SECOM Case Study following CRISP-DM Methodology

MPMD 2.2 Data Mining Techniques - Group 6

Catherine King

Lin Yi Hsuan

Pawin Poboon

Ender Yolagel

Agenda

CRISP-DM Process

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation & Preprocessing
- 4. Model Building & Evaluation
- 5. Model Deployment & Results
- 6. Retrospective CRISP-DM

CRISP-DM Introduction

What

- 6 phases of a project
- Overview of data mining life cycle
- Flexible and easily customized, yet structured
- Iterative process

Why

- Organizes project streams, output, and documentation
- Guides users through data mining projects

Source: IBM SPSS Modeler CRISP-DM Guide

Complete Process Workflow

1. Business Understanding

Business Success Criteria & Data Mining Goals

Business Background:

- Semiconductor industry is complex and known for sophisticated production processes with many steps
- **Default detection** during the production process plays an important role to smooth productivity, preventing breakdowns, and reducing related costs
- To predict defaults, data from the sensors on the production line must be collected and analyzed

Business Objective:

 To accurately predict faulty wafers on the production line, possibly before production is finished

Requirements, Assumptions, and Constraints:

- Complete a successful data mining project on the Secom dataset following the CRISP-DM methodology.
- Well-structured document must describe all processes, decisions, and relevant contents
- Limited business insight and information about 590 features

Data Mining Goals:

- Prediction of defaults based on the least amount of sensors/features using CRISP-DM
- Build parsimonious model with great exploratory power with 15-30 key features (sensors)

2. Data Understanding

2.1 Data Collection & Description Report

- 2.1.1 Quantity
 - Format
 - Size
- 2.1.2 Quality
 - Characteristics/attributes
 - Effect on Data Mining Hypotheses

2.2 Exploring Data – EDA Report

- 2.2.1 Univariate Analysis
- 2.2.2 Multivariate Analysis
- 2.2.3 Target Feature

2.3 Data Quality

- 2.3.1 Outliers
- 2.3.2 Missing Values
- 2.3.3 Data Quality Report

2.1 Data Understanding: Data Collection Report

2.1.1 Quantity

Data comes in one .sav file. Feature names not given.

590 features plus 3 (ID, timestamp, and class [0 = good, 1 = defective])

1567 entries

- with 1472 "good" (~93%)
- 95 "bad" (~6%)

2.1.2 Quality

Beside time stamps, all features are numeric; target variable is binary.

Data for each feature determines "good" or "bad" result.

Up to 1429 missing values per feature. Without more business insight, we assume MAR.

2.2 Data Understanding: EDA Report

2.2.1 Univariate Analysis

- No duplicated or complete missing rows
- 538 Features have **missing values**
- 28 features that have missing values more than 50%
- 116 features with constant values
- Shapiro Wilk test: 473 out of 474 features are not normally distributed

Top 5 Features that have largest skewness

# A tibble: 20 x 8											
variable	skewness	kurtosis	mean	sd	p25	p50	p75				
<chr></chr>	<dbl></dbl>										
1 feature160	4.20	21.6	883.	983.	411	623	966				
2 feature162	2.23	6.77	4067.	4239.	1321	2614	5034				
3 feature297	2.19	6.05	1879.	1975.	603.	1202.	2341.				
4 feature023	-2.18	15.7	2699.	295.	2578	2664	2842.				
5 feature163	1.83	3.00	4797.	6554.	451	1784	6384				

2.2 Data Understanding: EDA Report

2.2.2 Multivariate Analysis

Pearson Correlations:

- Result in a histogram with over 220,000 correlations
- 48 correlations of exactly +1 and 2 correlations of exactly -1
- Important as we move forward with MICE

2. Data Understanding: Outliers

	variables outl	liers_ratio ou [.]	with_mean v	vithout_mean	rate	
1	feature060	12.50798	19.796804082	2.960241474	0.5409113636	6.687564
2	feature390	12.06126	0.008788360	0.001338354	0.0003165457	6.566546
3	feature524	12.69943	2.909124623	0.453896426	0.0967396930	6.409226
4	feature252	12.82706	0.026911940	0.004284812	0.0009553441	6.280775
5	feature130	15.18826	-2.471529412	-0.554228306	-0.2085331061	4.459407

2. Data Understanding: Missing Values

A tibble: 28 x 5

variables	missing_count	missing_percent	unique_count	unique_rate
<chr></chr>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1 feature158	1429	91.2	129	0.0823
2 feature159	1429	91.2	139	0.0887
3 feature293	1429	91.2	93	0.0593
4 feature294	1429	91.2	139	0.0887
5 feature086	1341	85.6	98	0.0625

3. Data Preparation & Preprocessing

3.1 Splitting the train & test dataset

3.4 Balancing Methods

3.2 Data Cleaning

3.5 Scaling/Normalization

3.2.1. Dimensionality Reduction

3.6 Transformation

3.2.2. Outlier Treatment

3.2.3. Missing Value Imputation

3.3 Feature Selection

3.1 Data Preparation: Split the dataset Random Stratified Sampling

3.2. Data Cleaning

3.2.1. Dimensionality Reduction

- Remove features from dataset with 55% or more missing values reduce # features to 569
- Remove features from dataset with 0% variance reduce # features to 453

3.2.2 Outlier Treatment

• Replace all values outside 3s values (for each feature) with NAs – to be handled with all other missing values

3.2.3 Data Preparation: Missing Value imputation

Missing Value Patterns

Missing values of all features:

- Nearly 25% of observations are missing in all features together
- Another near 25% of observations are missing together in features 073, 074, 346, 347
- Another 21% of observations are also missing together in features 113, 248, 386, 520

Imputation methods to handle missing values:

- kNN
- MICE
- Random Forest

3.2.3 Data Preparation: Missing Value imputation

kNN Imputation

kNN Imputation approach:

- Non-parametric, unsupervised algorithm
- Match a datapoint with its closest k neighbors in a multi-dimensional space
- Work well with a small number of input variables but struggle when the number of inputs get very large
- Identify the "k" closest observations based on Euclidean distance and compute the weighted average

Results from kNN:

- Observations need to be temporally scaled
- Tuning k parameters from 1 to 21

3.2.3 Data Preparation: Missing Value imputation

MICE Imputation

- Assumed missing values are missing at random (MAR).
- 21 Predictors on average used in for each imputation model, suggested by van Buuren as 15~25 predictors (2018) using Spearman correlations.
- Target feature is included as covariate in each imputation model
- CART Method seek predictors and cut points in the predictors that are used to split the sample.
- Parameter uncertainty is incorporated by fitting the tree on the bootstrapped sample.
- This method deals with multicollinearity and skewed distributions, and nonlinear relations.

3.2.3 Data Preparation: Methods comparison MICE vs kNN

Comparison of imputation methods

MICE performs better:

- Compared by using the best parameter for both imputation methods
- MICE performs better in term of AUC, sensitivity, precision.
- AUC and Sensitivity are slightly different, while specificity of MICE is much higher
- MICE detects **collinear** and **constant** features, and does not impute them.

Decisions:

- Apply MICE as imputation method.
- Drop **20 collinear** and **6 constant** features that are detected by MICE.

3.3 Data Preparation: Feature Selection

Boruta (Feature Selection)

Boruta approach:

- Wrapper method built around the random forest classification algorithm
- Perform several random forest runs to obtain statistically significant division between important and irrelevant attribute

Results from Boruta:

- 13 important features and 2 tentative features are identified
- **Best parameters** are maxRuns = 250, doTrace = 2
- Boruta does NOT handle multicollinearity, but MICE does that already (another reason why not choosing kNN)

maxRuns	Iterations	Important	Unimportant	Tentative	Duration (mins)
100 (default)	99	11	422	5	7.305315
101	100	11	422	5	6.600742
76	75	11	422	5	6.486325
150	149	12	422	4	6.993041
250	249	13	422	2	9.19243
300	299	13	422	2	8.32042
350	349	13	422	2	8.262173
500	499	13	422	2	10.80016

3.3 Data Preparation: Feature Selection

Boruta (Feature Selection)

Boruta vs without Boruta:

- Improve overall criteria, especially sensitivity which is highly important in SECOM case
- Sensitivity increases from 0.76 to 0.96 with feature selection (Boruta)

Benefits from Boruta:

- Does not compromise the performance of the model and might lead to a more parsimonious and interpretable model
- Some models can be crippled by predictors with degenerate distributions
- Significant improvement in model performance and/or stability without the problematic features

3.4 Data Preparation: Balancing

SECOM with imbalanced dataset:

- Bias the prediction model towards the majority class
- Prediction model with imbalanced dataset yield bad accuracy and other measures
- Sensitivity of the result is lower than 0.1 which is very critical in SECOM case

Balancing methods:

- Original Dataset: Possess high specificity, but very low sensitivity since the data is imbalanced
- ROSE: Improve all criteria, compared to original dataset
- SMOTE: performs better than other balancing methods, including ROSE

3.5 Data Preparation: Scaling/Normalization

Mandatory for some models

• Some models need scaled dataset in order to perform better or to yield accurate results

Not needed in some models

• No assumptions are needed from some models, such as tree-based models, etc.

3.6 Data Preparation: Transformation

Some data are highly screwed

- Some models need transformed dataset in order to perform better or to yield accurate results
- There are several transformations which are applied box-cox, jeo-johnson

4. Model Building, Evaluation and Selection

4.1 Resampling

- 4.1.1. Bootstrap
- 4.1.2. Cross Validation
- 4.1.3. Repeated Cross Validation

4.2 Model Building

- 4.2.1. Random Forest
- 4.2.2. GBM
- 4.2.3. SVM
- 4.2.4. kNN
- 4.2.5. Neural Network
- 4.2.6. Naïve Bayes
- 4.2.7. GLM

4.3 Model Evaluation

- 4.3.1. Hyperparameter Tuning
- 4.3.2. Evaluate model performance

4.4 Model Selection

- 4.4.1. Performance on test dataset
- 4.4.2. Non-Accuracy-Based Criteria (Cost)
- 4.4.3. Model selection

4. Model Building & Evaluation

4.1 Resampling

- 20 times **Bootstrapped**, **10-fold cross validation** and 5 times **repeated 10 fold cross validation** are used for creating **validation sets** to tune the hyperparameters and evaluate the models.
- For a given iteration of bootstrap resampling, a model is **built on the selected samples** and is used to predict the out-of-bag samples (samples not selected) for accuracy.
- Bootstrapping is chosen because it reduces model overfitting and provides better performance

4. Model Building & Evaluation

- Pre-defined resampling folds are being used in control object to make **fair** comparisons between models.
- Pre-defined lists of seed values to be stored are used to allow parallel processing without errors in tree-based models.
- Started with models that are **the least interpretable** and **most flexible** such as Random Forest or Support Vector Machines.
- Investigated simpler models that are less opaque such as Naive Bayes models.
- Simplest model that reasonably approximates the performance of the more complex methods such as Logistic Regression.

4. Hyperparameter Tuning Process

Max Kuhn, Applied Predictive Modeling, page 66.

4. Hyperparameters Tuning

kNN

GBM

4. Hyperparameters Tuning

Random Forest

mtry:

- Number of variables randomly sampled as candidates at each split.
- Hyperparameter mtry = 2 yields the best result in term of AUC, sensitivity, and FN.
- All criteria are decreasing when mtry is greater.

ntree:

- Hyperparameter (ntree = 250), significantly increase until ntree equals to 250.
- After 250, there is no significant improvement in the model.

4. Model Evaluation

	AUC	Sensitivity	Specificity	Precision	F1	FN	FP	Resampling	Total Cost (15:1 Cost Ratio)
Random Forest	0.996	0.969	0.965	0.970	0.965	245	303	16473	3978
GBM	0.994	0.974	0.950	0.962	0.960	205	437	16473	3512
SVM	0.990	0.984	0.955	0.981	0.968	123	389	16473	2234
kNN	0.977	0.990	0.798	0.793	0.895	79	1748	16473	2933
Neural Network	0.959	0.929	0.883	0.931	0.903	557	1010	16473	9365
Naïve Bayes	0.827	0.674	0.775	0.808	0.701	2551	1948	16473	40213
GLM	0.778	0.587	0.792	0.737	0.646	3234	1797	16473	50307

4. Model Building & Evaluation

Comparison of Models

Results from R, fitting model with Train Dataset with best parameters

4. Model Selection

	AUC	Sensitivity	Specificity	Precision	F1	FN	FP	Resampling	Total Cost (15:1 Cost Ratio)
Random Forest	0.721	0.579	0.864	0.216	0.314	8	40	313	160
GBM	0.725	0.789	0.660	0.130	0.224	4	100	313	160
SVM	0.712	0.632	0.793	0.164	0.261	7	61	313	166
kNN	0.689	0.684	0.694	0.126	0.213	6	90	313	180

- Random Forest shows the best performance on test dataset with two hyperparameters: mtry = 2, and ntree = 250
- Cost = (15 * FN) + (1 * FP)

4. Alternative Cutoffs

	AUC	Sensitivity	Specificity	Precision	F1	FN	FP	Resampling	Total Cost (15:1 Cost Ratio)
Train Dataset	0.967	0.969	0.965	0.961	0.965	240	306	16473	3906
Test Dataset (0.652 threshold)	0.721	0.579	0.864	0.216	0.314	8	40	313	160
Test Dataset (0.698 threshold)	0.719	0.632	0.806	0.174	0.273	7	57	313	162
Test Dataset (0.842 threshold)	0.705	0.947	0.463	0.102	0.185	1	158	313	173

Best Model:

- Best predictive model is conducted by MICE, Boruta, SMOTE, and Random Forest with their respective best parameters
- Best model fits yields 0.967 AUC on train set, while yielding 0.721 with test dataset.

<u>Different cut-off threshold:</u>

- Set cost ratio of FN:FP to 15:1.
- Cut-off threshold of 0.652 yields the best result in overall cost

5. Model Deployment & Results

Bootstrap Simulation

- Model Consistency is tested on 500 different datasets created from the raw data using Bootstrapping.
- A procedure calculates the cost of false predictions for each dataset in 95% confidence interval.
- Results are shown in histogram.

6. CRISP-DM Retrospective

Pros

- A roadmap to follow
- Iterative process
- Effective methodology
- Control (Checklists and process frameworks)

Cons

- Inflexible
- Lack of clarity in decision paths
- Not entirely efficient for projects with multiple teams