Importing relevant libraries -

import numpy as np import pandas as pd import datetime as dt import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import shapiro from scipy.stats import levene from scipy.stats import kruskal from sklearn.preprocessing import MinMaxScaler

data = pd.read_csv("delhivery_data.csv")

data.head()

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_center	destination_name	od_start_time		cut
() training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	2018-09-20 03:21:32.418600		
,	I training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	2018-09-20 03:21:32.418600		
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	2018-09-20 03:21:32.418600		0
;	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	2018-09-20 03:21:32.418600	***	
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	2018-09-20 03:21:32.418600		
5	rows × 24 c	olumns										

data.shape

→ (144867, 24)

</pre

data.info()

```
RangeIndex: 144867 entries, 0 to 144866
 Data columns (total 24 columns):
  # Column
                                                                                                                         Non-Null Count Dtype
                                                                                                                       144867 non-null object
   0
1
                trip creation time
            route_schedule_uuid
route_type
              trip_uuid
source_center
                                                                                                                        144867 non-null object
               source_name
destination_center
                                                                                                                       144574 non-null object
144867 non-null object
                                                                                                                       144606 non-null object
144867 non-null object
144867 non-null object
               destination_name
od_start_time
    10 od end time

        10 od_end_time
        144867 non-null object

        11 start_scan_to_end_scan
        144867 non-null float64

        12 is_cutoff
        144867 non-null obol

        13 cutoff_factor
        144867 non-null object

        14 cutoff_timestamp
        144867 non-null float64

        15 actual_distance_to_destination
        144867 non-null float64

        16 actual_time
        144867 non-null float64

        17 osrm_time
        144867 non-null float64

        18 osrm_distance
        144867 non-null float64

18 osrm_distance 144867 non-nul
19 factor 144867 non-nul
20 segment_actual_time 144867 non-nul
21 segment_osrm_time 144867 non-nul
22 segment_osrm_distance 144867 non-nul
23 segment_factor 144867 non-nul
dtypes: bool(1), float64(10), int64(1), object(12)
memory usage: 25.6+ MB
                                                                                                                 144867 non-null float64
```

Handling missing values -

#Checking for missing values data.isna().sum()

0 data 0 trip_creation_time 0 route_schedule_uuid 0 0 route_type 0 trip_uuid 0 source_center source_name 293 destination_center 0 destination_name 261 od_start_time 0 od end time 0 start_scan_to_end_scan 0 0 is cutoff cutoff_factor 0 cutoff_timestamp 0 actual_distance_to_destination 0 actual_time 0 0 osrm_time osrm_distance 0 factor 0 segment_actual_time 0 segment_osrm_time 0 segment_osrm_distance segment_factor 0

dtvne• int64

Replacing the missing values of the source and destination names with their respective center ids data["source_name"] = data["source_name"].fillna(data["source_center"])
data["destination_name"] = data["destination_name"].fillna(data["destination_center"])

#Confirming for missing values replacementdata.isna().sum().sum()

∑▼ 0

All missing values handled.

#Conversion of date time columns from object type to datetime format data['trip_creation_time']=pd.to_datetime(data['trip_creation_time'])
data['od_start_time']=pd.to_datetime(data['od_start_time'])
data['od_end_time']=pd.to_datetime(data['od_end_time'])

data.describe()

	trip_creation_time	od_start_time	od_end_time	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	
count	144867	144867	144867	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867
mean	2018-09-22 13:34:23.659819264	2018-09-22 18:02:45.855230720	2018-09-23 10:04:31.395393024	961.262986	232.926567	234.073372	416.927527	213.868272	284.771297	2
min	2018-09-12 00:00:16.535741	2018-09-12 00:00:16.535741	2018-09-12 00:50:10.814399	20.000000	9.000000	9.000045	9.000000	6.000000	9.008200	C
25%	2018-09-17 03:20:51.775845888	2018-09-17 08:05:40.886155008	2018-09-18 01:48:06.410121984	161.000000	22.000000	23.355874	51.000000	27.000000	29.914700	1
50%	2018-09-22 04:24:27.932764928	2018-09-22 08:53:00.116656128	2018-09-23 03:13:03.520212992	449.000000	66.000000	66.126571	132.000000	64.000000	78.525800	1
75%	2018-09-27 17:57:56.350054912	2018-09-27 22:41:50.285857024	2018-09-28 12:49:06.054018048	1634.000000	286.000000	286.708875	513.000000	257.000000	343.193250	2
max	2018-10-03 23:59:42.701692	2018-10-06 04:27:23.392375	2018-10-08 03:00:24.353479	7898.000000	1927.000000	1927.447705	4532.000000	1686.000000	2326.199100	77
std	NaN	NaN	NaN	1037.012769	344.755577	344.990009	598.103621	308.011085	421.119294	1

data.nunique()

	0
data	2
trip_creation_time	14817
route_schedule_uuid	1504
route_type	2
trip_uuid	14817
source_center	1508
source_name	1508
destination_center	1481
destination_name	1481
od_start_time	26369
od_end_time	26369
start_scan_to_end_scan	1915
is_cutoff	2
cutoff_factor	501
cutoff_timestamp	93180
actual_distance_to_destination	144515
actual_time	3182
osrm_time	1531
osrm_distance	138046
factor	45641
segment_actual_time	747
segment_osrm_time	214
segment_osrm_distance	113799
segment_factor	5675
dtvne: int64	

Merging of rows -

₹	trip_uuid	source_center	destination_center	data trip_creation_time	route_schedule_uuid	route_type	source_name	destination_name	od_start_tim

	trip_uuid	source_center	destination_center	data	trip_creation_time	route_schedule_uuid	route_type	source_name	destination_name	od_start_time
0	trip- 153671041653548748	IND209304AAA	IND000000ACB	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	Kanpur_Central_H_6 (Uttar Pradesh)	Gurgaon_Bilaspur_HB (Haryana)	2018-09-12 16:39:46.85846§
1	trip- 153671041653548748	IND462022AAA	IND209304AAA	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	Bhopal_Trnsport_H (Madhya Pradesh)	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 00:00:16.535741
2	trip- 153671042288605164	IND561203AAB	IND562101AAA	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	Doddablpur_ChikaDPP_D (Karnataka)	Chikblapur_ShntiSgr_D (Karnataka)	2018-09-12 02:03:09.655591
3	trip- 153671042288605164	IND572101AAA	IND561203AAB	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	Tumkur_Veersagr_I (Karnataka)	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 00:00:22.88643(
4	trip- 153671043369099517	IND000000ACB	IND160002AAC	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	Gurgaon_Bilaspur_HB (Haryana)	Chandigarh_Mehmdpur_H (Punjab)	2018-09-14 03:40:17.106733
26363	trip- 153861115439069069	IND628204AAA	IND627657AAA	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Tirchchndr_Shnmgprm_D (Tamil Nadu)	Thisayanvilai_UdnkdiRD_D (Tamil Nadu)	2018-10-04 02:29:04.272194
26364	trip- 153861115439069069	IND628613AAA	IND627005AAA	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Peikulam_SriVnktpm_D (Tamil Nadu)	Tirunelveli_VdkkuSrt_I (Tamil Nadu)	2018-10-04 04:16:39.894872
26365	trip- 153861115439069069	IND628801AAA	IND628204AAA	test	2018-10-03 23:59:14.390954	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	Carting	Eral_Busstand_D (Tamil Nadu)	Tirchchndr_Shnmgprm_D (Tamil Nadu)	2018-10-04 01:44:53.808000
26366	trip- 153861118270144424	IND583119AAA	IND583101AAA	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	Sandur_WrdN1DPP_D (Karnataka)	Bellary_Dc (Karnataka)	2018-10-04 03:58:40.726547
26367	trip- 153861118270144424	IND583201AAA	IND583119AAA	test	2018-10-03 23:59:42.701692	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	FTL	Hospet (Karnataka)	Sandur_WrdN1DPP_D (Karnataka)	2018-10-04 02:51:44.71265€

a517042...

Tirunelveli_VdkkuSrt_I

Sandur_WrdN1DPP_D

(Tamil Nadu)

(Karnataka)

Tirchchndr_Shnmgprm_D

Sandur_WrdN1DPP_D

IND628204AAA

IND583119AAA

2018-10-03

2018-10-04

(Tamil Nadu) 23:59:14.390954

(Karnataka) 03:58:40.726547

26368 rows × 19 columns

```
"source_center": "first", "source_name": "first", "destination_center": "last", "destination_name": "last",
                                                                                                                                              "first",
                                                                        "od_stination_center: last, destination_name: last,
"od_start_time": "first", "od_end_time": "last",
"start_scan_to_end_scan:"sum", "actual_distance_to_destination": "sum",
"actual_time": "sum", "osrm_time": "sum", "osrm_distance": "sum",
"segment_actual_time": "sum", "segment_osrm_time": "sum", "segment_osrm_distance": "sum"}).reset_index()
```

thanos::sroute:c5f2ba2c-

thanos::sroute:412fea14-

8486-4940-8af6-

6d1f-4222-8a5f-

d1d2a6a...

a517042

₹ trip_uuid data trip_creation_time route_schedule_uuid route_type source_center source_name destination_center destination_name od_start_time thanos::sroute:d7c989batrip-153671041653548748 2018-09-12 Kanpur_Central_H_6 Kanpur_Central_H_6 2018-09-12 training a29b-4a0b-b2f4-FTL IND209304AAA IND209304AAA 00:00:16.535741 (Uttar Pradesh) 16:39:46.858469 (Uttar Pradesh) 288cdc6 thanos::sroute:3a1b0ab2-2018-09-12 Doddablpur_ChikaDPP_D Doddablpur_ChikaDPP_D 2018-09-12 triptraining bb0b-4c53-8c59-Carting IND561203AAB IND561203AAB 153671042288605164 00:00:22.886430 (Karnataka) (Karnataka) 02:03:09.655591 thanos::sroute:de5e208etrip-2018-09-12 Gurgaon_Bilaspur_HB Gurgaon_Bilaspur_HB 2018-09-14 7641-45e6-8100-FTL IND00000ACB IND00000ACB 153671043369099517 00:00:33.691250 03:40:17.106733 (Haryana) (Haryana) 4d9fb1e... thanos::sroute:f0176492-2018-09-12 Mumbai Hub Mumbai_MiraRd_IP 2018-09-12 trip-Carting IND400072AAB IND401104AAA training a679-4597-8332-153671046011330457 00:01:00.113710 (Maharashtra) (Maharashtra) 00:01:00.113710 bbd1c7f.. thanos::sroute:d9f07b12-Sandur WrdN1DPP D 2018-09-12 2018-09-12 65e0-4f3b-bec8-FTL IND583101AAA Bellary_Dc (Karnataka) IND583119AAA 153671052974046625 00:02:09.740725 (Karnataka) 00:02:09.740725 df06134... thanos::sroute:8a120994-2018-10-03 Chandigarh_Mehmdpur_H Chandigarh_Mehmdpur_H 2018-10-03 14812 test f577-4491-9e4b-Carting IND160002AAC IND160002AAC (Punjab) 23:55:56.258533 153861095625827784 23:55:56.258533 (Punjab) b7e4a14... thanos::sroute:b30e1ec3-2018-10-03 FBD_Balabhgarh_DPC Faridabad_Blbgarh_DC 2018-10-03 Carting IND121004AAB IND121004AAA 3bfa-4bd2-a7fb-14813 test 153861104386292051 (Haryana) 23:57:23.863155 23:57:23.863155 (Haryana) 3b75769... thanos::sroute:5609c268-2018-10-03 Kanpur_GovndNgr_DC Kanpur_GovndNgr_DC 2018-10-04 trip-14814 test e436-4e0a-8180-Carting IND208006AAA IND208006AAA (Uttar Pradesh) 153861106442901555 23:57:44.429324 (Uttar Pradesh) 02:51:27.075797

Carting IND627005AAA

FTL IND583119AAA

14817 rows × 19 columns

14816 153861118270144424

Feature build for data analysis -

test

153861115439069069

```
df[["source", "source_state"]] = df["source_name"].str.split("(", n=1, expand = True)
df[[source_state]] = df[source_state]] = true)
df["source_state"] = df["source_state"].str.strip(")")
df[["source_city", "source_place", "source_code"]]= df["source"].str.split("_", n=2, expand = True)
df[["dest", "dest_state"]] = df["destination_name"].str.split("(", n=1, expand = True)
df["dest_state"] = df["dest_state"].str.strip(")")
df[["dest_city", "dest_place", "dest_code"]]= df["dest"].str.split("_", n=2, expand = True)
```

2018-10-03

2018-10-03

23:59:14.390954

23:59:42.701692

```
df["trip_creation_year"] = df["trip_creation_time"].dt.year
df["trip_creation_month"] = df["trip_creation_time"].dt.month_name()
df["trip_creation_day"] = df["trip_creation_time"].dt.day
```

df.head()

₹	trip_uuid	data	trip_creation_time	route_schedule_uuid	route_type	source_center	source_name	${\tt destination_center}$	destination_name	od_start_time	
	trip- 153671041653548748	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 16:39:46.858469	
	trip- 1 153671042288605164	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	IND561203AAB	Doddablpur_ChikaDPP_D (Karnataka)	IND561203AAB	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 02:03:09.655591	
	trip- 153671043369099517	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	2018-09-14 03:40:17.106733	
	trip- 153671046011330457	training	2018-09-12 00:01:00.113710	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	Carting	IND400072AAB	Mumbai Hub (Maharashtra)	IND401104AAA	Mumbai_MiraRd_IP (Maharashtra)	2018-09-12 00:01:00.113710	
	trip- 153671052974046625	training	2018-09-12 00:02:09.740725	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	FTL	IND583101AAA	Bellary_Dc (Karnataka)	IND583119AAA	Sandur_WrdN1DPP_D (Karnataka)	2018-09-12 00:02:09.740725	

Data Visualization:

5 rows × 32 columns


```
#Most preferred route_type :
plt.figure(figsize = (8,6))
bar = sns.countplot(x=df["route_type"])
plt.show()
```


- Most of the shipments use "carting" as the route type.
- Count of carting is close to 9k and that of FTL is around 6k (i.e 2/3rd).

```
#Trip creation day and month -
plt.figure(figsize = (10,6))
sns.countplot(x = df["trip_creation_day"], hue = df["trip_creation_month"])
plt.show()
```



```
# Actual distance to destination vs city

top_city = df["actual_distance_to_destination"].sort_values(ascending = False).head(100)
plt.figure(figsize = (12, 10))
plt.xticks(rotation = 90)
sns.scatterplot(x=df["dest_city"], y = top_city, hue= df["dest_state"])
plt.legend(loc = "upper right")
plt.show()
```


Gurgaon, Hariyana is the destination city to which "distance to reach destination" is the highest compared to other cities in the states

```
# Destination states with delivery counts -
states_dest = df.groupby("dest_state")["trip_uuid"].count().sort_values(ascending = False).head(10).to_frame("trip_uuid_count").reset_index()
states_dest
```

```
₹
          dest_state trip_uuid_count
     0
         Maharashtra
                                  2561
                                  2294
            Karnataka
                                  1643
                                  1084
           Tamil Nadu
        Uttar Pradesh
                                   811
                                   784
            Telangana
              Gujarat
                                   734
                                   697
          West Bengal
     8
                Delhi
                                   652
               Punjab
                                   617
```

```
plt.figure(figsize = (8,6))
sns.barplot(x="dest_state", y = "trip_uuid_count", data = states_dest, color = "g")
plt.xticks(rotation = 45)
plt.show()
```


- Highest deliveries are occuring in Maharashtra (2561) and then followed by Karnataka (2294) in a close second.
- Haryana, TN and UP are also in the top 5 states.

```
# Source states with delivery counts -
states_source = df.groupby("source_state")["trip_uuid"].count().sort_values(ascending = False).head(10).to_frame("trip_uuid_count").reset_index()
states_source
```

₹		source_state	trip_uuid_count
	0	Maharashtra	2714
	1	Karnataka	2143
	2	Haryana	1838
	3	Tamil Nadu	1039
	4	Telangana	781
	5	Uttar Pradesh	762
	6	Gujarat	750
	7	Delhi	728
	8	West Bengal	665
	9	Punjab	536
	4		

```
plt.figure(figsize = (8,6))
sns.barplot(x="source_state", y = "trip_uuid_count", data = states_source, color = "r")
plt.xticks(rotation = 45)
plt.show()
```


- In case of source states for delivery, trend is similar to the destination delivery count, with Maharashtra (2714) at the top and Karnataka (2143) at second position.
- Haryana, TN and Telangana are in the top 5 states.

```
d = df.groupby(["dest_place", "dest_state"])["trip_uuid"].count().sort_values(ascending = False).head(10).to_frame("trip_uuid_count").reset_index()
d
```

```
₹
        dest place dest state trip uuid count
     0
            Bilaspur
                                             548
           Nelmngla
                      Karnataka
     2
            Mankoli Maharashtra
                                             434
                      Karnataka
                                             346
          Bomsndra
          Shamshbd
                      Telangana
                                             339
             Kundli
                                             320
                        Haryana
     6
          Mehmdpur
                         Punjab
                                             274
                                             272
           KGAirprt
                      Karnataka
     8
           Tathawde Maharashtra
                                             258
            Dankuni West Bengal
```

```
plt.figure(figsize = (8,6))
d["destination"] = d["dest_place"] + ", " + d["dest_state"]
ax = sns.barplot(x="destination", y = "trip_uuid_count", data = d, color = "y")
for i in ax.patches:
    ax.annotate(format(i.get_height(), '.0f'), (i.get_x() + i.get_width() / 2., i.get_height()), ha = 'center', va = 'center', xytext = (0, 5), textcoords = 'offset points')
plt.sticks(rotation = 45)
plt.show()
```


- Bilaspur in Haryana is the most delivered place in that state. Nelamangala in Karnataka is at second.
- In the top 10, there are 3 places in the state Karnatake which to which most deliveries are done.

```
# Analysis of source places in states with highest delivery:
s = df.groupby(["source_place", "source_state"])["trip_uuid"].count().sort_values(ascending = False).head(10).to_frame("trip_uuid_count").reset_index()
s
```

₹		source_place	source_state	trip_uuid_count
	0	Bilaspur	Haryana	1085
	1	Mankoli	Maharashtra	697
	2	Nelmngla	Karnataka	625
	3	Bomsndra	Karnataka	457
	4	Tathawde	Maharashtra	396
	5	KGAirprt	Karnataka	295
	6	Shamshbd	Telangana	278
	7	Dankuni	West Bengal	245
	8	Airport	Delhi	237
	9	Central	Uttar Pradesh	234

- Bilaspur in Haryana is the most sourced place in that state. Mankoli in Maharashtra is at second.
- There are 3 places in Karnataka and 2 in Maharashtra in the top 10 source places.

```
# Analysis of destination cities in states with highest delivery:
d = df.groupby(["dest_city", "dest_state"])["trip_uuid"].count().sort_values(ascending = False).head(10).to_frame("trip_uuid_count").reset_index()
d
```

₹		dest_city	dest_state	trip_uuid_count
	0	Bengaluru	Karnataka	1088
	1	Mumbai	Maharashtra	966
	2	Gurgaon	Haryana	877
	3	Bangalore	Karnataka	551
	4	Delhi	Delhi	549
	5	Hyderabad	Telangana	499
	6	Bhiwandi	Maharashtra	434
	7	Chennai	Tamil Nadu	410
	8	Sonipat	Haryana	322
	9	Pune	Maharashtra	313

Inference -

- Bangalore/ Bengaluru in karnataka has the highest deliveries in the country.
- Top 5 cities also include Mumbai, Delhi, Gurgaon, Hyderabad.

```
#Month with highest trip creation:
plt.figure(figsize = (6,6))
sns.countplot(x=df["trip_creation_month"], hue = df["data"])
plt.show()
```


- · Majority of trip creation has occured in September.
- And most of the trip creation in september is part of training.

```
# Route type that is more time efficient:

df.groupby("route_type").aggregate({"actual_time" : "mean", "osrm_time": "mean"}).plot(kind = "bar")
plt.show()
```


- Full truck load, that is FTL takes more time to deliver than small vehicles(carts).
- · Actual mean time of carting is lesser by 6 times whereas osrm mean time of carting is lesser by 3 times compared to FTL.

```
# States and the number of source centers -
plt.figure(figsize = (12,6))
df.groupby("source_state")["source_center"].nunique().sort_values(ascending = False).plot(kind = "bar", color = "pink")
plt.show()
```


- Maharashtra has highest number of source centers followed by UP and TN
- WB and Karnataka are also in the top 5 states.

```
# States and the number of destination centers -
plt.figure(figsize = (12,6))
df.groupby("dest_state")["destination_center"].nunique().sort_values(ascending = False).plot(kind = "bar", color = "pink")
plt.show()
```


- Maharashtra has highest number of source centers followed by UP and Karnataka.
- WB and TN are also in the top 5 states.
- The same 5 states are in the top 5 list of most source centers and destination centers.

Day with most deliveries:

df["weekday"] = df["trip_creation_time"].dt.day_name()
df.head()

_	trip_uuid	data	trip_creation_time	route_schedule_uuid	route_type	source_center	source_name	destination_center	destination_name	od_start_time	
0	trip- 153671041653548748	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 16:39:46.858469	
1	trip- 153671042288605164	training	2018-09-12 00:00:22.886430	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	Carting	IND561203AAB	Doddablpur_ChikaDPP_D (Karnataka)	IND561203AAB	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 02:03:09.655591	
2	trip- 153671043369099517	training	2018-09-12 00:00:33.691250	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	FTL	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	IND000000ACB	Gurgaon_Bilaspur_HB (Haryana)	2018-09-14 03:40:17.106733	
3	trip- 153671046011330457	training	2018-09-12 00:01:00.113710	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	Carting	IND400072AAB	Mumbai Hub (Maharashtra)	IND401104AAA	Mumbai_MiraRd_IP (Maharashtra)	2018-09-12 00:01:00.113710	
4	trip- 153671052974046625	training	2018-09-12 00:02:09.740725	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	FTL	IND583101AAA	Bellary_Dc (Karnataka)	IND583119AAA	Sandur_WrdN1DPP_D (Karnataka)	2018-09-12 00:02:09.740725	

day_data = df["weekday"].value_counts().to_frame("count").reset_index()

day_data

```
₹
          weekday count
     0 Wednesday
                   2739
          Saturday
                   2130
          Thursday
                   2106
            Friday
                   2060
          Tuesday
                   2040
                    1987
           Monday
           Sunday
                   1755
```

5 rows × 33 columns

plt.figure(figsize = (10,7))
palette_color = sns.color_palette("Set2")
plt.pie(data = day_data, x = day_data["count"], colors = palette_color, labels = ["Wed", "Sat", "Thu", "Fri", "Tue", "Mon", "Sun"], explode = (0.08,0,0,0,0,0,0), autopct = "%0.2f%")
plt.show()

- Highest deliveries happen on Wednesday (18.5%).
- Followed by Saturday (14.38%) and Thursday (14.2%).
- · Least deliveries happen on Monday and Sunday.

#Analyzing actual time vs osrm time for each state:

```
t = df.groupby("source_state").aggregate({"actual_time": "mean", "osrm_time": "mean"}).reset_index()
t = pd.melt(t, id_vars = ["source_state"], value_vars = ["actual_time", "osrm_time"])
t.head()
```

3		source_state	variable	value
	0	Andhra Pradesh	actual_time	398.435484
	1	Arunachal Pradesh	actual_time	429.250000
	2	Assam	actual_time	540.171642
	3	Bihar	actual_time	492.645714
	4	Chandigarh	actual_time	168.741935

```
plt.figure(figsize = (12, 6))
sns.lineplot(y = "value", x = "source_state", data = t, hue = "variable")
plt.xticks(rotation = 90)
plt.show()
```


- In states/ UT Dadra & Nagar Haveli the difference between actual mean time and osrm mean time is almost nill.
- The difference is minimal in TN as well.
- The variation is highest in case of Mizoram and followed by Haryana.

d = df.groupby("source_state").aggregate({"actual_distance_to_destination": "mean", "osrm_distance": "mean"}).reset_index()
d = pd.melt(d, id_vars = ["source_state"], value_vars = ["actual_distance_to_destination", "osrm_distance"])
d

d				
_		source_state	variable	value
	0	Andhra Pradesh	actual_distance_to_destination	205.461342
	1	Arunachal Pradesh	actual_distance_to_destination	77.150532
	2	Assam	actual_distance_to_destination	193.532247
	3	Bihar	actual_distance_to_destination	153.588085
	4	Chandigarh	actual_distance_to_destination	54.811432
	5	Chhattisgarh	actual_distance_to_destination	73.734984
	6	Dadra and Nagar Haveli	actual_distance_to_destination	14.349976
	7	Delhi	actual_distance_to_destination	100.054953
	8	Goa	actual_distance_to_destination	219.883526
	9	Gujarat	actual_distance_to_destination	175.549300
	10	Haryana	actual_distance_to_destination	342.895103
	11	Himachal Pradesh	actual_distance_to_destination	116.370463
	12	Jammu & Kashmir	actual_distance_to_destination	105.300217
	13	Jharkhand	actual_distance_to_destination	226.406040
	14	Karnataka	actual_distance_to_destination	101.412585
	15	Kerala	actual_distance_to_destination	97.875658
	16	Madhya Pradesh	actual_distance_to_destination	259.562780
	17	Maharashtra	actual_distance_to_destination	137.783489
	18	Mizoram	actual_distance_to_destination	119.774782
	19	Nagaland	actual_distance_to_destination	67.510835
	20	Orissa	actual_distance_to_destination	121.063622
	21	Pondicherry	actual_distance_to_destination	233.749084
	22	Punjab	actual_distance_to_destination	155.165304
	23	Rajasthan	actual_distance_to_destination	211.217983
	24	Tamil Nadu	actual_distance_to_destination	73.311371
	25	Telangana	actual_distance_to_destination	148.657690
	26	Uttar Pradesh	actual_distance_to_destination	154.254277
	27	Uttarakhand	actual_distance_to_destination	104.240000
	28	West Bengal	actual_distance_to_destination	167.877726
	29	Andhra Pradesh	osrm_distance	255.804854
	30	Arunachal Pradesh	osrm_distance	104.452450
	31	Assam	osrm_distance	273.490164
	32	Bihar	osrm_distance	189.872446
	33	Chandigarh	osrm_distance	71.311419
	34	Chhattisgarh	osrm_distance	106.256274
	35	Dadra and Nagar Haveli	osrm_distance	16.592587
	36	Delhi	osrm_distance	122.053160
	37	Goa	osrm_distance	306.198908
	38	Gujarat	osrm_distance	212.907671
	39	Haryana	osrm_distance	419.345857
	40	Himachal Pradesh	osrm_distance	195.963321
	41	Jammu & Kashmir	osrm_distance	131.068324
	42	Jharkhand	osrm_distance	283.488592
	43	Karnataka	osrm_distance	126.073458
	44	Kerala	osrm_distance	132.494697
	45	Madhya Pradesh	osrm_distance	333.969259
	46	Maharashtra	osrm_distance	168.249902
	47	Mizoram	osrm_distance	325.281675
	48	Nagaland	osrm_distance	110.817940
	49	Orissa	osrm_distance	165.384751
	50	Pondicherry	osrm_distance	266.931242
	51	Punjab	osrm_distance	189.070016
	52	Rajasthan	osrm_distance	259.339060
	53	Tamil Nadu	osrm_distance	91.682308
	54	Telangana	osrm_distance	185.170089
	55	Uttar Pradesh	osrm_distance	195.463270
	56	Uttarakhand	osrm_distance	175.364052
	57	West Bengal	osrm_distance	215.371641

plt.xticks(rotation = 90)
plt.show()

Inference

- The differences in mean actual and osrm distances are overall lesser compared to the differences in times.
- Again for Dadra and Nagar Haveli, Delhi and TN the difference is almost negligible.
- The differences are highest in case of Mizoram, Haryana, Goa and Assam.

Outliers

```
#Percentage of outliers:
Q1 = df["actual_time"].quantile(0.25)
Q3 = df["actual_time"].quantile(0.75)
IQR = Q3-Q1
upper_bound = Q3 + 1.5*IQR
lower_bound = Q1 - 1.5*IQR
upper_outliers = df[df["actual_time"] > upper_bound]
round(len(upper_outliers)*100/len(df),2)
```

Inference

- Nearly 11% of the data is outliers, hence clipping them is not right.
- Before performing hypothesis testing, we can try to transform the data using log normal function and see its impact.
- Outlier treatment will be done post that.

Feature Engineering:

```
# Creating a feature (column) which is the difference between od_end_time and od_start_time

df["total_min_diff"] = (df["od_end_time"] - df["od_start_time"])/pd.Timedelta(minutes = 1) # time difference between the two datetime columns for each row in the DataFrame and

# the result is a pandas Timedelta object.When you divide the Timedelta object (time difference)

#by pd.Timedelta(minutes=1), the result is the total time difference in minutes.
```

```
df.drop(columns = ["od_end_time", "od_start_time"], inplace = True)
```

0.000000 0.000000 180.0 2 3933.0 0.000000 100.494935 100.0 717.0 232.556228 14812 257.0 405.485842 14813 60.0 60.590521 0.000000 14814 421.0

14816 353.0 0.000000 14817 rows × 2 columns

```
# Hypothesis testing:
# H0 - mean(start_scan_to_end_scan) == mean(total_min_diff)
# Ha - mean(start_scan_to_end_scan) != mean(total_min_diff)
```

347.0

149.831354

```
#Checking for normality -
plt.figure(figsize = (14,6))
plt.subplot(1,2,1)
sns.kdeplot(df["start_scan_to_end_scan"])
plt.subplot(1,2,2)
sns.kdeplot(df["total_min_diff"])
plt.show()
```

14815

Inference:

- It appears that both data are right skewed and that there are presence of outliers.
- Shapiro test cannot be done as it cannot handle large datasets.
- Parametric tests cannot be used to check the statistical significance.

```
# Non - parametric tests:
# Kruskal wallis test:

stat, p_val = kruskal(df["start_scan_to_end_scan"], df["total_min_diff"])
print("KW statistic is:", stat, "and P value is:", p_val)

if p_val < 0.05:
    print("Reject H0: Medians are significantly different")
else:
    print("Accept H0: Medians are not significantly different")</pre>
```

Ew KW statistic is: 1111.6501037556222 and P value is: 9.700927751107437e-244 Reject H0: Medians are significantly different

- From the hypothesis testing, it is confirmed that the means of the start_scan_to_end_scan and total_min_diff are significantly different.
- This difference indicates that there could be a data collection issue at source due to human or system error.
- Additionally, there could be some assumptions that were taken incorrectly. For example, total_min_diff is based on differences between
 trip and odometer times, whereas start_scan_to_end_scan might include delays or processes not accounted for in total_min_diff.

```
df[["trip_uuid", "actual_time", "segment_actual_time"]]
```

```
<del>-</del>--
```

	trip_uuid	actual_time	segment_actual_time					
0	trip-153671041653548748	1562.0	1548.0					
1	trip-153671042288605164	143.0	141.0					
2	trip-153671043369099517	3347.0	3308.0					
3	trip-153671046011330457	59.0	59.0					
4	trip-153671052974046625	341.0	340.0					
14812	trip-153861095625827784	83.0	82.0					
14813	trip-153861104386292051	21.0	21.0					
14814	trip-153861106442901555	282.0	281.0					
14815	trip-153861115439069069	264.0	258.0					
14816	trip-153861118270144424	275.0	274.0					
14817 rows × 3 columns								

Analysis between actual_time aggregated value and segment actual time aggregated value:

```
# checking normality by plotting the density plots-
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["actual_time"])
plt.subplot(1,2,2)
sns.kdeplot(df["segment_actual_time"])
plt.show()
```


Inference -

- Both are appearing to have a long tail, hence right skewed distribution.
- Shapiro test cannot be done as it cannot handle large datasets.
- Parametric tests cannot be used to check the statistical significance.
- Log normal function also couldnt make it completely normal.

```
# Non - parametric tests:
# Kruskal wallis test:

stat, p_val = kruskal(df["actual_time"], df["segment_actual_time"])
print("KW statistic is:", stat, "and P value is:", p_val)

if p_val < 0.05:
    print("Reject H0: Medians are significantly different")
else:
    print("Accept H0: Medians are not significantly different")</pre>
```

🕁 KW statistic is: 0.6603876360800134 and P value is: 0.4164231265256002 Accept H0: Medians are not significantly different

Inference -

- $\bullet~$ The P values is not less than 5% and this means that Null hypothesis cannot be rejected.
- $\bullet\,$ The actual time and segment actual time have means that are significantly similar.
- Since time and distance metrics (segment, osrm actual) are strongly correlated (0.96), and we have already tested the significance of the difference in actual time and segment time, the distance metrics are likely to follow a very similar pattern. In most cases, testing actual distance vs. segment distance would not yield additional insights because the high correlation implies that the behavior of the distances is already aligned with that of the times.

```
# Analysis between actual_time aggregated value and osrm time aggregated value:
# checking normality by plotting the density plots-
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["actual_time"])
plt.subplot(1,2,2)
```

```
sns.kdeplot(df["osrm_time"])
plt.show()
```



```
#Let us try converting data to log normal and see if we can make it normal.
df["actual_time_log"] = np.log1p(df["actual_time"])
df["osrm_time_log"] = np.log1p(df["osrm_time"])
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["actual_time_log"])
plt.subplot(1,2,2)
sns.kdeplot(df["osrm_time_log"])
plt.show()
```


Inference -

print("Reject H0: Medians are significantly different")
else: print("Accept H0: Medians are not significantly different")

```
• Both are appearing to have a long tail, hence right skewed distribution.
    • Shapiro test cannot be done as it cannot handle large datasets.
    • Parametric tests cannot be used to check the statistical significance.
    · Log normal function also couldnt make it completely normal.
# Non - parametric tests:
# Kruskal wallis test:
stat, p_val = kruskal(df["actual_time"], df["osrm_time"])
print("KW statistic is:", stat, "and P value is:", p_val)
if p_val < 0.05:
  print("Reject H0: Medians are significantly different")
else:
  print("Accept H0: Medians are not significantly different")
      KW statistic is: 3363.9317112678514 and P value is: 0.0
      Reject H0: Medians are significantly different
\ensuremath{\mathtt{\#}} Trying to check the significance using log normal transformed data -
# Kruskal wallis test:
stat, p_val = kruskal(df["actual_time_log"], df["osrm_time_log"])    print("KW statistic is:", stat, "and P value is:", p_val)
```

KW statistic is: 3363.9317112678514 and P value is: 0.0 Reject H0: Medians are significantly different

Inference -

- The P value is less than 5% and this means that Null hypothesis can be rejected.
- The actual time and osrm time means that are significantly different.
- Since time and distance metrics (segment, osrm actual) are strongly correlated (0.96), and we have already tested the significance of the difference in actual time and segment time, the distance metrics are likely to follow a very similar pattern. In most cases, testing actual distance vs. segment distance would not yield additional insights because the high correlation implies that the behavior of the distances is already aligned with that of the times.

```
# Analysis between osrm aggregated value and segmented time aggregated value:
# checking normality by plotting the density plots-
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["osrm_time"])
plt.subplot(1,2,2)
sns.kdeplot(df["segment_actual_time"])
plt.show()
```


Inference -

- Both are appearing to have a long tail, hence right skewed distribution.
- Shapiro test cannot be done as it cannot handle large datasets.
- Parametric tests cannot be used to check the statistical significance.
- Log normal function also couldnt make it completely normal.

```
# Non - parametric tests:
# Kruskal wallis test:

stat, p_val = kruskal(df["segment_actual_time"], df["osrm_time"])
print("KW statistic is:", stat, "and P value is:", p_val)

if p_val < 0.05:
    print("Reject H0: Medians are significantly different")
else:
    print("Accept H0: Medians are not significantly different")

>>> KW statistic is: 3285.9259815010146 and P value is: 0.0
    Reject H0: Medians are significantly different
```

Inference -

plt.show()

- The P value is less than 5% and this means that Null hypothesis can be rejected.
- The segment actual time and osrm time means that are significantly different.

```
# Analysis between osrm distance aggregated value and segment osrm distance aggregated value:

# checking normality by plotting the density plots-
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["osrm_distance"])
plt.subplot(1,2,2)
sns.kdeplot(df["segment_osrm_distance"])
```

```
#Let us try converting data to log normal and see if we can make it normal.
df["osrm_distance_log"] = np.log1p(df["osrm_distance"])
df["segment_osrm_distance_log"] = np.log1p(df["segment_osrm_distance"])
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sns.kdeplot(df["osrm_distance_log"])
plt.subplot(1,2,2)
sns.kdeplot(df["segment_osrm_distance_log"])
plt.show()
```


Inference -

- Both are appearing to have a long tail, hence right skewed distribution.
- Shapiro test cannot be done as it cannot handle large datasets.
- Parametric tests cannot be used to check the statistical significance.
- Log normal function also couldnt make it completely normal.

```
# Non - parametric tests:
# Kruskal wallis test:

stat, p_val = kruskal(df["osrm_distance"], df["segment_osrm_distance"])
print("KW statistic is:", stat, "and P value is:", p_val)

if p_val < 0.05:
    print("Reject H0: Medians are significantly different")
else:
    print("Accept H0: Medians are not significantly different")</pre>
```

KW statistic is: 19.189169264591182 and P value is: 1.1838316476705933e-05 Reject H0: Medians are significantly different

Inference -

- $\bullet\,$ The P value is less than 5% and this means that Null hypothesis can be rejected.
- The segment osrm distance and osrm distance means are significantly different.

Outlier Treatment -

data.describe()

					•		•				
₹		trip_creation_time	od_start_time	od_end_time	start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	
	count	144867	144867	144867	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867
	mean	2018-09-22 13:34:23.659819264		2018-09-23 10:04:31.395393024	961.262986	232.926567	234.073372	416.927527	213.868272	284.771297	, 2
	min	2018-09-12 00:00:16.535741		2018-09-12 00:50:10.814399	20.000000	9.000000	9.000045	9.000000	6.000000	9.008200	0
	25%	2018-09-17 03:20:51.775845888	2018-09-17 08:05:40.886155008	2018-09-18 01:48:06.410121984	161.000000	22.000000	23.355874	51.000000	27.000000	29.914700	1
	50%	2018-09-22 04:24:27.932764928	2018-09-22 08:53:00.116656128	2018-09-23 03:13:03.520212992	449.000000	66.000000	66.126571	132.000000	64.000000	78.525800	1
	75%	2018-09-27 17:57:56.350054912		2018-09-28 12:49:06.054018048	1634.000000	286.000000	286.708875	513.000000	257.000000	343.193250) 2
	max	2018-10-03 23:59:42.701692		2018-10-08 03:00:24.353479	7898.000000	1927.000000	1927.447705	4532.000000	1686.000000	2326.199100) 77
	std	NaN	NaN	NaN	1037.012769	344.755577	344.990009	598.103621	308.011085	421.119294	1
											ļ
data.	columns										
Index(['data', 'trip_creation_time', 'route_schedule_uuid', 'route_type',											

```
'jstart_scan_to_end_scan',
    'actual_distance to_destination',
    'actual_time',
    'osrm_time',
    'osrm_distance',
    'segment_actual_time',
    'segment_osrm_time',
    'segment_osrm_distance']
```

```
# Analysing the outliers in the numerical columns -
plt.figure(figsize = (18,14))
plt.subplot(4,2,1)
sns.boxplot(data = num_col, x = "start_scan_to_end_scan")
plt.subplot(4,2,2)
sns.boxplot(data = num_col, x = "actual_distance_to_destination")
plt.subplot(4,2,3)
sns.boxplot(data = num_col, x = "actual_time")
plt.subplot(4,2,4)
sns.boxplot(data = num_col, x = "osrm_time")
plt.subplot(4,2,5)
sns.boxplot(data = num_col, x = "osrm_distance")
plt.subplot(4,2,6)
sns.boxplot(data = num_col, x = "segment_actual_time")
plt.subplot(4,2,7)
sns.boxplot(data = num_col, x = "segment_osrm_time")
plt.subplot(4,2,8)
sns.boxplot(data = num_col, x = "segment_osrm_distance")
plt.subplot(data = num_col, x = "segment_osrm_distance")
plt.subplot(data = num_col, x = "segment_osrm_distance")
plt.show()
```



```
for i in num_list:
    for i in num_list:
    q1 = data[i].quantile(0.25)
    q3 = data[i].quantile(0.75)
    IQR = q3- q1
    upper = q3 + (1.5*IQR)
    lower = q1 - (1.5*IQR)
    print(f"lower limit of {i} = {lower}")
    print(f"upper limit of {i} = {upper}")
    print(""...
     print("-----
    data_iqr = data_iqr[~((data_iqr[i] < lower) | (data_iqr[i] > upper))]
data_iqr
```

```
upper limit of start_scan_to_end_scan = 3843.5
     lower limit of actual_distance_to_destination = -371.6736259929169
upper limit of actual_distance_to_destination = 681.7383749520162
      lower limit of actual_time = -642.0
     upper limit of actual_time = 1206.0
     lower limit of osrm time = -318.0
     upper limit of osrm_time = 602.0
     lower limit of osrm_distance = -440.0031250000001
     upper limit of osrm_distance = 813.1110750000001
     lower limit of segment actual time = -10.0
      upper limit of segment_actual_time = 70.0
     lower limit of segment_osrm_time = -5.5
     upper limit of segment osrm time = 38.5
     lower limit of segment osrm distance = -11.544625
      upper limit of segment_osrm_distance = 51.427975
                 data trip_creation_time route_schedule_uuid route_type
                                                                                            trip_uuid source_center
                                                                                                                               source_name destination_center
                                                                                                                                                                       destination_name od_start_time
                                             thanos::sroute:eb7bfc78-
                                                                                                        IND388121AAA Anand_VUNagar_ DC
                                 2018-09-20
                                                                                                                                                                  Khambhat MotvdDPP D
                                                                                                                                                                                               2018-09-20
                                                                         Carting 153741093647649320
         n
               training
                                                    b351-4c0e-a951-
                                                                                                                                                  IND388620AAB
                            02:35:36.476840
                                                                                                                                                                                 (Gujarat)
                                                          fa3d5c3...
                                             thanos::sroute:eh7bfc78-
                                                                                                                                                   IND388620AAB Khambhat_MotvdDPP_D
                                                                                                        IND388121AAA Anand_VUNagar_DC
                                 2018-09-20
                                                                                                                                                                                               2018-09-20
                                                                         Carting trip-
153741093647649320
                                                    b351-4c0e-a951-
               training
                            02:35:36.476840
                                                                                                                                                                                          03:21:32.418600
                                                                                                                                                                                 (Guiarat)
                                                          fa3d5c3
                                             thanos::sroute:eb7bfc78-
                                 2018-09-20
                                                                                                                                                                  Khambhat_MotvdDPP_D
                                                                                                                       Anand VUNagar DC
                                                                                                                                                                                               2018-09-20
                                                                                                  trip-
               training
                                                                         Carting
                                                    b351-4c0e-a951-
                                                                                                        IND388121AAA
                                                                                                                                                  IND388620AAB
                                                                                                                                                                                          03:21:32.418600
                            02:35:36.476840
                                                                                 153741093647649320
                                                                                                                                                                                 (Gujarat)
                                                          fa3d5c3...
                                             thanos::sroute:eb7bfc78-
                                                                                                        IND388121AAA Anand_VUNagar_DC
                                 2018-09-20
                                                                                                                                                                  Khambhat_MotvdDPP_D
                                                                                                                                                                                               2018-09-20
                                                    b351-4c0e-a951-
                                                                                                                                                   IND388620AAB
               training
                            02:35:36.476840
                                                                                  153741093647649320
                                                                                                                                                                                          03:21:32.418600
                                                                                                                                                                                 (Gujarat)
                                                                                                                                   (Gujarat)
                                                          fa3d5c3...
                                             thanos::sroute:eb7bfc78-
                                 2018-09-20
                                                                                                                       Anand_VUNagar_DC
                                                                                                                                                                  Khambhat_MotvdDPP_D
                                                                                                                                                                                               2018-09-20
                                                                                                        IND388121AAA
                                                                                                                                                  IND388620AAB
               training
                                                    b351-4c0e-a951-
                                                                         Carting
                                                                                  153741093647649320
                            02:35:36.476840
                                                                                                                                   (Gujarat)
                                                                                                                                                                                 (Gujarat)
                                                                                                                                                                                          03:21:32.418600
                                                          fa3d5c3...
                                             thanos::sroute:f0569d2f-
                                 2018-09-20
                                                                                                                           Sonipat_Kundli_H
                                                                                                                                                                     Gurgaon_Bilaspur_HB
                                                                                                                                                                                               2018-09-20
                                                    4e20-4c31-8542-
                                                                                                        IND131028AAB
                                                                                                                                                  IND00000ACB
      144861 training
                                                                          Carting
                                                                                  153746066843555182
                            16:24:28.436231
                                                                                                                                  (Haryana)
                                                                                                                                                                               (Haryana)
                                                                                                                                                                                           16:24:28.436231
                                                         67b86d5...
                                             thanos::sroute:f0569d2f-
                                 2018-09-20
                                                                                                                                                                                               2018-09-20
                                                                                                  trip-
                                                                                                                           Sonipat Kundli H
                                                                                                                                                                     Gurgaon_Bilaspur_HB
      144862 training
                                                                         Carting
                                                    4e20-4c31-8542-
                                                                                                        IND131028AAB
                                                                                                                                                  IND000000ACB
                                                                                  153746066843555182
                                                                                                                                  _
(Haryana)
                            16:24:28.436231
                                                                                                                                                                               (Haryana)
                                                                                                                                                                                           16:24:28.436231
                                                         67b86d5...
                                             thanos::sroute:f0569d2f-
                                 2018-09-20
                                                                                  trip-
153746066843555182
                                                                                                                           Sonipat_Kundli_H
                                                                                                                                                                     Gurgaon_Bilaspur_HB
                                                                                                                                                                                               2018-09-20
                                                    4e20-4c31-8542-
       144863 training
                                                                                                                                                  IND000000ACB
                            16:24:28.436231
                                                                                                                                  (Haryana)
                                                                                                                                                                               (Haryana)
                                                                                                                                                                                           16:24:28.436231
                                                         67b86d5
                                 2018-09-20
                                                                                                                           Sonipat Kundli H
                                                                                                                                                                     Gurgaon_Bilaspur_HB
                                                                                                                                                                                               2018-09-20
      144864 training
                                                    4e20-4c31-8542-
                                                                         Carting
                                                                                                        IND131028AAB
                                                                                                                                                  IND000000ACB
                            16:24:28.436231
                                                                                  153746066843555182
                                                                                                                                  (Haryana)
                                                                                                                                                                                (Haryana)
                                                                                                                                                                                           16:24:28.436231
                                             thanos::sroute:f0569d2f-
                                 2018-09-20
                                                                          Carting trip-
153746066843555182
                                                                                                                           Sonipat_Kundli_H
                                                                                                                                                                     Gurgaon_Bilaspur_HB
                                                                                                                                                                                               2018-09-20
      144865 training
                                                    4e20-4c31-8542-
                                                                                                        IND131028AAB
                                                                                                                                                  IND000000ACB
                            16:24:28.436231
                                                                                                                                                                                          16:24:28.436231
                                                                                                                                  (Haryana)
                                                                                                                                                                               (Haryana)
                                                         67b86d5..
      114085 rows × 24 columns
data.select_dtypes(include = "object").columns
Index(['data', 'route_schedule_uuid', 'route_type', 'trip_uuid', 'source_center', 'source_name', 'destination_center', 'destination_name', 'cutoff_timestamp'],
            dtype='object')
# encoding of Route type and data using 1HE -
df_encoded = pd.get_dummies(data = data, columns = ["route_type", "data"], prefix = ["route_type", "data"])
df_encoded[["route_type_Carting", "route_type_FTL", "data_test", "data_training"]].value_counts()
₹
      route_type_Carting route_type_FTL data_test data_training
                                                                         73108
                                                                         31750
                                 False
                                                False
              True
                                                              True
              False
                                 True
                                                              False
                                                                         26552
              True
                                 False
                                                                         13457
                                                True
                                                              False
df new = df encoded
df_new.drop(columns = ["trip_creation_time", "source_name", "is_cutoff", "destination_name", "cutoff_factor", "factor", "cutoff_timestamp"], inplace = True)

    Normalizing/ Standardizing the numerical features using MinMaxScaler or StandardScaler -
```

lower limit of start_scan_to_end_scan = -2048.5

data[num list] = MinMaxScaler().fit transform(data[num list])

data[num_list]

·	start_scan_to_end_scan	${\tt actual_distance_to_destination}$	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_time	segment_osrm_distance
0	0.008378	0.000748	0.001105	0.002976	0.001276	0.078300	0.006828	0.005460
1	0.008378	0.005180	0.003316	0.008333	0.005488	0.077086	0.005587	0.004453
2	0.008378	0.009715	0.006854	0.013095	0.010155	0.078907	0.004345	0.004935
3	0.008378	0.014135	0.011718	0.020238	0.015775	0.080425	0.007449	0.005942
4	0.008378	0.015839	0.013044	0.022619	0.019511	0.075873	0.003104	0.001787
1448	0.051663	0.018900	0.018793	0.032143	0.025427	0.077693	0.007449	0.003735
1448	0.051663	0.023505	0.024541	0.041667	0.033090	0.081942	0.013035	0.007928
1448	0.051663	0.029797	0.028963	0.048810	0.038014	0.080121	0.021105	0.009448
1448	0.051663	0.033715	0.032943	0.054762	0.044132	0.079211	0.016760	0.008619
1448	0.051663	0.031817	0.092195	0.052976	0.034405	0.155387	0.005587	0.004020
14486	7 rows × 8 columns							

Recommendations and Insights summary:

- For deliver the products 61% prioritize carting shipments route type because FTL shipments Full Truck Load takes more time to deliver
 product and time taken to actual and osrm higher than that of rout type. Using carting shipments helps to reach destination sooner
 provided it is feasible.
- 2. Most of the products were delivered during wednesday (18.5%) followed by saturday and thursday. Least number of products were delivered on sunday Delhivery could optimize resource allocation and scheduling to handle peak delivery days, particularly on Wednesday, while exploring strategies to boost efficiency and demand on the lower-performing days, such as Monday and Sunday.
- 3. It is observed that Gurgaon, Hariyana is the destination city to which "distance to reach destination" is the highest compared to other cities in the states. Delhivery could consider optimizing routes or exploring alternative transportation methods for shipments to Gurgaon, Harvana. to reduce delivery times and improve cost efficiency for long-distance deliveries.
- 4. The highest number of deliveries and sources are occurring in Maharashtra followed closely by Karnataka. Delhivery could focus on scaling operations and resource allocation in Maharashtra and Karnataka to meet the high delivery demand and ensure optimized performance in these key regions.
- 5. Full Truck Load (FTL) takes more time to deliver than small vehicles (carts). The actual mean time for carting is 6 times less, and the OSRM mean time for carting is 3 times less compared to FTL. Delhivery could explore increasing the use of carting for shorter routes or time-sensitive deliveries to optimize delivery times, while reserving FTL for larger or longer distance shipments.
- 6. In states/ UT Dadra & Nagar Haveli and TN the difference between actual mean time and osrm mean time is almost nill. Delhivery could investigate the factors contributing to the minimal difference in Dadra & Nagar Haveli and Tamil Nadu to replicate these efficiencies in other regions, while also focusing on understanding the causes of the high variation in Mizoram and Haryana to improve routing accuracy and delivery times.
- 7. Delhivery could focus on optimizing time predictions by studying the regions with high variations in time (Mizoram, Haryana, Goa, and Assam), while leveraging the regions with minimal distance discrepancies (Dadra & Nagar Haveli, Delhi, Tamil Nadu) as benchmarks for improving time and distance forecasting models.
- 8. Means of "start_scan_to_end_scan" and "total_min_diff" are significantly different. Delhivery should investigate the factors driving this difference as this could uncover inefficiencies in the scanning process or reveal opportunities for optimizing delivery timelines. It should conduct a thorough review of the data collection process to identify potential human or system errors.
- 9. The actual time and segment actual time have means that are significantly similar. Delhivery could evaluate whether the granularity of segment-based analysis is necessary, as the similarity between actual time and segment actual time suggests that segmenting may not be providing additional value in optimizing delivery times.
- 10. All the numerical columns are right-skewed in distribution, with almost 11% of the data containing outliers. Delhivery should investigate the causes of outliers to determine whether they should be removed or managed through robust statistical techniques.