## Основы глубинного обучения

Лекция 6

Архитектуры свёрточных сетей

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

# Архитектуры свёрточных сетей

## LeNet (1998)



### LeNet (1998)

- Для данных MNIST
- Идея end-to-end обучения
- Использовали аугментацию
- Около 60.000 параметров
- Доля ошибок на тесте 0.8%

### ImageNet



ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- Около 1.000.000 изображений
- 1000 классов

• Обычно качество измерялось на основе лучшей гипотезы модели

### AlexNet (2012)

### ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto

kriz@cs.utoronto.ca

Ilya Sutskever

University of Toronto

ilya@cs.utoronto.ca

**Geoffrey E. Hinton** 

University of Toronto

hinton@cs.utoronto.ca

### AlexNet (2012)



### AlexNet (2012)

- Используют ReLU, аугментацию, dropout
- Градиентный спуск с инерцией (momentum)
- Обучение на двух GPU (5-6 суток)
- Около 60 миллионов параметров

Ошибка около 17%

# VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan\* & Andrew Zisserman\*

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

| ConvNet Configuration       |           |           |           |           |           |  |  |  |  |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| A                           | A-LRN     | В         | C         | D         | Е         |  |  |  |  |
| 11 weight                   | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |  |  |  |  |
| layers                      | layers    | layers    | layers    | layers    | layers    |  |  |  |  |
| input (224 × 224 RGB image) |           |           |           |           |           |  |  |  |  |
| conv3-64                    | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |  |
|                             | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |  |
| maxpool                     |           |           |           |           |           |  |  |  |  |
| conv3-128                   | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |  |
|                             |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |  |
|                             | maxpool   |           |           |           |           |  |  |  |  |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |  |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |  |
|                             |           |           | conv1-256 | conv3-256 | conv3-256 |  |  |  |  |
|                             |           |           |           |           | conv3-256 |  |  |  |  |
|                             |           |           | pool      |           |           |  |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |  |
|                             |           |           |           |           | conv3-512 |  |  |  |  |
|                             |           |           | pool      |           |           |  |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
|                             |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |  |
|                             |           |           |           |           | conv3-512 |  |  |  |  |
|                             | maxpool   |           |           |           |           |  |  |  |  |
| FC-4096                     |           |           |           |           |           |  |  |  |  |
| FC-4096                     |           |           |           |           |           |  |  |  |  |
| FC-1000                     |           |           |           |           |           |  |  |  |  |
| soft-max                    |           |           |           |           |           |  |  |  |  |

Table 2: Number of parameters (in millions).

| Network              | A,A-LRN | В   | C   | D   | Е   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

- Только маленькие свёртки
- Градиентный спуск с инерцией
- Dropout для двух первых полносвязных слоёв

• Хитрая инициализация (сначала обучается вариант A со случайными начальными весами, потом им инициализируются более глубокие сети)

Table 3: ConvNet performance at a single test scale.

| ConvNet config. (Table 1) | smallest image side |          | top-1 val. error (%) | top-5 val. error (%) |
|---------------------------|---------------------|----------|----------------------|----------------------|
|                           | train(S)            | test (Q) |                      |                      |
| A                         | 256                 | 256      | 29.6                 | 10.4                 |
| A-LRN                     | 256                 | 256      | 29.7                 | 10.5                 |
| В                         | 256                 | 256      | 28.7                 | 9.9                  |
|                           | 256                 | 256      | 28.1                 | 9.4                  |
| C                         | 384                 | 384      | 28.1                 | 9.3                  |
|                           | [256;512]           | 384      | 27.3                 | 8.8                  |
|                           | 256                 | 256      | 27.0                 | 8.8                  |
| D                         | 384                 | 384      | 26.8                 | 8.7                  |
|                           | [256;512]           | 384      | 25.6                 | 8.1                  |
|                           | 256                 | 256      | 27.3                 | 9.0                  |
| E                         | 384                 | 384      | 26.9                 | 8.7                  |
|                           | [256;512]           | 384      | 25.5                 | 8.0                  |

### GoogLeNet (2014)

### **Going Deeper with Convolutions**

```
Christian Szegedy<sup>1</sup>, Wei Liu<sup>2</sup>, Yangqing Jia<sup>1</sup>, Pierre Sermanet<sup>1</sup>, Scott Reed<sup>3</sup>,

Dragomir Anguelov<sup>1</sup>, Dumitru Erhan<sup>1</sup>, Vincent Vanhoucke<sup>1</sup>, Andrew Rabinovich<sup>4</sup>

<sup>1</sup>Google Inc. <sup>2</sup>University of North Carolina, Chapel Hill

<sup>3</sup>University of Michigan, Ann Arbor <sup>4</sup>Magic Leap Inc.
```

<sup>1</sup>{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com
<sup>2</sup>wliu@cs.unc.edu, <sup>3</sup>reedscott@umich.edu, <sup>4</sup>arabinovich@magicleap.com



Figure 3: GoogLeNet network with all the bells and whistles.

### GoogLeNet (2014)



(b) Inception module with dimensionality reduction

### GoogLeNet (2014)

- Снижается число каналов перед «тяжёлыми» свёртками
- Несколько выходных слоёв для улучшения обучаемости

- Обучается градиентным спуском с инерцией
- Ошибка 6.67% на ImageNet

### Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com



Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Добавление слоёв в свёрточную сеть ухудшает качество даже на обучении
- Хотя возможностей для переобучения больше, сеть почему-то не может ими воспользоваться





- Даёт низкую ошибку на обучении даже с 1000 слоёв (но там плохо на тестовой выборке)
- Обучается градиентным спуском с инерцией со случайной инициализацией
- Ошибка 4.49% на ImageNet

### Эволюция архитектур



### Xception



### Xception

- Разделяется роль свёрток: либо по каналам, либо по пространству
- Более эффективное использование параметров

### Что ещё?

- Highway networks
- Inception-ResNet
- Squeeze and Excitation Network
- MobileNet
- EfficientNet
- ...

# Transfer learning

### Перенос знаний

- ImageNet:
  - Много данных (которые сложно собрать!)
  - Годы улучшений
- Не хотелось бы повторять это для новых задач

### Дообучение



#### Если данных совсем мало:

- Берём модель из другой задачи
- Заменяем последний слой на слой с нужным числом выходов
- Обучаем только его
- По сути, это обучение линейной модели

### Представления с последних слоёв



### Дообучение



#### Если данных не очень мало:

- Берём модель из другой задачи
- Заменяем последний слой на слой с нужным числом выходов
- Обучаем его и несколько слоёв до него
- Чем ближе к началу слой, тем ниже стоит делать градиентный шаг

### Дообучение

- Как правило, на первых слоях фильтры похожие для всех задач
- Чем сильнее новая задача отличается от исходной, тем больше слоёв нужно переучивать
- В любом случае выходы последних слоёв модели, обученной на lmageNet, лучше случайных признаков