Mechanics of Mechanisms and Robots

1. Fundamental: motion

Yanan Li

Revisiting mechanics problems

- Task 1: how to move the robot between 'Home' and a target position?
- Task 2: how to apply a desired force F to the surface S?

Fundamental: motion

- motion representation
- motion of rigid bodies
- matrix operation

Position, velocity and acceleration

- A systematic method to describe motion:
- derive an equation for position
- derivative of position w.r.t. time: velocity
- derivative of velocity w.r.t. time: acceleration

Motion of a point

- Position is a quantity with magnitude and direction, which can be represented by a <u>vector</u>
- Vectors can be represented graphically, with the length corresponding to the magnitude, and the direction set by an angle against a coordinate frame or another vector
- Velocity and acceleration can be also represented by a vector

• position:
$$\vec{r} = x\vec{i} + y\vec{j}$$
 or $\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}$

- vector: **bold font** or ()
- magnitude: $r = |\vec{r}|$
- direction: θ
- x, y: coordinates
- $-x = r\cos\theta, y = r\sin\theta$

• position:
$$\vec{r} = x\vec{i} + y\vec{j}$$
 or $\vec{r} = \begin{bmatrix} x \\ y \end{bmatrix}$

- \vec{i} , \vec{j} : unit vectors

$$-\vec{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• position: $\vec{r} = x\vec{\imath} + y\vec{\jmath}$

 velocity (time derivative of position using product rule):

$$\vec{v} = \dot{\vec{r}} = \dot{x}\vec{i} + x\dot{\vec{i}} + \dot{y}\vec{j} + y\dot{\vec{j}}$$

- time derivative: $\dot{()} = \frac{d()}{dt}$
- double derivative: ()

velocity (time derivative of position):

$$\vec{v} = \dot{\vec{r}} = \dot{x}\vec{i} + x\dot{\vec{i}} + \dot{y}\vec{j} + y\dot{\vec{j}}$$

if coordinate frame is fixed:

$$\dot{\vec{\imath}}=\dot{\vec{\jmath}}=\vec{0}$$
 then $\vec{v}=\dot{x}\vec{\imath}+\dot{y}\vec{\jmath}=v_x\vec{\imath}+v_y\vec{\jmath}$

 acceleration (derivative of velocity) in a fixed coordinate frame:

$$\vec{a} = \dot{\vec{v}} = \dot{v}_x \vec{i} + \dot{v}_y \vec{j} = a_x \vec{i} + a_y \vec{j}$$

where we have used

$$\dot{\vec{i}} = \dot{\vec{j}} = \vec{0}$$

What if the coordinate frame is moving?

- position: $\vec{r} = r\vec{e}_r$
- r: magnitude of \vec{r}
- \vec{e}_r , \vec{e}_θ : unit vectors

$$-\vec{e}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \vec{e}_\theta = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

in rectangular coordinate frame x-y

- position: $\vec{r} = r\vec{e}_r$
- velocity (using product rule):

$$\vec{v} = \dot{\vec{r}} = d(r\vec{e}_r)/dt$$

$$= \dot{r}\vec{e}_r + r\dot{\vec{e}}_r = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_{\theta}$$
where (using chain rule):

$$\dot{\vec{e}}_r = d \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} / dt = \dot{\theta} \vec{e}_{\theta}$$

• velocity:
$$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_{\theta}$$

- for rotation: $\dot{r}=0$ so $\vec{v}=r\dot{\theta}\vec{e}_{\theta}$
- in direction of $\vec{e}_{ heta}$
- magnitude is $r\dot{ heta}$

acceleration:

$$\begin{split} \vec{a} &= \dot{\vec{v}} \\ &= \mathsf{d}(\dot{r}\vec{e}_r + r\dot{\vec{e}}_r)/\mathsf{d}t \\ &= \big(\ddot{r} - r\dot{\theta}^2\big)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_\theta \end{split}$$
 where we have used

$$\dot{\vec{e}}_{\theta} = -\dot{\theta}\vec{e}_r$$

- centrifugal: $-r\dot{\theta}^2\vec{e}_r$
- Euler: $r\ddot{ heta}\vec{e}_{ heta}$
- Coriolis: $2\dot{r}\dot{\theta}\vec{e}_{\theta}$

• for rotation: $\dot{r}=0$ and $\ddot{r}=0$, so $\vec{a}=-r\dot{\theta}^2\vec{e}_r+r\ddot{\theta}\vec{e}_\theta$

• t-axis: tangential to the path curve

 n-axis: perpendicular to the t-axis and is directed toward the centre of curvature

 n-t coordinate frame is attached to, and moves with, a point, so there is no position vector

velocity (always tangential to the path):

$$\vec{v} = \dot{s}\vec{e}_t = v\vec{e}_t$$
 where (using arc length formula $ds = \rho d\theta$) $v = \rho \dot{\theta}$, similar as in polar coordinate frame

acceleration:

$$\begin{split} \vec{a} &= \dot{\vec{v}} \\ &= \mathsf{d}(v\vec{e}_t)/\mathsf{d}t \\ &= \dot{v}\vec{e}_t + \frac{v^2}{\rho}\vec{e}_n \\ &= \rho \ddot{\theta}\vec{e}_t + \frac{v^2}{\rho}\vec{e}_n \end{split}$$

Recall polar coordinate frame for rotation

$$\vec{a} = -r\dot{\theta}^2\vec{e}_r + r\ddot{\theta}\vec{e}_\theta$$
 with $v = \rho\dot{\theta}$ and $\rho = r$

Summary of coordinate frames

 The rectangular coordinate frame is useful when a path is straight line.

- position: $\vec{r} = x\vec{\imath} + y\vec{\jmath}$ for a fixed coordinate frame:
- velocity: $\vec{v} = v_x \vec{i} + v_y \vec{j}$
- acceleration: $\vec{a} = a_x \vec{i} + a_y \vec{j}$

Summary of coordinate frames

 The polar coordinate frame is useful when a path is curved and when angular velocity and acceleration are given.

- position: $\vec{r} = r\vec{e}_r$
- velocity: $\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta$
- acceleration: $\vec{a}=\left(\ddot{r}-r\dot{\theta}^2\right)\vec{e}_r+\left(r\ddot{\theta}+2\dot{r}\dot{\theta}\right)\vec{e}_{\theta}$

Summary of coordinate frames

 The normal and tangential coordinate frame is useful when a path is curved and the path's radius of curvature, and the speed and acceleration along the path are given.

- velocity: $\vec{v} = v\vec{e}_t$
- acceleration: $\vec{a} = \rho \ddot{\theta} \vec{e}_t + \frac{v^2}{\rho} \vec{e}_n$

Example: slider crank

- crank with a radius r rotates about point O
- rod with a length l connects crank AO and slider at point B
- θ , $\dot{\theta}$ and $\ddot{\theta}$ are given

video link

Questions

- Calculate the velocity of the slider as a function of θ , $\dot{\theta}$.
- Using a polar coordinate frame, derive the equations for the tangential and normal accelerations of point A.
- Determine the equations for the magnitude and angle of acceleration vector of point A.

Solutions

position of slider:

$$x_B = r\cos\theta + \sqrt{l^2 - r^2\sin^2\theta}$$

velocity of slider:

$$v_B = \dot{x}_B = -r \,\dot{\theta} \sin \theta - \frac{r^2 \dot{\theta} \sin \theta \cos \theta}{\sqrt{l^2 - r^2 \sin^2 \theta}}$$

Solutions

• position of point A: $\vec{r} = r\vec{e}_r$

• velocity:
$$\vec{v}=\dot{\vec{r}}=\mathrm{d}(r\vec{e}_r)/\mathrm{d}t=r\dot{\vec{e}}_r=r\dot{\theta}\vec{e}_{\theta}$$

acceleration:

$$\vec{a} = \dot{\vec{v}} = d(r\dot{\theta}\vec{e}_{\theta})/dt$$
$$= -r\dot{\theta}^{2}\vec{e}_{r} + r\ddot{\theta}\vec{e}_{\theta}$$

Solutions

magnitude of acceleration vector:

$$|\vec{a}| = \sqrt{(r\dot{\theta}^2)^2 + (r\ddot{\theta})^2} = r\sqrt{\dot{\theta}^4 + \ddot{\theta}^2}$$

• angle of acceleration vector: $-arctan\frac{\dot{\theta}^2}{\ddot{\theta}}$

Fundamental: motion

- motion representation
- motion of rigid bodies
- matrix operation

Motion of a rigid body

- Translation or linear motion
- Rotation
- General motion: neither a translation nor a rotation

Translation

 Any straight line inside the body keeps the same direction during the movement.

Rectilinear motion

 All the particles forming the body move along parallel paths.

These paths are straight lines.

Curvilinear motion

 All the particles forming the body move along parallel paths.

These paths are curved lines.

Rotation

 The particles forming the rigid body move along circles centred on the same fixed axis.

Translation description

 All the points of the body have the same velocity and the same acceleration.

$$\overrightarrow{v_B} = \overrightarrow{v_A}$$

$$\overrightarrow{a_B} = \overrightarrow{a_A}$$

Rotation description

- velocity vector: $\vec{v}_A = r_A \omega \vec{e}_t$
- acceleration vector: $\vec{a}_A = r_A \alpha \vec{e}_t + r_A \omega^2 \vec{e}_n$

General motion description

 The motion of the rigid body may be described as a simple superposition of the body's translation and rotation.

Absolute & relative motion

 absolute motion: measured from a fixed coordinate frame, normally the ground or anything rigidly attached to the ground and not moving

 relative motion: measured relative to a coordinate frame that may itself be moving

Absolute & relative motion

 Inertial coordinate frame: non-accelerating and non-rotating

 Body-fixed coordinate frame: a body-fixed reference frame is fixed to a body that is

usually moving.

Example: translating coordinate frame

- position vector: $\vec{r}_A = \vec{r}_B + \vec{r}_{A/B}$
- velocity vector:

$$\vec{v}_A = \vec{v}_B + \vec{v}_{A/B}$$

$$= \vec{v}_B + r_{AB}\omega \vec{e}_t \text{ (rotation)}$$

acceleration vector:

$$\vec{a}_A = \vec{a}_B + \vec{a}_{A/B}$$

$$= \vec{a}_B + r_{AB}\alpha \vec{e}_t + r_{AB}\omega^2 \vec{e}_n$$

Example: rotating coordinate frame

position vector:

$$\vec{r}_A = \vec{r}_B + \vec{r}_{A/B}$$
$$= \vec{r}_B + (x\vec{\imath} + y\vec{\jmath})$$

Example: rotating coordinate frame

velocity vector:

$$\vec{v}_A = \vec{v}_B + \vec{v}_{A/B} = \vec{v}_B + (\dot{x}\vec{i} + x\dot{\vec{i}} + \dot{y}\vec{j} + y\dot{\vec{j}})$$

- how to better describe a rotating coordinate

frame?

Fundamental: motion

- motion representation
- motion of rigid bodies
- matrix operation

Matrix operation: rotation

- It is of advantage to express the rotation as a matrix operation.
- Consider a vector in two coordinate frames:

$$\vec{p}_{xyz} = p_x \vec{\imath}_x + p_y \vec{\jmath}_y + p_z \vec{k}_z$$
$$\vec{p}_{uvw} = p_u \vec{\imath}_u + p_v \vec{\jmath}_v + p_w \vec{k}_w$$

• There is rotation matrix R s.t.

$$\vec{p}_{xyz} = \mathsf{R}\,\vec{p}_{uvw}$$

Math review: dot product

Dot product of vectors \vec{a}, \vec{b} (also scalar or inner product)

Geometric definition:

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \Theta$$

Algebraic definition:

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i \, b_i$$

A two-dimensional example

$$\vec{a} = [a_x, a_y]^{\top}, \quad \vec{b} = [b_x, b_y]^{\top}$$

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} \cdot \begin{bmatrix} b_x \\ b_y \end{bmatrix} = a_x b_x + a_y b_y$$

Matrix operation: rotation

• p_x , p_y , p_z represent projections of \vec{p} onto x, y, z axes, respectively:

$$\begin{aligned} p_x &= \vec{\imath}_x \cdot \vec{p} = \vec{\imath}_x \cdot \vec{\imath}_u \ p_u + \vec{\imath}_x \cdot \vec{\jmath}_v \ p_v + \vec{\imath}_x \cdot \vec{k}_w \ p_w \\ p_y &= \vec{\jmath}_y \cdot \vec{p} = \vec{\jmath}_y \cdot \vec{\imath}_u \ p_u + \vec{\jmath}_y \cdot \vec{\jmath}_v \ p_v + \vec{\jmath}_y \cdot \vec{k}_w \ p_w \\ p_z &= \vec{k}_z \cdot \vec{p} = \vec{k}_z \cdot \vec{\imath}_u \ p_u + \vec{k}_z \cdot \vec{\jmath}_v \ p_v + \vec{k}_z \cdot \vec{k}_w \ p_w \end{aligned}$$

• in a matrix form:

Rotation matrix R

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} \vec{\imath}_x \cdot \vec{\imath}_u & \vec{\imath}_x \cdot \vec{\jmath}_v & \vec{\imath}_x \cdot \vec{k}_w \\ \vec{\jmath}_y \cdot \vec{\imath}_u & \vec{\jmath}_y \cdot \vec{\jmath}_v & \vec{\jmath}_y \cdot \vec{k}_w \\ \vec{k}_z \cdot \vec{\imath}_u & \vec{k}_z \cdot \vec{\jmath}_v & \vec{k}_z \cdot \vec{k}_w \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

Example: rotation matrix

Rotation about axis x by Θ:

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} \vec{\imath}_x \cdot \vec{\imath}_u & \vec{\imath}_x \cdot \vec{\jmath}_v & \vec{\imath}_x \cdot \vec{k}_w \\ \vec{\jmath}_y \cdot \vec{\imath}_u & \vec{\jmath}_y \cdot \vec{\jmath}_v & \vec{\jmath}_y \cdot \vec{k}_w \\ \vec{k}_z \cdot \vec{\imath}_u & \vec{k}_z \cdot \vec{\jmath}_v & \vec{k}_z \cdot \vec{k}_w \end{bmatrix} \begin{bmatrix} p_u \\ p_v \\ p_w \end{bmatrix}$$

$$\mathsf{R} = \mathsf{R}(x,\Theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta \\ 0 & \sin\Theta & \cos\Theta \end{bmatrix}$$

Example: rotation matrix

Rotation about axis y by Θ:

$$R = R(y, \Theta) = \begin{bmatrix} \cos \Theta & 0 & \sin \Theta \\ 0 & 1 & 0 \\ -\sin \Theta & 0 & \cos \Theta \end{bmatrix}$$

Rotation about axis z by Θ:

$$\mathsf{R} = \mathsf{R}(z, \Theta) = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0\\ \sin \Theta & \cos \Theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Composite rotation matrix

- A sequence of finite rotations.
- Matrix multiplications do not commute ⇒ the correct order is important.
- Point \vec{p} is represented as \vec{p}_0 w.r.t. to its coordinates $Oi_0j_0k_0$. Point \vec{p}_1 similarly as \vec{p}_1 w.r.t. $Oi_1j_1k_1$. Point \vec{p}_2 similarly as \vec{p}_2 w.r.t. $Oi_2j_2k_2$.
- ightharpoonup $\vec{p}_0 = \mathsf{R}^1_0 \, \vec{p}_1$ and $\vec{p}_1 = \mathsf{R}^2_1 \, \vec{p}_2$
- $R_0^2 = R_0^1 R_1^2$, consequently $\vec{p}_0 = R_0^2 \vec{p}_2$

Example: composite rotation matrix

- 1. Rotation around the current z-axis by the angle Θ .
- 2. Rotation around the current y-axis by the angle Φ .

$$\mathsf{R} = \mathsf{R}(y,\Phi)\,\mathsf{R}(z,\Theta) = \begin{bmatrix} \cos\Phi & 0 & \sin\Phi \\ 0 & 1 & 0 \\ -\sin\Phi & 0 & \cos\Phi \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \Phi \cos \Theta & -\cos \Phi \sin \Theta & \sin \Phi \\ \sin \Theta & \cos \Theta & 0 \\ -\sin \Phi \cos \Theta & \sin \Phi \sin \Theta & \cos \Phi \end{bmatrix}$$

Matrix operation: rotation + translation

- A point (vector) \vec{p} originally expressed with respect to the coordinate system O_1uvw as \vec{p}_1 is newly represented with respect to the coordinate system O_0xyz as \vec{p}_0 .
- The transformation writes as $\vec{p}_0 = R \vec{p}_1 + \vec{t}$, where R is the rotation matrix aligning the coordinate system $O_0 xyz$ to $O_1 uvw$ and \vec{t} is a translation vector bringing the origin O_0 to the origin O_1 .

Homogeneous transformation

- Express $\vec{p_0}$, $\vec{p_1}$ in homogeneous coordinates as $\vec{p_{0h}}$, $\vec{p_{1h}}$. $\vec{p_{1h}}$. $\vec{p_{1h}} = \begin{bmatrix} \vec{p_0} \\ 1 \end{bmatrix}$, $\vec{p_{1h}} = \begin{bmatrix} \vec{p_1} \\ 1 \end{bmatrix}$
- The joint rotation and translation can be written in the matrix form

$$\vec{p}_{0h} = \begin{bmatrix} \mathbf{R} & | \vec{t} \\ 0 & 0 & 0 & 1 \end{bmatrix} \vec{p}_{1h}$$

Transformation matrix T

Example: a robot manipulator

- Representation of end-point position in x0-y0z0
- Find coordinate in x3-y3-z3

- Find composite transformation matrix from x3y3-z3 to x0-y0-z0

Summary

- motion representation:
- position, velocity, acceleration
- coordinate frames

- vector formalism:
- suitable for simple mechanisms, simple motions

Summary

- matrix operation:
- suitable for complex mechanisms, e.g. a robot with >3 joints

