Inferencia Estadística

G2: Estimación puntual

Gabriel Martos Email: gmartos@utdt.edu

Nicolás Ferrer Email: nicolas.ferrer.747@gmail.com

Listados de ejercicios teórico-prácticos

- 1. Siendo $\{X_1, \ldots, X_n\}$ una muestra aleatoria de una población Uniforme discreta con soporte $\{0, 1, \ldots, \theta 1, \theta\}$, siendo θ un entero mayor a 1, se pide:
 - (a) Hallar el estimador de momentos del parámetro θ .
 - (b) De una muestra de tamaño n = 10 se tiene que $\sum_{i=1}^{10} x_i = 7$. Computa la estimación de momentos de θ con los datos de la muestra.
 - (c) Si el soporte del modelo uniforme fuera en cambio: $\{-\theta, -\theta+1, \ldots, -1, 0, 1, \ldots, \theta-1, \theta\}$; ¿qué ocurre con el estimador que hallaste en el punto (a)? ¿Cómo redefines el estimador de momentos en este caso? Vuelve a computar la estimación de momentos en relación a la muestra dada en (b).
- 2. Sea $\{X_1,\ldots,X_n\} \stackrel{iid}{\sim} \text{Binomila}(\theta,k)$ donde $(\theta;k)$ resultan desconocidos.
 - (a) Hallar los estimadores de momentos de (θ, k) .
 - (b) Para una muestra de tamaño n = 10 se tiene que $\bar{x} = 1$ y $\sum_{i=1}^{10} (x_i 1)^2 = 20$. Son las estimaciones de momentos de los dos parámetros coherentes con el modelo de probabilidad?
- 3. Sabiendo que $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \operatorname{Gamma}(\alpha, \lambda)$, esto es:

$$f(x; \lambda, \gamma) = \begin{cases} \lambda \exp(-\lambda x) \frac{(\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & \text{si }, x > 0, \\ 0 & \text{en otro caso.} \end{cases}$$

con $\lambda > 0$ y $\alpha > 0$. Hallar los estimadores de momentos de $\theta = (\alpha, \lambda)$. De una muestra de tamaño n = 10 se sabe que $\sum_{i=1}^{10} x_i = 50$ y que $\sum_{i=1}^{10} x_i^2 = 144$, computar las estimaciones de momentos de $\theta = (\alpha, \lambda)$

- 4. Para los siguientes modelos de probabilidad:
 - (a) Poisson: $f(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$, con $\lambda \in (0, \infty)$ y $x \ge 0$.
 - (b) Exponencial: $f(x,\lambda) = \frac{1}{\lambda}e^{-\frac{1}{\lambda}x}$, con $\lambda \in (0,\infty)$ y $x \ge 0$.
 - (c) Truncada en $\lambda \colon f(x;\lambda) = \lambda^{-1} e^{1-x/\lambda}$ con $0 < \lambda < x$.
 - (d) Gamma: $f(x; \lambda, k) = \lambda e^{-\lambda x} \frac{(\lambda x)^{k-1}}{\Gamma(k)}$, con $\lambda > 0$, k = 2 (conocido) y x > 0.

1

Computa en cada caso el estimador de momentos y el estimador máximo verosímil de λ . Sabiendo que el valor del estadístico $\sum_{i=1}^{20} x_i = 25$, computa las estimaciones de momentos y máximo verosímiles relativas a λ en cada caso.

- 5. Demuestra que los estimadores de los puntos (a) y (b) son UMVUE y que sus ECM convergen a cero cuando el tamaño de la muestra tiende a infinito (consistencia).
- 6. Si $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} f(x; \theta)$ donde $-1 \le \theta \le 1$ y

$$f(x; \theta) = \frac{1 + \theta x}{2}$$
, para $x \in [-1, 1]$.

- (a) Obtener el estimador de momento del modelo.
- (b) Utiliza argumentos de la distribución en el muestreo para justificar una aproximación del riesgo cuadrático del estimador cuando $n \gg 0$ (cuando n es grande).
- (c) ¿Es el estimador de momentos consistente?
- (d) Para una muestra de tamaño n=4 donde $X_1=-0.5, X_2=-0.1, X_3=-0.2,$ y $X_4=0.6$ compara el estimador de momentos contra el estimador máximo verosímil (tendrás que implementar algún método numérico para computar el segundo).
- 7. La información de la tabla representa una muestra realizada (de tamaño n=55) de una población que sigue una distribución Poisson de parámetro λ . Con esta información se pide que halles la estimación máximo verosímil del parámetro $\psi_{\lambda} = P_{\lambda}(X=2)$.

- 8. Considerando $\{X_1,\ldots,X_n\} \stackrel{iid}{\sim} N(\mu,\sigma^2)$, se pide:
 - (a) Hallar los estimadores máximo verosímiles de los parámetro μ y σ^2 (verifica que se cumplen las condiciones necesarias y suficientes para un máximo).
 - (b) De una muestra se tiene que $\sum_{i=1}^{100} x_i = 170$ y $\sum_{i=1}^{100} x_i^2 = 810$, con esta información computa las estimaciones máximo verosímiles de μ y σ^2 .
 - (c) Computa el riesgo del estimador máximo verosímil de σ^2 y compara el riesgo de éste en relación al estimador insesgado S^2 .
 - (d) Computa la matriz de Información de Fisher y la cota CR.
 - (e) Son los estimadores máximo verosímiles de μ y σ^2 eficientes.
 - (f) Con la información del punto (b), construye una ellipse de confianza de nivel 0.95.
- 9. Sea $\{X_1, \ldots, X_n\}$ una muestra aleatoria de una población Uniforme (continua) con soporte en $[0, \theta]$, hallar el estimador máximo verosímil del parámetro θ .
- 10. Siendo W un estimador de θ , demuestre que $ECM(W, \theta) = Sesgo^2(W) + Var(W)$.
- 11. Si W es un estimador insesgado de θ , demuestre que: (1) a + bW es insesgado para el parámetro $a + b\theta$ (con a y b dos constantes conocidas); y (2) W^2 es sesgado para θ^2 .
- 12. Si $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bin}(p)$, considera los siguientes estimadores de p: $\widehat{p}_1 = \overline{X}$ (EMV) y $\widehat{p}_2 = (\sqrt{n/4} + n\overline{X})/(n + \sqrt{n})$ (estimador Bayesiano)
 - (a) Computar el error cuadrático medio (ECM) de ambos estimadores.
 - (b) Para n fijo, para que valores de p ocurre que $ECM(\hat{p}_1, p) < ECM(\hat{p}_2, p)$.
 - (c) ¿Qué estimador prefieres para valores pequeños y cuál para valores grandes de n?

- 13. Si $\{X_1,\ldots,X_n\} \stackrel{iid}{\sim} N(\mu,\sigma^2)$, considera el estimador de σ^2 : $\widehat{\sigma}_b^2 = bS^2$ (b>0).
 - (a) Computar el ECM de $\hat{\sigma}_h^2$ (Utiliza las propiedades de S^2 en poblaciones normales).
 - (b) Demuestre que para cualquier valor de σ^2 , el estimador $\hat{\sigma}_b^2$ minimiza el riesgo cuadrático cuando b = (n-1)/(n+1).
- 14. Consideremos $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \text{Cauchy}(\theta)$ donde θ es un parámetro de localización:

$$f(x;\theta) = \frac{1}{\pi} \left[\frac{1}{1 + (x - \theta)^2} \right].$$

- (a) ¿Puedes dar una solución analítica para el EMV de θ ?
- (b) Determine las expresiones de las funciones $S(\theta)$ (score) y $H(\theta)$ (hessiano) relativas al método de Newton–Raphson discutidas en clase.
- (c) Experimento numérico: Considerando $\theta=1$ (verdadero valor del parámetro), genera muestras de tamaños n=10,100,1000 del modelo (rcauchy(n,location = 1)). Con estas muestras implementa el método Newton-Raphson para obtener una estimación numérica de θ . ¿Qué esperas que ocurra con tus estimaciones a medida que n crece?
- 15. Sea $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \text{Unif}(0, \theta)$ (modelo continuo), considera el estimador de momentos y $\frac{n+1}{n} \max(X_1, \ldots, X_n)$, como candidatos para estimar θ .
 - (a) Computa el ECM de cada uno de los estimadores.
 - (b) ¿Son estos estimadores consistentes?
 - (c) Computa la eficiencia relativa entre los pares de estimadores.
 - (d) ¿Con cuál de ellos te quedas al hacer inferencia para θ ?.
- 16. Sea $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \operatorname{Exp}(\theta)$, con $E(X_1) = \theta$; se proponen dos estimadores para θ : $\widehat{\theta} = \bar{X}$ (EMV) y $W = nX_{(1)}$ (donde recordemos $X_{(1)} = \min(X_1, \ldots, X_n) \sim \operatorname{Exp}(\theta/n)$).
 - (a) Demuestra que $X_{(1)} \sim \text{Exp}(\theta/n)$.
 - (b) Computa el ECM de ambos estimadores para dirimir cuál de los dos prefieres.
 - (c) ¿Son ambos estimadores consistentes?
- 17. Sea $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \text{Beta}(\theta, 1) \text{ con } \theta > 0$; esto es

$$f(x;\theta) = \theta x^{(\theta-1)}$$
, para $x \in [0,1]$.

- (a) Computar la información de Fisher del modelo.
- (b) Compute el estimador MV de θ : ¿Es insesgado? ¿Es eficiente?.
- (c) ¿Cómo construiría un intervalo de confianza aproximada (cuando $n \gg 0$) para θ con las cuentas del punto (a)?
- (d) Imagine que con los datos de una muestra de tamaño n=100 (considere ésta una muestra grande), se tiene que $\hat{\theta}=7$. Indique los límites del intervalo de confianza aproximado (a un nivel $\alpha=5\%$) para el parámetro θ .

- 18. Considere el siguiente modelo (lineal) $Y = \beta x + \varepsilon$, donde las x's se pueden considerar fijas (las elige quien observa los datos) y $\varepsilon \sim N(0, \sigma^2)$. Considere una muestra aleatoria $\{(Y_1, x_1), \ldots, (Y_n, x_n)\}$ de este modelo, en donde además los valores de x se eligieron de tal forma que $\sum_{i=1}^{n} x_i/n = 1 = 0$ y $\sum_{i=1}^{n} x_i^2/n = 1$. Con esta información se pide:
 - (a) Identifique el modelo estadístico de Y y sus parámetros.
 - (b) Hallar los estimadores máximo verosímiles de los parámetros anteriores.
 - (c) Computa $I(\beta)$ y determina si el estimador $\widehat{\beta}$ es eficiente.
 - (d) ¿Cómo se distribuye $\widehat{\beta}$?
 - (e) Computa el ECM de $\hat{\beta}$. ¿Es $\hat{\beta}$ consistente?
- 19. Considere el siguiente modelo estadístico:

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}$$
, si $x, \theta > 0$.

- (a) Computa el estimador máximo verosímil de θ .
- (b) Demuestre que cuando el tamaño de muestra es grande, la varianza del EMV es aproximadamente $\frac{\theta^2}{3n}$.
- (c) Construye un intervalo aleatorio [L,U] tal que cuando la muestra es grande con una probabilidad de aproximadamente 0.95, θ pertenezca a dicho intervalo.
- (d) En una muestra de tamaño n = 250 se tiene que $\sum_{i=1}^{250} x_i = 432$. Obtenga el valor de la estimación máximo verosímil y determine los valores de los límites estimados del intervalo anterior.
- 20. Una empresa encuestadora quiere estimar la proporción de votantes θ en la Ciudad de Buenos Aires con intención de votar al candidato A en las próximas elecciones (suponga en todo momento que en la Ciudad de Buenos Aires hay 4 millones de votantes). Con este objetivo se tomará una muestra de n=1000 votantes, preguntando ¿Votará ud a A en las próximas elecciones?, registrando la preferencia de cada uno de los encuestados con las opciones SI y NO (no hay indecisos en esta población). La empresa necesita de su asesoramiento en lo respectivo a los siguientes puntos:
 - (a) Usted propone estimar la proporción de votantes en favor de A utilizando el estadístico \hat{p} (proporción muestral) y su colega, Juan Perez, propone en cambio:

$$\widehat{p}_{JP} = \frac{n_{si} + 10}{n + 20},$$

donde n_{si} es el número de encuestados que manifiesta intención de votar por el candidato A. ¿Es insesgado \widehat{p}_{JP} ? Calcule su error cuadrático medio como función de p. Si el criterio para comparar estimadores es el error cuadrático medio, ¿es uno de los estimadores \widehat{p} o \widehat{p}_{JP} mejor que el otro cualquiera sea el valor de p en la población?

21. Se sabe que el tiempo T de respuesta de un servidor web dedicado a las apuestas online se sigue (ajusta a) una distribución Rayleigh de parámetro $\alpha > 0$, con función de densidad

$$f_T(t) = \begin{cases} \alpha t \exp(-\frac{\alpha}{2}t^2) & \text{si } t > 0; \\ 0 & \text{si } t \le 0. \end{cases}$$

- (a) Hallar la expresión del estimador máximo verosímil del parámetro α en la población.
- (b) De una muestra de 50 tiempos de respuesta se obtuvo que $\sum_{i=1}^{n} t_i = 146.28 \text{ y}$ $\sum_{i=1}^{n} t_i^2 = 510.58$, cual es el valor de la estimación máximo verosímil de α ?

Addendum G1: demostrar que T(X). In X; es un estadístico supriciente s: X = {X., X2, ..., X4} in Bernoull; (9).

Hacerlo aplicando laderinicand de estadístico supriciente.

Terminología: . Parámetro del modelo: o que indexe la colección 9= { f(0,0)/00 } Ox suele usarse para el verdiadero de 2 que or:ginó la dalo. . Parómetro de interéi: ospecto de la distribució de X sobre la que quiero hacer und in Felencia. Sue le ser una función $g(\theta)$.

Estimador de $g(\theta)$: es una función de $X/\hat{g} = \delta(X)$ (variable dealors) La regla de decisión & g (6) en base a X . Estimo vioù: es el valor de la función $\delta(\cdot)$ evaluada en los delos observados X (valor F_ijo). Estadístico: lualquier Función de los dela T(X) => redución de los delos Principios de seducción de de tos: . Suficiencia . Verosimilitud Teorema de Fechorgauin . Invariauza . Propiedades de los estadísticos T(X). . Sufficiencia - Sufficiencia Hinimol Teorema de Basu Ancillariedad . Completitud Teorema de Bahadur

- 2. Sea $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} \text{Binomila}(\theta, k)$ donde $(\theta; k)$ resultan desconocidos.
 - (a) Hallar los estimadores de momentos de (θ, k) .
 - (b) Para una muestra de tamaño n = 10 se tiene que $\bar{x} = 1$ y $\sum_{i=1}^{10} (x_i 1)^2 = 20$. Son las estimaciones de momentos de los dos parámetros coherentes con el modelo de probabilidad?

$$\begin{array}{l} \underset{=}{\overset{\times}{\sum}} \left\{ X_{1}, X_{2}, \ldots, X_{n} \right\} \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Binomical}\left(\theta, k\right) \\ \text{.} & \underset{=}{\overset{\times}{\sum}} \left\{ X_{1}, X_{2}, \ldots, X_{n} \right\} \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Binomical}\left(\theta, k\right) \\ \text{.} & \text{Wor}\left[X_{i}\right] \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Wor}\left[X\right] = k \Theta \left(A - \Theta\right) \end{array} \right\} \\ \text{Homentos poble consider}$$

$$\begin{array}{l} \text{Morentes poble consider} \\ \text{Mor}\left[X\right] \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Wor}\left[X\right] = k \Theta \left(A - \Theta\right) \\ \text{Mor}\left[X\right] \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Mor}\left[X\right] = k \Theta \left(A - \Theta\right) \\ \text{Mor}\left[X\right] \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Mor}\left[X\right] \overset{\text{i.i.d}}{\overset{\times}{\sum}} & \text{Mor}\left[X\right] & \text{Mor}\left[X\right] + \text{Exp}\left[X\right]^{2} \\ \text{Exp}\left(A - \Theta\right) + k^{2}\Theta^{2} \end{array} \right] = \text{Nor}\left[X\right] + \text{Exp}\left[X\right]^{2} \\ \text{Exp}\left(A - \Theta\right) + k^{2}\Theta^{2} \end{array} \right]$$

Resolvemo, para 0, k:

b)
$$n=10$$

$$\bar{x}=1$$

$$\sum_{i=1}^{10} (x_i-\lambda)^2 = 20 \implies \sum_{i=1}^{10} (x_i^2-2x_i+\lambda) = 20$$

$$\sum_{i=1}^{10} x_i^2 - 2\sum_{i=1}^{10} x_i+10 = 20$$

$$10x^2 - 20x + 10 = 20$$

$$10x^2 = 30$$

$$x^2 = 3$$

$$\hat{k}(\underline{X} = \underline{x}) = \frac{1+1-3}{1} = -1$$

$$\hat{k}(\underline{X} = \underline{x}) = -1$$

$$\theta \in [0,1] \text{ y } k > 0.7 \text{ No occurre, por ende este resultants ex incoherent.}$$

4. Para los siguientes modelos de probabilidad:

(a) Poisson:
$$f(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$
, con $\lambda \in (0, \infty)$ y $x \ge 0$.

(b) Exponencial:
$$f(x,\lambda) = \frac{1}{\lambda}e^{-\frac{1}{\lambda}x}$$
, con $\lambda \in (0,\infty)$ y $x \ge 0$.

(c) Truncada en
$$\lambda$$
: $f(x; \lambda) = \lambda^{-1} e^{1-x/\lambda}$ con $0 < \lambda < x$.

(d) Gamma:
$$f(x; \lambda, k) = \lambda e^{-\lambda x} \frac{(\lambda x)^{k-1}}{\Gamma(k)}$$
, con $\lambda > 0$, $k = 2$ (conocido) y $x > 0$.

Computa en cada caso el estimador de momentos y el estimador máximo verosímil de λ . Sabiendo que el valor del estadístico $\sum_{i=1}^{20} x_i = 25$, computa las estimaciones de momentos y máximo verosímiles relativas a λ en cada caso.

5. Demuestra que los estimadores de los puntos (a) y (b) son UMVUE y que sus ECM convergen a cero cuando el tamaño de la muestra tiende a infinito (consistencia).

a)
$$X = \{X_1, X_1, ..., X_n\}$$
 in Poisson (x) => $\int \{X_1 X) = \frac{e^{-\lambda} \lambda^{x}}{x!}$, con $\lambda \in \mathbb{R}^+$. If $[X] = X$

·HH:

$$H_1(X) = \overline{X} \xrightarrow{P} \mathbb{F}_{\lambda}[X] = \lambda$$

:. para muedra Finita, H(X)= X ~>

. MLE :

$$\mathcal{L}(\lambda; X = X) = \int_{X} (X | \lambda) = \int_{i=1}^{i=1} \int_{X_{i}} (x_{i} | \lambda)$$

. Un estimador $\hat{g}(\theta)$ es insesgado s: $\mathbb{E}_{\theta}[\hat{g}(\theta)] = g(\theta)$.

. Algoritmo: 1) Pruebo que E [g (0)] = g(0).

2) War [g(0)] alcauza la cola inferior de Clamer-Rao DOIX)

$$\begin{array}{c} \text{CICR: War} \left[\hat{g}(\theta)\right] \text{ alcausa la cota intelier de Claimer-Roo libit} \\ \frac{\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[\hat{g}(\theta)\right]\right)^{2}}{\operatorname{E}\left(\left[\frac{\partial}{\partial \theta} \operatorname{Intelier}\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[\hat{g}(\theta)\right]\right)^{2}\right)} = \frac{\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[\hat{g}(\theta)\right]\right)^{2}}{\operatorname{E}_{\theta}\left(\left[\frac{\partial}{\partial \theta} \operatorname{L}(\theta; \mathcal{E})\right]^{2}\right)} \\ = \frac{\left(\frac{\partial}{\partial \theta} \operatorname{E}\left[\hat{g}(\theta)\right]\right)^{2}}{-\operatorname{E}\left[\frac{\partial^{2}}{\partial \theta} \operatorname{L}(\theta|\mathcal{E})\right]} \end{array}$$

5) a)
$$\mathbb{E}_{\lambda}[\hat{\lambda}_{\text{HLF}}] = \mathbb{E}_{\lambda}[\bar{X}] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\lambda}[X_{i}] = \frac{1}{N}\sum_{i=1}^{N}\lambda = \lambda = \lambda$$
 of unextinador inserged de λ

b)
$$\forall \text{ar}_{\lambda} [\hat{\lambda}_{\text{MLE}}] = \forall \text{ar}_{\lambda} [\bar{x}] = \frac{1}{n^2} \sum_{i=1}^{n} \forall \text{ar}[\bar{x}_i] = \frac{n \cdot \forall \text{ar}[\bar{x}_i]}{n^2} = \frac{\lambda}{n}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \forall \text{ar}[\bar{x}_i] = \frac{1}{n^2} \sum_{i=1}^{n} \forall \text{ar}[\bar{x}_i] = \frac{\lambda}{n^2}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \exists \text{ar}[\bar{x}_i] = \frac{\lambda}{n^2} \sum_{i=1}^{n} \exists \text{ar}[\bar{x}_i] = \frac{1}{n^2} \sum_{i=1}^{n} \exists \text{ar}[\bar{x}_i] = \frac{1}{n^2}$$

CICR:
$$\frac{1}{n/\lambda} = \frac{\lambda}{n} = \text{War} \left[\frac{\lambda}{\lambda} \right]$$

.. Dado que $\hat{\lambda}_{HLE} = \overline{X}$ es un estimador insesgado de λ y cu voriauza alcouza la CICR => $\hat{\lambda}$ es UMVUE

. Un estimador ĝ (+) es cousistante si y solo si ĝ (+) - g (+) cuando n -> 00.

$$ECH(\hat{g}(\Theta), g(\Theta)) = \mathbb{E}_{\Theta} \left[\left(\hat{g}(\Theta) - g(\Theta) \right)^{2} \right] = \mathbb{E}_{\Theta} \left[\left(\hat{g}(\Theta) - \mathbb{E} \left[\hat{g}(\Theta) \right] \right)^{2} \right]$$

$$= \mathbb{E}_{\Theta} \left[\hat{g}(\Theta) \right] = g(\Theta) \quad (\text{Solo posque es insergado})$$

$$= \text{Vor}_{\Theta} \left[\hat{g}(\Theta) \right] = \frac{2}{n}$$

Si $n \to \infty$, ECH $(\hat{g}(\theta), g(\theta)) \to 0 \to \hat{g}(\theta) \xrightarrow{m.c} g(\theta) \to \hat{g}(\theta) \xrightarrow{p} g(\theta)$ $\therefore \hat{g}(\theta)$ et un estimador consistente de $g(\theta)$.

— b Solución de solución: dado que $\hat{\lambda}_{HLE}$ escuna función de \bar{x} el cual el comploto y sufficiente y ademán $\hat{\lambda}_{HLE}$ es insergado, por el teoloma de Lehmann-Scheffe, $\hat{\lambda}_{=}\bar{x}$ el el único estimador UMVUE de \bar{x} .