Correction

d'après Mines de Sup 1995

Partie I

- 1. Si P est un polynôme constant alors $\Delta(P)=0$ ce qui en détermine degré et coefficient dominant. Si P est un polynôme non constant, posons p son degré, on peut écrire $P=\sum_{k=0}^p a_k X^k$ (avec $a_p\neq 0$) et on a $\Delta(P)=\sum_{k=0}^p a_k \Delta(X^k)$ avec $\Delta(X^0)=0$ et $\Delta(X^k)=(X+1)^k-X^k=kX^{k-1}+\cdots$ pour $k\geq 1$. Par suite $\Delta(P)=pa_pX^{p-1}$ donc $\deg\Delta(P)=p-1$ et le coefficient dominant de $\Delta(P)$ est pa_p où a_p désigne le coefficient dominant de P.
- 2.a Δ_n est linéaire car restriction d'une application linéaire, de plus ci-dessus, on a vu que si $\deg P \leq n$ alors $\deg \Delta(P) \leq n-1 \leq n$ donc $\Delta_n : E_n \to E_n$ et ainsi Δ_n est un endomorphisme de E_n .
- 2.b En 1, on a obtenu : si P est constant $\Delta(P)=0$ et si P non constante $\Delta(P)\neq 0$. Le noyau de Δ_n est donc réduit à l'ensemble des polynômes constants. Ainsi $\dim\ker\Delta_n=1$ et par le théorème du rang $\operatorname{rg}\Delta_n=\dim E_n-1=n$. De plus si $P\in E_n$ alors on a $\deg\Delta(P)\leq n-1$ donc $\Delta(P)\in E_{n-1}$. Par suite $\operatorname{Im}\Delta_n\subset E_{n-1}$. Par inclusion et égalité des dimensions : $\operatorname{Im}\Delta_n=E_{n-1}$.
- 3. $\forall P \in E$, on posant $n = \deg P$, il existe $Q \in E_{n+1}$ tel que $\Delta(Q) = P$ car Δ_{n+1} est un endomorphisme de E_{n+1} dont l'image est E_n .

Partie II

$$1.a \qquad \Delta(N_k)(x) = N_k(x+1) - N_k(x) = \frac{x(x-1)...(x-k+2)}{k!} (x+1-(x-k+1)) = \frac{x(x-1)...(x-k+2)}{(k-1)!} \\ \text{donc } \Delta(N_k) = N_{k-1} \; .$$

- 1.b Pour $j \le k$: $\Delta^j(N_k) = N_{k-j}$ et puisque $\Delta(N_0) = 0$, $\Delta^j(N_k) = 0$ pour j > k. Par suite $(\Delta^j(N_k))(0) = 0$ si j < k et si j > k alors que $(\Delta^j(N_k))(0) = 1$ si j = k.
- 2.a La famille $(N_0, N_1, ..., N_n)$ vérifie $\deg N_k = k$ donc c'est une famille de polynôme de degrés étagés et par conséquent celle-ci est une base de E_n .

2.b
$$(\Delta^{j}(P))(0) = \sum_{k=0}^{n} a_{k}(\Delta^{j}(N_{k}))(0) = a_{j} \text{ puisque } (\Delta^{j}(N_{k}))(0) = \delta_{j,k}.$$

- $\begin{aligned} &3. \qquad a = \Delta^0(P)(0) = 0 \text{ , } b = \Delta^1(P)(0) = 1 \text{ et } c = \Delta^2(P)(0) = 2 \text{ .} \\ &\text{Consid\'erons } Q = aN_1 + bN_2 + cN_3 \text{ . Par l'\'etude qui pr\'ec\`ede } \Delta(Q) = aN_0 + bN_1 + cN_2 = P \text{ .} \\ &\text{Concr\`etement : } Q(x) = \frac{x(x-1)}{2} + 2\frac{x(x-1)(x-2)}{6} = \frac{x(x-1)(2x-1)}{6} \text{ .} \\ &\sum_{k=1}^n k^2 = \sum_{k=1}^n P(k) = \sum_{k=1}^n \Delta(Q)(k) = \sum_{k=1}^n Q(k+1) Q(k) = Q(n+1) Q(1) = \frac{n(n+1)(2n+1)}{6} \text{ .} \end{aligned}$
- 4.a Par récurrence $T^k(f)(x) = f(x+k)$.
- 4.b $\Delta = T \operatorname{Id}_{\mathcal{F}}$ avec T et $\operatorname{Id}_{\mathcal{F}}$ qui commutent donc par la formule du binôme de Newton : $\Delta^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} T^k \text{ puis } \Delta^n(f) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} T^k(f) .$
- 4.c $(\Delta^n(f))(0) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} f(k) \text{ car } T^k(f)(0) = f(k).$

- 1.a Soit $\lambda,\mu\in\mathbb{R}$ et $P,Q\in E_n$. $\varphi(\lambda P+\mu Q)=(...,(\lambda P+\mu Q)(k),...)=(...,\lambda P(k)+\mu Q(k),...)=\lambda(...,P(k),...)+\mu(...,Q(k),...)$ donc $\varphi(\lambda P+\mu Q)=\lambda\varphi(P)+\mu\varphi(Q)$ et φ est linéaire. Soit $P\in E_n$. Si $\varphi(P)=(0,...,0)$ alors P(0)=...=P(n)=0 et donc le polynôme admet au moins n+1 racines or $\deg P\leq n$ donc P=0. Ainsi $\ker \varphi=\left\{0\right\}$ or $\dim E_n=\dim \mathbb{R}^{n+1}$ donc φ est un isomorphisme.
- 1.b Par la bijectivité de φ , il existe un unique $P \in E_n$ tel que $\varphi(P) = (f(0), ..., f(n))$. Par suite le problème \mathcal{P} possède une unique solution.

2.a
$$(\Delta^{j}(f))(0) = \sum_{k=0}^{j} {j \choose k} (-1)^{j-k} f(k) = \sum_{k=0}^{j} {j \choose k} (-1)^{j-k} P(k) = (\Delta^{j}(P_f))(0)$$
.

2.b Rappelons que pour
$$P \in E_n$$
: $P = \sum_{j=0}^n a_j N_j$ avec $a_j = \Delta^j(P)(0)$ donc
$$P_f = \sum_{j=0}^n (\Delta^j(P_f))(0) N_j = \sum_{j=0}^n (\Delta^j(f))(0) N_j \,.$$

3.a Posons K une constante telle que $f(x)-P_f(x)=K.N(x)$. Une telle constante K existe car $N(x)\neq 0$ puisque $x\not\in\mathbb{N}$.

Considérons alors $\varphi:\mathbb{R}\to\mathbb{R}$ définie par $\varphi(t)=f(t)-P_f(t)-KN(t)$. φ est une fonction de classe \mathcal{C}^{n+1} qui s'annule en $0,1,\ldots,n$ et aussi en x. Cela fournit n+2 annulation dans [0,n]. Par application du théorème de Rolle, φ' s'annule au moins n+1 fois dans [0,n] et en reprenant ce processus, $\varphi^{(n+1)}$ s'annule au moins une fois dans [0,n] en un certain ξ . Or $\varphi^{(n+1)}(t)=f^{(n+1)}(t)-0-(n+1)!K$ car $\deg P_f \leq n$ et N est un polynôme unitaire de degré n+1 donc $N^{(n+1)}=(n+1)!$. La relation $\varphi^{(n+1)}(\xi)=0$ donne alors $K=\frac{f^{(n+1)}(\xi)}{(n+1)!}$ ce qui permet de conclure.

3.b Pour
$$x \in \mathbb{N} \cap [0, n]$$
, $|f(x) - P_f(x)| = 0 \le \frac{1}{n+1} M_{n+1}$.

$$\text{Pour } x \in \left[0, n\right], \ x \not \in \mathbb{N} \ : \ \left|f(x) - P_f(x)\right| = \frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!} \left|N(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \left|N(x)\right| \, .$$

Pour conclure, il reste à établir : $\forall x \in [0, n], |N(x)| \le n!$.

Raisonnons par récurrence sur $n \in \mathbb{N}^*$.

Pour n = 1, N(x) = x et la propriété est vraie.

Supposons la propriété établie au rang $n \ge 1$:

Pour
$$x \in [0, n+1]$$
, étudions $N(x) = x(x-1) \times ... \times (x-(n+1)) = M(x) \times (x-n-1)$.

Par HR, pour $x \in [0, n]$, on a $|M(x)| \le n!$ donc $|N(x)| \le n |x - n - 1|$ avec $|x - n - 1| \in [1, n + 1]$ donc $|N(x)| \le (n + 1)!$. Pour $x \in [n, n + 1]$,

 $|N(x)| = x(x-1) \times ... \times (x-n) \times (n+1-x) \le (n+1)n \times ... \times 1 \times 1 = (n+1)!$. Récurrence établie et problème résolu.