

Phase 1: Foundational & Core Concepts (Months 1 & 2 Online)

Month 1: CNC Fundamentals & Manual G-Code/M-Code Programming

Core CNC Principles: Intro to machine components, coordinate systems, and basic cycles.

G-Code & M-Code Mastery: Manual programming for machine movements, spindle, and tool control.

Virtual Hands-on Practice: Skill development via online simulators like **GCodeTutor** and visualization tools like **NC Viewer**.

Month 2: Tool Path Generation, Simulation & Troubleshooting

Automated Tool Path (CAM): Using software like Fusion 360 to generate complex tool paths from CAD models.

Advanced Machining Simulation: G-code driven simulation to visualize tool movement and detect collisions with tools like CAMWorks, Siemens NX, and Vericut.

Troubleshooting & Optimization: Systematic approaches to diagnose and resolve issues found during simulation.

Month 1: CNC Fundamentals & Manual Programming

Week 1: Foundations & Safety

- Introduction to CNC machine anatomy and control systems.
- Understanding basic operational interfaces.
- Critical safety protocols and best practices in a CNC environment.

Meek 2: G-Code Motion Mastery

- In-depth study of G-Code for precise tool path control.
- Mastering linear (G01) and rapid (G00) movements.
- Introduction to circular interpolation (G02/G03) and feed rates (F-code).

Week 3: Advanced G-Code & Cycles

- Defining workplanes (G17-G19) and coordinate systems.
- Understanding unit selection and essential tool compensations.

<>> Week 4: M-Code & Program Build

Understanding M-Code for machine auxiliary functions (spindle, coolant).

G-Code & M-Code Programming Essentials

Understanding G-Codes

Motion Control

G00: Rapid Traverse (Non-cutting).

G01: Linear Interpolation (Cutting).

G02/G03: Circular Interpolation.

Offsets & Workplanes

G17-19: Workplane Selection.

G40-42: Cutter Compensation.

G43: Tool Length Compensation.

Canned Cycles

G81: Basic Drilling Cycle.

G83: Peck Drilling Cycle.

G84: Tapping Cycle.

Mastering M-Codes

Spindle Control

M03: Spindle ON Clockwise.

M04: Spindle ON Counter-Clockwise.

M05: Spindle OFF.

Program Control

M00: Program Stop (Unconditional).

M01: Optional Program Stop.

M30: Program End and Reset.

Coolant Control

MOS: Coolant ON.

MO9: Coolant OFF.

CNC Program Structure

O-Numbers

Unique program ID (e.g., 01234).

Placed at the beginning of a program for identification.

N-Blocks

Sequence numbers (e.g., N10, N20).

Used for block identification, program jumps, and easier debugging.

Subroutines

M98: Call Subprogram.

M99: Return from Subprogram.

Enables modular programming for repetitive tasks.

Practical Application: Writing & Simulating CNC Programs

1 2: Tor 6

en/

a tio

emova.

-tuning ace finisl

CAM Integration & Tool Path Optimization

Introduction to CAM Software

Role: The essential bridge from CAD to CNC, translating designs into machine-readable G-code.

Interface: Define strategies and simulate processes in platforms

like Fusion 360, Mastercam, and Siemens NX.

2.5D & 3D Milling Operations

2.5D Operations: For prismatic parts, including Facing, Pocketing, and Contouring.

3D Operations: For complex surfaces, using advanced strategies like Adaptive Clearing for high-speed roughing.

Tool Selection, Feeds & Speeds

Tooling: Selection is based on material, operation, and desired finish (e.g., carbide end mills, ball nose cutters).

Feeds & Speeds: Critical parameters that balance cutting speed and tool movement, unique to each material and tool combination.

Optimization Strategies

Simulation, Verification & Troubleshooting

Importance of Simulation

Collision Prevention: Digitally detect potential crashes between tool, workpiece, and fixtures to prevent costly machine damage.

Tool Path Verification: Validate G-code to ensure accurate material removal and "error-free machining."

🥻 Sim

Simulation Techniques

Backplotting: Basic visual representation of tool movements from the G-code program.

Solid Verification: Advanced 3D simulation showing precise material removal and component interaction.

Identifying Common Errors

Syntax errors in code, physical collisions, and tool breakage from incorrect parameters.

Troubleshooting Basics

Phase 2: Industry Immersion & Integrated Project (Month 3 Offline)

This phase marks a pivotal transition, moving from virtual simulations to tangible, hands-on experience. Learners will immerse themselves in a real CNC workshop environment, applying previously acquired theoretical knowledge and digital skills to actual machinery.

Month 3: CNC Machine Setup & Operation

- Physical Machine Orientation: Direct interaction with industrial-grade CNC machines. Understanding physical components, control panels, and critical safety features.
- **Setup Procedures:** Practical training on machine calibration, precise workpiece fixturing, correct tool loading, and accurate offset settings.
- Operational Proficiency: Step-by-step guidance on running

Integrated Mini Project: Component Machining

- Project-Based Learning: Direct application of theoretical knowledge and simulation skills in a tangible, real-world machining project.
- Simple Component Machining: Undertake the entire process of machining a simple component, including program loading and first article inspection.
- **Real-World Problem-Solving:** Encounter and troubleshoot

Contract of the Contract of t

Practical Application

Real-World Skills

Month 3: CNC Machine Setup & Operation

Workholding: Hands-on training with vises, clamps, and fixtures for rigidity.

Tooling Management: Practical selection, inspection, and loading of cutting tools.

Machine Preparation: Homing axes and ensuring a safe work envelope.

Setting Offsets: Defining workpiece origins (G54) and tool length compensation.

Program Verification: Performing dry runs and single-block checks for safety.

Running & Monitoring: Initiating cycles and

Practical Machine Setup & Safe Operation

1. Machine Familiarization

Control Panel Navigation: Understand the layout and functions of the CNC control panel, including emergency stops, mode selectors, and axis jogging controls.

Manual Movements: Practice safe manual operation of machine axes (X, Y, Z) to gain a direct tactile understanding of the machine's response.

Spindle Operations: Learn to safely start, stop, and control spindle speed, which is critical for tool engagement and material removal.

2. Workholding & Tooling

Workholding Devices: Train on selecting and using devices like vises , clamps , and chucks securely.

3. WCS Setting

Precision Tools: Use edge finders, dial indicators, and touch probes to accurately define workpiece origins like G54 .

Temporary Offsets: Understand and apply the command for temporary coordinate system shifts for specific operations.

4. Program Loading & Verification

Program Loading: Safely transfer G-code programs from external sources (USB, network) to the CNC control unit.

O Verification Methods: Perform Dry Runs (air

Mini Project: From Code to Component

1. Detailed Project Planning

Design & Material Translating requirements into a manufacturable design and selecting appropriate materials.

Strategy Defining machining operations, tool paths, and workholding strategies.

Safety Integrating comprehensive safety considerations into every step of the plan.

2. Machine Preparation

Mounting Securely loading the raw material onto the workholding device.

Tooling Accurately loading cutting tools and verifying their integrity.

Offsets Precisely setting workpiece (G54) and tool length/diameter offsets.

Career Launchpad & Program

This final phase consolidates learning, quirophing the sotin career development tools, and celebrates

their achievements, ensuring a seamless transition into the industry.

Empowering Your Career Journey

Resume & Portfolio Building

Craft compelling resumes for CNC roles. Develop a robust portfolio

showcasing projects, technical skills, and practical applications.

LinkedIn Optimization &

Networki ngedIn profile for the manufacturing sector. Learn

effective networking strategies to connect with professionals.

Mock Interviews: Technical &

Beltaviora ews covering technical and behavioral questions.

Receive constructive feedback to build confidence.

Networking Session with

Engage directly with leading experts and companies, creating

valuable platform for interaction and career opportunities.

Program Culmination

Recognition Project Debrief & Troubleshooting

Analysis

A comprehensive review of the mini-project. Analyze challenges,

solutions, and troubleshooting methodologies applied.

Graduation Ceremony & Certification

A formal ceremony to celebrate success. Receive official certification validating your proficiency in CNC programming and

operation.