

Sistemas numéricos e representação de informações

Professora Dra. Luana Batista da Cruz luana.b.cruz@nca.ufma.br

Roteiro

- 01 Introdução
- 02 Conversões de bases (parte 1)
- 03 Conversões de bases (parte 2)

Objetivo

- Compreender as formas de representação das informações nos computadores
- Adquirir noções básicas de conversão de sistemas numéricos

Introdução

Representação das informações

- Os seres humanos conseguem trabalhar com fala, escrita e informações analógicas
 - o Relação de semelhança entre coisas ou fatos distintos

- Os computadores lidam apenas com informações digitais
 - o Dados que não podem assumir valores indefinidos

As posições das memórias do computador armazenam o que chamamos de **bit** que pode contar 0 e 1

- Assim como o ser humano tem a fala e a escrita para representar as informações, o computador tem a sua própria representação, para que possa tratá-las e processá-las
- Para um computador, qualquer informação deve ser codificada com uma linguagem apropriada para seu mundo
- Os computadores "entendem" impulsos elétricos, positivos ou negativos, que são representados por 1 ou 0. A cada impulso damos o nome de **bit** (**BI**nary Digi**T**)
- Por isso, a base mais importante para o computador é a base 2, daí o nome binário

 Qualquer caractere a ser armazenado em um sistema de computador é convertido em um conjunto de bits previamente definido para o referido sistema

Palavra

- É a unidade natural de informação usada por cada tipo de computador em particular
- É uma sequência de bits de tamanho fixo que é processado em conjunto numa máquina

- No dia a dia, estamos tão acostumado com trabalhar com sistema numérico decimal que medidas como kg, metro, km/h tudo é medido na forma que compreendemos no modelo decimal
- Por que é chamado de decimal?

- No dia a dia, estamos tão acostumado com trabalhar com sistema numérico decimal que medidas como kg, metro, km/h tudo é medido na forma que compreendemos no modelo decimal
- Por que é chamado de decimal?
 - o Pela quantidade de algarismo que possui

0	1	2	3	4	5	6	7	8	9

- No dia a dia, estamos tão acostumado com trabalhar com sistema numérico decimal que medidas como kg, metro, km/h tudo é medido na forma que compreendemos no modelo decimal
- Por que é chamado de decimal?
 - o Pela quantidade de algarismo que possui

0	1	2	3	4	5	6	7	8	9

Usar esses algarismos em conjunto, é possível obter infinitos números diferentes

• Então por que usar o sistema binário e não o decimal?

- Então por que usar o sistema binário e não o decimal?
 - Os computadores utilizam aritmética binária porque quanto menor o número de algarismos mais rápido, confiável e eficiente se torna o hardware

• Iremos ver alguns números e como são representados no sistema binário!

- Iremos ver alguns números e como são representados no sistema binário!
- Mas antes vamos REVISAR → sistema decimal

Sistema decimal

- Quando falamos o número 1234 → imaginamos certos números de itens que esse número representa
- Expressão matemática: para formar um número, associa-se um ou mais algarismos, e a posição de cada algarismo terá um peso de uma potência de 10

Sistema binário

- Sistema decimal potência de **10**
 - o (0 9)
- Sistema binário potência de **02**
 - o (0 e 1)

Sistema binário

• Por exemplo, o número binário 11001010 representa 202 no sistema decimal

Sistema binário

• Por exemplo, o número binário **11001010** representa **202** no sistema decimal

$$(1 \times 2^7) + (1 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

$$(1 \times 128) + (1 \times 64) + (0 \times 32) + (0 \times 16) + (1 \times 8) + (0 \times 4) + (1 \times 2) + (0 \times 1) = 202_{10}$$

02

Conversões de bases (parte 1)

Binário x Hexadecimal x Octal x → Binário Decimal → Binário x Octal x Hexadecimal

- Binário → decimal
 - o 1010010011₂

- Binário → decimal
 - o 1010010011₂

$$(1 \times 2^{9}) + (0 \times 2^{8}) + (1 \times 2^{7}) + (0 \times 2^{6}) + (0 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$512 + 0 + 128 + 0 + 0 + 16 + 0 + 0 + 2 + 1 = 659_{10}$$

- Binário → decimal
 - o 1000000111₂
 - o 1101111000₂
 - o 1100011₂
 - 110000011₂

Vamos praticar!

- Binário → decimal
 - o 1000000111₂

$$(1 \times 2^{10}) + (0 \times 2^{9}) + (0 \times 2^{8}) + (0 \times 2^{7}) + (0 \times 2^{6}) + (0 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) +$$

$$1024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 2 + 1 = 103110$$

- Binário → decimal
 - o 11011111000₂

$$(1 \times 2^{9}) + (1 \times 2^{8}) + (0 \times 2^{7}) + (1 \times 2^{6}) + (1 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0})$$

$$512 + 256 + 0 + 64 + 32 + 16 + 8 + 0 + 0 + 0 = 888_{10}$$

- Binário → decimal
 - o 1100011₂

$$(1 \times 2^{6}) + (1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$64 + 32 + 0 + 0 + 0 + 2 + 1 = 99_{10}$$

- Binário → decimal
 - o 110000011₂

$$(1 \times 2^{8}) + (1 \times 2^{7}) + (0 \times 2^{6}) + (0 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$

$$256 + 128 + 0 + 0 + 0 + 0 + 0 + 2 + 1 = 387_{10}$$

- Decimal → binário
 - o Para isso é necessário ir dividindo o número decimal por 2 até chegar a 0
 - o O resultado é o resto obtido em cada divisão do último para o primeiro

- Decimal → binário
 - o **54**

- Decimal → binário
 - o **54**

- Decimal → binário
 - o **54**

- Decimal → binário
 - o **133**
 - o **15**
 - o **248**
 - o **777**

Vamos praticar!

Decimal → binário

o **133**

- Decimal → binário
 - o **15**

- Decimal → binário
 - o **248**

Decimal → binário

Sistema hexadecimal

- Trata-se de um sistema de numeração de base 16, denotado utilizando os algarismos 0-9 e os símbolos de A-F
- Assim como no sistema decimal, a associação dos algarismos representam diferentes números e a posição do algarismos será um múltiplo de potência de 16

0	1	2	3	4	5	6	7	8	9
Α	В	С	D	Е	F				

- Hexadecimal → decimal
 - o F2₁₆

$$(15 \times 16^1) + (2 \times 16^0)$$

- Hexadecimal → decimal
 - o A12C₁₆
 - o D123₁₆
 - o 4A3F₁₆

Vamos praticar!

- Hexadecimal → decimal
 - o A12C₁₆

$$(10 \times 16^3) + (1 \times 16^2) + (2 \times 16^1) + (12 \times 16^0)$$

- Hexadecimal → decimal
 - o D123₁₆

$$(13 \times 16^3) + (1 \times 16^2) + (2 \times 16^1) + (3 \times 16^0)$$

- Hexadecimal → decimal
 - 4A3F₁₆

$$(4 \times 16^3) + (10 \times 16^2) + (3 \times 16^1) + (15 \times 16^0)$$

$$16.384 + 2.560 + 48 + 15 = 19.007$$

- Decimal → hexadecimal
 - o **340**

154₁₆

- Decimal → hexadecimal
 - o 46046

- Decimal → hexadecimal
 - 0 87
 - 0 144
 - o **219**
 - o 462

Vamos praticar!

- Decimal → hexadecimal
 - 0 87

- Decimal → hexadecimal
 - 0 144

- Decimal → hexadecimal
 - o **219**

- Decimal → hexadecimal
 - o 462

Sistema octal

- Trata-se de um sistema de numeração de base 8, denotado utilizando os algarismos 0–7
- Assim como no sistema decimal, a associação dos algarismos representam diferentes números e a posição do algarismos será um múltiplo de potência de 8

- Octal → decimal
 - o 750245₈

$$(7 \times 8^5) + (5 \times 8^4) + (0 \times 8^3) + (2 \times 8^2) + (4 \times 8^1) + (5 \times 8^0)$$

- Octal → decimal
 - o 7256₈
 - o 654₈

Vamos praticar!

- Octal → decimal
 - o 7256₈

$$(7 \times 8^3) + (2 \times 8^2) + (5 \times 8^1) + (6 \times 8^0)$$

$$3.584 + 128 + 40 + 6 =$$
3.758

- Octal → decimal
 - o 654₈

$$(6 \times 8^2) + (5 \times 8^1) + (4 \times 8^0)$$

- Decimal → octal
 - o **127**

- Decimal → octal
 - o 679
 - o **333**

Vamos praticar!

- Decimal → octal
 - o 679

1247₈

- Decimal → octal
 - o **333**

03

Conversões de bases (parte 2)

Binário → Hexadecimal x Octal

Hexadecimal x Octal → Binário

Octal → Hexadecimal

Hexadecimal → Octal

- Binário → hexadecimal
 - Bases binárias e hexadecimais estão relacionadas
 - 2⁴ = 16, para cada 4 algarismos de um número binário tem-se um número em hexadecimal

Binário → hexadecimal

Bases binárias e hexadecimais estão relacionadas

2⁴ = 16, para cada 4 algarismos de um número binário tem-se um número em

hexadecimal

4 algarismos: 16 combinações

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

- Binário → hexadecimal
 - o 10110₂

- Binário → hexadecimal
 - o 10110₂

Binário → hexadecimal

Binário → hexadecimal

o 10110₂

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Binário → hexadecimal

o 10110₂

1

0001 0110

Hexadecimal	Binário
0	0000
	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binário
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Binário → hexadecimal

- Binário → hexadecimal
 - o 101010100₂
 - o 1011001111011110₂

Vamos praticar!

Binário → hexadecimal

o 101010100₂

0001 0101 0100

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Binário → hexadecimal

o 101010100₂

(1)

0001 0101 0100

1 5 4

Hexadecimal	Binário
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
E	1110
F	1111

- Binário

 hexadecimal
 - o 101010100₂

Binário → hexadecimal

1011001111011110₂

1011 0011 1101 1110

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Binário → hexadecimal

o 1011001111011110₂

1011 0011 1101 1110

B 3 D E

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

- Binário

 hexadecimal
 - o 101010100₂

10

1011 0011 $(1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$ $8 + 0 + 2 + 1 = \mathbf{B}$

$$(0 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

$$0+0+2+1=3$$

$$(1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

$$8 + 4 + 0 + 1 = D$$

- Hexadecimal → binário
 - o F2₁₆

Hexadecimal → binário

F 2

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Hexadecimal → binário

- Hexadecimal → binário
 - o 9C4₁₆
 - \circ ABC₁₆

Vamos praticar!

Hexadecimal → binário

 C

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	А	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Hexadecimal → binário

C

Hexadecimal → binário

o ABC₁₆

1

Α

В

C

1010

1011

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Hexadecimal → binário

2

Α

L 2

В

 12
 2

 0
 6
 2

 0
 3
 2

1010

1011

Binário → octal

- Assim como o sistema hexadecimal, o sistema octal tem uma relação com o sistema binário
- 2³ = 8, para cada 3 algarismos de um número binário tem-se um número em octal

Binário → octal

 Assim como o sistema hexadecimal, o sistema octal tem uma relação com o sistema binário

○ **2**³ = **8**, para cada 3 algarismos de um número binário tem-se um número em

octal

3 algarismos: 8 combinações

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Binário → octal

Binário → octal

o 1111111₂

001 111 111

1 7 7

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Binário → octal
 - o 1111111₂

- Binário → octal
 - o 0010₂
 - o 0000001₂

Vamos praticar!

Binário → octal

o 0010₂

000 010

0 2

(1)

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Binário → octal

Binário → octal

o 0000001₂

000 000 001

0 0 1

 \bigcirc

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Binário → octal
 - 0000001

Octal → binário

7 1

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Octal → binário

- Octal → binário
 - o 662₈
 - o 758₈

Vamos praticar!

- Octal → binário

 - 662₈
 7×8₈

Vamos praticar!

Octal → binário

o 662₈

6 6 2

110 110 010

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Octal → binário
 - o 662₈

6 2 0 3 2

- Octal → hexadecimal?
 - Como pode ser feita a conversão?

- Octal → hexadecimal?
 - Como pode ser feita a conversão?
 - Intermediadores: binário ou decimal

- Octal → hexadecimal (binário intermediário)
 - o 455₈
 - Dois passos:
 - 2 formas para converter para binário
 - 2 formas para converter para hexadecimal

• Octal → hexadecimal (binário intermediário)

4 5 5

100 101 101

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Octal → hexadecimal (binário intermediário)

- Octal → hexadecimal (binário intermediário)
 - \circ 455₈ \rightarrow 100101101₂ \rightarrow hexadecimal (?)

Octal → hexadecimal (binário intermediário)

 \circ 455₈ \rightarrow 100101101₂ \rightarrow hexadecimal (?)

(1)

0001 0010 1101

1 2 D

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binário
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	1110
F	1111

- Octal → hexadecimal (binário intermediário)
 - \circ 455₈ \rightarrow 100101101₂ \rightarrow hexadecimal (?)

Octal → hexadecimal (binário intermediário)

$$\circ$$
 455₈ \rightarrow 100101101₂ \rightarrow **12D**₁₆

$$0001 \quad 0010 \quad 1101$$

$$(0 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$0 + 0 + 0 + 1 = 1$$

$$(0 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{1}) + (0 \times 2^{0})$$

$$0 + 0 + 2 + 0 = 2$$

- Octal → hexadecimal (decimal intermediário)
 - o 455₈
 - Dois passos:
 - 1 forma para converter para decimal
 - 1 forma para converter para hexadecimal

- Octal → hexadecimal (decimal intermediário)
 - \circ 455₈ \rightarrow decimal (?)

$$(4 \times 8^2) + (5 \times 8^1) + (5 \times 8^0)$$

$$256 + 40 + 5 =$$
301₁₀

- Octal → hexadecimal (decimal intermediário)
 - \circ 455₈ → 301₁₀ → hexadecimal (?)

• Octal → hexadecimal (decimal intermediário)

$$\circ$$
 455₈ \rightarrow 301₁₀ \rightarrow **12D₁₆**

Conversor online

https://clevert.com.br/t/pt-br/base-convert

Referências

FERNANDEZ, Marcial P.; CORTÉS, Mariela I. I**ntrodução à**Computação. Editora da Universidade Estadual do Ceará –
EdUECE. 3° Edição, 2015

