Collaborative Filtering: A Machine Learning Perspective

Chapter 6: Dimensionality Reduction

Benjamin Marlin

Presenter: Chaitanya Desai

Topics we'll cover

- Dimensionality Reduction for rating prediction:
 - Singular Value Decomposition
 - Principal Component Analysis

Rating Prediction

Problem Description:

- We have M distinct items and N distinct users in our corpus
- Let r_y^u be rating assigned by user u for item y. Thus, we have (M dimensional) rating vectors \mathbf{r}^u for the N users
- Task:
 - Given the partially filled rating vector \mathbf{r}^a of an active user a, we want to estimate \hat{r}^a_y for all items y that have not yet been rated by a

Singular Value Decomposition

- Given a data matrix D of size $N \times M$, the SVD of D is $D = U\Sigma V^T$ where $U_{N\times N}$ and $V_{M\times M}$ are orthogonal and $\Sigma_{N\times M}$ is diagonal
- columns of U are eigenvectors of DD^T and columns of V are eigenvectors of D^TD
- Σ is diagonal and entries comprise of eigenvalues ordered according to eigenvectors (i.e. columns of U and V)

Low Rank Approximation

- Given the solution to SVD, we know that $\hat{D} = U_k \Sigma_k V_k^T$ is the best rank k approximation to D under the Frobenius norm
- The Frobenius norm is given by

$$F(D - \hat{D}) = \sum_{n=1}^{N} \sum_{m=1}^{M} (D_{nm} - \hat{D}_{nm})^{2}$$

D contains many missing values

- D contains many missing values
- SVD on a matrix is undefined if there are missing values

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?
- Assign 0/1 weights to elements of D

- D contains many missing values
- SVD on a matrix is undefined if there are missing values
- Solution?
- Assign 0/1 weights to elements of D
- ullet Our goal is to find \hat{D} so that the **weighted** Frobenius norm is minimized

$$F_w(D - \hat{D}) = \sum_{n=1}^{N} \sum_{m=1}^{M} W_{nm} (D_{nm} - \hat{D}_{nm})^2$$

- Srebro and Jaakkola in their paper Weighted Low Rank Approximations provide 2 approaches to finding \(\hat{D} \)
 - Numerical Optimization using Gradient Descent in U and V
 - Expectation Maximization (EM)

Generalized EM

Given a joint distribution $p(X, Z|\theta)$ over observed variables X and latent variables Z, governed by parameters θ , the goal is to maximize the likelihood function $p(X|\theta)$ with respect to θ

- 1. Choose an initial setting for the parameter θ^{old}
- 2. E step Evaluate $p(Z|X, \theta^{old})$
- 3. **M step** Evaluate θ^{new} given by $\theta^{new} = \arg\max_{\theta} Q(\theta, \theta^{old})$ where $Q(\theta, \theta^{old}) = \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$ represents the expectation of the complete data log-likelihood for some general parameter θ
- 4. If convergence criterion is not satisfied, let

$$oldsymbol{ heta}^{old} \leftarrow oldsymbol{ heta}^{new}$$

EM for weighted SVD

E step: Fill in the missing values of D from the low rank reconstruction \hat{D} forming a complete matrix X.

$$(1) X = W \odot D + (1 - W) \odot \hat{D}$$

EM for weighted SVD

■ E step: Fill in the missing values of D from the low rank reconstruction \hat{D} forming a complete matrix X.

$$(1) X = W \odot D + (1 - W) \odot \hat{D}$$

M step: Find low rank approximation using standard SVD on X, which is completely specified.

$$[U, \Sigma, V^T] = SVD(X)$$
$$\hat{D} = U_k \Sigma_k V_k^T$$

The complete algorithm

```
Input: R, W, L, K
Output: \Sigma, V
\hat{R} \leftarrow 0
while (F_W(R-\hat{R})) not converged) do
   X \leftarrow W \odot R + (1 - W) \odot R
   [U, \Sigma, V^T] = SVD(X)
   U \leftarrow U_L, \Sigma \leftarrow \Sigma_L, V \leftarrow V_L
   \hat{R} \leftarrow U \Sigma V^T
   if (L > K) then
      Reduce L
   end if
end while
```

ting Prediction using the new concept spa

■ Given \hat{R} , rating value for user u for item y is simply $\hat{r}^u_y = \hat{R}_{uu}$

ting Prediction using the new concept spa

- Given \hat{R} , rating value for user u for item y is simply $\hat{r}^u_y = \hat{R}_{uy}$
- Map the new user's profile into the K dimensional latent space

ting Prediction using the new concept spa

- Given \hat{R} , rating value for user u for item y is simply $\hat{r}^u_y = \hat{R}_{uy}$
- Map the new user's profile into the K dimensional latent space
 - If r is the user's rating vector in the original space and l is the user's vector in the latent space, then $r=l\Sigma V^T$ and thus $l=rV\Sigma^{-1}$

Algorithm (rating vector estimation)

```
Input: r^a, w^a, \Sigma, V, K
```

Output: \hat{r}^a

$$\hat{m{r}}^a \leftarrow 0$$
 while $(F_{w^a}(r^a - \hat{m{r}}^a) \text{ not converged})$ do $x \leftarrow w^a \odot m{r}^a + (1 - w^a) \odot \hat{m{r}}^a$ $\hat{m{t}}^a \leftarrow xV\Sigma^{-1}$ $\hat{m{r}}^a \leftarrow m{l}^a\Sigma V^T$ end while

Results of SVD

Data Sets:

EachMovie:

- Collected by the Compaq Systems Research Center over an 18 month period beginning in 1997.
- Base data set contains 72916 users, 1628 movies and 2811983 ratings.
- Ratings are on a scale from 1 to 6.

MovieLens

- Collected by GroupLens research group at the University of Minnesota
- Contains 6040 users, 3900 movies, and 1000209 ratings collected from users who joined the MovieLens recommendation service in 2000
- Ratings are on a scale from 1 to 5.

Results of SVD...

Results reported are NMAE

$$NMAE = \frac{MAE}{E[MAE]}$$

•
$$MAE = \frac{1}{N} \sum_{n=1}^{N} |\hat{r}_{y}^{u} - r_{y}^{u}|$$

Greater than 1 indicates worse than random

Principal Component Analysis

- The idea is to discover latent structure in the data
- **●** Let $A = \frac{1}{N-1}D^TD$ be the co-variance matrix of D
- ullet A(i,j) indicates co-variance between items i and j
- We are interested in retaining K dimensions of highest variance
- ullet This is the subspace spanned by the K largest eigenvectors of A

Rating Prediction with PCA

- Cannot do PCA when D has missing data
- Goldberg, Roeder, Gupta and Perkins propose an algorithm called **Eigentaste** in their paper *Eigentaste: A* Constant Time Collaborative Filtering Algorithm

Pick a set of items called the gauge set that all users must rate

- Pick a set of items called the gauge set that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components

- Pick a set of items called the gauge set that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering

- Pick a set of items called the gauge set that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering
- Compute mean rating vector μ_c for each cluster c

- Pick a set of items called the gauge set that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering
- Compute mean rating vector μ_c for each cluster c
- For a new user, map the user's rating profile (r^a) for the gauge set into the 2 dimensional concept space (\hat{r}^a) and determine what cluster the user belongs to.

- Pick a set of items called the gauge set that all users must rate
- Map the new data into a lower dimensional latent space and retain only the 1st 2 components
- Cluster users in this 2 dimensional latent space using divisive hierarchical clustering
- Compute mean rating vector μ_c for each cluster c
- For a new user, map the user's rating profile (r^a) for the gauge set into the 2 dimensional concept space (\hat{r}^a) and determine what cluster the user belongs to.
- If an item (\hat{r}_y^a) is not rated, assign it the mean rating vector's value for that item (i.e. $\hat{r}_y^a = \mu_{cy}$)

Problems with Eigentaste?

Gauge Set must be the same for all users and all users must rate all gauge items

Problems with Eigentaste?

- Gauge Set must be the same for all users and all users must rate all gauge items
- Rating some items is easier and faster than others (e.g. jokes vs. books)

Problems with Eigentaste?

- Gauge Set must be the same for all users and all users must rate all gauge items
- Rating some items is easier and faster than others (e.g. jokes vs. books)
- Selection of items (items that are good discriminators)