두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Robo:Loop	제출자 성명	홍송은
참여 명단	전효재, 홍송은, 김사웅		
모임 일시	2025 년 07 월 01 일 16 시 40 분 ~ 17 시 40 분		
장소	온라인 구글 미팅	출석 인원	3
학습목표	 ROS 정기평가 대비를 위한 핵심 개념 및 실습 내용의 체계적 복습 주차별 강의 요약 자료를 바탕으로 주요 개념을 정리하고, 강의자료 및 실습 결과를 참고하여 보완 학습자료 작성 토픽, 서비스, 액션 등 ROS2 의 주요 통신 구조 및 구성요소의 개념과 동작 원리를 정리하여 이해도 향상 		
학습내용	● 김사웅(기초 범위) ○ 폰 노이만 구조: CPU, 메모리, 프로그램 구성 ○ 프로세스: 실행 중인 프로그램 (독립적 메모리) ○ 스레드: 프로세스 내 작업 단위 (자원 공유) ○ 메모리 구조: 코드, 데이터, 스택, 힙 ○ 중요 명령어: pwd, ls, cd, rm, chmod, sudo ○ IPv4: 32 비트, 브로드캐스트 지원 ○ IPv6: 128 비트, 멀티/애니캐스트 사용 ○ 센서: 외부 신호 감지 후 전기신호로 변환 ○ PWM 신호: 디지털로 아날로그 동작 구현 ○ IoT: 디바이스 간 네트워크 ○ 임베디드: 디바이스 내부의 제어용 컴퓨터 ○ 로봇 구성에는 기구부, 하드웨어부, 소프트웨어부가 있음 ○ 조인트 종류: 회전/직선/구면 등 다양한 관절 존재 ○ 좌표계: 직교, 원통, 구면		

- 전효재(입문 1 주차 범위))
 - o ROS1 vs ROS2 비교
 - ROS1: Master 노드 필수 (중앙 집중형)
 - ROS2: Master 노드 없음 (분산형, discovery 자동화)
 - ROS1: Linux 전용
 - ROS2: Linux, Windows, macOS, RTOS 등 멀티 플랫폼 지원
 - ROS1: 제한적
 - ROS2: DDS 기반으로 확장성, 실시간성, 보안성 우수
 - ㅇ 노드
 - ROS 시스템에서 기능을 수행하는 실행 단위 프로그램
 - o Message (통신 방법)
 - 토픽 비동기식, 여러 Subscriber 가 중복 구독 가능
 - 서비스 동기식, 1 대 1 통신
 - 액션션 동기/비동기 혼합형
 - 프로그래밍 규칙
 - Underlay
 - 기본 ROS2 설치 환경 또는 하위 워크스페이스
 - 수정 불가
 - Overlay
 - 기존 underlay 위에 덮어쓰는 상위 워크스페이스
 - 새로운 패키지를 추가하거나 수정
 - ㅇ 패키지
 - package.xml 메타 정보 포함 (신분증 역할)
 - setup.cfg 선언적 방식 (주로 사용되는 방식)
 - setup.py 프로그래밍 방식, 패키지 의존성을 해결 불가
 - 패키지 구성
 - argument_node 변수를 publish
 - operator_node -연산자를 Service 요청으로 calculator _node 에 전달
 - calculator node

토픽 Subscriber: argument_node → a, b 값 수신

서비스 Server: operator_node → 연산자 수신

연산 수행(결과값 반환) <-> checker_node

- checker_node 누적값이 도달해야 할 목표값을 설정
- rclpy
 - ROS 2 의 Python 클라이언트 라이브러리
 - Python 을 이용해서 노드를 생성, ROS 2 통신 기능 사용 가능하게 해줌
 - 멀티스레드 지원
- ROS2 계층구조

- User code
- rcl (rclcpp, rclpy)
- rmw
- rmw adapter
- Middleware
- 홍송은(입문 2 주차 범위)
 - 1. 액션 패키지
 - Goal State Machine 으로 액션 처리 상태를 관리

- 서버/클라이언트 동작 흐름
 - 클라이언트가 goal 전송
 - 서버가 실행, 중간 피드백 제공
 - 완료 시 result 전송
 - 중간에 취소 요청 가능
- 액션 인터페이스 구성
 - GOAL, RESULT, FEEDBACK
 - --- 로 구분하며 비워도 무관
- 명령어
 - ros2 action list, ros2 action send_goal, ros2 action status
- 2. 인터페이스 프로그래밍(응용_1) ex_calculator
- 패키지 설계 목적
 - a, b 입력값으로 계산 수행, 결과 누적
 - 누적값이 목표치 도달 시 액션으로 결과 전달
- 노드 구성
 - argument: a, b 토픽 퍼블리시
 - calculator: 토픽 수신 + 서비스 처리 + 액션 서버
 - operator: 사칙연산자 서비스 요청
 - 병렬 콜백 위해 ReentrantCallbackGroup 사용
 - QoS: RELIABLE, KEEP LAST, depth 10
- 기술 요소
 - 서비스 콜백(get arithmetic operator)로 연산 처리
 - 파라미터 서버: a, b 생성 범위 동적 제어
 - 실행 인자: argparse 사용
 - 런치 파일 실행: ros2 launch 로 다중 노드 실행 자동화
- 3. 인터페이스 프로그래밍(응용_2) Hangman
- 전체 구조
 - letter_publisher: 알파벳 순차 퍼블리시
 - word_service: 단어 설정 및 CheckLetter 응답

	 user_input: 문자 입력 → 서비스 요청 action_client/server: 진행 상황 추적 및 결과 반환 핵심 흐름 알파벳 입력 → 정답 여부 확인 → 상태 업데이트→ 액션 서버는 진행 상태를 피드백으로 전송→ 게임 종료 조건 충족 시 result 반환 ROS2 BAG 실습 목적: 토픽 데이터를 기록하여 나중에 재생. 테스트 자동화, 시뮬레이션 검증에 활용 명령어 기록: ros2 bag record -o turtle_bag /turtle1/cmd_vel 재생: ros2 bag play turtle_bag 정보: ros2 bag info turtle_bag
활동평가	전효재 입문 1 주차를 준비하면서 이전 스터디에서 학습했던 내용이 생각나면서 도움이 . 입문 1 주차에서는 Ros 의 개념이나 실행원리 등 큰 개념을 위주로 다루고있어서 각 부분의 특징을 위주로 학습하며 정리.이 개념을 학습해서 다음 스터디에서 다른 파트의 문제만들때 더 이해하기 쉬울 것으로 생각됨.
	홍송은 정기평가 대비를 위해 주차별 강의 요약과 강의 자료를 함께 복습하며 전체 흐름을 되짚는 시간을 가짐. 정리를 맡은 입문 2 주차에서는 패키지 및 인터페이스 구성의 구조적 이해에 집중하였다 . 과제에서도 해당 개념이 출제되었기에 큰 흐름 부터 세부적인 부분가지 꼼꼼히 정리함. 다음 시간에는 이를 바탕으로 전 범위를 아우르는 문제를 제작하여 시험 준비를 마무리할 계획임.
	김사웅 ROS2 기초 수업을 통해 로봇 시스템의 구성과 통신 구조를 이해했음. 리눅스 명령어와 파일 시스템 구조를 익히며 ROS2 환경에 대한 기반을 다졌고, DDS 기반 통신 방식과 ROS1 과의 차이점도 알게 되었음. 노드, 토픽, 서비스, 액션 등의 개념을 실습을 통해 체험하며 실제 동작 방식을 익혔음.

ROS 정기평가 대비 예상 문제 20 문항 출제 (객관식/서술형/코드형 포함) • 시험 범위 전체를 포괄하도록 구성 (노드, 토픽, 서비스, 액션, 파라미터 등) 과제 문제 유형별 난이도 분포를 고려하여 출제 • 각 문제에 대한 정답 및 풀이 과정을 정리하여, 스터디 시간에 설명 가능한 수준으로 준비 • ROS2 전체 범위 복습 및 실습 내용을 기반으로 주요 개념 최종 정리 • 작성한 예상 문제에 대해 상호 검토 및 질의응답을 통해 이해도 점검 향후 계획 • 마지막 스터디 통해 그동안의 학습 과정과 스터디 활동을 되돌아볼 예정 첨부 자료 4기 ROS2 기초 요약본 1. 컴퓨터 구조와 리눅스 스터디 화면 스터디 화면

