

A-688A.ST25 SEQUENCE LISTING

1111		
<110>	FEIGE, ULRICH KOHNO, TADAHIKO LACEY, DAVID BOONE, THOMAS CHARLES	
<120>	ADHESION ANTAGONISTS (as amended)	
<130>	A-688A	
<140> <141>	US 09/840,277 2001-04-23	
<150> <151>	US 60/198,919 2000-04-21	
<150> <151>	US 60/201,394 2000-05-03	
<160>	137	
<170>	PatentIn version 3.2	
	1 684 DNA Homo sapiens	
<220> <221> <222>	CDS (1)(684)	
atg ga	1 c aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc ctg 48 p Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 5 10 15	
ggg gg Gly Gl	a ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc y Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30	
atg at Met Il	c tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg agc 144 e Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser 35 40 45	
cac ga His Gl 50	a gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag 192 u Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 55 60	
gtg ca Val Hi 65	t aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg s Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 70 75 80	
tac cg Tyr Ar	t gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg aat 288 g Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95	
ggc aa Gly Ly	g gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc 336 s Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110	
atc ga Ile Gl	g aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag 384 u Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 125	
gtg ta	c acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc 432 Page 1	

```
A-688A.ST25
Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val
130 135 140
agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg
Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
145 150 155 160
                                                                                                       480
gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc acg cct
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
165 170 175
                                                                                                       528
ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc acc
Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
                                                                                                       576
gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc gtg
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
195 200 205
                                                                                                       624
atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
210 215 220
                                                                                                       672
tct ccg ggt aaa
Ser Pro Gly Lys
225
                                                                                                       684
          2
228
<210>
<211>
<212>
          PRT
         Homo sapiens
<400>
Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu
1 5 10 15
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30
Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser
35 40 45
His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60
Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80
Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
85 90 95
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110
Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
115 120 125
Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val
```

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 220

Ser Pro Gly Lys

<210>

<210> 3 <211> 8 <212> PRT <213> Artificial Sequence

<220> <223> Preferred linker

<400> 3

Gly Gly Gly Lys Gly Gly Gly Gly 1

<210> 4

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Preferred linker

<400>

Gly Gly Gly Asn Gly Ser Gly Gly 1

<210>

<211> 8 <212> PRT

<213> Artificial Sequence

<220>

Preferred linker <223>

Gly Gly Gly Cys Gly Gly Gly Gly 5

```
<210> 6
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Preferred linker
<400> 6
Gly Pro Asn Gly Gly
<210>
        7
<210> /
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin peptide
<400> 7
Tyr Ile Gly Ser Arg
<210>
<211> 49
<212> PRT
<213> Artificial Sequence
<220>
<223> Echistatin peptide
<400> 8
Glu Cys Glu Ser Gly Pro Cys Cys Arg Asn Cys Lys Phe Leu Lys Glu
10 15
Gly Thr Ile Cys Lys Arg Ala Arg Gly Asp Asp Met Asp Asp Tyr Cys 20 25 30
Asn Gly Lys Thr Cys Asp Cys Pro Arg Asn Pro His Lys Gly Pro Ala 35 40 45
Thr
<210>
<220>
<223> RGD, NGR derivative peptide
<220>
<221> misc_feature
<222> (2, 5 and)..(7)
<223> Xaa is any amino acid
```

```
<400> 9
Arg Xaa Glu Thr Xaa Trp Xaa
1 5
<210>
        10
<400>
        10
000
<210>
        11
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> RGD, NGR derivative peptide
<220>
<221> misc_feature
<222> (2, 3, 7 and)..(8)
<223> Xaa is any amino acid
<400> 11
Cys Xaa Xaa Arg Leu Asp Xaa Xaa Cys
1
<210> 12
<400>
000
        12
<210>
        13
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223> RGD, NGR derivative peptide
<220>
<221>
<222>
        misc_feature (1, 2, 3, 7, 8 and)..(9) Xaa is any amino acid with Xaa at 1, 3, 7 and 9 capable of forming a bridge.
<223>
<400>
Xaa Xaa Xaa Arg Gly Asp Xaa Xaa Xaa
1 5
<210> 14
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223>
         RGD, NGR derivative peptide
<220>
```

```
A-688A.ST25
        misc_feature
(2, 3, 4, 5, 6, 12, 13, 14, 15 and)..(16)
At positions 2, 3, 4, 5, 6, 12, 13, 14, 15 and 16, Xaa is any amino acid or may be absent.
<221>
<222>
<400> 14
Cys Xaa Xaa Xaa Xaa Cys Arg Gly Asp Cys Xaa Xaa Xaa Xaa Xaa 1 10 15
Cys
        15
<210>
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223>
        RGD, NGR derivative peptide
<220>
<221>
<222>
        misc_feature
        (1 \text{ and})..(8)
<223>
       Xaa is an independently selected amino acid.
<220>
<221>
<222>
        misc_feature
        (2 and)..(7)
        Xaa equals 0 to 4 amino acids, each which is independently
<223>
        selected.
<220>
<221>
        misc_feature
        (4)..(4)
Xaa is selected from the group consisting of glycine and leucine.
<222>
<223>
<220>
<221>
<222>
        misc_feature
(5)..(5)
Xaa is selected from the group consisting of tryptophan and
<223>
        leucine.
<400>
        15
Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa
```

<210> 16 <211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> RGD, NGR derivative peptide

<220>

<221> misc_feature

<222> (1 and)..(10)

<223> Xaa is any amino acid.

<220>

<221> misc_feature

```
A-688A.ST25
<222>
      (2 and)..(9)
       xaa equals 0 to 3 amino acids.
<223>
<220>
       misc_feature
<221>
<222>
<223>
       (3)..(3)
Xaa_is selected from the group consisting of tryptophan and
       proline.
<220>
       misc_feature (6)..(6)
<221>
<222>
<223>
       Xaa is selected from the group consisting of glycine and leucine.
<220>
<221>
<222>
       misc_feature
       (7)...(7)
<223>
       Xaa is selected from the group consisting of tryptophan and
       leucine.
<220>
<221>
       misc_feature
<222>
       (8)..(8)
       Xaa is selected from the group consisting of leucine, tryptophan,
<223>
       and methionine.
<400>
       16
Xaa Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa 10
<210>
       17
<211>
       19
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
      Vinculin binding/selectin antagonist peptide
<220>
<221>
       misc_feature (3, 5, 6, 13)..(15)
<222>
       Xaa is any naturally occuring amino acid residue.
<400>
       17
Arg Lys Xaa Asn Xaa Xaa Trp Thr Trp Val Gly Thr Xaa Lys Xaa Leu
5 10 15
Thr Glu Glu
<210>
       18
<211>
       16
<212>
<213>
       PRT
       Artificial Sequence
<220>
<223>
       Vinculin binding/selectin antagonist peptide
```

<220> <221> <222>

misc_feature (2, 3, 4, 7)..(15)

```
A-688A.ST25
        xaa is any naturally occuring amino acid residue
<223>
<400>
        18
Cys Xaa Xaa Xaa Tyr Thr Xaa Leu Val Ala Ile Gln Asn Lys Xaa Glu 1 10 15
<210>
        19
<211>
        19
<212>
        PRT
        Artificial Sequence
<213>
<220>
<223>
       Vinculin binding/selectin antagonist peptide
<220>
        misc_feature
<221>
        (3, 4, 5, 6, 8, 13, 15)..(18)
Xaa is any naturally occuring amino acid residue.
<222>
<223>
<400>
Arg Lys Xaa Xaa Xaa Trp Xaa Trp Val Gly Thr Xaa Lys Xaa Leu
1 10 15
Thr Xaa Glu
<210>
        20
<211>
        16
<212>
        PRT
        Artificial Sequence
<213>
<220>
<223>
      Vinculin binding/selectin antagonist peptide
<220>
<221>
<222>
        misc_feature
        (2, 5, 6, 7, 12, 13)..(14)
Xaa is any naturally occurring amino acid residue.
<400>
        20
Ala Xaa Asn Trp Xaa Xaa Xaa Glu Pro Asn Asn Xaa Xaa Xaa Glu Asp
1 10 15
<210>
        21
<211>
        13
<212>
        PRT
<213>
        Artificial Sequence
<220>
<223>
        Vinculin binding/selectin antagonist peptide
<220>
       misc_feature
(1, 3, 6, 9, 12 )..(13)
Xaa is any naturally occurring amino acid residue.
<221>
<222>
<400>
        21
```

```
A-688A.ST25
Xaa Lys Xaa Lys Thr Xaa Glu Ala Xaa Asn Trp Xaa Xaa 1 5 10
<210> 22
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
        Integrin antagonist peptide
<400> 22
Cys Leu Cys Arg Gly Asp Cys Ile Cys 1
<210> 23
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
         23
Cys Trp Asp Asp Gly Trp Leu Cys
1
<210> 24
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
         Integrin antagonist peptide
<400> 24
Cys Trp Asp Asp Leu Trp Trp Leu Cys \mathbf{1}
<210> 25
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
         Integrin antagonist peptide
<223>
<400>
Cys Trp Asp Asp Gly Leu Met Cys 5
<210>
         26
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
```

```
<400> 26
Cys Trp Asp Asp Gly Trp Met Cys 1
<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 27
Cys Ser Trp Asp Asp Gly Trp Leu Cys
1
<210> 28
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 28
Cys Pro Asp Asp Leu Trp Trp Leu Cys
1
<210> 29
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 29
Asn Gly Arg
<210> 30
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223>
         Integrin antagonist peptide
<400>
         30
Gly Ser Leu
<210> 31
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
```

```
A-688A.ST25 <223> Integrin antagonist peptide
<400> 31
Arg Gly Asp
<210> 32
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 32
Cys Gly Arg Glu Cys Pro Arg Leu Cys Gln Ser Ser Cys
<210> 33
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 33
Cys Asn Gly Arg Cys Val Ser Gly Cys Ala Gly Arg Cys 1 10
<210> 34
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400> 34
Cys Leu Ser Gly Ser Leu Ser Cys
<210> 35
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
        35
Gly Ser Leu
<210> 36
<211> 6
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223>
         Integrin antagonist peptide
<400>
         36
Asn Gly Arg Ala His Ala
1 5
<210>
<211>
        37
5
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400> 37
Cys Asn Gly Arg Cys
<210> 38
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400> 38
Cys Asp Cys Arg Gly Asp Cys Phe Cys 5
<210> 39
<211> 7
<212> PRT
<213> Artificial Sequence
<223>
        Integrin antagonist peptide
<400>
        39
Cys Gly Ser Leu Val Arg Cys
5
<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<220>
<221> misc_feature
<222> (3)..(4)
<223> Xaa is any amino acid residue
<400> 40
```

```
Asp Leu Xaa Xaa Leu 5
<210> 41
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400> 41
<210> 42
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 42
Arg Thr Asp Leu Asp Ser Leu Arg Thr Tyr 1 10
<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Integrin antagonist peptide
<400> 43
Arg Thr Asp Leu Asp Ser Leu Arg Thr 1
<210> 44
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
<210> 45
<211> 43
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
```

```
A-688A.ST25
<400> 45
Gly Asp Leu Asp Leu Leu Lys Leu Arg Leu Thr Leu 1 5 10
<210>
        46
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 46
Gly Asp Leu His Ser Leu Arg Gln Leu Leu Ser Arg
1 10
<210> 47
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 47
Arg Asp Asp Leu His Met Leu Arg Leu Gln Leu Trp
1 10
<210>
       48
<211>
        12
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
Ser Ser Asp Leu His Ala Leu Lys Lys Arg Tyr Gly
1 10
<210> 49
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
Arg Gly Asp Leu Lys Gln Leu Ser Glu Leu Thr Trp 5 10
<210> 50
<211> 7
<212> PRT
<213> Artificial Sequence
```

<220>

```
A-688A.ST25
       Integrin antagonist peptide
<220>
<221>
<222>
<223>
       misc_feature
       (2)..(3)
Xaa is any amino acid residue
<400>
        50
Cys Xaa Xaa Arg Gly Asp Cys
1 5
       51
27
<210>
<211>
<212>
       PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser 1 10 15
Ser Ala Leu Thr Thr Leu Val Ala Thr Arg
20 25
       52
27
<210>
<211>
<212>
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser 10 15
Ser Ala Leu Thr Thr Leu Val Ala Thr Arg
20 25
<210>
        53
<211>
       30
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala
1 5 10 15
Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg 20 25 30
```

```
<210>
        54
<211>
        30
<212>
        PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
        54
Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala
1 10 15
Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg
20 25 30
<210>
<211>
<212>
        55
        31
       PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
        55
Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala
1 10 15
Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg 20 25 30
<210> 56
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
        56
Ser Ser Thr Gly Trp Val Asp Leu Leu Gly Ala Leu Gln Arg Ala Ala
1 10 15
Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg
20 25 30
<210>
        57
<211>
       18
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
        57
Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser
1 10 15
```

```
<210> 58
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223>
         Integrin antagonist peptide
<220>
<221> misc_feature
<222> (5)..(5)
<223> Xaa is any amino acid residue
<400>
         58
Arg Gly Asp Gly Xaa
<210> 59
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<220>
<221>
<222>
        misc_feature
<222> (6)..(6)
<223> Xaa is any amino acid residue
<400>
Cys Arg Gly Asp Gly Xaa Cys
5
<210> 60
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
         Integrin antagonist peptide
<400>
         60
Cys Ala Arg Arg Leu Asp Ala Pro Cys
<210> 61
<211> 9
<212> PRT.
<213> Artificial Sequence
<220>
<223>
         Integrin antagonist peptide
<400> 61
```

```
A-688A.ST25
Cys Pro Ser Arg Leu Asp Ser Pro Cys 1
<210> 62
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 62
Cys Asp Cys Arg Gly Asp Cys Phe Cys 5
<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 63
Cys Asp Cys Arg Gly Asp Cys Leu Cys
<210> 64
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
Arg Gly Asp Leu Ala Ala Leu Ser Ala Pro Pro Val
1 10
<210> 65
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 1 10
<210>
        66
<211>
        12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
```

```
A-688A.ST25
```

```
<400> 66
Asp Ile Thr Trp Asp Glu Leu Trp Lys Ile Met Asn 1 \hspace{1cm} 10
<210> 67
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 67
Asp Tyr Thr Trp Phe Glu Leu Trp Asp Met Met Gln
<210> 68
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400>
        68
Gln Ile Thr Trp Ala Gln Leu Trp Asn Met Met Lys
1 10
<210>
        69
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
        69
Asp Met Thr Trp His Asp Leu Trp Thr Leu Met Ser
<210> 70
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
Asp Tyr Ser Trp His Asp Leu Trp Glu Met Met Ser 1 	 5 	 10
<210>
        71
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
```

```
A-688A.ST25
<223> Selectin antagonist peptide
<400>
        71
Glu Ile Thr Trp Asp Gln Leu Trp Glu Val Met Asn 1 	 10
<210> 72
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 72
His Val Ser Trp Glu Gln Leu Trp Asp Ile Met Asn 1 10
<210> 73
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 73
His Ile Thr Trp Asp Gln Leu Trp Arg Ile Met Thr 1 	 5
<210> 74
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
        74
Arg Asn Met Ser Trp Leu Glu Leu Trp Glu His Met Lys 1 \hspace{1cm} 10
<210>
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
Ala Glu Trp Thr Trp Asp Gln Leu Trp His Val Met Asn Pro Ala Glu 10 15
Ser Gln
```

```
A-688A.ST25
<210>
<211>
<212>
       76
       14
       PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
        76
His Arg Ala Glu Trp Leu Ala Leu Trp Glu Gln Met Ser Pro
<210> 77
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400> 77
Lys Lys Glu Asp Trp Leu Ala Leu Trp Arg Ile Met Ser Val 10
<210> 78
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 1 	 10
<210>
        79
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400> 79
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 1 10
```

<210> 80
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 80

Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
1 5 10

Page 21

```
<210> 81
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 81
<210>
        82
<211> 16
<212> PRT
<213> Artificial Sequence
<223> Selectin antagonist peptide
<400> 82
Cys Gln Asn Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Asn Glu 10 15
<210> 83
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400>
Ala Glu Asn Trp Ala Asp Asn Glu Pro Asn Asn Lys Arg Asn Asn Glu 1 5 10 15
Asp
<210> 84
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
Arg Lys Asn Asn Lys Thr Trp Thr Trp Val Gly Thr Lys Lys Ala Leu 1 \hspace{1.5cm} 10 \hspace{1.5cm} 15
Thr Asn Glu
<210>
        85
<211>
```

```
A-688A.ST25
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 85
Lys Lys Ala Leu Thr Asn Glu Ala Glu Asn Trp Ala Asp
<210> 86
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<220>
<221>
<222>
        misc_feature
       (3 and)..(15)
<223> Xaa is any amino acid residue
<400> 86
Cys Gln Xaa Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Xaa Glu
1 10 15
<210> 87
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<220>
<221>
<222>
        misc_feature
        (13 and)..(15)
       Xaa is any amino acid residue
<400> 87
Ala Glu Asn Trp Ala Asp Gly Glu Pro Asn Asn Lys Xaa Asn Xaa Glu 1 5 10 15
Asp
<210>
        88
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
```

Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala

Page 23

<400> 88

```
Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg 20 25 30
<210>
        89
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
<400> 89
Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala
1 5 10 15
Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg 20 25 30
<210>
        90
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Vinculin binding peptide
<400>
Ser Ser Thr Gly Trp Val Asp Leu Gly Ala Leu Gln Arg Ala Ala 1 5 10 15
Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg
20 25 30
<210>
        91
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Vinculin binding peptide
<400> 91
Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser 10 15
Glu Lys
<210>
        92
<211> 27
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
```

<400> 92

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser 10 15

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg 20 25

<210> 93 <211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Vinculin binding peptide

<400> 93

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser 10 15

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg 20 25

<210> 94

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

Vinculin binding peptide <223>

Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala 1 10 15

Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg 20 25 30

<210> 95

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

Laminin related peptide <223>

Arg Glu Asp Val Glu Ile Leu Asp Val Tyr Ile Gly Ser Arg Pro Asp 10 15

Ser Gly Arg

<210> 96

<211> 19

<212> PRT <213> Artificial Sequence

```
<220>
<223>
       Laminin related peptide
<400>
      96
Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp
Ser Gly Arg
<210>
       97
<211>
<212>
       44
       DNA
      Artificial Sequence
<213>
<220>
<223>
       Used to form echistatin template for PCR
<400>
ggggggcata tggaatgtga atctggtcca tgctgcagaa actg
                                                                        44
<210>
       98
<211>
       44
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Used to form echistatin template for PCR
taagttcttg aaggaaggta ccatctgtaa gagagctaga ggtg
                                                                        44
<210>
       99
<211>
       44
<212>
      DNA
<213> Artificial Sequence
<220>
       Used to form echistatin template for PCR
<223>
<400>
acgacatgga cgactactgt aacggtaaga cctgtgactg cccg
                                                                        44
<210>
       100
<211>
       51
<212>
      DNA
      Artificial Sequence
<213>
<220>
<223>
       Used to form echistatin template for PCR
agaaacccac acaagggtcc agctacttaa tggatccgcg qccgcccagc t
                                                                        51
<210>
       101
<211>
      24
<212> DNA
<213> Artificial Sequence
<220>
```

<223>	A-688A.ST25 Used to form echistatin template for PCR	
<400> ttcaaga	101 aact tacagtttct gcag	24
<210> <211> <212> <213>	102 24 DNA Artificial Sequence	
<220> <223>	Used to form echistatin template for PCR	
<400> cgtcca	102 tgtc gtcacctcta gctc	24
<210> <211> <212> <213>	103 24 DNA Artificial Sequence	
<220> <223>	Used to form echistatin template for PCR	
<400> gtgtgg	103 gttt ctcgggcagt caca	24
<210> <211> <212> <213>	104 48 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccgggta	104 aaag gtggaggtgg tggtgaatgt gaatctggtc catgctgc	48
<210> <211> <212> <213>	105 48 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccgggta	105 aaag gtggaggtgg tggtgaatgt gaatctggtc catgctgc	48
<210> <211> <212> <213>	106 22 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> aacata	106 agta cctgtaggat cg	22
<210>	107 49	

A-688A.ST25							
<212> DNA <213> Artificial Sequence							
<220> <223> PCR primer							
<400> 107 gcagcatgga ccagattcac attcaccacc acctccacct ttacccgga	49						
<210> 108 <211> 859 <212> DNA <213> Artificial Sequence							
<220> <223> Echistatin Fc-peptide							
<220> <221> misc_feature <222> (1)(1) <223> NdeI site							
<220> <221> CDS <222> (4)(849)							
<220> <221> misc_feature <222> (854)(854) <223> BamHI site							
<pre><400> 108 cat atg gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 1</pre>	48						
ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30	96						
ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45	144						
agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 50 55 60	192						
gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 65 70 75	240						
acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 80 85 90 95	288						
aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 100 105 110	336						
ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125	384						
cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Page 28	432						

135

140

	agc Ser 145															480
gtg val 160	gag Glu	tgg Trp	gag Glu	agc Ser	aat Asn 165	ggg Gly	cag Gln	ccg Pro	gag Glu	aac Asn 170	aac Asn	tac Tyr	aag Lys	acc Thr	acg Thr 175	528
cct Pro	ccc Pro	gtg val	ctg Leu	gac Asp 180	tcc Ser	gac Asp	ggc Gly	tcc Ser	ttc Phe 185	ttc Phe	ctc Leu	tac Tyr	agc Ser	aag Lys 190	ctc Leu	576
acc Thr	gtg Val	gac Asp	aag Lys 195	agc Ser	agg Arg	tgg Trp	cag Gln	cag Gln 200	ggg Gly	aac Asn	gtc Val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	624
	atg Met															672
ctg Leu	tct Ser 225	ccg Pro	ggt Gly	aaa Lys	ggt Gly	gga Gly 230	ggt Gly	ggt Gly	ggt Gly	gaa Glu	tgt Cys 235	gaa Glu	tct Ser	ggt Gly	cca Pro	720
tgc Cys 240	tgc Cys	aga Arg	aac Asn	tgt Cys	aag Lys 245	ttc Phe	ttg Leu	aag Lys	gaa Glu	ggt Gly 250	acc Thr	atc Ile	tgt Cys	aag Lys	aga Arg 255	768
	aga Arg															816
tgc Cys	ccg Pro	aga Arg	aac Asn 275	cca Pro	cac His	aag Lys	ggt Gly	cca Pro 280	gct Ala	act Thr	taat	tggat	tcc			859
<210> 109 <211> 282 <212> PRT <213> Artificial Sequence																
<22 <22	_	Synth	netio	Cor	nstri	ıct										
<40		L09														
Met 1	Asp	Lys	Thr	His 5	Thr	Cys	Pro	Pro	Cys 10	Pro	Ala	Pro	Glu		Leu	
Gly	Gly	Pro	Ser 20	۷al	Phe	Leu	Phe	Pro 25	Pro	Lys	Pro	Lys	Asp 30	Thr	Leu	
Met	Ile	Ser 35	Arg	Thr	Pro	Glu	Va1 40	Thr	Cys	val	٧a٦	∨a1 45	Asp	٧a٦	Ser	
His	Glu 50	Asp	Pro	Glu	val	Lys 55	Phe	Asn	Trp	Tyr	va1 60	Asp	Gly	val	Glu	
Va1 65	His	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	Glu 75	Gln	Tyr	Asn	ser	Thr 80	

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys Gly Gly Gly Gly Glu Cys Glu Ser Gly Pro Cys 225 230 235 240

Cys Arg Asn Cys Lys Phe Leu Lys Glu Gly Thr Ile Cys Lys Arg Ala 245 250 255

Arg Gly Asp Asp Met Asp Asp Tyr Cys Asn Gly Lys Thr Cys Asp Cys 260 265 270

Pro Arg Asn Pro His Lys Gly Pro Ala Thr 275 280

<210> 110

<211> <212> 140 DNA

Artificial Sequence

<220> <223> pAMG21

<220> <221> <222>

misc_feature (1)..(1) AatII site

<220>

			A-688A.S	Г25		
<221> <222> <223>	misc_feature (140)(140) claI site					
<400> ctaatto	110 ccgc tctcacctac	caaacaatgc	cccctgcaa	aaaataaatt	cataaaaaaa	60
catacaç	gata accatctgcg	gtgataaatt	atctctggcg	gtgttgacat	aaataccact	120
ggcggtg	gata ctgagcacat					140
<210> <211> <212> <213>	111 55 DNA Artificial Sequ	ience				
<220> <223>	pAMG21					
<220> <221> <222> <223>	misc_feature (1)(1) ClaI site					
<220> <221> <222> <223>	misc_feature (55)(55) KpnI site					
<400> cgatttg	111 gatt ctagaaggag	gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210> <211> <212> <213>	112 1546 DNA Artificial Sequ	ience				
<220> <223>	pAMG21					
<220> <221> <222> <223>	misc_feature (1)(1) AatII sticky er	ıd				
<220> <221> <222> <223>	misc_feature (1546)(1546) SacII sticky er	nd				
<400> gcgtaac	112 cgta tgcatggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	60
cgaaag	gctc agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctga	agta ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	180
gggtgg	cggg caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggccatc	240
ctgacg	gatg gcctttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	300
	ggac gtcgtactta					360
gctttag	gaaa tactttggca	gcggtttgtt	gtattgagtt Page 3:	tcatttgcgc 1	attggttaaa	420

tggaaagtga co	cgtgcgctt	actacagcct	aatattttg	aaatatccca	agagctttt	480	
ccttcgcatg co	ccacgctaa	acattcttt	tctcttttgg	ttaaatcgtt	gtttgattta	540	
ttatttgcta ta	atttattt	tcgataatta	tcaactagag	aaggaacaat	taatggtatg	600	
ttcatacacg ca	atgtaaaaa	taaactatct	atatagttgt	ctttctctga	atgtgcaaaa	660	
ctaagcattc co	gaagccatt	attagcagta	tgaataggga	aactaaaccc	agtgataaga	720	
cctgatgatt to	cgcttcttt	aattacattt	ggagatttt	tatttacagc	attgttttca	780	
aatatattcc aa	attaatcgg	tgaatgattg	gagttagaat	aatctactat	aggatcatat	840	
tttattaaat ta	agcgtcatc	ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900	
gaaatatcag at	tttaaccat	agaatgagga	taaatgatcg	cgagtaaata	atattcacaa	960	
tgtaccattt ta	agtcatatc	agataagcat	tgattaatat	cattattgct	tctacaggct	1020	
ttaattttat ta	aattattct	gtaagtgtcg	tcggcattta	tgtctttcat	acccatctct	1080	
ttatccttac ct	tattgtttg	tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140	
gattgacatt to	gattctaat	aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200	
aattgtttaa ca	ataagtacc	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260	
tagtcgatta at	tcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320	
tggttaacgc gt	ttggaattc	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380	
actcgaggat co	cgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440	
ctgctgccac co	gctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500	
ggggttttt gd	ctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546	
<210> 113 <211> 872 <212> DNA <213> Artificial Sequence							
<223> GM221							
<400> 113 ttattttcgt go	cggccgcac	cattatcacc	gccagaggta	aactagtcaa	cacgcacggt	60	
gttagatatt ta	atcccttgc	ggtgatagat	tgagcacatc	gatttgattc	tagaaggagg	120	
gataatatat ga	agcacaaaa	aagaaaccat	taacacaaga	gcagcttgag	gacgcacgtc	180	
gccttaaagc aa	atttatgaa	aaaaagaaaa	atgaacttgg	cttatcccag	gaatctgtcg	240	
cagacaagat g	gggatgggg	cagtcaggcg	ttggtgcttt	atttaatggc	atcaatgcat	300	
taaatgctta ta	aacgccgca	ttgcttacaa	aaattctcaa	agttagcgtt	gaagaattta	360	
gcccttcaat co	gccagagaa	tctacgagat	gtatgaagcg	gttagtatgc	agccgtcact	420	
tagaagtgag ta	atgagtacc	ctgtttttc	tcatgttcag	gcagggatgt	tctcacctaa	480	
gcttagaacc tt	ttaccaaag	gtgatgcgga	gagatgggta	agcacaacca	aaaaagccag	540	
tgattctgca tt	tctggcttg	aggttgaagg	taattccatg Page 32		caggctccaa	600	

		7 0007.5			
gccaagcttt cctgacggaa	tgttaattct	cgttgaccct	gagcaggctg	ttgagccagg	660
tgatttctgc atagccagac	ttgggggtga	tgagtttacc	ttcaagaaac	tgatcaggga	720
tagcggtcag gtgttttac	aaccactaaa	cccacagtac	ccaatgatcc	catgcaatga	780
gagttgttcc gttgtgggga	aagttatcgc	tagtcagtgg	cctgaagaga	cgtttggctg	840
atagactagt ggatccacta	gtgtttctgc	cc			872
<210> 114 <211> 1197 <212> DNA <213> Artificial Sequ <220> <223> GM221	ience				
<400> 114					
ggcggaaacc gacgtccatc	gaatggtgca	aaacctttcg	cggtatggca	tgatagcgcc	60
cggaagagag tcaattcagg	gtggtgaatg	tgaaaccagt	aacgttatac	gatgtcgcag	120
agtatgccgg tgtctcttat	cagaccgttt	cccgcgtggt	gaaccaggcc	agccacgttt	180
ctgcgaaaac gcgggaaaaa	gtcgaagcgg	cgatggcgga	gctgaattac	attcccaacc	240
gcgtggcaca acaactggcg	ggcaaacagt	cgctcctgat	tggcgttgcc	acctccagtc	300
tggccctgca cgcgccgtcg	caaattgtcg	cggcgattaa	atctcgcgcc	gatcaactgg	360
gtgccagcgt ggtggtgtcg	atggtagaac	gaagcggcgt	cgaagcctgt	aaagcggcgg	420
tgcacaatct tctcgcgcaa	cgcgtcagtg	ggctgatcat	taactatccg	ctggatgacc	480
aggatgccat tgctgtggaa	gctgcctgca	ctaatgttcc	ggcgttattt	cttgatgtct	540
ctgaccagac acccatcaac	agtattattt	tctcccatga	agacggtacg	cgactgggcg	600
tggagcatct ggtcgcattg	ggtcaccagc	aaatcgcgct	gttagcgggc	ccattaagtt	660
ctgtctcggc gcgtctgcgt	ctggctggct	ggcataaata	tctcactcgc	aatcaaattc	720
agccgatagc ggaacgggaa	ggcgactgga	gtgccatgtc	cggttttcaa	caaaccatgc	780
aaatgctgaa tgagggcatc	gttcccactg	cgatgctggt	tgccaacgat	cagatggcgc	840
tgggcgcaat gcgcgccatt	accgagtccg	ggctgcgcgt	tggtgcggat	atctcggtag	900
tgggatacga cgataccgaa	gacagctcat	gttatatccc	gccgttaacc	accatcaaac	960
aggattttcg cctgctgggg	caaaccagcg	tggaccgctt	gctgcaactc	tctcagggcc	1020
aggcggtgaa gggcaatcag	ctgttgcccg	tctcactggt	gaaaagaaaa	accaccctgg	1080
cgcccaatac gcaaaccgcc	tctcccgcg	cgttggccga	ttcattaatg	cagctggcac	1140
gacaggtttc ccgactggaa	agcggacagt	aaggtaccat	aggatccagg	cacagga	1197
<210> 115 <211> 11 <212> PRT <213> Artificial Segu	ianca				

<213> Artificial Sequence

```
A-688A.ST25
<223> Laminin related peptide
<400>
        115
Met Tyr Ile Gly Ser Arg Gly Gly Gly Gly 1 10
<210>
        116
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Laminin related peptide
<400> 116
Met Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 10 15
<210>
        117
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin related peptide
<400> 117
Met Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 10 15
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 20 25
<210> 118
<211> 26
<212> PRT
<213> Artificial Sequence
<210>
        118
<220>
<223>
        Laminin related peptide
<400> 118
Met Ile Pro Cys Asn Asn Lys Gly Ala His Ser Val Gly Leu Met Trp 5 10 15
Trp Met Leu Ala Arg Gly Gly Gly Gly 20 25
<210> 119
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Laminin related peptide
```

<400>

119

```
A-688A.ST25
Met Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro
1 10 15
Asp Ser Gly Arg Gly Gly Gly Gly 25
<210>
       120
<211>
       20
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
       Laminin related peptide
<400>
       120
Met Arg Gly Asp Arg Gly Asp Tyr Ile Gly Ser Arg Arg Gly Asp Gly
1 10 15
Gly Gly Gly Gly 20
<210>
       121
       48
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Encoding Laminin related peptide, for PCR reaction to yield
<223>
       in-frame fusion to Fc
<400>
       121
gaataacata tgtacatcgg ttctcgtggt ggaggcggtg gggacaaa
                                                                          48
<210>
       122
<211>
       81
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Encoding Laminin related peptide, for PCR reaction to yield
<223>
       in-frame fusion to Fc
<400>
gaataacata tgtacatcgg ttctcgttat attggctccc gctacattgg tagccgtgac
                                                                          60
aaaactcaca catgtccacc t
                                                                          81
<210>
       123
<211>
       111
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Encoding Laminin related peptide, for PCR reaction to yield
       in-frame fusion to Fc
<400>
gaataacata tgtacatcgg ttctcgttat attggctccc gctacattgg tagccgttat
                                                                          60
atcggctctc gctatattgg tagccgcgac aaaactcaca catgtccacc t
                                                                         111
```

<210> <211> <212> <213>	124 93 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gaataa	124 cata tgatcccgtg caacaacaaa ggtgctcact ctgttggtct gatgtggtgg	60
atgctg	gctc gtggtggagg cggtggggac aaa	93
<210> <211> <212> <213>	125 90 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gaataa	125 cata tgtacatcgg ttctcgtcgt gaagacgttg aaatcctgga cgttccggac	60
tctggt	cgtg gtggaggcgg tggggacaaa	90
<210> <211> <212> <213>	126 75 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gaataa	126 cata tgcgtggtga ccgtggtgac tacatcggtt ctcgtcgtgg tgacggtgga	60
ggcggt	gggg acaaa	75
<210> <211> <212> <213>	127 20 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gttatte	127 gctc agcggtggca	20
<210> <211> <212> <213>	128 10 PRT Artificial Sequence	
<220> <223>	Laminin related peptide	
~400 <u>></u>	128	

```
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg
<210>
       129
15
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin related peptide
<400>
       129
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 10 Ser 10 Ser 10 Ser 15
<210> 130
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin related peptide
<400> 130
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 10 Gly Ser Arg Tyr 10 10 15
Ile Gly Ser Arg
<210> 131
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Laminin related peptide
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 1 10 15
Ile Gly Ser Arg Tyr Ile Gly Ser Arg
<210>
       132
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Laminin related peptide
<400>
Ile Pro Cys Asn Asn Lys Gly Ala His Ser Val Gly Leu Met Trp Trp 5 10 15
```

```
Met Leu Ala Arg
<210>
<211>
       133
       19
<212>
       PRT
<213> Artificial Sequence
<220>
<223>
       Laminin related peptide
<400>
       133
Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp
10 15
Ser Gly Arg
<210>
<211>
       134
       14
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Laminin related peptide
<400>
       134
Arg Gly Asp Arg Gly Asp Tyr Ile Gly Ser Arg Arg Gly Asp 1 10
<210> 135
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Laminin related peptide
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 1 10 15
Ile Gly Ser Arg Tyr Ile Gly Ser Arg 20 25
<210>
       136
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Laminin related peptide
Arg Glu Asp Val Glu Ile Leu Asp Val Tyr Ile Gly Ser Arg Pro Asp 10 	 15
```

Ser Gly Arg

<210> 137 <211> 19 <212> PRT <213> Artificial Sequence

<220> <223> Laminin related peptide

<400> 137

Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp 1 5 10 15

Ser Gly Arg