Process Fluid Mechanics (CL254) – Semester II, 2020-2021 Department of Chemical Engineering, Indian Institute of Technology - Bombay

End Semester Examination - Part 2

April 27, 2021 10:15-11:45 a.m.

Max. marks: 40 Open Book Duration: 90 min.

1. (12 marks) Creeping flow. Fluid slowly seeps out as it flows through a hollow fibre membrane as shown below. Assume the flow in the system to be steady, axisymmetric and to vary slowly with length. Also assume $v_{\theta} = 0$, $v_r \approx 0$ and $\partial^2 v_z/\partial z^2 \approx 0$. The radial flow out of the tube is given by

$$v_r(R, z) = K(P(z) - P_a)$$

where K is a constant, P is pressure inside the tube and P_a is the ambient pressure. The pressure at the inlet is P_0 and gravitational forces are negligible.

(a) Show that the z momentum balance equation reduces to

$$0 = -\frac{\partial P}{\partial z} + \frac{\mu}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right),$$

and obtain the velocity profile $v_z(r)$ in terms of the pressure gradient. (5)

- (b) Obtain the volumetric flow rate in the tube (Q(z)) in terms of the pressure gradient.(4)
- (c) Using an overall volume balance given by

$$Q(z) = Q_0 - 2\pi R \int_0^z v_r(R, z) dz,$$

obtain an equation for the variation of pressure with length in the tube (do not solve). (3)

2. (12 marks) Forces on a nozzle. Water (density 1000 kg/m³, viscosity 1 mPa s) flows in a nozzle, as shown below, under turbulent conditions. The inlet cross-sectional area is 10 cm² and the outlet cross-sectional area is 4 cm². The inlet average velocity is 2 m/s and the exit pressure is atmospheric (100 kPa). Plug flow may be assumed in the nozzle and gravity may be neglected. The friction loss factor for the system is $e_v = 0.4$.

Weightage: 20%

¹D. V. Khakhar

- (a) Obtain the nozzle inlet pressure. (6)
- (b) Find the components of the force acting on the nozzle. (6)
- 3. (15 marks) **Piping system analysis.** 0.01 m³/s of water are to be pumped through a smooth pipe of length 250 m to a tank 12 m above the level of the reservoir. The pipeline has four 90° rounded elbows, three gate valves and one globe valve.
 - (a) Calculate the pressure drop for the pipeline assuming the inner diameter equal to the optimum diameter. (6)
 - (b) For a centrifugal pump with characteristic curves given below, choose the operating RPM. (5)
 - (c) Calculate the power requirement for pumping. (4)

Data:

μ	$10^{-3} \text{ Pa s} = 1 \text{ cP}$
ρ	10^3 kg m^{-3}

Fitting	L_{eq}/D
90^{o} rounded elbow	30
Gate valve	13
Globe valve	340

Friction factor for smooth pipes:

$$f = 0.0791 Re^{-1/4}$$

Economic pipe diameter:

$$D_{opt} = 33.65Q^{0.482}\rho^{0.142}\mu^{0.0272}$$

2

(units : $D_{opt}[cm]$, $Q[m^3/s]$, $\rho[kg/m^3]$, $\mu[cP]$).

To convert from gallons to m^3 multiply by 3.785×10^{-3}

To convert from ft to m multiply by 0.3048

Fig. 6-8. Characteristic curve of centrifugal pump at various speeds.

Paper End