

Градиентный спуск

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha) < f(x)$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha) < f(x)$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle \le 0$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha) < f(x)$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle \le 0$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha) < f(x)$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle \le 0$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление наискорейшего локального убывания функции f.

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) < f(x)$$

$$f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha) < f(x)$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle \le 0$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление наискорейшего локального убывания функции f.

Итерация метода имеет вид:

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k)$$

Дифференциальное уравнение градиентного потока

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дифференциальное уравнение градиентного потока

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

Дифференциальное уравнение градиентного потока

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1}-x^k}{\alpha}=-\nabla f(x^k),$$

где $x^k \equiv x(t_k)$ и $\alpha = t_{k+1} - t_k$ — шаг сетки.

Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска.

Открыть в Colab 🚓

_Дифференциальное уравнение градиентного потока

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)).$$

Дискретизируем его на равномерной сетке с шагом lpha:

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

где $x^k \equiv x(t_k)$ и $\alpha = t_{k+1} - t_k$ — шаг сетки.

Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска.

Открыть в Colab 弗

Trajectories with Contour Plot

Рис. 1: Траектория градиентного потока

Сходимость алгоритма градиентного спуска

lacktriangleКод для построения анимации ниже. Сходимость существенно зависит от выбора шага lpha:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Условия оптимальности:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \mathop{\arg\min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\frac{d}{d\alpha} f(x^k - \alpha \nabla f(x^k)) \Big|_{\alpha = \alpha_k} = 0.$$

Условия оптимальности:

$$\nabla f(x^{k+1})^\top \nabla f(x^k) = 0$$

Рис. 2: Наискорейший спуск

Открыть в Colab 🌲

Сильно выпуклые квадратичные функции

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

Рассмотрим следующую задачу квадратичной оптимизации:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

• Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- ullet Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$

Рассмотрим следующую задачу квадратичной оптимизации:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A = Q \Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

♥ 0 Ø

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- ullet Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ rge } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x} = Q^T(x - x^*)$, где x^* — точка минимума исходной функции, определяемая как $Ax^* = b$. При этом $x = Q\hat{x} + x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ rge } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x} = Q^T(x - x^*)$, где x^* — точка минимума исходной функции, определяемая как $Ax^* = b$. При этом $x = Q\hat{x} + x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ rge } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x} = Q^T(x - x^*)$, где x^* — точка минимума исходной функции, определяемая как $Ax^* = b$. При этом $x = Q\hat{x} + x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} - \frac{1}{2} (x^*)^T A x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ где } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x} = Q^T(x - x^*)$, где x^* — точка минимума исходной функции, определяемая как $Ax^* = b$. При этом $x = Q\hat{x} + x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} - \frac{1}{2} (x^*)^T A x^* \simeq \frac{1}{2} \hat{x}^T \Lambda \hat{x} \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x}

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

 $x_{(i)}^{k+1} = (1-lpha^k\lambda_{(i)})\,x_{(i)}^k$ для i-й координаты

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2} x^T \Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$=(I-\alpha^k\Lambda)x^k$$
 $x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})\,x_{(i)}^k$ для i -й координаты
$$x_{(i)}^k=(1-\alpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $\alpha^k=\alpha$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

Используем постоянный шаг $\alpha^k = \alpha$. Условие сходимости:

$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L > \mu$.

 $f \to \min_{z,y,z}$ Сильно выпуклые квадратичные функции

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1}=x^k-lpha^k
abla f(x^k)=x^k-lpha^k\Lambda x^k \ =(I-lpha^k\Lambda)x^k \ x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты

Используем постоянный шаг $\alpha^k=\alpha$. Условие сходимости:

$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

 $x_{(i)}^k = (1 - \alpha \, \lambda_{(i)})^k \, x_{(i)}^0$ при постоянном шаге $\alpha^k = \alpha$

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{aligned} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{aligned}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты $x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k=lpha$

Используем постоянный шаг $\alpha^k=\alpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$

$$-1 < 1 - \alpha \mu < 1$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\hat{x}$$
)
$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $lpha^k=lpha$ Используем постоянный шаг $lpha^k=lpha$. Условие

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) \, x_{(i)}^k$ для i-й координаты

сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Помним, что
$$\lambda_{\min} = \mu > 0$$
, $\lambda_{\max} = L \geq \mu$.

$$|1 - \alpha \mu| < 1$$
$$-1 < 1 - \alpha \mu < 1$$

 $= (I - \alpha^k \Lambda) x^k$

$$-\alpha\mu$$
 < .

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^k = (1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $lpha^k = lpha$.

Используем постоянный шаг $\alpha^k = \alpha$. Условие сходимости:

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$\begin{aligned} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & \end{aligned}$$

 $= (I - \alpha^k \Lambda) x^k$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2}x^T\Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$x_{(i)}^k = (1 - \alpha \, \lambda_{(i)})^k \, x_{(i)}^0$$
 при постоянном шаге $\alpha^k = \alpha$

Используем постоянный шаг $\alpha^k = \alpha$. Условие сходимости:

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu.$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
-1 < 1 - \alpha L < 1 -1 < 1 - \alpha L < 1

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$lpha < rac{2}{\mu}$$
 $lpha \mu > 0$ Сильно выпуклые квэдратичные функции

 $= (I - \alpha^k \Lambda) x^k$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$x_{(i)}^k = (1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $lpha^k = lpha$

Используем постоянный шаг $\alpha^k=\alpha$. Условие сходимости:

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$lpha < rac{2}{\mu}$$
 $lpha \mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$ Сильно выпуклые квадратичные функции

 $= (I - \alpha^k \Lambda) x^k$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$x_{(i)}^k = (1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $lpha^k = lpha$

Используем постоянный шаг $\alpha^k=\alpha$. Условие сходимости:

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$lpha < rac{2}{\mu}$$
 $lpha \mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$ Сильно выпуклые квадратичные функции

сходимости:

Теперь мы можем работать с функцией $f(x) = \frac{1}{2}x^T\Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$=(I-\alpha^k\Lambda)x^k \\ x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты
$$\rho^*=\min_{\alpha}\rho(\alpha)$$

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Используем постоянный шаг $\alpha^k = \alpha$. Условие

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

. . . . Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$\begin{aligned} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ & \alpha < \frac{\rho}{L} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

 $x_{(i)}^k = (1 - \alpha \, \lambda_{(i)})^k \, x_{(i)}^0$ при постоянном шаге $\alpha^k = \alpha$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2}x^T\Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k \Lambda) x^k$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты $x_{(i)}^k = (1 - \alpha \, \lambda_{(i)})^k \, x_{(i)}^0$ при постоянном шаге $\alpha^k = \alpha$

Используем постоянный шаг $\alpha^k = \alpha$. Условие

. . . Помним, что
$$\lambda_{\min} = \mu > 0$$
, $\lambda_{\max} = L > \mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ Сильно выпуклые квадратичные функции

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2}x^T\Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ для *i*-й координаты

 $x_{(i)}^k = (1 - \alpha \, \lambda_{(i)})^k \, x_{(i)}^0$ при постоянном шаге $\alpha^k = \alpha$ Используем постоянный шаг $\alpha^k = \alpha$. Условие

сходимости: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

. . . . Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \end{split}$$

$$lpha < rac{2}{\mu}$$
 $lpha \mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты $x_{(i)}^k = (1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k = lpha$

сходимости:

Используем постоянный шаг $\alpha^k = \alpha$. Условие

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . . . Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

 $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ $lpha < rac{\mu}{N}$ Сильно выпуклые квадратичные функции

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \end{split}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2} x^T \Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из

$$\hat{x}$$
) Выберем $lpha$, минимизирующий худший знаменатель $x^{k+1}=x^k-lpha^k
abla f(x^k)=x^k-lpha^k\Lambda x^k$ прогрессии

$$=(I-\alpha^k\Lambda)x^k$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})\,x_{(i)}^k\quad\text{для i-й координаты}$$

$$x_{(i)}^{k+1} = (1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты $x_{(i)}^k = (1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k = lpha$

сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

Используем постоянный шаг $\alpha^k = \alpha$. Условие

$$\begin{aligned} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ & \alpha < \frac{2}{L} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* &: \quad 1 - \alpha^* \mu = \alpha^* L - 1 \end{split}$$

$$\alpha^* = \frac{2}{\mu + L}$$

Теперь мы можем работать с функцией $f(x) = \frac{1}{2} x^T \Lambda x$ с $x^* = 0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{split}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты $x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k=lpha$

сходимости:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Используем постоянный шаг $\alpha^k = \alpha$. Условие

. . . . Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* &: \quad 1 - \alpha^* \mu = \alpha^* L - 1 \end{split}$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$|L| < 1$$
 $(1 - \alpha L < 1)$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{split}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты $x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k=lpha$

сходимости: $\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$

Используем постоянный шаг $\alpha^k = \alpha$. Условие

Помним, что
$$\lambda_{\min} = \mu > 0$$
, $\lambda_{\max} = L \geq \mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$ $-1 < 1 - \alpha L < 1$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* &: \quad 1 - \alpha^* \mu = \alpha^* L - 1 \end{split}$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$|x_{(i)}^k| \leq \left(\frac{L-\mu}{L+\mu}\right)^k |x_{(i)}^0|$$

$$lpha < rac{\mu}{L}$$
 $lpha \mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$

Теперь мы можем работать с функцией $f(x)=rac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{split}$$

$$=(I-lpha^\kappa\Lambda)x^\kappa$$
 $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$ для i -й координаты $x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$ при постоянном шаге $lpha^k=lpha$

Используем постоянный шаг
$$\alpha^k=\alpha$$
. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L > \mu$.

$$|1 - \alpha \mu| < 1 \qquad \qquad |1 - \alpha L| < 1$$

$$-1 < 1-lpha\mu < 1$$
 $-1 < 1-lpha L < 1$ $lpha < rac{2}{L}$ $lpha\mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* &\colon \quad 1 - \alpha^* \mu = \alpha^* L - 1 \end{split}$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$
$$|x_{(i)}^k| \le \left(\frac{L - \mu}{L + \mu}\right)^k |x_{(i)}^0|$$

$$|x_{(i)}^0|$$

$$\|x^k\|_2 \le \left(\frac{L-\mu}{L+\mu}\right)^k \|x^0\|_2$$

 $= (I - \alpha^k \Lambda) x^k$

 $|1 - \alpha \mu| < 1$

Теперь мы можем работать с функцией $f(x)=rac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$x$$
) Выберем $lpha$, минимизирующий худший знаменатель $x^{k+1}=x^k-lpha^k\nabla f(x^k)=x^k-lpha^k\Lambda x^k$ прогрессии

$$x_{(i)}^{k+1} = (1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты

$$x_{(i)}^k=(1-lpha\,\lambda_{(i)})^k\,x_{(i)}^0$$
 при постоянном шаге $lpha^k=lpha$ Используем постоянный шаг $lpha^k=lpha$. Условие

сходимости: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

. . . . Помним, что
$$\lambda_{\min} = \mu > 0$$
, $\lambda_{\max} = L \geq \mu$.

$$|1-lpha L| < 1$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \end{split}$$

$$\alpha^*: 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$\begin{pmatrix} k \\ \downarrow_{x^0} \downarrow \end{pmatrix}$$

$$|x_{(i)}^k| \le \left(\frac{L-\mu}{L+\mu}\right)^k |x_{(i)}^0|$$

$$\begin{aligned} \|x^k\|_2 &\leq \left(L + \mu\right)^{-|x^0(i)|} \\ \|x^k\|_2 &\leq \left(\frac{L - \mu}{L + \mu}\right)^k \|x^0\|_2 \quad f(x^k) \leq \left(\frac{L - \mu}{L + \mu}\right)^{2k} f(x^0) \end{aligned}$$

$$_{i)}$$
 |

$$-1 < 1-lpha\mu < 1$$
 $-1 < 1-lpha L < 1$ $lpha < rac{2}{L}$ $lpha\mu > 0$ $lpha < rac{2}{L}$ $lpha L > 0$ Сильно выпуклые квадратичные функции

Таким образом, имеем линейную сходимость по аргументу со скоростью $\frac{\varkappa-1}{\varkappa+1}=1-\frac{2}{\varkappa+1}$, где $\varkappa=\frac{L}{\mu}$ — число обусловленности квадратичной задачи.

и	ρ	Итераций до уменьшения ошибки по аргументу в 10 раз	Итераций до уменьшения ошибки по ϕ ункции в 10 раз
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Число обусловленности и

Случай РL-функций

учай PL-функций

PL-функции. Линейная сходимость градиентного спуска без выпуклости

Говорят, что f удовлетворяет условию Поляка-Лоясиевича (PL), если для некоторого $\mu>0$ выполняется

$$\|\nabla f(x)\|^2 \geq 2\mu(f(x) - f^*) \quad \forall x$$

Интересно, что градиентный спуск может сходиться линейно даже без выпуклости.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. • Код

$$f(x) = x^2 + 3\sin^2(x)$$

PL-функции. Линейная сходимость градиентного спуска без выпуклости

Говорят, что f удовлетворяет условию Поляка-Лоясиевича (PL), если для некоторого $\mu>0$ выполняется

$$\|\nabla f(x)\|^2 \geq 2\mu(f(x) - f^*) \quad \forall x$$

Интересно, что градиентный спуск может сходиться линейно даже без выпуклости.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. **Ф**Код

$$f(x) = x^2 + 3\sin^2(x)$$

Function, that satisfies Polyak- Lojasiewicz condition $f(x) = x^2 + 3sin^2(x)$

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Non-convex PL function

i Theorem

Рассмотрим задачу

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

и предположим, что f является PL-функцией с константой μ и L-гладкой, для некоторых $L \ge \mu > 0$. Рассмотрим последовательность $(x^k)_{k \in \mathbb{N}}$, сгенерированную методом градиентного спуска из точки x^0 с

постоянным шагом lpha, удовлетворяющим $0<lpha\leq \frac{1}{L}.$ Пусть $f^*=\min_{x\in\mathbb{R}^d}f(x).$ Тогда:

$$f(x^k)-f^*\leq (1-\alpha\mu)^k(f(x^0)-f^*).$$

₩ 6

Любая μ -сильно выпуклая дифференцируемая функция является PL-функцией

i Theorem

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Выпуклый гладкий случай

Выпуклый гладкий случай

i Theorem

Рассмотрим задачу

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

и предположим, что f является выпуклой и L-гладкой функцией, для некоторого L>0.

Пусть $(x^k)_{k\in\mathbb{N}}$ — последовательность итераций, сгенерированная методом градиентного спуска из точки x^0 с постоянным шагом lpha, удовлетворяющим $0<lpha\leq rac{1}{L}.$ Пусть $f^*=\min_{x\in\mathbb{R}^d}f(x).$ Тогда для всех

 $x^* \in \operatorname{argmin} f$ и всех $k \in \mathbb{N}$ справедливо:

$$f(x^k) - f^* \le \frac{\|x^0 - x^*\|^2}{2\alpha k}.$$

Итог

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$f(x) \hspace{1cm} x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

гладкий (не выпуклый)	гладкий и выпуклый	гладкий и сильно выпуклый (или PL)
$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\varkappa\log\frac{1}{\varepsilon}\right)$

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, random matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, clustered matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=600, clustered matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, uniform spectrum matrix.

$$f(x) = \frac{1}{2} x^T A x - b^T x \to \min_{x \in \mathbb{R}^n}$$

Strongly convex quadratics. n=60, Hilbert matrix.

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

Convex binary logistic regression. mu=0.

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \to \min_{x \in \mathbb{R}^n}$$

Strongly convex binary logistic regression. mu=0.1.

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

Regularized binary logistic regression. n=300. m=1000. μ =0

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \rightarrow \min_{x \in \mathbb{R}^n}$$

Regularized binary logistic regression. n=300. m=1000. μ =1

