IE 345 - K "Introduction to Deep Learning: Fundamentals Concepts"

Prof. Yuzo

K Nearest Neighbor

```
pg. 56 - 63
```

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [2]: dataset = pd.read_csv('diabetes.csv')
    dataset.head(5)
```

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcor
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	

In [3]: dataset.shape

Out[3]: (768, 9)

In [4]: dataset.describe()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420
4							•


```
In [6]: features = dataset.drop(['Outcome'], axis=1)
labels = dataset['Outcome']
```

```
In [8]: # Importing the model
    from sklearn.neighbors import KNeighborsClassifier

    classifier = KNeighborsClassifier()
    classifier.fit(features_train, labels_train)

    pred = classifier.predict(features_test)
```

```
In [9]: from sklearn.metrics import accuracy_score
accuracy = accuracy_score(labels_test, pred)
print('Accuracy: {}'.format(accuracy))
```

Accuracy: 0.7083333333333334

Pablo David Minango Negrete

 $pablodavid 218@gmail.\ com$

Lisber Arana Hinostroza

 $lisber arana@gmail.\ com$