Appende Selected Thermodynamic Data

Note: All vasumed precise to at least ± 1 .

Substance	$\Delta H_{ m f}^{ m o}$	$\Delta G_{ m f}^{\circ}$	\mathcal{S}°		Substance	$\Delta H_{\mathrm{f}}^{\circ}$	$\Delta G_{ m f}^{ m o}$	S°
and State	(kJ/mol)	(kJ/mol)	(J/K·mol)		and State	(kJ/mol)	(kJ/mol)	(J/K · mol)
Aluminum					Calcium			
Al(s)	0	0	28		Ca(s)	0	0	41
$Al_2O_2(s)$	-1676	-1582	51		$CaC_2(s)$	-63	-68	70
$Al(OH)_3(s)$	-1277				$CaCO_3(s)$	-1207	-1129	93
AlCl ₃ (s)	-704	-629	111		CaO(s)	-635	-604	40
Barium					$Ca(OH)_2(s)$	-987	899	83
Ba(s)	0	0	67		$Ca_3(PO_4)_2(s)$	-4126	-3890	241
$BaCO_3(s)$	-1219	-1139	112		$CaSO_4(s)$	-1433	-1320	107
BaO(s)	-582	-552	70		$CaSiO_3(s)$	-1630	-1550	84
$Ba(OH)_2(s)$	-946				Carbon			
$BaSO_4(s)$	-1465	-1353	. 132		C(s) (graphite)	0	0	6
Beryllium					C(s) (diamond)	2	3	. 2
Be(s)	0	0	10		CO(g)	-110.5	-137	198
BeO(s)	-599	-569	14		$CO_2(g)$	-393.5	-394	214
$Be(OH)_2(s)$	-904	-815	47		$CH_4(g)$	-75	-51	186
Bromine					$CH_3OH(g)$	-201	-163	240
$Br_2(l)$. 0	0	152		$CH_3OH(l)$	-239	-166	127
$Br_2(g)$	31	3 .	245	-	$H_2CO(g)$	-116	-110	219
$Br_2(aq)$	-3	4	130		HCOOH(g)	-363	-351	249
$Br^-(aq)$	-121	-104	82		HCN(g)	135.1	125	202
$\mathrm{HBr}(g)$	-36	-53	199		$C_2H_2(g)$	227	209	201
Cadmium					$C_2H_4(g)$	52	68	219
Cd(s)	0 :	0	52		$CH_3CHO(g)$	-166	-129	250
CdO(s)	-258	-228	55		$C_2H_5OH(l)$	-278	-175	161
$Cd(OH)_2(s)$	-561	-474	96		$C_2H_6(g)$	-84.7	-32.9	229.5
CdS(s)	-162	-156	65		$C_3H_6(g)$	20.9	62.7	266.9
$CdSO_4(s)$	-935	-823	123		$C_3H_8(g)$	-104	-24	270
	\$\footnote{\chi_1}\$							(continue

A22 Appendixes

Appendix Four (continued)

Substance	$\frac{\Delta H_{\rm f}^{\circ}}{(-1/(-1))}$	$\Delta G_{\rm f}^{\circ}$	So	Substance	$\Delta H_{\mathrm{f}}^{\circ}$	$\Delta G_{ m f}^{\circ}$	S°
and State	(kJ/mol)	(kJ/mol)	$(J/K \cdot mol)$	and State	(kJ/mol)	(kJ/mol)	$(J/K \cdot mol)$
Carbon, continued				Iron			
$C_2H_4O(g)$				Fe(s)	0	0	27
(ethylene oxide)	-53	-13	242	$Fe_3C(s)$	21	15	108
$CH_2 = CHCN(g)$	185.0	195.4	274	$Fe_{0.95}O(s)$ (wustite)	-264	-240	59
$CH_3COOH(l)$	-484	-389	160	FeO	-272	-255	61
$C_6H_{12}O_6(s)$	-1275	-911	212	$Fe_3O_4(s)$ (magnetite)	-1117	-1013	146
CCI ₄	-135	-65	216	$Fe_2O_3(s)$ (hematite)	-826	-740	90
Chlorine				FeS(s)	-95	-97	. 67
$.Cl_2(g)$	0	0	223	$FeS_2(s)$	-178	-166	53
$Cl_2(aq)$	-23	7	121	$FeSO_4(s)$	-929	-825	121
$Cl^{-}(aq)$	-167	-131	57	Lead			121
HCl(g)	-92	-95	187	Pb(s)	0	0	67
Chromium		,,,	107	$PbO_2(s)$	-277	-217	65
Cr(s)	0	0	24	PbS(s)	-100	99	69
$Cr_2O_3(s)$	-1128	-1047	24 81	$PbSO_4(s)$	-920	-813	91
$CrO_3(s)$	-579	-1047 -502	72		920	013	149
	-319	-302	12	Magnesium	•		
Copper		_		Mg(s)	0	0	33
Cu(s)	0	0	33	$MgCO_3(s)$	-1113	-1029	66
$CuCO_3(s)$	-595	-518	88	MgO(s)	-602	-569	27
$Cu_2O(s)$	-170	-148	93	$Mg(OH)_2(s)$	-925	-834	64
CuO(s)	-156	-128	43	Manganese			
$Cu(OH)_2(s)$	-450	-372	108	Mn(s)	0	0	32
CuS(s)	-49	-49	67	MnO(s)	-385	-363	60
Fluorine				$Mn_3O_4(s)$	-1387	-1280	149
$F_2(g)$	0	0	203	$Mn_2O_3(s)$	-971	-893	110
$F^{-}(aq)$	-333	-279	-14	$MnO_2(s)$	-521	-466	53
HF(g)	-271	-273	174	$MnO_4^-(aq)$	-543	449	190
Hydrogen				Mercury			
$H_2(g)$	0	0 .	131	Hg(l)	0	0	76
H(g)	217	203	115	$Hg_2Cl_2(s)$	-265	-211	196
$H^+(aq)$	0	0	0	$HgCl_2(s)$	-230	-184	144
$OH^-(aq)$	-230	-157	-11	HgO(s)	-90	-59	70
$H_2O(l)$	-286	-237	70	HgS(s)	-58	-49	78
$H_2O(g)$	-242	-229	189	Nickel			
Iodine				Ni(s)	0	0	30
$I_2(s)$	0	0	116	$NiCl_2(s)$	-316 [°]	-272	30 107
$I_2(g)$	62	19	261	NiO(s)	-310 -241	-272 -213	38
$I_2(aq)$	23	16	137	$Ni(OH)_2(s)$	-241 -538	-213 -453	30 79
$I^{-}(aq)$	-55	-52	106	NiS(s)	538 93	-433 90	53
· (aq)	33	-32	100	1412(2)	-93	90	ىد

Appendixes A23

(continued)

Appendix Four (continued)

	Substance	A TTO	A CO	en.				, T
1	and State	$\frac{\Delta H_{\rm f}^{\circ}}{\partial r H_{\rm max}}$	$\Delta G_{\rm f}^{\rm o}$	So	Substance	$\Delta H_{ m f}^{ m o}$	$\Delta G_{ m f}^{ m o}$	S°
	and State	(kJ/mol)	(kJ/mol)	$(J/K \cdot mol)$	and State	(kJ/mol)	(kJ/mol)	(J/K·mol)
į	Nitrogen							
	Nurogen $N_2(g)$	0	0	100	Silicon			
1	$NH_3(g)$			192	$SiO_2(s)$ (quartz)	-911	-856	42
76	$NH_3(g)$ $NH_3(aq)$	-46	-17	193	$SiCl_4(l)$	-687	-620	240
ĺ.		-80 * 132	-27	111				
T.	$NH_4^+(aq)$	³−132	-79	/113	Silver			
9	NO(g)	90	. 87	211	Ag(s)	0	0	43
Ä	$NO_2(g)$	34	52	240	$Ag^+(aq)$	105	77	73
Š	$N_2O(g)$	82	104	220	AgBr(s)	-100	-97	107
	$N_2O_4(g)$	10	98	304	AgCN(s)	146	164	84
1	$N_2O_4(l)$	-20	97	209	AgCl(s)	-127	-110	96
	$N_2O_5(s)$	-42	134	178	$Ag_2CrO_4(s)$	-712	-622	217
	$N_2H_4(l)$	51	149	121	AgI(s)	-62	66	115
	$N_2H_3CH_3(l)$	54	180	166	$Ag_2O(s)$	-31	-11	122
	$HNO_3(aq)$	-207	-111	146	$Ag_2S(s)$	-32	-40	146
	$HNO_3(l)$	-174	-81	156	•			
	$NH_4ClO_4(s)$	-295	-89	186	Sodium			
	$NH_4Cl(s)$	-314	-203	96	Na(s)	0	0	51
	Oxygen				$Na^+(aq)$	-240	-262	. 59
要	$O_2(g)$	0	0	205	NaBr(s)	-360	-347	84
題	O(g)	249	232	161	$Na_2CO_3(s)$	-1131	-1048	136
	$O_3(g)$	143	163	239	$NaHCO_3(s)$	-948	-852	102
	Phosphorus		100	237	NaCl(s)	-411	-384	.72
	P(s) (white)	0	0	, ,	NaH(s)	-56	-33	40
Ť		0	0	41	NaI(s)	-288	-282	91
Ž.	P(s) (red)	-18	-12	23	$NaNO_2(s)$	-359		
變	P(s) (black)	-39	-33	23	$NaNO_3(s)$	-467	-366	116
	$P_4(g)$	59	24	280	$Na_2O(s)$	-416	-377	73
	$PF_5(g)$	-1578.	-1509	296	$Na_2O_2(s)$	-515	-451	95
	$PH_3(g)$	5	13	210	NaOH(s)	-427	-381	64
	$H_3PO_4(s)$	-1279	-1119	110	NaOH(aq)	-470	-419	50
	$H_3PO_4(l)$	-1267			(44)	.,,	14.7	50
Ť	$H_3PO_4(aq)$	-1288	-1143	158	Sulfur			
	$P_4O_{10}(s)$	-2984	-2698	229	S(s) (rhombic)	0	0	32
	Potassium				S(s) (monoclinic)	0.3	0.1	33
	K(s)	0	0	64	$S^{2-}(aq)$	33	86	-15
ľ	KCl(s)	-436	-408	83	$S_8(g)$	102	50	-13 431
	$KClO_3(s)$	-391	-290	143	$SF_6(g)$	-1209		
	$KClO_4(s)$	-433	-304	151	$H_2S(g)$		-1105 -34	292
	$K_2O(s)$	-361	-322	98	$SO_2(g)$	-21 -297	-34	206
	$K_2O_2(s)$	-496	-430	113	$SO_2(g)$ $SO_3(g)$	-297 -396	-300	248
	$KO_2(s)$	-283	-238	117	$SO_3(g)$ $SO_4^{2-}(aq)$		-371	257
	KOH(s)	-425	-379	79		-909 914	-745	20
	KOH(aq)	-481	-440	9.20	$H_2SO_4(l)$	-814 000	-690	157
6		101	770	9.20	$H_2SO_4(aq)$	-909	-745	20

A24 Appendixes

Appendix Four (continued)

Substance	$\Delta H_{ m f}^{ m o}$	$\Delta G_{\rm f}^{\circ}$	S°
and State	(kJ/mol)	(kJ/mol)	$\overline{(J/K \cdot mol)}$
Tin			
Sn(s) (white)	0	0	52
Sn(s) (gray)	-2	0.1	44
SnO(s)	-285	-257	56 -
$SnO_2(s)$	-581	-520	52
$Sn(OH)_2(s)$	-561	-492	155
Titanium			
$TiCl_4(g)$	-763	-727	355
$TiO_2(s)$	-945	-890	50
Uranium			
U(s)	0	0 .	50
$UF_6(s)$	-2137	-2008	228
$UF_6(g)$	-2113	-2029	380
$UO_2(s)$	-1084	-1029	78
$U_3O_8(s)$	-3575	-3393	282
$UO_3(s)$	1230	-1150	99

Substance and State	$\frac{\Delta H_{\rm f}^{\circ}}{({\rm kJ/mol})}$	$\frac{\Delta G_{\rm f}^{\circ}}{(\text{kJ/mol})}$	$\frac{S^{\circ}}{(J/K \cdot mol)}$
Xenon Xe(g) XeF ₂ (g) XeF ₄ (s) XeF ₆ (g) XeO ₃ (s)	0 -108 -251 -294 402	0 -48 -121	170 254 146
Zinc $Zn(s)$ $ZnO(s)$ $ZnO(h)_2(s)$ $ZnS(s)$ (wurtzite) $ZnS(s)$ (zinc blende) $ZnSO_4(s)$	0 -348 -642 -193 -206 -983	0 -318 -201 -874	42 44 58 120