Processamento e Análise de Imagens

Processamento no Domínio da Frequência I

Introdução

Introdução

- Alguns tipos de degradações em imagens possuem tratamento muito complexo (ou mesmo impossível) no domínio espacial;
 - As degradações, no entanto, podem ser resolvidas mais facilmente forem tratadas em um domínio diferente;
 - Para isso, deve ser feita uma transformação da imagem do domínio espacial para um novo domínio;
 - Neste novo domínio, as degradações são evidenciadas, permitindo que sejam filtradas;
 - A imagem é, então, processada, mitigando suas imperfeições;
 - Finalizadas as correções, a imagem é retornada para o domínio espacial.

Introdução

- Para realizar a transformação da imagem no domínio espacial para um novo domínio, é utilizada frequentemente a Série de Fourier
 - A série de Fourier permite que um sinal periódico seja decomposto em uma soma de senos ou cossenos de frequências diferentes, ponderados por coeficientes;
 - A transformada de Fourier permite decompor sinais que não são periódicos;
 - Em ambos os casos, os coeficientes obtidos das transformações permitem recompor o sinal sem perda de informação;
 - O tratamento de sinais com a transformada de Fourier é dito como feito no domínio da frequência.

Séries e Transformadas de Fourier

Séries e Transformadas de Fourier

- A Série de Fourier é uma forma de série trigonométrica usada para representar funções <u>infinitas e periódicas</u> na forma de funções trigonométricas simples de senos e cossenos.
 - Independentemente da função e sua correspondente complexidade, desde que a mesma seja periódica, esta poderá ser representada como uma soma;
- A Transformada de Fourier é utilizada para representação de funções não periódicas (como aquelas sob uma área de uma curva) na forma da integral de senos e cossenos multiplicados por uma função de ponderação
 - A transformada de Fourier possui, segundo Gonzalez & Woods (2018) maior utilidade que as séries de Fourier;

Fonte: Brito Jr. (2018).

Fonte: O'Gorman (2023).

Séries e Transformadas de Fourier

- Tanto a série quanto a transformada de Fourier possuem como característica a possibilidade de reconstrução (recuperação) por meio de um processo inverso, sem perda de informação;
 - Tal característica possibilita que as representações trabalhem no domínio de Fourier (também chamado de domínio da frequência) e que depois possam retornar ao domínio original da função sem perda de informação;
- A transformada foi originalmente aplicada em problemas de difusão de calor
 - Ela apresenta diversas aplicações em disciplinas práticas;
 - O surgimento da **Transformada Rápida de Fourier** (*FFT Fast Fourier Transform*) possibilitou uma revolução na área de processamento de sinais.

Série de Fourier

- A Série de Fourier consiste em uma função f(t) de uma variável contínua t periódica com um período T, que pode ser expressa como a soma de senos e cossenos multiplicados por coeficientes apropriados;
- A série possui a seguinte forma:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{j\frac{2\pi n}{T}t}$$

onde:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j\frac{2\pi n}{T}t} dt$$
 for $n = 0, \pm 1, \pm 2, ...$

Série de Fourier

A série possui a seguinte forma:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{j\frac{2\pi n}{T}t}$$

A expansão dos senos e cossenos segue a seguinte fórmula de Euler

$$e^{j\theta} = \cos\theta + j\sin\theta$$

• onde θ é o ângulo entre o vetor e o eixo real (coordenadas polares).

Transformada de Fourier

 A Transformada de Fourier de uma função contínua f(t) em uma variável contínua t é dada por:

$$\Im\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-j2\pi\mu t} dt$$

- onde μ é também uma função contínua
- Uma vez que t é integrado, $F\{f(t)\}$ é uma função de somente μ ;
- Logo, temos que $F\{f(t)\} = F(\mu)$.

Transformada de Fourier

 A Transformada Inversa de Fourier, para conversão de F(μ) de volta em f(t), é dada por:

$$f(t) = \int_{-\infty}^{\infty} F(\mu) e^{j2\pi\mu t} d\mu$$

- A transformada inversa pode ser escrita como $f(t) = F^{-1}\{F(\mu)\};$
- O par de transformadas de Fourier é frequentemente $f(t) \Leftrightarrow F(\mu)$.

Transformada Discreta de Fourier (DFT)

• A Transformada de Fourier, em sua versão discreta (DFT), é dada por:

$$\sum_{n=-\infty}^{\infty} f_n e^{-j2\pi\mu n\Delta T}$$

A transformada inversa, em sua versão discreta, é dada por:

$$f_n = \frac{1}{M} \sum_{m=0}^{M-1} F_m e^{j2\pi mn/M} \quad n = 0, 1, 2, ..., M-1$$

Transformada de Fourier

• Para duas dimensões, o par de transformadas de Fourier é dado por:

$$F(\mu,\nu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z) e^{-j2\pi(\mu t + \nu z)} dt dz$$

$$f(t,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu,\nu) e^{j2\pi(\mu t + \nu z)} d\mu d\nu$$

Transformada Discreta de Fourier (DFT)

Para duas dimensões, o par de transformadas discretas de Fourier são dadas por:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

 A notação f(0), f(1), ..., f(M-1) denota que as amostras são espaçadas igualmente no espaço.

Transformada de Fourier - Exemplo

 O exemplo abaixo exibe o cálculo da Transformada de Fourier para uma função quadrática.

Fonte: Gonzalez & Woods (2018).

Transformada de Fourier - Exemplo

 O gráfico resultante da Transformada de Fourier e seu respectivo espectro (magnitude da transformada – valor real) podem ser vistas na figura abaixo:

Fonte: Gonzalez & Woods (2018).

- Funções contínuas podem ser transformadas em uma sequência de valores discretos antes de serem processadas computacionalmente
 - Para isso, é necessário um processo de amostragem e quantização.

Fonte: Gonzalez & Woods (2018).

- De acordo com o Teorema da Amostragem, nenhuma informação é perdida se uma função contínua e limitada pela banda for representada por amostras adquiridas a uma taxa maior que o dobro do conteúdo de frequência mais alto de uma função
 - Infinitos termos s\u00e3o necess\u00e1rios em uma representa\u00e7\u00e3o cont\u00eanua da S\u00e9rie de Fourier;
 - Se um número <u>finito</u> de termos da série de Fourier pode ser calculado a partir desse sinal, esse sinal é considerado limitado por banda;
 - Se uma função f(t) cuja transformada de Fourier é zero para valores fora do intervalo finito $[-\mu_{max}, \mu_{max}]$ acima da origem, a função é dita limitada por banda.

• Se uma função f(t) cuja transformada de Fourier é zero para valores fora do intervalo finito $[-\mu_{max}, \mu_{max}]$ acima da origem, a função é dita limitada por banda.

Fonte: Gonzalez & Woods (2018).

 Considerando a representação da transformada de Fourier de uma função amostrada, limitada por banda, podemos extrair um único período com um filtro ideal passabaixo.

Fonte: Gonzalez & Woods (2018).

Amostragem de Funções - Aliasing

- Aliasing é uma expressão originada de alias ("pseudônimo", em tradução literal);
- Na área de processamento de sinais, aliasing refere-se ao fenômeno que pode fazer com que sinais fiquem indistinguiveis de outros após a amostragem
 - Devido a uma amostragem indevida (sub-amostrada) duas funções completamente diferentes podem ter amostras coincidentes;
 - Duas funções com amostras coincidentes ficam indistinguíveis após o processo de amostragem.

Amostragem de Funções - Aliasing

- Um exemplo de aliasing pode ser visto na imagem ao lado
 - É possível observar que duas funções diferentes, quando sub-amostradas apresentam pontos semelhantes.
 - À partir da amostragem, não é possível diferir às funções originais.

Fonte: Gonzalez & Woods (2018).

Espectro de Fourier e Ângulos de Fases

Ângulos de Fases

 Uma vez que a transformada discreta de Fourier (DFT) é complexa, ela pode ser expressa na forma polar:

$$F(u,v) = R(u,v) + jI(u,v)$$
$$= |F(u,v)|e^{j\phi(u,v)}$$

com magnitude dada por:

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}$$

• que é denominada **Espectro de Fourier (ou da frequência)**, em que:

$$\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$$

onde φ é o ângulo de fase ou a fase do espectro.

Ângulos de Fases

O Espectro de Força é definido como:

$$P(u,v) = |F(u,v)|^2$$

= $R^2(u,v) + I^2(u,v)$

- onde R e I são as partes reais e imaginárias, respectivamente.
- A transformada de Fourier de uma função real possui simetria do conjugado, indicando que o espectro possui simetria par em relação à origem:

$$|F(u,v)| = |F(-u,-v)|$$

enquanto o ângulo de fase possui simetria ímpar em relação à origem:

$$\phi(u,v) = -\phi(-u,-v)$$

Ângulos de Fases

 Considerando a equação da DFT, temos que a frequência do termo zero é proporcional à média de f(x, y), correspondente a:

$$F(0,0) = MN \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = MN\overline{f}$$

Podemos considerar então que:

$$|F(0,0)| = MN |\overline{f}|$$

- Como a constante de proporcionalidade MN geralmente é grande, F(0, 0)
 normalmente é o maior componente do espectro por um fator que pode ser
 várias ordens de grandeza maior do que outros termos.
- Como os componentes de frequência u e v são zero na origem, F(0, 0) às vezes é chamado de componente dc da transformada T.

Correspondência entre domínios

- O Teorema da Convolução estabelece que, sob condições apropriadas, a transformada de Fourier de uma convolução de duas funções integráveis é igual ao produto das transformadas de Fourier de cada função.
 - A convolução em um domínio (ex.: domínio espacial) equivale a multiplicação em outro domínio (ex.: domínio da frequência).
 - Desse modo, o mesmo procedimento de filtragem pode ser realizado em ambos os domínios
 - Na prática, a escolha do domínio adequado de trabalho pode facilitar a análise e resolução do problema.

 Considerando a convolução de duas funções contínuas, f(t) e h(t), para uma variável contínua t no domínio espacial, a convolução entre essas duas funções é denotada pelo operador ★ (comumente também é utilizado o operador *) é definido como:

$$(f \star h)(t) = \int_{-\infty}^{\infty} f(\tau)h(t - \tau)d\tau$$

Temos que a transformada da função, para μ no domínio da frequência, é dada por:

$$\Im\{(f \star h)(t)\} = \int_{-\infty}^{\infty} f(\tau) \Big[H(\mu) e^{-j2\pi\mu\tau} \Big] d\tau$$

$$= H(\mu) \int_{-\infty}^{\infty} f(\tau) e^{-j2\pi\mu\tau} d\tau$$

$$= H(\mu) F(\mu)$$

$$= (H \cdot F)(\mu)$$

- A Transformada de Fourier da convolução de duas funções no domínio espacial é igual ao produto no domínio da frequência das Transformadas de Fourier das duas funções.
 - Se tivermos o produto das duas transformadas, podemos obter a convolução no domínio espacial calculando a transformada inversa de Fourier.
 - Logo, $f \star h = H \cdot F$ correspondem a um par de transformada de Fourier

$$(f \star h)(t) \Leftrightarrow (H \cdot F)(\mu)$$

De forma similar, temos que:

$$(f \cdot h)(t) \Leftrightarrow (H \star F)(\mu)$$

Propriedades

Separabilidade

- A Transformada de Fourier 2-D é linearmente separável
 - Ela pode ser composta da transformada de Fourier 1-D das linhas seguida pelas transformada de Fourier 1-D das colunas resultantes (ou vice-versa)

$$F(u,v) = \frac{1}{MN} \sum_{0}^{M-1} e^{-j2\pi \frac{ux}{M}} \sum_{0}^{N-1} f(x,y) e^{-j2\pi \frac{vy}{N}}$$

$$f(x,y) = \sum_{0}^{M-1} e^{j2\pi \frac{ux}{M}} \sum_{0}^{N-1} F(u,v) e^{j2\pi \frac{vy}{N}}$$

Translação (Shifting Theorem)

- A translação (ou deslocamento) de uma função deixa a magnitude inalterada e adiciona uma constante à fase
 - A magnitude indica "o valor de uma função";
 - A fase indica "onde uma determinada função está".

$$f(x,y)e^{-j2\pi(rac{u_0x}{M}+rac{v_0y}{N})} \quad \Leftrightarrow \quad F(u-u_0,v-v_0) \ f(x-x_0,y-y_0) \quad \Leftrightarrow \quad F(u,v)e^{-j2\pi(rac{ux_0}{M}+rac{vy_0}{N})} \$$
Para $u_0=M/2$ e $v_0=N/2$, $e^{-jrac{2\pi}{N}(u_0x+v_0y)}=e^{j\pi(x+y)}=(-1)^{x+y}$

Periodicidade

• A transformada de Fourier 2-D e sua inversa, assim como as correspondentes 1-D, são infinitamente periódicas nas direções *u* e *v*.

$$F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v) = F(u + M, v + N)$$

Rotação

• A rotação de uma função 2-D rotaciona a transformada de Fourier correspondente.

$$x = r \cos \theta$$
 $y = r \sin \theta$ $u = w \cos \phi$ $v = w \cos \phi$ $f(r, \theta + \theta_0) \Leftrightarrow F(w, \phi + \theta_0)$

Simetria do Conjugado

• Uma propriedade frequentemente adotada é que a transformada de Fourier de uma função real é f(x, y) possui **simetria do conjugado**.

$$F(u,v) = F^*(-u,-v)$$

$$|F(u,v)| = |F(-u,-v)|$$

Distributividade

A propriedade distributiva é aplicada à transformada de Fourier.

$$\mathscr{F}\lbrace f_1(x,y) + f_2(x,y)\rbrace = \mathscr{F}\lbrace f_1(x,y)\rbrace + \mathscr{F}\lbrace f_2(x,y)\rbrace$$
$$\mathscr{F}\lbrace f_1(x,y)f_2(x,y)\rbrace \neq \mathscr{F}\lbrace f_1(x,y)\rbrace \mathscr{F}\lbrace f_2(x,y)\rbrace$$

Escalamento

 Uma constante aplicada à função original altera o valor correspondente na transformada de Fourier.

$$af(x,y) \Leftrightarrow aF(u,v)$$

 $f(ax,by) \Leftrightarrow \frac{1}{|ab|}F(u/a,v/b)$

- O uso da transformada de Fourier não seria prático caso fosse necessária a implementação direta das equações de DFT e IFT
 - A implementação utilizando força bruta das equações em 2-D tem custo O((MN)²);

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

- A Transformada Rápida de Fourier (FFT Fast Fourier Transform) é um algoritmo para processamento da DFT e da IFT
 - Para uma DFT 2-D, o algoritmo reduz o custo computacional do cálculo da transformada para O(MNlog₂MN);
 - Para uma DFT 1-D, o algoritmo reduz o custo computacional de $O(N^2)$ para O(NlogN).

Tamanho Imagem	Operações DFT por força bruta	Operações FFT
1024×1024	~ 1 trilhão de adições e multiplicações	~ 21 milhões de adições e multiplicações
2048x2048	~ 17 trilhões de adições e multiplicações	~ 92 milhões de adições e multiplicações

- O algoritmo FFT moderno é atribuído ao trabalho de James Cooley and John Tukey, em 1965
 - Essa versão do algoritmo é denominada Cooley-Tukey-FFT e utiliza um mecanismo de divisão e conquista;
 - O FFT é considerado um dos mais importantes algoritmos da história da computação;
 - Frequentemente, é implementado em bibliotecas matemáticas e de processamento de imagens de diferentes linguagens
 - Ex.: Python (Numpy e OpenCV), Matlab, R, etc.

Resumo e Propriedades das DFTs

DFT - Propriedades

- Na imagem abaixo, podemos ver as propriedades de simetria entre 2D DFTs e suas respectivas inversas
 - R(u, v) e I(u, v) são as partes reais e imaginárias, respectivamente, de F(u, v);

	Spatial Domain [†]		Frequency Domain†
1)	f(x,y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x,y) imaginary	\Leftrightarrow	$F^*(-u,-v) = -F(u,v)$
3)	f(x,y) real	\Leftrightarrow	R(u,v) even; $I(u,v)$ odd
4)	f(x,y) imaginary	\Leftrightarrow	R(u,v) odd; $I(u,v)$ even
5)	f(-x,-y) real	\Leftrightarrow	$F^*(u,v)$ complex
6)	f(-x,-y) complex	\Leftrightarrow	F(-u,-v) complex
7)	$f^*(x,y)$ complex	\Leftrightarrow	$F^*(-u,-v)$ complex

48

DFT - Propriedades

- Na imagem abaixo, podemos ver as propriedades de simetria entre 2D DFTs e suas respectivas inversas
 - R(u, v) e I(u, v) são as partes reais e imaginárias, respectivamente, de F(u, v);

	Spatial Domain [†]		Frequency Domain†
8)	f(x,y) real and even	\Leftrightarrow	F(u,v) real and even
9)	f(x,y) real and odd	\Leftrightarrow	F(u,v) imaginary and odd
10)	f(x,y) imaginary and even	\Leftrightarrow	F(u,v) imaginary and even
11)	f(x,y) imaginary and odd	\Leftrightarrow	F(u,v) real and odd
12)	f(x,y) complex and even	\Leftrightarrow	F(u,v) complex and even
13)	f(x,y) complex and odd	\Leftrightarrow	F(u,v) complex and odd

Fonte: Gonzalez & Woods (2018).

DFT - Propriedades

Na imagem abaixo, vemos exemplos de propriedades dos slides anteriores.

Property	f(x)		F(u)
3	{1, 2, 3, 4}	\Leftrightarrow	$\{(10+0j),(-2+2j),(-2+0j),(-2-2j)\}$
4	$\{1j,2j,3j,4j\}$	\Leftrightarrow	$\{(0+2.5j), (.55j), (05j), (55j)\}$
8	$\{2, 1, 1, 1\}$	\Leftrightarrow	{5, 1, 1, 1}
9	$\{0, -1, 0, 1\}$	\Leftrightarrow	$\{(0+0j),(0+2j),(0+0j),(0-2j)\}$
10	$\left\{2j,1j,1j,1j\right\}$	\Leftrightarrow	$\left\{5j,j,j,j\right\}$
11	$\left\{0j,-1j,0j,1j\right\}$	\Leftrightarrow	$\{0, -2, 0, 2\}$
12 {(4+	4j, $(3+2j)$, $(0+2j)$, $(3+2j)$	\Leftrightarrow	$\{(10+10j),(4+2j),(-2+2j),(4+2j)\}$
13 {(0	+0j, $(1+1j)$, $(0+0j)$, $(-1-j)$	\Leftrightarrow	$\{(0+0j),(2-2j),(0+0j),(-2+2j)\}$

Fonte: Gonzalez & Woods (2018).

DFT - Resumo

	Name	Expression(s)
1)	Discrete Fourier transform (DFT) of $f(x,y)$	$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$
2)	Inverse discrete Fourier transform (IDFT) of $F(u,v)$	$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$
3)	Spectrum	$ F(u,v) = [R^2(u,v) + I^2(u,v)]^{1/2}$ $R = \text{Real}(F); I = \text{Imag}(F)$
4)	Phase angle	$\phi(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$
5)	Polar representation	$F(u,v) = F(u,v) e^{j\phi(u,v)}$
6)	Power spectrum	$P(u,v) = F(u,v) ^2$
7)	Average value	$\overline{f} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) = \frac{1}{MN} F(0, 0)$

Fonte: Gonzalez & Woods (2018).

Transformada Discreta de Fourier (DFT) - Resumo

	Name	Expression(s)
8)	Periodicity (k_1 and k_2 are integers)	$F(u,v) = F(u + k_1 M, v) = F(u, v + k_2 N)$ $= F(u + k_1, v + k_2 N)$ $f(x,y) = f(x + k_1 M, y) = f(x, y + k_2 N)$ $= f(x + k_1 M, y + k_2 N)$
9)	Convolution	$(f \star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$
10)	Correlation	$(f \approx h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n)h(x+m,y+n)$
11)	Separability	The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.
12)	Obtaining the IDFT using a DFT algorithm	$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v) e^{-j2\pi(ux/M+vy/N)}$

52

Referências

Referências

- Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing 4th Edition.
 2018. Pearson. ISBN: 978-9353062989.
- Agostinho Brito Jr. Processamento digital de imagens Slides de Aula.
 2018. Universidade Federal do Rio Grande do Norte.
- Willy Wriggers. Fourier Transform Slides de Aula. 2005. School of Health Information Sciences - University of Texas. Disponível em: https://biomachina.org/courses/imageproc/
- Liz O'Gorman. **The beauty of the Fourier series and Fourier transform.** 2023. Duke Institute for Brain Sciences Methods Meetings. Disponível em: https://dibsmethodsmeetings.github.io/fourier-transforms/