Correlazione tra sistema visivo e squilibrio muscolare orofacciale

Serena Delbono

SALUTE: "stato di completo benessere fisico, psichico e sociale e non semplice assenza di malattia"

INTERDISCIPLINARIETÀ

SISTEMA TONICO POSTURALE

Consente all'uomo la gestione delle sue masse nello spazio, sia in posizione statica che in movimento, adattandosi ai continui cambiamenti ambientali

VIA OCULOCEFALOGIRA

-ASCENDENTE:

recettori paradontali delle arcate superiori e dello spot palatino → Nucleo mesencefalico del Trigemino → Nuclei III, IV, VI nervo cranico

-DISCENDENTE:

recettori paradontali delle arcate superiori, muscoli masticatori, ATM e muscoli oculomotori → Nucleo mesencefalico del Trigemino → Nucleo Accessorio Spinale → XI nervo cranico → Trapezio superiore e SCM

SQUILIBRIO MUSCOLARE OROFACCIALE

Disfunzioni della deglutizione e ad ATM interferiscono con il sistema visivo (e viceversa) inducendo un adattamento della postura.

STUDIO SU CORRELAZIONE TRA SISTEMA STOMATOGNATICO E OCULOMOTORE NEL DETERMINISMO DELLA POSTURA (Cuccia et al, 2009)

SISTEMA STOMATOGNATICO:

comprende la respirazione, fonazione, suzione, deglutizione e masticazione.

MATERIALI E METODI: 22 soggetti con disturbi alla propriocezione muscolare extra-oculare (6 difetti di convergenza, 5 eteroforie, 11 strabismo). Valutazione: tipo malocclusione con esame intraorale e tipo di difetto oculare con test convergenza e cover test.

CLASSI DENTALI

Insufficienza di convergenza

- I classe
- II classe 1 divisione
- II classe 2 divisione
- III classe

Inclinazione testa

- destra
- sinistra

Strabismo

- I classe
- II classe 1 divisione
- II classe 2 divisione
- III classe

Inclinazione testa

- destra
- sinistra

■ III classe

■ sinistra

CONCLUSIONI:

Interazione sia neurofisiologica che neuromuscolare tra apparati stomatognatico, oculomotore e il sistema posturale. Sia la postura in toto che la postura testacollo sono interessate da alterazione dei difetti degli assi visivi. Il difetto occlusale potrebbe ripercuotersi sul sistema motorio e quindi sul sistema oculomotore e difetti primari dell'occhio potrebbero ripercuotersi sull'apparato stomatognatico.

STUDIO SU ASSOCIAZIONE TRA MALOCCLUSIONI, POSTURA ERRATA E PROBLEMI DI CONVERGENZA OCULARE NEI BAMBINI DELLA SCUOLA ELEMENTARE (Silvestrini et al, 2013)

MATERIALI E METODI: 605 bambini sottoposti ad esami:

- -*Odontoiatrico*: presenza di cross-bite, deviazione della linea mediana con uno spostamento mandibolare, abitudini viziate e morso profondo o aperto.
- -Posturologico: osservazione frontale e laterale, durante la flessione del tronco e la deambulazione e annotazione di ogni asimmetria nell'arto inferiore.
- -Ortottico: dominanza oculare, cover test, test di convergenza e test della corda di Brock.

Table 1 Distribution of physiological and pathological gait in our population

	Normal bite (%)	Deep-bite (%)	Open-bite (%)	Total (%)
Physiological gait (%)	86.92% (N = 226)	85.13% (N = 206)	85.30% (N = 87)	100% (N = 519)
Pathological gait (%)	13.08% (N = 34) (*)	14.87% (N = 36)	14.70% (N = 15)	100% (N = 85)
Total (%)	100% N = 260	100% (N = 242)	100% (N = 102)	N = 604

^{*} significantly lower than the other two groups.

Table 2 Distribution of dysmetric legs in our population

	Normal bite (%)	Deep-bite (%)	Open- bite (%)	Total (%)
Dysmetric legs (%)	6.15% (N = 16)	5.76% (N = 14)	5.94% (N = 6)	100% (N = 36)
Normal legs (%)	93.85% (N = 244)	94.24% (N = 229)	94.06% (N = 95)	100% (N = 568)
Total (%)	100% N = 260	100% (N = 243)	100% (N = 101)	N = 604

^{*} significantly lower than the other two groups.

Table 3 Distribution of dominant eyes data in our population

	Normal bite (%)	Deep-bite (%)	Open-bite (%)	Total (%)
Right dominant eye (%)	62.70% (N = 163)	66.66% (N = 164)	58.42% (N = 59)	100% (N = 386)
Left dominant eye (%)	37.30% (N = 97)	33.33% (N = 82) (*)	41.58% (N = 42) (*)	100% (N = 221)
Total (%)	100% (N = 260)	100% (N = 246)	100% (N = 101)	N = 607

^{*} significantly lower than the other two groups.

Table 4 Distribution of data about the ocular convergence diseases

	Normal bite (%)	Deep-bite (%)	Open-bite (%)	Total (%)
CT phoria	85.38% (N = 222)	83.53% (N = 203)	88.12% (N = 89)	100% (N = 514)
CTexophoria	8.84% (N = 23)	11.93% (N = 29) (*)	8.91% (N = 9)	100% (N = 61)
CT esophoria	4.23% (N = 11)	4.52% (N = 11)	2.97% (N = 3) (*)	100% (N = 25)
CT trophia	1.53% (N = 4)	0% (N = 0)	0% (N = 0)	100% (N = 4)
Total (%)	100% (N = 260)	100% (N = 246)	100% (N = 101)	N = 607

^{*} significantly lower than the other two groups.

Table 5 Distribution of data about the ocular convergence

	Normal bite (%)	Deep-bite (%)	Open-bite (%)	Total (%)
Normal	89.18% (N = 231)	90.94% (N = 221)	86.54% (N = 90)	100% (N = 542)
Pathological in the right side	4.24% (N = 11)	3.70% (N = 9) (*)	4.80% (N = 5)	100% (N = 25)
Pathological in the left side	6.56% (N = 17)	5.34% (N = 13)	8.65% (N = 9) (*)	100% (N = 39)
Total (%)	100% (N = 259)	100% (N = 243)	100% (N = 104)	N = 606

^{*} significantly lower than the other two groups.

CONCLUSIONI:

Varie problematiche posturali, ortottiche, osteopatiche e occlusali sono risultate frequentemente clinicamente associate. Dunque questi disturbi richiedono una valutazione ed un trattamento di natura multidisciplinare.

Bibliografia:

Sergio Ettore Salteri "Criteri di interdisciplinarietà del trattamento delle sindromi posturali con particolare riguardo al recettore oculare: esperienza personale – IMPATTO SOCIO-ECONOMICO DELLE PATOLOGIE POSTURALI"

Francesco Fanottoli http://www.francescofanottoli.com/category/optometria/ "Interferenza visiva e postura" (9 aprile 2015)

G.Bilello, D. Caradonna, C. Caradonna, A.M. Cuccia, A. Manzella "Correlazione tra i sistemi stomatognatico e oculomotore nel determinismo della postura" (7 ottobre 2009)

Armando Silvestrini-Biavati, Marco Migliorati, Eleonora Demarziani, Simona Tecco, Piero Silvestrini-Biavati, Antonella Polimeni, Matteo Saccucci "Clinical association between teeth malocclusions, wrong posture and ocular convergence disorders: an epidemiological investigation on primary school children" (2013)

Alice Delbono Tesi di laurea in Logopedia "Correlazione tra Squilibrio Muscolare Orofacciale e disfunzioni di interesse osteopatico: studio su 21 soggetti" (2015)