PLASTIC OPTICAL FIBER

Patent number:

JP11160552

Publication date:

1999-06-18

Inventor:

TOYOSHIMA SHINICHI

Applicant:

ASAHI CHEMICAL IND

Classification:

- international:

G02B6/00; G02B6/44; C08F214/18

- european:

Application number:

JP19970329888 19971201

Priority number(s):

JP19970329888 19971201

Report a data error here

Abstract of **JP11160552**

PROBLEM TO BE SOLVED: To obtain a plastic optical fiber having a large theoretical NA and excellent heat resistance and chemical resistance with low loss by forming a three-layer structure of core resin, sheath resin and protective layer resin by multiple spinning. SOLUTION: The core resin, sheath resin and protective layer resin are supplied at one time to the multispinning die for multiple spinning to form a three-layer structure. The core resin consists of a polymethylmethacrylate resin. The sheath resin consists of a ternary copolymer of vinylidenefluoride, tetrafluoroethylene and hexafluoropropene or a binary copolymer of vinylidenefluoride and hexafluoropropene, and contains 30 to 92 mol.% vinylidenefluoride component, 0 to 55 mol.% tetrafluoroethylene component and 8 to 25 mol.% hexafluoropropene component. The sheath resin has 1.350 to 1.380 refractive index measured with sodium-D line at 20 deg.C and has a specified melt flow index (MI). The protective layer resin has >=120 deg.C melting point and a higher MI than that of the sheath resin.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-160552

(43)公開日 平成11年(1999)6月18日

(51) Int.CL^a

酸別記号

G02B 6/00

391

6/44

321

FΙ

G 0 2 B 6/00 391

6/44

321

// C08F 214/18

C08F 214/18

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

特願平9-329888

(22)出願日

平成9年(1997)12月1日

(71)出願人 000000033

旭化成工業株式会社

大阪府大阪市北区堂島浜1丁目2番6号

(72)発明者 豊島 真一

千葉県袖ケ浦市中袖5番地1 旭化成工業

株式会社内

(74)代理人 弁理士 渡辺 敬介 (外1名)

(54) 【発明の名称】 プラスチック光ファイパ

(57)【要約】

【課題】 高NAで、高温条件でも光学的、構造的に安 定で、曲げによる光ロスが小さいプラスチック光ファイ バを提供する。

【解決手段】 芯樹脂としてポリメチルメタクリレート 系樹脂を、鞘樹脂としてビニリデンフロライドーテトラ フロロエチレンーヘキサフロロプロペンからなり、屈折 率が1.350~1.380で柔らかい樹脂を、保護層 樹脂としてビニリデンフロライド系樹脂を用い、3層複 合ダイを用いて複合紡糸してプラスチック光ファイバを 形成する。

10

【特許請求の範囲】

【請求項1】 透明樹脂からなる芯と、その回りを取り 囲む屈折率の低い透明な鞘と、さらにその回りを薄く被 覆した保護層とからなる3層構造のプラスチック光ファ イバであって、上記芯を形成する芯樹脂が、ポリメチル メタクリレート系樹脂であり、上記輪を形成する鞘樹脂 が、ビニリデンフロライドとテトラフロロエチレンとへ キサフロロプロペンの3元共重合体またはビニリデンフ ロライドとヘキサフロロプロペンの2元共重合体であっ て、ビニリデンフロライド成分が30~92モル%、テ トラフロロエチレン成分が0~55モル%、ヘキサフロ ロプロペン成分が8~25モル%の範囲にあり、ナトリ ウムD線で20℃で測定した屈折率が1.350~1. 380の範囲にあり、23℃におけるショアD硬度(A STM D2240)の値が30~55の範囲にあり、 紡糸温度T℃におけるメルトフローインデックスMI (ASTM D1238;荷重10Kg、オリフィスの 直径2mm、長さ8mmノズルから10分間に流れる樹

1

 $15 < MI < (5/9) \times T - 100$ (1) 上記保護層を形成する保護層樹脂が、融点(JIS K -7122)が120℃以上であり、ビカット軟化温度 (ASTM1525) が100 ℃以上であり、かつ紡糸 温度T℃におけるMIが上記鞘樹脂よりも大きい樹脂で あり、上記芯樹脂、鞘樹脂、保護層樹脂を同時に複合紡 糸ダイに供給して複合紡糸により3層構造を形成してな

脂のg数)が下記(1)式を満足し、

【請求項2】 上記保護層樹脂がピニリデンフロライド 系樹脂である請求項1のプラスチック光ファイバ。

ることを特徴とするプラスチック光ファイバ。

【請求項3】 上記保護層樹脂がナイロン12またはナ イロン11である請求項1のプラスチック光ファイバ。 【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、車載用配線、移動 体配線、FA機器配線、パソコン配線などの光信号伝送 や、光電センサーなどに使用される、プラスチック光フ ァイバに関する。

[0002]

【従来の技術】 芯をポリメチルメタクリレート系樹脂 (以下、「PMMA系樹脂」と記す)とするプラスチッ ク光ファイバの鞘樹脂としては、フルオロアルキルメタ クリレート系の共重合体が知られている。特公平7-1 1605号公報にはそのような鞘樹脂が示されているが その屈折率は精々1.40前後である。ビニリデンフロ ライドとテトラフロロエチレンの共重合体としては特に 共重合組成が80モル%/20モル%で、屈折率が1. 403の2元共重合体が特に有名である。ビニリデンフ ロライドとテトラフロロエチレンとヘキサフロロプロペ ン共重合体についても公知であり、特公昭62-340

レン、不飽和重合性化合物からなる共重合体であって、 そのメルトフローインデックスが紡糸温度T℃において 〔(5/9)×T-100〕g/10分以上であるもの が提案されている。

[0003]

【発明が解決しようとする課題】近年プラスチック光フ ァイバは、ライトガイド、光電センサーの用途、自動車 内の近距離敷設配線、オーディオ用配線、FA用配線な ど比較的短距離に使用されるものが多くなっているが、 問題は、PMMA系プラスチック光ファイバの場合、理 論NAが0.55程度以下のため、プラスチック光ファ イバを曲げたときのロスが大きいという問題があった。 その外、ライトガイドや光電センサーに使用する場合に は、受光量が小さいという問題があった。そして、自動 車の中の配線や、ネットワークの配線の場合には、敷設 時の曲げ配線による光ロスの問題の他に、光ファイバを 分岐したり結合したりするときの結合ロスの問題などが クローズアップされてはいるが、プラスチック光ファイ バのNAについての特別の見直しはこの10年間全くな 20 されていないのが実情であった。しかるに、本発明者は これらの問題が大きくNAに起因していることに着目 し、近年の市場の要求する機能を備えたプラスチック光 ファイバの提供を行うものである。

【0004】即ち、本発明の目的は、理論NAがより大 きく、耐熱性及び耐薬品性に優れた低損失のプラスチッ ク光ファイバを提供することにある。

[0005]

【課題を解決するための手段】本発明は第1に、透明樹 脂からなる芯と、その回りを取り囲む屈折率の低い透明 な鞘と、さらにその回りを薄く被覆した保護層とからな る3層構造のプラスチック光ファイバであって、上記芯 を形成する芯樹脂が、ポリメチルメタクリレート系樹脂 であり、上記鞘を形成する鞘樹脂が、ビニリデンフロラ イドとテトラフロロエチレンとヘキサフロロプロペンの 3元共重合体またはビニリデンフロライドとヘキサフロ ロプロペンの2元共重合体であって、ビニリデンフロラ イド成分が30~92モル%、テトラフロロエチレン成 分が0~55モル%、ヘキサフロロプロペン成分が8~ 25モル%の範囲にあり、ナトリウムD線で20℃で測 定した屈折率が1.350~1.380の範囲にあり、 23 ℃におけるショア D硬度 (ASTM D2240) の値が30~55の範囲にあり、紡糸温度T*Cにおける メルトフローインデックスMI (ASTM D123 8;荷重10 Kg、オリフィスの直径2 mm、長さ8 m mノズルから10分間に流れる樹脂のg数)が下記 (1) 式を満足し、

 $15 < MI < (5/9) \times T - 100$ 上記保護層を形成する保護層樹脂が、融点(JIS K -7122)が120°C以上であり、ピカット軟化温度 1号公報にはビニリデンフロライド、テトラフロロエチ 50 (ASTM1525)が100℃以上であり、かつ紡糸

温度T℃におけるMIが上記鞘樹脂よりも大きい樹脂で あり、上記芯樹脂、鞘樹脂、保護層樹脂を同時に複合紡 糸ダイに供給して複合紡糸により3層構造を形成してな・ ることを特徴とするプラスチック光ファイバである。 【0006】また第2の発明は、上記保護層樹脂がビニ リデンフロライド系樹脂であるプラスチック光ファイバ であり、第3の発明は上記保護層樹脂がナイロン12ま たはナイロン11であるプラスチック光ファイバであ

[0007]

る。

【発明の実施の形態】本発明の芯に用いるPMMA系樹 脂としては、メチルメタクリレートを50重量%以上含 んだ共重合体で、共重合可能な成分として、アクリル酸 メチル、アクリル酸エチル、アクリル酸プチルなどのア クリル酸エステル類、メタクリル酸エチル、メタクリル 酸プロピル、メタクリル酸シクロヘキシルなどのメタク・ リル酸エステル類、イソプロピルマレイミドのようなマ レイミド類、アクリル酸、メタクリル酸、スチレンなど の中から一種以上適宜選択して共重合させたものなどが 挙げられ、その分子量が重量平均分子量として8万~2 0万程度のものが好ましく、特に10万~12万が好ま しい。

【0008】プラスチック光ファイバに用いられる鞘樹 脂としては、従来はフルオロアルキルメタクリレート系 の共重合体が耐熱的に安定な伝送損失値を維持するとと から、通信用途やFA用途では使用されてきた。しか し、これらの鞘樹脂の屈折率は1.42~1.40前後 である。理論NAは芯樹脂の屈折率の2乗と鞘樹脂の屈 折率の2乗の差の平方根で示されるが、本発明において は、20℃におけるナトリウムD線で測定した屈折率を 指標に議論するとNAは0.52程度が上限である。他 方、ビニリデンフロライド系の樹脂として実用化されて いるものは、ビニリデンフロライドとテトラフロロエチ レンの80モル%/20モル%の共重合体で屈折率が 1. 403のものや、ピニリデンフロライドとトリフロ ロエチレンとヘキサフロロアセトンからなる屈折率が 1. 400の樹脂であり、これもNAは0. 52程度で あった。

【0009】上記のようなプラスチック光ファイバケー ブルを曲げ半径10mmの棒に1回巻きつけただけで2 40 d B程度のロスがでるというのが現状である。このよう な問題は自動車の中のネットワークにファイバを配線す る場合などにはファイバを非常に狭い空間で引き回すた め、その曲げによる光ロスが深刻な問題となっている。 ファイバの曲げによる光ロスを低減するにはNAを上げ ることが有効であることは分かっているが、その試みは 成功しておらず、現在は依然として低いNAのファイバ が使用されている。一方ライトガイドや光電センサーの 用途でも、出来るだけ受光量を大きくしたいという要望 がある。光ファイバが受光出来る光量は概ねNAの2乗 50 【0015】即ち、本発明で用いる鞘樹脂は、ビニリデ

に比例するということも判っているので、NAの高いプ ラスチック光ファイバが望まれているが、PMMA系樹 脂からなる芯を有するプラスチック光ファイバで実用化 されているファイバのNAはいずれも0.55を上回る ようなものは無いという現実がある。

【0010】本発明者はNAの高い光ファイバを開発す べく鋭意検討の結果、ビニリデンフロライドとテトラフ ロロエチレンとヘキサフロロプロペンの3元共重合体ま たはビニリデンフロライドとヘキサフロロプロペンの2 元共重合体で、ビニリデンフロライド成分が30~92 10 モル%、テトロフロロエチレン成分が0~55モル%、 ヘキサフロロプロペン成分が8~25モル%の範囲の中 にある共重合体の大半は屈折率が低く、ナトリウムD線 で20℃で測定した屈折率が1.350~1.380の 範囲にあり、NAが0. 60前後の非常にNAの高いプ ラスチック光ファイバが得られることがわかった。

【0011】しかしながら、ブラスチック光ファイバと して使用できるためには、鞘樹脂が余りにも軟らか過ぎ ては実用化できない。軟らか過ぎる鞘樹脂は鞘がべたつ き、裸線同志が融着してしまい、ボビンに巻き取ること が出来ないし、機械的な締めつけによって鞘が流れたり して、ファイバの信頼性が損なわれるからである。

【0012】本発明はショアD硬度が30~55という ような軟らかな鞘樹脂を対象としているが、特に30~ 45程度の軟らかな鞘については前述の理由によってブ ラスチック光ファイバとしての実用化ができないものと 思われていた。これに対し、本発明者は、鞘樹脂の平均 分子量を大きくすると、極端にべたつきを生じ易い低分 子成分の含有量を抑制することができ、同一の共重合体 組成であってもベタツキが少なく、弾力性のある樹脂と なり、プラスチック光ファイバの材料としてより適用性 が増すことが判明した。

【0013】しかし、すでに特公昭62-3401号公 報に述べられているように、鞘樹脂のメルトフローイン デックスが紡糸温度T℃において〔(5/9)×T-1 00) g/10分以上でなければ光ファイバの伝送損失 が大きなものになってしまうとされているように、流動 性の小さい鞘を用いたプラスチック光ファイバは伝送損 失が大きく有益なプラスチック光ファイバは得がたいと いう問題があった。

【0014】本発明者は、芯と鞘とその上に保護層と称 する流動性に優れ、かつプラスチック光ファイバの機械 物性や耐薬品性を付与するような層を同時に複合紡糸に より成形すれば、驚くべきことに鞘樹脂のメルトフロー インデックスが低くても紡糸速度などを低下させること なく低損失のプラスチック光ファイバを製造することが できるとともに、鞘樹脂のショアD硬度が低くても実用 的なプラスチック光ファイバが得られることを見出し本 発明を完成させた。

ンフロライドとテトラフロロエチレンとヘキサフロロプ ロペンの3元共重合体またはビニリデンフロライドとへ キサフロロプロペンの2元共重合体で、ビニリデンフロ ライド成分が30~92モル%、テトラフロロエチレン 成分が0~55モル%、ヘキサフロロプロペン成分が8 ~25モル%の範囲にあり、ナトリウムD線で20℃で 測定した屈折率が1.350~1.380の範囲にあ り、23℃におけるショアD硬度(ASTMD224 0)の値が10~55の樹脂で、紡糸温度T℃における メルトフローインデックス (ASTM D1238; 荷 10 重10Kg、オリフィスの直径2mm、長さ8mmノズ ルから10分間に流れる樹脂のg数) (以下、「MI」 と記す)が下記(1)式を満足するものであり、 $15 < MI < (5/9) \times T - 100$ (1)式 中でも屈折率と透明性と硬度の総合的な調和された性能 から、より好ましい鞘樹脂の組成範囲はビニリデンフロ ライド成分が40~62モル%、テトラフロロエチレン*

* 成分が28~40モル%、ヘキサフロロプロペン成分が 8~22モル%の範囲の中にあり、23℃におけるショ アD硬度(ASTM D2240)の値が35~45の 樹脂である。

【0016】本発明に用いる鞘樹脂の各成分の含有量 は、NMRにより測定することができる。具体的には、 鞘樹脂試料の適量をアセトン-d6とα,α,α-トリ フロロトルエンとの混合溶媒に溶解してなる試料溶液を 用意し、観測周波数は 1 Hが400MHz、19Fが3 76MHzとし、化学シフトの基準物として、1 H-N MRはテトラメチルシランを基準に換算し、19F-NM Rはトリクロロフロロメタンを基準に換算した。スペク トルからの各成分濃度の算出は次式により求めた重量% 組成を、モル%換算する。

[0017] 【数1】

ビニリデンフロライド成分(重量%) =
$$\frac{A \times \frac{B}{C \times (2/5)} \times 64}{D} \times 100$$

ヘキサフロロプロペン成分(重量%) = $\frac{A \times \frac{E}{F} \times 150}{D} \times 100$

テトラフロロエチレン成分(重量%)=100-ビニリデンフロライド成分(重量%) - ヘキサフロロプロペン成分(重量%)

【0018】尚、上記式中、

A: 試料溶液中のトリフロロトルエンmmol数

B:¹ H-NMRで2. 2~2. 7ppmと3. 0~

3.8 p p mの積分値合計

C:¹ H-NMRで7.0~8.5ppmの積分値

D: 試料溶液中の試料mg数

E:19F-NMRで-67~-78ppmの積分値

F:1°F-NMRで-62~-66ppmの積分値

【0019】次に本発明の保護層用いる樹脂について述 べる。保護層樹脂として必要な特性は、①鞘樹脂との密 着性があること、②ブラスチック光ファイバを紡糸する 温度において、鞘のMIより大きい流動性を示す樹脂で あること、母鞘の耐熱性として特に熱変形性を補強する 観点から融点やビカット軟化温度が高いことである。

【0020】従って本発明に用いる保護層樹脂は融点 (JIS K-7122)が120℃以上であり、かつ ビカット軟化温度 (ASTM1525) が100℃以上 である。また保護層樹脂のMIは鞘樹脂のMIよりも高 いことが必要であり、紡糸温度において鞘樹脂のMIよ り20g/10分以上高いことがより好ましい。上限に ついては樹脂の種類にもよるが数100g/10分でも 可能である。とのような高いMIの保護層樹脂は、紡糸 ダイにおける樹脂の流れを滑らかにする効果があり、鞘 樹脂の流動性が低くても3層複合紡糸法によりファイバ を製造すれば伝送性能を低下することなく、低損失のプ 50 00℃~280℃であり、特に好ましい温度は230℃

ラスチック光ファイバを生産性のよい紡糸速度で製造で きるというメリットがある。

【0021】本発明に用いられる保護層樹脂は鞘樹脂と の密着性が重要であり、そのような樹脂としてはビニリ 30 デンフロライド系樹脂が挙げられる。ピニリデンフロラ イド系樹脂としてはポリビニリデンフロライド、ポリビ ニリデンフロライド - クロロトリフロロエチレンのラン ダム共重合体にビニリデンフロライドをグラフトさせた 共重合体、ポリビニリデンフロライド – テトラフロロエ チレン共重合体、ポリビニリデンフロライドーヘキサフ ロロプロペン共重合体、ポリビニリデンフロライドーテ トラフロロエチレンーヘキサフロロブロベン共重合体、 ポリビニリデンフロライドークロロトリフロロエチレン 共重合体などの樹脂でありビニリデンフロライド構造成 40 分が50重量%以上のものが、鞘への密着力が強く、且 つ耐熱性や耐薬品性に優れる点で好ましい。また、同様 に好ましい保護層樹脂としてはナイロン12及びナイロ ン11も耐熱性と鞘層との密着性と耐薬品性に優れる点 で好ましい。その他の樹脂も同様の特性があれば用いる ことが可能である。

【0022】本発明のプラスチック光ファイバは、上記 した芯樹脂、鞘樹脂、保護層樹脂を3層複合紡糸ダイに 同時に供給し、複合紡糸して同時に3層構造を形成する ことにより得られる。この時の紡糸温度は好ましくは2

~250℃である。

【0023】図1に本発明のプラスチック光ファイバの 断面模式図を示す。図中、1は芯、2は鞘、3は保護層・ である。

【0024】本発明のプラスチック光ファイバの直径は 100μm~5000μm程度であり、そのうち芯の直 径はプラスチック光ファイバの直径の85%~99%、 鞘の厚さはプラスチック光ファイバの直径の0.3%~ 5%、保護層の厚さはプラスチック光ファイバの直径の 0.3%~5%がそれぞれ好ましい。

【0025】とれらのプラスチック光ファイバはそのま ま使用されることもあるが、さらにその上にポリエチレ ンやポリ塩化ビニル、ポリウレタン、ナイロン、ポリブ ロビレンなどの熱可塑性樹脂のジャケットを施してケー ブルとして使用することもできる。

[0026]

【実施例】[実施例1]屈折率が1.492で重量平均 分子量が10万のポリメチルメタクリレート樹脂を芯樹 脂として用いた。鞘樹脂としては、ビニリデンフロライ ド59モル%、テトロフロロエチレン30%、ヘキサフ ロロブロペン11%からなる共重合体で、240℃にお けるMIが27g /10分、屈折率が1.364で2 3℃におけるショアD硬度の値が41の鞘樹脂を用い た。保護層樹脂としては、ビニリデンフロライド72重 量%とテトラフロロエチレン28重量%からなる共重合 体で、240℃におけるMIが90g/10分であり、 融点が127℃、ビカット軟化温度が119℃のビニリ デンフロライド系樹脂を用いた。

【0027】尚、上記鞘樹脂の各成分の含有量について は、アセトン- d 6 を 9 1 重量部とα, α, α-トリフ ロロトルエン9重量部からなる混合溶媒100重量部に 鞘樹脂を9~10重量部精秤して溶解して調製した試料 溶液を用い前述した通り、NMRで測定して求めた。

【0028】上記芯樹脂、鞘樹脂、保護層樹脂の3つの 樹脂を図2に示すような3層複合紡糸ダイに導入した。 図中、11は芯樹脂導入口、12は鞘樹脂導入口、13 は保護層樹脂導入口、14は3層構造体の排出口であ る。この紡糸ダイの温度は240℃とし、芯径970 u m、鞴外径985μm、保護層外径1000μmのプラ スチック光ファイバを20m/minの紡糸速度で紡糸 した。

【0029】得られたプラスチック光ファイバを52m と2mで測定した伝送損失は650nmの波長で、入射 NAO. 15で測定して126dB/kmであった。と のプラスチック光ファイバを素線として、その外側に黒 色ポリエチレンのジャケットをほどこし、外径2.2m mのプラスチック光ファイバケーブルを製造し、信頼性 のテストを行った。先ず、85℃で95%の湿度のオー ブンに1000時間放置したときの伝送損失値は158 d B/k mと安定していた。また別の耐熱試験として、

100℃の乾熱状態に1000時間放置した場合でも1 30dB/kmと安定していた。

【0030】[比較例1]実施例1と同様の芯樹脂及び 鞘樹脂を用い、2層複合紡糸ダイで芯鞘2層構造のプラ スチック光ファイバを得た。紡糸ダイの温度は240℃ とし、芯径が980μm、鞘外径が1000μmのプラ スチック光ファイバを20m/minの紡糸速度で紡糸 した。このプラスチック光ファイバの伝送損失は650 nmの波長で、入射NA0.15で測定し220dB/ kmとロスが大きかった。

【0031】[実施例2]実施例1で用いた芯樹脂と鞘 樹脂を用いた。鞘樹脂の230℃におけるMIは22g /10分であった。また保護層樹脂として、ナイロン1 2樹脂の中にカーボンブラックを1%添加してなる、2 30℃におけるMIが150g/10分であり、融点が 178℃、ビカット軟化温度が165℃の樹脂を用い tc.

【0032】上記芯樹脂、鞘樹脂、保護層樹脂の3つの 樹脂を実施例1と同様に図2に示すような3層複合紡糸 ダイに導入し、紡糸ダイの温度を230℃として、芯径 960μm、鞘外径980μm、保護層外径1000μ mのプラスチック光ファイバを20m/minの紡糸速 度で紡糸した。

【0033】得られたプラスチック光ファイバの伝送損 失は650nmの波長で、入射NAO. 15で測定して、 128dB/kmであった。本プラスチック光ファイバ にオレンジ色のナイロン12のジャケットをほどとし、 外径2.2mmのプラスチック光ファイバケーブルを製 造した。

【0034】得られたケーブルを85℃で95%の湿度 のオーブンに1000時間放置したときの伝送損失値は 160dB/kmと安定していた。別の耐熱試験とし て、100℃の乾熱状態に1000時間放置した場合で も131dB/kmと安定していた。

【0035】上記ケーブル50mの両端に黒色コネクタ ーを接続し、トスリンクテスタを用いて直射日光の下に ケーブルをさらしながら当該試料ケーブルが被覆の外か ら受け取った光量を測定した。 この間 LED は点灯させ ないでパワーを測定した。その結果-40 d Bm以下の 光漏れ込みにすぎなかった。次に、このケーブルを23 ℃にて軽油及びガソリンに500時間浸漬したがプラス チック光ファイバの伝送損失の変化もなく、ケーブルの 腐食もなかった。

[0036]

【発明の効果】以上説明したように、本発明によれば、 耐熱性及び耐薬品性に優れ、高NAで曲げによる光ロス が少なく、狭い環境、特に自動車内の配線のように過酷 な環境においても使用に耐えるプラスチック光ファイバ が提供される。

50 【図面の簡単な説明】

10

【図1】本発明のプラスチック光ファイバの断面模式図

である。

【図2】本発明の実施例に用いられた3層複合紡糸ダイ。 の縦断面模式図である。

【符号の説明】

1 芯

3 保護層

11 芯樹脂導入口

12 鞘樹脂導入口

13 保護層樹脂導入口

14 3層構造体排出口

【図1】

【図2】

