!gdown https://d2beiqkhq929f0.cloudfront.net/public\_assets/assets/000/001/125/original/aerofit\_treadmill.csv?1639992749

Downloading...
From: https://d2beiqkhq929f0.cloudfront.net/public\_assets/assets/000/001/125/original/aerofit\_treadmill.csv?1639992749 To: /content/aerofit\_treadmill.csv?1639992749

100% 7.28k/7.28k [00:00<00:00, 16.1MB/s]

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.read\_csv('aerofit\_treadmill.csv')

df.head()

| <del>_</del> |   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |     |
|--------------|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|-----|
|              | 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | 11. |
|              | 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |     |
|              | 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |     |
|              | 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |     |
|              | 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |     |

Next steps: ( Generate code with df

View recommended plots

New interactive sheet

df.shape

**→** (180, 9)

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 180 entries, 0 to 179

Data columns (total 9 columns):

| # | Column        | Non-Null Count | Dtype  |
|---|---------------|----------------|--------|
|   |               |                |        |
| 0 | Product       | 180 non-null   | object |
| 1 | Age           | 180 non-null   | int64  |
| 2 | Gender        | 180 non-null   | object |
| 3 | Education     | 180 non-null   | int64  |
| 4 | MaritalStatus | 180 non-null   | object |
| 5 | Usage         | 180 non-null   | int64  |
| 6 | Fitness       | 180 non-null   | int64  |
| 7 | Income        | 180 non-null   | int64  |
| 8 | Miles         | 180 non-null   | int64  |

dtypes: int64(6), object(3) memory usage: 12.8+ KB

df.describe(include="all")

| <del></del> |         |       |            |        |            |               |            |            |               |            | _   |
|-------------|---------|-------|------------|--------|------------|---------------|------------|------------|---------------|------------|-----|
| <u> </u>    | Product |       | Age        | Gender | Education  | MaritalStatus | Usage      | Fitness    | Income        | Miles      |     |
|             | count   | 180   | 180.000000 | 180    | 180.000000 | 180           | 180.000000 | 180.000000 | 180.000000    | 180.000000 | ıl. |
|             | unique  | 3     | NaN        | 2      | NaN        | 2             | NaN        | NaN        | NaN           | NaN        |     |
|             | top     | KP281 | NaN        | Male   | NaN        | Partnered     | NaN        | NaN        | NaN           | NaN        |     |
|             | freq    | 80    | NaN        | 104    | NaN        | 107           | NaN        | NaN        | NaN           | NaN        |     |
|             | mean    | NaN   | 28.788889  | NaN    | 15.572222  | NaN           | 3.455556   | 3.311111   | 53719.577778  | 103.194444 |     |
|             | std     | NaN   | 6.943498   | NaN    | 1.617055   | NaN           | 1.084797   | 0.958869   | 16506.684226  | 51.863605  |     |
|             | min     | NaN   | 18.000000  | NaN    | 12.000000  | NaN           | 2.000000   | 1.000000   | 29562.000000  | 21.000000  |     |
|             | 25%     | NaN   | 24.000000  | NaN    | 14.000000  | NaN           | 3.000000   | 3.000000   | 44058.750000  | 66.000000  |     |
|             | 50%     | NaN   | 26.000000  | NaN    | 16.000000  | NaN           | 3.000000   | 3.000000   | 50596.500000  | 94.000000  |     |
|             | 75%     | NaN   | 33.000000  | NaN    | 16.000000  | NaN           | 4.000000   | 4.000000   | 58668.000000  | 114.750000 |     |
|             | max     | NaN   | 50.000000  | NaN    | 21.000000  | NaN           | 7.000000   | 5.000000   | 104581.000000 | 360.000000 |     |

df.dtypes



dtype: object

df.describe(include="object").T



df["Gender"].value\_counts()



dtype: int64

df["Product"].value\_counts()



dtype: int64

df["MaritalStatus"].value\_counts()



df.nunique()



dtype: int64

```
df["Product"].unique()
```

→ array(['KP281', 'KP481', 'KP781'], dtype=object)

df["Gender"].unique()

→ array(['Male', 'Female'], dtype=object)

df["MaritalStatus"].unique()

⇒ array(['Single', 'Partnered'], dtype=object)

sns.distplot(df['Age'])

/tmp/ipython-input-3255828239.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see <a href="https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751">https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751</a>

sns.distplot(df['Age'])
<Axes: xlabel='Age', ylabel='Density'>



sns.distplot(df['Income'])

/tmp/ipython-input-1426022472.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Income']) <Axes: xlabel='Income', ylabel='Density'>



sns.histplot(df['Education'], kde=True)



Axes: xlabel='Education', ylabel='Count'>



sns.histplot(df['Fitness'], kde=True)





sns.histplot(x="Income",kde=True,data=df,hue="Gender")





sns.histplot(df['Usage'], kde=True)

</pre



```
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
sns.countplot(data=df, x='Product', ax=axs[0], palette="coolwarm")
sns.countplot(data=df, x='Gender', ax=axs[1], palette="Set1")
sns.countplot(data=df, x='MaritalStatus', ax=axs[2], palette="Set2")
axs[0].set_title('Product-Counts')
axs[1].set_title('Gender-Counts')
axs[2].set_title('MaritalStatus-Counts')
plt.tight_layout()
plt.show()
```

/tmp/ipython-input-2520653886.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.countplot(data=df, x='Product', ax=axs[0], palette="coolwarm") /tmp/ipython-input-2520653886.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.countplot(data=df, x='Gender', ax=axs[1], palette="Set1") /tmp/ipython-input-2520653886.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend



## Observations:

- 1. KP281 is the most frequent product.
- 2. There are more Males in the data than Females.
- 3. More Partnered persons are there in the data.

sns.countplot(data=df, x="MaritalStatus", hue="Product")



✓ 1. KP281 is the best pick for both Partnered and Singles.

sns.countplot(data=df, y='Usage', hue="Product" )



sns.histplot(data=df, x='Miles', hue="Product",bins=7)

```
→ <Axes: xlabel='Miles', ylabel='Count'>
```



fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(15, 10))
fig.subplots\_adjust(top=1.1)
sns.boxplot(data=df, x="Age", orient="h", ax=axis[0,0])

```
sns.boxplot(data=df, x="Age", orient="h", ax=axis[0,0])
sns.boxplot(data=df, x="Education", orient="h", ax=axis[0,1])
sns.boxplot(data=df, x="Usage", orient="h", ax=axis[1,0])
sns.boxplot(data=df, x="Fitness", orient="h", ax=axis[1,1])
sns.boxplot(data=df, x="Income", orient="h", ax=axis[2,0])
sns.boxplot(data=df, x="Miles", orient="h", ax=axis[2,1])
plt.show()
```



# ✓ 1. Even from the boxplot it is quit clear that:

Age, Education and Usage are having very few outliers while Income and Miles are having more outliers.

sns.boxplot(data=df, y="Age", x="Gender", palette='ch:s=.25,rot=-.25', legend=False)

/tmp/ipython-input-3764614881.py:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.boxplot(data=df, y="Age", x="Gender", palette='ch:s=.25,rot=-.25', legend=False) <Axes: xlabel='Gender', ylabel='Age'>



sns.violinplot(data=df, x="Usage", y="Miles", palette=["lightblue","pink"])

/tmp/ipython-input-3477126622.py:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend

 $\verb|sns.violinplot(data=df, x="Usage", y="Miles", palette=["lightblue","pink"]||$ 

/tmp/ipython-input-3477126622.py:1: UserWarning:

The palette list has fewer values (2) than needed (6) and will cycle, which may produce an uninterpretable plot. sns.violinplot(data=df, x="Usage", y="Miles", palette=["lightblue","pink"])

<Axes: xlabel='Usage', ylabel='Miles'>



sns.boxplot(data=df, x="MaritalStatus", y="Education", palette=["lightblue","brown"])

```
/tmp/ipython-input-2656843954.py:1: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend sns.boxplot(data=df, x="MaritalStatus", y="Education", palette=["lightblue","brown"]) 
<Axes: xlabel='MaritalStatus', ylabel='Education'>



```
sns.set_style(style="whitegrid")
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(15, 10))
sns.countplot(data=df, x='Product',hue="Gender", ax=axs[0], palette="coolwarm")
sns.countplot(data=df, x='Product',hue="MaritalStatus", ax=axs[1], palette="Set1")
axs[0].set_title("Product vs Gender")
axs[1].set_title("Product vs MaritalStatus")
plt.show()
```



# Observations

## Product vs Gender

Equal number if males and females have purchased KP281 product and almost same for the product KP481. Most of the males have purchased the product KP781.

### Product vs MaritalStatus:

Customers who is Partnered, is more likely to purchase the product.

sns.boxplot(data=df, x="Product", y="Income", hue="Gender", palette="Set2")





pd.crosstab(index=df.Product,columns=df.Gender,margins=True,normalize='index')

| <b>→</b> | Gender  | Female   | Male     |     |
|----------|---------|----------|----------|-----|
|          | Product |          |          | ıl. |
|          | KP281   | 0.500000 | 0.500000 |     |
|          | KP481   | 0.483333 | 0.516667 |     |
|          | KP781   | 0.175000 | 0.825000 |     |
|          | All     | 0.422222 | 0.577778 |     |

pd.crosstab(index=df.Product,columns=df.MaritalStatus,margins=True,normalize='index')



sns.boxplot(data=df, x="MaritalStatus", y="Miles", hue="Fitness", palette="coolwarm")

```
sns.boxplot(data=df, y="Education", x="Product", hue="Gender", palette="coolwarm")
→ <Axes: xlabel='Product', ylabel='Education'>
                                                                 0
               Gender
                 Male
        20
                Female
        18
      Education
        16
        14
        12
                   KP281
                                       KP481
                                                           KP781
                                       Product
attrs = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
sns.set_style("white")
fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(15, 10))
fig.subplots_adjust(top=1.2)
count = 0
for i in range(2):
 for j in range(3):
   sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm")
   count += 1
plt.show()
/tmp/ipython-input-2518129669.py:8: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege  $\verb|sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm"|)|$ /tmp/ipython-input-2518129669.py:8: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm") /tmp/ipython-input-2518129669.py:8: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm") /tmp/ipython-input-2518129669.py:8: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm") /tmp/ipython-input-2518129669.py:8: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm") /tmp/ipython-input-2518129669.py:8: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `lege sns.boxplot(data=df, x="Product", y=attrs[count], ax=axs[i,j], palette="coolwarm") 50 0 00 20 45