2. (Dr. Ayati: S13 Midterm – Ashwin and Hemanth) Prove that if $A = MM^T$ for $M \in \mathbb{R}^{n \times n}$ is nonsingular, then A is symmetric positive definite.

symmetric

$$A^{\mathsf{T}} = \left(M M^{\mathsf{T}} \right)^{\mathsf{T}}$$
$$= M M^{\mathsf{T}}$$
$$= A$$

positive definite

Since A is nonsingular, $\det A \neq 0$. Then as $\det A = \det M \det M^T$, we also have $\det M$, $\det M^T \neq 0$, i.e., M and M^T are nonsingular.

Let x be a nonzero vector. Then

$$x^{T}Ax = x^{T}MM^{T}x$$

$$= (M^{T}x)^{T}M^{T}x$$

$$= ||M^{T}x||_{2}$$

$$\geq 0 \text{ as } M^{T} \text{ is nonsingular}$$