

planetmath.org

Math for the people, by the people.

linear transformation is continuous if its domain is finite dimensional

 $Canonical\ name \qquad Linear Transformation Is Continuous If Its Domain Is Finite Dimensional$

Date of creation 2013-03-22 15:17:59 Last modified on 2013-03-22 15:17:59

Owner matte (1858) Last modified by matte (1858)

Numerical id 7

Author matte (1858) Entry type Theorem Classification msc 15A04 **Theorem 1.** A linear transformation is continuous if the domain is finite dimensional.

Proof. Suppose $L: X \to Y$ is the transformation, $\dim X = n$, and $\|\cdot\|_X$, $\|\cdot\|_Y$ are the norms on X, Y, respectively. By http://planetmath.org/ContinuityIsPreservedWhenCoresult and http://planetmath.org/SubspaceTopologyInAMetricSpacethis result, it suffices to prove that $L: X \to L(X)$ is continuous when L(X) is equipped with the topology given by $\|\cdot\|_Y$ restricted onto L(X). Also, since continuity and boundedness are equivalent, it suffices to prove that L is bounded. Let e_1, \ldots, e_n be a basis for X such that L is invertible on span $\{e_1, \ldots, e_k\}$ and $\ker L = \operatorname{span}\{e_{k+1}, \ldots, e_n\}$ for $k = 1, \ldots, n$. (The zero map is always continuous.) Let $f_i = L(e_i)$ for $i = 1, \ldots, k$, so that $\operatorname{span}\{f_1, \ldots, f_k\} = L(X)$. Let us define new norms on X and L(X),

$$||x||'_X = \sqrt{\sum_{i=1}^n \alpha_i^2},$$

 $||y||'_X = \sqrt{\sum_{i=1}^k \beta_i^2},$

for $x = \sum_{i=1}^{n} \alpha_i e_i \in X$ and $y = \sum_{i=1}^{k} \beta_i f_i \in Y$. Since norms on finite dimensional vector spaces are equivalent, it follows that

$$1/C||x||_X' \le ||x||_X \le C||x||_X', \quad x \in X$$
$$1/D||y||_Y' \le ||y||_Y \le D||y||_Y', \quad y \in L(X)$$

for some constants C, D > 0. For $x = \sum_{i=1}^{n} \alpha_i e_i \in X$,

$$||L(x)||_{Y} \leq D||\sum_{i=1}^{k} \alpha_{i} f_{i}||_{Y}^{\prime}$$

$$= D\sqrt{\sum_{i=1}^{k} \alpha_{i}^{2}}$$

$$\leq D\sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}}$$

$$= D||x||_{X}^{\prime}$$

$$= CD||x||_{X}.$$

Thus $L\colon X\to L(X)$ is bounded.