From gentle to string algebras: a geometric model

jt. work with Karin Baur

§ 1. String and gentle algebras - background

Definition · A=RQ/I string algebra if:

- (SI) $\forall i \in Q_0$, \exists at most two arrows starting at i. \exists at most two arrows ending at i.
- (S2) $\forall a \in Q_{n_1} \exists at most one arrow bst. ba \notin I$ & $\exists at most one arrow cs.t. ac \notin I$.
- (S3) I generated by paths of length ≥ 2 .
 - · A gentle algebra if additionally:
- (S2') \forall a \in Q₁₁, \exists at most one arrow b'st. b'a \in I. & \exists at most one arrow c's.t. ac' \in I.
- & (S3') I generated by paths of length 2.

Examples

$$1 \stackrel{a}{\Longrightarrow} 2$$

Definitions

- * Given a $\in Q_1$, define a formal inverse $a^{-1}s$, t. $s(a^{-1}) = t(a) & t(a^{-1}) = s(a)$.
- * walk = sequence $W = W_1 W_r$ st- $t(W_i) = s(W_{i+1})$, with $w_i \in Q_1^{t_1}$
- * string = walk with no subwalks of the form and or ala (aeQ1) or subwalks v with $v \in I$ or $v^l \in I$.
- * trivial strings: e;, i ∈ Qo.
- * Bands: $b = b_1 b_1 = ayclic string (t(b_n) = s(b_1)) s.t. any power b of b is a string but b itself is not a proper power of any string.$

Examples

 $1 \stackrel{a}{\Longrightarrow} 2$

ab'ab' string but not a band.

eb' string & bands ec not string eb'b not string

Representation theory of string algebras:

- indec. modules - string modules band modules

Gelfand-Ponomarev Wald- Waschbisch

- morphisms Crawley-boevey; Krank - AR-sequences Butler-Ringel.

§ Representation theory via surfaces - why?

* Description of extensions between modules [Çanakçı - Schroll, Çanakçı - Pauksotello-Schroll]

* T-tilting theory: [Adachi- Jyama- Reiten] Cf. Palu-Pilaud-Plamondon

Brüstle-Douville-Mousavand-Thomas-Kildirim

He-zhow-zhu: classification of Support T-tilking for skew-gentle algs.

- proporties of z-tilting graph in gentle case. [Fu-Geng-Liu-Zhou]

* Bridgeland/King stability conditions

[Garcia-Garver] _ classification of semistable repts when S = disc.

* Link to Fukaya catgs in symplectic geometry [Lekili-Polishchuk]

3 geometric model of D'(A) gentle [Opper-Planendon-Schroll ~ nsed to study derived agricultures [Broomhead] DDCs; Braver graph algs - Corner-zvonareva]).

§2. Representation theory of gentle algs via surfaces

Theorem 1 (Baur-CS)

- (1) Let Abe a finite dim! alg. TFAE

 see also

 [OPS]

 A is a tiling algebra associated to (S,M,P)

 unpunctived partial triangulation

 surface

 with

 25
 - * A is the endomorphism algebra of a partial cluster-tilting object of a generalised cluster catego associated to some unpundented surface
 - Particular cases: P triangulation -> Jacobian algs. ([Assem-Brüstle-Charbonneau-Plamondon])
 - · P out of a triangulation -> surface algs [David-Roesler-Schiffler]

Theorem 1 (Baur-CS)

2) A gentle algebra, (S,M,P) corresponding tiling

string modules $\stackrel{1-1}{\Longrightarrow}$ equivalence classes of permissible arcs in S band modules $\stackrel{1}{\Longleftrightarrow}$ homotopy classes of certain * indecomposable modules

permissible closed curves (intosection with P > 2).

* M = M(y) string module, 8 corresponding arc

irreducible: M(x) \\
morphisms: M(\tau) \\
M(\tau_e)

ors, be obtained from or by pivot elementary moves on their endpoints

* AR-sequences are of the form:

 $O \rightarrow M(r) \rightarrow M(r_s) \oplus M(r_e) \rightarrow M(r_{s,e}) \rightarrow O$ $\tau' \mathcal{S} = \mathcal{S}_{s,e} - (\mathcal{S}_s)_e = (\mathcal{S}_e)_s$. S unpunctured oriented, connected surface with boundary DS M finite set of marked pts on DS.

(S,M) marked surface.

 \underline{Arc} in (S,M): curve $V:[O,D] \longrightarrow S$ s.t.

- * 2(0), 7(1) EM
- * on M only at its endpts
- * I does not cut a monogen or digon

P partial triangulation = collection of arcs that do not intersect themselves or each other in the interior of S.

(S,M,P) tiling s.t. P divides S into the following regions/tiles:

* m-gons $(m \ge 3)$: edges are arcs in P or boundary segments & $\not\ni$ unmarked bdy components in its interior.

* 2-gon

Definition A_p tiling algebra associated to (S, M, P) $A = kQ_p/I_p$

* $(Q_p)_{\mathfrak{d}} \overset{1-1}{\Longleftrightarrow} \operatorname{arcs in } P$

* \exists arrow $i \xrightarrow{a} j$ if

* Ip generated by: * paths ab st pa * Pb

* paths ab st t(a)=s(b) is a loop arc

Example: permissible, equivalence of arcs, pivot elementary move, AR-translate abc Vs = bcde V=cde of = cdeb

§3. Representation theory of string algebras via surfaces

Theorem 2 (Baur-CS)

(I) A string algebra (=> A is a labelled tiling algebra associated to partial triangulation (S,M,P,L) = labelled tiling

marked pts 26 m & interior

- labels at marked ptr s.t. each puncture has at least one

A string algebra, (S,M,P,L) corresponding labelled tiling
 indecomposable modules (S,M,P,L) corresponding labelled tiling

new condition on purmissible: does not cross labels

* M = M(r) string module, 8 corresponding arc $M(r_s)$

irreducible: M(y) > M(y) $M(y_e)$

or, the obtained from to by pivot elementary moves on their endpoints beyond on labels

* AR-sequences are of the form:

 $0 \to M(\mathfrak{d}) \to M(\mathfrak{d}_s) \oplus M(\mathfrak{d}_e) \to M(\mathfrak{d}_{s,e}) \to 0.$ $\mathfrak{d}_{s,e} = (\mathfrak{d}_s)_e = (\mathfrak{d}_e)_s.$ Thus if r not injective

Example

§ 4. An application: T-tilting theory

Def! A finite din alg, Me mod A.

- \star M τ -rigid if thom $(M, \tau M) = 0$.
- * M z-tilting if M z-rigid & IMI=IAI.
- * M support z-tilting if \exists idempotent $e \in A$ s.t. M is z-tilting $(A/\langle e \rangle)$ -module.

|M| = # non-isomorphic indec.

direct summands of M.

Fact [AIR]:

M support z-tilting () F phoj. P s.t. (P, M) is support z-tilting pair.

[He-Zhou-Zhu] If A is gentle,

Support I-tiling (1-1) Smaximal collections of noncrossing }

pairs

generalised permissible arcs

may include arcs in P > right choice of representative (clockerise most)

Conjecture (Baur-CS) A string alg.

Satisfies

Examples

(Ps 4010 f-c 0 ab)

Support I-tilting over string algebra (but not the gentle alg.)