Abstract

These notes are based on Davi Maximo's lectures for the course "Geometric Analysis and Topology I" at UPenn along with John Lee's *Introduction to Smooth Manifolds*, 2nd Ed. and Michael Spivak's *A Comprehensive Introduction to Differential Geometry, Vol. 1.* Any mistake in what follows is my own.

Contents

1	\mathbf{Sm}	Smooth manifolds 3				
	1.1	Lecture 1	3			
	1.2	Lecture 2	4			
2	Smooth maps					
	2.1	Lecture 3	6			
	2.2	Lecture 4	8			
	2.3	Lecture 5	9			
3	Tan	ngent vectors	0			
	3.1	Lecture 6	10			
	3.2	Lecture 7	13			
	3.3	Lecture 8	14			
	3.4	Lecture 9	15			
	3.5	Lecture 10	17			
	3.6	Lecture 11	19			
	3.7	Lecture 12	20			
	3.8	Lecture 13	22			
4	Vec	etor bundles	23			
	4.1	Lecture 14	24			
5	Diff	ferential forms	26			
	5.1	Lecture 15	26			
	5.2	Lecture 16	28			
	5.3	Lecture 17	30			
	5.4	Lecture 18	32			
	5.5	Lecture 19	34			
	5.6	Lecture 20	35			
	5 7	Losturo 21	20			

CONTENTS 2

6	Integration			
	6.1	Lecture 22	40	
	6.2	Lecture 23	42	
7	De Rham cohomology			
	7.1	Lecture 24	44	
	7.2	Lecture 25	46	
	7.3	Lecture 26	47	
8	Integral curves and flows			
	8.1	Lecture 27	48	
	8.2	Lecture 28	50	
9	Dis	tributions	51	

1 Smooth manifolds

1.1 Lecture 1

We want to make precise our notion of a (topological) space that locally looks like \mathbb{R}^n .

Definition 1.1.1. A space M is a (topological) n-dimensional manifold (or n-manifold) if it is

- (i) Hausdorff,
- (ii) second-countable, and
- (iii) locally Euclidean of dimension n, i.e., for any $x \in M$, there exist an open set $U \ni x$ and a homeomorphism $\varphi: U \to V$ for some open subset $V \subset \mathbb{R}^n$.

Condition (iii) holds if and only if U is homeomorphic to an open ball in \mathbb{R}^n or to \mathbb{R}^n itself.

Terminology. A 2-dimensional manifold is called a surface.

Definition 1.1.2. Let M be an n-manifold.

1. A coordinate chart on M is a pair (U,φ) where $U\subset M$ is open and φ is a homeomorphism

$$U \xrightarrow{\cong} W \subset \mathbb{R}^n$$
.

If W is an open ball, then we call U a coordinate ball.

2. If (U, φ) is a coordinate chart and $\pi_i : \mathbb{R}^n \to \mathbb{R}$ denotes the *i*-th projection map, then we call elements of the set $\{(\pi_1(\varphi(p)), \dots, \pi_n(\varphi(p))) \mid p \in U\}$ local coordinates on U.

Notation. We shall use the symbols x^i and x_i interchangeably for local coordinates.

Definition 1.1.3.

1. Given charts (U, φ) , (V, ψ) with $U \cap V \neq \emptyset$, we say that the two are C^k -compatible if the transition $map \ \psi \circ \varphi^{-1}$

$$U \xrightarrow{\varphi} \varphi(U \cap V)$$

$$\downarrow^{\psi \circ \varphi^{-1}}$$

$$\psi(U \cap V)$$

is C^k .

2. A collection of charts $(U_{\alpha}, \varphi_{\alpha})$ which covers a smooth manifold M and is pairwise C^k -compatible is called a C^k -atlas for M.

Example 1.1.4. Consider the global charts $(\mathbb{R}, x \mapsto x)$ and $(\mathbb{R}, x \mapsto x^3)$. Since $x \mapsto x^{\frac{1}{3}}$ is not differentiable at 0, these charts fail to form a C^1 -atlas on \mathbb{R} .

Definition 1.1.5. An atlas A is maximal if it contains every chart that is C^{∞} - (or smoothly) compatible with every chart in A.

Proposition 1.1.6.

1. Every smooth atlas A is contained in a unique maximal atlas, namely the family of all charts that are smoothly compatible with every chart in A.

2. Two smooth atlases are contained in the same maximal atlas if and only if their union is also a smooth atlas.

This shows that an atlas is maximal if and only if it's maximal in the usual in the set-theoretic sense.

Definition 1.1.7. A manifold M is *smooth* if it admits a maximal smooth atlas, also known as a *smooth* structure.

By Proposition 1.1.6, it's enough to construct any smooth atlas for M to show that it's a smooth manifold.

An open problem is whether there is more than one smooth structure on \mathbb{S}^4 . This is known for each $n \neq 4$. For example, Milnor (1958) gave an affirmative answer for \mathbb{S}^7 .

1.2 Lecture 2

Proposition 1.2.1. If M admits a smooth structure, then M admits uncountably many smooth structures. Remark 1.2.2.

- 1. There exists a 10-dimensional topological manifold that admits no smooth structure (Kevaire 1961).
- 2. Any 2- or 3-dimensional manifold admits a smooth structure.

Let us now look at several examples of smooth structures on topological manifolds.

Example 1.2.3.

- (1) Any (real) vector space V where of dimension $n < \infty$ has a canonical smooth structure as follows. Endow V with any norm, since all norms on a finite-dimensional space are equivalent and hence generate the same topology. Pick any basis $B := (b_1, \ldots, b_n)$ of V. Define the isomorphism $T : V \to \mathbb{R}^n$ by $b_i \mapsto e_i$ where e_i denotes the i-th standard basis vector. This is also a diffeomorphism, implying that V is a topological manifold and that (V,T) is an atlas on V. If B' is any other basis of V and T' the corresponding isomorphism, then the transition map $T' \circ T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism, hence a diffeomorphism. By Proposition 1.1.6(2), it follows that any two bases determine the same smooth structure on V.
- (2) The restriction of a smooth structure on a smooth manifold M to an open subset $U \subset M$ yields a smooth structure on U, which is called an *open submanifold*.

Note that the general linear group $GL(n, \mathbb{F})$ is an open subset of $M(n, \mathbb{F})$, which is an n^2 -manifold by Example 1.2.3(1). Indeed, $GL(n, \mathbb{F}) = \det^{-1}(\mathbb{F}^{-1})$, the preimage of an open set in \mathbb{F} . By Example 1.2.3(2), $GL(n, \mathbb{F})$ is an open submanifold.

Example 1.2.4.

- (1) Let $U \subset \mathbb{R}^n$ be open and $F: U \to \mathbb{R}^m$ be continuous. Let $\Gamma(F)$ denote the graph of F and $\pi_1 \upharpoonright_{\Gamma(F)}$ be the restriction of the projection map $(x,y) \mapsto x$. This is a homeomorphism $\Gamma(F) \xrightarrow{\cong} U$ with inverse given by $x \mapsto (x, f(x))$. Hence $(\Gamma(F), \pi_1 \upharpoonright_{\Gamma} (F))$ is a smooth atlas on $\Gamma(F)$.
- (2) For each $i \in \{1, 2, ..., n+1\}$, let $U_i^+ := \{\vec{x} \in \mathbb{R}^{n+1} : x_i > 0\}$. Define U_i^- similarly, so that the U_i^{\pm} cover the *n*-sphere

$$\mathbb{S}^n \coloneqq \left\{ \vec{x} \in \mathbb{R}^{n+1} : |\vec{x}| = 1 \right\}.$$

Define the map $f: B_1(0) \subset \mathbb{R}^n \to \mathbb{R}$ by $f(\vec{u}) = \sqrt{1 - |\vec{u}|^2}$. Define $x_i: B_1(0) \to \mathbb{R}$ by $f(x_1, \dots, \hat{x}_i, \dots x_n)$. Then $\Gamma(x_i) = U_i^+ \cap \mathbb{S}^n$, and $\Gamma(-x_i) = U_i^- \cap \mathbb{S}^n$. Thanks to (1), these graphs with their corresponding projections form a smooth structure on \mathbb{S}^n .

(3) Let $f: U_{\text{open}} \subset \mathbb{R}^m \to \mathbb{R}$ be smooth. For each $c \in \mathbb{R}$, let $M_c := f^{-1}(c)$. Assume that the total derivative $\nabla f(a)$ is nonzero for each $a \in M_c$. Then $f_{x_i}(a) \neq 0$ for some $1 \leq i \leq m$. By the implicit function theorem, there is some smooth function $F: \mathbb{R}^{m-1} \to \mathbb{R}$ given by $x_i = F(x_1, \dots, \hat{x}_i, \dots, x_m)$ on some neighborhood $U_a \subset \mathbb{R}^m$ of a such that $f^{-1}(c) \cap U_a$ equals the graph of F. This means that the open sets $f^{-1}(c) \cap U_a$ together with their graph coordinates define a smooth atlas on M_c .

Example 1.2.5 (Real projective space). For each $i \in \{1, 2, ..., n+1\}$, let $\tilde{U}_i := \{\vec{x} \in \mathbb{R}^{n+1} : x_i \neq 0\}$. Let $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the quotient map and $U_i := \pi\left(\tilde{U}_i\right)$. Since \tilde{U}_i is saturated and open, we know that $\pi \upharpoonright_{\tilde{U}_i}$ is a quotient map. Define $f_i : U_i \to \mathbb{R}^n$ by

$$[x_1, \dots, x_{n+1}] \mapsto \left(\frac{x_1}{x_i}, \dots, \frac{x^{i-1}}{x_i}, \frac{x^{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right),$$

whose inverse if given by $(x_1, \ldots, x_n) \mapsto [x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots x_n]$. Since $f_i \circ \pi$ is continuous, so is f_i . Hence f_i is a homeomorphism. It's easy to check that each transition $f_i \circ f_j^{-1}$ is smooth. Thus, (U_i, f_i) defines a smooth atlas on \mathbb{RP}^n .

Exercise 1.2.6. Show that \mathbb{RP}^n is second countable and Hausdorff.

Proof. Recall that $\mathbb{S}^n/\sim \cong \mathbb{RP}^n$ where $x \sim y$ if y = -x. Thus it suffices to show these properties are true of $P^n := \mathbb{S}^n/\sim$.

To this end, let $\mathcal{B} := \{V_n\}$ denote the usual countable basis of \mathbb{S}^n inherited from \mathbb{R}^{n+1} . If $p \in U \subset P^n$ is open, then $\pi^{-1}(U)$ is a neighborhood of $\pi^{-1}(p)$, which equals $\{a, -a\}$ for some point a on the sphere. There exist $q \in \mathbb{Q}$ and $r \in \mathbb{Q}^{n+1}$ such that $\mathcal{B} \ni B_q(r) \cap \mathbb{S}^n \ni a$. In this case, $\mathcal{B} \ni B_q(-r) \cap \mathbb{S}^n \ni -a$. Note that the union of these two balls is contained in $\pi^{-1}(U)$ and is saturated, hence is mapped to a neighborhood $N \subset U$ of p. Thus $\{\pi(V_n)\}_{n \in \mathbb{N}}$ is a countable basis of P^n .

Proving that \mathbb{RP}^n is Hausdorff is quite similar.

Example 1.2.7 (Product manifold). Let $M_1 \times \cdots \times M_k$ be a product of n_i -dimensional smooth manifolds. Then this is a smooth manifold of dimension $n_1 + \cdots + n_k$.

Lemma 1.2.8 (Smooth manifold construction). Let M be a set and let $\{U_{\alpha}\}$ be a collection of subsets equipped with injections $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ such that

¹Munkres, James. *Topology*. Theorem 22.1.

²Ibid. Theorem 22.2.

- (i) countably many U_{α} cover M,
- (ii) each $\varphi_{\alpha}(U_{\alpha})$ is open,
- (iii) any set of the form $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ or $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is open,
- (iv) if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is smooth, and
- (v) if $p, q \in M$ with $p \neq q$, then either both are in U_{α} for some α or they can be separated by sets in $\{U_{\alpha}\}$. Then M has a unique smooth manifold structure with $(U_{\alpha}, \varphi_{\alpha})$ as charts.

Notation. The expression M^n means that M is an n-dimensional manifold.

Definition 1.2.9. If $f: M^n \to \mathbb{R}$ is a function with M smooth, we say that f is differentiable at p if there is some chart $(U_\alpha, \varphi_\alpha)$ such that the coordinate representation $f \circ \varphi_\alpha^{-1} : \varphi(U_\alpha) \to \mathbb{R}$ is differentiable at p.

We must ensure that Definition 1.2.9 is coordinate-independent.

Lemma 1.2.10. If $f \circ \varphi^{-1}$ is differentiable at $\varphi(p)$ and $\psi : V \to \mathbb{R}^n$ is another coordinate neighborhood of $p \in M^n$, then $f \circ \psi^{-1} : \varphi(V) \to \mathbb{R}$ is also differentiable at $\varphi(p)$.

Proof. This holds because

commutes.

2 Smooth maps

2.1 Lecture 3

Definition 2.1.1. Let M^n and N^k be smooth manifolds. We say that $F: M \to N$ is smooth at $p \in M$ if there are charts $(V, \varphi) \ni p$ and $(V', \psi) \ni F(p)$ with $F(V) \subset V'$ such that the coordinate representation $\psi \circ F \circ \varphi^{-1}$ is smooth.

$$V \xrightarrow{F} V'$$

$$\varphi \downarrow \qquad \qquad \downarrow \psi$$

$$\varphi(V) \xrightarrow{\psi \circ F \circ \varphi^{-1}} \psi(V')$$

This definition is independent of coordinates. Indeed, if $(U, \bar{\varphi})$ and $(U', \bar{\psi})$ are other charts around p and F(p), respectively, then

$$\bar{\psi} \circ F \circ \varphi^{-1} = (\bar{\psi} \circ \psi^{-1}) \circ (\psi \circ F \circ \varphi^{-1})$$
$$\psi \circ F \circ \bar{\varphi}^{-1} = (\psi \circ F \circ \varphi^{-1}) \circ (\varphi \circ \bar{\varphi}^{-1}),$$

which are smooth as composites of smooth maps.

Lemma 2.1.2. Smoothness implies continuity.

Proof. Using notation as in Definition 2.1.1, we see that for each $p \in M$, there is a neighborhood V of p such that $F \upharpoonright_V = \psi^{-1} \circ \psi \circ F \circ \varphi^{-1} \circ \varphi$ is a composite of continuous maps (as we know smoothness implies continuity for maps between Euclidean spaces) and thus itself continuous. We can glue these restrictions together to conclude that F is continuous.

Note 2.1.3. Being smooth is a local property of maps.

- 1. Given $F: M \to N$, if every $p \in M$ has a neighborhood U_p so that $F \upharpoonright_{U_p}$ is smooth, then F is smooth.
- 2. Conversely, the restriction of any smooth map to an open subset is smooth.

Example 2.1.4. The natural projection $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is smooth. Let $v \in (\mathbb{R}^{n+1} \setminus \{0\}, \mathrm{id})$. Let $(U_i, \varphi_i) \in A_n$ be a neighborhood of $\pi(p)$. Since π is continuous, $S := \pi^{-1}(U_i) \cap (\mathbb{R}^{n+1} \setminus \{0\})$ is a neighborhood of v. Further, $\varphi_i \circ \pi \circ \mathrm{id} : S \to \varphi_i(U_i)$ is given by $x \mapsto \frac{(x_1, \dots, \hat{x}_i, \dots, x_{n+1})}{x_i}$, which is smooth.

Definition 2.1.5. A smooth map with a smooth inverse is a diffeomorphism.

This defines an equivalence relation \approx between smooth manifolds. Thanks to Lemma 2.1.2, any diffeomorphism is a homeomorphism, which gives us the following result.

Theorem 2.1.6. If $M^n \approx N^k$, then n = k.

Example 2.1.7.

- 1. $(\mathbb{R}, \mathrm{id}) \approx (\mathbb{R}, x \mapsto x^{\frac{1}{3}})$ via the mapping $x \mapsto x^3$.
- 2. $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{\sqrt{1-|x|^2}}$ is a diffeomorphism with inverse $G(y) = \frac{y}{\sqrt{1+|y|^2}}$.
- 3. $\mathbb{S}^n/_{\sim} \approx \mathbb{RP}^n$.
- 4. If M is a smooth manifold and (U,φ) is a chart, then $\varphi:U\to\varphi(U)$ is a diffeomorphism.

At this point, we want to develop tools with which we can glue together already locally defined smooth functions $U_{\alpha} \to \mathbb{R}$ to obtain a globally defined smooth function $M \to \mathbb{R}$.

Definition 2.1.8. If M is any space and $f: M \to \mathbb{R}^n$ is continuous, then the support of f is

$$\operatorname{supp} f := \operatorname{cl} \left(\left\{ x \in M : f(x) \neq 0 \right\} \right).$$

Lemma 2.1.9. Given any $0 < r_1 < r_2$, there is some smooth function $H : \mathbb{R}^n \to \mathbb{R}$ such that

- $H=1 \ on \ \bar{B}_{r_1}(0),$
- 0 < H < 1 on $B_{r_2}(0) \setminus \bar{B}_{r_1}(0)$, and
- H = 1 elsewhere.

Proof. We construct such an H. First recall that $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(t) = \begin{cases} e^{-\frac{1}{t}} & t > 0\\ 0 & \text{otherwise} \end{cases}$$

is smooth. Now define $h: \mathbb{R} \to \mathbb{R}$ by $h(t) = \frac{f(r_2 - t)}{f(r_2 - t) + f(t - r_1)}$. Finally, define $H: \mathbb{R}^n \to \mathbb{R}$ by H(x) = h(|x|).

2.2 Lecture 4

Definition 2.2.1. Let \mathcal{U} and \mathcal{V} be open covers of a space X.

- 1. V is a refinement of U if for every $V \in V$, there is some $U \in U$ such that $V \subset U$.
- 2. \mathcal{U} is locally finite if each $x \in X$ has some neighborhood that intersects only finitely many $U \in \mathcal{U}$.
- 3. X is paracompact if every open cover of X admits a locally finite refinement.

We are now ready to define our main tool for patching together local functions to obtain a global one.

Definition 2.2.2. Let M be a space and $\mathcal{X} := (X_{\alpha})_{\alpha \in A}$ be an open cover. A partition of unity subordinate to \mathcal{X} is a family $(\psi_{\alpha})_{\alpha \in A}$ of continuous functions $\psi_{\alpha} : M \to \mathbb{R}$ with the following properties.

- (a) $0 \le \psi_{\alpha}(x) \le 1$ for each α and x.
- (b) supp $\psi_{\alpha} \subset X_{\alpha}$ for each α .
- (c) The family (supp ψ_{α}) is locally finite, in the sense that every point $p \in M$ has a neighborhood V_p such that $V_p \cap \text{supp } \psi_{\alpha} \neq \emptyset$ for at most finitely many α . In particular, M is paracompact.
- (d) $\sum_{\alpha \in A} \psi_{\alpha}(x) \equiv \sup \left\{ \sum_{\alpha \in F} \psi(x) : F_{\text{finite}} \subset A \right\} = 1 \text{ for each } x.$

Lemma 2.2.3. Every topological manifold M is paracompact.

Before proving this, let us recall that a subspace is *precompact* if its closure is compact.

Proof. Since M has a countable atlas, it has a countable basis $\{B_n\}$ of precompact coordinate balls. (The continuous image of a precompact set into a Hausdorff space is also precompact.)

Step 1: By induction, we can build a countable covering $\{U_n\}$ of precompact sets such that $\operatorname{cl}(U_{n-1}) \subset U_n$ and $B_n \subset U_n$ for each n.

Step 2: We build a countable locally finite open cover $\{V_n\}$. Let

$$V_n = \begin{cases} \operatorname{cl}(U_n) \setminus U_{n-2} & n > 2 \\ V_n = U_n & \text{otherwise} \end{cases}.$$

Note that every V_n intersects only finitely many other V_i , hence $\{V_n\}$ is locally finite.

Step 3: Let $\{X_{\alpha}\}$ be any open cover. For any $p \in M$, there is some α with $p \in X_{\alpha}$ as well as some neighborhood W_p that intersects V_j for only finitely many $j \in \mathbb{N}$. Set $\widetilde{W}_p = W_p \cap X_{\alpha}$. Then the \widetilde{W}_p cover M. Since each V_j is precompact by construction, we know that V_j has a finite subcover $\widetilde{W}_{p_{j_{k_1}}}, \ldots, \widetilde{W}_{p_{j_{k_j}}}$. Then

$$V_j = \left(V_j \cap \widetilde{W}_{p_{j_{k_1}}}\right) \cup \cdots \cup \left(V_j \cap \widetilde{W}_{p_{j_{k_i}}}\right),$$

and thus $\left\{\left(V_j\cap \widetilde{W}_{p_{j_{k_1}}}\right),\ldots,\left(V_j\cap \widetilde{W}_{p_{j_{k_j}}}\right)\right\}_{j\in\mathbb{N}}$ is a locally finite refinement of $\{X_\alpha\}$, as desired. \square

Remark 2.2.4. If X is connected, then X is paracompact if and only if it is second-countable.

Theorem 2.2.5 (Existence of partition of unity). If M is a smooth manifold, then any open cover $\mathcal{X} := \{X_{\alpha}\}_{{\alpha} \in A}$ of M admits a partition of unity.

Proof. For each $\alpha \in A$, we can find a countable basis \mathcal{C}_{α} of precompact coordinate balls centered at 0 for X_{α} . Then $\mathcal{C} := \bigcup_{\alpha} \mathcal{C}_{\alpha}$ is a basis for M. Since M is paracompact, \mathcal{X} admits a locally finite refinement $\{C_i\}_{i\in\mathbb{I}}$ consisting of elements of \mathcal{C} . Note that the cover $\{\operatorname{cl}(B_i)\}$ is also locally finite. There are coordinate balls $C'_i \subset X_{\alpha_i}$ such that $C'_i \supset \operatorname{cl}(C_i)$. For each $i \in \mathbb{I}$, let $\varphi_i : C'_i \to \mathbb{R}^n$ be a smooth coordinate map so that $\varphi_i(C'_i) \supset \varphi(C_i)$ and $\varphi(\operatorname{cl}(C_i)) = \operatorname{cl}(\varphi(C_i))$. Define $f_i : M \to \mathbb{R}$ by

$$f_i(x) = \begin{cases} H_i \circ \varphi_i & x \in C_i' \\ 0 & x \in M \setminus \operatorname{cl}(C_i) \end{cases}$$

where $H_i: \mathbb{R}^n \to \mathbb{R}$ is as in Lemma 2.1.9: a smooth function that is positive on $\varphi_i(C_i)$ and zero elsewhere. Note that f_i is well-defined because $f_i = 0$ on $C'_i \setminus \operatorname{cl}(C_i)$. Also, it is smooth by the point-set gluing lemma for open sets.

Define $f: M \to \mathbb{R}$ by $f(x) = \sum_i f_i(x)$, which is a finite sum and hence well-defined. We see that f is a smooth function and that f(x) > 0 for each $x \in M$. Then $g_i(x) \equiv \frac{f_i(x)}{f(x)}$ defines a smooth function $M \to \mathbb{R}$ for each i, so that $\sum_i g_i(x) = 1$ and $0 \le g_i(x) \le 1$ for each $x \in M$. Note that $\sup(g_i) = \operatorname{cl}(C_i)$.

For each $\alpha \in A$, define $\psi_{\alpha} : M \to \mathbb{R}$ by

$$\psi_{\alpha}(x) = \sum_{\substack{i \\ \alpha_i = \alpha}} g_i(x).$$

Interpret this as the zero function when there are no i such that $\alpha_i = \alpha$. Note that each ψ_{α} is smooth as a finite sum of smooth functions and satisfies $0 \le \psi_{\alpha} \le 1$. Moreover, we have that

$$\operatorname{supp}(\psi_{\alpha}) = \operatorname{cl}\left(\bigcup_{\substack{i \\ \alpha_i = \alpha}} C_i\right) = \bigcup_{\substack{i \\ \alpha_i = \alpha}} \operatorname{cl}(C_i).$$

Since $\{\operatorname{cl}(C_i)\}$ is locally finite, so is $\{\operatorname{supp}(\psi_\alpha)\}_{\alpha\in A}$. Finally, the fact that $\alpha_i\in A$ implies that

$$\sum_{\alpha} \psi_{\alpha}(x) = \sum_{i} g_{i}(x) = 1$$

for each $x \in M$. Therefore, we may take $\{\psi_{\alpha}\}$ as our desired partition of unity.

Corollary 2.2.6 (Bump function). If $A \subset U \subset M$ with A closed and U open in M, then there is a smooth function $f: M \to \mathbb{R}$ such that f(x) = 1 for each $x \in A$ and f(x) = 0 outside a neighborhood of A.

Proof. Since $\{U, M \setminus A\}$ is an open cover of M, there is a partition of unity φ_1, φ_2 such that supp $\varphi_1 \subset U$, supp $\varphi_2 \subset M \setminus A$, and $\varphi_1 + \varphi_2 = 1$. Hence $\varphi_1 \upharpoonright_A = 1 - 0 = 1$, and $\varphi_1 \upharpoonright_{M \setminus U} = 0$.

2.3 Lecture 5

Corollary 2.3.1 (Whitney). Let M be a smooth manifold and $K \subset M$ be closed. Then there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = K$.

This means that closed subsets of smooth manifolds are completely characterized as the 0-level sets of smooth maps. Being the 0-level set of analytic maps, such as polynomials, is much more special. Any object with such a property is called an *analytic submanifold* and is studied in algebraic geometry.

Proof. First assume that $M = \mathbb{R}^n$. We have that $M \setminus K$ is open, which is thus the union of countably many balls $B_{r_i}(x_i)$ with $r_i \leq 1$. Construct, as in Lemma 2.1.9, a smooth bump function $h : \mathbb{R}^n \to \mathbb{R}$ such that h(x) = 1 on $\bar{B}_{\frac{1}{2}}(0)$ and h is supported in $B_1(0)$. By our construction of h, we can verify that for each $i \in \mathbb{N}$, there is some $C_i \geq 1$ that bounds any of the partials of h up through order i.

Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$\sum_{i=1}^{\infty} \frac{r_i^i}{2^i C_i} h\left(\frac{x - x_i}{r_i}\right).$$

Each *i*-th term is bounded by $\frac{1}{2^i}$. Thanks to the Weierstrass M-test, f is well-defined and continuous. Since h is zero outside $B_1(0)$, we see that $f^{-1}(0) = K$.

To see that f is smooth, assume by induction that f is C^{k-1} for a given $k \geq 1$. By the chain rule and induction, we can write any k-th partial D_k of the i-th term of the series defining f as $\frac{(r_i)^{i-k}}{2^iC_i}D_kh(\frac{x-x_i}{r_i})$. As h is smooth, this expression is C^1 . And since $r_i \leq 1$ and C_i bounds all partials up to order i, it is eventually bounded by $\frac{1}{2^i}$. Hence the series of these expressions converges uniformly to a continuous function. By Theorem C.31 (Lee), it follows that $D_k f$ exists and is continuous, thereby completing our induction.

Now, assume that M is arbitrary. Find a cover (B_{α}) of smooth coordinate balls for M. Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to this cover. Note that each B_{α} is diffeomorphic to \mathbb{R}^n . Since the property of admitting a non-negative smooth function $f: M \to \mathbb{R}$ with $f^{-1}(0) = K$ can be stated in the language of smooth manifolds, it is invariant under diffeomorphism. Thus, there is some non-negative smooth function $f_{\alpha}: B_{\alpha} \to \mathbb{R}$ where $f^{-1}(0) = K \cap B_{\alpha}$ for each α . Then it's straightforward to check that $g \equiv \sum_{\alpha} \varphi_{\alpha} f_{\alpha}$ is as desired.

Corollary 2.3.2. Let M be a smooth manifold and $K \subset M$ be closed. Let c > 0. Then there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(c) = K$.

Exercise 2.3.3. Prove that the restriction of a smooth map on \mathbb{R}^{n+1} to \mathbb{S}^n is smooth.

3 Tangent vectors

3.1 Lecture 6

We can view the tangent space $T_p\mathbb{S}^n$ of \mathbb{S}^n at a point p as all of the directions from p with respect to which you can find the rate of change of a smooth map f provided that you're only allowed to roam through \mathbb{S}^n . We want to generalize our notion of a tangent space to arbitrary manifolds in order to do first-order calculus on them.

Notation. We shall denote the space of smooth functions $M \to \mathbb{R}$ by $C^{\infty}(M)$.

Definition 3.1.1. Given $a \in \mathbb{R}^n$, a map $\omega : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is called a *derivation at a* if it

(i) is linear over \mathbb{R} and

(ii) satisfies the *Leibniz rule*:

$$\omega(fg) = f(a)\omega(g) + g(a)\omega(f)$$

for any $f, g \in C^{\infty}(\mathbb{R}^n)$.

Let $T_a\mathbb{R}^n$ denote the vector space of derivations at a.

Note 3.1.2. If f is constant, then $\omega f = 0$ for any derivation ω .

Example 3.1.3. For any $u \in \mathbb{R}^n$, recall that the directional derivative of $f \in C^{\infty}(\mathbb{R}^n)$ in the direction u at a is

$$D_u f(a) \equiv \lim_{h \to 0} \frac{1}{h} (f(a+hu) - f(a)) = \frac{d}{dh} \Big|_{h=0} f(a+hu).$$

Then this is a derivation of f at a.

Notation. For any $a \in \mathbb{R}^n$, let \mathbb{R}^n_a denote the (real) vector space $\{(a, v) \mid v \in \mathbb{R}^n\}$.

Theorem 3.1.4. For each $a \in \mathbb{R}^n$, define $L_a : \mathbb{R}^n_a \to T_a \mathbb{R}^n$ by $v_a \mapsto D_v|_a$. This is an isomorphism.

Proof. It is clear that L_a is linear. It remains to show that it is both injective and surjective.

Suppose that $u, v \in \mathbb{R}_a^n$ and $L_a(u) = L_a(v)$. Then by linearity $L_a(u-v) = 0$, yielding

$$\frac{d}{dt}\big|_{t=0}f(a+t(u-v)) = 0$$

for any smooth function f. But if $u - v \neq 0$, then this says that for any f, the directional derivative of f at a in the direction of a certain nonzero vector vanishes, which is clearly false. Hence u = v, and L_a is injective.

Next, suppose that $\omega \in T_a \mathbb{R}^n$ and consider the coordinate projection $x^i : \mathbb{R}^n \to \mathbb{R}$ for each i = 1, ..., n. Set $v_i = \omega(x^i)$ and write $v = v_i e_i$. We claim that $L_a(v) = D_v \big|_a = \omega$. By Taylor's theorem, any $f \in C^{\infty}(\mathbb{R}^n)$ has an expansion

$$f(x) = f(a) + \sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) + c \sum_{i,j=1}^{n} (x_i - a_i)(x_j - a_j) \int_0^1 (1 - t) \frac{\partial^2 f}{\partial x_i \partial x_j} (a + t(x - a)) dt$$

for some c > 0. Each term of the second sum is the product of two smooth functions vanishing at a. We can apply the product rule along with linearity of ω to conclude that

$$\omega f = \omega \left(\sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) \right)$$

$$= \sum_{i=1}^{n} \omega (f_{x_i}(a)(x_i - a_i))$$

$$= \sum_{i=1}^{n} f_{x_i}(a)(\omega(x_i) - \omega(a_i))$$

$$= \sum_{i=1}^{n} f_{x_i}(a)v_i$$

$$= D_v|_{a} f.$$

Corollary 3.1.5. We have $\dim(T_a\mathbb{R}^n) = n$, and the partial derivatives $\left\{\frac{\partial}{\partial x_i}\Big|_a\right\}_{1 \leq i \leq n}$ form a basis of $T_a\mathbb{R}^n$.

Definition 3.1.6. Let M be a smooth manifold and let $p \in M$.

1. An \mathbb{R} -linear map $v: C^{\infty}(M) \to \mathbb{R}$ is called a derivation at p if

$$v(fg) = f(p)v(g) + v(f)g(p)$$

for any f and g.

2. The tangent space of M at p is the vector space

$$T_pM \equiv \{\omega : C^{\infty}(M) \to \mathbb{R} : \omega \text{ is a derivation of } M \text{ at } p\}.$$

Any element of this space is called a *tangent vector*.

Definition 3.1.7 (Differential of a smooth map). Given smooth manifolds M and N, a smooth map $F: M \to N$, and $p \in M$, we define the differential of F at p as the map $dF_p: T_pM \to T_{F(p)}N$ given by

$$dF_p(v)(f) = v(f \circ F).$$

Terminology. We call $dF_p(v)$ the pushforward of v by dF.

Proposition 3.1.8. Let M, N, and P be smooth manifolds, $F: M \to N$ and $G: N \to P$ be smooth maps, and $p \in M$.

- 1. $dF_p: T_pM \to T_{F(p)}N$ is linear.
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{G(F(p))}P$.
- 3. $d(\mathrm{id}_M)_n = \mathrm{id} : T_n M \to T_n M$.
- 4. If F is a diffeomorphism, then dF_p is an isomorphism with inverse $d(F^{-1})_{F(p)}$.

Aside. This shows that mapping (M, p) to T_pM and $F: (M, p) \to (N, F(p))$ to dF_p defines a functor from \mathbf{Diff}_* to $\mathbf{Vec}_{\mathbb{R}}$, known as the tangent space functor.

Lemma 3.1.9. Let $v \in T_pM$ and $f, g \in C^{\infty}(M)$. Then if f and g agree on a neighborhood N_p of p, then vg = vf.

Proof. Set h = f - g, so that h vanishes on N_p . We can find a smooth bump function $\varphi : M \to \mathbb{R}$ such that $\varphi \equiv 1$ on $\operatorname{supp}(h)$ and $\operatorname{supp}(\varphi) \subset M \setminus \{p\}$. Then $\varphi h(x) = h(x)$ for any $x \in M$. Since both φ and h vanish at p, it follows that $vf - vg = vh = v(\varphi h) = 0$.

Proposition 3.1.10. If M is an n-dimensional smooth manifold, then $\dim(T_pM) = n$ for every $p \in M$.

In particular, we identify the standard basis $\{e_1,\ldots,e_n\}$ for \mathbb{R}^n by $e_i\leftrightarrow \left(0,\ldots,0,\frac{\partial}{\partial x_i}\big|_p,0\ldots,0\right)$.

3.2 Lecture 7

Given a point $p \in M$, find a chart $(U, \varphi) \ni p$. Then $d\varphi_p : T_pM \cong T_pU \to T_{\varphi(p)}\varphi(U) \cong T_p\mathbb{R}^n$ is an isomorphism. This choice of chart yields a natural choice of basis for T_pM :

$$\left\{ \frac{\partial}{\partial x_i} \Big|_p \right\}_{1 \le i \le n}$$

where

$$\frac{\partial}{\partial x_i}\big|_p \coloneqq (d\varphi_p)^{-1} \left(\frac{\partial}{\partial x_i}\big|_{\varphi(p)}\right) = \left(d\varphi^{-1}\right)_{\varphi(p)} \left(\frac{\partial}{\partial x_i}\big|_{\varphi(p)}\right). \tag{*}$$

Let $F: M \to N$ be smooth with $M \subset \mathbb{R}^n$ and $N \subset \mathbb{R}^m$ open. Then by the chain rule we get

$$dF_{p}\left(\frac{\partial}{\partial x_{i}}\Big|_{p}\right)f = \frac{\partial}{\partial x_{i}}\Big|_{p}(f \circ F)$$

$$= \frac{\partial}{\partial x_{i}}\Big|_{p}(f(F_{1}, \dots, F_{m}))$$

$$= \sum_{j=1}^{m} \frac{\partial f}{\partial F_{j}}(F(p))\frac{\partial F_{j}}{\partial x_{i}}(p)$$

$$= \sum_{j=1}^{m} \frac{\partial F_{j}}{\partial x_{i}}(p)\left(\frac{\partial}{\partial y_{j}}\Big|_{F(p)}\right)f.$$

Therefore, dF_p can be represented by the familiar $m \times n$ Jacobian matrix of F at p,

$$DF(p) := \begin{bmatrix} \vdots & & \vdots \\ \frac{\partial F_j}{\partial x_1}(p) & \cdots & \frac{\partial F_j}{\partial x_n}(p) \\ \vdots & & \vdots \end{bmatrix},$$

which acts on $\mathbb{R}^n \cong T_pM$.

Now consider the general case $F:M\to N$ smooth between manifolds. For any $p\in M$, choose charts $(U,\varphi)\ni p$ and $(V,\psi)\ni F(p)$. Then the Euclidean map $\widehat{F}:=\psi\circ F\circ \varphi^{-1}:\varphi(F^{-1}(V)\cap U)\to \psi(V)$ is smooth. If $\widehat{p}:=\varphi(p)$, it follows from (*) that $d\widehat{F}_{\widehat{p}}$ is represented by the Jacobian of \widehat{F} at \widehat{p} . Noting that $F\circ \varphi^{-1}=\psi^{-1}\circ \widehat{F}$, we compute

$$dF_{p}\left(\frac{\partial}{\partial x_{i}}\big|_{p}\right) = dF_{p}\left(d(\varphi^{-1})\big|_{\hat{p}}\left(\frac{\partial}{\partial x_{i}}\big|_{\hat{p}}\right)\right)$$

$$= d(\psi^{-1})\big|_{\widehat{F}(\hat{p})}\left(d\widehat{F}\big|_{\hat{p}}\left(\frac{\partial}{\partial x_{i}}\big|_{\hat{p}}\right)\right)$$

$$= d(\psi^{-1})\big|_{\widehat{F}(\hat{p})}\left(\sum_{j=1}^{m} \frac{\partial \widehat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}\big|_{\widehat{F}(\hat{p})}\right)$$

$$= \sum_{j=1}^{m} \frac{\partial \widehat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}\big|_{F(p)}.$$

Therefore, dF_p can be represented by the Jacobian matrix of \hat{F} at \hat{p} .

Given any two pairs of coordinates for p and F(p), the respective Jacobian matrices are related by the familiar change-of-basis matrix. In particular, they are similar.

Given a smooth manifold M, we define a notion of a smoothly varying tangent space as follows.

Definition 3.2.1. The tangent bundle of M is the set

$$TM \equiv \coprod_{p \in M} T_p M$$

endowed with a certain natural topology induced by the projection $\pi: TM \to M$, $(\varphi, p) \mapsto p$.

Example 3.2.2. As \mathbb{R}^n_a is canonically isomorphic to \mathbb{R}^n , we have $T\mathbb{R}^n \cong \coprod_{a \in \mathbb{R}^n} \{a\} \times \mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n$.

3.3 Lecture 8

Lemma 3.3.1. For any smooth n-dimensional manifold M, the tangent bundle TM has a natural topology and smooth structure such that

- TM is a 2n-dimensional smooth manifold and
- the projection $\pi: TM \to M$ is smooth.

Proof. Given a chart (U, φ) , define $\tilde{\varphi} : \pi^{-1}(U) \to \mathbb{R}^n$ by

$$v_i \frac{\partial}{\partial x_i} \Big|_p \mapsto \left(x^1(p), \dots, x^n(p), v_1, \dots, v_n\right)$$

where $\varphi = (x^1, \ldots, x^n)$. This is continuous with $\operatorname{Im} \tilde{\varphi} = \varphi(U) \times \mathbb{R}^n$, which is open. Further, $\tilde{\varphi}^{-1}$ is given by $(x_1, \ldots, x_n, v_1, \ldots, v_n) \mapsto v_i \frac{\partial}{\partial x_i} \big|_{\varphi^{-1}(x)}$ on $\varphi(U) \times \mathbb{R}^n$. Take $\{(\pi^{-1}(U), \tilde{\varphi})\}$ to be charts on TM. Given two such charts $(\pi^{-1}(U), \tilde{\varphi})$ and $(\pi^{-1}(V), \tilde{\psi})$, it's straightforward to check that $\tilde{\psi} \circ \tilde{\varphi}^{-1} : \varphi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is smooth.

Next, notice that if we take a countable cover $\{U_i\}$ of M by smooth coordinate domains, then $\{\pi^{-1}(U_i)\}$ satisfies the conditions of Lemma 1.2.8.

Finally, to see that $\pi:TM\to M$ is smooth, notice that its coordinate representation at every point is given by the projection $\pi:\mathbb{R}^{2n}\to\mathbb{R}^n$, $(x,v)\mapsto x$.

Terminology. We call the $\tilde{\varphi}((f,p))$ the natural coordinates on TM.

Given $F: M \to N$ is smooth, define the global differential $dF: TM \to TN$ of F by $dF(\varphi, p) = dF_p(\varphi)$.

Proposition 3.3.2. The global differential $dF:TM \to TN$ is smooth.

Aside. This shows that mapping M to TM and F to dF defines a functor from **Diff** to itself, known as the tangent functor.

Note 3.3.3. If F is a diffeomorphism, then so is dF with $d(F^{-1}) = (df)^{-1}$.

Definition 3.3.4. Given a smooth curve $\gamma: J \to M$ and $t_0 \in J$, the velocity of γ at t_0 is

$$\gamma'(t_0) \equiv d\gamma \left(\frac{d}{dt}\big|_{t_0}\right) \in T_{\gamma(t_0)}M.$$

³The expression $v_i \frac{\partial}{\partial x_i}|_p$ is secretly a summation, in accordance with the Einstein summation convention.

Note 3.3.5. Let $(U,\varphi) \ni \gamma(t_0)$ be a chart on M. Then $\gamma'(t_0) = \frac{d\gamma^i}{dt} \frac{\partial}{\partial x_i} \Big|_{\gamma(t_0)}$.

Lemma 3.3.6. Every $v \in T_pM$ is the velocity of some smooth curve $\gamma: J \to M$ at 0 such that $\gamma(0) = p$.

Proof. Let (U, φ) be a chart centered at p. Write $v = v_i \frac{\partial}{\partial x_i} \Big|_p$. For any $\epsilon > 0$ small, define $\gamma : (-\epsilon, \epsilon) \to U$ by $\gamma(t) = \varphi^{-1}(tv_1, \dots, tv_n)$. Note 3.3.5 implies that $\gamma'(0) = v$.

Proposition 3.3.7. Let $v \in T_pM$. Then $dF_p(v) = (F \circ \gamma)'(0)$ for any smooth map $\gamma : J \to M$ satisfying $\gamma(0) = p$ and $\gamma'(0) = v$.

Aside. A smooth function element on M is a pair (f,U) with $U \subset M$ open and $f:M \to \mathbb{R}$ smooth. Say that $(f,U) \sim (g,V)$ if $p \in U \cap V$ and f=g on some neighborhood of p. The equivalence class $[f]_p := [(f,U)]$ is called the *germ of* f at p. The set of such classes is denoted by $C_p^{\infty}(M)$. This is an associative algebra over \mathbb{R} .

Define a derivation of $C_p^{\infty}(M)$ as a linear map $v: C_p^{\infty}(M) \to \mathbb{R}$ satisfying $v[fg]_p = f(p)v[g]_p + g(p)v[f]_p$. The tangent space $\mathcal{D}_p M$ of such derivations serves as an equivalent (in the sense of isomorphism) definition of the tangent space of M at p.

3.4 Lecture 9

Theorem 3.4.1 (Inverse function). If $F: M \to N$ is smooth and dF_p is invertible, then there are connected neighborhoods U_0 of p and V_0 of F(p) such that $F \upharpoonright_{U_0} : U_0 \to V_0$ is a diffeomorphism.

Proof. Notice that M and N have equal dimension (say n) because dF_p is invertible. Choose charts (U, f) centered at p and (V, g) centered at F(p) such that $F(U) \subset V$. Then $\widehat{F} := g \circ F \circ f^{-1}$ is smooth map from $f(U) \subset \mathbb{R}^n$ to $g(V) \subset \mathbb{R}^n$ with $\widehat{F}(0) = 0$. Now $d\widehat{F}_0$ is invertible as the composite of three invertible maps. The inverse function theorem for Euclidean space implies that there are open balls $B_r(0)$ and $B_s(0)$ such that $\widehat{F}: B_r(0) \to B_s(0)$ is a diffeomorphism. Thus, we can take $F: f^{-1}(B_r(0)) \to g^{-1}(B_s(0))$ as our desired diffeomorphism .

Corollary 3.4.2. If dF_p is nonsingular at each $p \in M$, then F is a local diffeomorphism.

Proposition 3.4.3.

- 1. The finite product of local diffeomorphisms is a local diffeomorphism.
- 2. The composite of two local diffeomorphisms is a local diffeomorphism.
- 3. Any bijective local diffeomorphism is a diffeomorphism.
- 4. A map F is a local diffeomorphism if and only if each point in dom(F) has a neighborhood where F's coordinate representation is a local diffeomorphism.

Definition 3.4.4. The rank of a smooth map F at a point p is the rank of dF_p . If the rank of F is the same at each point, then we say F has constant rank.

Theorem 3.4.5 (Constant rank). Let $F: M^m \to N^n$ be smooth with constant rank $r \leq m, n$. Then for each $p \in M$, there are charts (U, f) centered at p and (V, g) centered at F(p) such that $F(U) \subset V$ and the coordinate representation of F is given by

$$\widehat{F}(x_1, \dots, x_r, x_{r+1}, \dots x_m) = (x_1, \dots, x_r, 0, \dots, 0).$$

Before proving this, we should mention a couple of things:

- If m = n = r, then this follows immediately from the inverse function theorem.
- The global condition on the rank of F cannot be weakened, as the space of $n \times m$ matrices of rank r need not be open. For example, consider the map $A(t) \equiv \begin{bmatrix} 1 & t \\ 1 & 1 \end{bmatrix}$, which has rank 2 when $t \neq 1$ and rank 1 otherwise.

Proof. Since our statement is local, we may assume that $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ are open subsets. Since DF(p) has rank r, it has some invertible $r \times r$ sub-matrix, which we may assume is the upper left sub-matrix $\left(\frac{\partial F^i}{\partial x^j}\right)_{i,j\in[r]}$. Write $(x,y)=\left(x^1,\ldots,x^r,y^1,\ldots,y^{m-r}\right)$ and $(v,w)=\left(v^1,\ldots,v^r,w^1,\ldots,w^{n-r}\right)$ for the standard coordinates on \mathbb{R}^m and \mathbb{R}^n , respectively. By applying suitable translations, we may assume that p=(0,0) and F(p)=(0,0). We have F(x,y)=(Q(x,y),R(x,y)) for some smooth map $Q:M\to\mathbb{R}^r$ and $R:M\to\mathbb{R}^{n-r}$. Then the Jacobian matrix $\left(\frac{\partial Q^i}{\partial x^j}\right)$ is invertible at (0,0) by hypothesis.

Define $f: M \to \mathbb{R}^m$ by $(x,y) \mapsto (Q(x,y),y)$. Define the Kronecker delta symbol δ_i^j by

$$\delta_i^j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Then

$$D[f]\left(0,0\right)\begin{bmatrix}\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right) & \frac{\partial Q^{i}}{\partial y^{j}}\left(0,0\right)\\ 0 & \delta^{i}_{j}\end{bmatrix}.$$

Since

$$\det(D[f]\left(0,0\right)) = \det\left(\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right)\right) \cdot \det(\delta^{i}_{j}) = \det\left(\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right)\right) \neq 0,$$

it follows that D[f] is invertible at (0,0).

Thus, we can apply the inverse function theorem to get a connected open set $U_0 \ni (0,0)$ and an open cube $\widetilde{U}_0 \ni f(0,0) = (0,0)$ such that $f: U_0 \to \widetilde{U}_0$ is a diffeomorphism. Let $f^{-1}(x,y) = (A(x,y),B(x,y))$. Then (x,y) = f(A(x,y),B(x,y)) = (Q(A(x,y),B(x,y)),B(x,y)), so that y = B(x,y). Hence

$$f^{-1}(x,y) = (A(x,y),y).$$

Additionally, Q(A(x,y),y)=x since $f\circ f^{-1}=\mathrm{id}_{\widetilde{U}_0}.$ If $\widetilde{R}:\widetilde{U}_0\to\mathbb{R}^{n-r}$ is defined by $(x,y)\mapsto R(A(x,y),y),$ then

$$F \circ f^{-1}(x,y) = \left(x, \widetilde{R}(x,y)\right).$$

Therefore,

$$D[F \circ f^{-1}](x,y) = \begin{bmatrix} \delta^i_j & 0\\ \frac{\partial \widetilde{R}^i}{\partial x^j}(x,y) & \frac{\partial \widetilde{R}^i}{\partial y^j}(x,y) \end{bmatrix}$$

for any $(x,y) \in \widetilde{U}_0$. It's clear that the first r columns of this matrix are linearly independent. But since f^{-1} is a diffeomorphism, it has rank r on \widetilde{U}_0 . It follows that $\frac{\partial \widetilde{R}^i}{\partial y^j}(x,y) = 0$ for each $(x,y) \in \widetilde{U}_0$. But \widetilde{U}_0 was chosen to be an open cube, so that $\widetilde{R}(x,y) = \widetilde{R}(x,0)$. If $S(x) := \widetilde{R}(x,0)$, then $F \circ f^{-1}(x,y) = (x,S(x))$.

Now, let

$$V_0 = \{(v, w) \in N \mid (v, 0) \in \widetilde{U}_0\},\$$

which is a neighborhood of (0,0) in N. Since \widetilde{U}_0 is a cube, we see that $F \circ f^{-1}(\widetilde{U}_0) \subset V_0$. Hence $F(U_0) \subset V_0$. Define $g: V_0 \to \mathbb{R}^n$ by $(v, w) \mapsto (v, w - S(v))$, which is smooth with inverse $g^{-1}(s, t) = (s, t + S(s))$. Then

$$\widehat{F}(x,y) = g \circ F \circ f^{-1}(x,y) = (x, S(x) - S(x)) = (x,0),$$

as desired. \Box

3.5 Lecture 10

Definition 3.5.1. Consider a smooth map $F: M \to N$.

- 1. It is a (smooth) submersion if it has constant rank equal to $\dim(N)$.
- 2. It is a (smooth) immersion if it has constant rank equal to $\dim(M)$.

Definition 3.5.2. A topological embedding is a continuous map $F: M \to N$ which is a homeomorphism onto F(M).

Example 3.5.3.

- 1. The map $\gamma : \mathbb{R} \to \mathbb{R}^2$ defined by $t \mapsto (t^3, 0)$ is a smooth topological embedding but not an immersion, since $\gamma'(0) = 0$.
- 2. The curve $f:(-\pi,\pi)\to\mathbb{R}^2$ defined by $f(t)=(\sin 2t,\sin t)$ is known as a *lemniscate*, describing a figure-eight curve. This is not a topological embedding, because the figure-eight is compact whereas $(-\pi,\pi)$ is not. But it is a smooth immersion as f' never vanishes.

Definition 3.5.4. A map is a *smooth embedding* if it both a topological embedding and a smooth immersion.

Example 3.5.5.

- 1. There is a smooth embedding of \mathbb{RP}^2 into \mathbb{R}^4 but not into \mathbb{R}^3
- 2. If $U \subset M$ is open, then the inclusion $U \hookrightarrow M$ is a smooth embedding.

Definition 3.5.6. A manifold $S \subset M$ in the subspace topology is an *embedded submanifold* if it has a smooth structure such that the inclusion $S \hookrightarrow M$ is a smooth embedding.

Note 3.5.7. The image of a smooth embedding is an embedded submanifold.

Terminology. If $S \subset M$ is an embedded submanifold, then $\dim(M) - \dim(S)$ is called the *codimension of* S in M.

Proposition 3.5.8. Let $U \subset M^m$ be open and $f: U \to N$ be smooth. The graph $\Gamma(f)$ of f is an embedded m-dimensional submanifold of $M \times N$.

Proof. Define $\gamma_f(x): U \to M \times N$ by $\gamma_f(x) = (x, f(x))$. It's easy to check this is a smooth embedding. \square

Our next notion is a local version of the standard embedding $\mathbb{R}^k \hookrightarrow \mathbb{R}^n$ where $k \leq n$ but works for any submanifold.

Definition 3.5.9. We say that a subset $S \subset M$ has the *local k-slice condition* if for each $p \in S$, there is a chart $(U, \varphi) \ni p$ for M such that

$$\varphi(U \cap S) = \underbrace{\left\{ x \in \varphi(U) : x^{k+1} = \dots = x^n = 0 \right\}}_{k\text{-slice of } \varphi(U)}, \quad n \equiv \dim(M)$$

Figure 1: Copied from Lee (102) $k\text{-slice condition with }V\equiv U\cap S$

Theorem 3.5.10. Let M^n be a smooth manifold. Let $S \subset M$. If S is an embedded manifold with $\dim(S) = k$, then S has the local k-slice condition.

Conversely, if S has the local k-slice condition, then S is a smooth manifold in the subspace topology and has a smooth structure making it an embedded submanifold of dimension k.

Proof.

 (\Longrightarrow)

Let $p \in S$. In particular, the inclusion $i: S \hookrightarrow M$ is a smooth immersion and thus has constant rank k. By the constant rank theorem, we can find charts (U, φ) and (V, ψ) centered at p for S and M, respectively, for which i has coordinate representation

$$(x^1, \dots, x^k) \mapsto (x^1, \dots, x^k, 0, \dots, 0).$$

This means that i(U) is a k-slice for S in V. We have that $U = W \cap S$ for some open set W in M. Let $V' = W \cap V$, which is neighborhood of p in M. Then $(V', \psi \upharpoonright_{V'})$ is a chart on M such that $V' \cap S = i(U)$, so that V' is slice for S in M.

 (\Longleftrightarrow)

See Theorem 5.8 (Lee).

Example 3.5.11. For any n, $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ is an embedded hypersurface because it is locally the graph of smooth map and thus has the local n-slice condition.

Theorem 3.5.12. Let $F: M^m \to N^n$ be smooth with constant rank r. Each level set of F is an embedded submanifold of codimension r in M.

Proof. Set k = m - r. Let $c \in N$ and $p \in F^{-1}(c)$. By the constant rank theorem, there are charts (U, f) centered at p and (V, g) centered at F(p) = c for which F has coordinate representation given by

$$(x_1,\ldots,x_r,x_{r+1},\ldots,x_m) \mapsto (x_1,\ldots,x_r,0,\ldots,0)$$

which must send each point in $f(F^{-1}(c) \cap U)$ to 0. Thus, $f(F^{-1}(c) \cap U)$ equals the k-slice

$$\{x \in \mathbb{R}^m : x_1 = \dots = x_r = 0\}.$$

By Theorem 3.5.10, S is an embedded submanifold of dimension k.

3.6 Lecture 11

Question. Can M^n with $n \ge 1$ be homeo-/diffeomorphic to $M \setminus \{p\}$?

Remark 3.6.1. We can generalize Theorem 3.5.12 to maps that are not necessarily of constant rank.

Definition 3.6.2. Let $\varphi: M \to N$ be smooth. We say that $p \in M$ is

- a regular point of φ if $d\varphi_p$ is surjective and
- a critical point of φ otherwise.

Definition 3.6.3. Let $\varphi: M \to N$ be smooth. We say that $c \in N$ is

- a regular value of φ if each point in $\varphi^{-1}(c)$ is regular and
- a critical value of φ otherwise.

We say that $S \subset M$ is a regular level set of φ if it has the form $\varphi^{-1}(c)$ with c a regular value.

Theorem 3.6.4. Every regular level set S of a smooth map $F: M^m \to N^n$ is an embedded submanifold of codimension n.

Proof. Let $S = F^{-1}(c)$. Note that the subspace of full-rank matrices is open due to continuity of the det. As a result, the set U of points $p \in M$ where dF_p is surjective is open in M. Hence $F \upharpoonright_U: U \to N$ is a smooth submersion. In particular, it has constant rank n. Thanks to Theorem 3.5.12, it follows that $F^{-1}(c)$ is an embedded submanifold of U with codimension n, where U itself is an open submanifold of M.

Example 3.6.5. \mathbb{S}^n is a regular level set of the smooth function $\vec{x} \mapsto |\vec{x}|^2$.

Theorem 3.6.6 (Sard). If $F: M \to N$ is smooth, then the set of all critical values of F has measure zero in N.

Proposition 3.6.7. Suppose M is smooth and $S \subset M$ is embedded. Then for any $f \in C^{\infty}(S)$, there is some neighborhood U of S in M along with some $\hat{f} \in C^{\infty}(U)$ such that $\hat{f} \upharpoonright_S = f$.

Proposition 3.6.8. The tangent space of a submanifold $S \subset M$ at $p \in S$ is precisely the image of the injective canonical map $di_p: T_pS \to T_pM$ where i denotes inclusion, i.e.,

$$A := \{ \gamma'(0) \in T_pM : \gamma : (-\epsilon, \epsilon) \to S \text{ and } \gamma(0) = p \}.$$

Proof. Let $v \in T_pS$. We know that $v = \gamma'(0)$ for some curve γ in S. Then $i \circ \gamma$ is a curve in M with $(i \circ \gamma)' = di_p(v)$.

Conversely, let $v := w'(0) \in A$. We have $w = j \circ w$ where $j : i(S) \to S$ is the reverse inclusion. Since $(j \circ w)'(0) = dj_p(v) \in T_pS$, it follows that $d_i((j \circ w)'(0)) = v$.

At this point, we begin developing the theory of differential forms. Let $F: \mathbb{R}^n \to \mathbb{R}$ be smooth. The gradient ∇F has two main properties.

1. It is orthogonal to the level sets of F.

2.
$$dF_p(v) = \langle \nabla F_p, v \rangle$$
.

But given a smooth manifold M, we don't necessarily have an inner product on M unless M is a Riemannian manifold, which by definition has a smoothly varying inner product. Instead, we shall view dF_p as a so-called 1-form.

3.7 Lecture 12

Recall that if $\pi: M \to N$ is a continuous map, then a section of π is a continuous right inverse of π .

Definition 3.7.1. A (smooth) vector field X is a smooth section of the projection map $\pi : TM \to M$, i.e., $X_p := F(p) \in T_pM$ for each $p \in M$.

Notation. Let $\mathcal{X}(M)$ denote the vector space of all smooth vector fields in M.

Note that $\mathscr{X}(M)$ is a module over $C^{\infty}(M)$ under the action $f \cdot X \equiv (p \mapsto f(p)X_p)$.

Given a chart U on M^n , if $p \in U$, then we can write $X_p = \sum_{i=1}^n r_i \frac{\partial}{\partial x_i} \Big|_p$ for some unique real coefficients r_i . Define $X^i : U \to \mathbb{R}$ by $X_i(p) = r_i$ for each $i = 1, \ldots, n$. Then

$$X_p = \sum_{i} X_i(p) \frac{\partial}{\partial x_i} \Big|_p.$$

We call such X_i the component functions of X for the chart U.

Proposition 3.7.2. A vector field X is smooth if and only if each component function in any given chart is smooth.

Lemma 3.7.3. If S is a closed subset of M and X a smooth vector field along S, then there is an extension of X to a smooth vector field on M.

Definition 3.7.4. Let $U \subset M^n$ be open and $X_1, \ldots, X_k \in \mathcal{X}(M)$.

- 1. X_1, \ldots, X_k are linearly independent if for any $p \in U$, we have that $\{X_1(p), \ldots, X_k(p)\}$ is linearly independent in T_pM .
- 2. If k = n and X_1, \ldots, X_k are linearly independent, then $\{X_1, \ldots, X_k\}$ is a local frame in U.

Example 3.7.5. The basis vectors $p \mapsto \frac{\partial}{\partial x_i}|_p$ form a local frame for a given chart U around p, called the coordinate frame.

Definition 3.7.6. A local frame for U is called a *global frame* if U = M. If such a frame exists, then M is called *parallelizable*.

Example 3.7.7. \mathbb{R}^n is parallelizable via the standard coordinate vector fields.

Lemma 3.7.8. M is parallelizable if and only if $TM \approx M \times \mathbb{R}^n$, i.e., its tangent bundle is trivial.

Theorem 3.7.9 (Kervaire). \mathbb{S}^n is parallelizable if and only if $n \in \{0, 1, 3, 7\}$.

Definition 3.7.10 (Lie group). A *Lie group* is a group G equipped with a smooth structure such that both $\times : G \times G \to G$ and $(-)^{-1} : G \to G$ are smooth maps.

Example 3.7.11. Any Lie group is parallelizable.

Note that $\mathscr{X}(M)$ acts on $C^{\infty}(U)$ for any $U \subset M$ with the action $X \cdot f \equiv (p \mapsto X_p(f))$. Given $X \in \mathscr{X}(M)$, this induces a linear map $X : C^{\infty}(U) \to C^{\infty}(U)$ satisfying the product rule

$$X(fg) = fXg + gXf.$$

We call such a map a derivation of $C^{\infty}(U)$.

Moreover, if $F: M \to N$ is smooth, then $dF_pX(p) \in T_{F(p)}N$ for each $p \in M$. Yet, this may not define a vector field on N, since F may not be surjective.

Example 3.7.12. Let $X, Y \in \mathcal{X}(M)$. Then X(Yf) need *not* be a derivation. Indeed, let $M = \mathbb{R}^2$, $X = \frac{\partial}{\partial x}$, and $Y = x \frac{\partial}{\partial y}$. If f(x, y) = x and g(x, y) = y, then XY(fg) = 2x whereas fXY(g) + gXY(f) = x, so that XY(f) is not a derivation.

Definition 3.7.13. Let $X,Y \in \mathcal{X}(M)$. The Lie bracket of X and Y is

$$[X,Y] \equiv XY - YX : C^{\infty}(M) \to C^{\infty}(M).$$

Proposition 3.7.14 (Clairaut). If $X_i = \frac{\partial}{\partial x_i} \in \mathcal{X}(M)$, then $[X_i, X_j] = 0$ for any $1 \le i, j \le n$.

Lemma 3.7.15. A map $D: C^{\infty}(M) \to C^{\infty}(M)$ is a derivation if and only if there is some $X \in \mathcal{X}(M)$ such that Df = Xf for any f.

Proof. We have established the (\iff) direction. Conversely, assume that D is a derivation. Define $X: M \to TM$ by $X_p(f) = (Df)(p)$. Since Df = Xf is smooth for each X, it follows that X is smooth thanks to Proposition 8.14 (Lee).

Lemma 3.7.16. Any Lie bracket [X,Y] is a smooth vector field.

Proof. By Lemma 3.7.15, it suffices to show that [X, Y] is a derivation. Let f, g be smooth functions on M. Then

$$\begin{split} [X,Y] \, (fg) &= X(Y(fg)) - Y(X(fg)) \\ &= X(fYg + gYf) - Y(fXg + gXf) \\ &= XfYg + XgYf - YfXg - YgXf \\ &= fXYg + YgXf + gXYf + YfXg \\ &- fYXg - XgYf - gYXf - XfYg \\ &= fXYg + gXYf - fYXg - gYXf \\ &= f \, [X,Y] \, g + g \, [X,Y] \, f. \end{split}$$

22

3.8 Lecture 13

Consider two smooth vector fields X and Y on M. Define $[X,Y]: M \to TM$ by $p \mapsto (f \mapsto X_p(Yf) - Y_p(Xf))$.

Proposition 3.8.1. Write $X = X^i \frac{\partial}{\partial x_i}$ and $Y = Y^j \frac{\partial}{\partial x_j}$ in local coordinates. Then

$$[X,Y] = \sum_{i,j} \left(X^i \frac{\partial Y^j}{\partial x_i} - Y^i \frac{\partial X^j}{\partial x_i} \right) \frac{\partial}{\partial x_j}.$$

Proof. Since [X,Y] is a vector field, we see that $([X,Y]f) \upharpoonright_U = [X,Y](f \upharpoonright_U)$ for any open subset $U \subset M$. Therefore, we may compute, say, Xf in a local coordinate expression for X. To this end, let us apply the product rule together with Clairaut's theorem to get

$$\begin{split} \left[X,Y\right]f &= X^{i}\frac{\partial}{\partial x_{i}}\left(Y^{j}\frac{\partial f}{\partial y_{j}}\right) - Y^{j}\frac{\partial}{\partial x_{j}}\left(X^{i}\frac{\partial f}{\partial x_{i}}\right) \\ &= X^{i}\frac{\partial Y^{j}}{\partial x_{i}}\frac{\partial f}{\partial x_{j}} + X^{i}Y^{j}\frac{\partial^{2}f}{\partial x_{i}x_{j}} - Y^{j}\frac{\partial X^{i}}{\partial x_{j}}\frac{\partial f}{\partial x_{i}} - Y^{j}X^{i}\frac{\partial^{2}f}{\partial x_{j}x_{i}} \\ &= X^{i}\frac{\partial Y^{j}}{\partial x_{i}}\frac{\partial f}{\partial x_{j}} - Y^{j}\frac{\partial X^{i}}{\partial x_{j}}\frac{\partial f}{\partial x_{i}} \\ &= \sum_{i,j}\left(X^{i}\frac{\partial Y^{j}}{\partial x_{i}} - Y^{i}\frac{\partial X^{j}}{\partial x_{i}}\right)\frac{\partial}{\partial x_{j}}. \end{split}$$

Remark 3.8.2. If $X_1, \ldots, X_n \in \mathscr{X}(U)$ satisfy $[X_i, X_j] = 0$, then there are local coordinates $x^i : V \to \mathbb{R}$ such that $X_i = \frac{\partial}{\partial x^i}$. This is a converse of Clairaut's theorem.

Proposition 3.8.3.

1. (Bilinearity) For any $a, b \in \mathbb{R}$,

$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

 $[Z, aX + bY] = a[Z, X] + b[Z, Y].$

2. (Antisymmetry)

$$[X,Y] = -[Y,X].$$

3. (Jacobi Identity)

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

4. For any $f, g \in C^{\infty}(M)$,

$$[fX, qY] = fq[X, Y] + (fXq)Y - (qYf)X,$$

where fX denotes the module action $f \cdot X$.

Now, let $X \in \mathcal{X}(M)$ and $Y \in \mathcal{X}(N)$. Let $F : M \to N$ be a diffeomorphism. The pushforward of X by F, denoted by F_*X , is the vector field on N given by

$$q \mapsto dF_{F^{-1}(q)}\left(X_{F^{-1}(q)}\right)$$
.

We say X and Y are F-related if $Y = F_*X$.

4 VECTOR BUNDLES 23

Note 3.8.4. $X(f \circ F) = (Yf) \circ F$ if and only if X and Y are F-related.

Theorem 3.8.5 (Naturality of the Lie bracket). $F_*[X,Y] = [F_*X, F_*Y]$.

Proof. Let $f \in C^{\infty}(M)$. By Note 3.8.4, we see that $XY(f \circ F) = X(F_*Yf \circ F) = F_*X(F_*Yf) \circ F$, and likewise $YX(f \circ F) = F_*Y(F_*Xf) \circ F$. Thus,

$$[X,Y](f \circ F) = F_*X(F_*Yf) \circ F - F_*Y(F_*Xf) \circ F = ([F_*X,F_*Y]f) \circ F.$$

We conclude by again applying Note 3.8.4.

Corollary 3.8.6. Let $S \subset M$ be a submanifold. If $X, Y \in \mathscr{X}(M)$ satisfy $X_p, Y_p \in T_p(S)$ for each $p \in S$, then $[X,Y]_p \in T_p(S)$ as well.

Proof. Let $i: S \to M$ denote inclusion. Then there are $X', Y' \in \mathscr{X}(S)$ with X' *i*-related to $X \upharpoonright_S$ and Y' *i*-related to $Y \upharpoonright_S$. This implies that [X', Y'] is *i*-related to $[X, Y] \upharpoonright_S$, which in turn implies that $[X, Y]_p \in T_p(S)$ for any $p \in S$.

4 Vector bundles

Definition 4.0.1. Let M be a space. A *(real) vector bundle of rank* k *over* M is a space E together with a continuous surjection $\pi: E \to M$ having the following properties.

- (I) For each $p \in M$, the fiber $E_p := \pi^{-1}(p)$ is a k-dimensional vector space.
- (II) For each $p \in M$, there is a neighborhood U_p in M together with a homeomorphism $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{R}^k$ (called a *local trivialization*) such that
 - (a) $\pi_U \circ \varphi = \pi \upharpoonright_{\pi^{-1}(U)}$, where $\pi_U : U \times \mathbb{R}^k \to U$ denotes the projection and
 - (b) for each $q \in U$, $\varphi \upharpoonright_{E_q}$ is a linear isomorphism $E_q \xrightarrow{\cong} \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$.

If M and E are smooth manifolds and each local trivialization is smooth, then E is called a *smooth vector bundle*.

Note 4.0.2. Any vector bundle $\pi: E \to M$ is an open map. Indeed, suppose that V is open in E. Then

$$\pi(V) = \bigcup_{x \in \pi(V)} \pi \upharpoonright_{\pi^{-1}(U_x)} (V \cap \pi^{-1}(U_x)).$$

But each map $\pi \upharpoonright_{\pi^{-1}(U_x)}$ is open as the composite $\pi_{U_x} \circ \varphi_{U_x}$ of open maps. Hence $\pi(V)$ is open as the union of open sets.

4 VECTOR BUNDLES 24

Example 4.0.3. The Möbius strip and $\mathbb{S}^1 \times \mathbb{R}$ are distinct vector bundles of rank 1 over \mathbb{S}^1 .

Figure 2: Möbius strip

We can always construct a global section of a smooth vector bundle by using partitions of unity. But we cannot always ensure that it is non-vanishing, as shown by the hairy ball theorem (Corollary 7.3.6) for bundles over \mathbb{S}^2 .

4.1 Lecture 14

Lemma 4.1.1 (Vector bundle construction). Let M^n be a smooth manifold and suppose that for any $p \in M$, there is some vector space E_p of dimension k. Let $E = \coprod_{p \in M} E_p$ and let $\pi : E \to M$ be the projection map. Further, suppose we have the following data:

- (a) an open cover $\{U_{\alpha}\}$,
- (b) for each α , a bijection $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k$ whose restriction to each E_p is a linear isomorphism to $\{p\} \times \mathbb{R}^k$, and
- (c) for each $U_{\alpha} \cap U_{\beta} \neq \emptyset$, a smooth map $\tau_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ such that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(p,v) = (p,\tau_{\alpha\beta}(p)v)$.

Then E has a unique topology and smooth structure making (E, π) into a smooth vector bundle of rank k over M.

The matrices $\tau_{\alpha\beta}(p)$ are called the *transition functions* of the vector bundle E. They satisfy the so-called cocycle condition:

$$\tau_{\alpha\alpha}(p) = I_k \qquad \tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p)\tau_{\gamma\alpha}(p) = I_k.$$

Definition 4.1.2 (Bundle map). Let $p_1: E_1 \to M_1$ and $p_2: E_2 \to M_2$ be two vector bundles of rank k. A homomorphism $p_1 \to p_2$ is a commutative square

$$E_1 \xrightarrow{f} E_2$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p_2}$$

$$M_1 \xrightarrow{g} M_2$$

in the category of spaces such that each map $f \upharpoonright_{p_1^{-1}(x)}$ is linear.

Note that g is uniquely determined by f because p_1 is surjective.

4 VECTOR BUNDLES 25

Let us now explore a specific kind of vector bundle. To this end, consider any vector space V as well as its $dual\ space$

$$V^* \equiv \operatorname{Hom}(V, \mathbb{R}),$$

which consists of all linear maps $V \to \mathbb{R}$, known as covectors on V. If $A: V \to W$ is linear, then let A^* denote the linear map $W^* \to V^*$ defined by $w \mapsto (v \mapsto w(Av))$, called the dual map of A.

Let $\{v_1, \ldots, v_n\}$ be a basis for V. The *dual basis* (or *cobasis*) consists of those linear functionals $\varphi_i : V \to \mathbb{R}$ given by

$$\varphi_i(v_j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}.$$

for each $i = 1, \ldots, n$.

Proposition 4.1.3.

(1) If $\dim(V) = n$, then $\dim(V^*) = n$.

Proof. Pick a basis b_1, \ldots, b_n for V. Consider its dual basis $\{b^1, \ldots, b^n\}$. It is easy to check that this is linearly independent. Further, for any $T \in V^*$, we see that

$$T = T_1 b^1 + \dots + T_n b^n$$
, $T_i \equiv T(b_i)$.

This means that the b^i span $\text{Hom}(V, \mathbb{R})$ as well.

Remark 4.1.4. The induced isomorphism $V \to V^*$ is not unique, for it depends on our chosen basis of V.

(2) The mapping $v\mapsto\underbrace{(\varphi\mapsto\varphi(v))}_{\operatorname{ev}_v}$ defines a canonical isomorphism

$$V \xrightarrow{\cong} (V^*)^* = \operatorname{Hom}(V^*, \mathbb{R}).$$

Definition 4.1.5. Let M^n be a smooth manifold.

- 1. Define the cotangent space at p as T_p^*M .
- 2. Define the cotangent bundle of M as $T^*M \equiv \coprod_p T_p^*M$.

Lemma 4.1.6. T^*M is a smooth n-vector bundle over M.

Proof. Let (U, φ) be a smooth chart on M. Define $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ by $a_i \lambda^i \big|_p \mapsto (p, a_1, \dots, a_n)$ where $\left\{\lambda^i \big|_p\right\}$ is a chosen dual basis for $T_p M$. Now we apply the vector bundle construction lemma. See Proposition 11.9 (*Lee*).

Let (U, x^i) be smooth coordinates for M^n . Then the map $\psi : a_i \lambda^i \big|_p \mapsto (x^1(p), \dots, x^n(p), a_1, \dots, a_n)$ makes $(\pi^{-1}(U), \psi)$ a chart on T^*M .

A smooth section of T^*M is called a *covector field* (or *(differential/smooth) 1-form)* on M. The vector space of such sections will be denoted by $\Gamma(T^*M)$.

Moreover, if U is a chart on M, then a tuple $(\epsilon^1, \ldots, \epsilon^k)$ of covector fields on M is a *local coframe* if $\{\epsilon^1|_p, \ldots, \epsilon^k|_p\}$ is a basis of T_p^*U for each $p \in U$.

Aside. Let $\pi: E \to M$ be a smooth vector bundle. The jet bundle $J^kE \to M$ of order k is the smooth vector bundle whose fiber at $p \in M$ consists of all order-k jets of smooth sections of π , i.e., equivalence classes of smooth sections of π where two sections are declared equivalent if their first k partial derivatives agree on a neighborhood of p. Note that a germ is precisely an order-1 jet.

We have a sequence of maps

$$\cdots J^3 E \twoheadrightarrow J^2 E \twoheadrightarrow J^1 E \twoheadrightarrow E$$
.

whose limit is called the *infinite jet bundle* $J^{\infty}E$.

5 Differential forms

5.1 Lecture 15

Definition 5.1.1 (Differential of a smooth function). Define $C^{\infty}(M) \to \Gamma(T^*M)$ by $f \mapsto (p \mapsto df_p)$ where

$$df_p(v) \equiv vf$$

for every $v \in T_pM$. We call df the differential of f.

Let (U, x^i) be local coordinates for M. Let (dx^i) denote the corresponding coordinate coframe. We have $df_p = A_i(p) dx^i|_p$ for some functions $A_i : U \to \mathbb{R}$. Then

$$A_{i}(p) = df_{p} \left(\frac{\partial}{\partial x^{i}} \Big|_{p} \right) = \frac{\partial f}{\partial x^{i}}(p)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad df_{p} = \frac{\partial f}{\partial x^{i}}(p)dx^{i} \Big|_{p}.$$

In this way, the differential of f generalizes the gradient of a smooth function on \mathbb{R}^n .

Proposition 5.1.2. If M is connected, then f is constant if and only if df = 0.

Proof. Since vf=0 for any derivation v and constant function f, the forward direction is clear. Conversely, suppose that df=0 and let $p\in M$. Set $C=\{q\in M: f(q)=f(p)\}$. We must show that C=M. Provided that M is connected, it suffices to show that C is clopen. For any $q\in C$, choose a coordinate ball $U\ni p$. Then since $0=df=\frac{\partial f}{\partial x^i}dx^i$, it follows that $\frac{\partial f}{\partial x^i}=0$ for each i. Elementary calculus reveals that f must be constant on U. Hence C is open. Since $C=f^{-1}(p)$, it is also closed.

Note 5.1.3 (Transition functions for changing coordinates). Let $p \in M$ and suppose that $(x^i)_{1 \le i \le n}$ and $(y^i)_{1 \le i \le n}$ are two coordinate charts around p. The chain rule for partial derivatives states that

$$\frac{\partial}{\partial x^j}\big|_p = \sum_k \frac{\partial y^k}{\partial x^j} (\hat{p}) \frac{\partial}{\partial y^k}\big|_p$$

where $\hat{p} := (x^1(p), \dots, x^n(p))$. Dually, for each $i \in \{1, \dots, n\}$, we have that

$$dx^i\big|_p = \sum_{\ell} A^i_{\ell} dy^{\ell}\big|_p$$

for some $A_{\ell}^i \in \mathbb{R}, l = 1, \dots, n$. It follows that

$$\begin{split} \delta_i^j &= dx^i \big|_p \left(\frac{\partial}{\partial x^j} \big|_p \right) \\ &= dx^i \big|_p \left(\sum_k \frac{\partial y^k}{\partial x^j} \frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} dx^i \big|_p \left(\frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} \sum_\ell A_\ell^i dy^\ell \big|_p \left(\frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} \sum_\ell A_\ell^i \delta_\ell^k \\ &= \sum_k A_k^i \frac{\partial y^k}{\partial x^j}. \end{split}$$

Therefore, if A denotes the $n \times n$ matrix (A_{ℓ}^i) and J denotes the Jacobian of (y^1, \dots, y^n) at \hat{p} , then $I_n = JA$, i.e., $A = J^{-1}$.

Definition 5.1.4. Let $F: M \to N$ be smooth. Let $\omega \in \Gamma(T^*N)$. Define the pullback $F^*\omega$ of ω as the element of $\Gamma(T^*M)$ given by

$$F^*\omega|_p(X|_p) \equiv \omega|_{F(p)}(F_*|_pX_p).$$

Note that, unlike the pushforward, the pullback requires merely that F be smooth.

Lemma 5.1.5. Let $F: M \to N$ be smooth, $\alpha, \beta \in \Gamma(T^*N)$ and $f, g \in C^{\infty}(N)$. Then

$$F^*(f\alpha + g\beta) = (f \circ F) F^*\alpha + (g \circ F) F^*\beta.$$

Proof. Let $X \in \mathcal{X}(M)$. We have that

$$F^{*}(f\alpha + g\beta)|_{p}(X_{p}) = (f\alpha + g\beta)|_{F(p)} (F_{*}|_{p}X_{p})$$

$$= f(F(p)) \alpha_{F(p)} (F_{*}|_{p}X_{p}) + g(F(p)) \beta_{F(p)} (F_{*}|_{p}X_{p})$$

$$= [(f \circ F)F^{*}\alpha]_{p} (X_{p}) + [(g \circ F)F^{*}\beta]_{p} (X_{p}).$$

Let $\gamma: J \subset \mathbb{R} \to M$ be a smooth curve in M. Note that $\Gamma(T^*\mathbb{R}) = \{f(t)dt \mid f: T \to \mathbb{R}\}$. Then

$$\omega \in \Gamma(T^*M) \implies \gamma^*\omega \in \Gamma(T^*\mathbb{R}) \implies \gamma^*\omega = f(t)dt$$

for some curve f along J. This enables us to modestly generalize our notion of integration.

Definition 5.1.6. The integral of ω along γ is

$$\int_{\gamma} \omega \equiv \int_{J} \gamma^* \omega.$$

Proposition 5.1.7. Suppose that φ is a positive reparameterization of γ (i.e., one with positive derivative). Then $\int_{\gamma} \omega = \int_{\gamma \circ \varphi} \omega$.

Definition 5.1.8. A differential 1-form ω on a smooth manifold M is closed if the equation

$$\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} = 0$$

holds for any i, j in any chart on M.

Exercise 5.1.9. Show that being closed is a well-defined property.

Example 5.1.10. By Clairaut's theorem, df is closed for any $f \in C^{\infty}(M)$.

5.2 Lecture 16

Recall that a map $T: V_1 \times \cdots \times V_k \to W$ of vector spaces is multilinear if it is linear in each argument, i.e.,

$$T(v_1, ..., ax + by, ..., v_k) = aT(v_1, ..., x, ..., v_k) + bT(v_1, ..., y, ..., v_k)$$

for any $a, b \in \mathbb{R}$.

Theorem 5.2.1 (Universal property of the tensor product). Let V_1, \ldots, V_k be vector spaces. There exists a vector space $V_1 \otimes \cdots \otimes V_k$ together with a map $: \otimes : V_1 \times \cdots \times V_k$ so that for any multilinear map $T: V_1 \times \cdots \times V_k \to W$, there is some unique linear map $\widetilde{T}: V \otimes \cdots \otimes V_k \to W$ such that

$$V_1 \times \cdots \times V_k \xrightarrow{T} W$$

$$\otimes \downarrow \qquad \qquad \widetilde{T}$$

$$V_1 \otimes \cdots \otimes V_k$$

commutes.

Terminology. $V_1 \otimes \cdots \otimes V_k$ is called the tensor product of the V_i .

Proof. Let us just prove this when k=2, for then we're done by induction. Let $\mathbb{R} \langle V_1 \times V_2 \rangle$ denote the free vector space on $V_1 \times V_2$, which consists of all finite formal linear combinations of $V_1 \times V_2$. Let

$$G = \langle (av_1, v_2) - a(v_1, v_2), (v_1, av_2) - a(v_1, v_2), (v_1 + w_1, v_2) - (v_1, v_2) - (w_1, v_2), (v_1, w_2 + v_2) - (v_1, w_2) - (v_1, v_2) \rangle$$

Given a multilinear map $T: V_1 \times V_2 \to W$, define $\widetilde{T}: \mathbb{R} \langle V_1 \times V_2 \rangle \to W$ by

$$\sum a_{(v_1,v_2)}(v_1,v_2) \mapsto \sum a_{(v_1,v_2)}T(v_1,v_2).$$

Since T is multilinear, $G \subset \ker \widetilde{T}$. Therefore, the vector space $V_1 \otimes V_2 := \mathbb{R} \langle V_1 \times V_2 \rangle_G$ fits in a commutative triangle

$$\mathbb{R} \langle V_1 \times V_2 \rangle \xrightarrow{\tilde{T}} W$$

$$\downarrow \qquad \qquad \qquad \tilde{T}$$

$$V_1 \otimes V_2 \qquad \qquad \tilde{T}$$

⁴Proposition 11.31 (Lee).

Thus, if $i: V_1 \times V_2 \to \mathbb{R} \langle V_1 \times V_2 \rangle$ denotes inclusion, then $\widetilde{\widetilde{T}} \circ \pi \circ i = \widetilde{T} \circ i$, which induces our desired diagram. We see that $\widetilde{\widetilde{T}}$ is unique because it is uniquely determined by elements of the form

$$v_1 \otimes v_2 \coloneqq [(v_1, v_2)]$$

under T and every element of $V_1 \otimes V_2$ can be written as some linear combination of such elements.

A basic property of the tensor product is that its generic elements are bilinear in the following sense.

Proposition 5.2.2. If $a, b \in \mathbb{R}$, then $(av_1 + bw_1) \otimes v_2 = a(v_1 \otimes v_2) + b(w_1 \otimes v_2)$.

Proposition 5.2.3.

- 1. $(\mathbf{Vect}_{\mathbb{R}}, \oplus, \otimes)$ is a semiring.
- 2. $V \otimes W \cong W \otimes V$.
- 3. $V \otimes \mathbb{R} \cong V$.
- 4. $(V \otimes W)^* \cong V^* \otimes W^*$.

Let B(V, W) denote the space of bilinear maps $V \times W \to \mathbb{R}$.

Lemma 5.2.4. There is a canonical isomorphism $V^* \otimes W^* \cong B(V, W)$.

Proof. Define $\Phi: V^* \times W^* \to B(V, W)$ by $(\omega, \eta) \mapsto ((v, w) \mapsto \omega(v)\eta(w))$. This is linear and hence induces a commutative diagram

To see that $\tilde{\Phi}$ is an isomorphism, pick bases $\{f_1,\ldots,f_n\}$ and $\{g_1,\ldots,g_n\}$ for V and W, respectively. Consider their respective dual bases $\{\xi\}$ and $\{\eta\}$. Then $\{\xi^i\otimes\eta^j:1\leq i,j\leq n\}$ is a basis for $V^*\otimes W^*$. Define the linear map $\Psi:B(V,W)\to V^*\otimes W^*$ by

$$b \mapsto \sum_{i,j} b(f_i, g_j) \xi^i \otimes \eta^j.$$

It is straightforward to check that Ψ is the inverse of Φ .

We can generalize Theorem 7.2.3 to obtain an isomorphism

$$V_1^* \otimes \cdots \otimes V_k^* \cong L(V_1, \ldots, V_k; \mathbb{R}).$$

Definition 5.2.5 (Tensor type). We say that an element of

$$V_\ell^k \coloneqq \underbrace{V^* \otimes \cdots \otimes V^*}_{k \text{ copies}} \otimes \underbrace{V \otimes \cdots \otimes V}_{\ell \text{ copies}}$$

is a (k, ℓ) -tensor.

Terminology.

- 1. A (k, 0)-tensor is called *covariant*.
- 2. A $(0, \ell)$ -tensor is called *contravariant*.

Let M be a smooth manifold. Define the (k, ℓ) -tensor bundle as

$$T_{\ell}^{k}M \equiv \coprod_{p \in M} (T_{p})_{\ell}^{k} M.$$

In particular, $T^1M = T^*M$, and $T_1M = TM$.

Exercise 5.2.6. Find the dimension of $T_{\ell}^{k}M$.

Let us examine the form of a generic (k,0)-tensor. Suppose that (x^i) and (y^i) are two local coordinate systems around a point $p \in M$. Then

$$dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k} = \left(\frac{\partial x^{i_1}}{\partial y^{\ell_1}} dy^{p_1}\right) \otimes \cdots \otimes \left(\frac{\partial x^{i_k}}{\partial y^{\ell_k}} dy^{p_k}\right)$$
$$= \sum_{p_1, \dots, p_k} \frac{\partial x^{i_1}}{\partial y^{\ell_1}} \cdots \frac{\partial x^{i_k}}{\partial y^{\ell_k}} \otimes dy^{p_1} \otimes \cdots \otimes dy^{p_k}.$$

Definition 5.2.7. A (k, ℓ) -tensor field is a (smooth) section of $T_{\ell}^k M$.

Let $\mathcal{T}_{\ell}^k(M)$ denote the space $\Gamma(T_{\ell}^kM)$ of all such sections.

5.3 Lecture 17

Let (U, x^i) be local coordinates for M. Then any $A \in \mathcal{T}_k^{\ell}(M)$ can be written in U as

$$A\big|_p = A^{j_1\dots j_\ell}_{i_1\dots i_k} dx^{i_1}\big|_p \otimes \dots \otimes dx^{i_k}\big|_p \otimes \frac{\partial}{\partial x^{j_1}}\big|_p \otimes \dots \otimes \frac{\partial}{\partial x^{j_\ell}}\big|_p,$$

summed over $n^k n^\ell$ many tensors.

Example 5.3.1. Let $\sigma = \delta^i_j dx^j \otimes \frac{\partial}{\partial x^i}$, $X = X^k \frac{\partial}{\partial x^k}$, and $w = w_\ell dx^\ell$. Then

$$\begin{split} \sigma(X,w) &= \delta^i_j dx^j \otimes \frac{\partial}{\partial x^i} \left(X^k \frac{\partial}{\partial x^k}, w_\ell dx^\ell \right) \\ &= \delta^i_j dx^j \left(X^k \frac{\partial}{\partial x^k} \right) \frac{\partial}{\partial x^i} w_\ell dx^\ell \\ &= \delta^i_j \delta^j_k X^k w_\ell \delta^\ell_i \\ &= w_k X^k \\ &= w(X). \end{split}$$

We say that σ is *invariant* in this case.

Example 5.3.2. Show that the tensor $\delta_i^j dx^i \otimes dx^j$ is *not* invariant.

Proposition 5.3.3.

1. Any $\sigma \in \mathcal{T}_{\ell}^k(M)$ induces a $C^{\infty}(M)$ -multilinear map

$$\hat{\sigma}: \underbrace{\mathscr{X}(M) \times \dots \times \mathscr{X}(M)}_{k \text{ copies}} \times \underbrace{\mathscr{X}^*(M) \times \dots \times \mathscr{X}^*(M)}_{\ell \text{ copies}} \longrightarrow C^{\infty}(M)$$

$$(X_1, \dots, X_k, w_1, \dots, w_{\ell}) \mapsto \left(p \mapsto \sigma\left(X_1\big|_p, \dots, X_k\big|_p, w_1\big|_p, \dots, w_{\ell}\big|_p\right)\right). \tag{*}$$

2. Any multilinear map over $C^{\infty}(M)$ is of the form (1) for some (k,ℓ) -tensor field.

Notice that the smooth function $\hat{\sigma}_p$ induced by σ of Example 5.3.1 is determined completely by the values $X_1(p), \ldots, X_k(p), w_1(p), \ldots, w_\ell(p)$.

Note 5.3.4. The Lie bracket is *not* multilinear over $C^{\infty}(M)$, for

$$[fX + gY, Z] = f[X, Y] + g[Y, Z] - Z(f)X - Z(g)Y.$$

Definition 5.3.5. A covariant k-tensor T is alternating if for any vectors Y, X_1, \ldots, X_{k-1} , it follows that

$$T(X_1, X_2, \dots, Y, \dots, Y, \dots, X_{k-1}) = 0.$$

In this case, T is also called an *exterior form*.

Example 5.3.6. If σ is a 0-tensor or a 1-tensor, then it is alternating.

Proposition 5.3.7. TFAE.

- 1. T is alternating.
- 2. $T(X_1, \ldots, X_k) = 0$ whenever $\{X_1, \ldots, X_k\}$ is linearly dependent.
- 3. $T(X_1, \ldots, X_i, X_{i+1}, \ldots, X_k) = -T(X_1, \ldots, X_{i+1}, X_i, \ldots, X_k)$.

Notation. The expression $\bigwedge^k(V)$ will denote the subspace of $T^k(V)$ consisting of alternating covariant k-tensors.

Definition 5.3.8. Given $T \in T^k(V)$, the alternation Alt(T) of T is the multilinear map defined by

$$(V_1, \dots, V_k) \mapsto \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) T(V_{\sigma(1)}, \dots, V_{\sigma(k)}).$$

Example 5.3.9.

- 1. Alt $(T)(X,Y) = \frac{1}{2}(T(X,Y) T(Y,X)).$
- 2. $Alt(T)(X,Y,Z) = \frac{1}{6}(T(X,Y,Z) + T(Y,Z,X) + T(Z,X,Y) T(Y,X,Z) T(Z,Y,X) T(X,Z,Y)).$

Example 5.3.10. Suppose that $\{w^1, \ldots, w^n\}$ is the cobasis of the standard basis $\{e_1, \ldots, e_n\}$ for the vector space V. Then

$$\operatorname{Alt}(w^{1} \otimes \cdots \otimes w^{n})(e_{1}, \dots, e_{n})$$

$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) w^{1} \otimes \cdots \otimes w^{n} \left(e_{\sigma(1)}, \dots, e_{\sigma(n)} \right)$$

$$= \frac{1}{n!} \operatorname{sgn} \left(\operatorname{id}_{n} \right) w^{1} \otimes \cdots \otimes w^{n} \left(e_{1}, \dots, e_{n} \right)$$

$$= \frac{1}{n!}.$$

Proposition 5.3.11.

- 1. Alt $(T) \in \bigwedge^k(V)$.
- 2. Alt $(T) = T \iff T \in \bigwedge^k(V)$.
- 3. The induced map $Alt: T^k(V) \to \bigwedge^k(V)$ is linear.

5.4 Lecture 18

Lemma 5.4.1. Let V be a vector space of dimension $k < \infty$. Let $\{w^1, \ldots, w^n\}$ be a cobasis for V. Let $k \le n$. Then

$$A := \left\{ \operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) : 1 \leq i_1 < \cdots < i_k \leq n \right\}$$

is a basis for $\bigwedge^k(V)$.

Proof. It's clear from Proposition 5.3.11 that A spans $\bigwedge^k(V)$. It remains to show that A is linearly independent.

Claim.

- (a) If the integers i_1, \ldots, i_k are not pairwise distinct, then $Alt(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) = 0$.
- (b) $\operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_j} \otimes \omega^{i_{j+1}} \otimes \cdots \otimes \omega^{i_k}) = -\operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_{j+1}} \otimes \omega^{i_j} \otimes \cdots \otimes \omega^{i_k}).$

As a consequence, span $(A) = \text{span} \{ \text{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) : 1 \leq i_1 \leq \cdots \leq i_k \leq n \}.$

Exercise 5.4.2. Show that this implies that A is linearly independent.

Corollary 5.4.3. If $\dim(V) = n$, then $\dim\left(\bigwedge^k(V)\right) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition 5.4.4. Define the wedge product as the map

$$\wedge: \bigwedge^k(V) \times \bigwedge^\ell(V) \to \bigwedge^{k+\ell}(V) \qquad (w,q) \mapsto w \wedge q \equiv \frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(w \otimes q).$$

This is like the tensor product.

Example 5.4.5. With notation as in Example 5.3.10, we have that $\omega^1 \wedge \cdots \wedge \omega^n(e_1, \dots, e_n) = 1$.

Lemma 5.4.6. The set $\{\omega^{i_1} \wedge \cdots \wedge \omega^{i_k} : 1 \leq i_1 < \cdots < i_k \leq n\}$ is a basis for $\bigwedge^k(V)$.

Proof sketch. For each k-tuple (i_1, \ldots, i_k) , one can show that $\omega^{i_1} \wedge \cdots \wedge \omega^{i_k}$ and $Alt(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k})$ differ precisely by a real factor. This is enough thanks to Lemma 5.4.1.

Consider the standard basis $B := \{e_1, \dots, e_n\}$ for V. Note that $\det_B \in \bigwedge^n(V)$ by Proposition 5.3.11. But $\bigwedge^n(V) = 1$, so that $\det_B = c(\omega^1 \wedge \dots \wedge \omega^n)$. But evaluating both sides at (e_1, \dots, e_n) yields the equation 1 = c(1) = c. Thus,

$$\det_{\mathcal{D}} = \omega^1 \wedge \cdots \wedge \omega^n.$$

Proposition 5.4.7. Suppose that ω , ω , η , and η' are exterior forms. The following are properties of the wedge product.

(1) (Bilinearity) If $a, a' \in \mathbb{R}$, then

$$(a\omega + a'\omega') \wedge \eta = a(\omega \wedge \eta) + a'(\omega' \wedge \eta)$$
$$\eta \wedge (a\omega + a'\omega') = a(\eta \wedge \omega) + a'(\eta \wedge \omega').$$

(2) (Associativity)

$$(\eta \wedge \omega) \wedge \omega' = \eta \wedge (\omega \wedge \omega').$$

(3) (Anticommutativity) If $\omega \in \bigwedge^k(V)$ and $\eta \in \bigwedge^\ell(V)$, then

$$\omega \wedge \eta = (-1)^{kl} \, \eta \wedge \omega.$$

Corollary 5.4.8. If ω is a 1-form, then $\omega \wedge \omega = 0$.

(4) If $\omega^1, \ldots, \omega^k \in \bigwedge^1(V)$, then

$$\omega^1 \wedge \cdots \wedge \omega^k(v_1, \dots, v_k) = \det(\omega^j(v_i)).$$

Definition 5.4.9. Let M^n be a smooth manifold. Define the alternating bundle of rank k as

$$\bigwedge^{k}(M) \equiv \coprod_{p \in M} \bigwedge^{k}(T_{p}M).$$

A smooth section of $\bigwedge^k(M)$ is called a *(differential) k-form.*

Let both $\Omega^k(M)$ and $\mathcal{A}^k(M)$ stand for the infinite-dimensional vector space of differential k-forms on the manifold M. We also have a graded associative algebra $(\Omega^*(M), \wedge)$ over \mathbb{R} .

In local coordinates we have a basis $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}_{1\leq i\leq n}$ for T_pM as well as a corresponding dual basis $\left\{dx^i\right\}$. Then for any $\omega\in\bigwedge^k(M)$, we can write

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
(1)

locally at p. Let $I = \{i_1 < \dots < i_k\}$. Since

$$dx^{i_1} \wedge \dots \wedge dx^{i_\ell} \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}} \right) = \delta^I_J$$

where $\delta_J^I = 1$ if and only if I = J as sets, it follows that

$$\omega_{i_1,\dots,i_k} = \omega\left(\frac{\partial}{\partial x^{i_1}},\dots,\frac{\partial}{\partial x^{i_k}}\right).$$
 (2)

We abbreviate (1) by writing

$$\omega = \omega_I dx^I,$$

where we tacitly sum over the I. In this case, for any other ordered set of indices $J := \{j_1 < \cdots < j_k\}$, we have

$$\omega\left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}\right) = \omega_I dx^I \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}\right) = \omega_I \delta_J^I.$$

Note 5.4.10. Let $w = w_I dx^I$ and $w = \tilde{w}_J d\tilde{x}^J$ be two coordinate representations of w. Observe that

$$\tilde{\omega}_{J} = \omega \left(\frac{\partial}{\partial \tilde{x}^{j_{1}}}, \dots, \frac{\partial}{\partial \tilde{x}^{j_{k}}} \right) \tag{(2)}$$

$$= \omega \left(\sum_{t} \frac{\partial x^{i_{t}}}{\partial \tilde{x}^{j_{1}}} \frac{\partial}{\partial x^{i_{t}}}, \dots, \sum_{t} \frac{\partial x^{i_{t}}}{\partial \tilde{x}^{j_{k}}} \frac{\partial}{\partial x^{i_{t}}} \right) \tag{chain rule}$$

$$= \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \frac{\partial x^{i_{1}}}{\partial \tilde{x}^{j_{1}}} \dots \frac{\partial x^{i_{k}}}{\partial \tilde{x}^{j_{k}}} \omega \left(\frac{\partial}{\partial \tilde{x}^{\sigma(i_{1})}}, \dots, \frac{\partial}{\partial \tilde{x}^{\sigma(i_{k})}} \right) \tag{multilinearity of } \omega$$

$$= \det \left(k \times k \text{ minor of } \frac{\partial x}{\partial \tilde{x}} \text{ relative to } i_{1}, \dots, i_{k} \text{ and } j_{1}, \dots, j_{k} \right). \tag{Proposition 5.4.7(4)}$$

5.5 Lecture 19

The following notion generalizes Definition 5.1.4 to differential forms of arbitrary degree.

Definition 5.5.1 (Pullback). Let $F: M \to N$ be smooth and $\omega \in \bigwedge^k(N)$. The pullback $F^*\omega$ of ω by F is the differential k-form on M given pointwise by

$$F^*\omega\big|_p(v_1,\ldots,v_k)=\omega_{F(p)}\left(dF_p(v_1),\ldots,dF_p(v_k)\right).$$

Note that $F^*(-)$ is a linear map $\Omega^k(N) \to \Omega^k(M)$ over \mathbb{R} .

Lemma 5.5.2 (Naturality of the pullback). $F^*(\omega \wedge \eta) = F^*(\omega) \wedge F^*(\eta)$

Proof. This is easily seen from Definition 5.5.1 together with Definition 5.4.4.

Lemma 5.5.3. In any local coordinates, we have that

$$F^*\left(\sum_I \omega_I dy^{i_1} \wedge \dots \wedge dy^{i_k}\right) = \sum_I \left(\omega_I \circ F\right) d\left(y^{i_1} \circ F\right) \wedge \dots \wedge d\left(y^{i_k} \circ F\right).$$

Proof. It is easy to check that $F^*\omega(X_1,\ldots,X_k)=\sum_I w_I\circ Fdy^I(F_*X_1,\ldots,F_*X_k)$. Hence it suffices to show that

$$d\left(y^{i_{1}}\circ F\right)\wedge\cdots\wedge d\left(y^{i_{k}}\circ F\right)\left(X_{1},\ldots,X_{k}\right)=dy^{I}\left(F_{*}X_{1},\ldots,F_{*}X_{k}\right).$$

For this, it suffices to show that $d(y^i \circ F)(X) = dy^i(F_*X)$ for each $i \in \{i_1, \dots, i_k\}$. Let (x^i) denote local coordinates on M. On the one hand, thanks to Definition 5.1.1, we see that

$$d\left(y^{i}\circ F\right)\left(X\right)=X\left(y^{i}\circ F\right)=X^{j}\frac{\partial F^{i}}{\partial x^{j}}.$$

On the other hand, we see that

$$dy^{i}(F_{*}X) = dy^{i}\left(X^{j}\frac{\partial F^{r}}{\partial x^{j}}\frac{\partial}{\partial y^{r}}\right)$$
$$= X^{j}\frac{\partial F^{i}}{\partial x^{j}}.$$

Example 5.5.4. Consider the change of variables to polar coordinates $\mathbb{R}^2 \to \mathbb{R}^2$:

$$(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$$
.

Locally, this is precisely the identity map with the domain endowed with one atlas and the codomain endowed with another. Lemma 5.5.3 together with certain computational properties of \land yields

$$dx \wedge dy = d(r\cos\theta) \wedge d(r\sin\theta)$$

$$= (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta)$$

$$= (\cos\theta dr - r\sin\theta d\theta) \wedge \sin\theta dr + (\cos\theta dr - r\sin\theta d\theta) \wedge r\cos\theta d\theta$$

$$= (\cos\theta dr \wedge \sin\theta dr) - (r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta) - (r\sin\theta d\theta \wedge r\cos\theta d\theta)$$

$$= -(r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta)$$

$$= r\sin^2\theta (dr \wedge d\theta) + r\cos^2\theta (dr \wedge d\theta)$$

$$= rdr \wedge d\theta.$$

Now, let us begin defining a differential operator on smooth forms that generalizes Definition 5.1.1. Let ω be a 1-form on a smooth manifold M. For this to arise as the differential of a smooth function df, each component function ω_i must have the form $\frac{\partial f}{\partial x^i}$. By Clairaut's theorem, this means that ω is closed in the sense of Definition 5.1.8, i.e.,

$$\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} = 0 \tag{*}$$

in any chart on M. This is property is actually coordinate-independent by Lee (Proposition 11.45). Therefore, we want to express (*) as the ij-component of a 2-form, namely

$$d\omega \equiv \sum_{j < i} \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) dx^j \wedge dx^i.$$

Notice that ω is closed if and only if $d\omega = 0$ in any chart on M.

5.6 Lecture 20

Let $\omega \in \mathcal{A}^k(M)$ with local coordinate representation $\omega_I dx^I$. The exterior derivative of ω is the (k+1)-form

$$d\omega \equiv d\omega_I \wedge dx^I$$
.

We refer to the operation $d: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}(M)$ as exterior differentiation.

Note 5.6.1.
$$d\omega = \sum_{I} \sum_{j} \frac{\partial}{\partial x^{j}} \omega_{I} dx^{j} \wedge dx^{I}$$
.

Aside. If we view $\Omega^k : \mathbf{Diff}^{\mathrm{op}} \to \mathbf{Vec}_{\mathbb{R}}$ as the functor sending each smooth map f to the pullback f^* , then the exterior derivative becomes a natural transformation $\Omega^k \Rightarrow \Omega^{k+1}$.

Definition 5.6.2. Let $\omega \in \mathcal{A}^k(M)$.

- 1. We say that ω is closed if $d\omega = 0$.
- 2. We say that ω is exact if $\omega = d\eta$ for some $\eta \in \mathcal{A}^{k-1}(M)$.

Lemma 5.6.3. Suppose that $M = \mathbb{R}^n$, equivalently, that M has a global chart.

- (1) d is linear over \mathbb{R} .
- (2) $d(F^*\omega) = F^*(d\omega)$.
- (3) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$.
- (4) $d \circ d = 0$.

Proof. Statement (1) is obvious. For (2), by linearity, it suffices to consider the case where $\omega = udx^I$. Using Lemma 5.5.3, we compute

$$F^* \left(d \left(u dx^{i_1} \wedge \dots \wedge dx^{i_k} \right) \right) = F^* \left(du \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} \right)$$
$$= d(u \circ F) \wedge d \left(x^{i_1} \circ F \right) \wedge \dots \wedge d \left(x^{i_k} \circ F \right)$$

$$d\left(F^*\left(udx^{i_1}\wedge\cdots\wedge dx^{i_k}\right)\right) = d\left((u\circ F)d\left(x^{i_1}\circ F\right)\wedge\cdots\wedge d\left(x^{i_k}\circ F\right)\right)$$
$$= d(u\circ F)\wedge d\left(x^{i_1}\circ F\right)\wedge\cdots\wedge d\left(x^{i_k}\circ F\right)$$

For (3), let $\eta = vdx^J$. Again, by linearity, it suffices to compute $d(udx^I \wedge vdx^J)$.

$$d(udx^{I} \wedge vdx^{J}) = d(uvdx^{I} \wedge dx^{J})$$

$$= (vdu + udv) \wedge dx^{I} \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (dv \wedge udx^{I}) \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (-1)^{k} (udx^{I}) \wedge (dv \wedge dx^{J})$$

$$= d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{k} \omega \wedge d\eta.$$

To prove (4), first observe that so long as k=1 and $\omega=\omega_i dx^j$, we have that

$$d\omega = \sum_{i,j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j$$

$$= \sum_{i < j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j + \sum_{i > j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j$$

$$= \sum_{i < j} \left(\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j} \right) dx^i \wedge dx^j.$$

This together with Clairaut's theorem implies that

$$d(du) = \frac{\partial^2 u}{\partial x^i \partial x^j} dx^i \wedge dx^j = \sum_{i < j} \left(\frac{\partial^2 u}{\partial x^i \partial x^j} - \frac{\partial^2 u}{\partial x^j \partial x^i} \right) dx^i \wedge dx^j = 0.$$

Now, drop the assumption that k = 1. Then expanding $d(d\omega)$ yields a sum of two summations of wedge products. One of which contains the term $d(d\omega_J)$, and the other contains the term $d(dx^{j_i})$. These both equal zero, and thus the entire expression $d(d\omega)$ vanishes.

Corollary 5.6.4 (Naturality of the exterior derivative). If F is a smooth map, then

$$d(F^*\omega) = F^*(d\omega).$$

Corollary 5.6.5. The exterior derivative is well-defined.

Proof. Let (U,φ) be a chart on M. Notice that

$$d\omega = \varphi^* d\left(\varphi^{-1}{}^*\omega\right)$$

on U. Let (V, ψ) be another chart. Then

$$(\varphi \circ \psi^{-1})^* d(\varphi^{-1})^* \omega = d((\varphi \circ \psi^{-1})^* \varphi^{-1})^* \omega.$$

Since $(\varphi \circ \psi^{-1})^* = \psi^{-1}^* \circ \varphi^*$ and $F^* \circ F^{-1}^* = \text{id}$ for any diffeomorphism F, it follows that

$$\psi^{-1*} \circ \varphi^* d \left(\varphi^{-1*} \omega \right) = d \left(\psi^{-1*} \omega \right).$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\varphi^* d \left(\varphi^{-1*} \omega \right) = \psi^* d \left(\psi^{-1*} \omega \right).$$

Corollary 5.6.6. Any exact form is closed.

It is not the case, however, that any closed form is exact. Let $M = \mathbb{R}^2 \setminus \{0\}$. Define the 1-form $\omega: M \to T^*M$ by

$$(x,y)\mapsto \frac{xdy-ydx}{x^2+y^2}.$$

On the one hand, a straightforward computation shows that $d\omega = 0$. On the other hand, recall from basic calculus that ω is exact on a connected open subset $\omega \subset M$ if and only if $\int_c \omega = 0$ for any closed curve $c \subset \omega$. But if $\gamma : [0, 2\pi] \to M$ is given by $(\cos \theta, \sin \theta)$, then

$$\int_{\gamma} \omega = \int_{0}^{2\pi} d\theta = 2\pi \neq 0,\tag{\dagger}$$

which means that ω is not exact.

Theorem 5.6.7 (Unique differentiation). The exterior derivative is the unique linear map $\bar{d}: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}$ such that

- (i) $\bar{d}(\omega \wedge \eta) = \bar{d}\omega \wedge \eta + (-1)^k \omega \wedge \bar{d}\eta$,
- (ii) $\bar{d}f(X) = Xf$ for any $f \in C^{\infty}(M)$, and
- (iii) $\bar{d} \circ \bar{d} = 0$.

For example, consider the linear map $\bar{d}: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}(M)$ given by

$$\bar{d}\omega(X_1,\dots,X_{k+1}) = \sum_{i=1}^{n+1} (-1)^{k+1} X_i \left(w \left(X_1,\dots, \widehat{X}_i,\dots, X_{k+1} \right) \right) - \sum_{i,j} (-1)^{i+j} w \left(\left[X_i, X_j \right], X_1,\dots, \widehat{X}_i,\dots, \widehat{X}_j,\dots, X_{k+1} \right).$$

This satisfies conditions (i), (ii), and (iii) of Theorem 5.6.7, and thus $\bar{d} = d$.

To conclude this lecture, let's look at a particular dual operation to exterior differentiation, which will be useful for our discussion of orientation.

Let V be a finite-dimensional vector space. For each vector $v \in V$, define interior multiplication by v as the linear map $i_v : \bigwedge^k(V) \to \bigwedge^{k-1}(V)$ given by

$$i_v \omega(w_1, \dots, w_{k-1}) = \omega(v, w_1, \dots, w_{k-1}).$$

Let $v \perp \omega := i_v \omega$.

Extend interior multiplication as follows. For each $X \in \mathcal{X}(M)$ and $\omega \in \mathcal{A}^k(M)$, define the (k-1)-form $X \perp \omega$ by $p \mapsto X_p \perp \omega_p$.

5.7 Lecture 21

Definition 5.7.1. Let V be a finite-dimensional vector space. Suppose that E and E' are two bases for V. We say that E and E' are co-oriented if the change-of-basis matrix from E to E' has positive determinant.

This notion provides us with exactly two equivalence classes of bases for V, which we call the *orientations* for V. If $[E_1, \ldots, E_n]$ is a chosen orientation for V, then we call any basis in it (positively) oriented and any basis not in it negatively oriented.

Definition 5.7.2 (Orientation). An orientation on a smooth manifold M is a continuous choice of orientation for T_pM as p varies over M.

Equivalently, if $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ denotes the smooth structure on M, we say that M is orientable if the Jacobian $D\left[\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right]$ has positive determinant on $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ for any $\alpha, \beta \in A$.

Example 5.7.3. \mathbb{S}^n is orientable for any $n \geq 1$. For each $p \in \mathbb{S}^n$, say that (v_1, \ldots, v_n) is positively oriented on $T_p\mathbb{S}^n$ if (p, v_1, \ldots, v_n) is positively oriented on \mathbb{R}^{n+1} , i.e., is co-oriented with the standard basis for \mathbb{R}^{n+1} .

Lemma 5.7.4. Let $\pi: E \to M$ be a smooth vector bundle and $V \subset E$ be open. If V_p is a convex subspace of E_p for every $p \in M$, then there is some $\sigma \in \Gamma(E)$ such that $\sigma_p \in V_p$ for every p.

Proof. Find a cover of E by local trivializations U_{α} over M along with smooth sections σ_{α} of them. There is some partition of unity ψ_{α} subordinate to (U_{α}) . Define $\sigma: M \to E$ as $\sum_{\alpha} \psi_{\alpha} \sigma_{\alpha}$, so that $\sigma \in \Gamma(E)$. Then σ_p belongs to V_p by convexity.

Proposition 5.7.5. Suppose that M is a smooth n-manifold. Any nowhere vanishing n-form on M gives rise to a unique orientation on M.

Conversely, any orientation on M gives rise to a nowhere vanishing n-form on M.

Proof.

 (\Longrightarrow)

Let $\omega \in \mathcal{A}^n(M)$ be nowhere vanishing. For each $p \in M$, we see that ω_p defines an orientation O_M^p on M by declaring that $[e_1, \ldots, e_n] \in O_M^p$ if and only if $\omega_p(e_1, \ldots, e_n) > 0$. It remains to show that if $p \in M$, then we can find some chart U_p around p and some local frame $(E_1, \ldots, E_n)_p$ on U_p such that $\omega_q(E_1|_{\sigma}, \ldots, E_n|_{\sigma}) > 0$

for every $q \in U_p$. To see this, pick any U_p and local frame $(E_1, \ldots, E_n)_p$ on U_p . Write $\omega = f dE^1 \wedge \cdots \wedge dE^n$ locally for some smooth function $f: U_p \to \mathbb{R}$. Since ω is nowhere vanishing, it follows that

$$\omega(E_1,\ldots,E_n)=f\neq 0.$$

Since f is continuous and M connected, we see that f > 0 or f < 0. We may assume that f > 0 for otherwise we can choose $(-E_1, \ldots, -E_n)_p$ instead.

$$(\longleftarrow)$$

Given $p \in M$ and an orientation O_M^p on T_pM , say that $w \in \bigwedge^n(T_pM)$ is positively oriented if and only if $w(e_1, \ldots, e_n) > 0$ for any $[e_1, \ldots, e_n] \in O_M^p$. Then the subspace $\bigwedge_{+}^n(T_pM)$ is open and convex. By Lemma 5.7.4, we are done.

Definition 5.7.6. A diffeomorphism $F: M \to N$ between two oriented manifolds is *orientation-preserving* if the isomorphism dF_p maps positively oriented bases for T_pM to positively oriented bases for $T_{F(p)}N$ for each $p \in M$. It is *orientation-reversing* if it maps positively oriented bases to negatively oriented ones.

We see that

F is orientation-preserving $\iff \det(dF_p) > 0$ for each $p \in M$ $\iff F^*\omega$ is positively oriented for any positively oriented form ω .

Lemma 5.7.7. The antipodal map $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is orientation-preserving if and only if n is odd.

Proof. Consider the commutative diagram

$$\mathbb{S}^{n} \xrightarrow{\alpha} \mathbb{S}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}^{n+1} \xrightarrow{\hat{\alpha}} \mathbb{R}^{n+1}$$

where $\hat{\alpha}(\vec{x}) \equiv -\vec{x}$. Note that the Jacobian of $\hat{\alpha}$ is precisely the identity matrix I_{n+1} . Since $\det(I_{n+1}) = (-1)^{n+1}$, we see that $\hat{\alpha}$ is orientation-preserving if and only if n is odd. Thus, the restriction α of $\hat{\alpha}$ to \mathbb{S}^n has the same property.

Corollary 5.7.8. \mathbb{RP}^n is not orientable when n is even.

Proof. Let n be even. Suppose, toward a contradiction, that \mathbb{RP}^n admits an orientation. Apply Proposition 5.7.5 to obtain a nowhere vanishing n-form ω on \mathbb{RP}^n . If $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ denotes the natural projection, then we also obtain the nowhere vanishing n-form $\pi^*\omega$ on \mathbb{S}^n . Applying Proposition 5.7.5 again shows that this determines the usual orientation on \mathbb{S}^n .

Note that $\pi \circ \alpha = \pi$, so that $\alpha^* \pi^* \mathbb{S}^n = \pi^* \mathbb{S}^n$. But this implies that α preserves the orientation of \mathbb{S}^n , contrary to Lemma 5.7.7.

The converse of Corollary 5.7.8 is also true, although we omit a proof of it.

Before moving to integration, we should look at a modest variant of our notion of manifold. Consider the intersection of \mathbb{R}^n with a half-plane

$$\mathbb{H}^n := \left\{ \left(x^1, \dots, x^n \right) \in \mathbb{R}^n : x^n \ge 0 \right\}.$$

Definition 5.7.9 (Manifold with boundary).

1. An *n-dimensional manifold with boundary* M is a second-countable Hausdorff space that is locally homeomorphic to either an open Euclidean ball or an open subset of \mathbb{H}^n .

- 2. Any point $p \in M$ is an interior point if it belongs to a chart homeomorphic to an open ball.
- 3. The point p is a boundary point if it belongs to a chart that sends p to a point in $\partial \mathbb{H}^n$.

Note that every point in M is either an interior or a boundary point, but not both.

Proposition 5.7.10. The set of boundary points ∂M is an (n-1)-dimensional embedded submanifold of M.

Moreover, ∂M inherits an orientation from M when M is oriented. This is called the *induced* or *Stokes orientation*. Indeed, we may construct a smooth outward-pointing vector field N along ∂M , which is nowhere tangent to ∂M . Therefore, if ω denotes the orientation form for M, then the form $i_{\partial M}^*(N \sqcup \omega)$ is an orientation form for ∂M .

Example 5.7.11. \mathbb{S}^n is orientable as the boundary of the closed unit ball.

6 Integration

6.1 Lecture 22

Definition 6.1.1. Let $A_0^k(\mathbb{R}^k)$ denote the space of k-forms with compact support. Let $\omega \in A_0^k(\mathbb{R}^k)$ and $\omega = f dx^1 \wedge \cdots \wedge dx^k$. Define

$$\int_{\mathbb{D}^k} \omega = \int_{\mathbb{D}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k.$$

Exercise 6.1.2. Given another coordinate representation $\omega = gy^1 \wedge \cdots \wedge y^k$ with $\det\left(\frac{\partial x}{\partial y}\right) > 0$, show that

$$\int_{\mathbb{R}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k = \int_{\mathbb{R}^k} g(x^1, \dots, x^k) dy^1 \cdots dy^k.$$

In other words, Definition 6.1.1 makes sense.

A singular k-cell on M^n is a smooth map $\sigma: [0,1]^k \to M$. Note that 0-cells are precisely points in M and 1-cells are precisely smooth curves in M. Let $\omega \in \mathcal{A}^k(M)$ and σ be a singular k-cell on M. Define

$$\int_{\sigma} \omega = \int_{[0,1]^k} \sigma^* \omega.$$

Proposition 6.1.3. Let $p:[0,1]^k \to [0,1]^k$ be a diffeomorphism.

- 1. If p is orientation-preserving, then $\int_{\sigma} \omega = \int_{\sigma \circ p} \omega$.
- 2. If p is orientation-reversing, then $\int_{\sigma} \omega = -\int_{\sigma \circ p} \omega$.

Definition 6.1.4.

1. A singular k-chain on M is a formal finite \mathbb{R} -combination $\sigma = \sum_{i=1}^{N} a_i \sigma_i$ of singular k-cells on M. Define

$$\int_{\sigma} \omega = \sum_{i=1}^{N} a_i \int_{\sigma_i} \omega.$$

2. Let σ be a singular k-cell on M. Let $i=1,\ldots,2k$ and $\alpha=0,1$. Define the (i,α) -face of σ as the smooth map $\sigma_{(i,\alpha)}$ given by

$$\sigma_{(i,\alpha)}(x^1,\ldots,x^k) = \sigma(x^1,\ldots,x^{i-1},\alpha,x^i,\ldots,x^k).$$

Moreover, define the boundary of σ as the (k-1)-chain

$$\partial \sigma \equiv \sum_{i=1}^{k} (-1)^{i+1} (\sigma_{(i,1)} - \sigma_{(i,0)}).$$

3. If $\sigma := \sum_{i=1}^{N} a_i \sigma_i$ is a singular k-chain, then define the boundary of σ as the (k-1)-chain

$$\partial \sigma \equiv \sum_{i=1}^{N} a_i \partial \sigma_i.$$

Note that $\int_{\partial \sigma} \omega = \sum_{i=1}^{N} a_i \int_{\partial \sigma_i} \omega$.

Definition 6.1.5. A singular k-chain σ is a closed if $\partial \sigma = 0$.

Exercise 6.1.6. Show that if σ is any singular k-chain, then $\partial \sigma$ is closed.

Theorem 6.1.7 (Stokes's theorem for chains). Let σ be a k-chain and $\omega \in \mathcal{A}^{k-1}(M)$. Then

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega.$$

Proof. For now, assume that $M = \mathbb{R}^k$ and $\sigma = I^k$. As the smooth structure on \mathbb{R}^k is global, we may write $\omega = f dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^k$ for some distinguished $1 \leq i \leq k$ and some smooth function $f : \mathbb{R}^k \to \mathbb{R}$. We compute

$$d\omega = df \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= \left(\sum_{j=1}^{k} \frac{\partial f}{\partial x^{j}} dx^{j}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= (-1)^{i-1} \frac{\partial f}{\partial x^{i}} dx^{1} \wedge \dots \wedge dx^{k}.$$

Now, apply Fubini's theorem together with the fundamental theorem of calculus (FTC) to obtain

$$\begin{split} \int_{\sigma} d\omega &= (-1)^{i-1} \int_{[0,1]^k} \frac{\partial f}{\partial x^i} dx^1 \wedge \dots \wedge dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 \left(\int_0^1 \frac{\partial f}{\partial x^i} dx^i \right) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 (f(x^1,\dots,\underbrace{1}_{i\text{-th position}},\dots,x^k) - f(x^1,\dots,\underbrace{0}_{i\text{-th position}},\dots,x^k)) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \left(\int_{[0,1]^{k-1}} f(x^1,\dots,1,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k - \int_{[0,1]^{k-1}} f(x^1,\dots,0,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k \right) \\ &= (-1)^{i-1} \left(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \right). \end{split}$$

Moreover, we compute

$$\int_{\partial \sigma} \omega = \sum_{j=1}^{k} (-1)^{j-1} \left(\int_{\sigma_{(j,1)}} \omega - \int_{\sigma_{(j,0)}} \omega \right).$$

Since x^j is constant along the (j,α) -face for each $\alpha=0,1$, it follows that $dx^j=0$. Therefore,

$$\int_{\partial \sigma} \omega = (-1)^{i-1} \left(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \right) = \int_{\sigma} d\omega.$$

Finally, assume that M is arbitrary and σ is an arbitrary k-cell on M. By the special case just proved, we have that

$$\int_{\sigma} d\omega = \int_{[0,1]^k} \sigma^*(d\omega) = \int_{[0,1]^k} d(\sigma^*\omega) = \int_{\partial[0,1]^k} \sigma^*\omega = \int_{\partial\sigma} \omega.$$

This clearly remains true if σ is a k-chain on M.

The FTC occurs precisely when $\sigma = I^1$ and $\omega = f$. This shows that Theorem 6.1.7 is equivalent to the FTC.

6.2 Lecture 23

Let M be an orientable manifold. Let $\omega \in \mathcal{A}^n(M)$. Let σ_1 and σ_2 be singular n-cells on M that can be extended to diffeomorphisms on (open) neighborhoods of $[0,1]^n$. Suppose that both are orientation-preserving.

Lemma 6.2.1. If supp $\omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, then $\int_{\sigma_1} \omega = \int_{\sigma_2} \omega$.

Proof. Since supp $\omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, Proposition 6.1.3 implies that

$$\int_{\sigma_1} \omega = \int_{\sigma_2 \circ (\sigma_2^{-1} \circ \sigma_1)} \omega = \int_{\sigma_2} \omega.$$

Let $\omega \in \mathcal{A}^n(M)$. Let σ be an orientation-preserving singular n-cell on M. If supp $\omega \subset \sigma([0,1]^n)$, then Lemma 6.2.1 allows us to define

$$\int_{M} \omega = \int_{\sigma} \omega.$$

In general, there exists an open cover (U_{α}) of M such that $U_{\alpha} \subset \sigma_{\alpha}([0,1]^n)$ for each α where σ_{α} is some orientation-preserving singular n-cell on M. Find a partition of unity (φ_{α}) subordinate to this cover. Note that each $\varphi_{\alpha}\omega$ belongs to $\mathcal{A}^n(M)$ and is supported in U_{α} . If ω is compactly supported, then supp ω intersects at most finitely many supp φ_{α} . In this case, we define

$$\int_{M} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \omega,$$

which is finite. It remains to check that this definition makes sense.

Lemma 6.2.2. If $(V_{\beta}, \psi_{\beta})$ is another such partition of unity, then $\sum_{\beta} \int_{M} \psi_{\beta} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \omega$. *Proof.*

$$\sum_{\alpha} \int_{M} \varphi_{\alpha} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \sum_{\beta} \psi_{\beta} \omega$$

$$= \sum_{\alpha} \sum_{\beta} \int_{M} \varphi_{\alpha} \psi_{\beta} \omega$$

$$= \sum_{\beta} \sum_{\alpha} \int_{M} \psi_{\beta} \varphi_{\alpha} \omega$$

$$= \sum_{\beta} \int_{M} \psi_{\beta} \sum_{\alpha} \varphi_{\alpha} \omega$$

$$= \sum_{\beta} \int_{M} \psi_{\beta} \omega.$$

Note 6.2.3. If ω is not assumed to be compact, then $\int_M \omega$ may be infinite but is still well-defined.

Theorem 6.2.4 (Stokes). Let M be an oriented compact n-manifold with boundary. If $\omega \in \mathcal{A}^{n-1}(M)$, then

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Proof. There are three cases to consider.

<u>Case 1:</u> Suppose that there is some orientation-preserving n-cell σ on M such that supp $\omega \subset \operatorname{Int}(\operatorname{im} \sigma)$ and $\operatorname{im} \sigma \cap \partial M = \emptyset$. By Theorem 6.1.7, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = 0 = \int_{\partial M} \omega.$$

<u>Case 2:</u> Suppose that there is some orientation-preserving n-cell σ on M such that $\sup \omega \subset \operatorname{im} \sigma$, $\operatorname{im} \sigma \cap \partial M = \sigma_{(n,0)}\left([0,1]^{n-1}\right)$, and $\sup \omega \cap \operatorname{im} \partial \sigma \subset \sigma_{(n,0)}$. By Theorem 6.1.7, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = (-1)^{n} \int_{\sigma_{(n,0)}} \omega.$$

Note that if μ denotes the usual orientation on \mathbb{H}^n , then the induced orientation on the boundary $\partial \mathbb{H}^n$ is equal to $(-1)^n \mu$. Therefore, $\sigma_{(n,0)} : [0,1]^{n-1} \to \partial M$ is orientation-preserving if and only if n is even. In either situation, we have that

$$(-1)^n \int_{\sigma_{(n,0)}} \omega = \int_{\partial M} \omega,$$

which completes our present case.

<u>Case 3:</u> In general, there exist an open cover (U_{α}) of M and a partition of unity (φ_{α}) subordinate to it such that each $\varphi_{\alpha}\omega$ is an (n-1)-form of the kind in Case 1 or Case 2. Since $\sum_{\alpha}\varphi_{\alpha}$ is constant, we see that

$$0 = d\left(\sum_{\alpha} \varphi_{\alpha}\right) = \sum_{\alpha} d\varphi_{\alpha}.$$

Hence $\sum_{\alpha} d\varphi_{\alpha} \wedge \omega = 0$, so that $\sum_{\alpha} \int_{M} d\varphi_{\alpha} \wedge \omega = 0$. From this we compute

$$\int_{M} d\omega = \int_{M} \sum_{\alpha} \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} d\varphi_{\alpha} \wedge \omega + \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} d(\varphi_{\alpha} \omega)$$

$$= \sum_{\alpha} \int_{\partial M} \varphi_{\alpha} \omega$$

$$= \int_{\partial M} \omega.$$

7 De Rham cohomology

7.1 Lecture 24

Given a smooth manifold M^n and integer $k \geq 1$, consider the vector spaces

$$Z^{k}(M) := \left\{ \omega \in \mathcal{A}^{k}(M) : d\omega = 0 \right\}$$
$$B^{k}(M) := \left\{ d\eta : \eta \in \mathcal{A}^{k-1}(M) \right\}.$$

Since $B^k(M) \subset Z^k(M)$, we may form the quotient space

$$H^k_{\mathrm{dR}}(M) \coloneqq Z^k(M)/B^k(M),$$

called the k-th de Rham cohomology group of M.

Remark 7.1.1. This is the same as the singular cohomology group over \mathbb{R} .

 $H_{dR}^k(M)$ can be thought of as a quantitative measure of the number of submanifolds of M over which we can't integrate certain closed forms to find a potentials for them. In this sense, the failure of a closed form to be exact indicates holes in M.

Theorem 7.1.2. If M and N are continuously homotopy equivalent, then $H^k_{dR}(M) \cong H^k_{dR}(N)$ for each $k \geq 1$.

Recall that a space X is *contractible* if id_X is smoothly homotopic to the constant map at some point in X.

Lemma 7.1.3 (Poincaré). If M is contractible, then $H_{dR}^k(M) = 0$ for each $k \ge 1$.

Proof. For simplicity, assume that k = 1. For each $t \in [0,1]$, define $\iota_t : M \to M \times [0,1]$ by $p \mapsto (p,t)$.

Claim. If ω is any closed 1-form on $M \times [0,1]$, then $\iota_1^*\omega - \iota_0^*\omega$ is exact.

Proof. If $\pi_M: M \times [0,1] \to M$ denotes the projection and (U,x^i) denotes local coordinates on M, then $(\pi_M^{-1}(U),(\bar{x}^i,t))$ is a coordinate chart on $M \times [0,1]$ where $\bar{x}^i := x^i \circ \pi_M$. We thus have that $\omega = w_i d\bar{x}^i + f dt$. For each $\alpha \in \{0,1\}$, we see that

$$\iota_{\alpha}^* \omega = \iota_{\alpha}^* (w_i d\bar{x}^i + f dt) = w_i(-, \alpha) dx^i + 0.$$

Moreover,

$$0 = d\omega$$

$$= dw_i \wedge d\bar{x}^i + df \wedge dt$$

$$= (\text{terms not involving } dt)$$

$$+ \frac{\partial w_i}{\partial t} dt \wedge d\bar{x}^i + \frac{\partial f}{\partial \bar{x}^i} d\bar{x}^i \wedge dt.$$

This implies that $\frac{\partial w_i}{\partial t} = \frac{\partial f}{\partial \bar{x}^i}$ for each i. For each $p \in U$, we compute the sum

$$w_i(p,1) - w_i(p,0) = \int_0^1 \frac{\partial w_i}{\partial t}(p,t)dt = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt.$$

As a result,

$$\iota_1^*\omega - \iota_0^*\omega = \left(\int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt\right)dx^i.$$

Now, define $g: U \to \mathbb{R}$ by $\int_0^1 f(p,t)dt$, so that

$$\frac{\partial g}{\partial x^i} = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p, t) dt.$$

It follows that $\iota_1^*\omega - \iota_0^*\omega = \frac{\partial g}{\partial x^i}dx^i = dg$. Since the pullback is coordinate-independent, g must be as well. This completes our proof.

By assumption, there is some smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_1 = \mathrm{id}_M$ and $H \circ \iota_0 = e_{p_0}$ where $p_0 \in M$. Let ω be a closed 1-form on M. Then $H^*\omega$ is closed since pullbacks commute with exterior derivatives. Recall that the pullback is a contravariant functor, giving us

$$\iota_k^* H^* \omega = (H \circ \iota_k)^* \omega$$

for each k = 0, 1. By our claim, it follows that

$$\iota_1^* H^* \omega - \iota_0^* H^* \omega = \omega - 0 = \omega$$

is closed. \Box

The generalization of this result to any positive integer k proceeds as follows.

We have the decomposition

$$T_{(p,t)}M \times [0,1] = \ker d\pi \big|_{(p,t)} \oplus \ker d\pi_M \big|_{(p,t)}$$

where $\pi: M \times [0,1] \to [0,1]$ denotes projection. Then any 1-form ω on $M \times [0,1]$ may be written uniquely as $\omega = \omega_1 + \omega_2$ such that $\omega_i(v_1 + v_2) = \omega(v_i)$ for each i = 1, 2. Hence there is some unique map $f: M \times [0,1] \to \mathbb{R}$ such that $\omega_2 = f dt$. In general, one can show that if ω is a k-form on $M \times [0,1]$, then we can write ω uniquely as

$$\omega = \omega_1 + (dt \wedge \eta)$$

where $\omega_1(v_1,\ldots,v_k)=0$ if some v_i belongs to $\ker d\pi_M\big|_{(p,t)}$ and η is a (k-1)-form with the analogous property.

Lemma 7.1.4. Define the (k-1)-form $I\omega$ on M by

$$I\omega|_{p}(v_{1},\ldots,v_{k-1}) = \int_{0}^{1} \eta(p,t) \left(d\iota_{t}|_{(p,t)}(v_{1}),\ldots,d\iota_{t}|_{(p,t)}(v_{k-1})\right) dt.$$

Then $\iota_1^*\omega - \iota_0^*\omega = d(I\omega) + I(d\omega)$. In particular, $\iota_1^*\omega - \iota_0^*\omega$ is exact whenever $d\omega = 0$.

Proof. For an argument similar to our case where k = 1, see Theorem 7.17 (Spivak). In particular, $I\omega$ and η correspond to our g and f, respectively.

Corollary 7.1.5. Recalling (\dagger) , we see that $\mathbb{R}^2 \setminus \{0\}$ is not contractible.

This proves that $\mathbb{R}^2 \setminus \{0\} \not\approx \mathbb{R}^2$.

7.2 Lecture 25

Corollary 7.2.1. If M is closed (i.e., compact without boundary) and orientable, then M is not contractible.

Proof. There is some positively oriented orientation form ω on M. Then $d\omega=0$, and $\int_M \omega>0$. But if $\omega=d\eta$ for some form η , then $\int_M \omega=\int_{\partial M} \eta=0$ thanks to Theorem 6.2.4, a contradiction. Hence $H^n(M)\neq 0$.

Example 7.2.2. \mathbb{S}^n is not contractible.

Theorem 7.2.3. If M is a (connected) orientable n-manifold, then we have an isomorphism

$$\underbrace{H^n_c(M)}_{compactly\ supported} \stackrel{\cong}{\longrightarrow} \mathbb{R}, \quad \ [\omega] \mapsto \int_M \omega.$$

Proof. Assume that this statement holds when $M=\mathbb{R}^n$. There is some compactly supported orientation form ω on M such that $\int_M \omega \neq 0$ and $\sup \omega \subset U \subset M$. Let ω' be a compactly supported n-form on M. Pick a partition of unity (φ_α) on M. Then $\omega' = \varphi_1 \omega' + \cdots + \varphi_k \omega'$, Thus, we may assume that $\sup \omega' \subset V$ where $V \approx \mathbb{R}^n$. We want to show that $\omega' = c\omega + d\eta$ for some $c \in \mathbb{R}$ and some $\eta \in \mathcal{A}^{n-1}(M)$. Since M is connected, there is some sequence

$$U = V_1, V_2, \dots, V_r = V$$

of open sets such that $V_i \approx \mathbb{R}^n$ and $V_i \cap V_{i+1} \neq \emptyset$ for each $i = 1, \dots, r-1$. We can find a family $\{\omega_i\}_{1 \leq i \leq r-1}$ of forms on M such $\int_M \omega_i \neq 0$ and supp $\omega_i \subset V_i \cap V_{i+1}$. It follows that

$$\omega_1 = c_1 \omega + d\eta_1$$

$$\omega_2 = c_2 \omega_1 + d\eta_2$$

$$\vdots$$

$$\omega' = c_r \omega_{r-1} + d\eta_r,$$

as desired. \Box

If M and N are closed orientable n-manifolds and $f: M \to N$ is smooth, then the pullback f^* induces a linear map $f^*: H^n_{dR}(N) \to H^n_{dR}(M)$. In light of Theorem 7.2.3, we get a linear map $f^*: \mathbb{R} \to \mathbb{R}$, which shows that there is a unique real number a such that

$$\int_{M} f^* \omega = a \int_{N} \omega$$

for every $\omega \in H^n_{dR}(N)$. The scalar a is called the degree of f.

7.3 Lecture 26

Let M and N be closed orientable n-manifolds and $f: M \to N$ be smooth. By Theorem 3.6.6, find some regular value q of f. For each $p \in f^{-1}(q)$, let

$$\operatorname{sgn}_p f = \begin{cases} 1 & df_p \text{ orientation-preserving} \\ -1 & df_p \text{ orientation-reversing} \end{cases}.$$

Theorem 7.3.1.

$$\deg f = \sum_{p \in f^{-1}(q)} \operatorname{sgn}_p f$$

where deg $f \equiv 0$ if $f^{-1}(q) = \emptyset$. In particular, deg f is always an integer.

Proof. Since f has constant rank n and $\{q\} \subset N$ is compact, we see that $f^{-1}(q)$ is a compact 0-dimensional submanifold of M by Theorem 3.6.4 and thus must be finite. Let $f^{-1}(q) = \{p_1, \ldots, p_k\}$. Find charts U_1, \ldots, U_k which are pairwise disjoint so that each $u_i \in U_i$ is a regular point of f. Find a chart (V, y^i) around q such that the components of $f^{-1}(V)$ are precisely the U_i . Let $\omega = gdy^1 \wedge \cdots \wedge dy^n$ where g is nonnegative and compactly supported in V. This implies that $f^*\omega \subset f^{-1}(V) = U_1 \sqcup \cdots \sqcup U_k$. Therefore,

$$\int_{M} f^* \omega = \sum_{i=1}^{k} \int_{U_i} f^* \omega.$$

Since each $f \upharpoonright_{U_i}: U_i \to V$ is a diffeomorphism, we have that

$$\int_{U_i} f^* \omega = \begin{cases} \int_V \omega & f \upharpoonright_{U_i} \text{ orientation-preserving} \\ -\int_V \omega & f \upharpoonright_{U_i} \text{ orientation-reversing} \end{cases}.$$

As a result,

$$\int_{M} f^* \omega = \left(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_{p} f \right) \int_{V} \omega = \left(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_{p} f \right) \int_{M} \omega.$$

Example 7.3.2. Let $A_n : \mathbb{S}^n \to \mathbb{S}^n$ denote the antipodal map. Choose $p_0 \in \mathbb{S}^n$, which is a regular value of A_n . Hence deg $A_n = (-1)^{n-1}$.

Theorem 7.3.3. Suppose that f and g are smoothly homotopic maps $M \to N$. Then $f^* = g^*$ as linear maps.

Proof. By assumption, there exists a smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_0 = f$ and $H \circ \iota_1 = g$. Let $\omega \in Z^k(N)$. We apply Lemma 7.1.4 (including its notation) to compute

$$g^*\omega - f^*\omega$$

$$= (H \circ \iota_1)^* \omega - (H \circ \iota_0)^* \omega$$

$$= \iota_1^*(H^*\omega) - \iota_0^*(H^*\omega)$$

$$= d(IH^*\omega) + I(dH^*\omega) = d(IH^*\omega).$$

This implies that $f^*([\omega]) = g^*([\omega])$, as desired.

Corollary 7.3.4. If f and g are smoothly homotopic, then $\int_M f^*\omega = \int_M g^*\omega$ for any closed n-form ω .

Proof. By Theorem 7.3.3, $f^*\omega = g^*\omega + d\eta$ for some (n-1)-form η . Since M is closed by hypothesis, applying \int to both sides and then invoking Stokes's theorem finishes our proof.

Corollary 7.3.5. If f and g are smoothly homotopic, then $\deg f = \deg g$.

Corollary 7.3.6 (Hairy ball). If $n \in \mathbb{N}$ is even, then there is no non-vanishing vector field on \mathbb{S}^n .

Proof. The identity map $\mathrm{id}_{\mathbb{S}^n}$ has degree 1 and thus is not homotopic to the antipodal map A_n . Suppose, toward a contradiction, that there is some non-vanishing $X \in \mathscr{X}(\mathbb{S}^n)$. For each $p \in \mathbb{S}^n$, there is a unique great semicircle γ_p traveling from p to A(p) whose tangent vector at p equals cX_p for some $c \in \mathbb{R}$. The smooth map $H(p,t) \equiv \gamma_p(t)$ defines a homotopy between $\mathrm{id}_{\mathbb{S}^n}$ and A_n , a contradiction.

8 Integral curves and flows

8.1 Lecture 27

Definition 8.1.1. Let M be a smooth manifold and $X \in \mathscr{X}(M)$. We say that a differentiable curve $\gamma: J \to M$ is an integral curve for X if $\gamma'(t) = X_{\gamma(t)}$ for any $t \in J$.

Terminology. If $0 \in J$, then $\gamma(0)$ is called the starting point of γ .

Example 8.1.2. Let $M = \mathbb{R}^2$, $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$, and $\gamma(t) = (x(t), y(t))$. Then $\gamma'(t) = x'(t) \frac{\partial}{\partial x} + y'(t) \frac{\partial}{\partial y}$. The system

$$\begin{cases} x(t) = x'(t) \\ y(t) = y'(t) \end{cases}$$

determines that $\gamma(t) = e^t(x(0), y(0))$.

In general, define the vector field $x^i \frac{\partial}{\partial x^i}$ on a chart (U, x^i) for the *n*-manifold M. Then given an integral curve $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$ for X where $\gamma^i = \gamma \circ x^i$, we obtain the system

$$\gamma'^{i}(t) = X^{i}\left(\gamma^{1}(t), \dots, \gamma^{n}(t)\right).$$

Given that $\gamma(0) = p$, we have an initial value problem, to which we can always find a local solution.

Theorem 8.1.3 (Fundamental theorem for autonomous ODEs). Let $U \subset \mathbb{R}^n$ be open and $X : U \to \mathbb{R}^n$ be a smooth vector field. Consider the initial value problem

$$\begin{cases}
\gamma'^{i}(t) = X^{i} \left(\gamma^{1}(t), \dots, \gamma^{n}(t) \right) \\
\gamma(t_{0}) = (c^{1}, \dots, c^{n})
\end{cases}$$
(1)

- (a) (Existence) Let $t_0 \in \mathbb{R}$ and $x_0 \in U$. There exist some interval $J_0 \ni t_0$ and open subset $U_0 \subset U$ such that for each $c \in U_0$, there is some C^1 curve $\gamma : J_0 \to U_0$ that solves Eq. (1).
- (b) (Uniqueness) Any two differentiable solutions to Eq. (1) agree on their common domain.
- (c) (Smoothness) Let J_0 and U_0 be as in (a). Define $\theta: J_0 \times U_0 \to U$ by $(t, x) \mapsto \gamma_x(t)$ where $\gamma_x: J_0 \to U$ uniquely solves Eq. (1) with initial condition $\gamma(t_0) = x$. Then θ is smooth.

Example 8.1.4. For any compact manifold M, we may stipulate that the U_0 form a finite cover $\{U_1, \ldots, U_k\}$ of M. Make J_0 smaller than any of the corresponding intervals J_1, \ldots, J_k . This yields a smooth map $\theta: J \times \mathbb{S}^n \to \mathbb{S}^n$ defined by $(t, p) \mapsto \gamma_n^i(t)$.

Corollary 8.1.5. Let X be a smooth vector field on M and $p \in M$. There is some $\epsilon > 0$ along with a smooth curve $\gamma : (-\epsilon, \epsilon) \to M$ such that $\gamma(0) = p$ and γ is an integral curve for X.

Definition 8.1.6. Let $\theta : \mathbb{R} \times M \to M$ be a group action on M.

- 1. We call θ a global flow on M if it is smooth, i.e., $\theta^p(t) := \theta(t,p) : \mathbb{R} \to M$ is smooth for every $p \in M$.
- 2. We call the vector field $p \mapsto (\theta^p)'(0)$ the infinitesimal generator of θ .

Question. When is a smooth vector field an infinitesimal generator of a global flow?

Example 8.1.7. Define $X=x^3\frac{\partial}{\partial x}$ on \mathbb{R}^2 . Then any integral curve $\gamma(t)=(x(t),y(t))$ for X must satisfy

$$\frac{dx}{dt} = x^3 \implies dx = x^3 dt$$

$$\implies -\frac{1}{2x^2} = t + c$$

$$\implies x(t) = \frac{1}{\sqrt{c - 2t}},$$

which is not smooth on \mathbb{R} . Hence X fails to generate a global flow.

Lemma 8.1.8 (Escape). Let $X \in \mathcal{X}(M)$ and γ be an integral curve for X. If the domain of γ is not equal to \mathbb{R} , then im γ is not contained in any compact set.

Remark 8.1.9. If M is compact, then every smooth vector field on M generates a global flow.

Definition 8.1.10. A *flow domain* for M is an open subset $D \subset \mathbb{R} \times M$ such that for every $p \in M$, the set $\{t \in \mathbb{R} \mid (t,p) \in D\}$ is an open interval containing 0

Theorem 8.1.11 (Fundamental theorem on flows). Let M be a smooth manifold and $X \in \mathcal{X}(M)$. There exist some unique maximal flow domain $\mathcal{D} \subset \mathbb{R} \times M$ and unique flow $\varphi : \mathcal{D} \to M$ such that X generates φ .

Terminology. We call φ the flow of X.

Corollary 8.1.12. If M is a closed manifold, then $\mathcal{D} = \mathbb{R} \times M$.

8.2 Lecture 28

Let M be a smooth manifold without boundary. Let $V \in \mathcal{X}(M)$ and let θ denote the flow of V. For any $W \in \mathcal{X}(M)$, define the section of TM by

$$(\mathcal{L}_V W)_p \equiv \lim_{t \to 0} \frac{d(\theta_{-t})_{\theta_t(p)} \left(W_{\theta_t(p)} \right) - W_p}{t},$$

which always exists. This is called the Lie derivative of W with respect to V.

Proposition 8.2.1. $\mathcal{L}_V W \in \mathcal{X}(M)$.

We can view the Lie derivative at a point p as the rate of change of W along the tangent vector $V|_{x}$.

Theorem 8.2.2. If $V, W \in \mathcal{X}(M)$, then $\mathcal{L}_V W = [V, W]$.

Proof. Let $\mathcal{R}(M)$ denote the set of points $p \in M$ such that $V_p \neq 0$. Note that $\operatorname{cl}(\mathcal{R}(M)) = \operatorname{supp} V$. Let $p \in M$. We have three cases to consider.

(i) Suppose that $p \in \mathcal{R}(M)$. We can find smooth coordinates (U, u^i) near p such that $V = \frac{\partial}{\partial u^1}$. In these coordinates we thus have that $\theta_t(u) = (u^1 + t, u^2, \dots, u^n)$. The Jacobian of θ_{-t} at each t equals the identity. For any $u \in U$, it follows that

$$d(\theta_{-t})_{\theta_t(u)} (W_{\theta_t(u)})$$

$$= d(\theta_{-t})_{\theta_t(x)} \left(W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{\theta_t(u)} \right)$$

$$= W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{u}.$$

From this we compute

$$(\mathcal{L}_V W)_p = \frac{d}{dt} \Big|_{t=0} W^j (u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_u$$
$$= \frac{\partial}{\partial u^1} W^j (u^1, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_u$$
$$= [V, W]_u.$$

(ii) Suppose that $p \in \text{supp } V \setminus \mathcal{R}(M)$. Since supp V is dense in M and TM is Hausdorff, it follows that $(\mathcal{L}_V W)_p = [V, W]_p$.

9 DISTRIBUTIONS 51

(iii) If $p \in M \setminus \text{supp } V$, then V vanishes on some neighborhood H of p. This implies that $\theta_t = \text{id}_H$, so that $d(\theta_{-t})_{\theta_t(p)} (W_{\theta_t(p)}) = W_p$. Hence $(\mathcal{L}_V W)_p = 0 = [V, W]_p$.

Definition 8.2.3. A smooth local frame $(X_1, ..., X_n)$ is called a *commuting* or *holonomic frame* if $[X_i, X_j] = 0$ for any $1 \le i, j \le n$.

Theorem 8.2.4. Let M be a smooth n-manifold. Let (X_1, \ldots, X_k) be a linearly independent k-tuple of smooth commuting vector fields defined on an open set $W \subset M$. For any $p \in W$, there is some chart (U, x^i) around p such that

$$X_i = \frac{\partial}{\partial x^i}$$

on U for each i = 1, ..., k.

Proof sketch. As this statement is local, we may assume that $M = \mathbb{R}^n$ and p = 0. Since the X_i are linearly independent, we can find coordinates (V, t^i) around 0 such that $X_i|_0 = \frac{\partial}{\partial t^i}|_0$ for each i. Let θ^i denote the flow of X_i . By making V a sufficiently small neighborhood of 0 in $\mathbb{R}^k \times \mathbb{R}^{n-k} \approx \mathbb{R}^n$, define $\Psi: V \to \mathbb{R}^n$ by

$$\Psi(t^1,\ldots,t^n) = \theta_{t^1}^1 \circ \cdots \circ \theta_{t^k}^k \left(0,\ldots,0,t^{k+1},\ldots,t^n\right).$$

Since the X_i are commuting, one can show that

$$d\Psi_0 = \begin{cases} X_i \big|_0 & i = 1, \dots, k \\ \frac{\partial}{\partial t^i} \big|_0 & i = k + 1, \dots, n. \end{cases}$$

This is invertible, and thus Ψ is a local diffeomorphism by the inverse function theorem. This gives us our desired local coordinates.

9 Distributions

Definition 9.0.1. Let M be a smooth manifold. A k-distribution on M is a rank-k smooth subbundle of TM.

In particular, 1-distributions are precisely vector fields.

Definition 9.0.2. Let $N \subset M$ be a nonempty submanifold and

$$D \coloneqq \coprod_{p \in M} D_p$$

be a distribution on M. Then N is called an *integral manifold of* D if $D_p = T_p N$ for each $p \in N$. Moreover, we say that D is *integrable* if each $p \in M$ is contained in an integrable manifold of D.

Definition 9.0.3. We say that a distribution D is *involutive* if $[X,Y] \in D$ whenever $X,Y \in D$.

Proposition 9.0.4. If D is integrable, then it is involutive.

Theorem 9.0.5 (Frobenius). If D is involutive, then it is integrable.