Quality Planning

James Linton, MiM, PmP, Cmbb, AAMIF Sessional Instructor,

Civil & Environmental Engineering
University of Windsor
JLinton@Uwindsor.ca

The Problem

Why Care

The Solution

Quality Planning

- Definition
- Grade
- Statistics
 - Control limits
 - Normal Distribution
 - Standard deviation
- Quality Planning Tools
 - Measurement terminology
 - Tolerances
 - Defining and meeting client expectations
- Quality Assurance

Definition of Quality

- Understand the quality levels expected
- Ensure that the levels are met
 - This includes measuring

Grades as a measure of quality

- Pre-set standards
 - Octane rating for gasoline
 - Lumber graded for appearance, strength
 - Steel and other commodities

Using statistics to measure and manage quality

- Control limits
 - Upper and lower standards for allowable variation
- Central limit theorem
 - Frequency distribution
 - Discrete math— "bins" -count the number of measurements that fall in each bin
 - Normal distribution— "bell-shaped curve"

Measuring your products

- Options:
 - Measure entire population
 - Sampling
 - Smaller amount of data to work with
 - Sometimes measuring destroys the sample

Normal Distribution

Figure 18.2.2 One Sigma Range

Source: http://pm4id.org/10/1/

Normal Distribution

- Standard deviation
 - Calculate the mean (or average value) of all measurements
 - Subtract EACH measurement from the mean
 - Square EACH difference
 - Sum the values
 - Divide the sum by ((number of values) 1)
 - Take the square root
- Result can be thought of as the average difference

The 68-95-99.7 Rule

Figure 18.2.3 The 68-95-99.7 Rule

Source: http://pm4id.org/10/1/

Sigma Levels

Standard Deviations between Mean and Either Control Limit	Sigma Level	Percentage Inside Control Limits	Percentage Outside Control Limits	Parts Outside Control Limits (approximate)
1	1	68.3%	31.7%	32 per 100
2	2	95.4%	4.6%	5 per 100
3	3	99.7%	.3%	3 per 1,000
4	4	99.993 7%	.006 3%	4 per 100,000
5	5	99.999 94%	.000 06%	6 per 10 million
6	6	99.999 999 8%	.000 000 2%	2 per billion

Figure 18.2.4 Meaning of Sigma Levels

Source: http://pm4id.org/10/1/

Quality Plan

- The quality plan specifies the control limits
- Often written as the mean ± the acceptable variation
- The size of the range is called the **tolerance**.

Quality planning techniques

- Cost-benefit analysis
- Benchmarking
- Experimentation design
- Cost of quality
- Control Charts
- Cause and Effect diagrams
- Histograms
 - Pareto diagram

Quality Assurance

- Process Analysis
 - ISO 9000 requires this

Summary

- Purpose of Quality Management:
 - Build confidence in clients that quality standards and procedures are being followed
- Ensured by
 - Internal review of plan
 - Testing
 - Revising policies
 - External Review or audit

Homework

- Read and Review Chapters 13 & 14
- Read and Review Supplemental slide decks 10 & 11

Questions?