Learning Notes in Quantitative Methods

Chi-Yuan Fang¹

Summer 2021

Learning

¹This document is edited by Chi-Yuan Fang, who is the teaching assistant in Introduction to Quantitative Methods at Department of Economics, National Taiwan University. Any comments or suggestions would be welcomed at r09323017@ntu.edu.tw. Do not distribute without the author's permission.

Table 1: Contents between lectures and notes

Chu, 2021	Topic	Notes
Lecture 1	Number System	Section 1.1
	Set, Unions, Intersections	Section 1.2
	Negation	Section 1.3.2
	Necessary and Sufficient Condition	Section 1.3.3
	Basic Notations of Set Theory	Section 1.4
	Functions, Sequences, and Subsequences	Section 1.5
Homework 1	Question 1	Example 1.5.10
	Question 2	Theorem 1.5.12
	Question 3	Example 1.5.2
	Question 4	Example 1.5.9
	Question 5	Example 1.5.9

Contents

1	Set 7	Set Theory		
	1.1	The Real Number System	5	
	1.2	Sets, Unions, and Intersections		
	1.3	Logic	7	
		1.3.1 Propositions: Contrapositives and Converses	7	
		1.3.2 Quantifiers and Negation	7	
		1.3.3 Necessary and Sufficient Conditions	9	
	1.4	Ordered Pairs and Relations	10	
		1.4.1 Binary Relation	10	
	1.5	Functions	12	
	1.6	Finite, Infinite, Countable, and Uncountable Sets	20	
	1.7	Upper Bounds, Maximum Element, and Least Upper Bound	21	

Only

Use in

Learning

Chapter 1

Set Theory

1.1 The Real Number System

Definition 1.1.1 (real number system).

1. The set of **natural numbers** is denoted by

$$\mathbb{N} = \{1, 2, 3, \ldots\}. \tag{1.1}$$

2. The set of **integers** is denoted by

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$
 (1.2)

3. The set of **rational numbers** is denoted by

$$\mathbb{Q} = \left\{ \frac{q}{p} \middle| p, q \in \mathbb{Z}, q \neq 0 \right\}. \tag{1.3}$$

4. The set of **real numbers** is denoted by \mathbb{R} .

[from Sundaram et al., 1996, p.2; Apostol, 1974, p.3,6-7; Chu, 2021, Lecture 1 p.1]

- 1. The real numbers are represented geometrically as points on a line, which is called the **real line** or the **real axis**.
- 2. Real numbers that are not rational are called **irrational numbers**.

Definition 1.1.2 (interval).

- 1. By the **open interval** (a, b) we mean the set of all real numbers x such that a < x < b.
- 2. By the **closed interval** [a, b] we mean the set of all real numbers x such that $a \le x \le b$.
- 3. Occasionally we shall encounter **half-open intervals** [a, b) and (a, b]; the first consists of x such that $a \le x < b$, the second of all x such that $a < x \le b$.

[from Rudin et al., 1964, p.31; Apostol, 1974, p.4; Sundaram et al., 1996, p.22]

- 1. The real line \mathbb{R} is referred to as the open interval $(-\infty, \infty)$.
- 2. A single point is considered as a degenerate closed interval.

1.2 Sets, Unions, and Intersections

Definition 1.2.1 (set). Let denote **sets** by capital letters such as A, B, X, and Y, and **elements** of these sets by lowercase letters such as a, b, x, and y.

- 1. An object a belongs to a set A is denoted by $a \in A$. If a is not an element of A, we write $a \notin A$.
- 2. If every element of a set B is also an element of a set A, we shall say that B is a **subset** of A and write $B \subset A$.
- 3. Two sets A and B are said to be **equal**, written A = B. If every element of A is also an element of B, and vice versa. That is, A = B if we have both $A \subset B$ and $B \subset A$.
- 4. The **union** of two sets A and B, denoted $A \cup B = \{x | x \in A \text{ or } x \in B\}$, is the set which consists of all elements which are either in A or in B.
- 5. The **intersection** of two sets *A* and *B*, denoted $A \cap B = \{x | x \in A \text{ and } x \in B\}$, is the set which consists of all elements which belong to both *A* and *B*.
- 6. If $A \subset X$, the **complement** of A in X, denoted A^C , is defined as $A^C = \{x \in X | x \notin A\}$.

[from Sundaram et al., 1996, p.315-316; Rudin et al., 1964, p.3; Chu, 2020, Lecture 1 p.1; Chu, 2021, Lecture 1 p.1-3]

1.3 Logic

1.3.1 Propositions: Contrapositives and Converses

Definition 1.3.1 (imply). Given two propositions P and Q, the statement "If P, then Q" is interpreted as the statement that if the proposition P is true, then the statement Q is also true. We denote this by $P \Rightarrow Q$.

[from Sundaram et al., 1996, p.316-317]

- 1. Its **contrapositive** is the statement that "if Q is not true, then P is not true." We denote this by $Q \Rightarrow P$.
- 2. **A statement and its contrapositive are logically equivalent.** That is, if the statement is true, then the contrapositive is also true, while if the statement is false, so is the contrapositive.

Definition 1.3.2 (converse). The **converse** of the statement $P \Rightarrow Q$ is the statement that $Q \Rightarrow P$. That is, the statement that "if Q, then P."

[from Sundaram et al., 1996, p.318]

- 1. There is no logical relationship between a statement and its converse.
- 2. If a statement and its converse both hold, we express this by saying that "P if and only if Q," and denote this by $P \Leftrightarrow Q$.

1.3.2 Quantifiers and Negation

Definition 1.3.3 (logical quantifiers).

- 1. The **universal** or "**for all**" quantifier is used to denote that a property holds for every element a in some set A. We write \forall .
- 2. The **existential** or "**there exists**" quantifier denotes that the property holds for at least one element a in the set A. We write \exists .

[from Sundaram et al., 1996, p.318]

Definition 1.3.4 (negation). The **negation** of a proposition P is its denial $\sim P$.

[from Sundaram et al., 1996, p.318-319; Chu, 2020, Lecture 1 p.2; Chu, 2021, Lecture 1 p.3]

- 1. If the proposition *P* involves a universal quantifier, then its negation involves an existential quantifier: to deny the truth of a universal statement requires us to find just one case where the statement fails.
- 2. The negation of an existential quantifier involves a universal quantifier: to deny that there is at least one case where the proposition holds requires us to show that the proposition fails in every case.

Example 1.3.5. Negate the following statements.

- 1. *A* or *B*.
- 2. *A* and *B*.
- 3. If *A*, then *B*.
- 4. For all x, A(x).
- 5. There exists x such that A(x).
- 6. For every x > 0, there exists y > 0 such that $y^2 = x$.
- 7. For all $x \in S$, there is an r > 0 such that $B(x, r) \subset S$.

[from Chu, 2020, Lecture 1 p.2; Chu, 2021, Lecture 1 p.3-4]

Solution

- 1. Not *A* and not *B*.
- 2. Not *A* or not *B*.
- 3. Suppose *A* is true, but *B* is not true.
- 4. There exists x such that not A(x).
- 5. For all x, not A(x).
- 6. There exists an x > 0, $y^2 \neq x$ for all y > 0.

- 7. (a) There exists an $x \in S$, $B(x, r) \notin S$ for all r > 0.
 - (b) There exists an $x \in S$, for all r > 0, there exists an $y \in B(x, r)$, but $y \notin S$.

Theorem 1.3.6 (Demorgan's laws).

1.
$$\left(\bigcup_{i\in I}A_i\right)^C=\bigcap_{i\in I}A_i^C$$

$$2. \left(\bigcap_{i\in I} A_i\right)^C = \bigcup_{i\in I} A_i^C$$

[from Wade, 2014, p.33; Rudin et al., 1964, p.33; Sundaram et al., 1996, p.25; Chu, 2020, Lecture 1 p.2; Chu, 2021, Lecture 1 p.3-4]

Proof.

1.

LHS
$$\Leftrightarrow \{x | \exists i, x \in A_i\}^C$$
 (1.4)

$$\Leftrightarrow \{x | \forall i, x \notin A_i\} \tag{1.5}$$

$$\Leftrightarrow \{x | \forall i, x \in A_i^C\} \tag{1.6}$$

$$\Leftrightarrow RHS$$
 (1.7)

2.

LHS
$$\Leftrightarrow \{x | \forall i, x \in A_i\}^C$$
 (1.8)

$$\Leftrightarrow \{x | \exists i, x \notin A_i\} \tag{1.9}$$

$$\Leftrightarrow \{x | \exists i, x \in A_i^C\} \tag{1.10}$$

$$\Leftrightarrow$$
 RHS (1.11)

1.3.3 Necessary and Sufficient Conditions

Definition 1.3.7 (necessary condition). Suppose an implication of the form $P \Rightarrow Q$ is valid. Then, Q is said to be a **necessary condition** for P.

[from Sundaram et al., 1996, p.320; Chu, 2021, Lecture 1 p.4]

Definition 1.3.8 (sufficient condition). Suppose an implication of the form $P \Rightarrow Q$ is valid. Then, P is said to be a **sufficient condition** for Q.

[from Sundaram et al., 1996, p.321; Chu, 2021, Lecture 1 p.4]

1.4 Ordered Pairs and Relations

Definition 1.4.1 (order pairs). If a set of two elements a and b is **ordered**, we enclose the elements in parentheses (a, b). Then, a is called the first element, and b is called second element.

[from Apostol, 1974, p.33; Chu, 2021, Lecture 1 p.5]

Definition 1.4.2 (cartestian product). Given two sets *A* and *B*, the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the **cartesian product** of *A* and *B*, and is denoted by $A \times B$.

[from Apostol, 1974, p.33; Chu, 2021, Lecture 1 p.5]

Definition 1.4.3 (relation). Any set of ordered pairs is called a **relation**.

[from Apostol, 1974, p.34; Chu, 2021, Lecture 1 p.5]

- 1. If *S* is a relation, the set of all elements *x* that occur as first members of pairs (x, y) in *S* is called **domain** of *S*, denoted by $\mathfrak{D}(S)$.
- 2. The set of second members y is called the **range** of S, denoted by $\Re(S)$.

1.4.1 Binary Relation

Definition 1.4.4 (reflexive). A binary relation R on the set X is **reflexive** if for all $x \in X$, xRx.

[from Osborne and Rubinstein, 2020, p.5]

Definition 1.4.5 (complete). A binary relation R on the set X is **complete** if for all $x, y \in X$, xRy or yRx.

[from Osborne and Rubinstein, 2020, p.5]

Definition 1.4.6 (irreflexive). A binary relation R on the set X is **irreflexive** if for all $x, y \in X$, not xRx.

[from Osborne and Rubinstein, 2020, p.5]

Definition 1.4.7 (symmetric). A binary relation R on the set X is **symmetric** if for all $x, y \in X$, xRy implies yRx.

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.8 (asymmetric). A binary relation R on the set X is **asymmetric** if for all $x, y \in X$, xRy implies not yRx.

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.9 (antisymmetric). A binary relation R on the set X is **antisymmetric** if for all $x, y \in X$, xRy and yRx imply x = y.

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.10 (transitive). A binary relation R on the set X is **transitive** if for all x, y, $z \in X$, xRy and yRz imply xRz.

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.11 (quasi-transitive). A binary relation R on the set X is **transitive** if for all x, y, $z \in X$, xPy and yPz imply xPz.

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.12 (acyclic). A binary relation R on the set X is **acyclic** if for all $x_1, x_2, ..., x_n \in X$, $x_1Px_2, x_2Px_3, ..., x_{n-1}Px_n$ imply x_1Rx_n .

[from Osborne and Rubinstein, 2020, p.6]

Definition 1.4.13 (negatively transitive). A binary relation R on the set X is **negatively transitive** if for all $x, y, z \in X$, not xRy and not yRz imply not xRz.

[from Osborne and Rubinstein, 2020, p.6]

1.5 Functions

Definition 1.5.1 (function). A **function** F is a set of ordered pairs (x, y), no two of which have the same first member. That is, if $(x, y) \in F$ and $(x, z) \in F$, then y = z.

[from Apostol, 1974, p.34-35; Rudin et al., 1964, p.24; Sundaram et al., 1996, p.41; Chu, 2021, Lecture 1 p.6]

- 1. The definition of function requires that for every x in the domain of F, there is exactly one y such that $(x, y) \in F$.
- 2. It is customary to call y the **value** of F at x and to write y = F(x) instead of $(x, y) \in F$ to indicate that the pair (x, y) is in the set F.
- 3. When the domain $\mathfrak{D}(F)$ is a subset of \mathbb{R} , then F is called a **function of one real variable**.
- 4. If $\mathfrak{D}(F)$ is a subset of a cartesian product $A \times B$, then F is called a **function of two variable**.
- 5. If *S* is a subset of $\mathfrak{D}(F)$, we say that *F* is defined on *S*.
- 6. The set of F(x) such that $x \in S$ is called the **image** of S under F, and is denoted by F(S).
- 7. If *T* is any set which contain F(S), then *F* is called a **mapping** from *S* into *T*. It is denoted by $F: S \to T$.
- 8. If F(S) = T, the mapping is said to be **onto** T.
- 9. A mapping of *S* into itself is called a **transformation**.

Example 1.5.2. Find the domain and range of following functions.

1. For all x in [-3, 3),

$$F(x) = (x+1)^2. (1.12)$$

2. For all x in \mathbb{R} ,

$$F(x) = 2^x. ag{1.13}$$

[from Nagaoka and Miyaoka, 2007, p.11; Chu, 2021, Lecture 1 Homework Q3]

Solution

1.

$$\mathfrak{D}(F) = [-3, 3) \tag{1.14}$$

$$\mathfrak{R}(F) = [0, 16) \tag{1.15}$$

2.

$$\mathfrak{D}(F) = \mathbb{R} \tag{1.16}$$

$$\mathfrak{R}(F) = \mathbb{R}^+ \tag{1.17}$$

Theorem 1.5.3. Two function *F* and *G* are **equal** if and only if

1. *F* and *G* have the same domain. That is,

$$\mathfrak{D}(F) = \mathfrak{D}(G). \tag{1.18}$$

2. for every x in $\mathfrak{D}(F)$,

$$F(x) = G(x). (1.19)$$

[from Apostol, 1974, p.35]

Definition 1.5.4 (one-to-one). Let F be a function defined on S. We say F is **one-to-one** on S if and only for every x and y in S, F(x) = F(y) implies x = y.

[from Apostol, 1974, p.36; Chu, 2021, Lecture 1 p.7]

Definition 1.5.5 (converse). Given a relation S, the new relation \check{S} defined by

$$\check{S} = \{(a,b)|(b,a) \in S\}$$
(1.20)

is called the **converse** of *S*.

[from Apostol, 1974, p.36; Chu, 2021, Lecture 1 p.7]

Definition 1.5.6 (inverse). Suppose that the relation F is a function. Consider the converse relation \check{F} , which may or may not be a function. If \check{F} is a function, then \check{F} is called the **inverse** of F, and it denoted by F^{-1} .

[from Apostol, 1974, p.36; Chu, 2021, Lecture 1 p.7]

Theorem 1.5.7. If the function F is one-to-one on its domain, then \check{F} is also a function.

[from Apostol, 1974, p.37; Chu, 2021, Lecture 1 p.7]

Proof. Let $(x, y) \in \check{F}$ and $(y, z) \in \check{F}$. By Definition 1.5.1 and Definition 1.5.5,

$$(x, y) \in \check{F} \Leftrightarrow (y, x) \in F$$
 (1.21)

$$\Leftrightarrow F(y) = x \tag{1.22}$$

$$(x,z) \in \check{F} \Leftrightarrow (z,x) \in F$$
 (1.23)

$$\Leftrightarrow F(z) = x. \tag{1.24}$$

We find

$$F(y) = F(z) = x.$$
 (1.25)

By Definition 1.5.4,

$$y=z. (1.26)$$

Definition 1.5.8 (composite function). Given two functions F and G such that $\mathfrak{R}(F) \subseteq \mathfrak{D}(G)$, we can form a new function, the **composite** $G \circ F$ of G and F, defined as follows: for every x in the domain of F,

$$(G \circ F)(x) = G[F(x)]. \tag{1.27}$$

[from Apostol, 1974, p.37; Chu, 2021, Lecture 1 p.8]

Example 1.5.9. Consider

$$F(x) = x^2 - 2, \quad x \in \mathbb{R}$$
 (1.28)

$$G(x) = -x + 1, \quad x \in \mathbb{R}. \tag{1.29}$$

- 1. Check whether each of the two functions is a one-to-one functions.
- 2. Verify that $\Re(F) \subseteq \mathfrak{D}(G)$, and find the domain and range of $(G \circ F)(x)$.

[from Nagaoka and Miyaoka, 2007, p.11; Chu, 2021, Lecture 1 Homework Q4,Q5]

Solution

- 1. By Definition 1.5.4.
- 2. We know

$$\mathfrak{D}(F) = \mathbb{R} \tag{1.30}$$

$$\mathfrak{R}(F) = [-2, \infty) \tag{1.31}$$

$$\mathfrak{D}(G) = \mathbb{R} \tag{1.32}$$

$$\mathfrak{R}(G) = \mathbb{R}.\tag{1.33}$$

Because $\Re(F) \subseteq \mathfrak{D}(G)$, we can define a composite function

$$(G \circ F)(x) = -(x^2 - 2) + 1 = -x^2 + 3 \tag{1.34}$$

for all $x \in \mathbb{R}$. Moreover,

$$\mathfrak{D}(G \circ F) = \mathbb{R} \tag{1.35}$$

$$\Re(G \circ F) = (-\infty, 3]. \tag{1.36}$$

Example 1.5.10. Let f be a function from \mathbb{R}^n to \mathbb{R}^m . For $B \subset \mathbb{R}^m$, define $f^{-1}(B)$

$$f^{-1}(B) = \{ x \in \mathbb{R}^n | f(x) \in B \}. \tag{1.37}$$

Show that for any subsets A_1 , A_2 of \mathbb{R}^n and B_1 , B_2 of R^m :

- 1. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.
- 2. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- 3. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- 4. $f^{-1}(B_1^C) = [f^{-1}(B_1)]^C$.
- 5. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- 6. $A_1 \subseteq f^{-1}(f(A_1))$.
- 7. $f(f^{-1}(B_1)) \subseteq B_1$.

[from Sundaram et al., 1996, p.71; Nagaoka and Miyaoka, 2007, p.34; Chu, 2021, Lecture 1 p.8-9,

Homework Q1]

Proof.

- 1. Skip.
- 2. By Definition 1.5.1,

$$f(A_1 \cup A_2) = \{b \in \mathbb{R}^m | \exists a \in A_1 \cup A_2 \text{ such that } f(a) = b\}$$
 (1.38)

$$f(A_1) = \{b \in \mathbb{R}^m | \exists a_1 \in A_1 \text{ such that } f(a_1) = b\}$$

$$\tag{1.39}$$

$$f(A_2) = \{b \in \mathbb{R}^m | \exists a_2 \in A_2 \text{ such that } f(a_2) = b\}.$$
 (1.40)

(⇒)

If $b \in f(A_1 \cup A_2)$, then there is a in either A_1 or A_2 such that f(a) = b.

- If $a \in A_1$, then $b \in f(A_1)$.
- If $a \in A_2$, then $b \in f(A_2)$.

Thus, $b \in f(A_1) \cup f(A_2)$.

(⇐)

If $b \in f(A_1) \cup f(A_2)$, then there is a in either A_1 or A_2 such that f(a) = b. Thus,

$$b \in f(A_1 \cup A_2). \tag{1.41}$$

- 3. Skip.
- 4. By Definition 1.5.1 and Definition 1.5.6,

$$f^{-1}(B_1^C) = \left\{ a \in \mathbb{R}^n | f(a) \in B_1^C \right\}$$
 (1.42)

$$[f^{-1}(B_1)]^C = \{ a \in \mathbb{R}^n | f(a) \notin B_1 \}.$$
 (1.43)

(⇒)

If $a \in f^{-1}(B_1^C)$, then $f(a) \in B_1^C$ and $f(a) \notin B_1$. Thus,

$$a \in [f^{-1}(B_1)]^C. \tag{1.44}$$

(⇐)

If $a \in [f^{-1}(B_1)]^C$, then $f(a) \notin B_1$ and $f(a) \in B_1^C$. Thus,

$$a \in f^{-1}(B_1^C). \tag{1.45}$$

- 5. Skip.
- 6. Skip.

7. Skip.

Example 1.5.11. The following functions *F* and *G* are defined for all real *x* by the equations given. In each case where the composite function $G \circ F$ can be formed, give the domain of $G \circ F$ and a formula for $(G \circ F)(x)$.

1.

$$F(x) = 1 - x \tag{1.46}$$

$$G(x) = x^2 + 2x. (1.47)$$

2.

$$F(x) = x + 5 \tag{1.48}$$

$$G(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 1, & x = 0. \end{cases}$$
 (1.49)

3.

$$F(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 1, & \text{otherwise,} \end{cases}$$
 (1.50)

$$F(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 1, & \text{otherwise,} \end{cases}$$

$$G(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ 0, & \text{otherwise.} \end{cases}$$
(1.50)

[from Apostol, 1974, p.43; Chu, 2021, Lecture 1 p.9-10]

Solution

- 1. Skip.
- 2. Skip.
- 3. We know

$$\mathfrak{D}(F) = \mathbb{R} \tag{1.52}$$

$$\mathfrak{R}(F) = [0, 2] \tag{1.53}$$

$$\mathfrak{D}(F) = \mathbb{R} \tag{1.54}$$

$$\mathfrak{R}(F) = [0,1]. \tag{1.55}$$

Because $\Re(F) \subseteq \mathfrak{D}(G)$, we can define a composite function

$$(G \circ F)(x) = \begin{cases} 4x^2, & 0 \le x \le \frac{1}{2} \\ 0, & \frac{1}{2} < x \le 1 \\ 1 & \text{otherwise.} \end{cases}$$
 (1.56)

Moreover,

$$\mathfrak{D}(G \circ F) = \mathbb{R} \tag{1.57}$$

$$\Re(G \circ F) = [0,1]. \tag{1.58}$$

Theorem 1.5.12. Let $f: S \to T$ be a function. The following statements are equivalent.

- 1. f is one-to-one on S.
- 2. For all subsets *A*, *B* of *S*,

$$f(A \cap B) = f(A) \cap f(B). \tag{1.59}$$

3. For every subset *A* of *S*,

$$f^{-1}[f(A)] = A. \tag{1.60}$$

- 4. For all disjoint subsets A and B of S, the images f(A) AND f(B) are disjoint.
- 5. For all subsets *A* and *B* of *S* with $B \subseteq A$, we have

$$f(A-B) = f(A) - f(B).$$
 (1.61)

[from Apostol, 1974, p,44; Chu, 2021, Lecture 1 Homework Q2]

Proof. Skip.

Definition 1.5.13 (finite sequence). By a finite sequence of n terms, we shall understand a function F whose domain is the set of numbers $\{1, 2, ..., n\}$.

[from Apostol, 1974, p.37; Chu, 2021, Lecture 1 p.10]

Definition 1.5.14 (infinite sequence). By an infinite sequence, we shall mean a function F whose domain is the set $\{1, 2, 3, \ldots\}$ of all positive integers. The range of F is written

$$\{F_1, F_2, F_3, \dots, F_n\},$$
 (1.62)

and the function value F_n is called the nth **term** of the sequence.

[from Apostol, 1974, p.37; Chu, 2021, Lecture 1 p.10]

Definition 1.5.15 (similar). Two sets A and B are called **similar**, or **equinumerous**, and we write $A \sim B$, if and only if there exists a one-to-one function F whose domain is the set A, and whose range is the set B.

[from Apostol, 1974, p.38]

Theorem 1.5.16.

- 1. Every set *A* is similar to itself.
- 2. If $A \sim B$, then $B \sim A$.
- 3. If $A \sim B$ and $B \sim C$, then $A \sim C$.

[from Apostol, 1974, p.38]

Proof.

1. Take *F* to be identity function. That is, for all *x* in *A*,

$$F(x) = x. ag{1.63}$$

- 2. If *F* is a one-to-one function which makes $A \sim B$, then F^{-1} will make $B \sim A$.
- 3. Skip.

1.6 Finite, Infinite, Countable, and Uncountable Sets

Definition 1.6.1 (finite set). A set *S* is called **finite**, and is said to contain *n* elements if

$$S \sim \{1, 2, \dots, n\}.$$
 (1.64)

[from Apostol, 1974, p.38]

- 1. The integer n is called the **cardinal number** of S.
- 2. The empty set is considered finite. Its cardinal number is defined to be o.

Theorem 1.6.2. If

$$\{1, 2, \dots, n\} \sim \{1, 2, \dots, m\},$$
 (1.65)

then m = n.

[from Apostol, 1974, p.38]

Definition 1.6.3 (infinite set). Sets which are not finite are called **infinite sets**.

[from Apostol, 1974, p.38]

Definition 1.6.4 (countably infinite set). A set *S* is said to be **countably infinite** if it is equinumerous with the set of all positive integers. That is,

$$S \sim \{1, 2, 3, \ldots\}.$$
 (1.66)

[from Apostol, 1974, p.39]

Definition 1.6.5 (countable, uncountable set).

- 1. A set *S* is called **countable** if it is either finite or countably infinite.
- 2. A set which is not countable is called **uncountable**.

[from Apostol, 1974, p.39]

Theorem 1.6.6. Every subset of a countable set is countable.

[from Apostol, 1974, p.39]

Theorem 1.6.7. The set of all real numbers is uncountable.

[from Apostol, 1974, p.39]

1.7 Upper Bounds, Maximum Element, and Least Upper Bound

Definition 1.7.1 (order). Let *S* be a set. An **order** on *S* is a relation, denoted by <, with the following two properties:

1. If $x \in S$ and $y \in S$, then one and only one of the statements

$$x < y \tag{1.67}$$

$$x = y \tag{1.68}$$

$$y < x \tag{1.69}$$

is true.

2. Let $x, y, z \in S$. If x < y and y < x, then x < z.

[from Rudin et al., 1964, p.3]

- 1. The statement "x < y" may be read as "x is less than y" or "x is smaller than y" or "x preceeds y."
- 2. It is often convenient to write y > x in place of x < y.
- 3. The notation $x \le y$ indicates that x < y or x = y, without specifying which of these two is to hold. In other words, $x \le y$ is the negation of x > y.

Definition 1.7.2 (order!order set). An **order set** is a set *S* in which an order is defined.

[from Rudin et al., 1964, p.3]

Definition 1.7.3 (bound). Suppose *S* is an ordered set, and $E \subset S$.

- 1. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is **bounded above**, and call β an **upper bound** of E.
- 2. If there exists a $\beta \in S$ such that $x \ge \beta$ for every $x \in E$, we say that E is **bounded below**, and call β an **lower bound** of E.

[from Rudin et al., 1964, p.3; Sundaram et al., 1996, p.14; Chu, 2020, Lecture 3 p.5]

1. The set of **upper bounds** of E, denoted U(E), is defined as

$$U(E) = \{ \beta \in \mathbb{R} | \beta \ge x, \forall x \in E \}. \tag{1.70}$$

2. The set of **lower bounds** of E, denoted L(E), is defined as

$$L(E) = \{ \beta \in \mathbb{R} | \beta \le x, \forall x \in E \}. \tag{1.71}$$

Definition 1.7.4. Suppose *S* is an ordered set, $E \subset S$, and *E* is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- 1. α is an upper bound of E.
- 2. If $y < \alpha$, then y is not an upper bound of E.

Then α is called the **least upper bound** of E (that there is at most one such α is clear from 2.) or the **supremum** of E, and we write

$$\alpha = \sup E. \tag{1.72}$$

The **greatest lower bound**, or **infimum**, of a set *E* which is bounded below is defined in the same manner: the statement

$$\alpha = \inf E \tag{1.73}$$

means that α is a lower bound of E and that no β with $\beta > \alpha$ is a lower bound of E.

[from Rudin et al., 1964, p.4; Sundaram et al., 1996, p.14; Chu, 2020, Lecture 3 p.5]

Definition 1.7.5 (least-upper-bound property). An ordered set S is said to have the **least-upper-bound property** if $E \subset S$, E is not empty, and E is bounded above, then sup E exists in S.

[from Rudin et al., 1964, p.4]

1. If $\alpha = \sup E$ exists, then α may or may not be a member of E. For instance, let E_1 be the set of all $r \in Q$ with r < o. Let E_2 be the set of all $r \in Q$ with r < o. Then

$$\sup E_1 = \sup E_2 = 0, \tag{1.74}$$

and $o \notin E_1$, $o \in E_2$.

2. We shall show that there is a close relation between greatest lower bounds and least upper bounds, and that every ordered set with the least-upper-bound property also has the greast-lower-bound property.

Theorem 1.7.6. If U(E) is nonempty, the supremum of E is well defined, i.e. there is a $x \in U(A)$ such that $x \le u$ for all $u \in U(E)$. Similarly, if L(E) is nonempty, the infimum of E is well defined, i.e. there is $y \in L(E)$ such that $y \ge l$ for all $l \in L(E)$.

[from Sundaram et al., 1996, p.14]

Theorem 1.7.7 (approximation property for suprema). Suppose sup E is finite. Then, for all $\varepsilon > 0$, there is a $a(\varepsilon) \in E$ such that

$$\sup E \ge a(\varepsilon) > \sup E - \varepsilon. \tag{1.75}$$

[from Sundaram et al., 1996, p.16]

Proof. Suppose $\exists \varepsilon > 0$ such that $a \le \sup E - \varepsilon$ for all $a \in E$. By Definion 1.7.3, $\sup E - \varepsilon$ would be an upper bound of E and $\sup E - \varepsilon < \sup E$, but it violates $\sup E$ is the least upper bound by Definition 1.7.4. A contradiction.

Theorem 1.7.8. Suppose *S* is an ordered set with the least-upper-bounded property $B \subset S$, *B* is not empty, and *B* is bounded below. Let *L* be the set of all lower bounds of *B*. Then

$$\alpha = \sup L \tag{1.76}$$

exists in S, and $\alpha = \inf B$. In particular, $\inf B$ exists in S.

[from Rudin et al., 1964, p.5]

Learning

Index

В	L
bound, 22	logic, 7
greatest lower bound, 22	contrapositive, 7
infimum, 22	converse, 7
least-upper-bound property, 23	Demorgan's laws, 9
least upper bound, 22	if and only if, 7
lower bound, 22	imply, 7
supremum, 22	logical quantifiers, 7
upper bound, 22	existential, 7
F	for all, 7
function, 12	universal, 7
composite function, 14	necessary condition, 9
converse, 13	negation, 8
domain, 10	sufficient condition, 10
equal, 13	O
finite sequence, 18	order, 21
function of one real variable, 12	order set, 21
function of two variable, 12	ordered pairs, 10
image, 12	cartesian product, 10
infinite sequence, 19	relation, 10
range, 19	antisymmetric, 11
term, 19	asymmetric, 11
inverse, 13	complete, 10
mapping, 12	domain, 10
one-to-one, 13, 19	irreflexive, 11
onto, 12	negatively transitive, 11
range, 10	quasi-transitive, 11
transformation, 12	range, 10
value, 12	reflexive, 10

```
symmetric, 11
      tacyclic, 11
      transitive, 11
R
real number system, 5
    integer, 5
    interval, 6
      closed interval, 6
      half-open interval, 6
      open interval, 6
    irrational number, 5
    natural number, 5
    rational number, 5
    real axis, 5
    real line, 5, 6
    real number, 5
S
set, 6
    belongs to, 6
    complement, 6
    countable set, 20
    countably infinite set, 20
    element, 6
    equal, 6
    equinumerous, 19
    finite set, 20
      empty set, 20
      integer, 20
    infinite set, 20
    intersection, 6
    similar, 19
    subset, 6
    uncountable set, 20
    union, 6
```

Bibliography

Apostol, Tom M (1974), *Mathematical analysis*; *2nd ed.* Addison-Wesley series in mathematics, Reading, MA: Addison-Wesley.

Chu, Yu-Chi (2020), Lecture Notes in Introduction to Quantitative Methods, URL: https://sites.google.com/site/yuchichu0803/mathcamp2020.

——— (2021), Lecture Notes in Introduction to Quantitative Methods.

Nagaoka, Yasujiro and Etsuo Miyaoka (2007), Advanced Calculus I, Tian-Jin.

Osborne, Martin J and Ariel Rubinstein (2020), *Models in Microeconomic Theory ('He'Edition)*, Open Book Publishers.

Rudin, Walter et al. (1964), Principles of mathematical analysis, vol. 3, McGraw-hill New York.

Sundaram, Rangarajan K et al. (1996), *A first course in optimization theory*, Cambridge university press. Wade, William R (2014), *Introduction to Analysis*, Pearson Education.

