Math 74: Algebraic Topology

Sair Shaikh

June 2, 2025

Problem 1.(2.3.1)

If $T_n(X, A)$ denotes the torsion subgroup of $H_n(X, A)$, show that the functors $(X, A) \mapsto T_n(X, A)$ with the obvious induced homomorphisms $T_n(X, A) \to T_n(Y, B)$ and boundary maps $T_n(X, A) \to T_{n-1}(A)$ do not satisfy a homology theory even if excluding the dimension axiom. Do the same for the 'mod-torsion' functor $MT_n(X, A) = H_n(X, A)/T_n(X, A)$.

Solution. We will show a contradiction to the exactness axiom. Let X be the Mobius strip and A be the boundary circle of the Mobius strip. Then, we must have the long exact sequence:

$$\cdots \to H_1(A) \to H_1(X) \to H_1(X,A) \to H_0(A) \to H_0(X) \to \cdots$$

Let C be the center circle. We showed in Hwk 3, Problem 3.3, that X deformation retracts to C via the straight-line homotopy (this is also clear from the CW complex picture). Thus, $\pi_1(X) \cong \pi_1(C) = \mathbb{Z}$. Since H_1 is the abelianization of π_1 , we have $H_1(X) \cong \mathbb{Z}$.

Moreover, $H_1(A) \cong \mathbb{Z}$ as well, since A is a circle. Moreover, note that we showed (in Hwk 3, Problem 3.3) that the generator for $H_1(A)$, i.e. the loop around A maps to 2 times the generator of $H_1(C)$, thus maps to 2 times the generator of $H_1(X)$ (as deformation retraction is a homotopy equivalence, thus isomorphism on the homology).

Finally, we have that $H_0(A) \cong H_0(X) \cong \mathbb{Z}$ and the pushforward of the inclusion map on H_0 is an isomorphism as the spaces are path-connected. Thus, we get:

$$\cdots \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to H_1(X, A) \to \mathbb{Z} \xrightarrow{\sim} \mathbb{Z} \to \cdots$$

Then, the kernel of the second map is the image of the first map, i.e. $2\mathbb{Z}$. Thus, the image of the second map is $\cong \mathbb{Z}/2\mathbb{Z}$ (first isomorphism theorem). Thus, we have that $\ker(H_1(X,A) \to \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

Moreover, the last map is an isomormphism, hence injective, thus the map $H_1(X,A) \to \mathbb{Z}$

is 0. Thus, the kernel is everything, i.e. $H_1(X, A) \cong \mathbb{Z}/2\mathbb{Z}$. Thus, our long exact sequence becomess:

$$\cdots \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0 \to \cdots$$

Applying the torsion functor T, we have:

$$\cdots \to \underbrace{0}_{T_1(A)} \to \underbrace{0}_{T_1(X)} \to \underbrace{\mathbb{Z}/2\mathbb{Z}}_{T_1(X,A)} \to 0 \to \cdots$$

is not exact (the boundary maps are the natural ones from functoriality) as the image of the second map is trivial, but the kernel of the third map is $\mathbb{Z}/2\mathbb{Z}$. Thus, T fails the exactness axiom.

Similarly, applying the mod-torsion functor MT, we have:

$$\cdots \to \underbrace{\mathbb{Z}}_{MT_1(A)} \xrightarrow{2} \underbrace{\mathbb{Z}}_{MT_1(X)} \to \underbrace{0}_{MT_1(X,A)} \to 0 \to \cdots$$

(the 2 map is preserved as be modded nothing out). Again, this is not exact at $MT_1(X)$ as the image of the first map is $2\mathbb{Z}$ while the kernel of the second map is \mathbb{Z} . Thus, the mod-torsion functor does not satisfy the exactness axiom.

Problem 2.(2.3.5, with $G = \mathbb{Z}$) Regarding a cochain $\varphi \in C^1(X)$ as a function on paths in X to \mathbb{Z} , show that if φ is a cocycle, then

- 1. $\varphi(f \cdot g) = \varphi(f) + \varphi(g)$,
- 2. φ takes the value 0 on constant paths,
- 3. $\varphi(f) = \varphi(g)$ if $f \simeq_p g$, and
- 4. φ is a coboundary if and only if $\varphi(f)$ depends only on the endpoints of f for all paths f in X.

Solution.

1. Recall that a cochain $\varphi \in C^1(X)$ is a cocycle if $\delta \varphi = 0$. However, we have, by definition, for $\sigma : \Delta^2 \to X$ that:

$$\delta(\varphi)(\sigma) = \varphi(\delta\sigma) = 0$$

Thus, φ is 0 on all boundaries.

We construct $\sigma: \Delta^2 \to X$ with sides $[v_1, v_2] = f$, $[v_2, v_3] = g$ and $[v_1, v_3] = f \cdot g$ as follows:

Then, we have:

$$\varphi(\delta\sigma) = \varphi(g) - \varphi(f \cdot g) + \varphi(f) = 0$$

Thus, we have $\varphi(f \cdot g) = \varphi(f) + \varphi(g)$.

2. Let id_e be the constant path at point $e \in X$. The constant path is the boundary of the 2-simplex $\sigma : \Delta^2 \to X$ with all vertices mapped to e (thus all edges constant paths id_e). Then, we have:

$$\varphi(\delta\sigma) = \varphi(\mathrm{id}_e) - \varphi(\mathrm{id}_e) + \varphi(\mathrm{id}_e) = 0$$

Thus, $\varphi(\mathrm{id}_e) = 0$.

3. If $f \simeq_p g$ are paths from x_0 to x_1 , then we can construct two 2-simplices as in the diagram:

with $[v_1, v_2] = f$, $[v_1, v_3] = \psi$, $[v_1, v_4] = id_{x_0}$, $[v_2, v_3] = id_{x_1}$, and $[v_3, v_4] = -g$. Then, we have:

$$\varphi(\delta(\sigma_{1} + \sigma_{2})) = \varphi([v_{2}, v_{3}]) - \varphi([v_{1}, v_{3}]) + \varphi([v_{1}, v_{3}]) + \varphi([v_{3}, v_{4}]) - \varphi([v_{1}, v_{4}]) + \varphi([v_{1}, v_{3}])
= \varphi(\mathrm{id}_{x_{1}}) - \varphi(\psi) + \varphi(f) + \varphi(-g) - \varphi(\mathrm{id}_{x_{0}}) + \varphi(\psi)
= \varphi(f) - \varphi(g)
= 0$$

Thus,

$$\varphi(f) = \varphi(g)$$

Note that I assumed $\varphi(-g) = -\varphi(g)$, which can be avoided by swapping v_3 and v_4 and just having $[v_3, v_4] = g$, but also, we implicitly use $[v_i, v_j] = -[v_j, v_i]$ often.

Note that also these three parts together imply that $\varphi(f^{-1}) = -\varphi(f)$, since $f \cdot f^{-1} \simeq_p id_{x_0}$, and then $\varphi(f^{-1}) + \varphi(f) = \varphi(id_{x_0}) = 0$, where x_0 is the start point of f.

4. If φ is a coboundary there exists a 0-cochain $\psi \in C^0(X)$ such that $\varphi = \delta \psi$. Thus, for $f: \Delta^1 \to X$ with endpoints x_0 and x_1 , we have:

$$\varphi(f) = \delta \psi(f)$$

$$= \psi(\delta f)$$

$$= \psi(x_1) - \psi(x_0)$$

Thus, $\varphi(f)$ depends only on the endpoints of f.

Conversely, assume $\varphi(f)$ depends only on the endpoints of f. Let X' be a path-connected component. Pick a basepoint $x \in X'$. Then, for any $x' \in X'$, we can construct a path $f_{x'}: \Delta^1 \to X'$ from x to x'. Then, we define $\psi: X' \to \mathbb{Z}$ by:

$$\psi(x') := \varphi(f_{x'})$$

since $\varphi(f)$ depends only on the endpoints, this is well-defined. Similarly, we do this for all path-connected components of X. Then, if f is a path from x_0 to x_1 in path-connected component with basepoint x, we construct f_1 and f_2 , paths from x to x_1 and x_2 , respectively. Then, we have:

$$\varphi(f) = \varphi(f_1^{-1} \cdot f_2)$$

$$= -\varphi(f_1) + \varphi(f_2)$$

$$= -\psi(x_1) + \psi(x_2)$$

$$= \psi(\delta f)$$

$$= \delta \psi(f)$$

Thus, φ is a coboundary.

Problem 3. Verify the remark in Hatcher after exercise 2.3.5: If X is path-connected, the previous problem together with the universal coefficient theorem induces an isomorphism $H^1(X) \cong \text{Hom}(\pi_1(X), \mathbb{Z})$.

Solution. We calculate $Ext^1(H_0(X), \mathbb{Z})$. This represents the isomorphism classes of extensions:

$$0 \to \mathbb{Z} \to A \to H_0(X) \to 0$$

Since X is path-connected, we have $H_0(X) \cong \mathbb{Z}$. Thus, there are no extensions and $Ext^1(H_0(X),\mathbb{Z}) = 0$. Then, note the universal coefficient theorem gives us the exact sequence:

$$0 \to H^1(X) \to \operatorname{Hom}(H_1(X), \mathbb{Z}) \to 0$$

Thus, we have $H^1(X) \cong \text{Hom}(H_1(X), \mathbb{Z})$.

Define $\Phi: Z^1(X) \to \operatorname{Hom}(\pi_1(X), \mathbb{Z})$ as follows:

$$\Phi(\varphi)([\gamma]) = \varphi(\gamma)$$

where $\varphi \in Z^1(X)$ is a cocycle and $[\gamma] \in \pi_1(X)$. This is well-defined by part (3), and a homomorphism by part (1) and (2) of the previous problem. We claim that Φ is surjective.

Let $\rho: \pi_1(X) \to \mathbb{Z}$ be a homomorphism. We define a cocycle $\varphi \in Z^1(X)$ for path f from x_1 to x_2 as follows. Let $\alpha_{x_1}, \alpha_{v_2}$ be paths from x_0 (the basepoint of $\pi_1(X)$) to x_1 and x_2 , respectively. Then, we define:

$$\varphi(f) = \rho([\alpha_{x_1} \cdot f \cdot \alpha_{x_2}^{-1}])$$

One can verify this is a cocycle. Let $\sigma: \Delta^2 \to X$ be a 2-simplex with sides $[v_1, v_2], [v_2, v_3]$ and $[v_3, v_1]$. Then,

$$\begin{split} \varphi(\delta\sigma) &= \rho([\alpha_{v_2} \cdot [v_2, v_3] \cdot \alpha_{v_3}^{-1}]) - \rho([\alpha_{v_1} \cdot [v_1, v_3] \cdot \alpha_{v_3}^{-1}]) + \rho([\alpha_{v_1} \cdot [v_1, v_2] \cdot \alpha_{v_2}^{-1}]) \\ &= \rho([\alpha_{v_2} \cdot [v_2, v_3] \cdot \alpha_{v_3}^{-1} \cdot \alpha_{v_3} \cdot [v_3, v_1] \cdot \alpha_{v_1}^{-1} \cdot \alpha_{v_1} \cdot [v_1, v_2] \cdot \alpha_{v_2}^{-1}]) \\ &= \rho([\alpha_{v_2} \cdot [v_2, v_3] \cdot [v_3, v_1] \cdot [v_1, v_2] \cdot \alpha_{v_2}^{-1}]) \\ &= \rho([\alpha_{v_2} \cdot \mathrm{id}_{v_2} \cdot \alpha_{v_2}^{-1}]) \\ &= \rho(\mathrm{id}_{v_2}) = 0 \end{split}$$

Thus, φ is a cocycle and Φ is surjective.

Next, we investigate $\ker(\Phi)$. Assume $\Phi(\varphi) = 0$. Then $\varphi(\gamma) = 0$ for all $\gamma \in \pi_1(X)$. Then, φ trivially depends only on the endpoints of γ , thus is a coboundary by part (4) of the previous problem. Thus, $\ker(\Phi) \subseteq B^1(X)$. Moreover, if φ is a coboundary, it depends only on the endpoints of any path. Thus, as paths in $\pi_1(X)$ are loops, φ is constant on $\pi_1(X)$. Thus, $\varphi(\gamma) = \varphi(\mathrm{id}) = 0$ for all $\gamma \in \pi_1(X)$. Thus, $B^1(X) \subseteq \ker(\Phi)$. Thus, $\ker(\Phi) = B^1(X)$.

Then, by the first isomorphism theorem, we have:

$$H^1(X) = Z^1(X)/B^1(X) \cong \operatorname{Hom}(\pi_1(X), \mathbb{Z})$$