集合冪級数

hos

2024年10月26日

係数環を R とする. x_0,\dots,x_{n-1} を不定元として, $I\subseteq [n]:=\{0,\dots,n-1\}$ に対し $x^I=\prod_{i\in I}x_i$ と書く. I と $\sum_{i\in I}2^i$ をしばしば同一視する.

1 subset convolution

subset convolution とは, $R2^X:=R[x_0,\ldots,x_{n-1}]/(x_0^2,\ldots,x_{n-1}^2)$ での積.

不定元 t を導入して, $R[x_0,\dots,x_{n-1}]/(x_0(x_0-t),\dots,x_{n-1}(x_{n-1}-t))$ での積を計算して $t\to 0$ とすることにする.中国剰余定理より,これは $\{0,t\}^n$ で多点評価して各点積をとって補間すればよい.各次元では $(a,b)\mapsto (a,a+bt),\,(a,b)\mapsto (a,(b-a)/t)$ という変換になるので,t で割るのを後回しにすると考えて,以下のアルゴリズムが得られる:

- 1. 入力のそれぞれについて , x^I を $x^It^{|I|}$ に置き換える .
- 2. 入力のそれぞれについて,累積和をとる: $(a_I)_I\mapsto \left(\sum_{J\subseteq I}a_J
 ight)_I$
- $3.\ t$ の多項式として各点積をとる.
- 4. 差分をとる: $(a_I)_I\mapsto \left(\sum_{J\subseteq I}(-1)^{|I|-|J|}c_J
 ight)_I$
- $5. \ [x^It^{|I|}]$ をとると出力の $[x^I]$ である .
- 2,4 がボトルネックで $O(2^nn^2)$ 時間 .3 は FFT で $O(2^nn\log(n))$ 時間にもできるが恩恵が少ない .

メモリアクセスを考慮して,ステップ $2,\,3,\,4$ を再帰で実装する (segment tree 上の DFS) . 入力を $A,B\in R2^X$ とする . $2^n\times (n+1)$ 配列 a,b を用意し, $0\le h<2^n,\,0\le k\le n$ について,

- $a[h][k] \leftarrow [|h| = k] \cdot [x^h]A$
- $b[h][k] \leftarrow [|h| = k] \cdot [x^h]B$

として,以下の $\operatorname{rec}(n,0)$ を呼ぶ.すると出力が $[x^h]A(x)B(x)=a[h][|h|]$ として得られる.

$$rec(m, h_0) \ (0 \le m \le n, \ 0 \le h_0 < 2^n, \ 2^m \mid h_0)$$

m > 0 のとき

1.
$$h_0 \le h < h_0 + 2^{m-1}$$
 について,①各 k について,
$$o \ a[h+2^{m-1}][k] += a[h][k]$$

$$\circ b[h+2^{m-1}][k] += b[h][k]$$

とする.

- $2. \operatorname{rec}(m-1,h), \operatorname{rec}(m-1,h+2^{m-1})$ を呼ぶ.
- $3. \ h_0 \leq h < h_0 + 2^{m-1}$ について,②各 k について, $a[h+2^{m-1}][k] -= a[h][k]$ とする.
- m=0 のとき
 - 1. ③各 k について, $a[h_0][k] \leftarrow \sum_{0 \le l \le k} a[h_0][l] \cdot b[h_0][k-l]$ とする.
- (1), (2), (3) で操作する k,l の範囲は $0 \le k \le n, 0 \le l \le k$ より狭くできる.
- ① について,非 0 の値が入る場所を考えると, $|h|-|h_0|\leq k\leq |h|$ としてよい.例えば n=3 では以下の表のようになる.

$\overline{}$						
m = 3						
	0	1	2	3		
0	*					
1		*				
2		*				
3			*			
4		*				
5			*			
6			*			
7				*		

	m=2						
	0	1	2	3			
0	*						
1		*					
2		*					
3			*				
4	*	*					
5		*	*				
6		*	*				
7			*	*			

m=1						
	0	1	2	3		
0	*					
1		*				
2	*	*				
3		*	*			
4	*	*				
5		*	*			
6	*	*	*			
7		*	*	*		

	m=0					
	0	1	2	3		
0	*					
1	*	*				
2	*	*				
3	*	*	*			
4	*	*				
5	*	*	*			
6	*	*	*			
7	*	*	*	*		

② について,出力に寄与する場所を考える(転置を考える)と, $|h| \le k \le |h| + (n-(m-1)-|h_0|)$ としてよい.例えば n=3 では以下の表のようになる.

m = 3						
	0	1	2	3		
0	*					
1		*				
2		*				
3			*			
4		*				
5			*			
6			*			
7				*		

	m=2						
	0	1	2	3			
0	*	*					
1		*	*				
2		*	*				
3			*	*			
4		*					
5			*				
6			*				
7				*			

	m = 1					
	0	1	2	3		
0	*	*	*			
1		*	*	*		
2		*	*			
3			*	*		
4		*	*			
5			*	*		
6			*			
7				*		

m = 0							
	0	1	2	3			
0	*	*	*	*			
1		*	*	*			
2		*	*	*			
3			*	*			
4		*	*	*			
5			*	*			
6			*	*			
7				*			

③ について,非 0 の値が入る場所を考えて $k\leq 2|h_0|$ としてよく (2 個の多項式の積であることを用いた),出力に寄与する場所を考えて $|h_0|\leq k$ としてよい.非 0 の値が入る場所を考えて $0\leq l\leq |h_0|$, $0\leq k-l\leq |h_0|$ としてよい.

さらに , ② について , 非 0 の値が入る場所を考えて $k \leq 2|h|$ としてよい .

2 exp

 $[x^\emptyset]A=0$ なる $A\in R2^X$ に対して, $\exp(A):=\sum_{i=0}^\infty rac{A^i}{i!}=\sum_{i=0}^n rac{A^i}{i!}$ を求めたい. $rac{A^i}{i!}$ は環演算のみで定義できることに注意する.

 x_{n-1} の次数で分けて $A = A_0 + A_1 x_{n-1}$ とおくと

$$\exp(A) = \exp(A_0) \exp(A_1 x_{n-1}) = \exp(A_0)(1 + A_1 x_{n-1}) = \exp(A_0) + \exp(A_0) A_1 x_{n-1}$$

となり, サイズ n-1 の subset convolution 1 回とサイズ n-1 の \exp に帰着できる $O(2^n n^2)$ 時間.

毎回補間をせず,多点評価した状態で持っておくことができる.

 $I\subseteq [n-1]$ とする . $\exp(A_0), \exp(A_1)$ を $x_i=[i\in I]\cdot t$ で評価した値をそれぞれ $a_0,a_1\in R[t]$ とすると, $\exp(A)$ をさらに $x_{n-1}=0,t$ で評価した値はそれぞれ $a_0,a_0+a_0a_1t$ となる.ここで補間時に x_{n-1} の軸から差分をとると, $(a_0,a_0+a_0a_1t)\mapsto (a_0,a_0a_1)$ となるが, a_0 が $O(t^n)$ ずれていても,残り n-1 軸の変換後 $t\to 0$ とすると消えるので,出力に影響がないことがわかる.

以上より, サイズ n の部分問題としては $2^n \times (n+1)$ 配列を求めればよい.

実測だと毎回 subset convolution を呼ぶほうが速い. TODO: 添え字の範囲を詰められていないかもしれないし, 本当に枝刈りが効きにくくなっているかもしれない.

3 合成

 $\mathrm{EGF}\ f(y) = \sum_{i=0}^\infty f_i rac{y^i}{i!}\ (f_i \in R)\ abla\ [x^\emptyset]A = 0$ なる $A \in R2^X$ に対して, $f(A) = \sum_{i=0}^\infty f_i rac{A^i}{i!} = \sum_{i=0}^n f_i rac{A^i}{i!}$ を求めたい.

 x_{n-1} の次数で分けて $A = A_0 + A_1 x_{n-1}$ とおくと

$$f(A) = f(A_0) + f'(A_0)A_1x_{n-1}$$

であるから,f の i 階微分を $f^{(i)}$ と書いて,サイズ m で $f^{(0)},\dots,f^{(n-m)}$ との合成を求める問題に帰着される.base case は f_0,\dots,f_n である.時間計算量は $\sum_{0\leq m< n}(n-m)\cdot O(2^mm^2)=O(2^nn^2)$.

以下のように subset convolution を除いてサイズ 2^n の配列上で実装できる:

(TODO: 多点評価した状態で持つ方針で定数倍を詰める)

多項式 $f(y)=\sum_i f_i y^i \in R[y]$ と $A\in R2^X$ に対しても f(A) が定まる.これは,定数項 $a=[x^\emptyset]A$ を分けて Taylor 展開して,

$$f(A) = f(a + (A - a)) = \sum_{i=0}^{\infty} f^{(i)}(a) \frac{(A - a)^i}{i!}$$

によって EGF の場合に帰着できる.

4 転置

 $A\in R2^X$ を固定するとき,A 倍写像 $R2^X\to R2^X$ の転置は, $A\cdot$ 入力・出力すべてを reverse しての subset convolution となる.これは,A 倍写像を行列で書くと $([i\supseteq j]\cdot a_{i-j})_{i,j}$ となり,その転置行列が

$$([j \supseteq i] \cdot a_{j-i})_{i,j} = ([[n] - i \supseteq [n] - j] \cdot a_{([n]-i)-([n]-j)})_{i,j}$$

となることからわかる.

 $[x^{\emptyset}]B=0$ なる $B\in R2^X$ を固定するとき , EGF 合成 $[n+1]\to R2^X; f\mapsto f(B)$ の転置は ,適切に reverse を挟むことで , EGF power projection $R2^X\to [n+1]; A\mapsto \left([x^{[n]}]Arac{B^i}{i!}
ight)_i$ である .

直接アルゴリズムを導出する.不定元 t を導入して,答えの $\mathrm{EGF}\ [x^{[n]}]\sum_{i=0}^{\infty}A\frac{(tB)^i}{i!}=[x^{[n]}]A\exp(tB)$ を求めたい. x_{n-1} の次数で分けて $A=A_0+A_1x_{n-1},\ B=B_0+B_1x_{n-1}$ とおくと,

$$[x^{[n]}]A \exp(tB) = [x^{[n]}](A_0 + A_1x_{n-1}) \exp(t(B_0 + B_1x_{n-1}))$$

$$= [x^{[n]}](A_0 + A_1x_{n-1}) \exp(tB_0)(1 + tB_1x_{n-1}))$$

$$= [x^{[n]}](A_0 \exp(tB_0) + (A_1 + tA_0B_1) \exp(tB_0)x_{n-1})$$

$$= [x^{[n-1]}](A_1 + tA_0B_1) \exp(tB_0)$$

であるから , サイズ m では t の n-m 次式が登場する (power projection を n-m+1 回解けばよい) . base case では $\exp(tB)=1$ である .

サイズ m の部分問題を $[x^{[m]}]\left(C_mrac{B^i}{i!}
ight)_i$ $(C_m\in R2^{\{x_0,\dots,x_{m-1}\}}[t])$ とおくと,計算過程は以下のように

なる:

[0,4) [4,6) [6,7) [7,8)

 $B\in R2^X$ を固定するとき,多項式合成 $R[y]\to R2^X; f\mapsto f(B)$ の転置は,適切に reverse を挟むことで,power projection $A\mapsto \left([x^{[n]}]AB^i\right)_i$ である.

定数項 $b = [x^{\emptyset}]B$ を分けて ,

$$AB^i = A(b + (B - b))^i = \sum_j \frac{i!}{(i - j)!} b^{i - j} A \frac{(B - b)^j}{j!}$$

となるので EGF の場合に帰着できる.