Shcheniayev
DA 15022025-091215

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10¹, а крутизна характеристики фазового детектора равна 1 В/рад. Частота колебаний опорного генератора (ОГ) 310 МГц. Частота колебаний ГУН 1650 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 2.5 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 876 кГц на 6.1 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики управления частотой ГУН?

Рисунок 1 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 0.13 В/рад
- 2) 0.22 В/рад
- 3) 0.31 В/рад
- 4) 0.40 В/рад
- 5) 0.49 В/рад
- 6) 0.58 В/рад
- 7) 0.67 В/рад
- 8) 0.76 В/рад
- 9) 0.85 В/рад

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 60 МГц. Частота колебаний ГУН 4380 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 52.7 дБн/Гц для ОГ и плюс 24.6 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=0.31341,\ \tau=748.8939$ мкс.

Крутизна характеристики управления частотой ГУН равна 2 МГц/В. Крутизна характеристики фазового детектора 1.1 В/рад.

Рисунок 2 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 4 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на плюс 2.3 дБ
- 2) на плюс 1.9 дБ
- 3) на плюс 1.5 дБ
- 4) на плюс 1.1 дБ
- 5) на плюс 0.7 дБ
- 6) на плюс 0.3 дБ
- 7) на минус 0.1 дБ
- 8) на минус 0.5 дБ
- 9) на минус 0.9дБ

Источник колебаний с доступной мощностью -4.2 дБм и частотой 1040 М Γ ц имеет равномерную спектральную плотность мощности фазового шума равную минус 92 дБн/ Γ ц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 1039.9991 М Γ ц, если спектральная плотность мощности его собственных шумов равна минус 98 дБм/ Γ ц, а полоса пропускания Π Ч установлена в положение 100 Γ ц?

- 1) -65.5 дБм
- 2) -67.2 дБм
- 3) -68.9 дБм
- 4) -70.6 дБм
- 5) -72.3 дБм
- 6) -74 дБм
- 7) -75.7 дБм
- 8) -77.4 дБм
- 9) -79.1 дБм

Источник колебаний с частотой 980 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 166 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1500 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 20 Гц, если с доступная мощность на выходе усилителя равна -4.3 дБм? Варианты ОТВЕТА:

- 1) -163 дБн/Гц
- 2) -163.5 дБн/Гц
- 3) -164 дБн/Гц
- 4) -164.5 дБн/Гц
- 5) -165 дБн/Гц
- 6) -165.5 дБн/Гц
- 7) -166 дБн/Гц
- 8) -166.5 дБн/Гц
- 9) -167 дБн/Гц

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту $1460~\mathrm{M}\Gamma$ ц и спектральную плотность мощности фазового шума на отстройке $100~\mathrm{k}\Gamma$ ц минус $116~\mathrm{д}\mathrm{Брад}^2/\Gamma$ ц . Спектральная плотность мощности фазового шума на отстройке $100~\mathrm{k}\Gamma$ ц второго колебания равна минус $114~\mathrm{д}\mathrm{Бh}/\Gamma$ ц, а частота его равна $2600~\mathrm{M}\Gamma$ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке $100~\mathrm{k}\Gamma$ ц при описанном выше некогерентном синтезе?

- 1) -124.2 дБн/Гц
- 2) -121.1 дБн/Гц
- 3) -118.7 дБн/Гц
- 4) -118.1 дБн/Гц
- 5) -115.8 дБн/Гц
- 6) -115.7 дБн/Гц
- 7) -113.1 дБн/Гц
- 8) -112.8 дБн/Гц
- 9) -112.6 дБн/Гц

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 7.755 к Γ ц меньше на 2.8 дB, чем вклад Γ УН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ меньше на 3.2 дB, чем вклад Γ УН. Известно, что C=5.97 н Φ , а $R_1=4138$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- 1) $971 \, \text{OM}$
- 2) 1228 O_M
- $3)1485 \, \mathrm{OM}$
- 4) $1742 \, \text{Om}$
- 5) 1999 Ом
- 6) 2256 O_M
- 7) 2513 O_M
- 8) $2770 \, \text{OM}$
- 9) $3027 \, \text{OM}$