- 4.15 For the network given in Figure 4.50, give global distance-vector tables like those of table 4.5 and 4.8 when
- (a) Each node knows only the distances to its immediate neighbor.
- (b)Each node has reported the information it had in the preceding step to its immediate neighbors.
- (c)Step (b) happens a second time

Solution:

(a)

Information	Distance to Reach Node					
Stored at	A	В	С	D	Е	F
Node						
A	0	∞	3	8	∞	∞
В	∞	0	∞	∞	2	∞
С	3	∞	0	∞	1	6
D	8	∞	∞	0	2	∞
Е	∞	2	1	2	0	∞
F	∞	∞	6	∞	∞	0

(b)

Information	Distance to	Distance to Reach Node				
Stored at	A	В	С	D	Е	F
Node						
A	0	∞	3	8	4	9
В	∞	0	3	4	2	∞
С	3	3	0	3	1	6
D	8	4	3	0	2	∞
Е	4	2	1	2	0	7
F	9	∞	6	∞	7	0

(c)

Information	Distance to	Distance to Reach Node				
Stored at	A	В	С	D	Е	F
Node						
A	0	6	3	6	4	9
В	6	0	3	4	2	9
С	3	3	0	3	1	6
D	6	4	3	0	2	9
Е	4	2	1	2	0	7
F	9	9	6	9	7	0

4.17 For the network given in Figure 4.50, show how the link-state algorithm builds the routing table for node D.

Solution:

Step	Confirmed	Tentative
1	D (0,-)	
2	D(0, -)	A(8,A) E(2,E)
3	D(0, -), E(2, E)	A(8,A), C(3,E), B(4,E)
4	D(0, -), E(2, E), C(3, E)	A(6, E), B(4, E), F(9, E)
5	D(0, -), E(2, E), C(3, E), B(4, E)	A(6, E), F(9, E)
6	D(0, -), E(2, E), C(3, E), B(4, E), A(6, E)	F(9, E)
7	D(0, -), E(2, E), C(3, E), B(4, E), A(6, E),	
	F(9, E)	
	Done	

- 4.20 For the network in Figure 4.50, suppose the forwarding tables are all established as in Exercise 15 and then C-E link fails. Give
- (a) The tables of A, B, D, and F after C and E have reported the news.
- (b) The tables of A and D after their next mutual exchange.
- (c) The table of C after A exchanges with it.

(a) A:

Dest	Cost	nexthop
В	∞	
С	3	С
D	∞	
Е	∞	
F	9	С

B:

Dest	Cost	nexthop
A	∞	
С	∞	
D	4	Е
Е	2	Е
F	∞	

D:

Dest	Cost	nexthop
A	∞	
В	4	Е
С	∞	
Е	2	Е
F	∞	

F:

Dest	Cost	nexthop
Dest	Cost	пелиюр

A	9	С
В	∞	
С	6	С
D	∞	
Е	∞	

(b) A:

Dest	Cost	nexthop
В	12	D
С	3	С
D	8	D
E	10	D
F	9	С

D:

Dest	Cost	nexthop
A	8	A
В	4	Е
С	11	A
Е	2	Е
F	17	A

(c) C:

Dest	Cost	nexthop
A	3	A
В	15	A
D	11	A
Е	13	A
F	6	F

- 4.25 Suppose a set of routers all use the split-horizon technique; we consider here under what circumstances it makes a difference if they use poison reverse in addition.
- (a) Show that poison reverse makes no difference in the evolution of the routing loop in the two examples described in Section 4.2.2, given that the hosts involved use split horizon.
- (b) Suppose split-horizon routers A and B somehow reach a state in which they forward traffic for a given destination X toward each other. Describe how this situation will evolve with and without the use of poison reverse.
- (c) Give a sequence of events that leads A and B to a looped states as in (b), even if poison reverse is used. (Hint: Suppose B and A connect through a very slow link. They each reach X through a third nod, C, and simultaneously advertise their routes to each other.)

Solution:

(a). The textbook already explains how poison reverse is not needed when F-G fails. When the A-E

link fails, the following sequence (or something similarly bad) may happen depending on the timing, whether or not poison reverse is used.

- i. A sends (E, inf) to B.
- ii. C sends (E, 2) to B. This route is via A.
- iii. A sends (E, inf) to C.
- iv. B sends (E, 3) to A. This route is via C.
- v. C sends (E, inf) to B.
- vi. A sends (E, 4) to C. This route is via B.
- vii. B sends (E, inf) to A.
- viii. C sends (E, 5) to B. This route is via A.
- ix. A sends (E, inf) to C.
- x. B sends (E, 6) to A. The oscillation goes on and on like this.
- (b)Without poison reverse, A and B would send each other updates that simply didn't mention X; presumably (this does depend somewhat on implementation) this would mean that the false routes to X would sit there until they eventually aged out. With poison reverse, such a loop would go away on the first table update exchange.

(c)

- 1. B and A each send out announcements of their route to X via C to each other
- 2. C announces to A and B that it can no longer reach X; the announcements of step 1 have not yet arrived.
- 3. B and A receive each others announcements from step 1, and adopt them.
- 4.40 An organization has a class C network 200.1.1 and wants to form subnets for four departments, with hosts as follows:
- A 72 hosts
- B 35 hosts
- C 20 hosts
- D 18 hosts

There are 145 hosts in all.

- (a) Give a possible arrangement of subnet masks to make this possible.
- (b) Suggest what the organization might do if department D grows to 34 hosts.

Solution:

- (a) Giving each department a single subnet, the nominal subnet sizes are 27, 26,
- 25, 25 respectively; we obtain these by rounding up to the nearest power

of 2. A possible arrangement of subnet numbers is as follows. Subnet

numbers are in binary and represent an initial segment of the bits of the last

byte of the IP address; anything to the right of the / represents host bits. The

/ thus represents the subnet mask. Any individual bit can, by symmetry, be flipped throughout; there are thus several possible bit assignments.

A 0/ one subnet bit, with value 0; seven host bits

B 10/

C 110/

D 111/

The essential requirement is that any two distinct subnet numbers remain distinct when the longer one is truncated to the length of the shorter.

(b) We have two choices: either assign multiple subnets to single departments, or abandon subnets and buy a bridge. Here is a solution giving A two subnets, of sizes 64 and 32; every other department gets a single subnet of size the next highest power of 2:

A 01/

001/

B 10/

C 000/

D 11/