

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

TAKAHASHI CO., LTD.

FIG. 5

$$P_1 \times A_{m1} = P_3 \times A_{m3} + F_p \times R_p \quad \dots (1)$$

FIG. 6

FIG. 7

100-120-259169550

FIG. 8

FIG. 9

FIG. 10

	FIRST STATE	SECOND STATE
SHUT-OFF VALVE 88	OPEN	OPEN
SHUT-OFF VALVE 90	OPEN	CLOSED
SHUT-OFF VALVE 92	CLOSED	OPEN
RATE OF FLOW q_{wc} INTO BRAKE CYLINDER	$(A_{m1}/A_{m3}) q$	q
BRAKING PRESSURE P_{wc}	$(A_{m3}/A_{m1}) P_{(FP=0)}$	P

100-250-500-1000

FIG. 11

FIG. 12

FIG. 13

100 200 300 400 500 600

FIG. 14

FIG. 15

K0E T20 25200000

FIG. 16

	FIRST STATE	SECOND STATE
SHUT-OFF VALVE 240	OPEN	CLOSED
SHUT-OFF VALVE 242	CLOSED	OPEN
RATE OF FLOW q_{wc} INTO BRAKE CYLINDER	$(A_2/A_3) \cdot q \cdot (A_2 A_1/A_3 A_2') \cdot q$	$q \cdot (A_1/A_2') \cdot q$
BRAKING PRESSURE P_{wc}	$(A_3/A_2) \cdot P \cdot (A_3 A_2'/A_2 A_1) \cdot q$ ($F_P = 0$)	$P \cdot (A_2'/A_1) \cdot P$

TOKUYAMA SEISAKUSHO

FIG. 17

FIG. 18A

FIG. 18B

102EP20-25960660

FIG. 19

	FIRST STATE	SECOND STATE
SHUT-OFF VALVE 340	OPEN	CLOSED
SHUT-OFF VALVE 342	CLOSED	OPEN
SHUT-OFF VALVE 344	CLOSED	CLOSED
RATE OF FLOW INTO BRAKE CYLINDER	$(A_{m1}/A_{m3}) \cdot q$	q
BRAKING PRESSURE	$(A_{m3}/A_{m1}) \cdot P_{(FP=0)}$	P

FIG. 20

F01ET20 25200660

FIG. 21

FIG. 22

	1 ST STATE	2 ND STATE	3 RD STATE
SHUT-OFF VALVE 436	OPEN	CLOSED	OPEN
SHUT-OFF VALVE 438	OPEN	CLOSED	CLOSED
SHUT-OFF VALVE 440	CLOSED	CLOSED	CLOSED
SHUT-OFF VALVE 342	CLOSED	OPEN	CLOSED
RATE OF FLOW INTO BRAKE CYLINDER	$\{(A_{m1} + A_{m2})/A_{m3}\} \cdot q$	q	$(A_{m1}/A_{m3}) \cdot q$
BRAKING PRESSURE	$(A_{m3} \cdot P)/(A_{m1} + A_{m2})$ (FP = 0)	p	$(A_{m3}/A_{m2} \cdot P)$ (FP = 0)

FIG. 23

FIG. 24

FOIET 200359120660

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29A

FIG. 29B

FIG. 30

TOEET20-25560660

FIG. 31

	FIRST STATE	SECOND STATE
SHUT-OFF VALVE 892	OPEN	CLOSED
SHUT-OFF VALVE 896	CLOSED	OPEN
RATE OF INCREASE OF BRAKING PRESSURE	$\Delta F_d/A_1$	$\Delta F_d/(A_1 + A_3)$

4007200-0043000000

FIG. 32

06902552-02/1304

FIG. 33

	FIRST STATE	SECOND STATE
SHUT-OFF VALVE 962	OPEN	CLOSED
SHUT-OFF VALVE 966	CLOSED	OPEN
PRESSURE INCREASE RATE BOOSTING RATIO	$\Delta F_d \cdot \gamma / (A_1 \cdot \gamma - A_3)$	$\Delta F_d / (A_1 - A_3)$

00000000000000000000000000000000