Calculus

Limits			. •	• •
Imuite	and	I 'An	tin	
LIIII III III III III III III III III I	allu	CUII		uitv
	~			

Limits	5
Limits of a Functions and Sequences	5
Properties of Limits	5
One-Sided Limit	5
Continuity	6
Continuous Functions	6
Intermediate Value Theorem	6
Limits Involving Infinity	7
Limits at Infinity and Infinite Limits	7
Asymptotes of functions	7
Derivatives	
Derivative Fundamentals	8
Derivative Notation	8
Differentiation Rules	9
Linear, Product, Chain, Inverse	9
Powers, Polynomials, Quotients, Reciprocals	9
Exponential, Logarithmic	9
Trigonometric, Hyperbolic	9
Differentials and Related Concepts	10
Differentials	10
Linearization	10
Implicit Differentiation	10
Related Rates	10
Applications of Derivatives	
Stationary Point	11
Maxima and Minima	11
Extreme Value Theorem	11
Interior Extremum Theorem	11
Mean Value Theorem	12
Rolle's Theorem	12
Corollaries of the Mean Value Theorem	12
Monotonic Functions	12
Derivative Tests	13
First-Derivative Test	13

Second-Derivative Test	13
Concavity	13
Higher-Order Derivative Test	13
Differential Methods	14
Newton's Method	14
Taylor's Theorem	14
General Leibniz Rule	14
Integrals	
Integral Fundamentals	15
Terminology and Notation	15
Primer: Formal Definitions	15
Definite Integrals	16
Riemann Integral	16
Integrability	16
Properties of Definite Integrals	16
The Fundamental Theorem of Calculus	17
Fundamental Theorem, Part 1	17
Fundamental Theorem, Part 2	17
The Integral of a Rate	17
Total Area	17
Integration By Substitution	18
Indefinite Integrals	18
Definite Integrals	18
Symmetric Functions	18
Area Between Curves	18
Applications of Definite Integrals	
Solid of Revolution	19
Disc Integration	19
Shell Integration	19
Arc Length	20
Dealing with Discontinuities	20
Differential Arc Length	20
Surface of Revolution	21
Revolution about the y-Axis	21
Transcendental Functions	
Inverse Functions	22
One-to-One Functions	22
Derivative Rule for Inverses	22
Logarithmic Functions	23

Natural Logarithm	23
Properties of Logarithms	23
Trigonometric Integrals	23
Logarithmic Differentiation	23
Exponential Functions	24
Euler's Number	24
Natural Exponential Function	24
Laws of Exponents	24
General Exponential Function	24
Exponential Change	25
Separable Differential Equations	25
Examples of Exponential Change	25
Indeterminate Forms	26
Indeterminate Form 0/0	26
ĽHôpital's Rule	26
Infinite Indeterminate Forms	26
Indeterminate Powers	26
Inverse Trigonometric Functions	27
Principal Trigonometric Values	27
Inverse Trigonometric Tables	27
Hyperbolic Functions	28
Hyperbolic Function Tables	28
Techniques of Integration	
Integration by Parts	29
Definite Integrals by Parts	29
Trigonometric Integral Methods	30
Trigonometric Products and Powers	30
Trigonometric Square Roots	
Trigonometric Substitutions	30
Partial Fraction Decomposition	31
Partial Fraction Principles	
General Statement	31
Numerical Integration	32
Trapezoidal Rule	32
Simpson's Rule	32
Improper Integrals	33
Indirect Evaluation	33

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

Limits and Continuity

Limits

- Limit [%] | Thomas (2.2-2.4) [■]
- Limit $\lim_{x\to c}$: the value of a function (or sequence) as the input (or index) approaches some value (note: an informal definition).
 - \circ Limits are used to define continuity \downarrow , derivatives \downarrow , and integrals \downarrow .

Limits of a Functions and Sequences

- **Limit of a function**: a fundamental concept in calculus and analysis concerning the behavior of a function near a particular input *c*, i.e.,

$$\lim_{x \to c} f(x) = L$$

- Reads as "f of x tends to L as x tends to c"
- \circ ϵ , δ Limit of a function: a formalized definition, wherein f(x) is defined on an open interval \mathcal{I} , except possibly at c itself, leading to the informal definition, if and only if

$$f: \mathbb{R} \to \mathbb{R}, c, L \in \mathbb{R} \Rightarrow \lim_{x \to c} f(x) = L$$

$$\updownarrow$$

$$\forall \varepsilon > 0 (\exists \delta > 0 : \forall x \in \mathcal{I} (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon))$$

- functions do not have a limit when the function:
 - has a unit step, i.e., it "jumps" at a point;
 - is not bounded, i.e., it tends towards infinity;
 - or it oscillates, i.e., does not stay close to any single number.
- **Limit of a sequence**: the value that the terms of a sequence $(x_n)_{n\in\mathbb{N}}$ "tends to" (and not to any other) as n approaches infinity (or some other point), i.e.,

$$\lim_{n\to\infty} x_n = x$$

• \mathcal{E} Limit of a sequence: for every measure of closeness \mathcal{E} , the sequence's x_n term eventually converges to the limit, i.e.,

$$\forall \varepsilon > 0 \ (\exists N \in \mathbb{N} \ (\forall n \in \mathbb{N} \ (n \ge N \Rightarrow |x_n - x| < \varepsilon)))$$

Properties of Limits

0

One-Sided Limit

Continuity

Continuous Functions

0

Intermediate Value Theorem

Limits Involving Infinity

Limits at Infinity and Infinite Limits

0

Asymptotes of functions

Derivatives

Derivative Fundamentals

Derivative Notation

0 ...

Differentiation Rules

Linear, Product, Chain, Inverse

0

Powers, Polynomials, Quotients, Reciprocals

0

Exponential, Logarithmic

0

Trigonometric, Hyperbolic

Differentials and Related Concepts

Differentials

C

Linearization

0

Implicit Differentiation

0

Related Rates

Applications of Derivatives

Stationary Point

Maxima and Minima

0

Extreme Value Theorem

0

Interior Extremum Theorem

Mean Value Theorem

Rolle's Theorem

C

Corollaries of the Mean Value Theorem

0

Monotonic Functions

Derivative Tests

First-Derivative Test

0

Second-Derivative Test

0

Concavity

0

Higher-Order Derivative Test

Differential Methods

Newton's Method

0

Taylor's Theorem

0

General Leibniz Rule

Integrals

Integral Fundamentals

Terminology and Notation

0

Primer: Formal Definitions

Definite Integrals

Riemann Integral

0

Integrability

0

Properties of Definite Integrals

The Fundamental Theorem of Calculus

Fundamental Theorem, Part 1

0

Fundamental Theorem, Part 2

0

The Integral of a Rate

0

Total Area

Integration By Substitution

Indefinite Integrals

0

Definite Integrals

0

Symmetric Functions

0

Area Between Curves

Applications of Definite Integrals

Solid of Revolution

Disc Integration

0

Shell Integration

Arc Length

Dealing with Discontinuities

0

Differential Arc Length

Surface of Revolution

Revolution about the y-Axis

Transcendental Functions

Inverse Functions

One-to-One Functions

0

Derivative Rule for Inverses

Logarithmic Functions

Natural Logarithm

0

Properties of Logarithms

0

Trigonometric Integrals

0

Logarithmic Differentiation

Exponential Functions

Euler's Number

0

Natural Exponential Function

0

Laws of Exponents

0

General Exponential Function

Exponential Change

• Separable Differential Equations

0

Examples of Exponential Change

Indeterminate Forms

Indeterminate Form 0/0

0

L'Hôpital's Rule

0

Infinite Indeterminate Forms

0

Indeterminate Powers

Inverse Trigonometric Functions

Principal Trigonometric Values

0

Inverse Trigonometric Tables

Hyperbolic Functions

Hyperbolic Function Tables

Techniques of Integration

Integration by Parts

Definite Integrals by Parts

Trigonometric Integral Methods

Trigonometric Products and Powers

0

Trigonometric Square Roots

0

Trigonometric Substitutions

Partial Fraction Decomposition

Partial Fraction Principles

0

General Statement

Numerical Integration

Trapezoidal Rule

0

Simpson's Rule

Improper Integrals

Indirect Evaluation

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

