B/S/H/

Automated Unit-Tests with the TcI-Test-Engine

Automatisierte Unit-Tests mit der Tcl-Test-Engine

T3000-Presentation

6/3/2015
Thorsten Klein

Overview

- Introduction: Software-Tests
- Test Procedure
- Test-Levels
- Software-Tests at BSH
- Unit-Tests at BSH
- TET vs. TEng
- BSH Test-Engine Layers
- D-BUS2 Messages
- Registration of TCL-variables and commands

Overview

- Overview: BSH-specific TCL-commands
- Handling the Test Engine manually
- Example: Read Data from Target
- Using Test-Scripts
- Creation of Test-Reports
- Automated Test (with TET)
- Problems with the current Test Engine based on TCL
- Potential for improvement
- List of Literature

Introduction: Software-Tests

- Need of correct functionality, but every software includes bugs
 - → Tests already during process of development are of advantage
 - → Localization of bugs by testing
- Fulfilling of standards and norms (ISO)
 - → Validation by testing

- Processing a huge amount of data
 - → Effort: automated tests
 - →automated identification and creation of test cases
 - → automated execution of tests
 - → automated generation of test results and documentation

Test Procedure

- 1. Planning the test
- 2. Analyzing (generation of test cases)
- 3. Realization and Execution
- 4. Evaluation & Documentation

5. Finalization (certification)

shall be automated

Test-Levels

Unit Testing
Testing one software module

Integration Testing

Testing several software modules connected to each other (interaction between modules)

SystemTesting

Testing the entire software with all modules in association with the target hardware

- Component Integration Testing / Acceptance Testing Testing the entire system in its final environment
 - → continuous validation of software quality during the process of development

Software-Tests at BSH

Type	What is tested?	What is simulated?	Reference?
Unit-Test	SW-Unit other SW-Units of the component		SW-module specification, design details
SW-Integration-Test	Software component (all SW-Units)	HW-components	Software specification
Component-Test	component (HW-SW)	System Household Appliance	Software specification
System test	System Household Appliance	Environment	System-specification

Unit-Tests at BSH

- A unit is the smallest piece of software that can be tested in isolation.
 - Separate and Apart from the application and all other units.
 - other units are stubbed ("unit-under-test")
- Test focuses on the unit itself
 - → not on the interfaces
- white box test
- usually performed by the developer.

Steps:

- 1. Bringing all units in correct states
- 2. Running the unit with given input parameters
- Comparison between occurring and expected behavior

B/S/H/

TET vs. TEng

TET:

TEng:

BSH Test-Engine Layers

TEngAppl.c

TEng.c

TEng_DII.c

TEng_SIO.c

TEng_Db2Wrapper.cpp

C-code with included tcl.h

→also Tcl data types are used as function parameters

Pure C-code

→only C-known data types are used

D-BUS2 Messages

General D-Bus2 Message Structure:

	Frame						
<idle></idle>	MessageLength	Target	Message	CheckSum	<gap></gap>	Ack	<idle></idle>
		Address	(Data)				
•	1 Byte	1 Byte	2n Byte	16 Bit		1 Byte	

1. Message Length

	MessageLength	FrameLength
Min	2	6
Max	255-4	255

2. Target Address

	Target / Source Address										
Bit Number:	7 6 5 4 3 2 1							0			
	Com	nunicatio	n Partner	r	SubSystem						

Message

Message-identifier (16Bit)

+ Message (0 – 249 Byte with Start- and End-Bit each Byte)

4. Checksum

Check sum - CRC	Method
16 Bit CRC	Xmodem 16bit (polynomial 1021h), Start=00

D-BUS2 Messages

- The message identifier is an uint16 value (0 FFFFh)
- It is divided into different ranges:

F000 - FFFF	Service Messages (F800 - F9FF reserved for proprietary messages)						
E000 - EFFF	NMT Messages						
A000 - DFFF	Undefined						
9000 - 9FFF	After Sales Service Communication objects and Test Messages (automatic tests)						
8000 - 8FFF	Remote Control Messages						
0000 - 7FFF	System Messages						

Registration of TCL-variables

RegVar <variable type> <name> <value> <signature> <accessibility>

- a Tcl variable of type <variable type> is registered under the name <name>
 - read-only
 - protected from being changed while script execution.
 Otherwise script execution break off.
- <signature>, <accessibility> and <value> are stored for later use.
- <value> describes an offset
 - → Application for members of abstract data structures or arrays
- Delete registered variable:
 DelVar <variable name>

Registration of TCL-Commands (Data)

RegCmd DATA <command name> <target address> <signature> <accessibility>

- command of type "DATA" is registered under the name <command name>.
- target address, signature and accessibility string are stored for later use.
- If command already existing:
 - error message
 - registration is ignored.
- Delete registered command:

DelObj <name>

Registration of TCL-Commands (Procedures)

RegCmd PROC<command name> <target address> <signature>

- command of type "PROC" is registered under the name <command name>.
- target address and signature string are stored for later use.
- If command already existing:
 - error message
 - registration is ignored.
- Delete registered procedure:

DelObj <name>

Overview: BSH-specific TCL-commands

- TEngGetVersion, TEngGetVendor, TEngGetCPUType, TEngGetDataModel, TEngGetBaseType
 - Show information about connected target
- GetMultipleCount, GetPROCCount, GetDATACount, GetVarCount
 - Show number of registered variables / functions
- GetCmd <name>
 - Returns the signature of the function or variable
- SizeOf <name>
 - Returns the size of the registered variable
- TEngDbg
 - Perform tracing
- TEngConnect TEngDisconnect
 - establish or cancel connection to the target
- TEngSendDbusMsg
 - Send specific DBUS-message

Handling the Test Engine manually

Example:

Command	Description			
% TEngConnect /REMOTE=UDA1,12,1,10,36864, VDBUS_FLAG_9600_BAUD, VDBUS_FLAG_NO_COLLISION	Establish Connection			
% RegCmd PROC TECCT_square_me 08002441 I1_I1 % RegCmd DATA my_global 200003F4 I1 RW	Register Variables / Procedures			
% set file [open "report.txt" w]	"report.txt" is opened as variable "file"			
% puts \$file "[TECCT_square_me 2] [TECCT_square_me 5]"	Return values of "TECCT_square_me" (with parameters "2" and "5") are written into the opened file			
% close \$file	Close file			
% TEngDisconnect	Release connection			

Example: Read Data from Target

Analyse: Aufrufe und Funktionsweise nachvollziehen

Using Test-Scripts

Create test script file "testscript.syr"

e.g. →

```
RegCmd PROC TECCT_square_me 08002441 I1_I1
TECCT_square_me 2

set file [open "test.txt" w]
puts $file "Report"

RegCmd DATA test 20000049 B1 RW
RegCmd DATA test2 20000049 B1 RW

puts $file "[test] [test2]"
close $file
```

Include / Run in Test Engine by calling

% source testscript.syr

Alternatively (in windows command line)

TengAppl.exe path\testscript.syr

Creation of Test-Reports

Requirements:

- Information about project data, environment and target connection
- Description of module functions, variables and struct elements
- Test case description
- Test execution and result analysis (actual value ⇔ reference value)
- Result summary (PASSED / FAILED)

CONNE	C	Γ	\mathbf{I})N	IN	١F	ORMATION	
		•		-			D DITTO-	

Type of serial link to target: DBUS2 Selected UDA port serial link: UDA1 Host address (normally PC 12): 12 Destination node addr. target: 1 Target subsystem - DBUS comm.: 10 Target base ID for DBUS comm.: 0x9000

Additional select. DBUS flags: VDBUS FLAG 9600 BAUD, V

SYMBOLS

Path of sourced symbol file : W:/Dimensions/SW_LIB_TEST Sourced symbol file for Teng: TEST_TESTER_MTEST.svr

TECCT_square_me	T01	T02	T03	T04
INPUT-VARIABLES	-	-	-	-
PARAMETER	-	-	-	-
param	0	1	3	4
OUTPUT-VARIABLES	-	-	-	-
FUNKTION-RETURN	-	-	-	-
RETURNVALUE	0	1	9	16
EXPECTED	0	1	9	16
PASSED/FAILED	P	P	P	P

Table 3: Results of test 0

Overall result of test cases

Testresult: PASSED

Automated Test (with TET)

Definition of the Test Case Matrix in TET

→ Automatic execution of all tests

→ Automatic generation of a test report (also writeable to a file)

Problems with the current Test Engine based on TCL

- Based on TCL Version 8.4.12 (released 2005)
- Extent and complexity have increased step by step
 - → Refactoring necessary
- Disadvantages of TCL itself:
 - Slow in comparison to C
 - Not object-orientated
 - Small command set
 - Line-orientated syntax
 - Limitedly C-type compatible

Potential for improvement

- Extending the functional range of the TEng
 - → support of additional data types
 - → integration of a function to directly execute a test case with the TEng (without TET)
 - → integration of test report functionality in TEng
- Usage of an object-orientated language
- Usage of a nowadays scripting language
- Usage of an interpreting scripting language (Hardware independency)

List of Literature

- [BSH07a] Peter Cambeis (BSH-intern). The Test Engine Book One. BSH-Intranet, 2007.
- [BSH07b] Peter Cambeis (BSH-intern). The Test Engine Book Two. BSH-Intranet, 2007.
- [BSH14] Jens Lehmann (BSH-intern). Test Levels: Workshop Automated Testing. BSHIntranet, 2014.
- [Grü13] Stephan Grünfelder. Software-Test für Embedded Systems. Ein Praxishandbuch für Entwickler, Tester und technische Projektleiter. dpunkt.verlag, 2013. isbn: 978-3-86490-048-8.
- [Hol12] Rune Holen. BSH General Bus Specification D-Bus-2. BSH Hausgeräte GmbH. BSH-Intranet, 2012.

List of Literature

[Köh07] Achim Köhler. Der C/C++-Projektbegleiter. C/C++ Projekte planen, dokumentieren, bauen und testen. dpunkt.verlag, 2007. isbn: 978-3-89864-470-9.

[Liu13] Huimei Liu. "Entwicklung einer Vorgehensweise zur Testautomatisierung im Rahmen des PDM am Beispiel der HELLA KGaA Hueck & Co." MA thesis. Universität Stuttgart: Fakultät Informatik, Elektrotechnik und Informationstechnik, May 2013.

[Neu15] Gustaf Neumann. Objekt-orientiertes Design und Systementwicklung: TCL. WU Wirtschaftsuniversität Wien. May 10, 2015. url: http://wi.wu-wien.ac.at/studium/Abschnitt_2/LVA_ws99/neumann/oo/einheit3/03-9.html

List of Literature

- https://www.dpunkt.de/buecher/4003/software-test-f%C3%BCr-embedded-systems.html
 https://www.dpunkt.de/leseproben/4003/4_Unit%20Tests.pdf
- https://www.dpunkt.de/buecher/2584.html https://www.dpunkt.de/leseproben/2584/Leseprobe.pdf
- http://download.e-bookshelf.de/download/0000/6666/97/L-X-0000666697-0001402267.XHTML/index.xhtml https://www.dpunkt.de/leseproben/3427/4%20Motivation%20und%20Einleitung%2 0%28Kap%201%29.pdf
- http://wi.wu-wien.ac.at/studium/Abschnitt_2/LVA_ws99/neumann/oo/einheit3/03-9.html
- http://www.pst.ifi.lmu.de/Lehre/wise-12-13/sep/06-unit-testing.pdf