US - Baby Names

Introduction:

We are going to use a subset of <u>US Baby Names (https://www.kaggle.com/kaggle/us-baby-names)</u> from Kaggle.

In the file it will be names from 2004 until 2014

Step 1. Import the necessary libraries

In [73]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 2. Import the dataset from this address

(https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/06_Stat

→

Step 3. Assign it to a variable called baby_names.

```
In [74]:
```

```
baby_names = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises
```

Step 4. See the first 10 entries

```
In [75]:
```

```
1 baby_names.head(10)
```

Out[75]:

	Unnamed: 0	ld	Name	Year	Gender	State	Count
0	11349	11350	Emma	2004	F	AK	62
1	11350	11351	Madison	2004	F	AK	48
2	11351	11352	Hannah	2004	F	AK	46
3	11352	11353	Grace	2004	F	AK	44
4	11353	11354	Emily	2004	F	AK	41
5	11354	11355	Abigail	2004	F	AK	37
6	11355	11356	Olivia	2004	F	AK	33
7	11356	11357	Isabella	2004	F	AK	30
8	11357	11358	Alyssa	2004	F	AK	29
9	11358	11359	Sophia	2004	F	AK	28

Step 5. Delete the column 'Unnamed: 0' and 'Id'

```
In [76]:
```

```
1 del baby_names['Unnamed: 0']
2 del baby_names['Id']
```

In [77]:

```
1 baby_names.head()
```

Out[77]:

	Name	Year	Gender	State	Count
0	Emma	2004	F	AK	62
1	Madison	2004	F	AK	48
2	Hannah	2004	F	AK	46
3	Grace	2004	F	AK	44
4	Emily	2004	F	AK	41

Step 6. Is there more male or female names in the dataset?

```
In [79]:
1  del baby_names['Year']

In [80]:
1  names = baby_names.groupby("Name").sum()

In [81]:
1  names.head()

Out[81]:
```

```
Name
Aaban 12
Aadan 23
Aadarsh 5
Aaden 3426
```

6

```
In [82]:
```

Aadhav

```
1 print(names.shape)
```

(17632, 1)

Step 8. How many different names exist in the dataset?

```
In [84]:
    1 len(names)
Out[84]:
17632
```

Step 9. What is the name with most occurrences?

Step 10. How many different names have the least occurrences?

```
In [91]:
    1 len(names[names.Count == names.Count.min()])
Out[91]:
2578
```

Step 11. What is the median name occurrence?

```
In [95]:
    1 names[names.Count == names.Count.median()]
```

Out[95]:

	Count
Name	
Aishani	49
Alara	49
Alysse	49
Ameir	49
Anely	49
Sriram	49
Trinton	49
Vita	49
Yoni	49
Zuleima	49

66 rows × 1 columns

11006.069467891111

Step 12. What is the standard deviation of names?

```
In [96]:

1 names.Count.std()
Out[96]:
```

Step 13. Get a summary with the mean, min, max, std and quartiles.

In [99]:

1 names.describe()

Out[99]:

	Count
count	17632.000000
mean	2008.932169
std	11006.069468
min	5.000000
25%	11.000000
50%	49.000000
75%	337.000000
max	242874.000000

In []:

1