REGRESI

- Curve Fitting
- Regresi Linier
- Regresi Eksponensial
- Regresi Polynomial

Curve Fitting: Kasus 1

Diberikan data berupa kumpulan titik-titik diskrit. Diperlukan estimasi / perkiraan untuk mendapatkan nilai dari titik-titik yang berada di antara titik-titik diskrit tersebut

Curve Fitting: Kasus 2

Dari kumpulan titik yang membentuk data, dapat dibuat sebuah persamaan fungsi sederhana.

Curve Fitting: Regresi

Jika data menunjukkan sebuah derajat kesalahan atau noise, dapat dibuat kurva tunggal untuk merepresentasikan trend data tersebut.

Curve Fitting: Interpolasi

Jika data yang disediakan sudah sangat presisi, pendekatan yang dilakukan adalah dengan membuat kurva atau urutan kurva yang sesuai yang melalui masing-masing titik.

Regresi Linier

Regresi Linier digunakan untuk menentukan fungsi linier yang paling sesuai dengan kumpulan titik data (x_n, y_n) yang diketahui.

Sebaran data dengan kurva linier

Untuk mendapatkan fungsi linier *y=mx+c*, dicari nilai *m* dan *c*

$$m = \frac{N \sum_{n=1}^{N} x_n y_n - \left(\sum_{n=1}^{N} x_n\right) \left(\sum_{n=1}^{N} y_n\right)}{N \sum_{n=1}^{N} x_n^2 - \left(\sum_{n=1}^{N} x_n\right)^2}$$

$$c = \frac{\sum_{n=1}^{N} y_n}{N} - m \frac{\sum_{n=1}^{N} x_n}{N} = \overline{y} - m\overline{x}$$

Contoh Penyelesaian Regresi Linier

Carilah persamaan kurva linier jika diketahui data untuk x dan y sebagai berikut:

Sehingga persamaan kurva linier:

$$y = 0.8392857x + 0.0714282$$

kurva y = 0.8392857x + 0.0714282

Tabel data hasil regresi

No	X	у
1	1	0.910714
2	1.5	1.33036
3	2	1.75
4	2.5	2.16964
5	3	2.58929
6	3.5	3.00893
7	4	3.42857
8	4.5	3.84821
9	5	4.26786
10	5.5	4.6875
11	6	5.10714
12	6.5	5.52679
13	7	5.94643
14	7.5	6.36607
15	8	6.78571
16	8.5	7.20536
17	9	7.625
18	9.5	8.04464
19	10	8.46429

Algoritma Regresi Linier

- 1. Tentukan N titik data yang diketahui dalam (x_i,y_i) untuk i = 1,2,3,...,N
- 2. Hitung nilai *m* dan *c* dengan menggunakan formulasi dari regresi linier
- 3. Tampilkan fungsi linier
- 4. Hitung fungsi linier tersebut dalam range x dan step dx tertentu
- 5. Tampilkan hasil tabel (x_n,y_n) dari hasil fungsi linier tersebut

Regresi Eksponensial

Regresi Eksponensial digunakan untuk menentukan fungsi eksponensial yang paling sesuai dengan kumpulan titik data (x_n, y_n) yang diketahui.

Regresi Eksponensial merupakan pengembangan dari regresi linier dengan memanfaatkan fungsi logaritmik

Untuk fungsi $y = e^{ax+b}$

dapat di logaritma-kan menjadi $\ln y = \ln(e^{ax+b})$

$$\ln y = \ln(e^{ax+b})$$

 $\ln y = ax + b$ jika z = ax + b maka: $z = \ln y$

Contoh Penyelesaian Regresi Eksponensial

Carilah persamaan kurva eksponensial jika diketahui data untuk x dan y sebagai berikut:

X _i	$\mathbf{y}_{\mathbf{i}}$	z _i = ln y
1	0.5	-0.6931
2	1.7	0.5306
3	3.4	1.2238
4	5.7	1.7405
5	8.4	2.1282

$$a = \frac{5x21.6425 - 15x4.93}{5x55 - (15)^2} = 0.685$$

$$b = \frac{4.93}{5} - 0.685x \frac{15}{5} = -1.069$$

Cari nilai a dan b seperti mencari nilai m dan c pada regresi linier

$$\sum x_n = 15$$
 $\sum z_n = 4.93$ N=5

$$\sum x_n z_n = 21.6425 \qquad \sum x_n^2 = 55$$

Sehingga persamaan kurva eksponensial menjadi:

$$y = e^{0.685x - 1.069}$$

Tabel data hasil regresi

i	X	у
1	1	0.6811
2	1.5	0.9593
3	2	1.3512
4	2.5	1.9031
5	3	2.6805
6	3.5	3.7754
7	4	5.3175
8	4.5	7.4895
9	5	10.5487
10	5.5	14.8574

Kurva eksponensial $y = e^{0.685x-1.069}$

Algoritma Regresi Eksponensial

- 1. Tentukan N titik data yang diketahui dalam (x_i,y_i) untuk i = 1,2,3,...,N
- 2. Ubah nilai y menjadi z dengan z = ln y
- 3. Hitung nilai *a* dan *b* dengan menggunakan formulasi dari regresi linier (seperti mencari *m* dan *c*)
- 4. Tampilkan fungsi eksponensial $y = e^{ax+b}$
- 5. Hitung fungsi eksponensial tersebut dalam range x dan step dx tertentu
- 6. Tampilkan hasil tabel (x_n,y_n) dari hasil fungsi eksponensial tersebut

Regresi Polynomial

Regresi Polynomial digunakan untuk menentukan fungsi polinomial yang paling sesuai dengan kumpulan titik data (x_n, y_n) yang diketahui.

Fungsi Pendekatan:

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Untuk persamaan polinomial orde 2 didapatkan hubungan :

$$\begin{cases} na_0 + (\sum_{i=1}^n x_i)a_1 + (\sum_{i=1}^n x_i^2)a_2 = \sum_{i=1}^n y_i \\ (\sum_{i=1}^n x_i)a_0 + (\sum_{i=1}^n x_i^2)a_1 + (\sum_{i=1}^n x_i^3)a_2 = \sum_{i=1}^n (x_i y_i) \\ (\sum_{i=1}^n x_i^2)a_0 + (\sum_{i=1}^n x_i^3)a_1 + (\sum_{i=1}^n x_i^4)a_2 = \sum_{i=1}^n (x_i^2 y_i) \end{cases}$$

Regre

Contoh Penyelesaian Regresi Polinomial

Carilah persamaan kurva polinomial jika diketahui data untuk x dan y sebagai berikut:

X _i	y_i	$n=6 \sum x_i y_i = 585.6 \sum x_i^2 y_i = 2488.8$
0	2.1	$\sum x_i = 15$ $\sum y_i = 152.6$ $\bar{x} = 2.5$ $\bar{y} = 25.433$
1	7.7	•
2	13.6	$\sum x_i^2 = 55 \sum x_i^3 = 225 \sum x_i^4 = 979$
3	27.2	$\begin{bmatrix} 15 & 55 \end{bmatrix} \begin{pmatrix} 15 & 15 \end{pmatrix} \begin{pmatrix} 152 & 15 \end{pmatrix}$
4	40.9	$\begin{vmatrix} 6 & 15 & 55 \end{vmatrix} \begin{vmatrix} a_0 \end{vmatrix} = \begin{vmatrix} 152.6 \end{vmatrix}$
5	61.1	$ 15 55 225 \{a_1\} = \{585.6\}$
		$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{Bmatrix}$

$$\begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{cases} 2.47857 \\ 2.35929 \\ 1.86071 \end{cases}$$
 sehingga
$$y=2.47857+2.35929x+1.86071x^2$$
 Regresi

Kurva polinomial

 $y=2.47857+2.35929x+1.86071x^2$

Tabel data hasil regresi

i	X	у
1	1	6.69857
2	1.5	10.2041
3	2	14.64
4	2.5	20.0062
5	3	26.3028
6	3.5	33.5298
7	4	41.6871
8	4.5	50.7748
9	5	60.7928
10	5.5	71.7411

Algoritma Regresi Polinomial

- 1. Tentukan N titik data yang diketahui dalam (x_i,y_i) untuk i = 1,2,3,..,N
- 2. Hitung nilai-nilai yang berhubungan dengan jumlahan data untuk mengisi matrik normal
- 3. Hitung nilai koefisien a0, a1,a2 dengan menggunakan eliminasi Gauss/Gauss-Jordan
- 4. Tampilkan fungsi polinomial $y = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
- 5. Hitung fungsi polinomial tersebut dalam range x dan step dx tertentu
- 6. Tampilkan hasil tabel (x_n,y_n) dari hasil fungsi polinomial tersebut