ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ _							
ПРЕПОДАВАТЕЛЬ							
профессор, д-р.т.н. должность, уч. степень, звание	подпись, дата	В.В.Фомин инициалы, фамилия					
должность, уч. степень, званис поднись, дата инициалы, фамилия							
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №2							
МЕТОД ЛИНЕЙНОЙ РЕГРЕССИИ							
Вариант 5							
по курсу: МЕТОДЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА							

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	4128		Воробьев В. А.
		подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

1	Введение	3
	1.1 Цель лабораторной работы	3
	1.2 Задание	3
2	Ход работы	4
3	Вывол	Ç

1 Введение

1.1 Цель лабораторной работы

Изучение основ организация работы с технологической платформой для создания аналитических решений KNIME, с использованием метода линейной регрессии.

1.2 Задание

Реализовать процесс линейного анализа, используя самостоятельно выбранный набор данных и инструменты аналитической платформы KNIME.

2 Ход работы

Для выполнения работы была взята задача исследовать наличие зависимости массы мозга от его объема.

На рисунке 2.1 представлена схема рабочего процесса для линейной регрессии.

Рисунок 2.1 - Схема в KNIME

Для лабораторной работы был взят набор данных, содержащий информацию о мозге человека. Датасет взят с Kaggle (URI - https://www.kaggle.com/datasets/anubhabswain/brain-weight-in-humans). Набор данных состоит из 238 записей со полями:

- 1) Пол. 0 мужчина, 1 женщина
- 2) Возраст. 0 до 18, 1 после
- 3) Обьем мозга в $c M^3$.
- 4) Вес мозга в граммах.

На рисунке 2.2 представлена настройка узла вычисления линейной зависимости. Линейная регрессия — это простая регрессия, которая описывается уравнением y=a+bx, где y - это зависимая переменная, а - свободный член линии, b – угловой коэффициент. В нашей модели а = 353.8568, а b = 0.2532.

Рисунок 2.2 - Узел Linear Regression Learner

Рисунок 2.3 - Статистика узла

На рисунке 2.4 представлен фрагмент результата прогнозирования. В столбце Brain Weight представлены исходные значения веса мозга, а в столбце Predication (Brain Weight) — прогнозируемые значения. Проанализировав результат, можно выявить следующую закономерность: чем больший объем имеет мозг, тем больше он весит.

#	RowID	Gender Number (integer)	~	Age Range Number (integer)	~		Brain Weight(grams) Number (integer)	Prediction (Brain Weight V
1	Row1	1		1		3738	1297	1,308.436
2	Row2	1		1		4261	1335	1,437.962
3	Row3	1		1		3777	1282	1,318.095
4	Row4	1		1		4177	1590	1,417.159
5	Row6	1		1		3785	1400	1,320.076
6	Row7	1		1		3559	1255	1,264.105
7	Row8	1		1		3613	1355	1,277.478
8	Row9	1		1		3982	1375	1,368.865
9	Row11	1		1		3993	1380	1,371.589
10	Row12	1		1		3640	1355	1,284.165
11	Row13	1		1		4208	1522	1,424.836
12	Row14	1		1		3832	1208	1,331.716
13	Row16	1		1		3497	1358	1,248.75
14	Row17	1		1		3466	1292	1,241.072
15	Row18	1		1		3095	1340	1,149.19
16	Row19	1		1		4424	1400	1,478.331
17	Row21	1		1		4046	1287	1,384.715
18	Row22	1		1		3804	1275	1,324.781
19	Row23	1		1		3710	1270	1,301.501
20	Row24	1		1		4747	1635	1,558.325
21	Row26	1		1		4036	1490	1,382.239
22	Row27	1		1		4022	1485	1,378.771
23	Row28	1		1		3454	1310	1,238.1
24	Row29	1		1		4175	1420	1,416.664
25	Row31	1		1		3796	1432	1,322.8
26	Row32	1		1		4103	1364	1.398.832

Рисунок 2.4 - Результаты прогнозирования

Коэффициент детерминации (R^2) имеет приближенное значение к \sim 0 . 6, что опровергают гипотезу о том, что масса мозга зависит от его размера.

Statistics - 3:19 - Numeric Sco					
File					
R ² :	0.645				
Mean absolute error:	56.39				
Mean squared error:	5,234.695				
Root mean squared error:	72.351				
Mean signed difference:	-11.143				
Mean absolute percentage error:	0.043				
Adjusted R ² :	0.645				

Рисунок 2.5 - Характеристики прогнозирования

На рисунке 2.6 представлена визуализация распределения данных. На горизонтальной оси откладываются значения объема головы в m^3 , а на вертикальной — масса мозга в граммах.

Рисунок 2.6 - Графики модели

3 Вывод

В результате анализа построенной модели линейной регрессии был получен коэффициент детерминации R^2 равный 0.651. Так как $R^2 < 0.8$, то можно сделать вывод, что изначальная гипотеза (масса мозга линейно связана с его объемом) - опровергнута.