4 Основные понятия кинематики

Материальная точка — это тело, размеры которого можно не учитывать. Все остальные значимые физические свойства у таких тел присутствуют.

Так, описывая движение муравья, удаляющегося на расстояние в несколько метров от начальной точки, можно представлять себе просто движущуюся точку. Такой случай (вид сверху) показан на рис. 1.

Рис. 1. Движение материальной точки

На рис. 1 муравей M (тело) двигался из точки A в точку C, пройдя точку B, вдоль штриховой линии — **траектории**.

Координаты (x,y [м]) тела показывают местонахождение тела. Например, точке A соответствуют $x_A=0$ м и $y_A=0$ м; точке $B-x_B>0$ м и $y_B=0$ м.

Путь (S [M]) — это длина траектории (следа), по которой двигалось тело. В предыдущем примере путь есть длина кривой ABC.

Перемещение $(\vec{r} \ [\text{м}])^1$ — это вектор, соединяющий начальное и конечное положения тела. Красный вектор на рис. 1 есть перемещение муравья.

Время (t [c]) — это длительность процесса. Можно сказать, что время — это неотъемлемая форма мышления наблюдателя.

Теперь нужно сказать о двух важных характеристиках движения.

- Скорость $\left(\vec{v} \ \left[\frac{\mathrm{M}}{\mathrm{c}}\right]\right)$ это характеристика движения, показывающая перемещение тела за одну секунду. Этот вектор всегда направлен по касательной к соответствующей траектории. Скорость \vec{v} как бы указывает, куда сдвинется тело через малый промежуток времени.
- Ускорение $\left(\vec{a} \ \left[\frac{\text{M}}{\text{c}^2}\right]\right)$ это характеристика движения, показывающая, на сколько изменяется скорость тела за одну секунду. Ускорение \vec{a} как бы указывает, $\kappa y \partial a$ стремится конец вектора \vec{v} .

Тот же муравей снова двигается по той же самой траектории, причем на прямом участке разгоняется, а на закругленном — движется в одном темпе. На рис. 2 показаны векторы \vec{v} и \vec{a} в различных положениях тела M_1 и M_2 .

Рис. 2. Скорости и ускорения точки

¹Строго говоря, $\Delta \vec{r}$.