UNIVERSIDAD NACIONAL DE COLOMBIA

Dirección Nacional de Programas de Pregrado

FICHA DE ASIGNATURAS DE PREGRADO

0. CÓDIGO ASIGNATURA:	4101133
1. IDENTIFICACIÓN DE LA ASIGNATUR	A
1.1 Fecha solicitud	
1.2 Sede	MANIZALES
1.3 Facultad	FACULTAD DE INGENIERÍA Y ARQUITECTURA
1.4 Unidad Académica Básica:	DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN MANIZALES
1.5 Nivel:	PREGRADO
1.6 Nombre de la asignatura:	PROCESAMIENTO DIGITAL DE SEÑALES

2. DURACIÓN					
A LA SEMANA					
HAP =	3	HAI =	4	THS = (HAP + HAI) =	7
AL SEMESTRE					
Nro de semanas =	16	THP = (THSxSemanas)	112	Nro_de Créditos (THP/48)	3

CONVENCIONES UTILIZADAS

HAP: Horas de Actividad Presencial a la semana o intensidad horaria

HAI: Horas de Actividad Independiente a la semana THS: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

3. VALIDABLE		
ASIGNATURA VALIDABLE =>	ASIGNATURA NO VALIDABLE =>	X

4. POF	RCENTAJE DE AS	SISTENCIA			
%	75	Total de Horas presenciales al semestre (HAP x Semanas)	48	Mínimo de horas Semestre	36
Porce	ntajes aceptados:	75, 80, 85, 90, 95 y 100%			

5. TIPOLOGÍA Y PLANES DE ESTUDIO ASOCIADOS

5.1. T	IPOLOGÍA				
Asign	atura de Libre E	Elección	X	(C) - Componente Disciplinar	
Escrib	a SI o NO al fre	nte de la casilla en l	la columna azul		
5.2. P	LANES DE ES	STUDIO A LOS QI	JE SE ASOCIA L	A ASIGNATURA	
Plan	4028 Ingenierí	a electrónica			
2	REQUISITOS				
	Código	Nombre		Tipo	
	4100905	Teoría de señale	es	Prerrequisitos	
	Tipo = Prerregu	uisito o Correquisito			

6. DESCRIPCIÓN DE LA ASIGNATURA 6.1. DESCRIPCIÓN

El curso de Procesamiento Digital de Señales se centra en el estudio de los métodos de representación,

manipulación y análisis de señales en los dominios de tiempo y frecuencia (tanto discretos como continuos). Este curso combina teoría matemática y simulaciones en Python para explorar la extracción y procesamiento de información relevante. A través de un enfoque práctico, los estudiantes aprenderán a aplicar conceptos como el muestreo, la transformación de Fourier, el filtrado de señales y la detección de patrones, todo ello utilizando herramientas actuales de programación para resolver problemas de ingeniería.

a la interpretación, manipulación y análisis de datos en el ámbito de la ingeniería electrónica, adaptándose a la constante evolución tecnológica. Objetivos específicos:

Objetivo general: Desarrollar competencias en modelado y análisis de señales mediante Python, orientadas

Fomentar el pensamiento crítico y ético-científico en el análisis y procesamiento de señales, generando una base sólida para el trabajo profesional y de investigación en ingeniería.

prácticas y avanzadas en Python.

- Desarrollar habilidades en Python para la manipulación, transformación y visualización de señales, mediante técnicas de modelado determinístico y aleatorio.
- Fortalecer la autonomía en el aprendizaje mediante proyectos y prácticas en Python, capacitándolos para adaptarse a nuevas herramientas y entornos de trabajo en ingeniería de señales.
- Fomentar el dominio de literatura científica en inglés, facilitando el acceso a textos técnicos y científicos actuales en el campo de procesamiento de señales.
- Orientar hacia campos especializados de ingeniería y tecnología, como el procesamiento de datos, sistemas de comunicación y análisis de señales biomédicas, mediante la exploración de aplicaciones
- Metodología: La metodología será práctica y aplicada, combinando clases magistrales con simulaciones en Python para el análisis y visualización de señales. Los conceptos teóricos serán reforzados mediante talleres

y laboratorios donde los estudiantes implementarán algoritmos de procesamiento de señales en Python. A lo largo del curso, los estudiantes desarrollarán proyectos prácticos, trabajando con señales reales y aplicando

1. Laboratorios de Simulación en Python (50%) • Entrega 1 (25%): Semana 6 – Representación y Análisis de Señales en Python.

Evaluación:

• Entrega 2 (25%): Semana 15 – Filtrado de Señales y Detección de Patrones.

técnicas de análisis tiempo-frecuencia, filtrado y detección.

- 2. Proyecto Final (50%) Propuesta y Análisis de Datos (25%): Semana 7 – Definición de proyecto, elección de datos o señales y
- planteamiento de objetivos. • Implementación Completa y Presentación (25%): Semana 16 – Entrega final del proyecto, demostrando
- la integración de conceptos aprendidos y resultados obtenidos mediante Python.
- 6.2. CONCEPTOS PREVIOS NECESARIOS

Contenido Detallado

2011

2002

2013

1. Manipulación de Señales en Python

Springer

CRC Press

Springer

7. CONTENIDOS BÁSICOS

Lista Contenido Básico

Se requieren conceptos básicos en teoría de señales.

4	Depresentación y Análicia de Coñeles	2.	Muestreo y Teorema de Nyquist
1.	Representación y Análisis de Señales	3.	Representación en Dominio de Frecuencia
		4.	Transformada Rápida de Fourier (FFT)
		•	
		1.	Transformada de Fourier de Tiempo Corto (STFT
Descomposición y Análi	Descomposición y Análisis en el Dominio del	2.	Transformada Wavelet Discreta (DWT)
2.	Tiempo-Frecuencia	3.	Transformada Wavelet Continua (CWT)
		4	Aplicaciones Prácticas
		1.	Diseño de Filtros Digitales
•	Filtrada da casalas	2.	Filtros Pasa Bajos, Pasa Altos, y Bandas
3.	Filtrado de señales	3.	Filtrado de Señales en Tiempo Real
		4	Aplicaciones de Filtrado
		•	
		1.	Modelos de Regresión y Ajuste de Curvas
		2.	Clasificación y Detección con el Detector
4.	Detección y Regresión en Señales		Bayesiano
		3.	Métodos Basados en Vecindades y KNN
		4.	Aplicaciones Avanzadas

		1.	Iviodelos de Regresión y Ajuste de	
	on y Regresión en Señales		Clasificación y Detección con el De	etector
4. Detección y Regr			Bayesiano	
		3.	Métodos Basados en Vecindades	y KNN
			Aplicaciones Avanzadas	
	·			
O DIDI INCOASIA DA				
3. BIBLIOGRAFÍA B <i>A</i>	ASICA			
B. BIBLIOGRAFIA BA	ASICA			
Autor (es)	ASICA Título		Editorial-Revista-País	Año
			Editorial-Revista-País Prentice Hall.	Año 1997
Autor (es)	Título			
Autor (es) OPPENHEIM, Alan V	Título Signals and systems.		Prentice Hall.	1997
Autor (es) OPPENHEIM, Alan V HWEI PSU	Título Signals and systems. Analog and digital communications		Prentice Hall. McGrawHill	1997 2002

Kernel adaptive filtering

Príncipe, J.