KJG

Równania różniczkowe zwyczajne

Opracowanie zagadnień na egzamin

Wersja z 19 grudnia 2018

SPIS TREŚCI 2

Sp	is treści	
1.	Twierdzenia	

1.	Twierdzenia	3
2.	Zagadnienia	3
	2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone	3
3.	Przykłady	3

1. Twierdzenia 3

1. Twierdzenia

2. Zagadnienia

2.1. Istnienie i jednoznaczność rozwiązań, rozwiązania wysycone

TWIERDZENIE 2.1.1 (PEANO). Niech y' = f(y, t), gdzie $y(t_0) = y_0$ oraz

$$f \colon H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja f jest ciągła i oznaczmy

$$M = \sup \{ \| f(y,t) \| : (y,t) \in H \}.$$

Wówczas dla $\alpha = \min(a, b/M)$ istnieje rozwiązanie y(t) określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$, spełniające warunek początkowy $y(t_0) = y_0$.

TWIERDZENIE 2.1.2 (PICARD — LINDELÖF). Niech y'=f(y,t), gdzie $y(t_0)=y_0$ oraz

$$f: H = \overline{B}(y_0, b) \times [t_0 - a, t_0 + a] \longrightarrow \mathbb{R}^m.$$

Załóżmy, że funkcja fjest ciągła oraz lipszycowska ze względu na $\boldsymbol{y},$ to znaczy

$$\exists L \ \forall (y_1, t), (y_2, t) \in H \quad ||f(y_1, t) - f(y_2, t)|| \le L \cdot ||y_1 - y_2||.$$

Oznaczmy ponadto

$$M = \sup \{ ||f(y,t)|| : (y,t) \in H \}.$$

Wówczas dla dowolnego $\alpha < \min(a,b/M,1/L)$ istnieje dokładnie jedno rozwiązanie zagadnienia Cauchy'ego z warunkiem początkowym $y(t_0) = y_0$ określone na przedziale $[t_0 - \alpha, t_0 + \alpha]$.

Dowóp. Jako ćwiczenie.

3. Przykłady