R Notebook

Michelle Cui and Sixian Ju

Contents

1.	Logistic Regression	2	
	train data	2	
	errors for logistic regression	3	
2.	LDA and QDA	3	
3.	KNN for classification	4	
4. Classification and Receiver Operating Characteristics(ROC) curves and AUC			
5 .	tree	6	
	decision tree	6	
	prune tree	7	
	errors for prune tree	7	
	bagging	8	
	errors for bagging	9	
	random forest	10	
	errors for random forest	11	
	boosting	11	
	errors for boosting	12	
lil lil lil lil lil lil lil	brary(readr) brary(tidyverse) brary(caret) brary(ggplot2) brary(pROC) brary(MASS) brary(leaps) brary(egg) brary(glmnet) brary(plotmo) brary(tree) brary(randomForest) brary(gbm)		

```
wine <- read_delim("winequality-white.csv", delim = ";", escape_double = FALSE, trim_ws = TRUE)
colnames(wine) <- c("fixed_ac", "volatile_ac", "citric_ac", "residual_sugar", "chloride", "free_so2", "</pre>
wine.quality <- wine %>%
  mutate(excellent = case_when(quality <= 6 ~ FALSE,</pre>
                             quality > 6 ~ TRUE))
wine.quality$excellent <- as.factor(wine.quality$excellent)</pre>
#split test and training
wine.q <- wine.quality %>%
  mutate(quality = ifelse(wine$quality <= 5, "poor",</pre>
                             ifelse(wine$quality <= 7, "average", "excellent" )))</pre>
set.seed(0)
n all <- nrow(wine)</pre>
tr_ind <- sample(n_all, round(n_all/2))</pre>
wine_train <- wine.q[tr_ind, ]</pre>
wine_test <- wine.q[-tr_ind, ]</pre>
colnames(wine_test)[13] <- "excellent"</pre>
colnames(wine_train)[13] <- "excellent"</pre>
fit_std <- preProcess(wine_train, method = "scale")</pre>
wine_train <- predict(fit_std, newdata = wine_train )</pre>
wine_test <- predict(fit_std, newdata = wine_test)</pre>
wine_train$quality <- as.factor(wine_train$quality)</pre>
wine_test$quality <- as.factor(wine_test$quality)</pre>
##scale
wine_sc <- rbind(wine_train, wine_test)</pre>
```

1. Logistic Regression

train data

```
glmod.train <- glm(excellent ~.-quality, wine_train, family = "binomial")</pre>
summary(glmod.train)
##
## Call:
## glm(formula = excellent ~ . - quality, family = "binomial", data = wine_train)
## Deviance Residuals:
      Min
                1Q
                     Median
                                 3Q
                                         Max
## -2.0221 -0.6685 -0.4046 -0.1503
                                      2.9342
##
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                 689.04626 135.72505 5.077 3.84e-07 ***
                             0.11210 4.813 1.49e-06 ***
## fixed_ac
                  0.53957
                             0.07539 -6.392 1.64e-10 ***
## volatile_ac
                  -0.48187
                             0.06970 -1.933
## citric_ac
                  -0.13476
                                              0.0532 .
                                      6.380 1.77e-10 ***
## residual_sugar 1.68357
                             0.26388
## chloride
                 -0.29461
                             0.12699 -2.320 0.0203 *
## free_so2
                  0.08868 0.07636 1.161
                                               0.2455
```

```
## total so2
                 0.05206
                             0.09214 0.565 0.5720
                 -2.15925
                             0.41607 -5.190 2.11e-07 ***
## density
                             0.09590 6.018 1.77e-09 ***
## ph
                  0.57710
                  0.25770
                             0.05612 4.592 4.39e-06 ***
## sulphates
## alcohol
                  0.17754
                             0.19789 0.897 0.3697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2519.2 on 2448 degrees of freedom
## Residual deviance: 2019.7 on 2437 degrees of freedom
## AIC: 2043.7
##
## Number of Fisher Scoring iterations: 6
```

errors for logistic regression

```
pred_exl_train <- predict(glmod.train, newdata = wine_train, type = "response")</pre>
exl_train_label <- ifelse(pred_exl_train > 0.5, TRUE, FALSE)
table(predict = exl_train_label, train = wine_train$excellent)
##
          train
## predict FALSE TRUE
##
    FALSE 1844 363
##
     TRUE
              90 152
train_error_exl <- mean(exl_train_label != wine_train$excellent)</pre>
pred_exl_test <- predict(glmod.train, newdata = wine_test, type = "response")</pre>
exl_test_label <- ifelse(pred_exl_test > 0.5, TRUE, FALSE)
table(predict = exl_test_label, test = wine_test$excellent)
##
          test
## predict FALSE TRUE
                  400
    FALSE 1785
##
     TRUE
             119 145
test_error_exl <- mean(exl_test_label != wine_test$excellent)</pre>
```

Our train error for logistic regression is 0.1849735. And test error is 0.2119232.

2. LDA and QDA

```
## LDA
fit_lda <- lda(excellent ~. -quality, wine_train)
### train error
lda.train.pred <- predict(fit_lda, newdata = wine_train)</pre>
```

```
lda.train.pred.class <- lda.train.pred$class
lda.train.error <- mean(lda.train.pred.class != wine_train$excellent)
### test error
lda.test.pred <- predict(fit_lda, newdata = wine_test)
lda.test.pred.class <- lda.test.pred$class
lda.test.error <- mean(lda.test.pred.class != wine_test$excellent)

### QDA
fit_qda <- qda(excellent ~. -quality, wine_train)
### training error
qda.train.pred <- predict(fit_qda, newdata = wine_train)
qda.train.pred.class <- qda.train.pred$class
qda.train.error <- mean(qda.train.pred.class != wine_train$excellent)

### testing error
qda.test.pred <- predict(fit_qda, newdata = wine_test)
qda.test.pred.class <- qda.test.pred$class
qda.test.error <- mean(qda.test.pred.class != wine_test$excellent)</pre>
```

type	train error	test error
LDA	0.1886484	0.2078399
QDA	0.2670478	0.2711311

3. KNN for classification

4. Classification and Receiver Operating Characteristics(ROC) curves and AUC

```
### auc_lda
pred_lda <- predict(fit_lda)$posterior[,2]</pre>
roc_lda <- roc(wine_train$excellent, pred_lda)</pre>
auc_lda <- auc(roc_lda)</pre>
### auc_qda
pred_qda <- predict(fit_qda)$posterior[,2]</pre>
roc_qda <- roc(wine_train$excellent, pred_qda)</pre>
auc_qda <- auc(roc_qda)</pre>
### logistic regression
roc_logi <- roc(wine_train$excellent, pred_exl_train)</pre>
auc_logi <- auc(roc_logi)</pre>
### knn
fit_knn <- knn3(excellent ~. -quality, wine_train, k = 16, prob = TRUE)</pre>
pred_knn <- predict(fit_knn, newdata = wine_train, type = "prob")</pre>
roc_knn <- roc(wine_train$excellent, pred_knn[,2])</pre>
auc_knn <- auc(roc_knn)</pre>
rocobj <- list(Logistic = roc_logi, LDA = roc_lda, QDA = roc_qda, KNN = roc_knn)</pre>
methods_auc <- paste(c("Logistic", "LDA", "QDA", "KNN"), "AUC = ",</pre>
                       round(c(auc_logi, auc_lda, auc_qda, auc_knn), 3))
```

```
ggroc(rocobj, size = 2, alpha = 0.5) +
scale_color_discrete(labels = methods_auc)
```


5. tree

decision tree

```
fit.tree <- tree(quality ~ fixed_ac + volatile_ac + citric_ac + residual_sugar + chloride + free_so2 +
set.seed(0)
cv.type <- cv.tree(fit.tree)

plot(fit.tree)
text(fit.tree)</pre>
```


prune tree

```
(bestsize_tree_type <- cv.type$size[which.min(cv.type$dev)])</pre>
```

```
## [1] 6
```

```
prune_type <- prune.tree(fit.tree, best = bestsize_tree_type)

plot(prune_type)
text(prune_type)</pre>
```


errors for prune tree

```
##prune
### training error
pred_type_train <- predict(prune_type, newdata = wine_train, type = "class")
prune.train.error <- mean(pred_type_train != wine_train$quality)
### test error
pred_type_test <- predict(prune_type, newdata = wine_test, type = "class")
prune.test.error <- mean(pred_type_test != wine_test$quality)</pre>
```

bagging

```
p <- ncol(wine.quality) - 1</pre>
bag_fit <- randomForest(quality ~ fixed_ac + volatile_ac + citric_ac + residual_sugar + chloride + free
## Warning in randomForest.default(m, y, ...): invalid mtry: reset to within valid
## range
bag_fit
##
## randomForest(formula = quality ~ fixed_ac + volatile_ac + citric_ac + residual_sugar + chlorid
                 Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 11
##
          OOB estimate of error rate: 22.01%
##
## Confusion matrix:
            average excellent poor class.error
## average
               1336
                            4 197
                                     0.1307742
## excellent
                 64
                            17
                                0 0.7901235
                 273
                            1 557
                                     0.3297232
## poor
importance(bag_fit)
```

```
##
                  average excellent
                                       poor MeanDecreaseAccuracy
## fixed_ac
                 28.69339 14.496416 26.17894
                                                        38.70484
## volatile_ac
                 55.56244 32.050309 55.72244
                                                        79.98069
                 36.35715 15.087495 27.32360
                                                        47.77326
## citric_ac
## residual_sugar 36.46697 10.344337 27.66559
                                                        46.99954
             29.21661 12.678412 28.29627
## chloride
                                                        44.15617
## free_so2
                 40.21735 14.966357 35.28244
                                                        55.86153
## total_so2
                 24.92937 18.244959 25.41028
                                                        41.89533
                 31.29106 8.517527 15.75913
## density
                                                       41.58878
## ph
                 25.79126 15.912904 32.65082
                                                       41.70324
## sulphates
                 23.59093 17.925353 25.19618
                                                       34.91962
                                                   104.78185
## alcohol
                 55.74903 44.695047 85.76612
##
                 MeanDecreaseGini
## fixed ac
                        83.80294
                       147.21572
## volatile_ac
```

```
## citric_ac
                          88.12772
## residual_sugar
                          99.66090
## chloride
                          92.95145
## free_so2
                         122.99952
## total_so2
                          95.40088
## density
                          83.06712
## ph
                          98.43153
## sulphates
                          85.63093
## alcohol
                         202.52648
```

varImpPlot(bag_fit)

bag_fit

errors for bagging

```
##bagging
### training error
train.bag.type <- predict(bag_fit, newdata = wine_train, type = "class")
bag.train.error <- mean(train.bag.type != wine_train$quality)
### test error
test.bag.type <- predict(bag_fit, newdata = wine_test)
bag.test.error <- mean(test.bag.type != wine_test$quality)</pre>
```

random forest

```
set.seed(0)
rf.type <- randomForest(quality ~ fixed_ac + volatile_ac + citric_ac + residual_sugar + chloride + free
rf.type
##
## Call:
## randomForest(formula = quality ~ fixed_ac + volatile_ac + citric_ac + residual_sugar + chlorid
                  Type of random forest: classification
##
##
                        Number of trees: 500
## No. of variables tried at each split: 3
##
           OOB estimate of error rate: 21.31%
##
## Confusion matrix:
##
             average excellent poor class.error
                1352 2 183 0.1203643
## average
## excellent
                64
                            17
                                0 0.7901235
## poor
                 273
                            0 558 0.3285199
importance(rf.type)
##
                  average excellent
                                         poor MeanDecreaseAccuracy
## fixed_ac
                  23.50271 17.17611 24.11913
                                                           35.50043
## volatile_ac 44.96321 26.71236 48.53512
                                                           63.19765
## citric_ac 35.36026 16.57741 27.56267
                                                           43.47083
## residual_sugar 31.75171 13.21749 27.87131
                                                           42.42474
## chloride 26.44891 17.97996 27.39499
## free_so2 34.96274 14.14561 36.87276
## total_so2 24.61444 18.49637 26.33265
## density 30.78403 20.78773 24.96956
                                                           35.37360
                                                           52.85003
                                                           37.72086
                                                          43.68921
## ph
                25.17415 16.83690 28.87245
                                                          38.48407
                24.21046 18.55926 25.37707
## sulphates
                                                          35.83700
## alcohol
                  36.04488 33.71202 55.45350
                                                           59.12387
##
                  MeanDecreaseGini
## fixed ac
                   86.34029
## volatile_ac
                       129.71743
## citric_ac
                         99.50221
## residual_sugar
                       107.81592
## chloride
                         99.22287
## free_so2
                        117.72976
## total_so2
                        106.81997
## density
                        121.41686
## ph
                         92.64881
## sulphates
                         88.02398
## alcohol
                        150.08665
varImpPlot(rf.type)
```

rf.type

errors for random forest

```
#random forest
### training error
train.rf.type <- predict(rf.type, newdata = wine_train)
rf.train.error <- mean(train.rf.type != wine_train$quality)
### test error
test.rf.type <- predict(rf.type, newdata = wine_test)
rf.test.error <- mean(test.rf.type != wine_test$quality)</pre>
```

boosting

Relative influence

```
##
                             var
                                  rel.inf
## alcohol
                         alcohol 18.661096
## density
                         density 15.316223
## sulphates
                       sulphates 12.915238
## ph
                              ph 10.899315
## chloride
                        chloride 10.404572
## volatile_ac
                     volatile_ac 7.366672
## total_so2
                       total_so2 6.201768
## residual_sugar residual_sugar 5.115241
## fixed_ac
                        fixed_ac 4.946826
## free_so2
                        free_so2 4.319353
## citric_ac
                       citric_ac 3.853695
```

errors for boosting

type	train error	test error
logistic regression	0.1849735	0.2119232
knn(16)	0.1690486	0.1768069
LDA	0.1886484	0.2078399
QDA	0.2670478	0.2711311
prune	0.2866476	0.2780727
bagging	0	0.2127399
random forest	0	0.2033483
boosting	0.1465904	0.1935484