Работа 2.1.2 Определение $\frac{C_p}{C_v}$ методом адиабатического расширения газа

Гаврилин Илья Дмитриевич Б01-101

26 апреля 2022 г.

1 Аннотация

В данной работе определили $\gamma = \frac{C_p}{C_v}$ для воздуха с помощью измерения давления в стеклянном сосуде. Измерения производились после адиабатического расширения газа, а затем после нагревания воздуха в сосуде до комнатной температуры. Оценено время установления теплового равновесия после накачивания давления в сосуд. Оценены погрешности полученных величин.

2 Теоретические сведения

Используемая для опытов экспериментальня установка состоит из стеклянного сосуда A (объёмом около 20 л), снабженного краном K, и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на Рис. 1.

Избыточное давление создаётся с помощью резиновой груши, сосединённой с сосудом трубкой с краном K_1 .

В начале опыта в стеклянном сосуде A находится исследуемый газ при комнатной температуре T_1 и давлении P_1 , несколько превышающем атмосферное давление P_0 . После открытия крана K, соединяющего сосуд A с атмосферой, давление и температура газа будут понижаться. Это уменьшение температуры приближённо можно считать адиабатическим.

Для адиабатического процесса можно записать следующее уравнение:

$$\left(\frac{P_1}{P_2}\right)^{\gamma-1} = \left(\frac{T_1}{T_2}\right)^{\gamma},\tag{1}$$

где индексом "1"обозначено состояние после повышения давления в сосуде и выравнивания температуры с комнатной, а индексом "2"— сразу после открытия крана и выравнивания давления с атмосферным.

После того, как кран K вновь отсоединит сосуд от атмосферы , происходит медленное изохорическое нагревание газа со скоростью, определяемой теплопроводностью стеклянных стенок сосуда. Вместе с ростом температуры растёт и давление газа. З время порядка Δt_T (время установления температуры) система достигает равновесия, и установившаяся температура газа T_3 становится равной комнатной температуре T_1 .

Тогда используя закон Гей-Люссака для изохорического процесса и уравнение (1) найдём γ :

$$\gamma = \frac{\ln(P_1/P_0)}{\ln(P_1/P_3)} = \frac{\ln(1 + \rho g h_1/P_0)}{\ln(1 + \rho g h_1/P_0) - \ln(1 + \rho g h_2/P_0)}.$$
 (2)

Разлагая логарифмы в ряд и пренебрегая членами второго порядка малости получим из (2):

$$\gamma \approx \frac{h_1}{h_1 - h_2}.\tag{3}$$

В работе рассмотрим отличие значения γ получаемое из (2) и (3).

Рис. 1: Схема экспериментальной установки

3 Ход работы

Определим время установления термодинамического равновесия после накачки воздуха, также проверим систему на герметичность, наблюдая за изменением давления после установления термодинамического равновесия.

Рис. 2: Зависимость разности столбиков жидкости от времени

Убедились, что система надежно держит давление, теперь проведем измерения разности высоты в жидкостном манометра перед адиабатическим расширением и после установления теплового равновесия. Получили значение времени установления равновесия порядка одной минуты.

Δt , сек	h_1 , cm	h_2 , cm	$\gamma_1^{-1}(2)$, отн. ед.	$\overline{\gamma_1}$ (2), отн. ед.	γ_2^1 (3), отн. ед.	$\overline{\gamma_2}$ (3), отн. ед.
0.5	14.9	3.6	1.321	1.324 ± 0.005	1.319	1.321 ± 0.005
	18.3	4.4	1.319		1.317	
	20.5	5	1.325		1.322	
	20.1	5	1.334		1.331	
	20.3	4.9	1.321		1.318	
1	19.7	4.7	1.316	1.310 ± 0.011	1.313	1.308 ± 0.011
	19.9	4.9	1.330		1.327	
	13.8	3.2	1.304		1.302	
	13.9	3.2	1.301		1.299	
	18.3	4.2	1.301		1.298	
2	21.3	4.6	1.278	1.289 ± 0.008	1.275	1.287 ± 0.009
	17.4	4	1.301		1.299	
	16.5	3.6	1.281		1.279	
	17.7	4	1.294		1.292	
	18.7	4.2	1.292		1.290	
4	20.1	4.2	1.27	1.25 ± 0.06	1.26	1.25 ± 0.06
	19.1	3.8	1.25		1.25	
	21.9	4.4	1.25		1.25	
	22.5	4.5	1.25		1.25	
	16.9	3.2	1.24		1.23	

Таблица 1: Рассчет показателя адиабаты γ

По полученным значениям коэффициента γ построим график зависимости $\gamma(\Delta t)$. Аппроксимируя прямой к значению $\Delta t_0 = 0.1$ сек. получим значение γ , с учетом минимального отклонения процесса расширения от адиабатического.

Также немаловажным вопросом является оценка полученной величины γ^2 , так как она получается путем подстановки в аппроксимирующую прямую. В виду того, что $\gamma=k\Delta t+b$, из логики вычисления погрешности суммы получим: $\sigma(\gamma)=\sqrt{\sigma(k\Delta t)^2+\sigma(b)^2}$. При этом, Δt как таковой погрешности в нашем случае не имеет, потому что мы берем его фиксированным значением равным 0.1 сек. По итогу после применения МНК и подстановки погрешностей в формулу получим: $\sigma(\gamma)=0.002$ отн. ед. Для последнего интервала Δt получили достаточно большую погрешность. Скорее всего это связано со сложностью измерения времени открытия крана. На других интервалах открытие крана представляло непрерывное вращение ручки с разными скоростями, что при достаточной сноровке дает возможность делать схожие по времени интервалы. В последнем же случае приходилось оставлять кран без движения что дает большой разбег значений времени открытия крана.

 $^{^{1}}$ В работе при получении формулы (3) мы пренебрегли членами второго порядка при разложении в ряд, из-за этого несомненно возникла некая погрешность. Для понимания ее величины подсчитал γ двумя способами: γ_{1} - с использованием точной формулы (2); γ_{2} - с использованием приближения (3).

²Данный вопрос указан в пункте 3 вывода

Рис. 3: Зависимость показателя адиабаты от времени открытия крана

4 Вывод

1) Оценили показатель адиабаты $\gamma = 1.330 \pm 0.002$, эталонным для воздуха является значение $\gamma = 1.4$, с учетом погрешности значения мы не попадаем в эталонное значение. Однако, в работе не была учтена погрешность определения времени открытия крана, потому что оно является субъективным показателем и невозможно дать какую-либо оценку способности человека отмерять интервалы времени. Также достаточно сложным для определения является момент соединения емкости с атмосферой, так как кран имеет достаточно узкое отверстие.

Ввиду вышесказанного можем отметить, что предоставленный метод является лишь способом оценки порядка γ , а никак не получением ее точного значения. С учетом этого полученное в ходе работы значение является вполне хорошим для оценки γ .

- 2) Оценили время установления теплового равновесия системы. Оно оказалось равным порядка одной минуты.
- 3)В ходе работы был поставлен важный вопрос об оценке погрешности величины, полученной подстановкой эталонного значения в аппроксимирующую функцию (См. раздел 3 работы).