

Machine Learning

Lecture 2: k-Nearest Neighbors

Prof. Dr. Aleksandar Bojchevski

16.04.24

Outline

Algorithm

Curse of dimensionality

Generalization

Iris dataset

Iris dataset: 2 features

How do we intuitively label new samples by hand?

Iris dataset: 2 features

How do we intuitively label new samples by hand?

Look at the surrounding points. Do as your neighbor does.

Notation

Symbol	MEANING
x	scalar is lowercase and not bold
$oldsymbol{x}$	vector is lowercase and bold
$oldsymbol{\Sigma}$	matrix is uppercase and bold
\boldsymbol{y}	vector of labels (targets)
\mathcal{D}	sets are calligraphic, e.g. training dataset
$oldsymbol{x}_i, y_i$	features and labels of the <i>i'</i> th example
$f(oldsymbol{x})$	function, e.g. predicted value for input $oldsymbol{x}$
N	number of samples (examples, instances)
D	number of features (attributes, predictors)
\hat{y}	predicted labels (targets)

Unless otherwise mentioned vectors are column vectors, e.g. $\boldsymbol{x} \in \mathbb{R}^{D \times 1}$.

1-Nearest Neighbor algorithm

Given a training dataset $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ where \boldsymbol{x}_i are features and y_i targets.

To classify new observations:

- 1. Define a distance measure (e.g. Euclidean distance)
- 2. Compute the nearest neighbor for a new data point
- 3. Label it with the label of its nearest neighbor

This works for both classification $y_i \in \{1, ..., C\}$, and regression $y_i \in \mathbb{R}$.

1-Nearest Neighbor decision boundary

Corresponds to a Voronoi tesselation.

The bisecting line between each pair of points determines which one is closer.

The decision boundary is a set of connected, convex polyhedra.

1-Nearest Neighbor decision boundary

Tends to result in poor generalization.

\overline{k} -Nearest Neighbors classification

Looking at multiple nearest neighbors and picking the **majority** label makes us more *robust* against errors in the training set.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} . The probability of class c is

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{I}(y_i = c),$$

and the prediction $\hat{y} = \arg \max_{c} p(y = c \mid \boldsymbol{x}, k)$ is the mode of its neighbors' labels.

Here \mathbb{I} is the **indicator** function defined as $\mathbb{I}(e) = \begin{cases} 1 \text{ if } e \text{ is true} \\ 0 \text{ if } e \text{ is false.} \end{cases}$

k-Nearest Neighbors classification

Looking at multiple nearest neighbors and picking the **majority** label makes us more *robust* against errors in the training set.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} . The probability of class c is:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{I}(y_i = c),$$

and the prediction $\hat{y} = \arg \max_{c} p(y = c \mid \boldsymbol{x}, k)$ is the mode of its neighbors' labels.

Here \mathbb{I} is the **indicator** function defined as $\mathbb{I}(e) = \begin{cases} 1 \text{ if } e \text{ is true} \\ 0 \text{ if } e \text{ is false.} \end{cases}$

\overline{k} -Nearest Neighbors classification

Looking at multiple nearest neighbors and picking the **majority** label makes us more *robust* against errors in the training set.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} . The probability of class c is:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{I}(y_i = c),$$

and the prediction $\hat{y} = \arg\max_{c} p(y = c \mid \boldsymbol{x}, k)$ is the mode of its neighbors' labels.

Here \mathbb{I} is the **indicator** function defined as $\mathbb{I}(e) = \begin{cases} 1 \text{ if } e \text{ is true} \\ 0 \text{ if } e \text{ is false.} \end{cases}$

k-Nearest Neighbors classification: weighted

Look at multiple nearest neighbors and pick the weighted majority label.

The weight is **inversely proportional** to the distance.

Let $\mathcal{N}_k(\boldsymbol{x})$ be the k nearest neighbors of \boldsymbol{x} in \mathcal{D} . The probability of class c is now.

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} \mathbb{I}(y_i = c),$$

where $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ is the the normalization constant, and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ measures the distance between \boldsymbol{x} and \boldsymbol{x}_i .

As before the prediction is $\hat{y} = \arg \max_{c} p(y = c \mid \boldsymbol{x}, k)$.

k-Nearest Neighbors classification: weighted

Look at multiple nearest neighbors and pick the **weighted majority** label. The weight is **inversely proportional** to the distance.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} . The probability of class c is now:

$$p(y = c \mid \boldsymbol{x}, k) = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} \mathbb{I}(y_i = c),$$

where $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ is the the normalization constant, and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ measures the distance between \boldsymbol{x} and \boldsymbol{x}_i .

As before the prediction is $\hat{y} = \arg \max_{c} p(y = c \mid \boldsymbol{x}, k)$.

k-Nearest Neighbors regression

Regression, i.e. $y_i \in \mathbb{R}$ is a real number, is similar.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} , then for regression:

$$\hat{y} = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} y_i,$$

where $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ is the the normalization constant, and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ measures the distance between \boldsymbol{x} and \boldsymbol{x}_i .

The prediction is the weighted mean of its neighbors' values

k-Nearest Neighbors regression

Regression, i.e. $y_i \in \mathbb{R}$ is a real number, is similar.

Let $\mathcal{N}_k(x)$ be the k nearest neighbors of x in \mathcal{D} , then for regression:

$$\hat{y} = \frac{1}{Z} \sum_{i \in \mathcal{N}_k(\boldsymbol{x})} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)} y_i,$$

where $Z = \sum_{i \in \mathcal{N}_k(x)} \frac{1}{\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)}$ is the the normalization constant, and $\mathrm{d}(\boldsymbol{x}, \boldsymbol{x}_i)$ measures the distance between \boldsymbol{x} and \boldsymbol{x}_i .

The prediction is the **weighted mean** of its neighbors' values.

K-NN can be used with various distance measures \rightarrow highly flexible.

-
$$L_2$$
 norm (Euclidean): $d_{L_2}(oldsymbol{x}_i,oldsymbol{x}_j)=\sqrt{\sum_{d=1}^D(x_{id}-x_{jd})^2}$

-
$$L_1$$
 norm: $d_{L_1}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sum_{d=1}^D |x_{id} - x_{jd}|$

-
$$L_{\infty}$$
 norm: $d_{L_{\infty}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \max_d |x_{id} - x_{jd}|$

- Angle:
$$d_{\cos}(m{x}_i, m{x}_j) = \cos lpha = rac{m{x}_i^{\top} m{x}_j}{\|m{x}_i\| \|m{x}_j\|}$$

K-NN can be used with various distance measures \rightarrow highly flexible.

-
$$L_2$$
 norm (Euclidean): $d_{L_2}(oldsymbol{x}_i,oldsymbol{x}_j)=\sqrt{\sum_{d=1}^D(x_{id}-x_{jd})^2}$

-
$$L_1$$
 norm: $d_{L_1}(oldsymbol{x}_i,oldsymbol{x}_j) = \sum_{d=1}^D |x_{id} - x_{jd}|$

-
$$L_{\infty}$$
 norm: $d_{L_{\infty}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \max_d |x_{id} - x_{jd}|$

- Angle:
$$d_{\cos}(oldsymbol{x}_i, oldsymbol{x}_j) = \cos lpha = rac{oldsymbol{x}_i^{\top} oldsymbol{x}_j}{\|oldsymbol{x}_i\|\|oldsymbol{x}_j\|}$$

K-NN can be used with various distance measures \rightarrow highly flexible.

-
$$L_2$$
 norm (Euclidean): $d_{L_2}(oldsymbol{x}_i,oldsymbol{x}_j)=\sqrt{\sum_{d=1}^D(x_{id}-x_{jd})^2}$

-
$$L_1$$
 norm: $d_{L_1}(oldsymbol{x}_i,oldsymbol{x}_j) = \sum_{d=1}^D |x_{id}-x_{jd}|$

-
$$L_{\infty}$$
 norm: $d_{L_{\infty}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \max_d |x_{id} - x_{jd}|$

- Angle:
$$d_{\cos}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \cos \alpha = \frac{\boldsymbol{x}_i^{\top} \boldsymbol{x}_j}{\|\boldsymbol{x}_i\| \|\boldsymbol{x}_j\|}$$

K-NN can be used with various distance measures \rightarrow highly flexible.

-
$$L_2$$
 norm (Euclidean): $d_{L_2}(oldsymbol{x}_i,oldsymbol{x}_j)=\sqrt{\sum_{d=1}^D(x_{id}-x_{jd})^2}$

-
$$L_1$$
 norm: $d_{L_1}(oldsymbol{x}_i,oldsymbol{x}_j) = \sum_{d=1}^D |x_{id}-x_{jd}|$

-
$$L_{\infty}$$
 norm: $d_{L_{\infty}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \max_d |x_{id} - x_{jd}|$

- Angle:
$$d_{\cos}(m{x}_i, m{x}_j) = \cos lpha = rac{m{x}_i^{ op} m{x}_j}{\|m{x}_i\| \|m{x}_j\|}$$

Mahalanobis distance, where Σ is positive (semi) definite and symmetric:

$$d_{\mathbf{\Sigma}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_j)^{\top} \mathbf{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{x}_j)}$$

 L_p norm, Hamming distance, String/Graph edit distance, Learned metric (e.g. learn Σ), Jaccard, ...

How to choose? Depends on the problem. It should be semantically meaningful.

Example: d_{\cos} for bag-of-words representation for text documents.

Scaling issues

The same example (k = 1) but one feature is in meters, the other in centimeters.

Circumventing scaling issues

Data **standardization**: scale each feature to zero mean and unit variance.

$$\boldsymbol{x}_i' = \frac{\boldsymbol{x}_i - \boldsymbol{\mu}}{\boldsymbol{\sigma}}$$

where μ is the mean vector and σ is the standard variance vector.

Commonly used since many models are sensitive to differences in scale.

The Mahalanobis distance
$$\mathrm{d}_{oldsymbol{\Sigma}}(oldsymbol{x}_i,oldsymbol{x}_j) = \sqrt{(oldsymbol{x}_i-oldsymbol{x}_j)^{ op}oldsymbol{\Sigma}^{-1}(oldsymbol{x}_j-oldsymbol{x}_j)}$$

with
$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \sigma_n^2 \end{bmatrix}$$
 is equal to Euclidean distance on normalized data.

Circumventing scaling issues

Data **standardization**: scale each feature to zero mean and unit variance.

$$\boldsymbol{x}_i' = \frac{\boldsymbol{x}_i - \boldsymbol{\mu}}{\boldsymbol{\sigma}}$$

where μ is the mean vector and σ is the standard variance vector.

Commonly used since many models are sensitive to differences in scale.

The Mahalanobis distance $\mathrm{d}_{oldsymbol{\Sigma}}(oldsymbol{x}_i,oldsymbol{x}_j) = \sqrt{(oldsymbol{x}_i-oldsymbol{x}_j)^{ op}oldsymbol{\Sigma}^{-1}(oldsymbol{x}_j-oldsymbol{x}_j)}$

with
$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & \sigma_n^2 \end{bmatrix}$$
 is equal to Euclidean distance on normalized data.

Outline

Algorithm

Curse of dimensionality

Generalization

Given a discrete one-dimensional input space $x \in \{1,2,\ldots,10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Add a second dimension (now $x \in \{1, ..., 10\}^2$) and your data only covers 18% of the space.

Once you add a third dimension you only cover 2%.

Given a discrete one-dimensional input space $x \in \{1, 2, \dots, 10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Add a second dimension (now $x \in \{1, ..., 10\}^2$) and your data only covers 18% of the space.

Once you add a third dimension you only cover 2%.

Given a discrete one-dimensional input space $x \in \{1,2,\ldots,10\}$

For N=20 uniformly distributed samples the data covers 100% of the input space.

Add a second dimension (now $x \in \{1, ..., 10\}^2$) and your data only covers 18% of the space.

Once you add a third dimension you only cover 2%.

Sample data uniformly at random in the unit cube $[0,1]^D$.

Let l be the edge length of the smallest hyper-cube that contains all k-nearest neighbors of a test point. Then $l^D \approx \frac{k}{N}$ and $l \approx (\frac{k}{N})^{1/D}$.

How big does l have to be for just k = 10 neighbors for different D?

D	l
2	0.1
10	0.63
100	0.955
1000	0.9954

Spans almost the entire space, so the nearest neighbor will be far away.

Divide the interval into $[0, \epsilon, 1 - \epsilon, 1]$ for some $\epsilon > 0$. The probability of landing in the interior is $(1 - 2\epsilon)^D$ which quickly converges to 0 as D grows since $1 - 2\epsilon < 1$.

Can we just use a larger dataset, i.e. larger N?

Let l = 0.1 so it is relatively small.

Then $N = \frac{k}{(0.1)^D}$, $\Longrightarrow N$ has to grow exponentially with the number of features.

Always keep the curse of dimensionality in mind when using k-NN.

Real data has low-dimensional structure

The "true" dimensionality can be much lower than the ambient space.

Data often lies on a lower-dimensional manifold (manifold hypothesis).

We can perform dimensionality reduction or learn a good representation.

Outline

Algorithm

Curse of dimensionality

Generalization

How many neighbors should we use?

Figure 1: 1-NN decision boundary.

Figure 2: 3-NN decision boundary.

Generalization

Goal is **generalization**: find a model that performs best on unseen (future) data.

Given a datasets $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ where instances are drawn from some (unknown) distribution $(\boldsymbol{x}_i, y_i) \sim p$.

We want to learn a function h^1 such that $h(x) \approx y$ for a **new** instance $(x,y) \sim p$ To do so we specify:

- Class of functions \mathcal{H} , e.g. all possible values of k, all neural networks
- Loss function ℓ that tells us how good is a given hypothesis $h \in \mathcal{H}$

 $^{^{\}mathrm{1}}$ Usually we denote the model with f here we have h for hypothesis.

Loss functions

Let y be the ground-truth target and $\hat{y} = h(x)$ the prediction. We have:

- Zero-one loss: $\ell(y,\hat{y}) = \mathbb{I}(y \neq \hat{y})$
- Squared loss: $\ell(y, \hat{y}) = (y \hat{y})^2$
- Absolute loss: $\ell(y,\hat{y}) = |y \hat{y}|$

We can also compute the average loss for a given dataset $\mathcal{D} = \{(oldsymbol{x}_i, y_i)\}_{i=1}^N$

$$\mathcal{L}(h, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, h(\boldsymbol{x}_i))$$

With the zero-one loss $\mathcal{L}(h,\mathcal{D})$ computes the error.

We want to learn (find) $h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}(h, \mathcal{D})$.

Generalization

We want to learn (find) $h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}(h, \mathcal{D}).$

If we find a function with low loss on our data \mathcal{D} , how do we know if it will make correct predictions on unseen examples not in \mathcal{D} ?

Bad example: Define memorizer $h(\cdot)$ as:

$$h(m{x}) = egin{cases} y_i, & ext{if } \exists (m{x}_i, y_i) \in \mathcal{D}, ext{s.t. } m{x} = m{x}_i \ 0, & ext{otherwise}. \end{cases}$$

h has 0% error rate, i.e. $\mathcal{L}(h,\mathcal{D})=0$, but it performs horribly on samples not in \mathcal{D} .

Generalization

We want to learn (find) $h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}(h, \mathcal{D})$.

If we find a function with low loss on our data \mathcal{D} , how do we know if it will make correct predictions on unseen examples not in \mathcal{D} ?

Bad example: Define memorizer $h(\cdot)$ as:

$$h(m{x}) = egin{cases} y_i, & ext{if } \exists (m{x}_i, y_i) \in \mathcal{D}, ext{s.t. } m{x} = m{x}_i \ 0, & ext{otherwise.} \end{cases}$$

h has 0% error rate, i.e. $\mathcal{L}(h,\mathcal{D})=0$, but it performs horribly on samples not in \mathcal{D} .

Generalization

We actually care about the population risk $\mathcal{L}(h) = \mathbb{E}_{(\boldsymbol{x},y) \sim p}[\ell(y,h(\boldsymbol{x}))]$, while $\mathcal{L}(h,\mathcal{D})$ computes the empirical risk on a fixed sample \mathcal{D} .

The difference $\mathcal{L}(h) - \mathcal{L}(h, \mathcal{D})$ is called the **generalization gap**.

A large generalization gap indicates that we are overfitting.

In practice we don't know the distribution p so how can we get an **unbiased** estimate of $\mathcal{L}(h)$?

Split \mathcal{D} into \mathcal{D}_{train} and \mathcal{D}_{test} . Learn h with \mathcal{D}_{train} and evaluate with \mathcal{D}_{test} .

Why does $\mathcal{L}(h, \mathcal{D}_{test}) \to \mathcal{L}(h)$ as $|\mathcal{D}_{test}| \to \infty$?

Generalization

We actually care about the population risk $\mathcal{L}(h) = \mathbb{E}_{(\boldsymbol{x},y) \sim p}[\ell(y,h(\boldsymbol{x}))]$, while $\mathcal{L}(h,\mathcal{D})$ computes the empirical risk on a fixed sample \mathcal{D} .

The difference $\mathcal{L}(h) - \mathcal{L}(h, \mathcal{D})$ is called the **generalization gap**.

A large generalization gap indicates that we are **overfitting**.

In practice we don't know the distribution p so how can we get an **unbiased** estimate of $\mathcal{L}(h)$?

Split \mathcal{D} into \mathcal{D}_{train} and \mathcal{D}_{test} . Learn h with \mathcal{D}_{train} and evaluate with \mathcal{D}_{test} .

Why does $\mathcal{L}(h, \mathcal{D}_{test}) \to \mathcal{L}(h)$ as $|\mathcal{D}_{test}| \to \infty$? (Weak) law of large numbers.

Choosing k

Generalization: pick the **hyper-parameter** k that performs best on unseen data.

Unfortunately, no access to unseen future data, so split the dataset \mathcal{D} :

Training set	Validation set	
Learning set		Test set
\mathcal{D}		

Hyper-parameter tuning procedure:

- 1. Learn the model using the training set (e.g. for k-NN just store the data)
- 2. Pick k that leads to the best performance on the *validation set*
- 3. Report final performance on the test set

Example: Using the validation set to choose k

We choose k=7 since it has highest validation accuracy.

Detour: Bayes optimal classifier

Assume that we know the true $p(y \mid x)$, what is the optimal model h?

The bayes optimal classifier predicts $\hat{y} = h_{\text{opt}}(\boldsymbol{x}) = \arg\max_{y} p(y \mid \boldsymbol{x})$.

This is a good as it gets, but we can still make some errors. For the zero-one loss:

$$\epsilon_{\text{BO}} = \mathcal{L}(h_{\text{opt}}) = \mathbb{E}_{(x,y) \sim p}[\ell(y, h_{\text{opt}}(\boldsymbol{x}))] = \mathbb{E}_{(x,y) \sim p}[\ell(y, \hat{y})] = \mathbb{E}_{x \sim p}[1 - p(\hat{y} \mid \boldsymbol{x})]$$

We have $\mathcal{L}(h_{\text{opt}}) \leq \mathcal{L}(h)$ for any h.

1-NN convergence

Theorem (informal). As $N \to \infty$ the 1-NN error is no more than twice the error of the Bayes optimal classifier.

Proof. Let x_{NN} be the nearest neighbor of x.

As $N o \infty, d(\boldsymbol{x}_{\mathsf{NN}}, \boldsymbol{x}) o 0$, i.e. the nearest neighbor is identical to \boldsymbol{x} .

The error then equals the probability of drawing two different labels:

$$\begin{split} \epsilon_{\mathsf{NN}} &= \mathbb{E}_{x \sim p}[p(\hat{y} \mid \boldsymbol{x})(1 - p(\hat{y} \mid \boldsymbol{x}_{\mathsf{NN}})) + p(\hat{y} \mid \boldsymbol{x}_{\mathsf{NN}})(1 - p(\hat{y} \mid \boldsymbol{x}))] \\ &\leq \mathbb{E}_{x \sim p}[1 - p(\hat{y} \mid \boldsymbol{x}_{\mathsf{NN}}) + 1 - p(\hat{y} \mid \boldsymbol{x})] = \mathbb{E}_{x \sim p}[2(1 - p(\hat{y} \mid \boldsymbol{x}_{\mathsf{NN}}))] = 2\epsilon_{\mathsf{BO}} \end{split}$$

We have $\epsilon_{BO} \le \epsilon_{NN} \le 2\epsilon_{BO}$. So $\epsilon_{BO} = 0 \implies \epsilon_{NN} = 0$.

However, 1-NN is *statistically inconsistent* – there are distributions for which it does not converge to the Bayes error rate.

What happens when k o N?

What happens when $k \to N$?

We converge to the constant majority vote predictor $h(x) = \arg\max_y \sum_i \mathbb{I}[y=y_i]$.

This is the simplest trivial baseline that you should always compare against.

This also shows you that high accuracy, e.g. 99%, is meaningless without context. If the class labels are highly imbalanced the baseline can trivially achieve this.²

²We will discuss proper evaluation and model selection in much more detail next week.

Speed and memory requirements

You need to store the entire datasets for k-NN. Alternative:

- Prototypes: select a few representative instances and discard the rest

Computing the nearest neighbors becomes expensive in large dimensions. Methods for nearest neighbor search³:

³FAISS (https://github.com/facebookresearch/faiss) is a useful library.

Speed and memory requirements

You need to store the entire datasets for k-NN. Alternative:

- Prototypes: select a few representative instances and discard the rest

Computing the nearest neighbors becomes expensive in large dimensions. Methods for nearest neighbor search³:

- Linear search, O(DN) runtime
- Space partitioning, e.g. k-d tree, $O(\log N)$ average runtime
- Approximate search with Locality Sensitive Hashing (LSH)

³FAISS (https://github.com/facebookresearch/faiss) is a useful library.

k-NN in context

k-NN is **nonparametric** – no assumptions about the functional form, no fixed number of parameters (number of "parameters" scales with the data size).

k-NN is lazy – it does not have an explicit training step.

k-NN is **instance-based** – predict by comparing with instances in the training set.

 $k ext{-NN}$ is $ext{discriminative}$ – does not explicitly model the data generating process.

Summary

Predict the (weighted) majority of your k nearest neighbors.

Can use any distance measure (flexible) but the choice can be critical.

Can suffer from the curse of dimensionality.

Use train/validation/test split to select k and obtain a model that generalizes.

Reading material

Main reading

- "Probabilistic Machine Learning: An Introduction" by Murphy [ch. 1.2.1, 1.2.3, 16.1]

Extra reading

- "Bayesian Reasoning and Machine Learning" by Barber [ch. 14]