ESPÉRANCE CONDITIONNELLE

Exercice 1 (Couples à densité). Calculer $\mathbb{E}[X|Y]$ et $\mathbb{E}[Y|X]$ dans chacun des cas suivants :

- a) (X,Y) a pour densité $f_{(X,Y)}(x,y) = e^{-y} \mathbf{1}_{0 < x < y}$.
- b) (X,Y) a pour densité $f_{(X,Y)}(x,y) = xe^{-xy} \mathbf{1}_{[0,\infty[}(x)\mathbf{1}_{[1,\infty[}(y).$
- c) (X,Y) a pour densité $f_{(X,Y)}(x,y) = 4\frac{y}{x^3}\mathbf{1}_{]0,1[}(x)\mathbf{1}_{]0,x^2[}(y)$.
- d) (X,Y) est uniformément distribué sur le disque unité.
- e) $X = \min\{U_1, ..., U_n\}$ et $Y = \max\{U_1, ..., U_n\}$ avec $U_1, ..., U_n$ i.i.d. de loi $\mathcal{U}(0, 1)$.

Exercice 2 Soient a, b > 0, et (N, X) un v.a. à valeurs dans $\mathbb{N} \times \mathbb{R}_+$ telle que

$$\mathbb{P}(N=n, X \le t) = \frac{a^n b}{n!} \int_0^t x^n e^{-(a+b)x} dx \qquad (n \in \mathbb{N}, t \ge 0).$$

- a) Déterminer les lois marginales de N et X.
- b) Montrer que pour toute fonction mesurable $g: \mathbb{R}_+ \to \mathbb{R}_+$, on a

$$\mathbb{E}\left[g(X)\mathbf{1}_{N=n}\right] = \frac{a^n b}{n!} \int_0^\infty g(x) x^n e^{-(a+b)x} dx.$$

c) En déduire $\mathbb{E}[X|N]$ et $\mathbb{E}[N|X]$.

Exercice 3 Soient X, Y indépendantes et de lois respectives $\mathscr{E}(\lambda)$ et $\mathscr{E}(\mu)$.

- a) Quelle est la loi de $U := \min\{X, Y\}$?
- b) Calculer $\mathbb{E}[U|X]$ et $\mathbb{E}[X|U]$.

Exercice 4 (Un terme sachant la somme). Calculer $\mathbb{E}[X|X+Y]$ dans les cas suivants :

- a) X et Y sont indépendantes avec $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ $(\lambda, \mu > 0)$.
- b) X et Y sont indépendantes avec $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$ $(m,n \in \mathbb{N}, 0 .$
- c) X et Y sont indépendantes avec $X \sim \Gamma(r, \lambda)$ et $Y \sim \Gamma(s, \lambda)$ $(r, s, \lambda > 0)$.
- d) X et Y sont indépendantes avec $X \sim \mathcal{N}(\mu, \sigma^2)$ et $Y \sim \mathcal{N}(\nu, \tau^2)$ $(\mu, \nu \in \mathbb{R}; \sigma, \tau > 0)$.

Exercice 5 (Classique). Soient X_1, X_2, \ldots, X_n i.i.d. de loi $\mathcal{N}(0,1)$ et soit $S_n := X_1 + \cdots + X_n$. Calculer $\mathbb{E}[f(S_n)|X_1, \ldots, X_{n-1}]$ lorsque $f(x) = x, x^2, x^3, \exp(x), \cos(x)$ et $\exp(-x^2)$.

Exercice 6 (Marche aléatoire). Soient $(X_n)_{n\geq 1}$ des v.a.i.i.d. dans L^1 , et $S_n=X_1+\cdots+X_n$.

- a) Calculer $\mathbb{E}[S_n|S_m]$ pour tout $n, m \geq 1$.
- b) Calculer $\mathbb{E}[X_1|S_n,S_{n+1},\ldots]$ pour tout $n\geq 1$. Que dire lorsque $n\to\infty$?

Exercice 7 (Variance conditionnelle). Soit $X \in L^2(\Omega, \mathscr{F}, \mathbb{P})$ et $\mathscr{G} \subseteq \mathscr{F}$ une sous-tribu. On pose $\operatorname{Var}(X|\mathscr{G}) := \mathbb{E}\left[(X - \mathbb{E}\left[X|\mathscr{G}\right])^2 \middle| \mathscr{G} \right]$. Montrer que

$$Var(X) = \mathbb{E}\left[Var(X|\mathcal{G})\right] + Var\left(\mathbb{E}[X|\mathcal{G}]\right).$$

Exercice 8 (Identité de Wald). Calculer l'espérance et la variance de $Z := X_1 + \cdots + X_T$, où les $(X_k)_{k \ge 1}$ sont i.i.d. dans L^2 , et T est dans L^2 , à valeurs dans \mathbb{N} , indépendante de $(X_k)_{k \ge 1}$.

Exercice 9 (Signe). Soit X une v.a. et $h \colon \mathbb{R} \to \mathbb{R}$ une fonction measurable bornée. Calculer $\mathbb{E}\left[h(X)\big||X|\right]$ lorsque X est symétrique (i.e. $-X \stackrel{(\text{loi})}{=} X$), puis dans le cas général.

Exercice 10 (Indépendance). Soient X, Y, Z des v.a. réelles, avec X intégrable.

- a) Montrer que si Z est indépendant de (X,Y), alors $\mathbb{E}[X|Y,Z] = \mathbb{E}[X|Y]$.
- b) Construire un contre-exemple lorsque l'on suppose simplement Z indépendant de X.

Exercice 11 (Cas gaussien).

- a) Calculer $\mathbb{E}[\langle Z, x \rangle | \langle Z, y \rangle]$ pour $Z \sim \mathcal{N}(0, \Gamma)$ et $x, y \in \mathbb{R}^d$.
- b) Soit (X,Y) un couple gaussien. Exprimer $\mathbb{E}[X|Y]$ en fonction des paramètres.

Exercice 12 Soient X,Y des v.a. intégrables telles que $\mathbb{E}[X|Y] \leq Y$ et $\mathbb{E}[Y|X] \leq X$ presque-sûrement. Le but est de démontrer que X=Y presque-sûrement.

- a) Montrer que les inégalités apparaissant dans l'hypothèse sont en fait des égalités.
- b) On suppose $X, Y \in L^2$. Calculer $\mathbb{E}[(X Y)^2]$ et conclure.
- c) On suppose $X, Y \ge 0$. Montrer que $\mathbb{E}[X \wedge n | Y \wedge n] \le Y \wedge n$ pour tout n et conclure.
- d) On revient au cas général. Montrer que $\mathbb{E}[X_+|Y_+] \geq Y_+$, et conclure.
- e) Retrouver le résultat en montrant directement que pour tout $\theta \in \mathbb{R}$,

$$\mathbb{E}\left[(Y - X) \mathbf{1}_{X > \theta, Y > \theta} \right] = \mathbb{E}\left[(X - Y) \mathbf{1}_{(X > \theta > Y} \right].$$