THREE-DIMENSIONAL TRANSFORMATIONS (Chapter 11 in *Computer Graphics*)

- Translation
- Scaling
- Rotation
- Rotation About an Arbitrary Axis
- Other Transformations
- Transformations of Coordinate Systems
- Transformations Commands

Translation

in three-dimensional homogeneous coordinate space,
 a point is translated from (x, y, z) to (x', y', z')

$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ Tx \ Ty \ Tz \ 1 \end{bmatrix}$$

• in three-dimensional homogeneous coordinate space, a object is translated by translating each vertex

$$[x'\ y'\ z'\ 1] = [x\ y\ z\ 1] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ & & & 1 \end{bmatrix}$$

Scaling

 in three-dimensional homogeneous coordinate space, an object is scaled relative to the origin of coordinates

$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \begin{bmatrix} Sx \ 0 & 0 & 0 \\ 0 & Sy \ 0 & 0 \\ 0 & 0 & Sz \ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- the scaling operation scales and translates objects relative to the coordinate origin
 - example (Sx = Sy = Sz = 2)

• the inverse scaling matrix

scaling relative to a fixed position

- translate the fixed point to the origin
- scale
- translate the fixed point back to its original position

$$T(-x_{\mathrm{F}}, -y_{\mathrm{F}}, -z_{\mathrm{F}}) \cdot S(Sx, Sy, Sz) \cdot T(x_{\mathrm{F}}, y_{\mathrm{F}}, z_{\mathrm{F}})$$

$$= \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ (1 - Sx)x_{F} & (1 - Sy)y_{F} & (1 - Sz)z_{F} & 1 \end{bmatrix}$$

Rotation

- designate an axis of rotation and an angle of rotation
- our convention: positive rotation is counterclockwise

rotation about the principal axes

• z-axis rotation

$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \begin{bmatrix} \cos\theta & \sin\theta & 0 \ 0 \\ -\sin\theta & \cos\theta & 0 \ 0 \\ 0 & 0 & 1 \ 0 \\ 0 & 0 & 0 \ 1 \end{bmatrix}$$

x-axis rotation

$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• y-axis rotation

$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \begin{bmatrix} \cos\theta \ 0 \ -\sin\theta \ 0 \\ 0 \ 1 \ 0 \ 0 \\ \sin\theta \ 0 \ \cos\theta \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

• inverse rotation matrices

rotation about an axis parallel to a principal axis

- translate the object so the rotation axis coincides with a principal axis
- rotate through the specified angle
- translate the object so the rotation axis returns to its original position

Rotate Object Through Angle θ

Translate Rotation Axis onto x axis

Translate Rotation Axis to Original Position

rotation about an arbitrary axis

- translate the object so the rotation axis passes through the origin of coordinates
- rotate the object so the rotation axis coincides with a principal axis
- rotate through the specified angle
- return the rotation axis to its original orientation
- return the rotation axis to its original position

rotation about an arbitrary axis, continued

• assume the axis of rotation is defined by two points

• translate the object so the rotation axis passes through the origin of coordinates

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -x_1 & -y_1 & -z_1 & 1 \end{bmatrix}$$

rotation about an arbitrary axis, continued

- rotate the object so the rotation axis coincides with the z axis
 - rotate about the x axis to place the rotation axis in the xz plane

 rotate about the y axis to align the rotation axis with the z axis

rotation about an arbitrary axis, continued

rotate through the specified angle about the z axis

$$Rz(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- return the rotation axis to its original orientation
- return the rotation axis to its original position
- concatenate transformations

$$R(\theta) = T \cdot Rx(\alpha) \cdot Ry(\beta) \cdot Rz(\theta) \cdot Ry^{-1}(\beta) \cdot Rx^{-1}(\alpha) \cdot T^{-1}$$

Other Transformations

- reflections
- shears
- transformations of coordinate systems

reflections

- about a specified plane
- example: conversion from a right-handed coordinate system to a left-handed coordinate system (or vice versa)

$$RFz = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 reflections about arbitrary planes are extensions of two-dimensional reflections about arbitrary lines

shears

- transform two of the three coordinate values of defined points
- example: z-axis shear (a = b = 1)

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
a & b & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

 effect: alter x- and y- coordinate values by an amount proportional to z, leaving z unchanged

Shears, continued

alter any coordinate value by an amount proportional to either or both of the other two coordinates

<u> </u>	Syxx	Szxx	0	٦
Sxxy Sxxz	1	Szxy	0	
Sxxz	Syxz	1	0	
0	0	0	1	

transformations of coordinate systems

- to build a scene, objects can be defined in one coordinate system and placed in a second coordinate system
- objects can be transformed relative to one coordinate system which is transformed relative to another coordinate system
- transform objects by mapping one set of coordinate axes onto the other
 - translate so the origins coincide
 - rotate to superimpose axes
 - scale as needed

example of multiple coordinate systems

- front wheel rotations are described in the front-wheel coordinate system
- the front-wheel coordinate system is described in the tractor coordinate system
- the tractor coordinate system is described in the world coordinate system

Transformation Commands

- simple extensions of two-dimensional commands
 - create transformation matrix
 - accumulate_transformation_matrix or
- provide separate functions
 - create translation matrix_3 (tx, ty, tz, t)
 - create scaling matrix 3 (sx, sy, sz, s)
 - create x rotation matrix 3 (a, rx)
 - create_y_rotation_matrix_3 (a, ry)
 - create z rotation matrix 3 (a, rz)
 - accumulate matrices 3 (m1, m2, m)
 - set_segment_transformation_3 (id, m)

THREE-DIMENSIONAL TRANSFORMATIONS

- Translation
- Scaling
- Rotation
- Rotation About an Arbitrary Axis
- Other Transformations
- Transformations of Coordinate Systems
- Transformations Commands