

(11) **EP 1 077 912 B1**

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:03.07.2002 Bulletin 2002/27
- (21) Application number: 99924929.5
- (22) Date of filing: 11.05.1999

- (51) Int CI.7: **C07C 1/00**, C07C 217/62, C07C 217/48, C07C 219/28, C07C 219/22, C07D 207/06, C07D 295/06, C07C 271/08, C07F 7/18, C07C 307/02, A61K 31/135, A61K 31/325, A61K 31/40, A61K 31/435
- (86) International application number: PCT/EP99/03212
- (87) International publication number: WO 99/58478 (18.11.1999 Gazette 1999/46)
- (54) NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES
 3,3-DIPHENYLPROPYLAMINDERIVATE
 NOUVEAUX DERIVES DE 3,3-DIPHENYLPROPYLAMINES
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 12.05.1998 EP 98108608
- (43) Date of publication of application: 28.02.2001 Bulletin 2001/09
- (73) Proprietor: SCHWARZ PHARMA AG D-40789 Monheim/Rhld. (DE)
- (72) Inventors:MEESE, ClausD-40789 Monheim (DE)

- SPARF, Bengt S-142 65 Tr ngsund (SE)
- (74) Representative: Albrecht, Thomas, Dr. Kraus & Welsert, Thomas-Wimmer-Ring 15 80539 München (DE)
- (56) References cited: WO-A-89/06644

WO-A-94/11337

 LISBETH NILVEBRANT ET AL.: "Tolterodine - a new bladder-selective antimuscarinic agent" EUROPEAN JOURNAL OF PHARMACOLOGY, vol. 327, 1997, pages 195-207, XP002079629 cited in the application

P 1 077 912 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to novel derivatives of 3,3-diphenylpropylamines, methods for their preparation, pharmaceutical compositions containing the novel compounds, and the use of the compounds for preparing drugs.

[0002] In man, normal urinary bladder contractions are mediated mainly through cholinergic muscarinic receptor stimulation. There is reason to believe that muscarinic receptors mediate not only normal bladder contractions; but also the main part of the contractions in the overactive bladder resulting in symptoms such as urinary frequency, urgency and urge incontinence. For this reason, antimuscarinic drugs have been proposed for the treatment of bladder overactivity.

[0003]. Among the antimuscarinic drugs available on the market, oxybutynin is currently regarded as the gold standard for pharmacological treatment of urge incontinence and other symptoms related to bladder overactivity. The effectiveness of oxybutynin has been demonstrated in several clinical studies, but the clinical usefulness of oxybutynin is limited due to antimuscarinic side effects. Dryness of the mouth is the most common experienced side effect which may be severe enough to result in poor compliance or discontinuation of treatment (Andersson, K.-E., 1988, Current concepts in the treatment of disorders of micturition, Drugs 35, 477-494; Kelleher et al. 1994).

[0004] Tolterodine is a new, potent and competitive, muscarinic receptor antagonist intended for the treatment of urinary urge incontinence and detrusor hyperactivity. Preclinical pharmacological data show that tolterodine exhibits a favourable tissue selectivity in vivo for the urinary bladder over the effect on the salivation (Nilvebrant et al., 1997, Tolterodine - a new bladder-selective antimuscarinic agent, Eur. J. Pharmacol. 327 (1997), 195-207), whereas oxybutynin exhibits the reversed selectivity. Tolterodine is equipotent to oxybutynin at urinary bladder muscarinic receptors and the favourable tissue selectivity of tolterodine demonstrated in the preclinical studies has been confirmed in clinical studies. Thus a good clinical efficacy has been combined with a very low number of incidences of dry mouth and antimuscarinic side effects.

[0005] A major metabolite of tolterodine, the 5-hydroxymethyl derivative is also a potent muscarinic receptor antagonist and the pharmacological in vitro and in vivo profiles of this metabolite are almost identical to those of tolterodine (Nilvebrant et al., 1997, Eur. J. Pharmacol. 327 (1997), 195-207). Combined pharmacological and pharmacokinetic data indicate that it is most likely that the metabolite gives a major contribution to the clinical effect in most patients.

[0006] WO 94/11337 proposes the active metabolite of tolterodine as a new drug for urge incontinence. Administration of the active metabolite directly to patients has the advantage compared to tolterodine that only one active principle (compound) has to be handled by the patient which normally should result in a lower variation in efficacy and side effects between patients and lower risk of interaction with other drugs.

[0007] However, the introduction of an additional hydroxy group in the tolterodine results in an increased hydrophilic property of the new compounds (3,3-diphenylpropylamines) compared to the parent compounds which normally results in a lower absorption/bioavailability, leading to pre-systemic side effects or interactions due to non-absorbed antimus-carinic drug. In a method to circumvent this disadvantage, different prodrugs of the metabolite have been synthesized and tested for their antimuscarinic activity, potential absorption through biological membranes and enzymatic cleavage. [0008] It is an object of the present invention to provide novel derivatives of 3,3-diphenylpropylamines. It is a further object of the present invention to provide new derivatives of 3,3-diphenylpropylamines which will be more useful as prodrugs for treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms while avoiding the disadvantage of a too low absorption through biological membranes of the drugs or an unfavourable metabolism.

[0009] A further object of the invention is to provide novel prodrugs of antimuscarinic agencs with superior pharmacokinetic properties compared to present drugs as oxybutynin and tolterodine, methods for preparing thereof, pharmaceutical compositions containing them, a method of using said compounds and compositions for the treatment of urinary incontinence, gastrointestinal hyperactivity (irritable bowel syndrome) and other smooth muscle contractile conditions

[0010] According to the present invention, novel 3,3-diphenylpropylamines are provided, which are represented by the general formulae I and VII'

wherein R and R' are independently selected from

- a) hydrogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, substituted or unsubstituted benzyl, allyl or carbohydrate; or
- b) formyl, C₁-C₆ alkylcarbonyl, cycloalkylcarbonyl, substituted or unsubstituted arylcarbonyl, preferably benzoyl; or
- c) C_1 - C_6 alkoxycarbonyl, substituted or unsubstituted aryloxycarbonyl, benzoylacyl, benzoylglycyl, a substituted or unsubstituted amino acid residue; or

d)

20

wherein R⁴ and R⁵ independently represent hydrogen, C₁-C₆ alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 4 carbon atoms and wherein R⁴ and R⁵ may form a ring together with the amine nitrogen; or

e

45

50

55

wherein R^6 and R^7 independently represent C_1 - C_6 alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 6 carbon atoms; or

- f) an ester moiety of inorganic acids,
- g) -SiR $_a$ R $_b$ R $_c$, wherein R $_a$, R $_b$, R $_c$ are independently selected from C $_1$ -C $_4$ alkyl or aryl, preferably phenyl,

with the proviso that R' is not hydrogen, methyl or benzyl if R is hydrogen, R is not ethyl if R' is hydrogen, X represents a tertiary amino group of formula la

$$-N < R^{\epsilon}$$

Formula la

wherein R⁸ and R⁹ represent non-aromatic hydrocarbyl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R⁹ may form a ring together with the amine nitrogen,

Y and Z independently represent a single bond between the $(CH_2)_n$ group and the carbonyl group, O, S or NH, A represents hydrogen (1 H) or deuterium (2 H),

n is 0 to 12

and

5

10

25

30

35

40

45

50

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

[0011] The aforementioned compounds can form salts with physiologically acceptable organic and inorganic acids. Furthermore, the aforementioned compounds comprise the free bases as well as the salts thereof. Examples of such acid addition salts include the hydrochloride and hydrobromide.

[0012]. When the novel compounds are in the form of optical isomers, the invention comprises the racemic mixture as well as the individual isomers as such.

[0013] Preferably each of R^8 and R^9 independently signifies a saturated hydrocarbyl group, especially saturated aliphatic hydrocarbyl groups such as C_{1-8} -alkyl, especially C_{1-6} -alkyl, or adamantyl, R^8 and R^9 together comprising at least three, preferably at least four carbon atoms.

[0014] According to another embodiment of the invention, at least one of R⁸ and R⁹ comprises a branched carbon chain.

[0015] Presently preferred tertiary amino groups X in formula I include the following groups a) to h):

a)
$$-N < \frac{CH(CH_3)_2}{CH(CH_3)_2}$$

b)
$$-N \stackrel{CE_3}{<}$$

$$_{\rm c)}$$
 $_{\rm N}$ $<$ $^{\rm CH_3}$

d) [

Group a) is particularly preferred.

15

20

[0016] The aforementioned tertiary amino groups X are described in WO 94/11337 and the compounds according to the present invention can be obtained by using the corresponding starting compounds.

[0017] In the compounds according to the present invention, the term "alkyl" preferably represents a straight-chain or branched-chain hydrocarbon group having 1 to 6 carbon atoms. Such hydrocarbon groups may be selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl. The term "cycloalkyl" denotes a cyclic hydrocarbon group having 3 to 10 carbon atoms which may be substituted conveniently.

[0018] The term "substituted or unsubstituted benzyl" denotes a benyl group -CH₂-C₆H₅ which is optionally substituted by one or more substituents on the phenyl ring. Suitable substituents are selected from alkyl, alkoxy, halogen and nitro. Suitable halogen atoms are fluorine, chlorine and iodine atoms. Preferred substituted benzyl groups are 4-methylbenzyl, 2-methylbenzyl, 4-methoxybenzyl, 2-methoxybenzyl, 4-nitrobenzyl, 2-nitrobenzyl, 4-chlorobenzyl and 2-chlorobenzyl.

[0019] In the compounds according to the present invention the term "C₁-C₆ alkylcarbonyl" denotes a group R-C (=O)- wherein R is an alkyl group as defined hereinbefore. Preferred C₁-C₆ alkylcarbonyl groups are selected from acetyl, propionyl, isobutyryl, butyryl, valeroyl and pivaloyl. The term "cycloalkylcarbonyl" denotes a group R-C(=O)-wherein R is a cyclic hydrocarbon group as defined hereinbefore. The same counts to the selected carbonyl groups.

[0020] The term "aryl" denotes an aromatic hydrocarbon group such as phenyl- (C₆H₅-), naphthyl- (C₁₀H₇-) and anthryl- (C₁₄H₉-). Preferred aryl groups according to the present invention are phenyl and naphthyl with phenyl being particularly preferred.

[0021] The term "benzoyl" denotes an acyl group of the formula -CO- C_6H_5 wherein the phenyl ring may have one or more substituents.

[0022] Preferred substituents of the aryl group and in particular of the phenyl group are selected from alkyl, alkoxy, halogen and *nitro*. As substituted benzoyl groups 4-methylbenzoyl, 2-methylbenzoyl, 4-methoxybenzoyl, 2-methoxybenzoyl, 4-chlorobenzoyl, 2-chlorobenzoyl, 4-nitrobenzoyl and 2-nitrobenzoyl may be mentioned.

[0023] The term " C_1 - C_6 alkoxycarbonyl" refers to a group ROC(=O)-wherein R is an alkyl group as defined hereinbefore. Preferred C_1 - C_6 alkoxycarbonyl groups are selected from $CH_3OC(=O)$ -, C_2H_5 -OC(=O)-, $C_3H_7OC(=O)$ - and $(CH_3)_3COC(=O)$ - and alicyclic alkyloxycarbonyl.

[0024] The term "amino acid residue" denotes the residue of a naturally occurring or synthetic amino acid. Particularly preferred amino acid residues are selected from the group consisting of glycyl, valyl, leucyl, isoleucyl, phenylalanyl, prolyl, seryl, threonyl, methionyl, hydroxyprolyl.

[0025] The amino acid residue may be substituted by a suitable group and as substituted amino acid residues, benzoylglycyl and N-acetylglycyl may be mentioned.

[0026] The term "carbohydrate" denotes the residue of a polyhydroxy aldehyde or polyhydroxy ketone of the formula C_nH_{2n}O_n or C_n(H₂O)_n and corresponding carbohydrate groups are, for example, described in Aspinal. The Polysac-charides, New York: Academic Press 1982, 1983. A preferred carbohydrate group in the compounds according to the present invention is a glucuronosyl group, in particular a 1β-D-glucuronosyl group.

[0027] The term "LG" as used herein denotes a leaving group selected from halogenides, carboxylates and imidazolides.

[0028] The term "Bn" as used herein denotes a benzyl group.

[0029] Suitable ester moieties of inorganic acids may be derived from inorganic acids such as sulfuric acid and phosphoric acid.

[0030] Preferred compounds according to the present invention are:

A) Phenolic monoesters represented by the general formulae II and II'

10

15

20

25

30

35

40

45

50

55

wherein R¹ represents hydrogen, C₁-C₆ alkyl or phenyl.
Particularly preferred phenolic monoesters are listed below:

(±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-proprofile acid 2-(3-disopropyramino-1-prietry propyr)-4-rydroxymetry prietry rester,

 $(\pm)\text{-n-butyric acid 2-}(3\text{-diisopropylamino-1-phenylpropyl})\text{-}4\text{-hydroxymethylphenyl ester},$

(±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

 $(\pm)\text{-}2,2\text{-}dimethyl propionic acid 2-(3\text{-}diisopropylamino-1-phenyl propyl)-4-hydroxymethyl phenyl ester,}$

(±)-2-acetamidoacetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-cyclopentanecarboxylic acid 2-(3-diisoprcpylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-4-methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-2-methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)2-metrylperizoic acid 2-to-disopropylamino-1-prientylpropyl)-4-nydroxymetrylphenyl ester,

(±)-2-acetoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

 $(\pm) \hbox{-1-naphthoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,}\\$

(±)-2-naphthoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-4-chlorobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-4-methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-2-methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-2-nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

(±)-malonic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl] ester.

(±)-succinic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,

(±)-pentanedioic acid bis- [2- (3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,

(±)-hexanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester.

B) Identical diesters represented by the general formula III

Formula (II

wherein R1 is as defined above.

10

15

20

25

30

35

40

45

50

55

Particularly preferred identical diesters are listed below:

- (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- (±)-acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester,
- (±)-n-butyric acid 4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethyl-propionyloxy)-benzyl ester.
- (±)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- R-(+)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester,
- cyclic oct-4-ene-1,8-dioate of Intermediate B,
- cyclic octane-1,8-dioate of Intermediate B,
- poly-co-DL-lactides of Intermediate B.
- C) Mixed diesters represented by the general formula IV

romus iV

wherein R1 is as defined above

and

R² represents hydrogen, C₁-C₆ alkyl or phenyl with the proviso that R¹ and R² are not identical.

Particularly preferred mixed diesters are listed below:

- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester,
- R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester,
- (±)-isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- R-(+)-isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-2,2-dimethylpropionic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-2,2-dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester.

D) Benzylic monoesters represented by the general formula V

Formula V

wherein R1 is as defined above.

Particularly preferred benzylic monoesters are listed below:

15

20

25

30

5

10

- (±)-formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- $(\pm)\text{-butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,}\\$
- (±)-isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-benzoic acid 3- (3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester.

E) Ethers and silyl ethers represented by the general formula VI

Formula VI

35

wherein at least one of R^{10} and R^{11} is selected from C_1 - C_6 alkyl, benzyl or -SiR_aR_bR_c as defined above and the other one of R^{10} and R^{11} may additionally represent hydrogen, C_1 - C_6 alkylcarbonyl or benzoyl.

40

45

50

55

- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-methoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenol,

Particularly preferred ethers and silyl ethers are listed below:

- (+) -2-(3-diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol,
- (±) -2- (3-diisopropylamino-1-phenylpropyl)-4-isopropoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-methoxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenyl ester,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxymethylphenol,
- (±)-diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)-propyl]-amine,
- (±)-[3-(3-diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]-methanol,
- (±)-diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropylamine,
- (±)-diisopropyl-[3-(5-ethoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropylamine,
- (\pm) -[4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol,
- (±)-acetic acid 4-(tert. -butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenol,
- (±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- $\label{lem:control} \begin{tabular}{ll} $(\pm)-\{3-[2-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-disopropylamine, \end{tabular}$

- (±)-[4-(tert.-butyl-diphenylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol,
- (±)-acetic acid 4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenol,
- (±)-{3-[2-(tert.-butyl-diphenylsilanyloxy)-5-(tert.-butyl-diphenylsilanyloxymethyl)-phenyl]-2-phenylpropyl}-disopropylamine,
- (±)-acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol.
- F) Carbonates and carbamates represented by the general formulae VII and VIII

wherein Y, Z and n are as defined above and wherein R12 and R13 represent a C1-C6 alkoxycarbonyl group or

wherein R4 and R5 are as defined above.

5

10

15

20

25

30

35

40

45

50

- Particularly preferred carbonates and carbamates are listed below:
- (±)-N-ethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N,N-dimethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N,N-diethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N-phenylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenoxycarbonylamino]acetic acid ethyl ester hydrochloride
- (±)-N-ethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester,
- (±)-N,N-dimethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl ester.
- (±)-N,N-diethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-diethylcarbamoyloxybenzyl ester,
- (±)-N-phenylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N-phenylcarbamoyloxybenzyl ester,
- (±)-{4- [2- (3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]-butyl}-carbamic ac-

- id 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester phenyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester,
- (\pm) -carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-phenoxycarbonyloxymethylphenyl ester phenyl ester.
- G) 3,3-Diphenylpropylamines selected from

5

10

15

20

25

30

35

40

45

50

55

(i) compounds of the formulae IX and IX'

Formuta IX

Formula IX1

- wherein o and p are the same or different and represent the number of methylene units $\{CH_2\}$ and may range from 0 to 6,
- (ii) (±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-sulphooxymethyl-phenyl ester
- (iii) Poly-co-DL-lactides of 2-(3-diisopropylaminophenylpropyl)-4-hydroxymethyl-phenol
- (iv) (\pm) -2-(3-Diisopropylamino-1-phenylpropyl)-4- $(1\beta$ -D-glucuronosyloxymethyl)-phenol having the formula

an

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

[0031] The present invention, moreover, relates to processes for the preparation of the aforementioned compounds. In particular, according to the present invention, the following processes are provided:

[0032] A process for the production of phenolic monoesters represented by the general formula II

Formula II

as defined above, which comprises treatment of a compound of the formula

with an equivalent of an acylating agent selected from

wherein LG represents a leaving group selected from halogenide, carboxylate and imidazolide and R¹ is as defined above, in an inert solvent in the presence of a condensating agent.

[0033] Preferably, the acylating agent is selected from

wherein Hal represents a halogen atom, preferably a chlorine, atom, and R¹ is as defined above.

[0034] A process for the production of phenolic monoesters represented by the general formula il

A A A HO CCH₂)rr O HO A A A Formula IT

as defined above, which comprises treatment of two equivalents of a compound of the formula

with an acylating agent selected from

5

10

15

20

45

50

35

O
O
O
O
O
Hal-C-(
$$CH_2$$
)_n-C-Hal cr C-(CH_2)_n-C

wherein Hal represents a halogen atom, preferably a chlorine atom.

[0035] Hence, in these processes, an Intermediate B having the formula

is treated with an equivalent of an acylating agent (e.g. an acyl halogenite or acyl anhydride) in an inert solvent and in the presence of a condensating agent (e.g. amine) to provide phenolic monoesters of formula II or formula II' (wherein n is 0-12), respectively, if polyfunctional acylating agents (e.g. acid halides, preferably acid chlorides of dicarboxylic acids) are used.

[0036] The Intermediate B as used in the processes for the production of the 3,3-diphenylpropylamines according to the present invention can be in the form of a racemic mixture or of optically active compounds in accordance with the formulae shown below:

which is a second of the secon

[0037] Alternatively, structures of formula II or II' may be obtained by regioselective deprotection of a protected benzylic hydroxy group (chemically or enzymatically: T. W. Greene, P. G. M. Wuts, "*Protective Groups in Organic Chemistry*", 2nd Ed., J. Wily & Sons, New York 1991).

[0038] The identical diesters represented by the general formula III

as defined above can be prepared by a process which comprises treatment of a compound of the formula

with at least two equivalents of the acylating agent R1-C(=O)-LG as defined above.

[0039] Thus, the aforementioned di-acyl compounds are readily accessible if an at least two-molar excess of an acylating agent is used in the above-mentioned conversion of Intermediate B or, more general, on treatment of compounds of formula I with acylating agents in the presence of suitable catalysts. In the above process, the following Intermediate A

55

5

10

15

20

25

30

35

40

5

10

15

20

25

wherein R' denotes a benzyl group can be used instead of Intermediate B. The Intermediate A can be used in the form of a racemic mixture or of optically active compounds (similar to Intermediate B).

[0040] Benzylic monoesters represented by the general formula V

Formula V

wherein R1 is as defined above can be prepared by a process which comprises treatment of a compound of the formula

30

35

at room temperature and under anhydrous conditions with activated esters in the presence of enzymes selected from lipases or esterases.

[0041] Hence, this process relates to the preparation of phenols with *para* acyloxymethyl substituents (cf. formula V). These compounds can be prepared in several chemical steps from intermediates such as formula I, where R represents hydrogen and R' is hydrogen or any suitable protective group which can be removed by known methods (T. W. Greene, P.G.M. Wuts, "*Protective Groups in Organic Chemistry*", 2nd Ed., J. Wily & Sons, New York 1991) in the presence of the newly introduced substituent R¹CO. It was found, however, that the benzylic substituent R¹CO can be introduced more conveniently and in only one step if Intermediate B is treated at room temperature and under anhydrous conditions with activated esters (e.g. vinyl acylates, isopropenyl acylates) in the presence of enzymes such as lipases or esterases.

[0042] The mixed diesters represented by the general formula IV

50

Formula IV

wherein R^1 and R^2 are as defined above can be prepared by a process which comprises acylation of the above-mentioned benzylic monoester represented by the general formula V

Formula V

wherein R1 is as defined above or of a phenolic monoester represented by the general formula II

Formula (I

as defined hereinbefore.

5

10

15

20

25

30

35

40

45

50

55

[0043] In general, mixed diesters of formula IV can be obtained by acylation of compounds of the general formula I wherein R and R' are different substituents selected from the group consisting of hydrogen, acyl residues or protecting groups that are cleavable under the acylation reaction conditions.

[0044] Ethers represented by the general formula VI

Formula VI

as defined hereinbefore wherein ${\sf R^{11}}$ is hydrogen can be prepared by a process which comprises reacting a compound of the formula

HO A A

with an alcohol R¹⁰-OH in the presence of an esterification catalyst.

[0045] A further process for the preparation of ethers represented by the general formula VI

R¹⁰ A A

Formula VI

wherein R¹⁰ and R¹¹ are as defined hereinbefore, comprises acid or base treatment of free benzylic alcohols selected from

30

and

40

35

5

10

15

20

50 and

HO A A Formula II

15 or

30

35

40

45

50

20 R¹⁰ A A Formada VI

wherein R¹⁰ is hydrogen and R¹¹ is as defined above or

Formula VII

wherein R12 is hydrogen and R13 represents a C1-C6 alkoxycarbonyl group or

wherein R⁴ and R⁵ are as defined above or of benzylic acylates selected from

Formula IV

wherein R1 and R2 are as defined hereinbefore in the presence of suitable hydroxy reagents.

[0046] Finally, ethers of formula VI can be prepared by a process which comprises treating a compound of the formula

wherein R¹⁰ is as defined above with an alkylating agent selected from alkyl halogenides, alkyl sulphates and alkyl triflates, said alkyl group having 1 to 6 carbon atoms.

[0047] In summary, regioselective modification of the *benzylic hydroxy groups is* achieved either by acid or base treatment of benzylic acylates in the presence of suitable hydroxy reagents (e.g. alcohols) or by catalytic ether formation as described in the literature for other benzylic substrates (J.M. Saa, A. Llobera, A. Garcia-Raso, A. Costa, P.M. Deya; J. Org. Chem. 53: 4263-4273 [1988]). Both free benzylic alcohols such as Intermediates A and B or compounds of formulas II or VI (in which R¹⁰ is hydrogen) or formula VII (in which R¹² is hydrogen) as well as benzylic acylates such as formulae III, IV, V may serve as starting materials for the preparation of benzylic ethers (B. Loubinoux, J. Miazimbakana, P. Gerardin; Tetrahedron Lett. 30: 1939-1942 [1989]).

[0048] Likewise the *phenolic hydroxy groups* are readily transformed into phenyl ethers (R¹¹ = alkyl) using alkylating agents such as e.g. alkyl halogenides, alkyl sulphates, alkyl triflates or employing Mitsunobu type reaction conditions (Synthesis 1981, 1-28). Similarly, both phenolic and alcoholic monosilyl ethers are obtained by regioselective silylation or by desilylation of bis-silyl ethers of Intermediate B as described for other compounds in the literature (J. Paladino, C. Guyard, C. Thurieau, J.-L. Fauchere, Helv. Chim. Acta 76: 2465-2472 [1993]; Y. Kawazoe, M. Nomura, Y. Kondo, K. Kohda, Tetrahedron Lett. 26: 4307-4310 [1987]).

[0049] Carbonates and carbamates represented by the general formulae VII and VIII

55

10

15

20

25

30

35

Formula VII Formula VIII

as defined hereinbefore can be prepared by a process which comprises reacting a compound selected from the group consisting of

5

10

20

25

Formula V

Formula VI

wherein R¹ is defined as above, n is 0 to 12, Bn is benzyl, one of R¹⁰ or R¹¹ is hydrogen and the other one is as defined above with activated carbonyl compounds or carbonyl precursor reagents selected from haloformates, ketenes, activated esters, mixed anhydrides of organic or inorganic acids, isocyanates and isothiocyanates.

[0050] The coupling reactions can be carried out in inert solvents over periods of several hours at temperatures from -10°C to the refluxing temperature of the solvent or reagent used to provide compounds of the general formula VII where R¹² represents hydrogen, alkyl, aliphatic or aromatic acyl, or carbamoyl, and R¹³ represents -C(=O)-Y-R³, wherein Y and R³ represent O, S, NH and alkyl or aryl, respectively. Polyfunctional reagents give the corresponding derivatives. For example, diisocyanates or di-carbonylchlorides provide compounds of formula VIII where X, Y have the meaning of O, S, or NH and n is zero to twelve.

[0051] The invention, moreover, relates to pharmaceutical compositions comprising one or more of the aforementioned 3,3-diphenylpropylamines. In other words, the compounds according to the present invention can be used as pharmaceutically active substances, especially as antimuscarinic agents.

[0052] They can be used for preparing pharmaceutical formulations containing at least one of said compounds.

[0053] The compounds according to the present invention in the form of free bases or salts with physiologically acceptable acids, can be brought into suitable galenic forms, such as compositions for oral use, for injection or for nasal spray administration, in accordance with accepted pharmceutical procedures. Such pharmaceutical compositions according to the invention comprise an effective amount of the compounds of claims 1 to 15 in association with compatible pharmaceutically acceptable carrier materials, or diluents, as is well known in the art. The carriers may be any inert material, organic or inorganic, suitable for enteral, percutaneous or parenteral administration, such as water, gelatine, gum arabicum, lactose, microcrystalline cellulose starch, sodium starch glycolate, calcium hydrogen phosphate, magnesium stearate, talcum and colloidal silicon dioxide. Such compositions may also contain other pharmaceutically active agents, and conventional additives, such as stabilizers, wetting agents, emulsifiers, flavouring agents and buffers.

[0054] The composition according to the invention can e.g. be made up in solid or liquid form for oral administration, such as tablets, capsules, powders, syrups and elixirs in the form of sterile solutions, suspensions or emulsions for parenteral administration.

[0055] The compounds according to the invention may be used in a patch formulation. The compounds can be administered transdermally with a reduced incidence of side effects and improved individual compliance.

[0056] The compounds and compositions can, as mentioned above, be used for the treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms. The dosage of the specific compound will vary depending on its potency, the mode of administration, the age and weight of the patient and the severity of the condition to be treated. The daily dosage may, for example, range from about 0.01 mg to about 5 mg, administered singly or multiply in doses e.g. from about 0.05 mg to about 50 g each.

[0057] The invention will be further illustrated by the following non-limiting examples and pharmacological tests.

I. Experimental

1. General

30.

45

[0058] All compounds were fully characterized by 1 H and 13 C NMR spectroscopy (Bruker DPX 200). The chemical shifts reported for 13 C NMR spectra (50 MHz, ppm values given) refer to the solvents CDCl₃ (77.10 ppm), dideuterio dichloromethane (CD₂Cl₂, 53.8 ppm), CD₃OD (49.00 ppm) or hexadeuterio dimethylsulphoxide (DMSO-d₆, 39.70 ppm), respectively. 1 H NMR data (200 MHz, ppm) refer to internal tetramethylsilane).

[0059] Thin-layer chromatography (tlc, R_f values reported) was conducted on precoated 5x10 cm E. Merck silica gel plates (60F254), spots were visualized by fluorescence quenching or spaying with alkaline potassium permanganate solution.

Solvent systems: (1), ethyl acetate/n-hexane (30/70, v/v-%); (2), toluene/acetone/methanol/acetic acid (70/5/20/5, v/v-%); (3), n-hexane/acetone/diethylamine (70/20/10, v/v-%); (4), n-hexane/acetone/triethylamine (70/20/10, v/v-%); (5), ethyl acetate/n-hexane/2-propanol/triethylamine (60/40/20/1, v/v-%); (6), ethyl acetate/triethylamine (90/10, v/v-%); (7), cyclohexane/acetone/acetic acid (80/20/0.5, v/v-%).

Optical rotations were measured at 589.3 nm and room temperature on a Perkin Elmer Polarimeter Type 241. Melting points (mp) reported are uncorrected and were determined on a Mettler FP 1 instrument.

IR spectra were taken from a Perkin-Elmer FTIR spectrometer Series 1610, resolution 4 cm⁻¹.

Gas chromatography-mass spectrometry (GC-MS): spectra (m/z values and relative abundance (%) reported) were recorded on a Finnigan TSQ 700 triple mass spectrometer in the positive (P-CI) or negative (N-CI) chemical ionization mode using methane or ammonia as reactant gas. Hydroxylic compounds were analyzed as their trimethylsilyl ether derivatives. Combined liquid chromatography-mass spectrometry (LC-MS):

5 Waters Integrety System, Thermabeam Mass Detector (EI, 70 eV), m/z values and relative abundance reported.

2. Synthesis of Intermediates A and B

3-Phenylacryllc acid 4-bromophenyl ester

[0060] An ice-cooled solution of 4-bromophenol (69.2 g) and cinnamoyl chloride (66.8 g) in dichloromethane (150 ml) was treated with triethylamine (40.6 g). After stirring for 18 hrs at room temperature the mixture was washed with water (250 ml), 1 M aqueous HCl, and dried over anhydrous sodium sulphate. Evaporation in vacuum left solid *3-phe-nylacrylic acid 4-bromophenyl ester* (121.0 g, 99.8% yield), m.p. 113.3°C, tlc: (1) 0.83. NMR (CDCl₃): 116.85, 118.87, 123.49, 128.38, 129.06, 130.90, 132.49, 134.02, 147.07, 149.84, 165.06.

(±)-6-Bromo-4-phenylchroman-2-one

[0061] A portion of the ester (60.0 g) was dissolved in a mixture of acetic acid (60 ml) and concentrated sulphuric acid (18 ml) and refluxed for 2 hrs. After cooling, the reaction mixture was poured into ice water and the product was isolated by extraction with echylacetate. Evaporation of the solvent and recrystallization of the residue from boiling ethanol (150 ml) yielded 26.3 g (43.8% yield) of pure, crystalline (±)-6-bromo-4-phenylchroman-2-one, m.p. 117.8°C, tlc: (1) 0.67. NMR (CDCl₃): 36.56, 40.51, 117.29, 118.87, 127.47, 127.89, 128.33, 129.32, 131.07, 131.79, 139.42, 150.76, 166.84.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester

[0062] A suspension consisting of (\pm) -6-bromo-4-phenylchroman-2-one (85.0 g), anhydrous potassium carbonate (46.7 g), sodium iodide (20.5 g) and benzyl chloride (40.6 g) in methanol (350 ml) and acetone (350 ml) was refluxed for 3 hrs. After evaporation of the solvents the residue was extracted with diethyl ether (2 x 300 ml) and the extract was washed with water (2 x 200 ml) and aqueous sodium carbonate. Drying (Na₂SO₄) and rotoevaporation left 121.8 g (102.1% crude yield) of (\pm) -3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester as a light yellow oil, tlc: (1) 0.77; NMR (CDCl₃): 39.22, 40.53, 51.63, 70.16, 113.10, 113.77, 126.46, 126.92, 127.88, 128.08, 128.34, 128.45, 130.31, 130.55, 134.41, 136.44, 142.37, 154.94, 172.08.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acld

[0063] A solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenyl-propionic acid methyl ester (0,391 g, 0,92 mmol)

in ethanol (5 ml) was treated at 50°C with excess aqueous sodium hydroxide solution until the milky emulsion became clear. The reaction mixture was then acidified (pH 3), evaporated and extracted with dichloromethane. The organic extract was evaporated and the remaining oil was redissolved in a minimum of boiling ethanol. The precipitation formed after 18 hrs at 4°C was filtered off and dried in vacuo to yield 0,27 g (71.4%) of (\pm)-3-(2-Benzyloxy)-5-bromophenyl)-3-phenylpropionic acid, colourless crystals, m.p. 124.9°C; tlc: (1) 0.15 (starting material methyl ester 0.75); NMR (CDCl₃): 39.15, 40.26, 70.25, 113.21, 113.90, 126.62, 127.27, 127.98, 128.17, 128.47, 128.54, 130.46, 130.68, 134.34, 136.45, 142.16, 154.95, 177.65. LC-MS: 412/410 (14/11%, M+), 394/392 (15/13%), 321/319 (17/22%), 304/302 (17/21%), 259 (24%), 194 (22%), 178 (21%), 167 (65%), 152 (49%), 92 (100%). IR (KBr): 3434, 3030, 1708, 1485, 1452, 1403, 1289, 1243, 1126, 1018, 804; 735, 698; 649. Calculated for $C_{22}H_{19}BrO_3$ (mol-wgt. 411.30): C 64.25%, H 4.66%, Br 19.43%, O 11.67%; found: C 63.72%, H 4.70%, Br 19.75%, O 11.80%.

[0064] Alternatively, the crude reaction mixture from the above described synthesis of (±) -3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester was evaporated, redissolved in warm ethanol, and treated with excess aqueous potassium hydroxide solution. Acidification to pH 3 (conc. hydrochloric acid) and cooling to 4°C resulted in the formation of a solid, which was filtered off after 18 hrs, washed repeatedly with water and dried to yield (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid in 82% yield.

a) Resolution of 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid

R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid

[0065] Warm solutions of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenyl-propionic acid (815.6 g, 1.85 mol) and 1S, 2R-(+)-ephedrine hemihydrate (232.1 g, 1.85 mol) in 2000 ml and 700 ml, respectively, of absolute ethanol were combined and then allowed to cool to 0°C. The precipitate formed was collected, washed with cold ethanol and dried invacuum to give 553.2 g of the ephedrinium salt of the title compound (m.p. 153°C, e.e. 65% as determined by NMR and HPLC). The salt was recrystallized twice from boiling ethanol to give *R-(-)-3-(2- benzyloxy-5-bromophenyl)-3-phenylpropionic acid 1S,2R-(+)-ephedrinium salt* in 75% yield, colourless crystalls, m.p. 158.6°C, e.e. 97.6% (HPLC). NMR (CDCl₃): 9.53, 30.90; 41.54, 42.83, 61.45, 70.15, 70.42, 113.05, 113.68, 125.89, 126.03, 127.33, 127.85, 128.19, 128.28, 128.45, 129.86, 130.70, 135.91, 136.65, 140.40, 144.09, 155.20, 178.94.

[0066] 1.2 g (2.0 mmol) of the ephedrinium salt were dissolved in a mixture of acetone (5 ml) and ethanol (10 ml). After treatment with water (0.4 ml) and conc. (37%) aqueous hydrochloric acid (0.34 ml), the solution was evaporated in vacuum, and the residue was redissolved in 1M aqueous hydrochloric acid (2 ml) and dichloromethane (10 ml). The organic phase was separated, washed twice with water (2 ml), and evaporated to dryness to give R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid as a colourless oil which slowly solidified (0.4 g, 98% yield), m.p. 105.6°C (fromethyl acetate/n-heptane); tlc: (7) 0.21; $[\alpha]_D^{20} = -21.1$ (c = 1.0, ethanol), e.e. 99.9% (HPLC). NMR: identical with the racemic acid.

S-(+)-3-(2-Benzyloxy-5-bromophenyl) -3-phenylpropionic acid

[0067] The combined mother liquids from the above resolution and recrystallizations were treated under stirring and cooling (18°C) with excess conc. aqueous hydrochloric acid. The precipitate (ephedrinium hydrochloride) was filtered off, and the filtrate was evaporated to dryness. The residue was re-dissolved in dichloromethane (1.5 litre) and then washed with several portions of 1 M aqueous hydrochloric acid followed by water. After drying (Na₂SO₄), filtration, and evaporation 479 g of crude S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid were obtained as a yellow viscous oil. The pure S-(+) enantiomeric acid was converted into the 1R,2S-(-)-ephedrine salt as described above for the R-(-) acid. Two recrystallizations from boiling ethanol provided colourless crystals of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid 1R,2S-(-)-ephedrinium salt in 83% yield, m.p. 158.7°C, e.e. 97.8% (HPLC). NMR (CDCl₃): 9.47, 30.85, 41.54, 42.92, 61.48, 70.13, 70.30, 113.04, 113.66, 125.89, 126.01, 127.32, 127.84, 128.18, 128.44, 129.83, 130.68, 135.94, 136.63, 140.44, 144.13, 155.19, 178.94.

[0068] S- (+)-3- (2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid was obtained in quantitative yield from this ephedrinium salt by the method described above for the R-(-) acid, tlc: (7) 0.20, e.e. (NMR) > 99%, mp 105.5°C; $[\alpha]_D^{20}$ = +22.6 (c = 1.0, ethanol); NMR: identical with the racemic acid.

b) Enantioselective Synthesis of R-(-)- and S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid [0069]

2-Benzyloxy-5-bromobenzaldehyde

5

10

15

20

25

30

35

[0070] To a solution of 0.1 mol of 5-bromo-2-benzaldehyde in THF (150 ml) was added 0.1 mol of K_2CO_3 and 0.11 mol of benzyl bromide. The mixture was refluxed for 2 hrs and water (500 ml) was added. After addition of ethyl acetate (400 ml) and stirring the organic layer was washed with water, dried (sodium sulphate) and evaporated to dryness. The resulting slightly yellow solid of pure (tlc) 2-benzyloxy-5-bromobenzaldehyde was used as such in the next step.

3-(2-Benzyloxy-5-bromophenyl)-acrylic acid

[0071] A mixture of 2-benzyloxy-5-bromobenzaldehyde (0.10 mol), malonic acid (15.0 g), and piperidine (2.0 ml) in 150 ml of pyridine was first heated at 90°C for 90 min and subsequently refluxed for 0.5 hrs. After cooling to room temperature, the reaction was poured on a mixture of ice (1 kg) and concentrated aqueous hydrochloric acid (250 ml). The solid material that precipitated after stirring for 2 hrs. was collected by suction and recrystallized from a minimum of boiling methanol.

3-[3-(2-Benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4-phenyloxazolidin-2-one

[0072] Pivaloylchloride (7 g) was added dropwise at -30°C to a stirred solution of 3-(2-benzyloxy-5-bromophenyl)-acrylic acid (50.0 mmol) and triethylamine (15.0 ml) in 200 ml of tetrahydrofuran. After an additional hour the temperature was lowered to -50°C and (R)-2-phenyloxazolidin-2-one (9.0 g) and lithium chloride (2.5 g) were added in one portion. The cooling bath was then removed and stirring was continued over 18 hrs. The reaction was diluted with water and 3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4-phenyloxazolidin-2-one was isolated by extraction with ethyl acetate.

3- [3-(2-Benzyloxy-5-bromophenyl)-(3S)-3-phenylpropionyl]-(4R)-4-phenyloxazolidin-2-one

[0073] To a precooled (-30°C) mixture of copper-(I) chloride (21.0 g) and dimethylsulfide (45 ml) in dry tetrahydrofuran (150 ml) was added dropwise an ethereal solution of phenylmagnesiumbromide (0.3 mol). The mixture was stirred 20 min at the same temperature and then cooled to -40°C. A solution of 3- [3- (2-Benzyloxy-5-bromophenyl)-acryloyl] -(4R)-4-phenyloxazolidin-2-one (50.0 mmol) in dry tetrahydrofuran (150 ml) was added during 10 min. The cooling bath was removed and stirring was continued for 18 hrs. The mixture was quenched with half-saturated aqueous ammonium chloride solution and the product was isolated by extraction with ethyl acetate.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid

[0074] A solution of the above described 3-[3-(2-benzyloxy-5-bromophenyl) - (3S)-3-phenylpropionyl]-(4R)-4-phenyloxazolidin-2-one in tetrahydrofuran (300 ml) and water (100 ml) was cooled to 0°C and then treated with 30% aqueous hydrogen peroxide (20 ml) followed by solid lithium hydroxide (4.3 g). Water was added after 2 hrs and the chiral auxiliary was removed by extraction with ethyl acetate. The aqueous phase was acidified with aqueous hydrochloric acid (10%) and crude S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid was extracted with tert-butyl-methylether.

[0075] HPLC analysis (Chiralpak AD, mobile phase hexane/2-propanol/trifluoro acetic acid [92:8:0.1, vol/vol-%); flow 1.0 ml/min, detection 285 nm) indicated an enantiomeric ratio 93:7 (retention times 14.8 min and 11.5 min, respectively). The e.e. of 86% of the S-(+) enantiomer can be improved to >98.5% by recrystallization of the diastereomeric salts using "nitromix" (Angew. Chem. Int. Ed. Engl. 1998, Vol. 37, p. 2349) or (1R,2S)-(-)-ephedrine hemihydrate as described above. The S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid was isolated after acidification of aqueous solutions of the diastereomeric salts. It forms colourless crystals which gave an optical rotation of $[\alpha]_D^{22} = +21.6$ (c = 0.5, MeOH).

[0076] R-(-)-3-(2-Benzyloxy-5-bromophenyl) -3-phenylpropionic acid Conjugate organocuprate addition of phenylmagnesiumbromide to-3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(4S)-4-phenoyloxazolidin-2-one as described above for the S-(+)enantiomer gave crystalline R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid in an e.e. of 99.6% after two recrystallizations, [α]_D²² = -21.7 (c = 0.5, MeOH).

c) Synthesis of the R- and S- Enantiomers of Intermediate B

(i) Phenylpropanol Route

[0077]

20

30

35

40

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol

[0078] A solution of the methyl(±)-propionate (121.0 g) in 350 ml of dry tetrahydrofuran was slowly added under an atmosphere of nitrogen to a suspension of lithium aluminiumhydride (7.9 g) in tetrahydrofuran (350 ml). After stirring at room temperature for 18 hrs, 20% aqueous HCl was added dropwise and the product was isolated by repeated extraction with diethyl ether. The combined extracts were gradually washed with hydrochloric acid, sodium hydroxide solution, distilled water, and then dried (Na₂SO₄) to give a light yellow viscous oil (108.8 g, 96.3% yield) after evaporation which gradually crystallized, m.p. 73.8°C, tlc: (1) 0.47, (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol. NMR (CDCl₃): 37.52, 39.52, 60.84, 70.54, 113.54, 113.83, 126.29, 127.30, 127.51, 129.99, 128.24, 128.38, 129.99, 130.88, 135.69, 136.40, 143.53, 155.12.

[0079] The same product was obtained after reduction of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid with lithium aluminium hydride in tetrahydrofuran (30 min, 25°C), 31% yield.

(±)-Toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester

[0080] A cooled (5°C) solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol (108.0 g) in dichloromethane (300 ml) was treated with pyridine (79.4 ml) and then p-toluenesulphonyl chloride (60.6 g) in dichloromethane (200 ml). After 18 hrs. at room temperature the solvent was removed in vacuum and the residue was extracted with diethyl ether. The extract was washed with hydrochloric acid, water, and dried over anhydrous sodium sulphate to give (±)-toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester as a light yellow oil after concentration under reduced pressure (140.3 g, 93.6% yield), tlc: (1) 0.66. NMR (CDCl₃): 21.67, 33.67, 39.69, 68.58, 70.28, 113.21, 113.76, 126.47, 127.84, 128.10, 128.25, 128.41, 128.51, 129.81, 130.26, 130.42, 132.91, 134.39, 136.41, 142.16,

155.07.

(±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine

[0081] A solution of the (±)-toluenesulphonate ((±)-toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester, 139.3 g) in acetonitrile (230 ml) and N,N-diisopropylamine (256 g) was refluxed for 97 hrs. The reaction mixture was then evaporated to dryness and the residue thus formed was partitioned between diethyl ether (500 ml) and aqueous sodium hydroxide (2 M, 240 ml). The organic phase was washed twice with water (250 ml) and then extracted with 1 M sulphuric acid. The aqueous phase was adjusted to about pH 12-13 and reextracted with ether (500 ml). The organic phase was washed with water, dried (Na₂SO₄) and evaporated to provide (±)-[3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine as a brown and viscous syrup (94.5 g, 77.9% yield), tlc: (2) 0.49. NMR (CDCl₃): 20.65, 20.70, 36.70, 41.58, 43.78, 48.77, 70.24, 113.52, 126.02, 127.96, 128.20, 128.36, 129.82, 130.69, 136.34, 136.76, 144.20, 155.15.

(II) Phenylpropionamide Route

[0082]

30

55

S-(+)-3-(2-Benzyloxy-5-bromophenyl) -3-phenylpropionyl chloride

[0083] Thionylchloride (4.5 g, 2.8 ml, 37.8 mmol) and some drops of dimethylformamide were added to a solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid (10.3 g, 25 mmol) in ethyl acetate (60 ml). The mixture was refluxed until tlc control indicated complete consumption of the starting material (2 hrs). Evaporation in vacuum gave the acid chloride as a light yellow liquid in almost quantitative yield (10.7 9). Conversion of an aliquot to the methyl ester showed a single spot in tlc (R_t 0.54, solvent system (7)).

S-(+)-N,N-Diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionamide

[0084] A solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionyl chloride (9.6 g, 22.3 mmol) in ethyl acetate (40 ml) was added dropwise to a stirred and cooled (3°C) solution of diisopropylamine (6.4 g, 49.0 mmol) in 60 ml of ethyl acetate. The reaction was stirred for 18 hrs at room temperature and then washed with water, aqueous hydrochloric acid (1 M) and half saturated brine. The organic phase was dried (sodium sulphate) and evaporated to dryness. The colourless oily residue (10.7 g, 97% yield) of S-(+)-N,N-diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionamide showed a single spot on tlc: (R_f 0.70 (4)). NMR (CDCl₃): 18.42, 20.46, 20.63, 20.98, 39.51, 41.44, 45.76, 48.63, 70.00, 112.84, 113.64, 126.10, 126.45, 127.34, 127.78, 128.20, 128.36. 129.93, 130.59, 135.18, 136.52, 143.52, 155.17, 169.61.

$\label{eq:continuous} \ensuremath{(\pm)\text{-N,N-Diisopropyl-3-}} \ensuremath{(2\text{-benzyloxy-5-bromophenyl)-3-phenylpropionamide}}$

[0085] The amide was prepared from diisopropylamine and the racemic acid chloride as described above for the S-(+) enantiomer. The viscous colourless oil was dissolved in ethanol and the solution stored at -30°C. From this solution colourless crystals were obtained, m.p. 101.8°C.

(±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine

[0086] To a stirred solution of (±)-N,N-diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionamide (11.8 g) in 40 ml of dry tetrahydrofuran was added 1 M lithium aluminium hydride/tecrahydrofuran (36 ml). The reaction was refluxed for 4 hrs and then quenched with the dropwise addition of water. After removal of the precipitate the solvent

was evaporated and the oily residue dissolved in diluted sulphuric acid. The aqueous phase was washed several times with diethyl ether, adjusted to pH 10-12 (aqueous NaOH), and extracted with diethyl ether. The extract was dried (sodium sulphate), filtered and evaporated to dryness in vacuum to leave 8.1 g (76.7%). of the title compound as a viscous colourless oil, tlc: (4) 0.86. The NMR spectrum corresponds to the product, obtained from the tosylate precursor (see above).

S-(+)-[3- (2-Benzyloxy-5-bromophenyl)-3-phenylpropyl] -diisopropylamine

[0087] Repetition of the reaction sequence by using S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave S-(+)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine as a viscous colourless oil, $[\alpha]_D^{22} = +18.5$ (c = 10.0, ethanol), e.e. of a representative batch 99.4%

R-(-)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine

[0088] Repetition of the reaction sequence by using R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave R-(-)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine as a viscous colourless oil, [α]_D²² = -17.3 (c = 10.0, ethanol), e.e. of a representative batch 98.3%.
 [0089] The optical purities were determined by chiral HPLC using Chiralpak OD columns.

(±)-4-Benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzoic acid hydrochloride

[0090] An ethereal Grignard solution, prepared from the above (±)-amine (22.8 g), ethyl bromide (17.4 g) and magnesium (6.1 g) under an atmosphere of nitrogen was diluted with dry tetrahydrofuran (200 ml) and then cooled to -60°C. Powdered solid carbon dioxide (ca. 50 g) was then added in small portions and the green reaction mixture was warmed to room temperature. After the addition of an aqueous solution of ammonium chloride (200 ml, 10%) and adjustment of the aqueous phase to pH 0.95, a white solid was recovered by filtration to provide (±)-*4-benzyloxy-3-(3-diisopro-pylamino-1-phenylpropyl)-benzoic acid hydrochloride* (14.7 g, 64.3% yield), m.p. 140°C (dec.), tlc: (2) 0.33. NMR (CD₃OD): 17.07, 18.77, 33.55, 43.27, 56.50, 71.50, 112.89, 124.10, 127.94, 129.07, 129.25, 129.34, 129.59, 129.66, 130.18, 131.60, 132.78, 137.60, 143.30, 161.11, 169.70.

(±) - [4-Benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol

Intermediate A.(n = 1)

[0091] The (±)-hydrochloride was converted into its methyl ester (MeOH, trace sulphuric acid, 6h reflux) and the free oily base thus obtained (28 g; tlc (2): R_f 0.46) was dissolved in dry diethyl ether (230 ml). This solution was slowly (2h) dropped under a nitrogen atmosphere to a suspension of lithium aluminium hydride (1.8 g) in ether (140 ml). After stirring for 18 hrs, the reaction was quenched by the addition of water (4.7 ml). The organic phase was dried over anhydrous sodium sulphate, filtered and evaporated to dryness to provide (±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol (26 g, 98.9% yield), as an oil which gradually crystallized, m.p. 86.4°C, tlc: (2) 0.32. NMR (CDCl₃): 20.53, 20.61, 36.87, 41.65, 44.14, 48.82, 65.12, 70.09, 111.80, 125.77, 125.97, 126.94, 127.55, 128.08, 128.37, 128.44, 133.27, 134.05, 134.27, 137.21, 144.84.

55

45

50

Intermediate d_2 -A (n = 2)

[0092] Repetition of the above described reduction of the methylester of (±)-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzoic acid by the use of lithium aluminium deuteride gave (±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-[C²H]methanol, colourless amorphous solid in 77% yield; tlc: (2) 0.33. NMR (CDCl₃): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centred at 64.96, 70.05, 111.76, 125.72, 127.34, 128.03,128.32, 128.38, 133.15, 133.99, 137.17, 144.80, 155.52.

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol

Intermediate B (n = 1)

[0093] A solution of Intermediate A (9.1 g) in methanol (100 ml) was hydrogenated over Raneynickel (4.5 g) under ambient conditions. After 5 hrs thin layer chromatography indicated complete hydrogenolysis. The catalyst was filtered off and the solution evaporated to dryness to leave an oil (6.95 g, 96.5% yield) which gradually solidified, (±)-2-(3-di-isopropylamino-1-phenylpropyl)-4-hydroxymethylphenol, m.p. 50°C, tlc: (2) 0.15. NMR (CDCl₃): 19.42, 19.83, 33.22, 39.62, 42.27, 48.27, 65.19, 118.32, 126.23, 126.55, 127.47, 128.33, 132.50, 144.47, 155.38.

Hydrochloride: colourless crystalls, m.p. 187-190°C (with decomposition)

S-(-)-2-(3-DiisopropylamIno-1-phenylpropyl)-4-hydroxymethylphenol

[0094] Hydrogenolysis of S-(-)-[4-benzyloxy-3- (3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol (prepared from S- (+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as described for the racemic series) gave the title compound in 85% yield, colourless solid; m.p. ≥ 50°C, [α]_D²² = -19.8 (c = 1.0, ethanol); NMR (CDCl₃): 19.58, 19.96, 33.30, 39.52, 42.10, 48.00, 65.40, 118.58, 126.31, 126.57, 127.16, 127.54, 128.57, 132.63, 132.83, 144.55, 155.52. S-(+) hydrochloride: colourless, non-hygroscopic solid, m.p. 186.4°C (dec.); [α]_D²² = +6.6 (c = 0.5, water). NMR (DMSOd₆): 16.58, 18.17, 31.62, 41.37, 45.90, 54.02, 63.07, 115.18, 126.05, 126.37, 128.03, 128.45, 129.04, 133.12, 143.88, 153.77.

45 R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol

[0095] Hydrogenolysis of $R-(+)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol (prepared from R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as described for the racemic series) gave the title compound in 87% yield, colourless solid; m.p. <math>\geq 50^{\circ}$ C, $[\alpha]_D^{22} = +21.3$ (c = 1.0, ethanol).

⁹ R-(-) hydrochloride: colourless, non-hygroscopic solid, m.p. 179.8°C (dec.); $[\alpha]_D^{22}$ = -7.2 (c = 0.5, water); NMR (DMSO-d₆): 16.59, 18.19, 31.64, 41.38, 45.92, 54.07, 63.08, 115.19, 126.07, 126.39, 128.04, 128.46, 129.05, 133.13, 143.89, 153.79.

S-(+)-mandelate: m.p. 139.7°C, $[\alpha]_D^{21} = +38.3$ (c = 1.0, ethanol)

55

25

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[2H2]methyl-phenol

Intermediate d_2 -B (n = 2)

[0096] A stirred suspension of lithium aluminium deuteride (0.1 g, 2.38 mmol) in 5 ml of dry diethyl ether was treated during 30 min at room temperature under an atmosphere of dry nitrogen with a solution of (±)-4-benzyloxy-3-(3-disopropylamino-1-phenylpropyl)-benzoic acid methyl ester (1.0 g, 2.17 mmol) in dry diethyl ether (5 ml). After an additional stirring at room temperature for 18 hrs the reaction was quenched by the dropwise addition of 0.17 ml of ²H₂O. The resultant precipitation was filtered off, washed with small portions of ether, and the combined organic phases were evaporated to dryness in vacuum to leave

(±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl] - [2H2]methanol

as slightly yellow, viscous oil which gradually crystallized, m.p. 84.1°C; tlc. (2) 0.33 (starting material 0.46), 0.725 g, 77.2% yield. NMR (CDCl₃): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centred at 64.30, 70.05, 111.76, 125.72, 125.94, 126.92, 127.34, 127.71, 128.03, 128.32, 128.38, 133.15, 133.99, 137,17, 144.30, 155.52.

[0097] A solution of the above (\pm)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-[$^{2}H_{2}$]methanol (0.129 g, 0.29 mmol) in a suspension of methanol (5 ml) and wet Raney-Nickel (0.1-0.2 g) was stirred at room temperature under an atmosphere of deuterium gas ($^{2}H_{2}$). After 1 hr tlc indicated complete disappearance of the starting material. The mixture was filtered, evaporated and the residue was redissolved in diethyl ether (5 ml). The solution was washed with water (2 x 5 ml), dried over sodium sulphate, filtered and evaporated to dryness to leave a pale yellow oil, 76.3 mg, in 74.6% yield, which gradually solidified to give a colourless solid of a m.p. range of 46-49°C. Tlc: (4) 0.57 (starting material 0.77). NMR (CDCl₃): 19.57, 19,94, 33.33, 39.56, 42.18, 48.07, 48.43, multiplett centred at 64.61, 118.47, 126.29, 126.58, 127.55, 127.94, 128.38, 132.53, 144.53, 155.37. GC-MS (P-CI, ammonia, TMS derivative): 488.43 (100%), 489.56 (70%), 490.56 (31%), 491.57 (8%).

25

30

40

45

50

Intermediate d.-B

n = 2, deuterium

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[2H2] methyl-phenol

Intermediate d2-B

5 (iii) Heck-Cuprate-Route to Intermediate B

[0098]

$$[Pd]$$

$$MeO_2C$$

$$Br$$

$$N(i-Pr)_2$$

$$MeO_2C$$

$$N(i-Pr)_2$$

$$MeO_2C$$

$$N(i-Pr)_2$$

$$N(i-Pr)_2$$

Intermediate B

N,N-Diisopropyl-acrylamide

30

35

40

45

[0099] A solution of acroyl chloride (42.2 g, 40.6 ml, 0.467 mol) in 125 ml of dichloromethane was slowly added to a cooled (0-5°C) solution of N,N-diisopropylamine in dichloromethane (500 ml). After 2 hrs the precipitated ammonium salt was filtered off and the filtrate was washed with 1M hydrochloric acid (3 x 100 ml), dried (sodium sulphate), and evaporated to dryness. N,N-diisopropyl-acrylamide was obtained as a slight yellow liquid in 48% yield and ca. 99% purity. NMR (CDCl₃): 20.54, 21.25, 45.66, 48.10, 125.62, 130.70, 166.17.

(E)-N,N-Diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-acrylamide

((E)-3-(2-Diisopropylcarbamoyi-vinyl)-4-methoxybenzoic acid methyl ester)

[0100] The reaction was carried out under an atmosphere of dry and oxygen-free nitrogen gas. All solvents and reagents were dried before use.

A stirred suspension consisting of N,N-dimethylglycine (6.0 mmol), anhydrous sodium acetate (40 mmol), methyl 3-bromo-4-methoxybenzoate (20 mmol, 4.90 g), N,N-diisopropylacrylamide (24 mmol, 3.72 g), bis-(benzonitrile)-palladium-II chloride (1.5 mol%), and 20 ml of N-methyl-2-pyrrolidinone was heated at 130°C until no starting material could be detected by tic (starting material methyl 3-bromo-4-methoxybenzoate: R_f 0.73; N,N-diisopropylacrylamide: R_f 0.46; solvent system (1)). After cooling to room temperature 50 ml of an aqueous 2N HCI solution was added. The reaction was diluted with dichloromethane (50 ml) and the precipitated grey palladium metal was filtered off. The organic phase was washed with five portions (50 ml each) of 2N aqueous hydrochloric acid, dried (MgSO₄) and evaporated to dryness. The remaining off-white solid was recrystallized from ethyl acetate/n-hexane to give 4.40 g (E)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-acrylamide in 69% yield, m.p. 139-140°C, tlc: (1) R_f 0.40. NMR (CD₂Cl₂): 21.22, 22.10, 46.39, 48.87, 52.59, 56.61, 111.42, 123.39, 123.78, 125.54, 130.32, 132.53, 135.07. MS (EI, DI, 105°C): 319 (M+, 22), 304 (6%), 276 (8%), 219 (100%), 187 (18%), 160 (7%):

(±)-N,N-Dlisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-3-phenylpropionamide

((±)-3-(2-Diisopropylcarbamoyl-1-phenylethyl)-4-methoxybenzoic acid methyl ester)

[0101] The reaction was carried out under an atmosphere of dry and oxygen-free nitrogen gas. All solvents and reagents were dried before use.

A dark green solution of lithium diphenylcuprate was prepared by addition of phenyllithium solution (12 ml, 24 mmol, cyclohexane/diethyl ether) to a cooled (0°C) and stirred suspension of copper-I bromide dimethylsulphide adduct (2.71 g, 13 mmol) in diethyl ether (40 ml). This solution was cooled to -78°C and then subsequently solutions were added of trimethylchlorosilane (1.5 ml, 12 mmol) in diethyl ether (5 ml) followed by the above cinnamide (3.19 g, 10.0 mmol, (E)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-acrylamide) in 10 ml of tetrahydrofuran. The reaction was stirred for one hour at -78°C, warmed to room temperature and then quenched by the addition of 150 ml of a saturated aqueous solution of ammonium chloride. After 90 min the organic phase was washed with two portions (100 ml) of half saturated aqueous sodium chloride, dried (MgSO₄) and evaporated to dryness. The yellow oily residue was dissolved in a minimum of ethyl acetate and purified by column chromatography on silica gel (mobile phase (1)). Evaporation of the combined fractions of the title compound gave

(±)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-3-phenylpropionamide as a viscous slightly yellow syrup (1.8 g, 44% yield). NMR (CD_2Cl_2): 19.45, 19.56, 19.74, 38.86, 44.87, 47.92, 50.80, 54.76, 109.41, 121.32, 125.53, 128.10, 128.43, 128.78, 132.03, 143.20, 159.95, 165.95, 168.87. MS (EI, DI, 105°C): 397 (M+, 41%), 366 (5%), 322 (2%), 269 (3%), 255 (14%), 237 (7%), 165 (5%), 128 (12%), 91 (43%), 58 (100%).

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol

[0102] A solution of (±)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-3-phenylpropionamide (0.79 g, 2.0 mmol) in 20 ml of tetrahydrofuran was cooled to 5°C and then treated with 2.5 ml of 1M LiAlH₄/THF. After stirring at room temperature for 18 hrs. finely powdered aluminium chloride (0.3 g) was added and stirring was continued for additional 4 hrs. The reaction was quenched at 5°C by the dropwise addition of water followed by aqueous sodium hydroxide solution. The mixture was diluted with diethyl ether (150 ml) and the organic phase was washed with half saturated brine, dried (sodium sulphate), and evaporated to dryness to give the title compound as a solid off-white foam. Tlc (2) 0.16, m.p. 48-51°C. A portion of the material was converted into the hydrochloride (ethereal hydrochloric acid), m.p. 186-189°C (dec.).

Hydrogenolytic Deoxygenation of S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol

[0103] A mixture of S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (683 mg, 2.0 mmol, [α]_D²² = -19.8 (c = 1.0, ethanol)), platinium-on-carbon catalyst (120 mg) and acetic acid (1.0 ml) was diluted with ethyl acetate (50 ml) and then hydrogenated at room temperature under a pressure of 4 bar hydrogen gas for 5 hrs. The catalyst was filtered off and the filtrate was evaporated to leave an oil. The residue was redissolved in dichloromethane (25 ml) and the solution was washed with aqueous sodium hydrogencarbonate solution. The organic phase was concentrated to dryness and the oily residue taken up in ethanol (7 ml). Addition of D-(-)-tartaric acid (300 mg) and storage of the clear solution at -25°C gave colourless crystals (310 mg) of

S-(-)-2-(3-diisopropylamino-1-phenylpropyl)-4-methylphenol D-(-) hydrogentartrate

in 33% yield, tlc: (4) : 0.66 (starting material 0.31), $[\alpha]_D^{22}$ = -26.7 (c = 1.0, methanol). NMR (CD₃OD) : 17.98, 18.37, 20.69, 33.68, 43.12, 56.33, 74.17, 116.31, 127.51, 129.11, 129.50, 129.70, 129.89, 130.41, 144.57, 153.67, 176.88.

[0104] A portion of the tartrate was treated with aqueous sodium hydrogencarbonate solution and the free base was isolated in quantitative yield as a colourless oil by extraction with ethyl acetate and evaporation of the extract. [α]_D²² = -26.3 (c = 1.0, methanol)

[0105] Preferred intermediates in the processes for the preparation of the 3,3-diphenylpropylamines according to the present invention are:

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts,

50

R-(-)-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts.

S-(+) - (2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts.

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C²H_o]methyl-phenol,

S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C2H2]methyl-phenol,

R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C²H₂]methyl-phenol and their salts.

- 3. Examples
- a) Phenolic monoesters
- 5 aa) General procedure

Esters of Carboxylic Acids

[0106] A stirred solution of (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (Intermediate B, 1.71 g, 5.01 mmol) and acid chloride (5,00 mmol carboxylic acid monochloride for compounds of formula II, 2.50 mmol for compounds of formula II') in 60 ml of dichloromethane was cooled to 0°C and then triethylamine (0.502 g, 4.96 mmol for compounds of formula II, 1.05 g, 9.92 mmol for compounds of formula II'), dissolved in 10 ml of dichloromethane, was added dropwise during 5-10 min. Stirring was continued for 18 hrs at room temperature, and then the mixture was washed successively with water (25 ml), aqueous sodium hydrogen carbonate (5%, 25 ml), and water (25 ml). The organic phase was then dried (sodium sulphate) and evaporated under reduced pressure and at low temperature. The oily residues thus formed were finally exposed to high vacuum (2-4 hrs.) to remove traces of residual solvents. The esters of formula II or II' were obtained as colourless to light yellow solids or viscous syrups in purities between 90% and 99% (tlc, HPLC, NMR).

20 Esters of N-Acylamino Acids

Phenolic Monoesters

30

45

50

55

[0107] To a solution of the respective amino acid (2.0 mmol) in 0.7 ml to 5 ml of N,N-dimethylformamide and 0.5 ml of triethylamine was added at 5°C in one portion methyl chloroformate (2.0 mmol, 288 mg). After stirring for 2 hrs. at the same temperature the cooling bath was removed and a solution of Intermediate B (2.0 mmol, 682 mg) in 5 ml of dichloromethane and triethylamine (0.5 ml) was added. The reaction was allowed to stir for 2-8 hrs and then diluted with diethyl ether (70 ml). Solid precipitates were filtered off and the mixture was washed with aqueous sodium hydrogen sulphate solution (5%) and water. After drying (sodium sulphate), filtration and evaporation in vacuum the residue was purified by flash chromatography on silica gel (eluent: solvent system (4)). N-acylamino acid esters were obtained as viscous oils or waxy solids in yields between 24% and 73%.

bb) Salt formation (Example hydrochloride)

- [0108] A cooled (0°C) solution of 4.94 mmol amino base in 30 ml of dry diethyl ether was treated under an atmosphere of nitrogen with 4.70 mmol (monoamines of formula II) or 9.4 mmol (diamines of formula II') ethereal (1 M) hydrochloric acid. The oily precipitation was washed repeatedly with dry ether and then evaporated in high vacuum. The residual product solidificated in most cases as an amorphous foam. The highly hygroscopic solids show a wide melting range above 100°C (with decomposition).
- 40 [0109] The following compounds were prepared according to the method described above and their analytical data are listed below:
 - (±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4 hydroxymethylphenyl ester, tlc: R_I 0.47 (4), NMR (CDCl₃): 20.36, 20.68, 20.97, 36.59, 42.35, 43.83, 48.76, 64.58, 122.69, 125.61, 126.22, 126.71, 127.96, 128.34, 136.82, 138.97, 143.73, 147.77, 169.24; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 456.8 (100%), 398.4 (4%)
 - (\pm)-Propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R₁ 0.52 (4); NMR (CDCl₃): 20.44, 20.64, 27.67, 36.67, 42.21, 43.87, 48.78, 64.70, 122.71, 125.62, 126.52, 126.78, 127.97, 128.53, 136.86, 138.82, 143.82, 147.86, 172.68; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 470.38 (100%), 398.4 (4%)

 $\begin{array}{l} (\pm)\text{-}n\text{-}Butyric\ acid\ 2\text{-}(3\text{-}diisopropylamino-1\text{-}phenylpropyl)\text{-}4\text{-}hydroxymethylphenyl\ ester,}\ tlc:\ R_{\text{f}}\ 0.43\ (4)\ ;\ NMR\ (CDCl_3):\ 13.77,\ 18.40,\ 20.43,\ 20.51,\ 20.59,\ 36.15,\ 36.82,\ 42.16,\ 43.90,\ 48.83,\ 49.20,\ 64.58,\ 122.66,\ 125.98,\ 126.17,\ 126.74,\ 127.33,\ 127.94,\ 128.33,\ 136.79,\ 138.91,\ 143.82,\ 171.88;\ GC\text{-}MS/N\text{-}Cl\ (methane,\ trimethylsilyl\ derivative):\ 482.3\ (20\%),\ 412.3\ (100\%),\ 340.1\ (33\%),\ 298.1\ (89\%),\ 234.7\ (15\%)\ ;\ GC\text{-}MS/P\text{-}Cl\ (methane,\ trimethylsilyl\ derivative):\ 484.5\ (100\%),\ 468.4\ (62\%),\ 394.3\ (22\%)\ ;\ GC\text{-}MS/P\text{-}Cl\ (ammonia,\ trimethylsilyl\ derivative):\ 484.4\ (100\%),\ 398.4\ (3\%) \end{array}$

(±)-Isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_I 0.43 (4); NMR (CDCl₃): 18.99, 19.11, 20.54, 34.21, 36.88, 41.84, 43.91, 48.78, 64.61, 122.54, 125.57, 126.14, 126.81, 127.94, 128.34, 136.84, 138.84, 143.89, 147.85, 175.36

- Fa-(+)-Isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
 TIc: R_f 0.38 (4), starting material: 0.26; colourless oil (yield 95%); NMR (CDCl₃): 19.02, 19.14, 19.96, 20.61, 34.26, 36.92, 41.87, 43.90, 48.80, 64.84, 122.63, 122.63, 125.64, 126.19, 126.92, 127.98, 128.39, 136.96, 138,76, 143.93, 147.97, 175.39.
- Hydrochloride: colourless hygroscopic solid; $[\alpha]_D^{20} = +5.5$ (c = 1.0, chloroform); NMR (CDCl₃): 17.03, 17.53, 18.30, 18.52, 18.95, 19.12, 31.23, 34.10, 41.69, 45.40, 54.22, 54.47, 64.00, 122.32, 126.62, 126.81, 127.40, 128.06, 128.70, 133.88, 140.64, 142.25, 147.81, 175.89.
 - (±)-2,2-Dimethylpropionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_f 0.49 (1); NMR (CDCl₃): 20.46, 20.66, 26.53, 27.34, 37.12, 39.21, 41.46, 43.98, 48.81, 64.65, 122.42, 125.58, 126.16, 126.92, 128.37, 134.27, 136.92, 138.82, 143.97, 148.02, 176.97; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 498.8 (100%), 482.5 (10%), 398.4 (4%)

15

- (±)-2-Acetamidoacetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ((±)-2-[Diisopropylamino)-1-phenylpropyl]-4-(hydroxymethyl)phenyl 2-(acetylamino)acetate)
 NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.39, 48.62, 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171.47, 173,82
- (±)-Cyclopentanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
 Tlc: R_f 0.66 (4), starting material Intermediate B (0.50), colourless oil, yield: 82%. NMR (CDCl₃): 20.42, 25.87,
 30.25, 36.57, 41.89, 43.97, 47.15, 49.02, 64.63, 122.56, 125.60, 126.16, 126.81, 127.60, 127.94, 128.35, 128.77,
 136.74, 138.88, 143.85, 147.92, 175.05.
- (±)-Cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester

 Tlc: R_f 0.67 (4), starting material Intermediate B (0.50), colourless oil, yield: 93%. NMR (CDCl₃): 20.27, 25.40,
 25.74, 29.03, 29.16, 36.29, 41.82, 43.31, 44.08, 49.36, 64.62, 122.56, 125.68, 126.22, 126.92, 127.92, 128.38,
 136.65, 139.00, 143.72, 147.86, 174.40.

 (±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester

 Tlc: R_f 0.31 (4); colourless syrup (99% yield, purity > 95%) ;gradually crystallized upon refrigeration; NMR (CDCl₃):
 20.41, 20.51, 36.65, 42.42, 43.85, 48.79, 64.70. 122.79, 125.74, 126.17, 126.83, 128.13, 128.28, 128.58, 129.48,
 130.25, 133.62, 137.21, 139.10, 143.67, 148.00, 154.99.
 - *R-(+)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl-)-4-*hydroxymethylphenyl ester tlc R_f 0.30 (4); colourless syrup Hydrochloride: colourless amorphous solid; $[\alpha]_D^{20} = +14.9$ (c = 1.0, chloroform);
- NMR (CDCl₃): 17.06, 17.53, 18.25, 18.61, 31.23, 42.19, 45.49, 54.26, 54.53, 64.09, 122.55, 126.77, 127.13, 127.58, 128.10, 128.50, 128.72, 128.78, 129.02, 130.17, 133.96, 134.27, 140.81; 142.13, 147.91, 165.40.
- (±)-4-Methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
 Tlc: R_f 0.30 (4), starting material Intermediate B: 0.24; yield: quantitative, viscous light yellow oil; NMR (CDCl₃):
 20.32, 20.50, 21.78, 36.13, 42.35, 43.98, 49.29, 64.66, 122.79, 125.81, 126.19, 126.70, 127.04, 128.30, 129.32, 129.76, 130.29, 136.94, 139.20, 143.61, 144.46, 148.04, 165.07.
 LC-MS: 459 (M+, 3.5%), 444 (17%), 223 (2.5%), 195 (2%), 119 (48%), 114 (100%).
- (±)-2-Methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester viscous colourless oil, tlc: (4) 0.64 (starting material R_f 0.51), yield 84%. NMR (CDCl₃): 20.44, 20.53, 21.86, 22.01, 36.74, 42.36, 43.87, 48.81, 64.76, 122.93, 123.11, 125.71, 126.12, 126.88, 128.10, 128.48, 130.76, 131.26, 131.70, 132.03, 132.79, 137.28, 139.00, 141,73, 143.72, 148.04, 165.25. LC-MS: 459 (M+, 21%), 444 (100%), 326 (1%), 223 (10%), 213 (6%), 195 (9%), 165 (14%), 115 (94%), 91 (99%).
- (±)-2-Acetoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
 colourless syrup, tlc: (4) 0.47 (starting material R₁ 0.51), yield 82%. NMR (CDCl₃): 20.39, 20.57, 20.96, 36.92,
 42.29, 43.88, 48.87, 64.64, 122.39, 122.64, 124.05, 125.80, 126.11, 126.75, 128.09, 128.32, 132.23, 134.66,
 137.27, 139.32, 143.64, 147.63, 151.37, 162.72, 169.73. LC-MS: 503 (M+, 7%), 488 (59%), 446 (6%), 326 (22%),

223 (9%), 213 (9%), 195 (9%), 163 (14%), 121 (100%), 114 (88%).

5

10

20

25

30

35

40

50

(±)-1-Naphthoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester colourless viscous oil, tlc: (4) 0.57 (starting material R_f 0.51), yield 82%. NMR (CDCl $_3$): 20.46, 20.58, 36.82, 42.46, 43.89, 48.76, 64.81, 122.98, 124.51, 125.64, 125.79, 125.98, 126.15, 126.44, 126.94, 128.12, 128.36, 128.65, 131.37, 131.82, 133.98, 134.45, 137.44, 139.08, 143.73, 148.13, 165.49. LC-MS: 495 (M+, 8%), 480 (100%), 213 (7%), 165 (8%), 155 (95%), 127 (100%), 114 (90%).

(±)-2-Naphthoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester colourless slightly yellow viscous oil, tlc: (4) 0.57 (starting material R_f 0.51), yield 71%. NMR (CDCl₃): 20.47, 20.59, 36.71, 42.59, 43.85, 48.81, 64.82, 122.89, 126.89, 127.89, 128.19, 128.41, 128.68, 129.50, 132.03, 132.55, 135.87, 137.22, 139.08, 143.83, 148.20, 165.14. LC-MS: 495 (M+, 7%), 480 (98%), 223 (8%), 213 (6%), 195 (6%), 165 (8%), 155 (96%), 127 (100%), 114 (81%).

(±)-4-Chlorobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
Tlc: R_f 0.54 (4), starting material Intermediate B: 0.44; yield: quantitative, viscous light yellow oil; NMR (CDCl₃):
20.34, 20.50, 36.41, 42.51, 43.84, 48.93, 64.66, 122.72, 125.82, 126.88, 127.27, 128.06, 128.56, 128.96, 131.60,
133.80, 136.95, 139.30, 140.16, 143.60, 147.87, 164.10. LC-MS: 479 (M+ 1.5%), 464 (10%), 223 (2%), 195 (2%),
165 (1.5%), 139 (25%), 114 (100%).

(±)-4-Methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester Tlc: R_f 0.47 (4), starting material Intermediate B: 0.42; yield: 89%, viscous light yellow oil; NMR (CDCl₃): 20.31, 20.47, 36.43, 42.39, 43.90, 48.97, 55.53, 64.71, 121.79, 122.86, 125.72, 126.14, 126.79, 128.11, 128.27, 131.77, 132.36, 132.84, 137.15, 139.01, 143.74, 148.08, 163.92, 164.71. LC-MS: 475 (M+, 3.5%), 460 (20%), 223 (2%), 195 (2%), 135 (48%), 114 (100%).

(\pm)-2-Methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester Tlc: R_f 0.40 (4), starting material Intermediate B: 0.42; yield: 98%, viscous light yellow oil; NMR (CDCl₃): 20.29, 20.42, 36.50, 41.92, 44.02, 49.09, 55.95; 64.72, 119.10, 120.20; 122.86, 125.64, 126.10, 126.82, 128.06, 128.30, 132.38, 134.32, 137.11, 139.01, 143.87, 148.00, 159.82, 164.40. LC-MS: 475 (M+-, 3.5%), 460 (18%), 223 (1%), 195 (1%), 135 (49%), 114 (100%).

(\pm)-4-Nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester Tlc: R_f 0.44 (4), starting material Intermediate B: 0.42; yield: 78%, viscous yellow oil which slowly solidified; m.p. 123.6°C; NMR (CDCl₃): 20.47, 20.62, 36.52, 42.66, 43.70, 48.75, 64.69, 122.61, 123.72, 125.91, 126.33, 127.04, 128.02, 128.37, 131.32, 134.86, 136.83, 139.55, 143.56, 147.75, 150.93, 163.04. LC-MS: 490 (M $^+$ ·, 1.5%), 475 (15%), 327 (0.8%), 223 (3%), 195 (3%), 150 (15%), 114 (100%).

(\pm)-2-Nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester Tlc: R_f 0.32 (4), starting material Intermediate B: 0.42; yield: 92%, viscous yellow oil which slowly solidified; NMR (CDCl₃): 20.39, 20.50, 36.74, 42.14, 43.89, 48.71, 48.92, 64.59, 122.15, 123.95, 124.18, 125.89, 126.25, 127.23, 127.99, 128.39, 129.95, 132.95, 133.08, 136.72, 139.62, 143.64, 147.63, 148.15, 163.90. LC-MS: 490 (M+, 1%), 475 (11%), 327 (2.5%), 223 (2.5%), 195 (3%), 165 (3%), 150 (7%), 114 (100%).

(±)-N-Acetylglycine 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl esteri(±)-2-Acetamidoacetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ((±)-2-[Diisopropylamino-1-phenylpropyl]-4-(hydroxymethyl)-phenyl 2-(acetylamino)acetate)
NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.39, 48.62, 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171,47, 173.82.

(±)-Malonic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: $\mathsf{R_f}$ 0.38 (4); NMR (CDCl₃): 20.52, 20.62, 20.69, 36.95, 41.84, 42.82, 43.89, 48.23, 64.83, 123.37, 127.36, 127.97, 128.42, 128.38, 129.06, 131.55, 137.50, 138.90, 148.23, 148.32, 160.54

(±)-Succinic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.40 (4); NMR (CDCl₃): 20.54, 20.63, 20.73, 30.69, 36.91, 41.80, 43.92, 48.20, 64.81, 122.60, 127.41, 127.93, 128.39, 129.31, 131.80, 136.73, 138.92, 143.82, 148.17, 168.01

(±)-Pentanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: $R_{\rm I}$ 0.43; NMR (CDCl₃): 20.47, 20.60, 32.87, 36.93, 41.82, 43.90, 48.22, 64.81, 64.83, 122.85, 127.39, 127.99, 128.35, 129.31, 131.84, 136.98, 138.94, 143.80, 147.40, 169.05

(\pm)-Hexanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.43; NMR (CDCl₃): 20.64, 23.40, 34.37, 36.95, 41.84, 43.88, 48.25, 64.87, 122.88, 127.34, 127.97, 128.39, 129.33, 131.80, 136.99, 138.94, 143.82, 147.65, 168.72

b) Identical diesters

5

10

20

25

30

35

40

45

50

[0110] (±)-Identical diesters (formula III) were prepared and worked up as described above with the exception that 2.4 mmol of both triechylamine and acyl chloride (R¹-COCl) were used. The physical properties were similar to the bases and salts described above.

Diesters of N-acylaminoacids were prepared as described for phenolic monoesters with the exception that an additional molar equivalent of acylating agent (mixed acid anhydride) was used.

[0111] In particular, the following compounds were prepared and their analytical data are given below:

(±)-Formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R₁ 0.65 (4). This diester was prepared from mixed formic acetic anhydride and Intermediate B as described for other substrates previously (F. Reber, A. Lardon, T. Reichstein, *Helv. Chim. Acta 37*: 45-58 [1954])

(±)-Acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.76 (4); GC-MS/P-CI (ammonia): 426.3 (100%); 368.3 (22%); GC-MS/P-CI (methane, trimethylsilyl derivative): 426.4 (64%), 410.3 (16%), 366.3 (100%); hydrochloride, NMR (DMSOd₆) - 16.50, 16.76, 18.05, 20.94, 21.04, 27.02, 31.39, 41.28, 45.26, 53.80, 65.21, 123.39, 126.84, 127.61, 127.85, 128.70, 134.41, 135.49, 142.68, 148.20, 169.32, 170.42

(\pm)-Propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester, tlc : R_f 0.82 (4) ; NMR (CDCl₃) : 20.53, 20.73, 21.14, 27.66, 36.73, 42.10, 43.68, 48.65, 65.75, 122.65, 126.10, 127.01, 127.70, 128.34, 128.78, 133.73, 136.81, 143.76, 148.45, 172.45, 174.21; GC-MS/P-CI (ammonia): 454.8 (100%), 438.5 (9%), 382.4 (27%)

 $\begin{array}{l} (\pm)\text{-}n\text{-}Butyric\ acid\ 4\text{-}n\text{-}butyryloxymethyl\text{-}2\text{-}(3\text{-}diisopropylamino\text{-}1\text{-}phenylpropyl)\text{-}phenyl\ ester,}\ tlc:\ R_{\text{f}}\ 0.86\ (4);\ NMR\ (CDCl_{3}):13.70,\ 13.76,\ 18.44,\ 20.53,\ 20.69,\ 21.13,\ 36.14,\ 36.76,\ 37.09,\ 42.08,\ 43.73,\ 48.71,\ 65.64,\ 122.81,\ 125.97,\ 126.97,\ 127.92,\ 128.35,\ 128.77,\ 133.78,\ 136.99,\ 143.76,\ 148.41,\ 171.68,\ 173.40;\ GC\text{-}MS/P\text{-}Cl\ (ammonia):\ 482.8 \\ (100\%),\ 396.4\ (67\%) \end{array}$

(±)-Isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester, tlc: R_f 0.83 (4), NMR (CDCl₃): 18.97, 19.10, 20.64, 20.67, 34.01, 34.23, 36.98, 41.72, 43.70, 48.65, 65.61, 122.50, 126.18, 126.73, 127.92, 128.13, 128.36, 133.90, 137.01, 143.85, 148.41, 175.17, 176.81; GC-MS/N-CI (methane): 480.3 (15%); GC-MS/P-CI (methane): 482.5 (63%), 466.4 (18%), 394.3 (100%)

 (\pm) -2,2-Dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethylpropionyloxy)-benzyl ester, Tlc: R_I 0.96 (4); NMR (CDCl₃): 20.44, 20.75, 27.09, 27.24, 37.18, 38.68, 39.15, 41.25, 43.66, 48.20, 65.50, 122.36, 126.32, 127.22, 127.48, 127.83, 128.29, 133.99, 136.98, 143.87, 148.37, 176.70, 178.10; GC-MS/P-CI (methane): 510.5 (76%), 494.5 (21%), 408.4 (100%)

(±)-Benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.80 (4); NMR (CDCl₃): 20.62, 36.95, 41.72, 43.89, 48.23, 66.76, 122.22, 125.33, 127.36, 127.62, 127.89, 127.89, 127.97, 128.38, 129.49, 130.52, 130.64, 131.15, 131.22, 131.98, 136.38, 137.66, 143.82, 148.95, 164.77, 166.60

(+)-Benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1- phenylpropyl)-phenyl ester Hydrochloride: colourless solid; tlc: (4) 0.70, $\left[\alpha\right]_{D}^{20}$ = +24.2 (c = 1.0, chloroform). NMR (DMSO-d₆) : 16.52, 17.99, 18.06, 26.99, 31.32, 53.94, 65.98, 123.58, 127.65, 127.98, 128.62, 128.90, 129.02, 129.45, 129.71, 130.10, 133.64, 134.32, 134.55, 135.60, 142.52, 148.37, 164.53, 165.76.

c) Mixed diesters

[0112] Mixed diesters (formula IV) were prepared by acylation of the respective benzylic or phenolic monoesters.

Working up and physical properties corresponded to the bases and salts described above.

[0113] In particular, the following compounds were prepared and their analytical data are given below:

(±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4 formyloxymethylphenyl ester, tlc: R_I 0.76 (4); NMR (CDCl₃): 20.62, 20.91, 33.25, 42.20, 42.28, 48.23, 70.70, 122.96, 127.36, 127.97, 128.38, 128.73, 132.02, 135.41, 137.11, 143.81, 149.35, 161.34, 168.95

(\pm)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R_f 0.74 (4); NMR (CDCl₃): 20.60, 36.93, 41.72, 43.89, 48.23, 70.71, 122.50, 125.33, 127.30, 127.89, 127.97, 128.36, 129.57, 130.65, 131.13, 132.05, 135.41, 136.66, 143.80, 149.15, 161.35, 164.78

(±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester Viscous colourless oil, tlc: R₁ 0.70 (4); NMR (CDCl₃): identical with R-(+) enantiomer, see below.

15 R-(+)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4- acetoxymethylphenyl ester tlc: R_f 0.70 (4) Hydrochloride: colourless non-hygroscopic solid $[\alpha]_D^{20}$ = +27.1 (c = 1.0, chloroform). NMR (CDCl₃) : 17.14, 18.53, 21.04, 31.51, 42.25, 46.27, 54.74, 65.58, 123.18, 127.07, 127.55, 127.61, 127.99, 128.80, 130.22, 134.14, 134.81, 135.27, 141.44, 148.54, 165.19, 170.81.

(\pm)-Isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.77 (4); NMR (CDCl₃): 18.99, 19.12, 20.65, 21.05, 34.24, 37.02, 41.79, 43.79, 48.72, 65.98, 122.75, 126.76, 127.14, 127.94, 128.29, 128.84, 133.55, 137.04, 143.84, 148.56, 170.84, 175.18

(+)-Isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester colourless oil
 Hydrochloride: colourless hygroscopic solid; [α]_D²⁰ = +14.6 (c = 1.0, chloroform); NMR (CDCl₃): 16.89, 17.04, 18.31, 18.54, 18.92, 19.06, 20.95, 31.49, 34.07, 41.64, 46.17, 54.55, 65.49, 122.91, 126.93, 127.48, 127.83, 128.74, 134.50, 134.88, 141.61, 148.44, 170.67, 175.63.

 (\pm) -2,2-Dimethylpropionic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.80 (4); NMR (CDCl₃): 20.63, 20.93, 27.19, 33.25, 37.49, 42.21, 42.25, 48.22, 67.37, 123.18, 127.36, 127.84, 128.39, 131.16, 137.34, 143.84, 148.29, 168.93, 178.40

(±)-2,2-Dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.81 (4); NMR (CDCl₃): 20.60, 20.79, 27.09, 36.93, 37.35, 41.85, 42.29, 48.25, 65.91, 122.36, 127.37, 127.99, 128.39, 129.38, 132.69, 136.00, 136.85, 143.80, 170.45, 176.60

d) Benzylic monoesters

5

10

20

30

35

40

50

55

[0114] A mixture consisting of Intermediate B (80 mg, 0.23 mmol), vinyl ester (0.4 ml), tert.-butyl methylether (18 ml), and lipase enzyme (1.0 g) was gently shaken at room temperature. Benzylic formate, acetate, and n-butyrate were prepared from the corresponding vinyl ester donors using SAM I lipase (Amano Pharmaceutical Co.). Benzoylation was achieved with vinyl benzoate in the presence of Lipozym IM 20 (Novo Nordisk), whereas pivalates and isobutyrates were obtained from the corresponding vinyl esters under catalysis of Novozym SP 435 (Novo Nordisk). TIc analysis indicated after 2 - 24 hrs complete disappearence of the starting material ($R_f = 0.45$ (3)). The mixture was filtered and then evaporated under high vacuum (< 40°C) to give the carboxylic acid ($R_f = 0.45$ (3)) salts of the respective benzylic monoesters as colourless to light yellow oils.

[0115] In particular, the following compounds were prepared and their analytical data are given below:

(±)-Formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4 hydroxybenzyl ester, tlc: R_f 0.25 (2); NMR (CDCl₃): 19.43, 33.24, 39.61, 42.25, 48.21, 68.44, 118.09, 127.34, 127.66, 128.31, 128.39, 133.97, 144.47, 156.63, 161.32

(±)-Acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.26 (2); NMR (CDCl₃): 19.45, 20.96, 33.26, 39.63, 42.27, 48.23, 63.59, 118.00, 127.36, 128.33, 128.48, 128.53, 129.13, 131.59, 133.88, 144.49, 155.74, 170.44

(±)-Propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_t 0.45 (2); NMR (CDCl₃):

19.02, 19.43, 27.58, 33.20, 39.61, 42.25, 48.21, 64.08, 118.30, 125.30, 127.03, 127.39, 128.31, 130.12, 134.22, 144.51, 155.64, 173.22

(±)-Butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.54 (2); NMR (CDCl₃): 13.58, 18.40, 19.45, 33.29, 35.88, 39.65, 42.23, 48.25, 63.96, 118.32, 124.55, 126.20, 127.35, 128.32, 129.91, 134.22, 144.50, 155.60, 169.05

(±)-Isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.56 (4); NMR (CDCl₃): 19.09, 19.45, 33.28, 33.59, 39.65, 42.29, 48.25, 64.63, 118.35, 125.35, 127.03, 127.38, 128.35, 128.49, 129.79, 134.22, 144.52, 155.65, 175.48

 (\pm) -2,2-Dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.61 (4); NMR (CDCl₃): 19.41, 27.15, 33.24, 37.46, 39.61, 42.25, 48.21, 65.10, 118.30, 125.32, 127.00, 127.34, 128.31, 129.42, 134.18, 144.47, 155.61, 178.39

(±)-Benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.77 (4); NMR (CDCl₃): 18.01, 19.40, 33.24, 39.60, 42.40, 48.20, 66.93, 117.13, 127.18, 127.81, 128.33, 129.98, 130.17, 132.96, 133.58, 142.33, 156.95, 166.60

20 e) Ethers and silyl ethers

[0116] A mixture of Intermediate B (3.4 g, 10 mmol), methanesulphonic acid (2 ml, 31 mmol), and alcohol R¹⁰-OH (50-150 ml) was stirred at room temperature until no starting material was detectable (2-24 hrs). After evaporation to dryness ($< 35^{\circ}$ C) the residue was redissolved in aqueous sodium hydrogen carbonate solution (100-200 ml, 5%, w/v) and the solution was extracted with ethyl acetate (75 ml). The organic phase was separated, dried (Na₂SO₄), filtered and evaporated to give bases of formula VI (R¹¹ = H) as colourless to light yellow oils.

[0117] Mixed ester ether derivatives, e.g. of Intermediate A, were prepared by benzylic acylation of phenolic ethers, such as Intermediate A, according to the procedure described for examples of the structure of formula IV.

30 Hydrochlorides:

5

10

15

40

45

[0118] Molar equivalents of bases of formula VI ($R^{11} = H$), dissolved in tert,-butyl methylether, and ethereal hydrochloric acid were combined at room temperature. Oily precipitates were separated and dried in vacuum, crystalline hydrochlorides were isolated and recrystallized from acetonitrile or acetone to give colourless crystalline material.

[0119] In particular, the following compounds were prepared and their analytical data are given below:

 (\pm) -2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethyl phenol, tlc: R_f 0.61 (4); GC-MS/P-CI (methane, trimethylsilyl derivative): 428.4 (100%), 412.3 (49%), 396.3 (52%); hydrochloride: amorphous hygroscopic colourless solid; m.p. 161°C; NMR (CD₃OD) : 17.39/18.75 (broad signals), 33.79, 43.13, 56.47, 58.00, 75.59, 116.19, 120.79, 127.62, 129.04, 129.14, 12.9.42, 129.55, 130.43, 144.32, 155.85

 (\pm) -2-(3-Diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenol, tlc: R_f 0.72 (4); GC-MS/P-CI (ammonia, trimethylsilyl derivative): 444.8 (100%), 398.4 (6%);

hydrochloride: colourless non-hygroscopic crystals, m.p. 158-161°C, NMR (CD₃OD): 15.43, 17.12, 18.82, 33.80, 56.49, 66.49, 73.62, 116.19, 127.63, 128.99, 129.13, 129.36, 129.55, 130.58, 130.75, 144.32, 155.77

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol, NMR (CDCl₃): 18.62, 19.44, 23.10, 33.24, 39.61, 42.26, 48.22, 71.87, 73.94, 117.78, 124.95, 127.35, 127.57, 128.32, 128.47, 133.66, 134.23, 144.48, 155.25

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-isopropoxymethylphenol, NMR (CDCl₃): 19.44, 22.32, 33.27, 39.65, 42.29, 48.25, 69.28, 72.10, 117.90, 127.38, 128.03, 128.41, 131.10, 133.76, 134.37, 144.51, 154.65.
 Hydrochloride: colourless crystals, m.p. 140.4°C, tlc (4) 0.61. LC-MS: 383 (6%, [M-HCl]+·), 368 (11%), 324 (1%), 223 (6%), 195 (3%), 165 (2%), 155 (5%), 114 (100%). NMR (DMSO-d₆): 16.57, 18.09, 18.19, 22.29, 31.58, 41.25, 45.87, 53.97, 69.26, 69.92, 115.28, 126.34, 127.08, 127.25, 127.96, 128.45, 129.07, 129.70, 132.31, 143.88, 154.22.

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol, NMR (CDCl₃): 13.75, 19.44, 19.75, 32.24, 33.28, 39.60, 42.20, 48.20, 72.45, 117.87, 125.50, 127.29, 128.39, 133.70, 134.30, 144.47, 155.36

(±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenyl ester, NMR (CDCl₃): 19.99, 20.62, 20.90, 33.33, 42.30, 48.21, 58.41, 75.94, 122.92, 127.37, 127.95, 128,35 131.85, 136.99, 138.81, 143.88, 147.88, 168.95

- (±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenyl ester, NMR (CDCl₃): 15.49, 19.94, 20.95, 33.23, 42.25, 48.25, 65.70, 73.73, 122.63, 127.46, 127.95, 128.36, 131.65, 136.79, 139.71, 143.80, 147.66, 168.99
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxymethylphenol, NMR (CDCl₃): 0.10, 19.40, 19.43, 33.25, 39.65, 42.25, 48.20, 64.93, 117.90, 124.90, 126.60, 127.35, 128.35, 128.48, 133.80, 137.15, 144.49, 155.28
 - (±)-Diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)-propyl]amine, NMR (CDCl₃): 0.10, 0.29, 19.40, 19.53, 33.28, 41.19, 42.27, 48.25, 66.40, 121.37, 127.36, 128.25, 128.50, 136.42, 144.10, 154.98
 - (±)-[3-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]methanol, NMR (CDCl₃): 0.29, 0.33, 19.40, 19.53, 33.27, 41.16, 42.27, 48.23, 65.22; 118.04, 124.99, 126.52, 127.30, 128.25, 134.16, 136.80, 144.14, 155.06
- 20 (±)-Diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR (CDCl₃): 0.28, 0.32, 19.39, 19.43, 33.28, 41.22, 42.33, 48.19, 58.40, 75.95, 117.68, 124.92, 126.60, 127.35, 128.25, 128.55, 134.00, 136.47, 144.16, 155.09-

15

40

- (±)-Diisopropyl-[3-(5-ethoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR (CDCl₃): 0.28, 0.31, 15.50, 19.42, 19.58, 33.29, 41.17, 42.25, 48.20, 65.70; 72.48, 117.50, 124.75, 126.39, 127.39, 128.25, 128.50, 134.99, 136.28, 144.19, 154.28
 - (±)-[4-(tert.-Butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]methanol, R_t 0.65 (3)
- 30 (±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, NMR (CDCl₃): -4.92, -5.00, 19.40, 19.49, 20.40, 20.83, 23.49, 33.25, 41.22, 42.25, 48.25, 72.55, 81.55, 121.24, 124.88, 127.40, 128.26, 128.44, 128.48, 133.37, 135.74, 144.11, 155.20
- (±)-4-(tert.-Butyl-dimethylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenol, tlc: R_f 0.70 (3); GC-MS/N-CI (methane, trimethylsilyl derivative): 526.5 (59%), 454.3 (100%), 412.2 (14%), 340.1 (42%); GC-MS/P-CI (methane, trimethylsilyl derivative): 528.6 (100%), 512.5 (85%), 470.43 (10%), 396.3 (31%)
 - (±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, NMR (CDCl₃): -4.77, -4.88, 19.15, 20.65, 20.93, 24.77, 33.25, 42.20, 48.20, 67.90, 122.79, 125.15, 127.44, 127.90, 128.41, 136.99, 140.55, 143.85, 147.86, 168.95
 - (±) {3-[2-(tert.-Butyl-dimethylsilanyloxy)-5-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-diiso-propylamine, tlc: R_f 0.94 (3); GC-MS/N-CI (methane): 568.6 (62%), 454.3 (100%), 438.2 (10%), 340.2 (58%), 324.8 (16%), 234.7 (78%); GC-MS/P-CI (methane): 570.6 (70%), 554.5 (52%), 512.5 (18%), 438.4 (24%)
 - (±)-Acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.56 (5); GC-MS/P-CI (ammonia): 474.4 (100%), 416.4 (54%); NMR (CDCl $_3$): 20.44, 20.56, 21.07, 36.73, 41.53, 44.01, 48.79, 66.43, 70.00, 111.61, 125.75, 127.34, 127.55, 127.76, 127.90, 128.03, 128.27, 128.39, 133.98, 136.98, 144.63, 156.05, 170.94
- (±)-Benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_I 0.87 (4); NMR (CDCl₃):
 20.54, 20.60, 36.80, 41.51, 43.95, 48.67, 66.83, 70.04, 111.66, 125.76, 127.35, 127.45, 127.78, 128.06, 128.27,
 128.30, 128.42, 128.85, 129.66, 130.55, 132.86, 134.05, 137.03, 144.75, 156.08, 166.46; GC-MS/P-Cl (ammonia):
 536.5 (100%), 416.4 (42%)
- (±)-Isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_I 0.77 (4); NMR (CDCl₃):
 19.01, 20.62, 20.65, 34.04, 36.85, 41.54, 43.97, 48.71, 66.15, 70.06, 111.62, 125.79, 125.96, 126.97, 127.24,
 127.55, 127.81, 128.08, 128.34, 128.45, 134.05, 137.10, 144.79, 156.00, 177.01; GC-MS/P-Cl (ammonia): 502.4 (100%), 416.4 (49%)

f) Carbamates and carbonates

Mono N-substituted carbamates

[0120] A solution of 4.0 mmol of Intermediate B, benzylic ether (formula VI, R¹¹ = H) or monoester of formula II in dichloromethane 20 ml) was treated at room temperature for 16 hrs with isocyanate (4.8 mmol) or disocyanate (2.2 mmol). After washing with 10 ml aqueous sodium hydrogen carbonate (5%, w/v), drying (Na₂SO₄) and evaporation oily residues or colourless solids of the free bases were obtained.

N-disubstituted carbamates

[0121] N,N-dialkyl-carbamoylchloride (4.4 mmol) was dissolved in dichloromethane and dropped into a cooled (0°C) and stirred mixture consisting of Intermediate B (4.0 mmol), dichloromethane (30 ml) and triethylamine (7.0 mmol, 0.71 mg, 1 ml). Stirring was continued for 6 hrs. The mixture was then washed with 5 portions (10 ml) of aqueous sodium hydrogen carbonate, dried (sodium sulphate), filtered and evaporated to give the carbamates as colourless oils or solids.

[0122] Bis-carbamates were prepared in like manner using Intermediate B and excess isocyanate (4.8 mmol) and toluene as solvent at 65°C over 18 hrs.

Carbonates were prepared and worked-up according to the methods described for the preparation of compounds of formulae II to IV. Alkyl chloroformates were used as acylation reagents.

Hydrochlorides:

30

35

40

[0123] The oils or solids were redissolved in tetrahydrofuran (10 ml). Addition of ethereal hydrochloric acid and evaporation to dryness in high vacuum gave crystalline or amorphous carbamate hydrochlorides.

[0124] In particular, the following compounds were prepared and their analytical data are given below:

(±)-N-Ethylcarbamic acid 2-(3-diisopropylamino-1-phenyl propyl)-4-hydroxymethylphenyl ester, tlc: R_1 0.38 (4); GC-MS/P-CI (ammonia, trimethylsilyl derivative) : 486.8 (100%), 413.4 (5%), 398.4 (6%); hydrochloride: m.p. 64°C (with decomposition); NMR (DMSO-d₆) : 15.16, 16.68, 18.05, 18.13, 25.33, 31.26, 35.46, 53.94, 62.65, 67.22, 123.04, 125.70, 126.72, 127.86, 128.67, 135.42, 136.02, 140.07, 142.98, 147.53, 154.52

(±)-N,N-Dimethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester NMR (CDCl₃): 20.34, 20.66, 30.51, 36.33, 36.77, 42.00, 48.28, 50.21, 65.65, 119.83, 123.44, 125.19, 126.60, 127.38, 127.54, 129.31, 136.62, 143.33, 150.99, 155.67.

(±)-N,N-Diethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester NMR (CDCl₃): 20.54, 20.66, 30.49, 35.61, 42.42, 48.31, 50.20, 65.56, 119.43, 123.40, 125.33, 126.66, 126.99, 127.05, 136.30, 143.27, 149.13, 154.97

 $\begin{array}{l} (\pm)\text{-N-Phenylcarbamic acid 2-} (3\text{-}diisopropylamino-1-phenylpropyl})\text{-}4\text{-}hydroxymethylphenyl ester;} \ \text{NMR} \ (CDCl_3): \\ 20.52, 20.61, 36.91, 39.44, 42.25, 48.22, 62.66, 118.36, 119.46, 123.50, 125.32, 127.11, 127.99, 130.15, 132.63, 139.65, 141.33, 145.16, 152.21, 156.00 \\ \end{array}$

(±)-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]acetic acid ethyl ester hydrochloride Tlc: R_f 0.14 (4); m.p. colourless crystals (from acetone, 21% yield); NMR (CDCl₃) : 16.76, 16.86, 18.45, 20.96, 31.37, 42.20, 46.13, 54.56, 65.50, 123.10, 126.98, 127.66, 128.72, 130.14, 134.05, 134.72, 135.22, 141.37, 148.47, 165.12, 170.71

(±)-N-Ethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester, tlc: R_I 0.36
 (3); NMR (CDCl₃): 15.00, 19.23, 19.40, 33.26, 36.00, 39.62, 42.35, 48.12, 65.95, 118.30, 125.45, 127.08, 128.33, 130.37, 134.24, 144.44, 155.44, 157.74

(±)-N,N-Dimethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl ester NMR (CDCl₃): 20.59, 20.66, 30.59, 35.96, 36.40, 36.74, 35.98, 42.03, 48.26, 50.09, 67.09, 119.04, 123.23, 123.49, 125.01, 126.67, 127.72, 129.33, 133.65, 143.43, 150.99, 155.63.

(±)-N,N-Diethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl) -4-N,N-diethylcarbamoyloxybenzyl ester

NMR (CDCl₃): 13.31, 13.64, 13.89, 20.33, 20.71, 31.57, 37.97, 41.55, 42.37, 48.46, 51.00, 67.23, 120.00, 123.39, 124.82, 126.31, 126.95, 127.33, 150.36, 157.18, 158.97.

- (±)-{4-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenoxycarbonylamino]-butyl]-carbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester (formula VII', X = Y = NH, n = 4) tlc: R_f 0.60 (6); dihydrochloride m.p. 142.5-145.6°C
 - (±)-Carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester, R_t 0.67 (4)
- (±)-Carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester, R_f 0.87 (4)
 - g) Intramolecular cyclic diesters via Ring Closing Metathesis (RCM)
- 15 [0125]

10

Example:

30

40

45

50

(±)-Pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester (x = y = 2)

[0126] A cooled (4°C) mixture of pent-4-enoic acid, isobutyl chloroformate, and triethylamine (each 5.84 mmol) in 10 ml of dichloromethane was stirred 5 hrs under an atmosphere of dry nitrogen gas. The cooling bath was then removed and both triethylamine (1.46 mmol) and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (1.46 mmol) were added in one portion. After 18 hrs the mixture was diluted with dichloromethane (30 ml), washed several times with water and finally aqueous 5% sodium hydrogen carbonate solution. After drying (sodium sulphate), filtration and evaporation the oily residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/ heptane/triethylamine (65/30/5, vol.-%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions gave (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxy methyl)-phenyl ester as a pale yellow syrupy oil (50% yield), tlc: (4) 0.75. NMR (CDCl₃): 18.95, 20.77, 27.75, 23.87, 33.58, 36.83, 42.13, 43.72, 48.71, 65.85, 70.55, 115.47, 115.99, 122.45, 126.26, 127.08, 127.96, 128.11, 128.83, 133.73, 136.38, 136.79, 137.04, 143.77, 148.46, 171.11, 172.78.

Intramolecular cyclic diesters of 1,ω-dioic acids and Intermediate B

Example

Intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3 -diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol

[0127] Grubbs catalyst (benzylidene-bis-(tricyclohexylphosphine)-dichlororuthenium, 16 mg, 0.002 mmol, 2 mol-%) was added to a solution of (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester (483 mg, 0.96 mmol) in dichloromethane (150 ml) and the mixture was refluxed for 96 hrs. under an atmosphere of nitrogen gas, after which all of the starting material was consumed as indicated by tlc. The mixture was filtered through a short pad of basic alumina, and the solvent was removed in vacuum. Flash chromatography (solvent system (4)) afforded the intermediate intramolecular cyclic diester of oct-4-ene-1,8-dioic acid and 2-(3-diisopropylami-

no)-1-(phenylpropyl)-4-hydroxymethyl-phenol (324 mg) as a colourless syrup (tlc: (4) R_f 0.68) in 71% yield, mixture of two geometrical isomers.

NMR (CDCl₃, major isomer): 19.24, 20.61, 23.11, 25.62, 30.55, 33.53, 35.02, 42.41, 48.29, 50.20, 65.30, 114.46, 124.33, 125.58, 127.15, 128.70, 129.29, 131.10, 132.46, 139.54, 146.76, 147.98, 173.76, 174.39.

[0128] A portion of this material (140 mg) was dissolved in ethyl acetate (10 ml) and hydrogenated at room temperature in the presence of palladium-on carbon catalyst to afford the intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenol in essentially quantitative yield, 139 mg, colourless oil, tlc: (4) 0.71.

NMR (CDCl₃): 19.36, 20.73, 24.84, 25.28, 28.90, 29.70, 30.57, 33.72, 34.37, 42.39, 48.26, 50.20, 65.26, 114.45, 124.37, 127.11, 128.67, 129.29, 131.18, 132.45, 139.52, 146.77, 147.69, 173.90, 174.15.

Poly-co-DL-Lactides of Intermediate B

[0129] All reagents were dried over P_2O_5 in vacuum (< 1 mbar) and at room temperature. The reactions were carried out at room temperature in an atmosphere of dry, oxygen-free nitrogen.

Low Molecular Weight Copolymer

15

30

[0130] A 15% solution of n-butyllithium (0.36 ml) was injected through a rubber septum into a stirred solution of 2-(3-diisopropylamino-phenylpropyl)-4-hydroxymethyl-phenol (100 mg, Intermediate B) and DL-dilactide (1.5 g) in 1.5 ml of dry toluene. The polymerization was allowed to proceed for 4 days at room temperature. Distilled water (10 ml) was then added in order to terminate the polymerization. The organic phase was separated and slowly dropped into 200 ml of methanol. The precipitated colourless oil was treated with water (100 ml) and then dried in high vacuum for 48 hrs.

The copolymer was obtained in 72.7% yield. NMR analysis (see below) indicated an average molecular weight range of M_n 2000-4000 and a weight content of Intermediate 3 of about 8.4% (NMR). TIc analysis showed the absence of monomeric Intermediate B. Gel permeation chromatography (GPC) analysis showed a Mw of 1108 and a Mn of 702.

High Molecular Weight Copolymer

[0131] The high molecular weight copolymer was prepared as described above with the exception that 3.0 g of DL-dilactide was used. Precipitation by methanol gave a fluffy white solid which was carefully washed with water and then dried as desribed to give the copolymer in 81% yield. NMR analysis (see below) indicated an average molecular weight range of M_n 4000-8000 and a weight content of Intermediate B of about 2.0%. TIc analysis showed the absence of monomeric Intermediate B. Gel permeation chromatography (GPC) showed a Mw of 9347 and a Mn of 6981. Differential scanning calorimetry (DSC) provided a Tg of 42.5°C.

NMR Analysis

40 [0132] The ¹H NMR resonance signals of the poly-lactyl chain were clearly separated from the copolymeric part of Intermediate B (solvent CDCl₃):

 $\mathrm{CH_3}$ resonances of the poly-lactyl chain: 1.30-1.60 ppm

CH resonances of the poly-lactyl chain: 5.10-5.30 ppm

45 CH resonances of the connecting lactyl units with the two hydroxy groups of Intermediate B: 4.8-5.0 ppm and 5.5-5.7 ppm.

Polymer bound Intermediate B: 1.06-1.11 (CH₃), 2.20-2.30

(CH₂CH₂), 2.40-2.80 (NCH₂), 3.30-3.50 (NCH), 4.45-4.55

(CHCH₂), 4.70-4.80 (CH₂-OCO-lactyl), 6.70-7.30 (aryl CH).

55

h) Inorganic ester

Example:

(±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-sulphooxymethyl-phenyl ester

Hydrochloride

[0133] To a stirred solution of chlorosulphonic acid (116 mg, 1.0 mmol) in 5 ml of dry diethyl ether was slowly added at 0°C a solution of (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester (445.6 mg, 1.0 mmol) in 3 ml of dry diethyl ether. The gel formed immediately during the addition was stirred at room temperature until it became a crystalline consistency (ca. 1 hr). The precipitate was washed several times with diethyl ether and then dried in vacuum to give 0.52 g (46% yield) colourless crystals, m.p. 63-65°C. NMR (CDCl₃): 16.85, 17.03, 18.32, 18.49, 32.01, 42.29, 46.23, 55.23, 55.50, 69.24, 122.52, 126.94, 127.15, 129.04, 129.76, 130.25, 133.89, 134.93, 136.85, 141.87, 147.80, 165.19.

i) Benzylic 1-O-β-D-glucuronide of 2-(3-diisopropylamino-1-phenylpropyl) -4-hydroxymethylphenol

((±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol)

[0134]

20

25

30

35

[0135] A solution of methyl 2,3,4-triacetyl-1- α -D-glucuronosylbromide (2.07 g, 4.64 mmol) in 24 ml of dry toluene was cooled to -25°C under an atmosphere of nitrogen and then treated with a solution of (\pm)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester in 7 ml of toluene. To this mixture was added dropwise with stirring and under protection from light a solution of silver triflate in 14 ml of toluene (immediate formation of a white precipitate). The cooling bath was removed after 15 min and pyridine (0.38 ml) was added. The mixture was diluted with ethyl acetate (200 ml), filtered and the clear yellow filtrate was washed sequentially with aqueous solutions of sodium thiosulphate (5%), sodium hydrogen carbonate (5%), and sodium chloride (20%). The solution was dried with solid sodium sulphate, treated with charcoal, filtered and evaporated to dryness. The waxy residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/heptane/triethylamine (65/30/5, vol.-%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions gave (\pm)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(2,3,4-triacetyl-1 β -D-glucuronosyloxymethyl)-phenyl ester, colourless syrup, tlc (4) 0.70 (starting amine: 0.31, bromo glycoside: 0.23), yield 14%.

NMR (CDCl₃, mixture of diastereomers): 20.41, 20.50, 20.60, 20.65, 20.84, 36.49, 42.44, 43.65, 48.73, 52.91, 69.46, 70.43, 71.12, 72.11, 72.60, 73.99, 99.19, 122.91, 126.23, 126.38, 126.54, 127.60, 127.92, 128.06, 128.09, 128.31, 128.59, 129.38, 130.22, 133.67, 134.31, 137.41, 143.52, 148.46, 164.82, 167.26, 169.21, 169.39, 170.07.

[0136] A portion (350 mg) of the above described material was dissolved and hydrolyzed in a solvent mixture consisting of tetrahydrofuran/methanol/aqueous potassium hydroxide (excess, 12 hrs, 22°C). The mixture was evaporated, re-dissolved in 5 ml of water and the pH was adjusted to 8.3. This solution was applied to a chromatography column charged with prewashed XAD 2 resin (50 g). The column was washed with water (ca. 250 ml) and then eluted with methanol. Collection of the appropriate methanol fractions, and evaporation of the combined fractions in vacuum gave 111 mg of

 $\begin{array}{l} (\pm)\text{-}2\text{-}(3\text{-}diisopropylamino-1-phenylpropyl)-4-}(1\beta\text{-}D\text{-}glucuronosyloxymethyl)-phenol, sodium salt,} \\ \text{amorphous colourless solid, m.p.} \equiv 110\text{-}124^{\circ}\text{C (dec.), tlc (4) 0.12. NMR (CD_{3}\text{OD, major isomer}): 19.43, 19.67, 33.26, 39.63, 42.27, 48.23, 69.76, 73.55, 74.70, 75.95, 78.03, 107.64, 117.95, 125.51, 127.36, 128.33, 133.83, 134.77, 144.49, 155.36, 176.76. \\ \end{array}$

II. Incubations of different compounds of the invention with human liver S 9-fraction

a) Incubation of unlabelled substrates

[0137] A pooled human liver S 9-preparation was used to show the in-vitro metabolism of different compounds of the invention and to prove the generation of the active metabolite by enzymatic process.

[0138] The pooled human liver S 9-preparation was delivered by Gentest, Woburn, MA, USA.

[0139] In a routine assay, $25 \,\mu\text{L}$ of pooled human liver S9 (20 mg protein/mL, H961, Gentest, Woburn, MA, USA) was incubated for 2 hrs at 37°C with 40 μ M substrate in a 0.01 M potassium phosphate buffer in the presence of NADPH (1 mM). The reaction was quenched by the addition of concentrated perchloric acid and precipitating protein was removed by centrifugation. The supernatant was adjusted to pH 3 with concentrated potassium phosphate solution, centrifuged, and injected into the HPLC for analysis of the respective products.

[0140] The analysis of the non-deuterated compounds was performed by a routine High Pressure Liquid Chromatography (HPLC) method with UV-detection.

[0141]. The incubation results expressed in (%) of theoretical turnover are presented in Fig. 1.

[0142] They ranged from 96 to 63.2%. The formation of the active metabolite is dependent on the substituents both at the benzylic and phenolic side of the respective compounds.

Explanation:

30

35

50

[0143] The prodrugs introduced in the assay show the following chemical structure:

chemical structure X-/-Y			
AcO-/-OAc	means	acetate	
HO-/-OBut	means	hydroxy and n-butyrate	
HO-/-OiBut	means	hydroxy and iso-butyrate	
iButO-/-OiBut	means	iso-butyrate	
ButO-/-OBut	means	<u>n</u> -butyrate	
PropO-/-OProp	means	proprionate	
HO-/-OProp	means	hydroxy and proprionate	
HO-/-OAc	means	hydroxy and acetate	
BzO-/-OBz	means	benzoate and benzoate	
ACO-/-OiBut	means	acetate and isobutyrate	
AcO-/-OBz	means	acetate and benzoate	

b) Incubation of labelled substrates

[0144] The metabolic degradation of the unlabelled hydroxy metabolite (i.e. Intermediate B) and the deuteriated hydroxy-metabolite (Intermediate d₂B) were compared in vitro. Used were the respective enantiomers and the racemates.

[0145] The hydroxy metabolite and the deuteriated hydroxy-metabolite expressed significant differences in the rate

to produce the corresponding carboxylic acid.

[0146] The measurement was performed with an incubation time of 3 hrs at 37.0° C in a concentration of 40 μ M. The formation of the carboxylic acid from the deuteriated hydroxy-metabolite showed a significantly decreased velocity of 10%.

[0147] These in-vitro experiments indicate a reduced metabolic turnover of the deuteriated compound in vitro, which may result in higher plasma levels.

c) Receptor binding study

20

25

30

45

50

55

[0148] WO 94/11337 discloses that the active metabolite has high affinity to muscarinic receptors in the guinea-pig bladder. Different compounds of the present invention were tested in a well established standardized assay, measuring the binding of [3H]-methylscopolamine to recombinant human M3 receptors. BSR-M3H cells transfected with a plasmid encoding the human muscarinic M3 receptor were used to prepare membranes in modified Tris-HCl pH 7.4 buffer using standard techniques. An aliquot of the membrane preparation was incubated with [3H]-methylscopolamine in the presence or absence of different concentrations of several compounds of the invention for 60 minutes at 25°C. Nonspecific binding was estimated in the presence of 1 µM atropine. Membranes were filtered and washed three times and the filters were counted to determine the amount of [3H]-methylscopolamine specifically bound. The following table shows the IC₅₀ values of several compounds of the invention in the M3 receptor binding assay.

Interaction with human M3 receptors in vitro		
Prodrug	IC ₅₀ [nM]	
(+)HO-/-OH	8.7	
(-)HO-/-OH	1300	
(+)HO-/-OiBut	159	
(+)HO-/-OBz	172	
BzO-/-OBz	2400	
AcO-/-OiBut	3600	
AcO-/-OBz	5400	

[0149] These data clearly showed that derivatization at the phenolic hydroxyl moiety results in an about 20 times less potent binding. If both functionalities are derivatized, the binding is even more dramatically reduced. Furthermore, it is demonstrated that the enantiomers of the active metabolite exhibit a marked difference in the binding characteristics to human M3 receptors.

[0150] The compounds were tested for their anticholinergic activity in a standard tissue assay, the guinea-pig ileum. A segment of ileum was obtained from Duncan Hartley guinea-pigs which were sacrified by cervical dislocation. The tissue was placed under 1 g tension in a 10 ml bath containing Krebs' solution (pH 7.4, 32°C) and the concentration-dependent ability of different compounds to reduce the methacholine-induced (0.6 μ M) concractile response was recorded. The IC₅₀ values for the different substances were calculated and examples are presented in the following table.

Anticholinergic activity in guinea-pig ileum in vitro		
Prodrug	IC ₅₀ [nM]	
(+) HO-/-OH	20	
(-) HO-/-OH	680	
(+) HO-/-OiBut	57	
(+) HO-/-OBz	180	
(+) BzO-/-OBz	220	
(+) AcO-/-OiBut	240	

[0151] These data confirm the results obtained in the receptor binding assays and demonstrate that the anticholinergic activity of the compounds decreases with increased derivatization.

d) Biological membranes

[0152] Different compounds of the invention were tested for their ability to penetrate the human skin (200 µm thick) in the "Flow through cell" at 32°C according to Tiemessen et al. (Acta Pharm. Technol. 1998; 34:99-101). Phosphate buffer (pH 6.2) was used as the acceptor medium. Samples were drawn at different time points and analysed by RP-HPLC with UV detection (220 nm). Permeation profiles were plotted and mean flux rates of different substances were calculated by linear regression analysis. The data obtained for different compounds of the invention are summarized in the following table.

Penetration through human skin		
Prodrug	Flux rate [µg/cm²/24hrs]	
но-/-он	3	
HO-/-OiBut	150	
iButO-/-OiBut	60	
PropO-/-OProp	70	

[0153] Disubsticution of the hydroxy group of HO-/-OH leads to a ≥ 20-fold increase in skin permeation in relation to the parent HO-/-OH. Suprisingly monosubstitution of the penolic hydroxy group resulted in even higher 50-fold penetration rate through human skin.

[0154] Taken together, these biological data clearly demonstrate that the compounds of the invention have a reduced affinity to bind to human muscarinic M3 receptors. They exhibit an increased penetration through biological membranes, e.g. the human skin, and they are rapidly transformed to the active metabolite, once they have entered the systemic circulation as shown by the in vitro metabolism by the human liver S9 preparation.

[0155] Thus, the antimuscarinic prodrugs according to this invention showed a profile that defines excellent prodrugs.

Claims

10

15

20

30

35

55

1. 3,3-Diphenylpropylamines of the general formulae I and VII':

wherein R and R' are independently selected from

Formula VII

- a) hydrogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, substituted or unsubstituted benzyl, allyl or carbohydrate; or
- b) formyl, C₁-C₆ alkylcarbonyl, cycloalkylcarbonyl, substituted or unsubstituted arylcarbonyl, preferably benzoyl; or
- c) C_1 - C_6 alkoxycarbonyl, substituted or unsubstituted aryloxycarbonyl, benzoylacyl, benzoylglycyl, a substituted or unsubstituted amino acid residue; or

d)

5

10

15

20

25

30

35

40

45

55

R⁴ N-CO

wherein R⁴ and R⁵ independently represent hydrogen, C₁-C₆ alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 4 carbon atoms and wherein R⁴ and R⁵ may form a ring together with the amine nitrogen, or

e)

- wherein R⁶ and R⁷ independently represent C₁-C₆ alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 6 carbon atoms; or
- f) an ester moiety of inorganic acids,
- g) -SiR_aR_bR_c, wherein R_a, R_b, R_c are independently selected from C_1 - C_4 alkyl or aryl, preferably phenyl,

with the proviso that R' is not hydrogen, methyl or benzyl if R is hydrogen, R is not ethyl if R' is hydrogen, X represents a tertiary amino group of formula la

Formula la

- wherein R⁸ and R⁹ represent non-aromatic hydrocarbyl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R⁹ may form a ring together with the amine nitrogen
 - Y and Z independently represent a single bond between the (CH₂)_n group and the carbonyl group, O, S or NH, A represents hydrogen (¹H) or deuterium (²H),
 - n is 0 to 12

and

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

2. 3,3-Diphenylpropylamines as claimed in claim 1, wherein X is

5

40

45

50

55

 3. 3,3-Diphenylpropylamines as claimed in claim 2 selected from phenolic monoesters represented by the general formulae II and II'

wherein R1 represents hydrogen, C1-C6 alkyl or phenyl.

4. 3,3-Diphenylpropylamines as claimed in claim 3 selected from :

- (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester.
- (±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-acetamidoacetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclopentanecarboxylic acid 2-(3-diisopronylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-acetoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- $(\pm) \hbox{-1-naphthoic acid 2-} (3 \hbox{-diisopropylamino-1-phenylpropyl}) \hbox{-4-hydroxymethylphenyl ester},$
- (±)-2-naphthoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- $(\pm) \hbox{-} 4- \hbox{chlorobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,}$
- (±)-4-methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, (±)-2-methoxybenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-nitrobenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

- (±)-malonic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-succinic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl] ester,
- (±)-pentanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-hexanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester.
- 5. 3,3-Diphenylpropylamines as claimed in claim 2 selected from identical diesters represented by the general formula

Formula III

- wherein R1 is defined as in claim 3.
 - 6. 3,3-Diphenylpropylamines as claimed in claim 5 selected from:
 - (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
 - (±)-acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
 - (±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester.
 - (±)-n-butyric acid 4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - (±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester,
 - (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethyl-propionyloxy)-benzyl ester.
 - (±)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - R-(+)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

poly-co-DL-lactides of Intermediate B, said Intermediate B having the formula

HO A A

wherein A is as defined in claim 1.

7. 3,3-Diphenylpropylamines as claimed in claim 2 selected from mixed diesters represented by the general formula IV

55

50

5

10

15

25

30

35

40

Formula IV

wherein R¹ is defined as in claim 3

10

15

20

25

35

40

45

50

55

R² represents hydrogen, C₁-C₆ alkyl or phenyl with the proviso that R¹ and R² are not identical.

- 8. 3,3-Diphenylpropylamines as claimed in claim 7 selected from:
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
 - (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
 - (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester,
 - R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester.
 - (±)-isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester.
 - R-(+)-isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - (±)-2,2-dimethylpropionic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
 - (±)-2,2-dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - (±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester.
- 3.3-Diphenylpropylamines as claimed in claim 2 selected from benzylic monoesters represented by the general formula V

Formula V

wherein R1 is defined as in claim 3.

- 10. 3,3-Diphenylpropylamines as claimed in claim 9 selected from:
 - (±)-formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
 - (±)-benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester.
- 11. 3,3-Diphenylpropylamines as claimed in claim 2 selected from ethers and silyl ethers represented by the general formula VI

wherein at least one of R^{10} and R^{11} is selected from C_1 - C_6 alkyl, benzyl or -SiR_aR_bR_c as defined in claim 1 and the other one of R^{10} and R^{11} may additionally represent hydrogen, C_1 - C_6 alkylcarbonyl or benzoyl.

Formula VI

12. 3,3-Diphenylpropylamines as claimed in claim 11 selected from:

10

15

20

25

30

35

40

45

50

- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-methoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-isopropoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-methoxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenyl ester.
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxymethylphenol.
- (±)-diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)-propyl]-amine,
- (±) [3-(3-diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]-methanol,
- (±)-diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropylamine,
- (±)-diisopropyl-[3-(5-ethoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropylamine.
- (±)-[4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol,
- (±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenol,
- (±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-{3-[2-(tert.-butyl-dimethylsilanyloxy)-5-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-disopropylamine,
- (±)-[4-(tert.-butyl-diphenylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol,
- $(\pm)\mbox{-acetic acid 4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,}$
- (±)-4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenol,
- (\pm) -{3-[2-(tert.-butyl-diphenylsilanyloxy)-5-(tert.-butyl-diphenylsilanyloxymethyl)-phenyl]-2-phenylpropyl}-disopropylamine,
- (±)-acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester.
- $(\pm) 2 (3 diisopropylamino 1 phenylpropyl) 4 (1\beta D glucuronosyloxymethyl) phenol.$
- 13. 3,3-Diphenylpropylamines as claimed in claim 2 selected from carbonates and carbamates represented by the general formulae VII and VIII

wherein Y, Z and n are as defined in claim 1 and wherein R12 and R13 represent a C1-C6 alkoxycarbonyl group or

R⁴

wherein R4 and R5 are as defined in claim 1.

5

10

15

20

25

30

35

40

45

- 14. 3,3-Diphenylpropylamines as claimed in claim 13 selected from:
 - (±)-N-ethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
 - $(\pm)\text{-N.N-dimethylcarbamic acid 2-} (3\text{-diisopropylamino-1-phenylpropyl})\text{-}4\text{-hydroxymethylphenyl ester}$
 - (±)-N,N-diethylcarbamic acid 2- (3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester
 - (±)-N-phenylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
 - (±) [2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]acetic acid ethyl ester hydrochloride,
 - (±)-N-ethylcarbamic acid 3- (3-diisopropylamino-1-phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester,
 - (±)-N,N-dimethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl ester,
 - (±)-N,N-diethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-diethylcarbamoyloxybenzyl ester,
 - (±)-N-phenylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N-phenylcarbamoyloxybenzyl ester,
 - $\label{lem:condition} \begin{tabular}{ll} $(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]-butyl}-carbamic acid $2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-diisopropylamino-1-phenylpropyl]-4-hydroxymethylphenyl ester, $$(\pm)-\{4-[2-(3-(3-diisopropylamino-1-phenylpropyl]-4-hydro$
 - (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester,
 - (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester phenyl ester,
 - (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl) -4-ethoxycarbonyloxymethylphenyl ester ethyl ester,
 - $(\pm)\text{-carbonic acid }2\text{-}(3\text{-diisopropylamino-1-phenylpropyl})\text{-}4\text{-phenoxycarbonyloxymethylphenyl ester phenyl ester.}$
- 15. 3,3-Diphenylpropylamines selected from
 - (i) compounds of the formulae IX and IX'

5

10

15

20

25

30

35

40

45

50

55

Formula IX

Formula IX¹

wherein x and y are the same or different and represent the number of methylene units (CH₂) and may range from 0 to 6,

- (ii) (±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-sulphooxymethyl-phenyl ester
- (iii) Poly-co-DL-lactides of 2-(3-diisopropylamino-phenylpropyl)-4-hydroxymethyl-phenol
- (iv) (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol having the formula

HO OH

- (v) (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester,
- (vi) cyclic oct-4-ene-1,8-dioate of Intermediate B,
- (vii) cyclic octane-1,8-dioate of Intermediate B,

said Intermediate B having the formula

wherein A is as defined in claim 1

and

10

15

25

30

35

45

50

55

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

5 16. A process for the production of phenolic monoesters represented by the general formula II

Formula II

as defined in claim 3, which comprises treatment of a compound of the formula

with an equivalent of an acylating agent selected from

wherein LG represents a leaving group selected from halogenide, carboxylate and imidazolide and R¹ is as defined in claim 3, in an inert solvent in the presence of a condensating agent.

17. A process for the production of phenolic monoesters represented by the general formula II'

as defined in claim 3, which comprises treatment of two equivalents of a compound of the formula

with an acylating agent selected from

20

25

30

40

45

50

55

wherein Hal represents a halogen atom.

18. A process for the production of identical diesters represented by the general formula III

as defined in claim 5, which comprises treatment of a compound of the formula

HO A A

with at least two equivalents of the acylating agent as defined in claim 16.

5

10

15

20

25

30

35

40

45

50

55

19. A process for the preparation of benzylic monoesters represented by the general formula V

R' A A

Formula V

as defined in claim 9, which comprises treatment of a compound of the formula

at room temperature and under anhydrous conditions with activated esters in the presence of enzymes selected from lipases or esterases.

 $\textbf{20.} \ \ \textbf{A} \ \textbf{process} \ \textbf{for the preparation of mixed diesters represented by the general formula IV}$

as defined in claim 7, which comprises acylation of a benzylic monoester represented by the general formula V

Formula V

10

5

as defined in claim 9 or of a phenolic monoester represented by the formula II as defined in claim 3.

21. A process for the production of ethers represented by the general formula VI

15

Formda VI

25

20

as defined in claim 11 wherein R¹¹ is hydrogen which comprises reacting a compound of the formula

30

35

with an alcohol R¹⁰-OH in the presence of an esterification catalyst.

40 22. A process for the preparation of ethers represented by the general formula VI

50

45

wherein R^{10} and R^{31} are as defined in claim 11, which comprises acid or base treatment of free benzylic alcohols selected from

5 HO AA A OH Y

20 and

or

15

Formula ()

40 R¹⁰

wherein ${\sf R}^{\sf 10}$ is hydrogen and ${\sf R}^{\sf 11}$ is as defined in claim 11 or

55

50

Formula VI

Formula VII

wherein ${\rm R^{12}}$ is hydrogen and ${\rm R^{13}}$ represents a ${\rm C_1\text{--}C_6}$ alkoxycarbonyl group or

wherein R4 and R5 are as defined in claim 1 or of benzylic acylates selected from

wherein ${\sf R}^1$ and ${\sf R}^2$ are as defined in claim 7 in the presence of suitable hydroxy reagents.

23. A process for the preparation of ethers of formula VI as defined in claim 11, which comprises treating a compound of the formula

5

10

55

with an alkylating agent selected from alkyl halogenides, alkyl sulphates and alkyl triflates, said alkyl group having 1 to 6 carbon atoms.

24. A process for the preparation of carbonates and carbamates represented by the general formulae VII and VIII

as defined in claim 13, which comprises reacting a compound selected from the group consisting of

10

15

20

Formula V

Formula II

wherein R¹ is defined as in claim 3, n is 0 to 12, Bn is benzyl, one of R¹⁰ or R¹¹ is hydrogen and the other one is as defined in claim 11 with activated carbonyl compounds or carbonyl precursor reagents selected from haloformates, ketenes, activated esters, mixed anhydrides of organic or inorganic acids, isocyanates and isothiocyanates.

Formule V

- 25. 3,3-Diphenylpropylamines as claimed in claims 1 to 15 for use as pharmaceutically active substances, especiallyas antimuscarinic agents.
 - **26.** A pharmaceutical composition comprising a 3,3-diphenylpropylamine as claimed in claim 1 to 15 and a compatible pharmaceutical carrier.
- 40 27. A pharmaceutical composition as claimed in claim 26 which is a patch formulation.
 - 28. Use of a 3,3-diphenylpropylamine as claimed in claims 1 to 15 for preparing an antimuscarinic drug.

45 Patentansprüche

1. 3,3-Diphenylpropylamine der allgemeinen Formeln I und VII'

50

Formel I

Formel VII'

worin R und R' unabhängig ausgewählt sind aus

- a) Wasserstoff, C₁-C₆-Alkyl, C₃-C₁₀-Cycloalkyl, substituiertem oder unsubstituiertem Benzyl, Allyl oder Kohlenhydrat; oder
- b) Formyl, C_1 - C_6 -Alkylcarbonyl, Cycloalkylcarbonyl, substituiertem oder unsubstituiertem Arylcarbonyl, bevorzugt Benzoyl; oder
- c) C_1 - C_6 -Alkoxycarbonyl, substituiertem oder unsubstituiertem Aryloxycarbonyl, Benzoylacyl, Benzoylglycyl, substituierten oder unsubstituierten Aminosäureresten; oder

d)

worin R^4 und R^5 unabhängig Wasserstoff, C_1 - C_6 -Alkyl, substituiertes oder unsubstituiertes Aryl, bevorzugt substituiertes oder unsubstituiertes Phenyl, Benzyl oder Phenoxyalkyl, worin der Alkylrest 1 bis 4 Kohlenstoffatome enthält, bedeuten und worin R^4 und R^5 zusammen mit dem Aminstickstoff einen Ring bilden können; oder

e)

55

25

30

35

40

45

worin R⁶ und R⁷ unabhängig C₁-C₆-Alkyl, substituiertes oder unsubstituiertes Aryl, bevorzugt substituiertes oder unsubstituiertes Phenyl, Benzyl oder Phenoxyalkyl, worin der Alkylrest 1 bis 6 Kohlenstoffatome enthält, bedeuten; oder

- f) einer Estergruppierung von anorganischen Säuren,
- g) $-SiR_aR_bR_c$, worin R_a , R_b , R_c unabhängig ausgewählt sind aus C_1-C_4 -Alkyl oder Aryl, bevorzugt Phenyl,

mit der Maßgabe, dass R' nicht Wasserstoff, Methyl oder Benzyl bedeutet, wenn R Wasserstoff bedeutet, R nicht Ethyl bedeutet, wenn R' Wasserstoff bedeutet, X eine tertiäre Aminogruppe der Formel la

worin R⁸ und R⁹ nicht-aromatische Hydrocarbylgruppen, die gleich oder unterschiedlich sein können, bedeuten und die zusammen mindestens drei Kohlenstoffatome enthalten und worin R⁸ und R⁹ zusammen mit dem Aminstickstoff einen Ring bilden können, bedeutet,

Y und Z unabhängig eine Einfachbindung zwischen der (CH₂)_n-Gruppe und der Carbonylgruppe, O, S oder NH bedeuten.

A Wasserstoff (1H) oder Deuterium (2H) bedeutet,

n 0 bis 12 bedeutet

und

5

10

15

20

25

30

35

40

45

ihre Salze mit physiologisch annehmbaren Säuren, ihre freien Basen und wenn die Verbindungen in Form optischer Isomeren vorliegen, die racemischen Gemische und die individuellen Enantiomeren.

2. 3,3-Diphenylpropylamine nach Anspruch 1, worin X

bedeutet.

3. 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus Phenolmonoestern, dargestellt durch die allgemeinen Formeln II und II'

Formel II'

Formel II

worin R1 Wasserstoff, C1-C6-Alkyl oder Phenyl bedeutet.

4. 3,3-Diphenylpropylamine wie in Anspruch 3 beansprucht, ausgewählt aus:

25 (±)-Ameisensäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-Essigsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-Propionsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-n-Buttersäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, $(\pm) - Isobutters\"{a}ure - 2 - (3 - diisopropylamino - 1 - phenylpropyl) - 4 - hydroxymethylphenylester,$ 30 R-(+)-Isobuttersäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-2,2-Dimethylpropionsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-2-Acetamidoessigsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-Cyclopentancarbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-Cyclohexancarbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, 35 (±)-Benzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, R-(+)-Benzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-4-Methylbenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester. (±)-2-Methylbenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester. (±)-2-Acetoxybenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, 40 (±)-1-Naphthoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester. (±)-2-Naphthoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-4-Chlorbenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-4-Methoxybenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-2-Methoxybenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, 45 (±)-4-Nitrobenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-2-Nitrobenzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester, (±)-Malonsäure-bis- [2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, (±)-Bernsteinsäure-bis- [2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, (±)-Pentandionsäure-bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester, 50 (±)-Hexandionsäure-bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester.

 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus identischen Diestern, dargestellt durch die allgemeine Formel III

55

10

15

Formel III

worin R1 die in Anspruch 3 gegebene Definition besitzt.

10

15

20

25

30

35

40

45

50

- 6. 3,3-Diphenylpropylamine nach Anspruch 5, ausgewählt aus:
 - (±)-Ameisensäure-2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenylester,
 - (±)-Essigsäure-4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester,
 - (±)-Propionsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenylester,
 - (±)-n-Buttersäure-4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)phenylester,
 - (±)-Isobuttersäure-2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenylester,
 - (±)-2,2-Dimethylpropionsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethylpropionyloxy)benzylester
 - (±)-Benzoesäure-4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)phenylester,
 - R-(+)-Henzoesäure-4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)phenylester,

Poly-co-DL-Lactiden des Zwischenprodukts B, wobei das Zwischenprodukt B die Formel

besitzt, worin A die in Anspruch 1 gegebene Definition besitzt.

7. 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus gemischten Diestern, dargestellt durch die allgemeine Formel IV

Formel IV

 worin R¹ die in Anspruch 3 gegebene Definition besitzt und
 R² Wasserstoff, C₁-C₆-Alkyl oder Phenyl bedeutet, mit der Maßgabe, dass R¹ und R² nicht identisch sind. 8. 3,3-Diphenylpropylamine nach Anspruch 7, ausgewählt aus:

5

10

15

20

25

35

45

50

55

- (±)-Essigsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenylester,
- (±)-Benzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenylester,
- (±)-Benzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenylester,
- R-(+)-Benzoesäure-2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenylester,
- $(\pm) Isobutters\"{a}ure 4 acetoxymethyl 2 (3 diisopropylamino 1 phenylpropyl) phenylester,$
- R-(+)-Isobuttersäure-4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)phenylester.
- (±)-2,2-Dimethylpropionsäure-4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester,
- (±)-2,2-dimethylpropionsäure-4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)phenylester,
- (±)-Benzoesäure-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester.
- 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus Benzylsäuremonoestern, dargestellt durch die allgemeine Formel V

R' TO A A

Formel V

worin R¹ die in Anspruch 3 gegebene Definition besitzt.

- 10. 3,3-Diphenylpropylamine nach Anspruch 9, ausgewählt aus:
 - (±)-Ameisensäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-Essigsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-Propionsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-Buttersäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-Isobuttersäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-2,2-Dimethylpropionsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzylester,
 - (±)-Benzoesäure-3-(3-diisopropylamino-1-phenylpropyl)-4-hyroxybenzylester.
- 11. 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus Ethern und Silylethern, dargestellt durch die allgemeine Formel VI

Formel VI

worin mindestens einer von R^{10} und R^{11} ausgewählt ist aus C_1 - C_6 -Alkyl, Benzyl oder -Si $R_aR_bR_c$, wie in Anspruch 1 definiert, und der andere von R^{10} und R^{11} zusätzlich Wasserstoff, C_1 - C_6 -Alkylcarbonyl oder Benzoyl bedeuten kann.

12. 3,3-Diphenylpropylamine nach Anspruch 11, ausgewählt aus:

- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenol,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenol,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-isopropoxymethylphenol,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol,

5

10

15

20

25

30

35

40

45

50

- (±)-Essigsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-methoxymethylphenylester,
- (±)-Essigsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenylester,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxymethylphenol.
- (\pm) -Diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)propyl]amin,
- (±)-[3-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]methanol,
- (±)-Diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenyl]propylamin,
- (±)-Diisopropyl-[3-(5-ethoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenyl]propylamin,
- (±)-[4-(tert.-Butyldimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)phenyl]methanol,
- (±)-Essigsäure-4-(tert.-butyldimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)benzylester,
- (\pm) -4-(tert.-Butyldimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)phenol,
- (±)-Essigsäure-4-(tert.-butyldimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)phenylester,
- (±)-{3-[2-(tert.-Butyldimethylsilanyloxy)-5-(tert.-butyldimethylsilanyloxymethyl)phenyl]-3-phenylpropyl}diiso-propylamin,
- (±)-[4-(tert.-Butyldiphenylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)phenyl]methanol,
- (±)-Essigsäure-4-(tert.-butyldiphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)phenylester,
- (±)-4-(tert.-Butyldiphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)phenol,
- (±)-{3-[2-(tert.-Butyldiphenylsilanyloxy)-5-(tert.-butyldiphenylsilanyloxymethyl)phenyl]-2-phenylpropyl}diiso-propylamin,
- (±)-Essigsäure-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester,
- (±)-Benzoesäure-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester.
- (±)-lsobuttersäure-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)benzylester,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)phenol.
- 13. 3,3-Diphenylpropylamine nach Anspruch 2, ausgewählt aus Carbonaten und Carbamaten, dargestellt durch die allgemeinen Formeln VII und VIII

Formel VII

Formel VIII

worin Y, Z und n die in Anspruch 1 gegebenen Bedeutungen besitzen und worin R¹² und R¹³ eine C₁-C₆-Alkoxycarbonylgruppe oder

bedeuten, worin R⁴ und R⁵ die in Anspruch 1 gegebenen Bedeutungen besitzen.

10 14. 3,3-Diphenylpropylamine nach Anspruch 13, ausgewählt aus:

5

15

20

25

30

35

40

45

50

55

- (±)-N-Ethylcarbaminsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester,
- (±)-N,N-Dimethylcarbaminsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester,
- (±)-N,N-Diethylcarbaminsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester,
- (±)-N-Phenylcarbaminsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester,
- $(\pm)\cdot [2\cdot (3-\text{Diisopropylamino-1-phenylpropyl})\cdot 4-\text{hydroxymethylphenoxycarbonylamino}] essigs \"{a} ure ethylester hydroxymethylphenoxycarbonylamino] essigs \ddot{a} ure ethylester hydroxymethylphenoxymeth$
- (±)-N-Ethylcarbaminsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-N-ethylcarbamoyloxybenzylester,
- (±)-N,N-Dimethylcarbaminsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzylester.
- (±)-N,N-Diethylcarbaminsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-diethylcarbamoyloxybenzylestern,
- (±)-N-Phenylcarbaminsäure-3-(3-diisopropylamino-1-phenylpropyl)-4-N-phenylcarbamoyloxybenzylester,
- (±)-{4-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]butyl]carbaminsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylester,
- (±)-Carbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylesterethylester.
- (±)-Carbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylesterphenylester,
- (±)-Carbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenylesterethylester,
- (±)-Carbonsäure-2-(3-diisopropylamino-1-phenylpropyl)-4-phenoxycarbonyloxymethylphenylesterphenylester
- 15. 3,3-Diphenylpropylamine, ausgewählt aus
 - (i) Verbindungen der Formeln IX und IX'

Formel IX

Formel IX'

worin x und y gleich oder unterschiedlich sind und die Zahl der Methyleneinheiten (CH₂) bedeuten und im Bereich von 0 bis 6 liegen können.

- (ii) (±) -Benzoesäure-2- (3-diisopropylamino-1-phenylpropyl)-4-sulphooxymethylphenylester,
- (iii) Poly-co-DL-Lactiden von 2- (3-Diisopropylaminophenylpropyl)-4-hydroxymethylphenol,

(iv) (\pm) -2-(3-Diisopropylamino-1-phenylpropyl)-4-(1 β -Dglucuronosyloxymethyl)phenol der Formel

CO.H OH OH

- (v) (±)-Pent-4-ensäure-2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)phenylester,
- (vi) cyclischem Oct-4-en-1,8-dioat des Zwischenprodukts B,
- (vii) cyclischem Octan-1,8-dioat des Zwischenprodukts B,

wobei das Zwischenprodukt B die Formel

besitzt, worin A die in Anspruch 1 gegebene Definition besitzt und

ihre Salze mit physiologisch annehmbaren Säuren, ihre freien Basen und, wenn die Verbindungen in Form optischer Isomeren vorliegen, das racemische Gemisch und die individuellen Enantiomeren.

16. Verfahren zur Herstellung von Phenolmonoestern, dargestellt durch die allgemeine Formel II

Formel II

wie in Anspruch 3 definiert, umfassend die Behandlung einer Verbindung der Formel

55

5

10

15

20

25

30

35

40

45

mit einem Äquivalent eines Acylierungsmittels, ausgewählt aus

worin LG eine Austrittsgruppe, ausgewählt aus Halogenid, Carboxylat und Imidazolid, bedeutet und R¹ die in Anspruch 3 gegebenen Definitionen besitzt, in einem inerten Lösungsmittel in Anwesenheit eines Kondensationsmittels.

17. Verfahren zur Herstellung von Phenolmonoestern, dargestellt durch die allgemeine Formel II'

wie in Anspruch 3 definiert, umfassend die Behandlung von zwei Äquivalenten einer Verbindung der Formel

mit einem Acylierungsmittel, ausgewählt aus

worin Hal ein Halogenatom bedeutet.

10

15

20

25

30

35

40

45

50

55

18. Verfahren zur Herstellung identischer Diester, dargestellt durch die allgemeine Formel III

wie in Anspruch 5 definiert, umfassend die Behandlung einer Verbindung der Formel

mit mindestens zwei Äquivalenten des Acylierungsmittels wie in Anspruch 16 definiert.

19. Verfahren zur Herstellung von Benzylsäuremonoestern, dargestellt durch die allgemeine Formel V

wie in Anspruch 9 definiert, umfassend die Behandlung einer Verbindung der Formel

bei Raumtemperatur und unter wasserfreien Bedingungen mit aktivierten Estern in Anwesenheit von Enzymen,

ausgewählt aus Lipasen oder Esterasen.

5

10

15

20

25

30

50

55

20. Verfahren zur Herstellung gemischter Diester, dargestellt durch die allgemeine Formel IV

R²

Formel IV

wie in Anspruch 7 definiert, umfassend die Acylierung eines Benzylsäuremonoesters, dargestellt durch die allgemeine Formel V

R' A A

Formel V

wie in Anspruch 9 definiert, oder eines Phenolmonoesters, dargestellt durch die Formel II, wie in Anspruch 3 definiert

21. Verfahren zur Herstellung von Ethern, dargestellt durch die allgemeine Formel VI

35 R¹⁰

Formel VI

45 wie in Anspruch 11 definiert, worin R¹¹ Wasserstoff bedeutet, umfassend die Umsetzung einer Verbindung der Formel

mit einem Alkohol R¹⁰-OH in Anwesenheit eines Veresterungskatalysators.

22. Verfahren zur Herstellung von Ethern, dargestellt durch die allgemeine Formel VI

R¹⁰ A A

Formel VI

worin R¹⁰ und R¹¹ die in Anspruch 11 gegebenen Definitionen besitzen, umfassend die Säure- oder Basenbehandlung von freien Benzylalkoholen, ausgewählt aus

HO A A

25 und

5

10

15

20

30

35

40

45

HO A A

und

HO A A

50

Formel II

oder

Formel VI

worin R10 Wasserstoff bedeutet und R11 die in Anspruch 11 gegebene Bedeutung besitzt, oder

Formel VII

worin R^{12} Wasserstoff bedeutet und R^{13} eine C_1 - C_6 -Alkoxycarbonylgruppe bedeutet, oder

worin R⁴ und R⁵ die in Anspruch 1 gegebene Bedeutung besitzen, oder von benzylischen Acylaten, ausgewählt aus

Formel III

Formel IV

55

50

5

10

15

20

25

30

35

40

Formel V

10

15

20

worin R1 und R2 die in Anspruch 7 gegebene Bedeutung besitzen, in Anwesenheit geeigneter Hydroxyreagentien.

23. Verfahren zur Herstellung von Ethern der Formel VI, wie in Anspruch 11 definiert, umfassend die Behandlung einer Verbindung der Formel

25

mit einem Alkylierungsmittel, ausgewählt aus Alkylhalogeniden, Alkylsulphaten und Alkyltriflaten, wobei die Alkylgruppe 1 bis 6 Kohlenstoffatome enthält.

30 24. Verfahren zur Herstellung von Carbonaten und Carbamaten, dargestellt durch die allgemeinen Formeln VII und VIII

35

40

45

50

55

Formel VII

wie in Anspruch 13 definiert, umfassend die Umsetzung einer Verbindung, ausgewählt aus der Gruppe bestehend aus

Formel VIII

Zwischenprodukt A

Zwischenprodukt B

10

15

20

25

30

35

40

45

50

Formel II

Formel II'

Formel V

Formel VI

worin R1 wie in Anspruch 3 definiert ist, n 0 bis 12 bedeutet, Bn Benzyl bedeutet, einer der Substituenten R10 oder R¹¹ Wasserstoff bedeutet und der andere die in Anspruch 11 gegebene Definition besitzt, mit aktivierten Carbonylverbindungen oder Carbonyl-Vorstufereagentien, ausgewählt aus Haloformiaten, Ketenen, aktivierten Estern, gemischten Anhydriden von organischen oder anorganischen Säuren, Isocyanaten und Isothiocyanaten.

- 25. 3,3-Diphenylpropylamine nach den Ansprüchen 1 bis 15 für die Verwendung als pharmazeutisch aktive Substanzen, insbesondere als antimuskarinische Mittel.
 - 26. Pharmazeutische Zubereitung, umfassend ein 3,3-Diphenylpropylamin, wie in einem der Ansprüche 1 bis 15 definiert, und einen pharmazeutisch verträglichen Träger.
- 27. Pharmazeutische Zubereitung nach Anspruch 26, die eine Plättchen- bzw. Pflaster-Zubereitung ist. 55
 - 28. Verwendung von 3,3-Diphenylpropylamin nach einem der Ansprüche 1 bis 15 zur Herstellung eines antimuskarinischen Arzneimittels.

Revendications

5

10

15

20

25

30

35

40

45

50

55

1. 3,3-Diphénylpropylamines de formules générales I et VII':

dans lesquelles R et R' sont indépendamment choisis à partir

- a) d'un atome d'hydrogène, d'un groupement alkyle C_1 - C_6 , d'un groupement cycloalkyle C_9 - C_{10} , d'un benzyle substitué ou non substitué, d'un groupement allyle ou d'un carbohydrate ; ou
- b) d'un groupement formyle, d'un groupement alkylcarbonyle C_1 - C_6 , d'un cycloalkylcarbonyle, d'un arylcarbonyle substitué ou non substitué, de préférence le benzoyle ; ou
- c) d' un groupement alkoxycarbonyle C_1 - C_6 , d'un aryloxycarbonyle substitué ou non substitué, d'un benzoylacyle, d'un benzoylglycyle, d'un résidu d'aminoacide substitué ou non substitué; ou d)

R⁴ N-CO-

dans lequel R4 et R5

représentent indépendamment un atome d'hydrogène, un groupement alkyle C₁-C₆, un groupement aryle substitué ou non substitué, de préférence un phényle substitué ou non substitué, un groupement benzyle ou un phénoxyalkyle dans lequel le résidu alkyle a 1 à 4 atomes de carbone et dans lequel R⁴ et R⁵ peuvent former un cycle ainsi que l'azote de l'amine ; ou e)

dans lequel R6 et R7

représentent indépendamment un groupement alkyle C_1 - C_6 , un groupement aryle substitué ou non substitué, de préférence un phényle substitué ou non substitué, un groupement benzyle ou un phénoxyalkyle dans

lequel le résidu alkyle a 1 à 6 atomes de carbone ; ou

f) un groupement ester d'acides inorganiques,

g) -Si $R_aR_bR_c$ dans lequel R_a , R_b , R_c sont indépendamment choisis parmi un groupement alkyle C_1 - C_4 ou aryle, de préférence un groupement phényle,

à condition que R' ne soit ni un atome d'hydrogène, ni un groupement méthyle ou benzyle si R est un atome d'hydrogène, R n'est pas un groupement éthyle si R' est un atome d'hydrogène,

X représente un groupement amine tertiaire de formule la

-N-R4

Fortugie ia

dans lequel R⁸ et R⁹ représentent des groupements d'hydrocarbyles non-aromatiques, qui peuvent être identiques ou différents et qui contiennent en même temps au moins trois atomes de carbone, et dans lesquels R⁸ et R⁹ peuvent former un cycle ainsi que l'azote de l'amine.

Y et Z représentent indépendamment une liaison simple entre le groupement $(CH_2)_n$ et le groupement carbonyle, O, S ou NH,

A représente un atome d'hydrogène (1H) ou de deutérium (2H),

n est compris entre 0 et 12

ρt

5

10

15

20

25

30

35

45

50

leurs sels avec des acides physiologiquement acceptables, leurs bases libres et, quand les composés peuvent être sous forme d'isomères optiques, le mélange racémique et les énantiomères uniques.

2. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 1, dans lesquelles X est

3.3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi les monoesters phénoliques représentés par les formules générales II et II'

dans lesquelles R1 représènte un atome d'hydrogène, un alkyle C1-C6 ou un phényle.

4. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 3 choisies parmi :

10

15

20

25

30

35

40

45

50

55

- 5 l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide formique.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide acétique.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide propionique,
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide butyrique.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide isobutyrique,
 - l'ester de R-(+)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide isobutyrique.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2,2-diméthylpropioni-
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-acétamidoacétique.
 - l'ester de (+) -2- (3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide cyclopentanecarboxyli-que.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide cyclohexanecarboxyli-que,
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide benzoïque,
 - l'ester de R-(+)-2-(3-diisoproplamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide benzoïque.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl) -4-hydroxyméthylphényle de l'acide 4-méthylbenzoïque.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-méthylbenzoïque.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-acétoxybenzoïque,

 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 1-naphtoïque,
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-naphtoïque. l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 4-chlorobenzoïque.
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 4-méthoxybenzoï-
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-méthoxybenzoï-
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl) -4-hydroxyméthylphényle de l'acide 4-nitrobenzoïque,
 - l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide 2-nitrobenzoïque,
 - l'ester de (±)-bis-[2-(3-diisopropylamino-1-phényl-propyl)-4-hydroxyméthylphényle de l'acide malonique,
 - l'ester de (±)-bis-[2-(3-diisopropylamino-1-phényl-propyl)-4-hydroxyméthylphényle de l'acide succinique,
 - l'ester de (±)-bis-[2-(3-diisopropylamino-1-phényl-propyl)-4-hydroxyméthylphényle de l'acide pentanoïque.
 - l'ester de (±)-bis-[2-(3-diisopropylamino-1-phényl-propyl)-4-hydroxyméthylphényle de l'acide hexadioïque.
 - 5. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi les diesters identiques à ceux représentés par la formule générale III

- dans laquelle R1 est défini selon la revendication 3
- 6. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 5 choisies parmi :

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-formyloxyméthylphényle de l'acide formique,

l'ester de (±)-4-acétoxy-3-(3-diisopropylamino-1-phénylpropyl)-benzyle de l'acide acétique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-propionyloxyméthylphényle de l'acide propionique,

l'ester de (±)4-n-butyryloxyméthyl-2-(3-diisopropyl-amino-1-phénylpropyl)-phényle de l'acide n-butyrique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-isobutyryloxyméthylphényle de l'acide isobutyrique,

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-(2,2-diméthylpropionyloxy)-benzyle de l'acide 2,2-diméthylpropionique,

l'ester de (±)-4-benzoyloxyméthyl-2-(3-diisopropyl-amino-1-phénylpropyl)-4-(2,2-diméthylpropionyloxy)-phényle de l'acide benzoïque,

l'ester de R-(+)-4-benzoyloxyméthyl-2-(3-diisopropyl-amino-1-phénylpropyl)-4-(2,2-diméthylpropionyloxy)-phényle de l'acide benzoïque.

les poly-co-DL-lactides de l'intermédiaire B, ledit intermédiaire B ayant la formule

dans laquelle A est défini selon la revendication 1

5

10

15

20

30

35

50

55

 3,3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi des diesters mixtes représentées par la formule générale IV

Parracia IV

dans laquelle R¹ est défini selon la revendication 3

R² représente un atome d'hydrogène, un groupement alkyle C¹-C⁶ ou un phényle à condition que R¹ et R² ne soient pas identiques

45 8. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 7 choisies parmi

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-formyloxyméthylphényle de l'acide acétique, l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-formyloxyméthylphényle de l'acide benzoïque, l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-acétoxyméthylphényle de l'acide benzoïque, l'ester de R-(+)-2-(3-diisopropylamino-1-phénylpropyl)-4-acétoxyméthylphényle de l'acide benzoïque, l'ester de (±)-4-acétoxyméthyl-2-(3-diisopropylamino-1-phényl-propyl)-phényle de l'acide isobutyrique, l'ester de R-(+)-4-acétoxyméthyl-2-(3-diisopropylamino-1-phényl-propyl)-phényle de l'acide isobutyrique, l'ester de (±)-4-acétoxy-3-(3-diisopropylamino-1-phényl propyl)-benzyle de l'acide 2,2-diméthylpropionique, l'ester de (±)-4-acétoxy-3-(3-diisopropylamino-1-phényl propyl)-phényle de l'acide 2,2-diméthylpropionique, l'ester de (±)-4-benzyloxy-3-(3-diisopropylamino-1-phénylpropyl)-benzyle de l'acide benzoïque.

3,3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi des monoesters benzyliques représentés par la formule générale V

Formula V

10

15

20

5

dans laquelle R1 est défini selon la revendication 3

10. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 9 choisies parmi

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide formique l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide acétique l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide propionique l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide butyrique l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide isobutyrique l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide 2,2-diméthylpropionique l'ester de (±)-3- (3-diisopropylamino-1-phénylpropyl)-4-hydroxybenzyle de l'acide benzoïque

11. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi des éthers et des éthers silylés représentées par la formule générale VI

25

30

35

40

45

50

55

Formula W

dans laquelle au moins un des substituants R^{10} ou R^{11} est choisi parmi un groupement alkyle C_1 - C_6 , un benzyle ou -SiRaRbRc selon la revendication 1 et l'autre substituant R^{10} ou R^{11} peut en plus représenter un atome d'hydrogène, un groupement alkyl carbonyle C_1 - C_6 ou un benzoyle.

12. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 11 choisies parmi

 $\label{eq:continuous} \mbox{le (\pm)-2-(3-diisopropylamino-1-phénylpropyl)-4-méthoxy-méthyl phénol,}$

le (\pm) -2-(3-diisopropylamino-1-phénylpropyl)-4-éthoxy-méthyl phénol, le (\pm) -2-(3-diisopropylamino-1-phénylpropyl)-4-propoxy-méthyl phénol,

le (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-isoprop-oxyméthyl phénol,

le (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-butoxy-méthyl phénol,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-méthoxyméthylphényle de l'acide acétique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-éthoxyméthylphényle de l'acide acétique,

le (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-tri-méthylsilanyloxyméthyl phénol,

la (±)-diisopropyl-[3-phényl-3-(2-triméthylsilanyloxy-5-tri-méthylsilanyloxyméthyl)-propyl]-amine,

le (±)-[3-(3-diisopropylamino-1-phénylpropyl)-4-tri-méthylsilanyloxyphényl]-méthanol,

la (±)-diisopropyl-[3-(5-méthoxyméthyl-2-triméthyl-silanyloxyphényl)]-3-phénylpropyl-amine,

la (±)-diisopropyl-[3-(5-éthoxyméthyl-2-triméthyl sil-anyloxyphényl)]-3-phénylpropyl-amine,

le (±)-[4-(tert.-butyl-diméthylsilanyloxy)-3-(3-diiso-propylamino-1-phénylpropyl)-phényl]-méthanol,

l'ester de (±)-4-(tert.-butyl-diméthylsilanyloxy)-3-(3-diisopropylamino-1-phénylpropyl)-benzyle de l'acide acétique,

le (±)-4-(tert.-butyl-diméthylsilanyloxy)-3-(3-diiso-propylamino-1-phénylpropyl)-phénol,

5

10

15

20

25

30

35

40

45

50

55

l'ester de (±)-4-(sert.-butyl-diméthylsilanyloxy)-2-(3-diisopropylamino-1-phénylpropyl)-phényle de l'acide acétique.

la (±)-{3-[2-(tert.-butyl-diméthylsilanyloxy)-5-(tert.-butyl-diméthylsilanyloxyl)-phényl]-3-phényl propyl} di-iso-propylamine,

le (±)-[4-(tert.-butyl-diméthylsilanyloxy)-3-(3-diiso-propylamino-1-phénylpropyl)-phényl]-méthanol,

l'ester de (±)-4-(tert.-butyl-diphéthylsilanyloxyméthyl)-2-(3-diisopropylamino-1-phénylpropyl)-phényle de l'acide acétique.

le (±)-4-(tert.-butyl-diphéthylsilanyloxyméthyl)-2-(3-diiso propylamino-1-phénylpropyl)-phénol.

la (±)-{3-[2-(tert.-butyl-diméthylsilanyloxy)-5-(tert. -butyl-diphéthylsilanyloxyméthyl)-phényl]-2-phényl-propyl} diisopropylamine,

l'ester de (±)-4-benzyloxy-3-(3-diisopropylamino-1-phénylpropyl)-benzyle de l'acide acétique,

l'ester de (±)-4-benzyloxy-3-(3-diisopropylamino-1-phénylpropyl)-benzyle de l'acide benzoïque,

l'ester de (±)-4-benzyloxy-3-(3-diisopropylamino-1-phényl-propyl)-benzyle de l'acide isobutyrique,

le (\pm) -2-(3-diisopropylamino-1-phényl-propyl)-4- $(1\beta$ -D-glucuronosyloxyméthyl)-phénol.

13. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 2 choisies parmi des carbonates et des carbamates représentés par les formules générales VII et VIII

dans lesquelles Y, Z et n sont définis selon la revendication 1 et dans lesquelles R^{12} et R^{13} représentent un groupement alcoxycarbonyle C_1 - C_6 ou

dans lesquelles R4 et R5 sont définis selon la revendication 1

14. 3,3-Diphénylpropylamines comme revendiquées dans la revendication 13 choisies parmi :

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide N-éthylcarbamique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide N,N-diméthylcarbamique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide N,N-diéthylcarbamique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide N-phénylcarbamique, l'ester de (±)-[2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphénoxycarbonylamino] éthyle du chlorhydrate de l'acide acétique,

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl) -4-N-éthylcarbamoyloxybenzyle de l'acide N,éthylcarbamique,

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl)-4-N,N-di-méthylcarbamoyloxybenzyle de l'acide N,N-di-méthylcarbamique,

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl) -4-N, N-diéthylcarbamoyloxybenzyle de l'acide N,N-diéthylcarbamique.

l'ester de (±)-3-(3-diisopropylamino-1-phénylpropyl) -4-N-phénylcarbamoyloxybenzyle de l'acide N-phényl-carbamique,

l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle de l'acide {4-[2-(3-diisopropyl amino-1-phénylpropyl)-4-hydroxyméthyl phénoxycarbonyl-amino]-butyl} carbamique,

le diester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxyméthylphényle et d'éthyle de l'acide carbonique,

le diester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-hydroxy-méthylphényle et de phényle de l'acide carbonique,

le diester de (±)-2-(3-diisopropylamino-1-phénylpropyl) -4-éthoxy-carbonyloxyméthylphényle et d'éthyle de l'acide carbonique,

le diester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-éthoxy-carbonyloxyméthylphényle et de phényle de l'acide carbonique,

15. 3,3-Diphénylpropylamines choisies parmi :

5

10

15

20

25

30

35

40

45

50

55

(i) les composés de formules IX et IX'

Formula IX!

dans les quelles x et y sont identiques ou différents et représentent le nombre d'unités méthylènes - (CH_2)-et peuvent être compris entre 0 et 6,

- (ii) l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-éthoxysulphooxyméthylphényle de l'acide benzoïque,
- (iii) les poly-co-DL-lactides-2-(3-diisopropyl amino-1-phénylpropyl)-4-hydroxyméthyl-phénol,
- (iV) le (±)-2-(3-diisopropylamino-1-phénylpropyl)-4-(1β-D-glucuronosyloxyméthyl)-phénol ayant la formule

HO CHI

- (v) l'ester de (±)-2-(3-diisopropylamino-1-phénylpropyl) -4- (pent-4-enoyloxyméthyl) -phényle de l'acide pent-4-énoïque,
- (vi) le 1,8-dioate d'oct-4-ène cyclique de l'intermédiaire B,
- (vii) le 1,8-dioate d'octane cyclique de l'intermédiaire B

ledit intermédiaire B ayant la formule

5

10

15

20

25

30

35

40

45

50

55

dans laquelle A est selon la revendication 1

leurs sels avec des acides physiologiquement acceptables, leurs bases libres et, quand les composés peuvent être sous forme d'isomères optiques, le mélange racémique et les énantiomères uniques.

16. Procédé pour la production de monoesters phénoliques représentés par la formule générale II

Formula II

selon la revendication 3, qui comprend le traitement d'un composé de formule

HO A A

avec un équivalent d'un agent acyclique choisi parmi

5

10

15

20

25

30

35

40

45

50

55

O # R¹-C-LG

dans lequel LG représente un groupe partant choisi parmi les halogénures, les carboxylates et les imidazoles et R¹ est selon la revendication 3, dans un solvant inerte en présence d'un agent de condensation.

17. Procédé pour la production de monoesters phénoliques représentés par la formule générale II'

selon la revendication 3, qui comprend le traitement de deux équivalents d'un composés de formule

avec un agent d'acylation choisi parmi

5

10

15

20

25

30

35

40

45

50

55

dans lequel Hal représente un atome d'halogène

18. Procédé pour la production de diesters identiques représentés par la formule générale III

selon la revendication 5, qui comprend le traitement d'un composé de formule

avec au moins deux équivalents d'un agent d'acylation selon la revendication 16.

19. Procédé pour la préparation de monoesters benzyliques représentés par la formule générale V

selon la revendication 9, qui comprend le traitement d'un composé de formule

HO A A

10

15

20

5

à température ambiante et dans des conditions anhydres avec des esters activés en présence d'enzymes choisies parmi les lipases et les ostérases.

20. Procédé pour la préparation de diesters mixtes représentés par la formule générale IV

25

30

selon la revendication 7, qui comprend l'acylation d'un monoester benzylique représenté par la formule générale V

40

selon la revendication 9 ou par un monoester phénolique représenté par la formule II selon la revendication 3

Formula V

Pomula VI

21. Procédé de production d'éthers représentés par la formule générale VI

55

50

selon la revendication 11 dans laquelle R^{11} est un atome d'hydrogène qui comprend la réaction d'un composé de formule

HO A A

avec un alcool ${\sf R}^{10} ext{-}{\sf OH}$ en présence d'un catalyseur d'estérification.

22. Procédé pour la préparation d'éthers représentés par la formule générale VI

Foreste VI:

dans laquelle R^{10} et R^{11} sont selon la revendication 11, qui comprend un traitement acide ou basique d'alcools benzyliques libres choisis parmi

et

HC A A

et

55

50

5

10

20

25

30

35

5

ou

20

25

30

35

40

45

50

55

Formula (

dans lesquelles ${\sf R}^{10}$ est un atome d'hydrogène et ${\sf R}^{11}$ est selon la revendication 11 ou

Poorosa VI

dans laquelle R¹² est un atome d'hydrogène et R¹³ représente un groupement alcoxycarbonyle ou

dans lequel R4 et R5 sont selon la revendication 1 ou des acylates benzyliques choisis parmi

Paramet IV

dans lesquels R1 et R2 sont selon la revendication 7 en présence de réactifs hydroxylés adéquats

23. Procédé pour la préparation d'éthers de formule VI selon la revendication 11, qui comprend le traitement d'un composé de formule

avec un agent d'alkylation choisi parmi les halogénures d'alkyle, les sulfates d'alkyle et les triflates d'alkyle, ledit groupe alkyle ayant 1 à 6 atomes de carbone.

24. Procédé pour la préparation de carbonates et de carbamates représentés par les formules générales VII et VIII

selon la revendication 13, qui comprend la réaction d'un composé choisi parmi le groupe constitué de

5

10

15

20

25

30

35

40

45

50

Intermédiaire A

Intermédiaire B

HO A A

dans lequel R¹ est selon la revendication 3, n est compris entre 0 et 12, Bn est un groupement benzyle, l'un des substituants R¹0 et R¹1 est un atome d'hydrogène et l'autre est selon la revendication 11 avec des composés carbonylés activés ou des réactifs précurseurs de carbonyles choisis parmi les halogénoformates , les cétènes, les esters activés, les anhydrides mixtes d'acides organiques ou inorganiques, les isocyanates et les isothiocyanates.

- 25. 3,3-Diphénylpropylamines comme revendiquées dans les revendications 1 à 15 choisies pour un usage en tant que substances actives pharmaceutiques, surtout en tant qu'agents antimuscariniques.
 - 26. Compositions pharmaceutiques comprenant une 3,3-diphénylpropylamine comme revendiquée dans les revendications 1 à 15 et un support pharmaceutique compatible
- 27. Composition pharmaceutique comme revendiquée dans la revendication 26 qui est une formulation en pastille.
 - 28. Utilisation d'une 3,3-diphénylpropylamine comme revendiquée dans les revendications 1 à 15 pour préparer un médicament antimuscarinique.

FIG. 1

9 (%) IN 1h

