

Active and Passive Components

Passive components

- Resistors, capacitors, inductors, etc.
- Do not need to be activated (always working)
- Wide linear range

Active components

- Diodes, transistors, ICs, LEDs, etc.
- Must be activated.
- Multiple modes of operation
- Control current flow and voltage distribution
- Generally nonlinear

An Ideal Electronically-Controlled Switch

- A two-state device
- Having four terminals
- The resistance between 1 and 2 is controlled by the voltage applied to the Gate.

OFF state:

- $v_{cont} < 0 \Rightarrow R_{sw} \rightarrow \infty$
- Open, perfect isolation between 1 and 2

• ON state:

- $v_{cont} \ge 0 \Rightarrow R_{sw} = 0$
- Closed, short-circuit between 1 and 2

- Finite OFF-resistance (*R_{OFF}*)
- Imperfect ON-resistance (R_{ON})
 - Voltage drop
 - Power loss and noise generation
- Threshold voltage (V_t)

Elektronik, EITA10, 2025 Active Components Slide 3

- Finite OFF-resistance (R_{OFF})
- Imperfect ON-resistance (R_{ON})
 - Voltage drop
 - Power loss and noise generation
- Threshold voltage (V_t)
- Gradual transition from OFF to ON

$$R_{sw} = \begin{cases} R_{OFF} \; ; v_{cont} < V_t \\ R_{ON} \; ; v_{cont} \ge V_t \end{cases}$$

- Finite OFF-resistance (R_{OFF})
- Imperfect ON-resistance (R_{ON})
 - Voltage drop
 - Power loss and noise generation
- Threshold voltage (V_t)
- Gradual transition from OFF to ON
- Parasitic capacitances

$$R_{sw} = \begin{cases} R_{OFF} \; ; v_{cont} < V_t \\ R_{ON} \; ; v_{cont} \ge V_t \end{cases}$$

- Finite OFF-resistance (R_{OFF})
- Imperfect ON-resistance (R_{ON})
 - Voltage drop
 - Power loss and noise generation
- Threshold voltage (V_t)
- Gradual transition from OFF to ON
- Parasitic capacitances
- Equivalent high-frequency RC-circuit
 - Delay $(\tau = RC)$
 - Limited sampling frequency (f_s)

Low-Frequency Model

High-Frequency Model

i - v Characteristic of a Switch

• For a constant $v_{sw} = v_1 - v_2$

Elektronik, EITA10, 2025 Active Components Slide 7

Diode, a Self-Controlled Switch

• The control voltage is the same as the voltage across the device $(v_{cont} = v_D)$.

ON state

- $v_D \ge V_t \approx 0.7 V$
- v_D remains almost constant, no matter what current flows! (~60 mV per decade)
- $R_{ON} \approx \frac{25 \, mV}{I_D}$ (at room temperature)

OFF state

- $v_D < V_t$
- $R_{OFF} \approx 100 \text{ to } 1000 \text{ M}\Omega$

Elektronik, EITA10, 2025 Active Components Slide 8

Pause and Ponder 1

A group of students have measured and plotted the i - v characteristic diagram of a diode. Can you help them calculate the values of R_{ON} and R_{OFF} ?

- By definition, $R_D = \frac{v_D}{i_D}$; however, diode is nonlinear.
- Linearization in a region of operation:

$$R_D = \frac{\Delta v_D}{\Delta i_D}$$

Pause and Ponder 1

A group of students have measured and plotted the i - v characteristic diagram of a diode. Can you help them calculate the values of R_{ON} and R_{OFF} ?

- By definition, $R_D = \frac{v_D}{i_D}$; however, diode is nonlinear.
- Linearization in a region of operation:

$$R_D = \frac{\Delta v_D}{\Delta i_D}$$

Linearization at a certain point:

$$R_D = \left(\frac{di_D}{dv_D}\right)^{-1}$$

1N4148, a Commercial Diode

ON State $v_D \ge V_t$ (Forward Bias)

• Logarithmic scale to highlight subthreshold $(0 < v_D < V_t)$ current

OFF State $v_D \ge V_t$ (Reverse Bias)

- Breakdown voltage $(V_{BR}) = 75 \text{ V}$
- Sharp increase in reverse current

Elektronik, EITA10, 2025 Active Components Slide 11

Diode Circuits – Example 1

- Complete the table below. ($V_t = 0.7 V$, $V_{BR} = 75 V$)
- When diode conducts ($v_D \ge 0.7 V$):

• When diode is OFF ($v_D < 0.7 V$):

$$i_R = i_D = 0$$

$V_0(V)$	$i_R(mA)$
10	9.3
5	4.3
2	1.3
0.7	0
0	0
-5	0

Diode Circuits – Example 3 (Rectifier)

• Draw the output voltage when feeding in a sinusoidal voltage $(V_m \gg V_t)$.

- Diode is ON if: $v_i v_o \ge V_t$
- In the beginning: $v_o(0) = 0 \text{ V}$

Elektronik, EITA10, 2025 Active Components Slide 14

- Diode is ON if: $v_i v_o \ge V_t$
- In the beginning: $v_o(0) = 0 \text{ V}$
- The capacitor is charged up to $V_m V_t$
- v_o follows v_i

• Draw the output voltage when feeding in a sinusoidal voltage $(V_m \gg V_t)$.

- Then v_i goes down
- $v_i < v_o \rightarrow$ Diode is turned off

Elektronik, EITA10, 2025 Active Components Slide 16

- Then v_i goes down
- $v_i < v_o \rightarrow$ Diode is turned off
- The capacitor is partially discharged by R
- v_o drops with a large time constant

- Afterwards, the capacitor is charged and discharged repeatedly.
- A simple AC-to-DC converter
- Output ripple (V_r) is inversely proportional to the filter's capacitance (C).

- Afterwards, the capacitor is charged and discharged repeatedly.
- A simple AC-to-DC converter
- Output ripple (V_r) is inversely proportional to the filter's capacitance (C).

How is a Diode Fabricated?

Raw Material: Silicon

- Active devices, including diodes, are made of semiconductors.
- Mostly Silicon (Si) and Germanium (Ge)
- Diamond cubic crystal structure
- $\sim 5 \times 10^{22}$ atom/cm³
- At temperature higher than 0 °K, electrons can jump from valence energy band to the conduction band.
- Therefore, the material shows lower resistance.

Electronic-Grade Silicon

- Mechanical refinement to 98% (metallurgical grade)
- Thermo-chemical purification to > 99.9999%
- Controlled concentrations of impurities and dopants
- Si ingot is sliced into wafers
 - Diameter ~ 30 cm
 - Thickness ~ 200 to 300 μm
- Precise surface finish and dimensions

Doping and Selective Patterning

- **Dopants** (atoms from Group 13 or 15) are introduced into the silicon lattice.
- Adjust the resistivity of Si
- Dopped Si:
 - N-type: additional electrons, by implanting P or As
 - P-type: electron deficit, by implanting B, Al, or Ga
- Photolithography: selective patterning of the wafer's surface to be implanted by N/P dopants.

Photolithography

A diode: P-N Junction

Magic of Electronic Miniaturization

Magic of Electronic Miniaturization

Magic of Electronic Miniaturization

Metal-Oxide-Semiconductor (MOS) Structure

- A structure similar to a capacitor (MOSCAP)
- Metal: conductor, polysilicon
- Oxide: very thin layer (2~5 nm)
- Silicon: a thick layer (2~3 μm)
 - For NMOS: P-type body
 - For PMOS: N-type body

Metal-Oxide-Semiconductor (MOS) Structure

- Two terminals: Gate and Body
- Body is normally connected to GND $(V_B = 0)$
- Gate voltage (V_G) controls the **local** concentration of electrons underneath the oxide-silicon interface.

Accumulation

- $V_B = 0$
- $V_G < 0$
- More deficit of electrons underneath the gate oxide
- Silicon become more p-type (p+)

Depletion

- $V_B = 0$
- $0 < V_G < V_t$
- Less deficit of electrons underneath the gate oxide
- Not enough to make it N-type
- Behaves like undopped silicon

Inversion

- $V_B = 0$
- $V_t < V_G$
- Excess electrons underneath the gate oxide
- Locally N-type Si, a thin layer within the body (channel)

MOS Field-Effect Transistor (MOSFET)

- We created a voltage-controlled material
- The resistivity of the channel is controlled by $V_G \rightarrow$ variable resistance (R_{ds})
- By implanting two n-type regions on the sides of the channel (with some overlap with the gate), a switch is constructed.
- Source (S) and Drain (D) terminals.

MOS Field-Effect Transistor (MOSFET)

- When $v_{GS} > V_t$ channel is formed next to the source.
- When $v_{DS} > 0$, electrons can flow from S to D through the channel.
- Schematic symbol of NMOS

MOSFET as a Switch (Deep-Triode Region)

- $v_{GS} > V_t \rightarrow$ Channel formation
- $v_{DS} \approx 0 \rightarrow \text{Uniform channel}$
- Switch's performance depends on:
 - Material properties: $K_n \triangleq \frac{1}{2} \left(\frac{W}{L} \right) \mu_n C_{ox}$
 - Electron mobility: μ_n
 - Gate-oxide capacitance per area: $C_{ox} \triangleq \frac{\varepsilon_{ox}}{t_{ox}}$
 - Overdrive voltage: $v_{ov} \triangleq v_{GS} V_t$

Pause and Ponder 1

 Derive an expression for the maximum achievable sampling frequency in an N-bit ADC.

$$\begin{cases} R_{ds} = \frac{1}{2K_n v_{ov}} \\ \tau = R_{ds}C \end{cases}$$

$$f_{s,max} = \frac{1}{2N(\ln 2)\tau}$$

$$f_{s,max} = \frac{\mu_n}{N(\ln 2)} \cdot \frac{C_{ox}}{C} \cdot \frac{W}{L} v_{ov}$$
 It is doubled. Really?!

Linear (Triode) Region of Operation

- $v_{GS} > V_t \rightarrow$ Channel formation
- $0 < v_{DS} < (v_{GS} V_t) \rightarrow \text{Non-uniform channel}$
- The transistor is symmetrical
 - No physical difference between S and D
- Increasing $v_{DS} \rightarrow \text{Lowering } v_{GD} = v_{GB \ (at \ D)}$
- Lower Inversion at D → Higher channel resistance → Lower current

$$i_D = K_n (2v_{ov}v_{DS} - v_{DS}^2)$$

Saturation Region

- $v_{GS} > V_t \rightarrow$ Channel formation
- $(v_{GS} V_t) < v_{DS} \rightarrow$ Pinched-off channel
- The channel width is reduced to zero at D
- Increasing $v_{DS} \rightarrow$ Ideally, no effect on i_D anymore!
- Suitable operating region for analog amplification

$$i_D = K_n v_{ov}^2$$

i-v Characteristics of an NMOS Transistor

PMOS: MOS in N-Type Substrate

- When $v_{GS} < V_t < 0$, a low-resistance p-type channel is formed.
- A negative v_{DS} create a current (i_D) flowing from S to D.
- The same equations describe i_D as a function of v_{GS} and v_{DS} .

Elektronik, EITA10, 2025 Active Components Slide

Complementary MOS (CMOS) Technology

- Both NMOS and PMOS devices are integrated on the same chip.
- NMOS switch is activated by logical 1 $(0 < V_t < v_{GS})$.
- PMOS switch is activated by logical 0 $(v_{GS} < V_t < 0)$.

	NMOS	PMOS	
Kretssymbol	$G \longrightarrow I_D$ i_D	$G \longrightarrow \bigcup_{D}^{S} \bigcup_{D} i_{D}$	
$\mu \approx$	$675\mathrm{cm^2V^{-1}s^{-1}}$	$240\mathrm{cm^2V^{-1}s^{-1}}$	
$\kappa \approx$	$115 \mu {\rm AV}^{-2}$	$40 \mu {\rm AV}^{-2}$	
$V_{ m t} pprox$	$+0.5\mathrm{V}$	$-0.6 m{V}$	
Subtröskel	$v_{\rm GS} \le V_{\rm t}$	$v_{\rm GS} \ge V_{\rm t},$	
(strypt	$v_{\rm DS} \ge 0$,	$v_{\rm DS} \leq 0$,	
område)	$i_{\rm D} = 0$	$i_{\rm D} = 0$	
Linjärt område	$v_{\rm GS} \ge V_{\rm t},$	$v_{\rm GS} \le V_{\rm t}$	
	$0 \le v_{\rm DS} \le v_{\rm GS} - V_{\rm t},$	$0 \ge v_{\rm DS} \ge v_{\rm GS} - V_{\rm t},$	
	$i_{\rm D} = K(2(v_{\rm GS} - V_{\rm t})v_{\rm DS} - v_{\rm DS}^2)$	$i_{\rm D} = K(2(v_{\rm GS} - V_{\rm t})v_{\rm DS} - v_{\rm DS}^2)$	
Mättnads-	$v_{\rm GS} \ge V_{\rm t},$	$v_{\rm GS} \le V_{\rm t},$	
område	$v_{\rm DS} \ge v_{\rm GS} - V_{\rm t},$	$v_{\rm DS} \le v_{\rm GS} - V_{\rm t},$	
	$i_{\rm D} = K(v_{\rm GS} - V_{\rm t})^2$	$i_{\rm D} = K(v_{\rm GS} - V_{\rm t})^2$	
$v_{\rm DS},v_{\rm GS}$	Vanligtvis positiva	Vanligtvis negativa	

CMOS Process Nodes

- Feature size: Represents the minimum gate length (L_{min}) achievable in a given CMOS technology generation.
- Process Node: Identified by the feature size
- Steady **miniaturization** over decades
- Approaching quantum physics (atomic-scale) limits

Digital Logic Operators and Gates

- Boolean logic condition: True and False
- In binary digital systems:
 - Logical "1" = True, corresponds to high voltage level (close enough to the supply voltage, V_{DD})
 - Logical "0" = False, corresponds to low voltage level (close enough to the GND voltage, 0 V)
- Fundamental digital logic operators and gates:
 - NOT, NAND, NOR
 - Digital gate: electronic implementation of an operator

A	\overline{A}
0	1
1	0

A	В	$\overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

A	B	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Elektronik, EITA10, 2025 Active Components Slide 44

CMOS Logic Gates

- A gate decides to connect the output node to either GND or V_{DD} according to its digital input state ("0" or "1") and the truth table.
- Lower-half (Pull-down) circuit connects to GND
- Upper-half (Pull-up) circuit connects to VDD
- CMOS construction:
 - Pull-down: NMOS
 - Pull-up: PMOS

CMOS Logic Gates, Pull-Down

- Start from the lower half
- NMOS switch conducts when its input is "1"
- However, when an NMOS between GND and OUT is ON, the output becomes "0"; therefore:
- Inverting: NMOS switch between GND and OUT
- NAND-ing: Series NMOS switches
- NOR-ing: Parallel NMOS switches

CMOS Logic Gates, Pull-Up

- The upper half complements the lower half.
- Reminder: PMOS conducts when it receives a "0" digital input
- Duality:

CMOS NAND and NOR

Voltage Transfer Characteristics

- Ideal input-output characteristics
- Low State: "0" $\equiv [0, V_{DD}/2)$
- High State: "1" $\equiv (V_{DD}/2, V_{DD}]$

Voltage Transfer Characteristics

- Realistic input-output characteristics
- Low State: "0" $\equiv [0, V_{IL})$
- High State: "1" $\equiv (V_{IH}, V_{DD}]$

Noise Margin

- Noise Margin: Maximum tolerable noise for reliable function
- Sources of Noise:
 - Variations in manufacturing process, temperature and supply voltage (PVT)
 - Radiation waves and magnetic fields
 - Nearby (both on-chip and off-chip)
 switching circuits

Elektronik, EITA10, 2025 Active Components Slide 51

Pause and Ponder 2

Could you specify the operating region (cut-off, linear, saturation)
 for NMOS and PMOS transistors at each point?

Operating Point	NMOS	PMOS
Α	Cut-off	Linear
В	Saturation	Linear
C	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cut-off

Unknown ("X") does NOT equate to useless!

- When both transistors operate in saturation, the inverter amplifies the input signal.
- **DC Operating Point (Q):** Identified by DC operating current (i_D) and voltages $(V_{DS} \text{ and } V_{GS})$ of each transistor.
- Gain (A_v) : the ratio of signal amplitudes

$$A_{v} = \left| \frac{v_{out,sig}}{v_{in,sig}} \right|$$

$$v_{out,Q} = v_{out,DCQ} + A_{v}v_{in,sig}$$

$$A_{v} = \left| \frac{\partial v_{out}}{\partial v_{in}} \right|$$

Voltage Gain

Voltage Gain (signal illustration)

• pp: peak-to-peak value

$$A_{v} = \left| \frac{v_{out,pp}}{v_{in,pp}} \right|$$

• Step 1: Write a linear equation for i-v relationship of nonlinear device (transistor, diode, etc.)

KVL:
$$V_{DD} = Ri_D + v_{DS} \Rightarrow \left[i_D = \frac{V_{DD}}{R} - \frac{v_{DS}}{R} \right]$$

• Example: $V_{DD} = 7 V$, $R = 1 k\Omega$

$$i_D = 7 \text{ mA} - \frac{v_{DS}}{1000}$$

- Step 2: Determine the operating point by intersecting the linear function and nonlinear characteristic curves of device.
- A and B: linear region → no gain ⊗
- C, D, and E: saturation → ©
- Let's pick C!

$$\rightarrow V_{GS,C} = 2 \text{ V}, V_{DS,C} = 2 \text{ V}, I_{D,C} = 5 \text{ mA}$$

• Step 3: Find voltage gain from $v_{in} - v_{out}$ curve.

$$v_{in} = v_{GS}$$

$$v_{out} = v_{DS}$$

