អន្តធាតុពាត់កណ្តាលទំនុច (Semiconductors)

បណ្ឌិត ឃុន គឺមលាង

មញ្ជីអត្ថមន

១- សេចក្តីផ្តើម ២-អង្គធាតុចំលង ៣-អង្គធាតុពាក់កណ្តាលចំលង ៤- សឺមីកង់ឌុចទ៏រប្រភេទ N ៥- សឺមីកង់ឌុចទ័រប្រភេទ P ៦-លំហារ នៃអេឡិចត្រុង និងរន្ធអេឡិចត្រុង ៧- បញ្ជាប់ P-N

សេខគ្គីឆ្កើម

- 🗖 អង្គធាតុចំលងអគ្គិសនី (Conductor)
- 🗆 អ៊ីស្ហូឡង់ (Insulator)
- **ា** អង្គធាតុពាក់កណ្តាលចំលង

(Semiconductors)

អន្តនាដូចលទ

Conductor -

Any material that allows electric current to pass through it

copper

•aluminum

steel

any metal

អន្តធាតុចំលទ

អេឡិចត្រុងស៊េរីនៅគ្នន្លងក្រៅរបស់អាត្ធមលោហៈ

អន្តធាដូចំលទ

Conductor Material	Resistivity (Ohm meters @ 20°C)
Silver	1.64 × 10 ⁻⁸
Copper	1.72 × 10 ⁻⁸
Aluminum	2.83 × 10 ⁻⁸
Tungsten	5.50 × 10 ⁻⁸
Nickel	7.80 × 10 ⁻⁸
Iron	12.0 × 10 ⁻⁸
Constantan	49.0 × 10 ⁻⁸
Nichrome II	110 × 10 ⁻⁸

អន្តជាតុខ៍លខ

		Electrical characteristics		
No	Material	Electrical	Electrical	
crt.	. Material	Resistivity (Ω x	Conductivity (Ω^{-1} x	
		cm)	cm ⁻¹)	
1	Cu	0.034×10^{-5}	29×10^5	
2	Fe	32.54 x 10 ⁻⁵	0.031×10^5	
3	Ag	0.36×10^{-5}	2.8×10^{5}	
2 3 4 5	Al	0.03×10^{-5}	33.3×10^5	
5	Ni	0.046 x 10 ⁻⁵	21.7×10^5	
6	Cu-Fe	33.37 x 10 ⁻⁵	0.030×10^5	
7	Cu-Ag	2.71 x 10 ⁻⁵	0.37×10^5	
8	Al-Ni	0.564×10^{-5}	1.77×10^{5}	

អន្តជាដូចរបទ

$$R = \rho \frac{L}{A}$$

$$\rho = \frac{RA}{L}$$

Example

រឺស្ត្រឡុខ (Insulator)

An **electrical insulator** is a material whose internal <u>electric charges</u> do not flow freely; very little <u>electric current</u> will flow through it under the influence of an electric field.

នុំស្នេទ្ធខំ (Insulator)

ទីនុស្សខ្សាខ់ (Insulator)

អ៊ីសូឡូខំ (Insulator)

Material	Conductivity, σ $(\Omega \cdot m)^{-1}$	Resistivity, $ ho$ (Ω ·m)	Temperature Coefficient, α (°C) $^{-1}$
Mica	$10^{-11} - 10^{-15}$	$10^{11} - 10^{15}$	
Quartz (fused)	2.00×10^{-15}	75×10^{16}	
Rubber (hard)	$10^{-13} - 10^{-16}$	$10^{13} - 10^{16}$	
Sulfur	10-15	10 15	
Teflon TM	<10 ⁻¹³	>10 ¹³	
Wood	$10^{-8} - 10^{-11}$	$10^8 - 10^{11}$	

Table 9.1 Resistivities and Conductivities of Various Materials at 20 °C [1] Values depend strongly on amounts and types of impurities.

អនីខាម់យង្អអរបារចូលទ

សឺមីកុងឌុចទ័រ គឺជាអង្គធាតុពាក់កណ្ដាល ចំលងដែល មានរេស៊ីស្ទីវីតេស្ថិតនៅចន្លោះ អង្គធាតុចំលង និងអ៊ីសូឡង់ ។

អង្គធាតុសឺមីកុងឌុចទ័រ មាន៖

- 🗖 ស៊ីលីហ្សូម (Silicon) Si
- 🗖 ហ្សៃមានីញ៉ូម (Germanium) Ge

ស៊ីលីហ្សូម *Si*

ហ្សែមានីញ៉ូម Ge

អន្តនាតុពាត់ឥណ្ឌាលទំលទ

ទំរងអាតូមរបស់ Ge

ទំរង់អាតូម Si

អន្តជាតុពាត់កណ្តាលចំលច

Material	Band Gap (eV)	Capacitance (zF)
AlN	6.2	12.9
GaN	3.4	23.53
SiC	3	27.67
InN	1.9	42.1
GaAs	1.4	57.14
Si	1.1	72.7
Ge	0.74	108.1
Starting of bilayer Graphene structure	0.25	320

អន្តធាតុពាត់ឥណ្ឌាលចំលទ

Material	Resitivity, ρ(Ω-m)	Temperature Coefficient, α(c°)-1		
Conductors				
Silver	1.59×10 ⁻⁸	0.0061		
Copper	1.68×10 ⁻⁸	0.0068		
Gold	2.44×10 ⁻⁸	0.0034		
Aluminium	2.65×10 ⁻⁸	0.00429		
Tungsten	5.6×10 ⁻⁸	0.0045		
Iron	9.71×10 ⁻⁸	0.00651		
Platinum	10.6×10 ⁻⁸	0.003927		
Mercuy	98×10 ⁻⁸	0.0009		
Nichrome(Ni,Fe,Cr alloy)	100×10 ⁻⁸	0.0004		
Semiconductors				
Carbon(Graphite)	(3-60)×10 ⁻⁵	-0.0005		
Germanium	(1-500)×10 ⁻³	-0.05		
Silicon	0.1 - 60	-0.07		
Insulators				
Glass	10 ⁹ -10 ¹²			
Hard rubber	10 ¹³ -10 ¹⁵			

សម្ព័ន្ធអ៊ីយ៉ូនិច (ionic bond)

សម្ព័ន្ធអ៊ីយ៉ូនិច គឺជាប្រភេទមួយរបស់សម្ព័ន្ធគីមី ដែលកើតឡើងរវាងអ៊ីយ៉ុងពីរ មានបន្ទុកផ្ទុយគ្នា ដោយកម្លាំងទំនាញ អេឡិចត្រូស្តាទិច កើតឡើងនៅក្នុងសមាស ះខាមបបម្ព័ត្តអ្ ធាតុអ៊ីយ៉ុងៗ

អន្តនាតុពាត់ឥណ្ឌាលទំលទ

អន្តនាដុពាអំអណ្តាលចំលខ

អន្តជាតុពាភ់ឥណ្ឌាលចំលខ

សម្ព័ន្ធកូវ៉ាំឡង់ (Covalent bond)

សម្ព័ន្ធកូវ៉ាឡង់ រឹសម្ព័ន្ធម៉ូលេគុល គឺជាសម្ព័ន្ធ គីមីដែលកើតឡើង ដោយការដាក់ទុនអេ ទ្បិចត្រុង វោងអាតូជាច្រើន។

អន្តធាតុពាភ់ឥណ្ឌាលចំលខ

Bonding Basics Practice

្ស ដេយ៉ាតឺម៉ង់ Representation of energy bands

សឺមីកុងឌុចទ័រប្រភេទ N និងប្រភេទ P

- ចំពោះក្រាមសឺមីកុងឌុចទ័រសុទ្ធ មានកំរិត ចំលងតិចតូចបំផុត ហើយនៅសីតុណ្ណភាព ខ្ពស់ វាអាចចំលងបានខ្លះៗ។
- □ ដើម្បីអោយសឺមីកុងឌុចទ័រអាចចំលងបាន ល្អគេត្រូវផលិតក្រាមពីរប្រភេទ គឺសឺមីកុង ឌុចទ័រប្រភេទP និងប្រភេទN ។

សឺមីកុងឌុចទ័រប្រភេទ N និងប្រភេទ P

ដេយ៉ាតឺម៉ង់ ស៊ីមីកុងឌុចទ័រប្រភេទ N និងប្រភេទ P

សឺមីកុងឌុចទ័រប្រភេទ N និងប្រភេទ P

់ រ៉ូបវិទ្យា ស៊ីមីកុងឌុចទ័រប្រភេទ N និងប្រភេទ P

បញ្ជាប់ P-N

បញ្ញាប់ P-N

ប៉ូលកម្មស្រប

Forward bias

ប៉ូលកម្មច្រាស

កិច្ចការផ្ទុះ

- 1- ចូរអោយនិយមន័យចំពោះ ÷ អង្គធាតុចំលង អង្គធាតុអ៊ីសូឡង់ និង អង្គធាតុសីមីកុងឌុចទ័រ ?
- 2- ចូរអោយនិយមន័យចំពោះ ÷ សម្ព័ន្ធក្នុវ៉ាឡង់ សម្ព័ន្ធអ៊ីយ៉ូនិច និង ស្រទាប់ P-N junction ?
- 3- ចូរពិនិត្យពីទំរង់អាតូមរបស់ទង់ដែង ហើយពិភាក្សាថា ហេតុអ្វីបានជាវាជាអង្គធាតុចំលងល្អ និងទំរង់ អាតូម របស់វា គី១សពីល៊ែម៉ាញ៉ូម និងស៊ីលីសុម្រ ?
- 4- ចូរពន្យល់ ពីការបង្កើតក្រាមសីមីក្នុងឌុចទ័រប្រភេទ P និងក្រាមសីមីក្នុងឌុចទ័រប្រភេទ N ?

កិច្ចការផ្លូះ

- 5- តើចាតុ Majority carriers និងចាតុ Minority carriers នៅក្នុងក្រាមសីមីកុងឌុចទ័រប្រភេទ P និង នៅក្នុងក្រាមសីមីកុងឌុចទ័រប្រភេទ N គឺជាអ្វី ហើយមានលក្ខណៈ ដូចម្ដេច ?
- 6- ច្ចរពន្យល់យ៉ាងខ្លី ចំពោះចលនារបស់អេឡិចត្រុង និង ហួល ?
- 7- ចូរបង្ហាញ ពីប៉ូលកម្ម ចំពោះ ក្រាមសីមីកុងឌុចទ័រប្រភេទ P និងក្រាមសីមីកុងឌុចទ័រប្រភេទ N ?
- 8- ចូរពន្យល់ពីប៉ូលកម្ម ចំពោះស្រទាប់ P-N Junction ?