Part of Speech Tagging

Asif Ekbal CSE Dept., IIT Patna

Part of Speech Tagging

With Hidden Markov Model

NLP Trinity

Part of Speech Tagging

- POS Tagging: attaches to each word in a sentence a part of speech tag from a given set of tags called the Tag-Set
- Standard Tag-set: Penn Treebank (for English)- 36 tags

Example

"_" The_DT mechanisms_NNS that_WDT make_VBP traditional_JJ hardware_NN are_VBP really_RB being_VBG obsoleted_VBN by_IN microprocessor-based_JJ machines_NNS ,_, "_" said_VBD Mr._NNP Benton_NNP ._.

Where does POS tagging fit in

Example to illustrate complexity of POS taggng

POS tagging is disambiguation

N (noun), V (verb), J (adjective), R (adverb) and F (other, i.e., function words).

That_F former_J Sri_Lanka_N skipper_N and_F ace_J batsman_N Aravinda_De_Silva_N is_F a_F man_N of_F few_J words_N was_F very_R much_R evident_J on_F Wednesday_N when_F the_F legendary_J batsman_N,_F who_F has_V always_R let_V his_N bat_N talk_V,_F struggled_V to_F answer_V a_F barrage_N of_F questions_N at_F a_F function_N to_F promote_V the_F cricket_N league_N in_F the_F city_N._F

1/22/2023

8

POS disambiguation

- That_F/N/J ('that' can be complementizer (can be put under 'F'), demonstrative (can be put under 'J') or pronoun (can be put under 'N'))
- former_J
- Sri_N/J Lanka_N/J (Sri Lanka together qualify the skipper)
- skipper_N/V ('skipper' can be a verb too)
- and_F
- ace_J/N ('ace' can be both J and N; "Nadal served an ace")
- batsman_N/J ('batsman' can be J as it qualifies Aravinda De Silva)
- Aravinda_N De_N Silva_N is_F a_F
- man_N/V ('man' can verb too as in'man the boat')
- of F few J
- words_N/V ('words' can be verb too, as in 'he words is speeches beautifully')

Behaviour of "That"

That

- That man is known by the company he keeps.
 (Demonstrative)
- Man that is known by the company he keeps, gets a good job. (Pronoun)
- That man is known by the company he keeps, is a proverb. (Complementation)
- Chaotic systems: Systems where a small perturbation in input causes a large change in output

POS disambiguation

- was_F very_R much_R evident_J on_F Wednesday_N
- when_F/N ('when' can be a relative pronoun (put under 'N) as in 'I know the time when he comes')
- the_F legendary_J batsman_N
- who_F/N
- has_V always_R let_V his_N
- bat_N/V
- talk_V/N
- struggle_V /N
- answer_V/N
- barrage_N/V
- question_N/V
- function_N/V
- promote_V cricket_N league_N city_N

Mathematics of POS tagging

Argmax computation (1/2)

```
Best tag sequence
= T*
= argmax P(T|W)
= argmax P(T)P(W|T) (by Baye's Theorem)
P(T) = P(t_0t_1t_2 ... t_{n+1})
       = P(t_0)P(t_1|t_0)P(t_2|t_1t_0)P(t_3|t_2t_1t_0) ...
                  P(t_n|t_{n-1}t_{n-2}...t_0)P(t_{n+1}|t_nt_{n-1}...t_0)
       = P(t_0)P(t_1|t_0)P(t_2|t_1) ... P(t_n|t_{n-1})P(t_{n+1}|t_n)
      = {\mathop\Pi^{N+1}} P(t_i|t_{i-1})
                                    Bigram Assumption
```

1/22/2023

i = 0

Argmax computation (2/2)

$$P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1}) \dots$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

```
= P(w_o|t_o)P(w_1|t_1) \dots P(w_{n+1}|t_{n+1})
= \prod_{i=0}^{n+1} P(w_i|t_i)
= \prod_{i=1}^{n+1} P(w_i|t_i) \quad \text{(Lexical Probability Assumption)}
```

Generative Model

This model is called Generative model. Here words are observed from tags as states. This is similar to HMM.

Typical POS tag steps

- Implementation of Viterbi Unigram, Bigram.
- Evaluation
- Per POS Accuracy
- Confusion Matrix

A Motivating Example

Colored Ball choosing

Example (contd.)

Given:

	U_1	U ₂	U_3
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

and

	R	G	В
U_1	0.3	0.5	0.2
U_2	0.1	0.4	0.5
U_3	0.6	0.1	0.3

Transition probability table

Emission probability table

Observation: RRGGBRGR

State Sequence: ??

Not so Easily Computable.

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Classic problems with respect to HMM

- 1. Given the observation sequence, find the possible state sequences- *Viterbi*
- Given the observation sequence, find its probabilityforward/backward algorithm
- 3. Given the observation sequence find the HMM parameters.-Baum-Welch algorithm

Illustration of Viterbi

- The "start" and "end" are important in a sequence
- Subtrees get eliminated due to the Markov Assumption

POS Tagset

- N(noun), V(verb), O(other) [simplified]
- ^ (start), . (end) [start & end states]

Illustration of Viterbi

```
Lexicon
         people: N, V
         laugh: N, V
Corpora for Training
           ^{\circ} w_{11} t_{11} w_{12} t_{12} w_{13} t_{13} ......w_{1k} _{1} _{1k} _{1} .
           ^{\prime} w_{21}_{-1}t_{21} w_{22}_{-1}t_{22} w_{23}_{-1}t_{23} ......w_{2k} _{2}t_{2k} _{2} .
           ^{\text{N}} w_{n1} t_{n1} w_{n2} t_{n2} w_{n3} t_{n3} \dots w_{nk} t_{nk} t_{nk}
```

Inference

	^	N	V	0	•
^	0	0.6	0.2	0.2	0
N	0	0.1	0.4	0.3	0.2
V	0	0.3	0.1	0.3	0.3
0	0	0.3	0.2	0.3	0.2
•	1	0	0	0	0

This transition table will change from language to language due to language divergences.

Lexical Probability Table

	€	people	laugh	•••	•••
^	1	0	0	•••	0
N	0	1x10 ⁻³	1x10 ⁻⁵	•••	•••
V	0	1x10 ⁻⁶	1x10 ⁻³	•••	•••
0	0	0	0	•••	•••
•	1	0	0	0	0

Size of this table = # pos tags in tagset X vocabulary size

vocabulary size = # unique words in corpus

Inference

New Sentence:


```
p( ^{\circ} N N . | ^{\circ} people laugh .)
= (0.6 x 1.0) x (0.1 x 1 x 10<sup>-3</sup>) x (0.2 x 1 x 10<sup>-5</sup>)
```

Computational Complexity

- If we have to get the probability of each sequence and then find maximum among them, we would run into exponential number of computations
- If |s| = #states (tags + ^ + .)
 and |o| = length of sentence (words + ^ + .)
 Then, #sequences = s|o|-2
- But, a large number of partial computations can be reused using Dynamic Programming

Dynamic Programming

10-4

Computational Complexity

- Retain only those N / V / O nodes which ends in the highest sequence probability
- Now, complexity reduces from |s| |o| to |s|. |o|
- Here, we followed the Markov assumption of order 1

Points to ponder wrt HMM and Viterbi

Viterbi Algorithm

- Start with the start state
- Keep advancing sequences that are "maximum" amongst all those ending in the same state

Viterbi Algorithm

Claim: We do not need to draw all the subtrees in the algorithm

1/22/2023

32

Viterbi phenomenon (Markov process)

Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N1.

Effect of shifting probability mass

- Will a word be always given the same tag?
- No. Consider the example:
 - ^ people the city with soldiers .
 - ^ quickly people the city . (i.e., 'populate')

In the first sentence "people" is most likely to be tagged as noun, whereas in the second, probability mass will shift and "people" will be tagged as verb, since it occurs after an adverb.

1/22/2023 34

Tail phenomenon and Language phenomenon

 Long tail Phenomenon: Probability is very low but not zero over a large observed sequence.

- Language Phenomenon:
 - "people" which is predominantly tagged as "Noun" displays a long tail phenomenon.
 - "laugh" is predominantly tagged as "Verb".

Viterbi phenomenon (Markov process)

Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N1.

What does P(A|B) mean?

- P(A|B) = P(B|A)If P(A) = P(B)
- P(A|B) means??
 - Causality?? B causes A??
 - Sequentiality?? A follows B?

Back to the Urn Example

Here :

$$S = \{U1, U2, U3\}$$

•
$$V = \{ R,G,B \}$$

For observation:

•
$$O = \{o_1 ... o_n\}$$

And State sequence

•
$$Q = \{q_1... q_n\}$$

■ Π is

$$\pi_i = P(q_1 = U_i)$$

Α	=
, ,	

B=

U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U ₃	0.3	0.4	0.3
	R	G	В
U_1	0.3	0.5	0.2
U ₂	0.1	0.4	0.5
U_3	0.6	0.1	0.3

 U_2

 U_3

 U_1

Observations and states

O₁ O₂ O₃ O₄ O₅ O₆ O₇ O₈

OBS: R R G B R G R

State: S₁ S₂ S₃ S₄ S₅ S₆ S₇ S₈

 $S_i = U_1/U_2/U_3$; A particular state

S: State sequence

O: Observation sequence

 S^* = "best" possible state (urn) sequence

Goal: Maximize $P(S^*|O)$ by choosing "best" S

Goal

 Maximize P(S|O) where S is the State Sequence and O is the Observation Sequence

$$S^* = \arg \max_{S} (P(S \mid O))$$

False Start

$$O_1$$
 O_2 O_3 O_4 O_5 O_6 O_7 O_8 OBS: R R G G B R G R State: S_1 S_2 S_3 S_4 S_5 S_5 S_6 S_7 S_8

$$P(S \mid O) = P(S_{1-8} \mid O_{1-8})$$

$$P(S \mid O) = P(S_1 \mid O).P(S_2 \mid S_1, O).P(S_3 \mid S_{1-2}, O)...P(S_8 \mid S_{1-7}, O)$$

By Markov Assumption (a state depends only on the previous state)

$$P(S \mid O) = P(S_1 \mid O).P(S_2 \mid S_1, O).P(S_3 \mid S_2, O)...P(S_8 \mid S_7, O)$$

Baye's Theorem

$$P(A | B) = P(A).P(B | A)/P(B)$$

P(A) -: Prior

P(B|A) -: Likelihood

 $\operatorname{argmax}_{S} P(S|O) = \operatorname{argmax}_{S} P(S) P(O|S)$

State Transitions Probability

$$P(S)=P(S_{1-8})$$

 $P(S)=P(S_1)P(S_2|S_1)P(S_3|S_{1-2})P(S_4|S_{1-3})..P(S_8|S_{1-7})$

By Markov Assumption (k=1)

$$P(S)=P(S_1)P(S_2|S_1)P(S_3|S_2)P(S_4|S_3)...P(S_8|S_7)$$

Observation Sequence probability

$$P(O|S) = P(O|S_{1-8})P(O_2|O,S_{1-8})P(O_3|O_{-2},S_{1-8})..P(O_8|O_{-7},S_{1-8})$$

Assumption that ball drawn depends only on the Urn chosen

$$P(O \mid S) = P(O_1 \mid S_1).P(O_2 \mid S_2).P(O_3 \mid S_3)...P(O_8 \mid S_8)$$

$$P(S \mid O) = P(S).P(O \mid S)$$

$$P(S \mid O) = P(S_1).P(S_2 \mid S_1).P(S_3 \mid S_2).P(S_4 \mid S_3)...P(S_8 \mid S_7).$$

$$P(O_1 | S_1).P(O_2 | S_2).P(O_3 | S_3)...P(O_8 | S_8)$$

Grouping terms

O_0	O_1	O_2	O_3	O_4	O_5	O_6	O_7	O_8	
Obs: E	R	R	G	G	В	R	G	R	
State: S ₀	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8 S	9

```
P(S).P(O|S)
= [P(O_0|S_0).P(S_1|S_0)].
[P(O_1|S_1). P(S_2|S_1)].
[P(O_2|S_2). P(S_3|S_2)].
[P(O_3|S_3).P(S_4|S_3)].
```

 $[P(O_4|S_4).P(S_5|S_4)].$ $[P(O_5|S_5).P(S_6|S_5)].$

 $[P(O_6|S_6).P(S_7|S_6)].$

 $[P(O_6|S_6),P(S_7|S_6)].$

 $[P(O_7|S_7).P(S_8|S_7)].$

 $[P(O_8|S_8).P(S_9|S_8)].$

We introduce the states S_0 and S_9 as initial and final states respectively.

After S_8 the next state is S_9 with probability 1, i.e., $P(S_9|S_8)=1$

 O_0 is ϵ -transition

Introducing useful notation

 O_0 O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8 Obs: ε R R G G B R G R State: S_0 S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9

Probabilistic FSM

The question here is:

"what is the most likely state sequence given the output sequence seen"

Developing the tree

48

Tree structure contd...

The problem being addressed by this tree is $S^* = \arg\max_s P(S \mid a_1 - a_2 - a_1 - a_2, \mu)$ a1-a2-a1-a2 is the output sequence and μ the model or the machine

Problem statement: Find the best possible sequence

$$S^* = \arg \max P(S \mid O, \mu)$$

S

where, $S \to \text{State Seq}, O \to \text{Output Seq}, \mu \to \text{Model or Machine}$

T is defined as
$$P(S_i \xrightarrow{a_k} S_j) \quad \forall_{i, j, k}$$

Probability of observation sequence

Why probability of observation sequence?: Language modeling problem

Probabilities computed in the context of corpora

- 1.P("The sun rises in the east")
- 2. P("The sun rise in the east")
 - Less probable because of grammatical mistake.
- 3. P(The svn rises in the east)
 - Less probable because of lexical mistake.
- 4. P(The sun rises in the west)
 - Less probable because of semantic mistake.

Uses of language model

- 1. Detect well-formedness
 - Lexical, syntactic, semantic, pragmatic, discourse
- 2. Language identification
 - Given a piece of text what language does it belong to.
 - Good morning English
 - Guten morgen German
 - Bon jour French
- 3. Automatic speech recognition
- 4. Machine translation

How to compute $P(o_0o_1o_2o_3...o_m)$?

$$P(O) = \sum_{S} P(O, S)$$
 Marginalization

Consider the observation sequence,

$$O_0O_1O_2....Om$$

$$S_0 S_1 S_2 S_3...S_m S_{m+1}$$

Where S_i s represent the state sequences.

Computing $P(o_0o_1o_2o_3...o_m)$

$$\begin{split} P(O,S) &= P(S)P(O \mid S) \\ &= P(S_0 S_1 S_2 ... S_{m+1}) P(O_0 O_1 O_2 ... O_m \mid S) \\ &= P(S_0) . P(S_1 \mid S_0) . P(S_2 \mid S_1) P(S_{m+1} \mid S_m). \\ P(O_0 \mid S_0) . P(O_1 \mid S_1) P(O_m \mid S_m) \\ &= P(S_0) [P(O_0 \mid S_0) . P(S_1 \mid S_0)] [P(O_m \mid S_m) . P(S_{m+1} \mid S_m)] \end{split}$$

Forward and Backward Probability Calculation

Forward probability *F(k,i)*

- Define F(k,i)= Probability of being in state S_i having seen $o_0o_1o_2...o_k$
- $F(k,i)=P(o_0o_1o_2...o_k, S_i)$
- With m as the length of the observed sequence and N states

```
P(observed \ sequence) = P(o_0o_1o_2...o_m)
= \sum_{p=0,N} P(o_0o_1o_2...o_m, S_p)
= \sum_{p=0,N} F(m, p)
```

Forward probability (contd.)

$$F(k, q)$$
= $P(o_0o_1o_2..o_k, S_q)$
= $P(o_0o_1o_2..o_k, S_q)$
= $P(o_0o_1o_2..o_{k-1}, o_k, S_q)$
= $\Sigma_{p=0,N} P(o_0o_1o_2..o_{k-1}, S_p, o_k, S_q)$
= $\Sigma_{p=0,N} P(o_0o_1o_2..o_{k-1}, S_p, o_k, S_q)$
= $\Sigma_{p=0,N} P(o_0o_1o_2..o_{k-1}, S_p)$.
 $P(o_k, S_q/o_0o_1o_2..o_{k-1}, S_p)$
= $\Sigma_{p=0,N} F(k-1,p). P(o_k, S_q/S_p)$

Backward probability B(k,i)

■ Define B(k,i)= Probability of seeing $o_k o_{k+1} o_{k+2} ... o_m$ given that the state was S_i

$$B(k,i)=P(o_ko_{k+1}o_{k+2}...o_m | S_i)$$

- With m as the length of the whole observed sequence
- $P(observed\ sequence) = P(o_0o_1o_2...o_m)$

=
$$P(o_0o_1o_2..o_m/S_0)$$

= $B(0,0)$

Backward probability (contd.)

```
B(k, p)
= P(o_k o_{k+1} o_{k+2} ... o_m \mid S_D)
= P(o_{k+1}o_{k+2}...o_m, o_k | S_n)
= \Sigma_{a=0,N} P(o_{k+1}o_{k+2}...o_m, o_k, S_a/S_b)
= \Sigma_{a=0.N} P(o_k, S_a/S_b)
   P(o_{k+1}o_{k+2}...o_m/o_k,S_a,S_b)
= \Sigma_{q=0,N} P(o_{k+1}o_{k+2}...o_m/S_a). P(o_k, o_k)
   S_a/S_p
= \sum_{q=0,N}^{o_k} B(k+1,q). \ P(S_D \xrightarrow{o_k} S_D)
```

How Forward Probability Works

- Goal of Forward Probability: To find P(O)
 [the probability of Observation Sequence].
- E.g. ^ People laugh .

Transition and Lexical Probability Tables

	^	N	V			ε	People	Laugh
^	0	0.7	0.3	0	^	1	0	0
N	0	0.2	0.6	0.2	N	0	0.8	0.2
V	0	0.6	0.2	0.2	V	0	0.1	0.9
	1	0	0	0		1	0	0

Inefficient Computation:

$$P(O) = \sum_{S} P(O,S) = \sum_{S} \prod_{i} P(S_{i} \xrightarrow{o_{j}} S_{j})$$

Computation in various paths of the Tree

8	Ε	People	Laugh	
Path 1:	^	N	Ν .	
P(Path1)	= (1.0)	x0.7)x(0.8	(0.2)x(0.2x0.2	2)
	3	People	Laugh	
Path 2: V	^	N .		
P(Path2)	= (1.0)	x0.7)x(0.8	(0.6)x(0.9x0.2	2)
	3	People	Laugh	
Path 3:	^	V		
N				
P(Path3)	= (1.0)	x0.3)x(0.1x	(0.6)x(0.2x0.2	2)
	3	People	Laugh	
Path 4:	^	V		
V				
P(Path4)	= (1.0)	x0.3)x(0.1)	(0.2)x(0.9x0.2	2)

Computations on the Trellis

F = accumulated F x output probability x transition probability

$$F_{11} = 0.7x1.0$$

 $F_{12} = 0.3x1.0$
 $F_{21} = F_{11} \times (0.2x0.3) + F_{12} \times (0.6x0.1)$
 $F_{22} = F_{11} \times (0.6x0.8) + F_{12} \times (0.2x0.1)$
 $F_{31} = F_{21} \times (0.2x0.2) + F_{22} \times (0.2x0.9)$

Number of Multiplications

Tree

- Each path has 5
 multiplications + 1
 addition.
- There are 4 paths in the tree.
- Therefore, total of 20 multiplications and 3 additions.

Trellis

- F_{11} , -> 1 multiplication
- F_{12} , -> 1 multiplication
- * $F_{21} = F_{11} \times (1 \text{ mult}) + F_{12} \times (1 \text{ mult})$

= 4 multiplications + 1 addition

- Similarly, for F₂₂ and F₃₁, 4 multiplications and 1 addition each.
- So, total of 14 multiplications and 3 additions.

Complexity

```
Let |S| = #States
And |O| = Observation length - <math>|\{^{\wedge}, .\}|
```

- Stage 1 of Trellis: |S| multiplications
- Stage 2 of Trellis: |S| nodes; each node needs computation over |S| arcs.
 - Each Arc = 1 multiplication
 - Accumulated F = 1 more multiplication
 - Total $2|S|^2$ multiplications
- Same for each stage before reading `.'
- At final stage (` . `) -> 2|S| multiplications

Summary: Forward Algorithm

- Accumulate F over each stage of trellis.
- Take sum of F values multiplied by $P(S_i \stackrel{O_j}{\to} S_{i+1})$.
- 3. Complexity = $|S| + 2|S|^2 (|O| 1) + 2|S|$ = $2|S|^2 |O| - 2|S|^2 + 3|S|$ = $O(|S|^2, |O|)$

i.e., linear in the length of input and quadratic in number of states.

Reading List

■ TnT (http://www.aclweb.org/anthology-new/A/A00/A00-1031.pdf)

Brill Tagger

(http://delivery.acm.org/10.1145/1080000/1075553/p112-brill.pdf?ip=182.19.16.71&acc=OPEN&CFID=129797466&CFTOKEN=72601926&acm=1342975719_082233e0ca9b5d1d67a9997c03a649d1)