ARJUNA (NEET)

Newton's Law of Motion

DPP-04

Two masses m_1 and m_2 are accelerated uniformly on frictionless surface as shown. The ratio of the tension T_1/T_2 :

- (A)

- Three blocks of masses m_1 , m_2 and m_3 are placed on a horizontal frictionless surface. A force of 40 N pulls the system. Then calculate the value of T, if $m_1 = 10 \text{ kg}$, $m_2 =$ $6 \text{ kg}, m_3 = 4 \text{ kg}$

- (A) 40 N
- (B) 20 N
- (C) 10 N
- (D) 5 N
- Blocks are in contact on a frictionless table. A horizontal force F = 3N is applied to one block as shown. Then force exerted by the smaller block m_2 on block m_1 is

- (B) 2 N
- (C) 3 N
- (D) 6 N
- A cracker rocket is ejecting gases at a rate of 0.05 kg/s with a velocity 400 m/s. The accelerating force on the rocket is
 - (A) 20 dyne
- (B) 20 N
- (C) 200 N
- (D) Zero

In the figure given below, with what acceleration does the block of mass m will move? (Pulley and strings are massless and frictionless)

- In the arrangement shown, the mass m will ascend with an acceleration (Pulley and rope are massless)

- (A) Zero
- (C) g
- (D) 2g
- A rocket of mass 5700 kg ejects mass at a constant rate of 15 kg/s with constant speed of 12 km/s. The acceleration of the rocket 1 minute after the blast is $(g = 10 \text{ m/s}^2)$
 - (A) 34.9 m/s^2
 - (B) 27.5 m/s^2
 - (C) 3.50 m/s^2
 - (D) 13.5 m/s^2

- **8.** A balloon has 2 g of air. A small hole is pierced into it. The air comes out with a velocity of 4 m/s. If the balloon shrinks completely in 2.5 s. The average force acting on the balloon is
 - (A) 0.008 N
- (B) 0.0032 N
- (C) 8 N
- (D) 3.2 N
- **9.** Two masses as shown are suspended from a massless pulley. Calculate the acceleration of the 10 kg mass when masses are left free

- $(A) \ \frac{2g}{3}$
- (B) $\frac{g}{3}$
- (C) $\frac{g}{9}$
- (D) $\frac{8}{7}$

10. Two bodies of 5 kg and 4 kg are tied to a string as shown in the figure. If the table and pulley both are smooth, acceleration of 5 kg body will be equal to

- (A) g
- (B) $\frac{g}{4}$
- (C) $\frac{4g}{9}$
- (D) $\frac{5g}{9}$
- 11. A light string passes over a frictionless pulley. To one of its ends a mass of 6 kg is attached and to its other end a mass of 10 kg is attached. The tension in the string will be

- (A) 50 N
- (B) 75 N
- (C) 100 N
- (D) 150 N

ANSWER KEY

- **1.** (D)
- **2.** (B)
- **3.** (A)
- **4.** (C)
- **5.** (B)
- **6.** (B)
- **7.** (B)
- **8.** (B)
- **9.** (B)
- **10.** (D)
- **11.** (B)

Please share your feedback on PW Teachershttps://forms.gle/jEBFswBuki4Ut2Lk6

For PW APP: https://physicswala.page.link/?type=contact-us&data=open

For PW Website: https://www.physicswallah.live/contact-us