$\bullet\,$ Vous avez $\bf 90\,$ minutes pour compléter l'examen

Nom	
Prénom	
Nom étudiant Devant vous:	
Nom étudiant Derrière:	

Notes

Q1.	(*) Questions de cours	/4
Q2.	(*) Groupes	/6
Q3.	(**) Polynômes	/6
Q4.	(**) Espaces vectoriels	/6
	Total	/22

Q1. [4 pts] (*) Questions de cours

- 1. Soit E un \mathbb{R} -espace vectoriel et soit $\mathcal{A} = \{v_1, v_2, \dots, v_p\}$ une famille de E.
 - Donner la définition que la famille \mathcal{A} est **génératrice**.
 - On suppose que A est génératrice, donner la relation entre $\operatorname{Card} A = k$ et $\dim E = n$.
- 2. Soit F un autre \mathbb{R} -espace vectoriel et $f: E \longrightarrow F$ une application.
 - Donner la définition de f est une application linéaire.
 - On suppose que f est linéaire, Définir ker f.
 - Donner une condition sur $\ker f$ pour que f soit injective.
- 3. Soient E et F deux ensembles tel que CardE = 3 et CardF = 5.
 - Quel est le nombre d'injections de E vers F?
 - ullet Quel sera le cardinal des sous ensembles de F contenant juste ${\bf deux}$ éléments.

Q2. [6 pts] (*) Groupes

1. Sur $E = \mathbb{R} \setminus \{1\}$, on définit sur E la loi interne * par:

$$\forall x, y \in E^2 \quad x * y = x + y - xy \tag{1}$$

- Montrer que (E, *) est un groupe.
- 2. Montrer que la loi interne * définie sur $\mathbb R$ par

$$\forall a, b \in \mathbb{R}^2$$
 $a * b = \ln(e^a + e^b)$

n'admet pas un élément neutre.

3. Soit (G, .) un groupe dont l'élément neutre est noté e. On suppose qu'on possède la propriété suivante:

$$\forall x \in G \quad x^2 = x \cdot x = e$$

Montrer que (G, .) est abélien.

4. On considère (G, .) un groupe abélien. Montrer que l'application:

$$\begin{array}{cccc} \Phi: & G & \longrightarrow & G \\ & x & \longrightarrow & x^{-1} \end{array}$$

est un morphisme de groupe (x^{-1} est le symétrique de x).

Q3. [6 pts] (**) Polynômes

On considère le polynôme $P = x^3 - 5x^2 + 8x - 4$.

- 1. Montrer que $\alpha = 2$ est une racine de P.
- 2. Quel est le degré de multiplicité de α .
- 3. Donner une décomposition en $\mathbb{R}[X]$ de P.
- 4. On considère la fraction rationnelle

$$F = \frac{x+1}{P}.$$

Donner la décomposition en éléments simples de F.

Q4. [6 pts] (**) Espaces vectoriels

1. On considère l'ensemble:

$$E = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = z = t = 0\}$$
(2)

- Prouvez que E est un sous espace vectoriel de \mathbb{R}^4 .
- Trouver un vecteur $u_1 \in \mathbb{R}^4$ tel que $E = \text{Vect}(u_1)$.
- ullet Donner une base et la dimension de E.
- 2. On considère l'espace vectoriel $F \subset \mathbb{R}^4$ défini par:

$$F = \{(a, a+b, -a+c, c) \mid (a,b,c) \in \mathbb{R}^3\}$$
(3)

- Trouver trois vecteurs u_2, u_3 et u_4 tel que $F = \text{Vect}(u_2, u_3, u_4)$.
- \bullet Donner une base et la dimension de F.
- 3. Démontrer que E et F sont supplémentaires dans \mathbb{R}^4 .