# 廉价交谈还是言之有据?

# ——分析师报告文本的信息含量研究

马黎珺 伊志宏 张 澈管理世界 2019

胡震霆 2021/12/12

## 研究动机

- 已有不少文献关注了分析师报告内容对资本市场的影响,主要关注盈余预测、推荐评级、目标股价等报告定量内容对投资的影响。
   但是,现有文献大多关注分析师报告中的定量信息而忽略定性分析对投资者的影响。
- 对西方资本市场的研究表面投资者对分析市报告中文字的重视在 近年来越发明显,但鉴于西方资本市场较为成熟和中英语言上的差 异而使得我们难以参考其研究成果
- · 我国分析师行业发展较短,规范化程度不高,影响投资者对研报的信任度;但是投资者结构多样化以及资本市场信息透明度较低使得投资者获取信息能力较为有限,分析师报告的信息价值相对较高。

## 研究问题

- 前瞻性语句是否会向市场传递增量信息?
- ➤ 假设H1a: 前瞻性语句的情感越积极(消极),分析师报告公布 后的正面(负面)市场反应越强烈。
- ▶ 假设H1b: 前瞻性语句的情感与分析师报告公布后的市场反应无显著关系。
- ·基于H1,报告质量、企业信息透明度和投资者信息处理能力对会对市场反应产生怎样的影响?
- ➤ 假设H2&3&4: 当报告质量高/企业信息透明度低/投资者信息处理 能力强时, 前瞻性语句情感的市场反应会被显著强化

# 研究问题

- ·作为对研究的补充,定性分析对定量指标是否进行了很好的补充 而非简单的"信息膨胀"?
- ▶ 假设H5: 前瞻性语句的情感越积极(消极),定量指标正向(负向)修正的市场反应越显著。
- 进一步研究, 前瞻性语句是否对企业基本面进行了合理的预测?
- 进一步研究, 哪些因素影响了分析师对前瞻性语句的提供?

## 研究结论

- ·对于H1,在控制了定量信息的影响之后,前瞻性语句的情感与分析师报告发布后的累积超额收益显著正相关,说明前瞻性语句向投资者传递了增量信息
- ·对于H2~H4,上述关系在被跟踪企业的信息透明度较低、分析师报告内容的质量较高以及投资者的信息处理能力较强时更加显著,说明分析师报告文本的市场影响力的发挥需要一定的作用条件。
- ·对于H5,前瞻性语句为定量指标提供了"逻辑"和"证据"支持,两者之间的逻辑一致性有助于增强投资者对分析师报告信息内容的信任程度,从而导致更强烈的市场反应

2021/12/19 5

## 研究结论

分析师产出的因素

进一步研究也佐证了,前瞻性语句的情感积极程度与企业未来盈余增长、投资规模以及创新成果等基本面信息都显著正相关,说明分析师对企业进行了合理展望,并在事后得到了基本面信息的验证。
最后本文发现,企业当前的业绩、效率、风险及未来的成长性等基本面信息显著地影响了分析师提供的前瞻性语句;分析师的私有信息挖掘能力、对被跟踪企业的精力投入以及公募基金持股等因素也对分析师报告中前瞻性语句的含量产生了影响,上述揭示了影响。

# 研究贡献

- 本文的结论丰富了分析师报告的信息含量方面的文献,本文揭示了文字信息对市场的重要影响,有助于我们全面、客观地认识分析师对市场资源配置效率的影响,特别地本文专门区分了前瞻性文字和历史性文字。
- 本文证明了本文还证明了分析师在文字分析中对企业基本面情况进行了真实、可靠表述,从而为分析师的价值发现功能提供证明,回应了已有文献针对我国分析师究竟能否引导长期价值投资的质疑

# 文章脉络



# 研究数据

- 原始数据
- 主要原始数据包括: 2009~2015年针对我国A股所有上市公司发布的所有分析师报告原文; 企业财务数据(总市值、权益市值比、营业收入等)、股票交易数据。其中研报数据来源于深圳市今日投资数据科技有限公司; 其他数据均来源于CSMAR数据库。
- 主要变量样本选择

设置 $t_0 \sim t_1$ ,  $t_0 \sim t_2$ ,  $t_0 \sim t_4$ 的窗口期(具体时间未知)。搜集到 2009~2015的所有分析师关于所有A股企业的研报的共250915个观测,经过四项筛选后在各个窗口期上分别得到21978、20956和19071个观测。

· 检验H1a和H1b

#### 为了检验H1a和H1b,本文建立如下模型:

$$\begin{aligned} \text{CAR}_{0,n} &= \alpha + \alpha_{1} FLS + \alpha_{2} \Delta EF + \alpha_{3} \Delta REC + \alpha_{4} \Delta TP + \alpha_{5} TONE + \\ \alpha_{6} CAR_{(-10,-1)} + \alpha_{7} SIZE + \alpha_{8} BM + \alpha_{i} Industryi + \alpha_{j} Yearj + \varepsilon \end{aligned}$$

#### 变量说明:

 $CAR_{0,n}$ : 股票在0~n内的累计超额收益

FLS: 前瞻性语句情感指标(等于积极性语句占比减消极性语句占比)

 $\Delta EF$ 、 $\Delta REC$ 、 $\Delta TP$ : 研报里三项定量指标的变化(修正)

TONE: 前瞻性语句之外其他语句的语气(正、中、负代表3、2、1)

SIZE、 BM: 企业市值的自然对数和和账面市值比

· 检验H1a和H1b

#### 为了检验H1a和H1b,本文建立如下模型:

$$\begin{aligned} \text{CAR}_{0,n} &= \alpha + \alpha_{1} FLS + \alpha_{2} \Delta EF + \alpha_{3} \Delta REC + \alpha_{4} \Delta TP + \alpha_{5} TONE + \\ \alpha_{6} CAR_{(-10,-1)} + \alpha_{7} SIZE + \alpha_{8} BM + \alpha_{i} Industryi + \alpha_{j} Yearj + \varepsilon \end{aligned}$$

#### 变量说明:

 $CAR_{0,n}$ : 股票在0~n内的累计超额收益

FLS: 前瞻性语句情感指标(等于积极性语句占比减消极性语句占比)

 $\Delta EF$ 、 $\Delta REC$ 、 $\Delta TP$ : 研报里三项定量指标的变化(修正)

TONE: 前瞻性语句之外其他语句的语气(正、中、负代表3、2、1)

SIZE、 BM: 企业市值的自然对数和和账面市值比

#### · 检验H1a和H1b

第(1)到(3)列的被解释变量分别为  $CAR_{(0,1)}$ 、  $CAR_{0,2}$ 和  $CAR_{(0,4)}$  。 FLS 的估计系数在所有列中都显著为正, 即前瞻性语句的情感积极程度与分 析师报告公布后的累计超额收益显 著正相关。这表明,在控制了定量 指标的影响之后,前瞻性语句仍具 有增量信息含量,因此它并不是对 定量信息的简单"膨胀"或二次解 释, 而是为投资者提供了额外的决 策依据。

表 4 前瞻性语句的市场反应

| 农4 削贴任借的的中场及应 |                    |                           |                           |                           |  |  |
|---------------|--------------------|---------------------------|---------------------------|---------------------------|--|--|
|               |                    | (1) CAR <sub>(0, 1)</sub> | (2) CAR <sub>(0, 2)</sub> | (3) CAR <sub>(0, 4)</sub> |  |  |
|               | Constant           | 0.0344                    | 0.0389                    | 0.0459                    |  |  |
|               | Constant           | (7.10)***                 | (6.91)***                 | (6.59)***                 |  |  |
|               | FLS                | 0.0118                    | 0.0136                    | 0.0147                    |  |  |
|               | F LS               | (6.39)***                 | (6.24)***                 | (5.38)***                 |  |  |
|               | $\Delta EF$        | 0.0985                    | 0.0836                    | 0.0738                    |  |  |
|               | $\Delta E r$       | (3.97)***                 | (3.18)***                 | (1.85)*                   |  |  |
|               | $\Delta REC$       | 0.0044                    | 0.0050                    | 0.0068                    |  |  |
|               | ΔKEC               | (6.03)***                 | (5.89)***                 | (6.52)***                 |  |  |
|               | $\Delta TP$        | 0.0041                    | 0.0030                    | 0.0011                    |  |  |
|               | $\Delta IP$        | (3.32)***                 | (1.99)**                  | (0.58)                    |  |  |
|               | TONE               | 0.0013                    | 0.0018                    | 0.0020                    |  |  |
|               | TONE               | (3.00)***                 | (3.48)***                 | (3.09)***                 |  |  |
|               | CAD                | 0.0007                    | 0.0041                    | 0.0151                    |  |  |
|               | CAR (-10, -1)      | (0.15)                    | (0.73)                    | (2.10)**                  |  |  |
|               | CIZE               | -0.0017                   | -0.0020                   | -0.0024                   |  |  |
|               | SIZE               | (-6.98)***                | (-7.03)***                | (-6.94)***                |  |  |
|               | BM                 | 0.0048                    | 0.0101                    | 0.0299                    |  |  |
|               | DM                 | (0.66)                    | (1.22)                    | (2.90)***                 |  |  |
|               | Year fixed effect  | Yes                       | Yes                       | Yes                       |  |  |
|               | Ind fixed effect   | Yes                       | Yes                       | Yes                       |  |  |
|               | Cluster by firm    | Yes                       | Yes                       | Yes                       |  |  |
|               | Cluster by analyst | Yes                       | Yes                       | Yes                       |  |  |
|               | Observations       | 21978                     | 20956                     | 19071                     |  |  |
|               | Adj R-squared      | 0.02                      | 0.02                      | 0.01                      |  |  |
|               |                    |                           |                           |                           |  |  |

注:括号中数字为t值;\*\*\*、\*\*和\*分别表示在1%、5%和10%水平显著。下表同。

• 检验H2~H4

为了检验H2~H4,本文建立如下模型:

$$\begin{aligned} \mathsf{CAR}_{0,n} &= \alpha 0 \ + \alpha_1 \mathit{FLS} + \alpha_2 \, \mathit{FLS} \times \mathit{INTRSTVAR} + \alpha_3 \, \mathit{INTRSTVAR} \, + \\ \alpha_4 \, \Delta \mathit{EF} + \alpha_5 \, \Delta \mathit{REC} + \alpha_6 \, \Delta \mathit{TP} + \alpha_7 \, \mathit{TONE} + \alpha_8 \mathit{CAR}_{(-10,-1)} + \alpha_9 \, \mathit{SIZE} \, + \\ \alpha_{10} \, \mathit{BM} + \alpha_i \, \mathit{Industryi} \, + \alpha_i \, \mathit{Yearj} + \varepsilon \end{aligned}$$

#### 变量说明:

INTRSTVAR:分别代表研究报告质量(CHAR)、被跟踪企业信息透明度(OPA)以及公募基金持股比例(FUND)

CHAR:包括报告可信度EXP(分析师第一次报告至今季度的自然对数)、可读性 READABLE(借助已有论文计算)和及时性TIMELY(前后最近两份报告天数和之比) OPA:包括企业盈余操纵水平(借助已有论文计算)和管理层是否披露业绩报告MF(应该披露但没披露取1,不用披露却披露取0)

FUND: 基金公司持股比例

#### · 检验H2~H4

所有交互项 FLS×INTRSTVAR 的估计系数显著均为正。这说明分析师报告质量越高,企业信息透明度越低以及投资者信息处理能力越强时,市场对前瞻性语句的反应越强烈。

表6 企业信息透明度的影响

| $ \begin{array}{c} \text{Constant} & 0.0380 & 0.0469 & 0.0579 & 0.0178 & 0.0271 & 0.0409 \\ (6.88)^{***} & (7.05)^{***} & (6.68)^{***} & (2.22)^{**} & (2.90)^{***} & (3.45)^{***} \\ \hline & 0.0117 & 0.0119 & 0.0135 & 0.0079 & 0.0073 & 0.0077 \\ (6.51)^{***} & (5.44)^{***} & (4.75)^{***} & (2.96)^{***} & (2.29)^{**} & (1.83)^{**} \\ \hline & FLS \times OPA & 0.0221 & 0.0233 & 0.0140 & 0.0076 & 0.0145 & 0.0167 \\ & (2.83)^{***} & (2.07)^{**} & (2.15)^{**} & (2.13)^{**} & (3.30)^{***} & (2.94)^{***} \\ \hline & OPA & -0.0039 & -0.0042 & -0.0044 & -0.0028 & -0.0049 & -0.0053 \\ & (-2.37)^{**} & (-2.05)^{**} & (-1.07) & (-2.29)^{**} & (-3.37)^{***} & (-2.85)^{**} \\ \hline & \Delta EF & 0.0509 & 0.0668 & 0.0731 & 0.0030 & 0.0213 & 0.0177 \\ & (5.44)^{***} & (6.06)^{***} & (4.92)^{***} & (0.22) & (1.29) & (0.84) \\ \hline & \Delta REC & 0.0024 & 0.0036 & 0.0048 & 0.0027 & 0.0048 & 0.0051 \\ & (3.85)^{***} & (4.72)^{***} & (4.67)^{***} & (1.65)^{*} & (2.45)^{**} & (2.09)^{**} \\ \hline & \Delta TP & 0.0039 & 0.0031 & 0.0016 & 0.0072 & 0.0073 & 0.0068 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 衣 6 企业信息透明及时影响     |                           |                           |                           |                           |                           |                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|--|
| $ \begin{array}{c} \text{Constant} & 0.0380 & 0.0469 & 0.0579 & 0.0178 & 0.0271 & 0.0409 \\ (6.88)^{***} & (7.05)^{***} & (6.68)^{***} & (2.22)^{**} & (2.90)^{***} & (3.45)^{***} \\ \hline & 0.0117 & 0.0119 & 0.0135 & 0.0079 & 0.0073 & 0.0077 \\ (6.51)^{***} & (5.44)^{***} & (4.75)^{***} & (2.96)^{***} & (2.29)^{**} & (1.83)^{**} \\ \hline & FLS \times OPA & 0.0221 & 0.0233 & 0.0140 & 0.0076 & 0.0145 & 0.0167 \\ & (2.83)^{***} & (2.07)^{**} & (2.15)^{**} & (2.13)^{**} & (3.30)^{***} & (2.94)^{***} \\ \hline & OPA & -0.0039 & -0.0042 & -0.0044 & -0.0028 & -0.0049 & -0.0053 \\ & (-2.37)^{**} & (-2.05)^{**} & (-1.07) & (-2.29)^{**} & (-3.37)^{***} & (-2.85)^{**} \\ \hline & \Delta EF & 0.0509 & 0.0668 & 0.0731 & 0.0030 & 0.0213 & 0.0177 \\ & (5.44)^{***} & (6.06)^{***} & (4.92)^{***} & (0.22) & (1.29) & (0.84) \\ \hline & \Delta REC & 0.0024 & 0.0036 & 0.0048 & 0.0027 & 0.0048 & 0.0051 \\ & (3.85)^{***} & (4.72)^{***} & (4.67)^{***} & (1.65)^{*} & (2.45)^{**} & (2.09)^{**} \\ \hline & \Delta TP & 0.0039 & 0.0031 & 0.0016 & 0.0072 & 0.0073 & 0.0068 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                           |                           | OPA=MF                    |                           |                           |                           |  |  |
| $ \begin{array}{c} \text{Constant} \\ \text{(6.88)***} \\ \text{(7.05)***} \\ \text{(6.68)***} \\ \text{(2.22)**} \\ \text{(2.90)***} \\ \text{(3.45)***} \\ \text{(3.45)***} \\ \text{(6.51)***} \\ \text{(6.51)***} \\ \text{(5.44)***} \\ \text{(4.75)***} \\ \text{(2.96)***} \\ \text{(2.29)**} \\ \text{(2.29)**} \\ \text{(1.83)*} \\ \text{(2.83)***} \\ \text{(2.07)**} \\ \text{(2.15)**} \\ \text{(2.13)**} \\ \text{(3.30)***} \\ \text{(2.94)***} \\ \text{(2.94)***} \\ \text{(2.29)**} \\ \text{(2.94)***} \\ \text{(2.94)***} \\ \text{(2.27)**} \\ \text{(2.29)**} \\ (2.2$ |                    | (1) CAR <sub>(0, 1)</sub> | (2) CAR <sub>(0, 2)</sub> | (3) CAR <sub>(0, 4)</sub> | (4) CAR <sub>(0, 1)</sub> | (5) CAR <sub>(0, 2)</sub> | (6) CAR <sub>(0, 4)</sub> |  |  |
| $FLS = \begin{pmatrix} (6.88)^{***} & (7.05)^{***} & (6.68)^{***} & (2.22)^{**} & (2.90)^{***} & (3.45)^{***} \\ 0.0117 & 0.0119 & 0.0135 & 0.0079 & 0.0073 & 0.0077 \\ (6.51)^{***} & (5.44)^{***} & (4.75)^{***} & (2.96)^{***} & (2.29)^{**} & (1.83)^{*} \\ \hline FLS \sim OPA & 0.0221 & 0.0233 & 0.0140 & 0.0076 & 0.0145 & 0.0167 \\ (2.83)^{***} & (2.07)^{**} & (2.15)^{**} & (2.13)^{**} & (3.30)^{***} & (2.94)^{***} \\ \hline OPA & -0.0039 & -0.0042 & -0.0044 & -0.0028 & -0.0049 & -0.0053 \\ (-2.37)^{**} & (-2.05)^{**} & (-1.07) & (-2.29)^{**} & (-3.37)^{***} & (-2.85)^{**} \\ \hline \Delta EF & 0.0509 & 0.0668 & 0.0731 & 0.0030 & 0.0213 & 0.0177 \\ (5.44)^{***} & (6.06)^{***} & (4.92)^{***} & (0.22) & (1.29) & (0.84) \\ \hline \Delta REC & 0.0024 & 0.0036 & 0.0048 & 0.0027 & 0.0048 & 0.0051 \\ (3.85)^{***} & (4.72)^{***} & (4.67)^{***} & (1.65)^{*} & (2.45)^{**} & (2.09)^{**} \\ \hline \Delta TP & 0.0039 & 0.0031 & 0.0016 & 0.0072 & 0.0073 & 0.0068 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Constant           | 0.0380                    | 0.0469                    | 0.0579                    | 0.0178                    | 0.0271                    | 0.0409                    |  |  |
| $FLS = (6.51)^{***} (5.44)^{***} (4.75)^{***} (2.96)^{***} (2.29)^{**} (1.83)^{*}$ $FLS \times OPA = 0.0221  0.0233  0.0140  0.0076  0.0145  0.0167$ $(2.83)^{***} (2.07)^{**} (2.15)^{**} (2.13)^{**} (3.30)^{***} (2.94)^{***}$ $OPA = -0.0039  -0.0042  -0.0044  -0.0028  -0.0049  -0.0053$ $(-2.37)^{**} (-2.05)^{**} (-1.07)  (-2.29)^{**} (-3.37)^{***} (-2.85)^{**}$ $\Delta EF = 0.0509  0.0668  0.0731  0.0030  0.0213  0.0177$ $(5.44)^{***} (6.06)^{***} (4.92)^{***} (0.22)  (1.29)  (0.84)$ $\Delta REC = 0.0024  0.0036  0.0048  0.0027  0.0048  0.0051$ $(3.85)^{***} (4.72)^{***} (4.67)^{***} (1.65)^{**} (2.45)^{**} (2.09)^{**}$ $\Delta TP = 0.0039  0.0031  0.0016  0.0072  0.0073  0.0068$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Constant           | (6.88)***                 | (7.05)***                 | (6.68)***                 | (2.22)**                  | (2.90)***                 | (3.45)***                 |  |  |
| $FLS \times OPA = \begin{pmatrix} (6.51)^{***} & (5.44)^{***} & (4.75)^{***} & (2.96)^{***} & (2.29)^{**} & (1.83)^{**} \\ 0.0221 & 0.0233 & 0.0140 & 0.0076 & 0.0145 & 0.0167 \\ (2.83)^{***} & (2.07)^{**} & (2.15)^{**} & (2.13)^{**} & (3.30)^{***} & (2.94)^{***} \\ \hline OPA & & -0.0039 & -0.0042 & -0.0044 & -0.0028 & -0.0049 & -0.0053 \\ (-2.37)^{**} & (-2.05)^{**} & (-1.07) & (-2.29)^{**} & (-3.37)^{***} & (-2.85)^{**} \\ \hline \Delta EF & & 0.0509 & 0.0668 & 0.0731 & 0.0030 & 0.0213 & 0.0177 \\ (5.44)^{***} & (6.06)^{***} & (4.92)^{***} & (0.22) & (1.29) & (0.84) \\ \hline \Delta REC & & 0.0024 & 0.0036 & 0.0048 & 0.0027 & 0.0048 & 0.0051 \\ (3.85)^{***} & (4.72)^{***} & (4.67)^{***} & (1.65)^{*} & (2.45)^{**} & (2.09)^{**} \\ \hline \Delta TP & & 0.0039 & 0.0031 & 0.0016 & 0.0072 & 0.0073 & 0.0068 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FIC                | 0.0117                    | 0.0119                    | 0.0135                    | 0.0079                    | 0.0073                    | 0.0077                    |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FLS                | (6.51)***                 | (5.44)***                 | (4.75)***                 | (2.96)***                 | (2.29)**                  | (1.83)*                   |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELEVODA            | 0.0221                    | 0.0233                    | 0.0140                    | 0.0076                    | 0.0145                    | 0.0167                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FL5×OPA            | (2.83)***                 | (2.07)**                  | (2.15)**                  | (2.13)**                  | (3.30)***                 | (2.94)***                 |  |  |
| $\Delta EF = \begin{pmatrix} (-2.37)^{**} & (-2.05)^{**} & (-1.07) & (-2.29)^{**} & (-3.37)^{***} & (-2.85)^{**} \\ 0.0509 & 0.0668 & 0.0731 & 0.0030 & 0.0213 & 0.0177 \\ (5.44)^{***} & (6.06)^{***} & (4.92)^{***} & (0.22) & (1.29) & (0.84) \\ \hline \Delta REC & 0.0024 & 0.0036 & 0.0048 & 0.0027 & 0.0048 & 0.0051 \\ (3.85)^{***} & (4.72)^{***} & (4.67)^{***} & (1.65)^{*} & (2.45)^{**} & (2.09)^{**} \\ \hline \Delta TP & 0.0039 & 0.0031 & 0.0016 & 0.0072 & 0.0073 & 0.0068 \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OPA                | -0.0039                   | -0.0042                   | -0.0044                   | -0.0028                   | -0.0049                   | -0.0053                   |  |  |
| $ \frac{\Delta EF}{\Delta REC} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OLA                | (-2.37)**                 | (-2.05)**                 | (-1.07)                   | (-2.29)**                 | (-3.37)***                | (-2.85)***                |  |  |
| $ \Delta REC                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AFF                | 0.0509                    | 0.0668                    | 0.0731                    | 0.0030                    | 0.0213                    | 0.0177                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta E F$       | (5.44)***                 | (6.06)***                 | (4.92)***                 | (0.22)                    | (1.29)                    | (0.84)                    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADEC               | 0.0024                    | 0.0036                    | 0.0048                    | 0.0027                    | 0.0048                    | 0.0051                    |  |  |
| $\Lambda TP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ΔKEC               | (3.85)***                 | (4.72)***                 | (4.67)***                 | (1.65)*                   | (2.45)**                  | (2.09)**                  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A TID              | 0.0039                    | 0.0031                    | 0.0016                    | 0.0072                    | 0.0073                    | 0.0068                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΔΤΡ                | (3.77)***                 | (2.44)**                  | (0.96)                    | (5.54)***                 | (4.69)***                 | (3.49)***                 |  |  |
| TONE 0.0011 0.0016 0.0017 0.0009 0.0006 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TONE               | 0.0011                    | 0.0016                    | 0.0017                    | 0.0009                    | 0.0006                    | 0.0014                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TONE               | (2.39)**                  | (2.87)***                 | (2.15)**                  | (1.41)                    | (0.77)                    | (1.39)                    |  |  |
| 0.0060 0.0104 0.0170 0.0210 0.0244 0.0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAD                | 0.0060                    | 0.0104                    | 0.0170                    | 0.0210                    | 0.0244                    | 0.0371                    |  |  |
| $CAR_{(-10,-1)}$ (1.17) (1.68)* (1.99)** (1.91)* (0.88) (1.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAR (-10, -1)      | (1.17)                    | (1.68)*                   | (1.99)**                  | (1.91)*                   | (0.88)                    | (1.24)                    |  |  |
| SIZE -0.0022 -0.0027 -0.0032 -0.0015 -0.0018 -0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CIZE               | -0.0022                   | -0.0027                   | -0.0032                   | -0.0015                   | -0.0018                   | -0.0026                   |  |  |
| SIZE (-7.80)*** (-7.83)*** (-7.14)*** (-3.32)*** (-3.46)*** (-4.02)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIZE               | (-7.80)***                | (-7.83)***                | (-7.14)***                | (-3.32)***                | (-3.46)***                | (-4.02)***                |  |  |
| BM -0.0057 -0.0120 0.0062 -0.0131 -0.0283 -0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DM                 | -0.0057                   | -0.0120                   | 0.0062                    | -0.0131                   | -0.0283                   | -0.0055                   |  |  |
| (-0.73)   (-1.32)   (0.51)   (-0.93)   (-1.68)*   (-0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ВМ                 | (-0.73)                   | (-1.32)                   | (0.51)                    | (-0.93)                   | (-1.68)*                  | (-0.25)                   |  |  |
| Year fixed effect Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Year fixed effect  | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       |  |  |
| Ind fixed effect Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ind fixed effect   | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       |  |  |
| Cluster by firm Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cluster by firm    | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       |  |  |
| Cluster by analyst Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cluster by analyst | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       | Yes                       |  |  |
| Observations 19063 17106 14118 9947 9293 8076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Observations       | 19063                     | 17106                     | 14118                     | 9947                      | 9293                      | 8076                      |  |  |
| Adj R-squared 0.02 0.02 0.02 0.02 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adi R-squared      | 0.02                      | 0.02                      | 0.02                      | 0.02                      | 0.02                      | 0.02                      |  |  |

- 检验H5

为了检验H5,本文建立如下模型:

$$\begin{aligned} \mathit{CAR}_{(0,n)} &= \alpha_0 + \alpha_1 \mathit{FLS} \times \Delta \mathit{EF} \times \mathit{UPEF} + \alpha_2 \mathit{FLS} \times \Delta \mathit{REC} \times \mathit{UPREC} + \alpha_3 \mathit{FLS} \times \Delta \mathit{TP} \times \mathit{UPTP} + \alpha_4 \Delta \mathit{EF} \times \mathit{UPEF} + \alpha_5 \Delta \mathit{REC} \times \mathit{UPREC} + \alpha_6 \Delta \mathit{TP} \times \mathit{UPTP} + \alpha_7 \mathit{UPEF} + \alpha_8 \mathit{UPREC} + \alpha_9 \mathit{UPTP} + \alpha_{10} \mathit{FLS} + \alpha_{11} \Delta \mathit{EF} + \alpha_{12} \Delta \mathit{REC} + \alpha_{13} \Delta \mathit{TP} + \alpha_{14} \mathit{TONE} + \alpha_{15} \mathit{CAR}_{(-10,-1)} + \alpha_{16} \mathit{SIZE} + \alpha_{17} \mathit{BM} + \alpha_i \mathit{Industry} + \alpha_i \mathit{Yearj} + \varepsilon \end{aligned}$$

#### 变量说明:

UPEF: 这是一个哑变量,当 $\Delta EF > 0$ 时取1,反之取0,其它同类型同理。

 $FLS \times \Delta EF \times UPEF$ : 交互项代表前瞻性语句的情感对三大基本要素正向修正的市场反应的增量影响,其他同类型同理。

#### · 检验H5

变量  $FLS \times \Delta EF \times UPEF$ 、  $FLS \times \Delta REC \times UPREC$ 和  $FLS \times \Delta TP \times UPTP$ 的估计 系数在 3 列中均显著为正,即前瞻性语句的情感越积 极时定量指标的正向修正 所引发的市场反应越显著,支持了 H5。

表8 定性和定量信息的交互作用

| 衣 人 足住                               | 和足里信心的文互作用                |                           |                           |  |  |  |
|--------------------------------------|---------------------------|---------------------------|---------------------------|--|--|--|
|                                      | (1) CAR <sub>(0, 1)</sub> | (2) CAR <sub>(0, 2)</sub> | (3) CAR <sub>(0, 4)</sub> |  |  |  |
| Constant                             | 0.0220                    | 0.0289                    | 0.0394                    |  |  |  |
| Constant                             | (6.02)***                 | (6.73)***                 | (7.16)***                 |  |  |  |
| $FLS \times \Delta EF \times UPEF$   | 0.0029                    | 0.0036                    | 0.0056                    |  |  |  |
| TESAMET AUT ET                       | (2.47)**                  | (2.57)**                  | (3.07)***                 |  |  |  |
| $FLS \times \Delta REC \times UPREC$ | 0.0101                    | 0.0115                    | 0.0117                    |  |  |  |
| FL3^AREG^OTREG                       | (2.60)***                 | (2.50)**                  | (1.99)**                  |  |  |  |
| $FLS \times \Delta TP \times UPTP$   | 0.0051                    | 0.0068                    | 0.0065                    |  |  |  |
| FLS^ATP^UPTP                         | (2.12)**                  | (2.41)**                  | (1.85)*                   |  |  |  |
| $\Delta EF \times UPEF$              | -0.0070                   | -0.0052                   | -0.0170                   |  |  |  |
| ΔEF^UFEF                             | (-0.57)                   | (-0.36)                   | (-0.88)                   |  |  |  |
| $\Delta REC \times UPREC$            | -0.0046                   | -0.0050                   | -0.0071                   |  |  |  |
| ΔREG~UFREG                           | (-3.33)***                | (-3.02)***                | (-3.34)***                |  |  |  |
| $\Delta TP \times UPTP$              | -0.0154                   | -0.0214                   | -0.0411                   |  |  |  |
| ΔIF^UFIF                             | (-0.45)                   | (-0.52)                   | (-0.75)                   |  |  |  |
| UPEF                                 | 0.0019                    | 0.0024                    | 0.0033                    |  |  |  |
| UPEr                                 | (3.36)***                 | (3.68)***                 | (3.78)***                 |  |  |  |
| UPREC                                | 0.0034                    | 0.0049                    | 0.0080                    |  |  |  |
| UPREC                                | (5.27)***                 | (6.41)***                 | (8.15)***                 |  |  |  |
| UPTP                                 | 0.0043                    | 0.0033                    | 0.0016                    |  |  |  |
| UPIP                                 | (4.30)***                 | (2.83)***                 | (1.06)                    |  |  |  |
| EIC                                  | 0.0055                    | 0.0063                    | 0.0075                    |  |  |  |
| FLS                                  | (4.30)***                 | (4.07)***                 | (3.73)***                 |  |  |  |
| $\Delta EF$                          | 0.0113                    | 0.0190                    | 0.0252                    |  |  |  |
|                                      | (1.10)                    | (1.58)                    | (1.59)                    |  |  |  |
| $\Delta REC$                         | 0.0031                    | 0.0042                    | 0.0056                    |  |  |  |
| ΔREC                                 | (2.37)**                  | (2.72)***                 | (2.77)***                 |  |  |  |
| $\Delta TP$                          | 0.0007                    | 0.0015                    | 0.0028                    |  |  |  |
| Δ1F                                  | (0.71)                    | (1.35)                    | (1.93)*                   |  |  |  |
| TONE                                 | 0.0009                    | 0.0009                    | 0.0006                    |  |  |  |
| IONE                                 | (2.98)***                 | (2.60)***                 | (1.24)                    |  |  |  |
|                                      |                           |                           |                           |  |  |  |

2021/12/19 16

• 安慰剂检验

#### 检验方式:

用伪前瞻性语句替换前瞻性语句进行检验,即替换解释变量。

#### 变量说明:

Rate-Pseudo-FLS: 伪前瞻性语句占全文句子总数的比例。

Log-Pseudo-FLS: 伪前瞻性语句总数的自然对数。

变量 Rate-Pseudo-FLS和Log-Pseudo-FLS的估计系数在所有列中都不显著,说明伪前瞻性语句与分析师报告公布后的市场反应无关,这表明并不存在未观测到的并发事件驱动本文的实证结果。

表9 安慰剂检验

|              | Rate-Pseudo-FLS           |                           |                           | Log-Pseudo-FLS            |                           |                           |  |
|--------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
|              | (1) CAR <sub>(0, 1)</sub> | (2) CAR <sub>(0, 2)</sub> | (3) CAR <sub>(0, 4)</sub> | (4) CAR <sub>(0, 1)</sub> | (5) CAR <sub>(0, 2)</sub> | (6) CAR <sub>(0, 4)</sub> |  |
| Constant     | 0.0225                    | 0.0414                    | 0.0483                    | 0.0374                    | 0.0407                    | 0.0478                    |  |
| Constant     | (4 50)***                 | (7 34)***                 | (6.91)***                 | (7 14)***                 | (6.67)***                 | (6.36)***                 |  |
| Pseudo-FLS   | -0.0022                   | -0.0022                   | -0.0006                   | -0.0004                   | -0.0002                   | -0.0004                   |  |
| r seudo-r Lo | (-1.49)                   | (-1.39)                   | (-0.35)                   | (-1.20)                   | (-0.54)                   | (-0.79)                   |  |
| $\Delta EF$  | 0.1153                    | 0.0913                    | 0.0831                    | 0.1056                    | 0.0932                    | 0.0792                    |  |
|              | (4.44)***                 | (3.46)***                 | (2.07)**                  | (4.18)***                 | (3.48)***                 | (1.95)*                   |  |
| $\Delta REC$ | 0.0050                    | 0.0052                    | 0.0071                    | 0.0047                    | 0.0054                    | 0.0072                    |  |
| AREC         | (11.81)***                | (6.16)***                 | (6.76)***                 | (6.22)***                 | (6.17)***                 | (6.68)***                 |  |
| $\Delta TP$  | 0.0068                    | 0.0033                    | 0.0014                    | 0.0044                    | 0.0032                    | 0.0012                    |  |
| $\Delta IP$  | (5.33)***                 | (2.20)**                  | (0.76)                    | (3.45)***                 | (2.11)**                  | (0.66)                    |  |

• 调整乐观偏差影响

偏差来源:

维护企业管理层关系、承销托市以及羊群效应等

#### 调整变量说明:

 $Adjusted - FLS_1$ : 用所有分析师对企业 i 发布前瞻性语句的平均情感来调

整:  $(FLS_{i,j,n} - Average FLS_i)/Average FLS_i$ 

 $Adjusted - FLS_2$ : 用分析师 j 对所有被跟踪企业提供的前瞻性语句的平均情

感来调整:  $(FLS_{i,j,n} - Average FLS_j)/Average FLS_j$ 

Adjusted-FLS1 的估计系数始终显著为正Adjusted-FLS2的系数在t0-t1以及 t0-t2的窗口期显著为正,与本文结论基本一致。

表10 调整乐观偏差的影响

|              | Adjusted-FLS <sub>1</sub> (FLS Adjusted by Firm) |                                                         |           | Adjusted-FLS <sub>2</sub> (FLS Adjusted by Analyst) |                           |                           |  |
|--------------|--------------------------------------------------|---------------------------------------------------------|-----------|-----------------------------------------------------|---------------------------|---------------------------|--|
|              | (1) CAR <sub>(0, 1)</sub>                        | 1) $CAR_{(0, 1)}$ (2) $CAR_{(0, 2)}$ (3) $CAR_{(0, 4)}$ |           |                                                     | (5) CAR <sub>(0, 2)</sub> | (6) CAR <sub>(0, 4)</sub> |  |
| Constant     | 0.0365                                           | 0.0413                                                  | 0.0484    | 0.0368                                              | 0.0415                    | 0.0486                    |  |
| Constant     | (7.49)***                                        | (7.32)***                                               | (6.94)*** | (7.53)***                                           | (7.33)***                 | (6.93)***                 |  |
| Adjusted-FLS | 0.0020                                           | 0.0018                                                  | 0.0024    | 0.0005                                              | 0.0005                    | 0.0001                    |  |
| Aujusieu-FES | (2.62)***                                        | (1.93)*                                                 | (2.01)**  | (2.16)**                                            | (1.88)*                   | (0.39)                    |  |

· 变更CAR衡量方式

#### 变更方法及变量:

分别根据市场模型法和FF三因子法重新计算超额收益得到 $CAR\_MM_{(0,n)}$ 和  $CAR\_FF_{(0,n)}$ 

更换累计超额收益的衡量 方法后,FLS的估计系数 在所有列中均显著为正, 说明前瞻性语句的确具有 增量信息含量;其他的控 制变量系数也与前面各表 中基本一致

| <br>表 11 变更累计超额收益的衡量方式 |                                 |                                 |                                 |                                 |                                 |                                 |  |
|------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
|                        | (1)<br>CAR_MM <sub>(0, 1)</sub> | (2)<br>CAR_MM <sub>(0, 2)</sub> | (3)<br>CAR_MM <sub>(0, 4)</sub> | (4)<br>CAR_FF <sub>(0, 1)</sub> | (5)<br>CAR_FF <sub>(0, 2)</sub> | (6)<br>CAR_FF <sub>(0, 4)</sub> |  |
| Constant               | 0.0394                          | 0.0469                          | 0.0598                          | 0.0296                          | 0.0327                          | 0.0392                          |  |
| FLS                    | 0.0134<br>(7.32)***             | 0.0157<br>(7.25)***             | 0.0173<br>(6.43)***             | 0.0113<br>(6.39)***             | 0.0122<br>(5.84)***             | 0.0126<br>(4.88)***             |  |
| $\Delta EF$            | 0.1174<br>(4.40)***             | 0.1071<br>(3.81)***             | 0.1019<br>(2.51)**              | 0.0984<br>(4.41)***             | 0.0805 (3.23)***                | 0.0748<br>(2.18)**              |  |
| $\Delta REC$           | 0.0042<br>(5.80)***             | 0.0047<br>(5.63)***             | 0.0065<br>(6.26)***             | 0.0046<br>(6.66)***             | 0.0054<br>(6.78)***             | 0.0073 (7.33)***                |  |
| $\Delta TP$            | 0.0059<br>(4.59)***             | 0.0054 (3.48)***                | 0.0043 (2.34)**                 | 0.0029<br>(2.63)***             | 0.0018 (1.34)                   | 0.0008 (0.52)                   |  |
| TONE                   | 0.0013<br>(2.88)***             | 0.0017 (3.28)***                | 0.0019<br>(2.97)***             | 0.0012<br>(2.86)***             | 0.0016 (3.12)***                | 0.0018 (2.87)***                |  |
| CAR (-10, -1)          | -0.0149<br>(-3.17)***           | -0.0165<br>(-2.99)***           | -0.0148<br>(-2.11)**            | -0.0126<br>(-2.83)***           | -0.0140<br>(-2.65)***           | -0.0157<br>(-2.36)**            |  |
| SIZE                   | -0.0018<br>(-7.49)***           | -0.0022<br>(-7.77)***           | -0.0028<br>(-8.28)***           | -0.0014<br>(-6.02)***           | -0.0016<br>(-6.05)***           | -0.0020<br>(-6.11)***           |  |
| ВМ                     | -0.0101<br>(-1.38)              | -0.0099<br>(-1.20)              | -0.0018<br>(-0.18)              | -0.0011<br>(-0.15)              | 0.0017<br>(0.21)                | 0.0098<br>(1.01)                |  |

• 区分前瞻性语句类型

变量说明:

*FLS\_POS*:积极语句 *FLS\_IND*:行业前景语句

FLS\_NEG: 消极语句 FLS\_FIRM: 企业前景语句

分类后四种语句的回归系数均显著。其中,积极语句系数显著为正,消极语句系数显著为负,后者的绝对值为前者的3-4倍,说明投资者对两种语句的反应是不对称的;行业前景语句和企业前景语句系数均显著为正,且行业前景语句系数大于企业前语句景系数

表12 区分前瞻性语句的类型

|          | (1) CAR <sub>(0, 1)</sub> | (2) CAR <sub>(0, 2)</sub> | (3) CAR <sub>(0, 4)</sub> | (4) CAR <sub>(0, 1)</sub> | (5) CAR <sub>(0, 2)</sub> | (6) CAR <sub>(0, 4)</sub> |
|----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Comptont | 0.0353                    | 0.0400                    | 0.0471                    | 0.0347                    | 0.0388                    | 0.0457                    |
| Constant | (7.28)***                 | (7.10)***                 | (6.74)***                 | (7.13)***                 | (6.83)***                 | (6.48)***                 |
| FLS_POS  | 0.0097                    | 0.0112                    | 0.0121                    |                           |                           |                           |
| FLS_F 05 | (4.98)***                 | (4.86)***                 | (4.23)***                 |                           |                           |                           |
| FLS_NEG  | -0.0365                   | -0.0420                   | -0.0434                   |                           |                           |                           |
| FLS_NEG  | (-5.64)***                | (-5.54)***                | (-4.55)***                |                           |                           |                           |
| FLS FIRM |                           |                           |                           | 0.0052                    | 0.0068                    | 0.0075                    |
| FLS_FIRM |                           |                           |                           | (2.58)***                 | (2.88)***                 | (2.60)***                 |
| FLS_IND  |                           |                           |                           | 0.0115                    | 0.0099                    | 0.0113                    |
| FLS_IND  |                           |                           |                           | (5.60)***                 | (4.09)***                 | (3.73)***                 |

#### • 前瞻性语句与企业基本面关系的研究

研究动机:虽然证明了前瞻性语句对投资者有增量影响,却并不意味着这些语句对企业基本面进行了合理、真实的预期,在现实中,一些分析师可能为了迎合噪声交易者而发布失实的研究报告,误导投资者。

建立模型: (用企业未来盈余增长、创新产出以及投资规模衡量企业基本面)  $EG_n$  ( $INNOV_n$ ,  $INVEST_n$ ) =  $\alpha_0$  +  $\alpha_1$   $FLS_AVG$  +  $\alpha_2$   $\Delta EF_AVG$  +  $\alpha_3$   $\Delta REC_AVG$  +  $\alpha_4$   $\Delta TP_AVG$  +  $\alpha_5$   $TONE_AVG$  +  $\alpha_6$  SIZE +  $\alpha_7$  ROA +  $\alpha_8$  LEV +  $\alpha_i$  Industryi +  $\alpha_j$  Yearj +  $\varepsilon$ 

#### 变量说明:

 $EG_n$ :未来盈余增长率,等于t+n年利润与t年利润之差和t年末总资产比  $INNOV_n$ :未来创新产出水平,等于t+n年专利授予数量+1的自然对数  $INVEST_n$ :一般性投资水平,等于t+n年构建固定资产、无形资产和其他长期资产支付的现金与第t年末总资产比(现有论文提出)

 $X_AVG$ :针对某一企业在某一期的所有研报对应数据的平均值。

2021/12/19 21

#### • 前瞻性语句与企业基本面关系的研究

FLS\_AVG 的估计系数在所有列中都显著为正,说明前瞻性语句成功预测了未来的盈余增长、创新绩的盈余增长、创新绩效和投资水平,因此,前瞻性语句是言之有据而非"噪音"。

表 13 前瞻性语句与企业基本面的关系

|                   | (1)        | (2)        | (3)        | (4)        | (5)                | (6)                | (7)                 | (8)                 | (9)                 |
|-------------------|------------|------------|------------|------------|--------------------|--------------------|---------------------|---------------------|---------------------|
|                   | $EG_1$     | $EG_2$     | $EG_3$     | $INNOV_1$  | INNOV <sub>2</sub> | INNOV <sub>3</sub> | INVEST <sub>1</sub> | INVEST <sub>2</sub> | INVEST <sub>3</sub> |
|                   | 0.9935     | 0.9135     | 0.7567     | -1.4296    | -1.0433            | -0.4803            | 0.1118              | 0.1226              | 0.1207              |
| Constant          | (8.75)***  | (9.56)***  | (8.24)***  | (-3.63)*** | (-2.94)***         | (-1.87)*           | (4.40)***           | (4.61)***           | (4.34)***           |
| ELC AVC           | 0.4672     | 0.1630     | 0.1718     | 0.4986     | 0.3845             | 0.3646             | 0.1067              | 0.0771              | 0.0587              |
| FLS_AVG           | (6.66)***  | (2.70)***  | (2.47)**   | (2.74)***  | (2.40)**           | (3.09)***          | (7.95)***           | (5.05)***           | (3.34)***           |
| $\Delta EF\_AVG$  | -0.1252    | -0.1162    | -0.0193    | 0.0405     | 0.0147             | 0.0337             | -0.0012             | -0.0049             | 0.0174              |
| ΔEF_AVG           | (-1.22)    | (-1.59)    | (-0.25)    | (0.22)     | (0.09)             | (0.23)             | (-0.08)             | (-0.29)             | (1.10)              |
| $\Delta REC\ AVG$ | 0.0268     | 0.0302     | -0.0095    | 0.0575     | 0.0227             | 0.0264             | 0.0048              | -0.0008             | 0.0053              |
| AREC_AVG          | (1.35)     | (1.74)*    | (-0.48)    | (1.33)     | (0.60)             | (0.86)             | (1.47)              | (-0.21)             | (1.39)              |
| ATD AVC           | 0.0102     | 0.0024     | 0.0022     | -0.0042    | -0.0014            | -0.0007            | 0.0005              | 0.0010              | 0.0009              |
| $\Delta TP\_AVG$  | (4.47)***  | (1.37)     | (0.94)     | (-0.95)    | (-0.34)            | (-0.24)            | (1.12)              | (2.21)**            | (2.00)**            |
| TONE AVC          | -0.0061    | -0.0188    | -0.0192    | 0.0496     | 0.0318             | -0.0052            | 0.0066              | 0.0050              | -0.0015             |
| TONE_AVG          | (-0.38)    | (-1.28)    | (-1.15)    | (1.34)     | (0.95)             | (-0.20)            | (2.31)**            | (1.61)              | (-0.41)             |
| CIZE              | -0.0357    | -0.0295    | -0.0235    | 0.0676     | 0.0507             | 0.0264             | -0.0032             | -0.0036             | -0.0028             |
| SIZE              | (-7.33)*** | (-7.21)*** | (-6.30)*** | (3.59)***  | (2.98)***          | (2.13)**           | (-2.72)***          | (-2.88)***          | (-2.19)**           |
| ROA               | -0.5961    | -0.3201    | -0.1048    | -0.0334    | 0.0338             | -0.1118            | 0.0169              | 0.0255              | 0.0232              |
| ROA               | (-5.79)*** | (-3.65)*** | (-1.17)    | (-0.10)    | (0.12)             | (-0.51)            | (0.72)              | (1.02)              | (0.84)              |
| LEV               | -0.0988    | -0.1124    | -0.1339    | 0.0624     | 0.0361             | 0.0115             | -0.0103             | -0.0077             | -0.0115             |
| LE V              | (-2.84)*** | (-3.76)*** | (-4.68)*** | (0.54)     | (0.35)             | (0.14)             | (-1.27)             | (-0.91)             | (-1.31)             |
| Year fixed effect | Yes        | Yes        | Yes        | Yes        | Yes                | Yes                | Yes                 | Yes                 | Yes                 |
| Ind fixed effect  | Yes        | Yes        | Yes        | Yes        | Yes                | Yes                | Yes                 | Yes                 | Yes                 |
| Cluster by firm   | Yes        | Yes        | Yes        | Yes        | Yes                | Yes                | Yes                 | Yes                 | Yes                 |
| Observations      | 8514       | 8495       | 7092       | 8535       | 8535               | 8535               | 6559                | 5090                | 3734                |
| Adj R-squared     | 0.07       | 0.04       | 0.04       | 0.04       | 0.03               | 0.03               | 0.13                | 0.13                | 0.12                |

#### • 前瞻性语句的影响因素

研究动机:截止目前,已经证明前瞻性语句具有重要价值,但不同报告中前瞻性语句含量存在巨大差异,研究影响分析师前瞻性语句产出的变量有助于我们打开分析师工作的"黑箱"。

#### 建立模型: (包括分析师特征层面、报告层面和企业层面)

 $FLS = \alpha_0 + \alpha_1 VISIT + \alpha_2 UDW + \alpha_3 STAR + \alpha_4 NUMSTK + \alpha_5 TIMELY + \alpha_6 TYPE + \alpha_7 SIZE + \alpha_8 ROE + \alpha_9 LEV + \alpha_{10} GROWTH + \alpha_{11} SOE + \alpha_{12} FUND + \alpha_i Industryi + \alpha_j Yearj + \varepsilon$ 

#### 变量说明:

VISIT: 分析师私有信息挖掘能力,用分析师实地调研的次数来表示。

*UDW*:分析师独立性,用所在券商与被跟踪企业是否具有承销关系来衡量,有则取1,反之取0。

STAR:分析师声誉,若分析师在上一年度的"新财富最佳分析师"评选中排名前五则取1,反之取0。

#### • 前瞻性语句的影响因素

#### 变量说明:

NUMSTK:分析师工作精力的分散程度,用分析师同时跟踪的股票数量来衡量。

TIMELY: 报告的及时性,与前述模型中相同。

TYPE: 报告类型, 若某分析师报告属于常规报告则取1, 若为深度报告则取0。

SIZE: 企业的规模。

ROE: 权益报酬率。

LEV: 财务风险水平, 杠杆率。

GROWTH: 营业收入增长率。

*SOE*: 产权性质, 国企取1, 其他取0。

FUND: 基金持股比例。

2021/12/19 24

#### • 前瞻性语句的影响因素

从分析师自身来看,仅VISIT和NUMSTK回归系数显著,说明调研和分析师精力分散程度能够影响其报告里前瞻性语句的产出,特别的,VISIT对于消极语句的产出系数不显著,说明实地调研能增加分析师对企业的积极印象。

从报告来看,TIMELY和TYPE回归系数均显著负相关。

从企业自身来看,SIZE、LEV对消极语句产出正相关;GROWTH和ROE对积极语句产出正相关,反之成立。

从企业产权来看,分析师对国企发布更少的积极 性语句。

从基金持股水平来看,FUND对积极语句产出显 著正相关。

表 14 前瞻性语句的影响因素

| 水 14 B   | 1 系        |            |             |
|----------|------------|------------|-------------|
|          | FLS        | FLS_POS    | FLS_NEG     |
| Constant | 0.3551     | 0.3494     | -0.0073     |
| Constant | (12.50)*** | (12.27)*** | (-1.28)     |
| VISIT    | 0.0117     | 0.0112     | -0.0005     |
| VISII    | (4.93)***  | (4.94)***  | (-1.20)     |
| UDW      | 0.0029     | 0.0040     | 0.0012      |
| UDW      | (0.54)     | (0.79)     | (0.95)      |
| STAR     | 0.0087     | 0.0098     | 0.0011      |
| SIAK     | (1.38)     | (1.53)     | (1.32)      |
| NUMSTK   | -0.0038    | -0.0040    | -0.0001     |
| NUMSIK   | (-1.67)*   | (-1.78)*   | (-0.31)     |
| TIMELY   | -0.0002    | -0.0001    | 0.0000      |
| HMELY    | (-3.16)*** | (-2.79)*** | (1.46)      |
| TYPE     | -0.0046    | -0.0069    | -0.0024     |
| IIFE     | (-1.84)*   | (-2.78)*** | (-5.82)***  |
| SIZE     | -0.0067    | -0.0054    | 0.0014      |
| SIZE     | (-5.29)*** | (-4.24)*** | (5.39)***   |
| ROE      | 0.0353     | 0.0347     | -0.0011     |
| KOŁ      | (1.96)**   | (2.05)**   | (-0.31)     |
| LEV      | -0.0492    | -0.0375    | 0.0116      |
| LE V     | (-3.53)*** | (-2.91)*** | (2.95)***   |
| GROWTH   | 0.0263     | 0.0192     | -0.0073     |
| GROWIII  | (9.00)***  | (7.19)***  | (-10.43)*** |
| SOE      | -0.0148    | -0.0147    | 0.0003      |
| SOE      | (-4.95)*** | (-5.15)*** | (0.38)      |
| FUND     | 0.0496     | 0.0418     | -0.0082     |
| FUND     | (3.77)***  | (3.39)***  | (-2.99)***  |
|          |            |            |             |