SITUATION

Il est souvent demandé de déterminer la position relative d'une courbe et d'une droite (le plus souvent une tangente ou une asymptote), c'est-à-dire de déterminer laquelle est graphiquement située au-dessus de l'autre. Ce problème revient à étudier le signe d'une différence.

ÉNONCÉ

On considère la fonction f définie sur $\mathbb{R}ackslash\{-1\}$ par :

$$f\left(x
ight) =rac{x^{2}+1}{x+1}$$

Déterminer la position relative de $\,C_f\,$ et de la droite $\it D\,$ d'équation $\,y=x-1\,$.

Etape 1

Énoncer la démarche

Avant de commencer les calculs, on explique la démarche :

"Pour étudier la position relative de la courbe $\,C_f\,$ et de la droite $\,D\,$ d'équation $\,y=ax+b$, on étudie le signe de $\,f\,(x)-(ax+b)$."

APPLICATION

Pour étudier la position relative de C_f et de $\it D$, on étudie le signe de $\it f(x)-(x-1)$ pour tout réel $\it x$ différent de -1.

Etape 2

Calculer et simplifier f(x) - (ax + b)

On calcule et simplifie autant que possible la différence f(x) - (ax + b), de manière à obtenir une expression dont on puisse facilement déterminer le signe.

APPLICATION

Pour tout réel x différent de −1, on a :

$$f(x) - (x - 1) = \frac{x^2 + 1}{x + 1} - (x - 1)$$

$$f(x) - (x - 1) = \frac{x^2 + 1}{x + 1} - \frac{(x - 1)(x + 1)}{x + 1}$$

On réduit au même dénominateur et on reconnaît une identité remarquable du type $(a-b)\,(a+b)=a^2-b^2$, pour tous réels a et b.

$$f(x) - (x - 1) = \frac{x^2 + 1 - (x^2 - 1)}{x + 1}$$

Soit:

$$f(x) - (x-1) = \frac{2}{x+1}$$

Etape 3

Étudier le signe de f(x) - (ax + b)

On étudie alors le signe de la différence f(x) - (ax + b) en distinguant les cas selon les valeurs de x si nécessaire. Un tableau de signes peut s'avérer utile dans les cas les plus compliqués.

APPLICATION

On a:

- 2 > 0
- $x+1>0 \Leftrightarrow x>-1$

On en déduit donc le signe de la différence :

Etape 4

Conclure sur la position relative

Finalement, on conclut:

- ullet Sur les intervalles où $f\left(x
 ight)-\left(ax+b
 ight)>0$, $\,C_{f}\,$ est au-dessus de $\it{D}.$
- ullet Sur les intervalles où $f\left(x
 ight) -\left(ax+b
 ight) <0$, C_{f} est en dessous de \emph{D} .
- ullet Lorsque $f\left(x
 ight) -\left(ax+b
 ight) =0$, C_{f} et \emph{D} ont un point d'intersection.

APPLICATION

Finalement, on peut conclure:

- ullet C_f est au-dessus de $\mathit{D}\,\mathrm{sur}\,\,]{-}1;+\infty[\,.$
- C_f est en dessous de D sur $]-\infty;-1[$.