22 Linear Modulations

3.b. Constellations for BP PAM

Recalling that $A[n] \in \{\mathbf{a}_1, \dots, \mathbf{a}_M\} = \mathcal{A} \in \mathbb{C}$ with $|\mathcal{A}| = M$, we have two ways to design the complex constellation:

- \circ QAM: The quadrature amplitude modulation (QAM) constellation is defined as $A[n] = A_I[n] + jA_Q[n]$, where both $A_I[n]$ and $A_Q[n]$ take values independently and each one is a \sqrt{M} -PAM constellation, i.e. $A_I[n] \in \{\pm 1, \pm 3, \dots, \pm (\sqrt{M} 1)\}$ and $A_Q[n] \in \{\pm 1, \pm 3, \dots, \pm (\sqrt{M} 1)\}$. Note that in this case $M = 2^m$ where $m \geq 2$ (bits/symbol) is an even number, i.e. $m = \{2, 4, \dots\}$
 - $\triangleright \mathcal{E}_s = \frac{2(M-1)}{3}$ if the symbols are equi-probable.
 - ▶ The Gray encoding is done independently in each dimension.

- \circ **PSK**: The phase shift keying (PSK) constellation $A[n] = A_I[n] + \mathrm{j} A_Q[n] = \sqrt{\mathcal{E}} e^{\mathrm{j} \varphi[n]}$, Note that in this case both $A_I[n] = \sqrt{\mathcal{E}}_s \cos(\varphi[n])$ and $A_Q[n] = \sqrt{\mathcal{E}}_s \sin(\varphi[n])$ and therefore do not take values independently. $\varphi[n] = \{0, \frac{2\pi}{M}, \dots, \frac{2\pi(M-1)}{M}\}$ whose phase values are taken independently.
 - \triangleright Is a constant amplitude constellation with energy \mathcal{E}_s for equiprobable symbols.
 - ▶ We use Gray encoding.

