Systems of First Order Differential Equations

Department of Mathematics IIT Guwahati RA/RKS/MGPP/KVK A first order system of n (not necessarily linear) equations in n unknown functions $x_1(t), x_2(t), \ldots, x_n(t)$ in normal form is given by

$$x'_1(t) = f_1(t, x_1, x_2, ..., x_n),$$

 $x'_2(t) = f_2(t, x_1, x_2, ..., x_n),$
 \vdots
 $x'_n(t) = f_n(t, x_1, x_2, ..., x_n).$

Higher-order differential equations often can be rewritten as first-order system. We can convert the *n*th order ODE

$$y^{(n)} = f(t, y, y', \dots, y^{(n-1)})$$
 (1)

into a first-order system as follows.

Setting

$$x_1(t) := y(t), \ x_2(t) := y'(t), \ \ldots, \ x_n(t) := y^{(n-1)}(t).$$

we obtain *n* first-order equations:

$$x'_{1}(t) = y'(t) = x_{2}(t),$$

$$x'_{2}(t) = y''(t) = x_{3}(t),$$

$$\vdots$$

$$x'_{n-1}(t) = y^{(n-1)}(t) = x_{n}(t),$$

$$x'_{n}(t) = y^{(n)}(t) = f(t, x_{1}, x_{2}, \dots, x_{n}).$$
(2)

If (1) has n initial conditions:

$$y(t_0) = \alpha_1, \ y'(t_0) = \alpha_2, \ \ldots, \ y^{(n-1)}(t_0) = \alpha_n,$$

then the system (2) has initial conditions:

$$x_1(t_0) = \alpha_1, \ x_2(t_0) = \alpha_2, \ \dots, \ x_{(n)}(t_0) = \alpha_n.$$

Example:
$$y''(t) + 3y'(t) + 2y(t) = 0$$
; $y(0) = 1$, $y'(0) = 3$.

Setting

$$x_1(t) := y(t)$$
 and $x_2(t) := y'(t)$

we obtain

$$x'_1(t) = x_2(t),$$

 $x'_2(t) = -3x_2(t) - 2x_1(t).$

The ICs transform to $x_1(0) = 1$, $x_2(0) = 3$.

We shall consider only linear systems of first-order ODEs.

Consider the linear system in the normal form:

$$x'_1(t) = a_{11}(t)x_1(t) + \cdots + a_{1n}(t)x_n(t) + f_1(t),$$

 $x'_2(t) = a_{21}(t)x_1(t) + \cdots + a_{2n}(t)x_n(t) + f_2(t),$
 \vdots
 $x'_n(t) = a_{n1}(t)x_1(t) + \cdots + a_{nn}(t)x_n(t) + f_n(t).$

In matrix and vector notations, we write it as

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t), \tag{3}$$

where $\mathbf{x}(t) = [x_1(t), \dots, x_n(t)]^T$, $\mathbf{f}(t) = [f_1(t), \dots, f_n(t)]^T$, and $A(t) = [a_{ij}(t)]$ is a $n \times n$ matrix.

When $\mathbf{f} = 0$ the linear system (3) is said to be homogeneous.

Definition: The IVP for the system

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t) \tag{4}$$

is to find a vector function $\mathbf{x}(t) \in C^1$ that satisfies the system (4) on an interval I and the initial conditions $\mathbf{x}(t_0) = \mathbf{x}_0 = (x_{1,0}, \dots, x_{n,0})^T$, where $t_0 \in I$ and $\mathbf{x}_0 \in \mathbb{R}^n$.

Theorem: (Existence and Uniqueness)

Let A(t) and $\mathbf{f}(t)$ are continuous on I and $t_0 \in I$. Then, for any choice of $\mathbf{x}_0 = (x_{1,0}, \dots, x_{n,0})^T \in \mathbb{R}^n$, there exists a unique solution $\mathbf{x}(t)$ to the IVP

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t), \quad \mathbf{x}(t_0) = \mathbf{x}_0$$

on the whole interval 1.

Example: Consider the IVP:

$$\mathbf{x}'(t) = \left[egin{array}{cc} t^3 & an t \\ t & an t \end{array}
ight] \mathbf{x}(t) + \left[egin{array}{cc} \sqrt{1-t} \\ 0 \end{array}
ight], \ \mathbf{x}(0) = \left[egin{array}{cc} -1 \\ 1 \end{array}
ight].$$

This IVP has a unique solution on the interval $(-\pi/2, 1)$.

Definition: The Wronskian of *n* vector functions

$$\mathbf{x}_1(t) = (x_{1,1}, \dots, x_{n,1})^T, \dots, \mathbf{x}_n(t) = (x_{1,n}, \dots, x_{n,n})^T$$
 is defined as

$$W(\mathbf{x}_{1},...,\mathbf{x}_{n})(t) := \begin{vmatrix} x_{1,1}(t) & x_{1,2}(t) & \cdots & x_{1,n}(t) \\ x_{2,1}(t) & x_{2,2}(t) & \cdots & x_{2,n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n,1}(t) & x_{n,2}(t) & \cdots & x_{n,n}(t) \end{vmatrix}$$
$$= \det[\mathbf{x}_{1} \mathbf{x}_{2} ... \mathbf{x}_{n}].$$

Theorem: Let A(t) is an $n \times n$ matrix of continuous functions. $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are linearly independent solutions to $\mathbf{x}'(t) = A(t)\mathbf{x}$ on I iff $W(t) := \det[\mathbf{x}_1 \ \mathbf{x}_2 \ \ldots \ \mathbf{x}_n] \neq 0$ on I.

Proof. Suppose $W(t_0)=0$ at some point $t_0\in I$. Now, $W(t_0)=0\Longrightarrow \mathbf{x}_1(t_0),\ \mathbf{x}_2(t_0),\ \ldots,\ \mathbf{x}_n(t_0)$ are L.D. . Then, \exists scalars c_1,\ldots,c_n , not all zero, such that

$$c_1\mathbf{x}_1(t_0) + c_2\mathbf{x}_2(t_0) + \ldots + c_n\mathbf{x}_n(t_0) = \mathbf{0}.$$

Note that $c_1\mathbf{x}_1(t) + c_2\mathbf{x}_2(t) + \ldots + c_n\mathbf{x}_n(t)$ and $\mathbf{z}(t) = \mathbf{0}$ are both solutions to $\mathbf{x}'(t) = A\mathbf{x}(t)$ on I and $\sum_{i=1}^n c_i\mathbf{x}_i(t_0) = \mathbf{z}(t_0) = 0$. By the existence and uniqueness theorem

$$c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \ldots + c_n \mathbf{x}_n(t) = \mathbf{0}, \ \forall t \in I$$

which contradicts to the fact that $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are L.I. Hence, $W(t_0) \neq 0$. Since $t_0 \in I$ is arbitrary, the result follows. The converse part is trivial.

Theorem:(**Abel's formula**) If $\mathbf{x}_1, \dots, \mathbf{x}_n$ are n solutions to $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$, then

$$W(t) = W(t_0) \exp \left(\int_{t_0}^t \left\{ \sum_{i=1}^n a_{ii}(s) \right\} ds \right),$$

where a_{ii} 's are the main diagonal elements of A.

Proof: Let $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$. Using Jacobi's formula, we have

$$\frac{d}{dt} \{ det(X) \} = trace(adj(X)X') = trace(adj(X)AX)$$

$$= trace(AX adj(X)) = trace(A det(X))$$

$$= det(X) trace(A).$$

Integrating from t_0 to t, the result follows.

Fact:

- The Wronskian of solutions to $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ is either zero or never zero on I.
- A set of n solutions to $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ on I is linearly independent on I if and only if $W(\mathbf{x}_1, \dots, \mathbf{x}_n)(t) \neq 0$ on I.

Representation of Solutions

Theorem: (Homogeneous case)

Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be n linearly independent solutions to

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t), \quad t \in I,$$

where A(t) is continuous on I. Then, every solution to $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ can be expressed in the form

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + \cdots + c_n \mathbf{x}_n(t),$$

where c_i 's are constants.

Definition: A set $\{x_1, ..., x_n\}$ of n linearly independent solutions to

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t), \quad t \in I \tag{*}$$

is called a fundamental solution set for (*) on I.

The matrix $\Phi(t)$ defined by

$$\Phi(t) := \begin{bmatrix} \mathbf{x}_{1}(t) \ \mathbf{x}_{2}(t) \ \dots \ \mathbf{x}_{n}(t) \end{bmatrix}$$

$$= \begin{bmatrix} x_{1,1}(t) & x_{1,2}(t) & \cdots & x_{1,n}(t) \\ x_{2,1}(t) & x_{2,2}(t) & \cdots & x_{2,n}(t) \\ \vdots & \vdots & & \vdots \\ x_{n,1}(t) & x_{n,2}(t) & \cdots & x_{n,n}(t) \end{bmatrix}$$

is called a fundamental matrix for (*).

Note: 1. We can use $\Phi(t)$ to express the general solution

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + \cdots + c_n \mathbf{x}_n(t) = \Phi(t)\mathbf{c}$$
, where $\mathbf{c} = (c_1, \dots, c_n)^T$.

2. Since $\det \Phi(t) = W(\mathbf{x}_1, \dots, \mathbf{x}_n) \neq 0$ on $I \Longrightarrow \Phi(t)$ is invertible for every $t \in I$.

Example: The set $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, where

$$\textbf{x}_1 = \left[\begin{array}{c} e^{2t} \\ e^{2t} \\ e^{2t} \end{array} \right], \; \textbf{x}_2 = \left[\begin{array}{c} -e^{-t} \\ 0 \\ e^{-t} \end{array} \right], \; \textbf{x}_3 = \left[\begin{array}{c} 0 \\ e^{-t} \\ -e^{-t} \end{array} \right],$$

is a fundamental solution set for the system $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$

on
$$\mathbb{R}$$
, where $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

Note that $A\mathbf{x}_i(t) = \mathbf{x}_i'(t)$, i = 1, 2, 3. Further,

$$W(t) = \left| egin{array}{ccc} e^{2t} & -e^{-t} & 0 \ e^{2t} & 0 & e^{-t} \ e^{2t} & e^{-t} & -e^{-t} \end{array}
ight| = -3
eq 0.$$

The fundamental matrix
$$\Phi(t)=\left[\begin{array}{ccc} e^{2t} & -e^{-t} & 0 \\ e^{2t} & 0 & e^{-t} \\ e^{2t} & e^{-t} & -e^{-t} \end{array}\right].$$

Thus, the GS is

$$\mathbf{x}(t) = \Phi(t)\mathbf{c} = c_1 \left[egin{array}{c} e^{2t} \ e^{2t} \ e^{2t} \end{array}
ight] + c_2 \left[egin{array}{c} -e^{-t} \ 0 \ e^{-t} \end{array}
ight] + c_3 \left[egin{array}{c} 0 \ e^{-t} \ -e^{-t} \end{array}
ight].$$

Theorem: (Non-homogeneous case) let \mathbf{x}_p be a particular solution to

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{f}(t), \quad t \in I, \tag{**}$$

and let $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a fundamental solution set on I for the corresponding homogeneous system $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$. Then every solution to (**) can be expressed in the form

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + \dots + c_n \mathbf{x}_n(t) + \mathbf{x}_p(t)$$

$$= \Phi(t)\mathbf{c} + \mathbf{x}_p(t).$$
*** Find ***