"while (noSuccess) { tryAgain(); if (dead) break; }"

- Unknown

CSE102 Computer Programming with C

2020-2021 Spring Semester

Top-Down Design with Functions

© 2015-2021 Yakup Genç

Function: modules of program

Programmers use segments of earlier programs to construct new programs

- Documentation is very important
- Use of predefined functions
- Top-down stepwise refinement
 - Major steps = modules of program

March 2021

2

CSE102 Computer Programming

1

Case Study: Circle

Problem: Compute and display the area and the circumference of a circle

- Analysis:
 - Input: radius (double)
 - Outputs: area and circumference (double)
 - Relationship: ???
- Design:
 - 1. Get the radius
 - 2. Calculate the area
 - 3. Calculate the circumference
 - 4. Display the area and the circumference
 - Some steps requires refinement

March 2021

3

CSE102 Computer Programming

Case Study: Circle

Implementation: The following slides contains the initial program

March 202:

4

CSE102 Computer Programming

```
Program Circle

1. /*
2. * Calculates and displays the area and circumference of a circle
3. */
4. * Hinclude <stdio.h>
6. * define Pt 3.14159
7. int
9. main(void)

(CSE102 Computer Programming 6
```


7

Case Study: Weight of Washers Here, we will use the solution of the previous case study Problem: Manufacturer of flat washers needs to estimate shipping cost. They need to compute the weight of a specifies quantity of flat washers Analysis: Weight is volume times density of the material Volume is the rim area times thickness Rim area is calculated as in the next slide Inputs: diameters, thickness, density, quantity Outputs: weight Relationships: ??


```
Program Washer
#include <stdio.h>
#define PI 3.14159
         double equantity; /* input - number of washer bace / double weight of washer batch */ double hole radius; /* radius of hole of weight of washer batch */ double edge radius; /* radius of outer edge */ double in area; /* area of rim */ double unit weight; /* weight of I washer */
          /* Get the inner diameter, outer diameter, and thickness.*/
          printf("Inner diameter in centimeters> ");
scanf("%lf", &hole_diameter);
         printf("Outer diameter);
printf("Outer diameter in centimeters> ");
scanf("%lf", &edge_diameter);
printf("Thickness in centimeters> ");
          scanf("%lf", &thickness);
                                                CSE102 Computer Programming
```

```
Program Washer (cont'd)
/* Get the material density and quantity manufactured. */
printf("Material density in grams per cubic centimeter> ");
scanf("%lf", &density);
printf("Quantity in batch> ");
 scanf("%lf", &quantity);
/* Compute the rim area. */
hole_radius = hole_diameter / 2.0;
edge_radius = edge_diameter / 2.0;
rim_area = PI * edge_radius * edge_radius -
PI * hole_radius * hole_radius;
/* Compute the weight of a flat washer. */
unit weight = rim area * thickness * density;
                                        CSE102 Computer Programming
```

Software engineering:
 Goal: writing error-free codes
 Use well tested existing codes: code reuse
 Use predefined functions
 EX: sqrt function in math library
 Use it as a black box
 y = sqrt(x);
 EX: printf and scanf in stdio library

13

```
Function sqrt as a "Black Box"

function sqrt

square root computation \longrightarrow result is 4.0

March 2021 CSE102 Computer Programming 15
```

```
Square Root Program
* Performs three square root computations */
#include <stdio.h> /* definitions of printf, scanf */
#include <math.h> /* definition of sqrt */
main(void)
     double first, second, /* input - two data values
            first_sqrt,
second_sqrt,
                            /* output - square root of first
                            /* output - square root of second
            sum_sqrt;
                            /* output - square root of sum
     /* Get first number and display its square root. */
     printf("Enter the first number> ");
     scanf("%lf", &first);
     first sgrt = sgrt(first):
     printf("The square root of the first number is %.2f\n", first_sqrt);
                           CSE102 Computer Programming
```

Square Root Program (cont'd)

```
/* Get second number and display its square root. */
                   printf("Enter the second number> ");
                   scanf("%lf", &second);
                   second sgrt = sgrt(second):
                   printf("The square root of the second number is %.2f\n", second sqrt);
                   /\star Display the square root of the sum of the two numbers. \star/
                   sum_sqrt = sqrt(first + second);
printf("The square root of the sum of the two numbers is %.2f\n",
                           sum_sqrt);
                   return (0);
             Enter the first number> 9.0
             The square root of the first number is 3.00
             Enter the second number> 16.0
             The square root of the second number is 4.00
             The square root of the sum of the two numbers is 5.00
March 2021
                                            CSE102 Computer Programming
```

17 18

Math Library

Returns the base-10 logarithm of x for x > 0.0: if x is 100.0, log10(x) is 2.0 log10(x) <math.h> double double Returns x^y . If x is negative, y must be integral: if x is 0.16 and y is <math.h> double double 0.5, pow(x, y) is 0.4 sin(x) <math.h> Returns the sine of angle x: double double if x is 1.5708, sin(x) is 1.0 Returns the non-negative square root of \mathbf{x} ($\sqrt{\mathbf{x}}$) for $\mathbf{x} \ge 0.0$: double double if x is 2.25, sqrt(x) is 1.5 Returns the tangent of angle x: if x is 0.0, tan(x) is 0.0 double (radians) double

CSE102 Computer Programming

Math Library

Function	Standard Header File	Purpose: Example	Argument(s)	Result	
abs(x)	<stdlib.h></stdlib.h>	Returns the absolute value of its integer argument: if x is -5, abs(x) is 5	int	int	
ceil(x)	<math.h></math.h>	Returns the smallest integral value that is not less than x: if x is 45.23, ceil(x) is 46.0	double	double	
cos(x)	<math.h></math.h>	Returns the cosine of angle x: if x is 0.0, cos(x) is 1.0	double (radians)	double	
exp(x)	<math.h></math.h>	Returns e^x where $e = 2.71828$: if x is 1.0, exp(x) is 2.71828	double	double	
fabs(x)	<math.h></math.h>	Returns the absolute value of its type double argument: if x is -8.432, fabs(x) is 8.432	double	double	
floor(x)	<math.h></math.h>	Returns the largest integral value that is not greater than x: if x is 45.23, floor(x) is 45.0	double	double	
log(x)	<math.h></math.h>	Returns the natural logarithm of x for $x > 0.0$; if x is 2.71828, $loq(x)$ is 1.0	double	double	

20

Library Functions

• Example: Compute the roots of a quadratic equation
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Example: Compute the length of the third side of a triangle

 $a^2 = b^2 + c^2 - 2bc \cos \alpha$

CSE102 Computer Programming

User-defined Functions

- Example: area of a circle area = find_area(radius);
- Example: circumference of a circle circum = find_circum(radius);
- Example: rim area calculation
 rim_area = find_area(edge_radius) find_area(hole_radius);

March 2021 CSE102 Computer Programming

21 22

• Problem: Draw simple diagrams on your screen • Ex: house, person • Analysis: Basic components • Circle • Parallel lines • Base line • Intersecting lines • Design: Divide the problem into three subproblems • Draw a circle • Draw a triangle • Draw a triangle • Draw intersecting lines • Further refinement in triangle – see following structure chart

Structure Chart for Drawing a Stick Figure Original Draw a Level 0 problem figure Draw Draw a Draw a Subproblems intersecting Level 1 Draw Draw a Detailed intersecting Level 2 subproblems

Case Study: Simple Diagrams

User Defined Functions Function prototype · Functions should be defined before they are used · Insert the whole function definition · Insert the function prototype · Defines · Data types of the function · Function name · Arguments and their types function_type function_name (argument types); • Ex: void draw_circle(void); CSE102 Computer Programming March 2021

```
User Defined Functions

    Function call

    Calling a function

              function_name (arguments);
   • Ex:
              draw_circle();
               printf("%d", year);
March 2021
                                  CSE102 Computer Programming
```

25 26

User Defined Functions

- Function definition
 - Defines the operation of a function
 - Similar to main function

```
function_type function_name (argument list)
  local declerations
  executable statements
```

- Function heading: similar to function prototype
- Function body: enclosed in braces

CSE102 Computer Programming

```
Function draw circle
 * Draws a circle
void
draw_circle(void)
      printf(" * \n");
printf(" * *\n");
printf(" * * \n");
```


29 30

Flow of Control Compiling the program: Function prototypes: compiler knows the functions enables compiler to translate function calls Function definition: translates the code of the function Allocates memory needed Function call: Transfers of the control to the function End of the function: Transfer of the control back to the calling statement Releases the local memory

Advantages of Functions

- For team of programmers:
 - Dividing programming tasks to the programmers
- Procedural abstraction
 - Move the details of the operation to the functions
 - Focus on the main operations
- Code reuse
 - In a program
 - In other programs
 - · Well tested functions

March 2021

CSE102 Computer Programming

33

34

Function instruct

```
1. /*
2. * Displays instructions to a user of program to compute
3. * the area and circumference of a circle.
4. */
5. void
6. instruct(void)
7. {
8. printf("This program computes the area\n");
9. printf("Tho use this program, enter the radius of\n");
10. printf("The circle after the prompt: Enter radius>\n");
11. }
12. }
This program computes the area and circumference of a circle.
To use this program, enter the radius of the circle after the prompt: Enter radius>
```

Functions with Input Arguments

- Functions are building blocks to construct large progr
 - · Like Lego blocks
- Arguments:
 - to carry information to functions: input arguments
 - to return multiple results : output arguments
- Arguments makes functions more versatile
 - Manipulate different data at each call

rim_area = find_area(edge_radius) - find_area(hole_radius);

March 202

SE102 Computer Programming

```
Functions find_circum and find_area

1. /*
2. *Computes the circumference of a circle with radius r.
3. * Pre: r is defined and is > 0.
4. * PI is a constant macro representing an approximation of pi.
5. */
6. double
7. find circum(double r)
8. {
9. return (2.0 * PI * r);
10. }
11.
12. /*
13. *Computes the area of a circle with radius r.
14. * Pre: r is defined and is > 0.
15. * PI is a constant macro representing an approximation of pi.
16. * Library math.h is included.
17. */
18. double
19. find_area(double r)
20. {
21. return (PI * pow(r, 2));
22. }

March 2021

CSE102 Computer Programming
40
```


Testing functions • Functions can be tested by a program that uses it • Driver program • Defines function arguments • Call the functions • Display the return value

Thanks for listening!