Lecture 9 – Recursive Functions

COSE212: Programming Languages

Jihyeok Park

2023 Fall

- Syntactic Sugar
 - FAE Removing val from FVAE
 - Syntactic Sugar and Desugaring
- Lambda Calculus (LC)
 - Church Encodings
 - Church-Turing Thesis
- In this lecture, we will learn recursion and conditionals.
- RFAE FAE with recursive functions
 - Concrete and Abstract Syntax
 - Interpreter and Natural Semantics

Contents

1. Recursion

Recursion in F1VAE Recursion in FVAE mkRec: Helper Function for Recursion

2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring Interpreter and Natural Semantics Arithmetic Comparison Operators Conditionals Recursive Function Definitions

Contents

1. Recursion

Recursion in F1VAE Recursion in FVAE mkRec: Helper Function for Recursion

 RFAE – FAE with Recursion and Conditionals Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for RFAE Definition with Desugaring Interpreter and Natural Semantics Arithmetic Comparison Operators Conditionals Recursive Function Definitions

A **recursive function** is a function that calls itself, and it is useful for **iterative processes** on **inductive data structures**.

Let's define a **recursive function** sum that computes the sum of integers from 1 to n in Scala:

For recursive functions, we need **conditionals** to define 1) **base cases** and 2) **recursive cases**.

Recursion

Most programming languages support recursive functions:

• Scala

```
def sum(n: Int): Int = if (n < 1) 0 else n + sum(n - 1)
```

• C++

```
int sum(int n) { return n < 1 ? 0 : n + sum(n - 1); }</pre>
```

Python

```
def sum(n): return 0 if n < 1 else n + sum(n - 1)
```

• Rust

```
fn sum(n: i32) -> i32 { if n < 1 {0} else {n + sum(n-1)} }
```

•

If we add **conditionals** to F1VAE, we can define recursive functions in F1VAE without any more extensions for recursion.

```
Programs \mathbb{P}\ni p:=f^*e (Program)
Function Definitions \mathbb{F}\ni f::=\operatorname{def} x(x)=e (FunDef)
Expressions \mathbb{E}\ni e::=\ldots
|e<e| \text{ if } (e) \ e \ e \text{ e} \text{ (Lt)}
Values \mathbb{V}\ni v::=n\mid b\mid \langle \lambda x.e,\sigma\rangle
```

Function Environments $\Lambda \in \mathbb{X} \xrightarrow{\text{fin}} \mathbb{F}$ (FEnv) Boolean $b \in \mathbb{B} = \{ \text{true}, \text{false} \}$ (Boolean)

```
/* F1VAE */
def sum(n) = if (n < 1) 0 else n + sum(n + -1)
```

$$\Lambda = [\mathtt{sum} \mapsto \mathit{f}_0]$$

where $f_0 = \text{def sum}(n) = \text{if } (n < 1) \text{ 0 else } n + \text{sum}(n + -1)$

However, the following FVAE expression is not a recursive function:

```
/* FVAE */
val sum = n => {
  if (n < 1) 0
  else n + sum(n + -1)
};
sum(10)</pre>
```

Why?

val does not support recursive definitions. Thus, sum is **NOT** in the scope of the function body!

Let's pass the function as an argument to itself!


```
/* FVAE */
val sumX = sumY => {
    n => {
        if (n < 1) 0
        else n + sumY(sumY)(n + -1)
    }
};
sumX(sumX)(10)</pre>
```

However, it is annoying to always pass the function as an argument to itself!

Let's wrap this to get sum back!


```
/* FVAE */
val sum = n => {
    val sumX = sumY => {
        if (n < 1) 0
        else n + sumY(sumY)(n + -1)
    }
};
sumX(sumX)(n)
};
sum(10)</pre>
```

We can simplify this using η -reduction:

```
\lambda x.e(x) \equiv e only if x is NOT FREE in e.
```



```
/* FVAE */
val sum = {
  val sumX = sumY => {
    n => { // ALMOST the same as the original body
        if (n < 1) 0
        else n + sumY(sumY)(n + -1)
    }
};
sumX(sumX)
};
sum(10)</pre>
```

The function body is almost the same as the original version except that we need to call the function as sumY(sumY) instead of sum.

Let's define a variable sum to be sumY(sumY)!


```
/* FVAE */
val sum = {
  val sum X = sum Y => {
    val sum = sumY(sumY); // INFINITE LOOP
    n \Rightarrow \{ // \text{EXACTLY the same as the original body} \}
      if (n < 1) 0
      else n + sum(n + -1)
  };
  sumX(sumX)
sum(10)
```

Unfortunately, this is an infinite loop!

We need to **delay** the evaluation of sum using the η -expansion:

 $e \equiv \lambda x.e(x)$ only if x is **NOT FREE** in e.


```
/* FVAE */
val sum = {
  val sum X = sum Y => {
    val sum = x \Rightarrow sumY(sumY)(x);
    n \Rightarrow \{ // \text{EXACTLY the same as the original body } 
       if (n < 1) 0
       else n + sum(n + -1)
  };
  sumX(sumX)
sum(10)
```

Do we need to do this for every recursive function?

To avoid such boilerplate code, let's define a helper function mkRec!


```
/* FVAE */
val mkRec = body => {
  val fX = fY \Rightarrow {
    val f = x \Rightarrow fY(fY)(x);
   body(f)
 };
  fX(fX)
};
val sum = mkRec(sum \Rightarrow n \Rightarrow { // EXACTLY the same as the original body}
  if (n < 1) 0
  else n + sum(n + -1)
}):
sum(10)
```

For example, we can define factorial (fac) function using mkRec:

```
/* FVAE */
val fac = mkRec(fac => n => if (n < 1) 1 else n * fac(n + -1));
fac(5) // 5 * 4 * 3 * 2 * 1 = 120
```

Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion

RFAE – FAE with Recursion and Conditionals Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for RFAE Definition with Desugaring Interpreter and Natural Semantics Arithmetic Comparison Operators Conditionals Recursive Function Definitions

Now, let's extend FAE into RFAE with **recursion** and **conditionals**.

```
/* RFAE */
def sum(n) = {
  if (n < 1) 0
  else n + sum(n + -1)
};
sum(10) // 55
```

```
/* RFAE */
def fib(n) = {
  if (n < 2) n
   else fib(n + -1) + fib(n + -2)
};
fib(7) // 13</pre>
```

For RFAE, we need to extend expressions of FAE with

- 1 arithmetic comparison operators
- 2 conditionals
- recursive function definitions

Concrete Syntax

For RFAE, we need to extend expressions of FAE with

- 1 arithmetic comparison operators
- 2 conditionals
- 3 recursive function definitions

Abstract Syntax

Let's define the **abstract syntax** of FVAE in BNF:

```
Expressions \mathbb{E} \ni e ::= \dots
 | e < e \qquad \text{(Lt)} 
 | \text{if } (e) \ e \ \text{else} \ e \quad \text{(If)} 
 | \text{def } x(x) = e; e \quad \text{(Rec)}
```

```
enum Expr:
...
// less-than
case Lt(left: Expr, right: Expr)
// conditionals
case If(cond: Expr, thenExpr: Expr, elseExpr: Expr)
// recursive function definition
case Rec(name: String, param: String, body: Expr, scope: Expr)
```

Contents

1. Recursion

Recursion in F1VAE
Recursion in FVAE
mkRec: Helper Function for Recursion

 RFAE – FAE with Recursion and Conditionals Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring Interpreter and Natural Semantics Arithmetic Comparison Operators Conditionals Recursive Function Definitions

One way to define the semantics of **recursive function definitions** by treating them as **syntactic sugar** and **desugar** them with mkRec:

$$\mathcal{D}[\![\operatorname{def} x_0(x_1) = e_0; e_1]\!] = \mathcal{D}[\![\operatorname{val} x_0 = \operatorname{mkRec}(\lambda x_0.\lambda x_1.e_0); e_1]\!]$$

$$= (\lambda x_0.\mathcal{D}[\![e_1]\!])(\operatorname{mkRec}(\lambda x_0.\lambda x_1.\mathcal{D}[\![e_0]\!]))$$

For example,

```
/* RFAE */
def sum(n) = if (n<1) 0 else n+sum(n+-1); sum(10)
// will be desugared into
(sum => sum(10))(mkRec(sum => (n => if (n<1) 0 else n+sum(n+-1))))</pre>
```

```
/* RFAE */
def fib(n) = if(n<2) n else fib(n+-1)+fib(n+-2); fib(7)
// will be desugared into
(fib => fib(7))(mkRec(fib => (n => if(n<2) n else fib(n+-1)+fib(n+-2))))</pre>
```


Another way is to directly 1) implement the **interpreter**:

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** for **recursive function definitions** and other new cases.

$$\sigma \vdash e \Rightarrow v$$

Expressions $\mathbb{E} \ni e ::= \dots$

$$| e < e$$
 (Lt)
 $| if (e) e else e$ (If)
 $| def x(x)=e; e$ (Rec)

Values
$$\mathbb{V} \ni \mathbf{v} ::= \mathbf{n} \mid \mathbf{b} \mid \langle \lambda \mathbf{x}.\mathbf{e}, \sigma \rangle$$

```
enum Value:
```

case NumV(number: BigInt)
case BoolV(bool: Boolean)

case CloV(param: String, body: Expr, env: Env)


```
type NCOp = (BigInt, BigInt) => Boolean
def numCOp(x: String)(op: NCOp)(1: Value, r: Value): Value = (1, r)
    match
    case (NumV(1), NumV(r)) => BoolV(op(1, r))
    case (1, r) => error(s"invalid operation: ${1.str} $x ${r.str}")

val numLt: (Value, Value) => Value = numCOp("<")(_ < _)

def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Lt(1, r) => numLt(interp(1, env), interp(r, env))
```

$$\sigma \vdash e \Rightarrow v$$

Lt
$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 < e_2 \Rightarrow n_1 < n_2}$$

Conditionals


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case If(c, t, e) => interp(c, env) match
      case BoolV(true) => interp(t, env)
      case BoolV(false) => interp(e, env)
      case v => error(s"not a boolean: ${v.str}")
```

$$\sigma \vdash e \Rightarrow v$$

$$\texttt{If}_{\mathcal{T}} \ \frac{\sigma \vdash e_0 \Rightarrow \texttt{true} \qquad \sigma \vdash e_1 \Rightarrow \textit{v}_1}{\sigma \vdash \texttt{if} \ (e_0) \ e_1 \ \texttt{else} \ e_2 \Rightarrow \textit{v}_1}$$

$$\texttt{If}_{\textit{F}} \; \frac{\sigma \vdash e_0 \Rightarrow \texttt{false} \qquad \sigma \vdash e_2 \Rightarrow \textit{v}_2}{\sigma \vdash \texttt{if} \; (e_0) \; e_1 \; \texttt{else} \; e_2 \Rightarrow \textit{v}_2}$$

Recursive Function Definitions


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Rec(n, p, b, s) =>
     val newEnv: Env = ???
   interp(s, newEnv)
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{Rec} \frac{\sigma' = \sigma[x_0 \mapsto \langle \lambda x_1.e_0, \sigma' \rangle] \qquad \sigma' \vdash e_1 \Rightarrow v_1}{\sigma \vdash \operatorname{def} x_0(x_1) = e_0; e_1 \Rightarrow v_1}$$

Recursive Function Definitions


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Rec(n, p, b, s) =>
    val newEnv: Env = env + (n -> CloV(p, b, newEnv)) // error
   interp(s, newEnv)
```

$$\sigma \vdash e \Rightarrow v$$

$$\text{Rec } \frac{\sigma' = \sigma[x_0 \mapsto \langle \lambda x_1.e_0, \sigma' \rangle] \qquad \sigma' \vdash e_1 \Rightarrow v_1}{\sigma \vdash \text{def } x_0(x_1) = e_0; e_1 \Rightarrow v_1}$$

Let's **delay** the evaluation of newEnv using the η -expansion again:

$$e \equiv \lambda x.e(x)$$
 only if x is **NOT FREE** in e.

We augment the closure value with an **environment factory** (() => Env) rather than an **environment** (Env):

```
enum Value:
  case CloV(param: String, body: Expr, env: () => Env)
def interp(expr: Expr, env: Env): Value = expr match
  case Func(p, b) \Rightarrow CloV(p, b, () \Rightarrow env)
  case App(f, e) => interp(f, env) match
    case CloV(p, b, fenv) => interp(b, fenv() + (p -> interp(e, env)))
                           => error(s"not a function: ${v.str}")
    case v
  case Rec(n, p, b, s) =>
    val newEnv: Env = env + (n -> CloV(p, b, () => newEnv)) // error
    interp(s, newEnv)
```

It sill doesn't work because newEnv is not yet defined.

Let's use a lazy value (lazy val) to delay the evaluation of newEnv.

Recursive Function Definitions


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
  case Rec(n, p, b, s) =>
  lazy val newEnv: Env = env + (n -> CloV(p, b, () => newEnv))
  interp(s, newEnv)
```

$$\sigma \vdash e \Rightarrow v$$

$$\operatorname{Rec} \frac{\sigma' = \sigma[x_0 \mapsto \langle \lambda x_1.e_0, \sigma' \rangle] \qquad \sigma' \vdash e_1 \Rightarrow v_1}{\sigma \vdash \operatorname{def} x_0(x_1) = e_0; e_1 \Rightarrow v_1}$$

We will learn more about lazy values in the later lectures in this course.

Exercise #5

- Please see this document¹ on GitHub.
 - Implement interp function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.

¹https://github.com/ku-plrg-classroom/docs/tree/main/cose212/rfae.

Summary

1. Recursion

Recursion in F1VAE Recursion in FVAE mkRec: Helper Function for Recursion

2. RFAE - FAE with Recursion and Conditionals

Concrete Syntax Abstract Syntax

3. Interpreter and Natural Semantics for RFAE

Definition with Desugaring Interpreter and Natural Semantics Arithmetic Comparison Operators Conditionals Recursive Function Definitions

Next Lecture

Mutable Data Structures

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr