Searchable Encryption

Cloud Computing

Data breaches

Data on nearly 200 million US voters exposed in huge GOP contractor leak Storage Server By: Sean Michael Kerner | February 16, 2018

FedEx Customer Data Left Publicly Exposed on Cloud

By James Rogers - Published June 20, 2 List of data breaches

s time it's 119,000 documents with FedEx-owned company Bongo

From Wikipedia, the free encyclopedia

For broader coverage of this topic, see Data breach

his is a list of data breaches, using data compiled from various sources, including press reports, government news releases, and mainstream news articles. The list includes those involving the maller breaches occur continually. Breaches of large organizations where the number of records is still unknown are also listed. The various methods used in the breaches are also listed, with ha

Most breaches occur in North America. It is estimated that the average cost of a data breach will be over \$150 million by 2020, with the global annual cost forecast to be \$2.1 trillion.[1][2] It is estim exposed as a result of data breaches.[3] In 2019, a collection of 2.7 billion identity records, consisting of 774 million unique email addresses and 21 million unique passwords, was posted on the w

HOTOTOTOTOTOTOTOTOTOTOTOTOTO	Entity	Year ▼	Records +	Organization type •	Method ♦	Sources \$
HO TO	2019 Bulgarian revenue agency hack	2019	over 5,000,000	government	hacked	[54]
0101010101000000000000001	Canva	2019	140,000,000	web	hacked	[56][57][58]
0101010101001001001001001001001001010101	Capital One	2019	106,000,000	financial	hacked	[59][60]
010100101000000000000000000000000000000	Desjardins	2019	2,900,000	financial	inside job	[89]
10100101010101010101010101010101010	Facebook	2019	540,000,000	social network	poor security	[121]
01010101010010100101010101010010	Facebook	2019	1,500,000	social network	accidentally uploaded	[122]
Picture illustration. (REUTERS/Pawel Kopczynski)	First American Corporation	2019	885,000,000	financial service company	poor security	[124]
010100101010010100000000101001	Health Sciences Authority (Singapore)	2019	808,000	healthcare	poor security	[151]
	Justdial	2019	100,000,000	local search	unprotected api	[170]
The personal details of nearly 200	Ministry of Health (Singapore)	2019	14,200	healthcare	poor security/inside job	[196][197]
exposed in the largest U.S. leak of	Quest Diagnostics	2019	11,900,000	Clinical Laboratory	poor security	[223]
	StockX	2019	6,800,000	retail	hacked	[255]
	Truecaller	2019	299,055,819	Telephone directory	unknown	[277][278]
Information on more than 198 mill	Woodruff Arts Center	2019	unknown	arts group	poor security	[314]
the Internet by a firm working on b	Westpac	2019	98,000	financial	hacked	[329]
Committee (RNC) in their efforts t	Australian National University	2019	19 years of data	academic	hacked	[330]
	AerSery (subsidiary of InMobi)	2018	75,000	advertising	hacked	[13]
Vickery, a cyber-risk researcher a	Air Canada	2018	20,000	transport	hacked	[15]
	Bell Canada	2018	100,000	telecoms	hacked	[42]
	Bethesda Game Studios	2018		gaming	accidentally published	[44]
	Blank Media Games	2018	7,633,234	gaming	hacked	[45][46]
	BMO and Simplii	2018	90,000	banking	poor security	[50]
	British Airways	2018	380,000	transport	hacked	[51][52]
	Cathay Pacific Airways	2018	9,400,000	transport	hacked	[63]

AMERICA

Watchdog: Hillary Clinton Violated State Dept. Policies By Using Private Email

May 25, 2016 · 1:09 PM ET

Democratic presidential candidate Hillary Clinton speaks at an International Brotherhood of Electrical Workers training center on Tuesday in Commerce, Calif.

John Locher/AP

Is encryption enough?

Searchable symmetric encryption (SSE)

MPC, fully homomorphic encryption (FHE) and oblivious RAM (ORAM)

Solves the problem in theory, but too slow

Static SSE

Inverted index

Pseudo random function:

Encryption:

 F_6

 F_1 F_2 F_3 F_4 F_5

Advantage

• Super efficient in practice. Encrypt and PRF are not bottleneck.

People are looking at locality

Leakage

• Search pattern leakage: token is generated from keyword deterministically

deterministic!

Leakage

• Search pattern leakage: token is generated from keyword deterministically

• Access pattern leakage: whether a file is returned

deterministic! token server client 111111 \mathbf{F}_{1} F_2 F_4

file access patterns!

Leakage

• Search pattern leakage: token is generated from keyword deterministically

• Access pattern leakage: whether a file is returned

Different from MPC!

Security definitions

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, \dots, D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \operatorname{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Correctness

An index-based SSE scheme is correct if for all $k \in \mathbb{N}$, for all K output by $\text{Gen}(1^k)$, for all $\mathbf{D} \subseteq 2^{\Delta}$, for all (I, \mathbf{c}) output by $\text{Enc}_K(\mathbf{D})$, for all $w \in \Delta$,

$$\mathsf{Search}\big(I,\mathsf{Trpdr}_K(w)\big) = \mathbf{D}(w) \bigwedge \mathsf{Dec}_K(c_i) = D_i, \ \textit{for} \ 1 \leq i \leq n.$$

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, ..., D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \operatorname{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Soundness/security

Definition 4.2 (History). Let Δ be a dictionary and $\mathbf{D} \subseteq 2^{\Delta}$ be a document collection over Δ . A q-query history over \mathbf{D} is a tuple $H = (\mathbf{D}, \mathbf{w})$ that includes the document collection \mathbf{D} and a vector of q keywords $\mathbf{w} = (w_1, \dots, w_q)$.

Definition 4.3 (Access Pattern). Let Δ be a dictionary and $\mathbf{D} \subseteq 2^{\Delta}$ be a document collection over Δ . The access pattern induced by a q-query history $H = (\mathbf{D}, \mathbf{w})$, is the tuple $\alpha(H) = (\mathbf{D}(w_1), \dots, \mathbf{D}(w_q))$.

Definition 4.4 (Search Pattern). Let Δ be a dictionary and $\mathbf{D} \subseteq 2^{\Delta}$ be a document collection over Δ . The search pattern induced by a q-query history $H = (\mathbf{D}, \mathbf{w})$, is a symmetric binary matrix $\sigma(H)$ such that for $1 \leq i, j \leq q$, the element in the i^{th} row and j^{th} column is 1 if $w_i = w_j$, and 0 otherwise.

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, \dots, D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \text{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Soundness/security

Definition 4.5 (Trace). Let Δ be a dictionary and $\mathbf{D} \subseteq 2^{\Delta}$ be a document collection over Δ . The trace induced by a q-query history $H = (\mathbf{D}, \mathbf{w})$, is a sequence $\tau(H) = (|D_1|, \dots, |D_n|, \alpha(H), \sigma(H))$ comprised of the lengths of the documents in \mathbf{D} , and the access and search patterns induced by H.

Throughout this work, we will assume that the dictionary Δ and the trace are such that all histories H over Δ are non-singular as defined below.

Definition 4.6 (Non-singular history). We say that a history H is non-singular if (1) there exists at least one history $H' \neq H$ such that $\tau(H) = \tau(H')$; and if (2) such a history can be found in polynomial-time given $\tau(H)$.

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, ..., D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \text{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Soundness/security

Definition 4.7 (Non-adaptive indistinguishability). Let SSE = (Gen, Enc, Trpdr, Search, Dec) be an index-based SSE scheme over a dictionary Δ , $k \in \mathbb{N}$ be the security parameter, and $A = (A_1, A_2)$ be a non-uniform adversary and consider the following probabilistic experiment $\mathbf{Ind}_{\mathsf{SSE},A}(k)$:

Ind_{SSE,A}(k)

$$K \leftarrow \text{Gen}(1^k)$$

 $(st_A, H_0, H_1) \leftarrow A_1(1^k)$
 $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 $parse\ H_b\ as\ (\mathbf{D}_b, \mathbf{w}_b)$
 $(I_b, \mathbf{c}_b) \leftarrow \text{Enc}_K(\mathbf{D}_b)$
 $for\ 1 \le i \le q,$
 $t_{b,i} \leftarrow \text{Trpdr}_K(w_{b,i})$
 $let\ \mathbf{t}_b = (t_{b,1}, \dots, t_{b,q})$
 $b' \leftarrow A_2(st_A, I_b, \mathbf{c}_b, \mathbf{t}_b)$
 $if\ b' = b,\ output\ 1$
 $otherwise\ output\ 0$

with the restriction that $\tau(H_0) = \tau(H_1)$, and where st_A is a string that captures A_1 's state. We say that SSE is secure in the sense of non-adaptive indistinguishability if for all polynomial-size adversaries $A = (A_1, A_2)$,

$$\Pr\left[\mathbf{Ind}_{\mathsf{SSE},\mathcal{A}}(k) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(k),$$

where the probability is taken over the choice of b and the coins of Gen and Enc.

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, \dots, D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \text{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Simulation-based security definition

Definition 4.8 (Non-adaptive semantic security). Let SSE = (Gen, Enc, Trpdr, Search, Dec) be an index-based SSE scheme, $k \in \mathbb{N}$ be the security parameter, \mathcal{A} be an adversary, \mathcal{S} be a simulator and consider the following probabilistic experiments:

$$\begin{aligned} & \mathbf{Real}_{\mathsf{SSE},\mathcal{A}}(k) \\ & K \leftarrow \mathsf{Gen}(1^k) \\ & (st_{\mathcal{A}}, H) \leftarrow \mathcal{A}(1^k) \\ & parse \ H \ as \ (\mathbf{D}, \, \boldsymbol{w}) \\ & (I, \, \boldsymbol{c}) \leftarrow \mathsf{Enc}_K(\mathbf{D}) \\ & for \ 1 \leq i \leq q, \\ & t_i \leftarrow \mathsf{Trpdr}_K(w_i) \\ & let \ \boldsymbol{t} = (t_1, \dots, t_q) \\ & output \ \forall = (I, \, \boldsymbol{c}, \, \boldsymbol{t}) \ and \ st_{\mathcal{A}} \end{aligned}$$

We say that SSE is semantically secure if for all polynomial-size adversaries A, there exists a polynomial-size simulator S such that for all polynomial-size distinguishers D,

$$\left|\Pr\left[\left.\mathcal{D}(\mathbf{V}, st_{\mathcal{A}}) = 1: (\mathbf{V}, st_{\mathcal{A}}) \leftarrow \mathbf{Real}_{\mathsf{SSE}, \mathcal{A}}(k)\right.\right] - \Pr\left[\left.\mathcal{D}(\mathbf{V}, st_{\mathcal{A}}) = 1: (\mathbf{V}, st_{\mathcal{A}}) \leftarrow \mathbf{Sim}_{\mathsf{SSE}, \mathcal{A}, \mathcal{S}}(k)\right.\right]\right| \leq \mathsf{negl}(k),$$

where the probabilities are over the coins of Gen and Enc.

- $\Delta = (w_1, ..., w_d)$: keywords set
- $\mathbf{D} = (D_1, \dots, D_n)$: documents set
- $\mathbf{D}(w)$: search result for w
- $K \leftarrow Gen(1^k)$
- $(I, c) \leftarrow Enc(K, \mathbf{D})$
- $t \leftarrow \text{Trpdr}(K, w)$
- $X \leftarrow Search(I, t)$
- $D_i \leftarrow \text{Dec}(K, c_i)$

Non-adaptive vs. adaptive

Definition 4.7 (Non-adaptive indistinguishability). Let SSE = (Gen, Enc, Trpdr, Search, Dec) be an index-based SSE scheme over a dictionary Δ , $k \in \mathbb{N}$ be the security parameter, and $A = (A_1, A_2)$ be a non-uniform adversary and consider the following probabilistic experiment $\mathbf{Ind}_{\mathsf{SSE},A}(k)$:

$$\begin{aligned} &\mathbf{Ind}_{\mathsf{SSE},\mathcal{A}}(k) \\ &K \leftarrow \mathsf{Gen}(1^k) \\ &(st_{\mathcal{A}}, H_0, H_1) \leftarrow \mathcal{A}_1(1^k) \\ &b \overset{\$}{\leftarrow} \{0, 1\} \\ &parse \ H_b \ as \ (\mathbf{D}_b, \mathbf{w}_b) \\ &(I_b, \mathbf{c}_b) \leftarrow \mathsf{Enc}_K(\mathbf{D}_b) \\ &for \ 1 \leq i \leq q, \\ &t_{b,i} \leftarrow \mathsf{Trpdr}_K(w_{b,i}) \\ &let \ t_b = (t_{b,1}, \dots, t_{b,q}) \\ &b' \leftarrow \mathcal{A}_2(st_{\mathcal{A}}, I_b, \mathbf{c}_b, t_b) \\ &if \ b' = b, \ output \ 1 \\ &otherwise \ output \ 0 \end{aligned}$$

with the restriction that $\tau(H_0) = \tau(H_1)$, and where st_A is a string that captures A_1 's state. We say that SSE is secure in the sense of non-adaptive indistinguishability if for all polynomial-size adversaries $A = (A_1, A_2)$,

$$\Pr\left[\mathbf{Ind}_{\mathsf{SSE},\mathcal{A}}(k) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(k),$$

where the probability is taken over the choice of b and the coins of Gen and Enc.

Definition 4.10 (Adaptive indistinguishability security for SSE). Let SSE = (Gen, Enc, Trpdr, Search, Dec) be an index-based SSE scheme, $k \in \mathbb{N}$ be a security parameter, $\mathcal{A} = (\mathcal{A}_0, \dots, \mathcal{A}_{q+1})$ be such that $q \in \mathbb{N}$ and consider the following probabilistic experiment $\mathbf{Ind}^*_{\mathcal{A},\mathsf{SSE}}(k)$:

$$\begin{split} & \operatorname{Ind}^{\star}_{\mathsf{SSE},\mathcal{A}}(k) \\ & K \leftarrow \operatorname{Gen}(1^k) \\ & b \overset{\$}{\leftarrow} \{0,1\} \\ & (st_{\mathcal{A}}, \mathbf{D}_0, \mathbf{D}_1) \leftarrow \mathcal{A}_0(1^k) \\ & (I_b, \boldsymbol{c}_b) \leftarrow \operatorname{Enc}_K(\mathbf{D}_b) \\ & (st_{\mathcal{A}}, w_{0,1}, w_{1,1}) \leftarrow \mathcal{A}_1(st_{\mathcal{A}}, I_b) \\ & t_{b,1} \leftarrow \operatorname{Trpdr}_K(w_{b,1}) \\ & for \ 2 \leq i \leq q, \\ & (st_{\mathcal{A}}, w_{0,i}, w_{1,i}) \leftarrow \mathcal{A}_i(st_{\mathcal{A}}, I_b, \boldsymbol{c}_b, t_{b,1}, \dots, t_{b,i-1}) \\ & t_{b,i} \leftarrow \operatorname{Trpdr}_K(w_{b,i}) \\ & let \ t_b = (t_{b,1}, \dots, t_{b,q}) \\ & b' \leftarrow \mathcal{A}_{q+1}(st_{\mathcal{A}}, I_b, \boldsymbol{c}_b, t_b) \\ & if \ b' = b, \ output \ 1 \\ & otherwise \ output \ 0 \end{split}$$

with the restriction that $\tau(\mathbf{D}_0, w_{0,1}, \dots, w_{0,q}) = \tau(\mathbf{D}_1, w_{1,1}, \dots, w_{1,q})$ and where $st_{\mathcal{A}}$ is a string that captures \mathcal{A} 's state. We say that SSE is secure in the sense of adaptive indistinguishability if for all polynomial-size adversaries $\mathcal{A} = (\mathcal{A}_0, \dots, \mathcal{A}_{q+1})$ such that $q = \mathsf{poly}(k)$,

$$\Pr\left[\mathbf{Ind^{\star}}_{\mathsf{SSE},\mathcal{A}}(k) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(k),$$

where the probability is over the choice of b, and the coins of Gen and Enc.

SSE with adaptive security

I: lookup table for k,j instead of k

