高等數位影像處理

作業#5

姓名: 巫伯銘

學號:_____111318096_____

指導老師: 張陽郎 教授

Figure

 $01_rhombus_magnitude_spectrum_DFT_C.png$

 $02_sine_magnitude_spectrum_DFT_C.png$

03_lena_magnitude_spectrum_DFT_C.png

Discussion

本題使用做兩次 1D 的 DFT 得到 2D DFT 的方式,結果如上所示。

因為空間域中越窄的訊號轉換至頻域,就會越寬;空間域中越寬的訊號轉換至頻域則反之。因此 rhombus 呈現X的形狀; sine 只有水平方向有變化,所以點都集中在中間水平線上。

1(2)

Discussion

以下表格為 C 以及 OpenCV 的 DFT 執行時間:

DFT	C execution time(sec.)	OpenCV execution time(sec.)
rhombus_256.raw	1.98982	0.0096883
sine_128.raw	0.230481	0.00009
lena_256.raw	2.0447	0.0002267

做出來的 DFT 結果基本上相同,但是在時間運算上差異非常大,原因是 OpenCV 內建是使用 FFT 運算。

1(3)

Figure

04_rhombus_IDFT_C.png

(MSE = 0.020)

05_sine_IDFT_C.png

(MSE = 0.919)

06_lena_IDFT_C.png

(MSE = 30.361)

Discussion

拿 IDFT 與原圖做比較,其實用肉眼觀察不出來差異,但是使用 MSE 計算還是能發現些許誤差,推測可能是在將傅立葉級數轉換為 0~255 時有些小數點精度的問題導致的,因為使用 unsigned char 輸出必將捨去小數點。

1(4)

Discussion

以下表格為 C 以及 OpenCV 的 IDFT 執行時間:

IDFT	C execution time(sec.)	OpenCV execution time(sec.)
rhombus_256.raw	1.7298	0.0038154
sine_128.raw	0.198424	0.0004802
lena_256.raw	1.72127	0.0004608

做出來的 DFT 結果基本上相同,但是在時間運算上差異非常大,原因是 OpenCV 內建是使用 FFT 運算。

1(5)

Figure

 $07_rhombus_magnitude_spectrum_DCT.png$

08_sine_magnitude_spectrum_DCT.png

09_lena_magnitude_spectrum_DCT.png

Discussion

在執行程式時可以明顯發現 DCT 的運算時間比 DFT 快了很多,因為少了複數的運算處理,過程簡化很多。

2(1)

Figure

 $10_raccoon_BLPF_5_1_magnitude_spectrum.png$

(Butterworth LPF, D0 = 5, n = 1)

12_raccoon_BLPF_5_2_magnitude_spectrum.png

(Butterworth LPF, D0 = 5, n = 2)

14_raccoon_BLPF_5_3_magnitude_spectrum.png

(Butterworth LPF, D0 = 5, n = 3)

11_raccoon_BLPF_5_1_idft.png

(Butterworth LPF, D0 = 5, n = 1)

13_raccoon_BLPF_5_2_idft.png

(Butterworth LPF, D0 = 5, n = 2)

15_raccoon_BLPF_5_3_idft.png

(Butterworth LPF, D0 = 5, n = 3)

22_raccoon_BLPF_50_1_magnitude_spectrum.png

(Butterworth LPF, D0 = 50, n = 1)
24_raccoon_BLPF_50_2_magnitude_spectrum.png

(Butterworth LPF, D0 = 50, n = 2)

26_raccoon_BLPF_50_3_magnitude_spectrum.png

(Butterworth LPF, D0 = 50, n = 3)

23_raccoon_BLPF_50_1_idft.png

(Butterworth LPF, D0 = 50, n = 1) 25_raccoon_BLPF_50_2_idft.png

(Butterworth LPF, D0 = 50, n = 2) 27_raccoon_BLPF_50_3_idft.png

(Butterworth LPF, D0 = 50, n = 3)

28_raccoon_BHPF_5_1_magnitude_spectrum.png 29_raccoon_BHPF_5_1_idft.png (Butterworth HPF, D0 = 5, n = 1) (Butterworth HPF, D0 = 5, n = 1) 30_raccoon_BHPF_5_2_magnitude_spectrum.png 31_raccoon_BHPF_5_2_idft.png (Butterworth HPF, D0 = 5, n = 2) (Butterworth HPF, D0 = 5, n = 2) 32_raccoon_BHPF_5_3_magnitude_spectrum.png 33_raccoon_BHPF_5_3_idft.png (Butterworth HPF, D0 = 5, n = 3) (Butterworth HPF, D0 = 5, n = 3)

34_raccoon_BHPF_20_1_magnitude_spectrum.png

(Butterworth HPF, D0 = 20, n = 1)

36_raccoon_BHPF_20_2_magnitude_spectrum.png

(Butterworth HPF, D0 = 20, n = 2)
38_raccoon_BHPF_20_3_magnitude_spectrum.png

(Butterworth HPF, D0 = 20, n = 3)

35_raccoon_BHPF_20_1_idft.png

(Butterworth HPF, D0 = 20, n = 1) 37_raccoon_BHPF_20_2_idft.png

(Butterworth HPF, D0 = 20, n = 2) 39_raccoon_BHPF_20_3_idft.png

(Butterworth HPF, D0 = 20, n = 3)

40_raccoon_BHPF_50_1_magnitude_spectrum.png

(Butterworth HPF, D0 = 50, n = 1) 42_raccoon_BHPF_50_2_magnitude_spectrum.png

(Butterworth HPF, D0 = 50, n = 2)
44_raccoon_BHPF_50_3_magnitude_spectrum.png

(Butterworth HPF, D0 = 50, n = 3)

41_raccoon_BHPF_50_1_idft.png

(Butterworth HPF, D0 = 50, n = 1) 43_raccoon_BHPF_50_2_idft.png

(Butterworth HPF, D0 = 50, n = 2) 45_raccoon_BHPF_50_3_idft.png

(Butterworth HPF, D0 = 50, n = 3)

Discussion

調整參數過程發現 D0 越小,LPF 會越模糊,HPF 則是保留的細節越多; n 越大時,LPF 會越模糊,HPF 則是保留的細節會越少。

2.(2)

Figure

46_owl_HFE_idft.png

(D0 = 50, n = 2, a = 0.5, b = 1)

Discussion

本題使用 Gaussian HPF,調整參數過程想辦法儘量讓翅膀以及木頭的線條 紋理更明顯,如圖所示。

3.(1)

Figure

 $47_raccoon_mark_i_raccoon_mark_i_magnitude_spectrum.png$

48_raccoon_mark_i_raccoon_mark_i_out_idft.png

Discussion

本題使用 $method\ i$,加上浮水印的時域,其中 w=100 ,剛開始 w 設比較小發現頻譜圖都看不到浮水印,因此最後才將 w 調到 100 。

3.(2)

Figure

49_raccoon_mark_ii_raccoon_mark_ii_magnitude_spectrum.png

50_raccoon_mark_ii_raccoon_mark_ii_out_idft.png

Discussion

本題使用 methodii,加上浮水印的頻域,其中 w=1,在調整 w 時發現 w 越大原圖影像會越暗,浮水印則會越明顯。

4.

Figure

51_house_homomorphic.png

(rH = 1.3, rL = 0.85, c = 0.35, D0 = 0.4) 52_house_histogram_equalization.png

Discussion

本題調整參數過程讓 rH>1, rL<1 並調整 c 想辦法讓對比度出來,觀察使用 histogram equalization 方法的輸出影像對比度佳,但是暗細節上的顏色有很多片雜訊。