Case Study 2-Group 4

Frances Hung, Yunran Chen, Keru Wu

Department of Statistical Science, Duke University

01/30/2019

Introduction

- ▶ Data: 2019 Airbnb listings in NYC, 48895 observations.
- ► Goal: Identify discernible and interesting patterns among the listings in NYC.

Data Preprocessing

- Delete id, host_name and last_review.
- ▶ Delete 11 listings with price 0.
- ▶ Missing data: 10052 in reviews_per_month, impute with 0.

EDA-borough

neighbourhood_group

- Bronx
- Brooklyn
 - Manhattan
- Queens
- Staten Island

EDA-price

EDA-Traffic

Model

Multilevel Conditional Autoregressive (CAR) Model

$$Y_{kj}|\mu_{kj} \sim f(y_{kj}|\mu_{kj}, \nu^2), \quad k = \text{neighbourhood} = 1, ..., K$$
 $j = \text{listings} = 1, ..., m_k$

$$g(\mu_{kj}) = x_{kj}^{T} \beta + \psi_{kj}$$
$$\psi_{kj} = \phi_k + \zeta_{kj}$$

Priors

$$\beta \sim N(\mu_{\beta}, \Sigma_{\beta})$$

$$\phi_{k} | \phi_{-k} \sim N\left(\frac{\rho \sum_{l=1}^{K} w_{kl} \phi_{j}}{\rho \sum_{j=1}^{K} w_{kl} + 1 - \rho}, \frac{\tau^{2}}{\rho \sum_{j=1}^{K} w_{kl} + 1 - \rho}\right)$$

- w_{kl} denotes whether neighborhood k and l are adjacent.
- ightharpoonup
 ho denotes spatial dependence.

Model

► Priors (Cont'd)

$$\zeta_{kj} \sim \mathcal{N}(0, \sigma^2)$$
 $\tau^2, \sigma^2 \sim \mathsf{Inv-Gamma}(a, b)$
 $\rho \sim \mathsf{Uniform}(0,1)$

- x_{kj} include room_type, neighbourhood_group, availability_365, $\log(1+\text{reviews_per_month})$, minimum_nights, etc.
- $\psi_{kj} = \phi_k + \zeta_{kj}$ includes both spatial information and individual random effect.

Further process the data

- ▶ No data for exactly 217 neighbourhoods.
- ▶ Relocate neighbourhoods according to formal NYC shapefile data (195 neighbourhoods).
- ▶ 191 neighbourhoods have airbnb listings.
- **Dollar Solution** Obtain adjacency matrix $W = (w_{kl})$

Neighbourhood Effect on log(price)

Discussion

- ► Include last_review: spatial temporal model.
- Nonlinear model: spline regression for x_{kj} .
- ▶ More spatial information: longitude & latitude