

12th October 2017, 10:00 am - 10:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: D

Time: 20 minutes. Max Marks: 5 points

Question 1: Let A_1 . . . A_5 be matrices with dimension 10×5 , 5×8 , 8×15 , 15×20 , 20×6 , respectively. Let $C_{i,j}$ be the smallest number of scalar multiplications needed for computing the matrix product $A_iA_{i+1} \cdot \cdot \cdot A_j$, assuming that multiplying an $\mathbf{r} \times \mathbf{s}$ matrix and an $\mathbf{s} \times \mathbf{t}$ matrix take $\mathbf{r} \times \mathbf{s} \times \mathbf{t}$ scalar multiplications. Solve the given matrix chain multiplication problem and Mark each of the following statements by T (=True) or F (=False).

- 1. $C_{2,5}$ is computed before $C_{1,3}$
- 2. $C_{1,4} = 3100$.
- 3. $C_{2,5}$ is derived from $C_{2,3}$ and $C_{4,5}$.
- 4. The optimal order to multiply A_1 . . . A_5 with fewest number of scalar multiplications is $(A_1 ((A_2A_3) (A_4A_5)))$.

12th October 2017, 10:00 am - 10:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: D

Time: 20 minutes. Max Marks: 5 points

Question 1: Solve the following **0/1 knapsack** problems using table.

a number of items, n=4 b n=3
weight of items, w[]=2 3 4 5
value of items, v[]=3 4 5 6

capacity of knapsack, M=5

Quiz 1 (A) 13th October 2017, 9:00 am – 9:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: B

Time: 20 minutes. Max Marks: 5 points

Question 1: Let $A_1 ... A_5$ be matrices with dimension 10×20 , 20×30 , 30×40 , 40×50 , 50×60 , and respectively. Let $C_{i,j}$ be the smallest number of scalar multiplications needed for computing the matrix product $A_i A_{i+1} \cdot \cdot \cdot A_j$, assuming that multiplying an $\mathbf{r} \times \mathbf{s}$ matrix and an $\mathbf{s} \times \mathbf{t}$ matrix take $\mathbf{r} \times \mathbf{s} \times \mathbf{t}$ scalar multiplications. Solve the given matrix chain multiplication problem and Mark each of the following statements by T (=True) or F (=False).

- 1. $C_{2,5}$ is computed before $C_{1,3}$
- 2. $C_{1,4} = 3100$.
- 3. $C_{2,5}$ is derived from $C_{2,3}$ and $C_{4,5}$.

The optimal order to multiply A_1 . . . A_5 with fewest number of scalar multiplications is $(A_1 ((A_2 A_3) (A_4 A_5)))$.

Quiz 1 (B) 13th October 2017, 9:00 am – 9:20 am

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	I Subhash Sagar
Student Roll No:	Section: B

Time: 20 minutes. Max Marks: 5 points

Question 1: Solve the following **0/1 knapsack** problems using table.

a number of items, n=4 b n=5 w[]=1 2 3 2 2 weight of items, w[]=2 3 4 5 value of items, v[]=3 4 5 6 v[]=8 4 0.5 3 M=4 M=4

Quiz 1 (A) 13th October 2017, 2:00 pm – 2:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: E

Time: 20 minutes. Max Marks: 5 points

Question 1: Let $A_1 cdots A_5$ be matrices with dimension 1 cdots 2, 2 cdots 15, 15 cdots 30, 30 cdots 50, 50 cdots 15, and respectively. Let $C_{i,j}$ be the smallest number of scalar multiplications needed for computing the matrix product $A_i A_{i+1} cdots cdots A_j$, assuming that multiplying an $\mathbf{r} cdots \mathbf{s}$ matrix and an $\mathbf{s} cdots \mathbf{t}$ matrix take $\mathbf{r} cdots \mathbf{s} cdots \mathbf{t}$ scalar multiplications. Solve the given matrix chain multiplication problem and Mark each of the following statements by T (=True) or F (=False).

- 1. $C_{2,5}$ is computed before $C_{1,3}$
- 2. $C_{1,4} = 220$.
- 3. $C_{2,5}$ is derived from $C_{2,3}$ and $C_{4,5}$.

The optimal order to multiply A_1 ... A_5 with fewest number of scalar multiplications is $(A_1(A_2A_3)(A_4A_5)))$.

Quiz 1 (B) 13th October 2017, 2:00 pm – 2:20 pm

Course Code: CS302	Course Name: Design and Analysis of Algorithm
Instructor Name / Names:	Subhash Sagar
Student Roll No:	Section: E

Time: 20 minutes. Max Marks: 5 points

Question 1: Solve the following questions using rod cutting problem. (n=length of rod)

a n=5 value[]= 2 3 7 8 10 for sizes 1,2,3,4,5 respectively

b n=7 value[]= 2 7 8 25 17 28 30