## Politechnika Warszawska

WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH



# Aproksymacja funkcji celu algorytmu ewolucyjnego aproksymatorem liniowym.

Uczenie maszynowe 2022L

Michał Brus, Michał Rejer 17 kwietnia 2022

### Spis treści

| 1        | Opi                  | s problemu                      | 3 |
|----------|----------------------|---------------------------------|---|
| <b>2</b> | Algorytm ewolucyjny  |                                 |   |
|          | 2.1                  | Cel                             | 3 |
|          | 2.2                  | Ogólny opis działania           | 3 |
|          | 2.3                  | Pseudokod algorytmu             | 3 |
|          | 2.4                  | Przyjęte założenia              | 4 |
|          | 2.5                  | Generacja zbiorów treninigowych | 4 |
| 3        | Aproksymator liniowy |                                 | 5 |
|          | 3.1                  | Metoda najmniejszych kwadratów  | 5 |
|          | 3.2                  | Generacja modelu                | 5 |
|          | 3.3                  | Przykład obliczeniowy           | 6 |
|          | 3.4                  | Podział dziedziny na części     | 6 |
|          | 3.5                  | Szukanie minimum modelu         | 7 |
| 4        | Ocena jakości modeli |                                 | 7 |
|          | 4.1                  | Plan eksperymentów              | 7 |
|          | 4.2                  | Określenie dziedziny            | 7 |
|          | 4.3                  | Walidacja modelu                | 7 |
| 5        | Imr                  | plementacia                     | 7 |

OPIS PROBLEMU 3

#### 1 Opis problemu

Projekt polega na aproksymacji funkcji celu algorytmu ewolucyjnego aproksymatorem liniowym, dla każdej z 30 funkcji z CEC 2017. Jego celem będzie wyznaczanie minimów badanych funkcji oraz określenie jak często zaimplementowany aproksymator uzyskuje lepsze wyniki od AE. Dodatkowym zagadnieniem będzie również ocena jakości generowanych modeli.

#### 2 Algorytm ewolucyjny

#### 2.1 Cel

W projekcie zostanie wykorzystany algorytm ewolucyjny. Będzie użyty do znalezienia minimów funkcji CEC oraz będzie generatorem zbiorów danych uczących.

#### 2.2 Ogólny opis działania

Idea algorytmu ewolucyjnego wywodzi się z ewolucji naturalnej. Rozpoczyna się od wylosowania punktów w przestrzeni, które staną się populacją początkową. Oceniania jest ich wartość i zapamiętany zostaje najlepszy punkt. Następnie zachodzi selekcja, podczas której z populacji wybierane są te punkty, które mają większe prawdopodobieństwo reprodukcji. Te punkty zostają rodzicami i (opcjonalnie) rozpoczyna się krzyżowanie części z nich. Następnie dzieci (nowe punkty z krzyżowania) oraz rodzice bez dzieci podlegają mutacji. Wygenerowane w ten sposób punkty są ponownie ocenianie i najlepszy z nich jest zapisywany jeśli jest lepszy niż najlepszy do tej pory. Na końcu zachodzi sukcesja podczas, której zachodzi decyzja, które osobniki ze starej populacji i nowych punktów przejdą do następnej generacji. Proces jest powtarzany, aż do zakończenia warunku pętli (zazwyczaj liczba generacji).

#### 2.3 Pseudokod algorytmu

```
 \begin{aligned}  & \textbf{Data} \quad : q(x), P_0, \mu, \sigma, p_m, p_c, t_{max} \\ & \textbf{Result:} \quad \hat{x}^*, \hat{o}^* \\ & t \leftarrow 0 \\ & o \leftarrow \text{ocena}(q, P_0) \\ & \hat{x}^*, \hat{o}^* \leftarrow \text{znajdz najlepszego } (P_0, o) \\ & \textbf{while } \quad kryterium \ stop \ np. \ t < t_{max} \ \textbf{do} \\ & R \leftarrow \text{reprodukcja } (P_t, o, \mu) \\ & M \leftarrow \text{operacje genetyczne } (R, \sigma, p_m, p_c) \\ & o_m \leftarrow (q, M) \\ & x_t^*, o_t^* \leftarrow \text{znajdz najlepszego } (M, o_m) \\ & \textbf{if } o_t^* < = \hat{o}^* \ \textbf{then} \\ & \left[ \begin{array}{c} \hat{o}^* \leftarrow o_t^* \\ \hat{x} \leftarrow x_t^* \end{array} \right] \\ & P_{t+1}, o \leftarrow \text{sukcesja } (P_t, M, o, o_m) \\ & t \leftarrow t + 1 \end{aligned}
```

#### Parametry

- q(x) funkcja celu, którą optymalizujemy
- $\bullet$   $P_0$  populacja początkowa
- $\mu$  liczba osobników w populacji
- $\bullet$   $\sigma$  siła mutacji. Mutacja polega na wygenerowaniu punktu z otoczenia punktu bieżącego, tak, że bardziej prawdopodobna jest generacja punktu bliskiego. Najczęściej stosuje się mutację gausowską,

gdzie do aktualnej wartości  ${\bf x}$  dodaje się wekto<br/>e liczb losowych z rozkładu losowego przeskalowany prze<br/>z ${\boldsymbol \sigma}$ - siłę mutacji:

$$x = x + \sigma * N(0, 1) \tag{1}$$

- $p_m$  prawdopodobieństwo mutacji. Dla danego punktu jeśli  $U(0,1) < p_m$  to mutujemy ten punkt.
- $p_c$  prawdopodobieństwo krzyżowania. Dla każdej pary punktów, jeśli  $U(0,1) < p_c$  to stosujemy krzyżowanie np. z 2 rodziców powstaje 2 dzieci. Jeśli krzyżowanie nie zachodzi to rodzice przechodzą dalej.
- $t_{max}$  maksymalna liczba iteracji (pokoleń)

#### 2.4 Przyjęte założenia

W niniejszej implementacji algorytmu ewolucyjnego przyjęto następujące założenia:

- Krzyżowanie jest opcjonalne (przy włączonym 2 rodziców = 2 dzieci)
- Zachodzi selekcja turniejowa o rozmiarze 2. Populacja jest sortowana względem jakości (najlepszy ma indeks 1). Losujemy z niej (ze zwracaniem) z rozkładem jednostajnym pary osobników, które "toczą ze sobą pojedynek". Prawdopodobieństwo wygranej, czyli reprodukcji zależy od jakości osobnika, ale też jego szansy na bycie wylosowanym:

$$p_s(P(t,j)) = \frac{1}{\mu^S} ((\mu - j + 1)^S - (\mu - j)^S)$$
 (2)

gdzie Sto rozmiar turnieju (tu 2), t - iteracja populacji, j - j-ty osobnik z populacji

ullet Zmiana populacji z  $t \to t+1$  odbywa się przez sukcesję elitarną 1-osobnikową. Oznacza to, że ze starej populacji najlepszy osobnik zostaje a z M (potencjalna nowa populacja) wchodzą wszyscy. Najgorszy z sumy nie przechodzi.

$$P_{t+1} = \{ \text{k najlepszych z } P(t) \} \cup M \setminus \{ \text{k najgorszych z tego połączonego zbioru} \}$$
 (3)

- Rozmiar populacji 20
- Liczba iteracji  $\geq 500$

#### 2.5 Generacja zbiorów treninigowych

Populacja początkowa  $P_0$  po wylosowaniu i ocenieniu jej zostanie przekazana jako pierwszy zbiór treningowy do aproksymatora liniowego. Każda nowa populacja z AE zostanie dołożona do obecnego już zbioru treningowego (np. 20, 40, 60 ...).

$$U = \bigcup_{j=1}^{t} U_j \tag{4}$$

$$U_j = \{ \langle x_i, y_i \rangle : i = 1, ..., \mu \}$$
 (5)

$$y_i = q(x_i) (6)$$

#### 3 Aproksymator liniowy

#### 3.1 Metoda najmniejszych kwadratów

Aproksymator liniowy dla funkcji  $f: \mathbb{R}^n \to \mathbb{R}$  opisanej równaniem 8. będzie przyjmował postać hiperpłaszczyzny  $\hat{f}$  o wymiarze n opisanej równaniem 11.

$$\mathbf{x} = [x_1, x_2, \dots, x_n] \tag{7}$$

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_n) \tag{8}$$

$$\hat{f}(\mathbf{x}) = \hat{f}(x_1, x_2, \dots, x_n) \tag{9}$$

$$\mathbf{a} = \left[a_0, a_1, \dots, a_n\right]^T \tag{10}$$

$$\hat{f}(\mathbf{x}) = a_0 + \sum_{i=1}^{n} a_i x_i = [1, \mathbf{x}] \mathbf{a} = 0$$
 (11)

Wektor współczynników **a** będzie szacowany przy użyciu metody najmniejszych kwadratów (MNK) dla zbioru treningowego. Zadaniem optymalizacji będzie minimalizacja wskaźnika opisanego równaniem 15.

 $p = 0, 1, \dots, k$  - liczność zbioru trenującego

 $\mathbf{x}_k = [x_{k,1}, \dots, x_{k,n}]$  - argument funkcji f ze zbioru trenującego,

 $\mathbf{y}$  - wektor zbierający wartości funkcji f dla kolejnych elementów zbioru trenującego.

$$M = \begin{bmatrix} 1 & x_{0,1} & \cdots & x_{0,n} \\ 1 & x_{1,1} & \cdots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{k,1} & \cdots & x_{k,n} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{x}_0 \\ 1 & \mathbf{x}_1 \\ \vdots & \vdots \\ 1 & \mathbf{x}_k \end{bmatrix}$$
(12)

$$\mathbf{y} = [y_0, y_1, \dots, y_k] \tag{13}$$

$$\mathbf{y} = Ma \tag{14}$$

$$E(\mathbf{a}) = \frac{1}{k} \sum_{i=0}^{k} \left\| [1, \mathbf{x}_k] \mathbf{a} - f(\mathbf{x}_k) \right\|^2$$

$$(15)$$

Rozwiązanie zadania minimalizacji ma postać podaną równaniem 16.

$$\mathbf{a} = (M^T M)^{-1} M^T \mathbf{y}^T \tag{16}$$

#### 3.2 Generacja modelu

Po wygenerowaniu w danej iteracji modelu z wykorzystaniem aproksymatora liniowego dla każdego punktu liczony jest błąd dopasowania aproksymatora ze wzoru numer 17. Jeżeli w punkcie, dla którego błąd dopasowania jest największy, zostanie przekroczony dopuszczalny próg błędu następuje podział danego fragmentu dziedziny na dwie części. Dla każdej z części parametry aproksymatora wyliczane są ponownie, a błędy porównywane z progiem, aż do uzyskania satysfakcjonującego dopasowania modelu.

$$e(\mathbf{x_k}) = \|[1, \mathbf{x}_k]\mathbf{a} - f(\mathbf{x}_k)\|^2$$
(17)

#### 3.3 Przykład obliczeniowy

Przykład dla funkcji  $f: \mathbb{R} \to \mathbb{R}$ . Wyznaczone zostały punkty postaci (x, f(x)):

$$\{(1,0.13820),(2,0.2857),(3,0.3964),(4,0.4241),(5,0.6179),(6,0.6452)\}\$$
 (18)

Po zastosowaniu wzoru 16. wyznaczone został wektor współczynników:

$$\mathbf{a} = [0.1017, 0.0619] \tag{19}$$

Funkcja aproksymująca ma więc postać:

$$\hat{f}(x) = 0.1017 + 0.0619x \tag{20}$$

Uzyskany model generuje punkty  $(x, \hat{f}(x))$  odpowiadające aproksymowanym danym:

$$\{(1, 0.1637), (2, 0.2654), (3, 0.3671), (4, 0.4688), (5, 0.5705), (6, 0.6722)\}$$
 (21)

Co przekłada się na wektor błędów:

$$[0.0006, 0.0004, 0.0009, 0.0020, 0.0022, 0.0007]$$

$$(22)$$

Największy błąd wystąpił dla x=5. Zakładając, że przekroczony został dopuszczalny próg błędu dopasowania aproksymatora, dziedzina w x=5 zostanie podzielona na dwa przedziały, a w nich powstaną dwie nowe funkcje aproksymujące:  $\hat{f}_1$  i  $\hat{f}_2$ . Opisane kroki będą powtarzane, aż do uzyskania złożenia liniowych aproksymatorów, dla których błąd dopasowania dla każdego elementu ze zbioru trenującego będzie akceptowalny lub podział nie będzie możliwy.

#### 3.4 Podział dziedziny na części

W ogólności hiperpłaszczyznę o wymiarze n definiuje n+1 punktów, dlatego podział fragmentu dziedziny na części ma jedynie sens, gdy w każdej z części znajdzie się co najmniej n+1 punktów, gdzie n będzie wymiarem dziedziny aproksymowanej funkcji.

Przestrzeń o wymiarze n na dwie części dzieliła będzie hiperpłaszczyzna o wymiarze n-1. Przyjmując, że fragmenty modelu będą wyznaczane dla wcześniej wydzielonych części dziedziny D, można zaproponować kilka sposobów dalszego podziału dziedziny aproksymowanej funkcji. Zakładając podział na dwie części tylko jednego fragmentu D w jednej iteracji. można spróbować dokonać podziału według jednej ze współrzędnych punktu.

Np. na początku największy błąd przekraczający próg został zidentyfikowany w punkcie:  $\mathbf{x_j} = [1, 0, 0, 0, 0]$ . Dokonujemy podziału dziedziny na dwie części według pierwszej współrzędnej:

- część pierwsza:  $x_1 < 1$
- część druga:  $x_1 \ge 1$

Drugi punkt podziału to:  $\mathbf{x_{i+1}} = [0, 1, 0, 0, 0]$ 

Tym razem zmieniamy współrzędną dzielącą fragment dziedziny. Punkt  $\mathbf{x_{j+1}}$  znalazł się we wcześniej wydzielonej części pierwszej, dlatego teraz ona podlega podziałowi:

- część pierwsza:  $x_1 < 1 \land x_2 < 1$
- cześć druga:  $x_1 < 1 \land x_2 \ge 1$
- część trzecia:  $x_1 \ge 1$

Punkt, w którym dokonano podziału można włączyć do jednej z części dziedziny powstałych po podziale. Jeśli w powstałych częściach pozostała niewystarczająca liczba punktów, można zmienić współrzędną, po której dokonywany jest podział. Natomiast, jeżeli podział będzie niemożliwy można sprawdzić próg błędu dopasowania w innym fragmencie dziedziny.

Jest to propozycja rozwiązania problemu, która zostanie zweryfikowana w trakcie realizacji projektu, i ewentualnie może zostać zmieniona.

#### 3.5 Szukanie minimum modelu

Dla modelu w formie aproksymarów liniowych na fragmentach dziedziny, minimum powinno znajdować się albo na przecięciu poszczególnych fragmentów modelu albo dla ograniczenia dziedziny.

#### 4 Ocena jakości modeli

#### 4.1 Plan eksperymentów

Dla każdej funkcji CEC algorytm ewolucyjny zostanie uruchomiony 30 razy, aby wyciągnąć średnie z otrzymanych wyników. Otrzymane minima w kolejnych generacjach będą porównane z minimami z aproksymatora liniowego (lepszy wynik pogrubiony w tabeli). Następnie zostanie policzony ich stosunek i sprawdzony w jakim procencie model okazuje się lepszy od AE.

#### 4.2 Określenie dziedziny

Dziedzina, dla której zostaną przeprowadzane eksperymenty, będzie 10-wymiarowa, a jej zakres  $[-x_{max}, x_{max}]$  dobrany w trakcie testów. Aby sprawdzić poprawność implementowanego algorytmu, zostanie on sprawdzony w niższych wymiarach (w celu lepszej wizualizacji).

#### 4.3 Walidacja modelu

Jakość modelu będzie sprawdzana na 2 sposoby:

- Porównanie przybliżonego minimum funkcji, otrzymanym z modelu z faktycznym minimum.
- Sprawdzenie średniej straty modelu w k-krotnej (tutaj 3) walidacji krzyżowej. Średnia strata modelu ma postać wektora błędów (równanie (22)). Zbiór trenujący jest podzielony na 3 części, gdzie jedna z nich jest zbiorem testowym (T), a dwie pozostałe służą do uczenia (U).

#### 5 Implementacja

Projekt zostanie zaimplementowany w języku Python przy wykorzystaniu dodatkowych bibliotek (numpy, matplotlib etc.). Wykorzystane do optymalizacji zostaną funkcje z repozytorium na githubie - CEC 2017.