Guía de Escalado de Parámetros para Diferentes Tamaños de Grafo

1. Introducción

Este documento explica cómo ajustar los parámetros del entrenamiento PPO (*Proximal Policy Optimization*) al cambiar el tamaño del grafo, asegurando un aprendizaje estable y eficiente del agente.

2. Tabla de Referencia Rápida

Tamaño Grafo	Nodos	\max_steps	$total_timesteps$	$eval_freq$	$learning_rate$	ent_coef
5x5	25	30	200,000	5,000	3e-4	0.05
10x10	100	80	500,000	10,000	3e-4	0.05
20x20	400	200	1,000,000	20,000	1e-4	0.07
25x25	625	250	1,500,000	25,000	1e-4	0.07
50x50	2,500	600	3,000,000	50,000	5e-5	0.1

3. Parámetros Clave y Cómo Escalarlos

3.1. max_steps (Límite de pasos por episodio)

 $max_steps \approx n_nodes \times (0.3 \text{ a } 0.4)$

Más nodos implican que el agente necesita más pasos para alcanzar los waypoints y evitar ciclos. **Ejemplos:**

- $5x5 (25 \text{ nodos}): 25 \times 1,2 = 30$
- $20x20 (400 \text{ nodos}): 400 \times 0.5 = 200$
- 50x50 (2500 nodos): $2500 \times 0.24 = 600$

3.2. total_timesteps (Duración del entrenamiento)

total_timesteps
$$\approx n_nodes \times (1000 \text{ a } 2000)$$

Más nodos = espacio de estados más grande, por lo que se necesita más experiencia para generalizar. **Ejemplos:**

- $5x5: 25 \times 8,000 = 200,000$
- $20x20: 400 \times 2,500 = 1,000,000$
- 50x50: $2,500 \times 1,200 = 3,000,000$

3.3. eval_freq (Frecuencia de evaluación)

$$eval_freq \approx \frac{total_timesteps}{40}$$

Se recomienda realizar aproximadamente 40 evaluaciones durante el entrenamiento. **Ejemplos:**

- 5x5: 200,000/40 = 5,000
- 20x20: 1,000,000/40 = 25,000
- 50x50: 3,000,000/40 = 75,000

3.4. learning_rate (Tasa de aprendizaje)

- \blacksquare Grafos pequeños (menos de 100 nodos): 3×10^{-4}
- \blacksquare Grafos medianos (100-500 nodos): 1×10^{-4} a 3×10^{-4}
- \blacksquare Grafos grandes (mas de 500 nodos): 5×10^{-5} a 1×10^{-4}

Comenzar con 3e-4 y reducir si el entrenamiento es inestable.

3.5. ent_coef (Coeficiente de entropía / exploración)

- Grafos pequeños: 0.05
- \blacksquare Grafos medianos: 0.05 0.07
- Grafos grandes: 0.07 0.1

Aumentar si el agente se queda en ciclos o reducir si explora demasiado.

3.6. gamma y gae_lambda (Factores de descuento)

```
gamma = 0.99

gae_lambda = 0.95
```

Valores que funcionan bien para la mayoría de los casos.

3.7. max_no_improvement_evals (Early stopping)

 $max_no_improvement_evals = 10 a 15$

4. Señales de Que Necesitas Ajustar

4.1. Problemas comunes

- El agente no aprende nada: recompensa negativa constante. Aumentar max_steps o ent_coef.
- Aprende pero muy lento: aumentar total_timesteps o learning_rate.
- Entrenamiento inestable: reducir learning_rate o clip_range.
- Se queda en ciclos: aumentar ent_coef o reducir max_steps.

Señales de buen entrenamiento:

- Recompensa aumenta consistentemente.
- Early stopping actúa tras 50–100k pasos.
- El agente completa los waypoints en ¡30 % de los pasos máximos.

5. Configuración del Modelo PPO

Listing 1: Configuración del modelo PPO

```
model = PPO(
    "MlpPolicy",
    env,
    learning_rate=3e-4,  # velocidad de aprendizaje
    clip_range=0.2,  # l mite de cambios dr sticos
    ent_coef=0.05,  # exploraci n
    gamma=0.99,  # descuento de recompensas futuras
    gae_lambda=0.95,  # ventaja estimada
    verbose=1
)
```

6. Explicación de los parámetros

- "MlpPolicy": Red neuronal multicapa que recibe el estado y devuelve probabilidades de acciones.
- env: Entorno donde el agente interactúa.
- learning_rate: Velocidad de actualización de los pesos.
- clip_range: Limita cambios bruscos en la política.
- ent_coef: Controla exploración vs explotación.
- gamma: Factor de descuento de recompensas futuras.
- gae_lambda: Cálculo de ventaja para evaluar acciones.
- verbose: Nivel de información impresa durante el entrenamiento.

7. Checklist de Escalado

- Ajustar grid_size
- Calcular nuevo max_steps
- Ajustar total_timesteps
- Actualizar eval_freq
- Revisar learning_rate y ent_coef
- Verificar distribución de waypoints
- Probar con pocos episodios antes del entrenamiento completo