Chapter 11 Problems

Problem 1

(a)
$$\mathbf{F}(\mathbf{x}) = \frac{1}{\rho} \hat{\mathbf{p}}$$
.

(b)
$$\mathbf{F}(\mathbf{x}) = y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$$
.

Problem 2

The parametrized streamlines for $\mathbf{v} = (-y, x)$ are of the form $r \cos t\hat{\mathbf{i}} + r \sin t\hat{\mathbf{j}}$.

Problem 3

We can see that ${\bf E}$ and ${\bf B}$ are mutually perpendicular by taking the standard inner product

$$\left\langle xy^2\hat{\mathfrak{i}}+x^2y\hat{\mathfrak{j}},x^2y\hat{\mathfrak{i}}-xy^2\hat{\mathfrak{j}}\right\rangle=0.$$

Additionally, for E,

$$\frac{dy}{dt} = x^2y$$

$$\frac{dx}{dt} = xy^2$$

$$\frac{dy}{dx} = \frac{x}{y}$$

$$y^2 = x^2 + K,$$

and for B,

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -xy^2$$

$$\frac{dx}{dt} = x^2y$$

$$\frac{dy}{dx} = -\frac{y}{x}$$

$$y = \frac{K}{x}.$$

Problem 4

(a)

$$\begin{split} & \int_{V} \mathbf{E}\left(\mathbf{r}\right) \; d^{3}x = \int_{0}^{\pi/2} \int_{0}^{2\pi} \int_{0}^{R} \hat{\mathbf{r}} \sin\theta \; d\mathbf{r} d\varphi d\theta \\ & \int_{V} \mathbf{E}\left(\mathbf{r}\right) \; d^{3}x = \int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \int_{0}^{\sqrt{R^{2}-x^{2}-y^{2}}} \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{\left(x^{2} + y^{2} + z^{2}\right)^{3/2}} \; dz dy dx \end{split}$$

(b)

$$\int_{V} \mathbf{E}(\mathbf{r}) \ d^{3}x = \int_{0}^{\pi/2} \int_{0}^{2\pi} \int_{0}^{R} \sin\theta \left(\cos\varphi \sin\theta \hat{\mathbf{i}} + \sin\varphi \sin\theta \hat{\mathbf{j}} + \cos\theta \hat{\mathbf{k}}\right) \ d\mathbf{r} d\varphi d\theta$$

This integral is more practical than the pure forms since the basis is position-independent and the integral is not a giant mess.

(c) Using symmetry, since $\cos \phi$ is integrated from 0 to 2π and $\sin \phi$ is integrated from 0 to 2π , both the \hat{i} and \hat{j} components are 0.

$$\begin{split} &\int_0^{\pi/2} \sin^2\theta \int_0^{2\pi} \cos\varphi \int_0^R \ dr d\varphi d\varphi = 0 \\ &\int_0^{\pi/2} \sin^2\theta \int_0^{2\pi} \sin\varphi \int_0^R \ dr d\varphi d\varphi = 0 \end{split}$$

(d) Evaluating the k component,

$$\int_0^{\pi/2} \sin \theta \cos \theta \int_0^{2\pi} \int_0^R dr d\phi d\theta = 2\pi R \int_0^{\pi/2} \sin \theta \cos \theta d\theta$$
$$= \pi R.$$

Problem 5

$$\begin{aligned} \mathbf{R}_{cm} &= \frac{1}{M} \int_{S} \mathbf{r} \, dm \\ &= \frac{\sigma}{M} \int_{-\ell/2}^{\ell/2} \int_{0}^{\pi} \left(R \cos \phi \hat{\mathbf{i}} + R \sin \phi \hat{\mathbf{j}} + z \hat{\mathbf{k}} \right) R \, d\phi dz \\ &= \frac{\sigma}{M} \left(2R^{2} \right) \hat{\mathbf{j}}. \end{aligned}$$

Chapter 12 Problems

Problem 1

Problem 2

Problem 3

Problem 6

Problem 7

Problem 9

Problem 15

Problem 19

Chapter 13 Problems

Problem 2