

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	PEGATRON CORPORATION
Applicant Address	5F., NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 112 Taiwan
FCC ID	VUIDPC3829
Manufacturer's company	MAINTEK COMPUTER
Manufacturer Address	233 Jinfeng Rd., Suzhou, Jiangsu, PRC

Product Name	Wireless cable modem
Brand Name	Cisco
Model No.	DPC3829XXXX (X = $0\sim9$ and $A\simZ$ or blank)
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Received Date	Oct. 03, 2013
Final Test Date	Oct. 28, 2013
Submission Type	Original Equipment

Statement

Test result included is only for the IEEE 802.11n, IEEE 802.11b/g part and IEEE 802.11a/ac (5725 \sim 5850MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03r01 and KDB 662911 D01 v02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERTI	IFICATE OF COMPLIANCE	
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	3
	3.2.	Accessories	5
	3.3.	Table for Filed Antenna	6
	3.4.	Table for Carrier Frequencies	7
	3.5.	Table for Test Modes	8
	3.6.	Table for Testing Locations	10
	3.7.	Table for Supporting Units	10
	3.8.	Table for Parameters of Test Software Setting	11
	3.9.	EUT Operation during Test	12
	3.10.	Duty Cycle	13
	3.11.	Test Configurations	17
4.	TEST R	result	19
	4.1.	AC Power Line Conducted Emissions Measurement	19
	4.2.	Maximum Conducted Output Power Measurement	23
	4.3.	Power Spectral Density Measurement	26
	4.4.	6dB Spectrum Bandwidth Measurement	40
	4.5.	Radiated Emissions Measurement	49
	4.6.	Emissions Measurement	77
	4.7.	Antenna Requirements	106
5.	LIST C	OF MEASURING EQUIPMENTS	107
6.	TEST L	OCATION	109
7.	MEAS	SUREMENT UNCERTAINTY	110
AF	PEND	DIX A. TEST PHOTOS	A1 ~ A5
		NY R COLOCATION DEPODT	D1 D2

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3O0405AA	Rev. 01	Initial issue of report	Nov. 06, 2013

Certificate No.: CB10211001

1. CERTIFICATE OF COMPLIANCE

Product Name: Wireless cable modem

Brand Name : Cisco

Model No. : DPC3829XXXX (X = 0~9 and A~Z or blank)

Applicant : PEGATRON CORPORATION

Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Oct. 03, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Report Format Version: 01 FCC ID: VUIDPC3829

Page No. : 1 of 112 Issued Date : Nov. 06, 2013

: 2 of 112

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C							
Part	rt Rule Section Description of Test			Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	11.60 dB				
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	0.18 dB				
4.3	15.247(e)	Power Spectral Density	Complies	3.6 dB				
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-				
4.5	15.247(d)	Radiated Emissions	Complies	0.43 dB				
4.6	15.247(d)	Band Edge Emissions	Complies	0.03 dB				
4.7	15.203	Antenna Requirements	Complies	-				

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Internal Power Supply
Modulation	see the below table for IEEE 802.11n/ac
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	For 2.4GHz Band:
	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
	For 5GHz Band:
	5 for 20MHz bandwidth ; 2 for 40MHz bandwidth ;
	1 for 80MHz bandwidth
Channel Band Width (99%)	For 2.4GHz Band:
	MCS0 (20MHz): 17.52 MHz ; MCS0 (40MHz): 36.00 MHz
	For 5GHz Band:
	802.11ac MCS0/Nss1 (20MHz): 25.04 MHz ;
	802.11ac MCS0/Nss1 (40MHz): 63.68 MHz ;
	802.11ac MCS0/Nss1 (80MHz): 75.84 MHz
Maximum Conducted Output Power	For 2.4GHz Band:
	MCS0 (20MHz): 27.50 dBm; MCS0 (40MHz): 19.07 dBm
	For 5GHz Band:
	802.11ac MCS0/Nss1 (20MHz): 29.38 dBm ;
	802.11ac MCS0/Nss1 (40MHz): 29.82 dBm ;
	802.11ac MCS0/Nss1 (80MHz): 25.48 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

 Report Format Version: 01
 Page No. : 3 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

802.11a/b/g

Items	Description
Product Type	802.11a/g: WLAN (1TX, 1RX)
	802.11b: WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From Internal Power Supply
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11a/g
Data Modulation	DSSS (BPSK / QPSK / CCK); OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11); OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	11b/g: 11 ; 11a: 5
Channel Band Width (99%)	11b: 10.08 MHz ; 11g: 16.96 MHz ; 11a: 32.96 MHz
Maximum Conducted Output Power	11b: 23.65 dBm ; 11g: 25.13 dBm ; 11a: 26.14 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna and Band width

Antenna	Single (TX)				Three (TX)	
Band width Mode	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz
IEEE 802.11a	٧	Х	Х	Х	Х	Х
IEEE 802.11b	٧	Х	Х	Х	Х	Х
IEEE 802.11g	٧	Х	Х	Х	Х	Х
IEEE 802.11n	Х	Х	Х	٧	٧	Х
IEEE 802.11ac	Х	Х	Х	٧	٧	٧

 Report Format Version: 01
 Page No. : 4 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	3	MC\$0-23
802.11n (HT40)	3	MC\$0-23
802.11ac (VHT20)	3	MCS 0-9/Nss1-3
802.11ac (VHT40)	3	MCS 0-9/Nss1-3
802.11ac (VHT80)	3	MCS 0-9/Nss1-3

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration:

11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

	Others
Power Cable, Non-shielded, 1.45m	
RJ-45 Cable, Non-shielded, 1.2m	

Report Format Version: 01 Page No. : 5 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

3.3. Table for Filed Antenna

Ant.	Brand Holder	Model Name	P/N	Antenna Type	Connector	Gain (dBi)	
AIII.	bidild holder with the F/N America type		Connector	2.4GHz	5GHz		
1	HL TECHNOLOGY GROUP LIMITED	EPC-3829AD (T-housing)	290-30054	PCB Antenna	I-PEX	4.94	-
2	HL TECHNOLOGY GROUP LIMITED	EPC-3829AD (T-housing)	290-30055	PCB Antenna	I-PEX	4.41	2.49
3	HL TECHNOLOGY GROUP LIMITED	EPC-3829AD (T-housing)	290-30056	PCB Antenna	I-PEX	2.7	-
4	HL TECHNOLOGY GROUP LIMITED	EPC-3829AD (T-housing)	290-30057	PCB Antenna	I-PEX	-	2.16
5	HL TECHNOLOGY GROUP LIMITED	EPC-3829AD (T-housing)	290-30058	PCB Antenna	I-PEX	-	2.57

Note: The EUT has five Antennas.

For 2.4GHz function:

For IEEE 802.11n mode (3TX/3RX)

Chain 1, Chain 2 and Chain 3 can be used as transmitting/receiving antenna.

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

According to the above antennas, there are three antennas will transit simultaneously(one is Horizontal and the others are Vertical), so arrey gain only add 10log(2)

For IEEE 802.11b/g mode (1TX/1RX)

Only Chain 1 can be used as transmitting/receiving antenna.

For 5GHz function:

For IEEE 802.11n/ac mode (3TX/3RX)

Chain 4, Chain 5 and Chain 6 can be used as transmitting/receiving antenna.

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

According to the above antennas, there are three antennas will transit simultaneously(one is Horizontal and the others are Vertical), so arrey gain only add 10log(2)

For IEEE 802.11a mode (1TX/1RX)

Only Chain 4 can be used as transmitting/receiving antenna.

Chain 1 (Connect to ANT.1)

Chain 2 (Connect to ANT.2)

Chain 3 (Connect to ANT.3)

Chain 4 (Connect to ANT.4)

Chain 5 (Connect to ANT.2)

Chain 6 (Connect to ANT.5)

 Report Format Version: 01
 Page No.
 : 6 of 112

 FCC ID: VUIDPC3829
 Issued Date
 : Nov. 06, 2013

3.4. Table for Carrier Frequencies

For 2.4GHz Band:

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400 2492 5MU-	3	2422 MHz	9	2452 MHz
2400~2483.5MHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

For 5GHz Band:

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 151, 159.

For 80MHz bandwidth systems, use Channel 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

Report Format Version: 01 Page No. : 7 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

For 2.4GHz Band:

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11n 20MHz	MCS0	1/6/11	1+2+3
	11n 40MHz	MCS0	3/6/9	1+2+3
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Power Spectral Density	11n 20MHz	MCS0	1/6/11	1+2+3
	11n 40MHz	MCS0	3/6/9	1+2+3
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11n 20MHz	MCS0	1/6/11	1+2+3
	11n 40MHz	MCS0	3/6/9	1+2+3
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions Below 1GHz	CTX	-	-	-
Radiated Emissions Above 1GHz	11n 20MHz	MCS0	1/6/11	1+2+3
	11n 40MHz	MCS0	3/6/9	1+2+3
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Band Edge Emissions	11n 20MHz	MCS0	1/6/11	1+2+3
	11n 40MHz	MCS0	3/6/9	1+2+3
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1

For 5GHz Band:

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11ac 20MHz	MCS0/Nss1	149/157/165	4+5+6
	11ac 40MHz	MCS0/Nss1	151/159	4+5+6
	11ac 80MHz	MCS0/Nss1	155	4+5+6
	11a/BPSK	6 Mbps	149/157/165	4
Power Spectral Density	11ac 20MHz	MCS0/Nss1	149/157/165	4+5+6
	11ac 40MHz	MCS0/Nss1	151/159	4+5+6
	11ac 80MHz	MCS0/Nss1	155	4+5+6
	11a/BPSK	6 Mbps	149/157/165	4
6dB Spectrum Bandwidth	11ac 20MHz	MCS0/Nss1	149/157/165	4+5+6
	11ac 40MHz	MCS0/Nss1	151/159	4+5+6
	11ac 80MHz	MCS0/Nss1	155	4+5+6
	11a/BPSK	6 Mbps	149/157/165	4
Radiated Emissions Below 1GHz	CTX	-	-	-
Radiated Emissions Above 1GHz	11ac 20MHz	MCS0/Nss1	149/157/165	4+5+6
	11ac 40MHz	MCS0/Nss1	151/159	4+5+6
	11ac 80MHz	MCS0/Nss1	155	4+5+6
	11a/BPSK	6 Mbps	149/157/165	4
Band Edge Emissions	11ac 20MHz	MCS0/Nss1	149/157/165	4+5+6
	11ac 40MHz	MCS0/Nss1	151/159	4+5+6
	11ac 80MHz	MCS0/Nss1	155	4+5+6
	11a/BPSK	6 Mbps	149/157/165	4

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. Stand of EUT (CTX) with 2.4GHz

Mode 2. Stand of EUT (CTX) with 5GHz

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission below 1GHz test:

Mode 1. Stand of EUT (CTX) with 2.4GHz

Mode 2. Stand of EUT (CTX) with 5GHz

Mode 2 is the worst case, so it was selected to record in this test report.

For Radiated Emission above 1GHz test:

Mode 1. Stand of EUT (CTX)

Report Format Version: 01 Page No. : 9 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

For Co-location Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Maximum Permissible Exposure Test Report) and Co-location (please refer to Appendix B) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC). Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	QDS-BRCM1049LE

Report Format Version: 01 Page No. : 10 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For 2.4GHz Band

Power Parameters of IEEE 802.11n MCS0 20MHz

Test Software Version	Mtool 2.0.0.9		
Frequency	2412 MHz	2437 MHz	2462 MHz
MCS0 20MHz	36	14	30

Power Parameters of IEEE 802.11n MCS0 40MHz

Test Software Version	Mtool 2.0.0.9		
Frequency	2422 MHz	2437 MHz	2452 MHz
MCS0 40MHz	40	32	37

Power Parameters of IEEE 802.11b/g

Test Software Version	Mtool 2.0.0.9		
Frequency	2412 MHz	2437 MHz	2462 MHz
IEEE 802.11b	21	16	19
IEEE 802.11g	30	10	28

For 5GHz Band

Power Parameters of IEEE 802.11ac MCS0/Nss1 20MHz

Test Software Version	Mtool 2.0.0.9		
Frequency	5745 MHz	5785 MHz	5825 MHz
MCS0/Nss1 20MHz	98	100	100

Power Parameters of IEEE 802.11ac MCS0/Nss1 40MHz

Test Software Version	Mtool 2.0.0.9		
Frequency	5755 MHz 5795 MHz		
MCS0/Nss1 40MHz	90	102	

Power Parameters of IEEE 802.11ac MCS0/Nss1 80MHz

Test Software Version	Mtool 2.0.0.9
Frequency	5775 MHz
MCS0/Nss1 80MHz	86

Report Format Version: 01 Page No. : 11 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Power Parameters of IEEE 802.11a

Test Software Version	Mtool 2.0.0.9		
Frequency	5745 MHz	5785 MHz	5825 MHz
IEEE 802.11a	97	102	100

3.9. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No. : 12 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

3.10. Duty Cycle

For 2.4GHz Band:

IEEE 802.11n MCSO 20MHz

Date: 28.OCT.2013 17:39:21

IEEE 802.11n MCSO 40MHz

Date: 28.OCT.2013 17:40:29

IEEE 802.11b

Date: 28.OCT.2013 17:38:21

IEEE 802.11g

Date: 28.OCT.2013 17:37:27

For 5GHz Band:

IEEE 802.11ac MCS0/Nss1 20MHz

Date: 28.OCT.2013 17:46:52

IEEE 802.11ac MCSO/Nss1 40MHz

Date: 28.OCT.2013 17:47:42

IEEE 802.11ac MCS0/Nss1 80MHz

Date: 28.OCT.2013 17:48:55

IEEE 802.11a

Date: 28.OCT.2013 17:45:54

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length(m)	
1	Power cable	No	1.45m	
2	RJ-45	No	10m	

3.11.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length(m)	
1	Power cable	No	1.45m	
2	RJ-45	No	10m	

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 01 Page No. : 19 of 112
FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	51%
Test Engineer	Kane Liu	Phase	Line
Configuration	СТХ		

		over	LIMIT	Kead	PT2M	Cable		
Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB		
0.15000	53.51	-12.49	66.00	53.17	0.16	0.18	LINE	QP
0.15000	37.46	-18.54	56.00	37.12	0.16	0.18	LINE	AVERAGE
0.16414	47.54	-17.72	65.25	47.19	0.16	0.19	LINE	QP
0.16414	34.13	-21.13	55.25	33.78	0.16	0.19	LINE	AVERAGE
0.17491	37.43	-17.29	54.72	37.09	0.15	0.19	LINE	AVERAGE
0.17491	51.49	-13.23	64.72	51.15	0.15	0.19	LINE	QP
0.20944	33.65	-19.58	53.23	33.30	0.15	0.20	LINE	AVERAGE
0.20944	44.69	-18.54	63.23	44.34	0.15	0.20	LINE	QP
0.23533	27.74	-24.52	52.26	27.39	0.15	0.20	LINE	AVERAGE
0.23533	39.36	-22.90	62.26	39.01	0.15	0.20	LINE	QP
0.47110	38.76	-17.73	56.49	38.41	0.15	0.20	LINE	QP
0.47110	31.54	-14.95	46.49	31.19	0.15	0.20	LINE	AVERAGE
16.398	29.69	-30.31	60.00	28.85	0.43	0.41	LINE	QP
16.398	20.63	-29.37	50.00	19.79	0.43	0.41	LINE	AVERAGE
	MHz 0.15000 0.15000 0.16414 0.16414 0.17491 0.17491 0.20944 0.20944 0.23533 0.23533 0.47110 0.47110 16.398	MHz dBuV 0.15000 53.51 0.15000 37.46 0.16414 47.54 0.16414 34.13 0.17491 37.43 0.17491 51.49 0.20944 33.65 0.20944 44.69 0.23533 39.36 0.47110 38.76 0.47110 31.54 16.398 29.69	MHz dBuV dB 0.15000 53.51 -12.49 0.15000 37.46 -18.54 0.16414 47.54 -17.72 0.16414 34.13 -21.13 0.17491 37.43 -17.29 0.17491 51.49 -13.23 0.20944 33.65 -19.58 0.20944 44.69 -18.54 0.23533 27.74 -24.52 0.23533 39.36 -22.90 0.47110 38.76 -17.73 0.47110 31.54 -14.95 16.398 29.69 -30.31	MHz dBuV dB dBuV 0.15000 53.51 -12.49 66.00 0.15000 37.46 -18.54 56.00 0.16414 47.54 -17.72 65.25 0.16414 34.13 -21.13 55.25 0.17491 37.43 -17.29 54.72 0.17491 51.49 -13.23 64.72 0.20944 33.65 -19.58 53.23 0.20944 44.69 -18.54 63.23 0.23533 27.74 -24.52 52.26 0.47110 38.76 -17.73 56.49 0.47110 31.54 -14.95 46.49 16.398 29.69 -30.31 60.00	MHz dBuV dB dBuV dBuV 0.15000 53.51 -12.49 66.00 53.17 0.15000 37.46 -18.54 56.00 37.12 0.16414 47.54 -17.72 65.25 47.19 0.16414 34.13 -21.13 55.25 33.78 0.17491 37.43 -17.29 54.72 37.09 0.17491 51.49 -13.23 64.72 51.15 0.20944 33.65 -19.58 53.23 33.30 0.20944 44.69 -18.54 63.23 44.34 0.23533 27.74 -24.52 52.26 27.39 0.23533 39.36 -22.90 62.26 39.01 0.47110 38.76 -17.73 56.49 38.41 0.47110 31.54 -14.95 46.49 31.19 16.398 29.69 -30.31 60.00 28.85	MHz Level Limit Line Level Factor 0.15000 53.51 -12.49 66.00 53.17 0.16 0.15000 37.46 -18.54 56.00 37.12 0.16 0.16414 47.54 -17.72 65.25 47.19 0.16 0.16414 34.13 -21.13 55.25 33.78 0.16 0.17491 37.43 -17.29 54.72 37.09 0.15 0.17491 51.49 -13.23 64.72 51.15 0.15 0.20944 33.65 -19.58 53.23 33.30 0.15 0.20944 44.69 -18.54 63.23 44.34 0.15 0.23533 27.74 -24.52 52.26 27.39 0.15 0.23533 39.36 -22.90 62.26 39.01 0.15 0.47110 38.76 -17.73 56.49 38.41 0.15 0.47110 31.54 -14.95 46.49 31.19 0	MHz dBuV dB dBuV dBuV dBuV dBuV dB dBuV dBuV dB dB	MHz dBuV dB uV dBuV dB uV dB

 Report Format Version: 01
 Page No. : 21 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	24°C	Humidity	51%
Test Engineer	Kane Liu	Phase	Neutral
Configuration	СТХ		

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1 @	0.15000	54.11	-11.89	66.00	53.85	0.08	0.18	NEUTRAL	QP
2	0.15000	37.88	-18.12	56.00	37.62	0.08	0.18	NEUTRAL	AVERAGE
3	0.16241	48.28	-17.06	65.34	48.02	0.08	0.18	NEUTRAL	QP
4	0.16241	34.20	-21.14	55.34	33.94	0.08	0.18	NEUTRAL	AVERAGE
5	0.16944	32.98	-22.01	54.99	32.71	0.08	0.19	NEUTRAL	AVERAGE
6	0.16944	50.46	-14.53	64.99	50.19	0.08	0.19	NEUTRAL	QP
7	0.17215	37.86	-17.00	54.86	37.59	0.08	0.19	NEUTRAL	AVERAGE
8	0.17215	51.58	-13.28	64.86	51.31	0.08	0.19	NEUTRAL	QP
9	0.20396	26.97	-26.48	53.45	26.69	0.08	0.20	NEUTRAL	AVERAGE
10	0.20396	44.22	-19.23	63.45	43.94	0.08	0.20	NEUTRAL	QP
11	0.39344	28.26	-19.73	47.99	27.98	0.08	0.20	NEUTRAL	AVERAGE
12	0.39344	33.36	-24.63	57.99	33.08	0.08	0.20	NEUTRAL	QP
13	0.45636	38.10	-18.66	56.76	37.82	0.08	0.20	NEUTRAL	QP
14 @	0.45636	35.16	-11.60	46.76	34.88	0.08	0.20	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter output power.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB 558074 D01 v03r01 section 9.2.2 Measurement using a power meter (PM).
- 2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 23 of 112
FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n/ac
Test Date	Oct. 28, 2013		

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 + Chain 3

Channel	Fraguanay	(Conducted	Power (dBm)	Max. Limit	Result
Charline	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Kesuli
1	2412 MHz	13.96	13.82	11.98	18.11	30.00	Complies
6	2437 MHz	23.07	23.14	21.86	27.50	30.00	Complies
11	2462 MHz	14.92	15.06	13.01	19.20	30.00	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 + Chain 3

Channel	Fragueney	(Conducted	Power (dBm)	Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Resuli
3	2422 MHz	11.28	11.37	9.52	15.57	30.00	Complies
6	2437 MHz	14.83	14.87	12.91	19.07	30.00	Complies
9	2452 MHz	11.56	11.88	9.65	15.91	30.00	Complies

For 5GHz Band

Configuration IEEE 802.11ac MCSO/Nss1 20MHz / Chain 4 + Chain 5 + Chain 6

_							
Channel	Frequency		Conducted	Max. Limit	Result		
Channel	riequericy	Chain 4	Chain 5	Chain 6	Total	(dBm)	Kesuli
149	5745 MHz	23.77	23.83	24.04	28.65	30.00	Complies
157	5785 MHz	24.79	24.61	24.42	29.38	30.00	Complies
165	5825 MHz	23.95	24.01	24.14	28.81	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Fraguency	·	Conducted	Power (dBm)	Max. Limit	Result
Charlie	Frequency	Chain 4	Chain 5	Chain 6	Total	(dBm)	Kesuli
151	5755 MHz	22.21	21.98	21.78	26.76	30.00	Complies
159	5795 MHz	25.64	24.46	24.97	29.82	30.00	Complies

Configuration IEEE 802.11ac MCSO/Nss1 80MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	Conducted Power (dBm)				Max. Limit	Result
Charine	riequericy	Chain 4	Chain 5	Chain 6	Total	(dBm)	Resuli
155	5775 MHz	20.73	20.56	20.83	25.48	30.00	Complies

Report Format Version: 01 Page No. : 24 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a/b/g
Test Date	Oct. 28, 2013		

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	22.51	30.00	Complies
6	2437 MHz	23.65	30.00	Complies
11	2462 MHz	22.03	30.00	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	17.46	30.00	Complies
6	2437 MHz	25.13	30.00	Complies
11	2462 MHz	16.87	30.00	Complies

Configuration IEEE 802.11a / Chain 4

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745 MHz	23.82	30.00	Complies
157	5785 MHz	26.14	30.00	Complies
165	5825 MHz	24.37	30.00	Complies

 Report Format Version: 01
 Page No. : 25 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test procedures refer KDB 558074 D01 v03r01 section 10.2 Method PKPSD (peak PSD) and KDB 662911 D01 v02 section In-Band Power Spectral Density (PSD) Measurements option (b) Measure and sum spectral maximal across the outputs.
- Use this procedure when the maximum conducted output power in the fundamental emission is
 used to demonstrate compliance. The EUT must be configured to transmit continuously at full power
 over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

Report Format Version: 01 Page No. : 26 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No. : 27 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

4.3.7. Test Result of Power Spectral Density

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n/ac

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 + Chain 3

Channel	Eroguepov	Power Density (dBm/3kHz)			Hz) Power Density Limit		Result
Charlie	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm/3kHz)	Resuli
1	2412 MHz	-12.03	-12.41	-13.70	-7.89	8.00	Complies
6	2437 MHz	-2.63	-2.03	-3.67	2.05	8.00	Complies
11	2462 MHz	-11.18	-11.27	-12.73	-6.90	8.00	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 + Chain 3

Channel	Eroguenov	Po	Power Density (dBm/3kHz)			Power Density Limit	Result
Charine	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm/3kHz)	Kesuli
3	2422 MHz	-16.50	-17.04	-17.30	-12.16	8.00	Complies
6	2437 MHz	-14.77	-13.37	-16.03	-9.82	8.00	Complies
9	2452 MHz	-17.14	-16.97	-17.40	-12.40	8.00	Complies

For 5GHz Band

Configuration IEEE 802.11ac MCSO/Nss1 20MHz / Chain 4 + Chain 5 + Chain 6

Channel	Eroguanov	Power Density (dBm/3kHz)			Power Density Limit	Result	
Charine	Frequency	Chain 4	Chain 5	Chain 6	Total	(dBm/3kHz)	Kesuli
149	5745 MHz	-1.78	-3.53	-1.19	2.71	8.00	Complies
157	5785 MHz	-1.97	-5.37	-0.57	2.56	8.00	Complies
165	5825 MHz	0.10	-5.17	1.54	4.40	8.00	Complies

Configuration IEEE 802.11ac MCSO/Nss1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Fraguanay	Power Density (dBm/3kHz)			Power Density Limit	Result	
Channel	Frequency	Chain 4	Chain 5	Chain 6	Total	(dBm/3kHz)	Kesuli
151	5755 MHz	-6.29	-6.43	-5.92	-1.44	8.00	Complies
159	5795 MHz	-3.27	-2.83	-1.42	2.34	8.00	Complies

Configuration IEEE 802.11ac MCSO/Nss1 80MHz / Chain 4 + Chain 5 + Chain 6

	Channel	Frequency	Power Density (dBm/3kHz)				Power Density Limit	Result
			Chain 4	Chain 5	Chain 6	Total	(dBm/3kHz)	Kesuli
	155	5775 MHz	-9.42	-9.32	-7.36	-3.82	8.00	Complies

Report Format Version: 01 Page No. : 28 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a/b/g

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
1	2412 MHz	-1.14	8.00	Complies
6	2437 MHz	0.69	8.00	Complies
11	2462 MHz	-1.77	8.00	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
1	2412 MHz	-8.12	8.00	Complies
6	2437 MHz	0.21	8.00	Complies
11	2462 MHz	-9.85	8.00	Complies

Configuration IEEE 802.11a / Chain 4

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
149	5745 MHz	-0.77	8.00	Complies
157	5785 MHz	-0.18	8.00	Complies
165	5825 MHz	-0.17	8.00	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

 Report Format Version: 01
 Page No. : 29 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:15:05

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / 2437 MHz / Chain 2

Date: 28.OCT.2013 17:14:29

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / 2437 MHz / Chain 3

Date: 28.OCT.2013 17:13:54

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:20:10

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / 2437 MHz / Chain 2

Date: 28.OCT.2013 17:20:38

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / 2437 MHz / Chain 3

Date: 28.OCT.2013 17:21:11

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / 5825 MHz / Chain 4

Date: 28.OCT.2013 16:40:15

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / 5825 MHz / Chain 5

Date: 28.OCT.2013 16:40:56

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / 5825 MHz / Chain 6

Date: 28.OCT.2013 16:41:42

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / 5795 MHz / Chain 4

Date: 28.OCT.2013 16:45:05

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / 5795 MHz / Chain 5

Date: 28.OCT.2013 16:45:42

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / 5795 MHz / Chain 6

Date: 28.OCT.2013 16:53:51

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / 5775 MHz / Chain 4

Date: 28.OCT.2013 16:57:30

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / 5775 MHz / Chain 5

Date: 28.OCT.2013 16:56:00

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / 5775 MHz / Chain 6

Date: 28.OCT.2013 16:54:53

Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:06:32

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:09:47

Power Density Plot on Configuration IEEE 802.11a / 5825 MHz / Chain 4

Date: 28.OCT.2013 16:34:57

Report No.: FR3O0405AA

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RBW	100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB 558074 D01 v03r01 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8.0 DTS 6-dB signal bandwidth option 1.
- Multiple antenna system was performed in accordance with KDB 662911 D01 v02 Emissions Testing
 of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 40 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Report No.: FR3O0405AA

4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n/ac

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	13.20	17.36	500	Complies
6	2437 MHz	13.68	17.52	500	Complies
11	2462 MHz	13.60	17.28	500	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 + Chain 3

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
3	2422 MHz	32.48	36.00	500	Complies
6	2437 MHz	32.48	35.84	500	Complies
9	2452 MHz	32.48	36.00	500	Complies

 Report Format Version: 01
 Page No. : 41 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

For 5GHz Band

Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	17.60	23.68	500	Complies
157	5785 MHz	16.32	24.64	500	Complies
165	5825 MHz	16.40	25.04	500	Complies

Configuration IEEE 802.11ac MCSO/Nss1 40MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
151	5755 MHz	35.36	36.64	500	Complies
159	5795 MHz	31.36	63.68	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 4 + Chain 5 + Chain 6

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
155	5775 MHz	75.52	75.84	500	Complies

Report Format Version: 01 Page No. : 42 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Report No.: FR3O0405AA

Temperature	24°C	Humidity	61%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a/b/g

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	8.00	10.08	500	Complies
6	2437 MHz	7.60	10.08	500	Complies
11	2462 MHz	8.56	10.08	500	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	16.40	16.64	500	Complies
6	2437 MHz	16.32	16.96	500	Complies
11	2462 MHz	16.48	16.64	500	Complies

Configuration IEEE 802.11a / Chain 4

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	16.40	22.96	500	Complies
157	5785 MHz	16.16	32.96	500	Complies
165	5825 MHz	16.32	24.48	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

 Report Format Version: 01
 Page No. : 43 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / 2412 MHz / Chain 1 \pm 2 \pm 3

Date: 28.OCT.2013 17:28:41

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz / 2422 MHz / Chain 1 \pm 2 \pm 3

Date: 28.OCT.2013 17:27:54

Report Format Version: 01 Page No. : 44 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / 5785 MHz / Chain 4+5+6

Date: 28.OCT.2013 15:50:46

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / 5795MHz / Chain 4 + 5 + 6

Date: 28.OCT.2013 15:53:40

Report Format Version: 01 Page No. : 45 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / 5775 MHz / Chain 4+5+6

Date: 28.OCT.2013 15:54:30

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:31:45

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 28.OCT.2013 17:33:52

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5785 MHz / Chain 4

Date: 28.OCT.2013 15:42:20

Report No.: FR3O0405AA

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1GHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1GHz / RBW 120kHz for QP

Report Format Version: 01 Page No. : 49 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Report No.: FR3O0405AA

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: 01 Page No. : 50 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

Issued Date : Nov. 06, 2013

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Issued Date : Nov. 06, 2013

Report No.: FR3O0405AA

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	20°C	Humidity	48%
Test Engineer	David Tseng	Configurations	СТХ
Test Date	Oct. 24, 2013		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: 01 Page No. : 53 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	20°C	Humidity	48%		
Test Engineer	David Tseng	Configurations	CTX		

Horizontal

	Freq	Level		0∨er Limit						T/Pos	Pol/Phase	Remark
-	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	87.23	29.59	40.00	-10.41	51.98	1.11	8.14	31.64	400	248	HORIZONTAL	Peak
2	125.06	39.30	43.50	-4.20	57.81	1.33	11.73	31.57	150	108	HORIZONTAL	Peak
3	250.19	38.56	46.00	-7.44	56.24	1.90	11.91	31.49	125	254	HORIZONTAL	Peak
4	375.32	40.08	46.00	-5.92	54.14	2.44	14.93	31.43	100	136	HORIZONTAL	Peak
5	624.61	33.24	46.00	-12.76	42.85	3.18	18.61	31.40	125	274	HORIZONTAL	Peak
6	749.74	40.36	46.00	-5.64	48.51	3.53	19.69	31.37	100	74	HORIZONTAL	Peak

 Report Format Version: 01
 Page No. : 54 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Vertical

	Freq	Freq Level					CableAntenna Preamp Loss Factor Factor			T/Pos Pol/Phase		Remark
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	36.79	36.93	40.00	-3.07	53.90	0.71	14.20	31.88	100	291	VERTICAL	Peak
2	50.37	36.39	40.00	-3.61	59.90	0.84	7.44	31.79	125	153	VERTICAL	Peak
3	83.35	35.94	40.00	-4.06	59.22	1.07	7.34	31.69	125	166	VERTICAL	Peak
4	250.19	35.09	46.00	-10.91	52.77	1.90	11.91	31.49	150	121	VERTICAL	Peak
5	375.32	39.31	46.00	-6.69	53.37	2.44	14.93	31.43	100	179	VERTICAL	Peak
6	749.74	35.87	46.00	-10.13	44.02	3.53	19.69	31.37	100	36	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 55 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Report No.: FR3O0405AA

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	20 ℃	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 1 / Chain 1 + Chain 2 + Chain 3
Test Date	Oct. 22, 2013		Chair i i Chair 2 i Chair 3

Horizontal

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4824.53	51.27	74.00	-22.73	49.93	3.31	33.06	35.03	Peak	108	254	HORIZONTAL
2	4824.74	37.14	54.00	-16.86	35.80	3.31	33.06	35.03	Average	108	254	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit				A/Pos	T/Pos Pol/Phase	
			dBu√/m		dBu√	dB		 	deg	-
1	4823.50 4823.69							 100 100	136 VERTICAL 136 VERTICAL	

 Report Format Version: 01
 Page No. : 56 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20°C	Humidity	48%		
Test Engineer	Sorway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 6 /		
lesi Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3		
Test Date	Oct. 22, 2013				

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	4875.09	50.41	54.00	-3.59	48.95	3.33	33.16	35.03	Average	156	251	HORIZONTAL
2	4875.24	65.79	74.00	-8.21	64.33	3.33	33.16	35.03	Peak	156	251	HORIZONTAL

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1									Average	100		VERTICAL
2	4875,40	53.72	74.00	-20.28	52.26	3.33	33.16	35.03	Peak	100	106	VERTICAL

Temperature	20 ℃	Humidity	48%				
Test Engineer Serway Li		Configurations	IEEE 802.11n MCS0 20MHz CH 11 /				
lesi Engineei	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3				
Test Date	Oct. 22, 2013						

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1									Average	151	326	HORIZONTAL
2	4925.40	48.72	74.00	-25.28	47.12	3.35	33.26	35.01	Peak	151	326	HORIZONTAL

	Freq	Level	Limit Line	Over Limit				-		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	4925.20	31.36	54.00	-22.64	29.76	3.35	33.26	35.01	Average	121	163	VERTICAL
2	4925.56	43.95	74.00	-30.05	42.35	3.35	33.26	35.01	Peak	121	163	VERTICAL

Temperature	20°C	Humidity	48%			
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 40MHz CH 3 /			
lesi Engineer	Serway Li	Comigurations	Chain 1 + Chain 2 + Chain 3			
Test Date	Oct. 22, 2013					

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4859.92	46.12	74.00	-27.88	44.71	3.32	33.12	35.03	Peak	101	250	HORIZONTAL
2	4860.10	37.81	54.00	-16.19	36.40	3.32	33.12	35.03	Average	101	250	HORIZONTAL

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	4860.07									100	227 VERTICAL
2	4860.12	43.31	74.00	-30.69	41.90	3.32	33.12	35.03	Peak	100	227 VERTICAL

Temperature	20°C	Humidity	48%				
Test Engineer	Serwav Li	Configurations	IEEE 802.11n MCS0 40MHz CH 6 /				
Test Engineer	serway Li	Configurations	Chain 1 + Chain 2 + Chain 3				
Test Date	Oct. 22, 2013						

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4859.92	48.13	74.00	-25.87	46.72	3.32	33.12	35.03	Peak	100	198	HORIZONTAL
2	4860.10	38.12	54.00	-15.88	36.71	3.32	33.12	35.03	Average	100	198	HORIZONTAL

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 	deg
1	4859.98 4860.06								 100 100	228 VERTICAL 228 VERTICAL

Temperature	20 ℃	Humidity	48%				
Test Engineer	Serwav Li	Configurations	IEEE 802.11n MCS0 40MHz CH 9 /				
Test Engineer	serway Li	Configurations	Chain 1 + Chain 2 + Chain 3				
Test Date	Oct. 22, 2013						

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4905.10								Peak Average	122 122		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos Pol/Phase	ŀ
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	_
1										100	145 VERTICAL	
2	4904.33	30.04	54.00	-23.96	28.53	3.34	33.19	35.02	Average	100	145 VERTICAL	

Temperature	20℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz CH 149 / Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

				0∨er						A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
	11490.20									157		HORIZONTAL
2	11495.50	67.43	74.00	-6.57	58.81	5.12	38.78	35.28	Peak	157	248	HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	
	11491.90									100		VERTICAL
2	11492.10	48.23	54.00	-5.77	39.62	5.11	38.78	35.28	Average	100	244	VERTICAL

Temperature	20℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz CH 157 /
Test Engineer	rc chen	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line				Antenna Factor			A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11566.00	65.50	74.00	-8.50	56.85	5.13	38.82	35.30	Peak	100	219	HORIZONTAL
2	11571.00	52.28	54.00	-1.72	43.61	5.14	38.83	35.30	Average	100	219	HORIZONTAL

Freq	Level	Limit Line			Cable/ Loss			A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 	deg	
11567.10 11572.30								100 100		VERTICAL VERTICAL

Temperature	20℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz CH 165/
1001 Engineer	10 Onon		Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line					Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11650.30	53.49	54.00	-0.51	44.77	5.16	38.86	35.30	Average	100	201	HORIZONTAL
2	11650.40	67.51	74.00	-6.49	58.79	5.16	38.86	35.30	Peak	100	201	HORIZONTAL

			Limit	0∨er	Read	Cable	htenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11651.50	46.32	54.00	-7.68	37.60	5.16	38.86	35.30	Average	100	336	VERTICAL
2	11656.80	59.99	74.00	-14.01	51.27	5.16	38.86	35.30	Peak	100	336	VERTICAL

Temperature	20 ℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 40MHz CH 151 /
Test Engineer	rc chen	Configurations	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 	deg	
1 2	11505.20 11520.20								157 157		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	11506.80	59.11	74.00	-14.89	50.48	5.12	38.79	35.28	Peak	100	244 VERTICAL
2	11507.20	45.53	54.00	-8.47	36.90	5.12	38.79	35.28	Average	100	244 VERTICAL

 Report Format Version: 01
 Page No. : 65 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 40MHz CH 159 / Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
	11590.70									100	219	HORIZONTAL
2	11590.90	66.14	74.00	-7.86	57.47	5.14	38.83	35.30	Peak	100	219	HORIZONTAL

	Freq	Level				CableA Loss			Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11592.00	61.27	74.00	-12.73	52.60	5.14	38.83	35.30	Peak	100	245	VERTICAL
2	11592.40	47.50	54.00	-6.50	38.83	5.14	38.83	35.30	Average	100	245	VERTICAL

Temperature	20℃	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11ac MCS0/Nss1 80MHz CH 155/
lesi Engineei	TO CHEIT	Comiguidions	Chain 4 + Chain 5 + Chain 6
Test Date	Oct. 22, 2013		

			Limit	over	Read	Cable	antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	5133.36	52.99	54.00	-1.01	50.95	3.43	33.64	35.03	Average	136	89	HORIZONTAL
2	5133.43	58.08	74.00	-15.92	56.04	3.43	33.64	35.03	Peak	136	89	HORIZONTAL
3	11545.10	60.54	74.00	-13.46	51.90	5.13	38.81	35.30	Peak	100	203	HORIZONTAL
4	11545.50	45.14	54.00	-8.86	36.50	5.13	38.81	35.30	Average	100	203	HORIZONTAL

Vertical

			Limit	over	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	AND
1	5133.37	55.12	74.00	-18.88	53.08	3.43	33.64	35.03	Peak	136	348	VERTICAL
2	5133.38	47.62	54.00	-6.38	45.58	3.43	33.64	35.03	Average	136	348	VERTICAL
3	11552.10	59.40	74.00	-14.60	50.75	5.13	38.82	35.30	Peak	101	242	VERTICAL
4	11562.50	43.08	54.00	-10.92	34.43	5.13	38.82	35.30	Average	101	242	VERTICAL

 Report Format Version: 01
 Page No. : 67 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20°C	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11b CH 1 / Chain 1
Test Date	Oct. 22, 2013		

	Freq	Level		0∨er Limit					Remark	A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4823.92	56.51	74.00	-17.49	55.17	3.31	33.06	35.03	Peak	156	247	HORIZONTAL
2	4824.00	53.57	54.00	-0.43	52.23	3.31	33.06	35.03	Average	156	247	HORIZONTAL

Vertical

			Limit	over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4823.97	47.08	54.00	-6.92	45.74	3.31	33.06	35.03	Average	124	271	VERTICAL
2	4824.03	50,60	74.00	-23,40	49.26	3.31	33.06	35.03	Peak	124	271	VERTICAL

 Report Format Version: 01
 Page No. : 68 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20 ℃	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11b CH 6 / Chain 1
Test Date	Oct. 22, 2013		

	Freq	Level		Over Limit						A/Pos	. ,	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4873.99	55.52	74.00	-18.48	54.06	3.33	33.16	35.03	Peak	100	319	HORIZONTAL
2	4874.00	53.53	54.00	-0.47	52.07	3.33	33.16	35.03	Average	100	319	HORIZONTAL
3	7310.60	47.88	74.00	-26.12	43.26	4.06	35.96	35.40	Peak	133	294	HORIZONTAL
4	7311.76	39.29	54.00	-14.71	34.67	4.06	35.96	35.40	Average	133	294	HORIZONTAL

Vertical

	Freq	Level		0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB			deg	
1	4874.00	44.90	54.00	-9.10	43.44	3.33	33.16	35.03	Average	101	225	VERTICAL
2	4874.04	49.10	74.00	-24.90	47.64	3.33	33.16	35.03	Peak	101	225 \	VERTICAL
3	7311.36	48.23	74.00	-25.77	43.61	4.06	35.96	35.40	Peak	149	279 \	VERTICAL
4	7311.84	38.61	54.00	-15.39	33.99	4.06	35.96	35.40	Average	149	279 \	VERTICAL

 Report Format Version: 01
 Page No. : 69 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20°C	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11b CH 11 / Chain 1
Test Date	Oct. 22, 2013		

	Free	Level		0ver Limit					Remark	A/Pos		Pol/Phase
	11	Levez	Line	Linize	LCVCI	2033	raccor	10000	Name K			roz, riidse
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4923.99	54.94	74.00	-19.06	53.34	3.35	33.26	35.01	Peak	100	320	HORIZONTAL
2	4924.00	53.40	54.00	-0.60	51.80	3.35	33.26	35.01	Average	100	320	HORIZONTAL
3	7386.76	36.88	54.00	-17.12	32.13	4.06	36.09	35.40	Average	132	290	HORIZONTAL
4	7387.96	46.92	74.00	-27.08	42.17	4.06	36.09	35.40	Peak	132	290	HORIZONTAL

			Limit	0ver	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase	!
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	-
1	4924.00	48.19	54.00	-5.81	46.59	3.35	33.26	35.01	Average	114	310 VERTICAL	
2	4924.12	51.56	74.00	-22.44	49.96	3.35	33.26	35.01	Peak	114	310 VERTICAL	
3	7386.84	35.95	54.00	-18.05	31.20	4.06	36.09	35.40	Average	116	289 VERTICAL	
4	7388.96	47.05	74.00	-26.95	42.30	4.06	36.09	35.40	Peak	116	289 VERTICAL	

Temperature	20 ℃	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11g CH 1 / Chain 1
Test Date	Oct. 22, 2013		

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg	
1	4799.04								Peak Average	100 100		HORIZONTAL HORIZONTAL

	Freq	Level				Cable/ Loss			Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4799.24 4799.33									100 100		VERTICAL VERTICAL

Temperature	20°C	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11g CH 6 / Chain 1
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line	0ver Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 	deg	
1	4871.20 4873.90								100 100		HORIZONTAL HORIZONTAL

Vertical

			Limit	0∨er	Read	Cable	htenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4874.10	37.41	54.00	-16.59	35.95	3.33	33.16	35.03	Average	104	226	VERTICAL
2	4875,90	50.29	74.00	-23.71	48.83	3.33	33.16	35.03	Peak	104	226	VERTICAL

 Report Format Version: 01
 Page No. : 72 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Temperature	20°C	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11g CH 11 / Chain 1
Test Date	Oct. 22, 2013		

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1 2	4924.01 4924.46								Average Peak	100 100		HORIZONTAL HORIZONTAL

	Freq	Level		0∨er Limit				-	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu√	dB	dB/m	dB			deg	
1	4924.08 4924.32									100 100		VERTICAL VERTICAL

Temperature	20°C	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11a CH 149 / Chain 4
Test Date	Oct. 22, 2013		

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11490.40	65.90	74.00	-8.10	57.29	5.11	38.78	35.28	Peak	100	222	HORIZONTAL
2	11492.00	50.98	54.00	-3.02	42.37	5.11	38.78	35.28	Average	100	222	HORIZONTAL

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11491.90	46.10	54.00	-7.90	37.49	5.11	38.78	35.28	Average	100	219	VERTICAL
2	11492.20	61.11	74.00	-12.89	52.50	5.11	38.78	35.28	Peak	100	219	VERTICAL

Temperature	20°C	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11a CH 157 / Chain 4
Test Date	Oct. 22, 2013		

Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 	deg	
11570.60 11571.04								100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	 	deg
11566.40 11570.50								154 154	249 VERTICAL 249 VERTICAL

: 76 of 112

Temperature	20°C	Humidity	48%
Test Engineer	YC Chen	Configurations	IEEE 802.11a CH 165 / Chain 4
Test Date	Oct. 22, 2013		

Horizontal

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	
1	11649.00	64.87	74.00	-9.13	56.15	5.16	38.86	35.30	Peak	100	216	HORIZONTAL
2	11652.00	50.39	54.00	-3.61	41.67	5.16	38.86	35.30	Average	100	216	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	11649.50	47.33	54.00	-6.67	38.61	5.16	38.86	35.30	Average	100	49	VERTICAL
2	11650.60	60.99	74.00	-13.01	52.27	5.16	38.86	35.30	Peak	100	49	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(kHz)	300
24000/F(kHz)	30
30	30
100	3
150	3
200	3
500	3
	(micorvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 150 200

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around band edges.

For Radiated Out of Band Emission Measurement:

- Test was performed in accordance with KDB 558074 D01 v03r01 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure
- The radiated emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.
 Only worst data of each operating mode is presented.

Report Format Version: 01 Page No. : 77 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 78 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	20°C	Humidity	48%
Toot Engineer	Sorway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 1, 6, 11 /
Test Engineer	Serway Li	Configurations	Chain 1 + Chain 2 + Chain 3
Test date	Oct. 22, 2013		

Channel 1

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2390.00	53.54	54.00	-0.46	23.15	2.22	28.17	0.00	Average	106	88	HORIZONTAL
2	2390.00	66.11	74.00	-7.89	35.72	2.22	28.17	0.00	Peak	106	88	HORIZONTAL
3	2415.40	101.51			71.07	2.23	28.21	0.00	Average	106	88	HORIZONTAL
4	2415.80	112.79			82.35	2.23	28.21	0.00	Peak	106	88	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line					Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
-	MHz	dBu\√/m	dBu\√/m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	2389.20	66.91	74.00	-7.09	36.53	2.21	28.17	0.00	Peak	107	83	HORIZONTAL
2	2390.00	53.97	54.00	-0.03	23.58	2.22	28.17	0.00	Average	107	83	HORIZONTAL
3	2430.60	111.24			80.76	2.23	28.25	0.00	Average	107	83	HORIZONTAL
4	2440.60	122.29			91.77	2.23	28.29	0.00	Peak	107	83	HORIZONTAL
5	2483.90	72.84	74.00	-1.16	42.20	2.26	28.38	0.00	Peak	107	83	HORIZONTAL
6	2485.50	52.16	54.00	-1.84	21.48	2.26	28.42	0.00	Average	107	83	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	2465.40	103.75			73.18	2.24	28.33	0.00	Average	104	83	HORIZONTAL
2	2465.40	115.17			84.60	2.24	28.33	0.00	Peak	104	83	HORIZONTAL
3	2483.50	53.63	54.00	-0.37	22.99	2.26	28.38	0.00	Average	104	83	HORIZONTAL
4	2485.50	66.35	74.00	-7.65	35.67	2.26	28.42	0.00	Peak	104	83	HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	20°C	Humidity	48%
Tost Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 40MHz CH 3, 6, 9 /
Test Engineer	serway Li	Configurations	Chain 1 + Chain 2 + Chain 3
Test date	Oct. 22, 2013		

Channel 3

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2389.60	67.79	74.00	-6.21	37.41	2.21	28.17	0.00	Peak	107	81	HORIZONTAL
2	2390.00	53.87	54.00	-0.13	23.48	2.22	28.17	0.00	Average	107	81	HORIZONTAL
3	2420.40	97.44			66.96	2.23	28.25	0.00	Average	107	81	HORIZONTAL
4	2420.40	109.68			79.20	2.23	28.25	0.00	Peak	107	81	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

	Freq	Level	Limit Line	0∨er Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2390.00	53.56	54.00	-0.44	23.17	2.22	28.17	0.00	Average	106	87	HORIZONTAL
2	2390.00	65.33	74.00	-8.67	34.94	2.22	28.17	0.00	Peak	106	87	HORIZONTAL
3	2425.40	111.40			80.92	2.23	28.25	0.00	Peak	106	87	HORIZONTAL
4	2435.40	99.61			69.09	2.23	28.29	0.00	Average	106	87	HORIZONTAL
5	2483.50	51.15	54.00	-2.85	20.51	2.26	28.38	0.00	Average	106	87	HORIZONTAL
6	2483.50	63.41	74.00	-10.59	32.77	2.26	28.38	0.00	Peak	106	87	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 9

	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	2450.00	109.27			78.74	2.24	28.29	0.00	Peak	104	87	HORIZONTAL
2	2450.40	97.27			66.74	2.24	28.29	0.00	Average	104	87	HORIZONTAL
3	2485.90	53.52	54.00	-0.48	22.84	2.26	28.42	0.00	Average	104	87	HORIZONTAL
4	2485.90	68,90	74.00	-5.10	38,22	2.26	28,42	0.00	Peak	104	87	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 80 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Temperature	20°C	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11b CH 1, 6, 11 / Chain 1
Test Date	Oct. 22, 2013		

Channel 1

	Freq	Level	Limit Line	0∨er Limit	Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2390.00	53.60	54.00	-0.40	23.21	2.22	28.17	0.00	Average	121	277	VERTICAL
2	2390.00	62.17	74.00	-11.83	31.78	2.22	28.17	0.00	Peak	121	277	VERTICAL
3	2411.20	110.43			80.00	2.22	28.21	0.00	Average	121	277	VERTICAL
4	2411.20	114.38			83.95	2.22	28.21	0.00	Peak	121	277	VERTICAL
5	2491.50	59.34	74.00	-14.66	28.67	2.26	28.41	0.00	Peak	121	277	VERTICAL
6	2491.60	49.86	54.00	-4.14	19.19	2.26	28.41	0.00	Average	121	277	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	O∨er Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2386.80	60.86	74.00	-13.14	30.48	2.21	28.17	0.00	Peak	118	278	VERTICAL
2	2388.80	49.39	54.00	-4.61	19.01	2.21	28.17	0.00	Average	118	278	VERTICAL
3	2436.20	111.08			80.56	2.23	28.29	0.00	Average	118	278	VERTICAL
4	2438.20	115.01			84.49	2.23	28.29	0.00	Peak	118	278	VERTICAL
5	2487.90	47.15	54.00	-6.85	16.48	2.26	28.41	0.00	Average	118	278	VERTICAL
6	2487.90	59.53	74.00	-14.47	28.86	2.26	28.41	0.00	Peak	118	278	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2463.20	111.22			80.65	2.24	28.33	0.00	Average	108	337	HORIZONTAL
2	2463.20	115.38			84.81	2.24	28.33	0.00	Peak	108	337	HORIZONTAL
3	2483.50	53.20	54.00	-0.80	22.56	2.26	28.38	0.00	Average	108	337	HORIZONTAL
4	2483.50	63.60	74.00	-10.40	32.96	2.26	28.38	0.00	Peak	108	337	HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	20 ℃	Humidity	48%
Test Engineer	Serway Li	Configurations	IEEE 802.11g CH 1, 6, 11 / Chain 1
Test Date	Oct. 22, 2013		

Channel 1

			Limit	0ver	Read	CableA	Antenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MH-	dBut//m	dBu\√/m	dB	dBu\∕	dB	dB/m	dB			deg
	rinz	abuv/m	abuv/m	ab	abuv	ав	OD/III	uв		cm	aeg
1	2390.00	53.13	54.00	-0.87	22.74	2.22	28.17	0.00	Average	121	277 VERTICAL
2	2390.00	66.39	74.00	-7.61	36.00	2.22	28.17	0.00	Peak	121	277 VERTICAL
3	2407.80	111.07			80.64	2.22	28.21	0.00	Peak	121	277 VERTICAL
4	2408.00	99.57			69.14	2.22	28.21	0.00	Average	121	277 VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	0ver Limit		CableA Loss				A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	2388.40	67.41	74.00	-6.59	37.03	2.21	28.17	0.00	Peak	116	276	VERTICAL
2	2390.00	53.23	54.00	-0.77	22.84	2.22	28.17	0.00	Average	116	276	VERTICAL
3	2429.40	107.48			77.00	2.23	28.25	0.00	Average	116	276	VERTICAL
4	2431.40	118.28			87.80	2.23	28.25	0.00	Peak	116	276	VERTICAL
5	2483.50	52.11	54.00	-1.89	21.48	2.26	28.37	0.00	Average	116	276	VERTICAL
6	2485.90	68.72	74.00	-5.28	38.05	2.26	28.41	0.00	Peak	116	276	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

								Preamp		A/Pos	T/Pos	D - 3 (D)
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	2466.00	99.58			69.01	2.24	28.33	0.00	Average	109	340	HORIZONTAL
2	2468.00	111.06			80.47	2.26	28.33	0.00	Peak	109	340	HORIZONTAL
3	2483.50	53.76	54.00	-0.24	23.12	2.26	28.38	0.00	Average	109	340	HORIZONTAL
4	2483.50	66.42	74.00	-7.58	35.78	2.26	28.38	0.00	Peak	109	340	HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 82 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

For Emission not in Restricted Band

Plot on Configuration IEEE 802.11n MCS0 20MHz / Reference Level

Date: 22.OCT.2013 20:05:41

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:06:46

Report Format Version: 01 Page No. : 83 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 20:07:18

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:08:21

Report Format Version: 01 Page No. : 84 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11n MCS0 20MHz / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 20:08:55

Plot on Configuration IEEE 802.11n MCS0 40MHz / Reference Level

Date: 22.OCT.2013 20:11:35

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 3 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:12:53

Report Format Version: 01 Page No. : 86 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 3 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 20:13:26

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 9 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:15:11

Report Format Version: 01 Page No. : 87 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11n MCS0 40MHz / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 20:14:27

Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Reference Level

Date: 23.OCT.2013 02:43:57

Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:46:36

Report Format Version: 01 Page No. : 89 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 23.OCT.2013 02:47:27

Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:44:28

Report Format Version: 01 Page No. : 90 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / CH 165 / 5850MHz \sim 40000MHz (down 30dBc)

Date: 23.OCT.2013 02:45:19

Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Reference Level

Date: 23.OCT.2013 02:24:23

Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:33:01

Report Format Version: 01 Page No. : 92 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 23.OCT.2013 02:33:56

Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:24:45

Report Format Version: 01 Page No. : 93 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 23.OCT.2013 02:27:32

Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Reference Level

Date: 23.OCT.2013 02:38:08

Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:38:47

Report Format Version: 01 Page No. : 95 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / CH 155 / 5850MHz \sim 40000MHz (down 30dBc)

Date: 23.OCT.2013 02:39:31

Plot on Configuration IEEE 802.11b / Reference Level

Date: 22.OCT.2013 19:52:32

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 19:56:51

Report Format Version: 01 Page No. : 97 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 19:58:11

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 19:55:23

Report Format Version: 01 Page No. : 98 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11b / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 22.OCT.2013 19:53:27

Plot on Configuration IEEE 802.11g / Reference Level

Date: 22.OCT.2013 19:59:53

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:00:58

Report Format Version: 01 Page No. : 100 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.OCT.2013 20:01:43

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.OCT.2013 20:02:57

Report Format Version: 01 Page No. : 101 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11g / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 22.OCT.2013 20:03:29

Plot on Configuration IEEE 802.11a / Reference Level

Date: 23.OCT.2013 02:51:09

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 04:18:17

Report Format Version: 01 Page No. : 103 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 23.OCT.2013 02:54:44

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 23.OCT.2013 02:51:37

Report Format Version: 01 Page No. : 104 of 112 FCC ID: VUIDPC3829 Issued Date : Nov. 06, 2013

Plot on Configuration IEEE 802.11a / CH 165 / 5850MHz~40000MHz (down 30dBc)

Date: 23.OCT.2013 02:53:21

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

 Report Format Version: 01
 Page No. : 106 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 12, 2013	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Jul. 17, 2013	Conduction
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2013	(CO01-CB) Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Oct. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9kHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Oct. 08, 2013	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 04, 2013	Conducted (TH01-CB)
Signal Generator	R&S	SMR40	100302	10MHz-40GHz	Nov. 27, 2012	Conducted (TH01-CB)

: 107 of 112

Issued Date $\,:\,$ Nov. 06, 2013

Page No.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
Signal generator	R&S	SMU200A	102782	25MHz-6GHz	Sep. 26, 2013	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	Jul. 03, 2013	Conducted (TH01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Dec. 06, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Page No. : 108 of 112

Issued Date : Nov. 06, 2013

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085
	•		

7. MEASUREMENT UNCERTAINTY

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Un	certaint		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch Receiver VSWR 1 = AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060
Combined standard uncertainty Uc(y)	1.2			
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	r)	2.4

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u>

	Un	certain						
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$				
Receiver reading	±0.173	dB	K=1	0.086				
Cable loss	±0.174	dB	K=2	0.087				
Antenna gain	±0.169	dB	K=2	0.084				
Site imperfection	±0.433	dB	Triangular	0.214				
Pre-amplifier gain	±0.366	dB	K=2	0.183				
Transmitter antenna	±1.200	dB	Rectangular	0.600				
Signal generator	±0.461	dB	Rectangular	0.231				
Mismatch	±0.080	dB	U-shape	0.040				
Spectrum analyzer	±0.500	dB	Rectangular	0.250				
Combined standard uncertainty Uc(y)	1.778							
Measuring uncertainty for a level of confidence	Measuring uncertainty for a level of confidence of 95% U=2Uc(y)							

 Report Format Version: 01
 Page No. : 110 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

	Un			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.191	dB	K=1	0.095
Cable loss	±0.169	dB	K=2	0.084
Antenna gain	±0.191	dB	K=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	K=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.839			
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	′)	3.678

<u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u>

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.186	dB	K=1	0.093
Cable loss	±0.167	dB	K=2	0.083
Antenna gain	±0.190	dB	K=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	K=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.771			
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	')	3.541

 Report Format Version: 01
 Page No. : 111 of 112

 FCC ID: VUIDPC3829
 Issued Date : Nov. 06, 2013

Uncertainty of Conducted Emission Measurement

	Un			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	±0.038	dB	K=2	0.019
Attenuator	±0.047	dB	K=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	0.863			
Measuring uncertainty for a level of confidence	1.726			