

Fundamentals of Optimization

Exercise 3 – Solutions

Remarks

- All questions that are available in the STACK quiz are duly marked. Please solve those using STACK.
- We have added marks for each question. Please note that those are purely for illustrative purposes. The exercise set will not be marked.
- We can derive the inverse of a nonsingular matrix $A \in \mathbb{R}^{2\times 2}$ in closed form:

$$A^{-1} \,=\, \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \,=\, \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \,.$$

STACK Problems

1 Basic Solutions of Polyhedra in Standard Form (2 marks)

(1.1) STACK question

By using the enumeration algorithm presented in Section 13.2.5 of the lecture notes, determine the set of all basic solutions and basic feasible solutions of the following polyhedron: $\mathcal{P} = \{x \in \mathbb{R}^4 : x_1 + 2x_2 - x_3 + 4x_4 = 10; 2x_1 + 3x_2 - 2x_3 - 2x_4 = 16; x \geq \mathbf{0}\}$. For each basic solution and basic feasible solution, determine whether it is degenerate or nondegenerate. You can assume that the coefficient matrix A has full row rank.

[1 mark]

Solution

We have n=4 and m=2. Since A has full row rank, we have |B|=m=2. Moreover,

$$A \ = \ \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & -2 & -2 \end{bmatrix}, \quad b \ = \ \begin{bmatrix} 10 \\ 16 \end{bmatrix} \ .$$

To solve this question, we consider all possible subsets $B \subset \{1, 2, 3, 4\}$ such that |B| = 2, and check whether the conditions for a basic (feasible) solution hold.

• $B = \{1, 2\}$: The columns A^1 and A^2 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_1 = 2$ and $\hat{x}_2 = 4$, and the nonbasic variables are $\hat{x}_3 = 0$ and $\hat{x}_4 = 0$. Therefore, $\hat{x} = [2, 4, 0, 0]^T$ is a basic feasible solution as $\hat{x} \geq \mathbf{0}$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

• $B = \{1, 3\}$: The columns A^1 and A^3 are linearly dependent since $A^1 + A^3 = \mathbf{0} \in \mathbb{R}^2$. Therefore, this choice does not give rise to a basic solution.

• $B = \{1, 4\}$: The columns A^1 and A^4 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 1 & 4 \\ 2 & -2 \end{bmatrix}^{-1} = \frac{1}{10} \begin{bmatrix} 2 & 4 \\ 2 & -1 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 42/5 \\ 2/5 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_1 = 42/5$ and $\hat{x}_4 = 2/5$, and the nonbasic variables are $\hat{x}_2 = 0$ and $\hat{x}_3 = 0$. Therefore, $\hat{x} = [42/5, 0, 0, 2/5]^T$ is a basic feasible solution as $\hat{x} \ge \mathbf{0}$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

• $B = \{2,3\}$: The columns A^2 and A^3 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_2 = 4$ and $\hat{x}_3 = -2$, and the nonbasic variables are $\hat{x}_1 = 0$ and $\hat{x}_4 = 0$. Therefore, $\hat{x} = [0, 4, -2, 0]^T$ is a basic solution but not feasible since $\hat{x} \geq 0$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

• $B = \{2, 4\}$: The columns A^2 and A^4 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}^{-1} = \frac{1}{16} \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 21/4 \\ -1/8 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_2 = 21/4$ and $\hat{x}_4 = -1/8$, and the nonbasic variables are $\hat{x}_1 = 0$ and $\hat{x}_3 = 0$. Therefore, $\hat{x} = [0, 21/4, 0, -1/8]^T$ is a basic solution but not feasible since $\hat{x} \not\geq \mathbf{0}$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

• $B = \{3, 4\}$: The columns A^3 and A^4 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} -1 & 4 \\ -2 & -2 \end{bmatrix}^{-1} = \frac{1}{10} \begin{bmatrix} -2 & -4 \\ 2 & -1 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} -42/5 \\ 2/5 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_3 = -42/5$ and $\hat{x}_4 = 2/5$, and the nonbasic variables are $\hat{x}_1 = 0$ and $\hat{x}_2 = 0$. Therefore, $\hat{x} = [0, 0, -42/5, 2/5]^T$ is a basic solution but not feasible since $\hat{x} \not\geq \mathbf{0}$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

Therefore, \mathcal{P} has two basic feasible solutions (i.e., vertices) and three basic solutions that are not feasible, all of which are nondegenerate.

(1.2) STACK question

By using the enumeration algorithm presented in Section 13.2.5 of the lecture notes, determine the set of all basic solutions and basic feasible solutions of the following polyhedron: $\mathcal{P} = \{x \in \mathbb{R}^3 : 3x_1 + 2x_2 + 4x_3 = 4; -x_1 + x_2 - 2x_3 = 2; x \geq \mathbf{0}\}$. For each basic solution and basic feasible solution, determine whether it is degenerate or nondegenerate. You can assume that the coefficient matrix A has full row rank.

[1 mark]

Solution

We have n=3 and m=2. Since A has full row rank, we have |B|=m=2. Moreover,

$$A = \begin{bmatrix} 3 & 2 & 4 \\ -1 & 1 & -2 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

To solve this question, we consider all possible subsets $B \subset \{1, 2, 3\}$ such that |B| = 2 and check whether the conditions for a basic (feasible) solution hold.

• $B = \{1, 2\}$: The columns A^1 and A^2 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_1 = 0$ and $\hat{x}_2 = 2$, and the only nonbasic variable is $\hat{x}_3 = 0$. Therefore, $\hat{x} = [0, 2, 0]^T$ is a basic feasible solution as $\hat{x} \geq \mathbf{0}$. Note that \hat{x} is degenerate since there is at least one basic variable that is equal to zero (i.e., $\hat{B} \subset B$ or $1 = |\hat{B}| < |B| = 2$).

• $B = \{1, 3\}$: The columns A^1 and A^3 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 4 \\ -1 & -3 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_1 = 8$ and $\hat{x}_3 = -5$, and the only nonbasic variable is $\hat{x}_2 = 0$. Therefore, $\hat{x} = [8, 0, -5]^T$ is a basic solution but not feasible since $\hat{x} \not\geq \mathbf{0}$. Note that \hat{x} is nondegenerate since both basic variables are different from zero (i.e., $\hat{B} = B$).

• $B = \{2,3\}$: The columns A^2 and A^3 are linearly independent and we get

$$(A_B)^{-1} = \begin{bmatrix} 2 & 4 \\ 1 & -2 \end{bmatrix}^{-1} = \frac{1}{8} \begin{bmatrix} 2 & 4 \\ 1 & -2 \end{bmatrix}$$
 and $\hat{x}_B = (A_B)^{-1}b = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Hence, the basic variables are $\hat{x}_2 = 2$ and $\hat{x}_3 = 0$, and the only nonbasic variable is $\hat{x}_1 = 0$. Therefore, $\hat{x} = [0, 2, 0]^T$ is a basic feasible solution as $\hat{x} \geq \mathbf{0}$. Note that \hat{x} is degenerate since there is at least one basic variable that is equal to zero (i.e., $\hat{B} \subset B$ or $1 = |\hat{B}| < |B| = 2$). Note that this is the same basic feasible solution as the one given by $B = \{1, 2\}$.

It follows that \mathcal{P} has one degenerate basic feasible solution (i.e., vertex) and one nondegenerate basic solution that is not feasible.

2 Optimality Conditions and Degeneracy (3 marks)

(2.1) STACK question

Consider the following linear program in standard form

$$\min\{-x_1 - 4x_2 - x_3 + 2x_4 : x_1 + 4x_2 + x_3 = 8; x_1 + 2x_2 + x_4 = 4; x \ge \mathbf{0}\}\$$

and the vertices

- (a) $\hat{x} = [4, 0, 4, 0]^T$.
- (b) $\hat{x} = [0, 2, 0, 0]^T$,
- (c) $\hat{x} = [0, 0, 8, 4]^T$.

You can assume that the coefficient matrix A has full row rank. For each vertex, decide whether the vertex is optimal or not, and whether it is degenerate or not.

[3 marks]

Write down a valid choice for the index set B, the reduced costs \bar{c}_j , $j \in \{1, ..., n\}$, for that basis, and a "candidate" improving direction $d \in \mathbb{R}^n$ if one exists. For the latter, if $\bar{c} \not\geq \mathbf{0}$, use $d_{j^*} = 1$ and $d_j = 0$, $j \in N \setminus \{j^*\}$ to derive the direction, where $j^* \in N$ is the index with the smallest reduced cost \bar{c}_j . Verify whether the candidate improving direction d is indeed an improving feasible direction at that vertex. If $\bar{c} \geq \mathbf{0}$, then enter $d = \mathbf{0}$.

If the vertex is degenerate, write down all possible choices of the indices for the index set B, together with the corresponding reduced costs \bar{c} and candidate improving directions.

Solution

First observe that n=4 and m=2. Since A has full row rank, |B|=2. Moreover,

$$A = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 8 \\ 4 \end{bmatrix}, \quad c = [-1, -4, -1, 2]^T.$$

(a) We have $\hat{x}_1 > 0$ and $\hat{x}_3 > 0$ and, hence, $\hat{B} = \{1, 3\}$. As $|\hat{B}| = m = 2$, \hat{x} is nondegenerate and we obtain $B = \hat{B}$ and $N = \{2, 4\}$. Furthermore, we obtain

$$(A_B)^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

and

$$\bar{c}_2 = c_2 - c_B^T (A_B)^{-1} A^2 = -4 - [-1, -1] \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 0$$

$$\bar{c}_4 = c_4 - c_B^T (A_B)^{-1} A^4 = 2 - [-1, -1] \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2$$

Since $\bar{c} \geq \mathbf{0}$, we conclude that \hat{x} is an optimal nondegenerate vertex by Corollary 15.4 and $\hat{d} = \mathbf{0}$.

- (b) We only have $\hat{x}_2 > 0$ and, hence, $\hat{B} = \{2\}$. As $|\hat{B}| = 1 < m = 2$, \hat{x} is a degenerate vertex. There are now three possibilities to extend \hat{B} to a basis: $B = \{1, 2\}$, $B = \{2, 3\}$, and $B = \{2, 4\}$.
 - $B = \{1, 2\}$ and $N = \{3, 4\}$: We obtain

$$(A_B)^{-1} = \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} -2 & 4 \\ 1 & -1 \end{bmatrix}$$

and

$$\bar{c}_3 = c_3 - c_B^T (A_B)^{-1} A^3 = -1 - [-1, -4] \begin{bmatrix} -1 & 2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

 $\bar{c}_4 = c_4 - c_B^T (A_B)^{-1} A^4 = 2 - [-1, -4] \begin{bmatrix} -1 & 2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2$

Since $\bar{c} \geq \mathbf{0}$, we conclude that \hat{x} is an optimal vertex by Corollary 15.4 and $d = \mathbf{0}$.

• $B = \{2, 3\}$ and $N = \{1, 4\}$: We obtain

$$(A_B)^{-1} = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1/2 \\ 1 & -2 \end{bmatrix}$$

and

$$\bar{c}_1 = c_1 - c_B^T (A_B)^{-1} A^1 = -1 - [-4, -1] \begin{bmatrix} 0 & 1/2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0$$

$$\bar{c}_4 = c_4 - c_B^T (A_B)^{-1} A^4 = 2 - [-4, -1] \begin{bmatrix} 0 & 1/2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2$$

Since $\bar{c} \geq \mathbf{0}$, we conclude that \hat{x} is an optimal vertex by Corollary 15.4 and $d = \mathbf{0}$.

• $B = \{2, 4\}$ and $N = \{1, 3\}$: We obtain

$$(A_B)^{-1} = \begin{bmatrix} 4 & 0 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/4 & 0 \\ -1/2 & 1 \end{bmatrix}$$

and

$$\bar{c}_1 = c_1 - c_B^T (A_B)^{-1} A^1 = -1 - [-4, 2] \begin{bmatrix} 1/4 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -1$$
 $\bar{c}_3 = c_3 - c_B^T (A_B)^{-1} A^3 = -1 - [-4, 2] \begin{bmatrix} 1/4 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$

Since $\bar{c} \not\geq \mathbf{0}$ and \hat{x} is a degenerate vertex, we cannot infer any information about the optimality of \hat{x} . The candidate improving direction is obtained by setting $d_1 = 1$ and $d_3 = 0$, and

$$d_B = -(A_B)^{-1} A_N d_N = -\begin{bmatrix} 1/4 & 0 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/4 \\ -1/2 \end{bmatrix}$$

Therefore,

$$d \, = \, [1, -1/4, 0, -1/2]^T \, .$$

Note that d is an improving direction since $c^T d = [-1, -4, -1, 2]^T [1, -1/4, 0, -1/2] = -1 = \bar{c}_1 < 0$. Let us check if d is indeed a feasible direction at \hat{x} . Note that $A(\hat{x} + \lambda d) = b$ for any $\lambda \in \mathbb{R}$ since $Ad = \mathbf{0}$. Consider $\hat{x} + \lambda d = [0, 2, 0, 0]^T + \lambda [1, -1/4, 0, -1/2]^T = [\lambda, 2 - (1/4)\lambda, 0, (-1/2)\lambda]^T$. Note that there does not exist a real number $\lambda^* > 0$ such that $\hat{x} + \lambda d \geq \mathbf{0}$ if $\lambda \in [0, \lambda^*]$ since the fourth component becomes negative whenever $\lambda > 0$. Therefore, d is not a feasible direction at \hat{x} . Note that we have $d \in \mathcal{D} \setminus \hat{\mathcal{D}}$.

(c) We have $\hat{x}_3 > 0$ and $\hat{x}_4 > 0$ and, hence, $\hat{B} = \{3, 4\}$. As $|\hat{B}| = m = 2$, \hat{x} is nondegenerate and we obtain $B = \hat{B}$ and $N = \{1, 2\}$. Furthermore, we obtain

$$(A_B)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$\bar{c}_1 = c_1 - c_B^T (A_B)^{-1} A^1 = -1 - [-1, 2] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -2$$

$$\bar{c}_2 = c_2 - c_B^T (A_B)^{-1} A^2 = -4 - [-1, 2] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = -4$$

Since $\bar{c} \geq \mathbf{0}$ and \hat{x} is a nondegenerate vertex, we can conclude that \hat{x} is not optimal by Proposition 17.1. The candidate improving direction is obtained by setting $d_1 = 0$ and $d_2 = 1$, and

$$d_B = -(A_B)^{-1} A_N d_N = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

Therefore,

$$d \ = \ [0,1,-4,-2]^T \, .$$

Note that d is an improving direction since $c^T d = [-1, -4, -1, 2]^T [0, 1, -4, -2] = -4 = \bar{c}_2 < 0$. Let us check if d is indeed a feasible direction at \hat{x} . Note that $A(\hat{x} + \lambda d) = b$ for any $\lambda \in \mathbb{R}$ since $Ad = \mathbf{0}$. Consider $\hat{x} + \lambda d = [0, 0, 8, 4]^T + \lambda [0, 1, -4, -2]^T = [0, \lambda, 8 - 4\lambda, 4 - 2\lambda]^T$. Note that letting $\lambda^* = 2 > 0$, we obtain $\hat{x} + \lambda d \geq \mathbf{0}$ if $\lambda \in [0, \lambda^*]$. Therefore, d is a feasible direction at \hat{x} . Note that we have $d \in \hat{\mathcal{D}}$ since $\mathcal{D} = \hat{\mathcal{D}}$ for a nondegenerate vertex by Section 17.4.1 in the lecture notes.

As illustrated by this example, a linear programming problem may have multiple vertices that are optimal (i.e., (a) and (b)) such that one of them is nondegenerate and another one is degenerate.

Open Ended Problems

3 Feasible Directions and Optimality Conditions (2.5 marks)

Consider the following linear programming problem (P) in standard form:

(P)
$$\min\{c^T x : Ax = b, \quad x \ge \mathbf{0}\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.

Let $\bar{x} \in \mathbb{R}^n$ be an optimal solution of (P) such that \bar{x} is not a vertex.

(3.1) Prove that there exists a feasible direction $\bar{d} \in \mathbb{R}^n$ at \bar{x} such that $\bar{d} \neq \mathbf{0}$ and $c^T \bar{d} = 0$.

[1.5 marks]

Solution

Note that (P) is a linear programming problem (P) in standard form. By the hypothesis, the optimal value is finite since $\bar{x} \in \mathbb{R}^n$ is an optimal solution (i.e., $z^* = c^T \bar{x}$). Then, by the Fundamental Theorem of Linear Programming, there exists a basic feasible solution (i.e., a vertex), say x^* , which is also an optimal solution and we know that $x^* - \bar{x} \neq 0$ since \bar{x} is not a vertex, and that $z^* = c^T \bar{x} = c^T x^*$. Let $\bar{d} = x^* - \bar{x}$. Then, since \bar{x} and $x^* = \bar{x} + \bar{d}$ are feasible solutions, \bar{d} is clearly a feasible direction at \bar{x} (using $\lambda^* = 1$). Now, observe that $\bar{d} = x^* - \bar{x} \neq 0$ and $c^T \bar{d} = c^T (x^* - \bar{x}) = c^T x^* - c^T \bar{x} = 0$, which proves the claim.

(3.2) Prove that (P) has an infinite number of optimal solutions.

[1 mark]

Solution

From (3.1), we know that there exists a vertex x^* which is also an optimal solution and $x^* \neq \bar{x}$ since \bar{x} is not a vertex. Since, the feasible region of a linear programming problem is always a polyhedron, and every polyhedron is a convex set by Remark 6.2, $(\lambda x^* + (1 - \lambda)\bar{x})$ is also a feasible solution of (P) for all $\lambda \in [0, 1]$. Now we want to show that $(\lambda x^* + (1 - \lambda)\bar{x})$ is an optimal solutions for each $\lambda \in [0, 1]$. By the following equality,

$$c^{T}(\lambda x^{*} + (1 - \lambda)\bar{x}) = \lambda c^{T}x^{*} + (1 - \lambda)c^{T}\bar{x} = \lambda z^{*} + (1 - \lambda)z^{*} = z^{*}.$$

Clearly $\lambda x^* + (1 - \lambda)\bar{x}$ is also an optimal solution for any $\lambda \in [0, 1]$. Since we have infinitely many real numbers in any interval $[a, b] \subseteq \mathbb{R}$ such that b > a, we conclude that we can find infinitely many λ values such that $\lambda \in [0, 1]$. Therefore, we have infinitely many optimal solutions.

4 Reduced Costs and Optimality Conditions (2.5 marks)

Consider the following linear programming problem in standard form:

(P)
$$\min\{c^T x : Ax = b, x \geq \mathbf{0}\},\$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$. Assume that A has full row rank. Let $x^* \in \mathbb{R}^n$ be a vertex with the corresponding index sets B and N.

(4.1) Suppose that $\bar{x} \in \mathbb{R}^n$ is a feasible solution of (P) such that $\bar{x} \neq x^*$. Prove that there exists an index $k \in N$ such that $\bar{x}_k > 0$.

[1 mark]

Solution

Let $x^* \in \mathbb{R}^n$ be a vertex of (P) with the corresponding index sets B and N. We have $x_B^* = (A_B)^{-1}b \geq \mathbf{0}$ and $x_N^* = \mathbf{0} \in \mathbb{R}^{n-m}$ by Proposition 13.2. Let $\bar{x} \in \mathbb{R}^n$ be a feasible solution of (P) such that $\bar{x} \neq x^*$. Suppose, for a contradiction, that the conclusion is false. Then, we have $\bar{x}_j = x_j^* = 0$ for each $j \in N$. Therefore using the same index sets B and N for the vertex x^* , we conclude that $\bar{x}_N = \mathbf{0} \in \mathbb{R}^{n-m}$. Since $A\bar{x} = A_B\bar{x}_B + A_N\bar{x}_N = A_B\bar{x}_B = b$, we obtain $\bar{x}_B = (A_B)^{-1}b$, which implies that $\bar{x}_B = x_B^*$. Since $\bar{x}_B = x_B^*$ and $\bar{x}_N = x_N^*$, we then conclude that $x^* = \bar{x}$, which is a contradiction. Therefore, we conclude that there exists an index $k \in N$ such that $\bar{x}_k > 0$.

(4.2) Consider the vertex x^* again. Suppose that reduced costs of all nonbasic variables are strictly positive, i.e.,

$$\bar{c}_j = c_j - c_B^T (A_B)^{-1} A^j > 0, \quad j \in N.$$

Prove, using (4.1), that x^* is the unique optimal solution.

[1.5 marks]

Solution

Let $x^* \in \mathbb{R}^n$ be an optimal vertex with the corresponding index sets B and N. Suppose that reduced costs of all nonbasic variables are strictly positive.

Suppose, for a contradiction, that x^* is not the unique optimal solution. Then, there exists a feasible solution $\bar{x} \in \mathbb{R}^n$ such that $\bar{x} \neq x^*$ and \bar{x} is also an optimal solution. In the following, we want to derive a contradiction by considering the vector $d = \bar{x} - x^*$.

By (4.1), there exists an index $k \in N$ such that $\bar{x}_k > 0$ whereas $x_k^* = 0$ since $k \in N$, Therefore, $d_k = \bar{x}_k - x_k^* = \bar{x}_k > 0$.

Note that $Ad = A(\bar{x} - x^*) = b - b = \mathbf{0}$, i.e. $A_B d_B + A_N d_N = \mathbf{0}$, which implies that $d_B = -(A_B)^{-1} A_N d_N$. Since $c^T \bar{x} = c^T x^*$, we obtain

$$0 = c^T d = c_B^T d_B + c_N^T d_N = -c_B^T (A_B)^{-1} A_N d_N + c_N^T d_N = \sum_{j \in N} \bar{c}_j d_j > 0,$$

where the strict inequality follows from $d_j = \bar{x}_j - x_j^* = \bar{x}_j \ge 0$ and $\bar{c}_j > 0$ for each $j \in N$, and the observation that $d_k = \bar{x}_k > 0$ and $\bar{c}_k > 0$. We obtain a contradiction. Therefore, we conclude that x^* is the unique optimal solution.