

Visual Domain Adaptation using Weighted Subspace Alignment

Shuo Chen¹, Fei Zhou¹, Qingmin Liao¹

¹Tsinghua University

VCIP November 30, 2016

Outline

- Motivation
- Previous Work
- Our Algorithm
- Experiments
- Conclusions

Motivation

- Mismatch between different datasets
- Background
 - Objective Recognition
- Domain Adaptation
 - learn a classifier on a labeled source domain and transfer it to a target domain

Target domain

Test

Previous Work

- Feature Transformation Techniques
 - GFK (Gong, CVPR 2012)-Geodesic Flow Kernel
 - SA (Fernando, ICCV 2013)-Subspace Alignment
 - LM (Gong, IJCV 2014)-Landmarks

Our Algorithm

^{*} Deeper color means that the source sample has a higher weight.

Weight Calculating

- Criterion: distance between source and target samples
- Weight function:

$$\omega_i = \omega^{(0)} + \sum_{j=1}^n \mu(v_j - d_{ji})$$

 $\circ \omega^{(0)}$ is the initial weight

$$\mu(x) = \begin{cases} 1, x = 0 \\ 0, x < 0 \end{cases}$$

 $d_{ji} = \left\| \mathbf{t}_j - \mathbf{s}_i \right\|_2^2$ the distance between target sample and source sample

 $v_j = \min_{i=1...m} \{d_{ji}\}$ the minimum distance between the target sample and source samples

Subspace Alignment

Weighted covariance matrix

$$\mathbf{C} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{s}_i - \bar{s})^T \omega_i (\mathbf{s}_i - \bar{s})$$

 \bar{s} is the weighted mean

Eigen-decomposition on \mathbf{C} and we get \mathbf{X}_S and \mathbf{X}_T .

 \mathbf{X}_S and \mathbf{X}_T lie in the subspace of the original feature space.

We want to minimize:

$$F(\mathbf{M}) = \|\mathbf{X}_S \mathbf{M} - \mathbf{X}_T\|_F^2$$

M is the transformation matrix.

The Frobenius norm is invariant to orthonormal operations.

$$F(\mathbf{M}) = \left\| \mathbf{X}_S^T \mathbf{X}_S \mathbf{M} - \mathbf{X}_S^T \mathbf{X}_S \mathbf{X}_T \right\|_F^2$$

Finally, we get:

$$\mathbf{M} = \mathbf{X}_S^T \mathbf{X}_T$$

Experimental Setup

- Four domains
 - Amazon, Caltech, DSLR, Webcam
- Features (Saenko, ECCV 2010)
 - Bag-of-SURF
- Classifier: 1NN

Accuracy of target domains using 1NN classifier

Method	NN	GFK	LM	SA	Ours
$\mathcal{A} o \mathcal{C}$	26.00	40.25	40.16	39.80	39.98
$\mathcal{A} \to \mathcal{D}$	25.48	36.31	40.76	36.94	38.85
$\mathcal{A} \to \mathcal{W}$	29.83	38.98	38.98	37.63	39.32
$\mathcal{C} \to \mathcal{A}$	23.70	41.02	41.75	42.07	42.17
$\mathcal{C} \to \mathcal{D}$	25.48	38.85	39.49	45.86	46.49
$\mathcal{C} \to \mathcal{W}$	25.76	40.68	37.97	32.20	42.03
$\mathcal{D} \to \mathcal{A}$	28.50	32.05	30.97	34.24	35.38
$\mathcal{D} \to \mathcal{C}$	26.27	30.28	31.34	32.50	34.37
$\mathcal{D} \to \mathcal{W}$	63.39	75.59	84.75	88.47	89.49
$\mathcal{W} \to \mathcal{A}$	22.96	29.75	31.00	34.34	33.19
$\mathcal{W} \to \mathcal{C}$	19.86	30.72	29.21	28.76	30.89
$\mathcal{W} \to \mathcal{D}$	59.24	80.89	83.44	88.54	90.44
Average	31.37	42.95	44.15	45.11	46.88

Conclusions

- We present an algorithm aligning the subspace generated on the reweighted samples.
- The source samples which distribute more similarly to target domain are given higher weights.
- The subspaces of reweighted source samples and target samples are aligned.
- See our paper for more details and our full algorithm.
- In future work, we plan to combine our method with deep neural network.

Thanks

chens14@mails.tsinghua.edu.cn