

FAI Sporting Code

Fédération Aéronautique Internationale

Section 6

International Aerobatic Events:
Statistical Method
for Processing Scores

Maison du Sport International Av. de Rhodanie 54 CH-1007 Lausanne (Switzerland) Tél. +41 (0)21 345 10 70 Fax +41 (0)21 345 10 77 E-mail: sec@fai.org Web: www.fai.org

Version 2016-1

Effective 1st January 2016

Version 2016-1

FEDERATION AERONAUTIQUE INTERNATIONALE MSI - Avenue de Rhodanie 54 – CH-1007 Lausanne – Switzerland

Copyright 2016

All rights reserved. Copyright in this document is owned by the Fédération Aéronautique Internationale (FAI). Any person acting on behalf of the FAI or one of its Members is hereby authorised to copy, print, and distribute this document, subject to the following conditions:

- 1. The document may be used for information only and may not be exploited for commercial purposes.
- 2. Any copy of this document or portion thereof must include this copyright notice.
- 3. Regulations applicable to air law, air traffic and control in the respective countries are reserved in any event. They must be observed and, where applicable, take precedence over any sport regulations.

Note that any product, process or technology described in the document may be the subject of other Intellectual Property rights reserved by the Fédération Aéronautique Internationale or other entities and is not licensed hereunder.

TABLE OF CONTENTS

1.	THE CIVA FAIR PLAY SYSTEM - PURPOSE				
2.	Overview				
3.	Pre-Processing				
3.1.	Dealing with Hard Zeros and Missed Figures				
3.2.	Identifying Figure Grades for Analysis				
3.3.	Grouping Figure Grades for Analysis	2			
3.4.	Confirmation of Hard Zero				
3.5.					
3.6.	Treatment of Perception Zero Grades				
4.	DEFINITIONS				
4.1.	The Basic Data Values	4			
5.	GROUP PROCESSES				
5.1.	Normalisation of a Data Group				
5.2.	Derivation of Fitted Values				
5.3.	Assessment of Anomalous Grades				
5.4.	Treatment of Anomalous Grades	(
5.5.	Second Normalisation of the Group				
5.6.	Replacement of Missing Grades	<i>'</i>			
5.7.	Assembly of Processed Grades by Pilot	<i>'</i>			
6.	SEQUENCE PROCESSES.	8			
6.1.	Normalisation of Sequence Scores	8			
6.2.	Derivation of Sequence Fitted Values	8			
6.3.	Assessment of Sequence Anomalies				
6.4.	Interim Final Sequence Score	9			
6.5.	Second FPS Iteration and Final Sequence Score	9			
7.	PROCESS SUMMARY	9			
7.1.					
8.	JUDGING PERFORMANCE ANALYSIS				
8.1.	Ranking Index (RI)	10			
8.2.	Low and High Scoring Anomalies	1			
8.3.	Discrimination				
8.4.	Hard Zero Anomalies				
8.5.	Sequence Score Anomalies	1			
CODI	O OF AMENDMENTS	11			

1. The CIVA Fair Play System - Purpose

1.1.1.1. Calculation of grades and scores for an aerobatic competition Programme using a mathematical process to give equal importance to all judges, while replacing anomalous grades with statistically fitted values.

2. Overview

The rating of a pilot performance for a given flight is an amount of points arising from two separate sources:

- 2.1.1.1. An evaluation of the quality of flown figures and of a flight's positioning with a grade given by judges observing the flight, on a scale ranging from 0 to 10 in increments of 0.5. These grades are multiplied by difficulty coefficients for each figure and added to derive a score for the programme for each pilot.
- 2.1.1.2. Penalties arising from height or time infringements and/or interruptions of the program sequence and other disciplinary actions.
- 2.1.1.3. The scores from C.2.1.1 are subject to random and systematic errors due to the inevitable lack of exactness of judging. The purpose of the Fair Play system is to reduce the effect of those errors to a minimum. The penalties from C.2.1.2 are not subject to the same errors and are simply subtracted from the scores results C.2.1.1 after they have been calculated as described below.

3. Pre-Processing

3.1. Dealing with Hard Zeros and Missed Figures

- 3.1.1.1. Prior to the scoring data being entered into the computer, the Chief Judge must ascertain the validity of Hard Zero grades. If a figure is determined to have been a Confirmed Hard Zero, this must be designated by the Chief Judge. The grades given to that figure by the grading judges must not be altered prior to being input into the computer.
- 3.1.1.2. For a figure determined not to be a Confirmed Hard Zero, any "HZ" grade given by a grading judge must remain unaltered prior to data entry into the scoring computer.
- 3.1.1.3. Figures that have been missed by a grading judge must be marked "A". These missing grades will be replaced automatically by the Fair Play system.

3.2. Identifying Figure Grades for Analysis

- 3.2.1.1. Prior to the start of the Programme, the data input to the scoring computer will include the number of pilots, the number of figures (including positioning and, for gliders, harmony) each pilot will fly, the K-factors of each figure and the number of judges for the programme.
- 3.2.1.2. Each figure will be given a full identifying number in the format *kkkffpp* where:
 - a) kkk is the K-factor, with leading zeros if necessary, e.g. "037" if K-factor =37
 - b) ff is the figure number, with leading zeros if necessary, and
 - c) *pp* is the pilot number, with leading zeros if necessary.
- 3.2.1.3. Note that the number pp allocated to a pilot must remain the same throughout a contest and should not be confused with the flight order number any pilot may be allocated for a particular programme.

3.3. Grouping Figure Grades for Analysis

- 3.3.1.1. Statistical manipulation must only be carried out on sets of data of reasonable size. Furthermore, such analysis is best conducted on sets of data that share similar source characteristics. To meet these requirements, the grading data from a programme must be combined into appropriate groups.
- 3.3.1.2. For the purpose of the Fair Play analysis, data will be arranged in groups in the following generalised format:

K-factor	Figure #	Pilot #	Judge 1	Judge 2	 	Judge j
Kkk ₁	ff	pp	Grade _{1,1}			
Kkk ₂	ff	pp				
Kkk ₃	ff	pp				
kkk _n	ff	pp				Grade _{n,j}

3.3.1.3. In such a data set, the arrangement of rows will be by ascending value of the full figure Identification Number *kkkffpp*. In compulsory programmes, Known and Unknown, all pilots fly the same figures and the number of rows per data group will normally be the same as the number of pilots. This means that each data group in a compulsory sequence will correspond to a figure of that sequence flown by all pilots, in the form:

K-factor	Figure #	Pilot #	Judge 1	Judge 2	 	Judge j
kkk	Figure 1	Pilot 1	Grade _{1,1}			
kkk	Figure 1	Pilot 2				
kkk	Figure 1	Pilot 3				
kkk	Figure 1	Pilot p				Grade _{p,j}

3.3.1.4. Exceptionally, if the number of pilots is less than 11, the target number of rows for each group (NrmGrp) will be as follows:

Number of Pilots	2	3	4	5	6	7	8	9	10
Group Size	12	12	12	15	12	14	16	18	20

3.3.1.5. Free Known Programmes

- a) In Free Known Programmes, every year CIVA selects five 'Known' or master figures for each category using the code letters "A" to "E" to which each competitor must add five 'Free' or complementary figures each coded "F" to create their sequence.
- b) The Harmony (G) and Positioning (P and G) figure codes will be set to "0" and "1".

3.3.1.6. Grouping of Free Known figures

- a) In the figures coded "A" to "E" the data groups will be formed from within each figure code, unless Np is less than 11. The target number of rows for each group (NrmGrp) will be the number of pilots whose flights have been judged, while the minimum group size (MinGrp) will remain 11 rows. When Np < 11, then NrmGrp will be as tabulated in C.3.3.4, and a group may contain figures from more than one figure code.
- b) The data rows with 'Free' or complementary figures coded "F" will be sorted by increasing K value. Where figures have the same K value they will be further sorted by the figure number within the pilots' sequence.
- c) In the figures coded "F" the group size will equal the number of pilots, containing every pilot once with the pilots' least remaining K value / figure number. A group may contain more than one K value. The target number of rows for each group (NrmGrp) will be the number of pilots whose flights have been judged, while the minimum group size (MinGrp) will remain 11 rows. When Np < 11, then NrmGrp will be as tabulated in C.3.3.4. and a group may contain every pilot more than once.
- d) In the Positioning and Harmony data sets, the group size will equal the number of pilots, i.e. each will contain the complete Positioning or Harmony data set. If the number of pilots (Np) whose flights have been judged is < 11, however, then these data sets will be combined into a group containing them both.</p>

3.3.1.7. Free Unknown Programmes

- a) In Free Unknown Programmes, the International Jury will give the ten common figures code letters "A" to "J" at the time of submission, and these letters must be maintained as the identifier for that figure in each sequence.
- b) The Jury will annotate the linking figures in each sequence, from a single link up to a maximum of four, with the figure codes "L1", "L2", L3" and "L4" sequentially.
- c) The Harmony (G) and Positioning (P and G) figure codes will be set to "0" and "1".

3.3.1.8. Grouping of Free Unknown figures

- a) In the figures with codes "A" to "J", the data groups will be formed from within each figure code, unless Np is less than 11. The target number of rows for each group (NrmGrp) will be the number of pilots whose flights have been judged, while the minimum group size (MinGrp) will remain 11 rows. When Np < 11, then NrmGrp will be as tabulated in C.3.3.4, and a group may contain figures from more than one figure code.</p>
- b) In the linking figures coded "L1" to "L4", the data groups will be formed from within each figure code, unless Np is less than 11. The target number of rows for each group (NrmGrp) will be the number of pilots whose flights have been judged, while the minimum group size (MinGrp) will remain 11 rows. When Np < 11, then NrmGrp will be as tabulated in C.3.3.4, and a group may contain figures from more than one linking figure code.</p>
- c) In the Positioning and Harmony data sets, the group size will equal the number of pilots, i.e. each will contain the complete Positioning or Harmony data set. If the number of pilots (Np) whose flights have been judged is < 11, however, then these data sets will be combined into a group containing them both.</p>

3.3.1.9. Free programmes

With effect from 2016 the CIVA Known and Free programmes are discontinued. Instructions

regarding the coding of data groups for these legacy formats using the Fair Play system can be found in CIVA Section 6 documents from 2015 and before.

3.4. Confirmation of Hard Zero

- 3.4.1.1. The first stage of processing is to set to "HZ" all numerical grades given to a figure subsequently deemed to be a Confirmed Hard Zero by the Chief Judge. Any grade thus reduced to "HZ" must result in an increment to the particular judge's record for determining the HZ anomaly count of the Judging Performance Analysis.
- 3.4.1.2. Once confirmed Hard Zeros have been implemented, each pilot's score sheet should be printed and made available for inspection along with the judges grading sheets.

3.5. Treatment of Other "HZ" or of "A" Grades

3.5.1.1. If a figure is not deemed to be a Confirmed Hard Zero, any "HZ" or "A" grades given for that figure must be treated as missing data points. Such grades will therefore be excluded from the calculation of means or standard deviations until such time as they are replaced later in the process. For each "HZ" grade that is not confirmed, an increment will be made to the judge's HZ anomaly count.

3.6. Treatment of Perception Zero Grades

3.6.1.1. Perception Zero grades are not subject to the same confirmation process as Hard Zeros. They are generally treated as valid numerical grades in the same way as non-zero grades. However, Perception Zero grades should not influence the normalisation of non-zero grades that is described below.

4. Definitions

4.1. The Basic Data Values

4.1.1.1. Define the Raw Grades, for a given sequence, as:

S(ff, pp, j)

This is the Grade awarded by Judge *j* to Pilot *pp* flying Figure *ff*.

4.1.1.2. These Grades are then divided into semi-homogeneous Groups as defined above, and are now defined as:

 $R_{\alpha}(fp, j)$

This is the Grade awarded by Judge j to (Pilot p flying Figure f) in Group g, and is represented physically by a rectangular array of numbers where fp is the row index and j is the column index.

4.1.1.3. There should also be a count indicator of values 0 and 1 to indicate 0 for any SZ, HZ or A values. These are designated: $N_g(fp, j)$

4.1.1.4. Counts

a) Pilot Count = No. Judges who score this pilot/figure combination

$$C_{\alpha}(fp, *) = \Sigma_{i} \{N_{\alpha}(fp, j)\}$$
 (1)

b) Judge Count = No. Pilot/figures scored by this judge

$$C_g(*,j) = \Sigma_{fp} \{ N_g(fp,j) \}$$
 (2)

c) Overall Count = Total number of Scores

$$C_g(*, *) = \Sigma_{fp,j} \{N_g(fp, j)\}$$
 (3)

4.1.1.5. Mean Values

a) Pilot Mean

$$mR_{q}(fp, *) = \sum_{i} \{R_{q}(fp, j)\}/C_{q}(fp, *)$$
(4)

b) Judge Mean

$$mR_g(*, j) = \Sigma_{fp} \{R_g(fp, j)\}/C_g(*, j)$$
 (5)

c) Overall Mean

$$mR_{q}(*,*) = \sum_{fp,j} \{R_{q}(fp,j)\}/C_{q}(*,*)$$
(6)

- 4.1.1.6. Standard Deviations
 - a) Judge Standard Deviation

$$sdR_g(*, j) = sqrt([\Sigma_{fp} \{R_g(fp, j)\}^2 - C_g(*, j)*\{mR_g(*, j)\}^2]/[C_g(*, j) - 1])$$
 (7)

b) Average Judge Standard Deviation

$$sdR_{\alpha}(^{*},) = \Sigma_{i} \{ sdR_{\alpha}(,j) \} / J$$
 (8)

5. Group Processes

5.1. Normalisation of a Data Group

- a) The first stage of the analysis is to Normalise the non-zero grades in the data group to give each judge's column of grades the same standard deviation. This will give equal importance to each judge's opinion. In the normalisation formula:
- b) Norm1g(fp,j) is the Normalised grade to replace the Raw grade $sdR_g(^*,j)$ is the standard deviation for a judge's Raw grades in this group $sdR_g(^*,\,^*)$ is the standard deviation for all the Raw grades in this group from all judges and.

$$Norm1_{a}(fp,j) = mR_{a}(*,*) + [R_{a}(fp,j) - mR_{a}(*,j)] * sdR_{a}(*,) / sdR_{a}(*,j)$$
 (9)

- 5.1.1.2. If the result of formula (7) or (8) is zero, then formula (9) cannot be applied and the grades for this judge, or this group, should be set to the overall mean for this group. If the result of formula (9) is less than zero, then it should be set at zero.
- 5.1.1.3. Perception Zero grades are excluded from this normalisation process because, for each judge, these form part of a second mode of distribution of raw grades. After the non-zero grades are normalised, the Perception Zero grades are set to 0.0 so that they are included in the process of determining Fitted Values and figure anomalies. Hence:

If
$$Rg(fp,j) = 0.0$$
, Then $Norm1g(fp,j) = 0.0$ (9a)

5.2. Derivation of Fitted Values

- 5.2.1.1. Within the data group, a Fitted Value for a figure grade for a pilot is the grade that you would expect a particular judge to give a particular pilot/figure combination, based on an analysis of all the judges' grades for all the pilot/figure combinations in the group, including numerical zeros (SZ) but excluding factual zeros (HZ). In the Fitted Value formula:
 - a) $FV1_g(fp,j)$ is the Fitted Value derived from $Norm1_g(fp,j)$ $mNorm1_g(^*,j)$ is the mean of the Normalised numerical grades in the group for that judge $mNorm1_g(fp,^*)$ is the mean of the Normalised numerical grades in the group for that pilot/figure

 $mNorm1_g(*, *)$ is the mean of all the Normalised numerical grades for that group for all judges and,

$$FV1_{\alpha}(fp,j) = mNorm1_{\alpha}(*,j) + mNorm1_{\alpha}(fp,*) - mNorm1_{\alpha}(*,*)$$
 (10)

5.3. Assessment of Anomalous Grades

The normalised grades in each group must be tested for anomalies caused by judging error or partiality.

- 5.3.1.1. The Uncertainty of Any Individual Data Point
 - a) A data point (grade) will be considered anomalous if its uncertainty exceeds a given threshold value. This uncertainty is derived by a two-way analysis of variance and starts with the calculation of the Residual for each data point. In the Residual formula:
 - b) Res1_g(fp,j) is the Residual value for each data point in the group after the first normalisation, and,

$$Res1_{\alpha}(fp,j) = Norm1_{\alpha}(fp,j) - FV1_{\alpha}(fp,j)$$
 (11)

c) RSS1_a is the Residual Sum of Squares for the data group after normalisation and,

$$RSS1_q = \sum_{fp,j} \{Res1_q(fp,j)\}^2$$
 (12)

- 5.3.1.2. The Degrees of Freedom of the data group is determined by:
 - D_g is the value of the Degrees of Freedom of the data group FP_g is the number of pilot/figure rows in the group J_g is the number of judges in the programme (columns in the data group) Nm_g is the number of missing values (HZ or A) in the group, and

$$D_{q} = \{ [FP_{q} - 1] * [J_{q} - 1] \} - Nm_{q}$$
 (13)

5.3.1.3. The Residual Standard Deviation of the data group, RSD1_g, is determined by:

$$RSD1_g = sqrt\{RSS1_g / D_g\}$$
 (14)

5.3.1.4. Finally, the uncertainty of each individual data point, U1_g(fp,j) is calculated:

$$U1_g(fp,j) = ABS[Res1_g(fp,j)] / RSD1_g$$
 (15)

5.4. Treatment of Anomalous Grades

- 5.4.1.1. If the uncertainty of an individual grade, U1_g(fp,j), exceeds 2.24 it has an uncertainty of approximately 97.5%. This degree of anomaly, or more, is to be expected in the case of a small number of Perception Zeros for a figure which generally attracts a majority of high grades. Similarly, such an anomaly might occur if a single judge missed a large pilot error that led all other judges to award a very low grade. Anomalies such as this should be treated as though they were missing values. This treatment will give the benefit of the doubt to the pilot in situations where it is possible that a very significant judging error has been made.
- 5.4.1.2. The raw grade for any data point showing such an anomaly should be set to "Missing" in the original Raw Data Rg(fp, j) call it R2g(fp, j). The judge concerned should have an increment made to Low or High Score anomaly count in the Judging Performance Analysis, as appropriate, for each grade replaced.
- 5.4.1.3. When making judgements based on the perception of the quality of flick rolls or spins, the panel of judges might produce a series of grades in which the distribution is bi-modal rather than Gaussian. For example, a set of grades might possibly include a number of Perception Zeros and a number of high grades. In extremely rare cases, this difference of opinion may be so great that the majority of raw grades might be considered anomalous by this analysis.

- In this situation it is not fair to assume that the remaining grades are truly representative of the pilot's performance of the figure concerned.
- 5.4.1.4. Therefore, if the number of missing values that would be carried forward to the second normalisation exceeds 60% of the number of judges, all grades for this figure by this pilot should be replaced by the FV1 value derived at Formula 10.

5.5. Second Normalisation of the Group

- 5.5.1.1. If anomalies have been removed from the raw grades, the data set will have more missing values. It would therefore be necessary to normalise the data group for a second time. Again, Perception Zero grades must be excluded from the Normalisation and these grades must remain 0.0. Using only the remaining non-zero grades new values must be determined for $mNorm_q(*,j)$, $mN_q(fp,*)$, $mN_q(*,*)$ and thus $FV_q(fp,j)$.
 - a) Hence,

$$Norm2_q(fp,j) = mR2_q(*,*) + [R2_q(fp,j) - mR2_q(*,j)] * sdR2_q(*,) / sdR2_q(*,j)$$
 (16)

b) and,

$$FV2_{\alpha}(fp,j) = mNorm2_{\alpha}(*,j) + mNorm2_{\alpha}(fp,*) - mNorm2_{\alpha}(*,*)$$
 (17)

5.5.1.2. These new fitted values will have been determined free from the influence of any anomalous grades and are thus robust and give the benefit of any doubt to the pilot in the case of minority Perception Zeros for an otherwise highly-graded figure.

5.6. Replacement of Missing Grades

- 5.6.1.1. These $FV2_g(fp,j)$ values are then used to replace the HZ, A and 'Missing' anomalous grades carried forward from the preceding analysis.
- 5.6.1.2. The judge concerned should have an increment made to his Low Score or High Score anomaly count in the Judging Performance Analysis, as appropriate, for each anomalous grade replaced, as well as to the HZ anomaly count for any HZ replaced.
- 5.6.1.3. After these replacements, the second normalised grades will be the final processed grades for each data group.

5.7. Assembly of Processed Grades by Pilot

- 5.7.1.1. After processing in the separate data groups, the final processed grades must be combined into a single matrix and this table sorted by ascending value of the Pilot identification number and then the figure number. These grades are then multiplied by the respective K-factor for each figure and totalled to give:
 - a) SR(p,f,j) an overall score for each pilot on each figure from each judge
- 5.7.1.2. These can then give
 - a) SR(p,f,*) an overall score for each pilot for each figure over all judges, where:

$$SR(p,f,^*) = \Sigma_i SR(p,f,j)$$
 (18)

b) SR(p,*,j) an overall score for each pilot for each judge over all figures, where:

$$SR(p,*,j) = \Sigma_f SR(p,f,j)$$
 (19)

c) SR(p,*,*) an overall score for each pilot, where:

$$SR(p,*,*) = \Sigma_{f,j} SR(p,f,j)$$
 (20)

5.7.1.3. These data should be printed and passed to each pilot at the earliest possible stage, so that the changes made during the processing stage can be understood.

6. Sequence Processes

6.1. Normalisation of Sequence Scores

- 6.1.1.1. It is now necessary to repeat the normalisation process at the sequence stage, once again to ensure that the opinion of each judge is given the same importance.
- 6.1.1.2. The sequence score data, SR(p,j), can be set out in a matrix form as shown here.

Pilot #	Judge 1	Judge 2	Judge 3	 	 Judge j
Pilot 1	SR(1,1)	SR(1,2)		 	
Pilot 2	SR(2,1)			 	
Pilot 3				 	
Pilot p				 	 SR(p,j)

6.1.1.3. From this table:

a) mSR(*,j) is the mean of all the scores given by Judge j.
 sdSR(*,j) is the standard deviation of all the scores given by Judge j.
 sdSR(*,*) is the average standard deviation of all the scores given to all the pilots by all the judges, and

$$NormS(p,j) = mSR(*,j) + [SR(p,j) - mSR(*,j)] * sdSR(*,*) / sdSR(*,j)$$
 (21)

6.2. Derivation of Sequence Fitted Values

- 6.2.1.1. Next sequence fitted values are derived from the normalised scores to enable calculation of standardised residuals at the sequence level. In this derivation:
 - a) mNormS(*,j) is the mean of all the normalised scores given by Judge j.
 mNormS(p,*) is the mean of all the normalised scores given to Pilot p.
 mNormS(*,*) is the mean of all normalised scores given by all judges to all pilots, and

$$FVS(p,j) = mNormS(*,j) + mNormS(p,*) - mNormS(*,*)$$
 (22)

6.3. Assessment of Sequence Anomalies

- 6.3.1.1. Despite the replacement of anomalous figures at the earlier stage of the process, it might be possible for slight, consistent favouritism or subconscious bias to influence unduly a Judge's overall score for a pilot. Such a score might be high or low and should be replaced if its degree of uncertainty reaches approximately 90%.
- 6.3.1.2. Therefore the analysis must next derive the residuals for the sequence scores:

$$ResS(p,j) = NormS(p,j) - FVS(p,j)$$
, and (23)
 $RSS_s = \sum_{p,j} \{ResS(p,j)\}^2$ (24)

- 6.3.1.3. The number of degrees of freedom for the sequence data set is calculated where:
 - a) D_s is the value of the Degrees of Freedom of the sequence data
 P_s is the number of Pilots in the sequence

J_s is the number of judges in the sequence

Nm_s is the number of missing values (confirmed HZ for all figures by a pilot), and

$$D_s = \{ [P_s - 1] * [J_s - 1] \} - Nm_s$$
 (25)

6.3.1.4. The Residual Standard Deviation for the sequence is given by:

$$RSD_s = sqrt\{RSS_s / D_s\}$$
 (26)

6.3.1.5. The uncertainty of each sequence score is given by:

$$US_s(p,j) = ABS[ResS(p,j)] / RSD_s$$
 (27)

6.3.1.6. If this uncertainty figure exceeds 1.65 (90%) it must be replaced by the fitted value FVS(p.j).

6.4. Interim Final Sequence Score

6.4.1.1. The processed sequence score for each pilot will be the sum of the normalised sequence scores over judges, after replacement of anomalous values of NormS(p,j) by fitted values FVS(p,j).

$$PS(p) = \sum_{i} \{NormS(p,j) \text{ or } FVS(p,j)\} / Nj$$
 (28)

6.4.1.2. Penalties awarded for whatever reason are subtracted from this processed score to give each pilot's final overall score for the sequence.

$$FS(p) = PS(p) - Pen(p)$$
 (29)

6.5. Second FPS Iteration and Final Sequence Score

- 6.5.1.1. When flights are of a very low standard, it is unlikely that the judges will show the same consistency of grading as when flights are of a high standard. Therefore, such low standard flights can have undue influence over the way in which the FPS system treats other scores.
- 6.5.1.2. To prevent such undue influence, the following procedure will be followed if the total number of competing pilots exceeds 30:
 - a) Determine the values of PS(p) as a percentage of the maximum possible score for the sequence.
 - b) If this value is less than 60% for a known sequence (Programmes 1, 2 and 5), or less than 50% for an unknown sequence, temporarily remove these flights raw data from the whole data set and re-apply the FPS process in its entirety. This will generate more reliable results for the retained pilots.
 - c) Publish the final ranked order, based on FS(p) from the first FPS iteration for the excluded, low-scoring pilots, and based on FS(p) from the second FPS iteration for the retained, higher scoring pilots.

7. Process Summary

7.1. The process carries out the following analytical steps:

- 7.1.1.1. Sets confirmed Hard Zeros to HZ for all judges
- 7.1.1.2. Treats unconfirmed HZ and A grades as "Missing" at this stage.
- 7.1.1.3. Arranges figure grades into data groups for further analysis.
- 7.1.1.4. Within each data group:
 - a) Normalises the grades to give equal importance to each judge.
 - b) Derives fitted values for each judge for each figure.

- Determines if any normalised grades are more than 95% uncertain and disregards them by setting them to "Missing".
- Derives revised normalised grades and fitted values taking account of the new missing data.
- e) Replaces all the missing grades with revised fitted values.

7.1.1.5. At the sequence level:

- a) Normalises the scores to give equal importance to each judge.
- b) Derives fitted values for each judge for each pilot.
- c) Determines if any scores are more than 90% uncertain and replaces them with fitted values.

7.1.1.6. In the Second Iteration:

- a) Repeats the FPS process excluding certain low-scoring flights.
- b) Recombines all results into a final ranking order.

8. Judging Performance Analysis

The Fair Play System generates judging analysis data from the raw and FPS-processed scores. A Ranking Index is derived and judging errors totalled in a number of different categories. This data is gathered by the FPS and made available to the International Jury after each sequence and may, at the Jury's discretion, be passed on the Chief Delegates of each national team at the completion of each Programme, or at the end of the contest.

8.1. Ranking Index (RI)

- 8.1.1.1. The Ranking Index measures how closely an individual judge's pilot ranking for a programme conforms to the overall ranking based on all judges' assessments. It is derived by comparing the ranking each judge would have provided for each pilot if no other judges were present (*Jrank*) with the overall ranking calculated from the combined judging panel after all anomalies have been resolved and prior to any penalties being included (*Prank*). In the event that *Jrank* and *Prank* differ, this difference is weighted by an amount proportional to the differences in the underlying sequence scores that lead to this difference. A ranking error is penalised more heavily when it involves a larger difference in scores than when only minor differences in scores are the cause.
- 8.1.1.2. To derive the "raw" Judge rankings (*Jrank*), all HZ and PZ grades are set to numerical zero (0.0) and any "A" grade is assumed missing. This array of data is then normalised, and Fitted Values determined using normal FPS techniques. "A" grades only are replaced with FV and then a pilot total score is calculated by multiplying each normalised figure mark by the relevant K Factor. If a PZ mark is determined to be an anomaly, then it is set to "Missing" and replaced with a FV before final calculation of the Judge rankings.
- 8.1.1.3. After the full FPS process is complete, a full panel score (Pscore) and ranking (Prank) is determined for each pilot prior to the application of any penalties.
- 8.1.1.4. To derive the "Raw" Judge scores (*Jscore*), a final normalisation is conducted to rescale each judge's all-pilot average "raw" scores and all-pilot average standard deviation of "raw" scores (as calculated in C.8.1.2) to be the same as the all-pilot average and standard deviation of the full panel score (calculated in C.8.1.3).

8.1.1.5. An index is now derived from these data for each judge. This takes account of differences in ranks and differences in total scores. Thus:

$$RI = \frac{{}^{Np}}{{}^{1}} \frac{abs(Jrank - Prank)*abs(Jscore - Pscore)}{Pscore} * \frac{20}{(0.0057*Np^{2})+(0.1041*Np)}$$

8.1.1.6. Typically, a judge's Ranking Index will be in the range 1 to 50, lower numbers indicating that a judge's individual rankings are closer to the overall panel rankings. When there has been a second FPS iteration in accordance with rule C.6.5, the RI is calculated using only data from the second iteration, i.e. pilots excluded from the second iteration are also excluded from the RI calculation.

8.2. Low and High Scoring Anomalies

- 8.2.1.1. A Low or High Scoring Anomaly is determined to have occurred each time a judge grades a figure significantly lower or higher than the consensus view of the judges.
- 8.2.1.2. For each figure, examine the normalised scores. If a judge's score for the figure has been determined 'Low' or 'High' at the approved confidence level, then add one to that judge's aggregate of errors under the appropriate heading.

8.3. Discrimination

8.3.1.1. Judges show differing degrees of "Discrimination" in that they score over wider or narrower ranges of raw grades. The FPS will keep track of these raw grades for subsequent publication and analysis in the form of histograms and banded totals.

8.4. Hard Zero Anomalies

- 8.4.1.1. The occurrence of Hard Zeros is determined by majority voting or by video conference. The scoring system determines the validity of each HZ from the "CHZ" box on the score sheets.
- 8.4.1.2. In the event that an individual judge fails to identify a confirmed Hard Zero, then add one to that judge's aggregate of errors under this heading. Similarly, if a judge gives a grade of HZ when no such error occurred, add one to the aggregate of errors under this heading.

8.5. Sequence Score Anomalies

- 8.5.1.1. A Sequence Anomaly occurs whenever a judge grades a whole sequence significantly higher or lower than the consensus view of the judges.
- 8.5.1.2. For each pilot, examine the normalised sequence scores. If a judge's score for the sequence has been determined 'High' or 'Low' at the approved confidence level, then add one to that judge's aggregate of errors under this heading.

RECORD OF AMENDMENTS

Version Number	Date Issued
2016-1	15 March 2016