Modeling the Effects of Buprenorphine during Morphine Withdrawal in Ventral Tegmental Area Dopamine Neurons

Lawrence Long, Aiden Kim, Luke Shao, Oviya Kalaivanan

Outline

01

Background Info

02

Methods

03

Data Analysis

04

Results

05

Significance

06

Summary

16,000,000

individuals worldwide have had or currently suffer from opioid use disorder (OUD)

VTA & Morphine

- The ventral tegmental area
 (VTA) is responsible for
 dopamine synthesis & release
 - Brain's reward system → addiction
- Morphine (MOR) binds to
 µ-opioid receptors in the brain
 → inhibits GABA and
 increases glutamate →
 increases dopamine
 transmission from VTA

Mechanisms of morphine induced rewarding effects.

MOR Withdrawal & BUP

- MOR withdrawal causes symptoms such as muscle pain, anxiety, diarrhea, vomiting, & insomnia
- Buprenorphine (BUP) is a partial opioid agonist -- high affinity binding to μ -opioid receptors, but less severe of a response
 - Used for the treatment of opioid addiction → milder withdrawal symptoms for the patient

Molecular structure of buprenorphine.

Research Objective: To model the effects of buprenorphine and morphine on the firing pattern and dopamine output of a VTA neuron undergoing withdrawal

Our Model

Ventral tegmental area dopamine-releasing neuron single cell model:

- 10 second simulation of neuronal activity
- Parameters: GABA and glutamate
- Outputs: firing pattern and dopamine output

Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective

P. Enrico ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$, M. Migliore ^b, S. Spiga ^c, G. Mulas ^c, F. Caboni ^c, M. Diana ^d

Reconstructed morphology of VTA neuron used in model.

Simulation Conditions

Decrease soma diameter by 30%

Control: Withdrawal

+30% Glutamate

Withdrawal + Morphine

+47% GABA +57% Glutamate

Withdrawal + Buprenorphine

Withdrawal

Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy

Saturnino Spiga, Giuliana P. Serra, M. Cristina Puddu, Marzia Foddai² and Marco Diana² Department of Animal Biology and Ecology, University of Cagliari, Italy Department of Drug Sciences, University of Sassari, Italy

Withdrawal + Morphine

Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA, inducing reward

Li Yang, Ming Chen, Qianqian Ma, Huan Sheng, Dongyang Cui, Da Shao, Bin Lai, Ping Zheng 🖰

Withdrawal + Buprenorphine

Alterations in neurotransmitter levels and transcription factor expression following intranasal buprenorphine administration

Sanelisiwe P. Xhakaza ^a, Leon J. Khoza ^a, Advaitaa M. Haripershad ^a, Terisha Ghazi ^b, Shanel Dhani ^b, Cosmas Mutsimhu ^c, Molopa J. Molopa ^c, Nithia P. Madurai ^c, Lorna Madurai ^c, Sanil D. Singh ^a, Nirmala D. Gopal ^d, Hendrik G. Kruger ^a, Thavendran Govender ^e, Anil Chuturgoon ^b, Tricia Naicker ^a, Sooraj Baijnath ^a ^A

Data Analysis

- Compared results for the three conditions
- Single spikes, burst firing, spikes/burst, and DA output
 - Spike = depolarization to -30mV
 - Burst = 2+ spikes in 80ms
- t-test to confirm significance
 - \circ p < 0.05 = significant

■ Graph(0) x -1000:11000 y -93:63

Graphs from NEURON GUI

Spreadsheet to keep track of the 4 variables for all 30 runs

type	Single Spikes	Burst Firing	Spikes/Burst	DA Output
Control	7	3	2	454.6763038
Control	3	7	2.167	746.6640734
Control	8	3	2	576.4565344
Control	8	3	2.3333	580.7742783
Control	14	4	2.33333	843.4806333
Control	8	1	2	349.4443544
Control	7	3	2	493.7638773
Control	7	3	3	709.9306
Control	6	6	2	662.7185
Control	7	4	2	536.1582
Morphine	19	18	3.411	5202.576946
Morphine	20	16	4.06666	6193.70
Morphine	20	19	3.6111111	6652.3539
Morphine	23	17	3.6875	6862.47659
Morphine	23	15	4.0714285	5943.46136
Morphine	20	17	4.0625	6853.9382
Morphine	21	17	3.8125	6167.32412
Morphine	20	17	4.125	7587.9286
Morphine	15	19	3.722	6028.089
Morphine	21	16	4.06666	6623.8184
BUP	15	6	2.5	1200.96193
BUP	18	8	2.5	1629.3296

Python code to analyse NEURON simulations

```
def count single spikes and bursts(info):
    how many single spikes (not bursts) in this 10s simulation
    how many bursts in this 10s simulation
    burst was defined as a train of 2 or more spikes initiated
    by an inter-spike interval (ISI) of 80 ms and terminated by an ISI > 160 ms
    singles = 0
    bursts = 0
    inBurst = False
    spikesperbursts = []
    spb = 2
    prev start = -1000
    prev_end = -1000
    for spike in info:
        if spike[0] - prev_end > 80:
            singles += 1
            if inBurst:
            inBurst = False
```

Results - Neuron Firing Rate

Results - Dopamine Output

Results - Spike, Burst & DA Analysis

- BUP increased
 single spikes, burst
 firing,
 spikes/burst, and
 DA output
- Intermediate to the levels reached by the VTA dopamine neuron administered w/ MOR

Results - P values

Categories	Single spikes	Bursts	Spikes/burst	DA output
Control vs Morphine	1.18e-9*	0*	1.14e-10*	0*
Control vs BUP	5.89e-4*	1.504e-5*	5.93e-3*	1.98e-10*
Morphine vs BUP	1.38e-3*	6.34e-8*	0*	0*

^{*} Threshold: p < 0.05

Significance of research

BUP's effects remain misunderstood and underutilized

We determined its effect on DA discharge patterns and firing rates of VTA DA neurons

Potentially lead to developments in the field of opioid addiction treatment

Support development of personalized doses for different stages of morphine withdrawal

Help decipher the most effective method of treatment

Limitations

Although GABA and GLU
have the largest effect on
VTA activity, research
suggests that other
neurotransmitters could
have a noticeable impact
as well

Future Work

- Incorporate additional neurotransmitters into the model
- Simulate other opioid agonists (namely methadone)

Summary

VTA DA Model

GLU and GABA altered to resemble BUP

Outputs:

Firing rates + dopamine release patterns of VTA

DA neurons

Supports the current use of BUP as a morphine withdrawal treatment

BUP ↑ single spikes, burst firing & DA output but only at an intermediate level

Acknowledgements

We would like to thank **Dr. Marianne Bezaire** and **Andrew Looka** for their unparalleled guidance throughout this project. Special thanks to **Kaitlyn Dorst** for leading us through foundational neuroscience content, and our parents for their continuous support. Finally, we would like to thank **Boston University** and **Michael Raymond** for making this research opportunity possible.

References

Enrico et al., (2016). Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective. Neuroscience, 322, 195-207. https://doi.org/10.1016/j.neuroscience.2016.02.006

Yang, L., et al, (2020). Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of vta, inducing reward. Neuropharmacology, 176, 108217. https://doi.org/10.1016/j.neuropharm.2020.108217

Xhakaza et al., (2021). Alterations in neurotransmitter levels and transcription factor expression following intranasal buprenorphine administration. Biomedicine & Pharmacotherapy, 138, 111515. https://doi.org/10.1016/j.biopha.2021.111515

Kosten, T. R., & George, T. P. (2002). The neurobiology of opioid dependence: implications for treatment. Science & practice perspectives, 1(1), 13–20. https://doi.org/10.1151/spp021113