Université des Sciences et de la Technologie HOUARI BOUMEDIENE

Faculté d'Electronique et d'Informatique Département d'Informatique

Data Mining Etude Exploratoire d'un Dataset

Partie N°: 1

Langage de programmation & environnement

Recommandations

JDK 11

https://www.oracle.com/java/technologies/javase/jdk11-archive-downloads.html

Netbeans 12.5

https://netbeans.apache.org/download/nb125/nb125.html

Jfreechart 1.5.2

http://www.jfree.org/jfreechart/jfreechart-demo-1.5.2-jar-with-dependencies.jar

■ Dataset à étudier : seeds

N° instance	1er attribut	2ème attribut	3ème attribut	4ème attribut	5ème attribut	6ème attribut	7ème attribut	Classe
1	15.26	14.84	0.871	5.763	3.312	2.221	5.22	Kama
2	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	Kama
3	14.29	14.09	0.905	5.291	3.337	2.699	4.825	Kama
70	12.73	13.75	0.8458	5.412	2.882	3.533	5.067	Kama
71	17.63	15.98	0.8673	6.191	3.561	4.076	6.06	Rosa
72	16.84	15.67	0.8623	5.998	3.484	4.675	5.877	Rosa
140	16.23	15.18	0.885	5.872	3.472	3.769	5.922	Rosa
141	13.07	13.92	0.848	5.472	2.994	5.304	5.395	Canadian
142	13.32	13.94	0.8613	5.541	3.073	7.035	5.44	Canadian
209	11.84	13.21	0.8521	5.175	2.836	3.598	5.044	Canadian
210	12.3	13.34	0.8684	5.243	2.974	5.637	5.063	Canadian

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Manipuler le dataset et visualiser son contenu.

Ouverture du dataset

Les extensions possibles .csv & .txt A partir d'un disque ou d'une URL valide

Affichage du dataset

Indiquer les numéros des instances, les attributs & la classe

Ajout, Modification, Suppression d'une instance

Sauvegarde du dataset

■ Travail à réaliser

Inclure dans le

rapport

Concevoir et programmer en Java une IHM permettant de :

Fournir une description du dataset et de chacun de ses attributs.

Description du dataset

Informations générales sur le dataset

Nombre d'instances

Nombre d'attributs

Nombre de classes

NOTTIDIC UC Classes

Distribution des classes (nombre et pourcentage d'instances par classe)

Valeurs manquantes

Description des attributs

Numéro, nom, description, type et valeurs possibles de chaque attribut

Types possibles (Nominal, Binaire symétrique, Binaire asymétrique, Numérique) – (Qualitatif, Quantitatif) – (Discret, continu)

Slide **5** sur 12

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Pour chaque attribut, calculer les mesures de tendance centrale et en déduire les symétries.

Moyenne (mean)

Moyenne tronquée (trimmed mean)

La moyenne tronquée est la moyenne obtenue après avoir éliminé les valeurs extrêmes. Une troncature à 2% signifie qu'on ignore 2% des données les plus éloignées.

Inclure dans le rapport

Médiane (median)

Mode (mode)

Unimodale - multimodale (bimodale, trimodale, ...)

Milieu de l'étendue (midrange)

La moyenne des deux valeurs extrêmes

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Pour chaque attribut, calculer les mesures de tendance centrale et en déduire les symétries.

Données symétriques (symmetric data)

Inclure dans le rapport

Données asymétriques à droite (positively skewed data)

Données asymétriques à gauche (negatively skewed data)

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Pour chaque attribut, calculer les mesures de dispersion et en déduire les données aberrantes (outliers).

Etendue (range)

Quartiles (five-number summary)

 Q_0 , Q_1 , Q_2 , Q_3 , Q_4

Inclure dans le rapport

Ecart interquartile (interquartile range IQR)

Variance

Ecart-type

Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Pour chaque attribut, construire une boîte à moustache et afficher les données aberrantes.

Boîte à moustache (boxplot)

Inclure toutes les boîtes à moustaches dans le rapport

Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Pour chaque attribut, construire un histogramme et visualiser la distribution des données

Histogramme (histogram)

Inclure tous les histogrammes (+interprétation de chaque histogramme) dans le rapport

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Construire et afficher des diagrammes de dispersion des données et en déduire les corrélations entre les attributs.

Diagramme de dispersion (scatter plot)

Inclure tous les diagrammes de dispersion dans le rapport

■ Travail à réaliser

Concevoir et programmer en Java une IHM permettant de :

Construire et afficher des diagrammes de dispersion des données et en déduire les corrélations entre les attributs.

Inclure dans le rapport

Analyse de corrélation

Coefficient de corrélation & covariance Corrélation positive (forte, moyenne, faible), corrélation négative, pas de corrélation