The Algebraic Properties of Formal Group Laws

Shay Ben Moshe

20/06/2017

(All rings are commutative with unit.)

Definition. Let R be a ring. A (commutative one-dimensional) formal group law over R is an element $F(x,y) \in R[[x]]$, such that:

- 1. F(x,0) = x = F(0,x)
- 2. F(x,y) = F(y,x) (commutativity) **TODO Do we need commutative?**
- 3. F(F(x,y),z) = F(x,F(y,x)) (associativity)

Example. The additive formal group law, $F_a(x,y) = x + y$.

Example. The multiplicative formal group law, $F_m(x,y) = x + y + uxy$ for some unit $u \in R$, and specifically $F_m(x,y) = x + y + xy$.

Lemma. $p(x) \in R[[x]]$ is (multiplicatively) invertible if and only if $p(0) \in R$ is invertible.

Proof. Let $p(x) = \sum a_n x^n$, and assume $q(x) = \sum b_n x^n \in R[[x]]$ is an inverse to p, i.e. pq = 1. By comparing coefficients it follows that $a_0b_0 = 1$ (so the first part follows), and $\sum_{k=0}^n a_k b_{n-k} = 0$. If a_0 is invertible then we can find a suitable q, by defining $b_0 = a_0^{-1}$, and $b_n = -a_0^{-1} (\sum_{k=1}^n a_k b_{n-k})$ (so the second part follows).

Definition. An homomorphism from F to G, two formal group laws over R, is a $f \in R[[x]]$, such that:

- 1. f(0) = 0
- 2. f(F(x,y)) = G(f(x), f(y))

Claim. $f: F \to G$ is (compositionally) invertible (i.e. an isomorphism) if and only if f'(0).

Proof. It is easy to see the first implication. If f'(0) = 0, we can show explicitly that there exists a unique g such that g(f(x)) = x, and $g'(0) = (f'(0))^{-1}$. From the very same claim, it follows that there exists an h such that h(g(x)) = x, it follows that h(x) = h(g(f(x))) = f(x).

Definition. $f: F \to G$ is a strict isomorphism if f'(0) = 1.

Example. The multiplicative formal group law is strictly isomorphic to the additive formal group law, by $f(x) = u^{-1} \log(1 + ux) = \sum_{k=1}^{\infty} \frac{(-u)^{k-1} x^k}{k}$:

$$f(F_m(x,y)) = u^{-1} \log (1 + uF_m(x,y))$$

$$= u^{-1} \log (1 + ux + uy + u^2xy)$$

$$= u^{-1} \log (1 + ux) (1 + uy)$$

$$= u^{-1} \log (1 + ux) + \log (1 + uy)$$

$$= F_a(f(x), f(y))$$

(Note that we don't need the u^{-1} to get an isomorphism, but we do need it to get a strict isomorphism.)

Definition. A strict isomorphism from F to F_a is called a *logarithm*.

Theorem. A formal group law over a \mathbb{Q} -algebra has a logarithm.

Proof. Let F be such a formal group law, and denote $F_2 = \frac{\partial F}{\partial y}$. Since $F(x,y) = x + y + \cdots$, we know that $F_2(0,0) = 1$, thus it is (multiplicatively) invertible. Since each $0 \neq n \in \mathbb{Z}$ is invertible, we can define the following:

$$f(x) = \int_0^x \frac{\mathrm{d}t}{F_2(t,0)}$$

We claim that it is a logarithm. We already know that $f'(0) = F_2(0,0) = 1$. We need to prove that $f(F(x,y)) = F_a(f(x), f(y))$, or equivalently, that w(x,y) = f(F(x,y)) - f(x) - f(y) vanishes. Denote the coefficients by $w(x,y) = \sum_{i \neq j} c_{ij} x^i y^j$. First, note that w(x,0) = f(F(x,0)) - f(x) - f(0) = f(x) - f(x) - 0 = 0 and it follows that $c_{i0} = 0$. If we prove that

$$0 = \frac{\partial w}{\partial y}$$
= $f'(F(x,y)) F_2(x,y) - f'(y)$
= $\frac{1}{F_2(F(x,y),0)} F_2(x,y) - \frac{1}{F_2(y,0)}$

it follows that $jc_{ij} = 0$, and since each $0 \neq j \in \mathbb{Z}$ is invertible, $c_{ij} = 0, j > 0$, which finishes the proof. Indeed, by associativity, F(F(x,y),z) = F(x,F(y,z)), differentiating w.r.t z at z = 0 we get, $F_2(F(x,y),0) = F_2(x,y)F_2(y,0)$ and the result follows.

Remark. The above theorem is not true over arbitrary rings.

To see this, we define a notion, that will lead us to the concept of height. Let F be a formal group law over a ring R. We define $[n]_F(X) \in R[[X]]$ by recursion:

$$[0]_F(X) = 0$$
 $[n+1]_F(X) = F(X, [n]_F(X))$

Clearly, for $f: F \to G$ we get $f([n]_F(X)) = [n]_C(f(X))$.

For F_a we have $[n]_{F_a}(X) = nX$, and by induction for F_m we have $[n]_{F_a}(X) = (1+X)^n - 1$. Consider them over a field of characteristic p, and assume that $f: F_m \to F_a$ is an homomorphism then

$$0 = \left[p \right]_{F_a} \left(f \left(X \right) \right) = f \left(\left[p \right]_{F_m} \left(X \right) \right) = f \left(\left(1 + X \right)^p - 1 \right) = f \left(X^p \right)$$

which means that f is not invertible, thus F_m and F_a are not isomorphic.