

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 6

Название лабораторной работы: <u>Последовательный критерий</u> отношения правдоподобия

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		<u>Очкин Н.В.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Задание

- 1. Постройте последовательный критерий Вальда для проверки гипотезы H_0 : $a=a_0$ против альтернативы H_1 : $a=a_1$ при известном $\sigma=\sigma_1$. Ошибка первого рода задана в условии, ошибка второго рода β вычислена вами в пункте 4.
- 2. Примените построенный критерий к заданной выборке (порядок чтения по столбцам), сформулируйте результат. Дайте графическую иллюстрацию последовательного критерия.
- 3. Вычислите математическое ожидание момента принятия решения при основной гипотезе H_0 и при альтернативе H_1 .
- 4. Перепишите критерий S_1 из пункта 3 предыдущей задачи в виде $\left(\frac{L(\vec{X_n},a_1)}{L(\vec{X_n},a_0)} \geq C\right)$, отметьте на графике найденное значение и сравните результаты применения критериев Вальда и Неймана-Пирсона.
- 5. Сформулируйте выводы.

Исходные данные

α	a_0	σ_0	a_1	σ_1	ε	n	β	C_1
0.1	3	2.1	3.5	2.2	0.1	100	0.1608	3.2819

-3.442	1.295	3.672	2.354	5.238	1.136	4.421	2.071	0.269	0.894
8.202	0.605	-2.011	3.375	3.767	1.068	2.928	-0.276	4.924	3.31
5.741	6.951	3.417	2.991	5.599	4.896	9.197	3.823	1.827	5.389
2.504	4.212	-2.021	1.891	3.689	5.366	3.117	4.641	2.968	4.645
3.752	4.582	3.601	0.934	2.785	3.294	4.695	1.092	3.155	4.352
0.896	0.839	4.309	2.793	7.233	0.95	5.228	1.28	5.19	0.972
4.562	1.915	4.243	4.495	0.648	5.34	3.294	2.791	6.805	3.474
3.044	5.452	2.957	7.862	4.61	1.317	5.383	3.205	-1.022	3.602
3.373	5.415	4.093	5.407	0.501	2.135	1.957	0.826	5.34	3.759
1.735	-3.277	5.101	1.43	3.494	0.545	4.699	3.44	2.85	4.33

Ход выполнения работы

Построим последовательный критерий Вальда для проверки гипотезы $H_0: a=a_0=3$ против альтернативы $H_1: a=a_1=3.5$ при известном $\sigma=\sigma_1=2.2$.

Найдем такие границы A и B, которые удовлетворяют следующему условию:

$$B < z(\vec{X_n}) < A,$$

где

$$z(\vec{X_n}) = \frac{L(\vec{X_n}, a_1)}{L(\vec{X_n}, a_0)}$$
 — функция отношения правдоподобия

Положим

$$\nu = \min \left\{ n : z\left(\vec{X_n}\right) \notin (B, A) \right\},$$

то есть статистикой критерия будет $z(\nu, X_1, ..., X_{\nu}).$

Сформулируем критерий Вальда:

- если $z\left(\vec{X_n}\right) \geq A$, то принимается H_1
- если $z\left(\vec{X_n} \right) \leq B,$ то принимается H_0

Тогда ошибка первого рода принимает вид:

$$\alpha = P\left(z\left(\vec{X_n}\right) \ge A|H_0\right),$$

а ошибка второго рода:

$$\beta = P\left(z\left(\vec{X_n}\right) \le B|H_1\right).$$

Постоянные А и В вычислим по формулам Вальда:

$$A = \frac{1 - \beta}{\alpha} \qquad B = \frac{\beta}{1 - \alpha}$$

$$A_{-} = (1 - beta)/alpha$$

 $B_{-} = beta/(1 - alpha)$

$$A \approx 8.392$$
 $B \approx 0.1787$

Вычислим отношение правдоподобия:

$$\frac{L(\vec{X_n}, a_1, \sigma_1)}{L(\vec{X_n}, a_0, \sigma_1)} = \prod_{i=1}^n \frac{p(X_i, a_1, \sigma_1)}{p(X_i, a_0, \sigma_1)} = \prod_{i=1}^n \frac{1}{\sigma_1 \sqrt{2\pi}} \cdot e^{\frac{-(X_i - a_1)^2}{2\sigma_1^2}} = \prod_{i=1}^n \frac{1}{\sigma_1 \sqrt{2\pi}} \cdot e^{\frac{-(X_i - a_0)^2}{2\sigma_1^2}}$$

$$= \prod_{i=1}^{n} \exp \left[\frac{-(X_i - a_1)^2}{2\sigma_1^2} + \frac{(X_i - a_0)^2}{2\sigma_1^2} \right] = \exp \left[\sum_{i=1}^{n} \frac{-(X_i - a_1)^2 + (X_i - a_0)^2}{2\sigma_1^2} \right] =$$

$$= \exp \left[n \cdot \frac{a_0^2 - a_1^2}{2\sigma_1^2} + \frac{a_1 - a_0}{\sigma_1^2} \cdot \sum_{i=1}^n X_i \right]$$

Применим построенный критерий к данной выборке.

Введем следующее обозначение:

$$z = X^T$$

Тогда

$$Z(j) = \prod_{i=1}^{j} \exp \left[\frac{a_0^2 - a_1^2}{2\sigma_1^2} + \frac{a_1 - a_0}{\sigma_1^2} z_i \right]$$

Приведем графическую иллюстрацию последовательного критерия:

Заметим, что график пересекает прямую $B \Rightarrow$ принимается гипотеза H_0 .

Вычислим математическое ожидание момента принятия решения при основной гипотезе $H_0: a=a_0=3$ и при альтернативе $H_1: a=a_1=3.5$.

Найдем математическое ожидание момента принятия решения при основной гипотезе H_0 :

$$M_{a_0}\nu = \frac{\alpha ln(A) + (1 - \alpha)ln(B)}{M_0}$$

$$M_0 = M_{a_0} ln \left(\frac{\rho(X_k, a_1, \sigma_1)}{\rho(X_k, a_0, \sigma_1)} \right) = \frac{-(a_1 - a_0)^2}{2\sigma_1^2}$$

$$MO_{-} = -(a1 - a0)**2/(2 * sigma1**2)$$
 $MaOnu_{-} = (alpha * np.log(A_{-}) + (1 - alpha) * np.log(B_{-}))/MO_{-}$

$$M_0 \approx -0.025826$$
 $M_{a_0} \nu \approx 51.779566$

Найдем математическое ожидание момента принятия решения при основной гипотезе H_1 :

$$M_{a_1}\nu = \frac{\beta ln(B) + (1-\beta)ln(A)}{M_1}$$

$$M_1 = M_{a_1} ln \left(\frac{\rho(X_k, a_1, \sigma_1)}{\rho(X_k, a_0, \sigma_1)} \right) = \frac{(a_1 - a_0)^2}{2\sigma_1^2}$$

$$M1_ = (a1 - a0)**2/(2 * sigma1**2)$$
 $Ma1nu_ = (beta * np.log(B_) + (1 - beta) * np.log(A_))/M1_$

$$M_1 \approx 0.0258264$$
 $M_{a_1} \nu \approx 58.400497$

Перепишем критическое множество из пункта 3 в виде $\left(\frac{L(\vec{X_n}, a_1)}{L(\vec{X_n}, a_0)} \ge C\right)$, отметим на графике и сравним результаты применения критериев Вальда и Неймана-Пирсона.

Запишем критическое множество в следующем виде:

$$S = \left\{ \frac{L(X_k, a_1, \sigma_1)}{L(X_k, a_0, \sigma_1)} \ge C \right\} = \left\{ \exp\left[n \cdot \frac{a_0^2 - a_1^2}{2\sigma_1^2} + \frac{a_1 - a_0}{\sigma_1^2} \cdot \sum_{i=1}^n X_i \right] \ge C \right\}$$

Выразим \overline{X} :

$$S = \left\{ n \frac{a_0^2 - a_1^2}{2\sigma_1^2} + \frac{a_1 - a_0}{\sigma_1^2} \sum_{i=1}^n X_i \ge \ln(C) \right\} = \left\{ \frac{1}{n} \sum_{i=1}^n X_i \ge \frac{\left(\frac{\ln(C)}{n} - \frac{a_0^2 - a_1^2}{2\sigma_1^2}\right) \sigma_1^2}{(a_1 - a_0)} \right\}$$

Заметим, что $a_1 - a_0 = 0.5 > 0 \Rightarrow$ при делении знак неравенства не меняется.

Следовательно:

$$C_1 = 3.2819 = \frac{\left(\frac{\ln(C)}{n} - \frac{a_0^2 - a_1^2}{2\sigma_1^2}\right)\sigma_1^2}{(a_1 - a_0)}$$

Итого:

$$C = \exp\left[\frac{C_1(a_1 - a_0)n}{\sigma_1^2} + n\frac{a_0^2 - a_1^2}{2\sigma_1^2}\right]$$

$$C \approx 1.39034$$

Таким образом, получаем критическое множество:

$$S = \left\{ \frac{L(X_k, a_1, \sigma_1)}{L(X_k, a_0, \sigma_1)} \ge 1.39034 \right\}$$

Приведем графическую иллюстрацию последовательного критерия:

При n = 100:

 \Rightarrow принимается гипотеза H_0 .

Вывод

В процессе выполнения задания мы научились строить последовательный критерий Вальда для проверки простых гипотез о среднем значении нормального закона (основная гипотеза $H_0: a=a_0$ против альтернативы $H_1: a=a_1$ при известном $\sigma=\sigma_1$) а также применять построенный критерий к заданной выборке, вычислять математическое ожидание момента принятия решения при основной гипотезе H_0 и при альтернативе H_1 . Было установлено, что критерий Вальда и критерий Неймана-Пирсона дали одинаковый результат.

Приложение

Программный код, с помощью которого была выполнена данная лабораторная работа.

```
import numpy as np
from IPython.display import Math, display
import matplotlib.pyplot as plt
data_ = np.array([
    [-3.442, 1.295, 3.672, 2.354, 5.238, 1.136, 4.421, 2.071, 0.269, 0.894],
    [8.202, 0.605, -2.011, 3.375, 3.767, 1.068, 2.928, -0.276, 4.924, 3.31],
    [5.741, 6.951, 3.417, 2.991, 5.599, 4.896, 9.197, 3.823, 1.827, 5.389],
    [2.504, 4.212, -2.021, 1.891, 3.689, 5.366, 3.117, 4.641, 2.968, 4.645],
    [3.752, 4.582, 3.601, 0.934, 2.785, 3.294, 4.695, 1.092, 3.155, 4.352],
    [0.896, 0.839, 4.309, 2.793, 7.233, 0.95, 5.228, 1.28, 5.19, 0.972],
    [4.562, 1.915, 4.243, 4.495, 0.648, 5.34, 3.294, 2.791, 6.805, 3.474],
    [3.044, 5.452, 2.957, 7.862, 4.61, 1.317, 5.383, 3.205, -1.022, 3.602],
    [3.373, 5.415, 4.093, 5.407, 0.501, 2.135, 1.957, 0.826, 5.34, 3.759],
    [1.735, -3.277, 5.101, 1.43, 3.494, 0.545, 4.699, 3.44, 2.85, 4.33]
])
data_ = data_.T
new_data_ = []
for i in range(len(data_)):
    for j in range(len(data_[i])):
        new_data_.append(data_[i][j])
data_ = new_data_
data_
alpha = 0.1
a0 = 3
sigma0 = 2.1
a1 = 3.5
sigma1 = 2.2
epsilon = 0.1
n = 100
beta = 0.1608
C1 = 3.2819
def decorate_plot(ax, x_ticks, xname, yname, loc=(-0.025, -0.3)):
    SIZE_TICKS = 10
    # Eliminate upper and right axes
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    # Show ticks in the left and lower axes only
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
```

```
# axis names
    ax.set_xlabel(xname, fontsize=15)
    ax.xaxis.set_label_coords(0.98, 0.05)
    ax.set_ylabel(yname, rotation=0, fontsize=15)
    ax.yaxis.set_label_coords(0.025, 0.95)
    ax.set_xticks(x_ticks)
    # Adjust the font size of the tick labels
    ax.tick_params(axis='both', which='major', labelsize=SIZE_TICKS)
    plt.legend(fontsize=10, loc=loc)
    # Update font settings
    plt.rcParams.update({'font.family': 'serif', 'font.size': 12})
    # Adjust layout
    plt.tight_layout()
A_{-} = (1 - beta)/alpha
B_{-} = beta/(1 - alpha)
print(f'A: {A_}')
print(f'B: {B_}')
def Z(j):
    res = 1
    for i in range(0, j + 1):
        res *= np.exp((a0**2 - a1**2)/(2*sigma1**2) + (a1 - a0)/sigma1**2 * data_[i]
    return res
def buildBar(filename):
    RED = '#6F1D1B'
    _, ax = plt.subplots(figsize=(10, 6))
    x_values = np.arange(0, n)
    y_values = [Z(int(x)) for x in x_values]
    ax.plot(x_values,
           y_values,
           color=RED,
           linestyle='-',
           linewidth=1.5,
           label='Z(j)')
    ax.axhline(y=A_, color='green', linestyle='--', label=f'A')
    ax.axhline(y=B_, color='blue', linestyle='--', label=f'B')
    decorate_plot(ax, np.arange(0,n + 10,10), 'j', '', loc='best')
    # plt.savefig(f'{filename}.png', dpi=300, transparent=True)
    plt.show()
```

```
buildBar('iterative_crit_A_B')
MO_{-} = -(a1 - a0)**2/(2 * sigma1**2)
MaOnu_ = (alpha * np.log(A_) + (1 - alpha) * np.log(B_))/MO_
display(Math(f'$M_0 = \{MO_\}$'))
display (Math(f'$M_{{a_0}}\\nu = {MaOnu_}$'))
M1_{-} = (a1 - a0)**2/(2 * sigma1**2)
Ma1nu_ = (beta * np.log(B_) + (1 - beta) * np.log(A_))/M1_
display(Math(f'$M_1 = {M1}_{*}))
display(Math(f'$M_{{a_1}})\nu = {Ma1nu_}$'))
a1 - a0
C_{-} = np.exp((C1 * (a1 - a0) * n) / (sigma1**2) + n * (a0**2 - a1**2)/(2 * sigma1**2)
print(f'C = {C_}')
def buildBar(filename):
    RED = '#6F1D1B'
    _, ax = plt.subplots(figsize=(10, 6))
    x_values = np.arange(0, n)
    y_values = [Z(int(x)) for x in x_values]
    ax.plot(x_values,
           y_values,
           color=RED,
           linestyle='-',
           linewidth=1.5,
           label='Z(j)')
    ax.axhline(y=A_, color='green', linestyle='--', label=f'A')
    ax.axhline(y=B_, color='blue', linestyle='--', label=f'B')
    ax.axhline(y=C_, color='purple', linestyle='--', label=f'C')
    decorate_plot(ax, np.arange(0,n + 10,10), 'j', '', loc='best')
    # plt.savefig(f'{filename}.png', dpi=300, transparent=True)
    plt.show()
buildBar('iterative_crit_A_B_C')
likelihoodRatio_ = np.exp(n * (a0**2 - a1**2)/(2 * sigma1**2) + (a1 - a0)/sigma1**2
\label{linear} $$ display(Math(f'$$)\frac{\{L(\bar{\{X\}}_n, a_1, \sigma_1)\}}{\{L(\bar{\{X\}}_n, a_0, \sigma_1)\}} $$
```