week 5 day 1

"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Feb 6, 2023.

Recap: Exponential families

- An {exponential family} is a parametric statistical model with probability distributions of a certain form.
- {General} enough to include many of the most common families of probability distributions:
 - multivariate normal
 - exponential
 - Poisson
 - binomial (with fixed number of trials)
- {Specific} enough to have nice properties:
 - likelihood function is strictly concave [next lecture]
 - have conjugate priors.

Objectives

- {What is} an exponential family?
- **How to find the polynomial ideal of an exponential family?**
 - Discrete exponential models: Hypothesis testing [future lecture]
 - Gaussian exponential submodels: Conditional independence implications [past lecture]

Recap: Discrete exponential families

Notation

- X a discrete random variable $X \in [r]$.
- $T(x) = a_x$, writing as a vector: $a_x = (a_{1x}, \dots, a_{kx})^t$. Assume $a_{jx} \in \mathbb{Z}$.
- $h(x) = h_x$, so $h = (h_1, ..., h_r)$ is also a vector (of positive real numbers)
- $\eta = (\eta_1, \dots, \eta_k)^t$ and $\theta_i = \exp \eta_i$.

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}.$$

- The design matrix: $A = (a_{ix})_{i \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}.$
- For each value x of X, the monomial $\prod_j \theta_j^{a_{jx}} \leftrightarrow$ a column of A.

Design matrix recipe

Columns of $\ensuremath{\mathcal{A}}$ are exponents of the parametrization of each given state.

Question from the previous lecture

• Consider the model $p_{ij} = \alpha_i \beta_j$ for $i \in [2]$ and $j \in [2]$.

Question from the previous lecture

- Consider the model $p_{ij} = \alpha_i \beta_j$ for $i \in [2]$ and $j \in [2]$. Binary independent random variables.
- The design matrix is

$$\mathcal{A} = egin{array}{cccc} lpha_1 & egin{array}{ccccc} eta_1 & eta_1 & eta_2 & eta_2 & 0 & 0 & 1 & 1 \ eta_2 & eta_2 & eta_2 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \end{array}
ight)$$

Finally, the vector $h = [1, 1, 1, 1]^t$.

 \rightarrow I *assume* that **each of you** has completed this example for not 2 \times 2 but $r_1 \times r_2$ by hand, by now.

In this lecture

- log-affine models
- what to do with the *h* function in the parametrization of an exponential family model (nothing!)
- is there an "easy" way to compute the implicitization of all discrete exponential families?

Log-affine, log-linear discrete exponential families

• Let $\mathcal{A} = [a_{jx}]_{j \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}$ be a design matrix.

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}.$$

- The logarithm of the exponential family model $p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_i \theta_i^{a_{ix}}$ is $\log p_{\theta}(x) = \log h_x + \sum_i a_{jx} \log \theta_j \log Z(\theta)$.
- Assume \mathcal{A} contains the vector $1=(1,\ldots,1)$ in the rowspan, then this is equivalent to requiring that $\log p$ belongs to the affine space $\log(h) + rowspan(\mathcal{A})$.

... "equivalent to requiring that $\log p$ belongs to the affine space $\log(h) + rowspan(A)$."

Definition

Definition 6.2.1. Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \text{rowspan}(A)$ and let $h \in \mathbb{R}^r_{>0}$. The *log-affine model* associated to these data is the set of probability distributions

$$\mathcal{M}_{A,h} := \{ p \in \operatorname{int}(\Delta_{r-1}) : \log p \in \log h + \operatorname{rowspan}(A) \}.$$

If h = 1, then $\mathcal{M}_A = \mathcal{M}_{A,1}$ is called a log-linear model.

Figure 1: Source: textbook

Ideal of a log-linear model

Consider the *log-affine* model $\mathcal{M}_{\mathcal{A},h}$ given by the design matrix \mathcal{A} and vector h.

$$p_{\theta}(x) \propto h_{x} \prod_{i} \theta_{i}^{a_{ix}}.$$

- This is a model for the joint distribution for discrete random variables, whose states we may denote by $\{1,\ldots,r\}$. So the model is a parametric form of the joint probabilities p_1,\ldots,p_r . In other words, the indeterminates p_i index the columns of the \mathcal{A} .
- $\mathcal{M}_{\mathcal{A},h}$ is the set of all joint probability vectors (p_1,\ldots,p_r) of the above form.

Definition [Cf. 6.2.2. & 6.2.3. in the book]

The toric ideal of the model $\mathcal{M}_{\mathcal{A},h}$ is the ideal of the variety parametrized by (p_1,\ldots,p_r) . If $h=[1,\ldots,1]$, we denote this as $I_{\mathcal{A}}$.

Proposition 6.2.4. Let $A \in \mathbb{Z}^{k \times r}$ be a $k \times r$ matrix of integers. Then the toric ideal I_A is a binomial ideal and

$$I_A = \langle p^u - p^v : u, v \in \mathbb{N}^r \text{ and } Au = Av \rangle.$$

If $\mathbf{1} \in \text{rowspan}(A)$, then I_A is homogeneous.

Figure 2: Proposition 6.2.4. from textbook

Proof. TBD

EXAMPLES: 6.2.5, 6.2.6.

I think I will leave 6.2.7 for self-study/reading. (Good for hw2.)

CODE for generating ideals. :)

Other resources

• TBD.

License

Major parts of this presentation are from Kaie Kubjas' course lectures, used with permission.

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.