## Classification using Neural Network: Basketball vs Football Players

Luc Rulinda

12/6/2021

### Task at hand:

Designing a neural network that classifies various points in two categories using M- dimensional feature vectors.

## Data used

- 2 categories: Basketball players and Football players
- Feature vectors: height, weight and BMI (Ref: Sports Encyclopedia of Pro Football and Official NBA basketball Encyclopedia)
- Normal distribution of points

|              |          | Football Player | Basketball Player |
|--------------|----------|-----------------|-------------------|
|              | Mean (μ) | 259.6           | 205.8             |
| Weight (lbs) | S.D(σ)   | 12.1            | 12.9              |
|              | Mean (μ) | 74.14           | 79                |
| Height (in)  | S.D(σ)   | 3.51            | 3.89              |



## M-dimensional feature vectors (2D vs 3D)





## Training the neural network

- "Patternet" function in Matlab
- Returns a pattern recognition networks (feedforward network)
   that can be trained to classify inputs according to target classes.
- Training function: "traingdx"- Variable Learn. Gradient descent
- Performance function: "crossentropy"



# Experimenting with various number of neurons:

Hidden 1 Hidden 2 Output Algorithms Data Division: Random (dividerand) Training: Gradient Descent with Momentum and Adaptive LR (traingdx) Performance: Cross Entropy (crossentropy) Calculations: MEX Progress 102 iterations 1000 Epoch: 0:00:01 Time: 0.601 0.0196 1.00e-05 Performance: 2.76 0.00588 1.00e-05 Gradient: Validation Checks: Hidden 1 Hidden 2 Output Output 35 35 40 40 45 45 2 50

#### Classification error vs number of neurons



#### Average error vs number of neurons



Experimenting with multiple hidden layers

Classification error vs number



Average performance vs # layers



#### Classification error vs number of layers



Average Classification error vs number of layers



## M-dimensional feature vectors (2D vs 3D)





Performance and Accuracy (2 D vs 3D)





## Learning rate

Performance vs Learning rate (0.01 - 0.5)



#### Average performance vs Learning rate



#### Classification error vs Learning rate (0.01 - 0.5)



#### Average classification error vs learning rate (0.01 - 0.5)



Thank you for your time!