Section for Statistical Theory

TA: Cong Mu

Office Hour: Wednesday 09:30AM - 11:30AM

September 10 & 11, 2020

Overview

- Review
 - Preliminaries
 - Sufficiency
 - Completeness
 - Exponential Families
- 2 Problems

Preliminaries

Regular Models

Models $\mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}$ will be called regular parametric models if either one of the followings hold

- **1** All of the P_{θ} are continuous with densities $p(x, \theta)$.
- ② All of the P_{θ} are discrete with frequency functions $p(x, \theta)$, and the set $\{x \mid p(x, \theta) > 0\}$ is the same for all $\theta \in \Theta$.

Preliminaries

Bias-variance tradeoff

- Low bias with high variance.
- 2 High bias with low variance.

MSE

Let $\hat{\theta}$ be an estimator of a parameter θ , then

$$MSE\left(\widehat{\theta}\right) = \left(Bias\left[\widehat{\theta}\right]\right)^2 + Var\left[\widehat{\theta}\right],$$

where

$$Bias\left[\widehat{\boldsymbol{\theta}}\right] = E\left[\widehat{\boldsymbol{\theta}}\right] - \boldsymbol{\theta}.$$

Sufficiency

Sufficient Statistic

A statistic T(X) is called sufficient for $P_{\theta} \in \mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}$ if the condition distribution of X given T(X) = t does not involve θ .

Factorization Theorem for Sufficient Statistics

In a regular model, a statistic $T(\boldsymbol{X})$ with range \mathcal{T} is sufficient for θ if and only if there exists a function $g(t,\theta)$ defined for $t\in\mathcal{T}$ and $\theta\in\Theta$ and a function $h(\boldsymbol{x})$ defined for $\boldsymbol{x}\in\mathcal{X}$ such that for all $\boldsymbol{x}\in\mathcal{X}$ and $\theta\in\Theta$

$$p(x, \theta) = g(T(x), \theta) h(x).$$

Sufficiency

Minimal Sufficient Statistic

A statistic T(X) is called minimally sufficient if it is sufficient and provides a greater reduction of the data than any other sufficient statistic S(X), i.e., we can find a transformation r such that T(X) = r(S(X)).

Characterization for Minimal Sufficient Statistics

A statistic T(X) is minimally sufficient **if and only if**

$$\frac{p\left(\boldsymbol{x},\theta\right)}{p\left(\boldsymbol{y},\theta\right)}$$
 does not involve $\theta \iff \mathsf{T}\left(\boldsymbol{x}\right) = \mathsf{T}\left(\boldsymbol{y}\right)$.

Completeness

Complete Statistic

A statistic T (X) is called complete for $P_{\theta} \in \mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}$ if for every measurable function g,

$$E_{\theta}\left[g\left(T\right)\right]=0,\ \forall\theta\qquad\Longrightarrow\qquad P_{\theta}\left[g\left(T\right)=0\right]=1,\ \forall\theta.$$

Sufficiency and Completeness

Rao-Blackwell Theorem

If g(X) is an estimator of parameter θ , then the Rao–Blackwell estimator $g_*(X) = E[g(X)|T(X)]$ where T(X) is a sufficient statistic is typically a better estimator of θ . With respect to MSE, that is

$$E\left[\left(g_{*}\left(X\right)-\theta\right)^{2}\right]\leqslant E\left[\left(g\left(X\right)-\theta\right)^{2}\right].$$

Lehmann-Scheffé Theorem

If an unbiased estimator depends on the data only through a complete and sufficient statistic for some parameter θ , then it is the minimum-variance unbiased estimator (MVUE) of θ .

One-Parameter Exponential Families

The family of distributions of a model $\{P_{\theta} \mid \theta \in \Theta\}$ is said to be a one-parameter exponential family if there exist real-valued functions $\eta\left(\theta\right)$, $B\left(\theta\right)$ defined for $\theta \in \Theta$, real-valued functions $T\left(x\right)$, $h\left(x\right)$ defined for $x \in \mathcal{X}$ such that the density (frequency) functions $p\left(x,\theta\right)$ of P_{θ} can be written as

$$p(x, \theta) = h(x) \exp [\eta(\theta) T(x) - B(\theta)].$$

Note that the functions $\eta\left(\theta\right)$, $B\left(\theta\right)$ and $T\left(x\right)$ are not unique. By **Factorization Theorem for Sufficient Statistics**, $T\left(X\right)$ is sufficient for θ .

Canonical One-Parameter Exponential Families

A useful reparametrization of the one-parameter exponential family by letting the model be indexed by η rather than θ has the form as

$$q\left(x,\eta\right) =h\left(x\right) \exp\left[\eta T\left(x\right) -A\left(\eta\right) \right] \text{,}$$

where

$$A(\eta) = \begin{cases} \log \int h(x) \exp [\eta T(x)] dx & \text{continuous case} \\ \log \sum h(x) \exp [\eta T(x)] & \text{discrete case} \end{cases}.$$

Note that $x \in \mathcal{X}$ and $\eta \in \mathcal{E}$ where \mathcal{E} is the collection of all η such that $A(\eta)$ is finite.

k-Parameter Exponential Families

The family of distributions of a model $\{P_{\theta} \mid \theta \in \Theta \subset \mathbb{R}^k\}$ is said to be a k-parameter exponential family if there exist real-valued functions $\eta_1\left(\theta\right), \cdots, \eta_k\left(\theta\right)$, $B\left(\theta\right)$ defined for $\theta \in \Theta$, real-valued functions $T_1\left(x\right), \cdots, T_k\left(x\right)$, $h\left(x\right)$ defined for $x \in \mathcal{X}$ such that the density (frequency) functions $p\left(x,\theta\right)$ of P_{θ} can be written as

$$p(x, \theta) = h(x) \exp \left[\eta^{T}(\theta) T(x) - B(\theta) \right],$$

where

$$\boldsymbol{\eta}\left(\boldsymbol{\theta}\right) = \begin{bmatrix} \eta_{1}\left(\boldsymbol{\theta}\right) & \cdots & \eta_{k}\left(\boldsymbol{\theta}\right) \end{bmatrix}^{\top},$$

$$\boldsymbol{T}\left(\boldsymbol{x}\right) = \begin{bmatrix} T_{1}\left(\boldsymbol{x}\right) & \cdots & T_{k}\left(\boldsymbol{x}\right) \end{bmatrix}^{\top}.$$

Canonical k-Parameter Exponential Families

A useful reparametrization of the k-parameter exponential family by letting the model be indexed by η rather than θ has the form as

$$q(x, \eta) = h(x) \exp \left[\eta^{T} T(x) - A(\eta) \right],$$

where

$$A(\boldsymbol{\eta}) = \begin{cases} \log \int h(x) \exp \left[\boldsymbol{\eta}^{\top} \boldsymbol{T}(x)\right] dx & \text{continuous case} \\ \log \sum h(x) \exp \left[\boldsymbol{\eta}^{\top} \boldsymbol{T}(x)\right] & \text{discrete case} \end{cases}$$

Note that $x \in \mathcal{X}$ and $\eta \in \mathcal{E}$ where \mathcal{E} is the collection of all η such that A (η) is finite.

Normal Distribution

• Multivariate Normal: $X \sim \mathcal{N}(\mu, \Sigma)$

$$\mathsf{f}_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^k |\boldsymbol{\varSigma}|}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\varSigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right].$$

• Bivariate Normal: $(X,Y) \sim \mathcal{N}\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho\right)$

$$f_{X,Y}(x,y) = \frac{\exp(z)}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}},$$

where

$$z = -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} \right].$$

Bivariate Normal

Marginal and Conditional Distribution

The marginal and conditional distributions of bivariate normal are normal. That is, if $(X,Y) \sim \mathcal{N}(\mu, \Sigma)$ where

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_Y \end{bmatrix}, \qquad \boldsymbol{\varSigma} = \begin{bmatrix} \boldsymbol{\sigma}_X^2 & \boldsymbol{\rho} \boldsymbol{\sigma}_X \boldsymbol{\sigma}_Y \\ \boldsymbol{\rho} \boldsymbol{\sigma}_X \boldsymbol{\sigma}_Y & \boldsymbol{\sigma}_Y^2 \end{bmatrix}.$$

Then $X \sim \mathcal{N}\left(\mu_X, \sigma_X^2\right)$, $Y \sim \mathcal{N}\left(\mu_Y, \sigma_Y^2\right)$ and $X \mid Y = y \sim \mathcal{N}\left(\mu_{X\mid Y}, \sigma_{X\mid Y}^2\right)$ where

$$\mu_{X|Y} = \mu_X + \rho \frac{\sigma_X}{\sigma_Y} \left(y - \mu_Y \right) \text{,} \qquad \sigma_{X|Y}^2 = \left(1 - \rho^2 \right) \sigma_X^2$$

Problem 1.1.1(d), page 67 in [B&D, 2015]

The number of eggs laid by an insect follows a Poisson distribution with unknown mean λ . Once laid, each egg has an unknown chance p of hatching and the hatching of one egg is independent of the hatching of the others. An entomologist studies a set of n such insects observing both the number of eggs laid and the number of eggs hatching for each nest.

Problem 1.3.11(a), page 78 in [B&D, 2015]

A decision rule δ is said to be unbiased if for all θ , $\theta' \in \Theta$, we have

$$\mathsf{E}_{\theta}\left[\ell\left(\theta,\delta\left(\boldsymbol{X}\right)\right)\right]\leqslant\mathsf{E}_{\theta}\left[\ell\left(\theta',\delta\left(\boldsymbol{X}\right)\right)\right].$$

Show that if θ is real and $\ell(\theta, \alpha) = (\theta - \alpha)^2$, then this definition coincides with the definition of an unbiased estimate of θ .

Problem 1.5.1, page 84 in [B&D, 2015]

Let $X_1, \dots, X_n \sim \text{Poisson}(\theta)$ iid where $\theta > 0$.

- **1** Show directly that $T(X) = \sum_{i=1}^{n} X_i$ is sufficient for θ .
- 2 Establish the same result using the factorization theorem.

Problem 1.5.12, page 86 in [B&D, 2015]

Let $\mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}$ where P_{θ} is discrete concentrated on $\mathcal{X} = \{x_1, x_2, \cdots\}$. Let

$$p\left(x,\theta\right)=P_{\theta}\left[X=x\right]=L_{x}\left(\theta\right)>0\ \ \text{on}\ \ \mathfrak{X}.$$

Show that $\frac{L_X(\cdot)}{L_X(\theta_0)}$ is minimal sufficient.

References

Bickel, Peter J., and Kjell A. Doksum. (2015) Mathematical statistics: basic ideas and selected topics, volume I. CRC Press.

Thanks for listening!