Introduction to computational models

Lab assignment 2. Multilayer perceptron for classification problems

<u>Pedro Antonio Gutiérrez</u> pagutierrez@uco.es

Module "Introduction to computational models"
4th year of "Grado en Ingenierᅵa Informᅵtica"
Especialidad Computaciᅵn
Escuela Politᅵcnica Superior
(Universidad de Cᅵrdoba)

20th October 2021

Contents

2 Introduction

Specific considerations

Objectives of the lab assignment

- To implement the off-line version of the error backpropagation algorithm for the multilayer perceptron.
- To adapt the formulation in classification problems by interpreting the outputs using a probabilistic perspective (softmax function).
- To use a probabilistic error function to train the network (cross entropy).
- To check whether these modifications improve the results.

Classification

- Please, read and analyse the theory notes.
- We have studied how to adapt MLP to classification problems:
 - Representation of the class label using a 1-of-*J* coding.
 - Use of multiple neurons in the output layer and the softmax activation function.
 - During training, use of the cross-entropy cost function as an alternative to MSE.
 - For checking the goodness-of-fit, use of the CCR evaluation function.

Summary of the modifications to be performed

- We must make the program show information about the CCR.
- We must incorporate the *softmax* function in the output layer, that is, change the way the inputs are propagated (according to the definition of the *softmax*) and the way error is backpropagated (according to the new expression of δ_i^h).
- We must incorporate the L error function (cross entropy), calculating it in the functions that have to obtain an error and modifying the way in which the error is backpropagated for δ_j^H (only output layer).
- We must incorporate the *off-line* version of the algorithm (previous lab assignment).

Obtaining δ_j^h

- Derivatives for sigmoid neurons:
 - Output layer:
 - MSE: $\delta_i^H \leftarrow -(d_i - out_i^H) \cdot out_i^H \cdot (1 - out_i^H)$
 - Cross-entropy: $\delta_i^H \leftarrow -\left(d_i/out_i^H\right) \cdot out_i^H \cdot \left(1 out_i^H\right)$
 - Hidden layers:

$$\delta_j^h \leftarrow \left(\sum_{i=1}^{n_{h+1}} w_{ij}^{h+1} \delta_i^{h+1}\right) \cdot out_j^h \cdot (1 - out_j^h)$$

- Derivatives for *softmax* functions:
 - Only output layer:
 - MSE:

$$\delta_i^H \leftarrow -\sum_{i=1}^{n_H} \left(\left(d_i - \mathsf{out}_i^H \right) \cdot \mathsf{out}_i^H (I(i=j) - \mathsf{out}_i^H) \right)$$

• Cross-entropy:

$$\delta_{j}^{H} \leftarrow -\sum_{i=1}^{n_{H}} \left(\left(d_{i} / out_{i}^{H} \right) \cdot out_{j}^{H} (I(i=j) - out_{i}^{H}) \right)$$

Adjustment of derivatives for off-line mode

- When using the off-line mode, derivatives are accumulated for all the patterns and their magnitude can be very high.
- As we are using an averaged error, it is a good idea to divide the derivative by the number of patterns (N).

Adjustment of derivatives for off-line mode

weightAdjustment()

Start

- **1 For** h from 1 to H // For each layer $(\Rightarrow \Rightarrow)$
 - **1 For** j from 1 to n_h // For each neuron of layer h
 - For i from 1 to n_{h-1} // For each neuron of layer h-1 $w_{ji}^h \leftarrow w_{ji}^h \frac{\eta \Delta w_{ji}^h}{N} \frac{\mu \left(\eta \Delta w_{ji}^h (t-1)\right)}{N}$ End For

2
$$w_{i0}^h \leftarrow w_{i0}^h - \frac{\eta \Delta w_{j0}^h}{N} - \frac{\mu \left(\eta \Delta w_{j0}^h(t-1) \right)}{N}$$
 // Bias

End For

End For

End

Optimization

An optimization technique consist of removing the last output neuron of the last layer (softmax) to avoid unnecesary computations associated to that neuron.

Introduction to computational models

Lab assignment 2. Multilayer perceptron for classification problems

Pedro Antonio Gutiérrez pagutierrez@uco.es

Module "Introduction to computational models"
4th year of "Grado en Ingenierᅵa Informᅵtica"
Especialidad Computaciᅵn
Escuela Politᅵcnica Superior
(Universidad de Cᅵrdoba)

20th October 2021

