

Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

Karl Bringmann and Philip Wellnitz

Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken, Germany

 Initial and auxiliary trees, nodes marked for adjunction

Adjoining trees

Examples

- Every CFG
- $\blacksquare \{a^nb^nc^nd^n \mid n \in \mathbb{N}\}$

(Large parts of) English (XTAG [DEH+94])

Examples

- Every CFG
- $\{a^nb^nc^nd^n \mid n \in \mathbb{N}\}$
- (Large parts of) English (XTAG [DEH⁺94]) $\{aa \mid a \in \Sigma\}$

- Check for $s \in T^*$ if $s \in \mathcal{L}(\Gamma)$, i.e. parse s
- $O(|s|^6)$ algorithm using dynamic programming [VSJ85, SJ88]
- $O(|s|^{2\omega})$ using matrix multiplication, $\omega <$ 2.373 [RY98]
- Faster algorithms? ~ Improbable, for $|\Gamma| = \Theta(n^{12})$ [Sat94] ~ Now, even for $|\Gamma| = \Theta(1)$

- Check for $s \in T^*$ if $s \in \mathcal{L}(\Gamma)$, i.e. parse s
- $O(|s|^6)$ algorithm using dynamic programming [VSJ85, SJ88]
- $O(|s|^{2\omega})$ using matrix multiplication, $\omega <$ 2.373 [RY98]
- Faster algorithms?

```
\rightarrow Improbable, for |\Gamma| = \Theta(n^{12}) [Sat94] \rightarrow Now, even for |\Gamma| = \Theta(1)
```


- Check for $s \in T^*$ if $s \in \mathcal{L}(\Gamma)$, i.e. parse s
- $O(|s|^6)$ algorithm using dynamic programming [VSJ85, SJ88]
- $O(|s|^{2\omega})$ using matrix multiplication, $\omega <$ 2.373 [RY98]
- Faster algorithms? \rightarrow Improbable, for $|\Gamma| = \Theta(n^{12})$ [Sat94]

- Check for $s \in T^*$ if $s \in \mathcal{L}(\Gamma)$, i.e. parse s
- $O(|s|^6)$ algorithm using dynamic programming [VSJ85, SJ88]
- $O(|s|^{2\omega})$ using matrix multiplication, $\omega <$ 2.373 [RY98]
- Faster algorithms?
 - \rightsquigarrow Improbable, for $|\Gamma| = \Theta(n^{12})$ [Sat94]
 - \rightsquigarrow Now, even for $|\Gamma| = \Theta(1)$

Hard to show lower bounds for natural problems

→ Use reductions to relate problems

- Hard to show lower bounds for natural problems
 - → Use *reductions* to relate problems

- Hard to show lower bounds for natural problems
 - → Use *reductions* to relate problems

No r(n) + t(s(n)) algorithm \longrightarrow

No t(n) algorithm

- Hard to show lower bounds for natural problems
 - → Use *reductions* to relate problems

→ Need hard problems

k-Clique

■ Given a graph G = (V, E) and $k \in \mathbb{N}$, does G contain a clique of size k?

- Naïve O(n^k) algorithm
- $O(n^{\frac{\omega k}{3}})$ for 3 | k, using matrix multiplication, $\omega <$ 2.373 [NP85]
- Let us believe that these algorithms are optimal.

k-Clique

■ Given a graph G = (V, E) and $k \in \mathbb{N}$, does G contain a clique of size k?

- Naïve O(n^k) algorithm
- $O(n^{\frac{\omega k}{3}})$ for $3 \mid k$, using matrix multiplication, $\omega <$ 2.373 [NP85]
- Let us believe that these algorithms are optimal.

No $n^{k+1} + t(n^{k+1})$ algorithm \longrightarrow

No t(n) algorithm

G contains 3k-Clique

No $n^{3k(1-\varepsilon)}$ algorithm No $n^{\frac{\omega k}{3}(1-\varepsilon)}$ algorithm \iff

Parsing CFG

CFG Γ, string s

$$\Gamma = (T, NT, P, S),$$
graphs w/ 3k-Cliques

s, encoding of G

size
$$s(n) = |s| = n^{k+1}$$

$$s \in \mathcal{L}(\Gamma)$$

No $n^{3-\varepsilon'}$ algorithm No $n^{\omega-\varepsilon'}$ algorithm

String s: list all k-cliques of G in a special way

→ Γ: all graphs where 3 k-cliques form a triangle

- String s: list all k-cliques of G in a special way
 - \rightsquigarrow Γ : all graphs where 3 k-cliques form a triangle

- String s: list all k-cliques of G in a special way
 - \sim Γ : all graphs where 3 k-cliques form a triangle

$$(+|+)_2 (+|+)_3 (+|+)_1 \cdots (-|+)_2 (-|+)_1 (-|+)_3 \cdots (-|-)_1 (-|-)_3 (-|-)_2$$

+: List clique's nodes

List for every node all neighbors

- String s: list all k-cliques of G in a special way
 - \rightsquigarrow Γ : all graphs where 3 k-cliques form a triangle

+: List clique's nodes

List for every node all neighbors

Matching + and - form a 2k-clique.

I will look like:

$$S
ightarrow^* \cdots (+|S_{lphaeta}|S_{eta\gamma}|-) \cdots \ S_{lphaeta}
ightarrow^* +) \cdots (- \ S_{eta\gamma}
ightarrow^* +) \cdots (-$$

Defining suitable gadgets:

- Node gadget NG(v) := \$ binary(v) \$
- List gadget $LG(v) := \bigcup_{u \in N(v)} NG(u)$
- Clique node gadget (+) $\mathsf{CNG}(C) := \bigcap_{v \in C} (\#\mathsf{NG}(v)\#)^k$
- Clique list gadget $CLG(C) := \left(\bigcirc_{v \in C} \#LG(v) \# \right)^k$
 - \rightsquigarrow Use $CLG(C)^R$ for gadgets
- CNG(C_1) \subseteq CLG(C_2) \Rightarrow $C_1 \cup C_2$ is a 2k-clique \rightsquigarrow CFGs can generate aa^R

- Want to "solve" 6k-clique using TAG parser
 Need string and a grammar
- String: list all k-cliques in graph G in a special way
 Grammar: all graphs where 6 k-cliques form a 6-clique
- **Here:** Will show how to generate 4k-cliques

- Want to "solve" 6k-clique using TAG parser
 - → Need string and a grammar
- String: list all k-cliques in graph G in a special way
 Grammar: all graphs where 6 k-cliques form a 6-clique
- **Here:** Will show how to generate 4*k*-cliques

- Can generate (almost) 4k-cliques $\rightsquigarrow P(\cdot, \cdot, \cdot, \cdot)$
- 6*k*-cliques decompose into 3 of these
 - \rightsquigarrow Need to use $P(\cdot, \cdot, \cdot, \cdot)$ 3 times
 - → Similar to CFG hardness

- Can generate (almost) 4k-cliques $\rightsquigarrow P(\cdot, \cdot, \cdot, \cdot)$
- 6*k*-cliques decompose into 3 of these
 - \leadsto Need to use $P(\cdot,\cdot,\cdot,\cdot)$ 3 times
 - → Similar to CFG hardness

- Can generate (almost) 4k-cliques $\rightsquigarrow P(\cdot, \cdot, \cdot, \cdot)$
- 6*k*-cliques decompose into 3 of these
 - \leadsto Need to use $P(\cdot, \cdot, \cdot, \cdot)$ 3 times
 - → Similar to CFG hardness

- String: list all k-cliques in graph G in a special way Grammar: all graphs where 6 k-cliques form a 6-clique
- CNG(C_k) list vertices of k-clique C_k CLG(C_k) list neighbors of vertices of k-clique C_k
- $CNG(C_k) \subset CLG(C'_k)$ iff $C_k \cup C'_k$ is a 2k-clique

- String: list all k-cliques in graph G in a special way
 Grammar: all graphs where 6 k-cliques form a 6-clique
- CNG(C_k) list vertices of k-clique C_k
 CLG(C_k) list neighbors of vertices of k-clique C_k
- $CNG(C_k) \subset CLG(C'_k)$ iff $C_k \cup C'_k$ is a 2k-clique

- CNG(C_k) list vertices of k-clique C_k
 CLG(C_k) list neighbors of vertices of k-clique C_k
- $CNG(C_k) \subset CLG(C'_k)$ iff $C_k \cup C'_k$ is a 2k-clique
- String (to detect 4*k*-cliques):

$$\begin{split} \mathsf{GG_k}(G) &:= \bigcup_{C \in \mathcal{C}_k} |\mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \end{split}$$

- $CNG(C_k) \subset CLG(C'_k)$ iff $C_k \cup C'_k$ is a 2k-clique
- String (to detect 4*k*-cliques):

$$\begin{split} \mathsf{GG_k}(G) &:= \bigcup_{C \in \mathcal{C}_k} |\mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ &\circ \bigcup_{C \in \mathcal{C}_k} |\mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \end{split}$$

Claim: There is a TAG that generates

```
\{GG_k(G) \mid G \text{ contains a } 4k\text{-clique}\}
```

∪ {some strings that are not encodings of graphs}

Reminder: Tree-Adjoining Grammars

 Initial and auxiliary trees, nodes marked for adjunction

- Consider sets of special trees ~ Program
- Easily combinable

Writing characters W(a, b, c, d)

Generates (a, b, c, d)

Hardness Result

Testing for equality $Eq(\Sigma)$

Generates $\{(s, s^R, s, s^R) \mid s \in \Sigma^*\}$

Hardness for Tree-Adjoining Grammars

Writing anything $A(\Sigma)$

Generates $\Sigma^* \times \Sigma^* \times \Sigma^* \times \Sigma^*$

Programs

Combine programs to detect claws of cliques

■ Detect 4k-clique as 4 claws of cliques

Hardness for Tree-Adjoining Grammars

Detecting claws

$$\begin{split} \mathsf{NC} &:= \mathsf{W}(\#) \cdot \mathsf{A}(\{0,1,\$\}) \cdot \mathsf{W}(\$) \\ & \cdot \mathsf{Eq}(\{0,1\}) \\ & \cdot \mathsf{W}(\$) \cdot \mathsf{A}(\{0,1,\$\}) \cdot \mathsf{W}(\#) \end{split}$$

Detecting claws of k-cliques (applying NC k^2 times)

- CC is completely symmetric
- Can simply use it 4 times:

$$\begin{split} C := & \mathsf{A}(0,1,\#,\S,|) \cdot \mathsf{W}(|) \\ & \cdot \mathsf{CC} \cdot \mathsf{W}(\S) \cdot \mathsf{CC} \cdot \mathsf{W}(\S) \cdot \mathsf{CC} \cdot \mathsf{W}(\S) \cdot \mathsf{CC} \\ & \cdot \mathsf{W}(|) \cdot \mathsf{A}(0,1,\#,\S,|) \end{split}$$

$$\begin{split} \blacksquare & \qquad \mathsf{GG_k}(G) := \underset{C \in \mathcal{C}_k}{\bigcirc} | \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \\ & \qquad \circ \underset{C \in \mathcal{C}_k}{\bigcirc} | \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ & \qquad \circ \underset{C \in \mathcal{C}_k}{\bigcirc} | \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R | \\ & \qquad \circ \underset{C \in \mathcal{C}_k}{\bigcirc} | \mathsf{CNG}(C) \S \mathsf{CLG}(C)^R \S \mathsf{CLG}(C) \S \mathsf{CLG}(C)^R | \\ \end{aligned}$$

 $C \in C_k$

Conclusions

- Current TAG parsers are very likely optimal
- There is a natural problem with the running time
 - $-\Theta(n^{2\omega})$ using matrix multiplication
 - $-\Theta(n^6)$ not using matrix multiplication

More Details for TAG-hardness

■ Overview of the grammar parsing 6*k*-cliques

More Details for TAG-hardness

Encoding of the graph, the string s

```
\begin{split} \operatorname{GG}_k(G) &:= \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_1 \ r_1 \ \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ &\circ \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_2 \ r_2 \ \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ &\circ \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_3 \ r_3 \ \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ &\circ e \\ &\circ \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_4 \ r_4 \ \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ &\circ \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_5 \ r_5 \ \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ &\circ \underset{C \in \mathcal{C}_k}{\bigcirc} \mid \operatorname{CLG}(C) \ \S \ \operatorname{CLG}(C)^R \ I_6 \ r_6 \ \operatorname{CNG}(C) \ \S \ \operatorname{CLG}(C)^R \mid \\ \end{split}
```


References I

- Christy Doran, Dania Egedi, Beth Ann Hockey, Bangalore Srinivas, and Martin Zaidel, *XTAG system: a wide coverage grammar for English*, 15th Conference on Computational Linguistics, COLING'94, 1994, pp. 922–928.
- Jaroslav Nešetřil and Svatopluk Poljak, On the complexity of the subgraph problem, Commentationes Mathematicae Universitatis Carolinae **26** (1985), no. 2, 415–419.
- Sanguthevar Rajasekaran and Shibu Yooseph, TAL recognition in $O(M(N^2))$ time, JCSS **56** (1998), no. 1, 83–89.

References II

- Giorgio Satta, *Tree-adjoining Grammar Parsing and Boolean Matrix Multiplication*, Comput. Linguist. **20** (1994), no. 2, 173–191.
- Yves Schabes and Aravind K. Joshi, *An Earley-type parsing algorithm for tree adjoining grammars*, 26th Annual Meeting of the Association for Computational Linguistics, ACL'88, 1988, pp. 258–269.
- K. Vijay-Shankar and Aravind K. Joshi, *Some computational properties of tree adjoining grammars*, 23rd Annual Meeting of the Association for Computational Linguistics, ACL'85, 1985, pp. 82–93.

Navigation

