

TECHNICAL REPORT NO. 501

A FINITE DIFFERENCE METHOD SOLUTION
OF NON-SIMILAR, EQUILIBRIUM
AND NON-EQUILIBRIUM AIR,
BOUNDARY LAYER EQUATIONS
WITH LAMINAR AND TURBULENT
VISCOSITY MODELS

PART II: COMPUTER PROGRAM
AND SUPPLEMENT

(FINAL REPORT)

By H. E. Gould
L. S. Galowin

February 2, 1965

GENERAL APPLIED SCIENCE LABORATORIES, INC.
MERRICK and STEWART AVENUES WESTBURY, L.I., N.Y. (516) ED 3-6960

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Project 8010/1210

Total No. of Pages - viii & 149

Copy No. (26) of 125

TECHNICAL REPORT NO. 501

A FINITE DIFFERENCE METHOD SOLUTION OF NON-SIMILAR,
EQUILIBRIUM AND NON-EQUILIBRIUM AIR, BOUNDARY LAYER EQUATIONS
WITH LAMINAR AND TURBULENT VISCOSITY MODELS*

PART II: COMPUTER PROGRAM AND SUPPLEMENT

(FINAL REPORT)

By H. E. Gould
L. S. Galowin

Prepared for
Advanced Research Projects Agency
Washington 25, D. C.

Under Contract SD-149
ARPA Order No. 396
Project Code 3790

Project Engineer - W. Daskin
Code 516 - ED 3-6960

Prepared by
General Applied Science Laboratories, Inc.
Merrick and Stewart Avenues
Westbury, L. I., New York

February 2, 1965

Approved by:

Antonio Ferri
President

* This research is sponsored by the
Advanced Research Projects Agency

SUMMARY

This report describes a program for the numerical solution by an explicit finite difference technique of the momentum, species conservation, and energy equations for an equilibrium or chemically reacting air boundary layer. Laminar and several turbulent viscosity models can be applied through the thickness of the boundary layer. Seven air species are included: O_2 , O , N_2 , N , NO , NO^+ and e^- .

Laminar and turbulent effects in any of the equations can be selectively controlled by input indicators. The various viscosity models can be applied to the entire thickness of the boundary layer or the boundary layer can be divided into two segments and different viscosity models applied to each segment. Provision has also been made for boundary layer swallowing of new inviscid streamlines. Properties along the inviscid streamline are computed to establish the varying streamwise outer edge conditions.

TABLE OF CONTENTS

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
I	INTRODUCTION	1
II	BOUNDARY LAYER EQUATIONS	4
	A. Coordinate Systems	4
	1. Overall	4
	2. Physical	4
	3. Body and von Mises stream function	4
	4. Inviscid streamlines	5
	B. Momentum Equation	6
	1. Analytic form	6
	2. Finite difference form	6
	3. Shear stress difference	7
	4. Viscosity models	7
	a. Laminar	7
	b. Turbulent	7
	i. Law of the wall - dimensional coordinate, y	8
	ii. Law of the wake - dimensional coordinate, y_e	8
	iii. Laminar contribution	9
	iv. Eddy viscosity fit dimensional coordinate, y	9
	v. Law of the wall - streamline coordinate, Ψ	10
	vi. Law of the wake - streamline coordinate, Ψ_e	11
	vii. Eddy viscosity fit streamline coordinate, Ψ	11

TABLE OF CONTENTS (Contd)

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
5.	Boundary layer swallowing and expansion of the boundary layer	12
6.	Boundary conditions	12
a.	Initial distributions	12
b.	Inner value at the wall	12
c.	Outer edge	12
d.	Inviscid streamlines	13
C.	Species Equation	13
1.	Analytic form	13
2.	Finite difference form	13
3.	Species diffusion terms	14
4.	Chemistry production terms	14
a.	Formulation	14
b.	Program control through input	18
5.	Equilibrium mass action laws	18
6.	Boundary layer swallowing and expansion of the boundary layer	21
7.	Boundary conditions	22
a.	Initial distributions	22
b.	Wall	22
c.	Outer edge	22
d.	Inviscid streamlines	23

TABLE OF CONTENTS (Contd)

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
D.	Energy Equation	23
1.	Analytic form	23
2.	Finite difference form	23
3.	Difference of enthalpy-kinetic energy terms, \mathcal{E}^H	24
4.	Energy transport due to species gradients, \mathcal{E}^C	27
5.	Boundary layer swallowing and expansion of the boundary layer	28
6.	Boundary conditions	28
a.	Initial distributions	28
b.	Wall	28
c.	Outer edge	28
III	INVISCID FLOW EQUATIONS	29
A.	Governing Equations for One-Dimensional Streamlines	29
1.	Momentum	29
2.	Species	29
3.	Energy	29
B.	Tracing the streamline from the shock	29
1.	Intersection of streamline and shock	29
2.	Conditions downstream of the shock	31

TABLE OF CONTENTS (Contd)

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
	a. Input	31
	b. Program set	31
	c. Program calculated	31
	d. Output	32
	3. Completion of streamline calculation	32
IV	INPUTS	33
	A. Body Geometry	33
	1. Classification	33
	2. Subsequent geometric regions	34
	3. Calculation of radius of the body and the zeta coordinates	34
	B. Shock Geometry	35
	1. Description of the shock	35
	2. Shock input	36
	3. Optional parabolic form	36
	4. Determination of zeta coordinates and analytic coefficients	36
	C. Pressure Distribution	39
	1. Cosine (Newtonian)	39
	2. Polynomial	39
	3. Hyperbolic	39
	D. Input Definitions, Card Formats and Symbols	40

TABLE OF CONTENTS (Contd)

<u>SECTION</u>	<u>TITLE</u>	<u>PAGE</u>
V	PROGRAM FEATURES	46
	A. Step Size Control	46
	1. Ψ direction	46
	2. x direction	46
	B. Stability Control	47
	C. Conversion from Physical to Streamline Coordinates	48
	D. Continuation Procedure	48
	E. Output Control	49
	F. Streamline Control	49
	G. Sense Switch Control	49
	H. Additional Programming Logic	50
	1. Momentum equation	50
	2. Species equation	51
	3. Enthalpy equation	52
VI	PROGRAMMED STOPS AND PAUSES	53
VII	OPERATING PROCEDURE	54
	A. Original Run	54
	B. Continuation Run	54

APPENDICES

<u>APPENDIX</u>	<u>TITLE</u>	<u>PAGE</u>
1	DIMENSIONS OF VARIABLES	1-1
	A. Momentum Equation	1-1
	B. Species Equation	1-3
	C. Energy Equation	1-5
2	PROGRAM - Source Language	2-1
3	OVERALL PROGRAM LOGIC DIAGRAM	3-1
4	SAMPLE INPUT	4-1
5	SAMPLE OUTPUT	5-1

TECHNICAL REPORT NO. 501

A FINITE DIFFERENCE METHOD SOLUTION OF NON-SIMILAR,
EQUILIBRIUM AND NON-EQUILIBRIUM AIR, BOUNDARY LAYER EQUATIONS
WITH LAMINAR AND TURBULENT VISCOSITY MODELS
PART II: COMPUTER PROGRAM AND SUPPLEMENT
(FINAL REPORT)

By H. E. Gould
L. S. Galowin

I. INTRODUCTION

This program is written in FORTRAN II language for the IBM 7090-4. It solves the non-equilibrium and equilibrium air boundary layer conservation equations for momentum, energy and species mass fractions. These parabolic partial differential equations are solved in the domain defined by the body surface and the inviscid edge of the boundary layer. The technique of solution is an explicit finite difference method. The boundary conditions at the body are specified as input data but those at the inviscid outer edge are not known a priori and are therefore computed as the calculation progresses. Edge conditions are determined from the solution of ordinary differential equations

which yield the velocity and species along an approximate inviscid streamline from the shock to the body station of interest. Initial conditions to start the problem require the distributions of the dependent variables of velocity, total enthalpy, and species mass fractions.

A number of significant capabilities are provided by the program. The multicomponent air species considered are O_2 , O, N_2 , N, NO, NO^+ and e^- . Laminar and several turbulent viscosity representations may be optionally selected for the diffusional transport terms applied to any of the partial differential equations. The boundary layer thickness can be divided into two segments and different viscosity models applied to each of the segments. Various two-dimensional or axisymmetric body geometrical configurations are possible. Similarly, shock shapes consisting of conical and parabolic segments are acceptable. Input tolerances upon the slope at the outer edge of the enthalpy, velocity or species profiles govern the boundary layer swallowing which results from the growth of the viscous layer into the inviscid flow.

The program described herein is based upon the analysis reported in Part I. The engineering definitions and the preparation of input data for application of the program to given boundary

layer problems are discussed in the Part III manual.

Typical hypersonic reentry body configurations have been investigated. Computer time required for their solution ranges from 3/4 to 4 hours, depending on body length, altitude, free stream velocities and mode of computation.

II. BOUNDARY LAYER EQUATIONS

In this section the explicit finite difference method solution of the boundary layer conservation equations is described.

A. Coordinate Systems

The program continuously calculates in four different coordinate systems. Thus for the permissible body and shock geometry configurations, the following systems shown in the sketch below are defined:

1. Overall - a basic reference system designated as ζ_1, ζ_2 . The units of these coordinates are feet.
2. Physical - an x-y system where x, in feet, is along the body and y, in feet, is normal to the body.
3. Body and von Mises stream function - an x- Ψ system in which the finite difference solutions will be solved, where x, in feet, is along the body and Ψ is the transformed normal coordinate and represents the stream function defined by $\Psi = \int_0^y \rho u r^\epsilon dy$. For $\epsilon = 1$, Ψ is in slugs/sec; for $\epsilon = 0$, Ψ is in slugs/ft-secs. The sketch below shows the grid in the x- Ψ plane with the paths of the numerical step indicated.

4. Inviscid streamline - a fourth system is a one-dimensional coordinate, s , along the (approximate inviscid) streamline. The origin of this coordinate system is the shock streamtube intersection point.

Coordinate Systems for a Blunt Body

Finite Difference Grid

B. Momentum Equation

1. Analytic form

$$\frac{\partial u}{\partial x} = - \frac{1}{\rho u} \frac{dp}{dx} + r^\epsilon \frac{\partial \tau}{\partial \Psi}$$

$$\tau = \mu \frac{\partial u}{\partial \Psi} \rho u r^\epsilon$$

2. Finite difference form

$$u_{m+1,n} = u_{m,n} - \frac{\Delta x}{\rho_{m,n} u_{m,n}} \left(\frac{dp}{dx} \right)_m + \frac{\Delta x}{\Delta \Psi} r_m^\epsilon \left(\tau_{m,n+1/2} - \tau_{m,n-1/2} \right)$$

Note: Near the wall a series solution has been assumed since $u \rightarrow 0$. The expressions used are:

$$u = a_1 \Psi^{\frac{1}{2}} + b_1 \Psi$$

$$c_i = c_{i_w} + a_{i_2} \Psi^{\frac{1}{2}} + b_{i_2} \Psi$$

$$H = H_w + a_3 \Psi^{\frac{1}{2}} + b_3 \Psi$$

$$\rho u = a_4 \Psi^{\frac{1}{2}} + b_4 \Psi$$

Using the variables evaluated at $\Delta \Psi$ and $2\Delta \Psi$, the a_n 's and b_n 's are determined. Thus from the series solution the values at $\frac{\Delta \Psi}{2}$ required in the

finite difference solution of the momentum, species and energy equations are then evaluated.

3. The difference in shear stress

$$\Delta\tau = \left[\frac{(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n}}{2} \right] \left[\frac{A_1^L (\mu_{m,n+1}^L + \mu_{m,n}^L)}{2} + A_1^T \frac{\mu_{m,n+1/2}^T}{\Delta\psi} \right] \left[\frac{u_{m,n+1} - u_{m,n}}{\Delta\psi} \right]$$

$$- \left[\frac{(\rho u r^\epsilon)_{m,n} + (\rho u r^\epsilon)_{m,n-1}}{2} \right] \left[\frac{A_1^L (\mu_{m,n}^L + \mu_{m,n-1}^L)}{2} + A_1^T \frac{\mu_{m,n-1/2}^T}{\Delta\psi} \right] \left[\frac{u_{m,n} - u_{m,n-1}}{\Delta\psi} \right]$$

4. Viscosity models

a. Laminar $\mu_{m,n}^L = \frac{3.04566 \times 10^{-8} T_{m,n}^{1.5}}{110.333 + T_{m,n}}$

b. Turbulent $\bar{\mu}^T = B_1^T \mu^{T1} + B_2^T \mu^{T2} + B_3^T \mu^{T3} + B_4^T \mu^{T4}$

$+ B_5^T \mu^{T5} + B_6^T \mu^{T6} + B_7^T \mu^{T7}$ where the B's are input coefficients and the μ^{Ti} are defined as follows:

i. Law of the wall - dimensional coordinate, y

$$\mu_{m,n+1/2}^{T1} = \left\{ Y_{m,n} + \Delta\Psi \left[\frac{.375}{(\rho_{ur^\epsilon})_{m,n}} + \frac{.125}{(\rho_{ur^\epsilon})_{m,n+1}} \right] \right\}^2 (FK)^2 \left\{ \frac{\rho_{m,n+1} + \rho_{m,n}}{2} \right\}$$

$$\left\{ \frac{(\rho_{ur^\epsilon})_{m,n+1} + (\rho_{ur^\epsilon})_{m,n}}{2} \right\} \left| \frac{u_{m,n+1} - u_{m,n}}{\Delta\Psi} \right|$$

$$\mu_{m,n-1/2}^{T1} = \left\{ Y_{m,n} - \Delta\Psi \left[\frac{.125}{(\rho_{ur^\epsilon})_{m,n-1}} + \frac{.375}{(\rho_{ur^\epsilon})_{m,n}} \right] \right\}^2 (FK)^2 \left\{ \frac{\rho_{m,n} + \rho_{m,n+1}}{2} \right\}$$

$$\left\{ \frac{(\rho_{ur^\epsilon})_{m,n} + (\rho_{ur^\epsilon})_{m,n-1}}{2} \right\} \left| \frac{u_{m,n} - u_{m,n-1}}{\Delta\Psi} \right|$$

ii. Law of the wake - dimensional coordinate, y_e .

$$\mu_{m,n+1/2}^{T2} = \left\{ \frac{\rho_{m,n+1} + \rho_{m,n}}{2} \right\} \left\{ \frac{K_{m,n+1} + K_{m,n}}{2} \right\} (Y_e u_e)_m$$

$$\mu_{m,n-1/2}^{T2} = \left\{ \frac{\rho_{m,n} + \rho_{m,n-1}}{2} \right\} \left\{ \frac{K_{m,n} + K_{m,n-1}}{2} \right\} (Y_e u_e)_m$$

where $K(N)$ is an input function of Ψ

$$K(N) = a + b\Psi + c\Psi^2$$

iii. Laminar contribution

$$\mu_{m,n+1/2}^{T3} = 1/2 \left\{ \mu_{m,n}^L + \mu_{m,n+1}^L \right\}$$

$$\mu_{m,n-1/2}^{T3} = 1/2 \left\{ \mu_{m,n}^L + \mu_{m,n-1}^L \right\}$$

iv. Eddy viscosity fit - dimensional coordinate, y

$$\mu_{m,n+1/2}^{T4} = \left\{ (Y_e)_m \left[.14 - .08 \left(1 - \frac{Y_{m,n} + \Delta y \left(\frac{.375}{(\rho u r^\epsilon)_{m,n}} + \frac{.125}{(\rho u r^\epsilon)_{m,n+1}} \right)}{(Y_e)_m} \right)^2 \right] \right.$$

$$\left. - .06 \left(1 - \frac{Y_{m,n} + \Delta y \left(\frac{.375}{(\rho u r^\epsilon)_{m,n}} + \frac{.125}{(\rho u r^\epsilon)_{m,n+1}} \right)}{(Y_e)_m} \right)^4 \right]$$

$$\left\{ \frac{\rho_{m,n} + \rho_{m,n+1}}{2} \right\} \left\{ \frac{(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n}}{2} \right\} \left| \frac{u_{m,n+1} - u_{m,n}}{\Delta y} \right|$$

$$\mu_{m,n-1/2}^{T4} = \left\{ \begin{aligned} & (Y_e)_m \left[.14 - .08 \left(1 - \frac{Y_{m,n} - \Delta\Psi \left(\frac{.125}{(\rho_{ur^\epsilon})_{m,n-1}} + \frac{.375}{(\rho_{ur^\epsilon})_{m,n}} \right)}{(Y_e)_m} \right) \right. \\ & \left. - .06 \left(1 - \frac{Y_{m,n} - \Delta\Psi \left(\frac{.125}{(\rho_{ur^\epsilon})_{m,n-1}} + \frac{.375}{(\rho_{ur^\epsilon})_{m,n}} \right)}{(Y_e)_m} \right)^2 \right] \end{aligned} \right\}^2$$

$$\left\{ \frac{\rho_{m,n} + \rho_{m,n-1}}{2} \right\} \left\{ \frac{(\rho_{ur^\epsilon})_{m,n} + (\rho_{ur^\epsilon})_{m,n-1}}{2} \right\} \left| \frac{u_{m,n} - u_{m,n-1}}{\Delta\Psi} \right|$$

v. Law of the wall - streamline coordinate, Ψ

$$\mu_{m,n+1/2}^{T5} = \left[\left(\Psi_n + \frac{\Delta\Psi}{2} \right) \left(\frac{FK}{\rho_e u_e r^\epsilon} \right)_m \right]^2 \left[\frac{\rho_{m,n+1} + \rho_{m,n}}{2} \right] \left[\frac{(\rho_{ur^\epsilon})_{m,n+1} + (\rho_{ur^\epsilon})_{m,n}}{2} \right]$$

$$\left| \frac{u_{m,n+1} - u_{m,n}}{\Delta\Psi} \right|$$

$$\mu_{m,n-1/2}^{T5} = \left[\left(\Psi_n - \frac{\Delta\Psi}{2} \right) \left(\frac{FK}{\rho_e u_e r^\epsilon} \right)_m \right]^2 \left[\frac{\rho_{m,n} + \rho_{m,n-1}}{2} \right] \left[\frac{(\rho_{ur^\epsilon})_{m,n} + (\rho_{ur^\epsilon})_{m,n-1}}{2} \right]$$

$$\left| \frac{u_{m,n} - u_{m,n-1}}{\Delta\Psi} \right|$$

vi. Law of the wake - streamline coordinate, Ψ_e

$$\mu_{m,n+1/2}^{T6} = \left(\frac{\rho_{m,n+1} + \rho_{m,n}}{2} \right) \left(\frac{K_{n+1} + K_n}{2} \right) \frac{\Psi_e}{(\rho_e u_e r^\epsilon)_m}$$

$$\mu_{m,n-1/2}^{T6} = \left(\frac{\rho_{m,n} + \rho_{m,n-1}}{2} \right) \left(\frac{K_n + K_{n-1}}{2} \right) \frac{\Psi_e}{(\rho_e u_e r^\epsilon)_m}$$

vii. Eddy viscosity fit - streamline coordinate, Ψ

$$\mu_{m,n+1/2}^{T7} = \left\{ \frac{\Psi_e}{(\rho_e u_e r^\epsilon)_m} \left[.14 - .08 \left(1 - \frac{\Psi + \frac{\Delta\Psi}{2}}{\Psi_e} \right)^2 - .06 \left(1 - \frac{\Psi + \frac{\Delta\Psi}{2}}{\Psi_e} \right)^4 \right] \right\}^2$$

$$\left\{ \frac{\rho_{m,n+1} + \rho_{m,n}}{2} \right\} \left\{ \frac{(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n}}{2} \right\} \left| \frac{u_{m,n+1} - u_{m,n}}{\Delta\Psi} \right|$$

$$\mu_{m,n-1/2}^{T7} = \left\{ \frac{\Psi_e}{(\rho_e u_e r^\epsilon)_m} \left[.14 - .08 \left(1 - \frac{\Psi - \frac{\Delta\Psi}{2}}{\Psi_e} \right)^2 - .06 \left(1 - \frac{\Psi - \frac{\Delta\Psi}{2}}{\Psi_e} \right)^4 \right] \right\}^2$$

$$\left\{ \frac{\rho_{m,n} + \rho_{m,n-1}}{2} \right\} \left\{ \frac{(\rho u r^\epsilon)_{m,n} + (\rho u r^\epsilon)_{m,n-1}}{2} \right\} \left| \frac{u_{m,n} - u_{m,n-1}}{\Delta\Psi} \right|$$

5. Boundary layer swallowing and expansion of the boundary layer

An input number ϵ_u is used as a test value for calling a new inviscid streamline and to increment the Ψ grid. Two options are available based upon the value of ϵ_u . If $\epsilon_u = 0$, the streamline test is not made. If ϵ_u is set as any positive number (used as the tolerance), the test

$$\left| \frac{u_{m+1}(L+1) - u_{m+1}(L-1)}{u_{m+1}(L+1)} \right| \leq \epsilon_u$$

is made. If the test fails, a new streamline is computed, or constant edge conditions are carried over. When the incremented expansion of the Ψ grid is called for then set $u_{m+1}(L-J) = \frac{u_m(L-J)}{u_m(L-1)} u_{m+1}(L+2)$, for $J = 2, 3, 4$, and $u_{m+1}(L-1) = u_{m+1}(L+2)$.

6. Boundary conditions

- a. Initial distributions - an input velocity profile vs. physical coordinates.
- b. Inner value at the wall - $u = 0$.
- c. Outer edge - velocity at the outer edge is obtained from the finite difference equation of "B" or the inviscid streamline solution of $u \frac{du}{ds} = - \frac{1}{\rho} \frac{dp}{ds}$ accordingly as the momentum, species

or enthalpy slope tests are satisfied or not
 (see Subsections II.B.5, II.C.5, II.D.5 for
 formulation of tests).

d. Inviscid streamlines - two inviscid streamlines
 external to the boundary layer which represent
 the locally uniform (assumed) external flow are
 always computed.

c. Species Equation

1. Analytic form

$$\frac{\partial c_i}{\partial x} = \frac{\dot{w}_i A_2}{\rho u} + r^\epsilon \frac{\partial \phi}{\partial \Psi}, \quad i = 1, 2, \dots, 7$$

2. Finite difference form

$$(c_i)_{m+1,n} = (c_i)_{m,n} + \frac{\Delta x (\dot{w}_i)_{m,n} A_2}{(\rho u)_{m,n}} + \frac{\Delta x}{\Delta \Psi} r_m^\epsilon \left[\phi_{m,n+1/2} - \phi_{m,n-1/2} \right]$$

See Section II.B.2 for note regarding solution near
 the wall.

3. The species diffusion terms are given by:

$$\Delta \phi = 1/2 \left\{ \frac{(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n}}{2} \right\} \left\{ A_3^L \left[\left(\frac{\mu^L D_{ki}^L}{S_C^L D^L} \right)_{m,n+1} + \left(\frac{\mu^L D_{ki}^L}{S_C^L D^L} \right)_{m,n} \right] \right.$$

$$+ A_3^T \mu_{m,n+1/2} \left[\left(\frac{1}{S_C^T} \frac{D_{ki}^T}{D^T} \right)_{m,n+1} + \left(\frac{1}{S_C^T} \frac{D_{ki}^T}{D^T} \right)_{m,n} \right] \left\{ \frac{(c_i)_{m,n+1} - (c_i)_{m,n}}{\Delta \Psi} \right\}$$

$$- 1/2 \left\{ \frac{(\rho u r^\epsilon)_{m,n} + (\rho u r^\epsilon)_{m,n-1}}{2} \right\} \left\{ A_3^L \left[\left(\frac{\mu^L D_{ki}^L}{S_C^L D^L} \right)_{m,n} + \left(\frac{\mu^L D_{ki}^L}{S_C^L D^L} \right)_{m,n-1} \right] \right.$$

$$+ A_3^T \mu_{m,n-1/2} \left[\left(\frac{1}{S_C^T} \frac{D_{ki}^T}{D^T} \right)_{m,n} + \left(\frac{1}{S_C^T} \frac{D_{ki}^T}{D^T} \right)_{m,n-1} \right] \left\{ \frac{(c_i)_{m,n} - (c_i)_{m,n-1}}{\Delta \Psi} \right\}$$

4. Chemistry production terms

a. Formulation

$$\dot{w}_i(\Psi, x) = \dot{w}_i(T, \rho, c_i), \quad i = 1, 2, \dots, 7$$

$$\dot{w}_{O_2} = \frac{\rho}{L} \left[-A + \frac{M_{O_2}}{M_{NO}} D \right]$$

$$\dot{w}_O = \frac{\rho}{L} \left[A + \frac{M_O}{M_{NO}} (C-D-E) - \frac{M_O}{M_{NO^+}} F \right]$$

$$\dot{w}_{N_2} = - \frac{\rho}{L} \left[B + \frac{M_{N_2}}{M_{NO}} E \right]$$

$$\dot{w}_N = \frac{\rho}{L} \left[B + \frac{M_N}{M_{NO}} (C+D+E) - \frac{M_N}{M_{NO^+}} F \right]$$

$$\dot{w}_{NO} = \frac{\rho}{L} \left[-C-D+E-K \right]$$

$$\dot{w}_{NO^+} = \frac{\rho}{L} \left[F+K \right]$$

$$\dot{w}_{e^-} = \frac{\rho}{L} \frac{M_e}{M_{NO^+}} \left[F+K \right]$$

where

$$A = \frac{2L}{M_O} \left[\sum_i \frac{C_i}{M_i} K_{ra}^i \right] \rho \left[\rho_{do} C_{O2} e^{D_{O2}/KT} - \rho C_O^2 \right] 9.6573302 \times 10^{25}$$

$$B = \frac{2L}{M_N} \left[\sum_i \frac{C_i}{M_i} K_{rb}^i \right] \rho \begin{bmatrix} \rho_{dN} C_{N2} e^{-D_{N2}/KT} & -\rho C_N^2 \\ -\rho C_N^2 & \end{bmatrix} 9.6573302 \times 10^{28}$$

$$C = \frac{LM_{NO}}{M_N M_O} \left[\sum_i \frac{C_i}{M_i} \right] K_{rc} \rho \begin{bmatrix} \rho_{dNO} C_{NO} e^{-D_{NO}/KT} & -\rho C_N C_O \\ -\rho C_N C_O & \end{bmatrix} 9.6573302 \times 10^{28}$$

$$D = \frac{LM_{NO}}{M_N M_{O2}} K_{rd} \rho \begin{bmatrix} \sigma C_{NO} C_O e^{-\frac{D_{NO}-D_{O2}}{KT}} & -C_{O2} C_N \\ -C_{O2} C_N & \end{bmatrix} 3.1076201 \times 10^{23}$$

$$E = \frac{LK_{re}}{M_N} \rho \begin{bmatrix} -\frac{D_{N2}-D_{NO}}{KT} & -C_{NO} C_N \\ \gamma C_{N2} C_O e^{-\frac{D_{N2}-D_{NO}}{KT}} & - \end{bmatrix} 3.1076201 \times 10^{23}$$

$$F = \frac{LK_{rf}}{M_e} \rho \begin{bmatrix} -\frac{I_{NO}-D_{NO}}{KT} & -(C_{NO}+) C_e \\ \frac{1}{K} C_O C_N e^{-\frac{I_{NO}-D_{NO}}{KT}} & - \end{bmatrix} 3.1076201 \times 10^{23}$$

$$K = \frac{L}{M_e} \left[\sum_i \frac{C_i}{M_i} K_{rk}^i \right] \rho \begin{bmatrix} \rho_{de} C_{NO} e^{-I_{NO}/KT} & -\rho (C_{NO}+) C_e \\ -\rho (C_{NO}+) C_e & \end{bmatrix} 9.6573302 \times 10^{28}$$

Set

$$ETT\ 228 = 5 + 3 e^{-228/T} + e^{-327/T}$$

$$ET\ 178 = 1 + e^{-178/T}$$

$$ET\ 2274 = 1 - e^{-2274/T}$$

$$ET\ 2740 = 1 - e^{-2740/T}$$

$$ET\ 3395 = 1 - e^{-3395/T}$$

$$ET\ 1130 = 3 + 2 e^{-11300/T}$$

Then

$$\sigma_{dO} = \frac{M_O}{2\eta h_p^3} (\pi m_O K T)^{3/2} \left(\frac{4.161}{T} \right) (ET\ 2274) \left(\frac{(ETT\ 228)^2}{ET\ 1130} \right) 3.87871 \times 10^{-11}$$

$$\sigma_{dN} = \frac{8M_N}{\eta h_p^3} (\pi m_N K T)^{3/2} \left(\frac{5.789}{T} \right) (ET\ 3395) 3.87871 \times 10^{-11}$$

$$\sigma_{dNO} = \frac{M_O}{\eta h_p^3} (2\pi m_O K T)^{3/2} \left(\frac{M_N}{M_{NO}} \right)^{5/2} \left(\frac{4.906}{T} \right) (ET\ 2740) \left(\frac{ETT\ 228}{ET\ 178} \right) 3.87871 \times 10^{-11}$$

$$\sigma = \left(\frac{M_O M_N}{M_{NO} M_O} \right)^{5/2} \left(\frac{4.906}{4.161} \right) \left(\frac{ET\ 2740}{ET\ 2274} \right) \left(\frac{ET\ 1130}{ETT\ 228 ET\ 178} \right)$$

$$\gamma = 16 \left(\frac{M_{NO} M_N}{M_{N2} M_O} \right)^{5/2} \left(\frac{5.789}{4.906} \right) \left(\frac{ET\ 3395}{ET\ 2740} \right) \left(\frac{ET\ 178}{ETT\ 228} \right)$$

$$\bar{K} = \left(\frac{(M_{NO^+}) \cdot M_e}{M_N M_O} \right)^{5/2} \left(\frac{T}{5.789} \right) \left(\frac{1}{ET \ 3395 \ ETT \ 228} \right)$$

$$\rho_{de} = \frac{M_e (2\pi m_e K T)^{3/2}}{\eta h_p} (.4237) \left(\frac{ET \ 2740}{ET \ 3395} \right) \frac{2}{ET \ 178} 3.87871 \times 10^{-11}$$

b. Input $A_2 = 1$ for reacting system

= 0 for frozen system; bypass all \dot{w}_i

= -1 for equilibrium system.

= 10 for reacting system with equilibrium at the wall

5. Equilibrium mass action laws

As indicated in II.C.4.b, an input of -1 for A_2 , activates the logic for obtaining the species from the following equilibrium relationships:

$$c_{m+1}(O_2) = \frac{908.19 T^{5/2} \left(\frac{5}{3} e^{-\frac{11391}{T}} + \frac{1}{3} e^{-\frac{18985}{T}} \right) \bar{A}^2 (2.773 \times 10^{-15})}{\rho \left(1-e^{-\frac{2274}{T}} \right)}$$

$$c_{m+1}(O) = \frac{2237 T^{5/2} \left(1.6 e^{-\frac{228}{T}} + .2 e^{-\frac{326}{T}} \right)}{\rho} e^{-\frac{29501}{T}} \bar{A} (1.386 \times 10^{-9})$$

$$c_{m+1}(N_2) = \frac{178.39 T^{5/2} B^2 (2.428 \times 10^{-15})}{\rho \left(1 - e^{-\frac{3395}{T}} \right)}$$

$$c_{m+1}(N) = \frac{1462 T^{3/2} (3.5) \left(e^{-\frac{27698}{T}} + \frac{3}{2} e^{-\frac{41520}{T}} \right)}{\rho} e^{-\frac{56544}{T}} \bar{B} (1.214 \times 10^{-9})$$

$$c_{m+1}(NO) = \frac{934.14 T^{5/2} \left(1 - e^{-\frac{178}{T}} \right)}{\rho \left(1 - e^{-\frac{2740}{T}} \right)} e^{-\frac{11063}{T}} \bar{AB} (2.6 \times 10^{-15})$$

$$c_{m+1}(NO^+) = 233.9 \sqrt{\frac{.1597 \times 10^{-11} T e^{-\frac{32125}{T}} c_{m+1}(O) c_{m+1}(N)}{\left(1 - e^{-\frac{3395}{T}} \right) \left(1.6 e^{-\frac{228}{T}} + .2 e^{-\frac{326}{T}} \right)}}$$

$$c_{m+1}(e^-) = \frac{1}{(233.9)^2} c_{m+1}(NO^+)$$

\bar{A} and \bar{B} are obtained from an iteration procedure which is satisfied when two successive values of \bar{B} agree to within $\frac{1}{1000}\%$.

The iteration procedure is initiated with $\bar{B} = 0$ and then the following calculations take place in the sequence shown:

$$BT = \frac{\left(\frac{2237}{T} B_4 e^{-\frac{29501}{T}} \right) - \left(\frac{934.14}{T} E_4 e^{-\frac{11063}{T}} \right)}{E_3} 10^{-18}$$

$$AC = \frac{(908.19 T^{\frac{5}{2}}) B_1 \rho (1338.7 \times 10^{-12})}{E_1}$$

$$\bar{A} = \frac{\left(-BT \sqrt{(BT)^2 + AC} \right) E_1}{(908.19 T^{\frac{5}{2}} B_1) (4 \times 10^{-12})}$$

$$BT = \frac{\left(\frac{1461.9}{T} B_5 e^{-\frac{56544}{T}} \right) - \left(\frac{934.14}{T} E_4 e^{-\frac{11063}{T}} \right)}{E_3} 10^{-18}$$

$$AC = \frac{(178.39 T^{\frac{5}{2}}) \rho (5060.8 \times 10^{-12})}{E_2}$$

$$\bar{B} = \frac{\left(-BT + \sqrt{(BT)^2 + AC} \right) E_2}{(178.39 T^{\frac{5}{2}}) (4 \times 10^{-12})}$$

where

$$B_1 = \frac{5}{3} e^{-\frac{11390}{T}} + \frac{1}{3} e^{-\frac{18984}{T}}$$

$$B_4 = 1.6 e^{-\frac{228}{T}} + .2 e^{-\frac{326}{T}}$$

$$B_5 = 3.5 e^{-\frac{27698}{T}} + 1.5 e^{-\frac{41520}{T}}$$

$$E_1 = 1 - e^{-\frac{2274}{T}}$$

$$E_2 = 1 - e^{-\frac{3395}{T}}$$

$$E_3 = 1 - e^{-\frac{2740}{T}}$$

$$E_4 = 1 - e^{-\frac{178}{T}}$$

6. Boundary layer swallowing and expansion of the boundary layer

An input number ϵ_c is used as a test value for calling a new inviscid streamline and to increment the Ψ grid. Two options are available based upon the value of ϵ_c . If $\epsilon_c = 0$, the streamline test is made. If ϵ_c is set as any positive number (used as the tolerance) the test

$$\left| \frac{c_{m+1,i}^{(L+1)} - c_{m+1,i}^{(L-1)}}{c_{m+1,i}^{(L+1)}} \right| \leq \epsilon_c \quad i=1, \dots, 7$$

is made. If the test fails, a new streamline is computed, or constant edge conditions are carried over. When the incremented expansion of the Ψ grid is called for then set $c_{m+1}^{(L-J)}$
 $= \frac{c_m^{(L-J)}}{c_m^{(L-1)}} c_{m+1}^{(L+2)}$, for $J = 2, 3, 4$ and
 $c_{m+1}^{(L-1)} = c_{m+1}^{(L+2)}$.

7. Boundary conditions

a. Initial - $c_i(y)$ profiles are input for all species except N_2 and e^- , which are computed from:

$$c_{e^-}(N) = \frac{M_{e^-}}{M_{NO^+}} C(NO^+)$$

$$c_{N_2}(N) = 1 - \sum c_i \quad i \neq N_2$$

b. Wall - $c_{m+1}(I) = C_1(I) + C_2(I) \frac{x}{Rn} + C_3(I) \left(\frac{x}{Rn}\right)^2 + C_4(I) \left(\frac{x}{Rn}\right)^3 + C_5(I) \left(\frac{x}{Rn}\right)^4$ where the C_1 through C_5 are input for each specie except e^- .

- c. Outer edge - Species at the outer edge are obtained from the finite difference equation in Subsection II.C.2. or the inviscid solution of $u \frac{dc_i}{ds} = \frac{\dot{w}_i}{\rho}$ accordingly as the momentum, species or enthalpy slope tests are satisfied or not (see Subsections II.B.5, II.C.5., II.D.5. for formulation of tests).
- d. Along the two external inviscid streamlines the species are obtained from the inviscid equation.

D. Energy Equation

1. Analytic form

$$\frac{\partial H}{\partial x} = r^\epsilon \frac{\partial}{\partial \Psi} (\mathcal{E}^H + \mathcal{E}^C)$$

2. Finite difference form

$$H_{m+1,n} = H_{m,n} + r_m^\epsilon \frac{\Delta x}{\Delta \Psi} (\mathcal{E}_{m,n+1/2}^H - \mathcal{E}_{m,n-1/2}^H)$$

$$+ r_m^\epsilon \frac{\Delta x}{\Delta \Psi} (\mathcal{E}_{m,n+1/2}^C - \mathcal{E}_{m,n-1/2}^C)$$

See Section II.B.2. for note regarding solution near the wall.

3. The difference of enthalpy-kinetic energy terms \mathcal{E}^H is given by:

N = 2

$$\text{UAVG1} = \frac{r^\epsilon}{\Delta\Psi} \left[\rho_{\frac{1}{2}} u_{\frac{1}{2}}^2 \left(\frac{du}{d\Psi} \right)_{\frac{1}{2}} + \rho_a u_a^2 \frac{(u_a + u_3)}{2} - u_{\frac{1}{2}} \right]$$

$$\text{UAVG2} = \frac{r^\epsilon}{2\Delta\Psi} \left[(\rho_3 u_3^2 + \rho_a u_a^2) (u_3 - u_a) + \rho_a u_a^2 (u_a + u_3 - 2u_{\frac{1}{2}}) \right]$$

$$\text{SUMHL} = 2 \sum_i h_i \left(\frac{D_{ki}}{D_a} + \frac{D_{ki}}{D_1} \right) \left(\frac{dc_i}{d\Psi} \right)_{\frac{1}{2}}$$

$$\text{SUMHT} = 2 \sum_i h_i \left(\frac{D_{ki}}{D_a^T} + \frac{D_{ki}}{D_1^T} \right) \left(\frac{dc_i}{d\Psi} \right)_{\frac{1}{2}}$$

$$\text{RURN} = 2(\rho u)_{\frac{1}{2}} r^\epsilon$$

$$\text{PARTH2} = \frac{1}{4} (\text{RURN}) \left[A_4^L \mu_{\frac{1}{2}}^L \left(\frac{1}{P_{r_2}^L} + \frac{1}{P_{r_1}^L} \right) + 2A_4^T \left(\frac{\mu_{3/2}^T}{P_{r_1}^T} \right) \right] \left(\frac{dH}{d\Psi} \right)_{\frac{1}{2}}$$

$$+ \left[A_4^L (\mu_2^L + \mu_{\frac{1}{2}}^L) \left(1 - \frac{1}{P_{r_2}^L} \right) \frac{A_4^T}{2} \mu_{3/2}^T \left(1 - \frac{1}{P_{r_2}^T} \right) \right] \text{UAVG1}$$

$$\text{PARTC2} = \frac{1}{8} \left[2 - \frac{1}{L_{e_2}^L} - \frac{1}{L_{e_1}^L} \right] \left[\frac{1}{S_{c_2}^L} + \frac{1}{S_{c_1}^L} \right] (\text{RURN}) \frac{A_5^L}{4} \mu_{\frac{1}{2}}^L (\text{SUMHL}) +$$

$$\frac{1}{8} \left[2 - \frac{1}{L_{e_2}^T} - \frac{1}{L_{e_1}^T} \right] \left[\frac{1}{S_{c_2}^T} + \frac{1}{S_{c_1}^T} \right] (\text{RURN}) \frac{A_3^T}{4} \mu_{\frac{1}{2}}^T (\text{SUMHT})$$

N > 2

$$\text{UAVG1} = \frac{r^\epsilon}{2\Delta\Psi} \left[\rho_n u_n^2 (u_{n+1} - u_{n-1}) + (\rho_n u_n^2 + \rho_{n-1} u_{n-1}^2) (u_n - u_{n-1}) \right]$$

$$\text{UAVG2} = \frac{r^\epsilon}{2\Delta\Psi} \left[\rho_n u_n^2 (u_{n+1} - u_{n-1}) + (\rho_{n+1} u_{n+1}^2 + \rho_n u_n^2) (u_{n+1} - u_n) \right]$$

$$\text{SUMHL} = \sum_i (h_{in} + h_{in-1}) \left(\frac{D_{ki}}{D_n^L} + \frac{D_{ki}}{D_{n-1}^L} \right) \left(\frac{dC_i}{d\Psi} \right)$$

$$\text{SUMHT} = \sum_i (h_{in} + h_{in-1}) \left(\frac{D_{ki}}{D_n^T} + \frac{D_{ki}}{D_{n-1}^T} \right) \left(\frac{dC_i}{d\Psi} \right)$$

$$\text{RURN} = r^\epsilon (\rho_n u_n + \rho_{n-1} u_{n-1})$$

$$\text{PARTH2} = \frac{1}{4} (\text{RURN}) \left[A_4^L \left(\frac{\mu_n^L}{P_r_n^L} + \frac{\mu_{n-1}^L}{P_r_{n-1}^L} \right) + A_4^T \left(\frac{\mu_{n-\frac{1}{2}}^T}{P_r_{n-1}^T} \right) \right] \frac{dH}{d\Psi} +$$

$$\left[\frac{A_4^L}{4} (\mu_{n-1}^L) \left(1 - \frac{1}{P_r_{n-1}^L} \right) + 3\mu_n^L \left(1 - \frac{1}{P_r_n^L} \right) + A_4^T \mu_{n-\frac{1}{2}}^T \right.$$

$$\left. \left(1 - \frac{1}{P_r_n^T} \right) \right] \text{UAVG1}$$

$$\text{PARTC2} = \frac{1}{16} \left(2 - \frac{1}{L_{e_n}^L} - \frac{1}{L_{e_{n-1}}^L} \right) \left(\frac{1}{S_{c_n}^L} + \frac{1}{S_{c_{n-1}}^L} \right) (\text{RURN})$$

$$\frac{A_5^L}{4} (\mu_n^L + \mu_{n-1}^L) (\text{SUMHL}) + \frac{1}{8} \left(2 - \frac{1}{L_{e_n}^T} - \frac{1}{L_{e_{n-1}}^T} \right)$$

$$\left(\frac{1}{S_{c_n}^T} + \frac{1}{S_{c_{n-1}}^T} \right) (\text{RURN}) \frac{A_5^T}{4} \mu_{n-1/2}^T (\text{SUMHT})$$

$$\Delta \mathcal{C}^H = \left\{ \frac{(\rho_{ur}^\epsilon)_{m,n+1} + (\rho_{ur}^\epsilon)_{m,n}}{2} \right\} \left\{ A_4^L \left[\frac{\left(\frac{\mu^L}{P_r^L} \right)_{m,n+1} + \left(\frac{\mu^L}{P_r^L} \right)_{m,n}}{2} \right] + 2A_4^T \left(\frac{\mu^T}{P_r^T} \right)_{m,n+1/2} \right\}$$

$$\left\{ \frac{H_{m,n+1} - H_{m,n}}{\Delta \Psi} \right\} + \left\{ \frac{(\rho_{ur}^\epsilon)_{m,n} + (\rho_{ur}^\epsilon)_{m,n+1}}{2} \right\} \left\{ A_4^L \left[\frac{\mu_{n+1}^L \left(1 - \frac{1}{P_r^L} \right)_{m,n+1} + 3\mu_n^L \left(1 - \frac{1}{P_r^L} \right)_{m,n}}{2} \right] \right\}$$

$$+ A_4^L \left[\bar{\mu}_{n+1/2}^T \left(1 - \frac{1}{P_r^T} \right)_{m,n+1/2} \right] \} \text{UAVG2} - \text{PARTH2}$$

4. The energy transport due to species gradients C^c
is given by:

$$\Delta C^c = \frac{1}{16} \left[\left(1 - \frac{1}{L_e^L} \right)_{m,n+1} + \left(1 - \frac{1}{L_e^L} \right)_{m,n} \right] \left[\left(\frac{1}{S_c^L} \right)_{m,n+1} + \left(\frac{1}{S_c^L} \right)_{m,n} \right]$$

$$\left[(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n} \right] \left[A_s^L (\mu_{m,n+1}^L + \mu_{m,n}^L) \right] \cdot \left[\frac{1}{4} \sum_i (h_i)_{m,n+1} + h_i)_{m,n} \right]$$

$$\left[\left(\frac{D_{ki}^L}{D^L} \right)_{m,n+1} \left(\frac{D_{ki}^L}{D^L} \right)_{m,n} \right] \left[\frac{(C_i)_{m,n+1} - (C_i)_{m,n}}{\Delta \Psi} \right] + \frac{1}{8} \left[\left(1 - \frac{1}{L_e^T} \right)_{m,n+1} + \left(1 - \frac{1}{L_e^T} \right)_{m,n} \right]$$

$$\left[\left(\frac{1}{S_c^T} \right)_{m,n+1} + \left(\frac{1}{S_c^T} \right)_{m,n} \right] \left[(\rho u r^\epsilon)_{m,n+1} + (\rho u r^\epsilon)_{m,n} \right] \left[A_s^{T-T} \mu_{m,n+1/2} \right]$$

$$\frac{1}{4} \sum_i (h_i)_{m,n+1} + h_i)_{m,n} \left[\left(\frac{D_{ki}^T}{D^T} \right)_{m,n+1} + \left(\frac{D_{ki}^T}{D^T} \right)_{m,n} \right] \left[\frac{(C_i)_{m,n+1} - (C_i)_{m,n}}{\Delta \Psi} \right] - PARTC2$$

5. Boundary layer swallowing and expansion
of the boundary layer

An input number ϵ_H is used as a test value for calling a new inviscid streamline and to increment the Ψ grid. Two options are available based upon the value of ϵ_H . If $\epsilon_H = 0$, the streamline test is

not made. If ϵ_H is set to any positive number (the tolerance) the test

$$\left| \frac{H_{m+1}(L+1) - H_{m+1}(L-1)}{H_{m+1}(L+1)} \right| \leq \epsilon_H$$

is made. If the test fails, a new streamline is computed, or constant edge conditions are carried over.

6. Boundary conditions

a. Initial - an input enthalpy profile vs. physical coordinates.

b. Wall - $H_{m+1} = HH_1 + HH_2 \left(\frac{x}{Rn} \right) + HH_3 \left(\frac{x}{Rn} \right)^2$

$+ HH_4 \left(\frac{x}{Rn} \right)^3 + HH_5 \left(\frac{x}{Rn} \right)^4$ where the HH_1 through HH_5 are input.

c. Outer edge

Enthalpy at the outer edge is obtained from the finite difference equation in Subsection II.D.2. or set equal to the input free stream value accordingly as the momentum, species or enthalpy slope tests are satisfied or not (see Subsections II.B.5., II.C.5., II.D.5. for formulation of tests).

III. INVISCID FLOW EQUATIONS

A. Governing Equations for One-Dimensional Streamlines

1. Momentum

$$u_{\text{inv}} \frac{du_{\text{inv}}}{ds} = - \frac{l}{\rho_{\text{inv}}} \frac{dp}{ds}$$

2. Species

$$u_{\text{inv}} \frac{dc_i}{ds} = \frac{\dot{w}}{\rho_{\text{inv}}}$$

3. Total enthalpy (energy)

$$H = \text{constant}$$

$$= h_{\text{inv}} + \frac{u_{\text{inv}}^2}{2}$$

B. Tracing the Streamline from the Shock

Reference: NACA Report #1135 - "Equations, Tables and Charts for Compressible Flow 1953"

1. Intersection of streamline and shock, see sketch.

$$\frac{D_\infty}{2} \left(\frac{m_b L}{\rho_\infty u_\infty \pi} \right)^{\frac{1}{2}}$$

where

$$m_{bL} = \int_0^{\Psi_e} \epsilon \left[(2\pi) \epsilon_y \cos \theta_t \frac{d\Psi}{r \epsilon} \right] + (2\pi) \epsilon \Psi_e$$

$\theta_t = 90 - \alpha$, for arc, ogive

= 0, cylinder, flat plate

= cone angle, cone

α = angle which the current point on the body and the coordinates of the center of the arc make with ζ_1 axis, measured in a clockwise direction from ζ_1 .

Coordinate Systems for a Blunt Body

2. Conditions downstream of the shock

a. Following will be input

$$\rho_\infty$$

$$\rho_{\text{stag}}$$

$$\left. \begin{array}{l} h_\infty \\ c_p \end{array} \right\} \text{needed for } T_\infty = \frac{h_\infty}{c_p \rho_\infty}$$

$$p_\infty$$

altitude

γ (specific heat ratio)

u_{LOLIM} - used for checking against calculated
 u in the one-dimensional streamline
equation in order to keep $u > 0$.

b. Following will be program set from input

$$u_\infty = u(L)$$

$$c_{i_\infty} = c(L, I)$$

$$H_\infty = H(L)$$

c. The program calculates:

$$u_{ds} = 1 - \left[\frac{[4(M_1^2 \sin^2 \theta - 1)(\gamma M_1^2 \sin^2 \theta + 1)]}{[(\gamma+1)^2 M_1^4 \sin^2 \theta]} \right]^{\frac{1}{2}} u_\infty$$

where

$$M_1 = \frac{u_\infty}{a_\infty} \text{ Mach #}$$

$$a_\infty = \text{speed of sound} = 49.9 \sqrt{1.8 T_\infty}$$

$$T_\infty = \frac{h_\infty}{c_p} {}^\circ\text{K}$$

θ = angle shock wave makes with ζ_1

$$c_{ids} = c_{i_\infty}$$

$$p_{ds} = \left[\frac{2\gamma M_1^2 \sin^2 \theta - (\gamma-1)}{\gamma + 1} \right] p_\infty$$

d. The program outputs:

(a) p_{ds}

(b) u_{ds}

(c) c_{ids}

3. Completion of streamline calculation

The program sets:

$$u_{m+1}(L) = u_{m+1}(L+1) = u_{m+1}(L+2)$$

$$c_{m+1}(L, I) = c_{m+1}(L+1, I) = c_{m+1}(L+2, I)$$

IV. INPUTS

Under this section the various input parameters are discussed from a programming viewpoint; see Manual, Part III, for input data preparation. In Subsection A through C, certain critical parameters are discussed, and in Subsection D the input definitions and card formats are specified. Also included in the latter sections of this report is a sample problem which illustrates the nature of the inputs.

A. Body Geometry

1. Classification

Bodies will be classified accordingly as the first geometrical region is:

a. Blunted $\Delta s \neq 0$

(a) arc (hemispherical nose)

b. Pointed $\Delta s = 0$

(a) cone

(b) ogive

(c) flat plate

where Δs = standoff distance from shock to stagnation point of body along centerline (see IV.B.3).

2. Subsequent geometric regions of the body

The following geometrical descriptions for body sections are available:

- | | | |
|---------------|---|--|
| a. arc | } | 2 dimensional or axisymmetric
depending upon input ϵ , (or EPSI in
the input list, Subsection IV.D) |
| b. cone | | |
| c. cylinder | | |
| d. ogive | | |
| e. flat plate | | |

3. Calculation of radius of the body and the ζ_1 , ζ_2 coordinates

- a. For each region the program reads in

- | | | |
|---|---|--|
| (a) INDP = pressure type indicator

(see p.39, Section C) | } | 1 = cosine
2 = polynomial
3 = quotient |
| | | |
| | | |
| (b) INDR = geometry indicator | } | 1 = arc
2 = cone
3 = cylinder
4 = ogive
5 = flat plate |
| | | |
| | | |
| | | |
| (c) INDLR = last subregion of last region indicator | | |
| | | |

- (d) INDLSR = last subregion of any region indicator $\left\{ \begin{array}{l} 1 = \text{yes} \\ 2 = \text{no} \end{array} \right.$
- (e) OGIVE H OGIVE K } coordinates of center of arc with respect to ζ_1, ζ_2 origin
- (f) p(J), J = 1,8, pressure coefficients
- (g) CC_i(K), K = 1,5, C_{WALL} coefficients
- (h) Rn = nose or reference base radius
- (i) XL = cumulative upper $\frac{x}{Rn}$ limit of this subregion
- (j) CONEAN = cone angle/2 (vertex semi-angle)

B. Shock Geometry

1. Description of the Shock

The shock consists of up to 10 sections of the form:

a. $\zeta_2 = a_n \zeta_1 + b_n$ straight line

b. $\zeta_1 - a_n = b_n (\zeta_2 - c_n)^2$ parabola

Type 6 is a parabola whose coefficients a_n , b_n and c_n are specified as input. Type 7 is a parabola whose beginning and ending slopes and the ζ_1 projection of the end point of the geometrical shock region are specified as input.

The present version of the program permits parabolae to follow each other but they may not follow straight lines.

2. Shock input is specified by giving

- a. Curve type
- b. Slope and cumulative ζ_1 limit for a straight line
- c. Coefficients and cumulative ζ_1 limit for a parabola or
- d. Beginning and ending slopes and cumulative ζ_1 limit

3. Section 1 of the shock has optional provision (type 7) for internally computing and establishing the shock

$$\zeta_1 - a_n = b_n (\zeta_2 - c_n)^2$$

with

$$a_n = c_n = 0, \quad b_n = \frac{.5}{1 + \frac{\Delta s}{R_n}} \frac{1}{R_n}$$

where $\Delta s = \frac{2/3}{\frac{\rho_{\text{stag}}}{\rho_{\infty}} - 1} R_n$ (physical standoff distance). $\frac{\Delta s}{R_n}$ is the dimensionless standoff distance.

4. The program has provision for specifying several shock shapes, e.g. conical, parabolic and normal. Moreover optional modes for specifying a particular shape are also possible, e.g.

parabolas can be specified by inputting the coefficients of the analytic expression or the beginning and ending slopes. The following indicates the formulae for obtaining the ζ coordinates and the balances of the shock coefficients for all permissible combinations of shock shapes.

a. Region 1 is a cone

i. $m, \zeta_1, b_1 = 0$ are input

ii. $\zeta_2 = m \zeta_1$

b. Region N-1 is a parabola

Region N is a parabola - Type 6

i. $a_{N-1}, b_{N-1}, c_{N-1}$ are available

a_N, l_N, c_N are input

$$\text{ii. } \zeta_{1(N-1)} = a_{N-1} + b_{N-1} [\zeta_{2(N-1)} - c_{N-1}]^2$$

$$\zeta_2 = \frac{b_{N-1} c_{N-1} - b_N c_N}{b_{N-1} - b_N}$$

c. Region N-1 is a parabola

Region N is a parabola - Type 7

i. $a_{N-1}, b_{N-1}, c_{N-1}$ are available

m_{N-1}, m_N, ζ_{1N} are input

$$\text{i.i. } a_N = \frac{\zeta_1(N-1) m_{N-1}^2 - m_N^2 \zeta_1(N)}{m_{N-1}^2 - m_N^2}$$

$$c_N = \zeta_2(N-1) - \frac{2m_N^2(\zeta_1(N) - a_N)}{m_{N-1}}$$

$$b_N = \frac{1}{4m_N^2(\zeta_1(N) - a_N)}$$

$$\zeta_2(N-1) = \frac{1}{2b_{N-1} m_{N-1}} + c_{N-1}$$

$$\zeta_1(N-1) = a_{N-1} + b_{N-1} (\zeta_2(N-1) - c_{N-1})^2$$

d. Region N-1 is a parabola

Region N is a cone

i. $a_{N-1}, b_{N-1}, c_{N-1}$ are available

m_N is input

$$\text{i.i. } \zeta_2(N-1) = \frac{1}{2b_{N-1} a_N} + c_{N-1}$$

$$\zeta_1(N-1) = a_{N-1} + b_{N-1} [\zeta_2(N-1) - c_{N-1}]^2$$

$$b_N = \zeta_2(N-1) - a_N \zeta_1(N-1)$$

e. Region N-1 is a cone

Region N is a cone

i. a_{N-1} , b_{N-1} , $\zeta_1(N-1)$ are available

m_N is input

ii. $\zeta_2(N-1) = a_{N-1} \zeta_1(N-1) + b_{N-1}$

$b_N = \zeta_2(N-1) - a_N \zeta_1(N-1)$

C. Pressure Distribution

Associated with each body subregion is a distribution which is one of 3 possible types:

$$1. p = p_1 \cos^2 \frac{x}{R_n} \text{ (Newtonian)}$$

$$2. p = p_2 + p_3 \frac{x}{R_n} + p_4 \left(\frac{x}{R_n} \right)^2 + p_5 \left(\frac{x}{R_n} \right)^3 + p_6 \left(\frac{x}{R_n} \right)^4$$

$$3. p = \frac{p_7}{p_8 + \frac{x}{R_n}}$$

where p_1 through p_8 are inputs.

D. Input Definitions, Card Formats and Symbols

<u>SYMBOLS</u>	<u>DEFINITION</u>	<u>FORMAT</u>
*LP2	# Ψ pts + 2	I 10
NS	# species	
NPSI	print interval density in Ψ direction e.g. every point, every second point, etc.	
INDSTR	streamline starting point indicator	
FNDSSL	lower limit for step size control	E 10.3
FNDSSH	upper limit for step size control	
IALT	altitude - in kft	I 10
A_1^L	laminar indicator for momentum equation	E 10.3
A_1^T	turbulent indicator for momentum equation	
A_2	chemistry indicator for equilibrium or non-equilibrium calculations (see p.18, Section b)	
A_3^L	laminar indicator for species equation	
A_3^T	turbulent indicator for species equation	
A_4^L	laminar indicator for energy equation	
A_4^T	turbulent indicator for energy equation	
A_5^L	laminar indicator for energy equation	
A_5^T	turbulent indicator for energy equation	
$c(N, I)$	species mass fraction profiles $N = 1, 2 \dots LP2;$ $I = 1, 2, 4, 5, 6$	
*RESTAR	restart indicator; 1 = original run, 0 = continuation run	E 10.3

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>FORMAT</u>
DELTAX	step size - x direction	E 10.3
EPSI	exponent for body radius	
EPSIU= ϵ_u	tolerance on velocity for a streamline call	
EPSIC= ϵ_c	tolerance on all species for a streamline call	
EPSIH= ϵ_H	tolerance on total enthalpy for streamline call	
EPSIT= ϵ_T	tolerance on temperature iteration	
FH(N)	total enthalpy profile, N = 1,2...LP2	
FK	factor in $\bar{\mu}^{Tl}$	
*CPE	free stream specific heat at constant pressure	E 10.3
FL	characteristic length to dimensionalize species production term	
FSHE	free stream static enthalpy	
GAMM	ratio of specific heat, Cp/Cr	
PE	free stream pressure	
RHOE	free stream density	
RHOSTG	stagnation density	
CE(I)	free stream species, I = 1,2...7	
R _N	nose radius	
UINF	free stream velocity	
ULOLIM	low limit for velocity in streamline	
XS	x starting value	

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>FORMAT</u>
Z1S	ζ_1 coordinate starting value	E 10.3
Z2S	ζ_2 coordinate starting value	
Z1L	ζ_1 coordinate entire body	
u(N)	velocity profile, $N = 1, 2, \dots, LP2$	
*FA	coefficient for FKPSI in μ^{T2}	E 10.3
FE	$FKPSI \equiv K(N)$ (see p.8, Section ii)	
FC		
TESTRA	test ratio for establishing turbulent viscosity model	
AB_1^T	law of the wall - dimensional coordinate y	E 10.3
AB_2^T	law of the wake - dimensional coordinate, y_e	
AB_3^T	laminar viscosity	
AB_4^T	eddy viscosity fit dimensional coordinate y	Indicators and coefficients for invoking turbulent viscosity model components (see p.7, Section 4,b)
AB_5^T	law of the wall - streamline coordinate, Ψ	
AB_6^T	law of the wake - streamline coordinate, Ψ_e	
AB_7^T	eddy viscosity fit streamline coordinate, Ψ	
BB_1^T	law of the wall .. dimensional coordinate, y	

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>FORMAT</u>
BB_2^T	law of the wake - dimensional coordinate, y_e	E 10.3
BB_3^T	laminar viscosity	
BB_4^T	eddy viscosity fit dimensional coordinate, y	
BB_5^T	law of the wall - streamline coordinate, Ψ	
BB_6^T	law of the wake - streamline coordinate, Ψ_e	
BB_7^T	eddy viscosity fit streamline coordinate, Ψ	
FLELIN	Lewis laminar number	E 10.3
FLETIN	Lewis turbulent number	
PRALIN	Prandtl laminar number	
PRATIN	Prandtl turbulent number	
SCHLIN	Schmidt laminar number	
SCHTIN	Schmidt turbulent number	
$Y(N)$	physical coordinates for input profile normal to body	
*INDPRI	print interval x direction	I 10
NSR	# shock regions	
JINPUT	# times to bypass step size control halving	
THPER	% to be used to establish boundary layer thickness	E 10.3

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>FORMAT</u>
*ASR(N)		E 10.3
BSR(N)	coefficients for N th shock region geometry, N = 1, NSR	
CSR(N)		
Z1R(N)	ζ_1 boundary for N th shock region, N = 1, NSR	
Z2R(N)	ζ_2 boundary for N th shock region, N = 1, NSR	
INDTYP(N)	geometric type, N = 1, NSR	I 3
INDCOO(N)	end coordinate indicator, N = 1, NSR	I 3
INDLAS(N)	last shock region indicator, N = 1, NSR	I 4
Note: ASR(N)-INDLAS(N) are repeated for each shock region, N = 1, NSR		
*INDP	body subregion pressure type	I 10
INDR	body subregion geometric type	
INDLR	last region indicator	
INDLSR	last subregion indicator	
INDS5	spare	
INDS6	spare	
INDS7	spare	
OGIVEH	coordinates of center of body arcs or ogives	E 10.3
OGIVEK		
P(J)	coefficients for pressure formulas, J = 1,8	
CC(K,I)	coefficients for species mass fractions at wall, K = 1,5; I = 1,NS-1	

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>FORMAT</u>
HH(J)	coefficients for total enthalpy at wall, J = 1,5	
R _N	body radius	
X _L	cumulative x limit for each subregion	
CONEAN	cone angle	

Note: INDP-CONEAN are repeated for each body subregion

* Indicates that this field is the first one on the input card, and subsequent fields until the next * are continuous through column 70 for as many cards as are necessary.

V. PROGRAM FEATURES

A. Step Size Control

The purpose of step size control is to allow the program to run as fast as possible within stability and truncation requirements.

1. Ψ direction

Whenever the number of Ψ intervals becomes twice the original input amount (as a result of swallowing) the program halves the number of points. This is of significance since the permissible stability control step size in the x direction varies with $(\Delta\Psi)^2$.

2. x direction

The program takes two single steps and compares the velocity, species and enthalpy with the results of a single step of double size. Depending on input limit tolerances, the step size is doubled, unchanged or halved. However, the step size is always subjected to the stability control for maximum size.

If a negative velocity, specie, enthalpy or temperature has been calculated, or depending on a sense switch being on, if a 5% out of monotonicity in u or H develops, the step size is halved up to seven times before the program stops. Provision has been made for overriding the halving for JINPUT times, so as

to allow zero species to fill in as a result of production and of diffusion in the Ψ direction. The above procedure for doubling, continuing and halving the step size which applies to the boundary layer also applies individually to u and c_i in the streamline calculations.

B. Stability Control

The expansion of the step size in the x direction which is described under "Step Size Control" is subsequently scrutinized to insure stability.

Δx is compared to $\frac{\Delta \Psi^2}{2\sigma_n}$ and accordingly as it is less than (or equal to) or greater than, it is accepted or halved.

$$\sigma_u = r_m^\epsilon r_m^\epsilon \rho_n u_n A_1^L \mu_n^L + A_1 \left[\frac{\bar{\mu}_{n+1/2}^T + \bar{\mu}_{n-1/2}^T}{2} \right]$$

$$\sigma_H = r_m^\epsilon r_m^\epsilon \rho_n u_n \left[A_4^L \frac{\mu_n^L}{P_{r_n}^L} + A_4^L \frac{\bar{\mu}_{n+1/2}^{-T} + \bar{\mu}_{n-1/2}^{-T}}{2} \frac{1}{P_{r_n}^T} \right]$$

$$\sigma_C = r_m^\epsilon r_m^\epsilon \rho_n u_n \left[A_3^L \frac{\mu_n^L}{S_{C_n}^L} \frac{D_k^L}{D_n^L} + A_3^T \frac{\bar{\mu}_{n+1/2}^{-T} + \bar{\mu}_{n-1/2}^{-T}}{2} \frac{1}{S_{C_n}^T} \frac{D_k^T}{D_n^T} \right]$$

Δx must be \leq the minimum of $\frac{\overline{\Delta \Psi}^2}{2\sigma_{u \ln} T}$, $\frac{\overline{\Delta \Psi}^2}{2\sigma_{H \ln} T}$, $\frac{\overline{\Delta \Psi}^2}{2\sigma_{C \ln} T}$ in order to insure stability.

C. Conversion from Physical to Streamline Coordinates

1. The various input profiles are given as functions of the physical coordinate Y , which may be unevenly spaced. The number of Ψ intervals equals the input number of Y intervals and is equal to $L - 1$.
2. The streamline coordinate $\Psi = \int_0^Y \rho u r^\epsilon dy$ is calculated and then equispaced over the thickness.
3. The corresponding Y 's are developed from

$$Y = \int_0^\Psi \frac{1}{\rho u r^\epsilon} d\Psi \text{ with } Y(0) = 0.$$
4. A table lookup routine is used to linearly interpolate the dependent variables, u , C_i , H .
5. The calculated value of Y_{max} is compared with the input value of Y_{max} (see Input, Section IV.D). If the difference is greater than .1%, the following on line message is printed: "YCALC(L) = Y(L) = ".

D. Continuation Procedure

At any time during the running of the program sense switch 4 can be depressed and an on-line punch of the continuation quantities will occur. This makes it possible to continue the program at a later date.

When the program is continued with on-line punched cards,

RESTAR must be set equal to zero.

E. Output Control

Based on the input quantity INDPRI, output at every n^{th} station is obtained and based on NPSI, output at every m^{th} Ψ level. There is also provision in the streamline calculation to obtain output whenever the step size doubles.

F. Streamline Control

An initial value or a complete body problem can be solved depending on whether we input a 0 or 1 for INDSTR. Thus there are two possible starting points for a streamline calculation:

1. The starting profile at the starting point on the body.
2. The starting profile at the point of intersection of the streamtube and the shock.

In addition, the first option can be additionally modified to constant edge conditions, i.e., $u_{m+1}(L+3) = u_e$, $c_{i,m+1}(L+3) = c_{e,i}$, $H_{m+1}(L+3) = H_e$, by setting INDSTR = - 1.

G. Sense Switch Control

Is available for diagnostic and monitoring purposes and can be specifically determined by consulting the source language.

H. Additional Programming Logic

1. Momentum equation

a. In order to step forward the required ρ
is obtained as follows:

$$h(\Psi) = H(\Psi) - \frac{u^2(\Psi)}{2}$$

Using as our first approximation for T

$$T_i(\Psi) = \left[h - C_O \frac{D_{O2}}{2m_O} - C_N \frac{D_{N2}}{2m_N} - \frac{C_{NO}}{m_{NO}} \left(\frac{D_{N2} + D_{O2}}{2} - D_{NO} \right) \right] \frac{C_{NO^+}}{m_{NO^+}}$$

$$\left(I_{NO} + \frac{D_{N2} + D_{O2}}{2} - D_{NO} \right) \frac{1}{C_p}$$

calculate

$$\Lambda_j = \left(\frac{T_j^V}{T} \right) \left/ \left(e^{T_j^V/T} - 1 \right) \right.$$

and solve for T_{i+1}

$$h = RT_{i+1} \left[\sum_j \frac{C_j}{M_j} \left(\Lambda_j + \frac{7}{2} \right) + \frac{5}{2} \sum_k \frac{C_k}{M_k} \right] + C_O \left(\frac{D_{O2}}{2m_O} \right) + C_N \left(\frac{D_{N2}}{2m_N} \right)$$

$$+ \frac{C_{NO}}{m_{NO}} \left(\frac{D_{N2} + D_{O2}}{2} - D_{NO} \right) + \frac{C_{NO^+}}{m_{NO^+}} \left(I_{NO} + \frac{D_{N2} + D_{O2}}{2} - D_{NO} \right)$$

$$j = O_2, N_2, NO, NO^+$$

$$k = O, N, e$$

if $\left| \frac{T_{i+1} - T_i}{T_{i+1}} \right| < \epsilon_T$ we use T_{i+1} , otherwise continue the iteration cycle at Λ .

- b. $p(x)$ is chosen according to the indicator for the subregion and we compute

$$\rho = \frac{p}{RT \sum_i \frac{c_i}{M_i}}$$

- c. Because the nature of the u profile is not linear in the neighborhood of the wall, $u_{\frac{1}{2}}$ is obtained by assuming $u = a\Psi^2 + b\Psi$ and determining a and b from u_2 and u_3 . The derivative at the $1/2$ point is obtained by differentiating u .
- d. If a velocity is negative or if both sense switch 5 is depressed and a 5% out of monotonicity occurs, then the step size is halved and the calculation repeated. If after halving seven times, the velocity is still negative, the program stops.

2. Species equation

If a species is negative, the step size is halved and the calculation repeated. If after halving the step size seven times, a species is still

negative, the program stops. $C_{\frac{1}{2}}$ is obtained by assuming $C = C_w + a\Psi^{\frac{1}{2}} + b\Psi$ and determine a and b from C_2 and C_3 . The derivative at the 1/2 point is obtained by differentiating C.

3. Enthalpy equation

Halving of the step size will result when a negative enthalpy occurs.

If after seven halvings, this condition persists, the program will halt.

$H_{\frac{1}{2}}$ is obtained by assuming $H = H_w + a\Psi^{\frac{1}{2}} + b\Psi$ and determine a and b from H_2 and H_3 . The derivative at the 1/2 point is obtained by differentiating H.

VI. PROGRAMMED STOPS AND PAUSES

<u>PROGRAM</u>	<u>STOP NO.</u>	<u>MEANING</u>
Displayed in Address Field of Storage Register		
MAIN	17	$\epsilon < 0$
	77	Shock geometry is cone followed by parabola
	310	$A_i^{L,T} < 0$
	650	$K_s < 1$
	2575	$LP_2 \geq 99$
	2655	$L > 2$ (LORIG)
CEDGE (J)	60	$J < 1$
	71	$C_{w,i}$ or $\sum C_{w,i}$ is in error
RADBDY	550	$\epsilon < 0$
STEPSZ	603 (Pause)	Δx has been halved 7 times Additional 7 times can be obtained by depressing START
UCSTRE	21	$\frac{D_\infty}{2}$ is not in any shock region
UEDGE (J)	30	$J < 1$
	50	$J > 3$

VII. OPERATING PROCEDURE

A. Original Run

Standard 7094 Fortran operating procedure is employed with RESTAR = 1.0E0. Program language is FORTRAN II.

B. Continuation Run

Remove subregion parameter cards that were read in during previous run. Insert continuation cards after problem input and ahead of remaining subregion cards. Set RESTAR = 0E0.

There is present the option of modifying the original input or the continuation input by repunching the appropriate fields or cards. It should be noted that the continuation cards are necessarily in octal in order to preserve full significance.

APPENDIX 1

DIMENSIONS OF VARIABLES

APPENDIX 1DIMENSIONS OF VARIABLES

The units of the variables which appear in the equations are listed below. The conversion constants required for consistency are indicated.

A. Momentum Equation

1. The units for the quantities involved are

$$\rho = \frac{\text{lb sec}^2}{\text{ft}^4} \text{ or } \frac{\text{slug s}}{\text{ft}^3}$$

$$u = \text{ft/sec}$$

$$p = \text{lbs}/\text{ft}^2$$

$$\frac{dp}{ds} = \text{lbs}/\text{ft}^2, s \text{ is nondimensional}$$

$$\frac{dp}{dx} = \text{lbs}/\text{ft}^3, x \text{ is in feet}$$

$$\tau = \text{lbs}/\text{ft}^2$$

$$\mu = \frac{\text{lbs sec}}{\text{ft}^2}$$

$$\frac{d\tau}{dy} = \text{lbs}/\text{ft}^3$$

2. In order for ρ to have the units $\frac{\text{lbs sec}^2}{\text{ft}^4}$ R should be expressed in the following units:

$$\frac{\text{lb sec}^2}{\text{ft}^4} = \rho = \frac{p}{RT \Sigma C/M} = \frac{\text{lb}/\text{ft}^2}{R \cdot K \frac{\text{mole}}{\text{gm}}}$$

$$R = \frac{\text{gm ft}^2}{\text{K mole sec}^2}$$

$$= 8.31657 \times 10^3 \text{ joule (kilogram mole}^{-1}) \text{ } ^\circ\text{K}^{-1}$$

$$= \frac{1}{1.356} \frac{\text{ft lbs}}{\text{joules}} 453.6 \frac{\text{gm}}{\text{lb}} 32.2 \text{ ft/sec}^2$$

$$= 8.95805 \times 10^7 \frac{\text{gm ft}^2}{\text{K (kilogram mole) sec}^2}$$

$$= 8.95805 \times 10^4 \frac{\text{gm ft}^2}{\text{K (gram mole) sec}^2}$$

3. In order for T to have the units $^\circ\text{K}$ the following adjustments must be made:

$$T = \frac{h - \frac{D_{O_2}}{m_O}}{C_p} = \frac{\frac{\text{ft}^2}{\text{sec}^2} - \left(\frac{\text{ev}}{\text{part}} \right) \frac{1}{\text{gm}}}{\frac{\text{ft}^2}{\text{sec}^2 K}} = ^\circ\text{K} - \frac{\text{ev sec}^2}{\text{part gm ft}^2} ^\circ\text{K}$$

Taking the second term

$$\frac{\text{ev sec}^2 \text{ } ^\circ\text{K}}{\text{part gm ft}^2} \cdot 453.6 \frac{\text{gm}}{\text{lb}} \cdot 32.2 \frac{\text{ft}}{\text{sec}^2} \cdot \frac{1}{1.356} \frac{\text{ft lb}}{\text{joule}} \cdot \frac{1 \text{ joules}}{6.24 \times 10^{18} \text{ ev}}$$

$$= 1726 \times 10^{-18} \text{ } (^\circ\text{K})$$

Thus for all $\frac{D}{m}$ terms, this factor should be used, i.e.

$$\frac{D}{m} = 1726 \times 10^{-18} \left(\frac{\bar{D}}{\bar{m}} \right)$$

B. Species Equation

1. The units for the quantities involved are

$$\dot{w} = \frac{\text{lb sec}}{\text{ft}^4} \text{ which is derived from}$$

$$\dot{w} = \rho u \frac{dC_i}{dx}$$

2. ρ_{DO} should be of the same units as ρ for Eq. (7a),

p. 5 of GASL TR-246. Hence,

$$\rho_{DO} = \frac{\text{qm/mole}}{\frac{\text{particle}}{\text{mole}} (\text{ft lbs sec})^2} \left(\frac{\text{gm}}{\text{part}} \frac{\text{ft lb}}{\text{qm}} \text{ } ^\circ\text{K} \right)^{3/2}$$

$$= \frac{\text{qm}}{(\text{ft lbs})^{3/2} \text{ sec}^3 \text{ part}^{5/2}} \left(\frac{1}{453.6} \frac{\text{lb}}{\text{gm}} \right)^{5/2} \left(\frac{1}{32.2} \text{ sec}^2/\text{ft} \right)^{5/2}$$

$$= 3.87871 \times 10^{-11} \frac{\text{lbs sec}^2}{\text{ft}^4} \bar{\rho}_{DO}$$

Similarly for ρ_{DN} , ρ_{DNO} , ρ_{DE}

3. σ , γ , \bar{K} are dimensionless

4. A, B, C, K develop as follows (example for A shown below)

$$\frac{\text{ft}}{\text{gm/mole}} \left[\frac{1}{\frac{\text{gm}}{\text{mole}}} \frac{\text{cm}^6}{\text{part}^2 \text{sec}} \right] \left[\frac{\text{lb sec}^2}{\text{ft}^4} \right] \left[\frac{\text{lb sec}^2}{\text{ft}^4} \right]$$

$$A = \frac{\text{mole}^2 \text{cm}^6 \text{sec}^3 \text{lb}^2}{\text{ft}^7 \text{gm}^2 \text{part}^2} \left[453.6 \frac{\text{gm}}{\text{lb}} \right]^2 \left[\frac{1}{2.54} \frac{\text{in}}{\text{cm}} \frac{1}{12} \frac{\text{ft}}{\text{in}} \right]^6 \left[6.0251 \times 10^{23} \frac{\text{part}}{\text{mole}} \right]$$

$$= 4.9778 \times 10^{21} \frac{\text{mole sec}}{\text{part}} \bar{A}$$

5. D, E, F develop as follows (example for D shown below)

$$\frac{\text{ft}}{\text{gm}} \frac{\text{cm}^3}{\text{part sec}} \frac{\text{lb sec}^2}{\text{ft}^4}$$

$$D = \frac{\text{mole cm}^3 \text{ sec lb}}{\text{ft}^3 \text{ gm part}} 453.6 \frac{\text{gm}}{\text{lb}} \left(\frac{1}{30.48} \frac{\text{ft}}{\text{cm}} \right)^3$$

$$= 1.6018 \times 10^{-2} \frac{\text{mole sec}}{\text{particle}} \bar{D}$$

6. Equation (9), p. 7 of GASL TR-246 would yield (neglecting $\frac{M_O}{\rho}$)

$\sum \dot{w}_i = \frac{\text{mole sec}}{\text{part}}$ but $\frac{\text{lb sec}}{\text{ft}^4}$ are required hence

$$\frac{\text{mole sec}}{\text{part}} \rho \frac{\text{lb sec}^2}{\text{ft}^4} 32.2 \text{ ft/sec}^2 6.0251 \frac{\text{part}}{\text{mole}} \times 10^{33} \frac{1}{L} \text{ ft}$$

$$\dot{w} = 1.94008 \times 10^{25} \frac{\rho}{L} \left[\quad \right] \frac{\text{lb sec}}{\text{ft}^4} \dot{w}_i$$

7. In A, B, etc. $\frac{D_{O_2}}{KT}$ should be dimensionless. This can be accomplished by setting

$$\frac{D_{O_2}}{KT} = \frac{\frac{\text{ev}}{\text{particle}}}{\frac{\text{ft lbs}}{\text{°K}}} \times 1.356 \frac{\text{joules}}{\text{ft lb}} 10^7 \frac{\text{erg}}{\text{joule}} \frac{1}{1.6021 \times 10^{-12}} \frac{\text{ev}}{\text{erg}}$$

$$= .846389 \times 10^{19} \left(\frac{\overline{D}_{O_2}}{KT} \right)$$

C. Energy Equation

1. The units for the quantities involved are:

$$H = - \frac{\text{ft}^2}{\text{s}}$$

$$h_i = \frac{\text{ft}^2}{\text{sec}^2}$$

$$D_{Ki} = \frac{\text{ft}^2}{\text{sec}}$$

Appendix II
Total No. of Pages-74

APPENDIX II

PROGRAM SOURCE LANGUAGE

```

L I P T S I C K A U L A C I C , A S H ( I C ) , E I I ( 6 C ) , B 2 T ( 6 0 ) , B 3 T ( 6 0 ) , B 4 T ( 6 0 ) , B 5 T ( 6 0 )
1 . b 6 T ( 6 0 ) , r 7 I ( 6 C ) , R C I 2 ( I C ) , B L U C K ( 6 0 ) , B S R ( 1 C ) , C ( 6 0 , 1 0 ) , C I 2 ( 1 0 ) ,
2 C I 5 , 1 C ) , C A C L C ( 6 C ) , J C I , C E ( I C ) , P R E C ( I C ) , C M I ( I C ) ,
3 C H 2 4 C , 1 C ) , C S I 6 0 , J C ) , C S K ( 1 C ) , L C L F 1 2 4 C J , W K L G C , 1 0 ) , D R E T ( 6 0 , 1 0 ) ,
4 t L E R S ( 6 C ) , t R E C I , F R A C L C ( 6 C ) , F M I C C I , F H S ( 6 C ) ,
S F K P S ( 6 C ) , F L E M I C C I , F L E M I T C C , F L H I C C I , F L I C C C I ,
C H I L C C I , F L O Z I C C I , F P U L I C C I , F P U L I M C C I
C I V E S S I C H , F U L T I P ( 6 0 ) , F S R ( C C I ) , F S I 6 0 , 1 C ) , F S H I 1 2 ( 1 0 ) , F S K R A ( 1 0 ) ,
A T R E K C A C I , F S R K C ( 1 C ) , F S R K H C ( 1 C ) , F S R K H C ( 1 C ) , I N C L C I C I C I ,
Z I L L A S ( 6 C ) , I R U S S C I , I N U Y F ( 1 0 ) , F ( 6 ) , P K U R A C C I ,
3 P K A T ( C C I ) , P R A T ( 6 0 ) , P S ( 6 ) , P S A L L ( 6 C ) , F S I C C I , R M U ( I C ) ,
4 R H U C A T ( 6 C ) , R S ( 5 0 ) , S C L ( 6 C ) , S C T ( 6 C ) , S I G R A C ( 6 C ) ,
S I G R A M ( 6 C ) , S I G R A U ( 6 C ) , T A C C I , T A U F ( 6 0 ) ,
C T I T L E ( 1 2 ) , T I T L E ( 2 ) , T I T L E ( 3 ) , T I T L E ( 4 ) , T M ( 6 0 ) , U F ( 6 0 )
L I P T S I C K U A C L C ( 6 C ) , U P ( C C I ) , U M I ( 6 C ) , U M 2 ( 6 0 ) , U S ( 6 0 ) ,
I M D U T ( 6 C , 1 C ) , X L S ( 5 0 ) , Y ( 6 C ) , Y C A L C ( 6 C ) , Y I R C ( 1 0 ) , Z I R ( I C ) .

```

```

1 REAL INPUT TAPE 5,5CCC,TITLE1,TITLE2,TITLE3
   WRITE C1UTFL TAPE 6,5CC1
   WRITE LLUTFL TAPE 6,5CC2
   WRITE C1IPFL TAPE 6,5CC3,TITLE1,TITLE2,TITLE3
   READ INPUT TAPE 5,2,LP2,NS,NSPSI,INDSTR,FNDS5L,FNDSH,IAIT,IAIL,ALT
   1,A2,A3L,A3T,A4L,A4T,A5L,A5T,((CN,1),N=1,2),((C(N,1),N=1,
   2,LP2),I=4,*)
2 FURCAT (411C,2E1C,3,I1C/(7E10,3))
L=L+2-2
END

```

PAGE 2

```

CPMRBL
LCRFL=L+1
ASMI=N-1
READ INPUT TAPE 5,S,RESTAR,DELTAX,EPSI,EPSSU,EPSSC,EPSSM,EPSSIT,
1(FHIN,A=1,LP2),FK
CELEXSI=CELTAX
5 FLRPAIT (7E1C.3)
REAL INPUT TAPE 5,5,CPE,FL,FSh,GMN,P,E,RHCE,RHCSIG,(CE(1)),I=1,NS1
1,RN,UNF,UNCLIF,XS,(15,225,21L,UNN),N=1,LP2
REAL INPUT TAPE 5,5,F,Fb,FC,TESTA,AB1,AB2,AB3,I,AB4,I,AB5,I,AB6,I
1AB7,I,EB1,BE2,I,EB3,I,BE4,I,BE5,I,BE6,I,BE7,I,FLELIN,PRALIN,PRATI
2NSCHLH,SCHTLN,(YH),H=1,LF2,I
LAII ((FLFC(1))
5 LL 11 H=1,LF2
C(H,7)=FP(7)/FP(C(H,6))
11 C(H,3)=1.0.C(H,1)-(C(H,2)-C(H,4)-C(H,5)-C(H,6))-C(H,7)
UEFL(1)
1F((FLCSR)) 13,13,16
12 LL 15 I=1,6,5
15 CE(1)=(LL,1)
1C FP=F(F(L)
RS=225
1F((FLSI)) 17,1E,1S
17 STCF 17
18 RS=1,C
19 KS=C
20 REAL INPUT TAPE 5,25,INPRI,RSK,JINPUT,IMPER,(ASK(N),BSR(N),CSR(N))
1,LLK((J,22R(N),INTYF(N),INLLCC(N),INLAS(N),N=1,NSR)
25 FORPAIT(311C,E10.3/(5E10.3,213,14))
IF((INCTYF(1))-6132,32,2C
30 ASR(1)=C
CSR(1)=C
STACIS=(1.6666*KHLF)/(RHCSIG-RHCE)*RS
BSR(1)=.5/(RN+STA(1))
32 N=2
62 IF((INCLASS(N-1))=11)65,65,65
65 IF((INCTYF(N-1))=11)66,7C,7C
C KELICK N-1 IS A CCAT
66 IF((INCTYF(N-1))=11)675,7C,7C
C REGICN N-1 IS A FARAECLA
70 IF((INCTYF(N-1))=11)81,84,87
C CGNE CINE
75 42R(N-1)=ASK(N-1)*21R(N-1)+ESR(N-1)
76 BSR(N)=22R(N-1)-ASR(N)*21R(N-1)
EC IC 55
C CCNE FARAECLA
78 STCF 77
C PARABCLA CGNE
81 22R(N-1)=.5/BSR(N-1)/ASK(N)*CSR(N-1)
IF((INULLC(N-1))=11)82,72,7E
82 21R(N-1)=ASR(N-1)+BSR(N-1)*(22R(N-1)-CSR(N-1))*2
GC IC 76
C PARABCLA FARAECLA
84 22R(N-1)=(BSR(N-1)*CSR(N-1)-BSR(N)*CSR(N))/(BSR(N-1)-CSR(N-1))
IF((INULLC(N-1))=11)85,75,55
85 21R(N-1)=ASR(N-1)+BSR(N-1)*(22R(N-1)-(CSR(N-1))**2
GC IC 55

```


四三

PAGE 4

PAGE 5

```

CHMREL
2111/SCR((A+1))+OKDT((A,11))/SC((N))**((C((A+1,11)-C((A,11))/DELTAP-DSQR2))
IF(I#2-S.8) 2424,2424,2420
2420 CNTK,I)=C((A,11)+DELTAX*WCCT((A,11)/RHC((A,11)+DELTAX*RS*DSCRIP/DELTIA
IF
      GOTO 2425

2424 CMIN,(I=C((A,11)+DELTAX*MLC((A,11)*A2/RHC((A,11)+DELTAX*RS*DSCRIP/C
      LEL14F
2425 LCL14LE
      ECELEG(I) IS CMAE:
      FF122-S.8) 243C,243L,242E
242E CALL CEGET(S,1,1)
      GL 1C 2431
243C CALL LEGET(1,C,C)
2431 CALL CELE(12,C,C)
250C CALL PSLLI
      FF1A2) 25C1,25C2,25C2
2501 CALL CELE(15,1,LF2)
2502 FF1JS-2) 2e0b,25C5,25C5
2505 IF(L1CEL-2) 25C6,25C6,25C6
2506 FF1EFS(1) 251C,251E,251C
2510 IF(ABS(FFM(L+1)-FFM(L-1))>EPSILH) 2518,2518,2563
2518 IF(EFSILC) 2520,2520,252C
2520 IF(ABS(FLM(L+1)-FLM(L-1))>EPSIL) 2528,2528,2563
252t IF(1A2) 26L,2525,2525
2525 IF(EPSIC) 253C,256C,253C
253C LC 254C L=1,5
      IF(ABS(FCP(L+1,1)-CP(L-1,1))/CP(L+1,1))-EPSIC) 2540,254C,2563
254C CONTINUE
256C GL 1C 260E
2563 FFM(L+3)=FRE
      PRINT 2565,L,UM(L-1)+LM(L+1),(CM(L-1,11)+CM(L+1,11),I=1,5),
      1FFM(L-1),FFM(L+1)
2565 FORMAT(4F-,L=13,1P7E13.5/1F7E13.5/
      CALL LCSTRE
L=L+1
      LF2=LP2+1
      UM(L-4)=UL(L-4)/UL(L-1)*(LP(LF2))
      UM(L-3)=UL(L-3)/UL(L-2)*(LP(LF2))
      UM(L-2)=UL(L-2)/UL(L-1)*(LP(LP2))
      UM(L-1)=UL(LP(LP2))
      CP(L)=LP(LF2)
      UM(L+1)=UL(LP(LP2))
      IF(EPSIC) 2567,256E,2567
2567 LC 257C L=1,NS
      CM(L-4,(I=L(L-4+1)/C(L-1+1)*CP(LP2),11
      CP(L-3,(I=C(L-3,11/C(L-1,1)*CM(LP2),11
      CM(L-2,(I=C(L-2,11/C(L-1,1)*CM(LP2),11
      CP(L-1,1)=LP(LF2),11
      CP(L,1)=LP(LH2),11
      CP(L+1,1)=CP(LLP2),11
      EC 1C 2573
2568 CL 2569 L=1,NS
      CP(L,1)=CP(LLP2),11
      2569 CP(L+1,1)=LP(LP2),11
      2573 CALL LCAPRC(3)
      FF(LLP2-S9) 26C0,2575,2575

```

CHANNEL

٢٤

```

2675 STCF 2575
2600 LC 26C4 N=1.LF2
L(N)=LP(N)
26C2 CG 26C2 I=1..N
26C2 CH(I,J)=CP(I,N,I)
26C4 PH(I,N)=FP(I,N)
LALL STACK(1$)
X=X+CELIAX
KS=KSP
LL LC 265C
26CF CALL STEPSZ
261C JF(L1)STF-27CC,6CC,27CC
265C JF(L1+1-24L1)G127CC,26CC,2655
2655 STCF 2655
266C EC 267C N=2,LCRPI
N2=2*H-1
L(N)=L(H2)
2665 CC 2665 I=1..N$5
C(N,I)=C(N2,I)
FH(N)=FT(H2)
PSI(N)=FSI(H2)
267C Y(N)=Y(H2)
L=L(F1C
LF2=L+2
L(LF2)=L(LCRPI)
CC 2675 I=1..N$5
C(LF2,I)=C(LCRPI,I)
FH(LF2)=FH(LCRPI)
CELLTAP=2.0*LELTAF
FSI(LF2)=PSI(LCRPI)+CELIAT
CALL CCPRG(3)
2680 PRINT 2665,J$5
2685 FCRMAT(21H,NC FSI PTS 1/2 JS=16)
2700 IF(L1)FSU1275C,275C,3C0C
2725C IF(X-XL12755,2775,25CC
2755 IF(SENSE SWITCH-4)276C,70C
276C FUNCH 2761.KS,(INUPSI(N),N=1,KS),L,LFP2,INDFSU,INCPL,INOR,INLR,INCLS
1R
2761 FCRMAT(1415)
2763 PUNCH 2765,X,DELIAX,(U(N),N=1,LP2),
1 ((CH,I,J),N=1,LP2),I=1,NS1*(FH(H)*N=1,LP2)*(PSI(N)*N=1,LP2),
2DELTAF,(Y(N),N=1,LP2),I=1..22,21..22,CGIVEH,CGIVEK,(P(J),J=1..8),
3((CC(I,J),K=1..5),I=1..NS1*(H(J),J=1..5),RN,XL,CUNEAN,(PSI(J),J=1..8),
48),I=1..KS1,(RS(N),N=1..KS),XLS(N),N=1..KS1,ALPHA,XS,RS,RSW
CL 1C 303C
2765 FORPAT(6C12)
2775 CELIAS=CELIAX
2800 INDFSL=1
GC 1C 7CC
2900 CELIXS=CELIAX
DELIAK=CELIAX-(X-XL)
X=X-CELTIXS+DELIAK
GC 1C 2800
3000 IF(INCLSR)310C,31CC,3C20
302C IF(INDLRI)310C,31CC,3C3C
3C30 X=X-CELIAX

```

CONTINUOUS

PAGE 7

STORAGE NO.1 USED BY PROGRAM

LEL CCT E4IC,
2117 23203 CCT
LEL CCT E4IC,
2117 23203 CCT

SUMMARY STATEMENT IN SUPPORT OF APPEARING PERSONS

COMMREL

VIMU 23244 55315
22R 2323C 55276

21 23243 55313
22L 23231 55277

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	LEC	LCC	LEC	LCC	DEC	OCT	DEC	OCT	DEC	OCT
DTLNS	211e	041C4	15C9e	211e	041C3	140FSU	2114	04102	1NDLSR	2112
INDSS	2111	C4C77	15C9e	2110	04C76	1NUST	2109	04075	LURG	2107
LCRPA	211C	C4C72	15C9e	210e	C4C71	N	2104	0407C	SDELIP	2102
SLCP1	2101	C4C65	SLCP2	210C	C4C64					

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LCC	EFN	LCC	EFN	LCC	EFN	LOC	EFN	LOC
B12	612	04C31	t15	5	04C24	8IP	25	04022	8JFK	500
B12JT	26F5	04CC5	612MD	2761	04000	812MD	2765	03777	814S9	5000
B14SA	5C62	C3765	E14SE	5C63	03746				5C01	03775

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	LEC	CCT	LEC	CCT	DEC	OCT	DEC	OCT	DEC	OCT
I1	2C74	C4C32	21	1550	C3706	31	2C02	03722	41	32767
CJUC	2C65	04C45	1561	2C8e	04046	C1G3	2C87	J4047	C1G5	2088
CJ67	2C5G	C4C52	1561	2C91	04C52	C1G9	2C52	04C54	C1100	2093
CJ106	2C55	C4C57	151C7	2C96	C4060	C1109	2097	C4C61	C1200	2098
CJ245	1223	C2321	15247	1296	C2412	C1235	1232	02320	D4QH	353
U1444	1225	C2311	15441	1461	02665	U144R	1472	027C0	C1454	1501
U165L	1667	C3227	1511	342	00526	E10	363	00553	E112	460
E117	496	C076C	E119	522	C1C12	E11C	587	01113	E13D	993
E150	1498	02732	E11CF	366	0056C	E113K	1C67	02C53	E114A	1289

LOCATIONS OF NAMES IN TRANSFER VECTOR

	LEC	UCT	LEC	CCT	DEC	OCT	DEC	OCT	DEC	OCT
ATAN	1C	00C12	CEGE	12	00014	CUNPRG	7	00007	EXIT	23
HSLLT	1e	COC22	PRTKH	11	00C13	RACBLY	14	C0C16	SQRT	8
STEPSZ	21	C9025	LCSTR	2C	00024	UEDGE	16	00020	VISLAT	15
(F11)	5	00005	(FPT)	0	CCC00	(RTNI	3	C0CC3	(SCHI	22
(SLC)	6	C0006	(SPHI	15	C0C23	(STM)	4	00004	(TSH)	1

ENTRY POINTS TO SUBROUTIN. & NOT OUTPUT FROM LIBRARY

	CEGE	CCAFRG	EXIT	EXP(3)	HSOLUT	PTERM	RABOY	SQRT	STADUT	SLI)
		UEGE	VISLAT	HCUCIR	(F11)	(FPT)	(RTNI	(SCHI	(SLI)	

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

	IFN	LLC	EFN	1FN	LCC	EFN	1FN	LOC	EFN	LOC
1	21	COC44	9	70	CC50C	11	72	00507	13	00530
16	77	00542	17	80	CC551	18	81	C0555	19	00562
30	90	C0640	32	94	007C	63	95	00673	65	00676
7C	58	C07C7	75	99	00715	76	100	00723	78	00733
82	105	CC745	64	107	0C761	85	1C9	00777	87	01031
89	116	01C43	90	120	0114	91	121	01121	92	01125

CHMR8L

PAGE 10

99	126	C1145	1CC	126	C1152	175	129	01156	180	175	01223	210	185	01451
300	186	C1455	3C5	167	C1457	310	188	01462	315	189	01464	325	190	01470
335	191	C1474	345	152	C150C	355	193	C15C4	365	194	01510	375	195	01514
400	196	C1520	51C	157	C1523	520	213	01622	521	214	01626	523	216	01645
526	216	C1662	54C	215	C1664	545	221	01672	550	222	01704	600	225	01715
640	226	C1717	65C	227	C1723	66C	228	C1725	661	230	01742	662	231	01747
6624	233	C1762	66C	235	C1767	664	238	C2C1C	667	240	02022	668	241	02026
6775	242	C2C3C	66C	243	C2C4C	7CC	245	C2C54	800	246	02056	1700	247	02067
1900	244	C2C74	2CCC	245	C2D72	200C	251	C2104	2009	253	02123	2010	254	02161
2250	254	C2217	230C	257	C2254	2350	256	02257	2400	259	02262	2410	260	02266
2414	261	C2274	241C	264	C232C	241C	265	C2332	24164	266	02330	2417	267	02347
2418	264	C241C	241C	270	C24t3	244C	272	02545	2424	274	02564	2425	275	02601
2422	277	C2C3C	243C	275	C2C3C	2431	280	02634	2500	281	02644	2501	283	02644
2502	284	C2C54	25C1	285	C2C57	25C8	286	C2663	2510	287	02666	2518	288	02676
252C	286	C2701	252C	29C	C2711	2529	291	C2715	2530	292	02717	2540	294	02737
256C	295	C2742	25C3	29C	C2744	2567	316	03044	2570	322	03071	2568	324	03100
258C	326	C3107	2571	327	C3115	2575	329	03124	2600	330	03126	2602	333	03144
2604	334	C3151	26C1	335	C316C	2610	340	03167	2650	341	03174	2655	342	03205
266C	343	C3207	26C1	347	C3242	267C	350	03256	2675	355	03311	2680	360	03334
270C	364	C3544	275C	365	03347	2755	364	03353	2760	365	03355	2763	371	03407
2775	420	C362C	280C	421	C363C	290C	423	03633	3000	427	03647	3020	428	03653
303C	429	C3657	31CC	432	C3665	3150	437	037C1						

CEDEGEI-J. NISTANT, MENDI

PAGE 1

```

DIMENSION AC12(10),ASR(10),PLT(60),B3T(60),B4T(60),B5T(60),
     B6T(60),B7T(60),B2C(10),BLOCK(60),BSR(10),C(60,10),C12(10),
     CC(5,10),CCALC(60,10),CE(10),CM(60,10),CM1(10),
     CM2(60,10),CS(60,10),CSR(10),DCOP12(10),DKDL(60,10),DKCT(60,10),
     EDENS(60),FH(60),FHACLC(60),FHM(60),FLN2(60),FHS(60),
     FKPSI(60),FLEWL(60),FLEM(60),FLNO(60),
     FLNOD(60),FL02(60),FM(10),FMU(60),
     DIMENSION FMUT(60),FSM(60,10),FSM1(60,10),FSM2(10),FSKRA(10),
     FSKRC(10),FSKRM(10),HMI(5),IMDCQ(10),
     INDLAS(10),INDP(50),IMDTY(10),P(8),PRDIRA(60),
     PRAL(60),PRAT(60),PS(10,50),PSCALC(6C),PSI(60),RHO(60),
     RHOCAL(60),RN(50),SCL(60),SCI(60),SIGMAC(60),
     SIGMAM(60),SIGMA(60),TAUM(60),TAUP(60),
     TITLE(12),TITLE2(12),TITLE3(12),TH(12),UI(60),
     UU(60,10),V(60,10),V1(60,10),V2(60,10),
     DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(6D),
     WOOT(60,10),XLS(50),Y(60),YCALC(60),YTHC(10),ZIR(10),
     ZZR(10)

```

CALCULATION OF THE NUMBER OF SPECIES

```

J=J
NSTART=NSTART
NEND=NEND
IF(J=91) 40,100
10 SUMCW=0.0
20 IF(J=51) 11,79,50,
30 00 55 1=1.6

```

SUBROUTINE CEDGE(IJ,NSTART,MEND)

PAGE 2

```

55 CM(1,1)=CC(1,1)+CC(2,1)*XRN+CC(3,1)*XRN+2*CC(4,1)*XRN+3*CC(5,1)*
1XRN+0.4
CM(1,7)=FM(7)/FM(6)*CM(1,6)
DO 62 I=1,NS
  IF (CM(1,1)) 70,60,60
  60 IF (CM(1,1))-1.0) 62,62,70
  62 CONTINUE
  63 DO 65 I=1,NS
  65 SUMCW=SUMCW+CM(1,I)
  66 IF (SUMCW-1.0) 67,78,70
  67 IF (SUMCW-.999) 70,78,76
  70 PRINT 72,(CM(1,1),I=1,NS),SUMCW
  72 STOP 71
  73 FORMAT(4E13.4/4E13.4)
  74 RETURN
  75 STOP 60
  76 IF (J-31 90,200,300
  80 DO 100 I=1,NS
  90 CM(L+1)=MDOT(L,I)*DELTAX/RHO(L)/U(L)+C(L,I)
  100 CM(L+1)=MDOT(L,I)*DELTAX/RHO(L)/U(L)+C(L,I)
  RETURN
  200 DO 250 I=1,NS
  250 CM(L+1,I)=MDOT(L,I)*DELTAX/RHO(L)/U(L)+C(L,I)
  300 DO 350 I=1,NS
  350 CM(L+2,I)=MDOT(L,I)*DELTAX/RHO(L+2)/U(L+2)+C(L+2,I)
  RETURN
  1000 DO 1150 I=NSTART,MEND
    ROOTT(I)=SQRT(T(I))
    E1=1.+666667*EXP(-11390.772/T(I))+EXP(-110984.62/T(I))/3.
    E2=1.+6*EXP(-228./T(I))+2*EXP(-326./T(I))
    E4=1.+EXP(-178./T(I))
    B5=1.+2.5*EXP(-27498.424/T(I))+1.5*EXP(-41520.32/T(I))
    E1=1.-EXP(-2274./T(I))
    E2=1.-EXP(-3395./T(I))
    E3=1.-EXP(-2740./T(I))
    SF1=908.18699*ROOTT(I)*T(I)*T(I)*T(I)*B1/E1
    SF2=178.39307*ROOTT(I)*T(I)*T(I)*T(I)*E2
    SF3=934.13519*ROOTT(I)*T(I)*T(I)*T(I)*E4*EXP(-11062.98/T(I))/E3
    SF4=2237.1532*T(I)*ROOTT(I)*T(I)*T(I)*AC1*EXP(-29501.28/T(I))
    SF5=1461.9021*T(I)*ROOTT(I)*T(I)*B5*EXP(-56544.12/T(I))
    SF6=SQRT(F1SF4*SF5)
    BBAR=0.0
    DO 1130 M=1,20
      BTERM=SF4*1.E-6+BBAR*SF3*1.E-12
      AC=SF1*RM0(I)*1336.7206E-12
      ABAR=(-BTERM+SQRIF(BTERM+AC1)/(SF1*4.E-12))
      BTERM=SF5*1.E-6+ABAR*SF3*1.E-12
      AC=SF2*RM0(I)*5060.0386E-12
      BBAR=(BTERM+SQRIF(BTERM+AC1)/(4.E-12*SF2))
      IF (A0SF(BBAR1-BBAR1)-.000011120,1130,1130
      1131 BBAR=BBAR1
      PRINT 1300
      1300 FORMAT(4CH1ALPHA BAR AND BETA BAR DID NOT CONVERGE)
      CALL EXIT
      1120 BBAR=BBAR1
      CM(1,1)=SF1*ABAR*ADAR*2.77278E-15/RM0(I)
      CM(1,3)=SF2*BBAR*BBAR*2.428056E-15/RM0(I)

```

SUBROUTINE CEDGE(J,NSTART,NEND)

```

CM11,S1=SF3*ABAR,BBAR=2.600418E-15/RHO(1)
CM11,2)=SF4*ABAR=1.38639E-9/RHO(1)
CM11,4)=SF5*BBAR=1.214028E-9/RHO(1)
E12=EXP(((-32125.131/T(1))/
Q=-15966227E-11*T(1)*E12/E2/84
ENOP=SQRIF(Q)*SQRIF(CM(1,2))*SQRIF(CM(1,4))
CM11,6)=ENOP*233.902493
CM11,7)=ENOP/233.902493
1150 CONTINUE
RETURN
END(1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

```

EDGE FLOW START: NEED

STORAGE NOT LISTED IN PROGRAM

PAGE 6

TERMINAL LOCATIONS FOR WATERSIDE AREAS

OEC OCT 23210 55252

THE JOURNAL OF CLIMATE

SUBROUTINE CEDGE (J,INSTRT,HEND)

PAGE 5

STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
ROUTI	DEC 724	OCT 01324								

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
ABAP	664 01230		AC	01227	B1	662 01226	B4	661 01225	B5	660 01224
EBAKL	659 01223		BBAR	01222	ATERM	657 01221	E12	656 01220	E1	655 01217
t2	654 01216		E3	653 01215	E4	652 01214	ENOP	651 01213	1	650 01212
K	649 01211		Q	648 01210	SF1	647 01207	SF2	646 01206	SF3	645 01205
SF4	644 01204		SFS	643 01203	SUMCW	642 01202	SUMC1	641 01201		

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC
0128	72 01161	010K	1300 01156							

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
I1	626 01162	21	561 01061	31	567 01067	61	609 01161	C1G1	633 01171	
C1G2	634 01172	C100	635 01173	C103	636 01174	C104	637 01175	C1200	638 01176	
I212	639 01177	C1204	640 01200	0213	480 00740	0140E	129 00201	E18	103 00147	
E11	464 00720	E112	472 00730							

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
EXIT	DEC 4 0C04	EXP 3 00003	SQRT 2 00002	(FILE) 1 00001	(SPH)	0 00000				

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

EXIT EXP SQRT (FILE) (SPH)

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

	EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC
41	17 00051	50	19 00060	55	20 00062	60	24 00162	62	25 00154
63	26 00157	65	27 00164	67	29 00175	70	30 00202	78	36 00226
79	38 00232	80	39 00234	90	40 00240	100	41 00244	200	44 00262
25C	45 C0270	300	46 00302	350	47 00306	1000	50 00324	1130	74 00724
112	77 00741	1150	88 01052						

SUBROUTINE CONPRG(M)
SUBROUTINE CONPRG(K)

PAGE 1

```

COMMON A1L,A1T,A2L,A2T,A3L,A3T,A4L,A4T,A5L,A5T,A6L,A6T,
1A83T,A84T,A85T,A86T,A87T,AC12,AM12,ALPHA,ASR,AU12,B1T,B2T,B3T,
2B4T,B5T,B6T,B7T,B8T,B9T,B10T,B11T,B12T,B13T,B14T,B15T,B16T,
3BLOCK,BSR,BU12,C,C12,CC,CCALC,CE,CM,CM1,CM2,CONEAN,CP,CPE,CS,
4CSR,DCDP12,DEL,DELTAP,DELXOD,DELXST,DHDP12,DIST,DKDL,
5DKCT,DN2,DN2D02,DNU,D02,DSCRIP,DUDP12,EDENS,EPSI,
6EPSIC,EPSIM,EPSIT,EPSIU,ETA,FA,FB,FC,FEDA,FEDB,
7FEDC,FM,FM12,FHCALC,FHE,FHM,FHM2,FHS
COMMON FINO,FK,FKPSI,FL,FLLELM,FLLETIN,FLLETW,FLLETW,
1FLN2,FLNO,FLN0P,FLQ2,FM,SMUL,FMUL12,FMUT1P,FNDSSM,
2FNDSSL,FSH,FSHE,FSH1,FSH12,FSHP,FSK,FSKRA,FSKRC,FSKRK,
3FSKRE,FSKRF,FSKRP,FSME,FSMA,FSMN,FSMNP,FSMO,GAMM,HE,
4MM,IA1,I,IDEI,INDCOL,INDLAS,INDP,INDPS,INDR,
5INDSTR,INDSTR,INDTYP,JINPU,JS,KS,L,LP2,NPSI,NS,NSR,
6OGIVEM,OGIVEK,P,PE,PR,PRAL,PRAT,PRATIN,PRDIRA
COMMON PRO,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,QW,R,RESTAR,RHO,
1RHOCAL,RHOE,RHO12,RHOSTG,RN,RNS,RS,RSC,RSN,SCHLIN,SCHTIN,
2SCL,SCT,SMANGL,SIGMAC,SIGMAN,SIGMAU,
3STDAS,T,TAUT,TAUP,TESTRA,THETAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,TH,TVN2,
5TVDNO,TVDNO,P,TVO2,U,U12,UCAUC,UE,UINF,ULOLIM,UM,UM1,
6UM2,US,WCD01,X,XI,XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7YTHU,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETNET,REX,REN,FNUREX,FNUREW,CNUREW,CSUB,IPRINT,NCOUNT,JBYCTR
1,FSM12,T12,Y12,STRLL,STRUL,STRUL,RHO12,AAU,EHP,FSK15,
2FSM015,FSM15,FSMES

```

```

C
DIMENSION AC12(10),ASR(10),BIT(60),B2T(60),B3T(60),B4T(60),B5T(60),
1,B6T(60),B7T(60),B12(10),BLOCK(60),BSR(10),C(60,10),C12(10),
2CC(5,10),CCALC(60,10),CE(10),CM(60,10),CM1(10),
3CM2(60,10),CS(60,10),CSR(10),DCOP12(10),DKDL(60,10),DKET(60,10),
4EDENS(60),FH(60),FHACALC(60),FHM(60),FHM2(60),FHS(60),
5FKPSI(60),FILEML(60),FILEMT(60),FLN2(60),FLN0(60),
6FLN0P(60),FL02(60),FM(10),FMUL(60),FSM12(10),FSKRA(10),
7FSKRB(10),FSKRC(10),FSKRK(10),HH(5),INDCO(10),
2INDLAS(10),INDPS(50),INDTYP(10),P(8),PRDIRA(60),
3PRAL(60),PRAT(60),PSI(8,50),PSCALC(60),PSI(60),RHO(60),
4RHOCAL(60),RNS(50),SCL(60),SCT(60),SIGMAC(60),
5SIGMAH(60),SIGMAU(60),T(60),TAUM(60),TAUP(60),
6TITLE1(12),TITLE2(12),TITLE3(12),TIN(60),U(60)
DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1MDOT(60,10),XLS(50),Y(60),YCALC(60),YTHC(10),ZIR(10),
2Z2R(10)

```

```

C
K=K
IF(K=9) 100,3000,3000
100 IF(K=2) 120,600,220
C PROGRAM CONSTANTS FOR MOMENTUM EQUATION
120 CP=14000
      D02=5.1155
      DN2=9.7592
      DNO=6.5060
      DN2D02=5.0(DN2+D02)-DNO

```

SUBROUTINE CONPRG(K)

PAGE 2

```

FIN0=9.258
FM(1)=32.000
FM(2)=16.000
FM(3)=28.016
FM(4)=14.008
FM(5)=30.008
FM(6)=30.008
FM(7)=5.4862E-4
FSMC=2.6556E-23
FSMN=2.3249E-23
FSMNO=4.9805E-23
FSME=9.1056E-28
FSMNDP=FSMNO-FSME
R=8.95805E4
TVN2=3395.0
TVNO=2740.0
TVNCP=3395.0
TV02=274.0

```

```

C PROGRAM CONSTANTS FOR SPECIES EQUATION
C 140 ETA=6.0251E23
FSHP=4.8347E-34
FSK=1.01734E-23
FSKRE=2.7E-11
EMP=ETA*FSHP
FSK15=FSK*1.5/FSHP
FSM015=FSMNO*1.5/FSHP
FSM15=FSMN*1.5/FSHP
FSMES=SQRT(FSME)/FSHP

```

```

C SCHMIOT AND DIFFUSION COEF RATIOS FOR SPECIES EQS
DO 145 N=1,60
SCL(N)=SCHL1N
SCT(N)=SCHT1N
DKOL(N,1)=1.0
DKOL(N,2)=1.0
DKOL(N,3)=1.0
DKOL(N,4)=1.0
DKOL(N,5)=1.0
DKOL(N,6)=1.0
DKOL(N,7)=1.0
DKOT(N,1)=1.0
DKOT(N,2)=1.0
DKOT(N,3)=1.0
DKOT(N,4)=1.0
DKOT(N,5)=1.0
DKOT(N,6)=1.0
DKOT(N,7)=1.0

```

```

C PRANDTL AND LEWIS RQS FOR ENERGY EQ
PRAL(N)=PRA1IN
PRA1(N)=PRA1IN
FLEA1(N)=FLE1IN
145 FLEM1(N)=FLEM1IN
RETURN
C FN=L

```

SUBROUTINE COMPRG(M)

```

RHOCAL(1)=RHO(1)
PSI(1)=0.0
DO 700 N=2,L
700 PSI(N)=PSI(N-1)+5*(Y(N)-Y(N-1))*RS*(RHO(N)*U(N)+RHO(N-1)*U(N-1))
DELTAP=(PSI(L)-PSI(1))/(FN-1.0)
DO 800 N=1,L,P2
800 WRITE OUTPUT TAPE 6,750,N,PSI(N)
750 FORMAT(5X,I3,3X,PE13.5)
FN=N
800 PSCALC(N)=(FN-1.0)*DELTAP
910 J=2
920 DO 1400 N=2,L
950 IF(PSCALC(N)-PSI(J))1300,1200,1000
1000 J=J+1
IF(J-L)950,950,1010
1010 J=J-1
1200 UCALC(N)=U(J)
DO 1250 I=1,NS
1250 UCALC(N,I)=C(J,I)
FMCALC(N)=FH(J)
RHOCAL(N)=RHO(J)
GO TO 1400
1300 PFACTR=(PSCALC(N)-PSI(J-1))/(PSI(J)-PSI(J-1))
UCALC(N)=U(J-1)+PFACTR*(U(J)-U(J-1))
DO 1310 I=1,NS
1310 UCALC(N,I)=C(J-1,I)+PFACTR*(C(J,I)-C(J-1,I))
FMCALC(N)=FH(J-1)+PFACTR*(FH(J)-FH(J-1))
RHOCAL(N)=RHO(J-1)+PFACTR*(RHO(J)-RHO(J-1))
1400 CONTINUE
UCALC(L+1)=UCALC(L)
UCALC(L+2)=UCALC(L)
DO 1450 I=1,NS
1450 UCALC(L+1,I)=CCALC(L+1,I)
CCALC(L+2,I)=CCALC(L+1,I)
FMCALC(L+1)=FMCALC(L)
FMCALC(L+2)=FMCALC(L)
RHOCAL(L+1)=RHOCAL(L)
RHOCAL(L+2)=RHOCAL(L)
YCALC(1)=0.0
1470 DEL12=SURTF(DELTAP)
DEL12=.707107*DEL12
AU12=(2.0*UCALC(2)-UCALC(3))/.58579/DEL12
BU12=(UCALC(3)-1.*41421*UCALC(2))/-.58579/DELTAP
U12=AU12-DELM12+BU12*.5*DELTAP
DUDP12=.5*AU12/DELM12+AU12
AAU=(2.*URHOCAL(2)*UCALC(2)-RHOCAL(3)*UCALC(3))/DEL12/.58579
ABU=(RHOCAL(3)*UCALC(3)-1.*41420*RHOCAL(2))/UCALC(2)/DEL12/.58579
YCALC(2)=2.0/BBU/RS*LOG((1.0+BBU/AAU+DEL12)
PRINT 151C,RHOCAL(2),RHOCAL(3),RS,DELTAP,UCALC(2)*UCALC(3),DUDP12
1,AAU,BBU,YCALC(2),U12
151C FORMAT(3X,PE13.5/8XPSE13.5)
1650 DO 1900 N=3,L,P2
1900 YCALC(N)=YCALC(N-1)+.5*(PSCALC(N)-PSCALC(N-1))/RS*.110/(RHOCAL(N))*
UCALC(N)+1.C/(RHOCAL(N-1)*UCALC(N-1))
IF(ABS(F(YCALC(L)-YL1)/YL1))-.0011 1910,1905
1905 PRINT 1906,YCALC(L),YL1

```

PAGE 3

SUBROUTINE CONPRG(X)

•
PAGE

SIGNATURE CONCERN

STORACE NOZ HEED AN PROGRAM

DEC UCI 1640

DEC OCT
231988 55234

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATE
DEC OCT 23190 55236
STORAGE NOT USED BY PROGRAM

PAGE 5

SYNTHETIC LOCATIONS FOR MAGNETIC SPREADING IN COMMON STATEMENTS

SUBROUTINE CGNPRG(K)

Y12	23208	55250	YCALC	23316	55424
YTHU	23245	55315	--	23243	55313
Z2R	23230	55276	--	22	23231

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	
B6U	799	01437	DEL12	798	01436	DELH12	797	01435	FN	796	01434
LP1MN	794	01432	LP2MN	793	01431	N	792	01430	PFACTR	791	01427

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC
8INT	750	01405	811F6	1510	01402	611R1	1906	01376		

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	
I1	774	01406	21	715	01313	3!	721	01321	6!	754	01362
L1G2	782	01416	C1G3	783	01417	C1G4	784	01420	C1S5	785	01421
L1200	787	01423	C1202	788	01424	C1203	789	01425	D121D	649	01211
L140A	257	00401	D140H	312	00470	D140J	341	00525	D141H	710	013C6
D160J	340	00524	D161M	709	01305	E15	162	00242	E1A	259	00403
E1G	296	00450	E117	610	01142	E11H	680	01253	E1J	6C7	01257
E1318	616	01150							E18	266	00412

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	DEC	OCT	SQRT	OCT	DEC	OCT	DEC	OCT	
EXP(3	0	00000	LOC	4	00004	1	000C1	(FILE)	3	00003	(SPHI)
(STH)	2	00032									

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

	EXP(3	LOG	SQRT	(FILE)	(SPHI)	(STH)				

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

EFN	IFN	LOC									
100	15	00033	120	16	00037	140	39	00123	145	68	00231
700	75	00257	600	81	00334	910	82	00344	220	83	00350
1000	95	00413	1010	87	00626	1200	88	00631	1250	90	00636
1310	97	00471	1400	100	00526	1450	105	00550	1470	141	00567
1900	123	00727	1905	125	00771	1910	127	01000	2000	134	01026
2300	139	01064	2310	147	01103	2500	154	01121	3000	157	01132
3005	159	01143	3009	160	01151	3101	162	01155	3109	166	01203
3115	168	01212	3119	170	01215	3201	172	01233	3209	174	01260
3215	176	01265	3301	177	01307						

SUBROUTINE HSGLUT

SUBROUTINE HSGLUT

```

C
COMMON A1L,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,ABLT,AB2T,
1AB3T,AB4T,AB5T,AB6T,AB7T,AC12,AH12,A1PHA,ASR,AU12,BLT,B2T,B3T,
2B4T,B5T,B6T,B7T,B8T,T,BB3T,BB4T,BB5T,BB6T,BB7T,BH12,
3BLOCK,BSR,BUL2,C,C12,CC,CCALC,CE,CM,CM2,CNEAN,CP,CPE,CS,
4CSR,DCOP12,DEL,OELTAP,DELTAX,OELXGD,DELXST,DHOP12,DIST,OKOL,
5OKDT,ON2,ON2002,ONG,002,OSCRIPI,OUOP12,EDENS,EPSI,
6EPSIC,EPSIH,EPSIT,EPSIU,ETA,FA,FB,FC,FEDA,FEOB,
7FEOC,FH,FH12,FHCALC,FHE,FHM,FHM2,FHS
COMMON FINO,FK,FKPSI,FL,FLLELIN,FLLETIM,FLEWL,FLWT,
1FLN2,FLNG,FLN0P,FL02,FM,FMUL,FMUL12,FMUTIM,FMUTIP,FMUTIP,FMUTSSH,
2FNOSSL,FSH,FSHE,FSHE,FSHI,FSHI12,FSHP,FSK,FSKRB,FSKRC,FSKRD,
3FSKRE,FSKRF,FSKR,FSSK,FSMN,FSMN,FSMNG,FSMNGP,FSMGP,GAMM,HE,
4HH,IALT,I0EL,INDC00,INOLAS,INDP,INOPRI,INDS,INDR,
5INOSTP,INOSTR,(NOTYP,JNUTP,JS,KS,L,LP2,PNPLNS,NSR,
6GIVEK,P,PE,PR,PRAL,PRALIN,PRAT,PRATIN,PROIRA,
CGMMON PRDS,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,QW,R,RESTAR,RH0,
1RH0CAL,RH0E,RH012,RH0STG,RN,RNS,RS,RS,RS,SCHLIN,SCHTIN,
2SCL,SCT,SHANGL,SIGMAC,SIGMAH,SIGMAU,
3STA01S,T,TAUM,TAUP,TESTRA,THEAT,THER,TIN,
4TITLE1,TITLE2,TITLE3,TM,TVN2,
5YNG,TVNGP,TV02,U,U12,UCALC,UE,UINF,ULGLIM,UM,UMI,
6UM2,US,W0GT,X,XI,XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7YTHU,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETHET,REX,REW,FNUREX,FNUREW,C,CSUB,IPRIki,NCOUNT,JBYCTR
1,FSH12,I12,Y12,STRLL,STRUL,RH0U12,AU

```

```

C
DIMENSION AC12(10),ASR(10),BT(160),BT(16),B3T(160),B4T(160),B5T(160),
1,B86T(60),B7T(60),BC12(10),BLGCK(60),BSR(10),C(60,10),C12(10),
2CC(5,10),CCALC(60,10),CE(10),CM(60,10),CM1(10),
3CM2(60,10),CS(60,10),CSK(10),COCP12(110),OKDL(60,10),OKDT(60,10),
4EOENS(60),FH(60),FHCALC(60),FHM(60),FHM2(60),FHS(60),
5FKPSI(160),FL02(60),FLWT(60),FLN2(60),FLN0(60),
6FLN0P(60),FL02(60),FM(10),FMUL(60),FMUTIM(60)
DIMENSION FMUTIP(60),FSH(60),FSH1(60,10),FSH12(10),FSKRA(10),
IFSKRB(10),FSKRC(10),FSRK(10),HN(5),INOC0(10),
2INOLAS(10),INOPS(50),IND,IP(10),P(B),PROIRA(60),
3PRAL(60),PRAT(60),PS(1,B,5C),C(60),PSI(60),RH0(60),
4RH0CAL(60),RNS(50),SCL(60),SCT(60),SIGMAC(60),
5SIGMAH(60),SIGMAU(60),T(60),TAUM(60),TAUP(50),
6TITLE1(12),TITLE2(12),TITLE3(12),TM(60),U(60),
DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1WDGT(60,10),XLS(50),Y(60),YCALC(60),YTHC(10),Z1R(10),
2Z2R(10)

```

```

C
2500 FHM(1)=HH(1)+XRN*(HH(2)+XRN*(HH(3)+XRN*(HH(4)+HH(5)*XRN)))
2505 DO 2550 N=2,L
SUMHL=0.0
SUMHT=0.0
SUMHPL=0.0
SUMHPT=0.0
IF(N=2) 2508,2508,2520
2508 UAVG1=RS*(RH012+U12+U12+DUOP12+RH0(2)*U(2)((U(2)+U(3))*5-U12
1)/OELTAP)
UAVG2=5*RS/OELTAP*((RH0(3)*U(3)*U(3)+RH0(2)*(U(2)*U(2))+(U(3)-U(2))

```

SUBDIVISIONS

PAGE 2

SUBROUTINE HSOLUT

PAGE 3

STORAGE NOT USED BY PROGRAM

DEC	OCT	DEC	OCT
809	01451	23203	55243

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT		
A1L	32561	77461	A1T	32560	77460	A2	32559	77457	A3L	32558	77456	A3T	32557	77455
A4L	32556	77454	A4T	32555	77453	A5L	32554	77452	A5T	32553	77451	AAU	23204	55244
AB1T	32552	77450	AB2T	32551	77447	AB3T	32550	77446	AB4T	32549	77445	AB5T	32548	77444
AB6T	32547	77443	AB7T	32546	77442	AC12	32545	77441	AH12	32535	77427	ALPHA	32534	77426
ASR	32533	77425	AU12	32523	77413	B1T	32522	77412	B2T	32462	77316	B3T	32402	77222
B4T	32342	77112	B5T	32282	77032	B6T	32222	76736	B7T	32162	76642	BB1T	32102	76546
B8T	32101	76545	B83T	32100	76544	B84T	32099	76543	B85T	32098	76542	BB6T	32097	76541
B87T	32096	76540	BC12	32095	76537	BH12	32085	76525	BL0CK	32084	76524	BSR	32024	76430
BU12	32014	76416	C12	31413	75265	CCALC	31353	75171	CC	31403	75253	CE	30753	74041
CM1	30143	72677	CM2	30133	72665	CM	30143	74027	CNEAN	29533	71535	CPE	29531	71533
CP	29532	71534	C	32013	76415	CSR	28930	70402	CS	29530	71532	CSUB	23214	55256
OCOP12	28920	70370	OEL	28910	70356	OLETAP	28909	70355	DELTA	28908	70354	DELX0D	28907	70353
DELEX1	28906	70352	OHOP12	28905	70351	OIST	28904	70350	DKDL	28903	70347	DKDT	28303	67217
ON2D02	27702	66066	ON2	27703	66067	ONO	27701	66065	D02	27700	66064	DSCRIPT	27699	66063
OUOP12	27698	66062	EDENS	27697	66061	EPSIC	27636	65764	EPSIH	27635	65763	EPSI	27637	65765
EPSIT	27634	65762	EPSIU	27633	65761	ETA	27632	65760	FA	27631	65757	FB	27630	65756
FC	27629	65755	FE0A	27628	65754	FE0B	27627	65753	FED	27626	65752	FH12	27565	65655
FHCALC	27564	65654	FHE	27504	65560	FHM2	27463	65663	FHM	27503	65557	FH	27625	65751
FHS	27383	65367	FING	27323	65273	FKPSI	27321	55271	FK	27322	65272	FLELIN	27260	65174
FLETIN	27259	65173	FLEWL	27258	65172	FLEWT	27198	65076	FLN2	27138	65002	FLNQP	27018	64612
FLNG	27078	64706	FLG2	26958	64516	FL	27261	55175	FM	26898	64422	FMUL.i.2	26828	64314
FMUL	268t8	64410	FMUREW	23216	55260	FMU1P	26767	64217	FNDSSH	26707	64123	FNDSSL	26706	64122
FNUREW	23215	55257	FNUREW	23216	55260	FSH12	23210	55252	FSH	26645	64025	FSH112	26044	62674
FSHI	26644	64024	FSHP	26034	62662	FSH	26705	64121	FSKRA	26032	62660	FSKR8	26022	62646
FSKRC	26012	62634	FSKRO	26002	62622	FSKRE	26001	52621	FSKRF	26000	62620	FSKRK	25999	622617
FSK	26033	62661	FSME	25989	62605	FSMNP	25986	52602	FSMNG	25987	622603	FSMN	25988	62604
FSM0	25985	62601	GAMM	25984	62600	HE	25983	52577	HH	25982	62576	IALT	25977	62571
I0EL	25976	62527	INOC0	25975	62567	INOLAS	25965	62555	INOPRI	25954	62542	INDP	25955	62543
INOPS	25953	62541	INOR	25903	62457	INOSTP	25902	52456	INDSTR	25901	62455	INDTYP	25900	62454
IPRINT	23213	55255	JBYCTR	23211	55253	JINPUT	25890	52442	JS	25889	62441	KS	25888	62440
LP2	25886	62436	L	25887	62437	NCOUNT	23212	55254	NPSI	25885	62435	NSR	25883	62433
NS	25884	62434	0GIVEH	25882	62432	0GIVEK	25881	62431	PRO1RA	25748	62224	PRALIN	25810	62322
PRAL	25870	62416	PRATIN	25749	62225	PRAT	25809	62231	PRIRA	25748	62224	PROS	25683	62130
PRP	25687	62127	PR	25871	62241	PRSAVE	25686	52126	P	25880	62230	PSCALC	25285	61305
PSI	25225	61211	PSITCU	25165	61115	PS	25685	52125	QW	25164	61114	RESTAR	25162	61112
RETHET	23219	55263	REW	23217	55261	REX	23218	55262	RH012	25040	60720	RH0CAL	25101	61015
RHOE	25041	60721	RHO	25161	61111	RH0STG	25039	60717	RH0U12	23205	55245	RN	25038	60716
RNS	25037	60715	R	25163	61113	RSC	24986	60632	RSM	24982	60532	RS	24987	60633
SCHLIN	24984	60630	SCHTIN	24983	60627	SCL	24982	60626	SCT	24922	60532	SHANGL	24862	60436
SIGMAC	24861	60435	SIGMAH	24801	60341	SIGMAU	24741	50245	STADIS	24681	60151	STRLL	23207	55247
STRUL	23206	55246	T12	23209	55251	TAUM	24623	60054	TAUP	24560	57760	TESTRA	24500	57664
THETAT	24499	57663	THPER	24498	57662	TIN	24497	57661	TITLE1	24496	57660	TITLE2	24484	57644
TITLE3	24472	57630	TM	24460	57614	T	24680	57410	TWN2	24400	57321	TWNQP	24398	57316
TWN0	24399	57517	TV02	24397	57515	U12	24336	57420	UCALC	24335	57417	UE	24275	57323
UINF	24274	57322	UL0LIM	24273	57321	UM1	24212	57224	UM2	24152	57130	UM	24272	57320
U	24396	57514	US	24092	57034	X1	23431	55607	XL	23430	55606	XU12	23377	55521
XLS	23429	55605	XRN	23379	55523	X	23432	55610	XS	23378	55522	YTHC	23255	55327
Y12	23208	55250	YCALC	23316	55424	Y	23376	55520	YTH	23256	55330			

SUBROUTINE HSOLUT

YTHU	23245	55215	Z1L	23243	55313	Z1R	23242	55312	Z1 23244	55314	
Z2R	23230	55276	Z2	23231	55277	Z2S	23220	55264	Z1S	23232	55300

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	
ESCRC	808	01450	ESCRH	807	01447	N	806	01446	PARTC2	805	01445
RURNP	803	01443	RURN	802	01442	SUMMHL	801	01441	SUMHPL	800	01440
SUMHT	798	01436	UAVG1	797	01435	UAVG2	796	01434	SUMHPT	799	01437

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
I1	774	01406	C1200	21	756	01364	C1201	31	759	01367
C1100	793	01431	C1200	794	01432	C1201	795	01433	D120A	61
E12	70	00106							D1031	768

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

	EFN	IFN	L0C											
2500	10	00013	2505	11	00033	2508	17	00107	2510	20	00211	2512	22	00227
2520	27	00450	2525	31	00563	2526	33	00617	2528	34	00721	2530	35	01031
2534	37	01051	2540	39	01105	2550	41	01317	2570	46	01354	2600	47	01356

PAGE 4

Z1R 23242 55312
Z2S 23220 55264

VGA 3 2.18-6J

SUBROUTINE PTERH (X,NSTART,NEND,KS)

SUBROUTINE PTERH (X,NSTART,NEEND,KS)

C

```

COMMON ALL,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,ABIT,AB2T,
1AB3T,AB4T,AB5T,AB6T,AB7T,AC12,AH12,AI12,BIT,B2T,B3T,
2A4T,B5T,36T,B7T,B8T,B9T,BB3T,BB4T,BU5T,B96T,PB7T,BC12,BH12,
3BLICK,BSR,SU12,C,C12,CC,CCALC,CE,CM,CM2,CUNFAN,CP,CP,E,CS,
4CSK,DCDP12,DEL,DELTA,DELTA,X,DELXST,DELYST,DHOP12,DIST,OKDL,
5OKDT,DN2,DN2DD2,DD2,DESCRIP,DUDP12,EDENS,EPsi,
6EPsiC,EPsiH,EPsiT,EPsiU,ETA,FA,F6,FC,FFDA,FEDE,
7FFDC,FH,FH12,FHCALC,FHE,FHM,FHM2,FHS
COMMON F(NY)FK,FKPSI,FL,FLFLIN,FLFTIN,FLFLWT,
1FLN2,FLN1,FLNOp,FLD2,FM,FMUL,FMUL12,FMUTIM,FMUTIP,FMUSSH,
2FNDSL,FSH,FSMF,FSHI,FSH12,FSHP,FSK,FSKRA,FSKRB,FSKPC,FSKFD,
3FSKRF,FSKRF,FSKR,FSME,FSMN,FSMN,FSMNC,FSMJ,GAMM,HE,
4MH,IAL,I,IDEI,INDCO,INDL,INDP,INDPRI,INDPS,INDR,
5INDTP,INDSTR,INDTYP,JINPUT,JS,KS,L,P2,NPSI,NS,NSK,
6GIVETH,OGIVEK,P,PE,PR,PRAL,PRAT,PRATIN,PRDIRA,
COMMON PRDS,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,OW,R,RESTAK,RH0,
1RHOCAL,RHOE,RHCl2,RHOStG,RN,RNS,RS,RS,SC,SCHLIN,SCHTIN,
2SCL,SCT,SHANGL,SIGMAH,SIGMAH,SIGMAU,
3STADIS,T,TAUM,TAUP,TESTRA,THEAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,TM,TVN2,
5TVN0,TVN3P,TVQ2,U,UJ12,UCALC,UE,UINF,ULCLIM,UM,UM1,
6UM2,US,MDDT,X,X1,XL,XLS,XRN,XS,XJ12,Y,YCALC,YTH,YTHC,
7YTHU,7I,7IL,7IR,Z1S,Z2,Z2R,Z2S
COMMON RETHF1,RFX,RFW,FNUREK,FNURFW,CSUB,IPRINT,NCOUNT,JYCYTR
1,FSH12,T12,Y12

```

C

```

DIMENSION AC1(10),ASR(10),B1T(60),B2T(60),B3T(60),B4T(60),
1,B6T(60),B7T(60),BC12(10),BLOCK(60),BSR(10),C(60,10),C12(10),
2CC(5,10),CCALC(60,10),CF(10),CM(60,10),CMI(10),
3CM2(60,10),CS(60,10),CSR(10),DCDP12(10),DKDL(60,10),DKDT(60,10),
4EDENS(60),FH(60),FH CALC(60),FH(60),FH M2(60),FHS(60),
5FKPSI(50),FLEWT(60),FLEWT(60),FLN2(60),FLNJ(60),
6FLNOp(60),FLQ2(60),FM(10),FMUL(60),FMUTIM(60),
7FMUL1P(60),FSH(60),FSH1(60,10),FSH12(10),FSKRA(10),
IFSKRA(10),FSKRC(10),HH(5),INDCON(10),
2INDAS(10),INDPS(50),INDTYP(10),P(B),PRDIRA(60),
3PKAL(60),PRAT(60),PS(B,50),PSCALC(60),PSI(60),RHO(60),
4RHONCAL(60),RNS(50),SCL(60),SCT(60),SIGMAC(60),
5SIGMAH(60),SIGMAU(60),TI(60),TAUM(60),TAUP(60),
6TITLE1(12),TITLE2(12),TITLE3(12),TM(60),U(60),
7DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1WDCT(60,10),YLS(50),Y(60),YCALC(60),YTHC(10),Z1R(10),
2Z2R(10)
DIMENSIIN HBAR(60),INU(60)

```

C

```

100 X=X
NSTART=NSTART
NEND=NEND
KS=KS
XRN=X/RNS(KS)
700 IF(NEND-NSTART)>000,750,800
750 IF(INDSTR) 760,760,950

```

760 XRM=(X-DFLX0D)/RNS(KS)
GO TO 900

SUBROUTINE PRTERH IX,NSTART,NEND,KS1

```

800 XRM=(X-DELTAX)/RNS(KS1)
901 IF(LINOPS(KS1)-2)910,920,930
910 P=PS(1,KS1)*ICDSF1(XRM)**2
PRP=PS(1,KS1)/RNS(KS1)*SINF(2,0*XRM)
PRSAVE=PR
GO TO 1950
920 PR=PS(2,KS1)+PS(3,KS1)*XRM+PS(4,KS1)*XRM**2+PS(5,KS1)*XRM**3+PS(6,KS1)*
1*XRM**4
PRP=RNS(KS1)*(PS(3,KS1)+2,0*PS(4,KS1)*XRM+3,0*PS(5,KS1)*XRM**2+4,0*PSI
16,KS1)*XRM**3)
PRSAVE=PQ
GO TO 1950
930 PR=PS(7,KS1)/(PS(8,KS1)*XRM)
PRP=PS(7,KS1)*RNS(KS1)/(X*PS(8,KS1)*RNS(KS1))**2
PRSAVE=PR
GO TO 1000
950 PR=PRDS+X/DIST*IPRSAVE-PRDS)
PRP=(PRSAVE-PRDS)/DIST
1000 IF(NEND-NSTART) 1005,1090,1005
1005 NEND=NEND+1
DELT12=.5*DELTAP
SDEL12=SQR(DELTI2)
SULLTP=.58579*SQRT(DELTP)
DELTTP=.58579*DELTAP
AH12=12.0*FH(2)-FH(1)-FH(3))/SDELTP
BH12=IFH(3)+.414*FH(1)-1.414*FH(2))/DELTTP
FH(NEND)=FH(1)+AH12*SDEL12+BH12*DELT12
FH12=FHI(NEND)
DHOP12=.5*AH12/SDEL12+BH12
AU12=(2.0*U(2)-U(3))/SDELTP
BU12=(U(3)-1.41421*U(2))/DFLTP
U(NEND)=AU12*SDEL12+BU12*DELT12
U12=U(NEND)
DUOP12=.5*AU12/SDEL12+BU12
DO 1030 I=1,NS
AC12(I)=(2.0*C(2,1)-C(1,1)-C(3,1))/SDELTP
BC12(I)=(C(3,1)+.414*C(1,1)-1.414*C(2,1))/DELTTP
IF(C(1,1)+C(2,1)) 1010,1015,1010
1015 IF(C(2,1)+C(1,1)) 1020,1015,1020
1015 C(NEND,1)=0
GO TO 1025
1020 C,NEND,1)=C(1,1)+AC12(I)*SDEL12+AC12(I)*DELT12
1020 IF(C(NEND,1)) 1022,1025,1025
1022 C(NEND,1)=.5*(C(1,1)+C(2,1))
JCOP12(I)=(C(12,1)-C(1,1))/DELTAP
GO TO 1030
1025 JCOP12(I)=.5*AC12(I)/SDEL12+BC12(I)
1030 C12(I)=C(NEND,1)
1090 DO 1100 N=NSTART,NEND
1100 FSH(N)=FH(N)-.5*U(N)**2
1105 IFIAZ(115,110,115,
1115 IFIAZ(-9,9),110,110,1150
1150 PLOG=4.3429448*LOGF(PR/2117.)
C8=230.6335/110.-PLNG)+.183042*(PLG+3.)
```

$$\begin{aligned}C9 &= 2 \cdot 1965^* \cdot 31961^* \{PLOG^{+4-1}\}^{**2} \\E4 &= (C9-C8)/(C8+C9-C9-79.4)\end{aligned}$$

SUBROUTINE PTRERH (X,NSTART,NEND,KS)

```

F2=79.4*((1.+E4)*(C8-79.4)
E1=(79.4-E2)*E4
E3=-E1*E4
C5=-2.1965+1.46434/((EXP(-2.*PL0G)+1.)*
C6=-.012096/(PL0G+.6)
C7=-.94.-1.-6.*PL0G*(1.-.5*PL0G)
CK8=5224./((33.842-PL0G)-1.7609*(PL0G+.8-.5)
CK9=12.813+.46218*(PL0G+.1)**2
K4=(CK9-CK8)/(CK8+CK8-CK9-79.4)
CK2=79.4+(1.+CK4)*(CK8-79.4)
CK1=(79.4-CK2)*CK4
CK3=-CK1*CK4
CK5=-1.83+1.098/((EXP(-2.*(PL0G-.75))+1.))
CK6=.00138+.000953/(PL0G+.5)
CK7=-.94.-6.-8.*PL0G*(1.-.5*PL0G)
1F(A2-9.8) 1155.1155.1110
1155 DO 1160 I=NSTART,NEND
      HBAR(I)=FSH(I)/25037.807
      D1=HBAR(I)/R465.
      D2=EXP((HBAR(I)/R465.
      D3=HBAR(I)/33.96
      F1=F1+F2*D1+F3/(E4+D1)+C5*EXP(-C6*(D3+C7)**2)+(5.4913-.56743*(PL0
      1G+1.75)*21*D2
      F2=CK1+CK2*D1+CK3/(CK4+D1)+C5*EXP(-C6*(D3+C7)**2)+(9.2217-.276
      139*(PL0G+3.5)*2)*D2
      T(I)=273.16*F1
      TM(I)=T(I)
1160  RH0(I)=PR*1.1799716F-6/F2
1117  GO TO 1200
1117  DO 1120 N=NSTART,NEND
      TNUM(N)=FSH(N)-1726.0F-18*(.5*C(N,2)*D2/FSMN+.5*C(N,4)*DN2/FSMN+C
      1(N,5)*DN2D02/FSMNO+C(N,6)*(F1D0,DN2D02)/FSMNOJP)
1127  T(N)=TNM(N)/CP
1200  DO 1250 N=NSTART,NEND
      FL02(N)=TVJ2/T(N)/(EXP(TV02/T(N))-1.0)
      FLN2(N)=TVN2/T(N)/(EXP(TVN2/T(N))-1.0)
      FLNU(N)=TVN0/T(N)/(EXP(TVN0/T(N))-1.0)
      FLN0P(N)=TVN0P/T(N)/(EXP(TVN0P/T(N))-1.0)
1250  FLN0P(N)=TVN0P/T(N)/(EXP(TVN0P/T(N))-1.0)
      IF(A2) 1500,1300,1300
1300  DO 1350 N=NSTART,NEND
      TM(N)=TNM(N)/(R*(C(N,1)*(FL02(N)+3.5)+C(N,3)/FM(3)*(FLN2(N)
      1+3.5)+C(N,5)/FM(5)*(FLN0(N)+3.5)+C(N,6)/FM(6)*(FLN0P(N)+3.5)+2.5*(2C(N,2)/FM(2)+C(N,4)/FM(4)+C(N,7)/FM(7)))
1400  DO 1450 N=NSTART,NEND
      1F(ABSF((TM(N)-T(N))/TM(N))-EPS1)*1450,1470
1450  CONTINUE
      GO TO 1500
1470  DO 1480 N=NSTART,NEND
1480  T(N)=TM(N)
      GO TO 1200
1500  DO 1520 N=NSTART,NEND
      SUMC=0.0
      T(N)=TM(N)
      DO 1510 I=1,NS

```

1510 SUMCM=SUMCM+C(N+1)/FM(I)
RTM=R*T4(N)

SUBROUTINE: PRIFRH (X:NSTART:NEND:KS)

DACE 4

SUBROUTINE PRTERH (X,NSTART,NEND,KS)

PAGE 5

DEC OCT
1463 12667
DEC OCT
23207 55247

STORAGE NOT USED BY PROGRAM

STURAGF LOCATIONS FOR VARIABLES APPARING IN COMMON STATEMENTS

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
ALL	32561	77461	A1T	32560	77460	A2	32559	77457	A3L	32558	77456	A4T	22557	77455
A4L	32556	77454	A4T	32555	77453	A5L	32554	77452	A5T	32553	77451	ABIT	32552	77450
A42T	32551	77447	AB3T	32550	77446	AB4T	32549	77445	AB5T	32548	77444	A5OT	32547	77443
A87T	32546	77442	AC12	32545	77441	AH12	32535	77427	ALPHA	32534	77426	A5R	32533	77425
AU12	32523	77413	81T	32522	77412	B2T	32462	77316	H3T	32402	77222	34T	32342	77126
A5T	32282	77032	B6T	32222	76736	B7T	32162	76642	BB1T	32102	76546	B32T	32101	76545
A83T	32100	76544	FB4T	32099	76543	FB5T	32098	76542	HB6T	32097	76541	B37T	32096	76540
HC12	32095	76537	BH12	32085	76525	BLOCK	32084	76524	HSR	32024	76430	BH12	32014	76416
C12	31413	75265	CCALC	31353	75171	CC	31403	75253	CF	30753	74041	CWI	30143	72677
C42	30133	72665	CM	30743	74027	CONFAN	29533	71532	CPF	29531	71533	CP	29532	71534
C	32013	76415	CSR	28930	70402	CS	27530	71532	CSUR	23214	55256	OCOP12	28920	70370
DFL	28910	70356	DELTAP	29909	70355	DELTA5	28908	70354	DELX0D	28907	70353	DELXST	28906	70352
DNDP12	28905	70351	DIST	28904	70350	DKDL	28903	70347	DK0T	28303	67217	DN2D712	27702	66066
DN2	27703	66067	DND	27701	66065	D002	27700	66064	DSCRIP	27699	66063	DUDP12	27698	66062
EDENS	27697	66061	EPS1C	27636	65764	EPS1H	27635	65763	EPS1	27637	65765	EPS12	27634	65762
FPSIU	27633	65761	FTA	27632	65760	FA	27631	65757	FB	27630	65756	FC	27629	65755
FFDA	27628	65756	FEDB	27627	65755	FEDC	27626	65755	FH12	27565	65555	FHCALC	27564	65554
FHE	27504	65560	FHM2	27443	65463	FHM	27503	65557	FH	27625	65751	FHS	27383	65367
FINO	27323	65273	FKPSI	27321	65271	FK	27322	65272	FLFLIN	27260	65174	FLETTIN	27259	65173
FIFEL	27258	65172	FLEWT	27178	65076	FLN2	27138	65002	FLINQ	27018	64612	FLINQ	27078	64776
FL72	26958	64516	FL	27261	65175	FM	26898	64422	FMUL12	26828	64314	FMUL	26888	64410
FMMUT1M	26827	64313	FMMUT1P	26167	54217	FNDSSH	26707	64123	FNDSSL	26707	64122	FNURFW	23215	55257
FNURFX	23216	55252	FSH12	23210	55252	FSHF	26645	64025	FSH112	26044	62674	FSHL	26644	64724
FSHP	26034	62662	FSH	26705	54121	FSKRA	26032	62660	FSKRM	26022	62646	FSKRC	26012	62634
FSKRQ	26002	62622	FSKRE	26001	62621	FSKRF	26000	62620	FSKRK	25999	62617	FSK	26033	62651
FSMF	25989	62605	FSMNJP	25986	52602	FSMND	25997	62603	FSM	25988	62604	FSM	25985	62601
GAMM	25984	62606	HF	25983	62577	HH	25982	62576	IALT	25977	62571	IDEL	25976	62570
INDC10	25975	62507	INDLAS	25965	62555	INDPRI	25954	62542	INDP	25955	62543	INDPS	25953	62541
INDR	25903	62457	INDSTP	25902	62455	INDSTR	25901	62455	INDTYP	25900	62454	IPPINT	23213	55255
JBYCTR	23211	55253	JINPUT	25890	62442	JS	25889	62441	LP2	25886	62436	L	25887	62437
NCOUNT	23212	55254	NPSI	25825	62435	NSR	25883	62433	NS	25884	62434	UGIVEH	25982	62432
OGIVFK	25881	62431	PE	25872	62420	PRALIN	25910	62232	PRALIN	25687	62416	PRATIN	25749	62225
PRAT	25809	62321	PDIRA	25748	62224	PRDS	25698	62130	PRP	25687	62127	PR	25871	62417
PRSADV	25686	62126	P	25880	62230	PSCALC	25285	61305	PSI	25225	61211	PSITCU	25165	61115
PS	25685	62125	QM	25164	61114	RESTAR	25162	61112	RETET	23219	55263	REW	23217	55261
REX	23218	55262	RHO12	25040	60720	RHOCL	25101	61015	RHOE	25041	60721	RHO	25161	61111
RHOSTG	25039	60717	RN	25038	60716	RNS	25037	60715	R	25163	61114	RSC	24986	60632
RSM	24985	60631	RS	24987	60633	SCHLIN	24984	60630	SCHLIN	24483	60627	SCL	24982	60626
SCI	24922	60532	SHANGL	24862	60436	SIGMAC	24861	60435	SIGMAH	24801	60341	SIGMAU	24741	60245
STADIS	24681	60151	T12	23209	55251	TAUM	24620	60054	TAUP	24560	57760	TESTRA	24500	57664
THFTAT	24499	57653	THPER	24498	57662	TIN	24497	57661	TITLE1	24496	57660	TITLE2	24484	57664
TITLE3	24472	57630	TM	24460	57614	T	24680	60150	TVN2	24500	57520	TVN1P	24398	57516
TVNO	24399	57517	TVOD	24397	57515	U12	24336	57420	UCALC	24335	57417	UF	24275	57323
UJINF	24274	57322	ULC1W	24273	57321	UM1	24212	57224	UM2	24152	57130	UM	24276	57320
U	24396	57514	US	24092	57034	WMDT	24032	53740	XL	23431	55607	XL	23430	55606

XLS	23429	55605	XRN	23379	55523	X _S	23378	55522	X _{J12}	23377	55521	Y ₁₂	23208	55250
YCALC	23316	55424	Y	23376	55520	Y _{THC}	23255	55327	Y _{T11}	23245	55315	Z _{1L}	23232	55300
Z _{1L}	23243	55313	Z _{1R}	23242	55312	Z ₁	23244	55314	Z _{2R}	23230	55276			
72	23231	55277	Z _{2S}	23220	55264									

SUBROUTINE PTRERH (X, NSTART, NFND, KSI)

PAGE 6

STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE STATEMENTS

HBAR	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
1462	02666		1402	02572				

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
C5	1342	02476	C6	1341	C7	1340	C8	1339
CK1	1337	02471	CK2	1336	02470	CK3	1335	02467
CK6	1332	02464	CK7	1331	02463	CK8	1330	02462
D2	1327	02457	D3	1326	02456	DFTL12	1325	02455
E2	1322	02452	E3	1321	02451	E4	1320	02450
N	1317	02445	PLOG	1316	02444	RTM	1315	02443
SUMCM	1312	02440	XRM	1311	02437			

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
I1	1293	02415	I2	1223	02307	I3	1230	02316
C1G0	1304	02430	C1G2	1305	02431	C1G3	1306	02432
C1I2	1309	02435	C1I03	1310	02436	C1I04	1308	02433
E1F	365	00555	F1K	1005	01755	D1508	321	00501

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
CNS	0	00000	EXP	4	00004	EXP3	5	00005
SQRT	2	00002						

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

COS	EXP	FXP3	LOG	SIN	SORT
-----	-----	------	-----	-----	------

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

FFN	IFN	LOC	FFN	IFN	LOC	FFN	IFN	LOC
100	11	00113	700	16	00136	750	17	00143
900	21	00157	910	22	00163	920	26	00212
1000	36	00346	1005	37	00351	1010	56	00524
1022	61	00560	1025	64	00573	1030	65	00600
1115	69	00627	1150	70	00634	1155	90	01122
1120	103	01337	1200	104	01345	1250	108	01414
1400	112	01522	1450	114	01541	1470	116	01544
1510	123	01575	1517	126	01616	1519	127	01624
1700	142	01756	2000	163	02272			

SUBROUTINE RADBOY
SUBROUTINE RADBOY

PAGE 1

```

C
COMMON A1L,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,A6L,A6T,
A83T,A84T,A85T,A86T,A87T,AC12,AM12,ALPHA,ASR,AU12,B1T,B2T,R3T,
B84T,B5T,B86T,B7T,B88T,B83T,B84T,B85T,B86T,B87T,B812,BH12,
B8LOCK,B8SR,BU12,C,C12,CC,CCALC,CE,CM,CM',CM2,COEAN,CP,CP,CS,
CSR,CCP12,DEL,DELIAP,DEL TAX,DEL XDO,DEL XST,DHOP12,DIST,DKDL,
>DKD1,DN2,DN2002,ONO,OD2,OSCRIP,DUOP12,E0ENS,EP51,
6EP5IC,EP5I1,EP5IT,EP5IC,ETA,FA,FB,FC,FEAO,FEOB,
7FFEDC,FH,FH12,FH CALC,FHE,FHM,FHM2,FHS
COMMON FIMO,FK,FKPSI,FL,FL E LIN,FL E LIN,FL E LIN,FL E LIN,FL E LIN,
FL MN2,FL MO,FL ND,FL O2,FM,FMUL,FMUL2,FMUTIP,FM OSSN,
2FN DSS,FSH,FSHE,FSHI,FSHI12,FSHP,FSK,FSKRC,FSKRD,
3FSKRE,FSKRF,FSKR,F S M K ,FSME,FSMN,FSMD,FSMDP,FSMD,GA M H,HE,
4MM, JAL1, JDEL, IND C DC, INOLAS, IND P, INOPRI, INOR,
SINDSIP,INOSTR,INOTY2,JINPUT,JS,KS,L,LP2,NPSI,NS,MSR,
EDGIVEK,OGIVEK,P,PE,PR,PR AL,PR AL,PR AT,PR AT,PR DRA
COMMON PRDS,PRP,PRSAV,PS,PSCALC,PSI,PSITCU,QM,R,RESTAR,RHO,
IRMOCAL,RHOE,RM012,RHOSTG,RN,RS,RS,RS,RS,SCHLIN,SCHTIN,
2SCL,SC1,SHANG1,SIGMAC,SIGMA1,SIGMAU,
3STADIS,T,TAUM,TAUP,TESTRA,THETAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,TM,TVN2,
5TVND,TVNOP,TVD2,U,U12,UCALC,UE,UMF,ULOLIM,UM,UM1,
6UM2,US,UMD1,X,X1) *XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7YTHU,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETHE1,REX,REW,FNUREX,FNUREW,CSUB,IPRINT,MCOUNT,JBYCTR
C
      DIMENSION AC12(10),ASR(10),BT(60),BT(60),R3T(60),R4T(60),R5T(60),
1,B86T(60),B7T(60),BC12(10),BLOCK(60),BSR(10),C(60,10),C12(10),
2CC(15,10),CCALC(60,10),CE(10),CM(60,10),CM(1110),
3CM2(60,10),CS(60,10),CSR(10),OCDP12(10),OKDL(60,10),
4EDENS(60),FH(60),FH CALC(60),FH M(60),FH M2(60),FH S(60),
5FKPSI(63),FL E LIN(60),FL E LIN(60),FL N(60),FL ND(60),
6FL NOP(60),FL O2(60),FL M(60),FMU(10),FMUTIM(66)
0: MENSION FMUTIP(60),FSH(60),FSH(60,10),FSH112(10),FSKRA(10),
IFSKRB(10),FSKRC(10),FSKRK(10),HM(5),INDCQD(10),
2INDLAS(10),INOPSI(50),INOTY(10),P(B),PR DRA(60),
3PR AL(60),PR AT(60),PS(8,50),PS CALC(60),PSI(60),RHD(60),
4RMOCAL(60),RWS(50),SCL(60),SCT(60),SIGMAC(60),
5SIGMAH(60),SIGMAU(60),T(60),TAUH(60),TAUP(60),
6TITLE(112),TITLE2(12),TITLE3(12),TM(60),U(60),
DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1WDDT(60,10),XLS(5D),Y(60),YCALC(60),YTHC(10),Z(10),
2Z2R(10)
C
      GO TO 1100,200,300,400,500,1NDR
103 IF(KS=2) 110,120,120
113 22=RNE SIN(FXRN+ALPHA-XS/RN)+OCIVEK
21=OGIVEH-RN=COSF(XRN+ALPHA-XS/RN)
GO TO 130
120 22=RNE SIN(FXRN+ALPHA-XS(KS-1)/RN)+OCIVEK
21=OGIVEH-RN=COSF(XRN+ALPHA-XS(KS-1)/RN)
130 RSM=72
GO TO 330
200 IF(KS=2) 210,220,220
210 22=(X-XS)*SINF(CONEAN)+225

```

SUBROUTINE RADBOY

```

Z1=(X-X5)*COSF(CONEAN)+Z1S
GO TO 230
220 Z2=(X-XLS(KS-1))+SINF(CONEAN)+Z2S
Z1=(X-XLS(KS-1))*CCSF(CONEAN)+Z1S
230 RSM=Z2
GO TO 330
300 Z2=Z2S
RSM=Z2
IF(KS=2)310,320,320
310 Z1=Z1S+(X-X5)
GO TO 330
320 Z1=X-XLS(KS-1)+Z1S
330 IF(LEPSI)550,700,800
400 GO TO 100
500 GO TO 300
550 STOP 550
700 RSM=1.0
800 RETURN
END(1,1,C,C,C,0,0,1,0,C,C,0,0,0,0)
```

PAGE 2

SUBROUTINE RADBDY

PAGE 3

STORAGE NOT USED BY PROGRAM

 DECI UC1
 193 003C1

 DEC OCT
 23210 55252

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT		DEC	OCT		DEC	OCT		DEC	OCT			
AIL	32561	77461	A1T	32560	77460	A2	32559	77457	A3L	32558	77456	A3T	32557	77455
A4L	32556	77454	A4T	32555	77453	A5L	32554	77452	A5T	32553	77451	A6L	32552	77450
AB2T	32551	77447	AB3T	32545	77446	AB4T	32549	77445	AB5T	32548	77444	AB6T	32547	77443
AB7T	32546	77442	AC12	32545	77441	AH12	32535	77427	ALPHA	32534	77426	ASR	32533	77425
AU12	32523	77413	B1T	32522	77412	B2T	32462	77316	B3T	32402	77222	B4T	32342	77126
B5T	32282	77032	B6T	32222	76736	B7T	32162	76642	B8T	32102	76546	B9T	32096	76540
AB3T	32100	76544	BB4T	32099	76543	BB5T	32098	76542	BB6T	32097	76541	BB7T	32096	76540
HC12	32095	76537	BH12	32085	76525	BLOCK	32084	76524	B5R	32024	76430	B12	32014	76416
C12	31413	75265	CCALC	31313	75171	CC	31403	75253	CE	30753	74041	CMI	30143	72677
CM2	30133	72665	CM	30134	74027	COMEAN	29533	71535	CPE	29531	71533	CP	29532	71534
C	32C13	76415	CSR	28930	70402	CS	29530	71532	CSUB	23214	55256	DCDP12	28920	70370
DEL	28910	7C356	DELTAP	28909	70355	DELTAX	28908	70354	DELX0D	28907	70353	DELXST	28906	70352
DHOP12	28905	7C351	DIST	28904	70350	DKDL	28903	70347	DKDT	28303	67217	DN2002	27702	66066
DN2	27703	66067	DNO	27701	66065	D02	27700	66064	DSCRIPT	27699	66063	DUDP12	27698	66062
EDENS	27697	66061	EPSIC	27636	65764	EPSIN	27635	65763	EPSI	27637	65765	EPSP12	27634	65762
FPSIU	27633	65761	ETA	27632	65760	FA	27631	65757	FB	27630	65756	FC	27629	65755
FEDA	27628	65754	FEDR	27627	65753	FEDC	27626	65752	FH12	27565	65655	FHCALC	27564	65654
FHE	27504	65560	FHM2	27443	65463	FHM	27503	65557	FH	27625	65751	FHS	27383	65367
FIND	27323	65273	FKPST	27321	65271	FK	27322	65272	FLELIN	27260	65174	FLETTIN	27259	65173
FLEWL	27258	65172	FLEWT	27198	65076	FLN2	27138	65002	FLN0P	27018	64612	FLNO	27078	64706
FLO2	26958	64516	FL	27261	65175	FM	26898	64422	FMULL12	26828	64314	FMUL	26868	64410
FMTUTM	26827	64313	FMUTIP	26767	64217	FNOSSH	26707	64123	FN0SSL	26706	64122	FNUREW	23215	55257
FNUREX	23216	55260	FSHE	26645	64025	FSHI12	26044	62674	FSHI	26644	64024	FSHP	26034	62662
FSH	26705	64121	FSKRA	26032	62660	FSKRB	26022	62646	FSKRC	26012	62634	FSKRD	26002	62622
FSKRL	26001	62621	FSKRF	25999	62617	FSKR	25999	62617	FSK	26033	62661	FSME	25989	62605
FSMNOP	25986	62602	FSMNO	25987	62603	FSMN	25988	62604	FSMM0	25985	62601	GAMM	25984	62600
HE	25983	62577	HH	25982	62576	IALT	25977	62571	IDEL	25976	62570	INDC00	25975	62567
INDLAS	25965	62555	INDPRI	25954	62542	IMDP	25955	62543	INDPS	25953	62541	INDR	25903	62457
INDSTR	25902	62456	INDSTR	25901	62455	INDTYP	25900	62454	IPRINT	23213	55255	JBYCTR	23211	55253
JINPUT	25890	62442	JS	25889	62441	KS	25888	62440	LP2	25886	62436	L	25887	62437
NCOUNT	23212	55254	NPSI	25895	62435	NSR	25883	62433	NS	25884	62434	OGIVEH	25882	62432
OGIVEK	25881	62431	PE	25872	62420	PRALIN	25810	62322	PRAL	25870	62416	PRATIN	25749	62225
PRAT	25809	62321	PROFIKA	25748	62224	PROS	25688	62130	PRP	25687	62127	PR	25871	62417
PRS4VE	25686	62126	P	25880	62430	PSCALC	25285	61305	PSI	25225	61211	PSITCU	25165	61115
PS	25685	62125	QW	25164	61114	RESTAR	25162	61112	RETHET	25129	55263	RHW	25217	55261
R7X	23218	55254	RHO12	25040	60720	RHOCL	25101	61015	RHOE	25041	60721	RHO	25161	61111
RHOSTG	25039	60717	RN	25038	60716	RNS	25037	60715	R	25163	61113	RSC	24986	60632
RSM	24985	60631	RS	24987	60633	SCMLIN	24984	60630	SCMTIN	24983	60627	SCL	24982	60626
SCT	24922	60532	SHANGL	24962	60436	SIGMAC	24861	60435	SIGMAH	24801	60341	SIGMAU	24741	60245
STADIS	24681	60151	TAUM	24620	60054	TAUP	25760	57760	TESTRA	25162	55263	THETA	24499	57663
THPER	24498	57662	TIN	24497	57661	TITLE1	24496	57664	TITLE2	24484	57664	TITLE3	24472	57630
TM	24460	57614	T	24680	60150	TWN2	24400	57520	TYNOP	24398	57516	TVNO	24399	57517
TV02	24397	57515	U12	24336	57420	UCALC	24335	57417	UE	24275	57323	UINF	24274	57322
ULOLIM	24273	57321	UML	24212	57224	UM2	24152	57130	UM	24272	57320	U	24396	57514
US	24092	57034	MDOT	24032	56740	XI	23431	55607	XL	23430	55606	XLS	23429	55605
XRN	23379	55523	X	23432	55610	X5	23378	55522	XU12	23377	55521	YCALC	23316	55424
Y	23376	55520	YTHC	23255	55327	YTH	23245	55330	YTHU	23245	55315	Z11	23243	55313
Z1R	23242	55312	Z1	23244	55314	Z15	23232	55300	Z2R	23230	55276	Z2	23231	55277

SUBROUTINE RA080Y

PAGE 4

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT		
11	188	00274	21	180	00264	31	181	00265	61	182	00266	C160	191	00277
C1G1	192	00300	E11	18	00022	E12	24	00030	E15	88	00130	E1E	166	00246
E1H	174	00256	E109	142	00216									

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
COS	1	00001	SIN	0	00000							

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

SIN

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

EFN	IFN	LOC									
10C	11	00024	110	12	00032	12C	15	00070	130	17	00125
21C	20	00136	220	23	00165	23D	25	00213	300	27	00220
32C	32	00235	330	33	00241	400	34	00245	500	35	00250
700	37	00253	800	38	00260				550	36	00251

SUBROUTINE STAOUT (KK)

PAGE 1

Vicks 24

```

KK=KK
IF (KK-2) 5800,6041,6046
      FORMAT ('/1H044HFLIGHT CONDITIONS AND FREE STREAM PROPERTIES//')
      FORMAT (6X3HALT13X2HC9X9HSTA1 ENTH8X5H GAMMA10X5H PRESS9X7HDENSITY9X
14HTTEMP12X3HVEL12X13H(FT/SEC) S3/K3X11H(FT/SEC) S019X10H(
2LB/SQ FT)4X13H(SLUGS/CU FT)5X7H(DEG K)8XB8H(FT/SEC)/19,1PE19.5,1P6E
315.5)
      FORMAT ('/5X5HC(02)11X4HC(0)10X5HC(N2)10X4HC(N)11X5HC(NO)9X6HC(NO+)1
10X5HC(E-)1PE13.5,1P6E15.5)
      FORMAT ('/17H SHOCK CONDITIONS//')

```

SUBROUTINE STAOUT(KK)

```

5020 FORMAT(15H STAG DENSITY 6X3HNSR/14H (SLUGS/CU FT)/1PE13.5,I10)
5025 FORMAT(//18H SHOCK REGION NO 12//6X4HTYPE10X6HSHANGL5X13HSTANDOFF
1 OIST19X9HGEOM COEF30X6HLIMITS/20X5H(RAD)10X4H(FT)12X3HASR12X3HBSR
212X3HCSR9X8H21R (FT)17X8H22R (FT)
5030 FORMAT(4X8HSTRAIGHT3X1PE13.5,1P6E15.5)
5035 FORMAT(4X7HCONICAL4X1PE13.5,1P6E15.5)
5038 FORMAT(5X6HNORMAL4X1PE13.5,1P6E15.5)
5040 FORMAT(3X12HPARABOLIC 1PE13.5,1P6E15.5)
5045 FORMAT(//34H PROBLEM PARAMETERS AND INDICATORS//13H PROBLEM TYPE/
1)

5050 FORMAT(5X15HINITIAL PROFILE15X24HCONSTANT EDGE CONDITIONS15X22HINI
1TIAL PROFILES INPUT)
5055 FORMAT(5X15HINITIAL PROFILE15X15HSTREAMLINE CALC15X22HINITIAL PROF
1ILES INPUT)
5060 FORMAT(5X14HSHOCK CROSSING616X15HSTREAMLINE CALC15X22HINITIAL PROFI
1LES INPUT)
5065 FORMAT(15H NO GRID PTS 15H NO SPECIES 15H NOSE RADIUS 15H
1 OVERALL ZETA 6X4HNPSSI10X6HJINPUT9X6HRESTAR/35X4H(FT)12X4H(FT)/1A*
2,16,1PL15.5,1P15.5,1P15.5,1P15.5,1P15.5,1P15.5)
5070 FORMAT(6X2HXS13XHZ1S12X3HZ2S11X6HDEL TAX/5X4H(FT)11X4H(FT
1T)11X4H(FT)/1PE13.5,1P3E15.5)
5075 FORMAT(6X3HA1L12X3HA1T12X2HA213X3HA3L12X3HA4L12X3HA4T/1PE
113.5,1P6E15.5//6X3HA5L12X3HA5T11X20HSTEP SIZE TOLERANCFS7X12HSTAB.
2 FACTOR/1PE13.5,1P4E15.5)
5080 FORMAT(/4X7HU LOLEM4X18HTHICKNESS CRITERIA/4X8H(FT/SEC)10X1HU12X5
1HC(02)11X4HC(0)10X5HC(N2)11X4HC(N)10X5HC(NO)12X1HH/1PE13.5,1P7E15.
25)
5085 FORMAT(/4X4HEPSI5X6HEPSI U6X10HEPSI C(02)2X9HEPSI C(0)3X10HEPSI C(
1N2)2X9HEPSI C(N)3X10HEPSI C(N0)4X6HEPSI H7X6HEPSI T/1P8E12.5,1PE13
2.5)
5090 FORMAT(/11X8HLEWIS N021X10HPRANDTL N020X10HSCHMIDT N0/4X,7HLAGINAK
17X9HTURBULENT7X7HLAGINAR7X9HTURBULENT7X7HLAGINAR7X9HTURBULENT/1PE1
23.5,1P5E15.5)
5095 FORMAT(/30H DIFFUSION COEF RATIOS LAMINAR/)
5100 FORMAT(6X2H0214X1H013X2HN214X1HNN013X3HNN0+12X2HE-/1PE13.5,1P6
1E15.5)
5105 FORMAT(/32H DIFFUSION COEF RATIOS TURBULENT/)
5110 FORMAT(/4X6HTESTRA10X4HAB1T11X4HAB2T11X4HAB3T11X4HAB4T11X4HAB5T1:X
14HAB6T11X4HAB7T/1PE13.5,1P7E15.5//20X4HBB1T11X4HBB2T11X4HBB3T11X4H
26B4T11X4HB5T11X4HB6T11X4HB7T/1PE28.5,1P6E15.5//6X2HFK13X2HFA13X
32HFB13X2HFC13X4HFEDA11X4HFEDB11X4HFEDC/1PE13.5,1P6E15.5)
5115 FORMAT(///37H SUBREGION VALUES AND WALL PARAMETERS)
5120 FORMAT(//11H PRES TYPE37X9HPRES COEF/18*1PE17*5*1P7E13.5//3X9HGE0
1M SUBR6X6H061IVEH9X6H0GIVEK10X2HRRN13X2HXL11X6HCONANEAN6X12HPRINTOUT
1 2NT/21X4H(FT)11X4H(FT)10X4H(FT)11X4H(RAD)10X5H(RAD)/19,1PE19.5,1P4E1
35.5,1I1)
5125 FORMAT(//11H CWALL COEF//6X2H0214X1H0:3X2HN214X1HNN013X3HNN0+1
12X2HE-9X11HH WALL COEF/(1PE13.5,1P7E15.5))
5130 FORMAT(18H1 INITIAL PROFILES//6X1HY10X5HC(02)8X4H(0)9X5HC(N2)8X4H
1C(N)9X5HC(NO)8X6HC(NO+)7X5HC(E-)10X1HH12X1HU/4X4H(FT)97X10H(FT/SEC
2)5Q4X8H(FT/SEC)
5135 FORMAT(1P10E13.5)
5140 FORMAT(15H15STATION VALUES3X15.4I10//)
5145 FORMAT(7X1HXX1X7HDELTAX8X6H2ETA 19X8HRAD BODY4X12HBL MASS FLOW3X1
14HSTREAMTUBE RAD3X9H WALL PRES7X7HRETHETA/5X4H(FT)11X4H(FT)11X4H(FT
2)12X4H(FT)7X11H(LR SEC/FT)7X4H(FT)8X10H(LB/SQ FT)/1P4E15.7,1PE13.5)

```

SUBROUTINE STAOUT(KK)

PAGE 3

```

3.1P3E15.5//
```

5150 FORMAT(3X7HDELTA U6X7HDELTA H4X11HDELTA C(0)2X10HDELTA C(10)3X11H
 1ELTA C(N2)2X10HDELTA C(N)3X11HDELTA C(N0+)12H DELT
 2A C(E-)4X4H(FT)9X4H(FT)9X4H(FT)9X4H(FT)9X4H(FT)9X
 34H(FT)9X4H(FT)1P9E13.5//)

5155 FORMAT(6X3HREX12X3HREW8X10HDELTA STAR8X5HTHETA6X13HNU/SQRT (REX)3X
 113HNU/SQRT (REW)5X7HC SUB F/5X4H 11X4H(FT)12X4H(FT)/1P
 2E13.5*1P6E15.5//)

5160 FORMAT(6X1HK10X5HC (02)8X4HC (0)9X5HC (N2)8X4HC (N)9X5HC (N0+)18X5HC (E-)6X4HC5UM)
 18X5HC (E-)6X4HC5UM)

5161 FORMAT (16*1PE17.5*1P7E13.5)

5165 FORMAT (1H16X1HK13X3HPS113X1HY14X1H014X1H11X7H5MALL H11X1HH13X3H
 1H0/16X13H(LB SEC/SQFT)6X4H(FT)9X8H(FT/SEC)8X7H(DEG K)6X11H(FT/SEC) S
 2*504X11H(FT/SEC) S03X13H(SLUGS/CU FT),

5166 FORMAT((19.1PE19.5*1P6E15.5)

5170 FORMAT (1H16X1HK13X3HPS113X1HY14X1H014X1H11X7H5MALL H11X1HH13X3H
 1H0/17X11H(LB SEC/FT)7X4H(FT)9X8H(FT/SEC)8X7H(DEG K)6X11H(FT/SEC) S
 2*504X11H(FT/SEC) S03X13H(SLUGS/CU FT),

5171 FORMAT((19.1PE19.5*1P6E15.5)

5175 FORMAT (1H16X1HK8X1HELECTRON DEN\$7X4HNU L11X4HNU T11X4HTAUM/19X7H
 1PART/CC5X13H(LB SEC/SQFT)2X13H(LB SEC/SQFT)4X9H(LB/SQFT),

5176 FORMAT ((19.1PE19.5*1P3E15.5)

5180 FORMAT (1H148X24HSPECIES GENERATION TERMS//7X1H10XBHWDDOT (02)8X7H
 1WDOT(0)7X8HWDDOT(N2)8X7HWDDOT(N)7X8HWDDOT(N0)7X9HWDDOT (NO+)6XBHWDDOT (E-
 2)/16X15H(LB SEC/FT**4) 15H(LB SEC/FT**4) 15H(LB SEC/FT**4) 15H(LB
 3SEC/FT**4) 15H(LB SEC/FT**4) 15H(LB SEC/FT**4) 15H(LB SEC/FT)**4)

5185 FORMAT ((19.1PE19.5*1P6E15.5)

5190 FORMAT(1H146X27HPRDUCTION/DIFFUSION RATIO //)

5195 FORMAT(7X1HK13X2H0214X1H014X2HN213X1HN14X2HN012X::HNO+13X2HE-/)

5200 FORMAT((19.1PE20.5*1P6E15.5)

PROBLEM PARAMETERS AND INDICATORS
 5P-3 TINF=FSHE/CPE

WRITE OUTPUT TAPE 6,5000

WRITE OUTPUT TAPE 6,5005,IAIT,CPE,FSHE,GAMM,PE,RHOE,TINF,UINF

WRITE OUTPUT TAPE 6,"5010,(CE(I),I=1,NS)

WRITE OUTPUT TAPE 6,"5015

WRITE OUTPUT TAPE 6,"5020,RHOSTG,NSR

DO 602U I=1,NSR

WRITE OUTPUT TAPE 6,"5025,I

IF (INDTYP (I)-6)6000,6015

SHANGL=ATANF (ASR(I))

IF (INDTYP (I)-1) 6003,6001,6003

6001 WRITE OUTPUT TAPE 6,5038,SHANGL,STADIS,ASR(I),BSR(I),CSR(I)•Z1R(I)
 1,22K(I)

60 TO 6020

b003 IF (EPSI) 6010,6005,6010

6003 WRITE OUTPUT TAPE 6,5030,
 1(I),Z1R(I),Z2R(I)

60 TO 602U

6010 WRITE OUTPUT TAPE 6,5035,
 1(I),Z1R(I),Z2R(I)

60 TO 6020

SHANGL=0,

WRITE OUTPUT TAPE 6,5040,
 1(I),Z1R(I),Z2R(I)

SUBROUTINE STAOUT(KK)

```

6020 CONTINUE
      WRITE OUTPUT TAPE 6,5045
      IF (INDSTR) 6025,6030,6035
 6025  WRITE OUTPUT TAPE 6,5050
      GO TO 6040
 6030  WRITE OUTPUT TAPE 6,5055
      GO TO 6040
 6035  WRITE OUTPUT TAPE 6,5060
 6040  WRITE OUTPUT TAPE 6,5065,L , 'NS,RN,Z1L,NPSI,JINPUT,RESTAR
      WRITE OUTPUT TAPE 6,5070,XS,Z1S,Z2S,DELTAX
      WRITE OUTPUT TAPE 6,5075,A1L,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,FNDSSL
 1,FNDSSH,TIN
      WRITE OUTPUT TAPE 6,5080,ULOLIM,THPER,THPER,THPER,THPER,THPER
 1R,THPER
      WRITE OUTPUT TAPE 6,5085,EPSI,EPSI,EPSI,EPSI,EPSI,EPSI,C,
 1EPSTH,EPSIT
      WRITE OUTPUT TAPE 6,5090,FLELIN,FLETIN,PRALIN,PRATIN,SCHL,IN,SCHTIN
      WRITE OUTPUT TAPE 6,5095
      WRITE OUTPUT TAPE 6,5100,(DKDL(1,I),I=1,NS)
      WRITE OUTPUT TAPE 6,5105
      WRITE OUTPUT TAPE 6,5100,(DKDT(1,I),I=1,NS)
      WRITE OUTPUT TAPE 6,5110,((CC(J,I),I=1,NS),HH(J),J=1,5)
      WRITE OUTPUT TAPE 6,5110,TESTRA,AB1T,AB2T,AB3T,AB4T,AB5T,AB6T,AB7T
 1,BB1T,BB2T,BB3T,BB4T,BB5T,BB6T,BB7T,FK,FA,FB,FC,FEDA,FEDB,FEDC
      RETURN
C   SUBREGION VALUES
 6041  WRITE OUTPUT TAPE 6,5115
      WRITE OUTPUT TAPE 6,5120,INDP,(P(I),I=1,8),INDR,OGIVEH,OGIVEK,RN,X
 1L,CONAN,INDPRI
      WRITE OUTPUT TAPE 6,5125,((CC(J,I),I=1,NS),HH(J),J=1,5)
      WRITE OUTPUT TAPE 6,5130
  DO 6045 N=1,LP2
      WRITE OUTPUT TAPE 6,5135,Y(N),(C(N,I),I=1,NS),FH(N),U(N)
      RETURN
C   STATION VALUES
  C
  C
 6046  IF (KK=9) 60465,6048,6048
 60465 IPRINT=IPRINT+1
 6047  IF (IPRINT-INDPRI) 6170,6048,6048
 6048  WRITE OUTPUT TAPE 6,5140,JS,IDEI,KK,IPRINT,INDPRI
      IF (EPSI) 6055,6050,6055
 6050  FMBL=EPSI(L)
      DIN2EPSI(L)/(RHOE*UINF)
 6055  AREA=0.0
      DO 6075 I=1,L
          IF (I-1) 6060,6065,6060
 6060  IF (I-L) 6070,6065,6070
 6065  AREA=AREA+(RS+Y(I))*COSF (THETAT)*.5
      GO TO 6075
 6070  AREA=AREA+(RS+Y(I))*COSF (THETAT)
 6075  CONTINUE
  CONSTA=6.2831852/RS
  FMBL=AREA*CONSTA*DELTAP
  UIN2=SQRT(FMBL/(3.1415926*RHOE*UINF))
 6080  AREA1=0.0

```

SUBROUTINE STAOUT(KK)

PAGE 5

```

DO 6100 I=2,L
IF(I-2) 6085,6090,6085
6085 IF(I-L) 6095,6090,6095
6090 AREA1=AREA1+(U(L)-U(I))*5
GO TO 6100
6095 AREA1=AREA1+(U(L)-U(I))
CONTINUE
AREA1=AREA1+U(L)-.66667*AU12*SQRTF(DELTAPE-.5*BU12*DELTAP
DO 303 N=1,LP2
303 BLOCK(N)=U(N)
CALL CONPRG(9)
YTHU=YTH
DO 313 N=1,LP2
313 BLOCK(N)=FH(N)
CALL CONPRG(9)
YTHH=YTH
DO 323 I=1,NS
323 DO 325 N=1,LP2
BLOCK(N)=C(N,I)
CALL CONPRG(9)
323 YTHC(I)=YTH
THETA=AREA1/RS*DELTAP/(RHO(L)*U(L)**2)
RETHET=(RHO(L)*U(L)*THETA)/FMUL(L)
REX=(RHO(L)*U(L)*X)/FMUL(L)
REW=(RHO(1)*U(L)*X)/FMUL(1)
IF(FH(1)-FH(2)) 440,400,440
400 DHDPI2=0
GO TO 440
440 DO 540 I=1,NS
IF(C(1,I)-C(2,I)) 540,500,540
500 DDP12(I)=0
GO TO 540
540 CONTINUE
GARB=0
DO 560 I=1,NS
560 GARB=GARB+FSH1(I,I)*DKDL(I,I)*.5* AAU*AC12(I)
FNUREW=X*FS/SQRTF(REW)*(+.5*AAU*AH12+FLEWL(1)*GARB)/(FH
I(I)-FH(1))
FNUREX=FNUREW*SQRTF(REW/REX)
UDESTAR=Y(L)-(PSI(L)/RHO(L)/U(L)/RS)
CSUB=TAU(M1)/(+.5*RHO(L)*U(L)**2)
WRITE OUTPUT TAPE 6,5145,X*DELTAX,Z1,RSM,FBML,DIN2,PRSAVE,RETHET
WRITE OUTPUT TAPE 6,5150,YTHU,YTHH,(YTHC(I),I=1,NS)
WRITE OUTPUT TAPE 6,5155,REX,REW,DESTAR,THETA,FNUREX,FNUREW,CSUB
DC 6108 N=1,LP2
CSUM=0,0
DO 6106 I=1,NS
6106 CSUM=CSUM+C(N,I)
6108 WRITE OUTPUT TAPE 6,5161,N,(C(N,I),I=1,NS),CSUM
IF(EPS1) 6120,6110,6120
6110 WRITE OUTPUT TAPE 6,5165
DO 6115 N=1,LP2
6115 WRITE OUTPUT TAPE 6,5166,N*PSI(N),Y(N),U(N),T(N),FSH(N),FH(N),RHO(
1N)
GO TO 6130

```

SUBROUTINE STAOUT(KK)

SUBROUTINE STAOUT(KK)

STORAGE NOT USED BY PROGRAM

DEC OCT
2087 04047DEC OCT
23203 55243

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	
A1L	32561	77461	A1L	32560	77460	A2	32559	77457	A3L	32558	77456	A3T	32557	77455
A4L	32556	77454	A4L	32555	77453	A5L	32554	77452	A5T	32553	77451	EAU	23204	55244
AB1T	32552	77450	AB2T	32551	77447	AB3T	32550	77446	AB4T	32549	77445	AB5T	32548	77444
AB6I	32547	77443	AB7I	32546	77442	AC12	32545	77441	AH12	32535	77427	ALPHA	32534	77426
ASK	32533	77425	AU12	32525	77413	B1T	32522	77412	B2T	32462	77316	B3T	32402	77222
R4T	32342	77120	B5T	32282	77032	B6T	32222	76736	B7T	32162	76642	b81T	32102	76546
HB2I	32101	76545	B83I	32100	76544	BB4T	32099	76543	BB5T	32098	76542	BB6T	32097	76541
BR7I	32096	76540	BC12	32095	76537	BH12	32085	76525	BLOCK	32084	76524	ASR	32024	76430
BU12	32014	76416	C12	31413	75265	CCALC	31353	75171	CC	31403	75253	CE	30753	74041
CM1	30143	72677	CW2	30133	72665	CM	30743	74027	COVAN	29533	71535	CPE	29531	71533
CP	29532	71534	C	32013	76415	CSR	28930	70402	CS	29530	71532	CSUP	23214	55256
UDUP12	28920	70370	DEL	28910	70356	DELTAP	28909	70355	DELTAZ	28908	70354	DELX00	28907	70353
UDUX5I	28906	70352	DHDUP12	28905	70351	DIST	28904	70350	DKDL	28903	70347	DKD1	28303	67217
UD2D02	27702	66066	DN2	27703	66067	DNO	27701	66065	DO2	27700	66064	DSCRIP	27749	66063
UDUP12	27698	66062	EDENS	27697	66061	EPSIC	27636	65764	EPSIH	27635	65763	EPSI	27637	65765
EPSII	27634	65762	EPSIU	27633	65761	ETA	27632	65760	ETA	27631	65757	FB	27630	65756
FC	27629	65755	FEDA	27628	65754	FEDR	27627	65753	FEDC	27626	65752	FH12	27565	65655
FHCALC	27564	65654	FHE	27504	65560	FHM2	27443	65463	FHM	27503	65557	FH	27625	65751
FHS	27383	65367	FINO	27323	65273	FKPSI	27321	65271	FK	27322	65272	FLELIN	27260	65174
FLETIN	27259	65173	FLEWL	27258	65172	FLEWT	27198	65076	FLN2	27138	65002	FLN0P	27018	64612
FLNO	27076	64706	FL02	26958	64516	FL	27261	61575	FM	26898	64422	FMULL2	26128	64314
FNU1	26886	64410	FMUT1M	26827	64313	FMUT1P	26767	64217	FNDSSH	26707	64123	FNDSSL	26706	64122
FIGUREW	23215	55257	FIGUREX	23216	55260	FSH12	23210	55252	FSHE	26645	64025	FSH112	26044	62674
FSHI	26b44	64024	FSHF	26034	62662	FSH	26705	64121	FSKRA	26032	62660	FSKRB	26022	62646
FSKRC	26012	62634	FSKRD	26001	62622	FSKRE	26001	62621	FSMNO	26000	62620	FSMKN	25999	62617
FSK	26035	62651	FSME	25989	62605	FSMNOP	25986	62602	FSMNO	25987	62663	FSMM	25988	62660
FSMO	25985	62601	GAMK	25984	62605	HF	25983	62577	HH	25982	62576	IALT	25977	62571
IDEL	25976	62570	IJDCC	25975	62567	INDLAS	25965	62555	INDPRI	25954	62542	INDP	25955	62543
INDPS	25953	62541	IIUR	25903	62457	INDSTR	25902	62456	INDSTR	25901	62455	INDTYP	25900	62454
IPKINI	23213	55255	JBYCTR	23211	55253	JINPUT	25890	62442	JS	25889	62441	KS	25888	62440
LP2	25886	62636	L	25887	62437	JNCOUNT	23212	55254	NPSI	25885	62441	NSR	25883	62433
NS	25884	62434	OGIVEH	25882	62432	OGIVET	25881	62431	PE	25872	62420	PRALIN	25810	62322
PRAL	25870	62416	PRATIN	25749	62225	PRAT	25809	62321	PRDIRA	25748	62224	PRDS	25688	62130
PRP	25687	62127	PR	25871	62417	PRSAVE	25686	62126	P	25880	62450	PSCALC	25285	61305
PS1	25225	61211	PSITCU	25165	61115	PS	25685	62125	PS	25164	61114	RESTAR	25162	61112
RELTH2	23219	55263	RLW	23218	55261	RELX	23218	55262	RHO12	25040	60720	RHOCL	25101	61015
RHOL	25041	61121	QH0	25161	61111	RHOSTG	25057	60717	RHOU12	23202	55245	RN	25038	60716
RNS	25037	60715	R	25163	61113	RSC	24048	60632	RSM	24985	60631	RS	24987	60633
SCHLIN	24984	60330	SCHTIN	24983	60627	SCL	24392	60626	SCT	24922	60532	SHANGL	24862	60436
SIGMA1'	24661	60435	S16MAH	24801	60341	SIGMAU	24741	60245	STADIS	24681	60151	STRLL	23207	55247
STRUL	23206	55246	T12	23209	55251	TAUM	24620	60054	TAUP	25450	57664	TESTRA	24500	57664
THETAT	24499	57663	TIHER	24498	57662	TIN	24497	57661	TITLE1	24496	57660	TITLE2	24484	57644
TITLE3	24472	57630	TR	24460	57614	T	24680	60150	TVN2	24400	57520	TVNOP	24398	57516
TVO10	24399	57517	TV02	24397	57515	U12	24336	57420	UCALC	24335	57417	UE	24275	57323
UL01M	24274	57322	UL01M	24273	57321	UM1	24212	57224	UM2	24152	57130	UM	24272	57320
U	24396	57514	US	24092	57034	WDOT	24032	56740	XI	23431	55607	XL	23430	55606
YLS	23429	55605	XRN	23379	55523	X	23432	55610	XS	23378	55522	XU12	23377	55521
YL2	23208	55250	YCALC	23316	55424	Y	23376	55520	YTH	23256	55330			

SUBROUTINE STAOUT(KK)

YTHU	23245	55315	Z1L	23243	55313	Z1R	23242	55312	Z1S	23244	55314
Z2H	23230	55276	Z2L	23231	55277	Z2S	23229	55264	Z2T	23232	55300

EQUIVALENCE STATEMENT

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAL STATEMENTS

LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC
8)458	5900	04015	8)4SD	5005	04003	8)451	5010	03742	8)455	5015	03723	8)455
8)471	5025	05704	8)4T6	5030	03651	8)4TB	5035	03643	8)4TE	5038	03635	8)4TG
8)4TL	5045	03622	8)4TQ	5050	03607	8)4TV	5055	03571	8)4U4	5060	03555	8)4U9
8)4UE	5070	03506	8)4UJ	5075	03467	8)4UO	5080	03435	8)4UT	5085	03407	8)4V2
8)4V7	5095	03331	8)4VC	5100	03322	8)4VH	5105	03307	8)4VM	5110	03300	8)4VR
8)500	5120	03216	8)505	5125	03154	8)50A	5130	03133	8)50F	5135	03103	8)50R
8)50P	5145	03073	8)50U	5150	03031	8)513	5155	02764	8)518	5160	02734	8)519
8)51D	5165	02713	8)51E	5166	02657	8)511	5170	02653	8)51J	5171	02620	8)51N
8)515	5180	02564	8)521	5185	02510	8)526	5190	02504	8)528	5195	02475	

LOCATIONS FOR OTHER STURGES NOT IN SOURCE		IN PARENTING		IN SOURCE		IN PARENTING		IN SOURCE			
DEC	CCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT		
1)	2062	04016	2)	1287	02407	3)	1294	02416	6)	1300	02424
C)62	2063	04024	C)63	2069	04025	C)102	2070	04026	C)200	2071	04027
E)7	147	00223	E)10	235	03553	E)F	250	03572	E)10	606	01136
									C)60	2067	04023
									C)201	2072	04030

LOCATIONS OF NAMES IN TRANSFER VECTOR

AT&T 2 00002 CONPRG DEC 5 00005 COS DEC 3 00003 SORT DEC 4 00004 (FIL) DEC 1 00001

ATAN	CONPRG			EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS			ATAN		
	COS	SQRT	(FIL)	(STH)	IFN	LOC	IFN	LOC	IFN
5800	59	00035	6000	75	00162	6001	77	00174	6003
6010	84	00260	6015	87	00307	6020	90	00337	6025
6035	97	00373	6040	98	00401	6041	126	00763	6045
27697	152	01143	6047	153	01146	6048	154	01153	6050
6060	163	01224	6065	164	01231	6070	166	01246	6075
6085	174	01322	6090	175	01327	6095	177	01336	6100
313	185	01407	323	192	01440	400	198	01515	440
540	204	01542	560	207	01556	6106	226	02002	6108
6115	236	02053	6120	239	02103	6125	241	02114	6130
6138	256	02250	6139	257	02252	6140	258	02254	6145
6156	267	02317	6160	271	02344	6165	272	02361	6170

SUBROUTINE STEPSZ

PAGE 1

SUBROUTINE STEPSZ

```

C
CG*MCN ALL*A1T.A2L.A3T.A4L.A4T.A5L.A5T.A6LT.A6T.
1AB3T.AB4T.AB5T.AB6T.AB7T.AC12.AH12.AH12.AH12.B1T.B2T.B3T.
2B4T.B5T.B6T.B7T.BB1T.BB2T.BB3T.BB4T.BB5T.BB6T.BB7T.BC12.BH12.
3BLOCK.BSR.BU12.CC12.CC.CCALC.CE.CM.CM1.CM2.CNEAN.CP.CPE.CS.
4CSR.DCCP12.DEL.DELTAP.DELTAX.DELXQD.DELXST.DHDP12.DTS1.DKDL.
5DKDT.DN2D02.DN0.DC2.DSCRIP.DUDP12.EDENS.EPSI.
6EPSIC.EPSIH.EPSIT.EPSIU.ETA.FA.FB.FC.FEDA.FEDB.
7FEDC.FH.FH12.FHCALC.FHE.FHM.FHM2.FHS
COMMNC FIND.FK.FKPSL.FL.FLELIN.FLELTIN.FLEWT.
1FLN2.FLAC.FLNCP.FLC2.FM.FMUL.FMUL12.FMUT1M.FMUT1P.FNDSSH.
2FNSSL.FSH.FSH1.FSH112.FSHP.FSK.FSKRA.FSKRB.FSKRC.FSKRU.
3FSKRE.FSKRF.FSKRK.FSM.E.FSMN.FSMND.FSMNC.P.FSMO.GANN.HF.
4HH.1ALT.1DEL.INDCC.INDLS.INDP.INDPRI.INDPS.INDR.
5INDSTP.INDSTR.INDTYP.JINPUT.JS.KS.L.LP2.NPS1.NSR.
6DGIVEK.P.PE.PR.PRALIN.PRAT.PRATIN.PROIRA
CDMMCN PROS.PRP.PRSAVE.PS.PSCALC.PSI.PSITU.QW.R.RESTAR.RHD.
1RHDCAL.RHDE.RHC12.RHDSGT.RN.RNS.R.S.RSC.RSM.SCHLIN.SCHTIN.
2SCL.SCT.S-ANGL.SIGMAH.SIGMAU.
3TAC(S.T.TAU).TAUP.TESTRA.TETAT.THER.TIN.
4TITLE1.TITLE2.TITLE3.TM.TVN2.
5TVMC.TVADP.TV02.U.U12.UCALC.UE.UINF.ULDIM.UM.UM1.
6UM2.US.WDDT.X.X(XL,XLS,XPN,XS,XU12,Y.YCALC.YTH.YTHC.
7YTHU.Z1.Z1L.Z1R.Z1S.Z2.Z2R.Z2S
CDMMCN RETRET.REX.REW.FNUREX.FNUREW.CSUB.IPRINT.NCDUNT.JBYCTR
C
DIMENSION AC1(1C).ASR(10).B1T(60).B2T(60).B3T(60).B4T(60).B5T(60).
1.B6T(60).B7T(60).BC12(10).BLOCK(60).BSR(10).C(60,10).C12(10).
2CC(5,10).CCALC(60,10).CE(10).CM(60,10).CM(10).
3CM2(60,10).CS(60,10).CSR(10).DCDP12(10).DKDL(60,10).
4FDENS(6C).FH(60).FHCALC(60).FHM(60).FHM2(60).FHS(60).
5FKPSI(60).FLEBL(60).FLEWT(60).FLN2(60).FLND(60).
6FLACP(60).FLD2(60).FM(10).FMUL(60).FMUT1M(60).
7FMENSI FNUT1P(60).FSH(60).FSH1(60,10).FSH12(10).FSKRA(10).
1FSKRA(10).FSKRC(10).FSKRK(10).HH(5).INDCD0(10).
2INDLAS(10).INDPS(50).INDTYP(10).P(B).PROIRA(60).
3PRA(60).PRAT(60).PS(18,50).PSCALC(60).PSI(60).RHO(60).
4RHDCAL(60).PRNS(50).SCL(60).SCT(60).SIGMAC(60).
5SIGMAH(60).SIGMAU(60).T(60).TAUM(60).TAUP(60).
6TITLE1(12).TITLE2(12).TITLE3(12).TM(60).U(60).
7DIMENSI UCALC(60).U(60).UM1(60).UM2(60).US(60).
14DDT(60,10).XLS(50).Y(60).YCALC(60).YTHC(10).Z1R(10).
72R(10)
C
50 IF((ICEL-2) 100.200.300
100 DO 105 N=1,LP2
   US(N)=U(N)
   L(N)=UP(N)
   U(1N)=UM(N)
   F+SF(N)=FH(N)
   FH(N)=FFM(N)
   CC 105 6=1,5
   CS1h,(1)=C(R,1)
   CS1h,(1)=C(R,1)
   RSES=k5
105 C(N,I)=CP(N,I)

```

SUBROUTINE STEPSZ

PAGE 2

```

IF (SENSE SWITCH 2) 106.108
106 CALL STACLT(3)
108 CG 114 N=1.LP2
110 IF (UM(N)) 116.111.111
111 CG 112 I=1.N5
112 IF (CM(N,I)) 118.112.112
113 IF (FM(N,I)) 118.113.113
114 CCNTNUF
1142 IF (SENSE SWITCH 5) 1142.1162
1142 CO 116 N=1.L
115 IF ((UP(N+1)-UP(N))/UM(N+1)*.05) 118.116.116
116 CCNTIALE
1162 IF (X*3.1*DELTAX-XL) 120.130.130
118 PRINT 119.X.DELTAX
119 FORMAT(3X23HSTEP SIZE CRITERIA N=13.5H X=1PE13.5.10H DELTAX=
11PE13.5)
ACCLN7=ACCLN7+1
1190 IF (ACCLN7=7) 515.600.600
120 RS=RSM
121 INCSTP=3
122 IDEL=IDEL+1
123 X=X+DELTAX
124 INCSTP=2
125 RETURN
126 X=X+DELTAX
127 RS=RSM
128 INCSTP=3
129 RETURN
200 IF (SENSE SWITCH 2) 202.206
202 CO 205 N=1.LP2
203 L(N)=JM(N)
204 F1(N)=FM(N)
205 CO 205 I=1.N5
205 C(N,I)=CM(N,I)
206 CALL STACLT(3)
207 CG 210 N=1.LP2
208 U(N)=LS(N)
209 UP2(N)=UM(N)
210 F(N)=FS(N)
211 FM2(N)=FM(N)
212 CO 210 I=1.N5
213 C(N,I)=CS(N,I)
214 CM2(N,I)=CM(N,I)
215 RS=RESS
216 RSM=RSW
217 CELTAX=2.0*DELTAX
218 X=X-DELTAX
219 CG 1C 125
220 CO 220 N=1.LP2
221 IF (ABS(F1(N)-UM(N))/UM(N))>FDSSL) 310.310.400
222 CO 220 N=1.LP2
223 IF (ABS(F1(N)-FM(N))/FM(N))>FDSSL) 320.320.400
224 CCNTNUF
225 CO 340 I=1.N5
226 CC 340 N=1.LP2

```

SUBROUTINE STEPSZ

PAGE 3

```

330 IF(ABSFI(CM2(N,I)-CM(N,I))/CM2(N,I))-FADSSL) 340.340.400
340 CONTINUE
341 INCS5=1
342 IF(SENSE SHIFT 5) 343.346
343 PRINT 345*CELTAX.X
345 FORMAT(20H DELTAX INCREASED TOPE15.8.TH
346 CO 350 N=1.LP2 X=1PE15.8)
      U(N)=UP(N)
      FF(N)=FM(N)
      CO 350 I=1.NS
      350 C(N,I)=CM(N,I)
      352 CC 3E0 N=2.L
      IF(INCSS5) 360.365
      360 RSMRS=RS*RHO(N)*UP1(N)*RS
      EC 1C 370
      365 RSMRS=RS*RHO(N)*U(N)*RS
      370 SIGNAL(N)=RSMRS*(A1*FMUL(N)+A1T*(FMUT1P(N)+FMUT1M(N))*.
      1PRAT(N))
      IF(A2) 3708.3705.3705
      3705 SIGMAC(N)=RSMRS*(A3L*FMUL(N)+DKDL(N)/SCL(N)+A3T*.5*(FMUT1P(N)+FM
      1UT1M(N))*DKDT(N,1)/SCT(N))
      3708 IF(SENSE SHIFT 2) 371.373
      371 WRITE OUTPUT TAPE 6.N.SIGMAU(N).SIGMAC(N)
      372 FFORMAT(5X12.1P3E13.5)
      373 IF(SIGMAU(N)) 374.375.374
      374 IF(DELTA-DELTAP**2.0/SIGMAU(N)/1.00001) 375.375.485
      375 IF(A2) 377.375.3755
      3755 IF(SIGMAC(N)) 376.377.376
      376 IF(DELTA-DELTAP**2.0/SIGMAC(N)/1.00001) 377.377.485
      377 IF(SIGMAH(N)) 378.380.378
      378 IF(DELTA-DELTAP**2.0/SIGMAH(N)/1.000001) 380.380.485
      380 CONTINUE
      JS=L$+1
      385 CALL STAOUT(3)
      390 ACCLN7=0
      JBYCTR=JBYCTR+2
      EC 1C 130
      400 CO 420 N=1.LP2
      IF(ABSFI(UM2(N)-UM(N))/UM2(N))-FNCSMH) 410.410.470
      410 IF(ABSFI(FHM2(N)-FHP(N))/FH2(N))-FNESSH) 420.420.470
      420 CCNTINLF
      421 IF(I>2) 425.425.425
      425 CC 440 I=1.NS
      CO 440 N=1.LP2
      430 IF(ABSFI(CP2(N,I)-CM(N,I))/CM2(N,I))-FADSSH) 440.440.470
      440 CCNTINLF
      445 INCS5=-1
      CELTAX=.5*CELTAX
      CC 460 N=1.LP2
      U(N)=UP2(N)
      FF(N)=FM2(N)
      CO 460 I=1.NS
      460 C(N,I)=CM2(N,I)
      RSM=RSM5
      GC 1C 352

```

SUBROUTINE STEPSZ

SUBROUTINE STEPSZ

PAGE 5

STORAGE NOT USED BY PROGRAM

DEC	OCT	DEC	OCT
001 01441		23210	55252

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
A1L 32561	77461	A1T 32560	77460	A2 32559	77457	A3L 32558	77456	A3T 32557	77455	A81T 32552	77450
A4L 32556	77454	A4T 32555	77453	A5L 32554	77452	A5T 32553	77451	A86T 32547	77443	A87T 32548	77444
AB2T 32551	77447	AB3T 32550	77446	AB4T 32549	77445	ALPHA 32534	77426	ASR 32533	77425	B4T 32342	77126
AB7T 32546	77442	AC12 32545	77441	AH12 32535	77427	B3T 32402	77222	B8T 32101	76545	B82T 32096	76540
AU12 32523	77413	B1T 32522	77412	B2T 32462	77316	B8T 32102	76546	B86T 32097	76541	B87T 32098	76541
B5T 322B2	77032	B6T 32222	76736	B7T 32162	76642	B8T 32098	76542	BSR 32024	76430	B912 32014	76416
B83T 32100	76544	B84T 32099	76543	B85T 32098	76542	B90T 32097	76541	C012 30753	74041	C014 30143	72677
BC12 32095	76537	BH12 32085	76525	BLOCK 32084	76524	B912 30753	74041	C1P 29531	71533	C1P 29532	71534
C12 31413	75265	CCALC 31353	75171	CC 31403	75253	CE 30753	74041	CDP12 28920	70370	DELXST 28905	70352
C2P 30133	72665	CM 30743	74027	CONEAN 29533	71535	CPE 29531	71533	CSUB 23214	55256	DN2D02 27702	66066
C 32013	76415	CSR 28930	70402	CS 29530	71532	DELXOD 28908	70354	DELXOD 28907	70353	DUDP12 27698	66062
DEL 28910	70356	DELTAP 28909	70355	DELTAZ 28908	70357	DKOT 28903	70347	EPSIT 27637	65765	EPSIT 27634	65762
DHOP12 28905	70351	DIST 28904	70350	OKOL 28903	70347	DSCRIP 27699	66063	F 27629	65755	FHCALC 27564	65654
DN2 27103	66067	DNO 27701	66065	D02 27700	66064	DSCRT 27699	66063	FH 27625	65751	FHS 27383	65367
EDENS 27697	66061	EPSIC 27636	65764	EPSIH 27635	65763	FLEL 27260	65174	FLETIN 27259	65173	FLELNP 27260	65174
EPISIU 27633	65761	ETA 27632	65760	ETA 27631	65757	FLELNP 27018	64612	FLIND 27078	64706	FLIND 27078	64706
FEDA 27628	65754	FEDB 27627	65753	FEDC 27626	65752	FH12 27565	65655	FHUL12 26828	64314	FHUL12 26828	64410
FHE 27504	65560	FHM2 27443	65463	FHM 27503	65557	FH 27625	65751	FNDSSL 26706	64122	FNUREW 23215	55257
FIND 27323	65273	FKPSI 27321	65271	FK 27322	65272	FIELIN 27260	65174	FLELNP 27018	64612	FNSHP 26034	62662
FLEWL 27258	65172	FLEWT 27198	65076	FLNW 27138	65002	FLELNP 27018	64612	FSKRD 26012	62622	FSME 25989	62605
FLU2 26558	64516	FL 27261	65175	FM 26898	64422	FMUL12 26828	64314	GAMM 25984	62600	INDCOO 25975	62567
FNUTIM 26627	64313	FMUT1P 26767	64217	FNDSSH 26707	64123	FNDSSL 26706	64122	INDR 25903	62457	JBYCTR 23211	55253
FNUREX 23216	55260	FSHE 26645	64025	FSH112 26044	62674	FSHi 26644	64024	IPR 25041	62554	IPR 25041	62554
FSH 26705	64121	FSKRA 26032	62660	FSKRB 26022	62646	FSK 26033	62664	IPRIN1 23213	55255	IPRIN1 23213	55255
FSKRF 26601	62621	FSKRA 26000	62600	FSKRF 25999	62617	FSMDO 25985	62601	L 25887	62437	L 25887	62437
FSMNOP 25986	62260	FSMNO 25987	62260	FSMN 25988	622604	FSMDO 25985	62601	OGIVEH 25882	62432	OGIVEH 25882	62432
HE 25983	62577	HH 25982	62576	IALT 25977	62571	IOEL 25976	62570	PRATIN 25749	62225	PRATIN 25749	62225
INCLAS 25565	62555	INDPRI 25954	62542	INDP 25955	62543	INDPS 25953	62541	SCL 24982	60626	SCL 24982	60626
INDSTP 25502	62456	INDSTR 25901	62455	INDTYP 25900	62454	IPR 25041	62554	SIGMAH 24801	60341	SIGMAU 24741	60245
JINPUT 25690	62442	JS 25889	62441	KS 25888	62440	LP2 25886	62436	R 25163	61113	RHO 25161	61111
NCOUNT 23212	55254	NPSI 25885	62435	NSR 25883	62433	NS 25864	62434	RHOE 25041	60721	RHOE 25041	60721
UGIVEK 25881	62431	PE 25872	62420	PRALIN 25810	62322	PRAL 25870	62416	R 25163	61113	RSC 24986	60632
PRA1 25809	62321	PRDIRA 25748	62224	PROS 25688	62130	PRP 25687	62127	PR 25871	62417	PR 25871	62417
PRS4VE 25686	62126	P 25880	62430	PSCALC 25285	61305	PSI 25225	61211	PSITCU 25165	61115	PSITCU 25165	61115
PS 25685	62125	QW 25164	61114	RESTAR 61112	61112	RETHET 61112	61112	REW 23217	62437	REW 23217	62437
REX 23218	55262	RHO12 25040	60720	RHOCL 25101	61015	RHOE 25041	60721	RHOE 25041	60721	RHOE 25041	60721
RHOSTG 25039	60717	RN 25038	60716	RMS 25037	60715	R 25163	61113	R 25163	61113	R 25163	61113
RSM 24985	60631	RS 24987	60633	SCHLIN 24984	60630	SCHTIN 24983	60627	SCHTIN 24983	60627	SCHTIN 24983	60627
SCT 24522	60532	SHANGL 24862	60436	SIGMAC 24861	60435	SIGMAH 24801	60341	SIGMAU 24741	60245	SIGMAU 24741	60245
STADIS 24681	60151	TAUH 24620	60054	TAUP 24560	57760	TESTRA 24500	57664	THETAT 24499	57613	THETAT 24499	57613
THPER 24458	57662	TIN 24497	57661	TITLE1 24496	57660	TITLE2 24484	57644	TITLE3 24472	57630	TITLE3 24472	57630
TM 24460	57614	T 24680	60150	TVN2 24400	57520	TVNOD 24398	57516	TWN0 24399	57517	TWN0 24399	57517
TV02 24357	57515	U12 24336	57420	UCALC 24335	57417	UE 24275	57323	UINF 24274	57322	UINF 24274	57322
ULCLIM 24273	57321	UM1 24212	57224	UM2 24152	57130	UM 24272	57320	U 24396	57514	U 24396	57514
US 24092	57034	WDOT 24032	56740	XI 23431	55667	XL 23430	55606	XLS 23429	55605	XLS 23429	55605
XRN 23375	55523	X 23432	55610	XS 23378	55522	XU12 23377	55521	YCALC 23316	55316	YCALC 23316	55316
Y 23376	55520	YTHC 23255	55327	YTH 23256	55330	YTHU 23245	55315	ZIL 23230	55276	ZIL 23230	55276
Z1R 23242	55312	Z1 23244	55314	Z1S 23232	55300	Z2R 23230	55276	Z2 23231	55277	Z2 23231	55277

S1-BRCI LINE STEPS

PAGE 6

STRAIGHTFORWARD STATEMENT

EFN LOC
119 01415
62 01247
EFN LOC
345 01401
81A? 81A?
EFN LOC
372 0137C
81FA 81FA
EFN LOC
490 01365
EFN LOC
505 01360

GENERAL SOURCE PROGRAM									
LOCATIONS					CONTROLS AND PLANNING				
DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
1) 782 01416 1) 100 787 01423 1) 203 792 01430 1) 430 132 00204 1) 430 132 00204 1) 19 66 00102 1) 19 304 00460 1) 19 304 00460	2) 719 01317 C) 101 788 01424 C) 1204 793 01431 D) 664 01230 E) 85 00125 F) 12P 563 01063 G) 12P 563 01063	3) 726 01326 C) 1200 789 01425 C) 1202 01132 D) 600 131 E) M 117 F) 13D 666	01335 01426 01307 00203 00165 01232	6) 733 C) 1201 C) 1202 D) 700 D) 700 E) 110 F) 11H	01335 01426 01307 01307 01307 00420	C) 1C9 C) 1202 C) 1202 D) 700 D) 700 E) 110 F) 11H	786 01422 791 01427 01331 01331 01731 01731 00442	OCT	OCT

AQOUT DFC 0 00000 (FIL) DEC 2 00002 (SPH) DEC 1 00001 (STH) DEC 3 00003 OCT 00C F

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

T (FILE) (SPH) (STP) EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

L'ONC EGA IEN IEC CEN TEC INC CEN TECN IECN CEN TECN

SUBROUTINE UCSTRE

SUBROUTINE UCSTRE

PAGE 1

```

COMMON AIL,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,A6L,A6T,A7L,A8L,A8T,
LAB3T,A84T,A85T,A86T,A87T,A88T,AH12,AH13,AH14,AH15,AH16,AH17,AH18,
2B4T,B5T,B6T,B7T,B8T,B9T,B10T,B11T,B12T,B13T,B14T,B15T,B16T,B17T,B18T,
3BLOCK,B5R,B12,C,C12,CC,CCALC,CE,CM,CM1,CM2,CONEM,CP,CPE,CS,
4CSR,DCP12,DEL,DELTAP,DELX,DELXST,DELP12,DIST,DKOL,
5OKOT,DN2,DN2002,DNC,DO2,DESCRIP,DUDP12,EDENS,EP5I,
6EP5IC,EP5IH,EP5IT,EP5IU,ETA,FA,FB,FC,FEDA,FEDB,
7FEDC,FH,FH12,FH CALC,FH,FHM,FHM2,FHS
COMMON FINU,FK,FKPSI,FL,FLELIN,FLIN,FLML,FLMT,
1FLN2,FLNO,FLNP,FLQP,FLC2,FM,FMUL,FMUL2,FMUTIM,FMUTIP,FMSSSH,
2FMDSL,FSH,FSHE,FSMI,FSM12,FSMP,FSK,FSKRA,FSKR,B,FSKRC,FSKRD,
3FSKRE,FSKRF,FSKRM,FSME,FSMNO,FSMNP,FSMO,GAMM,HE,
4HH,1ALT,1DEL,1DEL,INDOC,INDLAS,INDP,INDPRI,INDPS,INDR,
5INDSTR,INDTR,INDTP,JINPU,JS,K,S,L,LP2,NPSLNS,NSR,
6GIVEK,PGIVEK,P,PE,PR,PRAL,PRALIN,PRATIN,PRDRA,
COMMON PROS,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,QW,R,RESTAR,RHO,
1RHOCAL,RHOE,RHO12,RHOSTG,NN,RNS,RS,RS,SC,SCMLIN,SCHTIN,
2SCL,SCI,SHANGL,SIGMA,C,SIGMA,H,SIGMAU,
3STAUS,T,TAUH,TAUP,TESTA,THETAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,TIN,TIN2,
5TINNO,TINOP,TVO2,U,U12,UCALC,UE,UINF,ULOLIM,UM,UM1,
6UM2,US,WDOT,X,XI,XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7YTTH,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETHE1,REW,FMUREX,FMUREW,CSUB,IPRINT,MCOUNT,JBYC1R
1,FSH12,T12,Y12,STRLL,STRUL
C
DIMENSION AC12(10),ASR(10),BIT(60),BT(60),BSI(60),BSI(60),BSI(60),
1,B6T(60),B7T(60),BC12(10),BLOCK(60),BSR(10),C(60,10),C12(10),
2CC(5,1C),CCALC(60,1C),CE(10),CM(10),CM(10,10),CM(10),
3CM2(60,1C),CS(60,1C),CSR(10),DCP12(10),DCP12(10),DCP12(10),
4EDENS(60),FH(60),FHM(60),FHM2(60),FHM2(60,10),FHM2(60,10),
5FKPSI(60),FLEWI(60),FLEWI(60),FLEWI(60),FLEWI(60),FLEWI(60),
6FLN0P(60),FLD2(60),FM(10),FMUL(60),FMUL(60),FMUTIM(60),
7DIMENS(UN) FMUTIP(60),FSH(60),FSM(60,1D),FSH112(10),FSKRA(10D),
IFSKRB(10),FSKRC(10),MH(15),INDCO(10),
2INDLAS(10),INDPS(5C),INDTP(10),PR1,PRDRA(60),
3PRAL(6C),PRAT(60),PS(8,5C),PSCALC(60),PSI(60),RHO(60),
4RHOCAL(6C),RNS(50),SCL(6C),SCT(60),SIGMAC(6C),
5SIGMAH(6C),SIGMAU(60),T(6D),TAUH(60),TAUP(60),
6TITLE1(12),TITLE2(12),TITLE3(12),TM(60),U(60),
7DIMENSTION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1WOUT(60,10),XLS(50),Y(60),YCALC(60),YTHC(10),ZIR(10),
222R(10)
C
IF(INDSTR) 5CO0,5D,2
2 GO TO 134,5,3,5,1,INDR
3 THETAT=1.5707963-(ALPHA+XRN)
GO TO 7
4 THETAT=CGNTAN
GO TO 7
5 THETAT=0,C
7 IF(EP5I) IC,9,10
9 TWOP1=1,0
RS1P1=RS

```

SUBROUTINE UCSTRE

PAGE 2

```

GO TO 12
10 TWOPI=6.2831853
RSIME=1.C
12 FMBL=0.0
DO 15 N=2,L
15 FMBL=(FMBL+Y(1)-Y(L))*TWOPI*COSF(THETAT)*DELTAP/RSTWOPI*RSIME*PSI
1(L)
DIN2=SQRTF(FMBL/RHOE/UINF/3.1415926)
IF(DIN2-R5)>19*19.16
16 PRINT 17,DIN2,R5,FMBL,THETAT
17 FORMAT(7H DIN2=1PE13.5,4HRS =1PE13.5,1P2E13.5)
DIN2=.9*RS
18 IF(DIN2-Z2K(H))25,25,20
19 DO 20 N=1,10
20 CONTINUE
STOP 21
25 IF(INDIYP(1)-1)29,26,29
26 ZIA=0.0
THETA=1.5707963
GO TO 40
29 IF(INDIYP(N)-6)30,35,35
30 ZIA=(DIN2-BR(N))/ASR(N)
THETA=ATANF(ASR(N))
GO TO 40
35 ZIA=ASR(N)+BR(N)*(DIN2-CSR(N))*2
THETA=ATANF(.5/BSR(N)/(DIN2-CSR(N)))
40 DIST=SQRTF((ZIA-21)**2+(DIN2-22)**2)
FM1=UINF/49.9/SQRTF(1.8*FSME/CPE)
PROS=PE*(12.0*GAMM*(FM1*SINF(THETA))**2-GAMM+1.0)/(GAMM+1.0)
UDS=PE*(4.0*(FM1**2-15INF(THETA))**2-1.0)/(GAMM*(FM1*SINF(THETA))**2+2)
SCOMP=(Z1-ZIA)/DIST
UESTAR=UDS
WRITE OUTPUT TAPE 6,42,THETA,PROS,ZIA,DIN2,UDS
42 FORMAT(14H SHOCK ANGLE=1PE13.5,7H PROS=1PE13.5,6H ZIA=1PE13.5,7
1H DIN2=1PE13.5,6H UDS=1PE13.5)
GO TO 52
50 UESTAR=UE
52 NCOUNT=0
53 WRITE OUTPUT TAPE 6,55
55 FORMAT(6X3HX0D0X4W2D0X10X11X4HC(W)0X5HC(M)0X6HC(M0+)0X5HC(M0+)0X5HC(E-1)
110X1HT11X3HMRN10X2HNE/,1
K=1
IF(INDSTR1 5555,56,58
56 X0D=XS+DELXST
GO TO 60
58 X0D=DELXST
Z1OD=ZIA*SCOMP*DELXST
63 U(L+3)=UESTAR
DO 65 I=1,NS
65 C(L+3,I)=CE(I)
FH(L+3)=FM1
PSI(L+3)=PSI(L+2)+DELTAP
73 INUFID=-1
DELXOD=DELXST

```

SUBROUTINE UCSTRE

PAGE 3

```

100 CALL PTRERH(X0D0,A+3,L+3,K)
    IF(A2) 1005,T003
1003 CALL W00TRI(L+3,L+3)
1005 USIL+3)=U(L+3)
    U(L+3)=U(L+3)-PRP/RHO(L+3)*DELX00/U(L+3)
    U(L+3)=UM1(L+3)
DO 1020 I=1,NS
    CS(L+3,I)=C(L+3,I)
    CM1(I)=CM1(I)+DELX00*W00T(L+3,I)/U(L+3)/RHO(L+3)
1020 CM(L+3,I)=CM1(I)
    X00=X00+DELX00
    IF(INDSTA1555,1022,1021
1021 Z100=Z100+SCMP*DELX00
1022 CALL PTRERH(X00,L+3,L+3,K)
    IF(A2) 1025,1025,1C23
1023 CALL W00TRI(L+3,L+3)
1025 UM2(L+3)=U(L+3)-PRP/RHO(L+3)*DELX00/U(L+3)
    U(L+3)=US(L+3)
    CM2(L+3,I)=C(L+3,I)+DELX00*W00T(L+3,I)/U(L+3)/RHO(L+3)
    C(I+3,I)=CS(L+3,I)
    DELX00=2.0*DELX00
    CALL PTRERH(X00,L+3,L+3,K)
    IF(A2) 2035,2035,2C33
2033 CALL W00TRI(L+3,L+3)
2035 UM(I+3)=U(L+3)-PRP/RHO(L+3)*DELX00/U(L+3)
    DO 2040 I=1,NS
    CM(L+3,I)=C(L+3,I)+DELX00*W00T(L+3,I)/U(L+3)/RHO(L+3)
    IF(ABS(F((UM2(L+3)-UM(L+3))/UM2(L+3))>0.001,2050,2070
2050 IF(A2) 2065,2052,2052
2052 DO 2060 I=1,RS
    IF(ABS(F((CN2(I+3,I)-CM(I+3,I))/CM2(I+3,I))>0.001,2060,2070
2060 CONTINUE
2065 IND22=C
    GO TO 2110
2070 IF(ABS(F((UM2(L+3)-UM(L+3))/UM2(L+3))>0.001,2080,2100
2080 IF(A2) 2082,2082
2082 DO 2090 I=1,NS
    IF(ABS(F((CH2(I+3,I)-CM(I+3,I))/CM2(I+3,I))>0.001,2090,2100
2090 CONTINUE
2095 IND22=1
    GO TO 2110
2100 X00=X00-.75*DELX00
    IN024=-1
    IF(INDSTA1555,2105,2103
2105 2100=Z100-.75*DELX00*SCOMP
    DELX00=.25*DELX00
    GO TO 100
2110 IF(INDSTA1555,2120,2115
2115 IF(Z100+SCMP*DELX00-Z112150,2130,2130
2120 IF(X00+DELX00-X1 2145,2130,2130
    UM(L+3)=UM(L+3)
    DO 2140 I=1,NS
2140 CM(L+3,I)=CM1(I)
    X00=X00-0.5*DELX00
    IF(INDSTA1555,2143,2141

```

SUBROUTINE UCSTRE

PAGE 4

```

2100=Z100-.5*DELX00*SCOMP
2143 DELX00=0.5*DELX00
    GO TO 2500
2145 IF(X00+DELX00-XLS(K)) 2150,2130,2130
2153 IF((IND22) 2500,2500,2170
2170 UM(L+3)=UM2(L+3)
    00 2160 I=1,NS
2180 CM(L+3,I)=CM2(L+3,I)
    DELX00=0.5*DELX00
2500 IF(UM(L+3)-ULDLIM)2505,2510,2510
2505 UM(L+3)=ULDLIM
2513 IF((IND22) 3060,2400,3060
    FNE=RHD(L+3)*CM(L+3,7)*5.664696E26
2600 WRITE OUTPUT TAPE 6,3005,X00,2100,UM(L+3),CM(L+3,I),I=4,NS),T(L+3
11),RHO(L+3),FNE
3005 FORMAT (1H *1P10E13.5)
3060 IF((IND3TR) 5555,3109,3460
3109 IF(K=KS)3120,3110,3110
3110 IF(ABSF((X00-X))-01*DELX00)3500,3500,3115
3115 IF((X00-X)3120,3500,3610
3120 XCJ=X00+DELXCD
3123 UM(L+3)=UM(L+3)
    00 3125 I=1,NS
3125 C(L+3,I)=CM(L+3,I)
    IF((IND3TR) 5555,3140,3130
3130 Z10D=Z10D+DELX00*SCOMP
    GO TO 100
314-) IF((INDF00)3150,3450,34C0
3150 IF(ABSF((X00-XLS(K))-01*DELX00)3200,3200,3155
3155 IF((X00-XLS(K)) 100,3200,3300
3203 INDFOO=0
    GO TO 100
3300 DELX00=DELX00-(X00-XLS(K))
    X00=ALS1(K)
    INFOFO=-1
    GO TO 100
3400 X00=X00-DELX00*DELAST
    3450 K=K+1
    GO TO 70
3460 IF(ABSF(Z10D-21)-.01*DELX00*SCOMP)3500,3500,3470
3470 IF((Z10D-21)3120,3500,3620
    3500 IF(A2) 3510,3520,3520
    3510 CALL CEORGE(9,L+3,L+3) 4
    352 RETURN
    361) DELX00=DELX00-(X00-X)
        X00=X
    GO TO 4000
3620 DELX00=DELX00-(Z10D-21)*SCOMP
    X00=X00-(Z10D-21)*SCOMP
    Z10D=Z1
4000 CALL PTERH(X00,L+3,L+3,K)
    IF(A2) 4C32,4C35,4C33
    4C31 CALL WDTTR(L+3,L+3)
4035 UM(L+3)=UL(L+3)-PRP/RHD(L+3)*DELX00/U(L+3)
    00 4040 I=1,NS
    4C41 CM(L+3,I)=(L+3,I)+DELX00-WD0Y(L+3,I)/U(L+3)/RHD(L+3)

```

SUBROUTINE UCSTRE

PAGE 5

```

450: IF(UML+3)=ULOLIM)4505,4510,4510
4505 UML+3)=ULOLIM
451 FNE=RMD(L+3)*CMIL+3,7)*5.664696E26
      WRITE OUTPUT TAPE 6,3005,X0D,Z10D,UM(L+3),(CM(L+3,I),I=4,NS),T(L+3
      11*RMD(L+3),FNE
      GO TO 3500
3500 UML+3)=UE
      DO 5010 I=1,NS
5010 CM(L+3,I)=CE(I)
      FM(L+3)=FME
      PSI(L+3)=PSI(L+2)+DELTAP
      RETURN
5555 STOP 5555
END(1,1,0,C,0,0,0,1,0,0,0,0,0,0,0,0,0)

```

SUBROUTINE UCSTRE

DEC DCT
1131 02153
DEC OCT
23205 55245

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
A1L	32561	77461	A1T	32560	77460	A2	32259	77457	A3L	32258	77456	A3T	32257	77455	A4L	32556	77454	A4T	32555	77453
A4L	32556	77454	A4T	32555	77453	A5L	32554	77452	A5T	32553	77451	A6L	32552	77450	A6T	32551	77449	A7L	32547	77443
A8L	32551	77447	A8T	32550	77446	A84	32549	77445	A85T	32548	77444	A86T	32547	77443	A87L	32546	77442	A87T	32545	77441
A87T	32546	77442	AC12	32545	77441	AH12	32235	77427	ALPHA	32234	77426	ASR	32233	77425	AU12	32523	77413	B1T	32222	77412
AU12	32523	77413	B1T	32222	77412	B2T	32462	77316	B3T	32402	77222	B4T	32342	77126	B5T	32222	76736	B6T	32162	76642
B5T	32282	77032	B6T	32222	76736	B7T	32162	76642	B8T	32102	76546	B82T	32101	76545	B88T	32100	76544	B88T	32099	76543
B88T	32100	76544	B884T	32099	76543	B89T	32098	76542	B86T	32097	76541	BB7T	32096	76540	BB7T	32024	76416	BU12	32024	76414
BC12	32095	76537	BM12	32095	76525	BLOCK	32084	76524	BSR	32024	76430	C11	30143	72677	C12	31413	75265	CC	31403	75253
C12	31413	75265	CCALC	31353	75171	CONEAN	29533	71535	CPE	29531	71533	CP	29532	71534	CM2	30133	72665	CM	30743	74027
CM2	30133	72665	CSR	28930	70402	CS	29530	71532	CSUB	23214	55256	DCDP12	28920	70370	DCLTAP	28909	70355	DELEXD	28907	70353
C	32613	76415	DEL.TAP	28909	70355	DELTAX	28908	70354	DELXOD	28907	70353	DELXST	28906	70352	DN2	27703	66067	DKDL	28904	70350
DEL	28910	70356	DIST	28904	70350	DKDL	28903	70347	DKDT	28303	67217	DN2002	27702	66066	DNDP12	27694	66062	DNDP12	27694	66062
DNDP12	28905	70351	DNO	27701	66065	D02	27700	66064	OSCPI	27699	66063	EPSIT	27634	65762	EDENS	27697	66061	EPSIC	27635	65763
EDENS	27697	66061	EPSIC	27636	65764	EPSIM	27635	65763	F	27630	65756	FC	27629	65755	EPSIU	27633	65761	FA	27631	65757
EPSIU	27633	65761	ETA	27632	65760	FEDC	27626	65752	FH12	27565	65655	FHCALC	27564	65654	FEDA	27628	65754	FH2	27625	65367
FEDA	27628	65754	FH2	27504	65463	FHM	27503	65557	FH	27383	65367	FHS	27383	65367	FH1	27503	65463	FH1	27503	65463
FH1	27504	65560	FHM2	27443	65463	FHM	27503	65557	FH1	27260	65174	FLELIN	27259	65173	FINDU	27323	65273	FK	27322	65272
FINDU	27323	65273	FKPSI	27321	65271	FL	27138	65002	FLN0P	27018	64612	FLNG	27078	64706	FLEWL	27258	65172	FLN2	27138	65002
FLEWL	27258	65172	FLEWT	27198	65027	FM	26898	64422	FMUL12	26820	64314	FMUL	26888	64410	FLO2	26958	64516	FN0SSH	26707	64123
FLO2	26958	64516	FHUTIP	26767	64217	FN0SSL	26706	64122	FNUREN	23215	55257	FNUREN	23215	55257	FHUTIP	26767	64217	FH2	26765	65174
FHUTIP	26827	64313	FH6	27627	65753	FHSH	26645	64025	FHSH12	26044	62674	FSH12	26044	62674	FH1	27503	65463	FH1	27503	65463
FH1	27504	65560	FHM2	27443	65463	FSKRA	26032	62660	FSKRB	26022	62646	FSKRC	26012	62634	FISHP	26034	62622	FSKRE	26002	62620
FISHP	26034	62622	FSKRE	26002	62621	FSKRF	26000	62602	FSKRF	25999	62612	FSKRM	25999	62614	FSMRE	26035	62661	FSMRE	26035	62661
FSKRE	26002	62622	FSMMOP	25986	62602	FSMMO	25987	62603	FSMM	25988	62604	FSMO	25985	62601	FSMTE	25989	62605	FSMTE	25989	62605
FSMTE	25989	62605	FH1	25887	62437	FH2	25883	62577	FH2	25982	62576	FH3	25982	62576	GAMM	25984	62600	IALT	25977	62571
GAMM	25984	62600	INDL	23216	55260	FISH12	23210	55252	INDP	25955	62543	INDPS	25953	62541	INDCOU	25975	62567	INDR	25954	62542
INDCOU	25975	62567	INDLAS	25965	62555	INDPRI	25954	62542	INDTYP	25900	62454	INPRINT	23213	55255	INDR	25954	62542	INDR	25954	62542
INDR	25903	62457	INDSTP	25902	62456	INDSTR	25901	62455	K	25888	62440	KP1	25886	62436	JBYC1F	23211	55253	K	25889	62441
JBYC1F	23211	55253	JINPUT	25890	62442	JS	25890	62442	RESTAR	25162	61112	RETMET	23219	51263	LC	25887	62437	JS	25888	62433
LC	25887	62437	NCOUNT	23212	55254	NPS1	25885	62445	RHOAL	25101	61015	RHOE	25041	62434	NDGIVEM	25882	62432	PRALIN	25010	62322
NDGIVEM	25882	62432	QGIVEK	25081	62431	PT	25872	62420	PRODIRA	25748	62224	PRAL	25070	62416	PRATIN	25749	62225	PRODS	25688	62130
PRATIN	25749	62225	PRA!	25809	62321	P	25880	62430	PSCALC	25285	61305	PRP	25687	62127	PRB	25801	62321	PRB	25801	62321
PRB	25871	62417	PRSAVE	25686	62126	GW	25164	61114	RESTAR	25162	61112	PS1	25225	61211	PS1	25225	61211	PS1	25225	61211
PS1	25165	61115	PS	25685	62125	QH012	25040	60720	RHOAL	25101	61015	PSI	24801	60341	PSI	24801	60341	PSI	24801	60341
PSI	25165	61115	REW	23217	55261	RHOIG	25039	60716	RHOIG	25037	60715	PSI	24798	60630	PSI	24798	60627	PSI	24798	60627
REW	23217	55261	RHOIG	25039	60717	RS	24987	60631	SCHLIN	24984	60630	SCHTLIN	24983	60627	RHOIG	25039	60716	SCHTLIN	24983	60627
RHOIG	25161	61111	RSM	24986	60632	SHANGL	24862	60436	SIGMAC	24861	60435	SIGMAH	24801	60341	RHOIG	25161	61111	SIGMAH	24801	60341
RHOIG	25161	61111	SCL	24982	60626	SCT	24922	60532	STRLL	23207	55247	STRUL	23206	55246	T12	23209	55251	T12	23209	55251
SCL	24982	60626	STADIS	24681	60151	TESTRA	24500	57766	THETAT	24499	57663	THPER	24498	57662	SIGMAU	24741	60524	THPER	24498	57662
SIGMAU	24741	60524	TAUP	24560	57760	TITLE2	24484	57644	ITLE3	24472	57630	ITLE3	24460	57614	T1	24460	57614	ITLE3	24460	57614
T1	24497	57661	T1FL1	24496	57660	T2WNP	24398	57516	TW10	24399	57515	TW10	24397	57515	U12	24336	57420	U12	24336	57420
U12	24336	57420	UCALC	24335	57417	UF	24275	57327	UINF	24274	57322	UINF	24273	57321	U-1	24212	57224	U-1	24212	57224
U-1	24212	57224	UM2	24152	57130	UR	24272	57320	U	24396	57514	U	24092	57034	WBLT	24032	56740	X	23376	5555.0
WBLT	24032	56740	X1	23431	55607	XL	23430	55606	XLS	23429	55605	XRN	23379	55523	Y	23376	5555.0	YTHU	23245	55315
Y	23376	5555.0	X5	23378	55522	XU12	23377	55511	YTH	23256	55511	YTHU	23245	55315	ZCALC	23316	55424	ZCALC	23316	55424

SUBROUTINE UCSTRE

21R 23242 55312
L2S 2322C 55264

21 23244 55314

21S 23232 55300

22R 23230 55276

22 23231 55277

PAGE 7

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
DIN2	1130	02152	FMI	0129	02151	FMBL	0128	02150	FNE	0127
INFOFD	1125	02145	I	0124	02144	K	0123	02143	N	0122
SCOMP	1120	02140	THETA	0119	02137	TWOPI	0118	02136	UDS	0117
X00	1115	02133	ZIA	0114	02132	ZI0C	0113	02131	UESTAR	0116

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC
81H	17	02102	811A	42	02073	811N	55	02053	812TT	3005

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
I1	1091	02103	21	1022	01776	31	1030	020C6	61	1045
C1G1	1103	02117	C1G3	1104	02120	C1G5	1105	C2121	C1100	02125
C1Z0	1108	02124	C1Z1	1109	02125	C1Z2	1110	02126	C1203	1111
0111U	615	01147	0121T	611	01143	0122A	696	01270	0131T	610
0143D	946	01662	D161M	575	01077	0163D	945	01661	E13	39
E16	50	00062	E1C	121	00171	E1E	129	00201	E1G	136
E1L	157	0C235	E1O	323	005C3	E1R	344	00530	E11	385
E17	450	007C2	E1H	503	00767	E1I	549	01045	E11	563
E1IC	602	01132	E123	649	01211	E127	676	01244	E12F	719
E12L	766	01376	E136	874	01552	E139	894	01576	E12A	695
E13M	1019	01773	E123M	1019	01773	E133M	1019	01773	E1535	870

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
ATAN	4	0G004	CEDGE	9	00011	COS	0	00000	PRTERM	7
SQRT	1	00001	W00TRT	8	00010	(FILE)	3	00003	(SPH)	2

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

	ATAN	CEDGE	COS	PRTERM	SIN	SQRT	WDORT	(FILE)	(SPH)	(STH)
--	------	-------	-----	--------	-----	------	-------	--------	-------	-------

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

	EFN	IFN	LOC									
2	15	00014	3	16	00041	4	18	00050	5	20	00054	7
9	22	00063	10	25	00070	12	27	00074	15	29	00101	16
19	36	0C172	20	36	00211	25	40	00216	26	41	00224	29
3C	45	00236	35	48	00250	40	50	00277	50	59	00504	52
56	64	00524	58	66	00531	60	68	00537	65	70	00545	70
10C	75	00563	10C3	77	00602	1005	78	00610	1020	84	00642	1021
1022	88	0C664	1023	90	00703	1025	91	00711	2030	95	00741	2033
2035	100	01600	204C	102	01016	205G	104	01041	2052	105	01046	206U
2065	108	01073	2070	110	01101	2080	111	01111	2062	112	01115	2090
2093	115	01144	2100	117	01150	2103	120	01163	2105	121	01172	2110
2115	124	01202	2120	125	01212	2130	126	01220	2140	128	01226	2141

SUBROUTINE UCSTRE

2143	132	01254	2145	134	01260	2150	135	01271	2170	136	01275	2180	138	01303
2500	140	01313	2505	141	01320	2510	142	01322	2600	143	01326	3060	150	01372
3109	151	01377	3110	152	01404	3115	153	01416	3120	154	01424	3123	155	01427
3125	157	01435	3130	159	01446	3140	161	01453	3150	162	01456	3155	163	01471
3200	164	01476	3300	166	01501	3400	170	01513	3450	171	01517	3460	173	01525
3470	174	01541	3500	175	01547	3510	176	01553	3520	177	01562	3610	179	01566
3620	182	01577	4000	185	01617	4033	187	01635	4035	188	01643	4040	190	01663
4500	191	1676	4505	192	01702	4510	193	01704	5000	201	01747	5010	203	01755
5555	208	01774												

PAGE 8

2145	134	01260	2150	135	01271	2170	136	01275	2180	138	01303
2505	141	01320	2510	142	01322	2600	143	01326	3060	150	01372
3110	152	01404	3115	153	01416	3120	154	01424	3123	155	01427
3130	159	01446	3140	161	01453	3150	162	01456	3155	163	01471
3300	166	01501	3400	170	01513	3450	171	01517	3460	173	01525
3500	175	01547	3510	176	01553	3520	177	01562	3610	179	01566
4000	185	01617	4033	187	01635	4035	188	01643	4040	190	01663
4500	192	01702	4510	193	01704	5000	201	01747	5010	203	01755

SUBROUTINE UEDGE(JJ)
SUBROUTINE UEDGE(JJ)

PAGE 1

```

C
COMMON A1L,A1T,A2L,A3T,A4L,A4T,A5L,A5T,A6L,A6T,
1A83T,A84T,A85T,A86T,A87T,AC12,AH12,ALPHA,ASR,AU12,B11,B21,E3T,
2B4T,B5T,B6T,B7T,B8T,B9T,BB2T,BB3T,BB4T,BB5T,BB6T,BB7T,BB12,BH12,
3BLOCK,BSR,BU12,C,C12,CC,CCALC,CE,CM,CM1,CM2,CONEAN,CP,CPE,CS,
4CSR,DCOP12,DEL,DELTAP,DELTAX,DELXOO,DELXST,DMOP12,DIST,DKDL,
5DKD1,DN2,DN2002,ONC,OO2,DSRIP,DUDP12,EDENS,EPSI,
6EPSIC,EPSIH,EPSIT,EPSIU,ETA,FA,FB,FC,FEDA,FEQB,
7FEDC,FH,FH12,FH CALC,FHE,FHM,FHM2,FHS
COMMON FINO,FK,FKPSI,FL,FL ELIN,FL ETIN,FL EWL,FL ETW,
1FLN2,FLND,FLNDP,FLC2,FM,FMUL,FMUL12,FMUT1M,FMUT1P,FNDSSM,
2FNSSL,FSH,FSHE,FSH1,FSH12,FSHP,FSK,FSKRC,FSKRD,
3FSKRE,FSKR,F,FSKR,F,FSME,FSME,FSMD,FSMDP,FSMD,FSMM,HE,
4HH,IALT,IDEI,INDOC,INDL,INOPRI,INOPS,INDR,
5INDSTR,INDSTR,INDTYP,JINPU,JS,KS,L,P2,NPSI,NS,NSR,
6GIVEH,Ogivek,P,PE,PR,PAAL,PRAL,PRAT,PRATIN,PROIRA
COMMON PROS,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,QM,R,RESTAR,RHO,
IRHOCL,RHOE,RHOI2,RHOSTG,RN,RMS,RS,RSCL,SCHL1N,SCHTIN,
2SCL,SCT,SHANGL,SIGNAC,SIGMAC,SIGMAH,SIGMAU,
3STADIS,T,TAUM,TAUP,TESTRA,THETAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,TM,TVN2,
5TVNO,TVNOP,TVO2,U,U12,UCALC,UE,UINF,ULOLIM,UM,UM1,
6UM2,US,MD0,X,XI,XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7VTMU,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETHET,REX,REW,FNUREK,FNUREH,CSUB,IPRINT,NCOUNT,JYCTR
```

```

C
DIMENSION AC12(10),ASR(10),B11(60),B21(60),B3T(60),B4T(60),B5T(60),
1,B6T(60),B7T(60),BC12(10),BLCK(60),BSR(10),C(60,10),C12(10),
2CC(5,10),CALC(60,10),CE(10),CM(60,10),CM1(10),
3CM2(60,10),CS(60,10),CSR(10),DCOP12(10),DKDL(60,10),
4DENS(60),FH(60),FH CALC(60),FH(60),FH(60),FH(60),
5FKPSI(60),FLEWL(60),FLEN(60),FLN2(60),FLND(60),
6FLNDP(60),FLQ2(60),FM(10),FM(10),FMUT1M,6C,
7FMUT1P(6C),FSH(60),FSH1(60,10),FSH112(10),FSKRA(10),
1FSKRB(10),FSKRC(10),FSKRK(10),HH(5),INDCD(10),
2INLAS(10),INOPS(50),INDTYP(10),P(8),PROIRA(60),
3PRAL(60),PRAT(60),PS(8,SO),PSI(60),RHO(60),
4RHOCAL(6C),RNS(50),SCL(6C),SCT(6C),SIGMAC(6C),
5SIGMAH(6C),SIGMAU(60),T(60),TAUM(6C),TAUP(60),
6TITLE1(12),TITLE3(12),TM(60),U(60)
DIMENSION UCALC(60),UM(60),UM1(60),UM2(60),US(60),
1W00T(60,10),XLS(50),Y(60),YCALC(60),YTHC(10),Z1R(10),
2Z2R(10)
```

UEDGE(1) I > UMAX

```

C
C
C
J=J
1F(J-1)3C,20,40
2:  UM(1)=0.C
RETURN
3 STOP 30
4:  1F(J-3)1CC,200,50
5:  STOP 50
10:  UM1J=U(L)-PRP/RHO(L)*DELTAX/U(L)
RETURN
```

SUBROUTINE VEOGE(1-4)

```

200 UML(1)=U(L+1)-PAP/RMD(L+1)*DELTAX/U(L+1)
    UML(2)=U(L+2)-PAP/RMD(L+2)*DELTAX/U(L+2)
    RETURN
    END
    C=0.0;0.1;0.0;0.0;0.0;0.0;0.0;0.0;0.0;

```

PAGE 2

STORAGE NOT USED BY SOURCE

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS
DEC OCT
23210 55252
STORAGE NOT USED BY PROGRAM

STANDARDISATION SIGNS FOR VARIABLES APPEARING IN COMMON STATEMENTS

SUBROUTINE UEDGE(J)

PAGE 4

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT
1)	78 00116		21 69 00105		31 71 00107		61	72 00110
EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS								
EFN	IFN	LOC	EFN	IFN	LOC	EFN	IFN	LOC
20	12 00026		30	15 00034		40	16 00036	
200	21 00061					50	17 00043	
							10C	18 00045

SUBROUTINE VISLAT

SUBROUTINE VISLAT

PAGE 1

00 100 N=1 LP2
00 FMUL(N)=3.04566E-8*TM(N)+1.5/(110.333+TM(N))

```

REUB=RH011*U(1)*R
00 600 N=2,LP2
IF(N=2)160,160,269
160 DEL1=SQR(T(DELTA1)
AAU=(2.0*RHO(2)*U(2))-RHO(3)*U(3))/DEL12/.56579
BBU=(RHO(3)*U(3))-1.4*RHO(2)*U(2)/DELTA1/.58579
Y(1)=2.0/BBU/RS*LOG((1.0+BBU/AAU*DEL1)
Y(2)=2.0/BBU/RS*LOG((1.0+BBU/AAU*DEL1)

```

SWEATLINE VISIT

1262

SUBROUTINE VISLAT

STORAGE NOT USED BY PROGRAM

PAGE 3

DEC	OCT	DEC	OCT
633 01171		23203 55243	

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

DEC	OCT	DEC	OCT								
AIL 32561 77461		AIT 32560 77460		A2 32559 77457		A3L 32558 77456		A3? 32557 77455			
A4L 32556 77454		A4T 32555 77453		A5L 32554 77452		A5? 32553 77451		AAU 3204 55244			
AB1T 32552 77450		AB2T 32551 77447		AB3T 32550 77446		AB4T 32549 77445		AB5T 32548 77444			
A86T 32547 77443		AB7T 32546 77442		AC12 32545 77441		AH12 32535 77427		ALPHA 32534 77426			
ASR 32533 77445		AU12 32523 77413		B1T 32522 77412		B2T 32462 77316		B3T 32402 77226			
U4? 32342 77126		B5T 32282 77032		B5T 32222 76736		B7T 32162 76642		B8T 32102 76546			
BB2T 32101 76545		BB3T 32100 76544		BB4T 32099 76543		BB5T 32098 76542		BB6T 32097 76541			
BB7T 32096 76540		BC12 32095 76537		BM12 32085 76525		BLOCK 32084 76524		BSR 32024 76430			
BU12 32014 76416		C12 31413 75265		CCALC 31353 75171		CC 31403 75253		CE 30753 74041			
CM1 3C143 72677		CM2 30133 72665		CM 30743 74027		CONEAN 29533 71535		CPE 29531 71533			
CP 29532 71534		C 32C13 76415		CS 29530 70402		CS 29530 70352		CSU 23214 55256			
DCDP12 28920 70370		DEL 28910 70356		DELTAP 28909 70355		DELTAX 28908 70354		DELXOD 28907 70353			
DELXST 28906 70352		DHDP12 28905 70351		DIST 28904 70350		DKDL 28903 70347		DKDT 28303 67217			
DN2D02 27702 66066		DN2 27703 66067		DMD 27701 66065		DOO 27700 66064		OSCRIP 27699 66063			
DUDP12 27698 66062		EDEMS 27697 66061		EPSIC 27636 65764		EPSIH 27635 65763		EPSI 27637 65765			
EPSIT 27634 65762		EPSIU 27633 65761		ETA 27632 65760		FA 27631 65757		FB 27630 65756			
FC 27629 65755		FEDA 27628 65754		FED8 27627 65753		FEDC 27626 65752		FH12 27565 65655			
FHCALL 27564 65654		FHM 27504 65560		FHM2 27443 65463		FHM 27503 65557		FH 27625 65751			
FHS 27383 65367		FINO 27323 65273		FKPSI 27321 65271		FK 27322 65272		FLELIN 27260 65174			
FLETIN 27259 65173		FLEWL 27258 65172		FLEWT 27198 65076		FLN12 27130 65002		FLNQUP 27018 64612			
FLNO 27078 64706		FL02 26958 64516		FL 27261 65175		FM 26898 64422		FMUL12 26826 64314			
FMUL 18888 64410		FMUTIM 26817 64313		FMUT1P 26767 64217		FNDSS1 26706 64123		FNDSSL 26706 64122			
FNUREW 23215 55257		FNUREX 23216 55260		FSH12 23210 55252		FSHE 26645 64025		FSH112 26044 62674			
FSHI 26644 64024		FSHP 26034 62662		FSH 26705 64121		FSKRA 26032 62660		FSKR8 26022 62648			
FSKRC 26012 62634		FSKRD 26002 62622		FSKRL 26001 62621		FSKRF 26000 62620		FSKRK 25999 62617			
FSK 26033 62661		FSME 25989 62665		FSMNOP 25986 62602		FSMNO 25987 62603		FaMN 25988 626C4			
FSMO 25985 62661		GAMM 25984 62660		HL 25983 62577		HH 25982 62576		IA1T 25977 62571			
IDEL 25975 62570		INDCO 25975 62567		INDLAS 25965 62555		INDP1 25954 62542		INDP 25955 62543			
INDPS 25953 62561		INDR 25903 62457		INDSP 25902 62456		INDSTR 25901 62455		INDTP 25900 62454			
IPRINT 23213 55255		JBYCTR 23211 55253		JINPUT 25890 62442		JS 25689 62441		K5 25888 62440			
LP2 25886 62436		L 25887 62437		NCOUNT 23212 55254		NPSI 25085 62435		NSK 25883 62433			
NS 25884 62434		OGIVEH 25882 62432		UGIVEH 25881 62431		PE 25072 62420		PRALIN 25010 62322			
PRAL 25870 62416		PRATIN 25879 62225		PRATV 25809 62321		PROIR1 25748 62224		PRODS 25688 62130			
PRP 25687 62127		PR 25871 62417		PRSAV 25686 62126		P 25880 62230		PSCALC 25285 61305			
PSI 25225 61211		PSITCU 25165 61115		PS 25685 62125		QW 25164 61114		RESTAR 25162 61112			
RETHEI 23219 55263		REW 23217 55261		REW 23218 55262		RHO12 25040 60720		RHOCL 25101 61015			
RHOE 25041 60721		RHN 25161 61111		RHOSTG 25239 60717		RHOU12 23205 55245		RN 25038 60716			
RNS 25037 60715		R 25163 61113		RSC 24965 61032		RSM 24985 60631		RS 24987 60633			
SCHLIN 24984 60630		SCXTIN 24983 60627		SCI 24S02 60626		SCT 24922 60532		SHANGL 24862 60436			
SIGMAC 24861 60435		SIGMAH 24801 6034!		SIGMAU 24741 60245		STADS 24681 60151		STRLL 23207 55247			
STRUL 23205 55246		T12 23209 55251		TAUM 24620 60054		TAUP 24560 57760		TESTRA 24500 57664			
THETAT 24499 57663		THPER 24498 57662		TIN 24697 57661		TITLE1 24496 57660		TITLE2 24484 57644			
TITLE3 24472 57650		TM 24460 57614		TM 24460 57610		TWN2 24400 57520		TWNOP 24398 57514			
TWN0 24399 57517		TVO2 24397 57515		U12 24336 57420		UCALC 24335 57417		UE 24275 57323			
UINF 24274 57322		ULOLIM 24273 57321		UML 24212 57224		UM2 24152 57130		UM 24272 57320			
U 24396 57514		US 24092 57034		WDDT 24032 56740		XI 23431 55607		XL 23430 556C6			
XLS 23429 556C1		XRP 23379 55523		X 23432 55610		X5 23378 55522		XU12 23377 55521			
Y12 23208 55250		YCAL . 23316 55424		Y 23375 55500		YTHC 23255 55327		YTH 23256 55330			

SUBROUTINE VISLAT

YTHU	23245	55315	21L	23243	55313	21R	23242	55312	21L	23244	55314
Z2R	23230	55276	22	23231	55277	22S	23220	55264	21S	23232	55300

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	DEC	OCT	C6C	OCT		DEC	OCT	JCT	DEC	OCT	
B8U	632	01170	DELI2	631	01167	FLTM	630	01166	FLTP	629	01165
FMUT2P	627	01163	FMUT6M	626	01162	FMUT6P	625	01161	N	624	01160
P2K2P	622	01156	PLTM	621	01155	PLTP	620	01154	REUER	619	01153
RURNM	617	01151	RURNP	616	01150	RURN	615	01147	Y2K2M	614	01146
									Y2K2P	613	01145

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

	EFN	LOC	EN	LOC		EFN	LOC		EFN	LOC	
8)KF	655	01131									

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

	DEC	OCT	OCT		DEC	OCT		DEC	OCT		
1)	602	01132	2)	01073	3)	575	01077	6)	590	01116	C1G1
F18	554	01052									612 01144

LOCATIONS OF NAMES IN TRANSFER VECTOR

	DEC	OCT	OCT		DEC	OCT		DEC	OCT		
EXP(3	0	00000C	LOG	2 00002	SQRT	1 00011	(FILE)	0EC	OCT	(STH)	DEC 3 00003

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

	LOG	SQRT	(FILE)	(STH)							

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

	EFN	IFN	LOC		EFN	IFN	LOC		EFN	IFN	LOC
102	12	00022	160	16 00055	180	22 00157	269	32 00261	270	41 00406	600
	51	00761	650	53 01053	700	55 01067					

PAGE 4

V9 M1 /-667

PAGE 1

SUBROUTINE WDDTR(INSTART,NEND)

SUBROUTINE WDDTR(INSTART,NEND)

```

C COMMAND A1L,A1T,A2,A3L,A3T,A4L,A4T,A5L,A5T,A6L,A6T,
1AB3T,AB4T,AB5T,AB6T,AB7T,AC12,AH12,ALPHA,ASR,AU12,B1T,B3T,
2B4T,B5T,B6T,B7T,B81T,B82T,B83T,B84T,B85T,B86T,B87T,B812,
3BLOCK BSR,BU12,C,C12,CC,CCALC,C,E,CM,CM1,CM2,CONAN,CP,CPE,CS,
4CSR,DCP12,DEL,DELTAP,DELTAX,DELXXD,DELXST,OHDP12,DIST,DKDL,
5DKOT,DN2,DD2,DNC,DD2,DESCRIP,DUDP12,EDENS,EP5I,
6EP5IC,EP5IH,EP5IT,EP5IL,ETA,FA,F8,FC,FEDA,FEDB,
7FEDC,FH,FH12,FHCALC,FHE,FHM,FHM2,FHS
CDMMCN FINO,FK,FKPSI,FL,FLLEIN,FLETIN,FLMLEL,FLWLT,
1FLN2,FLND,FLNDP,FLC2,FM,FMUL2,FMUT1P,FNDSSH,
2FNSL,FSH,FSK,FSHI,FSH12,FSHP,FSKRA,FSKRB,FSKRC,FSKRC,
3FSKRE,FSKRF,FSKRK,FSME,FSMN,FSMNC,FSMND,FSMNCP,FSMND,FSMNC,
4HH,IALT,IDEI,INDCDC,INCLAS,INDP,INOPRI,INDPS,INDR,
5INDSTP,INDSTR,INCTYP,JINPUT,JS,KS,L,LP2,NPSI,NS,NSR,
6DGIVEH,DGIVEK,P,PE,PR,PRAL,PRALIN,PRAT,PRATIN,PROIRA
COMMON PRDS,PRP,PRSAVE,PS,PSCALC,PSI,PSITCU,CW,R,RESTAR,RHO,
1RHOCAL,RHO,RHO12,RHDSTG,RN,RNS,RSC,RSM,SCHLIN,SCHTIN,
2SCL,SCT,SHANGL,SIGMAH,SIGMAI,SIGMAU,
3STADIS,T,TAUM,TAUP,TESTRA,THETAT,THPER,TIN,
4TITLE1,TITLE2,TITLE3,T,TVN2,
5VNODP,TVD2,U,U12,UCALC,UM,UM1,
6UM2,US,WDOT,X,XI,XL,XLS,XRN,XS,XU12,Y,YCALC,YTH,YTHC,
7YTHU,Z1,Z1L,Z1R,Z1S,Z2,Z2R,Z2S
COMMON RETHT,RE,REW,FNUREX,FNUREW,CSUB,IPRINT,NCOUNT,JBYCTR
1,FSH12,T12,Y12,STRLL,STRUL,RHO12,AAU,EHP,FSK15,
2FSMD15,FSMN15,FSMES

```

```

C DIMENSION AC12(1D),ASR(1D),B1T(6D),B2T(60),B2T(6C),B5T(60),
1,B6T(60),B7T(60),BC12(1D),BLOCK(6D),BSR(1D),C(6D,10),C12(10),
2CC(5,10),CCALC(6C,10),CE(1D),CM(60,1C),CP(1,1C),
3CM2(60,10),CS(60,1C),CSR(10),DCDP12(1D),DKDL(6D,10),
4EDENS(6D),FH(60),FHCALC(6D),FHM(60),FH(60),FH(60),
5FKPSI(60),FLWLT(6D),FLWLT(6D),FLN2(60),FLN2(60),
6FLNDP(6D),FLD2(60),FM(1D),FMUL(6D),FMUT1P(60)
DIMENSION FMUT1P(60),FSH(60),FSH112(10),FSH112(10),FSKRA(10),
1FSKRB(1D),FSKRC(1D),FSKRK(1D),HH(5),INDCO(10),
2INDLAS(10),INDPS(50),INDTYP(10),P(8),PRDIRA(6D),
3PRAL(60),PRAT(6D),PSI(6,50),PSCALC(60),PSI(60),RHD(60),
4RHOCAL(60),RNS(50),SCL(60),SCT(6D),SIGMAC(60),
5SIGMAH(6D),SIGMAI(60),T16D),TAUM(60),TAUP(60),
6TITLE1(12),TITLE2(12),TITLE3(12),TM(6D),U(60),
DIMENSION UCALC(6D),UM,SDI,UM1(6D),UM2(60),US(6D),
1WDT(60,1D),XLS(50),Y(60),YCALC(6D),YTH(1D),ZIR(1D),
2Z2R(10)

```

```

C 10 NSTART=NSTART
NEND=NEND
DD 300 N=NSTART,NEND

```

```

ETT228=5.D+3.0*EXP(-228.0/T(N))+EXP(-327.0/T(N))
ET17B=1.0+EXP(-178.0/T(N))
ET2274=1.-D-EXP(-2274.C/T(N))
ET2740=1.0-EXP(-2740.0/T(N))
ET3395=1.-D-EXP(-3395.0/T(N))
ET1130=3.D+2.D*EXP(-11300.D/T(N))

```

SUBROUTINE WOORTR(INSTART,NENO)

PAGE 2

```

C
      RH000=FM(2)*11.584906/T(N)*ET2274*ETT228**2/ET1130*FSM015
      1*FSK15*3.87871E-11*T(N)**1.5/EHP
      RH00N=FM(4)*257.8804/T(N)*ET3395*FSMN15*FSK15
      1*3.87871E-11*T(N)**1.5/EHP
      RHODN0=FM(2)*77.267586*(FM(4)/FM(5))*2.5/T(N)*ET2740*ET12
      128/ET178*FSM015*FSK15**3.87871E-11*T(N)**1.5/EHP
      RHODE*FM(7)*13.346219*ET2740/ET3395/ET178*FSM015
      1*FSK15*3.87871E-11*T(N)**1.5/EHP*FSME
      SIGMA=(FM(1)*FM(4)/FM(5))/FM(2)**2.5*1.1790*ET2274*ET1130/E
      1TT228/ET178
      GAMMA=(FM(5)*FM(4)/FM(3)/FM(2))**2.5*10.88*ET3395/ET2740*ET178/ETT
      1228
      FKBAR=( FM(6)*FM(7) / FM(4)/FM(2) )**2.5*T(N)/5.789/ET3395/ETT228
      TT2=1.0/SQRT(FTM(N))
      T32=T2*TT2*T12
      FSKRA(1)=2.2E-7*T32
      FSKRA(2)=6.2E-7*T32
      FSKRA(3)=1.7E-11*T12
      FSKRA(4)=8.3E-12*T12
      FSKRA(5)=FSKRA(4)
      FSKRA(6)=FSKRA(4)
      FSKRA(7)=FSKRA(4)
      FSKRB(1)=3.0E-11*TT2
      FSKRB(2)=FSKRB(1)
      FSKRB(3)=7.6E-11*T12
      FSKRB(4)=6.5E-6*T32
      FSKRB(5)=FSKRB(1)
      FSKRB(6)=FSKRB(1)
      FSKRB(7)=FSKRB(1)
      FSKRC(1)=2.8E-7*T32
      FSKRC(2)=FSKRC(1)
      FSKRC(3)=FSKRC(1)
      FSKRC(4)=FSKRC(1)
      FSKRC(5)=5.5E-6*T32
      FSKRC(6)=FSKRC(1)
      FSKRC(7)=FSKRC(1)
      FSKRD=2.2E-14*TM(N)*EXP(-3560./TM(N))
      FSKR=3.0E-3*T32
      FSKRK(1)=FSKR(1)
      FSKRK(2)=FSKR(1)
      FSKRK(3)=FSKR(1)
      FSKRK(4)=FSKR(1)
      FSKRK(5)=FSKR(1)
      FSKRK(6)=FSKR(1)
      FSKRK(7)=FSKR(1)
      FSKT=FSK*T(N)**.846389E19
      EMD02=EXP(-002/FSKT)
      EMON2=EXP(-DN2/FSKT)
      EMONO=EXP(-ONO/FSKT)
      EMIN0=EXP(-FINO/FSKT)
      SUMCM=0.0
      SUMCMAB=0.0
      SUMCMBC=0.0
      SUMCMCK=0.0
      00 150 I=1,NS
  
```

INITIATION AND TUNING MONOLAYER START-UPEND

PAGE 3

```

SUMCM=SUMCH+C(N,1)/FM(1)
SUMCPA=SUMCHA*C(N,1)/FM(1)*FSKRA(1)
SUMCPB=SUMCMB+C(N,1)/FM(1)*FSKR8(1)
SUMCPG=SUMCMG+C(N,1)/FM(1)*FSKR1(1)
SUMCPK=SUMCK+C(N,1)/FM(1)*FSKRK(1)
50 SUMCPK=SUMCK+C(N,1)/FM(1)*FSKRK(1)
SUMCPK=SUMCK+C(N,1)/FM(1)*FSKRK(1)
A=2.0*FL/FM(2)*SUMCM+RHD(N)*(RHD0+C(N,1)*1.94008E25*EP002-RHD(N)
1*1.94008E25+C(N,2)*2)*4.9778
8=2.0*FL/FM(4)*SUMCMB+RHD(N)*(RHD0+C(N,3)*1.94008E25*EP002-RHD(N)
1*1.94008E25+C(N,4)*2)*4.9778
G=FL/FM(5)*FM(4)/FM(1)*SUMCM+C(RHD(N)*(RHD0+C(N,5)*1.94008E25*EP002-RHD(N)
1*ND-RHD(N)*1.94008E25*C(N,4)*C(N,2)*4.9778
0=FL/FM(5)*FM(4)/FM(1)*FSKR8*RHD(N)*(SIGMA*C(N,5)*C(N,2)*1.94008E2
1*EMOND/EP002-C(N,1)*1.94008E25*C(N,4)*1.6018E-2
E=FL*FSKRE/FM(4)*RHD(N)*(GAMMA*C(N,3)*1.94008E25*C(N,2)*EMDN2/EP002
1-D-C(N,5)*1.94008E25*C(N,4)*1.6018E-2
F=FL*FSKRF/FM(7)*RHD(N)*(FKBAR*C(N,2)*1.94008E25*C(N,4)*EMIND/EMDN
1-D-C(N,6)*1.94008E25*C(N,7)*1.6018E-2
TK=FL/FM(7)*SUMCPK*RHD(N)*(RHD0+C(N,5)*1.94008E25*EMIND-RHD(N)*C(
1,N,6)*1.94008E25*C(N,7))*4.9778
WDDT(N,2)=(A+FM(2)/FM(5)*(G-D-E)-FM(2)/FM(6)*F)*RHD(N)/FL
WDDT(N,4)=(B+FM(4)/FM(5)*(G-D+E)-FM(4)/FM(6)*F)*RHD(N)/FL
WDDT(N,1)=(-A+FM(1)/FM(5)*0)*RHD(N)/FL
WDDT(N,3)=-(B+FM(3)/FM(5)*E)*RHD(N)/FL
WDDT(N,5)=(-G-0+E-TK)*RHD(N)/FL
WDCT(N,6)=(F+TK)*RHD(N)/FL
1/SENSE SWITCH 3100
50 WRITE DUTPUT TAPE 6,255,A,B,G,D,E,F,TK,SUMCM,SUMCMG,SUMCMC,
1 SUMCMK,EMDD2,EM0N2,EMDN0,EMIND,FSKRA(1),FSKR8(1),FSKR1(1),FSKRE,FS
2 KRF,FSKRK(1),RHDCD,RHDCN,RHDDN,RHDE,SIGMA,GAMMA,FKBAR,ETA,ET1228
3,ET176,ET2274,ET2740,ET3395,ET1130,T(N),TM(N),TT2,T32,FSKT
55 FDRMTH 7E10-3)
00 WDDT(N,7)=(F+TK)*RHD(N)/FL*FM(7)/FM(6)
END(1,1,0,0,0,0,1,0,C,0,0,0,0,0)

```

SUBROUTINE WDDRTT(START,NEND)

PAGE 4

DEC OCT DEC OCT
958 01532 23198 55256

STORAGE LOCATIONS FOR VARIABLES APPEARING IN COMMON STATEMENTS

	DEC	DCT	DEC	DCT	DEC	DCT	DEC	DCT	DEC	DCT	DEC	OCT		
AIL	32561	77461	AIL	32560	77460	A2	32559	77457	A3L	32558	77456	A3T	32557	77455
A4L	32556	77454	A4T	32555	77453	A5L	32554	77452	A5T	32553	77451	A8T	32504	55244
AB1T	32552	77450	AB2T	32551	77447	AB3T	32550	77446	AB4T	32549	77445	ALPHA	32534	77426
AB6T	32547	77443	AB7T	32546	77442	AC12	32545	77441	AH12	32535	77427	B2T	32462	77316
ASR	32533	77425	AU12	32523	77413	B1T	32522	77412	B7T	32162	76542	BB1T	32102	76546
84T	32342	77126	85T	32282	77032	86T	32222	76736	B8T	32098	76542	B86T	32097	76541
882T	32101	76545	683T	32100	76544	BB4T	32099	76543	BLDCK	32084	76524	BSR	32024	76430
887T	32096	76540	BC12	32095	76537	CC12	31343	75171	CC	31403	75253	CE	30753	74041
BU12	32014	76416	C12	31413	75265	CCALC	31353	75171	CONEAN	29533	71535	CPE	29531	71533
CMI	30143	72677	CM2	30133	72665	CM	30743	74027	CS	29530	71532	CSUB	23214	55256
CP	29532	71534	C	32013	76415	CSR	28930	70402	DELTA	28908	70354	DELXXX	28907	70353
DCOP12	28920	70370	DEL	28910	70356	DELTAP	28909	70355	DKDL	28903	70347	DKDT	28303	67217
OELXSY	28906	70352	CHDP12	28905	70351	CIST	28904	70350	DND	27701	66065	DSCRIP	27699	66063
DN20002	27702	66066	DN2	27703	66067	EMP	23203	55243	EPS1C	27636	65764	EPSIM	27635	65763
ODUP12	27698	66062	EDENS	27697	66061	EPSII	27634	65762	ETA	27632	65760	FA	27631	65757
EPSI	27637	65765	F8	27630	65756	FC	27629	65755	FEDA	27628	65754	FEDC	27626	65752
FH12	27565	65655	FHCALC	27564	65654	FHE	27504	65560	FHM2	27443	65463	FHM	27503	65557
FH	27625	65751	FHS	27383	65367	FIND	27323	65273	FKPSI	27321	65271	FKT	27322	65272
FLELIN	27260	65174	FLELIN	27259	65173	FLEM1	27258	65172	FLENT	27198	65076	FLN2	27138	65002
FLNOP	27018	64612	FLNO	27078	64706	FLD2	26958	64516	FL	27261	65175	FM	26898	64422
FMU12	26828	64314	FMUL	26888	64410	FMUT1M	26827	64313	FMLT1P	26767	64217	FNDSH	26707	64123
FNDSSL	26706	64122	FNUREW	23215	55257	FNUREX	23216	55260	FSH12	23210	55252	FSH	26645	64025
FSH112	26044	62674	FSH1	26644	64024	FSHP	26034	62662	FSKRD	26012	62624	FSKRS	26001	62621
FSKRA	26032	62660	FSKR2	26022	62646	FSKRC	26012	62634	FSKRD	26001	62622	FSME	25989	62605
FSKRF	26000	62620	FSKRK	25999	62617	FSK	26033	62661	FSM15	23199	55237	FSMD15	23201	55241
FSMN15	23200	55240	FSMNCP	25986	62602	FSMNO	25987	62603	FSMN	25988	62604	IAIT	25977	62571
FSMO	25985	62601	GAMM	25984	62600	HE	25983	62577	FSH12	23210	55252	FSH	26705	64121
IDEL	25976	62570	INCCD	25975	62567	INDLAS	25965	62555	INDPRI	25954	62542	INDP	25955	62543
INDPS	25953	62541	INCR	25903	62457	INDS1P	25902	62456	INDSTR	25901	62455	INDTP	25900	62454
IPRINT	23213	55255	JBYCTR	23211	55253	JINPUT	25890	62442	JS	25809	62441	KS	25888	62440
LP2	25886	62436	L	25887	62437	NCOUNT	23212	55254	NPSI	25885	62435	NSR	25883	62433
NS	25884	62434	CGIVEH	25882	62432	DG1VEK	25881	62431	PE	25872	62420	PRALIN	25810	62322
PRAL	25870	62416	PRATIN	25749	62225	PRAT	25809	62321	PRODIRA	25748	62224	PROS	25688	62130
PRF	25687	62127	PR	25871	62417	PRSAVE	25686	62126	P	25880	62430	PSCALC	25285	61305
PSI	25225	61211	PSITCU	25165	61115	PS	25685	62125	RHO12	25040	60720	RESTAR	25162	51112
RETHET	23219	55263	REW	23217	55261	REX	23218	55262	RHDU12	23205	55245	RHDCAL	25101	61015
RHOE	25041	60721	RHD	25161	61111	RHGSTG	25039	60717	RSM	24985	60631	RN	25038	60716
RNS	25037	60715	R	25163	61113	RSC	24986	60632	SCT	24922	60532	RS	24987	60633
SCHLIN	24984	60630	SCHTIN	24983	60627	SCL	24982	60626	STADIS	24681	60151	SHANGL	24862	60436
SIGMAC	24861	60435	SIGMAH	24801	60341	SIGMAU	24741	60245	TALP	24560	57760	TESTRA	24500	57664
STRUL	23206	55246	T12	23209	55251	TAUM	24620	60054	TIN	24497	57661	TITLE1	24484	57644
THETAT	24499	57663	THPER	24498	57662	TIN	24680	60150	TWN2	24400	57520	TVDNP	24398	57516
TITLE3	24472	57630	TM	24460	57614	U12	24732	57420	UCALC	24335	57417	UE	24275	57323
TVND	24399	57517	TVC2	24397	57515	UM1	24212	57224	UM2	24152	57130	UM	24272	57320
UINF	24274	57322	ULOLIM	24273	57321	UM2	24032	56740	XI	23431	55607	XI	23430	55606
U	24396	57514	US	24092	57034	XI	23432	55610	XI	23378	55523	XU12	23377	55521

SUBROUTINE WOOTR(INSTART,NENO)

PAGE 5

Y12	23208	55250	YCALC	23316	55424	Y	23376	55520	YTHC	23255	55327
YTHU	23245	55315	Z1L	23243	55313	Z1R	23242	55312	Z1	23244	55314
Z2R	23230	55276	Z2	23231	55277	Z2S	23220	55264	Z1S	23232	55300

STORAGE LOCATIONS FOR VARIABLES NOT APPEARING IN COMMON, DIMENSION, OR EQUIVALENCE STATEMENT

	OEC	OCT	OEC	OCT	OEC	OCT	OEC	OCT	OEC	OCT	OEC	OCT
A	857	01524	8	856	01530	0	855	01527	EMCN2	854	01526	EMONO
EM002	852	01524	EMIN0	851	01523	E	850	01522	ET1130	849	01521	ET178
ET2274	847	01517	ET22740	846	01516	ET3395	845	01515	ETT228	844	01514	FK8AR
F	842	01512	FSKT	841	01511	GAMMA	840	01510	G	839	01507	RHODE
RHOONO	837	01505	RHOON	836	01504	RHOOD	835	01503	SIGMA	834	01502	SUMCMA
SUMCM8	832	01500	SUMCMC	831	01477	SUMCMK	830	01476	SUMCM	829	01475	T32
TK	827	01473	TT2	826	01472					828	01474	

SYMBOLS AND LOCATIONS FOR SOURCE PROGRAM FORMAT STATEMENTS

817V	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC	EFN	LOC
255	01463									

LOCATIONS FOR OTHER SYMBOLS NOT APPEARING IN SOURCE PROGRAM

11	OEC	OCT	DEC	OCT	DEC	OCT	DEC	OCT	C1GO	OCT	
820	01464	21	770	01402	31	774	01406	61	812	01454	(STH)

LOCATIONS OF NAMES IN TRANSFER VECTOR

EXP	OEC	OCT	OEC	OCT	DEC	OCT	DEC	OCT	EXP	OCT	
0	00000		EXP(3	1	00001	SQRT	2	00002	(FIL)	4	00004

ENTRY POINTS TO SUBROUTINES NOT OUTPUT FROM LIBRARY

EXP	EXP(3	SQRT	(FIL)	(STH)						
-----	-------	------	-------	-------	--	--	--	--	--	--

EXTERNAL FORMULA NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS

EFN	IFN	LOC									
10	11	00030	150	74	00645	250	89	C1230	300	91	01362

Appendix III

Total No. of Pages - 1

APPENDIX III

FLOW DIAGRAM

CHIEFLY FEATING HABITS & LAYER

OVERALL PROGRAM LOGIC

APPENDIX 4

SAMPLE INPUT

TITLE CARD
FIRING RANGE BLUNTED CONE

TITLE CARD
NON UNITY FLOW PARAMETERS

TITLE CARD
LAMINAR CHEMISTRY RUN

LP2 20	NS 7	NPSI 1	INDSTR 1	FNOSSL .5E-2	FNDSSH .75E-1	IALT 150
A1L 1.0E0	A1T 0.0E0	A2 1.0E0	A3L 1.0E0	A3T 0.0E0	A4L 1.0E0	A4T 0.0E0
ASL 1.0E0	AST 0.0E0	C(1,1) .22741E0	C(2,1) .22170E0	C(3,1) .21183E0	C(4,1) .17982E0	C(5,1) .14297E0
C(6,1) .11150E0	C(7,1) .85382E-1	C(8,1) .62616E-1	C(9,1) .43567E-1	C(10,1) .29410E-1	C(11,1) .20097E-1	C(12,1) .16908E-1
C(13,1) .14904E-1	C(14,1) .14469E-1	C(15,1) .14469E-1	C(16,1) .14469E-1	C(17,1) .14469E-1	C(18,1) .14469E-1	C(19,1) .14469E-1
C(20,1) .14469E-1	C(1,2) .67227E-3	C(2,2) .33476E-2	C(3,2) .10007E-1	C(4,2) .36819E-1	C(5,2) .71043E-1	C(6,2) .10170E0
C(7,2) .12798E0	C(8,2) .15152E0	C(9,2) .17185E0	C(10,2) .18753E0	C(11,2) .19831E0	C(12,2) .20215E0	C(13,2) .20462E0
C(14,2) .20516E0	C(15,2) .20516E0	C(16,2) .20516E0	C(17,2) .20516E0	C(18,2) .20516E0	C(19,2) .20516E0	C(20,2) .20516E0
C(1,4) .14702E-8	C(2,4) .30977E-7	C(3,4) .25366E-6	C(4,4) .34105E-5	C(5,4) .14424E-4	C(6,4) .35360E-4	C(7,4) .69228E-4
C(8,4) .12614E-3	C(9,4) .22343E-3	C(10,4) .37977E-3	C(11,4) .60274E-3	C(12,4) .73494E-3	C(13,4) .84654E-3	C(14,4) .87483E-3
C(15,4) .87483E-3	C(16,4) .87483E-3	C(17,4) .87483E-3	C(18,4) .87483E-3	C(19,4) .87483E-3	C(20,4) .87483E-3	C(1,5) .73356E-2
C(2,5) .13023E-1	C(3,5) .19050E-1	C(4,5) .28800E-1	C(5,5) .33728E-1	C(6,5) .35239E-1	C(7,5) .34955E-1	C(8,5) .33489E-1
C(9,5) .31103E-1	C(10,5) .28245E-1	C(11,5) .25478E-1	C(12,5) .24262E-1	C(13,5) .23396E-1	C(14,5) .23195E-1	C(15,5) .23195E-1
C(16,5) .23195E-1	C(17,5) .23195E-1	C(18,5) .23195E-1	C(19,5) .23195E-1	C(20,5) .23195E-1	C(1,6) .36175E-11	C(2,6) .93313E-10
C(3,6) .87854E-9	C(4,6) .13790E-7	C(5,6) .61681E-7	C(6,6) .15267E-6	C(7,6) .29524E-6	C(8,6) .52305E-6	C(9,6) .88771E-6
C(10,6) .14312E-5	C(11,6) .21502E-5	C(12,6) .25554E-5	C(13,6) .28882E-5	C(14,6) .29714E-5	C(15,6) .29714E-5	C(16,6) .29714E-5

C(17,6) C(18,6) C(19,6) C(20,6)
 .29714E-5 .29714E-5 .29714E-5 .29714E-5

RESTAR	DELTAX	EPSI	EPSIU	EPSIC	EPSIH	EPSIT
	1.0E0	1.0E-9	1.0E0	0.5E-3	0.0E0	1.0E-4
H(1)	H(2)	H(3)	H(4)	H(5)	H(6)	H(7)
.26496E8	.31276E8	.36058E8	.45620E8	.55182E8	.64744E8	.74306E8
H(8)	H(9)	H(10)	H(11)	H(12)	H(13)	H(14)
.83868F0	.93428E8	1.02985E8	1.12551E8	1.17333E8	1.21160E8	1.22112E8
H(15)	H(16)	H(17)	H(18)	H(19)	H(20)	FK
1.22113E8	1.22114E8	1.22115E8	1.22116E8	1.22116E8	1.22116E8	.4E0
CPE	FL	FSHE	GAMM	PE	RHOE	RHOSIG
.432F0	1.0E0	1.20096E2	1.4E0	3.0597E0	3.5642E-6	4.1379E-5
CE(1)	CE(2)	CE(3)	CE(4)	CE(5)	CE(6)	CE(7)
.232F0	0.0E0	.768E0	0.0E0	0.0E0	0.0E0	0.0E0
RN	UINF	ULOLIM	XS	ZIS	Z2S	ZIL
.05E0	15.2E3	100.E0	.0519E0	.02806E0	.041305E0	1.5E0
U(1)	U(2)	U(3)	U(4)	U(5)	U(6)	U(7)
0.0F0	.42518E3	.85037E3	.17007E4	.25511E4	.34014E4	.42518E4
U(8)	U(9)	U(10)	U(11)	U(12)	U(13)	U(14)
.51022F4	.59525E4	.68029E4	.76533E4	.80785E4	.84186E4	.85037E4
U(15)	U(16)	U(17)	U(18)	U(19)	U(20)	
.85037E4	.85037E4	.85037E4	.85037E4	.85037E4	.85037E4	
FA	FB	FC	TESTRA	AB4T	AB2T	AB3T
0.4F0	0.0E0	0.0E0	2.0E-1	0.0E0	0.0E0	0.0E0
AB4T	AB5T	AB6T	AB7T	BBIT	BB2T	BB3T
0.0E0						
BB4T	BB5T	BB6T	BB7T	FLELIN	FLETIN	PRALIN
0.0E0	0.0E0	0.0E0	0.0E0	1.4E0	1.4E0	.7E0
PRATIN	SCHLIN	SCHTIN	Y(1)	Y(2)	Y(3)	Y(4)
.7F0	.5E0	.5E0	0.0E0	.52716E-4	.11128E-3	.24304E-3
Y(5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)	Y(11)
.39216E-3	.55812E-3	.74335E-3	.95388E-3	.12015E-2	.15123E-2	.19643E-2
Y(12)	Y(13)	Y(14)	Y(15)	Y(16)	Y(17)	Y(18)
.23168E-2	.24369E-2	.25270E-2	.26171E-2	.27072E-2	.27973E-2	.28874E-2
Y(19)	Y(20)					
.29775E-2	.30673E-2					

INOPRI	NSR	JINPUT	THPER
5	4	20	.99E0

ASR(1)	BSR(1)	CSR(1)	ZIR(1)	Z2R(1)	TYP	COO	LAS	IND	IND	IND
0.0EO	5.3775E0	0.0EO	1.036E-3	1.3880E-2	6	1	0			
					IND	IND	IND			
ASR(2)	BSR(2)	CSR(2)	ZIR(2)	Z2R(2)	TYP	COO	LAS			
.60962E-3	13.067	.81680E-2	.042663E0	.064899E0	6	1	0			
					IND	IND	IND			
ASR(3)	BSR(3)	CSR(3)	ZIR(3)	Z2R(3)	TYP	COO	LAS			
9.6118E-3	1.6625E1	.020312E0	.390380E0	.168759E0	6	1	0			
					IND	IND	IND			
ASR(4)	BSR(4)	CSR(4)	ZIR(4)	Z2R(4)	TYP	COO	LAS			
.2026F0.0896068E0	0.0EO		1.5E0	1.50E0	2	1	1			
INDP	INDR	INDLR	INDLSR	INDS5	INDS6	INDS7				
2	1	0	0	0	0	0				
OGIVEH	OGIVEK	P(1)	P(2)	P(3)	P(4)	P(5)				
.0534E0	0.0EO	0.0EO	593.330E0	-410.15E0	0.0EO	0.0EO				
P(6)	P(7)	P(8)	CC(1,1)	CC(2,1)	CC(3,1)	CC(4,1)				
0.0FO	0.0EO	0.0EO	.22741E0	0.0EO	0.0EO	0.0EO				
CC(5,1)	CC(1,2)	CC(2,2)	CC(3,2)	CC(4,2)	CC(5,2)	CC(1,3)				
0.0EO	.67227E-3	0.0EO	0.0EO	0.0EO	0.0EO	.76457E0				
CC(2,3)	CC(3,3)	CC(4,3)	CC(5,3)	CC(1,4)	CC(2,4)	CC(3,4)				
0.0EO	0.0EO	0.0EO	0.0EO	.14702E-8	0.0EO	0.0EO				
CC(4,4)	CC(5,4)	CC(1,5)	CC(2,5)	CC(3,5)	CC(4,5)	CC(5,5)				
0.0EO	0.0EO	.73356E-2	0.0EO	0.0EO	0.0EO	0.0EO				
CC(1,6)	CC(2,6)	CC(3,6)	CC(4,6)	CC(5,6)	HH1	HH2				
36175E-11	0.0EO	0.0EO	0.0EO	0.0EO	.26496E8	0.0EO				
HH3	HH4	HHS	RN	XL	CONEAN					
0.0FO	0.0EO	0.0EO	.05E0	.06175E0	0.0EO					
INDP	INDR	INDLR	INDLSR	INDS5	INDS6	INDS7				
2	1	0	1	0	0	0				
OGIVEH	OGIVEK	P(1)	P(2)	P(3)	P(4)	P(5)				
.0534E0	0.0EO	0.0EO	213.56E0	-102.64E0	0.0EO	0.0EO				
P(6)	P(7)	P(8)	CC(1,1)	CC(2,1)	CC(3,1)	CC(4,1)				
0.0FO	0.0EO	0.0EO	.22741E0	0.0EO	0.0EO	0.0EO				
CC(5,1)	CC(1,2)	CC(2,2)	CC(3,2)	CC(4,2)	CC(5,2)	CC(1,3)				
0.0EO	.67227E-3	0.0EO	0.0EO	0.0EO	0.0EO	.76457E0				
CC(2,3)	CC(3,3)	CC(4,3)	CC(5,3)	CC(1,4)	CC(2,4)	CC(3,4)				
0.0FO	0.0EO	0.0EO	0.0EO	.14702E-8	0.0EO	0.0EO				
CC(4,4)	CC(5,4)	CC(1,5)	CC(2,5)	CC(3,5)	CC(4,5)	CC(5,5)				
0.0EO	0.0EO	.73356E-2	0.0EO	0.0EO	0.0EO	0.0EO				

CC(1,6) 36175E-11	CC(2,6) 0.0EO	CC(3,6) 0.0EO	CC(4,6) 0.0EO	CC(5,6) 0.0EO	HH1 .26496E8	HH2 0.0EO
HH3 0.0EO	HH4 0.0EO	HHS 0.0EO	RN .05EO	XL .0717EO	CONEAN 0EO	
INOP 2	INDR 2	INDLR 0	INDLSR 0	INOS5 0	INOS6 0	INOS7 0
OGIVEH 0.0FO	OGIVEK 0.0EO	P(1) 0.0EO	P(2) 213.56EO	P(3) -102.64EO	P(4) 0EO	P(5) 0EO
P(6) 0EO	P(7) 0EO	P(8) 0EO	CC(1,1) .22741EO	CC(2,1) 0.0EO	CC(3,1) 0.0EO	CC(4,1) 0.0EO
CC(5,1) 0.0FO	CC(1,2) .67227E-3	CC(2,2) 0.0EO	CC(3,2) 0.0EO	CC(4,2) 0.0EO	CC(5,2) 0.0EO	CC(1,3) .76457EO
CC(2,3) 0.0EO	CC(3,3) 0.0EO	CC(4,3) 0.0EO	CC(5,3) 0.0EO	CC(1,4) .14702E-8	CC(2,4) 0.0EO	CC(3,4) 0.0EO
CC(4,4) 0.0FO	CC(5,4) 0.0EO	CC(1,5) .73356E-2	CC(2,5) 0.0EO	CC(3,5) 0.0EO	CC(4,5) 0.0EO	CC(5,5) 0.0EO
CC(1,6) 36175E-11	CC(2,6) 0.0EO	CC(3,6) 0.0EO	CC(4,6) 0.0EO	CC(5,6) 0.0EO	HH1 .26496E8	HH2 0.0EO
HH3 0.0FO	HH4 0.0EO	HHS 0.0EO	RN .05EO	XL .0864EO	CONEAN .136717EO	
INOP 2	INDR 2	INDLR 0	INDLSR 0	INOS5 0	INOS6 0	INOS7 0
OGIVEH 0.0FO	OGIVEK 0.0EO	P(1) 0.0EO	P(2) 43.840EO	P(3) -4.4213EO	P(4) 0.0EO	P(5) 0.0EO
P(6) 0.0FO	P(7) 0.0EO	P(8) 0.0EO	CC(1,1) .22741EO	CC(2,1) 0.0EO	CC(3,1) 0.0EO	CC(4,1) 0.0EO
CC(5,1) 0.0FO	CC(1,2) .67227E-3	CC(2,2) 0.0EO	CC(3,2) 0.0EO	CC(4,2) 0.0EO	CC(5,2) 0.0EO	CC(1,3) .76457EO
CC(2,3) 0.0FO	CC(3,3) 0.0EO	CC(4,3) 0.0EO	CC(5,3) 0.0EO	CC(1,4) .14702E-8	CC(2,4) 0.0EO	CC(3,4) 0.0EO
CC(4,4) 0.0FO	CC(5,4) 0.0EO	CC(1,5) .73356E-2	CC(2,5) 0.0EO	CC(3,5) 0.0EO	CC(4,5) 0.0EO	CC(5,5) 0.0EO
CC(1,6) 36175E-11	CC(2,6) 0.0EO	CC(3,6) 0.0EO	CC(4,6) 0.0EO	CC(5,6) 0.0EO	HH1 .26496E8	HH2 0.0EO
HH3 0.0EO	HH4 0.0EO	HHS 0.0EO	RN .05EO	XL .2877EO	CONEAN .136718EO	

INDP 2	INDR 2	INDLR 1	INDLSR 1	INDSS 0	INDS6 0	INDS7 0
OGIVEH 0.0E0	OGIVEK 0.0E0	P(1) 0.0E0	P(2) 19.228E0	P(3) -.13784E0	P(4) 0.0E0	P(5) 0.0E0
P(6) 0.0E0	P(7) 0.0E0	P(8) 0.0E0	CC(1,1) .22741E0	CC(2,1) 0.0E0	CC(3,1) 0.0E0	CC(4,1) 0.0E0
CC(5,1) 0.0E0	CC(1,2) .67227E-3	CC(2,2) 0.0E0	CC(3,2) 0.0E0	CC(4,2) 0.0E0	CC(5,2) 0.0E0	CC(1,3) .76457E0
CC(2,3) 0.0E0	CC(3,3) 0.0E0	CC(4,3) 0.0E0	CC(5,3) 0.0E0	CC(1,4) .14702E-8	CC(2,4) 0.0E0	CC(3,4) 0.0E0
CC(4,4) 0.0E0	CC(5,4) 0.0E0	CC(1,5) .73356E-2	CC(2,5) 0.0E0	CC(3,5) 0.0E0	CC(4,5) 0.0E0	CC(5,5) 0.0E0
CC(1,6) 36175E-11	CC(2,6) 0.0E0	CC(3,6) 0.0E0	CC(4,6) 0.0E0	CC(5,6) 0.0E0	HH1 .26496E8	HH2 0.0E0
HH3 0.0E0	HH4 0.0E0	HH5 0.0E0	RN 0.05E0	XL 1.5415E0	CONEAN .136718E0	

Appendix V

Total No. of Pages - 10

APPENDIX V

SAMPLE OUTPUT

GENERAL APPLIED SCIENCE LABS

FINITE DIFFERENCE SOLUTION OF CHEMICALLY REACTING AIR BOUNDARY LAYERS

FIRING RANGE BLUNTED CONE

NON UNITY FLOW PARAMETERS

LAMINAR CHEMISTRY RUL

FLIGHT CONDITIONS AND FREE STREAM PROPERTIES

ALT (K FT)	CP (FT/SEC) SQ/K	STAT ENTH (FT/SEC) SQ	GAMMA	PRESS (LB/SC FT)	DENSITY (SLUGS/CU FT)	TEMP (DEG K)	VEL (FT/SEC)
150	4.32000E-01	1.20096E 02	1.40000E 00	3.05970E 01	3.56420E-06	2.78000E 02	1.52000E 04
C(02)	C(0)	C(N2)	C(N)	C(ND)	C(ND+)	C(E-)	0.

SHOCK CONDITIONS

STAG DENSITY (SLUGS/CU FT)	NSR
4.13790E-05	4

SHOCK REGION NO 1

TYPE	SHANGL (RAO)	STANDOFF DIST (FT)	ASR	GEOM COEF BSR	Z1R (FT)	LIMITS Z2R (FT)
PARABOLIC	0.	0.	0.	5.37750E 00	0.	CSR 1.03600E-03

SHOCK REGION NO 2

TYPE	SHANGL (RAO)	STANDOFF DIST (FT)	ASR	GEOM COEF BSR	Z1R (FT)	LIMITS Z2R (FT)
PARABOLIC	0.	0.	6.09620E-04	1.30670E 01	CSR 8.16800E-03	4.26630E-02

SHOCK REGION NO 3

TYPE	SHANGL (RAO)	STANDOFF DIST (FT)	ASR	GEOM COEF BSR	Z1R (FT)	LIMITS Z2R (FT)
PARABOLIC	0.	0.	9.61100E-03	1.66250E 01	CSR 2.03120E-02	3.90300E-01

SHOCK REGION NO 4

TYPE	SHANGL (RAO)	STANDOFF DIST (FT)	ASR	GEOM COEF BSR	Z1R (FT)	LIMITS Z2R (FT)
					CSR 0.	1.68750E-01

PROBLEM TYPE		STREAMLINE CALC		INITIAL PROFILES INPUT	
NO GRID PTS	NO SPECIES	NOSE RADIUS (FT)	OVERALL ZETA (FT)	NPSI	JINPUT
18	7	5.00000E-02	1.50000E 00	1	20
X _S (FT)	Z _{1S} (FT)	Z _{2S} (FT)	DELTA X (FT)		1.00000E 00
5.19000E-02	2.80600E-02	4.13050E-02	1.00000E-09		
A _{LL} 1.00000E 00	A ₁₁ 0.	A ₂ 1.00000E 0C	A _{3L} 1.00000E 00	A _{4L} 1.00000E 00	A _{4T} 0.
A _{5L} 1.00000E 00	A ₅₁ 0.	STEP SIZE 5.00000E-03	TOLERANCES 7.50000E-02	STAB. FACTOR 0.	
U _{LOLIM} (FT/SEC)	U 9.90000E-01	C ₍₀₂₎ 9.90000E-01	C ₍₀₁₎ 9.90000E-01	C _(N2) 9.90000E-01	C _(N1) 9.90000E-01
EPSI 1.00000E 00	EPSI U 5.00000E-04 C. 0.	EPSI C ₍₀₂₎ 0.	EPSI C ₍₀₁₎ 0.	EPSI C _(N2) 0.	EPSI H 10.00000E-05
LEWIS NO 1.40000E 00	TURBULENT 1.40000E 00	LAMINAR 7.00000E-01	TURBULENT 7.00000E-01	PRANDTL NO 5.00000E-01	SCHMIDT NO 5.00000E-01
DIFFUSION COEF 02 1.00000E 00	RATIOS LAMINAR 0 1.00000E 00	N ² 1.00000E 00	N 1.00000E 00	NC 1.00000E 00	NO+ 1.00000E 00
DIFFUSION COEF 02 1.00000E 00	RATIOS TURBULENT 0 1.00000E 00	N ² 1.00000E 00	N 1.00000E 00	NC 1.00000E 00	E- 1.00000E 00
TEST RIA 2.00000E-01	A _{B11} 0.	A _{B21} 0.	A _{B31} 0.	A _{B41} 0.	A _{B51} 0.
	B _{B11} 0.	B _{B21} 0.	B _{B31} 0.	B _{B41} 0.	B _{B51} 0.
F _K 4.00000E-01	F _A 4.00000E-01	F _B 0.	F _C 0.	F _{D1A} 0.	F _{E1C} 0.
SUBREGION VALUES AND WALL PARAMETERS					
PRES TYPE 2	0.	5.93330E 02	-4.10150E 02	PRES COEF 0.	0.
GEOM SUBR 1	OGIVEH 5.34000E-02	OGIVEK 0.	RN 5.00000E-02	XL (FT) 6.17500E-02	CONAN (RAD) 0.
CWALL COEF 02 2.27410E-01	0.	N ² 7.64570E-01	N 1.47020E-09	NC 7.33560E-03	NO+ 3.61750E-12
					E- 0.
					H WALL COEF 2.64960E 07

0. 0. 0. 0. 0. 0. 0. 0. 0.

INITIAL PROFILES

	γ	$c(02)$	$c(0)$	$c(n2)$	$c(n)$	$c(n+1)$	$c(e-1)$	$c(e)$	$c(f1/sec)q$	$c(f1/sec)$	u	u
0.	2.27410E-01	6.12270E-04	7.64582E-01	1.47020E-09	7.33560E-03	3.61750E-12	6.61360E-17	2.64940E-07	0.	0.	0.	0.
5.27160E-05	2.21700E-01	3.34760E-03	7.61929E-01	3.09770E-08	1.30230E-02	9.33130E-11	1.70599E-15	3.12760E-07	4.25140E-02	0.	0.	0.
1.1280E-04	2.11830E-01	1.00070E-02	7.59113E-01	2.53660E-07	1.90500E-02	8.76540E-10	1.46061E-14	3.50370E-07	8.50370E-02	0.	0.	0.
2.43040E-04	1.79820E-01	3.68190E-02	7.54558E-01	3.41050E-06	2.88000E-02	1.37900E-08	2.52115E-13	6.56200E-07	1.70070E-03	0.	0.	0.
3.92160E-04	1.42970E-01	7.10430E-02	7.52244E-01	1.44240E-05	3.37280E-02	6.16810E-08	1.12768E-12	5.51820E-07	2.55110E-03	0.	0.	0.
5.58120E-04	1.11500E-01	1.01700E-01	7.51525E-01	3.53600E-05	3.52390E-02	1.52670E-07	2.79118E-12	6.47440E-07	3.40140E-03	0.	0.	0.
7.43350E-04	8.53820E-02	1.27980E-01	7.51613E-01	6.92280E-05	3.49550E-02	2.95240E-07	5.39771E-12	7.43060E-07	4.25180E-03	0.	0.	0.
9.53880E-04	6.26160E-02	1.51520E-01	7.52248E-01	1.26140E-04	3.34890E-02	9.56264E-12	8.38680E-07	5.10220E-03	5.10220E-03	0.	0.	0.
1.20150E-03	4.35670E-02	1.71850E-01	7.53256E-01	2.23430E-04	3.11030E-02	8.87710E-07	1.62229E-11	9.34280E-07	5.95250E-03	0.	0.	0.
1.51230E-03	2.94100E-02	1.87530E-01	7.54434E-01	3.79770E-04	2.82450E-02	1.43120E-06	2.61659E-11	1.02985E-06	6.80290E-03	0.	0.	0.
1.96430E-03	2.00970E-02	1.98310E-01	7.55510E-01	6.02740E-04	2.54780E-02	2.15020E-06	3.93109E-11	1.12551E-06	7.65330E-03	0.	0.	0.
2.31680E-03	1.69080E-02	2.02150E-01	7.55942E-01	7.34940E-04	2.42620E-02	2.55540E-06	4.67190E-11	1.17333E-06	8.07650E-03	0.	0.	0.
2.43690E-03	1.49000E-02	2.04620E-01	7.56231E-01	8.46540E-04	2.33960E-02	2.88820E-06	5.28034E-11	1.21160E-06	8.41860E-03	0.	0.	0.
2.52700E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22112E-06	8.50370E-03	0.	0.	0.
2.61710E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22113E-06	8.50370E-03	0.	0.	0.
2.70720E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22114E-06	8.50370E-03	0.	0.	0.
2.79730E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22115E-06	8.50370E-03	0.	0.	0.
2.88740E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22116E-06	8.50370E-03	0.	0.	0.
2.97750E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22116E-06	8.50370E-03	0.	0.	0.
3.06730E-03	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	1.22116E-06	8.50370E-03	0.	0.	0.

1. 0.
2. 1.02230E-08
3. 4.21912E-08
4. 1.71171E-07
5. 3.95443E-07
6. 7.22983E-07
7. 1.16515E-06
8. 1.74654E-06
9. 2.51731E-06
10. 3.58718E-06
11. 5.28204E-06
12. 6.68176E-06
13. 7.17443E-06
14. 7.55062E-06
15. 7.92814E-06
16. 8.30566E-06
17. 8.68317E-06
18. 9.06067E-06
19. 0.
20. 0.

STATION VALUES		0	0	9	0	5		
X (FT)	Y (FT)	DELTA X (FT)	ZETA 1 (FT)	RAO BC0Y (FT)	BL MASS FLOW (LB SEC/FT)	STREAMUBE RAO (FT)	WALL PRES (LB/SQ FT)	RETHETA
5.1900001E-03	1.0000000E-09	0.	0.	5.93238E-05	1.86697E-02	1.67594E-02	0.	
DELTA U (FT)	DELTA C(02) (FT)	DELTA C(02) (FT)	DELTA C(01) (FT)	DELTA C(N2) (FT)	DELTA C(NC) (FT)	DELTA C(ND+) (FT)	DELTA C(E-) (FT)	
2.92360E-03	2.49344E-03	2.92360E-03	2.92360E-03	2.92360E-03	2.92360E-03	2.92360E-03	2.92360E-03	2.92360E-03
RELX	REF	DELTA STAR (FT)	THETA (FT)	NU/SQRT(REF)	NU/SQRT(REF)	C SUB F		
0.	C.	7.61037E-04	4.66866E-04	-0.	-0.	0.		
K	C(02)	C(01)	C(N2)	C(N1)	C(ND+)	C(E-)	CSUP	
1	2.27410E-01	6.72270E-04	7.e4582E-01	1.47020E-09	7.33560E-03	3.61750E-12	6.61368E-17	10.00000E-01
2	1.29755E-01	8.39162E-02	7.51194E-01	2.32153E-05	3.43625E-02	9.98883E-08	1.82620E-12	10.00000E-01
3	9.12410E-02	1.22065E-01	7.51594E-01	6.16305E-05	3.50187E-02	2.63258E-07	4.81300E-12	10.00000E-01
4	6.83956E-02	1.45544E-01	7.52087E-01	1.11692E-04	3.36612E-02	4.65216E-07	8.50529E-12	10.00000E-01
5	5.30915E-02	1.61685E-01	7.52752E-01	1.74785E-04	3.22960E-02	1.28961E-07	1.53808E-11	10.00000E-01
6	4.16140E-02	1.81824E-01	7.53418E-01	2.44988E-04	3.07087E-02	9.62688E-07	1.76033E-11	10.00000E-01
7	3.45613E-02	1.86205E-02	7.54005E-01	3.22898E-04	2.92849E-02	1.23346E-06	2.25503E-11	10.00000E-01
8	2.56918E-02	1.91834E-01	7.54525E-01	3.98673E-04	2.80104E-02	1.49215E-06	2.72803E-11	10.00000E-01
9	2.27632E-02	1.95224E-01	7.55202E-01	4.68790E-04	2.71403E-02	1.71826E-06	3.14140E-11	10.00000E-01
10	1.99882E-02	1.98441E-01	7.55525E-01	5.38907E-04	2.62702E-02	1.94436E-06	3.55477E-11	10.00000E-01
11	1.44690E-02	1.99903E-01	7.55698E-01	6.07251E-04	2.54365E-02	2.16403E-06	3.95637E-11	10.00000E-01
12	1.87739E-02	2.00136E-01	7.55854E-01	6.57589E-04	2.449735E-02	2.31832E-06	4.23845E-11	10.00000E-01
13	1.75596E-02	2.00160E-01	7.56087E-01	7.07927E-04	2.45105E-02	2.47260E-06	4.52053E-11	10.00000E-01
14	1.59034E-02	2.03388E-01	7.56298E-01	7.90885E-04	2.38279E-02	2.72223E-06	4.97691E-11	10.00000E-01
15	1.45718E-02	2.05032E-01	7.56282E-01	8.68145E-04	2.32425E-02	2.95174E-06	5.39651E-11	10.00000E-01
16	1.44690E-02	2.05160E-01	7.56e+98E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	10.00000E-01
17	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	10.00000E-01
18	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	10.00000E-01
19	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	10.00000E-01
20	1.44690E-02	2.05160E-01	7.56298E-01	8.74830E-04	2.31950E-02	2.97140E-06	5.43245E-11	10.00000E-01

K	PSI (LB SEC/FT)	Y (FT)	U (FT/SEC)	T (DEG K)	H (FT/SEC) SQ	RHO (SLUGS/CU FT)
1	0.	4.94177E-04	2.90015E 03	2.13739E 03	2.64960E 07	2.52367E-05
2	5.32981E-07	7.37640E-04	4.06103E 03	2.43659E 03	3.11856E 07	1.62111E-05
3	1.06596E-06	9.37584E-04	4.88631E 03	2.66964E 03	3.56964E 07	1.49018E-05
4	1.59894E-06	1.11638E-04	5.52735E 03	2.92658E 03	4.41738E 07	8.14405E 07
5	2.13192E-06	1.28189E-04	6.06982E 03	3.04724E 03	5.19279E 07	8.86480E 07
6	2.66490E-06	1.43829E-04	6.49346E 03	3.16703E 03	5.89592E 07	9.47464E 07
7	3.19788E-06	1.58811E-04	6.874799E 03	3.40126E 03	6.52671E 07	1.30119E-05
8	4.26385E-06	1.73313E-04	7.14242E 03	3.49876E 03	7.08518E 07	1.27749E-05
9	4.79683E-06	1.87452E-04	7.40984E 03	3.60118E 03	7.57119E 07	1.266225E-05
10	5.32981E-06	2.01261E-04	7.667781E 03	3.71113E 03	7.98453E 07	1.24701E-05
11	5.86279E-06	2.14819E-04	7.82971E 03	3.76492E 03	8.32645E 07	1.23241E-05
12	6.39577E-06	2.28188E-04	7.991162E 03	3.80586E 03	8.47019E 07	1.22429E-05
13	6.92875E-06	2.41322E-04	8.24899E 03	3.81533E 03	8.57236E 07	1.21618E-05
14	7.46173E-06	2.54188E-04	8.48359E 03	3.81540E 03	8.59555E 07	1.20410E-05
15	7.99471E-06	2.66919E-04	8.50370E 03	3.81547E 03	8.59565E 07	1.19375E-05
16	8.52769E-06	2.79639E-04	8.50370E 03	3.81555E 03	8.59575E 07	1.19290E-05
17	9.06067E-06	2.92360E-04	8.50370E 03	3.81562E 03	8.59585E 07	1.19287E-05
18	9.59365E-06	3.05081E-04	8.50370E 03	3.81562E 03	8.59595E 07	1.19284E-05
19	1.012666E-05	3.17802E-04	8.50370E 03	3.81562E 03	8.59595E 07	1.19284E-05
20						

K	ELECTRON DENS PART/C	MU L (LB SEC/SQFT)	MU T (LB SEC/SQFT)	TAUM (LB/SQFT)
1	9.45480E 05	0.	0.	0.
2	1.67702E 10	0.	0.	0.
3	4.06286E 10	0.	0.	0.
4	6.81601E 10	0.	0.	0.
5	9.97687E 10	0.	0.	0.
6	1.32403E 11	0.	0.	0.
7	1.66215E 11	0.	0.	0.
8	1.97416E 11	0.	0.	0.
9	2.24618E 11	0.	0.	0.
10	2.51106E 11	0.	0.	0.
11	2.76203E 11	0.	0.	0.
12	2.93947E 11	0.	0.	0.
13	3.11431E 11	0.	0.	0.
14	3.39468E 11	0.	0.	0.
15	3.64925E 11	0.	0.	0.
16	3.67093E 11	0.	0.	0.
17	2.67084E 11	0.	0.	0.
18	3.67074E 11	0.	0.	0.
19	2.67074E 11	0.	0.	0.
20	3.67074E 11	0.	0.	0.
U 1/2	FH 1/2	RHO 1/2	V 1/2	EDEN 1/2
2.07465E 03	2.64960E C7	2.52367E-C5	2.13739E 03	0.
C (1) 1/2	2.27410E-C1	6.72270E-C4	7.64582E-C1	1.47020E-09
				7.33560E-03
				3.61750E-12
				6.61368E-17

K	PSI CLB SEC/FT)	Y (FT)	U (FT/SEC)	T (FT/SEC)	OEG KI	SMALL H (FT/SEC)	H (SLUGS/LU FT)	SQ (FT/SEC)
1	0.	0.	0.	2.13742E-03	2.64960E-07	2.64960E C7	2.52367E-05	
2	5.32981E-07	4.60655E-04	2.90615E-03	3.10402E-03	5.49665E-07	5.91971E C7	1.61649E-05	
3	1.06596E-06	7.17187E-04	4.06103E-03	3.26682E-03	6.39150E-07	7.21609E C7	1.48736E-05	
4	1.59894E-06	9.11330E-04	4.86630E-03	3.37858E-03	6.95025E-07	8.14404E C7	1.41207E-05	
5	2.13192E-06	1.08497E-03	5.52735E-03	3.46533E-03	7.33722E-07	8.86479E C7	1.36262E-05	
6	2.66490E-06	1.24565E-03	6.009561E-03	3.51598E-03	7.63251E-07	9.47464E C7	1.32663E-05	
7	3.19786E-06	1.39745E-03	6.49346E-03	3.56992E-03	7.86249E-07	9.95075E C7	1.29860E-05	
8	3.73066E-06	1.54285E-03	6.87499E-03	3.61251E-03	8.01632E-07	1.03796E 08	1.27666E-05	
9	4.26385E-06	1.68358E-C2	7.14242E-C2	3.65128E-03	8.12971E-07	1.06894E C8	1.25973E-05	
10	4.79643E-06	1.82088E-C2	7.40984E-C2	3.68494E-03	8.23595E-07	1.09812E C8	1.24491E-05	
11	5.32561E-06	1.95482E-C2	7.44178E01	3.71318E-03	8.33165E-07	1.12714E 08	1.23232E-05	
12	5.86279E-06	2.08625E-C2	7.441971E-01	3.73501E-03	8.38828E-07	1.14535E 08	1.22370E-05	
13	6.39577E-06	2.21567E-C2	7.45142E-01	3.75498E-03	8.44229E-07	1.16356E C8	1.21578E-05	
14	6.92675E-06	2.34320E-C2	7.474499E-01	3.78647E-03	8.52265E-07	1.19251E C8	1.20373E-05	
15	7.46173E-06	2.46792E-02	7.48358E-01	3.81314E-03	8.59014E-07	1.21087E 08	1.19373E-05	
16	7.99471E-06	2.59130E-03	7.50370E-01	3.81542E-03	8.59567E-07	1.22113E 08	1.19290E-05	
17	8.52769E-06	2.71458E-03	7.50370E-01	3.81552E-03	8.59581E-07	1.22115E C8	1.19287E-05	
18	9.06067E-06	2.83787E-02	7.50370E-01	3.81562E-03	8.59595E-07	1.22116E C8	1.19284E-05	
19	9.59365E-06	2.96116E-02	7.50370E-01	3.81562E-03	8.59595E-07	1.22116E 08	1.19284E-05	
20	1.01266E-05	3.08444E-02	7.50370E-01	3.81562E-03	8.59595E-07	1.22116E 08	1.19284E-05	

K	ELECTRON DENS	MU L		MU T		TAUM	
		PART/CC	(LB SEC/SQFT)				
1	5.480E 05	1.67234E 10	1.3896E-06	0.	0.	9.20574E 00	
2	4.05525E 10	1.63862E-06	C.	C.	9.09546E 00		
3	4.05525E 10	1.68446E-C6	C.	C.	8.22637E 00		
4	6.03451E 10	1.71432E-06	C.	C.	7.25588E 00		
5	5.95435E 10	1.73522E-06	C.	C.	6.37958E 00		
6	1.22661E 11	1.75100E-06	C.	C.	5.85173E 00		
7	1.65812E 11	1.76519E-06	C.	C.	4.9C899E 00		
8	1.97277E 11	1.77632E-06	C.	C.	4.64848E 00		
9	2.24170E 11	1.78638E-06	C.	C.	3.3E5.4E 00		
10	2.45008E 11	1.79508E-C6	C.	C.	3.4E5.91E 00		
11	2.76163E 11	1.80234E-C6	C.	C.	3.4E6.30E 00		
12	2.94505E 11	1.6C794E-C6	C.	C.	2.22375E 00		
13	3.11524E 11	1.61304E-C6	C.	C.	2.26162E 00		
14	3.29263E 11	1.62106E-06	C.	C.	3.67329E 00		
15	3.46451E 11	1.62763E-06	C.	C.	3.43215E 00		
16	3.67692E 11	1.62840E-06	C.	C.	2.98029E-01		
17	3.67013E 11	1.62843E-06	C.	C.	1.08626E-05		
18	3.67073E 11	1.62845E-06	C.	C.	1.81041E-06		
19	3.67073E 11	1.62845E-06	C.	C.	0.		
20	3.67C73E 11	1.62845E-C6	C.	C.	0.		
U 1/2		RHO 1/2	RHO 1/2	Y 1/2	Y 1/2	TAUM 1/2	EDEN 1/2
2.07465E 03	6.09H306E 07	1.76310E-C5	2.90841E 03	3.29699E-04	6.76785E 07	9.09546E 00	5.02542E 09
C(1) 1/2		5.82456E-02	7.53913E-01	6.23856E-06	3.01770E-02	2.75210E-08	5.03152E-13

"STREAMLINE OUTPUT"

SHOCK ANGLE=	1.24667E-00	PRDS=	6.12958E-02	ZIA=	2.12017E-03	DIN2=	1.89198E-02	UDS=	4.011725E-03	RHO
XUD	110D	U	C(N)	C(MD)	C(E-1)	C(MD+)	C(E-1)	T	T	ME
2.32031E-19	2.12017E-03	4.811725E-03	7.37991E-20	0.	0.	0.	0.	0.	0.	2.39659E-05
3.49246E-19	2.12017E-03	4.811725E-03	1.10700E-19	6.97570E-35	0.	0.	0.	0.	0.	2.39659E-05
4.07454E-19	2.12017E-03	4.811725E-03	1.29149E-17	6.97570E-35	0.	0.	0.	0.	0.	2.39659E-05
4.65661E-19	2.12017E-03	4.811725E-03	1.47599E-19	6.97570E-35	0.	0.	0.	0.	0.	2.39659E-05
1.28057E-18	2.12017E-03	4.811725E-03	4.05898E-19	1.831112E-33	0.	0.	0.	0.	0.	2.39659E-05
2.44472E-18	2.12017E-03	4.811725E-03	7.74897E-19	2.02416E-33	0.	0.	0.	0.	0.	2.39659E-05
4.77303E-18	2.12017E-03	4.811725E-03	1.51289E-18	2.19900E-32	0.	0.	0.	0.	0.	2.39659E-05
1.03610E-17	2.12017E-03	4.811725E-03	3.28409E-18	1.32905E-31	0.	0.	0.	0.	0.	2.39659E-05
1.95742E-17	2.12017E-03	4.811725E-03	6.23607E-18	4.19457E-31	0.	0.	0.	0.	0.	2.39659E-05
3.83006E-17	2.12017E-03	4.811725E-03	1.21401E-17	1.81544E-30	0.	0.	0.	0.	0.	2.39659E-05
8.30041E-17	2.12017E-03	4.811725E-03	2.63037E-17	8.54337E-30	0.	0.	0.	0.	0.	2.39659E-05
1.57510E-16	2.12017E-03	4.811725E-03	4.99255E-17	3.07451E-29	0.	0.	0.	0.	0.	2.39659E-05
3.06522E-16	2.12017E-03	4.811725E-03	9.71574E-17	1.16293E-28	0.	0.	0.	0.	0.	2.39659E-05
6.64149E-16	2.12017E-03	4.811725E-03	2.10514E-16	5.46988E-28	0.	0.	0.	0.	0.	2.39659E-05
1.26020E-15	2.12017E-03	4.811725E-03	3.99441E-16	1.96808E-27	0.	0.	0.	0.	0.	2.39659E-05
2.45229E-15	2.12017E-03	4.811725E-03	7.77296E-16	7.44350E-27	0.	0.	0.	0.	0.	2.39659E-05
5.31331E-15	2.12017E-03	4.811725E-03	1.68415E-15	3.50088E-26	0.	0.	0.	0.	0.	2.39659E-05
1.00817E-14	2.12017E-03	4.811725E-03	3.19557E-15	1.25969E-25	0.	0.	0.	0.	0.	2.39659E-05
1.96184E-14	2.12017E-03	4.811725E-03	6.21842E-15	4.76390E-25	0.	0.	0.	0.	0.	2.39659E-05
4.25066E-14	2.12017E-03	4.811725E-03	1.34733E-14	2.24058E-24	0.	0.	0.	0.	0.	2.39659E-05
8.06537E-14	2.12017E-03	4.811725E-03	2.53667E-14	8.61148E-24	0.	0.	0.	0.	0.	2.39659E-05
1.56948E-13	2.12017E-03	4.811725E-03	4.97475E-14	3.04891E-23	0.	0.	0.	0.	0.	2.39659E-05
3.40053E-13	2.12017E-03	4.811725E-03	1.07786E-13	1.43398E-22	0.	0.	0.	0.	0.	2.39659E-05
6.45229E-13	2.12017E-03	4.811725E-03	2.04510E-13	5.15936E-22	0.	0.	0.	0.	0.	2.39659E-05
1.25558E-12	2.12017E-03	4.811725E-03	3.97981E-13	1.95131E-21	0.	0.	0.	0.	0.	2.39659E-05
2.72042E-12	2.12017E-03	4.811725E-03	8.62296E-13	9.17747E-21	0.	0.	0.	0.	0.	2.39659E-05
9.06808E-12	2.12017E-03	4.811725E-03	2.87432E-12	1.03320E-19	0.	0.	0.	0.	0.	2.39659E-05
1.78571E-11	2.12017E-03	4.811725E-03	5.66020E-12	4.01703E-19	4.95563E-32	0.	0.	0.	0.	2.39659E-05
3.54353E-11	2.12017E-03	4.811725E-03	1.12320E-11	1.582621E-18	3.89122E-31	0.	0.	0.	0.	2.39659E-05
7.05915E-11	2.12017E-03	4.811725E-03	2.23756E-11	6.28101E-18	3.07711E-30	0.	0.	0.	0.	2.39659E-05
1.40904E-10	2.12017E-03	4.811725E-03	4.46628E-11	2.50242E-17	2.44752E-29	6.92053E-35	8.23680E-03	8.23680E-03	9.39529E-13	
2.97154E-10	2.12017E-03	4.811725E-03	9.41900E-11	1.11374E-16	2.29987E-28	3.82647E-33	8.23680E-03	8.23680E-03	5.19480E-11	
5.47154E-10	2.12017E-03	4.811725E-03	1.73434E-10	1.73335E-16	1.43248E-27	5.58111E-32	8.23680E-03	8.23680E-03	3.50410E-10	
1.10965E-09	2.12017E-03	4.811725E-03	3.51732E-10	1.55154E-15	1.19446E-26	2.17999E-31	8.23680E-03	8.23680E-03	2.95954E-09	
2.23465E-09	2.12017E-03	4.811725E-03	7.08330E-10	6.29237E-15	9.75812E-26	1.78365E-30	8.23680E-03	8.23680E-03	2.42147E-08	
4.48465E-09	2.12017E-03	4.811725E-03	1.42153E-09	2.53449E-14	7.08877E-25	1.44222E-29	8.23680E-03	8.23680E-03	1.95796E-07	
8.98465E-09	2.12017E-03	4.811725E-03	9.41900E-09	1.01733E-13	6.23059E-33	0.	0.	0.	0.	2.39659E-05
1.79846E-08	2.12017E-03	4.811725E-03	5.70075E-09	1.86114E-10	1.25986E-28	3.82647E-33	8.23680E-03	8.23680E-03	1.57462E-06	
3.59846E-08	2.12017E-03	4.811725E-03	1.14065E-08	1.63198E-12	5.08764E-23	7.45237E-28	8.23680E-03	8.23680E-03	1.26301E-05	
1.15198E-06	2.12017E-03	4.811725E-03	3.65350E-07	1.67243E-09	1.33751E-17	2.44529E-22	8.23680E-03	8.23680E-03	1.01173E-04	
7.19846E-06	2.12017E-03	4.811725E-03	2.28181E-06	6.43076E-12	3.26314E-21	5.96583E-26	8.23680E-03	8.23680E-03	8.09918E-04	
1.43985E-07	2.12017E-03	4.811725E-03	4.56424E-08	2.611286E-11	2.61139E-20	4.77426E-25	8.23680E-03	8.23680E-03	6.48151E-03	
2.87985E-07	2.12017E-03	4.811725E-03	8.04793E-09	1.04525E-10	2.08940E-19	3.82006E-24	8.23680E-03	8.23680E-03	5.18611E-02	
5.75985E-07	2.12017E-03	4.811725E-03	5.70075E-09	1.82613E-07	5.0863E-23	7.45237E-28	8.23680E-03	8.23680E-03	4.14931E-01	
1.15198E-06	2.12017E-03	4.811725E-03	1.82133E-03	1.82133E-03	1.07970E-06	4.39170E-18	8.23680E-03	8.23680E-03	3.31970E-00	
7.37280E-05	2.12017E-03	4.811725E-03	2.39467E-05	6.81203E-06	3.51194E-12	6.43348E-17	8.23680E-03	8.23680E-03	8.73075E-05	
1.47456E-04	2.12017E-03	4.811725E-03	4.89197E-05	2.70816E-05	8.56216E-16	1.56537E-20	8.23680E-03	8.23680E-03	2.12509E-02	
9.21598E-06	2.12017E-03	4.811725E-03	2.93076E-06	1.06974E-07	6.85168E-15	1.25266E-19	8.23680E-03	8.23680E-03	1.70052E-03	
1.84320E-05	2.12017E-03	4.811725E-03	5.88018E-06	4.27597E-07	5.48428E-14	1.00266E-18	8.23680E-03	8.23680E-03	1.36108E-04	
3.68640E-05	2.12017E-03	4.811725E-03	1.82133E-03	1.82133E-03	1.07970E-06	4.39170E-18	8.23680E-03	8.23680E-03	3.70147E-08	
1.06134E-03	2.12017E-03	4.811725E-03	4.82544E-03	4.82544E-03	6.81203E-06	3.51194E-12	8.23680E-03	8.23680E-03	1.08982E-05	
1.99885E-03	2.12017E-03	4.811725E-03	5.03548E-03	5.03548E-03	5.61643E-08	1.02682E-12	7.80046E-03	7.80046E-03	2.54621E-05	
3.30957E-03	4.53340E-03	5.17537E-03	1.14503E-03	1.14503E-03	9.12567E-03	1.84331E-07	3.63574E-12	7.57772E-03	1.37714E-10	
5.40672E-03	6.0258E-03	5.39566E-03	5.39566E-03	5.39566E-03	1.63219E-03	1.84331E-07	5.82712E-07	1.06534E-11	1.38187E-11	
8.55245E-03	8.36344E-03	5.72225E-03	5.72225E-03	5.72225E-03	2.09343E-03	3.15757E-02	2.44433E-11	6.96538E-03	3.03416E-11	