P.PORTO

ESCOLA Superior De Tecnologia Tipo de Prova: Exame Modelo - Parte Teórica

Curso: Engenharia Informática Unidade Curricular: Matemática

Computacional I

Ano Letivo 2020/2021 Data: Hora:

Duração: 1h30m

Observações: Nas respostas às questões deve apresentar todos os cálculos que efetuar e todas as justificações necessárias. Não é permitido o uso de calculadora gráfica.

1. Considere
$$w=\frac{xz}{x^2+y}$$
, sendo $\bar x=3.1$, $\bar y=1.4$ e $\bar z=1.7$ valores aproximados para $x=\pi$, $y=\sqrt{2}$ e $z=\sqrt{3}$.

- (a) Determine uma estimativa para os erros absoluto e relativo cometidos com estas aproximações.
- (b) Determine uma aproximação para w.
- 2. Considere a função de \mathbb{R}^2 definda por $f(x,y)=xye^{\frac{x}{y}}$. Mostre que $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=2f(x,y)$.
- 3. Use o método de integração por partes para calcular $\int x \arcsin(x^2) dx$.
- 4. Utilize a substituição $t=e^x$ para calcular $\int \frac{e^{2x}}{(e^x-1)(e^{2x}+1)} dx$.
- 5. Calcule a área da região delimitada por $y=-x^2+1$, y=2x+1, y=2 e x=1, cujo o esboço gráfico é apresentado na seguinte figura.

6. Mostre que é convergente e calcule a soma da série $\sum_{n=1}^{+\infty} 5\left(\frac{2}{3}\right)^{n-1}$.