12 Àlgebra multilineal i formes

Exercici 124: (Propietats elementals del producte exterior). Siguin S un tensor alternat d'ordre p, T un d'ordre q i U un d'ordre r. Feu la comprovació explícita de les propietats següents:

1. (Associativitat)

$$(S \wedge T) \wedge U = S \wedge (T \wedge U)$$

2. (Anticommutativitat)

$$S \wedge T = (-1)^{pq} T \wedge S$$

Exercici 125: Sigui $f: \mathbb{R}^n \to \mathbb{R}^m$. Es defineix l'aplicació $f^*: \Lambda^p(\mathbb{R}^m) \to \Lambda^p(\mathbb{R}^n)$ considerant, per a cada tensor alternat T d'ordre p sobre \mathbb{R}^m , l'aplicació $f^*(T)$ que compleix

$$f^*(T)(v_1, \dots, v_p) = T(f(v_1), \dots, f(v_p))$$

si v_1, \ldots, v_p són vectors de \mathbb{R}^n .

Feu les comprovacions de:

- 1. $f^*(T)$ és un tensor alternat de \mathbb{R}^n i, per tant, la imatge de f^* està, realment, en $\Lambda^p(\mathbb{R}^n)$.
- 2. f^* és una aplicació lineal. És a dir $f^*(S+T)=f^*(S)+f^*(T)$ i $f^*(\lambda T)=\lambda f^*(T)$.
- 3. f^* és compatible amb el producte exterior: $f^*(S \wedge T) = f^*(S) \wedge f^*(T)$

Exercici 126: 1. Per a cada família v_1, \ldots, v_n de n vectors de \mathbb{R}^n considerem la matriu $A = \begin{pmatrix} a_i^j \end{pmatrix}$ formada per les components dels vectors v_i respecte la base canònica e_1, \ldots, e_n de forma que, per a cada i, es tingui

$$v_i = \sum_j a_i^j e_j$$

Demostreu que l'aplicació D determinada per

$$D(v_1,\ldots,v_n)=\det(A)$$

és un element de $\Lambda^n(\mathbb{R}^n)$.

2. Demostreu que per a cada $T \in \Lambda^n(\mathbb{R}^n)$ existeix una constant α tal que

$$T(v_1, \dots, v_n) = \alpha D(v_1, \dots, v_n)$$

3. Deduïu de l'anterior que, per a qualsevol endomorfisme f de \mathbb{R}^n , l'aplicació f^* : $\Lambda^n(\mathbb{R}^n) \to \Lambda^n(\mathbb{R}^n)$ compleix

$$f^*(T) = \det(f) T$$

Exercici 127: Sigui e_1, \ldots, e_4 la base canònica de \mathbb{R}^4 i $\theta_1, \ldots, \theta_4$ la seva base dual $(\theta_i(e_i) = 1 \text{ i } \theta_i(e_i) = 0 \text{ si } i \neq j)$. Demostreu que és impossible escriure

$$\theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4 = S \wedge T$$

amb $S,T\in\Lambda^1(\mathbb{R}^4)$. (Hi ha 2-tensors alternats que no són producte exterior de dos 1-tensors).

Exercici 128: Demostreu que, si T és un producte interior (2-tensor simètric i definit positiu) d'un cert espai vectorial V de dimensió n, existeix una aplicació lineal bijectiva $f: \mathbb{R}^n \to V$ tal que $f^*(T)$ és el producte escalar ordinari de \mathbb{R}^n .

Exercici 129: (Per a repassar si no ha quedat clar a les classes de teoria)

Siguin $x_i : \mathbb{R}^n \to \mathbb{R}^n$ les funcions que a cada $p \in \mathbb{R}^n$ li fan correspondre la seva component *i*-èsima. Comproveu que les 1-formes dx_i donen, en cada punt, la base dual de la base canònica de \mathbb{R}^n

Exercici 130: Determineu quines són les formes diferencials ω a \mathbb{R}^4 compleixen

$$\omega \wedge (dx \wedge dy + dz \wedge dt) = dx \wedge dy \wedge dz \wedge dt$$

i les que compleixen

$$\omega \wedge \omega = dx \wedge dy \wedge dz \wedge dt$$

Exercici 131: Si en \mathbb{R}^3 es consideren les coordenades cilíndriques (r, θ, z) , quina és l'expressió de l'element de volum usual $\eta = dx \wedge dy \wedge dz$ en funció de dr, $d\theta$, dz? (Recordeu que, respecte les coordenades cilíndriques, $x = r \cos(\theta)$, $y = r \sin(\theta)$ i la coordenada z és la mateixa en els dos casos).

I si en comptes de les coordenades cilíndriques es consideren les esfèriques?

Exercici 132: Es considera a \mathbb{R}^3 una forma del tipus $\omega = x \, dy \wedge dz - 2 \, z \, f(y) \, dx \wedge dy + y \, f(y) \, dz \wedge dx$ amb f diferenciable tal que f(1) = 1. Determineu la funció f si

- 1. $d\omega = dx \wedge dy \wedge dz$,
- $2. \ d\omega = 0.$