Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

https://arxiv.org/abs/2106.13008

0. Introduction

- 장기 시계열 예측은 에너지, 트래픽, 경제, 날씨 등 다양한 분야에서 필수적이지만, 기존 방법은 장기 패턴 학습에 어려움이 있음.
- Transformer 기반 모델은 장기 종속성 파악에 강점이 있으나 계산 복잡도와 패턴 얽힘 문제 존재.
- 본 논문은 시계열 분해와 Auto-Correlation 메커니즘을 결합한 Autoformer를 제안 함.

1. Overview

- 이 논문은 시계열 장기 예측 문제를 다룸
- 기존 Transformer 기반 시계열 모델은 복잡한 시간 패턴과 장기 의존성 학습에 한계가 있었음
- 이를 해결하기 위해 Autoformer라는 새로운 구조를 제안함
 - 시계열 데이터를 점진적으로 분해하여 복잡한 패턴을 단순한 구성 요소(추세 + 잔차)로 분리
 - Auto-Correlation 메커니즘을 통해 시계열 내 주기성과 반복성을 기반으로 종속성 탐색 및 정보 집계 수행
- 기존 self-attention 기반 방식과 달리 연산 복잡도는 O(LlogL)로 더 효율적이며, long sequence 처리 시 정보 병목 문제를 완화함
- 다양한 실제 시계열 데이터셋에서 기존 모델 대비 일관된 SOTA 성능을 기록함

2. Challenges

- 장기 시계열은 복잡한 주기와 잡음이 공존하며, 패턴이 얽혀있어 예측이 어려움.
- self-attention은 계산 비용이 높고, sparse attention은 포인트 단위 연결로 정보 손 실 발생.
- 시계열 내 시리즈 수준의 종속성을 효과적으로 포착하는 기법 필요.

3. Method

Figure 2: Auto-Correlation (left) and Time Delay Aggregation (right). We utilize the Fast Fourier Transform to calculate the autocorrelation $\mathcal{R}(\tau)$, which reflects the time-delay similarities. Then the similar sub-processes are rolled to the same index based on selected delay τ and aggregated by $\mathcal{R}(\tau)$.

Figure 3: Auto-Correlation vs. self-attention family. Full Attention [41] (a) adapts the fully connection among all time points. Sparse Attention [23, 48] (b) selects points based on the proposed similarity metrics. LogSparse Attention [26] (c) chooses points following the exponentially increasing intervals. Auto-Correlation (d) focuses on the connections of sub-series among underlying periods.

Series Decomposition Block

- 입력 시계열을 trend(추세)와 seasonal(계절성) 성분으로 분해하여 처리.
- trend는 moving average로 추출하고, seasonal은 나머지 구성요소로 간주.
- 。 이 과정을 통해 복잡한 시계열을 단순 구성 요소로 분해하여 안정적인 학습 유도.

Auto-Correlation Mechanism

- 기존 self-attention 대신 사용되는 핵심 모듈로, 시계열 내 주기성을 기반으로 유사한 시점 간 종속성을 포착.
- 。 두 단계로 구성:
 - 1. 상관성 탐색(Search Phase): 주기적인 시점 간 유사도를 기반으로 관련 시점을 선택.
 - 2. 정보 집계(Aggregation Phase): 유사한 시점들의 정보를 통합하여 표현 강화.
- 계산 복잡도는 O(L log L)로, 기존 self-attention의 O(L²)보다 효율적.

Encoder-Decoder 구조

- Encoder: 입력 시계열을 분해 후 seasonal, trend 성분 각각에 대해 Auto-Correlation 적용.
- Decoder: 이전 time step에서 예측된 trend는 누적되고, seasonal은 반복 예측.
- 예측된 trend + seasonal 성분을 합산하여 최종 예측 결과 생성.

- Embedding 없이 Raw Input 사용
 - 시계열의 연속성과 스케일 유지가 중요하기 때문에, 일반적인 position embedding은 사용하지 않고, 입력값을 그대로 사용.

4. Experiments

5. Results

• 5가지 주요 시계열 예측 응용 분야를 포함하는, 총 6가지 benchmark에서 평가 (에너지, 교통, 경제, 날씨, 질병 등)

Mo	odels	Autoformer		Informer[48]		LogTrans[26]		Reformer[23]		LSTNet[25]		LSTM[17]		TCN[4]	
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96 192				0.453		0.642	0.658 1.078	0.619		1.365			3.041	1.330
	336	0.339	0.372	1.363	0.887 1.388	1.334		1.549		3.160		2.568			1.348
ity							0.357			0.680					
Electricity	192 336	0.231	0.338	0.300	$0.386 \\ 0.394$	0.280		0.350		0.828		0.439	0.473	1.000	0.824
					0.439		0.376	0.340	0.420		0.811			1.438	
Exchange	96 192	0.300	0.369	1.204	0.752 0.895 1.036	1.040	0.812 0.851 1.081	1.065 1.188 1.357	0.829 0.906 0.976	1.551 1.477 1.507	1.058 1.028 1.031	1.453 1.846 2.136	1.179	3.004 3.048 3.113	1.444
Exc	720				1.310		1.127	1.510	1.016		1.243			3.150	
Traffic	96 192	0.616	0.382	0.696	0.391	0.685	0.384	0.733	0.420		0.706	0.847	0.453	1.463	0.794
T					0.420 0.472		0.408	0.742	0.420		0.730 0.805			1.479	
Weather	96 192	0.307	0.367	0.598	0.384 0.544	0.658	0.589	0.689 0.752	0.596 0.638	0.560	0.565	0.416	0.435	0.629	0.600
We	336 720				0.523 0.741		0.652 0.675	0.639 1.130	0.596 0.792		0.587 0.599				
ILI	24 36 48	3.103	1.148	4.755	1.677 1.467 1.469	4.799	1.444 1.467 1.468	4.400 4.783 4.832	1.382 1.448 1.465	6.026 5.340 6.080	1.770 1.668 1.787	6.631	1.845	6.858	1.830 1.879 1.892
	60				1.564		1.560	4.832	1.483		1.720		1.879	7.127	1.892

^{*} ETT means the ETTm2. See Appendix A for the full benchmark of ETTh1, ETTh2, ETTm1.

- 시계열 분해 모듈 통해 계절성, 피크, 트렌드 등 주요 요소 효과적으로 학습함
- 시간 지연 기반으로 주기성 탐지 → roll된 시계열 집계 유도하여 의존성 학습 진행함

M	odels	Autof	ormer	N-BEA	ATS[29]	Inforn	ner[48]	LogTr	ans[26]	Reform	ner[23]	DeepA	AR[34]	Proph	et[39]	ARIN	/A[]
N	letric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.065	0.189	0.082	0.219	0.088	0.225	0.082	0.217	0.131	0.288	0.099	0.237	0.287	0.456	0.211	0.362
E					0.268												
Щ	336	0.154	0.305	0.226	0.370	0.180	0.336	0.201	0.361	0.220	0.381	0.277	0.428	0.331	0.474	0.317	0.448
	720	0.182	0.335	0.188	0.338	0.300	0.435	0.268	0.407	0.267	0.430	0.332	0.468	0.534	0.593	0.366	0.487
e	96	0.241	0.387	0.156	0.299	0.591	0.615	0.279	0.441	1.327	0.944	0.417	0.515	0.828	0.762	0.112	0.245
lan	192	0.273	0.403	0.669	0.665	1.183	0.912	1.950	1.048	1.258	0.924	0.813	0.735	0.909	0.974	0.304	0.404
Exchange	336	0.508	0.539	0.611	0.605	1.367	0.984	2.438	1.262	2.179	1.296	1.331	0.962	1.304	0.988	0.736	0.598
面	720	0.991	0.768	1.111	0.860	1.872	1.072	2.010	1.247	1.280	0.953	1.894	1.181	3.238	1.566	1.871	0.935

- 단변량 설정에서도 Autoformer가 다른 모델보다 long-term robustness 뛰어남
- 96→96 예측에서는 ARIMA가 더 나은 성능 보였으나, long-term 예측에서는 성능 급 격히 저하됨
- ARIMA가 non-stationary한 경제 데이터 처리에는 강점 있으나, 실제 시계열의 복잡한 temporal pattern 학습에는 한계 있음으로 보임

Input-96	Informer[48]			LogTrans[23]			Reformer[26]			Promotion				
Predict-O	Origin	Sep	Ours	Origin	Sep	Ours	Origin	Sep	Ours	Origin	Sep	Ours	Sep	Ours
96	0.604	0.311	0.204	0.365	0.490	0.354	0.768	0.862	0.231	0.658	0.445	0.218	0.069	0.347
192										1.078				
336	1.413	0.665	0.375	1.363	1.469	0.481	1.334	0.762	0.362	1.549	1.028	0.366	0.434	1.019
720	2.672	3.200	0.537	3.379	2.766	0.822	3.048	2.601	0.539	2.631	2.845	0.502	0.079	2.332

- Autoformer의 progressive decomposition 구조 적용 시, 다른 모델도 성능 향상됨
- 예측 길이 O가 길어질수록 성능 향상 효과 더 뚜렷해짐
- progressive decomposition이 다양한 모델에 일반화 가능, 다른 의존성 학습 메커니 즉의 학습 능력 확장 + 복잡한 패턴에서 오는 distraction 완화 효과 있음

Input Lengt		96			192		336			
Prediction Ler	336	720	1440	336	720	1440	336	720	1440	
Auto-	MSE	0.339	0.422	0.555	0.355	0.429	0.503	0.361	0.425	0.574
Correlation	MAE	0.372	0.419	0.496	0.392	0.430	0.484	0.406	0.440	0.534
Full Attention[41]	MSE MAE	0.375 0.425	0.537 0.502	0.667 0.589	0.450 0.470	0.554 0.533	-	0.501 0.485	0.647 0.491	-
LogSparse	MSE	0.362	0.539	0.582	0.420	0.552	0.958	0.474	0.601	-
Attention[26]	MAE	0.413	0.522	0.529	0.450	0.513	0.736	0.474	0.524	
LSH	MSE	0.366	0.502	0.663	0.407	0.636	1.069	0.442	0.615	-
Attention[23]	MAE	0.404	0.475	0.567	0.421	0.571	0.756	0.476	0.532	
ProbSparse	MSE	0.481	0.822	0.715	0.404	1.148	0.732	0.417	0.631	1.133
Attention[48]	MAE	0.472	0.559	0.586	0.425	0.654	0.602	0.434	0.528	0.691

- auto-correlation은 다양한 input-*I*, predict-*O* 설정에서 self-attention 기반 방법들 보다 더 좋은 성능 보임
- O 길이가 1440일 때 self-attention 계열 모델은 out-of-memory 발생했지만, auto-correlation은 그렇지 않음
- auto-correlation이 성능뿐 아니라 메모리 효율성 면에서도 우수함을 보여줌

- series decomposition block 없으면 예측 모델이 증가하는 trend나 seasonal part
 의 peak를 제대로 포착하지 못함
- series decomposition block 추가 시 trend-cyclical part를 잘 정제하고 집계할 수 있음
- seasonal part의 peak와 trough도 더 잘 학습하게 됨

- (a)에서 표시된 time delay 크기는 가장 가능성 높은 주기
- 학습한 periodicity는 Roll(X, τi)로부터 모델이 같은 또는 인접한 phase of periods
 의 sub-series를 합치도록 가이드
- 마지막 step에서 auto-correlation은 유사한 sub-series를 완전히 활용하는 반면, self-attention 기반은 그렇지 않음 확인 가능

 Autoformer가 deep representations에서 학습한 lag는 원본 시계열의 실제 seasonality를 나타냄

 Auto-correlation과 self-attention 기반 모델 학습 시 실행 메모리 및 시간 비교 결과, auto-correlation(red)이 메모리와 시간 면에서 더 효율적임을 확인 가능

6. Insight

- 시계열 분해와 Auto-Correlation 메커니즘을 구조에 자연스럽게 녹였다는 점
- 특히 복잡한 패턴을 trend와 seasonal로 분리해 안정적인 학습을 유도하고, 주기성 기반으로 종속성을 찾는 방식이 직관적이면서도 효과적이라는 느낌
- self-attention 구조의 한계를 극복하고도 계산 효율성과 메모리 효율성까지 확보한 것 도 인상적임.
- 실제 구현 시 어떤 방식으로 trend와 seasonal을 나누는지에 대한 디테일 부족
- 기존 transformer 계열 모델과 직접적인 비교를 통해 얻은 인사이트가 논문에 많지만, 왜 그 구조가 더 잘 작동하는지에 대한 이론적 설명은 조금 부족하게 느껴짐.
- 이후 Auto-Correlation 부분이 어떻게 작동하는지, FFT 기반으로 계산되는 로직 등을 PyTorch 관점에서 살펴볼 계획
- 더 나아가 논문에서 언급한 progressive decomposition을 다른 모델(LSTM, Informer 등)에 적용해보는 것도 실험해볼만하다고 생각함.