

Module 9 Part 4

Machine Learning

Harvinder S Jabbal SSZG653 Software Architectures

Contents

- Introduction
 - What is Machine Learning (ML)?
 - Applications of ML
- Different types of ML
 - Algorithms used in ML
- Steps to build a ML model
- Architecture of ML system
- Popular tools for ML

What is ML?

ML is the ability of machines to detect patterns and perform activities that humans do:

Applications

- Determine treatment for a patient based on their genetic makeup, demographic (age, gender, ethnicity) and psychographic characteristics (lifestyle, attitude, values)
- Pro-active maintenance of industrial equipment by looking at health parameters such as temperature, vibration, oil level
- Credit card Fraud detection by looking at spend frequency, amount, time of day, place of transaction, product purchased, customer profile

Major types of machine learning

Types of Machine Learning

ЛІ

lead

Some algorithms used in ML

Regression

Eg. Predict price of house given size, location, etc.

Decision tree

innovate

Does the person like computer games

Clustering

SE ZG651/ SS ZG653 Software Architectures

Neural networks

Supervised learning

innovate

- Supervised: In this approach, we provide a labelled dataset to the machine.
- Labelled dataset consists of features and result or class.
- Using the dataset, the machine builds a model (an equation or structure) to predict.

Eg. Predict price of house given size, location, etc.

Eg. Does this person like computer

Decision tree: Data provided to algorithm

Day	Outlook	Temperature	Humidity	Wind	Play Golf
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
Nov amber 9, 2024	⁴ Rain	Mild SE ZG651/S	SS ZG653 Software	Strong	No

Decision tree built by algorithm to predict whether to play or not

innovate achieve lead

Unsupervised Learning

 Unsupervised: Here we have an unlabelled dataset. We do not know what all features will constitute a class. The machine learns by itself and builds a model.

Circles indicates clusters of crime areas in Delhi

Ref: Crime Prediction using K-means Algorithm:
Global Research and Development Journal for Engineering |
SE ZG65/olume 2 places | April 2017

Architectures

Clustering

- Customers can be segmented (clustered) based on Gender, age, annual income, products purchased, etc. (Luxury car buyers)
- We can source potential customer data and determine to which segment they belong to.
- Based on the segment, we can target them and send promotion details for the right product

Clustering

innovate achieve lead

Reinforcement Learning

- Reinforcement Learning: In this, the machine learns from the environment by interacting with it.
- The machine is provided a set of allowed actions, rules and potential end states.
- By exploring different actions and observing resulting reactions the machine learns to exploit the rules to create a desired outcome.
- Eg. Game of chess, Robotics
- Algorithms used: Neural networks, Learning Automata, Q-Learning, Markov decision process

Deep Learning

innovate achieve lead

Deep learning: Used to understand and analyse image, sound and video. Uses Neural networks

Used to understand human language (Natural Language Processing

- NLP). Eg. Chatbots

Neural networks

- These networks can learn and model the relationships between inputs and outputs that are complex.
- Examples: Detecting rare events such as frauds, help doctors with an opinion

How does a neural network look like?

innovate achieve lead

Steps to build ML model

- 1. Identify the problem to be solved (how will it benefit the business?)
- Identify the features: This needs domain knowledge, creativity and lots of time. Ex: If we want to categorize customers, the features used to categorize can be age, salary, product purchased, where purchased, when, etc.
- 3. Decide on the model: What algorithm to use supervised, unsupervised, reinforcement?
- 4. Train-test-validate the model
- 5. Experiment: Keep improving the model

Building the model: Fraud detection

Architecture of ML system:

innovate achieve lead

Resource '

Image classification for insurance claims

SE ZG651/ SS ZG653 Software

Nove Ref. https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/intelligent-appsimage-processing

Popular tools

- Scikit Learn It provides models and algorithms for Classification, Regression, Clustering, Dimensional reduction, Model selection
- PyTorch Neural Networks
- Tensor Flow Neural networks
- Apache Mahout Regression, Clustering, Recommenders, and Distributed Linear Algebra.
- Spark MLib –

load

Experience sharing

What problem did you solve using ML?

What steps did you follow to develop the system?

What were the key challenges you faced?

References

ML primer SAS

Case studies in ML

6 steps to build a ML system

Thank you

