

Predicting Housing Prices in Perth

Presented by Bharat Guturi

Project Overview and Source of Data

For someone who is contemplating to buy a house, this Project aims to predict the house prices in Perth based on the available historical data available.

The Data is sourced from:

https://www.kaggle.com/datasets/syuzai/perth-house-prices

Architecture diagram

Extract, Transform & load

- 1. Importing Dependencies
- 2. Storing CSV into Dataframe

	ADDRESS	SUBURB	PRICE	BEDROOMS	BATHROOMS	GARAGE	LAND_AREA	FLOOR_AREA	BUILD_YEAR	CBD_DIST	NEAREST_STN	NEAREST_STN_E
0	1 Acorn Place	South Lake	565000	4	2	2.0	600	160	2003.0	18300	Cockburn Central Station	1
1	1 Addis Way	Wandi	365000	3	2	2.0	351	139	2013.0	26900	Kwinana Station	4
2	1 Ainsley Court	Camillo	287000	3	1	1.0	719	86	1979.0	22600	Challis Station	1
3	1 Albert Street	Bellevue	255000	2	1	2.0	651	59	1953.0	17900	Midland Station	3
4	1 Aman Place	Lockridge	325000	4	1	2.0	466	131	1998.0	11200	Bassendean Station	2
$+\parallel$												+

3. Connecting to local database

```
load_dotenv()
protocol = 'postgresql'
username = os.environ.get('db_Username')
password = os.environ.get('db_Password')
host = 'localhost'
port = 5432
database_name = 'housing_db'
rds_connection_string = f'{protocol}://{username}:{password}@{host}:{port}/{database_name}'
engine = create_engine(rds_connection_string)
insp = inspect(engine)
```

4. Loading csv data using dataframe to SQL

```
prices_df.to_sql(name='Perth_housing',if_exists = 'append', con=engine, index=False)
```


Data Analysis

Data Cleaning:

Data Columns and datatypes

PRICE	int64
BEDROOMS	int64
BATHROOMS	int64
GARAGE	int64
LAND_AREA	int64
FLOOR_AREA	int64
BUILD_YEAR	int64
CBD_DIST	int64
NEAREST_STN_DIST	int64
DATE_SOLD	datetime64[ns]
POSTCODE	int64
LATITUDE	float64
LONGITUDE	float64
NEAREST_SCH_DIST	float64
NEAREST_SCH_RANK	int64
dtype: object	

Steps:

- Removal of rows containing null values in 'Nearest_SCH_RANK'
- 2. Changing the 'DATE_SOLD' column to 'MONTH_SOLD' and 'YEAR SOLD'

Box Plots

Filtered Data

Correlation Matrix

Correlation of Numerical Variables

Visualisation of Filtered Data as per the Price

Choosing the right Algorithm

Resulting Accuracy of various Models

	Model	R2 Score	Accuracy
0	RandomForestRegressor	0.851	87.652
5	DecisionTreeRegressor	0.711	83.590
3	Ridge	0.701	81.247
1	BayesianRidge	0.701	81.253
2	ElasticNet	0.121	63.371
4	SVR	-0.078	66.671

Random Forest Regressor

Decision Tree Regressor

Bayesian Ridge Regressor

SVR

Hyperparameter Tuning

```
# Use the random grid to search for best hyperparameters
# First create the base model to tune
# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of Levels in tree
\max depth = [int(x) \text{ for } x \text{ in np.linspace}(10, 110, num = 11)]
max depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10]
# Minimum number of samples required at each leaf node
min samples leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random arid
random grid = {'n estimators': n estimators,
               'max_features': max_features,
               'max depth': max depth,
               'min samples split': min samples split,
               'min samples leaf': min samples leaf,
               'bootstrap': bootstrap}
rf = RandomForestRegressor(random state = 42)
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = RandomizedSearchCV(estimator=rf, param distributions=random grid,
                              n iter = 10, scoring='neg mean absolute error',
                              cv = 3, verbose=2, random_state=42, n_jobs=-1,
                              return train score=True)
# Fit the random search model
rf_random.fit(X_train_scaled, y_train);
```

Best Parameters

```
rf_random.best_params_

{'n_estimators': 400,
  'min_samples_split': 10,
  'min_samples_leaf': 1,
  'max_features': 'sqrt',
  'max_depth': 60,
  'bootstrap': False}
```

Output

Model R2 Score Accuracy

0 best_random_forest 0.711 83.590

Web Application

Testing

Case Study: https://www.realestate.com.au/property-house-wa-tuart+hill-140995332

Thank you