

Solutions: Linear Algebra by Hoffman and Kunze

G V V Sharma*

1

CONTENTS

1 Fields and Linear Equations

Abstract—This book provides solutions to the Linear Algebra book by Hoffman and Kunze.

1 FIELDS AND LINEAR EQUATIONS

1.1. Let \mathbb{F} be a set which contains exactly two elements,0 and 1.Define an addition and multiplication by tables. Verify that the set \mathbb{F} ,

+	0	1
0	0	1
1	1	0

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

together with these two operations, is a field. **Solution:**

To prove that $(\mathbb{F},+,\cdot)$ is a field we need to satisfy the following,

a) + and \cdot should be closed

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- For any a and b in \mathbb{F} , $a+b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$. For example 0+0=0 and $0\cdot 0=0$.
- b) + and \cdot should be commutative
 - For any a and b in F, a+b = b+a and a ·
 b = b · a. For example 0+1=1+0 and 0 ·
 1=1 · 0.
- c) + and \cdot should be associative
 - For any a and b in \mathbb{F} , a+(b+c)=(a+b)+c and $a \cdot (b \cdot c)=(a \cdot b) \cdot c$. For example 0+(1+0)=(0+1)+0 and $0\cdot (1\cdot 0)=(0\cdot 1)\cdot 0$.
- d) + and · operations should have an identity element
 - If we perform a + 0 then for any value of a from F the result will be a itself. Hence 0 is an identity element of + operation. If we perform a · 1 then for any value of a from F the result will be a itself. Hence 1 is an identity element of · operation.
- e) \forall a \in \mathbb{F} there exists an additive inverse
 - For additive inverse to exist, ∀ a in F a+(-a)=0. For example. 1-1=0 and 0-0=0.
- f) \forall a \in \mathbb{F} such that a is non zero there exists a multiplicative inverse
 - For multiplicative inverse to exist, \forall a such that a is non zero in \mathbb{F} , $a \cdot a^{-1} = 1$. For example $1 \cdot 1^{-1} = 1$.
- g) + and \cdot should hold distributive property
 - For any a,b and c in \mathbb{F} the property $a \cdot (b+c) = a \cdot b + a \cdot c$ should always hold

true.For example $0\cdot(1+1)=0\cdot1+0\cdot1$. Since the above properties are satisfied we can say that $(\mathbb{F},+,\cdot)$ is a field.