Doctrine and Covenants 88: 118

And as all have not faith, seek ye diligently and teach one another words of wisdom; yea, seek ye out of the best books words of wisdom; seek learning, even by study and also by faith.

Some things

- Homework:
 - Due before class on the day indicated
 - Turn in pdf or jpeg make sure it is legible and easy to read
- Labs
 - Due at midnight
 - Turn in the .ipynb
- Policies

NEURON

Perceptron Learning Algorithm

- First neural network learning model in the 1960's
 - Frank Rosenblatt
- Simple and limited (single layer model)
- Basic concepts are similar for multi-layer models so this is a good learning tool
- Still used in some current applications (large business problems, where intelligibility is needed, etc.)

Perceptron Node – Threshold Logic Unit

$$z = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta \\ 0 & \text{if } \sum_{i=1}^{n} x_i w_i < \theta \end{cases}$$

Perceptron Node – Threshold Logic Unit

- Learn weights such that an objective function is maximized.
- What objective function should we use?
- What learning algorithm should we use?

$$z = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta \\ 0 & \text{if } \sum_{i=1}^{n} x_i w_i < \theta \end{cases}$$

Perceptron Learning Algorithm

$$\begin{array}{c|cccc} x_1 & x_2 & t \\ \hline .8 & .3 & 1 \\ .4 & .1 & 0 \\ \end{array}$$

$$z = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta \\ 0 & \text{if } \sum_{i=1}^{n} x_i w_i < \theta \end{cases}$$

First Training Instance

$$\begin{array}{c|cccc} x_1 & x_2 & t \\ \hline .8 & .3 & 1 \\ .4 & .1 & 0 \\ \end{array}$$

$$z = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta \\ 0 & \text{if } \sum_{i=1}^{n} x_i w_i < \theta \end{cases}$$

Second Training Instance

$$\begin{array}{c|cccc} x_1 & x_2 & t \\ \hline .8 & .3 & 1 \\ .4 & .1 & 0 \\ \end{array}$$

$$z = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i w_i \ge \theta \\ 0 & \text{if } \sum_{i=1}^{n} x_i w_i < \theta \end{cases}$$

Need to make a correction

Perceptron Rule Learning

$$\Delta w_i = c(t-z) x_i$$

- Where w_i is the weight from input i to the perceptron node,
 - c is the learning rate,
 - t is the target for the current instance,
 - z is the current output, and
 - $-x_i$ is i^{th} input
- Least perturbation principle
 - Only change weights if there is an error
 - small c rather than changing weights sufficient to make current pattern correct
 - Scale by x_i

$$w_{ij} \leftarrow w_{ij} - \eta(y_j - t_j) \cdot x_i$$

Perceptron Rule Learning

- Create a perceptron node with n inputs
- Iteratively select a pattern from the training set
- Calculate the output value z
- Apply the perceptron rule to adjust weights

- Each iteration through the training set is an epoch
- Continue training until total training set error ceases to improve
- Perceptron Convergence Theorem: Guaranteed to find a solution in finite time if a solution exists

Weight Versus Threshold

Do you need to adjust Theta? Yes, in most cases

From the textbook

Augmented Pattern Vectors

```
1 0 1 -> 0
1 0 0 -> 1
Augmented Version
1 0 1 1 -> 0
1 0 0 1 -> 1
```

- Treat threshold like any other weight. No special case. Call it a *bias* since it biases the output up or down.
- Since we start with random weights anyways, can ignore the $-\theta$ notion, and just think of the bias as an extra available weight. (note the author uses a -1 input)
- Always use a bias weight

Perceptron Rule Example

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

```
Training set 0 0 1 -> 0
1 1 1 -> 1
1 0 1 -> 1
0 1 1 -> 0
```

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (z) ΔW
0.01.1	0	0 0 0 0		

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (z	ΔW
0 0 1 1	0	0 0 0 0	0	0	0 0 0 0
1111	1	0.0.0.0			

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (z	ΔW
0 0 1 1	0	0 0 0 0	0	0	0 0 0 0
1111	1	0000	0	0	1 1 1 1
1011	1	1111			

Challenge Question - Perceptron

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$
- Training set 0 0 1 -> 0
 1 1 1 -> 1
 1 0 1 -> 1
 0 1 1 -> 0

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (2	z) ΔW		
0 0 1 1	0	0 0 0 0	0	0	0 0	0	0
1111	1	0 0 0 0	0	0	1 1	1	1
1011	1	1111					

- Once it converges the final weight vector will be
 - A. 1111
 - В. -1010
 - C. 0000
 - D. 1000
 - E. None of the above

slido

Once it converges, the final weight vector will be

(i) Start presenting to display the poll results on this slide.

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (2	z) <u>ΔW</u>
0 0 1 1	0	0 0 0 0	0	0	0 0 0 0
1111	1	0 0 0 0	0	0	1 1 1 1
1011	1	1111	3	1	0 0 0 0
0111	0	1111			

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

<u>Pattern</u>	Target (t)	Weight Vector (w_i)	<u>Net</u>	Output (z)	ΔW
0 0 1 1	0	0 0 0 0	0	0	0 0 0 0
1111	1	0 0 0 0	0	0	1 1 1 1
1011	1	1111	3	1	0 0 0 0
<u>0 1 1 1</u>	<u>0</u>	<u>1111</u>	<u>3</u>	1	<u>0 -1 -1 -1</u>
0 0 1 1	0	1000			

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 0: $\Delta w_i = c(t-z) x_i$

<u>Pattern</u>	Target (t)	Weight Vector (w _i)	<u>Net</u>	Output (z)	ΔW
0 0 1 1	0	0 0 0 0	0	0	0 0 0 0
1111	1	0 0 0 0	0	0	1 1 1 1
1011	1	1111	3	1	0 0 0 0
<u>0 1 1 1</u>	<u>0</u>	<u>1111</u>	<u>3</u>	1	<u>0 -1 -1 -1</u>
0 0 1 1	0	1000	0	0	0 0 0 0
1111	1	1000	1	1	0 0 0 0
1011	1	1000	1	1	0 0 0 0
0 1 1 1	0	1000	0	0	0 0 0 0

Perceptron Homework

- Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)
- Assume a learning rate c of 1 and initial weights all 1: $\Delta w_i = c(t-z) x_i$
- Show weights after each pattern for just one epoch

```
Pattern Target (t) Weight Vector (w_i) Net Output (z) \Delta W
```

Training Sets and Noise

 Assume a Probability of Error at each input and output value each time a pattern is trained on

- 00101100110 -> 0110
- i.e. P(error) = .05
- Or a probability that the algorithm is applied wrong (opposite) occasionally
- Averages out over learning

Linear Separability

2-d case (two inputs)

$$W_1X_1 + W_2X_2 > \theta \ (Z=1)$$

$$W_1X_1 + W_2X_2 < \theta \ (Z=0)$$

So, what is decision boundary?

$$W_1X_1 + W_2X_2 = \theta$$

$$X_2 + W_1 X_1 / W_2 = \theta / W_2$$

$$X_2 = (-W_1/W_2)X_1 + \theta/W_2$$

$$Y = MX + B$$

2-d case (two inputs)

If no bias weight, the hyperplane must go through the origin.

Note that since
$$\Theta$$
 = bi

Note that since $\Theta =$ -bias, the equation with bias is:

$$X_2 = (-W_1/W_2)X_1 - bias/W_2$$

$$\mathbf{M} = -\mathbf{W}_1/\mathbf{W}_2$$

$$B = -bias/W_2$$

$$W_1X_1 + W_2X_2 > \theta \ (Z=1)$$

$$W_1X_1 + W_2X_2 < \theta \ (Z=0)$$

So, what is decision boundary?

$$W_1X_1 + W_2X_2 = \theta$$

$$X_2 + W_1 X_1 / W_2 = \theta / W_2$$

$$X_2 = (-W_1/W_2)X_1 + \theta/W_2$$

$$Y = MX + B$$

Note: bias is the weight for bias input

Linear Separability

Linear Separability and Generalization

When is data noise vs. a legitimate exception

Limited Functionality of Hyperplane

Is there a dividing hyperplane?

• d = # of dimensions (i.e. inputs)

- d = # of dimensions
- $P = 2^d = \#$ of Patterns

```
• d = \# of dimensions
• P = 2^d = \# of Patterns
• 2^P = 2^{2^d} = \# of Functions
• Total Functions
• Linearly Separable Functions
• 2
• 2
• 4
• 4
```

16

14

```
• d = \# of dimensions
P = 2^d = \# of Patterns
2^P = 2^{2^d} = \# of Functions
              Total Functions Linearly Separable Functions
0
              4
              16
                                             14
              256
                                             104
              65536
                                             1882
5
              4.3 \times 10^9
                                             94572
              1.8 \times 10^{19}
                                             1.5 \times 10^{7}
              3.4 \times 10^{38}
                                             8.4 \times 10^9
```

Linearly Separable Functions

$$LS(P,d) = 2 \sum_{i=0}^{d} \frac{(P-1)!}{(P-1-i)!i!}$$
 for $P > d$

$$= 2P \text{ for } P \leq d$$

(All patterns for d=P)
i.e. all 8 ways of dividing 3 vertices of a cube for d=P=3

Where *P* is the # of patterns for training and *d* is the # of inputs

$$\lim_{d \to \infty} (\# \text{ of LS functions}) = \infty$$

Linear Models which are Non-Linear in the Input Space

So far we have used

$$f(\mathbf{x}, \mathbf{w}) = sign(\sum_{i=1}^{n} w_i x_i)$$

• We could preprocess the inputs in a non-linear way and do

$$f(\mathbf{x}, \mathbf{w}) = sign(\sum_{i=1}^{m} w_i \phi_i(\mathbf{x}))$$

- To the perceptron algorithm it is the same but with more/different inputs. It still uses the same learning algorithm.
- For example, for a problem with two inputs x and y (plus the bias), we could also add the inputs x^2 , y^2 , and $x \cdot y$
- The perceptron would just think it is a 5-dimensional task, and it is linear (5-d hyperplane) in those 5 dimensions
 - But what kind of decision surfaces would it allow for the original 2-d input space?

Quadric Machine

- All quadratic surfaces (2nd order)
 - ellipsoid
 - parabola
 - etc.
- That significantly increases the number of problems that can be solved
- Can we solve XOR with this setup?

Quadric Machine

- All quadratic surfaces (2nd order)
 - ellipsoid
 - parabola
 - etc.
- That significantly increases the number of problems that can be solved
- But still many problem which are not quadrically separable
- Could go to 3rd and higher order features, but number of possible features grows exponentially
- Multi-layer neural networks will allow us to discover highorder features automatically from the input space

Simple Quadric Example

- What is the decision surface for a 1-d (1 input) problem?
- Perceptron with just feature f_1 cannot separate the data
- Could we add a transformed feature to our perceptron?

Simple Quadric Example

- Perceptron with just feature f_1 cannot separate the data
- Could we add a transformed feature to our perceptron?
- $f_2 = f_1^2$

Simple Quadric Example

- Perceptron with just feature f_1 cannot separate the data
- Could we add another feature to our perceptron $f_2 = f_1^2$
- Note could also think of this as just using feature f_1 but now allowing a quadric surface to divide the data
 - Note that f_1 not actually needed in this case

Quadric Machine Homework

- Assume a 2-input perceptron expanded to be a quadric (2nd order) perceptron, with 5 input weights $(x, y, x \cdot y, x^2, y^2)$ and the bias weight
 - Assume it outputs 1 if net > 0, else 0
- Assume a learning rate c of .5 and initial weights all 0
 - $\Delta w_i = c(t-z) x_i$
- Show all weights after each pattern for one epoch with the following training set

X	У	Target
0	.4	0
1	1.2	1
.5	.8	0

How to Handle Multi-Class Output

- This is an issue with learning models which only support binary classification (perceptron, SVM, etc.)
- Create 1 perceptron for each output class, where the training set considers all other classes to be negative examples (one vs the rest)
 - Run all perceptrons on novel data and set the output to the class of the perceptron which outputs high
 - If there is a tie, choose the perceptron with the highest net value
- Another approach: Create 1 perceptron for each pair of output classes, where the training set only contains examples from the 2 classes (one vs one)
 - Run all perceptrons on novel data and set the output to be the class with the most wins (votes) from the perceptrons
 - In case of a tie, use the net values to decide
 - Number of models grows by the square of the output classes

UC Irvine Machine Learning Data Base Iris Data Set

4.8,3.0,1.4,0.3,	Iris-setosa
5.1,3.8,1.6,0.2,	Iris-setosa
4.6,3.2,1.4,0.2,	Iris-setosa
5.3,3.7,1.5,0.2,	Iris-setosa
5.0,3.3,1.4,0.2,	Iris-setosa
7.0,3.2,4.7,1.4,	Iris-versicolor
6.4,3.2,4.5,1.5,	Iris-versicolor
6.9,3.1,4.9,1.5,	Iris-versicolor
5.5,2.3,4.0,1.3,	Iris-versicolor
6.5,2.8,4.6,1.5,	Iris-versicolor
6.0,2.2,5.0,1.5,	Iris-viginica
6.9,3.2,5.7,2.3,	Iris-viginica
5.6,2.8,4.9,2.0,	Iris-viginica
7.7,2.8,6.7,2.0,	Iris-viginica
6.3,2.7,4.9,1.8,	Iris-viginica

Quiz

Password is - perceptron

Determining Model Performance

Objective Functions: Accuracy

- How do we judge the quality of a particular model (e.g. Perceptron with a particular setting of weights)
- Consider how accurate the model is on the data set
 - Classification accuracy = # Correct/Total instances
 - Classification error = # Misclassified/Total instances (= 1 acc)

Objective Functions: Error

- Usually minimize a Loss function (aka cost, error)
- For real valued outputs and/or targets
 - Pattern error = Target output: Errors could cancel each other
 - $\Sigma |t_j z_j|$ (L1 loss), where j indexes all outputs in the pattern
 - Common approach is Squared Error = $\sum (t_i z_j)^2$ (L2 loss)
- For nominal data, pattern error is typically 1 for a mismatch and 0 for a match
 - For nominal (including binary) output and targets, L1, L2, and classification error are equivalent

Mean Squared Error

- Mean Squared Error (MSE) = SSE/n where n is the number of instances in the data set
 - This can be nice because it normalizes the error for data sets of different sizes
 - MSE is the average squared error per pattern
- Root Mean Squared Error (RMSE) is the square root of the MSE
 - This puts the error value back into the same units as the features and can thus be more intuitive
 - Since we squared the error on the SSE
 - RMSE is the average distance (error) of targets from the outputs in the same scale as the features
 - Note RMSE is the root of the total data set MSE, and NOT the sum of the root of each individual pattern MSE

Challenge Question - Error

Given the following data set, what is the L1 $(\Sigma | t_i - z_i|)$, SSE $(L2) (\Sigma (t_i - z_i)^2)$, MSE, and RMSE error for the entire data set?

X	У	Output	Target	Data Set
2	-3	1	1	
0	1	0	1	
.5	.6	.8	.2	
L1				?
SSE				?
MSE				?
RMSE				?

- A. .4 1 1 1
- B. 1.6 2.36 1 1
- C. .4 .64 .21 0.453
- D. 1.6 1.36 .67 .82
- E. None of the above

slido

What are the errors for the data?

① Start presenting to display the poll results on this slide.

Challenge Question - Error

Given the following data set, what is the L1 $(\Sigma | t_i - z_i|)$, SSE $(L2) (\Sigma (t_i - z_i)^2)$, MSE, and RMSE error for the entire data set?

X	У	Output	Target	Data Set	
2	-3	1	1		
0	1	0	1		
.5	.6	.8	.2		
L1				1.6	
SSE				1.36	
MSE				1.36/3 = .453	
RMSE				.45^.5 = .67	

- A. .4 1 1 1
- B. 1.6 2.36 1 1
- C. .4 .64 .21 0.453
- D. 1.6 1.36 .67 .82
- E. None of the above

Error Values Homework

- Given the following data set, what is the L1, SSE (L2), MSE, and RMSE error of Output1, Output2, and the entire data set? Fill in cells that have a ?.
 - Notes: For instance 1 the L1 pattern error is 1 + .4 = 1.4 and the SSE pattern error is 1 + .16 = 1.16. The Data Set L1 and SSE errors will just be the sum of each of the pattern errors.

Instance	X	у	Output1	Target1	Output2	Target 2	Data Set
1	-1	-1	0	1	.6	1.0	
2	-1	1	1	1	3	0	
3	1	-1	1	0	1.2	.5	
4	1	1	0	0	0	2	
L1			?		?		?
SSE			?		?		?
MSE			?		?		?
RMSE			?		?		?

Error Surface

Error is a function of the weights

$$- E = \sum (t_i - z_i)^2 = \sum (t_i - \sum x_j w_{ij})^2$$

If we could search this space, we could find the minimum

Total SSE: Sum Squared Error $\sum (t-z)^2$

0

Error Surface

Single perceptron –1d input with bias

Gradient Descent Learning: Minimize (Maximize) the Objective Function

- Gradient descent algorithm
 - Find a starting location set of weights
 - Loop
 - Calculate output values
 - Use the gradient to adjust your weight values
- Adjusting the weights
 - Derivative of the error function w.r.t the weights slope or gradient

CS 270 - Perceptron

$$w_i\!\leftarrow\!w_i\!+\!\Delta w_i \ \Delta w_i\!=\!-\eta rac{\partial E}{\partial w_i}$$

Deriving a Gradient Descent Learning Algorithm

- Goal is to decrease overall error (or other loss function) each time a weight is changed
- Sum Squared error one possible loss function $E = \sum (t-z)^2$
 - Actually use $E = \sum (t z)^2$
- Other reasons to use SSE
 - All errors are positive
 - Amplifies the effect of larger errors
 - Transforms the error surface smooth and differentiable
- Partial derivative of the error function w.r.t the weights gives us a weight update function

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w}.\vec{x}) \end{split}$$

$$\Delta w_i = \eta \sum\nolimits_{d \in D} (t_d - o_d) x_{id}$$

Delta rule algorithm

- Simple perceptron rule has a problem for gradient descent
 - Threshold output makes the error function non-differentiable
- Delta rule uses (target net) before the net value goes through the threshold in the learning rule to decide weight update

$$\Delta w_i = c(t - net)x_i$$

Use sigmoid(net) if you want 0/1 output

- Weights are updated even when the output would be correct
- Because this model is single layer and because of the SSE objective function, the error surface is guaranteed to be parabolic with only one minima
- Learning rate
 - If learning rate is too large can jump around global minimum
 - If too small, will get to minimum, but will take a longer time
 - Can decrease learning rate over time to give higher speed and still attain the global minimum (although exact minimum is still just for training set and thus...)

Perceptron Rule

Delta Rule + Sigmoid(net)

Changing to the Delta Rule and using Sigmoid(net) for output changes the decision surface to smooth and differentiable

Batch vs Stochastic Update

- To get the true gradient, we need to sum errors over the entire training set and only update weights at the end of each epoch
- Batch (gradient) vs stochastic (on-line, incremental)
 - SGD (Stochastic Gradient Descent)
 - With the stochastic gradient descent algorithm, you update after every pattern, just like with the perceptron algorithm (even though that means each change may not be along the true gradient)
 - Stochastic is more efficient and best to use in almost all cases, though not all have figured it out yet
 - We'll talk about this in more detail when we get to Backpropagation

Perceptron rule vs Delta rule

- Perceptron rule (target thresholded output) guaranteed to converge to a separating hyperplane if the problem is linearly separable. Otherwise may not converge could get in a cycle
- Singe layer Delta rule guaranteed to have only one global minimum. Thus, it will converge to the best SSE solution whether the problem is linearly separable or not.
 - Could have a higher misclassification rate than with the perceptron rule and a less intuitive decision surface – we will discuss this later with regression where Delta rules is more appropriate
- Stopping Criteria For these models we stop when no longer making progress
 - When you have gone a few epochs with no significant improvement/change between epochs (including oscillations)

Quiz

- Password is:
 - gradient