

Question Number: 57 Question Id: 640653825634 Question Type: MCQ

**Correct Marks: 0** 

Question Label: Multiple Choice Question

# **Instructions:**

 There are some questions which have functions with discrete valued domains (such as day, month, year etc).

- For NAT type question, enter only one right answer even if you get multiple answers for that particular question.
- Notations:
  - R= Set of real numbers
  - Q= Set of rational numbers
  - Z= Set of integers
  - N= Set of natural numbers
- The set of natural numbers includes 0.

## Question Label: Comprehension

Suppose A is the set of even positive integers less than or equal to 20 and B is the set of positive integers less than 20 which are divisible by 6.

Consider the following relations from A to B.

- $R_1 = \{(a, b) \mid a \in A, b \in B, a \text{ is a factor of } b\}$
- $R_2 = \{(a, b) \mid a \in A, b \in B, (a + b) \mod 10 = 0\}$

Based on the above data, answer the given subquestions.

## **Sub questions**

Question Number: 58 Question Id: 640653825636 Question Type: SA

**Correct Marks: 3** 

Question Label: Short Answer Question What is the cardinality of  $R_1 \cap R_2$ ?

Response Type: Numeric

## **Possible Answers:**

1

Question Number: 59 Question Id: 640653825637 Question Type: SA

**Correct Marks: 2** 

Question Label: Short Answer Question

What is the cardinality of  $R_1$ ? **Response Type :** Numeric

#### **Possible Answers:**

9

Question Number: 60 Question Id: 640653825638 Question Type: MSQ

Correct Marks: 3 Max. Selectable Options: 0

**Question Label: Multiple Select Question** 

Which of the following statements are correct?

## **Options:**

- $\checkmark$   $R_1$  is transitive.
- $R_2$  is transitive.
- $\checkmark$   $R_2$  is not symmetric.
- $\checkmark$  (2,18) is an element in  $R_2$ .

(

## **Question Numbers: (61 to 62)**

Question Label: Comprehension

Suppose that  $P_1$  and  $P_2$  are two different points in a Cartesian coordinate system, with  $P_1$  located at (3,–2) and  $P_2$  at (–1, 5). Let  $L_1$  and  $L_2$  be lines passing through  $P_1$  and  $P_2$  respectively.

Based on the above data, answer the given subquestions.

**Sub questions** 

Question Number: 61 Question Id: 640653825641 Question Type: MCQ

**Correct Marks: 4** 

Question Label: Multiple Choice Question

If the x-intercept of the line  $L_1$  is 1 and the angle between  $L_1$  and  $L_2$  is  $\frac{\pi}{2}$  then

Determine the coordinates of the point where  $L_1$  and  $L_2$  intersect.

## **Options:**

- $(\frac{5}{2}, \frac{7}{2})$
- **(5, 11)**
- (-5,7)
- $\sqrt{(\frac{-5}{2}, \frac{7}{2})}$

Question Number: 62 Question Id: 640653825642 Question Type: MCQ

**Correct Marks: 4** 

Question Label: Multiple Choice Question

If the x-intercept of the line  $L_1$  is 1 and y- intercept of the line  $L_2$  is -1 and If  $\theta$  is the angle between  $L_1$  and  $L_2$ , then tan  $\theta$  is equal to

## **Options:**

 $\frac{-5}{7}$ 

× :

× 7

Question Number: 63 Question Id: 640653825639 Question Type: SA

**Correct Marks: 4** 

Question Label: Short Answer Question

A company opened recruitment for the post of data analyst. 500 candidates have applied for the post. 285 candidates are proficient in Python programming, 195 candidates are proficient in *C* programming, 115 candidates are proficient in Java programming, 45 candidates are proficient in Python and Java, 70 candidates are proficient in *C* and Python, 50 candidates are proficient in *C* and Java and 50 candidates don't know any of the programming languages. Find the number of candidates who are proficient in exactly one of the three programming languages.

**Response Type:** Numeric

325

Question Number: 64 Question Id: 640653825643 Question Type: SA

**Correct Marks: 4** 

Question Label: Short Answer Question

Radhika has been tracking her monthly expenses and the corresponding number of outings she has with friends. Here's a table with two rows representing the amount spent on entertainment and the corresponding number of outings. Let's consider y to be the amount spent and x to be the corresponding number of outings. She fitted a best fit line to her data and obtained the equation y = 4x + 15. What is the value of SSE (Sum of Squared Errors) in relation to the best fit line?

| Amount spent      | 37 | 44 | 53 | 50 | 57 | 64 |
|-------------------|----|----|----|----|----|----|
| Number of outings | 5  | 7  | 9  | 8  | 10 | 12 |

Response Type: Numeric

#### **Possible Answers:**

23

Question Number: 65 Question Id: 640653825644 Question Type: MSQ

Correct Marks: 4 Max. Selectable Options: 0

Question Label: Multiple Select Question

Consider the following polynomial p(x) whose graph is given below:-



Which of the following options is/are correct?

## **Options:**

Multiplicity of -1 and 1 must be the same.

p(x) is an increasing function in the interval  $(2, \infty)$ .

p(x) tends to infinity as x tends to infinity.

The number of turning points is 5.

Question Number: 66 Question Id: 640653825645 Question Type: MSQ

Correct Marks: 4 Max. Selectable Options: 0

Question Label: Multiple Select Question

Consider the parabola  $y = x^2 + 4x + 12$ . Which of the following option(s) are true?

**Options:** 

\* The co-ordinates of vertex is (-8, 2).

✓ The given equation attains it minima at x = -2.

✓ The minimum value for the given equation is 8

Question Number: 67 Question Id: 640653825647 Question Type: MSQ

Correct Marks: 4 Max. Selectable Options: 0

Question Label: Multiple Select Question

Consider the polynomials p(x) = (2x - 1)(x - 5)q(x) where the zeros of p(x) with multiplicity 1 are  $\frac{1}{2}$ , 5, 2,  $\frac{3}{5}$ . Which of the following option(s) are true for q(x)?

# **Options:**

- $\approx q(x)$  is a cubic polynomial.
- $\checkmark q(x)$  is a quadratic polynomial.
- $\checkmark q(x)$  has two distinct zeros.
- $\approx q(x)$  does not have any real zeros.

Question Number : 68 Question Id : 640653825646 Question Type : MCQ

Correct Marks: 4

## Question Label: Multiple Choice Question

Consider the quadratic equation  $ax^2 + bx + c = 0$  where a, b, c are integers with  $a \neq 0$ . Which of the following option(s) are true?

## **Options:**



- If  $b^2 4ac > 0$  and not a perfect square then there exists a rational root of the quadratic equation.
- If  $b^2 4ac < 0$  and a perfect square then there exists a rational root of the quadratic equation.
- If  $b^2 4ac < 0$  and not a perfect square then there exists a rational root of the quadratic equation.