Lecture 10

CS436/536: Introduction to Machine Learning

Zhaohan Xi Binghamton University

zxi1@binghamton.edu

Recap: Linear Model for Three Learning Problems

$$h(x) = \mathbf{w}^T x$$
, where $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{x} \in 1 \times \mathbb{R}^d$

But: The Linear Model has Limitations

Linear with Outliers

Essentially Non-linear

Credit Approval

• Using salary, debt, years in residence, etc., approve for credit or not

age	33 years
salary	50,000
debt	27,500
years employed	1
years at residence	2
•••	

Approve for credit?

Use the Appropriate Feature

Years in Residence (Y)

 $Y \gg 3$ years, no additional effect beyond Y = 3 $Y \ll 0.3$ years, no additional effect below Y = 0.3

Change the Feature Using a Transform

Changing the Feature Using a Transform

Mechanics of Non-Linear Feature Transforms

Feature Transforms In General

 \mathcal{X} -space is \mathbb{R}^d

$$\mathcal{Z}$$
-space is \mathbb{R}^d

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$$

$$(x_1, y_1), ..., (x_N, y_N)$$

$$g(\mathbf{x}) = sign(\widetilde{\mathbf{w}}^T \mathbf{\Phi}(\mathbf{x}))$$

Low E_{in}

$$\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} 1 \\ \Phi_1(\mathbf{x}) \\ \dots \\ \Phi_{\tilde{a}}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 1 \\ z_1 \\ \dots \\ z_{\tilde{a}} \end{bmatrix}$$

$$(\boldsymbol{z}_1, y_1), \dots, (\boldsymbol{z}_N, y_N)$$

$$\widetilde{\boldsymbol{w}} = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_{\tilde{d}} \end{bmatrix}$$

What about "Real Learning"? Generalization

• Want $g \approx f$ over all of \mathcal{X} , i.e., $E_{out}(g) \approx 0$

[Approximation] small $E_{in}(g)$

[Generalization] $E_{in}(g) \approx E_{out}(g)$

$$\begin{array}{ccc} d_{VC} & \longrightarrow & \tilde{d}_{VC} \\ d+1 & & \tilde{d}+1 \end{array}$$

Select transform Φ with small \tilde{d}

Possibly Many 'Good' Nonlinear Transforms

$$z_1 = x_1^2 + x_2^2 - 0.6$$

Polynomial Feature Transform

E.g. Polynomial Transform for 2-D \mathcal{X} -space

Degree 1:
$$(1, x_1, x_2) \xrightarrow{\Phi_1} (1, x_1, x_2)$$
 $\Rightarrow \tilde{d}_{VC} = 3$

Degree 2: $\xrightarrow{\Phi_2} (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$ $\Rightarrow \tilde{d}_{VC} = 6$

Degree 3: $\xrightarrow{\Phi_3} (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$ $\Rightarrow \tilde{d}_{VC} = 10$

Degree 4: $\xrightarrow{\Phi_4} (1, x_1, x_2, x_1^2, \dots, x_2^2, x_1^3, \dots, x_2^3, x_1^4, \dots, x_2^4)$ $\Rightarrow \tilde{d}_{VC} = 15$

In general:

For a Q-th order polynomial feature transform, with original x of d dimensions,

$$\tilde{d} = \begin{pmatrix} Q + d \\ Q \end{pmatrix} - 1 \Rightarrow \tilde{d}_{VC} = \begin{pmatrix} Q + d \\ Q \end{pmatrix}$$

Pick Feature Transform **BEFORE** Seeing Data

Construct Features Carefully, Before Seeing the Data

- Do NOT Pick Φ after looking at the data
- Pick Φ BEFORE seeing the data

If you suspect linear model is insufficient to approximate the target, Pick one of the standard feature transforms

Pick one of the standard feature transforms
$$x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \quad \stackrel{\Phi_2}{\rightarrow} \quad \Phi_2(x) = \begin{bmatrix} 1 \\ \Phi_1(x) \\ \Phi_2(x) \\ \Phi_3(x) \\ \Phi_4(x) \\ \Phi_5(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix} \quad \stackrel{\times}{\searrow} \stackrel{\circ}{\searrow} \stackrel{\circ}{\Longrightarrow} \stackrel{\Longrightarrow}{\Longrightarrow} \stackrel{\Longrightarrow}{\Longrightarrow} \stackrel{\Longrightarrow}{\Longrightarrow} \stackrel{\Longrightarrow}{\Longrightarrow}$$

Use Feature Transforms Responsibly

• Approximation – Generalization Tradeoff

Digits Data — "1" vs. "All"

Average Intensity

Linear model

 $E_{in} \approx 2.13\%$ $E_{out} \approx 2.38\%$

Average Intensity

3rd Order Polynomial model

$$E_{in} \approx 1.75\%$$

 $E_{out} \approx 1.87\%$

Use the Linear Model!

- Try it first simple, robust, works
- Works for different kinds of problems:
 - Classification, Regression, Logistic Regression
- Works for nonlinear targets:
 - All the machinery and algorithms
 - Can tolerate errors
 - Easily extended to use nonlinear transforms
- Pick feature transform before seeing the data
- Linear Model is Fundamental!
 - Building block for more complex models

Average Intensity

Overfitting

Another Simple Learning Problem

- Target *f* is *quadratic*
- 5 data points x_1, x_2, \dots, x_5
- A little noise (small measurement error)

5 data points?

 4^{th} order polynomial can fit it exactly ($E_{in}=0$)!

An Illustration of Overfitting

- Target *f* is *quadratic*
- 5 data points x_1, x_2, \dots, x_5
- A little noise (small measurement error)

Learning a simple target with excessively complex ${\mathcal H}$

Small $E_{in} \approx 0$, but High $E_{out} \gg 0$

Because we listened to the **noise**. (We fit the data more than was warranted)

Overfitting is Not Just Bad Generalization

VC dimension, $d_{\rm VC}$

- VC analysis covers bad generalization
- Fitting the data, lowering E_{in} , is fine so long as E_{out} is also lowered

Overfitting: When Lower E_{in} results in Higher E_{out}

Lowering E_{in} is no longer a good guide to lower E_{out}

The Curious Case of the Simple Model 2nd order vs. 10th Order Polynomial Fit

Two Learning Problems

Simple Noisy Target

Complex Noiseless Target

10th order f with noise.

Two Contenders: 2nd Order vs 10th Order Polynomial

10th order f with noise.

50th order f with no noise.

$$\mathcal{H}_2$$
: $h(\mathbf{x}) = \mathbf{w}^T \Phi_2(\mathbf{x})$

Learn linear model with 2nd order polynomial transform

$$\mathcal{H}_{10}: h(\mathbf{x}) = w^T \Phi_{10}(\mathbf{x})$$

Learn linear model with 10th order polynomial transform

2nd Order vs 10th Order Polynomial

simple noisy target

2nd order E_{in} E_{out} 0.050 0.127

10th order 0.034 9.00

complex noiseless target 2nd order E_{in} E_{out} 0.029 0.120

10th order 10^{-5} 7680

When is \mathcal{H}_2 better than \mathcal{H}_{10} ?

Learning curves for \mathcal{H}_2

Learning curves for \mathcal{H}_{10}

Number of Data Points, N

 \mathcal{H} should match quantity (N) and quality of data (noise), not the target (f)

Overfitting: When $E_{out}(\mathcal{H}_{10}) > E_{out}(\mathcal{H}_2)$

Overfit Measure: $E_{out}(\mathcal{H}_{10}) - E_{out}(\mathcal{H}_{2})$

Learning Scenario Parameters:

- Noise level σ^2 (variance)
- Target complexity Q_f
- Number of Data Points N

Overfit Measure: $E_{out}(\mathcal{H}_{10}) - E_{out}(\mathcal{H}_{2})$

Noise: The Part of y we cannot model

Towards a unified view of overfitting

- Noise:
 - Stochastic noise: measurement error
 - Deterministic noise (?)

Stochastic Noise: A Part of y we cannot model

Want to learn from o: y = f(x)

Unfortunately we only observe o: y = f(x) + stochastic noise

We have no way to model stochastic noise

Stochastic Noise: A Part of y we cannot model

Want to learn from o: y = f(x)

Unfortunately we only observe o: y = f(x) + stochastic noise

We have no way to model stochastic noise

Noise level σ^2 (variance) $\uparrow \uparrow$ Overfitting

Stochastic and Deterministic Noise

Stochastic noise: measurement errors we cannot model

Deterministic noise: the other part of y we cannot model the best we can possibly do with $\mathcal H$

Deterministic Noise

 χ

Deterministic Noise: Model Error

Want: Pick h^* the best approximation of f in \mathcal{H}

Want: To learn from o

Unfortunately, we observe o

$$y_n = f(x_n)$$

 $y_n = h^*(x_n) + \text{deterministic noise}$

Target complexity $Q_f \uparrow \uparrow$ Overfitting

Stochastic and Deterministic Noise Hurt Learning

Stochastic Noise

random measurement errors

- Measuring y_n again stochastic noise changes
- Independent of ${\cal H}$

Deterministic Noise

 ${\mathcal H}$ cannot model f

- Measuring y_n again deterministic noise constant
- Depends on ${\cal H}$

Bias Variance Decomposition with Stochastic Noise

$$\mathbb{E}[E_{out}(\mathbf{x})] = bias(\mathbf{x}) + var(\mathbf{x})$$

$$bias(\mathbf{x}) = (\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2}$$

$$var(\mathbf{x}) = var(g(\mathbf{x}))$$

$$E_{out}(\mathbf{x}) = (g(\mathbf{x}) - f(\mathbf{x}))^{2}$$

With noise:

$$E_{out}(\mathbf{x}) = (g(\mathbf{x}) - y)^2, \text{ where } y = f(\mathbf{x}) + \epsilon$$
$$= (g(\mathbf{x}) - f(\mathbf{x}) - \epsilon)^2$$
$$= (g(\mathbf{x}) - f(\mathbf{x}))^2 - 2\epsilon(g(\mathbf{x}) - f(\mathbf{x})) + \epsilon^2$$

Bias Variance Decomposition with Stochastic Noise

$$E_{out}(\mathbf{x}) = (g(\mathbf{x}) - f(\mathbf{x}))^2 - 2\epsilon(g(\mathbf{x}) - f(\mathbf{x})) + \epsilon^2$$

$$\mathbb{E}_{\mathbf{x}}[E_{out}] = \mathbb{E}_{\mathbf{x}}[(g(\mathbf{x}) - f(\mathbf{x}))^2 - 2\epsilon(g(\mathbf{x}) - f(\mathbf{x})) + \epsilon^2]$$

$$\mathbb{E}[\epsilon] = 0 \Rightarrow$$

$$\mathbb{E}_{x}[E_{out}] = \mathbb{E}_{x}[(g(x) - f(x))^{2}] + \mathbb{E}_{x}[\epsilon^{2}]$$

$$\mathbb{E}_{\mathbf{x}}[E_{out}] = \mathbb{E}_{\mathbf{x}}[bias(\mathbf{x}) + var(\mathbf{x}) + \epsilon^{2}]$$

$$E_{out} = bias + \sigma^2 + var$$
 depends on N

det. noise stoch. noise indirect impact of noise