Лабораторная работа №5.1.2

Теоретическая справка

Виды взаимодействия γ - кванта с веществом

При прохождении γ -излучения через вещество происходит ослабление интенсивности пучка γ -квантов, что является результатом их взаимодействия с атомами вещества.

Фотоэффект

При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом, а его энергия частично передается электрону, а частично тратится на возбуждение атома. Атом практически мгновенно (за время порядка $10^{-8}\,\mathrm{c}$) возвращается в нормальное состояние. Его энергия возбуждения излучается в виде мягкого фотона, либо передется какому-нибудь другому электрону, который покидает атом (Оже-эффект). Энергия кванта должна быть больше энергии связи электрона оболочки атома.

Томпсоновское рассеяние

Рассеяние квантов не очень высокой энергии. В этом случае атом воспринимается фотоном "как единое целое", и фотон обменивается энергией и импульсом со всем атомом. Так как масса атома очень велика по сравнению с эквивалентной массой фотона $\frac{h\nu}{c}$, то отдача в этом случае практически отсутствует. Поэтому рассеяние фотонов происходит без изменения их энергии, т.е. когерентно.

Комптоновское рассеяние

При комптоновском рассеянии каждый электрон атома ведет себя независимо от других, поскольку рассеяние в этом случае происходитна каком-либо одном из атомных электронов.

Образование электронно нейтральных пар

При достаточно большой энергии (γ -квантов $2mc^2=1.02$ МэВ) становится возможным процесс образования пары, при котором в поле ядра фотон поглощается, и рождаются электрон и позитрон. В рассматриваемом энергетическом диапозоне не наблюдается.

Рис. 1. Сечение взаимодействия фотонов с углеродом (Z = 6) и свинцом (Z = 82) при энергиях фотона от 10 эВ до 100 ГэВ. σ_{ph} - сечение фотоэффекта, σ_{coh} - сечение релеевского рассеяния, σ_{ph} - сечение комптоновского рассеяния, σ_{np} - сечение рождения пары в поле ядра, σ_{ep} - сечение образования пар в поле атомных электронов, σ_{GDR} - сечении ядерного фотопоглощения.

Фотоэлектронный умножитель

Фотоэлементы, основанные на эффекте фотоэффекта, не позволяют измерять слабые световые потоки, так как фототок получается ничтожно малым. Фотоэлектронный умножитель позволяет усиливать фототок в огромное число раз. Бомбардировка поверхности вызывает металла вызывает эмиссию вторичных электронов с облучаемой

поверхности. Количество выбитых может быть больше количества падающих. Эмиссионный свойства характеризуются величиной $\sigma=\frac{n_2}{n_1}$, где n_2 - число выбитых, а n_1 - число падающих электронов. Величина σ зависит от энергии падающих электронов, температуры слоя, толщины, угла падения и т.д. Со временем σ может меняться.

Кристаллический сцинтиллятор NaI(TI)

В непроводящих чистых неорганических кристаллах электроны в основном состоянии расположены в валентной зоне А. Проходя через кристалл, заряженная частица переводит часть электронов из основного состояния в возбужденное, в зону проводимости В. При диффузии в зоне проводимости электрон может оказаться вблизи свободного уровня валентной зоны - "дырки". Если происходит рекомбинация электрона с "дыркой", то излучаются световые кванты с энергией, определяемой шириной запрещенной зоны кристалла - С. Этой же шириной определяется и спектр поглощения кристалла. Поэтому излученные при рекомбинации световые кванты интенсивно поглощаются внутри и свет наружу не выходит.

Рис. II.4. Схема уровней неорганического кристалла (а); спектральная чувствительность фотокатода Sb-Cs и спектры люминесценции кристаллов NaI(Tl) и CsI(Tl) (б)

Обработка результатов

θ , град.	N, номер канала	Счет	Время	Частиц	$\frac{1}{N}$	$1 - \cos\theta$	$\sigma_{\frac{1}{N}}$
0	968	48389	63	496698	0.001033	0.000000	0.000033
10	892	184781	249	1662281	0.001121	0.015192	0.000038
20	826	64742	188	127348	0.001211	0.060307	0.000042
30	773	46800	173	75751	0.001294	0.133975	0.000047
40	713	43475	189	66609	0.001403	0.233956	0.000053
50	628	49924	231	76524	0.001592	0.357212	0.000064
60	546	39615	215	57504	0.001832	0.500000	0.000078
70	485	41732	239	58773	0.002062	0.657980	0.000094
80	429	41860	245	57477	0.002331	0.826352	0.000113
90	391	32881	199	45469	0.002558	1.000000	0.000129
100	360	33513	206	46373	0.002778	1.173648	0.000146
110	333	136860	835	196759	0.003003	1.342020	0.000165
120	312	75372	487	107561	0.003205	1.500000	0.000181

$$N_{\text{наил}}(0) = 913.686262867$$

$$N_{\text{наил}}(90) = 395.357272769$$

$$E_{\gamma}=662$$
кэВ

$$mc^2 = 504.942844357$$
кэВ

Вывод

На основании теоретических выкладок из эксперимента получили значение энергии покоя частицы, на которой происходит отклонение