Projet de sociobiologie

Introduction à l'Analyse numerique

Sinclair Tsana

05/08/2022

Question 1: Représentation graphique de SN

Par définition, on a

 $S^N = \{x = (x_1,...,x_N): \sum_{i=1}^N = 1, \forall i=1\dots N \\ x_i \geq 0\}$ Pour représenter S^N , on procède comme suit:

• On choisit un homéomorphisme entre le simplexe S^N et la boule unité de $B^N=\{x\in\mathbb{R}^N:\|x\|\leq 1\}$ de \mathbb{R}^N

En effet la boule unité B^N est un difféomorphisme qui peut se restreindre a n'importe quelle dimension du simplexe S^N

- Ensuite on différentie ce difféomorphisme pour obtenir un champs de vecteurs sur la boule B^N
- Le Théorème de Poincaré-Hoff nous assure que tout champs de vecteur sur cette boule s'annule.

Pour N=2, on se donne un repère orthonormé (o, e_1, e_2) Pour N=3, on se donne un repère orthonormé (o, e_1, e_2, e_3)

Question 2:

Considérons $f: \mathbb{R}^N \to \mathbb{R}^N$ la fonction $x = (x_1, ..., x_N) \longmapsto (f_1(x)...f_N(x))$ telle que $f_i(x) = x_i(e_i^{\mathsf{T}}Ax - x^{\mathsf{T}}Ax)$ i = 1, ..., N.

Les fonctions f_i sont des fonctions polynômes donc elles sont toutes de classes C^{∞} et en particulier de classe C^1 . On en déduit que f ainsi définit est de classe C^1 .

De plus, comme \mathbb{R}^N est de dimension finie, alors la fonction f est localement Lipschitzienne.

On peut donc invoquer le théoreme d'existence et d'unicité qui garanti que le système (2) admet une unique solution qui est maximale.

Ainsi la condition de Cauchy(à t=0) apportée par (3) ne change pas la solution du système (2)-(3)

Question 3

Supposons que l'on ajoute une constante λ_j (Potentiellement différente) à chaque colonne de la matrice A. Le système devient.

$$\partial_t x_i = x_i \left(\sum_{i=1}^N (a_{ij} + \lambda_j) x_j - \sum_{i=1}^N \sum_{j=1}^N (a_{ij} + \lambda_j) x_j x_i\right)$$

$$= x_i \left(\sum_{i=1}^N a_{ij} x_j + \sum_{i=1}^N \lambda_j x_j - \sum_{i=1}^N \sum_{j=1}^N \lambda_j x_j - \sum_{i=1}^N \sum_{j=1}^N a_{ij} x_j x_i\right)$$

$$= x_i \left(\sum_{i=1}^N a_{ij} x_j + \left(1 - \sum_{i=1}^N x_i\right) \sum_{i=1}^N \lambda_j x_j - \sum_{i=1}^N \sum_{j=1}^N a_{ij} x_j x_i\right)$$

$$= x_i \left(\sum_{i=1}^N a_{ij} x_j - \sum_{i=1}^N \sum_{j=1}^N a_{ij} x_j x_i\right)$$

Déduction: Nous venons de montrer que le probleme de Cauchy reste equivalent si on ajoute une constante λ_j a chaque colonne j de la matrice A.

En particulier si on ajoute a chaque colonne j de A la constante $\lambda_j = -a_{1j}$, le sytème obtenu sera tel que $a_{1i} = 0$ pour tout $i = 1, \ldots, N$ et sera toujours équivalent a (2)-(3).

Ainsi les solutions resterons également inchangées

Question 4:

a) Preuve par contraposition

Soit $i \in \{1, \dots, N\}$ fixé.

Soit x une solution de (2) - (3)

Supposons que $\exists t \geq 0 : x_i(t) \neq 0$

Comme x est solution du système (2)-(3), alors par unicité de la solution, on a également à l'instant t=0 $x_i(0)=x_0, i\neq 0$

b) Preuve par contraposition

Soit x une solution de (2) - (3).

Supposons que $\exists t \geq 0: \sum_{i=1}^N x_i(t) \neq 1$

Pour un tel t, on a $x_1(t) + \cdots + x_N(t) \neq 0$

Remarquons chaque instant t peut s'ecrire $t = t_0 + \Delta t$

on peut donc écrire $x_1(t_0 + \Delta t) + \cdots + x_N(t_0 + \Delta t) \neq 0$

En faisant $\Delta t \to +\infty$, on obtient $x_1(t_0) + \cdots + x_N(t_0) \neq 0$

Donc
$$\sum_{i=1}^{N} x_{0,i} \neq 1$$

c) Déduction

D'après le point (b) précédent, nous avons montré que si $\sum_{i=1}^{N} x_{0,i} = 1$ (ie. $x_0 \in S^N$), alors la solution de (2) - (3) vérifie $\forall t \geq 0, \sum_{i=1}^{N} x_i(t) = 1$ (ie. $\forall t \geq 0, x(t) \in S^N$)

On en déduit que si $x_0 \in S^N$, alors $\forall t \geq 0, x(t) \in S^N$

Question 5:

Supposons que $x(t) \to x^*$ lorsque $t \to +\infty$

i.e pour tout $\epsilon > 0$, il existe $t_0 \ge 0$ tel que pour tout $t \ge t_0, ||x(t) - x^*|| \le \epsilon$. (*)

En considérant la fonction f tel que définie à la question 2, le problème de Cauchy (2) - (3) peut se réecrire de la manière suivante.

$$\frac{x(t)-x_0}{t} = \frac{1}{t} \int_0^t f(x(s)) - f(x^*) ds + \int_0^t f(x^*) ds \text{ de sorte que } \frac{x(t)-x_0}{t} \to f(x^*) \text{ lorsque } t \to +\infty$$

Mais on a

$$\left\| \frac{x(t) - x_0}{t} \right\| = \left\| \frac{x(t) - x^* + x^* - x_0}{t} \right\| \le \left\| \frac{x(t) - x^*}{t} \right\| + \left\| \frac{x^* - x_0}{t} \right\|$$

d'apres l'inégalité triangulaire.

ce qui équivaut a
$$\left\|\frac{x(t)-x_0}{t}\right\| \leq \frac{1}{t} \left\|x(t)-x^*\right\| + \frac{1}{t} \left\|x_0-x^*\right\|$$

En utilisant (*), on peut écrire

$$\left\| \frac{x(t) - x_0}{t} \right\| \le \frac{1}{t} \epsilon + \frac{1}{t} \left\| x_0 - x^* \right\|$$

Et comme $\frac{1}{t}\epsilon + \frac{1}{t} \|x_0 - x^*\| \to 0$ lorsque $t \to +\infty$

on en déduit que
$$\left\|\frac{x(t)-x_0}{t}\right\| \to 0$$
 lorsque $t \to +\infty$

Donc $x(t) \to x_0$ lorsque $t \to +\infty$

et par unicité de la limite on a $x_0 = x^*$

Ainsi la solution de condition initiale x_0 est la fonction constante $t \to x^*$

Donc x^* est un équilibre

Question 6:

Posons
$$F_i = x_i(e_i^{\mathsf{T}}Ax - x^{\mathsf{T}}Ax) \ i = 1,...,N$$

a) Montrons que les sommets e_i de S^N sont des équilibres

En effet, pour tout i = 1, ..., N, on a

$$F_i = x_i(e_i^{\mathsf{T}} A e_i - e_i^{\mathsf{T}} A e_i) = 0$$

On conclut que tous les e_i , i = 1, ..., N sont des équilibres

b) Preuve de l'équivalence

Soit $x = (x_1, \dots, x_N) \in S^N$, x est un équilibre ssi:

$$\sum_{i=0}^{N} x_i = 1 \text{ et } \forall i = 1, \dots, N , x_i(e_i^{\mathsf{T}} A x - x^{\mathsf{T}} A x) = 0$$

qui équivaut à
$$\sum_{i=0}^N x_i = 1$$
 et $\forall i=1,\dots,N x_i = 0$ ou $e_i^\intercal A x - x^\intercal A x = 0$

Mais on ne peut avoir $\sum_{i=0}^{N} x_i = 1$ et $\forall i = 1, \dots, N, x_i = 0$

Donc les x_i doivent etre **non tous nuls**. Ainsi, il existe une partie $I \subsetneq \{1, ..., N\}$ telle que pour tout $i \in I, x_i = 0$ et $\forall i \notin I, x_i \neq 0$

La condition d'équilibre précédente devient:

$$\forall i \in I, x_i = 0 \text{ et } \forall i \notin I, x_i \neq 0 \text{ ou } e_i^{\mathsf{T}} A x = x^{\mathsf{T}} A x$$

Mais d'après l'énoncé la matrice A est symétrique donc pour tout $x \in \mathbb{R}^N, x^{\intercal}Ax \neq 0$,

Ainsi il existe $\gamma \in \mathbb{R}$ tel que $x^{\mathsf{T}}Ax = e_i^{\mathsf{T}}Ax = \gamma$

D'ou $x \in S^N$ est un équilibre ssi il existe $I \subsetneq \{1, \dots, N\}$ tel que $\forall i \in I, x_i = 0$ et $\exists \gamma \in \mathbb{R}, \forall i \notin I, x_i \neq 0, e_i^\intercal Ax = \gamma$

Question 7: Déterminons les équilibres de (2)

Soit $x \in \mathbb{R}^N$, x est un équilibre ssi:

pour tout $i=1,2,3,\,x_i=0$ ou $e_i^\intercal=x^\intercal$ ou Ax=0

- Le 1^{er} cas nous donne le point (0,0,0)
- Le 2^e cas nous donne les points $e_1 = (1,0,0), e_2 = (0,1,0)$ et $e_3 = (0,0,1)$
- Le cas Ax = 0 equivaut à $x \in \ker(A)$

Posons $\delta_1 = ae - bd$, $\delta_2 = af - cd$, $\delta_3 = bf - ce$

Si
$$\delta_1 \neq 0, \delta_2 \neq 0$$
 et $\delta_3 \neq 0$

Alors on fixe une variable et on résout le système par la méthode de Cramer

Fixons dans ce cas $x_3 = m$, ou m est un paramètre réel, on aura

$$x_1 = \frac{\delta_1}{\delta_3} m$$
, $x_2 = \frac{\delta_2}{\delta_3} m$ et $x_3 = m$

et
$$\ker(A) = vect(\frac{\delta_1}{\delta_3}, \frac{\delta_2}{\delta_3}, 1) = vect(\delta_1, \delta_2, \delta_3)$$

Si un seul des δ_i est nul,

Par exemple $\delta_1 = 0$ $\delta_2 \neq 0$ et $\delta_3 \neq 0$

Fixons dans ce cas $x_2 = m'$, ou m' est un paramètre réel, on aura

$$x_2 = m'$$
 et $x_3 = \frac{\delta_3}{\delta_2} m'$

et
$$\ker(A) = vect(1, \frac{\delta_3}{\delta_1}) = vect(\delta_1, \delta_3)$$

Si deux des δ_i sont nuls,

Par exemple $\delta_1 = 0$ $\delta_2 = 0$ et $\delta_3 \neq 0$

Alors $ker(A) = vect(\delta_3)$

Si
$$\delta_1 = 0$$
 $\delta_2 = 0$ **et** $\delta_3 = 0$

Alors on a forcément A=0 et l'equation Ax=0 admet une infinité de solutions

Question 10:

Pour V=2 et C= 4 on obtient la matrice suivante:

$$\begin{bmatrix} -1 & 2 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

En appliquant la fonction Graphe(), on obtient le graphe suivant:

Question 11:

a) Soit $u \in \mathbb{R}^2$, u est un équilibre ssi Au = 0

Puisque la matrice A est inversible, alors $b \in \mathbb{R}^2$, le système Au = b, admet une unique solution. Mais comme dans notre cas $b = (0,0)^{\intercal}$, le système est donc homogène. On en déduit que le point (0,0) est la seule solution du système Au = 0.

Donc le point (0,0) est le seul équilibre de l'équation $\partial_t u = Au$

b)

$1^{er}Cas$: A est diagonalisable sur $\mathbb C$

Alors il existe une base (V_1, V_2) de vecteurs propres associés aux valeurs propres conjuguées λ_1 et λ_2 .

posons
$$\lambda_1 = a + ib$$
 et $\lambda_2 = a + ib$

Le système $\partial_t u = Au$ admet une solution $u = (u_1, u_2) \in \mathbb{C}^2$ telle que:

$$u_1 = e^{\lambda_1}.V_1 \text{ et } u_2 = e^{\lambda_2}.V_2$$

Si a < 0 alors $\lim_{t \to +\infty} u_1(t) = \lim_{t \to +\infty} u_2(t) = \lim_{t \to +\infty} ce^{at} = 0$ i.e $\lim_{t \to +\infty} u(t) = (0,0)$. Donc (0,0) est stable.

$2^{eme}Cas$: A admet une Forme Normale de Jordan

On sait que toute matrice non nulle admet une forme normale sur \mathbb{C} .

Dans ce cas A est semblable a une matrice J de la forme J= dite de Jordan de sorte quil existe une matrice inversible P telle que $P^{-1}AP = J$ ce qui équivaut a $A = PJP^{-1}$.

Ainsi
$$u' = Au \iff P^{-1}u' = JP^{-1}u$$

En posant $y(t) = P^{-1}u(t)$, on est amené à résoudre le système y'(t) = Jy(t) dont la solution est $y(t) = e^{Jt}$. C ou $C = (c_1, c_2) \in \mathbb{C}^2$

Ainsi
$$y(t) = (c_1 e^{\lambda_1 t}, c_2 e^{\lambda_2 t})^{\mathsf{T}}$$

En revenant a u(t) = Py(t), on obtient $u(t) = (k_1 e^{\lambda_1 t}, k_2 e^{\lambda_2 t})^{\intercal}, k_1, k_2 \in \mathbb{C}$

• Si
$$Re(\lambda_1) < 0$$
 et $Re(\lambda_2) < 0$

Alors
$$\lim_{t\to+\infty} u_1(t) = \lim_{t\to+\infty} k_1 e^{Re(\lambda_1)t} = 0$$

$$\lim_{t \to +\infty} u_1(t) = \lim_{t \to +\infty} k_2 e^{Re(\lambda_2)t} = 0$$

i.e $\lim_{t\to+\infty} u(t) = (0,0)$. Donc (0,0) est stable.

c) Si
$$Re(\lambda_1) > 0$$
 et $Re(\lambda_2) > 0$

$$\lim_{t \to +\infty} u_1(t) = \lim_{t \to +\infty} k_1 e^{Re(\lambda_1)t} = +\infty$$

et
$$\lim_{t\to+\infty} u_1(t) = \lim_{t\to+\infty} k_2 e^{Re(\lambda_2)t} = +\infty$$

Ainsi
$$\lim_{t\to+\infty} u(t) = +\infty$$

Donc le point d'equilibre (0,0) est un equilibre **instable**

d) Si
$$Re(\lambda_1) < 0$$
 et $Re(\lambda_2) > 0$

$$\lim_{t\to+\infty} u_1(t) = \lim_{t\to+\infty} k_1 e^{Re(\lambda_1)t} = 0 \text{ et } \lim_{t\to+\infty} u_1(t) = \lim_{t\to+\infty} k_2 e^{Re(\lambda_2)t} = +\infty$$

On obtient deux directions diférentes de la limite de u(t) quand $t \to +\infty$

on en déduit que le le point d'equilibre (0,0) est un **point de selle**

Question 12: Preuve

 $[\implies]$ supposons que $u^* \in \mathbb{R}^2$ est un équilibre.

Puisque le système est autonome, u^* est l'unique solution de l'équation f(u) = 0 et par conséquent $f(u^*) = 0$ $[\Leftarrow]$ Supposons que $f(u^*) = 0$

Comme $f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, alors pour tout $u = (u_1, u_2) \in \mathbb{R}^2$, $\frac{\partial f}{\partial u_1}(u)$ et $\frac{\partial f}{\partial u_2}(u)$ existent et sont continues.

Soit $h=(h_1,h_2)\in\mathbb{R}^2\setminus\{(0,0)\}$, le developpement de Taylor d'ordre 1 de f en u^* s'écrit:

$$f(u^* + h) = f(u^*) + h_1 \frac{\partial f}{\partial u_1}(u^*) + h_2 \frac{\partial f}{\partial u_2}(u^*) + O(h)$$
$$= h_1 \frac{\partial f}{\partial u_1}(u^*) + h_2 \frac{\partial f}{\partial u_2}(u^*) + O(h)$$

car $f(u^*) = 0$ par hypothèse.

On en déduit que $\lim_{h\to(0,0)}f(u^*+h)=0$ donc u^* est un équilibre.

Question 14 Graphes de la dynamique pour les matrices A1 a A12

Trajectoires pour la matrice A9

Trajectoires pour la matrice A10

Trajectoires pour la matrice A11

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

Trajectoires pour la matrice A12

