

Energy Conversion and Combustion Sciences

Date: 08 March 2013

Chiping Li
Program Officer
AFOSR/RTE
Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 08 MAR 2013	2 DEDORT TYPE		3. DATES COVERED 00-00-2013 to 00-00-2013				
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Energy Conversion	and Combustion S		5b. GRANT NUMBER				
	5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE Scientific Research n,VA,22203	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO Presented at the A	otes FOSR Spring Revie	w 2013, 4-8 March,	Arlington, VA.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 23	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

2013 AFOSR SPRING REVIEW

NAME: CHIPING LI

BRIEF DESCRIPTION OF PORTFOLIO:

Meet Basic Combustion Challenges with New Approaches
Explore New Energy Conversion Opportunities for
Next Generation Air Force Propulsion Systems of Game-Changing Efficiency and Operability

Key Portfolio Attributes:

- •Understand *Fundamentals* in Realms of *Air Force* Interests (understand the nature as it is)
- •Quantify *Rate-Controlling* Processes and Scales in Multi-Physics, Multi-Scale Phenomena (find ways to control complex phenomena)

LIST SUB-AREAS IN PORTFOLIO:

- 1. Combustion Chemistry (underlying chemistry, new approaches -- working with Drs. Berman/RTE, ARO & DOE/BES)
- 2. Turbulent Flame Properties/Models (nonlinear flow-chemistry interaction, new thinking/tools)
- 3. Combustion Numerics (new tools -- collaborating with Dr. Fariba/RTA)
- 4. Combustion Diagnostics (new tools -- collaborating with Dr. Parra/RTB)
- 5. Game-Changing Energy Conversion Concepts (new opportunities, Drs. Berman/RTE, Luginsland/RTB, & ONR)

Sub-areas are multi-disciplinary: collaboration with other POs & Agencies are essential.

Combustion – the Central Process in Converting Chemical to Mechanical Energy in AF Propulsion Systems

- Most Important determining factors of operability and performance;
- Least Understood areas in basic combustion research, with large uncertainties;
- Confluence of "grand-old" fundamental science challenges, immediate needs and long-term interests.

Cavity Based Scramjet Combustor

Portfolio Logic and Strategy

Portfolio Directions/Trends

1. Combustion Chemistry

- Reaction-pathway centric approaches (based on ab initial methods and exp. data)
- Traditional detailed reaction-rate-constant centric approaches

2. Turbulent Flame Properties/Models

- Turbulent flame experiments in realm of AF interests (high-Re, compressible)
- Laminar and weakly turbulent flame experiments.
- Scale interaction models based on DNS, experimental data and new math approach
- Models based on assumptions not directly verifiable by experiments

3. Combustion related Numerical Techniques

- Coupled simulation-experiment approaches
- Computational methods for studying stochastic pathways
- Computational methods for reduction of "large" detailed combustion chemistry models √

Combustion Diagnostics →

5. Game-Changing Energy Conversion Concepts

- New combustion concepts
- Direct/partially direct conversion from chemical energy to mechanical energy
- New energy-storage/ fuel concepts for propulsion application

Coordination with Other Agencies

Strong collaboration is continuously being forged in following areas: 1.

- Diagnostics (Mainly DoE, NASA)
- Numerical (DoE, NASA, ARO)
- Combustion Chemistry (DoE, ARO, NSF)
- Innovative Combustion Concept (ONR, ARO)

2. Dividing problems and condition areas according to each interests:

- AFOSR combustion portfolio:
 - Turbulence combustion area: Air-Force relevant realms, i.e. compressible, high-Re conditions for propulsion applications
 - Combustion Chemistry: Reaction-pathway centric approaches
- DOE -- a well funded combustion program focusing on basic energy research:
 - turbulence combustion area: ground-base energy systems and auto-engine types of applications at relatively low-speed and low-Re conditions (TNF etc.)
 - combustion chemistry: large, detailed reaction-rate-constant centric approach
- NASA -- a modest combustion program focusing:
 - "Very-high" speed (space access) region
 - Overlapping interests and close coordination with AF programs (scramjet, rockets etc.).
- NSF -- a modest combustion program:
 - Covers broad ranges of combustion problems

3. Multi-Agency Coordinate Committee of Combustion Research (MACCCR)

Functioning well and its positive roles will continue

Multi-Agency Collaboration Benefits Every One

Combustion Chemistry a New Direction

Combustion Chemistry: History and Recent Progress

Spalding used 3-step "fictitious" reactions to describe the global reaction kinetics of a flame (*Philos. Trans. Royal Soc. London A* 1956)

 $A {\longrightarrow} 2B - 66 \, \text{kcal/mole} = \text{radical-producing,}$ $B + A {\longrightarrow} B + 2C + 33 \, \text{kcal/mole} = \text{chain,}$

 $B+B+X \longrightarrow 2C+X+99 \text{ kcal/mole} = \text{chain-breaking}.$

add physics

Late 60s-early 70s

remove empiricism by using ~10-20 step elementary chemistry

burned Intermediates unburned

Graham Dixon-Lewis

add physics or just follow the formula?

1950s'

Three-step, global chemistry with detailed transport

burned

unburned

structure of a hydrogen flame, including intermediate radical concentrations, using detailed chemistry (*Proc. R. Soc. Lond. A* 1970)

Dixon-Lewis'

calculation of the

Today: following the formula, an extrapolation of Dixon-Lewis' work, but this is sure not what Dixon-Lewis had in mind.

- O(10⁴) species and O(10⁵) reactions with rates and pathways unverifiable.
- Back to the empirical past: > 90% species considered are not detectable by any experimental means.

Ranked maximum concentrations of species computed as an initial value problem using a typical reaction mechanism

 $(T_0 = 1400 \text{ K and } P = 1 \text{ atm})$

Uncertainty vs. Model Size

The larger, the better – Maybe Not

Does the model uncertainty reduce as
the model size grows – Not Necessarily

- Uncertainties of Model inputs
- Uncertainties with model complexity
- Relationship between model size and its uncertainty

Find out optimal model size for minimal uncertainty --- new direction in UQ for the combustion chemistry model

Two Distinctive, Complementary Approaches for Real HC Fuel

Traditional/State of Art "Rate Constants Centric"

- (1) **INCLUDE**: combinatory approaches (up to $\sim 10^4-10^5$ reaction steps for common HC fuels)
- (2) **ESTIMATE**: rate constants for most and calculate and measure for some
- (3) **SELECT**: through sensitivity analysis, targeting ~ order of 102 reaction steps

Note1: large uncertainty in steps 1 & 2

Note2: There is a confusion between approximate natures of those large, complex reaction sets and exact nature of the human Genome set.

In the combustion process, reactions follow uncertain pathways, step by step.

$$k(T) = AT^n e^{-Ea/RT}$$

At each step in traditional Arrhenius model, the reaction rate is controlled by rate constants.

	h		$k = A T^n \exp(-E/RT)^c$			references/
No.	reaction ^b		A	n	E	comments
	Reactions of propene					
1	$aC_3H_5 + H(+M) = C_3H_6(+M)$		2.00×10^{14}			k_{∞}, d
			1.33×10^{60}	-12.0	5968	k_0
		a=0.020	$T^{***}=1097$	$T^*=1097$	T**=6860	e
2	$CH_3 + C_2H_3 (+M) = C_3H_6 (+M)$		2.50×10 ¹³			k_{∞}, f
			4.27×10^{58}	-11.94	9770	k_0
		a = 0.175	$T^{***}=1341$	$T^*=60000$	T**=10140	e
3	$C_3H_6 + H = C_2H_4 + CH_3$		1.60×10^{22}	-2.39	11180	1 atm, g
4	$C_3H_6 + H = aC_3H_5 + H_2$		1.70×10^{05}	2.5	2490	[33]
5	$C_3H_6 + H = CH_3CCH_2 + H_2$		4.00×10^{05}	2.5	9790	[33]
6	$C_3H_6 + O = CH_2CO + CH_3 + H$		1.20×10^{08}	1.65	327	[33]
7	$C_3H_6 + O = C_2H_5 + HCO$		3.50×10^{07}	1.65	-972	[33]
8	$C_3H_6 + O = aC_3H_5 + OH$		1.80×10^{11}	0.7	5880	[33]
9	$C_3H_6 + O = CH_3CCH_2 + OH$		6.00×10^{10}	0.7	7630	[33]
10	$C_3H_6 + OH = aC_3H_5 + H_2O$		3.10×10^{06}	2.0	-298	[33]
11	$C_3H_6 + OH = CH_3CCH_2 + H_2O$		1.10×10^{06}	2.0	1450	[33]
12	$C_3H_6 + HO_2 = aC_3H_5 + H_2O_2$		9.60×10^{03}	2.6	13910	[33]
13	$C_3H_6 + CH_3 = aC_3H_5 + CH_4$		2.20×10^{00}	3.5	5675	[33]
14	$C_3H_6 + CH_3 = CH_3CCH_2 + CH_4$		8.40×10 ⁻⁰¹	3.5	11660	[33]

New/Start Exploring "Follow the Pathway"

- (1) **SELECT**: identify important pathways following PES
- (2) **INCLUDE**: only include most relevant ones - targeting no more than ~order of 102 reaction steps
- (3) **OBTAIN**: rate constants from experimental measure and ab initio calculations

Note1: understanding of initial fuel breakup is most important

Note2: made possible for recent develop in diagnostics and ab. initio chemistry calculation method

? - Just Start Exploring

Combustion Chemistry Models of limited reaction steps with acceptable uncertainties, usable for reactive CFD tools

???? - Have Explored for more than forty years DISTRIBUTION STATEMENT A - Unclassified, Unlimited Distribution

Ab. Initio Methods to Identify Key Pathways 🤊

Diagnostics in Combustion Chemistry

Combustion Chemistry: Where We Are

With recent developments in combustion diagnostics (especial ultra-fast lased based diagnostics) and ab. initio chemistry methods, we have unprecedented opportunities in combustion chemistry, --- AFOSR is leading the charge

leading to usable models with acceptable uncertainty to revolutionized Air Force propulsion system development.

Turbulent Flame Property in Air-Force-Relevant Realms

Turbulence Combustion: Fundamental Structures, Critical Scales and Relevant Conditions

(1)Little Understanding and Data Available at AF Relevant Compressible, High-Re Conditions;(2)Needs for Better Definition of Re-Conditions in Regions of Interests

High-Re, Compressible Turbulence Flame Experiments at AF Relevant Condition Ranges

- •Focus on key combustion properties and characteristics such as:
 - •Flame propagation,
 - Flammability limit
 - Combustion instability
- •Multi-phase conditions *applicable* to Air Force propulsion systems
- Made possible by diagnostics developed by this portfolio up to date

Key Requirements (Experimental Data Objectives):

- Understanding the above key combustion phenomena and characteristics;
- **2. Quantifying rate-controlling processes and scales** that govern those phenomena and characteristics;
- 3. Developing and validating as directly as possible basic model assumptions
- Controlling and quantifying turbulence properties are essential.

Proposals are being considered and funded for:

- •Defining relevant conditions and Studying Critical Scales (1 funded in FY12)
- •Relevant Experiments in different configurations (4 funded in FY12)

Understanding Nature from Observation and Data

More Turbulent Flame Experiments

Speed and Free Propagating Turbulent Flame and Swirl Flame: (PI: Lieuwen, Georgia Tech)

Major data set obtained over range of velocities (4-70 m/s), pressures (1-20 atm), turbulence intensities, fuel compositions. S_T/S_I can be >>100.

No upper limits observed in turbulence flame speed!!! Much more efficient and compacted combustor can be designed.

More Turbulent Flame Experiments

Flame Speed and Self-similar Propagation of Turbulent Premixed Flames: (PI: Law, Princeton)

CV: Check Valve, PG: Pressure Gauge, PT: Pressure Transducer, M: Fan Motor, L: Cylindrical Lens, E: Electrodes, W: Quartz Window

Pressure = Pressure = Settifieren images of turbulent prem Detain CH_{4} air flames (ϕ =0.9, Le=1) at same u_{ms}

Turbulence flame speed can be scaled, at least partially understood and modeled.

Turbulent Flame Interactions

thicken pre-heating (pyrolysis) zone

- large intensities, preheat (pyrolysis) zone broadened and reaction zone virtually unaffected
- robustness reaction turbulent diffusion zone suppressed in reaction zone by heat release (suppressed small scales)
- tangential strain rate thins flame

We may be able to understand turbulent flame structure after all...

Turbulence-Chemistry Interaction

Stage 1: quantify the pyrolysis process in the thicken pre-heating zone, which leads to ~6 c1-c4 molecular fragments

Stage 2: combined with the c1-c4 combustion chemistry that has been well characterized.

Turbulence-Chemistry Interaction: (PI: Wang, USC)

Turbulent Pre-Heating (Pyrolysis) Zone Makes the Chemistry Model Simpler....

Turbulent Flame Property: Where We Are

With recent developments in combustion diagnostics and numerical simulation for the reactive flow, we begun to observe and understand fundamental attributes of the turbulent flame in Air-Force-relevant realms,

Leading to:

- Quantify of interactions among different scales
- Establish of usable turbulent combustion models
- With acceptable uncertainty to revolutionized Air Force propulsion system development.

Examples of Continuous Transition

State-of-Art Optical Fibers, Probes, Single-Beam Techniques

Diagnostics

J85 Turbojet Engine
Equipped
with Augmenter

Absorbance

Absorbance

Exhaust Plume

15x15 HT Sensor

New Ignition Technique

Basic Combustion

Closing Statements

After a year, the portfolio is taking shape.

Supported projects have started showing very encouraging results.

More to come, stay tuned.