Ghost is in the Air(Traffic)

Andrei Costin <andrei.costin@eurecom.fr>
Aurelien Francillon <aurelien.francillon@eurecom.fr>

andrei# whoami SW/HW security researcher, PhD candidate

Mifare Classic MFCUK

Interest in avionics

Hacking MFPs +
PostScript

http://andreicostin.com/papers/
http://andreicostin.com/secadv/

Administratrivia #0 DISCLAIMER

- This presentation is for informational purposes only. Do not apply the material if not explicitly authorized to do so
- Reader takes full responsibility whatsoever of applying or experimenting with presented material
- Authors are fully waived of any claims of direct or indirect damages that might arise from applying the material
- Information herein represents author own views on the matter and does not represent any official position of affiliated body

tldr;

- DO NOT TRY THIS AT HOME!
 - USE AT YOUR OWN RISK!

Agenda

ATC Today (SSR)

- 2. Today's Problems
- 3. ATC "Tomorrow" (ADS-B)
- 4. "Tomorrow"s Problems
- 5. Exploit scenarios & Demos
- 6. Solutions and take-aways

ATC Today...

AIR TRAFFIC CONTROL

What my friends think I do

What my mom thinks I do

What society thinks I do

What pilots think I do

What I think I do

What I actually do

How do radars work without ADS-B?

SSR transmits basic solicited data

- SSR is solicited type of communication
 - Solicitation via XPDR
 - Solicitation via voice VHF
- Example of data from SSR XPDR:
 - Aircraft Address
 - Altitude
 - Code (squawk)
 - Angles (Roll/Track)

Agenda

1. ATC Today (SSR)

Today's Problems

- 3. ATC "Tomorrow" (ADS-B)
- 4. "Tomorrow"s Problems
- 5. Exploit scenarios & Demos
- 6. Solutions and take-aways

Inputs are not robust enough

Don't add any leading zeros, hyphens, dashes or spaces to the FLTID.

To allow correlation of a FLTID to a flight plan, the FLTID must match the Aircraft Identification (ACID) entered in Item 7 of the Flight Notification.

be able to see your aircraft, or might confuse it with another.
You could also affect other systems, like TCAS. The codes are flight critical information, so enter them carefully.

Input mistakes have severe implications

When making routine code changes, you should avoid inadvertent selection of codes 7500, 7600, or 7700 thereby causing momentary false alarms at automated ground facilities. For example when switching from code 2700 to code 7200, switch first to 2200 then 7200, NOT to 7700 and then 7200.

This procedure applies to nondiscrete code 7500 and all discrete codes in the 7600 and 7700 series (i.e., 7600-7677, 7700-7777) which trigger special indicators in automated facilities. Only nondiscrete code 7500 will be decoded as the hijack code. An aircraft's transponder code (when available) is utilized to enhance the tracking capabilities of the ATC facility, therefore you should not turn the GTX 320 to SBY when making routine code changes.

Important Codes

- 1200—The VFR Code for any altitude.
- 7600—Loss of Communications.
- 7500—Hijacking (Never assigned by ATC with her aircraft is subject to unlawful interference).
- 7700—Emergency (All secondary surveillance times).

Important Codes

Following is a list of important codes:

- 1200 VFR code in the U.S. (refer to ICAO standards for VFR codes in other countries).
- 7000 VFR code commonly used in Europe (refer to ICAO standards).
- 7500 Hijack code.
- 7600 Loss of communication code.
- 7700 Emergency code.
- 7777 Military interceptor operations code (NEVER SQUAWK THIS CODE).
- 0000 Code for military use in the U.S.

Agenda

- 1. ATC Today (SSR)
- 2. Today's Problems

ATC "Tomorrow" (ADS-B)

- 4. "Tomorrow"s Problems
- 5. Exploit scenarios & Demos
- 6. Solutions and take-aways

EXHIBIT 300

ADS-B is a \$billions world-wide effort from 2002...

FAAXX704: Automatic Dependent Surveillance-Broadcast (ADS-B)

Investment The Surveillance and Broadcast Services (SBS) program office is implementing Description Automatic Dependent Surveillance-Broadcast (ADS-B), a surveillance system designed to provide improved air traffic information for pilots and air traffic controllers. ADS- More

FY2012 (CY) Spending \$301.52 M

Status . Continued

2006 - 2035

Time frame of investment

Gurrent Exhibit 300 FY12 Exhibit 300 Contracts Baseline Change History Evaluation History

UII 021-142305975

Section C: Summary of Funding (Budget Authority for Capital Assets)

		Table I.C.1 Summary of Funding		
	PY-1 & Prior	PY 2011	CY 2012	BY 2013
Planning Costs:	\$9.9	\$0.0	\$0.0	\$0.0
DME (Excluding Planning) Costs:	\$710.7	\$179.8	\$288.0	\$272.1
DME (Including Planning) Govt. FTEs.	\$28.6	\$6.3	\$6.8	\$4.5
Sub-Total DME (Including Govt. FTE):	\$749.2	\$186.1	\$294.8	\$276.6
O & M Costs:	\$11.0	\$5.0	\$6.4	\$7.9
O & M Govt. FTEs:	\$2.6	\$0.3	\$0.4	\$0.2
Sub-Total O & M Costs (Including Govt. FTE):	\$13.6	\$5.3	\$6.8	\$8.1
Total Cost (Including Govt. FTE):	\$762.8	\$191.4	\$301.6	\$284.7
Total Govt, FTE costs.	\$31.2	\$6.6	\$7.2	\$4.7
# of FTE rep by costs:	202	38	38	24
Total change from prior year final President's Budget (\$)		\$0.0	\$-2.0	
Total change from prior year final President's Budget (%)		0.00%	-0.66%	

How does ADS-B work? – Architectural view

Guidance for the Provision of Air Traffic Services Using ADS-B for Airport Surface Surveillance

2.1.1 ADS-B Out and ADS-B IN

ADS-B Out and ADS-B In - Simplified Functional Diagram

ADS-B – INsideOUT...

- ADS-B is being used over 2 existing technologies:
 - Mode-S 1090 MHz (replies) and 1030 MHz (interrogation)
 - PPM @ 1 Mbps
 - UAT (Universal Access Transceiver) 978 MHz (replies)
 - CP-2FSK @ 1.041667 Mbps (modulation index h >= 0.6)

ATC Tomorrow – NextGen, ATC/M and eAircrafts

ADS-B Deployment Map – Australia

www.airservicesaustralia.com/projects/ads-b/ads-b-coverage/

ADS-B Deployment Map – USA

www.faa.gov/nextgen/flashmap/

FA.A Home * NextGen * NextGen Technologies Interactive Map

NextGen Technologies Interactive Map

Page Last Modified: 08/09/10 11:06 ET

How does community get this data?

AirNav RadarBox

PlaneGadgets ADS-B

miniADSB

Mode-S Beast with miniASDB

Aurora Eurotech SSRx

Funkwerk RTH60

Kinetic SBS

microADSB USB

microADSB-IP BULLION

How does ADS-B look like? – Community view

ADS-B frame – modulation, format, security

- Frames encoded in
 - Pulse-position-modulation (PPM)
 - 1 bit = 1 us
 - Shared-medium (no CA/CD), theoretical bandwidth 1 Mbit/sec

ADS-B frame – modulation, format, security

- Frames encoded in
 - Pulse-position-modulation (PPM)
 - 1 bit = 1 us
 - Shared-medium (no CA/CD), theoretical bandwidth 1 Mbit/sec
- Frames composed of
 - A preamble
 - 8 bits for TX/RX sync
 - A data-block
 - 56 bits for short frames
 - 112 bits for extended/long frames
 - Mandatory to have
 - 24 bits ICAO address of aircraft
 - 24 bits error-detection parity

ADS-B frame – modulation, format, security

Page intentionally left blank

Agenda

- 1. ATC Today (SSR)
- 2. Today's Problems
- 3. ATC "Tomorrow" (ADS-B)

"Tomorrow"s Problems

- 5. Exploit scenarios & Demos
- 6. Solutions and take-aways

ADS-B Main Threats – Summary

ADS-B Threat	Fail / warn / ok
Entity/message authentication	
Entity authorization (eg. medium access)*	
Entity temporary identifiers/privacy	0
Message integrity (HMAC)	
Message freshness (non-replay)	0
Encryption (message secrecy)	
Massive public DBs with private detail*	

Potential mitigations exist... but are not public

- Mode-4/Mode-5 IFF Crypto Appliqué
 - 2-Levels Crypto secured version of Mode S and ADS-B GPS position
 - Defined for military NATO STANAG 4193
 - Enhanced encryption
 - Spread Spectrum Modulation
 - Time of Day Authentication
 - Level1:
 - Aircraft Unique PIN
 - Level2:
 - Level1 + other (unknown for now) information
 - Apparently based on Black & Red keys crypto
- ADS-B also specifies, but not details available about crypto/security:
 - DF19 = Military Extended Squitter
 - DF22 = Military Use Only

Agenda

- 1. ATC Today (SSR)
- 2. Today's Problems
- 3. ATC "Tomorrow" (ADS-B)
- 4. "Tomorrow"s Problems

Exploit scenarios & Demos

6. Solutions and take-aways

ADS-B – Adversary Model – *By role*

- Pilots
 - Bad intent
 - (Un)Intentional pranksters
- Pranksters
- Abusive users/organizations
 - Privacy breachers eg. Paparazzi
 - Message conveyors
- Criminals
 - Money (more likely). Eg.: Underground forums with "Worldwide SDRs for hire" potentially very profitable underground biz (think sniff GSM)
 - Terror (less likely)
- Military/intelligence
 - Espionage
 - Sabotage

Example: internal prankster attack

- Already happening Callsigns/FlighIDs used in real-life!
- Check them on Google or RR forum

12	A			150	В
1	MATTSUXX	A20	: N2295	vest Airline)7/11 17:57:04
2	BUTTSEXX	A2F	N290S'	est Airlines	7/11 01:27:28
3	MATSUUXX	A2F	X N292	west Airline	07/11 03:29:55
4	MATTSUXX	A31	: N2975	ed Express	17/11 16:39:11
5	HIDAD	A31	IIDAD		
6	BALLSLAM	A21	- N235	west Airlin	06/06 18:21:05
7	BUTTPUMP	A2F) - N29	rwest Airlin	/06/06 07:17:47
8	YOUSUCK	A33	- N308:	vest Airline	06 09:22:03
9	BUTTSEXX	A2F	120 201	5:19 BUTTSE	
10	ABBAROCK	A22	120 201	3:09 ABBAR	
11	NO2OBAMA	N38	1A		
12	FAYISGAY	N8C			
13	WOLYSAID	N45	10		
14	ATCFAIL	N71			
15	BIGBOOBS	N72	10		
16	GETAJOB	N83			
17	NOFATCHK	USA	3 NOF.		
18	VOTEUNUN	VO*	B8 - N.		
19	VOTENOO	VO"	can Ea	at probably	4
20	PHATCHIX	PHA	0 - N29		
21	DUMBPILT	DUI	A - OLC	1SW	
22	JETSBLOW	JET!	9 / N2		
23	JOHNRULZ	JOH	V (A30:		
24	KELYSMLS	KEL'	'(A305	niles, or Ke	You be the judge.
25	SOFAKING	SOF	B - N25		
26	FATIGUE	FAT	ntal Ex		
27	LADYGAGA	LAC	32 / N2	on Aug 7 &	
28	SEXY1215	C-FI			
29	YOUWIN	N23	-send	YOUWIN" 8	₫ ⁿ
30	BULLSHIT	N5C			
31	GOINHOM	N15			
32	THEMOLE	N78			

Example: external abusers + public data correlation

Have a well-defined target

Poses inexpensive devices

Can publicly access private details (why is this allowed?!)

en.wikipedia.org/wiki/Aircraft_registration

- Searchable worldwide registration database 🗗
- Aruba Aircraft Register
- Australian Aircraft Register

 Ø
- Austrian Aircraft Register

 P
- Belgian Aircraft Register

- Canadian Aircraft Register 🗗
- Dutch Aircraft Register

 ■
- Dutch Historic Aircraft Registers 🗗
- Finnish Aircraft Register
- French Aircraft Register 🗗
- Guatemalan Aircraft Register 🗗

- International Registry of Mobile Assets pursuant to the Cape Town Treaty

- Luxembourg Aircraft Register &
- _____
- New Zealand Aircraft Register 🗗
- Norwegian Aircraft Register
- Singapore Aircraft Register
- South African Aircraft Register @
- Swedish Aircraft Register
- Swiss Aircraft Registry @
- United States Aircraft Registry
- Article 20 of the Convention on International Civil Aviation
- Annex 7 to the Convention on International Civil Aviation
- Supplement to Annex 7 of the Convention on International Civil Aviation

Public access, seriously? USA (FAA)

Aircraft Inquiries

N-number

Serial Number

Name

Make / Model

Engine Reference

Dealer

Document Index

State and County

Territory and Country

Pending / Expired /

Canceled Registration Reports

Recent Registration

N-number Availability

- Request A Reserved
 Number
- Online
- In Writing
- Reserved N-Number Renewal
- Online
- Request for Aircraft Records
- Online

Help

Main Menu

Aircraft Registration

Aircraft Downloadable Database

Definitions

Registration

N-Number Format

Registrations at Risk Contact Aircraft arning::

Warning

NOTICE

The FAA Registry will be performing maintenance on its web servers beginning Saturday, July 21st.

This website will be unavailable from 05:00 AM CDT Saturday morning through 11:30 PM CDT Sunday night.

We applicate for the inconvenience.

FAA Home a Libertook & Certification a Ascraft Certification a Ascraft Registration a Ascraft Impany a N-Number Inquiry

FAA REGISTRY

N-Number Inquiry Results

N1 is Assigned

Data Updated each Federal Working Day at Midnight

Download the Aircraft Registration Database (39 MB)

Aircraft Certificate Expiration Date has been added to the Master Download file

Aircraft Description			
Serial Number	1071	Type Registration	Government
Manufacturer Name	GULFSTREAM AEROSPACE	Certificate Issue Date	02/14/1990
Model	0-IV	Expiration Date	12/31/2013
Type Aircraft	Fixed Wing Multi-Engine	Status	Valid
Pending Number Change	None	Type Engine	Turbo-fan
Date Change Authorized	None	Dealer	No
MFR Year	1988	Mode S Code	50000001
		Fractional Owner	NO

	Regi	stared Owner		
Name	FEDERAL AVIATION ADMINISTRATION			
Street	NATL FLIGHT PROGRAM OVERSIGHT OFC			
	6125 SW 68TH ST RM 137N	2,54		
City	OKLACITY	State	OKLAHOMA	
County	OKLAHOMA	Zip Code	73189-1225	
Country	LINITED STATES			

		Airworthiness	
Engine Manufacturer	ROLLS-ROYC	Classification	Standard
Engine Model	TAY MK 510-8	Category	Transport
	1	A/W Date	988 neoneo

Public access, seriously? Australia (CASA)

Public access, seriously? UK (CAA)

International Register of Civil Aircraft

The International Register of Civil Aircraft is published, in co-operation with ICAO, jointly by Bureau Veritas (France), the UK Civil Aviation Authority and the ENAC of Italy. The database, which contains information from over 45 countries and over 400,000 aircraft, is available on CD-ROM and is updated on a quarterly basis. This CD-ROM now also contains the US Register of Civil Aircraft. To order the International Register on CD-ROM please see forms and fees.

ADS-B – Adversary Model – By location

- Ground-based
 - Easier to operate (win criminals)
 - Easier to be caught (win agencies)
 - Easier to defend or mitigate against (win agencies)
 - Eg. Angle of arrival, time-difference of arrival
- Airborne
 - Drones
 - UAV
 - Autonomously pre-programmed self-operating checked-in luggage:
 - Pelican case, barometric altimeter, battery, embed-devs, GPS, RF...
 - Possibly could work around angle of arrival
 - Could pose more advanced threat to ADS-B IN enabled aircrafts
 - Important: not extensively modeled in the attacker & threat modeling of Mode-S/ADS-B

Potential for DoS on ATC human-resource

Attack:

- Based on "Fake airplane injection into ATC" attack
- Mitigation: there is a mostly manual procedure for an ATC operator to check a flight number against flight plans and flight strips (flight strips is so 1900, really!)

Twist1:

- Inject 1 mln fake airplanes, both valid and invalid flight plans, filed by different flight plan systems
- Result: Potential human-resource exhaustion

Fixes:

- Have fully e-automated flight plan exchange and cross-checks
- Better, solve ADS-B insecurities and potential is nullified

Potential for DoS on ATC flight-space resource

- Attack:
 - Similar to "DoS on ATC human-resource"
- Twist1:
 - Fake planes scattered on wide geographic area of responsibility of "victim ATC"
 - The area of ghost/fake/unidentified aircraft/object is in "flight quarantine"
 - Separation are increased, all normal routes deviated
 - General rules are in ICAO 4444 + country specifics
 - This is done for safety reasons (eg. ASSET methodology) to avoid disasters
 - A potentially wide geo-area affected in terms of air-traffic nightmare!
- Twist2:
 - Fake a copy of a genuine aircraft within it's own area of separation
 - Will generate a Short Term Conflict Alert (STCA)
- Fixes:
 - Locate and turn-off attacker RF emitter (but what if it's a drone?)
 - Better, solve ADS-B insecurities and potential is nullified

Potential for DoS on ADS-B IN aircrafts

Attack:

- Based on "Fake airplane injection into ATC" attack
- Mitigation: unknown, perhaps similar to ATC semi-auto/semi-manual flight plan cross-check
- Twist1: Inject fake airplanes (1...1 mln) into ADS-B IN capable aircrafts
 - Assumption: Target aircraft lacks good connectivity and automated crosscheck protocols for flight plan lookup and validation (compared to ATC)
 - Result: Total uncertainty in received data, i.e. data is useless...

Fixes:

- Have real-time critical data exchange and verification capability on eAircrafts
- Have fully e-automated flight plan exchange and cross-checks
- Better, solve ADS-B insecurities and potential is nullified

Hardware setup

Hardware	Functions	Price
SDR USRP1	Main RF support	700 USD
SBX	ADS-B OUT /IN (attack)	475 USD
WBX	ADS-B OUT /IN (attack)	450 USD
DBSRX2	ADS-B IN (verify)	150 USD
Plane	ADS-B IN (verify)	~245 USD
Gadget Stenuators		40.1105
Cables	Limit output (SMA cable)	<10 USD

Alternative SDRs

Alternative ADS-Bs

ADS-B Message Replay Quick reference

- Capture ADS-B data:
 - UHD-mode
 - uhd_rx_cfile.py --spec B:0 --gain 25 --samp-rate 4000000 -f 1090000000 -v ~/CAPTURE_adsb.fc32
 - Pre-UHD-mode
 - usrp_rx_cfile.py
- Replay the captured data:
 - UHD-mode
 - tx_transmit_samples --file ~/CAPTURE_adsb.fc32 --ant "TX/RX" --rate 4000000 --freq 1090000000 --type float -subdev B:0
 - Pre-UHD-mode
 - usrp_replay_file.py

ADS-B Message Injection Quick reference guide

- ADS-B data crafting
 - Tweak the captured data
 - Load I/Q data: d_cap = read_float_binary('~/CAPTURED_adsb.fc32')
 - Modify the samples: d_cft = adsb_randomize(d_cap)
 - Write back I/Q data: write_float_binary(d_cft, '~/CRAFTED_adsb.fc32')
 - Generate the data
 - MatLab modulate(adsb_frame, fc, fs, 'ppm')
 - GNUradio write native C++ block
- Transmit the crafted data:
 - UHD-mode
 - tx_transmit_samples --file ~/CRAFTED_adsb.fc32 --ant "TX/RX" --rate 4000000 --freq 1090000000 --type float --subdev B:0
 - Pre-UHD-mode
 - usrp_replay_file.py

ADS-B Message Analyze/Visualize/Plot Quick reference guide

- GNURadio ModeS tests:
 - Pre-UHD-mode (by Eric Cottrell):
 - gr-air/src/python/usrp_mode_s_logfile.py
 - UHD-mode (by Nick Foster):
 - gr-air-modes/python/uhd_modes.py –a –w –F ~/CRAFTED_adsb.fc32
- GNURadio:
 - gr_plot_psd_c.py -R 4000000 ~/CAPTURE_adsb.fc32
 - gr_plot_psd_c.py -R 4000000 ~/CRAFTED_adsb.fc32
- Octave + gnuplot:
 - *n_samp* = *500000*
 - *trig_lvl* = 0.01
 - d_cap = read_float_binary('CAPTURE_adsb.fc32', n_samp)
 - axis ([0, n_samp, -trig_lvl, trig_lvl])
 - plot(arr)

Code showcase

```
adsb_modes_crc.py
  40 def adsb 112bits crc(adsb payload 11 bytes):
      POLY = 0xFFFA0480
42
43
      data = \
           (adsb_payload_11_bytes[0] << 24) | \
45
           (adsb payload 11 bytes[1] << 16) | \
46
           (adsb payload 11 bytes[2] << 8) | \
47
           (adsb payload 11 bytes[3] << 0)
48
49
      data1 = \
           (adsb payload_11_bytes[4] << 24) | \setminus
50
51
           (adsb_payload_11_bytes[5] << 16) | \
52
           (adsb payload 11 bytes[6] << 8) | \
53
           (adsb_payload_11_bytes[7] << 0)
54
55
      data2 = \
56
           (adsb_payload_11_bytes[8] << 24) | \
57
           (adsb_payload_11_bytes[9] << 16) | \
58
           (adsb_payload_11_bytes[10] << 8)
59
60
      logging.info('init dataX', hex(data), hex(data1), hex(data2))
61
62
      result = 0x000000000
63
64
      for i in range (0, 88):
65
          logging.info('data', hex(data))
66
          if (data & 0x80000000) <> 0:
67
               data = data ^ POLY
68
               logging.info('data (if)', hex(data))
69
          data = data << 1
71
          logging.info('data (<<)', hex(data))</pre>
72
          logging.info('data1', hex(data1))
74
          if (data1 & 0x80000000) <> 0:
75
               data = data | 1
               logging.info('data (if)', hex(data))
          data1 = data1 << 1
79
          logging.info('data1 (<<)', hex(data1))</pre>
80
          logging.info('data2', hex(data2))
82
          if (data2 & 0x80000000) <> 0:
83
               data1 = data1 | 1
84
               logging.info('data1 (if)', hex(data1))
85
          data2 = data2 << 1
87
          logging.info('data2 (<<)', hex(data2))</pre>
88
      result = result ^ data
       logging.debug(hex(data >> 8), hex(result >> 8))
91
92
      return result >> 8
```


Demo showtime

http://www.youtube.com/zveriu

Agenda

- 1. ATC Today (SSR)
- 2. Today's Problems
- 3. ATC "Tomorrow" (ADS-B)
- 4. "Tomorrow"s Problems
- 5. Exploit scenarios & Demos

Solutions and take-aways

High-level perspective – Timelines

- SDR Community
 - 1988 (Peter Hoeher and Helmuth Lang) SDR prototype
 - 1991/1992 (Joseph Mitola) SDR theory and paper
 - October 2003 (Ettus) USRP1 available \$US750
 - September 2008 (Ettus) USRP2 available \$US1700 (http://www.ruby-forum.com/topic/165227)
 - 13 Jan 2010 (Ettus) WBX Tranceiver board available (http://lists.gnu.org/archive/html/discuss-gnuradio/2010-01/msg00146.html)
 - 23 Mar 2011 (Ettus) USRP N200 \$US1500 and USRP N210 \$US1700 available (http://lists.ettus.com/pipermail/usrp-announce lists.ettus.com/2011-March/000007.html)
 - 15 Apr 2011 (Ettus) SBX Tranceiver board available (http://lists.ettus.com/pipermail/usrp-announce_lists.ettus.com/2011-April/000008.html)
 - February 2012 (Antti Palosaari) RTL-SDR discovered (http://thread.gmane.org/gmane.linux.drivers.video-input-infrastructure/44461/focus=44461)
- ADS-B Standartization/Regulatory
 - Jul 2002 (FAA) Federal Aviation Administration (FAA) announced a dual link decision using 1090 MHz ES for air carrier and private/commercial operators of high performance aircraft and UAT for the typical general aviation user as media for the ADS-B system in the United States (http://www.faa.gov/news/press_releases/news_story.cfm?newsId=5520&print=go)
 - March 2003 First ADS-B demonstrations (AOPA for CAP)
 - April 2003 (RTC) DO-260A "Minimum Operational Performance Standards for 1090 MHz Extended Squitter Automatic Dependent Surveillance
 Broadcast (ADS-B) and Traffic Information Services Broadcast (TIS-B)"
 - Jul 2004 (RTC) DO-282A "Minimum Operational Performance Standards for Universal Access Transceiver (UAT) Automatic Dependent Surveillance – Broadcast."
 - 2004 US Development & testing stations deployed
 - 2007 Early estimates stated the cost to equip a general aviation aircraft ranged from \$7,644 to \$10,920 for ADS-B Out and from \$10,444 to \$29,770 for ADS-B Out and ADS-B In, depending on aircraft type.
 - 2009 US Ground segment implementation and deployment
 - 2009 Assuming 2009 market prices for individual system components, a UAT retrofit was estimated at \$18,000 and new at \$25,000. For a 1090ES retrofit \$4,200 and new at \$18,000.
 - Dec 2009 Australia in world first for nationwide ADS-B coverage
- Research community
 - Jan 2001 An Assessment of the Communications, Navigation, Surveillance (CNS) Capabilities Needed to Support the Future Air Traffic Management System
 - Oct 2001 Vulnerability accessment of the transportation infrastructure relying on GPS
 - 2002 Validation techniques for ADS-B surveillance data
 - 2003 GPS integrity and potential impact on aviation safety
 - Sept 2004 Aircraft ADS-B Data Integrity Check
 - 2008/2009 Vast security research on Future eEnabled Aircraft and their support infrastructure
 - Oct 2010 Identification of ADS-B System Vulnerabilities and Threats
 - 2010 Assessment and Mitigation of Cyber Exploits in Future Aircraft Surveillance
 - 2010 Visualization \& Assessment Of ADS-B Security For Green ATM
 - 2011 Security analysis of the ADS-B implementation in the next generation air transportation system
 - Oct 2011 Aircraft Systems Cyber Security
 - Oct 2011 On the Requirements for Successful GPS Spoofing Attacks
 - Jul 2012 Practical setups and demonstrations on ADS-B attacks (BH12US, DC19)

ADS-B Security Solutions

- Solutions could include:
 - Verifiable multilateration (MLAT) with multiple ground-stations, but:

Guidance Material on Surveillance Technology Comparison

7.11 VERIFICATION OF ADS-B

Some commentators have promoted the use of multilateration as a means of ensuring the validity of received ADS-B data. Technically this is possible. Radar could also be used to verify the integrity of ADS-B data. If radar and/or multilateration in all areas of ADS-B coverage is required, then the most advantages of ADS-B are significantly diminished and the ADS-B deployment becomes unlikely. Verification could perhaps be achieved at major airport hubs aimed at detecting non compliant

Edition 1.0 September 2007 Page 41

- "Group of aircrafts" concepts
- AANETs should inspire from VANETs solutions
- Lightweight PKI architectures and protocols. Our thoughts:
 - FAA, EUROCONTROL, CASA as CAs
 - CAs root keys installed/updated during ADS-B device mandatory certification process
 - HMAC on each broadcast message
 - Every broadcast a subset of HMAC bits

Take-aways

- ADS-B is a safety-related mission-critical technology
- Yet, ADS-B lacks minimal security mechanisms
 - This poses direct threat to safety
- ADS-B costs tremendous amount of money, coordination, time
 - Yet, ADS-B is defeated in practice with
 - FOSS or moderate-effort custom software
 - Relatively low-cost SDRs hardware
- ADS-B assumptions are not technologically up-to-date
 - Doesn't account users will have easy access to RF via SDRs
 - Doesn't account users will have easy access to UAV, drones, etc.
- SDRs and their decreasing price are not the problem

ADS-B is flawed and is the actual root-cause problem

References (academia, standards, reports)

enough and sufficient to induce potentially dangerous safety and operational perturbances in a multi-million technology via the exploitation of missing basic security mechanisms such as message authentication at least.

REFERENCES

- K. Sampigethaya, R. Poovendran, L. Bushnell, Assessment and Mitigation of Cyber Exploits in Future Aircraft Surveillance, Aerospace Conference (AC), 2010 IEEE
- [2] K. Sampigethaya, R. Poovendran, Visualization & Assessment Of ADS-B Security For Green ATM, Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th
- [3] K. Sampigethaya, R. Poovendran, L. Bushnell, A Framework for Securing Future e-Enabled Aircraft Navigation and Surveillance, AIAA Proceedings, 2009
- [4] K. Sampigethaya, R. Poovendran, S. Shetty, T. Davis, C. Royalty Future E-Enabled Aircraft Communications and Security: The Next 20 Years and Beyond, Proceedings of the IEEE, Vol. 99, No. 11, November 2011
- [5] K. Sampigethaya, R. Poovendran, Privacy of future air traffic management broadcasts, Digital Avionics Systems Conference, 2009. DASC '09. IEEE/AIAA 28th
- [6] K. Sampigethaya, R. Poovendran, L. Bushnell, Secure Operation, Control, and Maintenance of Future E-Enabled Airplanes, Proceedings of the IEEE, Dec 2008
- K. Sampigethaya, R. Poovendran, Security and Privacy of Future Aircraft Wireless Communications with Offboard Systems, Communication Systems and Networks (COMSNETS) 2011, IEEE
- [8] K. Sampigethaya, R. Poovendran, L. Bushnell, Secure Wireless Collection and Distribution of Commercial Airplane Health Data, IEEE Aerospace and Electronic Systems Magazine, 2009, 34(7): 14, 20
- [9] L. Kenney, J. Dietrich, J. Woodall, Secure ATC surveillance for military applications, Military Communications Conference, MILCOM 2008, IEEE
- [10] D. McCallie, J. Butts, R. Mills, Security analysis of the ADS-B implementation in the next generation air transportation system, International Journal of Critical Infrastructure Protection, No. 4 (2011), Pag. 7887
- [11] J. Krozel, D. Andrisani, M. A. Ayoubi, T. Hoshizaki, C. Schwalm, Aircraft ADS-B Data Integrity Check, AIAA Aircraft Technology, Integration, and Operations Conf., Chicago, IL, Sept., 2004
- [12] A.C. Drumm, E.M. Shank, Validation techniques for ADS-B surveillance data, Digital Avionics Systems Conference, 2002. Proceedings. The 21st
- [13] S. Thompson, D. Spencer, J. Andrews, An Assessment of the Communications, Navigation, Surveillance (CNS) Capabilities Needed to Support the Future Air Traffic Management System, Project Report ATC-295, 10 January 2001, Massachusetts Institute Of Technology, Lexington, Massachusetts

- [14] B. Nuseibeh, C.B. Haley, C. Foster, Securing the Skies: In Requirements We Trust, Computer, IEEE Journals & Magazines, Sept. 2009
- [15] B. Nuseibeh, C.B. Haley, C. Foster, Securing the Skies: In Requirements We Trust, Computer, IEEE Journals & Magazines, Sept. 2009
- [16] L. Purton, H. Abbass, S. Alam, Identification of ADS-B System Vulnerabilities and Threats, Australian Transport Research Forum, Canberra, October, 2010
- [17] Federal IT Dashboard An Official Website of the United States Government FAAXX704: Automatic Dependent Surveillance-Broadcast (ADS-B), www.itdashboard.gov/investment?buscid=3
- [18] Federal Aviation Administration (FAA), Air Traffic Bulletin, Special Issue 2005-3, August 2005, www.faa.gov/air_traffic/publications/bulletins/media/atb_aug_05.pdf
- [19] DO-282B, Minimum Operational Performance Standards for Universal Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B), RTCA Paper Number 190-09/SC186-286, RTCA DO-282B, 2009
- [20] DO-249, Development and Implementation Planning Guide for Automatic Dependent Surveillance Broadcast (ADS-B) Applications, RTCA DO-249
- [21] DO-260A, Minimum Operational Performance Standards for 1090 MHz, Automatic Dependent Surveillance Broadcast (ADS-B) and Traffic Information Services (TIS-B), RTCA DO-260A
- [22] DO-242A, Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (ADS-B), RTCA DO-242A
- [23] DO-263, Application of Airborne Conflict Management: Detection, Prevention, & Resolution, RTCA DO-263
- [24] DoT, FAA, Technical Standard Order, Airborne Navigation Sensors Using The Global Positioning System (GPS) Augmented By The Wide Area Augmentation System (WAAS), TSO-C145a
- [25] End to- End System Preliminary Hazard Analysis Matrix of Scenarios, FAA Capstone Safety Engineering Report #1 ADS-B Radar-Like Services, Volume 2
- [26] Electronic Code of Federal Regulations, Title 47: Telecommunication, PART 15RADIO FREQUENCY DEVICES, Subpart BUnintentional Radiators,
- [27] Surveillance and Conflict Resolution Systems Panel (SCRSP), Civil-Military Interoperability with Military Mode S Format 22, SCRSP/WG-A/B, Montreal, 26th to 7th May 2004,
- [28] R.D. Grappel, R.T. Wiken, Guidance Material for Mode S-Specific Protocol Application Avionics, Project Report ACT-334, Lincoln Laboratory, MIT,
- [29] RTCA Special Committee 209 ATCRBS / Mode S Transponder MOPS Maintenance, Proposed Change to DO-181D and ED-73C for Higher Squitter Rates at Lower Power,

- [30] Jim McMath, Automated Dependent Surveillance Broadcast Military (ADS-M),
- [31] Vincent Orlando, Extended Squitter Update, adsb.tc.faa.gov/WG3_Meetings/Meeting1/1090-WP-1-01.pdf
- [32] N. O. Tippenhauer, C. Ppper, K. B. Rasmussen, S. Capkun, On the Requirements for Successful GPS Spoofing Attacks, CCS11, October 1721, 2011, Chicago, Illinois, USA
- [33] E. Lester, J. Hansman, Benefits and incentives for ADS-B equipage in the national airspace system, MIT ICAT Report, ICAT-2007-2, 2007
- [34] W. Ochieng, K. Sauer, D. Walsh, G. Brodin, S. Griffin, M. Denney, GPS integrity and potential impact on aviation safety, The Journal of Navigation Vol. 56, 2003
- [35] H.R. Zeidanloo, Botnet Command and Control Mechanisms, ICCEE '09, Second International Conference on Computer and Electrical Engineering, 2009
- [36] Yuanyuan Zeng, Kang G. Shin, Xin Hu, Design of SMS Commanded-and-Controlled and P2P-Structured Mobile Botnets, WiSec'12, April 1618, 2012, Tucson, Arizona, USA
- [37] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, Z. Tianning, Andbox: Towards Advanced Mobile Bomets, LEET 11, 4th Usenix Workshop on Large-Scale Exploits and Emerging Threats, 2011, Boston, Massachusetts, USA
- [38] A. Khalili, J. Katz, W.A. Arbaugh, Toward secure key distribution in truly ad-hoc networks, Proceedings of IEEE Symposium on Applications and the Internet Workshops, 2003
- [39] M. Toorani, A. Beheshti, LPKI A lightweight public key Infrastructure for the mobile environments, 11th IEEE Singapore International Conference on Communication Systems, 2008
- [40] Ki-Woong Park, Hyunchul Seok, Kyu-Ho Park, pKASSO: Towards Seamless Authentication Providing Non-Repudiation on Resource-Constrained Devices, AINAW Advanced Information Networking and Applications Workshops, 2007
- [41] B. Kadri, M. Feham, A. M'hamed, Lightweight PKI for WSN uPKI, International Journal of Network Security, 2010
- [42] Righter Kunkel, Air Traffic Control: Insecurity and ADS-B, DefCon 17, Las Vegas, USA,
- [43] Righter Kunkel, Air Traffic Control Insecurity 2.0, DefCon 18, Las Vegas, USA.
- [44] Brad Haines, Hacker + Airplanes = No good can come of this, Confidence X, 2012, Krakow, Poland,
- [45] A comprehensive summary of existing radio-enthusiasts-level ADS-B devices, www.andreicostin.com/papers/AdsbComprehensiveDeviceList.xlsx
- [46] RadioReference Community Forum, Dodgy callsigns from flights,
- [47] GNU Radio, A free & open-source software development toolkit that provides signal processing blocks to implement software radios, gnuradio.org

- [48] CGRAN, Comprehensive GNU Radio Archive Network, www.cgran.org
- [49] Ettus Research, USRP (Universal Software Radio Peripheral), www.ettus.com/product/details/USRP-PKG
- [50] Ettus Research, SBX 400-4400 MHz Rx/Tx transceiver daughterboard, www.ettus.com/product/details/SBX
- [51] Radar Gadgets, Plane Gadget ADS-B Virtual Radar, www.radargadgets.com
- [52] Mini-Circuits, VAT-10W2+ SMA Fixed Attenuator, 217.34.103.131/pdfs/VAT-10W2+.pdf
- [53] Discovery Tech News, Iran's Military Hacks U.S. Stealth Drone, news.discovery.com/tech/irans-military-hacks-usstealth-drone.html
- [54] BBC Tech News, Researchers use spoofing to 'hack' into a flying drone, www.bbc.com/news/technology-18643134
- [55] SWISS Magazine, Eco-care reaches new (flight) levels, May 2012, Pag. 94
- [56] NewScientist Tech, Air traffic system vulnerable to cyber attack, www.newscientist.com/article/mg21128295.600air-traffic-system-vulnerable-to-cyber-attack.html
- [57] USA TODAY 27 May 2011, Air France jet's final minutes a free-fall, www.usatoday.com/news/world/2011-05-27air-france-crash n.htm
- [58] Bureau d'Enquètes et d'Analyses (BEA), Final Report On the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro - Paris, http://www.bea.acro/en/enquetes/flight.af.447/rapport.final.en.php
- [59] Garmin, Garmin GDL 96 www8.garmin.com/specs/gdl90_0903.pdf
- [60] FreeFlight Systems, Freeflight 1201, 1204, 1203 GPS/WAAS SENSOR SYSTEMS, www.freeflightsystems.com/docs/FFS_GPS_WAAS.pdf
- [61] Eric Cottrell, GNURadio 'gr-air' module pre-UHD-mode Mode-S/ADS-B demodulator and decoder, github.com/russss/gr-air
- [62] Nick Foster, GNURadio 'gr-air-modes' module UHD-mode software-defined radio receiver for Mode S transponder signals, including ADS-B reports from equipped aircraft, github.com/bistromath/gr-air-modes
- [63] [Discuss-gnuradio] A Chunks to Symbols Related Question, GNURadio PPM native transmitter block implementation hints, lists,gnu.org/archive/html/discuss-gnuradio/2012-01/msg00144.html

References (related talks)

- 22C3 I see airplanes
- DefCon17 Air Traffic Control: Insecurity and ADS-B
- DefCon18 Air Traffic Control Insecurity 2.0
- GRConf2011 ADS-B in GnuRadio
- DefCon20 Hacker + Airplanes = No Good Can Come Of This

Thank you! Questions, ideas, corrections?

Andrei Costin <andrei.costin@eurecom.fr>
Aurelien Francillon <aurelien.francillon@eurecom.fr>

