Lab1

Andreas C Charitos[andch552]

1/22/2021

Contents

roblem 1	2
a)	
b)	3
roblem 2	4
a)	4
b)	5
c)	6
roblem 3	6
pprendix	7

Problem 1

Table 1: First 3 rows of the data

country	100m	200m	400m	800m	1500m	3000m	marathon
ARG	11.57	22.94	52.50	2.05	4.25	9.19	150.32
AUS	11.12	22.23	48.63	1.98	4.02	8.63	143.51
AUT	11.15	22.70	50.62	1.94	4.05	8.78	154.35

a)

Table 2: Column means

	X
100m	11.357778
$200 \mathrm{m}$	23.118519
$400 \mathrm{m}$	51.989074
$800 \mathrm{m}$	2.022407
$1500 \mathrm{m}$	4.189444
$3000 \mathrm{m}$	9.080741
marathon	153.619259

Table 3: Column standard deviations

X
0.3941012
0.9290255
2.5972019
0.0868730
0.2723650
0.8153269
16.4398951

b)

Problem 2

a)

Table 4: Correlation matrix

	$100 \mathrm{m}$	200m	400m	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	marathon
100m	1.0000000	0.9410886	0.8707802	0.8091758	0.7815510	0.7278784	0.6689597
$200 \mathrm{m}$	0.9410886	1.0000000	0.9088096	0.8198258	0.8013282	0.7318546	0.6799537
$400 \mathrm{m}$	0.8707802	0.9088096	1.0000000	0.8057904	0.7197996	0.6737991	0.6769384
$800 \mathrm{m}$	0.8091758	0.8198258	0.8057904	1.0000000	0.9050509	0.8665732	0.8539900
$1500 \mathrm{m}$	0.7815510	0.8013282	0.7197996	0.9050509	1.0000000	0.9733801	0.7905565
$3000 \mathrm{m}$	0.7278784	0.7318546	0.6737991	0.8665732	0.9733801	1.0000000	0.7987302
marathon	0.6689597	0.6799537	0.6769384	0.8539900	0.7905565	0.7987302	1.0000000

Table 5: Covariance matrix

	100m	$200 \mathrm{m}$	$400 \mathrm{m}$	800m	$1500 \mathrm{m}$	$3000 \mathrm{m}$	marathon
100m	0.1553157	0.3445608	0.8912960	0.0277036	0.0838912	0.2338828	4.334178
$200 \mathrm{m}$	0.3445608	0.8630883	2.1928363	0.0661659	0.2027633	0.5543502	10.384988
$400 \mathrm{m}$	0.8912960	2.1928363	6.7454576	0.1818079	0.5091768	1.4268158	28.903731
$800 \mathrm{m}$	0.0277036	0.0661659	0.1818079	0.0075469	0.0214146	0.0613793	1.219655

	100m	200m	400m	800m	1500m	3000m	marathon
1500m	0.0838912	0.2027633	0.5091768	0.0214146	0.0741827	0.2161551	3.539837
$3000 \mathrm{m}$	0.2338828	0.5543502	1.4268158	0.0613793	0.2161551	0.6647579	10.706091
\max	4.3341776	10.3849876	28.9037314	1.2196546	3.5398373	10.7060911	270.270150

b)

Problem 3

countries
PNG
COK
SAM
BER
GBR

Apprendix

```
## ----message=FALSE, echo=FALSE-----
# Import libraries -----
library(ggplot2)
library(GGally)
library(reshape)
# library(kableExtra)
library(knitr)
library(dplyr)
library(plotly)
library(RColorBrewer)
## ---- echo=FALSE-----
dt = read.delim("T1-9.dat", header=FALSE)
colnames(dt) = c('country', '100m', '200m', '400m', '800m', '1500m', '3000m', 'marathon')
kable(dt[1:3,],
    caption = "First 3 rows of the data")
                        _____
## ----echo=F-----
col_means = sapply(dt[, -1], mean)
kable(col_means,
     caption = "Column means")
## ----echo=F-----
                      _____
col_sd = sapply(dt[, -1], sd)
kable(col_sd,
    caption = "Column standard deviations")
## ----echo=F-----
# Histograms
# Values for the normal distribution.
x = seq(-5, 5, 0.1)
y = dnorm(x)
par(mar=rep(2,4))
par(mfrow=c(4,2), bg='whitesmoke')
for (i in 2:8){
 hist(scale(dt[, i]),
     freq=FALSE,
     breaks=10,
     main=paste('Histogram of variable', colnames(dt)[i]),
     col='gray',
     border='blue', panel.first = grid(25,25))
```

```
lines(x, y, col='tomato4')
}
## ----echo=F-----
# Boxplots
par(mar=rep(2,4))
par(mfrow=c(4,2), bg='whitesmoke')
for(i in 2:9){
 if(i!=9){
 boxplot(dt[, i], horizontal = TRUE,
        main = paste('Boxplot for variable', colnames(dt)[i]))
 # Add mean line
 segments(x0 = mean(dt[, i]), y0 = 0.8,
         x1 = mean(dt[, i]), y1 = 1.2,
         col = "red", lwd = 2)
 # Add mean point
 # points(mean(dt[, i]), 1, col = 3, pch = 19, cex=2)
 stripchart(dt[, i], method = "jitter",
           pch = 19, add = TRUE,
           col = "blue", cex =0.5)}else{
   par(mai=c(0,0,0,0))
   plot.new()
   legend('center',legend=c('points','mean'),
         col=c('blue', 'red'), pch=c(19, NA),
         lwd=c(NA, 2), cex=0.7)
 }
}
## ---echo=FALSE------
# a) -----
# calculate matrices
corr_mat=cor(dt[, 2:8]); cov_mat=cov(dt[, 2:8])
# print correlation mat
# print(corr_mat)
kable(corr_mat,
     caption = "Correlation matrix")
# print covariance mat
# print(cov mat)
kable(cov mat,
     caption = "Covariance matrix")
## ----echo=FALSE------
par(mfrow=c(3,2), bg='whitesmoke')
for(i in 2:7){
```

```
name1=colnames(dt)[i+1]
      name0=colnames(dt)[i]
      title=paste0(name1," vs ",name0)
      # print(title)
      plot(dt[, i], dt[, i+1],
                    xlab=colnames(dt)[i], ylab=colnames(dt)[i+1],
                    col='red', pch =19,
                    main=paste("Scatterplot ", title))
      lm_model=lm(dt[,i+1]~dt[,i], data=dt)
      abline(lm_model,lty=2, lwd=2)
## ---echo=FALSE------
my_cols= colorRampPalette(brewer.pal(8, "PiYG"))(25)
heatmap(as.matrix(dt[, 2:8]), labRow=dt$country, scale='column', col = my_cols)
## ---echo=FALSE-----
euclidean_dist=function(X){
     X_centered=sweep(X, 2, colMeans(X))
     X_dist=sqrt(diag(X_centered %*% t(X_centered)))
return(X_dist)
}
distances_ed = euclidean_dist(as.matrix(dt[, 2:8]));
idxs = sort(distances_ed, decreasing=TRUE, index.return=TRUE)$ix;
countries = dt$country[idxs[1:5]]
kable(as.data.frame(countries))
\#\# ----code = read Lines (knitr::purl("/home/quartermaine/Desktop/multivariate_statistical\_methods-732A97/llooper (knitr::purl("/home/quartermaine/Desktop/multivariate_statistical\_methods-732A97/llooper (knitr::purl("/home/quartermaine/Desktop/multivariate_statistical\_methods-732A97/llooper (knitr::purl("/home/quartermaine/Desktop/multivariate_statistical_methods-732A97/llooper (knitr::purl("/home/quartermaine/Desktop/multivariate_statist
## NA
```