Joint longitudinal models for dealing with missing at random data in trial-based economic evaluations

Andrea Gabrio¹, Rachael Hunter², Alexina J. Mason³, Gianluca Baio⁴

Department of Methodology and Statistics, Faculty of Health Medicine and Life Sciences, UM, NL

 2 Department of Primary Care and Population Health, UCL, UK 3 Department of Health Services Research and Policy, LSHTM, UK

⁴ Department of Statistical Science, UCL, UK

email: a.gabrio@maastrichtuniversity.nl GitHub page: https://github.com/AnGabrio

Session: Methodological aspects in health economic evaluation

Chair: Mathyn Vervaart

HEH1.Aud3 - EuHEA Conference, Friday 08 Jul 2022

Outline

- Introduction
- 2 Methods
- Simulation Study
- 4 Application: the MenSS trial
- 5 Discussion

Part 1

Introduction

Back to Table of content

- How much missingness?
 - If only few variables and small rates (e.g.< 5%) unlikely to affect results

- How much missingness?
 - If only few variables and small rates (e.g. $\!<5\%$) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent (different implications on inferences)

- How much missingness?
 - If only few variables and small rates (e.g. $\!<5\%$) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent (different implications on inferences)
- Why missingness occurred?

- How much missingness?
 - If only few variables and small rates (e.g. < 5%) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent (different implications on inferences)
- Why missingness occurred?
 - Random chance, individual characteristics observed/unobserved

- How much missingness ?
 - If only few variables and small rates (e.g. < 5%) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent (different implications on inferences)
- Why missingness occurred?
 - Random chance, individual characteristics observed/unobserved
- Different assumptions about the mechanism underlying missingness may have a strong impact on the validity of the analysis method
- Rubin's taxonomy (Rubin, 1986) groups the mechanisms into three classes
 - Missing Completely At Random missingness does not depend on observed/unobserved data
 - Missing At Random missingness does not depend on unobserved data given the
 observed data
 - Missing Not At Random missingness depends on unobserved data given the observed data

 Standard analyses at the aggregated level (e.g. QALYs and total costs) require pre-processing the (longitudinal) data collected from the study (ID)

Intended	data	set	(ID)

	Utilities						Costs			
i	t	u_0	u_1		u_J	c_0	c_1		c_J	
1	1	0.32	0.66		0.44	103	141		180	
2	2	0.33	0.54		0.61	101	434		511	
3	1	0.12	0.16		0.38	204	808		877	
4	2	0.41	0.47		0.72	35	50		90	
:	:	:	:	:	:	:	:	:	:	
n	2	0.49	0.55		0.88	16	12		22	

 In reality, utility/cost measurements for some individuals are missing at least at some occasions (CD)

	Intended data set (ID)									
	Utilities						Co	sts		
i	t	u_0	u_1		u_J	c_0	c_1		c_J	
1	1	0.32	0.66		0.44	103	141		180	
2	2	0.33	0.54		0.61	101	434		511	
3	1	0.12	0.16		0.38	204	808		877	
4	2	0.41	0.47		0.72	35	50		90	
:	:	:	:	:	:	:	:	:	:	
n	2	0.49	0.55		0.88	16	12		22	
	Collect the data Missingness occurs Collected data set (CD)									
			Utili	ties			Co	sts		
i	t	u_0	u_1		u_J	c_0	c_1		c_J	
1	1	0.32	0.66		0.44	103	141		180	
2	2	0.33	0.54		0.61	101	434		511	
3	1	0.12	_		_	204	_		_	
4	2	-	0.47		0.72	35	-		90	
:	:	:	:	:	:	:	:	:	:	

 Computation of aggregated quantities causes removal of follow-up data for the partially-observed cases (AD)

			Inte	ended	data se	et (ID)					
			Utili	ties			Co	sts			
i	t	u_0	u_1		u_J	c_0	c_1		c_J		
1	1	0.32	0.66		0.44	103	141		180		
2	2	0.33	0.54		0.61	101	434		511		
3	1	0.12	0.16		0.38	204	808		877		
4	2	0.41	0.47		0.72	35	50		90		
:	:	:	:	:	:	:	:	:	:		
n	2	0.49	0.55		0.88	16	12		22		
	Collect the data Missingness occurs										
			Coll	ected	data se	t (CD)				
			Utili	ties			Co	sts			
i	t	u_0	u_1		u_J	c_0	c_1		c_J		
1	1	0.32	0.66		0.44	103	141		180		

			Utili	ities		Co	sts		
i	t	u_0	u_1		u_J	c_0	c_1		c_J
1	1	0.32	0.66		0.44	103	141		180
2	2	0.33	0.54		0.61	101	434		511
3	1	0.12	_		_	204	_		_
4	2	_	0.47		0.72	35	-		90
÷	:	:	:	:	:	:	:	:	:
n	2	0.49	0.55		_	_	12		_

	Aggregated data set (AD)									
		Util	ities	Co	osts					
i	t	u_0	e	c_0	c					
1	1	0.32	0.47	103	424					
2	2	0.33	0.49	101	1046					
3	1	0.12	_	204	_					
4	2	-	-	35	-					
:	:			:						
n	2	0.49		_	_					

 When focus is on complete cases, baseline data for partially-observe cases are also discarded (ACD)

	Intended data set (ID)									
			Utili			Co	sts			
i	t	u_0	u_1	• • •	u_J	c_0	c_1		c_J	
1	1	0.32	0.66		0.44	103	141		180	
2	2	0.33	0.54		0.61	101	434		511	
3	1	0.12	0.16		0.38	204	808		877	
4	2	0.41	0.47		0.72	35	50		90	
:	:	:	:	:	:	:	:	:	:	
n	2	0.49	0.55		0.88	16	12		22	
			Coll	ected	data se	et (CD)			
			Utili	ties			Co	sts		
i	t	u_0	u_1		u_J	c_0	c_1	• • •	c_J	
1	1	0.32	0.66		0.44	103	141		180	
2	2	0.33	0.54		0.61	101	434		511	
3	1	0.12	_		_	204	_		_	
4	2	_	0.47	• • •	0.72	35	_		90	
:	:	:	:	:	:	:	:	:	:	
n	2	0.49	0.55		_	_	12		_	

	Aggregated complete data set (ACI						
•		Utilities			Costs		
	i	t	u_0	e	c_0	c	
	1	1	0.32	0.47	103	424	
	2	2	0.33	0.49	101	1046	
	:	:	:	:	:	:	
	$n^{(cc)}$	1	0.29	0.30	116	1156	
		pelt	y the e cases gregated Utili	n d data		data	
	i	t	u_0	e	c_0	c	
Calculate	1	1	0.32	0.47	103	424	
QALYs/Total costs	2	2	0.33	0.49	101	1046	
>	. 3	1	0.12	-	204	-	
Discard	4	2	-	-	35	_	
follow-up data	:	:	:		:		
ionow up data	n	2	0.49	_	_	_	

Some considerations ...

- Traditional trial-based CEAs are performed at the level of aggregated QALYs/Total costs despite the fact that collected data are longitudinal in nature
- This is not a problem with fully complete data as (e_i, c_i) are derived from (u_{ij}, c_{ij}) and therefore provide the same information in a "cross-sectional" setting
- This, however, is no longer true when missingness occurs since some longitudinal data are discarded and cannot be used in the analysis fitted at aggregated level
- Intuitively, addressing missing data at longitudinal level is more efficient since all observed data can be used to impute values/fit models

Some considerations ...

- Traditional trial-based CEAs are performed at the level of aggregated QALYs/Total costs despite the fact that collected data are longitudinal in nature
- This is not a problem with fully complete data as (e_i, c_i) are derived from (u_{ij}, c_{ij}) and therefore provide the same information in a "cross-sectional" setting
- This, however, is no longer true when missingness occurs since some longitudinal data are discarded and cannot be used in the analysis fitted at aggregated level
- Intuitively, addressing missing data at longitudinal level is more efficient since all observed data can be used to impute values/fit models

Question: How much does this matter?

Some considerations ...

- Traditional trial-based CEAs are performed at the level of aggregated QALYs/Total costs despite the fact that collected data are longitudinal in nature
- This is not a problem with fully complete data as (e_i, c_i) are derived from (u_{ij}, c_{ij}) and therefore provide the same information in a "cross-sectional" setting
- This, however, is no longer true when missingness occurs since some longitudinal data are discarded and cannot be used in the analysis fitted at aggregated level
- Intuitively, addressing missing data at longitudinal level is more efficient since all observed data can be used to impute values/fit models

Question: How much does this matter?

- Aim: Assess impact of addressing missing at different levels using alternative approaches in terms of bias/efficiency across a range of scenarios
- Focus on MAR assumption (standard assumption in CEAs) with only baseline outcome values as predictors (simplified setting)

Part 2

Methods

Back to Table of content

Missing data analysis methods in CEA

Review of popular approaches to handle missingness under standard linear regression analysis framework in trial-based CEA practice

- Case deletion methods
- Baseline imputation methods
- Joint aggregated models
- Joint longitudinal models

Case deletion methods

- Model fitted to the aggregated QALYs/Total costs (e_i, c_i) after processing utility/cost (u_{ij}, c_{ij}) data collected in the study (ACD or AD)
- Regression analysis is used to adjust for baseline variables, e.g. baseline utility/cost values (u_{i0}, c_{i0})

$$\begin{array}{lcl} e_i|t_i,u_{i0} & \sim & \mathsf{Normal}(\alpha_0 + \alpha_1 t_i + \alpha_2 u_{i0},\sigma_e^2) \\ c_i|t_i,c_{i0} & \sim & \mathsf{Normal}(\beta_0 + \beta_1 t_i + \beta_2 c_{i0},\sigma_c^2) \end{array}$$

- Two alternatives:
 - Complete Case Analysis (CCA): use only complete cases (n_{cca}) to both fit the model and compute the baseline means \bar{u}_0 and \bar{c}_0
 - Available Case Analysis (ACA): use complete cases (n_{cca}) to fit the model but compute the baseline means \bar{u}_0 and \bar{c}_0 using all available observed cases $(n_{aca} \geq n_{cca})$

Missing data analysis methods in CEA

Review of popular approaches to handle missingness under standard linear regression analysis framework in trial-based CEA practice

- Case deletion methods
- Baseline imputation methods
- Joint aggregated models
- Joint longitudinal models

Baseline imputation methods

- Model fitted to the aggregated QALYs/Total costs (e_i, c_i) after processing utility/cost (u_{ij}, c_{ij}) data collected in the study (AD)
- Regression analysis is used to adjust for imputed baseline variables $(u_{i0}^{\star}, c_{i0}^{\star})$ using some value, e.g. **mean-imputed value** (MEAN)

$$\begin{array}{lcl} e_i|t_i,u_{i0}^{\star} & \sim & \mathsf{Normal}(\alpha_0+\alpha_1t_i+\alpha_2u_{i0}^{\star},\sigma_e^2) \\ c_i|t_i,c_{i0}^{\star} & \sim & \mathsf{Normal}(\beta_0+\beta_1t_i+\beta_2c_{i0}^{\star},\sigma_e^2) \end{array}$$

- Missing outcome values (e_i, c_i) are imputed through the linear model either:
 - replacing missing data with point predictions
 - replacing missing data with point predictions and an error term

Missing data analysis methods in CEA

Review of popular approaches to handle missingness under standard linear regression analysis framework in trial-based CEA practice

- Case deletion methods
- Baseline imputation methods
- Joint aggregated models
- Joint longitudinal models

Joint aggregated models

- Model fitted to the aggregated QALYs/Total costs (e_i, c_i) after processing utility/cost (u_{ij}, c_{ij}) data collected in the study (AD)
- A joint distribution is simultaneously fitted to aggregated and baseline variables, which can also be conditionally specified as

$$\begin{split} u_{i0} &\sim \mathsf{Normal}(\mu_{u0}, \sigma_{u0}^2), \ e_i | t_i, u_{i0} \quad \sim \quad \mathsf{Normal}(\alpha_0 + \alpha_1 t_i + \alpha_2 u_{i0}, \sigma_e^2) \\ c_{i0} &\sim \mathsf{Normal}(\mu_{c0}, \sigma_{c0}^2), \ c_i | t_i, c_{i0} \quad \sim \quad \mathsf{Normal}(\beta_0 + \beta_1 t_i + \beta_2 c_{i0}, \sigma_c^2) \end{split}$$

- Two alternative methods can be used to directly impute missing values within this bivariate modelling framework
 - Multiple Imputation (MI): separate imputation and analysis steps
 - Full Bayesian (FB): jointly perform imputation and analysis steps

Missing data analysis methods in CEA

Review of popular approaches to handle missingness under standard linear regression analysis framework in trial-based CEA practice

- Case deletion methods
- Baseline imputation methods
- Joint aggregated models
- Joint longitudinal models

Joint longitudinal models

- Model fitted to the utility/cost (u_{ij},c_{ij}) data at each time point collected in the study (CD)
- A joint distribution is simultaneously fitted to all variables, which can also be conditionally specified (under a lag-1 dependence assumption) as

$$\begin{aligned} u_{i0} &\sim \mathsf{Normal}(\mu_{u0}, \sigma_{u0}^2), \quad u_{ij} | t_i, u_{ij-1} \quad \sim \quad \mathsf{Normal}(\alpha_{0t} + \alpha_{1t} t_i + \alpha_{2t} u_{ij-1}, \sigma_e^2) \\ c_{i0} &\sim \mathsf{Normal}(\mu_{c0}, \sigma_{c0}^2), \quad c_{ij} | t_i, c_{ij-1} \quad \sim \quad \mathsf{Normal}(\beta_{0t} + \beta_{1t} t_i + \beta_{2t} c_{ij-1}, \sigma_c^2) \end{aligned}$$

- ullet The joint multivariate distributions of (u_{i0},u_{ij}) and (c_{i0},c_{ij}) can be
 - approximated via MI (L-MI): first multiply-impute all variables and then fit the model and combine estimates across the imputed datasets
 - directly fitted via FB (L-FB): fit model to partially-observed data using weakly informative priors

Part 3

Simulation Study

Back to Table of content

Design

- Setting: normally-distributed outcome collected at 3 time points in a RCT
- Objective: assess performance of methods under different assumptions about data generating and missing data processes
- Scenarios: total of 45 different scenarios generated by varying
 - sample size: 100, 500, 1000
 - missing data proportion: low = 0.15, medium = 0.3, high = 0.5
 - dropout across arms introduced by modelling dropout probabilities as function of outcomes at previous times via logistic regression

Missingness scenarios:

- Dropout is totally random (MCAR)
- Dropout random at j=0 but more likely at j=1,2 for individuals with higher utilities at j=0 (MAR1) or j=1 (MAR2)
- Dropout more likely at j=1,2 for individuals with higher utilities at same time with dropout at j=0 being random (MNAR1) or more likely for individuals with higher utilities at same time (MNAR2)

Results - Bias

Results - Empirical SE

Part 4

Application: the MenSS trial

Back to Table of content

- The MenSS pilot RCT evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D 3L)
 - Total costs calculated from different components (no baseline)

Time	Time Type of outcome		observed (%)
		Control $(n_1=75)$	Intervention $(n_2=84)$
Baseline	utilities	72 (96%)	72 (86%)
3 months	utilities and costs	34 (45%)	23 (27%)
6 months	utilities and costs	35 (47%)	23 (27%)
12 months	utilities and costs	43 (57%)	36 (43%)
Complete cases	utilities and costs	27 (44%)	19 (23%)

 Partially-observed cases are mostly associated with lower utilities and higher costs in the control arm while no clear pattern emerges in the intervention arm

The MenSS trial Results: estimates

 With the exception of CCA, all methods show similar estimates for mean QALYs/Costs with small differences observed for the joint longitudinal models (L-MI,L-FB)

 With the exception of CCA, all methods show a relatively high chance of cost-effectiveness, with milder conclusions drawn by L-MI and L-FB

Part 5

Discussion

Back to Table of content

Conclusions

- The main objective was to assess impact on trial-based CEA results of alternative missingness approaches with focus on:
 - Differences between aggregated and longitudinal methods
 - Use and extension of standard modelling frameworks used by practitioners
- Results based on the scenarios explored in the simulation study and analyses of case studies indicate that:
 - Depending on the specification of the missingness mechanism, simple methods (CCA,ACA,MEAN) and even joint aggregate models (MI,FB) may lead to biased results under MAR
 - Joint longitudinal models are the most robust approach to MAR assumptions as they incorporate all information from partially-observed cases
 - The magnitude of the differences between methods changes depending on sample size and missingness proportion
 - Potential benefit of L-MI/L-FB is likely to increase when the number complete cases is small (MenSS)

Recommendations and limitations

- Looking at observed distributions of utilities/costs by time and arm could provide some insights on potential benefit of using longitudinal vs aggregate models
- Presence of substantial observed differences at any time between complete cases and partially-observed cases suggests longitudinal models provide more robust inferences under MAR
- Both MI and FB are valid approaches to implement longitudinal models (MLE also possible)
- Exploration of the impact of additional data complexities which are typical of CEA data have not been explored and could be considered in the future:
 - Correlation between utilities/costs
 - Skewness and presence of "structural values" in both outcomes' distributions
- Conclusions: models that take into account the longitudinal nature of utility/cost data provide reliable estimates under a wider range of MAR assumptions compared to standard models fitted to aggregate QALYs/Total costs.

