Charles University in Prague Faculty of Mathematics and Physics

MASTER THESIS

Filip Bártek

Minimum representations of boolean functions defined by multiple intervals

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. Petr Kučera, Ph.D.

Study programme: Informatics

Study branch: Theoretical Computer Science

cited sources, literature and other profe	thesis independently, and only with the essional sources.								
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement or the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.									
In date	signature								

Title: Minimum representations of boolean functions defined by multiple intervals

Author: Filip Bártek

Department: Department of Theoretical Computer Science and Mathematical

Logic

Supervisor: RNDr. Petr Kučera, Ph.D., Department of Theoretical Computer

Science and Mathematical Logic

Abstract:

When we interpret the input vector of a Boolean function as a binary number, we define interval Boolean function $f_{[a,b]}$ so that $f_{[a,b]}(x) = 1$ if and only if $a \le x \le b$. Disjunctive normal form is a common way of representing Boolean functions. Minimizing DNF representation of an interval Boolean function can be performed in linear time.[2] The natural generalization to k-interval functions seems to be significantly harder to tackle. In this thesis, I discuss the difficulties with finding an optimal solution and introduce a 2k-approximation algorithm.

Keywords: Boolean minimization, disjunctive normal form, interval functions

Contents

Introduction							2														
1			imation algorithm fo val Boolean function		mi	nin	ni	zir	ıg	D	N]	F 1	re _]	pr	es	se	nt	\mathbf{a}	ti	on	9
	1.1	Introd	uction																		į
	1.2	Defini	tions																		į
	1.3	Algori	thm																		
		1.3.1	Description																		3
		1.3.2	Correctness																		3
		1.3.3	Approximation ratio												•						4
C	onclu	ısion																			5
Bibliography										6											

Introduction

I will build on the results about interval Boolean functions shown by Schieber et al.[2] $\,$

1. 2k-approximation algorithm for minimizing DNF representation of k-interval Boolean functions

1.1 Introduction

In this chapter, an algorithm will be shown that computes a small DNF representation of a Boolean function given as a set of k intervals. The input intervals are represented by pairs of endpoints (n-bit numbers). An approximation ratio of 2k will be proved.

1.2 Definitions

Definition 1.2.1 (k-interval Boolean function). Let $a_1, b_1, \ldots, a_k, b_k$ be n-bit numbers such that $0 \le a_1, a_1 \le b_1, b_1 \le a_2 - 2, \ldots, b_k \le 2^n - 1$. Then $f_{[a_1,b_1],\ldots,[a_k,b_k]}^n : \mathbf{B}^n \to \mathbf{B}$ is a function defined as follows:

$$f_{[a_1,b_1],\dots,[a_k,b_k]}^n(x) = \begin{cases} 1 & \text{if } x \in [a_i,b_i] \text{ for some } i \\ 0 & \text{otherwise} \end{cases}$$

Note that the adjacent intervals are required to be separated by at least one false point.

1.3 Algorithm

1.3.1 Description

Input Numbers $a_1, b_1, \ldots, a_k, b_k$ that satisfy the inequalities in definition 1.2.1

Output A set of ternary vectors

Procedure The algorithm goes through all the intervals $[a_i, b_i]$. For each i, the longest common prefix of a_i and b_i is computed. Let j be its length. Note that $a^{[j+1]} = 0$ and $b^{[j+1]} = 1$. Now let $a'' = a_i^{[j+2,n]}$ and $b'' = b_i^{[j+2,n]}$. Optimally span the suffix interval $[a'', 1^{n-j-1}]$ and the prefix interval $[0^{n-j-1}, b'']$ using the (linear time) algorithm introduced in [2]. Prepend $a_i^{[1,j+1]}$ and $b_i^{[1,j+1]}$ to the respective ternary vectors and add them to the output spanning set.

1.3.2 Correctness

Theorem 1.3.2.1. The algorithm spans exactly $f_{[a_1,b_1],\dots,[a_k,b_k]}^n$.

Proof. This is easy to see from the fact that the subintervals form a partition of the multi-interval (i.e. the set of all true points) and that each of them is spanned exactly by the suffix or prefix procedure. \Box

1.3.3 Approximation ratio

Theorem 1.3.3.1. Let \mathcal{T}_{opt} be an optimal spanning set of $f_{[a_1,b_1],...,[a_k,b_k]}^n$ and let \mathcal{T}_{approx} be the spanning set returned by the algorithm. We claim that:

$$|\mathcal{T}_{approx}| \le 2k|\mathcal{T}_{opt}|$$
 (1.1)

Proof. Let \mathcal{T}_x be the largest (n-bit) spanning set of a "suffix" or "prefix" subinterval added in the algorithm. Without loss of generality, let the respective subinterval be "prefix" $[b_i^{[1,j+1]},b_i]$. From [1, p. 36] we know that there is an orthogonal set of $[b_i^{[1,j+1]},b_i]$ of size $|\mathcal{T}_x|$, and moreover that its orthogonality only depends on the false point b+1. Note, however, that b+1 is also a false point in $f_{[a_1,b_1],\ldots,[a_k,b_k]}^n$. Thus we obtain an orthogonal set of size $|\mathcal{T}_x|$ for the k-interval function, limiting the size of its optimal spanning set $|\mathcal{T}_{opt}| \geq |\mathcal{T}_x|$.

Since \mathcal{T}_x is the largest of the 2k partial sets used to span the function in the approximation algorithm, we know that $|\mathcal{T}_{approx}| \leq 2k|\mathcal{T}_x|$.

Joining the inequalities together we conclude: $|\mathcal{T}_{approx}| \leq 2k|\mathcal{T}_{x}| \leq 2k|\mathcal{T}_{opt}|$.

Theorem 1.3.3.2. The approximation ratio of 2k is tight.

Proof. For every k that is a power of 2 we'll show a k-interval function such that $|\mathcal{T}_{approx}| = 2k|\mathcal{T}_{opt}|$ (following the notation from Theorem 1.3.3.1.

Let $k = 2^{n_k}$. Let P be all the n_k -bit numbers, that is $P = \mathbf{B}^{n_k}$. Note that |P| = k.

For each $p \in P$, we define the interval $[a_p, b_p]$ by appending 2-bit suffixes to p:

- $a_p = p00$
- $\bullet \ b_p = p01$

The first appended bit (0 for both a_p and b_p) ensures that there is at least one false point between any pair of intervals defined this way. The second appended bit (0 for a_p and 1 for b_p) ensures that the interval has two points, so the approximation algorithm will use two vectors to span it. Thus we have k ($n_k + 2$)-bit intervals, none of which intersect or touch.

Let $n = n_k + 2$.

Since $P = \mathbf{B}^{n_k}$, we can span all the intervals by the single ternary vector $\phi^{\{n_k\}}0\phi$. Clearly $|\mathcal{T}_{opt}|=1$.

However, the approximation algorithm uses 2k vectors to span the intervals, since it spans each of the intervals separately and uses two vectors for each interval.

We get $|\mathcal{T}_{approx}| = 2k|\mathcal{T}_{opt}|$.

Note that the optimal spanning set is disjoint, so the ratio is tight in disjoint case as well. \Box

Conclusion

Bibliography

- [1] Jakub Dubovský. A construction of minimum DNF representations of 2-interval functions. Master's thesis, Charles University in Prague, 2012.
- [2] Baruch Schieber, Daniel Geist, and Ayal Zaks. Computing the minimum DNF representation of boolean functions defined by intervals. *Discrete Applied Mathematics*, 149(1–3):154 173, 2005. Boolean and Pseudo-Boolean Functions Boolean and Pseudo-Boolean Functions.

Glossary

 $\mathbf{DNF}\,$ disjunctive normal form. ii, 1, 5