AGUSTINA MITA A. 240 60121130058 UTS DAK B.

1. 2. Komponen komputer

- () CPU berfungsi untuk mengontrol operasi dari komputer serta melakukan fungsi untuk memproses data. CPU disebut juga prosesor
- 2) Main memory berfungsi untuk menyimpan data ketika melakukan pemrosesan data (RAM)
- 3) 10 berfungsi untuk memindahkan dara antara komputer dengan perangkat eksternal
- 4) Sistem interconnection/bus berfungsi untuk menghubungkan 3 komponen yaitu cpu, main memory, dan IO
- b. 0001 = load AC from memory

0010 : Store AC to memory

0101 : add to AC from memory

. Fetch cycle 1 dan excecute cycle 1.

PC dimulai dari 388

IR > 1700 (1 = load AC from memory)

alamat > 700, sehingga Tsi 0006 di AC

· Fetch cycle 2 dan excecute cycle 2

PC - 389

IR > 5701 (5 = add to AC from memory)

AC sebelumnya adalah 6, sehingga 6+5 = 11

· Fetch cycle 3 dan execute cycle 3

PC > 390

IR > 2701

alamat>701, sehingga AC > 0003.

2. a. Instruction cycle diagram (Interrupt)

Start: state awal untuk molakukan Instruction cycle

Fetch next instruction: penjemputan Instrukti selanjutnya, register yang

terlibat PC, IR, AC

Excecute instruction = mengerserusi intruksi, register : PC, IR, AC

Check for interrupt = memeriksa apabah ada interrupt dalam eksekusi tersebut dan memberikan solubi.

- b. Bit = 0001 0010 0011 0100 0101 0110
 - · Direct mapping

word = 10 32

tag = 0001 0010 → 12

line : 00 110100010101 > 0015

Format

12 0015 2

tag line word

· Assosiative mapping

word = $10 \rightarrow 2$

tag ; 00 0100 1000 1101 0001 0101 → 48015

Format

48D15 2 +ag word

Set assosiative mapping

ward = 10 -2

set = 0 1101 0001 0101 → D15

tag = 0010 0100 -> 24

Format

24 D15 2 tag set word

-	
,	2. Perbedaan DRAM dan SRAM
	DRAM: 1. dituat dari cell yang menyimpan data sebagai charge 1 muatan
	kapasitor
	2. Ada tidarnya charge diantikan sebagai biner 1 atau 0
	3. Kapasitor dapat menyimpan nilai muotan apapun dalam suatu range.
	SRAM: 1. Wilai biner Sisimpan dengan tonfigurasi gerbang logila the tlop
	tradisional
	2. Menyimpan data seluma ai beri suplai daya
	3. Address line mengontrol 2 transistor
	Penggunaan yang tepat untuk PRAM dan SPAM
	- DRAM lebih padat dan lebih murah dari SRAM
	- DRAM dipilih untur tebutuhan memory yang lebih besar
	- SRAM lebih cepat dari DRAM, SRAM digunatan untuk cache me mory da
	DRAM digunakan untuk main memory
	6. Data: 11001101
	Parity bit yang dibaca : 1101
	2. Parity bit yang disimpan
	C1 : 10001001=1
	C2 = 1 1 1 1 0 0 1 1 30 01 = 0
	C9 = 0@1@1 €1 = 1
	C8 = O⊕O⊕I⊕I = O
	b. XOR parity but young disimpoun dan dibaca
	C8 C4 C2 C1
	1 1 0 1
	⊕ D 1 D 1
	1 0 0 0 -> 8
	c. Syndrom word menghasi Ikan nilai 8
	d. Terjadi error poda bit posisi ko-8, atau pada check bit: 8
	e. Maka data yang dibaca adalah 01001101
4.	a. 3 teknis untuk operosi IO
-,	1) Programmed 1/0
	· tekniknya yaitu prosesor harus memeriksa I/O module secara
	berkala hingga di temukan operasi telah selesal dan membutuhkan wakt
	lama
	.) Prosesor membaca perintah ID module
	1) 5/0 membaca status dari CPU
	·) The ditemutan error, CPU terus mengecek status secara berbala
	·) membaca dan menulis word

- ·) Jika telah selesai, berlanjut ke instruksi selanjutnya
- 2) Interrupt driven I/O
 - ·) Processor mengeluarkan perintah 1/0
 - ·) Langsung mengeksekusi Intruksi lain dan di Interupsi oleh I/O module ketika Intruksi yang terakhir telah di eksekusi
 - o) Prosesor tidar perlu memeriksa I/O module secara berkala
 - o) IO module melakukan interupsi tetika siap
- 3) DMA
 - .) DMA memunokinkon perangkat I/O untuk mengirim atau menerimo data se cara langsung te atau dari memory utama, melalui CPU untuk mempercepat operati memori
- b. Memori management yang mampu memberikan pitur virtual memory ke pengguna adalah paging. Hal tersebut di karenakan paging memisahtan memori menjadi small chunks-page berukuran sama dan mengalokasikan page prame nomor yang diperlukan te sebuah proses. Fitur virtual memory tidak memerlukan semua page dari suatu proses dalam memori dan menggunakan page sesuai kebutuhan