Variational Mixture of Normalizing Flows

Guilherme Grijó Pen Freitas Pires

November 15, 2019

Thesis to obtain the Master of Science degree in **Electrical and Computer Engineering**

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- 4 Variational Inference
- Variational Mixture of Normalizing Flows
- 6 Conclusions

Introduction and Motivation

 Deep generative models have been an active area of research, with promising results.

Introduction and Motivation

- Deep generative models have been an active area of research, with promising results.
 - Implicit distributions: Generative adversarial networks [Goodfellow et al., 2014], Variational Autoencoder [Kingma and Welling, 2014]
 - Don't allow explicit access to the density function

Introduction and Motivation

- Deep generative models have been an active area of research, with promising results.
 - Implicit distributions: Generative adversarial networks [Goodfellow et al., 2014], Variational Autoencoder [Kingma and Welling, 2014]
 - Don't allow explicit access to the density function
 - Explicit distributions: Normalizing flows [Rezende and Mohamed, 2015]
 - Allow explicit access to the density function
 - Lack an approach to introduce discrete structure (multi-modality) in the modelled distribution.

 The goal of this work was the development of a mixture of flexible distributions.

- The goal of this work was the development of a mixture of flexible distributions.
- This requires answering two questions:

- The goal of this work was the development of a mixture of flexible distributions.
- This requires answering two questions:
 - What should be the "family" of the mixture components?

- The goal of this work was the development of a mixture of flexible distributions.
- This requires answering two questions:
 - What should be the "family" of the mixture components?
 - How should the mixture components' parameters be estimated?

- Mixture Models

- Mixture Models
- Variational Inference

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model
- Normalizing Flows

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model
- Normalizing Flows
 - The chosen family for the mixture model components

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model
- Normalizing Flows
 - The chosen family for the mixture model components
- Variational Mixture of Normalizing Flows

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model
- Normalizing Flows
 - The chosen family for the mixture model components
- Variational Mixture of Normalizing Flows
- Experiments and results

- Mixture Models
- Variational Inference
 - The chosen framework for estimating the parameters of the proposed model
- Normalizing Flows
 - The chosen family for the mixture model components
- Variational Mixture of Normalizing Flows
- Experiments and results
- Conclusions and future work

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- 4 Variational Inference
- Variational Mixture of Normalizing Flows
- 6 Conclusions

Mixture Models: Definition

 A mixture model is used to model data that is assumed to contain subgroups.

Mixture Models: Definition

- A mixture model is used to model data that is assumed to contain subgroups.
- Typically, it is assumed that the "subgroup-conditional" distributions belong to the same family, but have different parameters.

Mixture Models: Definition

- A mixture model is used to model data that is assumed to contain subgroups.
- Typically, it is assumed that the "subgroup-conditional" distributions belong to the same family, but have different parameters.
- Formally, a mixture model's joint distribution (for a single instance x) is given by:

$$p(\boldsymbol{x}, c) = p(\boldsymbol{x}|c)p(c),$$

where c is the latent variable that indexes the subgroup to which \boldsymbol{x} belongs

Mixture Models: Plate diagram

Mixture Models: Mixture of Gaussians

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- 4 Variational Inference
- 5 Variational Mixture of Normalizing Flows
- 6 Conclusions

Given

$$\begin{cases} \boldsymbol{z} \sim p(\boldsymbol{z}) \\ \boldsymbol{x} = g(\boldsymbol{z}; \boldsymbol{\theta}) \end{cases}$$

Given

$$\begin{cases} \boldsymbol{z} \sim p(\boldsymbol{z}) \\ \boldsymbol{x} = g(\boldsymbol{z}; \boldsymbol{\theta}) \end{cases}$$

then:

$$egin{aligned} f_X(m{x}) &= f_Z(g^{-1}(m{x};m{ heta})) \Big| \det \Big(rac{d}{dm{x}}g^{-1}(m{x};m{ heta})\Big) \Big| \ &= f_Z(g^{-1}(m{x};m{ heta})) \Big| \det \Big(rac{d}{dm{z}}g(m{z};m{ heta})\Big|_{m{z}=g^{-1}(m{x};m{ heta})}\Big) \Big|^{-1} \end{aligned}$$

Given

$$\begin{cases} \boldsymbol{z} \sim p(\boldsymbol{z}) \\ \boldsymbol{x} = g(\boldsymbol{z}; \boldsymbol{\theta}) \end{cases}$$

then:

$$egin{aligned} f_X(oldsymbol{x}) &= f_Z(g^{-1}(oldsymbol{x};oldsymbol{ heta})) igg| \det \left(rac{d}{doldsymbol{x}} g^{-1}(oldsymbol{x};oldsymbol{ heta})
ight) igg|^{-1} \ &= f_Z(g^{-1}(oldsymbol{x};oldsymbol{ heta})) igg| \det \left(rac{d}{doldsymbol{z}} g(oldsymbol{z};oldsymbol{ heta})igg|_{oldsymbol{z}=g^{-1}(oldsymbol{x};oldsymbol{ heta})}
ight) igg|^{-1} \end{aligned}$$

This can be optimized w.r.t. θ , so as to approximate an arbitrary distribution

The described in the previous slide can be useful if

The described in the previous slide can be useful if

 The base density has a closed form expression and is easy to sample from

The described in the previous slide can be useful if

- The base density has a closed form expression and is easy to sample from
- The determinant of the Jacobian of g is computationally cheap not the case, in general

The described in the previous slide can be useful if

- The base density has a closed form expression and is easy to sample from
- The determinant of the Jacobian of g is computationally cheap not the case, in general
- The gradient of the determinant of the Jacobian of g w.r.t $\pmb{\theta}$ is computationally cheap

The framework of Normalizing Flows consists of composing several transformations that fulfill the three listed conditions.

Normalizing Flows: Affine Coupling Layer

An example of such a transformation is the Affine Coupling Layer [Dinh, Sohl-Dickstein, and Bengio, 2017].

Splitting z into (z_1, z_2) ,

Normalizing Flows: Affine Coupling Layer

An example of such a transformation is the Affine Coupling Layer [Dinh, Sohl-Dickstein, and Bengio, 2017].

Splitting z into (z_1, z_2) ,

$$egin{cases} egin{aligned} oldsymbol{x_1} &= oldsymbol{z_1} \odot \expig(s(oldsymbol{z_2})ig) + t(oldsymbol{z_2}) \ oldsymbol{x_2} &= oldsymbol{z_2}. \end{aligned}$$

Normalizing Flows: Affine Coupling Layer

An example of such a transformation is the Affine Coupling Layer [Dinh, Sohl-Dickstein, and Bengio, 2017].

Splitting z into (z_1, z_2) ,

$$\begin{cases} \boldsymbol{x_1} &= \boldsymbol{z_1} \odot \exp\left(s(\boldsymbol{z_2})\right) + t(\boldsymbol{z_2}) \\ \boldsymbol{x_2} &= \boldsymbol{z_2}. \end{cases}$$

This transformation has the following Jacobian matrix:

$$J_{f(z)} = \begin{bmatrix} \frac{\partial x_1}{\partial z_1} & \frac{\partial x_1}{\partial z_2} \\ \frac{\partial x_2}{\partial z_1} & \frac{\partial x_2}{\partial z_2} \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(\exp(s(z_2))) & \frac{\partial x_1}{\partial z_2} \\ \mathbf{0} & I \end{bmatrix}$$

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- Variational Inference
- Variational Mixture of Normalizing Flows
- 6 Conclusions

Consider a joint probability distribution p(x, z).

Consider a joint probability distribution p(x, z). Suppose x is observed and z is latent.

Consider a joint probability distribution p(x, z). Suppose x is observed and z is latent. If we want to infer the most probable values of z, given x, by Bayes' Law:

$$p(\boldsymbol{z}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{x})}$$
$$= \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{\int p(\boldsymbol{x}|\boldsymbol{z}')p(\boldsymbol{z}')d\boldsymbol{z}'}$$

Consider a joint probability distribution p(x, z). Suppose x is observed and z is latent. If we want to infer the most probable values of z, given x, by Bayes' Law:

$$p(\boldsymbol{z}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{x})}$$
$$= \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{\int p(\boldsymbol{x}|\boldsymbol{z}')p(\boldsymbol{z}')d\boldsymbol{z}'}$$

Problem: The integral in the denominator is intractable for most interesting models.

Consider a joint probability distribution p(x, z). Suppose x is observed and z is latent. If we want to infer the most probable values of z, given x, by Bayes' Law:

$$p(\boldsymbol{z}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{x})}$$
$$= \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{\int p(\boldsymbol{x}|\boldsymbol{z}')p(\boldsymbol{z}')d\boldsymbol{z}'}$$

Problem: The integral in the denominator is intractable for most interesting models.

 Variational inference is an approximate inference framework, that can be used to overcome this intractability.

Variational Inference: Goal

Given a variational family $q(z; \lambda)$, find the parameters λ that minimize the Kullback-Leibler divergence between $q(z; \lambda)$ and p(z|x)

$$KL(q||p) = \int q(oldsymbol{z}) \log rac{q(oldsymbol{z})}{p(oldsymbol{z})} doldsymbol{z}$$

$$egin{aligned} KL(q||p) &= \int q(oldsymbol{z}) \log rac{q(oldsymbol{z})}{p(oldsymbol{z})} doldsymbol{z} \ &= \int q(oldsymbol{z}) (\log q(oldsymbol{z}) - \log p(oldsymbol{z}|oldsymbol{x})) doldsymbol{z} \end{aligned}$$

$$\begin{split} KL(q||p) &= \int q(\boldsymbol{z})\log\frac{q(\boldsymbol{z})}{p(\boldsymbol{z})}d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - \log p(\boldsymbol{z}|\boldsymbol{x}))d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - (\log p(\boldsymbol{x},\boldsymbol{z}) - \log p(\boldsymbol{x})))d\boldsymbol{z} \end{split}$$

$$\begin{split} KL(q||p) &= \int q(\boldsymbol{z})\log\frac{q(\boldsymbol{z})}{p(\boldsymbol{z})}d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - \log p(\boldsymbol{z}|\boldsymbol{x}))d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - (\log p(\boldsymbol{x},\boldsymbol{z}) - \log p(\boldsymbol{x})))d\boldsymbol{z} \\ &= \mathbb{E}_q[\log q(\boldsymbol{z})] - \mathbb{E}_q[\log p(\boldsymbol{x},\boldsymbol{z})] + \log p(\boldsymbol{x}) \end{split}$$

$$\begin{split} KL(q||p) &= \int q(\boldsymbol{z})\log\frac{q(\boldsymbol{z})}{p(\boldsymbol{z})}d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - \log p(\boldsymbol{z}|\boldsymbol{x}))d\boldsymbol{z} \\ &= \int q(\boldsymbol{z})(\log q(\boldsymbol{z}) - (\log p(\boldsymbol{x},\boldsymbol{z}) - \log p(\boldsymbol{x})))d\boldsymbol{z} \\ &= \mathbb{E}_q[\log q(\boldsymbol{z})] - \mathbb{E}_q[\log p(\boldsymbol{x},\boldsymbol{z})] + \log p(\boldsymbol{x}) \end{split}$$

Which yields the lower bound (ELBO):

$$\begin{split} ELBO(q) &= \mathbb{E}_q[\log p(\boldsymbol{x}, \boldsymbol{z})] - \mathbb{E}_q[\log q(\boldsymbol{z})] \\ &= \mathbb{E}_q[\log p(\boldsymbol{x}|\boldsymbol{z})] + \mathbb{E}_q[\log p(\boldsymbol{z})] - \mathbb{E}_q[\log q(\boldsymbol{z})] \end{split}$$

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- 4 Variational Inference
- Variational Mixture of Normalizing Flows
- 6 Conclusions

VMoNF: Motivation

How can we leverage the flexibility of normalizing flows, and endow it with multimodal, discrete structure, like in a mixture model?

VMoNF: Motivation

How can we leverage the flexibility of normalizing flows, and endow it with multimodal, discrete structure, like in a mixture model?

Mixture of normalizing flows.

VMoNF: Motivation

How can we leverage the flexibility of normalizing flows, and endow it with multimodal, discrete structure, like in a mixture model?

Mixture of normalizing flows. \rightarrow Approximate inference is required.

VMoNF: Definition

Recall the ELBO:

$$ELBO(q) = \mathbb{E}_q[\log p(\boldsymbol{x}|\boldsymbol{z})] + \mathbb{E}_q[\log p(\boldsymbol{z})] - \mathbb{E}_q[\log q(\boldsymbol{z})]$$

VMoNF: Definition

Recall the ELBO:

$$ELBO(q) = \mathbb{E}_q[\log p(\boldsymbol{x}|\boldsymbol{z})] + \mathbb{E}_q[\log p(\boldsymbol{z})] - \mathbb{E}_q[\log q(\boldsymbol{z})]$$

Let the variational posterior q(z|x) be parameterized by a neural network. We jointly optimize this objective, hence we learn the variational posterior and the generative components simultaneously.

VMoNF: Overview

VMoNF: Experiments - Pinwheel (5 wings)

VMoNF: Experiments - Pinwheel (3 wings)

Trainining Animation

VMoNF: Experiments - 2 Circles

VMoNF: Experiments - 2 Circles (semi supervised)

Note: 32 labeled points, 1024 unlabeled points

VMoNF: Experiments - MNIST

Table of Contents

- Introduction and Motivation
- Mixture Models
- Normalizing Flows
- 4 Variational Inference
- Variational Mixture of Normalizing Flows
- 6 Conclusions

 Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]

- Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]
- Formally describe the reasons why the model fails in cases like the 2 circles \rightarrow Topology

- Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]
- Formally describe the reasons why the model fails in cases like the 2 circles → Topology
 - Investigate the effect of a consistency loss regularization term

- Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]
- Formally describe the reasons why the model fails in cases like the 2 circles → Topology
 - Investigate the effect of a consistency loss regularization term
- Weight-sharing between components

- Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]
- Formally describe the reasons why the model fails in cases like the 2 circles → Topology
 - Investigate the effect of a consistency loss regularization term
- Weight-sharing between components
- Balance between complexities

- Similar work is being pursued and published in prominent venues: [Dinh, Sohl-Dickstein, et al., 2019; Izmailov et al., 2019]
- Formally describe the reasons why the model fails in cases like the 2 circles → Topology
 - Investigate the effect of a consistency loss regularization term
- Weight-sharing between components
- Balance between complexities
- (Controlled) component anihilation

Thank you!

