Homework 12

7355608, G Pang

December 11, 2019

Problem 1

Let $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}$, and $f_1 : A \to B = \{\langle 1, c \rangle, \langle 2, c \rangle, \langle 3, b \rangle, \langle 4, a \rangle, \langle 5, d \rangle\}$, $f_2 : B \to A = \{\langle a, 2 \rangle, \langle b, 5 \rangle, \langle c, 1 \rangle, \langle d, 3 \rangle\}$. Determine whether f_1, f_2 have left or right inverse. If so, find the left or right inverse for each function.

Solution.

- 1. Right Inverse. $\{\langle a, 4 \rangle, \langle b, 3 \rangle, \langle c, 1 \rangle, \langle d, 5 \rangle\}$
- 2. Left Inverse. $\{\langle 1, c \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle, \langle 5, b \rangle\}$

Problem 2

Let $h \in A_A$, prove that the state "for any $f, g \in A_A$, if $h \circ f = h \circ g$ then we have f = g" is true if and only if h is injective, or:

$$(\forall f)(\forall g)((f \in A_A \land g \in A_A \land h \circ f = h \circ g) \rightarrow f = g) \Leftrightarrow h \text{ is injective}$$

Solution.

Method 1

1. \Leftarrow : If h is injective

Then h has a left inverse m such that $m \circ h = I_A$. Then:

$$h \circ f = h \circ g$$

$$\Rightarrow m \circ (h \circ f) = m \circ (h \circ g)$$

$$\Leftrightarrow (m \circ h) \circ f = (m \circ h) \circ g$$

$$\Rightarrow I_A \circ f = I_A \circ g$$

$$\Rightarrow f = g$$

2.
$$\Rightarrow$$
: If $(\forall f)(\forall g)((f \in A_A \land g \in A_A \land h \circ f = h \circ g) \rightarrow f = g)$

$$(\forall f)(\forall g)((f \in A_A \land g \in A_A \land h \circ f = h \circ g) \to f = g)$$

$$\Rightarrow (\forall f)(\forall g)((f \in A_A \land g \in A_A \land f \neq g) \to (h \circ f \neq h \circ g))$$
We can let $f(x) = x_1, g(x) = x_2, x_1, x_2 \in A$, then:
$$(\forall f)(\forall g)((f \in A_A \land g \in A_A \land f \neq g) \to (h \circ f \neq h \circ g))$$

$$\Rightarrow (\forall x_1)(\forall x_2)((x_1 \in A \land x_2 \in A \land x_1 \neq x_2) \to h(x_1) \neq h(x_2))$$

$$\Rightarrow h \text{ is injective}$$

Problem 3

Design a DFA accepting the language $(a|b)^*c^+$ over the alphabeta $\{a,b,c\}$. (Transition table, transition diagram or giving the transition functions are all acceptable). And show how it accepts the string "abaacc" by showing all the changes of states in whole process.

Solution.

	a	b	c
$\rightarrow q_0$	q_0	q_0	q_1
$*q_1$	q_2	q_2	q_1
q_2	q_2	q_2	q_2

$$\hat{\delta}(q_0, a) = q_0
\hat{\delta}(q_0, ab) = \delta(q_0, b) = q_0
\hat{\delta}(q_0, aba) = \delta(q_0, a) = q_0
\hat{\delta}(q_0, abaa) = \delta(q_0, a) = q_0
\hat{\delta}(q_0, abaac) = \delta(q_0, c) = q_1
\hat{\delta}(q_0, abaacc) = \delta(q_1, c) = q_1$$

Problem 4

Design a Turing Machine for the language $\{w|w \text{ has an equal number of 0's and 1's}\}$ over input alphabeta $\Sigma = \{0,1\}$. (Transition table, transition diagram or giving the transition functions are all acceptable) And show how it accepts the string 100011 by instantaneous descriptions.

Solution.

 $q_0100011 \vdash_M 1q_000011 \vdash_M q_11X0011 \vdash_M q_1B1X0011 \vdash_M q_21X0011 \vdash_M q_3BYX0011 \\ \vdash_M q_0YX0011 \vdash_M Yq_0X0011 \vdash_M YXq_00011 \vdash_M Yq_1XX011 \vdash_M q_1YXX011 \\ \vdash_M q_1BYXX011 \vdash_M q_2YXX011 \vdash_M YQ_2XX011 \vdash_M YQ_2XX011 \vdash_M YXXQ_2011 \\ \vdash_M YXX0q_211 \vdash_M YXXq_30Y1 \vdash_M YXq_3X0Y1 \vdash_M Yq_3XX0Y1 \vdash_M q_3YXX0Y1 \\ \vdash_M q_3BYXX0Y1 \vdash_M q_0YXX0Y1 \vdash_M Yq_0XX0Y1 \vdash_M YXq_0X0Y1 \vdash_M YXXQ_00Y1 \\ \vdash_M YXq_1XXY1 \vdash_M Yq_1XXXY1 \vdash_M q_1YXXXY1 \vdash_M q_1BYXXXY1 \vdash_M q_2YXXXY1 \\ \vdash_M Yq_2XXXY1 \vdash_M YXQ_2XXY1 \vdash_M YXXQ_2XY1 \vdash_M YXXXQ_2Y1 \vdash_M YXXXYQ_2Y1 \\ \vdash_M YXXXQ_3YY \vdash_M YXXQ_3XYY \vdash_M YXQ_3XXYY \vdash_M YQ_3XXXYY \vdash_M q_3YXXXYY \\ \vdash_M q_3BYXXXYY \vdash_M q_0YXXXYY \vdash_M Yq_0XXXYY \vdash_M YXq_0XXYY \vdash_M YXXQ_0XYY \\ \vdash_M YXXXQ_0YY \vdash_M YXXXYQ_0Y \vdash_M YXXXYYQ_0B \vdash_M YXXXYQ_4Y \vdash_M YXXXQ_4YY \\ \vdash_M YXXQ_4XYY \vdash_M YXQ_4XXYY \vdash_M Yq_4XXXYY \vdash_M q_4YXXXYY \vdash_M q_4BYXXXYY \\ \vdash_M YXXQ_4XYY \vdash_M YXQ_4XXYY \vdash_M YQ_4XXXYY \vdash_M q_4YXXXYY \vdash_M q_4BYXXXYY \\ \vdash_M q_5YXXXYY \\ \vdash_M q_5YXXXYY \\ \vdash_M q_5YXXXYY$