From AlphaGo to AlphaZero

- 1. Mastering the Game of Go with Deep Neural Networks and Tree Search (2016)
 - 2. Mastering the Game of Go without Human Knowledge (2017)
- 3. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (2017)

- By Shijie Huang (Harvey)
 - 11 December 2017

Content

- Deep Reinforcement Learning in Different Games
- Go Game: Basic Rules
- AlphaGo
 - Why Go and Prior Work
 - Structure Breakdown
 - Supervised Learning of Policy Networks
 - Policy and Policy Networks
 - Reinforcement Learning: Policy Networks
 - Reinforcement Learning: Value Networks and Position Evaluation
 - Monte Carlo Tree Search: Search with Policy and Value Networks
- AlphaGo Zero
 - Deep Neural Network Structure Breakdown
 - Monte Carlo Tree Search: Search with a Single Neural Network
- Humans, AlphaGo and AlphaGo Zero
- Discussions
- AlphaZero

1. Deep Reinforcement Learning in Different Games

Assumption: Al can only see/do what humans can see/do

Games	Atari	Board Game	Dota / LOL	Starcraft II
Agents	1	2	≥ 1 (Generally 5 vs. 5)	≥ 2 (Generally 1 vs. 1)
Information	Perfect information	Perfect Information	Imperfect information (fog of war)	Imperfect information (fog of war)
State space	Limited	Limited but large	Unlimited	Unlimited
Action space	Limited	Limited but large	Limited but large	Unlimited
Al vs. Human	AI dominated	AI dominated	Al won in 1 vs. 1 Completely failed in 5 vs. 5 (OpenAl)	Completely failed in any competitive game but learn to do simple tasks (DeepMind)

1. Go Game: Basic Rules

How to play

Liberty is when the area surrounding the go has no other go

If a go has no liberty, it is consider "dead" and will be taken out

Liberty (Multiple Go)

In this case, black gos are "dead" and will be taken out

Ko Rule

- One cannot place the go in "dead" area
- Essence of many strategies
- Note that it appears that old version of AlphaGo made mistakes here

Life

- If go is surrounded but the "Ko" rule applies, then this area of go is considered to be "alive" (life)
- In the case shown in the left, black gos cannot be placed inside the white gos. Hence, white gos are considered to be "alive"

How to win

The winner is:

- 1. whoever occupies more areas of the board
- 2. whoever has more number of go on the board
- 3. rules are country dependent but only minor differences exist

AlphaGo

An "interesting" fact about AlphaGo:

The most powerful version consists of 1920 CPUs and 280 GPUs

Electricity bill is \$3000 per game, training phase: 160,000 game ≈ \$480 million

2. Why Go and Prior Work

Why Go Game?

- Most challenging of classic games in computer science
- 19 X 19 board positions
- 250¹⁵⁰ possible sequences of moves (chess: 35⁸⁰)
- The idea of broad picture: the objective is to occupy more territory.
 - Leads to highly sophisticated evaluation functions
 - No one before AlphaGo has successfully build an effective evaluation function
- · Exhaustive search is infeasible.
- Still within the scope of perfect information

Prior Work

Reinforcement Learning

Self-play

Linear Value Function

Tree Search

- Most game too large for Minimax
 Tree Search because it requires one to go all the way to the end of the game
- Truncate the tree by using approximated value function $V_{\theta}(s) \approx v^*(s)$
- Super-human performance in chess
- · Not effective in Go

Monte Carlo Tree Search

- Double approximation
- $V^n(s) \approx v^{p_n}(s) \approx v^*(s)$
- First use Monte Carlo simulations to estimate the value function of a policy pⁿ
- Second use the value function to approximate the optimal value function
- Why does it work? In the limit they are equivalent

Reinforcement Learning: Neurobiology foundations

Why?

Tree Search: Players tend to make forecasts (truncated) and predictions

2. AlphaGo: Structure Breakdown

Testing/Tournament

Problems with pure MCTS

(Silver et al. 2016)

- Tree depth: need to simulate all the way to the end of the game
- Tree breadth: enormous amount of choices per time step

2. AlphaGo: Supervised Learning of Policy Networks

Convolutional Neural Network

CNN Training and Testing

- To predict human experts move
- 160,000 games (professional players)
- 29.4 Million moves (28.4 million training and 1 million testing)
- Stochastic Gradient Descent update to maximize the action log likelihood

Prediction accuracy: 55-57%

If I feed the neural network with a board status (state), the neural network can predict, on average 55-57% chance, the correct move that a human expert will do under the same board condition

Better accuracy or higher chances of winning?
After all, human (including experts) make mistakes/their strategy may not be optimal strategy

Supervised learning is not enough

2.1 AlphaGo: Policy and Policy Network

Policy Based Learning

P(a|s) Formally, a policy maps states to actions

- In policy gradient framework, it is a probability distribution over all states and actions (Contrast with the value framework)
- Policy will tell the probability of I choose a particular action under current state
- No value function, states and actions can be continuous and infinite
- Often parameterized, a function $P_{\theta}(a|s)$
- Training becomes an optimization problem

Policy Network in AlphaGo Action probability distribution/matrix Take board position s as input $P_{\theta}(a|s)$ 50% n/a 50% 30% n/a 30% **Training:** 10% Stochastic gradient ascent to 20% 20% maximize the log likelihood

Rollout Policy vs. Supervised Learning Policy

Trade off between speed and accuracy

Choose an action	Rollout Policy	SL Policy
Speed	2μs	3ms
Accuracy	24.4%	57%

The key differences are

Structure	Rollout Policy	SL Policy
Softmax function	Linear	Non-linear
	Small feature size (A simple demo)	Full size (19 X 19 X 48)
Feature fed into CNN		
Other techniques	<u>Last good reply</u> <u>heuristic</u>	
Notation	$P_{\pi}(a s)$	$P_{\sigma}(a s)$

2.2 Reinforcement Learning: Policy Network Iterations

The aim here is to allow the policy to be improved by letting the AI play against itself

 $P_{\sigma}(a|s) \Rightarrow P_{\rho}(a|s), \sigma \text{ and } \rho \text{ are weight parameters}$

2.3 Reinforcement Learning: Value Network and Position Evaluation

Now we have a better policy (strategy), we want to predict the outcome of game when we make a move i.e. the probability of me winning this game

Value Function

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

- **Interpretation:** the value (chances of win) of the current state after I make a move under the policy p.
- **Problem:** we do not know the optimal value function under perfect play $v^*(s)$
- Solution: use approximation

•
$$v_{\theta}(s) \approx v^{p_{\rho}}(s) \approx v^*(s)$$

Training

- Parameterized value function $v_{\theta}(s)$ with weights θ
- We know the game results for a given state (board position) under the strongest policy p_{ρ} , i.e. $v_{\theta}(s)$.
- Optimization problem: optimize θ so that $v_{\theta}(s)$ is close to $v^{p_{\theta}}(s)$
- Approach: standard regression (projection) method
- Minimize Mean Squared Errors:
 - $(v_{\theta}(s) v^{p_{\theta}}(s))^2$ or $(v_{\theta}(s) z^k)^2$ where $z^k = \pm 1$

Overfitting

Naïve approach leads to overfitting

- Training: Mean Squared Errors of 0.19
- Testing: Mean Squared Errors of 0.37

Solution and approach

- A new self-play dataset consisting of 30 million distinct positions, each sampled from a separate game
- Each game between the RL policy network and itself
- MSEs: 0.226 (Training) and 0.234 (Testing)

(Silver et al. 2016)

2.4 Monte Carlo Tree Search: Search with Policy and Value Networks

Asynchronous Policy and Value Monte Carlo Tree Search (APV-MCTS)

AlphaGo Zero

Simple Neural Network Structure Completely tablua Rasa

An "interesting" fact about AlphaGo Zero:

The system consists of only 4 TPUs,
each of which is 15-30 times more efficient than GPUs in performance per-watt

And 64 GPUs, 19 CPUs.

3.1 Deep Neural Network- Structure Breakdown

Single Neural Network Architecture

Policy Network

 $p_a = \Pr(a|s)$ probability of selecting each move from the current position

Value Network

v scalar evaluation, estimating the probability of current players winning from the current position

Core RL Concepts

Training Pipeline

Reinforcement

Policy Evaluation $f_{\theta}(s) \Rightarrow \mathsf{MCTS} \Rightarrow \pi_t$, a move is selected according to policy π_t Terminal state s_T will give us a game winner Z

Policy Improvement

At time t, feed the board position s_t into policy $f_{\theta}(s) = f_{\theta}(s_t)$, which gives us p_t and v_t .

Optimization problem: optimize weight parameters θ to minimize prediction errors between p_t - π_t and v_t - Z_t

Minimize Loss Function: $l = (z - v)^2 - \pi^T \log \mathbf{p} + \mathbf{c} ||\theta||^2$

3.2 Monte Carlo Tree Search: Search with a Single Neural Network

Asynchronous Policy and Value Monte Carlo Tree Search (APV-MCTS)

4. Humans, AlphaGo and AlphaGo Zero

Humans

They develop new policies only when they become masters in Go

Ancient Master / Experts

Dozens of manuals/books

Heritage from ancient knowledge in thousands of years

The problem is that there is limited evaluation process children will not (often are not allowed) to question ancient knowledge (mostly because of the Asian culture)

AlphaGo

Supervised Learning

Humans are right

Humans are wrong

Policy Improvement

AlphaGo Zero

- 1. Only basic rules
- 2. Start from completely random play
 - Concepts of shapes, territory, influence
 - Joseki
 - Fuseki
 - Tesuji
 - Sente
 - Shicho

Policy Evaluation

I am right I am wrong

Policy Improvement

5. Discussions

Human vs. Artificial Intelligence

Humans in Go game

- · Humans are often wrong
- Master manuals are more like guidance rather than mandatory knowledge
- Self-evaluation and improvement are key to learning
- The concept of tabula rasa is crucial in learning theories

Al in Go game

- Algorithms are much more important than data
- People tend to assume that machine learning is all about big data and massive computations, THAT IS WRONG!
- AlphaGo Zero does not use any human data whatsoever, it always has the opponent at just right level (self-play), and improves itself from self-learning
- Yet it performs much better, and significantly less computational requirement

The only game that AlphaGo resigned

- AlphaGo (Black) calculates that Lee Sedol has 0.01% chances to make move 78
- Policy informed AlphaGo that move 79 had a winning probability of 70%
- It realised that the winning probability was actually only 55% after move 87
- Often considered as a "bug" in MCTS

6. AlphaZero: General Version

Generalize AlphaGo Zero in board games

AlphaGo Zero vs. AlphaZero

	AlphaGo Zero	AlphaZero	
Value Function	Binary win/loss Probability of Winning	Expected outcome (Chess has win, loss, draw)	
Rotation and Reflection	Invariance (faster training)	Variance (Asymmetric rules)	
Policy Improvem ent	Current best player vs. New player after each iteration If win by 55% then update the policy	Updated continually, even during the iterations	

Neural network architecture in different games

	Chess	Shogi	Go
Input Feature	119	362	17
Policy Plane	8 X 8 X 73	9 X 9 X 139	19 X 19 + 1
Training Time	9h	12h	34h
Training Games	44 million	24 million	21 million