Plan du cours

I.	Dé	finition de la symétrie axiale	1								
П.	Syr	Symétrique d'un point par rapport à une droite									
	1.	Définition	1								
	2.	Première méthode de construction à l'aide de l'équerre	2								
	3.	Deuxième méthode de construction à l'aide du compas	2								
III.	Symétrique de figures usuelles										
	1.	Symétrique d'une droite	4								
	2.	Symétrique d'un segment	2								
	3.	Symétrique d'un cercle	5								
IV.	Pro	opriétés de la symétrie axiale	7								

I. Définition de la symétrie axiale

→ Dans quelle figure observe-t-on une symétrie axiale?

Définition

II. Symétrique d'un point par rapport à une droite

1. Définition

<u>|||llustration</u> :

2. Première méthode de construction à l'aide de l'équerre

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer! Tracer le symétrique des points M et S par rapport à la droite (d).

3. Deuxième méthode de construction à l'aide du compas

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer! Tracer le symétrique des points J et O par rapport à la droite (d).

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est

III. Symétrique de figures usuelles

1. Symétrique d'une droite

Propriété

2. Symétrique d'un segment

Propriété

Le symétrique d'un segment par rapport à une droite (Δ) est

3. Symétrique d'un cercle

Propriété

Le symétrique d'un **cercle** par rapport à une droite (Δ) est

En résumé :

En pratique, pour construire l'image d'une figure géométrique par une symétrie axiale, on construit l'image de ses points caractéristiques :

IV. Propriétés de la symétrie axiale

Activité d'introduction

Dans la figure ci-dessous, les parties du haut et du bas sont symétriques par rapport à la droite (d). Les longueurs sont exprimées en cm.

1.	Par	rapport	à	la	droit	te ((d),	les	symétric	ques	de
chacun	des	s points	Α	, C	, S	et	M	son	t, dans	l'ord	dre,

2	2. Pa	ar rapport	à la (droite	(d),	les s	symétri	iques	de	cha-
un	des	segments	[TP]	, [AE]	et	[EC]	sont,	dans	l'o	rdre

3. Par	rapport	à la droit	e (d), les	s symétr	iques d	le cha
cun des a	ngles \widehat{TI}	$\widehat{PM}, \widehat{PMT}$	et \widehat{MT}	\widehat{P} sont,	dans	l'ordre

4. Les angles \widehat{EAC} et	sont symétriques	par rapport à la	droite (d).
Or : $\widehat{TPM} = \dots$			
Donc $: \widehat{FAC} =$			

5. Les angles \widehat{MTP} et sont symétriques par rapport à la droite (d).

6. Les segments [MT] et sont symétriques par rapport à la droite (d).

7. Les segments [AE] et sont symétriques par rapport à la droite (d).

Or:... = Donc:... =

→ Construire l'image d'une figure par une symétrie axiale revient à "décalquer plier" cette figure par rapport à une droite donnée. Une telle construction n'entraîne pas de déformation ni de changement de mesure quel-quelle soit.

	ro		