Name: .			
i tallic.			

Notes:

- 1. Fill in your name (first and last) and student ID number in the space above.
- 2. This midterm contains 20 pages (including this cover page) and 11 problems. Check to see if any pages are missing.
- 3. Answer all questions in the space provided. Extra space is provided at the end. If you want the overflow page marked, be sure to clearly indicate that your solution continues.
- 4. Show all of your work on each problem.
- 5. Your grade will be influenced by how clearly you express your ideas, and how well you organize your solutions.

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	9	10	4	12	11	10	5	6	8	9	6	90
Score:												

[3] (b) Find all possible values of $(1-j)^{4j}$.

[3] (c) Consider the domain $D = \{x + jy : 0 < x < 1 \text{ and } 0 < y < 1\}$ (shaded below). Sketch the image of the domain D under the function $f(z) = e^z$.

- 2. Consider the vector field $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\vec{F}(x,y) = (y, x y)$.
- [2] (a) Which of the following is the correct picture for the field?

[4] (b) Consider the curve Γ that is part of the parabola $x=y^2$ from x=0 to x=1. Sketch the curve on the picture above, and compute $\int_{\Gamma} \vec{F} \cdot d\vec{r}$ explicitly by finding a parameterization.

[2] (c) The vector field \vec{F} is conservative. Find a scalar potential function $\Psi : \mathbb{R}^2 \to \mathbb{R}$ for \vec{F} .

[2] (d) Use the potential you found in part (c) to verify your answer in part (b).

[4] 3. For the curve Γ in \mathbb{R}^2 (shown in the figure below) and the vector field $\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\vec{F}(x,y) = \left(\ln(\sin^2(x) + 1), \cos(\sin y) + x\right)$, evaluate $\oint_{\Gamma} \vec{F} \cdot \vec{r}$.

4. Consider the surface Σ in \mathbb{R}^3 (depicted at right) with outward facing normal, and whose closed boundary curve $\partial \Sigma$ is the triangle in the xy-plane (oriented clockwise when viewed from above) with vertices at the points (0,0,0), (0,3,0), and (2,2,0).

(a) Consider the vector field defined by $\vec{F}(x, y, z) = y \hat{i}$. Compute $\iint_{\Sigma} (\nabla \times \vec{F}) \cdot \hat{n} dA$. (Hint: Find a surface with the same boundary curve and make use of an important theorem.)

- [2] (b) Now consider the vector field defined by $\vec{G}(x, y, z) = (2xz x, 2y, 2y z^2)$. Show that $\nabla \cdot \vec{G}$ is a constant scalar field.
- [6] (c) Suppose you know that the volume of the region contained inside the surface Σ and below the xy-plane is equal to 8. Compute $\iint_{\Sigma} \vec{G} \cdot \hat{n} \, dA$.

- 5. Consider the surface Σ in \mathbb{R}^3 that is defined by $x^2 + y^2 = z^2 + 1$ in the region where $0 \le z \le 1$.
- [2] (a) Circle the correct visualization of Σ below.

[3] (b) Provide a parameterization for the surface Σ . Make sure to include bounds on the variables.

[6] (c) Let \vec{F} be the vector field defined by $\vec{F}(x,y,z)=(xz,0,-1)$. Find the flux of \vec{F} through Σ with respect to the outward facing normal.

- 6. Let a be a constant, let f be the function defined by $f(r) = \frac{a}{r^3}$ for all r > 0, and let \vec{F} be the radial vector field defined by $\vec{F}(x,y,z) = f(r)\vec{r}$, where $\vec{r} = (x,y,z)$ and $r = ||\vec{r}|| = \sqrt{x^2 + y^2 + z^2}$. (Note that \vec{F} is \mathcal{C}^1 everywhere except at $\vec{\mathbf{0}}$, where it is not defined.)
- [2] (a) Show that $\nabla \cdot \vec{F} = 0$ on all points where \vec{F} is defined.

[4] (b) Let S_R denote the solid sphere of radius R centered at the origin. Compute the flux of \vec{F} through the boundary sphere ∂S_R with respect to the outward pointing normal of ∂S_R .

(You may use the fact that the outward unit normal vector on the surface of the sphere of radius R is given by $\hat{n} = \frac{\vec{r}}{R}$ and that the surface area of a sphere of radius R is given by $4\pi R^2$.)

[3] (c) Let Ω be a solid region of \mathbb{R}^3 (depicted below) with outward facing normal such that the origin lies inside Ω . For some R > 0 small enough, the solid sphere S_R lies entirely inside Ω . We can cut out of Ω the sphere S_R to leave a small spherical "hole" of radius R inside Ω , as depicted below.

View of D with "hole" Sp cut out.

Slice view on xy-plane.

Explain why $\iint_{\partial\Omega} \vec{F} \cdot \hat{n} dA = \iint_{\partial S_R} \vec{F} \cdot \hat{n} dA$. (You should reference an important theorem.) Conclude that $\iint_{\partial\Omega} \vec{F} \cdot \hat{n} dA = 4\pi a$.

[1] (d) What is $\iint_{\partial\Omega} \vec{F} \cdot \hat{n} dA$ if the region Ω instead does not contain the origin? Explain.

[5] 7. Suppose a static current density in a region of space is given by $\vec{J}(x,y,z) = b \, e^{-(x^2+y^2)} \hat{k}$, where b is a constant, and let Γ denote the unit circle $x^2 + y^2 = 1$ on the xy-plane that is oriented counterclockwise when viewed from above. Compute the circulation of the magnetic field around Γ , assuming that the electric field is static.

- 8. Consider the function defined by $f(z) = \frac{1}{z(z^2+2)}$.
- [4] (a) Write out the two possible Laurent series expansions of f about the point z = 0, and specify the region of validity for each.

[2] (b) Use one of the Laurent series you found in part (a) to evaluate $\oint_{\Gamma} \frac{1}{z(z^2+2)} dz$, where Γ is the positively oriented unit circle |z|=1.

- 9. Let R>2 and let Γ_R be the closed contour consisting of the semicircular arc of radius R centered at the origin that goes counterclockwise from R to -R, followed by the line segment on the real axis from -R to R. Consider the function defined by $f(z)=\frac{z^2}{(z^2+1)(z^2+4)}$.
- [6] (a) Sketch Γ_R and indicate the location of the singularities of f. Then compute $\oint_{\Gamma_R} f(z) dz$.

[2] (b) Explain how your answer from part (a) can be used to compute the value of the real improper integral $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 5x^2 + 4} dx$.

- 10. Consider the function defined by $f(z) = |z|^2$ and the integral $\int_{\Gamma} f(z) dz$.
- [2] (a) Use the Cauchy-Riemann equations to find all points where the function f is analytic.

[3] (b) Evaluate the integral where Γ is the line segment with initial point -1 and terminal point j.

[3] (c) Evaluate the integral where Γ is the arc of the unit circle |z|=1 traversed clockwise with initial point -1 and terminal point j.

[1] (d) Do your answers from (b) and (c) agree? Why or why not?

11. Let D be the domain (indicated below) defined by $D = \{x + jy : -4 < x < 4 \text{ and } -2 < y < 2\}$ and consider the function defined by

$$f(z) = \frac{4z}{z^4 - 1} + \frac{1}{\sin z} + 2(2z - j)^3.$$

[4] (a) Indicate the locations of the singularities of f in D above and compute the residue of f at each.

[2] (b) Draw an oriented simple closed contour Γ in D such that $\oint_{\Gamma} f(z) dz = -8\pi j$, or explain why such a contour cannot exist.

Trigonometric identities

$$\sin^2 \theta + \cos^2 \theta = 1 \qquad \tan^2 \theta + 1 = \sec^2 \theta$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \qquad \sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \qquad \cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Change of variable formula If $\Phi(u,v) = (x(u,v),y(u,v))$ is a transformation then

$$\iint_{D_{xy}} f(x,y) \, dx \, dy = \iint_{D_{uv}} f(x(u,v), y(u,v)) \, \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

where the region D_{xy} is mapped to D_{uv} under Φ . The Jacobian is defined as

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

The Jacobian satisfies the following property: $\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{\frac{\partial(x,y)}{\partial(u,v)}}$.

- Polar coordinates: $x = r \cos \theta$ and $y = r \sin \theta$. The Jacobian is $\frac{\partial(x,y)}{\partial(r,\theta)} = r$
- Cylindrical coordinates: $x = r \cos \theta$, $y = r \sin \theta$, z = z. The Jacobian is $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r$
- Spherical coordinates: $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$. The Jacobian is $\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)} = \rho^2 \sin \varphi$

Vector calculus identities

$$\begin{split} \nabla \times (f\vec{\boldsymbol{F}}) &= (\nabla f) \times \vec{\boldsymbol{F}} + f(\nabla \times \vec{\boldsymbol{F}}) \\ \nabla \cdot (f\vec{\boldsymbol{F}}) &= (\nabla f) \cdot \vec{\boldsymbol{F}} + f(\nabla \cdot \vec{\boldsymbol{F}}) \\ \nabla \times (\nabla f) &= \vec{\boldsymbol{0}} \\ \nabla \cdot (\nabla \times \vec{\boldsymbol{F}}) &= 0 \\ \nabla \times (\nabla \times \vec{\boldsymbol{F}}) &= \nabla (\nabla \cdot \vec{\boldsymbol{F}}) - \nabla^2 \vec{\boldsymbol{F}} \end{split}$$

where
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
.

Maxwell's equations

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$

Complex trigonometric and hyperbolic identities

$$\cos z = \frac{e^{jz} + e^{-jz}}{2} \qquad \sin z = \frac{e^{jz} - e^{-jz}}{2j} \qquad \qquad \cosh z = \frac{e^z + e^{-z}}{2} \qquad \sinh z = \frac{e^z - e^{-z}}{2}$$

For all complex numbers $z \in \mathbb{C}$:

$$\cos jz = \cosh z$$
 $\sin jz = j \sinh z$

Cauchy-Riemann equations Let $u, v : \mathbb{R}^2 \to \mathbb{R}$ be differentiable functions. The Cauchy-Riemann equations are:

$$u_x = v_y u_y = -v_x$$

The Cauchy-Riemann equations in *polar form* are:

$$u_r = \frac{1}{r}v_\theta \qquad v_r = -\frac{1}{r}u_\theta$$

If f = u + jv is analytic, its derivative in Cartesian coordinates is given by

$$f'(z) = f(x + jy) = u_x + jv_x$$

and in polar coordinates is given by

$$f'(z) = f'(re^{j\theta}) = e^{-j\theta}(u_r + jv_r)$$