Linear Algebra

Cody Vig

January 2022

1

Preliminary Assessment

- 1. (a) Is the set of polynomials of degree $n \in \mathbb{Z}_{\geq 0}$ over a field \mathbb{F} a vector space? If it is, prove it. If it is not, state which axioms are not satisfied and provide counterexamples.
 - (b) Prove that the set of polynomials of degree at most n is a vector space. You may assume that the set of continuous functions $\mathscr{C}(\mathbb{F})$ in \mathbb{F} is a vector space. Why is this helpful?

In what follows, let $P_2(\mathbb{R})$ be the vector space of polynomials of degree at most 2 and \mathbb{V} denote the subset of $P_2(\mathbb{R})$ such that:

$$\int_0^1 p(t) \, \mathrm{d}t = 0.$$

- (c) Prove that \mathbb{V} is a subspace of $P_2(\mathbb{R})$.
- (d) Construct a basis for V and prove it is indeed a basis. What is the dimension of V?
- 2. Let $P_n(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficients in a field \mathbb{F} . Define the transformation $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ by

$$T(p(t)) = 2p'(t) - 3p''(t).$$

- (a) Prove that T is a linear transformation.
- (b) Find a basis for the nullspace of T.
- (c) Given the bases $\beta := \{1, t, t^2, t^3\}$ and $\gamma := \{1, t 1, t^2 1\}$ for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$ respectively, determine the matrix $[T]_{\beta}^{\gamma}$ which represents T. That is, if v is a vector in $P_3(\mathbb{R})$, w = T(v), and $[v]_{\beta}$ represents the coordinates of v in the β -basis, find the matrix $[T]_{\beta}^{\gamma}$ for which $[w]_{\gamma} = [T]_{\beta}^{\gamma}[v]_{\beta}$.
- 3. Let $\beta := \{(1,1), (1,-1)\}$ and $\beta' := \{(2,4), (3,1)\}.$
 - (a) Verify that β and β' are bases for \mathbb{R}^2 .
 - (b) Construct the matrix Q which changes β' coordinates to β -coordinates. That is, if $v \in \mathbb{R}^2$ and $[v]_{\beta}$ represents the coordinates of v in the β -basis, determine the matrix Q such that $[v]_{\beta} = Q[v]_{\beta'}$.

4. Let $M_n(\mathbb{F})$ denote the vector space of $n \times n$ matrices over a field \mathbb{F} and define $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$ by

$$T(f(x)) = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}.$$

Find a basis for the range R(T) of T and a basis for the nullspace N(T) of T. Verify that $\dim R(T) + \dim N(T) = 3 = \dim P_2(\mathbb{R})$.

5. Define the following matrix.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Determine the eigenvalues of A. Use these eigenvalues to write $A = PDP^{-1}$ where D is a diagonal matrix and P is nonsingular.

6. Suppose $\{v_1, \ldots, v_n\}$ is an orthogonal set of vectors. Let $\|\cdot\|$ denote the norm generated by the inner product $\langle \cdot, \cdot \rangle$. Prove

$$\left\| \sum_{i=1}^{n} a_i v_i \right\|^2 = \sum_{i=1}^{n} |a_i|^2 \|v_i\|^2,$$

where a_1, \ldots, a_n are scalars.

- 7. Let $\mathbb V$ be a finite-dimensional inner product space over $\mathbb C$ and suppose $T:\mathbb V\to\mathbb V$ is linear. Then there exists a unique linear transformation $T^*:\mathbb V\to\mathbb V$ (called the adjoint of T) such that $\langle T(v),w\rangle=\langle v,T^*(w)\rangle$ for all v,w in $\mathbb V$. Using only the definition above and the axioms of an inner product, show that if $T=T^*$, then the eigenvalues of T are real.
- 8. Consider the vector space $\mathbb{V} := \{p(t) = a + bt^2 \mid a, b \in \mathbb{R}\}$. Let ω_1 and ω_2 be linear functionals on \mathbb{V} such that $\omega_1\{p(t)\} = p(1)$ and $\omega_2\{p(t)\} = p(2)$. Find the basis for \mathbb{V} for which $\{\omega_1, \omega_2\}$ is the dual basis.