QM Berry Phase Examples March 10

Recap:

If we have a Hamiltonian H(t), we first diagonalize it and get instantaneous eigenstates $H(t)\psi_n(t)=E_n\psi_n(t)$. Usually we use a path $\vec{R}(t)$ to represent such time dependence. Using the fact that \dot{H} is small, we can write down an approximation

$$\psi_n(\vec{R}(t))e^{i\theta_n(t)}e^{i\delta_m(t)} \tag{1}$$

where $\theta_n(t)$ is the dynamic phase that come from H(t), and we have the equation for the geometric phase δ_n :

And if we have a closed loop where $ec{R}_i = ec{R}_f$, we have

$$\delta_n = \oint \vec{A}_n(\vec{R}) d\vec{R} \tag{3}$$

were $ec{A}_n=i\,\langle\psi_n|
abla_R\psi_n
angle.$

Example: Uniform \vec{B} field with spin 1/2 particles

We have $H(t)=rac{e}{m} ec{S} \cdot ec{B}(t)$ where $ec{B}(t)=B_0(\sin lpha \cos \omega t,\sin lpha,\sin \omega t,\cos lpha)$ and $ec{S}=rac{\hbar}{2} ec{\sigma}$ we have

$$H(t) = \hbar \frac{\omega_1}{2} \begin{pmatrix} \cos \alpha & e^{-i\omega t \sin \alpha} \\ e^{i\omega t} \sin \alpha & -\cos \alpha \end{pmatrix} \tag{4}$$

with intrinsic frequency $\omega_1=rac{eB_0}{m}.$ The adiabatic condition is when $\omega_1\gg\omega$

if we diagonalize (4) and eigen-decompose it, we will ge

$$\chi_+(t) = egin{pmatrix} coarac{lpha}{2} \ e^{i\omega t}\sinrac{lpha}{2} \end{pmatrix} & E_+ = rac{\hbar\omega_1}{2} \ \chi_-(t) = egin{pmatrix} e^{-i\omega t\sinlpha/2} \ -\cosrac{lpha}{2} \end{pmatrix} & E_- = -rac{\hbar\omega_1}{2} \end{pmatrix}$$

Just solve the equation will grant us (check)

$$\chi(t) = iggl[\cosrac{\lambda t}{2} - i\omega_1 - rac{\omega\coslpha}{\lambda} \sinrac{\lambda t}{2} iggr] e^{-i\omega t/2} \chi_+(t) \ + i iggl[rac{\omega}{\lambda} \sinlpha \sinrac{\lambda t}{2} iggr] e^{i\omega t/2} \lambda_-(t)$$

where $\lambda = \sqrt{\omega^2 + \omega_1^2 - 2\omega\omega_1\coslpha}$.

Let us consider a transition from $\chi_+(0) \to \chi_-$, we have the probability for such transition to be

$$P(t) = |\langle \chi_-(t) | \chi(t)
angle|^2 = \left(rac{\omega}{\lambda} {
m sin} \, lpha \, {
m sin} \, rac{\lambda t}{2}
ight)^2$$

If we use the condition of adiabaticity $\omega_1\gg\omega_0$, we have

$$\lambda pprox \omega_1 - \omega \cos lpha \ P(t) pprox \left(rac{\omega}{\omega_1} \sin lpha \sin rac{\lambda t}{2}
ight)^2 \ll 1$$

So there is a small (but none zero) chance that our state flip from λ_+ to λ_-

Now, what happens under a full rotation?

Using the condition for adiabaticity which gives us $\lambda \approx \omega_1 - \omega \cos \alpha$ We can re-write $\chi(t)$ to be

$$egin{aligned} \chi(t) &pprox e^{-i\lambda t/2} e^{-i\omega t/2} \chi_+(t) \ &= e^{-i\omega_1 t/2} e^{i\omega\cos(lpha)t/2} e^{-i\omega t/2} \chi_+(t) \end{aligned}$$

We can then get from inspection that $heta_+(t)=-rac{\omega_1 t}{2}$ and $\delta_+(t)=rac{\omega t}{2}(\cos lpha-1)$

We realize that $\delta_+(T)$ after one complete rotation is nothing but $-\frac{1}{2}\Omega$, the solid angle of the circle swept by \vec{B} on the top of the sphere.

We discussed a situation where we have circular motion, but what if we have a general enclosed path?

We still have that $(\alpha o \phi, eta o heta)$

$$\chi_+ = egin{pmatrix} \cosrac{ heta}{2} \ e^{i\phi}\sinrac{ heta}{2} \end{pmatrix}$$

We want to compute A_+ as defined in (3), so we will need to calculate $\nabla_B \chi$. Since we are in spherical coordinate, we have

$$abla_B \chi = rac{1}{r} inom{rac{1}{2} \sin rac{ heta}{2}}{rac{1}{2} e^{i\phi} \cos rac{ heta}{2}} \hat{ heta} + rac{1}{r \sin heta} inom{0}{i e^{i\phi} \sin rac{ heta}{2}} \hat{\phi}$$

This gives

$$\langle \chi_{+} | \nabla_{B} \chi_{+} \rangle = \frac{i \sin^{2} \frac{\theta}{2}}{r \sin \theta} \hat{\phi} = \frac{i}{2} \frac{1}{r} \tan \frac{\theta}{2} \hat{\phi}$$
 (5)

using (3) gives:

$$\delta_n = \oint \hat{A_n} \cdot dec{R} = \int (
abla_R imes A_n) \, dec{a} = \int ec{B}_n \, dec{a}$$
 (6)

we can see that A_n actually becomes a fictitious magnetic field! This is called the $\[Berry\]$ field

combine (5) and (3) gives

$$ec{A}_{=}=i\left\langle \chi_{+}|
abla_{B}\chi_{+}
ight
angle =-rac{1}{2r} anrac{ heta}{2}\hat{\phi}_{-}$$

This gives

$$\vec{B}_{+} = \nabla_{B} \times \vec{A}_{+} = -\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{1}{2r} \tan \frac{\theta}{2} \right) \hat{r} = -\frac{1}{2r^{2}} \hat{r}$$
 (7)

note that our \vec{B}_+ points radially! This is equivalent to a mono-pole magnetic charge at the origin!

Because $dec{a}=\hat{r}r^2d\Omega$, combine (6) and (7) gives

$$\delta_+(T) = \int ec{B} \cdot \, dec{a} = -rac{1}{2} \Omega$$

So the result we got from a circular close contour is actually general to any close contour!