Queueing Theory and Simulation, lecture 3

Nicky van Foreest

June 22, 2021

Contents

1 General things	1
2 Notation for queues	1
3 Random walk	2
4 Rest of the course	2
1 General things	
1.1 General things	
• assignments: hope you enjoy them. We do one per week, even talready	hough most is on github
• assignments: making groups works?	
• Book: keep up with the exercises.	
\bullet book form at (main text, comments and references to exercises	in the margin.)
2 Notation for queues	
2.1 Continuous time, multiserver queue	
• Job k sees, upon arrival, a waiting time $w_{k,i}$ at queue i .	
• m servers	
$\bullet \ w_k = (w_{k,1}, \dots, w_{k,m}),$	
• I represents here a vector $(1, 1, \dots, 1)$.	
• e_k is kth unit vector, i.e., all zeros with 1 at kth place	

$$s_k = \arg\min_{i} \{w_{k,i}\} \tag{1}$$

$$w_{k+1} = [w_k + S_k e_{s_k} - X_{k+1} I]^+, (2)$$

$$W_k = w_{k,s_k} \tag{3}$$

 $\implies \{X_k\}, \{S_k\}$ and m suffice construct the queueing process.

2.2 Kendall's notation

- M/M/1
- M/M/c
- G/G/c
- D/D/1

3 Random walk

3.1 Applications

- insurance
- production inventory control
- queueing

It's all the 'same' thing we study.

3.2 Elegant recursion

$$Z_k = Z_{k-1} + a_k - c_k (4)$$

$$L_k = [L_{k-1} + a_k - c_k]^+ = [L_{k-1} + Z_k - Z_{k-1}]^+$$
(5)

$$L_k = Z_k - \min_{1 \le i \le k} Z_k \wedge 0 \tag{6}$$

Nice formula, but still a recursion

3.3 Useful and useless

- Can we find a closed form solution, something like $x_t = x_0 + v_0 t gt^2/2$ for the height of bullet in a homogeneous gravitational field (and no friction)? No, disappointingly.
- We have to drop the time-dependent analysis
- Henceforth in the course we concentrate on finding formulas compute/estimate time-average waiting times, e.g, $\mathsf{E}[W]$, or $\mathsf{E}[I_{W \geq x}]$.

4 Rest of the course

4.1 Next lecture

- Concept of rate
- Stability
- Convergence to stationary state

4.2 lectures next week

- One of the most beautiful (?) formulas of probability, Sakasegawa's approximation for the average waiting time in an G/G/c queue.
- Application to many different practically useful queueing systems.

4.3 later lectures

- Use sample paths of queueing process to analyze the system; we still use the ideas of simulation, but in a different way!
- Formulas for many queueing models