Logistic Regression

Akshata Mohan, Valerie Roth WiDS Oct 20th 2017

References

http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf

Previously what we did in Linear Regression

- Predicting continuous outcomes conditioning Y on some values of X conditional expectations
- How do we get Y to be discrete taking on only certain values?

Why wasn't it enough?

- Linear regression cannot give you discrete outcomes.
- Assigning class labels to data classification
- Basic model "yes" or "no"
- Logistic regression outputs probabilities quantifies uncertainty
- Conditional distribution of Y given input X Y is response class, X are predictors. Pr(Y/X) this is what logistic regression gives us.
- P(Y|X) measure "precision" of prediction

Bottom line -

Image credits - clipartpanda.com

Secret sauce

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + x \cdot \beta$$

Sigmoid function

Image credits - Wikipedia

How does this make sense?

- Linear dependence but 0,1 as o/p
- Sigmoid function [0,1]
- t is the linear regression equation

$$S(t) = \frac{1}{1+e^{-t}}.$$

Fitting the parameters and model assumptions

- We can fit it using gradient descent or Newton's method or MLE
- Y's are independent and are either a 0 or a 1 => Bernoulli distribution
- A linear relationship between logit of Y and X's. And NOT between Y and X's.
- Cannot have homoscedasity of errors. But errors must be independent

Decision boundary

- Find B's
- We plug coefficient estimates and find the equation representing decision boundary.
- S(t) > 0.5 for Y = 1

Coefficient interpretation

 The effect of a unit change in xi is to increase the odds of a response multiplicatively by the factor exp(Bi)

Logistic regression using sklearn

See ipython notebook

Measuring performance

- Accuracy [tp + tn /(tp+tn+fp+fn)]
- ROC receiver operating characteristic curves tells us about the performance of a classifier as the threshold is changed
- TPR or sensitivity (y axis) vs FPR or specificity (x axis). TPR recall is the fraction of relevant instances that are retrieved. FPR is probability of false alarm

ROC curves

Image from ipython notebook

Multi class logistic regression

- K classes, K-1 different logistic regression equations are estimated.
- The test record is assigned to the class with the highest probability from one of the K-1 different equations