1 Subgradients

- 1. (*) If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable at x, the $\partial f(x) = {\nabla f(x)}$.
- 2. Fix $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$. Then the subdifferential $\partial f(x)$ is a convex set.
- 3. (a) True or False: A subgradient of $f: \mathbb{R}^n \to \mathbb{R}$ at x is normal to a hyperplane that globally understimates the graph of f.
 - (b) True or False: If $g \in \partial f(x)$ then -g is a descent direction of f.
 - (c) True or False: For $f: \mathbb{R} \to \mathbb{R}$, if $1, -1 \in \partial f(x)$ then x is a global minimizer of f.
 - (d) True or False: Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $g \in \partial f(x)$. Then $\alpha g \in \partial f(x)$ for all $\alpha \in [0,1]$.
 - (e) True or False: If the sublevel sets of a function are convex, then the function is convex.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x_1, x_2) = |x_1| + 2|x_2|$. Compute $\partial f(x_1, x_2)$ for each $x_1, x_2 \in \mathbb{R}^2$.