Московский Физико-Технический Институт Физтех-школа электроники, фотоники и молекулярной физики

Отчёт по лабораторной работе: Масс спектроскопия остаточных газов. Квадрупольный масс-анализатор

Выполнили работу студенты группы Б04-005: Давыдов Владислав Карташов Констанин Корнеев Николай

I Анотация

Цель работы: Исследовать масс-спектр остаточных газов в вакуумной установке. Снять временную масс-спектрограмму для напускания и накачки газов. Расшифровать масс-спектрограммы.

Оборудование:

- ⊳ Установка VTS (Vacuum Training System) с квадрупольным масс-анализатором.
- ⊳ Персональный компьютер.

II Масс-спектры остаточных газов

Мы провели 5 измерений с интервалом по времени в 6 минут, со следующими параметрами:

$N_{\bar{0}}$	$t_{\text{окр}}, ^{\circ}\text{C}$	$t_{\rm ryp6},{}^{\circ}{\rm C}$	$I_{\text{турб}}, A$	W, об/мин	$P \cdot 10^{-6}$, торр	$P_{\rm qd} \cdot 10^{-9}, {\rm ropp}$
1	28	41	0.23	42070	4.60	11
2	29	41	0.23	42070	4.30	10
3	29	42	0.22	42070	4.10	10
4	29	43	0.23	42070	3.90	9.7
5	30	43	0.22	42070	3.80	9.4

Таблица 1: Параметры при которых проведены измерения

Масс-спектры измерений из табл. 1 в виде гистограммы на рис. 1-5.

Рис. 1: Измерение 1

Рис. 2: Измерение 2

Рис. 3: Измерение 3

Рис. 4: Измерение 4

Рис. 5: Измерение 5

На масс-спектрах видно несколько пиков соответствующих массам:

 $m_0 = 2$ – водород (H₂)

 $m_0 = 14$ – атомарный азот (N)

 $m_0 = 16$ – атомарный кислород (O)

 $m_0 = 17 - \text{аммиак (NH₃)}$

 $m_0 = 18$ – вода (H₂O) – самый большой пик

 $m_0 = 28$ – молекулярный азот (N_2)

 $m_0 = 32$ – молекулярных кислород (O₂)

 $m_0 = 40 - \text{аргон (Ar)}$

 $m_0 = 44$ – углекислый газ (CO₂)

Скорость откачки для различных газов. По графиками нескольких измерений видим, что парциальные давления для различных газов убывают с различной

скоростью. Для более подробного изучения этих скоростей снимем временную массспектрограмму для нескольких пиков.

Сначала проведём натекание, а затем проведём откачу. По временной масс-спектрограмме посмотрим с какими относительными скоростями меняются парциальные давления газов. Временная масс-спектрограмма показана на рис. 6.

Рис. 6: Временная масс-спектрограмма

По рис. 6 видим, что при напускании с одинаковой скоростью увеличивается парциальное давление газов с массами:

 $m_0 = 28, 32, 14, 40$ – быстрее всего,

 $m_0 = 16, 44, 15$ – помедленнее,

 $m_0 = 18, 17$ – почти не меняются,

 $m_0 = 2$ – наоборот, уменьшается.

При откачке с одинаковой скоростью уменьшается давление газов с массами:

 $m_0 = 14$ – быстрее всего

 $m_0 = 28, 32, 14, 40$ – немного помедленнее,

 $m_0 = 16, 44, 15 -$ помедленнее,

 $m_0 = 18, 17$ – почти не меняются,

 $m_0 = 2$ – наоборот, увеличивается.

Видим, что откачка и накачка происходит с для разов с одинаковыми относительными скоростями.