

tpu.ru

Углубленный курс информатики

Аппроксимация экспериментальных данных

Чузлов Вячеслав Алексеевич к.т.н.. доцент ОХИ ИШПР

ПОСТАНОВКА ЗАДАЧИ АППРОКСИМАЦИИ

Пусть задана функциональная зависимость y = f(x), полученная в эксперименте:

	ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
--	---

X	X ₁	X ₂	X ₃	•••	X _n
Υ	y ₁	y ₂	y ₃	•••	Уn

n — количество известных экспериментальных значений. Если аналитическое выражение функции f(x) неизвестно или является сложным, то возникает практически важная задача: найти такую эмпирическую формулу:

$$\tilde{y} = \tilde{f}(x)$$

значения которой при $\mathbf{x} = \mathbf{x}_i$ были близки к экспериментальным данным \mathbf{y}_i (i = 1, 2, ..., n).

ПОСТАНОВКА ЗАДАЧИ АППРОКСИМАЦИИ

Графическое сравнение аппроксимирующих функций:

- В данном случае экспоненциальная аппроксимация точнее описывает экспериментальные данные.
- Для других экспериментальных данных возможны другие функции, которые будут точнее их описывать.

ЛИНЕЙНАЯ АППРОКСИМАЦИЯ

$$\tilde{y} = a_0 + a_1 x$$

 a_0 , a_1 — коэффициенты линейной аппроксимирующей функции

• Для линейной аппроксимирующей функции коэффициенты a_0 и a_1 определяются по методу наименьших квадратов:

$$F = \sum_{i=1}^{n} [y_i - (a_0 + a_1 x_i)]^2 \to \min$$

где \mathbf{y}_i - табличные значения функции; \mathbf{a}_0 + $\mathbf{a}_1\mathbf{x}_i$ — линейная аппроксимирующая функция

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

$$\begin{cases} \frac{\partial F}{\partial a_0} = -2 \cdot \sum_{i=1}^{n} (y_i - a_0 - a_1 \cdot x_i) \cdot 1 = 0 \\ \frac{\partial F}{\partial a_1} = -2 \cdot \sum_{i=1}^{n} (y_i - a_0 - a_1 \cdot x_i) \cdot x_i = 0 \end{cases}$$

$$\begin{cases} \frac{\partial F}{\partial a_0} = -2 \cdot \sum_{i=1}^n (y_i - a_0 - a_1 \cdot x_i) \cdot 1 = 0 \\ \frac{\partial F}{\partial a_1} = -2 \cdot \sum_{i=1}^n (y_i - a_0 - a_1 \cdot x_i) \cdot x_i = 0 \end{cases} \begin{cases} \sum_{i=1}^n y_i - a_0 \cdot n - a_1 \cdot \sum_{i=1}^n x_i = 0 \\ \sum_{i=1}^n (y_i \cdot x_i) - a_0 \cdot \sum_{i=1}^n x_i - a_1 \cdot \sum_{i=1}^n x_i^2 = 0 \end{cases}$$

$$\begin{cases} a_0 \cdot n + a_1 \cdot \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ a_0 \cdot \sum_{i=1}^n x_i + a_1 \cdot \sum_{i=1}^n x_i^2 = \sum_{i=1}^n (y_i \cdot x_i) \end{cases}$$

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

$$a_{0} = \frac{\left| \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i} \right|}{\left| \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} \right|} = \frac{\sum_{i=1}^{n} y_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} (x_{i} \cdot y_{i})}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\left| \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} (x_{i} \cdot y_{i}) - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \right| = \frac{n \cdot \sum_{i=1}^{n} (x_{i} \cdot y_{i}) - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$a_{0} = \frac{\begin{vmatrix} \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} (x_{i} \cdot y_{i}) \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} (x_{i} \cdot y_{i}) \end{vmatrix}}{\begin{vmatrix} \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{vmatrix}} = \frac{n \cdot \sum_{i=1}^{n} (x_{i} \cdot y_{i}) - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$S_1 = \sum_{i=1}^n x_i$$
 $S_2 = \sum_{i=1}^n y_i$ $S_3 = \sum_{i=1}^n x_i^2$ $S_4 = \sum_{i=1}^n x_i \cdot y_i$

$$S_3 = \sum_{i=1}^n x_i^2$$

$$S_4 = \sum_{i=1}^n x_i \cdot y_i$$

Коэффициенты аппроксимации:

$$a_0 = \frac{S_2 \cdot S_3 - S_1 \cdot S_4}{n \cdot S_3 - S_1^2} \qquad a_1 = \frac{n \cdot S_4 - S_1 \cdot S_2}{n \cdot S_3 - S_1^2}$$

$$a_1 = \frac{n \cdot S_4 - S_1 \cdot S_2}{n \cdot S_3 - S_1^2}$$

ПРИМЕР

Составить программу для аппроксимации экспериментальных данных:

X	300	400	500	600	700	800
Y	6.97	7.01	7.12	7.28	7.45	7.62

Вычислить значение Y в точке X = 750.

Реализация

```
function LineFit(x, y: array of real): array of real;
begin
 var (s1, s2, s3, s4) := (0.0, 0.0, 0.0, 0.0);
  result := ArrFill(2, 0.0);
  for var i := 0 to x. High do
 begin
    s1 += x[i];
    s2 += y[i];
    s3 += sqr(x[i]);
    s4 += x[i] * y[i]
  end;
 var n := x.Length;
 result[0] := (s2 * s3 - s1 * s4) / (n * s3 - sqr(s1));
  result[1] := (n * s4 - s1 * s2) / (n * s3 - sqr(s1))
end;
function line func(a: array of real; x: real): real;
begin
 result := a[0] + a[1] * x
end;
```

```
begin
var x: array of real = (300, 400, 500, 600, 700, 800);

var y: array of real = (6.97, 7.01, 7.12, 7.28, 7.45, 7.62);

var a := LineFit(x, y);
var y_ := line_func(a, 750);
println($'При x = 750 y = {y_}')
end.

При x = 750 y = 7.51195238095238
```

ЭКСПОНЕНЦИАЛЬНАЯ АППРОКСИМАЦИЯ

$$P(x) = A * e^{k \cdot x}$$

$$\ln(P(x)) = \ln(A) + k \cdot \ln(e) \cdot x$$

Сделаем замену:
$$\ln(P(x)) = y$$
; $\ln(A) = a_0$; $k = a_1$:

$$y = a_0 + a_1 \cdot x$$

Реализация

```
function ExpFit(x, y: array of real): array of real;
begin
 var (s1, s2, s3, s4) := (0.0, 0.0, 0.0, 0.0);
  result := ArrFill(2, 0.0);
  for var i := 0 to x. High do
 begin
    s1 += x[i];
    s2 += ln(y[i]);
    s3 += sqr(x[i]);
    s4 += x[i] * ln(y[i])
  end;
 var n := x.Length;
 result[0] := (s2 * s3 - s1 * s4) / (n * s3 - sqr(s1));
  result[1] := (n * s4 - s1 * s2) / (n * s3 - sqr(s1))
end;
function exp func(a: array of real; x: real): real;
begin
 result := \exp(a[0]) * \exp(a[1] * x)
end;
```

```
begin
var x: array of real = (300, 400, 500, 600, 700, 800);

var y: array of real = (6.97, 7.01, 7.12, 7.28, 7.45, 7.62);

var a := ExpFit(x, y);
var y_ := exp_func(a, 750);
println($'При x = 750 y = {y_}')
end.

При x = 750 y = 7.51206780537444
```

СТЕПЕННАЯ АППРОКСИМАЦИЯ

$$\ln(P(x)) = \ln(A) + k \cdot \ln(x)$$

Сделаем замену: $\ln(P(x)) = y$; $\ln(A) = a_0$; $k = a_1$:

$$y = a_0 + a_1 \cdot \ln(x)$$

Реализация

```
function PowFit(x, y: array of real): array of real;
begin
 var (s1, s2, s3, s4) := (0.0, 0.0, 0.0, 0.0);
  result := ArrFill(2, 0.0);
  for var i := 0 to x. High do
 begin
    s1 += ln(x[i]);
    s2 += ln(y[i]);
    s3 += sqr(ln(x[i]));
    s4 += ln(x[i]) * ln(v[i])
  end;
 var n := x.Length;
 result[0] := (s2 * s3 - s1 * s4) / (n * s3 - sqr(s1));
  result[1] := (n * s4 - s1 * s2) / (n * s3 - sqr(s1))
end;
function pow func(a: array of real; x: real): real;
begin
 result := \exp(a[0]) * x ** a[1]
end;
```

Задание

Дана зависимость теплоемкости и энтальпии от температуры:

Т, К	Этилбензол С ₈ Н ₁₀			
	C_{p} °, Дж/(моль·К)	ΔΗ, κДж/моль		
300	129.20	29.62		
400	170.54	21.88		
500	206.48	15.52		
600	236.14	10.38		
700	260.58	6.40		
800	280.96	3.35		
900	298.19	1.13		
1000	312.84	0.21		

- 1. С использованием линейной, экспоненциальной и степенной аппроксимации определить значения теплоемкости и энтальпии при изменении Т в интервале от 300 до 1000 с шагом 50.
- 2. Построить графики в Excel по табличным данным и результатам аппроксимации. Выбрать аппроксимирующую функцию, которая наиболее точно описывает табличные данные.

