I Sous-graphe le plus dense

Soit G = (S, A) un graphe non orienté à n sommets et p arêtes. Pour $S' \subseteq S$, on définit la fonction de densité par :

$$\rho(S') = \frac{|A(S')|}{|S'|}$$

où A(S') est l'ensemble des arêtes de G ayant leurs deux extrémités dans S'.

1. Quelles sont les valeurs minimum et maximum de $\rho(S')$, en fonction de |S'|?

On s'intéresse aux problèmes suivants :

DENSE

Entrée : un graphe G = (S, A).

Sortie : un ensemble $S' \subseteq S$ tel que $\rho(S')$ soit maximum.

DENSE-DEC

Entrée : un graphe G = (S, A), un entier k et un réel α .

Sortie : existe t-il un ensemble $S' \subseteq S$ tel que |S'| = k et $\rho(S') \ge \alpha$?

CLIQUE-DEC

Entrée : un graphe G = (S, A) et un entier k.

Sortie : existe t-il une clique de taille k ($S' \subseteq S$ tel que |S'| = k et tous les sommets de S' sont adjacents) ?

2. En admettant que CLIQUE-DEC est NP-complet, montrer que DENSE-DEC est NP-complet.

On propose un algorithme glouton pour DENSE :

- Itérativement retirer un sommet de degré minimum (ainsi que toutes les arêtes adjacentes) jusqu'à ce qu'il n'y ait plus de sommet.
- À chacune de ces itérations, calculer la valeur de ρ et conserver le maximum.
- 3. Expliquer comment on pourrait implémenter cet algorithme en complexité temporelle O(n+p).

Soit S'^* tel que $\rho(S'^*)$ soit maximum, $v^* \in S'^*$ le premier sommet de S'^* retiré par l'algorithme glouton et S'' l'ensemble des sommets restants juste avant de retirer v^* .

- 4. Montrer que $\rho(S'') \ge \frac{\deg_{S''}(v^*)}{2}$, où $\deg_{S''}(v^*)$ est le degré de v^* dans S''.
- 5. Justifier que $\rho(S'^*) \ge \rho(S'^* \setminus \{v^*\})$.
- 6. En déduire que $\deg_{S'^*}(v^*) \ge \rho(S'^*)$.
- 7. En déduire que l'algorithme glouton est une 2-approximation pour DENSE.

II Ensemble dominant

Soit G = (V, E) un graphe. Un ensemble dominant de G est un sous-ensemble D de V tel que tout sommet de V est soit dans D, soit adjacent à un sommet de D.

On note d(G) la taille d'un plus petit ensemble dominant de G.

- 1. Calculer d(G) si G est un chemin à n sommets.
- 2. On suppose que G est connexe et contient au moins 2 sommets. Montrer que $d(G) \leq \left\lfloor \frac{n}{2} \right\rfloor$.
- 3. On suppose que G ne contient pas de sommet isolé (sommet de degré 0). Montrer que $d(G) \leq \lfloor \frac{n}{2} \rfloor$.

Une couverture par sommets de G est un sous-ensemble C de V tel que toute arête de G ait au moins une extrémité dans C. On s'intéresse aux problèmes suivants :

DOMINANT

Entrée: Un graphe G = (V, E) et un entier k.

Sortie : G possède-t-il un ensemble dominant de taille k?

COUVERTURE

Entrée: Un graphe G = (V, E) et un entier k.

Sortie : G possède-t-il une couverture par sommets de taille k?

- 4. Soit G un graphe sans sommet isolé. Est-ce qu'une couverture par sommets est un ensemble dominant? Et réciproquement
- 5. On admet que COUVERTURE est NP-complet. Montrer que DOMINANT est NP-complet.
- 6. Décrire un algorithme efficace pour résoudre DOMINANT si G est un arbre. L'implémenter en OCaml.

III k-Centres

k-CENTRES

Instance : un entier k et un graphe complet pondéré et non orienté G = (S, A, d) dont les distances (poids) vérifient

l'inégalité triangulaire $(d(u, w) \le d(u, v) + d(v, u))$ Solution : un sous-ensemble $S \subseteq S$ de cardinal kOptimisation : minimiser $r = \max_{v \in S} \min_{s \in S} d(v, s)$.

Si l'on considère le cas particulier où les sommets du graphe sont des points du plan et le poids d(u, v) est la distance euclidienne entre u et v, on demande donc de recouvrir S par k cercles de même rayon r centrés en k points de S, en minimisant r.

Figure 1: Une instance pour k=3, avec deux solutions (la deuxième est meilleure).

On considère l'algorithme glouton suivant :

```
Choisir x un sommet quelconque C \leftarrow \{x\}

Pour i = 1 à k - 1:

Choisir y tel que \min_{c \in C} d(y, c) soit maximal.

C \leftarrow C \cup \{y\}

return C
```

On souhaite montrer que cet algorithme fournit une 2-approximation. On note C, r l'ensemble des centres et le rayon correspondant renvoyés par l'algorithme glouton et C^*, r^* une solution optimale.

- 1. Soit r la distance maximum d'un point à un centre en fin d'algorithme, u un point réalisant ce maximum et $S = C \cup \{u\}$. Montrer qu'il existe $c_0 \in C^*$ et deux éléments distincts x et y de S tels que $d(x, c_0) \le r^*$ et $d(y, c_0) \le r^*$.
- 2. Conclure.