Text Classification: 20newsgroups

Vaggelis Lamprou

Natural Language Processing

1. The Dataset: 20 newsgroups

Training data: 11314 texts
 Test data: 7532 texts

Categories:

- alt.atheism
- comp.graphics
- comp.os.ms-windows.misc
- comp.sys.ibm.pc.hardware
- comp.sys.mac.hardware
- comp.windows.x
- misc.forsale
- rec.autos
- rec.motorcycles
- rec.sport.baseball

- rec.sport.hockey
- sci.crypt
- sci.electronics
- sci.med
- sci.space
- soc.religion.christian
- talk.politics.guns
- talk.politics.mideast
- talk.politics.misc
- talk.religion.misc

Training set: Class distribution

Test set: Class distribution

2. ML approach

- Preprocessing
 - Preprocess1: lower characters, nltk's word_tokenize
 - Preprocess2: lower characters, nltk's word_tokenize, remove small words, remove stopwords, nltk's PorterStemmer
- Tfidf Vectorizer
 - tokenizer: Preprocess1, Preprocess2
 - n-grams: uni-grams, uni-grams & bi-grams, bi-grams
 - norm: 'l1', 'l2'
- Classifiers
 - Support Vector Machine
 - Multinomial Naive Bayes
 - Random Forest

- Evaluation of 36 pipeline models wrt validation accuracy score
- Optimal: SVM with Preprocess2, uni-grams & I2 norm
- Overall test scores
 - accuracy: 0.66
 - precision (weighted): 0.68
 - recall (weighted): 0.66
 - f1-score (weighted): 0.66

3. DL approach

- Kera's Tokenizer
 - Tokenize words and lower characters.
 - Learns 200-dim representations per text. Sequence of integers.
 - Consider 20K most common words and assign integers based on their frequency in descending order
- GloVe Embeddings
 - Pre-trained word vectors of dim 100
 - Matrix of shape (20K,100); eventually describes the weights of the Embedding layer of the NN
- The model: GloVe-based BiLSTM architecure
 - Hyper-params tuned: Istm nodes and dropout and training batch size
 - No need to tune: Adam(0.001), Categorical-Crossentropy Loss, Tanh activation fct

Accuracy history and Summary

Overall test scores

- accuracy: 0.67

- precision (weighted): 0.68

- recall (weighted): 0.67

- f1-score (weighted): 0.67

Layer (type)	Output Shape	Param #	Connected to
input_26 (InputLayer)	[(None, 200)]	0	[]
embedding_25 (Embedding)	(None, 200, 100)	2000000	['input_26[0][0]']
<pre>spatial_dropout1d_25 (SpatialD ropout1D)</pre>	(None, 200, 100)	0	['embedding_25[0][0]']
bidirectional_25 (Bidirectiona 1)	(None, 200, 512)	731136	['spatial_dropout1d_25[0][0]']
global_average_pooling1d_25 (G lobalAveragePooling1D)	(None, 512)	0	['bidirectional_25[0][0]']
global_max_pooling1d_25 (Globa lMaxPooling1D)	(None, 512)	0	['bidirectional_25[0][0]']
concatenate_25 (Concatenate)	(None, 1024)	0	['global_average_pooling1d_25[0] 0]', 'global_max_pooling1d_25[0][0]'
dropout_125 (Dropout)	(None, 1024)	0	['concatenate_25[0][0]']
dense_125 (Dense)	(None, 512)	524800	['dropout_125[0][0]']
dropout_126 (Dropout)	(None, 512)	0	['dense_125[0][0]']
dense_126 (Dense)	(None, 512)	262656	['dropout_126[0][0]']
dropout_127 (Dropout)	(None, 512)	0	['dense_126[0][0]']
dense_127 (Dense)	(None, 256)	131328	['dropout_127[0][0]']
dropout_128 (Dropout)	(None, 256)	0	['dense_127[0][0]']
dense_128 (Dense)	(None, 128)	32896	['dropout_128[0][0]']
dropout_129 (Dropout)	(None, 128)	0	['dense_128[0][0]']
dense_129 (Dense)	(None, 20)	2580	['dropout_129[0][0]']

Non-trainable params: 2,000,000

4. Conclusion

• Summary:

Test Summary (Weighted metrics)						
Model	Accuracy	Precision(W)	Recall(W)	F1-score(W)		
SVM	0.66	0.68	0.66	0.66		
BiLSTM	0.67	0.68	0.67	0.67		

Thank you!