

Data Mining: Item Recommendation Systems

Group 1
Joel Polizzi, Antariksha Ray, Lora Khatib, Jemin Vagadia
12/03/2024

Introduction

Overview:

Evaluating Amazon Data from SVD to BPR and BERT4Rec

Singular Value Decomposition (SVD)

Transformers for Recommendation (Bert4Rec)

Overview:

Foundational: Collaborative Filtering and Singular Value Decomposition (SVD)

- Addresses Collaborative Filtering challenges
- Implements Matrix factorization (SVD)
- Rating System

$$A = U\Sigma V^T$$

$$\underbrace{\left(\begin{bmatrix}\vdots\\u_1\\\vdots\end{bmatrix}\begin{bmatrix}\vdots\\u_2\\\vdots\end{bmatrix}\dots\begin{bmatrix}\vdots\\u_i\\\vdots\end{bmatrix}\right)}_{\mathbf{U}}\underbrace{\begin{pmatrix}\sigma_1&0&\dots&0\\0&\sigma_2&\dots&0\\0&0&\ddots&0\end{pmatrix}}_{\boldsymbol{\Sigma}}\underbrace{\begin{pmatrix}\begin{bmatrix}\dots&v_1&\dots\\\dots&v_2&\dots\end{bmatrix}\\\vdots&\dots&v_1&\dots\end{bmatrix}}_{\boldsymbol{V}^T}$$

Overview:

Foundational: Collaborative Filtering and Singular Value Decomposition (SVD)

- Addresses Collaborative Filtering challenges
- Implements Matrix factorization (SVD)
- Rating System

Importance of the topic

- Implicit feedback drives personalized recommendations
- Increase user experience
- Grow engagement between users and application
- Scalable systems
- Sales impact and ROI

- Streaming and media platforms (Netflix, Prime, Youtube, etc...)
- E-Commerce (Amazon, Netflix, Reverb, etc..)
- Social Media (Meta, X, BlueSky, etc...)
- Finance (Credit Karma, Etrade, etc..)
- Food delivery (DoorDash, GrubHub, etc...)

Problem formulation

- Recommendation systems have evolved from ratings systems to personalized ranking ones.
- Improve personalization recommendation (BPR)
- Examine transformer based approach where user context is applied to the learning system (BERT4Rec)

```
User = U, Item = I; preferred item = i, non-preferred item = j; user latent factors = p_u, item latent factors = q_i

BPR with matrix factorization: \hat{x}_{ui} = p_u^T q_i

Difference between items: \hat{x}_{uij} = \hat{x}_{ui} - \hat{x}_{uj}

Loss Function: Max \sum_{(u,i,j) \in D} ln\sigma(\hat{x}_{u,i,j}) - \lambda ||\theta||^2
```

Matrix Factorization: Relation to SVD

$$R = \begin{bmatrix} 5 & \cdot & \cdot & 2 & 3 \\ \cdot & 4 & 1 & \cdot & \cdot \\ \cdot & 5 & 5 & 3 & \cdot \\ 5 & \cdot & 4 & \cdot & 4 \\ 1 & 1 & \cdot & 4 & 5 \end{bmatrix} \quad C = \begin{bmatrix} 1 & \cdot & \cdot & 1 & 1 \\ \cdot & 1 & 1 & \cdot & \cdot \\ \cdot & 1 & 1 & 1 & \cdot \\ 1 & 1 & \cdot & 1 & 1 \end{bmatrix}$$
users.
$$\underbrace{ \begin{bmatrix} 1 & \cdot & \cdot & 1 & 1 \\ \cdot & 1 & 1 & \cdot & \cdot \\ \cdot & 1 & 1 & 1 & \cdot \\ 1 & 1 & \cdot & 1 & 1 \end{bmatrix} }_{items}$$

$$\underbrace{ \begin{bmatrix} \mathbf{R} \\ \end{bmatrix}}_{|U| \times |I|} = \underbrace{ \begin{bmatrix} \mathbf{\gamma}_{U} \\ \end{bmatrix}}_{|U| \times K} \times \underbrace{ \begin{bmatrix} \mathbf{\gamma}_{I}^{T} \\ K \times |I| \end{bmatrix}}_{K \times |I|}.$$
 Best rank-k approximation

Matrix Factorization: SVD in practice 1/2

- SVD is defined for fully observed matrices, which is often not the case for large user-item interaction data
- Even with data imputation, solving SVD on large matrices with millions of rows and columns is not recommended

Matrix Factorization: SVD in practice 2/2

Solving SVD on large matrices with million of rows and columns?

It's better to use gradient based approach

- Alternating Least Squares (ALS)
- Stochastic Gradient Descent (SGD)

Matrix Factorization: SVD with SGD

Solving SVD on large matrices with millions of rows and columns

It's better to use gradient based approach

Alternating Least Squares

Stochastic Gradient Descent

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

$$\sum_{r_{ui} \in R_{train}} \left(r_{ui} - \hat{r}_{ui}
ight)^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2
ight)$$

Minimize the regularized squared error

$$egin{array}{ll} b_u \leftarrow b_u &+ \gamma (e_{ui} - \lambda b_u) \ b_i \leftarrow b_i &+ \gamma (e_{ui} - \lambda b_i) \ p_u \leftarrow p_u + \gamma (e_{ui} \cdot q_i - \lambda p_u) \ q_i \leftarrow q_i &+ \gamma (e_{ui} \cdot p_u - \lambda q_i) \end{array}$$

Gradient update equations

where
$$e_{ui} = r_{ui} - \hat{r}_{ui}$$
.

Implicit feedback and ranking models (step up)

- A lot of the times we deal with binary outcomes
 (e.g. click prediction on unseen articles, add to cart a new item, like or dislike a new video)
- Re-use regression value through a sigmoid function?
 prob(+ve interaction) high, pro(-ve interaction) low?

But these -ve interactions are what we want to recommend!

Bayesian Personalized Ranking (Rendle et. al 2009)

Generate ranked list of items for user u such that

$$x_{u,i,j} > 0 \rightarrow u$$
 prefers i
 $x_{u,i,j} \leq 0 \rightarrow u$ prefers j .
$$x_{u,i,j} = x_{u,i} - x_{u,j} = \gamma_u \cdot \gamma_i - \gamma_u \cdot \gamma_j.$$

$$p(i >_u j | \Theta) := \sigma(\hat{x}_{uij}(\Theta)), Where \ \sigma(x) := \frac{1}{1 + e^{-x}}$$

Bayes Theorem

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$
$$p(\Theta|>_u) \propto p(>_u |\Theta)p(\Theta)$$

Maximize

 $Loss = -\sum_{(u,i,j)\in D} ln(p(i>_{u}j|\Theta))p(\Theta) = -(\sum_{(u,i,j)\in D} ln(\sigma(\hat{x}_{uij}) - \lambda_{\Theta}||\Theta||^{2})$

Theta = parameter vector (MF) >u = latent structure for user u

Bayesian Personalized Ranking (continued)

The loss function is analogous to the AUC score

$$Loss = -\sum_{(u,i,j)\in D} ln(p(i>_u j|\Theta))p(\Theta) = -(\sum_{(u,i,j)\in D} ln(\sigma(\hat{x}_{uij}) - \lambda_{\Theta}||\Theta||^2)$$

Transformers Architecture

Key innovation of the transformer architecture is the self-attention mechanism

Bidirectional Encoder Representations from Transformers (BERT4Rec)

(b) BERT4Rec model architecture.

Comparison of Approaches

Aspect	SVD	BPR	BERT4Rec
Model Type	Matrix Factorization	Pairwise Learning-to-Rank	Transformer-based model
Objective	Minimize error in approximating user-item ratings (e.g., RMSE).	Maximize ranking of observed interactions over unobserved ones.	Predict items in a sequence.
Training Data	User-item interaction matrix	Implicit feedback	Sequential interaction data
Strengths	-simple -efficient for dense data	-works well for implicit feedback -scalable for large datasets	-Captures global dependencies -Robust to noise
Weaknesses	-struggles with sparsity -ignores sequential patterns	-ignores sequential patterns	-computationally expensive -requires large training data

Experiment Setup

Dataset

- We use the Amazon Reviews 2023 Dataset (<u>link</u>)
- It has ~572M reviews, **User reviews** (ratings, text, timestamp,...), **Item** metadata (description, price, imageurls,...)
- Interactions range from May 1996 to Sep 2023
- From several categories, we picked Musical Instruments (1.8M users, **213.6K items, 3.0M ratings)**

Evaluation Metrics

 Precision@k: Measures the proportion of relevant items in the top-k recommendations.

NDCG@K: Measures the overall reward at all positions (till K) that hold a
relevant item. The reward is an inverse log of the position (i.e. higher ranks for
relevant items would lead to better reward, as desired)

Results and Interpretation

Results on the proposed evaluation metrics

Model	Precision@10	NDCG@10
BPR	0.524	0.377
BERT4Rec	0.678	0.712

Recommendations Visualized

Conclusions

- Ratings to rankings to sessions
- SVD forms the basis of our linear algebra approach
- Transformer models enable Deep Learning and Self-Attention
- Future: Generative Recommenders

References

 Rendle, Steffen, et al. "BPR: Bayesian personalized ranking from implicit feedback." arXiv preprint arXiv:1205.2618 (2012).

 Sun, Fei, et al. "BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer." Proceedings of the 28th ACM international conference on information and knowledge management. 2019.

• de Souza Pereira Moreira, Gabriel, et al. "Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation." *Proceedings of the 15th ACM conference on recommender systems*. 2021.