

Faculté Polytechnique

Optimisation Non Linéaire

Récupération d'une image floutée (deblurring)

Projet d'Optimisation

Sabrine RIAHI Aymerick SOYEZ

Sous la direction de Monsieur Nicolas GILLIS et Arnaud VANDAELE

Décembre 2017

Table des matières

1	Introduction	2
2	Étude de la convexité du problème	2
3	Le problème admet-il un minimum global?	2
4	Conditions d'optimalité	2
5	Méthode de descente de coordonnées	2
6	Méthode du gradient	2
7	Comparaison des méthodes	2
8	Étude de la sensibilité de la solution	6

1 Introduction

Le problème posé est de déflouter une image dont chaque pixel a été remplacé par une combinaison linéaire des pixels voisins. La matrice de floutage utilisée est donnée. L'objectif de ce projet est donc la résolution du problème suivant :

$$\min_{0 \le x \le 1} ||Ax - \tilde{x}||_2^2 + \lambda ||x||_2^2$$

où:

A est la matrice de floutage $\tilde{x} \text{ est le vecteur de pixels flouté}$ $\lambda \text{ est un paramètre positif qui dépend du niveau de bruit}$

2 Étude de la convexité du problème

Pour qu'un problème soit convexe, il faut que

- Son domaine D soit convexe,
- $-\nabla^2 f(x) \geqslant 0, \forall x \in D$

Le domaine est décrit par $D=\{x\mid c(x)\geq 0\}$ et est convexe si c(x) est concave. Ici :

- 3 Le problème admet-il un minimum global?
- 4 Conditions d'optimalité
- 5 Méthode de descente de coordonnées
- 6 Méthode du gradient
- 7 Comparaison des méthodes
- 8 Étude de la sensibilité de la solution