Métodos Numéricos Taller 2: Modelo Media-Varianza

16 de octubre de 2015

Integrante	LU	Correo electrónico
Martin Baigorria	575/14	martinbaigorria@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

${\rm \acute{I}ndice}$

1.	Condiciones para garantizar que un sistema se puede resolver mediante Jacobi o Gauss-Seidel	3
2.	Ejercicio 4	3
	Ejercicio 5	4
	3.1. a)	4
	3.2 b)	4

1. Condiciones para garantizar que un sistema se puede resolver mediante Jacobi o Gauss-Seidel

Sea $A \in \mathbb{R}^{n \times n}$. A se puede escribir como A = D - L - U, donde D es diagonal, L es triangular inferior y U es triangular superior. Sea T la matriz de iteración de cada metodo. Los siguientes teoremas garantizan que un sistema se pueda resolver mediante alguno de estos metodos:

Theorem 1.1 Jacobi y Gauss-Seidel convergen \Leftrightarrow el radio espectral $\rho(T) < 1$. A su vez, como sabemos que $\rho(T) \le ||T||$, si $||T|| < 1 \implies \rho(T) < 1 \implies$ Jacobi y Gauss-Seidel convergen.

Theorem 1.2 Si A es e.d.d por columnas \implies Jacobi y Gauss-Seidel convergen.

2. Ejercicio 4

Probar que el metodo de Jacobi converge para sistemas de ecuaciones lineales de 2×2 cuya matriz es simetrica definida positiva.

Como A es s.d.p la podemos expresar como:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \tag{1}$$

La matriz de iteración de Jacobi es $T = D^{-1}(L + U)$.

$$A = D - L - U = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ -a_{12} & 0 \end{pmatrix} - \begin{pmatrix} 0 & -a_{12} \\ 0 & 0 \end{pmatrix}$$
 (2)

Como D es diagonal:

$$D^{-1} = \begin{pmatrix} 1/a_{11} & 0\\ 0 & 1/a_{22} \end{pmatrix} \tag{3}$$

Por lo tanto la matriz de iteracion de Jacobi es:

$$T = D^{-1}(L+U) = \begin{pmatrix} 0 & -a_{12}/a_{11} \\ -a_{12}/a_{22} & 0 \end{pmatrix}$$
 (4)

Su respectivo polinomio caracteristico igualado a 0 es:

$$p(\lambda) = \det(T - \lambda I) = \begin{pmatrix} -\lambda & -a_{12}/a_{11} \\ -a_{12}/a_{22} & -\lambda \end{pmatrix} = \lambda^2 - a_{12}^2/(a_{11}a_{22}) = 0$$
 (5)

Por lo tanto $\lambda^2 = a_{12}^2/(a_{11}a_{22})$

Por otro lado, dado que A es s.d.p, sabemos que A es inversible. Esto implica que det(A) > 0.

$$det(A) = a_{11}a_{22} - a_{12}^2 > 0 (6)$$

Despejando:

$$a_{12}/(a_{11}a_{22}) < 1 \tag{7}$$

Utilizando la ecuacion del polinomio caracteristico entonces podemos ver:

$$\lambda^2 = a_{12}^2 / (a_{11}a_{22}) < 1 \tag{8}$$

Por lo tanto $\lambda^2 < 1$. Esto significa que $|\lambda| < 1 \implies \rho(T) < 1 \implies$ Jacobi converge.

Notar que en el procedimiento nosotros utilizamos que $a_{11} \neq 0$ y $a_{22} \neq 0$. Esto se puede verificar facilmente usando que A es s.d.p y evaluando la definicion de s.d.p en los canonicos.

3. Ejercicio 5

3.1. a)

Si ||R|| < 1 para alguna norma subordinada $\implies x^{(k)}$ converge a una solucion del sistema Ax = b. $x^{k+1} = Rx^k + c$ donde $R = M^{-1}N$ y $c = M^{-1}b$.

Haciendo 'unrolling' de la recursion:

$$x^{k+1} = R^k x^0 + (R^{k-1} + \dots + R + I)c$$
(9)

Como por hipotesis ||R|| < 1, esto implica que R converge. Esto hace que el primer termino se vaya a 0 en el limite. A su vez, podemos utilizar el siguiente teorema:

Theorem 3.1 Sea A de dimension $n \times n$. Si $\exists \|.\|$ inducida tal que $\|A\| < 1 \implies I - A$ es inversible y $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$

Por lo tanto:

 $\lim_{n\to\infty} x^{k+1} = (I-R)^{-1}c$

Como en el limite $x^{k+1} = x^k = x$, reemplazando en la funcion de iteración x = Rx + c. Despejando $x = (I - R)^{-1}c$. Por lo tanto podemos ver que converge a la solución del sistema.

3.2. b)

Como A es singular, $\exists x \neq 0$ tal que $Ax = 0 \implies (M - N)x = 0 \implies Mx = Nx$. Recordar que M es no singular por enunciado.

Entonces:

$$M^{-1}Mx = M^{-1}Nx (10)$$

$$M^{-1}Nx = 0 (11)$$

Como $M^{-1}N=R$, 1 es autovalor de R. Por lo tanto por definicion $\rho(R)\geq 1$.