CSC301 HW2

Alex Zhang

Jan 2023

Question 1

Let algorithm computing x^y that makes at most O(n) calls to integer multiplication called EXPO. The pseduocode is following below.

```
function z = EXPO(x,y)
  if y = 0 then return 1
  z = EXPO(x, math.floor(y/2))
  z = z*z
  if y is even then
      return z
  else
      return z*x
  end if
end function
```

Proof:

Base Case: y = 0

The algorithm then returns 1, which is true because $x^0 = 1$ for all x.

Induction: Assume y = n - 1 is true, we are going to prove that y = n for $z = x^y$ is also true.

The recursion will get $z' = x^{\lfloor y/2 \rfloor}$.

Case 1: y = n is even

The EXPO returns z. If y is even, then |y/2| = y/2, which

$$z' = x^{y/2}$$

squaring both sides,

$$(z')^2 = x^y$$

So $z = (z')^2$ when y is even. Just as what EXPO will return.

Case 2: y = n is odd

Then EXPO returns $z \cdot x$. In this case |y/2| = (y-1)/2, which

$$z' = x^{y-1/2}$$

squaring both sides and multipling by x,

$$(z')^2 \cdot x = x^y$$

In this case $(z')^2 = z$. So $(z')^2 \cdot x = z \cdot x$. This matched the EXPO returning value. \blacksquare

1. Integer multiplication

Since we assume that x, y are all n-bits numbers, so in each recursion, y will chunk the last bit so there are total n times recursion calls. In each call, it will perform a integer multiplication on z it self, and sometimes possible calling multiplication for x and z. So overall, there are O(n) integer multiplication calls for the whole recursion process.

2. Time Complexity

We have showed that there are total O(n) calls to integer multiplication, and for multiplication itself, th time Complexity will be $O(n^2)$, which overall, the time complexity for EXPO will be $O(n^3)$

Question 2

(a)

If a number $1 \le x < p$ for a given prime p is its own multiplicative inverse, then

$$x^2 \equiv 1 \mod p$$

By definition, for some integer k:

$$x^2 - 1 = pk$$

$$(x+1)(x-1) = pk$$

We have two case for k = 0 and $k \neq 0$.

Case 1: $k \neq 0$

Since $1 \le x < p$ and x is relative prime to p, so either x+1=p or x-1=p. However, the second case will not happen since x-1 < p-1. x=p-1 is one number that is its own multiplicative inverse.

Case 2: k = 0

This time either x-1=0 or x+1=0, but $x+1\geq 2$ with the given condition so x-1=0 and x=1.

There are two numbers 1 and p-1 which are their own inverse.

$$(p-1)! = (p-1)(p-2)(p-3)\dots 2\cdot 1$$
, so
$$(p-1)! \equiv -1 \mod p$$

$$(p-1)(p-2)(p-3)\dots 2\cdot 1 \equiv -1 \mod p$$

$$-1\cdot (p-2)(p-3)\dots 2\cdot 1 \equiv -1 \mod p$$

We need to show that $(p-2)(p-3) \dots 2 \equiv 1 \mod p$. Since for prime p, every number $1 \leq x < p$ is invertible modulo p, we have

$$ax \equiv 1 \mod p$$

Taking $a \mod p$, $a \in \{1, 2, \ldots, p-2, p-1\}$ and since 1 and p-1 are their own inverse, $a \in \{2, \ldots, p-2\}$. So for each x, there is going to be a multiplicative inverse $a \in \{2, \ldots, p-2\}$. Therefore, we can pairing up every element in $\{2, \ldots, p-2\}$ to make a multiplicative inverse respect to p.

$$-1 \cdot (p-2)(p-3) \dots 2 \cdot 1 \equiv -1 \mod p$$

will become

$$-1 \cdot 1 \cdot 1 \dots 1 \cdot 1 \equiv -1 \mod p$$

which is true.■

(c)

Suppose N is a composite number, then there will be a factor b > 1 and $b \le N - 1$. This indicates that d divides (N - 1)!, meaning that d does not divide (N - 1)! + 1, same as

$$(N-1)! \not\equiv -1 \mod N$$

So if N is not prime, then $(N-1)! \not\equiv -1 \mod N$.

(d)

I think the problem is that Wilson's Theorem takes more time on doing the primality test. For example, the time complexity when N is a n-bits number will be $O(2^n n^2)$ because the the maximum times of integer multiplication will be $2^{n-1} - 1$ and each multiplication itself is $O(n^2)$. Whereas Fermat's Little Theorem only takes like $O(n^3)$ and maximum of $O(n^4)$ for doing n times of check.

Question 3

(a)

Based on the question, we know that p is prime, and for encryption integer e, and e is relative prime to s = p - 1. The following pseduocode is the method used for recovering x for $0 \le x < p$.

```
function Decrypt(y,e,p)
   (d,a,b) = EXTEuclid(e,p-1)
   x = MODEXP(y,d,p)
   return x
end function
```

Proof:

Case 1: $x \not\equiv 0 \mod p$

Since in this method, Extended Euclid's algorithm is used for getting integer d where $de \equiv 1 \mod s$. This means de - 1 = ks for some inetger k.

$$x^{de} = x^{1+ks} = x \cdot x^{(p-1)k}$$

By Fermat's Little Theorem, if $x \not\equiv 0 \mod p$, then

$$x^{ks} \equiv x^{(p-1)k} \equiv 1^k \equiv 1 \mod p$$

Therefore

$$x^{de} \equiv x \cdot x^{ks} \equiv 1 \cdot x \equiv x \bmod p$$

Case 2: $x \equiv 0 \mod p$

Since for this RSA-like scheme, $0 \le x < p$, then only possible number for x is 0. This case the method will also be true since

$$0^{de} \equiv 0 \bmod p$$

The correctness of this RSA-like scheme has benn proved.

Bit Complexity

- \bullet Alice generates one n-bits prime p
- Alice computes s = p 1
- ullet Alice chooses e relatively prime to s
- Eve knows e and p and computes s and $d \equiv e^{-1} \mod s$
- Eve computes $x \equiv y^d \mod p$

When p is a n-bits prime number, the time complexity for this method is $O(n^3)$ overall. In step four, Eve will use this method and use Extended Euclidea's Algorithm to get decryption integer d which takes $O(n^3)$. In step five, Eve then using the modular exponentiation to recover the original message x, which takes $O(n^3)$. Overall, this method will take polynomial time to recover x.

(b)

With given s and public key e, we can use the Extended Euclidea's Algorithm to get the multiplicative inverse of e where

 $de \equiv 1 \text{ mod } s$

The time complexity for Extended Euclidea's Algorithm is $\mathcal{O}(n^3)$ and this is polynomial time.