الدوال الأسية

محتوى الدرس

2	1 دالة الأسية النبيرية	
3	2 دراسة الدالة الأسية النبيرية	2
4	a دالة الأسية ذات الأساس a	}

1. دالة الأسية النبيرية

نشاط 1

- 1. بين أن الدالة In تقبل دالة عكسية معرفة على مجال I ينبغي تحديده.
- $\ln^{-1}(a)$ عددا جذریا، حدد a عددا عددا

- $.\ln^{-1}(1)$ و $\ln^{-1}(0)$ عدد 2
- فيما يلي نمدد النتيجة من مجموعة الأعداد الجذرية إلى مجموعة الأعداد الحقيقية.
 - 4. لیکن a و d عددین حقیقیین و r عددا جذریا. بین ما یلی:
- $\ln^{-1}(ra) = \left(\ln^{-1}(a)\right)^r$; $\ln^{-1}(a-b) = \frac{\ln^{-1}(a)}{\ln^{-1}(b)}$; $\ln^{-1}(a+b) = \ln^{-1}(a) \times \ln^{-1}(b)$

تعریف

الدالة العكسية للدالة In هي الدالة ٠٠٠٠٠٠٠٠٠٠ و تسمى الدالة الأسية النبيرية و نرمز لها بالرمز exp.

نتائج

- $\bullet(\forall x \in \mathbb{R}) : \exp(x) > 0$ $\bullet \exp(1) = e$ و $\exp(0) = 1$
 - $\bullet(\forall y \in]0; +\infty[) (\forall x \in \mathbb{R}) : \ln y = x \Leftrightarrow y = \exp(x) \bullet$
- $\bullet(\forall x \in]0; +\infty[) : \exp\left(\ln(x)\right) = x \bullet \qquad \bullet(\forall x \in \mathbb{R}) : \ln\left(\exp(x)\right) = x \bullet$
 - الدالة exp متصلة و تزايدية قطعا على \mathbb{R} .
- $\bullet (\forall (x;y) \in \mathbb{R}^2) : x = y \Leftrightarrow \exp(x) = \exp(x) \bullet \qquad \bullet (\forall (x;y) \in \mathbb{R}^2) : x < y \Leftrightarrow \exp(x) < \exp(x) \bullet$

خاصيات

 $\exp(rx) = (\exp(x))^r$ $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$ $\exp(-x) = \frac{1}{\exp(x)}$ $\exp(x+y) = \exp(x)\exp(y)$

ملاحظات

الخاصيات السابقة هي نفسها خاصيات القوي.

 $ax\mapsto e^x$ أما الرمز $ax\mapsto e^x$ فيستعمل للتعبير عن الدالة $ax\mapsto e^x$ بدل الرمز $ax\mapsto e^x$ أما الرمز

تمرين 1

- $e^{rac{3x}{2}}\sqrt{e^{1-2x}}$ و $e^{x+e^{2x}\over e^{x}}$ و $e^{1-2x}e^{3x}$: بسط ما يلي.
- $e^x + 3e^{-x} 4 = 0$ و $e^{2x} 3e^x + 2 = 0$.3
- $e^{x}-1$ و $e^{x}-1$
 - $\left\{egin{array}{l} e^{2x}e^y=e^2 \ \ln(3x)+\ln(3+2y)=2\ln3 \end{array}
 ight.$ وفي \mathbb{R}^2 النظمة: \mathbb{R}^2

2. دراسة الدالة الأسية النبيرية

نشاط 2

```
\lim_{x\to +\infty} \exp(x) = +\infty نقبل أن
```

- النتيجتين. $\lim_{x\to 0} \frac{\exp(x)-1}{x}$ و $\lim_{x\to \infty} \frac{\exp(x)}{x}$ أول هندسيا النتيجتين.
- \mathbb{R} من x اکل $\exp'(x)$ عند سیا النتیجة. $\lim_{x\to +\infty} \frac{\exp(x)}{x}$ اکل $\lim_{x\to +\infty} \frac{\exp(x)}{x}$ بین أن
- 4. ضع جدول تغيرات الدالة exp. الأفصول 0. حدد معادلة المماس في النقطة ذات الأفصول 0.
 - $\cdot \left(rac{1}{e} pprox 0,37
 ight)$ و e pprox 2,72 و e pprox 6. أنشئ منحنى الدالة e pprox 0,37 في معلم متعامد ممنظم
 - $\mathbb{N}^*-\{1\}$ و $\lim_{x o -\infty}x^n\exp(x)=0$ و $\lim_{x o +\infty}\frac{\exp(x)}{x^n}=+\infty$ و $\lim_{x o -\infty}x\exp(x)=0$ من $\lim_{x o -\infty}x\exp(x)=0$

دراسة

مجموعة تعريف الدالة exp $D_{\exp} = \cdots$ $\lim_{x \to +\infty} \exp(x) = \dots$ $\lim_{x \to -\infty} \exp(x) = \dots$ النهايات عند محدات مجموعة تعريف الدالة In الدالة exp قابلة للاشتقاق على ${\mathbb R}$ و دالتها المشتقة هي: قابلية اشتقاق الدالة exp $\forall x \in \mathbb{R}: \ \exp'(x) = \dots$ جدول تغيرات الدالة exp exp منحنى الدالة $\exp(x) = \dots$ منحنى الدالة بقبل $\lim_{x \to -\infty} \exp(x)$ الفروع اللانهائية $\displaystyle \lim_{x o +\infty} \frac{\exp(x)}{x} = \cdots$ عقبل: منحنى الدالة: $\displaystyle \lim_{x o +\infty} \frac{\exp(x)}{x} = \cdots$ نتائج أخرى $\lim_{x\to 0} \frac{\exp(x)-1}{x} = \dots$ $\lim_{x\to -\infty} x \exp(x) = \dots$ $\forall n \in \mathbb{N}^* \smallsetminus \{1\} \lim_{x \to +\infty} \frac{\exp(x)}{x^n} = \dots \quad \text{i} \quad \lim_{x \to -\infty} x^n \exp(x) = \dots$ $(\forall a \in]0; +\infty[) : \exp(x) = a \Leftrightarrow x = \ln(a)$

تمرين 2

 $\lim_{x \to \infty} \frac{e^{2x} - e^x}{e^{4x} + 3e^x}; \lim_{x \to +\infty} \left(e^{2x} - e^x + 2\right); \lim_{x \to 0} \frac{1 + 2x - e^x}{x}; \lim_{x \to 0} \frac{e^{2x} - e^x}{x}; \lim_{x \to -\infty} (1 - x)e^x; \lim_{x \to +\infty} \frac{x}{e^x}; \lim_{x \to -\infty} (1 - x + e^x)$ $\lim_{x \to +\infty} \frac{e^x}{x^3}; \lim_{x \to 1} \exp\left(\frac{x^2 - 4}{1 - x}\right); \lim_{x \to +\infty} \exp\left(\frac{3 - 4x^2}{1 - x}\right); \lim_{x \to +\infty} (1 + 3x)e^{2 - 3x}$

خاصية

I لتكن u دالة قابلة للإشتقاق على مجال I و U تنعدم على U

- $(\forall x \in I) : (\exp\left(u(x)\right))' = u'(x) \exp'\left(u(x)\right)$ الدالة $x \mapsto \exp\left(u(x)\right)'$ قابلة للاشتقاق على أ، و لدينا
- $x\mapsto \exp\left(u(x)
 ight)+k$ على I هي الدوال المعرفة على I بما يلى: $x\mapsto u'(x)\exp'\left(u(x)
 ight)$ $\cdot k \in \mathbb{R}$ حيث

a دالة الأسية ذات الأساس 3.

تعريف

 $a \neq 1$ و a > 0 ليكن a > 0 و الكن موجبا

 \bullet الدالة الأسية للأساس a هي الدالة التي يرمن لها بالرمن \exp_a و المعرفة بما يلي: $\exp_a(x) = e^{x \ln(a)} = a^x$

 $\exp_e = \dots$

 $\exp_{a}(0) = \dots$

 $\exp_a(1) = \dots$

خاصيات

 \mathbb{R} لکل x و y من \mathbb{R} و لکل x من

 $\exp_a(x^r) = (\exp_a(x))^r$; $\exp_a(-x) = \frac{1}{\exp_a(x)}$; $\exp_a(x-y) = \frac{\exp_a(x)}{\exp_a(y)}$; $\exp_a(x+y) = \exp_a(x)\exp_a(y)$

دراسة

 $D_{\exp_a} = \cdots$

 \exp_a الدالة بحموعة تعريف

النهايات عند محدات مجموعة تعريف الدالة log

0 < a < 1 اذا کان

 $\lim_{x \to +\infty} \exp_a(x) = \dots$ $\lim_{x \to -\infty} \exp_a(x) = \dots$

a>1 إذا كان

 $\lim_{x\to +\infty} \exp_a(x) = \dots \qquad \lim_{x\to -\infty} \exp_a(x) = \dots \qquad \dots$

الدالة و \exp_a قابلة للاشتقاق على \mathbb{R} و دالتها المشتقة هي:

قابلية اشتقاق الدالة exp

 $\forall x \in \mathbb{R} : \exp'_a(x) = \dots$

0 < a < 1 اذا کان

 \exp_a جدول تغیرات الداله

 \boldsymbol{x} exp_a

a > 1 اذا کان

 \exp_a

نتيجة

$$(\forall b \in]0; +\infty[) : \exp_a(x) = b \Leftrightarrow x = \log_a(b)$$

ملاحظة

 $\bullet]0;+\infty[$ على \log_a للدالة العكسية للدالة \exp_a

تعریف

 $(\forall x \in \mathbb{R}) : \exp_{10}(x) = 10^x$ لدينا: $\exp_{10}(x) = 10^x$ الأسية الدالة الأسية ذات الأساس 10 أي

