	Utech
Name :	
Roll No.:	To Owner by Exercising and Explained
Invigilator's Signature :	

CS/B.TECH(AUE-OLD)/SEM-3/AUE-303/2011-12 2011

ENGINEERING THERMODYNAMICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Thermodynamic properties are
 - a) path functions
 - b) point functions
 - c) may be path or point functions
 - d) none of these.
 - ii) A heat engine is supplied heat at the rate of 30,000 J/S and gives an output of 9 kW. The thermal efficiency of the engine will be
 - a) 30%

b) 33%

c) 40%

d) 50%.

3227-(O) [Turn over

CS/B.TECH(AUE-OLD)/SEM-3/AUE-303/2011-12

iii) In a thermodynamic cycle

- a) complete conversion of heat into work is possible
- b) complete conversion of heat into work is impossible
- c) heat and work are completely interchangeable
- d) none of these.
- iv) Any spontaneous process is
 - a) reversible
 - b) irreversible
 - c) may be reversible or irreversible
 - d) none of these.
- v) Entropy generation of a reversible system is
 - a) positive
 - b) negative
 - c) zero
 - d) dependent on the process.

b)
$$\oint \frac{dQ}{T} > 0$$

c)
$$\oint \frac{\mathrm{d}Q}{T} \ge 0$$

d)
$$\oint \frac{\mathrm{d}Q}{T} \le 0$$
.

- vii) For a mercury-steam binary cycle if the topping cycle has the efficiency 0.5 and the bottom cycle has the efficiency 0.40. What is the efficiency of the combined cycle?
 - a) 0.45

b) 0.55

c) 0.70

- d) 0.75.
- viii) The equation Tds = dH Vdp holds good for
 - a) reversible process only
 - b) irreversible process only
 - c) isentropic process only
 - d) any process.
- ix) For same maximum pressure and temperature and same heat ejection between Otto cycle and Diesel cycle
 - a) Otto cycle is more efficient
 - b) Diesel cycle is more efficient
 - c) both are equal efficient
 - d) efficiency cannot be compared.

CS/B.TECH(AUE-OLD)/SEM-3/AUE-303/2011-12

x) If relative humidity is 100% degree of saturation is

a) 0.5

b) 1

c) 0.75

d) 0.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- What is enthalpy? Starting from steady flow energy equation, show that for a throttling process enthalpy of the fluid remains constant.
- 3. What is Clausius' theorem ? Show that entropy is a thermodynamic property. 2+3
- 4. Explain that *Rankine* cycle is more suitable than Carnot cycle for steam power plants.
- 5. What is one tone of refrigeration ? What is the chemical formula of refrigerant R-110 ? 3+2
- 6. What is specific humidity?

Show that $W = 0.622 \times \frac{P_w}{P - P_w}$ where, W is specific humidity.

 P_w is partial pressure of water vapour and P is the atmospheric pressure. 2+3

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What are the causes of irreversibility?
 - b) Between a 1 kW electric heater and 1 kW heat pump, which one is more efficient to heat a room? Give explanation to your answer.
 - c) A domestic food freezer maintains a temperature maintains a temperature of -15°C. The ambient air temperature is 30°C. If heat leaks into the freezer at the continuous rate of 1.75 kJ/s, what is the least power necessary to pump this heat out continuously?

4 + 4 + 7

- 8. a) Show that the efficiency of Rankine cycle is a function of mean temperature of heat addition.
 - b) Steam at 20 bar, 360°C is expanded in a steam turbine to 0.08 bar, then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assuming ideal process find.
 - (i) Per kg of steam the net work and cycle efficiency
 - (ii) If the turbine and the pump have each 80% efficiency, find percentage reduction in the net work and cycle efficiency. 3 + (7 + 5)

- 9. a) What is dew point temperature?
 - b) A simple R-12 plant is to develop 5 tonnes of refrigeration. The condenser and evaporator temperatures are to be 40°C and -10°C respectively. Determine:
 - (i) the refrigerant flow rate
 - (ii) the volume flow rate handled by the compressor
 - (iii) power required to drive the compressor
 - (iv) the pressure ratio
 - (v) the COP
 - (vi) heat rejected to the condenser. $3 + (2 \times 6)$
- 10. a) Show that the efficiency of diesel cycle is

$$n_{Diesel} = 1 - \frac{1}{\gamma} \times \frac{1}{r_k^{\gamma - 1}} \times \frac{r_c^{\gamma - 1} - 1}{r_c - 1}$$

- b) An air standard dual cycle has a compression ratio of 16, and compression begins at 1 bar, 50°C. The maximum pressure is 70 bar. The heat transferred to air at constant pressure is equal to that at constant volume. Estimate,
 - (i) the pressure and temperature at the cardinal points of the cycle
 - (i) the cycle efficiency. 5 + (5 + 5)

3227-(O)

$$n_{vol} = 1 + C + C \times \left(\frac{p_2}{p_1}\right)^{\frac{1}{n}}$$

Where, C is the clearance and p_2 and p_1 are the discharge and suction pressures respectively.

b) A diesel engine has a compression ratio of 14 and cutoff takes place at 6% of stroke. Find the air standard efficiency. 7+8