CSCI 341 Problem Set 5

From Nonregular Languages to Counter Automata

Due Friday, October 10

Don't forget to check the webspace for hints and additional context for each problem!

Pumping Lengths

Problem 1 (NOT THE Bs). Show that the following language is not regular.

$$L = \{a^n b^m \mid n \in \mathbb{N} \text{ and } n > m\}$$

Solution.

Context-free Grammars

Problem 2 (Balancing Act). Recall that a string of parentheses is *balanced* if every left parenthese (is eventually followed by a right parenthese). But things get more complicated when there are other alternatives to parentheses: what about square brackets? Or curly ones? If we take

$$A = \{(,),[,],\{,\},\langle,\rangle\}$$

then we say that a string of brackets $w \in A^*$ is *balanced* if every left bracket of a given type is eventually followed by a right bracket of the same type, without being interrupted by an unmatched right bracket of a different type. For example, these are all balanced:

 $\{()\}() \qquad [\qquad [()\langle()\rangle] \qquad [()\{()\}] \qquad (*)$

but these are not:

 $([)] \qquad \{()() \qquad] \qquad \langle [()()\rangle] \qquad [()\{(\})]$

Let $L \subseteq A^*$ be the language of balanced strings of brackets.

- (1) Write down a grammar $\mathcal{G}=(X,A,R)$ with a variable that generates L, i.e., for some $x\in X, \mathcal{L}(\mathcal{G},x)=L.$
- (2) Use your grammar to derive each of the words in (*).
- (3) Describe what prevents each of the words in (**) from being derivable from your grammar \mathcal{G} .

Solution. \Box

Problem 3 (Arithmetic is Not Regular). Prove that the language of arithmetic expressions $ArExp \subseteq A^*$, derived from E in the grammar $\mathcal{G} = (X, A, R)$ below

$$E \to N \mid (E+E) \mid (E \times E) \mid (E-E) \mid (E/E)$$

 $N \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid NN$

where the alphabet is

$$A = \{(,), +, \times, -, /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

is not regular.

Solution. \Box

Parse Trees

Problem 4 (Left on Your Own). Let \mathcal{G} be a grammar with a variable x, and let $w \in A^*$. Prove that if w has a derivation from x, then w has a left-most derivation from x.

Solution.

Counter Automata

Problem 5 (Cats > Dogs). Let $A = \{c, a, t, d, o, g\}$. Design an integer-counter automaton with a state x that accepts the language L_{cat} of all words $w \in A^*$ such that the string "cat" appears in w more times than "dog" appears in w.