Assignment 4

Name: Nour-aldin Ibrahim Ahmed Elbadawy

ID: 2018-13394

Q3)

- a) Analyze this FSM and minimize it if possible
- b) Write a VHDL code to describe that minimized state diagram.

			,	-
State	Next X=0	state x=1	0/0	
50	50	21	1	
51	50	53	0	
52	50	23	1	
23	50	52	1	

```
library ieee;
use ieee.std_logic_1164.all;
entity sheet5 is
        port(
                clk,rst,x : in std_logic;
                z : out std_logic
        );
end entity;
architecture behave of sheet5 is
       type state is(s0,s1,s2,s3);
        signal ns,ps : state;
begin
        present_state : process(clk,rst)
        begin
                if rst='1' then
                        ps <= s0;
                elsif rising_edge(clk) then
```

```
ps <= ns;
               end if;
       end process;
       next_state : process(ps,x)
       begin
               case ps is
                       when s0 \Rightarrow
                               if x = '0' then
                                      ns <= s0;
                               elsif x = '1'
                                      then ns <= s1;
                               end if;
                       when s1 =>
                               if x = '0'
                                 then ns <= s0;
                               elsif x = '1'
                                     then ns <= s3;
                               end if;
                       when s2 =>
                               if x = '0'
                                   then ns <= s0;
                               elsif x = '1'
                                      then ns <= s3;
                               end if;
                       when s3 =>
                               if x = '0'
                                      then ns <= s0;
                               elsif x = '1'
                                   then ns <= s2;
                               end if;
               end case;
       end process;
       z <= '0' when ps<=s1 else '1';
end behave;
```


	Source State	Destination State	Condition				
1		s1	(x)				
2	s1 s2	s3	(x)				
3	s2	s3	(x)				
4	s3	s2	(x)				
Г							
- k	<u>.</u>						
-JA	Transitions (Encoding /						