RECUPERO DEI DATI ALGORITMI DI ORDINAMENTO

ALGORITMI E STRUTTURE DATI

Algoritmi Ricorsivi e Complesità

Algoritmi Ricorsivi

Fino a ora abbiamo visto algoritmi iterativi

Possiamo calcolarne la complessità contando il numero di iterazioni.

Possiamo sfruttare la ricorsione scrivendo gli algoritmi?

Come calcolarne la complessità?

Un Algoritmo Ricorsivo ... Familiare

```
def do_something (A, n=|A|):
  if n>1
     do_{-}something(A, n-1)
     i \leftarrow n
     while (j>1 \text{ and } A[j]< A[j-1]):
       swap(A, i-1, i)
       i\leftarrow i-1
     endwhile
  endif
enddef
```

Un Algoritmo Ricorsivo ... Familiare

```
def do_something (A, n=|A|):
  if n>1
     do_{-}something(A, n-1)
     i \leftarrow n
     while (j>1 \text{ and } A[j]< A[j-1]):
       swap(A, j-1, j)
       i\leftarrow i-1
     endwhile
  endif
enddef
```

Non è familiare questo codice? È insertion sort ricorsivo!

Come Calcolarne la Complessità?

Usando le equazioni ricorsive di complessità!!!

Se T(|A|) il tempo per risolvere il problema su A allora

Come Calcolarne la Complessità?

Usando le equazioni ricorsive di complessità!!!

Se T(|A|) il tempo per risolvere il problema su A allora

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n = 1 \\ T(n-1) + \Theta(n) & ext{se } n > 1 \end{array}
ight.$$

Per induzione, $T(|A|) \in \sum_{i=0}^{|A|} \Theta(i) = \Theta(|A|^2)$

Un Esempio Più Spinoso

```
def rec_find (A, v, l=1, r=|A|):
  if r < 1
    return 0
  endif
  m \leftarrow (l+r)/2
  if A[m]=v
    return m
  endif
  if A[m] > v
    return rec_find(A, v, l, m-1)
  else
    return rec_find(A, v, m+1, r)
  endif
enddef
```

Se n=1 o A[m]=v allora $T(n)\in\Theta(1)$. Altrimenti $T(n)\leq T(\lfloor n/2\rfloor-1)+\Theta(1)$

Se n = 1 o A[m] = v allora $T(n) \in \Theta(1)$. Altrimenti

$$T(n) \le T(|n/2|-1) + \Theta(1) \le T(n/2) + \Theta(1)$$

Se n = 1 o A[m] = v allora $T(n) \in \Theta(1)$. Altrimenti

$$T(n) \le T(\lfloor n/2 \rfloor - 1) + \Theta(1) \le T(n/2) + \Theta(1)$$

Poniamo $m \stackrel{\text{def}}{=} \log_2 n$ e $P(m) \stackrel{\text{def}}{=} T(2^m)$

Se n = 1 o A[m] = v allora $T(n) \in \Theta(1)$. Altrimenti

$$T(n) \le T(|n/2|-1) + \Theta(1) \le T(n/2) + \Theta(1)$$

Poniamo $m \stackrel{\text{def}}{=} \log_2 n$ e $P(m) \stackrel{\text{def}}{=} T(2^m)$

$$P(m) = T(2^m)$$

 $\leq T(2^m/2) + \Theta(1)$
 $= T(2^{m-1}) + \Theta(1) = P(m-1) + \Theta(1)$

Quindi
$$P(m) \le \sum_{i=0}^m \Theta(1) = \Theta(m), \ P(m) \in O(m)$$
 e ...
$$T(|A|) = P(\log_2 |A|) = O(\log |A|)$$

Quando l'Equazione è Più Complicata?

Per esempio:

$$T(i) = \begin{cases} \Theta(1) & \text{se } i = 1\\ 2 * T(i/2) + \Theta(i) & \text{se } i > 1 \end{cases}$$

Tre metodi:

- metodo di sostituzione
- ▶ l'albero di ricorsione
- ▶ il teorema dell'esperto

Metodo di Sostituzione

Il Metodo di Sostituzione

Due passi:

- 1. ipotizzo una complessità per T(n)
- dimostro per induzione che esistono delle costanti che soddisfano l'ipotesi

Il Metodo di Sostituzione: Un Esempio

Es.
$$T(n) = 2 * T(n/2) + O(n)$$

- **1.** ipotizzo che $T(n) \in O(n \log n)$
- **2.** assumo che $\exists c \ \forall m < n \ T(m) \le c * m * \log_2 m$

Il Metodo di Sostituzione: Un Esempio

Es.
$$T(n) = 2 * T(n/2) + O(n)$$

- **1.** ipotizzo che $T(n) \in O(n \log n)$
- **2.** assumo che $\exists c \ \forall m < n \ T(m) \leq c * m * \log_2 m$

$$T(n) \le 2 * T(n/2) + c' * n$$

$$\le 2 * (c * n/2 * log_2(n/2)) + c' * n$$

$$= c * n * log_2(n/2) + c' * n$$

$$= c * n * log_2(n) - c * n * log_2(2) + c' * n$$

Se scelgo c' < c, allora $T(n) \le c * n * log_2(n)$.

La costante c è la **stessa** per ogni n

Il Metodo di Sostituzione: Come NON fare

Es.
$$T(n) = 3 * T(n/2) + O(n)$$

- **1.** ipotizzo che $T(n) \in O(n * \log n)$
- 2. assumo che $\exists c \ \forall m < n \ T(m) < c * m * \log_2 m$

$$\leq 3 * (c * n/2 * log_2(n/2)) + c' * n$$

$$= \frac{3}{2} * c * n * log_2(n/2) + c' * n$$

$$= \frac{3}{2} * c * n * log_2(n) - c * n * log_2(2) + c' * n$$

$$\leq c * \frac{3}{2} * n * log_2(n)$$

Il Metodo di Sostituzione: Come NON fare

Es.
$$T(n) = 3 * T(n/2) + O(n)$$

- **1.** ipotizzo che $T(n) \in O(n * \log n)$
- **2.** assumo che $\exists c \ \forall m < n \ T(m) \le c * m * \log_2 m$

$$\leq 3 * (c * n/2 * log_2(n/2)) + c' * n$$

$$= \frac{3}{2} * c * n * log_2(n/2) + c' * n$$

$$= \frac{3}{2} * c * n * log_2(n) - c * n * log_2(2) + c' * n$$

$$\leq c * \frac{3}{2} * n * log_2(n)$$

La costante per m < n era c, mentre per $n \stackrel{?}{e} \frac{3}{2} * c$

Albero di Ricorsione

Albero di Ricorsione

Costruisci un albero (grafo connesso aciclico) in cui ogni nodo:

- rappresenta una chiamata ricorsiva
- corrisponde al costo della chiamata senza i passi ricorsivi
- ▶ è collegato alle chiamate ricorsive che genera

Sommando il costo di tutti i nodi, otteniamo il costo totale.

Albero di Ricorsione: Un Esempio

Consideriamo l'equazione

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ 8 * T(n/2) + \Theta(n^2) & \text{se } m > 1 \end{cases}$$

Albero di Ricorsione: Un Esempio

Consideriamo l'equazione

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1\\ 8 * T(n/2) + \Theta(n^2) & \text{se } m > 1 \end{cases}$$

Scegliamo una funzione in $\Theta(n^2)$ (es. $c * n^2$)

Albero di Ricorsione: Un Esempio

Consideriamo l'equazione

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ 8 * T(n/2) + \Theta(n^2) & \text{se } m > 1 \end{cases}$$

Scegliamo una funzione in $\Theta(n^2)$ (es. $c * n^2$)

Se m è la dimensione dell'input per una chiamata:

- ▶ il costo su una chiamata è cm²
- ogni nodo dell'albero ha 8 figli (le chiamate ricorsive)
- m si dimezza a ogni chiamata ricorsiva

$$T_M(n) = cn^2 \left(1 + 2 + \ldots + 2^i + \ldots + 2^{\log_2 n}\right)$$

$$T_{M}(n) = cn^{2} \left(1 + 2 + \dots + 2^{i} + \dots + 2^{\log_{2} n} \right)$$
$$= cn^{2} \left(2^{1 + \log_{2} n} - 1 \right) = cn^{2} \left(2n - 1 \right) \in \Theta(n^{3})$$

Il Metodo dell'Esperto

Metodo dell'Esperto

Theorem (Teorema dell'Esperto)

Siano $a \ge 1$ e b > 1 due costanti, f(n) una funzione ≥ 0 e

$$T(n) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} \Theta(1) & se \ n = 1 \\ a * T(n/b) + f(n) & altrimenti \end{array} \right.$$

Se, per qualche costante ϵ , f(n) sta in

- **1.** $O(n^{\log_b a \epsilon})$, allora $T(n) \in \Theta(n^{\log_b a})$;
- **2.** $\Theta\left(n^{\log_b a}\right)$, allora $T(n) \in \Theta(n^{\log_b a} * \log n)$;
- 3. $\Omega\left(n^{\log_b a + \epsilon}\right)$ e $a * f(n/b) \le c * f(n)$ per qualche c < 1 e n sufficientemente grande, allora $T(n) \in \Theta(f(n))$.

Consideriamo:

$$T(n) = 9 * T(n/3) + O(n)$$
: $a = 9$, $b = 3$ e $f(n) \in O(n^{\log_3 9 - \epsilon})$) con $\epsilon = 1$ quindi Caso $1 \Rightarrow T(n) \in \Theta(n^2)$

Consideriamo:

$$T(n) = 9 * T(n/3) + O(n)$$
: $a = 9$, $b = 3$ e $f(n) \in O(n^{\log_3 9 - \epsilon})$) con $\epsilon = 1$ quindi Caso $1 \Rightarrow T(n) \in \Theta(n^2)$

$$T(n) = T(2 * n/3) + 1$$
: $a = 1$, $b = 3/2$ e $f(n) \in \Theta(n^{\log_{3/2} 1}) = \Theta(1)$ quindi Caso $2 \Rightarrow T(n) \in \Theta(\log n)$

Consideriamo:

$$T(n) = 9 * T(n/3) + O(n)$$
: $a = 9$, $b = 3$ e $f(n) \in O(n^{\log_3 9 - \epsilon})$) con $\epsilon = 1$ quindi Caso $1 \Rightarrow T(n) \in \Theta(n^2)$

$$T(n) = T(2 * n/3) + 1$$
: $a = 1$, $b = 3/2$ e $f(n) \in \Theta(n^{\log_{3/2} 1}) = \Theta(1)$ quindi Caso $2 \Rightarrow T(n) \in \Theta(\log n)$

$$T(n) = 3 * T(n/4) + n * \log n$$
: $a = 3$, $b = 4$ e $f(n) \in \Omega(n^{\log_4 3 + \epsilon})$ con $\epsilon \approx 0.2$ quindi Caso $3 \Rightarrow T(n) \in \Theta(n * \log n)$

Consideriamo:

$$T(n) = 2 * T(n/2) + n * \log n$$
: $a = 2$, $b = 2$ e $f(n) \in \Omega(n^{\log_2 2})$.

Sfortunatamente,

$$\lim_{n\to\infty}\frac{n*\log n}{n^{1+\epsilon}}=0$$

per ogni $\epsilon > 0$ e **NON** si può applicare il teorema dell'esperto.

Dimostrazione

Lemma

Siano $a \ge 1$ e b > 1 due costanti, f(n) una funzione ≥ 0 e

$$T(n) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} \Theta(1) & se \ n = 1 \\ a * T(n/b) + f(n) & se \ n = b^i \end{array} \right.$$

dove i è un naturale positivo. Allora

$$T(n) \in \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

Dim. tramite l'albero di ricorsione.

Dimostrazione (Cont'd)

Lemma

Siano $a \ge 1$ e b > 1 due costanti, f(n) una funzione ≥ 0 e:

$$g(n) \stackrel{\text{def}}{=} \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$

- **1.** se $f(n) \in O(n^{\log_b a \epsilon})$, allora $g(n) \in O(n^{\log_b a})$;
- **2.** se $f(n) \in \Theta\left(n^{\log_b a}\right)$, allora $g(n) \in \Theta(n^{\log_b a} \log n)$;
- 3. se $a * f(n/b) \le cf(n)$ per qualche c < 1 e n sufficientemente grande, allora $g(n) \in \Theta(f(n))$.

Dim. tramite sostituzione delle condizioni