Minimización de funciones booleanas

Tema 7

Contenido

- > Métodos de minimización
- Mapas de Karnaugh
 - 2 variables
 - 3 variables
 - 4 variables
 - 5 variables
 - 6 variables y más

Métodos de minimización

- Destacan:
 - Método algebraico
 - > Es un método teórico poco operativo
 - Método de Quine-McClusckey
 - > Método potente de gran valor computacional, pero de laboriosa aplicación a mano
 - Método de los mapas de Karnaugh
 - > Método gráfico poco potente, pero de fácil aplicación manual

Karnaugh, Maurice (November 1953) [1953-04-23, 1953-03-17]. "The Map Method for Synthesis of Combinational Logic Circuits" (PDF). Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics. 72 (5): 593-599.

π

F

Universidad de La Laguna

Mapas de Karnaugh

> Para 2 variables (a,b):

	ab	m_i	M_i
0	00	$\bar{a}\bar{b}$	a + b
1	01	$\bar{a}b$	$a + \overline{b}$
2	10	$a \overline{b}$	$\bar{a} + b$
3	11	ab	$\bar{a} + \bar{b}$

a b	0	1
0	āb 0	а <u>Б</u> 2
1	āb 1	ab 3

Mapas de Karnaugh

> Para 2 variables (a,b): ejemplo 1

	ab	m_i	M_i	F
0	00	$\bar{a}\bar{b}$	a + b	0
1	01	$\bar{a}b$	$a + \overline{b}$	1
2	10	$a\overline{b}$	$\bar{a} + b$	1
3	11	ab	$\bar{a} + \bar{b}$	1

a b	0	1
0	0	1 2
1	11	13

a b	0	1
0	āb 0	ab 2
1	āb 1	ab 3

a b	0	1
0	a+b	ā+b 2
1	a+b 1	ā+b 3

$$F(a,b) = a + b$$

$$F(a,b) = a\overline{b} + ab + \overline{a}b + ab = a(\overline{b} + b) + b(\overline{a} + a) = a + b$$

Los mapas de Karnaugh aplican:
$$XY + X\overline{Y} = X$$
 $(X + Y)(X + \overline{Y}) = X$ $X + X = X$ $X \cdot X = X$

F

Universidadde La Laguna

Mapas de Karnaugh

> Para 2 variables (a,b): ejemplo 2

	ab	m_i	M_i	G
0	00	$\bar{a}\bar{b}$	a + b	1
1	01	$\bar{a}b$	$a + \overline{b}$	1
2	10	$a\overline{b}$	$\bar{a} + b$	0
3	11	ab	$\bar{a} + \bar{b}$	0

a b	0	1
0	10	0 2
1	1/	0 3

a b	0	1
0	iab 0	а <u>Б</u> 2
1	āb 1	ab 3

$$G(a,b) = \bar{a}\bar{b} + \bar{a}b = \bar{a}(\bar{b}+b) = \bar{a}$$

Mapas de Karnaugh

- > Para 3 variables (a,b,c)
 - Las últimas dos filas se permutan para conservar la adyacencia

	abc	m_i	Minitérmino	M_i	Maxitérmino	\	1
0	000	m_0	$\bar{a}\bar{b}\bar{c}$	M_0	a+b+c	bc a	0
1	001	m_1	$\bar{a}\bar{b}c$	M_1	$a+b+\bar{c}$		
2	010	m_2	$\bar{a}b\bar{c}$	M_2	$a + \overline{b} + c$	00	(
3	011	m_3	$\bar{a}bc$	M_3	$a + \bar{b} + \bar{c}$	01	
4	100	m_4	$aar{b}ar{c}$	M_4	$\bar{a} + b + c$		
5	101	m_5	$a\overline{b}c$	M_5	$\bar{a} + b + \bar{c}$	11	,
6	110	m_6	$abar{c}$	M_6	$\bar{a} + \bar{b} + c$	10	
7	111	m_7	abc	M_7	$\bar{a} + \bar{b} + \bar{c}$		

6

$$f(a,b,c) = \sum m(3,4,5,6,7) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f(a,b,c) = a + bc$$

$$f(a,b,c) = m_1 + m_3 + m_5$$

$$f(a,b,c) = \bar{a}c + \bar{b}c$$

$$f(a,b,c) = \sum m(2,3,6,7)$$

$$f(a,b,c) = b$$

$$f(a,b,c) = \prod M(0,1,2,3,5,7) = \sum m(4,6)$$

$$f(a,b,c) = a\bar{c}$$

$$f(a,b,c) = ab\bar{c} + \bar{b}c + \bar{a}$$

$$f(a,b,c) = \bar{a} + \bar{b}c + b\bar{c}$$

Ejemplo 6: varias formas simples

$$f(a,b,c) = \sum m(0,1,2,5,6,7)$$

Ejemplo 7:

 Diseñar un circuito que produce señal 1 cuando el líquido de un depósito está por debajo del nivel x1 o bien entre x2 y x3:

 $X_1 X_2 X_3$

 X_2X_3

$$z(x_1, x_2, x_3) = \sum m(0,6) + \sum d(1,2,3,5) = x_1 + x_2 \overline{x_3}$$

Mapas de Karnaugh

- > Para 4 variables (a,b,c,d):
 - Se permutan las 2 últimas filas y las 2 últimas columnas para conservar la adyacencia
 - Adyacencias de hasta tercer orden (agrupaciones de 8 casillas para simplificar 3 variables)

ab	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

$$f(a,b,c,d) = \sum m(0,5,6,7,8,13,14,15)$$

$$f(a,b,c,d) = \sum m(0,2,4,5,6,7,8,10,11,12,14,15)$$

$$f(a,b,c,d) = \sum m(1,3,4,5,10,12,13)$$

$$f(a,b,c,d) = \sum m(0,2,3,5,6,7,8,10,11,14,15)$$

$$f(a,b,c,d) = c + \bar{b}\bar{d} + \bar{a}bd$$

$$f(a,b,c,d) = \sum m(1,3,5,7,9) + \sum d(6,12,13)$$

	ab cd	00	01	11	10
	00	0	4	X ₂	8
	01	1 1	1),	\mathbf{X}_3	1 ₉ \ \(\bar{c} \)
•	11	13	1	15	11
	10	2	X_6	14	10
		ād			

$$f(a,b,c,d) = \bar{a}d + \bar{c}d$$

Ejemplo 6: producto de sumas mínimo

$$f(a,b,c,d) = \sum m(0,2,3,4,8,10,11,15) = \prod M(1,5,6,7,9,12,13,14)$$

Ejemplo 7:

> Simplificar $f(a,b,c,d) = \sum m(0,2,8,12,13)$ mediante POS y SOP. ¿Qué realización es más económica?

$$f(a,b,c,d) = ab\bar{c} + \bar{b}\bar{c}\bar{d} + \bar{a}\bar{b}\bar{d}$$
3 AND y 1 OR

Ejemplo 7:

> Simplificar $f(a,b,c,d) = \sum m(0,2,8,12,13)$ mediante POS y SOP. ¿Qué realización es más económica?

ab	00	01	11	10	
00	0	O ₄	12	8	
01	0,	05	13	09	b+d
11	0 ₃	0,	Q ₅	Q ₁₁	
10	2	0,	\mathbf{Q}_4	010	→ a+c
•		a+b	'	•	

$$f(a,b,c,d) = ab\bar{c} + \bar{b}\bar{c}\bar{d} + \bar{a}\bar{b}\bar{d}$$
3 AND y 1 OR

$$f(a,b,c,d) = (b + \bar{d})(\bar{a} + \bar{c})(a + \bar{b})$$
3 OR y 1 AND

La segunda emplea menos transistores al tener las puertas lógicas menor número de entradas

π

Mapas de Karnaugh

- > Para 5 variables (a,b,c,d,e):
 - 2 mapas de 4 variables
 - Adyacencias de hasta cuarto orden

	a=0			
bc de	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

	a=1			
bc de	00	01	11	10
00	16	20	28	24
01	17	21	29	25
11	19	23	31	27
10	18	22	30	26

$$f(a,b,c,d,e) = \sum m(0,2,3,8,10,14,24,31)$$

$$f(a,b,c,d,e) = \bar{a}\bar{c}\bar{e} + \bar{a}\bar{b}\bar{c}d + \bar{a}bd\bar{e} + b\bar{c}\bar{d}\bar{e} + abcde$$

$$f(a,b,c,d,e) = \sum m(1,3,5,7,9,10,11,12,14,16,18) + \sum d(20,22,24,26,28,30)$$

$$f(a,b,c,d,e) = a\bar{e} + \bar{a}\bar{b}e + \bar{a}\bar{c}e + bc\bar{e} + bd\bar{e}$$

π

Universida

Mapas de Karnaugh

- > Para 6 variables (a,b,c,d,e,f):
 - 4 mapas de 4 variables
 - Adyacencias de hasta quinto orden

		ab=00			
_	cd ef	00	01	11	10
	00	0	4	12	8
	01	1	5	13	9
_	11	3	7	15	11
1	10	2	6	14	10

ab=10

cd ef	00	01	11	10
00	32	36	44	40
01	33	37	45	41
11	35	39	47	43
10	34	38	46	42

	ab=01				
cd ef	00	01	11	10	
00	16	20	28	24	
01	17	21	29	25	
11	19	23	31	27	
10	18	22	30	26	

	ab=11					
cd ef	00	01	11	10		
00	48	52	60	56		
01	49	53	61	57		
11	51	55	63	59		
10	50	54	62	58		

Mapas de Karnaugh

> Y más...

5 variables

6 variables

7 variables

8 variables

9 variables

10 variables...

