19. fejezet: Kapcsolat az inverz mátrixszal

Matematikai alapozás, 2023-2024/I.

Négyzetes mátrixú LER

Legyen $A \in \mathbb{K}^{n \times n}$ és $b \in \mathbb{K}^n$.

- a) Ha $\mathrm{rang}(A)=n,$ akkor az Ax=b LER-nek egyértelműen létezik megoldása.
- b) Ha rang(A) < n, akkor az Ax = b LER-nek vagy végtelen sok megoldása létezik, vagy nem létezik megoldása.

Bizonyítás.

a) rang(A) = n. Ekkor igaz az alábbi implikáció-lánc:

$$\operatorname{rang}(A) = n \Longrightarrow A \text{ oszlopai } (\widehat{\mathbf{F}}) \Longrightarrow O(A) = \mathbb{K}^n \Longrightarrow b \in O(A).$$

Tanultuk, hogy Ax=b pontosan akkor konzisztens, ha $b\in O(A)$. Így Ax=b-nek biztosan van megoldása.

Másrészt: a szabadsági fok n - rang(A) = 0, így a megoldás egyértelmű.

b) $(\operatorname{rang}(A) < n)$

- ▶ Ha $b \notin O(A)$, akkor Ax = b-nek nincs megoldása.
- ightharpoonup Ha $b \in O(A)$, akkor Ax = b-nek van megoldása, és mivel

$$\operatorname{rang}(A) < n = \dim(\mathbb{K}^n),$$

így egy korábbi tételből következik, hogy végtelen sok megoldás létezik (a szabadsági fok > 1).

- Legyen $A \in \mathbb{K}^{n \times n}$. a) Ha rang(A) = n, akkor A reguláris. b) Ha rang(A) < n, akkor A szinguláris.

Bizonyítás. A reguláris \iff létezik A^{-1} , azaz létezik $I \in \mathbb{K}^{n \times n}$ úgy, hogy

$$AX = I$$
.

Vezessük be az alábbi jelöléseket:

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \qquad X = \begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix}$$

ahol e_i az i. kanonikus egységvektor, $x_i \in \mathbb{K}^n$ az X i. oszlopa $(i \in \{1, \dots, n\})$.

$$AX = I \qquad \Longleftrightarrow \qquad \begin{cases} Ax_1 &= e_1 \\ Ax_2 &= e_2 \\ &\vdots \\ Ax_n &= e_n \end{cases}$$

Kérdés: Van-e az összes egyenlet(rendszer)nek megoldása?

a) $(\operatorname{rang}(A) = n)$ Ekkor $O(A) = \mathbb{K}^n$, így

$$\forall i \in \{1,\ldots,n\}: e_i \in O(A),$$

azaz $Ax_i = e_i$ LER-nek egyértelműen létezik megoldása. X definíciója miatt $A^{-1} = X$, azaz létezik az A-nak inverze.

b) (rang(A) < n) Ekkor $O(A) \neq \mathbb{K}^n$ (azaz O(A) valódi altér), így

$$\exists j \in \{1,\ldots,n\}: e_j \notin O(A).$$

Az előző tételből következik, hogy $Ax_j = e_j$ -nek nem létezik megoldása, így az X mátrix sem állítható össze, azaz A-nak nincs inverze, azaz A szinguláris.

Regularitás/szingularitás ekvivalens jellemzései

 $A \in \mathbb{K}^{n \times n}$ reguláris $\exists A^{-1}$ $det(A) \neq 0$ rang(A) = nA oszlopai (F)

A sorai (F)

 $A \in \mathbb{K}^{n \times n}$ szinguláris

 $\not\exists A^{-1}$

 $\det(A) = 0$

rang(A) < n

A oszlopai (Ö)

A sorai (Ö

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n \qquad \Longrightarrow \qquad \boxed{A \mid e_1 e_2 e_3 \dots e_n}$$

isr	neretler	nek koo	jobb oldali vektorok							
$(x_i)_1$	$(x_i)_2$	$(x_i)_3$		$(x_i)_n$	e_1	e_2	e_3		e_n	
$\overline{a_{11}}$	a_{12}	a_{13}		a_{1n}	1	0	0		0	
a_{21}	a_{22}	a_{23}		a_{2n}	0	1	0		0	
a_{31}	a_{32}	a_{33}		a_{3n}	0	0	1		0	
:	÷	÷	:	:	:	:	:	٠	:	
a_{n1}	a_{n2}	a_{n3}		a_{nn}	0	0	0		1	

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n \qquad \Longrightarrow \qquad \boxed{A \mid e_1 e_2 e_3 \dots e_n}$$

isı	meretler	nek koo	job	jobb oldali vektorok					
$(x_i)_1$	$(x_i)_2$	$(x_i)_3$		$(x_i)_n$	b_1	b_2	b_3		b_n
a_{11}	a_{12}	a_{13}		a_{1n}	1	0	0		0
a_{21}	a_{22}	a_{23}		a_{2n}	0	1	0		0
a_{31}	a_{32}	a_{33}		a_{3n}	0	0	1		0
÷	:	:	:	:	:	:	:	٠	:
a_{n1}	a_{n2}	a_{n3}		a_{nn}	0	0	0		1

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n \qquad \Longrightarrow \qquad \boxed{A \mid e_1 e_2 e_3 \dots e_n}$$

isr	neretler	nek koo	jobb oldali vektorok						
$(x_i)_1$	$(x_i)_2$	$(x_i)_3$		$(x_i)_n$			b_3		b_n
0	1	0		0	1 11	b_{12}^{n}	b_{13}^{n}		b_{1n}^n
1	0	0		0	b_{21}^{n}	b_{22}^{n}	b_{23}^{n}		b_{2n}^n
0	0	1			b_{31}^{n}		b_{33}^{n}		b_{3n}^n
:	:	:	٠	:	:	:	:	٠	÷
0	0	0		1	b_{n1}^n	b_{n2}^n	b_{n3}^n		b_{nn}^n

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n \Longrightarrow$$

 $A \mid e_1 e_2 e_3 \dots e_n$

ismeretlenek koordinátái jobb oldali vektorok $(x_i)_1, (x_i)_2, (x_i)_2, \dots, (x_i)_n$ by $b_1, b_2, b_3, \dots, b_n$

$(x_i)_1$	$(x_i)_2$	$(\mathcal{I}_i)_3$		$(x_i)_n$	v_1	02	03		o_n	
0	1	0		0	b_{11}^{n}	b_{12}^{n}	b_{13}^{n}		b_{1n}^n	a mo-k 2. koordinátái
1	0	0		0	b_{21}^{n}	b_{22}^{n}	b_{23}^{n}		b_{2n}^n	a mo-k 1. koordinátái
0	0	1		0	b_{31}^{n}	b_{32}^{n}	b_{33}^{n}		b_{3n}^n	
÷	:	•	٠.	•	:	:	:	٠.	:	
0	0	0		1	b_{n1}^n	b_{n2}^n	b_{n3}^n		b_{nn}^n	
					161	162	760		1616	I

Megoldás:

Megoldás:

$$(x_j)_1 = b_{2j}^n$$

$$(x_j)_2 = b_{1j}^n$$

$$(x_j)_3 = b_{3j}^n$$

$$\vdots$$

$$(x_j)_n = b_{nj}^n$$

$$x_j = \begin{bmatrix} b_{2j}^n \\ b_{1j}^n \\ b_{3j}^n \\ \vdots \\ b_{nj}^n \end{bmatrix}$$

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n \qquad \Longrightarrow \qquad \boxed{A \mid e_1 e_2 e_3 \dots e_n}$$

ismeretlenek koordinátái jobb oldali vektorok

					J					
$(x_i)_1$	$(x_i)_2$	$(x_i)_3$		$(x_i)_n$	b_1	b_2	b_3		b_n	
1	0	0		0	b_{21}^{n}	b_{22}^{n}	b_{23}^{n}		b_{2n}^n	a mo-k 1. koordinátái
0	1	0		0	b_{11}^{n}	b_{12}^{n}	b_{13}^{n}		b_{1n}^n	a mo-k 2. koordinátái
0	0	1		0	b_{31}^{n}	b_{32}^{n}	b_{33}^{n}		b_{3n}^n	
:	:	:	٠.	:	:	:	:	٠.	:	
0	0	0		1	b_{n1}^n	b_{n2}^n	b_{n3}^n		b_{nn}^n	

$$A^{-1} = X = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix} = \begin{bmatrix} b_{21}^n & b_{22}^n & b_{23}^n & \dots & b_{2n}^n \\ b_{11}^n & b_{12}^n & b_{13}^n & \dots & b_{1n}^n \\ b_{31}^n & b_{32}^n & b_{33}^n & \dots & b_{3n}^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1}^n & b_{n2}^n & b_{n3}^n & \dots & b_{nn}^n \end{bmatrix}$$

x_1	x_2		x_i		x_n			x_1	x_2		x_j	 x_n	
$\frac{a_{11}}{a_{11}}$						b_1		a_{11}	a_{12}		a_{1j}	 a_{1n}	b_1
	a_{12}	• • •		• • •	a_{1n}	$\begin{vmatrix} b_1 \\ b_2 \end{vmatrix}$		a_{21}	a_{22}		a_{2j}	 a_{2n}	b_2
a_{21}	a_{22}	• • •	-3	• • •	a_{2n}	02	,	:	:		:	:	:
:	÷		:		:	:	\Longrightarrow	a_{i1}	a_{i2}		•	$\dot{a_{in}}$	b_i
a_{i1}	a_{i2}		a_{ij}		a_{in}	b_i					1	 	
:	:		÷		:	:		a_{ij}	a_{ij} .			a_{ij}	a_{ij}
a_{n1}					a_{nn}	b_n		:	:		:	÷	
α_{n_1}	a_{n2}	• • •	a_{nj}	• • •	ωnn	\mid $\circ n$		a_{n1}	a_{n2}		a_{nj}	 a_{nn}	b_n
		£	$A \mid b$				\Longrightarrow			$A^{\frac{1}{2}}$	$b^1 \mid b^1$		
			'								1		

x_1	x_2	x_i	 x_n			x_1	x_2		x_j		x_n	
a_{i1}	$ \begin{array}{c} x_2 \\ a_{12} \\ a_{22} \\ \vdots \\ a_{i2} \\ \vdots \\ a_{n2} \end{array} $	 a_{1j} a_{2j} \vdots	 a_{1n} a_{2n} \vdots a_{in} \vdots	$\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{array}$	\Rightarrow	a_{11} a_{21} \vdots a_{i1} a_{ij} \vdots	a_{12} a_{22} \vdots a_{i2} a_{ij} \vdots		a_{1j} a_{2j} \vdots 1 \vdots		a_{1n} a_{2n} \vdots a_{in} a_{ij} \vdots	$ \begin{array}{c} b_1 \\ b_2 \\ \vdots \\ \underline{b_i} \\ a_{ij} \\ \vdots \\ \vdots \end{array} $
701	702	A b	7070	, ,,	\Longrightarrow	a_{n1}	a_{n2}	$A^{\frac{1}{2}}$	a_{nj} $\begin{vmatrix} a_{nj} \\ b^1 \end{vmatrix}$	•••	a_{nn}	b_n

$$\boxed{\det(A^1) = \det(A) \cdot \frac{1}{a_{ij}}}$$

$$\det(A^l) = \det(A^{l-1}) \cdot \frac{1}{a_{i_l j_l}^{l-1}}$$

Ha nem tudunk minden sorból generáló elemet kiválasztani, akkor $\det(A) = 0$, hiszen A szinguláris.

Ha \boldsymbol{n} darab ciklust tudunk végigszámolni az algoritmus során, akkor teljes indukcióval igazolható:

$$\det(A^{1}) = \frac{1}{a_{i_{1}j_{1}}} \cdot \det(A)$$

$$\det(A^{2}) = \frac{1}{a_{i_{2}j_{2}}^{1}} \cdot \det(A^{1})$$

$$\vdots$$

$$\det(A^{n}) = \frac{1}{a_{i_{n}j_{n}}^{n-1}} \cdot \det(A^{n-1})$$

Ha nem tudunk minden sorból generáló elemet kiválasztani, akkor $\det(A)=0$, hiszen A szinguláris.

Ha \boldsymbol{n} darab ciklust tudunk végigszámolni az algoritmus során, akkor teljes indukcióval igazolható:

$$a_{i_1j_1} \cdot \det(A^1) = \det(A)$$
 $a_{i_2j_2}^1 \cdot \det(A^2) = \det(A^1)$
 \vdots
 $a_{i_nj_n}^{n-1} \cdot \det(A^n) = \det(A^{n-1})$

Ha nem tudunk minden sorból generáló elemet kiválasztani, akkor $\det(A) = 0$, hiszen A szinguláris.

Ha \boldsymbol{n} darab ciklust tudunk végigszámolni az algoritmus során, akkor teljes indukcióval igazolható:

$$\begin{array}{rcl} a_{i_1j_1} \cdot \det(A^1) & = & \det(A) \\ \\ a_{i_2j_2}^1 \cdot \det(A^2) & = & \det(A^1) \\ \\ & & \Longrightarrow & \det(A) = a_{i_1j_1} \cdot a_{i_2j_2}^1 \cdot \ldots \cdot a_{i_1j_n}^{n-1} \\ \\ \vdots & & \\ a_{i_nj_n}^{n-1} \cdot \det(A^n) & = & \det(A^{n-1}) \end{array}$$

det(A) = a generáló elemek szorzatával