\mathbb{R} を実数体、F を体、V を F ベクトル空間とする。

問題 1. $v_1, \ldots, v_n \in V$ が、(F上)一次独立であることの定義を述べよ。

問題 2. $v_1, v_2, v_3, v_4 \in \mathbb{R}^4$ を

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

とする。次のうち、ℝ上一次独立になるベクトルの組をすべて選べ。

- 1. v_1, v_2
- 2. v_1, v_2, v_3
- 3. v_2, v_3
- 4. v_1, v_2, v_4
- 5. v_1, v_2, v_3, v_4

問題 3. $u=(a,b), v=(c,d)\in\mathbb{R}^2$ が \mathbb{R} 上一次独立である必要十分条件が $ad-bc\neq 0$ であることを示せ。 (ヒント:対偶)

問題 4. 1 と $\sqrt{2}$ が $\mathbb Q$ 上一次独立であるとはどういうことか、一次独立の定義に従い述べよ。また、これを示せ。