BF16.95

March 4, 2021

1 Mekanik baskurs, problem 16.95

Two gravity research satellites ($m_A = 250$ kg, $m_B = 50$ kg) are tethered by a cable. The satellites and cable rotate with angular velocity $\omega_0 = 0.25$ revolution per minute. Ground controllers order satellite A to slowly unreel 6 m of additional cable. What is the angular velocity afterward?

2 Lösning:

Efterom satelliterna sitter fast i varandra med en kabel kan vi utgå från att de bara utsätts för en centralkraft i kabelns riktning. För centralkrafter gäller att rörelsemängdsmomentet \mathbf{H} bevaras. Dock är det så att \mathbf{H} bara bevaras med avseende kring systemets masscentrum. (Eftersom det finns en avståndsvektor \mathbf{r} med i uttrycket för rörelsemängdsmomentet $\mathbf{H} = \mathbf{r} \times m\mathbf{v}$ är \mathbf{H} alltid definierat *med avseende på en viss punkt i rummet*. Det är analogt med kraftmoment $\mathbf{M} = \mathbf{r} \times \mathbf{F}$ som också alltid är definierat med avseende på en viss punkt.)

Därför behöver vi bestämma masscentrums läge för de två olika kabellängderna.

I startläget är kabelns längd l = 12m. Det ger masscentrum relativt m_A som

$$r_0 = \frac{m_A * 0 + m_B * l}{m_A + m_B} = \frac{12m_B}{m_A + m_B} = 2m \tag{1}$$

När kabeln dragits ut är masscentrum istället på

$$r_1 = \frac{m_A * 0 + m_B * (l+6)}{m_A + m_B} = \frac{18m_B}{m_A + m_B} = 3m$$
 (2)

Med r_0 och r_1 kända kan vi skriva upp rörelsemängden i start- och ändläget. Eftersom vi har vinkelhastigheten ω och inte hastigheten v_θ kan vi först skriva om det generella uttrycket för rörelsemängdsmomentet H för en massa m vid centralrörelse med radien r som

$$H = mrv_{\theta} = mr^2 \omega \tag{3}$$

Med den omskrivningen får vi

$$H_0 = m_A (0 - r_0)^2 \omega_0 + m_B (l - r_0)^2 \omega_0 \tag{4}$$

$$H_1 = m_A (0 - r_1)^2 \omega_1 + m_B (l + 6 - r_1)^2 \omega_1$$
 (5)

Rörelsemängdens bevarande $H_0 = H_1$ kan då användas för att bestämma ω_1 .

$$m_A(0-r_0)^2\omega_0 + m_B(l-r_0)^2\omega_0 = m_A(0-r_1)^2\omega_1 + m_B(l+6-r_1)^2\omega_1$$
 (6)

$$(m_A(0-r_0)^2 + m_B(l-r_0)^2)\omega_0 = (m_A(0-r_1)^2 + m_B(l+6-r_1)^2)\omega_1$$
(7)

$$\omega_1 = \frac{(m_A(0 - r_0)^2 + m_B(l - r_0)^2)\omega_0}{m_A(0 - r_1)^2 + m_B(l + 6 - r_1)^2}$$
(8)

2.1 Uträkning

Med insatta värden fås att $\omega_1 = 0.111 \text{ varv/minut.}$