Química Mecânica Quântica Moderna

Prof. Diego J. Raposo (djrs@poli.br)
UPE – Poli
2025.2

Reflexões sobre o modelo de Bohr

- Inovações trazidas pelo modelo de Bohr:
 - Explicação e cálculo de espectros de absorção/emissão de átomos com um elétron, chamados de hidrogenóides;
 - Uso bem sucedido da hipótese quântica na descrição da estrutura dos átomos.
- Limitações do modelo de Bohr
 - Não é aplicável para átomos com mais de um elétron;
 - Não descreve substâncias com mais de um átomo;
 - Não explica a diferença de intensidade entre as linhas, entre outros.

Dualidade onda-partícula

- Tais limitações se devem, em parte, a outra propriedade muito importante no domínio de partículas tão pequenas: a dualidade ondapartícula;
- Ondas e partículas apresentam propriedades muito diferentes:
 - Onda: posição, momento e massa indefinidos.
 - Partículas: Posição, momento e massa definidos.
- A luz exibe propriedades de onda e de partícula:
 - Propriedades de onda: interferência, difração;
 - Propriedades de partícula: efeito Tyndall, refração (posição, trajetória), efeito fotoelétrico, luminescência (momento mínimo).

Eq. de Le Broglie

Usando a Eq. de Planck (E = hf) e a de Einstein (E=pc), que relaciona a energia e o momento da luz, Le Broglie uniu em uma só equação a característica corpuscular (momento) e ondulatória (comprimento de onda) da luz:

 $\lambda = \frac{h}{p}$

• Le Broglie foi além e propôs que a relação era válida para qualquer corpo com massa m e velocidade v, possuindo propriedades de partícula e de onda simultaneamente:

 $\lambda = \frac{h}{p} = \frac{h}{mv}$

- A confirmação da Eq. de Le Broglie veio a partir de dois experimentos:
 - Efeito Compton: fótons têm momento
 - Difração de elétrons: eles exibem propriedades ondulatórias também

Exemplos

- 1) Calcule o comprimento de onda de um hambúrger de 500 g a 1 m/s. R.: 1,33 · 10⁻²³ Å.
- 2) Calcule o comprimento de onda do elétron a 9,47 · 106 m/s. R.: 0,77 Å.
- Corpos na nossa escala tamanho e massa têm comprimento de onda muito pequeno para que propriedades ondulatórias sejam verificadas na prática. Então o comportamento simultâneo ondapartícula é algo inerente ao domínio microscópico;
- Confirmação adicional à abordagem foi a explicação bem sucedida de Le Broglie para a razão da condição de quantização de Bohr funcionar.

(a) Radiolarian under light microscope

(b) Radiolarian under electron microscope

Interpretação de Born

- Se partícula-onda, qual a função de onda Ψ? É onda de quê?
- Ψ é um objeto matemático sem significado físico intrínseco.
 Porém, |Ψ|² é a probabilidade de encontrar o elétron em certa região do espaço. Essa é a interpretação de Born.
- Não podemos determinar precisamente se uma moeda lançada dará cara ou coroa. Mas, por meio de medidas coletivas, podemos ver padrões de probabilidade e fazer previsões.
- Portanto, calcular |Ψ|² é uma maneira de fazer previsões. Em certo sentido, Ψ não é uma onda comum, que se propaga em um meio, mas um objeto matemático que permite obter probabilidades.

Experimentos de dupla fenda

1 fóton por vez

1 elétron por vez

Equação de Schrodinger

- Se Ψ é tão importante, como calculá-lo? Schrödinger sugeriu o uso de duas equações de onda:
 - **a)** Uma para determinar a função de ondas progressivas, sendo dependente do espaço e do tempo, $\Psi(x,t)$ (ondas tais como a da luz);
 - **b)** Outra para determinar a função em ondas estacionárias, que depende apenas do espaço, $\Psi(x)$ (ondas de matéria confinada, como uma partícula em uma caixa);

Eq. de Schrödinger

A segunda equação é a adequada para descrever orbitais e energias em um átomo, por isso vamos focar nela.

orbitais

Para usá-la emprega-se o esquema ao lado.

Ele permitiu que os cientistas previssem, ao longo dos anos:

A Eq. de Le Broglie

- O princípio da Incerteza de Heisenberg
- Resultados de experimentos com fendas
- Energias e outras propriedades de átomos hidrogenóides
- Energias e outras propriedades de átomos polieletrônicos
- Energias e outras propriedades de moléculas
- E muito mais!

Eq. de Schrödinger para H

Números quânticos

- Número quântico principal:
 - n = 1, 2, ...
 - Designa <u>camada (nível)</u>: K (n=1), L (n=2), M (n=3), etc...
 - Indica energia e distância do núcleo (tamanho do orbital): cresce com n;
- Número quântico do momento angular:
 - $I = 0, 1, 2, \dots n-1$
 - Designa <u>subcamada (subnível)</u>: s (*l*=0), p (*l*=1), d (*l*=2),
 f(*l*=3), etc;
 - Indica forma do orbital, e energia em um mesmo nível: cresce com I;

n	camada	1	subnível
1	К	0	S
2	L	0	S
		1	р
3	М	0	S
		1	р
		2	d

Números quânticos

- Número quântico magnético:
 - $m_l = 0, \pm 1, ..., \pm l$
 - Representa a orientação espacial do orbital;
 - Símbolos correspondentes a essas orientações variam.
 - Cada valor de m_l (para dados n e l)
 corresponde a um orbital, muitas vezes
 representado por uma caixa.

	subnível	I	m _l	caixas
;	S	0	0	0
	р	1	0,±1	-1 0 +1
	d	2	0,±1,±2	-2 -1 0 +1 +2
	f	3	0,±1,±2,±3	-3 -2 -1 0 +1 +2 +3

Números quânticos

n	camada	I	subcamada	m _I	Orbitais	Símbolos
1	K	0	S	0	0	1s
2	L	0	S	0	0	2s
		1	p	0, ±1	-1 0 +1	2p (2p _x ,2p _y ,2p _z)
3	M	0	S	0	0	3s
		1	p	0, ±1	-1 0 +1	3p (3p _x ,3p _y ,3p _z)
		2	d	0, ±1, ±2	-2 -1 0 +1 +2	3d $(3d_{xy}, 3d_{xz}, 3d_{yz}, 3d_{xz-y2}, 3d_{z2})$

Dada uma camada (n), quantos subníveis? R.: n subníveis

Dado uma subcamada (/), quantos orbitais? R.: 2/ + 1 orbitais

Dada uma camada (n), quantos orbitais? R.: n^2

Exemplos

- 1) Quais os valores possíveis de m_l para o subnível f?
- 2) Na camada N, quantos orbitais encontramos?
- 3) Se uma camada possui n = 7, determine quantos subníveis e quantos orbitais no total?
- 4) Qual orbital possui maior energia, 2s ou o 1s?
- 5) Cada orbital pode possuir até dois elétrons. Qual o máximo de elétrons na camada M?

Orbitais s(l = 0)

- Ψ só depende de r: esfericamente simétrico;
- Podemos representar os orbitais como superfícies de contorno: fixase Ψ (e probabilidade de encontrar elétron, $|\Psi|^2$), e desenha superfície associada a certa probabilidade (geralmente 90%);
- O tamanho dos orbitais s cresce com aumento de *n*;
- A função de onda pode conter nós: regiões onde a probabilidade de encontrar o elétron é nula, e separam regiões onde Ψ é positiva e negativa.
- O número de superfícies nodais é igual a n-1. No orbital 1s há 1-1 = 0 superfícies nodais; já no orbital 2s há 2-1=1 casca esférica nodal, que podemos ver ao fazer uma seção transversal do orbital

n aumenta: E aumenta, distância do núcleo aumenta

Orbitais s(l = 0)

- Os nós em uma corda que vibra são uma boa analogia para o que ocorre com o elétron, que está confinado às proximidades do núcleo;
- A presença dos nós também ajuda a explicar a ordem das energias dos orbitais: quanto mais superfícies nodais, mais fraca a interação dos elétrons naquele orbital com o núcleo, logo maior (menos negativa) a energia.
- Nos orbitais s a probabilidade de encontrar o elétron próximo do núcleo cai com o aumento do n° de superfícies nodais. Portanto, a ordem de energia é, como esperado (pela equação de E(n)):

E(1s) < E(2s) < E(3s)

Orbitais p(l = 1)

- Algumas características diferenciam os orbitais p dos s:
 - a) Só existem a partir de n = 2, logo contém pelo menos 1 superfície nodal e pelo menos duas fases;
 - b) Apresentam diferentes valores de m_l (-1, 0 e +1), logo apresentam diferentes orientações da mesma forma. É comum representar esses orbitais ao longo dos eixos x, y e z;
 - c) depende não só de r mas de θ , o que confere o formato de halteres;
- Os orbitais 2p (2p_x, 2p_y e 2p_z) possuem um plano nodal que passa pelo núcleo separando as fases da onda. Isso diminui ainda mais a interação elétrons-núcleo em relação ao 2s, e aumentando sua energia.

Orbitais d(l = 2)

- Esses orbitais tem formas mais complexas que as dos orbitais s ou p;
- Possuem pelo menos duas superfícies nodais, o que reduz ainda mais a interação do núcleo com elétrons de orbitais com / menor.
- Assim, num mesmo nível com orbitais s, p e d (como o nível 3), as energias seguem a ordem:

 Ou seja, para um nível n qualquer, quanto maior o l maior a energia:

São 5 orbitais, pois 2*I + 1 = 2*2+1 = 5

Bons estudos!

Apêndices

n =	Nº WANTICE PRINCIPAL		7,, 🗢
SIGNII	FICADO : ENEI	161A , D	ISTANCIA
~	CAMADA		
1	×		
2	<u>_</u>		
3	M		
4	N		
i			
L =	N: QUÂNTIC MOMENTO ANGULA		(NIFICADO : FORI
n	CAMADA	L	SUBCAMADA
1	K	0	5
2	1	0	5
7	_		P

	MAGNETICO SILNIFI	UA FORMA	4: 0 £ caixa
1	SUBCAMADA	me	1
0	<	0	
1	P	0, ± 1	-1 0 +1
2	4	0, ±1, ±2	ПШ
3	F	0, ±1, ±2, ±3	-2-10+1+2
n, L, n	REPRE	⇒ CTIXA SENTAÇÃO DE ONB	ita
		My my	

