Modelling and Simulation of Rotorcraft

CONTROL Y PROGRAMACIÓN DE ROBOTS

Grado en Electrónica, Robótica y Mecatrónica

Outline

- 1. Introduction
- 2. Kinematic model
- 3. Dynamic model
- 4. Simulations

Introduction

Thrusts as result of wings rotation:

- Wings with variable pitch angle:
 - Constant rotation speed
 - Magnitude and direction of the thrust depends on:
 - Longitudinal and lateral cyclic
 - Collective
- Wings with fixed pitch angle:
 - Variable rotation speed
 - Thrust perpendicular to the rotation axis.

Introduction

Some features:

Nonlinear, high-coupled multivariable systems

Unstable systems

Usually, underactuated mechanical systems

- 6 DOF: 3D location and attitude
- Number of actuators: depends on the specific rotorcraft

Capable of hovering motion

Narrow speed range: up to 240 knots (≈120 m/s)

Introduction

Necessity of modelling:

For control purposes:

- Control laws based on models
- Simplified models to obtain main features
- Nonlinear models for control needed if attraction basis must be enlarged (e.g., for acrobatic motions)

For simulation purposes:

- Mechanical design (out of the scope of this course)
- Evaluation of control performance
- Training

FMS Flight Simulator – DraganFly Quadrotor

Outline

- 1. Introduction
- 2. Kinematic model
- 3. Dynamic model
- 4. Simulations

Rotorcraft kinematics

Coordinates frames:

Degrees of freedom:

Translation:

- Translation:
$$\vec{P}_B = \begin{pmatrix} X_B & Y_B & Z_B \end{pmatrix}^T$$

$$\vec{\eta} = (\varphi \quad \theta \quad \psi)^T$$

$$R_{B} = \begin{pmatrix} c \theta c \psi & s \varphi s \theta c \psi - c \varphi s \psi & c \varphi s \theta c \psi + s \varphi s \psi \\ c \theta s \psi & s \varphi s \theta s \psi + c \varphi c \psi & c \varphi s \theta s \psi - s \varphi c \psi \\ -s \theta & s \varphi c \theta & c \varphi c \theta \end{pmatrix}$$

Rotorcraft kinematics

<u>Linear velocities:</u> $\vec{V_B} = \frac{d\vec{P_B}}{dt}$

$${}^{B}\vec{V}_{B} = \begin{pmatrix} V_{BX} \\ V_{BY} \\ V_{BZ} \end{pmatrix}$$

In the Inertial frame:

$$^{I}\vec{V_{B}} = ^{I}R_{B}^{B}\vec{V_{B}}$$

In the Body frame:
$$\vec{\Omega}_B = \begin{pmatrix} p \\ q \\ r \end{pmatrix}$$

$$\vec{\Omega}_{B} = \begin{bmatrix} 1 & 0 & -s\theta \\ 0 & c\phi & s\phi c\theta \\ 0 & -s\phi & c\phi c\theta \end{bmatrix} \vec{\phi}$$

$$\begin{split} \dot{\vec{\eta}} &= W_{\eta}^{-1} \vec{\Omega}_{B} \\ W_{\eta}^{-1} &= \begin{pmatrix} 1 & s\varphi t g\theta & c\varphi t g\theta \\ 0 & c\varphi & -s\varphi \\ 0 & s\varphi \sec\theta & c\varphi \sec\theta \end{pmatrix} \end{split}$$

Outline

- 1. Introduction
- 2. Kinematic model
- 3. Dynamic model
- 4. Simulations

Rotorcraft dynamics

Modules for simulation purposes:

$$ec{T}_b = egin{bmatrix} T_x \ T_y \ T_z \end{bmatrix} & ec{ au}_b = egin{bmatrix} au_{\phi} \ au_{ heta} \ au_{\psi} \end{bmatrix}$$

Rotorcraft dynamics

Low level control of actuators included for simulation purposes:

Usually, modelled as fast second order dynamic systems

State space description to provide initial conditions

Rotorcraft dynamics

Rotary wing dynamics:

 $\begin{array}{c} R_r \\ \hline \omega_r \\ \hline \end{array} \begin{array}{c} Rotary \\ Wing \\ Dynamics \\ \hline \end{array} \overrightarrow{\tau}_r$

- Visited in the preceding block.
- Use of complex/simplified expressions depending on the required degree of complexity, operation conditions, ...
- Complex expressions may affect simulation times of computation significantly.
- Static models for simulations.
- Examples:

Fixed-pitch-angle blades

$$\vec{f}_r \approx c_t \rho \omega_r^2 \vec{n}$$

$$\vec{\tau}_r \approx c_{drag} \rho \omega_r^2 \vec{n}$$

$$\vec{n} = (0 \quad 0 \quad 1)^T$$

Regulated-speed rotors

$$\vec{f}_r \approx \left(c_{t1}\rho\omega_r^2\theta_0 + c_{t2}\omega_r\right)\vec{n}$$

$$\vec{\tau}_r \approx \left(c_{drag}\rho\omega_r^2 + c_v\omega_r\theta_0\right)\vec{n}$$

$$\vec{n} = \left(s\theta_{1s}c\theta_{1c} + c\theta_{1s}s\theta_{1c} + c\theta_{1s}c\theta_{1c}\right)^T$$

 $\theta_0, \theta_{1s}, \theta_{1c}$: Collective angle, longitudinal pitch angle, and lateral pitch angle

Rotorcraft dynamics

Force and moment generation process:

Resulting thrusts/torques (f_{ri} / τ_{ri}) cause forces/torques (T_{bi} / τ_{bi}) on the rotorcrafts center of mass, depending on the configuration.

Force &

Moment Generation

- Single main rotor helicopters
- Tandem rotors helicopters
- Quad rotors helicopters
- Tilt rotor helicopters

Rotorcraft dynamics

Rigid body dynamics:

Newton-Euler formulation (writing with respect to Body coordinate frame)

Newton's equations (forces on com)

$$m^B \dot{\vec{V}}_B + \vec{\Omega}_B \times m^B \vec{V}_B = \sum_i \vec{T}_{bi} + \sum_i \vec{F}_{Aerodynamics}$$

Euler's equations (torques on com)

$$I\dot{\vec{\Omega}}_{B} + \vec{\Omega}_{B} \times I \vec{\Omega}_{B} = \sum_{i} \vec{\tau}_{bi} + \sum_{i} \vec{\tau}_{Aerodynamics}$$

$$ec{F}_{Aerodynamics}$$

- Vertical stabilizer
- Horizontal stabilizer
- Fuselage
- .

Inertia matrix with respect to body frame

$$I = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{pmatrix}$$

$$I_{ij} = \int_{V_h} \rho_h \left(\delta_{ij} \left(\sum_i d_i^2 \right) - d_i d_j \right) dV_h$$

Rotorcraft dynamics

Rigid body dynamics:

State space equations:

$$\begin{pmatrix} \dot{\vec{P}}_{B} \\ {}^{I}\dot{\vec{V}}_{B} \\ \dot{\vec{\eta}} \\ \dot{\vec{\Omega}}_{B} \end{pmatrix} = \begin{pmatrix} {}^{I}\vec{V}_{B} \\ \frac{1}{m}{}^{I}R_{B} \bigg(\sum_{i}\vec{T}_{bi} + \sum_{i}\vec{F}_{Aerodynamics} \bigg) \\ W_{\eta}^{-1}{}^{B}\vec{\Omega}_{B} \\ I^{-1} \bigg(\sum_{i}\vec{\tau}_{bi} + \sum_{i}\vec{\tau}_{Aerodynamics} - \vec{\Omega}_{B} \times I \vec{\Omega}_{B} \bigg)$$

By "numerical" integration of accelerations, velocities and positions are computed

(Simulink on Matlab)

Rotorcraft dynamics

Structure of the rigid body dynamics:

By defining:
$$\vec{q} = \begin{pmatrix} \vec{P}_B \\ \vec{n} \end{pmatrix} = \begin{pmatrix} X_B & Y_B & Z_B & \varphi & \theta & \psi \end{pmatrix}^T$$

Rigid Body Dynamics ${}^{I}R_{B}$, ${\overset{\circ}{\Omega}}_{I}$

Dynamics equations can we written as:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = B(q)\Gamma + \Gamma_{Aerodynamics}$$

M(q): Dynamic matrix

 $C(q,\dot{q})$: Centrifugal and Coriolis matrix

G(q): Gravitational vector

B(q): Input matrix

 Γ : Generalized torques

Important properties for controllers synthesis!

Outline

- 1. Introduction
- 2. Kinematic model
- 3. Dynamic model
- 4. Simulations

Simulations

Dynamic model as a unique system:

Simulations

Simulation including control:

Feedback information

Simulations

Case study: PLANAR TWIN-ROTOR HELICOPTER (balanced)

Parameter description	Parameter	Value
Mass of the helicopter	m	2.24 kg
Distance between mass center and rotors	l	0.332 m
Thrust coefficient of the rotors	b	9.5e-6 N.s ²
Drag coefficient of the rotors	k_{t}	1,7e-7 Nm.s ²
Moment of inertia	I_{yy}	0,0363 kg.m ²

Control signals dynamics and saturations:

$$\omega_{r \max} = 10.000 \, rpm$$
 $\omega_{r \min} = 100 \, rpm$

$$\omega_r^{ref} = \frac{1}{\left(0.04s + 1\right)^2} \,\omega_r$$

Aerodynamics frictions:

$$\left| \vec{F}_{Aerodynamics} \right| = \frac{1}{2} \rho f \left| \vec{V}_{B} \right| \qquad \rho \approx 1.2 \, kg / m^{3}$$

Equivalent flat-plate area: $f \approx 0.1m$

Simulations

Case study: QUAD-ROTOR HELICOPTER (balanced)

Parameter Description	Parameter	Value
Mass of the QuadRotor helicopter	m	2.24 kg
Distance between the mass center and the rotors	1	0.332 m
Thrust coefficient of the rotors	b	$9.5e - 6 Ns^2$
Drag coefficient of the rotors	k_{τ}	$1.7e - 7 Nms^2$
Gravitational acceleration	g	$9.81 m/s^2$
Moment of inertia around the x-axis	I_{xx}	$0.0363~Kg.m^2$
Moment of inertia around the y-axis	I_{yy}	$0.0363 \ Kg.m^2$
Moment of inertia around the z-axis	I_{zz}	$0.0615 Kg.m^2$

Control signals dynamics and saturations:

$$\omega_{r\text{max}} = 10.000 \, rpm$$

$$\omega_{r\text{min}} = 100 \, rpm$$

$$\omega_r^{ref} = \frac{1}{\left(0.04s + 1\right)^2} \, \omega_r$$

Aerodynamics frictions:

$$\left| \vec{F}_{Aerodynamics} \right| = \frac{1}{2} \rho f \left| \vec{V}_{B} \right| \qquad \rho \approx 1.2 \, kg / m^{3}$$

Equivalent flat-plate area: $f \approx 0.1m$

Simulations

Case study: QUAD-ROTOR HELICOPTER (unbalanced)

Parameter Description	Parameter	Value
Mass of the QuadRotor helicopter	m	2.24 kg
Distance between the mass center and the rotors	1	0.332 m
Thrust coefficient of the rotors	b	$9.5e - 6 Ns^2$
Drag coefficient of the rotors	k_{τ}	$1.7e-7 Nms^2$
Gravitational acceleration	g	$9.81 m/s^2$
Moment of inertia around the x-axis	I_{xx}	$0.0363~Kg.m^2$
Moment of inertia around the y-axis	I_{yy}	$0.0363~Kg.m^2$
Moment of inertia around the z-axis	I_{zz}	$0.0615 Kg.m^2$
Position of the center of mass in <i>x</i> from the body-fixed frames	r_{x}	-0.00069 m
Position of the center of mass in y from the body-fixed frames	r_y	-0.0014 m
Position of the center of mass in z from the body-fixed frames	r_z	-0.0311 m

Control signals dynamics and saturations:

$$\omega_{r \max} = 10.000 \, rpm$$

$$\omega_{r \min} = 100 \, rpm$$

$$\omega_{r}^{ref} = \frac{1}{\left(0.04 \, s + 1\right)^{2}} \, \omega_{r}$$

Aerodynamics frictions:

$$\left| \vec{F}_{Aerodynamics} \right| = \frac{1}{2} \rho f \left| \vec{V}_{B} \right| \qquad \rho \approx 1.2 \, kg / m^{3}$$

$$f \approx 0.1 m$$

Simulations

Case study: Single main rotor helicopter

Param.	Value
M	4,9 kg
I_{x}	0,1424 kg.m ²
I_y	0,2712 kg.m ²
I_z	0,2715 kg.m ²
l_M	0,015 m
h_M	0,294 m
y_M	0 m
l_T	0,871 m
h_T	0,115 m

Propulsion models:

$$\begin{aligned} \left| \vec{f}_{M} \right| &= \left(6.4578 \theta_{M0} + 100.3752 \theta_{M0}^{3} \right) \\ \left| \vec{f}_{T} \right| &= \left(1.837 \theta_{T0} + 1.545 \theta_{T0}^{3} \right) \end{aligned} \qquad \vec{\tau}_{M} = \begin{pmatrix} 25.23 \theta_{M1s} - \tau_{MDrag} \sin(\theta_{M1s}) \\ 25.23 \theta_{M1c} + \tau_{MDrag} \sin(\theta_{M1s}) \\ -\tau_{MDrag} \cos(\theta_{M1c}) \cos(\theta_{M1c}) \end{pmatrix}$$

$$\tau_{MDrag} = 0.004452 \left| \vec{f}_{M} \right|^{1.5} + 0.6304$$

$$\tau_{TDrag} = 0.005066 \left| \vec{f}_{T} \right|^{1.5} + 0.008488 \qquad \vec{\tau}_{T} = \begin{pmatrix} 0 \\ \tau_{TDrag} \\ 0 \end{pmatrix}$$

Control signals dynamics:

$$\theta_i^{\textit{ref}} = \frac{1}{\left(0.01s+1\right)^2} \, \theta_i \;\; , \; i = 0, 1s, \; 1c \label{eq:theta_interpolation}$$

Control signals saturations:

$$\begin{aligned} & \left| \theta_{_{M1s}} \right| \leq 0.4363 \, rad & -0.5556 \, rad \leq \theta_{_{M0}} \leq 0.8604 \, rad \\ & \left| \theta_{_{M1c}} \right| \leq 0.3491 \, rad & -1.240 \, rad \leq \theta_{_{T0}} \leq 1.240 \, rad \end{aligned}$$