6

7

CLAIMS

What is claimed is:

1	1.	A network processor comprising:
2		a plurality of standard cells; and
3		at least one field programmable gate array (FPGA) cell that can communicate
4	with at least one of the standard cells, wherein the FPGA cell allows for customization of the	
5	network proce	essor.
## T	2.	The network processor of claim 1, wherein the at least one FPGA cell can
	provide a spec	cified function based upon field programming techniques to allow for
	customization	n of the network processor.
	3.	The network processor of claim 1 wherein the plurality of standard cells are
	utilized for co	ommon logic and the at least one FPGA cell is utilized for high risk logic.
1	4.	A method for customizing a network processor; comprising the steps of:
2		(a) providing at least one field programmable gate array (FPGA) cell
3	within the net	twork processor;
4		(b) providing a custom logic file for the vendor of the network processor by
5	a customer of	f the network processor; and

programming the at least one FPGA cell, the vendor based upon the

(c)

custom logic bill to provide a customized network processor.

1

2

1

2

1

2

- 5. The method of claim 4 wherein step (b) further comprises (b1) providing a verification module within the custom logic file.
- 6. The method of claim 4 which includes step (c) verifying the customized network processor based upon the verification module.
- 7. A network processor comprising:
 a plurality of standard cells, the plurality of standard cells comprising common logic;
 a plurality of FPGA cells, the plurality of FPGA cells comprising high risk logic; and
 at least one bus coupled to a portion of the standard cells and portion of the FPGA
 cells, wherein each of the plurality of FPGA cells allows for customization of the network
 processor.
- 8. The network processor of claim 7, wherein the plurality of cells each can provide a specified function based upon field programming techniques to allow for customization of the network processor.
- 9. The network processor of claim 7 wherein the at least one bus comprises a processor local bus (PLB) and two on-chip peripheral buses (OPBs).
- 10. The network processor of claim 9 wherein the FPGA cells coupled to the PLB comprise an accelerator function and a PLB master/slave function.

- 11. The network processor of claim 9 wherein the FPGA cells coupled to one of the two OPBs are media interfaces.
- 12. The network processor of claim 9 wherein the FPGA cells coupled to the other of the two OPBs are a GPIO preprocessor function and an OPB master/slave function.
 - 13. A network processor comprising:

a plurality of standard cells, the plurality of standard cells comprising common logic; a plurality of FPGA cells, the plurality of FPGA cells comprising high risk logic; and a processor local bus (PLB) and two on-chip peripheral buses (OPBs) coupled to a portion of the standard cells and portion of the FPGA cells, wherein the FPGA cells coupled to the PLB comprise an accelerator function and a PLB master/slave function; wherein the FPGA cells coupled to one of the two OPBs are media interfaces; wherein the FPGA cells coupled to the other of the two OPBs are a GPIO preprocessor function and an OPB master/slave function; wherein the plurality of cells each can provide a specified function based upon field programming techniques to allow for customization of the network processor.