Advanced Regression Methods for Independent Data STAT/BIOST 570, 2020

Normal Linear Models

Mauricio Sadinle

 $\begin{tabular}{ll} \textbf{Department of Biostatistics} \\ \begin{tabular}{ll} \textbf{W} & \textbf{UNIVERSITY of WASHINGTON} \\ \end{tabular}$

Our Data Structure

- Y_i: response variable for unit i
- $\mathbf{x}_i = (x_{i0}, x_{i1}, \dots, x_{ik})$: row vector of covariates for unit i, $x_{i0} = 1$
- We observe n independent pairs $\{(Y_i, x_i)\}_{i=1}^n$
- We organize the data as

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

The main characteristics of the normal linear model are:

Normality (Gaussianity)

$$Y_i \mid \mathbf{x}_i \sim Normal[\ \mu_i, \sigma_i^2]$$

Homoskedasticity

$$\sigma_i^2 = \text{var}(Y_i \mid x_i) = \sigma^2$$

Linearity

$$\mu_{i} = E(Y_{i} \mid \mathbf{x}_{i}) = \mu(\mathbf{x}_{i}) = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}$$

$$= (x_{i0}, x_{i1}, \dots, x_{ik}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} = \mathbf{x}_{i}\beta,$$

where linearity refers to $\mu(x_i) = \mu(x_i; \beta)$ being linear as a function of β^{-1}

¹Note that β is taken as a column vector

The main characteristics of the normal linear model are:

Normality (Gaussianity)

$$Y_i \mid \mathbf{x}_i \sim Normal[\ \mu_i, \sigma_i^2]$$

▶ Homoskedasticity

$$\sigma_i^2 = \operatorname{var}(Y_i \mid \boldsymbol{x}_i) = \sigma^2$$

Linearity

$$\mu_{i} = E(Y_{i} \mid \mathbf{x}_{i}) = \mu(\mathbf{x}_{i}) = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}$$

$$= (x_{i0}, x_{i1}, \dots, x_{ik}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} = \mathbf{x}_{i}\boldsymbol{\beta},$$

where linearity refers to $\mu(\mathbf{x}_i) = \mu(\mathbf{x}_i; \boldsymbol{\beta})$ being linear as a function of $\boldsymbol{\beta}$

¹Note that β is taken as a column vecto

The main characteristics of the normal linear model are:

Normality (Gaussianity)

$$Y_i \mid \mathbf{x}_i \sim Normal[\ \mu_i, \sigma_i^2]$$

Homoskedasticity

$$\sigma_i^2 = \operatorname{var}(Y_i \mid \boldsymbol{x}_i) = \sigma^2$$

Linearity

$$\mu_{i} = E(Y_{i} \mid \mathbf{x}_{i}) = \mu(\mathbf{x}_{i}) = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}$$

$$= (x_{i0}, x_{i1}, \dots, x_{ik}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} = x_{i}\beta,$$

where linearity refers to $\mu(x_i) = \mu(x_i; eta)$ being linear as a function of eta^{-1}

¹Note that β is taken as a column vecto

The main characteristics of the normal linear model are:

Normality (Gaussianity)

$$Y_i \mid \mathbf{x}_i \sim Normal[\ \mu_i, \sigma_i^2]$$

Homoskedasticity

$$\sigma_i^2 = \operatorname{var}(Y_i \mid \boldsymbol{x}_i) = \sigma^2$$

Linearity

$$\mu_{i} = E(Y_{i} \mid \mathbf{x}_{i}) = \mu(\mathbf{x}_{i}) = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}$$

$$= (x_{i0}, x_{i1}, \dots, x_{ik}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{pmatrix} = \mathbf{x}_{i}\beta,$$

where *linearity* refers to $\mu(\mathbf{x}_i) = \mu(\mathbf{x}_i; \boldsymbol{\beta})$ being linear as a function of $\boldsymbol{\beta}^1$

¹Note that β is taken as a column vector

Note:

► We can equivalently write

$$Y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim Normal[0, \sigma^2]$$

▶ Models built on *k* transformations of initial covariates *x*_i can still be linear models, e.g.

$$\mu(\mathbf{x}_i) = \beta_0 + \sum_{i=1}^k \beta_j h_j(\mathbf{x}_i),$$

for known functions $h_j(\cdot)$, e.g. transformations, polynomials products, etc.

Note:

► We can equivalently write

$$Y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \epsilon_i \sim Normal[0, \sigma^2]$$

Models built on k transformations of initial covariates x_i can still be linear models, e.g.

$$\mu(\mathbf{x}_i) = \beta_0 + \sum_{i=1}^k \beta_j h_j(\mathbf{x}_i),$$

for known functions $h_j(\cdot)$, e.g. transformations, polynomials, products, etc.

Multivariate representations:

 \triangleright The Y_i 's are normal and independent of each other, therefore

$$\mathbf{Y} \mid \mathbf{X} \sim N_n[\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n],$$

where N_n represents the *n*-variate normal, and I_n the $n \times n$ identity matrix

► Equivalently,

$$Y = X\beta + \epsilon,$$
 $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T,$ $\epsilon \sim N_n[0, \sigma^2 I_n]$

Multivariate representations:

 \triangleright The Y_i 's are normal and independent of each other, therefore

$$\mathbf{Y} \mid \mathbf{X} \sim N_n[\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n],$$

where N_n represents the *n*-variate normal, and I_n the $n \times n$ identity matrix

Equivalently,

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^T, \qquad \boldsymbol{\epsilon} \sim N_n[\mathbf{0}, \sigma^2 \mathbf{I}_n]$$

First, we need to be mindful of the notation we use, so that interpretation is clear, e.g.

Writing

$$\mathsf{E}[Y\mid x]=\beta_0,$$

encodes the assumption that the expected response does not vary with \boldsymbol{x}

► On the other hand, writing

$$E[Y] = \beta_0$$
,

simply amounts to using β_0 as notation for $E[Y] = E_X\{E[Y \mid X]\}$.

$$E(Y \mid \mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

 β_j : difference in the expected response for a unit difference in x_j , given the other covariates being the same:

$$E(Y \mid x_1,\ldots,x_j+1,\ldots,x_k) - E(Y \mid x_1,\ldots,x_j,\ldots,x_k) = \beta_j$$

 \triangleright β_0 : expected value of the response when the covariates are all zero:

$$E(Y \mid \mathbf{0}) = \beta_0$$

The interpretation of β_0 may make little sense however (e.g., Y: blood pressure, x: weight), so it is common to re-center the covariates

$$E(Y \mid x) = \beta_0^* + \sum_{j=1}^k \beta_j (x_j - x_j^*),$$

so that β_0^* becomes the expected response at a value $x^* = (x_1^*, \dots, x_k^*)$ that is more interesting/meaningful scientifically.

•

$$E(Y \mid \mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

 β_j : difference in the expected response for a unit difference in x_j , given the other covariates being the same:

$$E(Y \mid x_1, ..., x_j + 1, ..., x_k) - E(Y \mid x_1, ..., x_j, ..., x_k) = \beta_j$$

 \triangleright β_0 : expected value of the response when the covariates are all zero:

$$E(Y \mid \mathbf{0}) = \beta_0$$

The interpretation of β_0 may make little sense however (e.g., Y: blood pressure, x: weight), so it is common to re-center the covariates

$$E(Y \mid x) = \beta_0^* + \sum_{j=1}^k \beta_j (x_j - x_j^*),$$

so that β_0^* becomes the expected response at a value $x^* = (x_1^*, \dots, x_k^*)$ that is more interesting/meaningful scientifically.

•

$$E(Y \mid \mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

 \triangleright β_j : difference in the expected response for a unit difference in x_j , given the other covariates being the same:

$$E(Y \mid x_1,\ldots,x_j+1,\ldots,x_k) - E(Y \mid x_1,\ldots,x_j,\ldots,x_k) = \beta_j$$

 \triangleright β_0 : expected value of the response when the covariates are all zero:

$$E(Y \mid \mathbf{0}) = \beta_0$$

The interpretation of β_0 may make little sense however (e.g., Y: blood pressure, x: weight), so it is common to re-center the covariates

$$\mathsf{E}(Y \mid x) = \beta_0^* + \sum_{j=1}^k \beta_j (x_j - x_j^*),$$

so that β_0^* becomes the expected response at a value $\mathbf{x}^* = (x_1^*, \dots, x_k^*)$ that is more interesting/meaningful scientifically.

•

We need to be careful in interpreting β_j as a measure of association in the population that we sampled

- If we were to select two groups of individuals from the population who agree in $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_k$, but one has $x_j + 1$, and the other has x_j , then β_j would represent the difference in the expected response between these groups.
- ▶ This is very different to stating that β_j is the expected change in the response if we were to increase x_j by one unit for an individual (via an *intervention*).
- ▶ The latter is a *causal* interpretation and is only valid under very strict conditions.

We need to be careful in interpreting β_j as a measure of association in the population that we sampled

- If we were to select two groups of individuals from the population who agree in $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_k$, but one has $x_j + 1$, and the other has x_j , then β_j would represent the difference in the expected response between these groups.
- ▶ This is very different to stating that β_j is the expected change in the response if we were to increase x_j by one unit for an individual (via an *intervention*).
- ▶ The latter is a *causal* interpretation and is only valid under very strict conditions.

We need to be careful in interpreting β_j as a measure of association in the population that we sampled

- If we were to select two groups of individuals from the population who agree in $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_k$, but one has $x_j + 1$, and the other has x_j , then β_j would represent the difference in the expected response between these groups.
- ▶ This is very different to stating that β_j is the expected change in the response if we were to increase x_j by one unit for an individual (via an *intervention*).
- ▶ The latter is a *causal* interpretation and is only valid under very strict conditions.

HW1: what if some of the covariates are functional transformations of other covariates in the model?

Identifiability

We need to ensure that it is possible to recover the model parameters based on data

Suppose we have a model that says

$$Y \sim Normal(\mu + \lambda, 1),$$

that is, the model is indexed by parameters μ and λ

- Intuitively, observations from this model carry information about $\mu + \lambda$, but not about μ and λ separately
- We say that the parameters of this model, and the model itself, are not identifiable

Identifiability

Remember ²: A parameter θ for a family of distributions (model) $\{f_{\theta}(\cdot)\}_{\theta}$ is *identifiable* if distinct values of θ correspond to distinct distributions, that is,

In practice, for complicated models, it is easier to show that a model *is not* identifiable using counterexamples, than to show that a model *is* identifiable

²Casella & Berger (2002), p. 523

- ► Suppose we wish to examine the association between *Y* and a categorical covariate *x* that takes categories *A* and *B*.
- ▶ In this case, $E(Y \mid A)$ and $E(Y \mid B)$ is all we can hope to recover
- However, someone unaware of this might create *dummy variables* $x_1 = I(x = A)$ and $x_2 = I(x = B)$, and formulate a model

$$E[Y \mid x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2,$$

or equivalently,

$$E[Y \mid x] = \begin{cases} \beta_0 + \beta_1 & \text{if } x = A, \\ \beta_0 + \beta_2 & \text{if } x = B, \end{cases}$$

but clearly, the parameters would not be identifiable

■ This non-identifiability phenomenon is known as intrinsic aliasing in the context of (generalized) linear models, and it is a problem of the model itself

- ► Suppose we wish to examine the association between *Y* and a categorical covariate *x* that takes categories *A* and *B*.
- ▶ In this case, $E(Y \mid A)$ and $E(Y \mid B)$ is all we can hope to recover
- ► However, someone unaware of this might create *dummy variables* $x_1 = I(x = A)$ and $x_2 = I(x = B)$, and formulate a model

$$E[Y \mid x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2,$$

or equivalently,

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0 + \beta_1 & \text{if } \mathbf{x} = A, \\ \beta_0 + \beta_2 & \text{if } \mathbf{x} = B, \end{array} \right.$$

but clearly, the parameters would not be identifiable

■ This non-identifiability phenomenon is known as intrinsic aliasing in the context of (generalized) linear models, and it is a problem of the model itself

- ► Suppose we wish to examine the association between *Y* and a categorical covariate *x* that takes categories *A* and *B*.
- ▶ In this case, $E(Y \mid A)$ and $E(Y \mid B)$ is all we can hope to recover
- ► However, someone unaware of this might create dummy variables $x_1 = I(x = A)$ and $x_2 = I(x = B)$, and formulate a model

$$E[Y \mid x_1, x_2] = \beta_0 + \beta_1 x_1 + \beta_2 x_2,$$

or equivalently,

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0 + \beta_1 & \text{if } \mathbf{x} = A, \\ \beta_0 + \beta_2 & \text{if } \mathbf{x} = B, \end{array} \right.$$

but clearly, the parameters would not be identifiable

➤ This non-identifiability phenomenon is known as intrinsic aliasing in the context of (generalized) linear models, and it is a problem of the model itself

A solution is to place a constraint on the parameters

In the *sum-to-zero* parameterization we impose the constraint $\beta_1 + \beta_2 = 0$ which gives the model

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0 - \beta_1 & \text{if } \mathbf{x} = A, \\ \beta_0 + \beta_1 & \text{if } \mathbf{x} = B. \end{array} \right.$$

- In this case we have $E[Y \mid x] = x\beta$ with x = (1, -1) if x = A, and x = (1, 1) if x = B.
- ▶ In this model

$$\beta_0 = (E[Y \mid x = A] + E[Y \mid x = B])/2$$

 $2\beta_1 = (E[Y \mid x = B] - E[Y \mid x = B])$

These restrictions are sometimes known as the ANOVA-type constraints

A solution is to place a constraint on the parameters

In the *sum-to-zero* parameterization we impose the constraint $\beta_1 + \beta_2 = 0$ which gives the model

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0 - \beta_1 & \text{if } \mathbf{x} = A, \\ \beta_0 + \beta_1 & \text{if } \mathbf{x} = B. \end{array} \right.$$

- In this case we have $E[Y \mid x] = x\beta$ with x = (1, -1) if x = A, and x = (1, 1) if x = B.
- ► In this model

$$\beta_0 = (E[Y \mid x = A] + E[Y \mid x = B])/2,$$

 $2\beta_1 = (E[Y \mid x = B] - E[Y \mid x = B])$

These restrictions are sometimes known as the ANOVA-type constraints

An alternative, the *baseline* or *corner-point* constraint, is to assign $\beta_1 = 0$ and assume a model of the form

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0' & \text{if } \mathbf{x} = A, \\ \beta_0' + \beta_1' & \text{if } \mathbf{x} = B. \end{array} \right.$$

- In this case we have $E[Y \mid x] = x\beta'$ where x = (1, 0) if x = A, and x = (1, 1) if x = B.
- In this model β_0' is the expected response for x = A, and β_1' is the difference in the expected response for x = B, as measured against x = A.
- ▶ These restrictions are sometimes known as the *GLM*-type constraints

An alternative, the *baseline* or *corner-point* constraint, is to assign $\beta_1 = 0$ and assume a model of the form

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_0' & \text{if } \mathbf{x} = A, \\ \beta_0' + \beta_1' & \text{if } \mathbf{x} = B. \end{array} \right.$$

- In this case we have $E[Y \mid x] = x\beta'$ where x = (1, 0) if x = A, and x = (1, 1) if x = B.
- In this model β_0' is the expected response for x=A, and β_1' is the difference in the expected response for x=B, as measured against x=A.
- ▶ These restrictions are sometimes known as the *GLM*-type constraints

► A final parameterization is simply

$$\mathsf{E}[Y \mid \mathbf{x}] = \left\{ \begin{array}{ll} \beta_1^{\dagger} & \text{if } \mathbf{x} = A, \\ \beta_2^{\dagger} & \text{if } \mathbf{x} = B. \end{array} \right.$$

- In this case we have $E[Y \mid x] = x\beta^{\dagger}$ where x = (1, 0) if x = A, and x = (0, 1) if x = B.
- ▶ The benefits of the above alternative parameterizations should also be considered in the light of the possibility of their extension to the case of more than one factor.
- Note that inference for the each of the formulations is identical, the only thing that changes is the interpretation of the parameters.

Identifiability and Estimation

Identifiability is necessary but not sufficient for estimation of β :

- ▶ In practice you might encounter *extrinsic aliasing*: a problem with the sample, where the columns of **X** are linearly dependent, e.g.
 - Unobserved level of a categorical variable in the sample: the corresponding column in X is all zeroes (under the baseline constraint)
 - Collinearity among the columns of X: one variable is a linear combination of the others
 - If X has more columns than rows (you have more β-parameters than data points), then you can express some columns as linear combinations of others
- ► In practice we have:
 - Non-identifiability \Rightarrow estimation of $oldsymbol{eta}$ based on the sample alone is impossible
 - ► Identifiability ⇒ estimation possible given large enough sample

Identifiability and Estimation

Identifiability is necessary but not sufficient for estimation of β :

- ▶ In practice you might encounter *extrinsic aliasing*: a problem with the sample, where the columns of **X** are linearly dependent, e.g.
 - Unobserved level of a categorical variable in the sample: the corresponding column in X is all zeroes (under the baseline constraint)
 - Collinearity among the columns of X: one variable is a linear combination of the others
 - If X has more columns than rows (you have more β-parameters than data points), then you can express some columns as linear combinations of others
- ► In practice we have:
 - Non-identifiability \Rightarrow estimation of $oldsymbol{eta}$ based on the sample alone is impossible
 - ► Identifiability ⇒ estimation possible given large enough sample

Identifiability and Estimation

Identifiability is necessary but not sufficient for estimation of β :

- ▶ In practice you might encounter *extrinsic aliasing*: a problem with the sample, where the columns of **X** are linearly dependent, e.g.
 - Unobserved level of a categorical variable in the sample: the corresponding column in X is all zeroes (under the baseline constraint)
 - Collinearity among the columns of X: one variable is a linear combination of the others
 - If X has more columns than rows (you have more β-parameters than data points), then you can express some columns as linear combinations of others
- In practice we have:
 - Non-identifiability \Rightarrow estimation of $oldsymbol{eta}$ based on the sample alone is impossible
 - ▶ Identifiability ⇒ estimation possible given large enough sample

Interactions

The models we will work with can have interactions:

```
\begin{array}{llll} \text{Null model}: & \mathsf{E}[Y \mid x_1, x_2] & = & \beta_0, \\ & x_1 \text{ only}: & \mathsf{E}[Y \mid x_1, x_2] & = & \beta_0 + \beta_1 x_1, \\ & x_2 \text{ only}: & \mathsf{E}[Y \mid x_1, x_2] & = & \beta_0 + \beta_2 x_2, \\ x_1 \text{ and } x_2 \text{ only}: & \mathsf{E}[Y \mid x_1, x_2] & = & \beta_0 + \beta_1 x_1 + \beta_2 x_2, \\ & \mathsf{Interaction}: & \mathsf{E}[Y \mid x_1, x_2] & = & \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2, \end{array}
```

HW1: simulate data and create plots that illustrate these relationships when $x_1 \in \{0,1\}$ and $x_2 \in \mathbb{R}$.

In the normal linear model we have the following:

We can write down the likelihood function, based on the independence of the pairs (Y_i, x_i) , as

$$L(\beta, \sigma^2) = \prod_{i=1}^n L_i(\beta, \sigma^2) = \prod_{i=1}^n \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\{-(Y_i - x_i\beta)^2/2\sigma^2\}$$

lacktriangle Or equivalently, based on the multivariate normality of $m{Y} \mid m{X}$, as

$$L(\boldsymbol{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\{-(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})/2\sigma^2\}$$

As it is common, it is easier to maximize the log-likelihood $I(\beta, \sigma^2) = \log L(\beta, \sigma^2)$:

$$I(\boldsymbol{\beta}, \sigma^2) = -(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})/2\sigma^2 - n\log(\sigma^2)/2 - n\log(2\pi)/2$$

▶ To find the maximizer $(\hat{\beta}, \hat{\sigma}^2)$ of $I(\beta, \sigma^2)$ we set its first derivatives to zero³:

$$\frac{\partial I}{\partial \beta} = \mathbf{X}^{T} (\mathbf{Y} - \mathbf{X}\beta) / \sigma^{2} = 0$$

$$\Rightarrow \mathbf{X}^{T} \mathbf{Y} = \mathbf{X}^{T} \mathbf{X} \hat{\beta} \quad \text{provided } 0 < \sigma^{2} < \infty$$

$$\Rightarrow \hat{\beta} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$

$$\frac{\partial I}{\partial \sigma^2} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) / 2\sigma^4 - n/2\sigma^2 = 0$$

$$\Rightarrow \hat{\sigma}_{ML}^2 = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) / n$$

³HW1: fill in the details

As it is common, it is easier to maximize the log-likelihood $I(\beta, \sigma^2) = \log L(\beta, \sigma^2)$:

$$I(\boldsymbol{\beta}, \sigma^2) = -(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) / 2\sigma^2 - n\log(\sigma^2)/2 - n\log(2\pi)/2$$

▶ To find the maximizer $(\hat{\beta}, \hat{\sigma}^2)$ of $I(\beta, \sigma^2)$ we set its first derivatives to zero³:

$$\frac{\partial I}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}) / \sigma^2 = 0$$

$$\Rightarrow \boldsymbol{X}^T \boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} \quad \text{provided } 0 < \sigma^2 < \infty$$

$$\Rightarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

$$\frac{\partial I}{\partial \sigma^2} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) / 2\sigma^4 - n/2\sigma^2 = 0$$

$$\Rightarrow \hat{\sigma}_{ML}^2 = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) / n$$

³HW1: fill in the details

Note:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg max}} \left\{ -(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) / 2\sigma^2 - n \log(\sigma^2) / 2 - n \log(2\pi) / 2 \right\}$$

$$= \underset{\boldsymbol{\beta}}{\operatorname{arg min}} \left\{ (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \right\}$$

$$= \underset{\boldsymbol{\beta}}{\operatorname{arg min}} \left\{ \sum_{i=1}^{n} (Y_i - x_i \boldsymbol{\beta})^2 \right\}$$

- ▶ The MLE $\hat{\beta}$ of β , under our normal linear model, is the same as the ordinary least squares (OLS) estimator
- For now, we focus on its properties under the normal linear model

Maximum Likelihood Estimation

Note:

$$\hat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \left\{ -(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) / 2\sigma^2 - n \log(\sigma^2) / 2 - n \log(2\pi) / 2 \right\}$$

$$= \arg \min_{\boldsymbol{\beta}} \left\{ (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \right\}$$

$$= \arg \min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^n (Y_i - \boldsymbol{x}_i \boldsymbol{\beta})^2 \right\}$$

- ▶ The MLE $\hat{\beta}$ of β , under our normal linear model, is the same as the ordinary least squares (OLS) estimator
- For now, we focus on its properties under the normal linear model

Maximum Likelihood Estimation

Note:

$$\hat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \left\{ -(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) / 2\sigma^2 - n \log(\sigma^2) / 2 - n \log(2\pi) / 2 \right\}$$

$$= \arg \min_{\boldsymbol{\beta}} \left\{ (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \right\}$$

$$= \arg \min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^n (Y_i - \boldsymbol{x}_i \boldsymbol{\beta})^2 \right\}$$

- ▶ The MLE $\hat{\beta}$ of β , under our normal linear model, is the same as the ordinary least squares (OLS) estimator
- For now, we focus on its properties under the normal linear model

Maximum Likelihood Estimation

Once we have $\hat{\beta}$, we can define:

► The *fitted values*:

$$\hat{\mathbf{Y}} = (\hat{Y}_1, \dots, \hat{Y}_n)^T = (\mathbf{x}_1 \hat{\boldsymbol{\beta}}, \dots, \mathbf{x}_n \hat{\boldsymbol{\beta}})^T = \mathbf{X} \hat{\boldsymbol{\beta}}$$

► The residuals:

$$\mathbf{e} = (e_1, \dots, e_n)^T = (Y_1 - \hat{Y}_1, \dots, Y_n - \hat{Y}_n)^T = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}$$

► The residual sum of squares:

$$RSS = \sum_{i=1}^{n} \mathbf{e}_{i}^{2} = \mathbf{e}^{T} \mathbf{e} = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{T} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}),$$

which is used in estimating σ^2

Unbiasedness:

▶ If $E[Y \mid X] = X\beta$, then

$$E(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}) = E[(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} \mid \boldsymbol{X}]$$

$$= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T E(\boldsymbol{Y} \mid \boldsymbol{X})$$

$$= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{\beta}$$

Notice that this only relies on correct specification of the mean model as $E[Y \mid X] = X\beta$

Variance:

- ▶ Remember: if $var(\mathbf{Z}) = \Sigma$, then $var(\mathbf{B}\mathbf{Z}) = \mathbf{B}\Sigma\mathbf{B}^T$
- ▶ If $var[Y \mid X] = \sigma^2 I_n$, then

$$var(\hat{\beta} \mid X) = var\{(X^T X)^{-1} X^T Y \mid X\}$$

$$= (X^T X)^{-1} X^T var(Y \mid X) X (X^T X)^{-1}$$

$$= \sigma^2 (X^T X)^{-1}$$

► This form relies on the homoskedasticity var[$\mathbf{Y} \mid \mathbf{X}$] = $\sigma^2 \mathbf{I}_n$

Variance:

- ▶ Remember: if $var(\mathbf{Z}) = \Sigma$, then $var(\mathbf{B}\mathbf{Z}) = \mathbf{B}\Sigma\mathbf{B}^T$
- ▶ If $var[Y \mid X] = \sigma^2 I_n$, then

$$var(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}) = var\{(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} \mid \boldsymbol{X}\}$$

$$= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T var(\boldsymbol{Y} \mid \boldsymbol{X}) \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

$$= \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

▶ This form relies on the homoskedasticity var[$m{Y} \mid m{X}$] = $\sigma^2 m{I}_n$

Distribution:

- ▶ Remember: if $Z \sim N_k(\mu, \Sigma)$, then $BZ \sim N_h[B\mu, B\Sigma B^T]$, for B an $h \times k$ matrix
- Since $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$, and $\boldsymbol{Y} \mid \boldsymbol{X} \sim N_n [\boldsymbol{X} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n]$, then $\hat{\boldsymbol{\beta}} \sim N_{k+1} [\boldsymbol{\beta}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}],$

which is an exact, finite sample result

Distribution:

- ▶ Remember: if $\mathbf{Z} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{B}\mathbf{Z} \sim N_h[\mathbf{B}\boldsymbol{\mu}, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^T]$, for \mathbf{B} an $h \times k$ matrix
- ▶ Since $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$, and $\boldsymbol{Y} \mid \boldsymbol{X} \sim N_n[\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n]$, then

$$\hat{\boldsymbol{\beta}} \sim N_{k+1}[\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}],$$

which is an exact, finite sample result

Why do we care about the distribution of the MLE?

- lt is the basis for building confidence intervals and hypothesis tests
- Under normality of the outcomes we have that

$$(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})/\sigma \sim N_{k+1}(\boldsymbol{0},\boldsymbol{I}_{k+1}),$$

which is a pivotal quantity⁴

For example 5 , if σ^2 is known, we could use this as the basis for testing the hypothesis

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0,$$

and confidence regions for $oldsymbol{eta}$ can be obtained by inverting that test

⁵See HW1

 $^{^4}$ Reminder: a pivotal quantity or pivot is function of observations and unobservable parameters whose distribution does not depend on the unknown parameters

- ▶ The previous results depend on knowing σ^2
- What if we estimate the variance and plug it in?

$$(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})/\hat{\sigma} \sim ?$$

To derive the exact distribution we need to consider how to estimate σ^2 and then do some distributional work

▶ An unbiased estimator of σ^2 is given by⁶

$$\hat{\sigma}^2 = \frac{n}{n-k-1} \hat{\sigma}_{ML}^2 = \frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n-k-1}$$

▶ The intuitive explanation is that dividing by n-k-1 "corrects" for the fact that we have estimated k+1 parameters in $\hat{\beta}$

⁶See HW1

$$\frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{\sigma^2} = \frac{RSS}{\sigma^2} = \frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-k-1}^2.$$

- ► Why? Key points⁷:
 - ► Theorem 2.7 of SL⁸: Let $Z \sim N_n(\mathbf{0}, I_n)$ and let A be a symmetric matrix. Then $Z^T A Z$ is χ^2_r iff A is idempotent of rank r
 - ► RSS = $\mathbf{Y}^T (\mathbf{I}_n \mathbf{P}) \mathbf{Y} = \boldsymbol{\epsilon}^T (\mathbf{I}_n \mathbf{P}) \boldsymbol{\epsilon}$, where $\mathbf{P} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$, $\boldsymbol{\epsilon} = \mathbf{Y} \mathbf{X} \boldsymbol{\beta} \sim N_n(0, \sigma^2 \mathbf{I}_n)$
 - ► Theorem 3.1 of SL: $rank(I_n P) = n k 1$

⁷HW1: formally write the proof

⁸Seber and Lee (2003) Linear Regression Analysi

$$\frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{\sigma^2} = \frac{RSS}{\sigma^2} = \frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-k-1}^2.$$

- ▶ Why? Key points⁷:
 - ► Theorem 2.7 of SL⁸: Let $Z \sim N_n(\mathbf{0}, I_n)$ and let A be a symmetric matrix. Then $Z^T A Z$ is χ_r^2 iff A is idempotent of rank r
 - ► RSS = $\mathbf{Y}^{T}(\mathbf{I}_{n} \mathbf{P})\mathbf{Y} = \boldsymbol{\epsilon}^{T}(\mathbf{I}_{n} \mathbf{P})\boldsymbol{\epsilon}$, where $\mathbf{P} = \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$, $\boldsymbol{\epsilon} = \mathbf{Y} \mathbf{X}\boldsymbol{\beta} \sim N_{n}(0, \sigma^{2}\mathbf{I}_{n})$
 - ► Theorem 3.1 of SL: $rank(I_n P) = n k 1$

⁷HW1: formally write the proof

⁸Seber and Lee (2003) Linear Regression Analysis

$$\frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{\sigma^2} = \frac{RSS}{\sigma^2} = \frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-k-1}^2.$$

- ► Why? Key points⁷:
 - ► Theorem 2.7 of SL⁸: Let $Z \sim N_n(\mathbf{0}, I_n)$ and let A be a symmetric matrix. Then $Z^T A Z$ is χ^2_r iff A is idempotent of rank r
 - ► RSS = $\mathbf{Y}^T (\mathbf{I}_n \mathbf{P}) \mathbf{Y} = \boldsymbol{\epsilon}^T (\mathbf{I}_n \mathbf{P}) \boldsymbol{\epsilon}$, where $\mathbf{P} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$, $\boldsymbol{\epsilon} = \mathbf{Y} \mathbf{X} \boldsymbol{\beta} \sim N_n(0, \sigma^2 \mathbf{I}_n)$
 - ► Theorem 3.1 of SL: $rank(I_n P) = n k 1$

⁷HW1: formally write the proof

⁸Seber and Lee (2003) Linear Regression Analysis

$$\frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}}(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{\sigma^2} = \frac{\mathsf{RSS}}{\sigma^2} = \frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-k-1}^2.$$

- ► Why? Key points⁷:
 - ► Theorem 2.7 of SL⁸: Let $Z \sim N_n(\mathbf{0}, I_n)$ and let A be a symmetric matrix. Then $Z^T A Z$ is χ^2_r iff A is idempotent of rank r
 - ► RSS = $\mathbf{Y}^T (\mathbf{I}_n \mathbf{P}) \mathbf{Y} = \boldsymbol{\epsilon}^T (\mathbf{I}_n \mathbf{P}) \boldsymbol{\epsilon}$, where $\mathbf{P} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$, $\boldsymbol{\epsilon} = \mathbf{Y} \mathbf{X} \boldsymbol{\beta} \sim N_n(0, \sigma^2 \mathbf{I}_n)$
 - ▶ Theorem 3.1 of SL: rank $(I_n P) = n k 1$

⁷HW1: formally write the proof

⁸Seber and Lee (2003) Linear Regression Analysis

The Multivariate t Distribution

Now we need some knowledge of the multivariate t distribution 9 10

- \triangleright Let Z and W be independent
- $ightharpoonup Z \sim N_p(\mathbf{0}, \Sigma)$
- $\sim W \sim \chi_d^2$
- ▶ We say that

$${m T} = rac{1}{\sqrt{W/d}} {m Z} + {m \mu} ~\sim ~ {m T}_{m
ho}({m \mu}, {m \Sigma}, d)$$

▶ A useful property is that for C a $p \times p$ nonsingular matrix

$$CT + a \sim T_p(C\mu + a, C\Sigma C^T, d)$$

https://doi.org/10.1016/0047-259X(72)90021-8

⁹The density can be checked in p. 661 of Wakefield's book ¹⁰More properties and characterizations can be found in Lin (1972)

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\hat{\boldsymbol{\sigma}}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\sqrt{RSS/(n-k-1)}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\boldsymbol{\sigma}}{\sqrt{(RSS/\boldsymbol{\sigma}^2)/(n-k-1)}}$$

- ▶ If $\hat{\beta}$ is independent of *RSS* we are done
- ▶ Theorem 2.5 of SL: Let $Z \sim N_n(\mu, \Sigma)$. Then AZ and BZ are independent iff $cov(AZ, BZ) = A\Sigma B' = 0$.
- $ightharpoonup RSS = ||(\mathbf{I}_n \mathbf{P})Y||^2 \text{ and } \hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$
- lt's easy to check that $\operatorname{cov}[(I_n P)Y, \hat{\beta}] = 0$
- lacktriangle Therefore RSS and \hat{eta} are independent, and

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\hat{\boldsymbol{\sigma}}} \sim T_{k+1}(\boldsymbol{0},\boldsymbol{I}_{k+1},n-k-1)$$

$$\frac{(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\hat{\sigma}} = \frac{(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\sqrt{RSS/(n-k-1)}} = \frac{(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})/\sigma}{\sqrt{(RSS/\sigma^{2})/(n-k-1)}}$$

- ▶ If $\hat{\beta}$ is independent of *RSS* we are done
- ▶ Theorem 2.5 of SL: Let $Z \sim N_n(\mu, \Sigma)$. Then AZ and BZ are independent iff $cov(AZ, BZ) = A\Sigma B' = 0$.
- $ightharpoonup RSS = ||(\mathbf{I}_n \mathbf{P})Y||^2 \text{ and } \hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$
- lt's easy to check that $cov[(I_n P)Y, \hat{\beta}] = 0$
- ▶ Therefore RSS and $\hat{\beta}$ are independent, and

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\hat{\sigma}} \sim T_{k+1}(\boldsymbol{0},\boldsymbol{I}_{k+1},n-k-1)$$

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\hat{\boldsymbol{\sigma}}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\sqrt{RSS/(n-k-1)}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\boldsymbol{\sigma}}{\sqrt{(RSS/\boldsymbol{\sigma}^2)/(n-k-1)}}$$

- ▶ If $\hat{\beta}$ is independent of *RSS* we are done
- ▶ Theorem 2.5 of SL: Let $Z \sim N_n(\mu, \Sigma)$. Then AZ and BZ are independent iff $cov(AZ, BZ) = A\Sigma B' = 0$.
- ► $RSS = ||(\mathbf{I}_n \mathbf{P})Y||^2$ and $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$
- lt's easy to check that $\operatorname{cov}[(\emph{\textbf{I}}_n-\emph{\textbf{P}})Y,\hat{oldsymbol{eta}}]=\mathbf{0}$
- lacktriangle Therefore RSS and \hat{eta} are independent, and

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\hat{\boldsymbol{\sigma}}} \sim T_{k+1}(\boldsymbol{0},\boldsymbol{I}_{k+1},n-k-1)$$

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\hat{\boldsymbol{\sigma}}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\sqrt{RSS/(n-k-1)}} = \frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\boldsymbol{\sigma}}{\sqrt{(RSS/\boldsymbol{\sigma}^2)/(n-k-1)}}$$

- ▶ If $\hat{\beta}$ is independent of *RSS* we are done
- ► Theorem 2.5 of SL: Let $Z \sim N_n(\mu, \Sigma)$. Then AZ and BZ are independent iff $cov(AZ, BZ) = A\Sigma B' = 0$.
- ► $RSS = ||(\mathbf{I}_n \mathbf{P})Y||^2$ and $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$
- lt's easy to check that $cov[(I_n P)Y, \hat{\beta}] = 0$
- lacktriangle Therefore RSS and \hat{eta} are independent, and

$$\frac{(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\hat{\sigma}} \sim T_{k+1}(\boldsymbol{0},\boldsymbol{I}_{k+1},n-k-1)$$

Some notes:

▶ For j = 0, 1, ..., k, taking S_j as the (j, j) element of $(\boldsymbol{X}^T \boldsymbol{X})^{-1}$,

$$\frac{\hat{\beta}_j - \beta_j}{S_j^{1/2}\hat{\sigma}} \sim t_{n-k-1}$$

- ▶ Confidence intervals and tests of H_0 : $\beta_i = c$ follow.
- ► The latter is a *partial* t-test in that it is a test with $1, x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_k$ in the model
- ► This is different from fitting the model

$$\mathsf{E}[Y\mid \mathbf{x}]=\beta_0+\beta_jx_j,$$

and testing $H_0: \beta_j = c$

▶ Question: can we easily use the multivariate distribution

$$\frac{1}{\hat{\sigma}}(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim T_{k+1}(\boldsymbol{0}, I_{k+1}, n-k-1)$$

- While we could think of working with multivariate versions of quantiles, this seems complicated
- Lemma 2 of Lin (1972): Let $T \sim T_{\rho}(\mu, \Sigma, d)$, then $T^T \Sigma^{-1} T/p \sim F_{\rho,d}(\mu^T \Sigma^{-1} \mu/p)$ (non-central F distribution with non-centrality parameter $\mu^T \Sigma^{-1} \mu/p$)
- Applying this to our case:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / (k+1)}{\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

where
$$\hat{\sigma}^2 = RSS/(n-k-1)$$

Question: can we easily use the multivariate distribution

$$\frac{1}{\hat{\sigma}}(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim T_{k+1}(\boldsymbol{0}, I_{k+1}, n-k-1)$$

- While we could think of working with multivariate versions of quantiles, this seems complicated
- Lemma 2 of Lin (1972): Let $T \sim T_{\rho}(\mu, \Sigma, d)$, then $T^T \Sigma^{-1} T/p \sim F_{\rho,d}(\mu^T \Sigma^{-1} \mu/p)$ (non-central F distribution with non-centrality parameter $\mu^T \Sigma^{-1} \mu/p$)
- Applying this to our case:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / (k+1)}{\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

where
$$\hat{\sigma}^2 = RSS/(n-k-1)$$

Question: can we easily use the multivariate distribution

$$\frac{1}{\hat{\sigma}}(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim T_{k+1}(\boldsymbol{0}, I_{k+1}, n-k-1)$$

- While we could think of working with multivariate versions of quantiles, this seems complicated
- Lemma 2 of Lin (1972): Let $T \sim T_{\rho}(\mu, \Sigma, d)$, then $T^T \Sigma^{-1} T/p \sim F_{\rho,d}(\mu^T \Sigma^{-1} \mu/p)$ (non-central F distribution with non-centrality parameter $\mu^T \Sigma^{-1} \mu/p$)
- Applying this to our case:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / (k+1)}{\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

where
$$\hat{\sigma}^2 = RSS/(n-k-1)$$

▶ Question: can we easily use the multivariate distribution

$$\frac{1}{\hat{\sigma}}(\boldsymbol{X}^{T}\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim T_{k+1}(\boldsymbol{0}, I_{k+1}, n-k-1)$$

- While we could think of working with multivariate versions of quantiles, this seems complicated
- Lemma 2 of Lin (1972): Let $T \sim T_{\rho}(\mu, \Sigma, d)$, then $T^T \Sigma^{-1} T/p \sim F_{\rho,d}(\mu^T \Sigma^{-1} \mu/p)$ (non-central F distribution with non-centrality parameter $\mu^T \Sigma^{-1} \mu/p$)
- Applying this to our case:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / (k+1)}{\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

where
$$\hat{\sigma}^2 = RSS/(n-k-1)$$

- Now we can more easily construct confidence regions and tests
- ▶ An α-level test can be conducted for the hypothesis H_0 : $β = β_0$ vs H_1 : $β ≠ β_0$ using

$$F_0 = \frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)}{(k+1)\hat{\sigma}^2},$$

rejecting H_0 if $F_0 \geq F_{k+1,n-k-1}(1-\alpha)$

A $100(1-\alpha)\%$ confidence region is determined by the interior of a k+1-dimensional ellipsoid

$$\{\boldsymbol{\beta}: (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \leq (k+1)\hat{\sigma}^2 F_{k+1,n-k-1} (1-\alpha)\},$$

where $F_{k+1,n-k-1}(1-\alpha)$ is the $1-\alpha$ quantile of the $F_{k+1,n-k-1}$

- Now we can more easily construct confidence regions and tests
- ▶ An α-level test can be conducted for the hypothesis H_0 : $β = β_0$ vs H_1 : $β ≠ β_0$ using

$$F_0 = \frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)}{(k+1)\hat{\sigma}^2},$$

rejecting H_0 if $F_0 \geq F_{k+1,n-k-1}(1-\alpha)$

A $100(1-\alpha)\%$ confidence region is determined by the interior of a k+1-dimensional ellipsoid

$$\{\boldsymbol{\beta}: (\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\mathsf{T}}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \leq (k+1)\hat{\sigma}^2 F_{k+1,n-k-1}(1-\alpha)\},$$

where $F_{k+1,n-k-1}(1-\alpha)$ is the $1-\alpha$ quantile of the $F_{k+1,n-k-1}$.

Taken from Seber and Lee (2003), section 4.3

► Remember our model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

We are interested in testing

$$H_0: \mathbf{A}\boldsymbol{\beta} = \mathbf{b},$$

where **A** is $q \times (k+1)$ matrix of rank q

► For example,

$$H_0: \beta_1 = \cdots = \beta_q = 0$$
, for $1 \le q \le k$,

or

$$H_0: \beta_1 = \cdots = \beta_{q+1}, \text{ for } 1 \leq q < k$$

The intuition:

- ▶ To test H_0 it makes sense to see if $\mathbf{A}\hat{\boldsymbol{\beta}}$ is far from \boldsymbol{b}
- Consider the squared Mahalanobis distance

$$(\mathbf{A}\hat{eta} - \mathbf{b})^{\mathsf{T}} (\mathsf{var}[\mathbf{A}\hat{eta}])^{-1} (\mathbf{A}\hat{eta} - \mathbf{b})$$

Note that this is equivalent to the squared Euclidean norm of the standardized vector

$$(\operatorname{var}[\mathbf{A}\hat{\boldsymbol{\beta}}])^{-1/2}(\mathbf{A}\hat{\boldsymbol{\beta}}-\mathbf{b})$$

We replace σ^2 with $\hat{\sigma}^2 = RSS/(n-k-1)$ in $var[A\hat{\beta}] = \sigma^2 A(X^TX)^{-1}A^T$

► To run the test we'll derive the distribution of (a constant times)

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})/\hat{\sigma}^2$$

The intuition:

- ▶ To test H_0 it makes sense to see if $\mathbf{A}\hat{\boldsymbol{\beta}}$ is far from \boldsymbol{b}
- Consider the squared Mahalanobis distance

$$(\mathbf{A}\hat{oldsymbol{eta}}-\mathbf{b})^T(extsf{var}[\mathbf{A}\hat{oldsymbol{eta}}])^{-1}(\mathbf{A}\hat{oldsymbol{eta}}-\mathbf{b})$$

Note that this is equivalent to the squared Euclidean norm of the standardized vector

$$(\operatorname{var}[\mathbf{A}\hat{\boldsymbol{\beta}}])^{-1/2}(\mathbf{A}\hat{\boldsymbol{\beta}}-\mathbf{b})$$

• We replace σ^2 with $\hat{\sigma}^2 = RSS/(n-k-1)$ in $\text{var}[\mathbf{A}\hat{\boldsymbol{\beta}}] = \sigma^2 \mathbf{A} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{A}^T$

► To run the test we'll derive the distribution of (a constant times)

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})/\hat{\sigma}^2$$

The intuition:

- ▶ To test H_0 it makes sense to see if $\mathbf{A}\hat{\boldsymbol{\beta}}$ is far from \boldsymbol{b}
- Consider the squared Mahalanobis distance

$$(\mathbf{A}\hat{eta} - \mathbf{b})^T (\mathsf{var}[\mathbf{A}\hat{eta}])^{-1} (\mathbf{A}\hat{eta} - \mathbf{b})$$

Note that this is equivalent to the squared Euclidean norm of the standardized vector

$$(\mathsf{var}[\boldsymbol{A}\hat{\boldsymbol{\beta}}])^{-1/2}(\boldsymbol{A}\hat{\boldsymbol{\beta}}-\boldsymbol{b})$$

- We replace σ^2 with $\hat{\sigma}^2 = RSS/(n-k-1)$ in $var[A\hat{\beta}] = \sigma^2 A(X^TX)^{-1}A^T$
- ► To run the test we'll derive the distribution of (a constant times)

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})/\hat{\sigma}^2$$

The intuition:

- ▶ To test H_0 it makes sense to see if $\mathbf{A}\hat{\boldsymbol{\beta}}$ is far from \boldsymbol{b}
- Consider the squared Mahalanobis distance

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T (\operatorname{var}[\mathbf{A}\hat{\boldsymbol{\beta}}])^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})$$

Note that this is equivalent to the squared Euclidean norm of the standardized vector

$$(\operatorname{var}[\boldsymbol{A}\hat{\boldsymbol{\beta}}])^{-1/2}(\boldsymbol{A}\hat{\boldsymbol{\beta}}-\boldsymbol{b})$$

• We replace σ^2 with $\hat{\sigma}^2 = RSS/(n-k-1)$ in $\text{var}[\pmb{A}\hat{\pmb{\beta}}] = \sigma^2 \pmb{A} (\pmb{X}^T \pmb{X})^{-1} \pmb{A}^T$

▶ To run the test we'll derive the distribution of (a constant times)

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})/\hat{\sigma}^2$$

The intuition:

- ▶ To test H_0 it makes sense to see if $\mathbf{A}\hat{\boldsymbol{\beta}}$ is far from \boldsymbol{b}
- Consider the squared Mahalanobis distance

$$(\mathbf{A}\hat{eta} - \mathbf{b})^T (\operatorname{var}[\mathbf{A}\hat{eta}])^{-1} (\mathbf{A}\hat{eta} - \mathbf{b})$$

Note that this is equivalent to the squared Euclidean norm of the standardized vector

$$(\operatorname{var}[\boldsymbol{A}\hat{\boldsymbol{\beta}}])^{-1/2}(\boldsymbol{A}\hat{\boldsymbol{\beta}}-\boldsymbol{b})$$

 $lackbox{ We replace } \sigma^2 ext{ with } \hat{\sigma}^2 = RSS/(n-k-1) ext{ in }$

$$\operatorname{var}[\mathbf{A}\hat{\boldsymbol{\beta}}] = \sigma^2 \mathbf{A} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{A}^T$$

To run the test we'll derive the distribution of (a constant times)

$$(\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})/\hat{\sigma}^2$$

An alternative intuition:

- Let's compare:
 - ▶ The fit of the restricted model under H_0 : $A\beta = b$, measured as

$$\textit{RSS}_{\textit{H}_0} = ||\boldsymbol{Y} - \boldsymbol{\hat{Y}}_{\textit{H}_0}||^2 = ||\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\hat{\beta}}_{\textit{H}_0}||^2$$

▶ The fit of the unrestricted model, measured as

$$RSS = ||\mathbf{Y} - \mathbf{\hat{Y}}||^2 = ||\mathbf{Y} - \mathbf{X}\mathbf{\hat{\beta}}||^2$$

- We know RSS_{H₀} ≥ RSS: the unrestricted minimizer in least squares will have a lower sum of squares compared to the restricted minimizer
- ▶ If the improvement in the fit from dropping the restriction $\mathbf{A}\boldsymbol{\beta} = \mathbf{b}$ is significant, then we would use this as evidence against H_0
- ► To run the test we'll derive the distribution of (a constant times)

$$(RSS_{H_0} - RSS)/RSS$$

An alternative intuition:

- Let's compare:
 - ▶ The fit of the restricted model under H_0 : $A\beta = b$, measured as

$$RSS_{H_0} = ||\mathbf{Y} - \hat{\mathbf{Y}}_{H_0}||^2 = ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2$$

The fit of the unrestricted model, measured as

$$RSS = ||\mathbf{Y} - \mathbf{\hat{Y}}||^2 = ||\mathbf{Y} - \mathbf{X}\mathbf{\hat{\beta}}||^2$$

- We know RSS_{H0} ≥ RSS: the unrestricted minimizer in least squares will have a lower sum of squares compared to the restricted minimizer
- If the improvement in the fit from dropping the restriction $\mathbf{A}\beta = \mathbf{b}$ is significant, then we would use this as evidence against H_0
- ► To run the test we'll derive the distribution of (a constant times)

$$(RSS_{H_0} - RSS)/RSS$$

An alternative intuition:

- Let's compare:
 - ▶ The fit of the restricted model under H_0 : $A\beta = b$, measured as

$$RSS_{H_0} = ||\mathbf{Y} - \hat{\mathbf{Y}}_{H_0}||^2 = ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2$$

The fit of the unrestricted model, measured as

$$RSS = ||\mathbf{Y} - \hat{\mathbf{Y}}||^2 = ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$

- We know $RSS_{H_0} \ge RSS$: the unrestricted minimizer in least squares will have a lower sum of squares compared to the restricted minimizer
- ▶ If the improvement in the fit from dropping the restriction $\mathbf{A}\beta = \mathbf{b}$ is significant, then we would use this as evidence against H_0
- ► To run the test we'll derive the distribution of (a constant times)

$$(RSS_{H_0} - RSS)/RSS$$

The model under H_0 :

► The least squares problem becomes

$$\hat{\boldsymbol{\beta}}_{H_0} = \operatorname{argmin}_{\boldsymbol{\beta}} \quad (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}), \text{ s.t. } \boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{b}$$

- ▶ We could simply "plug the restriction into the objective function"
- ▶ For example, if H_0 : $\beta_1 = b_1, \beta_2 = \beta_3$, then the model becomes

$$Y_i = \beta_0 + b_1 x_{i1} + \beta_2 (x_{i2} + x_{i3}) + \beta_4 x_{i4} + \dots + \beta_k x_{ik} + \epsilon_i$$

proceed to do regular least squares using $Y_i - b_1 x_{i1}$ as the response (or including $b_1 x_{i1}$ as an offset) and creating a new covariate $x_{i2} + x_{i3}$

▶ SL, section 3.8.1 present the general solution of $\hat{\beta}_{H_0}$ using Lagrange multipliers

$$\hat{\boldsymbol{\beta}}_{H_0} = \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T [\boldsymbol{A} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T]^{-1} (\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{\beta}})$$

The model under H_0 :

▶ The least squares problem becomes

$$\hat{\boldsymbol{\beta}}_{H_0} = \operatorname{argmin}_{\boldsymbol{\beta}} \quad (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}), \text{ s.t. } \boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{b}$$

- ▶ We could simply "plug the restriction into the objective function"
- ▶ For example, if H_0 : $\beta_1 = b_1$, $\beta_2 = \beta_3$, then the model becomes

$$Y_i = \beta_0 + b_1 x_{i1} + \beta_2 (x_{i2} + x_{i3}) + \beta_4 x_{i4} + \dots + \beta_k x_{ik} + \epsilon_i;$$

proceed to do regular least squares using $Y_i - b_1 x_{i1}$ as the response (or including $b_1 x_{i1}$ as an offset) and creating a new covariate $x_{i2} + x_{i3}$

▶ SL, section 3.8.1 present the general solution of $\hat{\beta}_{H_0}$ using Lagrange multipliers

$$\hat{\boldsymbol{\beta}}_{H_0} = \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T [\boldsymbol{A} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T]^{-1} (\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{\beta}})$$

The model under H_0 :

► The least squares problem becomes

$$\hat{\boldsymbol{\beta}}_{H_0} = \operatorname{argmin}_{\boldsymbol{\beta}} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}), \text{ s.t. } \boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{b}$$

- ▶ We could simply "plug the restriction into the objective function"
- ▶ For example, if H_0 : $\beta_1 = b_1$, $\beta_2 = \beta_3$, then the model becomes

$$Y_i = \beta_0 + b_1 x_{i1} + \beta_2 (x_{i2} + x_{i3}) + \beta_4 x_{i4} + \cdots + \beta_k x_{ik} + \epsilon_i;$$

proceed to do regular least squares using $Y_i - b_1 x_{i1}$ as the response (or including $b_1 x_{i1}$ as an offset) and creating a new covariate $x_{i2} + x_{i3}$

▶ SL, section 3.8.1 present the general solution of $\hat{\beta}_{H_0}$ using Lagrange multipliers

$$\hat{\boldsymbol{\beta}}_{H_0} = \hat{\boldsymbol{\beta}} + (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T [\boldsymbol{A} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T]^{-1} (\boldsymbol{b} - \boldsymbol{A} \hat{\boldsymbol{\beta}})$$

▶ SL, Theorem 4.1, shows that

$$RSS_{H_0} - RSS = ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2 - ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$
$$= ||\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2$$
$$= (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})$$

▶ Under H_0 ,

$$A\hat{\boldsymbol{\beta}} \sim N_q[\boldsymbol{b}, \sigma^2 \boldsymbol{A} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{A}^T]$$

$$(RSS_W - RSS_W)/\sigma^2 \approx V^2$$

and therefore

▶ SL, Theorem 4.1, shows that

$$RSS_{H_0} - RSS = ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2 - ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2$$
$$= ||\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{H_0}||^2$$
$$= (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})^T [\mathbf{A}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{A}^T]^{-1} (\mathbf{A}\hat{\boldsymbol{\beta}} - \mathbf{b})$$

▶ Under H_0 ,

$$oldsymbol{A}\hat{oldsymbol{eta}} \sim N_q[oldsymbol{b}, \sigma^2 oldsymbol{A} (oldsymbol{X}^T oldsymbol{X})^{-1} oldsymbol{A}^T]$$

and therefore

$$(RSS_{H_0} - RSS)/\sigma^2 \sim \chi_q^2$$

Remember:

- ightharpoonup Let U and V be independent
- ▶ Let $U \sim \chi_m^2$ and $V \sim \chi_n^2$
- ▶ We say that

$$\frac{U/m}{V/n} \sim F_{m,n}$$

- ▶ Note that $(RSS_{H_0} RSS)$ is a deterministic function of $\hat{\beta}$
- lacktriangle Remember that RSS and \hat{eta} are independent
- ▶ Also, $RSS/\sigma^2 \sim \chi^2_{n-k-1}$
- ► Then we obtain

$$\frac{(RSS_{H_0} - RSS)/q}{RSS/(n-k-1)} = \frac{(\boldsymbol{A}\boldsymbol{\hat{\beta}} - \boldsymbol{b})^T[\boldsymbol{A}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{A}^T]^{-1}(\boldsymbol{A}\boldsymbol{\hat{\beta}} - \boldsymbol{b})}{q\hat{\sigma}^2} \sim F_{q,n-k-1}$$

Particular cases:

Note that this coincides with the test for H_0 : $\beta = \beta_0$ that we derived via transforming the multivariate t:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)}{(k+1)\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

(this test is, however, not very useful, as it includes the intercept)

For a hypothesis $H_0: \beta_j = c$,

$$\frac{(\hat{\beta}_j - c)^2}{S_j \hat{\sigma}^2} \sim F_{1,n-k-1}$$

where S_j is the (j,j) element of $(X^TX)^{-1}$. This is equivalent to the t test that we derived via the marginal of the multivariate t, because if $W \sim t_d$ then $W^2 \sim F_{1,d}$.

Particular cases:

Note that this coincides with the test for H_0 : $\beta = \beta_0$ that we derived via transforming the multivariate t:

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T (\boldsymbol{X}^T \boldsymbol{X}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)}{(k+1)\hat{\sigma}^2} \sim F_{k+1, n-k-1}$$

(this test is, however, not very useful, as it includes the intercept)

For a hypothesis $H_0: \beta_i = c$,

$$\frac{(\hat{\beta}_j-c)^2}{S_i\hat{\sigma}^2}\sim F_{1,n-k-1}$$

where S_j is the (j,j) element of $(\boldsymbol{X}^T\boldsymbol{X})^{-1}$. This is equivalent to the t test that we derived via the marginal of the multivariate t, because if $W \sim t_d$ then $W^2 \sim F_{1,d}$.

For inference concerning the *expected* response at a covariate x_0 , we define

$$\theta = \mathbf{x}_0 \boldsymbol{\beta}$$
.

► Then

$$\hat{\theta} = \mathbf{x}_0 \hat{\boldsymbol{\beta}}$$

and

$$\frac{(\hat{\theta} - \theta)}{\sigma \sqrt{\mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim N(0, 1).$$

▶ Plugging in $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\hat{\theta} - \theta)}{\hat{\sigma} \sqrt{x_0 (\boldsymbol{X}^T \boldsymbol{X})^{-1} x_0^T}} \sim t_{n-k-1}.$$

• We obtain a $100(1-\alpha)\%$ confidence interval for θ

$$\hat{\theta} \pm t_{n-k-1}(\alpha/2)\hat{\sigma}\sqrt{x_0(\boldsymbol{X}^T\boldsymbol{X})^{-1}x_0^T}$$

where $t_{n-k-1}(\alpha/2)$ is the quantile $\alpha/2$ of the t_{n-k-1}

For inference concerning the *expected* response at a covariate x_0 , we define

$$\theta = \mathbf{x}_0 \boldsymbol{\beta}$$
.

► Then

$$\hat{\theta} = \mathbf{x}_0 \hat{\boldsymbol{\beta}}$$

and

$$\frac{(\hat{\theta} - \theta)}{\sigma \sqrt{\mathbf{x}_0(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}} \sim N(0, 1).$$

▶ Plugging in $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\hat{\theta} - \theta)}{\hat{\sigma}\sqrt{\mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-k-1}.$$

• We obtain a $100(1-\alpha)\%$ confidence interval for θ

$$\hat{\theta} \pm t_{n-k-1}(\alpha/2)\hat{\sigma}\sqrt{x_0(\boldsymbol{X}^T\boldsymbol{X})^{-1}x_0^T}$$

where $t_{n-k-1}(\alpha/2)$ is the quantile $\alpha/2$ of the t_{n-k-1}

▶ For inference concerning the *expected* response at a covariate x_0 , we define

$$\theta = \mathbf{x}_0 \boldsymbol{\beta}$$
.

► Then

$$\hat{\theta} = \mathbf{x}_0 \hat{\boldsymbol{\beta}}$$

and

$$\frac{(\hat{\theta} - \theta)}{\sigma \sqrt{\mathbf{x}_0(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}} \sim N(0, 1).$$

▶ Plugging in $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\hat{\theta} - \theta)}{\hat{\sigma} \sqrt{\mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}} \sim t_{n-k-1}.$$

• We obtain a $100(1-\alpha)\%$ confidence interval for θ

$$\hat{\theta} \pm t_{n-k-1}(\alpha/2)\hat{\sigma}\sqrt{x_0(\boldsymbol{X}^T\boldsymbol{X})^{-1}x_0^T}$$

where $t_{n-k-1}(\alpha/2)$ is the quantile $\alpha/2$ of the t_{n-k-1}

Section 5.3 of SL:

▶ Under our model, a response at x_0 is generated as

$$Y_0 = \mathbf{x}_0 \boldsymbol{\beta} + \epsilon_0, \quad \epsilon_0 \sim N(0, \sigma^2)$$

• We want an interval $[a(Y_1, \ldots, Y_n), b(Y_1, \ldots, Y_n)]$ such that

$$\Pr[\ a(Y_1, \dots, Y_n) < Y_0 < b(Y_1, \dots, Y_n)\] \ge 1 - \alpha$$

where the probability is computed w.r.t. the joint distribution of Y_1, \ldots, Y_n, Y_0 . This is called a *prediction interval*.

Section 5.3 of SL:

▶ Under our model, a response at x_0 is generated as

$$Y_0 = \mathbf{x}_0 \boldsymbol{\beta} + \epsilon_0, \quad \epsilon_0 \sim N(0, \sigma^2)$$

• We want an interval $[a(Y_1, ..., Y_n), b(Y_1, ..., Y_n)]$ such that

$$Pr[a(Y_1, ..., Y_n) < Y_0 < b(Y_1, ..., Y_n)] \ge 1 - \alpha,$$

where the probability is computed w.r.t. the joint distribution of Y_1, \ldots, Y_n, Y_0 . This is called a *prediction interval*.

- Note that $x_0\hat{\beta}$ and Y_0 are independent under our model
- $E(x_0\hat{\beta} Y_0) = 0$
- ightharpoonup var $(x_0\hat{m{\beta}} Y_0) = \sigma^2[1 + x_0({m{X}}^T{m{X}})^{-1}x_0^T]$
- ▶ It then follows that

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} - Y_0 \sim N \left\{ 0, \sigma^2 [1 + \mathbf{x}_0 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \mathbf{x}_0^T] \right\}.$$

► Similarly as previously done, using $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0)}{\hat{\sigma}\sqrt{1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-k-1}.$$

▶ We obtain a $100(1-\alpha)\%$ prediction interval for Y_0

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} \pm t_{n-k-1} (\alpha/2) \hat{\boldsymbol{\sigma}} \sqrt{1 + \mathbf{x}_0 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \mathbf{x}_0^T}$$

- Note that $x_0\hat{\beta}$ and Y_0 are independent under our model
- $E(x_0\hat{\beta} Y_0) = 0$
- ightharpoonup var $(x_0\hat{eta} Y_0) = \sigma^2[1 + x_0(X^TX)^{-1}x_0^T]$
- It then follows that

$$\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0 \sim N\left\{0, \sigma^2[1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T]\right\}.$$

► Similarly as previously done, using $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0)}{\hat{\sigma}\sqrt{1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-k-1}.$$

▶ We obtain a $100(1-\alpha)$ % prediction interval for Y_0

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} \pm t_{n-k-1} (\alpha/2) \hat{\sigma} \sqrt{1 + \mathbf{x}_0 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \mathbf{x}_0^T}$$

- Note that $x_0\hat{\beta}$ and Y_0 are independent under our model
- $E(x_0\hat{\beta} Y_0) = 0$
- ightharpoonup var $(x_0\hat{eta} Y_0) = \sigma^2[1 + x_0(X^TX)^{-1}x_0^T]$
- ▶ It then follows that

$$\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0 \sim N\left\{0, \sigma^2[1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T]\right\}.$$

▶ Similarly as previously done, using $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0)}{\hat{\sigma}\sqrt{1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-k-1}.$$

▶ We obtain a $100(1-\alpha)\%$ prediction interval for Y_0

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} \pm t_{n-k-1} (\alpha/2) \hat{\sigma} \sqrt{1 + \mathbf{x}_0 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \mathbf{x}_0^T}$$

- Note that $x_0\hat{\beta}$ and Y_0 are independent under our model
- $E(x_0\hat{\beta} Y_0) = 0$
- ightharpoonup var $(x_0 \hat{eta} Y_0) = \sigma^2 [1 + x_0 (X^T X)^{-1} x_0^T]$
- It then follows that

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} - Y_0 \sim N \left\{ 0, \sigma^2 [1 + \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T] \right\}.$$

▶ Similarly as previously done, using $\hat{\sigma} = \sqrt{RSS/(n-k-1)}$,

$$\frac{(\mathbf{x}_0\hat{\boldsymbol{\beta}} - Y_0)}{\hat{\sigma}\sqrt{1 + \mathbf{x}_0(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{x}_0^T}} \sim t_{n-k-1}.$$

• We obtain a $100(1-\alpha)\%$ prediction interval for Y_0

$$\mathbf{x}_0 \hat{\boldsymbol{\beta}} \pm t_{n-k-1} (\alpha/2) \hat{\sigma} \sqrt{1 + \mathbf{x}_0 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_0^T}$$

Comments

- ► The normal linear model receives special attention because exact, finite sample inferential procedures are well characterized
- ▶ In practice, we can employ diagnostics to see whether the model's assumptions are reasonable
- Violations of the model assumptions can lead to inferences being incorrect
- ▶ In many cases, you might have to move to other type of parametric models, or work under more flexible assumptions