COMP90051 Statistical Machine Learning

Semester 2, 2015

Lecturer: Ben Rubinstein

9. PGM Statistical Inference

Statistical inference on PGMs

Learning from data — fitting probability tables to observations (eg as a frequentist; a Bayesian would just use probabilistic inference to update prior to posterior)

Where are we?

- Representation of joint distributions
 - * PGMs encode conditional independence
- Examples
- Probabilistic inference
 - * Computing other distributions from joint
 - * Elimination, sampling algorithms
- Statistical inference
 - Learn parameters from data

Have PGM, Some observations, No tables...

Fully-observed case is "easy"

- Max-Likelihood Estimator (MLE) says
 - * If we observe *all* r.v.'s X in a PGM independently n times x_i
 - * Then maximise the *full* joint $\arg \max_{\theta \in \Theta} \prod_{i=1}^{n} \prod_{j} p(X^{j} = x_{i}^{j} | X^{parents(j)} = x_{i}^{parents(j)})$

- Decomposes easily, leads to counts-based estimates
 - * Maximise log-likelihood instead; becomes sum of logs $\arg\max_{A\in \Omega} \sum_{i=1}^n \sum_j \log p(X^j = xij | X^{parents(j)} = x_i^{parents(j)})$
 - * Big maximisation of all parameters together, decouples into small independent problems
- Example is training a naïve Bayes classifier

Example: Fully-observed case

$$\frac{\#\{x_i|HG_i = true, HT_i = false, FG_i = false\}}{\#\{x_i|HT_i = false, FG_i = false\}}$$

i=1..n

Presence of unobserved variables trickier

- But most PGMs you'll encounter will have latent, or unobserved, variables
- What happens to the MLE?
 - Maximise likelihood of observed data only
 - * Marginalise full joint to get to desired "partial" joint
 - * $\arg \max_{\theta \in \Theta} \prod_{i=1}^{n} \sum_{\text{latent } j} \prod_{j} p(X^{j} = x_{i}^{j} | X^{parents(j)} = x_{i}^{parents(j)})$
 - * This won't decouple oh-no's!!

Can we reduce partially-observed to fully?

- Rough idea
 - * If we had guesses for the missing variables
 - * We could employ MLE on fully-observed data

- With a bit more thought, could alternate between
 - Updating missing data
 - * Updating probability tables/parameters
- This is the basis for training PGMs

Expectation-Maximisation Algorithm

Déjà vu?

Hard E-step

- K-means clustering
 - Randomly assign cluster centres
 - * Repeat
 - Assign points to nearest clusters
 - Update cluster centres

Soft E-step

 Assign distribution of point belonging to each cluster (e.g., 10% C1 20% C2 70% C3)

- EM learning
 - Randomly seed parameters
 - * Repeat
 - Expectations for missing variables
 - Update parameters via MLE
 - Posteriors for missing variables given observed, current parameters

Summary

- Statistical inference on PGMs
 - * What is it and why do we care?
 - * Straight MLE for fully-observed data
 - * EM algorithm for mixed latent/observed data