Extra sheet (Capacitor)

Exercise 1:

In order to determine the capacitance C of a capacitor, we connect up the circuit of document 1. This circuit is formed of the capacitor, a generator of e.m.f. E = 9V and of negligible internal resistance, two resistors of resistances $\mathbf{R_1} = 200 \mathrm{k}\Omega$ and $\mathbf{R_2} = 100 \mathrm{k}\Omega$ and two switches $\mathbf{K_1}$ and $\mathbf{K_2}$.

I- Charging the capacitor

The capacitor being initially uncharged, we close K_1 and keep K_2 open. The capacitor will be charged.

- 1- Derive the differential equation that describes the variation of the voltage $u_{\mathcal{C}}=u_{AB}$ across the capacitor.
- 2- Knowing that the solution of this differential equation has the

form $u_C = E\left(1 - e^{-\frac{t}{\tau_1}}\right)$. Determine the expression of the constant τ_1 as a function of \mathbf{R}_1 and \mathbf{C} .

II- Discharging the capacitor

The capacitor being charged under a voltage of 9V, we open K₁ and close K₂.

The capacitor then discharges.

- Draw a diagram of the circuit during that phase indicating the direction of the current.
- 2- Derive the differential equation that describes the variation of the voltages $u_{\mathcal{C}}=u_{AB}$ across the capacitor.
- variation of the voltages $u_C = u_{AB}$ across the capacitor. 3- Knowing that the solution of this differential equation is

of the form $u_C = Ee^{-\frac{\epsilon}{\tau_2}}$, deduce the expression of:

- 3.1- the current i as a function of time. Take the direction of the current as a positive direction.
- 3.2- the time constant τ_2 as a function of R_2 and C.
- 4- A convenient apparatus allows us to trace the graph of the variation of $u_{\mathcal{C}}$ as a function of time. (document 2) Determine from the curve the value of τ_2 . Deduce the value of C.

III- What conclusion can be drawn about the two values of C? Comment.

Exercise 2:

The object of this exercise is to distinguish the response of an RC series circuit when we apply across its terminals a constant voltage, from its response when it carries a constant current.

A- Case of a constant voltage

The circuit of the adjacent figure allows us to charge the capacitor of capacitance C = $10\mu F$ through a resistor of resistance R = $100k\Omega$, under a constant voltage E = 9V. Take the instant t = 0 the instant when the switch K is closed.

1- Denote by $u_C = u_{MN}$, the instantaneous value of the voltage across the terminals of the capacitor.

- 1.2- Knowing that the solution of this equation has the form: $u_{\mathcal{C}} = A\left(1 e^{-\frac{t}{\tau}}\right)$ determine A and τ .
- 1.3- Trace the shape of the curve that gives the variation of $u_{\mathcal{C}}$ as a function of time.

2-

2.1- Determine the expression of the voltage $u_{\it R}=u_{\it AM}$ as a function of time.

- 2.2- Trace, on the same system of axes, the shape of the curve giving the variation of u_R as a function of time.
- 3- What is the value of the interval if time t_A at the end of which u_C becomes practically 9V?

B- Case of a constant current

The preceding capacitor being discharged is to be recharged through the same resistor by a generator giving a constant current $I_0 = 0.1 mA$.

1-

- **1.1-** Show that the chare q can be written, in SI, in the form $q = 10^{-4} \times t$.
- **1.2-** The voltage $u_R = u_{AM}$ across the resistor remains constant. Determine its value
- **1.3-** Trace the shape of the graph representing u_R .

2-

- **2.1-** Determine the expression of the voltage $u_C = u_{MN}$ as a function of time.
- **2.2-** Trace the shape of the graph representing u_c .
- **2.3-** Determine the time interval t_B needed for the voltage u_C to attain the value 9V.

C- Conclusions

- 1- Using the preceding graphs, specify the case where the voltage across the capacitor attains, in the steady state, a limiting value.
- 2- A camera is equipped with a flash that is formed of the preceding RC circuit. We intend to take the largest number of photos in a given time interval. To do so we have to charge the capacitor. Which one of the two preceding charging modes is more convenient? Why?

Exercise 3:

A heart suffering from disordered muscular contractions is treated by applying electric shocks using a convenient apparatus. In order to study the functioning of this apparatus, we use a source of DC voltage of adjustable value E, a double switch, a resistor of resistance R and a capacitor (initially neutral) of adjustable capacitance C. We connect the circuit represented in the adjacent figure.

E R

A. Theoretical study

- 1- The switch is turned to position (1).
 - 1.1- Give the name of the physical phenomenon that takes place in the capacitor.
 - 1.2- Specify the values of the current in the circuit and the voltage u_{MN} after few seconds.
- **2-** The switch is now turned to position (2) at an instant taken as $t_0 = 0$.
 - **2.1-** Derive, at the instant t, the differential equation giving the variation of the voltage $u_C = u_{MN}$ as a function of time.

2- The discharging starts at the instant $t_0 = 0$. At the instant t_1 , the energy delivered to the patient amounts to 360J, the switch is then opened.

- 2.1- Calculate the energy that remains in the capacitor at the instant t₁.
- 2.2- Using the results of the above theoretical study; determine:
 - 2.2.1- the value of t_1 .
 - **2.2.2-** the current at the end of the electric shock.

Exercise 4:

The object of this exercise is to determine the capacitance of a capacitor and study the effect of certain physical quantities on the duration of its charging.

The circuit of figure (1) is formed of:

- -an ideal generator delivering across its terminals an adjustable DC voltage $u_{MN}=u_g=E$;
- -a resistor of adjustable resistance R;
- -a capacitor of capacitance C;
- -a switch K.

I- The value of E is adjusted at E = 10V and that of R at $R = 2k\Omega$.

The capacitor being initially neutral, we close the switch at the instant $t_0 = 0$.

- 1.1- Derive the differential equation giving the variation of the voltage $u_{DF}=u_{C}$ across the capacitor as a function of time.
- **1.2-** Verify that the solution of this differential equation is $u_C = E\left(1 e^{-\frac{t}{RC}}\right)$.
- **2-** The voltages $u_{\mathcal{C}}$ and $u_{\mathcal{G}}$ are displayed using an oscilloscope (figure 2).
 - 2.1- Redraw the circuit of figure (1) showing the connections of the oscilloscope.
 - **2.2-** Give the maximum value of u_C .
- 3- One method to determine the value of C consists of determining the duration t₁ at the end of which the voltage $u_{\mathcal{C}}$ attains 63% of its maximum value.
 - **3.1-** Show that t_1 is very close to the value of RC.
 - 3.2- Using figure (2), determine the value of the capacitance C.
- 4- Another method allows us to determine C starting from the tangent at O to the curve $u_{\mathcal{C}} = f(t)$ (fig.2).
 - **4.1-** Find the expression of $\frac{du_c}{dt}$, at O, in terms of E, R and C.
 - **4.2-** Show that the equation of this tangent to the curve is $u = \frac{E}{RC}t$.
 - **4.3-** Verify that this tangent intersects the asymptote to the curve at the point of abscissa $t_1 = RC$.
 - **4.4-** Determine then the value of the capacitance C of the capacitor.
- II- The value of R is adjusted at $R = 1k\Omega$.
- 1- Trace, on the same system of axes, the shape of the curve uc in the two following cases:

Case (1): E = 10V, C = 2×10^{-6} F (curve 1) Case (2): E = 5V, C = 2×10^{-6} F (curve 2)

Scale: on the axis of abscissas:1div \leftrightarrow 4 ms; on the axis of ordinates:1 div \leftrightarrow 1 V.

2- Specify, with justification, which of the two physical quantities E or R affects the duration of charging of the capacitor.

Exercise 5:

An electric component (D), of unknown nature, which may be a resistor of resistance R or a pure coil of inductance L or a capacitor of capacitance C. To determine the nature and the characteristic of (D) we consider the following:

- An ideal generator G of constant electromotive force (e.m.f) E;
- Two resistors of resistances R₁ = 100Ω and R₂ = 150Ω;
- A double switch K.

We set up the circuit of figure 1.

$G = \begin{bmatrix} \bigoplus_{i \in \{1\}}^{K} K & (2) \\ \vdots & \vdots & \ddots \\ K & B \\ M & \vdots & R_1 \end{bmatrix} R_2$ $Fig.1 \quad N$

A- First Experiment

At an instant $t_0 = 0$, the switch K is turned to position (1). Figure 2 shows the variation of the voltage u_{FM} across the terminals of (D) as a function of time and the tangent to this curve at $t_0 = 0$.

- 1- The component (D) is a capacitor. Justify.
- 2- Indicate the value of the e.m.f E of the generator.
- 3- Calculate, at $t_0 = 0$, the current carried by the circuit.
- **4-** Derive the differential equation describing the variation of the voltage $u_{FM} = u_C$.
- 5- The solution of the differential equation has the form: $u_C = u_{FM} = A + Be^{-\frac{t}{\tau}}.$ Determine the expressions of the constants A, B and τ in terms of R₁, C and E.
- 6- Determine, graphically, the value of the time constant.
- 7- Deduce the value of C.

B- Second Experiment

During the charging of the capacitor and at an instant t_1 , we turn the switch K to the position (2) (figure 3).

- 1- Name the phenomenon that takes place.
- **2-** The resistor R_2 can support a maximum power of $P_{max} = 0.24W$.
 - **2.1-** Calculate the maximum value of the current which can pass through R_2 without damaging it (the thermal power is given by the relation: $p = Ri^2$).
 - **2.2-** Applying the law of addition of voltages, show that the maximum voltage across the terminals of the capacitor is $u_{FM} = 10V$ so that R_2 will not be damaged.
 - **2.3-** At the instant t_1 the current is maximum. Determine, graphically, the maximum duration $t=t_1$ of the charging process of the capacitor so that the resistor R_2 will not be damaged.

Exercise 6:

We intend to determine the resistance R of a resistor (R). We thus connect up the circuit represented in figure (1) that is formed of an ideal generator of e.m.f E=5V, the resistor (R), an uncharged capacitor (C) of capacitance $C=33\mu F$ and a double switch (K).

A- Charging of the capacitor

- 1- We intend to charge the capacitor. To what position, 1 or 2, must then (K) be moved?
- **2-** The circuit reaches a steady state after a certain time. Give then the value of the voltage u_{AB} across (C) and that of the voltage across (R).

B- Discharging of the capacitor

- 1- Draw a diagram of the circuit during the discharging of the capacitor and show on it the direction of the current it carries.
- **2-** Derive the differential equation in $u_{\mathcal{C}} = u_{AB}$ during the discharging.
- 3- The solution of this differential equation has the form: $u_C = Ee^{-\frac{t}{\tau}} (u_C \text{ in V, t in s})$ where τ is a constant.
 - $u_C = Ee^{\frac{t}{\tau}} (u_C \text{ in V, t in s})$ where τ is a constant. 3.1- Determine the expression of τ in terms of R and
 - **3.2-** Determine the value of $u_{\mathcal{C}}$ at the instant $t_1 = \tau$.
 - **3.3-** Give, in terms of τ , the minimum duration needed at the end of which the capacitor is practically totally discharged.
 - **3.4-** Derive the expression of $\ln u_C$, the natural logarithm of u_C , in terms of E, τ and t.
 - 3.5- The diagram of figure 2 represents the variation

Fig. 2

t(ms)

of $\ln u_C$ as a function of time. Referring to the graph of figure 2, determine the value of R.

0.4

10

20