RAMCloud: Scalable Datacenter Storage Entirely in DRAM

John Ousterhout Stanford University

Introduction

- New research project at Stanford
- Create large-scale storage systems entirely in DRAM
- Interesting combination: scale, low latency
- The future of datacenter storage
- Low latency disruptive to database community

RAMCloud Overview

- Storage for datacenters
- 10-10000 commodity servers
- ~64 GB DRAM/server
- All data always in RAM
- Durable and available
- High throughput:1M ops/sec/server
- Low-latency access: 5-10µs RPC

Example Configurations

	Today	5-10 years
# servers	1000	1000
GB/server	64GB	1024GB
Total capacity	64TB	1PB
Total server cost	\$4M	\$4M
\$/GB	\$60	\$4

RAMCloud Motivation

- Relational databases don't scale
- Every large-scale Web application has problems:
 - Facebook: 4000 MySQL servers + 2000 memcached servers
- New forms of storage starting to appear:
 - Bigtable
 - Dynamo
 - PNUTS
 - H-store
 - memcached

RAMCloud Motivation, cont'd

Disk access rate not keeping up with capacity:

	Mid-1980's	2009	Change
Disk capacity	30 MB	500 GB	16667x
Max. transfer rate	2 MB/s	100 MB/s	50x
Latency (seek & rotate)	20 ms	10 ms	2x
Capacity/bandwidth (large blocks)	15 s	5000 s	333x
Capacity/bandwidth (1KB blocks)	600 s	58 days	8333x
Jim Gray's rule	5 min	30 hrs	360x

- Disks must become more archival
- More information must move to memory

Impact of Latency

Traditional Application

<< 1µs latency

Web Application

0.5-10ms latency

- Large-scale apps struggle with high latency
- RAMCloud goal: low latency and large scale
- Enable a new breed of information-intensive applications

Research Issues

- Achieving 5-10 μs RPC
- Durability at low latency
- Data model
- Concurrency/consistency model
- Data distribution, scaling
- Automated management
- Multi-tenancy
- Node architecture

Low Latency: SQL is Dead?

- Relational query model tied to high latency:
 - Describe what you need up fron
 - DBMS optimizes retrieval
- With sufficiently low latency:
 - Don't need optimization; make individual requests as needed
 - Can't afford query processing overhead
 - The relational query model will disappear
- Question: what systems offer very low latency and use relational model?

Low Latency: Stronger Consistency?

Cost of consistency rises with transaction overlap:

0 ~ R*D

O = # overlapping transactions

R = arrival rate of new transactions

D = duration of each transaction

- R increases with system scale
 - Eventually, scale makes consistency unaffordable
- But, D decreases with lower latency
 - Stronger consistency affordable at larger scale
 - Is this phenomenon strong enough to matter?

Low Latency: One Size Fits All Again?

- "One-size-fits-all is dead" Mike Stonebraker
- Specialized databases proliferating:
 - 50x performance improvements in specialized domains
 - Optimize disk layout to eliminate seeks
- With low latency:
 - Layout doesn't matter
 - General-purpose is fast
 - One-size-fits-all rides again?

Conclusions

- All online data is moving to RAM
- RAMClouds = the future of datacenter storage
- Low latency will change everything:
 - New applications
 - Stronger consistency at scale
 - One-size-fits-all again
 - SQL is dead
- 1000-10000 clients accessing 100TB - 1PB
 5-10µs latency

Questions/Comments?

For more on RAMCloud motivation & research issues:

- "The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM"
- To appear in Operating Systems Review
- http://www.stanford.edu/~ouster/cgi-bin/papers/ramcloud.pdf
- Or, google "RAMCloud"

Backup Slides

Why Not a Caching Approach?

Lost performance:

1% misses → 10x performance degradation

Won't save much money:

- Already have to keep information in memory
- Example: Facebook caches ~75% of data size

• Changes disk management issues:

Optimize for reads, vs. writes & recovery

Why not Flash Memory?

- Many candidate technologies besides DRAM
 - Flash (NAND, NOR)
 - PC RAM
 - · ...
- DRAM enables lowest latency:
 - 5-10x faster than flash
- Most RAMCloud techniques will apply to other technologies
- Ultimately, choose storage technology based on cost, performance, energy, not volatility

Is RAMCloud Capacity Sufficient?

Facebook: 200 TB of (non-image) data today

• Amazon:

Revenues/year: \$16B

Orders/year: 400M? (\$40/order?)

Bytes/order: 1000-10000?

Order data/year: 0.4-4.0 TB?

RAMCloud cost: \$24K-240K?

United Airlines:

Total flights/day: 4000? (30,000 for all airlines in U.S.)

Passenger flights/year: 200M?

Bytes/passenger-flight: 1000-10000?

Order data/year: 0.2-2.0 TB?

RAMCloud cost: \$13K-130K?

Ready today for all online data; media soon

Data Durability/Availability

- Data must be durable when write RPC returns
- Unattractive possibilities:
 - Synchronous disk write (100-1000x too slow)
 - Replicate in other memories (too expensive)
- One possibility: log to RAM, then disk

Durability/Availability, cont'd

- Buffered logging supports ~50K writes/sec./server (vs. 1M reads)
- Need fast recovery after crashes:
 - Read 64 GB from disk? 10 minutes
 - Shard backup data across 100's of servers
 - Reduce recovery time to 1-2 seconds
- Other issues:
 - Power failures
 - Cross-datacenter replication

Low-Latency RPCs

Achieving 5-10µs will impact every layer of the system:

Must reduce network latency:

- Typical today: 10-30 µs/switch,
 5 switches each way
- Arista: 0.9 µs/switch:9 µs roundtrip
- Need cut-through routing, congestion mgmt

Tailor OS on server side:

- Dedicated cores
- No interrupts?
- No virtual memory?

Slide 20

Low-Latency RPCs, cont'd

- Client side: need efficient path through VM
 - User-level access to network interface?
- Network protocol stack
 - TCP too slow (especially with packet loss)
 - Must avoid copies
- Preliminary experiments:
 - 10-15 μs roundtrip
 - Direct connection: no switches

Interesting Facets

- Use each system property to improve the others
- High server throughput:
 - No replication for performance, only durability?
 - Simplifies consistency issues
- Low-latency RPC:
 - Cheap to reflect writes to backup servers
 - Stronger consistency?
- 1000's of servers:
 - Sharded backups for fast recovery

New Conference!

USENIX Conference on Web Application Development:

- All topics related to developing and deploying Web applications
- First conference: June 20-25, 2010, Boston
- Paper submission deadline: January 11, 2010
- http://www.usenix.org/events/webapps10/