Reachability of One-Counter Automata

Reporter: Xie Li

February 27, 2019

Outline

- NP Lower Bound
- Weighted Graph Weighted graph, path, cycle, v-cycle, positive v-cycle template.
 - An algorithm to decide positive cycle in a weighted graph.
- Path Flows Flow, s-t path flow, weight of a flow, support of a flow, s-t support.
 - Lemma 4.1.6.
- The NP Upper Bound

Path Flows

Question: Why are interested in path flows?

Lemma (4.1.6)

A flow f is a s-t path flow iff f satisfies the following conditions:

- If s = t then
 - 1. $\Sigma_{w \in out(v)} f(v, w) = \Sigma_{w \in in(v)} f(w, v)$ for all $v \in V$
 - 2. F(f) is a s-t support
- ▶ If $s \neq t$ then
 - 1. $\Sigma_{w \in out(v)} f(v, w) = \Sigma_{w \in out(v)} f(w, v)$ for all $v \in V \{s, t\}$ $\Sigma_{w \in out(s)} f(s, w) = \Sigma_{w \in out(s)} f(w, s) + 1$ $\Sigma_{w \in out(t)} = \Sigma_{w \in out(t)} f(w, t) 1$
 - 2. F(f) is connected.

Lemma (4.1.7)

Let $s,t\in V, n,n'\in \mathbb{N}$ and F be an s-t support, there exists a QFPA formula $\phi(G,F< s,t)(c,c')$ such that $\phi[n/c,n'/c']$ iff thre exits an s-t path flow f with support F and weight(f) = n' – n. Moreover, $|\phi| = O(|G|^2)$.

Proof.

Proof idea: regard each f(e) as a variable in the formula.

Let $\psi(\mathit{f}(e_1),\ldots,\mathit{f}(e_k))$ be the formula derived from lemma4.1.6 regarding s=t or not.

$$\psi'(f(e_1),\ldots,f(e_k))=\Sigma_{e\in F}f(e)\mu(e)=c'-c\wedge\bigwedge_{e\in E-F}f(e)=0$$

The final formula:

$$\phi(G, F, s, t) = \exists_{e \in E} f(e) . \psi \wedge \psi'$$

remark: path flows are additive regarding to the concatenation of paths.

Lemma (4.1.8 & 4.1.9 & 4.1.10)

- 4.1.8 Let f, f' be path flows, if
 - ▶ f is an s-v path flow and f is a v-t path flow, or
 - ▶ f is an s-t path flow, f is a v-v path flow and $F \cup F'$ is an s-t support.
 - f + f' is an s-t path flow.
- 4.1.9 A flow f a v-v path flow iff there are path flows $f_1, \ldots f_j, j \in [|G|]$ such that each G/F_i is a loop and $f = \sum_{i \in [j]} f_i$
- 4.1.10 A flow f is an s-t path flow iff there are j path flows f_i with $j \in O(|G|^2)$ and a path flow f_0 such that $f = f_0 + \sum_{i \in [j]} f_i$ where G/F_0 is a simple s-t path, G/F_i is a simple cycle and $G/\cup_i F_i)$ is connected.

Proof.

- 4.1.8 A directly application Lemma 4.1.6.
- 4.1.9 ⇒: By induction on the number of edges in G/F
- 4.1.10 ⇒: By induction, deleting cycle in path and lemma 4.1.9.

Definition (Support Edge Decomposition)

Given an s-t support F, a support-edge decomposition of F is a squence of tuples $(F_i, v_i, w_i, e_i)_{i \in [m]}$ with $F_i \subseteq F, v_1 = s, v_{m+1} = t$ such that

- ▶ F_i is a $v_i w_i$ support, $e_i = (w_i, v_{i+1}), i \in [m]$
- $e_i \notin F_j$ for all $1 \le i < j \le m$
- $F = \cup_{i \in [m]} \{e_i\}$

An edge decomposition is a nsequence of tuples $(f_i, e_i)_{i \in [m]}$ where f_i is $v_i - w_i$ path flow, $v_1 = s, v_{m+1} = t, e_i = (w_i, v_{i+1})$ s.t. ...

The NP Upper Bound

First consider one-counter automata without zero-test. Under this circumstance, it can be viewed as weighted graph.

 $\mathcal{A} = (Q, \Lambda, q_0, F, \delta, \lambda, \epsilon)$ corresponds to $G_{\mathcal{A}} = (Q, \Delta, \lambda)$.

Then we can relate runs in T(A) with paths in G_A .

However a path in G_A does not gurantee a run between two configurations of T(A).

Lemma (4.1.11)

Let π be a q-q' path in $G_{\mathcal{A}}$ and $n,n'\in\mathbb{N}$. There is a run $(q,n)\to_{\mathcal{A}}^*(q',n')$ that π corresponds to iff $drop(\pi)\geq -n$ and $weight(\pi)=n'-n$.

Proof.

By induction on $|\pi|$.

Reachability Certificate to Path

Definition (Rechability Certificate)

Let G be a graph, f is a s-t path flow and $n, n' \in \mathbb{N}$. The n (G, f, n, n') fulfills the

- 1. type-1 reachability criteria if
 - ightharpoonup G/F does not contain positive cycles
 - weight(f) = n' n
 - f has an edge decomposition $(f_i, e_i)_{i \in [m]}$ such that $\sum_{i \in [j]} weight(f + f_{e_i}) \ge -n$ for all $j \in [m]$
- 2. type-2 reachability criteria if $(G^{op}, f^{op}, n'n)$ fulfills the type-1 reachability criteria.
- 3. type-3 reachability criteria if
 - weight(f = n' n)
 - ▶ there is a positive s-cycle template *l* in *G* with respect to *n*
 - ▶ there is a positive t-cycle template l' in G^{op} with respect to n'

then we call (G, f, n, n') type-i reachability certificate correspondingly.

Lemma (4.1.12)

Let (q, n), (q', n') be configurations of \mathcal{A} and $G_{\mathcal{A}}$ the graph corresponding to \mathcal{A} .

If (G_A, f, n, n') is a type-i reachability certificate then $f = f_{\pi}$ for some path π corresponding to a run $\rho : (q, n) \to_{\mathcal{A}}^* (q', n')$ in $T(\mathcal{A})$.

Proof.

Make use of the result of lemma 4.1.11

Path to Reachability Certificate

Lemma (4.1.13)

Let $\rho: (q,n) \to_{\mathcal{A}}^*$ be a run in $T(\mathcal{A})$ with the corresponding path π in $G_{\mathcal{A}}$ and let F be the support of f_pi . If π does not contain any positive Cycle then either $G_{\mathcal{A}}/F$ does not contain any positive cycles or there is a path π' in $G_{\mathcal{A}}$ that factors as $\pi' = \pi_1 \cdot \pi_2 \cdot \pi_3$ and corresponds to a run $\rho': (q,n) \to (q',n')$ in $T(\mathcal{A})$ such that $|\pi_1| < |\pi|$ and π_2 is a positive cycle.

Proof.

Assume G_A/F contains a positive cycle I.

Let p be the first vertex of l that occurs in π and let (p, m) be the configuration first reached by ρ .

We claim that there is a posotive cycle at p in G_A that corresponds to a run $(p,m) \to_A^* (p,m')$ for some m' > m. If not argue as follows...

Next we observe that the first occurrence of p in π lies on a negative cycle in π . We can decompose $\rho = \rho_1 \cdot \rho_2 \cdot \rho_3$

Lemma (4.1.14)

There is a run $\rho: (q, n) \to (q', n')$ in $T(\mathcal{A})$ iff there is a q-q' path π in $G_{\mathcal{A}}$ that can be written as $\pi = \pi_1 \cdot \pi_2 \cdot \pi_3$ such that there are $n_1, n_2 \in \mathbb{N}$ such that

- if $|\pi_1| > 0$, then (G_A, f_{π_1}, n, n_1) is a type-1 reachability certificate.
- if $|\pi_2| > 0$, then $(G_A, f_{\pi_2}, n_1, n_2)$ is a type-3 reachability certificate.
- ▶ if $|\pi_3| > 0$, then $(G_A, f_{\pi_3}, n_2, n')$ is a type-2 reachability certificate.

Proof.

 \Rightarrow :

- G_A/F does not contain any positive cycle.
- Otherwise, let π' be a path in $G_{\mathcal{A}}$ corresponding to some run $(q,n) \to_{\mathcal{A}}^* (q',n')$. By repeatly applying lemma 4.1.13 to π' , we can obbtain $\pi_1 \cdot \pi'_2 \cdot \pi'_3$. Let $\pi'' = \pi_2 \cdot \pi_3$, if $G_{\mathcal{A}}/F'_{\pi}$ does not contain negative cycles...

By now we have shown that deciding reachability in $\mathcal{T}(\mathcal{A})$ can be reduced to checking the exisitence of at most three reachability certificates in $G_{\mathcal{A}}$.

Now we need to phrased in terms of an open formula in QFPA.

Definition (QFPA definable)

Given a set $M \subseteq \mathbb{N}^k$, we say M is QFPA-definable if there exists a finite set R of QFPA formulae, each with free variables x_1, \ldots, x_k such that

$$M = \bigcup_{\phi(x_1, \dots, x_k) \in R} \{ (n_1, \dots, n_k) \in \mathbb{N}^k : \models \phi[n_1/x_1, \dots, n_k/x_k] \}$$

Lemma (4.1.15)

Given a graph G and vertices s, t, the sets

$$\{(n,n'): thre\ exists\ an\ s-t\ path\ flow\ f\ such\ that\ (G,f,n,n')\ is\ a \ type-1\ reachability\ certificate\ \}$$
 $\{(n,n'): thre\ exists\ an\ s-t\ path\ flow\ f\ such\ that\ (G,f,n,n')\ is\ a \ type-2\ reachability\ certificate\ \}$

are definable via sets $R_1(G,s,t)$ and $R_2(G,s,t)$ of QFPA formulae, where $|\phi| = O(|G|^4)$ for each $\phi \in R_1(G,s,t) \cup R_2(G,s,t)$

Proof.

$$\varphi \stackrel{\text{def}}{=} \exists_{i \in [m]} c_i, c_i'. \underbrace{\varphi(G/F)}_{\text{no positive cycles}} \land \underbrace{\bigwedge_{i \in [m]} \varphi(G, F_i, v_i, v_i')(c_i, c_i')}_{\text{there are path flows } f_i \text{ with weight } c_i' - c_i} \land \underbrace{\bigwedge_{i \in [m]} \sum_{j \in [i]} c_i' - c_i + \mu(e_i) \ge -c}_{\text{weights of the edge decomposition sum up correctly}} \land \underbrace{\sum_{i \in [m]} c_i' - c_i + \mu(e_i) = c' - c}_{\text{total weight matches}}$$