Skriptování ESP8266

Programování WiFi mikročipu ve skriptovacím jazyce? Důvody pro a proti, a ukázky jak na to.

ESP moduly od Ai-Thinker

ESP8266

- WiFi SoC
- relativně výkonný 32bit CPU @ 80/160 MHz
- relativně dost paměti: 96 kB / 50 kB
- SDK je v C/C++
- výkon nazbyt svádí…

Jak programovat ESP8266

- (AT příkazy)
- oficiální SDK verze Non-OS nebo FreeRTOS
- ESP8266 Arduino Core "plugin" do Arduino IDE
- skriptovací jazyky (díky výkonu CPU a velikosti RAM)

Důvody pro skriptování

- rychlost vývoje programu
- pohodlnost vývoje programu
- přenositelnost programu na jiné platformy
- snadnější ladění

Důvody proti skriptování

- větší vzdálenost od "železa"
- další vrstva s potenciálními vlastními chybami
- program bude zřejmě běžet pomaleji

Skriptovací jazyky a ESP8266

- Lua www.nodemcu.com
- MicroPython www.micropython.org
- Javascript www.espruino.com
- Basic www.esp8266basic.com

Lua

- Lua je mocný, rychlý, lehký skriptovací jazyk
- kombinuje jednoduchou procedurální syntaxi s mocným popisem dat pomocí asociativních polí a rozšiřitelné syntaxe
- je dynamicky typovaný, za běhu interpretuje bajtkód ve virtuální mašině, má automatickou správu paměti
- ideální pro konfigurace, skriptování a rychlý vývoj
- http://www.luafaq.org/

Jak se naučit programovat v Lue?

- František Fuka http://www.fffilm.name/2013/11/lua-krasa-v-jednoduchosti-video-kniha.html
- Pavel Tišnovský https://www.root.cz/serialy/programovaci-jazyk-lua/
- další zdroje:

```
http://www.luafaq.org/gotchas.html
```

http://lua-users.org/wiki/LearningLua

https://learnxinyminutes.com/docs/lua/

Kde se vzala Lua na ESP8266

- NodeMCU = open source vývojová platforma pro IoT
- kombinuje hardware a Lua firmware (eLua port)
- v základu je spiffs, souborový filesystém v paměti
- od léta 2015 vývoj pokračuje dobrovolnicky
- za rok už NodeMCU obsahoval více než 40 modulů: http, mqtt, onewire, u8g, ...

Na jakém HW programovat?

- originál NodeMCU developer kity
- holé moduly ESP v01-12 (aspoň 1 MB flash)
- Wemos a Wemos D1 Mini
- Itead WiFi Sonoff relé či Smart žárovky
- a samozřejmě vlastní HW (smart watch, ...)

ESP v07/12 – popis vývodů

Mapování NodeMCU ↔ ESP8266

IO index	ESP8266 pin	IO index	ESP8266 pin
0 [*]	GPIO16	7	GPIO13
1	GPIO5	8	GPIO15
2	GPIO4	9	GPIO3
3	GPIO0	10	GPIO1
4	GPIO2	11	GPIO9
5	GPIO14	12	GPIO10
6	GPIO12		

Omezení Luy na ESP8266

- http://www.eluaproject.net/
- Lua verze 5.1, chybí moduly debug, math a os
- http://nodemcu.readthedocs.io/en/dev/en/lua-developer-faq/
- integer a floating point verze firmware
- událostmi řízené programování (jako Node.js)
- kód by neměl běžet déle než 10 ms v kuse
- omezení daná velikostí volné RAM

Kde vzít Luu pro ESP8266

- vývoj pod OpenSource licencí na GitHubu
- https://github.com/nodemcu/nodemcu-firmware
- Docker image s build environmentem
- on-line buildovací služba www.nodemcu-build.com

Verze Luy pro ESP8266

- vývojové větve master a dev
- master = stabilní, dev = aktuální vývoj
- založeno na Espressif Non-OS SDK
- pozor na kompatibilitu při větším upgrade

http://nodemcu.readthedocs.io/en/dev/en/flash/#upgrading-firmware

"Flashování" firmware

- esptool.py github.com/themadinventor/esptool
- https://nodemcu.readthedocs.io/en/master/en/flash/

NodeMCU příkazová řádka

- terminálový program UART na 115200 bps 8N1
- DTR pulz resetuje ESP8266
- po startu se automaticky spouští init.lua
- programy nahráváme pomocí nodemcu-uploader.py http://nodemcu.readthedocs.io/en/dev/en/upload/

Esplorer

- ruský pokus o NodeMCU/Lua IDE v Javě
- žije na http://esp8266.ru/esplorer/
- obsahuje editor, uploader, terminál
- verze 0.2.0 odpovídá kvalitě programu
- první pokusy o podporu MicroPythonu

NodeMCU Web IDE

- Javascript i Basic měly web IDE, proč ne Lua?
- https://github.com/joysfera/nodemcu-web-ide
- Primitivní, ale překvapivě pohodlné
- Plán: lepší editor se syntax highlighting

Příklad v Lue: rozsvítit LED

On-board LED je připojena mezi TX1 = GPIO2 a VCC

gpio.mode(4, gpio.OUTPUT)
gpio.write(4, gpio.LOW)

Příklad: blikání LED bez čekání

```
LED_PIN = 4

gpio.mode(LED_PIN, gpio.OUTPUT)

value = true

tmr.alarm(0, 500, tmr.ALARM_AUTO, function ()

gpio.write(LED_PIN, value and gpio.HIGH or gpio.LOW)

value = not value
```

end)

Příklad: připojení k AP

```
wifi.setmode(wifi.STATION)
wifi.sta.config("openalt", "openalt")
tmr.alarm(1, 1000, 1, function()
   if wifi.sta.getip() == nil then
      print("Připojuji...")
   else
      tmr.stop(1)
      print("Připojeno, IP je " .. wifi.sta.getip())
   end
end)
```

Příklad: HTTP GET

```
http.get("http://httpbin.org/ip", nil, function(code,
data)
  if (code < 0) then
      print("HTTP požadavek selhal")
  else
      print(code, data)
  end
end)
```

Příklad: web server

```
srv = net.createServer(net.TCP)
srv:listen(80, function(conn)
  conn:on("receive", function(sck, payload)
    print(payload)
    sck:send("HTTP/1.0 200 OK\r\nContent-Type:
text/html\r\n<h1>Ahoj z NodeMCU.</h1>")
  end)
  conn:on("sent", function(sck) sck:close() end)
end)
```

Příklad: WS2812 LED pásek

ws2812.init()

-- první dvě RGB LED budou zelené ws2812.write(string.char(255, 0, 0, 255, 0, 0))

Příklad: WS2812 LED efekt

```
ws2812.init()
local i, buffer = 0, ws2812.newBuffer(10, 3)
buffer:fill(0, 0, 0)
tmr.alarm(0, 50, 1, function()
    i=i+1
    buffer:fade(2)
    buffer:set(i%buffer:size()+1, string.char(0, 0, 255))
    ws2812.write(buffer)
end)
```

ESP32

Stručné představení horké novinky fy Espressif

ESP8266

- původně WiFi převodník k MCU bez konektivity
- 32-bit CPU na 80/160 MHz, 80 % volné kapacity
- 96 kB datové paměti
- 16 GPIO pinů
- obvyklá rozhraní: UART, SPI, I2S, ADC, PWM
- spící režimy
- drtivě nízká cena (< 40 Kč)

ESP8266 v praxi

- uzavřené SDK, verze NonOS a OS (FreeRTOS)
- slabá dokumentace, původně pouze v čínštině
- blob pro WiFi stack, asynchronní volání "userspace"
- CPU nesmíme zdržet déle než 10 ms
- polovina RAM obsazena WiFi stackem
- z 16 GPIO použitelných tak 10
- pouze jeden ADC (a jen 10bitový)
- I2C jen softwarově

ESP32 = řešení všech neduhů

- komplet open source vývoj, od začátku na GitHubu
- pouze FreeRTOS verze (žádný Non-OS)
- dvě CPU jádra Tensilica LX108 na 160 (240?) MHz!
- jedno CPU aplikační, druhé pro WiFi? Nově i plný SMP
- 512 kB RAM! Volných pro uživatele cca 170 kB
- 36 GPIO, víc a přesnější ADC, nově DAC, HW I2C, touch senzory
- důraz na bezpečnost, HW akcelerace šifrování
- důraz na nízkou spotřebu, sleep mody, lepší výrobní technologie
- Bluetooth LE a rychlejší WiFi (150 Mbps)
- RTC, ULP koprocesor, Ethernet, CAN, IR, ..., ...,

ESP32 modul

http://esp32.com/

ESP32 blokový diagram

Vývojový modul ESP32

ESP32 Dev Board PINMAP

					3.3V	373		Lier Cally	No.	200	SS	GND						
(pu)				RESET	EN	空				BI	21023	GPIO23	VSPI MOSI					SPI MOSI
SVP			ADC0		GPIO36	SYP		629		4	0102:	GPIO22						Wire SCL
SVN			ADC3		GPIO39	NA.		5	=		OTXC.	GPI01	TX0					Serial TX
			ADC6		GPIO34	0341	- S	ns.inii	111111.113	Cs	82.4	GPIO3	RX0					Serial RX
	_		ADC7		GPIO35	0351	-	500			102	GPIO21						Wire SDA
		TOUCH9	ADC4		GPIO32	03_	기현		-	J.	S.	GND						
		TOUCH8	ADC5		GPIO33	73.51		Titt	treet		1019	GPIO19	VSPI MISO					SPI MISO
DAC1			ADC18		GPIO25	025	22R1	23 /		D2	80	GPIO18	VSPI SCK					SPI SCK
DAC2			ADC19		GPIO26	026			112	. a	50	GPI05	VSPI SS				(pu)	SPI SS
		TOUCH7	ADC17		GPIO27	027		cz 💮	Text	R20 F	3 1017	GPI017						
	TMS	TOUCH6	ADC16	HSPI SCK	GPIO14	1014				3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	910	GPIO16						
(pd)	TDI	TOUCH5	ADC15	HSPI MISO	GPIO12	1012	R	C1 C20				GPIO4		ADC10	TOUCH0		(pd)	
					GND	GÝO	D1 [[m]	28 - 101 0C			8	GPI00	BOOT	ADC11	TOUCH1		(pu)	
	тск	TOUCH4	ADC14	HSPI MOSI	GPIO13	513		* ~			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GPIO2		ADC12	TOUCH2		(pd)	
				FLASH D2	GPIO9	SD2	01		Y P		기를 기를	GPIO15	HSPI SS	ADC13	TOUCH3	TDO	(pu)	
				FLASH D3	GPIO10	\$03	R4	4000	05	ר. הני	R3 S	GPIO8	FLASH D1					
				FLASH CMD	GPIO11	Se		17	111	0	Suc Suc	GPI07	FLASH D0					
					5V	5V	IZ TELEN		1	pot	CK.	GPIO6	FLASH SCK					

Jak ESP32 programovat?

- Primárně skrz ESP32 IoT Development Platform
- IDF (1.října verze 0.9) GitHub espressif/esp-idf
- přehled vydání: github.com/espressif/esp-idf/releases
- Arduino core (7.října v0.0) espressif/arduino-esp32
- MicroPython (?)
- NodeMCU Lua esp32 branch nodemcu

ESP3212 ESP32S od Ai-Thinker

Prodejci

- Espressif prodává samotné čipy
- Ai-Thinker a další vyrábějí moduly či přímo desky
- Adafruit, AliExpress, Seeed Studio atd. je prodávají
- přehled například na www.esp32.net

ESP32 informační zdroje

- espressif.com/products/hardware/esp32/resources
- github.com/espressif/esp-idf/tree/master/docs
- www.esp32.com fórum

Díky za pozornost

... a těším se na otázky

Petr Stehlík

www.pstehlik.cz

https://plus.google.com/+PetrStehlík

petr@pstehlik.cz