Prosthetic Leg Sensing

Dylan Drotman, Daniel Yang, Daniel Call, Eric Sihite MAE 207 Final Presentation

March 20, 2017

Motivation

- Prosthetics are typ. \$5k-20k+
 - A large portion of cost is the expert knowledge of the Prosthetist
- Current prosthetics must be changed frequently as the child matures.
 - From age 6 -16, a child's height can range from 112 to 178 cm and can weigh from 15 to 66 kg [1].
- The prosthetic must account for these changes as the child grows.

Current State of the Art

Prosthetic

- Stiffness: Passive compliance to resemble natural biomechanics. [2]
 - Running blades or leaf springs
- Length: Expandable prosthetic using hydrogels [3]
- Low Cost: 3D printing functional low-cost prosthetic hands [4].
 - Little work has been done for developing low-cost solutions for below-the-knee amputees.

[2] Miller, Laura A., and Dudley S. Childress. "Analysis of a vertical compliance prosthetic foot." Journal of rehabilitation research and development 34.1 (1997): 52.

[3] Richelsoph, Marc E. "Non-invasive expandable prosthesis for growing children." U.S. Patent No. 5,466,261, 14 Nov. 1995.

[4] Zuniga, Jorge, et al. "Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences." BMC research notes 8.1 (2015): 10.

Current State of the Art

Sensing

- IMU sensors used to analyze walking gait [5]
- Treadmill setup
- Motion capture systems \$20,000+
- Computer Assisted Prosthetics \$20,000+ [6]

Proposed Solution:

Phase 1: Develop low cost wearable sensor

- Provide a tool to train new prosthetists or bypass the prosthetist entirely
- Better understand gait asymmetry in prosthetic patients
- Develop intuition on:
 - Comfort
 - Asymmetry
 - Effect of leg length and leg stiffness

Phase 2: Develop low cost adj. prosthetic <\$100

- Adjustable Stiffness
- Adjustable Length
- Low Cost

Hardware

9 axis BNO055 IMU

Sensor Placement and Orientation

Toe placement:

- Least amount of sensor "shifting-around" movements
- "No slip" characteristic of the toe

Estimating Three Parameters

Step Length (m)

Step Frequency (Hz)

Contact Time (s)

Example Data:

Estimating Step Length

Double integration

- 1. Moving average the accel data
- 2. Remove the accel due to the gravity
- Determine the fixed frame x-acceleration (forward)
- 4. Double integrate the x-acceleration to obtain distance

Method used by Bamberg et. al.

Bamberg, Stacy J. Morris, et al. "Gait analysis using a shoe-integrated wireless sensor system." *IEEE transactions on information technology in biomedicine* 12.4 (2008): 413-423.

Dominant Frequency Estimating Step Frequency Power Spectrum of z-gyro Raw Gyro Data Right Leg 0.8 left leg Left Leg right leg 0.7 1.5 0.6 dtheta (rad/s) (£) Ld 0.4 **DFT** 0.3 -1.5 0.2 0.1 -2.5 10 12 Time (s) 3.5

The dominant frequency occurs at .8291Hz for both the left and right legs.

f (Hz)

- 1.2061 seconds per step
- Method is fairly robust
- Works with all data

Estimating Contact Time

Experimental Validation:

Force Link C-Mill 3N treadmill

- Typically used for rehabilitating amputees and people with impaired eye-foot coordination
- Force plate detects foot location and force
- Computes gait parameters: asymmetry, contact time, step length, step freq, etc.

Normal Walking

	IMU Result	Treadmill Result	% Difference	
Step frequency	0.925 Hz	0.952 Hz	2.96%	
Step Length L	-0.730 m	0.540 m	xxx	
Step Length R	0.293 m	0.524 m	xxx	
Length Asym	140%	-2.8%		
Contact Time L	1.40 s	1.33 s	-5%	
Contact Time R	1.44 s	1.41 s	-2.1%	
Time Asym	2.93%	6.2%		

Treadmill Result:

- General information -

General		Total C-Mill session		
Name / Session	DANIEL CALL / 90_1318	Duration [sec]	60	
Date	3/17/2017	Distance [m]	34	
		Avg. walkingspeed [km/h] (corrected)	2	

- Free Gait (32x) -

Free Gait (32x)		Free Gait			
Speed [km/h] (corrected)	2		Left	Right	Asymmetry (%)
Duration [sec]	61	Steplength [mm]	540 (± 24) [51%]	524 (± 26) [49%]	-2.8
Step frequency [steps/min]	63 (± 2)	Contacttime [s]	1.33 (± 0.08)	1.41 (± 0.08)	6.2
Step width [mm]	164 (± 20)				

3cm Spacer Walking

	IMU Result Treadmil Result		% Difference	
Step frequency	1.4 Hz	1.4 Hz	0%	
Step Length L	0.0196 m	0.563 m	xxx	
Step Length R	0.223 m	0.641 m	xxx	
Length Asym	1030%	12.2%		
Contact Time L	1.01 s	0.95 s	-5.94%	
Contact Time R	0.973 s	0.95 s	-2.36%	
Time Asym	2.93%	6.2%		

Treadmill Result:

— General information -

General		Total C-Mill session	U
Name / Session	DANIEL CALL / 90_1328	Duration [sec]	60
Date	3/17/2017	Distance [m]	50
		Avg. walkingspeed [km/h] (corrected)	3

- Free Gait (42x)

Free Gait (42x)		Free Gait			
Speed [km/h] (corrected)	3		Left	Right	Asymmetry (%)
Duration [sec]	60	Steplength [mm]	563 (± 26) [47%]	641 (± 26) [53%]	12.2
Step frequency [steps/min]	84 (± 1)	Contacttime [s]	0.95 (± 0.04)	0.95 (± 0.04)	-0.5
Step width [mm]	175 (+ 18)				

Conclusions

Our methods are accurate for:

- 'Peak to peak' contact time estimate, error < 6%
- Spectral analysis is very accurate for frequency estimate

Double integration failed for step length estimation: data was too noisy

The step length is the most useful metric in comparing discrepancy in leg length

Future "steps"

- Better sensor attachments
 - Reduce sensor movement
 - Reduce sensor noise
- Compare different sensor locations
- Other useful information for modeling gait
- Phase 2: Low cost adjustable prosthetic

Thanks!

Acknowledgments:

We are grateful for the groups and individuals who supported our research.

We would like to thank the **UCSD EPARC** team for giving us time on their C-Mill treadmill for data validation, **Deborah Forster** for connecting us with the EPARC group, and **Andre Szucs** for sharing his knowledge of prosthetics and providing guidance for our project.

Outline

- Motivation
- Current state of the art
- Designs considered
- Hardware and software
- Data collection and processing
- Treadmill Validation experiment
- Comparison of results
- Conclusions
- Future work

Gait Analysis Terminology

Step Length: distance between left and right leg steps

Step frequency: 1/steptime

Contact Time: time the foot is contact with the ground

Heel Strike: when the heel touches the ground

Toe Strike: when the foot is fully in contact with the ground

