \beta \in L \setminus K$ such that $\alpha^2 \in K$. Then, by the remark made at the beginning, $L = K(\alpha) = K(\beta)$ As shown in the second part of this exercise, this is equivalent to $\frac{\alpha^2}{\beta^2} \in (K^{\times})^2$, so $[\alpha^2] = [\beta^2] \in K^{\times}/(K^{\times})^2$. (Note also that $[\alpha^2] = [1]$ if and only if $\alpha^2 = k^2 \in K^2$, so $\alpha = \pm k \in K$ and $K(\alpha) = L$.)

Let now prove that ψ is injective. Assume that we have two extension L/K and L'/K of degree ≤ 2 , such that $[\alpha^2] = \psi(L) = \psi(L') = [\beta^2]$.

If $[\beta^2] = [\alpha^2] = [1]$, then $L = K(\alpha) = K = K(\beta) = L'$. Otherwise, $\beta^2/\alpha^2 \in (K^{\times})^2$, so, by the previous part of this exercise, $L = K(\alpha) = K(\beta) = L'$.

Finally, for the subjectivity, let $x \in K^{\times}$. If $x \in (K^{\times})^2$, then $x = \alpha^2$ for some $\alpha \in K^{\times}$ and so $L = K(\alpha)$ is an extension of K of degree ≤ 2 and $\psi(L) = [\alpha]$.

If $x \notin (K^{\times})^2$, then we can find and extension $L = K(\alpha)$ such that $\alpha^2 = x \in K^{\times}$ and so $\psi(L) = [x] \in K^{\times}/(K^{\times})^2$. To construct this extension consider the polynomial $f(X) = X^2 - x \in K[X]$. It has to be irreducible, otherwise $X^2 - x = (aX + b)(cX + d) = acX^2 + (ad + bc)X + bd$, for some $a, c \in K^{\times}$ and $b, d \in K$. So 1 = ac, 0 = ad + bc and -x = bd, i.e. $c = a^{-1}$, $d = -a^{-1}bc = bc^2$ and $-x = bd = b^2c^2 \in (K^{\times})^2$, a contradiction to the assumption $x \notin (K^{\times})^2$. Then we can consider the field $L = K[X]/(X^2 - x)$ that contains K (it is a field because the ideal $(X^2 - x)$ is maximal, since it is generated by an irreducible polynomial). Defining α as the class of X in L we get that $L = K(\alpha)$ and $\alpha^2 = x \in K$.

Exercise 2.2. Let E/K be a field extension and a and b be algebraic over K.

- (1) Assume that [K(a):K]=m, [K(b):K]=n. Prove that $K[a,b]\subseteq E$ is generated, as a vector space over K, by the elements a^ib^j $(1 \le i \le m, 1 \le j \le n)$.
- (2) Prove that a + b and ab are algebraic over K. Can you estimate the quantities [K(a + b) : K] and [K(ab) : K]?
- (3) Find a polynomial $f \in \mathbb{Q}[X]$ such that $\deg(f) \leq 6$ and $f(\sqrt[3]{3} + \sqrt{5})$.

The following lemma can be used, without proof, in the following exercise.

Lemma (Gauss' Lemma). Let A be a unique factorization domain and K be its fraction field. A non-constant polynomial $f \in A[X]$ is irreducible if and only if is primitive and is irreducible in K[X].

Exercise 2.3 (Eisenstein's irreducibility criterion). Let A be a unique factorization domain and K be its fraction field. Let $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ be a polynomial of degree n > 0. Assume that there exists a prime element $p \in A$ such that $p \mid a_i$ for all $i \in \{0, 1, \ldots, n-1\}$, $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible in K[X].

Exercise 2.4. Let $\zeta \in \mathbb{C}$ be a primitive cubic root of one. Set $E = \mathbb{Q}[\sqrt[3]{2}]$, $F = \mathbb{Q}(\zeta)$ and $L = \mathbb{Q}[i]$.

- (i) Prove that $[E:\mathbb{Q}]=3$ and $[F:\mathbb{Q}]=2$ and compute the minimal polynomial of ζ over \mathbb{Q} and over L.
- (ii) Prove that $EF = \mathbb{Q}(\sqrt[3]{2}, \zeta)$.
- (iii) Compute $[EF:\mathbb{Q}]$ and $[E\cap F:\mathbb{Q}]$.

Exercise 2.5. Let E/K be a field extension and let L/K and M/K be subextensions.

(i) Prove that $[LM:K] \cdot [L \cap M:K] \leq [L:K] \cdot [M:K]$.

(ii) Can you find examples where $[LM:K]\cdot [L\cap M:K]<[L:K]\cdot [M:K]$? Hint: Use two different roots of the polynomial X^3-2 .

Exercise 2.6. Let E/K be a field extension and let $f \in K[X]$ be a polynomial such that f factorizes in E[X] as $f = \prod_{i=1}^{n} (x - \alpha_i)$. Prove by induction that $[K(\alpha_1, \alpha_2, \dots, \alpha_n) : K] \leq n!$.

Exercise 3.1. For every polynomial $p(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$ of degree n, define its reciprocal polynomial as

$$\widehat{p}(X) = \sum_{i=0}^{n} a_{n-i} X^{i}.$$

Let $p(X), q(X) \in K[X]$ be polynomials of degree n and m respectively such that $p(0) \neq 0$ and $q(0) \neq 0$. Prove that

- (i) $\widehat{p}(X) = X^n p(1/X)$ in K(X),
- (ii) $\widehat{\widehat{p}}(X) = p(X),$
- (iii) $\widehat{pq}(X) = \widehat{p}(X)\widehat{q}(X)$,
- (iv) $\widehat{p}(X)$ is irreducible if and only if p(X) is irreducible.

Solution. Suppose that $p(X) = \sum_{i=0}^{n} a_i X^i$ has degree n and $q(X) = \sum_{i=0}^{m} b_i X^i$ has degree m.

- (i) $X^n p(1/X) = X^n \sum_{i=0}^n a_i (1/X)^i = \sum_{i=0}^n a_i X^{n-i} = \sum_{j=0}^n a_{n-j} X^j = \widehat{p}(X)$ (ii) Since $p(0) \neq 0, \ a_0 \neq 0$, therefore $\deg(\widehat{p}) = \deg(p) = n$. Hence, using the previous part of this exercise,

$$\widehat{\widehat{p}}(X) = X^n \widehat{p}(1/X) = X^n (1/X)^n p(1/(1/X)) = p(X).$$

(iii) Since $p(0) \neq 0$ and $q(0) \neq 0$ we deduce that also $pq(0) \neq 0$. Hence we can apply the previous results for p, q and pq. So, using also that pq(1/X) =p(1/X)q(1/X) and that deg pq = n + m, we have that

$$\widehat{pq}(X) = X^{n+m}pq(1/X) = X^np(1/X)X^mq(1/X) = \widehat{p}(X)\widehat{q}(X).$$

(iv) Suppose $\widehat{p}(X)$ is irreducible and let $p = q_1q_2$ for $q_1(X), q_2(X) \in K[X]$. Note that $0 \neq p(0) = q_1(0)q_2(0)$ implies that both $q_1(0) \neq 0$ and $q_2(0) \neq 0$. Considering now the reciprocal polynomials and using the previous properties, $\widehat{p}(X) = \widehat{q}_1(X)\widehat{q}_2(X)$. Since $\widehat{p}(X)$ is irreducible, there is $i \in \{1,2\}$ such that \widehat{q}_i is a constant, i.e. $\deg q_i = \deg \widehat{q}_i = 0$. Thus, q_i is a constant too, and therefore p(X) is irreducible.

Vice versa, assume that p(X) is irreducible. Since we know that p(X) = \hat{p} , by the property just proved, we obtain that \hat{p} is also irreducible.

Exercise 3.2. Let E/K be a field extension and $x \in E$ be an algebraic element and let f = f(x, K) is the minimal polynomial of x over K of degree $\deg(f) = n$.

- (i) Prove that [K(x):K]=n.
- (ii) Prove that $\frac{1}{f(0)}\hat{f}$ is the minimal polynomial of 1/x over K.
- (iii) Write $f(X) = \sum_{i=0}^{n} a_i X^i = p(X^2) + Xd(X^2)$, where

$$p(X) = \sum_{j=0}^{\lfloor n/2 \rfloor} a_{2j} X^j \text{ and } d(X) = \sum_{j=0}^{\lfloor n/2 \rfloor} a_{2j+1} X^j.$$

Let $g(X) = p(X)^2 - Xd(X)^2$ and prove that

- if $d(x^2) = 0$, then the minimal polynomial of x^2 over K is p(X),
- if $d(x^2) \neq 0$, then the minimal polynomial of x^2 over K is $(-1)^n g(X)$. Solution.
 - (i) We will prove that $B = \{1, x, \dots, x^{n-1}\}$ is a basis of K(x) as a K vector space which implies that $[K(x):K] = \dim_K(K(x)) = |B| = n$.

- B is a generating set for K(x) as a K vector space. To prove this recall that K(x) = K[x], since x is algebraic over K. (Similar proof to $1) \Rightarrow 2$) of Theorem 2.7 of the lecture notes.) Let $z \in K(x) = K[x]$, say z = h(x) for some $h \in K[X]$. Divide h by f to obtain polynomials $q, r \in K[X]$ such that h = fq + r, where r = 0 or $\deg r < \deg f = n$. This implies that

$$z = h(x) = f(x)q(x) + r(x) = r(x).$$

Moreover we can write $r = \sum_{i=0}^{n-1} c_i X^i$ for some $c_0, \ldots, c_{n-1} \in K$. Thus $z = \sum_{i=0}^{n-1} c_i x^i \in \langle 1, x, \ldots, x^{n-1} \rangle$ and hence K[x] is generated by $\{1, x, \ldots, x^{n-1}\}$ as a K-vector space.

- B is linearly independent over K.

If B is linearly dependent over K then there exists a linear combination $0 = \sum_{i=0}^{n-1} c_i x^i$ over K, with not all c_i equal to 0. Then the polynomial $h(X) = \sum_{i=0}^{n-1} c_i X^i$ is in $K[X] \setminus \{0\}$ and has x as a root. So

$$n - 1 = \deg(h) \le \deg(f) = n,$$

a contradiction.

(ii) Fist of all we note that $f(0) \neq 0$. Otherwise we can write f(X) = Xg(X) for some $g(X) \in K[X]$, but f is monic and irreducible in K[X], hence g(X) = 1 and f(X) = X. Evaluating f in x we obtain 0 = f(x) = x, a contradiction with the hypothesis $x \neq 0$.

Since $f(0) \neq 0$, we can use the previous exercise and obtain that \hat{f} is also irreducible and $\hat{f} = X^n f(1/X)$. Hence

$$\frac{1}{f(0)}\widehat{f}\left(1/x\right) = \frac{1}{f(0)}\left(1/x\right)^n f\left(\frac{1}{1/x}\right) = \frac{1}{f(0)x^n}f(x) = 0.$$

So we have that $\frac{1}{f(0)}\widehat{f}$ is an irreducible polynomial in K[x] with 1/x as a root. To prove that $\frac{1}{f(0)}\widehat{f}$ is the minimal polynomial of 1/x over K it remains to prove that it is monic. Looking at the definition of \widehat{f} we see that its leading coefficient is the constant term of f, i.e. f(0). Therefore the leading coefficient of $\frac{1}{f(0)}\widehat{f}$ is $\frac{1}{f(0)}f(0)=1$, hence $\frac{1}{f(0)}\widehat{f}$ is monic.

(iii) First of all note that

$$0 = f(x) = p(x^2) + xd(x^2), \tag{1}$$

therefore

$$g(x^2) = p(x^2)^2 - x^2 d(x^2)^2 = (p(x^2) + xd(x^2))(p(x^2) - xd(x^2)) = 0.$$

So x^2 is a root of g and the degree of g is

$$\begin{cases} 2\deg(p) & \text{if } n \text{ is even} \\ 1+2\deg(d) & \text{if } n \text{ is odd} \end{cases} = \begin{cases} 2\left\lfloor\frac{n}{2}\right\rfloor & \text{if } n \text{ is even} \\ 1+2\left\lfloor\frac{n}{2}\right\rfloor & \text{if } n \text{ is odd} \end{cases} = n.$$

Moreover, by the first point of this exercise and the fact that the degree is multiplicative

$$n = \deg(f) = [K(x):K] = [K(x):K(x^2)][K(x^2):K].$$

Hence, to compute $[K(x^2):K]$ (which is also the degree of $f(x^2,K)$, the minimal polynomial of x^2 over K), we need to know $[K(x):K(x^2)]$. Observe that X^2-x^2 is a polynomial in $K(x^2)[X]$ which has x has a root. Thus

$$[K(x^2):K] = \deg(x,K(x^2)) \le \deg(X^2 - x^2) = 2$$

Therefore

$$[K(x^2):K] = \frac{[K(x):K]}{[K(x):K(x^2)]} \in \left\{n, \frac{n}{2}\right\}.$$
 (2)

• If $d(x^2) = 0$, by Equation (1), also $p(x^2) = 0$ and $deg(p) = \lfloor \frac{n}{2} \rfloor < n$. So

$$[K(x^2):K] = \deg(f(x^2,K)) \le \deg(p) < n,$$

thus, by (2), $[K(x^2):K] = \frac{n}{2}$, which implies that n has to be even, p(X) monic and

$$[K(x^2):K] = \frac{n}{2} = \left\lfloor \frac{n}{2} \right\rfloor = \deg(p).$$

Therefore p(X) is a monic polynomial in K[X] which as x^2 as a root and of degree $[K(x^2):K] = \deg(f(x^2,K))$, hence it is $\deg(f(x^2,K))$, the minimal polynomial of x^2 over K.

• If $d(x^2) \neq 0$, then, by Equation (1),

$$x = -\frac{p(x^2)}{d(x^2)} \in K(x^2).$$

Therefore $K(x) \subseteq K(x^2) \subseteq K(x)$ and so $K(x^2) = K(x)$, which means $[K(x):K(x^2)] = 1$ and, by (2),

$$[K(x^2):K] = \frac{[K(x):K]}{[K(x):K(x^2)]} = [K(x):K] = n = \deg(g).$$

Moreover the leading coefficient of g(X) is

$$\begin{cases} a_n & \text{if } n \text{ is even} \\ -a_n & \text{if } n \text{ is odd} \end{cases} = (-1)^n a_n = (-1)^n.$$

Therefore we have the monic polynomial $(-1)^n g(X) \in K[X]$ that vanishes in x^2 , of degree $n = [K(x^2) : K] = \deg(f(x^2, K))$. Hence $(-1)^n g(X) = f(x^2, K)$.

The following lemma can be used, without proof, in the following exercise.

Lemma (Gauss' Lemma). Let A be a unique factorization domain and K be its fraction field. A non-constant polynomial $f \in A[X]$ is irreducible if and only if it is primitive and irreducible in K[X].

Exercise 3.3 (Eisenstein's irreducibility criterion). Let $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ be a polynomial of degree n > 0. Assume that there exists a prime p such that $p \mid a_i$ for all $i \in \{0, 1, \ldots, n-1\}$, $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible in $\mathbb{Q}[X]$.

More general version

Let A be a unique factorization domain and K be its fraction field. Let $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ be a polynomial of degree n > 0. Assume that there exists a prime element $p \in A$ such that $p \mid a_i$ for all $i \in \{0, 1, ..., n-1\}$, $p \nmid a_n$ and $p^2 \nmid a_0$. Then f is irreducible in K[X].

Exercise 3.4. Let $\zeta \in \mathbb{C}$ be a primitive cubic root of one. Set $E = \mathbb{Q}[\sqrt[3]{2}]$, $F = \mathbb{Q}(\zeta)$ and $L = \mathbb{Q}[i]$.

- (i) Prove that $[E:\mathbb{Q}]=3$ and $[F:\mathbb{Q}]=2$ and compute the minimal polynomial of ζ over \mathbb{Q} and over L.
- (ii) Prove that $EF = \mathbb{Q}(\sqrt[3]{2}, \zeta)$.
- (iii) Compute $[EF:\mathbb{Q}]$ and $[E\cap F:\mathbb{Q}]$.

Exercise 3.5. Let E/K be a field extension and let L/K and M/K be subextensions.

- $\begin{array}{ll} \text{(i) Prove that } [LM:K] \cdot [L \cap M:K] \leq [L:K] \cdot [M:K]. \\ \text{(ii) Can you find examples where } [LM:K] \cdot [L \cap M:K] < [L:K] \cdot [M:K]? \\ \textit{Hint: Use two different roots of the polynomial } X^3 2. \end{array}$

Exercise 3.6. Let E/K be a field extension and let $f \in K[X]$ be a polynomial such that f factorizes in E[X] as $f = \prod_{i=1}^{n} (x - \alpha_i)$. Prove by induction that $[K(\alpha_1, \alpha_2, \ldots, \alpha_n) : K] \leq n!$.

Exercise 4.1. Let K be a field. For a polynomial $f = \sum_{k=0}^{n} a_k X^k \in K[X]$, we define the derivative by

$$f' = \sum_{k=1}^{n} k a_k X^{k-1}.$$

- (i) Let $\alpha \in K$ and $f, g \in K[X]$. Prove the following properties of the derivative (a) (f+g)' = f' + g',

 - (b) $(\alpha \cdot f)' = \alpha \cdot f'$, (c) $(f \cdot g)' = f' \cdot g + f \cdot g'$.
- (ii) Let $f \in K[X]$ be a polynomial that factorizes as $f = \prod_{i=1}^{n} (X \alpha_i)$. Prove that the roots $\alpha_1, \ldots, \alpha_n$ are pairwise different if and only if gcd(f, f') = 1.
- (iii) Let C be an algebraic closure of K and let $f \in K[X]$ be a polynomial with $\deg(f) \geq 1$ that is irreducible over K. Prove that f has repeated roots in C if and only if f' = 0. In particular, show that having such a polynomial f implies that char(K) = p > 0 and $f(X) = g(X^p)$ for some irreducible polynomial $g \in K[X]$.

Solution.

(i) For sake of simplicity, write $f = \sum_{k=0}^{\infty} a_k X^k$ and $g = \sum_{k=0}^{\infty} b_k X^k$. Then

$$(f+g)' = \left(\sum_{k=0}^{\infty} (a_k + b_k) X^k\right)' = \sum_{k=1}^{\infty} k(a_k + b_k) X^{k-1}$$
$$= \sum_{k=1}^{\infty} k a_k X^{k-1} + \sum_{k=1}^{\infty} k b_k X^{k-1} = f' + g'.$$

Hence we have proved (a). We can now prove also (b) as:

$$(\alpha \cdot f)' = \left(\sum_{k=0}^{\infty} \alpha a_k X^k\right) = \sum_{k=1}^{\infty} k \alpha a_k X^{k-1} = \alpha \cdot \sum_{k=1}^{\infty} k a_k X^{k-1} = \alpha \cdot f'.$$

To prove (c), we first check the equality for $f = X^k$ and $g = X^l$:

$$(f \cdot g)' = (X^{k+l})' = (k+l)X^{k+l-1} = kX^{k-1}X^l + X^klX^{l-1} = f' \cdot g + f \cdot g'.$$

Using the already-established K-linearity (i.e. (a) and (b) of this exercise), we can now calculate

$$(f \cdot g)' = \left(\sum_{k,l \ge 0} a_k b_l X^{k+l}\right)' = \sum_{k,l \ge 0} a_k b_l (X^{k+l})'$$

$$= \sum_{k,l \ge 0} a_k b_l ((X^k)' X^l + X^k (X^l)')$$

$$= \sum_{k,l \ge 0} a_k b_l (X^k)' X^l + \sum_{k,l \ge 0} a_k b_l X^k (X^l)'$$

$$= \left(\sum_{k=0}^{\infty} a_k X^k\right) \cdot \left(\sum_{l=0}^{\infty} b_l (X^l)'\right) + \left(\sum_{k=0}^{\infty} a_k (X^k)'\right) \cdot \left(\sum_{l=0}^{\infty} b_l X^l\right)$$

$$= f' \cdot g + f \cdot g'.$$

(ii) Let α_i be one of the roots of f. Write $f = (X - \alpha_i) \cdot g$. By the (i) of this exercise.

$$f' = (X - \alpha_i)' \cdot g + (X - \alpha_i) \cdot g' = g + (X - \alpha_i) \cdot g'.$$

Therefore, $f'(\alpha_i) = g(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j)$. This implies that $f'(\alpha_i) = 0$ if and only if α_i is a repeated root of f which is the case if and only if $(X - \alpha_i)$ is a common divisor of f and f'.

As the linear factors $(X - \alpha_i)$ are prime elements of K[X], it follows that f and f' have common divisors if and only if f has repeated roots.

(iii) Let f be irreducible in K[X] with repeated roots in C[X]. By the previous exercise, $\gcd(f,f') \neq 1$. As f is irreducible and $\gcd(f,f') \in K[X]$, this implies $\gcd(f,f') = f$. Therefore, f divides f'. As $\deg(f') < \deg(f)$, this implies f' = 0.

In case that f'=0, we write $f=\sum_{k=0}^{\infty}a_kX^k$ and consider that

$$f' = \sum_{k=1}^{\infty} k a_k X^{k-1} = 0.$$

Therefore, for all $k \geq 0$, we have k = 0 or $a_k = 0$. As there is at least one $k \geq 1$ with a_k we conclude that k = 0 holds in K for some nonzero k. This implies that $\operatorname{char}(K) = p > 0$ and that $a_k = 0$ whenever $p \nmid k$. We can therefore write

$$f = \sum_{l=0}^{\infty} a_{pl} X^{pl} = g(X^p)$$

with $g = \sum_{l=0}^{\infty} a_{pl}X^l$. For a decomposition $g = g_1g_2$, we also get a decomposition $f(X) = g(X^p) = g_1(X^p)g_2(X^p)$ which implies that either $g_1(X^p)$ or $g_2(X^p)$ is in K, which amounts to saying that g_1 or g_2 is in K. Therefore, g has to be irreducible.

Exercise 4.2. Let L be a finite field.

(i) Show that L is not algebraically closed. Hint: Consider the polynomial $f(X) = 1 + \prod_{l \in L} (X - l) \in L[X]$.

(ii) Show that L contains a subfield K isomorphic to \mathbb{Z}/p (its ring of integers) and that $|L| = p^m$, where m = [L : K].

Assume now that $K = \mathbb{Z}/p$ and let $f(X) = X^{p^m} - X \in K[X]$. Let C be an algebraic closure of K and set $L = \{\alpha \in C \mid f(\alpha) = 0\}$. Prove that

(iii) $|L| = p^m$ *Hint*: Use the previous exercise.

(iv) Recall that, since K has characteristic p, $\Phi: K \to K$; $x \mapsto x^p$ is a field endomorphism (the Frobenius endomorphism). Prove that L is a field and $K \subseteq L \subseteq C$.

Solution.

(i) The polynomial $f(X) \in L[X]$ doesn't have roots in L. In fact consider any $a \in L$, then

$$f(a) = 1 + \prod_{l \in L} (a - l) = 1 + (a - a) \prod_{l \in L \setminus \{a\}} (X - l) = 1 + 0 = 1 \neq 0.$$

(ii) Let K be the ring of integers of L. Since L is finite, K is finite too. Hence K is isomorphic to \mathbb{Z}/p for some prime p. L is a vector space of dimension m over $K \cong \mathbb{Z}/p$. Let $\{x_1, x_2, \ldots, x_m\}$ is a basis of L over K, then every element of L can be written in a unique way as a linear combination $\sum_{i=1}^m a_i x_i$, with $a_i \in K$. So the number of elements of L is equal to the number of tuples $(a_1, \ldots, a_m) \in K^m$. Hence $|L| = |K|^m = p^m$.

- (iii) If $f = X^{p^m} X$, then $f' = p^m X^{p^m 1} 1 = -1$. So, gcd(f, f') = 1 and, by the previous exercise, we can conclude that f has p^m pairwise different roots in C, i.e. $|L| = p^m$.
- (iv) Using the Frobenius endomorphism Φ of K, we can see that

$$L = \{ \alpha \in C \mid \alpha^{p^m} = \alpha \} = \{ \alpha \in C \mid \Phi^m(\alpha) = \alpha \}.$$

Since Φ is an endomorphism, Φ^m is also an endomorphism. Then for all $\alpha, \beta \in L$,

$$\Phi^{m}(\alpha + \beta) = \Phi^{m}(\alpha) + \Phi^{m}(\beta) = \alpha + \beta$$

$$\Phi^{m}(-\alpha) = -\Phi(\alpha) = -\alpha$$

$$\Phi^{m}(\alpha\beta) = \Phi^{m}(\alpha)\Phi^{m}(\beta) = \alpha\beta.$$

$$\Phi^{m}(\alpha^{-1}) = (\Phi^{m}(\alpha))^{-1} = \alpha^{-1}.$$

So $\alpha + \beta, \alpha, \alpha\beta, \alpha^{-1} \in L$, i.e. L is a field.

Exercise 4.3. Let C/K be an algebraic field extension. Show that the following are equivalent:

- (i) C is an algebraic closure of K.
- (ii) For every algebraic extension L/K there is an extension homomorphism $\varphi \in \operatorname{Hom}(L/K, C/K)$.

Hint: For (i)⇒(ii) use Proposition 3.6 in the notes.

Exercise 4.4. Let $f \in K[X]$ be a polynomial of degree n. Let C be an algebraic closure of K and $A = \{\alpha_1, \dots \alpha_k\} \subseteq C$ be the distinct roots of f in C. We know that $E = K(\alpha_1, \dots, \alpha_k)$ is the decomposition field of f over K.

- (i) Prove that $[E:K] \leq n!$.
- (ii) Prove that there is an injective homomorphism $\operatorname{Gal}(E/K) \longrightarrow \mathbb{S}_A \cong \mathbb{S}_k$ *Hint:* Prove that $\sigma(A) = A$ for every $\sigma \in \operatorname{Gal}(E/K)$.
- (iii) For $K = \mathbb{Z}/3$ and $f = X^3 X 1$, compute [E : K] and Gal(E/K). (Observe that in this case [E : K] < n!.)

Exercise 4.5. Let $f = X^4 - 5X^2 + 5 \in \mathbb{Q}[X]$ and E be a decomposition field of f over \mathbb{Q} . Prove that $[E:\mathbb{Q}] = 4$.

Hint: Given $\alpha, \beta \in \mathbb{C}$ two solutions of f such that $\beta \neq -\alpha$, compute $\alpha\beta$. Prove also that $E = \mathbb{Q}(\alpha)$.

Exercise 5.1. Let $\xi \in \mathbb{C}$ be a primitive cubic root of one. Prove that the extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not normal and that $\mathbb{Q}(\sqrt[3]{2},\xi)/\mathbb{Q}$ is normal.

Solution. Let $G = \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2},\mathbb{Q}))$. By Proposition 4.10 of the lecture notes we know that $y \in O_G(\sqrt[3]{2})$ if and only if y and $\sqrt[3]{2}$ have the same minimal polynomial over \mathbb{Q} . So we need to compute the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} .

First of all, note that $\sqrt[3]{2}$ is a root of the polynomial $f(X) = X^3 - 2$.

The roots of f are $\sqrt[3]{2}$, $\sqrt[3]{2}\xi$ and $\sqrt[3]{2}\xi^2$ which are all not in \mathbb{Q} . So, being of degree 3 and not having rational roots, f is irreducible over \mathbb{Q} . Thus, by Proposition 4.10,

$$O_G(\sqrt[3]{2}) = {\sqrt[3]{2}, \sqrt[3]{2}\xi, \sqrt[3]{2}, \xi^2}.$$

This implies that there exists $\sigma \in \text{Hom}(\mathbb{C}/\mathbb{Q}, \mathbb{C}/\mathbb{Q})$ such that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}\xi$. But $\sqrt[3]{2}\xi \notin \mathbb{Q}(\sqrt[3]{2})$ because $\sqrt[3]{2}\xi \in \mathbb{C} \setminus \mathbb{R}$ while $\sqrt[3]{2} \in \mathbb{R}$. Hence $\sigma(\mathbb{Q}(\sqrt[3]{2})) \not\subseteq \mathbb{Q}(\sqrt[3]{2})$ and so $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not a normal extension.

To prove that $\mathbb{Q}(\sqrt[3]{2},\xi)$ is a normal extension we use Proposition 5.10, so it is enough to prove that $\mathbb{Q}(\sqrt[3]{2},\xi)$ is the decomposition field of f. We know that the decomposition field E of f over \mathbb{Q} is \mathbb{Q} extended with the roots of f, i.e. $E = \mathbb{Q}(\sqrt[3]{2},\sqrt[3]{2}\xi,\sqrt[3]{2}\xi^2)$. But it's easy to see that actually

$$\mathbb{Q}(\sqrt[3]{2},\xi) = \mathbb{Q}(\sqrt[3]{2},\sqrt[3]{2}\xi,\sqrt[3]{2}\xi^2) = E.$$

The inclusion \subseteq is because $\sqrt[3]{2}, \xi = \frac{\sqrt[3]{2}\xi}{\sqrt[3]{2}} \in E$. Vice versa \supseteq is due to the fact that the roots of f are products of $\sqrt[3]{2}$ and ξ , elements in $\mathbb{Q}(\sqrt[3]{2}, \xi)$.

Exercise 5.2. Let $f \in K[X]$ be a polynomial of degree n. Let C be an algebraic closure of K and $A = \{\alpha_1, \dots \alpha_k\} \subseteq C$ be the distinct roots of f in C. We know that $E = K(\alpha_1, \dots, \alpha_k)$ is the decomposition field of f over K.

- (i) Prove that $[E:K] \leq n!$.
- (ii) Prove that there is an injective homomorphism $\operatorname{Gal}(E/K) \longrightarrow \mathbb{S}_A \cong \mathbb{S}_k$ Hint: Prove that $\sigma(A) = A$ for every $\sigma \in \operatorname{Gal}(E/K)$.
- (iii) For $K = \mathbb{Z}/3$ and $f = X^3 X 1$, compute [E:K] and Gal(E/K). (Observe that in this case [E:K] < n!.) Solution.
 - (i) If n=0, the polynomial f is a nonzero constant. Therefore, $A=\emptyset$ and E=K. In this case, [E:K]=[K:K]=0!.

Suppose that we have proven that $[F:L] \leq n!$ whenever F is the decomposition field of a polynomial $g \in L[X]$ with $\deg(g) = n$.

We assume now that $f \in K[X]$ has $\deg(f) = n + 1$. Denote the decomposition field of f over K by E. Let α be a root of f.

As $f(\alpha) = 0$ we know that $f(\alpha, K)|f$. Therefore,

$$[K(\alpha):K] = \deg(f(\alpha,K)) \le \deg(f) = n+1.$$

As $\alpha \in K(\alpha)$, we conclude that $g = \frac{f}{X-\alpha} \in K(\alpha)[X]$. Furthermore, E is the decomposition field of g over K: if A is the set of roots of g, then $A \cup \{\alpha\}$ is the set of roots of f. Therefore, $E = K(A \cup \{\alpha\}) = K(\alpha)(A)$.

As deg(g) = n, we can apply the inductive hypothesis and infer that

$$[E:K] = [E:K(\alpha)] \cdot [K(\alpha):K] \le (n+1) \cdot n! = (n+1)!.$$

(ii) Let $\alpha \in A$ and $\sigma \in Gal(E/K)$, then

$$f(\sigma(\alpha)) = \overline{\sigma}(f)(\sigma(\alpha)) = \sigma(f(\alpha)) = \sigma(0) = 0.$$

Therefore, $\sigma(\alpha) \in A$. As a consequence, $\sigma(A) = A$ for all $\sigma \in \operatorname{Gal}(E/K)$. Therefore the restriction

$$\gamma: \operatorname{Gal}(E/K) \to \mathbb{S}_A$$
$$\sigma \mapsto \sigma|_A$$

is well-defined and, as the restriction of a group action, indeed a homomorphism. As E is generated by A over K, an automorphism $\sigma \in \operatorname{Gal}(E/K)$ is uniquely determined by its action on A. We conclude that γ is injective.

(iii) Let α be a root of f. As f = X(X-1)(X+1)-1, the fact that $\operatorname{char}(K) = 3$ implies that $\alpha + k$ is a root of f for any $k \in \mathbb{Z}/3$. Looking at the degree, this implies that these are in fact all roots of f.

Note that f(k) = -1 for all $k \in K$ which implies that f has no roots in K. A reducible polynomial of degree 3 over K[X] always has roots in K, therefore f has to be irreducible.

It follows that $f = f(\alpha, K)$ and $[K(\alpha) : K] = 3$. As all roots of f are $\alpha + k \in K(\alpha)$ for $k \in K$, we conclude that $E = K(\alpha)$. Therefore [E : K] = 3.

By the same argument as in the proof of Theorem 4.10, there is for each $k \in K$ a unique $\phi \in \text{Hom}(E/K, E/K)$ with $\phi(\alpha) = \phi(\alpha + k)$. This shows that $\text{Gal}(E/K) \cong \mathbb{Z}/3$.

Exercise 5.3. Let $f = X^4 - 5X^2 + 5 \in \mathbb{Q}[X]$ and E be a decomposition field of f over \mathbb{Q} . Prove that $[E:\mathbb{Q}] = 4$.

Hint: Given $\alpha, \beta \in \mathbb{C}$ two solutions of f such that $\beta \neq -\alpha$, compute $\alpha\beta$. Prove also that $E = \mathbb{Q}(\alpha)$.

Solution. Note that, since f is an even polynomial if $\alpha \in \mathbb{C}$ is a root of f, then also $-\alpha$ is a root of f. Hence, given two roots $\alpha, \beta \in \mathbb{C}$ such that $\beta \neq -\alpha$, we have that $E = \mathbb{Q}(\alpha, -\alpha, \beta, -\beta)$. But $-\alpha, -\beta \in \mathbb{Q}(\alpha, \beta) \subseteq E$ and so

$$E = \mathbb{Q}(\alpha, -\alpha, \beta, -\beta) \subseteq \mathbb{Q}(\alpha, \beta) \subseteq \mathbb{Q}(\alpha, -\alpha, \beta, -\beta) = E,$$

which means that $E = \mathbb{Q}(\alpha, \beta)$. Moreover we can decompose f in $\mathbb{C}[X]$ as

$$(X - \alpha)(X + \alpha)(X - \beta)(X + \beta) = (X^2 - \alpha^2)(X^2 - \beta^2) = X^4 - (\alpha^2 + \beta^2)X^2 + \alpha^2\beta^2.$$

This implies in particular that $\alpha^2\beta^2=5$, hence $\beta=\pm\frac{\sqrt{5}}{\alpha}\in\mathbb{Q}(\alpha,\sqrt{5})$. Therefore $E=\mathbb{Q}(\alpha,\beta)\subseteq\mathbb{Q}(\alpha,\sqrt{5})$. On the other hand $\sqrt{5}=\pm\alpha\beta\in\mathbb{Q}(\alpha,\beta)$, hence $\mathbb{Q}(\alpha,\sqrt{5})\subseteq\mathbb{Q}(\alpha,\beta)=E$. So we can conclude that $E=\mathbb{Q}(\alpha,\sqrt{5})$. Using the multiplicative of the degree of finite extension we get that

$$[E:\mathbb{Q}] = [E:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}].$$

But $[\mathbb{Q}(\alpha):\mathbb{Q}]$ is equal to the degree of the minimal polynomial of α over \mathbb{Q} . Using Eisenstein criterion with p=5, we have that f is irreducible (and monic), so it is the minimal polynomial of α over \mathbb{Q} . Thus $[\mathbb{Q}(\alpha):\mathbb{Q}]=\deg f=4$. It remains to compute $[E:\mathbb{Q}(\alpha)]=[\mathbb{Q}(\alpha,\sqrt{5}):\mathbb{Q}(\alpha)]$. We have the following situation:

Observe that $\mathbb{Q}(\alpha, \sqrt{5})$ is equal to the composite of $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\sqrt{5})$. We can use the property of composite extension, $[LF:L] \leq [F:K]$, to deduce that

$$[\mathbb{Q}(\alpha,\sqrt{5}):\mathbb{Q}(\alpha)] \leq [\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 2.$$

The last equality is because $X^2 - 5$ is the minimal polynomial of $\sqrt{5}$ over \mathbb{Q} ,

as it is monic has $\sqrt{5}$ as a root and it's irreducible due to Eisenstein's criterion.

Finally, we want to understand whether $[\mathbb{Q}(\alpha, \sqrt{5}) : \mathbb{Q}(\alpha)]$ is 1 or 2. For this, we need to understand the relation between α and $\sqrt{5}$. Note that $\alpha^4 - 5\alpha^2 + 5 = 0$, so we can solve the equation for α^2 as it is a root of $X^2 - 5X + 5$, i.e.

$$\alpha^2 = \frac{5 \pm \sqrt{25 - 20}}{2} = \frac{5 \pm \sqrt{5}}{2},$$

hence $\sqrt{5} = \pm (2\alpha^2 - 5) \in \mathbb{Q}(\alpha)$. So $\mathbb{Q}(\alpha, \sqrt{5}) \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\alpha, \sqrt{5})$, which means that $E = \mathbb{Q}(\alpha)$ and $[E : \mathbb{Q}] = [\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$.

Exercise 5.4. Let $\alpha = \sqrt[4]{7} + \sqrt{2} \in \mathbb{C}$

(i) Prove that $\sqrt{2} \in \mathbb{Q}(\alpha)$.

Hint: Use that $(\alpha - \sqrt{2})^4 = 7$ and compute $\sqrt{2}$ depending on α .

- (ii) Prove that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[4]{7})$.
- (iii) Prove that $\sqrt{2} \notin \mathbb{Q}(\sqrt[4]{7})$.

Hint: If $\sqrt{2} \in \mathbb{Q}(\sqrt[4]{7})$, then the extension $\mathbb{Q}(\sqrt[4]{7})/\mathbb{Q}(\sqrt{2})$ would be a quadratic extension. Therefore, there were $\beta, \gamma \in \mathbb{Q}(\sqrt{2})$ such that

$$\sqrt[4]{7}^2 + \beta \sqrt[4]{7} + \gamma = 0.$$

Produce a contradiction by showing that this would imply $\sqrt{7} \in \mathbb{Q}(\sqrt{2})$.

- (iv) Compute $[\mathbb{Q}(\alpha) : \mathbb{Q}]$
- (v) Prove that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is not a normal extension. Hint: $\sqrt[4]{7}$.

Solution.

(i) Note that $(\alpha - \sqrt{2})^4 - 7 = 0$. By expanding the left side, we get

$$0\alpha^{4} - 4\sqrt{2}\alpha^{3} + 12\alpha^{2} - 8\sqrt{2}\alpha - 3$$

$$= (\alpha^{4} + 12\alpha^{2} - 3) - (4\alpha^{3} + 8\alpha)\sqrt{2}.$$

$$\rightarrow \sqrt{2} = \frac{\alpha^{4} + 12\alpha^{2} - 3}{4\alpha^{3} + 8\alpha} \in \mathbb{Q}(\sqrt{2}).$$

We are left with checking that $4\alpha^3 + 8\alpha \neq 0$. But this would only be possible for $\alpha \in \{0, \pm i\sqrt{2}\}$ which is not the case.

(ii) From the definition, it is immediate that $\alpha \in \mathbb{Q}(\sqrt{2}, \sqrt[4]{7})$, therefore $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[4]{7})$.

On the other hand, the first part of the exercise shows that $\sqrt{2} \in \mathbb{Q}(\alpha)$. As $\sqrt[4]{7} = \alpha - \sqrt{2} \in \mathbb{Q}(\alpha)$, we also see that $\sqrt[4]{7} \in \mathbb{Q}(\alpha)$. It follows that $\mathbb{Q}(\sqrt{2}, \sqrt[4]{7}) \subseteq \mathbb{Q}(\alpha)$.

We conclude that $\mathbb{Q}(\sqrt{2}, \sqrt[4]{7}) = \mathbb{Q}(\alpha)$.

(iii) Suppose that $\sqrt{2} \in \mathbb{Q}(\sqrt[4]{7})$. As $[\mathbb{Q}(\sqrt[4]{7}):\mathbb{Q}] = 4$ and $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$ this would imply that $[\mathbb{Q}(\sqrt[4]{7}):\mathbb{Q}(\sqrt{2})] = 2$. Let therefore $f(\sqrt[4]{7},\mathbb{Q}(\sqrt{2})) = x^2 + \beta x + \gamma$ with $\beta, \gamma \in \mathbb{Q}(\sqrt{2})$.

Evaluating f at $x = \sqrt[4]{7}$ would lead to the following chain of implications:

$$\sqrt{7} + \beta \sqrt[4]{7} + \gamma = 0$$

$$\beta^2 \sqrt{7} = (-\sqrt{7} - \gamma)^2$$

$$= 7 + 2\gamma \sqrt{7} + \gamma^2$$

$$\sqrt{7} = \frac{\gamma^2 + 7}{\beta^2 - 2\gamma} \in \mathbb{Q}(\sqrt{2}).$$

This is a contradiction, as soon as we have justified the last step by excluding $\gamma = \frac{\beta^2}{2}$. But $x^2 + \beta x + \frac{\beta^2}{2} = 0$ holds only for $x = \frac{\beta}{2}(-1 \pm i)$ which is clearly not in $\mathbb{Q}(\sqrt{2})$.

(iv) Recall that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[4]{7})$. As $\sqrt{2} \notin \mathbb{Q}(\sqrt[4]{7})$, we see that $[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt[4]{7})] > 1$. On the other hand, $\sqrt{2}$ is a zero of $x^2 - 2 \in \mathbb{Q}(\sqrt[4]{7})[X]$, therefore $[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt[4]{7})] \le 2$, which proves that $[\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt[4]{7})] = 2$. Therefore,

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}(\sqrt[4]{7})] \cdot [\mathbb{Q}(\sqrt[4]{7}):\mathbb{Q}] = 2 \cdot 4 = 8.$$

(v) We know that $\sqrt[4]{7} \in \mathbb{Q}(\alpha)$ which has minimal polynomial $f(\sqrt[4]{7}, \mathbb{Q}) = x^4 - 7$. One root of this polynomial is $i\sqrt[4]{7} \notin \mathbb{Q}(\alpha)$, therefore $\mathbb{Q}(\alpha) : \mathbb{Q}$ is not normal.

Exercise 6.1. Let F be a field, we denote by F^{\times} the group $F \setminus \{0\}$ with the field multiplication. Every finite subgroup of F^{\times} is a cyclic group. Prove this statement using the following steps:

- (i) Let G be a finite subgroup of F^{\times} . Being an abelian finite group we have that $G \cong \bigoplus_{i=1}^k \mathbb{Z}/p_i^{n_i}$, where p_i are not necessarily distinct primes. Take $m = \text{lcm}(p_i^{n_i} \mid i \in \{1, \dots, k\})$. Prove that $x^m = 1$ for all $x \in G$.
- (ii) Prove that $m = \prod_{i=1}^{k} p_i^{n_i}$.

 Hint: Consider the polynomial $X^m 1$. How many roots does it have?
- (iii) Prove that G is cyclic. Hint: Show that $p_i \neq p_j$ for all $i \neq j$.

Solution. We can assume that $G = \bigoplus_{i=1}^k \mathbb{Z}/p_i^{n_i}$.

- (i) For every $x \in G$ we can write it as $x = (x_1, \ldots, x_k)$, where $x_i \in \mathbb{Z}/p_i^{n_i}$ for every $i \in \{1, \ldots, k\}$. So $x_i^{p_{ii}^{n_i}} = 1$ for every $i \in \{1, \ldots, k\}$. Since m is also a multiple of $p_i^{n_i}$, we get that $x_i^m = 1$ for every $i \in \{1, \ldots, k\}$. Therefore $x^m = (x_1, \ldots, x_k)^m = 1_G$.
- (ii) The polynomial $X^m-1\in K[X]$ has degree m, so it can have at most m roots. However, the previous point of this exercise shows that every element of G is a root. Thus $\prod_{i=1}^k p_i^{n_i} = |G| \leq m$. On the other hand, clearly $m = \operatorname{lcm}(p_i^{n_i} \mid i \in \{1, \dots, k\}) \leq \prod_{i=1}^k p_i^{n_i}$. Therefore $m = \prod_{i=1}^k p_i^{n_i}$.
- (iii) Since we proved that $\operatorname{lcm}(p_i^{n_i} \mid i \in \{1,\dots,k\}) = \prod_{i=1}^k p_i^{n_i}$, we can deduce that $p_i^{n_i}$ and $p_j^{n_j}$ have to be coprime whenever $i \neq j$. Therefore $p_i \neq p_j$ for all $i \neq j$. Moreover, since $G \cong \bigoplus_{i=1}^k \mathbb{Z}/p_i^{n_i}$, we can deduce, using the Chinese remainder theorem, that $G \cong \mathbb{Z}/m$.

Exercise 6.2. If C is an algebraic closure of K, $x \in C$ and G = Gal(C/K). Prove that the following statements are equivalent:

- (i) x is separable over K.
- (ii) Every $y \in O_G(x)$ is separable over K.
- (iii) $\gamma(K(x)/K) = [K(x) : K] = \deg(f(x, K)).$

Solution. By Proposition 4.11 of the lecture notes, we know that

$$f(x,K) = \prod_{y \in O_G(x)} (X - y)^m$$

for some m. Moreover, by Proposition 4.10 of the lecture notes, f(y, K) = f(x, K) for all $y \in O_G(x)$.

- (i) \iff (ii): x is separable over K if and only if x is a simple root of f, i.e. m=1. Thus x is separable over K if and only if y is separable over K for all $y \in O_G(x)$.
- (i) \iff (iii): We know already that $[K(x):K] = \deg(f(x,K))$. By Proposition 5.16 of the lecture notes, we also have that $\gamma(K(x)/K) = |O_G(x)|$. Thus

$$[K(x):K] = \deg(f(x,K)) = m|O_G(x)| = \gamma(K(x)/K).$$

But x is separable over K if and only if m = 1, i.e.

$$[K(x):K] = \deg(f(x,K)) = |O_G(x)| = \gamma(K(x)/K).$$

Recall the following property.

Proposition 1. Let K be a field and C an algebraic closure of K. If a polynomial $f \in K[X]$ is irreducible and has repeated roots in C, then K has positive characteristic p > 0 and $f = g(X^p)$ for an irreducible polynomial $g \in K[X]$.

Exercise 6.3. Let K be a field of positive characteristic p and let K(t) be the field of rational functions over K. Prove that the extension $K(t)/K(t^p)$ is inseparable. *Hint:* Use the Eisenstein criterion to prove that the polynomial X^p-t^p is irreducible in $K(t^p)[X]$.

Solution. It is clear that $K(t^p)(t) = K(t)$ and that t is a root of the polynomial $f = X^p - t^p \in K(t^p)[X]$. We have to prove that $f = f(t, K(t^p))$ by showing that it is irreducible in $K(t^p)[X]$.

 $K(t^p)$ is the field of fractions of the factorization domain $K[t^p]$ which we can identify with the ring K[Y] by substituting $Y = t^p$. We apply Eisenstein with the prime $Y \in K[Y]$ to the monic polynomial $f = X^p - Y$: $Y|a_i$ for i < p and $Y^2 \nmid Y = a_0$, hence f is irreducible in K[Y,X] and, thus, also in $K(Y)[X] = K(t^p)[X]$.

Note that $f = X^p - t^p = (X - t)^p$ which implies that t is a repeated root of $f = f(t, K(t^p))$. This proves that $K(t)/K(t^p)$ is an inseparable extension.

Exercise 6.4. Let K be a field. Prove the equivalence of the following two statements:

- (1) Each algebraic extension of K is separable.
- (2) Either K has characteristic 0, or K has positive characteristic p > 0 and the Frobenius endomorphism $\Phi_K : K \to K$; $\Phi_K(x) = x^p$ is bijective.

Hint: The first statement is equivalent to the statement that each irreducible polynomial in K[X] doesn't have repeated roots in an algebraic closure. Use the proposition to reduce the problem to the case that K has positive characteristic p. In this case, use the fact that $(K[X])^p = \Phi_K(K)[X^p]$ to show that if $\Phi_K(K) = K$ then there are no irreducible polynomials of the form $g(X^p)$ in K[X]. On the other hand, if $\Phi_K(K) \neq K$, let $b \in K \setminus \Phi_K(K)$ and prove that the polynomial $X^p - b$ is irreducible in K[X].

Solution. ...

(Carsten Dietzel) Department of Mathematics and Data Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

 $Email\ address:$ Carsten.Dietzel@vub.be

(Silvia Properzi) DEPARTMENT OF MATHEMATICS AND DATA SCIENCE, VRIJE UNIVERSITEIT BRUSSEL, PLEINLAAN 2, 1050 BRUSSEL, BELGIUM Email address: Silvia.Properzi@vub.be