1.a) Draw an NFA with 2 states for the following language: $\mathbf{A} = (\{\mathbf{a},\mathbf{b}\}^*)(\{\mathbf{b},\mathbf{c}\})(\{\mathbf{a},\mathbf{b}\}^*)$

1.b) Draw an NFA with 2 states for the following language: $\mathbf{B} = (\{a,c\}^*)(\{b\})(\{a,c\}^*)$

1.c) Draw an NFA for $C = A \cup B$ with 4 states

1.d) Use the subset construction game to create a DFA for C out of its NFA. Label each state with subsets of C $\,$

Work:

2.) Is the following statement true? "Let $N_1=(Q,\Sigma,\Delta,S,F)$ be any non-deterministic finite state machine. Let $N_2=(Q,\Sigma,\Delta,S,Q\setminus F)$. Then $L(N_1)=\sim L(N_2)$ ". If you think it is true, then prove it. Otherwise, provide a counterexample.

Intuitively, this is false. Take the following counter-example:

Say N_1 has the NFA:

The states, alphabet, transitions, and start states of N_2 would need to be the same as N_1 , and the final states would have to be all states of N_1 minus the final states, according to the definition of N_2 . This would mean that the NFA for N_2 would be:

The language of N_1 can be described as $L(N_1) = \{x\}^+$. The language of N_2 can be described as $L(N_2) = \{x\}^*$. This means that $\sim L(N_2) = \{\emptyset\}$. Since $\{x\}^+ \neq \{\emptyset\}$, $L(N_1) \neq \sim L(N_2)$, meaning the statement is false.

Formally, a proof by contradiction:

Let $N_1 = (Q, \Sigma, \Delta, S, F)$ be any non-deterministic finite state machine. Let $N_2 = (Q, \Sigma, \Delta, S, Q \setminus F)$. Then, we assume that $L(N_1) = L(N_2)$ is true.

Take $N_1 = (Q, \Sigma, \Delta, S, F)$ to be an arbitrary NFA where:

$$Q = \{q_1, q_2\}$$

$$\Sigma = \{x\}$$

$$\Delta = \Delta(q_1, x) = \{q_1, q_2\}, \Delta(q_2, x) = q_2$$

$$S = \{q_1\}$$

$$F = \{q_2\}$$

Then, by definition of N_2 , $N_2 = (Q, \Sigma, \Delta, S, Q \setminus F)$ where:

$$Q = \{q_1, q_2\}$$

$$\Sigma = \{x\}$$

$$\Delta = \Delta(q_1, x) = \{q_1, q_2\}, \Delta(q_2, x) = q_2$$

$$S = \{q_1\}$$

$$F' = Q \setminus F = \{q_1, q_2\} \setminus \{q_2\} = \{q_1\}$$

Based on the definition of complement and our assumed statement, we can say that if a string $y \in L(N_1) \implies y \notin L(N_2)$.

Let
$$y \in \Sigma^* \mid y = x$$

$$y \in L(N_1)$$
 $\iff \hat{\Delta}_{N_1}(S_{N_1}, y) \cap F \neq \emptyset$ definition of acceptance
 $\iff \hat{\Delta}_{N_1}(q_1, x) \cap F \neq \emptyset$ definition of N_1 acceptance
 $\iff \{q_1, q_2\} \cap \{q_2\} \neq \emptyset$ definition of $\Delta_{N_1}(q_1, x)$ and F
 $\iff \{q_2\} \neq \emptyset$ definition of \cap
 $\iff True$

$$y \in L(N_2)$$
 $\iff \hat{\Delta}_{N_2}(S_{N_2}, y) \cap F' \neq \emptyset$ definition of acceptance
 $\iff \hat{\Delta}_{N_2}(q_1, x) \cap F' \neq \emptyset$ definition of N_2 acceptance
 $\iff \{q_1, q_2\} \cap \{q_1\} \neq \emptyset$ definition of $\Delta_{N_2}(q_1, x)$ and F'
 $\iff \{q_1\} \neq \emptyset$ definition of \cap
 $\iff True$

We now have a contradiction because when $y \in \Sigma^* \mid y = x, y \in L(N_1)$ and $y \in L(N_2)$. However, in our assumed statement we said that $y \in L(N_1) \implies y \notin L(N_2)$. Therefore the statement is false.

3.) "Prove" that the following language is regular: $A = \{xy \mid x, y \in \{a, b\}^*, \#a(x) = \#b(y)\} \subseteq \{a, b\}^*$

Intuitively, we want to prove that for any string $w \in \{a, b\}^*$, it can be represented by the concatenation of x and y such that the number of a's in x = the number of b's in y. We can then say that $\{a, b\}^* \subseteq A$, and through double inclusion, say that $\{a, b\}^* = A$, meaning that A must be regular because $\{a, b\}^*$ is regular.

First, we must prove that $\{a,b\}^*$ is regular. A set $B \subseteq \Sigma^*$ is regular if there exists a DFA such that B = L(M). Let $B = \{a,b\}^*$. By definition (given in the question), $\{a,b\}^*$ is a language, therefore $L(M) = \{a,b\}^*$, so B = L(M).

Here is a corresponding DFA for B:

Therefore $\{a,b\}^*$ is regular, and we also claim that $A = \{xy \mid x,y \in \{a,b\}^*, \#a(x) = \#b(y)\} \subseteq \{a,b\}^*$ is regular.

Now, using a proof by induction on the length of an arbitrary string $w \in \{a, b\}^*$, we will prove that $\{a, b\}^* \subseteq A = \{xy \mid x, y \in \{a, b\}^*, \#a(x) = \#b(y)\}.$

Base Case: |w| = 0

We know that $|w| = 0 \implies w = \epsilon$ based on the definition of $|\epsilon| = 0$

Let $x = \epsilon$ and $y = \epsilon$:

xy concatenation of x and y $\iff \epsilon$ definition of x and y $\iff \phi$ identity of null string for concatenation $\iff w$ definition of w

As stated earlier, by definition, $|\epsilon| = 0$. We also know that by definition, |xy| = |x| + |y|. So we can say that:

$$|xy| = |x| + |y|$$

$$|xy| = 0 + 0$$

$$|xy| = 0$$

$$|xy| = |w|$$

Since we proved that w = xy and |w| = |xy|, this means that w can be written in terms of xy. By definition of #, #a(x) = 0 and #b(x) = 0, which means that $(xy \mid x = \epsilon, y = \epsilon) \subseteq A$, but also $w \in A$, meaning that the base case holds true.

Inductive Hypothesis:

For any arbitrary string $w \in \{a,b\}^*$ where |w| = n, we assume that $w = xy \mid \#a(x) = \#b(y) \implies w \in A$.

Inductive Step:

Now, we use our inductive hypothesis to prove that for any arbitrary string $w \in \{a, b\}^*$ where |w| = n + 1, our hypothesis holds.

Based off our inductive hypothesis, we know that there exists an xy = w. For our inductive step, we concatenate another letter c to w such that |c| = 1, so that |w| = n + 1. Using these facts, we can say that w can be represented by xcy.

By definition, we know that $|\epsilon| = 0$, so the only possible letters that can be added to our string w in order for |w| = n + 1 and $w \in \{a, b\}^*$ to hold true is a or b because we also know that |a| = 1 and |b| = 1 by definition. We now have two cases.

Case 1: c = a

If c = a, we can say that w can be represented as xay. Looking back at the definition of the language A, $xy \in A$ if #a(x) = #b(y). We can use the fact that we only care about #b(y) to manipulate xay into xy.

Based on our induction hypothesis, we know that $xy \in A$. So #a(x) = #b(y) holds true. c can either be concatenated with x or y. If we were to put c into x, #a(x) would change because c = a, causing $\#a(x) \neq \#b(y)$. However, if we were to put c into y, #a(x) would remain unchanged because x does not have any new letters, and #a(x) = #b(y) would still hold true

because we are not counting/do not care about #a(y).

This means that when c = a, we can concatenate c with y, so that it still follows that $xay \in A$ because #a(x) = #b(y) holds true. Since we said that w can be represented using xay, it follows that $w \in A$.

Case 2: c = b

Very similarly, if c = b, we can say that w can be represented as xby. Looking back at the definition of the language A, $xy \in A$ if #a(x) = #b(y). We can use the fact that we only care about #a(x) to manipulate xby into xy.

Based on our induction hypothesis, we know that $xy \in A$. So #a(x) = #b(y) holds true. c can either be concatenated with x or y. If we were to put c into y, #b(y) would change because c = b, causing $\#a(x) \neq \#b(y)$. However, if we were to put c into x, #b(y) would remain unchanged because y does not have any new letters, and #a(x) = #b(y) would still hold true because we are not counting/do not care about #b(x).

This means that when c = b, we can concatenate c with x, so that it still follows that $xby \in A$ because #a(x) = #b(y) holds true. Since we said that w can be represented using xby, it follows that $w \in A$.

Now we have proved our inductive step because when c = a or c = b, $w \in A$. This means that $\forall w \in \{a,b\}^*$, $w \in A$. So $\{a,b\}^* \subseteq A$. In the very beginning we claimed that by definition $A \subseteq \{a,b\}^*$, so by double inclusion, we can say that $\{a,b\}^* = A$. Since we also proved that $\{a,b\}^*$ is regular, $A = \{xy \mid x,y \in \{a,b\}^*, \#a(x) = \#b(y)\} \subseteq \{a,b\}^*$ is regular.