${\mathfrak l}_1^{\#2}$	0	0	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{4k^2}{(\alpha_0 - 4\beta_1)(1 + 2k^2)^2}$
				- (α0-4β	$-\frac{2}{(\alpha_0-4\beta_1)}$		$-\frac{(\alpha_0-4\beta_1)}{(\beta_0-\beta_1)}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1}\dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

$f_{1^{-}}^{\#2}$	0	0	0	$-\frac{1}{2}\bar{I}(\alpha_0-4\beta_1)k$	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_lpha f_{1^-}^{\#1}{}_lpha$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}$ \vec{i} (α_0 - 4 β_1) k
$\omega_1^{\#2}{}_+^2 \alpha_eta f_1^{\#1}{}_+^4 \alpha_eta$	$rac{1}{4}\left(lpha_0-4~eta_1 ight)\left rac{lpha_0-4~eta_1}{2~\sqrt{2}} ight rac{i\left(lpha_0-4~eta_1 ight)k}{2~\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+ \alpha eta$	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	α_0 - 4 β_1)	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
3	$u_1^{\#1} + \alpha \beta \frac{1}{4} ($	$o_1^{#2} + \alpha \beta$	$+^{\alpha\beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\sharp 2} +^{lpha}$	$+_{\alpha}$	$f_{1}^{#2} + \alpha$

	Massive particle			
? /	Pole residue:	$\frac{1}{\alpha_0} + \frac{1}{\alpha_6} - \frac{1}{4\beta_1} > 0$		
$J^P = 0^+$	Polarisations:	1		
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{8 \alpha_6 \beta_1} > 0$		
?	Spin:	0		
	Parity:	Even		

Unitarity conditions	
$\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid \beta_1 > \frac{\alpha_0}{4}$	

_	$\sigma_{0}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2}$	$-\frac{i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k+8\alpha_{6}\beta_{1}k^{3}}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k + 8 \alpha_6 \beta_1 k^3}$	$-\frac{\alpha_0 - 4 \beta_1 + 2 \alpha_6 k^2}{k^2 (\alpha_0^2 - 4 \alpha_0 \beta_1 + 8 \alpha_6 \beta_1 k^2)}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4 \beta_1}$

			1	Ī	I	ΙO
	#	I	3	3	3	10
Source constraints	SO(3) irreps	$\tau_{0}^{#2} = 0$	$\tau_{1}^{\#2\alpha} + 2ik \ \sigma_{1}^{\#2\alpha} = 0 \ 3$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \ 3$	Total #:
$\omega_{0}^{\#1}$		0	0	0	0 $\frac{1}{2} (\alpha_0 - 4 \beta_1)$	
$f_{0}^{#2}$		0	0	0	0	
$f_{0}^{\#1}$ $f_{0}^{\#2}$	$i(\alpha_0-4\beta_1)k$	$\sqrt{2}$	$-4 \beta_1 k^2$	0	0	
$\omega_{0}^{\#1}$	$\frac{\alpha_0}{2}$	ω_{0} + $\left(\frac{2}{2} - \frac{2}{2}\rho_{1} + \frac{2}{46} + \frac{\sqrt{2}}{\sqrt{2}}\right)$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0	
	, #1 +	9 +0 -	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0^{\text{-}}}^{\#1} \dagger$	