

מבוא למערכות לומדות (236756)

סמסטר חורף תשפ"ג – 14 במרץ 2023

מרצה: ד"ר יונתן בלינקוב

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** שלוש שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט בלבד.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - הוכחות והפרכות צריכות להיות פורמליות.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- ס בשאלות רב-ברירה הקיפו את התשובות בבירור. סימונים לא ברורים יביאו לפסילת התשובה.
 - לא יתקבלו ערעורים בנושא. 🏻 o
- במבחן 14 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

בהצלחה!

חלק א' – שאלות פתוחות [82 נק']

שאלה 1: השפעה של דוגמה יחידה על פעולת מסווגים [24 נק']

 $\mathbf{x}_i \in \mathbb{R}^2, y_i \in \{-1,1\}$ מתקיים i=1,...,m נתון סֵט אימון עם $m \geq 10$ דוגמאות דו-ממדיות ותיוגים בינאריים, משמע לכל

- <u>בשלב הראשון</u>: לומדים מסווג על סט האימון המקורי ומחשבים את הסיווגים על כל הדוגמאות.
 - בשלב השני:
 - סירים דוגמת אימון <u>אחת</u> שרירותית כלשהי. 🏻 ס
- . מאמנים מסווג <u>חדש</u> על סט האימון המעודכן, ומחשבים בעזרתו את הסיווג על כל הדוגמאות <u>הנותרות.</u>

עבור כל אלגוריתם למידה, סמנו האם הסיווגים שהמסווג <u>החדש</u> יחזה על דוגמאות האימון <u>הנותרות</u> זהים <u>בהכרח</u> לאלה של המסווג <u>המקורי</u> על דוגמאות אלה.

הסבירו בקצרה את תשובותיכם (2-4 משפטים בכל סעיף).

הניחו שאין צעדים אקראיים או שגיאות נומריות בריצת האלגוריתמים (בעיות קמורות מתכנסות לפתרון האנליטי במדויק).

			ליניארי לא הומוגני עם $\lambda=10^{-1}$ בהנחה שהדאטה המקורי פריד ליניארית. Soft-SVM	א.
לא	/	כן	?הסיווגים על דוגמאות האימון הנותרות זהים בהכרח	
לא	/	כן	בהנחה שהדאטה המקורי פריד ליניארית. $\lambda \to 0$ בהנחה ליניארי לא הומוגני עם $\lambda \to 0$ בהכחת ליניארי לא הומוגני עם 1 הסיווגים על דוגמאות האימון הנותרות זהים בהכרח?	ב.
			הסבר:	

כן / לא	ל דוג' האימון הנותרות זהים בהכרח?	<u>י 4.</u> הסיווגים ע <i>י</i>	ID3 המשתמש באנטרופיה ועוצר בעומק מירב
			הסבר:
			עם $k=3$ (דוגמה לא נחשבת שכנו $k = 3$ לדוגמה שהוסרה יש תיוג זהה לתיוג שלה.
, ,=	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			הסבר:

(נק'<u>] 26</u> Generative models שאלה 2

, היא [a,b], הסגור ([a,b], אחידה ורציפה על הקטע הסגור ([a,b], היא

$$f(z) = \frac{1}{b-a} \mathbb{I}[a \le z \le b] = \begin{cases} \frac{1}{b-a}, & a \le z \le b \\ 0, & \text{otherwise} \end{cases}$$

א. בור $\theta>0$ לא ידוע. $X{\sim}U[0,\theta]$ א. ג. [5 נק'] אירוע. אקראי נתון משתנה אקראי $S=\{x_1,\dots,x_m\}\subset\mathbb{R}_{\geq 0}$ שנדגמו מהמשתנה האקראי באופן .i.i.d. נתון מדגם אקראי $S=\{x_1,\dots,x_m\}\subset\mathbb{R}_{\geq 0}$ שמוגדר בתור שמשערך ה- $\hat{\theta}_{\mathrm{MLE}}=\max_{i\in[m]}x_i$ הוכיחו שמשערך ה-MLE שמוגדר בתור $\sum_{\mathrm{likelihood}} \mathrm{Pr}[S;\theta]$

תשובה:

	ובה:	תש

 $\mathcal{X}=\{-1,+1\}$ בסעיף הבא מרחב הדוגמאות הוא $\mathcal{X}=\mathbb{R}^2_{\geq 0}$ (הרביע החיובי) מרחב הדוגמאות הוא בינארי. $\{(\mathbf{x}_1,y_1),...,(\mathbf{x}_m,y_m)\}\subset (\mathcal{X}\times\mathcal{Y})$ נרצה ללמוד מסווג בינארי.

תהליך הלמידה:

- .Naïve Bayes (NB) נניח את הנחת.i.
- $J \in \{1,2\}, k \in \{-1,+1\}$ כאשר, ($X[j]|Y=k) \sim U[0,\theta_k[j]]$, משמע, Uniform NB נמדל את בעיות הסיווג בעזרת. ii.

$$. \hat{\theta}_{-1} = \begin{bmatrix} \max_{i:y_i = -1} x_i[1] \\ \max_{i:y_i = -1} x_i[2] \end{bmatrix} - \mathbf{i} \ \hat{\theta}_{+1} = \begin{bmatrix} \max_{i:y_i = +1} x_i[1] \\ \max_{i:y_i = +1} x_i[2] \end{bmatrix}$$
משמע, MLE משמע, הפרמטרים בעזרת. נשערך את ארבעת הפרמטרים בעזרת.

 $\hat{y}(\mathbf{x}) = \operatorname{argmax}_{\mathbf{v} \in \{-1, +1\}} \Pr(\mathbf{x}; y)$ בהמשך לכל ההנחות לעיל, נבנה כלל החלטה הסתברותי. iv

כעת נתונים שלושה מדגמי אימון, כל אחד מהתפלגות שונה ומכיל 100 דוגמאות חיוביות ו-100 שליליות. המדגמים מופיעים בתרשימים הבאים (הדוגמאות מִכֹּל תיוג מופיעות בנפרד ביחד עם ההיסטוגרמות השוליות המתאימות). לכל מדגם (בנפרד), מבצעים את תהליך הלמידה המתואר לעיל.

ג. [15 נק'] לכל מדגם, ענו על השאלות ביחס לתהליך הלמידה שלו. התשובות אמורות להיות ברורות מהגרפים.

לא / כן NB מתקיימת? מהנחת NB האם נראה שהנחת בזמן הבחינה הובהר שהכוונה להנחת NB על ההתפלגות (בזמן הבחינה הוגיע המדגם באופן (i.i.d.)

איך תסווג הנק' (0,0)? לא ניתן לדעת -1 / +1 (0,0)

האם דיוק האימון יהיה מעל 70%? **כן / לא**

(נק'<u>] 32] Multi-Layer Perceptron (MLP) and VC dimension שאלה</u>

קראו היטב את הנתונים הבאים.

 $\mathcal{X} = \mathbb{R}^2, \mathcal{Y} = \{-1, +1\}$ בשאלה זו מרחב הנתונים הוא

. ופלט היפר ReLU ופלט ReLU ופלט (היפר-פרמטר), אקטיבציות אחת ברוחב אחת ברוחב אחת שכבה חבויה אחת שכבה חבויה אחת ברוחב וועדיר מחלקה \mathcal{H}

בכל הרשתות במחלקה, המשקלים של השכבה השנייה קבועים להיות 1 וללא bias.

נאמר שאוסף פרמטרים θ הוא **חוקי**, אם המשקלים בו <u>אי-שליליים</u> (אילוץ זה לא כולל את רכיבי ה-bias).

:תאר את הפונקציה המתקבלת בצורה את בצורה בצורה פורמלית: במתקבלת המתקבלת הפונקציה המתקבלת בצורה ובצורה פורמלית

$$\begin{split} F_{\Theta}(\mathbf{x}) &= \mathrm{sgn} \Biggl(\sum_{t=1}^{p} \mathrm{ReLU}(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x} + b_{t}) \Biggr), \\ \text{where:} \\ \Theta &= \Bigl(\mathbf{w}_{1}, \dots, \mathbf{w}_{p}, b_{1}, \dots, b_{p} \Bigr), \\ \mathbf{w}_{1}, \dots, \mathbf{w}_{p} &\in \mathbb{R}^{2}_{\geq 0}, \\ b_{1}, \dots, b_{p} &\in \mathbb{R} \,. \end{split}$$

וכמו כן,

$$ReLU(z) = \begin{cases} 0, & z \le 0 \\ z, & z > 0 \end{cases}$$
 תזכורת:

$$\operatorname{sgn}(z) = \begin{cases} -1, \ z \le 0 \\ +1, \ z > 0 \end{cases}$$

(כך שלא מתקבל אפס לשום קלט)

 $x_i[1] \geq \mathbf{x}_j[1] \wedge \mathbf{x}_i[2] \geq \mathbf{x}_j[2]$ אם ורק אם $\mathbf{x}_i \succcurlyeq \mathbf{x}_j$ נסמן געני קלטים. געני קלטים אם יהיו שני קלטים אם ורק אם ורק אם ורק אם אם ורק אם יהיו שני קלטים אוני קלטים ו

 $F_{\Theta}(\mathbf{x}_i) \geq F_{\Theta}(\mathbf{x}_j)$ אזי $\mathbf{x}_i \geqslant \mathbf{x}_j$ אזי $\mathbf{x}_i \geqslant \mathbf{x}_j$ ולכל חוקי, אם p ולכל רוחב שהגדרנו, לכל רוחב

$\underbrace{0}_{1},\underbrace{+1}_{y_{1}},\underbrace{\left(\underbrace{1,0}_{x_{2}},\underbrace{+1}_{y_{2}}\right)},\underbrace{\left(\underbrace{0,0}_{x_{3}},\underbrace{-1}_{y_{3}}\right)},\underbrace{\left(\underbrace{1,1}_{x_{4}},\underbrace{-1}_{y_{4}}\right)}$	
(0,0), $(0,0)$, $($	
(1, +1), $((1,0), +1)$, $((0,0), -1)$, $((1,1), -1)$	
(0,0), $(0,0)$, $($	
(0,0), $(0,0)$, $(1,1)$, $(0,0)$, $($	
(0,0), $(0,0)$, $(1,1)$, $(0,0)$, $($	
(0,0), $(0,0)$, $(1,1)$, $(0,0)$, $($	
(0, 0), $(0, 0)$, $(0,$	
(0,0), $(0,0)$, $($	
(0,0), $(0,0)$, $(1,1)$, $(0,0)$, $($	
$(0, \frac{1}{y_1}), (\underbrace{(1,0)}_{x_2}, \underbrace{+1}_{y_2}), (\underbrace{(0,0)}_{x_3}, \underbrace{-1}_{y_3}), (\underbrace{(1,1)}_{x_4}, \underbrace{-1}_{y_4})$	
$\underbrace{), \underbrace{+1}_{y_1}, \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{+1}_{y_2}\right), \left(\underbrace{(0,0)}_{\mathbf{x}_3}, \underbrace{-1}_{y_3}\right), \left(\underbrace{(1,1)}_{\mathbf{x}_4}, \underbrace{-1}_{y_4}\right)}_{}$	
$(\underbrace{1,0)}_{y_1},\underbrace{(\underbrace{1,0)}_{x_2},\underbrace{+1}_{y_2}}_{y_2},\underbrace{(\underbrace{0,0)}_{x_3},\underbrace{-1}_{y_3}}_{y_3},\underbrace{(\underbrace{1,1)}_{x_4},\underbrace{-1}_{y_4}}_{y_4})$	
$\underbrace{), \underbrace{+1}_{y_1}, \left(\underbrace{(1,0)}_{\mathbf{x}_2}, \underbrace{+1}_{y_2}\right), \left(\underbrace{(0,0)}_{\mathbf{x}_3}, \underbrace{-1}_{y_3}\right), \left(\underbrace{(1,1)}_{\mathbf{x}_4}, \underbrace{-1}_{y_4}\right)}_{}\right)$	
כדאי להיעזר בס) $F_\Theta\in \mathcal{H}$ ניתן להגיע לשגיאת אימון אפס על S ע"י להגיע לשגיאת אימון אפס של capa של המחלקה ולא במציאת דרכי אימון יעילות.	
<u> </u>	

 $\|\mathbf{x}_i\|_2 = 1$ יהיו $\|\mathbf{x}_i\|_2 = 1$ קלטים $\|\mathbf{x}_i\|_2 = 1$ שונים ומנורמלים ברביע החיובי (משמע $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2_{\geq 0}$ וגם $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2_{\geq 0}$ שמקיימת $\mathbf{x}_2 = F_{\Theta}(\mathbf{x}_1) = F_{\Theta}(\mathbf{x}_2) = F_{\Theta}(\mathbf{x}_3) = \dots = F_{\Theta}(\mathbf{x}_n) = -1$ וגם $\mathbf{x}_1 = F_{\Theta}(\mathbf{x}_1) = F_{\Theta}(\mathbf{x}_2) = F_{\Theta}(\mathbf{x}_3) = \dots = F_{\Theta}(\mathbf{x}_n) = -1$ הראו שקיימת השמה חוקית $\mathbf{x}_1 = F_{\Theta}(\mathbf{x}_1) = -1$ שמקיימת $\mathbf{x}_1 = F_{\Theta}(\mathbf{x}_1) = -1$ וגם $\mathbf{x}_2 = F_{\Theta}(\mathbf{x}_2) = F_{\Theta}(\mathbf{x}_3) = \dots = F_{\Theta}(\mathbf{x}_n) = -1$

. משמע, הציעו השמה כזאת (שתלויה ב- $\mathbf{x}_1,\dots,\mathbf{x}_n$) והוכיחו שהיא מקיימת את הנדרש

 $\mathbf{u}^\mathsf{T}\mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \mathsf{cos} \angle (\mathbf{u},\mathbf{v})$ ניתן להיעזר בזהות האלגברית ניתן להיעזר ב

הוכחה (לרשותכם טיוטה בסוף הגיליון):

בלבד). בהמשך ניתן להיעזר בסעיף הקודם גם מבלי לפתור אותו (נדרשות התאמות כי בסעיף הקודם p=1

... ($\mathcal{H}_p \subset \mathcal{H}$ משמע, מתקיים $p \in \mathbb{N}$ שהן ברוחב שהן מ- \mathcal{H} את מחלקת הרשתות מ- \mathcal{H}_p .) ד.

 $p \geq 2$ מבין האפשרויות הבאות, בחרו את החסם התחתון ההדוק ביותר שתוכלו להוכיח עבור

- (i) $\operatorname{VCdim}(\mathcal{H}_p) \ge 2$ (ii) $\operatorname{VCdim}(\mathcal{H}_p) \ge \ln p$ (iii) $\operatorname{VCdim}(\mathcal{H}_p) \ge p$

הוכיחו את החסם התחתון שבחרתם.

הוכחה:

<u>חלק ב' – שאלות רב-ברירה [18 נק']</u>

בשאלות הבאות סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

א. לפניכם סט אימון דו-ממדי עם 4 מחלקות ו-3 דוגמאות מכל מחלקה (התיוג כתוב מעל/מתחת הדוגמאות).

. הבאים, סמנו את $\underline{\vec{c}}$ אלה שצפויים להגיע לדיוק אימון של 100% על הדאטה לעיל multiclass מבין מודלי ה

- a. ו- 1-nearest-neighbor (חוזה את התיוג של השכן הקרוב ביותר לפי מרחק אוקלידי, דוג' לא נחשבת שכנה של עצמה).
 - b. עץ החלטה בעומק מירבי 3 (הפרדיקציה של כל עלה נקבעת לפי רוב דוגמאות האימון שבתוכו).
 - .c מודל ecision stump עם one-vs-one (עץ בעומק 1) כמודל בסיס.
 - decision stump עם one-vs-all (עץ בעומק 1) כמודל בסיס.

ב. נגדיר אלגוריתם Random Forest פשוט:

Random Forest(*S*, *k*, max_depth, min_samples_split**):**

For i=1 to k:

 $S' = \text{Sample } \sqrt{d}$ features out of the original d features in S (keeping all samples)

 $h_i = ID3(S', max_depth, min_samples_split, criterion="entropy")$

Return $H(x) = \frac{1}{k} \sum_{i=1}^{k} h_i(x)$

אילו מבין הבחירות האלגוריתמיות הבאות צפויות להפחית את ה-Variance של המסווג הכולל שנלמד (H)? סמנו את בֹּלַ התשובות הנכונות (השאלה אינה עוסקת במקרי קצה אלא במקרה הסביר).

- (מספר העצים ביער). k הגדלת. a
- b. הגדלת max_depth (העומק המירבי המותר).
- .c הגדלת min_samples_split (מספר הדוגמאות המינימלי הנדרש לפיצול של צומת).
 - .d נירמול מקדים של הדאטה בשיטת min-max.
 - standardization (Z-score) נירמול מקדים של הדאטה בשיטת. e

(יש שאלה נוספת בעמוד הבא)

1	(2023)	תעפ"ג ו	' חורם	ד ר	พท –	לומדוח	מערכות'	7	מרוע
١	(2023)	ונשני גו	`I III I	⊥ 1	– נווע	. 7 11 1/71 (בועו בוונ	(バコルコ

עמ' 12	למערכות לומדות – מועד ב' חורף תשפ"ג (2023)	מרוא
12 139		
	(± 1) של דוגמאות ב- \mathbb{R}^d ותיוגים בינאריים $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ תון מדגם	
	$.oldsymbol{\phi} \colon \mathbb{R}^d o \mathbb{R}^{10}$ תונה פונקציית מיפוי כלשהי	13
.∀i	$i\in[m]$: $y_i\widehat{m{w}}^{ op}m{\phi}(\mathbf{x}_i)\geq c$ תון שקיימים $\widehat{m{w}}\in\mathbb{R}^{10}$ וקבוע $c>0$ המקיימים	נו
.argmin $\left(\frac{1}{m}\sum_{i} \max\{0, 1 - y_{i}\mathbf{w}^{\top}\boldsymbol{\phi}(\mathbf{x}_{i})\}\right)$: S על hinge loss גדיר בעיית אופּטימיזציה בעזרת	נו
, לאחר המיפוי ϕ) היא בהכרח אפס	S על $\overline{\mathbf{w}}$ ועל $\mathbf{\overline{w}}$ של הבעיה, האם שגיאת ה-0-1 של	K
	ומנו את התשובה הנכונה.	ס
	c(.	a
	. רק אם הפונקציה ϕ ליניארית.	b
	. רק אם הפונקציה ϕ לא ליניארית.	С
	.c=1 רק אם.	d
	$.c \geq 1$ רק אם.	e
	. לא, כי חסר גורם רגולריזציה.	.f
	ת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):	מסגרו
)

/	
ſ	
ı	
	_
ı	
ı	
ı	
ı	
	-
l	
l	
l	
	_
l	
l	
l	
ı	-
ı	
	-
	-
	_
	•
l	
	-
l	
l	
\	

בהמשך לתשובה אחוו ת): 	ת נוספת (יש לציין אם מדובר בטיוטה או

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

-	