| Consider the following lines of code. What is the name of the column that contains the target values? |
|-------------------------------------------------------------------------------------------------------|
| <pre>from sklearn.linear_model import LinearRegression lm=LinearRegression()</pre>                    |
| <pre>X = df[['highway-mpg']]</pre>                                                                    |
| Y = df['price']                                                                                       |
| <pre>lm.fit(X, Y)</pre>                                                                               |
| Yhat=lm.predict(X)                                                                                    |
| O Yhat                                                                                                |
| O 'highway-mpg'                                                                                       |
| O fit                                                                                                 |
| • 'price'                                                                                             |
|                                                                                                       |
|                                                                                                       |

1.

1 point

2. Consider the following Residual Plot. Which of the following is a correct interpretation?



- O Since the values are distributed uniformly around a straight line, the linear model is a good fit.
- O Since the values are randomly distributed on the graph, it indicates the linear model is not a good fit.
- Since the number of values above the line is the same as the number below the line, it indicates the linear model is not a good fit.

| 3. | Which statement is most accurate about a higher-order polynomial model than a linear one?          | 1 point |
|----|----------------------------------------------------------------------------------------------------|---------|
|    | O When you compare their R <sup>2</sup> values, the smaller value indicates the better fit.        |         |
|    | When you compare their R <sup>2</sup> values, the larger value indicates the better fit.           |         |
|    | The linear model will usually appear to fit the data better.                                       |         |
|    | <ul> <li>You cannot compare their R<sup>2</sup> values to decide which is a better fit.</li> </ul> |         |
|    |                                                                                                    |         |
| 4. | Consider the following lines of code. What value does the variable <b>out</b> contain?             | 1 point |
|    | <pre>lm = LinearRegression()</pre>                                                                 |         |
|    | <pre>X = df[['highway-mpg']]</pre>                                                                 |         |
|    | Y = df['price']                                                                                    |         |
|    | <pre>lm.fit(X, Y)</pre>                                                                            |         |
|    | out=lm.score(X,Y)                                                                                  |         |
|    | The Coefficient of Determination                                                                   |         |
|    | Mean Squared Error with respect to X                                                               |         |
|    | A multiple linear regression                                                                       |         |
|    | Mean Square Error with respect to y.                                                               |         |
|    |                                                                                                    |         |
|    |                                                                                                    |         |