MNIST Digit Classification with MLP

袁无为 计预0

Abstract

图像识别一直是深度学习中的一个基础又重要的内容。在这次作业中,我对手写数字识别和分类进行了一些研究,搭建了 MLP 模型并使用 MNIST 数据集对我的模型进行了一些测试。

1. Introduction

手写数字识别是一个非常简单的问题。对于给定的一张 28×28 个像素的只包含一个数字的灰度 图,只需要识别出这个图像对应的数字。而且这个数字往往会出现在图像的中央。

把一个图像输入到 MLP 中,会得到预测出的这个图像分别是每个数字的概率。

下图展示了一个手写数字的图像以及识别结果:

该图为 MNIST 中一个数字 7 的图像以及 MLP 网络的预测结果。

2. Approach

我使用的 MLP 模型主要包含以下几部分内容:

2.1 Basic Structure

我搭建了几个包含一个隐藏层的和几个包含两个隐藏层的模型,它们的结构如下:

Input Layer Output Layer Input 1 Input 2 Output 1 Input 1 Input 1

包含一个隐藏层的网络

Speudis thick Second Input hidden hidden layer layer layer

包含两个隐藏层的网络

所有网络的输入层节点个数为 784,输出层节点个数为 10。边为全连接的。没有 Dropout。 对于有一个隐藏层的网络,隐藏层的节点数为 100。

对于有两个隐藏层的网络,第一个隐藏层的节点个数为200,第二个隐藏层的节点数为100。

2.2 Forward Propagation

把一张图片的 784 个像素点的灰度值作为输入。

对于每一层,设前一层的输出为 y^{l-1} (为一个 $1\times n_{i-1}$ 的矩阵),权值矩阵为 W^l ,偏置为 b^l ,激活函数为 f(x)。那么这一层的输出 y^l 为

$$u^l = y^{l-1}W^l + b^l$$
$$y^l = f(u^l)$$

2.3 Back Propagation

先计算最后一层的输出的偏导数 $\frac{\partial E}{\partial y^l}$,然后从后往前计算每层的局部梯度 $\delta^l=\frac{\partial E}{\partial y^l}*f'(u^l)$ (其中* 为逐元素相乘) 、权值矩阵的偏导数 $\frac{\partial E}{\partial W^l}=(y^{l-1})^T\delta^l$ 、偏置的偏导数 $\frac{\partial E}{\partial b^l}=\delta^l$ 和前一层输出的偏导数 $\frac{\partial E}{\partial y^{l-1}}=\delta^l(W^l)^T$ 。

2.4 Activation Function

我选择了两个激活函数:

$$ext{ReLU}(x) = egin{cases} x & , x > 0 \\ 0 & , ext{otherwise} \end{cases}$$
 $ext{Sigmoid}(x) = rac{1}{1 + e^{-x}}$

它们的导数分别为:

$$\operatorname{ReLU}'(x) = egin{cases} 1 & , x > 0 \\ 0 & , x < 0 \end{cases}$$
 $\operatorname{Sigmoid}'(x) = rac{e^{-x}}{(1+e^{-x})^2} = \operatorname{Sigmoid}(x)(1-\operatorname{Sigmoid}(x))$

2.5 Loss Function

我选择了两个损失函数:

EuclieanLoss(MeanSquareError): 对于预测结果 $y^{(n)}$ 和实际的结果(人工标注的结果) $t^{(n)}$,损失为:

$$E = rac{1}{2N} \sum_{n=1}^{N} ||t^{(n)} - y^{(n)}||_2^2$$

,其中N为 batch size。它的导数为

$$rac{\partial E}{\partial y_k^{(n)}} = rac{1}{N}(y_k^{(n)} - t_k^{(n)})$$

SoftmaxCrossEntropy: 对于预测结果 $y^{(n)}$ 和实际的结果 $t^{(n)}$,损失 E 为:

$$E = rac{1}{N} \sum_{n=1}^{N} E^{(n)}$$
 $E^{(n)} = -\sum_{k=1}^{K} t_k^{(n)} \ln h_k^{(n)}$ $h_k^{(n)} = rac{\exp(y_k^{(n)})}{\sum_{j=1}^{K} \exp(y_j^{(n)})}$

其中 K 是分类的类别数。它的导数为:

$$rac{\partial E}{\partial y_k^{(n)}} = rac{1}{N}(h_k^{(n)} - t_k^{(n)})$$

2.6 Parameters

我使用了 Xavier 初始化方法,权值矩阵初始化为 $\sigma^2=\frac{1}{n_i}$ 的正态分布的随机变量。其中 n_i 为前一层的节点个数。

偏置矩阵初始化为 0。

2.7 Optimizer

使用了经典的 SGD 方法,即 $W=W-\eta \frac{\partial E}{\partial W}$ 。对 b 也是如此。

2.8 Normalization

在某些模型中添加一个归一化层:在输入层前先对数据做一次归一化,即令 $x_i'=\frac{x_i-\overline{x}}{\sigma}$ 。其中 \overline{x} 为 x_i 的平均值, σ 为 x_i 的标准差。这样做能把 x_i 调整为平均值为 0,方差为 1 的分布。能够减少微小扰动带来的影响。

3. Experiments

3.1 Datasets

使用了经典的 MNIST 手写数字数据集进行测试。

3.2 Implementation Details

不同结构的网络之间的对比

分别搭建了八个不同的网络,使用了相同的参数进行对比(其中误差函数为 SoftmaxCorssEntropy 的网络中输出层没有激活函数)。使用的参数为:learning rate =0.1, momentum =0, weight decay =0, batch size =100, without normalization。

归一化的影响

搭建了八个模型,其中四个在输入层对数据做一遍归一化处理,另外四个没有。使用的参数为: hidden layer num =2, learning rate =0.1, momentum =0, weight decay =0, batch size =100。

3.3 Quantitative Results

图像

由于时间以及设备原因,我记录下了每次迭代中 Mini Batch 的正确率和损失以及每个 Epoch 后整个训练集以及测试集的正确率和损失。

one hidden layer, ReLU, Softmax Cross-Entropy Loss, Without Normalization

one hidden layer, Sigmoid, Mean Square Error, Without Normalization

two hidden layer, ReLU, Softmax Cross-Entropy Loss, Without Normalization

two hidden layer, ReLU, Mean Square Error, Without Normalization

two hidden layer, ReLU, Mean Square Error, With Normalization

two hidden layer, Sigmoid, Softmax Cross-Entropy Loss, Without Normalization

two hidden layer, Sigmoid, Mean Square Error, With Normalization

0.925

0.900

Training Set

Test Set

250000 500000 750000 1000000 1250000 1500000 1750000

不同结构的网络之间的对比:

250000 500000 750000 1000000 1250000 1500000 1750000

整理出的表格如下:

0.0

模型	隐藏 层个 数	激活函数	损失函数	测试集正确率	测试集达到最大正确 率需要的迭代次数	每秒进行 的迭代次 数	测试集达到95%正确 率需要的迭代次数	测试集达到98%正确 率需要的迭代次数
模 型 1	1	ReLU	Softmax Cross- Entropy Loss	98.07%	97200	234	2400	54600
模 型 2	1	ReLU	Mean Square Error	97.83%	68400	237	2400	
模 型 3	1	Sigmoid	Softmax Cross- Entropy Loss	98.11%	174000	192	11400	118200
模 型 4	1	Sigmoid	Mean Square Error	98.06%	1141800	200	72600	848400
模 型 5	2	ReLU	Softmax Cross- Entropy Loss	98.18%	35400	88	1800	16800
模 型 6	2	ReLU	Mean Square Error	98.20%	67200	80	1800	18600
模 型 7	2	Sigmoid	Softmax Cross- Entropy Loss	98.15%	114000	67	13200	66600
模 型 8	2	Sigmoid	Mean Square Error	98.20%	912000	68	79800	476400

进行对比之后,可以得到以下结论:

- 对于有一个隐藏层的模型,用 Sigmoid 作激活函数的模型相对于用 ReLU 作激活函数的模型来说,在测试集上的正确率会更高,但是每次迭代的用时较长,收敛速度前者远远慢于后者。
- 对于有一个隐藏层的模型,用 Mean Square Error 作损失函数的模型相对于用 Softmax Cross-Entropy 作损失函数的模型来说,准确率相对较低,每次迭代的用时较长,收敛速度较慢。
- 对于有两个隐藏层的模型,用 Sigmoid 作激活函数的模型相对于用 ReLU 作激活函数的模型来说,在测试集上的正确率差不多相同,但是每次迭代的用时较长,收敛速度前者远远慢于后者。
- 对于有两个隐藏层的模型,用 Mean Square Error 作损失函数的模型相对于用 Softmax Cross-Entropy 作损失函数的模型来说,准确率相对较高,每次迭代的用时较长,收敛速度较慢。
- 对于损失函数、激活函数相同的两个模型,含有一个隐藏层的模型相对于含有两个隐藏层的模型来说,在测试集上的正确率较低,每次迭代的用时较短,收敛速度较快。

归一化:

测试集的损失和正确率随迭代次数的图像如下:

two hidden layer, ReLU, Softmax Cross-Entropy Loss

two hidden layer, Sigmoid, Mean Square Error

整理出的表格如下:

模型	激活函数	损失函数	是否 有归 一化	测试集正确率	测试集达到最大正确 率需要的迭代次数	测试集达到95%正确 率需要的迭代次数	测试集达到98%正确 率需要的迭代次数
模 型 1	ReLU	Softmax Cross- Entropy Loss	否	98.18%	35400	1800	16800
模 型 2	ReLU	Softmax Cross- Entropy Loss	是	98.18%	9600	600	7200
模 型 3	ReLU	Mean Square Error	否	98.20%	67200	1800	18600
模 型 4	ReLU	Mean Square Error	是	98.17%	35400	1800	12600
模 型 5	Sigmoid	Softmax Cross- Entropy Loss	否	98.15%	114000	13200	66600
模 型 6	Sigmoid	Softmax Cross- Entropy Loss	是	98.31%	57000	4200	18000
模 型 7	Sigmoid	Mean Square Error	否	98.20%	912000	79800	476400
模 型 8	Sigmoid	Mean Square Error	是	98.28%	909000	22200	142200

进行对比之后,可以得到以下结论:

• 归一化对模型的收敛速度有很大的提升,对使用 Sigmoid 函数作为激活函数的模型的正确率有微小的提升。

4. Conclusion

在这次作业中,我对手写数字识别以及 MLP 进行了一些研究。包括 MLP 的结构、激活函数、损失函数、初始化以及一些其他的内容。实验证明 MLP 能较好的完成手写数字识别的工作。尽管如此,MLP 也有一些不尽人意地方,会有一小部分的数字识别不出或识别错误。

References

Exploring Context and Visual Pattern of Relationship for Scene Graph Generation

深度学习——Xavier初始化方法

Batch Normalization原理与实战

含有一个隐藏层的神经网络图片

含有两个隐藏层的神经网络图片