Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

3 комп'ютерного практикуму № 7 з дисципліни «Технології паралельних обчислень»

Виконала студентка	<u>ІП-13 Замковий Дмитро Володимирович</u> (шифр, прізвище, ім'я, по батькові)
Перевірив	ст.викл. Дифучин Антон Юрійович (прізвище, ім'я, по батькові)
Оцінка	
Дата оцінювання	

Лабораторна робота 7

Завдання

- 1. Ознайомитись з методами колективного обміну повідомленнями типу «одиндо-багатьох», «багато-до-одного», «багато-до-багатьох» (див. лекцію та документацію стандарту MPI).
- 2. Реалізувати алгоритм паралельного множення матриць з використанням розподілених обчислень в MPI з використанням методів колективного обміну повідомленнями. 40 балів.
- 3. Дослідити ефективність розподіленого обчислення алгоритму множення матриць при збільшенні розміру матриць та при збільшенні кількості вузлів, на яких здійснюється запуск програми. Порівняйте ефективність алгоритму при використанні методів обміну повідомленнями «один-до-одного», «один-добагатьох», «багато-до-одного», «багато-до-багатьох». 60 балів.

Лістинги програми

Файл task2\Main.java

```
import static java.lang.System.exit;
   public static void main(String[] args) {
       double[][] a = new double[SIZE][SIZE];
       double[][] b = new double[SIZE][SIZE];
       double[][] c = new double[SIZE][SIZE];
       MPI.Init(args);
       int size = MPI.COMM WORLD.Size();
       int rank = MPI.COMM WORLD.Rank();
           System.out.println("Need at least two MPI tasks. Quitting...");
           MPI. COMM WORLD. Abort (1);
           exit(1);
           exit(1);
```

```
MPI. DOUBLE, MASTER);
        a = Main.transform(aRecv, offset, len);
                    c[i][j] += a[i][k] * b[k][j];
MPI.DOUBLE, MASTER);
                System.out.format("%10.2f ", elem);
        System.out.println("\n******");
```

```
double[] tmp = new double[SIZE * SIZE];
         System.arraycopy(matrix[i], 0, tmp, i * SIZE, SIZE);
    double[] tmp = new double[len];
    System.arraycopy(Main.transform(matrix), offset, tmp, 0, len);
private static double[][] transform(double[] array) {
    double[][] tmp = new double[SIZE][SIZE];
         for (int j = 0; j < SIZE; j++) {
   int index = i * SIZE + j;
   if (index >= offset && index < offset + len) {</pre>
                   tmp[i][j] = array[i * SIZE + j - offset];
    return tmp;
```

Файл task3\Main.java

```
import mpi.*;
import static java.lang.System.exit;

class Main {
    private static final int MASTER = 0;
```

```
public static void main(String[] args) {
         double[][] c = new double[SIZE][SIZE];
         MPI.Init(args);
              exit(1);
              MPI.COMM WORLD.Abort(1);
              exit(1);
              System.out.format("mpi mm has started with %d tasks.%n", size);
         double[] aRecv = new double[len];
double[] arrA = Main.transform(a);
MPI.COMM_WORLD.Scatter(arrA, 0, len, MPI.DOUBLE, aRecv, 0, len,
MPI.DOUBLE, MASTER);
         b = Main.transform(bRecv);
                       c[i][j] += a[i][k] * b[k][j];
```

```
MPI.DOUBLE);
       c = Main.transform(cRecv);
       MPI.Finalize();
            System.out.println();
            System.arraycopy(matrix[i], 0, tmp, i * SIZE, SIZE);
       System.arraycopy(Main.transform(matrix), offset, tmp, 0, len);
            System.arraycopy(array, i * SIZE, tmp[i], 0, SIZE);
```

```
return tmp;
}

/**

  * Transform 1D array to 2D array with offset

  *

  * @param array 1D array
  * @param offset offset
  * @return 2D array
  */

private static double[][] transform(double[] array, int offset, int len) {
    double[][] tmp = new double[SIZE][SIZE];
    for (int i = 0; i < SIZE; i++) {
        for (int j = 0; j < SIZE; j++) {
            int index = i * SIZE + j;
            if (index >= offset && index < offset + len) {
                tmp[i][j] = array[i * SIZE + j - offset];
            }
        }
        return tmp;
}</pre>
```

Скріншоти

Завдання 2

```
19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08 19,08
```

Завдання 3

	A11117																		
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10.6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,88	10,88	10,88	10,88	10,00	10,00	10,00	10,00	10,00	10.6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,88	10,88	10,88	10,88	10,88	10,00	10,00	10,00	10,00	10,00	10.6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,88	10,88	10,88	10,88	10,88	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,88	10,88	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,88	10,00	10,00	10,00	10,00	10,00	10,00	10,6
10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,0
Matrix C																			
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,6
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0
2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,00	2000,0

Інші результати

Висновки

В ході даної лабораторної роботи було розроблено та досліджено методи колективного обміну повідомленнями типу «один-до-багатьох», «багато-доодного», «багато-до-багатьох». Також був проведений аналіз і порівняння методів з методом «один-до-одного». Було виявлено, що метод «один-до-одного» незначно, але програє іншим методам колективного мпілкування.