Counterfactuals and Mediation

Brady Neal

causalcourse.com

Counterfactuals Basics

Important Application: Mediation

Brady Neal 2 / 25

Counterfactuals Basics

Important Application: Mediation

Fundamental Problem of Causal Inference

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

Fundamental Problem of Causal Inference

Counterfactual

T: observed treatment

: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Factual

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

Fundamental Problem of Causal Inference

T: observed treatment

Y: observed outcome

i : used in subscript to denote a

specific unit/individual

 $Y_i(1)$: potential outcome under treatment

 $Y_i(0)$: potential outcome under no treatment

Counterfactual

Causal effect

$$Y_i(1) - Y_i(0) = 1$$

We can compute counterfactuals using a parametric SCM.

Counterfactual: $P(Y(t) \mid T = t', Y = y')$

observation Counterfactual: $P(Y(t) \mid T = t', Y = y')$

Counterfactual:
$$P(Y(t) \mid T = t', Y = y')$$

hypothetical condition

Counterfactual:
$$P(Y(t) \mid T = t', Y = y')$$

hypothetical condition

Different from CATE: $\mathbb{E}[Y(t) \mid X = x]$

Counterfactual:
$$P(Y(t) \mid T = t', Y = y')$$

hypothetical condition

Different from CATE: $\mathbb{E}[Y(t) \mid X = x] = \mathbb{E}[Y \mid do(t), X = x]$

Counterfactual:
$$P(Y(t) \mid T = t', Y = y')$$

hypothetical condition

Different from CATE: $\mathbb{E}[Y(t) \mid X = x] = \mathbb{E}[Y \mid do(t), X = x]$

Cannot express counterfactuals using do-notation

Given: Observation of (T, Y) (observation of potential outcome Y(t) where t is the observed value of T)

Given: Observation of (T, Y) (observation of potential outcome Y(t) where t is the observed value of T)

Main ingredient necessary: correct parametric model for the structural equation for Y

Given: Observation of (T, Y) (observation of potential outcome Y(t) where t is the observed value of T)

Main ingredient necessary: correct parametric model for the structural equation for Y

Result: access to counterfactuals Y(t') at the unit-level

Y: happy or unhappy (1 or 0)

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Observation: T = 0 and Y = 0

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := \dots$$
 Observation: $T = 0$ and $Y = 0$ $(Y_u(0) = 0)$ $Y := UT + (1 - U)(1 - T)$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := \dots$$
 Observation: $T = 0$ and $Y = 0$ $(Y_u(0) = 0)$ $Y := UT + (1 - U)(1 - T)$ $Y_u(1)$?

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$ $Y_u(1)$?

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$ $Y_u(1)$?

Step 1: Solve for U

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := \dots$$

$$\underline{Y := UT + (1 - U)(1 - T)}$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := \dots$$

$$\underline{Y := UT + (1 - U)(1 - T)}$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := \dots$$

$$\underline{Y := UT + (1 - U)(1 - T)}$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM

$$T := \dots$$

 $Y := (1)T + (1-1)(1-T)$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM $T := \dots$

$$Y := T$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM

$$T := 1$$

$$Y := T$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM

$$T := 1$$

$$Y := T$$

$$Y_u(1) = 1$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

Computing Counterfactuals: Simple Example

Y: happy or unhappy (1 or 0)

T: get a dog or don't (1 or 0)

U: unobserved variable describing the individual (1 if dog person; 0 if anti-dog person)

SCM:
$$T := ...$$

 $Y := UT + (1 - U)(1 - T)$

Step 2: Individualized SCM

$$T := 1$$

$$Y := T$$

$$Y_u(1) = 1$$

Observation:
$$T = 0$$
 and $Y = 0$ $(Y_u(0) = 0)$
 $Y = UT + (1 - U)(1 - T)$ $Y_u(1)$?
 $0 = U(0) + (1 - U)(1 - 0)$
 $0 = 1 - U$
 $U = 1$

ITE:
$$Y_u(1) - Y_u(0) = 1 - 0 = 1$$

From Chapter 4 of Pearl et al. (2016)'s Primer:

1. Abduction: Use an observation to determine the value of U

- 1. Abduction: Use an observation to determine the value of U
- 2. Action: Modify the SCM, by replacing the structural equation for T with T := t

- 1. Abduction: Use an observation to determine the value of U
- 2. Action: Modify the SCM, by replacing the structural equation for T with T := t
- 3. Prediction: Use the value of U from step 1 and the modified SCM from step 2 to compute the value of Y(t)

Question:

Given the observation T = 1 and Y = 0, compute Y(0) for this individual given the following SCM:

$$T := \dots$$

$$Y := UT + (1 - U)(1 - T)$$

Even when we have the structural equation for Y, we can't always determine counterfactuals with probability 1

Even when we have the structural equation for Y, we can't always determine counterfactuals with probability 1

What if we can't solve for U (function that maps U to Y for a fixed value of T isn't invertible)?

Even when we have the structural equation for Y, we can't always determine counterfactuals with probability 1

What if we can't solve for U (function that maps U to Y for a fixed value of T isn't invertible)?

Example:

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

Even when we have the structural equation for Y, we can't always determine counterfactuals with probability 1

What if we can't solve for U (function that maps U to Y for a fixed value of T isn't invertible)?

Example:

Observation: T = 1 and Y = 0

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

Even when we have the structural equation for Y, we can't always determine counterfactuals with probability 1

What if we can't solve for U (function that maps U to Y for a fixed value of T isn't invertible)?

Example:

Observation: T = 1 and Y = 0

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1-T & U = ext{dog-hater} \end{cases}$$

Structural equation for Y:

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

Observation: T = 1 and Y = 0

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1-T & U = ext{dog-hater} \end{cases}$$

Observation:
$$T = 1$$
 and $Y = 0$
 $(Y_u(1) = 0)$

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1-T & U = ext{dog-hater} \end{cases}$$

Observation:
$$T = 1$$
 and $Y = 0$
 $(Y_u(1) = 0)$
 $Y_u(0) = ?$

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

$$P(U = \text{always happy}) = 0.3$$

 $P(U = \text{never happy}) = 0.2$
 $P(U = \text{dog-needer}) = 0.4$
 $P(U = \text{dog-hater}) = 0.1$

Observation:
$$T = 1$$
 and $Y = 0$
 $(Y_u(1) = 0)$
 $Y_u(0) = ?$

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1-T & U = ext{dog-hater} \end{cases}$$

$$P(U = \text{always happy}) = 0.3$$

 $P(U = \text{never happy}) = 0.2$
 $P(U = \text{dog-needer}) = 0.4$
 $P(U = \text{dog-hater}) = 0.1$

Observation:
$$T = 1$$
 and $Y = 0$
 $(Y_u(1) = 0)$
 $Y_u(0) = ?$

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

$$P(U = \text{always happy}) = 0.3$$

 $P(U = \text{never happy}) = 0.2$
 $P(U = \text{dog-needer}) = 0.4$
 $P(U = \text{dog-hater}) = 0.1$

Observation: T = 1 and Y = 0
$$(Y_u(1) = 0) \qquad P(U = \text{never happy} \mid T = 1, Y = 0) = \frac{0.2}{0.2 + 0.1} = \frac{2}{3}$$
$$P(U = \text{dog-hater} \mid T = 1, Y = 0) = \frac{0.1}{0.2 + 0.1} = \frac{1}{3}$$
$$Y_u(0) = ?$$

$$Y := egin{cases} 1 & U = ext{always happy} \\ 0 & U = ext{never happy} \\ T & U = ext{dog-needer} \\ 1 - T & U = ext{dog-hater} \end{cases}$$

$$P(U = \text{always happy}) = 0.3$$

 $P(U = \text{never happy}) = 0.2$
 $P(U = \text{dog-needer}) = 0.4$
 $P(U = \text{dog-hater}) = 0.1$

Observation: T = 1 and Y = 0
$$(Y_u(1) = 0)$$
 $P(U = \text{never happy} \mid T = 1, Y = 0) = \frac{0.2}{0.2 + 0.1} = \frac{2}{3}$ $P(U = \text{dog-hater} \mid T = 1, Y = 0) = \frac{0.1}{0.2 + 0.1} = \frac{1}{3}$ $Y_u(0) = ?$ $P(Y_u(0) = 1) = \frac{1}{3}$

Counterfactuals Basics

From Chapter 4 of Pearl et al. (2016)'s Primer:

1. Abduction: Use an observation Z to update the distribution of U: P(U | Z)

- 1. Abduction: Use an observation Z to update the distribution of U: P(U | Z)
- 2. Action: Modify the SCM, by replacing the structural equation for T with T := t

- 1. Abduction: Use an observation Z to update the distribution of U: P(U | Z)
- 2. Action: Modify the SCM, by replacing the structural equation for T with T := t
- 3. Prediction: Use the updated distribution of U step 1 and the modified SCM from step 2 to compute the distribution of Y(t)

No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y

No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y

Strong assumption

No Unit-Level Counterfactuals without Parametric Model

Main ingredient necessary for computing counterfactuals: parametric model for the structural equation for Y

Strong assumption

Without it, we are stuck with the fundamental problem of causal inference.

Question:

Given the observation T = 1 and Y = 1, compute Y(0) for this individual given the following SCM and prior:

$$Y := \begin{cases} 1 & U = \text{always happy} \\ 0 & U = \text{never happy} \\ T & U = \text{dog-needer} \\ 1 - T & U = \text{dog-hater} \end{cases} \qquad P(U = \text{always happy}) = 0.3$$

$$P(U = \text{never happy}) = 0.2$$

$$P(U = \text{never happy}) = 0.4$$

$$P(U = \text{dog-needer}) = 0.4$$