mecheng

1.0.0

Generated by Doxygen 1.8.11

Contents

1	Mod	lules Ind	ex	2
	1.1	Module	s List	2
2	Data	Type In	dex	2
	2.1	Data Ty	vpes List	2
3	Mod	ule Doc	umentation	2
	3.1	column	s Module Reference	2
		3.1.1	Detailed Description	3
		3.1.2	Function/Subroutine Documentation	3
	3.2	constar	nts Module Reference	7
		3.2.1	Detailed Description	7
	3.3	section	s Module Reference	7
		3.3.1	Detailed Description	7
		3.3.2	Function/Subroutine Documentation	7
	3.4	strain N	Module Reference	10
		3.4.1	Detailed Description	10
		3.4.2	Function/Subroutine Documentation	10
4	Data	Type D	ocumentation	13
	4.1	column	s::buckling_load Interface Reference	13
		4.1.1	Detailed Description	13
		4.1.2	Member Function/Subroutine Documentation	13
	4.2	column	s::euler_buckling Interface Reference	14
		4.2.1	Detailed Description	15
		4.2.2	Member Function/Subroutine Documentation	15
	4.3	column	s::johnson_buckling Interface Reference	16
		4.3.1	Detailed Description	16
		4.3.2	Member Function/Subroutine Documentation	16
	4.4	column	s::slenderness_ratio Interface Reference	17
		4.4.1	Detailed Description	18
		4.4.2	Member Function/Subroutine Documentation	18
	4.5	strain::\	wheatstone_bridge Interface Reference	19
		4.5.1	Detailed Description	19
		4.5.2	Member Function/Subroutine Documentation	19

CONTENTS

Index	21
1 Modules Index	
1.1 Modules List	
Here is a list of all documented modules with brief descriptions:	
columns columns	2
constants constants	7
sections sections	7
strain strain	10
2 Data Type Index	
2.1 Data Types List	
Here are the data types with brief descriptions:	
columns::buckling_load Computes the buckling load of a column under compression. The routine determines wheth to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column	
columns::euler_buckling Computes the critical buckling load of a column by means of Euler's equation	14
columns::johnson_buckling Computes the critical buckling load of a column by means of J.B. Johnson's equation	16
columns::slenderness_ratio Computes the slenderness ratio of a column	17
strain::wheatstone_bridge Computes the output of a wheatstone bridge	19
3 Module Documentation	
3.1 columns Module Reference	
columns	

Data Types

interface buckling load

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column.

· interface euler buckling

Computes the critical buckling load of a column by means of Euler's equation.

· interface johnson_buckling

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

· interface slenderness ratio

Computes the slenderness ratio of a column.

Functions/Subroutines

pure elemental real(real64) function slenderness_ratio_1 (length, rad)

Computes the slenderness ratio of a column.

• pure elemental real(real64) function slenderness_ratio_2 (length, moi, area)

Computes the slenderness ratio of a column.

• pure elemental real(real64) function euler_buckling_1 (modulus, ratio, area)

Computes the critical buckling load of a column by means of Euler's equation.

• pure elemental real(real64) function euler_buckling_2 (modulus, length, moi, area)

Computes the critical buckling load of a column by means of Euler's equation.

pure elemental real(real64) function johnson buckling 1 (modulus, yield, ratio, area)

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

• pure elemental real(real64) function johnson_buckling_2 (modulus, yield, length, moi, area)

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

• pure elemental real(real64) function, public buckling_transition (modulus, yield)

Computes the slenderness ratio transition point above which the Euler equation is more appropriate to estimate the buckling load, but below which the Johnson equation is more valid.

• pure elemental real(real64) function buckling_load_1 (modulus, yield, ratio, area)

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_← transition routine to determine where the transition between the two equations lies.

• pure elemental real(real64) function buckling_load_2 (modulus, yield, length, moi, area)

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_ctransition routine to determine where the transition between the two equations lies.

3.1.1 Detailed Description

columns

Purpose

This module contains calculations relating to buckling and stability of columns in compression.

References

•

3.1.2 Function/Subroutine Documentation

3.1.2.1 pure elemental real(real64) function columns::buckling_load_1 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *ratio*, real(real64), intent(in) *area*) [private]

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_transition routine to determine where the transition between the two equations lies.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 214 of file columns.f90.

3.1.2.2 pure elemental real(real64) function columns::buckling_load_2 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *length*, real(real64), intent(in) *moi*, real(real64), intent(in) *area*) [private]

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_transition routine to determine where the transition between the two equations lies.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the section.

Returns

The critical buckling load.

Definition at line 245 of file columns.f90.

3.1.2.3 pure elemental real(real64) function, public columns::buckling_transition (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*)

Computes the slenderness ratio transition point above which the Euler equation is more appropriate to estimate the buckling load, but below which the Johnson equation is more valid.

Parameters

	in	modulus	The modulus of elasticity of the material from which the column is made.
ſ	in	yield	The yield strength of the material from which the column is made.

Definition at line 192 of file columns.f90.

3.1.2.4 pure elemental real(real64) function columns::euler_buckling_1 (real(real64), intent(in) *modulus*, real(real64), intent(in) *ratio*, real(real64), intent(in) *area*) [private]

Computes the critical buckling load of a column by means of Euler's equation.

Parameters

i	n	modulus	The modulus of elasticity of the material from which the column was made.
i	n	ratio	The slenderness ratio of the column.
in area The cross-sectional are		area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 120 of file columns.f90.

3.1.2.5 pure elemental real(real64) function columns::euler_buckling_2 (real(real64), intent(in) modulus, real(real64), intent(in) moi, real(real64), intent(in) area) [private]

Computes the critical buckling load of a column by means of Euler's equation.

Parameters

in modulus The modulus of elasticity of the material from which the column		The modulus of elasticity of the material from which the column was made.
in length The effective length of the column.		The effective length of the column.
in moi The moment of inertia (area) for the section. in area The cross-sectional area of the column.		The moment of inertia (area) for the section.
		The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 137 of file columns.f90.

3.1.2.6 pure elemental real(real64) function columns::johnson_buckling_1 (real(real64), intent(in) *modulus*, real(real64), intent(in) *ratio*, real(real64), intent(in) *area*) [private]

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

·		The modulus of elasticity of the material from which the column is made.
		The yield strength of the material from which the column is made.
		The slenderness ratio of the column.
in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 156 of file columns.f90.

3.1.2.7 pure elemental real(real64) function columns::johnson_buckling_2 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *length*, real(real64), intent(in) *moi*, real(real64), intent(in) *area*) [private]

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 175 of file columns.f90.

3.1.2.8 pure elemental real(real64) function columns::slenderness_ratio_1 (real(real64), intent(in) length, real(real64), intent(in) rad) [private]

Computes the slenderness ratio of a column.

Parameters

in	length	The effective length of the column.
in	rad	The radius of gyration of the section.

Returns

The slenderness ratio.

Definition at line 91 of file columns.f90.

3.1.2.9 pure elemental real(real64) function columns::slenderness_ratio_2 (real(real64), intent(in) length, real(real64), intent(in) moi, real(real64), intent(in) area) [private]

Computes the slenderness ratio of a column.

in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the section.

Returns

The slenderness ratio.

Definition at line 104 of file columns.f90.

3.2 constants Module Reference

constants

Variables

real(real64), parameter pi = 3.1415926535897932384626433832795d0
 The parameter pi.

3.2.1 Detailed Description

constants

Purpose

This module provides constants commonly used in engineering calculations.

3.3 sections Module Reference

sections

Functions/Subroutines

- pure elemental real(real64) function radius_of_gyration (moi, area)

 Computes the radius of gyration of a section.
- pure real(real64) function, dimension(4) i_beam_section (webt, webh, flanget, flangew)

 Computes the cross-sectional properties of an I-beam section.
- pure real(real64) function, dimension(3) circle_section (diameter)
 - Computes the cross-sectional properties of a circular section.

• pure real(real64) function, dimension(3) hollow_circle_section (od, id)

Computes the cross-sectional properties of a hollow circular section.

3.3.1 Detailed Description

sections

Purpose

This module contains routines used for computing the sectional properties of various shapes.

3.3.2 Function/Subroutine Documentation

3.3.2.1 pure real(real64) function, dimension(3) sections::circle_section (real(real64), intent(in) diameter)

Computes the cross-sectional properties of a circular section.

Parameters

in diameter The diameter of the sect	on.
--------------------------------------	-----

Returns

An array containing the following cross-sectional properties.

- · Cross-sectional area.
- · Moment of inertia.
- · Polar moment of inertia.

The cross-sectional properties are computed as follows.

• Area:

$$-A = \frac{\pi}{4}d^2$$

· Moment of Inertia:

$$-I = \frac{\pi}{64}d^4$$

· Polar Moment of Inertia:

$$-J = \frac{\pi}{32}d^4$$

Definition at line 97 of file sections.f90.

3.3.2.2 pure real(real64) function, dimension(3) sections::hollow_circle_section (real(real64), intent(in) od, real(real64), intent(in) id)

Computes the cross-sectional properties of a hollow circular section.

Parameters

in	od	The outer diameter of the section.
in	id	The inner diameter of the section.

Returns

An array containing the following cross-sectional properties.

- · Cross-sectional area.
- · Moment of inertia.
- · Polar moment of inertia.

The cross-sectional properties are computed as follows.

• Area:

$$-A = \frac{\pi}{4}(d_o^2 - d_i^2)$$

• Moment of Inertia:

$$-I = \frac{\pi}{64}(d_o^4 - d_i^4)$$

· Polar Moment of Inertia:

$$-J = \frac{\pi}{32}(d_o^4 - d_i^4)$$

Definition at line 131 of file sections.f90.

3.3.2.3 pure real(real64) function, dimension(4) sections::i_beam_section (real(real64), intent(in) webt, real(real64), intent(in) flanget, real(real64), intent(in) flangew)

Computes the cross-sectional properties of an I-beam section.

Parameters

in	webt	The web section thickness.
in	webh	The web section height (between the flanges).
in	flanget	The flange thickness.
in	flangew	The flange width.

Returns

An array containing the following cross-sectional properties.

- · Cross-sectional area.
- Moment of inertia about the x-axis of the section (Stiff Axis).
- Moment of inertia about the y-axis of the section (Soft Axis).
- · Polar moment of inertia.

The cross-sectional properties are computed as follows.

· Area:

$$-A = t_w h_w + 2w_f t_f$$

• Moments of Inertia:

-
$$I_x = \int y^2 dA = \frac{1}{12} (t_w h_w^3 + 2w_f t_f^3) + \frac{1}{2} w_f t_f (h_w + t_f)^2$$

- $I_y = \int x^2 dA = \frac{1}{12} (h_w t_w^3 + 2t_f w_f^3)$

• Polar Moment of Inertia:

$$- J = \int r^2 dA = \int (x^2 + y^2) dA = I_x + Iy.$$

Definition at line 55 of file sections.f90.

3.3.2.4 pure elemental real(real64) function sections::radius_of_gyration (real(real64), intent(in) *moi*, real(real64), intent(in) *area*)

Computes the radius of gyration of a section.

Parameters

in	moi	The moment of inertia of area for the section.
in	area	The cross-sectional area of the section.

Returns

The radius of gyration for the section.

The radius of gyration is computed as follows.

$$\rho = \sqrt{\frac{I}{A}}$$

Definition at line 26 of file sections.f90.

3.4 strain Module Reference

strain

Data Types

interface wheatstone_bridge

Computes the output of a wheatstone bridge.

Functions/Subroutines

- pure elemental real(real64) function wheatstone_bridge_1 (fg, strain1, strain2, strain3, strain4) Computes the output of a wheatstone bridge.
- pure real(real64) function wheatstone_bridge_2 (fg, r, strain1, strain2, strain3, strain4)

 Computes the output of a wheatstone bridge.
- pure elemental real(real64) function strain_transform_x (ex, ey, gxy, theta)

Applies a rotation transformation to the x-direction strain.

• pure elemental real(real64) function strain_transform_y (ex, ey, gxy, theta)

Applies a rotation transformation to the y-direction strain.

• pure elemental real(real64) function strain_transfom_xy (ex, ey, gxy, theta)

Applies a rotation transformation to the x-y shear strain.

3.4.1 Detailed Description

strain

Purpose

Provides routines for performing strain related calculations.

- 3.4.2 Function/Subroutine Documentation
- 3.4.2.1 pure elemental real(real64) function strain::strain_transfom_xy (real(real64), intent(in) ex, real(real64), intent(in) ey, real(real64), intent(in) gxy, real(real64), intent(in) theta) [private]

Applies a rotation transformation to the x-y shear strain.

in	ex	The x-direction strain.
in	ey	The y-direction strain.
in	gxy	The x-y shear strain.
in	theta	The rotation angle, in radians.

Returns

The transformed strain.

Definition

$$\gamma_{x'y'} = 2(\epsilon_x - \epsilon_y)\sin\theta\cos\theta + \gamma_{xy}(\cos^2\theta - \sin^2\theta)$$

Definition at line 172 of file strain.f90.

3.4.2.2 pure elemental real(real64) function strain::strain_transform_x (real(real64), intent(in) ex, real(real64), intent(in) ey, real(real64), intent(in) gxy, real(real64), intent(in) theta) [private]

Applies a rotation transformation to the x-direction strain.

Parameters

	in	ex	The x-direction strain.
	in	ey	The y-direction strain.
Ī	in	gxy	The x-y shear strain.
Ī	in	theta	The rotation angle, in radians.

Returns

The transformed strain.

Definition

$$\epsilon_{x'} = \epsilon_x \cos^2 \theta + \epsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

Definition at line 132 of file strain.f90.

3.4.2.3 pure elemental real(real64) function strain::strain_transform_y (real(real64), intent(in) ex, real(real64), intent(in) ey, real(real64), intent(in) gxy, real(real64), intent(in) theta) [private]

Applies a rotation transformation to the y-direction strain.

Parameters

in	ex	The x-direction strain.
in	ey	The y-direction strain.
in	gxy	The x-y shear strain.
in	theta	The rotation angle, in radians.

Returns

The transformed strain.

Definition

$$\epsilon_{y'} = \epsilon_x \sin^2 \theta + \epsilon_y \cos^2 \theta - \gamma_{xy} \sin \theta \cos \theta$$

Definition at line 152 of file strain.f90.

3.4.2.4 pure elemental real(real64) function strain::wheatstone_bridge_1 (real(real64), intent(in) fg, real(real64), intent(in) strain1, real(real64), intent(in) strain2, real(real64), intent(in) strain3, real(real64), intent(in) strain4) [private]

Computes the output of a wheatstone bridge.

Parameters

in	fg	The gage factor of each strain gage. Each gage is assigned the same gage factor.
in	strain1	The strain in leg 1 of the bridge.
in	strain2	The strain in leg 2 of the bridge.
in	strain3	The strain in leg 3 of the bridge.
in	strain4	The strain in leg 4 of the bridge.

Returns

The output of the bridge, in units of mV/V.

Remarks

The construction of the wheatstone bridge is as follows.

The output of the bridge assuming each gage has the same resistance and the same gage factor is as follows.

$$\frac{V_{out}}{V} = \frac{f_g(f_g(\epsilon_1\epsilon_3 - \epsilon_2\epsilon_4) - (\epsilon_4 - \epsilon_3 + \epsilon_2 - \epsilon_1))}{4 + f_g(f_g(\epsilon_3(\epsilon_2 + \epsilon_1) + \epsilon_4(\epsilon_2 + \epsilon_1)) + 2(\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4))}$$

Definition at line 56 of file strain.f90.

3.4.2.5 pure real(real64) function strain::wheatstone_bridge_2 (real(real64), dimension(4), intent(in) fg, real(real64), dimension(4), intent(in) r, real(real64), intent(in) strain1, real(real64), intent(in) strain2, real(real64), intent(in) strain3, real(real64), intent(in) strain4) [private]

Computes the output of a wheatstone bridge.

in	fg	A 4-element array containing the gage factor for each strain gage (gage 1, gage 2, gage 3, gage 4).	
in	r	A 4-element array containing the resistance for each strain gage (gage 1, gage 2, gage 3, gage 4).	
in	strain1	The strain in leg 1 of the bridge.	
in	strain2	The strain in leg 2 of the bridge.	
in	strain3	The strain in leg 3 of the bridge.	
in	strain4	The strain in leg 4 of the bridge.	

Returns

The output of the bridge, in units of mV/V.

Remarks

The construction of the wheatstone bridge is as follows.

The output of the bridge is defined as follows.

$$\frac{V_{out}}{V} = \frac{R_3 + \Delta R_3}{R_3 + \Delta R_3 + R_4 + \Delta R_4} - \frac{R_2 + \Delta R_2}{R_2 + \Delta R_2 + R_1 + \Delta R_1}$$

Where: $\Delta R_i = f_{g,i} R_i \epsilon_i, i = 1..4$.

Definition at line 103 of file strain.f90.

4 Data Type Documentation

4.1 columns::buckling_load Interface Reference

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column.

Private Member Functions

- pure elemental real(real64) function buckling_load_1 (modulus, yield, ratio, area)
 - Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_← transition routine to determine where the transition between the two equations lies.
- pure elemental real(real64) function buckling_load_2 (modulus, yield, length, moi, area)
 - Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling \leftarrow transition routine to determine where the transition between the two equations lies.

4.1.1 Detailed Description

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column.

Definition at line 78 of file columns.f90.

4.1.2 Member Function/Subroutine Documentation

4.1.2.1 pure elemental real(real64) function columns::buckling_load::buckling_load_1 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *ratio*, real(real64), intent(in) *area*) [private]

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_transition routine to determine where the transition between the two equations lies.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 214 of file columns.f90.

4.1.2.2 pure elemental real(real64) function columns::buckling_load::buckling_load_2 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *length*, real(real64), intent(in) *moi*, real(real64), intent(in) *area*) [private]

Computes the buckling load of a column under compression. The routine determines whether to use the J.B. Johnson equation or the Euler equation based upon the slenderness ratio of the column. The routine uses the buckling_transition routine to determine where the transition between the two equations lies.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the section.

Returns

The critical buckling load.

Definition at line 245 of file columns.f90.

The documentation for this interface was generated from the following file:

• /home/jason/Documents/Code/mecheng/src/columns.f90

4.2 columns::euler_buckling Interface Reference

Computes the critical buckling load of a column by means of Euler's equation.

Private Member Functions

- pure elemental real(real64) function euler_buckling_1 (modulus, ratio, area)

 Computes the critical buckling load of a column by means of Euler's equation.
- pure elemental real(real64) function euler_buckling_2 (modulus, length, moi, area)

 Computes the critical buckling load of a column by means of Euler's equation.

4.2.1 Detailed Description

Computes the critical buckling load of a column by means of Euler's equation.

Remarks

The Euler buckling equation is as follows: $P_{cr}=rac{\pi^2EA}{R_s^2}$; where $R_s=rac{L_e}{
ho}$, and $ho=\sqrt{rac{I}{A}}$.

- P_{cr} = The critical buckling load.
- E= The modulus of elasticity of the material.
- $L_e=$ The effective length of the column.
- I =The moment of inertia (area) of the column (softest axis).
- A =The cross-sectional area of the column.

Definition at line 49 of file columns.f90.

4.2.2 Member Function/Subroutine Documentation

4.2.2.1 pure elemental real(real64) function columns::euler_buckling::euler_buckling_1 (real(real64), intent(in) modulus, real(real64), intent(in) ratio, real(real64), intent(in) area) [private]

Computes the critical buckling load of a column by means of Euler's equation.

Parameters

	in	modulus	The modulus of elasticity of the material from which the column was made.
Ī	in	ratio	The slenderness ratio of the column.
Ī	in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 120 of file columns.f90.

4.2.2.2 pure elemental real(real64) function columns::euler_buckling::euler_buckling_2 (real(real64), intent(in) modulus, real(real64), intent(in) length, real(real64), intent(in) moi, real(real64), intent(in) area) [private]

Computes the critical buckling load of a column by means of Euler's equation.

in	modulus	The modulus of elasticity of the material from which the column was made.	
in	length	The effective length of the column.	
in	moi	The moment of inertia (area) for the section.	
in	area	The cross-sectional area of the column.	

Returns

The critical buckling load.

Definition at line 137 of file columns.f90.

The documentation for this interface was generated from the following file:

/home/jason/Documents/Code/mecheng/src/columns.f90

4.3 columns::johnson_buckling Interface Reference

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

Private Member Functions

- pure elemental real(real64) function johnson_buckling_1 (modulus, yield, ratio, area)

 Computes the critical buckling load of a column by means of J.B. Johnson's equation.
- pure elemental real(real64) function johnson_buckling_2 (modulus, yield, length, moi, area)

 Computes the critical buckling load of a column by means of J.B. Johnson's equation.

4.3.1 Detailed Description

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

Remarks

The J.B. Johnson buckling equation is as follows: $P_{cr}=A(S_y-(\frac{S_yR_s}{2\pi})^2(\frac{1}{E}));$ where $R_s=\frac{L_e}{\rho},$ and $\rho=\sqrt{\frac{I}{A}}$.

- P_{cr} = The critical buckling load.
- $S_y =$ The yield strength of the material.
- $E=\mbox{The modulus of elasticity of the material.}$
- $L_e=$ The effective length of the column.
- I =The moment of inertia (area) of the column (softest axis).
- A = The cross-sectional area of the column.

Definition at line 69 of file columns.f90.

4.3.2 Member Function/Subroutine Documentation

4.3.2.1 pure elemental real(real64) function columns::johnson_buckling::johnson_buckling_1 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *ratio*, real(real64), intent(in) *area*) [private]

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.	
in	yield	The yield strength of the material from which the column is made.	
in	ratio	The slenderness ratio of the column.	
in	area	The cross-sectional area of the column.	

Returns

The critical buckling load.

Definition at line 156 of file columns.f90.

4.3.2.2 pure elemental real(real64) function columns::johnson_buckling::johnson_buckling_2 (real(real64), intent(in) *modulus*, real(real64), intent(in) *yield*, real(real64), intent(in) *length*, real(real64), intent(in) *moi*, real(real64), intent(in) *area*)

[private]

Computes the critical buckling load of a column by means of J.B. Johnson's equation.

Parameters

in	modulus	The modulus of elasticity of the material from which the column is made.
in	yield	The yield strength of the material from which the column is made.
in	length	The effective length of the column.
in	moi	The moment of inertia (area) for the section.
in	area	The cross-sectional area of the column.

Returns

The critical buckling load.

Definition at line 175 of file columns.f90.

The documentation for this interface was generated from the following file:

- /home/jason/Documents/Code/mecheng/src/columns.f90
- 4.4 columns::slenderness_ratio Interface Reference

Computes the slenderness ratio of a column.

Private Member Functions

- pure elemental real(real64) function slenderness_ratio_1 (length, rad)

 Computes the slenderness ratio of a column.
- pure elemental real(real64) function slenderness_ratio_2 (length, moi, area)

 Computes the slenderness ratio of a column.

4.4.1 Detailed Description

Computes the slenderness ratio of a column.

Remarks

The slenderness ratio is defined as the ratio between the effective length of the column (L_e), and the radius of gyration of the column (ρ): $R_s = \frac{L_e}{\rho}$.

Definition at line 30 of file columns.f90.

- 4.4.2 Member Function/Subroutine Documentation
- 4.4.2.1 pure elemental real(real64) function columns::slenderness_ratio::slenderness_ratio_1 (real(real64), intent(in) length, real(real64), intent(in) rad) [private]

Computes the slenderness ratio of a column.

Parameters

in	length	The effective length of the column.
in	rad	The radius of gyration of the section.

Returns

The slenderness ratio.

Definition at line 91 of file columns.f90.

4.4.2.2 pure elemental real(real64) function columns::slenderness_ratio::slenderness_ratio_2 (real(real64), intent(in) length, real(real64), intent(in) moi, real(real64), intent(in) area) [private]

Computes the slenderness ratio of a column.

Parameters

	in	length	The effective length of the column.	
` ,		The moment of inertia (area) for the section.		
		area	The cross-sectional area of the section.	

Returns

The slenderness ratio.

Definition at line 104 of file columns.f90.

The documentation for this interface was generated from the following file:

/home/jason/Documents/Code/mecheng/src/columns.f90

4.5 strain::wheatstone_bridge Interface Reference

Computes the output of a wheatstone bridge.

Private Member Functions

- pure elemental real(real64) function wheatstone_bridge_1 (fg, strain1, strain2, strain3, strain4) Computes the output of a wheatstone bridge.
- pure real(real64) function wheatstone_bridge_2 (fg, r, strain1, strain2, strain3, strain4)

 Computes the output of a wheatstone bridge.

4.5.1 Detailed Description

Computes the output of a wheatstone bridge.

Definition at line 15 of file strain.f90.

4.5.2 Member Function/Subroutine Documentation

4.5.2.1 pure elemental real(real64) function strain::wheatstone_bridge::wheatstone_bridge_1 (real(real64), intent(in) *fg*, real(real64), intent(in) *strain1*, real(real64), intent(in) *strain2*, real(real64), intent(in) *strain3*, real(real64), intent(in) *strain4*) [private]

Computes the output of a wheatstone bridge.

Parameters

in	fg	The gage factor of each strain gage. Each gage is assigned the same gage factor.
in	strain1	The strain in leg 1 of the bridge.
in	strain2	The strain in leg 2 of the bridge.
in	strain3	The strain in leg 3 of the bridge.
in	strain4	The strain in leg 4 of the bridge.

Returns

The output of the bridge, in units of mV/V.

Remarks

The construction of the wheatstone bridge is as follows.

The output of the bridge assuming each gage has the same resistance and the same gage factor is as follows.

$$\frac{V_{out}}{V} = \frac{f_g(f_g(\epsilon_1\epsilon_3 - \epsilon_2\epsilon_4) - (\epsilon_4 - \epsilon_3 + \epsilon_2 - \epsilon_1))}{4 + f_g(f_g(\epsilon_3(\epsilon_2 + \epsilon_1) + \epsilon_4(\epsilon_2 + \epsilon_1)) + 2(\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4))}$$

Definition at line 56 of file strain.f90.

4.5.2.2 pure real(real64) function strain::wheatstone_bridge::wheatstone_bridge_2 (real(real64), dimension(4), intent(in) fg, real(real64), dimension(4), intent(in) r, real(real64), intent(in) strain1, real(real64), intent(in) strain2, real(real64), intent(in) strain3, real(real64), intent(in) strain4) [private]

Computes the output of a wheatstone bridge.

Parameters

in	fg	A 4-element array containing the gage factor for each strain gage (gage 1, gage 2, gage 3, gage 4).	
in	r	A 4-element array containing the resistance for each strain gage (gage 1, gage 2, gage 3, gage	
		4).	
in	strain1	The strain in leg 1 of the bridge.	
in	strain2	The strain in leg 2 of the bridge.	
in	strain3	The strain in leg 3 of the bridge.	
in	strain4	The strain in leg 4 of the bridge.	

Returns

The output of the bridge, in units of mV/V.

Remarks

The construction of the wheatstone bridge is as follows.

The output of the bridge is defined as follows.

$$\frac{V_{out}}{V} = \frac{R_3 + \Delta R_3}{R_3 + \Delta R_3 + R_4 + \Delta R_4} - \frac{R_2 + \Delta R_2}{R_2 + \Delta R_2 + R_1 + \Delta R_1}$$

Where:
$$\Delta R_i = f_{g,i} R_i \epsilon_i, i = 1..4$$
.

Definition at line 103 of file strain.f90.

The documentation for this interface was generated from the following file:

/home/jason/Documents/Code/mecheng/src/strain.f90

Index

buckling_load_1	sections, 7
columns, 3	circle section, 7
columns::buckling_load, 13	hollow circle section, 8
buckling_load_2	i_beam_section, 8
columns, 4	radius_of_gyration, 9
columns::buckling_load, 14	slenderness_ratio_1
buckling_transition	columns, 6
columns, 4	columns::slenderness_ratio, 18
	slenderness_ratio_2
circle_section	columns, 6
sections, 7	columns::slenderness_ratio, 18
columns, 2	strain, 10
buckling_load_1, 3	strain_transfom_xy, 10
buckling_load_2, 4	strain_transform_x, 11
buckling_transition, 4	strain_transform_y, 11
euler_buckling_1, 4	wheatstone_bridge_1, 11
euler_buckling_2, 5	
johnson buckling 1, 5	wheatstone_bridge_2, 12
johnson_buckling_2, 6	strain::wheatstone_bridge, 19
slenderness ratio 1, 6	wheatstone_bridge_1, 19
slenderness_ratio_2, 6	wheatstone_bridge_2, 20
columns::buckling load, 13	strain_transfom_xy
buckling load 1, 13	strain, 10
- :	strain_transform_x
buckling_load_2, 14	strain, 11
columns::euler_buckling, 14	strain_transform_y
euler_buckling_1, 15	strain, 11
euler_buckling_2, 15	
columns::johnson_buckling, 16	wheatstone_bridge_1
johnson_buckling_1, 16	strain, 11
johnson_buckling_2, 17	strain::wheatstone_bridge, 19
columns::slenderness_ratio, 17	wheatstone_bridge_2
slenderness_ratio_1, 18	strain, 12
slenderness_ratio_2, 18	strain::wheatstone_bridge, 20
constants, 7	
euler_buckling_1	
columns, 4	
columns::euler_buckling, 15	
euler_buckling_2	
columns, 5	
columns::euler_buckling, 15	
hollow_circle_section	
sections, 8	
Sections, o	
i_beam_section	
sections, 8	
johnson_buckling_1	
columns, 5	
columns::johnson_buckling, 16	
johnson_buckling_2	
columns, 6	
columns::johnson_buckling, 17	
radius_of_gyration	
sections, 9	