

Lastenheft

HTW Berlin 3D-Scanner mit einer Intel RealSense

Autor: Vinh Thong Trinh, Mert Karadeniz, Habib Ben Khedher, William Eppel

Letzte Änderung: 26. April 2022 Dateiname: Lastenheft

Version: 0.2

Copyright

© Mohammad Abuosba

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie:

Version:	Datum:	Verantwortlich	Änderung	
0.1	12.04.2022	Alle	Initiale Dokumenterstellung - Lastenheft	
0.2	18.04.2022	Alle	Erweiterungen	
0.3	19.04.2022	Alle	Endgültiger Entwurf	
1.0	24.04.2022	Alle	Finalisierung	

I Inhaltsverzeichnis

II A	Abbil	dungsve	erzeichnis Fehler! Textmarke nich	nt definiert.
1	Einle	eitung		3
2	Aus	gangsitu	uation	3
3	Ziels	setzung.		3
4	Anfo	orderung	gen	4
	4.1	4.1.1	reFunktionale AnforderungenNicht-funktionale Anforderungen	4
	4.2	Technis	sche Anforderungen	5
	4.3	Konstru	uktive Anforderungen	6
	4.4	Angestr	rebte Lösungsskizze	6
5	Abn	ahmekrit	iterien	7
6	Ans	prechpa	ırtner für Rückfragen	8
7	Wer	hat was	s gemacht	Я

Lastenheft 3D-Scanner

II Abbildungsverzeichnis

Abbildung 1: Konstruktionsskizze	6
-	
Abbildung 2: GUI Mockup	7

1 Einleitung

Digitalisierung ist ein großer Begriff unter dem man grundlegend die Erfassung von Informationen physischer Objekte in Formate versteht, welche sich zur Verarbeitung oder Speicherung in digitaltechnischen Systemen eignen. Durch Digitalisierung des Objektes vergrößert sich das Spektrum an Möglichkeiten mit dem Objekt um ein Vielfaches.

3D-Scanner sind oft stationär und besitzen mehrere Kameras die auf einen Punkt gerichtet sind. Die Kameras sind keine herkömmlichen Kameras, die Farbinformationen sammeln, sondern Kameras die durch Tiefenbilder Informationen über den Abstand zur Oberfläche des Objekts aufnehmen können. Durch die ermittelten Informationen wird das gescannte Objekt digital rekonstruiert.

2 Ausgangsituation

Derzeit werden zum Digitalisieren der Objekte 3D-Scanner genutzt. Die Kosten der Geräte sind für Personen mit durchschnittlichem Einkommen nicht einfach bezahlbar. Außerdem sind die meisten 3D-Scanner sehr groß und immobil. Zudem ist hinzuzufügen, dass die Scanner keine Wartbereitschaft besitzen und ausschließlich vom Hersteller repariert werden können.

Unser Team sollte eine Lösung finden um die Kosten eines derartigen Scanners zu minimieren. Zudem sind die Eigenschaften des Projektes aus Mobilität und Kompaktheit auszuzeichnen. Durch die Kompaktheit, sollte die Technik soweit einsichtig werden, dass Nutzer bei Problemen selber Tatkräftig werden können.

3 Zielsetzung

Ziel des Projektes ist es ein Produkt zu schaffen mit dem jeder Interessierte die Option hat diverse Objekte zu digitalisieren. Es soll die Möglichkeit geboten werden die Objekte zu scannen und daraus 3D – Modelle zu erstellen, die anschließend gedruckt werden können.

Das zu scannende Objekt soll auf eine rotierende Plattform platziert werden können. Durch nur eine Kamera soll das Objekt anschließend erfasst werden. Das System soll durch die erfassten Daten ein 3D-Modell erstellen, welches in einem bestimmten Dateityp – Format gespeichert werden soll. Die gespeicherten Daten können anschließend weiterverarbeitet werden um das Objekt beispielsweise zu drucken.

Die Bedienung des Systems soll einfach und intuitiv sein, sodass Nutzer ohne spezifisches Fachwissen dieses benutzen können.

Der Kostenpunkt des Produkts sollte weitestgehend minimiert werden um das Produkt für jeden interessierten erwerbbar zu machen.

4 Anforderungen

4.1 Software

4.1.1 Funktionale Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
FA-1	Objekt-Plattform		
FA-1.1		Plattform zum Stand und Fixierung des Objekts hoch	
FA-1.2		Verbindung zur Kamera durch ein Standfuß	wenig
FA-1.3		Kamerahalterung	mittel
FA-2	Kamera		
FA-2.1		Es soll eine einzige Kamera zum Scan benutzt werden	hoch
FA-2.2		Kamera asynchron einbinden	mittel
FA-2.3		Kamera sollte automatisch ausgewählt werden bei Verbindung des Kabels	hoch
FA-3	GUI		
FA-3.1		Desktop Anwendung	hoch
FA-3.2		Einfache Benutzeroberfläche	hoch
FA-3.3		Übersichtlich und einfache Steuerung hoch	
FA-3.4		Scan eines Objektes soll durch einen Druck auf einen hoch Button möglich sein	
FA-3.5		Gescanntes Objekt visualisieren	mittel
FA-3.6		Gescanntes Objekt exportieren	hoch
FA-3.7		Exportierte Objekte wieder importieren können zum visualisieren	
FA-4	Output		
FA-4.1		Gescanntes Objekt soll gedruckt werden können	mittel
FA-4.2		Dateityp: z.B. STL, OBJ,	hoch

4.1.2 Nicht-funktionale Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
NFA 1	Zuverlässigkeit		
NFA-1.1		Das System ist sicher und geschützt.	hoch
NFA-1.2		Die Hardware muss vor physischen Schäden geschützt hoch werden.	
NFA 2	Benutzbarkeit		
NFA-2.1		Das System lässt sich vom Benutzer ohne Handbuch bedienen.	hoch
NFA-2.2		GUI ist einfach zu bedienen.	mittel
NFA 3	Effizienz		
NFA-3.1		Der Scan sollte nicht länger als 1 Minuten andauern.	hoch
		Die Drehplattform soll sich ohne Probleme drehen können.	hoch
NFA 4	Wartung		
NFA-4.1		Quellcode soll gut formatiert und kommentiert sein.	hoch
NFA-4.2		Der Mikroprozessor soll einfach zu erreichen sein.	mittel

4.2 Technische Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
TA 1	Soft- und Hard- ware		
TA-1.1		IDE - PyCharm und Visual Studio Code	hoch
TA-1.2		GUI - PyQt	hoch
TA-1.3		Arduino UNO	hoch
TA-1.4		Intel RealSense DXXX	hoch

4.3 Konstruktive Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
KA 1	3D-Konstruktion		
KA-1.1		Der Halter der Intel Realsense-Kamera soll richtig kalib- riert sein, um einen optimalen Scan zu erzeugen	
KA-1.2		Das Gehäuse muss groß genug sein, um die gesamte Hardware zu halten	Hoch
KA-1.3		Die Drehplattform muss sich reibungsfrei drehen	Hoch
KA-1.4		Die Drehplattform kann abmontiert werden, um auf die Hardware zugreifen zu können	Hoch
KA-1.5		Das Gehäuse muss eine Stromversorgungmöglichkeit anbieten	Hoch
KA-1.6		Der Halter der Kamera muss so konstruiert sein, sodass die Montage der Kamera einfach sein sollte	Hoch
KA-1.7		Batterien können im Gehäuse sein (Kabellose Stromversorgung)	niedrig
KA-1.8		Kamerahalter können an-/abmontiert werden	niedrig

4.4 Angestrebte Lösungsskizze

 $Abbildung \ 1: Konstruktionsskizze$

Abbildung 2: GUI Mockup

5 Abnahmekriterien

- 1. Konstruktion als Plattform für das Objekt inklusiver Kamerahalterung sollte gegeben sein.
- 2. Plattform soll sich um 360° durch die Hardware (Arduino) drehen können.
- 3. Software soll einen erfolgreichen Scan durchführen können.
- 4. Software soll eine simple GUI beinhalten.
- 5. Die GUI soll mindestens einen Button haben zum starten des Scans.
- 6. Die GUI soll gescanntes Objekt digitalisiert anzeigen können.
- 7. Der Scanner soll ein Objekt in der Größe einer Kaffeetasse scannen können

6 Ansprechpartner für Rückfragen

Name	Vinh Thong Trinh
Funktion	Projektleiter Auftraggeber
E-Mail	S0571062@htw-berlin.de
Telefon	015786433823
Name	Mert Karadeniz
Funktion	Projektleiter Auftraggeber
E-Mail	S0569367@htw-berlin.de
Telefon	0176 57931807
Name	Habib Ben Khedher
Funktion	Projektleiter Auftraggeber
E-Mail	S0560734@htw-berlin.de
Telefon	17623509783
Name	William Eppel
Funktion	Projektleiter Auftraggeber
E-Mail	S0570986@htw-berlin.de
Telefon	017683395937

7 Wer hat was gemacht

Autor	Aufgabe/Kapitel	Anteil
Vinh	Nicht-Funktionale Anforderung, GUI Mockup, Rechtschreibung / Grammatik	25%
Mert	Einleitung, Funktionale Anforderungen,	25%
William	Zielsetzung, Funktionale Anforderungen	25%
Habib	Lösungsskizze, konstruktive Anforderungen	25%