Variable (Vector) aleatoria(o)

		-
	Variable <i>X</i> unidimensional	Vector $(X;Y)$ bidimensional
Definición de esperanza (condicional)	$E[X] = \mu_X = \int_{x=-\infty}^{x=+\infty} x \cdot f^X(x) \cdot dx$	
Esperanza de función	$E[g(X)] = \mu_{g(X)} = \int_{x=-\infty}^{x=+\infty} g(x) \cdot f^{X}(x) \cdot dx$	$\mu_{g(X;Y)} = E[g(X;Y)] = \int_{x=-\infty}^{x=+\infty} \int_{y=-\infty}^{y=+\infty} g(x;y) \cdot dy \cdot dx$
Propiedades de la esperanza	$E[a \cdot X + b \cdot Y + c] = \mu_{[a \cdot X + b \cdot Y + c]}$ $= a \cdot E[X] + b \cdot E[Y] + c$	$E[X] = E\left[E\left[\frac{X}{Y}\right]\right]$
Definición y fórmula de calculo de la (co)varianza (condicional) Coeficiente de correlación	$\sigma_X^2 = E[(X - E[X])^2]$ $= \int_{x = -\infty}^{x = +\infty} (x - \mu_X)^2 \cdot f^X(x) \cdot dx$ $= E[X^2] - (E[X])^2$	$\sigma_{(X;Y)} = E[(X - E[X]) \cdot (Y - E[Y])]$ $= \int_{\substack{x = -\infty \\ x = -\infty}}^{\infty} \int_{\substack{y = -\infty \\ y = -\infty}}^{\infty} (x - \mu_X) (y - \mu_Y) f^{(X;Y)}(x;y) dy dx$ $= E[X \cdot Y] - E[X] \cdot E[Y]$ $\rho_{\text{Pearson}} = \frac{\sigma_{(X;Y)}}{\sigma_X \cdot \sigma_Y}$ $\sigma_{X/Y}^2 = E[X/Y]^2/Y$ $= E[X/Y] - \left(E[X/Y]\right)^2/Y$
Propiedades de la (co)varianza (condicional)	$\sigma_{[a \cdot X \pm b \cdot Y + c]}^2 = a^2 \cdot \sigma_X^2 + b^2 \cdot \sigma_Y^2 \pm 2 \cdot a \cdot b \cdot \sigma_{(X;Y)}$	$\sigma_{(a \cdot X + b; c \cdot Y + d)} = a \cdot c \cdot \sigma_{(X;Y)}$ $\sigma_X^2 = \sigma_{\left(E \left[X/Y\right]\right)}^2 + E \left[\sigma_{\left(X/Y\right)}^2\right]$
Cambio de variable (1:1 y 2:2)	$f^{Y}(y) = \left[\frac{f^{X}(x)}{\left \frac{dY}{dX}\right }\right]_{x = \phi^{-1}(y)}$ (*) También puede encontrarse a través de eventos equivalente haciendo uso de $F^{X}(x)$.	$f^{(U;V)}(u;v) = \left[\frac{f^{(X;Y)}(x;y)}{\left\ \frac{\partial(U;V)}{\partial(X;Y)} \right\ } \right]_{\substack{x = \varphi_1^{-1}(u;v) \\ y = \varphi_2^{-1}(u;v)}}$

	Máximo	Mínimo
Distribuciones de extremos de un conjunto I.I.D.	$ \begin{aligned} & \{X_1; X_2; \dots; X_k\} \in \text{I.I.D.} \\ & X_{MAX} = MAX(X_1; X_2; \dots; X_k) \\ & F^{X_{MAX}}(x) = \left(F^X(x)\right)^k \\ & f^{X_{MAX}}(x) = k \cdot \left[F^X(x)\right]^{k-1} \cdot f^X(x) \end{aligned} $	$ \begin{aligned} & \{X_1; X_2; \dots; X_k\} \in \text{I.I.D.} \\ & X_{min} = min(X_1; X_2; \dots; X_k) \\ & 1 - F^{X_{min}}(x) = \left(1 - F^X(x)\right)^k \\ & f^{X_{min}}(x) = k \cdot \left[1 - F^X(x)\right]^{k-1} \cdot f^X(x) \end{aligned} $