Hotel Reservations Classification

Zenthia Song

Overview

TASK

 I want to train a binary classification model to determine if each customer is likely to cancel their reservation or not.

DATASET

 https://www.kaggle.com/datasets/ahsan81/hotel-reservations-clas sification-dataset?datasetId=2783627&sortBy=voteCount

METHOD

 Logistic Regression, KNeighbours, Decision Tree, and Random Forest.

Summary Data

Booking_ID	object
no_of_adults	int64
no_of_children	int64
no_of_weekend_nights	int64
no_of_week_nights	int64
type_of_meal_plan	object
required_car_parking_space	int64
room_type_reserved	object
lead_time	int64
arrival_year	int64
arrival_month	int64
arrival_date	int64
market_segment_type	object
repeated_guest	int64
no_of_previous_cancellations	int64
no_of_previous_bookings_not_canceled	int64
avg_price_per_room	float64
no_of_special_requests	int64
booking_status	object
dtype: object	

Summary Data

Canceled

Not_Canceled

Canceled

Not_Canceled

Correlation Visualization

Model: Logistic Regression

Model: K Neighbors

Model: Decision Tree

Model: Decision Tree

Model: Random Forest

Comparing Model Performance

The Random Forest model

- → achieved the highest AUC score of 0.96, indicating that it has a high ability to distinguish between positive and negative classes.
- → achieved the highest accuracy score of 0.90, indicating that it correctly classified 90% of instances.

Overall, the Random Forest model achieved the highest scores in both AUC and accuracy, indicating that it is the best model for this dataset.

	Model	AUC	Accuracy	Weighted avg Precision	Weighted avg Recall	weighted avg F1
3	Random Forest	0.96	0.90	0.90	0.90	0.90
2	Decision Tree	0.93	0.88	0.87	0.87	0.87
1	K Neighbors	0.90	0.85	0.85	0.85	0.85
0	Logistic regression	0.86	0.80	0.80	0.80	0.80

Error Analysis

Error Analysis

Possible reasons for misprediction:

- Noise: Random noise in the data can have a negative impact on the model's performance.
- Bias: Bias refers to the model's deviation from the true relationship, usually due to the model being too simple or the assumptions being incorrect.
- Variance: Variance refers to the instability of the model's predictions on different datasets, usually due to the model being too complex or overfitting.
 - For example:
 - Logistic regression models can overfit the training data if the model is too complex or the regularization parameter is set too low.
 - Trees can easily overfit the training data if the tree is too deep or if the stopping criterion is not set correctly.
- Insufficient Features: If there are not enough features or the selected features are not relevant to the problem, the model's performance may also be affected.
- Imbalanced classes/data: it can lead to poor performance in rare classes.
 - For example:
 - KNN can be sensitive to imbalanced classes because it relies on the majority class in the k nearest neighbors.
 - Random Forest can be biased toward the majority class in imbalanced datasets.

To improve the performance of the model, the following methods can be used:

- Use more and better features to capture more patterns and relationships.
- Choose a model that is more suitable for the problem and avoid models that are either too simple or too complex.
- Use ensemble learning methods, such as gradient boosting trees, to improve the performance and robustness of the model.