

School of Advanced Sciences Department of Mathematics Fall Semester - 2017-18

MAT1711: Calculus for Engineers

- 1. a) Determine the continuity and differentiability of f(x) = |x-1| at x=1.
 - b) Find whether $f(x) = \begin{cases} \frac{x}{\sin x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ is differentiable at the origin. In case of

differentiability, find the derivative at the origin.

- c) Find the values of the constants mentioned such that $f(x) = \begin{cases} ax + b & x > -1 \\ bx^2 3 & x \le -1 \end{cases}$ is differentiable for all real values.
- d) Find the first two derivatives of the following

(i)
$$4x\sqrt{x+\sqrt{x}}$$
, (ii) $x^2 \sin^2(2x^2)$, (iii) $\frac{\sqrt{x}e^{\sqrt{\sin x}}(\tan x + \sec x)}{x^4 + 2x^2 + 1}$.

- e) If $xy = \cot(xy)$ then find $\frac{dy}{dx}$ using implicit differentiation.
- 2. a) Find all the critical points for the function $f(z) = \frac{z^2 + 1}{z^2 z 6}$.
 - b) Determine all the numbers c which satisfy the conclusions of the Mean Value theorem for the function in $f(t) = \frac{2}{3}x^3 6x^2 + 10x$ the interval [0, 6].
 - c) If $f(x) = \sin |x|$ for $I : \frac{-\pi}{2} \le x \le \frac{\pi}{2}$, determine the subintervals of I on which f is concave down and concave up. What about the points of inflection for f in I?
 - d) Find the values of constants a, b, and c so that the graph of $y = \frac{x^2 + a}{bx + c}$ has a local minimum at x = 3 and a local maximum at (-1, -2).
 - e) Determine the following for the function $f(x) = \frac{(x+1)^2}{1+x^2}$. (i) Domain, (ii) Critical points,
 - (iii) Increasing and decreasing intervals, (iv) Extreme points, (v) Inflection points,
 - (vi) Asymptotes.

Assignment # 1

- 3. a) Find the angle of intersection of curves $x^2 y^2 = a^2$ and $x^2 + y^2 = \sqrt{2} a^2$ also verify the orthogonality of intersection of curves.
 - b) The position of a particle moving along a number line is given by $f(t) = \frac{2}{3}t^3 6t^2 + 10t \text{ where } t \text{ is time in seconds. The particle moves both left and right in the first six seconds. What is the total distance travelled by the particle for <math>0 \le t \le 6$.
 - c) The equations for free fall at the surfaces of Mars and Jupiter are $s = 1.86t^2$ on Mars and $s = 11.44t^2$ on Jupiter. How long does it take a rock falling from west to each a velocity of 27.8m/sec on each planet?
 - d) If a mercury thermometer took 14 seconds to rise from $-19^{\circ}C$ to $100^{\circ}C$ when it was taken drawn from a freezer and placed in boiling water. Show that somewhere along the way the mercury was rising at the rate of $8.5^{\circ}C/\sec$.
 - e) A vessel is in the form of an inverted cone of semi-vertical angle 45°. Water is poured into this vessel at the rate of 100 cc per second. Find the rate of rise in the water level when it is 2 cm deep?
- 4. a) Evaluate the following integrals:

(i)
$$\int x \sin(2x^2) dx$$
, (ii) $\int \frac{1}{x^2} \cos^2(\frac{1}{x}) dx$, (iii) $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$, (iv) $\int \frac{1}{x \log^2 x} dx$

- b) A hemispherical bowl of radius *a* meters contains water to a depth *h* meters. Find the volume of water in the bowl. Suppose that the water runs into a sunken concrete hemispherical bowl of radius 5 m at the rate of 0.2 m³/sec. How fast is the water level in the bowl rising when the water is 4m deep?
- c) Find the area of the region enclosed between the curves $y = -x^4$ and y = 8x.
- d) Using Washer Method, find the volume of solid of revolution about the *x*-axis generated by revolving the region *R*, enclosed by the curve $y = \cos x$ and the line y = 1 between the ordinates $x = \pm \frac{\pi}{2}$.
- e) Using Disk Method, find the volume of solid of revolution about the x-axis generated by revolving the region R, enclosed by the triangle with edges x = 0, x + 2y = 2 and y = 0.
- f) The solid lies between planes perpendicular to the x-axis at x=-1 and x=1. The cross-sections perpendicular to the axis on the $0 \le x \le 4$ are squares whose bases run from the semi-circle $y=-\sqrt{1-x^2}$ to the parabola $y=\sqrt{1-x^2}$. Find the volume of solid by Slicing.

- 5. a) Evaluate $\int_0^1 \left(y^5 \log \left(\frac{1}{y} \right) \right)^3 dy$ in terms of Gamma function.
 - b) Evaluate $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$ c) Evaluate $\int_0^\infty \frac{x^c}{c^x} dx$ d) Evaluate $\int_0^\infty a^{-bx^2} dx$
 - e) Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$ f) d) Evaluate $\int_0^\infty \sqrt{\tan x} dx$
- 6. a) Find the Laplace Transforms of the following: (i) $t \sin at$, (ii) f(t) = |t-1| + |t+1|, t > 0, (iii) f(t) = [t] where [t] stands for the greatest integer function.
 - (iv) Find $\frac{d}{dt} \left(\int_{0}^{t^4} \sqrt{x} \, dx \right)$, by mentioning the appropriate rule.
 - (iv) $f(t) = \begin{cases} t & 0 < t < \pi \\ \pi t & \pi < t < 2\pi \end{cases}$
 - b) Find the Laplace transform of the periodic half-wave rectified signal f which is given in

one period as
$$f(t) = \begin{cases} \sin at & \text{for } 0 < t < \frac{\pi}{a} \\ 0 & \text{for } \frac{\pi}{a} < t < \frac{2\pi}{a} \end{cases}$$

- c) Find the Laplace Transforms of the following: (i) $t\sqrt{1+\sin t}$, (ii) $t^2 \sin at$,
 - (iii) $te^{-t}\sin 3t$, (iv) $e^{-t}\int_{0}^{t}\frac{\sin t}{t} dt$, (v) $\int_{0}^{t}\int_{0}^{t}t\sin t dt dt dt$, (vi) $\int_{0}^{\infty}\frac{e^{-t}\sin t}{t} dt$.
- d) Express the function $f(t) = \begin{cases} t-1 & 1 < t < 2 \\ 3-t & 2 < t < 3 \end{cases}$ in terms of unit step function and find its Laplace transform.
- e) Obtain the Laplace transform of $e^{-t} [1-u(t-2)]$.
- f) Using Laplace transform, evaluate $\int_{0}^{\infty} e^{-t} \left[1 + 2t t^{2} + t^{3} \right] H(t-1) dt$.
- g) Evaluate $L\left\{\frac{1}{t}\delta(t-a)\right\}$.