Prova scritta di Calcolo Scientifico

Udine, 8 febbraio 2021

- 1. Sia $\mathcal{F} = \mathcal{F}(2,t,e_{\max},e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, e_{max} , e_{min} in modo che realmin = 1/64, realmax = 15, e Nu = 5, dove N è il numero degli elementi di \mathcal{F} maggiori di 0 e u è la precisione di macchina.
 - Siano dati $x=(10.\overline{101})_2$ e $y=(11.\overline{101})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F}, \ \tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=2\tilde{x}fl(-)\tilde{y}\in\mathcal{F}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Determina l'esponente intero minimo e tale che $\tilde{z}2^e \in \mathcal{F}$. Giustifica la risposta.
- 2. Siano dati una funzione f(x) e un intero n > 1.
 - Scrivi il numero di condizionamento di $F(x) = f(x)^n$ e quello di $G(x) = f(x^n)$ in funzione di quello di $f(x) = f(x)^n$
 - Considera $f(x) = e^x$. Per quali valori di x risulta $cond_F(x) > cond_G(x)$? Giustifica la risposta.
 - Supponi che f(x) sia approssimata con un errore relativo maggiorato da u. Studia la stabilità in avanti dell'algoritmo
 ricorsivo che calcola F con x numero di macchina. Quando n = 50, quante cifre decimali potresti avere in meno
 rispetto a quelle garantite da u.
 - Considera $f(x) = e^x$ e supponi sia approssimata con un errore relativo è maggiorato da u. Studia la stabilitá in avanti dell'algoritmo che calcola G con x numero di macchina.
- 3. Sia $f(x) = \frac{1}{2}(x^3 x^2) 4x + 6$.
 - Disegna il grafico di f. Determina le radici $\alpha, \beta, \cos \alpha < \beta$.
 - Studia la convergenza del metodo di Newton a α e β. Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -2$
 - (b) $x_0 = -4$
 - (c) $x_0 = -4/3$
 - (d) $x_0 = 3$
 - (e) $x_0 = 1$
 - (f) $x_0 = 1/3$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le risposte.

Sia $g(x) = x - \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g e considera il metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$

- Determina m in modo che il metodo sia localmente convergente in maniera monotona a α con fattore asintotico di convergenza pari a $\frac{1}{6}$. La successione ottenuta con $x_0 = -2$ è convergente? Giustifica la risposta.
- * Determina m in modo che il metodo sia localmente convergente ad α con ordine di convergenza quadratico. La successione ottenuta con $x_0 = -2$ è convergente? Giustifica la risposta.
- Sia m = -7. Studia la convergenza locale a β del metodo. La successione ottenuta con $x_0 = 1$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} \alpha - 2 & 3 & 4 \\ -4 & -9 & 4 \\ 2\alpha & 13 & 8 \end{array} \right).$$

- ullet Calcola la fattorizzazione LU di A. Per quale scelta del parametri lpha esiste tale fattorizzazione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = 4$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- \star Proponi un algoritmo per risolvere il sistema Ux=b. Scrivi la sua pseudocodifica e analizzane la complessità computazionale.
- 5. Sia dati i punti $P_0 = (-1, 18), P_1 = (0, 12)$ e $P_2 = (2, 0)$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Determina il polinomio \tilde{p} che interpola i tre punti e $\tilde{p}'(0) = -8$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e $P_3 = (3, 6)$ nel senso dei minimi quadrati.
- \star Sia data una matrice A di dimensione n che ammette la fattorizzazione LU. Scrivi la pseudocodifica che calcola L e U mediante l'algoritmo di eliminazione di Gauss gestendo in maniera efficiente la memoria.