4.4 Game of SET

Date:

Set is a multi-player game played with a special deck of cards. Each card is uniquely determined by four features: number, color, shape and shading which can vary as follow:

shape diamond, oval and squiggle

number 1, 2 or 3 shapes per card

color red, green or purple.

shading plain/empty, striped/hashed or solid/full.

A SET is a collection of three cards such that for each feature, either all the cards in the trio share the same value for that feature, or else no two have the same value for it.

For example, "one plain green diamond", "two striped red squiggles", and "three solid purple ovals" form a set.

1) Complete to form a SET with the same shape, the same color, the same number of symbols and all different shading.

2) Complete to form a SET with different shapes, different colors, and different numbers of symbols and the same shading.

3) Find a card to form a SET.

4) Explain why it is a SET.

5) Find a card to form a SET.

6) Explain why it is a SET.

DNL, Year 10 2021/2022

Listening comprehension https://youtu.be/NzXDfSFQ1c0 (2'30")
The object of the game is to have the highest score at the end of multiple rounds.
Setup the deck and lay out 12 cards face up in a 4 by 3 grid so all players can see them
Each card has 4 features.
Symbols Each card has ovals, squiggles or diamonds on it.
Colors The symbols are red, green or purple.
Number They are either one, two or three symbols on each card.
Shading The symbols are either,, or description
There is no turn order. All play is simultaneous. All players look at the face of grid of cards looking
for SETs. A SET consists of three cards in which each of card features, looked at one by one, are the
same on each card, or are different on each card. All the features must separately satisfy this rule.
• The shape must be either the same or different on all three cards.
• The color must be either the same or different on all three cards.
• The number must be either the same or different on all three cards.
• The shading must be either the same or different on all three cards.
When a player recognizes a SET, they say SET, and tap the three cards in the set. The other players
verify that it is a set, and the player that recognized them picks up the cards and
collects them. The dealer replaces the taking cards with new ones from the deck.
When a player calls SET, play is paused until that player picks up the cards. Then the play
If a player calls SET, and does not have one, they lose 1 point an play continues.
If among the cards all the players agree there is no SET visible, then the dealer flips over three
more cards. When a set is found the three extra cards are not replaced until the total number of
cards on the table is fewer than 12 or if there is no SET visible.
Play continues until deck is and no more sets can be made. Each player scores one
point for each SET they made. The cards are all gathered, and the dealer then pass the deal to the
left. The new dealer shuffles and lays out cards and another round is played.
Continue playing until every player has been the dealer once. Then the game ends and the player
with the most points wins.
Vocabulary
1) to deplete, depleted
The lake was depleted of water
2) to resume, resumed, resumed
3) to stripe, striped, striped
Zebras have unique striped pattern
4) to strip, stripped, stripped
The tank was stripped down piece by piece
The general was stripped of his rank

Instructions

To play, we start with a shuffled deck and the dealer deals 12 cards face up on the table. Your goal, as a player, is to find a SET. Once you find one, you call it out, collect the SET (assuming that it is a legitimate one), and the dealer deals 3 more cards. The object of the game is to collect the most SETs. One point is given for each SET. Highest score wins.

A player must call SET before picking up the cards. There are no turns, first player to call SET has few seconds to pick his cards. If the SET is incorrect, he/she loses one point.

1) How many To make a Each chara We can dra	acteristic has	a SET deck?	char		
	Pick a number	Pick a shading	Pick a color	Pick a shape	Card

Fundamental Rule

A number of multiple choices are to be made. There are m_1 possibilities for the first choice, m_2 for the second, m_3 for the third, etc. If these choices can be combined freely, then the total number of possibilities for the whole set of choices is equal to _____

2)	Show that for every two cards there is a uni		
	(different from/same/similar/similarly). Tak	Either the first	
	two cards have the same, a	and the third card must have	Either
	the first two cards have, a	and then the third card must have _	

DNL, Year 10 2021/2022

and there is _____ possibility for that.

for the other three characteristics.

- 3) If you draw three cards at random, what is the probability that they form a SET?

 Since any two cards _______ a Set, if you draw two cards, then

 ______ of the remaining _____ cards will join with the first two cards to
 make a Set. The probability of such a drawing ______.
- 4) How many different ordered SETS are there?

We can use a ______ to count all **ordered** SETS.

To make a Set, we need to pick 3 cards. There are _____ choices for the first card, ____ choices for the second card, and ____ choice for the third card.

The number of **ordered SET** is _____

This is called "Sampling without repetition and with ordering"

5) Use a tree diagram to find out in how many ways we can order the 3 cards set

6)		· ·	t SETS are there cards in a Set do		we should divide	by	. Thus there
	are_		different S	Sets.			
	Th	nis is called "Sa	mpling without r	repetition and	without ordering"		
7)	a) b)	How many can To make such ————————————————————————————————————	rds share no char n a card, we have ssible choices for sees for color. There are sharing only a seem possible have cards share shading. ards sharing one rds share exactly	acteristics with ve to pick ame shape, re are 1 characteristic ame color, we he choices for sha possible ca naring only a sessame character 3 characteristic	possible choices possible choices with ? nave to pick among pe and cards. rds sharing only ame shape, and istic is	oossible choices s for shading, an sible cards. g po _ possible choic a same numbe	ossible choices es for shading. er, as well as cards
		among	possible cho	pices.			-
		The total num	ber of cards shar	ring 3 characte	ristics with 🖒 i	s	
	d)	How many car	rds are left? How	many charact	eristics do they sh	nare with	
8)	_	_	Pick first card		third card	ordered zero alike SET	

DNL, Year 10 2021/2022

 9) Figure out the percentage of one-alike Sets, two-alike Sets and three-alike Sets among all Sets.

By the fundamental rule, the total number of ordered one-alike sets is ____×___=_

By the fundamental rule, the total number of three-alike sets is _____×___=___

By the fundamental rule, the total number of ordered two-alike sets is ____×___=_

Percentage of three-alike sets:_____

Percentage of none-alike sets:

Percentage of two-alike sets:

Percentage of one-alike sets:

Variant: Rules for SETUP

OBJECT To play a card from your hand that does not make a 'set' with the cards already played on the table.

THE DEAL Four cards are dealt to each player, which are held in the players' hands. The remainder of the deck is placed on the table in a stack.

THE PLAY Each player must place a card face up on the table during his/her turn. The card played is then checked by all other players to see if it makes a 'set' with the cards already on the table. A 'set' must be seen before the next person in turn plays a card. If a 'set' is seen on the table that does not use the last card played, it does not count and play continues as if it did not exist. If the card played is found by any of the other players to make a 'set' with two other cards on the table, the player who put the card down receives all of the cards currently on the table. They are not used in play again, but count against the player at the end of the hand. As each player plays a card, he/she draws a replacement from the deck. After players try to make a 'set' with the last card played, (which may or not be possible), the next player in turn puts down a card, and the play continues until all the cards in the deck are played. Note, as more cards are laid on the table, it is more and more likely that a 'set' will be made. It is difficult to have more than twelve cards (and impossible to have more than 21 cards) on the table without a 'set' being made by the next player, so check carefully and bluff convincingly.

SCORING After all of the cards in the deck are used, the player who has to take the most cards from the table loses.

Variant: Rules for ChipSET

Object To make the most 'sets' by using at least one card in your hand and the cards on the table. By doing so the player wins all the chips in the pot.

NUMBER OF PLAYERS 2 or more.

THE DEAL One card is dealt face up in the center, then one face down to each player. A second card is dealt face up in the center, then one face down to each player. After each SHOWDOWN (see below), if no player shows, an additional card is dealt face up in the center.

THE SHOWDOWN If a player has a 'set' he may or may not show it at this time. If he does show, then every player who has not previously dropped must expose his cards face up on the table. Whichever of these players has the highest number of 'sets' wins. All 'sets' must use at least one card from the player's hand.

DNL, Year 10 2021/2022

Answers

1) How many different cards in a SET deck?

Since there are three possible values for each of the four characteristics, there are a total of 34 = 81 cards in a Set deck.

- 2) Show that for every two cards there is a unique third card that will make a set.
 - Take the characteristic NUMBER. If the first two cards have the same number, then the third card must have that same number. If the first two cards have different numbers, then the third card must have a number different from the first two and there is only one possibility for that. Similarly for the other three characteristics.
- 3) If you draw three cards at random, what is the probability that they form a SET?

 Since any two cards uniquely determine a Set, if you draw two cards, then exactly one of the remaining 79 cards will join with the first two cards to make a Set. The probability of drawing it is 1/79.
- 4) How many different SETS are there?
 - There are 81 choices for the first card, 80 choices for the second card, and one choice for the third card. Since the order of cards in a Set don't matter, we should divide by 3! = 6. Thus there are $81 \times 80/6 = 1080$ different Sets.
- 5) After playing a few rounds of Set, you will notice that there are different kinds of SETS. What are they? Which kinds do you think are the most and least common? Which seem to be the trickiest to spot?
 - There are actually four different kinds of Sets. They can be classified according to how many characteristics the cards share: zero, one, two, or three. The three-alike Sets are easiest to spot. An example of a three-alike Set is "one plain red squiggle," "two plain red squiggles," and "three plain red squiggles." The none-alike or all-different Sets are the most challenging to find. An example of an all-different Set is "one plain red oval," "two striped green squiggles," "three solid purple diamonds."
- 6) Figure out the percentage of three-alike Sets, two-alike Sets, one-alike Sets, and all-different Sets. If your calculation is correct you should have found that out of the 1080 total possible Sets the number of three-alike Sets is 108, or 10%, the number of two-alike Sets is 324, or 30%, the number of one-alike Sets is 432, or 40%, and the number of all-different Sets is 216 or 20%.