Лабораторная работа 5.4.2. Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра.

Вязовцев Андрей, Б01-005

05.10.22

Цель работы: С помощью магнитного спетрометра исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определяется их максимальная энергия.

В работе используются: магнитный спектрометр с короткой линзой.

Теоретическая справка:

Явление радиоктивности состоит в самопроизвольном распаде ядер с испусканием одной или нескольких частиц. К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В нашей работе мы будем рассматривать второе явление.

Бета-распад — процесс самопроизвольного превращения нестабильного ядра в ядро-изобар (ядро с тем же числом нуклонов, т. е. с одинаковым массовым числом A) с зарядом, отличным от исходного на $\Delta Z=\pm 1$ за счёт испускания электрона (позитрона) или захвата электрона с атомной оболочки. Главной особенностью β -распада является то, что он обусловлен не ядерными и не электромагнитными силами, а слабым взаимодействием. Период полураспада изменяется от ничтожных долей секунды до 10^{18} лет, а энегрия от 18 кэВ до 13.4 МэВ.

В данной работе мы будем иметь дело с электронным распадом:

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}X + e^{-} + \tilde{\nu}$$

Вероятность $d\omega$ того, что при распаде электрон вылетит с импульсом $d^3\vec{p}$, а антинейтрино с импульсом в интервале $d^3\vec{k}$ равна

$$d\omega = D\delta(E_e - E - ck)d^3pd^3p \tag{1}$$

где E_e — максимальная энергия электрона, E — его кинетическая энегрия, D — некоторый коэффициент пропорциональности, при этом:

$$E_e - E - ck = 0 (2)$$

Соответственно, для электрона с импульсом [p, p+dp] и антинейтрино с импульсом [k, k+dk] количество распадов dN на N_0 частиц определяется выражением:

$$dN = N_0 d\omega \tag{3}$$

В нерелятевистком приближении (наш случай) можено получить, что:

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2 \tag{4}$$

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбуждёнными. Возбуждённые ядра отдают свою энергию либо излучая γ -квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определённую энергию и называются конверсионными.

Экспериментальная установка:

Энергию β -частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой линзой». На рис. 1 изображена схема установки. А на рис. 2 — общая блок-схема.

Как показывает расчёт, для заряженных частиц тонкая катушка эквивалента линзе. Для фокусного расстояния f, силы тока I и импульса электрона p верно:

$$\frac{1}{f} \propto \frac{I^2}{p^2}$$

Отсюда следует:

$$p = kI (5)$$

Рис. 1. Схема β -спектрометра с короткой магнитной линзой

Рис. 2. Блок-схема установки для изучения β -спектра

Ход работы:

- 1. Включим пересчётный прибор, высоковольтный выпрямитель и вакуумметр и дадим им прогреться 10-15 минут. Насосом сделаем, чтобы давление в спектрометре было не больше 0.1 Тор. Насос отключим, соединив его с атмосферой.
- 2. Установим рабочее напряжение на ФЭУ. Убедимся, что β -спектрометр правильно работает.
- 3. Проведём измерения, особое внимание уделим конверсионному пику. Каждое будем проводить в течение 100 секунд. Результаты представлены в таблице 1.
 - 4. Измерим фон. Результаты в таблице 2.

I, A	0.2	0.4	0.0	6 (0.8	1.0)	1.1		1.2	1.3	1.	4	1.5
$N, \frac{1}{c}$	1.36	1.61	2.0	$3 \mid 2$	2.07	2.70	0	3.44	1 3	5.73	4.68	5.2	20	5.83
<i>I</i> , A	1.6	1.7	1.8	8	1.9	2.0)	2.1	1	2.2	2.3	2.	4	2.5
$N, \frac{1}{c}$	6.41	6.93	8.2	1 8	3.23	7.88	8	8.09	7	´.35	6.70	6.6	52	5.56
I, A	2.6	$\overline{\mathfrak{s}}$ 2.	7	2.8	2.9) [3.0	3.	.05	3.1	3	.15	3	5.2
N,	$\frac{1}{c}$ 4.3	9 3.4	19 3	3.30	3.68	8 5	.17	7.	.27	9.66	5 12	2.41	12	.63
I, A	3.	3 3	3.35	3.4	4 3	.45	3	3.5	3.6	3 3	3.7	3.9	4	4.1
N,	$\frac{1}{c}$ 12.	04 1	11.05		8.74 6		4.	.47	2.6	$2 \mid 1$.42	0.73	0	.62

Таблица 1. Измерения на β -спектрометре

t, c	300	300				
$N, \frac{1}{c}$	1.3593	0.5964				
I, A	0	4.25				

Таблица 2. Фон спектрометра

Обработка результатов:

5. Вычтем из измерений фон и построим график N(I). При этом уровень конверсионного пика приблизим распределением Гаусса, а другую часть графика — уравнением вида:

$$N(I) = a \cdot \sqrt{I}(I - b)^2 + c$$

6. Найдём константу прибора по энергии электронов внутренней конверсии $^{137}Cs,$ равной $T_{\rm k}=624$ кЭв. Т. к. m=511 кэВ, то $E_{\rm k}=1135$ кэВ и $p_{\rm k}=1013$ кэВ. Т.к. $I=(3.241\pm0.004)$ А, то

$$k = (312.7 \pm 0.4) \frac{\text{кэВ}}{\text{A}}$$

7. Построим график Ферми-Кюри. Из графика получаем, что:

$$E_m ax = (1140 \pm 30)$$
кэВ

Рис. 3. Главный график

Рис. 4. График Ферми-Кюри