Exercise 1. On note (E_n) l'équation (E_n) : $\frac{x^3}{x^2+1}=n$

- 1. Montrer que pour tout entier $n \geq 0$, l'équation (E_n) possède une unique solution, notée x_n , sur \mathbb{R} .
- 2. Quelle est la monotonie de la suite $(x_n)_n$?
- 3. Montrer que $\forall n \geq 1, n \leq x_n \leq n+1$.
- 4. En déduire la limite de la suite $(x_n)_n$ et donner son équivalent.

Exercise 2. On définit une fonction f sur \mathbb{R} par $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Justifier que f réalise une bijection de \mathbb{R} sur un intervalle à expliciter.
- 2. Montrer que pour tout entier n, l'équation $f(x) = \frac{1}{n}$ admet une unique solution dans \mathbb{R} . On note x_n cette solution.
- 3. Montrer que $\forall n \geq 0, x_n \geq 0$ puis déterminer la monotonie de la suite $(x_n)_n$.
- 4. Déterminer alors la limite de la suite $(x_n)_n$.

Exercise 3. On considère la fonction $f(x) = e^x + x$.

- 1. Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle à expliciter.
- 2. Justifier que pour tout entier positif n, l'équation f(x) = n possède une unique solution que l'on notera par la suite x_n .
- 3. Quelle est la monotonie de la suite x_n ?
- 4. Démontrez que $\forall n \geq 1$, $\ln(n \ln n) \leq x_n \leq \ln n$.
- 5. En déduire la limite de la suite (x_n) puis déterminer $\lim_{n\to\infty} \frac{x_n}{\ln n}$.

- 1. Montrer que pour tout entier $n \geq 0$, l'équation (E_n) possède une unique solution, notée x_n , sur $]1, +\infty[$.
- 2. Quelle est la monotonie de la suite $(x_n)_n$? Montrer que $\forall n \geq 1, x_n \leq n$.
- 3. En déduire que $\forall n \geq 2, x_n \geq \frac{n}{\ln n}$ puis que $x_n \leq \frac{n}{\ln n \ln(\ln n)}$
- 4. À l'aide de l'encadrement obtenu à la question 3, calculer $\lim_{n\to+\infty}\frac{(\ln n)x_n}{n}$.

Exercise 5. Posons $f_n(x) = x^n + 1 - nx$.

- 1. Montrer que, pour chaque entier $n \geq 2$, l'équation $x^n + 1 = nx$ possède une unique solution dans l'intervalle [0,1]. On note x_n cette racine.
- 2. Justifier que $\forall n \geq 2, \frac{1}{n} \leq x_n \leq \frac{2}{n}$. En déduire $\lim_{n \to +\infty} x_n$.
- 3. En utilisant l'égalité $f_n(x_n) = 0$, déterminer $\lim_{n \to +\infty} nx_n$.
- 4. Étudier le signe de $f_{n+1}(x) f_n(x)$. En évaluant en $x = u_n$, en déduire le signe de $f_{n+1}(x_n)$.
- 5. Déterminer la monotonie de la suite $(x_n)_n$.

Exercise 6. Pour tout entier n supérieur ou égal à 1, on définit la fonction f_n par : $\forall x \in \mathbb{R}^+, f_n(x) = x^n + 9x^2 - 4$.

- 1. Montrer que l'équation $f_n(x) = 0$ n'a qu'une seule solution positive, notée u_n .
- 2. Calculer u_1 et u_2 et vérifier que : $\forall n \in \mathbb{N}^*, u_n \in [0, 2]$.
- 3. Montrer que, pour tout x élément de [0,1], on a : $f_{n+1}(x) < f_n(x)$.
- 4. En évaluant l'inégalité précédente en $x = u_n$, déterminer le signe de $f_{n+1}(u_n)$. Quelle est alors la monotonie de la suite (u_n) ?
- 5. Montrer que la suite (u_n) est convergente. On note λ sa limite.
- 6. À l'aide de la question 2, encadrer $(u_n)^n$ puis déterminer $\lim_{n\to+\infty} u_n^n$. En déduire la limite de $(4-9u_n^2)$ et expliciter λ .

Exercise 4. On considère l'équation (E_n) : $x \ln x = n$