QUANTIZING THE HOLOMORPHIC BOSONIC STRING

1. Obstruction deformation complex

compute obstruction groups. Symmetry arguments to argue relevant terms.

1.1. **Jets.** The role of \mathfrak{g}_X here is bookkeeping, so we denote it by \mathfrak{g} for now. We use the coordinate z on \mathbb{C} , and we let ∂_z denote $\frac{\partial}{\partial z}$.

The Lie algebra $\mathfrak{v} = \mathbb{C}[\![z]\!] \partial_z$ has a natural basis $L_n := iz^{n+1}\partial_z$, with $n \ge -1$. With respect to this basis we have

$$[L_m, L_n] = (m-n)L_{m+n}.$$

Thus, the L_0 element induces a natural filtration on \mathfrak{v} : (1) z^k has weight k, (2) ∂_z has weight -1.

- 2. Calculating the obstructions
- 2.1. The "string" condition. $ch_2(T_X)$
- 2.2. The "Calabi-Yau" condition. $ch_1(T_X)$.
- 2.3. The conformal anomaly.
- 3. Main result

existence of quantization