Homological Algebra

Ikhan Choi Lectured by Takeshi Tsuji University of Tokyo, Spring 2023

May 18, 2023

Contents

1	Day 1: April 6	2
	1.1 Commutative diagrams and exact sequences	2
	1.2 Direct sum, direct product, inductive limit, direct limit	4
2	Day 2: April 13	5
3	Day 3: April 20	7
4	Day 4: April 27	10
5	Day 5: May 11	13
6	Day 6: May 18	16

1 Day 1: April 6

1. Modules

References: Atsushi Shiho, Yukiyoshi Kawada

1.1. R-modules

Definition 1.1. Let *R* be a ring with 1. A (left) *R*-module is an abelian group *M* with a map $R \times M \rightarrow M$: $(a, x) \mapsto ax$ satisfying a(x + y) = ax + ay, (a + b)x = ax + bx, (ab)x = a(bx), 1x = x.

Example 1.2. (a) Every abelian group is a \mathbb{Z} -module. The R-module structures on an abelian group M has 1-1 correspondence with the ring homomorphisms $R \to \operatorname{End}_{\mathbb{Z}}(M)$.

(b)
$$M = C^{\infty}(\mathbb{R}), R = \mathbb{R}[T]$$
 a polynomial ring, $R \times M \to M : (P(T), f(x)) \mapsto P(\frac{d}{dx})f(x)$.

Definition 1.3. A (left) *R*-submodule of *M* is a subgroup $N \subset M$ such that $ax \in N$ for $a \in R$, $x \in N$. A (left) *R*-homomorphism is a group homomorphism $M \to N$ which preserves the action of *R*.

Example 1.4. (a) $M = C^{\infty}(\mathbb{R}), R = \mathbb{R}[T]$, then $\varphi : M \to M : f(x) \mapsto f(x+1)$ is an R-homomorphism.

Definition 1.5. Let $f: M \to N$ be an R-homomorphism. The kernel of f is $\ker f := \{x \in M : f(x) = 0\} \xrightarrow{i} M$, and the cokernel of f is $N \xrightarrow{p} \operatorname{coker} f := N / \operatorname{im} f$, where the image is $\operatorname{im} f := \{f(x) \in N : x \in M\} \xrightarrow{j} N$.

$$\ker f \xrightarrow{i} M \xrightarrow{f} N \xrightarrow{p} \operatorname{coker} f$$

$$\operatorname{im} f$$

On each of them, there is a unique R-module structure such that the each map i, j, p becomes an R-homomorphism respectively.

Theorem 1.6 (Universal property). For the above setting, note that fi = 0 and pf = 0. If an R-homomorphism $g: M' \to M$ satisfies fg = 0, then there is a unique R-homomorphism $h: M' \to \ker f$ such that g = ih. If an R-homomorphism $g: N \to N'$ satisfies gf = 0, then there is a unique R-homomorphism $h: \operatorname{coker} f \to N'$ such that g = hp.

1.1 Commutative diagrams and exact sequences

Definition 1.7 (Diagram). Among some *R*-modules suppose we have *R*-homomorphisms as the following diagram:

$$\begin{array}{ccc}
M_1 & \xrightarrow{f_1} & M_2 \\
f_3 \downarrow & & \downarrow g_1 \\
M_3 & \xrightarrow{g_2} & M_4 & .
\end{array}$$

Then, if the compositions sharing each source and target coincide, then we say the diagram is commutative. For example, we say the triangle formed by M_2 , M_3 , M_4 is commutative iff $g_1 = g_2 f_2$.

Definition 1.8 (Sequence). A sequence is a diagram of R-modules placed linearly as

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n+1} \xrightarrow{f_{n+1}} M_{n+2} \longrightarrow \cdots.$$

2

If $im f_n = ker f_{n+1}$ for all n, then we say the sequence is exact.

Example 1.9. (a) $f: M \to N$ is injective iff $0 \to M \xrightarrow{f} N$ is exact. $f: M \to N$ is surjective iff $M \xrightarrow{f} N \to 0$ is exact.

(b)
$$0 \longrightarrow \ker f \xrightarrow{i} M \xrightarrow{f} N \xrightarrow{p} \operatorname{coker} f \longrightarrow 0$$

is exact.

(c)
$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

is exact.

(d) $0 \to \mathbb{R} \cos x \oplus \mathbb{R} \sin x \xrightarrow{n} C^{\infty}(\mathbb{R}) \xrightarrow{\frac{d^2}{dx^2} + 1} C^{\infty}(\mathbb{R}) \to 0$

is exact.

Proposition 1.10 (Five lemma). Suppose each row is exact in the folloing commutative diagram:

Then,

(a)

(b)

(c)

Proof. (a) We will show $x \in \ker h_3$ is in the image of f_2f_1 : $h_3(x) = 0 \implies f_3(x) = 0 \implies x = f_2(y) \implies g_2h_2(y) = 0 \implies h_2(y) = g_1(z) \implies z = h_1(u) \implies f_1(u) = y$. Then, $x = f_2(y) = f_2f_1 = 0$.

(b) Similar.

Proposition 1.11 (Snake lemma). Suppose the second and the third rows are exact in the following commutative diagram:

	$\ker h_1$	$\ker h_2$	$\ker h_3$	
	M_1	M_2	M_3	0
0	N_1	N_2	N_3	
	$\operatorname{coker} h_1$	coker h ₂	coker 3	

(a) There is $\delta : \ker h_3 \to \operatorname{coker} h_1$ such that

$$\ker h_1 \xrightarrow{k_1} \ker h_2 \xrightarrow{k_2} \ker h_3 \xrightarrow{\delta} \operatorname{coker} h_1 \xrightarrow{l_1} \operatorname{coker} h_2 \xrightarrow{l_2} \operatorname{coker} 3$$

is exact. Here k_1, k_2, l_1, l_2 are induced from f_1, f_2, g_1, g_2 , respectively. The element $\delta(x)$ is determined by u such that $x = f_2(y)$, $z = h_2(y)$, $z = g_1(u)$, and we can check that u does not depend on the choice of y.

(b)

Proof. (a) We have to show the well-definedness of δ , ker \subset im, and im \subset ker. Skip.

In the general abelian cateogies, the five lemma and the snake lemma hold but the proofs become more complicated.

1.2 Direct sum, direct product, inductive limit, direct limit

Definition 1.12. Let M_{λ} be a family of *R*-modules. The direct product is

$$\prod_{\lambda} M_{\lambda} := \{ (x_{\lambda}) : x_{\lambda} \in M_{\lambda} \} \twoheadrightarrow M_{\lambda},$$

and the direct sum is the submodule of the direct product such that

$$\bigoplus_{\lambda} M_{\lambda} := \{(x_{\lambda}) : x_{\lambda} = 0 \text{ but finitely many}\} \hookrightarrow M_{\lambda}$$

Proposition 1.13 (Universal property). (a) For $f_{\mu}: M_{\mu} \to N$ there is unique $f: \bigoplus_{\lambda} M_{\lambda} \to N$ such that $fi_{\mu} = f_{\mu}$.

(b) For $g_{\mu}: N \to M_{\mu}$ there is unique $g: N \to \prod_{\lambda} M_{\lambda}$ such that $p_{\mu}g = g_{\mu}$.

Remark 1.14. (a) The direct sum and direct product is unique up to isomorphism by the universal property.

- (b) For *R*-homomorphisms $f_{\lambda}: M_{\lambda} \to N_{\lambda}$ we can induce $\prod_{\lambda} f_{\lambda}: \prod_{\lambda} M_{\lambda} \to \prod_{\lambda} N_{\lambda}$ and $\bigoplus_{\lambda} f_{\lambda}: \bigoplus_{\lambda} M_{\lambda} \to \bigoplus_{\lambda} N_{\lambda}$.
- (c) In the category of modules, even for infinite indices, direct product and sum commute with the kernel, cokernel, and image. In an abelian category, we may not have infinite direct product/sum.
- (d) exactness also preserved under products and sums

2 Day 2: April 13

Let (Λ, \prec) be a totally ordered set. By a direct system, we refer the family of R-modules M_{λ} for each $\lambda \in \Lambda$ and the family of R-homomorphisms $\tau_{\mu\lambda}: M_{\lambda} \to M_{\mu}$ for $\lambda \prec \mu$ such that $\tau_{\lambda\lambda} = \mathrm{id}_{M_{\lambda}}$ and $\tau_{\kappa\lambda} = \tau_{\kappa\mu}\tau_{\mu\lambda}$ for $\lambda \prec \mu \prec \kappa$.

Example.1.3.3.

- (a) Let $\Lambda = \mathbb{N}$ and $n \prec m \Leftrightarrow n \mid m, M_n = \mathbb{Z}$ and $\tau_{mn}(z) : M_n \to M_m : z \mapsto (m/n)z$.
- (b) Let M be a R-module, $\{M_{\lambda}\}$ are finitely generated R-submodules of M, and $\lambda \prec \mu \iff M_{\lambda} \subset M_{\mu}$, with $\tau_{\mu\lambda}$ inclusions.

Definition.

$$\lim_{\longrightarrow} M_{\lambda} = \lim_{\longrightarrow} (M_{\lambda}, \tau_{\mu\lambda}) := \operatorname{coker}(\bigoplus_{\substack{(\lambda, \mu) \in \Lambda \\ \lambda \prec \mu}} M_{\lambda} \xrightarrow{\Phi} \bigoplus_{\lambda \in \Lambda} M_{\lambda}),$$

where $\Phi((x_{\lambda\mu})) = \sum_{\lambda \prec \mu} \iota_{\mu} \tau_{\mu\lambda}(x_{\lambda\mu}) - \iota_{\lambda}(x_{\lambda\mu})$, and $\iota_{\lambda} : M_{\lambda} \to \bigoplus_{\lambda} M_{\lambda}$ is a componentwise embedding. That is, we want to identify $x \in M_{\lambda}$ and $\tau_{\mu\lambda}(x) \in M_{\mu}$ with the map Φ .

Proposition.1.3.4. Let $\tau_{\mu}: M_{\mu} \xrightarrow{\iota_{\mu}} \bigoplus_{\lambda} M_{\lambda} \twoheadrightarrow \lim_{\longrightarrow} M_{\lambda}$.

- (a) $\tau_{\mu} = \tau_{\kappa} \tau_{\kappa \mu}$.
- (b) $M_{\mu} \xrightarrow{f_{\mu}} N$ for $\mu \in \Lambda$ are R-homomorphisms, and they satisfy $f_{\mu} = f_{\kappa} \tau_{\kappa \mu}$. Then, there is a unique $f: \lim_{\longrightarrow} M_{\lambda} \to N$ such that $f_{\mu} = f \tau_{\mu}$

For each example in 1.3.3, \mathbb{Q} and M are the direct limits because it satisfies the universal property (1.3.4(b))

Remark. (1) The direct limit is unique by the universal property up to isomorphism.

(2) If $f_{\lambda}: M_{\lambda} \to M'_{\lambda}$ are *R*-homomorphism such that

$$\begin{array}{ccc} M_{\lambda} & \stackrel{f_{\lambda}}{\longrightarrow} & M\lambda' \\ \downarrow & & \downarrow \\ M_{\mu} & \stackrel{f_{\mu}}{\longrightarrow} & M'_{\mu} \end{array}$$

commutes for all $\lambda \prec \mu$, then there is a unique f such that

$$\bigoplus_{\lambda \prec \mu} M_{\lambda} \longrightarrow \bigoplus_{\lambda} M_{\lambda} \longrightarrow \lim_{\longrightarrow} M_{\lambda} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{\lambda \prec \mu} M_{\lambda}' \longrightarrow \bigoplus_{\lambda} M_{\lambda}' \longrightarrow \lim_{\longrightarrow} M_{\lambda}' \longrightarrow 0$$

commutes, and f is denoted by $\lim_{\longrightarrow} f_{\lambda}$. It is by the universal property of cokernel.

Definition.1.3.6. A preordered set Λ is a directed set if $\forall \lambda, \lambda' \in \Lambda$, there is $\mu \in \Lambda$ such that $\lambda, \lambda' \prec \mu$.

Proposition. *If* Λ *is a directed set, then there is a 1-1 correspondence*

$$(\coprod_{\lambda} M_{\lambda})/\sim \to \lim_{\longrightarrow} M_{\lambda}: [x_{\lambda}] \mapsto \tau_{\lambda}(x_{\lambda}),$$

where $x_{\lambda} \sim y_{\lambda'}$ iff there is $\mu > \lambda$, λ' such that $\tau_{\mu\lambda}(x_{\lambda}) = \tau_{\mu\lambda'}(y_{\lambda'})$.

Proposition. If

$$L_{\lambda} \xrightarrow{f_{\lambda}} M_{\lambda} \xrightarrow{g_{\lambda}} N_{\lambda} \longrightarrow 0$$

is exact, then

$$\operatorname{colim} L_{\lambda} \,\longrightarrow\, \operatorname{colim} M_{\lambda} \,\longrightarrow\, \operatorname{colim} N_{\lambda} \,\longrightarrow\, 0$$

is exact.

Proof. The only non-trivial part is the exactness at $\operatorname{colim} M_{\lambda}$. We can prove it by diagram chasing. \square

Example. Examples of inverse limit

- (a) projection $\mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ for m > n.
- (b) restriction $C^{\infty}((-r,r)) \to C^{\infty}((-r',r'))$ for r' > r.

3 Day 3: April 20

Example. Limit preserves injectivity, but not surjectivity: although the diagram

commutes, but the induced map $\mathbb{Z} \to \mathbb{Z}_p := \lim_n \mathbb{Z}/p^n \mathbb{Z}$ is not surjective because we have an element $x \in \mathbb{Z}_p$ such that for $\pi_n : \mathbb{Z}_p \to \mathbb{Z}/p^n \mathbb{Z}$ we have $\pi_n(x) \equiv 1 \pmod{p^n}$ for all n.

Lemma (Mittag-Leffler condition). Let

$$0 \to M_n \to N_n \to L_n \to 0$$

be a sequence of exact sequences. Suppose (M_n) satisfies that for each n we have a eventually constant monotonically decreasing sequence

$$M_n \supset \pi_{n,n+1}(M_{n+1}) \supset \pi_{n,n+2}(M_{n+2}) \supset \cdots$$

of submodules of M_n . Then,

$$0 \to \lim M_n \to \lim N_n \to \lim L_n \to 0.$$

Note that when we consider the seuqence of kernels $p^n\mathbb{Z}$ of the maps $\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ in the above example, we can check the sequence does not satisfy the Mittag-Leffler condition.

1.4. Properties of Hom

From now on, we always let R be a commutative ring and M,N be a R-modules. Define

$$\operatorname{Hom}_R(M,N) := \{ f : M \to N, R\text{-homomorphism} \}.$$

It is an R-module, which is not the case if R is not commutative. If $\varphi: N_1 \to N_2$ is an R-homomorphism, then

$$\operatorname{Hom}_R(M, N_1) \to \operatorname{Hom}_R(M, N_2) : f \mapsto \varphi \circ f$$

is an *R*-homomorphism. If $\psi: M_1 \to M_2$ is an *R*-homomorphism, then

$$\operatorname{Hom}_R(M_2,N) \to \operatorname{Hom}_R(M_1,N) : f \mapsto f \circ \psi$$

is an R-homomorphism.

Proposition.1.4.1.

(a) If

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3$$

is exact, then

$$0 \to \operatorname{Hom}_R(M, N_1) \to \operatorname{Hom}_R(M, N_2) \to \operatorname{Hom}_R(M, N_3)$$

is exact.

(b) *If*

$$M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

is exact, then

$$0 \to \operatorname{Hom}_{\mathbb{R}}(M_3, N) \to \operatorname{Hom}_{\mathbb{R}}(M_2, N) \to \operatorname{Hom}_{\mathbb{R}}(M_1, N)$$

is exact.

Proof. (a) If $f_2 \in \operatorname{Hom}_R(M, N_2)$ satisfies $\varphi_2 \circ f_2 = 0$, then by the universal property there exists unique $f_1 : M \to N_1$ such that the diagram

$$0 \longrightarrow N_1 \stackrel{\exists! f_1}{\longrightarrow} N_2 \stackrel{\varphi_2}{\longrightarrow} N_3$$

commutes.

Example. For

$$0 \to \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0,$$

The maps

$$0 \cong \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$$

and

$$\mathbb{Z} \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{\circ (\cdot n)} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$$

are not surjective.

1.5. Projective modules

Definition.1.5.1. An *R*-module is said to be *projective* if for every surjective $\varphi: N_1 \twoheadrightarrow N_2$ and for every $f: M \to N_2$, there is a map $\widetilde{f}: M \to N_1$ such that

$$\begin{array}{ccc}
& M \\
& \downarrow^{f} & \downarrow^{f} \\
N_{1} & \longrightarrow & N_{2}
\end{array}$$

commutes, equivalently,

$$\operatorname{Hom}_R(M, N_1) \to \operatorname{Hom}_R(M, N_2) \to 0$$

is exact for every exact $N_1 \rightarrow N_2 \rightarrow 0$.

Proposition.1.5.2. *If* M *is a projective module, then* $Hom_R(M, -)$ *is an exact functor.*

Proposition.1.5.3. A direct sum of R-modules is projective iff its summands are all projective. In particular, a free R-module is projective.

Corollary.1.5.4. As a corollary, a module M is projective if and only if there is another module N such that $M \oplus N$ is free.

Proof. (\Rightarrow) Take generators of $\{e_{\lambda}\}_{\lambda}$ of M. Then, for

$$f:\bigoplus_{\lambda}R \twoheadrightarrow M:(a_{\lambda})\mapsto \sum_{\lambda}a_{\lambda}e_{\lambda},$$

we have an exact sequence

$$0 \to \ker f \to \bigoplus_{j} R \to M \to 0,$$

which is right split by applying the definition of projective modules to extend the codomain of $id_M : M \to M$.

Corollary.1.5.5. Let R be a PID. Then, since a submodule of a free module is free, so a module is projective if and only if it is free.

1.6. Injective modules

Definition.1.6.1. An *R*-module is said to be injective if for every injective $\varphi: N_1 \hookrightarrow N_2$ and for every $g: N_1 \to M$, there is a map $\widetilde{g}: N_2 \to M$ such that

$$\begin{matrix} N_1 & \stackrel{\varphi}{\longleftarrow} & N_2 \\ \downarrow^g & \stackrel{f}{\swarrow} & g \end{matrix}$$

commutes, equivalently,

$$\operatorname{Hom}_R(N_2, M) \to \operatorname{Hom}_R(N_1, M) \to 0$$

is exact for every exact $0 \rightarrow N_1 \rightarrow N_2$.

Proposition.1.6.3. An R-module M is injective iff the restriction $\operatorname{Hom}(R,M) \to \operatorname{Hom}(I,M)$ is surjective for every ideal I of R.

Proof. (\Rightarrow) Clear. (\Leftarrow) Suppose there is $x \in N_2$ such that $N_2 = N_1 + Rx$. Define an ideal I of R such that there is an exact sequence

$$0 \rightarrow I \rightarrow N_1 \oplus R \rightarrow N_2 \rightarrow 0$$
,

in which the first map sends b to (-bx, b) and the second map sends (y, a) to y + ax. Define $h : I \to M$ by h(b) := g(bx) and extend it to $h : R \to M$. Define $g : N_2 \to M$ by g(y + ax) := g(y) + h(a). We can check it is well-defined from the exactness of the above defining sequence of I. (To be continued..)

Corollary.1.6.4. If R is a PID, then an R-module M is injective iff for all $0 \neq a \in R$ the map $M \xrightarrow{\cdot a} M$ is surjective.

Proof. Let *I* be an ideal. If I = 0, then clear. If not, we have I = aR for some $0 \neq a \in R$. Then, the restriction $\text{Hom}(R, M) \to \text{Hom}(I, R)$ is surjective if and only if

$$M \xrightarrow{\sim} \operatorname{Hom}(R, M) \to \operatorname{Hom}(aR, M) \xrightarrow{\sim} aM$$

 $m \mapsto (1 \mapsto m) \mapsto (a \mapsto am) \mapsto am$

is surjective. \Box

Example. If $R = \mathbb{Z}$, then \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective, and \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are not injective.

4 Day 4: April 27

Proof of 1.6.3. Let S be the set of all pairs (N,h) such that $N_1\subset N\subset N_2$ and

$$\begin{array}{ccc}
N_1 & \longrightarrow & N \\
\downarrow & & & \\
M & & & \\
\end{array}$$

commutes, and define a partial order \prec such that $(N,h) \prec (N',h')$ if ando only if

$$\begin{array}{ccc}
N & \longrightarrow & N' \\
\downarrow & & \\
M
\end{array}$$

commutes. Since the union of a chain belongs to S, S has a maximal element (N_0, h_0) by Zorn's lemma. If $N_0 \subsetneq N_2$, then by taking $x \in N_2 \setminus N_0$, we can show N_0 is not maximal, so $N_0 = N_2$.

Proposition.1.6.5. Let M_{λ} be R-modules, and M be their product. Then, M is injective if and only if every M_{λ} is injective.

Proof. Apply the definition on the following diagram to show the first row is surjective:

$$\begin{array}{ccc} \operatorname{Hom}_R(N_2, \prod_{\lambda} M_{\lambda}) & \longrightarrow & \operatorname{Hom}_R(N_1, \prod_{\lambda} M_{\lambda}) \\ & & \downarrow = & & \downarrow = \\ \prod_{\lambda} \operatorname{Hom}_R(N_2, M_{\lambda}) & \longrightarrow & \prod_{\lambda} \operatorname{Hom}_R(N_1, M_{\lambda}). \end{array}$$

Proposition.1.6.6. *If* M *is injective* Z-module, then $Hom_{\mathbb{Z}}(R, M)$ *is an injective* R-module.

Lemma.1.6.7. Let N be an R-module and M be a \mathbb{Z} -module. Then, $\operatorname{Hom}_{\mathbb{Z}}(R,M)$ is an R-module, and there is a bijection

$$\operatorname{Hom}_R(N, \operatorname{Hom}_{\mathbb{Z}}(R, M)) \cong \operatorname{Hom}_{\mathbb{Z}}(N, M).$$

Proof of Proposition 1.6.6. Apply Lemma 1.6.7 to show the first row is surjective:

Theorem.1.6.8. Every R-module M is embedded in an injective R-module.

Proof. Suppose $R = \mathbb{Z}$. The surjectivity of

$$\bigoplus_{\lambda} \mathbb{Z} \twoheadrightarrow \mathrm{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$$

implies

$$\operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}),\mathbb{Q}/\mathbb{Z}) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(\bigoplus_{\lambda} \mathbb{Z},\mathbb{Q}/\mathbb{Z}) = \prod_{\lambda} \mathbb{Q}/\mathbb{Z}.$$

Then, it suffices to prove the canonical map

$$M \to \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}), \mathbb{Q}/\mathbb{Z}))$$

is injective. For non-zero $x \in M$, by the injectivity of \mathbb{Q}/\mathbb{Z} , we can extend a \mathbb{Z} -homomorphism $f: \mathbb{Z}x \to \mathbb{Q}/\mathbb{Z}$ satisfying $f(x) \neq 0$ to a \mathbb{Z} -homomorphism $\widetilde{f}: M \to \mathbb{Q}/\mathbb{Z}$ satisfying $\widetilde{f}(x) = f(x) \neq 0$. Therefore, we are done.

Now let R be arbitrary commutative ring. Consider an R-homomorphism

$$\Phi: M \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,M): x \mapsto (a \mapsto ax),$$

which is easily checked to be injective by putting a=1. Let M' be an injective \mathbb{Z} -module with an injective \mathbb{Z} -homomorphism $M \to M'$, and it induces

$$M \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, M').$$

1.7. Tensor products

Definition.1.7.1. Let R be a commutative ring, and M_1, M_2, N be R-modules. Let $\Phi: M_1 \times M_2 \to N$ be an R-bilinear map. If R is non-commutative, then M_1 and M_2 are set to be right and left R-modules resepctively, and Φ is just a \mathbb{Z} -bilinear map but required to satisfy an additional condition $\Phi(-a, -) = \Phi(-, a-)$. Such Φ is called a balanced product.

There is an *R*-module such that the following universal property holds: for every balanced product $\Phi: M_1 \to M_2 \to N$, there is a unique *R*-homomorphism

$$M_1 \times M_2 \xrightarrow{\otimes} M$$

Ν

Then, M is called the tensor product of M_1 and M_2 .

Proof. Let \widetilde{M} be a free R-module generated by $M_1 \times M_2$. Let \widetilde{M}_0 be a R-subodule of \widetilde{M} generated by

$$(p+p',q)-(p,q)-(p',q), (p,q+q')-(p,q)-(p,q'),$$

 $(ap,q)-a(p,q), (p,aq)-a(p,q).$

Let $M := \widetilde{M}/\widetilde{M}_0$. Then, it satisfies the universal property(Exercise!).

Remark 4.1.1.7.2.

- (a) The tensor product is unique.
- (b) $M_1 \otimes M_2$ is an *R*-module.
- (c) For $f_1: M_1 \to M_1'$ and $f_2: M_2 \to M_2'$, we have an R-homomorphism $f_1 \otimes f_2: M_1 \otimes M_2 \to M_1' \otimes M_2'$ defined by

$$\begin{array}{cccc} M_1 \times M_2 & \stackrel{\otimes}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} & M_1 \otimes_R M_2 \\ \downarrow & & \downarrow^{\exists! f_1 \otimes f_2} \\ M_1' \times M_2' & \stackrel{\otimes}{-\!\!\!\!-\!\!\!-\!\!\!-} & M_1' \otimes_R M_2'. \end{array}$$

Proposition 4.2.1.7.3.

- (a) $R \otimes_R M \cong M$.
- (b) $M \otimes_R R \cong M$.
- (c) $(\bigoplus_{\lambda} M_{\lambda}) \otimes_{R} N \cong \bigoplus_{\lambda} (M_{\lambda} \otimes_{R} N)$.
- (d) $N \otimes_R (\bigoplus_{\lambda} M_{\lambda}) \cong \bigoplus_{\lambda} (N \otimes_R M_{\lambda}).$

Proof. Use the universal properties for the right-hand sides.

Proposition 4.3.1.7.4. *Let R be commutative.*

(a)
$$(M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_3)$$
.

(b)
$$M_1 \otimes_R M_2 \cong M_2 \otimes_R M_1$$
.

Proof. (a) Use the universal property.

(b) Omitted.

Proposition 4.4.1.7.5. *If*

$$M_1 \xrightarrow{f} M_2 \to M_3 \to 0$$

is exact, then

$$N \otimes_R M_1 \to N \otimes_R M_2 \to N \otimes_R M_3 \to 0$$

is exact.

Proof. We can construct a unique Ψ by the universal property of $N \otimes M_2$ so that the following diagram commutes.

Therefore, we can check $\operatorname{coker}(\operatorname{id}_N \otimes f)$ satisfies the universal property.

Example. We have

$$M/IM \cong (R \otimes M)/(I \otimes M) \cong (R/I) \otimes M$$
.

If M = R/I, then

$$I/I^2 \to R/I \to (R/I)^{\otimes 2} \to 0$$

is exact, and the first map is not injective.

Direct limit.

$$(\operatorname{colim}_{\lambda} N_{\lambda}) \otimes_{R} M \cong \operatorname{colim}_{\lambda} (N_{\lambda} \otimes_{R} M).$$

Proof.

$$(\bigoplus_{\lambda<\mu} N_{\lambda}) \otimes_{R} M \longrightarrow (\bigoplus_{\lambda} N_{\lambda}) \otimes_{R} M \longrightarrow \operatorname{coker} \longrightarrow 0$$

$$\otimes \uparrow \qquad \qquad \otimes \uparrow \qquad \qquad \otimes \uparrow \qquad \qquad \otimes \uparrow \qquad \qquad \oplus$$

$$\bigoplus_{\lambda<\mu} (N_{\lambda} \otimes_{R} M) \longrightarrow \bigoplus_{\lambda} (N_{\lambda} \otimes_{R} M) \longrightarrow \operatorname{colim}_{\lambda} (N_{\lambda} \otimes_{R} M)$$

5 Day 5: May 11

Definition (1.8.1). Let R be a commutative ring and M be an R-module. We say M is flat if $\mathrm{id} \otimes f: M \otimes N_1 \to M \otimes N_2$ is injective for every injective $f: N_1 \hookrightarrow N_2$. If R is noncommutative, consider $-\otimes M$ and $M \otimes -$ for left and right modules M respectively.

Example.

- (a) A free R-module is flat since tensor product and direct sum satisfy the distribution law.
- (b) A direct limit of flat modules is flat. For example, $\mathbb{Q} = \text{colim } \frac{1}{n}\mathbb{Z}$ is flat.

Proposition (1.8.2). *If* M *is* flat, then $M \otimes_R -$ *is* an exact functor.

Proposition (1.8.3). Let M be a left R-module. Then, we can give $\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$ a right R-module structure by (fa)(x) = f(ax) for $a \in R$ and $x \in M$. For an injective right R-homomorphism $N_1 \hookrightarrow N_2$ between right R-modules, $N_1 \otimes M \to N_2 \otimes M$ is injective if and only if

$$\operatorname{Hom}_R(N_2, \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})) \xrightarrow{-\circ f} \operatorname{Hom}_R(N_1, \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z}))$$

is surjective.

Proof. We first observe that

$$\operatorname{Hom}_{\mathbb{Z}}(N \otimes M, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{R}}(N, \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})).$$

Also we have the following from the fact that \mathbb{Q}/\mathbb{Z} is injective: for \mathbb{Z} -module homomorphism $f: L_1 \to L_2$, f is injective if and only if $\operatorname{Hom}_{\mathbb{Z}}(L_1,\mathbb{Q}/\mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(L_2,\mathbb{Q}/\mathbb{Z})$ is surjective. \square

Remark. If $N \cap R \cap M \cap S$ and $L \cap S$, then $\text{Hom}_S(N \otimes_R M, L) \cong \text{Hom}_R(N, \text{Hom}_S(M, L))$.

Corollary (1.8.4). For a left R-module M, M is flat if and only if $\text{Hom}(M, \mathbb{Q}/\mathbb{Z})$ is injective.

Corollary (1.8.5). For a right R-module M, M is flat if and only if $I \otimes_R M \to R \otimes_R M = M$ is injective for every right ideal $I \subset R$

Corollary (1.8.6). Let R be a PID. Then, M is flat if and only if $M \xrightarrow{\cdot a} M$ is injective for every $a \in R$.

Proof.

$$M=R\otimes M\cong I\otimes M\hookrightarrow R\otimes M=M.$$

2. Complexes

2.1. Definitions

Definition (2.1.1). A chain complex is a pair of a (bilateral) sequence of *R*-modules C_n and a (bilateral) sequence of *R*-homomorphisms $\partial_n : C_n \to C_{n-1}$ such that $\partial_{n-1} \circ \partial_n = 0$.

A cochain complex is a pair of a (bilateral) sequence of *R*-modules C^n and a (bilateral) sequence of *R*-homomorphisms $d^n: C^n \to C^{n+1}$ such that $d^{n+1} \circ d^n = 0$.

Example (2.1.2). The simplicial homology and the de Rham cohomology.

Remark. It is frequently assumed to be $C_n = 0$ and $C_n = 0$ for negative n.

Definition (2.1.3). Let C_{\bullet} be a chain complex. Then, $Z_n(C_{\bullet}) := \ker \partial_n$, $B_n(C_{\bullet}) := \operatorname{im} \partial_{n+1}$, and $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$. For cochain complexes, we can do the same thing.

A chain map between two chain complexes C_{\bullet} and C'_{\bullet} is a sequence $f_{\bullet} = (f_n : C_n \to C'_n)$ such that $\partial'_{n-1} \circ f_n = f_{n-1} \circ \partial_n$. Then, we can check it induces $H_n(f_{\bullet}) : H_n(C_{\bullet}) \to H_n(C'_{\bullet})$.

A short sequence of chain complexes is said to be exact if the short sequence at each n is exact.

Theorem (2.1.4). If

$$0 \rightarrow C_{\bullet} \rightarrow C_{\bullet}' \rightarrow C_{\bullet}'' \rightarrow 0$$

is exact, then there is a exact sequence

$$\cdots \to H_n(C_{\bullet}) \to H_n(C'_{\bullet}) \to H_n(C''_{\bullet}) \xrightarrow{\delta_n} H_{n-1}(C_{\bullet}) \to \cdots$$

Proof.

The snake lemma implies the exactness of the first and fourth rows.

The snake lemma implies the desired boundary map δ_n .

2.2. Homotopy

Definition (2.2.1). Let $f,g:C\to C'$ be chain maps. A sequence $k=k_{\bullet}=(k_n:C_n\to C'_{n+1})$ of R-homomorphisms such that $f_n-g_n=k_{n-1}\circ\partial_n+\partial'_{n+1}\circ k_n$ is called a homotopy between f and g.

Proposition (2.2.2). If $f, g: C_{\bullet} \to C'_{\bullet}$ are homotopic, then $H_n(f) = H_n(g)$.

Example.

(a) Let K be an algebraic extension over \mathbb{Q} .

$$0 \longrightarrow K \longrightarrow K[x] \xrightarrow{\frac{d}{dx}} K[x] \longrightarrow 0$$

$$0 \longrightarrow K \longrightarrow K[x] \xrightarrow{\frac{d}{dx}} K[x] \longrightarrow 0$$

Define

$$k^{0}(\sum_{n\geq 0}a_{n}x^{n}):=a_{0}, \qquad k^{1}(\sum_{n\geq 0}a_{n}x^{n}):=\sum_{n\geq 0}(n+1)^{-1}a_{n+1}x^{n+1}.$$

Then, k is a homotopy between the zero and the identity, so the cohomology groups are all trivial. (cohomology groups of a exact cochain complex are trivial..?)

(b) Let S be a set and $C^n := Map(S^{n+1}, M)$ for R-module M.

$$(d^n f)(x_0, \dots, x_{n+1}) = \sum_{i=0}^n (-1)^i f(x_0, \dots, \check{x}_i, \dots, x_n).$$

then, id and 0 are homotopic.

6 Day 6: May 18

2.3. Double complexes

Definition. A double complex is a family of *R*-modules $\{C_{p,q}\}$ indexed by $(p,q) \in \mathbb{Z}^2$ together with *R*-homomorphisms $\partial_{p,q}^I: C_{p,q} \to C_{p-1,q}$ and $\partial_{p,q}^{II}: C_{p,q} \to C_{p,q-1}$ such that

- (i) $(C_{\bullet,q}, \partial_{\bullet,q}^I)$ and $(C_{p,\bullet}, \partial_{p,\bullet}^{II})$ are chain complexes,
- (ii) $\partial^{II} \circ \partial^{I} + \partial^{I} \circ \partial^{II} = 0$. (anticommuting squares convention, convenient in defining the total complex)

For a double complex, we can define total complex by

$$T_n := \bigoplus_{p+q=n} C_{p,q}, \qquad \partial_n : T_n \to T_{n-1} : (a_{p,q})_{p+q=n} \mapsto (\partial^I(a_{p,q})) + (\partial^{II}(a_{p,q})),$$

and it satisfies the axiom of chain complex; $\partial^2 = 0$. The total complex is denoted by $\operatorname{Tot}^{\oplus}(C)$. We can also define with \times instead of \oplus to get $\operatorname{Tot}^{\Pi}(C)$. If $\operatorname{Tot}^{\oplus} = \operatorname{Tot}^{\Pi}$, then we write it as Tot .

Example. Let C_{\bullet} and C'_{\bullet} be chain complexes of right and left R-modules(resp.) for a commutative ring R. Then, $D_{p,q} := C_p \otimes_R C_q$ and $\partial^I_{p,q} = \partial_p \otimes \mathrm{id}$, $\partial^{II}_{p,q} = (-1)^p \mathrm{id} \otimes \partial_q$ define a double complex, and its total complex is denoted by $C \otimes_R C'$.

Example. Let C_{\bullet} and C'^{\bullet} be chain and cochain complexes R-modules for a commutative ring R. Then, $D_{p,q} := \operatorname{Hom}(C_p, C'^q)$ and $d_{p,q}^I = -\circ \partial_{p+1}$, $d_{p,q}^{II} = (-1)^{p+q+1}d^q \circ -$ define a double (cochain) complex, and its total complex is denoted by $\operatorname{Hom}(C, C')$.

Proposition (2.3.1).

- (a) Let $f: C_{\bullet,\bullet} \to C'_{\bullet,\bullet}$; $f_{p,q}: C_{p,q} \to C'_{p,q}$ commutes with ∂^I and ∂^{II} . Suppose there is $N \in \mathbb{Z}$ such that p < N or q < N imply $C_{p,q} = 0$ and $C'_{p,q} = 0$. Suppose also that $H_n(C_{\bullet,q}, \partial^I) \cong H_n(C'_{\bullet,q}, \partial^I)$ for each $n \in \mathbb{Z}$ and $q \in \mathbb{Z}$. Then, $H_n(\operatorname{Tot}(C)) \cong H_n(\operatorname{Tot}(C'))$.
- (b) Let $f: C^{\bullet, \bullet} \to C'^{\bullet, \bullet}$. Suppose there is $N \in \mathbb{Z}$ such that p < N or q < N imply $C^{p,q} = 0$ and $C'^{p,q} = 0$. If $H^n(C^{\bullet,q}) \cong H^n(C'^{\bullet,q})$ for each $n \in \mathbb{Z}$ and $q \in \mathbb{Z}$, then $H^n(\operatorname{Tot}(C)) \cong H^n(\operatorname{Tot}(C'))$.

Proof.

$$C_{p,q}^{\le r} = \begin{cases} 0 & q > r \\ C_{p,q} & q \le r \end{cases}$$

is a subcomplex of *C*. Then, we have an exact sequence

$$0 \to C^{\leq r-1} \to C^{\leq r} \to C^{(r)} \to 0$$

of double complexes. Taking Tot, we have

$$\longrightarrow H_n(\operatorname{Tot}(C^{\leq r-1})) \longrightarrow H_n(\operatorname{Tot}(C^{\leq r})) \longrightarrow H_n(\operatorname{Tot}(C^{(r)})) \longrightarrow$$

$$\downarrow \qquad \qquad \downarrow \sim$$

$$\longrightarrow H_n(\operatorname{Tot}(C^{\leq r-1})) \longrightarrow H_n(\operatorname{Tot}(C^{\leq r})) \longrightarrow H_n(\operatorname{Tot}(C^{(r)})) \longrightarrow$$

Note that $H_n(\text{Tot}(C^{(r)})) = H_{n-r}(C_{\bullet,r})$ gives the isomorphism at the third column. Then, use the five lemma inductively.

2.4. Ext and Tor

Let *C* be a chain complex of *R*-modules and *M* be an *R*-module. Then, $C \otimes M$ is a chain complex and Hom(C, M) is a cochain complex. In this case, we have:

- (i) If *M* is flat, then $H_n(C \otimes_R M) \cong H_n(C) \otimes_R M$.
- (ii) If M is injective, then $H_n(\operatorname{Hom}_R(C, M)) \cong \operatorname{Hom}_R(H^n(C), M)$.

We want to measure the failure of this.

Definition (2.4.1). Let M be an R-module.

(a) A projective resolution is an exact sequence

$$0 \leftarrow M \stackrel{\varepsilon}{\leftarrow} P_0 \stackrel{\partial_1}{\leftarrow} P_1 \stackrel{\partial_2}{\leftarrow} P_2 \leftarrow \cdots,$$

where P_n is a projective for each n.

(b) A injective resolution is an exact sequence

$$0 \rightarrow M \rightarrow I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots$$
,

where I_n is a injective for each n.

Proposition (2.4.2). Every R-module admits a projective resolution and an injective resolution.

Proof. Every module has a surjection(injection) from(to) a free(injective) module. Then, for the kernel(cokernel) we can do same thing. \Box

Proposition (2.4.3). Let $f: M \to M'$ be an R-homomorphism.

(a) If (P_{\bullet}) and (P'_{\bullet}) are projective resolutions, then there is a chain map $g: P \to P'$. If g and g' are two chain maps between P and P', then g and g' are homotopic.

(b) Same for injective resolution.

Proof. (a) Lift f to get g_0 . Restrict to kernel and lift g_0 to get g_1 , and so on.

Restrict to kernel and lift
$$g_0 - g'_0$$
 to get h_0

For an injective resolution I of N, we define $\operatorname{Ext}_R^n(M,N) := H^n(\operatorname{Hom}_R(M,I^{\bullet}))$.

For a projective resolution P of M, we define $\operatorname{Tor}_n^R(M,N) := H_n(P_{\bullet} \otimes_R N)$.

They do not depend on the choice of resolutions.

For $f: M_1 \to M_2$, we have an induced homomorphism $\operatorname{Ext}^n_R(M_2, N) \to \operatorname{Ext}^n_R(M_1, N)$.

For $f: N_1 \to N_2$, we have an induced homomorphism $\operatorname{Tor}_n^R(M, N_1) \to \operatorname{Tor}_n^R(M, N_2)$.

functoriality.