MCMC Class

A Long journey to Markov Chain Monte-Carlo Bayesian Estimation with Metropolis Rule.

2021/09

Hyeong-sik Yun

Star formation lab., Kyung Hee University

Objective

- Markov Chain Monte-Carlo (MCMC) 방법을 이해하기위해 알 아야하는 기본적인 통계 지식에 대해 간략하게 익힌다.
- MCMC 방법을 이용한 data fitting이 어떤 방식으로 이루어지는 지 이해한다.
- MCMC 방법을 이용한 data fitting을 주어진 test problem을 바탕으로 사용방법과 결과 해석을 시도한다.
- ❖스스로 MCMC code를 build 해보고 사용하는 것을 최종 목표로 한다.

What is MCMC?

- One of the method to find the bestfit model?
- What is the output of the MCMC method?
- What is the MCMC?

Contents

- 1. Monte-Carlo sampling
- 2. Markov Chain
- 3. Markov Chain Monte-Carlo sampling with Metropolis rule
- 4. Likelihood
- 5. Maximum likelihood estimation
- 6. Bayesian statistics
- 7. Markov Chain Monte-Carlo Bayesian Estimation with Metropolis Rule

Monte-Carlo

- 통계적인 수치를 얻기 위한 simulation.
- 무한한 시도를 거쳐야 답을 얻을 수 있는 문제에 대해 유한한 시도로 정답을 추정하고자 하는 것.
- 통계적인 특성을 이용해 무수한 시도를 하는 분석을 통틀어 지 칭함.
- Ex) Monte-Carlo sampling, Bootstrap method, ...
- ❖Monte-Carlo, Monaco: 지중해 연안에 위치한 카지노와 도박장으로 유명한 도시.

Monte-Carlo Sampling

• Sampling: 모집단으로부터 조건에 맞게 표본을 추출하는 것.

Markov chain

- 과정을 설명하는 통계적 model에서 많이 사용되는 방법
- 연속되는 state 를 기술하는 확률 모델이며, 각 state 의 확률은 직전 state 에만 영향을 받는다.

Ex1) 어제 순대국밥을 먹었으니 오늘 점심은 다른걸 먹자.

직전의 state ->

다음 state의 확률에 영향을 줌

Markov Chain Monte-Carlo (MCMC)

- 무한한 시도를 거쳐야 답을 얻을 수 있는 문제에 대해 유한한 시도로 정답을 추정하고자 하는 것 (Monte-Carlo).
- 일반 Monte-Carlo 방법에 비해 좀더 적은 시도로 정답을 추정하고자 Markov Chain을 활용하여 접근하는 방법.

특징

- 1. 첫 sample(θ_0)로부터 다음 sample(θ_1)이 propose 된다.
- 2. Propose된 sample(θ_i)은 특정 기준에 따라 Accept 또는 Reject한다.
- 3. Sample(θ_i)이 Accept 된 경우, **다음 sample(\theta_{i+1})은 직전 sample(\theta_i)** 에서 propose 된다 (chain).
- 4. 2-3 과정을 무수히 많이 반복한다.

Markov Chain Monte-Carlo (MCMC)

- MCMC는 fitting method의 이름이 아니다.
- Output of MCMC = Posterior (Accept 된 sample의 집합)

• 수집된 Posterior 를 이용하여 **알아내고자 하는 정답을 추정하** 는 것 (데이터를 잘 설명하는 분포 -> fitting; 뒤에서 계속)

The MCMC sampling

- 1. Random initial sample(θ_0)
- 2. Generate a sample(θ_1) from θ_0
 - Normal probability density function (PDF) is generally used.
 - Propose θ_1
- 3. Accept or Reject the propose with a given rule(sampler).

the simplest and commonly used sampler: Metropolis rule

- 1. Random initial sample(θ_0)
- 2. Generate a sample(θ_1) from θ_0
 - Normal probability density function (PDF) is generally used.
 - Propose θ_1
- 3. Judge the acceptance

$$f(\theta_1) \ge f(\theta_0)$$
: Accept

- 1. Random initial sample(θ_0)
- 2. Generate a sample(θ_1) from θ_0
 - Normal probability density function (PDF) is generally used.
 - Propose θ_1
- 3. Judge the acceptance

$$\begin{cases} f(\theta_1) \ge f(\theta_0) : Accept \\ f(\theta_1) < f(\theta_0) : Accept \text{ with } p = \frac{f(\theta_1)}{f(\theta_0)} \end{cases}$$

Judge the acceptance

$$\begin{cases} f(\theta_1) \ge f(\theta_0) : Accept \\ f(\theta_1) < f(\theta_0) : Accept \text{ with } p = \frac{f(\theta_1)}{f(\theta_0)} \end{cases}$$

- Why we accept the propose stochastically?
 - 1. Allow to escape the local minima
 - 2. Provide a good chance to find the deep minima

EX) Markov Chain Monte Carlo - 공돌이의 수학정리노트 (angeloyeo.github.io)

- 1. Random initial sample(θ_0)
- 2. Generate a sample(θ_1) from θ_0
 - Normal probability density function (PDF) is generally used.
 - Propose θ_1
- 3. Judge the acceptance
- 4. Generate new sample (θ_{i+1}) from the accepted sample (posterior; θ_i)
- 5. Repeat 3-4

Likelihood

• Definition:

$$P(x|\theta) = \prod_{k=1}^{n} p(x_k|\theta) = p(x_1|\theta) * p(x_2|\theta) * \dots * p(x_n|\theta)$$

주어진 parameter(θ)로 정의된 확률밀도함수, $p(x|\theta)$ 가 있을 때, n개의 sample(x_k)에 대한 확률밀도의 곱

• 보통은 계산의 편의성 때문에 Log-likelihood를 주로 사용한다.

$$L(x|\theta) = \log P(x|\theta) = \log \left(\prod_{k=1}^{n} p(x_k|\theta) \right) = \sum_{k=1}^{n} \log p(x_k|\theta)$$

Maximum Likelihood Estimation (MLE)

❖알지 못하는 정규분포인 모 분포로부터 5개의 sample을 얻어냈다. 이 sample이 얻어진 모분포 를 추정하기 위하여 Likelihood를 이용한다.

$$P(x|\theta) > P(x|\theta')$$
 & $L(x|\theta) > L(x|\theta')$

• Likelihood가 Maximum이 되는 θ 를 찾아 모 분포의 parameter 를 추정하는 방법.

• Definition:

$$p(H|E) = \frac{p(E|H) p(H)}{p(E)}$$

[p: probability, H: hypothesis (the event interested in), E: evidence (new information)]

❖베이즈 정리에서 확률은 '어떤 state가 가지는 신뢰도'로 생각하는 것이 이해에 도움이 된다.

• Definition:

$$p(H|E) = \frac{p(E|H) p(H)}{p(E)}$$

[p: probability, H: hypothesis (the event interested in), E: evidence (new information)]

- 불확실성을 내포하는 수치를 기반으로 한 사전확률이 있을 때, 이에대한 추가 사건을 관찰한 이후에 사전확률의 신뢰도를 갱신하는 방법
 - p(H): 기존에 알려져 있던 확률 (사전 확률; prior)
 - p(H|E): 새로운 정보인 evidence를 얻은 후 확률 (사후 확률; posterior)

• Example problem1 (베이즈 정리의 의미 - 공돌이의 수학정리노트 (angeloyeo.github.io))

질병 A의 발병률은 0.1%로 알려져 있다. 이 질병에 실제로 감염된 환자에게 검사를 실시 하였을 때 양성이 나올 확률은 99% 이고, 질병에 감염되지 않은 사람에게 검사를 실시 하였을 때 음성이 나올 확률은 98% 이다.

만약 어떤 X라는 사람이 검진에서 양성이 나왔을 때, 이 사람이 정말로 질병에 걸렸을 확률은?

이 문제에서, Hypothesis와 Evidence는 무엇인가?

• Example problem1 (베이즈 정리의 의미 - 공돌이의 수학정리노트 (angeloyeo.github.io))

질병 A의 발병률은 0.1%로 알려져 있다. 이 질병에 실제로 감염된 환자에게 검사를 실시 하였을 때 양성이 나올 확률은 99% 이고, 질병에 감염되지 않은 사람에게 검사를 실시 하였을 때 음성이 나올 확률은 98% 이다.

만약 어떤 X라는 사람이 검진에서 양성이 나왔을 때, 이 사람이 정말로 질병에 걸렸을 확률은?

- 이 문제에서, Hypothesis와 Evidence는 무엇인가?
- *H*: X는 질병 A의 **감염자**다
- *E*: X는 질병 A에 대해 **양성판정**을 받았다.

$$p(H|E) = \frac{p(E|H)p(H)}{p(E)} = \frac{p(E|H)p(H)}{p(E|H)p(H) + p(E|H^c)p(H^c)}$$

• Example problem1 (베이즈 정리의 의미 - 공돌이의 수학정리노트 (angeloyeo.github.io))

$$p(H|E) = \frac{p(E|H)p(H)}{p(E)} = \frac{p(E|H)p(H)}{p(E|H)p(H) + p(E|H^c)p(H^c)}$$

p(H|E): 양성 판정을 받았을 때 감염자일 확률

(신뢰도)

p(E|H): **감염자**일 때 **양성판정**을 받을 확률

p(H): **감염자**일 확률

p(E): **양성판정**을 받을 확률

$$p(H|E) = 0.047 = 4.7\%$$

• Example problem2 (베이즈 정리의 의미 - 공돌이의 수학정리노트 (angeloyeo.github.io))

만약 어떤 X라는 사람이 검진에서 양성이 나왔을 때, 이 사람이 정말로 질병에 걸렸을 확률은 4.7%이다. 그렇다면 한번 더 검진하여 양성이 나왔을 때, X가 질병 A의 감염자일 확률은?

• Example problem2 (베이즈 정리의 의미 - 공돌이의 수학정리노트 (angeloyeo.github.io))

만약 어떤 X라는 사람이 검진에서 양성이 나왔을 때, 이 사람이 정말로 질병에 걸렸을 확률은 4.7%이다. 그렇다면 한번 더 검진하여 양성이 나왔을 때, X가 질병 A의 감염자일 확률은?

$$p(H|E) = \frac{p(E|H)p(H)}{p(E)} = \frac{p(E|H)p(H)}{p(E|H)p(H) + p(E|H^c)p(H^c)}$$

- E: X는 두번째 검진에서 양성이 나왔다.
- H: X는 질병 A의 감염자다.
- *Prior*: 0.047
- *Posterior* : p(H|E) = 0.709

MCMC Bayesian Estimation with Metropolis rule

• θ 를 parameter로 한 model(M)로 주어진 data(D)를 설명할 수 있을 때, MCMC를 이용하여 data를 가장 잘 설명할 수 있는 θ 를 추정하는 방법.

- 1. Random initial sample(θ_0)
- 2. Generate a sample(θ_1) from θ_0
 - Normal probability density function (PDF) is generally used.
 - Propose θ_1
- 3. Judge the acceptance

$$\begin{cases} f(\theta_1) \ge f(\theta_0) : Accept \\ f(\theta_1) < f(\theta_0) : Accept \text{ with } p = \frac{f(\theta_1)}{f(\theta_0)} \end{cases}$$

MCMC Bayesian Estimation with Metropolis rule

- 1. Define initial parameters, θ_0 .
- 2. Generate and propose a small jump $(\theta_0 + \Delta\theta)$
- 3. Judge the acceptance with metropolis rule

$$\begin{cases} f(\theta_1) \ge f(\theta_0) : Accept \\ f(\theta_1) < f(\theta_0) : Accept \text{ with } p = \frac{f(\theta_1)}{f(\theta_0)} \end{cases}$$

�어떤 함수가 $f(\theta)$ 에 쓰이는가?

 $'\theta$ 가 데이터를 잘 설명하는지'를 판단할 수 있는 지표 (신뢰도)

• Definition:

$$p(H|E) = \frac{p(E|H) p(H)}{p(E)}$$

[p: probability, H: hypothesis (the event interested in), E: evidence (new information)]

- 각 항목의 의미
 - Prior/posterior: Hypothesis가 맞을 확률(신뢰도)
 - Evidence: 새로운 정보 (Evidence의 신뢰도)
 - p(E|H): Hypothesis가 맞을 때 Evidence가 맞을 확률 (신뢰도)

MCMC Bayesian Estimation with Metropolis rule

- 각 항목의 의미
 - Prior/posterior: 주어진 파라미터(θ)를 이용해 만들어진 Model이 관측 Data를 잘 설명할 확률 (신뢰도)
 - Evidence: 임의의 Residual(Data Model)이 Noise distribution을 따를 확률 (신뢰도)
 - Likelihood: 주어진 파라미터(θ)를 이용해 Residual을 구했을 때, 이 Residual이 noise distribution을 따를 확률 (신뢰도). 주로 normal white noise를 가정.
- ❖언제나 normal white noise가 사용되는 것은 아니다. Noise의 알려진 확률분포 (pdf)에 따라 다른 pdf를 사용해야 한다.

MCMC Bayesian Estimation with Metropolis rule

$$p(\theta|D,M) = \frac{p(D|\theta,M)p(\theta|M)}{p(D|M)} \text{ (Bayes' theorem)}$$
Evidence

- MCMC Bayesian Estimation에서는 Evidence는 잘 고려하지 않는다.
- 주로 Metropolis rule을 적용한 경우, **Evidence는 상쇄된다.** $f(\theta_{i+1})$ $p(\theta_{i+1}|D,M)$ $p(D|\theta_{i+1},M)p(\theta_{i+1}|M)$

$$\frac{f(\theta_{i+1})}{f(\theta_i)} = \frac{p(\theta_{i+1}|D,M)}{p(\theta_i|D,M)} = \frac{p(D|\theta_{i+1},M)p(\theta_{i+1}|M)}{p(D|\theta_i,M)p(\theta_i|M)}$$

- �Evidence 는 θ 에 대해 상수이기 때문에 $p(\theta_i|D,M) \propto p(D|\theta_i,M)p(\theta_i|D)$
- �여러 연구에서는 Prior를 고려하지 않음; $p(\theta_i|D,M) \propto p(D|\theta_i,M)$ = Likelihood

Likelihood

Definition:

$$P(x|\theta) = \prod_{k=1}^{n} p(x_k|\theta) = p(x_1|\theta) * p(x_2|\theta) * \dots * p(x_n|\theta)$$

- MCMC에서는 Residual(r_i)이 Noise distribution과 잘 일치하는지를 판단.
- 대부분의 천문학 연구에서는 Error를 normal white noise를 가정한다.
 - -> Gaussian likelihood function을 많이 사용.

$$P(D|\theta_{i}, M) = \prod_{k=1}^{n} \frac{1}{(2\pi\sqrt{\sigma_{k}})^{2}} exp\left(-\frac{1}{2}\frac{r_{k}^{2}}{\sigma_{k}^{2}}\right); r_{k} = D_{k} - M(\theta_{i})_{k}$$

MCMC Bayesian Estimation with Metropolis rule

 $p(\theta|D,M) \propto p(D|\theta,M)p(D|\theta,M) = P(D|\theta,M)p(D|\theta,M)$ Likelihood

$$P(D|\theta_i, M) = \prod_{k=1}^n \frac{1}{(2\pi\sqrt{\sigma_k})^2} exp\left(-\frac{1}{2}\frac{r_k^2}{\sigma_k^2}\right); r_k = D_k - M(\theta_i)_k$$
 Synthetised data

❖ 종종 편의를 위해 Log-likelihood를 사용 Measured uncertainty

$$p(\theta|D,M) \propto L(D|\theta,M)p(D|\theta,M)$$

$$L(D|\theta_{i}, M) = \sum_{k=1}^{n} \log \left(\frac{1}{(2\pi\sqrt{\sigma_{k}})^{2}} exp\left(-\frac{1}{2}\frac{r_{k}^{2}}{\sigma_{k}^{2}}\right) \right) = \frac{1}{2} \sum_{k=1}^{n} \left(-\log 2\pi - \log \sigma_{k}^{2} - \frac{r_{k}^{2}}{\sigma_{k}^{2}}\right)$$

�만약 σ_k 가 일정(constant uncertainty)하다면, $L(D|\theta_i, M) = c - \frac{1}{2} * X^2$

Chi-square (X²)

MCMC Bayesian Estimation with Metropolis rule

- 1. Define initial parameters, θ_0 .
- 2. Generate and propose a small jump $(\theta_0 + \Delta \theta)$
- 3. Judge the acceptance with metropolis rule
- 4. Generate and propose next small jump $(\theta_{i+1} + \Delta \theta)$ based on the previous step $(\theta_i + \Delta \theta)$.
- 5. Repeat 3rd-4th steps

General case

If $p(\theta_{i+1}|D,M) \ge p(\theta_i|D,M)$, accept the jump

If $p(\theta_{i+1}|D,M) < p(\theta_i|D,M)$, accept the jump with $p = \frac{p(\theta_{i+1}|D,M)}{p(\theta_i|D,M)}$

Ignoring priors

If $L(\theta_{i+1}|D,M) \ge L(\theta_i|D,M)$, accept the jump

If $L(\theta_{i+1}|D,M) < L(\theta_i|D,M)$, accept the jump with $p = \frac{L(\theta_{i+1}|D,M)}{L(\theta_i|D,M)}$

Ignoring priors and assuming normal errors

If $X_{i+1}^2 \le X_i^2$, accept the jump

If $X_{i+1}^2 > X_i^2$, accept the jump with $p = \exp\left(-\frac{\Delta X^2}{2}\right)$

oarameter b

works?

• Example: 2-D problem

• $\theta = (a, b)$

parameter a

oarameter b

works?

• Example: 2-D problem

•
$$\theta = (a, b)$$

• 새로운 step을 제안하 기 위해 Normal distribution을 사용.

$$\theta_{i+1} = \theta_i + N(0, \Delta \theta)$$
Jump scale

Judge the acceptance

parameter a

works?

• If θ_1 is accepted, propose the next step (θ_2)

If the proposed step is question rejected, propose another step (θ2')
 Propose the post step

 Propose the next step until it is accepted.

works?

• If θ_1 is accepted, propose the next step (θ_2)

If the proposed step is question rejected, propose another step (θ2')
 Propose the post step

• Propose the next step until it is accepted.

How to the MCMC Bayesian Estimation

oarameter b

works?

Collect posteriors.

 The steps move around near the true values (orbit the solution and never stop at it).

Keep jumping!

How to the MCMC Bayesian Estimation

oarameter b

works?

• Define Burn-in steps

Remove burn-in steps

- Something checks to do
 - 1. Posteriors would be well mixed.
 - 2. The posteriors would converge on the same end point.
- Output: the list of posteriors

How to define the burn-in steps?

- Histogram of each parameter
 - Mean: the best-fit value of the parameter
 - Standard deviation: 1-σ error

- Histogram of each parameter
 - Mean: the best-fit value of the parameter
 - Standard deviation: 1-σ error
- Posterior distribution
 - The joint probability distribution between two parameters
 - We can check the correlation between the parameters

Test problem 1.

Linear fitting using the MCMC Bayesian estimation code.

HyeongSikYun/MCMC_linear_fitting: the linear_fitting code using MCMC (github.com)

Test problem 1.

Test problem 2.

 Derive the column density and excitation temperature of molecule from the observed ALMA spectrum using the rotational diagram model.

HyeongSikYun/MCMC_line_fitting: This is an application of the MCMC linear fitting code to derive the gas column density and excitation temperature from the observed molecular line spectra. (github.com)

Test problem 2.

-25000 • Derive the column demolecule from the column description of the column description description of the column description rotational diagram n = 100000 -125000HyeongSikYun/MCM(-150000 MCMC linear fitting c -1750001000 1250 1500 1750 500 750 excitation tempera Steps Line width $(km s^{-1})$

10

15

20

Tex (K)

25

30

Test problem 2.

- Try to fit the observed ALMA spectrum
- Data: Methanol line spectrum toward V883 Ori

Did not converge

 Finally I found a end point (guess)

- Finally I found a end point (guess)
- The excitation temperature is too high.
- The expected thermal width exceeds the fitted line width.

❖Not the solution.

Advanced application

- 구하려는 parameter 사이에 correlation이 없는 것이 가장 좋다.
- 하지만 parameter 사이에 correlation이 있는 경우가 있고, 이 경우 MCMC가 진행해 나가기 힘들다.
- 이를 고려한 더 Fancy한 algorithm이 있다.
- ❖Ex) Gaussian process likelihood

An Astronomer's Introduction to Gaussian Processes

Speaker Deck

 S_0 [Jy]

Advanced application

• 관측 noise가 Normal white noise로 설명되지 않을 수 있다. 경우에 따라 원하는 likelihood function을 사용해야 한다.

• Metropolis rule이 빠르고 정확하게 작동하지 못하는 경우도 있다.

- 다양한 방법들을 사용
 - 1. Metropolis-Hasting rule
 - 2. Simulated Annealing
 - 3. Parallel tempering
 - 4. Affine-invariant sampling

References

- MCMC class in Sagan Summer Workshop 2016
 A Beginner's Guide to Monte Carlo Markov Chain MCMC Analysis 2016 - YouTube
- Youtube channel (공돌이의 수학정리노트)

 Markov Chain Monte Carlo(1): Sampling편 YouTube

 Markov Chain Monte Carlo(2): Bayesian Estimation YouTube

 베이즈 정리의 의미 YouTube

 최대우도법(Maximum Likelihood Estimation) 소개 YouTube
- MCMC 내용 & 예제

 <u>Markov Chain Monte Carlo 공돌이의 수학정리노트</u>
 (angeloyeo.github.io)