Автоматическое построение нейросети оптимальной сложности

Маркин Валерий, Забазнов Антон, Горян Николай, Сергей Губанов, Сергей Таранов, Товкес Артём, Улитин Александр, Криницкий Константин

Московский физико-технический институт

10 декабря, 2018г.

Цель работы

Иследуется

Задача выбора структуры нейронной сети.

Требуется

Найти нейросеть оптимальной сложности.

Проблемы

- Большое количество параметров,
- Высокая вычислительная сложность оптимизации,
- Невозможность использования эвристических и переборных алгоритмов выбора струкутры модели

Литература

- LeCun Y., Denker J., Solla S.
 Optimal Brain Damage // Advances in Neural Information Processing Systems, 1989. Vol. 2. P. 598–605.
- Graves A.
 Practical Variational Inference for Neural Networks // Advances in Neural Information Processing Systems, 2011. P. 2348–2356.
- Bishop C.
 Pattern Recognition and Machine Learning. Berlin: Springer,
 2006. 758 p.
- Grunwald P. A
 Tutorial introduction to the minimum description length principle.
 2005.

Постановка задачи

$$\mathfrak{D}^{\mathsf{train}} = \{\mathbf{x}_i, y_i\}, \quad i = 1, \dots, m^{\mathsf{train}},$$

 $\mathfrak{D}^{\mathsf{valid}} = \{\mathbf{x}_i, y_i\}, \quad i = 1, \dots, m^{\mathsf{valid}},$

где $\mathbf{x}_i \in \mathbf{X} \subset \mathbb{R}^n, \quad y_i \in \mathbf{Y} \subset \mathbb{R}.$

 $y \in \mathbf{Y} = \{1, \dots, Z\}$, где Z - количество классов.

Модель задаётся ориентированным графом $\mathbf{G} = (\mathbf{V}, \mathbf{E})$

 $\mathbf{g}^{i,j}$ — базовые функции ребра (i,j) с весами $oldsymbol{\gamma}^{i,j}$

Требуется построить такую модель \mathbf{f} с параметрами $\mathbf{W} \in \mathbb{R}^n$:

$$\mathbf{f}(\mathbf{x}, \mathbf{W}) = \{\mathbf{f}_i(\mathbf{x}, \mathbf{w}_i)\}_{i=1}^{|\mathbf{V}|}$$

где $\mathbf{f_i}(\mathbf{x},\mathbf{w_i})$ - подмодель с параметрами \mathbf{w}_i задаётся как:

$$\mathbf{f}_i(\mathbf{x},\mathbf{w}_i) \; = \sum_{j \in \mathit{adj}(i)} \left< oldsymbol{\gamma}^{i,j}, \mathbf{g}^{i,j}
ight> \mathbf{f}_j(\mathbf{x},\mathbf{w}_j)$$

Постановка задачи

Функция потерь на обучении L и функция потерь на валидации Q задаются как:

$$egin{aligned} L(\mathbf{W}, \mathbf{A}, \mathbf{\Gamma}) &= \log p(\mathbf{Y}^{\mathsf{train}} | \mathbf{X}^{\mathsf{train}}, \mathbf{W}, \mathbf{\Gamma}) + \mathbf{e}^{\mathbf{A}} ||\mathbf{W}||^2, \ &Q(\mathbf{W}, \mathbf{\Gamma}) &= \log p(\mathbf{Y}^{\mathsf{valid}} | \mathbf{X}^{\mathsf{valid}}, \mathbf{W}, \mathbf{\Gamma}) + \lambda p(\mathbf{\Gamma}), \end{aligned}$$

где **A** и λ — регуляризационные слагаемые, $p(\Gamma)$ - произведение всех произведение вероятностей всех $\gamma^{i,j}\in \Gamma$.

Требуется решить задачу двухуровневой оптимизации, оптимизируя параметры модели по обучающей выборке, а структуру модели по валидационной:

$$\mathbf{W}^*(\mathbf{\Gamma}) = \underset{\mathbf{W}}{\operatorname{arg min}} L(\mathbf{W}, \mathbf{\Gamma})$$

$$\Gamma^*, \mathbf{A}^* = \min_{\Gamma, \mathbf{A}} Q(\mathbf{W}^*(\Gamma), \Gamma)$$