Docket No. 10182-016-999

GENE DISRUPTION METHODOLOGIES FOR DRUG TARGET DISCOVERY

This application claims priority to the United States provisional application serial no. 60/259,128, filed December 29, 2000, United States non-provisional application serial no. 09/792,024, filed February 20, 2001; and United States provisional application serial no. 60/314.050, filed August 22, 2001, which are all incorporated herein by reference in their entirety.

1. INTRODUCTION

The present invention is directed toward (1) methods for constructing strains useful for identification and validation of gene products as effective targets for therapeutic intervention, (2) methods for identifying and validating gene products as effective targets for the rapeutic intervention, (3) a collection of identified essential genes, and (4) screening methods and assay procedures for the discovery of new drugs.

2. BACKGROUND OF THE INVENTION

Validation of a cellular target for drug screening purposes generally involves an experimental demonstration that inactivation of that gene product leaves the cell inviable. Accordingly, a drug active against the same essential gene product expressed, for example, by a pathogenic fungus, would be predicted to be an effective therapeutic agent. Similarly, a gene product required for fungal pathogenicity and virulence is also expected to provide a suitable target for drug screening programs. Target validation in this instance is based upon a demonstration that inactivation of the gene encoding the virulence factor creates a fungal strain that is shown to be either less pathogenic or, ideally, avirulent, in animal model studies. Identification and validation of drug targets are critical issues for detection and discovery of new drugs because these targets form the basis for high throughput screens within the pharmaceutical industry.

Target discovery has traditionally been a costly, time-consuming process, in which newly-identified genes and gene products have been individually analyzed as potentially-suitable drug targets. DNA sequence analysis of entire genomes has markedly accelerated the gene discovery process. Consequently, new methods and tools are required to analyze this information, first to identify all of the genes of the organism, and then, to discern which genes encode products that will be suitable targets for the discovery of effective, non-toxic drugs. Gene discovery through sequence analysis alone does not

validate either known or novel genes as drug targets. Elucidation of the function of a gene from the underlying and a determination of whether or not that gene is essential still present substantial obstacles to the identification of appropriate drug targets. These obstacles are especially pronounced in diploid organisms.

C. albicans is a major fungal pathogen of humans. An absence of identified specific, sensitive, and unique drug targets in this organism has hampered the development of effective, non-toxic compounds for clinical use. The recent completion of the DNA sequence analysis of the entire C. albicans genome has rejuvenated efforts to identify new antifungal drug targets. Nevertheless, two primary obstacles to the exploitation of this information for the development of useful drug targets remain: the paucity of suitable markers for genetic manipulations in C. albicans and the inherent difficulty in establishing, in this diploid organism, whether a specific gene encodes an essential product. Co-pending provisional patent application, filed February 18, 2000, discloses the identification of dominant selectable markers, and the construction of two genes encoding those markers, which are suitable for transformation and gene disruption in C. albicans.

Current methods for gene disruption in C. albicans (Fig.1) typically involve a multistep process employing a "URA blaster" gene cassette which is recombined into the genome, displacing the target gene of interest. The URA blaster cassette comprises the CaURA3 marker which is selectable in the corresponding auxotrophic host and which is flanked by direct repeats of the Salmonella typhimurium HisG gene. The URA blaster cassette also carries flanking sequences corresponding to the gene to be replaced, which facilitate precise replacement of that gene by homologous recombination. Putative heterozygous transformants, which have had one allele of the target gene deleted, are selected as uracil prototrophs, and their identity and chromosomal structure confirmed by Southern blot and PCR analyses. Isolates within which intrachromosomal recombination events have occurred between HisG repeats, leading to excision of the CaURA3 gene and loss of the integrated cassette, are selected on 5-fluoroorotic acid (5-FOA) containing media. This allows a repetition of the entire process, including reuse of the Ura-blaster cassette, for disruption of the second allele of the target gene. In those instances in which the target gene is nonessential, homozygous gene disruptions are produced in the second round gene replacement and identified by Southern blot and PCR analyses.

However, homozygous deletion strains, which lack both alleles of a gene that is essential will not be viable. Accordingly, the Ura blaster method will not provide an unequivocal result, establishing the essential nature of the target gene since alternative explanations, including poor growth of a viable mutant strain, may be equally likely for the negative results obtained. More recent approaches for identification of essential genes, including those disclosed by Wilson, R.B., Davis, D., Mitchell, A.P. (1999) J. Bacteriol.

181:1868-74, employ multiple auxotrophic markers and a PCR-based gene disruption strategy. Although such methods effectively overcome the need to use the Ura Blaster cassette, determination of whether a given gene is essential, and therefore, a potentially useful target, remains labor-intensive and unsuitable for genome-wide analyses. Substantial effort is required to support a statistically valid conclusion that a given gene is essential when using either the Ura blaster cassette or multiple auxotrophic marker-based methods for gene disruption in Candida albicans. Typically, between 30 and 40 second round transformants must all be confirmed as reconstructed heterozygous strains (using PCR or Southern blot analysis) resulting from homologous recombination between the disruption fragment and previously constructed disruption allele, before statistical support to the claim that the gene is essential can be made. Moreover, since secondary mutations may be selected in either the transformation step or 5-FOA counterselection (if the Ura blaster cassette is reused), two independently constructed heterozygous strains are preferably examined during the attempted disruption of the second allele. In addition, demonstration that a particular phenotype is linked to the homozygous mutation of the target gene (and not 15 a secondary mutation) requires complementation of the defect by transforming a wild type copy of the gene back into the disruption strain.

Finally, the Ura blaster method precludes direct demonstration of gene essentiality. Therefore, one is unable to critically evaluate the terminal phenotype characteristic of essential target genes. Consequently, establishing whether inactivation of a validated drug target gene results in cell death (i.e., a cidal terminal phenotype) versus growth inhibition (i.e., a static terminal phenotype) is not possible with current approaches, despite the value such information would provide in prioritizing drug targets for suitability in drug development.

Clearly, since current gene disruption methods are labor intensive and largely refractile to a high throughput strategy for target validation, there is a need for effective methods and tools for unambiguous, rapid, and accurate identification of essential genes in diploid, pathogenic fungi, and particularly, in *Candida albicans*. The present invention overcomes these limitations in current drug discovery approaches by enabling high throughput strategies that provide rapid identification, validation, and prioritization of drug targets, and consequently, accelerate drug screening.

20

3. SUMMARY OF THE INVENTION

The present invention provides effective and efficient methods that enable, for each gene in the genome of an organism, the experimental determination as to whether that gene is essential, and for a pathogenic organism, in addition, whether it is required for virulence or pathogenicity. The identification and validation of essential genes and those genes critical to the development of virulent infections, provides a basis for the development of high-throughput screens for new drugs against the pathogenic organism.

The present invention can be practiced with any organism independent of ploidy, and in particular, pathogenic fungi. Preferably, the pathogenic fungi are diploid pathogenic fungi, including but not limited to Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and the like.

In one embodiment, the present invention is directed toward a method for constructing a diploid fungal strain in which one allele of a gene is modified by insertion of or replacement by a cassette comprising an expressible dominant selectable marker. This cassette is introduced into the chromosome by recombination, thereby providing a heterozygous strain in which the first allele of the gene is inactivated.

The other allele of the gene is modified by the introduction, by recombination, of a promoter replacement fragment comprising a heterologous promoter, such that the expression of the second allele of the gene is regulated by the heterologous promoter. Expression from the heterologous promoter can be regulated by the presence of a transactivator protein comprising a DNA-binding domain and transcription-activation domain. The DNA-binding domain of this transactivator protein recognizes and binds to a sequence in the heterologous promoter and increases transcription of that promoter. The transactivator protein can be produced in the cell by expressing a nucleotide sequence encoding the protein.

This method for the construction of a diploid fungus having both alleles of a gene modified, is carried out, in parallel, with each and every gene of the organism, thereby allowing the assembly a collection of diploid fungal cells each of which comprises the modified alleles of a gene. This collection, therefore, comprises modified alleles of substantially all of the genes of the diploid organism. As used herein, the term

30 "substantially all" includes at least 60%, 70%, 80%, 90%, 95% or 99% of the total.

Preferably, every gene in the genome of the diploid organism is represented in the collection.

The present invention also encompasses diploid organisms, such as diploid pathogenic fungal strains, comprising modified alleles of a gene, where the first allele of a gene is inactivated by insertion of or replacement by a nucleotide sequence encoding an expressible dominant selectable marker; and where the second allele of the gene has also

been modified so that expression of the second allele is regulated by a heterologous promoter. In one aspect of the present invention, the alleles modified in the mutant diploid fungal strain correspond to an essential gene, which is required for growth, viability and survival of the strain. In another aspect of the present invention, the modified alleles correspond to a gene required for the virulence and pathogenicity of the diploid pathogenic fungal strain against a host organism. In both cases, the essential gene and the virulence/pathogenicity gene are potential drug targets.

Accordingly, the present invention encompasses collections of mutant diploid fungal strains wherein each collection comprises a plurality of strains, each strain containing the modified alleles of a different gene. The collections of strains of the invention include modified alleles for substantially all the different essential genes in the genome of a fungus or substantially all the different virulence genes in the genome of a pathogenic fungus.

In another embodiment, the present invention is directed to nucleic acid microarrays which comprise a plurality of defined nucleotide sequences disposed at identifiable positions in an array on a substrate. The defined nucleotide sequences can comprise oligonucleotides complementary to, and capable of hybridizing with, the nucleotide sequences of the essential genes of the diploid pathogenic organism that are required for the growth and survival of the diploid pathogenic organism, the nucleotide sequences of genes contributing to the pathogenicity or virulence of the organism, and/or the unique molecular tags employed to mark each of the mutant strains.

The present invention is also directed to methods for the identification of genes essential to the survival of a diploid organism, and of genes that contribute to the virulence and/or pathogenicity of the diploid pathogenic organism. First, the invention provides mutants of diploid organisms, such as mutant fungal cells, having one allele of a gene inactivated by insertion of or replacement with a disruption cassette, and the other allele modified by a nucleic acid molecule comprising a heterologous regulated promoter, such that expression of that second allele is under the control of the heterologous promoter. Second, such mutant cells are cultured under conditions where the second allele of the modified gene is substantially not expressed. The viability or pathogenicity of the cells are then determined. The resulting loss of viability or exhibition of a severe growth defect indicates that the gene that is modified in the mutant cells is essential to the survival of a pathogenic fungus. Similarly, the resulting loss of virulence and/or pathogenicity of the mutant cells indicates that the gene that is modified contributes to the virulence and/or pathogenicity of the pathogenic fungus.

35 In yet another embodiment of the present invention, the mutant pathogenic fungal strains constructed according to the methods disclosed are used for the detection of

- 5 - NY2 - 1267788.1

antifungal agents effective against pathogenic fungi. Mutant cells of the invention are cultured under differential growth conditions in the presence or absence of a test compound. The growth rates are then compared to indicate whether or not the compound is active against a target gene product. The second allele of the target gene may be substantially underexpressed to provide cells with enhanced sensitivity to compounds active against the gene product expressed by the modified allele. Alternatively, the second allele may be substantially overexpressed to provide cells with increased resistance to compounds active against the gene product expressed by the modified allele of the target gene.

In yet another embodiment of the present invention, the strains constructed according to the methods disclosed are used for the screening of therapeutic agents effective for the treatment of non-fungal infectious diseases in a plant or an animal, such as a human. As a consequence of the similarity of a target's amino acid sequence with a plant or animal counterpart, or the lack of sequence similarity, active compounds so identified may have therapeutic applications for the treatment of diseases in the plant or animal, in particular, human diseases, such as cancers and immune disorders.

The present invention, in other embodiments, further encompasses the use of transcriptional profiling and proteomics techniques to analyze the expression of essential and/or virulence genes under a variety of conditions, including in the presence of known drugs. The information yielded from such studies can be used to uncover the target and mechanism of known drugs, to discover new drugs that act in a similar fashion to known drugs, and to delineate the interactions between gene products that are essential to growth and survival of the organism and that are instrumental to virulence and pathogenicity of the organism.

In a further embodiment of the present invention, a set of genes of a pathogenic organism are identified as potential targets for drug screening. Such genes comprise, genes that have been determined, using the methods and criteria disclosed herein, to be essential for survival of a pathogenic fungus and/or for the virulence and/or pathogenicity of the pathogenic fungus. The polynucleotides of the essential genes or virulence genes of a pathogenic organism (i.e., the target genes) provided by the present invention can be used by various drug discovery purposes. Without limitation, the polynucleotides can be used to express recombinant protein for characterization, screening or therapeutic use; as markers for host tissues in which the pathogenic organisms invade or reside (either permanently or at a particular stage of development or in a disease states); to compare with DNA sequences of other related or distant pathogenic organisms to identify potential orthologous essential or virulence genes; for selecting and making oligomers for attachment to a nucleic acid array for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; as an antigen to raise anti-DNA

5

antibodies or elicit another immune response; and as a therapeutic agent (e.g., antisense). Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in assays to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides or proteins encoded by the essential genes and virulence genes (i.e. the target gene products) provided by the present invention can also be used in assays to determine biological activity, including its uses as a member in a panel or an array of multiple proteins for high-throughput screening; to raise antibodies or to elicit immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as a marker for host tissues in which the pathogenic organisms invade or reside (either permanently or at a particular stage of development or in a disease states); and, of course, to isolate correlative receptors or ligands (also referred to as binding partners) especially in the case of virulence factors. Where the protein binds or potentially binds to another protein (such as, for 25 example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction, such as those involved in invasiveness, and pathogenicity of the pathogenic organism.

Any or all of these drug discovery utilities are capable of being developed 20 into a kit for commercialization as research products. The kits may comprise polynucleotides and/or polypeptides corresponding to a plurality of essential genes and virulence genes of the invention, antibodies, and/or other reagents.

4. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the URA blaster method for gene disruption in Candida albicans.

Figure 2 depicts the GRACE method for constructing a gene disruption of one allele of a gene (CaKRE9), and promoter replacement of the second allele of the target gene, placing the second allele under conditional, regulated control by a heterologous promoter.

Figure 3 presents conditional gene expression, using GRACE technology, 35 with KRE1, KRE5, KRE6 and KRE9.

10

15

20

30

Figure 4 presents conditional gene expression using GRACE technology with CaKRE1, CaTUB1, CaALG7, CaAUR1, CaFKS1 and CaSAT2.

Figure 5 presents a Northern Blot Analysis of CaHIS3, CaALR1, CaCDC24 and CaKRE9 mRNA isolated from GRACE strains to illustrate elevated expression under non-repressing conditions.

Figure 6 presents growth of a *CaHIS3* heterozygote strain and a tetracycline promoter-regulated *CaHIS3* GRACE strain compared to growth of a wild-type diploid *CaHIS3* strain in the presence and absence of 3-aminotriazole (3-AT).

Figure 6A depicts growth of a wild-type strain and a CaHIS3 heterozygote strain as compared with a CaHIS3 GRACE strain constitutively expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of inhibitory levels of 3-aminotriazole.

Figure 6B depicts growth of a wild-type strain, a haploinsufficient *CaHIS3* heterozygote strain, and a *CaHIS3* GRACE strain constitutively expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

Figure 6C depicts growth of a wild-type strain, a haploinsufficient *CaHIS3* heterozygote strain, and a *CaHIS3* GRACE strain minimally expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

Figure 6D demonstrates the hypersensitivity of the CaHIS3 GRACE strain minimally expressing the tetracycline promoter-regulated imidazoleglycerol phosphate dehydratase, in the presence of an intermediate level of 3-aminotriazole.

5. DETAILED DESCRIPTION OF THE INVENTION

5.1 Gene Disruption And Drug Target Discovery

The present invention provides a systematic and efficient method for drug

35 target identification and validation. The approach is based on genomics information as well
as the biological function of individual genes.

5

The methods of the invention generates a collection of genetic mutants in which the dosage of specific genes can be modulated, such that their functions in growth, survival, and/or pathogenicity can be investigated. The information accrued from such investigations allows the identification of individual gene products as potential drug targets. The present invention further provides methods of use of the genetic mutants either individually or as a collection in drug screening and for investigating the mechanisms of drug action.

Generally, in gene disruption experiments, the observation that homozygous deletions cannot be generated for both alleles of a gene in a diploid organism, cannot, per se, support the conclusion that the gene is an essential gene. Rather, a direct demonstration of expression of the gene in question that is coupled with viability of the cell carrying that gene, is required for the unambiguous confirmation that the gene in question is essential.

A direct demonstration that a given gene is essential for survival of a cell can be established by disrupting its expression in diploid organisms which have a haploid stage. For example, in Saccharomyces cerevisiae, this is achieved by complete removal of the 15 gene product through gene disruption methods in a diploid cell type, followed by sporulation and tetrad dissection of the meiotic progeny to enable direct comparison of haploid yeast strains possessing single mutational differences. However, such an approach is not applicable to asexual yeast strains, which include most diploid pathogenic cell types, and alternative methods are required for eliminating expression of a putative essential gene.

In one embodiment, the invention provides a method for creating a diploid mutant cell of an organism in which the dosage of a specific gene can be modulated. By this method of the invention, one allele of a target gene in a diploid cell of an organism is disrupted while the second allele is modified by having its promoter replaced by a regulated promoter of heterologous origin. A strain constructed in this manner is said to comprise a modified allelic pair, i.e., a gene wherein both alleles are modified as described above. Where the genomic DNA sequence of the organism is available, this process may be repeated with each and every gene of the organism, thereby constructing a collection of mutant organisms each harboring a disrupted allele and an allele which can be conditionally expressed. This gene disruption strategy, therefore, provides a substantially complete set of 30 potential drug target genes for that organism. This collection of mutant organisms, comprising a substantially complete set of modified allelic pairs, forms the basis for the development of high throughput drug screening assays. A collection of such mutant organisms can be made even when the genomic sequences of an organism are not completely sequenced. It is contemplated that a smaller collection of mutant organisms can be made, wherein in each mutant organism, one allele of a desired subset of gene is disrupted, and the other allele of the genes in this subset is placed under conditional

expression. The method of the invention employed for the construction of such strains is referred to herein as the GRACE method, where the acronym is derived from the phrase gene replacement and conditional expression.

The GRACE method, which involves disruption of one allele coupled with conditional expression of the other allele, overcomes limitations relying upon repeated cycles of disruption with the URA blaster cassette followed by counterselection for its loss. The GRACE method permits large scale target validation in a diploid pathogenic microorganism, such as a pathogenic fungus.

The GRACE method of the invention, as applied to a diploid cell involves two steps: (i) gene replacement resulting in disruption of the coding and/or non-coding region(s) of one wild type allele by insertion, truncation, and/or deletion, and (ii) conditional expression of the remaining wild type allele via promoter replacement or conditional protein instability (Fig. 2). Detailed descriptions of the method is provided in later sections.

Isolated mutant organisms resulting from the application of the GRACE method are referred to herein as GRACE strains of the organism. Such mutant strains of an organism are encompassed by the invention. In a particular embodiment, a collection of GRACE strains which are generated by subjecting substantially all the different genes in the genome of the organism to modification by the GRACE method is provided. In this collection, each strain comprises the modified alleles of a different gene, and substantially all the genes of the organism are represented in the collection. It is intended that a GRACE strain is generated for every gene in an organism of interest. Alternatively, a smaller collection of GRACE strains of an organism can be generated wherein a desired subset of the genes in the organism are modified by the GRACE method.

A gene is generally considered essential when viability and/or normal growth of the organism is substantially coupled to or dependent on the expression of the gene. An essential function for a cell depends in part on the genotype of the cell and in part the cell's environment. Multiple genes are required for some essential function, for example, energy metabolism, biosynthesis of cell structure, replication and repair of genetic material, etc.

Thus, the expression of many genes in an organism are essential for its growth and/or survival. Accordingly, when the viability or normal growth of a GRACE strain under a defined set of conditions is coupled to or dependent on the conditional expression of the remaining functional allele of a modified allelic gene pair, the gene which has been modified in this strain by the GRACE method is referred to as an "essential gene" of the organism.

A gene is generally considered to contribute to the virulence/pathogenicity of an organism when pathogenicity of the organism is associated at least in part to the expression of the gene. Many genes in an organism are expected to contribute to the

- 10 - NY2 - 1267788.1

virulence and/or pathogenicity of the organism. Accordingly, when the virulence and/or pathogenicity of a GRACE strain to a defined host or to defined set of cells from a host is associated with the conditional expression of the remaining functional allele of a modified allelic gene pair, the gene which has been modified in this strain by the GRACE method is referred to as a "virulence gene" of the organism.

The present invention provides a convenient and efficient method to identify essential genes of a pathogenic organism, and to validate their usefulness in drug discovery programs. The method of the invention can similarly be used to identify virulence genes of a pathogenic organism. The identities of these essential genes and virulence genes of an organism as identified by the GRACE method are encompassed in the present invention. Substantially all of the essential genes and virulence genes of an organism can be identified and validated by the GRACE method of the invention.

Each of the essential genes and virulence genes so identified represent a potential drug target for the organism, and can be used individually or as a collection in various methods of drug screening. Depending on the objective of the drug screening program and the target disease, the essential genes and virulence genes of the invention can be classified and divided into subsets based on the structural features, functional properties, and expression profile of the gene products. The gene products encoded by the essential genes and virulence genes within each subset may share similar biological activity, similar intracellular localization, structural homology, and/or sequence homology. Subsets may also be created based on the homology or similarity in sequence to other organisms in a similar or distant taxonomic group, e.g. homology to Saccharomyces cerevisiae genes, or to human genes, or a complete lack of sequence similarity or homology to genes of other organisms, such as S. cerevisiae or human. Subsets may also be created based on the display of cidal terminal phenotype or static terminal phenotype by the organism bearing the modified gene. Such subsets, referred to as essential gene sets or virulence gene sets, which can be conveniently investigated as a group in a drug screening program, are provided by the present invention. Accordingly, the present invention provides a plurality of mutant organisms, such as a collection of GRACE strains, each comprising the modified alleles of a different gene, wherein each gene is essential for the growth and/or survival of the cells. 30 The collection can be used according to the various methods of the invention, wherein the cells of each strain in the collection are separately subjected to the same manipulation or treatment related to the use. Alternatively, the cells of each strain in the collection are pooled before the manipulation or treatment related to the use. The concept of a collection is also extended to data collection, processing and interpretation where data arising from 35 different strains of fungal cells or a pool of different fungal strains in the collection are handled coordinately as a set.

In a specific embodiment, substantially all of the essential genes in the genome of a pathogenic fungus are identified by the GRACE method, and the GRACE strains containing the modified allelic pairs of essential genes are included in a collection of GRACE strains. In another specific embodiment, substantially all of the virulence genes in the genome of a pathogenic fungus are identified by the GRACE method, and the GRACE strains containing the modified allelic pairs of virulence genes are included in a collection of GRACE strains.

For Candida albicans, based on analysis of the C. albicans genome sequence a collection of GRACE strains for the entire genome may comprise approximately 7000 strains each with a modified allelic pairs of genes. The complete set of essential genes of C. albicans is estimated to comprise approximately 1000 genes. The present invention provides the identities of many of these genes in C. albicans, and the various uses of these genes and their products as drug targets. In addition, estimates as to the number of genes participating in the virulence of this pathogen range between 100 and 400 genes. Once the identity of an essential gene is known, various types of mutants containing one or more copies of the mutated essential gene created by other methods beside the GRACE method are contemplated and encompassed by the invention.

The invention also provides biological and computational methods, and reagents that allow the isolation and identification of genes that are homologous to the identified essential and virulence genes of *C. albicans*. Information obtained from the GRACE strains of diploid organisms can be used to identify homologous sequences in haploid organisms. The identities and uses of such homologous genes are also encompassed by the present invention.

For clarity of discussion, the invention is described in the subsections below by way of example for the pathogenic fungus, *Candida albicans*. However, the principles may be analogously applied to the essential and virulence genes of other pathogens and parasites, of plants and animals including humans. The GRACE method can be applied to any pathogenic organisms that has a diploid phase in their life cycles. Hence, the term diploid pathogenic organism is not limited to organism that exist exclusively in diploid form, but encompasses also organisms that have both haploid and diploid phases in their life cycle.

For example, the GRACE method for drug target identification and validation can be directly applied to other pathogenic fungi. *Deuteromycetous* fungi, *i.e.* those lacking a sexual cycle and classical genetics, (in which *C. albicans* is included), represent the majority of human fungal pathogens. *Aspergillus fumigatus* is another medically-significant member of this phylum, which, more strictly, includes members of the *Ascomycota* and the *Basidiomycota*. *A. fumigatus*, an *Ascomycte* is the predominant air

borne infectious fungal agent causing respiratory infection, or invasive aspergillosis (IA), in immunocompromised patients. While relatively unknown 20 years ago, today the number of IA cases is estimated to be several thousand per year. Moreover, IA exhibits a mortality rate exceeding 50% and neither amphothericin B nor fluconazole are highly efficacious. Compounding these problems is that identification of novel drug targets is limited by the current state of target validation in this organism.

The GRACE method demonstrated for *C. albicans* is readily adapted for use with *A. fumigatus*, for the following reasons. Although, *A. fumigatus* possesses a haploid genome, the GRACE method could be simplified to one step-conditional promoter replacement of the wild type promoter. Since *A. fumigatus*, in contrast to *Candida albicans*, adheres to the universal genetic code, extensive site-directed mutagenesis, like that required to engineer the GRACE method for *C. albicans*, would not be required. Moreover, essential molecular biology techniques such as transformation and gene disruption *via* homologous recombination have been developed for *A. fumigatus*. Selectable markers are available for these techniques in *A. fumigatus*, and include genes conferring antibiotic resistance to hygromycin B and phleomycin, and the auxotrophic marker, *ura3*. Furthermore, both public and private *A. fumigatus* genome sequencing projects exist. Therefore, sequence information is available both for the identification of putative essential genes as well as for the experimental validation of these drug targets using the GRACE method. Additional pathogenic *deuteromycetous* fungi to which the GRACE method may be applied include *Aspergillus flavus*, *Aspergillus niger*, and *Coccidiodes immitis*.

In another aspect of the present invention, the GRACE method for drug target identification and validation is applied to Basidiomycetous pathogenic fungi. One particular, medically-significant member of this phylum is Cryptococcus neoformans. This air borne pathogen represents the fourth (7-8%) most commonly recognized cause of life-threatening infections in AIDS patients. Transformation and gene disruption strategies exist for C. neoformans and a publically funded genome sequencing project for this organism is in place. C. neoformans possesses a sexual cycle, thus enabling the GRACE method to be employed with both haploid and diploid strains. Other medically-significant Basidiomycetes include Trichosporon beigelii and Schizophylum commune.

In the same way medically relevant fungal pathogens are suitable for a rational drug target discovery using the present invention, so too may plant fungal pathogens and animal pathogens be examined to identify novel drug targets for agricultural and veterinary purposes. The quality and yield of many agricultural crops including fruits, nuts, vegetables, rice, soybeans, oats, barley and wheat are significantly reduced by plant fungal pathogens. Examples include the wheat fungal pathogens causing leaf blotch (Septoria tritici, glume blotch (Septoria nodorum), various wheat rusts (Puccinia recondita,

Puccinia graminis); powdery mildew (various species), and stem/stock rot (Fusarium spp.). Other particularly destructive examples of plant pathogens include, *Phytophthora infestans*, the causative agent of the Irish potato famine, the Dutch elm disease causing ascomycetous fungus, Ophiostoma ulmi, the corn smut causing pathogen, Ustilago maydis, the rice-blast-causing pathogen Magnapurtla grisea, Peronospora parasitica (Century et al., Proc Natl Acad Sci U S A 1995 Jul 3;92(14):6597-601); Cladosporium fulvum (leaf mould pathogen of tomato); Fusarium graminearum, Fusarium culmorum, and Fusarium avenaceum, (wheat, Abramson et al., J Food Prot 2001 Aug;64(8):1220-5); Alternaria brassicicola (broccoli; Mora et al., Appl Microbiol Biotechnol 2001 Apr;55(3):306-10); Alternaria tagetica (Gamboa-Angulo et al., J Agric Food Chem 2001 Mar;49(3):1228-32); the cereal pathogen Bipolaris sorokiniana (Apoga et al., FEMS Microbiol Lett 2001 Apr 13;197(2):145-50); the rice seedling blast fungus Pyricularia grisea (Lee et al., Mol Plant Microbe Interact 2001 Apr;14(4):527-35); the anther smut fungus Microbotryum violaceum (Bucheli et al., : Mol Ecol 2001 Feb;10(2):285-94); Verticillium longisporum comb. Nov (wilt of oilseed rape, Karapapa et al., Curr Microbiol 2001 Mar;42(3):217-24); Aspergillus 15 flavus infection of cotton bolls (Shieh et al., Appl Environ Microbiol 1997 Sep;63(9):3548-52; the evespot pathogen Tapesia vallundae (Wood et al., FEMS Microbiol Lett 2001 Mar 15:196(2):183-7); Phytophthora cactorum strain P381 (strawberry leaf necrosis, Orsomando et al., J Biol Chem 2001 Jun 15;276(24):21578-84); Sclerotinia sclerotiorum, an ubiquitous necrotrophic fungus (sunflowers, Poussereau et al., Microbiology 2001 Mar;147(Pt 3):717-20 26); pepper plant/cranberry, anthracnose fungus Colletotrichum gloeosporioides (Kim et al., Mol Plant Microbe Interact 2001 Jan;14(1):80-5); Nectria haematococca (pea plants, Han et al., Plant J 2001 Feb; 25(3): 305-14); Cochliobolus heterostrophus (Monke et al., Mol Gen Genet 1993 Oct:241(1-2):73-80), Glomerella cingulata (Rodriguez et al., Gene 1987;54(1):73-81) obligate pathogen Bremia lactucae (lettuce downy mildew; Judelson et 25 al., Mol Plant Microbe Interact 1990 Jul-Aug;3(4):225-32) Rhynchosporium secalis (Rohe et al., Curr Genet 1996 May;29(6):587-90), Gibberella pulicaris (Fusarium sambucinum), Leptosphaeria maculans (Farman et al., Mol Gen Genet 1992 Jan;231(2):243-7), Cryphonectria parasitica and Mycosphaerella fijiensis and Mycosphaerella musicola, the causal agents of black and yellow Sigatoka, respectively, and Mycosphaerella eumusae, which causes Septoria leaf spot of banana (banana & plantain, Balint-Kurti et al., FEMS Microbiol Lett 2001 Feb 5;195(1):9-15). The emerging appearance of fungicidal-resistant plant pathogens and increasing reliance on monoculture practices, clearly indicate a growing need for novel and improved fungicidal compounds. The present invention encompasses identification and validation of drug targets in pathogens and parasites of plants and

35 livestock. Accordingly, the application of the GRACE method to identify and validate drug targets in pathogens and parasites of plants and livestock are encompassed. Table I lists

- 14 - NY2 - 1267788.1

Table I: Exemplary Haploid and Diploid Fungi
Ascomycota

5	Animal pathogens:	Plant Pathogens:	General Commercial Significance
10	Aspergillus fumigatus Alternaria spp Blastomyces dermatidis Candida spp including Candida dublinensis Candida glabrata Candida krusei Candida lustaniae Candida lustaniae Candida parapsilopsis Candida tropicalis Coccidioides immitis Exophalia dermatiditis Fusarium oxysporum Histoplasma capsulatum Pneumocystis carinil	Alternaria solanii Gaeumannomyces graminis Cercospora zeae-maydis Botrytis cinerea Claviceps purpurea Corticum rolfsii Endothia parasitica Sclerotinia sclerottorum Erysiphe gramini Erysiphe triticii Fusarium spp. Magnaporthe grisea Plasmopara viticola Penicillium digitatum Ophiostoma ulmi Rhizoctonia species including Septoria avenae Septoria nodorum Septoria passerinii Septoria riticii Venturia inequalis Verticillium dahliae Verticillium daho-atrum	Aspergillus niger Schizosaccharomyces pombe Pichia pastoris Hansenula polymorpha Ashbya gossipii Aspergillus nidulans Trichoderma reesei Aureobasidium pullulans Yarrowia lipolytica Candida utilis Kluveromyces lactis
		Basidiomycota	
25	Animal pathogens:	Plant Pathogens:	General commercial significance
30	Crypiococcus neoformans Trichosporon beigelii	Puccinia spp including Puccinia coronata Puccinia graminis Puccinia recondita Puccinia stritformis Tilletia spp including Tilletia caries Tilletia controversa Tilletia indica Tilletia tritici Tilletiafoetida Ustilago maydis	Agaricus campestris Phanerochaete chrysosporium Gloeophyllum trabeum Trametes versicolor
35		Ustilago hordeii	

Zygomycota

Animal pathogens: Plant Pathogens:

General commercial significance

Absidia corymbifera Mucor rouxii Rhizomucor pusillus Rhizopus arrhizus

5

10

All Candida species except *Candida glabrata* are obligate diploid species that lack a haploid phase in its life cycle, and are thus subject to the application of the GRACE methods.

5.2 Construction of GRACE Strains

According to the invention, in a GRACE strain of a diploid organism, only one allele of a gene is eliminated, while the second allele is placed under the control of the heterologous promoter, the activity of which is regulatable. Where the gene is essential, elimination of both alleles will be lethal or severely crippling for growth. Therefore, in the present invention, a heterologous promoter is used to provide a range of levels of expression of the second allele. Depending on the conditions, the second allele can be non-expressing, underexpressing, overexpressing, or expressing at a normal level relative to that when the allele is linked to its native promoter. A heterologous promoter is a promoter from a different gene from the same pathogenic organism, or it can be a promoter from a different species.

Precise replacement of a target gene is facilitated by using a gene disruption cassette comprising a selectable marker, preferably a dominant selectable marker, that is expressible in the strain of interest. The availability of two distinct dominant selectable markers allows the gene replacement process to be engineered at both alleles of the target gene, without the required counterselection step inherent in existing methods.

In particular, the present invention encompasses a method for constructing a strain of diploid pathogenic fungal cells, in which both alleles of a gene are modified, the method comprising the steps of (a) modifying a first allele of a gene in diploid pathogenic fungal cells by recombination using a gene disruption cassette comprising a nucleotide sequence encoding a selectable marker that is expressible in the cells, thereby providing heterozygous pathogenic fungal cells in which the first allele of the gene is inactivated; and (b) modifying the second allele of the gene in the heterozygous diploid pathogenic fungal cells by recombination with a promoter replacement fragment comprising a heterologous promoter, such that the expression of the second allele of the gene is regulated by the heterologous promoter.

- 16 - NV2 - 1267788 1

The process can be repeated for a desired subset of the genes such that a collection of GRACE strains is generated wherein each strain comprises a modified allelic pair of a different gene. By repeating this process for every gene in a pathogenic fungus, a complete set of GRACE strains representing the entire genome of the pathogenic fungus can be obtained. Thus, the present invention provides a method of assembling a collection of diploid pathogenic fungal cells, each of which comprises the modified alleles of a different gene. The method comprises repeating the steps of modifying pairs of alleles a plurality of times, wherein a different pair of gene alleles is modified with each repetition, thereby providing the collection of diploid pathogenic fungal cells each comprising the modified alleles of a different gene.

A preferred embodiment for the construction of GRACE strains, uses the following two-step method. *C. albicans* is used as an example.

5.2.1 Heterozygote Construction By Gene Disruption

Several art-known methods are available to create a heterozygote mutant. In less preferred embodiments, auxotrophic markers, such as but not limited to CaURA3, CaHIS3, CaLEU2, or CaTRP1, could be used for gene disruption if desired. However, the preferred method of heterozygote construction in diploid fungi employs a genetically modified dominant selectable marker. C. albicans is sensitive to the nucleoside-like antibiotic streptothricin at a concentration of 200 micrograms per milliliter. The presence of the Escherichia coli SAT1 gene within C. albicans allows acetylation of the drug rendering it nontoxic and permitting the strain to grow in the presence of streptothricin at a concentration of 200 micrograms per milliliter. Expression of the SAT1 gene in C. albicans is made possible by engineering the gene so that its DNA sequence is altered to conform to the genetic code of this organism and by providing a CaACT1 promoter (Morschhauser et al. (1998) Mol. Gen. Genet. 257:412-420) and a CaPCK1 terminator sequence (Leuker et al. (1997) Gene 192: 235-40). This genetically modified marker is referred to as CaSAT1 which is the subject of a copending United States nonprovisional application, filed February 16, 2001.

C. albicans is also sensitive to a second fungicidal compound, blasticidin,
whose cognate resistance gene from Bacillus cereus, BSR, has similarly been genetically
engineered for expression in C. albicans (CaBSR1), and has been shown to confer a
dominant drug resistance phenotype. PCR amplification of either dominant selectable
marker so as to include about 65 bp of flanking sequence identical to the sequence 5' and 3'
of the C. albicans gene to be disrupted, allows construction of a gene disruption cassette for
as any given C. albicans gene.

- 17 - NY2 - 1267788.1

By employing the method of Baudin et al. (1993, Nucleic Acids Research 21:3329-30), a gene disruption event can be obtained following transformation of a C. albicans strain with the PCR-amplified gene disruption cassette and selection for drug resistant transformants that have precisely replaced the wild type gene with the dominant selectable marker. Such mutant strains can be selected for growth in the presence of a drug, such as but not limited to streptothricin. The resulting gene disruptions are generally heterozygous in the diploid C. albicans, with one copy of the allelic pair on one homologous chromosome disrupted, and the other allele on the other homologous chromosome remaining as a wild type allele as found in the initial parental strain. The disrupted allele is non-functional, and expression from this allele of the gene is nil. By repeating this process for all the genes in the genome of an organism, a set of gene disruptions can be obtained for every gene in the organism. The method can also be applied to a desired subset of genes.

5.2.2 Conditional Expression By a Tetracycline-Regulatable Promoter

The conditional expression system used in this embodiment of the invention comprises a regulatable promoter and a means for regulating promoter activity. Conditional expression of the remaining wild type allele in a heterozygote constructed as set forth in Section 5.1.1 is achieved by replacing its promoter with a tetracycline-regulatable promoter system that is developed initially for S. cerevisiae but which is modified for use in 20 C. albicans. See Gari et al., 1997, Yeast 13:837-848; and Nagahashi et al., 1997, Mol. Gen. Genet, 255:372-375.

Briefly, conditional expression is achieved by first constructing a transactivation fusion protein comprising the E. coli TetR tetracycline repressor domain or DNA binding domain (amino acids 1-207) fused to the transcription activation domain of S. 25 cerevisiae GAL4 (amino acids 785-881) or HAP4 (amino acids 424-554). Multiple CTG codon corrections were introduced to comply with the C. albicans genetic code. The nucleotide sequences encoding the transactivation fusion proteins of E. coli TetR (amino acids 1-207) plus S. cerevisiae GAL4 (amino acids 785-881), and of E. coli TetR (amino acids 1-207) plus S. cerevisiae HAP4 (amino acids 424-554), both of which have been 30 modified for proper expression in C. albicans are encompassed by the present invention. Accordingly, the invention provides haploid or diploid cells that can comprise a nucleotide sequence encoding a transactivation fusion protein expressible in the cells, wherein the transactivation fusion protein comprises a DNA binding domain and a transcription activation domain.

Constitutive expression of the transactivation fusion protein in C. albicans 35 can be achieved by providing a CaACT1 promoter and CaACT1 terminator sequence.

However, it will be appreciated that any regulatory regions, promoters and terminators, that are functional in *C. albicans* can be used to express the fusion protein. Thus, a nucleic acid molecule comprising a promoter functional in *C. albicans*, the coding region of a transactivation fusion protein, and a terminator functional in *C. albicans*, are encompassed by the present invention. Such a nucleic acid molecule can be a plasmid, a cosmid, a transposon, or a mobile genetic element. In a preferred embodiment, the TetR-Gal4 or TetR-Hap4 transactivators can be stably integrated into a *C. albicans* strain, by using either wa3 and his3 auxotrophic markers.

In this embodiment, the invention further provides that a promoter replacement fragment comprising a nucleotide sequence encoding heterologous promoter which comprises at least one copy of a nucleotide sequence which is recognized by the DNA binding domain of the transactivation fusion protein, and wherein binding of the transactivation fusion protein increases transcription of the heterologous promoter. The heterologous tetracycline promoter initially developed for S. cerevisiae gene expression, contains an ADH1 3' terminator sequence, variable number of copies of the tetracycline operator sequence (2, 4, or 7 copies), and the CYCI basal promoter. The tetracycline promoter has been subcloned adjacent to both CaHIS3 and CaSAT1 selectable markers in the orientation favoring tetracycline promoter-dependent regulation when placed immediately upstream the open reading frame of the gene of interest. PCR amplification of the CaHIS3-Tet promoter cassette incorporates 65bp of flanking sequence homologous to the promoter sequence around nucleotide positions -200 and -1 (relative to the start codon) of the target gene, thereby producing a conditional promoter replacement fragment for transformation. When transformed into a C. albicans strain made heterozygous as described in Section 5.1.1 using the CaSATI disruption cassette, homologous recombination between the promoter replacement fragment and the promoter of the wild 25 type allele generates a strain in which the remaining wild type gene is conditionally regulated gene by the tetracycline promoter. Transformants are selected as His prototrophs and verified by Southern blot and PCR analysis.

In this particular embodiment, the promoter is induced in the absence of tetracycline, and repressed by the presence of tetracycline. Analogs of tetracycline, including but not limited to chlortetracycline, demeclocycline, doxycycline, meclocycline, methocycline, minocycline hydrochloride, anhydrotetracycline, and oxytetracycline, can also be used to repress the expression of the modified gene allele in a GRACE strain.

The present invention also encompasses alternative variants of the tetracycline promoter system, based upon a mutated tetracycline repressor (tetR) molecule,

35 designated tetR', which is activated (i.e. binds to its cognate operator sequence) by binding of the antibiotic effector molecule to promote expression, and is repressed (i.e. does not

bind to the operator sequence) in the absence of the antibiotic effectors, when the tetR' is used instead of, or in addition to, the wild-type tetR. For example, the GRACE method could be performed using tetR' instead of tetR in cases where repression is desired under conditions which lack the presence of tetracycline, such as shut off of a gene participating in drug transport (e.g. CaCDR1, CaPDR5, or CaMDR1). Also, the GRACE method could be adapted to incorporate both the tetR and tetR' molecules in a dual activator/repressor system where tetR is fused to an activator domain and tetR' is fused to a general repressor (e.g. CaSsr6 or CaTup1) to enhance or further repress expression in the presence of the antibiotic effector molecules (Belli et al., 1998, Nucl Acid Res 26:942-947 which is incorporated herein by reference). These methods of providing conditional expression are also

In another embodiment of the invention, the method may also be applied to haploid pathogenic fungi by modifying the single allele of the gene via recombination of the allele with a promoter replacement fragment comprising a nucleotide sequence encoding a heterologous promoter, such that the expression of the gene is conditionally regulated by the 15 heterologous promoter. By repeating this process for a preferred subset of genes in a haploid pathogenic organism, or its entire genome, a collection or a complete set of conditional mutant strains can be obtained. A preferred subset of genes comprises genes that share substantial nucleotide sequence homology with target genes of other organisms, e.g., C. albicans and S. cerevisiae. For example, this variation to the method of the invention may be applied to haploid fungal pathogens including, but not limited to, animal 20 fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida glabrata, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Pneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species.

The means to achieve conditional expression are not restricted to the tetracycline promoter system and can be performed using other conditional promoters.

Such conditional promoter may, for example, be regulated by a repressor which repress transcription from the promoter under particular condition or by a transactivator which increases transcription from the promoter, such as, when in the presence of an inducer. For example, the *C. albicans CaPCK1* promoter is not transcribed in the presence of glucose but has a high level of expression in cells grown on other carbon sources, such as succinate, and therefore could also be adopted for conditional expression of the modified allele in a GRACE strain. To this end, it has been shown that both *CaHIS1* and *CaSAT1* are essential

for growth on glucose-containing medium using the CaPCK1 promoter as an alternative to the tetracycline promoter in the above description. In this instance, the CaPCK1 promoter is heterologous to the gene expressed and not to the organism, and such heterologous promoters are also encompassed in the invention. Alternative promoters that could functionally replace the tetracycline promoter include but are not limited to other antibiotic-based regulatable promoter systems (e.g., pristinamycin-induced promoter or PIP) as well as Candida albicans conditionally-regulated promoters such as MET25, MAL2, PHO5, GAL1.10, STE2, or STE3.

In a preferred embodiment of the GRACE method, performing the gene disruption first enables heterozygous strains to be constructed and separately collected as a heterozygote strain collection during the process of drug target validation. Such a C. albicans heterozygote strain collection enables drug screening approaches based on haploinsufficiency for validated targets within the collection. As used herein, the term "haploinsufficiency" refers to the phenomenon whereby heterozygous strains for a given gene express approximately half the normal diploid level of a particular gene product.

15 Consequently, these strains provide constructions having a diminished level of the encoded gene product, and they may be used directly in screens for antifungal compounds. Here differential sensitivity of a diploid parent, as compared with its heterozygous derivative, will indicate that a drug is active against the encoded gene product.

It is clear to those skilled in the art that the order of allele modification

followed in this embodiment of the invention is not critical, and that it is feasible to perform these steps in a different order such that the conditional-expressing allele is constructed first and the disruption of the remaining wild type gene allele be performed subsequently.

However, where the promoter replacement step is carried out first, care should be taken to delete sequences homologous to those employed in the gene disruption step.

A specific application of the GRACE method, as used to construct modified alleles of the target gene CaKRE9 is provided in Section 6.

5.2.3 Alternative Methods of Conditional Expression

In other embodiments of the invention, conditional expression could be achieved by means other than the reliance of conditional promoters. For example, conditional expression could be achieved by the replacement of the wild type allele in heterozygous strains with temperature sensitive alleles derived *in vitro*, and their phenotype would then be analyzed at the nonpermissive temperature. In a related approach, insertion of a ubiquitination signal into the remaining wild type allele to destabilize the gene product during activation conditions can be adopted to examine phenotypic effects resulting from gene inactivation. Collectively, these examples demonstrate the manner in which C.

albicans genes can be disrupted and conditionally regulated using the GRACE method.

In an alternative embodiment of the present invention, a constitutive promoter regulated by an excisable transactivator can be used. The promoter is placed upstream to a target gene to repress expression to the basal level characteristic of the promoter. For example, in a fungal cell, a heterologous promoter containing lexA operator elements may be used in combination with a fusion protein composed of the lexA DNA binding domain and any transcriptional activator domain (e.g. GAL4, HAP4, VP16) to provide constitutive expression of a target gene. Counterselection mediated by 5-FOA can be used to select those cells which have excised the gene encoding the fusion protein. This procedure enables an examination of the phenotype associated with repression of the target gene to the basal level of expression provided by the lexA heterologous promoter in the absence of a functional transcription activator. The GRACE strains generated by this approach can be used for drug target validation as described in detail in the sections below. In this system, the low basal level expression associated with the heterologous promoter is critical. Thus, it is preferable that the basal level of expression of the promoter is low to make this alternative shut-off system more useful for target validation.

Alternatively, conditional expression of a target gene can be achieved without the use of a transactivator containing a DNA binding, transcriptional activator domain. A cassette could be assembled to contain a heterologous constitutive promoter downstream of, for example, the URA3 selectable marker, which is flanked with a direct repeat containing homologous sequences to the 5' portion of the target gene. Additional homologous sequences upstream of the target, when added to this cassette would facilitate homologous recombination and replacement of the native promoter withe above-described heterologous promoter cassette immediately upstream of the start codon of the target gene or open reading frame. Conditional expression is achieved by selecting strains, by using 5-FOA containing media, which have excised the heterologous constitutive promoter and URA3 marker (and consequently lack those regulatory sequences upstream of the target gene required for expression of the gene) and examining the growth of the resulting strain versus a wild type strain grown under identical conditions.

5.2.4 GRACE strains of Filamentous Plant Pathogenic Fungi

In specific embodiments, the methods of identifying drug targets of the invention can be applied to filamentous plant pathogenic fungi. A wide variety of filamentous fungi cause plant diseases; these fungi include species in the genera *Ustilago*, Fusarium, Colletotrichum, Botrytis, Septoria, Rhizoctonia, Puccinia, Tilletia and Gaemannomyces. In particular, pathogenic fungi of the Fusarium group cause many economically significant diseases on crop plants and some species also cause human

infections. For example, plant pathogenic species such as *F. graminearum*, which causes head scab of wheat, can have devestating economic effects, e.g., \$2.6 billion in crop losses over the last 10 years in the U.S.

A majority of techniques and reagents applicable to genetic engineering in fungi in general are useful in the present invention. The transformation procedure for most filamentous plant pathogenic fungi is based on the protocol developed for Aspergillus nidulans by Yelton et al. (1984. Proc. Natl. Acad. Sci. 81: 1470-1474). The protocol involved creating protoplasts by Novozyme 234 digestion of the cell wall material from mycelium or newly germinated conidial spores. Protoplasts are separated from the cell wall debris by filtratioin, centrifugation and (in some species) gradient purification. DNA is introduced in the presence of CaCl₂ and polyethylene glycol, and protoplasts are regenerated on medium containing an osmotic stabilizer (such as sorbitol). A. nidulans metabolic genes such as TrpC, ArgB and the amdS gene (growth on acetamide) have commonly been used as selectable markers. Metabolic markers for other fungi include the PyrG gene and the gene for nitrate reductase. Dominant selectable markers generally include genes for resistance to hygromycin, benomyl, bialophos, phleomycin and, more recently, pyrithiamine. By far, resistance to hygromycin is the most common selection for obtaining transformants and most vectors are based on the marker developed by Punt et al. (pAN7-1; Gene. 56: 117-124, 1987). Promoters to drive transcription of marker genes include the A. nidulans trpC and gpd promoters although many more of the characterized promoters can be 20 used. Well-studied regulated promoters are available from genes involved in nitrogen metabolism (e.g. see publications by the laboratories of Michael Hynes, George Marzluf and Herb Arst). In addition, regulated promoters have been identified for plant pathogens such as the promoter for the pg1 gene encoding polygalacturonase which is induced upon growth with pectin as the carbon source (Di Pietro and Roncero. 1998. MPMI 11: 91-98.). Generally, targeted integration of transforming DNA occurs at a lower frequency than in S. cerevisiae, but nonetheless sufficient for gene replacement and the GRACE promoter replacement method.

In preferred embodiments, the invention encompasses modified strains and essential genes of basidiomycetes which comprises, for example, the Ustilago species. In particular, Ustilago maydis (corn smut) is a dimorphic basidiomycete fungus related to many fungal plant pathogens such as the economically important bunts and rusts. Other Ustilago species, such as U. hordei, are common pathogens of small grain cereals such as barley, oats and wheat. In the Ustilago species, the budding form is haploid, unicellular and nonpathogenic; this cell type serves as a genetically tractable model system in which molecular biological methods can readily be applied to identify essential genes (Banuett, F. Annual Reviews in Genetics (1995) 29;179-208). Fusion of two haploid cells of opposite

mating type produces a dikarvotic filamentous form which is pathogenic and which requires the host plant for growth. The GRACE method can be adapted to target validation within U. maydis and U. hordei for identifying novel plant pathogen essential targets suitable for agricultural purposes. A comparative analysis with U. maydis and U. hordei may provide a significant advantage because the analyses could help identify essential genes.

U. maydis and U. hordei are preferred plant pathogenic fungi for constructing GRACE strains for use in the methods of drug targets identification of the invention. In Ustilago species, gene replacement by homologous recombination is efficient. Targeted disruptions using 1 kb flanking sequence yields as high as 70-90% correct integration Protoplast-based transformation protocols typically yield 50-100 colonies/µg. 10 For example, dominant selectable markers including nourseothricin (NSR), hygromycin B (hygB), phleomycin, benomyl, carboxin, and geneticin, as well as autonomously replicating and integration plasmids are available (Kojic M, and Holloman WK Can J Microbiol 2000 46:333-8, and Gold, S., G. Bakkeren, J. Davies and J. W. Kronstad. 1994. Gene 142: 225-230). Accordingly, standard gene disruption experiments may be performed by those 15 skilled in the art using gene disruption cassettes containing dominant selectable markers suitable for selection in *U. maydis* (e.g. nourseothricin, hygromycin B, phleomycin, or carboxin dominant selectable markers may be used). These may be amplified by three-way PCR methodology (Wach, A. 1996. Yeast Vol. 12:259-265) to add flanking homologous sequence of suitable length and permit precise gene replacement. Alternatively, auxotrophic 20 markers may be used to select for stable integration of the disruption cassette within any corresponding U. maydis and U. hordei auxotrophic mutant. Alternative recombinant DNA methods to construct suitable U. maydis and U. hordei gene disruption cassettes are also readily available to those skilled in the art.

Transformation of the resulting disruption cassettes may be performed as described by Wang, et al. 1988. Proc. Natl. Acad. Sci., 85: 865-869. Briefly, transformation in U. maydis involves removing the cell wall with lysing enzyme (e.g. Novozyme or Sigma L1412), adding DNA, treating the cells with PEG and plating on medium with 1M sorbitol and antibiotic selection. Transformants appear in 3 to 5 days. Alternatively, diploid U. maydis strains are also publicly available and have been used for the analysis of essential 30 genes (e.g., Holden et al., 1989. EMBO J. 8: 1927-1934.). Specifically, one allele is disrupted in the diploid strain, as outlined above, and the heterozygous strain is injected into corn seedlings. Diploid spores are harvested 14 days later, the spores are germinated to obtain meiotic progeny. Random spore analysis of the resulting progeny is then performed whereby haploid strains are screened for the absence of any identifiable disrupted allele 35 within the population. A statistical analysis may then be performed to determine the essentiality of the examined gene based on the absence of identfying any viable haploid

strains maintaining the deletion allele.

PCR-based promoter replacement experiments using the GRACE regulatable promoter system in *U. maydis* may be performed by those skilled in the art by first constructing a functional transactivator protein which regulates the GRACE tetracycline promoter. The transactivator protein must be constitutively expressed at high levels. Possible *U. maydis* regulatory sequence includes the UmTEF1 and UmHSP70 promoters and their respective 3'UTR sequence. The resulting transactivator may be subcloned into a suitable *U. maydis* plasmid (e.g., pCM54; Tsukuda, et al., 1988. Mol. Cell. Biol. 8:3703-3709.) containing a dominant selectable marker (e.g. HygB) and transformed into any *U. maydis* homothalic wild-type strain (e.g. 518 (a2 b2) and 521 (a1 b1) (Banuett, F. Trends in Genetics (1992) 8:174-180. Alternatively, a number *U. maydis* and *U. hordei* strains containing stable auxotrophic mutations are publicly available and may be used in conjunction with cognate auxotrophic marker cassettes to introduce and stably express the transactivator protein.

As *U. maydis* and *U. hordet* are haploid fungal organisms, the GRACE

methodology may then be applied as a single step involving precise promoter replacement
using a tetracycline promoter replacement cassette. Preferably, this may be performed using
3-way PCR products comprising a NSR dominant selectable marker fused to the Tet
promoter and flanked with appropriate homologous sequence and transforming the
promoter replacement cassette into a *U. maydis* strain constitutively expressing the Tet
transactivator protein. Alternative dominant selectable markers may also be employed.
Precise replacement by homologous recombination between the wild type promoter and the
dominant marker-fused Tet conditional promoter facilitates conditional mutant *U. maydis*strain construction in a single step. Correct integration of the promoter replacement cassette
may be experimentally determined by PCR-mediated genotyping and/or Southern blot
analysis.

Alternatively endogenous regulatable promoters may be applied to constructing conditional mutant strains of *U. maydis*. Preferable regulatable promoters which may be used include, but are not restricted to, the *crg1* gene promoter which is regulated by carbon source (Bottin,A., Kamper,J. and Kahmann,R. Mol. Gen. Genet. 253: 342-352 (1996) and the *nar1* gene promoter (nitrate reductase) has also been developed for regulating gene expression (Brachmann, A. et al. 2001. Mol. Microbiol. 42: 1047-1063).

U. hordei has a very similar life cycle when compared with U. maydis except that the fungus grows more slowly in culture and crosses require the complete growth cycle of the barley plant (2 months) to complete. U. hordei is closely related to a large group of Ustilago species that cause economically more important diseases on small grain cereals.
These other species include U. tritici, U. nuda, U. avenae and U. kolleri. U. hordei which

are amenable to the methods of the invention also shows remarkably similarities to the bunt pathogens that cause important cereal diseases. Haploid and stable diploid strains of U. hordei are available and formation of stable U. hordei diploids (Int. J. Plant Sci. 155: 15-22) offers the ability to evaluate gene essentiality by random spore analysis as described above for U. mavdis.

Gene disruption in U. hordei is accomplished in an identical fashion to that of U. maydis and the common selectable markers (e.g., hygromycin resistance) function in both species (Bakkeren, G. and J. Kronstad. 1996. Genetics 143: 1601-1613.). Gene replacement has been demonstrated for several genes at the mating type locus (Lee, N., G. Bakkeren, K. Wong, J. E. Sherwood and J. W. Kronstad. 1999. Proc. Natl. Acad. Sci., USA. 96: 15026-15031.). One minor technical difference in the transformation of U. hordei, compared with U. maydis, is that electroporation enhances the uptake of DNA in U. hordei. Preferred target genes for use in construction of GRACE strains include pan1 which participates in pantothenic acid biosynthesis (Bakkeren, G., and J. W. Kronstad. 1993. The Plant Cell 5: 123-136) and fill encoding a Gα subunit (Lichter A, Mills D. 1997. 15 Mol Gen Genet. 256: 426-435)

In various embodiments, the hph gene isolated from E. coli, encoding hygromycin resistance, can be used generally as a selectable marker and GUS can be used as a reporter gene. Non-limiting examples of useful recombinant regulatable gene expression systems include the following: F. oxysporum panC promoter induced by 20 steroidal glycoalkaloid alpha-tomatine (Perez-Espinosa et al., : Mol Genet Genomics 2001 Jul:265(5):922-9); Ustilago maydis hsp70-like gene promoter in a high-copy number autonomously replicating expression vector (Keon et al., Antisense Nucleic Acid Drug Dev 1999 Feb;9(1):101-4); Cochliobolus heterostrophus transient and stable gene expression systems using P1 or GPD1 (glyceraldehyde 3 phosphate dehydrogenase) promoter of C. 25 heterostrophus or GUS or hygromycin B phosphotransferase gene (hph) of E. coli (Monke et al., Mol Gen Genet 1993 Oct;241(1-2):73-80); Rhynchosporium secalis (barley leaf scald fungus) transformed to hygromycin-B and phleomycin resistance using the hph gene from E. coli and the ble gene from Streptoalloteichus hindustanus under the control of Aspergillus nidulans promoter and terminator sequences, plasmid DNA introduced into 30 fungal protoplasts by PEG/CaCl₂ treatment (Rohe et al., Curr Genet 1996 May;29(6):587-90). Pathogens of banana and plantain (Musa spp.) Mycosphaerella fijiensis and Mycosphaerella musicola, and Mycosphaerella eumusae can be transformed as taught in Balint-Kurti et al., FEMS Microbiol Lett 2001 Feb 5;195(1):9-15. Gibberella pulicaris (Fusarium sambucinum) a trichothecene-producing plant pathogen can be transformed with 35 three different vectors: cosHyg1, pUCH1, and pDH25, all of which carry hph (encoding hygromycin B phosphotransferase) as the selectable marker (Salch et al., Curr Genet

1993;23(4):343-50). Leptosphaeria maculans, a fungal pathogen of Brassica spp.can be transformed with the vector pAN8-1, encoding phleomycin resistance; protoplasts can be retransformed using the partially homologous vector, pAN7-1 which encodes hygromycin B resistance. Farman et al., Mol Gen Genet 1992 Jan;231(2):243-7. Cryphonectria parasitica; targeted disruption of enpg-1 of this chestnut blight fungus was accomplished by homologous recombination with a cloned copy of the hph gene of Escherichia coli inserted into exon 1, see Gao et al., Appl Environ Microbiol 1996 Jun;62(6):1984-90.

Another example, Glomerella cingulata f. sp. phaseoli (Gcp) was transformed using either of two selectable markers: the amdS + gene of Aspergillus nidulans, which encodes acetamidase and permits growth on acetamide as the sole nitrogen source and the hygBR gene of Escherichia coli which permits growth in the presence of the antibiotic Hy. The amdS+ gene functioned in Gcp under control of A. nidulans regulatory signals and hygBR was expressed after fusion to a promoter from Cochliobolus heterostrophus, another filamentous ascomycete. Protoplasts to be transformed were generated with the digestive enzyme complex Novozym 234 and then were exposed to plasmid DNA in the presence of 10 mM CaCl₂ and polyethylene glycol. Transformation occurred by integration of single or multiple copies of either the amdS+ or hygBR plasmid into the fungal genome. (Rodriquez et al., Gene 1987;54(1):73-81); integration vectors for homologous recombination; deletion studies demonstrated that 505 bp (the minimum length of homologous promoter DNA analysed which was still capable of promoter function) was sufficient to target integration events. Homologous integration of the vector resulted in duplication of the gdpA promoter region. (Rikkerink et al., Curr Genet 1994 Mar;25(3):202-8).

5.3 Identification of Essential Genes and Virulence Genes

5.3.1 Essential Genes

The present invention provides methods for determining whether the gene that has been modified in a GRACE strain is an essential gene or a virulence gene in a pathogenic organism of interest. To determine whether a gene is an essential gene in an organism, a GRACE strain containing the modified alleles of the gene is cultured under conditions wherein the second modified allele of the gene which is under conditional expression, is substantially underexpressed or not expressed. The viability and/or growth of the GRACE strain is compared with that of a wild type strain cultured under the same conditions. A loss or reduction of viability or growth indicates that the gene is essential to the survival of a pathogenic fungus. Accordingly, the present invention provides a method for identifying essential genes in a diploid pathogenic organism comprising the steps of

25

culturing a plurality of GRACE strains under culture conditions wherein the second allele of each of the gene modified in the respective GRACE strain is substantially underexpressed or not expressed; determining viability and/or growth indicator(s) of the cells; and comparing that with the viability and/or growth indicator(s) of wild type cells. The level of expression of the second allele can be less than 50% of the non-modified allele, less than 30%, less than 20%, and preferably less than 10%. Depending on the heterologous promoter used, the level of expression can be controlled by, for example, antibiotics, metal ions, specific chemicals, nutrients, pH, temperature, etc.

Candida albicans is used herein as an example which has been analyzed by the GRACE methodology.

For example, C. albicans conditional gene expression using the GRACE method was performed using CaKRE1, CaKRE5, CaKRE6, and CaKRE9 (Fig. 3). CaKRE5, CaKRE6, and CaKRE9 are predicted to be essential or conditionally essential (CaKRE9 null strains are nonviable on glucose but viable on galactose), in C. albicans as demonstrated by gene disruption using the Ura blaster method. CaKRE1 has been demonstrated as a nonessential gene using the Ura blaster method in C. albicans. Strains heterozygous for the above genes were constructed by PCR-based gene disruption method using the CaSAT1 disruption cassette followed by tetracycline regulated promoter replacement of the native promoter of the wild type allele. Robust growth of each of these strains suggests expression proceeds normally in the absence of tetracycline. When tetracycline is added to the growth medium, expression of these tetracycline promoter-20 regulated genes is greatly reduced or abolished. In the presence of tetracycline, the GRACE strain cells containing each one of the three essential C. albicans genes cited above stop growing. As expected, only the CaKRE1 GRACE strain demonstrates robust growth despite repression of CaKRE1 expression.

To further examine the utility of the GRACE method in target validation, growth of four additional GRACE strains controlling expression of the known essential genes CaTUB1, CaALG7, CaAUR1, and CaFKS1, as well as the predicted essential gene CaSAT2, and CaKRE1 were compared under inducing versus repressing conditions (Fig. 4). As expected, GRACE strains of CaTUB1, CaALG7, CaAUR1 and CaFKS1 failed to grow under repressing conditions, unlike the non-essential CaKRE1 GRACE strain. Furthermore, as predicted, the CaSAT2 GRACE strain demonstrates essentiality of this gene in C. albicans. The CaSAT2 gene, which has been engineered as a dominant selectable marker for use in C. albicans, is a C. albicans gene that is homologous to a S. cerevisiae gene but is unrelated to the Sat1 gene of E. coli.

In all cases based on other disruption data that have been generated, this is 35 the expected response if the tetracycline regulated gene is repressed to a level where it is

nonfunctional in the presence of tetracycline. Furthermore, in applying the GRACE methodology of conditional gene disruption to two additional *C. albicans* genes (*CaYPD1*, and *CaYNL194c*) whose *S. cerevisiae* counterpart is known not to be essential, no inhibition of growth was observed when these strains were incubated in the presence of tetracycline. These results establish that the method of conditional gene expression using a GRACE strain is a reliable indicator of gene essentiality.

Furthermore, the utility of the present method, as a rapid and accurate means to identifying the complete set of essential genes in *C. albicans*, has been demonstrated by an analysis of the null phenotype of a large number of genes using the GRACE two-step method of gene disruption and conditional expression. Target genes were selected as being fungal specific and essential. Such genes are referred to as target essential genes in the screening assays described below.

A literature search identified reports of URA blaster-based gene disruption experiments on a total of 89 genes, of which 13 genes were presumed to be essential, based on the inability to construct homozygous deletion strains. The 13 genes are CaCCT8 15 (Rademacher et al., Microbiology, UK 144, 2951-2960 (1998)); CaFKSI (Mio et al., J. Bacteriol, 179, 4096-105 (1997); and Douglas, et al., Antimicrob Agents Chemother 41, 2471-9 (1997)); CaHSP90 (Swoboda et al., Infect Immun 63, 4506-14 (1995)); CaKRE6 (Mio et al., J. Bacteriol 179, 2363-72 (1997)); CaNMTI (Weinberg et al., Mol Microbiol 16, 241-50 (1995)); CaPRSI (Payne et al., J. Med. Vet. Mycol. 35, 305-12 (1997)); CaPSAI 20 (Care et al., Mol Microbiol 34, 792-798 (1999)); CaRAD6 (Care et al., Mol Microbiol 34, 792-798 (1999)); CaSEC4 (Mao et al., J. Bacteriol 181, 7235-7242 (1999)); CaSEC14 (Monteoliva et al., Yeast 12, 1097-105 (1996)); CaSNF1 (Petter et al., Infect Immun. 65, 4909-17 (1997)); CaTOP2 (Keller, et al., Biochem J., 329-39 (1997)); and CaEFT2 (Mendoza et al., Gene 229, 183-1991 (1999)). These 13 putatively essential genes and 25 CaTUBI, CaALGI, and CaAURI of C. albicans are not initially identified by the GRACE method. However, GRACE strains containing modified alleles of any one of these 17 genes and their uses are encompassed by the invention, for example, the CaTUB1, CaALG1, and CaAURI GRACE strains in Fig. 4 and the CaKRE6 GRACE strain in Fig. 3. Any of these 17 genes may be included as a control for comparisons in the methods of the invention, or as a positive control for essentiality in the collections of essential genes of the invention. The nucleic acid molecules comprising a nucleotide sequence corresponding to any of these 17 genes may be used in the methods of drug discovery of the invention as drug targets, or they may be included individually or in subgroups as controls in a kit or in a nucleic acid microarray of the invention.

35 In contrast to the use of conventional method, application of the GRACE method has already identified significantly more C. albicans essential genes than previously

determined by the collective efforts of the entire C. albicans research community. The data presented herewith establishes the speed inherent to the approach of the invention and, therefore, the feasibility of extending the GRACE method to the examination of all the genes of the C. albicans genome, the identification of the complete set of essential genes of this diploid fungal pathogen, and its application to other species.

An alternative method is available for assessing the essentiality of the modified gene in a GRACE strain. According to the invention, repression of expression of the modified gene allele within a GRACE strain may be achieved by homologous recombination-mediated excision of the gene encoding the transactivator protein. In a preferred embodiment, where conditional expression of a target gene is achieved using the tetracycline-regulated promoter, constitutive expression (under nonrepressing conditions) may be repressed by homologous recombination-mediated excision of the transactivator gene (TetR-GAL4AD). In this way, an absolute achievable repression level is produced independently of that produced by tetracycline-mediated inactivation of the transactivator protein. Excision of the transactivator gene is made possible by virtue of the selectable marker and integration strategy used in GRACE strain construction. Stable integration of the CaURA3-marked plasmid containing the TetR-GAL4AD transactivator gene into the CaLEU2 locus results in a tandem duplication of CaLEU2 flanking the integrated plasmid. Counterselection on 5-FOA-containing medium can then be performed to select for excision of the CaURA3-marked transactivator gene and to directly examine whether this alternative repression strategy reveals the target gene to be essential.

Three examples of genes defined as essential on 5-FOA containing medium but lacking any detectable growth impairment on tetracycline supplemented medium are the genes, CaYCL052c, CaYNL194c and CaYJR046c. Presumably, this is due to the target gene exhibiting a lower basal level of expression under conditions where the transactivator gene 25 has been completely eliminated than its gene product incompletely inactivated by addition of tetracycline. Thus, the GRACE method offers two independent approaches for the determination of whether or not a given gene is essential for viability of the host strain.

5.3.2 Virulence/Pathogenicity Genes

The present invention also provides methods of using the GRACE strains of 30 a diploid pathogenic organism to identify virulence/pathogenicity genes. In addition to uncovering essential genes of a pathogenic organism, the GRACE methodology enables the identification of other genes and gene products potentially relevant to the screening of drugs useful for the treatment of diseases caused by the pathogenic organism. Nonessential genes and their gene products of a pathogen which nevertheless display indispensable roles in the pathogenesis process, may therefore serve as potential drug targets for prophylactic drug

development and could be used in combination with existing cidal therapeutics to improve treatment strategies. Thus, genes and their products implicated in virulence and/or pathogenicity represent another important class of potential drug targets. Moreover, some of the genes implicated in virulence and pathogenicity may be species-specific, and unique to a particular strain of pathogen. It has been estimated that approximately 6-7% of the genes identified through the *C. albicans* sequencing project are absent in *S. cerevisiae*. This represents as many as 420 *Candida albicans*-specific genes which potentially participate in the process of pathogenesis or virulence. Such a large scale functional evaluation of this gene set can only be achieved using the GRACE methodology of the invention.

Although essential genes provide preferred targets, value would also be 10 placed on those nonessential C. albicans specific genes identified. The potential role of nonessential C. albicans-specific genes in pathogenesis may be evaluated and prioritized according to virulence assays (e.g. buccal epithelial cell adhesion assays and macrophage assays) and various C. albicans infection studies (e.g. oral, vaginal, systemic) using mouse or other animal models. In the same manner described above for essential genes, it is equally feasible to demonstrate whether nonessential genes comprising the GRACE strain collection are required for pathogenicity in a cellular assay or in a mouse model system. Accordingly, GRACE strains that fail to cause fungal infection in mice under conditions of gene inactivation by tetracycline (or alternative gene inactivation means) define the GRACE virulence/pathogenicity subset of genes. More defined subsets of virulence/pathogenicity 20 genes, for example those genes required for particular steps in pathogenesis (e. g. adherence or invasion) can be determined by applying the GRACE pathogenicity subset of strains to in vitro assays which measure the corresponding process. For example, examining GRACE pathogenicity strains in a buccal adhesion or macrophage assay by conditional expression of individual genes would identify those pathogenicity factors required for adherence or cell 25 invasion respectively. Moreover, essential genes that display substantially reduced virulence and growth rate when only partially inactivated represent "multifactorial" drug targets for which even minimally inhibitory high specificity compounds would display therapeutic value.

Accordingly, to determine whether a gene contributes toward the virulence/pathogenicity of a pathogenic organism in a host, a GRACE strain of the pathogen containing the modified alleles of the gene is allowed to infect host cells or animals under conditions wherein the second modified allele of the gene which is under conditional expression, is substantially underexpressed or not expressed. After the host cells and/or animals have been contacted with the GRACE strain for an appropriate period of time, the condition of the cells and/or animals is compared with cells and/or animals infected by a wild type strain under the same conditions. Various aspects of the infected cell's

morphology, physiology, and/or biochemistry can be measured by methods known in the art. When an animal model is used, the progression of the disease, severity of the symptoms, and/or survival of the host can be determined. Any loss or reduction of virulence or pathogenicity displayed by the GRACE strain indicates that the gene modified in the strain contributes to or is critical to the virulence and/or pathogenicity of the virus. Such genes are referred to as target virulence genes in the screening assays described below.

In another aspect of the present invention, GRACE methodology can be used for the identification and delineation of genetic pathways known to be essential to the development of pathogenicity. For example, extensive work in S. cerevisiae has uncovered a number of processes including cell adhesion, signal transduction, cytoskeletal assembly, that play roles in the dimorphic transition between yeast and hyphal morphologies. Deletion of orthologous genes participating in functionally homologous cellular pathways in pathogenic fungi such as C. albicans, A. fumigatus, and C. neoformans, has clearly demonstrated a concomitant loss of virulence. Therefore, the use of GRACE strains of orthologous genes found in C. albicans and other pathogenic fungi could rapidly validate potential antifungal drug target genes whose inactivation impairs hyphal development and pathogenicity.

5.3.3 Validation of Genes Encoding Drug Targets

Target gene validation refers to the process by which a gene product is identified as suitable for use in screening methods or assays in order to find modulators of the function or structure of that gene product. Criteria used for validation of a gene product as a target for drug screening, however, may be varied depending on the desired mode of action that the compounds sought will have, as well as the host to be protected.

In one aspect of the present invention, a set of GRACE strains identified and grouped as having only modified alleles of essential genes can be used directly for drug screening.

In another aspect, the initial set of essential genes is further characterized using, for example, nucleotide sequence comparisons, to identify a subset of essential genes which include only those genes specific to fungi - that is, a subset of genes encoding essential genes products which do not have homologs in a host of the pathogen, such as humans. Modulators, and preferably inhibitors, of such a subset of genes in a fungal pathogen of humans would be predicted to be much less likely to have toxic side effects when used to treat humans.

Similarly, other subsets of the larger essential gene set could be defined to include only those GRACE strains carrying modified allele pairs that do not have a homologous sequence in one or more host (e.g., mammalian) species to allow the detection

of compounds expected to be used in veterinary applications. In addition, using other homology criteria, a subset of GRACE strains could be identified that would be used for the detection of anti-fungal compounds active against agricultural pathogens, inhibiting targets that do not have homologs in the crop to be protected.

Current C. albicans gene disruption strategies identify nonessential genes and permit the inference that other genes are essential, based on a failure to generate a homozygous null mutant. The null phenotype of a drug target predicts the absolute efficaciousness of the "perfect" drug acting on this target. For example, the difference between a cidal (cell death) versus static (inhibitory growth) null terminal phenotype for a particular drug target. Gene disruption of CaERG11, the drug target of fluconazole, is presumed to be essential based on the failure to construct a homozygous CaERG11 deletion strain using the URA blaster method. However, direct evaluation of its null phenotype being cidal or static could not be performed in the pathogen, and only after the discovery of fluconazole was it possible to biochemically determine both the drug, and presumably the drug target to be static rather than as cidal. Despite the success fluconazole enjoys in the marketplace, its fungistatic mode of action contributes to its primary limitation. i.e., drug resistance after prolonged treatment. Therefore, for the first time, the ability to identify and evaluate cidal null phenotypes for validated drug targets within the pathogen as provided by the invention, now enables directed strategies to identifying antifungal drugs that specifically display a fungicidal mode of action.

Using a single GRACE strain or a desired collection of GRACE strains 20 comprising essential genes, one or more target genes can be directly evaluated as displaying either a cidal or static null phenotype. This is determined by first incubating GRACE strains under repressing conditions for the conditional expression of the second allele for varying lengths of time in liquid culture, and measuring the percentage of viable cells 25 following plating a defined number of cells onto growth conditions which relieve repression. The percentage of viable cells that remain after return to non-repressing conditions reflects either a cidal (low percent survival) or static (high percent survival) phenotype. Alternatively, vital dyes such as methylene blue or propidium iodide could be used to quantify percent viability of cells for a particular strain under repressing versus 30 inducing conditions. As known fungicidal drug targets are included in the GRACE strain collection (e.g CaAURI), direct comparisons can be made between this standard fungicidal drug target and novel targets comprising the drug target set. In this way each member of the target set can be immediately ranked and prioritized against an industry standard cidal drug target to select appropriate drug targets and screening assays for the identification of 35 the most rapid-acting cidal compounds.

- 33 - NY2 - 1267788.1

5

5.4 Essential Genes and Virulence Genes

5.4.1 Nucleic Acids Encoding Targets, Vectors, and Host Cells

By practice of the methods of the invention, the essentiality and the contribution to virulence of substantially all the genes in the genome of an organism can be determined. The identities of essential genes and virulence genes of a diploid pathogenic organism, such as Candida albicans, once revealed by the methods of the invention, allow the inventors to study their functions and evaluate their usefulness as drug targets. Information regarding the structure and function of the gene product of the individual essential gene or virulence gene allows one to design reagents and assays to find compounds that interfere with its expression or function in the pathogenic organism. Accordingly, the present invention provides information on whether a gene or its product(s) is essential to growth, survival, or proliferation of the pathogenic organism, or that a gene or its product(s) contributes to virulence or pathogenicity of the organism with respect to a host. Based on this information, the invention further provides, in various embodiments, novel uses of the 15 nucleotide and/or amino acid sequences of genes that are essential and/or that contributes to virulence or pathogenicity of a pathogenic organism, for purpose of discovering drugs that act against the pathogenic organism. Moreover, the present invention provides specifically the use of this information to identify orthologs of these essential genes in a non-pathogenic yeast, such as Saccharomyces cerevisiae, and the use of these orthologs in drug screening 20 methods. Although the nucleotide sequence of the orthologs of these essential genes in S. cerevisiae may be known, it was not appreciated that these S. cerevisiae genes can be useful for discovering drugs against pathogenic fungi.

As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising a nucleotide sequence encoding a polypeptide or a biologically 25 active ribonucleic acid (RNA). The term can further include nucleic acid molecules comprising upstream, downstream, and/or intron nucleotide sequences. The term "open reading frame (ORF)," means a series of nucleotide triplets coding for amino acids without any termination codons and the triplet sequence is translatable into protein using the codon usage information appropriate for a particular organism.

As used herein, the term "target gene" refers to either an essential gene or a virulence gene useful in the invention, especially in the context of drug screening. The terms "target essential gene" and "target virulence gene" will be used where it is appropriate to refer to the two groups of genes separately. However, it is expected that some genes will contribute to virulence and be essential to the survival of the organism. The target genes of 35 the invention may be partially characterized, fully characterized, or validated as a drug target, by methods known in the art and/or methods taught hereinbelow. As used herein, the term "target organism" refers to a pathogenic organism, the essential and/or virulence genes of which are useful in the invention.

The term "nucleotide sequence" refers to a heteropolymer of nucleotides, including but not limited to ribonucleotides and deoxyribonucleotides, or the sequence of these nucleotides. The terms "nucleic acid" and "polynucleotide" are also used

interchangeably herein to refer to a heteropolymer of nucleotides, which may be unmodified or modified DNA or RNA. For example, polynucleotides can be single-stranded or double-stranded DNA, DNA that is a mixture of single-stranded and double-stranded regions, hybrid molecules comprising DNA and RNA with a mixture of single-stranded and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising DNA, RNA, or both. A polynucleotide can also contain one or modified bases, or DNA or RNA backbones modified for nuclease resistance or other reasons. Generally, nucleic acid segments provided by this invention can be assembled from fragments of the genome and short oligonucleotides, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e. g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e. g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will be glycosylated.

The term "expression vehicle or vector" refers to a plasmid or phage or virus, for expressing a polypeptide from a nucleotide sequence. An expression vehicle can comprise a transcriptional unit, also referred to as an expression construct, comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and which is operably linked to the elements of (1); and (3) appropriate transcription initiation and termination sequences.

"Operably linked" refers to a link in which the regulatory regions and the DNA sequence to be expressed are joined and positioned in such a way as to permit transcription, and ultimately, translation. In the case of *C. albicans*, due to its unusual codon usage, modification of a coding sequence derived from other organisms may be necessary to ensure a polypeptide having the expected amino acid sequence is produced in this organism.

Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host

cell. Alternatively, where a recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant host cells" means cultured cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry stably the recombinant transcriptional unit extrachromosomally. Recombinant host cells as defined herein will express heterologous polypeptides or proteins, and RNA encoded by the DNA segment or synthetic gene in the recombinant transcriptional unit. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express RNA, polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "polypeptide" refers to the molecule form by joining amino acids to each other by peptide bonds, and may contain amino acids other than the twenty commonly used gene-encoded amino acids. The term "active polypeptide" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, proteolytic processing, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one macromolecular component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99.8% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

Table Π lists a set of fungal specific genes that are demonstrated to be essential in C. albicans when conditionally expressed under the tetracycline repression system in the respective GRACE strains or when the gene encoding the transactivator protein is excised in the respective GRACE strain in a 5-FOA assay.

Table II Sequence identifiers of essential genes and related oligonucleotides

	Gene Name	ко-ир	KO-Down	Tet-Up	Tet-Down	Primer A	Primer B	DNA Sequence	Protein Sequence
	CaYDL105W	1	1001	2001	3001	4001	5001	6001	7001
	CaYJL090C	2	1002	2002	3002	4002	5002	6002	7002
5	CaYLR127C	3	1003	2003	3003	4003	5003	6003	7003
	CaYNL151C	4	1004	2004	3004	4004	5004	6004	7004
	CaYPL083C	5	1005	2005	3005	4005	5005	6005	7005
	CaYHR036W	6	1006	2006	3006	4006	5006	6006	7006
	CaYNL256W	7	1007	2007	3007	4007	5007	6007	7007
10	CaYOL149W	8	1008	2008	3008	4008	5008	6008	7008
	CaYDR361C	9	1009	2009	3009	4009	5009	6009	7009
	CaYDR407C	10	1010	2010	3010	4010	5010	6010	7010
	CaYBR070C	11	1011	2011	3011	4011	5011	6011	7011
	CaYOR148C	12	1012	2012	3012	4012	5012	6012	7012
15	CaYJR041C	13	1013	2013	3013	4013	5013	6013	7013
	CaYGR090W	14	1014	2014	3014	4014	5014	6014	7014
	CaYBR123C	15	1015	2015	3015	4015	5015	6015	7015
	CaYHR118C	16	1016	2016	3016	4016	5016	6016	7016
	CaYKR063C	17	1017	2017	3017	4017	5017	6017	7017
20	CaYOR004W	18	1018	2018	3018	4018	5018	6018	7018
	CaYML025C	19	1019	2019	3019	4019	5019	6019	7019
	CaYKL033W	20	1020	2020	3020	4020	5020	6020	7020
	CaYDR498C	21	1021	2021	3021	4021	5021	6021	7021
	CaYIR011C	22	1022	2022	3022	4022	5022	6022	7022
25	CaYMR220W	23	1023	2023	3023	4023	5023	6023	7023
23	CaYPR105C	24	1024	2024	3024	4024	5024	6024	7024
	CaYDL153C	25	1025	2025	3025	4025	5025	6025	7025
	CaYPL128C	26	1026	2026	3026	4026	5026	6026	7026
	CaYER026C	27	1027	2027	3027	4027	5027	6027	7027
20	CaYKL004W	28	1028	2028	3028	4028	5028	6028	7028
30	CaYMR200W	29	1029	2029	3029	4029	5029	6029	7029
	CaYPR165W	30	1030	2030	3030	4030	5030	6030	7030
	CaYHR007C	31	1031	2031	3031	4031	5031	6031	7031
	CaYJL087C	32	1032	2032	3032	4032	5032	6032	7032
	CaYLR229C	33	1033	2033	3033	4033	5033	6033	7033
35	CaYER118C	34	1034	2034	3034	4034	5034	6034	7034

	CaYPL228W	35	1035	2035	3035	4035	5035	6035	7035
	CaYPL160W	36	1036	2036	3036	4036	5036	6036	7036
	CaYHR101C	37	1037	2037	3037	4037	5037	6037	7037
	CaYML085C	38	1038	2038	3038	4038	5038	6038	7038
	CaYBR243C	39	1039	2039	3039	4039	5039	6039	7039
5	CaYLR342W	40	1040	2040	3040	4040	5040	6040	7040
5	CaYOL026C	41	1041	2041	3041	4041	5041	6041	7041
	CaYGR251W	42	1042	2042	3042	4042	5042	6042	7042
	CaYDR118W	43	1043	2043	3043	4043	5043	6043	7043
	CaYJL085W	44	1044	2044	3044	4044	5044	6044	7044
10	CaYDR052C	45	1045	2045	3045	4045	5045	6045	7045
10	CaYGR002C	46	1046	2046	3046	4046	5046	6046	7046
	CaYLL004W	47	1047	2047	3047	4047	5047	6047	7047
	CaYOR075W	48	1048	2048	3048	4048	5048	6048	7048
	CaYMR005W	49	1049	2049	3049	4049	5049	6049	7049
	CaYHR172W	50	1050	2050	3050	4050	5050	6050	7050
15	CaYGL122C	51	1051	2051	3051	4051	5051	6051	7051
	CaYOR287C	52	1052	2052	3052	4052	5052	6052	7052
	CaYMR149W	53	1053	2053	3053	4053	5053	6053	7053
	CaYKR071C	54	1054	2054	3054	4054	5054	6054	7054
	CaYDR412W	55	1055	2055	3055	4055	5055	6055	7055
20	CaYKR025W	56	1056	2056	3056	4056	5056	6056	7056
	CaYJR112W	57	1057	2057	3057	4057	5057	6057	7057
	CaYMR277W	58	1058	2058	3058	4058	5058	6058	7058
	CaYKR083C	59	1059	2059	3059	4059	5059	6059	7059
	CaYNL245C	60	1060	2060	3060	4060	5060	6060	7060
25	CaYNL181W	61	1061	2061	3061	4061	5061	6061	7061
	CaYNL260C	62	1062	2062	3062	4062	5062	6062	7062
	CaYDR365C	63	1063	2063	3063	4063	5063	6063	7063
	CaYNL149C	64	1064	2064	3064	4064	5064	6064	7064
	CaYGL029W	65	1065	2065	3065	4065	5065	6065	7065
30	CaYOR057W	66	1066	2066	3066	4066	5066	6066	7066
	CaYIL022W	67	1067	2067	3067	4067	5067	6067	7067
	CaYMR203W	68	1068	2068	3068	4068	5068	6068	7068
	CaYOR206W	69	1069	2069	3069	4069	5069	6069	7069
	CaYBR167C	70	1070	2070	3070	4070	5070	6070	7070
35	CaYDR016C	71	1071	2071	3071	4071	5071	6071	7071
	CaYNL306W	72	1072	2072	3072	4072	5072	6072	7072

	CaYJR067C	73	1073	2073	3073	4073	5073	6073	7073
	CaYDR362C	74	1074	2074	3074	4074	5074	6074	7074
	CaYLR355C	75	1075	2075	3075	4075	5075	6075	7075
	CaYLR105C	76	1076	2076	3076	4076	5076	6076	7076
	CaYML127W	77	1077	2077	3077	4077	5077	6077	7077
5	CaYPL011C	78	1078	2078	3078	4078	5078	6078	7078
	CaYKL108W	79	1079	2079	3079	4079	5079	6079	7079
	CaYCR035C	80	1080	2080	3080	4080	5080	6080	7080
	CaYML114C	81	1081	2081	3081	4081	5081	6081	7081
	CaYNL118C	82	1082	2082	3082	4082	5082	6082	7082
10	CaYDR527W	83	1083	2083	3083	4083	5083	6083	7083
10	CaYBR256C	84	1084	2084	3084	4084	5084	6084	7084
	CaYGL233W	85	1085	2085	3085	4085	5085	6085	7085
	CaYLR103C	86	1086	2086	3086	4086	5086	6086	7086
	CaYOR340C	87	1087	2087	3087	4087	5087	6087	7087
	CaYPR175W	88	1088	2088	3088	4088	5088	6088	7088
15	CaYJR093C	89	1089	2089	3089	4089	5089	6089	7089
	CaYCL031C	90	1090	2090	3090	4090	5090	6090	7090
	CaYML130C	91	1091	2091	3091	4091	5091	6091	7091
	CaYAL033W	92	1092	2092	3092	4092	5092	6092	7092
	CaYNL062C	93	1093	2093	3093	4093	5093	6093	7093
20	CaYNL132W	94	1094	2094	3094	4094	5094	6094	7094
	CaYDL193W	95	1095	2095	3095	4095	5095	6095	7095
	CaYDR489W	96	1096	2096	3096	4096	5096	6096	7096
	CaYJL069C	97	1097	2097	3097	4097	5097	6097	7097
	CaYPL063W	98	1098	2098	3098	4098	5098	6098	7098
25	CaYNL232W	99	1099	2099	3099	4099	5099	6099	7099
	CaYNR054C	100	1100	2100	3100	4100	5100	6100	7100
	CaYGR245C	101	1101	2101	3101	4101	5101	6101	7101
	CaYPR162C	102	1102	2102	3102	4102	5102	6102	7102
	CaYHR058C	103	1103	2103	3103	4103	5103	6103	7103
30	CaYKR081C	104	1104	2104	3104	4104	5104	6104	7104
	CaYNL240C	105	1105	2105	3105	4105	5105	6105	7105
	CaYPR168W	106	1106	2106	3106	4106	5106	6106	7106
	CaYKL099C	107	1107	2107	3107	4107	5107	6107	7107
	CaYLR008C	108	1108	2108	3108	4108	5108	6108	7108
35	CaYOL142W	109	1109	2109	3109	4109	5109	6109	7109
	CaYDL015C	110	1110	2110	3110	4110	5110	6110	7110

	CaYDR472W	111	1111	2111	3111	4111	5111	6111	7111
	CaYNR046W	112	1112	2112	3112	4112	5112	6112	7112
	CaYDR473C	113	1113	2113	3113	4113	5113	6113	7113
	CaYGL207W	114	1114	2114	3114	4114	5114	6114	7114
	CaYHR088W	115	1115	2115	3115	4115	5115	6115	7115
5	CaYIR015W	116	1116	2116	3116	4116	5116	6116	7116
,	CaYHR197W	117	1117	2117	3117	4117	5117	6117	7117
	CaYMR218C	118	1118	2118	3118	4118	5118	6118	7118
	CaYKL182W	119	1119	2119	3119	4119	5119	6119	7119
	CaYDR325W	120	1120	2120	3120	4120	5120	6120	7120
10	CaYLL003W	121	1121	2121	3121	4121	5121	6121	7121
10	CaYNR026C	122	1122	2122	3122	4122	5122	6122	7122
	CaYNL251C	123	1123	2123	3123	4123	5123	6123	7123
	CaYPL126W	124	1124	2124	3124	4124	5124	6124	7124
	CaYLR002C	125	1125	2125	3125	4125	5125	6125	7125
	CaYJL061W	126	1126	2126	3126	4126	5126	6126	7126
15	CaYLR071C	127	1127	2127	3127	4127	5127	6127	7127
	CaYML031W	128	1128	2128	3128	4128	5128	6128	7128
	CaYIL147C	129	1129	2129	3129	4129	5129	6129	7129
	CaYJL025W	130	1130	2130	3130	4130	5130	6130	7130
	CaYOR353C	131	1131	2131	3131	4131	5131	6131	7131
20	CaYKR008W	132	1132	2132	3132	4132	5132	6132	7132
	CaYMR033W	133	1133	2133	3133	4133	5133	6133	7133
	CaYNL313C	134	1134	2134	3134	4134	5134	6134	7134
	CaYGL225W	135	1135	2135	3135	4135	5135	6135	7135
	CaYNL308C	136	1136	2136	3136	4136	5136	6136	7136
25	CaYDR353W	137	1137	2137	3137	4137	5137	6137	7137
	CaYIL068C	138	1138	2138	3138	4138	5138	6138	7138
	CaYPR190C	139	1139	2139	3139	4139	5139	6139	7139
	CaYOR174W	140	1140	2140	3140	4140	5140	6140	7140
	CaYDL150W	141	1141	2141	3141	4141	5141	6141	7141
30	CaYAL041W	142	1142	2142	3142	4142	5142	6142	7142
	CaYMR227C	143	1143	2143	3143	4143	5143	6143	7143
	CaYPL043W	144	1144	2144	3144	4144	5144	6144	7144
	CaYDR324C	145	1145	2145	3145	4145	5145	6145	7145
	CaYOL022C	146	1146	2146	3146	4146	5146	6146	7146
35	CaYOL069W	147	1147	2147	3147	4147	5147	6147	7147
	CaYGR156W	148	1148	2148	3148	4148	5148	6148	7148

CaYDL003W										
CaYKR062W		CaYDL003W	149	1149	2149	3149	4149	5149	6149	7149
CaYDR398W 152 1152 2152 3152 4152 5152 6152 7152 CaYNL126W 153 1153 2153 3153 4153 5153 6153 7153 CaYKL089W 154 1154 2154 3154 4154 5154 6154 7154 CaYMR028W 155 1155 2155 3155 4155 5155 6155 7155 CaYDR299W 156 1156 2156 3156 4156 5156 6156 7156 CaYDL034W 157 1157 2157 3157 4157 5157 6157 7157 CaYGR119C 158 1158 2158 3158 4158 5158 6158 7158 CaYDL111C 159 1159 2159 3159 4159 5159 6159 7159 CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYKL021C 161 1161 2161 3161 4161 5161 6161 7161 CaYLL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYL004C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 168 1168 2168 3168 4168 5168 6168 7168 CaYDR195W 168 1168 2168 3169 4169 5169 6169 7169 CaYR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYDR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR040W 171 1171 2171 3171 4171 5171 6171 7171 CaYDR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR265W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR265W 176 1176 2176 3176 4176 5176 6177 7177 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR265W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR265W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR265W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR265W 174 1174 2174 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3179 4179 5179 6179 7179 CaYBR265W 181 1181 2181 3181 4181 5181 6181 7181 CaYRR037W 181 1181 2181 3181 4181 5181 6181 7181 CaYBR152W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CAYBR192W 183 1183 2183 3183 4185 5185 6185 7185		CaYDR228C	150	1150	2150	3150	4150	5150	6150	7150
CaYNL126W 153 1153 2153 3153 4153 5153 6153 7153 CaYKL089W 154 1154 2154 3154 4154 5154 6154 7154 CaYMR028W 155 1155 2155 3155 4155 5155 6155 7155 CaYDR299W 156 1156 2156 3156 4156 5156 6156 7156 CaYOL034W 157 1157 2157 3157 4157 5157 6157 7157 CaYGR119C 158 1158 2158 3158 4158 5158 6158 7158 CaYDL111C 159 1159 2159 3159 4159 5159 6159 7159 CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYLL031C 161 1161 2161 3161 4161 5161 6161 7161 CaYLL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYL04C 165 1165 2165 3165 4165 5165 6165 7165 CaYDL195W 166 1166 2166 3166 4166 5166 6166 7166 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYGR266W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6177 7170 CaYR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYGR266W 174 1174 2174 3174 4174 5174 6174 7174 CaYGR266W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7170 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR155W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR155W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR155W 176 1176 2176 3170 4170 5170 6170 7170 CaYBR155W 178 1178 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR155W 178 1178 2178 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4185 5185 6185 7185		CaYKR062W	151	1151	2151	3151	4151	5151	6151	7151
Cayklo89w		CaYDR398W	152	1152	2152	3152	4152	5152	6152	7152
CaYMR028W 155 1155 2155 3155 4155 5155 6155 7155 CaYDR299W 156 1156 2156 3156 4156 5156 6156 7156 CaYOL034W 157 1157 2157 3157 4157 5157 6157 7157 CaYGR119C 158 1158 2158 3158 4158 5158 6158 7158 CaYDL111C 159 1159 2159 3159 4159 5159 6159 7159 CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYKL021C 161 1161 2161 3161 4161 5161 6161 7161 CaYLL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYLL030C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 166 1168 2168 3168 4168 5168 6166 7166 CaYPR133C 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYRR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYDR29C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 176 1176 2176 3176 4177 5177 6177 7177 CaYBR155W 176 1176 2176 3176 4179 5179 6179 7179 CaYBR155W 178 1178 2173 3173 4173 5173 6173 7173 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 176 1176 2176 3176 4179 5179 6179 7179 CaYBR155W 178 1178 2173 3175 4175 5175 6175 7175 CaYBR155W 178 1178 2178 3175 4175 5175 6175 7175 CaYBR155W 178 1179 2179 3179 4179 5179 6179 7179 CaYBR03W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR155W 178 1180 2180 3180 4180 5180 6180 7180 CaYBR155W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184		CaYNL126W	153	1153	2153	3153	4153	5153	6153	7153
CaYMR028W 155 1155 2155 3155 4155 5155 6155 7155 CaYDR299W 156 1156 2156 3156 4156 5156 6156 7156 CaYOL034W 157 1157 2157 3157 4157 5157 6157 7157 CaYGR119C 158 1158 2158 3158 4158 5158 6158 7158 CaYOL034W 159 1159 2159 3159 4159 5159 6159 7159 CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYKL021C 161 1161 2161 3161 4161 5161 6161 7161 CaYL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYHR052W 166 1166 2166 3166 4166 5166 6166 7166 CaYL031C 164 1164 2164 3164 4164 5164 6164 7164 CaYL040C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYGR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYGR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYGR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYGR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYGR254C 172 1172 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 2274 3174 4174 5174 6174 7174 7175 CaYGR254C 177 1175 2175 3175 4175 5175 6175 7175 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYJR012W 179 1179 2179 3179 4179 5179 6179 7179 7179 CaYJR012W 179 1179 2179 3179 4179 5179 6179 7179 7179 CaYBR155W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 5184 6184 7184 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 6185 7185 5185 5185 6185 7185	5	CaYKL089W	154	1154	2154	3154	4154	5154	6154	7154
CaYOL034W 157 1157 2157 3157 4157 5157 6157 7157 CaYGR119C 158 1158 2158 3158 4158 5158 6158 7158 CaYDL111C 159 1159 2159 3159 4159 5159 6159 7159 CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYKL021C 161 1161 2161 3161 4161 5161 6161 7161 CaYLL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYLL030C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR133C 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYRR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR265W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR280C 177 1177 2177 3177 4179 5179 6179 7179 CaYBR155W 176 1176 2178 3178 4178 5178 6178 7178 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYBR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4184 5184 6184 7184 CaYBR192W 183 1184 2184 3184 4184 5184 6184 7184	-	CaYMR028W	155	1155	2155	3155	4155	5155	6155	7155
CayGR119C 158 1158 2158 3158 4158 5158 6158 7158 CayDL111C 159 1159 2159 3159 4159 5159 6159 7159 CayHR052W 160 1160 2160 3160 4160 5160 6160 7160 CayKL021C 161 1161 2161 3161 4161 5161 6161 7161 CayLL031C 162 1162 2162 3162 4162 5162 6162 7162 CayHR040W 163 1163 2163 3163 4163 5163 6163 7163 CayML015C 164 1164 2164 3164 4164 5164 6164 7164 CayL1004C 165 1165 2165 3165 4165 5165 6165 7165 CayDR302W 166 1166 2166 3166 4166 5166 6166 7166 CayDL195W 168 1168 2168 3168 4168 5168 6168 7168 CayCR052W 169 1169 2169 3169 4169 5169 6169 7169 CayRR017W 171 1171 2171 3171 4171 5171 6171 7171 CayOR254C 172 1172 2172 3172 4172 5172 6172 7172 CayBR265W 174 1174 2174 3174 4174 5174 6174 7174 CayR280C 177 1175 2175 3175 4175 5175 6175 7175 CayBR155W 176 1176 2176 3177 4177 5177 6177 7177 CayRR012W 179 1170 2170 3170 4170 5170 6170 7170 CayRR012W 175 1175 2175 3175 4175 5175 6175 7175 CayBR265W 174 1174 2174 3174 4174 5174 6174 7174 CayGR280C 177 1177 2177 3177 4177 5177 6177 7177 CayRR012W 179 1179 2179 3179 4179 5179 6179 7179 CayRR012W 179 1179 2179 3179 4179 5179 6179 7179 CayRR012W 179 1179 2179 3179 4179 5179 6177 7177 CayRR012W 179 1179 2179 3179 4179 5179 6177 7177 CayRR012W 179 1179 2179 3179 4179 5179 6179 7179 CayRR012W 179 1179 2179 3179 4179 5179 6179 7179 CayRR012W 179 1179 2179 3179 4179 5179 6179 7179 CayRR012W 181 1181 2181 3181 4181 5181 6181 7181 CayLR298C 182 1182 2182 3182 4182 5182 6182 7182 CayBR192W 183 1183 2183 3183 4183 5183 6183 7183 CayPR112C 184 1184 2184 3184 4184 5184 6184 7184 CayLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYDR299W_	156	1156	2156	3156	4156	5156	6156	7156
CayDL111C		CaYOL034W	157	1157	2157	3157	4157	5157	6157	7157
Cayhroszw 160		CaYGR119C	158	1158	2158	3158	4158	5158	6158	7158
CaYHR052W 160 1160 2160 3160 4160 5160 6160 7160 CaYKL021C 161 1161 2161 3161 4161 5161 6161 7161 CaYKL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYL004C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYDR302W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBL29C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYDR254C 177 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 178 1178 2178 3175 4175 5175 6175 7175 CaYBR155W 178 1178 2178 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR155W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR155W 179 1179 2179 3179 4179 5179 6179 7179 CaYBR153W 178 1178 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 5185 6185 7185 5185 6185 7185	10	CaYDL111C	159	1159	2159	3159	4159	5159	6159	7159
CaYLL031C 162 1162 2162 3162 4162 5162 6162 7162 CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYL004C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYPR133C 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYRR017W 171 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYDR312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR012W 179 1179 2179 3179 4179 5179 6179 7179 CaYMR012W 179 1179 2179 3179 4179 5179 6177 7178 CaYBR157W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR112C 184 1184 2184 3184 4184 5184 6184 7184	10	CaYHR052W	160	1160	2160	3160	4160	5160	6160	7160
CaYHR040W 163 1163 2163 3163 4163 5163 6163 7163 CaYML015C 164 1164 2164 3164 4164 5164 6164 7164 CaYL04C 165 1165 2165 3165 4165 5165 6165 7165 CaYDR302W 166 1166 2166 3166 4166 5166 6166 7166 CaYDR302W 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYDR3017W 171 1171 2171 3171 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYDR312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR03W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR012W 179 1179 2179 3179 4179 5179 6179 7179 CaYBR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYBR112C 184 1184 2184 3184 4184 5184 6184 7184		CaYKL021C	161	1161	2161	3161	4161	5161	6161	7161
CayML015C		CaYLL031C	162	1162	2162	3162	4162	5162	6162	7162
Team		CaYHR040W	163	1163	2163	3163	4163	5163	6163	7163
CaYDR302W 166 1165 2165 3165 4165 5165 6165 7165 CaYDR133C 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYFR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 25 CaYRL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR012W 179 1179 2179 3179 4179 5179 6179 7179 CaYRR017W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYML015C	164	1164	2164	3164	4164	5164	6164	7164
CaYPR133C 167 1167 2167 3167 4167 5167 6167 7167 CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYFR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR155W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 <td>15</td> <td>CaYIL004C</td> <td>165</td> <td>1165</td> <td>2165</td> <td>3165</td> <td>4165</td> <td>5165</td> <td>6165</td> <td>7165</td>	15	CaYIL004C	165	1165	2165	3165	4165	5165	6165	7165
CaYDL195W 168 1168 2168 3168 4168 5168 6168 7168 CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYFR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYBR155W 176 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR280C 177 <td></td> <td>CaYDR302W</td> <td>166</td> <td>1166</td> <td>2166</td> <td>3166</td> <td>4166</td> <td>5166</td> <td>6166</td> <td>7166</td>		CaYDR302W	166	1166	2166	3166	4166	5166	6166	7166
CaYCR052W 169 1169 2169 3169 4169 5169 6169 7169 CaYFR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYGR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 <td></td> <td>CaYPR133C</td> <td>167</td> <td>1167</td> <td>2167</td> <td>3167</td> <td>4167</td> <td>5167</td> <td>6167</td> <td>7167</td>		CaYPR133C	167	1167	2167	3167	4167	5167	6167	7167
20 CaYFR042W 170 1170 2170 3170 4170 5170 6170 7170 CaYNR017W 171 1171 2171 3171 4171 5171 6171 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYBR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYBR012W		CaYDL195W	168	1168	2168	3168	4168	5168	6168	7168
CaYNR017W 171 171 2171 3170 4170 5170 6172 7171 CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 25 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7178 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 53 CAYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYCR052W	169	1169	2169	3169	4169	5169	6169	7169
CaYOR254C 172 1172 2172 3172 4172 5172 6172 7172 CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W	20	CaYFR042W	170	1170	2170	3170	4170	5170	6170	7170
CaYFL029C 173 1173 2173 3173 4173 5173 6173 7173 CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 25 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6182 7182		CaYNR017W	171	1171	2171	3171	4171	5171	6171	7171
CaYBR265W 174 1174 2174 3174 4174 5174 6174 7174 25 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYLR298C 182 1181 2181 3181 4181 5181 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183		CaYOR254C	172	1172	2172	3172	4172	5172	6172	7172
25 CaYNL312W 175 1175 2175 3175 4175 5175 6175 7175 CaYBR155W 176 1176 2176 3176 4176 5176 6176 7176 CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYBR192W 183 1182 2182 3182 4182 5182 6182 7182 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184		CaYFL029C	173	1173	2173	3173	4173	5173	6173	7173
CayBr155W 176 1176 2176 3176 4176 5176 6176 7176 CayGr280C 177 1177 2177 3177 4177 5177 6177 7177 CayJL203W 178 1178 2178 3178 4178 5178 6178 7178 CayIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CayMr093W 180 1180 2180 3180 4180 5180 6180 7180 CayPR137W 181 1181 2181 3181 4181 5181 6181 7181 CayLr298C 182 1182 2182 3182 4182 5182 6182 7182 CayBr192W 183 1183 2183 3183 4183 5183 6183 7183 CayPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CayLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYBR265W	174	1174	2174	3174	4174	5174	6174	7174
CaYGR280C 177 1177 2177 3177 4177 5177 6177 7177 CaYJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 30 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185	25	CaYNL312W	175	1175	2175	3175	4175	5175	6175	7175
CayJL203W 178 1178 2178 3178 4178 5178 6178 7178 CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYBR155W	176	1176	2176	3176	4176	5176	6176	7176
CaYIR012W 179 1179 2179 3179 4179 5179 6179 7179 CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CAYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYGR280C	177	1177	2177	3177	4177	5177	6177	7177
CaYMR093W 180 1180 2180 3180 4180 5180 6180 7180 CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYJL203W	178	1178	2178	3178	4178	5178	6178	7178
CaYPR137W 181 1181 2181 3181 4181 5181 6181 7181 CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYIR012W	179	1179	2179	3179	4179	5179	6179	7179
CaYLR298C 182 1182 2182 3182 4182 5182 6182 7182 CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185	30	CaYMR093W	180	1180	2180	3180	4180	5180	6180	7180
CaYBR192W 183 1183 2183 3183 4183 5183 6183 7183 CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYPR137W	181	1181	2181	3181	4181	5181	6181	7181
CaYPR112C 184 1184 2184 3184 4184 5184 6184 7184 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYLR298C	182	1182	2182	3182	4182	5182	6182	7182
35 CaYLL011W 185 1185 2185 3185 4185 5185 6185 7185		CaYBR192W	183	1183	2183	3183	4183	5183	6183	7183
		CaYPR112C	184	1184	2184	3184	4184	5184	6184	7184
	35	CaYLL011W	185	1185	2185	3185	4185	5185	6185	7185
	-	CaYER082C	186	1186	2186	3186	4186	5186	6186	7186

		-,		,					
	CaYDL217C	187	1187	2187	3187	4187	5187	6187	7187
	CaYFL035C	188	1188	2188	3188	4188	5188	6188	7188
	CaYOR262W	189	1189	2189	3189	4189	5189	6189	7189
	CaYLR323C	190	1190	2190	3190	4190	5190	6190	7190
	CaYAR007C	191	1191	2191	3191	4191	5191	6191	7191
5	CaYBL023C	192	1192	2192	3192	4192	5192	6192	7192
-	CaYBL026W	193	1193	2193	3193	4193	5193	6193	7193
	CaYBL030C	194	1194	2194	3194	4194	5194	6194	7194
	CaYBL035C	195	1195	2195	3195	4195	5195	6195	7195
	CaYBL040C	196	1196	2196	3196	4196	5196	6196	7196
10	CaYBL050W	197	1197	2197	3197	4197	5197	6197	7197
10	CaYBL076C	198	1198	2198	3198	4198	5198	6198	7198
	CaYBR002C	199	1199	2199	3199	4199	5199	6199	7199
	CaYBR029C	200	1200	2200	3200	4200	5200	6200	7200
	CaYBR080C	201	1201	2201	3201	4201	5201	6201	7201
	CaYBR091C	202	1202	2202	3202	4202	5202	6202	7202
15	CaYBR135W	203	1203	2203	3203	4203	5203	6203	7203
	CaYBR142W	204	1204	2204	3204	4204	5204	6204	7204
	CaYBR143C	205	1205	2205	3205	4205	5205	6205	7205
	CaYBR160W	206	1206	2206	3206	4206	5206	6206	7206
	CaYBR196C	207	1207	2207	3207	4207	5207	6207	7207
20	CaYBR198C	208	1208	2208	3208	4208	5208	6208	7208
	CaYBR202W	209	1209	2209	3209	4209	5209	6209	7209
	CaYBR234C	210	1210	2210	3210	4210	5210	6210	7210
	CaYBR236C	211	1211	2211	3211	4211	5211	6211	7211
	CaYBR237W	212	1212	2212	3212	4212	5212	6212	7212
25	CaYBR253W	213	1213	2213	3213	4213	5213	6213	7213
	CaYBR254C	214	1214	2214	3214	4214	5214	6214	7214
	CaYCL003W	215	1215	2215	3215	4215	5215	6215	7215
	CaYCL017C	216	1216	2216	3216	4216	5216	6216	7216
	CaYCL054W	217	1217	2217	3217	4217	5217	6217	7217
30	CaYCR012W	218	1218	2218	3218	4218	5218	6218	7218
	CaYCR057C	219	1219	2219	3219	4219	5219	6219	7219
	CaYCR072C	220	1220	2220	3220	4220	5220	6220	7220
	CaYDL030W	221	1221	2221	3221	4221	5221	6221	7221
	CaYDL043C	222	1222	2222	3222	4222	5222	6222	7222
35	CaYDL055C	223	1223	2223	3223	4223	5223	6223	7223
	CaYDL060W	224	1224	2224	3224	4224	5224	6224	7224

	CaYDL084W	225	1225	2225	3225	4225	5225	6225	7225
	CaYDL087C	226	1226	2226	3226	4226	5226	6226	7226
	CaYDL126C	227	1227	2227	3227	4227	5227	6227	7227
	CaYDL132W	228	1228	2228	3228	4228	5228	6228	7228
	CaYDL141W	229	1229	2229	3229	4229	5229	6229	7229
5	CaYKL059C	230	1230	2230	3230	4230	5230	6230	7230
	CaYDL108W	231	1231	2231	3231	4231	5231	6231	7231
	CaYKL060C	232	1232	2232	3232	4232	5232	6232	7232
	CaYHR070W	233	1233	2233	3233	4233	5233	6233	7233
	CaYGR195W	234	1234	2234	3234	4234	5234	6234	7234
10	CaYOL102C	235	1235	2235	3235	4235	5235	6235	7235
10	CaYOR074C	236	1236	2236	3236	4236	5236	6236	7236
	CaYGL155W	237	1237	2237	3237	4237	5237	6237	7237
	CaYLR305C	238	1238	2238	3238	4238	5238	6238	7238
	CaYNL222W	239	1239	2239	3239	4239	5239	6239	7239
1.5	CaYDR236C	240	1240	2240	3240	4240	5240	6240	7240
15	CaYBL020W	241	1241	2241	3241	4241	5241	6241	7241
	CaYNL261W	242	1242	2242	3242	4242	5242	6242	7242
	CaYDR246W	243	1243	2243	3243	4243	5243	6243	7243
	CaYNL075W	244	1244	2244	3244	4244	5244	6244	7244
	CaYOR145C	245	1245	2245	3245	4245	5245	6245	7245
20	CaYOL077C	246	1246	2246	3246	4246	5246	6246	7246
	CaYBR257W	247	1247	2247	3247	4247	5247	6247	7247
	CaYHR170W	248	1248	2248	3248	4248	5248	6248	7248
	CaYNL263C	249	1249	2249	3249	4249	5249	6249	7249
	CaYKR068C	250	1250	2250	3250	4250	5250	6250	7250
25	CaYPR016C	251	1251	2251	3251	4251	5251	6251	7251
	CaYGR172C	252	1252	2252	3252	4252	5252	6252	7252
	CaYHR089C	253	1253	2253	3253	4253	5253	6253	7253
	CaYMR197C	254	1254	2254	3254	4254	5254	6254	7254
	CaYHR188C	255	1255	2255	3255	4255	5255	6255	7255
30	CaYPL266W	256	1256	2256	3256	4256	5256	6256	7256
	CaYBR011C	257	1257	2257	3257	4257	5257	6257	7257
	CaYCL059C	258	1258	2258	3258	4258	5258	6258	7258
	CaYDL008W	259	1259	2259	3259	4259	5259	6259	7259
	CaYDL097C	260	1260	2260	3260	4260	5260	6260	7260
35	CaYDL143W	261	1261	2261	3261	4261	5261	6261	7261
	CaYDL205C	262	1262	2262	3262	4262	5262	6262	7262

					-				
	CaYDL208W	263	1263	2263	3263	4263	5263	6263	7263
	CaYDR002W	264	1264	2264	3264	4264	5264	6264	7264
	CaYDR013W	265	1265	2265	3265	4265	5265	6265	7265
	CaYDR023W	266	1266	2266	3266	4266	5266	6266	7266
	CaYDR037W	267	1267	2267	3267	4267	5267	6267	7267
5	CaYDR045C	268	1268	2268	3268	4268	5268	6268	7268
-	CaYDR054C	269	1269	2269	3269	4269	5269	6269	7269
	CaYDR086C	270	1270	2270	3270	4270	5270	6270	7270
	CaYDR087C	271	1271	2271	3271	4271	5271	6271	7271
	CaYDR091C	272	1272	2272	3272	4272	5272	6272	7272
10	CaYDR167W	273	1273	2273	3273	4273	5273	6273	7273
10	CaYDR172W	274	1274	2274	3274	4274	5274	6274	7274
	CaYDR189W	275	1275	2275	3275	4275	5275	6275	7275
	CaYDR196C	276	1276	2276	3276	4276	5276	6276	7276
	CaYDR212W	277	1277	2277	3277	4277	5277	6277	7277
	CaYDR238C	278	1278	2278	3278	4278	5278	6278	7278
15	CaYDR280W	279	1279	2279	3279	4279	5279	6279	7279
	CaYDR331W	280	1280	2280	3280	4280	5280	6280	7280
	CaYDR373W	281	1281	2281	3281	4281	5281	6281	7281
	CaYDR376W	282	1282	2282	3282	4282	5282	6282	7282
	CaYDR390C	283	1283	2283	3283	4283	5283	6283	7283
20	CaYDR394W	284	1284	2284	3284	4284	5284	6284	7284
	CaYDR404C	285	1285	2285	3285	4285	5285	6285	7285
	CaYDR429C	286	1286	2286	3286	4286	5286	6286	7286
	CaYDR454C	287	1287	2287	3287	4287	5287	6287	7287
	CaYEL020W-A	288	1288	2288	3288	4288	5288	6288	7288
25	CaYEL026W	289	1289	2289	3289	4289	5289	6289	7289
	CaYER003C	290	1290	2290	3290	4290	5290	6290	7290
	CaYER006W	291	1291	2291	3291	4291	5291	6291	7291
	CaYER012W	292	1292	2292	3292	4292	5292	6292	7292
	CaYER021W	293	1293	2293	3293	4293	5293	6293	7293
30	CaYER036C	294	1294	2294	3294	4294	5294	6294	7294
	CaYER094C	295	1295	2295	3295	4295	5295	6295	7295
	CaYER125W	296	1296	2296	3296	4296	5296	6296	7296
	CaYER148W	297	1297	2297	3297	4297	5297	6297	7297
	CaYER159C	298	1298	2298	3298	4298	5298	6298	7298
35	CaYFL002C	299	1299	2299	3299	4299	5299	6299	7299
	CaYFL005W	300	1300	2300	3300	4300	5300	6300	7300

	CaYFL017C	301	1301	2301	3301	4301	5301	6301	7301
	CaYFL022C	302	1302	2302	3302	4302	5302	6302	7302
	CaYFL038C	303	1303	2303	3303	4303	5303	6303	7303
	CaYFL045C	304	1304	2304	3304	4304	5304	6304	7304
	CaYFR004W	305	1305	2305	3305	4305	5305	6305	7305
5	CaYFR037C	306	1306	2306	3306	4306	5306	6306	7306
,	CaYFR050C	307	1307	2307	3307	4307	5307	6307	7307
	CaYFR052W	308	1308	2308	3308	4308	5308	6308	7308
	CaYDL029W	309	1309	2309	3309	4309	5309	6309	7309
	CaYDL147W	310	1310	2310	3310	4310	5310	6310	7310
10	CaYDL148C	311	1311	2311	3311	4311	5311	6311	7311
10	CaYDR060W	312	1312	2312	3312	4312	5312	6312	7312
	CaYDR062W	313	1313	2313	3313	4313	5313	6313	7313
	CaYDR211W	314	1314	2314	3314	4314	5314	6314	7314
	CaYDR328C	315	1315	2315	3315	4315	5315	6315	7315
	CaYER025W	316	1316	2316	3316	4316	5316	6316	7316
15	CaYER136W	317	1317	2317	3317	4317	5317	6317	7317
	CaYER171W	318	1318	2318	3318	4318	5318	6318	7318
	CaYFL008W	319	1319	2319	3319	4319	5319	6319	7319
	CaYGL001C	320	1320	2320	3320	4320	5320	6320	7320
	CaYGL008C	321	1321	2321	3321	4321	5321	6321	7321
20	CaYGL011C	322	1322	2322	3322	4322	5322	6322	7322
	CaYGL022W	323	1323	2323	3323	4323	5323	6323	7323
	CaYGL044C	324	1324	2324	3324	4324	5324	6324	7324
	CaYGL048C	325	1325	2325	3325	4325	5325	6325	7325
	CaYGL068W	326	1326	2326	3326	4326	5326	6326	7326
25	CaYGL097W	327	1327	2327	3327	4327	5327	6327	7327
	CaYGL112C	328	1328	2328	3328	4328	5328	6328	7328
	CaYGL120C	329	1329	2329	3329	4329	5329	6329	7329
	CaYGL130W	330	1330	2330	3330	4330	5330	6330	7330
	CaYGR029W	331	1331	2331	3331	4331	5331	6331	7331
30	CaYGR060W	332	1332	2332	3332	4332	5332	6332	7332
	CaYGR094W	333	1333	2333	3333	4333	5333	6333	7333
	CaYGR103W	334	1334	2334	3334	4334	5334	6334	7334
	CaYGR185C	335	1335	2335	3335	4335	5335	6335	7335
	CaYGR211W	336	1336	2336	3336	4336	5336	6336	7336
35	CaYGR218W	337	1337	2337	3337	4337	5337	6337	7337
	CaYGR246C	338	1338	2338	3338	4338	5338	6338	7338

	CaYGR253C	339	1339	2339	3339	4339	5339	6339	7339
	CaYHL015W	340	1340	2340	3340	4340	5340	6340	7340
	CaYHR005C-A	341	1341	2341	3341	4341	5341	6341	7341
	CaYHR019C	342	1342	2342	3342	4342	5342	6342	7342
	CaYHR020W	343	1343	2343	3343	4343	5343	6343	7343
5	CaYHR024C	344	1344	2344	3344	4344	5344	6344	7344
,	CaYHR062C	345	1345	2345	3345	4345	5345	6345	7345
	CaYHR072W	346	1346	2346	3346	4346	5346	6346	7346
	CaYHR072W-A	347	1347	2347	3347	4347	5347	6347	7347
	CaYHR090C	348	1348	2348	3348	4348	5348	6348	7348
10	CaYHR122W	349	1349	2349	3349	4349	5349	6349	7349
10	CaYHR143W-A	350	1350	2350	3350	4350	5350	6350	7350
	CaYHR148W	351	1351	2351	3351	4351	5351	6351	7351
	CaYHR165C	352	1352	2352	3352	4352	5352	6352	7352
	CaYHR166C	353	1353	2353	3353	4353	5353	6353	7353
	CaYHR169W	354	1354	2354	3354	4354	5354	6354	7354
15	CaYHR190W	355	1355	2355	3355	4355	5355	6355	7355
	CaYIL003W	356	1356	2356	3356	4356	5356	6356	7356
	CaYIL021W	357	1357	2357	3357	4357	5357	6357	7357
	CaYIL075C	358	1358	2358	3358	4358	5358	6358	7358
	CaYIL078W	359	1359	2359	3359	4359	5359	6359	7359
20	CaYIL142W	360	1360	2360	3360	4360	5360	6360	7360
	CaYIR008C	361	1361	2361	3361	4361	5361	6361	7361
	CaYIR022W	362	1362	2362	3362	4362	5362	6362	7362
	CaYJL001W	363	1363	2363	3363	4363	5363	6363	7363
	CaYJL014W	364	1364	2364	3364	4364	5364	6364	7364
25	CaYJL050W	365	1365	2365	3365	4365	5365	6365	7365
	CaYJL074C	366	1366	2366	3366	4366	5366	6366	7366
	CaYJL081C	367	1367	2367	3367	4367	5367	6367	7367
	CaYJL104W	368	1368	2368	3368	4368	5368	6368	7368
	CaYJL111W	369	1369	2369	3369	4369	5369	6369	7369
30	CaYJL143W	370	1370	2370	3370	4370	5370	6370	7370
	CaYJL167W	371	1371	2371	3371	4371	5371	6371	7371
	CaYJL194W	372	1372	2372	3372	4372	5372	6372	7372
	CaYJR006W	373	1373	2373	3373	4373	5373	6373	7373
	CaYJR017C	374	1374	2374	3374	4374	5374	6374	7374
35	CaYJR064W	375	1375	2375	3375	4375	5375	6375	7375
	CaYJR065C	376	1376	2376	3376	4376	5376	6376	7376

	CaYJR072C	377	1377	2377	3377	4377	5377	6377	7377
	CaYJR123W	378	1378	2378	3378	4378	5378	6378	7378
	CaYKL012W	379	1379	2379	3379	4379	5379	6379	7379
	CaYKL019W	380	1380	2380	3380	4380	5380	6380	7380
	CaYKL028W	381	1381	2381	3381	4381	5381	6381	7381
5	CaYKL058W	382	1382	2382	3382	4382	5382	6382	7382
-	CaYKL104C	383	1383	2383	3383	4383	5383	6383	7383
	CaYKL144C	384	1384	2384	3384	4384	5384	6384	7384
	CaYKL145W	385	1385	2385	3385	4385	5385	6385	7385
	CaYKL172W	386	1386	2386	3386	4386	5386	6386	7386
10	CaYKL210W	387	1387	2387	3387	4387	5387	6387	7387
10	CaYKR079C	388	1388	2388	3388	4388	5388	6388	7388
	CaYKR086W	389	1389	2389	3389	4389	5389	6389	7389
	CaYLL018C	390	1390	2390	3390	4390	5390	6390	7390
	CaYLR005W	391	1391	2391	3391	4391	5391	6391	7391
	CaYLR009W	392	1392	2392	3392	4392	5392	6392	7392
15	CaYLR022C	393	1393	2393	3393	4393	5393	6393	7393
	CaYLR026C	394	1394	2394	3394	4394	5394	6394	7394
	CaYLR051C	395	1395	2395	3395	4395	5395	6395	7395
	CaYLR060W	396	1396	2396	3396	4396	5396	6396	7396
	CaYLR078C	397	1397	2397	3397	4397	5397	6397	7397
20	CaYLR100W	398	1398	2398	3398	4398	5398	6398	7398
	CaYLR116W	399	1399	2399	3399	4399	5399	6399	7399
	CaYLR117C	400	1400	2400	3400	4400	5400	6400	7400
	CaYLR129W	401	1401	2401	3401	4401	5401	6401	7401
	CaYLR147C	402	1402	2402	3402	4402	5402	6402	7402
25	CaYLR153C	403	1403	2403	3403	4403	5403	6403	7403
	CaYLR163C	404	1404	2404	3404	4404	5404	6404	7404
	CaYLR175W	405	1405	2405	3405	4405	5405	6405	7405
	CaYLR186W	406	1406	2406	3406	4406	5406	6406	7406
	CaYLR197W	407	1407	2407	3407	4407	5407	6407	7407
30	CaYLR208W	408	1408	2408	3408	4408	5408	6408	7408
	CaYLR222C	409	1409	2409	3409	4409	5409	6409	7409
	CaYLR259C	410	1410	2410	3410	4410	5410	6410	7410
	CaYLR276C	411	1411	2411	3411	4411	5411	6411	7411
	CaYLR277C	412	1412	2412	3412	4412	5412	6412	7412
35	CaYLR291C	413	1413	2413	3413	4413	5413	6413	7413
	CaYLR293C	414	1414	2414	3414	4414	5414	6414	7414

	CaYLR347C	415	1415	2415	3415	4415	5415	6415	7415
	CaYLR378C	416	1416	2416	3416	4416	5416	6416	7416
	CaYLR397C	417	1417	2417	3417	4417	5417	6417	7417
	CaYML064C	418	1418	2418	3418	4418	5418	6418	7418
	CaYML069W	419	1419	2419	3419	4419	5419	6419	7419
5	CaYML092C	420	1420	2420	3420	4420	5420	6420	7420
,	CaYML093W	421	1421	2421	3421	4421	5421	6421	7421
	CaYML125C	422	1422	2422	3422	4422	5422	6422	7422
	CaYML126C	423	1423	2423	3423	4423	5423	6423	7423
	CaYMR113W	424	1424	2424	3424	4424	5424	6424	7424
10	CaYMR131C	425	1425	2425	3425	4425	5425	6425	7425
10	CaYMR146C	426	1426	2426	3426	4426	5426	6426	7426
	CaYMR208W	427	1427	2427	3427	4427	5427	6427	7427
	CaYMR213W	428	1428	2428	3428	4428	5428	6428	7428
	CaYMR240C	429	1429	2429	3429	4429	5429	6429	7429
	CaYMR260C	430	1430	2430	3430	4430	5430	6430	7430
15	CaYMR308C	431	1431	2431	3431	4431	5431	6431	7431
	CaYMR314W	432	1432	2432	3432	4432	5432	6432	7432
	CaYNL002C	433	1433	2433	3433	4433	5433	6433	7433
	CaYNL006W	434	1434	2434	3434	4434	5434	6434	7434
	CaYNL061W	435	1435	2435	3435	4435	5435	6435	7435
20	CaYNL102W	436	1436	2436	3436	4436	5436	6436	7436
	CaYNL113W	437	1437	2437	3437	4437	5437	6437	7437
	CaYNL178W	438	1438	2438	3438	4438	5438	6438	7438
	CaYNL189W	439	1439	2439	3439	4439	5439	6439	7439
	CaYNL244C	440	1440	2440	3440	4440	5440	6440	7440
25	CaYNL247W	441	1441	2441	3441	4441	5441	6441	7441
	CaYNL287W	442	1442	2442	3442	4442	5442	6442	7442
	CaYNR043W	443	1443	2443	3443	4443	5443	6443	7443
	CaYOL005C	444	1444	2444	3444	4444	5444	6444	7444
	CaYOL010W	445	1445	2445	3445	4445	5445	6445	7445
30	CaYOL094C	446	1446	2446	3446	4446	5446	6446	7446
	CaYOL139C	447	1447	2447	3447	4447	5447	6447	7447
	CaYOR048C	448	1448	2448	3448	4448	5448	6448	7448
	CaYOR056C	449	_1449	2449	3449	4449	5449	6449	7449
	CaYOR063W	450	1450	2450	3450	4450	5450	6450	7450
35	CaYOR103C	451	1451	2451	3451	4451	5451	6451	7451
	CaYOR116C	452	1452	2452	3452	4452	5452	6452	7452

	CaYOR117W	453	1453	2453	3453	4453	5453	6453	7453
	CaYOR151C	454	1454	2454	3454	4454	5454	6454	7454
	CaYOR157C	455	1455	2455	3455	4455	5455	6455	7455
	CaYOR159C	456	1456	2456	3456	4456	5456	6456	7456
	CaYOR168W	457	1457	2457	3457	4457	5457	6457	7457
5	CaYOR194C	458	1458	2458	3458	4458	5458	6458	7458
	CaYOR207C	459	1459	2459	3459	4459	5459	6459	7459
	CaYOR210W	460	1460	2460	3460	4460	5460	6460	7460
	CaYOR217W	461	1461	2461	3461	4461	5461	6461	7461
	CaYOR224C	462	1462	2462	3462	4462	5462	6462	7462
10	CaYOR232W	463	1463	2463	3463	4463	5463	6463	7463
10	CaYOR259C	464	1464	2464	3464	4464	5464	6464	7464
	CaYOR261C	465	1465	2465	3465	4465	5465	6465	7465
	CaYOR272W	466	1466	2466	3466	4466	5466	6466	7466
	CaYOR294W	467	1467	2467	3467	4467	5467	6467	7467
	CaYOR310C	468	1468	2468	3468	4468	5468	6468	7468
15	CaYOR335C	469	1469	2469	3469	4469	5469	6469	7469
	CaYOR341W	470	1470	2470	3470	4470	5470	6470	7470
	CaYPL010W	471	1471	2471	3471	4471	5471	6471	7471
	CaYPL076W	472	1472	2472	3472	4472	5472	6472	7472
	CaYPL094C	473	1473	2473	3473	4473	5473	6473	7473
20	CaYPL117C	474	1474	2474	3474	4474	5474	6474	7474
	CaYPL122C	475	1475	2475	3475	4475	5475	6475	7475
	CaYPL131W	476	1476	2476	3476	4476	5476	6476	7476
	CaYPL211W	477	1477	2477	3477	4477	5477	6477	7477
	CaYPL235W	478	1478	2478	3478	4478	5478	6478	7478
25	CaYPL252C	479	1479	2479	3479	4479	5479	6479	7479
	CaYPR019W	480	1480	2480	3480	4480	5480	6480	7480
	CaYPR025C	481	1481	2481	3481	4481	5481	6481	7481
	CaYPR034W	482	1482	2482	3482	4482	5482	6482	7482
	CaYPR055W	483	1483	2483	3483	4483	5483	6483	7483
30	CaYPR056W	484	1484	2484	3484	4484	5484	6484	7484
	CaYPR082C	485	1485	2485	3485	4485	5485	6485	7485
	CaYPR103W	486	1486	2486	3486	4486	5486	6486	7486
	CaYPR107C	487	1487	2487	3487	4487	5487	6487	7487
	CaYPR108W	488	1488	2488	3488	4488	5488	6488	7488
35	CaYPR110C	489	1489	2489	3489	4489	5489	6489	7489
	CaYPR113W	490	1490	2490	3490	4490	5490	6490	7490

	CaYPR176C	491	1491	2491	3491	4491	5491	6491	7491
	CaYPR183W	492	1492	2492	3492	4492	5492	6492	7492
	CaYPR186C	493	1493	2493	3493	4493	5493	6493	7493
	CaYPR187W	494	1494	2494	3494	4494	5494	6494	7494
	CaYGL123W	495	1495	2495	3495	4495	5495	6495	7495
5	CaYHR042W	496	1496	2496	3496	4496	5496	6496	7496
	CaYIL062C	497	1497	2497	3497	4497	5497	6497	7497
	CaYJR042W	498	1498	2498	3498	4498	5498	6498	7498
	CaYJR063W	499	1499	2499	3499	4499	5499	6499	7499
	CaYJR076C	500	1500	2500	3500	4500	5500	6500	7500
10	CaYKL013C	501	1501	2501	3501	4501	5501	6501	7501
10	CaYLR196W	502	1502	2502	3502	4502	5502	6502	7502
	CaYLR272C	503	1503	2503	3503	4503	5503	6503	7503
	CaYNR035C	504	1504	2504	3504	4504	5504	6504	7504
	CaYPR088C	505	1505	2505	3505	4505	5505	6505	7505
1.5	CaYDR397C	506	1506	2506	3506	4506	5506	6506	7506
15	CaYAL032C	507	1507	2507	3507	4507	5507	6507	7507
	CaYBR060C	508	1508	2508	3508	4508	5508	6508	7508
	CaYBR154C	509	1509	2509	3509	4509	5509	6509	7509
	CaYDL028C	510	1510	2510	3510	4510	5510	6510	7510
	CaYDR088C	511	1511	2511	3511	4511	5511	6511	7511
20	CaYDR235W	512	1512	2512	3512	4512	5512	6512	7512
	CaYDR267C	513	1513	2513	3513	4513	5513	6513	7513
	CaYDR460W	514	1514	2514	3514	4514	5514	6514	7514
	CaYEL032W	515	1515	2515	3515	4515	5515	6515	7515
	CaYER013W	516	1516	2516	3516	4516	5516	6516	7516
25	CaYER048W-A	517	1517	2517	3517	4517	5517	6517	7517
	CaYER172C	518	1518	2518	3518	4518	5518	6518	7518
	CaYFR031C	519	1519	2519	3519	4519	5519	6519	7519
	CaYGL065C	520	1520	2520	3520	4520	5520	6520	7520
	CaYGL073W	521	1521	2521	3521	4521	5521	6521	7521
30	CaYGL091C	522	1522	2522	3522	4522	5522	6522	7522
	CaYGL103W	523	1523	2523	3523	4523	5523	6523	7523
	CaYGL116W	524	1524	2524	3524	4524	5524	6524	7524
	CaYGL201C	525	1525	2525	3525	4525	5525	6525	7525
	CaYGL245W	526	1526	2526	3526	4526	5526	6526	7526
35	CaYGL247W	527	1527	2527	3527	4527	5527	6527	7527
	CaYGR047C	528	1528	2528	3528	4528	5528	6528	7528

	CaYGR074W	529	1529	2529	3529	4529	5529	6529	7529
	CaYGR083C	530	1530	2530	3530	4530	5530	6530	7530
	CaYGR128C	531	1531	2531	3531	4531	5531	6531	7531
	CaYHR074W	532	1532	2532	3532	4532	5532	6532	7532
	CaYHR107C	533	1533	2533	3533	4533	5533	6533	7533
5	CaYIL126W	534	1534	2534	3534	4534	5534	6534	7534
,	CaYJL010C	535	1535	2535	3535	4535	5535	6535	7535
	CaYJL011C	536	1536	2536	3536	4536	5536	6536	7536
	CaYJL026W	537	1537	2537	3537	4537	5537	6537	7537
	CaYJL039C	538	1538	2538	3538	4538	5538	6538	7538
10	CaYJL041W	539	1539	2539	3539	4539	5539	6539	7539
10	CaYJR045C	540	1540	2540	3540	4540	5540	6540	7540
	CaYKL049C	541	1541	2541	3541	4541	5541	6541	7541
	CaYKL152C	542	1542	2542	3542	4542	5542	6542	7542
	CaYKL181W	543	1543	2543	3543	4543	5543	6543	7543
	CaYLR086W	544	1544	2544	3544	4544	5544	6544	7544
15	CaYLR115W	545	1545	2545	3545	4545	5545	6545	7545
	CaYLR223C	546	1546	2546	3546	4546	5546	6546	7546
	CaYLR274W	547	1547	2547	3547	4547	5547	6547	7547
	CaYLR336C	548	1548	2548	3548	4548	5548	6548	7548
	CaYML065W	549	1549	2549	3549	4549	5549	6549	7549
20	CaYML098W	550	1550	2550	3550	4550	5550	6550	7550
	CaYMR043W	551	1551	2551	3551	4551	5551	6551	7551
	CaYMR112C	552	1552	2552	3552	4552	5552	6552	7552
	CaYMR281W	553	1553	2553	3553	4553	5553	6553	7553
	CaYMR288W	554	1554	2554	3554	4554	5554	6554	7554
25	CaYMR290C	555	1555	2555	3555	4555	5555	6555	7555
	CaYMR309C	556	1556	2556	3556	4556	5556	6556	7556
	CaYNL039W	557	1557	2557	3557	4557	5557	6557	7557
	CaYNL110C	558	1558	2558	3558	4558	5558	6558	7558
	CaYNL221C	559	1559	2559	3559	4559	5559	6559	7559
30	CaYNL317W	560	1560	2560	3560	4560	5560	6560	7560
	CaYNR053C	561	1561	2561	3561	4561	5561	6561	7561
	CaYOL038W	562	1562	2562	3562	4562	5562	6562	7562
	CaYOR095C	563	1563	2563	3563	4563	5563	6563	7563
	CaYOR204W	564	1564	2564	3564	4564	5564	6564	7564
35	CaYOR249C	565	1565	2565	3565	4565	5565	6565	7565
	CaYOR250C	566	1566	2566	3566	4566	5566	6566	7566

							-		
	CaYOR257W	567	1567	2567	3567	4567	5567	6567	7567
	CaYOR370C	568	1568	2568	3568	4568	5568	6568	7568
	CaYPL151C	569	1569	2569	3569	4569	5569	6569	7569
	CaYPL204W	570	1570	2570	3570	4570	5570	6570	7570
	CaYPL209C	571	1571	2571	3571	4571	5571	6571	7571
5	CaYPL242C	572	1572	2572	3572	4572	5572	6572	7572
	CaYPR048W	573	1573	2573	3573	4573	5573	6573	7573
	CaYPR086W	574	1574	2574	3574	4574	5574	6574	7574
	CaYPR178W	575	1575	2575	3575	4575	5575	6575	7575
	CaYIL109C	576	1576	2576	3576	4576	5576	6576	7576
10	CaYKL045W	577	1577	2577	3577	4577	5577	6577	7577
10	CaYLR316C	578	1578	2578	3578	4578	5578	6578	7578
	CaYBR087W	579	1579	2579	3579	4579	5579	6579	7579
	CaYGR048W	580	1580	2580	3580	4580	5580	6580	7580
	CaYPL169C	581	1581	2581	3581	4581	5581	6581	7581
	CaYGR186W	582	1582	2582	3582	4582	5582	6582	7582
15	CaYNL131W	583	1583	2583	3583	4583	5583	6583	7583
	CaYLR088W	584	1584	2584	3584	4584	5584	6584	7584
	CaYKL193C	585	1585	2585	3585	4585	5585	6585	7585
	CaYJR007W	586	1586	2586	3586	4586	5586	6586	7586
	CaYJL034W	587	1587	2587	3587	4587	5587	6587	7587
20	CaYDL207W	588	1588	2588	3588	4588	5588	6588	7588
	CaYDL017W	589	1589	2589	3589	4589	5589	6589	7589
	CaYAL035W	590	1590	2590	3590	4590	5590	6590	7590
	CaYBR038W	591	1591	2591	3591	4591	5591	6591	7591
	CaYBR159W	592	1592	2592	3592	4592	5592	6592	7592
25	CaYDR120C	593	1593	2593	3593	4593	5593	6593	7593
	CaYER070W	594	1594	2594	3594	4594	5594	6594	7594
	CaYGL003C	595	1595	2595	3595	4595	5595	6595	7595
	CaYGL206C	596	1596	2596	3596	4596	5596	6596	7596
	CaYAL043C	597	1597	2597	3597	4597	5597	6597	7597
30	CaYBL097W	598	1598	2598	3598	4598	5598	6598	7598
	CaYBL105C	599	1599	2599	3599	4599	5599	6599	7599
	CaYBR079C	600	1600	2600	3600	4600	5600	6600	7600
	CaYBR088C	601	1601	2601	3601	4601	5601	6601	7601
	CaYDL145C	602	1602	2602	3602	4602	5602	6602	7602
35	CaYDL166C	603	1603	2603	3603	4603	5603	6603	7603
	CaYDR145W	604	1604	2604	3604	4604	5604	6604	7604

	CaYDR170C	605	1605	2605	3605	4605	5605	6605	7605
	CaYDR301W	606	1606	2606	3606	4606	5606	6606	7606
	CaYDR531W	607	1607	2607	3607	4607	5607	6607	7607
	CaYFL024C	608	1608	2608	3608	4608	5608	6608	7608
	CaYFR002W	609	1609	2609	3609	4609	5609	6609	7609
		610	1610			4610	5610		7610
5	CaYGR264C	_		2610	3610			6610	
	CaYHR023W	611	1611	2611	3611	4611	5611	6611	7611
	CaYHR027C	612	1612	2612	3612	4612	5612	6612	7612
	CaYJL008C	613	1613	2613	3613	4613	5613	6613	7613
	CaYJL033W	614	1614	2614	3614	4614	5614	6614	7614
10	CaYJL054W	615	1615	2615	3615	4615	5615	6615	7615
	CaYJL109C	616	1616	2616	3616	4616	5616	6616	7616
	CaYJL125C	617	1617	2617	3617	4617	5617	6617	7617
	CaYJL156C	618	1618	2618	3618	4618	5618	6618	7618
	CaYJR002W	619	1619	2619	3619	4619	5619	6619	7619
15	CaYKL192C	620	1620	2620	3620	4620	5620	6620	7620
13	CaYLL034C	621	1621	2621	3621	4621	5621	6621	7621
	CaYLR029C	622	1622	2622	3622	4622	5622	6622	7622
	CaYLR167W	623	1623	2623	3623	4623	5623	6623	7623
	CaYLR243W	624	1624	2624	3624	4624	5624	6624	7624
20	CaYLR249W	625	1625	2625	3625_	4625	5625	6625	7625
20	CaYLR321C	626	1626	2626	3626	4626	5626	6626	7626
	CaYLR383W	627	1627	2627	3627	4627	5627	6627	7627
	CaYMR239C	628	1628	2628	3628	4628	5628	6628	7628
	CaYNL088W	629	1629	2629	3629	4629	5629	6629	7629
	CaYNL163C	630	1630	2630	3630	4630	5630	6630	7630
25	CaYNR038W	631	1631	2631	3631	4631	5631	6631	7631
	CaYOL097C	632	1632	2632	3632	4632	5632	6632	7632
	CaYOR260W	633	1633	2633	3633	4633	5633	6633	7633
	CaYPL028W	634	1634	2634	3634	4634	5634	6634	7634
	CaYPL153C	635	1635	2635	3635	4635	5635	6635	7635
30	CaYPL210C	636	1636	2636	3636	4636	5636	6636	7636
	CaYPL217C	637	1637	2637	3637	4637	5637	6637	7637
	CaYPR010C	638	1638	2638	3638	4638	5638	6638	7638
	CaYPR144C	639	1639	2639	3639	4639	5639	6639	7639
	CaYPR169W	640	1640	2640	3640	4640	5640	6640	7640
35	CaYDL140C	641	1641	2641	3641	4641	5641	6641	7641
	CaYDL031W	642	1642	2642	3642	4642	5642	6642	7642

	CaYHR186C	643	1643	2643	3643	4643	5643	6643	7643
	CaYPL093W	644	1644	2644	3644	4644	5644	6644	7644
	CaYKL035W	645	1645	2645	3645	4645	5645	6645	7645
	CaYDL058W	646	1646	2646	3646	4646	5646	6646	7646
	CaYDR341C	647	1647	2647	3647	4647	5647	6647	7647
5	CaYGL238W	648	1648	2648	3648	4648	5648	6648	7648
•	CaYFR028C	649	1649	2649	3649	4649	5649	6649	7649
	CaYNL172W	650	1650	2650	3650	4650	5650	6650	7650
	CaYDR190C	651	1651	2651	3651	4651	5651	6651	7651
	CaYEL055C	652	1652	2652	3652	4652	5652	6652	7652
10	CaYPR041W	653	1653	2653	3653	4653	5653	6653	7653
10	CaYGR255C	654	1654	2654	3654	4654	5654	6654	7654
	CaYBR055C	655	1655	2655	3655	4655	5655	6655	7655
	CaYER022W	656	1656	2656	3656	4656	5656	6656	7656
	CaYKL014C	657	1657	2657	3657	4657	5657	6657	7657
	CaYIL046W	658	1658	2658	3658	4658	5658	6658	7658
15	CaYMR015C	659	1659	2659	3659	4659	5659	6659	7659
	CaYNL280C	660	1660	2660	3660	4660	5660	6660	7660
	CaYML075C	661	1661	2661	3661	4661	5661	6661	7661
	CaYCR042C	662	1662	2662	3662	4662	5662	6662	7662
	CaYMR235C	663	1663	2663	3663	4663	5663	6663	7663
20	CaYIL026C	664	1664	2664	3664	4664	5664	6664	7664
	CaYPL085W	665	1665	2665	3665	4665	5665	6665	7665
	CaYGR005C	666	1666	2666	3666	4666	5666	6666	7666
	CaYOL144W	667	1667	2667	3667	4667	5667	6667	7667
	CaYHR005C	668	1668	2668	3668	4668	5668	6668	7668
25	CaYGR013W	669	1669	2669	3669	4669	5669	6669	7669
	CaYIL115C	670	1670	2670	3670	4670	5670	6670	7670
	CaYGR147C	671	1671	2671	3671	4671	5671	6671	7671
	CaYOR336W	672	1672	2672	3672	4672	5672	6672	7672
	CaYPR159W	673	1673	2673	3673	4673	5673	6673	7673
30	CaYJL174W	674	1674	2674	3674	4674	5674	6674	7674
	CaYOL130W	675	1675	2675	3675	4675	5675	6675	7675
	CaYNL048W	676	1676	2676	3676	4676	5676	6676	7676
	CaYER007W	677	1677	2677	3677	4677	5677	6677	7677
	CaYGL106W	678	1678	2678	3678	4678	5678	6678	7678
35	CaYDL102W	679	1679	2679	3679	4679	5679	6679	7679
	CaYDL007W	680	1680	2680	3680	4680	5680	6680	7680

						,			
	CaYER031C	681	1681	2681	3681	4681	5681	6681	7681
	CaYDR226W	682	1682	2682	3682	4682	5682	6682	7682
	CaYOR349W	683	1683	2683	3683	4683	5683	6683	7683
	CaYNL148C	684	1684	2684	3684	4684	5684	6684	7684
	CaYPR119W	685	1685	2685	3685	4685	5685	6685	7685
5	CaYMR055C	686	1686	2686	3686	4686	5686	6686	7686
,	CaYFL018C	687	1687	2687	3687	4687	5687	6687	7687
	CaYNL238W	688	1688	2688	3688	4688	5688	. 6688	7688
	CaYPL231W	689	1689	2689	3689	4689	5689	6689	7689
	CaYNL025C	690	1690	2690	3690	4690	5690	6690	7690
10	CaYJL141C	691	1691	2691	3691	4691	5691	6691	7691
10	CaYLR306W	692	1692	2692	3692	4692	5692	6692	7692
	CaYLR300W	693	1693	2693	3693	4693	5693	6693	7693
	CaYKL046C	694	1694	2694	3694	4694	5694	6694	7694
	CaYDR311W	695	1695	2695	3695	4695	5695	6695	7695
	CaYDR449C	696	1696	2696	3696	4696	5696	6696	7696
15	CaYER023W	697	1697	2697	3697	4697	5697	6697	7697
	CaYGL040C	698	1698	2698	3698	4698	5698	6698	7698
	CaYGR009C	699	1699	2699	3699	4699	5699	6699	7699
	CaYNR003C	700	1700	2700	3700	4700	5700	6700	7700
	CaYOL066C	701	1701	2701	3701	4701	5701	6701	7701
20	CaYOR119C	702	1702	2702	3702	4702	5702	6702	7702
	CaYMR049C	703	1703	2703	3703	4703	5703	6703	7703
	CaYNR050C	704	1704	2704	3704	4704	5704	6704	7704
	CaYPL203W	705	1705	2705	3705	4705	5705	6705	7705
	CaYER113C	706	1706	2706	3706	4706	5706	6706	7706
25	CaYOR280C	707	1707	2707	3707	4707	5707	6707	7707
	CaYGR006W	708	1708	2708	3708	4708	5708	6708	7708
	CaYJL122W	709	1709	2709	3709	4709	5709	6709	7709
	CaORF6_3320	710	1710	2710	3710	4710	5710	6710	7710
	CaORF6_7574	711	1711	2711	3711	4711	5711	6711	7711
30	CaORF6_6275	712	1712	2712	3712	4712	5712	6712	7712
	CaORF6_1979	713	1713	2713	3713	4713	5713	6713	7713
	CaORF6_8942	714	1714	2714	3714	4714	5714	6714	7714
	CaYJL153C	715	1715	2715	3715	4715	5715	6715	7715
	CaYNL277W	716	1716	2716	3716	4716	5716	6716	7716
35	CaYIL104C	717	1717	2717	3717	4717	5717	6717	7717
	CaYOL027C	718	1718	2718	3718	4718	5718	6718	7718

	CaYJL134W	719	1719	2719	3719	4719	5719	6719	7719
	CaYLL012W	720	1720	2720	3720	4720	5720	6720	7720
	CaORF6 7779	721	1721	2721	3721	4721	5721	6721	7721
	CaORF6 3262	722	1722	2722	3722	4722	5722	6722	7722
	CaORF6 7304	723	1723	2723	3723	4723	5723	6723	7723
	CaORF6 2028	724	1724	2724	3724	4724	5724	6724	7724
5	CaORF6 1717	725	1725	2725	3725	4725	5725	6725	7725
	CaORF6 1780	726	1726	2726	3726	4726	5726	6726	7726
	CaORF6 1932	727	1727	2727	3727	4727	5727	6727	7727
	CaORF6 1934	728	1728	2728	3728	4728	5728	6728	7728
	CaORF6 2193	729	1729	2729	3729	4729	5729	6729	7729
10	CaORF6 2398	730	1730	2730	3730	4730	5730	6730	7730
	orf6.3168	731	1731	2731	3731	4731	5731	6731	7731
	orf6.3295	732	1732	2732	3732	4732	5732	6732	7732
	orf6.3939	733	1733	2733	3733	4733	5733	6733	7733
	orf6.4497	734	1734	2734	3734	4734	5734	6734	7734
15	orf6.4499	735	1735	2735	3735	4735	5735	6735	7735
	orf6.4537	736	1736	2736	3736	4736	5736	6736	7736
	orf6.4747	737	1737	2737	3737	4737	5737	6737	7737
	orf6.4899	738	1738	2738	3738	4738	5738	6738	7738
	orf6.4974	739	1739	2739	3739	4739	5739	6739	7739
20	orf6.5147	740	1740	2740	3740	4740	5740	6740	7740
	orf6.5199	741	1741	2741	3741	4741	5741	6741	7741
	orf6.5210	742	1742	2742	3742	4742	5742	6742	7742
	orf6.5520	743	1743	2743	3743	4743	5743	6743	7743
	orf6.569	744	1744	2744	3744	4744	5744	6744	7744
25	orf6.5739	745	1745	2745	3745	4745	5745	6745	7745
	orf6.6011	746	1746	2746	3746	4746	5746	6746	7746
	orf6.7375	747	1747	2747	3747	4747	5747	6747	7747
	orf6.7629	748	1748	2748	3748	4748	5748	6748	7748
	orf6.8025	749	1749	2749	3749	4749	5749	6749	7749
30	orf6.804	750	1750	2750	3750	4750	5750	6750	7750
	orf6.8362	751	1751	2751	3751	4751	5751	6751	7751
	orf6.8377	752	1752	2752	3752	4752	5752	6752	7752
	orf6.8395	753	1753	2753	3753	4753	5753	6753	7753
	orf6.8482	754	1754	2754	3754	4754	5754	6754	7754
35	orf6.8837	755	1755	2755	3755	4755	5755	6755	7755
	orf6.889	756	1756	2756	3756	4756	5756	6756	7756

	orf6.8938	757	1757	2757	3757	4757	5757	6757	7757
	orf6.9113	758	1758	2758	3758	4758	5758	6758	7758
	CaLYS4	759	1759	2759	3759	4759	5759	6759	7759
	CaTRP5	760	1760	2760	3760	4760	5760	6760	7760
	CaPRO1	761	1761	2761	3761	4761	5761	6761	7761
5	CaPBS2	762	1762	2762	3762	4762	5762	6762	7762
	CaYBL041W	763	1763	2763	3763	4763	5763	6763	7763
	CaYBR170C	764	1764	2764	3764	4764	5764	6764	7764
	CaYDR188W	765	1765	2765	3765	4765	5765	6765	7765
	CaYGR098C	766	1766	2766	3766	4766	5766	6766	7766
10	CaYGR267C	767	1767	2767	3767	4767	5767	6767	7767
10	CaYGR274C	768	1768	2768	3768	4768	5768	6768	7768
	CaYJL002C	769	1769	2769	3769	4769	5769	6769	7769
	CaYKL125W	770	1770	2770	3770	4770	5770	6770	7770
	CaYLL035W	771	1771	2771	3771	4771	5771	6771	7771
1.5	CaYPL016W	772	1772	2772	3772	4772	5772	6772	7772
15	CaYPL218W	773	1773	2773	3773	4773	5773	6773	7773
	CaYKL141W	774	1774	2774	3774	4774	5774	6774	7774
	CaYHR174W	775	1775	2775	3775	4775	5775	6775	7775
	CaYDR356W	776	1776	2776	3776	4776	5776	6776	7776
	CaYNL124W	777	1777	2777	3777	4777	5777	6777	7777
20	CaYAL015C	778	1778	2778	3778	4778	5778	6778	7778
	CaYBR001C	779	1779	2779	3779	4779	5779	6779	7779
	CaYCL035C	780	1780	2780	3780	4780	5780	6780	7780
	CaYCR048W	781	1781	2781	3781	4781	5781	6781	7781
	CaYDR379W	782	1782	2782	3782	4782	5782	6782	7782
25	CaYER059W	783	1783	2783	3783	4783	5783	6783	7783
	CaYGR070W	784	1784	2784	3784	4784	5784	6784	7784
	CaYGR209C	785	1785	2785	3785	4785	5785	6785	7785
	orf6.1498	786	1786	2786	3786	4786	5786	6786	7786
	orf6.2086	787	1787	2787	3787	4787	5787	6787	7787
30	orf6.3026	788	1788	2788	3788	4788	5788	6788	7788
	orf6.3261	789	1789	2789	3789	4789	5789	6789	7789
	orf6.3819	790	1790	2790	3790	4790	5790	6790	7790
	orf6.3864	791	1791	2791	3791	4791	5791	6791	7791
	orf6.3972	792	1792	2792	3792	4792	5792	6792	7792
35	orf6.4005	793	1793	2793	3793	4793	5793	6793	7793
	orf6.4010	794	1794	2794	3794	4794	5794	6794	7794

					,		,		
	orf6.4114	795	1795	2795	3795	4795	5795	6795	7795
	orf6.4153	796	1796	2796	3796	4796	5796	6796	7796
	orf6.4206	797	1797	2797	3797	4797	5797	6797	7797
	orf6.4293	798	1798	2798	3798	4798	5798	6798	7798
	orf6.4463	799	1799	2799	3799	4799	5799	6799	7799
5	orf6.4555	800	1800	2800	3800	4800	5800	6800	7800
	orf6.4628	801	1801	2801	3801	4801	5801	6801	7801
	orf6.4837	802	1802	2802	3802	4802	5802	6802	7802
	orf6.4854	803	1803	2803	3803	4803	5803	6803	7803
	orf6.4923	804	1804	2804	3804	4804	5804	6804	7804
10	orf6.4927	805	1805	2805	3805	4805	5805	6805	7805
10	orf6.5092	806	1806	2806	3806	4806	5806	6806	7806
	orf6.5279	807	1807	2807	3807	4807	5807	6807	7807
	orf6.5786	808	1808	2808	3808	4808	5808	6808	7808
	orf6.5919	809	1809	2809	3809	4809	5809	6809	7809
	orf6.5920	810	1810	2810	3810	4810	5810	6810	7810
15	orf6.6022	811	1811	2811	3811	4811	5811	6811	7811
	orf6.6026	812	1812	2812	3812	4812	5812	6812	7812
	orf6.6030	813	1813	2813	3813	4813	5813	6813	7813
	orf6.6069	814	1814	2814	3814	4814	5814	6814	7814
	orf6.6140	815	1815	2815	3815	4815	5815	6815	7815
20	orf6.6218	816	1816	2816	3816	4816	5816	6816	7816
	orf6.6390	817	1817	2817	3817	4817	5817	6817	7817
	orf6.6550	818	1818	2818	3818	4818	5818	6818	7818
	orf6.6562	819	1819	2819	3819	4819	5819	6819	7819
	orf6.6660	820	1820	2820	3820	4820	5820	6820	7820
25	orf6.6664	821	1821	2821	3821	4821	5821	6821	7821
	orf6.6670	822	1822	2822	3822	4822	5822	6822	7822
	orf6.6700	823	1823	2823	3823	4823	5823	6823	7823
	orf6.6933	824	1824	2824	3824	4824	5824	6824	7824
	orf6.6939	825	1825	2825	3825	4825	5825	6825	7825
30	orf6.7203	826	1826	2826	3826	4826	5826	6826	7826
	orf6.7214	827	1827	2827	3827	4827	5827	6827	7827
	orf6.7847	828	1828	2828	3828	4828	5828	6828	7828
	orf6.7893	829	1829	2829	3829	4829	5829	6829	7829
	orf6.8239	830	1830	2830	3830	4830	5830	6830	7830
35	orf6.8461	831	1831	2831	3831	4831	5831	6831	7831
	orf6.8607	832	1832	2832	3832	4832	5832	6832	7832

						т			
	orf6.8654	833	1833	2833	3833	4833	5833	6833	7833
	orf6.8716	834	1834	2834	3834	4834	5834	6834	7834
	CaYPR198W	835	1835	2835	3835	4835	5835	6835	7835
	orf6.1031	836	1836	2836	3836	4836	5836	6836	7836
	orf6.1035	837	1837	2837	3837	4837	5837	6837	7837
5	orf6.1302	838	1838	2838	3838	4838	5838	6838	7838
3	orf6.1752	839	1839	2839	3839	4839	5839	6839	7839
	orf6.2119	840	1840	2840	3840	4840	5840	6840	7840
	orf6.2277	841	1841	2841	3841	4841	5841	6841	7841
	orf6.2355	842	1842	2842	3842	4842	5842	6842	7842
	orf6.2417	843	1843	2843	3843	4843	5843	6843	7843
10	orf6.2463	844	1844	2844	3844	4844	5844	6844	7844
	orf6.2715	845	1845	2845	3845	4845	5845	6845	7845
	orf6.2865	846	1846	2846	3846	4846	5846	6846	7846
	orf6.3078	847	1847	2847	3847	4847	5847	6847	7847
	orf6.3170	848	1848	2848	3848	4848	5848	6848	7848
15	orf6.3203	849	1849	2849	3849	4849	5849	6849	7849
	orf6.3517	850	1850	2850	3850	4850	5850	6850	7850
	orf6.3623	851	1851	2851	3851	4851	5851	6851	7851
	orf6.3676	852	1852	2852	3852	4852	5852	6852	7852
	orf6.3804	853	1853	2853	3853	4853	5853	6853	7853
•	orf6.4003	854	1854	2854	3854	4854	5854	6854	7854
20	orf6.4037	855	1855	2855	3855	4855	5855	6855	7855
	orf6.4386	856	1856	2856	3856	4856	5856	6856	7856
	orf6.4898	857	1857	2857	3857	4857	5857	6857	7857
	orf6.5286	858	1858	2858	3858	4858	5858	6858	7858
	orf6.5335	859	1859	2859	3859	4859	5859	6859	7859
25	orf6.5517	860	1860	2860	3860	4860	5860	6860	7860
	orf6.5752	861	1861	2861	3861	4861	5861	6861	7861
	orf6.7453	862	1862	2862	3862	4862	5862	6862	7862
	orf6.7500	863	1863	2863	3863	4863	5863	6863	7863
	orf6.7621	864	1864	2864	3864	4864	5864	6864	7864
30	orf6.7699	865	1865	2865	3865	4865	5865	6865	7865
50	orf6.7983	866	1866	2866	3866	4866	5866	6866	7866
	orf6.8076	867	1867	2867	3867	4867	5867	6867	7867
	orf6.8143	868	1868	2868	3868	4868	5868	6868	7868
	orf6.8690	869	1869	2869	3869	4869	5869	6869	7869
	orf6.9105	870	1870	2870	3870	4870	5870	6870	7870
35	orf6.1740	871	1871	2871	3871	4871	5871	6871	7871

	orf6.2265	872	1872	2872	3872	4872	5872	6872	7872
	orf6.2307	873	1873	2873	3873	4873	5873	6873	7873
	orf6.2584	874	1874	2874	3874	4874	5874	6874	7874
	orf6.2709	875	1875	2875	3875	4875	5875	6875	7875
	orf6.2898	876	1876	2876	3876	4876	5876	6876	7876
	orf6.3102	877	1877	2877	3877	4877	5877	6877	7877
5	orf6.3507	878	1878	2878	3878	4878	5878	6878	7878
	orf6.3754	879	1879	2879	3879	4879	5879	6879	7879
	orf6.3955	880	1880	2880	3880	4880	5880	6880	7880
	orf6.4050	881	1881	2881	3881	4881	5881	6881	7881
	orf6.4735	882	1882	2882	3882	4882	5882	6882	7882
10	orf6.4748	883	1883	2883	3883	4883	5883	6883	7883
	orf6.4766	884	1884	2884	3884	4884	5884	6884	7884
	orf6.5263	885	1885	2885	3885	4885	5885	6885	7885
	orf6.5701	886	1886	2886	3886	4886	5886	6886	7886
	orf6.5918	887	1887	2887	3887	4887	5887	6887	7887
15	orf6.6139	888	1888	2888	3888	4888	5888	6888	7888
13	orf6.6214	889	1889	2889	3889	4889	5889	6889	7889
	orf6.6250	890	1890	2890	3890	4890	5890	6890	7890
	orf6.6255	891	1891	2891	3891	4891	5891	6891	7891
	orf6.6561	892	1892	2892	3892	4892	5892	6892	7892
	orf6.6665	893	1893	2893	3893	4893	5893	6893	7893
20	orf6.6753	894	1894	2894	3894	4894	5894	6894	7894
	orf6.6768	895	1895	2895	3895	4895	5895	6895	7895
	orf6.6808	896	1896	2896	3896	4896	5896	6896	7896
	orf6.6921	897	1897	2897	3897	4897	5897	6897	7897
	orf6.6972	898	1898	2898	3898	4898	5898	6898	7898
25	orf6.6993	899	1899	2899	3899	4899	5899	6899	7899
	orf6.6997	900	1900	2900	3900	4900	5900	6900	7900
	orf6.7164	901	1901	2901	3901	4901	5901	6901	7901
	orf6.7180	902	1902	2902	3902	4902	5902	6902	7902
	orf6.7314	903	1903	2903	3903	4903	5903	6903	7903
30	orf6.7478	904	1904	2904	3904	4904	5904	6904	7904
50	orf6.7883	905	1905	2905	3905	4905	5905	6905	7905
	orf6.7923	906	1906	2906	3906	4906	5906	6906	7906
	orf6.8232	907	1907	2907	3907	4907	5907	6907	7907
	orf6.8441	908	1908	2908	3908	4908	5908	6908	7908
	orf6.8465	909	1909	2909	3909	4909	5909	6909	7909
35	orf6.8543	910	1910	2910	3910	4910	5910	6910	7910

	orf6.8747	911	1911	2911	3911	4911	5911	6911	7911
	orf6.8766	912	1912	2912	3912	4912	5912	6912	7912
	orf6.8967	913	1913	2913	3913	4913	5913	6913	7913
5	orf6.848	914	1914	2914	3914	4914	5914	6914	7914
	orf6.893	915	1915	2915	3915	4915	5915	6915	7915
	orf6.1000	916	1916	2916	3916	4916	5916	6916	7916
	orf6.1364	917	1917	2917	3917	4917	5917	6917	7917
	orf6.2113	918	1918	2918	3918	4918	5918	6918	7918
	orf6.2481	919	1919	2919	3919	4919	5919	6919	7919
	orf6.2565	920	1920	2920	3920	4920	5920	6920	7920
110	orf6.3020	921	1921	2921	3921	4921	5921	6921	7921
	orf6.3597	922	1922	2922	3922	4922	5922	6922	7922
	orf6.6093	923	1923	2923	3923	4923	5923	6923	7923
	orf6.6260	924	1924	2924	3924	4924	5924	6924	7924
	orf6.6934	925	1925	2925	3925	4925	5925	6925	7925
	orf6.6946	926	1926	2926	3926	4926	5926	6926	7926
	orf6.2546	927	1927	2927	3927	4927	5927	6927	7927
	orf6.4262	928	1928	2928	3928	4928	5928	6928	7928
	orf6.4676	929	1929	2929	3929	4929	5929	6929	7929
	orf6.5777	930	1930	2930	3930	4930	5930	6930	7930
	orf6.7959	931	1931	2931	3931	4931	5931	6931	7931
	orf6.8887	932	1932	2932	3932	4932	5932	6932	7932

30

In one embodiment, the present invention provides the identities of 932 essential genes. Although the nucleotide sequence and the reading frame of a number of these genes are known, the fact that these genes are essential to the growth and/or survival of Candida albicans was not known until the inventors' discovery. Thus, the uses of these genes and their gene products are encompassed by the present invention. Also provided in Table II are SEQ ID NOs: that are used herein to identify the open reading frame, the deduced amino acid sequence and related oligonucleotide sequences for each identified essential gene. To facilitate correlation of the nucleotide sequence of each essential gene with its corresponding amino acid sequence and related oligonucleotide sequences, the sequence identifiers have been organized into eight blocks of each with one thousand SEQ ID numbers. Each block of SEQ ID numbers, which corresponds to a type of sequence, has 10 932 sequences with SEQ ID NOs., and 166 SEQ ID NOs. with no sequence which serve as place holders. Accordingly, the SEQ ID NO. for each of the eight related sequences of an essential gene are separated by 1000. For example, SEQ ID NO: 1, 1001, 2001, 3001, 4001, 5001, 6001, and 7001 are directed to, respectively, the upstream and downstream knockout 15 (KO) primers, upstream and downstream tet promoter primers, identification primers A and B, the nucleotide sequence of the coding region and the amino acid sequence of one essential gene, and in this example, the essential gene is CaYDL105W.

In accordance with the above numbering scheme, SEQ ID NO: 6001 through to SEQ ID NO: 6932 each identifies a nucleotide sequence of the opening reading frame (ORF) of an identified essential gene. The nucleotide sequences labeled as SEQ ID NO: 6001-6932 were obtained from a *Candida albicans* genomic sequence database version 6 assembled by the *Candida albicans* Sequencing Project and is accessible by internet at the web sites of Stanford University and University of Minnesota (See http://www-sequence.stanford.edu:8080/ and http://alces.med.umn.edu/Candida.html).

25 The predicted amino acid sequence of the identified essential genes are set forth in SEQ ID NO: 7001 through to SEQ ID NO: 7932 which are obtained by conceptual translation of the nucleotide sequences of SEQ ID NO: 6001 through to 6932 once the reading frame is determined. As it is well known in the art, the codon CTG is translated to a serine residue in *C. albicans*, instead of the usual leucine in other organisms.

Accordingly, the conceptual translation of the ORE is performed using the codon usage of

Accordingly, the conceptual translation of the ORF is performed using the codon usage of *C. albicans*.

The DNA sequences were generated by sequencing reactions and may contain minor errors which may exist as misidentified nucleotides, insertions, and/or deletions. However, such minor errors, if present, in the sequence database should not disturb the identification of an ORF as that of an essential gene of the invention. Since sequences of the ORFs are provided herein and can be used individually to uniquely identify

the corresponding gene in the *C. albicans* genome, a clone of the gene corresponding to the ORFs can readily be isolated by any of several art-known methods. The sequencing can then be repeated to confirm the sequence or correct the error(s). The disclosure of the ORFs or a portion thereof essentially provides the complete gene by uniquely identifying the coding sequence in question, and providing sufficient guidance to obtain the complete cDNA or genomic sequence. The uses of an essential gene that corresponds to an ORF identified by the methods of the invention are not affected by the minor errors in the ORF.

For example, minor sequence errors and variation in splicing do not affect the construction of conditional-expression C. albicans mutant strains or GRACE strains based on the sequences provided herein, and the uses of those strains, since these methods do not require absolute sequence identity between the chromosomal DNA sequences and the sequences of the gene in the primers or recombinant DNA. In some instances, the correct reading frame of the C. albicans gene can be identified by comparing its overall amino acid sequence with known Saccharomyces cerevisiae sequences. Accordingly, the present invention encompasses C. albicans genes which correspond to the ORFs identified in the invention, polypeptides encoded by C. albicans genes which correspond to the ORFs identified in the invention, and the various uses of the polynucleotides and polypeptides of the genes which correspond to the ORFs of the invention. As used herein in referring to the relationship between a specified nucleotide sequence and a gene, the term "corresponds" or "corresponding" indicates that the specified sequence effectively identifies the gene. In general, correspondence is substantial sequence identity barring minor errors in sequencing, allelic variations and/or variations in splicing. Correspondence can be a transcriptional relationship between the gene sequence and the mRNA or a portion thereof which is transcribed from that gene. This correspondence is present also between portions of an mRNA which is not translated into polypeptide and DNA sequence of the gene.

25 SEQ ID NO:1-5932 identify oligonucleotide primers and probes that were designed for and used in the construction of the GRACE strain for the corresponding identified essential gene. (i.e., SEQ ID NO:1-932 are knockout upstream primers (KO-UP); SEQ ID NO:1001-1932 are knockout downstream primers (KO-Down); SEQ ID NO:2001-2932 are tetracycline promoter upstream primers (Tet-Up); SEQ ID NO:3001-3932 are tetracycline promoter downstream primers (Tet-Down); and SEQ ID NO:4001-4932, and 5001-5932 are primers for identification of the respective GRACE strains (primers A and B respectively). Therefore, each set of oligonucleotides can be used to identify a unique essential gene and a unique GRACE strain, e.g. by hybridization, or PCR.

The essential genes listed in Table II can be obtained using cloning methods
well known to those of skill in the art, and include but are not limited to the use of
appropriate probes to detect the genes within an appropriate cDNA or gDNA (genomic

5

DNA) library. (See, for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, which is incorporated herein by reference in its entirety.) Probes for the sequences identified herein can be synthesized based on the DNA sequences disclosed herein in SEQ ID NO:6001-6932.

As used herein, "target gene" (i.e., essential and/or virulence gene) refers to (a) a gene containing at least one of the DNA sequences and/or fragments thereof that are set forth in SEO ID NO: 6001 through to SEQ ID NO: 6932; (b) any DNA sequence or fragment thereof that encodes the amino acid sequence that are set forth in SEO ID NO: 7001 through to SEO ID NO: 7932 using the universal genetic code or the codon usage of C. albicans; (c) any DNA sequence that hybridizes to the complement of the nucleotide sequences set forth in SEQ ID NO:6001 through to SEQ ID NO:6932 under stringent conditions, e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45°C followed by one or more washes in 0.2xSSC/0.1% SDS at about 50-65°C, or under highly stringent conditions, e.g., hybridization to filter-bound nucleic acid in 6xSSC at about 45°C followed by one or more washes in 0.1xSSC/0.2% SDS at about 68°C, or under other hybridization conditions which are apparent to those of skill in the art (see, for example, Ausubel, F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York, at pp. 6.3.1-6.3.6 and 2.10.3). Preferably, the polynucleotides that hybridize to the complements of the DNA sequences disclosed herein encode gene products, e.g., gene products that are functionally equivalent to a gene product encoded by a target gene.

As described above, target gene sequences include not only degenerate nucleotide sequences that encode a polypeptide comprising or consisting essentially of one of the amino acid sequences of SEQ ID NO: 7001 through to SEQ ID NO: 7932 in C. albicans, but also degenerate nucleotide sequences that when translated in organisms other than C. albicans, would yield a polypeptide comprising or consisting essentially of one of the amino acid sequences of SEO ID NO: 7001 through to SEO ID NO: 7932, or a fragment thereof. One of skill in the art would know how to select the appropriate codons or modify the nucleotide sequences of SEO ID NO: 6001 through to SEO ID NO: 6932 when using the target gene sequences in C. albicans or in other organisms. Moreover, the term "target 30 gene", in certain embodiments, encompasses genes that are naturally occurring in Saccharomyces cerevisiae or variants thereof, that share extensive nucleotide sequence homology with C. albicans genes having one of the DNA sequences that are set forth in SEO ID NO: 6001 through to SEO ID NO: 6932, i.e., the orthologs in S. cerevisiae. It is contemplated that methods for drug screening that can be applied to C. albicans genes can also be applied to orthologs of the same genes in the non-pathogenic S. cerevisiae. 35 However, in certain embodiments, target genes excluding genes of Saccharomyces

cerevisiae are used.

In another embodiment, the invention also encompasses the following polynucleotides, host cells expressing such polynucleotides and the expression products of such nucleotides: (a) polynucleotides that encode portions of target gene product that corresponds to its functional domains, and the polypeptide products encoded by such nucleotide sequences, and in which, in the case of receptor-type gene products, such domains include, but are not limited to signal sequences, extracellular domains (ECD), transmembrane domains (TM) and cytoplasmic domains (CD); (b) polynucleotides that encode mutants of a target gene product, in which all or part of one of its domains is deleted or altered, and which, in the case of receptor-type gene products, such mutants include, but are not limited to, mature proteins in which the signal sequence is cleaved, soluble receptors in which all or a portion of the TM is deleted, and nonfunctional receptors in which all or a portion of CD is deleted; and (d) polynucleotides that encode fusion proteins containing a target gene product or one of its domains fused to another polypeptide.

The invention also includes polynucleotides, preferably DNA molecules, that hybridize to, and are therefore the complements of, the DNA sequences of the target gene sequences. Also included are polynucleotides that hybridize to the complement of the DNA sequences of the target genes. Such hybridization conditions can be highly stringent or less highly stringent, as described above and known in the art. The nucleic acid molecules of the invention that hybridize to the above described DNA sequences include oligodeoxynucleotides ("oligos") which hybridize to the target gene under highly stringent or stringent conditions. In general, for oligos between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula:

Tm(°C) = 81.5 + 16.6(log[monovalent cations (molar)] + 0.41 (% G+C) - (500/N)

where N is the length of the probe. If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation: $Tm(^{\circ}C) = 81.5 + 16.6 (log[monovalent cations (molar)]) + 0.41(\% G+C) - (0.61) (\% formamide) - (500/N).$

where N is the length of the probe. In general, hybridization is carried out at about 20-25 degrees below Tm (for DNA-DNA hybrids) or about 10-15 degrees below Tm (for RNA-DNA hybrids). Other exemplary highly stringent conditions may refer, *e.g.*, to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos). Examples of such oligos are set forth in SEQ ID NO:4001 to 4932 and 5001 to5932.

These nucleic acid molecules can encode or act as target gene antisense molecules, useful, for example, in target gene regulation and/or as antisense primers in amplification reactions of target gene nucleotide sequences. Further, such sequences can be

used as part of ribozyme and/or triple helix sequences, also useful for target gene regulation. Still further, such molecules can be used as components of diagnostic methods whereby the presence of the pathogen can be detected. The uses of these nucleic acid molecules are discussed in detail below.

Fragments of the target genes of the invention can be at least 10 nucleotides in length. In alternative embodiments, the fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more contiguous nucleotides in length. Alternatively, the fragments can comprise nucleotide sequences that encode at least 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450 or more contiguous amino acid residues of the target gene products. Fragments of the target genes of the invention can also refer to exons or introns of the above described nucleic acid molecules, as well as portions of the coding regions of such nucleic acid molecules that encode functional domains such as signal sequences, extracellular domains (ECD), transmembrane domains (TM) and cytoplasmic domains (CD).

To identify and characterize the essential genes of the invention, computer 15 algorithms are employed to perform searches in computer databases and comparative analysis, and the results of such analyses are stored in or displayed on a computer. Such computerized tools for analyzing sequence information are very useful in determining the relatedness of structure of genes and gene products with respect to other genes and gene products in the same species or a different species, and may provide putative functions to novel genes and their products. Biological information such as nucleotide and amino acid sequences are coded and represented as streams of data in a computer. As used here, the term "computer" includes but is not limited to personal computers, data terminals, computer workstations, networks, computerized storage and retrieval systems, and graphical displays for presentation of sequence information, and results of analyses. Typically, a computer 25 comprises a data entry means, a display means, a programmable processing unit, and a data storage means. A "computer readable medium" can be used to store information such as sequence data, lists, and databases, and includes but is not limited to computer memory, magnetic storage devices, such as floppy discs and magnetic tapes, optical-magnetic storage devices, and optical storage devices, such as compact discs. Accordingly, the present invention also encompass a computer or a computer readable medium that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 1-932, 1001-1932, 2001-2932, 3001-3932, 4001-4932, 5001-5932, and 6001-6932, or at least one amino acid sequence selected from the group consisting of SEQ ID NO: 7001-7932. In preferred embodiments, the sequences are curated and stored in a form with links to other annotations and biological information associated with the sequences. It is also an object of the invention to provide one or more computers programmed with instructions to perform

sequence homology searching, sequence alignment, structure prediction and model construction, using the nucleotide sequences of the invention, preferably one or more nucleotide sequences selected from the group consisting of SEQ ID NO: SEQ ID NO: 1-932, 1001-1932, 2001-2932, 3001-3932, 4001-4932, 5001-5932, and 6001-6932, and/or one or more amino acid sequence selected from the group consisting of SEQ ID NO: SEQ ID NO: 7001-7932. Computers that comprise, and that can transmit and distribute the nucleotide and/or amino acid sequences of the invention are also contemplated. Also encompassed by the present invention are the uses of one or more nucleotide sequences selected from the group consisting of SEQ ID NO: 1-932, 1001-1932, 2001-2932, 3001-3932, 4001-4932, 5001-5932, and 6001-6932, and/or one or more amino acid sequence selected from the group consisting of SEQ ID NO: 7001-7932 in computer-assisted methods for identifying homologous sequences in public and private sequence databases, in computer-assisted methods for providing putative functional characteristics of a gene product based on structural homology with other gene products with known function(s), in computer-assisted methods of constructing a model of the gene product. In one specific embodiment, the invention encompasses a method assisted by a computer for identifying a putatively essential gene of a fungus, comprising detecting sequence homology between a fungal nucleotide sequence or fungal amino acid sequence with at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 1-932, 1001-1932, 2001-2932, 3001-3932, 4001-4932, 5001-5932, and 6001-6932, or at least one amino acid sequence selected from the group consisting of SEQ ID NO: 7001-7932.

5.4.2 Homologous Target Genes

In addition to the nucleotide sequences of Candida albicans described above, homologs or orthologs of these target gene sequences, as can be present in other species, can be identified and isolated by molecular biological techniques well known in the art, and without undue experimentation, used in the methods of the invention. For example, homologous target genes in Aspergillus fiumigatus, Aspergillus flavus, Aspergillus niger, Coccidiodes immitis, Cryptococcus neoformans, Histoplasma capsulatum, Phytophthora infestans, Puccinia seconditii, Pneumocystis carinii, or any species falling within the genera of any of the above species. Other yeasts in the genera of Candida, Saccharomyces, Schizosaccharomyces, Sporobolomyces, Torulopsis, Trichosporon, Tricophyton, Dermatophytes, Microsproum, Wickerhamia, Ashbya, Blastomyces, Candida, Citeromyces, Crebrothecium, Cryptococcus, Debaryomyces, Endomycopsis, Geotrichum, Hansenula, Kloeckera, Kluveromyces, Lipomyces, Pichia, Rhodosporidium, Rhodotorula, and Yarrowia are also contemplated. Also included are homologs of these target gene sequences can be identified in and isolated from animal fugal pathogens such as Aspergillus fumigatus,

Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Alternaria solanii, Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Sclerotinia sclerotiorum, Septoria triticii, Tilletia controversa, Ustilago maydis, Venturia inequalis, Verticullium dahliae or any species falling within the genera of any of the above species.

Accordingly, the present invention provides polynucleotides that comprise nucleotide sequences allowing them to hybridize to the polynucleotides of the target genes. In one embodiment, the present invention encompasses an isolated nucleic acid comprising a nucleotide sequence that is at least 50% identical to a nucleotide sequence selected from the group consisting of SEQ ID NO: 6001 through to SEQ ID NO: 6932, and that is of a species other than Saccharomyces cerevisiae and/or Candida albicans. In another embodiment, the present invention encompasses an isolated nucleic acid comprising a 15 nucleotide sequence that hybridizes under medium stringency conditions to a second nucleic acid that consists of a nucleotide sequence selected from the group consisting of SEQ ID NO: 6001 through to SEQ ID NO: 6932, and that is of a species other than Saccharomyces cerevisiae and/or Candida albicans. In a specific embodiment, the nucleotide sequence that is at least 50% identical or hybridizes under medium stringency conditions to any one of the sequences SEQ ID NO: 6001 through to SEQ ID NO: 6932 is from Aspergillus fumigatus or Cryptococcus neoformans. In another specific embodiment, the nucleotide sequence that is at least 50% identical or hybridizes under medium stringency conditions to any one of the sequences SEQ ID NO: 6001 through to SEQ ID NO: 6932 is of a species other than Aspergillus fumigatus and/or Cryptococcus neoformans.

In yet another embodiment, the present invention includes an isolated nucleic acid comprising a nucleotide sequence that encodes a polypeptide the amino acid sequence of which is at least 50% identical to an amino acid sequence selected from the group consisting of SEQ ID NO. 7001 through to 7932, wherein the polypeptide is that of a species other than Saccharomyces cerevisiae and/or Candida albicans. In a specific embodiment, the amino acid sequence that is at least 50% identical to any one of the sequences SEQ ID NO: 7001 through to SEQ ID NO: 7932 is from Aspergillus fumigatus or Cryptococcus neoformans. In another specific embodiment, the amino acid sequence that is at least 50% identical to any one of the sequences SEQ ID NO: 7001 through to SEQ ID NO: 7932 is of a species other than Aspergillus fumigatus and/or Cryptococcus neoformans.

35 Although the nucleotide sequences and amino acid sequences of homologs or orthologs of the essential/virulence genes in S. cerevisiae are mostly published, uses of such

homologs or orthologs in *S. cerevisae* in drug screening are mostly not known and are thus specifically provided by the invention. To use such nucleotide and/or amino acid sequences of *S. cerevisiae*, public databases, such as Stanford Genomic Resources (www-genome.stanford.edu), Munich Information Centre for Protein Sequences (www.mips.biochem.mpg.de), or Proteome (www.proteome.com) may be used to identify and retrieve the sequences. Orthologs of *S. cerevisiae* can also be identified by hybridization assays using nucleic acid probes consisting of any one of the nucleotide sequences of SEO ID NO: 6001 to 6932.

The nucleotide sequences of the invention still further include nucleotide sequences that have at least 40%, 45%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more nucleotide sequence identity to the nucleotide sequences set forth in SEQ ID NO:6001 through to SEQ ID NO:6932. The nucleotide sequences of the invention also include nucleotide sequences that encode polypeptides having at least 25%, 30%, 40%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or higher amino acid sequence identity or similarity to the amino acid sequences set forth in SEQ ID NO: 7001 through to 7932.

To determine the percent identity of two amino acid sequences or of two nucleotide sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleotide sequence for optimal alignment with a second amino acid or nucleotide sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = number of identical overlapping positions/total number of positions x 100%). In one embodiment, the two sequences are the same length.

The determination of percent identity between two sequences can also be accomplished using a mathematical algorithm and computer-assisted methods. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. U.S.A. 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. U.S.A. 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al., 1990, J. Mol. Biol. 215:403-0. BLAST nucleotide searches can be performed with the NBLAST nucleotide program parameters set, e.g., for score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the present invention. BLAST protein searches can be performed with the XBLAST

program parameters set, e.g., to score-50, wordlength=3 to obtain amino acid sequences homologous to a protein molecule of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., of XBLAST and NBLAST) can be used (see, e.g., http://www.ncbi.nlm.nih.gov). Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated in the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Any of these algorithms can be coded as a set of instructions for use in a computer that comprises the sequences of the invention.

To isolate homologous target genes, the C. albicans target gene sequence described above can be labeled and used to screen a cDNA library constructed from mRNA obtained from the organism of interest. Hybridization conditions should be of a lower stringency when the cDNA library was derived from an organism different from the type of organism from which the labeled sequence was derived. cDNA screening can also identify 20 clones derived from alternatively spliced transcripts in the same or different species. Alternatively, the labeled fragment can be used to screen a genomic library derived from the organism of interest, again, using appropriately stringent conditions. Low stringency conditions will be well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, (Green Publishing Associates and Wiley Interscience, N.Y.).

Further, a homologous target gene sequence can be isolated by performing a 30 polymerase chain reaction (PCR) using two degenerate oligonucleotide primer pools designed on the basis of amino acid sequences within the target gene of interest. The template for the reaction can be cDNA obtained by reverse transcription of mRNA prepared from the organism of interest. The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequences of a homologous target gene sequence.

The PCR fragment can then be used to isolate a full length cDNA clone by a 35 variety of methods well known to those of ordinary skill in the art. Alternatively, the

labeled fragment can be used to screen a genomic library.

PCR technology can also be utilized to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an organism of interest. A reverse transcription reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid can then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid can be digested with RNAase H, and second strand synthesis can then be primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment can easily be isolated. For a review of cloning strategies which can be used, see e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, (Green Publishing Associates and Wiley Interscience, N.Y.).

Additionally, an expression library can be constructed utilizing DNA isolated from or cDNA synthesized from the organism of interest. In this manner, gene products

made by the homologous target gene can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against the *C. albicans* gene product, as described, below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual," Cold Spring Harbor Press, Cold Spring Harbor). Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis by well known methods.

Alternatively, homologous target genes or polypeptides may be identified by searching a database to identify sequences having a desired level of homology to a target gene or polypeptide involved in proliferation, virulence or pathogenicity. A variety of such databases are available to those skilled in the art, including GenBank and GenSeq. In various embodiments, the databases are screened to identify nucleic acids with at least 97%, at least 95%, at least 90%, at least 80%, at least 70%, at least 60%, at least 50%, or at least 40% identity to a target nucleotide sequence, or a portion thereof. In other embodiments, the databases are screened to identify polypeptides having at least 99%, at least 95%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% identity or similarity to a polypeptide involved in proliferation, virulence or pathogenicity or a portion thereof.

Alternatively, functionally homologous target sequences or polypeptides may be identified by creating mutations that have phenotypes by removing or altering the function of a gene. This can be done for one or all genes in a given fungal species including, for example:

35 Saccharomyces cerevisiae, Candida albicans, and Aspergillus fumigatus. Having mutants in the genes of one fungal species offers a method to identify functionally similar genes (orthologs) or

20

related genes (paralogs) in another species, by use of a functional complementation test.

A library of gene or cDNA copies of messenger RNA of genes can be made from a given species, e.g. Candida albicans, and the library cloned into a vector permitting expression (for example, with the Candida albicans promoters or a Saccharomyces cerevisiae promoter) of the genes in a second species, e.g. Saccharomyces cerevisiae. Such a library is referred to as a "heterologous library." Transformation of the Candida albicans heterologous library into a defined mutant of Saccharomyces cerevisiae that is functionally deficient with respect to the identified gene, and screening or selecting for a gene in the heterologous library that restores phenotypic function in whole or in part of the mutational defect is said to be "heterologous functional complementation" and in this example, permits identification of gene in Candida albicans that are functionally related to the mutated gene in Saccharomyces cerevisiae. Inherent in this functional-complementation method, is the ability to restore gene function without the requirement for sequence similarity of nucleic acids or polypeptides; that is, this method permits interspecific identification of genes with conserved biological function, even where sequence similarity comparisons fail to reveal or suggest such conservation.

In those instances in which the gene to be tested is an essential gene, a number of possibilities exist regarding performing heterologous functional complementation tests. The mutation in the essential gene can be a conditional allele, including but not limited to, a temperature-sensitive allele, an allele conditionally expressed from a regulatable promoter, or an allele that has been rendered the mRNA transcript or the encoded gene product conditionally unstable. Alternatively, the strain carrying a mutation in an essential gene can be propagated using a copy of the native gene (a wild type copy of the gene mutated from the same species) on a vector comprising a marker that can be selected against, permitting selection for those strains carrying few or no copies of the vector and the included wild type allele. A strain constructed in this manner is transformed with the heterologous library, and those clones in which a heterologous gene can functionally complement the essential gene mutation, are selected on medium non-permissive for maintenance of the plasmid carrying the wild type gene.

In the following example, the identification, by functional complementation, of a Candida albicans homolog of a Saccharomyces cerevisiae gene, KRE 9, is described. (Lussier et al. 1998, "The Candida albicans KRE 9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose," Proc. Natl. Acad. Sci. USA 95: 9825-30). The host strain was a Saccharomyces cerevisiae haploid null mutant in KRE 9, kre 9::HIS3, which has a severe growth defect phenotype. The host strain carried a wild type copy of the native Saccharomyces cerevisiae KRE 9 gene on a LYS-2 based pRS317 shuttle vector and was transformed with a Candida albicans genomic library. This heterologous library was constructed using, as a vector, the multicopy plasmid YEp352, which carries the URA3 gene as a selectable marker. To screen for plasmids supporting growth of the kre 9::HIS 3 mutant host, approximately 20,000 colonies

20

capable of growth in the absence of histidine, lysine, and uracil, were replica-plated onto minimal medium containing α -amino adipate as a nitrogen source to allow selection for cells that have lost the LYS2 plasmid-based copy of KRE 9 and that possess a copy of a functionally-complementing Candida albicans ortholog, CaKRE 9. These cells were tested further for loss of the pRS317-KRE 9 plasmid by their inability to grow in the absence of lysine, and YEp352-based Candida albicans genomic DNA was recovered from them. On retransformation of the Saccharomyces cerevisiae kre 9::HIS3 mutant, a specific genomic insert of 8kb of Candida albicans was recovered that was able to restore growth partially. Following further subcloning using functional complementation for selection, a 1.6 kb DNA fragment was obtained that contained the functional Candida albicans KRE 9 gene.

A heterologous functional complementation test is not restricted to the exchange of genetic information between Candida albicans and Saccharomyces cerevisiae; functional complementation tests can be performed, as described above, using any pair of fungal species. For example, the CRE1 gene of the fungus Sclerotininia sclerotiorum can functionally complement the creAD30 mutant of the CREA gene of Aspergillus nidulans (see Vautard et al. 15 1999, "The glucose repressor gene CRE1 from Sclerotininia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae," FEBS Lett. 453: 54-58).

In yet another embodiment, where the source of nucleic acid deposited on a gene expression array and the source of the nucleic acid probe being hybridized to the array are from two different species of organisms, the results allow rapid identification of homologous genes in the two species.

In yet another embodiment, the invention also encompasses (a) DNA vectors that contain a nucleotide sequence comprising any of the foregoing coding sequences of the target gene and/or their complements (including antisense); (b) DNA expression vectors that contain a nucleotide sequence comprising any of the foregoing coding sequences operably linked with a regulatory element that directs the expression of the coding sequences; and (c) genetically engineered host cells that contain any of the foregoing coding sequences of the target gene operably linked with a regulatory element that directs the expression of the coding sequences in the host cell. Vectors, expression constructs, expression vectors, and genetically engineered host cells containing the coding sequences of homologous target genes of other species (excluding S. cerevisiae) are also contemplated. Also contemplated are genetically engineered host cells containing mutant alleles in homologous target genes of the other species. As used herein, regulatory elements include but are not limited to inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the lac system, the trp system, the tet system and other antibiotic-based repression systems (e.g.PIP), the TAC

system, the TRC system, the major operator and promoter regions of phage A, the control regions of fd coat protein, and the fungal promoters for 3-phosphoglycerate kinase, acid phosphatase, the yeast mating pheromone responsive promoters (e.g. STE2 and STE3), and promoters isolated from genes involved in carbohydrate metabolism (e.g. GAL promoters), phosphate-responsive promoters (e.g. PHO5), or amino acid metabolism (e.g. MET genes). The invention includes fragments of any of the DNA vector sequences disclosed herein.

A variety of techniques can be utilized to further characterize the identified essential genes and virulence genes. First, the nucleotide sequence of the identified genes can be used to reveal homologies to one or more known sequence motifs which can yield information regarding the biological function of the identified gene product. Computer programs well known in the art can be employed to identify such relationships. Second, the sequences of the identified genes can be used, utilizing standard techniques such as in situ hybridization, to place the genes onto chromosome maps and genetic maps which can be correlated with similar maps constructed for another organism, e.g., Saccharomyces cerevisiae. The information obtained through such characterizations can suggest relevant methods for using the polynucleotides and 15 polypeptides for discovery of drugs against Candida albicans and other pathogens.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual," 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques," Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987. Many of the uses of the polynucleotides and polypeptides of the identified essential genes are discussed in details hereinbelow.

5.4.3 Target Gene Products

The target gene products used and encompassed in the methods and compositions of the present invention include those gene products (e.g., RNA or proteins) that are encoded by the target essential gene sequences as described above, such as, the target gene sequences set forth in SEQ ID NO: 6001 through to 6932. In Table II, the amino acid sequences of SEQ ID NO: 7001 through to 7932 are deduced using the codon usage of C. albicans from the respective nucleotide sequences of SEQ ID NO: 6001 through to 6932. However, when 30 expressed in an organism other than C. albicans, protein products of the target genes comprising the amino acid sequences of SEQ ID NO: 7001 through to 7932 may be encoded by nucleotide sequences that are translated using the universal genetic code. One of skill in the art would know the modifications that are necessary to accommodate for such a difference in codon usage.

In addition, however, the methods and compositions of the invention also use 35 and encompass proteins and polypeptides that represent functionally equivalent gene products.

Such functionally equivalent gene products include, but are not limited to, natural variants of the polypeptides comprising or consisting essentially of an amino acid sequence set forth in SEQ ID NO: 7001 through to 7932.

Such equivalent target gene products can contain, e.g., deletions, additions or substitutions of amino acid residues within the amino acid sequences encoded by the target gene sequences described above, but which result in a silent change, thus producing a functionally equivalent target gene product. Conservative amino acid substitutions can be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues involved. For example, nonpolar (i.e., hydrophobic) amino acid residues can include alanine (Ala or A), leucine (Leu or L), isoleucine (Ile or I), valine (Val or V), proline (Pro or P), phenylalanine (Phe or F), tryptophan (Trp or W) and methionine (Met or M); polar neutral amino acid residues can include glycine (Gly or G), serine (Ser or S), threonine (Thr or T), cysteine (Cys or C), tyrosine (Tyr or Y), asparagine (Asn or N) and glutamine (Gln or Q); positively charged (i.e., basic) amino acid residues can include arginine (Arg or R), lysine (Lys or K) and histidine (His or H); and negatively charged (i.e., acidic)

In one particular embodiment, a composition comprising a mixture of natural variants of the polypeptides having one of SEQ ID NO: 7001 through to 7932 is provided. Since it is known in the art that, in *C. albicans*, 99% of the tRNA molecules that recognize the codon CTG is charged with a serine residue, and 1% are charged with a leucine residue, there is a possibility that during biosynthesis, a leucine is incorporated into a growing polypeptide chain. Accordingly, when a nucleotide sequence comprising the codon CTG is translated in *C. albicans*, a small percentage of the resulting polypeptides may have a leucine residue in positions where a serine residue encoded by CTG (conforming to the codon usage of *C. albicans*) is expected. The product of translation of such a nucleotide sequence may comprise a mixture of polypeptides with minor leucine/serine variations at positions that correspond to a CTG codon in the nucleotide sequence.

"Functionally equivalent," as the term is utilized herein, refers to a polypeptide capable of exhibiting a substantially similar *in vivo* activity as the *Candida albicans* target gene product encoded by one or more of the target gene sequences described in Table II.

Alternatively, when utilized as part of assays described hereinbelow, the term "functionally equivalent" can refer to peptides or polypeptides that are capable of interacting with other cellular or extracellular molecules in a manner substantially similar to the way in which the corresponding portion of the target gene product would interact with such other molecules. Preferably, the functionally equivalent target gene products of the invention are also the same size as a target gene product encoded by one or more of the target gene sequences described in Table II.

The biological function of the target gene products encoded by the *C. albicans* essential genes of the invention can be predicted by the function of their corresponding homologs in *Saccharomyces cerevisiae*. Accordingly, the *C. albicans* gene products of the invention may have one or more of the following biological functions:

Metabolism: amino-acid metabolism, amino-acid biosynthesis, assimilatory reduction of sulfur and biosynthesis of the serine family, regulation of amino-acid metabolism, amino-acid transport, amino-acid degradation (catabolism), other amino-acid metabolism activities, nitrogen and sulphur metabolism, nitrogen and sulphur utilization, regulation of nitrogen and sulphur utilization, nitrogen and sulphur transport, nucleotide metabolism, purine-ribonucleotide metabolism, pyrimidine-ribonucleotide metabolism, deoxyribonucleotide metabolism, metabolism of cyclic and unusual nucleotides, regulation of nucleotide metabolism, polynucleotide degradation, nucleotide transport, other nucleotide-metabolism activities, phosphate metabolism, phosphate utilization, regulation of phosphate utilization, phosphate transport, other phosphate metabolism activities, C-compound and carbohydrate metabolism. C-compound and carbohydrate utilization, regulation of C-compound and carbohydrate 15 utilization, C-compound, carbohydrate transport, other carbohydrate metabolism activities, lipid, fatty-acid and isoprenoid metabolism, lipid, fatty-acid and isoprenoid biosynthesis, phospholipid biosynthesis, glycolipid biosynthesis, breakdown of lipids, fatty acids and isoprenoids, lipid, fatty-acid and isoprenoid utilization, regulation of lipid, fatty-acid and isoprenoid biosynthesis, lipid and fatty-acid transport, lipid and fatty-acid binding, other lipid, fatty-acid and isoprenoid metabolism activities, metabolism of vitamins, cofactors, and prosthetic groups, biosynthesis of vitamins, cofactors, and prosthetic groups, utilization of vitamins, cofactors, and prosthetic groups, regulation of vitamins, cofactors, and prosthetic groups, transport of vitamins, cofactors, and prosthetic groups, other vitamin, cofactor, and prosthetic group activities, secondary metabolism, metabolism of primary metabolic sugars derivatives, biosynthesis of glycosides, biosynthesis of secondary products derived from primary amino acids, biosynthesis of amines.

Energy: glycolysis and gluconeogenesis, pentose-phosphate pathway, tricarboxylic-acid pathway, electron transport and membrane-associated energy conservation, accessory proteins of electron transport and membrane-associated energy conservation, other electron transport and membrane-associated energy conservation proteins, respiration, fermentation, metabolism of energy reserves (glycogen, trehalose), glyoxylate cycle, oxidation of fatty acids, other energy generation activities.

Cell Growth, Cell Division and DNA Synthesis: cell growth, budding, cell
polarity and filament formation, pheromone response, mating-type determination, sex-specific
proteins, sporulation and germination, meiosis, DNA synthesis and replication, recombination
and DNA repair, cell cycle control and mitosis, cell cycle check point proteins, cytokinesis, other

cell growth, cell division and DNA synthesis activities.

Transcription: rRNA transcription, rRNA synthesis, rRNA processing, other rRNA-transcription activities, tRNA transcription, tRNA synthesis, tRNA processing, tRNA modification, other tRNA-transcription activities, mRNA transcription, mRNA synthesis, general transcription activities, transcriptional control, chromatin modification, mRNA processing (splicing), mRNA processing (5'-, 3'-end processing, mRNA degradation), 3'-end processing, mRNA degradation, other mRNA-transcription activities, RNA transport, other transcription activities.

Protein Synthesis: ribosomal proteins, translation, translational control, tRNA-synthetases, other protein-synthesis activities.

Protein Destination: protein folding and stabilization, protein targeting, sorting and translocation, protein modification, modification with fatty acids (e.g. myristylation, palmitylation, farnesylation), modification by phosphorylation, dephosphorylation, modification by acetylation, other protein modifications, assembly of protein complexes, proteolysis, cytoplasmic and nuclear degradation, lysosomal and vacuolar degradation, other proteolytic degradation, other proteolytic proteins, other protein-destination activities.

Transport Facilitation: channels/pores, ion channels, ion transporters, metal ion transporters (Cu, Fe, etc.), other cation transporters (Na, K, Ca, NH4, etc.), anion transporters (Cl, SO4, PO4, etc.), C-compound and carbohydrate transporters, other C-compound transporters, amino-acid transporters, peptide-transporters, lipid transporters, purine and 20 pyrimidine transporters, allantoin and allantoate transporters, transport ATPases, ABC transporters, drug transporters, other transport facilitators

Cellular Transport and Transport Mechanisms: nuclear transport, mitochondrial transport, vesicular transport (Golgi network, etc.), peroxisomal transport, vacuolar transport, extracellular transport (secretion), cellular import, cytoskeleton-dependent transport, transport mechanism, other transport mechanisms, other intracellular-transport activities.

Cellular Biogenesis: biogenesis of cell wall (cell envelope), biogenesis of plasma membrane, biogenesis of cytoskeleton, biogenesis of endoplasmatic reticulum, biogenesis of Golgi, biogenesis of intracellular transport vesicles, nuclear biogenesis, biogenesis of chromosome structure, mitochondrial biogenesis, peroxisomal biogenesis, endosomal biogenesis, vacuolar and lysosomal biogenesis, other cellular biogenesis activities.

Cellular Communication/signal Transduction: intracellular communication, unspecified signal transduction, second messenger formation, regulation of G-protein activity, key kinases, other unspecified signal transduction activities, morphogenesis, G-proteins, regulation of G-protein activity, key kinases, other morphogenetic activities, osmosensing, 35 receptor proteins, mediator proteins, key kinases, key phosphatases, other osmosensing activities, nutritional response pathway, receptor proteins, second messenger formation,

> - 77 -NY2 - 1267788.1

G-proteins, regulation of G-protein activity, key kinases, key phosphatases, other nutritional-response activities, pheromone response generation, receptor proteins, G-proteins, regulation of G-protein activity, key kinases, key phosphatases, other pheromone response activities, other signal-transduction activities.

Cell Rescue, Defense, Cell Death and Ageing: stress response, DNA repair, other DNA repair, detoxification, detoxification involving cytochrome P450, other detoxification, cell death, ageing, degradation of exogenous polynucleotides, other cell rescue activities.

Ionic Homeostasis: homeostasis of cations, homeostasis of metal ions, homeostasis of protons, homeostasis of other cations, homeostasis of anions, homeostasis of sulfates, homeostasis of phosphate, homeostasis of chloride, homeostasis of other anions.

Cellular Organization (proteins are localized to the corresponding organelle): organization of cell wall, organization of plasma membrane, organization of cytoplasm, organization of cytoskeleton, organization of centrosome, organization of endoplasmatic reticulum, organization of Golgi, organization of intracellular transport vesicles, nuclear organization, organization of chromosome structure, mitochondrial organization, peroxisomal organization, endosomal organization, vacuolar and lysosomal organization, inner membrane organization, extracellular/secretion proteins.

In another embodiment of the invention, the use of target gene products that are RNA or proteins of Saccharomyces cerevisiae are provided.

Peptides and polypeptides corresponding to one or more domains of the target gene products (e.g., signal sequence, TM, ECD, CD, or ligand-binding domains), truncated or deleted target gene products (e.g., polypeptides in which one or more domains of a target gene product are deleted) and fusion target gene proteins (e.g., proteins in which a full length or truncated or deleted target gene product, or a peptide or polypeptide corresponding to one or more domains of a target gene product is fused to an unrelated protein) are also within the scope of the present invention. Such peptides and polypeptides (also referred to as chimeric protein or polypeptides) can be readily designed by those skilled in the art on the basis of the target gene nucleotide and amino acid sequences listed in Table II. Exemplary fusion proteins can include, but are not limited to, epitope tag-fusion proteins which facilitates isolation of the target gene product by affinity chromatography using reagents that binds the epitope. Other exemplary fusion proteins include fusions to any amino acid sequence that allows, e.g., the fusion protein to be anchored to a cell membrane, thereby allowing target gene polypeptides to be exhibited on a cell surface; or fusions to an enzyme (e.g., β -galactosidase encoded by the LAC4 gene of Kluyveronmyces lactis (Leuker et al., 1994, Mol. Gen. Genet., 245:212-217)), to a fluorescent 35 protein (e.g., from Renilla reniformis (Srikantha et al., 1996, J. Bacteriol. 178:121-129), or to a luminescent protein which can provide a marker function. Accordingly, the invention provides a

fusion protein comprising a fragment of a first polypeptide fused to a second polypeptide, said fragment of the first polypeptide consisting of at least 6 consecutive residues of an amino acid sequence selected from one of SEQ ID NO: 7001 through to 7932.

Other modifications of the target gene product coding sequences described above can be made to generate polypeptides that are better suited, e.g., for expression, for scale up, etc. in a chosen host cell. For example, cysteine residues can be deleted or substituted with another amino acid in order to eliminate disulfide bridges.

The target gene products of the invention preferably comprise at least as many contiguous amino acid residues as are necessary to represent an epitope fragment (that is, for the gene products to be recognized by an antibody directed to the target gene product). For example, such protein fragments or peptides can comprise at least about 8 contiguous amino acid residues from a full length differentially expressed or pathway gene product. In alternative embodiments, the protein fragments and peptides of the invention can comprise about 6, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450 or more contiguous amino acid residues of a target gene product.

The target gene products used and encompassed in the methods and compositions of the present invention also encompass amino acid sequences encoded by one or more of the above-described target gene sequences of the invention wherein domains often encoded by one or more exons of those sequences, or fragments thereof, have been deleted. The target gene products of the invention can still further comprise post translational modifications, including, but not limited to, glycosylations, acetylations and myristylations.

The target gene products of the invention can be readily produced, e.g., by synthetic techniques or by methods of recombinant DNA technology using techniques that are well known in the art. Thus, methods for preparing the target gene products of the invention are discussed herein. First, the polypeptides and peptides of the invention can be synthesized or prepared by techniques well known in the art. See, for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., N.Y., which is incorporated herein by reference in its entirety. Peptides can, for example, be synthesized on a solid support or in solution.

Alternatively, recombinant DNA methods which are well known to those skilled
in the art can be used to construct expression vectors containing target gene protein coding
sequences such as those set forth in SEQ ID NO: 6001 through to 6932, and appropriate
transcriptional/translational control signals. These methods include, for example, in vitro
recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic
recombination. See, for example, the techniques described in Sambrook et al., 1989, Molecular

35 Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., Pla et
al., Yeast 12:1677-1702 (1996), which are incorporated by reference herein in their entireties,

and Ausubel, 1989, supra. Alternatively, RNA capable of encoding target gene protein sequences can be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in Oligonucleotide Synthesis, 1984, Gait, M.J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.

A variety of host-expression vector systems can be utilized to express the target gene coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest can be produced and subsequently purified, but also represent cells which can, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the target gene protein of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing target gene protein coding sequences; yeast (e.g., Saccharomyces, Schizosaccarhomyces, Neurospora, Aspergillus, Candida, Pichia) transformed with recombinant yeast expression vectors containing the target gene protein coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the target gene protein coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing target gene protein coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., 20 metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). If necessary, the nucleotide sequences of coding regions may be modified according to the codon usage of the host such that the translated product has the correct amino acid sequence.

In bacterial systems, a number of expression vectors can be advantageously

selected depending upon the use intended for the target gene protein being expressed. For
example, when a large quantity of such a protein is to be produced, for the generation of
antibodies or to screen peptide libraries, for example, vectors which direct the expression of high
levels of fusion protein products that are readily purified can be desirable. Such vectors include,
but are not limited, to the *E. coli* expression vector pUR278 (Ruther et al., 1983, *EMBO J.*2:1791), in which the target gene protein coding sequence can be ligated individually into the
vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors
(Inouye & Inouye, 1985, *Nucleic Acids Res. 13*:3101-3109; Van Heeke & Schuster, 1989, *J. Biol. Chem. 264*:5503-5509); and the like. pGEX vectors can also be used to express foreign
polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion
proteins are soluble and can easily be purified from lysed cells by adsorption to glutathioneagarose beads followed by elution in the presence of free glutathione. The pGEX vectors are

designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene protein can be released from the GST moiety.

When a target gene is to be expressed in mammalian host cells, a number of viral-based expression systems can be utilized. In cases where an adenovirus is used as an expression vector, the target gene coding sequence of interest can be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing target gene protein in infected hosts, (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals can also be required for efficient translation of inserted target gene coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire target gene, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals can be needed. However, in cases where only a portion of the target gene coding sequence is inserted, 15 exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription 20 enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain can be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products can be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the target gene protein can be engineered. Host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be allowed to grow for 1-2 days in an enriched media, and then are switched to a

selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method can advantageously be used to engineer cell lines which express the target gene protein. Such engineered cell lines can be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the target gene protein.

A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:817) genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler et al., 1980, Proc. Natl. Acad. Sci. USA 77:3567; O'Hare et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre et al., 1984, Gene 30:147) genes.

Alternatively, any fusion protein may be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cells lines (Janknecht et al., 1991, *Proc. Natl. Acad. Sci. USA 88*: 8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers. Fusions at the carboxy terminal of the target gene product are also contemplated.

When used as a component in assay systems such as those described herein, the target gene protein can be labeled, either directly or indirectly, to facilitate detection of a complex formed between the target gene protein and a test substance. Any of a variety of suitable labeling systems can be used including but not limited to radioisotopes such as ¹²⁵I; enzyme labeling systems that generate a detectable colorimetric signal or light when exposed to substrate; and fluorescent labels.

Indirect labeling involves the use of a protein, such as a labeled antibody, which specifically binds to either a target gene product. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a

Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

Following expression of the target gene protein encoded by the identified target nucleotide sequence, the protein is purified. Protein purification techniques are well known in the art. Proteins encoded and expressed from identified exogenous nucleotide sequences can be partially purified using precipitation techniques, such as precipitation with polyethylene glycol. Alternatively, epitope tagging of the protein can be used to allow simple one step purification of the protein. In addition, chromatographic methods such as ion-exchange chromatography, gel filtration, use of hydroxyapaptite columns, immobilized reactive dyes, chromatofocusing, and use of high-performance liquid chromatography, may also be used to purify the protein. Electrophoretic methods such as one-dimensional gel electrophoresis, high-resolution two-dimensional polyacrylamide electrophoresis, isoelectric focusing, and others are contemplated as purification methods. Also, affinity chromatographic methods, comprising solid phase bound-

In addition, the purified target gene products, fragments thereof, or derivatives thereof may be administered to an individual in a pharmaceutically acceptable carrier to induce an immune response against the protein or polypeptide. Preferably, the immune response is a protective immune response which protects the individual. Methods for determining appropriate dosages of the protein (including use of adjuvants) and pharmaceutically acceptable carriers are familiar to those skilled in the art.

antibody, ligand presenting columns and other affinity chromatographic matrices are

5.4.4 Antibodies Specific for Target Gene Products

contemplated as purification methods in the present invention.

Described herein are methods for the production of antibodies capable of specifically recognizing epitopes of one or more of the target gene products described above.

25 Such antibodies can include, but are not limited to, polyclonal antibodies, monoclonal antibodies (mAbs), human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

For the production of antibodies to a target gene or gene product, various host
animals can be immunized by injection with a target gene protein, or a portion thereof. Such
host animals can include but are not limited to rabbits, mice, and rats, to name but a few.

Various adjuvants can be used to increase the immunological response, depending on the host
species, including but not limited to Freund's (complete and incomplete), mineral gels such as
aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols,

polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially
useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

NY2 - 1267788.1

Accordingly, the invention provides a method of eliciting an immune response in an animal, comprising introducing into the animal an immunogenic composition comprising an isolated polypeptide, the amino acid sequence of which comprises at least 6 or at least 8 consecutive residues of one of SEO ID NO: 7001 through to 7932.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as target gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, can be immunized by injection with differentially expressed or pathway gene product supplemented with adjuvants as also described above. The antibody titer in the immunized animal can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be isolated from the animal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction.

Monoclonal antibodies, which are homogeneous populations of antibodies to a 15 particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Patent No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies can be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention can be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody 30 System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al.

(1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816397, which are incorporated herein by reference in their entirety.) Humanized antibodies are antibody molecules from non-human species having one or more complementarily determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089, which is incorporated herein by reference in its entirety.) Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173.494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood 20 et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S. Patent 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment
of human patients. Such antibodies can be produced using transgenic mice which are incapable
of expressing endogenous immunoglobulin heavy and light chains genes, but which can express
human heavy and light chain genes. The transgenic mice are immunized in the normal fashion
with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal
antibodies directed against the antigen can be obtained using conventional hybridoma
technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange
during B cell differentiation, and subsequently undergo class switching and somatic mutation.
Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE
antibodies. For an overview of this technology for producing human antibodies, see Lonberg
and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for
producing human antibodies and human monoclonal antibodies and protocols for producing
such antibodies, see, e.g., U.S. Patent 5,663,425; U.S. Patent 5,569,825;

NV2 - 1267788 1

U.S. Patent 5,661,016; and U.S. Patent 5,545,806.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al. (1994) Bio/technology 12:899-903).

Antibody fragments which recognize specific epitopes can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries can be constructed (Huse et al., 1989, Science 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies of the present invention may also be described or specified in terms of their binding affinity to a target gene product. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10⁻⁶M, 10⁻⁶M, 5 X 10⁻⁷M, 10⁻⁷M, 5 X 10⁻⁸M, 10⁻⁸ M, 5 X 10⁻⁹M, 10⁻⁹M, 5 X 10⁻¹⁰M, 10⁻¹⁰M, 5 X 10⁻¹¹M, 10⁻¹¹M, 5 X 10⁻¹²M, 10⁻¹²M, 5 X 10⁻¹³M, 10⁻¹³M, 5 X 10⁻¹⁴M, 10⁻¹⁴M, 5 X 10⁻¹⁵M, or 10⁻¹⁵M.

Antibodies directed against a target gene product or fragment thereof can be used to detect the a target gene product in order to evaluate the abundance and pattern of expression of the polypeptide under various environmental conditions, in different morphological forms (mycelium, yeast, spores) and stages of an organism's life cycle. Antibodies directed against a target gene product or fragment thereof can be used diagnostically to monitor levels of a target gene product in the tissue of an infected host as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by 25 coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131L 35S or 3H.

Further, antibodies directed against a target gene product or fragment thereof can be used therapeutically to treat an infectious disease by preventing infection, and/or inhibiting

15

20

25

30

35

growth of the pathogen. Antibodies can also be used to modify a biological activity of a target gene product. Antibodies to gene products related to virulence or pathogenicity can also be used to prevent infection and alleviate one or more symptoms associated with infection by the organism. To facilitate or enhance its therapeutic effect, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a toxin or fungicidal agent. Techniques for conjugating a therapeutic moiety to antibodies are well known, see, e.g., Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).

An antibody with or without a therapeutic moiety conjugated to it can be used as a therapeutic that is administered alone or in combination with chemotherapeutic agents.

- 87 - NY2 - 1267788.1

5.4.5 Antisense Molecules

The use of antisense molecules as inhibitors of gene expression may be a specific, genetically based therapeutic approach (for a review, see Stein, in Ch. 69, Section 5 "Cancer: Principle and Practice of Oncology", 4th ed., ed. by DeVita et al., J.B. Lippincott, Philadelphia 1993). The present invention provides the therapeutic or prophylactic use of nucleic acids of at least six nucleotides that are antisense to a target essential or virulence gene or a portion thereof. An "antisense" target nucleic acid as used herein refers to a nucleic acid capable of hybridizing to a portion of a target gene RNA (preferably mRNA) by virtue of some sequence complementarity. The invention further provides pharmaceutical compositions comprising an effective amount of the antisense nucleic acids of the invention in a pharmaceutically acceptable carrier, as described infra.

In another embodiment, the invention is directed to methods for inhibiting the expression of a target gene in an organism of interest, such as *C. albicans in vitro* or *in vivo* comprising providing the cell with an effective amount of a composition comprising an antisense nucleic acid of the invention. Multiple antisense polynucleotides hybridizable to different target genes may be used in combinations, sequentially or simultaneously.

In another embodiment, the present invention is directed toward methods for modulating expression of an essential gene which has been identified by the methods described supra, in which an antisense RNA molecule, which inhibits translation of mRNA transcribed from an essential gene, is expressed from a regulatable promoter. In one aspect of this 20 embodiment, the antisense RNA molecule is expressed in a GRACE strain of Candida albicans or another GRACE strain constructed from another diploid pathogenic organism. In other aspects of this embodiment, the antisense RNA molecule is expressed in a wild-type or other non-GRACE strain of Candida albicans or another diploid pathogenic organism, including animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, 25 Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydiss, or any species falling within the genera of any of the above species.

The nucleic acid molecule comprising an antisense nucleotide sequence of the invention may be complementary to a coding and/or noncoding region of a target gene mRNA. The antisense molecules will bind to the complementary target gene mRNA transcripts and reduce or prevent translation. Absolute complementarity, although preferred, is not required. A sequence "complementary" to a portion of an RNA, as referred to herein, means a sequence

having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Nucleic acid molecules that are complementary to the 5' end of the message, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994, Nature 372:333-335.

Nucleic acid molecules comprising nucleotide sequences complementary to the 5' untranslated region of the mRNA can include the complement of the AUG start codon. Antisense nucleic acid molecules complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of target gene mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects, the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides, at least 50 nucleotides, or at least 200 nucleotides.

Regardless of the choice of target gene sequence, it is preferred that in vitro studies are first performed to quantitate the ability of the antisense molecule to inhibit gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.

The antisense molecule can be DNA or RNA or chimeric mixtures or

derivatives or modified versions thereof, single-stranded or double-stranded. The antisense
molecule can be modified at the base moiety, sugar moiety, or phosphate backbone, for
example, to improve stability of the molecule, hybridization, etc. The antisense molecule may
include other appended groups such as peptides (e.g., for targeting cell receptors in vivo),
hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958-976)

or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the
antisense molecule may be conjugated to another molecule, e.g., a peptide, hybridization

triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

The antisense molecule may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2-methylguanine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methyluracil, 5-methyluracil, 5-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense molecule may also comprise at least one modified sugar moiety

15 selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense molecule comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphorodithioate, a phosphoramidate, a phosphoradiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense molecule is an α -anomeric oligonucleotide. An α -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

Antisense molecules of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

While antisense nucleotides complementary to the coding region of a target gene could be used, those complementary to the transcribed untranslated region are also preferred.

35 Pharmaceutical compositions of the invention comprising an effective amount of an antisense nucleic acid in a pharmaceutically acceptable carrier, can be administered to a

subject infected with the pathogen of interest.

The amount of antisense nucleic acid which will be effective in the treatment of a particular disease caused by the pathogen will depend on the site of the infection or condition, and can be determined by standard techniques. Where possible, it is desirable to determine the antisense cytotoxicity of the pathogen to be treated in vitro, and then in useful animal model systems prior to testing and use in humans.

A number of methods have been developed for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site in which the pathogens are residing, or modified antisense molecules, designed to target the desired cells (e.g., antisense molecule linked to peptides or antibodies that specifically bind receptors or antigens expressed on the pathogen's cell surface) can be administered systemically. Antisense molecules can be delivered to the desired cell population via a delivery complex. In a specific embodiment, pharmaceutical compositions comprising antisense nucleic acids of the target genes are administered via biopolymers (e.g., poly-β-1-4-N-acetylglucosamine polysaccharide), liposomes, microparticles, or microcapsules. In various embodiments of the invention, it may be useful to use such compositions to achieve sustained release of the antisense nucleic acids. In a specific embodiment, it may be desirable to utilize liposomes targeted via antibodies to specific identifiable pathogen antigens (Leonetti et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:2448-2451; Renneisen et al., 1990, J. Biol. Chem. 265:16337-16342).

5.4.6 Ribozyme Molecules

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA (For a review see, for example Rossi, J., 1994, Current Biology 4:469-471). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known catalytic sequence responsible for mRNA cleavage. For this sequence, see U.S. Pat. No. 5,093,246, which is incorporated by reference herein in its entirety. As such, within the scope of the invention are engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences encoding target gene proteins.

Ribozyme molecules designed to catalytically cleave specific target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and expression of target genes. While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target gene mRNA. The sole requirement is that the target mRNA have the

15

following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, 1988, Nature, 334:585-591. Preferably the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target gene mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

The ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al., 1984, Science, 224:574-578; Zaug and Cech, 1986, Science, 231:470-475; Zaug, et al., 1986, Nature, 324:429-433; published International patent application No. WO 88/04300 by University Patents Inc.; Been and Cech, 1986, Cell, 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in a target gene.

As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g. for improved stability, targeting, etc.) and should be delivered to cells which express the target gene in vivo. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency. Multiple ribozyme molecules directed against different target genes can also be used in combinations, sequentially or simultaneously.

Anti-sense RNA and DNA, ribozyme, and triple helix molecules of the invention can be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite 25 chemical synthesis. Alternatively, RNA molecules can be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines. These nucleic acid constructs can be administered selectively to the desired cell population via a delivery complex.

Various well-known modifications to the DNA molecules can be introduced as a means of increasing intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences of ribo- or deoxy- nucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

> - 92 -NY2 - 1267788.1

5.5 SCREENING ASSAYS

The following assays are designed to identify compounds that bind to target gene products, bind to other cellular proteins that interact with the target gene product, and to compounds that interfere with the interaction of the target gene product with other cellular proteins. Compounds identified via such methods can include compounds which modulate the activity of a polypeptide encoded by a target gene of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of the polynucleotide (that is, increase or decrease expression relative to expression levels observed in the absence of the compound), or increase or decrease the stability of the expressed product encoded by that polynucleotide. Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

Accordingly, the present invention provides a method for identifying an antimycotic compound comprising screening a plurality of compounds to identify a compound that modulates the activity or level of a gene product, said gene product being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 6001 through to 6932, or a nucleotide sequence that is naturally occurring in Saccharomyces cerevisiae and that is the ortholog of a gene having a nucleotide sequence selected from the group consisting of SEQ ID NO: 6001 through to 6932.

5.5.1 In Vitro Screening Assays

In vitro systems are designed to identify compounds capable of binding the target gene products of the invention. Compounds identified in this manner are useful, for example, in modulating the activity of wild type and/or mutant target gene products, are useful in elucidating the biological function of target gene products, are utilized in screens for identifying other compounds that disrupt normal target gene product interactions, or are useful themselves for the disruption of such interactions.

The principle of the assays used to identify compounds that bind to the target gene product involves preparing a reaction mixture comprising the target gene product and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex which is removed and/or detected within the reaction mixture. These assays are conducted in a variety of ways. For example, one method involves anchoring target gene product or the test substance onto a solid phase and detecting target gene product/test compound complexes anchored, via the intermolecular binding reaction, to the solid phase at the end of the reaction. In one embodiment of such a method, the target gene product is

anchored onto a solid surface, and the test compound, which is not anchored, is labeled, either directly or indirectly.

In practice, microtiter plates are conveniently utilized as the solid phase. The anchored component is immobilized by non-covalent or covalent attachments. Non-covalent attachment can be accomplished by simply coating the solid surface with a solution of the protein and drying the coated surface. Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein to be immobilized is used to anchor the protein to the solid surface. The surfaces are prepared in advance and stored.

In order to conduct the assay, the nonimmobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e. g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface is accomplished in a number of ways. Where the previously nonimmobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously nonimmobilized component is not pre-labeled, an indirect label is used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the previously nonimmobilized component (the antibody, in turn, is directly labeled or indirectly labeled with a labeled anti-lig antibody).

Alternatively, a reaction is conducted in a liquid phase, the reaction products are separated from unreacted components, and complexes are detected; e.g., using an immobilized antibody specific for the target gene product or for the test compound, to anchor complexes formed in solution, and a second labeled antibody, specific for the other component of the complex to allow detection of anchored complexes.

5.5.1.1 Assays For Proteins That Interact With A Target Gene Product

25 Any method suitable for detecting protein-protein interactions can be employed for identifying novel target protein-cellular or extracellular protein interactions.

The target gene products of the invention interact, in vivo, with one or more cellular or extracellular macromolecules, such as proteins. Such macromolecules include, but are not limited to, nucleic acid molecules and proteins identified via methods such as those described above. For purposes of this discussion, such cellular and extracellular macromolecules are referred to herein as "binding partners." Compounds that disrupt such interactions can be useful in regulating the activity of the target gene protein, especially mutant target gene proteins. Such compounds include, but are not limited to molecules such as antibodies, peptides, and the like, as described.

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the target gene product and its cellular or extracellular

binding partner or partners involves preparing a reaction mixture containing the target gene product and the binding partner under conditions and for a time sufficient to allow the two to interact and bind, thus forming a complex. In order to test a compound for inhibitory activity, the reaction mixture is prepared in the presence and absence of the test compound. The test compound is initially included in the reaction mixture, or added at a time subsequent to the addition of target gene product and its cellular or extracellular binding partner. Control reaction mixtures are incubated without the test compound. The formation of complexes between the target gene protein and the cellular or extracellular binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the target gene protein and the interactive binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal target gene protein can also be compared to complex formation within reaction mixtures containing the test compound and a mutant target gene protein. This comparison can be important in those cases wherein it is desirable to identify compounds that disrupt intermolecular interactions involving mutant but not normal target gene 15 proteins.

The assay for compounds that interfere with the interaction of the target gene products and binding partners is conducted in either a heterogeneous or a homogeneous format. Heterogeneous assays involve anchoring either the target gene product or the binding partner onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants is varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the target gene products and the binding partners, e.g., by competition, are identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the target gene protein and an interacting cellular or extracellular binding partner. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that displace one of the components from the complex, are tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.

In a heterogeneous assay system, either the target gene protein or the interactive cellular or extracellular binding partner, is anchored onto a solid surface, while the non-anchored species is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species is immobilized either by non-covalent or covalent attachment.

Non-covalent attachment is accomplished simply by coating the solid surface with a solution of the target gene product or binding partner and drying the coated surface. Alternatively, an immobilized antibody specific for the species to be anchored is used to anchor the species to the

solid surface. The surfaces can be prepared in advance and stored.

In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface is accomplished in a number of ways. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, is directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes are detected.

Alternatively, the reaction is conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a second, labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes are identified.

In an alternate embodiment of the invention, a homogeneous assay can be used.

20 In this approach, a preformed complex of the target gene protein and the interacting cellular or extracellular binding partner is prepared in which either the target gene product or its binding partner is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Patent No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex results in the generation of a signal above background. In this way, test substances which disrupt target gene protein/cellular or extracellular binding partner interaction are identified.

In a particular embodiment, the target gene product is prepared for immobilization using recombinant DNA techniques described above. For example, the target 30 gene coding region is fused to a glutathione-S-transferase (GST) gene using a fusion vector, such as pGEX-5X-1, in such a manner that its binding activity is maintained in the resulting fusion protein. The interactive cellular or extracellular binding partner is purified and used to raise a monoclonal antibody, using methods routinely practiced in the art and as described above. This antibody is labeled with the radioactive isotope ¹²⁵I, for example, by methods routinely practiced in the art. In a heterogeneous assay, e.g., the GST-target gene fusion protein is anchored to glutathione-agarose beads. The interactive cellular or extracellular binding

partner is then added in the presence or absence of the test compound in a manner that allows interaction and binding to occur. At the end of the reaction period, unbound material can be washed away, and the labeled monoclonal antibody is added to the system and allowed to bind to the complexed components. The interaction between the target gene protein and the interactive cellular or extracellular binding partner is detected by measuring the amount of radioactivity that remains associated with the glutathione-agarose beads. A successful inhibition of the interaction by the test compound results in a decrease in measured radioactivity.

Alternatively, the GST-target gene fusion protein and the interactive cellular or extracellular binding partner are mixed together in liquid in the absence of the solid glutathione-agarose beads. The test compound is added either during or after the species are allowed to interact. This mixture is added to the glutathione-agarose beads and unbound material is washed away. Again the extent of inhibition of the target gene product/binding partner interaction is detected by adding the labeled antibody and measuring the radioactivity associated with the beads.

In another embodiment of the invention, these same techniques are employed 15 using peptide fragments that correspond to the binding domains of the target gene product and/or the interactive cellular or extracellular binding partner (in cases where the binding partner is a protein), in place of one or both of the full length proteins. Any number of methods routinely practiced in the art are used to identify and isolate the binding sites. These methods include, but are not limited to, mutagenesis of the gene encoding one of the proteins and screening for disruption of binding in a co-immunoprecipitation assay. Compensating mutations in the gene encoding the second species in the complex are then selected. Sequence analysis of the genes encoding the respective proteins reveals the mutations that correspond to the region of the protein involved in interactive binding. Alternatively, one protein is anchored to a solid surface using methods described above, and allowed to interact with and bind to its labeled binding partner, which has been treated with a proteolytic enzyme, such as trypsin. After washing, a short, labeled peptide comprising the binding domain remains associated with the solid material, and can be isolated and identified by amino acid sequencing. Also, once the gene coding for the cellular or extracellular binding partner is obtained, short gene segments are engineered to express peptide fragments of the protein, which are tested for binding activity and 30 purified or synthesized.

For example, and not by way of limitation, a target gene product is anchored to a solid material as described, above, by making a GST-target gene fusion protein and allowing it to bind to glutathione agarose beads. The interactive cellular or extracellular binding partner is labeled with a radioactive isotope, such as ³⁵S, and cleaved with a proteolytic enzyme such as trypsin. Cleavage products are added to the anchored GST-target gene fusion protein and allowed to bind. After washing away unbound peptides, labeled bound material, representing

the cellular or extracellular binding partner binding domain, is eluted, purified, and analyzed for amino acid sequence by well known methods. Peptides so identified are produced synthetically or fused to appropriate facilitative proteins using well known recombinant DNA technology.

5.5.1.2 Screening a Combinatorial Chemical library

In one embodiment of the present invention, the proteins encoded by the fungal genes identified using the methods of the present invention are isolated and expressed. These recombinant proteins are then used as targets in assays to screen libraries of compounds for potential drug candidates. The generation of chemical libraries is well known in the art. For example, combinatorial chemistry is used to generate a library of compounds to be screened in the assays described herein. A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building block" reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining amino acids in every possible combination to yield peptides of a given length. Millions of chemical compounds theoretically can be synthesized through such combinatorial mixings of chemical building blocks. For example, one commentator observed that the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the theoretical synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds. (Gallop et al., "Applications of Combinatorial Technologies to Drug Discovery, Background and Peptide Combinatorial Libraries," Journal of Medicinal Chemistry, Vol. 37, No. 9, 1233-1250 (1994). Other chemical libraries known to those in the art may also be used, including natural product libraries.

Once generated, combinatorial libraries are screened for compounds that possess desirable biological properties. For example, compounds which may be useful as drugs or to develop drugs would likely have the ability to bind to the target protein identified, expressed and 25 purified as discussed above. Further, if the identified target protein is an enzyme, candidate compounds would likely interfere with the enzymatic properties of the target protein. For example, the enzymatic function of a target protein may be to serve as a protease, nuclease, phosphatase, dehydrogenase, transporter protein, transcriptional enzyme, replication component, and any other type of enzyme known or unknown. Thus, the present invention contemplates using the protein products described above to screen combinatorial chemical libraries.

In some embodiments of the present invention, the biochemical activity of the protein, as well as the chemical structure of a substrate on which the protein acts is known. In other embodiments of the present invention, the biochemical activity of the target protein is unknown and the target protein has no known substrates.

In some embodiments of the present invention, libraries of compounds are 35 screened to identify compounds that function as inhibitors of the target gene product. First, a library of small molecules is generated using methods of combinatorial library formation well known in the art. U.S. Patent Nos. 5,463,564 and 5,574, 656, to Agrafiotis, et al., entitled "System and Method of Automatically Generating Chemical Compounds with Desired Properties," the disclosures of which are incorporated herein by reference in their entireties, are two such teachings. Then the library compounds are screened to identify those compounds that possess desired structural and functional properties. U.S. Patent No. 5,684,711, the disclosure of which is incorporated herein by reference in its entirety, also discusses a method for screening libraries.

To illustrate the screening process, the target gene product, an enzyme, and chemical compounds of the library are combined and permitted to interact with one another. A labeled substrate is added to the incubation. The label on the substrate is such that a detectable signal is emitted from metabolized substrate molecules. The emission of this signal permits one to measure the effect of the combinatorial library compounds on the enzymatic activity of target enzymes by comparing it to the signal emitted in the absence of combinatorial library compounds. The characteristics of each library compound are encoded so that compounds demonstrating activity against the enzyme can be analyzed and features common to the various compounds identified can be isolated and combined into future iterations of libraries.

Once a library of compounds is screened, subsequent libraries are generated using those chemical building blocks that possess the features shown in the first round of screen to have activity against the target enzyme. Using this method, subsequent iterations of candidate compounds will possess more and more of those structural and functional features required to inhibit the function of the target enzyme, until a group of enzyme inhibitors with high specificity for the enzyme can be found. These compounds can then be further tested for their safety and efficacy as antibiotics for use in mammals.

It will be readily appreciated that this particular screening methodology is exemplary only. Other methods are well known to those skilled in the art. For example, a wide variety of screening techniques are known for a large number of naturally-occurring targets when the biochemical function of the target protein is known. For example, some techniques involve the generation and use of small peptides to probe and analyze target proteins both biochemically and genetically in order to identify and develop drug leads. Such techniques include the methods described in PCT publications No. WO9935494, WO9819162,

WO9954728, the disclosures of which are incorporated herein by reference in their entireties.

Similar methods may be used to identify compounds which inhibit the activity of proteins from organisms other than *Candida albicans* which are homologous to the *Candida albicans* target proteins described herein. For example, the proteins may be from animal fugal pathogens such as *Aspergillus fumigatus*, *Aspergillus niger*, *Aspergillus flavis*, *Candida tropicalis*, *Candida parapsilopsis*, *Candida krusei*, *Cryptococcus neoformans*, *Coccidioides*

25

immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis. Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the proteins are from an organism other than Saccharomyces cerevisiae.

5.5.1.3 In vitro Enzyme Assays

In one embodiment, GRACE methods and strains can be used to develop in vitro assays for biochemical activities that are shown to be essential to cell viability. A number of essential genes identified by the GRACE conditional expression methodologies display statistically significant similarity to biochemically characterized gene products from other organisms. For example, based on amino acid sequence similarity, a number of essential and fungal specific genes listed in Table II are predicted to possess the following biochemical activities:

15		
	CaRHO1	GTPase involved in (1,3)-β-glucan synthesis and polarity
20	CaYHR118c (ORC6)	Origin of replication complex subunit
	CaYPL128c (TBP1)	Telomere binding protein
	CaYNL256w	Dihydropteroate synthase
	CaYKL004w (AUR1)	Phosphatidylinositol: ceramide phosphoinositol transferase
	CaYJL090c (DPB11)	DNA polB subunit
	CaYOL149w (DCP1)	mRNA decapping enzyme
	CaYNL151c (RPC31)	RNA polIII subunit
	CaYOR148c (SPP2)	RNA splicing
25	CaYER026c (CHO1)	Phosphatidylserine synthase

Therefore, a number of well characterized standard in vitro biochemical assays (e.g., DNA binding, RNA processing, GTP binding and hydrolysis, and phosphorylation) are readily adapted for these validated drug targets. For example the validated target, CaRHO1, is 30 used within a in vitro-based drug screen by adapting standard GTPase assays developed for a wide range of such proteins. Alternatively, novel assays are developed using biochemical information pertaining to validated drug targets within our GRACE strain collection. Any assays known in the art for enzymes with similar biochemical activities (e.g., mechanism of action, class of substrate) are adapted for screening for inhibitors of the enzymes encoded by 35 these essential C. albicans genes.

For example, a number of features make the C. albicans gene, CaTBF1, a

candidate for *in vitro* assay development. *CaTBF1* shares significant homology to its *S. cerevisiae* counterpart, *TBF1*, a telomere binding factor. In addition, the DNA sequence CaTBF1p recognizes is known and is relatively short (Koering et al., Nucleic Acid Res. 28:2519-2526, which is incorporated herein by reference in its entirety), enabling inexpensive synthesis of oligonucleotides corresponding to this element. Moreover since this assay only requires the target protein and a DNA fragment containing the nucleotide sequence it recognizes, only purification of CaTBF1p protein is necessary in order to develop an *in vitro* binding assay. One preferred embodiment of this *in vitro* assay involves crosslinking the DNA element to the bottom of a well, incubation of radiolabeled CaTBF1p to facilitate protein-DNA binding, a series of washes to remove unbound material, and determination of the percentage of bound radiolabeled CaTBF1p. Alternatively, purified CaTBF1p is attached to the well and radiolabeled oligonucleotides added. Drug screening, including the use of high throughput screening technique, is performed by searching for compounds that inhibit the protein-DNA binding measured in this assay.

Similarly, a second validated drug target, CaORC6, is used in this type of assay

since its S. cerevisiae homolog, ORC6, directly binds a DNA element within the origin of
replication of yeast chromosomes (Mizushima et al., 2000, Genes & Development 14:16311641, which is incorporated herein by reference in its entirety). Biochemical purification of any
of these targets could be achieved, for example, by PCR-based construction of C. albicans
heterozygous strains in which the gene encoding the CaORC6 protein has been modified to
include a carboxy-terminal hexahistidine tag enabling purification of the chimeric protein using
standard Ni¹² affinity column chromatography techniques.

For other targets like CaDPB11, a homolog of which in S. cerevisiae encode proteins that physically associate with Sld2p (Kamimura et al., 1998, Cell Biol. 18:6102-6109, which is incorporated herein by reference in its entirety), in vitro assays similar to those described above are developed. In addition, two-hybrid assays based on known physical interactions are developed for any validated targets within the GRACE strain collection.

The present invention also provides cell extracts useful in establishing *in vitro* assays for suitable biochemical targets. For example, in an embodiment of the present invention, GRACE-derived *C. albicans* strains are grown either under constitutive expression conditions or transcription repression conditions to either overproduce or deplete a particular gene product. Cellular extracts resulting from strains incubated under these two conditions are compared with extracts prepared from identically-grown wild type strains. These extracts are then used for the rapid evaluation of targets using existing *in vitro* assays or new assays directed toward novel gene products, without having to purify the gene product. Such a whole cell extract approach to *in vitro* assay development is typically necessary for targets involved in cell wall biosynthetic pathways (e. g. (1,3)-β-glucan synthesis or chitin synthesis) which involve

multiple gene products that transit the secretory pathway before receiving essential posttranslational modifications required for their functional activity. GRACE-derived strains for conditional expression of target genes involved in these, or other cell wall pathways (ε. g. (1,6)β-glucan synthesis) enable *in vitro* assays to be performed directly in *C. albicans*.

5

10

1

15

20

25

30

35

5.5.2 Cell-based Screening Assays

In various embodiments, the essential genes identified by the methods of the invention can be used in cell-based screening assays. Generally, the target essential gene in a cell can be engineered to be overexpressed or underexpressed constitutively or inducibly. Given that the identity of an essential gene is known, the construction of such cells can be accomplished by methods well known in the art. The GRACE strains of the invention is a non-limiting example of the type of genetically engineered cells that can be used in the cell-based screening assays of the invention.

Current cell-based assays used to identify or to characterize compounds for drug discovery and development frequently depend on detecting the ability of a test compound to modulate the activity of a target molecule located within a cell or located on the surface of a cell. Most often such target molecules are proteins such as enzymes, receptors and the like. However, target molecules also include other molecules such as DNAs, lipids, carbohydrates and RNAs including messenger RNAs, ribosomal RNAs, tRNAs and the like. A number of highly sensitive cell-based assay methods are available to those of skill in the art to detect binding and interaction of test compounds with specific target molecules. However, these methods are generally not highly effective when the test compound binds to or otherwise interacts with its target molecule with moderate or low affinity. In addition, the target molecule may not be readily accessible to a test compound in solution, such as when the target molecule is located inside the cell or within a cellular compartment such as the periplasm of a bacterial cell.

Thus, current cell-based assay methods are limited in that they are not effective in identifying or characterizing compounds that interact with their targets with moderate to low affinity or compounds that interact with targets that are not readily accessible.

The cell-based assay methods of the present invention have substantial advantages over current cell-based assays. These advantages derive from the use of sensitized cells in which the level or activity of at least one gene product required for fungal proliferation, virulence, or pathogenicity (the target molecule) has been reduced, and preferably specifically reduced to the point where the presence or absence of its function becomes a rate-determining step for fungal growth, survival, proliferation, virulence, or pathogenicity. Such sensitized cells become much more sensitive to compounds that are active against the affected target molecule.

For example, sensitized cells are obtained by growing a GRACE strain in the presence of a concentration of inducer or repressor which provides a level of a gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity such that the presence or absence of its function becomes a rate-determining step for fungal growth, survival, proliferation, virulence, or pathogenicity such that the present invention are capable of detecting compounds exhibiting low or moderate potency against the target molecule of interest because such compounds are substantially more potent on sensitized cells than on

non-sensitized cells. The effect may be such that a test compound may be two to several times more potent, at least 10 times more potent, at least 20 times more potent, at least 50 times more potent, at least 100 times more potent, at least 1000 times more potent, or even more than 1000 times more potent when tested on the sensitized cells as compared to the non-sensitized cells.

Due in part to the increased appearance of antibiotic resistance in pathogenic microorganisms and to the significant side-effects associated with some currently used antibiotics, novel antibiotics acting at new targets are highly sought after in the art. Yet, another limitation in the current art related to cell-based assays is the problem of repeatedly identifying hits against the same kinds of target molecules in the same limited set of biological pathways. This may occur when compounds acting at such new targets are discarded, ignored or fail to be detected because compounds acting at the "old" targets are encountered more frequently and are more potent than compounds acting at the new targets. As a result, the majority of antibiotics in use currently interact with a relatively small number of target molecules within an even more limited set of biological pathways.

The use of sensitized cells of the current invention provides a solution to the above problems in two ways. First, desired compounds acting at a target of interest, whether a new target or a previously known but poorly exploited target, can now be detected above the "noise" of compounds acting at the "old" targets due to the specific and substantial increase in potency of such desired compounds when tested on the sensitized cells of the current invention. Second, the methods used to sensitize cells to compounds acting at a target of interest may also sensitize these cells to compounds acting at other target molecules within the same biological pathway. For example, expression of a gene encoding a ribosomal protein at a level such that the function of the ribosomal protein becomes rate limiting for fungal growth, survival, proliferation, virulence, or pathogenicity is expected to sensitize the cell to compounds acting at that ribosomal protein to compounds acting at any of the ribosomal components (proteins or rRNA) or even to compounds acting at any target which is part of the protein synthesis pathway. Thus an important advantage of the present invention is the ability to reveal new targets and nathways that were previously not readily accessible to drug discovery methods.

Sensitized cells of the present invention are prepared by reducing the activity or level of a target molecule. The target molecule may be a gene product, such as an RNA or 30 polypeptide produced from the nucleic acids required for fungal growth, survival, proliferation, virulence, or pathogenicity described herein. In addition, the target may be an RNA or polypeptide in the same biological pathway as the nucleic acids required for fungal growth, survival, proliferation, virulence, or pathogenicity as described herein. Such biological pathways include, but are not limited to, enzymatic, biochemical and metabolic pathways as 35 well as pathways involved in the production of cellular structures such as the cell membrane.

Current methods employed in the arts of medicinal and combinatorial

chemistries are able to make use of structure-activity relationship information derived from testing compounds in various biological assays including direct binding assays and cell-based assays. Occasionally compounds are directly identified in such assays that are sufficiently potent to be developed as drugs. More often, initial hit compounds exhibit moderate or low potency. Once a hit compound is identified with low or moderate potency, directed libraries of compounds are synthesized and tested in order to identify more potent leads. Generally these directed libraries are combinatorial chemical libraries consisting of compounds with structures related to the hit compound but containing systematic variations including additions. subtractions and substitutions of various structural features. When tested for activity against the target molecule, structural features are identified that either alone or in combination with other features enhance or reduce activity. This information is used to design subsequent directed libraries containing compounds with enhanced activity against the target molecule. After one or several iterations of this process, compounds with substantially increased activity against the target molecule are identified and may be further developed as drugs. This process is facilitated by use of the sensitized cells of the present invention since compounds acting at the selected targets exhibit increased potency in such cell-based assays, thus; more compounds can now be characterized providing more useful information than would be obtained otherwise.

Thus, it is now possible using cell-based assays of the present invention to identify or characterize compounds that previously would not have been readily identified or characterized including compounds that act at targets that previously were not readily exploited using cell-based assays. The process of evolving potent drug leads from initial hit compounds is also substantially improved by the cell-based assays of the present invention because, for the same number of test compounds, more structure-function relationship information is likely to be revealed.

The method of sensitizing a cell entails selecting a suitable gene. A suitable gene is one whose expression is required for the growth, survival, proliferation, virulence, or pathogenicity of the cell to be sensitized. The next step is to obtain a cell in which the level or activity of the target can be reduced to a level where it is rate limiting for growth, survival, proliferation, virulence or pathogenicity. For example, the cell may be a GRACE strain in which the selected gene is under the control of a regulatable promoter. The amount of RNA transcribed from the selected gene is limited by varying the concentration of an inducer or repressor which acts on the regulatable promoter, thereby varying the activity of the promoter driving transcription of the RNA. Thus, cells are sensitized by exposing them to an inducer or repressor concentration that results in an RNA level such that the function of the selected gene product becomes rate limiting for fungal growth, survival, proliferation, virulence, or

In one embodiment of the cell-based assays, GRACE strains, in which the

sequences required for fungal growth, survival, proliferation, virulence, or pathogenicity of Candida albicans described herein are under the control of a regulatable promoter, are grown in the presence of a concentration of inducer or repressor which causes the function of the gene products encoded by these sequences to be rate limiting for fungal growth, survival, proliferation, virulence, or pathogenicity. To achieve that goal, a growth inhibition dose curve of inducer or repressor is calculated by plotting various doses of inducer or repressor against the corresponding growth inhibition caused by the limited levels of the gene product required for fungal proliferation. From this dose-response curve, conditions providing various growth rates, from 1 to 100% as compared to inducer or repressor-free growth, can be determined. For example, if the regulatable promoter is repressed by tetracycline, the GRACE strain may be grown in the presence of varying levels of tetracyline. Similarly, inducible promoters may be used. In this case, the GRACE strains are grown in the presence of varying concentrations of inducer. For example, the highest concentration of the inducer or repressor that does not reduce the growth rate significantly can be estimated from the dose-response curve. Cellular proliferation can be monitored by growth medium turbidity via OD measurements. In another example, the concentration of inducer or repressor that reduces growth by 25% can be predicted from the dose-response curve. In still another example, a concentration of inducer or repressor that reduces growth by 50% can be calculated from the dose-response curve. Additional parameters such as colony forming units (cfu) are also used to measure cellular growth, survival and/or viability.

In another embodiment of the present invention, an individual haploid strain may 20 similarly be used as the basis for detection of an antifungal or therapeutic agent. In this embodiment, the test organism (e.g. Aspergillus, fumigatus, Cryptococcus neoformans, Magnaportha grisea or any other haploid organisms represented in Table I) is a strain constructed by modifying the single allele of the target gene in one step by recombination with a 25 promoter replacement fragment comprising a heterologous regulatable promoter, such that the expression of the gene is conditionally regulated by the heterologous promoter. Like individual diploid GRACE strains, sensitized haploid cells may similarly be used in whole cell-based assay methods to identify compounds displaying a preferential activity against the affected target,

In various embodiments, the modified strain is grown under a first set of 30 conditions where the heterologous promoter is expressed at a relatively low level (i.e. partially repressed) and the extent of growth determined. This experiment is repeated in the presence of a test compound and a second measurement of growth obtained. The extent of growth in the presence and in the absence of the test compound are then compared to provide a first indicator value. Two further experiments are performed, using non-repressing growth conditions where 35 the target gene is expressed at substantially higher levels than in the first set of conditions. The extent of growth is determined in the presence and absence of the test compound under the

2.0

30

5

second set of conditions to obtain a second indicator value. The first and second indicator values are then compared. If the indicator values are essentially the same, the data suggest that the test compound does not inhibit the test target. However, if the two indicator values are substantially different, the data indicates that the level of expression of the target gene product may determine the degree of inhibition by the test compound and, therefore, it is likely that the gene product is the target of that test compound. Whole-cell assays comprising collections or subsets of multiple sensitized strains may also be screened, for example, in a series of 96-well, 384-well, or even 1586-well microtiter plates, with each well containing individual strains sensitized to identify compounds displaying a preferential activity against each affected target comprising a target set or subset selected from, but not limited to the group consisting of fungal-specific, pathogen-specific, desired biochemical-function, human-homolog, cellular localization, and signal transduction caseade target sets.

Cells to be assayed are exposed to the above-determined concentrations of inducer or repressor. The presence of the inducer or repressor at this sub-lethal concentration reduces the amount of the proliferation-required gene product to the lowest amount in the cell that will support growth. Cells grown in the presence of this concentration of inducer or repressor are therefore specifically more sensitive to inhibitors of the proliferation-required protein or RNA of interest as well as to inhibitors of proteins or RNAs in the same biological pathway as the proliferation-required protein or RNA of interest but not specifically more sensitive to inhibitors of unrelated proteins or RNAs.

Cells pretreated with sub-inhibitory concentrations of inducer or repressor, which therefore contain a reduced amount of proliferation-required target gene product, are used to screen for compounds that reduce cell growth. The sub-lethal concentration of inducer or repressor may be any concentration consistent with the intended use of the assay to identify candidate compounds to which the cells are more sensitive than are control cells in which this gene product is not rate-limiting. For example, the sub-lethal concentration of the inducer or repressor may be such that growth inhibition is at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 50%, at least about 50% or more than 95%. Cells which are pre-sensitized using the preceding method are more sensitive to inhibitors of the target protein because these cells contain less target protein to inhibit than wild-type cells.

It will be appreciated that similar methods may be used to identify compounds which inhibit virulence or pathogenicity. In such methods, the virulence or pathogenicity of cells exposed to the candidate compound which express rate limiting levels of a gene product involved in virulence or pathogenicity is compared to the virulence or pathogenicity of cells exposed to the candidate compound in which the levels of the gene

product are not rate limiting. Virulence or pathogenicity may be measured using the techniques described herein.

In another embodiment of the cell-based assays of the present invention, the level or activity of a gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity is reduced using a mutation, such as a temperature sensitive mutation, in the sequence required for fungal growth, survival, proliferation, virulence, or pathogenicity and an inducer or repressor level which, in conjunction with the temperature sensitive mutation, provides levels of the gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity which are rate limiting for proliferation. Growing the cells at an intermediate temperature between the permissive and restrictive temperatures of the temperature sensitive mutant where the mutation is in a gene required for fungal growth, survival, proliferation, virulence, or pathogenicity produces cells with reduced activity of the gene product required for growth, survival, proliferation, virulence, or pathogenicity. The concentration of inducer or repressor is chosen so as to further reduces the activity of the gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity. Drugs that may not have been found using either the temperature sensitive mutation or the inducer or repressor alone may be identified by determining whether cells in which expression of the nucleic acid encoding the proliferation-required gene product has been reduced and which are grown at a temperature between the permissive temperature and the restrictive temperature are substantially more sensitive to a test compound than cells in which expression of the gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity has not been reduced and which are grown at a permissive temperature. Also drugs found previously from either the use of the inducer or repressor alone or the temperature sensitive mutation alone may have a different sensitivity profile when used in cells combining the two approaches, and that sensitivity profile may indicate a more specific action of the drug in inhibiting one or more activities of the gene product.

Temperature sensitive mutations may be located at different sites within a gene and may lie within different domains of the protein. For example, the dnaB gene of Escherichia coli encodes the replication fork DNA helicase. DnaB has several domains, including domains for oligomerization, ATP hydrolysis, DNA binding, interaction with primase, interaction with DnaC, and interaction with DnaA. Temperature sensitive mutations in different domains of DnaB confer different phenotypes at the restrictive temperature, which include either an abrupt stop or a slow stop in DNA replication either with or without DNA breakdown (Wechsler, J.A. and Gross, J.D. 1971 Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol. Gen. Genetics 113:273-284) and termination of growth or cell death. Thus, temperature sensitive mutations in different domains of the protein may be used in conjunction with GRACE strains in which

expression of the protein is under the control of a regulatable promoter.

It will be appreciated that the above method may be performed with any mutation which reduces but does not eliminate the activity or level of the gene product which is required for fungal growth, survival, proliferation, virulence, or pathogenicity.

When screening for antimicrobial agents against a gene product required for fungal growth, survival, proliferation, virulence, or pathogenicity, growth inhibition, virulence or pathogenicity of cells containing a limiting amount of that gene product can be assayed. Growth inhibition can be measured by directly comparing the amount of growth, measured by the optical density of the culture relative to uninoculated growth medium, between an experimental sample and a control sample. Alternative methods for assaying cell proliferation include measuring green fluorescent protein (GFP) reporter construct emissions, various enzymatic activity assays, and other methods well known in the art. Virulence and pathogenicity may be measured using the techniques described herein.

It will be appreciated that the above method may be performed in solid phase, liquid phase, a combination of the two preceding media, or *in vivo*. For example, cells grown on nutrient agar containing the inducer or repressor which acts on the regulatable promoter used to express the proliferation required gene product may be exposed to compounds spotted onto the agar surface. A compound's effect may be judged from the diameter of the resulting killing zone, the area around the compound application point in which cells do not grow. Multiple compounds may be transferred to agar plates and simultaneously tested using automated and semi-automated equipment including but not restricted to multi-channel pipettes (for example the Beckman Multimek) and multi-channel spotters (for example the Genomic Solutions Flexys). In this way multiple plates and thousands to millions of compounds may be tested per day.

The compounds are also tested entirely in liquid phase using microtiter plates as described below. Liquid phase screening may be performed in microtiter plates containing 96, 384, 1536 or more wells per microtiter plate to screen multiple plates and thousands to millions of compounds per day. Automated and semi-automated equipment are used for addition of reagents (for example cells and compounds) and for determination of cell density.

The compounds are also tested *in vivo* using the methods described herein.

It will be appreciated that each of the above cell-based assays may be used to identify compounds which inhibit the activity of gene products from organisms other than
Candida albicans which are homologous to the Candida albicans gene products described herein. For example, the target gene products may be from animal fugal pathogens such as
Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia

15

20

dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the gene products are from an organism other than Saccharomyces cerevisiae.

5.5.2.1 Cell-Based Assays Using GRACE Strains

GRACE strains in which one allele of a gene required for fungal growth,
survival, proliferation, virulence, or pathogenicity is inactivated while the other allele is
under the control of a regulatable promoter are constructed using the methods described
herein. For the purposes of the present example, the regulatable promoter may be the
tetracycline regulated promoter described herein, but it will be appreciated that any
regulatable promoter may be used.

In one embodiment of the present invention, an individual GRACE strain is used as the basis for detection of a therapeutic agent active against a diploid pathogenic fungal cell. In this embodiment, the test organism is a GRACE strain having a modified allelic gene pair, where the first allele of the gene has been inactivated by the insertion of, or replacement by, a nucleotide sequence encoding an expressible, dominant selectable marker and the second allele has been modified, by recombination, to place the second allele under the controlled expression of a heterologous promoter. This test GRACE strain is then grown under a first set of conditions where the heterologous promoter is expressed at a relatively low level ("repressing") and the extent of growth determined. This measurement may be carried out using any appropriate standard known to those skilled in the art including optical density, wet weight of pelleted cells, total cell count, viable count, DNA content, and the like. This experiment is repeated in the presence of a test compound and a second measurement of growth obtained. The extent of growth in the presence and in the absence of the test compound, which can conveniently be expressed in terms of indicator values, are then compared. A dissimilarity in the extent of growth or indicator values provides an indication that the test compound may interact with the target essential gene product.

To gain more information, two further experiments are performed, using a second set of "non-repressing" growth conditions where the second allele, under the control of the heterologous promoter, is expressed at a level substantially higher than in the first set of conditions described above. The extent of growth or indicator values is determined in the presence and absence of the test compound under this second set of conditions. The extent

of growth or indicator values in the presence and in the absence of the test compound are then compared. A dissimilarity in the extent of growth or indicator values provides an indication that may interact with the target essential gene product.

Furthermore, the extent of growth in the first and in the second set of growth conditions can also be compared. If the extent of growth is essentially the same, the data suggest that the test compound does not inhibit the gene product encoded by the modified allelic gene pair carried by the GRACE strain tested. However, if the extent of growth are substantially different, the data indicate that the level of expression of the subject gene product may determine the degree of inhibition by the test compound and, therefore, it is likely that the subject gene product is the target of that test compound.

Although each GRACE strain can be tested individually, it will be more 10 efficient to screen entire sets or subsets of a GRACE strain collection at one time. Therefore in one aspect of this invention, arrays may be established, for example in a series of 96-well microtiter plates, with each well containing a single GRACE strain. In one representative, but not limiting approach, four microtiter plates are used, comprising two 15 pairs where the growth medium in one pair supports greater expression of the heterologous promoter controlling the remaining active allele in each strain, than the medium in the other pair of plates. One member of each pair is supplemented with a compound to be tested and measurements of growth of each GRACE strain is determined using standard procedures to provide indicator values for each isolate tested. The collection of diploid pathogenic GRACE strains used in such a method for screening for therapeutic agents may comprise, for example, a substantially complete set of all the modified allelic gene pairs of the organism, the substantially complete set of all the modified allelic essential gene pairs of the organism or the collection may be selected from a subset of GRACE strains selected from, but not limited to the group consisting of fungal-specific, pathogen-specific, desired biochemical-function, human-homolog, cellular localization, and signal transduction cascade target sets.

The GRACE strains are grown in medium comprising a range of tetracycline concentrations to obtain the growth inhibitory dose-response curve for each strain. First, seed cultures of the GRACE strains are grown in the appropriate medium. Subsequently, aliquots of the seed cultures are diluted into medium containing varying concentrations of tetracycline. For example, the GRACE strains may be grown in duplicate cultures containing two-fold serial dilutions of tetracycline. Additionally, control cells are grown in duplicate without tetracycline. The control cultures are started from equal amounts of cells derived from the same initial seed culture of a GRACE strain of interest. The cells are grown for an appropriate period of time and the extent of growth is determined using any appropriate technique. For example, the extent of growth may be determined by measuring

the optical density of the cultures. When the control culture reaches mid-log phase the percent growth (relative to the control culture) for each of the tetracycline containing cultures is plotted against the log concentrations of tetracycline to produce a growth inhibitory dose response curve for tetracycline. The concentration of tetracycline that inhibits cell growth to 50% (IC₅₀) as compared to the 0 mM tetracyline control (0% growth inhibition) is then calculated from the curve. Alternative methods of measuring growth are also contemplated. Examples of these methods include measurements of proteins, the expression of which is engineered into the cells being tested and can readily be measured. Examples of such proteins include green fluorescent protein (GFP) and various enzymes.

Cells are pretreated with the selected concentration of tetracycline and then used to test the sensitivity of cell populations to candidate compounds. For example, the cells may be pretreated with a concentration of tetracycline which inhibits growth by at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% at least about 75%, at least 80%, at least 90%, at least 95% or more than 95%. The cells are then contacted with the candidate 15 compound and growth of the cells in tetracycline containing medium is compared to growth of the control cells in medium which lacks tetracycline to determine whether the candidate compound inhibits growth of the sensitized cells (i.e. the cells grown in the presence of tetracycline). For example, the growth of the cells in tetracycline containing medium may be compared to the growth of the cells in medium lacking tetracycline to determine whether the candidate compound inhibits the growth of the sensitized cells (i.e. the cells grown in the presence of tetracyline) to a greater extent than the candidate compound inhibits the growth of cells grown in the absence of tetracycline. For example, if a significant difference in growth is observed between the sensitized cells (i.e. the cells grown in the presence of tetracycline) and the non-sensitized cells (i.e. the cells grown in the absence of tetracycline), the candidate compound may be used to inhibit the proliferation of the organism or may be further optimized to identify compounds which have an even greater ability to inhibit the growth, survival, or proliferation of the organism.

Similarly, the virulence or pathogenicity of cells exposed to a candidate compound which express a rate limiting amount of a gene product required for virulence or pathogenicity may be compared to the virulence or pathogenicity of cells exposed to the candidate compound in which the level of expression of the gene product required for virulence or pathogenicity is not rate limiting. In such methods, test animals are challenged with the GRACE strain and fed a diet containing the desired amount of tetracycline and the candidate compound. Thus, the GRACE strain infecting the test animals expresses a rate

35 limiting amount of a gene product required for virulence or pathogenicity (i.e. the GRACE cells in the test animals are sensitized). Control animals are challenged with the GRACE

10

strain and are fed a diet containing the candidate compound but lacking tetracycline. The virulence or pathogenicity of the GRACE strain in the test animals is compared to that in the control animals. For example, the virulence or pathogenicity of the GRACE strain in the test animals may be compared to that in the control animals to determine whether the candidate compound inhibits the virulence or pathogenicity of the sensitized GRACE cells (i.e. the cells in the animals whose diet included tetracyline) to a greater extent than the candidate compound inhibits the growth of the GRACE cells in animals whose diet lacked tetracycline. For example, if a significant difference in growth is observed between the sensitized GRACE cells (i.e. the cells in animals whose diet included tetracycline) and the non-sensitized cells (i.e. the GRACE cells in animals whose diet did not include tetracycline), the candidate compound may be used to inhibit the virulence or pathogenicity of the organism or may be further optimized to identify compounds which have an even greater ability to inhibit the virulence or pathogenicity of the organism. Virulence or pathogenicity may be measured using the techniques described therein.

It will be appreciated that the above cell-based assays may be used to identify compounds which inhibit the activity of gene products from organisms other than Candida albicans which are homologous to the Candida albicans gene products described herein. For example, the gene products may be from animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the

The cell-based assay described above may also be used to identify the biological pathway in which a nucleic acid required for fungal proliferation, virulence or pathogenicity or the gene product of such a nucleic acid lies. In such methods, cells expressing a rate limiting level of a target nucleic acid required for fungal proliferation, virulence or pathogenicity and control cells in which expression of the target nucleic acid is not rate limiting are contacted with a panel of antibiotics known to act in various pathways. If the antibiotic acts in the pathway in which the target nucleic acid or its gene product lies, cells in which expression of target nucleic acid is rate limiting will be more sensitive to the antibiotic than cells in which expression of the target nucleic acid is not rate limiting.

35 As a control, the results of the assay may be confirmed by contacting a panel of cells in which the levels of many different genes required for proliferation, virulence or

pathogenicity, including the target gene, is rate limiting. If the antibiotic is acting specifically, heightened sensitivity to the antibiotic will be observed only in the cells in which the target gene is rate limiting (or cells in which genes in the same pathway as the target gene is rate limiting) but will not be observed generally in which a gene product required for proliferation, virulence or pathogenicity is rate limiting.

It will be appreciated that the above method for identifying the biological pathway in which a nucleic acid required for proliferation, virulence or pathogenicity lies may be applied to nucleic acids from organisms other than Candida albicans which are homologous to the Candida albicans nucleic acids described herein. For example, the nucleic acids may be from animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Phneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the nucleic acids are from an organism other than Saccharomyces cerevisae.

Similarly, the above method may be used to determine the pathway on which a test compound, such as a test antibiotic acts. A panel of cells, each of which expresses a rate limiting amount of a gene product required for fungal proliferation, virulence or pathogenicity where the gene product lies in a known pathway, is contacted with a compound for which it is desired to determine the pathway on which it acts. The sensitivity of the panel of cells to the test compound is determined in cells in which expression of the nucleic acid encoding the gene product required for proliferation, virulence or pathogenicity is at a rate limiting level and in control cells in which expression of the gene product required for proliferation, virulence or pathogenicity is not at a rate limiting level. If the test compound acts on the pathway in which a particular gene product required for proliferation, virulence, or pathogenicity lies, cells in which expression of that particular gene product is at a rate limiting level will be more sensitive to the compound than the cells in which gene products in other pathways are at a rate limiting level. In addition, control cells in which expression of the particular gene required for fungal proliferation, virulence or pathogenicity is not rate limiting will not exhibit heightened sensitivity to the compound. In this way, the pathway on which the test compound acts may be determined.

It will be appreciated that the above method for determining the pathway on which a test compound acts may be applied to organisms other than Candida albicans by using panels of cells in which the activity or level of gene products which are homologous

to the Candida albicans gene products described herein is rate limiting. For example, the gene products may be from animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Pneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the gene products are from an organism other than Saccharomyces cerevisiae. Example 6.4, infra, provided below describes one method for performing such assays.

One skilled in the art will appreciate that further optimization of the assay conditions, such as the concentration of inducer or repressor used to produce rate limiting levels of a gene product required for fungal proliferation, virulence or pathogenicity and/or the growth conditions used for the assay (for example incubation temperature and medium components) may further increase the selectivity and/or magnitude of the antibiotic sensitization exhibited.

It will be appreciated that the above methods for identifying the pathway in which a gene required for growth, survival, proliferation, virulence or pathogenicity lies or the pathway on which an antibiotic acts may be performed using organisms other than Candida albicans in which gene products homologous to the Candida albicans gene products described herein are rate limiting. For example, the gene products may be from animal fugal pathogens such as Aspergillus funigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Pneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the gene products are from an organism other than Saccharomyces cerevisae.

Furthermore, as discussed above, panels of GRACE strains may be used to characterize the point of intervention of any compound affecting an essential biological pathway including antibiotics with no known mechanism of action.

Another embodiment of the present invention is a method for determining the pathway against which a test antibiotic compound is active, in which the activity of proteins or nucleic acids involved in pathways required for fungal growth, survival,

proliferation, virulence or pathogenicity is reduced by contacting cells with a sub-lethal concentration of a known antibiotic which acts against the protein or nucleic acid. The method is similar to those described above for determining which pathway a test antibiotic acts against, except that rather than reducing the activity or level of a gene product required for fungal proliferation, virulence or pathogenicity by expressing the gene product at a rate limiting amount in a GRACE strain, the activity or level of the gene product is reduced using a sub-lethal level of a known antibiotic which acts against the gene product.

Growth inhibition resulting from the presence of sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, at least 80%, at least 90%, at least 95% or more than 95%.

Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

Cells are contacted with a combination of each member of a panel of known antibiotics at a sub-lethal level and varying concentrations of the test antibiotic. As a control, the cells are contacted with varying concentrations of the test antibiotic alone. The IC₅₀ of the test antibiotic in the presence and absence of the known antibiotic is determined. If the IC₅₀s in the presence and absence of the known drug are substantially similar, then the test drug and the known drug act on different pathways. If the IC₅₀s are substantially different, then the test drug and the known drug act on the same pathway.

Similar methods may be performed using known antibiotics which act on a gene product homologous to the Candida albicans sequences described herein. The homologous gene product may be from animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Pneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the gene products are from an organism other than Saccharomyces cerevisae.

Another embodiment of the present invention is a method for identifying a candidate compound for use as an antibiotic in which the activity of target proteins or nucleic acids involved in pathways required for fungal proliferation, virulence or

35 pathogenicity is reduced by contacting cells with a sub-lethal concentration of a known antibiotic which acts against the target protein or nucleic acid. The method is similar to

those described above for identifying candidate compounds for use as antibiotics except that rather than reducing the activity or level of a gene product required for proliferation, virulence or pathogenicity using GRACE strains which express a rate limiting level of the gene product, the activity or level of the gene product is reduced using a sub-lethal level of a known antibiotic which acts against the proliferation required gene product.

The growth inhibition from the sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.

Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

In order to characterize test compounds of interest, cells are contacted with a panel of known antibiotics at a sub-lethal level and one or more concentrations of the test compound. As a control, the cells are contacted with the same concentrations of the test compound alone. The IC₅₀ of the test compound in the presence and absence of the known antibiotic is determined. If the IC₅₀ of the test compound is substantially different in the presence and absence of the known drug then the test compound is a good candidate for use as an antibiotic. As discussed above, once a candidate compound is identified using the above methods its structure may be optimized using standard techniques such as

Similar methods may be performed using known antibiotics which act on a gene product homologous to the Candida albicans sequences described herein. The homologous gene product may be from animal fugal pathogens such as Aspergillus fumigatus, Aspergillus niger, Aspergillus flavis, Candida tropicalis, Candida parapsilopsis, Candida krusei, Cryptococcus neoformans, Coccidioides immitis, Exophalia dermatiditis, Fusarium oxysporum, Histoplasma capsulatum, Pneumocystis carinii, Trichosporon beigelii, Rhizopus arrhizus, Mucor rouxii, Rhizomucor pusillus, or Absidia corymbigera, or the plant fungal pathogens, such as Botrytis cinerea, Erysiphe graminis, Magnaporthe grisea, Puccinia recodita, Septoria triticii, Tilletia controversa, Ustilago maydis, or any species falling within the genera of any of the above species. In some embodiments, the gene products are from an organism other than Saccharomyces cerevisae.

An exemplary target gene product is encoded by *CaTBF1*. A number of features make this *C. albicans* gene product a valuable drug target. First, the protein encoded by *CaTBF1* is compatible with *in vitro* high throughput screening of compounds that inhibit its activity. Modulated expression of this gene product in whole cell assays could be performed in parallel with *in vitro* assays to broaden the spectrum of possible

inhibitory compounds identified. In addition, demonstration of the predicted physical interaction between CaTbf1p and chromosomal telomerases could be used to develop two-hybrid assays for drug screening purposes. Finally, because CaTBF1 is a fungal specific gene, its nucleotide sequence could serve in designing PCR-based diagnostic tools for fungal infection.

Other validated drug targets included in the GRACE-derived strain collection that represent preferred drug targets include the products encoded by the following *C. albicans* genes: *CaRHO1*, *CaERG8*, *CaAUR1*, and *CaCHO1*, as well as those encoded by SEQ ID NOs.:6001-6932. The ability to manipulate these genes using GRACE methods of the present invention will improve drug screening practices now in use that are designed to identify inhibitors of these critical gene products.

In another embodiment of the present invention, all potential drug targets of a pathogen could be screened simultaneously against a library of compounds using, for example a 96 well microtiter plate format, where growth, measured by optical density or pellet size after centrifugation, may be determined for each well. A genomic approach to drug screening eliminates reliance upon potentially arbitrary and artificial criteria used in evaluating which target to screen and instead allows all potential targets to be screened. This approach not only offers the possibility of identifying specific compounds which inhibit a preferred process (e. g. cell wall biosynthetic gene products) but also the possibility of identifying all fungicidal compounds within that library and linking them to their cognate cellular targets.

In still another embodiment of the present invention, GRACE strains could be screened to identify synthetic lethal mutations, and thereby uncover a potentially novel class of drug targets of significant therapeutic value. For example two separate genes may encode homologous proteins that participate in a common and essential cellular function, where the essential nature of this function will only become apparent upon inactivation of both family members. Accordingly, examination of the null phenotype of each gene separately would not reveal the essential nature of the combined gene products, and consequently, this potential drug target would not be identified. Provided the gene products are highly homologous to one another, compounds found to inhibit one family member are likely to inhibit the other and are therefore predicted to approximate the synthetic growth inhibition demonstrated genetically. In other cases however, synthetic lethality may uncover seemingly unrelated (and often nonessential) processes, which when combined produce a synergistic growth impairment (cell death). For example, although disruption of the S. cerevisiae gene RVS161 does not present any discernable vegetative growth phenotype in 35 yeast carrying this single mutation, at least 9 other genes are known to display a synthetic lethal effect when combined with inactivation of RVS161. These genes participate in

processes ranging from cytoskeletal assembly and endocytosis, to signal transduction and lipid metabolism and identifies multiple avenues to pursuing a combination drug target strategy. A directed approach to uncovering synthetic lethal interactions with essential and nonessential drug targets is now performed where a GRACE strain or heterozygote strain is identified as displaying an enhanced sensitivity to the tested compound, not because it expresses a reduced level of activity for the drug target, but because its mutation is synthetically lethal in combination with inhibition of a second drug target. Discerning whether the compound specifically inhibits the drug target in the sensitized GRACE strain or heterozygote strain or a second target may be achieved by screening the entire GRACE or heterozygote strain sets for additional mutant strains displaying equal or greater sensitivity to the compound, followed by genetic characterization of a double mutant strain demonstrating synthetic lethality between the two mutations.

5.5.2.2 Screening for Non-antifungal Therapeutic Agents With GRACE Strains

The biochemical similarity existing between pathogenic fungi and the mammalian hosts they infect limits the range of clinically useful antimycotic compounds. However, this similarity can be exploited using a GRACE strain collection to facilitate the discovery of therapeutics that are not used as antimycotics, but are useful for treatment a wide-range of diseases, such as cancer, inflammation, etc.

In this embodiment of the invention, fungal genes that are homologous to disease-causing genes in an animal or plant, are selected and GRACE strains of this set of genes are used for identification of compounds that display potent and specific bioactivity towards the products of these genes, and therefore have potential medicinal value for the treatment of diseases. Essential and non-essential genes and the corresponding GRACE strains carrying modified allelic pairs of such genes are useful in this embodiment of the invention. It has been predicted that as many as 40% of the genes found within the C. albicans genome share human functional homologs. It has also been predicted that as many as 1% of human genes are involved in human diseases and therefore may serve as potential drug targets. Accordingly, many genes within the GRACE strain collection are homologs to disease-causing human genes and compounds that specifically inactivate individual members of this gene set may in fact have alternative therapeutic value. The invention provides a pluralities of GRACE strains in which the modified alleles are fungal genes that share sequence, structural and/or functional similarities to genes that are associated with one or more diseases of the animal or plant.

For example, much of the signal transduction machinery that promotes cell

35

cycle progression and is often perturbed in a variety of cancers is conserved in fungi. Many of these genes encode for cyclins, cyclin-dependent kinases (CDK), CDK inhibitors, phosphatases, and transcription factors that are both structurally and functionally related. As a result, compounds found to display specificity towards any of these functional classes of proteins could be evaluated by secondary screens to test for potential anticancer activity. However, cytotoxic compounds identified in this way need not act on cancer causing targets to display therapeutic potential. For example the taxol family of anti-cancer compounds, which hold promise as therapeutics for breast and ovarian cancers, bind tubulin and promote microtubule assembly, thereby disrupting normal microtubule dynamics. Yeast tubulin displays similar sensitivity to taxol, suggesting that additional compounds affecting other fundamental cellular processes shared between yeast and man could similarly be identified and assessed for antitumor activity.

The phenomenon of pathogenesis extends far beyond the taxonomic borders of microbes and ultimately reflects the underlying physiology. In many ways, the phenomenon of cancer is analogous to the process of pathogenesis by an opportunistic pathogen such as *C. albicans*. Both are non-infectious diseases caused by either the body's own cells, or microbes from its natural fauna. These cells grow in a manner unchecked by the immune system and in both cases disease manifests itself by colonization of vital organs and eventual tissue damage resulting in death. Effective drug-based treatment is also elusive for both diseases primarily because the causative agent in both cases is highly

In fact, a number of successful therapeutic drugs affecting processes unrelated to cancer have also been discovered through anti-fungal drug screening programs. One clinically-important class of compounds includes the immunosuppressant molecules rapamycin, cyclosporin A, and FK506, which inhibit conserved signal transduction components. Cyclosporin A and FK506, form distinct drug-prolyl isomerase complexes (CyPA- Cyclosporin A and FKBP12-FK506 respectively) which bind and inactivate the regulatory subunit of the calcium and calmodulin-dependent phosphatase, calcineurin. Rapamycin also complexes with FKBP12, but this drug-protein complex also binds to the TOR family of phosphatidylinositol kinases to inhibit translation and cell cycle progression. In each case, both the mechanism of drug action, and the drug targets themselves are highly conserved from yeast to humans.

The identification of *C. albicans* drug targets, and grouping the targets into essential-gene, fungal-specific, and pathogen-specific target sets provide the basis for the development of whole-cell screens for compounds that interact with and inhibit individual members of any of these targets. Therefore, similar analyses can be used to identify other sets of GRACE strains having modified allelic pairs of genes encoding drug targets with

other specific common functions or attributes. For example, GRACE strain subsets can be established which comprise gene targets that are highly homologous to human genes, or gene targets that display a common biochemical function, enzymatic activity, or that are involved in carbon compound catabolism, biosynthesis, transport of molecules (transporter activity), cellular localization, signal transduction cascades, cell cycle control, cell adhesion, transcription, translation, DNA replication, etc. An exemplary list of biochemical functions is provided in Section 5.4.3.

5.5.2.3 Target Gene Dosage-Based Whole Cell Assays

Experiments involving modulating the expression levels of the encoding
gene to reveal phenotypes from which gene function may be inferred can be carried out in a
pathogenic diploid fungus, such as Candida albicans, using the strains and methods of the
present intention. The principle of drug-target-level variation in drug screening involves
modulating the expression level of a drug target to identify specific drug resistance or drug
sensitivity phenotypes, thereby linking a drug target to a particular compound. Often, these
phenotypes are indicative of the target gene encoding the bona fide drug target of this
compound. In examples where this is not the case, the candidate target gene may
nonetheless provide important insight into the true target gene that is functioning either in a
pathway or process related to that inhibited by the compound (e.g. producing synthetic
phenotype), or instead functioning as a drug resistance mechanism associated with the
identified compound.

Variation of the expression levels of the target protein is also incorporated within both drug screening and drug target identification procedures. The total, cellular expression level of a gene product in a diploid organism is modified by disrupting one allele of the gene encoding that product, thereby reducing its functional activity in half, creating a "haploinsufficient" phenotype. A heterozygous S. cerevisiae strain collection has been used in such a haploinsufficiency screen to link drug-based resistance and hypersensitive phenotypes to heterozygous drug targets. Nonessential genes are screened directly using a haploid deletion strain collection against a compound library for specific phenotypes or "chemotypes." However, this procedure cannot be used in a haploid organism where the target gene is an essential one.

The expression level of a given gene product is also elevated by cloning the gene into a plasmid vector that is maintained at multiple copies in the cell. Overexpression of the encoding gene is also achieved by fusing the corresponding open reading frame of the gene product to a more powerful promoter carried on a multicopy plasmid. Using these strategies, a number of overexpression screens have been successfully employed in S.

cerevisiae to discover novel compounds that interact with characterized drug targets as well

as to identify the protein targets bound by existing therapeutic compounds.

The GRACE strain collection replaces the surrogate use of S. cerevisiae in whole cell drug screening by providing a dramatic range in gene expression levels for drug targets directly within the pathogen (Fig. 5). In one embodiment of the invention, this is achieved using the C. albicans-adapted tetracycline promoter system to construct GRACE strains. Northern Blot analysis of 30 different GRACE strains grown under nonrepressing conditions (i.e. no tetracycline) reveals that 83% of conditionally expressed genes tested maintain an overexpression level greater than or equal to 3 fold of wild type, and 60% of all genes examined express greater than or equal to 5 times that of the wild type C. albicans strain used for GRACE strain construction. As each GRACE strain is in fact heterozygous, this expression range is presumably doubled if compared against their respective heterozygote strain. For most GRACE strains then, this represents an elevated expression level rivaling that typically achieved in S. cerevisiae using standard 2\u03c4-based multicopy plasmids, and an absolute level of constitutive expression comparable to that provided by the CaACT1 promoter. Therefore, the GRACE strain collections of the invention are not 15 only useful in target validation under repressing conditions, but are also useful as a collection of strains overexpressing these same validated drug targets under nonrepressing conditions for whole cell assay development and drug screening.

Variation in the level of expression of a target gene product in a GRACE strain is also used to explore resistance to antimycotic compounds. Resistance to existing 20 antifungal therapeutic agents reflects both the limited number of antifungal drugs available and the alarming dependence and reliance clinicians have in prescribing them. For example, dependence on azole-based compounds such as fluconazole for the treatment of fungal infections, has dramatically undermined the clinical therapeutic value for this compound. The GRACE strain collection is used to combat fluconazole resistance by identifying gene 25 products that interact with the cellular target of fluconazole. Such products are used to identify drug targets which, when inactivated in concert with fluconazole, provide a synergistic effect and thereby overcome resistance to fluconazole seen when this compound is used alone. This is accomplished, for example, by using the GRACE strain collection to overexpress genes that enhance drug resistance. Such genes include novel or known plasma membrane exporters including ATP-binding cassette (ABC) transporters and multidrug resistance (MDR) efflux pumps, pleiotropic drug resistance (PDR) transcription factors, and protein kinases and phosphatases. Alternatively, genes specifically displaying a differential drug sensitivity are identified by screening GRACE strains expressing reduced levels (either by haploinsufficiency or threshold expression via the tetracycline promoter) 35 individual members of the target set. Identifying such genes provides important clues to drug resistance mechanisms that could be targeted for drug-based inactivation to enhance

the efficacy of existing antifungal therapeutics.

In another aspect of the present invention, overexpression of the target gene for whole cell assay purposes is supported with promoters other than the tetracycline promoter system. (see Section 5.3.1) For example, the CaPGK1 promoter is used to overexpress C. albicans drug targets genes. In S. cerevisiae, the PGK1 promoter is known to provide strong constitutive expression in the presence of glucose. See, Guthrie, C., and G. R. Fink. 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:373-398. A preliminary analysis of five C. albicans genes placed under the control of the CaPGK1 promoter (CaKRE9, CaERG11, CaALG7, CaTUB1 and CaAUR1) revealed dramatic overexpression versus wild type as judged by Northern blot analysis. The level of overexpression achieved for all genes exceeds that obtained by the tetracycline promoter by 3-4 fold. Moreover, CaAUR1, which was not overexpressed significantly when constitutively expressed using the tetracycline promoter, was overexpressed 5-fold relative to wild type CaAUR1 expression levels, suggesting that the CaPGK1 promoter is useful in overexpressing genes normally not overexpressed by the tetracycline promoter.

In another aspect of the present invention, intermediate expression levels of 15 individual drug targets within the GRACE strain collection may are engineered to provide strains tailored for the development of unique whole cell assays. In this embodiment of the invention, GRACE strains are grown in a medium containing a tetracycline concentration determined to provide only a partial repression of transcription. Under these conditions, it is possible to maintain an expression level between that of the constitutively expressed overproducing strain and that of wild type strain, as well as levels of expression lower than that of the wild-type strain. That is, it is possible to titrate the level of expression to the minimum required for cell viability. By repressing gene expression to this critical state, novel phenotypes, resembling those produced by a partial loss of function mutation (i.e. 25 phenocopies of hypomorphic mutants) may be produced and offer additional target expression levels applicable for whole cell assay development and drug screening. Repressing expression of the remaining allele of an essential gene to the threshold level required for viability, therefore will provide a strain with enhanced sensitivity toward compounds active against this essential gene product.

In order to demonstrate the utility of target level expression in whole cell assays for drug screening, both a CaHIS3 heterozygote strain and a tetracycline promoter-regulated CaHIS3 GRACE strain were compared against a wild type (diploid) CaHIS3 strain for sensitivity towards the 3-aminotriazole (3-AT) (Example 6.3). The data derived from these experiments clearly indicate that distinct levels of target gene products

35 synthesized within the pathogen could be directly applied in whole cell assay based drug screens to identify novel antifungal compounds active against novel drug targets validated

5.5.2.4 Uses of Tagged strains

In still another aspect of the present invention, unique oligonucleotide sequence tags or "bar codes" are incorporated into individual mutant strains included within a heterozygous strain collection of validated targets. The presence of these sequence tags enables an alternative whole cell assay approach to drug screening. Multiple target strains may be screened simultaneously in a mixed population (rather than separately) to identify phenotypes between a particular drug target and its inhibitory agent.

Large-scale parallel analyses are performed using mixed populations of the entire bar coded heterozygous essential strain collection target set and comparing the relative representation of individual strains within a mixed population prior to and after growth in the presence of a compound. Drug-dependent depletion or overrepresentation of a unique bar-coded strain is determined by PCR-amplifying and fluorescently labeling all bar codes within the mixed population and hybridizing the resulting PCR products to an array of complementary oligonucleotides. Differential representation between bar coded strains indicates gene-specific hypersensitivity or resistance and suggests the corresponding gene product may represent the molecular target of the compound tested.

In one specific embodiment, the mutant strains are GRACE strains, and each of the GRACE strains of the set comprises at least one, and preferably two unique molecular tags, which, generally, are incorporated within the cassette used to replace the first allele of the gene pair to be modified. Each molecular tag is flanked by primer sequences which are common to all members of the set being tested. Growth is carried out in repressive and non-repressive media, in the presence and absence of the compound to be tested. The relative growth of each strain is assessed by carrying out simultaneous PCR amplification of the entire collection of embedded sequence tags.

In one non-limiting aspect of the present invention, the PCR amplification is performed in an asymmetric manner with fluorescent primers and the resulting single stranded nucleic acid product hybridized to an oligonucleotide array fixed to a surface and comprises the entire corresponding set of complementary sequences. Analysis of the level of each fluorescent molecular tag sequence is then determined to estimate the relative amount of growth of GRACE strain of the set, in those media, in the presence and absence of the compound tested.

Therefore, for each GRACE strain of the set tested, there could be, in one non-limiting example of this method, four values for the level of the corresponding molecular tag found within the surviving population. They would correspond to cell growth under repressing and non-repressing conditions, both in the presence and absence of the

compound being tested. Comparison of growth in the presence and absence of the test compound provides a value or "indicator" for each set of growth media; that is, an indicator derived under repressing and non-repressing conditions. Again, comparison of the two indicator values will reveal if the test compound is active against the gene product expressed by the modified allelic gene pair carried by that specific member of the GRACE set tested.

In still another aspect of the present invention, each potential drug target gene in a heterozygous tagged or bar-coded collection, may be overexpressed. For example, in the heterozygous tagged or bar-coded collection described above, each of the potential target gene can be overexpressed by introducing either the Tet promoter or another strong, constitutively expressed promoter (e. g. CaACT1, CaADH1 and CaPGK1) upstream of the remaining non-disrupted allele. These constructions allow a further increase in the dosage of the encoded target gene product of individual essential genes to be used in mixed-population drug susceptibility studies. Although overexpression may itself disrupt the normal growth rate of numerous members of the population, reliable comparisons could still be made between mock and drug-treated mixed cultures to identify compound-specific growth differences.

In S. cerevisiae, the molecular drug targets of several well-characterized compounds including 3-amino-triazol, benomyl, tunicamycin and fluconazole were identified by a similar approach. In that study, bar-coded strains bearing heterozygous mutations in HIS3, TUB1, ALG7, and ERG11, (i.e. the respective drug targets to the compounds listed above) displayed significantly greater sensitivity when challenged with their respective compound than other heterozygote bar-coded strains when grown together in a mixed population.

In another aspect of the present invention, screens for antifungal compounds

25 can be carried out using complex mixtures of compounds that comprise at least one
compound active against the target strain. Tagging or bar-coding the GRACE strain
collection facilitates a number of large scale analyses necessary to identify gene sets as well
as evaluate and ultimately evaluate individual targets within particular gene sets. For
example, mixed-population drug screening using a bar-coded GRACE strain collection

30 effectively functions as a comprehensive whole cell assay. Minimal amounts of a complex
compound library are sufficient to identify compounds that act on individual essential target
genes within the collection. This is done without the need to array the collection. Also,
strong predictions as to the 'richness' of any particular compound library could be made
before committing to it in drug screening. It becomes possible then to assess whether, for
example, a carbohydrate-based chemical library possesses greater fungicidal activity than a
natural product or synthetic compound library. Particularly potent compounds within any

5

complex library of molecules can be immediately identified and evaluated according to the priority of targets and assays available for drug screening. Alternatively, the invention provides applying this information to developing "tailored" screens, in which only those targets which were demonstrated to be inactivated in mixed population experiments by a particular compound library would be included in subsequent array-formatted screens.

Traditionally, drug discovery programs have relied on an individual or a limited set of validated drug targets. The preceding examples emphasize that such an approach is no longer necessary and that high throughput target evaluation and drug screening are now possible. However, a directed approach based on selecting individual targets may still be preferred depending on the expertise, interest, strategy, or budget of a drug discovery program.

5.5.3 Target Evaluation in an Animal Model System.

Currently, validation of an essential drug target is demonstrated by examining the effect of gene inactivation under standard laboratory conditions. Putative drug target genes deemed nonessential under standard laboratory conditions may be examined within an animal model, for example, by testing the pathogenicity of a strain homozygous for a deletion in the target gene versus wild type. However, essential drug targets are precluded from animal model studies. Therefore, the most desirable drug targets are omitted from the most pertinent conditions to their target evaluation.

In one specific embodiment of the invention, conditional expression, provided by the GRACE essential strain collection, overcomes this longstanding limitation to target validation within a host environment. Animal studies can be performed using mice inoculated with GRACE essential strains and examining the effect of gene inactivation by conditional expression. In a preferred embodiment of the invention, the effect on mice 25 injected with a lethal inoculum of a GRACE essential strain could be determined depending on whether the mice were provided with an appropriate concentration of tetracycline to inactivate expression of a drug target gene. The lack of expression of a gene demonstrated to be essential under laboratory conditions can thus be correlated with prevention of a terminal C. albicans infection. In this type of experiment, only mice "treated" with tetracycline-supplemented water, are predicted to survive infection because inactivation of the target gene has killed the GRACE strain pathogen within the host.

In yet another embodiment of the invention, conditional expression could be achieved using a temperature-responsive promoter to regulate expression of the target gene or a temperature sensitive allele of a particular drug target, such that the gene is functional 35 at 30°C but inactivated within the normal body temperature of the mouse.

In the same manner as described above for essential genes, it is equally

126 NV2 - 1267788 1

feasible to demonstrate whether nonessential genes comprising the GRACE strain collection are required for pathogenicity in a mouse model system. Included in this set are multiple genes whose null phenotype results in a reduced growth rate and may attenuate the virulence of the pathogen. Many mutants demonstrating a slow growth phenotype may represent hypomorphic mutations in otherwise essential genes (as demonstrated by alternative methods) which are simply not completely inactivated by the conditional expression method used to construct the GRACE strain. One important use of such strains is to assess whether any given essential gene doubly functions in the process of virulence. Essential genes that display substantially reduced virulence and growth rate when only partially inactivated represent "multifactorial" drug targets for which even minimally inhibitory high specificity compounds would display therapeutic value. Collectively, all GRACE strains that fail to cause fungal infection in mice under conditions of gene inactivation by tetracycline (or alternative gene inactivation means) define a subset of genes that are required for pathogenicity, i.e., GRACE pathogenicity subset. More defined subsets of pathogenicity genes, for example those genes required for particular steps in pathogenesis 15 (e.g. adherence or invasion) may be determined by applying the GRACE pathogenicity subset of strains to in vitro assays which measure the corresponding process. For example, examining GRACE pathogenicity strains in a buccal adhesion or macrophage assay by conditional expression of individual genes would identify those pathogenicity factors required for adherence or cell invasion respectively.

The GRACE strain collection or a desired subset thereof is also well suited 20 for evaluating acquired resistance/suppression or distinguishing between fungicidal/fungistatic phenotypes for an inactivated drug target within an animal model system. In this embodiment of the invention, GRACE strains repressed for expression of different essential drug target genes would be inoculated into mice raised on tetracycline-supplemented water. Each of the GRACE strains would then be compared according to the frequency of death associated with the different mice populations they infected. It is expected that the majority of infected mice will remain healthy due to fungal cell death caused by tetracycline-dependent inactivation of the essential gene in the GRACE strain. However, a GRACE strain harboring a drug target more likely to develop extragenic suppressors because it is a fungistatic target rather than fungicidal one, or suppressed by an alternative physiological process active within a host environment, can be identified by the higher incidence of lethal infections detected in mice infected with this particular strain. By this method, it is possible to evaluate/rank the likelihood that individual drug target genes may develop resistance within the host environment.

Although a GRACE strain is highly suited for this purpose, it is also 35 contemplated that a strain with a modified allele of an essential gene or a modified essential

35

5

gene is used in an animal model for drug target evaluation.

5.5.4 Rational Design of Binding Compounds

Compounds identified via assays such as those described herein can be useful, for example, for inhibiting the growth of the infectious agent and/or ameliorating the symptoms of an infection. Compounds can include, but are not limited to, other cellular proteins. Binding compounds can also include, but are not limited to, peptides such as, for example, soluble peptides, comprising, for example, extracellular portions of target gene product transmembrane receptors, and members of random peptide libraries (see, e.g., Lam et al., 1991, Nature 354:82-84; Houghten et al., 1991, Nature 354:84-86) made of D-and/or L-configuration amino acids, rationally-designed antipeptide peptides, (see e.g., Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides. A User's Guide, W.H. Freeman, NY (1992), pp. 289-307), antibodies (including, but not limited to polyclonal, monoclonal, human, humanized, anti-idiotypic, chimeric or single chain antibodies, and FAb, F(ab'), and FAb expression library fragments, and epitope-binding fragments thereof), and small organic or inorganic molecules. In the case of receptor-type target molecules, such compounds can include organic molecules (e.g., peptidomimetics) that bind to the ECD and either mimic the activity triggered by the natural ligand (i.e., agonists); as well as peptides, antibodies or fragments thereof, and other organic compounds that mimic the ECD (or a portion thereof) and bind to a "neutralize" natural ligand.

Computer modeling and searching technologies permit identification of compounds, or the improvement of already identified compounds, that can modulate target gene expression or activity. Having identified such a compound or composition, the active sites or regions are preferably identified. In the case of compounds affecting receptor molecules, such active sites might typically be ligand binding sites, such as the interaction 25 domains of ligand with receptor itself. The active site is identified using methods known in the art including, for example, from the amino acid sequences of peptides, from the nucleotide sequences of nucleic acids, or from study of complexes of the relevant compound or composition with its natural ligand. In the latter case, chemical or X-ray crystallographic methods are used to find the active site by finding where on the factor the complexed ligand is found.

The three-dimensional geometric structure of the active site is then preferably determined. This is done by known methods, including X-ray crystallography, which determines a complete molecular structure. Solid or liquid phase NMR is also used to determine certain intra-molecular distances within the active site and/or in the ligand binding complex. Other experimental methods of structure determination known to those of skill in the art, are also used to obtain partial or complete geometric structures. The

geometric structures are measured with a complexed ligand, natural or artificial, which increases the accuracy of the active site structure determined. Methods of computer based numerical modeling are used to complete the structure (e.g., in embodiments wherein an incomplete or insufficiently accurate structure is determined) or to improve its accuracy.

Finally, having determined the structure of the active site, either experimentally, by modeling, or by a combination, candidate modulating compounds are identified by searching databases containing compounds along with information on their molecular structure. Such a search seeks compounds having structures that match the determined active site structure and that interact with the groups defining the active site. Such a search can be manual, but is preferably computer assisted. These compounds found from this search are potential target or pathway gene product modulating compounds.

Alternatively, these methods are used to identify improved modulating compounds from an already known modulating compound or ligand. The composition of the known compound is modified and the structural effects of modification are determined using the experimental and computer modeling methods described above applied to the new composition. The altered structure is then compared to the active site structure of the compound to determine if an improved fit or interaction results. In this manner systematic variations in composition, such as by varying side groups, are quickly evaluated to obtain modified modulating compounds or ligands of improved specificity or activity.

Further experimental and computer modeling methods useful to identify modulating compounds based upon identification of the active sites of target or pathway gene or gene products and related transduction and transcription factors are apparent to those of skill in the art.

There are a number of articles that review the art of computer modeling of drugs that interact with specific proteins, including the following: Rotivinen et al., 1988,

Acta Pharmaceutical Fennica 97:159-166; Ripka, (June 16, 1988), New Scientist 54-57;

McKinaly and Rossmann, 1989, Annu. Rev. Pharmacol. Toxiciol. 29:111-122; Perry and Davies, OSAR: Quantitative Structure-Activity Relationships in Drug Design pp. 189-193 (Alan R. Liss, Inc. 1989); Lewis and Dean, 1989 Proc. R. Soc. Lond. 236:125-140 and 1-162; and, with respect to a model receptor for nucleic acid components, Askew et al., 1989,

J. Am. Chem. Soc. 111:1082-1090.

Although generally described above with reference to design and generation of compounds which could alter binding, one could also screen libraries of known compounds, including natural products or synthetic chemicals, as well as other biologically active materials, including proteins, for compounds which are inhibitors or activators.

5.6 Transcriptional Profiling

5.6.1 Analysis of Gene Expression

Gene expression profiling techniques are important tools for the identification of suitable biochemical targets, as well as for the determination of the mode of action of known compounds. Completion of the *C. albicans* genome sequence and development of nucleic acid microarrays incorporating this information, will enable genome-wide gene expression analyses to be carried out with this diploid pathogenic fungus. Therefore, the present invention provides methods for obtaining the transcriptional response profiles for both essential and virulence/pathogenicity genes of *Candida albicans*. Conditional expression of essential genes serves to delineate, for example, regulatory interactions valuable for the design of drug screening programs focused upon *C. albicans*.

In an embodiment of the present invention, a strain or a strain collection wherein the expression of an essential gene identified by the method of the invention is modified can be used for the analysis of expression of essential genes within this pathogen. In one specific embodiment, a GRACE strain collection is used. One particularly powerful application of such a strain collection involves the construction of a comprehensive transcriptional profile database for the entire essential gene set or a desired subset of essential genes within a pathogen. Such a database is used to compare the response profile characteristic of lead antimycotic compounds with the profile obtained with new anti-fungal compounds to distinguish those with similar from those with distinct modes of action.

Matching (or even partially overlapping) the transcriptional response profiles determined after treatment of the strain with the lead compound with that obtained with a particular essential target gene under repressing conditions, is used to identity the target and possible mode of action of the drug.

Gene expression analysis of essential genes also permits the biological function and regulation of those genes to be examined within the pathogen, and this information is incorporated within a drug screening program. For example, transcriptional profiling of essential drug targets in *C. albicans* permits the identification of novel drug targets which participate in the same cellular process or pathway uncovered for the existing drug target and which could not otherwise be identified without direct experimentation within the pathogen. These include genes not only unique to the pathogen but also broadrange gene classes possessing a distinct function or subject to different regulation in the pathogen. Furthermore, pathogen-specific pathways may be uncovered and exploited for the first time.

35 In another aspect of the present invention, the gene expression profile of mutant strains, such as GRACE-derived strains, under nonrepressing or induced conditions

is established to evaluate the overexpression response profile for one or more drug targets. For example, overexpression of genes functioning in signal transduction pathways often display unregulated activation of the pathway under such conditions. Moreover, several signaling pathways have been demonstrated to function in the pathogenesis process. Transcriptional response profiles generated by overexpressing C. albicans GRACE strains provide information concerning the set of genes regulated by such pathways; any of which may potentially serve an essential role in pathogenesis and therefore representing promising drug targets. Furthermore, analysis of the expression profile may reveal one or more genes whose expression is critical to the subsequent expression of an entire regulatory cascade. Accordingly, these genes are particularly important targets for drug discovery and mutants carrying the corresponding modified allelic pair of genes form the basis of a mechanism-of-action based screening assays. Presently such an approach is not possible. Current drug discovery practices result in an exceedingly large number of "candidate" compounds and little understanding of their mode of action. A transcriptional response database comprising both gene shut-off and overexpression profiles generated using the GRACE strain collection offers a solution to this drug discovery bottleneck by 1) determining the transcriptional response or profile resulting from an antifungal's inhibition of a wild type strain, and 2) comparing this response to the transcriptional profiles resulting from inactivation or overexpression of drug targets comprising the GRACE strain collection

20 Matching or significantly correlating transcriptional profiles resulting from both genetic alteration of a drug target and chemical/compound inhibition of wild type cells provides evidence linking the compound to its cellular drug target and suggests its mechanism of action

Accordingly, the invention provides a method for evaluating a compound
against a target gene product encoded by a nucleotide sequence comprising one of SEQ ID
NO: 6001 through to 6932, said method comprising the steps of (a) contacting wild type
diploid fungal cells or control cells with the compound and generating a first transcription
profile; (b) determining the transcription profile of mutant diploid fungal cells, such as a
GRACE strain, which have been cultured under conditions wherein the second allele of the
target gene is substantially underexpressed, not expressed or overexpressed and generating a
second transcription profile for the cultured cells; and comparing the first transcription
profile with the second transcription profile to identify similarities in the profiles. For
comparisons, similarities of profiles can be expressed as an indicator value; and the higher
the indicator value, the more desirable is the compound.

5.6.2 Identification of Secondary Targets

Methods are described herein for the identification of secondary targets.

"Secondary target," as used herein, refers to a gene whose gene product exhibits the ability to interact with target gene products involved in the growth and/or survival of an organism (i.e., target essential gene products), under a set of defined conditions, or in the pathogenic mechanism of the organism, (i.e., target virulence gene products) during infection of a host.

Any method suitable for detecting protein-protein interactions can be employed for identifying secondary target gene products by identifying interactions between gene products and target gene products. Such known gene products can be cellular or extracellular proteins. Those gene products which interact with such known gene products represent secondary target gene products and the genes which encode them represent secondary targets.

Among the traditional methods employed are co-immunoprecipitation, crosslinking and co-purification through gradients or chromatographic columns. Utilizing procedures such as these allows for the identification of secondary target gene products.

Once identified, a secondary target gene product is used, in conjunction with standard techniques, to identify its corresponding secondary target. For example, at least a portion of the amino acid sequence of the secondary target gene product is ascertained using techniques well known to those of skill in the art, such as via the Edman degradation technique (see, e.g., Creighton, 1983, "Proteins: Structures and Molecular Principles,"

W.H. Freeman & Co., N.Y., pp.34-49). The amino acid sequence obtained can be used as a guide for the generation of oligonucleotide mixtures that can be used to screen for secondary target gene sequences. Screening can be accomplished, for example, by standard hybridization or PCR techniques. Techniques for the generation of oligonucleotide mixtures and for screening are well-known. (See, e.g., Ausubel, supra., and PCR Protocols:

A Guide to Methods and Applications, 1990, Innis, M. et al., eds. Academic Press, Inc., New York).

Additionally, methods are employed which result in the simultaneous identification of secondary targets which encode proteins interacting with a protein involved in the growth and/or survival of an organism under a set of defined conditions, or in the pathogenic mechanism of the organism during infection of a host. These methods include, for example, probing expression libraries with labeled primary target gene protein known or suggested to be involved in or critical to these mechanisms, using this protein in a manner similar to the well known technique of antibody probing of \$\lambda gt11\$ phage libraries.

One method which detects protein interactions in vivo, the two-hybrid

system, is described in detail for illustration purposes only and not by way of limitation.

One version of this system has been described (Chien et al., 1991, Proc. Natl. Acad. Sci.

USA, 88:9578-9582) and is commercially available from Clontech (Palo Alto, CA).

Briefly, utilizing such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to a known protein, in this case, a protein known to be involved in growth of the organism, or in pathogenicity, and the other consists of the activator protein's activation domain fused to an unknown protein that is encoded by a cDNA which has been recombined into this plasmid as part of a cDNA library. The plasmids are transformed into a strain of the yeast S. cerevisiae that contains a reporter gene (e.g., <u>lacZ</u>) whose regulatory region contains the transcription activator's binding sites. Either hybrid protein alone cannot activate transcription of the reporter gene, the DNA-binding domain hybrid cannot because it does not provide activation function, and the activation domain hybrid cannot because it cannot localize to the activator's binding sites. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product.

The two-hybrid system or related methodology is used to screen activation
domain libraries for proteins that interact with a known "bait" gene product. By way of
example, and not by way of limitation, target essential gene products and target virulence
gene products are used as the bait gene products. Total genomic or cDNA sequences
encoding the target essential gene product, target virulence gene product, or portions
thereof, are fused to the DNA encoding an activation domain. This library and a plasmid
encoding a hybrid of the bait gene product fused to the DNA-binding domain are
cotransformed into a yeast reporter strain, and the resulting transformants are screened for
those that express the reporter gene. For example, and not by way of limitation, the bait
gene is cloned into a vector such that it is translationally fused to the DNA encoding the
DNA-binding domain of the GAL4 protein. These colonies are purified and the library
plasmids responsible for reporter gene expression are isolated. DNA sequencing is then
used to identify the proteins encoded by the library plasmids.

A cDNA library of the cell line from which proteins that interact with bait gene product are to be detected is made using methods routinely practiced in the art.

According to the particular system described herein, for example, the cDNA fragments are inserted into a vector such that they are translationally fused to the activation domain of GAL4. This library is co-transformed along with the bait gene-GAL4 fusion plasmid into a yeast strain which contains a lacZ gene driven by a promoter which contains GAL4 activation sequence. A cDNA encoded protein, fused to GAL4 activation domain, that interacts with bait gene product reconstitutes an active GAL4 protein and thereby drive expression of the lacZ gene. Colonies which express lacZ are detected by their blue color in the presence of X-gal. The cDNA can then be purified from these strains, and used to

25

5

produce and isolate the bait gene-interacting protein using techniques routinely practiced in the art.

Once a secondary target has been identified and isolated, it is further characterized and used in drug discovery by the methods of the invention.

5.6.3 Use of Gene Expression Arrays

To carry out profiling, gene expression arrays and microarrays can be employed. Gene expression arrays are high density arrays of DNA samples deposited at specific locations on a glass surface, silicon, nylon membrane, or the like. Such arrays are used by researchers to quantify relative gene expression under different conditions. An example of this technology is found in U.S. Patent No. 5,807,522, which is hereby incorporated by reference.

It is possible to study the expression of substantially all of the genes in the genome of a particular microbial organism using a single array. For example, the arrays may consist of 12 x 24 cm nylon filters containing PCR products corresponding to ORFs from *Candida albicans*. An appropriate amount of each PCR product (e.g., 10 ng) are spotted every 1.5 mm on the filter. Single stranded labeled cDNAs are prepared for hybridization to the array and placed in contact with the filter. In an embodiment, no second strand synthesis or amplification step is done, and thus the labeled cDNAs are of "antisense" orientation. Quantitative analysis is done using a phosphorimager.

In one embodiment, PCR products of essential genes can be generated using pairs of oligonucleotide primers of the invention, i.e., SEQ ID NO: 4001 to 4932, and SEQ ID NO: 5001 to 5932. Ten ngs of each PCR product are spotted every 1.5 mm on the filter. Each PCR product comprises a nucleotide sequence selected from the group of nucleotide sequences consisting of SEQ ID NO: 6001 to 6932.

Hybridization of cDNA made from a sample of total cell mRNA to such an array followed by detection of binding by one or more of various techniques known to those in the art provides a signal at each location on the array to which cDNA hybridized. The intensity of the hybridization signal obtained at each location in the array thus reflects the amount of mRNA for that specific gene that was present in the sample. Comparing the results obtained for mRNA isolated from cells grown under different conditions thus allows for a comparison of the relative amount of expression of each individual gene during growth under the different conditions.

Gene expression arrays are used to analyze the total mRNA expression
pattern at various time points after reduction in the level or activity of a gene product
required for fungal proliferation, virulence or pathogenicity. Reduction of the level or
activity of the gene product is accomplished by growing a GRACE strain under conditions

in which the product of the nucleic acid linked to the regulatable promoter is rate limiting for fungal growth, survival, proliferation, virulence or pathogenicity or by contacting the cells with an agent which reduces the level or activity of the target gene product. Analysis of the expression pattern indicated by hybridization to the array provides information on other genes whose expression is influenced by reduction in the level or activity of the gene product. For example, levels of other mRNAs may be observed to increase, decrease or stay the same following reduction in the level or activity of the gene product required for growth, survival, proliferation, virulence or pathogenicity. Thus, the mRNA expression pattern observed following reduction in the level or activity of a gene product required for growth, survival, proliferation, virulence or pathogenicity identifies other nucleic acids required for 10 growth, survival, proliferation, virulence or pathogenicity. In addition, the mRNA expression patterns observed when the fungi are exposed to candidate drug compounds or known antibiotics are compared to those observed when the level or activity of a gene product required for fungal growth, survival, proliferation, virulence or pathogenicity is reduced. If the mRNA expression pattern observed with the candidate drug compound is similar to that observed when the level of the gene product is reduced, the drug compound is a promising therapeutic candidate. Thus, the assay is useful in assisting in the selection of promising candidate drug compounds for use in drug development.

In cases where the source of nucleic acid deposited on the array and the source of the nucleic acid being hybridized to the array are from two different microorganisms, gene expression identify homologous genes in the two microorganisms.

5.7 Proteomics Assays

In another embodiment of the present invention, and in much the same way that a mutant strain collection (e.g., GRACE strain collection) enables transcriptional profiling within a pathogen, a mutant strain collection provides an invaluable resource for the analysis of the expressed protein complement of a genome. By evaluating the overall protein expression by members of a mutant strain collection under repressing and non-repressing growth conditions, a correlation between the pattern of protein expression of a cell can be made with the non-expression or the level of expression of an essential gene.

Accordingly, the invention provides a pattern of expression of a set of proteins in a mutant strain as determined by methods well known in the art for establishing a protein expression pattern, such as but not limited to two-dimensional gel electrophoresis. The set of proteins comprises proteins comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NO: 7000 to 7932. A plurality of protein sexpression patterns will be generated for a mutant strain when the strain is cultured under different conditions and different levels of expression of one of the modified allele. A

preferred mutant strain collection is a GRACE strain collection.

In yet another embodiment, defined genetic mutations can be constructed to create strains exhibiting protein expression profiles comparable to those observed upon treatment of the strain with a previously uncharacterized compound. In this way, it is possible to distinguish between antimycotic compounds that act on multiple targets in a complicated manner from other potential lead compounds that act on unique fungal-specific targets and whose mode of action can be determined.

Evaluation of the full complement of proteins expressed within a cell depends upon definitive identification of all protein species detectable on two-dimensional polyacrylamide gels or by other separation techniques. However, a significant fraction of these proteins are of lower abundance and fall below the threshold level required for positive identification by peptide sequencing or mass spectrometry. Nevertheless, these "orphan" proteins are detectable using an analysis of protein expression by individual mutant strain (GRACE strains). Conditional expression of low abundance gene products facilitates their positive identification by comparing protein profiles of mutant strains (GRACE strains) under repressing versus nonrepressing or overexpression conditions. In some cases, a more complex protein profile results because of changes of steady state levels for multiple proteins, which is caused indirectly by manipulating the low abundance gene in question. Overexpression of individual targets within the GRACE strain collection can also directly aid orphan protein identification by providing sufficient material for peptide

In various embodiments, the present invention provides a method of quantitative analysis of the expressed protein complement of a diploid pathogenic fungal cell: a first protein expression profile is developed for a control diploid pathogenic fungus, which has two, unmodified alleles for the target gene. Mutants of the control strain, in which one allele of the target gene is inactivated, for example, in a GRACE strain, by insertion by or replacement with a disruption cassette, is generated. The other allele is modified such that expression of that second allele is under the control of a heterologous regulated promoter. A second protein expression profile is developed for this mutant fungus, under conditions where the second allele is substantially overexpressed as compared to the expression of the two alleles of the gene in the control strain. Similarly, if desired, a third protein expression profile is developed, under conditions where the second allele is substantially underexpressed as compared to the expression of the two alleles of the gene in the control strain. The first protein expression profile is then compared with the second expression profile, and if applicable, a third protein expression profile to identify an expressed protein detected at a higher level in the second profile, and if applicable, at a lower level in the third profile, as compared to the level in first profile.

Accordingly, the invention provides a method for evaluating a compound against a target gene product encoded by a nucleotide sequence comprising one of SEQ ID NO: 6001 through to 6932, said method comprising the steps of (a) contacting wild type diploid fungal cells or control cells with the compound and generating a first protein expression profile; (b) determining the protein expression profile of mutant diploid fungal cells, such as a GRACE strain, which have been cultured under conditions wherein the second allele of the target gene is substantially underexpressed, not expressed or overexpressed and generating a second protein expression profile for the cultured cells; and comparing the first protein expression profile with the second protein expression profile to identify similarities in the profiles. For comparisons, similarities of profiles can be expressed as an indicator value; and the higher the indicator value, the more desirable is the compound.

5.8 Pharmaceutical Compositions And Uses Thereof

Compounds including nucleic acid molecules that are identified by the methods of the invention as described herein can be administered to a subject at therapeutically effective doses to treat or prevent infections by a pathogenic organism, such as Candida albicans. Depending on the target, the compounds may also be useful for treatment of a non-infectious disease in a subject, such as but not limited to, cancer. A therapeutically effective dose refers to that amount of a compound (including nucleic acid molecules) sufficient to result in a healthful benefit in the treated subject. Typically, but not so limited, the compounds act by reducing the activity or level of a gene product encoded by a nucleic acid comprising a sequence selected from the group consisting of SEQ ID NO: 6001 through to 6932. The subject to be treated can be a plant, a vertebrate, a mammal, an avian, or a human. These compounds can also be used for preventing or containing contamination of an object by Candida albicans, or used for preventing or inhibiting formation on a surface of a biofilm comprising Candida albicans. Biofilm comprising C albicans are found on surfaces of medical devices, such as but not limited to surgical tools, implanted devices, catheters and stents.

5.8.1 Effective Dose

Toxicity and therapeutic efficacy of compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD_{50}/ED_{50} .

Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC_{50} (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography. A useful dosage can range from 0.001 mg/kg body weight to 10 mg/kg body weight.

5.8.2 Formulations and Use

Pharmaceutical compositions for use in accordance with the present invention can be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

Thus, the compounds and their physiologically acceptable salts and solvents can be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions can take the form
of, for example, tablets or capsules prepared by conventional means with pharmaceutically
acceptable excipients such as binding agents (e.g., pregelatinised maize starch,
polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose,
microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium
stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or
wetting agents (e.g., sodium lauryl sulphate). The tablets can be coated by methods well
known in the art. Liquid preparations for oral administration can take the form of, for
example, solutions, syrups or suspensions, or they can be presented as a dry product for
constitution with water or other suitable vehicle before use. Such liquid preparations can be
prepared by conventional means with pharmaceutically acceptable additives such as
suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats);
emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily

10

30

35

esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration can be suitably formulated to give controlled release of the active compound.

For buccal administration the compositions can take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds can be formulated for parenteral administration (i.e., intravenous or intramuscular) by injection, via, for example, bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds can also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

6. EXAMPLES

6.1 Construction of a GRACE strain containing modified alleles of CaKRE9

Oligonucleotide primers for PCR amplification of the SAT selectable marker

139 NY2 - 1267788 I

used in Step 1 (i.e. gene replacement) contain 25 nucleotides complementary to the SAT disruption cassette in pRC18-ASP, and 65 nucleotides homologous to regions flanking the CaKRE9 open reading frame. Figure 2 illustrates the 2.2 kb cakre9Δ::SAT disruption fragment produced after PCR amplification and resulting gene replacement of the first wild type CaKRE9 allele via homologous recombination following transformation. PCR conditions were as follows: 5-50 ng pRC18-ASP, 100 pmol of each primer, 200 μM dNTPs, 10 mM Tris- pH 8.3, 1.5 mM MgCl2, 50 mM KCl, 1 unit Taq DNA polymerase (Gibco). PCR amplification times were: 5 min 94°C, 1 min 54°C, 2 min 72°C, for 1 cycle; 45 sec 94°C, 45 sec 54°C, 2 min 72°C, for 30 cycles. Transformation was performed using the lithium acetate method adapted for C. albicans, by Braun and Johnson, (Braun, B. R., and A. D. Johnson (1997), Control of filament formation in Candida albicans by the transcriptional repressor TUP1, Science 277:105-109), with minor modifications, including shorter incubation times at 30°C and 42°C (1 hr and 5 min respectively) and a greater amount of material transformed (50 μg of ethanol-precipitated cakre9Δ::SAT PCR product).

amount of material transformed (50 μg of ethanol-precipitated *cakre9Δ::SAT PCR* product).

Transformed cells were spread onto YPD plates and incubated overnight at 30°C, providing
a preincubation period for expression of SAT prior to replica plating onto YPD medium
containing streptothricin (400μg/ml). Streptothricin-resistant colonies were detected after 36
hr and *cakre9Δ::SAT/CaKRE9* heterozygotes identified by PCR analysis using suitable
primers which amplify both *CaKRE9* and *cakre9Δ::SAT* alleles.

Oligonucleotide primers for PCR amplification of the conditional promoter

20 used in Step 2 (i.e. promoter replacement) contain 25 nucleotides complementary to the CaHIS3-marked tetracycline regulated promoter cassette in pBSK-HT4 and 65 nucleotides of homologous sequence corresponding to promoter regions -270 to -205, relative to the point of transcription initiation, and nucleotides 1-65 of the CaKRE9 open reading frame. The resulting 2.2 kb PCR product was transformed into the cakre9A::SAT/CaKRE9
 25 heterozygous strain produced in step 1, and His* transformants selected on YNB agar. Bonafide CaKRE9 GRACE strains containing both a cakre9A::SAT allele and CaHIS3-Tet-CaKRE9 allele were determined by PCR analysis. Typically, 2 independent GRACE strains are constructed and evaluated to provide a reliable determination of the terminal phenotype of any given drug target. Terminal phenotype is that phenotype caused by the absence of

30 the gene product of an essential gene

6.2 Phenotype determination of the CaKRE9 Grace strain

The terminal phenotype of the resulting GRACE strains was evaluated in three independent methods. In the first, rapid determination of the *CaKRE9* GRACE strain ³⁵ terminal phenotype was achieved by streaking approximately 1.0 X 10⁶ cells onto both a

20 repressing conditions.

YNB plate and YNB plate containing 100µg/ml tetracycline and comparing growth rate after 48 hr at room temperature. For essential genes, such as CaKRE9, no significant growth is detected in the presence of tetracycline. In the second approach, the essential nature of a gene may be determined by streaking CaKRE9 GRACE cells onto a casamino acid plate containing 625 µg/ml 5-fluroorotic acid (5FOA) and 100 µg/ml uridine to select for ura cells which have excised (via recombination between CaLEU2 sequence duplications created during targeted integration) the transactivator gene that is normally required for expression of the tetracycline promoter-regulated target gene. Again, whereas nonessential GRACE strains demonstrate robust growth under such conditions, essential GRACE strains fail to grow. Quantitative evaluation of the terminal phenotype associated with an essential 10 GRACE strain is performed using 2 x 10³ cells/ml of overnight culture inoculated into 5.0 ml YNB either lacking or supplemented with 100 µg/ml tetracycline and measuring optical density (O.D. 600) after 24 and 48 hr incubation at 30°C. Typically, for essential GRACE strains, no significant increase in optical density is detected after 48 hrs. Discrimination between cell death (cidal) and growth inhibitory (static) terminal phenotypes for a 15 demonstrated essential gene is achieved by determining the percentage of viable cells (as judged by the number of colony forming units (CFU) from an equivalent of 2 x 10³ washed cells at T=0) from the above tetracycline-treated cultures after 24 and 48 hours of incubation. Essential GRACE strains producing a cidal terminal phenotype are those which display a reduction in percent viable cells (i.e. < 2 x 10³ CFU) following incubation under

6.3 Target Level Variation in Whole Cell Assays

In order to demonstrate the utility of target level expression in whole cell assays for drug screening, both a *CaHIS3* heterozygote strain and a tetracycline

25 promoter-regulated *CaHIS3* GRACE strain were compared against a wild type (diploid) *CaHIS3* strain for sensitivity towards the 3-aminotriazole (3-AT) (Fig.6). 3-AT is a competitive inhibitor of the enzyme encoded by CaHIS3, imidazoleglycerol phosphate dehydratase, and together serve as a model for a drug and drug target respectively.

Overexpression, achieved by the constitutive expression level of *CaHIS3* maintained by the tetracycline promoter, confers 3-AT resistance at concentrations sufficient to completely inhibit growth of both wild type and *CaHIS3* heterozygote strains (Fig 6A). The phenotype observed is consistent with that expected in light of the predicted 7.5 fold overexpression of *CaHIS3* determined by Northern bolt analysis (see Fig 5). A heterozygous *CaHIS3* strain demonstrates enhanced sensitivity (i.e. haploinsufficient phenotype) to an intermediate

3 3-AT concentration mable to effect either wild type or tetracycline promoter-based

overproducing CaHIS3 strains noticeably (Fig 6B). A third CaHIS3 expression level

20

evaluated for differential sensitivity to 3-AT was produced by partial repression of the GRACE *CaHIS3* strain using a threshold concentration of tetracycline 0.1% that normally is used to achieve complete shut-off.

This level of CaHIS3 expression represents the minimum expression level required for viability and as predicted, demonstrates an enhanced drug sensitivity relative the heterozygous CaHIS3 strain at an intermediate 3-AT concentration (Fig 6C). Similarly, GRACE strain-specific drug resistance and sensitivity phenotypes to fluconazole and tunicamycin have been demonstrated by increasing and decreasing the level of expression of their respective known drug targets, CaERG11 and CaALG7. Together these results demonstrate that three different levels of expression are achieved using the C. albicans GRACE strain collection, and that they exhibit the predicted drug sensitivity phenotypes between known drugs and their known drug target. Moreover, these experiments clearly indicate how distinct levels of target gene products synthesized within the pathogen could be directly applied in whole cell assay based drug screens to identify novel antifungal compounds against those novel drug targets validated using the GRACE method.

6.4 Identification of a Target Pathway

A target pathway is a genetic or biochemical pathway wherein one or more of the components of the pathway (e.g., enzymes, signaling molecules, etc) is a drug target as determined by the methods of the invention.

6.4.1. Preparation of Stocks of GRACE Strains for Assay

To provide a consistent source of cells to screen, frozen stocks of host GRACE strains are prepared using standard microbiological techniques. For example, a single clone of the microorganism can be isolated by streaking out a sample of the original stock onto an agar plate containing nutrients for cell growth and an antibiotic for which the GRACE strain contains a gene which confers resistance. After overnight growth an isolated colony is picked from the plate with a sterile needle and transferred to an appropriate liquid growth medium containing the antibiotic to which the GRACE strain is resistant. The cells are incubated under appropriate growth conditions to yield a culture in exponential growth.

6.4.2. Growth of GRACE Strains for Use in the Assay

Prior to performing an assay, a stock vial is removed from the freezer,
rapidly thawed and a loop of culture is streaked out on an agar plate containing nutrients for
cell growth and an antibiotic for which the GRACE strain contains a gene which confers
resistance. After overnight growth, randomly chosen, isolated colonies are transferred from

2.5

the plate (sterile inoculum loop) to a sterile tube containing medium containing the antibiotic to which the GRACE strain contains a gene which confers resistance. After vigorous mixing to form a homogeneous cell suspension, the optical density of the suspension is measured and if necessary an aliquot of the suspension is diluted into a second tube of medium plus antibiotic. The culture is then incubated until the cells reach an optical density suitable for use in the assay.

6.4.3. Selection of Medium to be Used in Assay

Two-fold dilution series of the inducer or repressor for the regulatable promoter which is linked to the gene required for the fungal proliferation, virulence or pathogenicity of the GRACE strain are generated in culture medium containing the appropriate antibiotic for which the GRACE strain contains a gene which confers resistance. Several medium are tested side by side and three to four wells are used to evaluate the effects of the inducer or repressor at each concentration in each media. Equal volumes of test media-inducer or repressor and GRACE cells are added to the wells of a 384 well microtiter plate and mixed. The cells are prepared as described above and diluted in the appropriate medium containing the test antibiotic immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells of each medium that do not contain inducer or repressor. Cell growth is monitored continuously by incubation by monitoring the optical density of the wells. The percent inhibition of growth produced by each concentration of inducer or repressor is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without inducer or repressor. The medium yielding greatest sensitivity to inducer or repressor is selected for use in the assays described below.

6.4.4. Measurement of Test Antibiotic Sensitivity in GRACE Strains in which the Level of the Target Gene Product is not Rate Limiting

Two-fold dilution series of antibiotics of known mechanism of action are generated in the culture medium selected for further assay development that has been supplemented with the antibiotic used to maintain the GRACE strain. A panel of test antibiotics known to act on different pathways is tested side by side with three to four wells being used to evaluate the effect of a test antibiotic on cell growth at each concentration.

Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for assay development supplemented with the antibiotic required to maintain the GRACE strain and are diluted in identical medium immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells that lack antibiotic, but contain the

10

solvent used to dissolve the antibiotics. Cell growth is monitored continuously by incubation in a microtiter plate reader monitoring the optical density of the wells. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A plot of percent inhibition against log [antibiotic concentration] allows extrapolation of an IC50 value for each antibiotic.

6.4.5. Measurement of Test Antibiotic Sensitivity in the GRACE Strains in which the Level of the Target Gene Product is Rate Limiting

The culture medium selected for use in the assay is supplemented with inducer or repressor at concentrations shown to inhibit cell growth by a desired amount as described above, as well as the antibiotic used to maintain the GRACE strain. Two fold dilution series of the panel of test antibiotics used above are generated in each of these media. Several antibiotics are tested side by side in each medium with three to four wells being used to evaluate the effects of an antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for use in the assay supplemented with the antibiotic required to maintain the GRACE strain. The cells are diluted 1:100 into two aliquots of identical medium containing concentrations of inducer that have been shown to inhibit cell growth by the desired amount and incubated under appropriate growth conditions. Immediately prior to addition to the microtiter plate wells, the cultures are adjusted to an appropriate optical density by dilution into warm sterile medium supplemented with identical concentrations of the inducer and antibiotic used to maintain the GRACE strain. For a control, cells are also added to several wells that 25 contain solvent used to dissolve test antibiotics but which contain no antibiotic. Cell growth is monitored continuously by incubation under suitable growth conditions in a microtiter plate reader monitoring the optical density of the wells. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A 30 plot of percent inhibition against log [antibiotic concentration] allows extrapolation of an IC₅₀ value for each antibiotic.

6.4.6. Determining the Specificity of the Test Antibiotics

A comparison of the IC₅₀s generated by antibiotics of known mechanism of action under conditions in which the level of the gene product required for fungal proliferation, virulence or pathogenicity is rate limiting or is not rate limiting allows the

pathway in which a gene product required for fungal proliferation, virulence or pathogenicity lies to be identified. If cells expressing a rate limiting level of a gene product required for fungal proliferation, virulence or pathogenicity are selectively sensitive to an antibiotic acting via a particular pathway, then the gene product encoded by the gene linked to the regulatable promoter in the GRACE strain is involved in the pathway on which the antibiotic acts.

6.4.7. Identification of Pathway in which a Test Antibiotic Acts

As discussed above, the cell-based assay may also be used to determine the pathway against which a test antibiotic acts. In such an analysis, the pathways against in which the gene under the control of the regulatable promoter in each member of a panel of GRACE strains lies is identified as described above. A panel of cells, each containing a regulatable promoter which directs transcription of a proliferation, virulence or pathogenicity-required nucleic acid which lies in a known biological pathway required for fungal proliferation, virulence or pathogenicity, is contacted with a test antibiotic for which it is desired to determine the pathway on which it acts under conditions in which the gene product of the nucleic acid is rate limiting or is not rate limiting. If heightened sensitivity is observed in cells in which the gene product is rate limiting for a gene product which lies in a particular pathway but not in cells expressing rate limiting levels of gene products which lie in other pathways, then the test antibiotic acts against the pathway for which heightened sensitivity was observed.

All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications can be made without departing from its spirit and scope, and are intended to fall within the scope of the appended claims.