PIM

Prof. Gilmário

Trabalho Prático – implementação da segmentação por área (não utilize bibliotecas de OpenCv, Python, por exemplo)

Implemente as operações necessárias.

I) Objetivo

Estudo da aplicação de segmentação por área e operações preparatórias (limiarização, identificação de componentes conexos, rotulação etc), conforme estudado em sala.

II) Descrição do problema

Suponha uma imagem qualquer em tons de cinza apresentando vários objetos com diferentes características: variações de brilho, tamanhos, etc.

Considere que esse tipo de imagem sempre apresenta um objeto maior, como se fosse uma ilha de pixels com um certo brilho, a Figura 1 exibe um **exemplo** desse tipo de imagem.

O problema principal consiste aplicar a segmentação por área, para evidenciar o objeto central e extrair as coordenadas do seu centro de massa (centro de gravidade).

A solução envolve o uso de limiarização, identificação de componentes conexos, rotulação, conexão à borda etc. Conforme discutido em sala.

Figura 1: Imagem solda.png com destaque para o objeto central.

III) Pede-se

Implemente script(s) Python para determinar a solução do problema, para testes utilize a imagem *solda.png*, disponível na pasta "imagens para testes" no Moodle.

Desenhe um diagrama que ilustre a cadeia de procedimentos que você realiza para a obtenção da solução, exemplo:

Descreva o(s) diagrama(s) e a sua relação com a(s) codificação(ões) em Python.

Todos os dados e resultados parciais que contribuem com a solução devem ser descritos/exibidos (limiar, método de determinação, resultados parciais gerados, etc)

OBS:

- O processo deve ser capaz de realizar o mesmo procedimento em imagens que apresentem características similares aos da solda.png,ou seja,imagens em tons de cinza com objetos de tamanhos e brilhos variados em e uma "ilha" de pixels com um certo brilho:
- É permitido uma única etapa de limiarização;
- Você pode optar por determinar o limiar via método de Otsu (from skimage.filters import threshold multiotsu) as demais operações devem ser implementadas.
 - O operador de multiotsu retorna um array com vários limiares, basta testá-los.

IV) Entrega

Via Moodle, acompanhada de relatório completo.

Veja no Moodle mais detalhes da entrega

V) Bibliografia

- [1] Gonzalez, R. e Woods, R. "Processamento digital de Imagens", 3a ed. Ed. Pearson, 2010.
- [2] Pedrini, Hélio. Livros Análise de Imagens Digitais Princípios, Algoritmos e Aplicações. Editora Thomson Learning, 2007.

Notas de aula...