Full N 8:02.

P(A) 2 (A)

Expleyer: Representation: $P_{n}=n!$; Sequence $A_{n}^{m}=\frac{n!}{(n-m)!}$; constant $C_{n}^{m}=\frac{n!}{(n-m)!}$

 $P(A) = \frac{|A|}{|Q|} = \frac{3 \cdot C_{4}^{2} \cdot C_{4}^{2} \cdot C_{4}^{2}}{C_{12}^{2}} = \frac{3 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9}{47 \cdot 11 \cdot 10 \cdot 95} = \frac{32}{55}$

Submonuepase plenpequeune un ornerne $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$ $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$ $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$ $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$ $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$ $fg = \begin{cases} \frac{1}{b-a} & \text{if } \frac{a+b}{b-a} \end{cases}$

 $\{-p.p.l.1,5\}$ $D_{\xi} = \frac{36}{12} = 3$ $G_{\xi} = \sqrt{3}$

 $P(-\sigma_{\xi} < \xi < \delta_{\xi}) = P(-v_3) (\xi < v_3) = F(v_3) - F(-v_3) = \frac{\sqrt{3}+1}{6} - \frac{1-v_3}{6} = \frac{2\sqrt{3}}{6}.$

	P(ui)	PLAINT)
\mathcal{U}_{ℓ}	3 18	25
Hz	<u>6</u> 18	20
Hs	18	15 30

$$P(A) = \sum_{i=1}^{5} P(N_i) \cdot P(A|N_i) = \frac{5}{36} + \frac{2^{14}}{9} + \frac{9}{36} = \frac{22}{36} = \frac{11}{18}$$

$$P(H_2|A) = \frac{P(N_2) \cdot P(A|N_2)}{P(A)} = \frac{2}{9} \cdot \frac{18^2}{11} = \frac{4}{11}$$

$$P(H_3|A) = \frac{P(N_3) \cdot P(A|H_3)}{P(A)} = \frac{9}{20} \cdot \frac{18}{11} = \frac{9}{22}$$

$$P(B) = P(H_2|A) + P(N_3|A) = \frac{472}{11} + \frac{9}{22} = \frac{73}{12}$$

S1 62	-1	0	1
-1	19 4	10 h	10
0	S/g	1/9 V	1/9/1
1	19	1/g ^M	T/g/2

$$\frac{\mathcal{L}_{1} - 2 - 1 | \mathcal{O} | 1 | 2}{P | 1/g | 2/g | 1/3 | 2/g | 1/g}$$

$$\frac{\mathcal{L}_{2} - 1 | \mathcal{O} | 1}{P | 2/g | 5/g | 2/g} = \frac{\mathcal{O} - \mathcal{O} \cdot \mathcal{O} = \mathcal{O}}{\mathcal{O} \cdot \mathcal{O} = \mathcal{O}}$$

$$\begin{array}{c}
2 \\
1 \\
1 \\
2 \\
3 \\
3 \\
7
\end{array}$$

$$\begin{array}{c}
2 \\
3 \\
3 \\
7
\end{array}$$

	N5	13-1= 13 PZ= {(r,y)}y> 2x+2}
	- (
	S2 2	$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{6}$
	\int_{Ω_2}	$nG = \frac{1}{3} \cdot \frac{1}{6} = \frac{1}{2}$
	Fa	(2): P(Y \ 2): P(2\ - \ 1 \ \ 2):
<i>></i>	ξ ;	Sc = 1 . 3 - 1
		16