SAVEMORE analysis

Lina Kramer

1.03.2025

Contents

1.	Data overview
2.	Descriptives
	2.1. Table 1
	2.2. Missingness
	2.3. 28-day survival
	2.5. IL-6 over time
3.	Models
	3.1. Linear-mixed model for IL-6 over time
	3.2. Cox proportional hazards models
	3.3. Joint models
4.	Results
	4.1. Indirect, direct, and total effects
	4.2. Association parameter
	4.4. Conclusions
5.	Model checks
	5.1. Longitudinal submodel
	5.2 Survival submodel
	5.1. 28-day endpoint
	5.2. 90-day endpoint

1. Data overview

- Exposure: anakinra vs. placebo.
- $\bullet\,$ Survival outcome: 28-day and 90-day survival.
- $\bullet\,$ Mediator: IL6 on days 1, 4 and 7.

2. Descriptives

2.1. Table 1

##	:	Stratified by	randomized_group
##		Placebo	Anakinra
##	n	187	401
##	death_d28 = 1 (%)	13 (7.0)	13 (3.2)
##	$death_d90 = 1 (\%)$	19 (10.2)	22 (5.5)
##	il6_1 (mean (SD))	1.26 (0.57)	1.20 (0.54)
##	il6_4 (mean (SD))	1.05 (0.59)	0.91 (0.55)
##	il6_7 (mean (SD))	0.99 (0.63)	0.80 (0.57)
##	sex = male (%)	106 (56.7)	235 (58.6)
##	age (mean (SD))	61.53 (11.33)	62.09 (12.43)

```
## bmi (mean (SD)) 29.73 (5.49) 29.40 (5.53)
## sofa (mean (SD)) 2.46 (1.15) 2.38 (1.11)
```

2.2. Missingness Of 593 patients, 5 have no IL6 biomarker measures. They are not included in any of the analyses.

For the 588 subjects who do have IL6 measures, this is the pattern of missingness:

missing_savemore <- mice::md.pattern(savemore_wide, rotate.names = TRUE, plot = TRUE)</pre>

Placebo -

Anakinra

2.3. 28-day survival

2.4. 90-day survival

```
class(savemore_surv$death_d90) <- "integer"

survfit2(Surv(time_mort90, death_d90) ~ randomized_group, data = savemore_surv) %>%
    ggsurvfit() +
    scale_ggsurvfit(x_scales= list(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90)))+
    ylim(c(.75, 1))+
    xlab("days")
```


IL-6 concentration on days 1, 4 and 7

2.5. IL-6 over time

3. Models

3.1. Linear-mixed model for IL-6 over time

```
## Linear mixed-effects model fit by REML
     Data: savemore_long
##
##
          AIC
                   BIC
                          logLik
     2663.727 2701.633 -1324.863
##
##
## Random effects:
## Formula: ~day | record.id
## Structure: General positive-definite, Log-Cholesky parametrization
##
              StdDev
                          Corr
## (Intercept) 0.34478060 (Intr)
## day
              0.05371349 -0.28
## Residual
              0.42544483
##
## Fixed effects: conc_log10 ~ day:randomized_group + day
                                     Value
                                             Std.Error
                                                         DF t-value p-value
                                 1.2484091 0.024396881 1074 51.17085
## (Intercept)
                                                                       0e+00
## day
                                -0.0412061 0.007195113 1074 -5.72695
                                                                       0e+00
## day:randomized_groupAnakinra -0.0269798 0.007669486 1074 -3.51780
                                                                       5e-04
## Correlation:
##
                                (Intr) day
## day
                                -0.467
## day:randomized_groupAnakinra 0.004 -0.736
##
## Standardized Within-Group Residuals:
           Min
                        Q1
                                   Med
                                                QЗ
## -2.54974446 -0.58093507 -0.06755401 0.53782487 4.71086242
##
## Number of Observations: 1664
## Number of Groups: 588
## Approximate 95% confidence intervals
##
## Fixed effects:
##
                                      lower
                                                   est.
                                                               upper
## (Intercept)
                                 1.20053819 1.24840915 1.29628010
                                -0.05532416 -0.04120608 -0.02708801
## day
## day:randomized_groupAnakinra -0.04202863 -0.02697975 -0.01193088
library(sjPlot)
library(sjmisc)
theme_set(theme_sjplot())
plot_model(lmefit.savemore, type = "int", terms = c("randomized_group", "day"))
```

Predicted values of conc_log10


```
# save the interaction estimate
a_res <- get_int(lmefit.savemore, "randomized_groupAnakinra")
saveRDS(a_res, "SAVEMORE_beta_est.rds")</pre>
```

3.2. Cox proportional hazards models For 28-day and 90-day survival.

```
# Fit cox proportional hazard model
coxfit.savemore28 <- coxph(Surv(time_mort28, death_d28) ~ randomized_group, data = savemore_surv, x = T.
summary(coxfit.savemore28)</pre>
```

3.2.1. 28-day survival

```
## Call:
## coxph(formula = Surv(time_mort28, death_d28) ~ randomized_group,
##
      data = savemore_surv, x = TRUE)
##
    n= 588, number of events= 26
##
##
##
                              coef exp(coef) se(coef)
                                                          z Pr(>|z|)
## randomized_groupAnakinra -0.7883
                                      0.4546 0.3922 -2.01
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                           exp(coef) exp(-coef) lower .95 upper .95
                                            2.2
                                                   0.2108
                                                             0.9807
## randomized_groupAnakinra
                              0.4546
## Concordance= 0.595 (se = 0.049)
```

```
= 4.04 on 1 df, p=0.04
## Wald test
## Score (logrank) test = 4.25 on 1 df,
                                        p=0.04
confint(coxfit.savemore28) %>% exp() %>% round(3)
                          2.5 % 97.5 %
## randomized_groupAnakinra 0.211 0.981
# Fit cox proportional hazard model
coxfit.savemore90 <- coxph(Surv(time_mort90, death_d90) ~ randomized_group, data = savemore_surv, x = T
summary(coxfit.savemore90)
3.2.2. 90-day survival
## Call:
## coxph(formula = Surv(time_mort90, death_d90) ~ randomized_group,
      data = savemore_surv, x = TRUE)
##
##
    n= 588, number of events= 41
##
##
##
                             coef exp(coef) se(coef)
                                                        z Pr(>|z|)
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                          exp(coef) exp(-coef) lower .95 upper .95
## randomized_groupAnakinra
                             0.5225
                                        1.914
                                                 0.2828
## Concordance= 0.577 (se = 0.039)
## Likelihood ratio test= 4.16 on 1 df, p=0.04
                    = 4.3 on 1 df,
                                       p=0.04
## Score (logrank) test = 4.45 on 1 df,
                                        p=0.03
confint(coxfit.savemore90) %>% exp() %>% round(3)
                          2.5 % 97.5 %
## randomized_groupAnakinra 0.283 0.965
3.3. Joint models Using 28- and 90-day survival as endpoints.
set.seed(15)
# Fit joint model for 28 day survival
jointfit.savemore_28 <- JMbayes2::jm(coxfit.savemore28, lmefit.savemore, time_var = "day", n_chains = "
# save results
saveRDS(jointfit.savemore_28, "jointfit.savemore_28.rds")
# Fit joint model for 90 day survival
jointfit.savemore_90 <- JMbayes2::jm(coxfit.savemore90, lmefit.savemore, time_var = "day", n_chains = "
saveRDS(jointfit.savemore_90, "jointfit.savemore_90.rds")
```

p=0.05

Likelihood ratio test= 3.94 on 1 df,

3.3.1. 28-day endpoint

```
##
## Call:
## JMbayes2::jm(Surv_object = coxfit.savemore28, Mixed_objects = lmefit.savemore,
       time_var = "day", n_chains = 2, n_iter = 50000L, n_burnin = 5000L,
##
       n thin = 5)
##
##
## Data Descriptives:
## Number of Groups: 592
                                Number of events: 26 (4.4%)
## Number of Observations:
     conc_log10: 1661
##
##
##
                            WAIC
                                       LPML
                    DIC
## marginal
               2907.000 2971.415 -1550.877
## conditional 1460.744 2731.342 -21749.354
## Random-effects covariance matrix:
##
          StdDev
##
                   Corr
## (Intr) 0.3143 (Intr)
## day
         0.0415 0.0869
## Survival Outcome:
                              Mean StDev
                                             2.5% 97.5%
                                                              Р
## randomized_groupAnakinra 0.2423 0.7734 -1.2396 1.8143 0.7589 1.0001
                            3.0819 0.9965 1.4228 5.3825 0.0000 1.0314
## value(conc_log10)
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
                  Mean StDev
                                 2.5%
                                        97.5%
                                                   Ρ
## (Intercept) 1.1850 0.0212 1.1427 1.2265 0.0000 1.0038
## day
               -0.0409 0.0077 -0.0560 -0.0258 0.0000 1.0017
               -0.0260 0.0085 -0.0431 -0.0094 0.0016 1.0001
## d:_A
               0.4344 0.0109 0.4133 0.4563 0.0000 1.0011
## sigma
##
## MCMC summary:
## chains: 2
## iterations per chain: 50000
## burn-in per chain: 5000
## thinning: 5
## time: 12.1 min
3.3.2. 90-day endpoint
##
## JMbayes2::jm(Surv_object = coxfit.savemore90, Mixed_objects = lmefit.savemore,
       time_var = "day", n_chains = 2, n_iter = 50000L, n_burnin = 5000L,
##
##
       n_{thin} = 5
## Data Descriptives:
## Number of Groups: 592
                                Number of events: 41 (6.9%)
## Number of Observations:
##
     conc_log10: 1661
##
```

```
##
                       DIC
                                    WAIC
                                                  LPML
                  3311.347 6.021164e+03 -4.206220e+03
## marginal
## conditional 3447233.293 6.678743e+16 -6.634874e+10
## Random-effects covariance matrix:
##
          StdDev
##
                   Corr
## (Intr) 0.3224 (Intr)
##
  day
          0.0667 -0.1341
##
## Survival Outcome:
                               Mean StDev
                                               2.5% 97.5%
##
                                                                     Rhat
## randomized_groupAnakinra -0.1051 0.9359 -2.1706 1.6944 0.9277 1.0621
                             1.9649 0.5242 0.9024 2.7771 0.0000 1.3804
## value(conc_log10)
##
## Longitudinal Outcome: conc_log10 (family = gaussian, link = identity)
##
                  Mean StDev
                                 2.5%
                                         97.5%
                                                    Ρ
## (Intercept) 1.1629 0.0295 1.1044 1.2164 0.0000 1.3484
               -0.0308 0.0136 -0.0535 -0.0030 0.0254 1.4917
## day
## d: A
               -0.0290 0.0105 -0.0506 -0.0094 0.0030 1.0976
## sigma
                0.4282 0.0113 0.4063 0.4508 0.0000 1.0032
##
## MCMC summary:
## chains: 2
## iterations per chain: 50000
## burn-in per chain: 5000
## thinning: 5
## time: 5 min
4. Results
4.1. Indirect, direct, and total effects Of anakinra through IL6 on the hazard of death.
res28 <- get_effects(jointfit.savemore_28, coxfit.savemore28,</pre>
                     "randomized_groupAnakinra") %>% cbind(endpoint =c("28-day endpoint"))
res28
##
             effect
                                  CI_lower
                                               CI_upper
                                                                endpoint
                             est
## 1
             direct 0.24229995 -1.2395534 1.81427247 28-day endpoint
## 2
           indirect -0.08003438 -0.1567002 -0.02451719 28-day endpoint
## 3 total (Cox-PH) -0.78825892 -1.5570289 -0.01948896 28-day endpoint
         total (JM) 0.16226557 -1.3027106 1.70492160 28-day endpoint
res90 <- get_effects(jointfit.savemore_90, coxfit.savemore90,</pre>
                     "randomized_groupAnakinra") %>% cbind(endpoint =c("90-day endpoint"))
res90
##
                            est CI_lower
                                              CI_upper
                                                               endpoint
             effect
## 1
             direct -0.10505573 -2.170580
                                           1.69444173 90-day endpoint
           indirect -0.05689723 -0.126946 -0.01364629 90-day endpoint
## 3 total (Cox-PH) -0.64909520 -1.262941 -0.03524972 90-day endpoint
```

total (JM) -0.16195296 -2.246248 1.60819108 90-day endpoint

```
res <- rbind(res28, res90)
saveRDS(res, "savemore_res.rds")

res %>%
    ggplot(aes(y = effect))+
    theme_grey()+
    geom_point(aes(x=exp(est)), shape=15, size=2) +
    geom_linerange(aes(xmin=exp(CI_lower), xmax=exp(CI_upper))) +
    geom_vline(xintercept = 1, linetype="dashed") +
    labs(x="Hazard Ratio", y= "")+
    scale_x_continuous(trans = "log2")+
    facet_grid(~endpoint)
```


4.2. Association parameter Hazard ratio estimate and 95% CI for the association parameter α for a one unit increase (at any time point) of IL-6 and the hazard of death over 28 days.

```
# save association estimates
alpha_28 <- get_alpha(jointfit.savemore_28, "28-day endpoint")
alpha_90 <- get_alpha(jointfit.savemore_90, "90-day endpoint")
alpha_est <- rbind(alpha_28, alpha_90)
saveRDS(alpha_est, "SAVEMORE_alpha_est.rds")</pre>
```

4.4. Conclusions

- From lime and JM we can conclude that there is an effect of anakinra over time on IL-6.
- From joint model we conclude 1) that there is no direct effect of anakinra on survival when controlling

for IL-6, 2) there is an association between IL-6 and survival, and (3) some of the effect of anakinra is mediated by IL-6.

5. Model checks

```
# get fitted values
fitted_values<- fitted(lmefit.savemore)
savemore_long <- savemore_long %>% drop_na(conc_log10)

# plot observed vs fitted values
ggplot(data = savemore_long, aes(x = fitted_values, y = conc_log10)) +
    geom_point() +
    geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") + # Line of perfect fit
    labs(x = "Fitted Values", y = "Observed Values") +
    ggtitle("Fitted vs Observed Values") +
    theme_minimal()
```

Fitted vs Observed Values

5.1. Longitudinal submodel

```
# get residuals
residuals_values <- resid(lmefit.savemore)

# plot residuals vs time
ggplot(savemore_long, aes(x = day, y = residuals_values)) +
  geom_jitter(width = 0.3, alpha = 0.5) +
  labs(x = "Day", y = "Residuals") +
  ggtitle("Residuals by day") +
  theme_minimal()</pre>
```



```
# get random effects
random_effects <- ranef(lmefit.savemore)

#plot random effects
ggplot(random_effects, aes(x = c(1:nrow(savemore_surv)), y = `(Intercept)`)) +
    geom_point() +
    geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
    labs(x = "Subjects", y = "Random Intercept") +
    ggtitle("Random Effects (Intercepts by Subject)") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



```
#plot random effects
ggplot(random_effects, aes(x = c(1:nrow(savemore_surv)), y = `day`)) +
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
  labs(x = "Subjects", y = "Random slope deviations") +
  ggtitle("Random Effects (Slope for day)") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


qq plot for residuals
qqnorm(resid(lmefit.savemore))
qqline(resid(lmefit.savemore), col = "red")

Global Schoenfeld Test p: 0.2947

5.2 Survival submodel

```
ggtraceplot(jointfit.savemore_28, "gammas")
```


5.1. 28-day endpoint

ggtraceplot(jointfit.savemore_28, "alphas")

ggtraceplot(jointfit.savemore_90, "gammas")

5.2. 90-day endpoint

ggtraceplot(jointfit.savemore_90, "alphas")

ggtraceplot(jointfit.savemore_90, "betas")

