

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6A

Fig. 6B

Fig. 6C

Fig. 6D

Fig. 6E

Fig. 6F

Fig. 6G

Fig. 6H

Fig. 7A

Tumor growth in DA3 mice treated with Adenovirus

L			G1 GC	GCV I.P.				Γ			3	HexTX	+ GCV Lo.	6			
70	4	-	12	15	10	25	=	:	-	-		12	15	-	25	7	47
date			11/12 15/12 18/12 21/12 28/12	18/12	21/12	28/12	13/1 19/1	19/1	l e	7/12	11/12	15/12	16/12	21/12	28/12	13/1	185
Ξ	0.63	0.78	0.87	96'0	1.00	1.05	1.19	1.23	1.#	0.52	0.60	0.50	0.47	0.48	0.58	0.59	0.87
	0.74	0.84	0.92	1.02	1.13	1.18	1.28	1.48		0.65	0.72	0.78	0.60	0.55	0.65	0.76	0.98
#2	0.52	0.75	0.80	1.06	1.14	1.22	1.20	1.18	\$2	0.60	0.63	95.0	95.0	0.58	0.66	0.93	1.00
	0.68	0.98	1.24	1.28	1.40	1.50	1.48	1.50		0.62	0.72	0.78	0.74	0.78	06'0	1.13	1.30
#3	0.48	0.53	0.66	0.78	0.75	0.88	1.01	1.18	61	0.60	0.63	0.55	0.47	0.48	0.56	0.68	0.85
	0.62	0.64	0.78	86'0	1.24	1.33	1.43	1.64		0.70	0.74	0.69	0.62	0.68	0.70	0.82	1.02
84	0.44	0.56	0.82	96.0	1.00	S		•	:	0.58	0.67	0.67	0.58	0.60	0.67	0.73	0.90
	0.77	06'0	1.04	1.06	1.14	တ				0.67	0.74	0.70	0.72	0.73	0.82	0.93	1.07
\$ #	0.48	0.65	0.82	06.0	1.03	1.08	1.12	1.13	15	0.50	0.64	0.53	0.47	0.50	0.60	0.58	0.82
	0.55	0.82	1.13	1.18	1.21	1.30	1.26	1.30		0.68	0.72	79.0	0.72	1.02	0.97	1.08	1.15
9.	0.56	09.0	0.72	0.00	0.78	1.08	1.22	1.37	9#	0.58	0.72	0.77	0.74	0.75	0.74	0.76	0.94
	0.67	0.96	1.17	1.20	1.37	1.33	1.38	=		20.0	0.75	0.82	0.92	0.95	1.02	1.23	1.28
17	0.53	0.62	99.0	0.73	0.68	0.85	70	1.19	42	0.58	0.04	0.67	19.0	0.73	0.84	0.94	0.98
	0.58	0.84	76.0	1.08	1.18	1.32	1.38	1.47		0.63	1.04	0.97	0.88	96.0	1.08	1.21	1.20
#9	0.58	0.73	08.0	0.95	1.03	ø			8.8	0.45	0.62	0.68	0.82	0.00	0.86	1.18	1.28
	0.73	0.85	1.05	1.13	1.21	S				0.60	0.78	1.03	1.10	1.28	1.37	1.50	1.57
6	0.57	0.65	0.68	0.78	0.92	1.04	1.08	1.07	6.0	0.56	0.65	0.54	0.58	0.66	0.67	0.07	1.03
		0.75	1.14	1.27	1.30	1.48	1.50	1.60		0.73	0.82	0.93	96.0	0.97	9.94	1.19	1.27
#10		0.60	0.73	0.89	0.95	0.97	1.02	1.00	\$ 10	0.52	0.64	0.58	0.58	75.0	0.65	0.93	0.96
	0.73	1.04	1.14	1.16	1.20	1.21	1.34	1.46		0.65	0.97	1.08	0.94	0.92	1.20	1.18	1.28
Ξ	0.50	0.57	0.60	0.64	0.77	1.06	1.13	1.25	11#	0.52	0.64	0.66	0.73	0.88	0.05	1.0.1	1.15
	0.84	0.97	1.28	1.34	1.54	1.50	1.87	2.25		0.58	0.83	96.0	1.08	1.06	1.10	1.48	-46
#12		0.62	0.92	1.04	1.08	1.05	1.10	1.12	115	0.48	0.58	0.52	0.50	0.54	0.68	19'0	0.90
	0.68	0.88	0.94	1.12	1.20	1.18	1.24	1.30		0.58	0.67	96.0	0.92	0.97	1.03	1.20	1.12
:	0.15	0.26	0.35	0.46	0.57	0.65	0.91	1.12	=	0.09	0.13	0.10	0.07	0.06	9.11	0.13	0.37
22	0.00	0.28	0.40	0.72	0.91	1.12	1.07	1.04	#2	0.11	0.14	0.12	0.11	0.13	0.20	0.49	9.65
6	0.02	60.0	0.17	0.30	0.35	0.51	0.73	1.14	£3	0.13	0.15	0.10	0.07	0.08	0.12	0.19	0.37
3	0.0	0.14	0.35	87.0	0.57	S			-	0.11	0.17	0.16	0.12	0.13	0.18	0.25	0.43
#2	90.0	0.17	0.38	0.48	0.64	0.76	0.79	0.83	\$	0.09	0.15	0.12	90.0	0.13	0.17	0.10	0.39
\$	0.1	0.17	0.30	0.36	0.42	0.78	1.03	1.35	9.0	0.11	0.19	0.24	0.25	0.27	0.28	0.36	0.57
:	80.0	0.16	0.20	0.29	0.46	0.48	0.75	1.02	_	0.11	0.21	0.22	0.18	0.26	0.38	0.53	0.58
8	0.12	0.23	0.43	0.51	0.64	8			#8	90.0	0.15	0.24	0.37	0.52	0.51	1.04	1.29
\$	0.10 0.10	0.16	0.26	0.39	0.55	0.79	0.87	0.92	6#	0.11	0.17	0.14	0.16	0.21	0.21	0.45	0.67
10	0.10	0.19	0.30	0.45	0.54	0.57	0.70	0.73	#10	0.09	0.20	0.18	0.16	0.15	0.25	0.51	0.59
=		0.16	0.23	0.27	0.46	0.87	1.19	1.78	#11	0.08	0.17	0.21	0.28	0.41	0.40	0.75	0.97
\$12		0.30	0.40	0.61	0.70	0.65	0.75	0.82	\$12	0.07	0.11	0.13	0.12	0.14	0.24	0.22	0.45
=	0.10	0.19	0.31	0.45	0.57	0.72	-	1.07	_	0.10	0.16	0.16	0.16	0.21	0.25	0.43	0.61
8	0.05	90.0	90.0	0.13	0.15	0.19	0.17	0.30	98	0.02	0.03	0.05	0.00	0.14	0.12	0.27	0.27
ğ	0.01	0.02	0.02	0.04	0.04	90.0	0.05 0.10		1000	0.01	0.01	0.01	0.02	0.04	0.03	90.0	0.07
		5x106 D	DA3 cells s.c. on 03/12/98(d0).	S.C. ON (3712/98(40).	Ganc	Cloving	30.0	DOMG/k	9 lp. 09	Ganckdown(GCV) 100mg/kg l.p. 09-14/12/98(d6-d11).	8 4 5 5				
				Adeno	virus Intr	altimoral	Adenovirus intratumoral injections on 08, 10/12/98(dS, d17).	5 00 00	1012	798(d5.	47.						

Tumor growth in DA3 mice treated with Adenovirus

	1	;	19/1	0.97	-13	1.28	1.88	1.00	1.45	0.83	1.02	1.30	1.37	0.60	0.78	1.08	1.13	1.08	1.47	1.00	1.55	1.12	1.28	0.96	1.32	1.17	1.80	0.53	1.54	0.73	0.35	1.16	0.14	0.63	98.0	0.78	0.80	0.61	1.23	0.78	0.39	0.11		
	ŀ	=	13	0.74	==	1.08	-8	0.79	1.38	0.76	1.00	0.98	1.35	0.54	0.60	0.90	1.02	0.97	1.25	0.76	1.50	0.71	1.10	0.73	1.40	0.67	1.74	0.32	1.01	0.43	0.29	0.52	0.09	0.41	0.59	0.43	0.28	0.37	0.66	0.45	0.23	0.07		
		25	28/12	0.62	1.03	0.70	1.28	0.88	1.18	0.66	0.74	0.78	1.00	0.48	0.62	0.90	0.98	0.88	1.14	0.67	1.12	0.57	0.74	0.68	1.02	0.80	1.40	0.20	0.31	0.46	0.16	0.30	0.07	0.40	0.44	0.25	0.12	0.24	0.57	0.29	0.15	0.04		
	.1	2	21/12	0.53	1.04	0.53	1.10	0.93	1.16	0.55	0.62	0.78	0.88	0.40	0.48	0.80	0.95	0.80	1.12	0.60	1.04	0.50	0.72	0.57	0.96	0.87	1.35	0.15	0.15	0.50	0.09	0.27	0.04	0.27	0.36	0.19	0.09	0.18	0.51	0.23	0.16	0.04		
1100	֡֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	15	18/12	0.55	96.0	0.57	1.18	0.0	1.12	0.56	09.0	0.70	0.86	0.43	0.48	0.76	0.87	99.0	1.10	0.57	1.00	0.50	0.94	0.54	0.88	0.85	1.17	0.15	0.19	0.45	0.09	0.21	0.04	0.25	0.24	0.16	0.12	0.13	0.42	0.21	0.12	0.04	6 13.	
	>l	12	16/12	0.53	1.06	0.60	1.18	0.80	1.06	0.55	0.82	9.6	0.92	0.45	0.55	97.0	0.88	0.58	1.03	0.55	96.0	0.52	1.18	0.56	0.93	0.82	1.07	0.15	0.21	0.34	0.12	0.19	90.0	0.27	0.17	0.15	0.16	0.15	0.36	0.19	0.09	0.03	712/88(d6	
	3	•	11/12	0.54	06.0	0.65	0.78	0.74	08'0	0.58	0.80	0.50	0.80	0.45	0.58	0.65	0.77	0.53	0.85	0.57	0.68	0.50	1.05	0.57	0.68	0.63	0.00	0.13	0.16	0.22	0.13	0.10	0.08	0.16	0.12	0.11	0.13	0.11	0.16	0.13	0.04	0.01	Ganciclovir(GCV) 100mg/kg l.p. 09-14/12/88(d6-d11).	<u> </u>
		•		05.0	0.68	0.48	0.73	79.0	0.78	0.57	0.76	0.48	0.73	0.45	0.53	0.48	0.80	0.49	0.67	0.54	0.60	0.47	0.65	0.52	0.60		22.0	0.09	0.08	0.18	0.12	0.08	0.05	0.09	0.08	0.08	0.07	0.08		0.09	0.03	0.01	Omg/kg	38(dS. d)
	[þ	date	#1	,	24		53		:		#5		9.		1.0		8.8		8.		\$10		#11		#12		=	#2	6	7#	5#	9#	28	8.	8.	01.8	114	\$15	7	8		₹	222
		47	19/1	0.92	1.02	0.85	0.98	1.18	1.64	0.93	1.22	1.28	1.74	1.47	1.85	S	S	S	S	٥	٥	0.92	1.23	1.03	1.42	0.90	1.25	0.43	0.35	1.10	0.53	1.43	2.00				0.52	0.75	0.51	0.85	0.58	0.19	clovir(GC	Adenovirus intratumoral Injections on 08, 10/12/98(d5, d17).
				08.0	0.82	0.77	86.0	1.04	1.50	0.90	0.99	1.23	1.80	1.40	1.68							0.94	1.20	0.85	1.20	0.72	1.25	0.26	0.26	0.81	0.40	1.36	1.65				0.42	0.43	0.32	99.0	0.51	0.17	Ganci	Injections
		25	20/12	0.68	0.80	0.70	0.66	0.73	1.09	0.77	0.84	0.60	1.16	0.84	1.28	s	S	S	s			0.74	1.07	0.73	1.28	19.0	1.06	0.18	0.21	0.29	0.25	0.37	0.45	s	S		0.29	0.34	0.24	0.29	1 0.08	0.03	(q 0)	atumoral
	ان	18	21/12	99.0	0.72	0.70	0.72	99.0	0.95	0.64	0.80	0.73	1.08	0.70	1.17	99.0	1.18	0.74	1.17			0.70	1.03	0.70	1.12	0.60	0.87	0.15	0.18	0.21	0.16	0.29	0.29	0.27	0.32		0.25	0.27	0.16	0.23	90.0	0.05	s.c. on 03/12/98(d0).	Virus intr
	4 CCV 1.5	15	18/12	0.57	0.64	0.60	0.77	0.63	0.86	09.0	0.78	0.67	0.92	0.60	1.05	0.75	0.94	0.70	1.06			99.0	1.02	99.0	1.06	0.57	0.82	0.10	0.14	0.17	0.14	0.21	0.19	0.26	0.26		0.24	0.25	0.13	0.19	90.0	0.05		Adeno
	Hext ac	12	15/12	0.60	0.04	0.65	0.78	0.57	0.80	0.57	0.76	0.67	0.90	0.58	20.	0.72	0.80	0.65	1.05			0.73	0.80	0.72	0.80	0.58	0.78	0.12	0.16	0.13	0.12	0.20	0.17	0.21	0.22		0.21	0.21	0.13	0.17	0.04	0.01	DA3 calls	
	8	•	11/12	0.64	0.70	0.70	0.78	99.0	0.68	0.48	0.75	0.72	0.83	0.62	0.78	0.60	0.78	0.60	0.65	۵	٥	0.65	0.70	0.62	0.70	0.56	0.73	0.14	0.19	0.15	0.09	0.22	0.15	0.14	0.15	٥	0.16	0.13	0.11	0.15	0.03	0.01	5x106	
		•	7/12	0.53	0.65	0.60	0.68	0.58	0.65	0.48	0.67	0.56	0.77	0.47	0.53	0.52	0.72	0.45	0.50	0.50	0.63	0.48	99.0	0.54	0.58	0.55	0.58	0.08	0.12	0.11	0.08	0.12	0.06	0.10	0.05	0.08	0.08	0.08	0.08	0.09	0.02	0.01		
1		Ð	date		1	#2		63	-	4.	.	\$	+-	9	₩.	22	┿	8	T	8.8	-	#10		118		112		=	\$2	-	_	_		2.0	8.#	6#	01.#	11.8	21#	7	8	10		

Fig. 7C

Strategy for generating the HK II promoter reporter gene construct pHexII4557 CAT, and pUC/HexII/LacZ and pAdBN/HexLacZ

Fig. 9A

Fig. 9B

Fig. 9C

Fig. 10A

Fig. 10B

Fig. 10C

Fig. 12A

Fig. 12B

Fig. 12C