One day Bob drew a tree, T, with n nodes and n-1 edges on a piece of paper. He soon discovered that parent of a node depends on the root of the tree. The following images shows an example of that:

Learning the fact, Bob invented an exciting new game and decided to play it with Alice. The rules of the game is described below:

- 1. Bob picks a random node to be the tree's root and keeps the identity of the chosen node a secret from Alice. Each node has an equal probability of being picked as the root.
- 2. Alice then makes a list of g guesses, where each guess is in the form u \vee and means Alice guesses that parent(v) = u is true. It's guaranteed that an undirected edge connecting u and v exists in the tree.
- 3. For each correct guess, Alice earns one point. Alice wins the game if she earns at least k points (i.e., at least k of her guesses were *true*).

Alice and Bob play q games. Given the tree, Alice's guesses, and the value of k for each game, find the probability that Alice will win the game and print it on a new line as a reduced fraction in the format p/q.

Input Format

The first line contains an integer, q, denoting the number of different games. The subsequent lines describe each game in the following format:

- 1. The first line contains an integer, n, denoting the number of nodes in the tree.
- 2. The n-1 subsequent lines contain two space-separated integers, u and v, defining an undirected edge between nodes \boldsymbol{u} and \boldsymbol{v} .
- 3. The next line contains two space-separated integers describing the respective values of \boldsymbol{g} (the number of guesses) and k (the minimum score needed to win).
- 4. Each of the g subsequent lines contains two space-separated integers, u and v, indicating Alice guesses parent(v) = u.

Constraints

- $1 \le q \le 5$
- $\begin{array}{ll} \bullet & 1 \leq n \leq 10^5 \\ \bullet & 1 \leq u,v \leq n \end{array}$
- $1 \le q, k \le 10^5$
- The sum of n over all test cases won't exceed 2×10^5 .
- No two guesses will be identical.

Scoring

- For 25% of the maximum score, $1 \le n \le 10^3$.
- For 100% of the maximum score, $1 < n < 10^5$.

Output Format

Print the probability as a reduced fraction in the format p/q.

Note: Print 0/1 if the probability is $\mathbf{0}$ and print 1/1 if the probability is $\mathbf{1}$.

Sample Input 0

1	2	
1	3	
3	4	
2	2	
1	2	
3	4	
3		
1	2	
_	_	
	3	
1		
1 2	3	

Sample Output 0

1/2 1/3

Explanation 0

Alice and Bob play the following ${\it g}=2$ games:

1. Alice makes two guesses, $(1\ 2)$ and $(3\ 4)$, meaning she guessed that parent(2)=1 and parent(4)=3. To win the game, at least k=2 of her guesses must be true.

In the diagrams below, you can see that at least ${\bf 2}$ guesses are $\it true$ if the root of the tree is either node ${\bf 1}$ or ${\bf 3}$:

There are 4 nodes in total and the probability of picking node 1 or 3 as the root is $\frac{2}{4}$, which reduces to $\frac{1}{2}$.

2. In this game, Alice only wins if node 1 is the root of the tree. There are 3 nodes in total, and the probability of picking node 1 as the root is $\frac{1}{3}$.