



### MSIN0095: Operations Analytics

Class 1-4: Process Analysis Class 5,7: Waiting Time Analysis

Class 6: Inventory Management - Newsvendor Model

Class 8: Inventory Management – Newsvendor, Periodic Review

Class 9: Inventory Management - EOQ

Class 10: Inventory Management – Amazon Distribution Strategy

Class 11: Supply Chain Management I: Beer Game

Class 12: Supply Chain Management II

Class 13: Supply Chain Management III: Strategic Sourcing, Sustainable

**Supply Chains** 

Class 14: Demand Forecasting I

Class 15: Demand Forecasting II - Caesars Entertainment

Class 16-17: Revenue Management

1

# **Competing on Analytics**

- Some high-performing firms are building their competitive strategies around data-driven insights.
- Examples of analytics competitors are:
  - Capital One, Barclays (Finance)
  - Boston Red Sox, Oakland A's (Sports)
  - Amazon (Retail)
  - Proctor & Gamble (CPG)
  - Caesars Entertainment (Gaming)
  - Marriott International (Hotel)









3

#### **Correlation Matrix and Stepwise Regression** MLK Tue Wed 2010 Day -0.15 -0.11 -0.20 0.36 0.20 0.16 0.12 0.21 0.17 0.11 Data-based multicollinearity Structural multicollinearity SE (Special FIT ADR CNY7Days event) (Cust. Seg.) (Wholesale) CNY15Days 0.680508339 0.444570474 0.793460189 0.818783647 Casino 0.775171344 0.493576989 Why is multicollinearity bad? Coefficients $\beta_k$ depends on which variables are included

- Precision of coefficients decrease with more variables
- Hypothesis tests for  $\beta_k=0$  may yield different conclusions

## Forward/Backward Selection

### Forward Selection:

- Start by choosing the independent variable that explains the most variation in the dependent variable
- Add new independent variable that explains the most residual variation
- Repeat until no variables "significantly" explain residual variation

### Backward Selection:

• Start with all the variables in the model, and drop the least "significant", one at a time until you are left with only "significant" variables.

### • Mixture of the two:

 Perform a forward selection but drop variables that become no longer "significant" after introducing new variables.

7

7

| Regre                                                          | ssion Stat                                   | istics                                    |                                         |                                                          |                                             |                                             |
|----------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| Multiple R                                                     | 0.623236                                     |                                           |                                         |                                                          |                                             |                                             |
| R Square                                                       | 0.388423                                     |                                           |                                         |                                                          |                                             |                                             |
| Adjusted R                                                     |                                              |                                           |                                         |                                                          |                                             |                                             |
| Square                                                         | 0.38085                                      |                                           |                                         |                                                          |                                             |                                             |
| Standard Error                                                 | 321.5244                                     |                                           |                                         |                                                          |                                             |                                             |
| Observations                                                   | 1309                                         |                                           |                                         |                                                          |                                             |                                             |
| ANOVA                                                          |                                              |                                           |                                         |                                                          |                                             |                                             |
|                                                                | df                                           | SS                                        | MS                                      | F                                                        | Significance F                              |                                             |
| Regression                                                     | 16                                           | 84829124                                  | 5301820                                 | 51.2858                                                  | 1.5E-125                                    |                                             |
| Residual                                                       | 1292                                         | 1.34E+08                                  | 103377.9                                |                                                          |                                             |                                             |
| Total                                                          | 1308                                         | 2.18E+08                                  |                                         |                                                          |                                             |                                             |
|                                                                | Coefficients S                               | tandard Error                             | t Stat                                  | P-value                                                  | Lower 95%                                   | Upper 95%                                   |
| Intercept                                                      | 152.8                                        | 150.9                                     | 1.0                                     | 31.159%                                                  | -143.3                                      | 448.9                                       |
| Sun                                                            | 488.4                                        | 29.3                                      | 16.7                                    | 0.000%                                                   | 430.8                                       | 545.9                                       |
| Mon                                                            | 230.4                                        | 30.3                                      | 7.6                                     | 0.000%                                                   | 170.9                                       | 289.8                                       |
| Wed                                                            | 86.6                                         | 29.8                                      | 2.9                                     | 0.375%                                                   | 28.1                                        | 145.1                                       |
| Thu                                                            | 204.7                                        | 29.2                                      | 7.0                                     | 0.000%                                                   | 147.4                                       | 261.9                                       |
| Fri                                                            | 566.3                                        | 29.7                                      | 19.1                                    | 0.000%                                                   | 508.1                                       | 624.6                                       |
| NY                                                             | -598.7                                       | 187.4                                     | -3.2                                    | 0.143%                                                   | -966.3                                      | -231.0                                      |
|                                                                | 000.0                                        | 162.7                                     | 5.2                                     | 0.000%                                                   | 519.9                                       | 1158.1                                      |
| MLK                                                            | 839.0                                        |                                           |                                         | 0.000%                                                   |                                             |                                             |
|                                                                | 839.0<br>1327.7                              | 163.9                                     | 8.1                                     | 0.000%                                                   | 1006.1                                      | 1649.2                                      |
| MLK<br>Pres Day<br>15th of Month                               |                                              |                                           |                                         |                                                          |                                             |                                             |
| Pres Day                                                       | 1327.7                                       | 163.9                                     | 8.1                                     | 0.000%                                                   | 1006.1                                      | 274.9                                       |
| Pres Day<br>15th of Month                                      | 1327.7<br>164.5                              | 163.9<br>56.2                             | 8.1<br>2.9                              | 0.000%<br>0.350%                                         | 1006.1<br>54.2                              | 274.9<br>0.3                                |
| Pres Day<br>15th of Month<br>Casino<br>FIT                     | 1327.7<br>164.5<br>0.2<br>0.4                | 163.9<br>56.2<br>0.0<br>0.1               | 8.1<br>2.9<br>4.4<br>5.9                | 0.000%<br>0.350%<br>0.001%<br>0.000%                     | 1006.1<br>54.2<br>0.1<br>0.2                | 274.9<br>0.3<br>0.5                         |
| Pres Day<br>15th of Month<br>Casino                            | 1327.7<br>164.5<br>0.2<br>0.4<br>0.2         | 163.9<br>56.2<br>0.0<br>0.1<br>0.0        | 8.1<br>2.9<br>4.4<br>5.9<br>5.0         | 0.000%<br>0.350%<br>0.001%<br>0.000%<br>0.000%           | 1006.1<br>54.2<br>0.1<br>0.2<br>0.1         | 274.9<br>0.3<br>0.5<br>0.3                  |
| Pres Day<br>15th of Month<br>Casino<br>FIT<br>Group<br>FIT ADR | 1327.7<br>164.5<br>0.2<br>0.4<br>0.2<br>-0.6 | 163.9<br>56.2<br>0.0<br>0.1<br>0.0<br>0.2 | 8.1<br>2.9<br>4.4<br>5.9<br>5.0<br>-2.8 | 0.000%<br>0.350%<br>0.001%<br>0.000%<br>0.000%<br>0.484% | 1006.1<br>54.2<br>0.1<br>0.2<br>0.1<br>-1.0 | 274.9<br>0.3<br>0.5<br>0.3<br>-0.2          |
| Pres Day<br>15th of Month<br>Casino<br>FIT<br>Group            | 1327.7<br>164.5<br>0.2<br>0.4<br>0.2         | 163.9<br>56.2<br>0.0<br>0.1<br>0.0        | 8.1<br>2.9<br>4.4<br>5.9<br>5.0         | 0.000%<br>0.350%<br>0.001%<br>0.000%<br>0.000%           | 1006.1<br>54.2<br>0.1<br>0.2<br>0.1         | 274.9<br>0.3<br>0.5<br>0.3<br>-0.2<br>185.4 |

# Forecast accuracy

|                     | Mean Percentage<br>Error | Mean Absolute<br>Error | Mean Absolute Percentage Error |
|---------------------|--------------------------|------------------------|--------------------------------|
| Moving average      | -2%                      | 225                    | 25%                            |
| Decomposition       | -3%                      | 184                    | 19%                            |
| Multiple regression | -14%                     | 280                    | 34%                            |

9

9

# **Pros and Cons of models**

|                              | Pros                                                                                                                                                                                                    | Cons                                                                                                                                                                                                                   |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moving<br>Average            | Simple and intuitive, only need to keep recent data                                                                                                                                                     | Not responsive to earlier<br>trends                                                                                                                                                                                    |
| Time Series<br>Decomposition | <ul> <li>Still simple (although not as<br/>simple as moving averages),</li> <li>Captures trend, cycle,<br/>seasonal effect</li> </ul>                                                                   | Needs to re-estimate<br>trend line, cycle,<br>seasonal effect every so<br>often                                                                                                                                        |
| Multivariate<br>Regression   | <ul> <li>Clear managerial implications</li> <li>Identifies key drivers of<br/>demand (seasonality, which<br/>holiday, customer type, price)</li> <li>Quantifies their impacts<br/>separately</li> </ul> | <ul> <li>Complicated to maintain needs lots of data that might not be available 2 weeks in advance</li> <li>Also needs to reestimate every so often to capture changes in coefficients (rolling regression)</li> </ul> |

## **Caesars Entertainment: Takeaways**

- Analytics competitors use data to improve business functions through using sophisticated quantitative techniques.
- How can we use data to predict demand?
  - Time series methods: Find historical patterns to make predictions
  - Regression methods: Model the cause-and-effect relationships of demand
- Out-of-sample validation (withholding data) is a good way to realistically compare forecasting performance of different models.

11



# **Method 1: Analytics Methods**

- Pros/Cons?
  - Assumes structural stability, ignores "inflection points" in customer behavior
  - Does not work for new products, or where historical data does not exist
  - Often demand is not observed, only sales







## **Method 2: The Quaker Method**

- Pros/Cons
  - Works for new products, incorporates human judgement
  - Organizational issues: politics around the table, anonymity
  - Difficult to account for level of confidence/information of experts.



15

## Method 3: The Quaker Method on Steroids

- Poll a large number of people, the crowd! (or create prediction market!)
- Pros/Cons
- Works well for new feature development, avoids political issues.
- Works if someone's decisions are independent of everyone else'
- Potential for herding effect.
- Prediction markets are no crystal balls, only aggregate information.

