Partiel Corrigé

Exercice 1

1. L'adhérence de A est le plus petit fermé contenant A, et c'est donc en particulier un fermé. Il est donc clair que $\overline{\overline{A}} = \overline{A}$, $\overline{\emptyset} = \emptyset$ et $A \subset \overline{A}$. Pour l'union, comme $A \subset \overline{A}$ et de même pour B, on a

$$A \cup B \subset \overline{A} \cup \overline{B}$$
.

qui est un fermé puisque c'est l'union de deux fermés, on en déduit donc que

$$\overline{A \cup B} \subset \overline{A} \cup \overline{B}$$
.

Réciproquement, on a

$$A \subset A \cup B \subset \overline{A \cup B}$$

et donc

$$\overline{A} \subset \overline{A \cup B}$$
.

Puisqu'il en va de même pour B, on a finalement

$$\overline{A} \cup \overline{B} \subset \overline{A \cup B}$$

et on a bien l'égalité.

2. On va définir la topologie par l'ensemble de ses parties fermées \mathcal{F} . Comme les fermés sont exactement les parties égales à leur adhérence, on va définir

$$\mathcal{F} := \{ A \subset X \text{ t.q. } \overline{A} = A \}.$$

Montrons qu'il s'agit bien de l'ensemble des fermés d'une topologie. On sait que $\emptyset = \overline{\emptyset}$ et $X \subset \overline{X} \subset X$, donc X et \emptyset sont bien des fermés. Soient F et G deux fermés, montrons que leur union l'est également :

$$\overline{F \cup G} = \overline{F} \cup \overline{G} = F \cup G$$

en utilisant successivement le fait que $A \mapsto \overline{A}$ préserve l'union, et que F et G en sont des points fixes. Donc $F \cup G$ est également fermé. Montrons enfin qu'une intersection quelconque de fermés est également fermée. Soit (F_i) une famille de fermés. Remarquons tout d'abord que $A \mapsto \overline{A}$ est croissante. En effet si $A \subset B$,

$$\overline{B} = \overline{A \cup B \backslash A} = \overline{A} \cup \overline{B \backslash A}$$

et donc $\overline{A} \subset \overline{B}$. Ainsi, pour tout i,

$$\bigcap_{i} F_{i} \subset F_{i} \Rightarrow \overline{\bigcap_{i} F_{i}} \subset \overline{F_{i}} = F_{i},$$

d'où

$$\overline{\bigcap_i F_i} \subset \bigcap_i F_i$$

et on a bien l'égalité.

On a montré que les fermés sont exactement les ensembles dans l'image de l'application $A \mapsto \overline{A}$. Si B est un fermé contenant A, par croissance de l'application $C \mapsto \overline{C}$, on a $A \subset \overline{A} \subset \overline{B} = B$. Cela montre que \overline{A} est bien le plus petit fermé contenant A, il s'agit donc bien de son adhérence au sens usuel du terme.

Exercice 2

- 1. L'espace X_1 n'est pas compact car il n'est pas borné pour la distance induite par la norme euclidienne de \mathbb{R}^2 .
- Montrons que X_2 est compact. Soit (U_i) un recouvrement de X_2 par des ouverts. il existe un des ouverts U_{i_0} contenant $0 \in X_2$, et par conséquent une boule $\mathcal{B}(0,r)$. Si $\frac{2}{n} < r$, le cercle $\mathcal{C}_{\frac{1}{n}}$ est entièrement contenu dans cette boule. L'ensemble $\bigcup_{n < \frac{r}{2}} \mathcal{C}_{\frac{1}{n}}$ est compact car c'est une union finie de parties compactes et il est également recouvert par les U_i . On peut donc en extraire un sous-recouvrement fini:

$$\bigcup_{n<\frac{r}{2}} \mathcal{C}_{\frac{1}{n}} \subset \bigcup_{j=1}^{N} U_{i_{j}}.$$

On a donc finalement

$$X_2 = \bigcup_{n < \frac{r}{2}} \mathcal{C}_{\frac{1}{n}} \cup \bigcup_{n \geqslant \frac{r}{2}} \mathcal{C}_{\frac{1}{n}} \subset \bigcup_{j=1}^N U_{i_j} \cup U_{i_0}$$

et X_2 est bien compact.

2. Le produit $\prod_{n\geqslant 1} S^1$ est compact par le théorème de Tychonoff, il suffit donc de montrer que X_3 est fermé dans ce dernier pour en établir la compacité. De plus, comme le produit est dénombrable, la topologie est engendrée par une distance. Soit $(u^p) = ((u_n^p)_n)$ une suite d'éléments de X_3 qui converge vers $u = (u_n)$ lorsque p tend vers l'infini. Si pour tout n $u_n = 1$ la limite u est bien dans X_3 . Sinon il existe un indice n_0 tel que $u_{n_0} \neq 1$. Par convergence de la suite, il existe un rang p_0 à partir duquel $u^p \in \{x \in \prod_{n\geqslant 1} S^1$ t.q. $x_{n_0} \neq 1\}$ qui est un voisinage ouvert de u. Cela veut dire que pour $p \geqslant p_0$ on a $u_{n_0}^p \neq 1$, et donc pour $n \neq n_0$ et $p \geqslant p_0$, $u_n^p = 1$. Par passage à la limite on a pour tout $n \neq n_0$ $u_n = 1$ et la limite u est bien dans X_3 , qui est par conséquent fermé, donc compact.

Autre preuve : le complémentaire de X_3 dans le produit est l'ensemble des points dont au moins deux des coordonnées sont diférentes de 1, c'est à dire

$$\prod_{i < j} S^1 - X_3 = \bigcup_{i < j} (S^1)^{i-1} \times (S^1 - \{1\}) \times (S^1)^{j-i-1} \times (S^1 - \{1\}) \times (S^1)^{\mathbb{N}}.$$

De plus, c'est une union d'ouverts, c'est donc un ouvert.

3. Montrons que X_4 n'est pas compact. On note π l'application de passage au quotient. On rappelle que les ouverts sont ceux dont l'image réciproque par π est ouverte. On note $U_n := \pi(S^1 \times \{n\} \setminus \{(1,n)\})$ qui est un ouvert de X_4 : le n-ième cercle moins le point commun à tous

les cercles. On note ensuite $V := \pi((S^1 \setminus \{-1\}) \times \mathbb{N})$ l'union de tous les cercles sauf un point dans chaque. Comme la trace sur chacun des cercles est un ouvert, V est également ouvert. Les U_n et V forment un recouvrement ouvert de X_4 dont il n'existe aucun sous-recouvrement fini car chacun des (-1,n) appartient uniquement à U_n , qui doit dès lors apparaître dans le recouvrement.

4. On définit $f: X_2 \to X_3$ qui à $x \in \mathcal{C}_{\frac{1}{m}}$ associe

$$f(x)_n = \begin{cases} 1 - nx \in S^1 \text{ si } m = n \\ 1 \text{ sinon.} \end{cases}$$

Il est clair que f est bijective, de réciproque g qui à $(1)_n$ associe 0 et à $u \in X_3 - \{(1)\}$ associe $\frac{1-u_n}{n}$ où n est l'unique rang tel que $u_n \neq 1$. Montrons que f est continue, ce qui assurera que c'est un homéomorphisme puisque c'est une bijection entre deux compacts.

Pour montrer que f est continue, puisque X_3 est muni de la topologie induite par la topologie produit, il suffit de montrer que les projections $\pi_n \circ f$ sur les différents facteurs sont continues. En écrivant $X_2 = \mathcal{C}_{\frac{1}{m}} \cup \bigcup_{n \neq m} \mathcal{C}_{\frac{1}{m}}$, on a écrit X_2 comme l'union de deux parties compactes, donc fermées. Pour montrer que $\pi_m \circ f$ est continue, il suffit de montrer que sa restriction à chacun des deux fermés est continue. Or, elle vaut une similitude sur le premier, et 0 sur le second, elle est donc bien continue.

- 5. On définit $\varphi:(x,n)\in S^1\times\mathbb{N}\mapsto n(1+x)$, qui est continue car sa restriction a chacun des cercles est continue. Elle devient bijective en passant au quotient.
- 6. Supposons par l'absurde qu'on ait une base dénombrable de voisinages de 1. Soit (U_n) une telle base. Alors pour tout n, $\pi^{-1}(U_n \cap S^1 \times \{n\})$ est un voisinage de $(1, n) \in S^1 \times \{n\}$, on peut donc trouver $1 \neq x_n \in U_n \cap S^1 \times \{n\}$. Alors l'ensemble $V := \bigcup_n (S^1 \times \{n\}) \{x_n\}$ est un ensemble ouvert car son intersection avec chacun des $S^1 \times \{n\}$ est ouverte, c'est donc un voisinage de 1. Sauf qu'il ne contient aucun U_n puisque U_n contient x_n et pas V. C'est absurde, il n'y a donc pas de base de voisinage dénombrable.

La topologie de X_1 étant métrique, elle est à base dénombrable de voisinages. Comme X_4 ne l'est pas, les deux espaces ne sauraient être homéomorphes.

Exercice 3

- 1. L'application $(x, y) \mapsto xy$ est continue en (e, e), donc si V est un voisinage de e il existe un ouvert produit $U_1 \times U_2$ tel que $U_1 \cdot U_2 \subset V$. Quitte à considérer $U_1 \cap U_2$, qui est également un voisinage de e, on peut supposer que $U_1 = U_2 = U$. On prend alors $W = U \cap U^{-1}$ qui est également un voisinage de e, mais qui vérifie lui $W^{-1} = W$.
- 2. Soit V un voisinage de e. Soit $x \in \overline{V}$, alors xV^{-1} est un voisinage de x par continuité de l'application inverse et de la multiplication par x. Ce voisinage de x intersecte donc V, et on a l'existence de v_1 et v_2 tels que $xv_1^{-1} = v_2$, c'est à dire $x = v_1v_2 \in W \cdot W$.

On en déduit que G a une base de voisinages fermés : quitte à composer par une multiplication, qui est un homéomorphisme, il suffit de le montrer pour e. Si V est un voisinage de e, il existe W voisinage de e tel que $W \cdot W \subset V$, et on a donc $\overline{W} \subset W \cdot W \subset V$ qui est un voisinage fermé de e inclu dans V.

- 3. Comme G est à base de voisinages fermés, X est régulier : soit $x \notin F$. Le complémentaire de F est ouvert, on peut donc trouver un voisinage V de x inclu dedans, et on peut le supposer fermé puisque G a une base de voisinages fermés. On a donc $x \in \mathring{V}$, $F \subset G V$ et ce sont bien deux ouverts disjoints.
- 4. Pour tout p, comme I_p est compact, $T(I_p)$ est compact également car T est continue. Comme X est séparé, $T(I_p)$ est donc fermé dans X. De plus, $\mathbb{R} = \bigcup_p I_p$, donc on a également $X = \bigcup_p T(I_p)$. On a écrit X comme une union dénombrable de fermés. Comme X est complet car compact et métrique, le théorème de Baire assure que l'un d'eux est d'intérieur non vide. (en fait, la compacité de X suffirait car le théorème de Baire est vrai dans les espaces localement compact, en particulier les compacts.
- 5. On prend un p tel que $T(I_p) \neq \emptyset$, X est alors recouvert par les $T(x) + T(I_p)$ pour $x \in \mathbb{R}$. Comme il est compact on peut en extraire un sous-recouvrement fini, ce qui donne

$$X = \bigcup_{1}^{N} T(x_i) + T(I_p).$$

Comme T est bijectif, on en déduit que $\mathbb{R} = T^{-1}(X) = \bigcup_{1}^{N} x_i + I_p$. C'est absurde car la partie de droite est une union finie de compacts, donc par exemple bornée, elle ne saurait donc être égale à \mathbb{R} tout entier.

6. L'application

$$f(x) := \begin{cases} 2 - \exp(2i\pi \frac{x}{1+|x|}) & \text{si } x \leq 0 \\ \exp(-2i\pi \frac{x}{1+|x|}) & \text{si } x \geq 0 \end{cases}$$

fournit un contre-exemple. Elle se prolonge à $\overline{\mathbb{R}}$ qui est compact, son image est donc compact. On vérifie aisément qu'elle est bijective. Son image est constituée de deux cercles tangents.

Exercice 4

- 1. a) Soit $\varepsilon > 0$. Comme $V_{\varepsilon}(K) = \{d_K \leqslant \varepsilon\}$, c'est un fermé car l'application d_K est continue. Par convergence de (K_n) , il existe un rang à partir duquel $K_n \subset V_{\varepsilon}(K)$, et donc (x_n) est à valeurs dans $V_{\varepsilon}(K)$ à partir d'un certain rang. En passant à la limite il vient que $x \in V_{\varepsilon}(K)$ car c'est un fermé. Ainsi, si pour tout $\varepsilon > 0$ on a $d_K(x) \leqslant \varepsilon$, il est clair que $d_K(x) = 0$ et donc que $x \in K$.
- b) Quitte à restreindre V, on peut supposer que V est une boule fermée $\overline{\mathcal{B}}(x,r)$. Par convergence de la suite (K_n) il existe un rang à partir duquel $K_n \subset V_r(K)$ et $K \subset V_r(K_n)$. En particulier, à partir de ce même rang $x \in V_r(K_n)$ et il existe donc $x_n \in K_n$ tel que $x \in \overline{\mathcal{B}}(x_n,r)$, ce qui signifie aussi que $x_n \in \overline{\mathcal{B}}(x,r) = V$. Ainsi $V \cap K_n \neq \emptyset$.
- 2. Pour chaque m et n'importe quelle suite K_n , la suite intersectée $K_n \cap U_m$ admet soit une sous-suite d'ensembles non vides, soit admet une sous-suite constituée uniquement de \emptyset . Il suffit donc de réaliser une extraction diagonale pour chacun des U_m : on peut trouver φ_0 telle que $K_{\varphi_0(n)} \cap U_0$ soit ultimement non vide ou stationnaire à \emptyset . Par récurrence on trouve φ_m telle que $K_{\varphi_0 \circ \cdots \circ \varphi_m(n)} \cap U_m$ soit ultimement non vide ou stationnaire à \emptyset . On pose ensuite $\varphi(n) := \varphi_0 \circ \cdots \circ \varphi_n(n)$ qui convient.
- 3. Montrons que L est compact. Soit $x \notin L$, il existe donc un voisinage ouvert de x qui ne rencontre pas tous les $K_{\varphi(n)}$ à partir d'un certain rang. Aucun point de V ne saurait donc être

dans L car ils ont tous eux aussi un voisinage qui ne rencontre pas ultimement les $K_{\varphi(n)}:V$. Cela montre que le complémentaire de L est ouvert, ce qui signifie que ce dernier est fermé, donc compact.

4. a) Soit maintenant $\varepsilon > 0$. Pour chaque $x \in L$ on peut trouver un ouvert $U_{m(x)}$ tel que

$$x \in U_{m(x)} \subset \mathcal{B}\left(x, \frac{\varepsilon}{2}\right)$$
.

Les $(U_{m(x)})$ recouvrent L, on peut donc en extraire un sous-recouvrement fini :

$$L \subset \bigcup_{1}^{p} U_{m(x_i)} =: U \subset V_{\varepsilon}(L).$$

On prend $M = \{m(x_i)\}_{1 \leq i \leq p}$. On a bien $U_{m(x)} \cap L \neq \emptyset$ car il contient x. Et ils sont bien de diamètre inférieur à ε car ils sont inclus dans une boule de rayon $\frac{\varepsilon}{2}$.

- b) X U est compact, donc la fonction d_L atteint son minimum a. Celui-ci est strictement positif car X U est disjoint de L. On prend alors r < a. Si $d_L(x) \le r$, alors $d_L(x) < a$ et donc $x \notin X U$, donc $x \in U$.
- c) Si $y \notin U$, on a aussi $y \notin V_r(L)$ et on peut trouver un voisinage de y qui soit inclu dans $X V_r(L)$ car c'est un ouvert. Quitte à le restreindre, on peut le prendre égal à un certain $U_{m(y)}$. Le complémentaire de U, qui est compact car c'est un fermé, est recouvert par les $U_{m(y)}$ et on peut donc également en extraire un sous-recouvrement fini :

$$X - U \subset \bigcup_{1}^{q} U_{m(y_j)}.$$

On prend alors $N = \{m(y_j)\}_{1 \leq j \leq q}$.

- d) Les suites $(K_{\varphi(n)} \cap U_m)$ stationnent soit à \emptyset (type I) soit sont ultimement non vide (type II).
 - Si $m \in M$, U_m est un voisinage d'un point de L, donc la suite est de type II par définition de L.
 - Si $m \in N$, et si par l'absurde la suite est de type II, on peut trouver $x_n \in K_{\varphi(n)} \cap U_m \subset X V_r(L) = \{d_L > r\}$. Soit x une valeur d'adhérence de (x_n) . Alors pour tout voisinage V de x, la suite $V \cap K_{\varphi(n)}$ est ultimement non vide puisque (x_n) est à valeurs dans V à partir d'un certain rang. Ainsi $x \in L$. Or, par continuité de d_L , on a $d_L(x) \ge r > 0$, c'est absurde. Donc la suite est de type I.

De plus, comme $X = (X - U) \cup U$, les $(U_m)_{m \in M \cup N}$ recouvrent X.

- e) Soit n_0 un rang à partir duquel les ensembles $K_{\varphi(n)} \cap U_m$ soient vides ou non vides suivant que $m \in M$ ou $m \in N$.
 - Si $z \in K_{\varphi(n)}$, il est dans l'un des $(U_m)_{m \in M \cup N}$ car c'est un recouvrement de X. Il ne saurait être dans un des $(U_m)_{m \in N}$ car les $U_m \cap K_{\varphi(n)}$ sont vides pour $m \in N$. Il est dans l'un des U_m pour $m \in M$, donc dans U. Or $U \subset V_{\varepsilon}(L)$, ainsi $K_{\varphi(n)} \subset V_{\varepsilon}(L)$.

- Réciproquement si $z \in L$, il est dans l'un des U_m pour $m \in M$. On peut trouver $x \in K_{\varphi(n)} \cap U_m$ car cet ensemble est non vide. Comme le diamètre de U_m est plus petit que ε , on a $z \in V_{\varepsilon}(K_{\varphi(n)})$ puis $L \subset V_{\varepsilon}(K_{\varphi(n)})$, ce qui achève de montrer que $\delta_X(L, K_{\varphi(n)}) < \varepsilon$. On a bien la convergence.