Оглавление

1	Введение		
	1.1	Введение	4
2	Теоретическая часть		5
	2.1	Постановка задачи	5
	2.2	Матрица чувствительности	7
3	Практическая часть		
	3.1	Пример	9

Глава 1

Введение

1.1 Введение

Гидравлические расчеты трубопроводных сетей, в частности систем газосбора и газораспределения, требуются при решении многих технико-экономических проблем, связанных с их проектированием и эксплуатацией. Задачи гидравлического расчета решаются в рамках теории гидравлических цепей. Одним из недостаточно исследованных вопросов этой теории является оценка и контроль откликов модели трубопроводной системы на изменение исходных данных — граничных условий — задачи. Эти вопросы относятся к сфере чувствительности модели.

Глава 2

Теоретическая часть

2.1 Постановка задачи

Пусть G — ориентированный граф с N_v узлами (образующими множество узлов E) и N_e ветвями (образующими множество ветвей E). Расход по i-й ветви связан с начальным и конечным давлениями p_F^i и p_L^i замыкающим соотношением

$$x_i = \phi\left(p_F^i, p_L^i\right) \tag{1}$$

Если A - матрица инцидентности графа G ($a_{ij}=1$, если ребро ј начинается в узле i, $a_{ij}=-1$, если ребро ј заканчивается в узле i);

Q - вектор узловых притоков. Тогда уравнения Кирхгофа (уравнения балансов в узлах) записывается в виде

$$AX = Q (2)$$

Используя матрицы A_F и A_L , соответствующие выходящим и входящим ветвям $(A = A_F + A_L)$, вектор узловых давлений P и вектор

 Φ функций ϕ_i , уравнения (1) можно записать в виде

$$P_F = A_F^T P, P_L = -A_L^T P$$

$$X = \Phi(P_F, P_L)$$
(3)

Преположим что граничные условия заданы

$$P_{\gamma} = (P_{i_1}, \dots, P_{i_k}), Q_{\gamma} = (Q_{i_{k+1}}, \dots, Q_{i_n})$$
(4)

Таким образом система уравнений

$$X = \Phi(P_F, P_L), \widetilde{A}X = Q \tag{5}$$

Матрица \widetilde{A} - это матрица A, только без последней строки, так как $rankA=min(N_e,N_v)\leq N_v.$

При граничных условиях (4), система (5) имеет единственное решение.

После решения системы (5), получаются векторы Q_0, P_0

Затем, предположим, что граничные условия (4) – получили малые приращения соответственно

$$\widetilde{P}_{\gamma} = P_{\gamma} + \delta P_{\gamma}, \widetilde{Q}_{\gamma} = Q_{\gamma} + \delta Q_{\gamma}$$

Требуется оценить влияние изменений граничных условий на неграничные (незаданные) переменные.

2.2 Матрица чувствительности

Для удобного рассмотрения модели введем обозначения:

 V_P — множество узлов с заданным давлением, V_Q — множество узлов с заданным притоком

Рассмотрим случай, когда замыкающие соотношения являются непрерывно диффиренцируемыми в окрестности решения P_0, Q_0 системы (5).

Обозначим

$$d_{Fi} = \frac{\partial \phi_i(P_F, P_L)}{\partial P_F}$$

$$d_{Li} = -\frac{\partial \phi_i(P_F, P_L)}{\partial P_L}$$

Тогда в силу монотонности ϕ_i справедливы неравенства $d_{Fi} \geq 0$ и $d_{Li} \geq 0$

Определим диагональные матрицы D_F и D_L с d_{Fi} и d_{Li} на диагонали. Тогда уравнения (2) и (3) можно переписать

$$dX = (D_F A_F^T + D_L A_L^T) dP (7)$$

$$dQ = A(D_F A_F^T + D_L A_L^T) dP (8)$$

Перенумеруем узлы графа так, чтобы сначала шли узлы с заданными притоками (из V_Q), а затем с заданными давлением (из V_P) и разобьем векторы и матрицы на соответствующие блоки:

$$P = \left(\frac{P_{var}}{P_{fix}}\right)Q = \left(\frac{Q_{var}}{Q_{fix}}\right)A = \left(\frac{A_Q}{A_P}\right)A_F = \left(\frac{A_{FQ}}{A_{FP}}\right)A_L = \left(\frac{A_{LQ}}{A_{LP}}\right) \tag{9}$$

Тогда уравнения (7) и (8) можно переписать

$$dX = (D_F A_{FQ}^T + D_L A_{LQ}^T) dP_{var} + (D_F A_{FP}^T + D_L A_{LP}^T) dP_{fix}$$
 (10)

$$dQ_{fix} = A_Q(D_F A_{FQ}^T + D_L A_{LQ}^T) dP_{var} + A_Q(D_F A_{FP}^T + D_L A_{LP}^T) dP_{fix}$$
(11)

$$dQ_{var} = A_P (D_F A_{FQ}^T + D_L A_{LQ}^T) dP_{var} + A_P (D_F A_{FP}^T + D_L A_{LP}^T) dP_{fix}$$
(12)

Матрица $M = A_Q(D_F A_{FQ}^T + D_L A_{LQ}^T)$ связывает подвекторы с фиксированными переменными (заданными граничными условиями) с подвекторами свободных переменных. Эта матрица также называется модифицированной матрицей Максвелла или M-матрицей.

Отметим еще несколько матриц

$$M_{PP} = A_P (D_F A_{FP}^T + D_L A_{LP}^T) (13)$$

$$M_{PQ} = A_P (D_F A_{FQ}^T + D_L A_{LQ}^T) (14)$$

$$M_{QP} = A_Q (D_F A_{FP}^T + D_L A_{LP}^T) (15)$$

Тогда (11) и (12) можно переписать используя (13), (14) и (15)

$$dQ_{var} = M_{PQ}M^{-1}dQ_{fix} + (M_{PP} - M_{PQ}M^{-1}M_{QP})dP_{fix}$$
 (16)

$$dP_{var} = M^{-1}dQ_{fix} - M^{-1}M_{QP}dP_{fix}$$
 (17)

Заметим также, что матрицы

$$M, M_{QP}, M_{PQ}, M_{PP}$$

– функциональные матрицы, векторных аргументов P_0, Q_0

Глава 3

Практическая часть

3.1 Пример

Рассмотрим систему уравнений (5) и её решение P_0, Q_0

$$A\Phi(A_F^T P_0, -A_L^T P_0) = Q_0$$

А также перенумерованные векторы P_0 и Q_0 так, чтобы сначала шли узлы с заданными притоками, затем с давлениями

$$P_0 = \left(\frac{P_0^{var}}{P_0^{fix}}\right), Q_0 = \left(\frac{Q_0^{var}}{Q_0^{fix}}\right)$$

и их "малые"изменения

$$\delta P_0 = \left(\frac{\delta P_0^{var}}{\delta P_0^{fix}}\right), \delta Q_0 = \left(\frac{\delta Q_0^{var}}{\delta Q_0^{fix}}\right)$$

В соотстветствие с описанным выше способом, получается:

$$dQ_0^{var} = [M_{PQ}M^{-1}](A_F^T P_0, -A_L^T P_0)dQ_0^{fix} +$$

$$[M_{PP} - M_{PQ}M^{-1}M_{QP}](A_F^T P_0, -A_L^T P_0)dP_0^{fix}$$

$$dP_0^{var} = [M^{-1}](A_F^T P_0, -A_L^T P_0)dQ_0^{fix} - [M^{-1}M_{QP}](A_F^T P_0, -A_L^T P_0)dP_0^{fix}$$