

Sistemas lógicos I

1º Semestre 2021/2022

Máquina de estados síncrona

09/01/2022

Turno: P11

Elementos do grupo

- David da Ponte Morgadinho Mendes 63718
- Duarte Miguel Corraleira Pereira 62446
- Tiago Capelo Monteiro 63368

© 2021, DEE/FCT/UNL Página 1 de 24

Contents Sistemas lógicos I....

Sistemas logicos I	1
Introdução	3
Diagrama de estados	4
Tabelas de excitação	5
Tabela de Transição de Estados e entradas dos Flip-flops	6
Mapas de Karnaugh expressões simplificadas das saídas	7
D0	7
D1	8
D2	9
J0	10
K0	11
J1	12
K1	13
J2	14
K2	15
Circuitos	16
Circuito com flip flop JK	16
Circuito com flip flop D	17
Funções de saída	18
F1 - Lógica combinatória - 62446	18
F2 - Descodificadores - 63368	19
F3 - Multiplexers - 63718	21
Conclusão e observações	24

Introdução

No âmbito do estudo de Sistemas Digitais, tivemos como objetivo fazer uma máquina de estados síncrona com sete estados (Q2Q1Q0) e duas variáveis de entrada (X1X0) que permita gerar três saídas que controlam alarmes.

Em seguida segue-se a descrição de cada capítulo.

No capítulo 2, explica-se o raciocínio por trás da construção do nosso diagrama de estados e a sua descrição.

No capítulo 3, 4, 5 e 6 apresenta-se a descrição detalhada dos vários módulos do projeto, respectivamente: as tabelas de estados e transições, os mapas de Karnaugh e as expressões simplificadas das saídas, os desenhos dos circuitos, as tabelas de excitação para os FF JK e FF D e as funções de saída.

No capítulo 7 encontra-se a implementação do Java Breadboard.

No capítulo 8, são discutidas as conclusões sobre o trabalho, respetivamente: o grau de cumprimento dos objetivos e problemas que foram identificados e corrigidos.

© 2021, DEE/FCT/UNL Página 3 de 24

Diagrama de estados

A máquina de estados foi definida com uma sequência criada através dos dígitos que compõem os números dos três elementos do grupo (62446, 63368, 63718), sendo que esta inicia e termina no estado 0, e são desprezados todos os dígitos superiores a 7.

Sempre que um estado se repete considera-se que existe um incremento nas entradas (X1X0). No caso de um dígito se repetir mais do que quatro vezes considera-se o dígito seguinte. A máquina de estados foi implementada em FF D e FF JK.

© 2021, DEE/FCT/UNL Página 4 de 24

Tabelas de excitação

Tabela excitação D						
Qn	Qn+1	D				
0	0	0				
0	1	1				
1	0	0				
1	1	1				

Tabela excitação JK						
Qn	Qn+1	J	K			
0	0	0	х			
0	1	1	х			
1	0	x	1			
1	1	x	0			

© 2021, DEE/FCT/UNL Página 5 de 24

Tabela de Transição de Estados e entradas dos Flip-flops

X1	XO	Q2	Q1	Q0	Q2+t	Q1+t	Q0+t	D2	D1	os Flip-flop D0	J2	K2	J1	K1	JO	ко
0	0	0	0	0	1	1	0	1	1	0	1	X	1	X	0	X
0	0	0	0	1	1	1	0	1	1	0	1	X	1	x	x	1
0	0	0	1	0	1	0	0	1	0	0	1	x	x	1	0	X
0	0	0	1	1	1	1	1	1	1	1	1	x	x	0	x	0
0	0	1	0	0	1	0	0	1	0	0	x	0	0	x	0	x
0	0	1	0	1	x	x	x	×	x	x	×	x	x	x	x	x
0	0	1	1	0	0	1	1	0	1	1	x	1	x	0	1	X
0	0	1	1	1	0	0	1	0	0	1	x	1	x	1	×	0
0	1	0	0	0	x	x	x	x	x	x	x	x	x	x	x	x
0	1	0	0	1	x	x	X	x	x	x	x	x	x	x	x	X
0	1	0	1	0	x	x	x	x	x	x	×	x	x	x	x	X
0	1	0	1	1	0	1	1	0	1	1	0	x	x	0	x	0
0	1	1	0	0	1	1	0	1	1	0	×	0	1	x	0	X
0	1	1	0	1	X	X	X	x	X	x	x	X	x	x	x	X
0	1	1	1	0	0	1	0	0	1	0	x	1	x	0	0	x
0	1	1	1	1	x	x	x	x	x	x	x	X	x	x	x	X
1	0	0	0	0	x	x	x	x	x	x	x	x	x	x	x	х
1	0	0	0	1	x	x	X	x	x	x	x	X	x	X	x	х
1	0	0	1	0	X	X	X	x	X	X	x	X	x	X	x	x
1	0	0	1	1	1	1	1	1	1	1	1	x	x	0	x	0
1	0	1	0	0	x	X	X	x	X	x	x	X	x	X	x	x
1	0	1	0	1	x	x	X	x	x	x	x	X	x	x	x	X
1	0	1	1	0	1	1	0	1	1	0	×	0	x	0	0	х
1	0	1	1	1	x	X	X	x	X	x	x	X	x	x	x	х
1	1	0	0	0	x	x	x	×	x	x	×	x	x	x	x	х
1	1	0	0	1	x	x	X	x	x	x	×	x	x	x	x	X
1	1	0	1	0	x	x	x	x	x	x	x	x	x	x	x	х
1	1	0	1	1	x	x	X	x	x	x	x	X	x	X	x	X
1	1	1	0	0	x	x	X	x	X	X	x	X	x	X	x	X
1	1	1	0	1	x	x	x	x	x	x	×	x	x	x	x	х
1	1	1	1	0	0	1	1	0	1	1	x	1	x	0	1	X
1	1	1	1	1	X	X	X	x	X	x	x	X	x	X	x	х

© 2021, DEE/FCT/UNL Página 6 de 24

Mapas de Karnaugh expressões simplificadas das saídas

D0

Mapa de karnaugh

D0	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	0	0	1	0
X1'.X0'.Q2	0	X	1	1
X1'.X0.Q2	0	X	X	0
X1'.X0.Q2'	X	X	1	х
X1.X0'.Q2'	X	X	1	Х
X1.X0'.Q2	X	X	X	1
X1.X0.Q2	X	X	X	1
X1.X0.Q2'	X	X	X	х

$$D_0 = X_1 + Q_1 Q_0 + \underline{X_0} Q_2 Q_1$$

D1

Mapa de karnaugh

D1	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	1	1	1	0
X1'.X0'.Q2	0	X	0	1
X1'.X0.Q2	1	X	X	1
X1'.X0.Q2'	X	X	1	X
X1.X0'.Q2'	х	X	1	X
X1.X0'.Q2	X	X	X	1
X1.X0.Q2	X	X	X	1
X1.X0.Q2'	X	X	X	X

$$D_1 = \underline{X_0} + \underline{Q_2Q_1} + \underline{Q_2}Q_0 + Q_2Q_1\underline{Q_0}$$

D2

Mapa de karnaugh

D2	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	1	1	1	1
X1'.X0'.Q2	1	X	0	0
X1'.X0.Q2	1	X	X	0
X1'.X0.Q2'	X	X	0	х
X1.X0'.Q2'	X	X	1	Х
X1.X0'.Q2	X	X	X	1
X1.X0.Q2	X	X	X	0
X1.X0.Q2'	x	x	x	Х

$$D_2 = \underline{Q_1} + \underline{X_0} \, \underline{Q_2} + X_1 \underline{X_0}$$

J0

Mapa de karnaugh

JO	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	0	X	X	0
X1'.X0'.Q2	0	X	X	1
X1'.X0.Q2	0	X	X	0
X1'.X0.Q2'	X	X	X	X
X1.X0'.Q2'	X	X	X	X
X1.X0'.Q2	X	X	X	0
X1.X0.Q2	X	X	X	1
X1.X0.Q2'	X	X	X	X

$$J_0 = X_1 X_0 + \underline{X_1} \, \underline{X_0} \, Q_2 \, Q_1$$

K0

Mapa de karnaugh

КО	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	X	1	0	Х
X1'.X0'.Q2	X	X	0	X
X1'.X0.Q2	X	X	X	X
X1'.X0.Q2'	X	X	0	X
X1.X0'.Q2'	X	X	0	X
X1.X0'.Q2	X	X	X	X
X1.X0.Q2	X	X	X	X
X1.X0.Q2'	X	X	X	X

$$K_0 = \underline{Q_1}$$

J1

Mapa de karnaugh

J1	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	1	1	X	Х
X1'.X0'.Q2	0	X	X	Х
X1'.X0.Q2	1	X	X	Х
X1'.X0.Q2'	X	X	X	Х
X1.X0'.Q2'	X	X	X	Х
X1.X0'.Q2	X	X	X	Х
X1.X0.Q2	X	X	X	Х
X1.X0.Q2'	Х	X	X	х

$$J_1 = \underline{Q_2} + X_0$$

K1

Mapa de karnaugh

K1	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	X	X	0	1
X1'.X0'.Q2	X	X	1	0
X1'.X0.Q2	X	X	X	0
X1'.X0.Q2'	X	X	0	X
X1.X0'.Q2'	x	X	0	X
X1.X0'.Q2	X	X	X	0
X1.X0.Q2	x	X	X	0
X1.X0.Q2'	x	X	X	X

$$K_1 = \underline{Q_2} \, \underline{Q_0} + Q_2 Q_0$$

J2

Mapa de karnaugh

J2	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	1	1	1	1
X1'.X0'.Q2	X	X	X	Х
X1'.X0.Q2	X	X	X	Х
X1'.X0.Q2'	X	X	0	Х
X1.X0'.Q2'	X	X	1	Х
X1.X0'.Q2	X	X	X	1
X1.X0.Q2	X	X	X	Х
X1.X0.Q2'	X	X	X	Х

$$J_2 = \underline{X_0}$$

K2

Mapa de karnaugh

K2	Q1'.Q0'	Q1'.Q0	Q1.Q0	Q1.Q0'
X1'.X0'.Q2'	X	X	X	X
X1'.X0'.Q2	0	X	1	1
X1'.X0.Q2	0	X	X	1
X1'.X0.Q2'	x	X	X	X
X1.X0'.Q2'	x	X	X	X
X1.X0'.Q2	x	X	X	0
X1.X0.Q2	x	X	X	1
X1.X0.Q2'	X	X	X	X

$$K_2 = \underline{X_1}Q_1 + X_0Q_1 = Q_1(\underline{X_1} + X_0)$$

Circuitos

Circuito com flip flop JK

$$J_2 = \underline{X_0}$$

$$K_2 = Q_1(\underline{X_1} + X_0)$$

$$J_1 = \underline{Q_2} + X_0$$

$$K_1 = \underline{Q_2} \, \underline{Q_0} + Q_2 Q_0 \blacksquare$$

$$J_0 = X_1 X_0 + \underline{X_1} \underline{X_0} Q_2 Q_1$$
$$K_0 = \underline{Q_1}$$

Circuito com flip flop D

$$D_{2} = \underline{Q_{1}} + \underline{X_{0}} \, \underline{Q_{2}} + X_{1} \underline{X_{0}}$$

$$D_{1} = \underline{X_{0}} + \underline{Q_{2}Q_{1}} + \underline{Q_{2}Q_{0}} + Q_{2}Q_{1} \underline{Q_{0}}$$

$$D_{0} = X_{1} + Q_{1}Q_{0} + \underline{X_{0}}Q_{2}Q_{1}$$

Funções de saída

Funções de alarme:

Em três dos outputs da máquina de estados, são implementadas funções de alarme obtidas, mais uma vez, através dos números de alunos.

F1 - Lógica combinatória - 62446

Q2	Q1	Q0	F1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

F1 é descrita com o menor número de aluno (62446), sendo que cada dígito descreve a função na primeira forma canônica, ou seja, no nosso caso, fica ativa nas posições 2,4 e 6, e foi implementada com lógica combinatória.

© 2021, DEE/FCT/UNL Página 18 de 24

F2 - Descodificadores - 63368

Q2	Q1	Q0	F2
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

F2 é descrita com o número de aluno do meio (63368) em que cada dígito descreve a função na segunda forma canónica, isto é, no nosso caso, está desativada em 0, 1, 2, 4, 7, e foi implementada com descodificadores de 3, 2 e 1 entradas de selecção.

F3 - Multiplexers - 63718

Tabela de verdade do multiplexer					
Q2	Q1	Q0	F2		
0	0	0	0		
0	0	1	х		
0	1	0	0		
0	1	1	х		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	х		

© 2021, DEE/FCT/UNL Página 21 de 24

F3 é descrita com o maior número de aluno (63718) em que a função está ativa nos dígitos pares e don't care nos ímpares, ou seja, no nosso caso, está ativa em 6, e

têm don't care em 1, 3, e 7, e foi implementada com multiplexers de 3, 2 e 1 entrada(s) de seleção.

Conclusão e observações

Durante a realização deste trabalho aplicaram-se os conhecimentos adquiridos nas aulas teóricas e práticas contribuindo para uma maior taxa de sucesso na sua realização.

O conteúdo neste relatório está apresentado de uma maneira clara e organizada de forma a tornar a sua visualização o mais facilitada possível.

No decorrer do projeto surgiram problemas relativos à sua implementação, respetivamente:

- o manuseamento do Java Breadboard no que diz respeito ao funcionamento do circuito na sua totalidade.

© 2021, DEE/FCT/UNL Página 24 de 24