

Why look at case studies?

Outline

Classic networks:

- LeNet-5 ←
- AlexNet ←
- VGG ←

ResNet (152)

Inception

Classic networks

Residual Networks (ResNets)

$$z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]})$$

Why ResNets work

Why do residual networks work?

ResNet

Network in Network and 1×1 convolutions

Using 1×1 convolutions

[Lin et al., 2013. Network in network]

Inception network motivation

The problem of computational cost

Inception network

Using open-source implementations

Transfer Learning

Data augmentation

Implementing distortions during training

The state of computer vision

Tips for doing well on benchmarks/winning competitions

Ensembling

· Train several networks independently and average their outputs

Multi-crop at test time

Run classifier on multiple versions of test images and average results

| 网易云课堂

Use open source code

- Use architectures of networks published in the literature
- Use open source implementations if possible
- Use pretrained models and fine-tune on your dataset