

Linear classifiers:

Parameter learning

Learn a probabilistic classification model

Many classifiers provide a degree of certainty:

Output label Input sentence P(y|x) Extremely useful in practice

A (linear) classifier

 Will use training data to learn a weight or coefficient for each word

Word	Coefficient	Value
	$\hat{\mathbf{w}}_0$	-2.0
good	\hat{w}_{1}	1.0
great	\hat{W}_2	1.5
awesome	Ŵ ₃	2.7
bad	\hat{w}_4	-1.0
terrible	\hat{w}_{5}	-2.1
awful	ŵ ₆	-3.3
restaurant, the, we,	$\hat{\mathbf{W}}_{7,} \hat{\mathbf{W}}_{8,} \hat{\mathbf{W}}_{9,}$	0.0

Logistic regression model

Quality metric for logistic regression: Maximum likelihood estimation

Learning problem

Training data:
N observations (**x**_i,y_i)

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
1	1	+1
2	4	-1
0	3	-1
0	1	-1
2	1	+1

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1

$$P(y=+1|x_i,w) = 0.0$$

$$P(y=+1|x_i,w) = 1.0$$

Pick w that makes

Quality metric = Likelihood function

Negative data points

Positive data points

$$P(y=+1|x_y) = 0.0$$

$$P(y=+1|x_i, w) = 1.0$$

No w achieves perfect predictions (usually)

Likelihood $\ell(\mathbf{w})$: Measures quality of fit for model with coefficients \mathbf{w}

Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2

Quality metric: probability of data

Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	P(y=+1 x1,w) = P(y=+1 x0]=2,x0]=1,w)
x ₂ ,y ₂	0	2	-1	P(g=-1 x2,w)
x ₃ ,y ₃	3	3	-1	P(g=-1 x3,w)
x ₄ ,y ₄	4	1	+1	P(9=+11×4,w)
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	

Must combine into single measure of quality?
Multiply Probabilitie

P(y=+1|x1,w) P(y=-1|x2,w) P(y=-1|x3,w)...

Learn logistic regression model with maximum likelihood estimation (MLE)

Data point	x [1]	x [2]	У	Choose w to maximize
x ₁ ,y ₁	2	1	y :+1	$P(\underline{y=+1} \mathbf{x}[1]=2, \mathbf{x}[2]=1,\mathbf{w})$
x ₂ ,y ₂	0	2	-1	$P(y=-1 \mathbf{x}[1]=0, \mathbf{x}[2]=2,\mathbf{w})$
x ₃ ,y ₃	3	3	-1	$P(y=-1 \mathbf{x}[1]=3, \mathbf{x}[2]=3,\mathbf{w})$
x ₄ ,y ₄	4	1	+1	$P(y=+1 \mathbf{x}[1]=4, \mathbf{x}[2]=1,\mathbf{w})$

Finding best linear classifier with gradient ascent

Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2

22

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Maximizing likelihood

Maximize function over all possible w_0, w_1, w_2 $\prod_{\mathbf{w_0, w_1, w_2}} P(y_i \mid \mathbf{x}_i, \mathbf{w})$

No closed-form solution → use gradient ascent

ℓ(w₀,w₁,w₂) is a function of 3 variables

Machine Learning Specialization

Finding the max via hill climbing

Algorithm:

while not converged $w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw}\Big|_{w^{(t)}}$

Convergence criteria

For convex functions, optimum occurs when

$$\frac{dl}{dw} = 0$$

In practice, stop when

NA NA

Algorithm:

while not converged
$$w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw} \bigg|_{w^{(t)}}$$

Moving to multiple dimensions: Gradients

Contour plots

30

Gradient ascent

Learning algorithm for logistic regression

Derivative of (log-)likelihood

35

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Computing derivative

$$\frac{\partial \ell(\mathbf{w}^{(t)})}{\partial \mathbf{w}_j} = \sum_{i=1}^N h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \Big)$$

w(e);

$\mathbf{W}_0^{(t)}$	0
$w_{\underline{1}}^{(t)}$	1
(t) W ₂	-2

h. (x) = H aurson

x [1]	x [2]	у	P(y=+1 x _i ,w)	Contribution to derivative for w ₁
2	1	+1	0.5	2(1-0.5)=1
0	2	-1	0.02	0 (0-0.02) = 0
3	3	-1	0.05	3 (0 - 0.05)=-0.15
4	1	+1	0.88	4(1-0.89)=0.48

Total derivative:

$$\frac{\partial l(w^{(i)})}{\partial w_{i}} = | +0 - 0.15 + 0.48 = | .33$$

$$w_{i}^{(t+i)} = w_{i}^{(i)} + \eta \frac{\partial l(w^{(i)})}{\partial w_{i}} | \eta = 0.1$$

$$= | +0.1 \times | .33 = | .|33 | \xi$$

Derivative of (log-)likelihood: Interpretation

Summary of gradient ascent for logistic regression

init
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$

while $\|\nabla \ell(\mathbf{w}^{(t)})\| > \epsilon$

for $j = 0,...,D$

$$partial[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)})\right)$$

$$\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ partial}[j]$$

$$\mathbf{t} \leftarrow \mathbf{t} + \mathbf{1}$$

Ske size

Learning curve: Plot quality (likelihood) over iterations

If step size is too small, can take a long time to converge

Compare converge with

Careful with step sizes that are too large

Very large step sizes can even cause divergence or wild oscillations

Simple rule of thumb for picking step size η

- Unfortunately, picking step size requires a lot of trial and error ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one η that is too small (smooth but moving too slowly)
 - find one η that is too large (oscillation or divergence)
- Try values in between to find "best" η

earning Specialization

Advanced tip: can also try step size that decreases with

iterations, e.g.,

Summary of logistic regression classifier

What you can do now...

- Measure quality of a classifier using the likelihood function
- Interpret the likelihood function as the probability of the observed data
- Learn a logistic regression model with gradient descent