

Appendix B. Maximum Permissible Exposure

FCC ID: YUATLDPV00A1 Page No. : B1 of B4

Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: YUATLDPV00A1 Page No. : B2 of B4

Report No.: FR341816

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11a: 16.99dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)	Test Result
2.00	1.5849	16.9917	50.0229	0.015780	1	Complies

For 2.4GHz Band:

Antenna Type: Dipole Antenna

Max Conducted Power for IEEE 802.11g: 22.21 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
2.00	1.5849	22.2100	166.3413	0.052475	1	Complies

Module (FCC ID: PKRNVWE362) Frequency range: 824.2MHz

Antenna Type: Dipole Antenna (2dBi) Max Conducted Power: 31.21 dBm

EIRP power(dBm)	EIRP power(dBm) EIRP power(mW)		Limit of Power Density (\$) (mW/cm²)	
33.21	2094.1125	0.4168	0.549	

Module (FCC ID: PKRNVWE371) Frequency range: 824.2MHz

Antenna Type: Dipole Antenna (2dBi) Max Conducted Power: 32.5 dBm

EIRP power(dBm)	EIRP power(mW)	Total Power (mW)	Duty Cycle (%)	Power Density (S) (mW/cm²)	Limit of Power Density (\$) (mW/cm²)
34.5	2818.3829	2818.38	25	0.1402	0.549

Note: Source-based time-averaged EIRP = (DC/100)*EIRP

FCC ID: YUATLDPV00A1 Page No. : B3 of B4

CONCULSION:

Both of the WLAN function and module's function can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN (5G)+ Module (FCC ID: PKRNVWE362)

Therefore, the worst-case situation is 0.015780 / 1 + 0.4168 / 1 = 0.43258, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

WLAN (2.4G)+ Module (FCC ID: PKRNVWE362)

Therefore, the worst-case situation is 0.052475 / 1 + 0.4168 / 1 = 0.469275, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

WLAN (5G)+ Module (FCC ID: PKRNVWE371)

Therefore, the worst-case situation is 0.015780 / 1 + 0.1402 / 1 = 0.15598, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

WLAN (2.4G)+ Module (FCC ID: PKRNVWE371)

Therefore, the worst-case situation is 0.052475 / 1 + 0.1402 / 1 = 0.192675, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: YUATLDPV00A1 Page No. : B4 of B4