GEOMETRÍA Capítulo 9

PROYECCIÓN ORTOGONAL

I. De un punto a una recta

NOTA:

II. De un segmento a una recta

 $\overline{A_1B_1}$: Proyección de \overline{AB} sobre $\overline{L_2}$

 $\overline{C_1D_1}$: Proyección de $\overline{C_1D_1}$ sobre $\overline{L_2}$

EF₁: Proyección de EF sobre L₂

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

* AB y BC son catetos

* AC: hipotenusa

 \overline{AH} : proyección ortogonal \overline{AB} sobre \overline{AC}

HC: proyección ortogonal BC sobre AC

$$(AC)^2 = (AB)^2 + (BC)^2$$

Longitud de la altura elevada al cuadrado

$$h^2 = mn$$

$$c \cdot a = h \cdot b$$

$$\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{h^2}$$

$$\frac{m}{n} = \frac{c^2}{a^2}$$

A, B y C son puntos de tangencia

RELACIONES MÉTRICAS EN LA CIRCUNFERENCIA

a.b=m.n

T. de las Secantes

$$x.y=a.b$$

T. de la Tangente

$$x^2 = n \cdot m$$

T: punto de tangencia

1. Halle el valor de x, si O es centro.

(PB)(BQ) =

(AB)(BC)

Resolución: Del gráfico: $(x)(x) = (4)(16) \Rightarrow x^2 = 64$

x = 8

2. Hallar el valor de x, si las circunferencias son concéntricas.

MN: Base media

$$AC = 2(MN)$$

Resolución:

$$2x(x) = 18(4)$$
 \Rightarrow $x^2 = 36$

Teorema de la tangente

$$(AT)^2 = (AB)(AC)$$

$$\Rightarrow$$
 $x^2 = 36$

x = 6

4. En un triángulo rectángulo ABC, recto en B, se traza la ceviana interior \overline{BD} , tal que AD = 6, DC = 21 y AB = BD. Hallar AB.

5. En la figura, si AB = $4\sqrt{2}$. Halle R.

tangencia

En △ O PO:

$$(3r)^2 = (r)^2 + (4\sqrt{2})^2 \Rightarrow 9r^2 = r^2 + 32$$

$$8r^2 = 32$$
 \Rightarrow $r^2 = 4$ \Rightarrow $r = 2$

Nos piden:

$$R = 2r \Rightarrow R = 2(2)$$

6. Halle la medida de uno de los ángulos agudos de un triángulo rectángulo si la hipotenusa tiene una longitud igual a $\sqrt{12}$ – a y los otros lados sus longitudes son 2 y \sqrt{a} .

Resolución:

Por teorema de Pitágoras

$$(\sqrt{12} - a)^2 = (\sqrt{a})^2 + 2^2$$

 $\Rightarrow 12 - a = a + 4 \Rightarrow 8 = 2a \Rightarrow 4 = a$

7. En la siguiente figura, PH = 2(PQ). Si HN = 4. Calcule MN. (O y O' centros de las semicircunferencias).

Resolución:

ANP:
$$(2h)^2 = n.4 \Rightarrow 4h^2 = n.4 \Rightarrow h^2 = n$$

AMQ:
$$(3h)^2 = n(x + 4)$$

 $9h^2 = p(x + 4) \Rightarrow 9 = x + 4$

$$x = 5$$

8. En la figura se muestra un patio cuyo contorno tiene forma de cuadrilátero. Halle el valor de x.

Resolución:

* Trazamos la diagonal BD

Por teorema de Pitágoras

ABD:

$$a^2 = 7^2 + 1^2$$

 $a^2 = 50$

> BCD:

$$a^2 = x^2 + x^2$$

 $50 = 2x^2$ ⇒ $25 = x^2$
.: $x = 5$