*Q	Method	Formula	Convergence/Info	Rate
1	Gaussian	Swap, X, - rows of [AIB] to get UTM	Partial Pivot: PAX=PB	Both =
	Elimination	Bekwd Sub to get values of [X].	4 pivot = largest magnitude	
	CHAMIAICOAL	>> X = A\B		fwd/bwd
	L.u.	U= UTM, using Gauss . Etim. on [A].	A=LU > LUX=B, UX=Y & LY=B	Sub = O(N2)
	Factorization	L = LTM, 1 on diag, then multipliers.		
	10000110001011	>> [LUP] = lu(A)		
1	Eigenvalues	$det(A-\lambda I)=0 \gg [VD]=eig(A)$	* At least one akk will = 0	NIA
	Eigenvectors	$(A-\lambda I)V=0$	4 let VK=1	
	Power Method	YK= AXK, XK+1 = 1/CK+1 (YK)	dom. e-val is unique > conv.	()x)k
		4 CK+1 is largest mag. coord. of YK.	d.e.v. not unique (3,+3) > div.	1 / 1/
2-3	Fixed Point	PK+1 = g(pk)	g, g' & C[a, b] 1 p & p. & [a, b]	N/A =1 > may/no
	$f(x)=0 \rightarrow x=g(x)$		g'(p) <1 → conv. ">1 → div.	3
	Bisection	c = (a+b)/2 & find f(c) *f(c)=0 -> Stop	f ∈ ([a, b] 1 f(a)f(b) < 0 > GC	linear
		suse c to replace a or b to keep [+,-]	" ∧ " → GC	linear
	Regula Falsi	$C = b - [f(b)(b-a) \div (f(b) - f(a))]$		M=1 >quad.
		PK+1= PK-[f(PK)(PK-PK-1)=(f(PK)-f(PK-1))]	$f \in C[a,b] \rightarrow LC$ " $\land f'(x_{k-1}) \neq 0 \rightarrow LC$	M>1 > finear
4	EM3 Newton	$x_k = x_{k-1} - \{M\}\{f(x_{k-1}) \div f'(x_{k-1})\}$		N/A
7	Jacobi	$x_{k+1} = f_1(y_k, z_k)$ $z_{k+1} = f_3(x_k, y_k)$	A is strictly diagonally dom. 6 lakel > E = 1, 1 * k lakel , Yk	INITA
	Gauss-Seidel	yk+1 = f2(Xk,Zk)	⇒ convergense	N/A
		ZK+1=" YK+1=f2(XK+1,ZK) ZK+1=f3(XK+1,YK+1)	4 else, may/not conv.	
	Non-Linear	Both = Same as linear, but convis new.		NIA
	Non-Emed	49,,92, dq e[R] 1 (P,q) + (Po, 80) + [R]	> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	Lagrange		En= fN+1(c)(x-x0)(x-xN)	N/A
	Local south	$P_{N}(x) = \sum_{k=0}^{N} y_{k} L_{N,k}(x) \notin L_{N,k}(x) = \prod_{j=0}^{N} \frac{x - x_{j}}{x_{k} - x_{j}}$	(N+1)!	$\Rightarrow c \in [X_0, X_N]$
1	Newton	$P_1(x) = a_0 + a_1(x-x_0)$	EN = "	N/A
		$P_{2}(x) = 1 + \alpha_{2}(x - x_{0})(x - x_{1})$	a an → use div. diff. table	
		PN(x)="+"+ + an(x-x0)(x-XN-1)		
1-2	Differentiation Taylor's Poly	See Difference Formulas Sheet f(x)+ h/11[f(x)]+h/21[f"(x)]+ h ³ /31[f"(x)]+	E-Err = lexact - appox	N/A
		$f(x) + \frac{h}{h} f(x) + \frac{h}{h} f(x) + \frac{h}{h} f(x) + \frac{h}{h} f(x) + \dots$	=f(x+h) R-trr======/exact	11
		f(x) - h/11[f'(x)] + h2/21[f"(x)] - h3/31[f"(x)]+	= f(x-h)	11/0
1	10 Line y=Ax+B	AEXX+ BEXK= EXKYK & AEXX+ NB= EyK	KWRE = F3 = [1/NZ K=1 (+(XK)-AK),1]	N/A
		A= Ext yk ÷ Ext	(A) (A) V-1, 80-0.0	11
	L Change Var	$0 y = A/x + B \rightarrow X = 1/x 9 y = (Ax + B)^{-2} \rightarrow Y = 1/y$	Dy=cxA >Y=lny &X=lnx &B=lnc	
		@ y= 1/Ax+B → Y= 1/y @y= x/A+Bx @y= Alnx+β→ X= lnx 4 y= 1/y = 1/x	Gy=cx 71-xig. x xix. B the	
4	T	h=b-a & 3bf(x)dx = h/2[fo+f,]	E-Err & R-Err are same.	O(h3), deg.
-	Trapezoidal Comp. Trap.	96 f(x)dx= h/2 [fo+2(f,++fm-1)+fm]	h=(b-a)/M	O(h2)
	Simpson	36f(x)dx = 1/3[fo+4f,+fa]	h=(b-a)/2	O(h5), deg
	Comp. Simp.	asbf(x)dx = 1/3[fo+4(Efodd)+2(Efeven)+fam.		O(h4) °
1	Optimization	f'(x)=0 or DNE → x is possible max/min		
		· f' changes from +ve to -ve @c > max=c		
		·f' changes from -ve to+ve @ c> min=c	> frinsearch ('f', [xo, 40])	
	Golden Ratio	See formula sheet.	f is unimodal on [a, b]	
		· f(c) = f(d) > new = [a,d], dk+1 = ck	Surique min point in [a, b]	
		· f(c)>f(d) -> new = [c, 6], cx+1 = dx	AND f & Clabb.	