BRAC UNIVERSITY

CSE331: Automata and Computability

- 1. Draw the state diagram of a TM that decides the following languages.
 - a. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains equal numbers of 0s and 1s}\}$, where $\Sigma = \{0, 1\}$
 - b. $L(M) \rightarrow \{0^{n}1^{n}2^{n} | n \ge 0\}$, where $\Sigma = \{0, 1, 2\}$
 - c. $L(M) \rightarrow \{0^2 | n \ge 0\}$, where $\Sigma = \{0\}$
 - d. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ is a palindrome}\}, \text{ where } \Sigma = \{0, 1\}$
- 2. Prove that the following languages are decidable.
 - a. $A_{DFA} \rightarrow \{\langle N, w \rangle \mid N \text{ is a NFA that accepts input string } w\}$
 - b. $A_{REX} \rightarrow \{\langle R, w \rangle \mid R \text{ is a regular expression that generates the string } w\}$