Lab 4

In this project, 7 classifiers were used as an Ensemble model. These are Random Forest, AdaBoost, Gaussian Naïve Bayes, Feed forward Neural Net, K-Nearest neighbors, Logistic Regression, and Decision Tree. Individual accuracies of all the models are between 74% and 82% when using my own data split. Accuracies mostly increase when using the recommended train/test csv files. The Ensemble over all models tops that by having an accuracy of 82.67%.

	Random	AdaBoos	Gaussian	Neural	K-Nearest	Logistic	Decision
	Forest	t	NB	Network	Neighbours	Regression	Tree
Using my own stratified data split							
%	82.00%	79.33%	74.67%	80.00%	78.67%	78.67%	77.33%
M	106 81	114 0	105 9	107 7	111 3	112 2	102 12
	9 17	31 5	29 7	23 13	29 7	30 6	22 14
Using recommended train.csv and test.csv							
%	83.06%	80.40%	80.07%	81.40%	78.41%	80.73%	81.40%
	220 10	226 2	226 12	221 7	220 0	222 6	221 17
M	228 10	236 2	226 12	231 7	229 9	232 6	221 17
	41 22	57 6	48 15	49 14	56 7	52 11	39 24

Hyper parameters:

 $RandomForestClassifier (n_jobs=2, random_state=68, n_estimators=30, max_depth=5) \\ AdaBoostClassifier (n_estimators=80, learning_rate=0.1, algorithm='SAMME.R') \\ GaussianNB()$

MLPClassifier(solver='lbfgs', alpha=1e-4,hidden_layer_sizes=(6, 9), random_state=1) KNeighborsClassifier(n_neighbors=9)

 $\label{logisticRegression} LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial') \\ DecisionTreeClassifier(max_depth=3)$

Ensemble experiments:

On the data I split myself:

Using the ensemble classifier on the 5 models, I get a consistent accuracy of just 80.67%. For some reason, this value doesn't change whether I apply proportional weights or use the accuracies themselves as weights, or use equal weights (unweighted).

For the 7 models however, weighted ensemble gives me an accuracy of 82.67%, larger than all the models I have. I believe this means the more models I have the better my ensemble performs.

Using recommended data split

Using the ensemble classifier on the 5 models, I get a an accrucay of 81.40% when using equal weights (unweighted). Weighted ensemble gives me an accuracy of 83.06%. This is better than all the five models used in the ensemble.

For the 7 classifiers, unweighted ensemble has an accuracy of 80.73%, and the weighted one out weighs all individual classifiers used with 83.39%.

Conclusion

From the above experiments I notice that weighted ensembles are capable of increasing the accuracy of a bunch of weaker models. Furthermore, the recommended (provided) data split performed better with most models.