Fayoum University Faculty of Engineering Industrial Engineering Department Fayoum University

Term Exam 2nd year
Stress Analysis
Time: 3 Hrs

امتحان طلاب نظامی + تخلفات Answer as much as you can. Maximum points are 100 points

Question No. (1):

(20 points)

Each of the four vertical links has an 8 x 36 mm uniform rectangular cross section and each of the four pins has a 16 mm diameter, determine:

- a. The force in each link.
- b. The maximum value of the average normal stress in the links connecting points B and D, points C and E.
- c. The average shearing stress in the pin at B.
- d. The average bearing stress at B in link BD.
- e. The average bearing stress at B in member ABC, knowing that this member has a 10 x 50 mm uniform rectangular cross section.

Question No. (2):

(20 points; (5+15))

(A) The change in diameter of a large steel bolt is carefully measured as the nut is tightened. Knowing that E=200 GPa and $\upsilon=0.29$, determine the internal force in the bolt if the diameter is observed to decrease by 13 μ m.

(B) The rigid bar BDE is supported by two links AB and CD. Link AB is made of aluminum (E = 70 GPa) and has a cross sectional area of 500 mm², link CD is made of steel (E = 200 GPa) and has a cross sectional area of 600 mm². For the 30 KN force shown, determine:

- a. The deflection at point B and point D.
- b. The deflection at point E.
- c. The deflection at point C if it is become free to move and deflection at point D = 0.4 mm.

(A) Design a solid shaft for allowable shearing stress 70 MPa and subjected to a torque of magnitude 600 N.m.

- (B) Two shafts, each with 22 mm diameter are connected by the gears shown. Knowing that G = 77 GPa, the shaft at is fixed at F, the torque at point A is equal to 130 N.m, determine:
 - (i) The torque at shaft FE.
 - (ii) The maximum shearing stress at shaft AB and shaft FE.
 - (iii) The twist angle at end A.

Question No. (4):

(15 points)

Knowing that the allowable stress in section a-a of the hydraulic press shown is 40 MP in tension and 80 MPa in compression, determine:

- a. The largest force P that can be exerted by the press.
- b. The location of the neutral axis.

Question No. (5):

(15 points)

The structure shown consists of a rolled steel beam AB and of two short members welded together and to the beam. Required:

- (a) Write down the shear and bending moment equations.
- (b) Draw the shear and bending moment diagrams.
- (c) Determine the maximum normal stress in sections just to the left and just to the right of point D.

Knowing that the elastic section modulus S has a value of $2.08 \times 10^6 \text{ mm}^3$ about the x-axis.

Question No. (6):

(20 points)

A 13 KN force is applied as shown to the 60 mm diameter cast iron post ABD. At point H, determine:

- a. The principle planes.
- b. The principle stresses.
- c. The maximum shearing stress

Good Luck

(11 PODE = \(\frac{125^2}{125^2} + 300^2 = 325 0000 Vx = 0 , Vy = -13 (300) = -12 KN V2 = -13 (125) = -5 KN * M. = -5 (0-2) = -1 KN.M My = 5 (0.15) = 0.75 kN.m , Mz = -12(0.15) = -1.8 kN.m * A = TC = TT (0.03) = 2.8274 + 10 mm I = TC4 = T (0.03)4 = 636.17 x 103 mm9 J 5 TT C9 = TT (0,03) = 1.2723 * 16 mm4 $Q = Aij = \frac{1}{2}\pi C^{2} + \frac{4\pi}{3\pi} = \frac{2}{3}C^{3} = \frac{2}{3}(0.03)^{3} = 18 + 10 \text{ mm}$ Lo at point H $\frac{F_{3}}{6y} = -\frac{P}{A} - \frac{My}{T} = \frac{-12 \times 10^{3}}{2.8274 \times 10^{3}} - \frac{(1.8 \times 10^{3})(0.03)}{636.17 \times 10^{-9}} = -89.13 \text{ Mpg}$ $T_{KJ} = \frac{QV}{T} + \frac{TC}{T} = \frac{(18H6^{-6})(-5000)}{(0.75*16)(0.03)} \qquad (0.75*16)(0.03)$ * State of Stress at clement H is (0.06) + 1.2723 *166 =15.5 Mm 6, =c, , 5y = -89.13, 7, = 15.3 MM waring Mohil's Cilde $G_{av} = \frac{G_{x} + G_{y}}{2} = \frac{-89.13}{2} = -44.565 Mpg$ R = \(\left(\frac{\Gr-67}{2}\right)^2 + \(T_{ry}^2\right)^2 \right(\frac{\Sq.13}{2}\right)^2 + \((S\frac{3}{2}\right)^2 + \((S\frac{3}{2}\right)^2\right)^2 + \((S\frac{3}\right)^2\right)^2 + \(S\frac{3}{2}\right)^2\right)^2 + \((S\frac{3}\right)^2\right)^2 + \((S\frac{3}\right)^ [a] 3 points tan 20p = (cx-6) = 2(15.1)

89.15 = -49.585 ±97.1 O.wax = 2.585MP9 5 - 91.885MP9

```
er year
                                      Model Haswel
   ist war
                                    Term Exam 2009/2010
   Stress Analysis
   Q. (1) (20) points
                                                         1 srikn
   (a) 4 = 0 (3 points)
           -20 (0.25+0.4) + FBD (0.4) =0
                    (Fign = 32.5 KN Tension) 0.25 m 0.4m
                   (FBO at one link = 32.5 = 15.25 KN Tension)
            E Fy7 50
                 20-FBO+FGE=0 == 20-32.5+FGE=0
                       ->> FEE = 12.5 EN Composision)
                          FOE at one link = 12.5 = 6.25 KN Compression
    (# routs)
  6) - link BO at Tension - max, stress value will be at smallest area (holes)
6 = FBO France WAK = 16.25*10 = 101.6 Mpa

BD A lathole (0.036-0.016)(0.008)

Ink CE at Compression to max stress will be at The arigin area

CE = FCE) one link = -6.25*103 = -21.7 Mpa

(4 points)

CE A latarign (0.036*+0.008)

(5 shear stress at pin B
T = FRD/for one link = 16.75×10 = 80.8 MP9

Ap ($points)

Bearing Stress at 13 in link BD
(3) = F80) for ene link = 16.25*(6) = 126.9 Mp9

(2) Bearing Stres pat B in ABC 2
         G_{b} = \frac{F_{BO}}{A} = \frac{32.5 \times 10^{3}}{(0.016 \times 0.01)} = 203.1 \text{ Mpg}
```

Q[Z] 20. Paints (5+15) $S_{y} = -13 \times 10^{6} \text{ m} - 10^{6} \text{ g} = \frac{S_{y}}{A} = \frac{-13 \times 10^{6}}{60 \times 10^{3}} = -2.17 \times 10^{4}$ $D = -\frac{E_{y}}{E_{x}} - 10^{6} E_{x} = \frac{-E_{y}}{D} = \frac{2.17 \times 10^{4}}{0.29} = 7.47 \times 10^{4}$ (A) Spoints: L., 6 = EEx = Zod*10 + 7.47 *10 = 149.4 Mp9 $A = \frac{11}{4} A^2 = \frac{11}{4} (0.06)^2 = 2.83 \times 10^3 \text{ m}^2$ L, 6x = Fx - Fx = 6x A = 149.4 x 16 x 2.83 x 10 = 422.4 投N 3. Fx = 422.4 N (B) (15 points) 5 MB 7 = 0 - Fro(0.7) - 50 (0.6) = 0 30 F.N FOD = 90 KN TENNION) Co C 5 MD 5 = 0 - 10 FAB(0.2) - 30(0.4)=0 (FAB = 60 KN Compression) (Spends) $(5P^{and})$ $(5P^{an$ So= Finls = 90x10 x 0.4 = 3x10 m = 0.3 mm & 600x10 x 0.4 6 = 3x10 m = 0.3 mm $\frac{S_B}{S_D} = \frac{200 - X}{X} = \frac{0.514}{0.3} = \frac{200 - X}{X}$ $\frac{S_{E}}{S_{O}} = \frac{o.4 + (73.7 + 10)}{X} = \frac{S_{E}}{(73.7 + 10)} = \frac{S_{E}}{0.3}$ in This Care Spr = Sp - Sc = 0.3 .. Se= Sn-Snc=0.4-0.7=0.1/mm

$$\frac{b}{T} \cdot (5points) = \frac{TC}{T} = \frac{130(0.011)}{T} = 62.7 Mpq$$

$$T_{max}|_{AB} = \frac{TC}{T} = \frac{137.3(0.011)}{T(0.011)} = 89.8 Mpq$$

$$C_{max}|_{FE} = \frac{TFC}{T} = \frac{137.3(0.011)}{T(0.011)} = 89.8 Mpq$$

$$C_{max}|_{FE} = \frac{TFC}{T} = \frac{137.3(0.011)}{T(0.011)} = 89.8 Mpq$$

$$\varphi_{E} = \varphi_{FE} = \frac{T_{FE} L_{FE}}{G T_{FE}} = \frac{197.3 * 0.3}{77 * 10^{4} * \frac{T}{2} (0.011)^{4}} = 0.05 \text{ red} = 1.72^{\circ}$$

$$\varphi_{E} = \varphi_{B} \Gamma_{B} \longrightarrow \varphi_{B} = \frac{\varphi_{E} Y_{E}}{\Gamma_{B}} = \frac{0.03 * 0.15}{0.11} = 0.051 \text{ red} = 2.34^{\circ}$$

$$\Phi_{AB} = \frac{T_{AB}L_{AB}}{GT_{AB}} = \frac{130 * 0.35}{77 * 10^{3} * T_{(0.011)^{4}}} = 0.026 \text{ rad} = 1.47^{\circ}$$

中性 (15 points) (10+5) a) (10 points) 250 6250 12.5 78125 (i)12500 1015675 7 = 5A7 = 1015625 = 81.25 mm Jz= 68-75 ---M=p(300+y) = p(381.25) = 0.38125 P N-m = 29.9 *10 mm = 29.7 * 10 mm 4 $I_{1} = \frac{bh'}{17} + A_{1}d_{1}^{2} = \frac{c_{5}(150)^{3}}{17} + 6750(68.75)^{2}$ = 62.1 x 16 min = 67.1 x 10 m 4 I = I, +I2 = 92 +16 m4 χ at tension y = 81.25 nm, $G_{tot} = \frac{P}{A} + \frac{M9}{I} \Rightarrow 40 \times 16 = \frac{P}{12500 \times 16^6} + \frac{0.38125 P6.46}{92 \times 16^6}$ 90+10 = p (80+335.7) = [p=96.22 KN] * at Compression y = 193.75 mm, 6 = P = My => - 80 x 16 = 17500 x 16 92 x 16 92 x 16 -80 x10 = P(80-797.8) - 111 kn) Sports I angest p That Can be applied is $96.22 \times N$ (b) at nutral aris $6 = 0 \rightarrow A - \frac{My}{I} = 0 \Rightarrow A = \frac{My}{A}$ $y = \frac{PI}{MA} = \frac{92 \times 10^6}{0.38125 \times 12500 \times 10^6} = 0.019 \, \text{m} = 19 \, \text{mm}$

أعمال السنة المادة: تحليل الاجهادات السنة: ثانية صناعية

Final (50)	Med Term (25)	HW, AT., Q. (25)	الأسم
34	11	23	اسراء عبد اللطيف محمود
45	20	25	احمد على عبد الجيد
1	0	1	أمنية عبد الفتاح جودة
40	17	23	حمدية عوض منصور
. 27	6	21	زينب عبد الستار محمد
37	15	22	سمر عصبام أحمد سالم
31	10	21	علا موسى محمد
3.5	13	22	غادة رمضان عبد الباقى
37	16	21	محمد مصطفى مصطفى
34	12	22	مریم نبیل ظریف
31	10	21	ناهد سمير ميهوب أحمد
25	5	20	ئورا سالم عويس
43	18	25	
25	14	11	هویدا محمد هیژم صبخی سلامة