| Reinforcement Learning                                                                                        |
|---------------------------------------------------------------------------------------------------------------|
| Reinforcement Learning (RL)                                                                                   |
| What is RL?                                                                                                   |
| adustrial  Pigital  Perolution reported revolution repeated bevolution?  Physical solutions  Mental solutions |
| RI: Interacting the environment  X learning to make decisions from interactions                               |
| 2 esquentia (Interactions Goal:                                                                               |
| D find previously unknown solutions                                                                           |
| D find golutions online<br>for unforeseen circumstances                                                       |
| RL VS ML                                                                                                      |



Cove concepts of RL Agent to 1/2 State \$ 13 Unvironment action by fits with policy Roward ( signal ) function (probably) model (optionally) observation Ot reword Rt Gruir-nment action At

## Agent and Environment



- ▶ At each step *t* the agent:
  - ▶ Receives observation  $O_t$  (and reward  $R_t$ )
  - ▶ Executes action A<sub>t</sub>
- ► The environment:
  - ► Receives action A<sub>t</sub>
  - ▶ Emits observation  $O_{t+1}$  (and reward  $R_{t+1}$ )

Remards Rt (reward hypothesis) Pt: Scalar feedback signal (reward/penalty) indicates how well agent is being at step t (define its goal) Gt = Rt+1 + Rt+2 + Rt+3 + ... Maximize

Return (cumulative reward) Reward Hypothesis.

Any goal can be formalized as the outcome of maximizing a cumulative remard.

Values: expected/mean cumulative reward
from a state s



policy



8tates — actions

Action values (condition the value on action):

Agent components

| Agent state: State: State: St. At, Rtu, Otti)                                          |
|----------------------------------------------------------------------------------------|
| Policy: A=T(5); T(A(5)=P(A(5)                                                          |
| Value function: V(S) = E[Gt   St=S]<br>= E[Rty+YRty++2Rty++2Rty++3+ St=S,7]            |
| P.S. Environment State: He                                                             |
|                                                                                        |
| (Full observable) Partially observable  Environment State                              |
| (Observation) Markov decision process  Onvironment State: environment's internal state |
| history: a sequence of observations.                                                   |
| actions                                                                                |
| rewardy                                                                                |
| Ht = 00, Ao, Ro, O1,, Ot-1, At-1, Rt, Ot<br>(Used to construct an agent state St)      |
|                                                                                        |

| MDPs: Markov decision Processes           |
|-------------------------------------------|
|                                           |
| P(r, s ( St, At) = P(r, s   Ht, At)       |
|                                           |
| (Ht) -> St -> Httl                        |
| Markov                                    |
|                                           |
| full abservability                        |
|                                           |
| partial observability: agent gets partial |
| In formation                              |
| Particly observable MDPs)                 |
| (Porticly observable MDPs)                |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |

 $\left\langle \right\rangle$ 

Agent State

function of history

Stri = f (St. At, Rtt)

J: state update function

P.S. agent environment

To licey

| 1      |     |         |            |
|--------|-----|---------|------------|
| define | the | agent's | behaviour; |
| 1,     |     | . \     |            |

agent policy

State

State

Deterministic 
$$A = 7(5)$$
policy:

Stochastic
policy: 
$$\pi(A|S) = p(A|S)$$

$$V_{\pi}(s) = \mathbb{E}\left[G(t) \mid S_{t} = s, \pi\right]$$

$$= \mathbb{E} \left[ R_{t+1} + V R_{t+2} + V^2 R_{t+3} + \cdots \right] S_{t=5, \pi}$$

## Bellman Equation (Bellman 1957)

tecursive form:

$$\bigvee_{*} (s) = \max_{\alpha} \mathbb{E} \left[ R_{t+i} + V \bigvee_{*} (S_{t+i}) \middle| S_{t} = s, A_{t} = a \right]$$

Value function approximations O State space might be too big @ (sample) for expectations Model predict what the environment will do next. P predicts the next state:  $p(5,a,s') \approx p(S_{t+1} = s'/S_{t+2}, A_{t=a})$ R predicts the next (immediate) temard R(5,0) & E[ Re+1 | St = 5, At =0] Stochastic / generative models

Value based (compare actions) -> Policy based (compare policy) A coor Critica (explicit action and palicy) Value-based 事文集代 73GD. (有的规范注意) なな大学母もちずれ 为发车的 不喜对我想了是接一个的 The state ond or siring and or Model Optionally policy
based and or value

があればれる

function

はないまする

1 ないまする

1 な 是否引入对 孙克马追摸 状态软料物等:丁(Sz(S,,a,) 堤后建筑: R(S(, a, )

## Agent Taxonomy



based extra critic you could have a model based value based Asians and the

| Challenges                          |
|-------------------------------------|
| Learning;                           |
| O environment initially unknown     |
| interact  agent () environment      |
| <u> </u>                            |
| 9. p(~~~;~);                        |
| A model of the environment is given |
| 1) The agent plans in the model     |
| (Without external interaction)      |
|                                     |
|                                     |

predicting

prediction:

2 valuate the future

(for a given policy)

control:

optimize the future

(for a given action)

Tx(s) = arg max Vx(s)

T

RL server search

All delayed reward

## Learning the components of an agent

- -
- All components are functions
  - Policies map states to actions
  - Value functions map states to values
  - Models map states to states and/or rewards
  - State updates map states and observations to new states
- We could represent these functions as neural networks, then use deep learning methods to optimize these
- Take care: we often violate assumptions from supervised learning (iid, stationarity)
- ▶ Deep reinforcement learning is a rich and active research field
  - (Current) neural networks are not always the best tool (but they often work well)

any subset of those or superjet and state updates which

| [ID: identically and independently |  |
|------------------------------------|--|
|                                    |  |
| distributed                        |  |
| ,                                  |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |