R20

Code No: **R204101B**

Set No. 1

IV B.Tech. I Semester Regular Examinations, January – 2024 BRIDGE ENGINEERING

(Civil Engineering)

Time: 3 hours Max. Marks: 70 Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks **** UNIT-I Discuss the different types of RCC bridges giving the main features of each 1 type. [7] Discuss briefly on the types of foundations adopted for a bridge. [7] 2 a) What are various components of a Bridge? Explain with a neat sketch. [7] b) What is the role of well foundation in bridges? [7] UNIT II Write a brief note on Wheel loads to be considered in design of Slab bridges. 3 a) [7] Explain the Use of Pigeaud's charts for computation of moments in charts. [7] b) a) Explain Hendry-Jaegar Method for analysis of bridges. 4 [7] Write a brief note on effective width method adopted for Slab bridges. b) [7] UNIT - III Design longitudinal girders of an RCC T-beam girder bridge for the 5 following data. Clear width of road way = 7.5m, Span (c/c of bearings) = 20m, Width of supports = 400mm, Width of kerbs = 600mm, Wearing coat = 80mm thick, Loading = IRC Class AA, M30 concrete and Fe500 steel are to be adopted. [14] (OR)

1 of 2

R20

Code No: **R204101B**

Set No. 1

6	a)	Discuss on the various elements present in a T beam bridge.	[7]
	b)	Explain Various longitudinal forces acting on a T beam Bridge.	[7]
		UNIT – IV	
7		Design the cross-section of a deck type welded Plate girder bridge for the following data.	
		Design the for the following data	
		Effective span = $25m$,	
		Dead load = $7kN/m$,	
		Equalent total live load for bending moment calc. / track = 2727kN,	
		Equalent total live load for shear calc. / track = 2927kN,	
		Width of abutment = 4m,	
		Top of rail level = 108m,	
		Side slopes of embankment = 1.5:1,	
		Foundation level = 100m,	
		(Note: Design of connections, bracings and stiffeners not required)	[14]
_		(OR)	
8	a)	Discuss on the various components of a plate girder using a sketch.	[7]
	b)	Explain the function of lateral bracings and cross frames used in plate girder	[7]
		bridges. How do you design them in a typical plate girder?	[7]
		UNIT – V	
9	a)	Elaborately explain the importance of bridge bearings in the overall	
		performance of a bridge.	[7]
	b)	Enumerate the different types of inspections carried out on bridges and their	
		respective purposes.	[7]
		(OR)	
10		A Reinforced Concrete box culvert having a clear ventway of $3m \times 3m$. The	
		superimposed dead load on the culvert is 12.8kN/m ² , the live load on the	
		culvert is 50kN/m^2 , Density of soil at site is 18kN/m^2 , Angle of repose = 30° .	
		Determine	
		i. Total uniformly distributed load on the box culvert	
		ii. Soil pressure	
		iii. Uniform lateral pressure due to dead load and live load	
		iv. Uniform lateral pressure due to dead load surcharge	
		v. Intensity of water pressure.	
			[14]