(Pages : 6)

Reg. No. :

Name :

First Semester B.Sc. Degree Examination, August 2021.

First Degree Programme under CBCSS

Mathematics

Complementary Course I for Chemistry and Polymer Chemistry

MM 1131.2: MATHEMATICS I - CALCULUS WITH APPLICATIONS IN CHEMISTRY I

(2020 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each:

- 1. Find the first derivative of x^2e^x .
- 2. Find the 100^{th} derivative of $x^8 + 3x^5 + 10$.
- State Leibnitz's Theorem.
- 4. Express $\frac{1}{i}$ in the form a + bi.
- 5. Define modulus of a complex number.
- 6. Find the complex conjugate of 2+i.

- 7. Two particles have velocities $v_1 = i + 3j + 6k$ and $v_2 = i 2k$, respectively. Find the velocity u of the second particle relative to the first.
- 8. Find the unit vector corresponding to the vector i + 3j + k.
- 9. Evaluate $\int \ln x \, dx$.
- 10. Evaluate $\int x \cos x \, dx$.

SECTION - II

Answer any eight questions from among the questions 11 to 26. These questions carry 2 marks each.

- 11. Find the first derivative of $\frac{x-1}{x-2}$.
- 12. Define stationary point.
- 13. If $x = t^2 4$ and $y = t^3 3t$, find $\frac{dy}{dx}$.
- 14. Find the derivative of $3^{\sqrt{x}}$ with respect to x.
- 15. Prove that $\overline{z_1 z_2} = \overline{z_1}.\overline{z_2}$.
- 16. Find argument of 2+2i.
- 17. State Demoivre's Theorem.
- 18. Find the solutions to the equation $z^3 = 1$
- 19. Find the angle between the vectors i + j + k and i + 2j + 3k.

- 20. If a = 4i 8j + 2k, b = 6i + 3j + 7k and c = 9i + 6j + 3k, find [a, b, c].
- 21. If v = 3i 4j is a velocity vector, then find the speed.
- 22. Find the direction of the line of intersection of the two planes x+3y-z=5 and 2x-2y+4z=3.
- 23. Evaluate $\int x \sin 3x \, dx$.
- 24. Evaluate $\int_{0}^{\infty} \frac{x}{(x^2+a^2)^2} dx$.
- 25. Evaluate $\int_{0}^{2} \frac{1}{(2-x)^{\frac{1}{4}}} dx$.
- 26. Find the mean value m of the function $f(x) = 3x^2 3$ between the limits x = 0 and x = 1.

SECTION - III

Answer any six questions from among the questions 27 to 38. These questions carry 4 marks each.

- 27. Find $\frac{dy}{dx}$, if $4x^2y^7 2x = x^5 + 4y^3$.
- 28. Verify Mean Value Theorem for differentiation for the function $x^2 + 2x 1 = 0$ on [0,1].
- 29. Prove that $Sinh2x = 2 \sinh x \cosh x$.
- 30. Find the value of Ln(-2).

- 31. Find the value of p for which the vectors 3i + 2j + 9k and i + pj + 3k are
 - (a) Perpendicular
 - (b) Parallel
- 32. Find the area of the parallelogram with sides i + 2j + 3k and 3i 2j + k.
- 33. Four non-coplanar points A, B, C, D are positioned such that the line AD is perpendicular to BC and BD is perpendicular to AC. Show that CD is perpendicular to AB.
- 34. Find the minimum distance from the point P with coordinates (1,6,3) to the line $r = (j+2k) + \lambda(i+2j+3k)$
- 35. The equation *in* polar coordinates of an ellipse with semi-axes a *and* b is $\frac{1}{\rho^2} = \frac{\cos^2 \phi}{a^2} + \frac{\sin^2 \phi}{b^2}$ Find the area of the ellipse.
- 36. Find the length of the curve $y = \ln \sec x$ between the points given by x = 0 and $x = \frac{\pi}{3}$.
- 37. Find the area of surface formed by rotating the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
- 38. Find the volume of a cone enclosed by the surface formed by rotating the curve y = 2x about the x axis the line between x = 0 and x = h.

SECTION - IV

Answer any two questions from among the questions 39 to 44. These questions carry 15 marks each.

- 39. (a) Find the magnitude of radius of curvature at a point (x,y) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
 - (b) Find the positions and stationary points of the function $f(x) = 2x^3 3x^2 36x + 2$.
- 40. (a) State Rolle's Theorem.
 - (b) Which of the following functions satisfies the conditions for Rolle's Theorem on the given interval and which do not.

(i)
$$f(x) = x^{\frac{2}{3}}$$
; [-1,5]

(ii)
$$g(x) = x^{\frac{3}{4}}$$
; [0,2]

(iii)
$$h(x) = \sqrt{x(1-x)}; [0,1]$$

- 41. (a) Find the value of i^{2i} .
 - (b) Express $tanh^{-1} x$ in logarithmic form.
- 42. Evaluate the following

(a)
$$\int e^{ax} \cos bx \, dx$$

(b)
$$\frac{d}{dx}(\sinh^{-1}x)$$
.

- 43. (a) The vertices of triangle ABC have position vectors a, b and c relative to some origin 0. Find the position vector of the centroid G of the triangle.
 - (b) Find the shortest distance between the lines $r_1 = (4i j) + \lambda(i + 2j 3k)$ and $r_2 = (i j + 2k) + \mu(2i + 4j 5k)$.
- 44. (a) Using integration by parts, find a relationship between I_n and I_{n-1} where $I_n = \int_0^1 (1-x^3)^n dx$ and n is any positive integer. Hence evaluate $I_2 = \int_0^1 (1-x^3)^2 dx$.
 - (b) Show that the value of the integral $I = \int_0^1 \frac{1}{(1+x^2+x^3)^{\frac{1}{2}}} dx$ lies between 0.810 and 0.882.