Teillösung zu Aufgabe 3 von Blatt 0

In der Übung gab es folgende Situation: Es war $(\mathfrak{q}_i)_{i\in I}$ eine Kette von Primidealen, welche alle unterhalb einem vorgegebenen Primideal \mathfrak{p} lagen. Wir mussten noch zeigen, dass $\bigcap_{i\in I}\mathfrak{q}_i$ wieder ein Primideal ist.

Das geht so: Zunächst ist klar, dass die Eins nicht in $\bigcap_i \mathfrak{q}_i$ liegt, denn die \mathfrak{q}_i sind ja alles Primideale. Dann müssen wir noch die zweite Eigenschaft eines Primideals nachweisen.

Seien dazu Elemente $x, y \in A$ mit $x \notin \bigcap_i \mathfrak{q}_i$ und $y \notin \bigcap_i \mathfrak{q}_i$ gegeben. Wir müssen zeigen, dass auch $xy \notin \bigcap_i \mathfrak{q}_i$. Zunächst können wir festhalten, dass es Indizes j und k gibt mit $x \notin \mathfrak{p}_j$ und $y \notin \mathfrak{p}_k$. Da die $(\mathfrak{q}_i)_i$ eine Kette bilden, gilt $\mathfrak{p}_j \subseteq \mathfrak{p}_k$ oder $\mathfrak{p}_j \supseteq \mathfrak{p}_k$. Ohne Beschränkung der Allgemeinheit trete der erste Fall ein, also $\mathfrak{p}_j \subseteq \mathfrak{p}_k$. Dann können wir folgern, dass auch $y \notin \mathfrak{p}_j$. Da \mathfrak{p}_j ein Primideal ist, folgt $xy \notin \mathfrak{p}_j$ und somit insbesondere $xy \notin \bigcap_i \mathfrak{p}_i$.

¹Für Fans der *leeren Kette* sei angemerkt, dass dieses Argument im Spezialfall der leeren Kette nicht funktioniert. Wie kann man das Argument in diesem Fall retten?