NIC ドライバの送受信ルーチンの調査(途中経過)

2017/6/19 小倉 伊織

1 はじめに

共有メモリを介した Ethernet 互換の仮想ネットワークインタフェースを実現する際, Ethernet での送受信ルーチンを改変する必要がある.このため, 既存 NIC ドライバの送受信ルーチンについて調査している.本資料では, 既存 NIC ドライバの送受信ルーチンについて調査の終わっている範囲でまとめた.

2 調査目的

私の担当する研究テーマは, Mint における仮想ネットワークインタフェースの実現である.実現する仮想ネットワークインタフェースは, 共有メモリを介した Ethernet 互換のデバイスドライバである.このデバイスドライバでは, Ethernet での送受信ルーチンを改変する必要がある.このため, 既存の NIC ドライバの送受信ルーチンについて調査する. 具体的には,まず,調査環境で使用される NIC ハードウェアに対応する NIC ドライバを特定する.その後,特定した NIC ドライバにおける送受信ルーチンについて調査を行う.

3 調査環境

NIC ドライバの調査に使用した計算機の環境を以下に示す.

表 1 調査環境

項目名	環境
OS	Debian7.10
カーネル	Mint カーネル 3.15.0
CPU	Intel Core i7-860 Processor
メモリ	2.0GB
NIC ハードウェア	RTL8111/8168B PCI Express Gigabit Ethernet controller

4 調査環境における NIC ドライバ

NIC ドライバは複数あり、計算機に搭載されている NIC ハードウェアによって使用されるものが異なる.調査で使用した NIC ハードウェアに対応する NIC ドライバは drivers/net/ethernet/realtek/r8169.c である.

5 NIC ドライバの送受信ルーチン

5.1 送信ルーチン

NIC ドライバがロードされると,アプリケーションはその NIC ドライバの送信ルーチンを呼び出すことでパケットの送信を行える.NIC ドライバ r8169.c における送信ルーチンは, $rt18169_start_xmit()$ である.この関数について以下に示す.

【形式】static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, strcut net_device *dev)

【引数】struck sk_buff *skb: ソケットバッファ

struct net_device *dev: net_device 構造体

【戻り値】成功: NETDEV_TX_OK

失敗: NETDEV_TX_BUSY

【機能】ソケットバッファとして渡されたパケットを, DMA バッファへ書き込む.その後, ソケットバッファを解放する.この関数では,パケットの送信時の時刻を記録しており,この時間を基準に一定時間が経過すると送信をタイムアウトする.また, DMA バッファがいっぱいになった場合には,上位レイヤからの送信を一時停止させる.

5.2 受信ルーチン

受信ルーチンは,調査が終わってないため途中経過について述べる.ネットワークデバイスに外部からパケットが到着すると,ハードウェア割り込みによって割り込みハンドラ rt18169_interrupt()が呼び出される.この割り込みハンドラ内でポーリング関数 rt18169_pol1()を登録し,ソフトウェア割り込みの発行を行う.このソフトウェア割り込みからポーリング関数 rt18169_pol1()が呼ばれ,この関数内で受信処理を行う.この受信処理に関しての調査は終わっていない.割り込みハンドラrt18169_interrupt()とポーリング関数 rt18169_pol1()について以下に示す.

(1) 割り込みハンドラ rtl8169_interrupt()

【形式】static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)

【引数】int irg: irg 番号

void *dev_instance: net_device 構造体

【戻り値】成功: IRQ_HANDLED

失敗: IRQ_NONE

【機能】ポーリング関数 rt18169_pol1() を登録し, ソフトウェア割り込みを発行させる.

(2) ポーリング関数 rtl8169_poll()

【形式】static int rtl8169_poll(struct napi_struct *napi, int budget)

【引数】struck napi_struct *napi: NAPI 構造体

int budget: 不明

【戻り値】不明

【機能】受信バッファからパケットを取り出す.

NAPI とは Linux カーネルが提供する NIC ドライバフレームワークである. 引数の int budget と戻り値は, 現在調査中のため不明としている.

6 おわりに

本資料では, NIC ドライバの送受信ルーチンについて調査の終わっている範囲でまとめた. 今後は, 受信ルーチンの調査を完了させる.

参考文献

[1] 平田 豊, "Linux デバイスドライバプログラミング", 2008.