18.445 Introduction to Stochastic Processes

Lecture 18: Martingale: Uniform integrable

Hao Wu

MIT

22 April 2015

1/12

Hao Wu (MIT) 18.445 22 April 2015

Announcement

- The drop date is April 23rd.
- Extra office hours today 1pm-3pm.

Recall Suppose that $X = (X_n)_{n \ge 0}$ is a martingale.

- If X is bounded in L^1 , then $X_n \to X_\infty$ a.s.
- If X is bounded in L^p for p > 1, then $X_n \to X_\infty$ a.s. and in L^p .

Today's goal

- Do we have convergence in L^1 ?
- Uniform integrable
- Optional stopping theorem for UI martingales
- Backward martingale

Hao Wu (MIT) 18.445 22 April 2015 2 / 12

Uniformly integrable

Definition

A collection $(X_i, i \in I)$ of random variables is uniformly integrable (UI) if

$$\sup_{i} \mathbb{E}[|X_{i}|\mathbf{1}_{[|X_{i}|>\alpha]}] \to 0, \quad \text{as } \alpha \to \infty.$$

- \bullet A UI family is bounded in L^1 , but the converse is not true.
- ② If a family is bounded in L^p for some p > 1, then the family is UI.

Theorem

If $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, then the class

$$\{\mathbb{E}[X \mid \mathcal{H}] : \mathcal{H} \text{ sub } \sigma\text{-algebra of } \mathcal{F}\}$$

is UI.

L¹ convergence

A collection $(X_i, i \in I)$ of random variables is uniformly integrable (UI) if $\sup_i \mathbb{E}[|X_i| \mathbf{1}_{[|X_i| > \alpha]}] \to 0$, as $\alpha \to \infty$.

Theorem

Let $X = (X_n)_{n \ge 0}$ be a martingale. The following statements are equivalent.

- X is UI.
- 2 X_n converges to X_{∞} a.s. and in L^1 .
- **1** There exists $Z \in L^1$ such that $X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$ a.s. for all $n \geq 0$.

Lemma

Let $X \in L^1, X_n \in L^1$ and $X_n \to X$ a.s. Then

$$X_n \to X$$
 in L^1 if and only if $(X_n)_{n\geq 0}$ is UI.

Hao Wu (MIT) 18.445 22 April 2015 4 / 12

L¹ convergence

- If X is a UI martingale, then $X_n \to X_\infty$ a.s. and in L^1 . Moreover, $X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ a.s.
- If X is a UI supermartingale, then $X_n \to X_\infty$ a.s. and in L^1 . Moreover, $X_n \ge \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ a.s.
- If X is a UI submartingale, then $X_n \to X_\infty$ a.s. and in L^1 . Moreover, $X_n \le \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ a.s.

Example

Let $(\xi_j)_{j\geq 1}$ be non-negative independent random variables with mean one. Set

$$X_0 = 1, \quad X_n = \prod_{j=1}^n \xi_j.$$

- \bigcirc $(X_n)_{n\geq 0}$ is a non-negative martingale.
- ② X_n converges a.s. to some limit $X_\infty \in L^1$.

Question:

• Do we have $\mathbb{E}[X_{\infty}] = 1$?

Answer : Set $a_j = \mathbb{E}[\sqrt{\xi_j}] \in (0, 1]$.

- ① If $\Pi_j a_j > 0$, then X converges in L^1 and $\mathbb{E}[X_\infty] = 1$.
- ② If $\Pi_j a_j = 0$, then $X_{\infty} = 0$ a.s.

Hao Wu (MIT) 18.445

6/12

Optional Stopping Theorem

Theorem

Let $X = (X_n)_{n \geq 0}$ be a martingale. If $S \leq T$ are bounded stopping times, then $\mathbb{E}[X_T \mid \mathcal{F}_S] = X_S$, a.s. In particular, $\mathbb{E}[X_T] = \mathbb{E}[X_S]$.

Theorem

Let $X = (X_n)_{n \geq 0}$ be a UI martingale. If $S \leq T$ are stopping times, then $\mathbb{E}[X_T \mid \mathcal{F}_S] = X_S$, a.s. In particular, $\mathbb{E}[X_T] = \mathbb{E}[X_S]$.

$$X_T = \sum_{0}^{\infty} X_n 1_{[T=n]} + X_{\infty} 1_{[T=\infty]}.$$

Hao Wu (MIT) 18.445 22 April 2015 7/12

Summary

Suppose that $X = (X_n)_{n>0}$ is a martingale.

- If X is bounded in L^1 , then $X_n \to X_\infty$ a.s.
- If X is bounded in L^p for p > 1, then $X_n \to X_\infty$ a.s. and in L^p .
- If X is UI, then $X_n \to X_\infty$ a.s. and in L^1 .

Suppose that $X = (X_n)_{n \ge 0}$ is a UI martingale.

- For any stopping times S < T, we have $\mathbb{E}[X_T | \mathcal{F}_S] = X_S$ a.s.
- In particular, $\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$.

8/12

Hao Wu (MIT) 18,445

Applications

Theorem (Kolmogorov's 0-1 law)

Let $(X_n)_{n\geq 0}$ be i.i.d. Let $\mathcal{G}_n=\sigma(X_k,k\geq n)$ and $\mathcal{G}_\infty=\cap_{n\geq 0}\mathcal{G}_n$. Then \mathcal{G}_∞ is trivial, i.e. every $A\in\mathcal{G}_\infty$ has probability $\mathbb{P}[A]$ is either 0 or 1.

9/12

Hao Wu (MIT) 18.445 22 April 2015

Backwards martingale

Definition

- $(\Omega, \mathcal{G}, \mathbb{P})$ probability space
- A filtration indexed by $\mathbb{Z}_{-}:\cdots\subseteq\mathcal{G}_{-2}\subseteq\mathcal{G}_{-1}\subseteq\mathcal{G}_{0}$.
- A process $X = (X_n)_{n \le 0}$ is called a backwards martingale, if it is adapted to the filtration, $X_0 \in L^1$ and for all $n \le -1$, we have

$$\mathbb{E}[X_{n+1} \mid \mathcal{G}_n] = X_n, a.s.$$

Consequences

- For all $n \le 0$, we have $\mathbb{E}[X_0 \mid \mathcal{G}_n] = X_n$.
- The process $X = (X_n)_{n < 0}$ is automatically UI.

Hao Wu (MIT) 18.445 22

10 / 12

Theorem

Suppose that $X = (X_n)_{n \ge 0}$ is a forwards martingale and $(\mathcal{F}_n)_{n \ge 0}$ is the filtration.

• If X is bounded in L^p for p > 1, then

$$X_n o X_\infty$$
 a.s.and in L^p ; $X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ a.s

If X is UI, then

$$X_n \to X_\infty$$
 a.s. and in L^1 ; $X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ a.s.

Theorem

Suppose that $X = (X_n)_{n \le 0}$ is a backwards martingale and $(\mathcal{G}_n)_{n \le 0}$ is the filtration. Recall that $\mathbb{E}[X_0 \mid \mathcal{G}_n] = X_n$.

• If $X_0 \in L^p$ for $p \ge 1$, then

$$X_n \to X_{-\infty}$$
 a.s.and in L^p ; $X_{-\infty} = \mathbb{E}[X_0 \mid \mathcal{G}_{-\infty}]$ a.s.

where $\mathcal{G}_{-\infty} = \cap_{n \leq 0} \mathcal{G}_n$.

Applications

Theorem (Strong Law of Large Numbers)

Let
$$X=(X_n)_{n\geq 0}$$
 be i.i.d. in L^1 with $\mu=\mathbb{E}[X_1].$ Define

$$S_n = (X_1 + \cdots + X_n)/n.$$

Then

$$S_n/n \rightarrow \mu$$
, a.s.and in L^1 .

Hao Wu (MIT) 18.445 22 April 2015 12 / 12