In ference

- Let Yi denote observations from some process, + let F(2:10), Where 2 is independent vouriable + of parameters.

. We assume & approximates the time process. Then

$$Y_{i} = f(\hat{A}_{i}; \hat{O}) + \mathcal{E}_{i}, \quad i=1,...,N$$

where E; accounts for difference between Y, + J.

· Y: landon Observations (real. y,)

· E: Pandon Measurement errors (real 6.)

. A: Parameters

or Frequentist: fixed, un2 nown

D Bayesian: rundom valiables

- Let us consider $f(2; \vec{\theta})$ where 2 represents ind. Variable.

. Y. Jenotes Observations.

Ex) Spring eq. F=ma eum m-1711 to F(t)

Z: Displacement of mass

alement of mass

$$\Rightarrow m \frac{d^2z}{dt} + C \frac{dz}{dt} + 2z = F(t) = f_0(os(w_F t))$$

$$= \sum_{z=0}^{\infty} m \frac{d^2z}{dt} + C \frac{dz}{dt} = V_0 + C \frac{dz}{dt} = V_0$$

·Recall that we can rewrite (I) as

Recall that we can rewrite
$$(I)$$
 as
$$\frac{d\hat{u}}{dt} = A\hat{u} + \hat{F}, \quad \hat{u} = \begin{bmatrix} z \\ v \end{bmatrix}, \quad \hat{v}_o = \begin{bmatrix} z \\ v \end{bmatrix}$$

$$A = \begin{bmatrix} -2/m & -1/m \end{bmatrix}, \quad \hat{F} = \begin{bmatrix} 5/m & \cos(\omega_F t) \end{bmatrix}$$

- . Note $\hat{0} = [M, C, 2]$ are parameters if $\vec{u}_0 + F(t)$ are 2000.
- Suppose we have a sensor that provides measurements at discrete times tj. Then:

$$f(t_j;\vec{\theta}) = \vec{c} \cdot \vec{u}(t_j;\vec{\theta})$$

. We call
$$\vec{c}$$
 the observation operator $\vec{c} = [0,1] \Rightarrow \text{Velocity Measure Ments}$ $\vec{c} = [0,1] \Rightarrow \text{Velocity Measure Ments}$ $\vec{c} = [1,0] \Rightarrow \text{Displacement Measure Ments}$ $\vec{c} = [1,1] \Rightarrow \text{Full System}$

Statistical Observation Models

- Here, we relate $f(\underline{y}; \overline{\delta}) = C(u(\underline{y}; \overline{\delta}))$, to \underline{y} , \underline{t} ets possible measurement error.

Additive Noise Models

- For additive measurement error, we have:

$$Y = \mathcal{L}(\mathcal{L}_i, \vec{\partial}) + \mathcal{E}_i, i=1,..., n_y$$

$$Y_{i} = \mathcal{F}(2, \bar{\theta}) + \mathcal{E}_{i}, i=1,..., n_{y}$$

. We typically assume Ein N(Me, 02), ME = bias

. We also like to assume $M_{\xi} = 0$

-If ℓ_i are additive with $\ell_i \sim \mathcal{N}(0, 0^2)$, we call these errors "interpendent + identically distributed", $\ell_i \sim \mathcal{N}(0, 0^2)$

- under these assumptions, the sampling distribution is given by a Gaussian pdf

P(4) 0) = (2002) 1/2 exp (- 201 = (4, - f(1, 0))2)

Inference with noise models

-onle we determine C + & distribution, we can begin interring (estinating)
the model parameters, $\vec{\delta}$.

- under the assumption of ε_i $N(0, \sigma^2)$, the ordinary least squares (OLS) estimator t estimate for $\vec{\partial}$ are

(estimator) $\widehat{\Theta}_{ols} = \underset{\widehat{O} \in \Gamma}{\text{arg Min}} \underbrace{\sum_{i=1}^{n_y} \left[y_i - f(y_i) \widehat{O} \right]^2}$

(estimate) $\hat{\theta}_{obs} = \underset{\delta \in \Gamma}{\operatorname{argmin}} \underbrace{z}_{i=1} \underbrace{y_i - f(y_i; \hat{\theta})}_{2} \underbrace{Ross}_{2}$

. Note that $\widehat{\Theta}_{ols}$ can be obtained without \mathcal{E}_i information. . Nowever, without \mathcal{E}_i or observation error assumptions, we cannot analyze $\widehat{\Theta}$ (i.e., Sampliny distribution)

Maximum Ligelihood estimation (MLE)

- We can also consider the <u>litelihood Function</u> for a fundom Sample $\hat{y} = [Y_1, ..., Y_{n_y}]$ (Be [1)

$$L(\hat{\partial}|\hat{y}) = f_y(\hat{y}|\theta), \quad L: \Gamma \ni [0,\infty)$$

where $f_y(\bar{y}|\bar{Q})$ is the parameter-dependent joint pot for $\bar{\gamma}$.

- Note that if
$$Y_i$$
 are iid, then
$$L(\vec{\partial} | \vec{y}) = f(\vec{y} | \vec{\delta}) = TT f_{y_i}(y_i | \vec{\delta})$$

$$L(\vec{\partial} | \vec{y}) = f(\vec{y} | \vec{\delta}) = TT f_{y_i}(y_i | \vec{\delta})$$

- Note: Since
$$L: \Gamma = \Sigma_0, \infty$$
, we often look at the log-likelihood, $\ln \left(L\left(\hat{\partial} \mid \vec{y}\right)\right) = LL\left(\hat{\partial} \mid \vec{y}\right)$