Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 30

Виконав студент ІП-12 Тарасюк Євгеній Сергійович

Перевірив _____

Київ 2021

Лабораторна робота 4.

Дослідження арифметичних циклічних алгоритмів.

Мета: дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача 30 (варіант 30).

30. Дано дійсне число
$$x$$
. Обчислити
$$\frac{(x-2)(x-4)(x-8)...(x-64)}{(x-1)(x-3)(x-7)...(x-63)}$$

Розв'язок.

1. Постановка задачі.

Початкові дані - це дійсне число, додаткових змінних для розв'язку не потрібно. Потрібна додаткова умова: число х не має бути числом (2^n) -1 на проміжку [1;63], щоб запобігти діленню на 0. Для обчислення використовуватимемо ітеративну формулу: розкладемо вираз на 6 множників, у циклі для значень і від 1 до 6 множимо результат на поточний множник $(x-2^i)/(x-2^i+1)$. Результатом розв'язку є дійсне число. Використовуватимемо стандартні логічні та арифметичні операції (степінь числа позначаємо як a або ** .

2. Побудова математичної моделі

Таблиця змінних та функцій:

Змінні	Тип	Ім'я	Призначення
Число Х	Дійсне число	X	Збереження початкових даних

Результат	Дійсне число	res	Збереження
			результату
			(добуток)
Число і	Натуральне	i	Перелічення
	число		всіх значень
			степеня двійки
Змінна valid	Логічний тип	valid	Перевірка на
			ділення на нуль

3. Псевдокод алгоритму

<u>Крок 1</u>	<u>Крок 2</u>		
Початок	Початок		
Введення х	Введення х		
res = 1	res = 1		
<i>valid</i> = True	valid = True		
{Цикл перевірки, обчислення та виведення res}	Повторити для і на проміжку [1;6]		
Кінець.	$\{\Pi$ еревірка, обчислення та виведення res $\}$		
Kinego.	Все повторити		
	Кінець		
	<u>Крок 4</u>		
<u>Крок 3</u>	Початок		
Початок	Введення х		
Введення х	res = 1		
res = 1	valid = True		
valid = True	Повторити для і на проміжку [1;6]		
Повторити для і на проміжку [1;6]	Якщо valid = True		
Якщо valid = True	Якщо $x == (2^i - 1)$:		
Якщо $x == (2^i - 1)$:	Виведення "Ділення на нуль"		
Виведення "Ділення на нуль"	valid = False		
valid = False	Інакше		
Інакше	$res *= (x-2^i)/(x-2^i+1)$		
{Обчислення та виведення res}	Якщо і == 6:		
Все якщо	Виведення res		
Все якщо	Все якщо		
Все повторити	Все якщо		
Кінець	Все якщо		
	Все повторити		

Кінець.

4. Блок схема алгоритму

5. Випробування алгоритму.

Перевіримо правильність алгоритму для різних вхідних даних:

	Tecm 1	Tecm 2	Tecm 3
Введення х	x = 1.000001	x = 32	x = 63
res = 1	res = 1	res = 1	res = 1
Повторити для цілих і на проміжку [1;64]	—//—	—//—	—//—
i = 1	res = -999999.0000822 666	res = 0.967741935483 871	res = 0.983870967741 9355
i = 5	res = -1937498.443016 3337	res = 0.0	res = 0.901326012989 8313
i = 6	res = -1968748.418407 7259	res = 0.0	Виведено "Ділення на нуль"
Виведення res	-1968748.418407 7259	0.0	Ділення на нуль

Висновки

Було досліджено особливості роботи арифметичних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій.