

Network Layer: Logical Addressing

- o Communication at network layer is host-to-host
- Computer somewhere in the world need to communicate with another computer somewhere else in the world through Internet
- Packet transmitted by sending computer may pass through several LANs or WANs before reaching destination computer
- We need <u>global addressing scheme</u> called <u>logical</u> addressing
- Today, we use the term <u>IP address</u> to mean a logical address in network layer of TCP/IP protocol suite

Network Layer 4-22

22

IP Addresses

- o The Internet address are 32 bits in length
 - o Address space is 232 or 4,294,967,296
 - These addresses are referred to as IPv4 (IP version 4) addresses or simply IP address
- The need for more addresses motivated a new design of the IP layer called new generation of IP or IPv6 (IP version 6)
 - The Internet uses 128-bit addresses that give much greater flexibility in address location
 - These addresses are referred to as IPv6 (IP version 6) address

Network Layer 4-23

IP Addresses "class-full" addressing: given notion of "network", let's re-examine IP addresses: class

b. Dotted-decimal notation

25

. Binary notation

Class	Number of Blocks	Block Size	Application
Α	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

Class	Network Octets (blanks in the IP address are used for octets identifying hosts)	Total Number of Possible Networks or Licenses	Host Octets (blanks in IP address are used for octets identifying networks)	Total Number of Possible IP Addresses in Each Networks
A	0 to 127	128	0.0.1 to 255.255.254	16,777,214
В	128.0 to 191.255	64×256 16,384	0.1 to 255.254	65,534
С	192.0.0 to 223.255.255	32×256×256 2,097,152	1 to 254 Ne	254 twork Layer 4-26

Address for Private Networks

Class A
Class B
Class C

	Ran	ge	Total
10.0.0.0	to	10.255.255.255	2^{24}
172.16.0.0	to	172.31.255.255	2^{20}
192.168.0.0	to	192.168.255.255	2^{16}

Network Layer 4-27

Subnets 223.1.1.1 o IP address: o subnet part (high 223.1.2 223.1.1.2 order bits) o host part (low order bits) 223.1.3.27 223.1.1.3 subnet o What's a subnet? o device interfaces with 223.1.3.2 223.1.3.1 same subnet part of IP address o can physically reach network consisting of 3 subnets each other without intervening router Class C

Network Layer 4-28

28

IP addresses: how to get one?

- O Q: How does host get IP address?
- o hard-coded by system admin in a file
 - o Windows:
 - o control-panel->network connections->properties->Internet Protocol (TCP/IP)
 - o UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - o "plug-and-play"
 - o allow host to dynamically obtain its IP address from network server when it joins network

Network Layer 4-32

32

NAT: Network Address Translation

- Motivation: local network uses just <u>one IP address</u> as far as outside world is concerned:
 - o range of addresses not needed from ISP: just one IP address for all devices
 - o can <u>change addresses of devices</u> in local network without notifying outside world
 - o can <u>change ISP</u> without changing addresses of devices in local network
 - o devices inside local net not explicitly addressable, visible by outside world (a security plus).

Network Layer 4-42

42

NAT: Network Address Translation

Implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - . . . remote clients/servers will respond using (NAT IP address, new port #) as destination address.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Network Layer 4-43

Address Mapping

- Delivery of packet to host or router requires two levels of addressing: logical address and physical address
- We need to be able to map a logical address to its corresponding physical address and vice versa.
- Mapping Logical Address to Physical Address can be done by Address Resolution Protocol (ARP) RFC 826

Logical address Physical address

Network Layer 4-49

Internet Control Message Protocol (ICMP)

- o IP provides unreliable and connectionless datagram delivery
- o IP protocol is a best-effort delivery service that delivers datagram from original source to final destination
- Two deficiencies
 - o Lack of error control
 - o No error-reporting or error-correcting mechanism
 - Lack of assistance mechanism for host and management queries
 - o Host sometimes needs to determine if router or another host is alive
 - o Sometimes a network administrator needs information from another host or router

Network Layer 4-57

ICMP: Type of Messages

- ICMP message are divided into two broad categories
 - o Error-reporting message
 - Report problems that router or host (destination) may encounter when it processes IP packet
 - o Query message
 - o Help host or network manager get specific information from router or another host
 - o Ex. Nodes can discover their neighbors
 - o Hosts can discover and learn about routers on their network

Network Layer 4-58

58

ICMP: Message Format

 ICMP message has 8-byte header and variable-size data section

ICMP: Error Reporting o ICMP always reports error messages to original source. Error reporting Destination unreachable Quench Time exceeded Parameter problems Redirection

				1
Type	<u>Code</u>	description		
3	0	dest. network unreachable		
3	1	dest host unreachable		
3	2	dest protocol unreachable		
3	3	dest port unreachable		
3	6	dest network unknown		
3	7	dest host unknown		
4	0	source quench (congestion	control - not used)	
11	0	TTL expired		
12	0	bad IP header	Network Layer	4-60

Type: 5

60

Code 1: required part of option is missing

Type: 12	Code: 0 or 1	Checksum	
Pointer		Unused (All 0s)	
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Parameter Problem

Type: 5	Code: 0 to 3	Checksum		
IP address of the target router				
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

Redirection message format

Code 0 - Redirection for network (or Subnet) -specific route

Code 1 - Redirection for host-specific route

Code 2 - same as code 0 , based on specified type of service Code 3 - same as code 1, based on specified type of service

Network Layer 4-64

64

ICMP: Query

Type	Code	description
0	0	echo reply (ping)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery

- Query message is encapsulated in IP packet, which in turn is encapsulated in data link layer frame
- o In this case, no bytes of original IP are included in message

Network Layer 4-65

Traceroute

- Source sends series of UDP segments to dest
 - o First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router:
 - o Router discards datagram
 - o And sends to source an ICMP message (type 11, code 0): TTL expired
 - o Message includes name of $\,_{0}\,$ When source gets this router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times
- Stopping criterion
- UDP segment eventually arrives at destination host
- Destination returns ICMP "port unreachable" packet (type 3, code 3: **Destination Port** Unreachable)
 - ICMP, stops.

Network Layer 4-69

"Real" Internet delays and routes

- o What do "real" Internet delay & loss look like?
- Traceroute program (tracert for windows):
 provides delay measurement from source to router along end-end Internet path towards destination.
 - o sends three packets that will reach router *i* on path towards destination
 - o router i will return packets to sender
 - sender times interval between transmission and reply.

Network Layer 4-70

70

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

Three delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms

2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms

3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms

4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms

5 jn1-so7-0-0.0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms

6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms

7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms

8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms

9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms

10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms

11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms

12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms

13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms

14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms

15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms

16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms

17 ***

**means no response (probe lost, router not replying)

19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

Network Layer 4-71

Graph abstraction: costs

- $\cdot c(x,x') = cost of link(x,x')$
 - e.g., c(w,z) = 5
- cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

Network Layer 4-83

83

Routing Algorithm classification

- Global or decentralized information?
- o Global:
 - all routers have complete topology, link cost information
 - o "link state" algorithms
- o Decentralized:
 - router knows physicallyconnected neighbors, link costs to neighbors
 - iterative process of computation, exchange of information with neighbors
 - "distance vector" algorithms

- o Static or dynamic?
- o Static:
 - routes change slowly over time
- o Dynamic:
 - routes change more quickly
 - o periodic update
 - o in response to link cost changes

Network Layer 4-84

A Link-State Routing Algorithm

- o Dijkstra's algorithm
- o network topology, link costs known to all nodes
 - o accomplished via "link state broadcast"
 - o all nodes have same information
- o computes least cost paths from one node ('source") to all other nodes
 - o gives forwarding table for that node
- o iterative: after k iterations, know least cost path to k destination's

- o Notation:
- O C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- O(V): current value of cost of path from source to destination v
- O p(v): predecessor node along path from source to v
- O N': set of nodes whose least cost path definitively known Network Layer 4-86

86

Dijsktra's Algorithm

```
1 Initialization:
2
  N' = \{u\}
```

for all nodes v if v adjacent to u

4 5 then D(v) = c(u,v)

6 else $D(v) = \infty$

เลือก node ที่ให้ cost น้อยที่สุด เป็นสมาชิกของ N'

หา Cost จาก U ไปยัง Node ข้างเคียงก่อน

Loop

8 9 find w not in N' such that D(w) is a minimum

add w to N'

11 update D(v) for all v adjacent to w and not in N':

 $D(v) = \min(D(v), D(w) + c(w,v))$

/* new cost to v is either old cost to v or known

shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Network Layer 4-87

Dijkstra's algorithm: example D(P): current value of cost of path from source to destination P p(P): predecessor node along path from source to P D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y)N' Step D(z),p(z)u 2,u 5,u 1.u ∞ 2,u 4,x ux • 4,y 2,u 3,y uxy• 4,y uxyv 4 3,y 4,y uxyvw 4 uxyvwz • ต้องการหา Shortest Path จาก Node u ไปยังทุก Node

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
w	(u,x)
Z	(u,x)

Network Layer 4-90

90

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

where \underline{min} is taken over all neighbors v of x

Network Layer 4-93

Bellman-Ford example

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path → forwarding table

Network Layer 4-94

94

Distance Vector Algorithm

- Iterative, asynchronous: each local iteration caused by:
 - o local link cost change
 - DV update message from neighbor
- o Distributed:
 - o each node notifies neighbors only when its DV changes
 - o neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or messg from neighbor)

recompute estimates

if DV to any destination has changed, notify neighbors

Network Layer 4-97

