=> fil req

FILE 'REGISTRY' ENTERED AT 13:31:24 ON 15 AUG 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ${\tt ZIC/VINITI}$ data file provided by InfoChem.

STRUCTURE FILE UPDATES: 14 AUG 2008 HIGHEST RN 1041071-62-8 DICTIONARY FILE UPDATES: 14 AUG 2008 HIGHEST RN 1041071-62-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d que stat 16 L3 STR

NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 4

STEREO ATTRIBUTES: NONE L4 STR

Ak - 0

NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 2

STEREO ATTRIBUTES: NONE

L6 4026 SEA FILE=REGISTRY SSS FUL L3 AND L4

100.0% PROCESSED 67669 ITERATIONS 4026 ANSWERS

SEARCH TIME: 00.00.01

=> d his

(FILE 'HOME' ENTERED AT 13:14:57 ON 15 AUG 2008)

FILE 'HCAPLUS' ENTERED AT 13:15:08 ON 15 AUG 2008

E US20040101759/PN

L1 2 S E3 SEL RN

FILE 'REGISTRY' ENTERED AT 13:15:43 ON 15 AUG 2008

L2 20 S E1-20

FILE 'LREGISTRY' ENTERED AT 13:21:37 ON 15 AUG 2008

L3 STR L4 STR

FILE 'REGISTRY' ENTERED AT 13:22:22 ON 15 AUG 2008

L5 50 S L3 AND L4

L6 4026 S L3 AND L4 FUL

L7 6 S L2 AND L6 SAV L6 WEI646/A

FILE 'HCAPLUS' ENTERED AT 13:23:33 ON 15 AUG 2008

L8 QUE BATTERY

L9 QUE ELECTROD? OR ANODE

L10 139 S L6(L)L8-9

L11 QUE ELECTROLY?

L12 154 S L6(L)L11

L13 QUE AMORPHOUS?

L14 7 S (L10 OR L12) AND L13

FILE 'REGISTRY' ENTERED AT 13:31:24 ON 15 AUG 2008

FILE 'HCAPLUS' ENTERED AT 13:31:30 ON 15 AUG 2008

L15 3 S L7

L16 3 S L15 NOT L14

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 13:31:30 ON 15 AUG 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching

August 15, 2008 10/717,646 3

databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 15 Aug 2008 VOL 149 ISS 8 FILE LAST UPDATED: 14 Aug 2008 (20080814/ED)

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d ibib abs hitstr hitind 114 1-7

L14 ANSWER 1 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:650382 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 147:221735

TITLE: Simple and effective way to improve the

stability of titanium based boron doped diamond

film electrode

AUTHOR(S): Guo, Liang; Chen, Guohua

CORPORATE SOURCE: School of Engineering, Hong Kong University of

Science and Technology, Kowloon, Hong Kong,

Peop. Rep. China

SOURCE: Materials Research Society Symposium Proceedings

(2007), 956 (Diamond Electronics--Fundamentals to

Applications), 105-111

CODEN: MRSPDH; ISSN: 0272-9172

PUBLISHER: Materials Research Society

DOCUMENT TYPE: Journal LANGUAGE: English

B-doped diamond film coated Ti (Ti/BDD) becomes increasingly attractive because of the combined properties of these 2 unique materials. The challenge for the composite material is the stability especially when it is used as an electrode. To meet this challenge, 2 temperature staged hot filament CVD method was employed. The accelerated working life time was significantly increased to 804 h for the 2-temperature electrode, compared with 244 h for the diamond film electrode fabricated under one temperature stage method. With the characterization of micro-Raman, XRD, and cross-sectional SEM, a multilayer of Ti/TiC/(diamond+amorphous C)/diamond can be found in the 2-temperature sample and the structure of Ti/TiC/diamond in the 1-temperature sample. There was less void space observed in the interlayer of 2-temperature sample. The multilayered compact structure plays an important role in improving the adhesion of diamond film to the Ti substrate which in turn increases the electrode working life time by over 3 times.

IT 121-43-7, Trimethyl borate

RL: RCT (Reactant); RACT (Reactant or reagent)
(B-doped diamond electrode fabrication on Ti by
two-temperature stage modified hot filament CVD using hydrogen and
methane and tri-Me borate and dimethoxymethane for improved
electrode stability)

RN 121-43-7 HCAPLUS

CN Boric acid (H3BO3), trimethyl ester (CA INDEX NAME)

August 15, 2008 10/717,646 4

OMe Me0-B-0Me

CC 72-2 (Electrochemistry)

Section cross-reference(s): 66, 75

109-87-5, Dimethoxymethane 121-43-7, Trimethyl borate ΙT

1333-74-0, Hydrogen, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(B-doped diamond electrode fabrication on Ti by

two-temperature stage modified hot filament CVD using hydrogen and

methane and tri-Me borate and dimethoxymethane for improved

electrode stability)

7440-44-0, Carbon, uses ΙT

RL: FMU (Formation, unclassified); TEM (Technical or engineered

material use); FORM (Formation, nonpreparative); USES (Uses)

(amorphous; formation in B-doped diamond electrode

fabrication on Ti by two-temperature stage modified hot filament CVD

using hydrogen and methane and tri-Me borate and dimethoxymethane

for improved electrode stability)

REFERENCE COUNT: 11

THERE ARE 11 CITED REFERENCES AVAILABLE

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

L14 ANSWER 2 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:601541 HCAPLUS Full-text

DOCUMENT NUMBER: 145:86502

TITLE: Secondary lithium battery

Arai, Toshikazu; Kobayashi, Mitsuru INVENTOR(S):

PATENT ASSIGNEE(S): Shin-Kobe Electric Machinery Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

Patent DOCUMENT TYPE:

Japanese LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2006164860	A	20060622	JP 2004-357502	200412
US 20060154149	A1	20060713	US 2005-296277	200512
PRIORITY APPLN. INFO.:			JP 2004-357502 A	200412 10

OTHER SOURCE(S): MARPAT 145:86502

GΙ

August 15, 2008 10/717,646 5

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{5} R^{5

The battery has a separator between a Li-intercalating cathode and a Li-intercalating anode and an organic electrolyte solution in a batter case; where the electrolyte solution containing a cyclic carbonate solvent I (R1-4 = H, F, Cl, C1-3 alkyl, or fluorinated alkyl group), a linear carbonate II (R5-6 = H, F, Cl, C1-3 alkyl, or fluorinated alkyl group), and a linear ester solvent III (R7-8 = H, F, Cl, C1-3 alkyl, or fluorinated alkyl group).

IT 412030-34-3, Lithium tetrakis(trifluoroacetoxy) borate
RL: MOA (Modifier or additive use); USES (Uses)

(electrolyte solns. containing carbonates and linear esters in solvents for secondary lithium batteries)

RN 412030-34-3 HCAPLUS

CN Borate(1-), tetrakis(2,2,2-trifluoroacetato- κ O)-, lithium (1:1) (CA INDEX NAME)

Li+

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT 7440-44-0, Carbotron P, uses

RL: DEV (Device component use); USES (Uses)

(amorphous; electrolyte solns. containing carbonates and linear esters in solvents for secondary lithium batteries)

IT 105-37-3, Ethyl propionate 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate 872-36-6, Vinylene carbonate 3967-54-2 4427-89-8 4427-96-7, Vinyl ethylene carbonate 74123-20-9, Trifluoromethyl acetate 167951-80-6 412030-34-3, Lithium tetrakis(trifluoroacetoxy) borate

RL: MOA (Modifier or additive use); USES (Uses)

(electrolyte solms, containing carbonates and linear esters in solvents for secondary lithium batteries)

L14 ANSWER 3 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:77298 HCAPLUS Full-text

DOCUMENT NUMBER: 144:153448

TITLE: Electrode for secondary polymer electrolyte

battery and the battery

INVENTOR(S): Okumura, Takefumi; Nishimura, Shin; Iwayasu, Norio; Yokoyama, Shoichi; Itoh, Tetsuya; Yabe,

Takeshi; Ichimiya, Kengo

PATENT ASSIGNEE(S): Hitachi, Ltd., Japan; NOF Corporation

SOURCE: PCT Int. Appl., 44 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

P. -	ATENT 	NO.			KIN:		DATE			APPL	ICAT	ION :	NO.		D	ATE
	0 2006	- 0092	84		A1		2006	0126		WO 2	005-	JP13	671		2	00507
															2	0
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,
		CH,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,
		GB,	GD,	GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,
		KΡ,	KR,	KΖ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,
		MW,	MX,	MZ,	NA,	NG,	NI,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,
		SC,	SD,	SE,	SG,	SK,	SL,	SM,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,
		UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,
		ΙE,	IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML ,	MR,	ΝE,	SN,	TD,
		ΤG,	BW,	GH,	GM,	KE,	LS,	MW,	${ m MZ}$,	NΑ,	SD,	SL,	SZ,	TZ,	UG,	ZM,
		,	,	,	,	,	KΖ,	,	,	,						
U	S 2007	0287	070		A1		2007	1213		US 2	007-	5723	35			
															2 1	00701 9
PRIORI	TY APP	LN.	INFO	.:						JP 2	004-	2114	12		A	
															2	00407 0
										WO 2	NN5-	TP13	671	1	M	
										VV Z	005-	OEIJ	0 / 1			00507 0

- AB The battery has a cathode containing a cation-intercalating cathode active mass, an anode containing a cation-intercalating anode active mass, and an electrolyte layer interposed between the cathode and the anode and composed of an ion-conductive polymer for transferring the cations; where the cathode and/or the anode comprises a B-cong. organic compound as a binder component; and the cathode and/or anode active mass is treated with silane, Al, or Ti for facilitating intercalation/decalation of cations, thereby suppressing decrease in charge/discharge capacity.
- IT 30989-05-0 866555-98-8

RL: DEV (Device component use); USES (Uses)

(electrodes having boron-containing organic compound binders and modified active mass for secondary lithium batteries)

RN 30989-05-0 HCAPLUS

CN Ethanol, 2-[2-(2-methoxyethoxy)ethoxy]-, 1,1',1''-triester with boric acid (H3BO3) (CA INDEX NAME)

August 15, 2008 10/717,646 7

PAGE 1-B

RN 866555-98-8 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 16-methyl-7-[2-[2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]ethoxy]-15-oxo-3,6,8,11,14-pentaoxa-7-boraheptadec-16-en-1-yl ester (CA INDEX NAME)

PAGE 1-A

$$\begin{array}{c} & \text{H2C} & \text{O} \\ & \text{Me-C-C-O-CH}_2 - \text{CH}_2 - \text{O-CH}_2 - \text{CH}_2 - \text{O} \\ & \text{Me-C-C-C-O-CH}_2 - \text{CH}_2 - \text{O-CH}_2 - \text{CH}_2 - \text{CH}$$

PAGE 1-B

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT 7440-44-0, Carbon, uses

RL: DEV (Device component use); USES (Uses)

(amorphous; electrodes having boron-containing organic compound binders and modified active mass for secondary lithium batteries)

IT 9003-11-6, Ethylene oxide-propylene oxide copolymer 12057-17-9, Lithium manganese oxide (LiMn2O4) 14283-07-9, Lithium tetrafluoroborate 30989-05-0 90076-65-6 132843-44-8 866555-98-8

RL: DEV (Device component use); USES (Uses)

(electrodes having boron-containing organic compound binders and modified active mass for secondary lithium batteries)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 4 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2001:334555 HCAPLUS Full-text

DOCUMENT NUMBER: 135:124786

TITLE: Effect of additions of organic sulfornates on

the conductivity of lithium conducting polymer

electrolytes

AUTHOR(S): Bakenov, Zhumabay; Ikuta, Hiromasa; Wakihara,

Masataka

CORPORATE SOURCE: Department of Applied Chemistry, Graduate School

of Science and Engineering, Tokyo Institute of

Technology, Ookayama, Meguro-ku, Tokyo,

152-8552, Japan

SOURCE: Electrochemistry (Tokyo, Japan) (2001), 69(5),

312-313

CODEN: EECTFA; ISSN: 1344-3542 PUBLISHER: Electrochemical Society of Japan

DOCUMENT TYPE: Journal LANGUAGE: English

The electrochem. properties of the solid polymer electrolytes (SPE) containing lithium trifluoromethanesulfon imide (LiTFSI) and novel lithium sulfonates have been investigated. Sulfonates as additives into the LiTFSI-based SPE showed ionic conductivities up to $5.1 \times 10-4$ S/cm at room temperature Improvement of the ionic conductivity is attributed to the formation of the coordination centers in the system and an increase of amorphous degree of the SPE.

64631-20-5, Polyethylene glycol boric acid ester ΙT

RL: DEV (Device component use); USES (Uses)

(effect of addns. of organic sulfornates on the conductivity of lithium conducting polymer electrolytes)

64631-20-5 HCAPLUS RN

Poly(oxy-1,2-ethanediyl), α , α ', α ''-CN

borylidynetris $[\omega$ -hydroxy- (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 72, 76

25322-68-3, Polyethylene glycol 53469-29-7, Lithium ΙT dodecylsulfonate 64631-20-5, Polyethylene glycol boric acid ester 82113-65-3 158454-23-0, Persoft 350679-87-7

RL: DEV (Device component use); USES (Uses)

6

(effect of addns. of organic sulfornates on the conductivity of lithium conducting polymer electrolytes)

REFERENCE COUNT:

THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 5 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1999:194152 HCAPLUS Full-text

DOCUMENT NUMBER: 130:204268

Preparation of weakly coordinating anions TITLE:

containing polyfluoroalkoxide ligands for use as

salt-in-polymer electrolytes

Strauss, Steven H.; Nolan, Benjamin G.; INVENTOR(S): Barbarich, Thomas J.; Rockwell, Juston J.

PATENT ASSIGNEE(S): Colorado State University Research Foundation,

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

		ENT						DATE			APP	LIC	CAT:	ION I	NO.		Γ	ATE
_ ₩	 VO	9912	– 938			A1		1999	0318		WO	199	J-8€	JS19	268			.99809 .1
		₩:	DE, KG, MW,	DK, KP, MX,	EE, KR, NO,	ES, KZ, NZ,	FI, LC, PL,	BA, GB, LK, PT, UZ,	GE, LR, RO,	GH, LS, RU,	GM LT SD	1, F 3, I	HU,	ID, LV,	IL, MD,	IS, MG,	CU, JP, MK,	CZ, KE, MN,
			ES, CG,	FI, CI,	FR, CM,	GB, GA,	GR, GN,	SD, IE, GW,	IT, ML,	LU, MR,	MC NE	C, N	NL, SN,	PT, TD,	SE, TG	•		•
		2302																.99809
P	U.	9893	928			A		1999	0329		AU	199	98-9	9392	8			.99809
E	ΞP	1025	110			A1		2000	0809		EP	199	98-9	9470	54			.99809 .1
E		1025 R:	AT,		CH,	DE,				GB,	GR	₹,]	ΙΤ,	LI,	LU,	NL,	SE,	MC,
Ţ	JS	6221		•				2001	0424		US	199	98-1	1518	52			.99809
J	JP	2001	5159	8 0		Т		2001	0925		JP	200	00-	5107	45		1	.99809
P	TA	2854	13			Т		2005	0115		AT	199	98-9	9470	54		1	.99809
PRIORI	ΙΤΥ	APP	LN.	INFO	.:						US	199	97-!	5852	4P		P 1	.99709 .1
											WO	199	J-86	US19	268		1	.99809 .1

OTHER SOURCE(S): MARPAT 130:204268

AB A compound comprising a polyfluorinated anion of the formula:

[M1(XC(CFa(R1)b)(CFc(R2)d)R3)m(R4)n]-p (M1 = transition metal or Group III, IV or V element; p = 1 or 2; X = 0, S, NR5R6; R1 and R2 are independently H, C1-C4 alkyl, C4-C20 aryl; R4 is independently C1-C10 alkyl, C1-C10 alkoxide or C4-C20 aryloxide; R5 and R6 are independently H or C1-C10 alkyl; each of a and c are independently an integer from 0-3; a + b = 3; c + d = 3; m is an integer from 2-8; n is an integer from 0-4; at least one of a or c is not 0) and the use thereof, especially as electrolytes for batteries, is provided. Specifically, the present invention provides a compound comprising an anion which comprises a polyfluorinated alkoxide coordinated to a transition metal, or a Group III, IV or V element. Thus, LiNb(HFIP)6 (HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol anion) was prepared in 79% yield from Li(HFIP) and reacted with amorphous polyethylene oxide (aPEO) to give a salt-in-polymer

electrolyte for which glass transition temps. were determined and elec. conductivity measurements were made.

IT 220836-34-0P 220836-39-5P

RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(preparation and use in preparation of salt-in-polymer electrolytes

RN 220836-34-0 HCAPLUS

CN Borate(1-), tetrakis(1,1,1,3,3,3-hexafluoro-2-propanolato- κ O)-, lithium (9CI) (CA INDEX NAME)

● Li+

RN 220836-39-5 HCAPLUS

CN Borate(1-), tetrakis(1,1,1,3,3,3-hexafluoro-2-propanolato- κ O)- (CA INDEX NAME)

IT 6919-80-8

RL: RCT (Reactant); RACT (Reactant or reagent) (reactant for preparation of thallium salt of polyfluoroalkoxide complex for use as salt-in-polymer electrolyte)

RN 6919-80-8 HCAPLUS

CN 2-Propanol, 1,1,1,3,3,3-hexafluoro-, 2,2',2''-triester with boric acid (H3BO3) (CA INDEX NAME)

ICS C07F003-00; C07F003-06; C07F005-00; C07F005-02; C07F005-06; C07F007-00; C07F009-00; C08G079-00; H01M002-16; H01M004-60; H01M004-62; H01M006-18 CC 78-7 (Inorganic Chemicals and Reactions) Section cross-reference(s): 29, 36, 37, 67, 75 197899-17-5P 220836-17-9P 220836-19-1P 220836-20-4P 220836-23-7P 220836-28-2P 220836-29-3P 220836-30-6P ΙT 220836-31-7P 220836-32-8P 220836-33-9P 220836-34-0P 220836-35-1P 220836-36-2P 220836-37-3P 220836-38-4P 220836-39-5P 220836-40-8P RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (preparation and use in preparation of salt-in-polymer electrolytes) 6919-80-8 27619-71-2 220836-24-8 ΤТ RL: RCT (Reactant); RACT (Reactant or reagent) (reactant for preparation of thallium salt of polyfluoroalkoxide complex for use as salt-in-polymer electrolyte) REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 6 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1988:115820 HCAPLUS Full-text

DOCUMENT NUMBER: 108:115820

ORIGINAL REFERENCE NO.: 108:18945a,18948a

TITLE: Materiau macromoleculaire a conduction ionique

INVENTOR(S): Muller, Daniel; Chabagno, Jean Michel

PATENT ASSIGNEE(S): Societe Nationale Elf Aquitaine (SNEA), Fr.

SOURCE: Fr. Demande, 8 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 2584868	A1	19870116	FR 1985-10737	198507
FR 2584868 EP 213985	B1 A1		EP 1986-401535	12 198607 09
EP 213985 R: AT, BE, CH, AT 46408	DE, GE	3, IT, LI,	LU, NL, SE AT 1986-401535	198607
JP 62064073	A	19870320	JP 1986-162925	198607 10
JP 07089496 US 4914161	B A		US 1986-884604	198607 11
CA 1308859	С	19921013	CA 1986-513621	198607

PRIORITY APPLN. INFO.:

FR 1985-10737

11

198507 12

FR 1985-18352

198512

11

Α

EP 1986-401535

198607 09

AB The ionically conductive material contains ≥ 1 ethoxylated salt dissolved in a macromol. material which has an amorphous polyether-type structure (ethylene oxide homopolymer or copolymer); the salt is RQM where M = alkali metal, especially Li, R = polyether-type structure, and Q = a functional group such as alcoholate, sulfonate, SO42-, PO43-, phosphonate, amide, and carboxylate. A Li-Mo oxide battery with an electrolyte of ethylene oxide-methylglycidyl ether solvating polymer and trietoxymethyl ether lithium trifluoroborate salt (20%) was discharged for 25 h to 1 V at 125 μ A/cm2 and 30°, vs. 8 h for a similar battery with copolymer-LiClO4 electrolyte.

IT 15841-16-4

RL: USES (Uses)

(electrolytes containing, with solvating ethylene oxide homopolymer or copolymer, in lithium batteries)

RN 15841-16-4 HCAPLUS

CN Borate(1-), tetramethoxy- (8CI, 9CI) (CA INDEX NAME)

IC ICM H01M004-60

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 76

IT 7791-03-9 14283-07-9 15841-16-4 19402-66-5

 $20246-63-3 \qquad 51323-41-2 \qquad 113151-63-6 \qquad 113151-68-1 \qquad 113316-37-3$

113316-38-4 113444-27-2

RL: USES (Uses)

(electrolytes containing, with solvating ethylene oxide homopolymer or copolymer, in lithium batteries)

L14 ANSWER 7 OF 7 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1965:469137 HCAPLUS Full-text

DOCUMENT NUMBER: 63:69137

ORIGINAL REFERENCE NO.: 63:12678g-h,12679a

TITLE: The reaction of aluminum electrodes with a

glycol borate electrolyte

AUTHOR(S): Alwitt, Robert S.; Hills, Reginald G. CORPORATE SOURCE: Sprague Elec. Co., North Adams, MA

SOURCE: Journal of the Electrochemical Society (1965),

112(10), 974-81

CODEN: JESOAN; ISSN: 0013-4651

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Foil electrodes used in Al electrolytic capacitors are attacked by glycol borate electrolytes at elevated temps. In the work described in this paper it appeared that the dissoln. rate was controlled by a reaction step involving OH- and possibly H2O, but dissoln. proceeded to a significant extent only because the dissolved Al was present as a soluble borate complex. The kinetics of electrode attack was studied by means of capacitance and weight change. Cathode foil (not anodized) dissolved at a constant rate and a film of amorphous, nonbarrier oxide was formed. Anodic Al2O3 initially dissolved at an approx. constant rate independent of oxide thickness, but at longer times the rate decreased and there was a dependence on thickness. Capacitance and weight loss data correlated as if uniform dissoln. were the sole process, despite the fact that electron micrographs showed that the oxide had been penetrated at flaws. The anodizing electrolyte was found to affect the kinetics of dissoln., with and without an applied potential.

IT 11098-42-3, Ethylene glycol, borate

(Al electrode corrosion by)

RN 11098-42-3 HCAPLUS

CN 1,2-Ethanediol, ester with boric acid (H3BO3) (9CI) (CA INDEX NAME)

CM 1

CRN 10043-35-3 CMF B H3 O3

ОН **I** НО**—** В**—** ОН

CM 2

CRN 107-21-1 CMF C2 H6 O2

HO - CH2 - CH2 - OH

CC 15 (Electrochemistry)

IT 11098-42-3, Ethylene glycol, borate (Al electrode corrosion by)

=> => d ibib abs hitstr hitind 116 1-3

L16 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:430508 HCAPLUS Full-text

DOCUMENT NUMBER: 141:9609

TITLE: Lithium secondary battery

INVENTOR(S): Okumura, Takefumi; Nishimura, Shin; Iwayasu,

Norio; Yokoyama, Shoichi; Yabe, Takeshi

PATENT ASSIGNEE(S): Japan

SOURCE: U.S. Pat. Appl. Publ., 14 pp., Cont.-in-part of

U.S. Ser. No. 623,497.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATEN:	I NO.	KIND	DATE	APPL	ICATION NO.		DATE
US 200	 040101759	A1	20040527	US 2	003-717646		200311
US 200	040101758	A1	20040527	US 2	003-623497		21 200307
PRIORITY A	PPLN. INFO.:			JP 2	002-337790	А	22 200211
					000 600407	7.0	21
				US 2	003-623497	A2	200307 22

The object of the present invention is to provide a lithium secondary battery of high output. According to the present invention, there is provided a lithium secondary battery having a pos. electrode and a neg. electrode which reversibly intercalate and deintercalate lithium and an electrolyte containing an ion conductive material and an electrolytic salt, where the electrolyte contains an electrolytic salt and a boron-containing compound represented by the following formula Z1(AO)mOB(O(AO)nZ2)O(AO)pZ3 where, B is boron atom, Z1, Z2, and Z3 are the organic groups having an acryloyl group or a methacryloyl group; AO represents an oxyalkylene group of C1-6 and comprises one, or two or more of the oxyalkylene groups; and m, n and p each represents an average degree of polymerization of the oxyalkylene group and are >0 and <4 provided that $m+n+p \ge 1$.

IT 693782-27-3P 693782-28-4P 693782-29-5P 693782-30-8F 693782-31-9P 693782-32-0P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(lithium secondary battery)

RN 693782-27-3 HCAPLUS

CN Boric acid (H3BO3), 4-[4-(4-methoxybutoxy)butoxy]butyl 4-[4-[(2-methyl-1-oxo-2-propenyl)oxy]butoxy]butyl ester (9CI) (CA INDEX NAME)

CM 1

CRN 693782-26-2 CMF C13 H28 O4

 $\mbox{MeO---}\mbox{(CH2)}\mbox{4---}\mbox{O----}\mbox{(CH2)}\mbox{4---}\mbox{O----}\mbox{(CH2)}\mbox{4---}\mbox{OH}$

CM 2

CRN 78972-17-5 CMF C12 H22 O4

HO— (CH2) 4—O— (CH2) 4—O—
$$\stackrel{\circ}{\mathbb{L}}$$
 — $\stackrel{\circ}{\mathbb{L}}$ — Me

CM 3

CRN 10043-35-3 CMF B H3 O3

RN 693782-28-4 HCAPLUS

CN Boric acid (H3BO3), 2-[2-(2-methoxyethoxy)ethoxy]ethyl 2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethoxy]ethyl ester (9CI) (CA INDEX NAME)

CM 1

CRN 10043-35-3 CMF B H3 O3

CM 2

CRN 2351-43-1 CMF C8 H14 O4

CM 3

CRN 112-35-6 CMF C7 H16 O4

RN 693782-29-5 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 4-(4-hydroxybutoxy) butyl ester, ester with boric acid (H3BO3) 4-[4-(4-methoxybutoxy) butoxy] butyl ester,

August 15, 2008 10/717,646 homopolymer (9CI) (CA INDEX NAME) CM CRN 693782-27-3 CMF C13 H28 O4 . x C12 H22 O4 . x B H3 O3 CM 2 CRN 693782-26-2 CMF C13 H28 O4 $\mbox{MeO---}\mbox{(CH2)}\mbox{4---}\mbox{O----}\mbox{(CH2)}\mbox{4---}\mbox{O----}\mbox{(CH2)}\mbox{4---}\mbox{OH}$ CM3 CRN 78972-17-5 CMF C12 H22 O4 HO— (CH₂)₄— O— (CH₂)₄— O— C— C—Me CM 4 CRN 10043-35-3 CMF B H3 O3 ОН RN 693782-30-8 HCAPLUS Boric acid (H3BO3), 3-[3-(3-methoxypropoxy)propoxy]propyl CN 3-[3-[(2-methyl-1-oxo-2-propenyl)oxy]propoxy]propyl ester (9CI) (CA)INDEX NAME) CM1 CRN 78972-16-4 CMF C10 H18 O4

CRN 13133-29-4 CMF C10 H22 O4

MeO-(CH2)3-O-(CH2)3-O-(CH2)3-OH

CM 3

CRN 10043-35-3 CMF B H3 O3

RN 693782-31-9 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 3-(3-hydroxypropoxy)propyl ester, ester with boric acid (H3BO3) 3-[3-(3-methoxypropoxy)propoxy]propyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-30-8

CMF C10 H22 O4 . \times C10 H18 O4 . \times B H3 O3

CM 2

CRN 78972-16-4 CMF C10 H18 O4

CM 3

CRN 13133-29-4 CMF C10 H22 O4

MeO-(CH2)3-O-(CH2)3-O-(CH2)3-OH

CM 4

CRN 10043-35-3 CMF B H3 O3 ОН НО**—**В**—** ОН

RN 693782-32-0 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(2-hydroxyethoxy)ethyl ester, ester with boric acid (H3BO3) 2-[2-(2-methoxyethoxy)ethoxy]ethyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-28-4

CMF C8 H14 O4 . x C7 H16 O4 . x B H3 O3

CM 2

CRN 10043-35-3 CMF B H3 O3

ОН НО**—**В**—** ОН

CM 3

CRN 2351-43-1 CMF C8 H14 O4

Н2С 0 Ме—С—С—О—СН2—СН2—О—СН2—СН2—ОН

CM 4

CRN 112-35-6 CMF C7 H16 O4

IC ICM H01M010-40

INCL 429306000; 429317000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

IT 693782-27-3P 693782-28-4P 693782-29-5P

693782-30-8P 693782-31-9P 693782-32-0P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(lithium secondary battery)

L16 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:430507 HCAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 141:9608

TITLE: Lithium secondary battery

INVENTOR(S): Okumura, Takefumi; Nishimura, Shin; Iwayasu,

Norio; Yokoyama, Shoichi; Yabe, Takeshi

PATENT ASSIGNEE(S): Japan

SOURCE: U.S. Pat. Appl. Publ., 14 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20040101758	A1	20040527	US 2003-623497	200307
FR 2847721	A1	20040528	FR 2003-13581	22 200311 20
FR 2847721 KR 2004045326	B1 A	20060804 20040601	KR 2003-82489	200311
CN 1503398	А	20040609	CN 2003-10118013	20 200311 20
US 20040101759	A1	20040527	US 2003-717646	200311
JP 2004186150	A	20040702	JP 2003-391808	200311
PRIORITY APPLN. INFO.:			JP 2002-337790	A 200211 21
			US 2003-623497	A2 200307 22

AB The object of the present invention is to provide a lithium secondary battery of high output. According to the present invention, there is provided a lithium secondary battery having a pos. electrode and a neg. electrode which reversibly intercalate and deintercalate lithium and an electrolyte containing an ion conductive material and an electrolytic salt, where the electrolyte contains an electrolytic salt and a boron-containing compound represented by the formula Z1(AO)mOB(O(AO)nZ2)O(AO)pZ3 or a polymer thereof (where B is a boron atom; Z1, Z2, and Z3 are organic groups having an acryloyl group or a methacryloyl group; AO represents an oxyalkylene group of C1-6 and comprises one or two or more of the oxyalkylene groups; and m, n and p each represent an average degree of polymerization of the oxyalkylene group and are 0-4).

IT 693782-27-3P 693782-28-4P 693782-29-5P 693782-30-8P 693782-31-9P 693782-32-0P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

August 15, 2008 10/717,646 (lithium secondary battery) RN 693782-27-3 HCAPLUS CN Boric acid (H3BO3), 4-[4-(4-methoxybutoxy)butoxy]butyl4-[4-[(2-methyl-1-oxo-2-propenyl)oxy]butoxy]butyl ester (9CI) (CA INDEX NAME) CM 1 CRN 693782-26-2 CMF C13 H28 O4 $\mbox{MeO---}$ ($\mbox{CH}\,\mbox{2}$) $\mbox{4}$ — \mbox{O} — ($\mbox{CH}\,\mbox{2}$) $\mbox{4}$ — \mbox{O} — CM CRN 78972-17-5 CMF C12 H22 O4 HO— (CH₂) 4— O— (CH₂) 4— O— C— C— Me CM 3 CRN 10043-35-3 CMF B H3 O3 ОН 693782-28-4 HCAPLUS RN CN Boric acid (H3BO3), 2-[2-(2-methoxyethoxy)ethoxy]ethyl 2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethoxy]ethyl ester (9CI) (CA INDEX NAME) CM 1 CRN 10043-35-3 CMF B H3 O3 ОН но**—**В**—** он

CRN 2351-43-1 CMF C8 H14 O4

CM 3

CRN 112-35-6 CMF C7 H16 O4

HO-CH2-CH2-O-CH2-CH2-O-CH2-OH2-OMe

RN 693782-29-5 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 4-(4-hydroxybutoxy)butyl ester, ester with boric acid (H3BO3) 4-[4-(4-methoxybutoxy)butoxy]butyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-27-3

CMF C13 H28 O4 . x C12 H22 O4 . x B H3 O3

CM 2

CRN 693782-26-2 CMF C13 H28 O4

 $\mbox{MeO---}$ ($\mbox{CH}\,\mbox{2}$) $\mbox{4}$ — \mbox{O} — ($\mbox{CH}\,\mbox{2}$) $\mbox{4}$ — \mbox{O} —

CM 3

CRN 78972-17-5 CMF C12 H22 O4

HO— (CH2) 4— O— (CH2) 4— O—
$$\stackrel{\circ}{\text{L}}$$
 — $\stackrel{\circ}{\text{L}}$ — Me

CM 4

CRN 10043-35-3 CMF B H3 O3

693782-30-8 HCAPLUS RN CN Boric acid (H3BO3), 3-[3-(3-methoxypropoxy)propoxy]propyl 3-[3-[(2-methyl-1-oxo-2-propenyl)oxy]propoxy]propyl ester (9CI) (CA INDEX NAME) CM1 CRN 78972-16-4 CMF C10 H18 O4 H2C 0 Me-C-C-O-(CH2)3-O-(CH2)3-OH CM 2 CRN 13133-29-4 CMF C10 H22 O4 $\mbox{MeO---}\mbox{(CH2)}\mbox{ 3----}\mbox{O----}\mbox{(CH2)}\mbox{ 3-----}\mbox{O----}\mbox{(CH2)}\mbox{ 3-----}\mbox{OH}$ CM CRN 10043-35-3 CMF B H3 O3 ОН 693782-31-9 HCAPLUS RN CN 2-Propenoic acid, 2-methyl-, 3-(3-hydroxypropoxy)propyl ester, ester with boric acid (H3BO3) 3-[3-(3-methoxypropoxy)propoxy]propyl ester, homopolymer (9CI) (CA INDEX NAME) CM 1 CRN 693782-30-8 CMF C10 H22 O4 . x C10 H18 O4 . x B H3 O3

> CRN 78972-16-4 CMF C10 H18 O4

2

CM

CM 3

CRN 13133-29-4 CMF C10 H22 O4

MeO-(CH2)3-O-(CH2)3-O-(CH2)3-OH

CM 4

CRN 10043-35-3 CMF B H3 O3

RN 693782-32-0 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(2-hydroxyethoxy) ethyl ester, ester with boric acid (H3BO3) 2-[2-(2-methoxyethoxy)] ethyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-28-4

CMF C8 H14 O4 . \times C7 H16 O4 . \times B H3 O3

CM 2

CRN 10043-35-3 CMF B H3 O3

CM 3

CRN 2351-43-1 CMF C8 H14 O4

$$\stackrel{\text{H2C}}{\underset{\text{Me}}{\overset{\circ}{=}}} \stackrel{\circ}{\underset{\text{C}}{\overset{\circ}{=}}} \circ - \circ - \circ + 2 -$$

CM 4

CRN 112-35-6 CMF C7 H16 O4

HO-CH2-CH2-CH2-CH2-CH2-O-CH2-OMe

IC ICM H01M010-40

INCL 429306000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

IT 693782-27-3P 693782-28-4P 693782-29-5P 693782-30-8P 693782-31-9P 693782-32-0P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(lithium secondary battery)

L16 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:427714 HCAPLUS Full-text

DOCUMENT NUMBER: 141:9606

TITLE: Boron-containing compound, ion-conductive

polymer and polyelectrolyte for electrochemical

devices

INVENTOR(S): Okumura, Takefumi; Nishimura, Shin; Iwayasu,

Norio; Yokoyama, Shoichi; Yabe, Takeshi Hitachi, Ltd., Japan; NOF Corporation

SOURCE: Eur. Pat. Appl., 25 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT ASSIGNEE(S):

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1422781	A1	20040526	EP 2003-26140	200311
·			B, GR, IT, LI, LU, NL, K, CY, AL, TR, BG, CZ,	
TW 244787	В	20051201	TW 2003-92131678	200311
JP 2004182982	A	20040702	JP 2003-389159	12
KD 200404E222	73	20040601	VD 2002 02461	200311 19
KR 2004045322	A	20040601	KR 2003-82461	200311 20

August 13, 2000		10//1/,040		
CN 1502644	A	20040609	CN 2003-10118012	
				200311 20
US 20040147697	A1	20040729	US 2003-717645	200311
				21
US 7230057	В2	20070612	TD 0000 000000	_
PRIORITY APPLN. INFO.:			JP 2002-337789	A 200211
				21
			EP 2003-13841	A
				200306
				18

OTHER SOURCE(S): MARPAT 141:9606

An object of the present invention is to provide a boron-containing compound capable of forming an ion-conductive polyelectrolyte having high ionconductive properties, and a polymer of the compound According to the present invention, there are provided a polymerizable boron-containing compound of formula Z1(AO)pOB(O(AO)mZ2)O(AO)nZ3 [where B is boron atom; Z1, Z2, and Z3 are organic groups having an acryloyl or methacryloyl group; AOs are independently an oxyalkylene group of C1-6 and are of one or more kinds; and m, n and p are independently an average number of moles of the oxyalkylene group(s) added of <4 and >0, provided that $m+n+p \ge 1$] a polymer thereof, a polymer of a compound of formula Z4(AO)p1OB(O(AO)m1Z5)O(AO)n1Z6 and a compound of formula R1(AO)p2OB(O(AO)m2R2)O(AO)n2R3 [where Z4, Z5, and Z6 is an organic group having an acryloyl or methacryloyl group; R1, R2 and R3 are independently a hydrocarbon group of C1-10; AOs are independently an oxyalkylene group of C1-6 and are of one or more kinds; and m1, n1, p1, m2, n2, and p2 are independently an average no, of moles of the oxyalkylene group(s) added of <4 and >0, provided that each of the sum of m1+n1+p1 and the sum of $m2+n2+p3 \ge 1$ and a polyelectrolyte for electrochem. device comprising either of these polymers and at least one electrolyte salt:.

IT 693782-27-3P 693782-28-4P 693782-29-5P 693782-30-8P 693782-31-9P 693782-32-0P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochem. devices)

RN 693782-27-3 HCAPLUS

CN Boric acid (H3BO3), 4-[4-(4-methoxybutoxy)butoxy]butyl 4-[4-[(2-methyl-1-oxo-2-propenyl)oxy]butoxy]butyl ester (9CI) (CA INDEX NAME)

CM 1

CRN 693782-26-2 CMF C13 H28 O4

MeO - (CH2)4 - O - (CH2)4 - O - (CH2)4 - OH

CM 2

CRN 78972-17-5

CMF C12 H22 O4

HO— (CH₂) 4—O— (CH₂) 4—O—
$$\stackrel{\circ}{\text{CH}_2}$$
 $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$ $\stackrel{\circ}{\text{L}}$

CM 3

CRN 10043-35-3 CMF B H3 O3

RN 693782-28-4 HCAPLUS
CN Boric acid (H3BO3), 2-[2-(2-methoxyethoxy)ethoxy]ethyl
2-[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethoxy]ethyl ester (9CI) (CA
INDEX NAME)

CM 1

CRN 10043-35-3 CMF B H3 O3

CM 2

CRN 2351-43-1 CMF C8 H14 O4

CM 3

CRN 112-35-6 CMF C7 H16 O4

RN 693782-29-5 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 4-(4-hydroxybutoxy)butyl ester, ester with boric acid (H3BO3) 4-[4-(4-methoxybutoxy)butoxy]butyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-27-3

CMF C13 H28 O4 . x C12 H22 O4 . x B H3 O3

CM 2

CRN 693782-26-2 CMF C13 H28 O4

 $\mbox{MeO---}$ ($\mbox{CH2}$) 4 $-\!\!\!\!-$ O $-\!\!\!\!-$ ($\mbox{CH2}$) 4 $-\!\!\!\!-$ O $\!\!\!\!-$

CM 3

CRN 78972-17-5 CMF C12 H22 O4

CM 4

CRN 10043-35-3 CMF B H3 O3

RN 693782-30-8 HCAPLUS

CN Boric acid (H3BO3), 3-[3-(3-methoxypropoxy)propoxy]propyl 3-[3-[(2-methyl-1-oxo-2-propenyl)oxy]propoxy]propyl ester (9CI) (CA INDEX NAME)

CM 1

CRN 78972-16-4 CMF C10 H18 O4

CM 2

CRN 13133-29-4 CMF C10 H22 O4

 $\mbox{MeO--}\mbox{(CH2)}\mbox{3--}\mbox{O--}\mbox{(CH2)}\mbox{3--}\mbox{O--}\mbox{(CH2)}\mbox{3--}\mbox{OH}$

CM 3

CRN 10043-35-3 CMF B H3 O3

ОН НО**—**В**—** ОН

RN 693782-31-9 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 3-(3-hydroxypropoxy)propyl ester, ester with boric acid (H3BO3) 3-[3-(3-methoxypropoxy)propoxy]propyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-30-8

CMF C10 H22 O4 . \times C10 H18 O4 . \times B H3 O3

CM 2

CRN 78972-16-4 CMF C10 H18 O4

CM 3

CRN 13133-29-4 CMF C10 H22 O4

MeO - (CH2)3 - O - (CH2)3 - O - (CH2)3 - OH

CM 4

CRN 10043-35-3 CMF B H3 O3

RN 693782-32-0 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(2-hydroxyethoxy)ethyl ester, ester with boric acid (H3BO3) 2-[2-(2-methoxyethoxy)ethoxy]ethyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 693782-28-4

CMF C8 H14 O4 . x C7 H16 O4 . x B H3 O3

CM 2

CRN 10043-35-3 CMF B H3 O3

CM 3

CRN 2351-43-1 CMF C8 H14 O4

CM 4

CRN 112-35-6 CMF C7 H16 O4

HO-CH2-CH2-OH2-OH2-OH2-OH2-OH2-OH2-OH2

IC ICM H01M010-40

ICS H01B001-12; C07F005-04; C08G065-00; C08L071-00

- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 76
- IT 693782-27-3P 693782-28-4P 693782-29-5P 693782-30-8P 693782-31-9P 693782-32-0P

August 15, 2008 10/717,646 30

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochem. devices)

=>