

# VPN (Virtual Private Networks) - Introdução



Redes de Comunicação

Departamento de Engenharia da Electrónica e Telecomunicações e de Computadores

Instituto Superior de Engenharia de Lisboa

#### Baseado em:



- "VPNs A Beginner's Guide", John Mairs, McGraw-Hill
- M.Sc. in Information Security Royal Holloway, University of London
- Prof. Dr. Andreas Steffen Zürcher Hochschule Winterthur
- Pascal Meunier, Symantec Corporation, Purdue Research
   Foundation
- Henric Johnson, Blekinge Institute of Technology, Sweden
- Fred Baker, VPNs

# Definição



Uma VPN é um canal seguro (túnel) que usa recursos de uma rede pública (normalmente a Internet) para interligar redes privadas ou utilizadores remotos a redes privadas.

Em vez de uma ligação fisica dedicada, uma VPN utiliza ligações virtuais estabelecidas através da rede pública entre a máquina de um colaborador remoto ou uma rede privada e outra rede privada.

# Definição (cont.)



- VPN Rede "virtual" que, apesar de normalmente utilizar uma rede pública, como a Internet, é mantida privada através do transporte de dados em <u>túneis</u> através da infra-estrutura pública.
- Uma VPN utiliza a Internet ou outro serviço de rede pública como todo ou parte do seu "backbone" WAN
- As VPN possibilitam:
  - Utilizadores remotos Substituir as ligações dial-up e ISDN, por vezes a longas distâncias, por ligações locais a ISP (Internet Service Providers), menos dispendiosas.
  - LAN Substituir linhas privadas dispendiosas (tais como E1, ATM e Frame Relay) entre LAN remotas

## Conceito de "canal seguro"



- Garante a confidencialidade, integridade e autenticidade (CIA) dos dados que viajam através de redes inseguras.
- Não apenas na Internet, nas LAN e WAN também.
- Algumas aplicações das VPN:
  - Ligação de redes remotas da mesma empresa
  - Ligação entre redes remotas de parceiros de negócio
  - Acesso remoto de colaboradores
  - Protecção dos números de cartão de crédito em transacções bancárias e outras no e-commerce, ...

Nota: Nem todas as VPN asseguram um canal seguro.

## Conceito de "canal seguro"



- Oferta típica:
  - Confidencialidade
  - Autenticação da origem de dados (do quê? Máquina? Aplicação? Utilizador?)
  - Integridade de dados
- Oferta menos usual:
  - Não-repudiação (negar a responsabilidade de uma acção depois de feita)
  - Maior eficiência (MPLS)

# Pré-requisitos de uma VPN



- Segurança, eficiência e custo menor do que as soluções tradicionais
  - VPN devem dar suporte a mecanismos de confidencialidade, mas nem todas o têm de fazer (e.g. MPLS)
  - VPN devem suportar autenticação
  - Ninguém externo à VPN deve poder alterar a VPN ou os conteúdos que lá passam (integridade)
  - Todas as partes associadas à VPN devem acordar sobre as propriedades de segurança.

## Porquê usar VPN?



- Expandir a abrangência geográfica
- Aumentar a segurança
- Reduzir os custos operacionais das WAN tradicionais
- Reduzir o tempo de trânsito e custo de transporte para os utilizadores remotos
- Aumentar a produtividade
- Simplificar a topologia da rede
- Melhorar as oportunidades de utilização da rede global
- Fornecer suporte ao trabalho remoto
- Melhorar a utilização e a compatibilidade com a rede de banda larga
- Fornecer um ROI (return on investment) mais rápido que uma WAN

## Quais as opções criticas?



- Segurança
- Fiabilidade
- Escalabilidade
- Gestão da rede
- Gestão de politicas



### **VPN** porquê?



As redes públicas são utilizadas para passarem informação entre redes de confiança, utilizando recursos partilhados como *Frame Relay* ou ATM.



Uma "Virtual Private Network" pode substituir as anteriores utilizando a Internet.

## VPN porquê?



#### Poupança, mantendo ou aumentando a segurança e versatilidade

T1 connections between San Francisco and New York City: \$10,000/mo Dial-in access from Denver and Chicago to San Francisco: \$600/mo



### Problemas das organizações na gestão das suas redes





# Razões principais da opção por VPN IP



#### IDC US WAN manager survey: Primary reason for implementing an IP-VPN?



## Conceito de "canal seguro"



- Canal seguro funciona da seguinte maneira:
  - Protocolo de estabelecimento de chaves de sessão
    - Durante este uma ou ambas as partes são autenticadas
    - São estabelecidas novas chaves de sessão
    - As chaves de sessão podem ser criadas a partir dum segredo partilhado
  - Fase de derivação de chaves
    - As chaves de sessão podem dar origem a chaves independentes de cifra e autenticação
  - O tráfego que se seguir é cifrado usando as chaves derivadas
- Opcionalmente: Reutilização da sessão, mudança rápida de chaves (session re-use, fast re-keying, ...)

# Primitivas criptográficas típicas utilizadas



- Algoritmos de cifra simétrica.
  - Para velocidade na cifra e decifra.

#### Algoritmos de cifra assimétrica

Para a autenticação de entidades e troca de chaves

#### Algoritmos de autenticação e integridade

 MAC (Message Authentication Code) usualmente construído com funções de hash

#### Funções de geração de números pseudo-aleatórios (com chave)

Derivação da chave.

#### Outros contributos para a segurança

- Números de sequência, protegidos por MACs, utilizados para prevenir ataques por repetição
- "Nonces" e "timestamps" utilizados para garantir a "frescura" nas trocas para autenticação entre entidades

## Vantagens das VPN



- Fornece um canal seguro: Confidencialidade, autenticação e integridade
- Fácil de estabelecer dado utilizar a mesma infra-estrutura das redes existentes
- Fácil de terminar
- Interliga locais (por exemplo, escritórios) de maneira segura através de uma rede com custos mais razoáveis do que métodos mais tradicionais tais como, por exemplo, as linhas alugadas.

# Desvantagem das VPN (face às linhas alugadas)



- Overhead devido aos mecanismos para garantirem a confidencialidade, autenticação e integridade
- Possibilidade da velocidade da VPN limitada pela velocidade do troço com débito menor na Internet
- Possibilidade de uma única falha no caminho desligar toda a VPN
- Difícil detectar problemas dado parte do tráfego ser cifrado
- IDS (Intrusion Detection System) é menos eficaz dado a cifra dos conteúdos
- Integração difícil com o NAT.

# Tipos de VPN



- Podemos classificar as VPN de acordo com a sua funcionalidade em:
  - VPN de acesso remoto
  - VPN intranet
  - VPN extranet
- Também podemos classificar as VPN quanto à sua função enquanto emuladoras de outro tipo de redes:
  - Virtual Leased Lines (VLL)
  - Virtual Private Routed Networks (VPRN)
  - Virtual Private LAN Segment (VPLS)
  - Virtual Private Dial Networks (VPDN)

## Tipos de VPN





#### VPN de acesso remoto



- Ligação de equipamentos móveis
- Ligações de muitos para um
- Computador remoto (cliente VPN) e gateway da VPN de acesso remoto (servidor VPN)
- Software de cliente
- Acesso ao recursos privados internos da rede

## VPN extremo a extremo (entre redes)



- Ligação router a router
- Ligação de um para um
- Lida com os assuntos do encaminhamento
- Utiliza IP públicos estáticos
- Podemos incluir nesta classificação as VPN intranet e extranet.

# Tipos de VPN



| U | S | е |
|---|---|---|
| U | 5 | е |

Remote Access VPN

**IntranetVPN** 

**ExtranetVPN** 

#### **Application**

Remote Connectivity

Site-to-Site Internal Connectivity

Business-to-Business External Connectivity

#### Alternative To

Dedicated Dial ISDN

> Leased Line

Fax, Mail, EDI

#### **Benefits**

Ubiquitous Access LowerCost

Extend Connectivity LowerCost

Facilitates E-Commerce

# Tipos de VPN (2)



- As VPN podem ser implementadas de várias formas :
  - Soluções baseadas em equipamentos dos clientes (Customer Premises Equipment (CPE))
  - Soluções baseadas na rede, equipamentos dos operadores

### VPN baseadas em CPE vs rede



- A maioria das implementações de VPN actuais são baseadas em dispositivos CPE (equipamentos dos clientes):
  - Firewalls
  - Routers de fronteira de WAN
  - Dispositivos especializados de terminação de VPN
- Soluções baseadas em rede: A VPN é implementada na rede pelo Internet Service Provider (ISP)
  - Alguns mecanismos disponibilizam ferramentas poderosas que são apenas aplicáveis aos ISP em vez de clientes individuais que utilizam dispositivos CPE especiais

# Tipos de VPN (emulação de outras redes)



- Virtual Leased Lines (VLL)
- Virtual Private Routed Networks (VPRN)
- Virtual Private LAN Segment (VPLS)
- Virtual Private Dial Networks (VPDN)

# Tipo I: Virtual Leased Lines (VLL)



- VLL = Túnel IP formando uma ligação ponto-a-ponto de maneira a emular uma ligação através de uma linha alugada ou dedicada
- Requer um mecanismo para dar suporte a um túnel IP
  - O envio é disjunto dos campos de endereço dos pacotes encapsulados, permite o transporte opaco de tramas como carga dos pacotes
  - e.g. IP/IP, túneis GRE, L2TP (pacotes PPP), MPLS e IPSec

# VLL: Requisitos do protocolo de suporte dos túneis



- Suporte de multiplexagem de VLLs
  - e.g. tunnel-id & call-id para o L2TP, labels MPLS
- Suporte de um protocolo de sinalização
  - Para negociar os atributos do túnel tais como nível de segurança, endereço IP dos pontos remotos (e.g. LDP no MPLS).
- Suporte de segurança de dados
  - Permitir aos clientes especificar os níveis de segurança
- Suporte de múltiplos protocolos de transporte
- Suporte de sequenciação de tramas
  - Requerido para garantir entrega por ordem dos pacotes

# VLL: Requisitos do protocolo de suporte dos túneis



- Suporte de manutenção do túnel
  - Estabelecer, manter e terminar instâncias de túneis
- Suporte de MTU grandes
  - Deve permitir fragmentação de tramas, quer ao nível do IP ou dentro do túnel (número de sequência no túnel)
- Minimização do overhead devido ao túnel
  - Importante para tráfego sensível a pequenos jitter e latência
- Formas de controlo de congestão e de fluxo
  - Actualmente apenas o L2TP faz isto, ainda em fase de experiência
- Formas de gestão do tráfego
  - Garantia de entrega e.g. taxa de perdas, latência e largura de banda

# **VLL:** Recomendações



- Uma modificação do IKE/IPSec pode ser uma escolha óptima como norma para um mecanismo de túnel VLL
  - Tem capacidades bem definidas de multiplexagem e de sinalização
  - Tem suporte de segurança
  - Compete com: MPLS
- Usar um único protocolo de sinalização e o encapsulamento de dados associado é melhor do que ter múltiplos protocolos em paralelo.

# Tipo II: Virtual Private Routed Networks (VPRN)



- Uma VPRN emula uma rede IP com múltiplos sítios com possibilidade de encaminhar entre eles
  - Uma mistura de túneis IP entre routers de ISPs e routers do cliente
  - Ligações "stub" a interligar os routers CPE aos routers dos ISPs



# **VPRN** (continuação)



- Benefício: A configuração dos routers CPE é simplificada. O router de fronteira do ISP aparece como um router "vizinho".
- A complicação do estabelecimento do túnel, manutenção e encaminhamento está do lado do ISP. O encaminhamento é realizado ao nível de rede (nível 3)
- Cada router CPE do lado do cliente está ligado a um router de fronteira do ISP através uma ou mais ligações "stub" (linhas alugadas, ATM ou Frame Relay)
- Cada VPRN suporta apenas um único protocolo da camada de rede.

# VPRN (continuação)



- Assuntos que necessitam ser abordados:
  - Configuração inicial/topologia: Necessidade de determinar o conjunto de routers que têm membros em VPRN
  - Os routers CPE necessitam determinar o conjunto de prefixos dos endereços IP a serem enviados para um router de fronteira do ISP
  - Routers de fronteira do ISP
    - Necessidade de determinar o conjunto de prefixos de endereços IP que estão disponíveis através de cada ligação "stub"
    - Necessidade de aprender e disseminar informação entre eles da maneira de atingir as várias sub-redes
    - Necessidade de mecanismos de envio da VPN para o envio de tráfego de chegada das ligações "stub" para o próximo router e para enviar o tráfego de saída da rede para as ligações "stub"
  - Nota: Assuntos semelhantes aplicados a VPLS.

# **VPRN:** Requisitos genéricos



- Identificador único de VPN para se referir a uma VPN em particular
  - Único através de diferentes AS (Sistemas Autónomos)
- Membros da VPRN
  - configuração
  - disseminação (lookup de directorias, configuração de gestão explícita, piggybacking em protocolos de routing).
- Informação de acesso às ligações "stub"
  - Os routers de fronteira devem aprender conjuntos de endereços/prefixos de endereços atingíveis via cada ligação "stub"
  - Cada router CPE necessita aprender os destinos atingíveis por cada ligação "stub"

# **VPRN:** Requisitos genéricos



- Informação de encaminhamento intra-VPRN
  - Necessita ser disseminada para outros *routers* de fronteira de uma das seguintes formas:
    - Lookup em directorias
    - Configuração explicita
    - Instanciações de encaminhamento intra-VPRN local
    - Protocolo "link reachability"
    - Piggybacking de protocolos de routing no backbone IP
- Mecanismo de túnel (como em VLL)
  - Os routers de fronteira devem construir os túneis necessários para os outros routers na VPRN, encapsular/desencapsular e enviar/receber pacotes através do túnel

# **VPRN:** Suporte de *multicast*



O tráfego de *multicast* e *broadcast* pode ser suportado por:

- Replicação na fronteira:
  - O router de fronteira replica o tráfego de multicast para a transmissão através de cada ligação da VPRN
- Suporte de *multicast* nativo
  - Os routers de fronteira VPRN mapeiam o tráfego multicast intra-VPRN em mecanismo de distribuição IP multicast através do backbone.

# **VPRN**: Recomendações



- Existem propostas para adaptar protocolos de routing para transportarem informações de VPN para suportarem mecanismos de piggybacking de routers (e.g. MPLS)
- Contra: Alguns ISP preferem n\u00e3o associar "membership" e "reachability" com os protocolos de routing do backbone.

# Tipo III: Virtual Private LAN Segment (VPLS)



- Uma VPLS emula um segmento de uma LAN sobre IP.
  - Equivalente às VPRN, excepto que agora os túneis estendem-se até aos routers
     CPE e os routers de fronteira do ISP fornecem ligações ao nível da camada de ligação (bridging) (apenas ligação ao nível 2).



# VPLS: Requisitos e recomendações



- Muito semelhante às VPRN
- Ao contrário das VPRN, os nós CPE podem ser bridges ou routers
  - A natureza dos CPE (bridge vs router) tem impacto na natureza da encapsulação, endereçamento, envio e acessibilidade dos protocolos na VPLS.
- Vantagem: Transparência do protocolo.
- A parceria entre VPRN e VPLS pode ser explorada de forma a diminuir a complexidade.

# Tipo IV: Virtual Private Dial Networks (VPDN)



- Uma VPDN permite a utilizadores remotos ligarem-se a pedido através de túneis:
  - Ex. Ligações PPP a NAS (Network Access Server)
- Uma relação forte entre o utilizador e a rede central requer segurança.
- L2TP (Layer 2 Tunneling Protocol) permite uma sessão PPP entre um utilizador de um concentrador de acessos L2TP (LAC) e um servidor de rede remoto (LNS) L2TP.

# **VPDN** (continuação)



- Suporte compulsivo de túneis
  - Um servidor de acessos (LAC), estende uma sessão PPP através do backbone usando L2TP até um LNS remoto
- Outros assuntos:
  - Call Routing
  - Mecanismos de segurança
  - Gestão de tráfego
  - Multiplexagem de chamadas
  - Gestão de endereços
  - Suporte de MTU grandes

# **VPDN** (continuação)



- Túneis voluntários
  - Um host individual liga-se a um local remoto utilizando um túnel com origem no host, sem envolvimento de nós da rede intermédios.
- Suporte de hosts na rede
  - O modelo existente do PPP assume uma ligação a uma rede de acesso
  - Se se quiser acomodar a infra-estrutura AAA entre os fornecedores de serviços
    - Estender o PPP a hosts através do L2TP
    - Estender directamente o PPP até aos hosts
    - Usar IPSec

## **VPDN**



- As especificações do L2TP foram complementadas para suportarem VPDN usando túneis compulsórios
- São necessários mais estudos para determinar a melhor solução para dar suporte aos túneis voluntários:
  - Solução baseada em PPP ou
  - Mecanismo baseado em IPSec.

## Protocolos de suporte a VPN



- PPTP (Point to Point Tunneling Protocol)
- L2TP (Layer 2 Tunneling Protocol)
- IPSec (Internet Protocol Security), IKEv2
- SSL/TLS (Secure Socket Layer / Transport Layer Security)
- SSH + PPP (Secure Shell + Peer-to-Peer Protocol)
- SSTP
- OpenVPN

Lista não exaustiva

- SoftEther VPN
- MPLS

## Segurança versus camadas de rede



- Em que camada da rede devemos implementar a segurança?
- A segurança pode ser aplicada em qualquer das camadas de rede:
  - Mesmo na física é por vezes possível aplicar segurança (técnicas de "spread spectrum", por exemplo)
- Quais os prós e os contras de aplicar a segurança numa ou noutra camada?

## **VPN – Camadas de rede**



| Camada do modelo     | Protocolos                                     |
|----------------------|------------------------------------------------|
| Camada de aplicação  | SoftEther VPN, OpenVPN, SSH                    |
| Camada de transporte | SSL/TLS                                        |
| Camada de rede       | IPSec                                          |
| Camada de ligação    | PPTP, L2TP, MPLS                               |
| Camada física        | Scrambling, Hopping,<br>Quantum Communications |

## Segurança e camadas da rede



### Camada Data Link (Network Interface):

- ✓ Cobre todo o tráfego nessa ligação (*link*), independentemente dos protocolos acima
- Protecção de apenas um troço ("hop")

### Camada Network (Internet):

- ✓ Pode cobrir todo o tráfego, extremo-a-extremo
- ✓ Transparente para as aplicações
- Pouco controlo das aplicações
  - As aplicações não têm visibilidade da camada Internet
- Não natural dado que a camada de rede não tem estado (stateless) e não é fiável
  - A ordem dos dados num canal seguro pode ser crucial
  - Difícil de manter se os datagramas IP forem descartados ou jogados fora, ...

## Segurança e camadas da rede



### Camada de Transporte:

- ✓ Extrêmo-a-extrêmo, cobre todo o tráfego que use o protocolo de transporte protegido
- ✓ As aplicações podem controlar quando é usado
  - As aplicações têm uma maior visibilidade da camada de transporte.
- ✓ A camada de transporte pode naturalmente ter noção de estado (statefull), e.g. TCP
- As aplicações têm de ser modificadas (se não se usarem *proxies*)

### Camada de Aplicação:

- ✓ A segurança pode ser ajustada às necessidades da carga.
  - Aplicações diferentes podem ter necessidades radicalmente diferentes
  - E.g. aplicação VoIP versus transferência de dados sensíveis.
- Cada aplicação deve gerir a sua própria segurança.

### VPN Nível 2 vs. Nível 3 – Prós e Contras



#### Nível 2 – L2TP

- Os mesmos procedimentos de que o PPP (segredos pré-partilhados, RADIUS, etc.)
- Mesma informação auxiliar que o PPP (virtual IP, DNS/WINS servers)
- Sem segurança forte, o protocolo de controlo da ligação fica sujeita a ataques e pode ser enganado para estabelecer um cifra fraca ou nenhuma.
- Os pacotes L2TP não são autenticados e estão sujeitos a ataques por repetição

#### Nível 3 – IPSec

- Cifra forte criptograficamente e autenticação do túnel VPN
- Pode negociar e forçar politicas de controlo complexas de acesso à VPN
- DHCP-over-IPSec e autenticação oferecem facilidades tipo PPP
- Não permite enviar pelo túnel protocolos não-IP (IPX, etc.)
- Estabelecimento da ligação complexo, overhead da gestão PKI

### VPN Nível 4/5



#### Nível 2 – SSL/TLS

- Possibilidade de utilizar inúmeros algoritmos criptográficos, incluindo cifras simétricas, assimétricas, hashes e certificados digitais
- Possibilidade de negociar os algoritmos criptográficos a utilizar em cada caso
- Mais «pesado» do que os protocolos implementados em camadas OSI inferiores

### Nível 4/5 – OpenVPN e SoftEther VPN

- Baseados no SSL/TLS
- Pode negociar e forçar politicas de controlo complexas de acesso à VPN
- Pode oferecer serviços nível 2 OSI (SoftEther VPN)
- Não têm uma abrangencia tão grande como os outros protocolos de suporte de VPN referidos anteriormente
- Normalmente mais «pesados» do que os protocolos de VPN de camadas inferiores apesar da sua implementação utilizando facilidades relacionadas com o kernel, etc. Permitam melhorar o desempenho

### VPNs Nível 2 vs. Nível 3– Prós e Contras



#### L2TP sobre IPsec

- 7 Fornece serviços de nivel 2 OSI de modo seguro
- → A encapsulação IPSec adiciona cifra e autenticação fortes
- Permite o envio pelo túnel de protocolos não-IP (IPX, etc.)
- Pacotes grandes devido à sobrecarga da múltipla encapsulação

## **PPTP**



- Point-to-Point Tunneling Protocol (PPTP), desenvolvido pela Microsoft
- Estabelece um túnel, não fornece encriptação
- Usado com o *Microsoft Point-to-Point Encryption* (MPPE) se se pretender confidencialidade
- Usado nas VPN de acesso remoto (cliente)
- Utiliza o MS-CHAPv2 para autenticação, ou utiliza o EAP (Extensible Authentication Protocol) para melhorar o suporte de mecanismos de autenticação

O EAP, criado inicialmente como uma extensão do PPP, é um protocolo de suporte à autenticação que dá suporte a múltiplos métodos de autenticação, tal como *token* cards, Kerberos, one-time passwords, certificados digitais, autenticação com chave pública e smart cards.

## L2TP



- Layer 2 Tunneling Protocol (PPTP + L2P, Layer 2 Forwarding)
- É independente do IP (nível 2 OSI)
- Requer certificados digitais
- Vantagens relativa ao PPTP
  - Não-repudiação

## **IPSec**



- Utilizado também pelo L2TP para cifrar os túneis
- Nível 3 do OSI
- Pode funcionar em modo transporte ou em modo túnel
- Autenticação via Internet Key Exchange (IKE)
  - Certificados digitais
  - Chaves pré-partilhadas

## Modo transporte



Como o nome sugere, no modo transporte o protocolo IPSec protege apenas a mensagem recebida da camada de transporte.



### Modo túnel



Neste modo o IPSec é utilizado para proteger um datagrama IP completo que é encapsulado dentro de outro datagrama IPSec.



## SSL



- Utilizado principalmente para a criação de VPNs de acesso remoto a servidores Web
- Utiliza certificados digitais

## Partes a considerar numa VPN



