zykład 1

ykaż, że zdanie: $\sim (p \land q) \Leftrightarrow ((\sim p) \lor (\sim q)) = zaprzeczenie komiunkcji$ st równoważne alternatywie zaprzeczeń – jest prawem rachunku zdań.

tym celu sporządzamy tabelę.

$((b \sim) \land (d \sim)) \Leftrightarrow (b \lor d) \sim (b \sim) \land (d \sim) b \sim$			1	
$(b \sim) \land (d \sim)$	0	-	-	-
$b \sim$	0	1	0	П
$d \sim$	0	0	1	1
$d \sim (b \vee d) \sim b \vee d$	0	-	1	1
bvd	н	0	0	0
b	г	0		0
1000				

ostatniej kolumnie, bez względu na wartość logiczną zdań p i q, zawsze rzymujemy, że zdanie jest prawdziwe, zatem jest ono prawem rachunku lań. Zdanie to jest znane jako jedno z praw De Morgana

Wykaż, że zdanie jest prawem rachunku zdań.

$$\sim (p \lor q) \Leftrightarrow ((\sim p) \land (\sim q))$$
 drugie z praw De Morgana

Wykaż, że zdanie jest prawem rachunku zdań.

- a) $(\sim p) \lor p$
- prawo wyłączonego środka
- $d \Leftrightarrow (d \sim) \sim (q)$
- prawo podwojnego przeczenia
- $(b \land (b \land b)) \sim (b)$
- prawo sprzeczności

prawo odrywania

- (a) $(b \Rightarrow d) \Leftrightarrow (-b \Rightarrow b)$ (a) $b \Leftarrow [(b \Leftarrow d) \lor d]$ (p
- prawo transpozycji
- $(b \sim \lor d) \Leftrightarrow (b \Leftarrow d) \sim (J)$
- prawo zaprzeczenia implikacji

Sprawdź, czy podane zdanie jest prawem rachunku zdań.

 $(d \sim \Leftrightarrow b \sim) \Leftrightarrow (b \sim \Leftrightarrow d)$ (e)

 $b \sim \Leftrightarrow [d \vee (b \sim \wedge d \sim)]$ (c)

- ($l \Leftrightarrow d$) $\Leftrightarrow (l \Leftrightarrow d) \land (l \Leftrightarrow d) \land (l \Leftrightarrow d)$
 - e) $((p \lor q) \land (p \Rightarrow r)) \Rightarrow (q \Rightarrow r)$ $d \sim \Leftrightarrow [b \sim \lor (b \Leftrightarrow d)]$ (q
- f) $((p \land q) \Rightarrow r) \Leftrightarrow (p \Rightarrow (q \Rightarrow r))$

- לבסומא
- zyków obcych. Otrzymano następujące wyniki: 90 studentów zna język gielski i rosyjski, 20 – niemiecki i rosyjski, a 4 – wszystkie trzy języki. Ilu angielski, 81 – niemiecki, 75 – rosyjski, 45 – angielski i niemiecki, 25 – an-Wśród 180 studentów przeprowadzono ankietę dotyczącą znajomości jęspośród ankietowanych studentów nie zna żadnego z tych języków?
- Dane są zbiory: A zbiór liczb naturalnych mniejszych od 15, B zbiór liczb naturalnych podzielnych przez 3, $C = \{2, 3, 5, 7, 11, 13, 17, 19\}$, D – zbiór liczb naturalnych, które przy dzieleniu przez 4 dają resztę 1. Wypisz wszystkie elementy zbioru: ci.
- c) $A \cap B \cap C$,
- e) $A \cap (D \setminus B)$, f) $A \setminus (B \setminus D)$.
 - Wyznacz zbiory: $A \cap B$, $A \cup B$, $A \setminus B$ i $B \setminus A$. d) $A \setminus (B \cup C)$,
- d) $A = (-\infty, 0) \cup (1, 2), B = \langle 0, 4 \rangle$
 - a) $A = \langle -1; 4 \rangle$, B = (2; 5)b) A = (2;7), B = (3;5)
- e) $A = (-\infty; -1) \cup (3; 5), B = (-2; 4)$
- c) $A = \langle -4; 2 \rangle$, $B = \langle 2; 9 \rangle$
- f) $A = (-1; 2) \cup (5; \infty), B = (0; 5)$
- 4. Wykonaj mnożenie.
- a) (a+2b+3)(a-2)
- e) $2x(3x^2 2y)(2y 3x^2)$ d) $-4(x^2-2y)(2x^2-y)$
 - b) (2a b + c)(2a 3b)
- f) $(x+y)(x^2+y^2)(x-y)$
- c) (a+2b-3c)(2a-3b)
- 5. Wskaż liczbę całkowitą k, dla której $x \in (k; k+1)$.
- a) $x = \sqrt[3]{17}$ b) $x = \sqrt[3-25]{2}$ c) $x = (3-2\sqrt{2})^2$ d) $x = \sqrt{27-10\sqrt{2}}$
- Ile liczb naturalnych spełnia nierówność?
- a) $\frac{2x+1}{2} 2 < x \frac{x-3}{3}$
- c) $\frac{x-1}{4} \frac{2x-1}{5} \geqslant \frac{x-3}{2} \frac{2-x}{5}$
- b) $\frac{1}{2}x \frac{6x-3}{4} \ge -2 \frac{2x-1}{3}$ d) $\frac{2-x}{2} \frac{1}{3}x > \frac{1-4x}{5} \frac{3-x}{2}$
- Zaznacz na osi liczbowej zbiór liczb spełniających obie nierówności.
- a) |x| > 1 i $|x| \leqslant 9$ b) $|x| \geqslant 2$ i |x 2| < 4 c) |x| < 4 i $|x + 1| \geqslant 2$
- Dane są zbiory: $A = \{x \in \mathbb{R} : |x 3| < 4\}, B = \{x \in \mathbb{R} : |x + 2| \ge 3\}$ i $C = \{x \in \mathbf{R} : |x| \geqslant 3\}.$ Zaznacz na osi liczbowej zbiór:
 - a) $A \cap B$, b) $A \setminus B$, c) $B \setminus A$, d) $(A \cup C) \setminus B$, e) $(A \setminus B) \cup C$.