ETESP

QUÍMICA GERAL

LIGAÇÕES QUÍMICAS

ELETRONEGATIVIDADE -CARÁTER IÓNICO E

CARÁTER COVALENTE

POLARIDADE

CARGA PARCIAL POSITIVA, E CARGA PARCIAL

NEGATIVA

Polaridade

Como calcular a eletronegatividade? **X

Fui Ontem No Clube, Briguei I Saí Correndo Para o Hospital".

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

22 W DI 24 W DI 25 W DI 26 W D

ELETRONEGATIVIDADE

Ligações químicas

Polaridade

Como calcular a eletronegatividade? X

Ligação covalente APOLAR

Ligação covalente POLAR

ILIGAÇÕES QUÍMICAS

Como calcular a eletronegatividade? **X

"Fui Ontem No Clube, Briguei I Saí Correndo Para o Hospital".

Polaridade

Como calcular a eletronegatividade? **X

caráter iônico aumenta

22 W DI 24 W DI 25 W DI 26 W D

LL

LIGAÇÕES QUÍMICAS

Polaridade das ligações e Eletronegatividade (X)

A diferença de eletronegatividade entre dois átomos é uma medida de polaridade de ligação.

Diferença próxima de zero -> Ligações covalentes apolares [Compartilhamento de elétrons igual ou quase igual]

Diferença próxima a dois → Ligações covalentes polares [Compartilhamento de elétrons desigual]

Diferença próxima a três → Ligações iônicas [transferência de elétrons igual ou quase igual]

Fluor \rightarrow apresenta a maior eletronegatividade $\chi = 4.0$

Césio \rightarrow apresenta a menor eletronegatividade $\chi = 0.7$

LIGAÇÕES QUÍMICAS

Carga Parcial Positiva δ⁺ e Carga Parcial Negativa δ⁻

Ligação covalente pura - ocorre somente quando dois átomos idênticos se ligam

F – F Ligação covalente apolar

Ligação covalente não pura - quando dois átomos diferentes se ligam, o par de elétrons será compartilhado de forma desigual. O resultado é uma ligação covalente polar.

H - F

Ligação covalente polar

Carga Parcial Positiva δ⁺ e Carga Parcial Negativa δ⁻

Ligação covalente Polar \rightarrow par de elétrons mais próximo a um dos átomos. Assim, os átomos adquirem cargas parciais, representadas pela letra grega delta δ .

H – F

O átomo que atrai mais fortemente o par de elétrons adquire uma carga parcial negativa [δ^-] e o outro átomo, adquire uma carga parcial positiva [δ^+].

A ligação H-F é polar, com o H adquirindo uma carga parcial positiva δ^+ e o F uma carga parcial negativa δ^-

2 × 81 A + 23 COUNTEX CENTE) | 14 | Free I ELETRONEGATIVIDADE

caráter iônico aumenta

Diferença de Eletronegatividade (Pauling)	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0	3,1	3,2
% do caráter iônico da Ligação química	51	55	59	63	67	70	74	7,6	79	82	84	86	88	89	91	92
	Ligação IÔNICA															

Na 0.9

O átomo de cloro tem uma eletronegatividade elevada e o sódio, uma eletronegatividade baixa. Logo, os elétrons serão puxados em direção ao cloro e para longe do sódio.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

caráter iônico aumenta

Diferença de Eletronegatividade (Pauling)	0	0,1	0,2	0,3	0,4	0,5	0,5	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,5
% do caráter iônico da Ligação química	0	0,5	0,1	2	4	5	9	12	15	19	22	25	30	34	38	43	47

Ligação covalente APOLAR

Ligação covalente POLAR

X = 4,0 -2,1 = 1,9

Na molécula HF, subtrairemos o valor da eletronegatividade do hidrogênio (2,1) daquele do flúor (4,0). 4,0 - 2,1 = 1,9.

caráter iônico aumenta

Diferença de Eletronegatividade (Pauling)	0	0,1	0,2	0,3	0,4	0,5	0,5	0,7	0,3	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6
% do caráter iônico da Ligação química	0	0,5	0,1	2	4	5	9	12	15	19	22	26	30	34	38	43	47

Ligação covalente APOLAR

Ligação covalente POLAR

X = 3,5 - 3,5 = 0

Se a diferença estiver abaixo de 0,5, a ligação é covalente e apolar. Aqui, os elétrons são compartilhados quase em igual medida. Essas ligações não formam moléculas com grandes diferenças de carga em qualquer extremidade. Ligações polares costumam ser muito difíceis de romper. Por exemplo, a molécula O₂ apresenta esse tipo de ligação. Como as duas moléculas de oxigênio apresentam a mesma eletronegatividade, a diferença entre elas é igual a 0.

LIL

caráter iônico aumenta

Diferença de Eletronegatividade (Pauling)	0	0,1	0,2	0,3	0,4	0,5	0,5	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,5
% do caráter iônico da Ligação química	0	0,5	0,1	2	4	5	9	12	15	19	22	25	30	34	38	43	47

Ligação covalente APOLAR

Ligação covalente POLAR

Se a diferença estiver entre 0,5 e 1,6, a ligação é covalente e polar. Essas ligações detêm mais elétrons em uma extremidade do que na outra. Isso torna a molécula um pouco mais negativa na extremidade com mais elétrons e um pouco mais positiva naquela sem eles. O desequilíbrio entre cargas existente nessas ligações permite às moléculas participar em algumas reações específicas. Um bom exemplo disso é a molécula de H₂O (água). O O é mais eletronegativo do que dois H e, por isso, mantém os elétrons mais próximos e torna toda a molécula parcialmente negativa na extremidade O e parcialmente positiva nas extremidades H.

LI

caráter iônico aumenta

X = 0.9 - 2.8 = 1.9

Se a diferença está entre 1,6 e 2, procure por um metal. Se houver um metal presente na ligação, isso indica que ela é iônica. Se houver outros não metais, a ligação é covalente polar. Metais incluem a maioria dos átomos do lado esquerdo e do centro da tabela periódica.

O exemplo HF anterior entra nesse grupo. Como H e F não são metais, a ligação será covalente polar.

Como calcular a eletronegatividade? $\pmb{\mathcal{X}}$

caráter iônico aumenta

X = 4,0 -2,1 = 1,9

Por exemplo, se estamos observando a molécula HF, subtrairemos o valor da eletronegatividade do hidrogênio (2,1) daquele do flúor (4,0). 4,0-2,1=1,9.

Exercício para fazer no caderno

Calcule a eletronegatividade, indique as cargas parciais, o caráter da ligação e a polaridade para o fluoreto de césio, CsF e para os exercícios da semana passada 5 a,b,c,d