Bio Computing & Machine Learning (BCML) Lab

Linear Algebra

Chapter 1. Introduction to Vectors

Professor: Cheolsoo Park

You can't add apples and oranges

Column vector
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $v_1 = \text{first component}$ $v_2 = \text{second component}$

Now you can add apples and oranges by the vector addition

VECTOR
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ add to $v + w = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$

Scalar multiplication

SCALAR MULTIPLICATION
$$2v = \begin{bmatrix} 2v_1 \\ 2v_2 \end{bmatrix}$$
 and $-v = \begin{bmatrix} -v_1 \\ -v_2 \end{bmatrix}$

Linear algebra is built on "adding vectors" and "multiplying by scalars"

- Linear combinations
 - Combining addition with scalar multiplication

DEFINITION The sum of cv and dw is a linear combination of v and w.

```
Four special linear combinations are: sum, difference, zero, and a scalar multiple cv:

1v + 1w = \text{sum of vectors in Figure 1.1a}

1v - 1w = \text{difference of vectors in Figure 1.1b}

0v + 0w = \text{zero vector}

cv + 0w = \text{vector } cv \text{ in the direction of } v
```

Vector representation

Represent vector v Two numbers Arrow from (0,0) Point in the plane

Bio Computing & Machine Learning (BCML) Lab

Vectors in three dimensions

$$v = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ and $v + w = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$

Bio Computing & Machine Learning (BCML) Lab

Linear combination

Linear combination Multiply by 1, 4, -2 Then add

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix}.$$

- 1. What is the picture of all combinations cu?
- 2. What is the picture of all combinations cu + dv?
- 3. What is the picture of all combinations cu + dv + ew?

- 1. The combinations cu fill a line.
- 2. The combinations cu + dv fill a *plane*.
- 3. The combinations cu + dv + ew fill three-dimensional space.
- * With varying c, d and e, the line, plane or three-dimensional space will be filled

Figure 1.3: (a) Line through u. (b) The plane containing the lines through u and v.

e Learning (BCML) Lab

Dot product or inner product

```
DEFINITION The dot product or inner product of v = (v_1, v_2) and w = (w_1, w_2) is the number v \cdot w:
v \cdot w = v_1 w_1 + v_2 w_2. \tag{1}
```

The dot product $w \cdot v$ equals $v \cdot w$. The order of v and w makes no difference.

Example 3 Dot products enter in economics and business. We have three goods to buy and sell. Their prices are (p_1, p_2, p_3) for each unit—this is the "price vector" p. The quantities we buy or sell are (q_1, q_2, q_3) —positive when we sell, negative when we buy. Selling q_1 units at the price p_1 brings in $q_1 p_1$. The total income (quantities q times prices p) is the dot product $q \cdot p$ in three dimensions:

Income =
$$(q_1, q_2, q_3) \cdot (p_1, p_2, p_3) = q_1 p_1 + q_2 p_2 + q_3 p_3 = dot product.$$

A zero dot product means that "the books balance". Total sales equal total purchases if $q \cdot p = 0$. Then p is perpendicular to q (in three-dimensional space). A supermarket with thousands of goods goes quickly into high dimensions.

- Projection of a vector into another domain
- Zero product
 - Perpendicular vectors

```
Example 1 The vectors v = (4, 2) and w = (-1, 2) have a zero dot product:

Dot product is zero
Perpendicular vectors
\begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0.
```

Length of a vector : dot product of a vector with itself

Dot product
$$v \cdot v$$
Length squared $\|v\|^2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 4 + 9 = 14.$

DEFINITION The length $\|v\|$ of a vector v is the square root of $v \cdot v$:

Length = norm(v) length $\|v\| = \sqrt{v \cdot v}$.

Unit vector

DEFINITION A unit vector u is a vector whose length equals one. Then $u \cdot u = 1$.

Angle Between Two Vectors

Right angles

Right angles The dot product is $v \cdot w = 0$ when v is perpendicular to w.

Angle between two unit vectors

Unit vectors u and U at angle θ have $u \cdot U = \cos \theta$. Certainly $|u \cdot U| \le 1$.

COSINE FORMULA If v and w are nonzero vectors then $\frac{v \cdot w}{\|v\| \|w\|} = \cos \theta$.

Example 5 Find
$$\cos \theta$$
 for $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and check both inequalities. **Solution** The dot product is $v \cdot w = 4$. Both v and w have length $\sqrt{5}$. The cosine is $4/5$. $\cos \theta = \frac{v \cdot w}{\|v\| \|w\|} = \frac{4}{\sqrt{5}\sqrt{5}} = \frac{4}{5}$.

Matrices

- Linear combinations in three-dimensional space
 - 7 Three column vectors

First example
$$u = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 $v = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ $w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Their linear combinations in three-dimensional space are $cu + dv + ew$:

$$c \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + e \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ d-c \\ e-d \end{bmatrix}$$

Rewrite that combination using a matrix

Same combination is now A times x
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} c \\ d-c \\ e-d \end{bmatrix}$$

Matrix times vector
$$Ax = \begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = cu + dv + ew$$
.

Matrices

Dot Products with rows

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1,0,0) \cdot (x_1, x_2, x_3) \\ (-1,1,0) \cdot (x_1, x_2, x_3) \\ (0,-1,1) \cdot (x_1, x_2, x_3) \end{bmatrix}.$$