目 录

一、河湖健康评价表3
(一) 河湖健康评估基准情景表 3
(二)河湖健康评估分级表 3
(三) 河流健康评估指标体系表4
二、目标层河段生态完整性状况5
三、水文水资源指标(HYDROLOGY, HD)6
(一)流量过程变异程度(FD)6
(二) 生态流量满足程度(EF)6
四、物理结构指标(PHYSICAL FORM, PF)7
(一)河岸带状况(RS)7
(二)河流连通阻隔状况(RC)10
(三) 天然湿地保留率 (NWL)11
(四)物理结构准则层赋分11
五、水质指标(WATER QUALITY, WQ) 12
(一) 水温变异状况 (WTC)12
(二) DO 水质状况(DO)13
(三) 耗氧有机污染状况(OCP)13
(四) 重金属污染状况 (HMP)14
(五)水质准则层赋分(WQ)14
六、生物指标(AQUATIC LIFE, AL) 15
(一) 底栖动物完整性指数 (BIBI) 15

(=)	鱼类生物损失指数 (FOE)	16
(三)	生物准则层赋分(AL)	16
七、社	上会服务功能指标(SOCIAL SERVICES, SS)	17
(-)	水功能区达标指标 (WFZ)	17
(=)	水资源开发利用指标(WRU)	17
(三)	防洪指标 (FLD)	17
(四)	公众满意度指标(PP)	18
(五)	社会服务功能准则层赋分(SS)	18

一、河湖健康评价表

(-)

表 1-1 河湖健康评估基准情景表

参照状况	说明	特征
最小干扰状态(MDC)	无显著人类活动干扰条 件下	考虑自然变动、随时间变化 小
历史状态(HC)	某一历史状态	有多种可能,可以根据需要 选 择某个时间节点
最低干扰状态(LDC)	区域范围内现有最佳状态, 也即区域内最佳的 样 板河段	具有区域差异,随着河道退 化 或生态恢复可能随时间变化
可达到的最佳状态 (BAC)	通过合理有效的管理调 控等可达到的最佳状况, 也即期望状态	主要取决于人类活动对区域的干扰水平。BAC不应超越MDC,但也不应劣于LDC

 $(\underline{-})$

表 1-2 河湖健康评估分级表

等级	类型	颜色	赋分范围	说明
1	理想状况	蓝	80-100	接近参考状况或预期目标
2	健康	绿	60-80	与参考状况或预期目标有较小差异
3	亚健康	黄	40-60	与参考状况或预期目标有中度差异
4	不健康	橙	20-40	与参考状况或预期目标有较大差异
5	病态	红	0-20	与参考状况或预期目标有显著差异

(三)

表 1-3 河流健康评估指标体系表

目标层	准则层	河流指标层	代码	指标选 择	
	水文水资 源(HD)	量过程变异程度 生态流量保障程度 流域自选指标	FD EF	必选 必选	
	物理结构 (PF)	河岸带状况河流连通阻隔状况 天然湿地保留率 流域自选指标	RS RC NWL	必选	
河流健康	水质 (WQ)	水温变异状况 DO 水质状况 耗氧有机污染状况 重金属污染状况 流域自选指标	WT DO OCP HMP	必选	
	生物 (AL)	大型无脊椎动物生物 完整性指数 鱼类生物损失指数 流域自选指标	BMIBI FOE	必选	
		社会服务 功能(SS)	水功能区达标指标 水资源开发利用指标 防洪指标 公众满意度指标 流域自选指标	WFZ WRU FLD PP	必选 必选 必选

二、目标层——河段生态完整性状况

公式 1-1:

 $REI = HDr \times HDw + PHr \times PHw + WQr \times WQw + AFr \times AFw$

表 2-1 河流生态完整性评估公式变量说明表

变量	说明	权重	建议权重
HDr	水文水资源准则层赋分	HDw	0. 2
PHr	物理结构准则层赋分	PHw	0. 2
WQr	水质准则层赋分	WQw	0. 2
AFr	生物准则层赋分	AFw	0. 4
REI	生态完整性状况赋分		

公式 1-2:

河流生态完整性评估综合

$$REI = \sum_{n=1}^{N \sec ts} \left(\frac{REI_n \times SL_n}{RIVL} \right)$$

式中, REI 为评估河流赋分, REIn 为评估河段指标和准则层赋分, SLn 为评估河段河流长度 (Km), RIVL 为评估河流总长度 (km)。

公式 1-3:

河流健康评估

$$RHI = REI \times REw + SSI \times SSw$$

表 2-2 河流健康评估公式变量说明表

变量	说明	权重	建议权重
REI	生态完整性状况赋分	REw	0. 7
SSI	社会服务准则层	SSw	0. 3
RHI	河流健康目标层		

三、水文水资源指标(Hydrology, HD)

公式 2-1:

流量过程变异程度 (FD)

$$FD = \left\{ \sum_{m=1}^{12} \left(\frac{q_m - Q_m}{\overline{Q_m}} \right)^2 \right\}^{1/2}$$

$$\overline{Q}_m = \frac{1}{12} \sum_{m=1}^{12} Q_m$$

$$\overline{Q}_m$$

式中: qm 为评估年实测月径流量, Qm 为评估年天然月径流量, \overline{Q}_m 为评估年天然月径流量年均值, 天然径流量按照水资源调查评估相关技术规划得到的还原量。

公式 2-2:

生态流量满足程度 (EF)

$$EF1 = \min \left[\frac{q_d}{\overline{Q}}\right]_{m=4}^9, EF2 = \min \left[\frac{q_d}{\overline{Q}}\right]_{m=10}^3$$

式中: qd 为评估年实测日径流量, \overline{Q} 为多年平均径流量,EF1 为 4-9 月份日径流量占多年平均流量的最低百分比; EF 为 10-3 月份日径流量占多年平均流量的最低百分比。

公式 2-3:

水文水资源准则层赋分

$$HDr = FDr * FDw + EFr * EFw$$

表 3-1 水文水资源准则层赋分公式变量说明

河流指标层	赋分	赋分范 围	权重	建议权重
流量变异程度	FDr	0-100	FDw	0.3
生态流量保障程度	EFr	0-100	Efw	0. 7

四、物理结构指标(Physical Form, PF)

(一) 河岸带状况(RS)

1、河岸稳定性(BKS)

公式 3-1:

$$BKSr = \frac{SAr + SCr + SHr + SMr + STr}{5}$$

式中, BKSr 岸坡稳定性指标赋分, SAr 岸坡倾角分值; SCr 岸坡覆盖度分值; SHr 岸坡高度分值; SMr 河岸基质分值, STr 坡脚冲刷强度分值。

表 4-1 河岸稳定性评估分指标赋分标准

岸坡特征	稳定	基本稳定	次不稳定	不稳定
分值	90	75	25	0
斜坡倾角 (度) (<)	15	30	45	60
植被覆盖 率 (%) (>)	75%	50%	25%	0%
斜坡高度 (米) (<)	1	2	3	5
基质(类 别)	基岩	岩土河岸	黏土河岸	非黏土河岸
河岸冲刷 状况	无冲刷迹象	轻度冲刷	中度冲刷	重度冲刷
总体特征描述	近期内河岸不 会发生变形破 坏, 无水土流 失现象	河岸结构有松 有水土流失地 有水土流失地 电近期 会发生变形 破坏	河岸松动裂痕 发育 一以导致 一以导致 一次 中变形 中度 水 中度 水 , 流 失。	河岸水土流失 严重,随时变 化发生大 明 的 变

2、河岸植被覆盖度(RVS)

公式 3-2:

$$TCC = \frac{TC - TCR}{TCR}, SCC = \frac{SC - SCR}{SCR}, HCC = \frac{HC - HCR}{HCR}$$

式中, TCC、SCC、HCC 为乔木、灌木及草本植物覆盖度变化百分比, TC、SC、HC 为评估河段乔木、灌木及草本植物覆盖度, TCR、 SCR、 HCR 为评估河段所在生态分区参考点的乔木、灌木及草本植物覆盖度。

基于乔木、灌木及草本植物覆盖度变化状况计算各自赋分值,最后根据公式(3-2)计算河岸植被覆盖度指标赋分值。

公式 3-3:

$$RVSr = \frac{TCr + SCr + HCr}{3}$$

表 4-2 基于参考系标准的河岸植被覆盖度指标赋分标准

乔木覆盖度 变异状况	灌木覆盖度 变异状况	草本植被覆盖度 变异状况		
(TC-TCR) /TCR (<)	(SC-SCR) /SCR (<)	(HC-HCR) /HCR	赋分 	说明
5%	5%	5%	100	接近参考点状况
10%	10%	10%	75	与参考点状况有较小差 异
25%	25%	25%	50	与参考点状况有中度差 异
50%	50%	50%	25	与参考点状况有较大差 异
75%	75%	75%	0	与参考点状况有显著差 异

直接评估赋分方法: 乔木、灌木及草本植物覆盖度赋分标准

表 4-3 河岸植被覆盖度指标直接评估赋分标准

植被覆盖度 (乔木、灌木、草本)	说明	赋分
0	无该类植被	0

0-10%	植被稀疏	25
10%-40%	中度覆盖	50
40%-75%	重度覆盖	75
>75%	极重度覆盖	100

3、河岸带人工干扰程度 (RD)

表 4-4 河岸带人类活动赋分标准

		所在位置				
				河岸带邻近陆域 以内, 大河		
序号	人类活动类型	河道内(水边线以内)	河岸带	30m (小河 以内) 10m		
1	河岸硬性砌护		- 5			
2	采砂	- 30	- 40			
3	沿岸建筑物 (房屋)	- 15	- 10	- 5		
4	公路 (或铁路)	- 5	- 10	- 5		
	垃圾填埋场或垃圾堆					
5	放		- 60	- 40		
6	河滨公园		- 5	- 2		
7	管道	- 5	- 5	- 2		
8	农业耕种		- 15	- 5		
9	畜牧养殖		-10	-5		

4、河岸状况(RS) 指标赋分计算

公式 3-4:

RSr = BKSr * BKSw + BVCr * BVCw + RDr * RDw

指标 标记 分指标 标记 赋分范围 权重 建议权重 岸坡稳定性 0 - 100 0.25 BKSr **BKSw** 河岸植被覆盖率 河岸带状况 RSr BVCr0 - 100**BVCw** 0.5 河岸人工干扰程度 0 - 100 RDr RDw0.25

表 4-5 河岸带状况指标赋分公式变量说明表

(二) 河流连通阻隔状况(RC)

公式 3-5:

$$RCr = 100 + \min[(DAMr)_i, (GATEr)_i]$$

式中,RCr 为河流连通阻隔状况赋分;(DAMr)i 为评估断面下游河段大坝阻隔赋分(i=1,NDam),NDam 为下游大坝座数;(GATEr) j 为评估断面下游河段水闸阻隔赋分(j=1,NGate),NGate 为下游水闸座数。

	ル 1 0 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
鱼类迁移阻隔特征	水量及物质流通阻隔特征	赋分
无阻隔	对径流没有调节作用	0
有鱼道,且正常运行	对径流有调节,下泄流量满足生态基流	- 25
无鱼道,对部分鱼类 迁移有阻隔作用	对径流有调节,下泄流量不满足生态基流	- 75
迁移通道完全阻隔	部分时间导致断流	- 100

表 4-6 闸坝阻隔赋分表

(三) 天然湿地保留率(NWL)

公式 3-6:

$$NWL = \frac{\sum_{n=1}^{N_S} AW_n}{\sum_{n=1}^{N_S} AR_n}$$

式中, NWL 为天然湿地保留率, AW 为评估基准年天然湿地面积 (Km2), AWR 为历史 (1980s) 以前的湿地面积 (Km2), NS 为与评估河段有水力联系的湿地个数。

天然湿地保留率 赋分 说明 93% 100 接近参考状况 与参考状况有较小差异 86% 75 72% 50 与参考状况有中度差异 与参考状况有较大差异 44% 25 与参考状况有显著差异 16% 0

表 4-7 天然湿地保留率赋分标准表

(四) 物理结构准则层赋分

公式 3-7:

PFr = RSw * RSw + RCr * RCw + NWLr * NWLw

表 4-8 水文水资源准则层赋分公式变量说明

河流指标层	赋分	赋分范围	权重	权重
河岸带状况	RSr	0-100	RSw	0.5
河流连通阻隔状况	RCr	0-100	RCw	0. 25
湿地保留率	NWLr	0-100	NWLw	0. 25

五、水质指标(Water Quality, WQ)

(一) 水温变异状况 (WTC)

公式 4-1:

$$WT1 = Max(Tm - \overline{T}m)$$

式中, Tm 为评估年实测月均水温, Tm 为多年平均月均水温。也可以采用与评估河流指示物种(一般选用经济或土著鱼类)适宜水温低值及高值的最大偏离程度表达,计算公式如下:公式 4-2:

$$WT2 = Max(Tm - Thigh)$$

 $WT3 = Max(Tlow - Tm)$

式中, Tm 为评估年实测月均水温, Thigh 为指示物种适宜水温高值, Tmin 为指示物种适宜水温高值。

	衣 5 - 1	即分经济里关小血安水(牛位: 6)				
		适宜水温			开始不利	
种类	产卵水温	低值	高值	利	万始不利 低温	
		(TLow)	(Thigh)	高温		
青鱼				30	17	
草鱼	18℃以上	0.4	00	30	17	
鲢		24	28	0.7		
鳙				37		
鲤	17 以上	25	28		13	
鲫	15 以上			29		
罗非鱼	$23\sim~33$	20	35	45	10	
鲥鱼	27~ 30					

表 5-1 部分经济鱼类水温要求 (单位: \mathbb{C})

表 5-2 水温变异程度指标赋分标准

水温变 异指标	WT1 (℃) (<)	WT2	WT3	赋分
	1	满足适宜	宜水温要求	100
偏离程	2	1	刊高温及高 活温 0.5℃	50
度	3	高于不利高温及低 于不利低温 1℃		25
	4		可高温及低 低温 2℃	0

(二) DO 水质状况(DO)

表 5-3 DO 水质状况指标赋分标准

DO (mg/L) (>)	饱和率 90%(或 7.5)	6	5	3	2	0
DO 指标赋分	100	80	60	30	10	0

DO 为水体中溶解氧浓度,单位 mg/L。溶解氧对水生动植物十分重要,过高和过低的 DO 对水生生物均造成危害,适宜值为4-12mg/L

(三) 耗氧有机污染状况(OCP)

公式 4-3:

$$OC \Pr = \frac{(CODMNr + CODr + BODr + NH3Nr)}{4}$$

表 5-4 耗氧有机污染状况指标赋分标准

高锰酸盐指数 (mg/L)	2	4	6	10	15
化学需氧量(COD)(mg/L)	15	17. 5	20	30	40
五日生化需氧量(BOD5) (mg/L)	3	3. 5	4	6	10
氨氮(NH3-N) (mg/L)	0. 15	0.5	1	1.5	2
赋分	100	80	60	30	0

(四) 重金属污染状况(HMP)

公式 4-4:

HM Pr = Min(ARr, HGr, CRr, PBr)

表 5-5 重金属污染状况指标赋分标准

砷	0. 05		0. 1
汞	0. 00005	0.0001	0. 001
镉	0. 001	0. 005	0. 01
铬 (六价)	0. 01	0. 05	0. 1
铅	0. 01	0. 05	0. 1
赋分	100	60	0

(五) 水质准则层赋分(WQ)

公式 4-5:

$$WQr = Min(WTr, DOr, OC Pr, HM Pr)$$

式中, WQr 为水质准则层赋分, WTr 为水温变异指标赋分, DOr 为溶解氧状况指标赋分, OCPr 为耗氧有机污染状况指标赋分, HMPr 为重金属污染指标赋分。

六、生物指标(AQUATIC LIFE, AL)

(一) 底栖动物完整性指数 (BIBI)

表 6-1 河流底栖动物完整性评估指标

类群	编号	参数	含义
	1	No. Total Taxa	总物种数
			蜉蝣目、毛翅目和 翅目种
	2	No. EPT taxa	类数 襀
多样性	3	No. Ephemeropterataxa	蜉蝣目种类数
和丰富	4	No. Plecoptera taxa	襀翅目种类数
性	5	No. Trichoptera taxa	毛翅目种类数
			蜉蝣目、毛翅目和 翅目数
			量所占百 襀
	6	%EPT	分比
群落结	7	% Ephemeroptera	蜉蝣目数量所占百分比
构组成	8	%Chironomidae	摇蚊类数量所占百分比
	9	No. Intolerant Taxa	敏感类群数量所占百分比
			耐污类群数量所占百分比
	10	% Tolerant Organisms	比
耐污度			
(抗逆	11	Hisenhoff Biotic index(HBI)	Hisenhoff 生物指数
力)	12	% Dominant Taxon	优势类群数量所占百分比
	13	No. Clinger taxa	粘食者种类数
 营养结	14	% Clingers	粘食者数量所占百分比
构及生	15	%Filterers	滤食者数量所占百分比
境质量	16	%Scrapers	刮食者数量所占百分比

判别能力分析按照 Barbour 方法,分别比较参照系和受损系各个备选参数箱体 IQ (25%分位值至 75%分位值之间)的重叠程度,只有那些箱体没有重叠或有部分重叠,但各自中位数都在对方箱体范围之外的参数才有较强的判别能力,保留并作进一步分析使用。 冗余度分析是对剩余参数进行 Person 相关性分析,当几个参数之间相关系数 | r | >0.9 时,应保留其中一个,其余淘汰,最大限度地保证各参数反映信息的独立性。变异度分析是对剩余参数在参照系中的分布情况作进一步检验,看其变异性是否过大,能否稳定和准确地反映外界环境压力对水生态系统的胁迫程度, 只有那些变异度较小的参数才能最终用于 BIB 指数的构建。

评估参数分值计算

采用比值法来统一各入选参数的量纲。比值法计算方法为: 对于外界压力响应下降或减少的参数,以所有样点由高 到低排序的 5%的分位值作为最佳期望值,该类参数的分值等于 参数实际值除以最佳期望值;

对于外界压力响应增加或上升的参数,则以 95%的分位 值为最佳期望值,该类参数的分值等于(最大值-实际值)/(最 大值-最佳期望值)。

将各评估参数的分值进行加和,得到 BIB 指数值。以参照系 样点 BIB 值由高到低排序,选取 25%分位值作为最佳期望值, BIB 指数赋分 100

公式 5-1:

$$BIBr = \frac{BIB}{BIBE} \times 100$$

式中, BIBr 为评估河段底栖动物完整性指标赋分, BIB 为评估河段底栖动物完整性指标值, BIBE 为河流所在水生态分区底栖动物完整性指标最佳期望值。

(二) 鱼类牛物损失指数 (FOE)

公式 5-2:

$$FOE = \frac{FO}{FE}$$

式中, FOE 为鱼类生物损失指数, FO 为评估河段调查获得的鱼类种类数量, FE 为 1980s 以前评估河段的鱼类种类数量

表 6-2 鱼类生物损失指数赋分标准表

鱼类生物损失指数	FOE	1	0.85	0. 75	0.6	0.5	0. 25	0
指标赋分	F0Er	100	80	60	40	30	10	0

(三) 生物准则层赋分(AL)

公式 5-3:

$$ALr = Min(BIBIr, FOEr)$$

式中, ALr 为生物准则层赋分, BIBIr 为大型底栖无脊椎动物 BIB 指标赋分, FOEr 为鱼类生物损失指标赋分。

七、社会服务功能指标(Social services, SS)

(一) 水功能区达标指标(WFZ)

公式 6-1:

$$WFZr = WFZP * 100$$

式中, WFZr 为评估河流水功能区水质达标率指标赋分, WFZP 为评估河流水功能区水质达标率

(二) 水资源开发利用指标(WRU)

公式 6-2:

WRU = WU / WR

式中: WRU 为评估河流流域水资源开发利用率, WR 为评估河流流域水资源总量, WU 为评估河流流域水资源开发利用量。 公式 6-3:

$$WRUr = a*(WRU)^2 + b*(WRU)$$

式中, WRUr 为水资源利用率指标赋分, WRU 为评估河段水资源利用率, a、b 为系数, 分别为 a=1111.11, b=666.67。

(三) 防洪指标 (FLD)

公式 6-4:

$$FLD = \frac{\sum_{n=1}^{NS} (RIVL_n \times RIVWF_n \times RIVB_n)}{\sum_{n=1}^{NS} (RIVL_n \times RIVWF_n)}$$

式中,

FLD 为河流防洪指标:

RIVLn 为河段 n 的长度,评估河流根据防洪规划划分的河段数量;

RIVBn 根据河段防洪工程是否满足规划要求进行赋值: 达标,

RIVBn=1,不达标, RIVBn=0:

RIVWFn 为河段规划防洪标准重现期(如 100 年)

表 7-1 防洪指标赋分标准表

赋分	100	75	50	25	0
防洪指标 (FLD)	95%	90%	85%	70%	50%

(四)公众满意度指标 (PP)

公式 6-5:

$$P \Pr = \frac{\sum_{n=1}^{NPS} PERr * PERw}{\sum_{n=1}^{NPS} PERw}$$

式中, PPr 为公众满意度指标赋分, PERr 为有效调查公众总体评估赋分, PERw 为公众类型权重

表 7-2 公众类型赋分统计权重

	权重	
沿河居民	3	
12 1 1 1 2 1	河道管理者	2
非沿河居	河道周边从事生产活动	1. 5
民	民旅游经常来河道	
	旅游偶尔来河道	0

(五)社会服务功能准则层赋分(SS)

公式 6-6:

SSr = WFZr * WFZw + WRUr * WRUw + FLDRr * FLDRw + P Pr* PPw

式中, SSr 为社会服务功能准则层赋分, 其它变量说明如表 7-3 所示。

表 7-3 社会服务功能准则层赋分公式变量说明表

准则层	指标层	代码	赋分范围	权重	建议权重
社会服 务 功能	水功能区达标指标	WFZ	0 - 100	WFZw	0. 25
	水资源开发利用指标	WRU	0 - 100	WRUw	0. 25
	防洪指标	FLD	0 - 100	FLDRw	0. 25
	公众满意度指标	PP	0 - 101	PPw	0. 25