

α							
$f_{1}^{#2}$	0	0	0	0	0	0	0
$f_{1^{ extstyle -}}^{\#1} lpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1$	0	0	0
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2}t_2}{3}$	2 ع	$-\frac{1}{3}$ i k t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_{1}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^-}^{\#1} \dagger^\alpha$	$f_{1}^{\#2} +^{\alpha}$

$\tau_{1}^{\#2}\alpha$	0	0	0	0	0	0	0	
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0	
$\sigma_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0	
${\mathfrak r}_1^{\#1}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0	
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0	
,	$\sigma_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	0	0	0	0
	+	+	+	+
	$\sigma_{0}^{\#1}$	$t_0^{\#1}$	${\bf r}_0^{\#2}$	0#

	#	1	1	1	3	3	3	3	3	2	2	28
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} == 0$	$o_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$t_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#1}{}^{\alpha\beta} = 0$	$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2^+}^{\#1}{}^{\alpha\beta} == 0$	Total #:

?	$J^P = 0^- /$
?	$\rightarrow k^{\mu}$

Massive partic	le
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd
	Pole residue: Polarisations: Square mass: Spin:

(No massless particles)