GROUPE EM GABON-UNIVERSITE

PRESIDENCE

DIRECTION DE LA SCOLARITÉ ET DE LA MOBILITÉ

École d'Ingénieurs de Libreville

Y BROWN F	4-13-50-19		8000
A BIBLY		10000	1000 1000
E TREETING E	Today Salar	SSEE:	166
N B B A	DECEMBER OF THE	100	1000
医骶腿形	100		
El am In	888		200 200
-/-	Committee of States	5000	And the heathering
4-24	THE RELIGIONS	2000	

MATIERE:	Probabilités		
NIVEAU:	Licence 1		
CLASSE/MAJEURE	Ingénieur		
TYPE D'EXAMEN	Final		
DURÉE :	2h		
ENSEIGNANT:	PAMBO BELLO Kowir		

Calculatrice non autorisée - Justifiez toutes vos réponses.

Problème 1 : Probabilités et probabilités conditionnelles (10 points)

Dans une entreprise, une étude a montré que :

- 40 % des machines sont performantes,
- 30 % subissent des baisses de tension,
- 20 % sont à la fois performantes et subissent des baisses de tension.

On choisit une machine au hasard.

- 1. (1 pts) Représenter la situation par un diagramme de Venn.
- 2. (1 pt) Quelle est la probabilité qu'une machine soit performante ou subissent des baisses de tension ?
- 3. (1 pt) Quelle est la probabilité qu'une machine ne soit ni performante ni victimes de baisse de tension ?
- 4. (1 pts) Sachant qu'une machine est performante, quelle est la probabilité qu'elle soit victime de baisse de tension ?
- (2 pts) Les événements "être performant" et "victime de baisse de tension" sont-ils indépendants ? Justifiez.
- 6. **(4 pts)** On sélectionne trois machines au hasard **avec remise**. Quelle est la probabilité qu'elles soient toutes non performantes ? Qu'il y ait au moins deux machines performantes ? qu'il y ait au plus une machine performante ?

Problème 2 : Lois de probabilité usuelles (10 points)

Un call center reçoit en moyenne 3 appels par minute.

Partie A – Loi de Poisson (4 points)

GROUPE EM GABON-UNIVERSITE

PRESIDENCE

DIRECTION DE LA SCOLARITÉ ET DE LA MOBILITÉ

École d'Ingénieurs de Libreville

- 1. (1 pt) Justifiez pourquoi le nombre d'appels reçus par minute peut être modélisé par une loi de Poisson.
- 2. (2 pts) Quelle est la probabilité qu'aucun appel ne soit reçu pendant une minute ?
- 3. (1 pt) Quelle est la probabilité de recevoir aux plus deux appels pendant une minute ?

Partie B – Loi Binomiale (2 points)

Un technicien répond à 5 appels. Chaque appel a une probabilité de 0,8 d'être résolu correctement.

- 1. (1 pt) Modélisez la situation à l'aide d'une loi de probabilité.
- 2. (1 pt) Quelle est la probabilité que tous les appels soient bien résolus ?

Partie C – Loi Géométrique et Exponentielle (4 points)

- 1. (2 pts) Dans un centre d'appels, la probabilité qu'un appelant raccroche avant d'être pris en charge est 0,2. Quelle est la probabilité qu'il faille attendre 3 appels avant de trouver un appelant qui ne raccroche pas ?
- 2. (2 pts) Le temps d'attente entre deux appels suit une loi exponentielle de paramètre $\lambda = 3$. Quelle est la probabilité que le prochain appel arrive dans plus de 1 minute ?

