Definition (Dualizable object). Let $\langle \mathbf{C}, \boldsymbol{\otimes}_{\mathbf{C}}, \mathbf{1}_{\mathbf{C}} \rangle$ be a monoidal category, and let $X \in \mathrm{Ob}_{\mathbf{C}}$. A *right dual object* of X is specified by:

Constituents

- 1. an object $X^{\vee} \in Ob_{\mathbf{C}}$;
- 2. an evaluation map $\epsilon_X : X^{\vee} \otimes X \to 1$;
- 3. a coevaluation map $\eta_X : \mathbf{1} \to X \otimes X^{\vee}$;

Conditions

- 1. $lu_X^{-1} \ \ (\eta_X \otimes Id_X) \ \ \ as_{X,X^{\vee},X} \ \ \ (Id_X \otimes \epsilon_X) \ \ \ ru_X = Id_X;$
 - 2. $\operatorname{ru}_{X^{\vee}}^{-1} \circ (\operatorname{Id}_{X^{\vee}} \otimes \eta_X) \circ \operatorname{as}_{X^{\vee},X,X^{\vee}}^{-1} \circ (\varepsilon_X \otimes \operatorname{Id}_{X^{\vee}}) \circ \operatorname{lu}_{X^{\vee}} = \operatorname{Id}_{X^{\vee}}.$