Comunicação de Dados (2016/2017) Ficha de Exercícios (Cap. I – Conceitos básicos; Lei de Hartley-Shannon; Ritmo de Nyquist; Técnicas de Modulação)

- As limitações fundamentais à transmissão da informação por meios elétricos são a largura de banda e o ruído. Explique de que forma estes fatores condicionam os processos de transmissão de informação.
- 2. Considere a expressão da lei de Hartley-Shannon para a capacidade de um canal dada pela equação:

$$C = B_T \log_2 \left(1 + \frac{S}{N} \right) \ bits/s$$

O valor da potência média total do ruído, N, representa a parte de ruído presente no ambiente do sistema de comunicação que passa até ao destino pelo facto do sistema possuir uma largura de banda B_T . Isto é, se o ruído no canal de transmissão apresentar com uma densidade η Watt/Hz, a potência total do ruído no receptor é $N = \eta.B_T$ Watt.

Considere que num sistema com densidade de ruído $\eta=10^{-8}$ Watt/Hz, se transmite um sinal eléctrico com uma potência média tal que o seu valor no destino é $S=100~\mu Watt$.

- a) Determine o ritmo máximo de transmissão de informação pelo sistema de comunicação (capacidade do canal) se este possuir uma largura de banda de *i*) 1 KHz *ii*) 10 KHz *iii*) 100 KHz.
- b) Compare os ritmos obtidos na alínea anterior com os ritmos de Nyquist (ritmo máximo de símbolos digitais), dados pela equação $B_T \ge r_s/2$, e discuta a sua implicação na codificação do sinal.
- 3. Considere a Lei de Hartley-Shannon aplicada a um sistema de transmissão com uma largura de banda $B_T = 4$ KHz e densidade de ruído $\eta = 10^{-13}$ Watt/Hz.

Determine o valor mínimo que a potencia do sinal deve ter à saída do sistema para se obter uma transmissão fiável de informação nos seguintes ritmos: 64 Kbits/s, 128 Kbits/s e 256 Kbits/s.

4. Responda à seguinte questão:

	Analisando com cuidado a Lei de Hartley-Shannon (com a capacidade do canal
	expressa em bits/seg) e a expressão que define o ritmo de <i>Nyquist</i> podemos deduzir
	que:
A1	Quanto maior for a relação entre a potência do sinal e a potência do ruído maior será ritmo de <i>Nyquist</i> .
В2	Assuma que, devido à formula de <i>Nyquist</i> , o ritmo máximo de símbolos digitais permitidos no canal de transmissão é 1000 símbolos/seg e a densidade de potência do
	ruído é η=10 ⁻² Watt/Hz. Neste caso, para se obter uma capacidade do canal igual 1000 bits/seg teremos de ter um sinal cuja potência no destino seja 15 watts.
C3	Considere que a potência do sinal no destino é sete vezes superior à potência do ruído presente no sistema de transmissão. Neste caso, a capacidade do canal será equivalente ao triplo da largura de banda de transmissão, sendo apenas expressa em unidades diferentes, ou seja, 3*B _T bits por segundo.
D4	A capacidade do canal aumenta na mesma proporção do aumento da banda de transmissão do sistema.
Z 9	Nenhuma das opções anteriores está correcta.
Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):	
•	

- 5. No âmbito dos sistemas de comunicação, a modulação é uma operação muitas vezes utilizada pelos equipamentos transmissores. Neste contexto, raciocine sobre os seguintes aspectos:
 - a) Quais os principais objectivos inerentes à aplicação de operações de modulação?
 - b) Qual o papel desempenhado na operação de modulação pelo *sinal modulante* e pela *onda portadora*.
 - c) Distinga os seguintes conceitos: modulação digital de onda contínua e modulação analógica de onda contínua
 - d) Explique as diferenças entre as seguintes técnicas de modulação digital: ASK (Amplitude-shift keying), FSK (Frequency-shift keying) e PSK (Phase-shift keying), apresentando exemplos ilustrativos.
- 6. Existem técnicas de modulação mais avançadas que permitem atingir maiores débitos binários, como por exemplo o QAM (Quadrature amplitude modulation). Explique, em termos gerais, os princípios de funcionamento desta técnica, apresentando também um exemplo ilustrativo.