Unidade 5 – Testes para k amostras independentes

Para o caso de populações independentes, emprega-se um teste estatístico não-paramétrico devidamente adequado aos dados a serem analisados, não sendo necessário que as amostras tenham o mesmo tamanho.

Teste de Kruskal-Wallis

O teste de Kruskal-Wallis nos permite verificar a hipótese nula $^{\rm H_{\circ}}$, de que k os tratamentos são iguais. Este teste é uma versão não-paramétrica comparável a uma ANOVA com classificação simples.

Hipóteses:

 $^{\rm H}{}_{\rm o}$: os tratamentos não diferem entre si;

 H_1 : pelo menos dois tratamentos diferem entre si.

Procedimento:

- A) dispor, em postos, as observações de todos os k tratamentos, atribuindo-lhes postos de 1 a n, em ordem crescente. Havendo valores iguais, calcular a média dos postos;
- B) determinar o valor de $R_{\rm j}$ (soma de postos) para cada um dos k tratamentos;
- C) calcular a estatística H:

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(N+1)$$

Em que: N = número total de dados;

n_j = número de observações por amostra;

 R_i = soma dos postos atribuídos às observações do tratamento j;

D) O método para determinar a significância do valor observado de H depende do tamanho de k e do tamanho dos grupos:

D.1) se k = 3 e n1, n2, n3 \leq 5, pode-se utilizar uma tabela específica para determinar a probabilidade associada, sob $^{H_{\circ}}$. Se $H \geq H_{tab}$, rejeita-se $^{H_{\circ}}$.

D.2) em outros casos, a significância de um valor tão grande quanto o valor observado de H, pode ser determinada mediante a Tabela do Quiquadrado, com com v = k-1 graus de liberdade.

Observe que ao rejeitar H_0 , sabemos somente que existe diferença. Não sabemos entre quais tratamentos. Ao rejeitarmos a hipótese nula necessitamos então proceder às comparações múltiplas.

Comparações múltiplas para o teste de Kruskal-Wallis

Quando rejeita-se ^H_o, admite-se que, pelo menos dois tratamentos diferem entre si. Neste caso, as comparações múltiplas localizam, quando existem, as diferenças significativas entre pares de tratamentos.

Os processos não-paramétricos empregados nas comparações múltiplas quase sempre são menos eficientes do que os seus concorrentes no campo paramétrico.

1) Caso de pequenas amostras

Para cada par i e j de tratamentos, determina-se a diferença:

$$|Ri - Rj|$$
, para $i = 1, 2, ..., k-1$ e $j = i+1, ..., k$.

Onde: R_i e R_j representam as somas das ordens atribuídas aos tratamentos i e j respectivamente, na classificação conjunta das N observações, referentes aos k tratamentos. A diferença mínima significativa (d.m.s.) a um nível de erro experimental α , segundo a qual se admite $t_i \neq t_j$ é:

a) d. m. s. = Δ , para $n_1=n_2=...=n_k$ (mesmo n). O valor de Δ encontrase na tabela 15. Se $|R_i-R_j|\geq \Delta$ então $t_i\neq t_j$.

$$d.m.s. = \sqrt{\frac{N(N+1)}{12}(\frac{1}{n_i} + \frac{1}{n_j})h}$$
, para o caso de diferentes números de repetições entre os k tratamentos.

Onde: h é o limite dado pela tabela (Tabua O) do teste de Kruskal-Wallis;

e n_i e n_j são os números de repetições dos tratamentos i e j, respectivamente.

Se
$$\left| \overline{R}_i - \overline{R}_j \right| \ge d.m.s$$
, então $t_i \ne t$.

Em que

$$\overline{R}_{i} = \frac{R_{i}}{n_{i}}$$
 $e \qquad \overline{R}_{j} = \frac{R_{j}}{n_{j}}$

2) Caso de grandes amostras

Determinam-se as diferenças $\left| \overline{R}_i - \overline{R}_j \right|$ e, a um nível α , as diferenças mínimas significativas segundo as quais ti \neq tj são:

a) d.m.s. =
$$Q\sqrt{\frac{k(kn+1)}{12}}$$
 = $Q\sqrt{\frac{k(N+1)}{12}}$, para $n_1=n_2=...=n_k$. Os valores de Q encontram-se em uma tabela específica.

 $\text{d.m.s.} = z_{\alpha/\,[k(k-1)]} \sqrt{\frac{N(N+1)}{12}(\frac{1}{n_{_{i}}} + \frac{1}{n_{_{j}}})}$, no caso de tratamentos não igualmente repetidos.

Onde: $z_{\alpha/[k(k-1)]}$ é um limite superior da distribuição normal.

Exemplo do teste de Kruskal-Wallis

Em uma pesquisa sobre qualidade de vinho, foram provados três tipos, por quatro degustadores. Cada degustador provou doze amostras (quatro de cada tipo) e atribuiu a cada uma delas uma nota de zero a dez. As médias das notas atribuídas pelos quatro degustadores a cada uma das amostras estão na tabela abaixo. Verificar se há preferência dos degustadores por algum dos tipos de vinho, ao nível de 5%.

Tipo 1	Tipo 2	Tipo 3
5,0	8,3	9,2
5,0 6,7	9,3	9,2 8,7
7,0	8,3 9,3 8,6	7,3
6,8	9,0	8,2

Resolução

Devemos então verificar se há diferença estatisticamente significativa entre os tipos de vinho.

H_o: os tipos não diferem entre si;

H₁: os tipos diferem entre si.

Agora atribuiremos postos às observações

Tipo 1	Posto	Tipo 2	Posto	Tipo 3	Posto
5,0	1	8,3	7	9,2	11
6,7	2	9,3	12	8,7	9
7,0	4	8,6	8	7,3	5
6,8	3	9,0	10	8,2	6
$R_1 = 10$		R_2	$R_2 = 37$ $R_3 =$		= 31

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(N+1)$$

$$H = \frac{12}{12(13)} \left(\frac{10^2}{4} + \frac{37^2}{4} + \frac{31^2}{4} \right) - 3(13) = 7,73$$

Pela Tabela (Tábua O) sabendo que todos os n são iguais a 4 temos:

.008
,011
,049
,054
,097
.104

O valor crítico de H mais próximo a 0,05 é o 5,6923.

Como 7,73 > 5,6923, rejeitamos H_0 . Sabemos então que existem diferenças entre pelo menos dois tipos de vinhos. Procedemos com as comparações múltiplas para identificar essas diferenças.

$$|R_1 - R_2| = |10 - 37| = 27$$

$$|R_1 - R_3| = |10 - 31| = 21$$

$$|R_2 - R_3| = |37 - 31| = 6$$

Pela tabela da dms, temos o valor $\Delta = 24$, como sendo a diferença mínima significativa, ou seja, as diferenças devem ser no mínimo maiores ou iguais a 24 para que sejam considerados tratamentos diferentes.

No exemplo acima, somente $|R_1 - R_2|$ é maior que 24. Sendo assim, há evidências de que o vinho tipo 1 difere-se do vinho tipo 2, com 5% de significância.