[2] 1. Considere o sistema de forças $\vec{F_1}$, $\vec{F_2}$ e $\vec{F_3}$, aplicadas nos vértices A, B e C de um paralelepípedo rectangular, com dimensões Δx , Δy e Δz , iguais a 35 cm, 45 cm e 25 cm, respectivamente. As forças $\vec{F_1}$ e $\vec{F_2}$ têm intensidades iguais a 120 N e a força $\vec{F_3}$ tem intensidade igual a 150 N. (As forças $\vec{F_1}$ e $\vec{F_2}$ têm componentes apenas segundo o eixo dos zz, e a força $\vec{F_3}$ tem componente apenas segundo o eixo dos yy.)

[2] a) Qual o momento do binário constituído pelas forças \vec{F}_1 e \vec{F}_2 ?

A)	$\vec{M}_{B,O} = 54\hat{i} + 42\hat{j}[\mathrm{N}\mathrm{m}]$	B)	$\vec{M}_{r,o} = 42\hat{i} + 54\hat{j} \left[\text{N m} \right]$	
C)	$\vec{M}_{r,o} = 42\hat{i} + 30\hat{j}\left[\text{Nm}\right]$	D)	$\vec{M}_{r,o} = 30\hat{i} + 42\hat{j}[\text{N m}]$	
E)	Nenhuma das restantes opções			

[2] b) Se se pretender substituir o sistema de forças por um equivalente com a resultante aplicada no ponto D, qual o vector momento do binário que tem de ser adicionado ao novo sistema de forças?

A)	$\vec{M}_{B} = 97.5\hat{i} + 42\hat{j} + 52.5\hat{k}[\text{N m}]$	B)	$\vec{M}_B = 109, 5\hat{i} + 30\hat{j} + 37, 5\hat{k} [\text{N m}]$
C)	$\vec{M}_B = 79,5\hat{i} + 54\hat{j} + 67,5\hat{k}[\text{N m}]$	D)	$\vec{M}_B = 91.5\hat{i} + 42\hat{j} + 52.5\hat{k}[\text{Nm}]$
E)	Nenhuma das restantes opções		

[2] c) Qual dos seguintes vectores momento de um binário tem de ser adicionado ao sistema se pretendermos deslocar o ponto de aplicação da força \vec{F}_3 do ponto C para o ponto A?

A)	$\vec{M} = 67,5\hat{i} + 37,5\hat{k} \text{ [N m]}$	B)	$\vec{M} = 67.5\hat{i} + 52.5\hat{k} [\text{Nm}]$
C)	$\vec{M} = 37.5\hat{i} + 52.5\hat{k}[\text{N m}]$	D)	$\vec{M} = 37.5\hat{i} + 67.5\hat{k}[\text{N m}]$
E)	Nenhuma das restantes opções		

26/02/2020

NOME: N°:			
	NOME:	N°:	

[2] 2. Considere um sistema constituído por uma barra homogénea, com peso P = 40 N e comprimento L, sobre a qual se encontra um bloco de peso P_2 , tal como ilustrado na figura. O sistema encontra-se em equilíbrio com a barra na horizontal, sendo suportada pelos cabos 1 e 2, de massas desprezáveis, que fazem ângulos com a horizontal iguais a 30° e 60° , respectivamente. Na extremidade do cabo 1, que passa por uma roldana ideal, encontra-se suspenso um corpo de peso $P_1 = 200 \text{ N}$.

[2] a) Sabendo que o peso P_2 é igual a 49,27 N, e que o corpo pode ser colocado em qualquer ponto da barra, qual o valor mínimo da força que a corda 2 deve suportar?

A)	165 N	B)	160 N	
C)	170 N	D)	155 N	
E)	Nenhuma das restantes opções			

[2] b) Se o peso P_2 for igual ao valor dado na alínea a) e a força exercida pela corda 2 for igual a 80,32 N, qual o valor do peso P_1 ?

A)	54,10 N	B)	83,85 N	
C)	46,37 N	D)	64,36 N	
E)	Nenhuma das restantes opções			

[2] c) Se o peso P_2 for igual ao valor dado na alínea a) e o peso P_1 for igual a 81,88 N, qual o valor da distância x?

A)	0,80 L	B)	0,75 L
C)	0,85 L	D)	0,70 L
E)	Nenhuma das restantes opções		

26/02/2020

NOME:	N°:	

3. Considere o seguinte tensor de tensões, referente a um plano *XY* de análise arbitrário. O material é isotrópico e linearmente elástico, com módulo de elasticidade igual a 180 GPa e razão de Poisson igual a 0,3.

$$\sigma = \begin{bmatrix} -100 & 80 & 0 \\ 80 & 50 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa.$$

[2] a) Qual a tensão de corte máxima a que o material está sujeito?

A)	121 MPa	B)	117 MPa
C)	113 MPa	D)	110 MPa
E)	Nenhuma das anteriores		

[2] b) Qual dos seguintes tensores corresponde ao tensor de deformações para o estado de tensão fornecido?

		3 1
A)	$\varepsilon = \begin{bmatrix} -639 & 578 & 0 \\ 578 & 444 & 0 \\ 0 & 0 & 83 \end{bmatrix} \times 10^{-6}$	B) $\varepsilon = \begin{bmatrix} -444 & 614 & 0 \\ 614 & 639 & 0 \\ 0 & 0 & -83 \end{bmatrix} \times 10^{-6}$
C)	$\varepsilon = \begin{bmatrix} 444 & 686 & 0 \\ 686 & -639 & 0 \\ 0 & 0 & 83 \end{bmatrix} \times 10^{-6}$	D) $\varepsilon = \begin{bmatrix} 639 & 650 & 0 \\ 650 & -444 & 0 \\ 0 & 0 & -83 \end{bmatrix} \times 10^{-6}$
E)	Nenhuma das anteriores	

[2] c) Qual dos seguintes tensores de tensões corresponde ao estado de tensão a que o material se encontra sujeito quando se rodam os planos de análise de 45° no sentido contrário ao dos ponteiros do relógio?

A)	$\sigma = \begin{bmatrix} 115 & -75 & 0 \\ -75 & -65 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	B) $\sigma = \begin{bmatrix} 70 & -75 & 0 \\ -75 & 120 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$
C)	$\sigma = \begin{bmatrix} 55 & 75 & 0 \\ 75 & -105 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	D) $\sigma = \begin{bmatrix} 110 & 75 & 0 \\ 75 & -60 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$
E)	Nenhuma das anteriores	

26/02/2020

[6] 4. Considere uma barra horizontal de massa desprezável, com comprimento $\ell = 1 \, \text{m}$, suportada por apoios simples nas suas extremidades A e B. Entre a extremidade A e o ponto $x = \ell/2$ actua uma distribuição contínua de carga com forma triangular, cuja intensidade é dada por $p_1(x) = -400 \, x + 200 \, \text{N m}^{-1}$, e entre o ponto $x = \ell/2$ e a extremidade B actua uma outra distribuição de carga triangular dada por $p_2(x) = 500 \, x - 250 \, \text{N m}^{-1}$. Para ambas as distribuições de carga a variável x é a distância ao ponto A.

(Nota: Na resolução do problema use os diagramas de corpo livre dados na Figura 1.)

Figura 1

[2] a) Qual a intensidade da reacção \vec{R}_R ?

A)	77,08 N	B)	52,08 N	
C)	85,42 N	D)	60,42 N	
E)	Nenhuma das anteriores			

26/02/2020

Exame de Biomecânica: Época de Recurso Eng^a Biomédica (2020/2021)

26/02/2020 Duração: 2h30

NOME: _____ N°: ____

[2] b) Qual dos gráficos representa a força de corte em função de x?

Exame de Biomecânica: Época de Recurso Eng^a Biomédica (2020/2021)

26/02/2020 Duração: 2h30

NOME: _____ N°: ____

[2] c) Qual dos gráficos representa o momento flector em função de x?

