

1. Radiometry and Light transport

Physically Based Rendering

Shinyoung Yi (이신영)

Rendering

Quiz & Preview

Radiometric quantities

Radiometric quantities

Mass vs. Density

per volume

Mass

- ✓ Mass of the object O
- \checkmark Mass of some region (volume) V
- \nearrow Mass at the point p \rightarrow illegal or meaningless (always zero)

Density

- X Density of the object O
 - → illegal or "average density" of the object O
- \mathbf{X} Density of some region (volume) V
 - → illegal or "average density" of the volume V
- \checkmark Density at the point p

Mass of What?

Density of what?

- "mass of an object O"
- = "mass of the volume of O"

Mass of $V \subset \mathbb{R}^3$

Density of $p \in \mathbb{R}^3$

$$\max(V)$$

$$\operatorname{density}(p) = \lim_{\substack{\text{vol}(V) \to 0 \\ p \in V}} \frac{\max(V)}{\operatorname{vol}(V)}$$

Mass of $V \subset \mathbb{R}^3$

Density of $p \in \mathbb{R}^3$

$$\operatorname{density}(p) = \lim_{\substack{\operatorname{vol}(V) \to 0 \\ p \in V}} \frac{\operatorname{mass}(V)}{\operatorname{vol}(V)}$$

$$= \lim_{\substack{vol(V) \to 0 \\ p \in V}} \frac{\operatorname{mass}(V)}{\operatorname{vol}(V)}$$

^{*} The limit converges to the same value whenever $vol(V) \rightarrow 0$ and $p \in V$.

Mass of $V \subset \mathbb{R}^3$

Density of $p \in \mathbb{R}^3$

$$\max(V) = \sum_{i} \max(\Delta V_i)$$

$$\approx \sum_{vol(\Delta V_i) \to 0} \operatorname{densitiv}(p) \operatorname{de$$

Mass of
$$V \subset \mathbb{R}^3$$
 [kg]

Density at $p \in \mathbb{R}^3$ [kg/m³]

Proposition

Relations between mass m of a volume $V \subset \mathbb{R}^3$ and density ρ at a point $p \in \mathbb{R}^3$ is that:

$$m(V) = \int_{V} \rho(p) \mathrm{d}p$$

per volume

over volume

$$\rho(p) = \lim_{\substack{|V| \to 0 \\ p \in V}} \frac{m(V)}{|V|}$$

Notation comparison

Other text often write $\frac{\mathrm{d}m}{\mathrm{d}V}$ instead of $\lim_{|V|\to 0, p\in V} \frac{m(V)}{|V|}$ but the former notation may give a misunderstanding that m is a function of a real number (volume measure) rather than one of a subset of \mathbb{R}^3 (volume region). The formula $\frac{\mathrm{d}m}{\mathrm{d}V}$ can be correctly understood only if it denoted a Radon-Nikodym derivative, which is dealt in *measure theory* (4th grade in Math. major). We do not assume measure theory as a prerequisite, so we use the latter notation $\lim_{|V|\to 0, p\in V} \frac{m(V)}{|V|}$ for explicitness.

Proposition

Relations between mass m of a volume $V \subset \mathbb{R}^3$ and density ρ at a point $p \in \mathbb{R}^3$ is that:

$$m(V) = \int_{V} \rho(p) dp$$

per volume

over volume

$$\rho(p) = \lim_{\substack{|V| \to 0 \\ p \in V}} \frac{m(V)}{|V|}$$

We roughly say...

"Solid angles" are 3D versions of "angles"

How strictly is this sentence correct?

Can following statements be converted to sphere (\mathbb{S}^2) version using "solid angles"?

The position of a point p in the unit circle (\mathbb{S}^1) can be represented as the angle θ two coordinates such as (θ, ϕ)

How far apart two points p and $q \in \mathbb{S}^1$ can be represented as the angle θ between them. angle θ

The size of a region $A \subset \mathbb{S}^1$ can be represented as the angle θ solid angle Ω

Can following statements be converted to sphere (\mathbb{S}^2) version using "solid angles"?

1. The position of a point p in the unit circle (\mathbb{S}^1) can be represented as the angle θ two coordinates

"Solid angles" are only relevant to 3.

2. How far apart two points p and $q \in \mathbb{S}^1$ can be represented as the angle θ between them angle θ

3. The size of a region $A \subset \mathbb{S}^1$ can be represented as the angle θ solid angle Ω

In many times,

several concepts can be treated as a single concept in lower dimensions,

but they become different in higher dimensions

We call the both "area". (similarly for "volume")

a 2-dimensional subset

$$A=\{(x,y)\in\mathbb{R}^2|0\leq x,y\leq 1\}$$

measure of a 2-dimensional subset |A| = 1

Also for "solid angle"

a spherical subset

$$\Omega = \{\widehat{\omega} \in \mathbb{S}^2 | \widehat{u} \cdot \widehat{\omega} \ge 0.7\}$$

measure of a spherical subset $|\Omega| = 1$

(not common) terminology in this seminar

a spherical subset

$$\Omega = \{\widehat{\omega} \in \mathbb{S}^2 | \widehat{u} \cdot \widehat{\omega} \ge 0.7 \}$$

solid angle region

measure of a spherical subset

$$|\Omega| = 1$$

solid angle *measure*

How large S appears to and observer at p?

Solid angle!

Try to write in an area integral on $\mathcal S$

Try to write in an area integral on $\mathcal S$

Try to write in an area integral on \mathcal{S}

Solid angle=
$$\int_{\mathcal{S}} \frac{|\widehat{n} \cdot \widehat{\omega}_{px}|}{\|x - p\|^2} dx$$

Radiometric Quantities

Radiometric quantities

Radiant energy [J]**Radiant power** Irradiance (flux) [W] $E \left[W/m^2 \right]$ per solid angle per solid angle Radiant Radiance intensity $L [W/m^2 \cdot sr]$ [W/sr]

Radiant energy

Radiant energy of what $\subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$,

- "Energy" is "energy"!
- Number of "hits" of photons on the surface

Radiant energy

Radiant energy of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$, time interval $[t_1, t_2] \subset \mathbb{R}$

- "Energy" is "energy"!
- Number of "hits" of photons on the surface

Radiant energy

Radiant energy of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \stackrel{\text{default}}{=} \mathbb{S}^2$, time interval $[t_1, t_2] \subset \mathbb{R}$

$$Q(\mathcal{S}, \Omega, [t_1, t_2])$$
 [J]

- "Energy" is "energy"!
- Number of "hits" of photons on the surface

Radiant flux (radiant power)

Radiant flux of puritates $\subset \mathbb{R}^3$, (Radiant power) solid angle $\Omega \subset \mathbb{S}^2$ time $t \in \mathbb{R}$ (steady state)

$$\Phi(\mathcal{S}, \Omega)t)$$
 [J/s = W]

- "Power" is "energy per time"!
- Number of "intersecting rays" on the surface

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

Radiant intensity of point source, ? direction $\hat{\omega}$

surface S_{Ω} whose field of view from the point source is $\Omega \subset \mathbb{S}^2$

Proposition

Relations between radiant flux Φ of a surface $S \subset \mathbb{R}^3$ and radiant intensity of a point source at a position $p \in \mathbb{R}^3$ is that:

$$\Phi(S_{\Omega}) = \int_{\Omega} I(\widehat{\omega}) d\widehat{\omega}$$

per solid angle over solid angle

$$I(\widehat{\omega}) = \lim_{\substack{|\Omega| \to 0 \\ \widehat{\omega} \in \Omega}} \frac{\Phi(\mathcal{S}_{\Omega})}{|\Omega|}$$
, solid angle measur

where Ω is the solid angle region

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

Radiant intensity of point source, direction $\widehat{\omega}$

Practice

There is an isotropic point light source with radiant flux Φ .

The radiant intensity of the source is?

$$I(\widehat{\omega}) = \frac{\Phi}{4\pi}$$

Irradiance

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathbb{R}^3$,?

point
$$p \in \mathbb{R}^3$$
, ?

solid angle $\Omega \subset \mathbb{S}^2$

$$\text{point } p \in \mathbb{R}^3$$

$$\text{surface } \mathcal{S}$$

?
$$E(p,\Omega) = \lim_{\substack{\text{area}(\mathcal{S}) \to 0 \\ p \in \mathcal{S}}} \frac{\Phi(\mathcal{S},\Omega)}{\text{area}(\mathcal{S})}$$
 is it enough?

Review: Concepts of mass vs. density

Mass of $V \subset \mathbb{R}^3$

Density of $p \in \mathbb{R}^3$

$$\operatorname{density}(p) = \lim_{\substack{\operatorname{vol}(V) \to 0 \\ p \in V}} \frac{\operatorname{mass}(V)}{\operatorname{vol}(V)}$$

$$= \lim_{\substack{vol(V) \to 0 \\ p \in V}} \frac{\operatorname{mass}(V)}{\operatorname{vol}(V)}$$

^{*} The limit converges to the same value whenever $vol(V) \rightarrow 0$ and $p \in V$.

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathbb{R}^3$,?

solid angle $\Omega \subset \mathbb{S}^2$

$$\mathsf{p} \in \mathbb{R}^3$$

$$\mathsf{surface}\,\mathcal{S}$$

?
$$E(p,\Omega) = \lim_{\substack{\text{area}(S) \to 0 \\ p \in S}} \frac{\Phi(S,\Omega)}{\text{area}(S)}$$
 is it enough?

$$\mathcal{S} = ($$
) and $\mathcal{S} = ($ yield different limits

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathbb{R}^3$,?

solid angle $\Omega \subset \mathbb{S}^2$

$$E(p,\Omega) = \lim_{\substack{\text{area}(\mathcal{S}) \to 0 \\ p \in \mathcal{S}}} \frac{\Phi(\mathcal{S},\Omega)}{\text{area}(\mathcal{S})}$$

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathbb{R}^3$,?

solid angle $\Omega \subset \mathbb{S}^2$

$$\begin{array}{c} & & \\$$

$$E_{\mathcal{S}}(p,\Omega) = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{\Phi(\mathcal{A},\Omega)}{\text{area}(\mathcal{A})}$$

Irradiance defined as the limit about a subset of given fixed surface

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathbb{R}(0)$ $p \in \mathbb{R}^3$ and \hat{n}) solid angle $\Omega \subset \mathbb{S}^2$

$$E_{\widehat{n}}(p,\Omega) = \lim_{\substack{\text{area}(S_{\widehat{n}}) \to 0 \\ p \in S_{\widehat{n}}}} \frac{\Phi(S_{\widehat{n}},\Omega)}{\text{area}(S_{\widehat{n}})}$$

Irradiance defined as the limit about a subset of given fixed surface, or a surface with given fixed normal

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathcal{S}$ (or $p \in \mathbb{R}^3$ and \hat{n}) solid angle $\Omega \subset \mathbb{S}^2$

$$E_{\widehat{n}}(p,\Omega) = \lim_{\substack{\text{area}(S_{\widehat{n}}) \to 0 \\ p \in S_{\widehat{n}}}} \frac{\Phi(S_{\widehat{n}},\Omega)}{\text{area}(S_{\widehat{n}})}$$

Irradiance defined as the limit about a subset of given fixed surface, or a surface with given fixed normal

We don't say just "irradiance at p" when p is not on any surface

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

surface $\mathcal{S}_{\widehat{n}}$ with normal \widehat{n}

irradiance of point $p \in S$ (or $p \in \mathbb{R}^3$ and \hat{n})

default: solid angle $\Omega = \mathbb{S}^2$, $\mathbb{S}^2_{+\hat{n}}$, or $\mathbb{S}^2_{-\hat{n}}$

$$E_{\hat{n}}(p,\Omega) = \lim_{\substack{\text{area}(S_{\hat{n}}) \to 0 \\ p \in S_{\hat{n}}}} \frac{\Phi(S_{\hat{n}},\Omega)}{\text{area}(S_{\hat{n}})}$$

The default solid angle changes depending on the context

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in S$ (or $p \in \mathbb{R}^3$ and \hat{n})

default: solid angle $\Omega = \mathbb{S}^2$, $\mathbb{S}^2_{+\hat{n}}$, or $\mathbb{S}^2_{-\hat{n}}$

Some details depending on context...

- "incoming" irradiance: $E_{\mathcal{S}}^{(in)}(p) = E_{\mathcal{S} + \epsilon \hat{n}}(p, \mathbb{S}^2_{-\hat{n}})$
- "reflected" irradiance: $E_{\mathcal{S}}^{(\text{refl})}(p) = E_{\mathcal{S}+\epsilon\hat{n}}(p, \mathbb{S}^2_{+\hat{n}})$
- "refracted" irradiance: $E_{\mathcal{S}}^{(\text{refr})}(p) = E_{\mathcal{S} \epsilon \hat{n}}(p, \mathbb{S}^2_{-\hat{n}})$
- "outgoing" irradiance: $E_{\mathcal{S}}^{(\text{out})}(p) = E_{\mathcal{S}}^{(\text{ref}l)}(p) + E_{\mathcal{S}}^{(\text{ref}r)}(p)$

Our intuition easily can do this!

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in S$ (or $p \in \mathbb{R}^3$ and \hat{n}) solid angle $\Omega \subset \mathbb{S}^2$

$$\Phi(\mathcal{S},\Omega) = \int_{\mathcal{S}} E_{\mathcal{S}}(p,\Omega) \mathrm{d}p$$

$$\text{over area}$$

$$per area$$

$$E_{\mathcal{S}}(p,\Omega) = \lim_{\substack{\mathrm{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{\Phi(\mathcal{A},\Omega)}{\mathrm{area}(\mathcal{A})}$$

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

 $\widehat{\omega}$ \widehat{n} $\widehat{S}_{\widehat{n}}$

irradiance of point $p \in S$ (or $p \in \mathbb{R}^3$ and \hat{n}) solid angle $\Omega \subset \mathbb{S}^2$

Practice

There is directional light with $\widehat{\omega}$. What is the relationship between $E_{\widehat{\omega}}(p)$ and $E_{\widehat{n}}(p)$?

$$E_{\widehat{n}}(p) = E_{\widehat{\omega}}(p)|\widehat{n}\cdot\widehat{\omega}|$$

Radiant flux of surface $S \subset \mathbb{R}^3$, solid angle $\Omega \subset \mathbb{S}^2$

irradiance of point $p \in \mathcal{S}$ (or $p \in \mathbb{R}^3$ and \hat{n}) solid angle $\Omega \subset \mathbb{S}^2$

Practice

There is a point light source at p_L with the radiant intensity $I(\widehat{\omega})$. What is the incident irradiance at p on a surface \mathcal{S} , $E_{\mathcal{S}}(p) = ?$

$$E_{\mathcal{S}}(p) = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{\Phi(\mathcal{A})}{\text{area}(\mathcal{A})} = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{I(\widehat{\omega}_{p_L p}) \text{sol. ang. } (\mathcal{A}, p_L)}{\text{area}(\mathcal{A})} = \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\|p - p_L\|^2}$$
Definition of irradiance Definition of radiant intensity, small areal \mathcal{A}

$$E_{\mathcal{S}}(p) = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\text{area}(\mathcal{A})} = \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\|p - p_L\|^2}$$

$$E_{\mathcal{S}}(p) = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\text{area}(\mathcal{A})} = \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\|p - p_L\|^2}$$

$$E_{\mathcal{S}}(p) = \lim_{\substack{\text{area}(\mathcal{A}) \to 0 \\ p \in \mathcal{A} \subset \mathcal{S}}} \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\text{area}(\mathcal{A})} = \frac{I(\widehat{\omega}_{p_L p}) |\widehat{n} \cdot \widehat{\omega}_{p p_L}|}{\|p - p_L\|^2}$$

Irradiance of point $p \in \mathcal{S}$, solid angle $\Omega \subset \mathbb{S}^2$

Radiance of point $p \in \mathbb{R}^3$, direction $\widehat{\omega} \in \mathbb{S}^2$

$$L(p,\widehat{\omega}) = \lim_{\substack{\text{sol.ang.}(\Omega) \to 0 \\ \widehat{\omega} \in \Omega}} \frac{E_{S_{\widehat{\omega}}}(p,\Omega)}{\text{sol. ang.}(\Omega)}$$

For a point $p \in \mathbb{R}^3$ (on or not on a surface), the radiance $L(p, \widehat{\omega})$ is defined as the limit about a virtual surface facing $\widehat{\omega}$

Irradiance of point $p \in S$, solid angle $\Omega \subset \mathbb{S}^2$

Radiance of point $p \in \mathbb{R}^3$, direction $\widehat{\omega} \in \mathbb{S}^2$

$$L(p,\widehat{\omega}) = \lim_{\substack{\text{sol.ang.}(\Omega) \to 0 \\ \widehat{\omega} \in \Omega}} \frac{E_{\mathcal{S}_{\widehat{\omega}}}(p,\Omega)}{\text{sol. ang. }(\Omega)} = \lim_{\substack{\text{sol.ang.}(\Omega) \to 0 \\ \widehat{\omega} \in \Omega}} \frac{1}{|\widehat{n} \cdot \widehat{\omega}|} \frac{E_{\mathcal{S}}(p,\Omega)}{\text{sol. ang. }(\Omega)}$$

For a point p on given surface S, the radiance $L(p, \widehat{\omega})$ can also be written as the limit about the irradiance on S

Irradiance of point $p \in S$, solid angle $\Omega \subset \mathbb{S}^2$

Radiance of point $p \in \mathbb{R}^3$, direction $\widehat{\omega} \in \mathbb{S}^2$

$$E_{\mathcal{S}}(p,\Omega) = \int_{\Omega} L(p,\widehat{\omega}) |\widehat{n} \cdot \widehat{\omega}| d\widehat{\omega}$$
per solid angle
$$L(p,\widehat{\omega}) = \lim_{\substack{\text{sol.ang.}(\Omega) \to 0 \\ \widehat{\omega} \in \Omega}} \frac{1}{|\widehat{n} \cdot \widehat{\omega}|} \frac{E_{\mathcal{S}}(p,\Omega)}{\text{sol. ang.}(\Omega)}$$
over solid angle

Irradiance of point $p \in \mathcal{S}$, solid angle $\Omega \subset \mathbb{S}^2$

Radiance of point $p \in \mathbb{R}^3$, direction $\widehat{\omega} \in \mathbb{S}^2$

Practice

Radiance is invariant along ray:

$$L(p,\widehat{\omega}) = L(p + t\widehat{\omega}, \widehat{\omega}) \ \forall t \in \mathbb{R}$$

whenever there is no material between p and $p + t\widehat{\omega}$

Slight abuse of terminology

Slight abuse of terminology

vs. position direction

• • •

Unfortunate ambiguity

Photometry?

Radiometry: physical energy

Photometry: how bright human perceive

 $\int_{380 \text{nm}}^{700 \text{nm}} (\text{radiometric quantity per wavelength}) (\text{luminous efficiency function}) d\lambda$

Photometry?

radiant → luminous **Radiant energy** radiance > luminance **Radiant power Irradiance** per area (flux) per solid angle per solid angle **Radiant Radiance** intensity

Photometry

radiant → luminous Luminous radiance → luminance energy Pertime **Luminous power** Illuminance per area (flux) per solid angle per solid angle Luminous Luminance intensity

Slight abuse of terminology

Radiometric quantities

Radiometric quantities

Physical energy? (per wavelength?)

Visible brightness for human?

Bidirectional reflectance distribution function

We roughly say....

BRDF f_s : $\frac{\text{outgoing radiance along } \omega_o}{\text{incident irradiance at } \omega_i}$

Previous slide

Irradiance

at a point *on a surface* (dosen't depend on direction)

Bidirectional reflectance distribution function

BRDF
$$f_{\mathcal{S}}(p,\widehat{\omega}_i,\widehat{\omega}_o) = \lim_{\substack{\text{sol.ang.}(\Omega_i) \to 0 \\ \omega_i \in \Omega_i}} \frac{L(p,\widehat{\omega}_o)}{E_{\mathcal{S}}^{(\text{in})}(p,\Omega_i)}$$

Bidirectional reflectance distribution function

$$\begin{aligned} \operatorname{BRDF} f_{\mathcal{S}}(p,\widehat{\omega}_{i},\widehat{\omega}_{o}) &= \lim_{\substack{\text{sol.ang.}(\Omega_{i}) \to 0 \\ \omega_{i} \in \Omega_{i}}} \frac{L(p,\widehat{\omega}_{o})}{E_{\mathcal{S}}^{(\text{in})}(p,\Omega_{i})} \\ &= \lim_{\substack{\text{sol.ang.}(\Omega_{i}) \to 0 \\ \omega_{i} \in \Omega_{i}}} \frac{L(p,\widehat{\omega}_{o})}{\int_{\Omega_{i}} L^{(\text{in})}(p,\widehat{\omega}_{i}) \, |\widehat{n} \cdot \widehat{\omega}_{i}| \mathrm{d}\widehat{\omega}_{i}} = \lim_{\substack{\text{sol.ang.}(\Omega_{i}) \to 0 \\ \omega_{i} \in \Omega_{i}}} \frac{L(p,\widehat{\omega}_{o})}{L^{(\text{in})}(p,\widehat{\omega}_{i}) \, |\widehat{n} \cdot \widehat{\omega}_{i}| \mathrm{d}\widehat{\omega}_{i}} \end{aligned}$$

Rendering equation

$+L_e(p,\widehat{\omega}_o) \Rightarrow$, then we get the rendering equation

$$L^{(\text{out})}(p,\widehat{\omega}_o) = \int_{\mathbb{S}^2} L^{(\text{in})}(p,\widehat{\omega}_i) f_s(p,\widehat{\omega}_i,\widehat{\omega}_o) |\widehat{n} \cdot \widehat{\omega}_i| d\widehat{\omega}_i$$

per solid angle

over solid angle

$$f_{S}(p,\widehat{\omega}_{i},\widehat{\omega}_{o}) = \lim_{\substack{\text{sol.ang.}(\Omega_{i}) \to 0 \\ \omega_{i} \in \Omega_{i}}} \frac{L(p,\widehat{\omega}_{o})}{L^{(\text{in})}(p,\widehat{\omega}_{i})|\widehat{n} \cdot \widehat{\omega}_{i}|\text{sol. ang.}(\Omega_{i})}$$

Properties of BRDF: energy conservation

 $\frac{\text{outgoing irradiance}}{\text{incident irradiance}} \le 1$, for any illumination condition

$$\frac{\int_{\mathbb{S}^2} L^{(\text{out})}(p,\widehat{\omega}) |\widehat{n} \cdot \widehat{\omega}| d\widehat{\omega}}{\int_{\mathbb{S}^2} L^{(\text{in})}(p,\widehat{\omega}) |\widehat{n} \cdot \widehat{\omega}| d\widehat{\omega}} =$$

rendering equation
$$\frac{\int_{\mathbb{S}^2} \int_{\mathbb{S}^2} L^{(\mathrm{in})}(p,\widehat{\omega}_i) f_s(p,\widehat{\omega}_i,\widehat{\omega}_o) |\widehat{n}\cdot\widehat{\omega}_i| \mathrm{d}\widehat{\omega}}{|\widehat{n}\cdot\widehat{\omega}_o| \mathrm{d}\widehat{\omega}_o} \leq 1,$$

$$\int_{\mathbb{S}^2} L^{(\mathrm{in})}(p,\widehat{\omega}) |\widehat{n}\cdot\widehat{\omega}| \mathrm{d}\widehat{\omega}$$
 for any positive function $L^{(\mathrm{in})}(p,\cdot)$.

Taking $L^{(in)}(p,\cdot)$ as a Dirac delta function centered at $\widehat{\omega}_i$,

$$\therefore \int_{\mathbb{S}^2} f_s(p, \widehat{\omega}_i, \widehat{\omega}_o) |\widehat{n} \cdot \omega_o| d\widehat{\omega}_o \le 1, \forall \widehat{\omega}_i$$

Properties of BRDF: energy conservation

 $\frac{\text{outgoing irradiance}}{\text{incident irradiance}} \le 1$, for any illumination condition

< 1: energy losses

= 1: energy conserves

> 1: impossible!

Energy Conservation

$$\int_{\mathbb{S}^2} f_s(p, \hat{\omega}_i, \hat{\omega}_o) |\hat{n} \cdot \omega_o| d\hat{\omega}_o \le 1, \forall \hat{\omega}_i$$

Example BRDFs

source: Keenan Crane []

Example BRDFs

- Pure diffuse (Lambertian reflection)
 - Albedo ρ_d : ratio of energy conservation
 - f_s is a constant function on $\mathbb{S}^2_{\hat{z}}$

$$\int_{\mathbb{S}_{\hat{z}}^2} f_{\mathcal{S}} |\widehat{n} \cdot \widehat{\omega}_o| d\omega_o = \pi f_{\mathcal{S}} = \rho_d$$

$$\therefore f_{S} = \frac{\rho_{d}}{\pi}$$

Example BRDFs

- Pure specular
 - A Dirac delta function centered at $refl_{\hat{n}}(\hat{\omega}_i)$
 - Be careful when you treat Dirac delta functions

$$f_s(\widehat{\omega}_i, \widehat{\omega}_o) = a \cdot \delta_{\mathbb{S}^2}(\widehat{\omega}_o, \operatorname{refl}_{\widehat{n}}(\widehat{\omega}_i)), \int_{\mathbb{S}_{\widehat{n}}^2} f_s(\widehat{\omega}_i, \widehat{\omega}_o) |\widehat{n} \cdot \widehat{\omega}_o| d\widehat{\omega}_o = 1$$

$$\therefore f_{S}(\widehat{\omega}_{i}, \widehat{\omega}_{o}) = \frac{\delta_{\mathbb{S}^{2}}(\widehat{\omega}_{o}, \operatorname{refl}_{\widehat{n}}(\widehat{\omega}_{i}))}{\widehat{n} \cdot \widehat{\omega}_{o}}$$

Notation table

Sets

\mathbb{R}^n	Euclidean space
\mathbb{S}^2	the unit sphere (the set of all unit vectors)
$\mathbb{S}^2_{\widehat{\omega}}$	the hemisphere facing a direction $\widehat{\omega} \in \mathbb{S}^2$

Convention of variables

$p \in \mathbb{R}^3$	point in the space (or a surface)
$\widehat{\omega} \in \mathbb{S}^2$	direction (unit vector)
• $\widehat{\omega}_{p_1p_2}$	$\coloneqq rac{p_2 - p_1}{\ p_2 - p_1\ }$ for any $p_1, p_2 \in \mathbb{R}^3$
$\hat{n} \in \mathbb{S}^2$	surface normal, where a point and a surface are given in context
$\mathcal{S} \subset \mathbb{R}^3$	surface
$\mathcal{V} \subset \mathbb{R}^3$	volume
$\Omega \subset \mathbb{S}^2$	solid angle (region on the unit sphere \mathbb{S}^2)

Radiometric quantities

* time dependency is omitted for simplicity

* (\cdot ", Ω ") is usually omitted and assumed as an entire \mathbb{S}^2 or hemisphere

Φ(S, Ω) [W]	radiant power (flux) at a surface $\mathcal{S} \subset \mathbb{R}^3$ and a solid angle $\Omega \subset \mathbb{S}^2$
$I(\widehat{\omega})$ [W/sr]	radiant intensity at a direction $\widehat{\omega} \in \mathbb{S}^2$, where a point source is given in context
$E(p,\Omega)$ [W/m ²]	irradiance at $p \in \mathcal{S}$ and $\Omega \subset \mathbb{S}^2$, where the surface $\mathcal{S} \subset \mathbb{R}^3$ is given in context
$L(p,\omega)$ [W/m ² sr]	radiance at $p \in \mathbb{R}^3$ and $\widehat{\omega} \in \mathbb{S}^2$
$f_s(p,\omega_i,\omega_o)$ [sr ⁻¹]	BSDF at $p \in \mathcal{S}$ from $\widehat{\omega}_i \in \mathbb{S}^2$ to $\widehat{\omega}_o \in \mathbb{S}^2$, where the surface \mathcal{S} is given in context