Chapter 3: The Reinforcement Learning Problem (Markov Decision Processes, or MDPs)

Objectives of this chapter:

- □ present Markov decision processes—an idealized form of the AI problem for which we have precise theoretical results
- introduce key components of the mathematics: value functions and Bellman equations

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step t: $S_t \in S$

produces action at step $t: A_t \in \mathcal{A}(S_t)$

gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$

and resulting next state: $S_{t+1} \in S^+$

Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a **Markov Decision Process (MDP)**.
- If state and action sets are finite, it is a finite MDP.
- ☐ To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics"

$$p(s', r|s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

• there is also:

$$p(s'|s, a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r|s, a)$$
$$r(s, a) \doteq \mathbb{E}[B_{t+1} \mid S_t = s, A_t = a] - \sum_{r \in \mathcal{R}} r \sum_{r \in \mathcal{R}} p(s', r|s, a)$$

$$r(s, a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$

The Agent Learns a Policy

Policy at step
$$t = \pi_t =$$
a mapping from states to action probabilities
$$\pi_t(a \mid s) = \text{probability that } A_t = a \text{ when } S_t = s$$

Special case - deterministic policies:

 $\pi_t(s)$ = the action taken with prob=1 when $S_t = s$

- ☐ Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- □ Roughly, the agent's goal is to get as much reward as it can over the long run.

The Meaning of Life (goals, rewards, and returns)

Return

Suppose the sequence of rewards after step *t* is:

$$R_{t+1}, R_{t+2}, R_{t+3}, \dots$$

What do we want to maximize?

At least three cases, but in all of them, we seek to maximize the **expected return**, $E\{G_t\}$, on each step t.

- Total reward, G_t = sum of all future reward in the episode
- Discounted reward, G_t = sum of all future discounted reward
- Average reward, G_t = average reward per time step

Episodic Tasks

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple *total reward*:

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but just goes on and on...

For continuing tasks we would use discounted return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

Typically, $\gamma = 0.9$

An Example: Pole Balancing

Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track

As an episodic task where episode ends upon failure:

reward = +1 for each step before failure

⇒ return = number of steps before failure

As a **continuing task** with discounted return:

reward = -1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

Another Example: Mountain Car

Get to the top of the hill as quickly as possible.

reward = -1 for each step where **not** at top of hill

⇒ return = - number of steps before reaching top of hill

Return is maximized by minimizing number of steps to reach the top of the hill.

A Trick to Unify Notation for Returns

- ☐ In episodic tasks, we number the time steps of each episode starting from zero.
- \square We usually do not have to distinguish between episodes, so instead of writing $S_{t,j}$ for states in episode j, we write just S_t
- ☐ Think of each episode as ending in an absorbing state that always produces reward of zero:

$$(S_0)$$
 $R_1 = +1$ (S_1) $R_2 = +1$ (S_2) $R_3 = +1$ (S_2) $R_3 = +1$ $(S_3 = +1)$ $(S_4 = 0)$ $(S_5 = 0)$ $(S_5 = 0)$

■ We can cover <u>all</u> cases by writing $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$,

where γ can be 1 only if a zero reward absorbing state is always reached.

Rewards and returns

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The <u>discounted return</u> at time t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

the discount rate

γ	Reward sequence	Return
0.5(or any)	1 0 0 0	1
0.5	002000	0.5
0.9	002000	1.62
0.5	-12632000	2

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

• Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G = \frac{1}{1 - \gamma} = 2$$