Data Analytics CA Pair Project - VR Jungian Sandplay

Charlie Duff, Adam Heaton, Ademide Adenuga

December, 2022

Contents

Abstract	2
Aim and Rationale	2
Participants and setting	2
Experiment design	2
Results gathering	2
Major findings	2
Findings/Implecations	2
Introduction	2
Topics And content	2
Rationale	2
Method	2
Hypothesis	3
Participants	3
Design	3
Materials	3
Procedure	3
Results	3
Graphs	7
Descriptive statistics	15
Inferential statistics	15
Statistical tests	15
Magnitude and direction of results	16
Discussion	16
References	16

Abstract

Aim and Rationale

The aim and rationale of this project is to formulate a single hypothesis based on a set of data we were given on an experiment conducted to attempt to determine the effectiveness of use of VR technology in Jungian Sandbox therapy, compare the effectiveness of the approaches based on the data we were provided, and cleaning up any data that requires cleanup.

Participants and setting

Participants of this experiment were young adults aged between 18 - 25 years old with no exact ages of the participants recorded. 150 participants were recorded in this study with an equal amount of male and female participants recorded. (Male = 75 / Female = 75) Participants were broken into 3 groups using random sampling. These groups were Control (traditional CBT, w/ No VR), Static (Non-animated model content, w/ VR), Animated (Animated model content, w/ VR)

Experiment design

Results gathering

Results of the experiment were tracked in an excel spreadsheet detailing the gender and test group of each participant(Control,Static,Animated) along with their CPSS (Child PTSD Symptom Scale) and OR (Observer Rating) pre and post treatment.

Major findings

Findings/Implecations

Introduction

Topics And content

Rationale

The Rationale behind this experiment was to determine if using VR technology in a Jungian Sandbox setting could be beneficial in reducing the PTSD levels in patients.

Method

Upon first analysis of the data, a missing datum was found for participant 100 in their Pre-Trial Self Reported CPSS. Between the group, we discussed our options. Between ourselves, two conflicting ideas emerged - one, that we ignore the missing data and calculate results without it (deletion), and the other that we replace the missing data with a suitable value and proceed with an adjusted dataset (imputation). We decided to proceed with imputation using the mean of the column that the missing dataset was relevant to.

First we analysed the missing datum to be Missing Completely at Random (MCAR), as being the sole unrecorded datum in the set, we can conclude that it being missing has nothing to do with any other

observed variables (data Missing at Random), or missing due to the values themselves (Missing Not at Random).

We then discussed how we could impute the missing datum. We came up with a variety of potential options based on research and discussion: 1. Take the mean of all Pre-Trial Self Reported CPSS values. 2. Take the median of all Pre-Trial Self Reported CPSS values. 3. Take the mode of all Pre-Trial Self Reported CPSS values. 4. Take the mean of all female control Pre-Trial Self Reported CPSS values. 5. Take the median of all female control Pre-Trial Self Reported CPSS values.

The following values were calculated for each option: 1. 6.06 2. 6.09 3. 6.24 4. 5.76 5. 5.82

Hypothesis

Our hypothesis was that imputing data would provide results with a more varied outcome than data that was ignored.

Participants

Participants of this experiment were young adults aged between 18 - 25 years old with no exact ages of the participants recorded. 150 participants were recorded in this study with an equal amount of male and female participants recorded. (Male = 75 / Female = 75) Participants were broken into 3 groups using random sampling. These groups were Control (traditional CBT, w/ No VR), Static (Non-animated model content, w/ VR), Animated (Animated model content, w/ VR)

Design

Materials

Procedure

Results

Table 1: Patient Data

X	gender	test_group	pre_trial_cpss	post_trial_cpss	pre_trial_or	post_trial_or
1	Male	Static	4.54	5.77	4.48	5.95
2	Male	Static	6.36	5.29	6.08	5.24
3	Male	Static	5.17	6.86	5.08	6.90
4	Male	Static	4.56	5.59	4.09	5.36
5	Male	Static	3.84	5.43	4.33	5.26
6	Male	Static	7.09	6.92	7.58	6.69
7	Male	Static	4.91	5.46	4.89	5.50
8	Male	Static	7.24	5.65	7.37	5.72
9	Male	Static	6.24	7.54	6.46	7.73
10	Male	Static	8.52	5.51	8.51	5.70
11	Male	Static	5.83	6.10	6.16	6.31
12	Male	Static	7.78	5.18	7.28	5.00
13	Male	Static	5.76	5.11	5.35	5.10
14	Male	Static	6.29	6.19	6.82	6.37
15	Male	Static	7.31	5.18	7.16	5.17

X	gender	test_group	pre_trial_cpss	post_trial_cpss	pre_trial_or	post_trial_or
16	Male	Static	6.61	4.19	6.54	4.15
17	Male	Static	5.73	4.43	5.75	4.37
18	Male	Static	6.93	6.46	6.79	6.45
19	Male	Static	7.41	7.91	7.46	7.68
20	Male	Static	7.00	6.13	7.49	6.35
21	Male	Static	7.88	5.47	7.90	5.32
22	Male	Static	6.25	4.97	6.00	5.18
23	Male	Static	5.88	5.12	6.04	4.93
24	Male	Static	5.79	7.24	6.30	7.18
25	Male	Static	7.56	6.47	7.60	6.64
26	Female	Static	6.28	5.72	5.98	5.95
27	Female	Static	5.50	4.65	5.50	4.50
28	Female	Static	5.81	5.07	6.07	5.17
29	Female	Static	5.06	4.03	4.53	3.96
30	Female	Static	6.17	5.58	6.54	5.69
31	Female	Static	6.06	5.41	5.87	5.58
32	Female	Static	6.56	6.11	6.96	6.30
33	Female	Static	5.82	5.09	5.82	4.86
34	Female	Static	6.24	5.67	6.44	5.75
35	Female	Static	5.79	5.05	5.74	5.01
36	Female	Static	5.50	4.65	5.30	4.58
37	Female	Static	5.66	4.87	5.59	5.01
38	Female	Static	4.49	3.24	4.09	3.03
39	Female	Static	6.04	5.39	6.41	5.24
40	Female	Static	6.90	6.59	6.58	6.37
41	Female	Static	6.04	5.39	5.93	5.26
42	Female	Static	5.28	4.34	5.57	4.30
43	Female	Static	6.09	5.46	5.79	5.49
44	Female	Static	4.10	2.70	4.26	2.50
45	Female	Static	6.19	5.61	6.38	5.67
46	Female	Static	6.92	6.61	7.03	6.70
47	Female	Static	5.37	4.47	5.05	4.28
48	Female	Static	6.13	5.52	5.78	5.35
49	Female	Static	4.86	3.76	4.86	3.94
50	Female	Static	5.74	4.97	5.83	4.95
51	Male	Control	5.60	6.53	5.62	6.66
52	Male	Control	4.37	4.86	4.59	4.88
53	Male	Control	6.86	6.24	6.96	6.27
54	Male	Control	4.97	5.52	4.95	5.75
55	Male	Control	7.40	5.32 5.21	7.06	5.45
56	Male	Control	6.66	6.87	7.18	7.08
57	Male	Control	6.17	5.10	6.17	5.13
58	Male	Control	7.24	5.82	7.46	5.61
59	Male	Control	8.00	5.61	8.34	5.49
60	Male	Control	6.30	6.20	6.42	6.25
61	Male	Control	7.23	4.41	6.89	4.46
62	Male	Control	7.23 5.73	$\frac{4.41}{3.62}$	5.25	$\frac{4.40}{3.69}$
63	Male Male	Control	5.73 7.90	$\frac{3.02}{6.32}$	5.25 7.88	6.23
64	Male Male		7.90 4.93	$\frac{6.32}{5.98}$	7.88 5.09	6.23
		Control				
65 66	Male	Control	5.09	4.42	4.97	4.59
66 67	Male	Control	4.03	5.19	4.02	5.02
67	Male	Control	5.37	6.05	5.21	6.12

X	gender	test_group	pre_trial_cpss	post_trial_cpss	pre_trial_or	post_trial_or
68	Male	Control	7.85	4.87	7.70	4.80
69	Male	Control	6.65	5.76	7.11	5.69
70	Male	Control	5.56	5.93	6.07	5.71
71	Male	Control	6.83	7.04	7.29	7.25
72	Male	Control	6.21	4.75	6.44	4.58
73	Male	Control	5.75	6.19	6.07	6.17
74	Male	Control	6.06	6.64	5.76	6.67
75	Male	Control	6.75	5.23	7.25	5.35
76	Female	Control	5.14	4.14	5.28	4.04
77	Female	Control	6.45	5.96	6.11	5.95
78	Female	Control	5.03	3.99	5.24	3.90
79	Female	Control	6.33	5.80	6.03	5.68
80	Female	Control	4.66	3.48	5.04	3.51
81	Female	Control	6.20	5.61	6.30	5.57
82	Female	Control	5.68	4.90	5.24	5.01
83	Female	Control	5.02	3.98	5.12	3.94
84	Female	Control	5.74	4.98	5.33	5.20
85	Female	Control	7.27	7.10	7.79	7.16
86	Female	Control	6.73	6.35	6.67	6.35
87	Female	Control	5.57	4.73	5.25	4.94
88	Female	Control	6.49	6.01	6.48	5.82
89	Female	Control	5.50	4.65	6.05	4.45
90	Female	Control	7.10	6.86	7.02	6.88
91	Female	Control	6.16	5.56	6.47	5.65
92	Female	Control	5.17	4.19	4.86	4.05
93	Female	Control	5.89	5.19	6.16	5.02
94	Female	Control	6.47	5.99	6.46	5.87
95	Female	Control	2.49	0.48	2.97	0.25
96	Female	Control	4.18	2.82	4.04	2.71
97	Female	Control	5.30	4.36	5.53	4.16
98	Female	Control	7.64	7.61	7.50	7.54
99	Female	Control	5.93	5.24	6.30	5.11
100	Female	Control	6.06	6.17	7.00	6.30
101	Male	Animated	7.34	4.99	6.85	4.83
102	Male	Animated	6.32	6.18	6.48	6.35
103	Male	Animated	7.62	5.49	7.82	5.27
104	Male	Animated	5.11	6.36	4.75	6.14
105	Male	Animated	7.29	4.64	7.71	4.86
106	Male	Animated	6.42	4.28	6.79	4.34
107	Male	Animated	6.50	4.29	7.03	4.08
108	Male	Animated	5.29	3.56	5.56	3.46
109	Male	Animated	6.42	6.05	6.84	6.05
110	Male	Animated	5.52	6.38	5.13	6.19
111	Male	Animated	5.59	5.11	5.83	5.35
112	Male	Animated	7.21	3.79	6.90	3.72
113	Male	Animated	5.61	6.79	5.73	6.83
114	Male	Animated	4.63	6.61	4.23	6.73
115	Male	Animated	5.87	6.56	5.60	6.57
116	Male	Animated	4.28	4.87	4.44	4.93
117	Male	Animated	6.10	4.88	5.94	4.98
118	Male	Animated	4.65	4.56	4.99	4.45
119	Male	Animated	8.63	6.13	8.74	5.99

X	gender	test_group	pre_trial_cpss	post_trial_cpss	pre_trial_or	post_trial_or
120	Mal	Animated	7.18	6.45	7.22	6.69
121	Male	Animated	7.21	5.49	7.78	5.66
122	Male	Animated	7.83	3.90	8.37	3.65
123	Male	Animated	6.84	6.96	6.33	6.79
124	Male	Animated	5.77	5.82	6.02	5.90
125	Male	Animated	7.41	5.08	7.25	5.17
126	Female	Animated	5.40	4.50	4.99	4.49
127	Female	Animated	5.83	5.10	6.40	5.11
128	Female	Animated	5.87	5.15	5.87	5.22
129	Female	Animated	4.22	2.87	3.98	2.88
130	Female	Animated	5.74	4.98	5.45	5.21
131	Female	Animated	6.24	5.67	5.67	5.82
132	Female	Animated	6.63	6.21	6.33	6.43
133	Female	Animated	5.38	4.48	5.71	4.69
134	Female	Animated	5.96	5.29	6.23	5.34
135	Female	Animated	6.59	6.16	6.35	6.23
136	Female	Animated	6.34	5.80	6.83	5.72
137	Female	Animated	6.57	6.12	6.38	5.89
138	Female	Animated	7.33	7.17	6.81	7.01
139	Female	Animated	4.05	2.64	3.93	2.86
140	Female	Animated	7.22	7.02	7.20	6.80
141	Female	Animated	5.13	4.13	5.51	3.88
142	Female	Animated	5.22	4.26	5.41	4.24
143	Female	Animated	5.10	4.09	5.45	4.08
144	Female	Animated	6.40	5.90	6.62	5.69
145	Female	Animatd	6.51	6.05	7.05	5.89
146	Female	Animated	6.20	5.62	6.66	5.61
147	Female	Animated	5.98	5.31	6.26	5.23
148	Female	Animated	6.31	5.77	6.37	5.73
149	Female	Animated	5.61	4.80	5.95	4.91
150	Female	Animated	6.25	5.69	6.06	5.83

## ## ## ## ##	•	gender Length:150 Class :characto Mode :characto	er Class:character	pre_trial_cpss Min. :2.490 1st Qu.:5.500 Median :6.077 Mean :6.063 3rd Qu.:6.657 Max. :8.630
## ## ## ## ## ##	post_trial_cpss Min. :0.480 1st Qu.:4.763 Median :5.460 Mean :5.364 3rd Qu.:6.117 Max. :7.910	Min. :2.970	post_trial_or Min. :0.250 1st Qu.:4.838 Median :5.355 Mean :5.357 3rd Qu.:6.140 Max. :7.730	

Graphs

density.default(x = patient_data\$pre_trial_cpss, na.rm = TRUE)

density.default(x = patient_data\$post_trial_cpss, na.rm = TRUE)

density.default(x = patient_data\$pre_trial_or, na.rm = TRUE)

density.default(x = patient_data\$post_trial_or, na.rm = TRUE)

Self Reported Data – Static CPSS

Self Reported Data – Control CPSS

Self Reported Data – Animated CPSS

Self Reported Data – Static OR

Self Reported Data – Control OR

Self Reported Data – Animated OR

Descriptive statistics

Static Pre trial cpss mean = 6.0616

Static Post trial cpss mean = 5.4424

Control Pre trial cpss mean = 5.9942685

Control Post trial cpss mean = 5.3302

Animated Pre trial cpss mean = 6.1344

Animated Post trial cpss mean = 5.32

Static Pre trial or mean = 6.0682

Static Post trial or mean = 5.4338

Control Pre trial or mean = 6.0798

Control Post trial or mean = 5.322

Animated Pre trial or mean = 6.196

Animated Post trial or mean = 5.3154

Inferential statistics

Statistical tests

A Shapiro-Wilk normality test was conducted on each of the data sets

```
pre trial CPSS data - 0.5579 post trial CPSS data - 0.0029 pre trial OR data - 0.9345 post trial OR data - 9 \times 10^{-4}
```

From the output obtained we can assume normality for the pre and post trial CPSS as the p-value is greater than 0.05 while the OR data fails this normality test.

95% confidence interval for pre trial CPSS = (5.8999085 , 6.2269371)

Magnitude and direction of results

Discussion

References

Help with getting mean of data while data is missing from column *Stack Overflow

Removing Na's by Column *GeeksforGeeks

How to Handle Missing Data in a Dataset *freeCodeCamp

How to Impute Missing Values in R? *GeeksforGeeks

First 10 entries in a bar plot *StackOverflow

Calculate confidence interval *Cyclismo