Mai Ngo

DSC 540 - Advanced ML

DePaul University

Prof. Casey Bennett

Final Project Presentation

Astrophysical Object

Photometric Classification

3.18.2024

AGENDA

Large-aperture Synoptic Survey Telescope (LSST) Data

- Data Introduction
- Visualization
- Data Construction
- Class Imbalance (Down Sampling)

Classification Models

- Random Forest
- Gradient Boosting
- SVM
- Neural Network

Best Model

Conclusions & Takeaways

LARGE-APERTURE SYNOPTIC SURVEY TELESCOPE (LSST)

LLST: A highly efficient optical telescope observes activities of near-Earth astrophysical objects.

Location: Vera C. Rubin

Observatory in Chile

Meta Data - Obs: 7,848 | Features: 12

object_id: Object identifier.

<u>ra:</u> right ascension | <u>decl:</u> declination.

gal I: Galactic longitude | gal b: Galactic latitude

<u>ddf:</u> Flag if object in the Deep Drilling Fields survey.

hostgal specz: Spectroscopic redshift.

<u>hostgal_photoz:</u> Photometric redshift.

hostgal photoz err: Uncertainty on hostgal_photoz.

distmod: Distance to the objects.

<u>mwebv:</u> Extinction of light due to Milky Way dust.

target: 14 classes.

[6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95]

Time Series Data - Obs:1,421,705 | Features: 6

<u>object_id:</u> Object identifier.

mid: Time of the observation.

passband: The specific LSST passband.

<u>flux:</u> Measures brightness in the passband of observation.

<u>flux err:</u> Uncertainty on flux.

<u>detected</u>: Flag if object's brightness exhibits statistically significant.

Multiple object_id under ONE target class!

LSST DATA INTRODUCTION

DATA VISUALIZATION

- META DATA

Passband | Flux ?

DATA
VISUALIZATIONTIME SERIES DATA

DATA VISUALIZATION-TIME SERIES DATA

Objective: Merged

dataset contains both

static numerical &

time series data!

DATA CONSTRUCTION

Apply Time Rolling (1 feature | 2 time-steps)

Sequences of uniform length.

-> Each object must have the same observation time range.

Date	Temp (° C)	
01/01/24	35	
01/02/24	36	
01/03/24	37	
01/04/24	38	

Date	Temp_t1	Temp_t2
01/01/24	35	36
01/02/24	36	37
01/03/24	37	38
01/04/24	38	NaN

^{*}Features drop as well.

CLASS IMBALANCE (DOWN SAMPLING)

Train Data:

• Observations: 667, 725

• Features: 18

Down Sampled Data:

• Observations: 81,155

• Features: 18

Train-Test Split | 0.65 - 0.35

-> Ensure similar class distribution in both sets.

Feature Selection ONLY on static data.

CLASSIFICATION MODELS

Top-down order!

 \bullet : Parameter Tuning \rightarrow Base 'best' Model.

: Feature Selection (FS) on Train Data.

: Model FS with Train Data.

• : Base 'best' Model on Down-sampled Data.

★ : Model FS on Down-sampled Data.

Top-down order!

- \bullet : Hyperparameter Tuning \rightarrow Base 'best' Model.
- : Feature Selection (FS) on Train Data.
- : Model FS with Train Data.
- : Base 'best' Model on Down-sampled Data.
- ★ : Model FS on Down-sampled Data.

CLASSIFICATION MODELS

RANDOM FOREST

- Tune parameters: 'criterion': ['gini', 'entropy']
- Both with and without Cross-Validation gives the same outputs. Yet significantly difference in run time.

Model	Accuracy	Log Loss
Train Data	0.97	1.05
Train Data (FS - 2)	0.81	6.78
Down-sampled Data	0.91	3.17
Down-sampled Data (FS -2)	0.64	12.89

Model	Accuracy	Log Loss
Train Data	0.68	11.64
Train Data (FS - 2)	0.65	12.55
Down-sampled Data	0.65	12.53
Down-sampled Data (FS - 2)	0.64	13.12

GRADIENT BOOSTING

Tune parameters: 'criterion': ['friedman_mse', 'squared_error']

ADA BOOST

Tune parameters: 'n_estimators': [20, 50, **100**, 200],

'learning_rate': [**0.01**, 0.3, 0.5, 1.0]

Model	Accuracy	Log Loss
Train Data	0.46	19.54
Train Data (FS - 3)	0.31	24.74
Down-sampled Data	0.23	7.78
Down-sampled Data (FS - 3)	0.23	27.78

NEURAL NETWORK

Model	Accuracy	Accuracy	Cross-entropy
		(weight)	Loss
Down-sampled Data	0.46	0.59	9.6

- 1 LSTM layer for time series.
- 2 Dense layer for static.
- Drop out rate = 0.2
- Dense output layer | combine.

	Accuracy	Log Loss
Train Data	0.97	1.05
Train Data (FS - 2)	0.81	6.78
Down-sampled Data	0.91	3.17
Down-sampled Data	0.64	12.89
(FS - 2)		

IMPROVEMENT SUGGESTIONS

- ✓ Much more room for data pre-processing.
- ✓ Time-series | Static Data.
- ✓ Feature Engineering.
- ✓ Class Imbalance.
- ✓ Machine Learning Models | Neural Network.
- ✓ Parameters Tuning.

CONCLUSION & TAKEAWAYS

- ✓ Enjoy working on this project.
- ✓ Apply my knowledge from this course.
- ✓ Learn about astrophysical objects and how telescope works!

THANK YOU!