STATE OF THE ART IN: SENSING DATA ANALYTICS DIGITAL TWINS

CHRIS PERULLO

Founded 2016
100+ Projects
100+Years of Combined Experience
Multidisciplinary Team

Jared Kee
Founder / CEO

Chris Perullo

Director of Engineering

Tim Lieuwen

euwen

Our Mission

EMPOWER OUR CUSTOMERS TO RUN SMARTER THROUGH THE EFFECTIVE USE OF THEIR DATA

RUN LONGER

RUN CLEANER

RUN STRONGER

RUN INTELLIGENTLY

EMPOWER YOURSELF

Our Customers

ENERGY

Power Production
Efficiency
Reliability
Technology

OIL & GAS

TECHNOLOGY RELIABILITY CO₂

RESEARCH

RESEARCH INSTITUTIONS
UNIVERSITIES
GOVERNMENT

OBLIGATORY DEFINITIONS

DIGITAL TWINS – CONSUMERS OF INFORMATION

Data Collection

The process of collecting time-series data and metadata, including serial numbers, geographic location, age, and manufacturer details, for building and simulating a model.

Integration

Integration allows for real-time data updates and synchronization between the digital twin and the physical asset, enabling predictive insights and reflecting the asset's current condition.

Data Preprocessing

Preparing data for simulation models by cleaning, integrating, and transforming it, which may involve removing anomalies and outliers, merging data from different sources, and manipulating it into the required format.

Analysis Techniques

Involves the use of advanced analytical tools, including AI and ML algorithms, to process and interpret the data. These techniques help in identifying patterns, predicting outcomes, and suggesting optimizations.

Data Storage

Storage architecture and practices for the large amounts of data used and generated by a digital twin, including considerations like data volume, storage and retrieval methods, format and structure, storage locations, and security.

Visualization

Concerns the presentation of data and simulation results in an understandable and actionable format. This can include dashboard design, data visualization best practices, and user-friendly interfaces.

Modeling and Simulation

Digital twins can include both physics-based and data-driven models. Physics-based models are grounded in physical, theoretical relationships, while data-driven models might use AI/ML algorithms.

Maintenance and Updates

Refers to the processes for version control, model recalibration, tracking model changes, and ensuring models remain accurate over time. This is crucial for the digital twin to remain relevant and useful.

HOW DO WE USE DIGITAL TWINS?

Compare

Diagnose

What-If?

State Identification

Monitor

Observe

Prognostics

DIGITAL TWINS

DIGITAL TWINS

SENSING

Required

Protection Control

Optional

Monitoring Enhanced Control

Educational

Temporary?
High 'Cost'?
High Fidelity?
New Location?

USE INSTRUMENTATION ALREADY AVAILABLE?

CORRELATE TO EXISTING INSTRUMENTATION?

USE CASE (EPRI) – COMPRESSOR ROTATING STALL MONITORING

-7 ND region

SENSORS AND DIGITAL TWINS

IS IT RELIABLE?

CAN IT BE INSTALLED

* Without Asset Modification?

Long term?

DIGITAL TWINS

SENSORS AND THE STORAGE CHAIN – IS IT SUFFICIENT?

SAMPLING RATE OF DATA GENERALLY DECREASES

Sensor

20,000 times per second

Signal Processing

1,000 times per second

Historian
Sample Rate

Once per second?

Archived DataSample Rate

Once per minute?

Fidelity Loss

DATA – WHAT CAN GO WRONG?

DATA - CONSIDERATIONS

WHAT EXISTING SENSORS ARE BEING COMPLIMENTED?

WHERE AND HOW WILL THE DATA BE STORED?

WILL THE DATA BE ACCESSIBLE?

THE DESIGN IS OFTEN NOT COMPLETELY KNOWN OR READILY AVAILABLE TO END USERS

DIGITAL TWINS

ANALYTICS

ANALYTICS ENABLE CALIBRATION AND PHYSICAL MODELING

FIDELITY MATTERS...

DIGITAL TWINS

Verification

Conceptual Verification

- Model's theoretical assumptions are sound
- Validation of underlying assumptions and physical models

Implementation Verification

 Code works correctly and is integrated.
 Data intake, preprocessing, analysis, and post-processing work as intended

Manual Calibration

- Manual adjustment to match 1-2 real world systems
- Testing predictive capability on blindtest systems
- Updating model as needed

Pre-Deployment Validation

Phase 2

3 Phase

Operational Validation

Initial Deployment

- Model deployed
- Significant monitoring and tweaking
- Shows ability to 'twin' early on for target assets

New Use Cases

- Model deployed on new assets with new data
- Model adapts and calibrated properly

Continuous Validation

Continual

Improvement

- Model runs 'hands off'
- Pathway exists to improve as new data or behaviors emerge

Long Term

Metrics Tracking

- Metrics for accuracy established
- Metrics for accuracy reviewed and acted upon

Phase 4

and post-processing

works as intended

Manual Calibration

- Manual adjustment to match 1-2 real world systems
- Testing predictive capability on blindtest systems
- Updating model as needed

Pre-Deployment Validation

Phase 2

3 Phase

Operational Validation

Initial

Deployment

- Model deployed
- Significant monitoring and tweaking
- Shows ability to 'twin' early on for target assets

New Use Cases

- Model deployed on new assets with new data
- Model adapts and calibrated properly

Continuous Validation

Continual

Improvement

- Model runs 'hands off'
- Pathway exists to improve as new data or behaviors emerge

Long Term

Metrics Tracking

- Metrics for accuracy established
- Metrics for accuracy reviewed and acted upon

Phase 4

Median Rate

Performance Loss Rate (Percent / year)

Photovoltaic Digital Twin

PREDICT DEGRADATION

Use DT to Baseline Performance

ACCOUNT FOR UNCERTAINTY IN SUNLIGHT MEASUREMENTS AND DEGRADATION

DIGITAL TWIN CHALLENGES

Model Maintenance

When do you update? How do you capture continual change?

Uncertainty as a Core Component

Can I trust the model? Should I trust the model? What don't I know?

What AI Should Be Used?

LLM Neural Network Bayesian Commercial Offering A/B/C?

Integration Across Tools

Are my tools ready to integrate?
Should I integrate my tools?
Do I have the right tools to begin with?

DIGITAL TWIN CONSIDERATIONS

Al and ML – Use Intelligently and Only to The Extent Required

- If a 2nd order function works use it
- Great for capturing uncertainty and working with noisy data

PHYSICAL MODEL REQUIRED

- * Helps 'tie together' noisy data
- * Use AI/ML to create reduced order models

UNCERTAINTY

Should always be included and quantified in the calibration and prediction processes

Empowering the world to run smarter

