# Introduction to Machine Learning

Lecture 10 Representation and Clustering - Bayesian
Gaussian Mixture Models and Mean Shift

**Hongteng Xu** 



高领人工智能学院 Gaoling School of Artificial Intelligence

### Outline

#### Review

- ▶ Generative modeling and Gaussian mixture model
- ► EM algorithm
- ▶ Revisit K-means from an EM viewpoint

### Outline

#### Review

- ▶ Generative modeling and Gaussian mixture model
- ► EM algorithm
- ▶ Revisit K-means from an EM viewpoint

### Today

- ► A Bayesian viewpoint of Gaussian mixture model and MCMC
- Nonparametric clustering and kernel density estimation
- Mean shift algorithm.

### Revisit The Generative Mechanism of GMM

Suppose that there are *K* Gaussian distributions defined on the sample space  $\mathcal{X} \subset \mathbb{R}^D$ .

- $m{w} = [w_k] \in \Delta^{K-1}$
- $\blacktriangleright \{\mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}_{k=1}^K$

Generative process:

- 1 Determine the cluster:  $k \sim \text{Categorical}(\boldsymbol{w})$
- **2** Determine the sample based on the cluster:  $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ .

### Revisit The Generative Mechanism of GMM

Suppose that there are *K* Gaussian distributions defined on the sample space  $\mathcal{X} \subset \mathbb{R}^D$ .

- $m{v} = [w_k] \in \Delta^{K-1}$
- $\blacktriangleright \{\mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}_{k=1}^K$

Generative process:

- 1 Determine the cluster:  $k \sim \text{Categorical}(\boldsymbol{w})$
- **2** Determine the sample based on the cluster:  $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ .

How to determine the number of clusters and the corresponding distributions?

# Bayesian Inference of GMM

▶ Recall that a GMM is

$$p(x) = \sum_{k=1}^{K} w_k \underbrace{p_k(x; oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)}_{ ext{Gaussian}}$$

# Bayesian Inference of GMM

Recall that a GMM is

$$p(x) = \sum_{k=1}^K w_k \underbrace{p_k(x; oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)}_{ ext{Gaussian}} = \sum_{k=1}^K w_k p_k(x; oldsymbol{\mu}_k, oldsymbol{\Phi}_k).$$

# **Bayesian Inference of GMM**

▶ Recall that a GMM is

$$p(x) = \sum_{k=1}^{K} w_k \underbrace{p_k(x; \mu_k, \Sigma_k)}_{\text{Gaussian}} = \sum_{k=1}^{K} w_k p_k(x; \mu_k, \underbrace{\Phi_k}_{\Sigma_k^{-1}}). \tag{1}$$

**Bayesian GMM** sets the prior distributions for its parameters  $\{w_k, \mu_k, \Phi_k\}_{k=1}^K$ .

# Bayesian Inference of GMM (1D)

#### **Conjugate Priors**

- $\boldsymbol{w} \sim \text{Dirichlet}(\delta_1, ..., \delta_K)$
- $ightharpoonup \phi_k \sim \operatorname{Gamma}(\frac{a}{2}, \frac{b}{2}), \forall k$
- $\blacktriangleright \mu_k | \phi \sim \mathcal{N}(m_k, \frac{1}{\alpha_k \phi_k}), \forall k$

# Bayesian Inference of GMM (1D)

### **Conjugate Priors**

- $\boldsymbol{w} \sim \text{Dirichlet}(\delta_1, ..., \delta_K)$
- $\phi_k \sim \text{Gamma}(\frac{a}{2}, \frac{b}{2}), \forall k$
- $\blacktriangleright \mu_k | \phi \sim \mathcal{N}(m_k, \frac{1}{\alpha_k \phi_k}), \forall k$

**Posteriors** given data *x*'s and the latent code *z*'s

- $\boldsymbol{w}|x,z\sim \text{Dirichlet}(\delta_1^*,...,\delta_K^*)$
- $igsip \phi_k | x, z \sim \operatorname{Gamma}(\frac{a_k^*}{2}, \frac{b_k^*}{2}), \forall k$
- $\blacktriangleright \ \mu_k | x, z, \phi \sim \mathcal{N}(m_k^*, \frac{1}{\alpha_k^* \phi_k}), \forall k$

# Bayesian Inference of GMM (1D)

### **Conjugate Priors**

- $\boldsymbol{w} \sim \text{Dirichlet}(\delta_1, ..., \delta_K)$
- $ho \phi_k \sim \text{Gamma}(\frac{a}{2}, \frac{b}{2}), \forall k$
- $\blacktriangleright \mu_k | \phi \sim \mathcal{N}(m_k, \frac{1}{\alpha_k \phi_k}), \forall k$

**Posteriors** given data *x*'s and the latent code *z*'s

- $\boldsymbol{w}|x,z\sim \text{Dirichlet}(\delta_1^*,...,\delta_K^*)$
- $\bullet$   $\phi_k|x,z\sim \text{Gamma}(\frac{a_k^*}{2},\frac{b_k^*}{2}), \forall k$
- $\blacktriangleright \mu_k | x, z, \phi \sim \mathcal{N}(m_k^*, \frac{1}{\alpha^* \phi_k}), \forall k$

$$\delta_{k}^{*} = \delta_{k} + N_{k}, \quad a_{k}^{*} = a + N_{k}, \quad b_{k}^{*} = b + \sum_{z_{j}=k} (x_{j} - \mu_{k})^{2}$$

$$\alpha_{k}^{*} = \alpha_{k} + N_{k}, \quad m_{k}^{*} = \frac{1}{\alpha_{k}^{*}} (\alpha_{k} m_{k} + \sum_{z_{j}=k} x_{j})$$
(2)

#### **MCMC Algorithm:**

▶ Initialize  $\{w_k, \mu_k, \phi_k\}_{k=1}^K$  via sampling from priors

#### **MCMC Algorithm:**

- ▶ Initialize  $\{w_k, \mu_k, \phi_k\}_{k=1}^K$  via sampling from priors
- Repeat till converge
  - **1.** Sampling latent codes  $z_{nk} \sim z | x_n, w_k, \mu_k, \phi_k$
  - **2.** Sampling  $\boldsymbol{w} \sim \boldsymbol{w} | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - 3. Sampling  $\phi_k \sim \phi_k | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - **4.** Sampling  $\mu_k \sim \mu_k | \{x_n\}_n, \{z_{nk}\}_{n,k}, \phi_k$

#### **MCMC Algorithm:**

- ▶ Initialize  $\{w_k, \mu_k, \phi_k\}_{k=1}^K$  via sampling from priors
- Repeat till converge
  - 1. Sampling latent codes  $z_{nk} \sim z | x_n, w_k, \mu_k, \phi_k$
  - 2. Sampling  $\boldsymbol{w} \sim \boldsymbol{w} | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - 3. Sampling  $\phi_k \sim \phi_k | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - **4.** Sampling  $\mu_k \sim \mu_k | \{x_n\}_n, \{z_{nk}\}_{n,k}, \phi_k$

#### **Compare to EM:**

▶ EM estimations the responsibility (the probability p(z|x) of latent codes) and **optimizes** parameters in a deterministic way.

#### **MCMC Algorithm:**

- ▶ Initialize  $\{w_k, \mu_k, \phi_k\}_{k=1}^K$  via sampling from priors
- ► Repeat till converge
  - 1. Sampling latent codes  $z_{nk} \sim z | x_n, w_k, \mu_k, \phi_k$
  - 2. Sampling  $\boldsymbol{w} \sim \boldsymbol{w} | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - 3. Sampling  $\phi_k \sim \phi_k | \{x_n\}_n, \{z_{nk}\}_{n,k}$
  - **4.** Sampling  $\mu_k \sim \mu_k | \{x_n\}_n, \{z_{nk}\}_{n,k}, \phi_k$

#### **Compare to EM:**

- ▶ EM estimations the responsibility (the probability p(z|x) of latent codes) and **optimizes** parameters in a deterministic way.
- ▶ MCMC **samples** latent codes and parameters in a probabilistic way.

# **Bayesian GMM**

► Modeling the uncertainty of model

# **Bayesian GMM**

- ▶ Modeling the uncertainty of model
- ► Extend to infinite mixture model (learn the number of clusters)

# **Bayesian GMM**

- Modeling the uncertainty of model
- ► Extend to infinite mixture model (learn the number of clusters)
- ► Generally, the complexity is high (due to the efficiency of sampling)

Parametric clustering models

► Kmeans, GMM, ... they are parametric clustering models.

#### Parametric clustering models

- ▶ Kmeans, GMM, ... they are parametric clustering models.
- ▶ The distribution of data is parametric and its inference is inductive.

#### Parametric clustering models

- ▶ Kmeans, GMM, ... they are parametric clustering models.
- ▶ The distribution of data is parametric and its inference is inductive.

### Nonparametric clustering models

► The distribution of data is constructed by the data itself.

#### Parametric clustering models

- ► Kmeans, GMM, ... they are parametric clustering models.
- ▶ The distribution of data is parametric and its inference is inductive.

### Nonparametric clustering models

- ► The distribution of data is constructed by the data itself.
- ▶ The inference is transductive.

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

### **Principle:**

► Given i.i.d. samples  $\{x_n\}_{n=1}^N$ , estimate the unknown PDF p(x) by the data themselves as

$$\hat{p}_h(x) = \frac{1}{n} \sum_{n=1}^{N} K_h(x, x_n)$$

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

### **Principle:**

▶ Given i.i.d. samples  $\{x_n\}_{n=1}^N$ , estimate the unknown PDF p(x) by the data themselves as

$$\hat{p}_h(x) = \frac{1}{n} \sum_{n=1}^{N} K_h(x, x_n) := \frac{1}{n} \sum_{n=1}^{N} K_h(x - x_n) \quad \text{(Recall nonparametric kernel)} \quad (3)$$

*h* is the bandwidth.

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

### **Principle:**

▶ Given i.i.d. samples  $\{x_n\}_{n=1}^N$ , estimate the unknown PDF p(x) by the data themselves as

$$\hat{p}_h(x) = \frac{1}{n} \sum_{n=1}^{N} K_h(x, x_n) := \frac{1}{n} \sum_{n=1}^{N} K_h(x - x_n) \quad \text{(Recall nonparametric kernel)} \quad (3)$$

h is the bandwidth.

Recall the constraints for a valid nonparametric kernel.

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

### **Principle:**

▶ Given i.i.d. samples  $\{x_n\}_{n=1}^N$ , estimate the unknown PDF p(x) by the data themselves as

$$\hat{p}_h(x) = \frac{1}{n} \sum_{n=1}^{N} K_h(x, x_n) := \frac{1}{n} \sum_{n=1}^{N} K_h(x - x_n) \quad \text{(Recall nonparametric kernel)} \quad (3)$$

h is the bandwidth.

- ► Recall the constraints for a valid nonparametric kernel.
- For 1D data, Gaussian (RBF) kernel, Gaussian-like density,  $h=(\frac{4\hat{\sigma}^5}{3N})^{0.2}\approx 1.06\hat{\sigma}N^{-0.2}$ .

#### **Motivation:**

► Given i.i.d. samples, how to estimate their probability density function (PDF) in a nonparametric way.

#### **Principle:**

► Given i.i.d. samples  $\{x_n\}_{n=1}^N$ , estimate the unknown PDF p(x) by the data themselves as

$$\hat{p}_h(x) = \frac{1}{n} \sum_{n=1}^{N} K_h(x, x_n) := \frac{1}{n} \sum_{n=1}^{N} K_h(x - x_n) \quad \text{(Recall nonparametric kernel)} \quad (3)$$

h is the bandwidth.

- ▶ Recall the constraints for a valid nonparametric kernel.
- For 1D data, Gaussian (RBF) kernel, Gaussian-like density,  $h=(\frac{4\hat{\sigma}^5}{3N})^{0.2}\approx 1.06\hat{\sigma}N^{-0.2}$ .
- ▶ For 1D data in general,  $h = \mathcal{O}(N^{-0.2})$ .

# Histogram: The Simplest Kernel Density Estimation



# Connections to What We Learned/Will Learn

#### **Mixture Model:**

▶ When  $K_h$  is a Gaussian kernel:  $K_h(x,x') = \frac{1}{\sqrt{2\pi}h} \exp(-\frac{|x-x'|^2}{2h^2})$ , KDE actually can be interpreted a GMM model with known parameters (See, the boundary of parametric and nonparametric modeling is not so strict:))

# Connections to What We Learned/Will Learn

#### **Mixture Model:**

▶ When  $K_h$  is a Gaussian kernel:  $K_h(x,x') = \frac{1}{\sqrt{2\pi h}} \exp(-\frac{|x-x'|^2}{2h^2})$ , KDE actually can be interpreted a GMM model with known parameters (See, the boundary of parametric and nonparametric modeling is not so strict:))

#### Naïve Bayes Classifier:

▶ KDE is often used to estimate the class-conditional marginal densities of data, and thus, improve classification accuracy. (Next lecture)

#### **Motivation:**

- ▶ As an extension of the kernel density estimation.
- ▶ Locate the maxima of the density function (or called **mode**-seeking algorithm).

#### **Motivation:**

- ▶ As an extension of the kernel density estimation.
- ▶ Locate the maxima of the density function (or called **mode**-seeking algorithm).

#### Find the maxima based on KDE:

• Given  $\{x_n\}_{n=1}^N$  and a nonparametric kernel  $K_h$ ,

$$\hat{p}(x) = \frac{1}{N} \sum\nolimits_{n=1}^{N} K_h(x, x_n)$$

#### **Motivation:**

- ▶ As an extension of the kernel density estimation.
- ▶ Locate the maxima of the density function (or called **mode**-seeking algorithm).

#### Find the maxima based on KDE:

• Given  $\{x_n\}_{n=1}^N$  and a nonparametric kernel  $K_h$ ,

$$\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} K_h(x, x_n)$$
 (4)

▶ "Brute force" approach:

$$\max_{x \in \mathcal{X}} \hat{p}(x). \tag{5}$$

Gradient ascent, ...

#### **Motivation:**

- ▶ As an extension of the kernel density estimation.
- ▶ Locate the maxima of the density function (or called **mode**-seeking algorithm).

#### Find the maxima based on KDE:

• Given  $\{x_n\}_{n=1}^N$  and a nonparametric kernel  $K_h$ ,

$$\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} K_h(x, x_n)$$
 (4)

▶ "Brute force" approach:

$$\max_{x \in \mathcal{X}} \hat{p}(x). \tag{5}$$

Gradient ascent, ...

Curse of dimensionality

### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$

#### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

#### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

(A Nadaraya-Watson Estimator imposed on the data itself.)

▶ m(x) is the **mean** of  $\mathcal{N}(x)$  and m(x) - x is the **mean shift vector**.

### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

- ▶ m(x) is the **mean** of  $\mathcal{N}(x)$  and m(x) x is the **mean shift vector**.
  - 1. For each  $x_n$ , compute  $m(x_n)$  by (6).
  - **2**. Each  $x_n \leftarrow m(x_n)$ , and repeat step 1 till  $m(x_n)$  converge.

### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

- ▶ m(x) is the **mean** of  $\mathcal{N}(x)$  and m(x) x is the **mean shift vector**.
  - 1. For each  $x_n$ , compute  $m(x_n)$  by (6).
  - **2.** Each  $x_n \leftarrow m(x_n)$ , and repeat step 1 till  $m(x_n)$  converge.
- ► The mean shift vector always points toward the direction of the maximum increase in the density.

### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

- ▶ m(x) is the **mean** of  $\mathcal{N}(x)$  and m(x) x is the **mean shift vector**.
  - 1. For each  $x_n$ , compute  $m(x_n)$  by (6).
  - **2.** Each  $x_n \leftarrow m(x_n)$ , and repeat step 1 till  $m(x_n)$  converge.
- ► The mean shift vector always points toward the direction of the maximum increase in the density.
- ► At every iteration the kernel is shifted to the mean of the points within it.

### **Principle:**

▶ Given a set of samples  $\{x_n \in \mathcal{X}\}_{n=1}^N$  and a kernel function  $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$ , the mean of the samples in the neighborhood of x is

$$m(x) = \frac{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i) x_i}{\sum_{x_i \in \mathcal{N}(x)} K_h(x, x_i)}.$$
 (6)

- ▶ m(x) is the **mean** of  $\mathcal{N}(x)$  and m(x) x is the **mean shift vector**.
  - 1. For each  $x_n$ , compute  $m(x_n)$  by (6).
  - **2.** Each  $x_n \leftarrow m(x_n)$ , and repeat step 1 till  $m(x_n)$  converge.
- ► The mean shift vector always points toward the direction of the maximum increase in the density.
- ► At every iteration the kernel is shifted to the mean of the points within it.
- Why?

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$
$$= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n)$$

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$

$$= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n)$$

$$\propto \sum_{n=1}^{N} K_h(x, x_n)(x_n - x)$$

$$\begin{split} \frac{\partial \hat{p}(x)}{\partial x} &= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x} \\ &= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n) \\ &\propto \sum_{n=1}^{N} K_h(x, x_n)(x_n - x) \propto \underbrace{\sum_{n=1}^{N} K_h(x, x_n)x_n}_{m(x)} - x. \end{split}$$

▶ Suppose that  $K_h(x,x') = \frac{1}{\sqrt{2\pi}h} \exp(-\frac{\|x-x'\|_2^2}{2h^2})$ , derive  $\frac{\partial \hat{p}(x)}{\partial x}$ .

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$

$$= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n)$$

$$\propto \sum_{n=1}^{N} K_h(x, x_n)(x_n - x) \propto \underbrace{\sum_{n=1}^{N} K_h(x, x_n)x_n}_{m(x)} - x.$$
(7)

▶ In summary,  $x_n^{(t+1)} = x_n^{(t)} + \tau_n \frac{\partial \hat{p}(x)}{\partial x}$  is achieved by mean shift.

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$

$$= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n)$$

$$\propto \sum_{n=1}^{N} K_h(x, x_n)(x_n - x) \propto \underbrace{\sum_{n=1}^{N} K_h(x, x_n)x_n}_{m(x)} - x.$$
(7)

- ▶ In summary,  $x_n^{(t+1)} = x_n^{(t)} + \tau_n \frac{\partial \hat{p}(x)}{\partial x}$  is achieved by mean shift.
- ▶ When kernel is band-limited, or we set  $n \in \mathcal{N}(x)$  rather than  $\{1, ..., N\}$ , the gradient ascent is stochastic/adaptive, and we obtain mean-shift.

$$\frac{\partial \hat{p}(x)}{\partial x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial K_h(x, x_n)}{\partial x}$$

$$= -\frac{1}{Nh^2} \sum_{n=1}^{N} K_h(x, x_n)(x - x_n)$$

$$\propto \sum_{n=1}^{N} K_h(x, x_n)(x_n - x) \propto \underbrace{\sum_{n=1}^{N} K_h(x, x_n)x_n}_{m(x)} - x.$$
(7)

- ▶ In summary,  $x_n^{(t+1)} = x_n^{(t)} + \tau_n \frac{\partial \hat{p}(x)}{\partial x}$  is achieved by mean shift.
- ▶ When kernel is band-limited, or we set  $n \in \mathcal{N}(x)$  rather than  $\{1, ..., N\}$ , the gradient ascent is stochastic/adaptive, and we obtain mean-shift.
- ▶ The curse of dimensionality is still a problem.

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

#### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

Recall that EM learns the model with **observed data** and **latent variables**.

▶ Data:  $x_n$ 's.

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

- ▶ Data:  $x_n$ 's.
- ▶ Latent variable: means/centroids *m*'s.

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

- ▶ Data:  $x_n$ 's.
- ightharpoonup Latent variable: means/centroids m's.
- ▶ E-step: estimate  $m(x_n)$  (the mean conditioned on  $x_n$ )

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

- ▶ Data:  $x_n$ 's.
- Latent variable: means/centroids m's.
- ▶ E-step: estimate  $m(x_n)$  (the mean conditioned on  $x_n$ ) (What is  $p(m|x_n)$ ?)

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

- ▶ Data:  $x_n$ 's.
- ▶ Latent variable: means/centroids *m*'s.
- ▶ E-step: estimate  $m(x_n)$  (the mean conditioned on  $x_n$ ) (What is  $p(m|x_n)$ ?)
- ► M-step: maximize  $p(x) = \int p(x|m)p(m)dm$ .

#### E-step:

▶ Compute  $m(x_n) \forall n$ .

### M-step:

▶ Update  $x_n \leftarrow m(x_n)$ .

- ▶ Data:  $x_n$ 's.
- ▶ Latent variable: means/centroids *m*'s.
- ▶ E-step: estimate  $m(x_n)$  (the mean conditioned on  $x_n$ ) (What is  $p(m|x_n)$ ?)
- ► M-step: maximize  $p(x) = \int p(x|m)p(m)dm$ . (What are p(m) and p(x|m)?)

### In Summary

- ► A Bayesian viewpoint of GMMs
- ► Kernel density estimation
- Mean-shift algorithm

#### Next...

- Classification problem and its challenges
- ▶ Linear classifiers (LDA and Logistic Regression)

### HW 4: DDL May 12, 2022

#### **Python Programming**

- 1 Lab # 7 (4 Pts)
- 2 Lab # 8 (4 Pts)

#### **Questions for Tech Report** (6 Pts, $\leq$ 3 Pages)

1 Gaussian mixture model with outliers. Suppose that the observed data contains several outliers. The mixture model can be:

$$p(\mathbf{x}) = \sum_{k=1}^{K} w_k p(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + w_{K+1}, \quad \mathbf{w} = [w_1, ..., w_{K+1}] \in \Delta^K$$
 (8)

and  $w_{K+1}$  is probability that the sample is an outlier. Modify the EM algorithm to learn this model. (2 Pts)

**2 Revisit mean-shift.** Derive the mean-shift as a maximum likelihood estimation method (refer to (7)). Derive a modified mean-shift as MAP if x owns a prior  $\mathcal{N}(\mu, \sigma^2)$ . What if the prior is a GMM  $p_{\text{prior}}(x) = \frac{1}{K} \sum_k p(x; \mu_k, \sigma_k^2)$ ? (4 Pts)