-	A					
	8	٩	5'	ת	P(5', 7 5,9)	
	high	search	high	Manuch	2	
	high	Seasch	Low	91 yearch	1-2	
	high	wait	high	92 wait	1	
	low	seach	low	91 gentich	В	
	Qow.	Seanch	Spleto / high	100000 (-3)	(1-B)	
	20w	wait	low	92 wait	1	
	Jow	nechange	high	0	1	
		7				
					1	

Escerige 3.

Dres 5.
$$V_{x}(s) = \max_{q \in A(s)} q_{x^{0}}(q_{3}s)$$

= $\max_{q \in A(s)} E_{x^{0}}[G_{t} | A_{t=q}, S_{t=2}s]$

= $\max_{q \in A(s)} E_{x^{0}}[R_{t} + Y_{t} G_{t+1} | A_{t=q}, S_{t=2}s]$

= $\max_{q \in A(s)} E_{x^{0}}[R_{t} + Y_{t} G_{t+1} | A_{t=q}, S_{t=2}s]$

= $\max_{q \in A(s)} E_{x^{0}}[R_{t} + Y_{t} G_{t+1} | A_{t=q}, S_{t=2}s]$

= $\max_{q \in A(s)} \sum_{q \in A(s)} P(S_{t}^{0}, q_{q}) \{p_{t} + Y_{t} V_{x}(S_{t}^{0})\}$

- $\max_{q \in A(s)} \sum_{q \in A(s)} P(S_{t}^{0}, q_{q}) \{p_{t} + Y_{t} V_{x}(S_{t}^{0})\}$

Dieg 3.

$$\ni G_t' = G_t + C\left(\frac{1}{1-\chi}\right)$$

 \Rightarrow $\forall x'(5)$ increases by $\forall c$ and $\forall c = \frac{c}{1-x}$

(b) Exercise 3.16

Adding a constant (c) to all newands in an episodic task will effect the tasks.

(onsides the following episodic task:

(0,0) and (3,3) are teaminal states greward for each action (-1)

Optimal Policy would ensure shortest path to either of the terminal states.

Now if the newands are -1+c (200) then optimal policy changes, also value functions will for any policy will be different as it would never try to go to teaminal states formacimizing neward