Département de Physique Faculté des Sciences Université Chouaïb Doukkali EL Jadida

Année Universitaire 2023-2024

Physique Quantique TD n^o 1 - SMP, S5

Exercice 1

Soient A et B deux opérateurs linéaires. On construit deux opérateurs fonctions du temps, $0 \le t \le 1$, comme suit :

$$F(t) = e^{tA}Be^{-tA} \text{ et } G(t) = e^{tA}e^{tB}.$$

1. Montrer que :

$$F(t) = B + \frac{t}{1!} [A, B] + \frac{t^2}{2!} [A, [A, B]] + \dots$$

2. Si $[A, B] = \alpha B$, où α est une constante, montrer que :

$$e^A B e^{-A} = e^{\alpha} B.$$

- 3. On suppose que les opérateurs A et B commutent avec leur commutateur.
 - (a) Montrer que $\frac{dG(t)}{dt} = (A + B + t [A, B])G(t)$.
 - (b) En déduire que $e^A e^B = e^{A+B+\frac{1}{2}[A,B]}$.

Exercice 2

Considérons deux observables A et B telles que $[A,B] \neq 0$ et un système physique quantique dans l'état $|\psi\rangle$:

1. Montrer que

$$(\Delta \mathcal{A})^2 (\Delta \mathcal{B})^2 \ge \left(\langle \psi | \frac{1}{2i} [A, B] | \psi \rangle \right)^2.$$

2. Montrer que dans le cas de saturation de l'inégalité de Heisenberg que $\Delta \mathcal{B} = |\lambda| \Delta \mathcal{A}$ avec λ est un réel non nul. En déduire que l'expression du paquet d'onde $\psi(x)$ décrivant une particule libre $(\mathcal{A} = x)$ et $\mathcal{B} = p_x$ est de la forme :

$$\psi(x) = A \exp\left(-\frac{(x-x_0)^2}{2\omega^2}\right) \exp\left(\frac{ip_0x}{\hbar}\right).$$

avec
$$x_0 = \langle x \rangle$$
 et $p_0 = \langle p \rangle$

Exercice 3

On considère un système physique quantique décrit par l'état $|\psi(t)\rangle$ et régi par l'hamiltonien H(t). Soit $U(t,t_0)$ l'opérateur d'évolution qui détermine l'évolution de $|\psi(t)\rangle$ à partir de $|\psi(t_0)\rangle$.

- 1. Montrer que l'opérateur $U(t,t_0)$ est unitaire.
- 2. On se place maintenant dans la représentation de Heisenberg.
 - (a) Montrer que l'équation du mouvement de l'opérateur A_H est donnée par :

$$i\hbar \frac{dA_H(t)}{dt} = [A_H(t), H_H] \tag{1}$$

(b) Ecrire les équations de Heisenberg pour une particule quantique de masse m soumise à un potentiel V(x).

Exercice 4

- 1. Soient A_1 et B_1 deux opérateurs agissant sur l'espace des états \mathbb{E}_1 et A_2 et B_2 deux opérateurs agissant sur l'espace des états \mathbb{E}_2 . Montrer que $(A_1 \otimes A_2)(B_1 \otimes B_2) = A_1B_1 \otimes A_2B_2$.
- 2. Si A et B agissent sur \mathbb{E}_1 et C agit sur \mathbb{E}_2 , Montrer que $[A \otimes \mathbb{1}_2, B \otimes C] = [A, B] \otimes C$.
- 3. On se donne $|\varphi\rangle$ un état de \mathbb{E}_1 et $|\chi\rangle$ un état de \mathbb{E}_2 qu'on peut écrire dans la base $\{|+\rangle, |-\rangle\}$ sous la forme :

$$|\varphi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 et $|\chi\rangle = \begin{pmatrix} \alpha' \\ \beta' \end{pmatrix}$

Ecrire la base de l'espace tensoriel $\mathbb{E}_1 \otimes \mathbb{E}_2$. calculer $|\varphi\rangle \otimes |\chi\rangle$.

4. On se donne deux opérateurs A et B représentés dans la base $\{|+\rangle, |-\rangle\}$ respectivement par les matrices suivantes :

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$

Calculer le produit tensoriel $C = A \otimes B$. Déterminer l'action de C sur $|\varphi\rangle \otimes |\chi\rangle$.

Exercice 5

On considère un système physique dont l'espace des états \mathbb{E} à trois dimensions est rapporté à la base orthonormée $\{|g\rangle, |e\rangle, |f\rangle\}$. Le hamiltonien H du système est donné par :

$$H = \hbar\omega |g\rangle \langle g| + 2\hbar\omega |e\rangle \langle e| + 3\hbar\omega |f\rangle \langle f|$$

Soit \mathcal{A} une grandeur physique représentée par l'observable A comme suit :

$$A = a\{|g\rangle\langle e| + |e\rangle\langle g| + |e\rangle\langle f| + |f\rangle\langle e|\}$$
 avec $a \in \mathbb{R}$

- 1. Si l'on prépare le système dans l'état $|\psi_{t=0}\rangle=\frac{1}{\sqrt{2}}\left(\,|g\rangle+i\;|e\rangle\right)$
 - (a) Quelles valeurs de l'énergie peut on trouver et avec quelles probabilités?.
 - (b) On mesure la grandeur physique A, quelles valeurs peut-on trouver et avec quelles probabilités?.
- 2. Déterminer le ket $|\psi_t\rangle$ décrivant l'état du système à un instant t ultérieur. Les kets $|\psi_t\rangle$ et $|\psi_{t_0}\rangle$ décrivent-ils des états physiquement indiscernables? Justifier votre réponse.
- 3. Si on effectue une mesure de A, à l'instant t > 0, quelles valeurs peut-on trouver et avec quelles probabilités?.
- 4. Calculer la valeur moyenne $\langle \mathcal{A} \rangle_t$ à l'insatnt t. La grandeur physique \mathcal{A} est-t-elle une constante de mouvement?.