

Research Article

Multigene phylogeny, taxonomy, and potential biological properties of *Pseudoroussoella* and *Neoroussoella* species (Roussoellaceae, Dothideomycetes) from Asteraceae weeds in northern Thailand

Zin Hnin Htet^{1,2}, Kevin D. Hyde^{1,2,3,4}, Fatimah O. Alotibi⁴, Thilini K. W. Chethana^{1,2}, Ausana Mapook²

- 1 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- 3 Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
- 4 Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia

Corresponding authors: Ausana Mapook (phung.ausana@gmail.com); Thilini K. W. Chethana (kandawatte.thi@mfu.ac.th)

This article is part of:

Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi

Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam

Academic editor:

Danushka Sandaruwan Tennakoon Received: 12 September 2024 Accepted: 9 November 2024 Published: 17 December 2024

Citation: Htet ZH, Hyde KD, Alotibi FO, Chethana TKW, Mapook A (2024) Multigene phylogeny, taxonomy, and potential biological properties of *Pseudoroussoella* and *Neoroussoella* species (Roussoellaceae, Dothideomycetes) from Asteraceae weeds in northern Thailand.

MycoKeys 111: 129–146. https://doi.org/10.3897/mycokeys.111.136922

Copyright: © Zin Hnin Htet et al.

This is an open access article distributed under terms of the Creative Commons Attribution

License (Attribution 4.0 International – CC BY 4.0).

Abstract

In our study, dead stems of two Asteraceae species (weeds) were collected from northern Thailand. Both morphology and multigene phylogeny were used to determine the identity of the taxa. Maximum likelihood and Bayesian inference analyses of combined LSU, SSU, ITS, tef1- α and rpb2 data revealed two new species Pseudoroussoella bidenticola, and Neoroussoella chromolaenae with one new host record of N. entadae. Preliminary investigation into antibacterial properties revealed that our three isolates inhibited the growth of Bacillus subtilis, Escherichia coli, and Staphylococcus aureus. Additionally, we present updated phylogenetic trees for Roussoellaceae, accompanied by detailed descriptions and illustrations of the three identified species.

Key words: 2 new species, antibacterial properties, Ascomycota, *Bidens pilosa*, *Chromolaena odorata*, new host record

Introduction

Asteraceae species exhibit a widespread distribution from polar to tropical regions (Xu et al. 2017). Many of these species hold economic significance, while others are categorized as weeds (Jansen and Palmer 1987; Katinas et al. 2007; Karlsson et al. 2008). In Thailand, numerous invasive weeds have an extensive spread, with *Bidens pilosa* and *Chromolaena odorata* being prevalent at roadsides, disturbed areas, and agricultural lands (Zungsontiporn et al. 2020). Mapook et al. (2020) studied the fungal diversity in *Chromolaena odorata* and provided a global checklist of fungi associated with this plant. Moreover, the information of fungi associated with *Bidens pilosa* was provided in previous studies (Abdou et al. 2010; Guatimosim et al. 2015; Zhang et al. 2018; Li et al. 2020; Htet et al. 2024). However, more knowledge is still needed about the diversity of fungi in Asteraceae plants to understand the fungi associated with this plant family. Moreover, the diversity of fungi in these two invasive weeds in Thailand is being further explored.

Roussoellaceae was introduced by Liu et al. (2014) based on morphology and LSU, ITS, *tef1-a* and *rpb2* sequence data. Members of Roussoellaceae can be found as saprobes and human pathogens (Ahmed et al. 2014; Liu et al. 2014; Mapook et al. 2020; Hyde et al. 2023; Wu et al. 2023). Currently, there are 12 genera in Roussoellaceae, viz., *Appendispora*, *Cytoplea*, *Elongatopedicellata*, *Immorrhia*, *Neoroussoella*, *Pararoussoella*, *Pseudoneoconiothyrium*, *Pseudoroussoella*, *Roussoella*, *Roussoella*, *Setoarthopyrenia*, and *Xenoroussoella* (Wijayawardene et al. 2022; Index Fungorum www.indexfungorum.org).

Neoroussoella was introduced by Liu et al. (2014) to accommodate a saprobic roussoella-like taxon with the type species N. bambusae. The sexual morphology of Neoroussoella is defined by immersed ascostromata beneath a clypeus or epidermis, appearing as black, dome-shaped, or flattened ovoid structures on the host surface. The asci are bitunicate and cylindrical, while the ascospores are brown or yellowish-brown, ellipsoidal to fusiform, and 2-celled, surrounded by a mucilaginous sheath (Liu et al. 2014). The asexual morphology of Neoroussoella is characterized by superficial or immersed pycnidia with annellidic, ampulliform, cylindrical conidiogenous cells, producing hyaline, pale brown, oblong to ellipsoidal conidia, each with two guttules (Liu et al. 2014; Jayasiri et al. 2019). Currently, there are 15 epithets listed in the Index Fungorum (www.indexfungorum.org), viz., Neoroussoella alishanensis, N. bambusae, N. clematidis, N. chiangmaiensis, N. entadae, N. fulvicomae, N. heveae, N. lenispora, N. leucaenae, N. lignicola, N. magnoliae, N. peltophora, N. sedimenticola, N. solani, and N. thailandica. Recent studies into the genus have been conducted by De Silva et al. (2022) and Hyde et al. (2023).

Pseudoroussoella was introduced by Mapook et al. (2020) based on morphology and LSU, SSU, ITS, tef1-a and rpb2 sequence data. The sexual morph of Pseudoroussoella species is characterized by globose to subglobose, dark brown to black ascomata with an ostiole, comprised of textura epidermoidea to textura angularis or textura intricata cells, with septate, trabeculate pseudoparaphyses, 8-spored, bitunicate, fissitunicate, cylindrical to clavate asci with a pedicel, and uniseriate, hyaline to pale brown, oval to ellipsoid, 1-septate ascospores bearing a gelatinous sheath (Mapook et al. 2020). Asexual morphs of Pseudoroussoella species are distinguished by solitary, superficial, uni-loculate, globose to obpyriform, pycnidial conidiomata with an ostiole, comprised of textura angularis cells, annellidic, ampulliform to oblong, hyaline and unbranched conidiogenous cells and pale brown to reddish brown, aseptate conidia with guttules (Mapook et al. 2020). Currently, two species are listed in the Index Fungorum (www.indexfungorum.org).

Some genera from Roussoellaceae, like *Roussoella* and *Neoroussoella*, are recognized for their bioactive secondary metabolites (Takekawa et al. 2013; Phukhamsakda et al. 2018; Chen et al. 2021; Zhong et al. 2021; Sommart et al. 2022). Moreover, the prescreening for antibacterial activity conducted by Mapook et al. (2020) revealed that *Pseudoroussoella elaeicola* (MFLUCC 17-1483) inhibits the growth of *E. coli*, resulting in a 10 mm inhibition zone. These findings showed that the species of Roussoellaceae are potential organisms for the production of bioactive secondary metabolites.

In this study, we introduce one new species of *Pseudoroussoella* on *Bidens pilosa* (Asteraceae), and one new species with a new host record of *Neoroussoella* on *Chromolaena odorata* (Asteraceae). We also provide an updated phylogenetic tree for Roussoellaceae, based on a combined dataset of LSU, SSU,

ITS, $tef1-\alpha$ and rpb2 sequence data. Further, we explore the potential antibacterial activity of our three isolates and discuss their implications for future discoveries of bioactive compounds.

Materials and methods

Sample collection, morphological study and isolation

Dead stems from the Asteraceae plants, Bidens pilosa and Chromolaena odorata, were collected from northern Thailand. All specimens were brought to the lab in plastic bags labelled with the collection information. Single spore isolation was performed on malt extract agar (MEA) and incubated at 27 °C for 24 hours (Senanayake et al. 2020). The spores were germinated within 24 h using a Motic SMZ 168 Series microscope (Motic Asia, Hong Kong). Germinated spores were transferred to fresh MEA plates. All the detailed morphological characteristics were observed using a Nikon ECLIPSE 80i compound microscope (Nikon, Japan) fitted to a Canon 550D digital camera (Canon, Japan). Tarosoft Image Framework (v 0.9.7) was used to measure photomicrograph structures. Adobe Photoshop CS6 Extended (v 10.0.) was used to edit and prepare photo plates (Adobe system, USA). Forty-day-old cultures were used for molecular studies. Specimens were deposited at the Mae Fah Luang University Herbarium (Herb. MFLU) while living cultures were maintained at Mae Fah Luang University Culture Collection (MFLUCC). Faces of fungi (FoF) and Index Fungorum (IF) numbers were obtained as instructed by Jayasiri et al. (2015) and Index Fungorum (www.indexfungorum.org). Moreover, the species descriptions were submitted to the GMS Microfungi database (Chaiwan et al. 2021).

DNA extraction, PCR amplification and sequencing

Fifty-day-old fungal mycelium was scraped off and placed into a 1.5 ml micro-centrifuge tube using a sterile lancet. Genomic DNA extraction was done using the E.Z.N.A.® Tissue DNA Kit (Omega Biotek Inc., Georgia). Polymerase chain reaction (PCR) was used for DNA amplifications, following the protocols of Mapook et al. (2016). The details of PCR primers and protocols are shown in Table 1. The quality of PCR products was confirmed on 1% agarose gels. Purification and sequencing of PCR fragments with the primers mentioned above were carried out at a commercial sequencing provider (Solgent Co., Ltd, Thailand). The newly generated nucleotide sequences were deposited in the GenBank, and accession numbers were obtained (Table 2).

Table 1. PCR conditions used in this study.

Como	Primers		DOD Conditions	
Gene	Forward Reverse		PCR Conditions	
Large subunit (LSU)	LROR	LR5	95 °C: 3 min, (94 °C: 30 s, 56 °C: 50 s, 72 °C: 1 min) × 40 cycles 72 °C: 7 min.	
Small subunit (SSU)	NS1	NS4	95 °C: 3 min, (94 °C: 30 s, 55 °C: 50 s, 72 °C :1 min) × 40 cycles 72 °C: 7 min.	
Internal transcribed spacer (ITS)	ITS5	ITS4	95 °C: 3 min, (94 °C: 30 s, 55 °C: 50 s, 72 °C :1 min) × 40 cycles 72 °C: 7 min.	
Elongation factor-1 alpha (tef1- α)	EF1-983F	EF1-2218R	95 °C: 3 min, (94 °C: 30 s, 55 °C: 50 s, 72 °C: 1 min) × 40 cycles 72 °C: 7 min.	
RNA polymerase II subunit (rpb2)	fRPB2-5F	fRPB2-7cR	95 °C: 5 min, (95 °C : 1 min, 52 °C: 2 min, 72 °C: 90 s) × 40 cycles 72 °C: 10 min	

Table 2. List of taxa, specimens and sequences used in phylogenetic analyses.

Species	Strain numbers	GenBank accession numbers					
Сросия	0	ITS	LSU	SSU	tef1- α	rpb2	
Neoroussoella alishanense	FU31016	MK503816	MK503822	MK503828	_	MN037756	
N. alishanense	FU31018	MK503818	MK503824	MK503830	MK336182	MN037757	
N. bambusae	MFLUCC 11-0124 T	KJ474827	KJ474839	_	KJ474848	KJ474856	
N. chromolaenae sp. nov.	MFLUCC 24-0274	PQ226190	PQ226193	PQ226196	PQ240621	PQ240623	
N. clematidis	MFLUCC 17-2061	MT310632	MT214587	MT226700	MT394645	MT39470	
V. entadae	MFLUCC 18-0243	MK347786	MK348004	MK347893	MK360065	MK43486	
V. entadae	MFLUCC 24-0275	PQ226191	PQ226194	PQ226197	_	PQ24062	
N. fulvicomae	MFLUCC 17-2073	MT310633	MT214588	MT226701	MT394646	MT39470	
N. heveae	MFLUCC 17-1983	MH590693	MH590689	MH590691	-	-	
N. lenispora	GZCC 16-0020 T	-	KX791431	-	-	-	
V. leucaenae	MFLUCC 18-1544	MK347767	MK347984	MK347874	MK360067	MK43487	
N. leucaenae	MFLUCC 17-0927	MK347733	MK347950	MK347841	MK360066	MK43489	
N. lignicola	MUT 5008	MN556318	MN556320	MN556308	MN605895	MN60591	
N. lignicola	MUT 5373	KU314953	MN556321	KU314954	MN605896	MN60591	
N. lignicola	MUT 4904	KT699129	MN556319	MN556307	MN605894	MN60591	
N. magnoliae	MFLU 18-1022	MK801232	MK801230	MK801231	MK834373	_	
N. peltophora	MFLUCC 21-0071	MZ567051	MZ567206	MZ567207	MZ605441	MZ60544	
N. sedimenticola	CGMCC 3.22470	OQ798949	OQ758144		OQ809046	OQ80900	
N. sedimenticola	CGMCC 3.22468 T	OQ798948	OQ758143		OQ809045	OQ80900	
N. solani	KT3264 T	LC195218	LC195209	LC195206	LC195212	_	
N. solani	KT3265 T	LC195219	LC195210	LC195207	LC195213	LC19521	
N. thailandica	MFLUCC 18-0721	OL703581	OL457704	OL764415	OM505028	ON50238	
Occultibambusa bambusae	MFLUCC 11-0394	KU940124	KU863113	_	KU940194	KU94017	
D. bambusae	MFLUCC 13-0855	KU940123	KU863112	KU872116	KU940193	KU94017	
Pseudoneoconiothyrium rosae	MFLUCC 15-0052 T	MG828922	MG829032	MG829138	_	_	
P. euonymi	CBS 143426 T	MH107915	MH107961	-	_	MH10800	
P. euonymi	GLMC 1544	MT153733	MT156304	_	_	_	
Pseudoroussoella bidenticola sp. nov.	MFLUCC 24-0273	PQ226192	PQ226195	PQ226198	PQ240622	PQ24062	
Ps. chromolaenae	MFLUCC 17-1492 T	MT214345	MT214439	MT214393	MT235769	_	
Ps. elaeicola	MFLUCC 15-0276a T	MT153733	MT156304	-	_	_	
Ps. elaeicola	MFLUCC 15-0276b	MH742330	MH742327	_	_	_	
Ps. elaeicola	MFLUCC 17-1483	MT214348	MT214442	_	MT235772	MT23580	
Pararoussoella mangrovei	MFLUCC 17-1542	MH025951	MH023318	_	MH028246	_	
P. mukdahanensi	HKAS 101766	MH453489	MH453485	_	MH453478	MH45348	
? rosarum	MFLUCC 17-0796 T	MG828939	MG829048	NG_061294	MG829224	MH02825	
Roussoella arundinacea	CPC 35554	MT223838	MT223928	-	MT223723	_	
R. bambusarum	GMB0316(HT)	ON479891	ON479892	_	ON505015	ON50501	
R. bambusarum	GMB0390	ON505055	ON505051	_	ON505017	ON50501	
R. chiangraina	MFLUCC 10-0556 T	KJ474828	KJ474840	_	KJ474849	KJ47485	
R. doimaesalongensis	MFLUCC 14-0584 T	KY026584	KY000659	_	KY651249	KY678394	
R. hysterioides	CBS 546.94 T	KF443405	KF443381	AB524480	KF443399	KF443392	
R. intermedia	CBS 170.96	KF443407	KF443382	KF443390	KF443398	KF443394	
R. japanensis	MAFF 239636 T	KJ474829	AB524621	_	AB539114	AB53910	
R. kunmingensis	HKAS 101773	MH453491	MH453487	_	MH453480	MH45348	
R. margidorensis	MUT 5329 T	KU314944	MN556322	MN556309	MN605897	MN60591	
R. mediterranea	MUT 5306	KU255054	MN556323	MN556310	MN605898	MN60591	
R. mexicana	CPC25355 T	KT950848	KT950862	_	_	_	
R. neopustulans	MFLUCC 11-0609 T	KJ474833	KJ474841	_	KJ474850	_	
R. neopustulans	MFLUCC 12-0003 T	KU940130	KU863119	KU872122	_	_	
· · · · · · · · · · · · · · · · · · ·	MFLUCC 11-0182 T	KJ474835	KJ474843	_	KJ474852	KJ474859	
R. nitidula		KJ474834	KJ474842	_	KJ474851	KJ474858	
	MFLUCC 11-0634 T □					MN60592	
R. nitidula	MFLUCC 11-0634 T MUT 5341	KU158153	MN556325	_	MINDLINGLIN	MIMBILLO	
R. nitidula R. padinae	MUT 5341	KU158153	MN556325		MN605900		
R. nitidula R. padinae R. padinae	MUT 5341 MUT 5365	KU158170	MN556326	KU158179	MN605901	MN60592	
R. nitidula R. nitidula R. padinae R. padinae R. padinae R. padinae R. padinae	MUT 5341					MN60592 MN60592	

Sanaina	Causin mumbana	GenBank accession numbers					
Species	Strain numbers	ITS	LSU	SSU	tef1- a	rpb2	
R. scabrispora	MFLUCC 11-0624	KJ474836	KJ474844	_	KJ474853	KJ474860	
R. siamensis	GMB0317	ON4617749	ON461896	_	ON505014	ON505010	
R. siamensis	GMB0391	ON505054	ON505053	_	ON505018	ON505013	
R. tosaensis	KT 1659	_	AB524625	AB524484	AB539117	AB539104	
R. tuberculata	MFLUCC 13-0854 T	KU940132	KU863121	_	_	_	
R. verrucispora	CBS 125434 T	KJ474832	_	_	_	_	
R. yunnanensis	HKAS 101762 T	MH453492	MH453488	_	MH453481	_	
R. yunnanensis	MFLUCC 12-0005 T	KJ739604	KJ474847	KJ739608	KJ474855	KJ474862	
Xenoroussoella triseptata	MFLUCC 17-1438	MT214343	MT214437	MT214391	MT235767	MT235804	
X. triseptata	KNUF-20-NI009	LC719282	LC719283	LC723530	LC723531	LC723532	

^{*} Remarks: The letter T denotes ex-type isolates. The newly generated sequences, new species and synonymized isolates are indicated in bold font.

Sequence alignment and phylogenetic analyses

Based on the sequence data of recent publications (De Silva et al. 2020; Li et al. 2023) and BLAST search results, reference taxa were selected, and phylogenetic analyses were conducted using the combined LSU, SSU, ITS, *tef1-a* and *rpb2* sequence data. Sequence alignments were made with the MAFFT v. 7 online tool (http://mafft.cbrc.jp/alignment/server; 2016). Alignments were improved where necessary, and composite sequence alignments were obtained using MEGA v. 6.0.

RAxML and Bayesian analyses were carried out on the CIPRESS Science Gateway Portal (http://www.phylo.org) (Miller et al. 2010). Maximum likelihood analysis was performed by RAxML-HPC v.8 (Stamatakis 2014) with rapid bootstrap analysis, followed by 1000 bootstrap replicates and the GTRGAMMA substitution model. MrBayes was used to perform BI analysis on XSEDE 3.2.7 (Ronquist et al. 2012), with tree samples taken at every 1000th generation during the 5,000,000-generation run of four concurrent Markov chains. The first 25% of the trees were removed as part of the burn-in phase, and calculations for the Posterior Probability were made for the remaining 75% of the trees (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002). The phylogenetic tree was displayed using Fig Tree v1.4.0 (Rambaut 2012) and was modified in Microsoft Office PowerPoint v. 2013.

Preliminary screening for antibacterial activity

Preliminary screening for antibacterial activity was carried out following the methods of Htet et al. (2024). Antibacterial discs of ampicillin were used as a positive control for screening (Alam et al. 2019). Antibacterial activity against gram positive bacteria (Bacillus subtilis-TISTR 1248 and Staphylococcus aureus-TISTR Y4b), and gram-negative bacteria (Escherichia coli TISTR 527) were investigated using the agar plug diffusion method (Balouiri et al. 2016). Bacteria test organisms were obtained from Scientific and Technological Instrument Center, Mae Fah Luang University. Bacterial test organisms were sub cultured and grown on Nutrient Agar (NA) for 24 hours. After 24 hours of inoculation, 2-3 loops of the bacterial test organisms were transferred to the nutrient broth and incubated for 24 hours in a shaking incubator. Prior to adding microbial suspensions to the sterile Mueller-Hinton agar media, cell counts were performed on the suspensions $(6.7 \times 10^5 \text{ cells/mL})$, as detailed by Mapook et al. (2020). Fungal mycelium plugs from our isolates were transferred to a solid medium plate and allowed to grow at room temperature for 24-48 hours. Inhibition zones were measured and compared to the positive control.

Results

Phylogenetic analyses

The combined LSU, SSU, ITS *tef1-α*, and *rpb2* sequence dataset comprises 66 taxa with *Occultibambusa bambusae* strains (MFLUC 13-0855 and MFLUCC 11-0394) as the outgroup taxa. Maximum likelihood (ML) analyses and Bayesian Inference (BI) of the combined dataset were performed to determine the placement of our new isolates. Tree topologies of ML and BI criteria were similar to earlier investigations (De Silva et al. 2020; Li et al. 2023). The best-scoring RAxML tree with a final likelihood value of -28736.822321 is shown in Fig. 1. RAxML analysis yielded 1578 distinct alignment patterns,

Figure 1. Phylogram generated from maximum likelihood analysis based on the combined dataset of LSU, SSU, ITS, $tef1-\alpha$ and rpb2 sequence data. Bootstrap support values for ML equal to or greater than 75% and BYPP equal to or greater than 0.90 are given at the nodes. Newly generated sequences are in blue and type species are in bold.

with 29.39% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.245746, C = 0.258383, G = 0.266559, T = 0.229312; substitution rates: AC = 1.714222, AG = 4.957697, AT = 1.884927, CG = 1.345111, CT = 9.562411, GT = 1.000000; gamma distribution shape parameter α = 0.166563. In our phylogenetic analysis, *Neoroussoella chromolaenae* sp. nov. (MFLUCC 24-0274) clustered with *Neoroussoella entadae* (MFLUCC 18-0243 and MFLUCC 24-0275) with 100% ML and 1.00 BYPP support. Furthermore, our isolate, *Pseudoroussoella bidenticola* sp. nov. (MFLUCC 24-0273) formed a branch separated from *Ps. elaeicola* (MFLUCC 17-1483, MFLUCC 15-0276a, MFLUCC 15-0276b), and *Ps. chromolaenae* (MFLUCC 17-1492) with 96% ML and 1.00 BYPP, respectively.

Taxonomy

Neoroussoella chromolaenae Z.H. Htet, A. Mapook & K. D. Hyde, sp. nov.

Index Fungorum: IF902613

Facesoffungi Number: FoF16402

Fig. 2

Etymology. Name reflects the host plant *Chromolaena odorata*, from which this species was isolated.

Holotype. MFLU 24-0264.

Description. Saprobic on the dead stems of Chromolaena odorata (Asteraceae). Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata 70–150 × 120–150 μm (av. 85 × 138 μm, n = 5), pycnidial, solitary, uniloculate, immersed, ostiolate. Ostiole papillate. Peridium 10–20 μm wide, comprising 2–3 layers of brown cells of textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells $3-5 \times 2-3.5 \mu m$ (av. $3 \times 3 \mu m$, n = 10), phialidic, ampulliform to cylindrical, hyaline. Conidia $3-6 \times 2-4 \mu m$ (av. $4.4 \times 3.1 \mu m$, n = 20), hyaline, oblong to slightly ellipsoid, aseptate, with small guttules.

Culture characteristics. Conidia germinating on MEA within 24 hours, reaching 22 mm after 10 days at 27 °C, irregular, curled margin, brown in the middle and becoming pale brown on the outer parts of the culture, wrinkled on the surface; wrinkle, pale brown to brown in reverse.

Material examined. THAILAND • Chiang Rai Province, Doi Pui, 19°48'51"N, 99°52'1"E, on dead stems of *Chromolaena odorata* (Asteraceae), 14 March 2023, Zin Hnin Htet (CO-DP-3, MFLU 24-0264, holotype); ex-type culture MFLUCC 24-0274.

Notes. In a megablast search of GenBank, the closest match for the ITS sequence of our isolate was fungal sp. isolate NFC-3 (MG189955) with 99.47% similarity. The closest match for the LSU region was *N. solani* CBS 141288 (MH878207) with 100% similarity, and the closest match for the SSU region was *N. bambusae* strain GMB1295 (OM764650) with 93.99% similarity. Additionally, the closet matches for the *tef1-α* and *rpb2* gene regions were *Neoroussoella entadae* strain MFLUCC 18-0243 (MK360065) and *N. entadae* strain MFLUCC 17-0920 (MK434898) with 99.45% and 99.77% similarities, respectively.

Based on the multi-locus phylogeny (Fig. 1), our isolate (MFLUCC 24-0274) formed a separate branch from *N. entadae* with 100% ML and 1.00 BYPP.

Figure 2. Neoroussoella chromolaenae (MFLU 24-0264, holotype) **a, b** Conidiomata on the substrate **c** a section through conidioma **d** ostiole **e** peridium **f** conidia and conidiogenous cells **g**–**i** conidia **j** germinating conidia **k** culture on the MEA. Scale bars: 500 μ m (**a, b**); 100 μ m (**c**); 20 μ m (**d, e**); 10 μ m (**e**–**j**).

A comparative analysis of base pair differences between *Neoroussoella chromolaenae* (MFLUCC 24-0274) and *Neoroussoella entadae* (MFLUCC 18-0243) revealed variations in ITS (0.6% - 3/476), LSU (0.1% - 1/838), SSU (1.9% - 14/717), tef1- α (0.5% - 5/902), and rpb2 (2.0% - 18/885) without gaps, respectively. Morphologically, our collection is similar to *N. entadae* (MFLUCC 17–0920) in having solitary, unilocular, ostiolate, phialidic, ampulliform to cylindrical, hyaline conidiogenous cells, and oblong to ellipsoidal, hyaline conidia (Jayasiri et al. 2019). However, our species differs from *N. entadae* (MFLUCC 17–0920) in having smaller conidiomata (70–150 × 120–150 μ m vs. 127–192 × 161–190 μ m), slightly wider conidiogenous cells (2–3.5 μ m vs. 0.7–1.8 μ m) and larger conidia size (3–6 × 2–4 μ m vs. 3–4 × 1.7–1.9 μ m). Therefore, *N. chromolaenae* is described here as a new species based on phylogeny and morphological evidence. Synopsis of the asexual morph of *Neoroussoella* species is also provided in Table 3.

Table 3. Synopsis of asexual morph species in Neoroussoella.

Species	Conidiomata (µm)	Conidiogenous cells (µm)	Conidia (µm)	References
Neoroussoella alishanense (FU31016)	130-140, 210-225	8-14 × 2-3	3-4 × 2-3	Karunarathna et al. (2019)
Neoroussoella bambusae (MFLUCC 11-0124)	200-430 × 300-420	8−13.5 × 1.5−3	3-4 × 1.5-2	Liu et al. (2014)
Neoroussoella chromolaenae (MFLUCC 24-0274)	70-150 × 120-150	3-5 × 2-3.5	3-6 × 2-4	This study
Neoroussoella entadae (MFLUCC 17–0920)	127-192 × 161-190	3.5-5.6 × 0.7-1.8	3-4 × 1.7-1.9	Jayasiri et al. (2019)
Neoroussoella entadae (MFLUCC 24-0275)	70-120 × 100-150	3-5 × 1-3	3-5 × 2-4	This study
Neoroussoella heveae (MFLUCC 17-0338)	90-130, 115-180	3-7 × 2-5	2.5-5 × 2-4	Phookamsak et al. (2019)
Neoroussoella leucaenae (MFLUCC 18–1544)	135-175 × 120-180	5.5-9 × 3-4	3.5-4.5 × 1.9-2.6	Jayasiri et al. (2019)
Neoroussoella peltophora (MFLUCC 21-0071)	165-224 × 144-178	1-3.5 × 6.5-8	2.0-3.0 × 3.0-4.0	Pasouvang et al. (2022)
Neoroussoella solani (CPC 26331)	To 150	4-6 × 3-4	4.5-5 × 2-3	Crous et al. (2016)

Neoroussoella entadae Jayasiri, E.B.G. Jones & K.D. Hyde, Mycosphere 10(1): 105 (2019)

Index Fungorum: IF555568 Facesoffungi Number: FoF05275

Fig. 3

Description. *Saprobic* on the dead stems of *Chromolaena odorata* (Asteraceae). *Sexual morph*: Undetermined. *Asexual morph*: Coelomycetous. *Conidiomata* 70–120 × 100–150 μm (av. 95 × 110 μm, n = 5), pycnidial, solitary, globose to subglobose, uniloculate, immersed to semi-immersed, ostiolate. *Ostiole* 30–35 μm wide, with small papillate. *Peridium* 10–20 μm wide, comprising 2–3 layers of brown cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 3–5 × 1–3 μm (av. 3.8 × 2.1 μm, n = 10), phialidic, ampulliform to cylindrical, hyaline. *Conidia* 3–5 × 2–4 μm (av. 3.8 × 2 μm, n = 20), hyaline, becoming pale brown when gathering, oblong to ovoid, aseptate, with small guttules.

Culture characteristics. Conidia germinating on PDA within 24 hours, reaching 24 mm after 7 days at 27 °C, irregular, entire, yellowish-brown, slightly wrinkled on the surface; pale brown to brown in reverse.

Material examined. THAILAND • Chiang Rai Province, Thoeng district, on dead stems of *Chromolaena odorata* (Asteraceae), 24 Jan 2022, A. Mapook (TCR18, MFLU 24-0265, new host record); living culture MFLUCC 24-0275.

Known host distribution. Entada phaseoloides (Fabaceae), Leucaena sp. (Fabaceae) (Jayasiri et al. 2019).

Notes. In a BLASTn search of GenBank, the closest match for the ITS sequence of our isolate was *N. solani* strain MnF107 (OQ704272) with 99.83% similarity. The closest match for the LSU region was *Roussoella* sp. strain HF3S53 (OP179275) with 99.77% similarity, and the closest match for the SSU region was Pleosporales sp. IRB20-2 (AB195632) with 100% similarity. The closest match for the *tef1-α* and *rpb2* gene region was *Neoroussoella entadae* strain MFLUCC 18-0243 (MK434866) with 99.78% and 99.53% similarity, respectively.

When we compared the morphology, our isolate is similar to *N. entadae* (MFLUCC 17–0920) in having solitary, unilocular, ostiolate conidiomata, phialidic, ampulliform to cylindrical, hyaline conidiogenous cells, and oblong to ovoid, hyaline conidia with size $(3-5\times2-4~\mu m~vs~3-4\times1.7-1.9~\mu m)$. However, our isolate differs from *N. entadae* (MFLUCC 17–0920) in having smaller

Figure 3. Neoroussoella entadae (MFLU 24-0265, new host record) **a**, **b** Conidiomata on the substrate **c** a section through conidioma **d** ostiole **e** peridium **f** conidia and conidiogenous cells **g**–**i** conidia **j** a germinating conidium **k** culture on the MEA. Scale bars: 500 μ m (**a**); 200 μ m (**b**); 50 μ m (**c**); 20 μ m (**d**, **e**); 5 μ m (**f**, **g**, **h**, **i**, **j**).

conidiomata (70–120 × 100–150 μ m vs. 127–192 × 161–190 μ m), slightly wider conidiogenous cells (3–5 × 1–3 μ m vs. 3.5–5.6 × 0.7–1.8 μ m) (Table 3).

Based on the multi-locus phylogeny (Fig. 1), our isolate MFLUCC 24-0275 clustered in the same clade with *N. entadae* (MFLUCC 18-0243). Moreover, there is no significant base pair difference between MFLUCC 24-0275 and *N. entadae* (MFLUCC 18-0243). Therefore, we reported *N. entadae* as the first occurrence on *C. odorata* (Asteraceae) based on morphology and multigene phylogeny.

Pseudoroussoella bidenticola Z.H. Htet, A. Mapook & K. D. Hyde, sp. nov.

Index Fungorum: IF902614 Facesoffungi Number: FoF16403

Fig. 4

Etymology. Name reflects the host plant *Bidens pilosa*, from which this species was isolated.

Holotype. MFLU 24-0266.

Description. *Saprobic* on dead stems of *Bidens pilosa*. *Sexual morph*: Undetermined. *Asexual morph*: Coelomycetous. *Conidiomata* $120-150 \times 150-180 \, \mu m$ (av. $126 \times 173 \, \mu m$, n = 5), pycnidial, solitary, immersed to semi-immersed, uni-loculate, brown, globose to subglobose, dark fruiting bodies on the host substrate, without an ostiole. *Peridium* $10-20 \, \mu m$ wide, comprising 2-3 layers of yellowish brown to brown cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* $1-2 \, \mu m$ long, holoblastic, short, globose to subglobose, hyaline and unbranched. *Conidia* $5-7.5 \times 4-5.5 \, \mu m$ (av. $6 \times 4.8 \, \mu m$, n = 20), globose to subglobose, brown to reddish brown, aseptate, thick-walled with a guttule.

Culture characteristics. Conidia germinating on MEA within 24 hours, reaching 27 mm after 10 days at 27 °C, irregular, entire, concentric, opaque, flat, white to pale brown on the surface; concentric, creamy to pale brown in reverse.

Material examined. THAILAND • Chiang Rai Province, Doi Pui, 19°48'51"N, 99°52'1"E, on dead stems of *Bidens pilosa* (Asteraceae), 14 March 2023, Zin Hnin Htet (BP-DP-11, MFLU 24-0266, holotype); ex-type culture MFLUCC 24-0273.

Notes. In a BLASTn search of GenBank, the closest match for the ITS sequence of our isolate was *Roussoella elaeicola* strain MFLUCC 15-0276b (MH742330) with 94.57% similarity. The closest match for the LSU region was *Pseudoroussoella chromolaenae* isolate MFLUCC 17-2062 (MT394704) with 92.95% similarity, and the closest match for the SSU region was *Parathyridaria tyrrhenica* MUT<ITA>:5371 (KU314952) with 99.16% similarity. Additionally, the closest matches for the *tef1-a* and *rpb2* gene regions were *Pseudoroussoella elaeicola* culture MFLUCC:17-1483 (MT235772) and *Roussoella* sp. strain GMB1153 (OM755588) with 97.08% and 98.27% similarity, respectively.

Pseudoroussoella elaeicola (MFLUCC 17-1483 and MFLUCC 17-2086) was found as a sexual morph in nature (Phookamsak et al. 2019, Mapook et al. 2020); hence, we were unable to directly compare their morphology with our isolate. However, based on comparing the morphology of *Pseudorousoella bidenticola* (MFLUCC 24-0273) and *Ps. chromolaenae* (MFLUCC 17-1492), our species differs from *Ps. chromolaenae* (MFLUCC 17-1492) in having immersed to semi-immersed, globose to subglobose, brown, conidiomata without ostiole, smaller-sized (120–150 × 150–180 μm vs 130–175(–230) × 160–230 μm), holoblastic, globose to subglobose conidiogenous cells, and brown to reddish brown, globose to subglobose conidia with guttules, while *Ps. chromolaenae* (MFLUCC 17-1492) displays superficial, globose to obpyriform, yellowish brown to brown conidiomata with a central ostiole, annellidic, ampulliform to oblong conidiogenous cells, and oblong to oval, conidia that are pale brown to light brown when immature, becoming yellowish brown to reddish brown when mature (Table 4).

Figure 4. Pseudoroussoella bidenticola (MFLU 24-0266, holotype) **a**, **b** Conidiomata on the substrate **c** a section through a conidioma **d** peridium **e** conidia and conidiogenous cell $\mathbf{f} - \mathbf{i}$ conidia \mathbf{j} germinating conidia \mathbf{k} culture on the MEA. Scale bars: 500 µm (**a**, **b**); 100 µm (**c**); 10 µm (**d**); 5 µm (**e**- \mathbf{i}).

Table 4. Synopsis of sexual and asexual morph of Chromolaenicola species.

Species	Conidiomata (µm)	Conidiogenous cells (µm)	Conidia (µm)	References
Pseudoroussoella chromolaenae (MFLUCC 17-1492)	130-175(-230) × 160-230	-	5.5-7 × 3.5-5	Mapook et al. (2020)
Pseudoroussoella bidenticola (MFLUCC 24-0273)	120-150 × 150-180	1-2	5-7.5 × 4-5.5	This study
Species	Ascomata (µm)	Asci (µm)	Ascospores (µm)	References
Pseudoroussoella elaeicola	225-475 × 240-400	95−135×6−8.5	10-14 × 4.5-6	Mapook et al. (2020)

Based on the multi-locus phylogeny (Fig. 1), our isolate (MFLUCC 24-0273) formed a separate branch related to *Pseudoroussoella* species with 96% ML and 1.00 BYPP. When comparing base pair differences between *Ps. bidenticola* (MFLUCC 24-0273) and *Ps. chromolaenae* (MFLUCC 17-1492), variations

Table 5. Preliminary antibacterial activity result of this study.

Chanina	Zone of inhibition (mm); Ampicillin (+)					
Species	Bacillus subtilis	Escherichia coli	Staphylococcus aureus			
Neoroussoella chromolaenae (MFLUCC 24-0274)	16 mm inhibition	11 mm inhibition	20 mm inhibition			
N. entadae (MFLUCC 24-0275)	13 mm inhibition	17 mm inhibition	14 mm inhibition			
Pseudoroussoella bidenticola (MFLUCC 24-0273)	18 mm inhibition	12 mm inhibition	13 mm inhibition			

were observed in ITS (3.6% - 23/469), LSU (0.6% - 5/799), SSU (0.6% - 4/630), tef1-a (2.6% - 24/891), without gaps. Therefore, we introduced our collection (MFLUCC 24-0273) as a new species based on morphology and multigene phylogeny. Moreover, this is also the first record of Pseudoroussoella species from

Preliminary screening for antibacterial activity

Bidens pilosa (Asteraceae).

In our study, we explored the antibacterial activities of our three isolates against *Bacillus subtilis*, *Escherichia coli coli*, and *Staphylococcus aureus*. *Neoroussoella chromolaenae* (MFLUCC 24-0274), *N. endatae* (MFLUCC 24-0275), *Pseudoroussoella bidenticola* (MFLUCC 24-0273) exhibited antibacterial activity against all three test organisms. For *B. subtilis*, *N. chromolaenae* (MFLUCC 24-0274), *N. entadae* (MFLUCC 24-0275), and *Ps. bidenticola* (MFLUCC 24-0273) exhibited partial inhibition. Against *E. coli*, *N. chromolaenae* (MFLUCC 24-0274), *N. entadae* (MFLUCC 24-0275), and *Ps. bidenticola* (MFLUCC 24-0273) demonstrated clear inhibition. For *S. aureus*, *N. chromolaenae* (MFLUCC 24-0274) showed the most significant inhibition, followed by *N. entadae* (MFLUCC 24-0275) and *Ps. bidenticola* (MFLUCC 24-0273), with clear inhibition observed. However, none of these fungal species showed a wider inhibition zone than the positive control, ampicillin (20 mm for *B. subtilis*, 50 mm for *E. coli*, 40 mm for *S. aureus*). The measurements of clear inhibition zones produced by our new isolates are provided in Table 5.

Discussion

Our research in northern Thailand unveiled the introduction of two novel species and one new host record within the Roussoellaceae. This classification was determined through a combination of morphological analyses and a multigene phylogeny approach, adhering to the recommendations outlined by Jeewon and Hyde(2016). Mapook et al. (2020) established *Pseudoroussoella* to accommodate *Ps. chromolaenae* and *Ps. elaeicola*. Interestingly, our study revealed a third *Pseudoroussoella* strain on the dead stems of *Bidens pilosa* (Asteraceae). In our phylogenetic analyses, our isolate (MFLUCC 24-0273) formed a basal lineage to other strains (MFLUCC 17-1483; MFLUCC 15-0276a; MFLUCC 15-0276b and MFLUCC 17-1492). Our species is morphologically similar to *Ps. chromolaenae* and has a significant base pairs difference between the two, and herein, we introduced our isolate as a new species. Moreover, we found two isolates of *Neoroussoella* on the dead stems of *C. odorata* (Asteraceae). Based on the morphological similarity and multigene phylogeny, we identified *N. chromolaenae* as a new species and *N. entadae* as the first occurrence on *Chromolaena odorata*.

Following the preliminary screening for antibacterial activity, all species examined in our study demonstrated potential antibacterial properties. In a prior examination of Pseudoroussoella species, Ps. chromolaena exhibited no inhibition on B. subtilis, E. coli, and M. plumbeus, while Ps. elaeicola displayed a 10 mm inhibition zone against E. coli (Mapook et al. 2020). Our isolate (MFLUCC 24-0273) exhibited inhibition on all tested organisms, with inhibition zones measuring 18 mm (B. subtilis), 12 mm (E. coli), and 13 mm (S. aureus), respectively. These results highlight our new species, Pseodoroussoella bidenticola, as a particularly promising organism for further research. Additionally, Neoroussoella chromolaenae (MFLUCC 24-0274) and N. entadae (MFLUCC 24-0275) demonstrated inhibitory effects against all test organisms, and specific measurements of inhibition zones are shown in Table 4. Across the three observed species, all species exhibited antibacterial activity. The outcomes of our investigation suggest that this fungal group possesses antibacterial potential, presenting a source for the exploration of novel bioactive compounds. These findings also highlight the potential of the Roussoellaceae family for antibacterial compound discovery, a field that remains relatively underexplored.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This research was funded by the Basic Research Fund support from the National Science, Research and Innovation Fund (Grant No. 652A01001, 662A01001 and 672A16001) entitled "Studies of fungi associated with Asteraceae and the discovery of biological properties", Mae Fah Luang University Grant - Reinventing University System (Grant No. 652A16049), Distinguished Scientist Fellowship Program (DSFP), King Saud University, Kingdom of Saudi Arabia.

Author contributions

The authors confirm contributions to the paper as follows: Fungal specimen collection and isolation, fungal specimen deposition and manuscript writing: Zin Hnin Htet; fungal identification and contributed in the revision of the manuscript: Zin Hnin Htet, Kevin D. Hyde, Fatimah O. Alotibi, Ausana Mapook, Thilini K. W. Chethana. All authors have read and agreed to the published version of the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Author ORCIDs

Zin Hnin Htet https://orcid.org/0000-0002-6652-6975

Kevin D. Hyde https://orcid.org/0000-0002-2191-0762

Fatimah O. Alotibi https://orcid.org/0000-0003-3629-5755

Thilini K. W. Chethana https://orcid.org/0000-0002-5816-9269

Ausana Mapook https://orcid.org/0000-0001-7929-2429

Data availability

All of the data that support the findings of this study are available in the main text.

References

- Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A-D, antifungal and cytotoxic depsidones from *Botryosphaeria rhodina*, an endophyte of the medicinal plant *Bidens pilosa*. Phytochemistry 71(1): 110–116. https://doi.org/10.1016/j.phytochem.2009.09.024
- Ahmed SA, Stevens DA, van de Sande WW, Meis JF, De Hoog GS (2014) *Roussoella percutanea*, a novel opportunistic pathogen causing subcutaneous mycoses. Medical Mycology 52(7): 689–698. https://doi.org/10.1093/mmy/myu035
- Alam ST, Le TAN, Park JS, Kwon HC, Kang K (2019) Antimicrobial biophotonic treatment of ampicillin-resistant *Pseudomonas aeruginosa* with hypericin and ampicillin cotreatment followed by orange light. Pharmaceutics 11(12): 641. https://doi.org/10.3390/pharmaceutics11120641
- Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
- Chaiwan N, Gomdola D, Wang S, Monkai J, Tibpromma S, Doilom M, Wanasinghe DN, Mortimer PE, Lumyong S, Hyde KD (2021) An online database providing updated information of microfungi in the Greater Mekong Subregion. Mycosphere 12(1): 1513–1526. https://doi.org/10.5943/mycosphere/12/1/19
- Chen S, Shen H, Deng Y, Guo H, Jiang M, Wu Z, Yin H, Liu L (2021) Roussoelins A and B: Two phenols with antioxidant capacity from ascidian-derived fungus *Roussoella siamensis* SYSU-MS4723. Marine Life Science & Technology 3(1): 69–76. https://doi.org/10.1007/s42995-020-00066-8
- Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PW, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JH, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GE, Held BW, Jurjević Ž, Kaewgrajang T, Latha KP, Lombard L, Luangsa-Ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin HD, Silva BD, Silva GA, Smith MT, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ (2016) Fungal Planet description sheets: 400–468. Persoonia 36(1): 316–458. https://doi.org/10.3767/003158516X692185
- De Silva NI, Tennakoon DS, Thambugala KM, Karunarathna SC, Lumyong S, Hyde KD (2020) Morphology and multigene phylogeny reveal a new species and a new record of *Rhytidhysteron* (Dothideomycetes, Ascomycota) from China. Asian Journal of Mycology 3(1): 295–306. https://doi.org/10.5943/ajom/3/1/4
- De Silva NI, Hyde KD, Lumyong S, Phillips AJL, Bhat DJ, Maharachchikumbura SSN, Thambugala KM, Tennakoon DS, Suwannarach N, Karunarathna SC (2022) Morphology, phylogeny, host association and geography of fungi associated with plants of An-

- nonaceae, Apocynaceae and Magnoliaceae. Mycosphere 13(1): 955–1076. https://doi.org/10.5943/mycosphere/13/1/12
- Guatimosim E, Pinto HJ, Pereira OL, Fuga CA, Vieira BS, Barreto RW (2015) Pathogenic mycobiota of the weeds *Bidens pilosa* and *Bidens subalternans*. Tropical Plant Pathology 40: 298–317. https://doi.org/10.1007/s40858-015-0040-x
- Htet ZH, Mapook A, Chethana KT (2024) Molecular taxonomy reveals new records of Chromolaenicola (Didymosphaeriaceae, Pleosporales) and potential antibacterial properties. Studies in Fungi 9(1): e006. https://doi.org/10.48130/sif-0024-0006
- Hyde KD, Norphanphoun C, Ma J, Yang HD, Zhang JY, Du TY, Gao Y, Gomes de Farias AR, He SC, He YK, Li CJY, Li JY, Liu XF, Lu L, Su HL, Tang X, Tian XG, Wang SY, Wei DP, Xu RF, Xu RJ, Yang YY, Zhang F, Zhang Q, Bahkali AH, Boonmee S, Chethana KWT, Jayawardena RS, Lu YZ, Karunarathna SC, Tibpromma S, Wang Y, Zhao Q (2023) Mycosphere notes 387–412 novel species of fungal taxa from around the world. Mycosphere 14(1): 663–744. https://doi.org/10.5943/mycosphere/14/1/8
- Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proceedings of the National Academy of Sciences of the United States of America 84(16): 5818–5822. https://doi.org/10.1073/pnas.84.16.5818
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8
- Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC, Jeewon R, Phillips AJL, Bhat DJ, Wanasinghe DN, Liu JK, Lu YZ, Kang JC (2019) Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10(1): 1–186. https://doi.org/10.5943/mycosphere/10/1/1
- Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 7(11): 1669–1677. https://doi.org/10.5943/mycosphere/7/11/4
- Karlsson LM, Tamado T, Milberg P (2008) Inter-species comparison of seed dormancy and germination of six annual Asteraceae weeds in an ecological context. Seed Science Research 18(1): 35–45. https://doi.org/10.1017/S0960258508888496
- Karunarathna A, Phookamsak R, Jayawardena RS, Cheewangkoon R, Hyde KD, Kuo CH (2019) The holomorph of *Neoroussoella alishanense* sp. nov. (Roussoellaceae, Pleosporales) on *Pennisetum purpureum* (Poaceae). Phytotaxa 406(4): 218–236. https://doi.org/10.11646/phytotaxa.406.4.1
- Katinas L, Crisci JV, Telleria MC, Barreda V, Palazzesi L (2007) Early history of Asteraceae in Patagonia: Evidence from fossil pollen grains. New Zealand Journal of Botany 45(4): 605–610. https://doi.org/10.1080/00288250709509742
- Li J, Jeewon R, Mortimer PE, Doilom M, Phookamsak R, Promputtha I (2020) Multigene phylogeny and taxonomy of *Dendryphion hydei* and *Torula hydei* spp. nov. from herbaceous litter in northern Thailand. PloS ONE 15: e0228067. https://doi.org/10.1371/journal.pone.0228067
- Li M, Raza M, Song S, Hou L, Zhang ZF, Gao M, Huang JE, Liu F, Cai L (2023) Application of culturomics in fungal isolation from mangrove sediments. Microbiome 11(1): 272. https://doi.org/10.1186/s40168-023-01708-6
- Liu JK, Phookamsak R, Dai DQ, Tanaka K, Jones EG, Xu JC, Chukeatirote E, Hyde KD (2014) Roussoellaceae, a new pleosporalean family to accommodate the genera

- *Neoroussoella* gen. nov., *Roussoella* and *Roussoellopsis*. Phytotaxa 181(1): 1–33. https://doi.org/10.11646/phytotaxa.181.1.1
- Mapook A, Boonmee S, Ariyawansa HA, Tibpromma S, Campesori E, Jones EG, Bahkali AH, Hyde KD (2016) Taxonomic and phylogenetic placement of *Nodulosphaeria*. Mycological Progress 15: 1–15. https://doi.org/10.1007/s11557-016-1176-x
- Mapook A, Hyde KD, McKenzie EH, Jones EG, Bhat DJ, Jeewon R, Stadler M, Samarakoon MC, Malaithong M, Tanunchai B, Buscot F, Wubet T, Purahong W (2020) Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). Fungal Diversity 101(1): 1–175. https://doi.org/10.1007/s13225-020-00444-8
- Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), IEEE, New Orleans, LA, 8 pp. https://doi.org/10.1109/GCE.2010.5676129
- Pasouvang P, Karunarathna A, De Silva NI, Sibounnavong P, Zhao H, Luo M, Jayawardena RS (2022) A new species of *Neoroussoella peltophora* in Roussoellaceae, from Thailand. Phytotaxa 531(3): 282–292. https://doi.org/10.11646/phytotaxa.531.3.7
- Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EG, Maharachchikumbura SS, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang G-N, Jiang H-B, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He M-Q, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang Q-J, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh S-Y, Huang S-K, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu X-D, Lu Y-Z, Lim YW, Chen Y, Tkalčec Z, Zhang Z-F, Luo Z-L, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang L-Z, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao R-L, Lumyong S, Boonmee S, Wen T-C, Mortimer PE, Xu J (2019) Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95(1): 1-273. https://doi.org/10.1007/s13225-019-00421-w
- Phukhamsakda C, Macabeo APG, Yuyama KT, Hyde KD, Stadler M (2018) Biofilm inhibitory abscisic acid derivatives from the plant-associated Dothideomycete fungus, *Roussoella* sp. Molecules (Basel, Switzerland) 23(9): 2190. https://doi.org/10.3390/molecules23092190
- Rambaut A (2012) FigTree v.140. University of Oxford.
- Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https://doi.org/10.1007/BF02338839
- Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 32: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
- Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D (2020) Morphological

- approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
- Sommart U, Rukachaisirikul V, Saithong S, Phongpaichit S, Sakayaroj J, Preedanon S, Chainok K, Khunrong T (2022) 2-Oxaspiro [45] decane and α-pyrenocine derivatives from the endophytic fungus *Roussoella* sp PSU-H51. Natural Product Research 36(19): 4911–4920. https://doi.org/10.1080/14786419.2021.1910692
- Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Takekawa H, Tanaka K, Fukushi E, Matsuo K, Nehira T, Hashimoto M (2013) Roussoellols A and B, tetracyclic fusicoccanes from *Roussoella hysterioides*. Journal of Natural Products 76(6): 1047–1051. https://doi.org/10.1021/np400045z
- Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Magurno F (2022)
 Outline of Fungi and fungus-like taxa 2021. Mycosphere 13: 53–453. https://doi.org/10.5943/mycosphere/13/1/2
- Wu K, Tian W, Syed A, Elgorban AM, Bahkali AH, Maharachchikumbura SS (2023) Description of two new species of *Roussoella* (Roussoellaceae, Pleosporales) associated with bamboo from Sichuan Province, China. Phytotaxa 607(4): 235–248. https://doi.org/10.11646/phytotaxa.607.4.2
- Xu Z, Chang L, Xu Z, Chang L (2017) Asteraceae. In: Xu Z, Chang L (Eds) Identification and Control of Common Weeds: Vol. 3. Springer, Singapore, 441–721. https://doi.org/10.1007/978-981-10-5403-7_20
- Zhang F, Li Q, Yerger EH, Chen X, Shi Q, Wan F (2018) AM fungi facilitate the competitive growth of two invasive plant species, *Ambrosia artemisiifolia* and *Bidens pilosa*. Mycorrhiza 28: 703–715. https://doi.org/10.1007/s00572-018-0866-4
- Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: 1–15. https://doi.org/10.1186/1471-2164-3-4
- Zhong JQ, Chen YC, Chen SC, Liu ZM, Liu HX, Zhang WM, Yan HJ (2021) Study on the secondary metabolites from the deep-sea-derived fungus *Neoroussoella* sp. and their biological activities. Natural product research and development 33: 1165. https://doi.org/10.16333/j.1001-6880.2021.7.011
- Zungsontiporn S, Watcharasin P, Promma A, Wong LJ, Pagad S (2020) Global Register of Introduced and Invasive Species Thailand. Version 1.4. Invasive Species Specialist Group ISSG. Checklist dataset. https://doi.org/10.15468/rbs6sw [accessed via GBIF. org on 2024-08-11]