Sensores espectroscópicos e modelos de regressão aplicados na análise de solos

Aula 4 – Redes Neurais Clássicas

Me. José Vinícius Ribeiro

PÓS GRADUAÇÃO

- Neurônio Artificial x Neurônio biológico
- Rede clássica (Perceptron multi-camadas)
- Backpropagation
- Gradiente descendente (cálculo teórico)
- Redes neurais informadas pela física (PINNs)
- Prática no python (google colab)

Vamos nos situar...

REDES NEURAIS CLÁSSICAS

REDE NEURAL - Perceptron

Inputs
Neuron Input
Function
Activation
Cada neurônio associa um *i*-ésimo
peso a *i*-ésima variável
Function
Activation
Function
Function
Activation

Neurônio Artificial (Modelo *Perceptron*)

i-th Variable the j-th Neuron

Em seguida, aplica uma função de ativação

REDE NEURAL – inspiração no cérebro

Unidade básica de comunicação do sistema nervoso dos seres humanos

Quando o neurônio acumula sinais suficientes dos receptores do seu dendrito ele dispara, *i.e.*, uma corrente elétrica se propaga pelo axônio até chegar aos terminais, conectando-o com outros neurônios

Recebem os sinais, podendo se conectar com milhares de outros neurônios. São a área de contato disponível para receber informações

Propaga o sinal processado

Conecta os sinais químicos do neurônio com os outros (podendo gerar mais que conexões que as próprias captadas pelo dendrito)

Neuron Input Inputs Function Activation Output Function Neurônio Artificial X_2W_{2i} (Modelo *Perceptron*) **Connection to** j-th Artificial the next layer Neuron of neurons *i*-th Weight of i-th Variable the j-th Neuron **Cell Body** (Neuron Input Function) **Nucleus** (Activation Function) Neurônio Biológico Synapses **Dendrites** Axon (Inputs) **Axon Terminals** (Connection) (Output)

Funções de ativação
$$f(\sum X_i W_{ij})$$

$$f(\sum_{i=1}^{n} X_i W_{ij})$$

Principais objetivos

- Inserir não-linearidade na relação entre as variáveis e o target
- Facilitar a convergência (objetivo secundário)

Principais tipos: sigmoid, tanh, ReLU, Softmax

Funções de ativação: Sigmoid

Funções de ativação: tanh

$$f(z) = \frac{e^{Z} - e^{-Z}}{e^{Z} + e^{-Z}} \quad \epsilon[-1,1]$$

Funções de ativação: Rectified Linear Unit (ReLU)

ReLU(z) = 0 se Z < 0 Z se Z > 0

 $\epsilon [0, \infty]$

Foward Propagation

Backward Propagation

O objetivo da rede é gerar uma função com dependências em diversos parâmetros que, dado uma matriz X de variáveis de entrada, produz um vetor y com valores de saída

FASE FOWARD

A função é então aproximada (através da otimização dos hiperparâmetros) até que atinja um nível de precisão desejado. Após esse processo ela deve apresentar capacidade de generalização

FASE BACKWARD

FASE FOWARD

 $s_{1}^{[1]} = w_{11}^{[1]} x_{1} + w_{12}^{[1]} x_{2} + w_{13}^{[1]} x_{3} + w_{14}^{[1]} x_{4} + w_{15}^{[1]} x_{5}$ $f^{[1]} = f(\sum_{w_{11}^{[1]} x_{1}^{w_{12}^{[1]}} x_{1}^{w_{13}^{[1]}} x_{1}^{w_{14}^{[1]}} x_{1}^{w_{15}^{[1]}} x_{1}^{$

$$f_j^{[1]} = f(\sum_i w_{ji}^{[1]} x_i)$$

$$s_{1}^{[2]} = w_{11}^{[2]} f_{1}^{[1]} + w_{12}^{[2]} f_{2}^{[1]} + w_{13}^{[2]} f_{3}^{[1]} + w_{14}^{[2]} f_{4}^{[1]} + w_{15}^{[2]} f_{5}^{[1]}$$

$$f_k^{[2]} = f(\sum_{j}^{5} w_{kj}^{[2]} f_j^{[1]})$$

5x5 + 3x5 + 3 = 43

REDE NEURAL – FASE BACKWARD

$$Loss = y - \hat{y} = L(w)$$
 Queremos o conjunto de parâmetros w^* que minimiza $L(w)$

Dado um conjunto de valores w^t (dado pelas condições inicias), a uma nova configuração (w^t) na qual L(w) mais irá crescer é dada pelo gradiente aplicado no ponto, *i.e.*, $\nabla L(w^t)$

Logo, em uma <u>época</u> futura (t+1): $w^{t+1} = w^t - \nabla L(w^t)$ nos fornecerá uma nova configuração de parâmetros (*i.e.*, novo ponto) que minimizará L

REDE NEURAL - GRADIENTE DESCENDENTE

$$w^{t+1} = w^t - \eta_t \nabla L(w^t)$$

 η_t : taxa de aprendizagem

GD (*Gradient* Descent - 1950)

Vamos a um exemplo de como é o cálculo

REDE NEURAL - BACKPROPAGATION

Foward Propagation

Backward Propagation

Para qualquer peso $w_{ij}^{[l]}$, queremos saber como o alteramos para que a função de perda L (escalar) fornece a máxima mudança*(-1). Matematicamente isso é o gradiente*(-1), que assume a seguinte forma para funções escalares:

$$(\nabla f)_i = \frac{\partial f}{\partial x_i} \qquad (\nabla_{\mathbf{w}^{[l]}} L)_{ij} = \frac{\partial L}{\partial w_{ij}^{[l]}}$$

Esse valor*(-1) nos diz a direção em que devemos ajustar $w_{ij}^{[l]}$ (positiva ou negativa) e a intensidade (quando calculado no ponto y)

$$X \to w^{[1]} \to f(w^{[1]}) \to w^{[2]} \to f(w^{[2]}) \to \dots \to \widehat{y} \to L$$

$$\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial \widehat{y}} \times \frac{\partial \widehat{y}}{\partial f(w^{[m]})} \times \dots \frac{\partial f(w^{[2]})}{\partial w^{[1]}}$$

$$X \to \boldsymbol{w}^{[1]} \to f(\boldsymbol{w}^{[1]}) \to \boldsymbol{w}^{[2]} \to f(\boldsymbol{w}^{[2]}) \to \dots \boldsymbol{w}^{[1]} \to f(\boldsymbol{w}^{[1]}) \to \hat{\boldsymbol{y}} \to L$$
$$\frac{\partial L}{\partial \boldsymbol{w}^{[1]}} = \frac{\partial L}{\partial \hat{\boldsymbol{y}}} \times \frac{\partial \hat{\boldsymbol{y}}}{\partial f(\boldsymbol{w}^{[m]})} \times \dots \frac{\partial f(\boldsymbol{w}^{[1]})}{\partial \boldsymbol{w}^{[1]}}$$

Após calcular as derivadas os pesos são atualizados da ultima até a primeira camada, segundo:

$$w_{hi}^{[1]} \to w_{hi}^{[1]} - \eta \frac{\partial L}{\partial w_{hi}^{[1]}} \qquad w_{kh}^{[2]} \to w_{kh}^{[2]} - \eta \frac{\partial L}{\partial w_{kh}^{[2]}} \qquad \cdots \qquad w_{1p}^{[l]} \to w_{1p}^{[l]} - \eta \frac{\partial L}{\partial w_{1p}^{[l]}}$$

Exemplo sobre como os pesos são atualizados via backpropagation

$$X \to w_{hi}^{[1]} \to s_h^{[1]} \to f_h^{[1]} \to w_{kh}^{[2]} \to s_k^{[2]} \to f_k^{[2]} \to w_{1k}^{[3]} \to s^{[3]} \to f^{[3]} \to \hat{y} \to L$$

$$w_{1k}^{[3]} \rightarrow s^{[3]} \rightarrow f^{[3]} \rightarrow \hat{y} \rightarrow L$$

$$s^{[3]} = \sum_{k=1}^{3} w_{1k}^{[3]} f_k^{[2]} \qquad \hat{y} = f^{[3]=} f(s^{[3]})$$

O quanto L muda se $s^{[3]}$ muda?

$$\frac{\partial L}{\partial s^{[3]}} = \frac{\partial L}{\partial \hat{y}} \frac{d\hat{y}}{ds^{[3]}} = \varepsilon^{[3]}$$

$$\varepsilon^{[3]} = 2(\hat{y} - y) \frac{d\hat{y}}{ds^{[3]}}$$

Função de perda MSE (N=1)

$$L = \frac{\sum_{n=1}^{N} (\hat{y}_n - y_n)^2}{N}$$

$$\hat{y}_1 = \hat{y} = \hat{y}(f(s^{[3]}))$$

$$w_{1k}^{[3]} \rightarrow s^{[3]} \rightarrow f^{[3]} \rightarrow \hat{y} \rightarrow L$$

Output
$$s^{[3]} = \sum_{k=1}^{3} w_{1k}^{[3]} f_k^{[2]} \quad \hat{y} = f^{[3]=} f(s^{[3]})$$

O quanto L muda se $s^{[3]}$ muda?

$$\frac{\partial L}{\partial s^{[3]}} = \varepsilon^{[3]} = 2(\hat{y} - y) \frac{d\hat{y}}{ds^{[3]}}$$

O quanto $s^{[3]}$ muda se $w_{1k}^{[3]}$?

$$\frac{\partial L}{\partial s^{[3]}} = \varepsilon^{[3]} = 2(\hat{y} - y) \frac{d\hat{y}}{ds^{[3]}} \qquad \frac{\partial s^{[3]}}{\partial w_{1k}^{[3]}} = \sum_{k=1}^{3} \delta_{k,l} f_k^{[2]} = f_k^{[2]}$$

Logo
$$\frac{\partial L}{\partial w_{1k}^{[3]}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial s^{[3]}} \frac{\partial s^{[3]}}{\partial w_{1k}^{[3]}} = \varepsilon^{[3]} f_k^{[2]}$$

$$w_{kh}^{[2]} \to s_k^{[2]} \to f_k^{[2]} \to w_{1k}^{[3]} \to s^{[3]} \to f^{[3]} \to \hat{y} \to L$$

Na camada dois, queremos saber como L varia quando os pesos $w_{kh}^{\lfloor 2 \rfloor}$ variam

$$\frac{\partial L}{\partial s^{[3]}} = \varepsilon^{[3]} \qquad s^{[3]} = \sum_{k=1}^{3} w_{1k}^{[3]} f_k^{[2]} \qquad \frac{\partial s^{[3]}}{\partial f_k^{[2]}} = \sum_{k=1}^{3} w_{1k}^{[3]} \delta_{k,l} = w_{1k}^{[3]}$$

$$\frac{\partial L}{\partial s_k^{[2]}} = \varepsilon_k^{[2]} = \frac{\partial L}{\partial s^{[3]}} \frac{\partial s^{[3]}}{\partial f_k^{[2]}} \frac{\partial f_k^{[2]}}{\partial s_k^{[2]}} = \varepsilon^{[3]} w_{1k}^{[3]} \frac{\partial f_k^{[2]}}{\partial s_k^{[2]}}$$

$$w_{kh}^{[2]} \to s_k^{[2]} \to f_k^{[2]} \to w_{1k}^{[3]} \to s^{[3]} \to f^{[3]} \to \hat{y} \to L$$

Na camada dois, queremos saber como L varia quando os pesos $w_{kh}^{\lfloor 2 \rfloor}$ variam

$$\frac{\partial L}{\partial s_k^{[2]}} = \varepsilon_k^{[2]} \qquad \frac{\partial}{\partial w_{kh}^{[2]}} s_k^{[2]} = \sum_{h=1}^{3} \delta_{k,p} \delta_{h,q} f_h^{[1]} = f_h^{[1]}$$

$$\frac{\partial L}{\partial w_{kh}^{[2]}} = \frac{\partial L}{\partial s_k^{[2]}} \frac{\partial s_k^{[2]}}{\partial w_{kh}^{[2]}} = \varepsilon_k^{[2]} f_h^{[1]}$$

$$X \!\!\to\! w_{hi}^{[1]} \!\!\to\! s_h^{[1]} \!\!\to\! f_h^{[1]} \!\!\to\! w_{kh}^{[2]} \!\!\to\! s_k^{[2]} \!\!\to\! f_k^{[2]} \!\!\to\! w_{1k}^{[3]} \!\!\to\! s^{[3]} \!\!\to\! f^{[3]} \!\!\to\! \hat{y} \!\!\to\! L$$

Na camada um, queremos saber como L varia quando os pesos $w_{hi}^{\lfloor 1 \rfloor}$ variam

$$\frac{\partial L}{\partial s_k^{[2]}} = \varepsilon_k^{[2]} \qquad s_k^{[2]} = \sum_h^5 w_{kh}^{[2]} f_h^{[1]} \qquad \frac{\partial}{\partial f_h^{[1]}} s_k^{[2]} = \sum_{h=1}^5 \delta_{h,q} w_{kh}^{[2]} = w_{kh}^{[2]}$$

$$\frac{\partial L}{\partial s_h^{[1]}} = \varepsilon_h^{[1]} = \sum_{k=1}^{3} \frac{\partial L}{\partial s_k^{[2]}} \frac{\partial s_k^{[2]}}{\partial f_h^{[1]}} \frac{\partial f_h^{[1]}}{\partial s_h^{[1]}} = \varepsilon_k^{[2]} \sum_{k=1}^{3} w_{kh}^{[2]} \frac{\partial f_h^{[1]}}{\partial s_h^{[1]}}$$

$$X \to w_{hi}^{[1]} \to s_h^{[1]} \to f_h^{[1]} \to w_{kh}^{[2]} \to s_k^{[2]} \to f_k^{[2]} \to w_{1k}^{[3]} \to s^{[3]} \to f^{[3]} \to \hat{y} \to L$$

Na camada um, queremos saber como L varia quando os pesos $w_{hi}^{\lfloor 1 \rfloor}$ variam

$$\frac{\partial L}{\partial s_h^{[1]}} = \varepsilon_h^{[1]} \qquad s_h^{[1]} = \sum_i^5 w_{hi}^{[1]} x_i$$

$$\frac{\partial L}{\partial w_{hi}^{[1]}} = \frac{\partial L}{\partial s_h^{[1]}} \frac{\partial s_h^{[1]}}{\partial w_{hi}^{[1]}} = \varepsilon_h^{[1]} x_i$$

$$X \to w_{hi}^{[1]} \to S_h^{[1]} \to f_h^{[1]} \to w_{kh}^{[2]} \to S_k^{[2]} \to f_k^{[2]} \to w_{1k}^{[3]} \to S^{[3]} \to f^{[3]} \to \hat{y} \to L$$

Atualizando os pesos

$$w_{1k}^{[3]} \to w_{1k}^{[3]} - \eta \frac{\partial L}{\partial w_{1k}^{[3]}} = w_{1k}^{[3]} - \eta \varepsilon^{[3]} f_k^{[2]} \qquad \varepsilon^{[3]} = \frac{\partial L}{\partial s^{[3]}} = \frac{\partial L}{\partial \hat{y}} \frac{d\hat{y}}{ds^{[3]}}$$

$$w_{kh}^{[2]} \to w_{kh}^{[2]} - \eta \frac{\partial L}{\partial w_{kh}^{[2]}} = w_{kh}^{[2]} - \eta \varepsilon_k^{[2]} f_h^{[1]} \qquad \varepsilon_k^{[2]} = \varepsilon^{[3]} w_{1k}^{[3]} \frac{\partial f_k^{[2]}}{\partial s_k^{[2]}}$$

$$w_{hi}^{[1]} \to w_{hi}^{[1]} - \eta \frac{\partial L}{\partial w_{hi}^{[1]}} = w_{hi}^{[1]} - \eta \varepsilon_h^{[1]} x_i \qquad \varepsilon_h^{[1]} = \sum_{k=1}^3 \varepsilon_k^{[2]} w_{kh}^{[2]} \frac{\partial f_h^{[1]}}{\partial s_h^{[1]}}$$

Backpropagation

$$w \rightarrow w - \eta \frac{\partial L}{\partial w}$$

Na prática o gradiente descendente tem sido cada vez menos utilizado devido a novas propostas. Novas abordagens fazem o cálculo computacionalmente, por meio de algoritmos otimizados para aproximar as derivadas

Backpropagation

$$w \to w - \eta \frac{\partial L}{\partial w}$$

L-BFGS (Limited-Memory
Broyden-Fletcher
-Goldfarb-Shannon - 1989)

ADAM (Adaptative Moment Estimation - 2014)

É importante discernir que há dois processos de otimização a serem seguidos.

- O primeiro em relação a arquitetura da rede: número de camadas, neurônios, função de perda, etc. Esse é feito a priori de acordo com a experiência, via grades de pesquisa ou via algum outro algoritmo heurístico (ex: GA).
- O segundo é o ajuste dos hiperparâmetros da rede em sí. É feito via backpropagation (Adam, Gradiente Descendente, etc.)

Dropout regularization

A regularização por *dropout* é uma técnica que desativa aleatoriamente uma proporção de neurônios (pré-fixada) em camadas específicas durante o treinamento da rede

Os neurônios são menos dependentes uns dos outros, resultando maior robustez e menos fragilidade para dados ligeiramente distintos (mais generalização).

Ela também pode ser implementada estrategicamente para reduzir a complexidade de ramos específicos, e portanto para diminuir também *overfitting*

Vantagens

- Capacidade de modelar relações complexas
- Alta capacidade preditiva
- Lida bem com datasets grandes
- Adaptabilidade/flexibilidade para os mais diversos problemas

Desvantagens

- Complexidade computacional
- Necessidade de muitos dados
- Propensão a overfitting
- Baixa ou nenhuma interpretabilidade
- Complexidade no ajuste dos hiperparametros

Redes Neurais Informadas Pela Física (PINNs)

Redes Neurais Informadas pela Física (PINNs)

As redes neurais também podem ser adaptadas para resolver problemas físicos e aproximar todos os tipos de funções, são as conhecidas redes neurais informadas pela física (PINNs)

Elas são uma abordagem alternativa interessante aos métodos tradicionais para resolver equações diferenciais, por exemplo

A estratégia das PINNs é integrar a equação diferencial e as condições de contorno (cc) diretamente na função de perda durante o treinamento da rede neural

$$L_{total} = L_{cc} + L_{fisica}$$

Redes Neurais Informadas pela Física (PINNs)

$$L_{total} = L_{cc} + L_{fisica}$$

 $L_{\it cc}$ representará o erro entre as previsões da rede e os "dados observados" (condições iniciais e de contorno)

 L_{fisica} quantifica o erro residual comparando a rede com o resultado teórico das equações diferenciais (que modelam física do problema)

No final, teremos uma função (aproximação) que resolverá o problema físico elaborado (através da EDO). Quanto mais precisamente abordado o problema, mais próxima da realidade a função gerada pela rede será

PINNs – Exemplo: oscilador harmônico

$$\frac{d^2x(t)}{dt} + \gamma \frac{dx(t)}{dt} + \omega^2 x(t) = 0 \qquad \gamma = \frac{b}{m}, \ \omega^2 = \frac{k}{m}$$

$$x(t=0) = x_0$$

Condições de contorno:
$$x(t=0) = x_0$$
 $\frac{dx(t=0)}{dt} = v_0$

$$L_{cc} = [\hat{x}(t=0) - x_0]^2 + \left[\frac{d\hat{x}(t=0)}{dt} - v_0\right]^2 \qquad L_{fisica} = \frac{1}{N} \sum_{i=1}^{N} [r_i(t)]^2$$

$$L_{fisica} = \frac{1}{N} \sum_{i=1}^{N} [r_i(t)]^2$$

$$r_i(t) = residuo_i(t) = rede_i(t) - teórico_i(t)$$

$$r_{i}(t) = \frac{d^{2}\hat{x}_{i}(t)}{dt} + \gamma \frac{d\hat{x}_{i}(t)}{dt} + \omega^{2}\hat{x}_{i}(t) - \frac{d^{2}x_{i}(t)}{dt} + \gamma \frac{dx_{i}(t)}{dt} + \omega^{2}x_{i}(t)$$

PINNs – oscilador harmônico

$$\frac{d^2x(t)}{dt} + \gamma \frac{dx(t)}{dt} + \omega^2 x(t) = 0 \qquad \gamma = \frac{b}{m}, \ \omega^2 = \frac{k}{m}$$

Condições de contorno:
$$x(t=0) = x_0$$
 $\frac{dx(t=0)}{dt} = v_0$

$$L_{total} = [\hat{x}_{w}(0) - x_{0}]^{2} + [\frac{d\hat{x}_{w}(0)}{dt} - v_{0}]^{2} + \frac{1}{N} \sum_{i=1}^{N} [\frac{d^{2}\hat{x}_{i}(t)}{dt} + \gamma \frac{d\hat{x}_{i}(t)}{dt} + \omega^{2}\hat{x}_{i}(t)]^{2}$$

Agora é só treinar a rede como usual...

PINNs – oscilador harmônico

Oscilador Harmônico Amortecido: .github

PINNs – oscilador harmônico

Oscillator Simulation with Deep Neural Networks:

10.3390/math12070959

Próxima aula - CNN

Redes Neurais Convolucionais

PRÁTICA – GOOGLE COLAB