Xử lý tín hiệu

Chương 2. Tín hiệu và hệ thống rời rạc 2.1. Tín hiệu rời rạc

TS. Nguyễn Hồng Quang

Viện Công nghệ thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội

Các dạng biểu diễn tín hiệu Các tín hiệu rời rạc cơ bản

21012

$$x(n) = \begin{cases} 1, & \text{for } n = 1, 3 \\ 4, & \text{for } n = 2 \\ 0, & \text{elsewhere} \end{cases}$$

$$x(n) = \{3, -1, -2, 5, 0, 4, -1\}$$

$$x(n) = \{\ldots 0, 0, 1, 4, 1, 0, 0, \ldots\}$$

$$x(n) = \{0, 1, 4, 1, 0, 0, \ldots\}$$

$$x(n) = \{0, 1, 4, 1\}$$

$$rect_N(n) = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & n \text{ còn lại} \end{cases}$$

$$rect_N(n-n_0) = \begin{cases} 1 & n_0 \le n \le N-1+n_0 \\ 0 & n \text{ còn lại} \end{cases}$$

$$r(n-n_0) \qquad \qquad \begin{cases} n & \text{for } n > 0 \end{cases}$$

$$\frac{r(n-n_0)}{x(n)=2\sin\left[\frac{2\pi}{10}(n+1)\right]}u_r(n) \equiv \begin{cases} n, & \text{for } n \ge 0\\ 0, & \text{for } n < 0 \end{cases}$$

$$e(n) = \begin{cases} a^n & n \ge 0 \\ 0 & n < 0 \end{cases} \frac{\delta(n - n_0) \text{ và } \delta(n + n_0)}{u(n - n_0) \text{ và } u(n + n_0)}$$

$$u(n) \equiv \begin{cases} 1, & \text{for } n \ge 0 \\ 0, & \text{for } n < 0 \end{cases} \delta(n) \equiv \begin{cases} 1, & \text{for } n = 0 \\ 0, & \text{for } n \ne 0 \end{cases}$$

 $\delta(n)$

$$\delta(n) \equiv \begin{cases} 1, & \text{for } n = 0 \\ 0, & \text{for } n \neq 0 \end{cases}$$

Phân lớp các tín hiệu rời rạc

Năng lượng của tín hiệu $\delta(n)$, rect₃(n), u(n)

Tín hiệu năng lượng

Công suất u(n) $s(n) = \sin(2\pi n/8)$

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

Tín hiệu công suất

 $x(n) = Ae^{j\omega_0 n}$ năng lượng và công suất của r(n)

x(n) tuần hoàn với chu kỳ $N(N > 0) \Leftrightarrow x(n + N) = x(n) \forall n$

Chu kỳ cơ bản (fundamental period) $x(n) = Ae^{j\omega_0 n}$ $f_0 = \frac{k}{N}$ Tín hiệu không tuần hoàn (nonperiodic or aperiodic)

Các phép toán với tín hiệu rời rạc

 $Tr\tilde{e} \ 2 \ m\tilde{a}u : x(n-2)$

Đảo trục : x(-n) Amplitude scaling: y(n) = Ax(n)

Time scaling or down-sampling: x(2n)

A discrete-time signal x(n) is defined as

Bài tập 2.1.

$$x(n) = \begin{cases} 1 + \frac{n}{3}, & -3 \le n \le -1\\ 1, & 0 \le n \le 3\\ 0, & \text{elsewhere} \end{cases}$$

- (a) Determine its values and sketch the signal x(n).
- **(b)** Sketch the signals that result if we:
 - 1. First fold x(n) and then delay the resulting signal by four samples.
 - 2. First delay x(n) by four samples and then fold the resulting signal.
- (c) Sketch the signal x(-n+4).
- (d) Compare the results in parts (b) and (c) and derive a rule for obtaining the signal x(-n+k) from x(n).
- (e) Can you express the signal x(n) in terms of signals $\delta(n)$ and u(n)?

Bài tập 2.2

A discrete-time signal x(n) is shown in Fig. P2.2. Sketch and label carefully each of the following signals.

Figure P2.2

(a)
$$x(n-2)$$
 (b) $x(4-n)$ (c) $x(n+2)$ (d) $x(n)u(2-n)$ (e) $x(n-1)\delta(n-3)$

(f) $x(n^2)$ (g) even part of x(n) (h) odd part of x(n)

Bài tập 2.4. Show that any signal can be decomposed into an even and an odd component. Is the decomposition unique? Illustrate your arguments using the signal: $x(n) = \{2, 3, \frac{4}{5}, 5, 6\}$

Bài tập 2.5. Show that the energy (power) of a real-valued energy (power) signal is equal to the sum of the energies (powers) of its even and odd components.

2.2. Hệ thống rời rạc