T 137 00 1 6	T 137 (D) 1D
Total No. of Ouestions: 6	Total No. of Printed Pages:
I DIGI I I DI DICCIIDIO. D	I O I MI I I O I I I I I I I I I I I I I

Enrollment	No
-------------------	----

Faculty of Engineering End Sem Examination Dec-2023 CE3CO19 Fluid Mechanics

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

0 1				4		
Q.1	i.	_	is the unit of specific weight?	1		
		(a) N/m^3 (b) N/m^2	(c) N/m (d) None of these			
	ii.	The specific volume of a liquid is the reciprocal of-				
		(a) Weight density	(b) Mass density			
		(c) Specific weight	(d) No unit			
	iii.	. Which is the cheapest device for measuring flow / discharge rate?				
		(a) Venturimeter	(b) Pitot tube			
		(c) Orificemeter	(d) None of these			
	iv.	The Bernoulli's equation in fluid dynamics is valid for		1		
		(a) Compressible flows	(b) Transient flows			
		(c) Continuous flows	(d) Viscous flows			
	v.					
		(a) Dynamic similarity	(b) Geometric similarity			
		(c) Conditional similarity	(d) Kinematic similarity			
	vi.	. Which of the following is the mathematical technique used to pre				
v		physical parameters?				
		(a) Dimensional analysis	(b) Temperature analysis			
		(c) Pressure analysis	(d) Combustion analysis			
	vii.					
		(a) Density	(b) Specific gravity			
		(c) Viscosity	(d) Compressibility			
	viii.	is a major loss?	1			
	,	(a) Frictional loss	(b) Entry loss	•		
		(c) Exit loss	(d) None of these			
		(C) LAIL TOOK	(a) I tolle of these			

P.T.O.

[2]

	ix.	. What is the dimension of C?							
		(a) LT	(b) $L^{1/2} T^{-1}$	(c) LT ⁻¹	(d) $L^{-1} T^{-1}$				
	х.	Calculate the	mean hydraul	ic radius for a	channel having 40m^2 cross	1			
		sectional area and 80m of wetted perimeter.							
		(a) 0.4	(b) 0.5	(c) 0.6	(d) 0.7				
Q.2	i.	Define density	y, specific grav	ritv.		2			
C	ii.	Write short note on viscosity and elasticity.							
	iii.	A rectangular plane surface is 2 m wide and 3 m deep. It lies in vertical 6							
		plane in water. Determine the total pressure and position of centre of pressure on the plane surface when its upper edge is horizontal							
ΩD		` '	with water surfa		5 m below the free surface.	~			
OR	IV.	and submerge		the conditions	of equilibrium for floating	6			
		and submerge	d bodies.						
Q.3	i.	Explain the te	rms velocity p	otential function	n and stream function.	3			
	ii.	Deduce an expression for Bernoulli's equation and also mention its 7							
		applications.		-					
OR	iii.	Derive the exp	pression for act	tual discharge t	hrough Venturimeter.	7			
Q.4	i.				s of dimension analysis.	4			
	ii.	•	· ·		nsional analysis.	6			
OR	iii.	Explain the ty	pes of similari	ties or similitud	de used in model analysis.	6			
Q.5	i.	Write short no	ote on hydrauli	c gradient line	and total energy line.	4			
	ii.		•	•	t and its prevention.	6			
OR	iii.	-	-	rcy's Weisbach	•	6			
Q.6		Attempt any t							
	i.				cal rectangular section.	5			
	ii.	-		•	for open channel flow.	5			
	iii.		<u> </u>		flow of water through a	5			
		_			eep, when it is running full.				
		The channel in C=55.	is having bed	slope as 1 in 2	2000.Take Chezy's constant				
