Sistema de Referencia Universal

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2013) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta el sistema de referencia universal.

Sistema de Referencia Universal

El sistema de referencia universal es un sistema de referencia fijo al centro de masa del universo.

La posición $\mathring{\mathbf{r}}_a$, la velocidad $\mathring{\mathbf{v}}_a$ y la aceleración $\mathring{\mathbf{a}}_a$ de una partícula A de masa m_a respecto al sistema de referencia universal $\mathring{\mathbf{S}}$, están dadas por:

$$\mathring{\mathbf{r}}_a = \int \int (\mathbf{F}_a/m_a) dt dt$$

$$\mathring{\mathbf{v}}_a = \int (\mathbf{F}_a/m_a) dt$$

$$\mathring{\mathbf{a}}_a = (\mathbf{F}_a/m_a)$$

donde \mathbf{F}_a es la fuerza resultante que actúa sobre la partícula A.

Desde las ecuaciones anteriores se obtienen las siguientes ecuaciones:

$$\begin{array}{c|c} m_a \mathring{\mathbf{r}}_a - \int \int \mathbf{F}_a \, dt \, dt = 0 \\ \downarrow & \downarrow \\ \hline m_a \mathring{\mathbf{v}}_a - \int \mathbf{F}_a \, dt = 0 \\ \downarrow & \downarrow \\ \hline m_a \mathring{\mathbf{v}}_a - \int \mathbf{F}_a \, dt = 0 \\ \downarrow & \downarrow \\ \hline m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0 \\ \hline \end{array} \begin{array}{c} 1/2 m_a \mathring{\mathbf{v}}_a^2 - 1/2 m_a (\int \int (\mathbf{F}_a/m_a) \, dt \, dt)^2 = 0 \\ \hline \downarrow & \downarrow \\ \hline m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0 \\ \hline \end{array} \begin{array}{c} 1/2 m_a \mathring{\mathbf{a}}_a^2 - 1/2 m_a (\mathbf{F}_a/m_a)^2 = 0 \\ \hline \end{array}$$

donde
$$1/2\mathring{\mathbf{v}}_a^2 = \int \mathring{\mathbf{a}}_a \, d\mathring{\mathbf{r}}_a \rightarrow 1/2 \, m_a\mathring{\mathbf{v}}_a^2 = \int m_a \mathring{\mathbf{a}}_a \, d\mathring{\mathbf{r}}_a \rightarrow 1/2 \, m_a\mathring{\mathbf{v}}_a^2 = \int \mathbf{F}_a \, d\mathring{\mathbf{r}}_a$$

Sistema de Referencia

La posición $\mathring{\mathbf{r}}_a$, la velocidad $\mathring{\mathbf{v}}_a$ y la aceleración $\mathring{\mathbf{a}}_a$ de una partícula A de masa m_a respecto a un sistema de referencia S, están dadas por:

$$\mathbf{\mathring{r}}_{a} = \mathbf{r}_{a} + \mathbf{\mathring{r}}_{S}$$

$$\mathbf{\mathring{v}}_{a} = \mathbf{v}_{a} + \mathbf{\mathring{o}}_{S} \times \mathbf{r}_{a} + \mathbf{\mathring{v}}_{S}$$

$$\mathbf{\mathring{a}}_{a} = \mathbf{a}_{a} + 2 \mathbf{\mathring{o}}_{S} \times \mathbf{v}_{a} + \mathbf{\mathring{o}}_{S} \times (\mathbf{\mathring{o}}_{S} \times \mathbf{r}_{a}) + \mathbf{\mathring{c}}_{S} \times \mathbf{r}_{a} + \mathbf{\mathring{a}}_{S}$$

donde \mathbf{r}_a , \mathbf{v}_a y \mathbf{a}_a son la posición, la velocidad y la aceleración de la partícula A respecto al sistema de referencia S; $\mathring{\mathbf{r}}_S$, $\mathring{\mathbf{v}}_S$, $\mathring{\mathbf{a}}_S$, $\mathring{\boldsymbol{\omega}}_S$ y $\mathring{\boldsymbol{\omega}}_S$ son la posición, la velocidad, la aceleración, la velocidad angular y la aceleración angular del sistema de referencia S respecto al sistema de referencia universal $\mathring{\mathbf{S}}$.

La posición $\mathring{\mathbf{r}}_S$, la velocidad $\mathring{\mathbf{v}}_S$, la aceleración $\mathring{\mathbf{a}}_S$, la velocidad angular $\mathring{\omega}_S$ y la aceleración angular $\mathring{\alpha}_S$ de un sistema de referencia S fijo a una partícula S respecto al sistema de referencia universal \mathring{S} , están dadas por:

$$\mathring{\mathbf{r}}_{S} = \int \int (\mathbf{F}_{0}/m_{s}) dt dt$$

$$\mathring{\mathbf{v}}_{S} = \int (\mathbf{F}_{0}/m_{s}) dt$$

$$\mathring{\mathbf{a}}_{S} = (\mathbf{F}_{0}/m_{s})$$

$$\mathring{\omega}_{S} = \left| (\mathbf{F}_{1}/m_{s} - \mathbf{F}_{0}/m_{s})/(\mathbf{r}_{1} - \mathbf{r}_{0}) \right|^{1/2}$$

$$\mathring{\alpha}_{S} = d(\mathring{\omega}_{S})/dt$$

donde \mathbf{F}_0 es la fuerza resultante que actúa sobre el sistema de referencia S en un punto 0, \mathbf{F}_1 es la fuerza resultante que actúa sobre el sistema de referencia S en un punto 1, \mathbf{r}_0 es la posición del punto 0 respecto al sistema de referencia S (el punto 0 es el centro de masa de la partícula S y el origen del sistema de referencia S) \mathbf{r}_1 es la posición del punto 1 respecto al sistema de referencia S (el punto 1 no pertenece al eje de rotación) y m_s es la masa de la partícula S (el vector \mathring{o}_S es colineal con el eje de rotación)

Por otro lado, la posición $\mathring{\mathbf{r}}_S$, la velocidad $\mathring{\mathbf{v}}_S$ y la aceleración $\mathring{\mathbf{a}}_S$ de un sistema de referencia S respecto al sistema de referencia universal $\mathring{\mathbf{S}}$ están relacionadas con la posición \mathbf{r}_{cm} , la velocidad \mathbf{v}_{cm} y la aceleración \mathbf{a}_{cm} del centro de masa del universo respecto al sistema de referencia S.

Fuerza Cinética

La fuerza cinética \mathbf{K}_{ab} ejercida sobre una partícula A de masa m_a por otra partícula B de masa m_b , causada por la interacción entre la partícula A y la partícula B, está dada por:

$$\mathbf{K}_{ab} = \frac{m_a m_b}{m_{cm}} (\mathring{\mathbf{a}}_a - \mathring{\mathbf{a}}_b)$$

donde m_{cm} es la masa del centro de masa del universo, $\mathring{\mathbf{a}}_a$ y $\mathring{\mathbf{a}}_b$ son las aceleraciones de las partículas A y B respecto al sistema de referencia universal $\mathring{\mathbf{S}}$.

Desde la ecuación anterior se deduce que la fuerza cinética resultante \mathbf{K}_a que actúa sobre una partícula A de masa m_a , está dada por:

$$\mathbf{K}_a = m_a \mathbf{\mathring{a}}_a$$

donde $\mathring{\mathbf{a}}_a$ es la aceleración de la partícula A respecto al sistema de referencia universal $\mathring{\mathbf{S}}$.

Desde la página [1], se tiene:

$$m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0$$

O sea:

$$\mathbf{K}_a - \mathbf{F}_a = 0$$

Por lo tanto, la fuerza total $(\mathbf{K}_a - \mathbf{F}_a)$ que actúa sobre una partícula A está siempre en equilibrio.

Bibliografía

- A. Einstein, Sobre la Teoría de la Relatividad Especial y General.
- E. Mach, La Ciencia de la Mecánica.
- R. Resnick y D. Halliday, Física.
- J. Kane y M. Sternheim, Física.
- H. Goldstein, Mecánica Clásica.
- L. Landau y E. Lifshitz, Mecánica.