Types of Probability Density Function

There are several types of continuous distributions thus, different probability density functions are used. Some important continuous distributions are given below:

- Normal Distribution
- Standard Normal Distribution
- Student t Distribution
- Chi-Square Distribution
- Continuous Uniform Distribution

The next section covers the probability density function formula for these distributions.

Types of Probability Density Functions

Normal Distribution:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
Standard Normal Distribution: $f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$
Student-t Distribution: $f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi}\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\frac{v}{2}}$
Chi-Square Distribution: $f(x) = f(x) = \frac{x^{\frac{k}{2}-1}e^{\frac{-x}{2}}}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}$
Continuous Uniform Distribution: $f(x) = f(x) = \frac{1}{b-a}$

Normal Distribution Probability Density Function

A random variable that follows a <u>normal distribution</u> is denoted as $X \sim N(\mu, \sigma 2) \diamondsuit \sim \diamondsuit(\diamondsuit, \diamondsuit 2)$. Here, $\mu \diamondsuit$ is the <u>mean</u> and $\sigma \diamondsuit^2$ is the <u>variance</u> and they form the parameters of the normal distribution. The graph of a normal distribution is a bell curve and is symmetric about the mean. The formula for the type of probability density function for a normal distribution is given below:

$$f(x) = 1\sigma\sqrt{2}\Pi e - 12(x - \mu\sigma)21$$

Standard Normal Distribution Probability Density Function

When a continuous random variable, X, follows a normal distribution such that the mean equals 0 and the standard deviation is equal to 1 then such a probability distribution is known as a standard normal distribution. It is denoted as $X \sim N(0,1) \diamondsuit \sim \diamondsuit(0,1)$ The formula for the probability density function of a standard normal distribution is given as follows:

$$f(x) = 1\sqrt{2\pi}e - x2212$$

Student T Distribution Probability Density Function

A continuous random variable following a student t distribution is denoted as $X \sim t(v) \diamondsuit \sim \diamondsuit(\diamondsuit)$, where $v \diamondsuit$ denotes the degrees of freedom. A <u>student t distribution</u> is used when the sample size is very small and a normal distribution cannot be used. The probability density function of a student t distribution is given as follows:

$$f(x) = \Gamma(v+12) \vee v \pi \Gamma(v2) (1+x2v) - v + 12\Gamma(\diamondsuit + 12) \diamondsuit \diamondsuit \Gamma(\diamondsuit 2) (1+\diamondsuit 2\diamondsuit) - \diamondsuit + 12$$

Here, $\Gamma\Gamma$ represents the gamma function

Chi-Squared Distribution Probability Density Function

Chi squared distribution is widely used for hypothesis testing. It can be defined as the sum of squares of k independent standard normal variables. It is denoted as $X \sim \chi 2(k) \diamondsuit \sim \diamondsuit 2(\diamondsuit)$. The type of probability density function used for a chi squared distribution is given as follows:

$$f(x) = xk2-1e-x22k2\Gamma(k2)$$
 $2-1$ $2-2$ $2\Gamma(2)$, $x > 0$.

f(x) = 0, otherwise

Continuous Uniform Distribution Probability Density Function

A <u>uniform distribution</u> is used to describe a random experiment such that the outcome lies between two values. The notation is given as $X \sim U(a,b) \diamondsuit \sim \diamondsuit(\diamondsuit,\diamondsuit)$. The probability density function when x lies between a and b is given as follows:

$$f(x) = 1 / (b - a)$$