

Enes Savli

Introductio

Information
Master Program

Preliminaries

Previous Works Research Plan

Thesis

Summary

POD-SVD Adaptive Strategies

Results Conclusions

A Short Summary of MsC Research Period

Enes Savli

Thesis: Posteriori MOR Strategies for Seismic Applications in Geophysics

March 8, 2019

Overview

Enes Savli

oduction

Personal Information Master Program

Preliminaries
Previous Works
Research Plan

Thesis Summary

Introduction POD-SVD Adaptive Strategies Results

Introduction

- Personal Information
- Master Program
- BSC
- Preliminaries
 - Previous Works
 - Research Plan
- Thesis Summary
 - Introduction
 - POD-SVD
 - Adaptive Strategies
 - Results
 - Conclusions

Personal Information

Enes Savli

I am a open-minded and curious Mechanical Engineer who;

Personal Information

- Master Program BSC
- Preliminaries Previous Works Research Plan

Thesis Summary

Introduction POD-SVD Adaptive Strategies Results

- was born in Istanbul at 1989,
- is a life-long student, good learner and self motivated person,
- likes seas and literature also is a cine guru,

- ullet Got the BsC Degree in 2011 in Mechanical Engineering (3.02/4)
- Final Poject : Exergy/Energy Analysis of an Active Co-generation System in ERDEMIR
- Technical interests are computational mechanics, numerical analysis...

Master Program

Enes Savli

Introduction Personal

Master Program

Preliminaries

Previous Works Research Plan

Thesis

Introduction POD-SVD Adaptive Strategies Results

Called Modeling for Science and Engineering given by Applied Mathematics division of UAB

- Interdisciplinary program is based on two pillars;
 - Modeling of Systems
 - Numerical simulation or Resolution of Systems

- Taken classes like Optimization, Dynamical Systems Modeling, Parallel Programming, Applied Modeling and Simulation
- Various small/mid scale projects on science/computer science and engineering.

Barcelona Supercomputer Center

Enes Savli

Personal Information Master Program BSC

Preliminaries
Previous Works
Research Plan

Thesis Summary Introduction POD-SVD Adaptive BSC is the national super-computing centre in Spain which specialise in HPC and manage MareNostrum, one of the most powerful supercomputers in Europe.

 With a total staff of more than 500 researchers and professionals focuses on four main fields: Computer, Life, Earth Sciences and Applications in Engineering and 24 sub-areas.

Necessity of ROM & Previous Works

Enes Savli

Personal Information Master Program

Previous Works

Research Plan

Summary Introduction POD-SVD Adaptive Strategies Results

- Seismic applications requires repetitive expensive solutions
 - Seismic Imaging
 - Reverse Time Migration
 - Inversion Techniques
- In Geosciences Applications Group of BSC, ROM techniques have been already conducting for some years.
- Group was specialized in a-priori methods mainly PDG (Proper Generalized Decompositions) [1] [2]

Thesis plan & Objectives

Enes Savli

Master Program

Research Plan

Thesis Summary

Adaptive Strategies

In broad manner objectives were;

- Exploring on various posteriori methods which are much more easy to implement than PDG
- Seeking for possibility to adaptation to the high fidelity solver of BSC

- At first sight due to dealing with huge data, POD-SVD methods have been chosen
- For latter, Pereyra's strategies has been planned for implementation and comparison.[4, 5, 3]

In particular objectives were;

- Building the surrogate models of large parameterized wave propagation models by using ROM.
- Analyze the snapshot method (SVD) advantages and drawbacks and discuss the cost of offline stage.
- Get over the burden by implementations of cheaper QR representations [5]
- Test different parameterizations.(frequency, positions)

4 D > 4 D > 4 D > 4 D >

Overview of Reduced Order Modeling

Enes Savli

Personal Information Master Program

Droliminario

Previous Works Research Plan

Thesis Summary

Introduction

Adaptive Strategie

Conclusions

- Approximates the high order model in low order one by preserving stucture.
- In general, projection on to the reduced basis
- Expensive step is computation of reduced basis a.k.a "Offline Stage"

Why POD?

- Data dependent, non-intrusive implementation, guarantees the optimality
- More stable, compatibility to larger data-sets (PCA relation)

Workflow of POD Snapshot Method

Enes Savli

troductio

Pomonal

Master Program

BSC Preliminaries

Previous Works Research Plan

Thesis

Summary

POD-SVD

Adaptive Strategies

Results Conclusions

Some Results on Validation Phase

Enes Savli

Master Program Preliminaries Previous Works

Research Plan Thesis Summary

POD-SVD

Adaptive

- 2D Time domain high order FD schemes with source and time parameterization.

10-10

- 1D Frequency Domain FE model with frequency parameterization.

n-th Singular Value

Some Results on Validation Phase

Enes Savli

Introduction

Personal Information

Master Program BSC

Previous Works

Thesis

Summary

POD-SVD

Adaptive

Results
Conclusions

- All the steps have been examined and shown in deeper aspects in both models.
- POD method in Acoustic Wave Propagation models have been explored and validated.
- It is shown that SVD is not a feasible option for large scale seismic applications for high memory requirement and complexity $\mathcal{O}(min(mn^2, m^2n))$.

Adaptive QR Decomposition Method - I

Enes Savli

Master Program BSC Preliminaries

Previous Works Research Plan

Summary Introduction POD-SVD Adaptive Strategies

Strategies Results Conclusions

- A novel algorithm proposed by Victor Pereyra (2011) claimed as a replacement of SVD
- It is progressive because it advances with the high fidelity simulation
- ullet It is adaptive because selects the y_i snapshot according to angle between existing basis and snapshot y_i .
- ullet Storing snapshot matrix is not required and evaluation of ${f Q}$ is just a backward accumulation. \Rightarrow cheaper!
- Projection with $\tilde{\mathbf{p}} = \mathbf{Q}\mathbf{a}(t)$ instead of $\tilde{\mathbf{p}} = \mathbf{U}\mathbf{a}(t)$

Adaptive QR Decomposition Method - I

Enes Savli

Master Program

Summary

Adaptive Strategies Algorithm 1: Adaptive QR Algorithm

Input: $\mathbf{X} \in \mathbb{R}^m$ Solution at t timestep, $V \in \mathbb{R}^{mxk}$ Computed Householder vectors, Threshold δ ; Output: O orthogonal basis:

At the kth step;

for i = 1,..,k do

Householder Transition until $X_{1:k}$;

$$X = \mathbf{X} - 2 * V(:, i) * (V(:, i)' * \mathbf{X})$$

Calculate the $\alpha = -sign(\mathbf{X}_{k:end}(1)) * \|\mathbf{X}_{k:end}\|_2$ (Diagonal term of R);

Compute the threshold $\mu = \|\alpha|/\|\mathbf{X}\|_2$;

if $\mu > \delta$ then

Compute the new snaphot's HH vector and save it;

$$v = (\mathbf{X}_{k:end} - \alpha * e)./\|\mathbf{X}\|_2, \quad \text{where } e^T = (1, 0, ..0);$$

$$c + = 1;$$

else

Try next snapshot;

Compute the Orthogonal Basis $Q \in \mathbb{R}^{mxn}$ (n << m) by backward accumulation of $V \in \mathbb{R}^{mxn}$ Householder Vectors for $i = n, n-1, \dots, 2$ do

$$\mathbf{Q} = \mathbf{Q} - 2 * V(:, j) * (V(:, j)' * \mathbf{Q})$$

Combining Domain & QR Decompositions

Enes Savli

Introduction
Personal
Information
Master Program

Preliminaries
Previous Works
Research Plan

Thesis Summary Introduction

Adaptive Strategies Results QR-I has limitations too and some manipulations to system might be done to make QR applicable.

• Proposed application is "skeletonization" by reducing the size of the "saved" entitites $N\Rightarrow N_r$ with arbitrary $\mathbf{C}\in\mathbb{R}^{N_T\times N}$. This reduction provides new snapshots $\tilde{\mathbf{Y}}=\mathbf{C}\mathbf{Y}$.

- $lackbox{0}$ Then we can't use direct orthogonal parts as $\mathbf{Q}^Y
 eq \mathbf{Q}^{ ilde{Y}}$.
- $\bullet \ \ \mbox{Idea comes from "Oblique Projections". Using } \ \tilde{\bf y} = \tilde{\bf Y} {\bf a}({\bf t}) \ \mbox{instead} \ \ \tilde{\bf y} = {\bf Q} {\bf a}({\bf t}) \ \mbox{and interpolate back!}$

Original System;

 $y_{tt} = Ay + Bu(t)$ introducing y = Ya(t); $CYa_{tt} = CAYa + Cbu(t)$

and we can substitute CY = QR:

 $QRa_{tt} = CAYa + Cbu(t)$ and finally;

 $\mathbf{a_{tt}} = \mathbf{R^{-1}Q^tCAYa} + \mathbf{R^{-1}Q^tCbu(t)}$

and;

y = CYa.

 $lack {f A}$ As seen, ${f R}^{-1}$ term occurs in reduced system.

Well-conditioned R⁻¹ is needed.

 Adaptive QR decomposition II is proposed focusing on condition number κ of R by using modified scheme of QR-I.

 Advancing in time is modified to avoid from systematic skipping.

Results

Enes Savli

roduction

Information
Master Program
BSC

Preliminaries Previous Works

Research Plan

Thesis Summary

Introduction POD-SVD Adaptive Strategies

Results

 Tests are done as figures above parameterization of source to be realistic with miscellaneous domain sizes.

Results

Enes Savli

Personal Information Master Program BSC

Preliminaries
Previous Works

Research Plan

Thesis Summary

POD-SVD Adaptive

Results

Conclusion

A Classifier Example

Enes Savli

Introduction
Personal
Information
Master Program
BSC

Preliminaries
Previous Works
Research Plan

Research Plan
Thesis

Summary Introduction POD-SVD Adaptive Strategies Results As claimed that two of QR decomposition for replacement SVD, one synthetically example in homogeneous media is derived;

• Total solution matrix would be size 4410000 x 1300 for 2 shot

Table: Calculation Times

Algorithm	POD-SVD	QR-I	QR-II
Time(s)	N/A	9760	11080
# Basis	N/A	221	378

Conclusions & Some Notes

Enes Savli

Master Program

Preliminaries

Thesis Summary

- It is shown that a-posteriori methodology is a satisfactory phenomena and it is worthwhile to do further developments.
 - All the methods gauged carefully and high compression ratios are obtained.
 - It is shown that usage of POD method is an option for seismic applications.
 - To get over the possible drawbacks (computational load of offline stage, memory), original and modified version of novel adaptive QR algorithm are introduced and implemented successfully.
 - During this work, i have been contracted in BSC as Research Intern.
 - In all works, in-house high fidelity models have been used as template.
 - All related implementations are realized by me from the scratch.
 - Matlab and Pyhton programming languages have been used.
 - Apart this work, POD for non-linear models and some error estimation methods have been researched
 - Real life applications leaved as future works.

Adaptive

References

Enes Savli

oduction

arconal

Information
Master Program

BSC

Preliminario

Previous Works Research Plan

Thesis

Summary

POD-SVD Adaptive Strategies

Conclusions

David Modesto and Josep De la Puente.

Exploiting a priori model reduction methods to accelerate seismic simulations. 04 2016.

David Modesto, Sergio Zlotnik, and Antonio Huerta.

 $Proper generalized \ decomposition \ for \ parameterized \ helmholtz \ problems \ in \ heterogeneous \ and \ unbounded \ domains: \ Application \ to \ harbor \ agitation.$

Computer Methods in Applied Mechanics and Engineering, 295, 04 2015.

Victor Pereyra.

Model order reduction with oblique projections for large scale wave propagation.

J. Comput. Appl. Math., 295(C):103-114, March 2016.

Victor Pereyra and And B Kaelin.

Fast wave propagation by model order reduction.

30:406-419, 01 2008.

Pereyra Victor.

Wave equation simulation using a compressed modeler.

American Journal of Computational Mathematics, 3(3):231-241, 2013.

Enes Savli

Introduction

Information
Master Program
BSC

Preliminaries

Previous Works Research Plan

Thesis

Summary

POD-SVD Adaptive

Conclusions

Thank You!!