Inventory Models for Probabilistic Demand: Basic Concepts

Notation

- D = Average Demand (units/time)
- c = Variable (Purchase) Cost (\$/unit)
- h = Carrying or Holding Charge (\$/ inventory \$/time)
- c_t = Fixed Ordering Cost (\$/order)
- c_e = c*h = Excess Holding Cost (\$/unit/time)
- c_s = Shortage Cost (\$/unit/time)
- Q = Replenishment Order Quantity (units/order)
- L = Replenishment Lead Time (time)
- T = Order Cycle Time (time/order)
- N = 1/T = Orders per Time (order/time)
- IP = Inventory Position (units)
- IOH = Inventory on Hand (units)
- IOO = Inventory On Order (units)

- μ_{DL} = Expected Demand over Lead Time (units/time)
- σ_{DL} = Standard Deviation of Demand over Lead Time (units/time)
- k = Safety Factor
- s = Reorder point (units)
- S = Order up to Point (units)
- R = Review Period (time)
- IFR = Item Fill Rate (%)
- CSL = Cycle Service Level (%)
- CSOE = Cost of Stock Out Event (\$/ event)
- CSI = Cost per item short
- E[US] = Expected Units Short (units) G(k) = Unit Normal Loss Function

Inventory Replenishment Policies

- Policy: How much to order and when
- Five Methods
 - EOQ Policy deterministic demand
 - Order Q* every T* time periods
 - Order Q* when IP= μ_{DI}
 - Single Period Models variable demand

 - Order Q* at start of period where P[x≤Q]=CR
 - Base Stock Policy one-for-one replenishment
 - Order what was demanded when it was demanded
 - Continuous Review Policy (s,Q) event based
 - Order Q* when IP≤s
 - Periodic Review Policy (R,S) time based
 - Order up to S units every R time periods.

Recall:

Inventory Position (IP) = Inventory on Hand (IOH)

- + Inventory on Order (IOO)
- Backorders

Demand over Leadtime=D*L= μ_{DI}

(be careful with dimensions)

Quick Aside on Converting Times

- What is the μ and σ of demand during the replenishment lead time?
 - Lead time for replenishment is 7 days (1 week)
 - Annual demand is $\sim N(450,000, 22,000)$
- What is the expected demand over lead time?
 - $\mu_{DI} = (450,000 \text{ units/year})(1 \text{ week}) / (52 \text{ weeks/year})$
 - = 8653.8 = 8,654 units
- What is the standard deviation of demand over lead time?
 - Recall that if we assume that each period (week) is identically and independently distributed (iid) then; $\sigma_1^2 + \sigma_{2+\dots}^2 = n\sigma^2$
 - So, in our problem, $\sigma_{\text{year}}^2 = 52(\sigma_{\text{week}}^2)$
 - Which means $\sigma_{\text{week}} = (\sigma_{\text{vear}})/(\sqrt{52})$
 - $\sigma_{DI} = (22,000 \text{ units/year}) / (\sqrt{52}) = 3,050 \text{ units}$
- Demand over leadtime $\sim N(8,654, 3,050)$

Quick Aside on Converting Times

- Suppose we have two periods to consider:
 - D_S = Demand over short time period (e.g., week)
 - D_1 = Demand over long time period (e.g., year)
 - n = Number of short periods within a long (e.g., 52)
- Converting from Long to Short
 - $E[D_S] = E[D_L]/n$
 - $VAR[D_S] = VAR[D_L]/n$ so that $\sigma_S = \sigma_L/\sqrt{n}$
- Converting from Short to Long
 - $E[D_L] = nE[D_S]$
 - VAR[D_L] = nVAR[D_S] so that $\sigma_L = \sqrt{n} \sigma_S$

Base Stock Policy

Lesson: Continuous Review Inventory Policies

Assumptions: Base Stock Policy

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

Base Stock Policy

- One-for-One Order Policy
- IP stays constant at Base Stock
- When is this used?
- How do we set the Base Stock (S*)?
 - Cover potential demand over lead time for desired level of service (LOS)
 - LOS here is defined as the probability of not stocking out = $P[\mu_{DL} \le S^*]$

Base Stock Policy

- How do I set the Level of Service (LOS)?
 - Management decision
 - Using Critical Ratio

$$LOS^* = P\left[\mu_{DL} \le S^*\right] = CR = \frac{c_s}{c_s + c_e}$$

- LOS is the probability that no stock outs will occur during the lead time replenishment period
- Base Stock, S*, is set to this amount: $S^* = \mu_{DL} + k_{LOS} \sigma_{DL}$ Standard deviation of demand during lead time

 Safety factor for given LOS

Base Stock Policy Example

- Set the Base Stock Policy for an item:
 - Daily demand ~N(100, 15)
 - Lead time is 2 days
 - Excess cost is \$5 per unit per day
 - Shortage cost is \$25 per unit per day.

Solution:

- Find $\mu_{DI} = 100(2) = 200$
- Find $\sigma_{DI} = 15(\sqrt{2}) = 21.2$
- Find LOS = CR = (25)/(5+25)=0.833
- Find k_{LOS} from Tables or Spreadsheet
 - $k_{LOS} = NORMSINV(0.833) = 0.967$
- Find $S^* = 200 + (0.967)(21.2) = 220.5 \cong 221$ units

Continuous Review Policies

Lesson: Continuous Review Inventory Policies

Assumptions: Continuous Review Policies

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

Continuous Review Policies

- Order-Point, Order-Quantity (s,Q)
 - Policy: **Order Q if IP ≤ s**
 - Two-bin system

- Order-Point, Order-Up-To-Level (s, S)
 - Policy: Order (S-IP) if IP ≤ s
 - Min-Max system

Notation

s = Reorder Point

S = Order-up-to Level

Q = Order Quantity

R = Review Period

L = Replenishment Lead Time

IOH= Inventory on Hand

IP = Inventory Position = (IOH) + (Inventory On Order) - (Backorders)

Order Point, Order Quantity Policy (s,Q)

Lesson: Continuous Review Inventory Policies

Framework for (s, Q) System

- Finding Q
 - Determines the level of Cycle Stock
 - Usually from EOQ but other methods maybe?
- Finding s
 - Based on expected demand over lead time (forecasted amount)
 - Added in safety or buffer stock for variability

What cost and service objectives?

1. Common Safety Factors Approach

- Simple, widely used method
- Apply a common metric to aggregated items

2. Customer Service Approach

- Establish constraint on customer service
- Definitions in practice are fuzzy
- Minimize costs with respect to customer service constraints

3. Cost Minimization Approach

- Requires costing of shortages
- Find trade-off between relevant costs

Service & Cost Metrics

$$TC = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL}\right) + c_s P[StockOutType]$$

- In this class we will focus on the following:
 - Performance Metrics
 - Cycle Service Level (CSL)
 - Item Fill Rate (IFR)
 - Stockout Cost Metrics
 - Cost per Stockout Event (CSOE)
 - Cost per Item Short (CIS)
- Other forms can be used these are most common.

Cycle Service Level (CSL)

Lesson: Continuous Review Inventory Policies

Cycle Service Level (CSL)

- Probability of no stockouts per replenishment cycle
 - Equal to one minus the probability of stocking out
 - X is the demand during lead time
 - $= 1 P[Stockout] = 1 P[X > s] = P[X \le s]$

Finding P[Stockout]

Cumulative Normal Distribution

Example: Finding (s,Q) Policy with CSL

Problem:

- You are managing the inventory for a production part with annual demand ~N(62,000, 8,000). The cost of the item, c, is \$100 and the holding charge is 15% per year. You have determined that the economic order quantity, Q*, is 5,200 units. Lead time is 2 weeks.
- Assuming a CSL of 95%, find the appropriate (s, Q) policy.

Solution

- Find $\mu_{DL} = (62,000)/(26) = 2,384.6 = 2,385$ units
- Find $\sigma_{DI} = (8,000)/(\sqrt{26}) = 1,568.9 = 1,569$ units
- Find k where CSL = 0.95 or $P[x \le k] = 0.95$, k=1.644 = 1.64
- Find $s = \mu_{DI} + k\sigma_{DI} = 2,385 + (1.64)(1,569) = 4,958$ units

Policy: Order 5,200 when Inventory Position ≤ 4,958 units

In Spreadsheets:

- k=NORMSINV(CSL)
- CSL=NORMSDIST(k)

In Standard Normal Tables:

CSL=P[x≤k]

k Factor versus Cycle Service Level

K-Factor versus CSL

Cost Per Stockout Event (CSOE)

What if I know CSOE?

- Consider total costs
 - Purchase Price no change
 - Order Costs no change from EOQ
 - Holding Costs add in Safety Stock
 - StockOut Costs product of:
 - Cost per stockout event (CSOE), B₁
 - Number of replenishment cycles
 - Probability of a stockout per cycle

$$TC = PurchaseCosts + OrderCosts + HoldingCosts + StockOutCosts$$

$$TC = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL}\right) + (B_1) \left(\frac{D}{Q}\right) P\left[x \ge k\right]$$

What costs are relevant? How do I solve for k?

Finding k that minimizes TRC

Take First Order Conditions wrt k . . .

$$TRC(k) = c_e k\sigma_{DL} + (B_1) \left(\frac{D}{Q}\right) P[x \ge k]$$

Recall that for Normal Distribution:

$$\frac{d(P[x \ge k])}{dk} = -f_x(k) = \frac{-e^{\frac{-k^2}{2}}}{\sqrt{2\pi}}$$

Which gives us:

$$\frac{dTRC(k)}{dk} = c_e \sigma_{DL} + (B_1) \left(\frac{D}{Q}\right) \left(\frac{-e^{\frac{-k^2}{2}}}{\sqrt{2\pi}}\right) = 0$$

Solving for k . . .

$$k = \sqrt{2 \ln \left(\frac{B_1 D}{c_e \sigma_{DL} Q \sqrt{2\pi}} \right)}$$

Cost per Stockout Event (B₁)

Decision Rule for B₁ Costs

• If
$$\frac{B_1 D}{c_e Q \sigma_{DL} \sqrt{2\pi}} > 1$$
 then $k = \sqrt{2 \ln \left(\frac{B_1 D}{c_e Q \sigma_{DL} \sqrt{2\pi}} \right)}$

Otherwise, set k as low as management allows

- Questions
 - Why is the first condition there?
 - What k would management allow?

Example: Finding (s,Q) Policy with CSOE

Problem:

- You are managing the inventory for a production part with annual demand ~N(62,000, 8,000). The cost of the item, c, is \$100 and the holding charge is 15% per year. You have determined that the economic order quantity, Q*, is 5,200 units. Lead time is 2 weeks.
- Assuming CSOE= B_1 =\$50,000 per event since it shuts the production line down, find the appropriate (s, Q) policy.

Solution

- Find $\mu_{DL} = (62,000)/(26) = 2,384.6 = 2,385$ units
- Find $\sigma_{DL} = (8,000)/(\sqrt{26}) = 1,568.9 = 1,569$ units
- Check that the first condition is met Solve for k $k = \sqrt{2\ln(10.1)} = 2.15$ $\frac{B_1 D}{c_e Q \sigma_{DL} \sqrt{2\pi}} = \frac{(50,000)(62,000)}{(15)(5,200)(1,569)\sqrt{2\pi}} = 10.1 > 1$
- Find $s = \mu_{DL} + k\sigma_{DL} = 2,385 + (2.15)(1,569) = 5,758$ units

Policy: Order 5,200 when Inventory Position ≤ 5,758 units

Item Fill Rate (IFR)

Item Fill Rate (IFR)

Item Fill Rate

- Fraction of customer demand met routinely from IOH
- This is equal to one minus the fraction we expect to be short

Logic for Rule

- We order Q each cycle
- The fraction we are short = E[US]/Q
- Therefore, item fill rate = 1 E[US]/Q
- Assuming \sim Normal, E[US]= $\sigma_{DL}G(k)$
- Calculate the desired G(k)
- Find appropriate k

$$IFR = 1 - \frac{E[US]}{Q}$$

$$IFR = 1 - \frac{\sigma_{DL}G[k]}{Q}$$

$$G[k] = \frac{Q}{\sigma_{DL}} (1 - IFR)$$

Example: Finding (s,Q) Policy with IFR

Problem:

- You are managing the inventory for a production part with annual demand ~N(62,000, 8,000). The cost of the item, c, is \$100 and the holding charge is 15% per year. You have determined that the economic order quantity, Q*, is 5,200 units. Lead time is 2 weeks.
- Assuming IFR = 99%, find the appropriate (s, Q) policy.

Solution

- Find $\mu_{DL} = (62,000)/(26) = 2,384.6 = 2,385$ units
- Find $\sigma_{DI} = (8,000)/(\sqrt{26}) = 1,568.9 = 1,569$ units
- Solve for G(k) $G[k] = \frac{Q}{\sigma_{DL}} (1 IFR) = \frac{5,200}{1,569} (1 .99) = 0.0331$
- Solve for k=1.45 from tables,
- Find $s = \mu_{DL} + k\sigma_{DL} = 2,385 + (1.45)(1,569) = 4,660$ units

Policy: Order 5,200 when Inventory Position ≤ 4,660 units

Cost per Item Short (CIS)

Lesson: Continuous Review Inventory Policies

What if I know cost per item short?

- Consider total costs
 - Purchase Price no change
 - Order Costs no change from EOQ
 - Holding Costs add in Safety Stock
 - StockOut Costs product of:
 - Cost per item stocked out (c_s)
 - Estimated number of units short
 - Number of replenishment cycles

$$TC = PurchaseCosts + OrderCosts + HoldingCosts + StockOutCosts$$

$$TC = cD + c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2} + k\sigma_{DL}\right) + c_s \sigma_{DL} G_u(k) \left(\frac{D}{Q}\right)$$

- What costs are relevant?
- How do I solve for k?

$$P[StockOut] = P[x \ge k] = \frac{Qc_e}{Dc_s}$$

Cost per Item Short (c_s)

Decision Rule for c_s Costs

• If
$$\frac{Qc_e}{Dc_s} \le 1$$
 Then $P[StockOut] = P[x \ge k] = \frac{Qc_e}{Dc_s}$

- Otherwise, set k as low as management allows
- Questions
 - Why is the first condition there?
 - What k would management allow?

Example: Finding (s,Q) Policy with CIS

Problem:

- You are managing the inventory for a production part with annual demand ~N(62,000, 8,000). The cost of the item, c, is \$100 and the holding charge is 15% per year. You have determined that the economic order quantity, Q*, is 5,200 units. Lead time is 2 weeks.
- Assuming CIS = c_s = 45 \$/unit-year, find the appropriate (s, Q) policy.

Solution

- Find $\mu_{DL} = (62,000)/(26) = 2,384.6 = 2,385$ units
- Find $\sigma_{DL} = (8,000)/(\sqrt{26}) = 1,568.9 = 1,569$ units
- Check decision rule: $\frac{Qc_e}{Dc_s} = \frac{(5,200)(15)}{(62,000)(45)} = 0.02795 \le 1$
- Find k where:

$$P[x \ge k] = 1 - P[x \le k] = 0.02795$$
 $P[x \le k] = 0.97205$ $k = 1.91$

• Find $s = \mu_{DL} + k\sigma_{DL} = 2,385 + (1.91)(1,569) = 5,382$ units

Policy: Order 5,200 when Inventory Position ≤ 5,382 units

Key Points from Lesson

Lesson: Continuous Review Inventory Policies

Key Points

$$S^* = \mu_{DL} + k_{LOS} \sigma_{DL}$$

- Base Stock Policy
 - Order one for one with initial quantity of S*
- Continuous Review Policy (s,Q)
 - Order Q when $IP \leq s$

$$s = \mu_{DL} + k\sigma_{DL}$$

- Safety Stock set by service or cost metrics
 - Cycle Service Level
 - Item Fill Rate
 - Cost per Stockout Event
 - Cost per Item Short

Metric	Value	k	SS
CSL	95%	1.64	\$2,573
IFR	99%	1.45	\$2,275
CSOE	\$50,000	2.15	\$3,373
CIS	\$45	1.91	\$2,997

Safety stock only buffers for demand over lead time

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

