

Organized by

The Opportunity: Generate value from abandoned wells

rock

The Opportunity: Generate value from abandoned wells

71,000 Abandoned oil & gas wells in Alberta, of which 2,100 are orphaned

of the total cost of a geothermal project is spent on drilling

The Opportunity: Generate value from abandoned wells

Abandoned oil & gas wells in Alberta, of which 2,100 are orphaned

50%

of **the total cost** of a geothermal project is spent on **drilling**

\$1.7B

to be spent by the Canadian Government on orphaned and abandoned oil & gas wells in Western Canada

Available in the **USA** to **plug old oil wells** and **clean up mines**

Presentation Outline

Temperature vs Depth from Surface

Similar gradients (slopes) 20°C shift

Ground Elevation Comparison

Eaglebine wells are almost at sea level.

Duvernay is further away, at 900 m above sea level.

Well Length

On average:

- Duvernay ≤1.8 km long

Field

Why Eaglebine is hotter

Eaglebine wells might be hotter because:

- they reach deeper into the earth
- 40% longer
- 800m lower elevation

When temperatures normalized to sub-sea level they align on the same gradient trend.

Thermal Gradient Mapping

Geothermal Opportunity Ranking Criteria

Duvernay Well Grouping Using K-means Clustering

Duvernay Geothermal Well Opportunities

Duvernay Geothermal Well Opportunities

Duvernay Geothermal Well Opportunities

Business Case: How much electricity can a well generate?

Based on **Duvernay** Well K-Cluster #4

Temp (°C)	Rate bwpd	Kwe	30 y Gross Revenue CA\$		
100	500	10	\$	207 k	
	1,000	20	\$	413 k	
	2,500	50	\$	1,034 k	
130	500	26	\$	543 k	
	1,000	53	\$	1,085 k	
	2,500	131	\$	2,713 k	

2021 Regulated Electricity average Rates:

\$7.86⊄/kwh

https://energyrates.ca/why-alberta-electricity-bills-are-getting-higher-and-what-you-can-do-about-it/

Derived from "Deep-Dive Analysis of the Best Geothermal Reservoirs for Commercial Development in Alberta", Jonathan Banks, University of Alberta EAS

Input

Ongoing Geothermal Pilot Projects in Alberta

Geothermal Opportunity Ranking Criteria

Eaglebine K-means Clusters

Eaglebine Geothermal Well Opportunities

Eaglebine Geothermal Well Opportunities

Business Case: How much electricity a well can generate?

Based on **Eaglebine** Well K-Cluster #4

Temp (°C)	Rate bwpd	Kwe	30 y Gross Revenue US\$	
110	500	15	\$ 265 k	
	1000	30	\$ 530 k	
	2500	75	\$ 1,325 k	
190	500	110	\$ 1,943 k	
	1000	220	\$ 3,888 k	
	2500	550	\$ 9,720 k	

Derived from "Deep-Dive Analysis of the Best Geothermal Reservoirs for Commercial Development in Alberta", Jonathan Banks, University of Alberta EAS

Texas Electricity rates today:

Average rate **\$6.72**⊄/kwh For a 6 month term

www.energybot.com/electricity-rates/texas

Potential Geothermal Well Use Cases

- Potential in Duvernay for direct use
 - → local commercial heating needs
 - → Over 300 candidate wells
- Electricity production potential limited
 - \rightarrow 56 wells

- Potential in **Eaglebine for electricity** production
 - ightarrow clean, 24/7 supply to the grid, from binary geothermal power plants
 - → Over 250 candidate wells
- Texas increasingly exposed to extreme-weather events
- Pressure to adapt energy infrastructure

Geothermal path to profitability

- Technology priorities:
 - Maximize well rates
 - Lower costs
 - Minimize thermal losses
- Economic incentives for:
 - Carbon offsets
 - Clean energy initiatives
 - Deferred abandonment liabilities

The ALM Team

