Лабораторная работа 13

Задание для самостоятельного выполнения

Абу Сувейлим Мухаммед Мунифович

Содержание

1	Цель работы	4
2	Постановка задачи	5
3	Выполнение лабораторной работы 3.1 Схема модели	6 6
4	Вывод	14
5	Библиография	15

Список иллюстраций

2.1	Сеть для выполнения домашнего задания	5
3.1	Задание деклараций модели	7
3.2	Модель сети петри	8
3.3	дерево достижимости	9
3.4	Граф пространства состояний	10

1 Цель работы

Приобретение навыков моделирования в CPN tools.

2 Постановка задачи

- 1. Используя теоретические методы анализа сетей Петри, проведите анализ сети, изображённой на рис. 1 (с помощью построения дерева достижимости). Определите, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделируйте сеть Петри (см. рис. 1) с помощью CPNTools.
- 3. Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

Рис. 2.1: Сеть для выполнения домашнего задания

3 Выполнение лабораторной работы

3.1 Схема модели

Заявка (команды программы, операнды) поступает в оперативную память (ОП), затем передается на прибор (центральный процессор, ЦП) для обработки. После этого заявка может равновероятно обратиться к оперативной памяти или к одному из двух внешних запоминающих устройств (driver1 и driver2). Прежде чем записать информацию на внешний накопитель, необходимо вторично обратиться к центральному процессору, определяющему состояние накопителя и выдающему необходимую управляющую информацию. Накопители (driver1 и driver2) могут работать в 3-х режимах: 1) driver1 — занят, driver2 — свободен, driver1 — занят, driver2 — занят. [1]

3.2 Реализация модели в CPN tools

Основные состояния позицие:

P1 — состояние оперативной памяти (свободна / занята); P2 — состояние внешнего запоминающего устройства driver1 (свободно / занято); P3 — состояние внешнего запоминающего устройства driver2 (свободно / занято); P4 — работа на ОП и driver1 закончена; P5 — работа на ОП и driver2 закончена; P6 — работа на ОП, driver1 и driver2 закончена;

Множество переходов:

Т1 — ЦП работает только с RAM и driver1; T2 — обрабатываются данные из RAM

и с driver1 переходят на устройство вывода; Т3 — CPU работает только с RAM и driver2; Т4 — обрабатываются данные из RAM и с driver2 переходят на устройство вывода; Т5 — CPU работает только с RAM и с driver1, driver2; Т6 — обрабатываются данные из RAM, driver1, driver2 и переходят на устройство вывода.

1. Зададим декларации модели:

```
► Tool box
▶ Help
Options
▼lab13.cpn
   Step: 36
   Time: 0
 Options
 ▶ History
 Declarations
   Standard declarations
    colset memory = unit with ram;
   ▼colset driver1 = unit with D1;
   ▼colset driver2 = unit with D2;
   colset mdriver = product driver1*driver2;
    var mem: memory;
    var d1: driver1;
   var d2: driver2;
 Monitors
   Main
```

Рис. 3.1: Задание деклараций модели

2. Состояние Р1 имеет тип тетогу и следующую начальную маркировку

1`ram

Cостояние P2 имеет тип driver1 и следующую начальную маркировку

1`D1

1`D2

Состояния P4 и P5 имеют тип driver1 и driver2, соотвественно. Состояние P6 имеет тип mdriver.

3. От состояния Р1 идут дуги к переходам Т1 и Т3 и обратно со значением mem. От состояния Р2 идёт дуга к переходу Т1 со значением d1. От состояния Р3 идёт дуга к переходу Т3 со значением d2. От состояния Р4 идёт дуга к переходу Т5 со значением d1. От состояния Р5 идёт дуга к переходу Т5 со значением d2. От состояния Р6 идёт дуга к переходу Т6 со значением (d1,d2). От перехода Т1 к состояния Р1 и Р4 идут дуги со значенями mem и d1, соотвественно. От перехода Т2 к состоянию Р2 идёт дуга со значением d1. От перехода Т3 к состояниам Р1, Р5 идут дуги со значенями mem, d2, соотвественно. От перехода Т4 к состоянию Р3 идёт дуга со значением d2. От перехода Т5 к состоянию Р5 идёт дуга со значением (d1,d2). От перехода Т6 к состояниам Р2, Р3 идут дуги со значенями d1, d2, соотвественно. Модель сети петри на рис. 3

Рис. 3.2: Модель сети петри

4. Сеть является безопасной, так как в позициях неможеть быть более одной фишки. Сеть не сохраняющаяся потому, что колисчество входящих и исходящих переходов изменяется. Сеть К-ограниченая и в ней нет тупиков, так как все перехрды доступны.

Рис. 3.3: дерево достижимости

5. Граф пространства состояний:

Рис. 3.4: Граф пространства состояний

6. Отчёт о пространстве состояний:

CPN Tools state space report for:

/home/openmodelica/mip/lab-cpn-13/lab13.cpn

Report generated: Sat Jun 1 01:59:27 2024

Statistics

State Space

Nodes: 5

Arcs: 10

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0
Secs: 0

Boundedness Properties

Best Integer Bounds

	Upper	Lower
Main'P1 1	1	1
Main'P2 1	1	0
Main'P3 1	1	0
Main'P4 1	1	0
Main'P5 1	1	0
Main'P6 1	1	0

Best Upper Multi-set Bounds

Main'P1	1	1`ram
Main'P2	1	1`D1
Main'P3	1	1`D2
Main'P4	1	1`D1
Main'P5	1	1`D2
Main'P6	1	1`(D1,D2)

Best Lower Multi-set Bounds

Main'P1 1 1`ram

Main'P2 1		empty		
Main'P3 1		empty		
Main'P4 1		empty		
Main'P5 1		empty		
Main'P6 1		empty		
Home Propertion	es			
Home Markin	as			
All	gs			
ALL				
Liveness Prop	erties			
Dead Markin	gs			
None				
Dead Transi	tion Tnstan	ces		
None				
None				
Live Transi	tion Instan	ces		
All				
Fairness Prop	erties			

Main'T1	1	No	Fairness
Main'T2	1	No	Fairness
Main'T3	1	No	Fairness
Main'T4	1	No	Fairness
Main'T5	1	Jus	st
Main'T6	1	Fai	ir

4 Вывод

• Изучали как работать с CPN tools. [1]

5 Библиография

1. Korolkova A., Kulyabov D. Моделирование информационных процессов. 2014.