

Analog Integrated Systems Design

Lecture 13 Nyquist ADCs (2)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

ADCs Classification

- \square Nyquist ADCs: signal BW close to Nyquist limit $(f_s/2)$
 - 1. Parallel search (e.g., flash ADC): $T_{conv} \sim T_{clk}$
 - 2. Sequential search (e.g., SAR ADC): $T_{conv} \sim N \times T_{clk}$
 - 3. Linear search (e.g., dual-slope ADC): $T_{conv} \sim 2^N \times T_{clk}$

Successive Approximation Algorithm

13: Nyquist ADCs (2) [Kester, 2005] 3

Successive Approximation Example

Successive Approximation Flowchart

SAR ADC Example

- ☐ SAR stands for successive approximation register
- Offsets in the sample-and-hold circuit or the comparator will generate a shift of the conversion range
 - But this shift is identical for every code → ADC offset error (no non-linearity)
- ☐ Comparator differential input gradually approaches zero
 - Negative feedback loop action

Asynchronous SAR ADC

- ☐ Usually, half T_{clk} is allocated for the DAC and half for the comparison + digital logic
- ☐ The synchronous logic can be replaced by asynchronous logic
 - Event-driven: Each decision triggers next comparison
 - Self-clocked: No high speed external clock is required
 - Example: P. J. A. Harpe *et al., IEEE JSSC,* July 2011.

Charge-Redistribution SAR ADC

- ☐ SAR ADC can be built with any DAC architecture
 - But most attention is focused on capacitive DAC structures
 - Low-power and low-voltage operation
 - The properties of CMOS technology are optimally utilized
 - Good switches and capacitors

Charge-Redistribution SAR ADC

- $oldsymbol{\square}$ Sampling: $Q = (C_{FS} C)(V_{in} V_{REF}) + CV_{in}$
- \square Conversion: $Q = (C_{on} + C)V_{top} + C_{off}(V_{top} V_{REF})$

$$C_{FS}V_{in} - (C_{FS} - C)V_{REF} = C_{FS}V_{top} - C_{off}V_{REF}$$
$$V_{top} = V_{in} - \frac{C_{on}}{C_{FS}}V_{ref}$$

$$C_{FS} = 16C$$

$$C_{FS} = C_{on} + C_{off} + C$$

Parasitic Capacitor Effect

- lacktriangle The parasitic capacitor at the top plate attenuates V_{REF}
- \square Sampling: $Q = (C_{FS} C)(V_{in} V_{REF}) + (C + C_p)V_{in}$
- $\Box \quad \text{Conversion:} \left(C_{on} + C + \textcolor{red}{C_p} \right) V_{top} + C_{off} \left(V_{top} V_{REF} \right) \\ V_{top} = V_{in} \frac{C_{on}}{C_{FS} + C_p} V_{REF} = V_{in} \frac{C_{on}}{C_{FS}} V_{REF}'$

$$V'_{REF} = \frac{C_{FS}}{C_{FS} + C_p} V_{REF}$$
$$V'_{REF} < V_{REF}$$

Parasitic Capacitor Effect

- ☐ The voltage step on a capacitor 2C gives exactly two times amplitude change on the top plate compared to the same step on a capacitor C
 - Irrespective of the parasitic capacitance.
 - The effect of additional capacitive load on the top plate is just attenuation.
 - But non-linear comparator input capacitance may yield a non-linear error.

Top vs Bottom Plate Sampling

- Top: V_{in} does not utilize the full reference range because V_{REF} gets attenuated + input-dependent switching errors (distortion)
- $oldsymbol{\square}$ Bottom: Same path for V_{in} and V_{REF} , but additional V_{CM} is required

SAR ADC with Bridge Capacitor

- The LSB section generates a voltage division on the left side of the bridge capacitor
 - But the top node is not a virtual ground node (compare with the DAC lecture)
 - An example of a coarse-fine structure

13: Nyquist ADCs (2) [M. Pelgrom, 2017]

13

SAR ADC with Resistor Ladder

- ☐ Better coarse-fine operation
 - But the ladder consumes static current

13: Nyquist ADCs (2) [M. Pelgrom, 2017]

14

SAR ADC Speed

☐ Capacitive DAC has to settle to 0.5 LSB accuracy

$$t_{settle} > 0.69(N+1)\tau_{DAC}$$

- Switch resistance and output impedance of V_{REF} have to be low
- Switches are scaled for the cap they drive to make τ of each cap nearly constant
- ☐ Comparator speed depends on topology, power consumption, and technology node

SAR ADC Error Sources

- \Box Thermal noise of the sampling cap array: kT/C_{FS}
 - Usually small for practical values of C_{FS}
- Comparator input referred noise
 - Can be reduced by majority voting
- \square Sampling clock jitter SNR: $1/(\omega_{in}\sigma_{jitter})^2$
 - High-speed clock buffers consume significant power
- \square Quantization error: $V_{LSR}^2/12$
- \square Cap array mismatch: Random (A_p/\sqrt{Area}) and systematic (layout) errors
- ☐ Voltage reference errors
 - lacktriangle A good V_{REF} circuit may consume more power than the SAR ADC!
- Comparator metastability
 - Happens at most once during each conversion
- Kickback noise (next slide)

Kickback Noise

- ☐ Fixed comparator offsets in the SAR ADC show up as a tolerable signal offset that do not affect linearity
- ☐ But the use of dynamic comparators leads to strong kick-back
- ☐ The comparator decision will induce charge on the top plate that can affect the decision that is being processed or the next decision
 - Many designers avoid simple comparators (e.g., StrongArm)
 - Robust designs use preamplifiers
- ☐ In differential designs common-mode kick-back is cancelled

Single-Slope Integrating / Counting ADC

- ☐ Sampled-and-held input (Vi), linear search for output
- Counter keeps counting until comparator output toggles
 - Ramp signal generated by charging/discharging a capacitor with a constant current
 - Ramp linearity determines INL
- \Box Simple, inherently monotonic, but very slow: $T_{conv} \sim 2^N \times T_{clk}$

13: Nyquist ADCs (2) [Y. Chiu, EECT 7327, UTD] 18

Single-Slope Integrating / Counting ADC

Single-Slope Integrating / Counting ADC

- For analog ramp
 - Need precision capacitor (C), current source (I), and clock (T_{clk})
- ☐ The ramp can be digitally generated using a DAC
 - Need precision DAC: DNL and INL depend on DAC ccs

13: Nyquist ADCs (2) [M. Pelgrom, 2017]

20

Dual-Slope Integrating ADC

- Op-amp converts V to I
 - Constant current is charging/discharging feedback capacitor
- Popular in multimeters and harsh industrial environments

Dual-Slope ADC

$$V_{m} = \frac{V_{i}}{RC} \cdot t_{1} = \frac{V_{R}}{RC} \cdot t_{2}$$

$$\Rightarrow D_{o} = \left\lfloor \frac{V_{i}}{V_{R}} \right\rfloor = \left\lfloor \frac{t_{2}}{t_{1}} \right\rfloor = \frac{N_{2}}{N_{1}}$$
or $D_{o} = N_{2}$ for fixed N_{1}

Dual-Slope ADC

- ☐ Exact values of R, C, and T_{clk} are not required
- Comparator offset doesn't matter
- ☐ Op-amp offset introduces gain and offset error
- Op-amp nonlinearity introduces INL error

$$V_{m} = \frac{V_{i}}{RC} \cdot t_{1} = \frac{V_{R}}{RC} \cdot t_{2}$$

$$\Rightarrow D_{o} = \left\lfloor \frac{V_{i}}{V_{R}} \right\rfloor = \left\lfloor \frac{t_{2}}{t_{1}} \right\rfloor = \frac{N_{2}}{N_{1}}$$
or $D_{o} = N_{2}$ for fixed N_{1}

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed, 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," Wiley, 2nd ed., 2012.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- ☐ Y. Chiu, EECT 7327, UTD.
- ☐ F. Maloberti, Data Converters, Springer, 2007.
- ☐ Low-Power SAR ADCs by Pieter Harpe: https://youtu.be/BE9onmrGZhY

Thank you!