Exercice 1

On considere la fonction g definie par :

$$g(x) = |x| - 2\sqrt{|x|}$$

- 1) Demontrer que la fonction g est continue sur IR
- 2) Determiner g'(x) sur les deux intervalles :

$$]-\infty;0[et]0,+\infty[$$

- 3) Verifier que $g\left(-\frac{1}{4}\right) = g\left(\frac{1}{4}\right)$
- 4) Demonter que $\forall x \in \left[-\frac{1}{4}; \frac{1}{4} \right] g'(x) \neq 0$
- 5) Demontrer que $\exists c \in \left]\frac{1}{4}; 2\right[g'(c) = 0$

Exercice 2

On considere la fonction h definie par :

$$h(x) = (x+2)(x-1)(x+1)(x-3)$$

sans calculer h'(x) demontrer que l'equation

h'(x) = 0 admet trois solutions distincts

Exercice 3

- 1) Demontrer que $\exists c \in \left] \frac{\pi}{4}; \frac{\pi}{2} \right[\sin c = c^2 \right]$
- 2) deduire que l'equation $\cos x 2x = 0$ admet au moins une solution sur IR
- 3) Cette solution est elle unique ? justifier

Exercice 4

Soit f une fonction definie sur [0,1] telle que :

$$\forall x \in]0,1[f(x) > 0 \text{ et } f(0) = 0$$

Demontrer que $\exists c \in]0,1[$, $\frac{2f'(c)}{f(c)} = \frac{3f'(1-c)}{f(1-c)}$

Exercice 5

Soit f un e fonction sur un intervalle I de IR

Et soient x_1 et x_2 et x_3 des elements de I tels que :

$$2f(x_3) = f(x_1) + f(x_2)$$

Demontrer que $\exists c \in I$; f'(c) = 0

Exercice 6

Demontrer que $\forall x \in]0, +\infty[x < e^x - 1 < xe^x]$

Exercice 7

Demontrer que $\frac{\sqrt{2}}{2} < \sin 50^{\circ} < \frac{\sqrt{2}}{2} + \frac{\pi}{36}$

Exercice 8

On considera Ifonction H definie par:

$$H(x) = \frac{1}{x+1} \text{ et soit } \alpha \in]0, +\infty[$$

1) Demontrer que $\forall x \in]0, \alpha[$

$$-1 < H'(x) < -\frac{1}{(1+\alpha)^2}$$

2) deduire que $\forall x \in]0, +\infty[$

$$1 - x < \frac{1}{x+1} < 1 - \frac{1}{(1+x)^2}$$

Exercice 9

Soit f la fonction definie par $f(x) = \sqrt[3]{x}$

1) Demontrer que pour tout x de [1000 ;1001]

$$\frac{1}{3 \times (10,1)^2} \le f'(x) \le \frac{1}{3 \times 10^2}$$

2) Deduire que $10,0032 < \sqrt[3]{1001} < 10,0033$

Exercice 10

On considere la fonction definie par :

$$\forall x \in [0; +\infty[$$
 $f(x) = \sqrt{x}$

1) Demontrer que pour tout x de]0; $+\infty$ [et pour tout t de [x; x + 1[on a :

$$\frac{1}{2\sqrt{x+1}} \le f'(t) \le \frac{1}{2\sqrt{x}}$$

2) Deduire que $\forall x \in]0; +\infty[$

$$\frac{1}{2\sqrt{x+1}} \le \sqrt{x+1} - \sqrt{x} \le \frac{1}{2\sqrt{x}}$$

3) On considere la suite $(u_n)_{n \in IN^*}$ definie par

$$u_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$

Demontrer que la suite $(u_n)_{n \in IN^*}$ est divergent

Exércices et problèmes

Exercice 11

En utilisant le théorème des accroissements finis démontrer que :

1)
$$\forall (a;b) \in \mathbb{R}^2$$
, $0 < a < b < \frac{\pi}{2}$

$$\frac{b-a}{\cos^2 a} < \tan a - \tan b < \frac{b-a}{\cos^2 b}$$

2)
$$\forall x; y \in [0,10] |x \sin x - y \sin y| \le 11|x - y|$$

3)
$$\forall x \in]0, +\infty[\frac{x}{x^2 + 1} < \arctan x]$$

$$4) \quad \forall x \in]0, +\infty[\quad x < e^x - 1 < xe^x$$

Exercice 12

Soit f une fonction définie sur un segment et continue

[0,1] et dérivable sur]0,1[et f(0) = 0 et f(1) = 1

montrer que $(\exists c \in]0;1[):2cf'(c) = \sqrt{c}$

Exercice 13

Soit f définie sur l'intervalle $\left[0; \frac{\pi}{2}\right]$ par

$$f(x) = \sqrt{\frac{2}{1 + \sin x}}$$

1)a) Montrer que
$$f'(x) = \frac{-\cos x}{\sqrt{2}(1+\sin x)^{\frac{3}{2}}}; \forall x \in \left[0; \frac{\pi}{2}\right]$$

- b) Montrer que l'équation f(x) = x admet une
- solution unique λ sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.
- c) Montrer que $|f'(x)| \le \frac{\sqrt{2}}{2}$; $\forall x \in \left[0; \frac{\pi}{2}\right]$.
 - 2. On considère la suite (U_n) définie par

- a) vérifier que $f\left(\left[0;\frac{\pi}{2}\right]\right) \subset \left[0;\frac{\pi}{2}\right]$ et montrer que
- $0 \le U_n \le \frac{\pi}{2}$; $\forall n \in \mathbb{N}$
 - b) Montrer que $|U_{n+1} \lambda| \le \frac{\sqrt{2}}{2} |U_n \lambda| \ (\forall n \in \mathbb{N})$

et déduire $\lim_{n\to +\infty} U_n$

Exercice 14

Soit à, b et c des éléments de $]0,+\infty[$ tels que

$$\ln(b) - \ln(a) = (b - a) \times \frac{1}{c}$$
 démontrer que

$$\sqrt{ab} < c < \frac{1}{2}(a+b)$$

Exercice 15

Soit f une fonction définie sur un segment [0,1]et

 $n \in \mathbb{N}^*$ on suppose que f est continue sur [0,1] et

dérivable sur]0,1[et f(0)=0 et f(1)=1 montrer que

$$(\exists a,b,c \in [0,1]):f'(a)f'(b) = \frac{1-c^n}{1-c}c^{n-1}$$

Exercice 16

1)Démontrer que $\forall x \in]0,+\infty[$

$$1-x^2 \le \frac{1}{x^2+1} \le 1-x^2+x^4$$

2)On considère la fonction f définie par

$$\forall x \in]0,+\infty[f(x)] = \arctan x - x + \frac{1}{3}x^3$$

- a) Démontrer que : $\forall x \in]0, +\infty[|f'(x)| \le x^4]$
- b) Déduire que $\forall x \in]0,+\infty[|f(x)| \le |x^5|]$
- c) Déterminer $\lim_{x\to 0} \frac{\arctan x x}{x^2}$

Exercice 17

On considère la fonction f définie sur $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$ par

$$f(x) = \frac{\cos x}{\sin x}$$

1) Démontrer que $\forall x \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right] -2 \le f'(x) < 1$

Déduire que $\forall a \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right]$

$$\left(\frac{\pi}{2} - 2a\right)\sin a \le \cos a - \sin a \le \left(\frac{\pi}{4} - a\right)\sin a$$

Exercice 18

On considere la fonction f definie sur $\left[0; \frac{\pi}{2}\right]$

 $Par f(x) = \sin x$

On sait d'apres le theoerme des accroissements finis que pour tout a et b de $\left[0; \frac{\pi}{2}\right]$ on a :

$$\exists c \in]a; b[: f(b) - f(a) = (b - a)f'(c)$$

- 1) Demontrer que c est unique
 - 2) Demontrer que $0 < c \frac{a+b}{2} < \frac{b-a}{2\sqrt{3}}$

Exercice 19

Soit f une fonction deux fois derivables sur un intervalle I et a et b deux elements de I demontrer que

$$\exists c \in]a; b[: \frac{f(b) - f(a)}{b - a} = f'(a) + \frac{b - a}{2} f''(c)$$

Exercice 20

Soit f une fonction trois fois derivables sur un intervalle I de IR soient a et b deux elements de I tels que a < b demontrer qu'il existe c de]a; b[tel que :

$$\frac{f(b) - f(a)}{b - a} = f'(a) + \frac{1}{2}(b - a)f''(a) + \frac{1}{6}(b - a)^2 f'''(c)$$

Exercice 21

Soit i une tonction derivable sur un intervalle ouvert I

Demontrer que si l'equation f(x) = 0 admet 4 solutions alors l'equation f'(x) = 0 admet trois solutions

Exercice 22

On considere la fonction f definie de [1 ;2] vers IR $par : f(x) = \sin(x - 1) + 2\sin(x - 2) + \sin(x - 3)$

Demontrer que $\exists (a, b) \in]1; 2[^2 :$

$$1 - \frac{f(1)}{f(a)} = 2 - \frac{f(2)}{f(b)} \quad et \ (a \neq b)$$

Exercice 23

F et g deux fonctions continues sur [a;b] et derivables sur a;b telles que :

- $\forall x \in [a; b]$ $g(x) \neq 0$
- $\forall x \in]a; b[g'(x) \neq 0$
- (fg)(a) = (fg)(b)

Demontrer que : $(\exists c \in]a; b[)$: $\frac{f(c)}{g(c)} = \frac{f'(c)}{g'(c)}$

Exercice 24

Soient f et g deux fonctions derivables sur un intervalle I et soient a et b deux element s de I tels que :

$$f(a) = f(b) = 0$$

Demontrer que $\exists c \in]a; b[: f'(c) + f(c)g'(c) = 0$

Exercice 25

Soit f une fonction continue sur [a;b] et derivable 3

fois sur]a; b[telle que :

$$\exists x \in [a; b[f(a) = f(b) = f(c) = 0]$$

Demontrer que pour tout x de a; b il existe αde

$$]a;b[: f(x) = \frac{1}{6}(x-a)(x-b)(x-c)f'''(\alpha)$$

Exercice 26

Soit f une fonction continue sur [a;b] et derivable sur

]*a*; *b*[telle que :

$$\forall x \in [a; b] \ f(x) \neq 0et \ f(a) = f(b) = 0$$

Demontrer que:

$$(\forall \lambda \in IR) (\exists c \in [a; b[) f'(c) = \lambda f(c))$$

Exercice 27

Demontrer que

$$(\forall x \in]2; +\infty[) 1 - \frac{1}{x+2} < \ln(x+2) < x+1$$