Advanced Machine Learning

Probability

	Y =	g(X)	Ω
$y_{13} = g(x_{13})$	$y_{14} = g(x_{14})$	$y_{15} = g(x_{15})$	$y_{16} = g(x_{16})$
$y_9 = g(x_9)$	$y_{10} = g(x_{10})$	$y_{11} = g(x_{11})$	$y_{12} = g(x_{12})$
$y_5 = g(x_5)$	$y_6 = g(x_6)$	$y_7 = g(x_7)$	$y_8 = g(x_8)$
$y_1 = g(x_1)$	$y_2 = g(x_2)$	$y_3 = g(x_3)$	$y_4 = g(x_4)$

Probability, Random Variables, Expectations

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Modelling Uncertainty

- To model a world with uncertainty we consider some set of elementary events or outcomes ΩII
- For the outcome of rolling a dice $\Omega = \{1,2,3,4,5,6\}$
- The elementary events ω_i are mutually exclusive $\omega_i \cap \omega_j = \emptyset$ and exhaustive $\bigcup_i \omega_i = \Omega$
- ullet We consider **events** $\mathcal{E} = \bigcup_{i \in \mathcal{I}} \omega_i \mathbf{I}$
- E.g. For a dice throw $\mathcal{E} = \{2,4,6\}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Random Variables

- We can define a random variable, X, by partition the set of outcomes Ω and assign a numbers to each partition
- E.g. for a dice

$$X = \begin{cases} 0 & \text{if } \omega \in \{1,3,5\} \\ 1 & \text{if } \omega \in \{2,4,6\} \end{cases}$$

• $\mathbb{P}(X = x_i) = \mathbb{P}(\mathcal{E}_i)$ where \mathcal{E}_i is the event that corresponding to the partition with value x_i !

 ω_i

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Function of Random Variables

 \bullet Any function, Y=g(X), of a random variable, X, is a random variable

	Y =	g(X)	Ω
$y_{13} = g(x_{13})$	$y_{14} = g(x_{14})$	$y_{15} = g(x_{15})$	$y_{16} = g(x_{16})$
$y_9 = xg(x_9)$	$y_{10} = g(x_{10})$	$y_{11} = g(x_{11})$	$y_{12} = p(x_{12})$
$y_5 = xg(x_5)$	$y_6 = x g(x_6)$	$y_7 = x \mathbf{g}(x_7)$	$y_8 = xg(x_8)$
$y_1 = xg(x_1)$	$y_2 = x g(x_2)$	$y_3 = xg(x_3)$	$y_4 = xg(x_4)$

- 1. Random Variables
- 2. Expectations
- 3. Calculus of Probabilities

				9
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Probabilities

- We attribute a **probability**, $\mathbb{P}(\mathcal{E})$, to an event, \mathcal{E} , with the requirements
 - $\star 0 \leq \mathbb{P}(\mathcal{E}) \leq 1$
 - $\star \ \mathbb{P}(\mathcal{E}) + \mathbb{P}(\neg \mathcal{E}) = 1$ where $\neg \mathcal{E} = \Omega \setminus \mathcal{E}$
- \mathcal{E} $\neg \mathcal{E}$
- In some cases we can interpret $\mathbb{P}(\mathcal{E})$ as the expected frequency of occurrence of a repetitive trial
- \bullet But $\mathbb{P}(\mathsf{Pass}\ \mathsf{COMP6208}\ \mathsf{exam})$ is something you do once
- Can think of probability as an informed belief that something might happen!
- When our knowledge changes the probability changes

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

What's In A Name

- We denote random variables with capital letters, X, Y, Z, etc.
- The symbol denote an object that can take one of a number of different values, but which one is still to be decided by chance!
- \bullet When we write $\mathbb{P}(X)$ we can view this as short-hand for

$$(\mathbb{P}(X=x) \mid x \in \mathcal{X}) = (\mathbb{P}(X=x_1), \mathbb{P}(X=x_2), \dots \mathbb{P}(X=x_n))$$

where ${\mathcal X}$ is the set of possible values that X can take

 We treat random variables very differently to normal numbers (scalars) when we consider taking expectations

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Continuous Spaces

- If the space of elementary events is continuous (e.g. for darts ${\pmb x}=(x,y)$) then ${\mathbb P}({\pmb X}={\pmb x})=0$
- ullet But if we consider a region, $\mathcal R$, then we can assign a probability to landing in the region $\mathbb P(X\in\mathcal R)$
- It is useful to work with **probability densities function** (PDF)

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\mathbb{P}(\boldsymbol{X} \in \mathcal{B}(\boldsymbol{x}, \epsilon))}{|\mathcal{B}(\boldsymbol{x}, \epsilon)|}$$

where $\mathcal{B}(x,\epsilon)$ is a ball of radius ϵ around the point x and $|\mathcal{B}(x,\epsilon)|$ is the volume of the ball

• If we make a change of variable the volume $|\mathcal{B}(x,\epsilon)|$ might change so $f_X(x)$ will change

Change of Variables

- ullet Consider a region ${\mathcal R}$ —we can describe this using different coordinate systems x or y = g(x)
- But

$$\mathbb{P}(X \in \mathcal{R}) = \int_{\mathcal{R}} f_X(x) dx = \mathbb{P}(Y \in \mathcal{R}) = \int_{\mathcal{R}} f_Y(y) dy$$

- As this is true for any region \mathcal{R} : $f_X(x)|\mathrm{d} x|=f_Y(y)|\mathrm{d} y|$
- Or

$$f_X(x) = f_Y(y) \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right| = f_Y(g(x)) |g'(x)| \mathbf{I}$$

• The probability density measured in units of probability per cm is different to that measured in units of probability per inch

Meaning of Probability Densities

- Probability densities are not probabilities
- They are positive, but don't need to be less than 1
- Note that

$$f_X(x) = \lim_{\delta x \to 0} \frac{\mathbb{P}(x \le X < x + \delta x)}{\delta x}$$

- We can think of $f_X(x) \delta x$ as $\mathbb{P}(x \leq X < x + \delta x)$
- Note that $f_X(x)\delta x \leq 1$

COMP6208 Advanced Machine Learning

Outline

- 1. Random Variables
- 2. Expectations
- 3. Calculus of Probabilities

x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Linearity of Expectation

• Because sums and integrals are linear operators

$$\sum_{i} (ax_i + by_i) = a\left(\sum_{i} x_i\right) + b\left(\sum_{i} y_i\right)$$
$$\int (af(\mathbf{x}) + bg(\mathbf{x})) d\mathbf{x} = a\left(\int f(\mathbf{x}) d\mathbf{x}\right) + b\left(\int g(\mathbf{x}) d\mathbf{x}\right)$$

then expectations are linear

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

• Beware usually $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$ (unless X and Y are independent)

Jacobian

- ullet In high dimension if we make a change of variables x o y(x)(which can be seen as a change of random variables $oldsymbol{X} o oldsymbol{Y}(oldsymbol{X})$).

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{\boldsymbol{Y}}(\boldsymbol{y})|\det(\boldsymbol{\mathsf{J}})|$$

where J is the Jacobian matrix

$$\mathbf{J} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \dots & \frac{\partial y_n}{\partial x_n} \end{pmatrix}$$

• Ensures integrals over volumes are the same

Cumulative Distribution Functions

• We can define the cumulative distribution function (CDF)

$$F_X(x) = \mathbb{P}(X \le x) = \begin{cases} \sum_{i: x_i \le x} \mathbb{P}(X = x_i) \\ \int_{-\infty}^x f_X(y) dy \end{cases}$$

- ullet This is a function that goes from 0 to 1 as x goes from $-\infty$ to ∞
- We note that for continuous random variables

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$$

Expectation

ullet We can define the expectation of $oldsymbol{Y}=g(oldsymbol{X})$ as

$$\mathbb{E}_{\boldsymbol{X}}[g(\boldsymbol{X})] = \begin{cases} \sum_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}) \mathbb{P}(\boldsymbol{X} = \boldsymbol{x}) \\ \int g(\boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \end{cases}$$

ullet The expectation of a constant c is

$$\mathbb{E}_{\boldsymbol{X}}[c] = \begin{cases} \sum_{\boldsymbol{x} \in \mathcal{X}} c \mathbb{P}(\boldsymbol{X} = \boldsymbol{x}) = c \sum_{\boldsymbol{x} \in \mathcal{X}} \mathbb{P}(\boldsymbol{X} = \boldsymbol{x}) = c \\ \int c f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} = c \int f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} = c \end{cases}$$

• Note $\mathbb{E}_X[\mathbb{E}_X[g(X)]] = \mathbb{E}_X[g(X)]$

Indicator Functions

· An indicator function has the property

$$\llbracket predicate \rrbracket = \begin{cases} 1 & \text{if } predicate \text{ is True} \\ 0 & \text{if } predicate \text{ is False} \end{cases}$$

(sometimes written $I_A(x)$ where A(x) is the predicate)

• We can obtain probabilities from expectations

$$\mathbb{P}(predicate) = \mathbb{E}[\llbracket predicate \rrbracket] \blacksquare$$

• E.g. The CDF is given by

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{E}[[X \le x]]$$

1. Random Variables

2. Expectations

3. Calculus of Probabilities

				9
x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Marginalisation

- Probabilities are extremely easy to manipulate (although lots of people struggle)
- One of the most useful properties is known as marginalisation

$$\mathbb{P}(X) = \sum_{y \in \mathcal{Y}} \mathbb{P}(X, Y = y)$$

where ${\mathcal Y}$ is the set of values that the random variable Y takes

- \bullet Note that when we write $\mathbb{P}(X)$ we are saying this is true for all values that X can take!
- Although obvious and easy this is extremely useful

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Basic Calculus

• To obtain the joint probability we can use

$$\mathbb{P}(X,Y) = \mathbb{P}(X|Y)\mathbb{P}(Y) = \mathbb{P}(Y|X)\mathbb{P}(X) \mathbb{I}$$

• This generalises to more random variables

$$\mathbb{P}(X,Y,Z) = \mathbb{P}(X,Y|Z)\,\mathbb{P}(Z) = \mathbb{P}(X|Y,Z)\,\mathbb{P}(Y|Z)\,\mathbb{P}(Z)$$

• We can do this in a number of different ways

$$\mathbb{P}(X,Y,Z) = \mathbb{P}(Y,Z|X)\mathbb{P}(X) = \mathbb{P}(Z|Y,X)\mathbb{P}(Y|X)\mathbb{P}(X) \mathbb{I}$$

• Note that $\mathbb{P}(A, B \mid X, Y)$ means the probability of random variables A and B given that X and Y take particular values

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Causality

- Conditional probabilities does not imply causality
- We might have causal relationships

$$\mathbb{P}(\mathsf{pass} \mid \mathsf{study}) = 0.9 \qquad \qquad \mathbb{P}(\mathsf{pass} \mid \neg \mathsf{study}) = 0.2 \blacksquare$$

ullet But if we know $\mathbb{P}(\mathsf{study}) = 0.8$ then we can compute

$$\begin{split} \mathbb{P}(\mathsf{pass},\mathsf{study}) &= \mathbb{P}(\mathsf{pass}\mid\mathsf{study})\,\mathbb{P}(\mathsf{study}) = 0.9\times0.8 = 0.72\\ \mathbb{P}(\mathsf{pass},\neg\mathsf{study}) &= \mathbb{P}(\mathsf{pass}\mid\neg\mathsf{study})\,\mathbb{P}(\neg\mathsf{study}) = 0.2\times0.2 = 0.04 \end{split}$$

and

$$\begin{split} \mathbb{P}(\mathsf{study}\mid\mathsf{pass}) &= \frac{\mathbb{P}(\mathsf{pass},\mathsf{study})}{\mathbb{P}(\mathsf{pass})} \\ &= \frac{\mathbb{P}(\mathsf{pass},\mathsf{study})}{\mathbb{P}(\mathsf{pass},\mathsf{study}) + \mathbb{P}(\mathsf{pass},\neg\mathsf{study})} = \frac{0.72}{0.72 + 0.04} \approx 0.947 \end{split}$$

Often we want to model complex processes where we have multiple random variables

• We can define the joint probability

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$

i.e. the probability of the event where both X=x and $Y=y{\hspace{-0.1em}|\hspace{0.1em}}$

• Clearly $\mathbb{P}(X,Y) = \mathbb{P}(Y,X)$

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

18

Conditional Probability

ullet We can also define the probability of an event X given that Y=y has occurred

$$\mathbb{P}(X \mid Y = y) = \frac{\mathbb{P}(X, Y = y)}{\mathbb{P}(Y = y)}$$

- In constructing a model it is often much easier to specify conditional probabilities (because you know something) rather than joint probabilities
- When manipulating probabilities it is often easier to work with joint probabilities because we can simplify them by marginalising out random variables we are not interested in

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Beware

 Conditional probabilities, $\mathbb{P}(X\mid Y)$ are probabilities for X, but not Y

$$\sum_{x \in \mathcal{X}} \mathbb{P}(X = x \mid Y) = 1 \mathbf{I}$$
$$\sum_{y \in \mathcal{Y}} \mathbb{P}(X \mid Y = y) \neq 1$$

(in general)

• Note that

$$\begin{split} \mathbb{E}_Y[\mathbb{P}(X\mid Y)] &= \sum_{y\in\mathcal{Y}} \mathbb{P}(Y=y)\,\mathbb{P}(X|Y=y) \mathbb{I} \\ &= \sum_{y\in\mathcal{Y}} \mathbb{P}(X,Y=y) \mathbb{I} = \mathbb{P}(X) \mathbb{I} \end{split}$$

Adam Prügel-Bennett

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

2:

Independence

ullet Random variables X and Y are said to be **independent** if

$$\mathbb{P}(X,Y) = \mathbb{P}(X)\,\mathbb{P}(Y)$$

• Because $\mathbb{P}(X,Y)=\mathbb{P}(X|Y)\mathbb{P}(Y)$ and $\mathbb{P}(X,Y)=\mathbb{P}(Y|X)\mathbb{P}(X)$ independence implies

$$\mathbb{P}(X|Y) = \mathbb{P}(X) \qquad \qquad \mathbb{P}(Y|X) = \mathbb{P}(Y)$$

- Probabilistic independence implies a mathematical co-incident not necessarily causal independence
- However causal independence implies probabilistic independence
- If $X \in \{0,1\}$ represents the outcome of tossing a coin and $Y \in \{1,2,3,4,5,6\}$ the outcome of rolling a dice then X and Y are independent.

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

23

COMP6208 Advanced Machine Learnin

Well Conducted Experiments

- In well conducted experiments we expect the results we obtain are independent
- Let $\mathcal{D}=(X_1,X_2,\ldots,X_m)$ represents possible outcomes from a set of m well conducted experiments then

$$\mathbb{P}(\mathcal{D}) = \prod_{i=1}^m \mathbb{P}(X_i) \mathbf{I}$$

 • Denoting a possible sentence I might say by $\mathcal{S} = (W_1, W_2, \ldots, W_m)$ then

$$\mathbb{P}(\mathcal{S}) \neq \prod_{i=1}^{m} \mathbb{P}(W_i) \mathbb{I}$$

otherwise it's time I retired

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Conclusion

- To work with probabilities you need to know
 - How to go back and forward between joint probabilities and conditional probabilities
 - ⋆ How to marginalise out variables
- You need to understand that for continuous outcomes, it makes sense to talk about the probability density!
- You need to know that expectations are linear operators and the expectation of a constant is the constant
- You need to understand independence

Adam Priigal Ronnati

COMP6208 Advanced Machine Learning

Conditional Independence

- \bullet Let K(d) be a random variable measuring the amount you know about ML on day d of your revision!
- From you revision schedule you can write down your belief

$$\mathbb{P}(K(d) \mid K(d-1), K(d-2), ...K(1))$$

• But a very reasonable model is

$$\mathbb{P}(K(d) \mid K(d-1), K(d-2), \dots K(1)) = \mathbb{P}(K(d) \mid K(d-1))$$

what you are going to know today will just depend on what you knew yesterday

• We say that K(d) is **conditionally independent** on K(d-2), K(d-3), etc. given K(d-1)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning
