МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ РАДІОЕЛЕКТРОНІКИ

КАФЕДРА СИСТЕМОТЕХНІКИ

МЕТОДИЧНІ ВКАЗІВКИ

до практичного заняття з дисципліни

"ТЕОРІЯ ЙМОВІРНОСТЕЙ, ЙМОВІРНІСНІ ПРОЦЕСИ І МАТЕМАТИЧНА СТАТИСТИКА"

за темою

"Повторення незалежних випробувань"

для студентів денної та заочної форм навчання спеціальності 122 «Комп'ютерні науки»

Методичні вказівки до практичного заняття з дисципліни "Теорія ймовірностей, ймовірнісні процеси і математична статистика" за темою "Повторення незалежних випробувань" для студентів денної та заочної форм навчання спеціальності 122 «Комп'ютерні науки» / Упоряд.: І.В. Гребеннік, Г.Є. Безугла, Т.Є. Романова, С.Б. Шеховцов.— Харків: ХНУРЕ, 2023—47с.

Упорядники: І.В. Гребеннік

Г.Є. Безугла Т.Є. Романова С.Б. Шеховцов

Зміст

Завдання практичного заняття	4
3. Повторення незалежних випробувань	
3.1. Формула Бернуллі	4
3.2. Локальна теорема Муавра-Лапласа	
3.3. Теорема Пуассона	
3.4. Інтегральна теорема Муавра – Лапласа	
Питання для самоперевірки	12
Література	
Варіанти індивідуальних розрахункових завдань	
Додатки. Статистичні таблиці	

"Теорія ймовірностей, ймовірнісні процеси і математична статистика"

Тема 3. Повторення незалежних випробувань

Ціль заняття: обчислення ймовірностей подій із застосуванням формули Бернуллі, локальної та інтегральної теорем Муавра — Лапласа, теореми Пуассона.

Рекомендована література: [1-7].

Завдання практичного заняття

- 1. Вивчити методи розв'язання задач із застосуванням формули Бернуллі, локальної та інтегральної теорем Муавра Лапласа, теореми Пуассона.
 - 2. Розв'язати задачі практичного заняття.
- 3. Оформити звіт по практичному заняттю (титульний лист, основні визначення, формули, теореми, розв'язання задач заданого варіанта)

3. Повторення незалежних випробувань

Припустимо, що проводиться певне число однакових випробувань або експериментів, у кожному з яких можливі лише два несумісні наслідки: деяка події A може відбутися або не відбутися.

Послідовність випробувань називається *незалежною щодо події* A, якщо ймовірність появи події A у кожному випробуванні не залежить від результатів інших випробувань.

Так, наприклад, ймовірність появи числа 3 у кожному з 10 кидків грального кубика не залежить від того, яке число з'являлося раніше.

3.1. Формула Бернуллі

Нехай при виконанні серії n незалежних випробувань ймовірність появи події A постійна та не залежить від номера проведеного випробування, тобто P(A) = p для будь-якого випробування. Ймовірність протилежної події \overline{A} дорівнює $P(\overline{A}) = q = 1 - p$.

Розглянемо наступну задачу. Знайти ймовірність того, що подія A у серії n незалежних випробувань, у кожному з яких ймовірність появи події A постійна та дорівнює p, наступить рівно k разів, байдуже в яких випробуваннях. Шукану ймовірність позначимо через $P_n(k)$.

Ймовірність складної події, яка означає, що подія A наступить в n випробуваннях рівно k разів і не наступить рівно (n-k) разів, по теоремі множення ймовірностей дорівнює $p^k q^{n-k}$.

Число способів появи такої складної події дорівнює числу різноманітних підмножин по k елементів, які можна сформувати із множини n елементів, тобто числу сполучень C_n^k .

Отже, ймовірність настання події A рівно k разів і події \overline{A} рівно (n-k) разів дорівнює p^kq^{n-k} .

Ця складна подія може відбутися одним із C_n^k способів. Тоді по теоремі додавання несумісних подій одержимо шукану ймовірність:

$$P_n(k) = C_n^k p^k q^{n-k}. (3.1)$$

Формула (3.1) називається формулою Бернуллі 1 .

Значення k_0 , якому відповідає найбільша ймовірність $P_n(k)$ називається найімовірнішим числом появи події A. Найімовірніше число знаходиться в інтервалі

$$np - q \le k_0 \le np + p \tag{3.2}$$

Довжина цього інтервалу дорівнює одиниці.

Якщо границі інтервалу (3.2) — цілі числа, то є два найімовірніших числа появи події A: $k_0^1 = np - q$ і $k_0^2 = np + p$. В іншому випадку існує тільки одне найімовірніше число $k_0 = [np + p]$, де [np + p]— ціла частина числа np + p.

Приклад. Ймовірність появи події A в кожному з 5 незалежних випробувань дорівнює 0,8. Знайти ймовірності всіх можливих чисел появи події A в серії незалежних випробувань. Знайти найімовірніше число появи події A.

Розв'язання. За умовою задачі: число випробувань n = 5, ймовірність появи події A дорівнює p = 0, 8, ймовірність не появи події A дорівнює q = 1 - p = 0, 2.

За формулою Бернуллі знайдемо ймовірність того, що в серії 5 незалежних випробувань подія A з'явиться рівно k разів:

$$k = 0: P_5(0) = C_5^0 \cdot 0, 8^0 \cdot 0, 2^5 = 0,00032;$$

$$k = 1: P_5(1) = C_5^1 \cdot 0, 8^1 \cdot 0, 2^4 = 0,0064;$$

$$k = 2: P_5(2) = C_5^2 \cdot 0, 8^2 \cdot 0, 2^3 = 0,0512;$$

$$k = 3: P_5(3) = C_5^3 \cdot 0, 8^3 \cdot 0, 2^2 = 0,2048;$$

$$k = 4: P_5(4) = C_5^4 \cdot 0, 8^4 \cdot 0, 2^1 = 0,4096;$$

$$k = 5: P_5(5) = C_5^5 \cdot 0, 8^5 \cdot 0, 2^0 = 0,32768.$$

За формулою (3.2) знайдемо найімовірніше число появи події A в 5 незалежних випробуваннях:

$$5 \cdot 0, 8 - 0, 2 \le k_0 \le 5 \cdot 0, 8 + 0, 8 \iff 3, 8 \le k_0 \le 4, 8$$
.

 1 Бернуллі Якоб (Bernoulli Jacob) (27.12.1654 — 16.8.1705) — швейцарський математик

Єдине ціле число, що задовольняє отриманої нерівності є $k_0 = 4$, а його ймовірність $P_5(4) = 0,4096$.

При великих значеннях n і k обчислення по формулі Бернуллі досить громіздкі та викликають певні труднощі. В такому разі для обчислення ймовірностей $P_n(k)$ застосовують асимптотичні (наближені) формули Муавра-Лапласа та Пуассона.

3.2. Локальна теорема Муавра-Лапласа

Якщо в п незалежних випробуваннях подія A відбувається з постійною ймовірністю p, що не дуже близька до нуля й одиниці (0 , то при досить великій кількості випробувань п ймовірність того, що подія <math>A відбудеться k разів, приблизно дорівнює

$$P_n(k) \approx \frac{\varphi(x)}{\sqrt{npq}}$$
 (3.3)

де
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 — функція Гауса, $x = \frac{k - np}{\sqrt{npq}}$.

Формула (3.3) називається локальною формулою Муавра-Лапласа².

Властивості функції $\varphi(x)$:

1. Функція $\varphi(x)$ – парна ($\varphi(-x) = \varphi(x)$) і приймає тільки додатні значення (рис.1).

Рис. 1. Графік функції $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

- $2. \lim_{x\to\infty} \varphi(x) = 0.$
- 3. Якщо x > 5, то $\varphi(x) \approx 0$.

Для функції $\varphi(x)$ складена таблиця (додатки, таблиця 1). В силу властивостей функції таблиця складена тільки для невід'ємних значень аргументу, менших 5. Для

 $^{^2}$ Муавр Абрахам де (Moivre Abraham de) (26.5.1667 – 27.11.1754) – англійський математик Лаплас Пьер Симон (Laplace Pierre Simon) (23.3.1749 – 5.3.1827) – французький астроном, математик і фізик

від'ємних аргументів значення функції можна одержати із цієї ж таблиці, використовуючи властивість 1.

Приклад. Ймовірність появи події A у кожному із 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 300 разів.

Розв'язання. Оскільки n = 400 досить велике, то застосуємо локальну формулу Муавра-Лапласа.

Знайдемо

$$x = \frac{300 - 400 \cdot 0, 8}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}} = -2,50.$$

Тоді за формулою (3.3)

$$P_{400}(300) \approx \frac{\varphi(-2,50)}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}} = \frac{\varphi(2,50)}{\sqrt{64}} = \frac{0,0175}{8} = 0,0022.$$

3.3. Теорема Пуассона

Якщо ймовірність p появи події A близька до нуля, то варто використовувати теорему Пуассона³, яка в цьому випадку дає більшу точність.

Якщо в n незалежних випробуваннях подія A відбувається з ймовірністю p, близькою до нуля, то при досить великому n ($np \le 10$) ймовірність появи події A рівно k разів приблизно дорівнює

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$
 (3.4)

де $\lambda = np$.

Для функції Пуассона $\frac{\lambda^k}{k!}e^{-\lambda}$ складені таблиці (додатки, таблиця 3).

Приклад. Ймовірність появи події A у кожному із 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 5 разів.

Розв'язання. За умовою задачі n=1000, p=0,004, $\lambda = np$ =1000 \cdot 0,004 = 4. Усі три числа задовольняють вимогам теореми Пуассона, тому для знаходження ймовірності події $P_{1000}(5)$ застосуємо формулу (3.4) при $\lambda = 4$ та k = 5:

$$P_{1000}(5) \approx \frac{4^5}{5!} e^{-4} = 0,1563.$$

По таблиці значень функції Пуассона при $\lambda = 4$ й k = 5 також одержуємо: $P_{1000}(5) \approx 0,1563$.

Знайдемо ймовірність тієї ж події $P_{1000}(5)$ по формулі Муавра-Лапласа. Для цього спочатку обчислюємо значення x:

 $^{^3}$ Пуассон Симеон Дени (Poisson Simeon Denis) (21.6.1781 – 25.4.1840) – французький механік, фізик. математик

$$x = \frac{5 - 1000 \cdot 0,004}{\sqrt{1000 \cdot 0,004 \cdot 0,996}} = \frac{1}{1,996} = 0,501.$$

Тоді по формулі (3.3):

$$P_{1000}(5) \approx \frac{\varphi(0,501)}{1,996} = \frac{0,3521}{1,996} = 0,1763.$$

Значення $P_{1000}(5)$, обчислене по формулі Бернуллі, дорівнює:

$$P_{1000}(5) = C_{1000}^5 \cdot 0,004^5 \cdot 0,996^{995} = 0,1566.$$

Таким чином, відносна помилка обчислення ймовірності $P_{1000}(5)$ за наближеною формулою Муавра-Лапласа становить: $\delta = \frac{\left|0,1566-0,1763\right|}{0,1566} = 0,1257$ або 12,57%; за формулою Пуассона: $\delta = \frac{\left|0,1566-0,1563\right|}{0,1566} = 0,002$, або 0,2%, тобто в 62,7 разів менше.

3.4. Інтегральна теорема Муавра – Лапласа

Нехай в умовах прикладу п. 2.2 необхідно знайти ймовірність того, що подія A з'явиться від 300 до 350 разів. У цьому випадку ймовірність шуканої події можна знайти по теоремі додавання ймовірностей несумісних подій:

$$P_{400}(300 \le k \le 350) = P_{400}(300) + P_{400}(301) + ... + P_{400}(350).$$

Обчислити кожний доданок можна по локальній формулі Муавра-Лапласа, але велика кількість доданків робить розрахунок досить громіздким. У таких випадках використовується наступна теорема.

Якщо в п незалежних випробуваннях подія A відбувається з постійною ймовірністю p, що відрізняється від 0 і 1, то при досить великому n ($npq \ge 20$) ймовірність того, що число k появи події A перебуває в діапазоні $[k_1;k_2]$, приблизно дорівнює

$$P_n(k_1, k_2) \approx \Phi(x_2) - \Phi(x_1),$$
 (3.5)

де функція $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^2/2} dz$ називається функцією Лапласа і є інтегралом від функції $\phi(x)$, що не виражається через елементарні функції;

$$x_1 = \frac{k_1 - np}{\sqrt{npq}}, \quad x_2 = \frac{k_2 - np}{\sqrt{npq}}.$$

Формула (3.5) називається інтегральною формулою Муавра-Лапласа.

Властивості функції $\Phi(x)$:

1. Функція $\Phi(x)$ – непарна, $\Phi(-x) = -\Phi(x)$ (рис.2).

Рис. 2. Графік функції $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^2/2} dz$

- 2. Функція $\Phi(x)$ монотонно зростаюча, тобто $\Phi(x_2) > \Phi(x_1)$, якщо $x_2 > x_1$.
- 3. $\lim_{x \to \infty} \Phi(x) = 0, 5$.
- 4. Якщо x > 5, то $\Phi(x) \approx 0.5$.

Для функції $\Phi(x)$ складена таблиця (додатки, таблиця 2). Таблиця складена тільки для додатних значень аргументу, менших 5.

Для від'ємних аргументів значення функції можна одержати із цієї ж таблиці, використовуючи властивість 1.

Зауваження. У ряді робіт функція Лапласа має вигляд: $\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^2/2} dz$.

У цьому випадку

$$P_n(k_1, k_2) \approx \frac{1}{2} [\Phi(x_2) - \Phi(x_1)]$$

та змінюються такі властивості функції:

- $-\lim_{x\to\infty}\Phi(x)=1,$
- якщо x>5, то $\Phi(x)$ ≈ 1.

Приклад. Ймовірність появи події A у кожному із 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться від 300 до 350 разів.

Розв'язання. Застосовуємо інтегральну теорему Муавра— Лапласа $(npq = 64 \ge 20)$.

Визначимо
$$x_1 = \frac{300 - 400 \cdot 0, 8}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}} = -2, 50, \quad x_2 = \frac{350 - 400 \cdot 0, 8}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}} = 3, 75.$$

Далі по формулі (3.5), з огляду на властивості $\Phi(x)$, одержимо

$$P_{400}(300, 350) \approx \Phi(3, 75) - \Phi(-2, 50) =$$

= $\Phi(3, 75) + \Phi(2, 50) \approx (0, 4999 + 0, 4938) = 0,9937$

Інтегральна формула Муавра – Лапласа дозволяє визначити ймовірність того, що:

1) число k появ події A відрізняється від добутку np по абсолютній величині не більш, ніж на $\varepsilon > 0$, тобто

$$P_n(|k-np| \le \varepsilon) \approx 2\Phi\left(\frac{\varepsilon}{\sqrt{npq}}\right);$$
 (3.6)

2) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від α до β включно, тобто

$$P_n\left(\alpha \le \frac{m}{n} \le \beta\right) \approx \Phi\left(\frac{\beta - p}{\sqrt{pq/n}}\right) - \Phi\left(\frac{\alpha - p}{\sqrt{pq/n}}\right);$$
 (3.7)

3) відносна частота $\frac{m}{n}$ події A відрізняється від ймовірності події A по абсолютній величині не більше чим на $\varepsilon > 0$:

$$\begin{split} &P_{n}\left(\left|\frac{m}{n}-p\right|\leq\varepsilon\right) &=P_{n}\left(-\varepsilon n+np\leq m\leq\varepsilon n+np\right)=\\ &\approx\Phi\left(\frac{\varepsilon n+np-np}{\sqrt{npq}}\right)-\Phi\left(\frac{-\varepsilon n+np-np}{\sqrt{npq}}\right)=2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right), \end{split}$$

тобто

$$P_n\left(\left|\frac{m}{n}-p\right| \le \varepsilon\right) \approx 2\Phi\left(\varepsilon \cdot \sqrt{\frac{n}{pq}}\right).$$
 (3.8)

Приклад. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться від 280 до 360 разів.

Розв'язання. Обчислити ймовірність $P_{400}(280 \le m \le 360)$ можливо за формулою

(3.5). Але простіше це зробити, якщо помітити, що границі інтервалу 280 і 360 симетричні щодо величини np = 320.

Тоді за формулою (3.6)

$$\begin{split} P_{400}(280 \leq m \leq 360) &= P_{400}(-40 \leq m - 320 \leq 40) = \\ &= P_{400}(\left|m - 320\right| \leq 40) \approx 2 \cdot \Phi\left(\frac{40}{\sqrt{400 \cdot 0, 8 \cdot 0, 2}}\right) \approx 2 \cdot \Phi(5) \approx 1 \,. \end{split}$$

Приклад. За статистичним даними відомо, що подія A з'являється в 87% проведених випробуваннях. Знайти ймовірність того, що в 1000 випробуваннях відносна частота $\frac{m}{n}$ події A:

- а) знаходиться в інтервалі від 0,9 до 0,95 включно;
- б) відрізняється по абсолютній величині від ймовірності події A не більше чим на 0.04.

Розв'язання. а) Ймовірність появи події *А* дорівнює 0,87. Оскільки n=1000 велике (умова npq =113,1≥20 виконана), то за формулою (3.7)

$$\begin{split} &P_{1000}(0,9 \leq \frac{m}{n} \leq 0,95) \approx \Phi\left(\frac{0,95-0,87}{\sqrt{0,87\cdot0,13/1000}}\right) - \Phi\left(\frac{0,9-0,87}{\sqrt{0,87\cdot0,13/1000}}\right) \approx \\ &\approx \Phi(7,52) - \Phi(2,82) \approx 0,5-0,4976 \approx 0,0024. \end{split}$$

б) За формулою (3.8)

$$P_{1000}\left(\left|\frac{m}{n}-0.87\right| \le 0.04\right) \approx 2 \cdot \Phi\left(\frac{0.04 \cdot \sqrt{1000}}{\sqrt{0.87 \cdot 0.13}}\right) \approx 2 \cdot \Phi(3,76) \approx 2 \cdot 0.4999 \approx 0.9998.$$

В свою чергу, формула (3.8) дозволяє визначити:

- 1) число n випробувань, необхідних для того, щоб із заданою ймовірністю P відхилення відносної частоти події A від постійної ймовірності p появи події A у кожному випробуванні по модулю не перевищило заданого значення $\varepsilon > 0$;
- 2) інтервал, у якому із заданою ймовірністю P знаходиться відносна частота події A, якщо відомі число випробувань і постійна ймовірність p появи події A у кожному випробуванні.

Питання для самоперевірки

- 1. Формула Бернуллі.
- 2. Як визначити найімовірніше число настання події?
- 3. Локальна теорема Муавра-Лапласа.
- 4. Властивості функції Гауса $\phi(x)$.
- 5. Інтегральна теорема Муавра-Лапласа.
- 6. Які властивості має функція Лапласа Ф(х)?
- 7. Теорема Пуассона? Як знайти параметр λ ?

Література

- 1. Тевяшев А. Д. Теорія ймовірностей і математична статистика : навч. посіб. / А. Д. Тевяшев, С. І. Козиренко, І. С. Агапова ; М-во освіти і науки України, Харків. нац. ун-т радіоелектроніки. Харків : Світ Книг, 2017. 248 с.
- 2. Тевяшев А.Д. Теорія ймовірностей і математична статистика: навч. посіб. Харків: ХНУРЕ, 2002. 572 с.
- 3. Барковський В.В., Барковська Н.В., Лопатін О.К. Теорія ймовірностей та математична статистика. 5-те видання. К.: Центр учбової літ., 2010. 424 с.
- 4. Малярець Л. М. Математика для економістів. Теорія ймовірностей та математична статистика : навч. посіб. У 3-х ч. Ч. 3 / Л. М. Малярець, І. Л. Лебедєва, Л. Д. Широкорад. Харків : Вид. ХНЕУ, 2011. 568 с.
- 5. Валєєв К. Г. Збірник задач з теорії ймовірностей та математичної статистики / К. Г. Валєєв, І. А. Джалладова. Київ : КНЕУ, 2005. 340 с.
- 6. Бобик О. І., Берегова Г. І., Копитко Б І. Теорія ймовірностей та математична статистика. Київ: Професіонал, 2007. 560 с.
- 7. Зайцев Є. П. Теорія ймовірностей і математична статистика. Київ : Алерта, 2013. 440 с.

Варіанти індивідуальних розрахункових завдань

Варіант № 1

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.

Задача 2. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.

Задача 3. Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 78% проведених випробуваннях. Знайти ймовірність того, що в 500 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,75 до 0,79;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,004.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0,7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.

Задача 2. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.

Задача 3. Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 58% проведених випробуваннях. Знайти ймовірність того, що в 200 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,49 до 0,57;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,027.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0,7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.

Задача 2. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.

Задача 3. Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 91% проведених випробуваннях. Знайти ймовірність того, що в 250 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,89 до 0,94;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,003.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 74% проведених випробуваннях. Знайти ймовірність того, що в 325 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,69 до 0,75;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,007.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 37% проведених випробуваннях. Знайти ймовірність того, що в 150 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,29 до 0,43;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,02.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.

Задача 2. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.

Задача 3. Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 31% проведених випробуваннях. Знайти ймовірність того, що в 230 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,34 до 0,37;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 63% проведених випробуваннях. Знайти ймовірність того, що в 450 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,57 до 0,6;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,037.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 62% проведених випробуваннях. Знайти ймовірність того, що в 750 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,58 до 0,65;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,028.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 72% проведених випробуваннях. Знайти ймовірність того, що в 650 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,71 до 0,78;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 47% проведених випробуваннях. Знайти ймовірність того, що в 350 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,49 до 0,52;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,005.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 78% проведених випробуваннях. Знайти ймовірність того, що в 500 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,75 до 0,79;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,004.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 58% проведених випробуваннях. Знайти ймовірність того, що в 200 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,49 до 0,57;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,027.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 91% проведених випробуваннях. Знайти ймовірність того, що в 250 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,89 до 0,94;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,003.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 74% проведених випробуваннях. Знайти ймовірність того, що в 325 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,69 до 0,75;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,007.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 37% проведених випробуваннях. Знайти ймовірність того, що в 150 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,29 до 0,43;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,02.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 31% проведених випробуваннях. Знайти ймовірність того, що в 230 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,34 до 0,37;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 63% проведених випробуваннях. Знайти ймовірність того, що в 450 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,57 до 0,6;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,037.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 37% проведених випробуваннях. Знайти ймовірність того, що в 150 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,29 до 0,43;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,02.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 72% проведених випробуваннях. Знайти ймовірність того, що в 650 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,71 до 0,78;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівню ϵ 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 47% проведених випробуваннях. Знайти ймовірність того, що в 350 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,49 до 0,52;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,005.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 78% проведених випробуваннях. Знайти ймовірність того, що в 500 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,75 до 0,79;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,004.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 58% проведених випробуваннях. Знайти ймовірність того, що в 200 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,49 до 0,57;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,027.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 91% проведених випробуваннях. Знайти ймовірність того, що в 250 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,89 до 0,94;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,003.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 74% проведених випробуваннях. Знайти ймовірність того, що в 325 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,69 до 0,75;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,007.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.

Задача 2. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.

Задача 3. Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 37% проведених випробуваннях. Знайти ймовірність того, що в 150 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,29 до 0,43;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,02.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 31% проведених випробуваннях. Знайти ймовірність того, що в 230 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,34 до 0,37;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події А.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 63% проведених випробуваннях. Знайти ймовірність того, що в 450 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події A знаходиться в інтервалі від 0,57 до 0,6;
- б) відносна частота $\frac{m}{n}$ події A відрізняється по абсолютній величині від ймовірності події A не більше чим на ε =0,037.

Задача 1. Ймовірність появи події A в кожному з 6 незалежних випробувань дорівнює 0.75.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,007. Знайти ймовірність того, що подія A з'явиться рівно 8 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 390 до 420 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія A з'явиться не більш ніж 390 разів.

Задача 5. Відомо, що подія A з'являється в 62% проведених випробуваннях. Знайти ймовірність того, що в 750 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події знаходиться в інтервалі від 0,58 до 0,65;
- б) відносна частота $\frac{m}{n}$ події відрізняється по абсолютній величині від ймовірності події не більше чим на ε =0,028.

Задача 1. Ймовірність появи події A в кожному з 8 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8. Знайти ймовірність того, що подія A з'явиться рівно 310 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,009. Знайти ймовірність того, що подія A з'явиться рівно 6 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85.

Знайти:

- 1) ймовірність того, що подія A з'явиться від 420 до 450 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 420 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 450 разів.

Задача 5. Відомо, що подія A з'являється в 72% проведених випробуваннях. Знайти ймовірність того, що в 650 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події знаходиться в інтервалі від 0,71 до 0,78;
- б) відносна частота $\frac{m}{n}$ події відрізняється по абсолютній величині від ймовірності події не більше чим на ε =0,013.

Задача 1. Ймовірність появи події A в кожному з 7 незалежних випробувань дорівнює 0.7.

Знайти:

- 1) ймовірності всіх можливих чисел появи події А в серії незалежних випробувань;
- 2) найімовірніше число появи події A.
- **Задача 2.** Ймовірність появи події A в кожному з 500 незалежних випробувань дорівнює 0,85. Знайти ймовірність того, що подія A з'явиться рівно 420 разів. Обчислити відносну помилку.
- **Задача 3.** Ймовірність появи події A в кожному з 1000 незалежних випробувань дорівнює 0,004. Знайти ймовірність того, що подія A з'явиться рівно 11 разів. Обчислити відносну помилку.

Задача 4. Ймовірність появи події A в кожному з 400 незалежних випробувань дорівнює 0,8.

Знайти:

- 1) ймовірність того, що подія А з'явиться від 310 до 370 разів;
- 2) ймовірність того, подія А з'явиться не менш ніж 370 разів;
- 3) ймовірність того, подія А з'явиться не більш ніж 310 разів.

Задача 5. Відомо, що подія A з'являється в 47% проведених випробуваннях. Знайти ймовірність того, що в 350 випробуваннях:

- а) відносна частота $\frac{m}{n}$ події знаходиться в інтервалі від 0,49 до 0,52;
- б) відносна частота $\frac{m}{n}$ події відрізняється по абсолютній величині від ймовірності події не більше чим на ε =0,005.

Додатки. Статистичні таблиці

Таблиця 1

Значення функції
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

	(2(1)		(2(2)		(2(20)	<u>√2π</u>	(2(2)		(2(10)
x	$\varphi(x)$								
0	0,3989	0,5	0,3521	1	0,2420	1,5	0,1295	2	0,0540
0,01	0,3989	0,51	0,3503	1,01	0,2396	1,51	0,1276	2,01	0,0529
0,02	0,3989	0,52	0,3485	1,02	0,2371	1,52	0,1257	2,02	0,0519
0,03	0,3988	0,53	0,3467	1,03	0,2347	1,53	0,1238	2,03	0,0508
0,04	0,3986	0,54	0,3448	1,04	0,2323	1,54	0,1219	2,04	0,0498
0,05	0,3984	0,55	0,3429	1,05	0,2299	1,55	0,1200	2,05	0,0488
0,06	0,3982	0,56	0,3410	1,06	0,2275	1,56	0,1182	2,06	0,0478
0,07	0,3980	0,57	0,3391	1,07	0,2251	1,57	0,1163	2,07	0,0468
0,08	0,3977	0,58	0,3372	1,08	0,2227	1,58	0,1145	2,08	0,0459
0,09	0,3973	0,59	0,3352	1,09	0,2203	1,59	0,1127	2,09	0,0449
0,1	0,3970	0,6	0,3332	1,1	0,2179	1,6	0,1109	2,1	0,0440
0,11	0,3965	0,61	0,3312	1,11	0,2155	1,61	0,1092	2,11	0,0431
0,12	0,3961	0,62	0,3292	1,12	0,2131	1,62	0,1074	2,12	0,0422
0,13	0,3956	0,63	0,3271	1,13	0,2107	1,63	0,1057	2,13	0,0413
0,14	0,3951	0,64	0,3251	1,14	0,2083	1,64	0,1040	2,14	0,0404
0,15	0,3945	0,65	0,3230	1,15	0,2059	1,65	0,1023	2,15	0,0396
0,16	0,3939	0,66	0,3209	1,16	0,2036	1,66	0,1006	2,16	0,0387
0,17	0,3932	0,67	0,3187	1,17	0,2012	1,67	0,0989	2,17	0,0379
0,18	0,3925	0,68	0,3166	1,18	0,1989	1,68	0,0973	2,18	0,0371
0,19	0,3918	0,69	0,3144	1,19	0,1965	1,69	0,0957	2,19	0,0363
0,2	0,3910	0,7	0,3123	1,2	0,1942	1,7	0,0940	2,2	0,0355
0,21	0,3902	0,71	0,3101	1,21	0,1919	1,71	0,0925	2,21	0,0347
0,22	0,3894	0,72	0,3079	1,22	0,1895	1,72	0,0909	2,22	0,0339
0,23	0,3885	0,73	0,3056	1,23	0,1872	1,73	0,0893	2,23	0,0332
0,24	0,3876	0,74	0,3034	1,24	0,1849	1,74	0,0878	2,24	0,0325
0,25	0,3867	0,75	0,3011	1,25	0,1826	1,75	0,0863	2,25	0,0317
0,26	0,3857	0,76	0,2989	1,26	0,1804	1,76	0,0848	2,26	0,0310
0,27	0,3847	0,77	0,2966	1,27	0,1781	1,77	0,0833	2,27	0,0303
0,28	0,3836	0,78	0,2943	1,28	0,1758	1,78	0,0818	2,28	0,0297
0,29	0,3825	0,79	0,2920	1,29	0,1736	1,79	0,0804	2,29	0,0290
0,3	0,3814	0,8	0,2897	1,3	0,1714	1,8	0,0790	2,3	0,0283
0,31	0,3802	0,81	0,2874	1,31	0,1691	1,81	0,0775	2,31	0,0277
0,32	0,3790	0,82	0,2850	1,32	0,1669	1,82	0,0761	2,32	0,0270
0,33	0,3778	0,83	0,2827	1,33	0,1647	1,83	0,0748	2,33	0,0264
0,34	0,3765	0,84	0,2803	1,34	0,1626	1,84	0,0734	2,34	0,0258
0,35	0,3752	0,85	0,2780	1,35	0,1604	1,85	0,0721	2,35	0,0252
0,36 0,37	0,3739	0,86	0,2756	1,36	0,1582	1,86	0,0707	2,36	0,0246
0,38	0,3725 0,3712	0,87	0,2732 0,2709	1,37 1,38	0,1561	1,87	0,0694 0,0681	2,37	0,0241
0,39	0,3712	0,88 0,89	0,2709	1,38	0,1539 0,1518	1,88 1,89	0,0669	2,38 2,39	0,0235 0,0229
0,39	0,3683	0,89	0,2661	1,39	0,1318	1,9	0,0656	2,39	0,0229
0,4	0,3668	0,9	0,2637	1,41	0,1497	1,91	0,0636	2,41	0,0224
0,41	0,3653	0,91	0,2613	1,41	0,1476	1,92	0,0632	2,42	0,0213
0,42	0,3637	0,92	0,2513	1,42	0,1435	1,93	0,0620	2,42	0,0213
0,43	0,3621	0,93	0,2565	1,43	0,1435	1,94	0,0620	2,44	0,0203
0,44	0,3605	0,94	0,2541	1,44	0,1413	1,95	0,0596	2,44	0,0203
0,45	0,3589	0,96	0,2516	1,46	0,1394	1,96	0,0584	2,46	0,0194
0,40	0,3572	0,90	0,2310	1,40	0,1374	1,97	0,0573	2,47	0,0194
0,47	0,3572	0,98	0,2492	1,48	0,1334	1,98	0,0573	2,47	0,0189
					· ·		· ·		· ·
0,49	0,3538	0,99	0,2444	1,49	0,1315	1,99	0,0551	2,49	0,0180

Таблиця 1 (продовження)

Значення функції
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

		,		,	•	$\sqrt{2\pi}$		•	_
x	$\varphi(x)$	x	$\varphi(x)$	x	$\varphi(x)$	\boldsymbol{x}	$\varphi(x)$	x	$\varphi(x)$
2,5	0,0175	3	0,0044	3,5	0,0009	4	0,00013	4,5	0,000016
2,51	0,0171	3,01	0,0043	3,51	0,0008	4,01	0,00013	4,51	0,000015
2,52	0,0167	3,02	0,0042	3,52	0,0008	4,02	0,00012	4,52	0,000015
2,53	0,0163	3,03	0,0040	3,53	0,0008	4,03	0,00012	4,53	0,000014
2,54	0,0158	3,04	0,0039	3,54	0,0008	4,04	0,00011	4,54	0,000013
2,55	0,0154	3,05	0,0038	3,55	0,0007	4,05	0,00011	4,55	0,000013
2,56	0,0151	3,06	0,0037	3,56	0,0007	4,06	0,00011	4,56	0,000012
2,57	0,0147	3,07	0,0036	3,57	0,0007	4,07	0,00010	4,57	0,000012
2,58	0,0143	3,08	0,0035	3,58	0,0007	4,08	0,00010	4,58	0,000011
2,59	0,0139	3,09	0,0034	3,59	0,0006	4,09	0,00009	4,59	0,000011
2,6	0,0136	3,1	0,0033	3,6	0,0006	4,1	0,00009	4,6	0,000010
2,61	0,0132	3,11	0,0032	3,61	0,0006	4,11	0,00009	4,61	0,000010
2,62	0,0129	3,12	0,0031	3,62	0,0006	4,12	0,00008	4,62	0,000009
2,63	0,0126	3,13	0,0030	3,63	0,0005	4,13	0,00008	4,63	0,000009
2,64	0,0122	3,14	0,0029	3,64	0,0005	4,14	0,00008	4,64	0,000008
2,65	0,0119	3,15	0,0028	3,65	0,0005	4,15	0,00007	4,65	0,000008
2,66	0,0116	3,16	0,0027	3,66	0,0005	4,16	0,00007	4,66	0,000008
2,67	0,0113	3,17	0,0026	3,67	0,0005	4,17	0,00007	4,67	0,000007
2,68	0,0110	3,18	0,0025	3,68	0,0005	4,18	0,00006	4,68	0,000007
2,69	0,0107	3,19	0,0025	3,69	0,0004	4,19	0,00006	4,69	0,000007
2,7	0,0104	3,2	0,0024	3,7	0,0004	4,2	0,00006	4,7	0,000006
2,71	0,0101	3,21	0,0023	3,71	0,0004	4,21	0,00006	4,71	0,000006
2,72	0,0099	3,22	0,0022	3,72	0,0004	4,22	0,00005	4,72	0,000006
2,73	0,0096	3,23	0,0022	3,73	0,0004	4,23	0,00005	4,73	0,000006
2,74	0,0093	3,24	0,0021	3,74	0,0004	4,24	0,00005	4,74	0,000005
2,75	0,0091	3,25	0,0020	3,75	0,0004	4,25	0,00005	4,75	0,000005
2,76	0,0088	3,26	0,0020	3,76	0,0003	4,26	0,00005	4,76	0,000005
2,77	0,0086	3,27	0,0019	3,77	0,0003	4,27	0,00004	4,77	0,000005
2,78	0,0084	3,28	0,0018	3,78	0,0003	4,28	0,00004	4,78	0,000004
2,79	0,0081	3,29	0,0018	3,79	0,0003	4,29	0,00004	4,79	0,000004
2,8	0,0079	3,3	0,0017	3,8	0,0003	4,3	0,00004	4,8	0,000004
2,81	0,0077	3,31	0,0017	3,81	0,0003	4,31	0,00004	4,81	0,000004
2,82	0,0075	3,32	0,0016	3,82	0,0003	4,32	0,00004	4,82	0,000004
2,83	0,0073	3,33	0,0016	3,83	0,0003	4,33	0,00003	4,83	0,000003
2,84	0,0071	3,34	0,0015	3,84	0,0003	4,34	0,00003	4,84	0,000003
2,85	0,0069	3,35	0,0015	3,85	0,0002	4,35	0,00003	4,85	0,000003
2,86	0,0067	3,36	0,0014	3,86	0,0002	4,36	0,00003	4,86	0,000003
2,87	0,0065	3,37	0,0014	3,87	0,0002	4,37	0,00003	4,87	0,000003
2,88	0,0063	3,38	0,0013	3,88	0,0002	4,38	0,00003	4,88	0,000003
2,89	0,0061	3,39	0,0013	3,89	0,0002	4,39	0,00003	4,89	0,000003
2,9	0,0060	3,4	0,0012	3,9	0,0002	4,4	0,00002	4,9	0,000002
2,91	0,0058	3,41	0,0012	3,91	0,0002	4,41	0,00002	4,91	0,000002
2,92	0,0056	3,42	0,0012	3,92	0,0002	4,42	0,00002	4,92	0,000002
2,93	0,0055	3,43	0,0011	3,93	0,0002	4,43	0,00002	4,93	0,000002
2,94	0,0053	3,44	0,0011	3,94	0,0002	4,44	0,00002	4,94	0,000002
2,95	0,0051	3,45	0,0010	3,95	0,0002	4,45	0,00002	4,95	0,000002
2,96	0,0050	3,46	0,0010	3,96	0,0002	4,46	0,00002	4,96	0,000002
2,97	0,0048	3,47	0,0010	3,97	0,0002	4,47	0,00002	4,97	0,000002
2,98	0,0047	3,48	0,0009	3,98	0,0001	4,48	0,00002	4,98	0,000002
2,99	0,0046	3,49	0,0009	3,99	0,0001	4,49	0,00002	4,99	0,000002
								5	0,000001

Значення функції Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{-z^2}{2}} dz$$

x	$\Phi(x)$								
0	0	0,5	0,19145	1	0,34135	1,5	0,4332	2	0,47725
0,01	0,004	0,51	0,19145	1,01	0,34135	1,51	0,4332	2,01	0,4778
0,01	0,004	0,51	0,19495	1,01	0,34615	1,52	0,43575	2,02	0,4778
0,02	0,000	0,52	0,19045	1,02	0,3485	1,52	0,43373	2,02	0,4788
0,03	0,01195	0,54	0,20193	1,03	0,35085	1,54	0,437	2,04	0,4788
0,05	0,01995	0,55	0,20885	1,05	0,35315	1,55	0,43945	2,05	0,4798
0,06	0,01333	0,56	0,20005	1,06	0,35545	1,56	0,4406	2,06	0,4730
0,07	0,0233	0,57	0,21565	1,07	0,3577	1,57	0,4418	2,07	0,48075
0,08	0,0273	0,58	0,21905	1,08	0,35995	1,58	0,44295	2,08	0,48125
0,09	0,03585	0,59	0,2224	1,09	0,36215	1,59	0,4441	2,09	0,4817
0,1	0,03985	0,6	0,22575	1,1	0,36435	1,6	0,4452	2,1	0,48215
0,11	0,0438	0,61	0,22905	1,11	0,3665	1,61	0,4463	2,11	0,48255
0,12	0,04775	0,62	0,23235	1,12	0,36865	1,62	0,4474	2,12	0,483
0,13	0,0517	0,63	0,23565	1,13	0,37075	1,63	0,44845	2,13	0,4834
0,14	0,05565	0,64	0,2389	1,14	0,37285	1,64	0,4495	2,14	0,4838
0,15	0,0596	0,65	0,24215	1,15	0,37495	1,65	0,45055	2,15	0,4842
0,16	0,06355	0,66	0,24535	1,16	0,377	1,66	0,45155	2,16	0,4846
0,17	0,0675	0,67	0,24855	1,17	0,379	1,67	0,45255	2,17	0,485
0,18	0,0714	0,68	0,25175	1,18	0,381	1,68	0,4535	2,18	0,48535
0,19	0,07535	0,69	0,2549	1,19	0,383	1,69	0,4545	2,19	0,48575
0,2	0,07925	0,7	0,25805	1,2	0,38495	1,7	0,45545	2,2	0,4861
0,21	0,08315	0,71	0,26115	1,21	0,38685	1,71	0,45635	2,21	0,48645
0,22	0,08705	0,72	0,26425	1,22	0,38875	1,72	0,4573	2,22	0,4868
0,23	0,09095	0,73	0,2673	1,23	0,39065	1,73	0,4582	2,23	0,48715
0,24	0,09485	0,74	0,27035	1,24	0,3925	1,74	0,45905	2,24	0,48745
0,25	0,0987	0,75	0,27335	1,25	0,39435	1,75	0,45995	2,25	0,4878
0,26	0,10255	0,76	0,27635	1,26	0,39615	1,76	0,4608	2,26	0,4881
0,27	0,1064	0,77	0,27935	1,27	0,39795	1,77	0,46165	2,27	0,4884
0,28	0,11025	0,78	0,2823	1,28	0,39975	1,78	0,46245	2,28	0,4887
0,29	0,1141	0,79	0,28525	1,29	0,40145	1,79	0,46325	2,29	0,489
0,3	0,1179	0,8	0,28815	1,3	0,4032	1,8	0,46405	2,3	0,4893
0,31	0,1217	0,81	0,29105	1,31	0,4049	1,81	0,46485	2,31	0,48955
0,32	0,1255	0,82	0,2939	1,32	0,4066	1,82	0,4656	2,32	0,48985
0,33	0,1293	0,83	0,29675	1,33	0,40825	1,83	0,4664	2,33	0,4901
0,34	0,13305	0,84	0,29955	1,34	0,4099	1,84	0,4671	2,34	0,49035
0,35	0,13685	0,85	0,30235	1,35	0,4115	1,85	0,46785	2,35	0,4906
0,36	0,1406	0,86	0,3051	1,36	0,4131	1,86	0,46855	2,36	0,49085
0,37	0,1443	0,87	0,30785	1,37	0,41465	1,87	0,46925	2,37	0,4911
0,38	0,14805	0,88	0,31055	1,38	0,4162	1,88	0,46995	2,38	0,49135
0,39	0,15175	0,89	0,31325	1,39	0,41775	1,89	0,4706	2,39	0,4916
0,4	0,1554	0,9	0,31595	1,4	0,41925	1,9	0,4713	2,4	0,4918
0,41	0,1591	0,91	0,3186	1,41	0,42075	1,91	0,47195	2,41	0,492
0,42	0,16275	0,92	0,3212	1,42	0,4222	1,92	0,47255	2,42	0,49225
0,43	0,1664	0,93	0,3238	1,43	0,42365	1,93	0,4732	2,43	0,49245
0,44	0,17005	0,94	0,3264	1,44	0,42505	1,94	0,4738	2,44	0,49265
0,45	0,17365	0,95	0,32895	1,45	0,42645	1,95	0,4744	2,45	0,49285
0,46	0,17725	0,96	0,33145	1,46	0,42785	1,96	0,475	2,46	0,49305
0,47	0,1808	0,97	0,334	1,47	0,4292	1,97	0,4756	2,47	0,49325
0,48	0,1844	0,98	0,33645	1,48	0,43055	1,98	0,47615	2,48	0,49345
0,49	0,18795	0,99	0,3389	1,49	0,4319	1,99	0,4767	2,49	0,4936

Таблиця 2 (продовження)

Значення функції Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{\frac{-z^{2}}{2}} dz$$

							. 0		
x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
2,5	0,4938	3	0,49865	3,5	0,49975	4	0,49997	4,5	0,4999965
2,51	0,49395	3,01	0,4987	3,51	0,4998	4,01	0,49997	4,51	0,499997
2,52	0,49415	3,02	0,49875	3,52	0,4998	4,02	0,49997	4,52	0,499997
2,53	0,4943	3,03	0,4988	3,53	0,4998	4,03	0,49997	4,53	0,499997
2,54	0,49445	3,04	0,4988	3,54	0,4998	4,04	0,499975	4,54	0,499997
2,55	0,4946	3,05	0,49885	3,55	0,4998	4,05	0,499975	4,55	0,4999975
2,56	0,49475	3,06	0,4989	3,56	0,4998	4,06	0,499975	4,56	0,4999975
2,57	0,4949	3,07	0,49895	3,57	0,4998	4,07	0,499975	4,57	0,4999975
2,58	0,49505	3,08	0,49895	3,58	0,49985	4,08	0,499975	4,58	0,4999975
2,59	0,4952	3,09	0,499	3,59	0,49985	4,09	0,49998	4,59	0,499998
2,6	0,49535	3,1	0,49905	3,6	0,49985	4,1	0,49998	4,6	0,499998
2,61	0,49545	3,11	0,49905	3,61	0,49985	4,11	0,49998	4,61	0,499998
2,62	0,4956	3,12	0,4991	3,62	0,49985	4,12	0,49998	4,62	0,499998
2,63	0,49575	3,13	0,49915	3,63	0,49985	4,13	0,49998	4,63	0,499998
2,64	0,49585	3,14	0,49915	3,64	0,49985	4,14	0,499985	4,64	0,4999985
2,65	0,496	3,15	0,4992	3,65	0,49985	4,15	0,499985	4,65	0,4999985
2,66	0,4961	3,16	0,4992	3,66	0,49985	4,16	0,499985	4,66	0,4999985
2,67	0,4962	3,17	0,49925	3,67	0,4999	4,17	0,499985	4,67	0,4999985
2,68	0,4963	3,18	0,49925	3,68	0,4999	4,18	0,499985	4,68	0,4999985
2,69	0,49645	3,19	0,4993	3,69	0,4999	4,19	0,499985	4,69	0,4999985
2,7	0,49655	3,2	0,4993	3,7	0,4999	4,2	0,499985	4,7	0,4999985
2,71	0,49665	3,21	0,49935	3,71	0,4999	4,21	0,499985	4,71	0,499999
2,72	0,49675	3,22	0,49935	3,72	0,4999	4,22	0,49999	4,72	0,499999
2,73	0,49685	3,23	0,4994	3,73	0,4999	4,23	0,49999	4,73	0,499999
2,74	0,49695	3,24	0,4994	3,74	0,4999	4,24	0,49999	4,74	0,499999
2,75	0,497 0,4971	3,25	0,4994 0,49945	3,75	0,4999 0,4999	4,25 4,26	0,49999 0,49999	4,75	0,499999
2,76 2,77	0,4971	3,26 3,27	0,49945	3,76 3,77	0,4999	4,26	0,49999	4,76 4,77	0,499999 0,499999
2,77	0,4972	3,28	0,49945	3,78	0,4999	4,27	0,49999	4,77	0,499999
2,76	0,4973	3,28	0,4995	3,78	0,4999	4,29	0,49999	4,78	0,499999
2,79	0,49735	3,29	0,4995	3,8	0,49995	4,29	0,49999	4,79	0,499999
2,81	0,49743	3,31	0,49955	3,81	0,49995	4,31	0,49999	4,81	0,499999
2,82	0,4976	3,32	0,49955	3,82	0,49995	4,31	0,49999	4,82	0,4999995
2,83	0,49765	3,33	0,49955	3,83	0,49995	4,33	0,499995	4,83	0,4999995
2,84	0,49775	3,34	0,4996	3,84	0,49995	4,34	0,499995	4,84	0,4999995
2,85	0,4978	3,35	0,4996		0,49995		0,499995		0,4999995
2,86	0,4979	3,36	0,4996	3,86	0,49995	4,36	0,499995	4,86	0,4999995
2,87	0,49795	3,37	0,4996	3,87	0,49995	4,37	0,499995	4,87	0,4999995
2,88	0,498	3,38	0,49965	3,88	0,49995	4,38	0,499995	4,88	0,4999995
2,89	0,49805	3,39	0,49965	3,89	0,49995	4,39	0,499995	4,89	0,4999995
2,9	0,49815	3,4	0,49965	3,9	0,49995	4,4	0,499995	4,9	0,4999995
2,91	0,4982	3,41	0,4997	3,91	0,49995	4,41	0,499995	4,91	0,4999995
2,92	0,49825	3,42	0,4997	3,92	0,49995	4,42	0,499995	4,92	0,4999995
2,93	0,4983	3,43	0,4997	3,93	0,49995	4,43	0,499995	4,93	0,4999995
2,94	0,49835	3,44	0,4997	3,94	0,49995	4,44	0,499995	4,94	0,4999995
2,95	0,4984	3,45	0,4997	3,95	0,49995	4,45	0,499995	4,95	0,4999995
2,96	0,49845	3,46	0,49975	3,96	0,49995	4,46	0,499995	4,96	0,4999995
2,97	0,4985	3,47	0,49975	3,97	0,49995	4,47	0,499995	4,97	0,4999995
2,98	0,49855	3,48	0,49975	3,98	0,49995	4,48	0,499995	4,98	0,4999995
2,99	0,4986	3,49	0,49975	3,99	0,49995	4,49	0,499995	4,99	0,4999995
								5	0,4999995
-									

Таблиця 3

Значення функції Пуассона
$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

<i>k</i> \ λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	0,9048	0,8187	0,7408	0,6703	0,6065	0,5488	0,4966	0,4493	0,4066
1	0,0905	0,1637	0,2222	0,2681	0,3033	0,3293	0,3476	0,3595	0,3659
2	0,0045	0,0164	0,0333	0,0536	0,0758	0,0988	0,1217	0,1438	0,1647
3	0,0002	0,0011	0,0033	0,0072	0,0126	0,0198	0,0284	0,0383	0,0494
4	0,0000	0,0001	0,0003	0,0007	0,0016	0,0030	0,0050	0,0077	0,0111
5	0,0000	0,0000	0,0000	0,0001	0,0002	0,0004	0,0007	0,0012	0,0020
6	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0003
7	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

<i>k</i> \ λ	1	2	3	4	5	6	7	8	9	10
0	0,3679	0,1353	0,0498	0,0183	0,0067	0,0025	0,0009	0,0003	0,0001	0,0000
1	0,3679	0,2707	0,1494	0,0733	0,0337	0,0149	0,0064	0,0027	0,0011	0,0005
2	0,1839	0,2707	0,2240	0,1465	0,0842	0,0446	0,0223	0,0107	0,0050	0,0023
3	0,0613	0,1804	0,2240	0,1954	0,1404	0,0892	0,0521	0,0286	0,0150	0,0076
4	0,0153	0,0902	0,1680	0,1954	0,1755	0,1339	0,0912	0,0573	0,0337	0,0189
5	0,0031	0,0361	0,1008	0,1563	0,1755	0,1606	0,1277	0,0916	0,0607	0,0378
6	0,0005	0,0120	0,0504	0,1042	0,1462	0,1606	0,1490	0,1221	0,0911	0,0631
7	0,0001	0,0034	0,0216	0,0595	0,1044	0,1377	0,1490	0,1396	0,1171	0,0901
8	0,0000	0,0009	0,0081	0,0298	0,0653	0,1033	0,1304	0,1396	0,1318	0,1126
9	0,0000	0,0002	0,0027	0,0132	0,0363	0,0688	0,1014	0,1241	0,1318	0,1251
10	0,0000	0,0000	0,0008	0,0053	0,0181	0,0413	0,0710	0,0993	0,1186	0,1251
11	0,0000	0,0000	0,0002	0,0019	0,0082	0,0225	0,0452	0,0722	0,0970	0,1137
12	0,0000	0,0000	0,0001	0,0006	0,0034	0,0113	0,0263	0,0481	0,0728	0,0948
13	0,0000	0,0000	0,0000	0,0002	0,0013	0,0052	0,0142	0,0296	0,0504	0,0729
14	0,0000	0,0000	0,0000	0,0001	0,0005	0,0022	0,0071	0,0169	0,0324	0,0521
15	0,0000	0,0000	0,0000	0,0000	0,0002	0,0009	0,0033	0,0090	0,0194	0,0347
16	0,0000	0,0000	0,0000	0,0000	0,0000	0,0003	0,0014	0,0045	0,0109	0,0217
17	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0006	0,0021	0,0058	0,0128
18	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0002	0,0009	0,0029	0,0071
19	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0004	0,0014	0,0037
20	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0002	0,0006	0,0019
21	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0003	0,0009
22	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0004
23	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0002
24	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001
25	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000