Table des matières

1	Introduction	5				
II	Analyse	9				
1	Nombres réels	11				
2	2 Fonctions réelles 2.1 Définitions					
3	Fonctions usuelles 3.1 Fonctions trigonométriques	19 20 23 25				
4	Suites réelles 4.1 Définitions	27 27 28 32 33				
5	Continuité et limites de fonctions	35				
6	Dérivabilité et accroissements finis36.1 Dérivabilité, théorèmes de Rolle et des accroissements finis36.2 Convexité4					
7	Intégration					
8	Equations différentielles linéaires 8.1 Équations différentielles d'ordre 1	515152				
9	8.1 Équations différentielles d'ordre 1	51 52 57 57				
	8.1 Équations différentielles d'ordre 1	51 52 57 57 57 58				

Annexes

IV

107

11	Ensembles	67
12	Logique et raisonnements 12.1 Logique	
13	Nombres complexes 13.1 Vision algébrique des nombres complexes	
14		79
15	Polynômes15.1 Définitions15.2 Arithmétique des polynômes15.3 Fractions rationnelles	84
16	Systèmes linéaires et matrices 16.1 Définitions et opérations élémentaires	
17	Espaces vectoriels 17.1 Définitions	
18	Applications linéaires 18.1 Définitions	103 104

Deuxième partie Analyse

Troisième partie

Algèbre

Chapitre 16

Systèmes linéaires et matrices

16.1 Définitions et opérations élémentaires

Définition : Matrice

Soient $m, n \in \mathbb{N}^*$ et $a_{1,1}, \ldots, a_{m,n} \in \mathbb{K}$.

Une **matrice** est un tableau de données appartenant à $\mathcal{M}_{m,n}(\mathbb{K})$:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} = (a_{i,j})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$$

Définition: Système linéaire

Soient $m, n \in \mathbb{N}^*, x_1, \dots, x_n \in \mathbb{K}$ n inconnues, $a_{1,1}, \dots, a_{m,n} \in \mathbb{K}$ et $b_1, \dots, b_n \in \mathbb{K}$. Un **système linéaire** est décrit par :

$$\begin{cases} a_{1,1} \cdot x_1 + a_{1,2} \cdot x_2 + \dots + a_{1,n} \cdot x_n = b_1 \\ a_{2,1} \cdot x_1 + a_{2,2} \cdot x_2 + \dots + a_{2,n} \cdot x_n = b_2 \\ \vdots \\ a_{m,1} \cdot x_1 + a_{m,2} \cdot x_2 + \dots + a_{m,n} \cdot x_n = b_m \end{cases}$$

Sa matrice associée est :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_m \end{pmatrix}$$

Définition: Opérations élémentaires

Soient i, j tels que $i \neq j$ des numéros de ligne et $\lambda \in \mathbb{K}^*$.

1.
$$L_i \leftarrow L_i + \lambda L_j$$

2.
$$L_i \leftrightarrow L_i$$

3.
$$L_i \leftarrow \lambda \cdot L_i$$

Opérations analogues sur les colonnes.

Définition:

- 1. Une matrice est **échelonnée** en lignes si et seulement si le nombre de zéros commençant une ligne croît strictement ligne par ligne jusqu'à ce qu'il ne reste plus que des zéros.
- 2. Une matrice est dite dite **échelonnée réduite** en lignes si les pivots valent 1 et si les autres coefficients dans les colonnes des pivots sont nuls.

Décrivons maintenant l'algorithme du pivot de Gauss utilisé pour résoudre des systèmes. On expliquera la méthode sur les lignes mais les principes sont analogues pour les colonnes.

La méthode consiste à appliquer les opérations élémentaires sur le système ou la matrice afin d'en faire un système ou une matrice échelonnée réduite.

Définition: Rang d'une matrice

Le rang d'une matrice A est son nombre de lignes non nulles après échelonnage. Il est noté rg(A).

<u>Théorème</u> :

Soient S un système linéaire de m lignes et n inconnues, $A \in \mathcal{M}_{m,n}(\mathbb{K})$ et $B \in \mathcal{M}_{m,1}(\mathbb{K})$ telles que A|B forme la matrice associée à S. S est solvable si et seulement si :

$$rg(A) = rg(A|B)$$

16.2 Opérations sur les matrices

Définition: Opérations sur les matrices

Soient $m, n, p, q \in \mathbb{N}^*$, $A \in \mathcal{M}_{m,n}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$, $\lambda \in \mathbb{K}$ tels que :

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{p1} & \cdots & b_{pq} \end{pmatrix}$$

1. Si m = p et n = q alors on peut définir l'addition entre A et B et la multiplication par λ .

$$A + \lambda B = \begin{pmatrix} (a_{1,1} + \lambda b_{1,1}) & \cdots & (a_{1,n} + \lambda b_{1,q}) \\ \vdots & \ddots & \vdots \\ (a_{m,1} + \lambda b_{p,1}) & \cdots & (a_{m,n} + \lambda b_{p,q}) \end{pmatrix}$$

2. Si n = p alors on peut définir la multiplication entre A et B. Soit C = AB. Chaque coefficient $c_{i,j}$ est défini par :

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

Autrement dit, le coefficient $c_{i,j}$ pour C = AB est donné par :

$$\begin{pmatrix} b_{1,1} & \cdots & b_{1,j} & \cdots & b_{1,q} \\ b_{2,1} & \cdots & b_{2,j} & \cdots & b_{2,q} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ b_{p,1} & \cdots & b_{pj} & \cdots & b_{p,q} \end{pmatrix}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i,1} & a_{i,2} & \cdots & a_{i,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,q} \\ \vdots & \vdots & \vdots & \vdots \\ \cdots & \cdots & \boxed{c_{i,j}} & \cdots & c_{i,q} \\ \vdots & \vdots & \vdots & \vdots \\ c_{m,1} & \cdots & \cdots & c_{m,q} \end{pmatrix}$$

$$\boxed{c_{i,j}} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \cdots + a_{i,n} \cdot b_{p,j}$$

Attention, la multiplication n'est pas commutative $(AB \neq BA)$.

Proposition:

Soient $m, n, k, l \in \mathbb{N}^*$.

1. Soient $A, B, C \in \mathcal{M}_{m,n}(\mathbb{K})$.

$$A + B = B + A$$

$$A + (B+C) = (A+B) + C$$

2. Soient $A \in \mathcal{M}_{m,k}(\mathbb{K}), B \in \mathcal{M}_{k,l}(\mathbb{K}), C \in \mathcal{M}_{l,n}(\mathbb{K}).$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

3. Soient $A \in \mathcal{M}_{m,k}(\mathbb{K}), B, C \in \mathcal{M}_{k,n}(\mathbb{K}), \lambda \in \mathbb{K}$.

$$A \cdot (B + \lambda C) = A \cdot B + \lambda \cdot A \cdot C$$

$$(A + \lambda B) \cdot C = A \cdot C + \lambda \cdot B \cdot C$$

Définition : Matrice nulle

La matrice nulle est la matrice dont tous les coefficients sont 0. On la note $0_{m,n}$, m étant le nombre de lignes, n le nombre de colonnes.

Définition : Symbole de Kronecker

On définit le symbole de Kronecker ainsi pour $i, j \in \mathbb{N}^*$:

$$\delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Définition : Matrice identité

La matrice identité est la matrice dont tous les coefficients sont 0 à l'exception de ceux de la diagonale principale à 1. On la note I_n , n étant le nombre de lignes.

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

On peut également dire que :

$$I_n = (\delta_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$$

Remarque. La matrice identité est parfois notée : $\mathbb{1}_n$.

Lemme:

Soient $m, n \in \mathbb{N}^*$.

1.
$$\forall A \in \mathcal{M}_{m,n}(\mathbb{K}), A + 0_{m,n} = A$$

2.
$$\forall A \in \mathcal{M}_n(\mathbb{K}), \ A \cdot I_n = I_n \cdot A = A$$

Définition: Transposée

Soient $m, n \in \mathbb{N}^*$, $A \in \mathcal{M}_{m,n}(\mathbb{K})$ de coefficients $a_{1,1}, \ldots, a_{m,n} \in \mathbb{K}$. La transposée de A est notée A^T . $A^T \in \mathcal{M}_{n,m}(\mathbb{K})$ et pour $a_{1,1}^T, \ldots, a_{n,m}^T \in \mathbb{K}$ ses coefficients :

$$(a_{j,i}^T)_{\substack{1 \leqslant j \leqslant n \\ 1 \leqslant i \leqslant m}} = (a_{i,j})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$$

Exemple 16.1. Soit A une matrice telle que :

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$A^T = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Définition:

Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{K})$.

- 1. M est symétrique $\iff M^T = M$
- 2. M est anti-symétrique $\iff M^T = -M$

Définition:

Soit $A \in \mathcal{M}_{m,n}(\mathbb{C})$.

On définit $A^* = (\overline{A})^T = (\overline{A}^T)$ la matrice adjointe / transconjuguée. Autrement dit : on prend la transposée de A et on prend les conjugués des coefficients.

Exemple 16.2. Soit A telle que :

$$A = \begin{pmatrix} 1+i & 3-i \\ 2 & -2 \\ i & 5i \end{pmatrix}$$

On a A^T :

$$A^T = \begin{pmatrix} 1+i & 2 & i \\ 3-i & -2 & 5i \end{pmatrix}$$

et finalement A^* :

$$A^* = \begin{pmatrix} 1 - i & 2 & -i \\ 3 + i & -2 & -5i \end{pmatrix}$$

Pour calculer le déterminant d'une matrice carrée noté $\det(A)$ ou s'il n'y a pas d'ambiguïté |A|, il existe plusieurs méthodes.

Soit A une matrice carrée de taille $n \times n$ de coefficients $a_{1,1}, \ldots, a_{n,n} \in \mathbb{K}$.

1. n = 2.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$

$$\det(A) = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$$

2. n = 3

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$\det(A) = (a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2}) - (a_{1,3}a_{2,2}a_{3,1} + a_{1,2}a_{2,1}a_{3,3} + a_{1,1}a_{2,3}a_{3,2})$$

3. $n \ge 3$ (14). On peut calculer le déterminant d'une matrice en calculant à l'aide des déterminants des matrices de taille n-1. Pour se faire on développe en lignes ou en colonnes. Notons $A_{i,j}$ ma matrice obtenue en enlevant à A sa i-ème ligne et sa j-ème colonne.

$$A_{i,j} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{n,n} \end{pmatrix}$$

On peut alors développer le calcul du déterminant suivant une ligne ou une colonne :

(a) Suivant la ligne i:

$$\det(A) = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} \det(A_{i,j})$$

(b) Suivant la colonne j:

$$\det(A) = \sum_{i=1}^{n} a_{i,j} (-1)^{i+j} \det(A_{i,j})$$

Exemple 16.3. Calculons le déterminant de la matrice

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 1 & -2 \\ 1 & 2 & -1 \end{pmatrix}$$

en développant suivant la première ligne.

$$\det(A) = 2(-1)^{1+1} \begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} + 1(-1)^{1+2} \begin{vmatrix} 1 & -2 \\ 1 & -1 \end{vmatrix} + (-2)(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}$$

$$= 2[1 \cdot (-1) - (-2) \cdot 2] - 1[1 \cdot (-1) - (-2) \cdot 1] - 2[1 \cdot 2 - 1 \cdot 1]$$

$$= 6 - 1 - 2$$

$$= 3$$

Proposition:

Soient $n \in \mathbb{N}^*$, $A, B \in \mathcal{M}_n(\mathbb{K})$, $\lambda \in \mathbb{K}$.

1.
$$det(A \cdot B) = det(A) \cdot det(B)$$

3.
$$\det(A^T) = \det(A)$$

2.
$$det(\lambda A) = \lambda^n det(A)$$

4.
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
 si $\det(A) \neq 0$

Définition: Matrice inversible

Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$.

A est inversible si et seulement si existe une unique matrice $B = A^{-1}$ telle que

$$AB = BA = I_n.$$

Proposition:

Une matrice est inversible si et seulement si son déterminant est non nul.

Définition : Comatrice

La comatrice com(A) d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice est définie ainsi :

$$(com(A))_{i,j} = (-1)^{i+j} \det(A_{i,j})$$

Lorsque nous devons calculer l'inverse d'une matrice, plusieurs cas sont possibles. Si on a une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Une méthode générale pour calculer l'inverse d'une matrice A est d'utiliser l'algorithme de Gauss-Jordan. On part de la matrice

$$A|I_n$$

et on applique les opérations élémentaires pour avoir une matrice de la forme

$$I_n|B$$

 $B = A^{-1}$ est l'inverse de A.

Une autre méthode générale est d'utiliser la comatrice de A.

$$A^{-1} = \frac{1}{\det(A)} \left(\operatorname{com}(A) \right)^{T}$$

Exemple 16.4. Soit
$$A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 & 2 \\ -2 & -2 & 6 \end{pmatrix}$$
.

Posons $A|I_n:$

$$A|I_{n} = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 2 & 0 & 1 & 0 \\ -2 & -2 & 6 & 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{L_{2} \leftarrow L_{2} + L_{1}}{\Longleftrightarrow} \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 2 & 8 & 2 & 0 & 1 \end{pmatrix}$$

$$\stackrel{L_{3} \leftarrow L_{3} - 2L_{1}}{\Longleftrightarrow} \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & -2 & 1 \end{pmatrix}$$

$$\stackrel{L_{3} \leftarrow L_{3} - 2L_{1}}{\Longleftrightarrow} \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & -2 & 1 \end{pmatrix}$$

$$\stackrel{L_{3} \leftarrow \frac{1}{2}L_{3}}{\Longleftrightarrow} \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & \frac{1}{2} \end{pmatrix}$$

Définition: Trace d'une matrice

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $a_{1,1}, \ldots, a_{n,n}$ les coefficients de A. La trace de A, notée $\operatorname{tr}(A)$ est définie par l'application suivante.

tr:
$$\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$$

 $A \mapsto \sum_{i=1}^n a_{i,i}$

Lemme:

1.
$$\operatorname{tr}(A^T) = \operatorname{tr}(A)$$

2.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

 $D\'{e}monstration.$

- 1. Par application directe de la définition de la trace et de la transposée.
- 2. Les coefficients $a_{1,1}, \ldots, a_{n,n}$ et $b_{1,1}, \ldots, b_{n,n}$ sont respectivement les coefficients des matrices A et B. Les coefficients $(ab)_{1,1}, \ldots, (ab)_{n,n}$ et $(ba)_{1,1}, \ldots, (ba)_{n,n}$ sont respectivement ceux des matrices AB et BA.

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (ab)_{i,i}$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{i,k} b_{k,i} \right)$$

$$= \sum_{i=1}^{n} (a_{i,1}b_{1,i} + \dots + a_{i,n}b_{n,i})$$

$$= (a_{1,1}b_{1,1} + \dots + a_{1,n}b_{n,1}) + \dots + (a_{n,1}b_{1,n} + \dots + a_{n,n}b_{n,n})$$

$$= (b_{1,1}a_{1,1} + \dots + b_{1,n}a_{n,1}) + \dots + (b_{n,1}a_{1,n} + \dots + b_{n,n}a_{n,n})$$

$$= \sum_{i=1}^{n} (b_{i,1}a_{1,i} + \dots + b_{i,n}a_{n,i})$$

$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{n} b_{i,k}a_{k,i} \right)$$

$$= \sum_{i=1}^{n} (ba)_{i,i}$$

$$= \operatorname{tr}(BA)$$

Proposition:

Pour passer d'une forme cartésienne à une forme paramétrique, on applique le pivot de Gauss sur les lignes. Pour passer d'une forme paramétrique à une forme cartésienne, on utilise le déterminant.

Définition: Produit scalaire dans \mathbb{R}^n

Soient
$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ deux vecteurs de \mathbb{R}^n .

On définit le produit scalaire ainsi :

$$\langle \cdot | \cdot \rangle \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

 $(\vec{x}, \vec{y}) \mapsto \sum_{i=1}^n x_i y_i$

Définition : Produit vectoriel dans \mathbb{R}^3

Soient
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 et $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 .
On définit le produit vectoriel ainsi :

$$\wedge \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$(\vec{x}, \vec{y}) \mapsto \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_1 y_3 - x_3 y_1 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

Bibliographie

- 1. BIBM@TH, Bibm@th, la bibliothèque des mathématiques (https://www.bibmath.net/).
- 2. In $Wikip\acute{e}dia$, (https://fr.wikipedia.org/w/index.php?title=Portail:Math%C3% A9matiques&oldid=189931811).
- 3. Exo7, Cours et exercices de mathématiques (http://exo7.emath.fr/).
- 4. Licence de mathématiques Lyon 1 (http://licence-math.univ-lyon1.fr/doku.php?id=enseignements:11).
- 5. In Wikipédia, Page Version ID: 200922904, (https://fr.wikipedia.org/w/index.php?title=Nombre_r%C3%A9el&oldid=200922904).
- 6. Fonctions d'une variable réelle/Dérivabilité Wikiversité (https://fr.wikiversity.org/wiki/Fonctions_d%27une_variable_r%C3%A9elle/D%C3%A9rivabilit%C3%A9).
- 7. Exo7, Cours d'analyse de première année, (http://exo7.emath.fr/cours/livre-analyse-1.pdf).
- 8. BIBMATH.NET, Démonstration de l'inégalité de Jensen pour les fonctions convexes, 23 sept. 2022, (2023; https://www.youtube.com/watch?v=5Upz20783FU).
- 9. BIBM@TH, Résolution des équations différentielles linéaires homogènes du premier ordre, 15 juin 2022, (https://www.youtube.com/watch?v=yCmVLulzxyc).
- 10. BIBM@TH, Règle de L'Hospital (https://www.bibmath.net/dico/index.php?action=affiche&quoi=./h/hospital.html).
- 11. BIBM@TH, Raisonnement par analyse-synthèse (https://www.bibmath.net/dico/index.php?action=affiche&quoi=./a/analysesynthese.html).
- 12. A. SOYEUR, F. CAPACES, E. VIEILLARD-BARON, SÉSAMATH, LES-MATHEMATIQUES.NET, Cours de mathématiques de SUP, (http://les.mathematiques.free.fr/pdf/livre.pdf).
- 13. F. MILLET, math-sup.fr (http://math-sup.ouvaton.org/index.php?sujet=cours&chapitre=DES5).
- 14. In $Wikip\acute{e}dia$, (https://fr.wikipedia.org/w/index.php?title=Calcul_du_d%C3%A9terminant_d%27une_matrice&oldid=199565270).
- 15. Résumé de cours : groupes, anneaux, corps (https://www.bibmath.net/ressources/index.php?action=affiche&quoi=mpsi/cours/groupeanneaucorps.html).