α) Τα σημεία Α και Β αντιστοιχούν στις λύσεις της εξίσωσης $\eta \mu x = \sigma v v x$ για $x \in [0,2\pi]$.

Γνωρίζουμε ότι $\eta \mu \frac{\pi}{4} = \sigma v v \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, ενώ $\eta \mu \frac{5\pi}{4} = \eta \mu \left(\pi + \frac{\pi}{4}\right) = -\eta \mu \frac{\pi}{4} = -\frac{\sqrt{2}}{2}$ και $\sigma v v \frac{5\pi}{4} = \sigma v v \left(\pi + \frac{\pi}{4}\right) = -\sigma v v \frac{\pi}{4} = -\frac{\sqrt{2}}{2}$, έχουμε ότι $A\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$ και $B\left(\frac{5\pi}{4}, -\frac{\sqrt{2}}{2}\right)$.

β) Η συνάρτηση $g(x) = \sigma v v x$ είναι γνησίως φθίνουσα στο διάστημα $\left[\frac{\pi}{2}, \pi\right]$ και η $f(x) = \eta \mu x$ είναι γνησίως αύξουσα στο διάστημα $\left[\frac{3\pi}{2}, 2\pi\right]$.

γ)

- i. Παρατηρούμε ότι $\frac{\pi}{2} < \frac{2\pi}{3} = \frac{4\pi}{6} < \frac{5\pi}{6} < \pi$ και αφού η $g(x) = \sigma v v x$ είναι γνησίως φθίνουσα στο διάστημα $\left[\frac{\pi}{2}, \pi\right]$, άρα $\sigma v v \frac{2\pi}{3} > \sigma v v \frac{5\pi}{6}$.
- ii. Ανάλογα, είναι $\frac{3\pi}{2} < \frac{5\pi}{3} = \frac{10\pi}{6} < \frac{11\pi}{6} < 2\pi$ και αφού η $f(x) = \eta \mu x$ είναι γνησίως αύξουσα στο διάστημα $\left[\frac{3\pi}{2}, 2\pi\right]$, άρα $\eta \mu \frac{5\pi}{3} < \eta \mu \frac{11\pi}{6}$.