Kohenen (SOM)

Simple example

Example 4.4 A Kohonen self-organizing map (SOM) to cluster four vectors

Let the vectors to be clustered be

$$(1, 1, 0, 0); (0, 0, 0, 1); (1, 0, 0, 0); (0, 0, 1, 1).$$

The maximum number of clusters to be formed is

$$m = 2$$
.

Suppose the learning rate (geometric decrease) is

$$\alpha(0) = .6,$$

$$\alpha(t + 1) = .5 \alpha(t).$$

With only two clusters available, the neighborhood of node J (Step 4) is set so that only one cluster updates its weights at each step (i.e., R = 0).

Step 0. Initial weight matrix:

Initial radius:

$$R = 0.$$

Initial learning rate:

$$\alpha(0) = 0.6.$$

Step 1. Begin training.

Step 2. For the first vector,
$$(1, 1, 0, 0)$$
, do Steps 3-5.
Step 3. $D(1) = (.2 - 1)^2 + (.6 - 1)^2 + (.5 - 0)^2 + (.9 - 0)^2 = 1.86;$
 $D(2) = (.8 - 1)^2 + (.4 - 1)^2 + (.7 - 0)^2 + (.3 - 0)^2 = 0.98.$

Step 4. The input vector is closest to output node 2, so J = 2.

Step 5. The weights on the winning unit are updated:
$$w_{i2}(\text{new}) = w_{i2}(\text{old}) + .6 [x_i - w_{i2}(\text{old})]_{Go \text{ to Pi}}$$

$$= .4 w_{i2}(\text{old}) + .6 x_i.$$

Step 5. The weights on the winning unit are updated:

$$w_{i2}(\text{new}) = w_{i2}(\text{old}) + .6 [x_i - w_{i2}(\text{old})]$$

= .4 $w_{i2}(\text{old}) + .6 x_i$.

This gives the weight matrix

Step 2. For the second vector, (0,0,0,1), do Steps 3-5. Step 3.

$$D(1) = (.2 - 0)^{2} + (.6 - 0)^{2} + (.5 - 0)^{2} + (.5 - 0)^{2} + (.9 - 1)^{2} = 0.66;$$

$$D(2) = (.92 - 0)^{2} + (.76 - 0)^{2} + (.28 - 0)^{2} + (.12 - 1)^{2} = 2.2768.$$

Step 4. The input vector is closest to output node 1, so

XOR Classification

affine transformation from an input vector to an output scalar. Now, we describe an affine transformation from a vector \mathbf{x} to a vector \mathbf{h} , so an entire vector of bias parameters is needed. The activation function g is typically chosen to be a function that is applied element-wise, with $h_i = g(\mathbf{x}^T \mathbf{W}_{:,i} + c_i)$. In modern neural networks, the default recommendation is to use the rectified linear unit or ReLU (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011a) defined by the activation function $g(z) = \max\{0, z\}$ depicted in Fig. 6.3.

We can now specify our complete network as

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$
(6.3)

We can now specify a solution to the XOR problem. Let

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \tag{6.4}$$

$$\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \tag{6.5}$$

$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \tag{6.6}$$

and b = 0.

We can now walk through the way that the model processes a batch of inputs. Let X be the design matrix containing all four points in the binary input space, with one example per row:

$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}. \tag{6.7}$$

The first step in the neural network is to multiply the input matrix by the first layer's weight matrix:

$$XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}. \tag{6.8}$$

Next, we add the bias vector c, to obtain

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}. \tag{6.9}$$

In this space, all of the examples lie along a line with slope 1. As we move along this line, the output needs to begin at 0, then rise to 1, then drop back down to 0. A linear model cannot implement such a function. To finish computing the value of h for each example, we apply the rectified linear transformation:

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}. \tag{6.10}$$

This transformation has changed the relationship between the examples. They no longer lie on a single line. As shown in Fig. 6.1, they now lie in a space where a linear model can solve the problem.

We finish by multiplying by the weight vector w:

$$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}. \tag{6.11}$$