Golang Vietnam Meetup #10

Docker suckless with Kubernetes

Thuan Duong - Monkey DevOps

February 27, 2017

Agenda

- Docker
- Mubernetes
 - What is Kubernetes?
 - Concepts
 - Architecture
 - Google Container Engine (GKE)
- 3 Demo
- 4 QA

What is Docker?

- An implementation of the container idea
- A package format
- Resource isolation
- An ecosystem

VM and Docker

Virtual Machine

¹https://www.docker.com/what-docker

VM and Docker

Virtual Machine

Docker

¹https://www.docker.com/what-docker

Implemented by a number of Linux APIs:

- cgroups: Restrict resources a process can consume
 - CPU, memory, disk IO, ...

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

Implemented by a number of Linux APIs:

- cgroups: Restrict resources a process can consume
 - CPU, memory, disk IO, ...
- namespaces: Change a process's view of the system
 - Network interfaces, PIDs, users, mounts

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

Implemented by a number of Linux APIs:

- cgroups: Restrict resources a process can consume
 - CPU, memory, disk IO, ...
- namespaces: Change a process's view of the system
 - Network interfaces, PIDs, users, mounts
- capabilities: Limits what a user can do
 - mount, kill, chown

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

Implemented by a number of Linux APIs:

- cgroups: Restrict resources a process can consume
 - CPU, memory, disk IO, ...
- namespaces: Change a process's view of the system
 - Network interfaces, PIDs, users, mounts
- capabilities: Limits what a user can do
 - mount, kill, chown
- chroot:

Determines what parts of the filesystem a user can see.

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

We need more than just packing and isolation

- **Scheduling**: Where should my container run?
- Lifecycle and health: Keep my containers running despite failures
- Discovery: Where are my containers now?
- Monitoring: What's happening with my containers?
- Auth{n,z}: Control who can do things to my containers
- **Aggregates**: Compose sets of containers into jobs
- Scaling: Make jobs bigger or smaller
- ...

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

What is Kubernetes?

- Container orchestrator
- Builds on Docker containers also supporting other container technologies
- Multiple cloud and bare-metal environments
- Support existing OSS apps
- Inspired and informed by Google's experiences and internal systems
- 100% Open source, written in Go
- Let users manage applications, not machines

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

• Container: A sealed application package (Docker)

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

- Container: A sealed application package (Docker)
- Pod: A small group of tightly coupled Containers

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

- Container: A sealed application package (Docker)
- Pod: A small group of tightly coupled Containers
- Labels: Identifying metadata attached to objects

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

- Container: A sealed application package (Docker)
- Pod: A small group of tightly coupled Containers
- Labels: Identifying metadata attached to objects
- Selector: A query against labels, producing a set result

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

- Container: A sealed application package (Docker)
- Pod: A small group of tightly coupled Containers
- Labels: Identifying metadata attached to objects
- Selector: A query against labels, producing a set result
- Controller: A reconciliation loop that drives current state towards desired state
 - Deployment
 - StatefulSet
 - Job
 - ...

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

- Container: A sealed application package (Docker)
- Pod: A small group of tightly coupled Containers
- Labels: Identifying metadata attached to objects
- Selector: A query against labels, producing a set result
- Controller: A reconciliation loop that drives current state towards desired state
 - Deployment
 - StatefulSet
 - Job
 - ...
- Service: A set of pods that work together

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

Kubernetes Architecture

¹Cluster Management with Kubernetes https://goo.gl/er33Gn

Kubernetes Architecture

Google Container Engine (GKE)

GKE is a powerful cluster manager and orchestration system for running your Docker containers. Container Engine schedules your containers into the cluster and manages them automatically based on requirements you define (such as CPU and memory). It's built on the open source Kubernetes system, giving you the flexibility to take advantage of on-premises, hybrid, or public cloud infrastructure.

Example: Gitlab CI/CD on GCP

Google Container Engine

Questions?

