Measure Theory: Exercises (not for credit)

Josephine Evans

November 11, 2021

Questions 5 and 6 are long and not super important so only do them if you are enjoying doing exercise sheets!

Question 1. Suppose that f is a measurable function from $\mathbb{R} \to \mathbb{R}$, show that g defined by $g(x) = f(x+\tau)$ is also measurable, where τ is a fixed real number.

Question 2. Show the restriction of measure makes sense. That is to say if (E, \mathcal{E}, μ) is a measure space and $A \in \mathcal{E}$ then show that $\mathcal{E}_A = \{B \in \mathcal{E} : B \subset A\}$ is a σ -algebra and $\mu_A = \mu|_{\mathcal{E}_A}$ is a measure. Show further that if g is a non-negative measurable function then $\mu_A(g) = \mu(g1_A)$.

Question 3. Show that the function sin(x)/x is not Lebesgue integrable over $[1, \infty]$ but the limit as $n \to \infty$ of

$$\int_{1}^{n} \sin(x)/x dx.$$

Question 4. Let (E, \mathcal{E}) and (F, \mathcal{F}) be measureable spaces. We call K a kernel on if for each $x \in E$ the function $A \mapsto K(x, A)$ is a measure on (F, \mathcal{F}) , and for every $A \in \mathcal{F}$ the function $x \mapsto K(x, A)$ is a measurable function on (E, \mathcal{E}) . Suppose that K is a kernel, μ is a measure on (E, \mathcal{E}) and f is a $[0, \infty]$ valued measurable function on (F, \mathcal{F}) . Show that

- $A \mapsto \int K(x,A)\mu(\mathrm{d}x)$ is a measure on (F,\mathcal{F}) ,
- $x \mapsto \int f(y)K(x, dy)$ is a measurable function on (E, \mathcal{E})
- If ν is the measure defined by $\nu(A) = \int K(x,A)\mu(\mathrm{d}x)$ then $\nu(f) = \int \int f(y)K(x,\mathrm{d}y)\mu(\mathrm{d}x)$.

Question 5. Recall in the last exercise sheet we constructed the devils staircase function $f:[0,1] \to [0,1]$ which is continuous and non-decreasing and flat everywhere except the Cantor set. Define a function by

$$g(y) = \inf\{x \in [0,1] : f(x) = y\},\$$

such a function is well defined since as f is continuous the intermediate value theorem shows there must be at least one x such that f(x) = y.

- Show that the range of g is contained inside the Cantor set.
- Show that f(g(y)) = y and that hence g is injective.
- Let A be a non-Lebesgue measurable subset of [0,1] (such as was constructed by Vitali) show that B = g(A) is Lebesgue measurable.
- Show that B is not Borel measurable.
- Show that $h(x) = 1_B(x)$ is Riemann integrable (note this shows the existence of a function that is Riemann integrable and not Borel measurable).

- Question 6. Construct a sequence of set by $K_1 = [0,1]$ and then $K_2 = [0,1/3] \cup [2/3,1]$ then instead of removing the middle thirds as in the construction of the Cantor set to construct K_n we remove the middle α_n proportion of every interval so that $\lambda(K_n) = (1 \alpha_n)\lambda(K_{n-1})$. Then for $\beta \in (0,1)$ choose $\alpha_n = 1 \beta^{2^{-n}}$, and show that $\bigcap_n K_n$ is a closed set with no interior points and $\lambda(\bigcup_n K_n) = \beta$.
 - Now assume (you can prove this fairly easily but its not the point of the question) that you can find a function f_n which is cotinuous and takes values in [0,1] such that $f_n = 0$ on K_n and 1 on K_{n-1}^c . Show that f_n is an increasing sequence of functions which converges to 1_U where $U = (\bigcap_n K_n)^c$.
 - Show that 1_U is not Riemann integrable.