МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Операционные системы»

Тема: «Обработка стандартных прерываний»

Студент гр. 7381	 Аженилок В.А
Преподаватель	Ефремов М.А.

Санкт-Петербург 2018

Цель работы

Целью работы является изучение внутренней структуры обработчиков прерываний, методов прямой взаимодействия с ними и построение резидентного обработчика прерываний сигналов таймера.

Описание функций и структур данных

Все использованные и созданные функции занесены в таблицу 1.

Таблица 1

Название функции	Назначение
PRINT_DX	Вспомогательная функция, печатает строку,
	смещение которой находится в dx
SET_CURSOR_POSITION	Установка позиции курсора в координату из
	регистра dx
GET_CURSOR_POSITION	Считывание текущей позиции курсора в dx
ROUT	Устанавливаемый обработчик прерывания
CHECK_HANDLER	Основная функция программы: проверяет флаг
	загруженности обработчика прерывания в память,
	проверяет аргументы командной строки, вызывает
	set_hander, выгружает обработчик
SET_HANDLER	устанавливает новый обработчик прерывания
	взамен старого, запоминая данные, необходимые
	для восстановления предыдущего обработчика

Ход работы и тестирование

1) После выполнения первого шага запускаем полученный загрузочный модуль (рис.1). По появившемуся на экране пятну цветных пикселей убеждаемся в успешной загрузке резидентного обработчика прерываний.

Теперь проверим его размещение в памяти с помощью загрузочного модуля из прошлой лабораторной работы (рис.2). Строка с именем Lab4 это он.

```
C:\>CHECK.COM

Size of free memory: 647360 Bytes
Size of extended memory: 15360 KBytes

Addrss Dumer Size Name
016F 0008 16
0171 0000 64
0176 0040 256
0187 0192 144
0191 0192 1376 LAB4
01E8 01F3 1144
01F2 01F3 647360 CHECK
```

Рис.2

2) Теперь повторно запустим полученный загрузочный модуль (рис.3). Загруженный обработчик продолжает работать; при повторной попытке его загрузки выводится сообщение, сообщающее пользователю ОС о том, что это прерывание уже загружено. Обработчик продолжает работать.

```
Number of handler calls (00592)
C:\>LAB4.EXE
interruption has been loaded yet
```

Рис. 3

3) Выгрузим загруженный обработчик прерываний с помощью аргумента /un (рис.4). Видим сообщение об успешной выгрузке нашего обработчика.

Рис. 4

Проверим карту памяти в виде блоков МСВ с помощью загрузочного модуля из лабораторной работы №3 (рис.5).

```
C:\>CHECK.COM

Size of free memory: 648912 Bytes
Size of extended memory: 15360 KBytes

Addrss Owner Size Name
016F 0008 16
0171 0000 64
0176 0040 256
0187 0192 144
0191 0192 648912 CHECK

C:\>
```

Рис. 5

Видно, что строки с именем Lab4 теперь нет, при этом сама проверяющая программа смогла занять больше места. Цветные пиксели обработчика более не выводятся.

Заключение

В ходе данной лабораторной работы был исследован механизм работы резидентного обработчика прерывания, создан и протестирован загрузочный модуль, реализующий исследуемую функциональность ОС.

Ответы на контрольные вопросы

1. Как реализован механизм прерывания от часов?

Ответ: у любого компьютера есть системный таймер. Это устройство подключено к линии запроса на прерывание IRQ0 и вырабатывает прерывание INT 8h раз в 55 мс. Прерывание INT 1Ch вызывается обработчиком прерывания INT 8h.

2. Какого типа прерывания использовались в работе?

Ответ: в работе использовались аппаратные прерывания (1Ch) и программные прерывания (21h, 10h).