

Session 18

An Overview of MySQL 5.7

Objectives

- ☐ Explain the process to upgrade MySQL 5.1 to MySQL 5.7
- ☐ Describe the new features and enhancements added to MySQL 5.7
- ☐ Explain geospatial data and how to use it in MySQL
- ☐ Explain various types of MySQL programs
- ☐ List and describe spatial data types in MySQL
- ☐ Identify JavaScript Object Notation (JSON) data types

Migrating from MySQL 5.1 to

MySQL 5.7

- ☐ Upgrading to MySQL 5.7 allows using new improved features and fixing security vulnerabilities existing in current version.
- \square Two ways to upgrade to MySQL 5.7:
 - ❖ In-place
 - ❖ Logical

In-place Upgrade

- ☐ The process includes shutting down the existing instance and replacing its packages with new ones.
- ☐ Following figure shows steps of an in-place upgrade:

Logical Upgrade

- ☐ The process includes exporting existing server data to a dump file, installing the new version, and loading it with the file.
- ☐ It is ideal for skipping several versions in between.
- ☐ Following figure shows steps of logical upgrade:

Performance Schema

- ☐ Is referred to as PERFORMANCE_SCHEMA that oversees the server performance at a low level.
- □ Contains tables storing the details of status and system variables.
- ☐ Focuses mainly on performance data, unlike INFORMATION_SCHEMA focusing on metadata.

Characteristics of Performance

Schema

Server Monitoring

Event Monitoring

Distinct Events

Data Collection via Instrumentation Points

Local Temporary
Tables

Dynamically Modifiable Configuration

Data Collection via Instrumentation

Support on All MySQL Platforms

Benefits of Performance Schema

- No impact on server's behavior
- Non-stop monitoring with least overhead
- □ Intact parser
- ☐ Ongoing execution of server code
- ☐ Faster collection of events
- ☐ Easy inclusion of instrumentation points
- Versioned instrumentation

Tables in Performance Schema

Configuration

Contain logistical details about monitoring entities.

Object Instance

Contain instances of instrumented objects.

Events

Contain the details of monitored events.

History

Contain details of events occurred.

Summary

Contain details about completed events.

Other

Contain rest of the tables.

The sys Schema

- ☐ Is a set of objects, which helps in interpreting data collected by Performance Schema.
- ☐ Contains objects such as views, stored procedures, and stored functions.
- \square Is installed by default while initializing the data directory.
- ☐ Has objects with the DEFINER as 'mysql.sys'@'localhost'.

Prerequisites for Using the sys

Schema

Enabled Performance Schema

SELECT, EXECUTE, INSERT, UPDATE, PROCESS, and other privileges on different objects

Enabled Consumer and Instruments of Performance Schema

Using the sys Schema 1-2

☐ Following figure shows how to set the sys schema as default one:

Using the sys Schema 2-2

☐ Following figure shows how to use object reference through the schema name:

```
mysql> SELECT * FROM sys.version;

+-----+

| sys_version | mysql_version |

+-----+

| 1.5.0 | 5.7.11

+-----+

1 row in set (0.00 sec)
```

Security Enhancements in MySQL 5.7

- No compulsion for the mysql.user table to hold a plugin column value
- Conversion of accounts using the mysql_old_password plugin for using mysql_native_password for authentication
- □ Setup of automatic password expiry policy
- □ Secure connections through Secure Sockets Layer (SSL) and Rivest Shamir Adleman (RSA) certificate
- ☐ Secure upgrades by default through mysqld —initialize

MySQL Programs

- ☐ Are mostly used on the command prompt.
- □ Have different options, which are seen by using --help option.
- ☐ Following figure shows the types of programs available:

Server and Startup Programs 1-2

Server and its Startup Program	Description
mysqld	Is the key program required for most MySQL installation tasks.
mysqld_safe	Is a server startup script, which starts mysqld.
mysqld_server	Is a startup script used on systems for starting and stopping the server.
mysqld_multi	Is a startup script useful for starting or halting multiple servers.

Server and Startup Programs 2-2

Installation- or Upgrade-related Program	Description
comp_err	Compiles errmsg.sys that mysqld uses to identify the error message.
mysql_install_db	Initializes the data directory, produces mysql database, configures InnoDB, and installs sys schema.
mysql_plugin	Configures server plugins and allows enabling or disabling plugins.
mysql_secure_installation	Boosts the security of installation.
mysql_ssl_rsa_setup	Produces security certificate and key pairs if they are missing.
mysql_tzinfo_to_sql	Loads the tables of time zone in the mysql database.
mysql_upgrade	Examines tables for incompatibility and fix them, and updates the grant tables.

Client Programs

Installation- or Upgrade-related Program	Description
mysql	Returns American Standard Code for Information Interchange (ASCII) table or output separated by tab.
mysqladmin	Performs administrative tasks.
mysqlcheck	Analyzes, fixes, and optimizes tables.
mysqldump	Dumps single or multiple databases into a text, SQL, or XML file for backup.
mysqlimport	Imports text files into their corresponding tables.
mysqlpump	Dumps a single or multiple databases into an SQL file.
mysqlshow	Displays details about databases, indexes, columns, and tables.
mysqlslap	Imitates client load and state timings for each stage.

Administrative and Utility Programs

Administrative and Utility Program	Description
innochecksum	Is an offline tool returning checksums for Innode files.
myisam_ftdump	Shows details about full-text indexes in MyISAM tables.
myisamchk	Tests, fixes, and optimizes MyISAM tables containing .MYD and .MYI files.
myisamlog	Displays data existing in a MyISAM log file.
myisampack	Compresses MyISAM tables.
mysql_config_editor	Saves authentication credentials in the encrypted file, .mylogin.cnf.
mysqlbinlog	Reads from a binary log for recovering from a crash.
mysqldumpslow	Reads and sums up the matter existing in a slow query log.

Program Development Utility	Description
mysql_config	Generates option values required while compiling client programs.
my_print_defaults	Displays options and the option files' groups.
resolve_stack_dump	Resolve a numeric dump file to symbols.

Miscellaneous Programs

Miscellaneous	Program	Description
1z4_decompress		Decompresses the mysqlpump
		output, which was generated using
		LZ4 compression.
perror		Infers the MySQL error codes or
		system.
replace		Replaces string in the input text.
resolveip		Transforms an IP address to its
	CX	corresponding host name and vice-
		versa.
zlib_decompress		Decompresses the mysqlpump
		output, which was generated using
	XO	ZLIB compression.

Spatial Data

- □ Represents geometrical or geospatial data, which refers to a point or a collection of points indicating a location.
- ☐ Is handled as per OpenGIS standard specification released by Open Geospatial Consortium (OGC).
- ☐ Is employed as a Geometry data type and is useful for mapping locations.
- ☐ Is managed through spatial data types and functions, which are only for NDB, InnoDB, MyISAM, and ARCHIVE tables.

Spatial Data Types

OpenGIS Model

- □ A geometric object is linked to the coordinate space and belongs to a geometry class.
- ☐ Geometry is the base class.
- ☐ Hierarchy of classes:
 - o Geometry (noninstantiable)
 - o Point
 - o Curve
 - LineString
 - o Surface
 - Polygon
 - o GeometryCollection
 - MultiPoint
 - MultiCurve
 - MultiSurface

Spatial Data Formats

- □ Two standard data formats for representing geometry objects in MySQL:
 - Well-Known Text (WKT) for exchanging geometry values in ASCII form
 - Well-Known Binary (WKB) for exchanging values as binary streams denoted by BLOB type
- MySQL, however, does not store geometry values in these formats. Thus, there are functions for converting data into the desired format.

Geometry Object	WKT Representation	Description
Point	POINT(5 10)	Is represented with X
		and Y coordinates
		separated with space
		and not comma like in
		the SQL Point()
		function.
	mysql> SELECT	Generates the Point
	ST_X(Point(5,	object through the
	10));	Point() function and
		fetches its X-coordinate.
	mysql> SELECT	Uses the WKT format,
	ST_X(ST_GeomFromTe	which is converted to a
	xt('POINT(5	Point object by using
~ (10)'));	the spatial function.

WKT Data Format 2-2

Geometry Object	WKT Representation	Description
Linestring	LINESTRING(0 0, 10	Is represented using
	10, 20 25, 50 60)	point coordinate pairs,
		each followed by a
		comma.
Polygon	POLYGON((0 0,20	Is represented using an
	0,20 20,0 20,0	exterior ring as well as
	0),(7 7,9 7,7 9,7	an interior ring.
	9,7 7))	
MultiPoint	MULTIPOINT(0 0, 30	Is represented using
	30, 70 70)	point coordinate pairs.
	ST_MPointFromText(Accepts WKT format of
	'MULTIPOINT (4 4,	MultiPoint values,
×	5 5, 6 6)')	wherein individual point
	ST_MPointFromText(pair is in parentheses
	'MULTIPOINT ((4	and separated by a
	4), (5 5), (6	comma.
7.0	6))')	

WKB Data Format

- □ Accepts 1-byte and 4-byte unsigned integers along with 8-byte double-precision numbers.
- ☐ For instance, POINT(1 0) is represented as a series of 21 bytes, which is split into the following components:
 - Byte Order: 01
 - **WKB Type**: 01000000
 - X –coordinate with Hexadecimal Digit and Doubleprecision Value: 00000000000000F03F
 - Y-coordinate with Hexadecimal Digit and Double-precision Value: 0000000000000000

Using Spatial Data

☐ Following code snippet creates the mobile table with a spatial column named geodata:

```
CREATE TABLE mobile (geodata GEOMETRY);
```

☐ Following code snippet inserts WKT values:

```
INSERT INTO mobile VALUES
(ST_GeomFromText('POINT(10 10)'));
```

□ Following code snippet retrieves data in the WKT and WKB formats respectively:

```
SELECT ST_AsText(geo) FROM mobile1;
SELECT ST AsBinary(geo) FROM mobile1;
```

JSON Data Type

- □ Allows accessing data from a stored JSON document, which is converted into an internal binary format for fast reading of elements.
- ☐ Facilitates automatic validation of JSON files added to JSON columns and optimized storage format.

{JSON}

Example of JSON data:

```
{
    "code": "DE",
    "name": "Germany",
    "population": "81802257"
}
```

Using JSON Data Type

☐ Following code snippet inserts a value in JSON column:

```
CREATE TABLE Book (bdoc JSON);
INSERT INTO Book VALUES('{"Edition": "V1.1",
"Author": "James Robert"}');
```

Functions to Fetch JSON Values

Function	Description
JSON_TYPE()	Takes a JSON argument and parses it to give its JSON type.
JSON_ARRAY()	Accepts a list of values and returns them as elements of a JSON array.
JSON_OBJECT()	Accepts a list of key/value pairs and returns them as pairs in a JSON object.
JSON_MERGE()	Accepts more than one JSON document and gives a combined outcome.

Searching and Editing JSON

Values

□ Following figure extracts the object value for the name key from a JSON document:

Functions Using Path Expressions

Function	Description
JSON_SET()	Replaces values for existing paths and adds values for non-existing paths.
JSON_INSERT()	Inserts new values without replacing the current ones.
JSON_REPLACE()	Replaces the current values and overlooks the new ones.
JSON_REMOVE()	Accepts single or multiple paths along with the values to be discarded.

Summary 1-2

- You can upgrade to MySQL 5.7 from MySQL 5.1 either through in-place or logical upgrade.
- Performance Schema is a feature that monitors all server events, stores event details in temporary tables, and holds all system and status variables.
- The sys Schema allows viewing the summary of Performance Schema data.
- MySQL 5.7 provides security enhancements such as policy for automatic password expiry, locking and unlocking accounts, and so on.
- MySQL offers several types of programs such as server startup, installation- or upgrade-based, client, administrative, development, and miscellaneous programs.

Summary 2-2

- Spatial data types and their functions are available only for NDB, InnoDB, MyISAM, and ARCHIVE tables.
- Geometry is the base class for spatial data and has four subclasses namely, Point, Curve, Surface, and GeometryCollection.
- WKT and WKB formats denote geometry objects and are converted into internal format for storing the objects in the database.
- JSON data is stored either as an array or as an object.
- Various MySQL functions are used to obtain JSON values from a JSON document.