10. Comprehensive Car Dataset Analysis

October 18, 2024

1 Importing Libraries

```
[1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

2 Importing Data

```
[3]: df = pd.read_csv("D:\\Practice CSV\\Car Sales\\Car_sales.csv")

df.head()
```

[3]:		Manufacturer	Model	Model Sales_in_th		ousandsyear_resale_		_value	Vehicle_	type	١
	0	Acura	Integra	16.919			16.360		Passenger		
	1	Acura	TL		39.384		19.875 18.225		· ·		
	2	Acura	CL	14.114		14.114					
	3	Acura	RL		8.588			29.725		Passenger	
	4	Audi	A4		20.397		22.255		Passenger		
		Price_in_tho	usands H	Engine_si	ze	Horsepower	Wheelbase	Width	Length	\	
	0		21.50	1	.8	140.0	101.2	67.3	172.4		
	1		28.40	3	.2	225.0	108.1	70.3	192.9		
	2		NaN	3	.2	225.0	106.9	70.6	192.0		
	3		42.00	3	.5	210.0	114.6	71.4	196.6		
	4		23.99	1	.8	150.0	102.6	68.2	178.0		
		Curb_weight	Fuel_cap	pacity F	uel_	efficiency	Latest_Laur	nch \			
	0	2.639		13.2		28.0	2/2/20)12			
	1	3.517		17.2		25.0	6/3/20)11			
	2	3.470		17.2		26.0	1/4/20)12			
	3	3.850		18.0		22.0	3/10/20)11			
	4	2.998		16.4		27.0	10/8/20)11			

```
Power_perf_factor
0 58.280150
1 91.370778
```

```
2 NaN
3 91.389779
4 62.777639
```

3 Missing Data Handling

```
[4]: # Checking for missing values
     df.isnull().sum()
[4]: Manufacturer
                             0
    Model
                             0
     Sales_in_thousands
                             0
     __year_resale_value
                            36
     Vehicle_type
                             0
    Price_in_thousands
                             2
     Engine_size
                             1
     Horsepower
                             1
     Wheelbase
                             1
     Width
                             1
    Length
                             1
     Curb_weight
    Fuel_capacity
                             1
    Fuel_efficiency
                             3
    Latest Launch
                             0
     Power_perf_factor
                             2
     dtype: int64
[5]: # Fill missing values or drop rows if necessary
     df.dropna(subset=['__year_resale_value'], inplace = True)
     df.fillna(method = 'ffill', inplace = True)
```

4 Top 5 Manufacturers by Sales

```
[5]: top_manufacturers = df.groupby('Manufacturer')['Sales_in_thousands'].sum().

sort_values(ascending = False).head()

[8]: top_manufacturers_plot(kind = !bar!_color=!gkyblue!)
```

```
[8]: top_manufacturers.plot(kind = 'bar', color='skyblue')
plt.title('Top 5 Manufacturers by Sales', fontsize = 12)
plt.xlabel('Manufacturer', fontsize = 12)
plt.ylabel('Sales (in thousands)', fontsize = 12)
plt.grid(alpha = 0.2, axis = 'y')
plt.xticks(rotation = 0)
plt.show()
```


5 Correlation Analysis: Horsepower vs Price

```
[10]: sns.scatterplot(x='Horsepower', y='Price_in_thousands', data=df)
   plt.title('Horsepower vs Price')
   plt.xlabel('Horsepower')
   plt.ylabel('Price (in thousands)')
   plt.show()
```



```
[12]: # Calculate the correlation coefficient

correlation = df['Horsepower'].corr(df['Price_in_thousands'])

print(f'Correlation between Horsepower and Price: {correlation:.2f}')
```

Correlation between Horsepower and Price: 0.85

6 Fuel Efficiency Distribution

```
[19]: df['Fuel_efficiency'].plot(kind='hist', bins = 10, color='green', □ ⇔edgecolor='black')

plt.title('Fuel Efficiency Distribution (MPG)')

plt.xlabel('Fuel efficiency (MPG)')

plt.show()
```

Fuel Efficiency Distribution (MPG)

7 Top 5 Most Expensive Cars

```
[7]: most_expensive = df[['Manufacturer', 'Model', 'Price_in_thousands']].

sort_values(['Price_in_thousands'], ascending = False)

most_expensive.head(5)
```

[7]:	Manufacturer		Model	Price_in_thousands		
	95	Mercedes-B	SL-Class	82.600		
	126	Porsche	Carrera Cabrio	74.970		
	125	Porsche	Carrera Coupe	71.020		
	39	Dodge	Viper	69.725		
	94	Mercedes-B	S-Class	69.700		

8 Vehicle Type Distribution

Vehicle Type Distribution

9 Price vs. Fuel Efficiency

```
[16]: # Scatter plot of Price vs Fuel Efficiency
sns.scatterplot(x='Price_in_thousands', y='Fuel_efficiency', data=df)
plt.title('Price vs Fuel Efficiency', fontsize = 13)
plt.xlabel('Price (in thousands)')
plt.ylabel('Fuel Efficiency (MPG)')
plt.show()
```

Price vs Fuel Efficiency

10 Cars with the Best Resale Value

```
[8]: top_resale_value = df[['Manufacturer', 'Model', '__year_resale_value']].

sort_values(by='__year_resale_value', ascending=False).head(5)

top_resale_value
```

```
[8]:
         Manufacturer
                                  Model
                                         __year_resale_value
     126
              Porsche
                                                       67.550
                        Carrera Cabrio
     125
              Porsche
                         Carrera Coupe
                                                       60.625
     95
           Mercedes-B
                               SL-Class
                                                       58.600
     39
                                                       58.470
                Dodge
                                  Viper
```

94 Mercedes-B S-Class 50.375

11 Cars with the Best Power-to-Performance Ratio

```
[10]: df.columns
[10]: Index(['Manufacturer', 'Model', 'Sales_in_thousands', '__year_resale_value',
             'Vehicle_type', 'Price_in_thousands', 'Engine_size', 'Horsepower',
             'Wheelbase', 'Width', 'Length', 'Curb_weight', 'Fuel_capacity',
             'Fuel_efficiency', 'Latest_Launch', 'Power_perf_factor'],
            dtype='object')
[12]: df['Power_to_Performance'] = df['Horsepower'] / df['Price_in_thousands']
      # Top 5 cars by power-to-performance ratio
      best_power_performance = df[['Manufacturer', 'Model', 'Power_to_Performance']].
       ⇒sort_values(by='Power_to_Performance', ascending=False).head(5)
      best_power_performance
[12]:
          Manufacturer
                             Model Power_to_Performance
      140
                                               12.317835
                Toyota
                            Tacoma
      63
               Hyundai
                           Elantra
                                               11.865412
      40
                 Dodge
                        Ram Pickup
                                               11.819116
              Plymouth
      114
                              Neon
                                               10.443038
      35
                 Dodge
                              Neon
                                               10.443038
 []:
```