GIẢI TÍCH III

TS. Lê Văn Tứ

Hanoi University of Science and Technology

Nội dung

1 Lí thuyết chuỗi

Table of Contents

1 Lí thuyết chuỗi

Khái niệm chuỗi hàm

Định nghĩa

Với $n \in \mathbb{N}$, xét $u_n(x) \colon \mathbb{R} \to \mathbb{R}$ là một hàm số. Chuỗi hàm xác định bởi dãy hàm $(u_n(x))_{n \geq 1}$ là tổng hình thức

$$u_1(x) + u_2(x) + \ldots + u_n(x) + \ldots$$

Kí hiệu là $\sum_{n=1}^{\infty} u_n(x)$.

- Nếu chuỗi số $\sum_{n=1}^{\infty} u_n(x_0)$ hội tụ, ta gọi chuỗi hàm $\sum_{n=1}^{\infty} u_n(x)$ hội tụ tại x_0 .
- Nếu chuỗi số $\sum\limits_{n=1}^{\infty}u_n(x_0)$ phân kì, ta gọi chuỗi hàm $\sum\limits_{n=1}^{\infty}u_n(x)$ phân kì tại x_0 .
- Miền hội tụ của $\sum\limits_{n=1}^{\infty}u_n(x)$ là tập hợp những điểm x_0 mà $\sum\limits_{n=1}^{\infty}u_n(x_0)$ hội tụ.

Xác định miền hội tụ của chuỗi $\sum_{n=1}^{\infty} x^n$.

Áp dụng tiêu chuẩn D'Alembert,

$$\left|\frac{u_{n+1}(x)}{u_n(x)}\right| = |x|.$$

- Với |x| < 1, chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ.
- Với |x| > 1, chuỗi $\sum_{n=1}^{\infty} u_n(x)$ phân kì.
- Với x=1, chuỗi $\sum_{n=1}^{\infty}u_n(1)=\sum_{n=1}^{\infty}1$ phân kì.
- Với x=-1, chuỗi $\sum\limits_{n=1}^{\infty}u_n(-1)=\sum\limits_{n=1}^{\infty}(-1)^n$ phân kì.

Kết luận: D = (-1, 1).

Xác định miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Áp dụng tiêu chuẩn D'Alembert,

$$\left|\frac{u_{n+1}(x)}{u_n(x)}\right| = \frac{n}{n+1}|x| \xrightarrow{n \to +\infty} |x|.$$

- Với |x| < 1, chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ.
- Với |x| > 1, chuỗi $\sum_{n=1}^{\infty} u_n(x)$ phân kì.
- Với x=1, chuỗi $\sum_{n=1}^{\infty}u_n(1)=\sum_{n=1}^{\infty}\frac{1}{n}$ phân kì.
- Với x=-1, chuỗi $\sum\limits_{n=1}^{\infty}u_n(-1)=\sum\limits_{n=1}^{\infty}\frac{(-1)^n}{n}$ hội tụ (Leibniz).

Kết luận: D = [-1, 1).

Xác định miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^x}$.

- Với $x \le 0$, $\lim_{n \to +\infty} \frac{1}{n^x} \ne 0 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^x}$ phân kì.
- Với $x_0>0$ cố định, hàm $y\mapsto y^{x_0}$ là hàm giảm. Áp dụng tiêu chuẩn tích phân

$$\sum_{n=1}^{\infty} \frac{1}{n^{x_0}} \text{ hội tụ } \Leftrightarrow \int\limits_{1}^{\infty} \frac{dy}{y^{x_0}} \text{ hội tụ } \Leftrightarrow x_0 > 1.$$

Kết luận: $D = (1, +\infty)$.

Chuỗi hội tụ điểm

Định nghĩa

Xét chuỗi hàm $\sum_{n=1}^{\infty} u_n(x)$ với miền hội tụ D. Hàm số xác định bởi

$$S(x): D \rightarrow \mathbb{R}$$

 $x \mapsto \sum_{n=1}^{\infty} u_n(x).$

được gọi là hàm giới hạn của chuỗi $\sum_{n=1}^{\infty} u_n(x)$.

Hàm $S_n(x)=u_1(x)+u_2(x)+\ldots+u_n(x)$ được gọi là dấy hàm tổng riêng thứ n .

Nhận xét: Hàm $S_n(x)$ xác định trên miền hội tụ D.

Lê Văn Tứ (BKHN)

Chuỗi hội tụ điểm

Sự hội tụ điểm

Xét chuỗi $\sum_{n=1}^{\infty} u_n(x)$ với miền hội tụ D và hàm giới hạn $S: D \to \mathbb{R}$. Ta nói dãy $(S_n(x))_{n\geq 1}$ hội tụ điểm về S(x). Tức là, với mỗi $x_0 \in D$ cố định,

$$\forall \epsilon > 0, \exists n_0 = n_0(x_0, \epsilon) > 0, \forall n > n_0, |S(x_0) - S_n(x_0)| < \epsilon.$$

Sự hội tụ của chuỗi $\sum_{n=1}^{\infty} x^n$

Với |x| < 1, ta có

$$\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$

Khi cho $x \to 1$, ta thấy cần n lớn để $S_n(x)$ xấp xỉ S(x).

Chuỗi hội tụ đều

Định nghĩa

Ta nói chuỗi hàm $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều về S(x) trên tập X nếu

$$\forall \epsilon > 0, \exists n_0 = n_0(\epsilon) > 0, \forall x \in X, |S(x) - S_n(x)| < \epsilon.$$

Nói cách khác, với mọi $\epsilon > 0$, tồn tại $n_0 > 0$ sao cho với mọi $n > n_0$, đồ thị của $S_n(x)$ nằm trong $(S(x) - \epsilon, S(x) + \epsilon)$.

Định lí Cauchy

Chuỗi hàm $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều về S(x) trên tập X khi và chỉ khi

$$\forall \epsilon > 0, \exists n_0 = n_0(\epsilon) > 0, \forall p, q \ge n_0, \forall x \in X, |S_p(x) - S_q(x)| < \epsilon.$$

Đọc thêm: Sự hội tụ không đều của $\sum_{n=1}^{\infty} x^n$ trên (-1,1)

Ta sử dụng mệnh đề phủ định Định lí Cauchy. Ta cần chứng minh

$$\exists \epsilon > 0, \forall n > 0, \exists p, q \geq n, \exists x_0 \in (-1, 1), |S_p(x) - S_q(x)| > \epsilon.$$

Chọn $\epsilon=1$. Cố định n>0. Chọn p=n, q=n+2. Ta cần chỉ ra là $x_0\in (-1,1)$ thoả mãn

$$|S_n(x_0)-S_{n+2}(x_0)|>1.$$

Do $|S_n(x)-S_{n+2}(x)=|x^{n+1}+x^{n+2}|\xrightarrow{x\to 1} 2$, tồn tại $x_0\in (1-\delta,1)$ thoả mãn

$$|S_n(x_0) - S_{n+2}(x_0)| = |x_0^{n+1} + x_0^{n+2}| > \frac{3}{2} > 1.$$

Do đó, $\sum_{n=1}^{\infty} x^n$ không hội tụ đều trên (-1,1).

Lê Văn Tứ (BKHN)

Tiêu chuẩn Weierstrass

Dinh lí

Cho chuỗi hàm $\sum_{n=1}^{\infty} u_n(x)$. Nếu

- $\forall n \in \mathbb{N}, \forall x \in X, |u_n(x)| < a_n$.
- $\sum_{n=1}^{\infty} a_n$ hội tụ.

thì chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ tuyệt đối và đều trên X.

Chứng minh rằng chuỗi $\sum\limits_{n=1}^{\infty} \frac{1}{n^2+x^2}$ hội tụ đều trên \mathbb{R} .

Với $x \in \mathbb{R}$, ta có với mọi n > 0,

$$\left|\frac{1}{n^2+x^2}\right|\leq \frac{1}{n^2}.$$

Chuỗi $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ hội tụ nên theo Tiêu

chuẩn Weierstrass, chuỗi $\sum\limits_{n=1}^{\infty} \frac{1}{n^2+x^2}$

hội tụ đều trên \mathbb{R} .

Chứng minh rằng với mọi 0 < q < 1 thì $\sum\limits_{n=1}^{\infty} x^n$ hội tụ đều trên [-q,q].

Đặt
$$\delta = \frac{1+q}{2}$$
. Ta có, $0 < q < \delta < 1$ và

- $\forall x \in [-q, q], |x| \le q \Rightarrow |x^n| < \delta^n.$
- $0 < \delta < 1 \Rightarrow \sum_{n=1}^{\infty} \delta^n$ hội tụ.

Suy ra $\sum_{n=1}^{\infty} x^n$ hội tụ đều trên [-q, q].

Tính liên tục của chuỗi hội tụ đều

Định lí

Cho chuỗi $\sum_{n=1}^{\infty} u_n(x)$ thoả mãn:

- $\forall n \geq 1, u_n(x)$ liên tục trên D.
- $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều về S(x) trên D.

Khi đó, S(x) liên tục trên D và với mọi $x_0 \in D$,

$$S(x_0) = \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x_0).$$

Xét sự liên tục của chuỗi $\sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n \pi x)$.

Với mọi $x \in \mathbb{R}$,

$$|u_n(x)|\leq \frac{1}{2^n}.$$

Do $\sum_{n=0}^{\infty} \frac{1}{2^n}$ hội tụ, theo Tiêu chuẩn

Weierstrass, chuỗi $\sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n \pi x)$

hội tụ đều về một hàm liên tục trên \mathbb{R} .

Đây còn gọi là hàm Weierstrass - Hàm liên tục nhưng không khả vi tại bất kì điểm nào (wiki).

Tìm miền hội tụ và xét sự hội tụ đều của $\sum_{n=1}^{\infty} (1-x)x^n$

Xét dãy tổng riêng, ta có $S_n(x) = x - x^n$ hội tụ khi và chỉ khi $x \in (-1, 1]$.

$$S_n(x) \xrightarrow{n \to \infty} S(x) = \begin{cases} 0 \text{ n\'eu } x = 1 \\ x \text{ n\'eu } x \in (-1, 1) \end{cases}$$

Các hàm $u_n = x^n - x^{n+1}$ là các hàm liên tục trên (-1,1]. Tuy nhiên, S(x) không liên tục tại 1. Do đó, chuỗi không hội tụ đều trên (-1,1].

Lê Văn Tứ (BKHN)

Tính khả tích của chuỗi hội tụ đều

Định lí

Cho chuỗi $\sum_{n=1}^{\infty} u_n(x)$ thoả mãn:

- Chuỗi $\sum_{n=1}^{\infty} u_n(x)$ hội tụ đều về S(x) trên [a,b].
- Với mọi $n \ge 1$, $u_n(x)$ khả tích trên [a, b].

Khi đó, S(x) khả tích trên [a, b] và

$$\int_{a}^{b} S(x) = \int_{a}^{b} \sum_{n=1}^{\infty} u_{n}(x) = \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x).$$

Tính tổng chuỗi $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, x \in [-\frac{1}{2}, \frac{1}{2}].$

Với $|t| \leq rac{1}{2}$, ta có $|t^2| \leq rac{1}{4} < rac{1}{2} < 1$. Do đó,

$$\sum_{n=1}^{\infty} (-t^2)^n = \frac{1}{1+t^2}$$

và chuỗi trên hội tụ đều theo Tiêu chuẩn Weierstrass. Hơn nữa, với mọi $n \ge 1, (-t^2)^n$ liên tục nên khả tích trên $[-\frac{1}{2}, \frac{1}{2}]$. Do đó, ta có thể lấy tích phân từ 0 đến $x \in [-\frac{1}{2}, \frac{1}{2}]$,

$$\sum_{n=0}^{\infty} \int_{0}^{x} (-t^{2})^{n} dt = \int_{0}^{x} \frac{dt}{1+t^{2}}.$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \arctan(x).$$

Lê Văn Tứ (BKHN) Chuỗi - PTVP - BD Laplace 03/2023 20/22

Tính khả vi của chuỗi hôi tu đều

Dinh lí

Cho chuỗi $\sum_{n=1}^{\infty} u_n(x)$ thoả mãn:

- $\sum_{n=1}^{\infty} u_n(x)$ hội tụ điểm về S(x) trên [a,b].
- $\forall n > 1, u_n(x)$ khả vi trên [a, b].
- Chuỗi các đạo hàm $\sum_{n=1}^{\infty} u'_n(x)$ hội tụ đều về T(x) trên [a,b].

Khi đó, S(x) khả vi trên [a, b] và S'(x) = T(x). Nói cách khác,

$$S'(x) = \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x).$$

Tính tổng chuỗi $\sum_{n=1}^{\infty} \frac{x^n}{n}, x \in (-1,1).$

Với $x_0 \in (-1,1)$, chọn $\delta < 0$ sao cho $0 < |x_0| < \delta < 1$. Đặt $u_n(t) = \frac{t^n}{n}$.

- Chuỗi $\sum\limits_{n=1}^{\infty}u_n(t)=\sum\limits_{n=1}^{\infty}\frac{t^n}{n}=S(t)$ hội tụ trên $[-\delta,\delta]\subset (-1,1)$ (D'Alembert).
- Chuỗi $\sum_{n=1}^{\infty} u_n'(t) = \sum_{n=1}^{\infty} t^{n-1} = \frac{1}{1-t}$ hội tụ đều trên $[-\delta, \delta]$ (Weierstrass).

Do đó, S(t) khả vi trên $[-\delta, \delta]$ và $S'(t) = \frac{1}{1-t}$. Ta có,

$$S(x_0) = S(0) + \int_0^{x_0} S'(t)dt = \int_0^{x_0} \frac{dt}{1-t} = -\ln(1-x_0).$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x), x \in (-1,1).$$

Lê Văn Tứ (BKHN)