Course	Course	ODER ATING SYSTEMS	Course	Durfasional Com	L T	P	С	
Code	Name	OPERATING SISTEMS	Category	Professional Core	3 0	2	4	

Pre-requisite Nil	Co-requisite Nil		Progressive Courses Nil
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil

Course	Objectives:	The purpose of learning this course is to:		L	earni	ng
1	Introduce the key role of an	Operating system		1	2	3
2	Insist the Process Manageme	ent functions of an Operating system				
3	3 Emphasize the importance of Memory Management concepts of an Operating system					üt
4	4 Realize the significance of Device Management part of an Operating system				Proficiency	Attainment
5	5 Comprehend the need of File Management functions of an Operating system					ain
6	Explore the services offered by the Operating system practically					Αtt
Course	Outcomes (CO):	At the end of this course, learners will be able to:		 evel of T Bloom)	oc	pected
CO1:	Express the fundamental con			<u> </u>	£ € 60	∄ € 70
CO2:	1 2	and scheduling in Operating System		3	70	75
CO3:					70	75
CO4:	Incorporate page fault handl	ing, demand paging and page buffering techniques in Operating System.		4	60	70
CO5:	Demonstrate the storage management techniques through various File Management techniques					70

	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
3		3										2		
2	1	3											2	
3	2	2										2		
3	2	2											2	
3		2	2									2		

	ration nour)	15	15		15	15	
S-1	SLO-1	PROCESS SYNCHRONIZATION: Peterson's solution Synchronization Hardware		MEMORY MANAGEMENT: Memory Management: Logical Vs Physical address space, Swapping	VIRTUAL MEMORY- Background	STORAGE MANAGEMENT: Mass storage structure – Overview of Mass storage structure – Magnetic Disks	
	SLO-2	Gaining the role of Operating systems	Understanding the two-process solution and the	Understanding the basics of Memory	Understanding the need of demand	Understanding the Basics in storage	
	020-2	Gaining the role of Operating systems	benefits of the synchronization hardware	management	paging	management	
	SLO-1	The evolution of operating system,	Process synchronization: Semaphores,	Contiguous Memory allocation – Fixed	VIRTUAL MEMORY – Basic concepts –	Disk Scheduling	
	OLO-1	Major achievements	usage, implementation	and Dynamic partition	page fault handling	Disk concauming	
S-2	SLO-2	I ()norating evetome from party hatch	Gaining the knowledge of the usage of the semaphores for the Mutual exclusion mechanisms	Getting to know about Partition memory management and issues: Internal fragmentation and external fragmentation problems	Understanding , how an OS handles the page faults	Understanding the various scheduling with respect to the disk	
	SLO-1	OS Design considerations for Multiprocessor and Multicore	Classical Problems of synchronization – Readers writers problem, Bounded Buffer problem	Strategies for selecting free holes in Dynamic partition	Performance of Demand paging	FILE SYSTEM INTERFACE: File concept, File access methods	
S-3	SLO-2	Understanding the key design issues of Multiprocessor Operating systems and Multicore Operating systems Good understanding of synchronization mechanisms		Understanding the allocation strategies with examples	Understanding the relationship of effective access time and the page fault rate	Understanding the file basics	
S		LAB 1 : Understanding the booting	LAB4 : System admin commands –	I AB7: Shall Programs Pagia laval	LAB10 : Overlay concept	I AP12: Process symphronization	
4-5	SLO-2	process of Linux	Basics	LAB7: Shell Programs – Basic level	LABTO . Overlay concept	LAB13:Process synchronization	

	SLO-1	PROCESS CONCEPT- Processes, PCB	Classical Problems of synchronization –	Paged memory management	Copy-on write	File sharing and Protection	
	020 .	TROCESS CONCENT - Trocesses, TOD	Dining Philosophers problem (Monitor)	aged memory management	Copy-on write	The sharing and Frotection	
S-6	SLO-2	Understanding the Process concept and Maintanance of PCB by OS	Understanding the synchronization of limited resources among multiple processes	Understanding the Paging technique.PMT hardware mechanism	Understanding the need for Copy-on write	Emphasis the need for the file sharing and its protection	
S-7	SLO-1	Threads – Overview and its Benefits	CPU SCHEDULING : FCFS,SJF,Priority	Structure of Page Map Table	Page replacement Mechanisms: FIFO, Optimal, LRU and LRU approximation Techniques	FILE SYSTEM IMPLEMENTATION : File system structure	
	SLO-2	Understanding the importance of threads	Understanding the scheduling techniques	Understanding the components of PMT	Understanding the Pros and cons of the page replacement techniques	To get the basic file system structure	
	SLO-1	Process Scheduling: Scheduling Queues,	CPU Scheduling: Round robin, Multilevel queue	Example : Intel 32 bit and 64 –bit	Counting based page replacement and	District Land and district	
	3LU-1	Schedulers, Context switch	Scheduling, Multilevel feedback Scheduling	Architectures	Page Buffering Algorithms	Directory Implementation	
S-8	SLO-2	Understanding basics of Process scheduling	Understanding the scheduling techniques	Understanding the Paging in the Intel architectures	To know on additional Techniques available for page replacement strategies	Understanding the various levels of directory structure	
S 9-10	SLO-1 SLO-2	LAB2: Understanding the Linux file system	LAB5: System admin commands – Simple task automations	LAB 8:Process Creation	LAB11: IPC using Pipes	LAB14 : Study of OS161	
S-11	SLO-1	Operations on Process – Process creation, Process termination	Real Time scheduling: Rate Monotonic Scheduling and Deadline Scheduling	Example : ARM Architectures		FILE SYSTEM IMPLEMENTATION :Allocation methods	
5-11	SLO-2	Understanding the system calls – fork(), wait(), exit()	Understanding the real time scheduling	Understanding the Paging with respect to ARM	Understanding the root cause of the Thrashing	Understanding the pros and Cons of various disk allocation methods	
S-12	SLO-1	Inter Process communication : Shared Memory, Message Passing ,Pipe()	DEADLOCKS: Necessary conditions, Resource allocation graph, Deadlock prevention methods	Segmented memory management	Thrashing, Causes of Thrashing	FILE SYSTEM IMPLEMENTATION :Free space Management	
5-12	SLO-2	Understanding the need for IPC	Understanding the deadlock scenario	Understanding the users view of memory with respect to the primary memory	Understanding the Thrashing	Understanding the methods available for maintaining the free spaces in the disk	
S-13	SLO-1	PROCESS SYNCHRONIZATION: Background, Critical section Problem	Deadlocks :Deadlock Avoidance, Detection and Recovery	Paged segmentation Technique	Working set Model	Swap space Management	
5-13	SLO-2	Understanding the race conditions and the need for the Process synchronization	Understanding the deadlock avoidance, detection and recovery mechanisms	Understanding the combined scheme for efficient management	Understanding the working set model for controlling the Working set Model	Understanding the Low-level task of the OS	
S 14-15	SLO-1 SLO-2	LAB3: Understanding the various Phases of Compilation of a 'C' Program	LAB6 : Linux commands	LAB9: Overlay concept	LAB12: IPC using shared memory and Message queues	LAB15: Understanding the OS161 filesystem and working with test programs	

Learning	1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating systems, 9th ed., John Wiley & Sons, 2013	3.	Andrew S.Tanenbaum, Herbert Bos, Modern Operating systems, 4th ed., Pearson, 2015
Resources	2.	William Stallings, Operating Systems-Internals and Design Principles, 7th ed., Prentice Hall, 2012	4.	Bryant O'Hallaxn, Computer systems- A Programmer's Perspective, Pearson, 2015

Learning A	ssessment										
	Bloom's				Final Examination (50% weightage)						
	Level of	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA –	4 (10%)	Final Examina	tion (50% weightage)
	Thinking	Theory (5%)	Practice (5%)	Theory (7.5%)	Practice (7.5%)	Theory (7.5%)	Practice (7.5%)	Theory (5%)	Practice (5%)	Theory (25%)	Practice (25%)
Level 1	Remember	20%		15%		15%				15%	
Level 2	Understand	20%		25%		25%		25%		20%	
Level 3	Apply	45%	30%	40%	35%	40%	40%	20%	20%	45%	30%
Level 4	Analyze	15%	40%	20%	35%	20%	30%	20%	50%	20%	35%

Level 5	Evaluate		30%		30%		30%	25%	30%		35%
Level 6	Create										
	Total	100 %	100 %	100 %	100 %	100 %	100 %	100%	100%	100%	100%

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers				
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts		
1.Mr. Balamurugan, Infosys, balams@gmail.com	1. Dr.Latha Parthiban, Pondicherry University, lathaparthiban@yahoo.com	1. Dr .G. Maragatham, SRMIST 3. Ms. Aruna S, SRMIST		
		2. Dr. M. Eliazer, SRMIST		