Bertskas exercise 1.1

1. We assume x_k integer.

$$\begin{split} J_4(x_4) &= 0 \\ J_3(x_3) &= \min_{u_3}(x_3^2 + u_3^2 + J_4(x_3 + u_3)) \\ &= \min_{u_3}(x_3^2 + u_3^2) \\ &= x_3^2 \quad u_3(x_3) = 0 \\ J_2(x_2) &= \min_{u_2}(x_2^2 + u_2^2 + J_3(x_2 + u_2)) \\ &= \min_{u_2}(x_2^2 + u_2^2 + (x_2 + u_2)^2) \\ &= \min_{u_2}(2x_2^2 + 2u_2(u_2 + x_2)) \\ &= 2x_2^2 + 2\min_{u_2}((u_2 + x_2 - x_2)(u_2 + x_2)) \\ &= 2x_2^2 + 2\min(0, 1 - x_2, 2(2 - x_2), 3(3 - x_2), 4(4 - x_2), 5(5 - x_2))) \\ &= 2x_2^2 \quad x_2 \le 1 \\ &= 2x_2^2 + 1 - x_2 \quad 1 \le x_2 \le 3 \\ &= 2x_2^2 + 2(2 - x_2) \quad 3 \le x_2 \le 5 \\ &= 2x_2^2 + 3(3 - x_2) \quad 5 \le x_2 \le 7 \\ &= 2x_2^2 + 4(4 - x_2) \quad 7 \le x_2 \le 9 \\ &= 2x_2^2 + 5(5 - x_2) \quad 9 \le x_2 \end{split}$$

Etc

2. We assume u_k, x_k real.

$$J_4(x_4) = 0$$

$$J_3(x_3) = \min_{u_3}(x_3^2 + u_3^2 + J_4(x_3 + u_3))$$

$$= \min_{u_3}(x_3^2 + u_3^2)$$

$$= x_3^2 \quad u_3(x_3) = 0$$

$$J_2(x_2) = \min_{u_2}(x_2^2 + u_2^2 + J_3(x_2 + u_2))$$

$$= \min_{u_2}(x_2^2 + u_2^2 + (x_2 + u_2)^2)$$

$$= \min_{u_2}(2x_2^2 + 2u_2(u_2 + x_2))$$

$$= 2x_2^2, u_2 = -x_2 \quad x_2 \le 0$$

$$= 3/2x_2^2, u_2 = -1/2x_2 \quad 0 \le x_2 \le 10$$

$$= 2x_2^2 + 50 - 10x_2, u_2 = 5 - x_2 \quad 10 \le x_2$$

Bertsekas exercise 3.2

We follow the PMP approach of Kappen's tutorial pg. 7.

1. Construct H:

$$H(t, u, x, \lambda) = \exp(-\beta t)\sqrt{u} + \lambda(\alpha x - u)$$

2. Construct H^* :

$$u^* = armin_u H = \frac{1}{4\lambda^2} \exp(-2\beta t)$$
$$H^*(t, x, \lambda) = H(t, u^*, x, \lambda) = \frac{1}{4\lambda} \exp(-2\beta t) + \lambda \alpha x$$

3. Hamilton equations

$$\dot{x} = \frac{\partial H^*}{\partial \lambda} = -\frac{1}{4\lambda^2} \exp(-2\beta t) + \alpha x$$

$$\dot{\lambda} = -\frac{\partial H^*}{\partial x} = -\lambda \alpha$$

with boundary condition x(0) = S and x(T) = 0. Note, that this is slightly different from the PMP derivation in the text, where we have an end condition for λ instead of for x.

4. Solve the Hamilton equations. The solution for λ is

$$\lambda(t) = A \exp(-\alpha t)$$

Substituting in the equation for x we get

$$\dot{x} = \frac{-1}{4A^2} \exp(2\alpha t - 2\beta t) + \alpha x$$

We try the solution $x(t) = C(t) \exp(\alpha t)$, because we know that $x = C \exp(\alpha t)$ is the solution of the homogeneous equation. Substitution yields an equation for C that we can solve:

$$\dot{C} = \frac{-1}{4A^2} \exp(\alpha t - 2\beta t)$$

$$C(t) = \frac{-1}{4A^2} \frac{1}{\alpha - 2\beta} \exp(\alpha t - 2\beta t) + C_0$$

Substituting this solution in the solution for x(t) we can find the two constants A and C_0 from the boundary conditions X(0) = S and X(T) = 0. The final result is

$$x(t) = \frac{S \exp(\alpha t)}{\exp((\alpha - 2\beta)T) - 1} \left(\exp((\alpha - 2\beta)T) - \exp(\alpha - 2\beta)t\right)$$

$$u(t) = \frac{S(\alpha - 2\beta)}{\exp((\alpha - 2\beta)T) - 1} \exp(2(\alpha - \beta)t)$$

Note, that when there is no discounting ($\beta = 0$) the optimal spending increases with age which is due to the interest on the capital.

Extra exercises

1. The mass on the spring problem with maximal end velocity is identical to maximal end position, except that the end cost $\phi(x) = -x_2$. The differential equation for ψ (ICML sheets pg. 20) are solved as

$$\psi_1(t) = \sin(t - T)\psi_2(t) = -\cos(t - T)$$

with boundary condition $(\psi_l(T), \psi_2(T)) = (0, -1)$. The optimal control is $u(t) = -\operatorname{sign}(\psi_2(t)) = \operatorname{sign}(\cos(t - T))$

$$u = 1$$
 $0 < t < \pi/2$
 $u = -1$ $\pi/2 < t < 3\pi/2$
 $u = 1$ $3\pi/2 < t < 2\pi$

- 2. (a) The PMP formalism is given in Kappen's tutorial text on page. 7. The recipe is
 - i. Construct the Hamiltonian

$$H(t, x, u, \lambda) = -R(t, x, u) + \lambda f(t, u, x) = -\frac{1}{2}u^2 + \lambda u$$

ii. Construct the optimized Hamiltonian

$$H^*(t, x, \lambda) = H(t, x, u^*, \lambda) = \frac{1}{2}\lambda^2$$
 $u^* = \lambda$

iii. Solve the Hamilton equations of motion

$$\frac{dx}{dt} = \frac{\partial H^*}{\partial \lambda} = \lambda$$

$$\frac{d\lambda}{dt} = -\frac{\partial H^*}{\partial x} = 0$$

with boundary conditions $x(t_0)$ and $\lambda(t=T)=-x(T)^1$. The solution for λ is constant $\lambda(t)=\lambda$ with $\lambda=-x(T)$. The solution for x(t) is

$$x(t) = x(t_0) + \lambda(t - t_0)$$

Combining these two results, we get $\lambda = -x(T) = -x(t_0) - \lambda(T - t_0)$, or

$$\lambda = \frac{-x(t_0)}{1 + T - t_0}$$

which is the optimal control law.

(b) We use the Bellman equation 1.18 on page 10 of Kappens tutorial.

$$-\partial_t J = \min_u \left(\frac{1}{2} u^2 + u \partial_x J + \frac{1}{2} \nu \partial_x^2 J \right)$$
$$= -\frac{1}{2} (\partial_x J)^2 + \frac{1}{2} \nu \partial_x^2 J$$

where we have computed the optimal control as a function of J: $u = -\partial_x J$. We have to solve with boundary condition $J(x,T) = \frac{1}{2}x^2$. This is a partial differential equation, because J is a function of x and t. This is not easy to solve, but since the problem is linear quadratic, we know that

$$J(x,t) = \frac{1}{2}P(t)x^2 + \alpha(t)x + \beta(t)$$

¹Note, that $\phi(x) = \frac{1}{2}x^2$ so that $\phi_x = x$.

with boundary conditions $P(T) = 1, \alpha(T) = 0, \beta(T) = 0.$

Substitution and setting terms proportional to x^2 , x and constant equal to zer yields directly:

$$\begin{array}{rcl} \dot{P} & = & P^2 \\ \dot{\alpha} & = & \alpha P \\ \dot{\beta} & = & \frac{1}{2}\alpha^2 - \frac{1}{2}\nu P \end{array}$$

The solution is:

$$P(t) = \frac{-1}{t+c}$$

$$\alpha(t) = 0$$

The solution for β is irrelevant for the control. c is an integration constant. Since P(T) = 1 we find c = -1 - T and $P(t) = \frac{1}{1 + T - t}$.

Finally, the control solution is

$$u = -\frac{\partial J}{\partial x} = \frac{-x}{1 + T - t}$$

(c) The path integral solution is given in Kappen's tutorial on pg. 19.

3. (a)

$$\rho(y,t|x,0) = \frac{1}{\sqrt{2\pi\nu t}} \exp\left(-\frac{(y-x)^2}{2\nu t}\right)$$

$$\frac{\partial}{\partial t}\rho = -\frac{1}{2t}\rho + \frac{(y-x)^2}{2\nu t^2}\rho$$

$$\frac{\partial}{\partial x}\rho = -\frac{(y-x)}{\nu t}\rho$$

$$\frac{\partial^2}{\partial x^2}\rho = \frac{1}{\nu t}\rho + \left(\frac{(y-x)}{\nu t}\right)^2\rho = -\frac{1}{\nu}\frac{\partial}{\partial t}\rho$$

(b)

$$J(x,t) = -\lambda \log \psi(x,t)$$

$$\psi(x,t) = \int dy \rho(y,T|x,t) \exp(-\phi(y)/\lambda)$$

$$\exp(-\phi(y)/\lambda) = \delta(y-1) + \delta(y+1)$$

$$\psi(x,T) = \rho(1,T|x,0) + \rho(-1,T|x,0)$$

$$= \frac{1}{\sqrt{2\pi\nu T}} \left(\exp\left(-\frac{(1-x)^2}{2\nu T}\right) + \exp\left(-\frac{(1+x)^2}{2\nu T}\right) \right)$$

$$= \frac{1}{\sqrt{2\pi\nu T}} \exp\left(-\frac{1+x^2}{2\nu T}\right) \left(\exp\left(\frac{x}{\nu T}\right) + \exp\left(-\frac{x}{\nu T}\right) \right)$$

$$= \frac{2}{\sqrt{2\pi\nu T}} \exp\left(-\frac{1+x^2}{2\nu T}\right) \cosh\left(\frac{x}{\nu T}\right)$$

$$J(x,0) = \lambda \log \sqrt{\frac{\pi\nu T}{2}} + \frac{R}{2T}(1+x^2) - \nu R \log \cosh\left(\frac{x}{\nu T}\right)$$

$$u = -\frac{1}{R}\frac{dJ}{dx} = -\frac{x}{T} + \frac{1}{T}\tanh\left(\frac{x}{\nu T}\right)$$