STAT 709 Third Exam 8:25am-9:15pm, Nov 23, 2010

Please show all your work for full credits.

1. Let $(X_1, Y_1), ..., (X_n, Y_n)$ be i.i.d. from the bivariate normal distribution with the Lebesgue p.d.f.

$$f(x,y) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2}{2\sigma^2(1-\rho^2)} + \frac{\rho xy}{\sigma^2(1-\rho^2)} - \frac{y^2}{2\sigma^2(1-\rho^2)}\right\},\,$$

where $\sigma^2 > 0$ and $\rho \in (-1, 1)$.

- (a) (2 points) When both σ^2 and ρ are unknown, obtain the UMVUE of σ^2 .
- (b) (2 points) Show that the variance of the UMVUE in (a) attains the Cramér-Rao lower bound.
- (c) (2 points) When σ^2 is unknown and ρ is known, obtain the UMVUE of σ^2 .
- (d) (2 points) When σ^2 is unknown and ρ is known, obtain the Fisher information about σ^2 contained in $(X_1, Y_1), ..., (X_n, Y_n)$ and the variance of the UMVUE in (c).
- (e) (4 points) When both σ^2 and ρ are unknown, obtain the UMVUE of $(1+\rho)/(1-\rho)$.
- 2. Let $X_1, ..., X_n$ be i.i.d. with the Lebesgue p.d.f.

$$f(x) = \frac{1}{2\theta} \exp\left\{-|x - \mu|/\theta\right\},\,$$

where $\mu \in \mathcal{R}$ and $\theta > 0$.

- (a) (2 points) When $\mu = 0$ and θ is unknown, show that both $T_n = n^{-1} \sum_{i=1}^n |X_i|$ and $T'_n = \sqrt{(2n)^{-1} \sum_{i=1}^n X_i^2}$ are consistent estimators of θ .
- (b) (4 points) In (a), obtain the asymptotic relative efficiency of T_n w.r.t. T'_n .
- (c) (2 points) When both μ and θ are unknown, show that $n^{-1} \sum_{i=1}^{n} |X_i \bar{X}|$ is a consistent estimator of θ , where \bar{X} is the sample mean.