DCN - UFES Ótica

Interferômetro de Michelson

INTRODUCÃO

É conhecido que os fenômenos ondulatórios exibem interferência, ou seja, em cada ponto do espaço, as amplitudes de duas ondas se somam linearmente (elas se sobrepõem). A intensidade da onda resultante é determinada pelo quadrado da amplitude resultante. Para que a interferência ocorra, as duas ondas devem manter sua relação de fase relativa ao longo do espaço e do tempo de observação: elas precisam ser coerentes. A luz laser, por exemplo, apresenta alto comprimento de coerência (alguns metros) e por isso é usualmente utilizada para aplicações baseadas em interferência.

Um arranjo amplamente utilizado para observar a interferência é o interferômetro de Michelson, ilustrado na figura acima. Um feixe de luz laser é expandido através de uma lente e incide em um divisor de feixe (um semi-espelho). O divisor de feixe reflete 50% da intensidade da luz incidente, transmitindo o restante: o feixe refletido incide em um espelho M_1 e o transmitido em um espelho M_2 . Ambos os feixes são refletidos de volta pelos espelhos, incidem novamente no divisor de feixes e seguem propagando-se para uma tela onde a interferência pode ser observada.

A diferença de caminho ótico entre os dois feixes após se encontrarem é $2(d_1-d_2)$, onde d_1 e d_2 são, respectivamente, as distâncias entre M_1 e M_2 ao divisor de feixe. Se essa diferença for múltipla do comprimento de onda λ da luz, ocorre interferência construtiva e uma região brilhante é observada na tela. Dessa forma, sobre a tela são observadas regiões (faixas) de máximo brilho, as quais correspondem a uma diferença de caminho $m\lambda$, sendo m um número inteiro. Assim, quando M_1 é deslocado a uma distância $\Delta z = \lambda/2$, essa diferença de caminho muda por um fator λ , e cada faixa brilhante se desloca para a posição anteriormente ocupada por uma faixa adjacente. Portanto, ao contar o número de faixas N que passam por um determinado ponto enquanto M_1 é deslocado, o comprimento de onda do laser pode ser determinado como

$$\lambda = \frac{2\Delta z}{N} \tag{1}$$

PRÉ-LAB

- 1. Para duas ondas transversais sobrepostas em um ponto do espaço, qual é a condição para que ocorra inteferência construtiva?
- 2. É possível determinar polarização em ondas longitudinais? Explique.
- 3. Considere a luz emitida por duas lâmpadas fluorescentes localizadas no teto da sala. Por que nenhum padrão de interferência é observado no chão ou nas paredes da sala?

PROCEDIMENTOS

- 1. Monte um interferômetro de Michelson como representado na figura ao lado [verifique com o(a) instrutor(a) o alinhamento do sistema]. Após ligar o laser verifique o padrão de interferência na tela. Observe a dependência da figura com o deslocamento do espelho M_1 usando o micrômetro do aparato. Registre a image produzida (desenhe ou fotografe a imagem).
- 2. Tome a posição de uma franja na tela como referência e conte quantas franjas passam por esta posição em função do deslocamento do espelho M_1 . Registre pelo menos 25 franjas e o respectivo deslocamento Δz dado pelo micrômetro. Repita o procedimento 6 vezes considerando diferentes número de franjas (30, 35, 40, ...).

PÓS-LAB

- A partir da contagem de franjas e do respectivo deslocamento, determine o comprimento de onda da luz laser usada no experimento usando a Eq. (1). Calcule a média dos valores encontrados e determine a respectiva incerteza.
- 2. Considerando a relação linear entre Δz e N dado pela Eq. (1), determine o comprimento de onda por análise gráfica.
- 3. Compare os comprimentos de onda encontrados com o valor nominal fornecido pelo fabricante, 632,8 nm.
- 4. Aplicação: Um laser de luz verde de comprimento de onda de 532 nm é usado em um interferômetro de Michelson, como no esquema ao lado. Enquanto mantém o espelho M_2 fixo, o espelho M_1 é deslocado. As franjas são observadas e registradas se movendo a partir de uma posição de referência fixa na tela. Encontre a distância que o espelho M_1 é deslocado para que uma única franja seja deslocada e outra reapareça na posição de referência.