

Introducció

Motivación y descripción de

Marco teório

Aprendizaje po Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje po Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Entornos GYM OpenA

Conclusiones y vías futuras

Uso de Modelos Generativos en Aprendizaje por Refuerzo

Silvia Barroso Moreno silviabm98@ugr.es

Directores: Juan Gómez Romero y Miguel Molina Solana Departamento Ciencia de la Computación e Inteligencia Artificial Trabajo Fin de Máster: Ciencia de Datos e Ingeniería de Computadores 2022-2023

Índice

Introducción Motivación y

problema

iviaico teoric

Refuerzo

Redes Generativas Adversarias (GANs)

Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentación
Entornos GYM OpenAl

- Introducción
 Motivación y descripción del problema
- 2 Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs)
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- **5** Experimentación Entornos GYM OpenAl Entornos Sinergym
- 6 Conclusiones y vías futuras

Índice

Introducción Motivación y

problema

Marco teorio

Refuerzo
Redes Generativas

Adversarias (G

Aprendizaje Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación Entornos GYM OpenAl Entornos Sinergym

- Introducción Motivación y descripción del problema
- 2 Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- Experimentación Entornos GYM OpenAl Entornos Sinergym
- 6 Conclusiones y vías futuras

Motivación y descripción del

problema

Marco teoric

Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje pol Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentación

Entornos GYM Opena

Conclusiones y vías futuras Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo

Motivación y descripción del problema

Widico ccome

Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje po Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación

Entornos Sinergym

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:

- Motivación y descripción del problema
- Marco teorio
- Refuerzo
- Redes Generativas
- Aprendizaje po Imitación Generativo
- Hibridació Q-learning (HQL)
- Experimentació
- Entornos Sinergym
- Conclusiones y vías futuras

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs

- Motivación y descripción del problema
- Marco teório
- Aprendizaje po
- Redes Generativas Adversarias (GANs)
- Aprendizaje po Imitación
- Imitación Generativo Adversario (GAIL)
- Hibridación Q-learning (HQL)
- Experimentació
- Entornos GYM OpenA
- Conclusiones y vías futuras

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - ② Aprendizaje por refuerzo ← Aprendizaje por Imitación

- Motivación y descripción del problema
- Marco teório
- Aprendizaje p
- Redes Generativas Adversarias (GANs)
- Aprendizaje po Imitación Generativo Adversario
- Hibridación Q-learning (HQL)
- Experimentació
- Entornos Sinergym
- Conclusiones y vías futuras

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - 2 Aprendizaje por refuerzo \leftarrow Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.

Motivación y descripción del

problema Marco teóric

Aprendizaje por

Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje p Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Entornos GYM OpenA

Conclusiones y

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - $oldsymbol{2}$ Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - Aprendizaje por Imitación Generativo Adversario (GAIL)

- Motivación y descripción del problema
- Marco teóric
- Aprendizaje p
- Redes Generativas Adversarias (GANs)
- Imitación
 Generativo
 Adversario
- Hibridación Q-learning (HQL)
- Entornos GYM OpenA
- Conclusiones y

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - $oldsymbol{2}$ Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - 1 Aprendizaje por Imitación Generativo Adversario (GAIL)
 - **②** Hibridación Q-Learning (HQL) → nueva propuesta

- Motivación y descripción del problema
- Marco teóric
- Aprendizaje po
- Redes Generativas Adversarias (GANs)
- Imitación Generativo Adversario (GAIL)
- Hibridación Q-learning (HQL)
- Experimentación Entornos GYM OpenAl Entornos Sinergym
- Conclusiones y

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - 2 Aprendizaje por refuerzo \leftarrow Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - 1 Aprendizaje por Imitación Generativo Adversario (GAIL)
 - ② Hibridación Q-Learning (HQL) → nueva propuesta
- Experimentación

- Motivación y descripción del problema
- Marco teóric
- Aprendizaje po
- Redes Generativas Adversarias (GANs)
- Imitación
 Generativo
 Adversario
- Hibridación Q-learning (HQL)
- Experimentación Entornos GYM OpenAl Entornos Sinergym
- Conclusiones y

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - ① Modelo generativo ← GANs
 - 2 Aprendizaje por refuerzo \leftarrow Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - 1 Aprendizaje por Imitación Generativo Adversario (GAIL)
 - ② Hibridación Q-Learning (HQL) → nueva propuesta
- Experimentación
 - **1** GYM OpenAI → Taxi y CartPole

Motivación y descripción del

problema Marco teório

Aprendizaje por

Redes Generativas

Adversarias (GANs)

Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentación Entornos GYM OpenAl Entornos Sinergym

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - ① Modelo generativo ← GANs
 - 2 Aprendizaje por refuerzo \leftarrow Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - 1 Aprendizaje por Imitación Generativo Adversario (GAIL)
 - ② Hibridación Q-Learning (HQL) → nueva propuesta
- Experimentación
 - **1** GYM OpenAI → Taxi y CartPole
 - ${f 2}$ Sinergym ightarrow 5Zone, Datacenter y Warehouse

Motivación y descripción del

problema Marco teório

Aprendizaje po

Redes Generativas Adversarias (GANs)

Aprendizaje po

Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM OpenAl Entornos Sinergym

- Objetivo: establecer conexión entre modelos generativos y aprendizaje por refuerzo
- Conexión:
 - Modelo generativo ← GANs
 - 2 Aprendizaje por refuerzo \leftarrow Aprendizaje por Imitación
- Aprendizaje por Imitación: el agente observa e imita el comportamiento del EXPERTO. NO tiene acceso al entorno NI a la recompensa.
 - 1 Aprendizaje por Imitación Generativo Adversario (GAIL)
 - ② Hibridación Q-Learning (HQL) → nueva propuesta
- Experimentación
 - **1** GYM OpenAI → Taxi y CartPole
 - 2 Sinergym \rightarrow 5Zone, Datacenter y Warehouse
 - 3 Proyecto de investigación → IA4TES

Índice

Introducción v

Marco teórico

Aprendizaje po Refuerzo Redes Generati

Redes Generativ Adversarias (GA

Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM OpenAl Entornos Sinergym

- 1 Introducción Motivación y descripción del problema
- Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs)
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- **5** Experimentación Entornos GYM OpenAl Entornos Sinergym
- 6 Conclusiones y vías futuras

• Espacio de estados ${\cal S}$ y espacio de acciones ${\cal A}$, $\Pi=\{\pi:{\cal S}\to{\cal A}\}$

Motivación v

descripción del problema

Marco teórico

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM OpenA

Entornos Sinergym

Figura: Funcionamiento de RL

Introducción Motivación v Espacio de estados S y espacio de acciones A, Π = {π : S → A}
 La política se define como el conjunto de reglas que establece el mar

Marco teório

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje po Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM OpenA

Conclusiones y

La política se define como el conjunto de reglas que establece el mapeo de situaciones o estados del entorno a las acciones que el
agente debe tomar con el fin de maximizar las recompensas a lo largo del tiempo.

Figura: Funcionamiento de RL

- Espacio de estados ${\cal S}$ y espacio de acciones ${\cal A},\,\Pi=\{\pi:{\cal S}\to{\cal A}\}$
 - La política se define como el conjunto de reglas que establece el mapeo de situaciones o estados del entorno a las acciones que el
 agente debe tomar con el fin de maximizar las recompensas a lo largo del tiempo.
 - Señal de recompensa en el paso t: R_t

Takes Changes Action Is in State Environment Agent Becomes State Is received by Is represented by St + 1 Reward Is received by Produces new R_{t+1}

Figura: Funcionamiento de RL

Introducción Motivación v

Marca toório

iviarco teorici

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje po Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentacion Entornos GYM OpenAl

Conclusiones y

- Motivación v
- Espacio de estados S y espacio de acciones A. $\Pi = \{\pi : S \to A\}$ La política se define como el conjunto de reglas que establece el mapeo de situaciones o estados del entorno a las acciones que el agente debe tomar con el fin de maximizar las recompensas a lo largo del tiempo.
 - Señal de recompensa en el paso t: R_t
 - Función valor: $V_{\pi}(S) = \mathbb{E}_{\pi}[G_t|S_t = S]$, $G_t = R_1 + R_2 + \ldots + R_t$

Figura: Funcionamiento de RL

Adversarias (GANs)

Aprendizaje por Refuerzo Redes Generativas

Introducción Motivación y

• Espacio de estados ${\cal S}$ y espacio de acciones ${\cal A}$, $\Pi=\{\pi:{\cal S}\to{\cal A}\}$

problema

La política se define como el conjunto de reglas que establece el mapeo de situaciones o estados del entorno a las acciones que el
agente debe tomar con el fin de maximizar las recompensas a lo largo del tiempo.

Marco teórico

Señal de recompensa en el paso t: Rt

• Función valor: $V_{\pi}(S) = \mathbb{E}_{\pi}[G_t|S_t = S]$, $G_t = R_1 + R_2 + \ldots + R_t$

Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs) • Función acción-valor: $Q_{\pi}(S,A) = \mathbb{E}_{\pi}[G_t|S_t = S,A_t = A]$

Aprendizaje po Imitación Generativo Adversario (GAIL)

Changes Takes Action Is in State Environment Agent Becomes State Is received by Is represented by St + 1 Reward Is received by Produces new R₁₊₁

Q-learning (HQL)

Figura: Funcionamiento de RL

Entornos GYM OpenA

Conclusiones

Métodos para soluciones tabulares

Introducción Motivación v

problema

Marco teóric

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs

Aprendizaje po Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentació

Entornos Sinergym

Conclusiones y vías futuras

Métodos para soluciones tabulares: Algoritmo Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Q-Table So S1 S2 S3 S4

$$Q(s, a) \rightarrow Q(3, 1) \rightarrow a_1 +2.53 +7.44 +3.34 +5.31 +6.22 \rightarrow +5.31$$

Figura: Acceso a la tabla Q(S,A)

Métodos para soluciones aproximadas

Métodos para soluciones aproximadas: Proximal Policy Optimixation (PPO)

- Incorpora una red neuronal para realizar la aproximación
- Corresponden a métodos que calculan gradientes de políticas

Figura: Ejemplo PPO: aprender a jugar a Mario Bros

Introducción Motivación v

descripcion dei

iviarco teorico

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM OpenAl

Aprendizaje por Refuerzo Profundo (DRL)

Aprendizaje por Refuerzo

Q-learning

La estimación de la función ventaja en el timestep t, \bar{A}_t , se define como

$$\bar{A}_t = \delta_t + (\gamma \lambda) \delta_{t+1} + \ldots + (\gamma \lambda)^{T-t+1} \delta_{T-1} \text{ donde } \delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

Recordemos, la función ventaja se define como $A_t := Q_t(s, a) - V_t(s)$

Nuestra **función de pérdida**:

$$L^{CPI}(\theta) = \mathbb{E}_t[\min(r_t(\theta)\bar{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\bar{A}_t)]$$

Algoritmo PPO

for
$$i = 1$$
 to M do
for $i = 1$ to N do

- Ejecutar la política $\pi_{\theta \, Old}$ en el entorno con T timesteps
- Calcular las estimaciones de la función ventaias $\bar{A}_1, \bar{A}_2, \dots, \bar{A}_T$

end

- Optimizar el obietivo clipped surrogated L^{CPI} , con K épocas y tamaño de minibatch M < NT
- $\theta_{OH} \rightarrow \theta$

end

Redes Generativas Adversarias (GANs)

Motivación y

problema

Marco teório

Aprendizaje po Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAII.)

Hibridación Q-learning (HQL)

Experimentación

Entornos Sinergym

Conclusiones y vías futuras

Figura: Funcionamiento de una GANs

TFG: Redes Generativas Adversarias para la creación de deepfakes:

https://github.com/silviabm98/TFG

Índice

Motivación v

Marca taária

Wareo teorie

Refuerzo

Adversarias (GA

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentacio

Entornos Sinergym

- 1 Introducción Motivación y descripción del problema
- 2 Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- Experimentación
 Entornos GYM OpenAl
 Entornos Sinergym
- 6 Conclusiones y vías futuras

Aprendizaje por Imitación Generativo Adversario (GAIL)

Introducción Motivación y

problema

Marco teorio

Aprendizaje po Refuerzo

Redes Generativ Adversarias (GA

Aprendizaje por Imitación Generativo Adversario

Hibridación Q-learning (HQL)

(GAIL)

Entornos GYM OpenA

Conclusiones y vías futuras

Descripción GAIL

- ullet Aprendizaje de una política π (generador) y de un discriminador D
- El generador trata de imitar a la política experta, π_E , de la secuencia [s, a], generando una secuencia falsa $[s, a]^*$ con la política π

Definimos

$$RL \circ IRL_{\psi}(\pi_E) = \operatorname{arg\,min}_{\pi \in \Pi}(-H(\pi) + \psi^*(
ho_{\pi} -
ho_{\pi_E}))$$

- **1** siendo ρ_{π} la **medida de ocupación** de la política $\pi \in \Pi$, definida como $\rho_{\pi}(s, a) = \pi(a|s) \sum_{t=0}^{\infty} \gamma^{t} P(s_{t} = s|\pi)$
- 3 ψ^* es la conjugada convexa de ψ

Aprendizaje por Imitación Generativo Adversario (GAIL)

Introducción Motivación v

problema

Marco teorio

Aprendizaje po

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Q-learning (HQL)

Entornos GYM OpenA

Entornos Sinergym

Conclusiones y vías futuras

Conexión entre aprendizaje por imitación y GANs

$$\psi_{\textit{GA}} \triangleq \left\{ egin{array}{ll} \mathbb{E}_{\pi_{\textit{E}}}[g(c(s,a))] & \textit{si} & c \leq 0 \\ +\infty & \text{en otro caso} \end{array}
ight.$$

donde

$$g(x) = \begin{cases} -x - \log(1 - \exp x) & si & x \le 0 \\ +\infty & \text{en otro caso} \end{cases}$$
 (2)

OBJETIVO: Encontrar un punto de silla (π, D) en la siguiente expresión

$$\mathbb{E}_{\pi}[\log(D(s,a))] + \mathbb{E}_{\pi_{E}}[\log(1-D(s,a))] - \lambda H(\pi)$$

Algoritmo GAIL

Introducció

Motivación y

Marco teório

Aprendizaje po

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentación Entornos GYM OpenAl Entornos Sinergym

Conclusiones y vías futuras

Algoritmo GAIL:

Para cada trayectoria *i*:

for i = 1 to N do

1 Actualizamos los parámetros del Discriminador de ω_i a ω_{i+1} con el gradiente:

$$\mathbb{E}_{\pi_i}[
abla_{\omega}\log(D_{\omega}(s,a))] + \mathbb{E}_{\pi_E}[
abla_{\omega}\log(1-D_{\omega}(s,a))]$$

2 Tomamos la política π_{θ_i} y actualizamos la política $\pi_{\theta_{i+1}}$ utilizando PPO con su función de coste. Realizamos la actualización del gradiente:

$$\mathbb{E}_{\pi_i}[\nabla_{\theta}\log \pi_{\theta}(a|s)\mathcal{Q}(s,a)] - \lambda \nabla_{\theta}H(\pi_{\theta})$$

donde
$$\mathcal{Q}(ar{s},ar{a})=\mathbb{E}_{ heta_i}[\log(D_{\omega_{i+1}}(s,a))|s_0=ar{s},a_0=ar{a}]$$

end

Índice

Motivación v

Marco toório

TVILLICO CCOTTO

Refuerzo Redes Generativas

Adversarias (GANs)

Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Entornos GYM OpenAl Entornos Sinergym

- 1 Introducción Motivación y descripción del problema
- 2 Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- Entornos GYM OpenAl
- 6 Conclusiones y vías futuras

Hibridación Q-learning (HQL)

Introducció

Motivación y descripción del

Marco teori

Aprendizaje po Refuerzo

Redes Generativas Adversarias (GANs)

Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación Entornos GYM OpenAl Entornos Sinergym

Conclusiones y vías futuras

Descripción HQL

- **1** Aprendizaje de una política π (generador) y de un discriminador D
- 2 El generador trata de imitar a la política experta, π_E , de la tabla Q[s,a], generando una tabla falsa $Q[s,a]^*$ con la política π

Base de datos experta:

$$Q(S,A) = \{Q(S,A,1), Q(S,A,2), \dots Q(S,A,n)\}, \ \forall (S,A) \in \mathcal{S} \times \mathcal{A}$$

Vanilla GAN

 $\min_{G} \max_{D} V(D,G) = \min_{Q^*} \max_{D} V(D,Q^*)$

$$= \min_{Q^*} \max_{D} (\mathbb{E}_{Q(S,A) \sim P_Q}[\log D(Q(S,A))] + \mathbb{E}_{Q^*(S,A) \sim P_{Q^*}}[\log(1 - D(Q^*(S,A)))])$$
(3)

Hibridación Q-learning (HQL)

Introducción Motivación v

descripción del problema

Marco teórico

Aprendizaje por

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación

Entornos GYM OpenAl

Entornos Sinergym

Índice

Introducción v

Maura tafula

Marco teorio

Aprendizaje por Refuerzo Redes Generativas

Adversarias (G

Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación

Entornos Sinergym

- 1 Introducción Motivación y descripción del problema
- Marco teórico Aprendizaje por Refuerzo Redes Generativas Adversarias (GANs
- 3 Aprendizaje por Imitación Generativo Adversario (GAIL)
- 4 Hibridación Q-learning (HQL)
- **5** Experimentación Entornos GYM OpenAl Entornos Sinergym
- 6 Conclusiones y vías futuras

Experimentación

Introducció

Motivación y descripción del problema

Marco teório

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo

Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentacio

Entornos GYM OpenAl Entornos Sinergym

	Observacciones		Acciones		$oxed{Algoritmo}$	
Entornos	Discreto	Continuo	Discreto	Continuo	GAIL	$_{ m HQL}$
Taxi - Gym	×		×		×	×
CartPole - Gym		×	×		×	
5Zone - Sinergym		×	×		×	
Datacenter - Sinergym		×	×		×	
Warehouse - Sinergym		×	×		×	

Entornos GYM OpenAl

Introducción

Motivación y descripción del

Marco teório

Aprendizaje por

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentació

Entornos GYM OpenAl

Conclusiones y vías futuras

CartPole

Entornos Sinergym

Introducción

Motivación y descripción del problema

Marco teórico

Aprendizaje por

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Experimentació

Entornos GYM Open Entornos Sinergym

Conclusiones y vías futuras

5Zone

Datacenter

Warehouse

Comparativa

Introducción

Motivación y descripción del problema

Marco teori Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario (GAIL)

Hibridación Q-learning (HQL)

Entornos GYM Open

Entornos Sinergym

	GAIL	GAIL	GAIL	GAIL	GAIL	$_{ m HQL}$
Épocas	5ZONE	DATACENTER	WAREHOUSE	CARTPOLE	TAXI	TAXI
10	-43646.9	-75631.07	-45995.8	20.1	-648.0	7.88
20	-43625.9	-75621.6	-45984.0	28.7	-745.4	7.65
30	-43621.8	-75641.4	-46006.1	30.5	-752.6	7.59
40	-43647.3	-75605	-45982.3	25.2	-767.0	7.82
50	-43618.7	-75643.09	-45966.1	32.3	-759.5	7.68
60	-43595.8	-75633.5	-45970.1	19.7	-705.0	7.92
70	-43645.1	-75633.8	-45976.10	31.2	-696.5	8.24
80	-43627.4	-75632.5	-45994.6	31.2	-731.0	7.63
90	-43636.5	-75622.7	-46000.7	21.4	-781.4	7.85
100	-43601.01	-75672.2	-46001.9	28.6	-738.2	8.46

Índice

Introducción v

Marco teório

. . .

Refuerzo Redes Generativas

Adversarias (G

Imitación Generativo Adversario

(GAIL)
Hibridación
Q-learning

(HQL)

Experimentación

Enternos GYM OpenAl

Conclusiones y vías futuras

1 Introducción

Motivación v descripción del problema

2 Marco teórico

Aprendizaje por Refuerzo

Redes Generativas Adversarias (GANs

Aprendizaie por Imitación Generativo Adversario (GAIL)

A Hibridación O learning (HOL)

4 Hibridación Q-learning (HQL)

6 Experimentación

Entornos GYM OpenAl

Entornos Sinergym

Conclusiones y vías futuras

Adversarias (GANs)

Conclusiones v vías futuras

Conexión entre RL y los modelos generativos

GANs y Aprendizaje por Imitación

Distintos entornos: CartPole, Taxi, 5Zone, Datacenter, Warehouse

LINEA FUTURA: Establecer nueva conexión entre RL y modelos generativo

-Nuevo modelo generativo, por ejemplo Decision Difusser

-Mejorar los experimentos realizados con CartPole, Taxi, 5Zone, Datacenter, Warehouse -Nuevos entornos distintos a CartPole, Taxi, 5Zone, Datacenter, Warehouse...

-Seguir investigando sobre la nueva propuesta Hibridación Q-Learning (HQL)

Introducción v

Motivación y descripción de problema

Marco teórico

Aprendizaje po Refuerzo

Redes Generativas Adversarias (GANs)

Aprendizaje por Imitación Generativo Adversario

Hibridación Q-learning (HQL)

Experimentación

Entornos GYM OpenAl Entornos Sinergym

Conclusiones y vías futuras

¡GRACIAS POR SU ATENCIÓN!