Aspen Plus에 의한 일산화탄소변성공정의 열력학적모의

김성민

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《전략수행기간 석탄가스화에 의한 탄소하나화학공업을 창설하고 갈탄을 리용하는 석 탄건류공정을 꾸리며 회망조를 출발원료로 하는 탄산소다공업을 완비하여 메라놀과 합성 연유, 합성수지를 비롯한 화학제품생산의 주체화를 높은 수준에서 실현하여야 합니다.》 (《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 52~53폐지)

메타놀은 탄소하나화학공업의 출발물질로서 석탄가스화에 의하여 대규모적으로 합성할수 있다. 석탄가스화에 의한 메타놀생산공정은 가스화, 변성, 청정, 합성공정으로 이루어져있으며 변성공정에서는 필요한 합성가스의 조성을 정확히 보장하여야 한다.

메타놀합성에 필요한 H₂/CO비는 화학량론적으로 2이며 변성공정에서는 원료가스에 CO가 암모니아를 함께 생산하는 경우 3~5%, 메타놀을 단독생산하는 경우 18~20%정도 들어있어야 한다.[2-4] 암모니아합성에서와는 달리 메타놀생산의 CO변성공정에서는 반응변화률이 일정하게 되도록 합성가스조성을 정확히 보장하는것이 매우 중요하다.

우리는 화학공정모의프로그람 Aspen Plus의 평형반응기모형을 리용하여 메타놀 22만t/y 생산공정을 위한 CO변성공정을 열력학적으로 모의하여 합리적인 공정조작지표들을 결정하였다.

1. CO변성반응에 대한 열력학적고찰

CO변성반응은 가역발열반응으로서 온도가 높아짐에 따라 반응의 평형상수는 작아지며 따라서 반응의 변화률을 높이기 위해서는 계의 온도를 낮추어야 한다.[1] 변성반응이 리상적인 단열계안에서 진행된다고 보면 반응진행도가 커짐에 따라 계의 온도는 높아지고 일정한 변화률에 도달하면 반응은 평형상태에 놓이게 된다. 따라서 공업에서는 반응탑을 2~3개의 단으로 가르고 매 단사이에 열교환기를 설치하여 매 단의 입구온도를 낮추는 방법으로 변화률을 높이고있다. 이러한 조건에서 매 단에서 반응의 열력학적가능성을 정확히 판정하는것이 중요한 문제로 나서고있다.

지금까지 단열계안에서 진행되는 변성반응에 대한 열력학적가능성판정을 다음과 같은 방법으로 진행하였다.[1]

먼저 일정한 출구흐름조성을 가정하고 그 조성에 해당한 평형상수와 평형온도를 결정한다. 다음 반응열에 의하여 계의 출구온도와 평형온도접근도(평형온도와 출구온도의 차)를 계산하여 그 값이 정수이면 열력학적으로 가능한 조성, 부수이면 불가능한 조성으로 판정한다. 출구흐름조성을 변화시키면서 평형온도접근도를 계산하여 반응이 최대로 도달할수있는 열력학적한계(평형온도접근도가 0인 경우)를 규정하였다. 이 방법은 복잡한 계산을 반복해야 하며 경험에 많이 의존해야 하는 결함이 있다.

우리는 선행연구자들의 이러한 결함을 극복하기 위하여 Aspen Plus의 평형반응기모형 (Requil)을 리용하여 CO변성공정에 대한 열력학적계산을 진행하고 가능한 공정조작지표들 을 결정하였다. Requil 바 응기모형에서는 기브즈에네르기최소화원리에 의하여 계의 열력학 적량들이 결정되면 반응의 열력학적하계를 쉽게 계산해내며 이로부터 사용자는 변성탑의 매 단에서의 출구조성의 한계값을 정확히 결정할수 있다.

또한 Aspen Plus에서는 평형온도접근도를 정의하여 평형에 도달하지 못한 반응의 열력 학적계산도 쉽게 할수 있다. 실지 공업에서는 반응을 완전한 평형에 도달시키기 힘들므로 평 형온도접근도가 20~30℃이상이면 충분히 가능한 반응으로 보고있다.[1]

2. 모이조건이 설정

공정흐름도 메타놀합성을 위한 CO변성공정은 발생로가스의 일부(바이파스가스)는 변성 하지 않고 합성가스조성을 맞추기 위한 조절가스로 리용할수 있게 구성되였다. 그리고 변 성탑은 2개의 단으로 갈라져있으며 1단에서 나오는 반응열은 가스-가스열교화기와 1단폐 열보이라, 2단에서 나오는 반응열은 2단페열보이라에 의하여 회수되게 되여있다.

CO변성공정모의체계 CO변성공정을 모의하기 위하여 단위조작모형들과 파라메터설정값 들을 표 1과 같이 설정하였다.

구분	단위조작모형	파라메터설정값
가스-가스열교환기	HeatX	찬 류체의 출구온도 220℃
변성탑 1단	Requil	평형온도접근도 200℃
변성탑 2단	Requil	평형온도접근도 50℃
1단페열보이라	HeatX	더운 류체의 출구온도 220℃
2단폐열보이라	HeatX	더운 류체의 출구온도 173℃

표 1. 단위조작모형들과 파라메러설정값

표준조건에서 발생로가스의 조성 및 열력학적파라메터들은 표 2와 같이 설정하였다.

표 2. 월생도/12의 소성 및 월역의식파다메더					
가스성분	류속/(m³·h⁻¹)	함량/%			
H_2	20 942.28	24.194			
CO	43 286.48	50.008			
CO_2	21 927.3	25.332			
$N_2 + Ar$	356.76	0.412			
CH_4	47.04	0.054			
마른가스계	86 559.86	100			
수증기량/(m³·h ⁻¹)	32 8	93			
온도/℃	180)			
압력/MPa	3.9)			
증기분률	1				

표 2 발새근가스이 조서 및 열려하저하나메리

물성계산모형으로는 고압의 무극성기체계에 대하여 적합한 RK-Soave물성모형(약간의 극성기체가 포함된 계에도 적합함)을 선택하였다.

3. 모의계산결과

바이파스가스량에 따르는 모의계산결과 수증기/마른가스비를 0.38로 고정시키고 바이파스 가스량에 따르는 출구가스중 CO와 H₂의 농도를 모의계산한 결과는 표 3과 같다.

표 3에서 보는바와 같이 바이파스가스량이 많아짐에 따라 CO농도는 증가하고 H₂농도는 감소하였다. 메타놀합성공정에서 요구되는 변성공정의출구가스중 CO농도가 18~20%이므로 합리적인 바이파스가스량은 10~15%이다.

수증기/마른가스비에 따르는 모의계 산결과 바이 파스가스량을 30%로 고정 시키고 수증기/마른가스비에 따르는 . 표 3. 바이파스가스량에 따르는 모의계산결과

바이파스가스량/%	출구CO농도/%	출구H ₂ 농도/%	H ₂ /CO ^H]
0.00	15.27	41.75	2.73
5.00	16.62	41.07	2.47
10.00	18.00	40.37	2.24
15.00	19.42	39.65	2.04
20.00	20.87	38.92	1.87
25.00	22.35	38.17	1.71
30.00	23.87	37.40	1.57
35.00	25.44	36.61	1.44
40.00	27.04	35.80	1.32
45.00	28.68	34.97	1.22
50.00	30.36	34.12	1.12

출구가스중 CO와 H₂의 농도를 모의계산한 결과는 표 4와 같다.

표 4. 수증기/마른가스비변화에 따르는 모의계산결과

수증기/마른가스비	출구CO농도/%	출구H ₂ 농도/%	H_2/CO
0.3	27.43	35.59	1.29
0.4	23.11	37.78	1.63
0.5	19.98	39.36	1.96
0.6	17.72	40.51	2.28
0.7	16.10	41.32	2.56
0.8	14.93	41.92	2.80
0.9	14.08	42.34	3.00
1.0	13.46	42.66	3.16

표 4에서 보는바와 같이 수증기/마른가스비가 커집에 따라 CO농도는 감소하고 H_2 농도는 증가하였다. 따라서 합리적인 수증기/마른가스비는 $0.5\sim0.6$ 이다.

수증기/마른가스비 및 바이파스가스 량변화에 따르는 모의계산결과 수증기/ - 마른가스비와 바이파스가스량을 동

시에 변화시키면서 진행한 모의계산결과는 표 5와 같다.

표	5.	수증기/마른가스비	및	바이파스기	가스량변화에	[[]르는	모의계산결과

수증기/마른가스비	바이파스가스량/%	출구CO농도/%	출구H ₂ 농도/%	H ₂ /CO비
0.3	0	19.71	39.50	2.00
0.4	20	20.04	39.33	1.96
0.5	30	19.98	39.36	1.96
0.6	35	18.80	39.42	2.09
0.7	40	19.97	39.37	1.97
0.8	40	18.90	39.91	2.11
0.9	40	18.11	40.31	2.22

표 5에서 보는바와 같이 공정요구조건에 맞는 CO농도를 보장하기 위해서는 수증기/마른가스비가 낮을 때에는 바이파스가스량을 감소시키고 높을 때에는 증가시켜야 한다. 즉수증기/마른가스비가 0.3%일 때 바이파스가스량은 0%로, 0.4~0.6%일 때에는 20~35%정도로, 0.7이상일 때에는 40%로 보장하여야 한다.

맺 는 말

화학공정모의프로그람 Aspen Plus의 평형반응기모형을 리용하여 메타놀 22만t/y생산을 위한 CO변성공정의 열력학적모의계산결과 공정조작지표들은 다음과 같다.

수증기/마른가스비가 0.3%일 때 바이파스가스량은 0%로, 0.4~0.6%일 때에는 20~35% 정도로, 0.7이상일 때에는 40%로 보장하여야 한다.

참 고 문 헌

- [1] 리석 등; 화학과 화학공학, 2, 14, 주체103(2014).
- [2] S. I. Sandler; Using Aspen Plus in Thermodynamics Instruction, Wiley, 252~273, 2015.
- [3] 谢古昌; 甲醇工艺学, 化学工业出版社, 23, 2010.
- [4] 肖王刚; 化学工业与工程技术, 26, 3, 47, 2005.

주체106(2017)년 10월 5일 원고접수

Thermodynamic Simulation of CO Shift Process by using Aspen Plus

Kim Song Min

As the calculating results of thermo-dynamical simulation of the CO shift process for producing methanol 220kt/y by using Aspen Plus, the operating indexes of the process are as follows:

The bypass gas should be supplied 0, $20\sim35$ and 40%, when steam/dry gas ratio are 0.3%, $0.4\sim0.6\%$ and 0.7%, respectively.

Key words: CO shift process, methanol synthesis, Aspen Plus