Wikipedia Data Analysis using Hadoop

Mentor: Dr. James Abello

Presenters: Ashish Jindal, Yikun Xian and Sanjivi Muttena

Outline

- Project Goals
- Project description
- Infrastructure Overview
- Findings and Results
- Stumbling blocks
- References
- Ideas for Extension

Project Goals

- Set Up an infrastructure for hadoop based data-analytics.
- Implement a trend estimation algorithm for Wikipedia data.
- Calculate page ranks for various Wikipedia Pages.
- Create an interactive web app to visualize the calculated data.

Project Description

estimation and page rank calculation and

test them on local system using a small

subset of data.

Set up a map-reduce Setup AWS based Create a Web application that fetches development environment on infrastructure (EMR and S3) data from MongoDB and visualizes local system. to analyze bigger dataset. result using a JS library (Highcharts). Step 2 Step 3 Step 4 Step 5 Step 1 Write map-reduce jobs for trend Dump the output from Amazon

FMR to an interactive database

system (MongoDB).

The Team

Ashish Jindal

- 1. Setup Hadoop infrastructure using EMR and S3.
- 2. Implemented Page-Rank calculation using map-reduce paradigm.
- Implemented a simple baseline algorithm for calculating trend factor.

Yikun Xian

- Created the web-application using Spring MVC.
- Implemented visualization of data using JS library (Highcharts).
- 3. Implemented data cleaning jobs for Wikipedia data using map-reduce.

Sanjivi Muttena

- Implemented aggregation map-reduce jobs for accumulating hourly Wikipedia data.
- Setup Interactive database system (MongoDB) on an Amazon EC2 server.
- Setup database interactivity in web-application using Spring Data API.

Hadoop

What is it? Why do we need it?

The Apache Hadoop is a framework for the distributed processing of large data sets across clusters of computers using simple programming models.

- Commodity inexpensive hardware.
- Efficient and simple fault tolerant mechanism .
- Scalability.
- Accepts all data formats. No predefined schema.

Infrastructure

Hadoop HDFS over EMR (Elastic Map reduce)

Dataset

What is page rank?

PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is.

$$PageRank of site = \sum \frac{PageRank of inbound link}{Number of links on that page}$$

OR

$$PR(u) = (1 - d) + d \times \sum \frac{PR(v)}{N(v)}$$

The underlying assumption is that more important websites are likely to receive more links from other websites

Calculation

PR = (1 - DF) + DF * (Total PR contribution from inbound links)DF = 0.85 in our application

Trend Factor Calculation

Wikipedia Page View Statistics

Web App Architecture

Web App Technology

Front-End

Back-End

Findings & Results

- Page View Count
- Page Trending
- Input/Output
- Page Rank Index
- Interesting Findings

Layout

Wikipedia Page Count Statistics

Add ";" to the end of keyword for accurate search!

Search

Input

Wikipedia Page Count Statistics

Page View Count

Page View Count

Overview

Wikipedia Page Count Statistics

x 2000 x 2001 x 2002 x 2003 Search

Add ";" to the end of keyword for accurate search!

Search

Add ";" to the end of keyword for accurate search!

Countries

US States

Companies

Various Majors

Various CS Areas

Years

Stumbling Blocks

- Setting up hadoop development environment and infrastructure for processing data.
- Integration of Elastic Map Reduce with MongoDB instance on EC2.
- Visual Chart Asynchronous Refresh.
- Implementing fast autocompletion in Wiki page search box in the Web-app.

Ideas for extension

- Find weekly popular/trending topics based on calculated trend factor.
- Use page link data to find topic relations like events in Germany in year 2000 based on outbound links on Wikipedia page for year 2000.
- Correlate page view count on Wikipedia pages for movies with the movie reviews.

Acknowledgment

We would like to thank our supervisor, Dr. James Abello, for assisting us with technology, algorithm and constructive suggestions which made our project promising and competitive.

References

- [1] L. Page, S. Brin, R. Motwani, and T. Winograd, "The pagerank citation ranking: bringing order to the web." 1999.
- [2] S. Brin and L. Page, "Reprint of: The anatomy of a large-scale hypertextual web search engine," *Computer networks*, vol. 56, no. 18, pp. 3825–3833, 2012.
- [3] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, "Amazon s3 for science grids: a viable solution?" in *Proceedings of the 2008 international workshop on Data-aware distributed computing*. ACM, 2008, pp. 55–64.
- [4] J. Dean and S. Ghemawat, "Mapreduce: simplified data processing on large clusters," *Communications of the ACM*, vol. 51, no. 1, pp. 107–113, 2008.
- [5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The hadoop distributed file system," in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.
- [6] T. White, Hadoop: The definitive guide. "O'Reilly Media, Inc.", 2012.
- [7] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to information retrieval. Cambridge university press Cambridge, 2008, vol. 1.
- [8] R. P. Adams and D. J. MacKay, "Bayesian online changepoint detection," arXiv preprint arXiv:0710.3742, 2007.
- [9] E. Keogh, S. Chu, D. Hart, and M. Pazzani, "An online algorithm for segmenting time series," in *Data Mining*, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE, 2001, pp. 289–296.

Any Questions?