Parcial Final

Wednesday, November 24, 2021

10:00 AM

I. (25 pts) Sean X y Y variables aleatorias continuas con PDF conjunta:

$$f_{XY}(x,y) = \begin{cases} 2 & si \quad y + x \le 1, x > 0, y > 0 \\ 0 & d.l.c. \end{cases}$$

Encuentre COV(X,Y)

$$(ov(x,y)) = E(xy) - E(x) E(y)$$

$$E(x,y) = s:$$

$$E(x,y) = \int_{0}^{1-x} 2 dy dx = \int_{0}^{1-x} 2 dy dx$$

$$= \int_{0}^{1-x} 2y \Big|_{0}^{1-x} \int_{0}^{1-x} 2 \int_{0}^{1-x} 1-x \int_{0}^{1} x$$

$$=2\cdot\left(1-\frac{2^{2}}{2}\right)\Big|_{0}^{1}=2\cdot\left(\frac{1}{2}\right)=1$$

$$\begin{cases}
f_{\chi}(\chi) = \int_{\chi_{\gamma}} f_{\chi_{\gamma}}(\chi, \gamma) d\gamma = \int_{\chi_{\gamma}} 2 d\gamma = 2(1-\chi)
\end{cases}$$

Arálogumare
$$f_{\gamma}(\gamma) = \int_{0}^{\infty} 2 d\chi = 2(1-\gamma)$$

$$\frac{E(\chi)}{E(\chi)} = 2 \int \chi \cdot (1-\chi) d\chi = 2 \cdot \int_{0}^{1} \chi - \chi^{2} d\chi$$

$$= 2 \cdot \left(\frac{\chi^2}{2} - \frac{\chi^3}{3} \right) \Big|_{0}^{1} = 2 \cdot \left(\frac{1}{6} \right) = \frac{1}{3}$$

$$E(Y)$$
: $E(Y) = 2.5 Y (1-Y) = 2.5 (\frac{1}{6}) = \frac{1}{3}$

$$(ov(x, y) = E(x, y) - E(x) E(y)$$

= $1 - (1/6)^2 = \frac{35}{36} = 0.972$.

2. (25 pts) Sea X el número de defectos en un circuito eléctrico. El jefe de control de calidad afirma que el número de defectos en un circuito eléctrico sigue una distribución Poisson con media igual a 0.7. Se toma una muestra aleatoria de n=60 circuitos y se mide el número de defectos que tiene cada uno. Los resultados obtenidos fueron:

Número de defectos	Frecuencia observada	
0	32	1 2
1	15	$\lambda = 0.7$
2	9	
3	4	

¿Existe evidencia suficiente para decir que el jefe de control de calidad tiene razón en su afirmación con un valor $\alpha=0.05$?

Ho:
$$\lambda = 0.7$$
, Ha: $\lambda \neq 0.7$

Vecaros que para hacer una buena proble a X recesi tunos

5 o más muestros pora cada cade goria, por la que
agrup anos: Nómino de Jefacto 5 2 y 3 en 27, Así:

Número de defectos	Frecuencia observada
0	32
1	15
27	13

Asumundo que 1 = 0.7 calculanos:

$$\rho_1 = 0.496$$
, $\rho_2 = 0.347$, $\rho_3 = 0,155$

$$E(N_1) = 60 \cdot \rho_1 = 29.76$$

 $E(N_2) = 60 \cdot \rho_2 = 20.82$

