论题 1-6 作业

姓名: 陈劭源 学号: 161240004

1 [UD] Problem 6.7

	$ullet$ $B\setminus A;$
	• $(A \cup B) \setminus (A \cap B)$;
	• $A \cup B \cup C$;
	$ullet \ (B\cap C)\setminus A;$
	• $((A \cap B) \cup (A \cap C) \cup (B \cap C)) \setminus (A \cup B \cup C)$.
2	[UD] Problem 6.16
(a)	For every n in A , $n = x^2$ where x is an integer, therefore n is an integer, i.e. $n \in B$, so $A \subseteq B$. \square
(b)	For every t in A , t is a real number, there exists a real number $x = t/2$, such that $t = 2x$, so $t \in B$. \Box
(c)	For every point (x, y) in A , we have $y = (5 - 3x)/2$, therefore $2y + 3x = 5$, which means that (x, y) is also in B . So $A \subseteq B$.
3	[UD] Problem 6.17
(a)	A is a proper subset of B. For every (x,y) in A, we have $xy > 0$, so both x and y are nonzero, thus $x^2 + y^2 > 0$, therefore A is a subset of B. However, $(1,-1)$ is an element of B, but not an element of A, so A is a proper subset of B.
(b)	A is a proper subset of B. By theorem 6.10, we have $A \subseteq B$. However, $(0,0)$ is an element of B,

but not an element of A, so A is a proper subset of B.

4 [UD] Problem 7.1

(a)	For every x in universe, by definition of complement, if $x \in A$, then $x \notin A^c$ and if $x \notin A^c$ then $x \in (A^c)^c$, therefore we have if $x \in A$, then $x \in (A^c)^c$, i.e. A is a subset of $(A^c)^c$. $(A^c)^c$ is a subset of A likewise. So $(A^c)^c = A$.
(b)	For every x in $A \cap (B \cup C)$, we have $x \in A$, and $x \in B$ or C , so $x \in A$ and B or $x \in A$ and C , thus $A \cap (B \cup C)$ is a subset of $(A \cap B) \cup (A \cap C)$. For every x in $(A \cap B) \cup (A \cap C)$, we have $x \in A$ and B or $x \in A$ and C , so $x \in A$, and $x \in B$ or C , thus $(A \cap B) \cup (A \cap C)$ is a subset of $A \cap (B \cup C)$. So $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
(c)	For every x in $X \setminus (A \cap B)$, we have $x \in X$ and, $x \notin A$ or $x \notin B$, thus $x \in X$ and $x \notin A$, or $x \in X$ and $x \notin B$, therefore $X \setminus (A \cap B)$ is a subset of $(X \setminus A) \cup (X \setminus B)$. For every x in $(X \setminus A) \cup (X \setminus B)$, we have $x \in X$ and $x \notin A$, or $x \in X$ and $x \notin B$, thus $x \in X$ and, $x \notin A$ or $x \notin B$, so $(X \setminus A) \cup (X \setminus B)$ is a subset of $X \setminus (A \cap B)$. Therefore $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.
(d)	Since A, B are subsets of X , for every $x \in X$, if $x \in A$ then $x \in B$ and if $x \notin B$ then $x \notin A$ are equivalent, so $A \subseteq B$ if and only if $(X \setminus B) \subseteq (X \setminus A)$.
(e)	If $A \cap B = B$, then for every $x, x \in B$ and $x \in A$ and B are equivalent, so $x \in B$ implies $x \in A$, i.e. A is a subset of B . If $B \subseteq A$, for every $x, x \in B$ implies $x \in A$, thus $x \in B$ and $x \in A$ and B are equivalent, so $A \cap B = B$. Therefore, $A \cap B = B$ if and only if $B \subseteq A$.
5	[UD] Problem 7.8
(a)	(ii);
(b)	(i), (ii), (iii), (iv), (v);
(c)	For every x in $(A \cap B) \setminus C$, we have $x \in A$ and B and $x \notin C$, so $x \in A$ and $x \notin C$, and $x \in B$ and $x \notin C$, thus $(A \cap B) \setminus C$ is a subset of $(A \setminus C) \cap (B \setminus C)$. Likewise $(A \setminus C) \cap (B \setminus C)$ is a subset of $(A \cap B) \setminus C$. Therefore $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.
6	[UD] Problem 7.9
(a)	For every x in $A \setminus B$, we have $x \in A$ and $x \notin B$, so $A \setminus B$ and B are disjoint.
(b)	For every x in $A \cup B$, we have $x \in A$ or $x \in B$, so $x \in A$, or $x \in B$ and $x \notin A$, therefore $A \cup B$ is a subset of $(A \setminus B) \cup B$. For every x in $(A \setminus B) \cup B$, we have $x \in A$, or $x \in B$ and $x \notin A$, so $x \in A$ or $x \in B$, therefore $(A \setminus B) \cup B$ is a subset of $A \cup B$. So $A \cup B = (A \setminus B) \cup B$

7 [UD] Problem 7.10

This statement is false. Here is a counterexample. Let $A = \{1,2\}$, $B = \{1\}$ and $C = \{2\}$, then $A \cup B = A \cup C$, but $B \neq C$.

8 [UD] Problem 7.11

This statement is true. We know that for every $x, x \in S$ if and only if $x \cap S = x$. For every $x \in A$, let Y = x, then $B \cap Y = A \cap Y = x$, so $x \in B$, thus A is a subset of B. B is a subset of A likewise. So the statement is true.

9 [UD] Problem 8.1

(a)
$$\bigcup_{n=1}^{\infty} A_n = [0,1) \cup [0,1/2) \cup [0,1/3) \cdots = [0,1) ;$$
$$\bigcup_{n=1}^{\infty} B_n = [0,1] \cup [0,1/2] \cup [0,1/3] \cdots = [0,1] ;$$
$$\bigcup_{n=1}^{\infty} C_n = (0,1) \cup (0,1/2) \cup (0,1/3) \cdots = (0,1)$$

(b)
$$\bigcap_{\substack{n=1\\ \infty}}^{\infty} A_n = [0,1) \cap [0,1/2) \cap [0,1/3) \dots = \{0\} ;$$
$$\bigcap_{\substack{n=1\\ \infty}}^{\infty} B_n = [0,1] \cap [0,1/2] \cap [0,1/3] \dots = \{0\} ;$$
$$\bigcap_{n=1}^{\infty} C_n = (0,1) \cap (0,1/2) \cap (0,1/3) \dots = \emptyset$$

(c) No. Because A_0 is undefined.

10 [UD] Problem **8.4**

This statement is false. Here is a counterexample: let $A_n = (n, n + \frac{1}{2})$, $B_n = [n, n + \frac{1}{2}]$, for all positive integer n, $A_n \subset B_n$ holds, however,

$$\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} B_n = \emptyset$$

which does not satisfy the definition of strict inclusion.

11 [UD] Problem 8.7

- (a) Suppose, to the contrary, that $\bigcap_{\alpha \in I} A_{\alpha} \neq \emptyset$, then there exists $x \in \bigcap_{\alpha \in I} A_{\alpha}$, however, there exists $\alpha_0 \in I$ such that $A_{\alpha_0} = \emptyset$, so $x \in \emptyset$, which leads to a contradiction. Therefore $\bigcap_{\alpha \in I} A_{\alpha} = \emptyset$. \square
- (b) Let *X* be the universe. For all *x* in *X*, there exists $\alpha_0 \in I$, such that $A_{\alpha_0} = X$, so $x \in \bigcup_{\alpha \in I} A_{\alpha} = X$. \square
- (c) For all $x \in B$, for all $\alpha \in I$, we have $x \in A_{\alpha}$, so $x \in \bigcap_{\alpha \in I} A_{\alpha}$, therefore $B \subseteq \bigcap_{\alpha \in I} A_{\alpha}$.

12 [UD] Problem 8.8

 $A=\mathbb{Z}$.

Proof: for every integer m, there exists n=|m| such that $m\notin\mathbb{R}\setminus\{-n,-n+1,\cdots,0,\cdots,n-1,n\}$, thus $n\notin\bigcap_{n\in\mathbb{Z}^+}\mathbb{R}\setminus\{-n,-n+1,\cdots,0,\cdots,n-1,n\}$, i.e. $m\in A$, so \mathbb{Z} is a subset of A. For every x in A, $x\notin\bigcap_{n\in\mathbb{Z}^+}\mathbb{R}\setminus\{-n,-n+1,\cdots,0,\cdots,n-1,n\}$, that is, there exists a positive integer n, such that $x\notin\mathbb{R}\setminus\{-n,-n+1,\cdots,0,\cdots,n-1,n\}$, i.e. $x\in\{-n,-n+1,\cdots,0,\cdots,n-1,n\}$, so $x\in\mathbb{Z}$, therefore \mathbb{Z} is a subset of A. By the definition of equality of two sets, we get $\mathbb{Z}=A$.

13 [UD] Problem **8.9**

 $A=\mathbb{Q}\setminus\{n:n\neq 2m,m\in\mathbb{Z}\}.$

Proof: for every real number x in $\bigcap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$, for every integer n, we have $x\notin\mathbb{R}\setminus 2n$, so $\bigcap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$ is a subset of $\{n:n\neq 2m,m\in\mathbb{Z}\}$. For every real number x in $\{n:n\neq 2m,m\in\mathbb{Z}\}$, we have that for all integer $n,x\in\mathbb{R}\setminus\{2n\}$, so $x\in\bigcap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$, therefore $\{n:n\neq 2m,m\in\mathbb{Z}\}$ is a subset of $x\in\bigcap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$. By the definition of equality of two sets, we have $\{n:n\neq 2m,m\in\mathbb{Z}\}=\bigcap_{n\in\mathbb{Z}}(\mathbb{R}\setminus\{2n\})$, and this completes the proof. \square

14 [UD] Problem 8.11

- (a) $A_{\alpha} = \{\alpha\}, (I = \mathbb{Z});$
- (b) if $A_{\alpha} \neq A_{\beta}$, then $A_{\alpha} \cap A_{\beta} = \emptyset$;
- (c) if $A_{\alpha} = A_{\beta}$, then $A_{\alpha} \cap A_{\beta} \neq \emptyset$;
- (d) Yes.

- (e) Yes.
- (f) Yes, except the trivial case: there is only zero or one element in I.
- (g) No. Here is a counterexample: $\{A_{\alpha}: A_{\alpha} = \{1,2,3\} \setminus \{\alpha\}, \alpha \in I\}, (I = \{1,2,3\}).$

15 [UD] Problem 9.2

- (a) By the definition of the power set, for every X in $\mathcal{P}(A) \cup \mathcal{P}(A)$, X is a subset of A or B, so X is a subset of $A \cup B$, therefore $\mathcal{P}(A) \cup \mathcal{P}(A) \subseteq \mathcal{P}(A \cup B)$.
- (b) Let $A = \{1\}$, $B = \{2\}$, then $A \cup B = 1, 2$, $\mathcal{P}(A) = \{\{1\}, \emptyset\}$, $\mathcal{P}(B) = \{\{2\}, \emptyset\}$, $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\{1\}, \{2\}, \emptyset\}$, $\mathcal{P}(A \cup B) = \{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$, $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.

16 [UD] Problem **9.4**

If $A \subseteq B$, then for all set X such that X is a subset of A, X is also a subset of B, so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \in \mathcal{P}(A) \subseteq \mathcal{P}(B)$, thus A is a subset of B. Therefore, $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

17 [UD] Problem 9.12

- (a) The sufficiency is obvious, and we only have to prove the necessity. Assume, to the contrary, that $A \neq C$ or $B \neq D$. Without loss of generality, suppose $A \neq C$. Therefore, there exists x such that $x \in A$ and $x \notin C$, or $x \notin A$ and $x \in C$. Suppose $x \in A$ and $x \notin C$ without loss of generality. Since B is a nonempty set, there exists y in B. Consider (x,y), by the definition of Cartesian product, it is an element of $A \times B$, however it isn't an element of $C \times D$, because x is not an element of C. Therefore, $A \times B = C \times D$ if and only if A = C and B = D.
- (b) In the construction of (x, y), we need to take an element y in B, and this requires the sets are nonempty.

18 [UD] Problem 9.13

No. Let $A = \{1\}, C = \{2\}, B = D = \emptyset$, then $A \times B = C \times D = \emptyset$, so $A \times B \subseteq C \times D$, however $A \nsubseteq C$.

19 [UD] Problem 9.14

(a)	True. For all (x,y) in $A \times (B \cup C)$, we have $x \in A$ and $y \in B \cup C$, so $x \in A$ and $y \in B$, or $x \in A$	and
	$y \in C$, hence $x \in (A \times B) \cup (A \times C)$, therefore, $A \times (B \cup C)$ is a subset of $x \in (A \times B) \cup (A \times C)$	C).
	For all (x,y) in $x \in (A \times B) \cup (A \times C)$, we have $x \in A$ and $y \in B$, or $x \in A$ and $y \in C$, so $x \in A$	$\in A$
	and $y \in B \cup C$, therefore $x \in (A \times B) \cup (A \times C)$ is a subset of $A \times (B \cup C)$. By the definition of	the
	equality of two sets, we get $A \times (B \cup C) = x \in (A \times B) \cup (A \times C)$.	

(b)	True. For all (x,y) in $A \times (B \cap C)$, we have $x \in A$ and $y \in B \cap C$, so $x \in A$ and $y \in B$, and $x \in A$	and
	$y \in C$, hence $x \in (A \times B) \cap (A \times C)$, therefore, $A \times (B \cap C)$ is a subset of $x \in (A \times B) \cap (A \times C)$	C).
	For all (x,y) in $x \in (A \times B) \cap (A \times C)$, we have $x \in A$ and $y \in B$, and $x \in A$ and $y \in C$, so $x \in A$	$\in A$
	and $y \in B \cap C$, therefore $x \in (A \times B) \cap (A \times C)$ is a subset of $A \times (B \cap C)$. By the definition of	the
	equality of two sets, we get $A \times (B \cap C) = x \in (A \times B) \cap (A \times C)$.	

20 [UD] Problem 9.16

- (a) If a = b, then $(a,b) = \{\{a\}, \{a,b\}\} = \{\{a\}, \{a\}\}\} = \{\{a\}\}$, thus $\{\{x\}, \{x,y\}\} = \{\{a\}\}\}$, so $\{x\} = \{x,y\} = \{a\}$, therefore x = y = a. Hence a = x and b = y.

 If $a \neq b$, then $\{\{a\}, \{a,b\}\} = \{\{x\}, \{x,y\}\}\}$. Suppose $\{a\} = \{x,y\}$, then a = x = y, so $\{\{a\}, \{a,b\}\} = \{\{x\}, \{x,y\}\} = \{\{x\}\}\}$, thus $\{a\} = \{a,b\}$, and therefore a = b, which contradicts $a \neq b$. So $\{a\} = \{x\}$, therefore a = x and $\{a,b\} = \{x,y\}$. If a = y, then a = x = y, thus $\{a,b\} = \{x,y\} = \{x\}$, therefore a = b, which contradicts $a \neq b$. So $a \neq y$, therefore a = x and b = y.
- (b) Since $\{a\}$ and $\{a,b\}$ are subsets of $A \cup B$, they are both the elements of $\mathcal{P}(A \cup B)$, therefore, $(a,b) = \{\{a\}, \{a,b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$.
- (c) For all $x \in \mathcal{P}(\mathcal{P}(A \cup B))$ in $A \times B$, there exists $a \in A$ and $b \in B$, such that x = (a,b). Therefore, $x \in \mathcal{P}(\mathcal{P}(C \cup D))$ (apply the conclusion in Problem 9.4 twice), and $a \in C$ and $b \in D$, so $x \in C \times D$. Therefore, $A \times B \subseteq C \times D$.