

FINAL EXAM REVIEW

What is the name of the Protocol Data Unit at the Data Link Layer?

- A) Frame
- B) Segment
- C) Packet
- D) Block

Protocol Data Units

- Segmentation partition of application data into blocks of data
- A data block with its headers is called a Protocol Data Unit (PDU)

The Data Link layer encapsulates what type of PDU?

- A) Frame
- B) Segment
- C) Packet
- D) Block

How many collision domains and broadcast domains are in this network?

- A) 7 collision domains and 3 broadcast domains
- B) 8 collision domains and 3 broadcast domains
- C) 8 collision domains and 2 broadcast domains
- D) 5 collision domains and 3 broadcast domains

Collision Domain & Broadcast Domain: Ethernet Switched Network

Router2

Collision Domain:

- Ethernet Switches break up collision domains into point-to-point links.
- Each Switch port forms a separate collision domain
- This is due to the switching function

Broadcast Domain:

- Routers break up broadcast domains and collision domains.
- Each Router port forms a separate broadcast domain
- Routers do not forward broadcasts
- The switch prevents collisions in the broadcast domain.

This is important for capacity planning

How Many Destination MAC Addresses How Many ARP Requests

IP Addresses are added during encapsulation at which layer?

MAC Addresses are added during encapsulation at which layer?

Ethernet Encapsulation

IEEE 802.3 Standard / Ethernet II

Preamble: sequence of 10101 for bit synchronization

Destination and Source MAC Address:

EtherType: Identifies upper layer Protocol, see table below for examples

Frame Check Sequence: Redundant information for error detection

EtherType for some notable protocols

	EtherType		Protocol
(0x0800	Internet Protocol version 4 (IPv4)	
	0x0806	Address Resolution Protocol (ARP)	
•	0x0842	wake-on-LAN ^[0]	
	0x22F3	IETF TRILL Protocol	
	0x6003	DECnet Phase IV	
L	00025	Deverse Address Desolution Protocol	

What packet sequence does TCP use to set up a connection?

What packet sequence does TCP use to take down a connection?

What does tracert provide that ping does not?

What field in the incoming packet does a router use to forward it to the outgoing interface.

From the Command prompt of your PC, what command can you use to discover the MAC address of your gateway interface?

- A) arp -d *
- B) arp -a
- C) arp -c
- D) ipconfig /arp

What is the basic operation of an Ethernet Switch?

Layer 2 Switching - 1

Step 1: Learn MAC Address

Learn: Examine Source MAC Address

Port and Source MAC address added

Destination MAC Source MAC 00-0A	Туре	Data	FCS
----------------------------------	------	------	-----

Layer 2 Switching - 2

Step 2: Forward the Frame

Forward: Examine Destination MAC Address

Port MAC Address

1 00-0A

Destination MAC address not in table

I don't have this destination MAC address in my table, so I will send this unknown unicast out all ports.

Destination MAC Source MAC Type Data FCS

Layer 2 Switching – 3

Step 1: Learn MAC Address

PC-D sends a frame back to PC-A and the switch learns PC-D's MAC address.

Layer 2 Switching - 4

Step 1: Forward the Frame

Since the Switch MAC Address table contains PC-A's MAC Address, it sends the frame out only port 1.

Destination MAC Source MAC Type Data FCS

Layer 2 Switching – Forward Only

Step 1: Forward the Frame

PC-A sends another frame to PC-D. The switch's table now contains PC-D's MAC address, so it sends the frame out only port 4.

MAC Address	^[able]		
Port	MAC Address		
1	00-0A		
4	00-0D		

Destination MAC Source M 00-0D 00-0A	Туре	Data	FCS
---	------	------	-----

What are the four message involved in a DHCP configuration?

Which commands are based on the ICMP protocol?

TCP Features

- Segmentation
- Connection-Oriented
 - Syn-Syn/Ack-Ack; Fin-Ack-Fin-Ack
- Ordered Delivery
 - Sequence Numbers
- Reliable Service
 - Acknowledgement
- Flow and Congestion Control
 - Window and Rate Control
- Multiplexing
 - Ports

UDP Header

- UDP is a stateless protocol. Neither the sender or the receiver is obligated to keep track of the state of the communication session.
- Reliability must be handled by the application.
- Live video and voice applications must quickly deliver data and can tolerate some data loss; they are perfectly suited to UDP.
- The pieces of communication in UDP are called datagrams.
- These datagrams are sent as best-effort by the transport layer protocol.
- UDP has a low overhead of 8 bytes.

Bit (0)	Bit (15)	Bit (16) Bit (31	
	Source Port (16)	Destination Port (16)	
Length (16)		Checksum (16)	
Application Layer Data (Size varies)			

Wireshark Capture Questions:

- Application Protocols
- Layer 2, Layer 3 Addressing
- Port Numbers
- TCP session

What are the layers of the OSI protocol stack?

What are components of a MAC address?

Explain the operation of arp and options.

Routing is done at which layer?

Information Sheet

IPv6 Global Unicast Format

Address Classes

10			Class	Starting IP Address	Ending IP Address	# of Hosts
bits	54 bits	64 bits	A	10.0.0.0	10.255.255.255	16,777,216
1111111010	0	interface ID	+ 	172.16.0.0	172.31.255.255	1,048,576
fe80::/10			+ c	192.168.0.0	192.168.255.255	65,536

IPv6 Link Local Format

Private Addresses

What is the purpose of the Sequence Number and Acknowledgement Numbers in the TCP and UDP protocols?

Identify application layer protocols that use TCP and UDP.

TTL is found in which network layer?

UTP Cabling Standards

Category 5 and 5e Cable (UTP)

Category 3 Cable (UTP)

- · Used for voice communication
- Most often used for phone lines

Category 5 and 5e Cable (UTP)

- Used for data transmission
- Cat5 supports 100 Mb/s and can support 1000 Mb/s, but it is not recommended
- Cat5e supports 1000 Mb/s

Category 6 Cable (UTP)

- · Used for data transmission
- An added separator is between each pair of wires allowing it to function at higher speeds
- Supports 1000 Mb/s 10 Gb/s, though 10 Gb/s is not recommended

Half and Full Duplex

Destination on a Remote Network

Communicating to a Remote Network

HTTP(S) - Hypertext Transfer Protocol

- Purpose: Transfer a file (resource). Resources include HTML files, audio, video, etc.
- Model: client / server
- Transport Layer: TCP
- Well Known Port Number: 80 (unencrypted); 443 (secured with TLS)
- Example Message Sequence:

Routing Table

© 2013 Cisco and/or its affiliates. All rights reserved.

Forwarding to a Remote Network

© 2013 Cisco and/or its affiliates. All rights reserveu.

Compress and Decompress IPv6 Address?

What does NAT change when a packet enters the external/public network?

A PC sends a TCP Window size of 0. What does this mean?

- a) The PC can receive unlimited data.
- b) The PC cannot receive any data.
- c) The PC will stop sending a data.
- d) The PC will send unlimited data.

A network service provider assigns you a global routing prefix of 2001:db8:acad::/48. What is the compressed network address for subnet 10 decimal?

Answer: 2001:db8:acad:a::/64

