

Université d'Ottawa · University of Ottawa

Faculté de Génie - EECS

CSI2520 : PARADIGMES DE PROGRAMMATION

Tutorat 5

Count the leaves of a binary tree

A leaf is a node with no successors. Write a predicate count_leaves/2 to count them.

```
% count_leaves(T,N) :- the binary tree T has N leaves
% count leaves (T, N) :- the binary tree T has N leaves
count leaves (nil, 0).
count leaves(t( ,nil,nil),1).
count leaves(t(,L,nil),N) :- L = t(,,)
count leaves (L, N).
count leaves(t(, nil, R), N) :- R = t(,,),
count leaves (R, N).
count leaves(t(_,L,R),N) :- L = t(_,_,_), R = t(_,_,_),
   count leaves(L,NL), count leaves(R,NR), N is NL +
NR.
% The above solution works in the flow patterns (i,o)
and (i,i)
% without cut and produces a single correct result.
Using a cut
% we can obtain the same result in a much shorter
program, like this:
count leaves1(nil,0).
count leaves1(t( ,nil,nil),1) :- !.
count leaves1(t( ,L,R),N) :-
    count leaves1(L, NL), count leaves1(R, NR), N is
NL+NR.
```

Symmetric binary trees

Let us call a binary tree symmetric if you can draw a vertical line through the root node and then the right subtree is the mirror image of the left subtree. Write a predicate symmetric/1 to check whether a given binary tree is symmetric. **Hint:** Write a predicate mirror/2 first to check whether one tree is the mirror image of another. We are only interested in the structure, not in the contents of the nodes.

```
symmetric(nil).
symmetric(t(_,L,R)) :- mirror(L,R).

mirror(nil,nil).
mirror(t(_,L1,R1),t(_,L2,R2)) :- mirror(L1,R2),
mirror(R1,L2).
```

Collect the internal nodes of a binary tree in a list

An internal node of a binary tree has either one or two non-empty successors. Write a predicate internals/2 to collect them in a list.

% internals(T,S): - S is the list of internal nodes of the binary tree T.

```
internals(nil,[]).
internals(t(_,nil,nil),[]).
internals(t(X,L,nil),[X|S]) :- L = t(_,_,_),
internals(L,S).
internals(t(X,nil,R),[X|S]) :- R = t(_,_,_),
internals(R,S).
internals(t(X,L,R),[X|S]) :- L = t(_,_,_), R =
t(_,_,_),
   internals(L,SL), internals(R,SR), append(SL,SR,S).
% OR
internals1(nil,[]).
internals1(t(_,nil,nil),[]) :- !.
internals1(t(X,L,R),[X|S]) :-
   internals1(L,SL), internals1(R,SR),
append(SL,SR,S).
```

Exercise 1. Lists to BSTs

Define a predicate that builds a binary search tree from an ordered list. Try to make the tree as balanced as possible. Here is how such a predicate could work:

```
?- listToBST([], T).
T = nul.
?- listToBST([1], T).
T = t(1, nul, nul).
?- listToBST([1, 2], T).
T = t(2, t(1, nul, nul), nul).
?- listToBST([1, 2, 3, 4, 5, 6, 7], T).
T = t(4, t(2, t(1, nul, nul), t(3, nul, nul)), t(6, t(5, nul, nul), t(7, nul, nul))
nul))) .
?- listToBST([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], T).
T = t(7, t(4, t(2, t(1, nul, nul), t(3, nul, nul)), t(6, t(5, nul, nul)),
nul)), t(10, t(9, t(8, nul, nul), nul), t(12, t(11, nul, nul), nul))) .
  • Hint:
       - find the middle element in the list.
       - length (List, LengthOfList).
     listToBST([], nul).
     listToBST (List, t(Root, Tleft, Tright)):-
          length (List, L1), L2 is L1/2,
          findMid (List, L2, Root, Lleft, Lright),
          listToBST (Lleft, Tleft), listToBST (Lright,
Tright).
     listToBST([], nul).
     listToBST (List, t(Root, Tleft, Tright)):-
          length (List, L1), L2 is L1/2,
          findMid (List, L2, Root, Lleft, Lright),
          listToBST (Lleft, Tleft), listToBST (Lright,
Tright).
```

Search

Explore the different search options given below. Use them to solve the towers of Hanoi problem and observe what happens.

```
% Only smaller disks can go on larger disks legal(_,[]). legal(D1,[D2|_]):- D1 < D2. % Move from first to second pole transition([[T|L1],L2,L3],[L1,[T|L2],L3]) :- legal(T,L2). % Move from first to third pole transition([[T|L1],L2,L3],[L1,L2,[T|L3]]) :- legal(T,L3).
```

```
% Move from second to first pole
transition([L1,[T|L2],L3],[[T|L1],L2,L3]) :- legal(T,L1).
% Move from second to third pole
transition([L1,[T|L2],L3],[L1,L2,[T|L3]]) :- legal(T,L3).
% Move from third pole to first pole
transition([L1,L2,[T|L3]],[[T|L1],L2,L3]) :- legal(T,L1).
% Move from third pole to second pole
transition([L1,L2,[T|L3]],[L1,[T|L2],L3]) :- legal(T,L2).
% final goal
goalState([[],[],_]).
% helper routine
showPath([]).
showPath([Node|Path]) :- showPath(Path), nl, write(Node).
```

Solution 1. Standard prolog DFS

The following program uses Prolog's depth first search strategy with the states and transitions defined above.

Solution 2. Prolog DFS without Loops

The following program uses again Prolog's depth first search strategy but avoids returning to previously visited states (or search nodes).

Solution 3. Prolog DFS to a Maximum Depth

The following program uses again Prolog's depth first search strategy but only backtracks until a certain depth in the search tree is reached.

Solution 4. Use BFS

The following program implements breadth first search with the help of the bagof predicate.