Lógicas epistémicas basadas en habilidades Doctorado en Ciencias de la Computación

Andrés R. Saravia

Grupo LIIS (Logics, Interaction and Intelligent Systems)
FaMAF, Universidad Nacional de Córdoba

3/VI/2024

Organigrama

- Motivación
- 2 Propuesta original: "Saber cómo" basado en LTSs
- 3 Agregando incertidumbre: "Saber cómo" basado en LTS^Us
- 4 Explotando el framework: operadores dinámicos
- **6** Conclusiones

Lógicas modales: modos de verdad sobre expresiones

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Hace frío en la ciudad

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Los estudiantes asisten a la mañana

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - K_iφ: "el agente i sabe que φ se cumple"

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - $K_i \varphi$: "el agente i sabe que φ se cumple"
 - Juan sabe que el día está nublado

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - $K_i \varphi$: "el agente i sabe que φ se cumple"
 - Juan sabe que el día está nublado
 - El robot sabe que se encuentra en la cocina

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - $K_i \varphi$: "el agente i sabe que φ se cumple"
 - Juan sabe que el día está nublado
 - El robot sabe que se encuentra en la cocina
- Otros patrones de conocimiento

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - $K_i \varphi$: "el agente i sabe que φ se cumple"
 - Juan sabe que el día está nublado
 - El robot sabe que se encuentra en la cocina
- Otros patrones de conocimiento
 - saber porqué, saber si, saber quién

- Lógicas modales: modos de verdad sobre expresiones
 - Necesidad, posibilidad, obligaciones, etcétera
 - Es posible que haga frío en la ciudad
 - Es obligatorio que los estudiantes asistan a la mañana
- Lógicas epistémicas: lógicas modales que razonan sobre el conocimiento de los agentes
- Usualmente se describe el "saber que" (Hintikka, 1962)
- Conocimiento de los agentes sobre hechos proposicionales
 - $K_i \varphi$: "el agente i sabe que φ se cumple"
 - Juan sabe que el día está nublado
 - El robot sabe que se encuentra en la cocina
- Otros patrones de conocimiento
 - saber porqué, saber si, saber quién, saber cómo

 Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos

- Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos
- Lógica de epistémica de saber cómo basada Sistemas de Transiciones Etiquetadas (LTSs) (Wang, 2015)

- Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos
 - Lógica de epistémica de saber cómo basada Sistemas de Transiciones Etiquetadas (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "cuando ψ se cumple, el agente sabe cómo cumplir φ "

- Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos
- Lógica de epistémica de saber cómo basada Sistemas de Transiciones Etiquetadas (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "cuando ψ se cumple, el agente sabe cómo cumplir φ "
- Generalizamos este framework

- Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos
- Lógica de epistémica de saber cómo basada Sistemas de Transiciones Etiquetadas (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "cuando ψ se cumple, el agente sabe cómo cumplir φ "
- Generalizamos este framework
 - Incorporando una componente de incertidumbre entre planes

- Conocimiento del agente sobre sus propias habilidades para alcanzar objetivos
- Lógica de epistémica de saber cómo basada Sistemas de Transiciones Etiquetadas (LTSs) (Wang, 2015)
 - Kh(ψ , φ): "cuando ψ se cumple, el agente sabe cómo cumplir φ "
- Generalizamos este framework
 - Incorporando una componente de incertidumbre entre planes
 - Considerando múltiples agentes menos idealizados

PROCEDIMIENTO DE EMERGENCIA

EN CASO DE INCENDIO

MANTENER LA CALMA

ACTIVAR LA ALARMA

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las escaleras o las rampas, evitar ascensores.

PROCEDIMIENTO DE EMERGENCIA

EN CASO DE INCENDIO

MANTENER LA CALMA

ACTIVAR LA ALARMA

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las escaleras o las rampas, evitar ascensores.

PROCEDIMIENTO DE EMERGENCIA

EN CASO DE INCENDIO

MANTENER LA CALMA

ACTIVAR LA ALARMA

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las escaleras o las rampas, evitar ascensores.

PROCEDIMIENTO DE EMERGENCIA

EN CASO DE INCENDIO

MANTENER LA CALMA

ACTIVAR LA ALARMA

DESDE UN LUGAR SEGURO

LLAMAR AL 100 (BOMBEROS)

Evacuación: usar únicamente las escaleras o las rampas, evitar ascensores.

Acciones básicas (Act)

usar las escaleras (e)

- usar las escaleras (e)
- usar las rampas (r)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1

Plan no recomendado: al

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1

Plan no recomendado: al

Estados (S)

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1 Plan <u>no</u> recomendado: a1 Estados (S)

• w_1 : se está en el incendio (f) y se puede seguir el protocolo (c)

Un ejemplo para motivar: Simplificando

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1 Plan <u>no</u> recomendado: a1 Estados (S)

- w_1 : se está en el incendio (f) y se puede seguir el protocolo (c)
- w₂: se está en un lugar seguro (s)

Un ejemplo para motivar: Simplificando

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: el, rl Plan no recomendado: al

Estados (S)

- w₁: se está en el incendio (f) y se puede seguir el protocolo (c)
- w₂: se está en un lugar seguro (s)
- w₃: se está en el incendio (f), pero no se puede seguir el protocolo (¬c)

Un ejemplo para motivar: Simplificando

Acciones básicas (Act)

- usar las escaleras (e)
- usar las rampas (r)
- usar el ascensor (a)
- llamar a 100 (1)

Planes recomendados: e1, r1

Plan no recomendado: al

Estados (S)

- w_1 : se está en el incendio (f) y se puede seguir el protocolo (c)
- w₂: se está en un lugar seguro (s)
- w₃: se está en el incendio (f), pero no se puede seguir el protocolo (¬c)

Act = {e, r, a, 1}, S = {
$$w_1$$
, w_2 , w_3 } y Prop = { f , c , s }

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in \mathsf{Act}}, V \rangle$$

Definición (LTS)

Dados Prop un conjunto de proposiciones y Act un conjunto de acciones básicas. Sea Act* el conjunto de planes.

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

S es un conjunto no vacío de estados

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in \mathsf{Act}}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ es una función de valuación

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in \mathsf{Act}}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V: S \to \mathcal{P}(\mathsf{Prop})$ es una función de valuación

Definición (LTS)

Dados Prop un conjunto de proposiciones y Act un conjunto de acciones básicas. Sea Act* el conjunto de planes.

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ es una función de valuación

• $S = \{w_1, w_2, w_3\}$

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \rightarrow \mathcal{P}(\mathsf{Prop})$ es una función de valuación

- \bullet S = { w_1, w_2, w_3 }
- \bullet R_e = {(w_1, w_2)}

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ es una función de valuación

- \bullet S = { w_1, w_2, w_3 }
- $\bullet R_e = \{(w_1, w_2)\}$
- $\bullet R_r = \{(w_1, w_2)\}$

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \rightarrow \mathcal{P}(\mathsf{Prop})$ es una función de valuación

- \bullet S = { w_1, w_2, w_3 }
- \bullet R_e = {(w_1, w_2)}
- $\bullet R_r = \{(w_1, w_2)\}$
- $\bullet \ R_a = \{(w_1, w_2), (w_1, w_3)\}\$

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \rightarrow \mathcal{P}(\mathsf{Prop})$ es una función de valuación

- \bullet S = { w_1, w_2, w_3 }
- \bullet R_e = {(w_1, w_2)}
- \bullet R_r = {(w_1, w_2)}
- $\bullet R_{a} = \{(w_{1}, w_{2}), (w_{1}, w_{3})\}\$
- $R_1 = \{(w_2, w_2)\}$

Definición (LTS)

$$\mathcal{L} = \langle S, \{R_a\}_{a \in Act}, V \rangle$$

- S es un conjunto no vacío de estados
- R_a es una relación binaria sobre S
- $V : S \to \mathcal{P}(\mathsf{Prop})$ es una función de valuación

- \bullet S = { w_1, w_2, w_3 }
- \bullet R_e = {(w_1, w_2)}
- $\bullet R_{r} = \{(w_{1}, w_{2})\}$
- $R_a = \{(w_1, w_2), (w_1, w_3)\}$
- $R_1 = \{(w_2, w_2)\}$
- $V(w_1) = \{f, c\}, V(w_2) = \{s\}, V(w_3) = \{f\}$

Planes a prueba de fallas:

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

 ${f r}$ es fuertemente ejecutable en w_1

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

 ${f r}$ es fuertemente ejecutable en ${f w}_1$ ${f r}{f l}$ es fuertemente ejecutable en ${f w}_1$

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

 ${f r}$ es fuertemente ejecutable en w_1 ${f r}{f l}$ es fuertemente ejecutable en w_1 a es fuertemente ejecutable en w_1

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

r es fuertemente ejecutable en w_1 rl es fuertemente ejecutable en w_1 a es fuertemente ejecutable en w_1 al no es fuertemente ejecutable en w_1

Planes a prueba de fallas: Cada ejecución parcial debe completarse.

 ${f r}$ es fuertemente ejecutable en w_1 ${f r}$ 1 es fuertemente ejecutable en w_1 a es fuertemente ejecutable en w_1 al no es fuertemente ejecutable en w_1

Definición (Ejecutabilidad fuerte de un plan)

 $\sigma = b_1 \dots b_n \in Act^*$ es fuertemente ejecutable (FE) en $u \in S$ sii, para cada $k = 1, \dots, n-1$,

$$v \in R_{b_1...b_k}(u)$$
 implica $R_{b_{k+1}}(v) \neq \emptyset$.

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

$$\mathcal{L}, w \models p$$
 sii $p \in V(w)$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

$$\mathcal{L}, w \models p$$
 sii $p \in V(w)$
 $\mathcal{L}, w \models \neg \varphi$ sii $\mathcal{L}, w \not\models \varphi$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

$$\mathcal{L}, w \models p$$
 $\operatorname{sii} p \in V(w)$

$$\mathcal{L}$$
, $\mathbf{w} \models \neg \varphi$ sii \mathcal{L} , $\mathbf{w} \not\models \varphi$

$$\mathcal{L}$$
, $\mathbf{w} \models \varphi \lor \psi$ sii \mathcal{L} , $\mathbf{w} \models \varphi \circ \mathcal{L}$, $\mathbf{w} \models \psi$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

```
\mathcal{L}, w \models p sii p \in V(w)

\mathcal{L}, w \models \neg \varphi sii \mathcal{L}, w \not\models \varphi

f(w) \models \varphi \lor \psi sii f(w) \models \varphi \lor \varphi
```

$$\mathcal{L}$$
, $\mathbf{w} \models \varphi \lor \psi$ sii \mathcal{L} , $\mathbf{w} \models \varphi \circ \mathcal{L}$, $\mathbf{w} \models \psi$

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

```
 \mathcal{L}, w \models p \qquad \text{sii} \quad p \in V(w) 
 \mathcal{L}, w \models \neg \varphi \qquad \text{sii} \quad \mathcal{L}, w \not\models \varphi 
 \mathcal{L}, w \models \varphi \lor \psi \qquad \text{sii} \quad \mathcal{L}, w \models \varphi \text{ o } \mathcal{L}, w \models \psi 
 \mathcal{L}, w \models \mathsf{Kh}(\psi, \varphi) \text{ sii existe un plan } \sigma \text{ } (\sigma \in \mathsf{Act}^*) \text{ tal que }
```

1. es FE en todos los estados ψ

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}(\varphi, \varphi)$$

- $\mathcal{L}, w \models p$ sii $p \in V(w)$ $\mathcal{L}, w \models \neg \varphi$ sii $\mathcal{L}, w \not\models \varphi$
- \mathcal{L} , $\mathbf{w} \models \varphi \lor \psi$ sii \mathcal{L} , $\mathbf{w} \models \varphi$ o \mathcal{L} , $\mathbf{w} \models \psi$
- \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que
 - 1. es FE en todos los estados ψ
 - 2. y vía σ , siempre terminan en estados φ .

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\models \mathsf{Kh}(f \land c, s)$

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\models \mathsf{Kh}(f \land c, s)$ el plan \mathbf{r} toma al agente desde cada estado $(f \land c)$ y alcanza sólo estados s

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\models \mathsf{Kh}(f \land c, s)$ el plan \mathbf{r} toma al agente desde cada estado $(f \land c)$ y alcanza sólo estados s

$$\not\models \mathsf{Kh}(f \land c, f \land \neg c)$$

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\models \mathsf{Kh}(f \land c, s)$ el plan \mathbf{r} toma al agente desde cada estado $(f \land c)$ y alcanza sólo estados s

 $\not\models \mathsf{Kh}(f \land c, f \land \neg c)$ el plan a es el único FE en estados $(f \land c)$ que alcanza al menos un estado $(f \land \neg c)$

Kh sobre LTSs

 $\mathsf{Kh}(\psi,\varphi)$: "cuando ψ se cumple, el agente sabe cómo cumplir φ ".

 \mathcal{L} , $w \models \mathsf{Kh}(\psi, \varphi)$ sii existe un plan σ ($\sigma \in \mathsf{Act}^*$) tal que

- 1. es FE en todos los estados ψ
- 2. y vía σ , siempre terminan en estados φ .

 $\models \mathsf{Kh}(f \land c, s)$ el plan \mathbf{r} toma al agente desde cada estado $(f \land c)$ y alcanza sólo estados s

 $\not\models \mathsf{Kh}(f \land c, f \land \neg c)$ el plan a es el único FE en estados $(f \land c)$ que alcanza al menos un estado $(f \land \neg c)$, pero no alcanza sólo a estos

 $A\varphi$: "en todos los estados se cumple φ ".

 $A\varphi$: "en todos los estados se cumple φ ". \mathcal{L} , $w \models A\varphi$ sii para todo $w \in S$, \mathcal{L} , $w \models \varphi$

$$\models \mathsf{A}(f \lor s) \\ \not\models \mathsf{A}(f \lor c)$$

Axiomatización $\mathcal{L}_{\mathsf{Kh}}^{\mathsf{LTS}}$ de L_{Kh}

Caracterizan las propiedades que se cumplen en los modelos.

<u>£:</u>	TAUT	$\vdash \varphi$ para tautologías proposicionales
	DISTA	$\vdash A(\varphi \to \psi) \to (A\varphi \to A\psi)$
	TA	$\vdash A\varphi \to \varphi$
	4KhA	$\vdash Kh(\psi,\varphi) \to AKh(\psi,\varphi)$
	5KhA	$\vdash \neg Kh(\psi, \varphi) \to A \neg Kh(\psi, \varphi)$
$\mathcal{L}_{ ext{LTS}}$:	EMP	$\vdash A(\psi \to \varphi) \to Kh(\psi, \varphi)$
	COMPKh	$\vdash (Kh(\psi,\varphi) \land Kh(\varphi,\chi)) \to Kh(\psi,\chi)$
	$\frac{\varphi (\varphi \to \psi)}{\psi} \text{ MP}$	φ NECA
Reglas:	${\psi}$ MP	$rac{arphi}{Aarphi}$ NECA

Axiomatización $\mathcal{L}_{\mathsf{Kh}}^{\mathsf{LTS}}$ de L_{Kh}

Caracterizan las propiedades que se cumplen en los modelos.

<u>L</u> :	TAUT DISTA	$\vdash \varphi$ para tautologías proposicionales $\vdash A(\varphi \to \psi) \to (A\varphi \to A\psi)$
	TA	$\vdash A\varphi \to \varphi$
	4KhA	$\vdash Kh(\psi,\varphi) \to AKh(\psi,\varphi)$
	5KhA	$\vdash \neg Kh(\psi, \varphi) \to A \neg Kh(\psi, \varphi)$
$\mathcal{L}_{ ext{LTS}}$:	EMP	$\vdash A(\psi \to \varphi) \to Kh(\psi, \varphi)$
	COMPKh	$\vdash (Kh(\psi, \varphi) \land Kh(\varphi, \chi)) \to Kh(\psi, \chi)$
Reglas:	$\frac{\varphi (\varphi \to \psi)}{\psi} \text{ MP}$	$rac{arphi}{Aarphi}$ NECA

Axiomatización $\mathcal{L}_{\mathsf{Kh}}^{\mathsf{LTS}}$ de L_{Kh}

Caracterizan las propiedades que se cumplen en los modelos.

<u>£:</u>	TAUT DISTA TA 4KhA	$ \begin{tabular}{l} \vdash \varphi \text{ para tautologías proposicionales} \\ \vdash A(\varphi \to \psi) \to (A\varphi \to A\psi) \\ \vdash A\varphi \to \varphi \\ \vdash Kh(\psi,\varphi) \to AKh(\psi,\varphi) \\ \end{tabular} $
	5KhA	$\vdash \neg Kh(\psi, \varphi) \to A \neg Kh(\psi, \varphi)$
$\mathcal{L}_{ ext{LTS}}$:	EMP	$\vdash A(\psi \to \varphi) \to Kh(\psi, \varphi)$
	COMPKh	$\vdash (Kh(\psi,\varphi) \land Kh(\varphi,\chi)) \to Kh(\psi,\chi)$
Reglas:	$\frac{\varphi (\varphi \to \psi)}{\psi} \text{ MP}$	$rac{arphi}{Aarphi}$ NECA

Propiedades

Teorema (Demri y Fervari, 2023)

El problema de model checking para L_{Kh} es PSpace-completo.

Propiedades

Teorema (Demri y Fervari, 2023)

El problema de model checking para L_{Kh} es PSpace-completo.

Teorema (Areces et al., 2023a)

El problema de satisfacibilidad para L_{Kh} está en NP^{NP}.

Saber que:

Saber que:

• información óntica: hechos proposicionales en un mundo;

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

el agente tiene disponible todos los planes para elegir uno;

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

el agente tiene disponible todos los planes para elegir uno;

para el agente, cada plan es diferente de cualquier otro;

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

• el agente tiene disponible todos los planes para elegir uno;

para el agente, cada plan es diferente de cualquier otro;

no hay una distinción entre la información óntica y epistémica.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

el agente tiene disponible todos los planes para elegir uno;

para el agente, cada plan es diferente de cualquier otro;

no hay una distinción entre la información óntica y epistémica.
 Hay muchas razones de no saber cómo.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

- el agente tiene disponible todos los planes para elegir uno;
 - ¿y si el agente no es consciente de que ciertos planes existen?
- para el agente, cada plan es diferente de cualquier otro;

no hay una distinción entre la información óntica y epistémica.
 Hay muchas razones de no saber cómo.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

- el agente tiene disponible todos los planes para elegir uno;
 - ¿y si el agente no es consciente de que ciertos planes existen?
 - o tener la habilidad de ≠ ser consciente de dicha habilidad
- para el agente, cada plan es diferente de cualquier otro;

• no hay una distinción entre la información óntica y epistémica.

Hay muchas razones de no saber cómo.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

- el agente tiene disponible todos los planes para elegir uno;
 - ¿y si el agente no es consciente de que ciertos planes existen?
 - o tener la habilidad de ≠ ser consciente de dicha habilidad
- para el agente, cada plan es diferente de cualquier otro;
 - ¿y si no es capaz de distinguir ciertos planes de otros?
- no hay una distinción entre la información óntica y epistémica.

Hay muchas razones de no saber cómo.

Saber que:

- información óntica: hechos proposicionales en un mundo;
- información epistémica: incertidumbre o relación de indistinguibilidad, la percepción del agente.

Saber cómo:

- el agente tiene disponible todos los planes para elegir uno;
 - ¿y si el agente no es consciente de que ciertos planes existen?
 - o tener la habilidad de ≠ ser consciente de dicha habilidad
- para el agente, cada plan es diferente de cualquier otro;
 - ¿y si no es capaz de distinguir ciertos planes de otros?
 - o los efectos de dos planes pueden ser indistintos para un agente
- no hay una distinción entre la información óntica y epistémica.

Hay muchas razones de no saber cómo.

Definición (LTS^U)

Dado Agt un conjunto de agentes. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

Definición (LTS^U)

Dado Agt un conjunto de agentes. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

• $\langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS

Definición (LTS^U)

Dado Agt un conjunto de agentes. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

- $\langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS y
- $U(i) \subseteq \mathcal{P}(Act^*)$ tal que
 - 1. $U(i) \neq \emptyset$, $\emptyset \notin U(i)$,
 - 2. si $\pi_1, \pi_2 \in U(i)$ y $\pi_1 \neq \pi_2$, entonces $\pi_1 \cap \pi_2 = \emptyset$.

Definición (LTS^U)

Dado Agt un conjunto de agentes. $\mathcal{M} = \langle S, \{R_a\}_{a \in Act}, \{U(i)\}_{i \in Agt}, V \rangle$:

- $\langle S, \{R_a\}_{a \in Act}, V \rangle$ es un LTS y
- $U(i) \subseteq \mathcal{P}(Act^*)$ tal que
 - 1. $U(i) \neq \emptyset$, $\emptyset \notin U(i)$,
 - 2. si $\pi_1, \pi_2 \in U(i)$ y $\pi_1 \neq \pi_2$, entonces $\pi_1 \cap \pi_2 = \emptyset$.

U(i): conjuntos de planes que el agente i no puede distinguir entre sí.

Múltiples agentes pueden compartir un mismo LTS

- Múltiples agentes pueden compartir un mismo LTS
- Modelar agentes más imperfectos y menos idealizados

- Múltiples agentes pueden compartir un mismo LTS
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja

- Múltiples agentes pueden compartir un mismo LTS
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja
- Distinción entre
 - la información óntica (parte LTS), común a todos los agentes,

- Múltiples agentes pueden compartir un mismo LTS
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja
- Distinción entre
 - la información óntica (parte LTS), común a todos los agentes, y
 - la información epistémica (U), que representa la percepción de cada agente.

- Múltiples agentes pueden compartir un mismo LTS
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja
- Distinción entre
 - la información óntica (parte LTS), común a todos los agentes, y
 - la información epistémica (U), que representa la percepción de cada agente.
- Posibilidad de definir nuevos operadores

Sintaxis y semántica de L_{Kh_i} sobre LTS^Us

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "cuando ψ se cumple, el agente i sabe cómo cumplir φ ".

Sintaxis y semántica de L_{Kh_i} sobre LTS^Us

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "cuando ψ se cumple, el agente i sabe cómo cumplir φ ".

 $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

 $\mathsf{Kh}_i(\psi,\varphi)$: "cuando ψ se cumple, el agente i sabe cómo cumplir φ ".

 $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que 1. cada plan en π es indistinguible de los otros $(\pi \in \mathsf{U}(i))$,

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .

$$\models \mathsf{Kh}_i(f \land c, s) \; (\mathsf{U}(i) = \{\{\mathsf{el}, \mathsf{rl}\}, \{\mathsf{al}\}\})$$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .

$$\models \mathsf{Kh}_i(f \land c, s) \ (\mathsf{U}(i) = \{\{\mathsf{el}, \mathsf{rl}\}, \{\mathsf{al}\}\})$$
 $\not\models \mathsf{Kh}_j(f \land c, s) \ (\mathsf{U}(j) = \{\{\mathsf{el}, \mathsf{rl}, \mathsf{al}\}\})$

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .


```
\models \mathsf{Kh}_i(f \land c, s) \ (\mathsf{U}(i) = \{\{\mathsf{el}, \mathsf{rl}\}, \{\mathsf{al}\}\})

\not\models \mathsf{Kh}_j(f \land c, s) \ (\mathsf{U}(j) = \{\{\mathsf{el}, \mathsf{rl}, \mathsf{al}\}\})

- el y rl llevan el agente desde todo

estado (f \land c) y alcanza sólo estados s;
```

Sintaxis y semántica de L_{Kh_i} sobre LTS^U s

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .


```
\models \mathsf{Kh}_i(f \land c, s) \ (\mathsf{U}(i) = \{\{\mathsf{el}, \mathsf{rl}\}, \{\mathsf{al}\}\})

\not\models \mathsf{Kh}_i(f \land c, s) \ (\mathsf{U}(j) = \{\{\mathsf{el}, \mathsf{rl}, \mathsf{al}\}\})

- el y rl llevan el agente desde todo
```

- el y rl llevan el agente desde todo estado $(f \land c)$ y alcanza sólo estados s;
- el plan al no se completa en w_3 ;

Definición

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi)$$

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ sii existe un conjunto de planes π para el agente i tal que
 - 1. cada plan en π es indistinguible de los otros ($\pi \in U(i)$),
 - 2. cada plan en π es FE en todos los estados ψ
 - 3. y vía cada plan en π , siempre terminan en estados φ .


```
\models \mathsf{Kh}_{i}(f \land c, s) \; (\mathsf{U}(i) = \{\{\mathsf{el}, \mathsf{rl}\}, \{\mathsf{al}\}\}) \\ \not\models \mathsf{Kh}_{j}(f \land c, s) \; (\mathsf{U}(j) = \{\{\mathsf{el}, \mathsf{rl}, \mathsf{al}\}\})
```

- el y rl llevan el agente desde todo estado $(f \land c)$ y alcanza sólo estados s;
- el plan al no se completa en w_3 ; {el,rl,al} no es FE en w_1

Axiomatización $\mathcal{L}_{\mathsf{Kh}_i}^{\mathsf{LTS}^U}$ de $\mathsf{L}_{\mathsf{Kh}_i}$

Comparando L_{Kh} con L_{Kh}

Proposición (Areces et al., 2023c)

Los axiomas

- *EMP*: $A(\psi \rightarrow \varphi) \rightarrow Kh(\psi, \varphi)$, *y*
- *COMPKh*: $(Kh(\psi, \varphi) \land Kh(\varphi, \chi)) \rightarrow Kh(\psi, \chi)$

no son válidos en la semántica basada en LTS^Us.

Comparando L_{Kh} con L_{Kh}

Proposición (Areces et al., 2023c)

Los axiomas

- *EMP*: $A(\psi \rightarrow \varphi) \rightarrow Kh(\psi, \varphi)$, *y*
- *COMPKh*: $(Kh(\psi, \varphi) \land Kh(\varphi, \chi)) \rightarrow Kh(\psi, \chi)$

no son válidos en la semántica basada en LTS^Us.

Teorema (Areces et al., 2023c)

 $\mathcal{L}_{\mathsf{Kh}_{i}}^{\mathsf{LTS}^{U}}$ generaliza $\mathcal{L}_{\mathsf{Kh}}^{\mathsf{LTS}}$. Para todo LTS, existe un LTS^U equivalente.

Propiedades computacionales

Teorema (Areces et al., 2021)

El problema de model checking para L_{Kh_i} está en P, y el problema de satisfacibilidad para L_{Kh_i} es NP-completo.

Propiedades computacionales

Teorema (Areces et al., 2021)

El problema de model checking para L_{Kh_i} está en P, y el problema de satisfacibilidad para L_{Kh_i} es NP-completo.

 Dada una fórmula φ satisfacible y su modelo canónico correspondiente, se seleccionan partes del mismo.

Propiedades computacionales

Teorema (Areces et al., 2021)

El problema de model checking para L_{Kh_i} está en P, y el problema de satisfacibilidad para L_{Kh_i} es NP-completo.

- Dada una fórmula φ satisfacible y su modelo canónico correspondiente, se seleccionan partes del mismo.
- Este "submodelo" es de tamaño polinomial

Explotando el framework

Ventajas:

- Múltiples agentes pueden compartir un mismo LTS o entorno
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja
- Distinción entre
 - la información óntica (parte LTS), común a todos los agentes, y
 - la información epistémica (U), que representa la percepción de cada agente.

Explotando el framework

Ventajas:

- Múltiples agentes pueden compartir un mismo LTS o entorno
- Modelar agentes más imperfectos y menos idealizados
- Complejidad computacional relativamente baja
- Distinción entre
 - la información óntica (parte LTS), común a todos los agentes, y
 - la información epistémica (U), que representa la percepción de cada agente.

Con esto se pueden definir operadores dinámicos ónticos y epistémicos que modifiquen cada tipo de información.

Operador de la lógica de "saber qué" (Ditmarsch et al., 2007)

- Operador de la lógica de "saber qué" (Ditmarsch et al., 2007)
 - $[!\chi]\varphi$: "después de anunciar χ , φ se cumple"

- Operador de la lógica de "saber qué" (Ditmarsch et al., 2007)
 - $[!\chi]\varphi$: "después de anunciar χ , φ se cumple"
- Elimina estados (S) y las relaciones entre estos (R)

- Operador de la lógica de "saber qué" (Ditmarsch et al., 2007)
 - $[!\chi]\varphi$: "después de anunciar χ , φ se cumple"
- Elimina estados (S) y las relaciones entre estos (R)
- Más expresiva que L_{Kh}, sobre LTS^Us arbitrarios

- Operador de la lógica de "saber qué" (Ditmarsch et al., 2007)
 - $[!\chi]\varphi$: "después de anunciar χ , φ se cumple"
- Elimina estados (S) y las relaciones entre estos (R)
- Más expresiva que L_{Kh}, sobre LTS^Us arbitrarios
- Satisfacibilidad: Decidible sobre una clase de modelos restringida

■ ¿Cómo modificamos U?

Eliminar incertidumbre entre planes

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos

- Eliminar incertidumbre entre planes
 - Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "luego de distinguir σ_1 y σ_2 , φ cumple"

- Eliminar incertidumbre entre planes
 - Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \nsim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"
 - $[\sigma_1 \not\sim \sigma_2] \varphi$: "para cada forma de separar σ_1 y σ_2 , φ cumple"

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"
 - $[\sigma_1 \not\sim \sigma_2] \varphi$: "para cada forma de separar σ_1 y σ_2 , φ cumple"

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"
 - $[\sigma_1 \not\sim \sigma_2] \varphi$: "para cada forma de separar σ_1 y σ_2 , φ cumple"

 $\not\models \mathsf{Kh}_{j}(f \wedge c, s)$

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"
 - $[\sigma_1 \not\sim \sigma_2] \varphi$: "para cada forma de separar σ_1 y σ_2 , φ cumple"


```
\not\models \mathsf{Kh}_{j}(f \land c, s) 
 \models \langle \mathsf{el} \not\sim \mathsf{al} \rangle \mathsf{Kh}_{j}(f \land c, s)
```

- Eliminar incertidumbre entre planes
- Dado un conjunto de planes, dividirlo en dos
 - $\langle \sigma_1 \not\sim \sigma_2 \rangle \varphi$: "existe una forma de separar σ_1 y σ_2 tal que φ cumple"
 - $[\sigma_1 \not\sim \sigma_2] \varphi$: "para cada forma de separar σ_1 y σ_2 , φ cumple"

Proposición (Areces et al., 2023b)

1. $[\sigma_1 \nsim \sigma_2]$ es una modalidad normal y serial

Proposición (Areces et al., 2023b)

- 1. $[\sigma_1 \not\sim \sigma_2]$ es una modalidad normal y serial
- 2. $\models \mathsf{Kh}_i(\psi, \varphi) \rightarrow [\sigma_1 \not\sim \sigma_2] \mathsf{Kh}_i(\psi, \varphi) \ (\psi, \varphi \ \text{proposicionales})$

Proposición (Areces et al., 2023b)

- 1. $[\sigma_1 \not\sim \sigma_2]$ es una modalidad normal y serial
- 2. $\models \mathsf{Kh}_i(\psi, \varphi) \rightarrow [\sigma_1 \not\sim \sigma_2] \mathsf{Kh}_i(\psi, \varphi) \ (\psi, \varphi \ proposicionales)$
- 3. L_{Ref} es más expresiva que L_{Khi} sobre LTS^Us arbitrarios

Proposición (Areces et al., 2023b)

- 1. $[\sigma_1 \not\sim \sigma_2]$ es una modalidad normal y serial
- 2. $\models \mathsf{Kh}_i(\psi, \varphi) \rightarrow [\sigma_1 \not\sim \sigma_2] \mathsf{Kh}_i(\psi, \varphi) \ (\psi, \varphi \ \text{proposicionales})$
- 3. L_{Ref} es más expresiva que L_{Khi} sobre LTS^Us arbitrarios
- 4. Sustitución uniforme no se cumple en L_{Ref}

Refinamiento: Propiedades

Proposición (Areces et al., 2023b)

- 1. $[\sigma_1 \nsim \sigma_2]$ es una modalidad normal y serial
- 2. $\models \mathsf{Kh}_i(\psi, \varphi) \rightarrow [\sigma_1 \not\sim \sigma_2] \mathsf{Kh}_i(\psi, \varphi) \ (\psi, \varphi \ proposicionales)$
- 3. L_{Ref} es más expresiva que L_{Khi} sobre LTS^Us arbitrarios
- 4. Sustitución uniforme no se cumple en L_{Ref}
- Kh_i no puede hablar explícitamente sobre planes

Refinamiento: Propiedades

Proposición (Areces et al., 2023b)

- 1. $[\sigma_1 \star \sigma_2]$ es una modalidad normal y serial
- 2. $\models \mathsf{Kh}_i(\psi, \varphi) \rightarrow [\sigma_1 \not\sim \sigma_2] \mathsf{Kh}_i(\psi, \varphi) \ (\psi, \varphi \ proposicionales)$
- 3. L_{Ref} es más expresiva que L_{Khi} sobre LTS^Us arbitrarios
- 4. Sustitución uniforme no se cumple en L_{Ref}
- Kh_i no puede hablar explícitamente sobre planes
- Dificultades al definir axiomatizaciones

 Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas

- Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas
- L_{Kh_i} no es lo suficiente expresiva para capturar el efecto de estas modalidades (Kh_i no puede describir planes explícitamente)

- Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas
- L_{Khi} no es lo suficiente expresiva para capturar el efecto de estas modalidades (Khi no puede describir planes explícitamente)

Propuesta: Extender la lógica L_{Kh_i} para hablar sobre los planes que los agentes pueden ejecutar en determinados estados.

- Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas
- L_{Kh_i} no es lo suficiente expresiva para capturar el efecto de estas modalidades (Kh_i no puede describir planes explícitamente)

Propuesta: Extender la lógica L_{Kh_i} para hablar sobre los planes que los agentes pueden ejecutar en determinados estados.

Operadores básicos de logica modal (para cada $b \in Act$):

- Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas
- L_{Kh_i} no es lo suficiente expresiva para capturar el efecto de estas modalidades (Kh_i no puede describir planes explícitamente)

Propuesta: Extender la lógica L_{Kh_i} para hablar sobre los planes que los agentes pueden ejecutar en determinados estados.

Operadores básicos de logica modal (para cada $b \in Act$):

• $[b]\varphi$: "desde este estado, cada ejecución de b lleva a estados φ "

- Resultados de axiomatizaciones y decidibilidad limitados a clases de modelos específicas
- L_{Kh_i} no es lo suficiente expresiva para capturar el efecto de estas modalidades (Kh_i no puede describir planes explícitamente)

Propuesta: Extender la lógica L_{Kh_i} para hablar sobre los planes que los agentes pueden ejecutar en determinados estados.

Operadores básicos de logica modal (para cada $b \in Act$):

- $[b]\varphi$: "desde este estado, cada ejecución de b lleva a estados φ "
- ⟨b⟩φ: "desde este estado, existe una ejecución de b que lleva a un estado φ"

Definición (
$$L_{Kh_i,\square} = L_{Kh_i} + [b]$$
)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

Definición (
$$L_{Kh_i,\square} = L_{Kh_i} + [b]$$
)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}, w \models [b]\varphi$$
 sii $\mathcal{M}, u \models \varphi$ para todo $(w, u) \in R_b$ $\mathcal{M}, w \models \langle b \rangle \varphi$ sii $\mathcal{M}, u \models \varphi$ existe $(w, u) \in R_b$

Definición ($L_{Kh_i,\square} = L_{Kh_i} + [b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}$$
, $w \models [b]\varphi$ sii \mathcal{M} , $u \models \varphi$ para todo $(w, u) \in R_b$ \mathcal{M} , $w \models \langle b \rangle \varphi$ sii \mathcal{M} , $u \models \varphi$ existe $(w, u) \in R_b$

Definición (
$$L_{Kh_i,\square} = L_{Kh_i} + [b]$$
)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}$$
, $w \models [b]\varphi$ sii \mathcal{M} , $u \models \varphi$ para todo $(w, u) \in R_b$ \mathcal{M} , $w \models \langle b \rangle \varphi$ sii \mathcal{M} , $u \models \varphi$ existe $(w, u) \in R_b$

$$w_1 \models [a](f \lor s)$$

Definición ($L_{Kh_i,\square} = L_{Kh_i} + [b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}$$
, $w \models [b]\varphi$ sii \mathcal{M} , $u \models \varphi$ para todo $(w, u) \in R_b$ \mathcal{M} , $w \models \langle b \rangle \varphi$ sii \mathcal{M} , $u \models \varphi$ existe $(w, u) \in R_b$

$$w_1 \models [a](f \lor s)$$
$$w_2 \models \langle 1 \rangle s$$

Definición ($L_{Kh_i,\square} = L_{Kh_i} + [b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}$$
, $w \models [b]\varphi$ sii \mathcal{M} , $u \models \varphi$ para todo $(w, u) \in R_b$ \mathcal{M} , $w \models \langle b \rangle \varphi$ sii \mathcal{M} , $u \models \varphi$ existe $(w, u) \in R_b$

$$w_1 \models [a](f \lor s)$$

$$w_2 \models \langle 1 \rangle s$$

$$w_1 \models \langle a \rangle \langle 1 \rangle s$$

Definición ($L_{Kh_i,\square} = L_{Kh_i} + [b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b] \varphi$$

 $[b]\varphi$: "cada ejecución de b lleva a estados φ "

$$\mathcal{M}$$
, $w \models [b]\varphi$ sii \mathcal{M} , $u \models \varphi$ para todo $(w, u) \in R_b$ \mathcal{M} , $w \models \langle b \rangle \varphi$ sii \mathcal{M} , $u \models \varphi$ existe $(w, u) \in R_b$

$$\begin{aligned} w_1 &\models [a](f \lor s) \\ w_2 &\models \langle 1 \rangle s \\ w_1 &\models \langle a \rangle \langle 1 \rangle s \\ w_3 &\not\models \langle 1 \rangle s \end{aligned}$$

Axiomatización $\mathcal{L}_{\mathsf{Kh}_{i},\square}$ de $\mathsf{L}_{\mathsf{Kh}_{i},\square}$

<u>£:</u>	TAUT	$\vdash \varphi$ para φ una tautología proposicional
	DISTA	$\vdash A(\varphi \to \psi) \to (A\varphi \to A\psi)$
	TA	$\vdash A\varphi \to \varphi$
	4KhA	$\vdash Kh_i(\psi,\varphi) \to AKh_i(\psi,\varphi)$
	5KhA	$\vdash \neg Kh_i(\psi, \varphi) \to A \neg Kh_i(\psi, \varphi)$
$\mathcal{L}_{ ext{LTS}^{U}}$:	KhA	$\vdash (A(\chi \to \psi) \land Kh_i(\psi, \varphi) \land A(\varphi \to \theta)) \to Kh_i(\chi, \theta)$
\mathcal{L}_{\square} :	DIST□	$\vdash [b](\varphi \to \psi) \to ([b]\varphi \to [b]\psi)$
	A□	$\vdash A\varphi \to [b]\varphi$
		$rac{arphi (arphi ightarrow \psi)}{\psi} \; MP \qquad rac{arphi}{A arphi} \; NECA$
Reglas:		ψ A φ NEOA

Definición (
$$L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$$
)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

Definición (
$$L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$$
)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\mathcal{M}$$
, $\mathbf{w} \models [!b]\varphi$ sii

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\mathcal{M}, w \models [!b]\varphi$$
 sii $\mathcal{M}^b, u \models \varphi$ donde $\mathcal{M}^b = \langle S, R, \{U^b(i)\}_{i \in Agt}, V \rangle$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_i(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_i(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\mathcal{M}, w \models [!b] \varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{ \mathbf{U}^b(i) \}_{i \in \mathsf{Agt}}, V \rangle$$

$$\mathbf{U}^b(i) = \begin{cases} (\mathbf{U}(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in \mathbf{U}(i) \text{ con } b \in \pi \end{cases}$$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\begin{split} \mathcal{M}, w &\models [!b] \varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{ \mathbf{U}^b(i) \}_{i \in \mathsf{Agt}}, V \rangle \\ \mathbf{U}^b(i) &= \begin{cases} (\mathbf{U}(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in \mathbf{U}(i) \text{ con } b \in \pi \\ \mathbf{U}(i) \cup \{\{b\}\} & \text{caso contrario} \end{cases} \end{split}$$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\mathcal{M}, w \models [!b]\varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{ U^b(i) \}_{i \in Agt}, V \rangle$$

$$U^b(i) = \begin{cases} (U(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in U(i) \text{ con } b \in \pi \\ U(i) \cup \{\{b\}\} & \text{caso contrario} \end{cases}$$

Definición ($\mathsf{L}_{\mathsf{Kh}_i,\square,[!b]} = \mathsf{L}_{\mathsf{Kh}_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_i(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

[!b] φ : "tras anunciar que b es distinguible de todo plan, φ se cumple".

$$\mathcal{M}, w \models [!b]\varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{U^b(i)\}_{i \in \mathsf{Agt}}, V \rangle$$

$$U^b(i) = \begin{cases} (U(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in U(i) \text{ caso contrario} \end{cases}$$

 $\not\models \mathsf{Kh}_i(f \land c, s)$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

[!b] φ : "tras anunciar que b es distinguible de todo plan, φ se cumple".

$$\mathcal{M}, w \models [!b]\varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{U^b(i)\}_{i \in \mathsf{Agt}}, V \rangle$$

$$U^b(i) = \begin{cases} (U(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in U(i) \text{ caso contrario} \end{cases}$$

 $\not\models \mathsf{Kh}_{j}(f \land c, s)$ $\models [!e]\mathsf{Kh}_{j}(f \land c, s)$

Definición ($L_{Kh_i,\square,[!b]} = L_{Kh_i,\square} + [!b]$)

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{Kh}_{i}(\varphi, \varphi) \mid [b]\varphi \mid [!b]\varphi$$

$$\mathcal{M}, w \models [!b]\varphi \quad \text{sii} \quad \mathcal{M}^b, u \models \varphi \text{ donde } \mathcal{M}^b = \langle S, R, \{U^b(i)\}_{i \in \mathsf{Agt}}, V \rangle$$

$$U^b(i) = \begin{cases} (U(i) \setminus \{\pi\}) \cup \{\{b\}\} & \exists \pi \in U(i) \text{ caso contrario} \end{cases}$$

$$\not\models \mathsf{Kh}_{j}(f \land c, s) \\
\models [!e]\mathsf{Kh}_{j}(f \land c, s) \\
\mathsf{U}(j) \to \mathsf{U}^{e}(j)$$

Axiomas de reducción $\mathcal{L}_{[!b]}$

Equivalencias que eliminan ocurrencias de [!b].

Axiomas de reducción $\mathcal{L}_{[!b]}$

Equivalencias que eliminan ocurrencias de [!b].

- (1) $[!b]p \leftrightarrow p$
- (2) $[!b] \neg \varphi_1 \leftrightarrow \neg [!b] \varphi_1$
- (3) $[!b](\varphi_1 \vee \varphi_2) \leftrightarrow ([!b]\varphi_1 \vee [!b]\varphi_2)$
- **(4)** $[!b][b]\varphi_1 \leftrightarrow [b][!b]\varphi_1$

Axiomas de reducción $\mathcal{L}_{[!b]}$

Equivalencias que eliminan ocurrencias de [!b].

- (1) $[!b]p \leftrightarrow p$
- (2) $[!b] \neg \varphi_1 \leftrightarrow \neg [!b] \varphi_1$
- (3) $[!b](\varphi_1 \vee \varphi_2) \leftrightarrow ([!b]\varphi_1 \vee [!b]\varphi_2)$
- **(4)** $[!b][b]\varphi_1 \leftrightarrow [b][!b]\varphi_1$
- (5) [!b]Kh_i $(\varphi_1, \varphi_2) \leftrightarrow (\text{Kh}_i([!b]\varphi_1, [!b]\varphi_2) \lor$ $A([!b]\varphi_1 \to (\langle b \rangle \top \land [b][!b]\varphi_2)))$

$$\mathcal{M}, w \models [!e] \mathsf{Kh}_j(f \land c, s)$$
 (5)

$$\mathcal{M}, w \models [!e] \mathsf{Kh}_j(f \land c, s)$$

$$\mathcal{M}, w \models \mathsf{Kh}_j([!e](f \land c), [!e]s) \lor \mathsf{A}([!e](f \land c) \to (\langle b \rangle \top \land [b][!e]s))$$
 (1)-(3)

$$\mathcal{M}, w \models [!e] \mathsf{Kh}_{j}(f \wedge c, s) \tag{5}$$

$$\mathcal{M}, w \models \mathsf{Kh}_{j}([!e](f \wedge c), [!e]s) \vee \mathsf{A}([!e](f \wedge c) \rightarrow (\langle b \rangle \top \wedge [b][!e]s)) \tag{1)-(3)}$$

$$\mathcal{M}, w \models \mathsf{Kh}_{j}(f \wedge c, s) \vee \mathsf{A}((f \wedge c) \rightarrow (\langle b \rangle \top \wedge [b]s))$$

$$\mathcal{M}, w \models [!e] \mathsf{Kh}_{j}(f \land c, s)$$

$$\mathcal{M}, w \models \mathsf{Kh}_{j}([!e](f \land c), [!e]s) \lor \mathsf{A}([!e](f \land c) \to (\langle b \rangle \top \land [b][!e]s))$$

$$\mathcal{M}, w \models \mathsf{Kh}_{j}(f \land c, s) \lor \mathsf{A}((f \land c) \to (\langle b \rangle \top \land [b]s))$$

$$\mathcal{M}, w \models \mathsf{A}((f \land c) \to (\langle b \rangle \top \land [b]s))$$

$$(b) \vdash \mathsf{A}(b) \vdash$$

Propiedades

Corolario

 $L_{Kh_{i,\square}}$ y $L_{Kh_{i,\square},[!b]}$ son igualmente expresivas para modelos LTS^Us arbitrarios.

Propiedades

Corolario

 $L_{Kh_{i},\square}$ y $L_{Kh_{i},\square,[!b]}$ son igualmente expresivas para modelos LTS^Us arbitrarios.

Teorema

El problema de satisfacibilidad para $L_{Kh_{i},\square}$ es decidible.

Propiedades

Corolario

 $L_{Kh_{i,\square}}$ y $L_{Kh_{i,\square},[!b]}$ son igualmente expresivas para modelos LTS^Us arbitrarios.

Teorema

El problema de satisfacibilidad para $L_{Kh_{i},\square}$ es decidible.

Corolario

El problema de satisfacibilidad para $L_{Kh_{i},\square,[!b]}$ también es decidible.

Propiedades

Corolario

 $L_{Kh_{i,\square}}$ y $L_{Kh_{i,\square},[!b]}$ son igualmente expresivas para modelos LTS^Us arbitrarios.

Teorema

El problema de satisfacibilidad para L_{Kh_i,□} es decidible.

Corolario

El problema de satisfacibilidad para $L_{Kh_{i,\square,[!b]}}$ también es decidible.

Resultados análogos para operadores de refinamiento de un plan $([!\sigma])$ y semi privados $([!\sigma, i])$.

Lógica L_{Kh_i} [Cap. 4]

Distinción entre la información óntica y epistémica

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]

Lógica L_{Khi} [Cap. 4]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]

Operadores dinámicos [Cap. 8]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]
 Operadores dinámicos [Cap. 8]
- Anuncios públicos ([!x]) y actualización de relaciones ([E]) [Cap. 8.1]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]
 Operadores dinámicos [Cap. 8]
- Anuncios públicos ([!x]) y actualización de relaciones ([E]) [Cap. 8.1]
- Refinamientos específico ⟨σ₁ ≁ σ₂⟩ y arbitrario de planes ⟨≁⟩, y refinamiento de un plan público [!σ] y privado [!σ, i] [Cap. 8.2 y 9]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]
 Operadores dinámicos [Cap. 8]
- Anuncios públicos ([!x]) y actualización de relaciones ([E]) [Cap. 8.1]
- Refinamientos específico ⟨σ₁ ≁ σ₂⟩ y arbitrario de planes ⟨≁⟩, y refinamiento de un plan público [!σ] y privado [!σ, i] [Cap. 8.2 y 9]
- Operadores deónticos (habilidades, normas y cumplimiento) [Cap. 10]

- Distinción entre la información óntica y epistémica
- Representa más razones de no saber cómo
- Axiomatización correcta y fuertemente completa [Cap. 5]
- Resultados de bisimulaciones y equivalencia de fórmulas [Cap. 6]
- Generaliza la semántica basada en LTSs [Cap. 6]
- Complejidad computacional relativamente baja [Cap. 7]
 Operadores dinámicos [Cap. 8]
- Anuncios públicos ([!x]) y actualización de relaciones ([E]) [Cap. 8.1]
- Refinamientos específico ⟨σ₁ ≁ σ₂⟩ y arbitrario de planes ⟨≁⟩, y refinamiento de un plan público [!σ] y privado [!σ, i] [Cap. 8.2 y 9]
- Operadores deónticos (habilidades, normas y cumplimiento) [Cap. 10]

 Considerar alternativas a la ejecutabilidad fuerte (ejecutabilidad débil, trazas de ejecuciones parciales, etcétera)

- Considerar alternativas a la ejecutabilidad fuerte (ejecutabilidad débil, trazas de ejecuciones parciales, etcétera)
- Encontrar la cota inferior del problema de satisfacibilidad para L_{Kh}

- Considerar alternativas a la ejecutabilidad fuerte (ejecutabilidad débil, trazas de ejecuciones parciales, etcétera)
- Encontrar la cota inferior del problema de satisfacibilidad para L_{Kh}
- Caracterizar la clase de complejidad exacta de las lógicas dinámicas y deónticas

- Considerar alternativas a la ejecutabilidad fuerte (ejecutabilidad débil, trazas de ejecuciones parciales, etcétera)
- Encontrar la cota inferior del problema de satisfacibilidad para L_{Kh}
- Caracterizar la clase de complejidad exacta de las lógicas dinámicas y deónticas
- Análisis sobre posibles clases de modelos, resultados de expresividad, axiomatizaciones y extensiones del lenguaje base

- Considerar alternativas a la ejecutabilidad fuerte (ejecutabilidad débil, trazas de ejecuciones parciales, etcétera)
- Encontrar la cota inferior del problema de satisfacibilidad para L_{Kh}
- Caracterizar la clase de complejidad exacta de las lógicas dinámicas y deónticas
- Análisis sobre posibles clases de modelos, resultados de expresividad, axiomatizaciones y extensiones del lenguaje base
- Considerar otros operadores dinámicos, como "aprender cómo" y "olvidar cómo"

Referencias

- Areces, C., V. Cassano, P. F. Castro et al. (2023a). "How Easy it is to Know How: An Upper Bound for the Satisfiability Problem". En: 18th Edition of the European Conference on Logics in Artificial Intelligence (JELIA 2023).
- Areces, C., R. Fervari, A. R. Saravia et al. (2021). "Uncertainty-Based Semantics for Multi-Agent Knowing How Logics". En: 18th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2021). Vol. 335. EPTCS. Open Publishing Association, págs. 23-37.
- (2023b). "First Steps in Updating Knowing How". En: Dynamic Logic. New Trends and Applications. Ed. por C. Areces y D. Costa. Springer International Publishing, págs. 1-16.
- (2023c). "Uncertainty-Based Knowing How Logic". En: *Journal of Logic and Computation*, exad056. poi: 10.1093/logcom/exad056.
- Demri, S. y R. Fervari (2023). "Model-Checking for Ability-Based Logics with Constrained Plans". En: 37th AAAI Conference on Artificial Intelligence (AAAI 2023). AAAI Press, págs. 6305-6312.