

Data sets

- YouTube
- LastFM
- BibSonomy
- YahooVideo

	small	medium	large
YouTube	2 to 5 tags/obj	6 to 9 tags/obj	10 to 74 tags/obj
LastFM	2 to 6 tags/obj	7 to 16 tags/obj	17 to 152 tags/obj

block #1

partition the data set to to small, medium and large set

All Data

1 2 3 4 5

block #2

- validation set
- test set
- train set

LATRE.py

important functions

findsubsets_list(s):

get_ranked_candidate(rules):

calculate_score(rules, tag):

projects/filters the training data according to the tags in Io, and extracts rules from this projected data

help to extract association rules

exploits co-occurrence of tags by extracting association rules

get candidate tags by given initial tags and min confidence ...

return a list of tupel(pair) of candidate tag and the score of that Example: [(t1, score),(t2, score)]

$$\sum_{X\subseteq I_0} \theta(X\to c), \quad (X\to c)\in \mathcal{R},$$
 confidence rules set

LATRE.py (Example)

		$\mathcal I$	\overline{y}
	$\boldsymbol{d_1}$	unicef children un united nations	Ø
	$\boldsymbol{d_2}$	un climatechange summit environment	Ø
${\cal D}$	d_3	climatechange islands environment	Ø
	d_4	children games education math	Ø
	d_5	education children unicef job	Ø
\overline{T}	t_1	unicef education haiti	?

Table 2. Projected training data for object t_1 .

		\mathcal{I}^t	\mathcal{Y}^t
	$d_1^{t_1}$	unicef	children un united nations
\mathcal{D}_{t_1}	$d_4^{t_1}$	education	children games math
	$d_5^{t_1}$	unicef education	children job

- unicef $\xrightarrow{\theta=1.00}$ children {unicef \land education} $\xrightarrow{\theta=1.00}$ children
- education $\xrightarrow{\theta=0.50}$ math

parameter_cal.py

iff	tive Power	Inverse Feature Frequency (IFF)	$IFF(c) = log \frac{ \mathcal{D} +1}{f_c^{tag}+1},$ where f_c^{tag} is the number of objects in the training set \mathcal{D} that contain c associated as a tag.	(9)
stab	Discrimina	Stability (Stab)	$Stab(c,k_s)=\frac{k_s}{k_s+ k_s-log(f_c^{tag}) },$ where the tuning parameter k_s represents the "ideal frequency" of a term in the data collection.	(10)

2 qid:2 1:1 2:0 3:1 4:0.4 5:0 # 2B

1 gid:2 1:0 2:0 3:1 4:0.1 5:0 # 2C

1 gid:2 1:0 2:0 3:1 4:0.2 5:0 # 2D

2 gid:3 1:0 2:0 3:1 4:0.1 5:1 # 3A

3 gid:3 1:1 2:1 3:0 4:0.3 5:0 # 3B

4 qid:3 1:1 2:0 3:0 4:0.4 5:1 # 3C

1 gid:3 1:0 2:1 3:1 4:0.5 5:0 # 3D

gather all outputs together

