TP555 - Inteligência Artificial e Machine Learning: Redução de Dimensionalidade

Esse material foi desenvolvido e gentilmente cedido pelo Prof. Dr. Felipe Augusto Pereira de Figueiredo, do Inatel.(felipe.figueiredo@inatel.br)

Prof. Dr. Luiz Augusto Melo Pereira luiz.melo@inatel.br

Redução de Dimensionalidade

- Muitos problemas de aprendizado de máquina envolvem centenas, milhares ou até milhões de atributos para cada exemplo de treinamento.
- Isso não apenas torna o treinamento extremamente lento, mas também pode tornar muito mais difícil encontrar uma boa solução.
- Este problema é frequentemente referido como a maldição da dimensionalidade.
- Felizmente, em problemas do mundo real, muitas vezes é possível reduzir consideravelmente o número de atributos, transformando um problema intratável em um tratável.

Redução de Dimensionalidade

- A redução de dimensionalidade transforma dados de um espaço de alta dimensão em um espaço de baixa dimensão de forma que a representação de baixa dimensão retenha algumas propriedades significativas dos dados originais, idealmente próximas de sua dimensão original.
- As abordagens para redução de dimensionalidade podem ser divididas em seleção e extração de atributos.
 - Extração: os dados originais sofrem algum tipo de transformação (e.g., projeção linear ou não-linear), dando origem a novos atributos em um espaço de dimensão possivelmente diferente.
 - **Seleção**: do conjunto de atributos originais do dado, somente um subconjunto deles é selecionado.

Redução de Dimensionalidade

- A redução de dimensionalidade pode ser usada para (i) redução de ruído, (ii) visualização de dados, análise de clusters ou (iii) como uma etapa intermediária para facilitar outras análises (e.g., reduzir o custo computacional envolvido no processamento dos dados através da redução da dimensionalidade.).
- A redução da dimensionalidade faz com que algumas informações sejam perdidas.
 - Exemplo: compactar uma imagem em JPEG pode degradar sua qualidade.
- Desta forma, embora acelere o treinamento, também pode fazer com que o desempenho do modelo seja um pouco pior.
- Entretanto, em alguns casos, a redução de dimensionalidade dos dados de treinamento pode filtrar ruído e detalhes desnecessários e, assim, resultar em melhor desempenho, mas em geral, ela apenas irá acelerar o treinamento.

Extração de Atributos

- Também conhecida como *projeção de atributos*.
- Ela transforma os dados do espaço de alta dimensão em um espaço de menor dimensões.
- Na maioria dos problemas do mundo real, os exemplos de treinamento não são distribuídos uniformemente em todas as dimensões.
- Muitos atributos são quase constantes, enquanto outros são altamente correlacionados.
- Como resultado, todos os exemplos de treinamento na verdade estão dentro (ou perto de) um *subespaço* de dimensão muito menor do espaço de alta dimensão.

Conjunto de dados em 3D próximo a um subespaço de 2D.

Extração de Atributos

- Observe que todos os exemplos de treinamento ficam próximos a um plano:
 - Este é um subespaço de dimensão menor (2D) do espaço de dimensão alta (3D).
- Agora, se projetarmos cada exemplo de treinamento perpendicularmente neste subespaço (conforme representado pelas linhas curtas conectando os exemplos ao plano), obteremos o novo conjunto de dados 2D mostrado na figura ao lado.
- Observe que os eixos correspondem aos novos atributos z_1 e z_2 (as coordenadas das projeções no plano).

Análise de Componentes Principais (PCA)

- A Análise de Componentes Principais (em inglês, Principal Component Analysis - PCA) é o algoritmo de redução de dimensionalidade linear mais popular.
- Primeiro, ele identifica o hiperplano mais próximo dos dados e, em seguida, projeta os dados nele, como na figura anterior.
 - Ou seja, ele realiza um mapeamento linear dos dados para um espaço de dimensão menor de forma que a variância dos dados na representação de dimensão menor seja maximizada.
- Na prática, a matriz de covariância dos dados é construída e os autovetores e autovalores da matriz são calculados.
- Os autovetores que correspondem aos maiores autovalores (ou seja, os componentes principais) agora podem ser usados para reconstruir uma grande fração da variância dos dados originais.

Preservando a variância

- Antes de projetarmos o conjunto de treinamento em um hiperplano de dimensão menor, primeiro precisamos escolher o hiperplano correto.
- Por exemplo, um conjunto de dados em 2D é representado na figura acima, junto com três eixos diferentes (ou seja, hiperplanos 1D).
- Na figura abaixo, está o resultado da projeção do conjunto de dados em cada um desses eixos.
 - Como podemos ver, a projeção na linha contínua preserva a variância máxima, enquanto a projeção na linha pontilhada preserva muito pouco da variância, e a projeção na linha tracejada preserva uma quantidade intermediária.

Preservando a variância

- Parece razoável selecionar o eixo (ou seja, hiperplano 1D) que preserva a quantidade máxima de variância, pois provavelmente será o eixo que perderá menos informações do que as outras projeções.
- Outra forma de justificar essa escolha é que este é o eixo que minimiza a distância quadrática média entre o conjunto de dados original e sua projeção nesse eixo.
- Esta é a ideia simples por trás do PCA: "encontrar uma sequência de eixos que maximizam a variância e consigam explicar os dados".

- PCA identifica o eixo responsável pela maior quantidade de variância no conjunto de treinamento. Na figura, é a linha sólida.
- Ele também encontra um segundo eixo, *ortogonal* ao primeiro, que responde pela maior quantidade de variância restante. Na figura, é a linha pontilhada.
- Se fosse um conjunto de dados de dimensão maior, o PCA encontraria um terceiro eixo, ortogonal a ambos os eixos anteriores, e um quarto, um quinto e assim por diante - tantos eixos quanto o número de dimensões do conjunto de dados.

- O vetor unitário que define o *i*-ésimo eixo é chamado de *i*-ésimo *componente principal* (CP).
 - Na figura acima, o primeiro CP é \mathcal{C}_1 e o segundo CP é \mathcal{C}_2 .
 - Na figura abaixo, os primeiros dois CPs são representados pelas setas *ortogonais* no plano, e o terceiro CP seria *ortogonal* ao plano (apontando para cima ou para baixo).
- Então, como podemos encontrar os CPs de um conjunto de treinamento?
 - Usamos a técnica de fatoração de matrizes chamada decomposição em valores singulares (em inglês, Singular Value Decomposition - SVD).

- SDV decompõe a matriz de treinamento \mathbf{X} , com dimensões $n \times p$, a partir de sua matriz de covariância, $\mathbf{C}_{\mathbf{X}}$, na multiplicação de três matrizes $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$, onde
 - U é uma matriz com dimensões $n \times n$ cujas colunas são vetores unitários ortogonais de comprimento n chamados de vetores singulares à esquerda de X,
 - lacksquare Σ é uma matriz retangular diagonal com dimensões n imes p com os **valores** singulares de X e
 - V é uma matriz com dimensões $p \times p$ cujas colunas são vetores unitários ortogonais de comprimento p chamados de vetores singulares à direita de X.
- Como isso se relaciona com PCA?

• Considere a matriz \mathbf{X} , com dimensões $n \times p$, para a qual nós temos a seguinte decomposição em valores singulares

$$X = U\Sigma V^{T}$$

- Existe um teorema em álgebra linear que diz que os valores singulares não-nulos de X são as raízes quadradas dos autovalores não-nulos de XX^T ou X^TX .
- A afirmação anterior para o caso X^TX é comprovada da seguinte forma:

$$X^{T}X = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$

$$= (V\Sigma^{T}U^{T})(U\Sigma V^{T})$$

$$= V(\Sigma^{T}\Sigma)V^{T}$$

- Observamos que $\mathbf{X}^T\mathbf{X}$ é *semelhante* a $\mathbf{\Sigma}^T\mathbf{\Sigma}$ e, portanto, possui os mesmos autovalores.
- Como $\Sigma^T\Sigma$ é uma matriz diagonal quadrada $p \times p$, os autovalores são de fato os elementos diagonais, que são os quadrados dos valores singulares.
- Também deve ser notado que realizamos efetivamente uma decomposição de autovalores para a matriz, $\mathbf{X}^T\mathbf{X}$.
- De fato, como a matriz $\mathbf{X}^T\mathbf{X}$ é simétrica, esta é uma diagonalização ortogonal e, portanto, os autovetores de $\mathbf{X}^T\mathbf{X}$ são as colunas de \mathbf{V} .
- Portanto, se realizarmos uma decomposição em valores singulares da matriz $\mathbf{X}^T\mathbf{X}$, os componentes principais serão as colunas da matriz ortogonal, \mathbf{V} .

Projetando em d dimensões

- Depois de identificar todos os componentes principais, podemos reduzir a dimensionalidade do conjunto de dados para d dimensões projetando-o no hiperplano definido pelos primeiros d componentes principais.
- Selecionar este hiperplano garante que a projeção preservará a maior variância possível, ou seja, a maior quantidade de informação possível.
- Por exemplo, na figura ao lado o conjunto de dados 3D é projetado no plano 2D definido pelos dois primeiros componentes principais, preservando uma grande parte da variância do conjunto de dados.
- Como resultado, a projeção 2D se parece muito com o conjunto de dados 3D original.

Projetando em d dimensões

- Para projetar o conjunto de treinamento no hiperplano de menor dimensão, podemos simplesmente calcular a multiplicação da matriz do conjunto de treinamento ${\bf X}$ pela matriz ${\bf W}_d$.
- A matriz \mathbf{W}_d é definida como a matriz contendo os primeiros d componentes principais (ou seja, a matriz composta pelas primeiras d colunas de \mathbf{V}), conforme mostrado na equação abaixo.

$$\mathbf{X}_{d-\text{proj}} = \mathbf{X}\mathbf{W}_d$$
.

PCA com a biblioteca Scikit-Learn

```
import sklearn
import numpy as np
m = 60
w1, w2 = 0.1, 0.3
noise = 0.1
# Creating a 3D dataset.
angles = np.random.rand(m) * 3 * np.pi / 2 - 0.5
X = np.empty((m, 3))
X[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise *
np.random.randn(m) / 2
X[:, 1] = np.sin(angles) * 0.7 + noise *
np.random.randn(m) / 2
X[:, 2] = X[:, 0] * w1 + X[:, 1] * w2 + noise *
np.random.randn(m)
                                                        Escolhe número de
                                                         componentes que
# Applying PCA to reduce the dataset.
                                                      explicam no mínimo 95%
pca = PCA (n components=0.95) \leftarrow
                                                      da variância do conjunto.
X reduced = pca.fit transform(X)
```


Obrigado!

Figuras