Examen Geometrie Diferențială

- 1. Fie curba $\alpha : \mathbb{R} \to \mathbb{R}^3$, $\alpha(t) = (1 + t + t^2, 1 t + t^2, 1 t^2 + at^3)$.
 - (a) (2p) Calculați curbura curbei în punctul c(0). Găsiți valorile lui $a \in \mathbb{R}$ pentru care curba este plană.
 - (b) (0,5p) Pentru valorile lui a determinate mai înainte, găsiţi ecuaţia planului în care se află curba.
- 2. (1p) Fie $\alpha:(a,b)\to\mathbb{R}^3$ o curbă canonic parametrizată astfel încât $k(s)\neq 0$ pentru orice $s\in(a,b)$. Arătați că normalele principale trec printr-un punct fix dacă și numai dacă curba este un cerc sau arc de cerc.
- 3. Fie S o suprafața parametrizată $h:(0,\infty)\times(0,\infty)\to\mathbb{R}^3$ dată prin

$$h(u_1, u_2) = (u_1, u_2, \frac{1}{u_1 u_2}).$$

- (a) (2p) Să se calculeze curbura Gauss a suprafeței.
- (b) (0,5p) Arătați că S este o suprafață Țițeica $(\frac{K}{d^4}$ este constantă, unde K este curbura Gauss iar d este distanța de la un punct fix la planul tangent în punctul curent).
- 4. (1p) Fie c o curbă canonic parametrizată cu curbura k(s) > 0, situată pe o suprafață regulată S. Arătați că c este linie asimptotică dacă și numai dacă planul osculator al curbei în punctul c(s) coincide cu planul tangent la S în c(s).
- 5. (a) (1p) Daţi exemplu de (cel puţin) două suprafeţe (scriind şi ecuaţiile lor) din \mathbb{R}^3 pentru care curba $c: \mathbb{R} \to \mathbb{R}^3$ definită prin $c(s) = (\sin s, \cos s, 0)$ este geodezică în fiecare din cele două suprafeţe. Sunt izometrice cele două suprafeţe (justificaţi)?
 - (b) (1p) Fie S o suprafață compactă având curbura Gauss strict pozitivă. Dați exemplu de o suprafață care satisface aceste proprietăți. Arătați că dacă α și β sunt geodezice simple și închise pe S, atunci ele se intersectează.
 - (c) (1p) Daţi exemplu de o suprafață regulată conexă pentru care care operatorul Weingarten (operatorul formă) admite două valori proprii reale nenule egale în fiecare punct al curbei. Determinaţi suprafeţele regulate conexe pentru care $H^2(p) \leq K(p)$, pentru orice $p \in S$.