Chapitre 25

Logique propositionnelle

Sommaire. Formules propositionnelles.

```
Syntaxe. . . . . . . . .
1.2
1.3
   Formes normales.
   Formes normales négatives.
   2.3
   Forme normale disjonctive.
2.4
             Les propositions marquées de \star sont au programme de colles.
```

Formules propositionnelles.

Soit V un ensemble fini (ou dénombrable) de symboles appelés variables propositionnelles. On définit inductivement l'ensemble des formules propositionnelles sur $\mathbb V$:

Définition 1: Logique propositionnelle.

• \perp et \top sont des expressions logiques, Faux et Vrai respectivement.

1.1

1.2

Syntaxe.

• p est une variable propositionnelle de \mathbb{V} . • À partir de φ et ψ deux formules, on peut construire :

 $\begin{array}{ll} - & (\varphi \wedge \psi) \text{ (conjonction).} \\ - & (\varphi \vee \psi) \text{ (disjonction).} \end{array}$

- $-(\neg\varphi)$ (négation). Ici, φ et ψ désigneront toujours des formules.
- Toute formule propositionnelle peut être représentée par un arbre : avec les variables propositionnelles en tant
- que feuilles, et les constructeurs en tant que noeuds internes.

Définition 2: Valuation. Une valuation sur \mathbb{V} est une application $v : \mathbb{V} \to \{0, 1\}$.

On étend cette application aux formules propositionnelles : Soient φ, ψ des formules propositionnelles. On définit inductivement $v(\varphi)$ tel que : • $v(\bot) = 0$.

• $v(\varphi) = v(\varphi) \text{ si } \varphi \in \mathbb{V}.$ • $v(\varphi \wedge \psi) = v(\varphi) \times v(\psi)$.

• $v(\top) = 1$.

• $v(\varphi \lor \psi) = v(\varphi) + v(\psi) - v(\varphi) \times v(\psi)$.

Sémantique.

• $v(\neg \varphi) = 1 - v(\varphi)$.

Ici, v désignera toujours une valuation.

Remarque: Dans la pratique, on compare les tables de vérité de φ et ψ .

Il existe des liens logiques qui s'expriment à partir de ceux de base :

On note alors $\varphi \equiv \psi$. Ainsi, \equiv est une relation d'équivalence sur les formules.

Définition 3: Équivalence logique. 🖈 Deux formules φ et ψ sont **sémantiquement équivalentes** si pour toute valuation v sur \mathbb{V} , $v(\varphi) = v(\psi)$.

• L'équivalence $\varphi \leftrightarrow \psi \equiv \varphi \rightarrow \psi \land \psi \rightarrow \varphi$. • Vrai : $\top \equiv \varphi \vee \neg \varphi$.

• L'implication $\varphi \to \psi \equiv \neg \varphi \lor \psi$.

Définition 4: Autres constructeurs.

• Faux : $\perp \equiv \varphi \land \neg \varphi$.

 $\bullet \neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi.$

 $\bullet \ \neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi.$

Proposition 5: Lois de De Morgan. 🛨

Soient φ et ψ deux formules logiques. Alors :

1.3 Satisfiabilité.

Définition 7: Conséquence logique.

On le montre facilement en comparant les tables de vérités.

On note alors $v \models \varphi$. On dit alors qu'une formule est satisfiable si elle admet un modèle.

Définition 6: Modèles.

Preuve:

On dit que φ est en **conséquence logique** de ψ , et on note $\psi \models \varphi$ si tout modèle de ψ est modèle de φ . On étend cette notation à un ensemble Γ de formules, dans ce cas, on dit que φ est une **conséquence logique**

Si aucune valuation n'en est un modèle, φ est une antilogie, on note $\not\models \varphi$.

Soit φ une formule sur \mathbb{V} . Une valuation $v: \mathbb{V} \to \mathscr{B}$ est un **modèle** de φ si $v(\varphi) = 1$.

Une formule φ pour laquelle toute valuation est un modèle est une tautologie, on note $\models \varphi$.

de Γ si φ est en **conséquence logique** de toute formule de Γ .

 $\mathbf{2}$

Soient φ, ψ deux formules.

Formes normales.

Définition 8: Équisatisfiabilité

On appelle littéral une variable propositionnelle ou sa négation.

Deux formules φ et ψ sont **équisatisfiables** si φ est satisfiable si et seulement si ψ l'est.

2.1Formes normales négatives. Définition 9: Littéral.

• $\operatorname{nnF}(\varphi \wedge \psi) = \operatorname{nnF}(\varphi) \wedge \operatorname{nnF}(\psi)$ • $\operatorname{nnF}(\varphi \vee \psi) = \operatorname{nnF}(\varphi) \vee \operatorname{nnF}(\psi)$ • $\operatorname{nnF}(\neg(\varphi \vee \psi)) = \operatorname{nnF}(\neg\varphi) \wedge \operatorname{nnF}(\neg\psi)$

• $nnF(\varphi) = \varphi$ si c'est un littéral.

• $\operatorname{nnF}(\neg(\varphi \wedge \psi)) = \operatorname{nnF}(\neg\varphi) \vee \operatorname{nnF}(\neg\psi)$

Définition 10: Construction. *

• $\operatorname{nnF}(\neg \neg \varphi) = \operatorname{nnF}(\varphi)$

Une formule est dite en forme normale négative (FNN) si ses négations ne s'appliquent qu'aux variables. Pour une formule φ , on construit sa forme normale négative $nnF(\varphi)$ inductivement de la manière suivante :

Proposition 16

Définition 14: Forme normale conjonctive. \star

• $\operatorname{cnF}(\varphi \vee (\psi \vee \psi')) = \operatorname{cnF}(\varphi \vee \operatorname{cnF}(\psi \vee \psi')).$

On définit inductivement la mise sous FNC de φ en $cnF(\varphi)$ par :

Si φ est une formule sous FNN, $\operatorname{cnF}(\varphi)$ est sous FNC et $\operatorname{cnF}(\varphi) \equiv \varphi$.

On la note $\varphi[\varphi_1/p_i,...,\varphi_n/p_n]$. La substitution se définit inductivement : • $\varphi[\varphi_i/p_i] = \varphi_i \text{ si } \varphi = p_i.$ • $\varphi[\varphi_1/p_1,...,\varphi_n/p_n] = \neg \varphi'[...]$ si $\varphi = \neg \varphi'$.

La substitution des φ_i aux p_i est la formule obtenue en remplaçant simultanément chaque p_i par φ_i .

Supposons φ une tautologie. Soit v une valuation de la formule substituée., il existe ω telle que $\omega(\varphi) = v(\varphi[...])$.

Si φ est sous FNN, on peut construire une FNC équisatisfiable à φ en temps linéaire.

Soit φ une formule sur un esemble $\{p_1, ..., p_n\}$ et soient $\{\varphi_1, ..., \varphi_n\}$ des formules.

Si $\varphi = \varphi_1 \vee \varphi_2$, $\omega(\varphi) = \omega(\varphi_1 \vee \varphi_2) = \omega(\varphi_1) \vee \omega(\varphi_2) = v(\varphi_1[...]) \vee v(\varphi_2[...]) = v(\varphi_1[...]) \vee \varphi_2[...]) = v(\varphi)$. De même pour la conjonction, avec φ_1, φ_2 vérifiant l'hypothèse. Par principe d'induction structurelle, la propriété est vérifiée.

Proposition 18

Preuve:

Hérédité.

Étape 1:

Entrée: φ sous FNC. **Sortie:** 1 si φ est satisfiable, 0 sinon. 1. Simplifier les clauses.

Définition 19: Algorithme de Quine.

formule. Correction: assurée par le tiers-exclu.

Définition 21: Forme normale disjonctive. * Une formule est une forme normale disjonctive (FND) si c'est une disjonction de conjonctions élémentaires. Pour passer de φ sous FNN à $dnF(\varphi)$ sous FND, on procède par induction :

• $\operatorname{dnF}(\varphi \wedge (\psi \vee \psi')) = \operatorname{dnF}(\varphi \wedge \psi) \vee \operatorname{dnF}(\varphi \wedge \psi').$ • $\operatorname{dnF}(\varphi \wedge (\psi \wedge \psi')) = \operatorname{dnF}(\varphi \wedge \operatorname{dnF}(\psi \wedge \psi')).$

Si φ est sous FNN, $dnF(\varphi)$ est sous FND et $dnF(\varphi) \equiv \varphi$. Preuve:

On pose alors ψ la disjonction des φ_v pour tout modèle v de φ .

2.4Forme normale disjonctive. Définition 20: Conjonction élémentaire. Une **conjonction élémentaire** est une formule sans disjonctions.

Pour tout modèle v de φ , on construit :

$$\psi$$
 sous FND et $\psi \equiv \varphi$.

Définition 23

Proposition 11: Existence. Pour toute formule φ , $nnF(\varphi)$ est sous forme normale négative et $nnF(\varphi) \equiv \varphi$. Par induction sur les formules propositionnelles. Cas de base. Soit φ un littéral. $nnF(\varphi) = \varphi$ sous FNN et $nnF(\varphi) \equiv \varphi$. **Hérédité:** Soient φ, ψ telles que la propriété soit vraie sur elles-mêmes et leurs négations. Soit v une valuation de φ et ψ . On a $nnF(\varphi \wedge \psi) = nnF(\varphi) \wedge nnF(\psi)$ donc c'est bien sous forme normale négative par hypothèse. De plus, $v \models \text{nnF}(\varphi \land \psi) = \iff v \models \text{nnF}(\varphi) \land \text{nnF}(\psi) \iff v \models \varphi \text{ et } v \models \psi \iff v \models \varphi \land \psi.$ On a $nnF(\neg(\varphi \land \psi)) = nnF(\neg \varphi) \lor nnF(\neg \psi)$ donc c'est bien sous forme normale négative par hypothèse. De plus, $v \models \text{nnF}(\neg(\varphi \land \psi)) \Leftrightarrow v \models \text{nnF}(\neg\varphi) \lor \text{nnF}(\neg\psi) \Leftrightarrow v \models \neg\varphi \text{ ou } v \models \neg\psi \Leftrightarrow v \models \neg\varphi \lor \neg\psi \Leftrightarrow v \models \neg(\varphi \land \psi).$ Même raisonnement pour la disjonction. Par théorème d'induction, c'est vrai pour toute formule φ . Formes normales conjonctives. 2.2Définition 12: Problème SAT. Le problème SAT prend une formule en entrée et répond à la question : "Cette formule est-elle satisfiable ?". Définition 13: Clause. Une clause est une disjonction de littéraux.

Une formule est en forme normale conjonctive (FNC) si elle est une conjonction de clauses.

• $\operatorname{cnF}(\varphi) = \varphi \operatorname{si} \varphi \operatorname{litt\'{e}ral}$. • $\operatorname{cnF}(\varphi \vee \psi) = \varphi \vee \psi \text{ si } \varphi, \psi \text{ littéraux.}$ • $\operatorname{cnF}(\varphi \wedge \psi) = \operatorname{cnF}(\varphi) \wedge \operatorname{cnF}(\psi)$. • $\operatorname{cnF}(\varphi \vee (\psi \wedge \psi')) = \operatorname{cnF}(\varphi \vee \psi) \wedge \operatorname{cnF}(\varphi \wedge \psi').$

Proposition 15

2.3Algorithme de Quine

> • $\varphi[...] = \varphi_1[...] \wedge \varphi_2[...]$ si $\varphi = \varphi_1 \wedge \varphi_2$. • $\varphi[...] = \varphi_1[...] \vee \varphi_2[...]$ si $\varphi = \varphi_1 \vee \varphi_2$.

Définition 17: Substitution.

Soit v une valuation sur \mathbb{V} et ω sur $\{p_1, ..., p_n\}$: $\omega(p_i) = v(\varphi_i)$. Montrons que $\omega(\varphi) = v(\varphi[...])$. Cas de base. Trivial si $\varphi = \top$ ou $\varphi = \bot$. Si $\varphi = p_i$, alors $\varphi[...] = \varphi_i$ et $\omega(\varphi) = \omega(p_i) = v(\varphi_i)$.

Si $\varphi = \neg \varphi', \ \omega(\varphi) = \omega(\neg \varphi') = \neg \omega(\varphi') = \neg v(\varphi'[...]) = v(\neg \varphi'[...]) = v(\varphi[...]).$

Comme φ est tautologie, $w(\varphi) = 1$ donc $v(\varphi[...]) = 1$ donc $v \models \varphi[...]$, c'est une tautologie.

Une substitution dans une tautologie donne une tautologie.

Soit φ sur $\{p_1,...,p_n\}$ et $\{\varphi_1,...,\varphi_n\}$ des formules sur \mathbb{V} .

2. Si φ est une conjonction sur \emptyset , renvoyer 1. 3. Si φ contient \bot , renvoyer 0.

• Fusion : supprimer les doublons de littéraux.

• Si une clause en contient une autre, on la supprime.

4. Choisir la prochaine variable p dans l'une des clauses :

• Si Quine $(\varphi[\perp/p])$, renvoyer 1, sinon renvoyer Quine $(\varphi[\top/p])$.

• Tiers-exclu : les clauses contenant des littéraux opposés sont supprimées.

• Si une clause contient \perp , le supprimer. Terminaison: Toutes les opérations s'effectuent en temps fini. Il y a un nombre fini d'appels récursifs : variant d'appel donnée par le nombre de variables apparaissant dans la

• Si la clause est \top , la supprimer.

• $dnF(\varphi) = \varphi \text{ si } \varphi \text{ est littéral.}$ • $dnF(\varphi) = \varphi \text{ si } \varphi = l \wedge l' \text{ avec } l, l' \text{ littéraux.}$ • $\operatorname{dnF}(\varphi \vee \psi) = \operatorname{dnF}(\varphi) \vee \operatorname{dnF}(\psi)$.

Proposition 22

Une FND est complète si chaque variable est représentée une unique fois dans chaque conjonction élémentaire.

 $\varphi_v = \bigwedge_{p \in \mathbb{V}} l_p$ où $l_p = \begin{cases} p & \text{si } v(p) = 1 \\ \neg p & \text{sinon} \end{cases}$. On obtient alors ψ sous FND et $\psi \equiv \varphi$.