

Calcolo Differenziale

Eugenio Montefusco

03. I numeri complessi

$$x + a = 0$$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$

$$ax^2 + bx + c = 0$$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$

$$ax^{2} + bx + c = 0$$
 \Rightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$

$$ax^{2} + bx + c = 0$$
 \Rightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x^2 + 1 = 0$$

$$x + a = 0$$
 \Rightarrow $x = -a$

$$ax + b = 0$$
 \Rightarrow $x = -\frac{b}{a}$

$$ax^{2} + bx + c = 0$$
 \Rightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

$$x^2 + 1 = 0$$
 ?

Sia i tale che $i^2 = -1$, allora possiamo definire

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{IR}\}$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$(a+bi)+(c+di)=$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) =$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) = ac+adi+bdi+bdi^2 =$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) = ac+adi+bdi+bdi^2 = (ac-bd)+(ad+bc)i$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) = ac+adi+bdi+bdi^2 = (ac-bd)+(ad+bc)i$$

$$(a + bi)^{-1} =$$

Sia i tale che $i^2 = -1$, allora possiamo definire

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)\cdot(c+di) = ac+adi+bdi+bdi^2 = (ac-bd)+(ad+bc)i$$

$$(a+bi)^{-1} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

Per ogni $z = a + bi \in \mathbb{C}$ definiamo le seguenti quantità

Per ogni $z=a+bi\in \mathbb{C}$ definiamo le seguenti quantità coniugato di z

$$\overline{z} = \overline{a + bi} =$$

Per ogni $z = a + bi \in \mathbb{C}$ definiamo le seguenti quantità

coniugato di z

$$\overline{z} = \overline{a + bi} = a - bi$$

Per ogni $z = a + bi \in \mathbb{C}$ definiamo le seguenti quantità

coniugato di z

$$\overline{z} = \overline{a + bi} = a - bi$$

modulo di z

$$|z| =$$

Per ogni $z = a + bi \in \mathbb{C}$ definiamo le seguenti quantità

coniugato di z

$$\overline{z} = \overline{a + bi} = a - bi$$

modulo di z

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$$

$$z = a + bi$$

$$z = a + bi = r(\cos(\vartheta) + \sin(\vartheta)i)$$

$$z = a + bi = r(\cos(\vartheta) + \sin(\vartheta)i)$$

$$r^2 = a^2 + b^2$$
 $\vartheta = arctg\left(\frac{b}{a}\right)$

Formula di De Moivre

Se $z \in \mathbb{C}$ e vale

$$z = a + bi = r(\cos(\vartheta) + \sin(\vartheta)i)$$

Formula di De Moivre

Se $z \in \mathbb{C}$ e vale

$$z = a + bi = r(\cos(\theta) + \sin(\theta)i)$$

allora segue che

$$z^n = (a + bi)^n = r^n(\cos(n\vartheta) + \sin(n\vartheta)i)$$

Come si calcolano le soluzioni di $z^3 - 1 = 0$?

Come si calcolano le soluzioni di $z^3 - 1 = 0$? La formula di de Moivre ci permette di scrivere che

$$z^3 = 1 = 1(\cos(0) + \sin(0)i)$$

Come si calcolano le soluzioni di $z^3 - 1 = 0$? La formula di de Moivre ci permette di scrivere che

$$z^3 = 1 = 1(\cos(0) + \sin(0)i)$$

$$z = (\cos(0 + 2\pi k/3)) + \sin(0 + 2\pi k/3))i)$$
 $k = 0, 1, 2$

Come si calcolano le soluzioni di $z^3 - 1 = 0$? La formula di de Moivre ci permette di scrivere che

$$z^3 = 1 = 1(\cos(0) + \sin(0)i)$$

$$z = (\cos(0 + 2\pi k/3)) + \sin(0 + 2\pi k/3))i)$$
 $k = 0, 1, 2$

Protagonisti

Johann Carl Friedrich Gauss

1777 - 1855

Protagonisti

Abraham de Moivre

1667 - 1754

