Automated model selection HL Chapter 4 – part 5

Before conducting any automated model selection at a minimum ...

...perform the following univariate analyses

- Categorical variables
 - Cross-tabulation
 - Collapsing or removal of categories if necessary/possible
- Continuous variables
 - Descriptive statistics and extreme observations
 - Removal/correction of outliers if necessary
 - Checking scale

Stepwise selection

(forwards and backwards)

Main effects model

 List ALL study variables in the model statement

Entering variables

- Select p_{Entry}
 - At step 0, the intercept is added
 - At each subsequent step, all study variables that are not yet part of the model are added (one at a time) to the model from the previous step
 - The new variable with the lowest p-value is selected into the model as long as the p-value is less than p_{Entry}

Removing variables

- Select p_{Exit}
 - At each step, after the new variable has entered the model, the p-values of all model covariates are compared to p_{Exit}
 - Variables with a p-value≥ p_{Exit} are removed from the model
 - p_{Exit} must be greater than p_{Entry}; otherwise the same variable may be repeatedly entered and removed

Categorical variables with > 2 categories

- SAS Class statement
 - Stepwise procedure tests overall statistical significance of the set of design variables
 - If only some of the design variables in a set are significant, the overall test may be non-significant
 - Important design variables may be missed (LOST)

Categorical variables with > 2 categories

- Design variables created in data step
 - Variables are treated as separate variables
 - It is possible that the final model only includes a subset of a set of design variables
 - This may not be biologically meaningful NONSENSE

Variables with 0 cells

- Interaction terms may have 0 cells
- In the stepwise procedure SAS output, find any table called

Analysis of Effects Eligible for Entry

 Determine which interaction terms could not be tested due to 0 cells (missing values for test statistic and p-value)

Scale assessment

- If you already assessed scale in a purposeful selection, you are golden
- If you have not assessed scale yet, you must do it now
- In this example, based on the results from purposeful selection, we keep all continuous variables linear

Pros and cons of stepwise selection

Pros

Quick and easy (in theory)

Cons

- Confounders may be missed
- Biological/clinical importance is ignored
- Model stability is ignored
- Categorical variables with >2 categories may be treated incorrectly

Conclusion

 Avoid automated stepwise model selection like the plague

proc logistic descending data=glow500; class site_id raterisk/param=ref ref=first; model fracture= site_id priorfrac age weight height All study variables /stepwise sle=0.15 sls=0.20 details; run; p_Entry pexit

Step	Variable entered	Model	p-values	Variable removed
2	RATERISK	RATERISK	0.0131	None
		RATERISK 2 vs. 1	0.0584	
		RATERISK 3 vs. 1	0.0033	
		FRACSCORE	< 0.0001	

Step	Variable entered	Model	p-values	Variable removed
3	HEIGHT	HEIGHT	0.0332	None
		RATERISK	0.0140	
		RATERISK 2 vs. 1	0.0817	
		RATERISK 3 vs. 1	0.0035	
		FRACSCORE	<0.0001	

Step	Variable entered	Model	p-values	Variable removed
4	PRIORFRAC	PRIORFRAC	0.0990	None
		HEIGHT	0.0355	
		RATERISK	0.0312	
		RATERISK 2 vs. 1	0.0946	
		RATERISK 3 vs. 1	0.0086	
		FRACSCORE	0.0002	
		RAC is not significa remove this variable		

Recall main effects model from purposeful selection

- Priorfrac
- Age
- Height
- Momfrac
- Armassist
- Raterisk (3 vs. 1,2)

Stepwise selection model

- Height
- Raterisk
- Fracscore is entirely different

Stepwise selection of interactions

- List the variables in the main effects model (here, height, raterisk and fracscore)
- Use transformed variables if indicated
- Also list all interactions of interest between model covariates
- Tell SAS to include the main effects in the model and to then select interactions

Stepwise selection of interactions

proc logistic descending data=glow500;

model fracture = height raterisk2 fracscore

height*raterisk2 height*fracscore raterisk2*fracscore

/stepwise sle=0.15 sls=0.20 include=3 details;

run;

Automatically include the first 3 variables listed; the first 3 variables are the main effects

Results

 In this example, no interactions are significant at the 0.15 level (results not shown)

Recall final model from purposeful selection

- Priorfrac
- Age
- Height
- Momfrac
- Armassist
- Raterisk (3 vs. 1,2)
- Age × Priorfrac
- Momfrac × Armassist

Stepwise selection model

- Height
- Raterisk
- Fracscore is entirely different

Conclusion repeated

 Avoid automated stepwise model selection like the plague

Main effects model

 List ALL study variables in the model statement

Minimum number of covariates

- Select start
 - Start is the minimum number of model covariates
 - Example: start=3
 With start=3, best subsets selection will not suggest models with only 1 or 2 covariates. There will be at least 3 covariates in each suggested model.

Maximum number of covariates

- Select stop
 - Stop is the maximum number of model covariates
 - Example: stop=8
 With stop=8, best subsets selection will not suggest models with more than 8 covariates

How many "best" models?

- Select best
 - Best is the number of models you would like to see for each number of model covariates
 - Example: start=3 stop=8 best=4
 With best=4, best subsets selection will show the best 4 models with 3 covariates, the best 4 models with 4 covariates, ..., the best 4 models with 8 covariates

What is "best"?

- How <u>should</u> best subset selection decide which models are best?
 - The models are not nested
 - → Likelihood ratio test not appropriate
 - Mallow's $\frac{C_q}{Q}$ should be used
 - Mallow's C_q allows for comparisons between nonnested models with different numbers of covariates

What is "best"?

- How does best subset selection in SAS decide which models are best?
 - SAS calculates Score Chi-square values
 - Score Chi-square values allow for comparisons between non-nested models
 - BUT: Score Chi-square values depend on the number of variables in the model
 - So, Score Chi-square values do not allow for comparisons between models with different numbers of covariates

Categorical variables with > 2 categories

- The SAS class statement does not work with best subsets selection
- Must create your own design variables
- That's a lot of work
- Variables are treated as separate variables
- It is possible that the final model only includes a subset of a set of design variables
- This may not be biologically meaningful NONSENSE

Variables with 0 cells

- Interaction terms may have 0 cells
- Best subsets selection lets you know which interaction terms were not tested

Scale assessment

- If you already assessed scale in a purposeful selection, you are golden
- If you have not assessed scale yet, you must do it now
- In this example, based on the results from purposeful selection, we keep all continuous variables linear

Pros and Cons

Pros

- Quick and easy (in theory)
- Variables missed in purposeful selection may be found

Pros and cons

Cons

- Biological/clinical importance is ignored
- Model stability is ignored
- Categorical variables with >2 categories may be treated incorrectly
- Cannot use class statement in SAS
- Should not be used in the presence of variables with 0 cells

Conclusion

- We <u>will not</u> use best subsets selection to find the best model
- We will use best subsets selection to make sure we didn't miss any important variables during purposeful model selection
- We will only run best subsets selection after completing purposeful selection to double check our variable selection

Example: GLOW500 data set

In the data step

- Create design variables s2-s6 for variable site id
- Create design variables r2, r3 for variable raterisk

proc logistic descending data=glow500;

model fracture= s2 s3 s4 s5 s6 priorfrac age weight
height bmi premeno momfrac
armassist smoke r2 r3 fracscore

All study variables

/ selection=score start=3 stop=8 best=4;

run;

Recall main effects model from purposeful selection

- Priorfrac
- Age
- Height
- Momfrac
- Armassist
- Raterisk (3 vs. 1,2)

Results from best subsets selection

Regression Models Selected by Score Criterion
of Score Variables Included in Model
Vars Chi-Square
3 45.2031 HEIGHT r3 FRACSCORE
3 44.4595 PRIORFRAC HEIGHT FRACSCORE
3 44.2335 PRIORFRAC r3 FRACSCORE
3 43.5541 r2 r3 FRACSCORE

FRACSCORE not included in purposeful selection model

Results from best subsets selection

Regr	ession Mod	els Selected by Score Criterion
# of Vars	Score	Variables Included in Model
Varo	Square	
4	48.7581	PRIORFRAC HEIGHT r3 FRACSCORE
4	48.3267	WEIGHT BMI r3 FRACSCORE
4	47.9567	HEIGHT r2 r3 FRACSCORE
4	47.5145	PRIORFRAC HEIGHT MOMFRAC FRACSCORE

FRACSCORE, WEIGHT, BMI not included in purposeful selection model

Results from best subsets selection

Regr	ression Mode	ls Selected by Score Criterion
	Score Chi-Square	Variables Included in Model
5	51.5791	PRIORFRAC WEIGHT BMI r3 FRACSCORE
5	51.2432	PRIORFRAC HEIGHT r2 r3 FRACSCORE
5	51.1475	PRIORFRAC HEIGHT MOMFRAC r3 FRACSCORE
5	50.9131	WEIGHT BMI r2 r3 FRACSCORE

FRACSCORE, WEIGHT, BMI not included in purposeful selection model

Regre	ession Mode	Is Selected by Score Criterion
# of	Score	Variables Included in Model
Vars	Chi-Square	
6	54.1579	PRIORFRAC WEIGHT BMI MOMFRAC
		r3 FRACSCORE
6	53.9346	PRIORFRAC WEIGHT BMI r2 r3
		FRACSCORE
6	53.2872	PRIORFRAC HEIGHT MOMFRAC r2 r3
		FRACSCORE
6	53.2592	s2 PRIORFRAC WEIGHT BMI r3
		FRACSCORE
	FRACSC	ORE, WEIGHT, BMI not included
		purposeful selection model

Res	ults from	best subsets selection
Regr	ession Mod	els Selected by Score Criterion
# of	Score	Variables Included in Model
Vars	Chi-Squar	e
7	56.1607	PRIORFRAC WEIGHT BMI MOMFRAC r2
		r3 FRACSCORE
7	55.7467	s2 PRIORFRAC WEIGHT BMI MOMFRAC
		r3 FRACSCORE
7	55.7156	PRIORFRAC WEIGHT HEIGHT BMI r2 r3
		FRACSCORE
7 :	55.6436	PRIORFRAC WEIGHT BMI MOMFRAC
		SMOKE r3 FRACSCORE
T	FRAG	CSCORE, WEIGHT, BMI not included
		in purposeful selection model

Regre	ession Model	s Selected by Score Criterion
# of	Score	Variables Included in Model
Vars	Chi-Square	
8	57.7211	PRIORFRAC WEIGHT HEIGHT BMI
		MOMFRAC r2 r3 FRACSCORE
8	57.5959	PRIORFRAC WEIGHT BMI MOMFRAC
		SMOKE r2 r3 FRACSCORE
8	57.5018	s2 PRIORFRAC WEIGHT BMI MOMFRAC
		r2 r3 FRACSCORE
8	57.4602	PRIORFRAC AGE WEIGHT BMI
		MOMFRAC ARMASSIST r2 r3
	FRACS	SCORE, WEIGHT, BMI not included
	i	n purposeful selection model

Should we change the main effects model from purposeful selection?

- May want to consider FRACSCORE
- However, FRACSCORE is a summary variable that may not be very meaningful
- May want to consider WEIGHT and/or BMI instead of HEIGHT
- May want to consider removing ARMASSIST

Best subsets selection of interactions

- List the variables in the main effects model (let's use the main effects model from purposeful selection)
- Use transformed variables if indicated
- Also list all interactions of interest between model covariates
- Tell SAS to include the main effects in the model and to then select interactions

Best subsets selection of interactions

proc logistic descending data=glow500;

model fracture priorfrac momfrac armassist raterisk2 height age

priorfrac*momfrac priorfrac*armassist priorfrac*raterisk2 priorfrac*height priorfrac*age momfrac*armassist momfrac*raterisk2 momfrac*height momfrac*age armassist*raterisk2 armassist*height armassist*age raterisk2*height raterisk2*age height*age

/selection=score start=6 stop=10 best=4(nclude=6;)

run;

Automatically include the first 6 variables listed; the first 6 variables are the main effects

Results

- In this example, the interactions most commonly selected are
 - Momfrac*armassist
 - Priorfrac*age
 - Armassist*height

(Results not shown)

Recall final model from purposeful selection

- Priorfrac
- Age
- Height
- Momfrac
- Armassist
- Raterisk (3 vs. 1,2)
- Age × Priorfrac
- Momfrac × Armassist

- Armassist*height is not statistically significant in this model (p=0.2533)
- Keep model from purposeful selection

Conclusion repeated

- We <u>will not</u> use best subsets selection to find the best model
- We will use best subsets selection to make sure we didn't miss any important variables during purposeful model selection
- We will only run best subsets selection after completing purposeful selection to double check our variable selection