

APPLICATION NOTE

AN1611-2

Application Note E2 Interface for EE03, EE07 and EE08

Rev. 1.0 11/2016

Relevant for:

This application note applies to EE03, EE07 and EE08

Introduction:

The E2 interface is used for the digital, bidirectional data transmission between a Master and a Slave device

The data transmission takes place via synchronous and serial modes, the Master being responsible for generating the clock signal. The Slave cannot send any data independently. For details, please refer to the document "Specification E2 Interface".

AN1611-2

CONTENT

1	Measured parameters				
		mum E2-Interface clock frequency			
		EE03			
	2.2	EE07	. 3		
	2.3	EE08	. 3		
3	Mea	surement Timing	. 4		
	3.1	EE03	. 4		
	3.2	EE07	. 4		
	3.3	EE08	. 4		
	3.4	Examples:	. 5		
4	Addi	tional information to EE07-02	. 6		
\sim	Contact information 7				

1 Measured parameters

Following parameters and values [hex] can be read via E2 interface:

command	return-value	parameter	format	measuring range	Output resolution
Group	EE03: 0x03 EE07: 0x07 EE08: 0x08				
Sub-Group	EE03: 0x09 EE07: 0x09 EE07-02: 0x29 EE08: 0x00				
Available measured values	EE03: 0x03 EE07: 0x02 or 0x03 EE07-02: 0x02 or 0x03 EE08: 0x03 or 0x21				
Statusbyte:1)	0x0x				
Measured value 1:		Humidity	unsigned integer	0 - 100%rH	1/100%rH
Measured value 2:		Temperature	unsigned integer	233.15 – 353.15°K	1/100°K
Measured value 3:		Not defined			
Measured value 4:		Not defined			

¹⁾ For EE03: Indicates broken (but not short circuit) sensor

2 Maximum E2-Interface clock frequency

The maximum clock frequency depends on the pull-up resistor and the capacity of the connection cable. The pull-up resistor shall be between 10 kOhm and 100 kOhm.

2.1 EE03

2.2 EE07

2.3 EE08

3 Measurement Timing

3.1 EE03

		minimum	typical	maximum
t pwrup			350 ms	600 ms
t meas			250 ms	450 ms
t cfree	@2.5 V & +25 °C		3.4 sec	
	@3.3 V & -40 °C		2.1 sec	
	@3.3 V & +25 °C		3.0 sec	
	@3.3 V & +85 °C		3.8 sec	
	@5.5 V & +25 °C		2.5 sec	

 $[\]overline{(t_{\text{pwrup}} = \text{power up time ; } t_{\text{meas}} = \text{measuring time ; } t_{\text{cfree}} = \text{internal measuring interval})}$

3.2 EE07

	minimum	typical	maximum
t pwrup		270 ms	300 ms
t _{meas}		260 ms	300 ms
t cfree		1.0 sec	

 $\overline{(t_{\text{pwrup}} = \text{power up time} - t_{\text{meas}} = \text{measuring time} - t_{\text{cfree}} = \text{internal measuring interval})}$

3.3 EE08

	minimum	typical	maximum
t pwrup 1)		300 ms	500 ms
t pwrup analog 1)		1 s	2 s
t _{meas}		150 ms	
t cfree		2.0 sec	

 $(t_{\text{pwrup}} = \text{power up time} - t_{\text{meas}} = \text{measuring time} - t_{\text{cfree}} = \text{internal measuring interval})$

1.) Max. 20ms from switching on to +UB stable (90% from final Value)

3.4 Examples:

1.) Free running mode Measurement tofree toffee to

2.) Trigger mode (tc < tcfree)

tc = time cycle (Query interval if the measurement get started with the query of the status byte)

4 Additional information to EE07-02

The EE07-02 is an EE07 version optimized for very low power consumption. It is ideal for battery-powered devices. The diagram shows the EE07-02 max. permissible E2-bus voltage VE2 as function of the supply voltage VDD.

Contact information

E+E ELEKTRONIK GES.M.B.H. Langwiesen 7 4209 Engerwitzdorf Austria

Tel.: +43 (7235) 605-0 Fax: +43 (7235) 605-8

E-Mail: info@epluse.com
Homepage: www.epluse.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. E+E Elektronik assumes no responsibility for errors and omissions, and shall not accept responsibility for any consequences resulting from the use of information included herein. Additionally, E+E Elektronik assumes no responsibility for the functioning of features or parameters not described. E+E Elektronik reserves the right to make changes without further notice. E+E Elektronik makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does E+E Elektronik assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including consequential or incidental damages without limitation. E+E Elektronik products are not designed, intended, or authorised for use in applications intended to support or sustain life, or for any other application in which the failure of the E+E Elektronik product could create a situation where personal injury or death may occur. Should the buyer purchase or use E+E Elektronik products for any such unintended or unauthorised application, the buyer shall indemnify and hold E+E Elektronik harmless against all claims and damages.