Name: Nguyen Quang Khoi

SSID: 888881

Part 1: Classification of Facial Expressions

1.2.1.

Figure 1: Three images from the dataset

1.2.2

Include your histogram plots

Figure 2: Expression category distribution

Answer this question: Is the dataset balanced?

Answer: No, the dataset is not balanced.

1.3.1 List the accuracy of the KNN and other metrics you might use.

KNN $(k = 1)$ classification report								
	precision	recall	f1-score	support				
0 1 2	0.78 0.68 0.84	0.93 0.42 0.73	0.85 0.52 0.78	122 40 64				
accuracy macro avg weighted avg	0.77 0.78	0.70 0.78	0.78 0.72 0.77	226 226 226				

Figure 3: Accuracy and other metrics of the baseline KNN (k = 1) model **Include two examples of the misclassified images.**

Figure 4: Two mis-classified images for each class

List the hyperparameters you found.

Figure 5: Best hyperparameters for the baseline model

Answer: best number of neighbours is 3

1.3.3

Create a table of the classifiers you used, there best hyperparameters if you found them and the metrics you found.

Model	Feature selection/Dim reduction	Best hyperparamaters	Training time (s)	Accuracy	Precision*	Recall*	F1 score*
Model	reacure selection/Dim reduction	best nyperparamaters	Training time (s)	Accuracy	rrecision*	Recall*	FI Score*
Knn (k = 1)	Raw	Baseline	0.0015	0.7832	0.7662	0.6952	0.7176
Logistics Regression	PCA	'C': 0.5	1.0263	0.8761	0.854	0.8707	0.8608
Decision Trees + Gradient Boosting	Random Forests	'max_depth': 4;'max_features': 'sqrt'	5.8852	0.8938	0.8756	0.8667	0.8705
SVM	PCA	'C':10.0;'gamma':'scale'	0.1618	0.9115	0.9013	0.8745	0.8859
Hard voting learner	Raw	LogReg + GradientBoostTrees + SVM	20.2147	0.9248	0.9393	0.8876	0.9071
Convolutional NN	Standardized	'learning_rate': 0.0001	27.7706	0.9779	0.9682	0.9782	0.973

Figure 6: Results of different model

* Macro average

Note: The table is quite big, so you need to zoom in to check it. I also include the table as a png file in the submission folder. I used TensorFlow to build my neural network. I also used google colaboratory to train some of my models. Therefore, there is some google colaboratory setup code in the notebook.

Answer this question: Which was your best pipeline or classifier and with what parameters?

My best classifier is the Convolutional Neural Network with learning rate of 1e-3. The picture below is the architecture.

Figure 7: CNN architecture

Answer this question: Did you beat the baseline classifier? If not, why do you think so?

Answer: I beat the baseline classifier with every model.

Part 2: Regression to estimate the width of a grey kangaroo's nose

2.2.1.

Include the plot you created

score: 0.7051

2.3.3

List the result of your mean R2 score

Mean R^2 score: 0.7123

2.3.4

In a table(preferably), display each regressor with it corresponding score. Include the figure displaying your solution in a plot.

Model	Mean R^2 score
Linear Regression	0.7123
Decision Tree Regression	0.5703
Linear SVM	0.7225

Answer this question: Which is the best regressor?

SVR is the best regressor with the highest R^2 score (0.7209)

2.4.

In a table (preferably), list the data imputation method and evaluation result.

Imputation method R^2 score on a Linear Regression model

Mean imputation 0.5375

KNN (k = 3) imputation 0.6289

Answer this question: Which is the best data imputation method?

The best data imputation method is KNN (k = 3) imputation.