2 Involutes i Evolutes

Exercici 2.1. (La involuta¹ o evolvent.) Sigui $\alpha: I \to \mathbb{R}^2$ una corba regular de curvatura mai nul·la. S'anomena *involuta* de α a qualsevol corba β que talli ortogonalment a totes les rectes tangents de α .

- a) Trobeu una parametrització de β en funció del paràmetre arc de α .
- b) Trobeu una parametrització de β quan α no està parametritzada per l'arc.
- c) Interpreteu geomètricament la parametrització obtinguda. (Indicació: podeu utilitzar un cordill.)
- d) Trobeu la involuta de la $catenària y = \cosh x$, que passa pel punt (0,1). Comproveu que es tracta de la tractriu.
- e) Trobeu parametritzacions de les involutes de la circumferència i de la cicloide.

Solució: Tenim que $\beta(s) = \alpha(s) + \lambda(s)\alpha'(s)$ i ha de passar que $\alpha'(s) \perp \beta'(s) = \alpha'(s) + \lambda'(s)\alpha'(s) + \lambda(s)\alpha''(s)$. Llavors com que $|\alpha'| = 1$ i $\langle \alpha', \alpha'' \rangle = 0$ per ser s el paràmetre arc, tenim que $\lambda' = -1$ i la involuta té expressió

$$\beta(s) = \alpha(s) + (c - s)\alpha'(s).$$

Es veu que quan s=c aleshores $\alpha(c)=\beta(c)$, diem que és el punt inicial sobre α de l'involuta. Considereu s< c i un cordill fixat a $\alpha(c)$ i seguint la corba α fins $\alpha(s)$, si el comencem a desplegar des de $\alpha(c)$ mantenint-lo en tensió, el que recorre l'extrem lliure és la involuta. La distància de $\beta(s)$ a $\alpha(s)$ (que es medeix seguint la tangent) és c-s (vegeu dibuix). Si considerem un paràmetre arbitrari tindrem

$$\beta(t) = \alpha(t) - \frac{\alpha'(t)}{|\alpha'(t)|} \int_{t_0}^t |\alpha'(\xi)| d\xi.$$

Trobem l'involuta de $\alpha(t) = (t, \cosh t)$. Aquí $\alpha'(t) = (1, \sinh t)$ i $|\alpha'(t)| = \cosh t$. Llavors

$$\beta(t) = (t - \tanh t, 1/\cosh t)$$

que correspon a la tractriu. Observeu que allà on la curvatura s'anul·la la involuta te un vèrtex.

La involuta de la circumferència de radi a que comença a (a,0) ve donada per $x=a(\cos t+t\sin t),y=a(\sin t-t\cos t).$

Exercici 2.2. (L'evoluta.) Diem que una corba regular plana β és l'evoluta d'una altra corba regular plana α si i només si α és una involuta de β . Dit d'una altra manera, β és l'envolupant de la família de rectes normals de α . Recordem que s'anomena envolupant d'una família de corbes a una corba que és tangent en cada punt a una de les corbes de la família.

a) Trobeu una parametrització de β en funció del paràmetre arc de α , suposant que la curvatura de α no s'anul·la. (Solució: $\beta(s) = \alpha(s) + \frac{1}{k(s)}\mathbf{n}(s)$).

Generalitzeu-la a qualsevol paràmetre de α .

¹Per un índex de corbes vegeu: http://www-history.mcs.st-and.ac.uk/Curves/Curves.html

- b) Interpreteu geomètricament la parametrització obtinguda. (Indicació: Recordeu la definició de centre de curvatura.)
- c) Demostreu que la longitud de β entre $\beta(s_0)$ i $\beta(s_1)$ és igual a la diferència dels radis de curvatura de α en els punts $\alpha(s_0)$ i $\alpha(s_1)$.
- d) Demostreu que la tangent de β en un punt $s \in I$ és la normal de α en s.
- e) Considerem les normals a α en dos punts propers $s_1 \neq s_2$ i fem tendir s_1 a s_2 . Demostreu que la intersecció d'aquestes normals convergeix a un punt de l'evoluta.
- f) Trobeu l'evoluta de la cicloide.
- g) Comproveu que la curvatura de la catenària $\alpha(t) = (t, \cosh t)$ és $k(t) = 1/\cosh^2 t$, i que la seva evoluta és $\beta(t) = (t \sinh t \cosh t, 2 \cosh t)$.

Solució: Estudiem primer l'envolvent a una família de corbes $t \mapsto \varphi(\lambda, t)$. Per cada una d'aquestes corbes volem trobar un punt $\varphi(\lambda, t(\lambda))$ de manera que la nova corba $\lambda \mapsto \varphi(\lambda, t(\lambda))$ sigui tangent a $t \mapsto \varphi(\lambda, t)$ en el punt de contacte. És a dir, volem que

$$\frac{\partial}{\partial \lambda}\varphi(\lambda, t(\lambda)) = k \frac{d}{dt}\varphi(\lambda, t(\lambda))$$

en cada punt.

En el nostre cas tenim que $\varphi(\lambda,t) = \alpha(\lambda) + t\mathbf{n}(\lambda)$ on λ és el paràmetre arc. La corba que busquem és de la forma $\beta(\lambda) = \alpha(\lambda) + t(\lambda)\mathbf{n}(\lambda)$. Tenim

$$\beta'(\lambda) = \mathbf{t}(\lambda) + t'(\lambda)\mathbf{n}(\lambda) + t(\lambda)\mathbf{n}'(\lambda) = (1 - t(\lambda)\kappa(\lambda))\mathbf{t}(\lambda) + t'(\lambda)\mathbf{n}(\lambda).$$

Llavors, exigint la tangència amb α , tenim que $t(\lambda) = 1/\kappa(\lambda) = \rho(\lambda)$. L'evoluta te expressió

$$\beta(s) = \alpha(s) + \frac{1}{\kappa(s)} \mathbf{n}(s).$$

Si t és un paràmetre arbritari, recordem que $s(t) = \int_{-\infty}^{t} |\alpha(\xi)| d\xi$. Substituïm i avall. Fem ara el problema suposant que la família de corbes ve donada per equacions $f(\lambda; x, y) = 0$. Volem trobar una corba $\lambda \mapsto (x(\lambda), y(\lambda))$ tal que: a) $f(\lambda; x(\lambda), y(\lambda)) = 0$ i b) Que sigui tangent a les corbes de la família. El gradient de f_{λ} dona la direcció normal a la corba $f(\lambda; x, y) = 0$. Volem doncs que $(x'(\lambda), y'(\lambda)) \cdot \nabla f_{\lambda}(x'(\lambda), y'(\lambda)) = 0$. Però la derivada respecte λ de $\lambda \mapsto f(\lambda; x(\lambda), y(\lambda)) = 0$ és

$$\frac{\partial}{\partial \lambda} f(\lambda; x(\lambda), y(\lambda)) + (x'(\lambda), y'(\lambda)) \cdot \nabla f_{\lambda}(x'(\lambda), y'(\lambda)) = \frac{\partial}{\partial \lambda} f(\lambda; x(\lambda), y(\lambda)) = 0.$$

Per torbar l'envolvent cal resoldre

$$f = 0, \qquad \partial_{\lambda} f = 0.$$

Fem-ho per la família de rectes normals d'una corba $\alpha(t)=(x(t),y(t))$. L'equació de la normal pel punt $\alpha(t)$ és

$$\frac{X - x(t)}{-y'(t)} = \frac{Y - y(t)}{x'(t)}.$$

O bé

$$(X - x(t))x'(t) + (Y - y(t))y'(t) = 0.$$

L'altra equació és

$$(X - x(t))x''(t) + (Y - y(t))y''(t) = x'^{2}(t) + y'^{2}(t).$$

Resolem i obtenim

$$X = x - y' \frac{x'^2 + y'^2}{y''x' - x''y'}, \qquad Y = y + x' \frac{x'^2 + y'^2}{y''x' - x''y'}$$

que és l'expressió de l'evoluta en qualsevol paràmetre.

La longitud que es demana és

$$L(s_0, s_1) = \int_{s_0}^{s_1} |\beta'(s)| ds.$$

Però $|\beta'(s)|^2 = |\mathbf{t}(s) + \rho'(s)\mathbf{n}(s) - \rho\kappa(s)\mathbf{t}(s)|^2 = (\rho'(s))^2$. Si ρ' no canvia de signe, obtenim el resultat anunciat.

Que la tangent de β és la normal de α es veu del càlcul anterior (o per ser envolvent de les normals).

Sigui $\alpha(s+\epsilon) + \mu(\epsilon)\mathbf{n}(s+\epsilon)$ la intersecció de les normals a la corba pels punts $\alpha(s)$ i $\alpha(s+\epsilon)$. Tenim que $\langle \alpha(s+\epsilon) + \mu(\epsilon)\mathbf{n}(s+\epsilon) - \alpha(s), \mathbf{t}(s) \rangle = 0$. Llavors

$$\langle \alpha(s+\epsilon) - \alpha(s), \mathbf{t}(s) \rangle = -\mu(\epsilon) \langle \mathbf{n}(s+\epsilon) - \mathbf{n}(s), \mathbf{t}(s) \rangle.$$

Dividint per ϵ i fent limit quan ϵ va a zero tenim

$$\langle \mathbf{t}(s), \mathbf{t}(s) \rangle = \mu(0)\kappa(s)$$

d'on deduïm que el límit del punt de tall és $\alpha(s) + \frac{1}{\kappa(s)}\mathbf{n}(s)$ que descriu l'evoluta quan s varia.

Considerem la cicloide $x = a(t + \sin t), y = a(1 + \cos t)$. Si apliquem les formules obtingudes arribem a $X = a(t - \sin t), Y = -a(1 + \cos t)$ com a envolvent. Torna a ser una cicloide. Vegeu el dibuix. El que queda és una comprovació.

Exercici 2.3. (Relació entre la curvatura d'una corba i la curvatura de la seva evoluta.)

- a) Trobeu la curvatura de la catenària en paràmetre arc.
- b) Trobeu la curvatura de la tractriu en el paràmetre induït per la catenària.
- c) Deduïu una fórmula general per la curvatura d'una involuta de α en el paràmetre induït per l'arc de α .

Solució: Per una corba regular $\beta(t)$ tenim que $\kappa(t) = \det(\beta'(t), \beta''(t))/|\beta'(t)|^3$. Si $\beta(t) = \alpha(t) + (c-t)\alpha'(t)$ amb t paràmetre arc de α , llavors $\kappa_{\beta}(t) = 1/|c-t|$.

Exercici 2.4. Comproveu geomètricament que l'evoluta de la tractriu és la catenària.

Solució: Geomètricament vol dir fent servir les propietats que defineixen les corbes. Per exemple, la tractriu és una corba amb la subtangent constant. I la catenària una corba amb el tangent del pendent proporcional al paràmetre arc (amb factor de proporcionalitat constant). Podem fer servir com a catenària la corba $(t, \cosh t)$, llavors si l'origen és el (0,0) tenim que $s(t)=\sinh t$. Sigui P un punt de la catenària, R els punt a distància $\sinh t$ seguint la tangent, Q el punt de l'eix OX seguint la tangent. La involuta és el lloc geomètric de R. Si seguim el punt R seguint la normal a la tangent de la catenària fins a tallar l'eix OX obtenim el punt S i RS és la subtangent a la involuta. Ternim que l'angle $\tan \angle PQS = \tan \alpha = \sinh t$ per definició de catenària. Llavors com que $\tan \alpha = \frac{RP}{RS} = \frac{\sinh t}{RS}$ deduim que RS = 1. La subtangent de la corba que descriu R és constant, llavors és una tractriu.

En negreta evolutes

En negreta involutes