Time Series Econometrics

- · Let's illustrate with a special case:
- Suppose
 - $v_{1t} \sim I(1)$
 - $\Delta y_{2t} = u_{2t}$ with u_{2t} white noise (so y_{2t} is difference stationary).
 - $y_{1t} = \gamma y_{2t} + u_{1t}$

$$-\mathbf{u}_{t} = \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}, E(\mathbf{u}_{t}) = \mathbf{0}, E(\mathbf{u}_{t}\mathbf{u}_{t}') = \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}$$

- Then $\Delta y_{1t} = \gamma \Delta y_{2t} + \Delta u_{1t} = \gamma u_{2t} + u_{1t} u_{1,t-1} \sim I(0)$
 - This is a first-order moving average, with u_{2t} stationary.
- In other words, $y_{1t}, y_{2t} \sim I(1)$ but $y_{1t} \gamma y_{2t} \sim I(0)$.
 - $[1 \gamma]'$ is the **cointegrating vector.**

Definition: an (nX1) vector $\mathbf{y_t}$ is said to be cointegrated if each element y_{it} is I(1) but there is a linear combination $\alpha'\mathbf{y_t} \sim I(0)$, where in general α is called the cointegrating vector.

- This is not spurious regression, even though we're regressing random walk on a random walk.
 - In spurious case, there is ${\bf no}$ choice of α that can make the vector stationary.
 - Spurious: $u_{1t} \sim I(1)$
 - Cointegrated: $u_{1t} \sim I(0)$

- In our example, y_{1t} will inherit the random walk that y_{2t} follows, but the cointegrating relationship keeps them close together.
 - They deviate by u_{1t}, which if I(0) will always return to a fixed mean.
 - This is an appealing model of long run market (or ecological or atmospheric) relationships.

Rewrite as a vector system:

$$y_{1t} - \gamma y_{2t} = u_{1t}$$

$$y_{2t} = y_{2t-1} + u_{2t}$$

$$\begin{bmatrix} 1 & -\gamma \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{1t-1} \\ y_{2t-1} \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

• premultiply by
$$\begin{bmatrix} 1 & -\gamma \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix}$$
$$\implies \begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} 0 & \gamma \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{1t-1} \\ y_{2t-1} \end{bmatrix} + \begin{bmatrix} u_{1t} + \gamma u_{2t} \\ u_{2t} \end{bmatrix}$$

• Let
$$\begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix} = \begin{bmatrix} u_{1t} + \gamma u_{2t} \\ u_{2t} \end{bmatrix}$$
, white noise because u 's are white noise.

- $E(\underline{\epsilon}_t) = \mathbf{0}$ and $E(\mathbf{e}_t \mathbf{e}_t') = \begin{bmatrix} \sigma_1^2 + \gamma^2 \sigma_2^2 & \gamma \sigma_2^2 \\ \gamma \sigma_2^2 & \sigma_2^2 \end{bmatrix}$ if t = s, $\mathbf{0}$ otherwise.
- So we could run this vector system in levels.

•
$$\mathbf{y_t} = \Phi \mathbf{y_{t-1}} + \mathbf{e_t}$$
, where $\Phi = \begin{bmatrix} 0 & \gamma \\ 0 & 1 \end{bmatrix}$

- Notice a few things
 - 1. the vector \mathbf{y}_t has a unit root (is nonstationary).

$$|\mathbf{I_2} - \Phi z| = \begin{vmatrix} 1 & -\gamma z \\ 0 & 1 - z \end{vmatrix} = 1 - z = 0 \Rightarrow z = 1$$

we could write the system in rotated hybrid of changes and levels, analogous to rotated Dickey Fuller.

$$\mathbf{y_t} - \mathbf{I_2} \mathbf{y_{t-1}} = (\Phi - \mathbf{I_2}) \mathbf{y_{t-1}} + \mathbf{e_t}$$

$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \end{bmatrix} = \begin{bmatrix} -1 & \gamma \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_{1t-1} \\ y_{2t-1} \end{bmatrix} + \begin{bmatrix} u_{1t} + \gamma u_{2t} \\ u_{2t} \end{bmatrix}$$

$$\Delta \mathbf{y_t} = \rho \mathbf{y_{t-1}} + \mathbf{e_t}$$

- 1. If we should have had a system (VAR) in changes, then $\underline{\rho}$ will be **0**.
- 2. If we should have had a system (VAR) in levels $(y_{1t}, y_{2t}$ were stationary), then ρ is an arbitrary set of coefficients and has full rank.
- 3. If the system is cointegrated, ρ has rank 1 and can be written as an outer product of two vectors, one if which is the cointegrating vector.

$$-\varrho = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & -\gamma \end{bmatrix} = \mathbf{b}\alpha'$$

- Why would we want to write the system this way: $\Delta y_t = \rho y_{t-1} + e_t$?
- Notice we have $\Delta \mathbf{y_t} = \mathbf{b} \alpha' \mathbf{y_{t-1}} + \mathbf{e_t}$, and $\alpha' \mathbf{y_{t-1}} = u_{1,t-1}$
 - So $\Delta \mathbf{v_t} = \mathbf{b} u_{1,t-1} + \mathbf{e_t}$,
 - Today's changes ∆y_t depend on how far y₁ and y₂ deviated from their cointegrating relation last period.
 - Because y_1 and y_2 are random walks, Δy_t should be white noise.
 - Indeed it is, but with a special kind of white noise: u_{1t-1}

- In general: An (nX1) vector yt is said to exhibit h < n cointegrating relations if
 - 1. each element of $\mathbf{y_t} \sim I(1)$
 - 2. there exists an (nXh) matrix $\bf A$ of full rank h such that each element of the (hX1) vector $\bf A'y_t \sim \it I(0)$
 - The rows of A' are called the cointegrating relations or vectors.
- In other words, if n > 2, there might be more than one linear combination which is cointegrated.

- Implications for general case:
 - If we can write yt as a vector system (VAR) then that system will have a unit root:
 - 1. $\mathbf{y_t} = \alpha + \Phi_1 \mathbf{y_{t-1}} + ... + \Phi_p \mathbf{y_{t-p}} + \mathbf{e_t}$
 - 2. $|\mathbf{I_n} \Phi_1 z ... \Phi_p z^p| = 0$ when z = 1

- Implications for general case:
 - If previous slide holds, then we can write it as a rotated regression:
 - 1. $\Delta y_t = \alpha + \rho y_{t-1} + \zeta_1 \Delta y_{t-1} + ... + \zeta_{p-1} \Delta y_{t-p+1} + e_t$

 - 3. $\underline{\rho}$ has rank h < n. As before, $\underline{\rho} = \mathbf{0}$ implies the VAR should be in differences $\Delta \mathbf{y_t}$ and if $\underline{\rho}$ has rank n, the VAR should be in levels $\mathbf{y_t}$
 - the Δy's are stationary, and the y's are nonstationary. The rows of A' take exactly the linear combinations of the levels to not ruin the stationarity of the remaining differences.

- Implications for general case:
 - If previous slide holds, then we can think of $\mathbf{A}'\mathbf{y}_t = \mathbf{z}_t$ as the stationary residual from the cointegrating relations of \mathbf{y}_t which is often called the "error correction term" and write
 - 1. $\Delta y_t = \alpha + Bz_{t-1} + \zeta_1 \Delta y_{t-1} + ... + \zeta_{p-1} \Delta y_{t-p+1} + e_t$
 - Notice that this is just a VAR in changes with an extra term (that would have been in the error if we didn't include it).
 - 3. \mathbf{z}_{t-1} was the degree of deviation from the cointegrating relation last period. \mathbf{B} measures how quickly we return to it.
- Conclusion: with a cointegrated system, we can estimate it as a VAR in levels, or as a VAR in differences with the error correction term.

Estimation and testing of a single cointegrating relation

- Let $\underline{\alpha}' = \begin{bmatrix} 1 & -\alpha_2 & \dots & -\alpha_n \end{bmatrix}$ be the cointegrating vector.
- $\underline{\alpha}'$ **y**_t \sim I(0) for the true α but \sim I(1) for any other α .
- Consider OLS of y_{1t} on y_{2t}, ... y_{n,t}
- $y_{1t} = \alpha_2 y_{2t} + ... + \alpha_n y_{nt} + u_t$
- $\min_{\alpha} \sum (y_{1t} \alpha_2 y_{2t} \dots \alpha_n y_{nt})^2$

Estimation and testing of a single cointegrating relation

- Recall from spurious regression that $\frac{1}{T} \sum u_t^2 \to V$ if u_t stationary, and $\to \infty$ if not.
 - If T is large enough, we will be able to tell the difference from something going to infinity.
- Conclusion: OLS of y_{1t} on remaining y's is a good way to estimate <u>α</u> and find out if it's really cointegrated or not.
- If it's not cointegrated, this will be a spurious regression.
- To tell the difference, take
 - Ho: no cointegration (spurious regression, residuals from OLS regression have a unit root).
 - Notice this is the same null hypothesis as the DF test for stationarity, which we can apply to the residuals (however, testing distribution is different).
 - If they are stationary, reject the null and conclude the series are cointegrated.

Estimation and testing of a single cointegrating relation

- Procedure (for example):
- 1. Estimate by OLS

1.1
$$y_{1t} = \alpha + \gamma_2 y_{2t} + ... + \gamma_n y_{nt} + u_t$$

- 1.1.1 includes a constant to account for any possible drift.
- 1.2 save the residuals \hat{u}_t
- Estimate by OLS

2.1
$$\hat{u}_t = \rho \hat{u}_{t-1} + \zeta_1 \Delta \hat{u}_{t-1} + ... + \zeta_{p-1} \Delta \hat{u}_{t-p+1} + \nu_t$$

- 2.2 no constant (Case 1).
- 2.3 If spurious, $\rho = 1$, fail to reject test null
- **2.4** If cointegrated, ρ < 1, reject test null.
- 2.5 **caveat**: because the null involves a spurious regression, the distribution of ρ will have a **different nonstandard distribution** here than it does in the DF test.
- 2.6 This is called a Phillips-Ouliaris-Hansen test same setup as Dickey-Fuller, including different cases for drift and trend, but with different distributions.

Estimation and testing of multiple cointegrating relationships

- Estimating and testing of more than one cointegrating relation can be done using an MLE-type procedure called Johansen's algorithm
 - ca.jo() function in R's urca package
- Estimate with ρ as an unrestricted $n \times n$ matrix

$$\Delta \mathbf{y_t} = \alpha + \varrho \mathbf{y_{t-1}} + \zeta_1 \Delta \mathbf{y_{t-1}} + \dots + \zeta_{p-1} \Delta \mathbf{y_{t-p+1}} + \mathbf{e_t}$$

where $\underline{\rho}$ is an unrestricted $n \times n$ matrix.

Estimate the restricted regression

$$\Delta \mathbf{y_t} = \alpha + \mathbf{BA'y_{t-1}} + \zeta_1 \Delta \mathbf{y_{t-1}} + \dots + \zeta_{p-1} \Delta \mathbf{y_{t-p+1}} + \mathbf{e_t}$$

where **B** is $n \times (n-1)$ and **A**' is $(n-1) \times n$. Compare the fit using a Likelihood Ratio test or compare the eigenvalues of ρ to **BA**'.

• Repeat with restrictions $n \times (n-2)$, etc.