Pixelwise Gaussian Entropy

Deriving our approximation of the entropy for the observations resulting from acquiring line $\boldsymbol{\ell}$

We want to compute the entropy of $p(y_t \mid A^{\ell}, y_{< t})$

We can choose to model $p(x_t \mid y_{< t})$ as a pixelwise independent Gaussian, so that $p(x_t \mid y_{< t}) = \mathcal{N}(x_t; \bar{x}_t, S_{x_t})$ where \bar{x}_t is the sample mean of the belief distribution (samples $x_t \mid y_{< t}$), and S_{x_t} is the sample pixelwise variance, i.e. a diagonal covariance with entries $\sigma^2_{x_t,i}$ for pixels i.

Given that the measurement model $y_t = U(A^{\ell})x_t$ is linear (where $U(A^{\ell})$ makes a matrix with 1s on the diagonal at indices contained in A^{ℓ}), we get that $p(y_t \mid A^{\ell}, y_{< t})$ is a simple transformation of $p(x_t \mid y_{< t})$:

$$p(y_t \mid A^\ell, y_{< t}) = \mathcal{N}(y_t; U(A^\ell) ar{x}_t, U(A^\ell) S_{x_t} U(A^\ell)^ op)$$

The entropy of this distribution is then:

$$H(y_t \mid A^\ell, y_{< t}) = rac{1}{2} \mathrm{log}((2\pi e)^M | U(A^\ell) S_{x_t} U(A^\ell)^ op |)$$

The matrix multiplications of S_{x_t} have the effect of selecting only the variances of the pixels revealed by A^{ℓ} . Given that the determinant of a diagonal matrix is just the product of its diagonal, the entropy simplifies to:

$$H(y_t \mid A^\ell, y_{< t}) = rac{1}{2} \mathrm{log}((2\pi e)^M \prod_{i \in A^\ell} \sigma_{x_t, i}^2).$$

Bringing the product outside of the log to become a sum, we get finally:

$$H(y_t \mid A^\ell, y_{< t}) = \sum_{i \in A^\ell} rac{1}{2} \mathrm{log}((2\pi e)^{|A^\ell|} \sigma^2_{x_t, i})$$

In other words, the entropy of the measurement y_t observed by acquiring line ℓ is equal to the sum of pixelwise entropies of the pixels revealed by ℓ .

We then modify this further to make it computable, since for large $|A^{\ell}|$ the term $(2\pi e)^{|A^{\ell}|}$ causes float overflows:

$$egin{aligned} H(y_t \mid A^\ell, y_{< t}) &= \sum_{i \in A^\ell} rac{1}{2} \mathrm{log} \left((2\pi e)^{|A^\ell|} \sigma_{x_t, i}^2
ight) \ &= \sum_{i \in A^\ell} rac{1}{2} \left[\mathrm{log} ((2\pi e)^{|A^\ell|}) + \mathrm{log} (\sigma_{x_t, i}^2)
ight] \ &= \sum_{i \in A^\ell} rac{1}{2} \left[|A^\ell| \log ((2\pi e)) + \log (\sigma_{x_t, i}^2)
ight] \end{aligned}$$

Then if $|A^\ell|$ is the same for all ℓ we can even drop the first term from the argmax.