Interrogation 2 Corrigé

1. Déterminer la nature des intégrales suivantes :

a)
$$\int_0^1 \ln(t) dt$$

☑ Converge

 \square Diverge

a)
$$\int_{0}^{1} \ln(t)dt$$

b)
$$\int_{0}^{+\infty} \frac{dt}{\sqrt{t}(1+t)}dt$$

☑ Converge

□ Diverge

c)
$$\int_0^{\frac{\pi}{2}} \tan(t) dt$$

☐ Converge

☑ Diverge

c)
$$\int_{0}^{\frac{\pi}{2}} \tan(t)dt$$

d) $\int_{0}^{+\infty} (t^2 + 1)t^{-2}dt$

□ Converge

☑ Diverge

e)
$$\int_{1}^{+\infty} \frac{dt}{\sqrt{t^4 + t^3} - t^2} dt$$

□ Converge

☑ Diverge

— b) la fonction est équivalente à $\frac{1}{\sqrt{t}}$ en 0 et à $\frac{1}{t\sqrt{t}}$ en $+\infty$.

— c) on se ramène en 0 en posant $t = \frac{\pi}{2} - u$ et on étudie $\int_0^{\frac{\pi}{2}} \frac{\cos(u)}{\sin(u)} du$. Cette intégrale diverge car $\frac{\cos(u)}{\sin(u)} \sim \frac{1}{u}$.

— d) la fonction est équivalente à $\frac{1}{t^2}$ en 0.

— e) la fonction est équivalente à $\frac{2}{t}$ en $+\infty$.

2. A l'aide du changement de variables $x=u^2$ montrer que $I=\int_0^{+\infty}\frac{e^{-\sqrt{x}}}{\sqrt{x}}dx$ converge et la calculer.

Corrigé

La fonction $u \mapsto u^2$ est de classe \mathscr{C}^1 , strictement monotone et bijective de $]0, +\infty[$ sur $]0, +\infty[$, on peut donc poser $x=u^2$ et on a dx=2udu. On en déduit que I est de même nature que $J = \int_0^{+\infty} \frac{2ue^{-u}}{u} du = \int_0^{+\infty} 2e^{-u} du.$

Cette dernière intégrale converge et vaut 2 donc I converge et I=2.

Interrogation 2 Corrigé

3. Soit $n \in \mathbb{N}$. On pose $I_n = \int_0^{+\infty} \frac{dx}{(1+x^2)^{n+1}}$. Déterminer une relation de récurrence entre I_n et I_{n+1} .

Corrigé

Soit $n \in \mathbb{N}$. On commence par remarquer que $x \mapsto \frac{1}{(1+x^2)^{n+1}}$ est continue sur $[0, +\infty[$ et $\frac{1}{(1+x^2)^{n+1}} \sim \frac{1}{t^{2(n+1)}}$ donc I_n est bien définie.

On a alors par intégration par parties :

$$I_{n} = \int_{0}^{+\infty} \frac{dx}{(1+x^{2})^{n+1}}$$

$$= \left[\frac{x}{(1+x^{2})^{n+1}}\right]_{0}^{+\infty} + \int_{0}^{+\infty} \frac{2(n+1)x^{2}}{(1+x^{2})^{n+2}} dx \quad \text{CAR LE CROCHET CONVERGE}$$

$$= 2(n+1) \left(\int_{0}^{+\infty} \frac{1+x^{2}}{(1+x^{2})^{n+2}} dx - \int_{0}^{+\infty} \frac{1}{(1+x^{2})^{n+2}} dx\right)$$

$$= 2(n+1)I_{n} - 2(n+1)I_{n+1}$$

On en déduit que $I_{n+1} = \frac{2n+1}{2n+2}I_n$.