ECE537

Random Processes

Problem Set 4

- 1. Let U_1 , U_2 , and U_3 be three independent zero-mean Gaussian random variables with unit variance. Let $X=U_1$, $Y=U_1+U_2$, and $Z=U_1+U_2+U_3$.
 - (a) Find $K_{X,Y,Z}$ their covariance matrix.
 - (b) Find the joint PDF of (X, Y, Z).
 - (c) Find $f_{(Y,Z|X)}(y,z|x)$
 - (d) Find f(Z|X,Y)(z|x,y)
- 2. The number of domestic, international and visiting students that have joined the ECE department of UofT by time t are independent Poisson random variables with expectations $\lambda_i t$, $i \in \{1,2,3\}$. Let N_i , $i \in \{1,2,3\}$ denote the number of joined students in each category by time T, where T is exponentially distributed with mean α^{-1} . Find the covariance matrix of (N_1, N_2, N_3) .
- 3. If X and Y are independent exponential random variables with parameters λ_1 and λ_2 respectively, find the PDF of Z = X/Y.
- 4. If $X = [X_1, X_2, X_3]^T$ is a jointly Gaussian random vector with mean $m_X = 0$, and covariance matrix $K = I_{3\times 3}$, where $I_{3\times 3}$ is the identity matrix, find the PDF of $Y = \max(X_1, X_2, X_3)$.
- 5. The covariance matrix of the Jointly Gaussian random vector $X = [X_1, X_2, X_3]^T$ is

$$K = \begin{bmatrix} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \end{bmatrix}$$

Find the matrix A such that the elements of Y = AX and independent jointly Gaussian random variables.

- 6. The PDF of a Cauchy random variable with parameter $\gamma > 0$ is $f_X(x) = \frac{\gamma}{\pi(\gamma^2 + x^2)}$ and its characteristic function is $\Phi_X(\omega) = e^{-\gamma |\omega|}$. Find the PDF of $Y = \sum_{i=1}^n X_i$, where the X_i 's are independent Cauchy random variables with parameter γ_i .
- 7. In the food industry, we determine the popularity of a product by asking a large number of people to taste a little of it and feedback their reviews as 0 (awful) or 1 (awesome). Suppose by the kind genie, we know that the popularity of the Trump Vodka is 0.1. At least how many persons should take a test shot to make sure that with probability 99%, we see 0.89 up to 0.91 of the participants unsatisfied?
- 8. In the context of Problem 7, we have 1000 participants. By using the Chernoff bound, find an upper bound for the probability that at least half of them are satisfied.