\mathcal{R} obert \mathcal{S} tańczy

Zadanie 39. Oblicz pierwsze dwie iteracje Picarda dla zagadnień: a) $y' = t^2 + y^2$, y(0) = 1, b) $y' = e^t + y^2$, y(0) = 0.

 Zadanie 40. Wyprowadź wzór na n-tą iterację Picarda $y_n(x)$ i oblicz jej granicę gdy $n \to \infty$ dla podanych zagadnień Cauchy'ego: a) y' = -y, y(0) = 1, b) y' = x + y, y(0) = 1,

c) y' = 2xy, y(0) = 1, d) $y' + y^2 = 0$, y(0) = 0.

Zadanie 41. Oblicz kolejne iteracje Picarda dla zagadnienia Cauchy'ego y' = 2t(y+1), y(0) = 0 i udowodnij, że zbiegają one do rozwiązania $y(t) = e^{t^2} - 1$.

Zadanie 42. Udowodnij, że y(t) = -1 jest jedynym rozwiązaniem zagadnienia y' = t(1+y), y(0) = -1. (Wsk. zastosuj Lemat Gronwalla.)

Zadanie 43. Dla podanich niżej zagadnień Cauchy'ego udowodnij, że rozwiązanie y = y(t) istnieje na zadanym przedziale. Powtarzając rozumowanie podane na wykladzie udowodnij, że jest to jedyne rozwiązanie. a) $y' = y^2 + \cos t^2$, y(0) = 0, $0 \le t \le 1/2$,

- b) $y' = 1 + y + y^2 \cos t$, y(0) = 0, $0 \le t \le 1/3$, c) $y' = t + y^2$, y(0) = 0, $0 \le t \le (1/2)^{2/3}$, d) $y' = e^{-t^2} + y^2$, y(0) = 0, $0 \le t \le (1/2)^{2/3}$, e) $y' = e^{-t^2} + y^2$, y(0) = 0, $0 \le t \le 1/2$,

- $y' = y + e^{-y} + e^{-t}, \quad y(0) = 0; \quad 0 \le t \le 1.$

Zadanie 44. Wskaż przedział (możliwie największy), na którym istnieje rozwiązanie zagadnienia: a) $y' = 2y^2 - t$, y(1) = 1, b) $y' = t + e^y$, y(1) = 0.

Zadanie 45. Uzasadnij, że zagadnienie $y' = 1 + y^2$, y(0) = 0 nie ma rozwiązania określonego na całej prostej.

Zadanie 46. Czy wykresy dwóch różnych rozwiazań danego równania moga się przecinać w pewnym punkcie (t_0, y_0) jeżeli równaniem tym jest:

a)
$$y' = y^2 + t$$
, b) $y' = y^{1/2}$?

Wyznacz możliwie wszystkie takie punkty (t_0, y_0) .

Zadanie 47. Wykazać, równoważność Lematów Gronwalla: całkowego z różniczkowym.

Zadanie 48. Używając metody Eulera z krokiem h=0,1 wyznacz przybliżoną wartość rozwiązania dla t=1. Oszacuj błąd jaki popełniamy. Nastenie znajdź rozwiazanie podanego zagadnienienia i porównaj otrzymaną wartość z wartością rzeczywistą.

a)
$$y' = 1 + t - y$$
, $y(0) = 0$, $y' = 2ty$, $y(0) = 2$, $y' = 1 + y^2 - t^2$, $y(0) = 0$.

Zadanie 49. Oszacuj błąd jaki popełniamy używając metody Eulera z krokiem h aby znaleźć przybliżoną wartość rozwiązania zagadnienia $y' = (t^2 + y^2)/2$, y(0) = 1 dla dowolnego $t \in [0, 2/5]$. Wskazówka: Rozważaj prostokat R: 0 < t < 1, 0 < y < 2.

Zadanie 50. Wyznacz odpowiednią wielkość kroku h w metodzie Eulera tak aby błąd, który popełniamy wyznaczając wartośći rozwiązania zagadnienia $y' = e^y - y^2$, y(0) = 0 w dowolnym punkcie $t \in [0, 1/e]$ był nie większy niż 0,0001.

Zadanie 51. Zbadaj ilość rozwiązań w zależności od wartości parametru α :

$$y' = y^{\alpha}, \ y(0) = 0,$$

Kiedy stosować można twierdzenie Picarda-Lindelöfa?

Zadanie 52. Wykazać, że funkcja f, klasy C^1 , spełnia dla dowolnego x warunek Lipschitza

$$|f(y) - f(x)| \le L|x - y|, \ y \in (x - \delta, x + \delta)$$

z pewną stałą $L = L(\delta, x) > 0$ oraz $\delta > 0$. W Twierdzeniu Picarda-Lindolöfa osłabić założenie regularności klasy C^1 nałożonego na funkcję $y \mapsto f(t,y)$ do warunku Lipschitza.

Zadanie 53. Porównać schematy numeryczne (Eulera, zmodyfikowany Eulera i Rungego Kutty) dla równania $y' = 1 + y^2$, y(0) = 0 (por. Rozdział 11, http://im0.p.lodz.pl/bprzeradzki/rrzw.pdf).