Здравствуйте!

Лекция №2

Вещественные числа

<u>Вещественным числом</u> называется бесконечная десятичная дробь вида:

ЗНАК
$$a_0, a_1 a_2 a_3 a_4...$$
 где ЗНАК $\in \{+,-\}$ $a_0 \in \{0,1,2,3,4,...\}$

а все цифры a_i после запятой принадлежат множеству $\{0,1,2,3,4,5,6,7,8,9\}.$

Равенство двух вещественных чисел

Пусть даны два вещественных числа:

$$a = \pm a_0, a_1 a_2 a_3 \dots$$

$$b = \pm b_0, b_1 b_2 b_3 \dots$$

Будем считать, что a = b, если:

а) знак a = знак b

b)
$$a_0 = b_0, a_1 = b_1, a_2 = b_2, a_3 = b_3...$$

то есть если у них одинаковые знаки и совпадают все соответствующие друг другу цифры.

Сравнение двух вещественных чисел

1. Пусть оба вещественных числа имеют знак +.

$$a = +a_0$$
, $a_1 a_2 a_3 a_4$...

$$b = +b_0, b_1b_2b_3b_4....$$

Найдем первую по порядку цифру в этих числах, которые не равны друг другу. Пусть это будет цифра с номером n, то есть $a_0 = b_0$, $a_1 = b_1$, $a_{n-1} = b_{n-1}$, но $a_n \neq b_n$

(заметим, что символами математики это записывается так: $n = \min\{k: a_k \neq b_k\}$). Тогда, если $a_n > b_n$, то считаем, что a > b, а если $a_n < b_n$, то a < b.

- 2. Если вещественные числа a и b разных знаков, то большим считается число, имеющее знак +.
- 3. Пусть оба числа имеют знак —. Назовем модулем вещественного числа это же число, но со знаком +:

$$|a| = +a_0, a_1 a_2 a_3 \dots$$

Тогда, если |a| > |b| то считаем, что a < b, если же |a| < |b| то считаем, что a > b.

Супремум и инфимум числовых множеств

Определение. Множество, элементами которого являются вещественные числа, называется числовым множеством.

Числовые множества мы будем обозначать $\{x\}$, где под x будут пониматься вещественные числа.

<u>Определение</u> 1. Числовое множество $\{x\}$ называется <u>ограниченным</u> сверху, если

$$\exists M < +\infty \ \forall x \in \{x\} \ x \leq M$$

 $(\underline{cyuqecm byem} \ makoe \ M < +\infty \ , \ что \ \underline{\partial ля \ любого} \ x ∈ \{x\} \ выполнено$ условие x ≤ M). Число M называется $\underline{bepxheй}$ гранью числового множества $\{x\}$.

Определение 2. Числовое множество $\{x\}$ называется <u>ограниченным</u> снизу, если

$$\exists m > -\infty \ \forall x \in \{x\} \ x \ge m.$$

Число m называется <u>нижней гранью</u> числового множества $\{x\}$.

<u>Определение 3</u>. Числовое множество $\{x\}$ называется <u>ограниченным</u>, если

$$\exists m,M \ \forall x \in \{x\} \ m \leq x \leq M$$
.

Определение 4. Наименьшая из верхних граней называется точной верхней гранью или супремумом числового множества $\{x\}$ (обозначение $\sup\{x\}$).

Наибольшая из нижних граней называется <u>точной</u> нижней гранью или <u>инфимумом</u> числового множества $\{x\}$ (обозначение $\inf\{x\}$).

Эти понятия столь важны, что опишем их в других терминах. $\sup\{x\}$ определяется двумя свойствами:

- 1. $\forall x \in \{x\}$ $x \le \sup\{x\}$
 - 2. $\forall \varepsilon > 0 \quad \exists x \in \{x\} \quad x > \sup\{x\} \varepsilon$

Первое свойство означает, что $\sup\{x\}$ — верхняя грань, то есть все элементы $\{x\}$ не превосходят $\sup\{x\}$.

Второе свойство означает, что любая попытка уменьшить эту верхнюю грань приводит к появлению элемента из $\{x\}$, который окажется больше $\sup\{x\}-\varepsilon$.

Аналогично, $\inf\{x\}$ определяется двумя свойствами:

- 1. $\forall x \in \{x\} \ x \ge \inf\{x\}$
- 2. $\forall \varepsilon > 0$ $\exists x \in \{x\}$ $x < \inf\{x\} + \varepsilon$

Заметим, что сами $\sup\{x\}$ и $\inf\{x\}$ могут как принадлежать, так и не принадлежать множеству $\{x\}$.

Теорема о существовании супремума и инфимума.

Если числовое множество $\{x\}$ не пусто и ограничено сверху, то у него существует $\sup\{x\}$.

Если числовое множество $\{x\}$ не пусто и ограничено снизу, то у него существует $\inf\{x\}$.

Доказательство.

Мы докажем эту теорему только для $\sup\{x\}$ при одном дополнительном предположении — в множестве $\{x\}$ имеются положительные числа. Доказательство разбивается на три части.

- 1. Процедура построения $\sup\{x\}$. Пусть M верхняя грань для $\{x\}$, то есть $\forall x \in \{x\} \ x \leq M$. Проделаем следующее построение:
 - а) Выбросим из множества $\{x\}$ все отрицательные числа.
- б) У оставшихся чисел выпишем те цифры x_0 , которые стоят перед запятой. Множество $\{x_0\}$ этих цифр конечно, так как этих цифр не более чем [M] (целая часть M). Обратите внимание, что именно в этом месте используется ограничение теоремы существование верхней грани. Если бы верхней грани не существовало, то множество $\{x\}$ было бы бесконечным.

<u>В силу конечности</u> множества $\{x_0\}$ из этих цифр до запятой можно выбрать самую большую —ведь их же конечное число. Обозначим самую большую из этих цифр через \bar{x}_0 .

в) Выбросим из $\{x\}$ все те числа, у которых цифра до запятой меньше \overline{x}_0 . У оставшихся чисел выпишем первую цифру после запятой. Этих цифр $\{x_1\}$ не более 10. Выберем из них самую большую и обозначим ее через \overline{x}_1 .

- г) Выбросим из $\{x\}$ все те числа, у которых первая цифра после запятой меньше \bar{x}_1 . У оставшихся чисел выпишем вторую цифру после запятой. Этих цифр $\{x_2\}$ не более 10. Выберем из них самую большую и обозначим ее через \bar{x}_2 .
- д) Выбросим из $\{x\}$ все те числа, у которых... Повторяя эту операцию до бесконечности мы построим число $\overline{x} = +\overline{x}_0, \overline{x}_1\overline{x}_2\overline{x}_3\overline{x}_4...$

Покажем, что \bar{x} и есть $\sup\{x\}$.

2. Проверим первое свойство $\sup\{x\}$.

Возьмем любое $x \in \{x\}$. Если x имеет знак —, то ясно, что $x < \overline{x}$.

Пусть x имеет знак +. Тогда

$$x = +x_0, x_1x_2x_3...$$

Сравним x_0 и \overline{x}_0 . Вспомним, что \overline{x}_0 было самым большим из $\{x_0\}$. Поэтому может быть всего два варианта: либо $x_0 < \overline{x}_0$, либо $x_0 = \overline{x}_0$. В первом случае $x < \overline{x}$ и дальнейшая проверка ни к чему. Если же $x_0 = \overline{x}_0$, то сравним x_1 и \overline{x}_1 . Опять-таки по построению возможны два варианта: либо $x_1 < \overline{x}_1$ и тогда $x < \overline{x}$ и дальнейшая проверка ни к чему, либо $x_1 = \overline{x}_1$.

Если $x_1=\overline{x}_1$, то сравним x_2 и \overline{x}_2 . Опять-таки по построению возможны два варианта: либо $x_2<\overline{x}_2$ и тогда $x<\overline{x}$ и дальнейшая проверка ни к чему, либо $x_2=\overline{x}_2$.

Продолжая этот процесс и дальше, получим, что возможны два следующих варианта.

- а) Найдется какое-то n, для которого $x_n < \overline{x}_n$. Тогда $x < \overline{x}$.
- б) Для всех $n x_n = \overline{x}_n$. Тогда $x = \overline{x}$.

Поэтому всегда $x \le \bar{x}$ и первое свойство супремума выполнено.

3. Проверка второго свойства супремума.

Заметим, что второе свойство $\sup\{x\}$ можно записать так: $\forall x' < \sup\{x\} \ \exists x \in \{x\} \ \text{такой, что } x' < x \leq \sup\{x\}.$

Возьмем положительное $x' < \bar{x}$:

$$x' = +x'_0, x'_1 x'_2 x'_3....$$

Так как $x' < \bar{x}$, то найдется такое n, что

$$x'_0 = \overline{x}_0; \ x'_1 = \overline{x}_1; \ x'_2 = \overline{x}_2; \dots; x'_{n-1} = \overline{x}_{n-1}; \ x'_n < \overline{x}_n.$$

Но вспомним процедуру построения \bar{x} . На n-м шаге после выбрасывания во множестве $\{x\}$ оставались лишь те числа, для которых $x_0 = \bar{x}_0$; $x_1 = \bar{x}_1$; ...; $x_{n-1} = \bar{x}_{n-1}$; $x_n = \bar{x}_n$. Любое из этих чисел будет больше x' (так как $x_n = \bar{x}_n > x'_n$), но естественно, меньше или равно \bar{x} . Поэтому любое из этих чисел удовлетворяет второму свойству супремума.

Терминология. Неравенства.

В заключение уточним еще раз некоторые термины.

Множество чисел x, удовлетворяющее свойству $a \le x \le b$, называется замкнутым отрезком и обозначается [a, b].

Множество чисел x, удовлетворяющее свойству a < x < b, называется открытым отрезком и обозначается (a, b).

Множество чисел x, удовлетворяющее свойству $a < x \le b$ (или $a \le x < b$), называется полуоткрытым отрезком и обозначается (a, b] (соответственно [a, b)).

Модулем |x| числа x называется это же число, взятое со знаком «+». Очевидно, что всегда

$$-|x| \le x \le |x|$$

Важнейшее в дальнейшем для нас неравенство выглядит так: $|x \pm y| \le |x| + |y|$.

Последовательности

Определение 1. Последовательностью $\{x_n\}$ называется упорядоченное бесконечное множество чисел $\{x_1, x_2, x_3, ...\}$. Обратите внимание, что

- а) всего чисел бесконечное число и
- б) они расположены в определенном порядке.

Операции над последовательностями

а) Умножение последовательности на число.

Пусть дана последовательность $\{x_n\}$ и число c. Тогда произведением последовательности $\{x_n\}$ на число c называется последовательность вида

$$c \cdot \{x_n\} = \{cx_1, cx_2, cx_3, cx_4, \ldots\}$$

б) Сложение и вычитание последовательностей Пусть даны две последовательности $\{x_n\}$ и $\{y_n\}$. Суммой $\{x_n\}$ и $\{y_n\}$ называется последовательность вида $\{x_n\}+\{y_n\}=\{x_1+y_1,x_2+y_2,x_3+y_3,\ldots\}$ Разностью - последовательность виды $\{x_n\}-\{y_n\}=\{x_1-y_1,x_2-y_2,x_3-y_3,\ldots\}$

в) Умножение и деление последовательностей Произведение последовательностей

$$\{x_n\} \{y_n\} = \{x_1 \cdot y_1, x_2 \cdot y_2, x_3 \cdot y_3, \ldots\}.$$

Частное последовательностей

$$\frac{\{x_n\}}{\{y_n\}} = \left\{\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, \frac{x_4}{y_4}, \dots\right\}$$

Определение 2. Последовательность называется ограниченной сверху, если $\exists \ M < +\infty \ \forall \ n \ x_n \leq M$; ограниченной снизу, если $\exists \ m > -\infty \ \forall \ n \ x_n \geq m$ ограниченной, если $\exists \ m, M \ \forall \ n \ m \leq x_n \leq M$. (Последнее часто пишут так: $\exists \ A < +\infty \ \forall \ n \ |x_n| \leq A$).