Atiyah-MacDonald: Rings and Modules of Fractions

James Pagan

February 2024

Contents

1	Construction of Rings of Fractions		
	1.1	Equality of Fractions	2
	1.2	Operations on Fractions	3

1 Construction of Rings of Fractions

1.1 Equality of Fractions

Let R be a ring. A multiplicatively closed subset $S \subseteq R$ is a subset that contains 1 and is closed under multiplication — that is, if (S, \times) is a submonoid of (R, \times) .

Lemma 1. Define a relation \equiv on $R \times S$ as follows:

$$(a,s) \equiv (b,t) \iff (at-bs)x = 0 \text{ for some } x \in S.$$

Then \equiv is an equivalence relation.

Proof. Let (a, s), (b, t), and (c, u) be any elements of $R \times S$. We must verify three properties:

- 1. Reflexivity: It is clear that $(a,b) \equiv (a,b)$, since (ab-ab)1 = 0.
- 2. **Symmetry**: The proof is as simple as multiplying by -1:

$$(a,s) \equiv (b,t) \iff (at-bs)x = 0 \text{ for some } x \in S$$

 $\iff (bs-at)x = 0 \text{ for some } x \in S$
 $\iff (b,t) \equiv (a,s).$

3. **Transitivity**: Suppose $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$. Then there exists $x, y \in S$ such that

$$(at - bs)x = 0$$
 and $(bu - ct)y = 0$.

Muliplying these equations by uy and sx respectively and add them: we obtain that (aut - cts)xy = 0. Hence (au - cs)xyt = 0; since $xyt \in S$ by closure, we find $(a, s) \equiv (c, u)$.

Therefore, \equiv is an equivalence relation.

The equivalence class of (a, s) is denoted $\frac{a}{s}$ and called a **fraction**. The set $S^{-1}R$ denotes all the equivalence classes on $S \times R$. Observe that we do not impose $0 \notin S$; if S contains zero, then all fractions are equivalent and $S^{-1}R = 0$.

1.2 Operations on Fractions

We endow $S^{-1}R$ with ring structure by defining addition and multiplication of fractions:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
$$\frac{a}{s} \times \frac{b}{t} = \frac{ab}{st}.$$

Lemma 2. Addition and multiplication of fractions is well-defined.

Proof. Suppose $\frac{a}{s} = \frac{c}{u}$ and $\frac{b}{t} = \frac{d}{v}$. First, we demonstrate that $\frac{a}{s} + \frac{b}{t} = \frac{c}{u} + \frac{d}{v}$; there exist $x, y \in S$ such that

$$(au - cs)x = 0 \quad \text{and} \quad (bv - dt)y = 0. \tag{1}$$

Multiply these equations by tvy and sux respectively and add them: we obtain that (atuv + bsuv - cvst - dust)xy = 0. Thus

$$\frac{a}{s} + \frac{b}{s} = \frac{at + bs}{st} = \frac{cv + du}{uv} = \frac{c}{u} + \frac{d}{v}.$$

Demonstrating that $\frac{a}{s} \times \frac{b}{t} = \frac{c}{u} \times \frac{d}{v}$ is a simpler story. Multiplying our equations in (1) by bvy and csx respectively and adding yields (abuv - cdst)xy = 0, so

$$\frac{a}{s} \times \frac{b}{s} = \frac{ab}{st} = \frac{cd}{uv} = \frac{c}{u} \times \frac{d}{v};$$

hence addition and multiplication of fractions is well-defined.

Naturally, $S^{-1}R$ is a commutative ring. The proof of this assertion is identical to the verification that \mathbb{Q} is a field — with one exception. It may not be true that each fraction has a multiplicative inverse.

Corollary 1. If R is an integral domain and $S = R \setminus \{0\}$, then $S^{-1}R$ is the field of fractions of R.