2022 年中国科学技术大学少年班复试

2024年8月15日

- **1.** 求最小的正整数 n, 使得存在一个实部和虚部都是正数的 z 满足 $z^n = z^{-n}$.
- **2.** (1) 已知 T_1, T_2 为定义在 ℝ 上的函数 f(x) 的周期, a, b 为正整数, 证明 $aT_1 + bT_2$ 为 f(x) 的周期.
- (2) 设函数 $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$, 证明任意的正有理数都是 f(x) 的周期.
- (3) 已知函数 f(x) 以任意的正有理数为周期,且 $|f(x)-f(y)| \le |x-y|$ 恒成立,证明: f 是常数函数.
- **3.** 记 $g(x) = x^2 k$, h(x) = g(g(x)), k 为整数.
- (1) 写出 h(x) 的表达式;
- (2) 求集合 $A = \{x \in \mathbb{R} \mid h(x) = x\};$
- (3) 已知函数 $f:A \to A$ 满足 f(f(x)) = g(x), 证明: f 既是单射也是满射;
- (4) 是否存在函数 s(x) 使得 $s(s(x)) = x^2 2$? 并证明你的结论.
- **4.** 记 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ i 为三次单位根, 集合 $X = \{x + y\omega \mid x, y \in \mathbb{Z}\}.$
 - 1. 设 f(x) 是实系数多项式,证明:存在实数 a,b 使得 $f(\omega)=a+b\omega$.
 - 2. 第 1 小颗中的 a,b 是否唯一? 为什么?
 - 3. 对于 $x, y \in \mathbb{Z}$, 记 $N(x + y\omega) = x^2 xy + y^2$.
 - (a) 求所有 $\alpha \in X$ 使得 $N(\alpha) = 1$.
 - (b) 证明: $N(\alpha) \ge 0$ 对于任意的 $\alpha \in X$ 成立, 并求所有 $\alpha \in X$ 使得 $N(\alpha) = 0$.
 - (c) 对任意的 $\alpha, \beta \in X$, $\beta \neq 0$, 证明: $\gamma, \delta \in X$ 使得 $\alpha = \gamma \beta + \delta$, 且 $N(\beta) > N(\delta)$.
 - 4. 对于任意的 α , $\beta \in X$, 证明: 存在 $\delta \in X$ 使得下列两个条件成立:
 - (a) 存在 $u, v \in X$ 使得 $\delta = \alpha u + \beta v$;
 - (b) 存在 $\gamma_1, \gamma_2 \in X$ 使得 $\alpha = \gamma_1 \delta, \beta = \gamma_2 \delta$.

1

災

. . . .