

A Project

Report On

Prediction Using Supervised And Unsupervised Learning

By

Tejaswini Vaidya

B.E

Batch: 2020 – 5129

Center: Thane

Under the Guidance of,

Mr. Mathivanan Balakrishnan

Technical Trainer

EduBridge

(School of coding)

Introduction:

In this project, we are taking different datasets and performing different machine learning algorithms on that dataset. The Machine Learning algorithm we have used on our project is as follows:

- 1. Linear Regression.
- 2. Logistic Regression.
- 3. K-Means Clustering.
- **1. Linear Regression:** Linear Regression is one of the easiest and popular machine learning algorithms. It is a statistical method used for prediction analysis for continuous or numeric variables. Here, we have taken a dataset of pressure which is of two columns and ten rows. Below are the screenshots:

I. Screenshot using Python language:

1.Bar graph of the dataset:

2. Visualizing the training data:

3. Visualising the test data:

II. Screenshot using R language:

1.Plotting Temperature and Pressure:

2. Output in R:

- **2. Logistic Regression**: It is used for predicting the categorical dependent variable using a given set of independent variables. Logistic regression predicts the output of a categorical dependent variable. Therefore, the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1. While performing logistic regression in python we have used the dataset of titanic. Below are the screenshots.
- **I. Using python Language:** The dataset used in this algorithm is the titanic dataset. The prediction of Survival of passengers is done.

1. Histogram of the dataset:

2.Bar plot of the dataset:

2. Heatmap of the dataset:

This graph shows the null values present in the dataset.

3. Confusion Matrix:

From this we come to know the correct prediction and wrong prediction.

4. Classification Report:

From this we will come to know brief about the result of the dataset.

	precision	recall	f1-score	support
0 1	0.80 0.77	0.86 0.68	0.83 0.73	175 120
accuracy macro avg weighted avg	0.79 0.79	0.77 0.79	0.79 0.78 0.79	295 295 295

- **3. k-means clustering:** k-means clustering is an unsupervised learning algorithm which groups the unlabeled dataset into different clusters. Here K defines the number of pre-defined clusters that need to be created in the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.
- **I. Using Python:** The dataset used for analysis is the iris dataset. It contains 150 rows and 5 columns.

Screenshot are as follows:

1. Histogram of the dataset:

2. Bar chart of the dataset:

3. Output of KMeans:

I. Analysis in R:

We have used the same dataset named iris.

1. Plotting Sepal.length and Sepal.Width:

2. Histogram of Petal.length:

3. Boxplot graph:

4. Output of KMeans:

Software Requirements:

- **Software Used:** Spyder 4.1.5, RStudio Version 1.4.1106.
- **Back end**: MongoDB 4.4.4.
- **Operating System:** Windows 10, 64-bit operating system.

