

Grajenje mostov

Časovna omejitev: 3 s Omejitev pomnilnika: 128 MB

Na široki reki stoji *n* stebrov potencialno različnih višin. Razporejeni so v ravni vrsti od enega brega do drugega. Zgraditi želimo most, stebre pa uporabiti za podporo. Izbrali bomo le neko podmnožico vseh stebrov in povezali njihove vrhove z odseki mostu. Prvi in zadnji steber morata biti nujno vključena v to podmnožico.

Cena gradnje mostu med stebroma i in j je $(h_i - h_j)^2$, kjer je h_i višina i-tega stebra, saj bi se radi ognili neravnim odsekom. Stebre, ki jih med gradnjo ne bomo uporabili, moramo porušiti, saj motijo rečni promet. Cena odstranitve i-tega stebra je w_i . Ta cena je lahko negativna—nekatere stranke so nam pripravljene plačati, da se znebimo nekaterih stebrov. Vse višine h_i in cene w_i so cela števila.

Kakšna je najnižja cena izgradnje mostu, ki povezuje prvi in zadnji steber?

Vhodni podatki

V prvi vrsti je podano število stebrov, n. V drugi vrsti so podane višine stebrov h_i , po vrsti, ločene s presledki. V tretji vrsti so podane cene odstranitve stebrov w_i , v istem vrstnem redu.

Izhodni podatki

Izpiši minimalno ceno izgradnje mostu. Upoštevaj, da je lahko cena negativna.

Omejitve

- $2 < n < 10^5$
- $0 \le h_i \le 10^6$
- $0 \le |w_i| \le 10^6$

Podnaloga 1 (30 točk)

• n < 1000

Podnaloga 2 (30 točk)

- optimalna rešitev poleg prvega in zadnjega vsebuje največ 2 vmesna stebra
- $|w_i| \le 20$

Podnaloga 3 (40 točk)

• ni dodatnih omejitev

Primer

${\bf Grajenje\ mostov}$

Vhod	Izhod
6	17
3 8 7 1 6 6	
0 -1 9 1 2 0	