Quantum Mechanics

Mark Benazet Castells

May 29, 2024

Week 11

Quantum Mechanics

Exercise Material

Webpage

Week 11

Review

Exercises

Quantum Mechanics

Review of Last Week

- Any questions on last week's topics?
- Feedback on the previous session?

Review

Review

Perturbation Theory Overview

Perturbation Theory

- Tool for approximating complex quantum systems
- Introduces small modifications to simpler, solvable systems
- ullet Starts with a well-established Hamiltonian $\hat{H}^{(0)}$

Hamiltonian Formulation

Hamiltonian Formulation

• New Hamiltonian:

$$\hat{H}_{new} = \hat{H}^{(0)} + \lambda \cdot \hat{H}'$$

- ullet \hat{H}_{new} : Hamiltonian for the complex problem
- $\hat{H}^{(0)}$: Solvable Hamiltonian
- ullet λ : Adjustable parameter (assumed to be one if not specified)
- \hat{H}' : Perturbation

Objective

Objective

• Solve the equation:

$$\hat{H}\psi_n = E_n\psi_n$$

• Using the solution of:

$$\hat{H}^{(0)}\psi_n^{(0)} = E_n^{(0)}\psi_n^{(0)}$$

Power Series Expansion

Power Series Expansion

 \bullet Energies and wavefunctions as second-order power series in λ

$$E_n = E_n^{(0)} + \lambda \cdot E_n^{(1)} + \lambda^2 \cdot E_n^{(2)}$$
$$\psi_n = \psi_n^{(0)} + \lambda \cdot \psi_n^{(1)} + \lambda^2 \cdot \psi_n^{(2)}$$

With a power series expansion we approximate with every order closer the solution.

Non-Degenerate Perturbation Theory

Non-Degenerate Perturbation Theory

- Quantum systems with distinct energy levels
- $E_n^{(0)} \neq E_m^{(0)}$
- ullet Unperturbed Hamiltonian $\hat{H}^{(0)}$
- ullet Eigenvalues $E_n^{(0)}$ and eigenfunctions $\psi_n^{(0)}$
- Perturbation \hat{H}' introduced

$$\hat{H}_{new} = \hat{H}^{(0)} + \lambda \hat{H}'$$

First-Order Energy Correction

$$E_n^{(1)} = \langle \psi_n^{(0)} | \hat{H}' | \psi_n^{(0)} \rangle$$

- Quantifies the primary influence of the perturbation
- Really important and simple to use! We can know our disturbance of energy by only knowing the difference in Hamiltonian and the unperturbed state!

First-Order Wavefunction Correction

$$\psi_n^{(1)} = \sum_{m \neq n} c_{mn} \psi_m^{(0)}$$
$$c_{mn} = \frac{\langle \psi_m^{(0)} | \hat{H}' | \psi_n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}}$$

- m = n term excluded
- $\psi_n = \psi_n^{(0)} + \lambda \psi_n^{(1)} + \lambda^2 \psi_n^{(2)}$

Second-Order Energy Correction

Second-Order Energy Correction

$$E_n^{(2)} = \sum_{m \neq n} \frac{|\langle \psi_m^{(0)} | \hat{H}' | \psi_n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}}$$

• Considers interactions between different energy levels

Example: Infinite Square Well

$$V(x) = \begin{cases} V_0, & 0 < x < \frac{a}{2} \\ 0, & \frac{a}{2} < x < a \end{cases}$$

- ullet V_0 is the perturbation strength
- ullet a is the width of the well

Unperturbed Hamiltonian

Unperturbed Hamiltonian

$$\psi_n^{(0)}(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right), \quad n = 1, 2, 3, \dots$$

First-Order Energy Correction Example

First-Order Energy Correction Example

$$E_n^{(1)} = \langle \psi_n^{(0)} | H' | \psi_n^{(0)} \rangle$$

$$E_n^{(1)} = \int_0^{a/2} \left(\sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)\right)^2 V_0 dx \tag{1}$$

$$=\frac{2}{a}\cdot V_0\cdot \frac{a}{4} \tag{2}$$

$$=\frac{V_0}{2}\tag{3}$$

Degenerate Perturbation Theory Overview

Degenerate Perturbation Theory

- Quantum systems with multiple eigenstates at identical energy levels
- Introduction of perturbation removes degeneracy

Energy Correction

- \bullet Degenerate eigenstates $\psi_a^{(0)}$ and $\psi_b^{(0)}$ with same eigenvalue $E^{(0)}$
- First-order energy correction:

$$E_{\pm}^{(1)} = \frac{1}{2} \left[W_{aa} + W_{bb} \pm \sqrt{(W_{aa} - W_{bb})^2 + 4W_{ab}^2} \right]$$
 (4)

• $W_{ij} = \langle \psi_i^{(0)} | H' | \psi_i^{(0)} \rangle$

Lifting Degeneracy

Lifting Degeneracy

Diagonalizing the W-Matrix

$$\begin{bmatrix} W_{aa} & W_{ab} \\ W_{ba} & W_{bb} \end{bmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E^{(1)} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Find eigenvalues of the matrix
- ullet Non-zero W_{ab} : Lifts degeneracy, appropriate linear combination
- Zero W_{ab} : Perturbation fails to distinguish states, degeneracy preserved

Variational Principle

Variational Principle

- Estimates ground state energy of a quantum system
- Useful for complex systems where Schrödinger equation is difficult to solve

Key Concept

- \bullet Ground state energy E_0 is the lowest expectation value of the Hamiltonian \hat{H}
- ullet Approximated using a trial wave function $\psi_{ ext{trial}}$

$$E_{gs} \leqslant \langle \psi_{\mathsf{trial}} | \hat{H} | \psi_{\mathsf{trial}} \rangle = E_{\mathsf{approx}}$$
 (5)

Application

Application

- Select a trial wave function with adjustable parameters
- Minimize the expectation value of the Hamiltonian

$$E_{\text{approx}} = \min_{\{\text{parameters}\}} \langle \psi_{\text{trial}} | \hat{H} | \psi_{\text{trial}} \rangle \tag{6}$$

 The trial wave function yielding the minimum expectation value is the best approximation

Example: Particle in Infinite Square Well

Example: Particle in Infinite Square Well

• Trial wave function:

$$\psi_{\mathsf{trial}}(x) = Ax(L - x) \tag{7}$$

Hamiltonian and Trial Energy

Hamiltonian and Trial Energy

- \bullet For an infinite square well, $\hat{H}=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$
- Trial energy:

$$E_{\rm approx} = \langle \psi_{\rm trial} | \hat{H} | \psi_{\rm trial} \rangle \tag{8}$$

Calculation

Calculation

Expectation value of the Hamiltonian:

$$\langle \psi | \hat{H} | \psi \rangle = \frac{\hbar^2}{m} \frac{L^3}{6}$$

• Normalization constant A^2 :

$$A^2 = \frac{L^5}{30}$$

• Trial energy:

$$E_{\mathsf{approx}} = \frac{5\hbar^2}{mL^2}$$

(10)

(9)

Mark Benazet Castells | ETH Zürich

Comparison with True Ground State Energy

Comparison with True Ground State Energy

Known ground state energy:

$$E_{gs} = \frac{\hbar^2 \pi^2}{2mL^2} \tag{12}$$

• Ratio:

$$\frac{E_{\mathsf{trial}}}{E_{gs}} = \frac{10}{\pi^2}$$

• Since $\pi^2 \approx 9.87$, the ratio is:

$$\frac{10}{\pi^2} < 5$$

Indicates a "good" guess

(13)

Comparison with True Ground State Energy

Perturbation Theory vs Variational Principle

Perturbation Theory

- Know answer to similar problem
- ullet Gives corrections to E_n and ψ_n
- Language to look for is:
 - Estimate to first order...
 - Consider the perturbation

Comparison with True Ground State Energy

Variational Principle

- No need to know anything
- ullet Gives estimate of E_{qs}
- Language to look for is:
 - Estimate E_{qs} ...
 - Use trial function...

Exercises

Exercises

Exercise 1

Really important, must do!

Exercises

Exercise 2

Really important, must do!

Exercises

Exercise 3

Interesting! There is a good video on Youtube

Questions?

THANK YOU all for coming!