Advanced Analysis in TEM

05/22/2020

Week 5

(S)TEM image Simulations Part III

(S)TEM Simulation of Thick Specimens Implementation of Multislice method (concepts)

Theory of Calculation of Thick Images

e⁻ interacts strongly with the specimen and can scatter more than once as it passes through specimens (dynamical)

Multislice incident electrons incident electrons incident electrons thick specimen slices transmit and propagate transmit propagate transmit $z+\Delta z$

(x,y)

Multislice Method: Steps

Slicing the Specimen

Multislice Method: Steps

Probing HOLZ

HOLZ will be reproduced if slice thickness matches the natural sample periodicity

Projected potential

$$v_{\Delta z}(x,y) = \int_{z}^{z+\Delta z} V(x,y,z) dz \sim \int_{-\infty}^{+\infty} V(x,y,z) dz = v_{z}(x,y).$$

Interfaces and Defects

Multislice Implementation

- Step 1 Divide the specimen into thin slices.
- Step 2 Calculate the projected atomic potential $v_{zn}(\mathbf{x})$ [(5.19) or (5.21)] for each slice and symmetrically bandwidth limit them.
- Step 3 Calculate the transmission function $t_n(\mathbf{x}) = \exp[i\sigma v_{zn}(\mathbf{x})]$ (5.25) for each slice and symmetrically bandwidth limit each to 2/3 of it maximum to prevent aliasing.
- Step 4 Initialize the incident wave function $\psi_0(x, y) = 1$.
- Step 5 Recursively transmit and propagate the wave function through each slice $\psi_{n+1}(x,y) = p_n(x,y,\Delta z_n) \otimes [t_n(x,y)\psi_n(x,y)]$ using FFT's as in (6.92). Repeat until the wave function is all the way through the specimen
- Step 6 Fourier transform the wave function at the exit surface of the specimen $\Psi_n(k_x, k_y) = \text{FT}[\psi_n(x, y)].$
- Step 7 Multiply the transmitted wave function $\Psi_n(k_x, k_y)$ by the transfer function of the objective lens, $H_0(k)$ (5.27) to get the image wave function in the back focal plane $\Psi_i(\mathbf{k}) = H_0(k)\Psi_n(\mathbf{k})$.
- Step 8 Inverse Fourier transform the image wave function $\psi_i(\mathbf{x}) =$ $FT^{-1}[\Psi_i(\mathbf{k})].$
- Step 9 Calculate the square modulus of the image wave function (in real space) to get the final image intensity $g(\mathbf{x}) = |\psi_i(\mathbf{x})|^2 =$ $|\psi_n(\mathbf{x}) \otimes h_o(\mathbf{x})|^2$.

Acta Cryst. (2016). A72, 1-27 https://doi.org/10.1107/S205 327331501757X

