

## Why is PH in PSPACE?

## $PH \subseteq PSPACE$ .

In order to prove it, one has to show that for a language  $A \in \Sigma_k$  (for some  $k \in \mathbb{N}$ ) there exists a turing machine  $M_A$  that decides it in polynomial space.

I am having a hard time understanding why this is true. I'll try to explain:

Let's take for example  $L \in \Sigma_2$ : by definition,  $x \in L \iff \exists y_1 \forall y_2 : V(y_1, y_2) = 1$ . But finding such  $y_1$  and checking it against all possible  $y_2$ s has to take more than polynomial space! The machine has to remember each  $y_2$  that it tried in order to make sure that it indeed tried out all of the options, and the number of possible  $y_2$ s is exponential, which makes it exponential space.

complexity-theory complexity-classes space-complexity

asked Aug 3 '16 at 12:06 ranys **86** 5

## 1 Answer

No, it is not necessary to remember all y's tried before. In order to remember that I've tried the numbers  $1,2,\ldots,200$ , I do not need to remember  $3,4,5,6,\ldots,199$ . If you try them in order, just remembering the last one is enough.

answered Aug 3 '16 at 12:15

Tom van der Zanden

8,049 1 16 39