SRIDEVI VENKATESAN

sridevi.venkatesan@mail.utoronto.ca | +1-437-779-1656

www.linkedin.com/in/sridevi-venkatesan | Google scholar

Postdoctoral fellow at Hospital for Sick Children and University of Toronto. 2023 Schmidt Science Fellow.

EDUCATION

2017 - 2023 **Doctor of Philosophy**

Department of Physiology, University of Toronto, Canada

Supervisor: Dr. Evelyn Lambe

Thesis: Multimodal investigation of Chrna5 nicotinic receptors: cellular and synaptic

mechanisms of cholinergic modulation in the prefrontal cortex

2013 - 2017 Bachelor of Science, Biology

Indian Institute of Science, Bangalore, India CGPA: 7.0 (/8) | Graduated top of the class Honors thesis supervisor: **Dr. Deepak Nair**

Thesis: Synaptic nano-organization in hippocampal neurons during homeostatic

scaling

RESEARCH POSITIONS

10/23- Current Schmidt Science Fellow

Co-PIs: Dr. Yun Li, The Hospital for Sick Children (SickKids) &

Dr. Jesse Gillis, Donnelly Centre for Cellular and Biomolecular Research, University

of Toronto

Deciphering cell type-specific developmental trajectories in autism: Comparative

analysis and experimental validation in human brain organoids

02/2023 – 09/23 **Postdoctoral Fellow**, Dr. Evelyn Lambe's lab

Department of Physiology, University of Toronto, Canada

Investigated neurophysiological changes caused by NMDA receptor patient mutations to identify mechanisms causing epilepsy and targeted treatments

AWARDS & FELLOWSHIPS

2025	Restracomp Fellowship, SickKids (declined)	100,000\$
2025	Canadian Institutes for Health Research Fellowship	210,000\$
2025	Mclaughlin Centre Accelerator Grant (co-applicant)	90,000\$
2024	Trainee Professional Development Award, Society for Neuroscier	<u>nce</u> 1000\$
2023-25	Schmidt Science Fellow	220,000 USD
2022	Doctoral Completion Award, University of Toronto	6000\$
2021 - 22	Ontario Graduate Scholarship	15,000\$
2020 - 21	Ontario Graduate Scholarship	15,000\$
2019 - 20	Mary H Beatty Fellowship, University of Toronto	10,000\$
2018	Faculty of Medicine merit scholarship for international students	5000\$
2018	International Brain Research Organization travel award	750 \$
2017	Gold medal in Bachelor of Science (Biology), Indian Institute of Science	cience
2016	Khorana Program for Scholars	5000 USD
2013 – 17	Kishore Vaigyanik Protsahan Yojana (KVPY) fellowship	3,52,000 INR

 Undergraduate scholarship awarded by Department of Science and Technology, Government of India

PUBLICATIONS

- 1. **Venkatesan S**, Werner JM, Li Y, Gillis J (2025) "Cell type agnostic transcriptomic signatures enable uniform comparisons of human neurodevelopment". <u>bioRxiv</u> (In review at PLOS Biology, PBIOLOGY-D-25-02208R1)
- 2. **Venkatesan S**, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK, (2024) "Context matters: integrative NMDA receptor dysfunction reveals effective seizure treatment in mice with a human patient GluN1 variant". bioRxiv (In revision at iScience, ISCIENCE-D-25-06942)
- 3. Sullivan MT, Tidball P, Yan Y, Intson K, Chen W, Xu Y, **Venkatesan S**, Horsfall W, Georgiou J, Finnie PSB, Lambe EK, Traynelis SF, Salahpour A, Yuan H, Collingridge GL, Ramsey AJ (2024) "Grin1" Mice: A Preclinical Model of GRIN1-Related Neurodevelopmental Disorder". bioRxiv (In review at Annals of Neurology ANA-24-1539)
- 4. Power SK, **Venkatesan S**, Qu S, McLaurin J, Lambe EK (2024) "Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models". bioRxiv (Accepted at Translational Neurodegeneration TNEU-D-23-00529R1)
- 5. **Venkatesan S**, Binko MA, Mielnik CA, Ramsey, AJ, & Lambe, EK. (2023). "*Deficits in integrative NMDA receptors caused by Grin1 disruption can be rescued in adulthood*". Neuropsychopharmacology, 1-10.
- 6. **Venkatesan S**, Chen T, Liu Y, Turner EE, Tripathy S, Lambe EK (2023) "Chrna5 and Lynx Prototoxins Identify Acetylcholine Super-Responder Subplate Neurons". iScience, 105992.
- 7. Power SK, **Venkatesan S**, Lambe EK (2023) "Xanomeline restores endogenous nicotinic acetylcholine receptor signaling in mouse prefrontal cortex". Neuropsychopharmacology, 1-12.
- 8. **Venkatesan S**, Lambe EK (2020) "Chrna5 is essential for a rapid and protected response to optogenetic release of endogenous acetylcholine in prefrontal cortex". <u>Journal of Neuroscience</u>, 40 (38): 7255–7268.
- 9. **Venkatesan S**, Jeoung H-S, Chen T, Power SK, Liu Y, Lambe EK (2020) "Endogenous Acetylcholine and Its Modulation of Cortical Microcircuits to Enhance Cognition". <u>Behavioral Pharmacology of the Cholinergic System</u>, 47–69. Springer, Berlin, Heidelberg.
- 10. **Venkatesan S**, Subramaniam S, Rajeev P, Chopra Y, Jose M, Nair D (2020) "Differential scaling of synaptic molecules within functional zones of an excitatory synapse during homeostatic plasticity". eNeuro, 7(2).
- 11. Nguyen R*, **Venkatesan S* [equal contribution]**, Binko M, Bang JY, Cajanding JD, Briggs C, Sargin D, Imayoshi I, Lambe EK, Kim JC (2020) "Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval". Journal of Neuroscience, 40 (11): 2314–2331. **Featured Article**.
- 12. Sparks D, Tian M, Sargin D, **Venkatesan S**, Intson K, Lambe, EK (2018) "Opposing cholinergic and serotonergic modulation of layer 6 in prefrontal cortex". Frontiers in Neural Circuits 11, 107

RESEARCH PRESENTATIONS

SELECTED TALK	(S
1. 08/2024	iGluR 2024 Ion Channel Conference, Toronto, Canada
	Context is key: NMDA receptor dysfunction in prefrontal cortex identifies effective
	seizure treatment for GRIN disorder
2. 06/2024	Donnelly Centre Retreat, University of Toronto, Canada
	How old is an organoid? Robust Developmental Staging of Human Neural Organoids
	using Fetal Brain Reference
3. 05/2024	Canadian Association for Neuroscience, Vancouver. Parallel symposium
	Multi-scale perspective to decipher and treat NMDA receptor dysfunction in GRIN
	disorder

SRIDEVI VENKATESAN

4. 11/2022	Society for Neuroscience, San Diego. Nanosymposium
	Discrepancy between NMDA receptor effects at synapse and dendrite in patient
	derived GRIN1 mutant mouse leads to unexpected treatment opportunity.
5. 10/2020	Canadian Association for Neuroscience Trainee research feature
	Chrna5 is essential for a rapid and protected response to optogenetic release of
	endogenous acetylcholine in prefrontal cortex
INVITED TALKS	
6. 2022, 2024	Developmental and Perinatal Biology, International exchange program
	with Karolinska Institute, University of Toronto
	08/2024: Unlocking hidden signals in human neurodevelopment with meta-analysis
	of single cell RNAseq data
	08/2022: Mechanisms of hyperexcitability in a mouse model of epileptic
7 05/0004	encephalopathy
7. 05/2024	BRAIN Initiative Cell Atlas Network (BICAN) Spring Consortium Meeting
	Developmental Joint Analysis Working Group: Integrating multiple analytical pipelines
0 04/0004	to study the developing brain
8. 01/2024	Tata Institute for Fundamental Research, Mumbai, India. Host: Dr. Vidita Vaidya
	Deciphering multi-scale NMDA receptor dysfunction to treat epilepsy caused by
9. 11/2023	human NMDA receptor mutations
9. 11/2023	Francis Crick Institute, London, UK. Host: Dr. Katharina Schmack
10. 01/2023	NMDA receptors in disease: Understanding and treating GRIN disorder Centre for Neuroscience, Indian Institute of Science, Bangalore, India.
10. 01/2023	Multimodal investigation of Chrna5 nicotinic receptors: cellular and synaptic
	mechanisms of cholinergic modulation in the prefrontal cortex
	meenamsms of endinergie modulation in the premontal cortex
DELEVANT DOSTEDS	
RELEVANT POSTERS	FMRO workshop on Developmental Timing Across Species: From Mechanisms to
RELEVANT POSTERS 11. 05/2025	EMBO workshop on Developmental Timing Across Species: From Mechanisms to
	Evolutionary Insights, Paris, France
	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of
11. 05/2025	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J
	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA
11. 05/2025	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across
11. 05/2025	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J
11. 05/202512. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago
11. 05/202512. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing
11. 05/202512. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago
11. 05/202512. 10/202413. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J
11. 05/202512. 10/202413. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner)
11. 05/202512. 10/202413. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors
11. 05/202512. 10/202413. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S,
11. 05/202512. 10/202413. 10/202414. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK
11. 05/202512. 10/202413. 10/202414. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S,
11. 05/2025 12. 10/2024 13. 10/2024 14. 10/2024 15. 12/2023	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S, Nazarkina D, Sullivan M, Qu Sarah, Ramsey AJ, Lambe EK
11. 05/202512. 10/202413. 10/202414. 10/2024	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S, Nazarkina D, Sullivan M, Qu Sarah, Ramsey AJ, Lambe EK Gordon Research Conference, Dendrites: Molecules, Structure and Function
11. 05/2025 12. 10/2024 13. 10/2024 14. 10/2024 15. 12/2023	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S, Nazarkina D, Sullivan M, Qu Sarah, Ramsey AJ, Lambe EK Gordon Research Conference, Dendrites: Molecules, Structure and Function Lucca, Italy.
11. 05/2025 12. 10/2024 13. 10/2024 14. 10/2024 15. 12/2023	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S, Nazarkina D, Sullivan M, Qu Sarah, Ramsey AJ, Lambe EK Gordon Research Conference, Dendrites: Molecules, Structure and Function Lucca, Italy. Characterizing synaptic and dendritic effects of a patient-derived NMDA receptor
11. 05/2025 12. 10/2024 13. 10/2024 14. 10/2024 15. 12/2023	Evolutionary Insights, Paris, France Cell Type-Agnostic Transcriptomic Signatures Enable Uniform Comparisons of Neurodevelopment. Venkatesan S, Werner JM, Li Y, Gillis J Lake conference on Comparative and Evolutionary Neurobiology, Seattle, USA Brains in sync: Unified transcriptomic signatures of neurodevelopment across contexts and systems. Venkatesan S, Werner JM, Li Y, Gillis J BRAIN Initiative Cell Atlas Network annual meeting, Chicago Developmental Joint Analysis: Integrating analytical pipelines to study the developing brain. Venkatesan S, Werner J, Nano P, Herb B, Bhaduri A, Gillis J Society for Neuroscience, Chicago (Professional Development Award winner) Functional context is critical: Impaired patient-variant GluN1 NMDA receptors prolong dendritic excitation to increase seizure vulnerability. Venkatesan S, Nazarkina D, Sullivan M, Tan YF, Qu S, Ramsey AJ, Lambe EK American College of Neuropsychopharmacology, virtual Unrestrained Dendritic Excitation and Epilepsy Caused by GRIN1 Patient Variant Can Be Prevented by Boosting Negative Feedback of NMDA Receptors. Venkatesan S, Nazarkina D, Sullivan M, Qu Sarah, Ramsey AJ, Lambe EK Gordon Research Conference, Dendrites: Molecules, Structure and Function Lucca, Italy.

SRIDEVI VENKATESAN

17. 11/2022 Society for Neuroscience, San Diego, USA

Chrna5 marks acetylcholine super responder subplate neurons with specialized expression of nicotinic modulator proteins. Lambe EK, Chen T, Liu Y, Turner EE,

Tripathy SK, Venkatesan S

18. 05/2022 Canadian Association for Neuroscience, Toronto

Discrepancy between NMDA receptor effects at synapse and dendrite in patient derived GRIN1 mutant mouse leads to unexpected treatment opportunity.

Venkatesan S, Ramsey AJ, Lambe EK

INTERNATIONAL TRAINING PROGRAMS

1. 06/2022	Transylvanian Experimental Neuroscience Summer School, Romania
	Selected among 14 international candidates to participate in this intensive 3-week
	program where I developed expertise building sophisticated microscopes, imaging
	techniques, and behavioral tracking with in vivo electrophysiology.
2. 08/2019	Summer course in Developmental and Perinatal Biology,
	Karolinska Institute, Sweden
3. 07/2017	Computational Approaches to Memory and Plasticity
	National Center for Biological Sciences (NCBS), Bangalore, India
	Intensive two-week summer school on computational neuroscience.
TEACHING	
2023	Guest lecturer, HMB402, Topics in Translational Medicine, UofT
2022	Teaching assistant, PSL 1445, Neuroscience: cellular and molecular, UofT
2018, 19	Teaching assistant, PSL 1026: Experimental physiology techniques, UofT
2018 - 22	Lecturer, Neuroscience 101, Collaborative Program in Neuroscience, UofT
LEADERSHIP	
SCIENTIFIC LEADERSHIP	
2023-Ongoing	Co-Chair, Developmental Joint Analysis Working Group, BRAIN Initiative Cell Atlas Network (BICAN), National Institutes of Health, USA
	Spearhead monthly consortium meetings, driving efforts to map cell types in the developing human brain.
2024	Program Committee, BICAN Consortium Semi-Annual Meeting, Chicago Developed agenda and speakers for the BICAN conference as a planning committee
	member. Coordinated event logistics for lightning talks and breakout sessions.
LEADERSHIP TRAINING	
11/2023	Schmidt Science Fellows Global Meeting, Oxford, UK
	Developed advanced skills in science communication, lab leadership, funding management, and policy development in this intensive leadership program.
02/2024	Schmidt Science Fellows Scientific Leadership Program, Stanford & UC
	Berkeley, California, USA. Gained expertise in negotiation, innovation, scientific entrepreneurship, and applying science for global impact.