THESIS TITLE

LAST, First

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

in

Mathematics

The Chinese University of Hong Kong December 2022

Thesis Assessment Committee

Professor LAST First (Chair)

Professor ZHANG San (Thesis Supervisor)

Professor LI Si (Thesis Co-supervisor)

Professor WANG Wu (Committee Member)

Professor ZHAO Liu (External Examiner)

Abstract

In this thesis, we prove that \ldots (English abstract)

摘要

在本论文中, 我们证明了 (中文摘要)

Acknowledgement

I am grateful to my supervisor Professor X.

Contents

Al	bstra	ct	Ι
摘	要		II
A	cknov	wledgement	III
Li	st of	Figures	VI
Li	st of	Tables	VII
1	Intr	oduction	1
	1.1	Background	1
	1.2	Main results	1
	1.3	Structure of the thesis	1
2	Pre	liminaries	2
	2.1	Notation	2
	2.2	Definitions	2
	2.3	Previous results	3
3	Pro	of of main theorems	4
	3.1	Lemmas	4
	3.2	Propositions	4

4	Applications	5
	4.1 Examples	5
A	Index of glossary terms	6
Bi	bliography	7

List of Figures

4.1	A self-affine set																		5
±.1	A sen-anne set	•	•	•	•	•	•	•	•	•			•	•	•	•			·

List of Tables

Introduction

1.1 Background

The study of A is motivated by B. It is important to study A.

1.2 Main results

Theorem 1.2.1. In this thesis, we prove that

$$e^{i\pi} + 1 = 0.$$

1.3 Structure of the thesis

In Chapter 2, we will make some necessary preparations. The proof of Theorem 1.2.1 will be given in Chapter 3.

Preliminaries

2.1 Notation

Here is table of basic notations.

\overline{X}	a compact metric space
\mathscr{B}	Borel σ -algebra
T	a continuous map from X to X
μ	a T -invariant Borel probability measure

Table 2.1: Table of notation

2.2 Definitions

Definition 2.2.1. Let X be a set. A function from X to Y is a mapping $f: X \to Y$.

2.3 Previous results

We include the following theorem, see e.g. [1].

Theorem 2.3.1. There are infinitely many primes.

Proof of main theorems

3.1 Lemmas

Lemma 3.1.1. If $a \leq b$ and $b \leq a$, then a = b.

3.2 Propositions

Proposition 3.2.1. The relation \leq is a partial order on \mathbb{R} .

Proof. It is readily checked that \leq is a preorder. Then the proof is completed by Lemma 3.1.1.

Applications

4.1 Examples

Example 4.1.1. Let $A \subset \mathbb{R}^2$ be an self-affine set.

Figure 4.1: The Barnsley fern is a self-affine set^1 .

¹This figure is generated using a notebook from zfengg/PlotIFS.jl.

Appendix A

Index of glossary terms

Bibliography

[1] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles. 3