

DATA LINK CONTROL PROTOCOLS

Requirement & Objectives for Effective data Communication

- Frame synchronization
- Flow Control

Error Control

- Addressing
- Control & Data on the Same Link

Link Management

 Flow control – regulate flow of data from sender to receiver

Error control – detect and correct errors

 Framing – recognizing beginning and end of frames (blocks, packets)

Flow Control

- Ensuring the sending entity does not overwhelm the receiving entity
 - Preventing buffer overflow
- Transmission time
 - Time taken to emit all bits of a frame onto the medium (proportional to length of frame)
- Propagation time
 - Time for a bit to traverse the link between sender and receiver

Model of Frame Transmission

(a) Error-free transmission

(b) Transmission with losses and errors

Stop and Wait Flow Control

Source transmits frame

 Destination receives frame and replies with acknowledgement

Source waits for ACK before sending next frame

Destination can stop flow by not sending ACK

Fragmentation

- Large block of data may be split into small frames
 - Limited buffer size

Longer the transmission, more likely error. If error, must retransmit entire frame

Prevents one station occupying medium for long periods

Stop and wait becomes inadequate

Link Utilization

- $B = R \times (d/V)$
 - B-length of the link in bits
 - R data rate
 - d length or distance of the link
 - V velocity of propagation
- a = B/L
 - a variable
 - L number of bits in the frame
- > a<1

Link Utilization

Figure 7.2 Stop-and-Wait Link Utilization (transmission time = 1; propagation time = a)

Drawback- Stop and Wait

- a<1
 - propagation time is less than transmission time
 - first bit of the frame has arrived at the destination
 hefore source has completed the transmiss

before source has completed the transmission of frame

The link is inefficiently utilized

- a>1
 - Propagation time greater than transmission time
 - Sender completes the transmission of frame before it reaches the destination

Sliding Windows Flow Control

- Allow multiple frames to be in transit
- Receiver has buffer W long
- Transmitter can send up to W frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected
- ACK can also be used to acknowledge multiple frames

Sliding Window Diagram

Example Sliding Window

Piggybacking
 data and acknowledgement sent together

RNR –receive not ready (RNR5)

- Sliding window is more efficient than stop and wait flow control
 - ☐ transmission link is treated as pipeline filled with frames in the transit