

Funções Inorgânicas

As funções inorgânicas são quatro:

- Ácidos (H? ou H?O) ametal
- Bases (?OH) metal
- Sais (??) metal + ametal
- Óxidos (?O) ametal ou metal

Ácidos

Substâncias que liberam íons H⁺(H₃O⁺) como únicos cátions.

Exemplos: HCl, HNO₃, H₂SO₄, H₃PO₄, H₂CO₃, etc.

<u>Ácido de Arrhenius</u> é qualquer espécie que aumenta a concentração dos íons (prótons) H⁺em solução aquosa.

Hidrácidos (formados por um H + ametal)

Ácido <u>nome do ametal (ânion)</u> ídrico

Exemplos:

HCl (ácido clorídrico)
HI (ácido iodídrico)
H₂S (ácido sulfídrico)
HF (ácido fluorídrico)
H₃N (ácido nitrídrico)

Regras para descobrir o Número de Oxidação (NOx)

Espécie química	Situação	Nox	Exemplos		
Substâncias simples	Qualquer caso	Zero	H_2 , O_2 , N_2 , F_2 , Cl_2 , Br_2 , I_2 , P_4 , S_8 , Cu , Al , Au etc.		
Íon	Qualquer caso	A carga do íon	$Na^+ \Rightarrow Nox = +1$; $A1^{3+} \Rightarrow Nox = +3$; $F^- \Rightarrow Nox = -1$ $Ca^{2+} \Rightarrow Nox = +2$; $S^{2-} \Rightarrow Nox = -2$; $N^{3-} \Rightarrow Nox = -3$		
Metais alcalinos e Ag	Em todos os compostos	+1	NaCl, KOH, LiNO ₃ , Ag ₂ SO ₄ , NaBr 		
Metais alcalino- terrosos e zinco	Em todos os compostos	+2	CaCl ₂ , MgO, BaSO ₄ , ZnCl ₂ , ZnSO ₄ 		
Alumínio	Em todos os compostos	+3	Al ₂ O ₃ , AlCl ₃ , Al(OH) ₃ +3 +3 +3		
Flúor	Em todos compostos	-1	HF, CF ₄ , NF ₃ , OF ₂		
Hidrogênio	Ligado a ametais	+1	HCl, H ₂ S, CH ₄ , NH ₃ , H ₂ SO ₄ , H ₂ CO		
rhurogemo	Ligado a IA e IIA	-1	NaH, LiH, CaH ₂ , BaH ₂		
	Na maioria de seus compostos	-2	H ₂ O, H ₂ SO ₄ , CaCO ₃ , SO ₂ , NO, CO ₂ 		
Ovjaĝajo	Peróxidos	-1	H ₂ O ₂ , Na ₂ O ₂ , CaO ₂ , MgO ₂		
Oxigênio	Superóxidos	-1/2	K ₂ O ₄ , Na ₂ O ₄ 		
	Com flúor	+2	OF ₂ +2		
Um composto	Qualquer		A soma algébrica dos Nox de todos os elementos participantes de um composto é igual a zero.		
Um ion	Qualquer	A soma algébrica dos Nox de todos os elementos de um íon é igual à carga do íon.			

Oxiácidos (formados por um H + ametal + Oxigênio)

Número de oxidação (Nox) do átomo central	Prefixo	Ânion	Sufixo
1 ou 2	Hipo		oso
3 ou 4			oso
5 ou 6			ico
7	(hi)Per		ico

H₂SO₄ HNO₃ H₄P₂O₇ H₃PO₄ H₃BO₃ H₂CO₃ HNO₂

Oxiácidos (formados por um H + ametal + Oxigênio)

Número de oxidação (Nox) do átomo central	Prefixo	Ânion	Sufixo
1 ou 2	Hipo		oso
3 ou 4			oso
5 ou 6			ico
7	(hi)Per		ico

 H_2SO_4

HNO₃

 $H_4P_2O_7$

H₃PO₄

 H_3BO_3

H₂CO₃

HNO₂

ác. sulfúrico

ác. nítrico

ác. fosfórico

ác. fosfórico

ác. boroso

ác. carbônico*

ác. nitroso

Bases

Substâncias que em água liberam HO - como únicos ânions. Exemplos: NaOH, Ca(OH)₂, Al(OH)₃, NH₄OH, etc.

$$H(OH)_x \stackrel{aq}{\longleftrightarrow} B^{x+} + x OH^-$$

Base de Arrhenius é qualquer espécie que aumenta a concentração dos íons (ânions) OH⁻ em solução aquosa.

Bases

Família 1 A
Família 2 A
Metais

+

OH⁻

Hidroxila

Hidróxido de <u>nome do metal (cátion)</u>

NaOH

 $Ca(OH)_2$

 $AI(OH)_3$

NH₄OH

Hidróxido de sódio

hidróxido de cálcio

ou

hidróxido de alumínio

hidróxido de amônio

ou

Soda Cáustica

Cal hidratada, Cal apagada,

Leite de cal,

Cal extinta

Sais

Substâncias obtidas junto com água em reações entre ácidos e bases (neutralização). Exemplos: NaCl, KNO₃, Na₂SO₄, Ca₃(PO₄)₂, CaCO₃, etc.

$$ACIDO + BASE \longleftrightarrow H_2O + SAL$$
 $HCI + NaOH \longleftrightarrow H_2O + NaCI$

ÁCIDO	SAL		
ídrico	eto	HCl + NaOH ← H₂O	+ NaCl
ico	ato	TICI TINGOTT TI ₂ O	I Naci
oso	ito	Ácido clorídrico	Cloreto de sódio

"Teimoso mosquito no bico do pato te meto no vidrico."

Óxidos

Substâncias binárias do oxigênio E_xO_v .

Oxidos ácidos: óxidos moleculares capazes de produzir ácidos em contato com a água.

Exemplos: CO₂, SO₂, SO₃, etc.

ÓXIDO ÁCIDO +
$$H_2O \longrightarrow ACIDO$$

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

ÓXIDO ÁCIDO + BASE
$$\longrightarrow$$
 H₂O + SAL
CO₂ + 2 NaOH \longrightarrow H₂O + Na₂CO₃

Óxidos básicos: óxidos iônicos capazes de produzir bases em contato com a água.

Exemplos: Na₂O, CaO, etc.

ÓXIDO BÁSICO +
$$H_2O \longrightarrow BASE$$

CaO + $H_2O \longrightarrow Ca(OH)_2$

ÓXIDO BÁSICO + ÁCIDO
$$\longrightarrow$$
 H_2O + SAL CaO + $H_2SO_4 \longrightarrow$ H_2O + $CaSO_4$

Peróxidos: óxidos que possuem o íon peróxido (O_2^{2-}) .

Exemplos: H₂O₂, Na₂O₂, CaO₂, etc.

-> O Nox do oxigênio tem seu valor diferente de - 2.

Nomenclatura

Óxido de ____nome do elemento_

-> Dióxido ou Trióxido

Peróxido de <u>nome do elemento</u>

 CO_2

Dióxido de carbono SO_3

Trióxido de enxofre CO

Óxido de carbono ou monóxido de carbono CaO

Óxido de cálcio ou monóxido de cálcio Cal viva, Cal virgem.

pH e pOH

Para medir os níveis de acidez e alcalinidade das soluções, utilizam-se as escalas de pH e pOH, Uruguaiana que medem os teores dos íons H⁺e OH⁻ livres por unidade de volume da solução.

$$HOH \longrightarrow H^+ + OH^-$$

$$Kw = [H^+].[OH^-] = 10^{-14}$$

$$pH = - log [H^+]$$

$$pOH = - log [OH^{-}]$$

$$pH + pOH = 14$$

Escala de pOH

Escala de pH

O que são indicadores ácido-base?

São substâncias naturais ou sintéticas que têm a propriedade de mudarem de cor em função do pH do meio.

Exemplos de Indicadores de pH:

- Fenolftaleína;
- Papel de Tornassol;
- Indicador Universal.

Fenolftaleina

Apresenta-se normalmente como um sólido em pó branco ou em solução alcoólica como um líquido incolor. Torna-se cor-de-rosa em soluções básicas e mantém-se incolor em soluções ácidas.

Papel de Tornassol

Tornassol vermelho: identifica bases (muda para azul);

Tornassol azul: identifica ácidos (muda para vermelho);

Tornassol neutro: identifica ácidos (muda para vermelho) e bases (muda para azul).

Papel de Tornassol neutro

Indicador Universal

Permite obter um valor aproximado do valor do pH. Apresentam distintas cores para cada pH de 1 a 14.

Indicador Universal de pH em solução

Medidor de pH (pHmetro)

Indicador Universal de pH em tiras de papel absorvente

