Question 19

Correct

Mark 1.00 out of 1.00

P Flag

In empirical risk minimization the predictor is:

Select one:

- O a. None of the above.
- O b. A probabilistic function.

The correct answer is: A deterministic function.

Question 20

Correct

Mark 1.00 out

F Flag

The regression matrix A of the data $(x_i,y_i), i=1,\ldots,N, x_i,y_i\in\mathbb{R}$, for a polynomial model of degree k-1, has elements:

Select one:

$$\bigcirc$$
 a. $a_{i,j}=x_i^{j+1}, i=1,\ldots,N, j=1,\ldots,k.$

$$lackbox{0}$$
 b. $a_{i,j}=x_i^{j-1}, i=1,\ldots,N, j=1,\ldots,k$

$$\bigcirc$$
 c. $a_{i,j}=x_i^j, i=1,\ldots,N, j=1,\ldots,k$

The correct answer is: $a_{i,j} = x_i^{j+1}, i = 1, \ldots, N, j = 1, \ldots, k$

 \bigcirc c. $\mathbb{E}[X] = 6$. The correct answer is: $\mathbb{E}[X] = \frac{14}{6}$ Question 17 If X,Y are random variables with values in \mathbb{R}^D , then: Correct Mark 1.00 but Select one: DOLT NO \odot a. Cov(X,Y) is a matrix $D \times D$. P Plan question \bigcirc b. Cov(X,Y) is a scalar. \bigcirc c. Cov(X,Y) is a vector D imes 1. The correct answer is: Cov(X,Y) is a matrix $D \times D$ Question 18 Given two random variables X and Y. Bayes Theorem implies that $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$ where: Correct Select one: \bigcirc a. p(x|y) is called posterior distribution on y. \bigcirc b. p(x|y) is called prior distribution on x. \odot c. p(x|y) is called likelihood on y. The correct answer as p(x|y) is called likelihood on y. Question 19

Mark 1.00 out of 1.00

F Flag

question

The regression matrix A of the data (x_i,y_i) , i=1 $I_i, x_i, y_i \in \mathbb{R}$, for a polynomial model of degree k+1, has elem

Select one:

$$\bigcirc$$
 a. $a_{i,j}=x_i^{j+1}, i=1,\ldots,N, j=1,\ldots,k$.

$$igodelightarrow$$
 b. $a_{i,j}=x_i^{j-1}, i=1,\ldots,N, j=1,\ldots,k$,

$$\bigcirc$$
 c. $a_{i,j} = x_i^j, i = 1, \ldots, N, j = 1, \ldots, k$.

The correct answer is: $a_{i,j}=x_i^{j-1}$, $i=1,\ldots,N,j=1$,

Question 21

Correct

Mark 1.00 out

of 1.00

F Flag question

Select one:

$$\bigcirc$$
 b. $||Ux|| > ||x||$.

$$\bigcirc$$
 c. $||Ux|| < ||x||$

The correct answer is: None of the above

O. INDIE DI THE SDUVE

 \odot c. $\forall A \in \mathcal{A}, X(A)$ is the event "X lies in A". imes

The correct answer is: None of the above.

Question 15

Correct

Mark 1.00 out of 1.00

P Flag

For a random variable $X:\Omega o \mathcal{T}$, its variance is defined as:

Select one:

$$igodesign{align*} igotimes_{} \mathrm{a.} & Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]. \ ullet$$

$$\bigcirc$$
 b. $Var(X) = \mathbb{E}[X - \mathbb{E}[X]]$.

$$\bigcirc \subseteq Var(X) = \mathbb{E}[X^2 - \mathbb{E}[X]^2].$$

The correct answer is: $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Question 16

Correct

Mark 1.00 put of 1.00

or Flag question Given a discrete random variable $X:\Omega \to \mathcal{T}$, with $\mathcal{T}=\{1,2,3\}$ and $f_X=\{\frac{1}{6},\frac{1}{2},\frac{1}{2}\}$ its PMF, then:

Select one:

$$\bigcirc$$
 a. $\mathbb{E}[X]=2$.

$$\odot$$
 D. $\mathbb{E}[X] = \frac{14}{6}$.

$$\bigcirc$$
 c, $\mathbb{E}[X]=6$.

The correct answer is: $\mathbb{E}[X] = \frac{st}{s}$

Question 7

Correct

Mark 1.00 out

P Flag

The correct answer is: $K_2(A)=4$.

If $A = U \Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

Select one:

O a. None of the above

 $igodeligate{igodeligatebox{igo}}}}}}}$ b. The rows of \$V^T\$ are eigenvectors of \$A^TA\$. \$\sigma\$ are eigenvectors of \$A^TA\$. \$\simedbox{igodeligatebox{

 \bigcirc c. The columns of U are eigenvectors of A^TA .

The correct answer is: The rows of V^T are eigenvectors of A^TA

Question 8

Mark 1.00 out of 1.00

P Flag question The solution of $\min_x ||Ax-b||_2^2$ where A is an m imes n matrix, $m \geq n$, rank(A) = n, can be computed as:

Select one:

 \bigcirc a. $AA^Tx = A^Tb$.

 \bullet b. $A^TAx = A^Tb$.

 $\bigcirc \subseteq A^TAx = b.$

The correct answer is: $A^T A x = A^T b$.

Question 9

Mari 1.00 out of 1.00 If $f:\mathbb{R}^3 o\mathbb{R}$, $f(x_1,x_2,x_3)=\sin x_1-\sin x_2\cos x_3+x_3^2$ then $\nabla f(0,\pi,\pi)$ equals to

Select one:

(a) a. None of the above

() c. (0,3).

The correct answer is: None of the above.

Question 13

Incorrect
Mark 6.00 out
of 1.00

₹ Flag question If $f:\mathbb{R}^n o \mathbb{R}$, $f \in \mathcal{C}^1(\mathbb{R}^n)$, then the Gradient Descent method $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$ converges to a stationary point of f if:

Select one:

- \bigcirc a. $\alpha_k \to 0$ as $k \to \infty$.
- \odot b. $\alpha_k > 0 \ \forall k \in \mathbb{N}$.
- \bigcirc c. $lpha_k > 0$ is chosen with a backtracking procedure.

The correct answer is: $lpha_k>0$ is chosen with a backtracking procedure.

Question 14

Mark 0.00 out of 1.00

F Flag

If ${\mathcal A}$ is the event space and ${\mathcal T}$ is a subset of ${\mathbb R}$, then:

Select one:

- \bigcirc a. $orall A \in \mathcal{A}, X(A)$ is the probability that X lies in A.
- O b. None of the above.
- \odot c. $\forall A \in \mathcal{A}$ X(A) is the event "X lies in A". \mathbf{x}

The correct answer is: None of the above

Question 15

Mark 100 ou

For a random variable $X:\Omega \to \mathcal{T}$, its variance is defined as:

Select one:

Question 9

Correct Mark 1.00 out of 1.00

P Flag question If $f:\mathbb{R}^3 o\mathbb{R}$, $f(x_1,x_2,x_3)=\sin x_1-\sin x_2\cos x_3+x_3^2$, then $abla f(0,\pi,\pi)$ equals to:

Select one:

a. None of the above. *

 \bigcirc b. $(-1,0,\pi)$.

O c. (0,0,0).

The correct answer is: None of the above.

Question 10

Correct

Mark 1.00 out

P Flog

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1x_2,g:\mathbb{R} o \mathbb{R}^2$, $g(t)=(t,t^2)$ then, if h(t)=f(g(t)),

Select one:

 \bigcirc a. $h'(t) = 3t^2 + 1$.

 \bigcirc b. $h'(t) = 3t^2 - 1$.

⑥ c. None of the above. ✓

The correct answer is. None of the above

Question 11

Conset

Mark 1,00 o

If $f \colon \mathbb{R}^n \to \mathbb{R}$ Which of the following statements is False?

Select one

 $\bigcirc \ c. \ ||x||_1 = \max_i |x_i|.$ The correct answer is: $||x||_1 = \sum_{i=1}^n |x_i|$ Question 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then: Incorrect Mark 0.00 out Select one: of 1.00 O a. None of the above. P Flag question \bigcirc b. $A_{i,j} \geq 0$ for all i,j. \odot c. All the eigenvalues λ_i of A are ≥ 0 , imesThe correct answer is: None of the above. Question 4 If U is an n imes n orthogonal matrix, then Select one: \bigcirc a. The rows of U are orthogonal vectors. b. None of the above. × \bigcirc c. The rows of U are orthonormal vectors. Question 5 If V is a vector space, $U\subseteq V$ is a subspace, and $\Pi_U:V\to U$ is a projection. Then

The correct answer is: None of the above.

Question 11

Correct

Mark 1.00 out of 1.00

P Flag

If $f:\mathbb{R}^n o \mathbb{R}$. Which of the following statements is False?

Select one:

$$\bigcirc$$
 a. x^* local minimum for $f \implies
abla f(x^*) = 0$.

$$\bigcirc$$
 b. $\nabla f(x^*) = 0 \implies x^*$ stationary point for f .

$$igodelightarrow$$
 c. $abla f(x^*) = 0 \implies x^*$ local minimum for f_*

The correct answer is: $abla f(x^*) = 0 \implies x^*$ local minimum for f

Question 12

Correct

Mark 1.00 out of 1.00

P Fing

Let $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=9x_1x_2^2-x_1$, $\nabla f(x_1,x_2)=(9x_2^2-1,18x_1x_2)$ then which of the following is a stationary point for f

Select one:

O a. (0,0).

b. None of the above.

✓

Oc. (0,3).

The correct answer is None of the above

Question 13

Mark 0.00 c

If $f:\mathbb{R}^n \to \mathbb{R}$, $f\in \mathcal{C}^1(\mathbb{R}^n)$, then the Gradient Descent method $x_{k+1}=x_k-\alpha_k \nabla f(x_k)$ converges to a stationary point of f if

Select and

On manager

GG

Virtuale

La risposta corretta è: $h'(t) = 8t^3 + 1$.

If $f:\mathbb{R}^n \to \mathbb{R}$, then: Scegli un'alternativa:

- \bigcirc a. x^* local minimum for $f \iff \nabla f(x^*) = 0$.
- \bigcirc b. $\nabla f(x^*) = 0 \implies x^* \log \min \min f$.
- igotimes c. x^* local minimum for $f \implies \nabla f(x^*) = 0$. \checkmark

La risposta corretta è: x^* local minimum for $f \implies \nabla f(x^*) = 0$.

Domanda 12

Domanda 11

Risposta corretta

Punteggio

domanda

ottenuto 1,00 su 1,00

Risposta corretta Punteggio

ottenuto 1,00 su 1,00

Contrassegna domanda

Let $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=9x_1x_2^2-x_1$, $\nabla f(x_1,x_2)=(9x_2^2-1,18x_1x_2)$ then which of the following is a stationary point for f?

Scegli un'alternativa:

- a. None of the above.
- O b. (0,0).
- O c. (0,3).

La risposta corretta è: None of the above.

Domanda 13

corretta Punteggio

ottenuto 1,00 su 1,00

Contrassegna domanda

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(1,1)^T$ and $lpha=rac{1}{2}$, then:

Sceoli un'alternativa:

- (a) $x^{(1)} = (1 \frac{\varepsilon}{2}, 1 \frac{\varepsilon}{2})^T$.
- $\bigcirc \ \text{b.} \ x^{(1)}=(1+\tfrac{\varepsilon}{2},1+\tfrac{\varepsilon}{2})^T.$
- \bigcirc c. $x^{(1)} = (\frac{1}{2} \frac{c}{2}, \frac{1}{2} \frac{c}{2})^T$.

La risposta corretta è: $x^{(1)}=(1-\frac{\varepsilon}{2},1-\frac{\varepsilon}{2})^T$

Domanda 14

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Contrassegna domanda

Given two random variables X and Y, then the posterior probability of Xgiven Y is defined as:

Scegli un'alternativa:

- \bigcirc a. P(X = x, Y = y).
- \bigcirc b. P(Y = y|X).
- c. P(X = x|Y).

 x

La risposta corretta è: P(Y = y|X).

Domanda 15

corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna

For a random variable $X:\Omega o \mathcal T$ with $\mathbb E[X]=0$, it holds:

Scegli un'alternativa:

- igotimes a. $Var(X) = \mathbb{E}[X^2]$.
- \bigcirc b. $Var(X) = \mathbb{E}[X]$.
- \bigcirc c. Var(X) = 0.

La risposta corretta è: $Var(X) = \mathbb{E}[X^2]$.

Domanda 16

Given a discrete random variable $X:\Omega o \mathcal{T}$, with $\mathcal{T}=\{0,1\}$, and $f_v = \{\frac{2}{2}, \frac{1}{2}\}$ then

0 0

GG

Virtuale

corretta Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

If

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then:

Scegli un'alternativa:

- \bigcirc a. $K_2(A) = \frac{1}{2}$.
- \bigcirc b. $K_2(A) = 4$.
- ⊚ c. $K_2(A) = 1.$ ✓

La risposta corretta è: $K_2(A)=1$.

Domanda 7

Risposta errata

Punteggio ottenuto 0,00 su 1,00

P Contrassegna domanda

If $A \in \mathbb{R}^{m \times n}$, then:

Scegli un'alternativa:

- \bigcirc a. It depends on A.
- \bigcirc b. A^TA is symmetric but not necessarily positive definite.
- $\ \odot$ c. A^TA is always symmetric and positive definite. imes

La risposta corretta è: $A^T A$ is symmetric but not necessarly positive definite.

Domanda 8

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Contrassegna domanda

A solution of $\min_x ||Ax-b||_2^2$ where A is an $m\times n$ matrix, $m\geq n$, rank(A)=k< n , can be computed as:

Scegli un'alternativa:

- $\bigcirc \ \ {\bf a}. \ \ {\bf A}^+x=b.$
- \odot b. $AA^Tx = A^Tb$.
- \bigcirc c. $x = A^+b$.

La risposta corretta è: $x=A^+b$.

Domanda 9

corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1^2+x_1x_2,g:\mathbb{R} o \mathbb{R}^2$. $g(t) = (\cos(t), \sin(t))$, then, if h(t) = f(g(t)):

Scegli un'alternativa:

- \bigcirc a. $h'(t) = \cos(2t) 1$.
- \bigcirc b. $h'(t) = 1 \sin(2t)$.
- \odot c. $h'(t) = \cos(2t) \sin(2t)$.

La risposta corretta è: $h'(t) = \cos(2t) - \sin(2t)$.

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00

su 1,00

domanda

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1+2x_2^2, g:\mathbb{R} o \mathbb{R}^2$, $g(t)=(t,t^2)$ then, if h(t)=f(g(t)),

Scegli un'alternativa:

- a. $h'(t) = 8t^3 + 1.$
 ✓
- \bigcirc b. $h'(t) = t^3 + t$.
- \bigcirc c. $h'(t) = 3t^3 + 1$.

La risposta corretta è: $h'(t) = 8t^3 + 1$.

Domanda 11

Virtuale

Domanda 16

Risposta

Puntaggio ottenuto 1,00 su 1,00

P Contrassegna

domanda

 $f_X = \{\frac{2}{3}, \frac{1}{3}\}$, then: Scegli un'alternativa:

 \bigcirc a. $\mathbb{E}[X] = 1$.

 \bigcirc b. $\mathbb{E}[X] = \frac{2}{3}$.

 \bullet c. $\mathbb{E}[X] = \frac{1}{3}$.

La risposta corretta è: $\mathbb{E}[X]=rac{1}{3}$.

Domanda 17

corretta

Punteggio ottenuto 1,00 su 1,00

P Contrassegna domanda

If X,Y are multivariate random variables with states $x,y\in\mathbb{R}^D$, then:

Given a discrete random variable $X:\Omega o\mathcal{T}$, with $\mathcal{T}=\{0,1\}$, and

 $\bigcirc \ \, \text{a.} \ \, Cov(X,Y) = \mathbb{E}[X,Y^Y] - \mathbb{E}[X].$

 \bigcirc b. $Cov(X,Y) = \mathbb{E}[X,Y] + \mathbb{E}[X]\mathbb{E}[Y]$.

 \odot c. Cov(X,Y) = Cov(Y,X).

La risposta corretta è: Cov(X,Y) = Cov(Y,X).

Domanda 18

Punteggio attenuto 1,00 su-1,00

Contrassegna domanda

Given two random variables X and Y, Bayes Theorem implies that $p(y|x) = rac{p(x|y)p(y)}{p(x)}$ where:

Scegli un'alternativa:

a. p(x|y) is called likelihood on y.

 \bigcirc b. p(x|y) is called prior distribution on x.

 \bigcirc c. p(x|y) is called posterior distribution on y.

La risposta corretta è: p(x|y) is called likelihood on y .

Domanda 19

Risposta

corretta Punteggio ottenuto 1,00 su 1,00

domanda

Given two random variables X and Y such that $p(x)=cc^{-|x|}$ and $p(y|x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y-ax)^2}$, then the MLE reads:

Scegli un'alternativa:

 \bigcirc a. $x^* = \arg\min_x \frac{1}{2}(y - ax)^2 + \frac{1}{2}x^2$.

 \bigcirc b. $x^* = \arg \min_x \frac{1}{2} (y - ax)^2 + |x|$.

© c. $x^* = \arg \min_{x} \frac{1}{2} (y - ax)^2$.

La risposta corretta è: $x^* = \arg\min_{x \in \frac{1}{2}} (y - ax)^2$.

Domanda 20

Risposta non

Punteggio max = 1,00

domanda

Suppose a set of data $(x_i,y_i), i=1,\ldots,N, y_i=f(x_i)+\epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. In linear regression, the likelihood function is:

Scegli un'alternativa:

 \bigcirc a. $p(y|x, \theta) = \prod_{i=1}^{N} \mathcal{N}(x|x_i^T \theta, \sigma^2)$.

O b. None of the above.

 \bigcirc c. $p(y|x, \theta) = \prod_{i=1}^{N} \mathcal{N}(y|x_i^T \theta x_i, \sigma^2)$.

La risposta corretta è: None of the above.

Domanda 21

Risposta errata Punteggio attenuta 0,00

A solution of $\min_x ||Ax-b||_2^2$ where A is an m imes n matrix, $m \geq n_\epsilon$ rank(A) = k < n, can be computed as:

Scegli un'alternativa:

 \bigcirc a. $x = A^+b$.

Virtuale

₽ □ | B •

Domanda 1

Risposta corretta

Punteggio attenuto 1,00 su 1,00

P Contrassegna domanda

If x=3.89167 and y=0.4567, which is the value of z=x-y when represented in $\mathcal{F}(10, 5, -5, 5)$?

Scegli un'alternativa:

- O a. 3.434.
- b. 0.3434 · 10⁰.
- ⑥ c. 3,4343. ✓

La risposta corretta è: 3.4343.

Domanda 2

Risposta corretta

Punteggio ottonuto 1,00 su 1,00

domanda

Given the matrix:

$$A = \begin{bmatrix} -4 & 0 \\ -1 & -2 \end{bmatrix}$$

Compute the 2-norm and the 1-norm of A:

Scegli un'alternativa:

- a. None of the above.
- $\bigcirc \ \, \text{b.} \ \, ||A||_2 = 4, ||A||_1 = \sqrt{5}.$
- \bigcirc c. $||A||_2 = 6, ||A||_1 = 5.$

La risposta corretta è: None of the above.

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Which pairs of vectors are linearly independent?

Scegli un'alternativa:

- a. (2,1,0), (-3,4,1).
- $\bigcirc \ b. \ (0,1,-1), (0,\tfrac{1}{7},-\tfrac{1}{7}).$
- \bigcirc c. $(\frac{1}{2}, \frac{1}{3}, 2), (1, \frac{2}{3}, 4)$.

La risposta corretta è: (2, 1, 0), (-3, 4, 1).

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00

su 1,00 Contrassegna domanda

If $x=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$, $y=(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$, then:

Scegli un'alternativa:

- a. x and y are orthonormal.

 ✓
- O b. a and y are orthogonal.
- \bigcirc c. x and y are parallel.

La risposta corretta è: x and y are orthonormal.

Domanda 5

corretta Punteggio ottenuto 1,00 su 1,00

Contrassegria domanda

If V is a vector space, $U\subseteq V$ is a subspace, and $\Pi_U:V o U$ is a projection. Then:

Scegli un'alternativa:

- a. None of the above.
- igotimes b. $\Pi_U(x)$ is the point with minimum distance to x in U. \checkmark
- \bigcirc c. $\Pi_U(x)$ is the point with maximum distance to x in U.

La risposta corretta è; $\Pi_U(x)$ is the point with minimum distance to x in U

corretta

Punteggio

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}$$

Risposta corretta

Punteggio attenuto 1,00 su 1,00

> Contrassegna domanda

If X,Y are multivariate random variables, then:

Scegli un'alternativa:

igotimes a. $Cov(X,Y) = -\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X,Y]$.

O b. None of the above.

 \bigcirc c. $Cov(X, Y) = \mathbb{E}[X, Y] - \mathbb{E}[X]$.

La risposta corretta è: $Cov(X,Y) = -\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X,Y].$

Domanda 18

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

P Contrassegna domanda

Given two random variables X and Y, Bayes Theorem implies that:

Scegli un'alternativa:

$$\bigcirc$$
 a. $p(x) = \frac{p(y)p(y|x)}{p(y|x)}$.

$$\bigcirc$$
 b. $p(x)=rac{p(x|y)p(y|x)}{p(y)}$

$$igotimes$$
 c. $p(y)=rac{p(y|x)p(x)}{p(x|y)}$, $m{arphi}$

La risposta corretta è: $p(y) = \frac{p(y|x)p(x)}{p(x)p(x)}$

Domanda 19

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Given two random variables X and Y such that $p(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$ and $p(y|x)=ce^{-|y-ax|}$, then the MLE reads:

Scegli un'alternativa:

$$\bigcirc$$
 a. $x^* = \arg\min_x \frac{1}{2}(y - ax)^2$

$$\bigcirc \ \, \mathrm{b.} \ \, x^* = \arg\min_x |y - ax| + x^2.$$

La risposta corretta è: $x^* = \arg\min_z |y - ax|$.

Domanda 20

Risposta corretta

ottenuto 1,00 su 1,00

Contrassegna domanda

The regression matrix A of the data $(x_i,y_i), i=1,\ldots,N, x_i,y_i\in\mathbb{R}$, for a polynomial model of degree k-1, has shape:

Scegli un'alternativa:

$$\bigcirc$$
 a. $k \times N$.

$$\bigcirc$$
 b. $N \times N$.

$$\textcircled{\scriptsize e}$$
 c. $N \times k$. \checkmark

La risposta corretta è: $N \times k$.

Domanda 21

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

If $A \in \mathbb{R}^{n imes n}$ is symmetric and positive definite, then:

Scegli un'alternativa:

 \bigcirc a. All the eigenvalues λ_i of A are ≥ 0 .

 \bigcirc b. $A_{i,j} \geq 0$ for all i,j.

⑥ c. None of the above. ✓

La risposta corretta è: None of the above.

Fine revisione

domanda

Contrassegna domanda

domanda

(•) c. P(X = x | Y) ≤ P(X = x). **×**

La risposta corretta è: None of the above.

Domanda 15 The normal distribution $\mathcal{N}(\mu=\frac{1}{2},\sigma^2=4)$ has the following PDF: corretta Scegli un'alternativa: Punteggio ottenuto 1,00 su 1,00

 \bigcirc a. $f_X(x) = \frac{1}{\sqrt{2\pi} \exp(-\frac{x^2}{2})}$.

igotimes b. $f_X(x)=rac{1}{2\sqrt{2\pi}\exp(-rac{(x-rac{1}{2})^2}{\hbar})}$, $oldsymbol{\checkmark}$

 $\frac{1}{\sqrt{4\pi}\exp(-\frac{(r-\frac{1}{2})^2}{s}}\Big),$ \bigcirc c. $f_X(x) = --$

La risposta corretta è: $f_X(x) = rac{1}{2\sqrt{2\pi}\exp(-rac{(x-rac{1}{2})^2}{2})}$

Domanda 16 Given two discrete random variable $X_1:\Omega o\mathcal{T}$, $X_2:\Omega o\mathcal{T}$ with Risposta $\mathcal{T}=\{0,1\}$, and $f_{X_1}=\{\frac{1}{3},\frac{2}{3}\}$, $f_{X_2}=\{\frac{2}{3},\frac{1}{3}\}$ their PMF, then: corretta Punteggio Scegli un'alternativa:

ottenuto 1,00 \bigcirc a. $\mathbb{E}[X_1] = \mathbb{E}[X_2]$. P Contrassegna

 \bigcirc b. $\mathbb{E}[X_1] < \mathbb{E}[X_2]$. igotimes c. $\mathbb{E}[X_1] > \mathbb{E}[X_2]$.

La risposta corretta è: $\Pi_U(x)$ is the point with minimum distance to x in U .

Domanda 6

corretta Printeggio ottenuto 1,00 su 1,00

P Contrassegna

[2 0 0 0] 0 3 0 0 0 0 2 0 0 0 0 4

then:

Scegli un'alternativa:

- \bigcirc a. rank(A) = 3.
- \bigcirc b. rank(A) = 2.
- c. rank(A) = 4.

 ✓

La risposta corretta è: rank(A) = 4.

Domanda 7

Risposta corretta

Puntoggio ottenuto 1,00 su 1,00

domanda

If $A=U\Sigma V^T$ is the SVD decomposition of an $m\times n$ matrix A, then:

Scegli un'alternativa:

- a. None of the above.
- \bigcirc b. The elements on the diagonal of Σ are strictly positive.
- $\ \odot$ c. The elements of the diagonal matrix Σ are non-negative. \checkmark

La risposta corretta è: The elements of the diagonal matrix Σ are nonnegative.

Domanda 8

Risposta errata

Punteggio ottenuto 0,00 su 1,00

domanda

The solution of $\min_x ||Ax-b||_2^2$ where A is an m imes n matrix, $m \geq n$, rank(A) = n, can be computed as:

Scegli un'alternativa:

- \bigcirc a. $A^+x=b$.
- \bigcirc b. $x = A^+b$.
- \odot c. $AA^Tx = A^Tb$.

La risposta corretta è: $x=A^+b$.

Domanda 9

corretta

Punteggio ottenuto 1,00 su 1,00

domanda

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1x_2, g:\mathbb{R} o \mathbb{R}^2$, $g(t)=(t,t^2)$, then, if h(t) = f(g(t)):

Scegli un'alternativa:

- \bigcirc a $h'(t) = 3t^3$.
- \bigcirc b. $h'(t) = t^2$.

La risposta corretta è: $h'(t) = 3t^2$.

Domanda 10

Rienneta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1+2x_2^2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,t^2)$ then, if h(t) = f(g(t)),

Scegli un'alternativa:

- \bigcirc a. $h'(t) = t^3 + t$.
- b. $h'(t) = 8t^3 + 1.$ ✓
- \bigcirc c. $h'(t) = 3t^3 + 1$.

La risposta corretta è: $h'(t)=8t^3+1$.

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna

If $x=0.7\cdot 10^{-4}$ and y=1.7892, which is the value of z=x+y when represented in $\mathcal{F}(10,5,-5,5)$?

Scegli un'alternativa:

- a. None of the above.
- O b. 0.17899 · 101.
- O = 0.17899.

La risposta corretta è: None of the abovi

omanda 2

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna

If A is symmetric and positive definite and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are the eigenvalues of A, then:

Scegli un'alternativa:

- $\bigcirc \ \ \text{a.} \ \ ||A||_2 = \sqrt{\lambda_1}$
- igodots b. $||A||_2 \lambda_1$.
- $\bigcirc \ ^{\mathrm{c.}} \ ||A^{-1}||_2 = \lambda_n.$

La risposta corretta e: $||A||_2\lambda$

Domanda 3

Risposta corretta Punteggio ottonuto 1,00 su 1,00

Contrassegna domanda The matrix:

$$A = egin{bmatrix} 1 & 2 \ 3 & 6 \end{bmatrix}$$

is:

Scegli un'alternativa:

- a. Semi-negative definite.
-) b. Positive definite.
- c. Semi-positive definite.

La risposta corretta è: Semi-positive definite

Domanda 4

Risposta corretta

Punteggio

otteruto 100 su

Contrassagna domanda If $x=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, $y=\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, then:

Scegli un'alternativa:

- a. None of the above.
- \bigcirc b. x and y are orthonormal.
- \bigcirc c. x and y are orthogonal.

La risposta corretta e: None of the above

Domanda 5

Risposta corretta Punteggio

Contrassegna

If V is a vector space with $dim(V)=n, U\subseteq V$ is a subspace with dim(U)=k , then:

Scegli un'alternativa:

- \bigcirc a. $U \cup U^{\perp} = U$.
- $igodesign{align*} igodesign{align*} igodesign{$
- $\bigcirc \circ U \cap U^{\perp} = \emptyset$

La risposta corretta è: $U\cap U^\perp=\{0\}$

Punteggio ottenuto 1,00 su

Contrassegna

If $f:\mathbb{R}^n o \mathbb{R}$. Which of the following statements is False?

Scegli un'alternativa:

$$\bigcirc$$
 a. x^* local minimum for $f \Longrightarrow
abla f(x^*) = 0$.

$$lacktriangledown$$
 b. $abla f(x^*) = 0 \implies x^*$ local minimum for f . \checkmark

$$\bigcirc$$
 c. $abla f(x^*) = 0 \implies x^*$ stationary point for f .

La risposta corretta è: $\nabla f(x^*) = 0 \implies x^*$ local minimum for f.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su

Contrassegra

If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2)=2\sin x_1+\sin x_1\cos x_2$, $\nabla f(x_1,x_2)=(2\cos x_1+\cos x_1\cos x_2,-\sin x_1\sin x_2)$ then which of the following is a stationary point for f?

Scegll un'alternativa:

(a)
$$(-\frac{\pi}{2},0)$$
.

La risposta corretta è: (- 🚆, 0)

Domanda 13

isposta corretta

Punteggio ottenuto 1,00 su 1,00

P Contressegne

If $f:\mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2)=x_1^2+\cos(x_2)$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(1,\frac{\pi}{2})^T$ and $\alpha>0$, then:

Scegli un'alternativa:

$$\bigcirc$$
 a. $x^{(1)}=(1+2lpha,rac{\pi}{2}+rac{\pi}{2}lpha)^T.$

$$igotimes b. \quad x^{(1)} = (1-2lpha, rac{\pi}{2}+lpha)^T.$$

$$\bigcirc$$
 c. $x^{(1)}=(1-2lpha,rac{\pi}{2}+rac{\pi}{2}lpha)^T$

La risposta corretta è: $x^{(1)} = (1-2lpha, \frac{\pi}{lpha}+lpha)^T$

Domanda 14

Plisposta corretta

опелито 1,00 su 1,00

Contrassegn domanda Given two random variables X and Y, then:

Scegli un'alternativa:

$$\bigcirc$$
 a. $P(X = x|Y) \le P(X = x)$.

$$\bigcirc$$
 b. $P(X=x|Y) \ge P(X=x)$.

La risposta corretta è: None of the above

Domanda 15

Risposta corretti Punteggio

₹ Contrassegna

For a random variable $X:\Omega o \mathcal T$, it holds:

Scegli un'alternativa:

$$\bigcirc$$
 b. $Var(X) = \mathbb{E}[X]^2 - \mathbb{E}[X^2]$

$$\bigcirc$$
 c. $Var(X) = \mathbb{E}[X^2] + \mathbb{E}[X]^2$.

te reporte corrette à $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Domanda 16

Risposta covett Punteggio Given two discrete random variable $X_1:\Omega\to\mathcal{T}$, $X_2:\Omega\to\mathcal{T}$ with $\mathcal{T}=\{0,1\}$, and $f_{X_1}=\{\frac{1}{3},\frac{2}{3}\}$, $f_{X_2}=\{\frac{2}{3},\frac{1}{3}\}$ their PMF, then:

Scegli un'alternativa:

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna

Given two discrete random variable $X_1:\Omega\to\mathcal{T}$, $X_2:\Omega\to\mathcal{T}$ with $\mathcal{T}=\{0,1\}$, and $f_{X_1}=\{\frac{1}{3},\frac{2}{3}\}$, $f_{X_2}=\{\frac{2}{3},\frac{1}{3}\}$ their PMF, then:

Scegli un'alternativa:

$$igotimes$$
 a. $\mathbb{E}[X_1] > \mathbb{E}[X_2]$. \checkmark

$$\bigcirc$$
 b. $\mathbb{E}[X_1] = \mathbb{E}[X_2]$.

$$\bigcirc$$
 c. $\mathbb{E}[X_1] < \mathbb{E}[X_2]$.

La risposta corretta è: $\mathbb{E}[X_1] > \mathbb{E}[X_2]$

Domanda 17

Risposta corretta

P Contrassagna

If X,Y are multivariate random variables, then:

Scegli un'alternativa:

$$igotimes$$
 b. $Cov(X,Y) = -\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X,Y]$.

$$\bigcirc$$
 c. $Cov(X,Y) = \mathbb{E}[X,Y] - \mathbb{E}[X]$.

La risposta corretta è: $Cov(X,Y) = -\mathbb{E}[X|\mathbb{E}[Y] + \mathbb{E}[X,Y]$

Domanda 18

Risposta corretta Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda Given two random variables $oldsymbol{X}$ and $oldsymbol{Y}$, Bayes Theorem implies that

$$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$
 where:

Scegli un'alternativa:

$$\bigcirc$$
 a. $p(x|y)$ is called posterior distribution on y .

$$lacktriangle$$
 b. $p(x|y)$ is called likelihood on y . \checkmark

$$\bigcirc$$
 c. $p(x|y)$ is called prior distribution on x

La risposta corretta è: p(x|y) is called likelihood on y

Domanda 19

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna

Given two random variables X and Y such that $p(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$ and $p(y|x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}(y-ax)^2}$, then the MLE reads:

Scegli un'alternativa:

$$x^* = \arg\min_{x = 0}^{\infty} \frac{1}{2} (y - ax)^2 + x^2$$

O b.
$$x^* = \arg\min_{x} \frac{1}{2} (y - ax)^2 + \frac{1}{2} x^2$$

La risposta constra è $x^* = \arg\min_{x} \frac{1}{(u - gx)^2}$

Domanda 20

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna domanda Suppose a set of data (x_i,y_i) , $i=1,\ldots,N$, $y_i=f(x_i)+\epsilon_i$, where $\epsilon_i\sim\mathcal{N}(0,\sigma^2)$. In linear regression, the likelihood function is:

Scegli un'alternativa:

$$\bigcirc$$
 a. $p(y|x, \theta) = \prod_{i=1}^{N} \mathcal{N}(y|\theta^{T}x_{i}^{N}, \sigma^{2})$

$$igodesign{igodesign} igotatled{igodesign}$$
 b. $p(y|x, heta) = \prod_{i=1}^N \mathcal{N}(y_i| heta^Tx_i,\sigma^2)$.

$$\bigcirc$$
 c. $p(y|x, heta) = \prod_{i=1}^{N} \mathcal{N}(x| heta^T x_i, \sigma^2)$.

La risposta corretta è: $p(y|x,\theta) = \prod_{i=1}^N \mathcal{N}(y_i|\theta^Tx_i,\sigma^2)$

Domanda 21

If $f:\mathbb{R}^3 o\mathbb{R}$, $f(x_1,x_2,x_3)=2x_2+x_1x_3-3x_1x_2$,

Risposta corretta

Punteggio ottenuto 1,00 su 1 00

Contrassegna domanda

If $f:\mathbb{R}^3 o\mathbb{R}$, $f(x_1,x_2,x_3)=2x_2+x_1x_3-3x_1x_2$, $\nabla f(x_1,x_2,x_3)=(x_3-3x_2,2-3x_1,x_1)$ then which of the following is a stationary point for f?

Scegli un'alternativa:

- \bigcirc a. (0,0,0).
- b. None of the above. 🗸
- \bigcirc c. (0,2,0).

La risposta corretta è: None of the above.

Risposta errata

Punteggio ortenuto 0,00 su 1,00

Contrassegna

The real number $x=79.5\overline{4}$ in normalized scientific representation is:

Scegli un'alternativa:

- a. $fl(x) = 0.7954 \cdot 10^2$.
- O b. None of the above,
- \bigcirc c. $fl(x) = 0.795\overline{4} \cdot 10^2$.

La risposta corretta è: $fl(x) = 0.7954 \cdot 10^2$.

Domanda 2

corretta

Punteggio ottenuto 1,00 51/1,00

Contrassegna domanda

Given the matrix:

$$A = \begin{bmatrix} -4 & 0 \\ -1 & -2 \end{bmatrix}$$

Compute the 2-norm and the 1-norm of A:

Scegli un'alternativa:

- \bigcirc a. $||A||_2 = 6$, $||A||_1 = \sqrt{7}$.
- O b. None of the above.
- **(●)** c. $||A||_2 = 4$, $||A||_1 = 5$. ✓

La risposta corretta é: $||A||_2=4, ||A||_1=5.$

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

domanda

The matrix:

$$A = \begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix}$$

Scegli un'alternativa:

- a. Symmetric and positive definite.
- O b. Symmetric and semi-positive definite.
- O c. None of the above.

La risposta corretta è: Symmetric and positive definite.

Domanda 4

Risposta

corretta Punteggio ottonuto 1,00 su 1,00

domanda

If x = (3, 1), y = (-3, -1), then:

Scegli un'alternativa:

- a. x and y are orthogonal.
- b. x and y are orthonormal.

La risposta corretta è; None of the above.

Domanda 5

Risposta corretta

Punteggio ottenuto 1,00 SH 1,00

Contrassegna domanda

If V is a vector space with dim(V)=n, $U\subseteq V$ is a subspace with dim(U)=k, then:

Scegli un'alternativa:

- \bigcirc a. $U \cap U^{\perp} = \emptyset$.
- $\textcircled{ b. } U \cap U^{\perp} = \{0\}. \checkmark$
- $\bigcirc \ \, {\rm c.} \ \, U \sqcup U^\perp = U.$

La risposta corretta è: $U\cap U^{\pm}=\{0\}.$

Risposta coiretta Punteggio ottenuto 1,00 su 1,00

(° Contrassegna domands

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

Scegli un'alternativa:

- a. rank(A) = 4.

 ✓
- \bigcirc b. rank(A) = 2.
- \bigcirc c. rank(A) = 3.

La risposta corretta è: rank(A) = 4.

Domanda 7

Risposta corretta

Puntoggio ottenuto 1,00 su 1,00

Contrassegna domanda

If $A=U\Sigma V^T$ is the SVD decomposition of an $m\times n$ matrix A, then:

Sceoli un'alternativa:

- igotimes a. The singular values σ_i of A are $\sigma_i = \sqrt{\lambda_i(A^TA)}$ where $\lambda_i(A^TA)$ are the eigenvalues of A^TA .
- \bigcirc c. The singular values σ_i of A are $\sigma_i = \lambda_i(A^TA)$ where $\lambda_i(A^TA)$ are the eigenvalues of A^TA .

La risposta corretta è: The singular values σ_i of A are $\sigma_i = \sqrt{\lambda_i(A^TA)}$ where $\lambda_i(A^TA)$ are the eigenvalues of A^TA .

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

The problem $\min_x ||Ax - b||_2^2$ where A is an $m \times n$ matrix, $m \ge n$, rank(A) = k,

Scegli un'alternativa:

- \bigcirc a. Has a unique solution if and only if k < n.
- ullet b. Has a unique solution if and only if k=n. \checkmark
- C. None of the above.

La risposta corretta è: Has a unique solution if and only if k=n.

Domanda 9

corretta

Punteggio ottenuto 1,00 su 1,00

domanda

If $f:\mathbb{R}^2\to\mathbb{R}$, $f(x,y)=\sqrt{x^2-y^2}$, $g:\mathbb{R}\to\mathbb{R}^2$, $g(t)=(e^{2t},e^{-t})$ then, if h(t)=f(g(t)),

Scegli un'alternativa:

- $\bigcirc \ a \ h'(t) = \frac{2e^{6t}-1}{e^t\sqrt{e^{4t}-1}}$
- O b. $h'(t) = \frac{2e^{it} e^{-it}}{\sqrt{e^{it} + e^{-it}}}$
- c. $h'(t) = \frac{2e^{it} + e^{-2i}}{\sqrt{e^{it} e^{-2i}}}$.

La risposta corretta è: $h'(t) = \frac{2e^{it} + e^{-it}}{\sqrt{e^{it} - e^{-it}}}$

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

If $f:\mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2)=x_1+2x_2^2$, $g:\mathbb{R} \to \mathbb{R}^2$, $g(t)=(t,t^2)$ then, if h(t) = f(g(t)),

Scegli un'alternativa:

- \bigcirc a. $h'(t) = t^3 + t$.
- \bigcirc b. $h'(t) = 3t^3 + 1$.

La risposta corretta è: $h'(t) = 8t^3 + 1$.

Virtuale

Risposta

Punteggio ottenuto 1,00 ou 1,00

Contrassegna domanda

Given a discrete random variable $X:\Omega o \mathcal T$, with $\mathcal T=\{1,2,3\}$, and $f_X = \{rac{1}{6}, rac{1}{3}, rac{1}{2}\}$ its PMF, then:

Scegli un'alternativa:

 \bigcirc a. $\mathbb{E}[X] = 6$.

 \bigcirc b. $\mathbb{E}[X]=2$.

igotimes c. $\mathbb{E}[X] = \frac{14}{6}$.

La risposta corretta è: $\mathbb{E}[X] = \frac{14}{6}$.

Domanda 17

Risposta errata Punteggio attenuto 0,00

domanda

If X is a random variable with values in \mathbb{R}^D , V_x is the variance of X_*

Scegli un'alternativa:

 \bigcirc a. $V_x[X]$ is a vector $D \times 1$.

 \bigcirc b. $V_x[X]$ is a matrix $D \times D$.

 \odot c. $V_x[X]$ is a scalar. f x

La risposta corretta è: $V_x[X]$ is a matrix $D \times D$.

Domanda 18

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

The quantity of interest in Bayes' Theorem is:

Scegli un'alternativa:

The posterior.

✓

O b. The marginal.

O c. The likelihood.

La risposta corretta è: The posterior.

Domanda 19

corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Given two random variables X and Y such that $p(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$ and $p(y|x)=ce^{-|y-ax|}$, then the MAP reads:

Scegli un'alternativa:

igotimes a. $x^* = rg \min_x |y - ax| + rac{1}{3}x^2.$

 \bigcirc b $x^* = \arg\min_x \frac{1}{2}(y - ax)^2$

 \bigcirc c. $x^* = \arg \min_x |y - ax|$.

La disposta corretta è: $x^* = \arg\min_x |y - ax| + \frac{1}{2}x^2$.

Domanda 20

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Contrassegria domanda

Suppose a set of data (x_i,y_i) , $i=1,\ldots,N$, $y_i=f(x_i)+\epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0,\sigma^2)$. In linear regression, the likelihood function is:

Scegli un'alternativa:

a. None of the above.

 \bigcirc b. $p(y|x,\theta) = \prod_{i=1}^{N} \mathcal{N}(x|x_{i}^{T}\theta, \sigma^{2})$

 \bullet c. $p(y|x,\theta) = \prod_{i=1}^{N} \mathcal{N}(y|x_i^T \theta x_i, \sigma^2)$

La risposta corretta è: None of the above.

Domanda 21

date Punteggio

max: 1.00

Contrassegna

If $f:\mathbb{R}^3
ightarrow \mathbb{R}$, $f(x_1,x_2,x_3)=x_1^2-3x_2^2x_1-x_3x_2$, then $\nabla f(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ equals to:

Scegli un'alternativa:

 \bigcirc a. $(\frac{11}{4}, -1, \frac{1}{2})$.

 \bigcirc b. $(\frac{11}{4}, 1, \frac{1}{2})$.

 \bigcirc c. $(\frac{11}{4}, \frac{1}{2}, -1)$

Punteggio ottenuto 1,00 su 1,00

Contrassegna

If

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

then:

Scegli un'alternativa:

- o a. rank(A) = 2
- \bigcirc b. rank(A) = 4.
- \bigcirc = rank(A) = 3.

La risposta corretta è: rank(A)=1

Domanda 7

Risposta corretta Punteggio ottenuto 1,00 su 1,00

Contrassegna

If $A=U\Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

Scegli un'alternativa:

- igodeligal a. The columns of U are eigenvectors of AA^T . \checkmark
- \bigcirc b. The rows of V^T are eigenvectors of AA^T .
- C. None of the above

La risposta corretta è: The columns of U are eigenvectors of AA^T .

Domanda 8

Risposta corretta

Punteggio
offenuto 100 su

Contrassegna domanda The problem $\min_x ||Ax-b||_2^2$ where A is an m imes n matrix, $m \geq n$, rank(A) = k,

Scegli un'alternativa:

- a. Has infinite solutions.
- lacksquare b. Has a unique solution if k=n. ightharpoons
- \bigcirc c. Has a unique solution for any k.

La risposta corretta è: Has a unique solution if k=n

Domanda 9

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna domanda If $f:\mathbb{R}^3 o\mathbb{R}$, $f(x_1,x_2,x_3)=\sin x_1-\sin x_2\cos x_3+x_3^2$, then $\nabla f(\frac{\pi}{2},\frac{\pi}{2},\pi)$ equals to:

Scegli un'alternativa:

- \bigcirc a. $(1,0,2\pi)$
- \bigcirc b. $(0,0,\pi)$.

La risposta corretta è: $(0,0,2\pi)$

Domanda 10

Risposta corretta Punteggio ottenuto 1,00 su

Contrassegna

if
$$f:\mathbb{R}^2 o\mathbb{R}$$
 , $f(x_1,x_2)=x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,t^2)$ then, if $h(t)=f(g(t))$,

Scegli un'alternativa:

- $0 = h'(t) = t^2 + 1.$
- \bigcirc b. $h'(t)=2t^2$
- \bigcirc c. $h'(t)=3t^2$.

La risposta corretta e $h'(t) = 3t^2$