Stokastiske variable

Definitioner

Vi har tidligere set på sandsynligheder i stil med

$$P(\{en \ familie \ på \ tre \ har \ netop \ en \ datter\}),$$

men det ville være smart, hvis vi i udgangspunktet havde kvantificeret alle udfaldene, så vi i stedet for at opskrive hændelser, så blot kunne opskrive et tal. Til dette vil vi definere begrebet stokastisk variabel.

Definition 1.1. En stokastisk variabel er en funktion, der sender en hændelse af et stokastisk eksperiment over i et reelt tal.

En stokastisk variabel vil typisk betegnes med X.

Eksempel 1.2. Vi kaster en mønt to gange og lader X betegne antallet af gange, vi slår plat. Billedmængden (de værdier X kan tage) er $\{0, 1, 2\}$ og vi har følgende sandsynligheder for udfaldene af X:

$$P(X = 0) = \frac{1}{4}, \ P(X = 1) = \frac{1}{4}, \ P(X = 2) = \frac{1}{2}.$$

Som vi tidligere har nævnt, så kaldes disse sandsynligheder for fordelingen af X.

Eksempel 1.3. Vi lader X_1 være den totale levetid for en amerikansk mand og X_2 er levetiden for en amerikansk kvinde. Så gælder der, at billedmængderne for de to variable er $[0, \infty)$ og

$$P(X_1 \le 30) \approx 0.16$$

samt

$$P(X_2 \le 30) \approx 0.11.$$

Eksempel 1.4. Vi slår med en terning og lader X være antallet af øjne på terningen. Fordelingen af X vil så være givet ved

$$P(X = 1) = P(X = 2) = \dots = P(X = 6) = \frac{1}{6}.$$

Hvis fordelingen af en stokastisk variabel opfylder, at alle udfald af den stokastiske variabel er lige sandsynlige, så siger vi, at fordelingen af X er uniform eller symmetrisk, og vi skriver at $X \sim \text{Unif.}$

Eksempel 1.5. Vi ønsker at bestemme sandsynligheden for at få netop to seksere blandt seks kast. For at bestemme det, bruger vi multiplikationsprincippet til at bestemme, hvad sandsynligheden for at få to seksere i de to første kast og nul i resten. Det må være givet ved

$$P(\{seksere \ i \ netop \ de \ to \ første \ kast\}) = \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{5}{6}\right)$$
$$= \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^4$$

Vi skal nu tage højde for, at sekserne ikke nødvendigvis behøver at optræde i de to første kast. Vi skal derfor bestemme på hvor mange forskellige måder, vi kan flytte positionen af sekserne rundt. Dette er netop givet af binomialkoefficienten

$$\binom{6}{2}$$
,

derfor er sandsynligheden for at få netop to seksere i seks forsøg givet ved

$$P(\{netop\ to\ seksere\}) = {6 \choose 2} \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^4 \approx 0.2$$

Vi kan generalisere dette eksempel. Først skal vi bruge følgende definition:

Definition 1.6 (Bernoulli-stokastisk variabel). En stokastisk variabel X kaldes en Bernoulli-stokastisk variabel, hvis den har to udfald (ofte betegnet 0 og 1). Vi betegner X=1 som "succes" og X=0 som "fiasko". Sandsynligheden p=P(X=1) kaldes for sandsynlighedsparametren og vi skriver, at $X \sim \text{Ber}(p)$.

Definition 1.7 (Binomialfordelt stokastisk variabel). En stokastisk variabel, der beskriver antallet af successer af n på hinanden følgende Bernoulli eksperimenter med sandsynlighedsparameter p kaldes for en binomialfordelt stokastisk variabel, og vi skriver, at $X \sim B(n, p)$. X er defineret som den stokastiske variabel med fordelingsfunktion

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Argumentet går som i Eksempel 1.5. Sandsynligheden for k successer i de k første eksperimenter er

$$\underbrace{p \cdot p \cdots p}_{k \text{ gange}} \cdot \underbrace{(1-p) \cdot (1-p) \cdots (1-p)}_{n-k \text{ gange}} = p^k (1-p)^{n-k}.$$

Antallet af måder, vi kan flytte rundt på de k successer er $\binom{n}{k}$. Derfor fås sandsynligheden for nøjagtigt k successer i n forsøg som

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

Opgave 1

- i) Bestem en passende stokastisk variabel for udfaldet af to terningekast og bestem sandsynligheden for hvert udfald af variablen.
- ii) Bestem en passende stokastisk variabel for udfaldet af tre kast med en mønt og bestem sandsynlighederne for hvert udfald af variablen.
- iii) Slå op på en tilfældig side i en bog på 400 sider. Bestem en stokastisk variabel, der beskriver udfaldet af dette eksperiment og bestem sandsynligheden for hvert udfald.
- iv) Bestem en stokastisk variabel, der beskriver udfaldene af antal af døtre i en søskendeflok på tre og bestem sandsynligheden for hvert udfald.

Opgave 2

- i) Hvad er sandsynlighedsparametren for den Bernoulli-stokastiske variabel, der beskriver et møntkast
- ii) Hvad er sandsynlighedsparametren for den Bernoulli-stokastiske variabel, der beskriver et slag på mere end 2 med en terning.

Opgave 3

- i) Hvad er sandsynligheden for at slå nøjagtigt fem seksere på seks slag med en terning?
- ii) Hvad er sandsynligheden for at få mindst 3 seksere?
- iii) Hvad er sandsynligheden for at få mindre en 4 nøjagtigt 2 gange?

Opgave 4

Et præparat bruges til en bestemt behandling, og gives til 10 personer. Sandsynligheden for helbredelse er 20%.

- i) Hvad er sandsynligheden for, at to personer helbredes?
- ii) Hvad er sandsynligheden for, at alle personer helbredes?
- iii) Hvad er sandsynligheden for, at mindst 4 helbredes?