МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ Институт системной и программной инженерии и информационных технологий (Институт СПИНТех)

Лабораторный практикум по курсу "Нейронные сети"

Лабораторная работа 1. Трудоёмкость алгоритма обработки данных. Моделирование функций активации нейрона.

1. Основные теоретические сведения

Нейронная сеть головного мозга содержит 10^{10} - 10^{11} нейронов, при этом каждая нервная клетка связана в среднем с 10^3 - 10^4 других нейронов, образуя в целом около 60×10^{12} синаптических связей. Установлено, что совокупность нейронов центральной нервной системы в объеме 1 мм^3 формирует достаточно независимую локальную биологическую нейронную сеть (БНС), несущую определенную функциональную нагрузку. Быстродействие БНС на пять-шесть порядков ниже, чем быстродействие элементов современных ИС: БНС -10^{-3} с., ИС -10^{-9} с. При этом энергетическая эффективность БНС равна 10^{-16} Дж на операцию в секунду, тогда как энергетическая эффективность современной ЭВМ, осуществляющей операции на основе бинарной логики, составляет порядка 10^{-6} Дж на операцию в секунду.

Нейроны образуют два характерных типа соединений - конвергентные, в которых число нейронов предыдущего слоя превосходит число нейронов последующего слоя, и дивергентные, в которых контакты осуществляются со все возрастающим числом клеток последующих слоев иерархии. Сочетание конвергентных и дивергентных соединений обеспечивает многократное дублирование информационных каналов, что собственно и определяет высокую надежность БНС. При повреждении или исчезновении части нервных клеток сохранившиеся нейроны оказываются в состоянии поддерживать функционирование сети.

Выделяют три основных типа БНС, отличающихся структурой и назначением.

К БНС первого типа относятся *иерархические сети*, наиболее часто встречающиеся в сенсорных и двигательных путях. Передача информации в иерархических сетях осуществляется в процессе последовательного перехода от одного структурного уровня к другому.

К БНС второго типа относятся *покальные сети*, формируемые нейронами с ограниченными зонами влияния. Нейроны таких сетей производят переработку информации в пределах одного иерархического уровня. При этом с функциональной точки зрения локальная БНС представляет собой достаточно изолированную тормозящую или возбуждающую структуру.

БНС третьего типа принято считать *дивергентные сети с одним входом*. Базовый нейрон, находящийся в основании данной сети, может оказывать воздействие на целую совокупность нейронов, а потому дивергентные сети с одним входом являются эффективным согласующим инструментом в сложном переплетении нейронно-сетевых архитектур всех типов.

Принципиальные отличия в функционировании БНС и последовательных ЭВМ приведены в табл.1 [1].

 Таблица 1.

 Сравнение особенностей функционирования БНС и последовательных ЭВМ.

Параметры	Последовательная ЭВМ	БНС
Процессор	Сложный	Простой
	Высокоскоростной	Низкоскоростной
	Один или несколько	Большое количество
Память	Отделена от процессора	Интегрирована в процессор
	Локализованная	Распределенная
	Адресация не по содержанию	Адресация по содержанию
Вычисления	Централизованные	Распределенные
	Последовательные	Параллельные
	Хранимые программы	Самообучение
Надежность	Высокая уязвимость	Живучесть
Специализация	Численные и символьные операции	Проблемы восприятия

Отметим важнейшие свойства БНС:

- 1. обработка информации в БНС осуществляется в *параллельном режиме*. Каждый нейрон формирует свой выход только на основе своих входов и собственного внутреннего состояния под воздействием общих механизмов регуляции нервной системы;
- 2. БНС обладают способностью к комплексной обработке информации. К этой группе свойств относятся *ассоциативность* (сеть может восстанавливать полный образ по его части), способность к классификации, обобщению, абстрагированию и множество других;
- 3. функционирование БНС отличается высокой степенью самоорганизации. В процессе работы они самостоятельно, под воздействием внешней среды, обучаются решению разнообразных задач. Не существует никаких принципиальных ограничений на сложность задач, решаемых БНС. Нервная система сама формирует алгоритмы своей деятельности, уточняя и усложняя их в течение жизни;
- 4. БНС являются *аналоговыми системами*. Информация поступает в сеть по большому количеству каналов и кодируется по пространственному принципу: вид информации определяется номером нервного волокна, по которому она передается. Амплитуда входного воздействия кодируется плотностью нервных импульсов, передаваемых по волокну;

БНС обладают чрезвычайно высокой надежностью: выход из строя даже 10% нейронов в нервной системе не прерывает их работы.

Таким образом, за счет использования новой математической модели, а также её программного или аппаратного воплощения можно существенно повысить эффективность вычислительного процесса и его масштабируемость (англ. scalability).

В настоящей лабораторной работе изучается вопрос оценки трудоемкости алгоритма на примере прямой реализации преобразования Фурье непрерывных во времени сигналов, а также его эффективного, быстрого аналога - БПФ. В дополнение осуществляется программирование и визуализация набора функций активации нейрона.

1.1. Преобразование Фурье непрерывных во времени сигналов

Основная цель каждого преобразования состоит в том, чтобы сформулировать исходную проблему в альтернативной форме, с целью *упрощения ее решения* (снижения *трудоемкости обработки данных*). Это утверждение справедливо и для преобразования Фурье, являющегося мощным математическим инструментом для решения широкого круга физических, инженерных и иных технических задач.

В системах компьютерного зрения, медицинской визуализации (томографии) можно выделить три взаимосвязанных области, в которых использование преобразования Фурье является одной из важнейших процедур вычислительного процесса. Это обработка исходных измерительных данных, собственно реализация распознавания (реконструктивного алгоритма), а также анализ и фильтрация полученного изображения.

В рамках настоящего задания мы сосредоточим свое внимание на применении преобразования Фурье в теории сигналов и оценки эффективности алгоритма. В качестве данных при этом будут использованы гармонические сигналы как функции времени. В такой постановке преобразование Фурье формирует представление сигнала в новом базисе, а именно его временной спектр.

Фурье-преобразование сигнала, являющегося временной функцией, имеет вид

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt.$$
 (1)

Операция обращения

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 (2)

соответствует обратному преобразованию Фурье.

В выражениях (1–2) x(t)- зависящий от времени сигнал, $X(\omega)$ – его фурье-образ. Фурье-образ и его обратное значение определены в предположении, что оба вышеприведенных интеграла существуют. Условия существования интегралов, т.е. вытекающие из этих условий требования к x(t), равно как и к $X(\omega)$, анализируются в общих математических курсах.

1.2. Дискретное во времени преобразование Фурье

Методы цифровой обработки сигналов основаны на представлении исходного сигнала в виде массива его дискретных значений. Процесс дискретизации можно интерпретировать перемножение исходного непрерывного сигнала с последовательностью эквидистантных дельтафункций

$$a(t) = \sum_{n = -\infty}^{\infty} \delta(t - n\Delta), \tag{3}$$

с интервалом дискретизации Δ и частотой дискретизации $f_s = \frac{1}{\Delta}$. Для фурье-образа сигнала, представленного в виде выборочных данных $x_a(t) = x(t)a(t)$, будем иметь

$$X_{a}(\omega) = \int_{-\infty}^{\infty} x_{a}(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} x(t)a(t)e^{-j\omega t}dt.$$
 (4)

Вычисление интеграла с учетом (3) соответствует дискретному во времени преобразованию Фурье

$$X_a(\omega) = \sum_{-\infty}^{\infty} x_n e^{-j\omega n\Delta}$$
 (5)

с $x_n = x(n\Delta)$. Эквивалентное (2) обратное преобразование Фурье выражается в виде

$$x_n = \frac{\Delta}{2\pi} \int_{-\pi/\Delta}^{\pi/\Delta} X_a(\omega) e^{j\omega n\Delta} d\omega.$$
 (6)

Взаимосвязь между $X_a(\omega)$ и $X(\omega)$ можно легко установить, используя теорему о свертке. Произведению двух сигналов во временной области соответствует свертка их фурье-образов в пространстве частот. Другими словами, справедливо следующее равенство

$$X_{a}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(v) A(\omega - v) dv, \qquad (7)$$

в котором фурье-образ a(t), записанный в форме разложения в ряд Фурье

$$a(t) = \frac{1}{\Delta} \sum_{-\infty}^{\infty} e^{j\frac{2\pi n}{\Delta}t}, \qquad (8)$$

может быть представлен в виде

$$A(\omega) = \int_{-\infty}^{+\infty} a(t)e^{-j\omega t}dt = \frac{2\pi}{\Delta} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{\Delta}\right). \tag{9}$$

С учетом (8-9), интеграл свертки (7) имеет вид

$$X_{a}(\omega) = \frac{1}{\Delta} \sum_{n=-\infty}^{\infty} X\left(\omega - \frac{2\pi n}{\Delta}\right). \tag{10}$$

Нетрудно видеть, что фурье-образ дискретизованного сигнала является периодическим с периодом $2\pi/\Delta$ и представляет собой периодически продолженную версию фурье-образа исходного непрерывного во времени сигнала. Отсюда следует, что применение дискретного преобразования Фурье к сигналам с неограниченной шириной спектра должно сопровождаться перекрытием смежных спектральных областей. Этот эффект получил название эффекта наложения (Aliasing). В практических приложениях устранение частотного наложения достигается низкочастотной фильтрацией исходного сигнала. При этом частота дискретизации f_s отфильтрованного сигнала должна быть по крайней мере в два раза выше граничной частоты фильтра f_c :

$$f_s > 2f_c. (11)$$

Данное условие называется критерием Найквиста.

1.3. Конечное преобразование Фурье

На практике в качестве входной информации доступно лишь ограниченное количество дискретных отсчетов x_n (n=0,1,...,N-1). По этой причине вместо фурье-образа (5) вычисляется его конечномерный аналог

$$X^{N}(\omega) = \sum_{n=0}^{N-1} x_n e^{-j\omega n\Delta}, \qquad (12)$$

где N соответствует количеству выборочных элементов. Данное преобразование известно как конечное преобразование Фурье.

Последствия использования конечного числа дискретных значений можно установить снова с помощью сверточной теоремы. Ограничение размерности выборки может быть интерпретировано как произведение дискретизованного сигнала с гребенчатой прямоугольной функцией

$$\omega_n = \begin{cases} 1 & n \in [0, N-1] \\ 0 & n \notin [0, N-1] \end{cases}$$
 (13)

Данному произведению, в свою очередь, соответствует свертка $X_a(\omega)$ с известным фурьеобразом прямоугольного окна

$$W^{N}(\omega) = \sum_{n=-\infty}^{\infty} \omega_{n} e^{-j\omega n\Delta} = e^{-j\omega(N-1)} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$$
(14)

в частотной области:

$$X^{N}(\omega) = \sum_{n=-\infty}^{\infty} x_{n} \omega_{n} e^{-j\omega n\Delta} = \frac{\Delta}{2\pi} \int_{-\pi/\Lambda}^{\pi/\Delta} X_{a}(v) W^{N}(\omega - v) dv.$$
 (15)

Свертка (15) приводит к искажениям $X_a(\omega)$, которые определяются конечной шириной так называемого главного лепестка и уровнем боковых лепестков $W^N(\omega)$. Оба эффекта зависят от формы и ширины выбранного окна. В общем виде справедливо: чем шире окно, т.е. чем больше дискретных отсчетов находится в распоряжении для последующей обработки, тем уже главный лепесток и слабее боковые лепестки, т.е. лучше частотная разрешающая способность.

Часто с целью достижения оптимального компромисса по ширине главного лепестка и высоты боковых лепестков вместо окна прямоугольной формы используют другие окна. Эффекты, связанные с выбором того или иного окна, будут рассматриваться позднее применительно к обработке изображений.

1.4. Дискретное преобразование Фурье

В цифровой обработке сигналов конечное преобразование Фурье рассчитывается лишь для некоторого ограниченного числа отсчетов в частотной. Обычно выбираются $\omega_k = \frac{2\pi k}{N\Delta}$, что приводит к замене конечного Фурье-преобразования (12) дискретным преобразованием Фурье (ДПФ)

$$X(k) = X^{N}(\omega_{k}) = \sum_{n=0}^{N-1} x_{n} e^{-j\frac{2\pi}{N}nk}, \qquad (k = 0,1,...,N-1).$$
(16)

Обратное ДПФ вводится в виде

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}nk}, \qquad (n = 0, 1, ..., N-1).$$
 (17)

Часто приходится использоваться очень ограниченный набор данных, так что применение ДПФ приводит к определению незначительного числа компонент спектра. Недостаток информации может быть в некоторой степени восполнен, если исходную выборку данных дополнить нулями. С помощью данной процедуры получают большее количество точек в частотной области и более гладкое представление. Следует, однако, учесть, что разрешение остается при этом неизменным.

1.5. Быстрое преобразование Фурье

Несмотря на то, что ДПФ в форме (16) позволяет вычислять фурье-образ сигнала в процессе компьютерного моделирования, тем не менее непосредственное использование данной процедуры не получило широкого распространения в силу квадратичной зависимости требуемого количества машинных операций от длины вектора данных. Лишь создание эффективных алгоритмов компьютерной реализации (16) сделало его доступным для широкого использования и обеспечило значительный вычислительный и технический прогресс в самых разных областях. Первый быстрый алгоритм решения (16) был разработан Кули и Тьюки (Cooley and Tucky) в 1965 году [2]. Процедура, предложенная Кули и Тьюки, стала основой целого ряда вычислительных алгоритмов, известных сегодня как БПФ - быстрое преобразование Фурье (англ. FFT - Fast Fourier Transform).

БПФ-алгоритмы особенно эффективны, когда длины входных векторов равняются $2^i\ (i\in N)$. В этом случае количество требуемых вычислительных операций в противоположность ДПФ выражается как

$$Q_{FFT} \sim N \log_2 N, \tag{18}$$

в то время как для ДПФ

$$Q_{DFT} \sim N^2. \tag{19}$$

Это означает, например, для N=1024, снижение трудоемкости вычислительных операций с коэффициентом

$$\frac{N\log_2(N)}{N^2} \approx \frac{1}{100}. (20)$$

В том случае, если размерность выборки не равняется целой степени двойки, можно дополнить исходный вектор нулями до следующего требуемого алгоритмом значения. Существуют также так называемые b-БПФ-алгоритмы, работающие с длинами данных b^i , $i \in N$, а также еще более медленные процедуры, использующие смешанный базис, а потому доступные для применения при обработке данных произвольной длины.

2. Функции активации в нейроне (перцептроне)

Функция активации (активационная функция, функция возбуждения) — функция, вычисляющая выходной сигнал нейрона (перцептрона) y = y(v). В качестве аргумента принимает сигнал v, получаемый на выходе входного сумматора Σ . Наиболее часто используются следующие функции активации:

- 1. Единичный скачок или пороговая функция, т.е. простая кусочно-линейная функция. Если входное значение меньше порогового $v \le v_0$, то значение функции активации равно минимальному допустимому $y_{\min} = 0$, иначе максимально допустимому. В большинстве случаев $y_{\max} = 1$.
- 2. Линейный порог или гистерезис, т.е. кусочно-линейная функция. Данная функция имеет два линейных участка, где функция активации тождественно равна минимально допустимому $v_0 = 0$ и максимально допустимому $v_0 = 1$ значениям, а также имеет участок, на котором функция строго монотонно возрастает.
- 3. Сигмоидная функция (англ. sigmoid), а именно монотонно возрастающая, всюду дифференцируемая S-образная нелинейная функция с насыщением. Сигмоидная функция позволяет усиливать слабые сигналы и не переходить в режим насыщения при наличии сильных сигналов. Примером сигмоидальной функции активации может служить логистическая функция, задаваемая следующим выражением:

$$y = \frac{1}{1 + \exp(-\alpha v)},$$

где α — параметр наклона сигмоидной функции активации. Изменяя этот параметр, можно построить функции с различной крутизной. Диапазон изменения значений функции также от 0 до 1

4. Еще одним примером сигмоидной функции активации является гиперболический тангенс, представляемый следующим выражением:

$$y = th \frac{v}{\alpha}$$
,

где α – это также параметр, влияющий на наклон тангенциальной функции.

Все эти функции применяются при моделировании нейронных сетей в пакете Matlab для создании архитектур нейронных сетей и их последующего моделирования, а именно, обучения и тестирования.

3. Задания

3.1. Реализация ДПФ в языке MATLAB

Пусть задан гармонический сигнал с некоторыми амплитудой и частотой. Изучить программу $Lab_1_1.m$, обеспечивающую диалоговое задание гармонического сигнала и его визуализацию, а также программу $Lab_1_2.m$, реализующую ДПФ такого сигнала и его восстановление с помощью обратного ДПФ. Пояснить работу программы, выбор частоты дискретизации и исчезновение оператора суммы при реализации прямого и обратного ДПФ в программе $Lab_1_2.m$.

3.2. Оценка трудоемкости обработки данных с помощью ДПФ и БПФ

Используя программу $Lab_1_2.m$, написать программу $Lab_1_3.m$, реализующую: а) дискретизацию и визуализацию функций синуса и косинуса с частотой 2 кГц в двух вариантах: для заданного интервала наблюдения и для заданного количества точек; б) вычислить фурьеобразы исходных сигналов с помощью прямого вычисления ДПФ и с помощью ДПФ, реализованного в MATLAB (функция fft); в) визуально сравнить реальные и мнимые части фурьеобразов и квадраты их модулей.

Построить график зависимости времени обработки исходных данных с помощью ДПФ и БПФ, варьируя размерность исходного массива 2^s от 128 (s=7) до 4096 (s=12) (если не происходит зависание вычислительного устройства).

Рис. 1. Демонстрация трудоемкости вычислительного процесса (вычисление БП Φ случайного сигнала размерности 2^s).

<u>Указание:</u> Для измерения производительности программ в MATLAB можно использовать следующие возможности:

- а) функцию etime, которая позволяет определять текущее время с точностью до сотых долей секунды. Имея два показателя времени t_1 и t_2 и подав команду etime (t2,t1), получим время, прошедшее с момента t_1 до момента t_2 ;
- b) функцию cputime, позволяющую оценить время, расходуемое центральным процессором, для запуска и выполнения приложения. Например,

c) запуск таймера посредством вызова команд tic и toc tic


```
A = rand(12000, 4400);
B = rand(12000, 4400);
toc
C = A'.*B';
toc
Elapsed time is 1.736832 seconds.
Elapsed time is 0.757567 seconds.
```

3.3. Программирование функций активации нейрона (перцептрона)

Написать программу-функцию, реализующую вычисление и отображение функций активации, представленных в разделе 2. Результат представить в виде m-функции, на вход которой поступает массив входных данных v, а также, если требуется, параметр α , а в результате ее выполнения производится прорисовка требуемой функции активации.

3.4. Представление данных

Представьте результаты пп. 2.1-2.3 в виде матриц размерности $N \times 2$ обучающего набора $\{t_n, y_n\}$, где t_n - вектор времени, y_n - вектор данных.

3.5. Производная сигмоидной функции

Вычислите (теоретически и численно) производную сигмоидной функции (п. 2.3) и представьте на графике.

4. Литература

- 1. Хайкин С. Нейронные сети. Полный курс Изд-во Вильямс, Москва, 2006. 1104с.
- 2. Рабинер Л. Гоулд Б. Теория и применение цифровой обработки сигналов. Пер. с англ. М: Мир, 1978.-835с.