FIGURE 1

$$\begin{array}{c} \vdots \\ \vdots \\ Br \\ CO_2H \\ \end{array} \xrightarrow{B} \begin{array}{c} \vdots \\ Br \\ \end{array} \xrightarrow{B} \begin{array}{c} \vdots \\ CO_2CH_3 \\ \end{array} \xrightarrow{B} \begin{array}{c} \vdots \\ Br \\ \end{array} \xrightarrow{B} \begin{array}{c} \vdots \\ CO_2CH_3 \\ \end{array} \xrightarrow{B$$

(a) CH₃1, DBU, acetone; (b) DIBAL, toluene -78 °C to rt; (c) PDC, MgSO₄, 4Å molecular sieves, CH₂Cl₂ 74% from 1; (d) Ph₃PCHCO₂CH₃, toluene 95%; (e) (Ph₃P)₃RhCl, H₂. EtOH 80%; (f) DIBAL, toluene -78 °C to rt 99%; (g) Dimetrythexytsily chloride, DMAP, Et₃N, CH₂Cl₂ 83%.

FIGURE 2

(a) Mg, THF, 65 °C; (b) EtMgBr, 0 °C to rt 69%; (c) Ac₂O, pyridine 77%; (d) $\{lm\}_2$ S, ClCH₂CH₂Cl, 60 °C 94%; (e) n-Bu₃SnH, AlBN, toluene; 110 °C 44%; (f) CrO₃, H₂SO₄, acetone; (g) MeOH, AcCl 88% for 2 steps; (h) CrO₃, H₂SO₄, acetone.

FIGURE 3

(a) L-serine benzyl ester hydrochloride, DCC, HOBI, Et₃N, THF 80% for 2 steps; (b) PPh₃, CCl₄, Prp,NEI, CH₅CN 89%; (c) BrCOl₃, DBU, CH₂Cl₂° C 75%; (d) H₂, Pd(OH) $_2$ /C, EtOA 109%; (e) i, (COCl)₂, eat. DMF, CH₂O₂ji, i. 4-cyclohexylbutylammonium chloride, Et₃N, CH $_2$ Cl $_2$ 78%; (f) NaOH, aqueous THF, 95%.

FIGURE 4

