Direction Derivatives and Differentiability_

If hoo,
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} - \frac{\alpha h}{h} = 0$$

$$\Rightarrow \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \alpha$$

of heo,
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{-h} = -a$$

$$\Rightarrow \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \alpha$$

: We can say that him f(xoth)-f(Mo) exists iff x exits.
Thus, function is differentiable iff E x & R.

(2) Let
$$\theta(x) = \frac{g(x) - g(x_0)}{x - x_0}$$

If g(x) is differentiable ⇒ g(x) is continuous

⇒ RHS of ① is combination ⇒ O(x) is continuous
of continuous frs.

3 Given that Dr (f) | P. exists.

Let
$$\phi(t) = f(P_0 + t\overline{V})$$

and $g(t) = (P_0 + t\overline{V})$

Then,
$$\frac{d}{dt} \phi(t)|_{t=0} = \lim_{t\to 0} \frac{\phi(t) - \phi(0)}{t-0}$$

$$\Rightarrow \frac{d}{dt} f(R_0 + t\bar{v}) = \lim_{t \to 0} \frac{f(R_0 + t\bar{v}) - f(R_0)}{t}$$

$$\Rightarrow \frac{d}{dt} f(g(t))|_{t=0} = D_v(f)|_{R_0}$$

Along
$$x-axid$$
. $(y=0)$,

 $k=0 \Rightarrow \lim_{h\to 0} \frac{f(x_0+h, y_0) - f(x_0, y_0) - \alpha h}{|h|} = 0$
 $\lim_{h\to 0} \frac{f(x_0+h, y_0) - f(x_0, y_0)}{h} = \alpha \Rightarrow 0$

Now, $\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h\to 0} \frac{f(x_0+h, y_0) - f(x_0, y_0)}{h}$
 $\Rightarrow \alpha = \frac{\partial f}{\partial x}(x_0, y_0)$

Similarly,
$$\beta = \frac{\partial f}{\partial y}|_{(x_0, y_0)}$$

Hence, α and β are the partial derivatives of f at (x_0, y_0) .

(3) Given that $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (x_0, y_0) . ∴ $f(x,y) = f(x_0, y_0) + (x-x_0) f_{x}(x_0,y_0) + (y-y_0) f_{y}(x_0,y_0)$,

where f_{x} and f_{y} are partial derivatives which are continuous.

- ⇒ RHS combination is continuous.
- ⇒ f(x,y) is continuous.

@ Caratheodory theorem:

1) for one variable case:

Let $G \subset R$ be open, $a \in G$ and $f : G \to R$ be a function. Then f is differentiable at 'a' iff and there exists a function $f_1 : G \to R$ such that

- (b) $f(x) f(a) = f_1(x)(x-a) \quad \forall \quad x \in G_1$ Here, $f_1(x) = \frac{d}{dx} f(x)|_a = f'(a)$.
- For two variable case: Let $Gr \subset \mathbb{R}^2$ be open, $(x_0, y_0) \in Gr$ and $f: Gr \to \mathbb{R}$ be a function. Then, f is differentiable at (x_0, y_0) if there exists two functions $f_1, f_2: Gr \to \mathbb{R}$ such that

@ frand to are continuous at (ko, yo).

- G f(x,y)-f(x₀,y₀) = (x-x₀)f₁(x,y) + (y-y₀)f₂(x,y) ∀(x,y) ∈ G Further, f_1 (x₀,y₀) = f_2 (x₀,y₀) and f_2 (x₀,y₀) = f_3 (x₀,y₀).
- By canatheodosy theorem for two variable case, we know that $f(x,y) = f(x_0,y_0) + (x-x_0) f_x|_{(x_0,y_0)} + (y-y_0) f_y|_{(x_0,y_0)}$ if f is differentiable at (x_0,y_0) .

Tangent plane: $3-30=f_{x}(x-x_{0})+f_{y}(y-y_{0})$ $\Rightarrow \Delta 3=\Delta x \frac{\partial f}{\partial x}(x_{0},y_{0})+\Delta y \frac{\partial f}{\partial y}(x_{0},y_{0})$

The appreximations of f in the neighbourhood of (xo.yo have higher occurrance when D3 >0.

(8) For a single ravible case, the function can be approximated by a tangent & line:

f(x) = f(a) + (x-a) f'(a)

⇒ Dy=f'(a) Dx.

Auc Length Function

- ① Given that c is a parametric c'-type curve.

 We know that c'(t) = c(a+b-t), c: [a,b] → R²

 Jet S = a+b-t, S ∈ [a,b]

 : c'(t) = c(s)

 ⇒ c'(t) must also be c'-type.
- ① Given that C: γ(t), t ∈ [a,b] is a c'-type curve.

 C': γ'

 γ'(t) = γ (a+b-t)

 b

 C: (a,b) is a c'-type curve.

$$\ell(c^{-1}) = \int_{a}^{b} ||\gamma^{-1}(a+b-t)|| dt$$

- 3 Given that Y: [a,b] -> R3 18 act-type curve.
 - As six= \int \(\)
 - > S(x)> S(x)
 - .: S is a non-decreasing function.
 - ⇒ γ'(t) is continuous.
 ⇒ ||γ'(t)|| is continuous.

 As integral of a continuous function is also continuous.
 S(u) = ∫||γ'(t)|| at is a continuous function.
 - © As a s is differentiable, $||\gamma'||$ is continuous f $\frac{d}{dx}s(x) = ||\gamma'(t)||$ \Rightarrow s is a c'-type function. continuous $s'(x) = ||\gamma'(x)||$.
 - As $||\gamma'(t)|| \neq 0$ and $||\gamma'(t)|| > 0$ ⇒ s = \int ||\gamma'(t)||\dt ≥ 0 is zero only when \times = a
 \[
 \text{.: S(x)} > 0 \quad \text{for all } \times \int \int \(\omega \).
 - (a) As $S(x) = \int_{0}^{x} |Y'(t)| | dt \ge 0 \quad \forall x \in (9, b]$ At x = a, $S(a) = \int_{0}^{x} |Y'(t)| | dt = 0$ Since S is non-decreasing and smooth, S(x) = 0 iff x = a.

 For $\forall x \in (a, b]$, S(x) > 0.

 Thus, S(x) is structly increasing function.