Modelación Numérica (CB051/95.10) Análisis Numérico I (95.04/75.12) Métodos Matemáticos y Numéricos (95.13)

1er cuatrimestre 2024

Trabajo Práctico:

Resolución de Ecuaciones Diferenciales Ordinarias "Dimensionamiento de Bomba de Desagote"

Integrantes

Nombre y apellido	Padrón
Agustin Nicolas, Gonzalez	106086
Violeta, Maillot	110508
Martin Alejo, Polese	106808

ÍNDICE

INTRODUCCIÓN	2
MODELADO	2
Se pide:	3
RESOLUCIÓN:	3
Corriendo el modelo para la lluvia de 60min (con C = 1 y Qsal = 0)	7
Corriendo el modelo para todas las lluvias	8
Dimensionamiento de la bomba	16
Comparación con Runge-Kutta de orden 2	18
Verificación de orden 1	24
Conclusiones	27

INTRODUCCIÓN

Últimamente se han registrado grandes inundaciones en distintos puntos del país y alrededores, incluyendo el Noreste Argentino y el Sur de Brasil. El agua caída en el rango de pocos días supera los 500 mm superando el 30% de la media histórica para todo un año. El presente trabajo práctico consiste en simular una inundación provocada por una lluvia intensa, analizar las consecuencias en un edificio residencial con cocheras subterráneas y evaluar las alternativas para mitigar los efectos de un evento climático.

MODELADO

Las precipitaciones se miden con pluviómetros, instrumentos que registran el volumen de agua caída por unidad de superficie durante un lapso de tiempo dado. Los valores que se registran corresponden a la altura de la película de agua, medida en mm, caída en una superficie de 1 m2, siendo 1 mm de agua de lluvia equivalente a 1 litro/m2. En un terreno se encuentra emplazado un edificio con un sótano. En el mismo, se dispone una bomba de desagote de una capacidad dada, de acuerdo al siguiente esquema:

Este trabajo tiene como objetivos modelar numéricamente el fenómeno físico analizado, dimensionar la bomba para mitigar el efecto de inundaciones producidas por lluvias y experimentar en la resolución numérica del sistema con varios esquemas.

Se pide:

- A) Modelación del sistema.
- **A.1)** Discretizar la ec. 1 con el método de Euler, tomando C = 1, Qsal= 0. Correr el modelo para la precipitación de 60 min y verificar que el volumen de agua almacenado en el sótano coincida con el volumen de Iluvia.
- **A.2)** Discretizar las ec. 1 y ec. 6 con el método de Euler, considerando *C* y *Q*sal variables. Correr el modelo para todas las duraciones / intensidades de precipitación, un lapso de tiempo suficiente como para que el sótano se vacíe.

- **B)** Dimensionamiento de la bomba: Redimensionar la bomba adoptando un nuevo Qmax para que la altura de agua sobre el piso del sótano no exceda los 0,25 m para ninguna de las precipitaciones de la tabla.
- **C)** Experimentación con distintos esquemas Discretizar las ec. 1 y ec. 6 con el método de Runge-Kutta de orden 2, considerando esta solución como "exacta". Correr el modelo para la precipitación de 60 min con el método de RK-2, y luego con Euler con dos pasos de tiempo distintos. Verificar que Euler es de orden 1 analizando la diferencia con la solución "exacta". Utilizar el Qmax obtenido en el punto B.
- **D)** Conclusiones Presente sus conclusiones del trabajo práctico. En particular, comente sobre la relación problema físico-problema numérico, los tipos de errores involucrados en la resolución del problema numérico, la importancia/efecto de cada uno, estabilidad y consistencia.

RESOLUCIÓN:

A) Modelación del sistema:

Vamos a resolver el problema propuesto mediante un modelo numérico que describe el comportamiento del sistema, considerando la conservación de masa y el coeficiente de infiltración que varía con el tiempo. El objetivo es dimensionar la bomba para mitigar las inundaciones en el sótano.

Para calcular los valores utilizamos el padrón número 106808. Y se utilizó Excel para modelar el sistema.

Nota: Como aclaración, para el modelado y la resolución, decidimos hacer el pasaje a $\frac{m}{h}$ para la intensidad.

<u>Nota</u>: Consideramos relevante aclarar, que si bien en este informe utilizaremos valores numéricos aproximados (para simplificar la explicación), en excel utilizamos toda la precisión que nos ofrece la herramienta para realizar los cálculos.

La ecuación de conservación de masa tomando al sótano como volumen de control es:

$$\frac{dV}{dt} = Q_{ent} - Q_{sal}$$

Donde

$$Q_{ent} = \left[\frac{m^3}{h}\right]$$
 Caudal de entrada al sótano

$$Q_{sal} = [\frac{m^3}{h}]$$
 Caudal de salida del sótano

El caudal de entrada viene dado por precipitaciones. La determinación del mismo se hace mediante el "método racional", el cual establece que:

$$Q_{ent} = C * I * A_{terr}$$

C = [adim] Coeficiente de infiltración

I = [mm/h] intensidad de la precipitación (dato, de tabla de recurrencia)

$$A_{terr} = [ha]$$
 área del terreno (17. 32 $m * \frac{106808}{3000} m \simeq 616.64 m^2$)

Reemplazando los datos:

$$Q_{ont} = C * I * 616,64m^2$$

C e I van a variar dependiendo de la consigna a resolver y la lluvia a modelar.

El caudal de salida viene dado por la bomba de desagote, la cual responde a una curva característica con la siguiente forma:

De la cual puede extraerse el caudal en función de la altura de agua en el sótano:

$$Q_{sal} = Q_{max} * \sqrt{\frac{\Delta H_{max} - \Delta H}{\Delta H_{max} - \Delta H_{min}}}$$

Donde:

 $egin{aligned} Q_{max} &=& [m^3/h] & Caudal\, m\'{a}ximo\,\, que\,\, puede\,\, extraer\,\, la\,\, bomba \ \Delta H_{max} &=& [m] & M\'{a}ximo\,\, nivel\,\, que\,\, puede\,\, extraer\,\, la\,\, bomba \ \Delta H_{min} &=& [m] & M\'{n}imo\,\, desnivel\,\, que\,\, puede\,\, extraer\,\, la\,\, bomba \ \Delta H &=& [m] & Desnivel\,\, entre\,\, la\,\, superficie\,\, del\,\, agua\,\, y\,\, el\,\, des\,agote \end{aligned}$

$$Q_{sal} = 8 \frac{m^3}{h} * \sqrt{\frac{4m - \Delta H}{4m - 1m}}$$

$$\Delta H = H_s - H$$

Donde:

 $H_{_S} = [m]$ Altura del sótano (3.5m)

H = [m] Altura de agua por encima del fondo del pozo (variable)

$$\Delta H = 3.5m - H$$

Él ΔH debe mantenerse en todo momento dentro de los límites mínimo y máximo que puede extraer la bomba. A su vez, las variables altura y volumen se encuentran relacionadas mediante:

$$H = \frac{V}{A_{sot}}$$

Donde:

 $V = [m^3]$ Volumen de agua (variable) $A_{sot} = [m^2]$ Superficie del sótano, en planta (8.66m * 8.66m $\simeq 75m^2$)

$$H = \frac{V}{75m^3}$$

Por lo que el volumen podría ser calculado mediante la siguiente ecuación:

$$\frac{dV}{dt} = C * I * A_{terr} - Q_{max} * \sqrt{\frac{\Delta H_{max} - (H_s - \frac{V}{A_{sot}})}{\Delta H_{max} - \Delta H_{min}}}$$

Reemplazando los datos que ya conocemos:

$$\frac{dV}{dt} = C * I * 616,64m^{2} - 8\frac{m^{3}}{h} * \sqrt{\frac{4m - (3.5m - \frac{V}{75m^{2}})}{4m - 1m}}$$

El coeficiente de infiltración varía teóricamente entre 0 (suelo permeable) y 1 (suelo impermeable), y depende a su vez del volumen de agua almacenado en el sótano, puesto que, a mayor volumen, el suelo se satura y disminuye su capacidad de absorber agua. Asumimos que este fenómeno puede aproximarse con la siguiente expresión:

$$\frac{dC}{dt} = \frac{V}{V_{sot}^* t_k} * (C_{sat} - C)$$

con condición inicial $C_{(t=0)} = C_0$, coeficiente de infiltración con el suelo seco, y donde

 $C_0 = [adim]$ Coeficiente de infiltración con el suelo seco (0.6)

$$V_{sot} = [m^3]$$
 Volumen del sótano ($V = H * A_{sot} \simeq 3.5m * 75m^2 = 262.5 m^3$)

$$t_k = [h]$$
 Tiempo característico $(t_k = (1 - \frac{106808}{140000})h \approx 0.237h)$

 $C_{sat} = [adim]$ Coeficiente de infiltración con el suelo saturado de agua (0.9)

$$\frac{dC}{dt} = \frac{V}{262.5 \, m^3 * 0.237 h} * (0.9 - C)$$

Por último, la intensidad de la precipitación se extrae de la siguiente tabla, en la que figuran duración e intensidad de una tormenta promedio con intervalo de recurrencia de 50 años, comparable a la vida útil de la obra:

Duración	5 min	10 min	15 min	30 min	60 min	3 h	6 h	12 h	24 h	72 h
Intensidad	241.4	190.7	162.6	119.6	85.0	41.7	26.4	16.7	10.9	5.2
[mm/h]										

Corriendo el modelo para la lluvia de 60min (con C = 1 y Qsal = 0)

A.1) Discretizar la ec. 1 con el método de Euler, tomando C = 1, Qsal = 0. Correr el modelo para la precipitación de 60 min y verificar que el volumen de agua almacenado en el sótano coincida con el volumen de lluvia.

Solución:

$$Q_{ent} = C * I * A_{terr}$$

$$Q_{ent} = 1 * 0.085 \frac{m}{h} * 616.64 m^2$$

$$Q_{ent} = 52.4144 \frac{m^3}{h}$$

Utilizamos Euler explícito, el cual es un método paso a paso para resolver ecuaciones diferenciales ordinarias, que se basa en la idea de usar la derivada para aproximar el valor de una función en el siguiente punto.

$$\begin{aligned} v_{n+1} &= v_n + \Delta t * f(v_n, t_n, c_n) \\ v_{n+1} &= v_n + \Delta t * (C_n * I * A_{terr} - Q_{sal}) \\ v_1 &= v_0 + \Delta t * (C_0 * I * A_{terr} - Q_{sal}) \end{aligned}$$

Con condición inicial $v_{(t=0)} = 0$

y donde:

$$v=[m^3]$$
 Volumen de agua (variable)
$$\Delta t=[h]$$
 Paso del tiempo
$$v_1=0m^3+0.1h*(1*0.085\frac{m}{h}*616.64m^2-0m^3)$$

$$v_1=5.2414m^3$$

Arriba tenemos el resultado para la primera iteración. Resolvemos utilizando excel las demás iteraciones hasta que se complete la duración de la lluvia.

Euler explicito: v	v_(n+1) = v_n + h * f(v_n, t_n)		Para resolver la EDO: dV/dt = Q_ent - Q_sal		
n	t_n	v_n	v_(n+1)	f(v_n, t_n) = Q_ent - Q_sal	h = 0,1 (6 min)
0	0	0	5,241424587	52,41424587	0,1
1	0,1	5,241424587	10,48284917	52,41424587	0,1
2	0,2	10,48284917	15,72427376	52,41424587	0,1
3	0,3	15,72427376	20,96569835	52,41424587	0,1
4	0,4	20,96569835	26,20712293	52,41424587	0,1
5	0,5	26,20712293	31,44854752	52,41424587	0,1
6	0,6	31,44854752	36,68997211	52,41424587	0,1
7	0,7	36,68997211	41,93139669	52,41424587	0,1
8	0,8	41,93139669	47,17282128	52,41424587	0,1
9	0,9	47,17282128	52,41424587	52,41424587	0,1
10	1	52,41424587	57,65567045	52,41424587	0,1
		Se verifica que \	/(t=1) = Q_ent		

Como podemos observar, se verifica que $V(t=1h)=Q_{ent}^{}*1h\simeq52.4142m^3$. Es decir, que tras una hora, el volumen de agua almacenado en el sótano coincide con el volumen de Iluvia.

Corriendo el modelo para todas las lluvias

A.2) Discretizar las ec. 1 y ec. 6 con el método de Euler, considerando *C* y *Q*sal variables. Correr el modelo para todas las duraciones / intensidades de precipitación, un lapso de tiempo suficiente como para que el sótano se vacíe.

Solución:

En general, Euler explícito para sistemas de ecuaciones diferenciales:

$$u_{n+1} = u_n + \Delta t * f(u_n, t_n, v_n)$$

$$v_{n+1} = v_n + \Delta t * f(u_n, t_n, v_n)$$

En nuestro problema, utilizamos las variables v y c:

$$v_{n+1} = v_n + \Delta t * f(u_n, t_n, v_n)$$

 $c_{n+1} = c_n + \Delta t * f(u_n, t_n, v_n)$

Realizando un despeje de los datos llegamos a la conclusión que para la **primera lluvia** de la tabla (Intensidad = 0.2414 m/h y Duración = 0.833 h) podemos reescribir la primera ecuación de la siguiente forma:

$$\frac{dV}{dt} = C * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{\frac{4m - (3.5m - \frac{V}{75m^2})}{4m - 1m}}$$

De la misma manera, reemplazamos los datos en la segunda:

$$\frac{dC}{dt} = \frac{V}{262.5 \, m^3 * 0.237 h} * (0.9 - C)$$

El paso del tiempo (Δt), decidimos elegirlo de acuerdo a una proporción de la duración total de la lluvia. En el caso de la primera lluvia: $\Delta t = \frac{1}{10} * D = \frac{1}{10} * 0.0833h = 0.00833h$.

Aplicando Euler explícito obtenemos:

$$v_{n+1} = v_n + \Delta t * (C_n * I * A_{terr} - Q_{max} * \sqrt{\frac{\Delta H_{max} - \Delta H}{\Delta H_{max} - \Delta H_{min}}})$$

$$v_{n+1} = v_n + 0.00833 h * (C_n * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{\frac{4m - (3.5m - \frac{Vn}{75m^2})}{4m - 1m}})$$

$$c_{n+1} = c_n + 0.00833 \, h * \left(\frac{v_n}{262.5 \, m^3 * 0.237 h} * (0.9 - c_n) \right)$$

También tenemos como dato las condiciones iniciales de C y V:

$$C_0 = 0.6$$

$$V_0 = 0m^3$$

Para encontrar C_1 y V_1 reemplazamos los valores en la ecuación de Euler:

$$v_1 = 0m^3 + 0.00833 h * (0.6 * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{\frac{4m - (3.5m - \frac{0m^3}{75m^2})}{4m - 1m}})$$

$$v_1 = 0.7170 m^3$$

$$c_1 = 0.6 + 0.0083 h * (\frac{0}{262.5 m^3 * 0.237h} * (0.9 - 0.6))$$

Vemos que como resultado obtenemos $0.7170 \, m^3$ de volumen de agua entrante y el coeficiente de infiltración que se mantuvo en 0.6.

Nota: La "constante auxiliar" (que luego aparece en el excel $\simeq 0.16667$) es el resultado de las constantes dentro de la raíz, que finalmente quedaría como:

 $c_1 = 0.6$

$$v_{n+1} = v_n + 0.00833 \, h * (C_n * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{0.16667 + \frac{v_n}{225m^3}})$$

 $v_1 = 0.7170 \, m^3$

<u>Nota</u>: Recordemos que, como se aclaró anteriormente, en estos cálculos manuales utilizamos números redondeados, pero en el excel utilizamos toda la precisión que la herramienta nos brinda.

Para resolver más eficientemente las cuentas, utilizamos el modelo en excel:

Podemos observar que en la iteración 10 se cumple la duración total de la lluvia, entonces la intensidad pasa a ser 0, por lo que no hay más agua entrante. El volumen de agua que entró al sótano va a ser la máxima, y luego de ese momento solo consideraremos el esfuerzo de la bomba sacando agua, por lo que el volumen irá disminuyendo hasta eventualmente llegar a 0.

Realizando más iteraciones:

			-					
V256	0,154397738	C256	0,6349113464	0	0,00833	0,166667	224,9868	0
V257	0,1271252106	C257	0,6349168272	0	0,00833	0,166667	224,9868	0
V258	0,09986256211	C258	0,6349213397	0	0,00833	0,166667	224,9868	0
V259	0,07260979252	C259	0,6349248845	0	0,00833	0,166667	224,9868	0
V260	0,04536690184	C260	0,6349274618	0	0,00833	0,166667	224,9868	0
V261	0,01813389008	C261	0,6349290722	0	0,00833	0,166667	224,9868	0

El tiempo de desagote, fue de: 2,09 horas.

<u>Nota</u>: Cuando hablemos de *tiempo de desagote*, siempre nos estaremos refiriendo al tiempo desde que dejó de llover hasta que se vació el sótano.

Observamos en un gráfico, el volumen de agua dentro del sótano en función del tiempo de esta lluvia:

A su vez, el coeficiente de infiltración irá aumentando muy levemente. Lo que significa que el suelo se va saturando con el paso del tiempo.

Repitiendo el mismo procedimiento para las demás lluvias, obtuvimos diferentes resultados:

Para la **segunda Iluvia** (
$$I=0.1907\frac{m}{h}$$
, $D=0.1667h$, $\Delta t=\frac{D}{10}=0.01667h$)

				Datos + Calculos	s auxiliares			
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxilia	A_sot * 3m (m^3	A_terr * I (m^3/h
V0	0	C0	0,6	0,1907	0,01667	0,166667	224,9868	117,5929022
V1	1,121495917	C1	0,6	0,1907	0,01667	0,166667	224,9868	117,5929022
V2	2,242183829	C2	0,600090107	0,1907	0,01667	0,166667	224,9868	117,5929022
V3	3,362252555	C3	0,6002702019	0,1907	0,01667	0,166667	224,9868	117,5929022
V4	4,481890036	C4	0,6005401	0,1907	0,01667	0,166667	224,9868	117,5929022
V5	5,601283247	C5	0,6008995508	0,1907	0,01667	0,166667	224,9868	117,5929022
V6	6,72061811	C6	0,6013482385	0,1907	0,01667	0,166667	224,9868	117,5929022
V7	7,840079403	C7	0,6018857822	0,1907	0,01667	0,166667	224,9868	117,5929022
V8	8,959850661	C8	0,6025117366	0,1907	0,01667	0,166667	224,9868	117,5929022
V9	10,08011408	C9	0,6032255918	0,1907	0,01667	0,166667	224,9868	117,5929022
V10	11,20105042	C10	0,6040267743	0	0,01667	0,166667	224,9868	0

Se observa que el volumen máximo de agua entrante es de $11,201m^3$.

V198	0,2336435482	C198	0,677147003	0	0,01667	0,166667	224,9868	0
V199	0,1790411236	C199	0,6771609478	0	0,01667	0,166667	224,9868	0
V200	0,1244782218	C200	0,677171633	0	0,01667	0,166667	224,9868	0
V201	0,06995484285	C201	0,6771790615	0	0,01667	0,166667	224,9868	0
V202	0,01547098668	C202	0,6771832361	0	0,01667	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 3,200 horas.

En estas primeras lluvias observamos cómo el volumen de agua en el sótano aumenta muy rápido, debido a la intensidad de la misma. Sin embargo, para vaciar el sótano se necesita mucho más tiempo.

Para la **tercera lluvia** $(I = 0.1626 \frac{m}{h}, D = 0.25h, \Delta t = \frac{D}{15} = 0.001667h)$

				Datos + Calcu	los auxiliares			
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxiliar	A_sot * 3m (m^3)	A_terr * I (m^3/h)
V0	0	C0	0,6	0,1626	0,01667	0,166667	224,9868	100,2653692
V1	0,9482205861	C1	0,6	0,1626	0,01667	0,166667	224,9868	100,2653692
V2	1,895757234	C2	0,6000761851	0,1626	0,01667	0,166667	224,9868	100,2653692
V3	2,842746124	C3	0,6002284617	0,1626	0,01667	0,166667	224,9868	100,2653692
V4	3,789322865	C4	0,6004566893	0,1626	0,01667	0,166667	224,9868	100,2653692
V5	4,735622444	C5	0,6007606803	0,1626	0,01667	0,166667	224,9868	100,2653692
V6	5,681779165	C6	0,6011402008	0,1626	0,01667	0,166667	224,9868	100,2653692
V7	6,627926591	C7	0,6015949704	0,1626	0,01667	0,166667	224,9868	100,2653692
V8	7,57419749	C8	0,6021246623	0,1626	0,01667	0,166667	224,9868	100,2653692
V 9	8,520723771	C9	0,602728904	0,1626	0,01667	0,166667	224,9868	100,2653692
V10	9,467636421	C10	0,6034072773	0,1626	0,01667	0,166667	224,9868	100,2653692
V11	10,41506545	C11	0,6041593184	0,1626	0,01667	0,166667	224,9868	100,2653692
V12	11,36313982	C12	0,6049845188	0,1626	0,01667	0,166667	224,9868	100,2653692
V13	12,3119874	C13	0,6058823252	0,1626	0,01667	0,166667	224,9868	100,2653692
V14	13,26173488	C14	0,60685214	0,1626	0,01667	0,166667	224,9868	100,2653692
V15	14,21250772	C15	0,6078933219	0	0,01667	0,166667	224,9868	0
V16	14,14858595	C16	0,6090051861	0	0,01667	0,166667	224,9868	0

V250	0,2775315281	C250	0,7131778319	0	0,01667	0,166667	224,9868	0
V251	0,2228973569	C251	0,713191718	0	0,01667	0,166667	224,9868	0
V252	0,1683027084	C252	0,7132028697	0	0,01667	0,166667	224,9868	0
V253	0,1137475828	C253	0,7132112894	0	0,01667	0,166667	224,9868	0
V254	0,05923197992	C254	0,7132169797	0	0,01667	0,166667	224,9868	0
V255	0,004755899888	C255	0,7132199427	0	0,01667	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 4,000 horas.

Para la **cuarta Iluvia** $(I = 0.1196 \frac{m}{h}, D = 0.5h, \Delta t = \frac{D}{15} = 0.0333h)$

				Datos + Calculos	s auxiliares			
dV/dt		dC/dt		I (m/h)	△t (h)	Constante auxilia A	_sot * 3m (m^3 A	_terr * I (m^3/h)
V0	0	C0	0,6	0,1196	0,03333	0,166667	224,9868	73,74992713
V1	1,366132332	C1	0,6	0,1196	0,03333	0,166667	224,9868	73,74992713
V2	2,730299279	C2	0,6002195248	0,1196	0,03333	0,166667	224,9868	73,74992713
V3	4,093077512	C3	0,6006579375	0,1196	0,03333	0,166667	224,9868	73,74992713
V4	5,455039471	C4	0,6013142146	0,1196	0,03333	0,166667	224,9868	73,74992713
V5	6,81675263	C5	0,6021869488	0,1196	0,03333	0,166667	224,9868	73,74992713
V6	8,178778742	C6	0,6032743524	0,1196	0,03333	0,166667	224,9868	73,74992713
V7	9,541673069	C7	0,6045742618	0,1196	0,03333	0,166667	224,9868	73,74992713
V8	10,90598361	C8	0,6060841417	0,1196	0,03333	0,166667	224,9868	73,74992713
V9	12,27225033	C9	0,6078010906	0,1196	0,03333	0,166667	224,9868	73,74992713
V10	13,64100438	C10	0,6097218472	0,1196	0,03333	0,166667	224,9868	73,74992713
V11	15,01276733	C11	0,6118427962	0,1196	0,03333	0,166667	224,9868	73,74992713
V12	16,38805041	C12	0,6141599762	0,1196	0,03333	0,166667	224,9868	73,74992713
V13	17,76735373	C13	0,6166690871	0,1196	0,03333	0,166667	224,9868	73,74992713
V14	19,15116557	C14	0,6193654991	0,1196	0,03333	0,166667	224,9868	73,74992713
V15	20,53996165	C15	0,6222442613	0	0,03333	0,166667	224,9868	0
V16	20,40452209	C16	0,6253001125	0	0,03333	0,166667	224,9868	0
V17	20,26924065	C17	0,628302415	0	0,03333	0,166667	224,9868	0

V179	0,4414754859	C179	0,7869662887	0	0,03333	0,166667	224,9868	0
V180	0,3319702892	C180	0,7869930178	0	0,03333	0,166667	224,9868	0
V181	0,2226232407	C181	0,7870131121	0	0,03333	0,166667	224,9868	0
V182	0,1134343406	C182	0,7870265852	0	0,03333	0,166667	224,9868	0
V183	0,00440358892	C183	0,7870334494	0	0,03333	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 5,600 horas.

Para la **quinta lluvia** $(I = 0.085 \frac{m}{h}, D = 1h, \Delta t = \frac{D}{30} = 0.0333h)$

				Datos + Calculos auxiliares						
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxiliar	A_sot * 3m (m^3)	A_terr * I (m^3/h)		
V0	0	C0	0,6	0,085	0,03333	0,166667	224,9868	52,41424587		
V1	0,9394187065	C1	0,6	0,085	0,03333	0,166667	224,9868	52,41424587		
V2	1,877482156	C2	0,6001509559	0,085	0,03333	0,166667	224,9868	52,41424587		
V3	2,814472472	C3	0,600452498	0,085	0,03333	0,166667	224,9868	52,41424587		
V4	3,750670085	C4	0,6009040754	0,085	0,03333	0,166667	224,9868	52,41424587		
V5	4,686353473	C5	0,601504957	0,085	0,03333	0,166667	224,9868	52,41424587		
V6	5,621798903	C6	0,6022542328	0,085	0,03333	0,166667	224,9868	52,41424587		

-

V25	23,69257117	C25	0,6422395896	0,085	0,03333	0,166667	224,9868	52,41424587
V26	24,67558517	C26	0,6455107206	0,085	0,03333	0,166667	224,9868	52,41424587
V27	25,66320169	C27	0,6488743372	0,085	0,03333	0,166667	224,9868	52,41424587
V28	26,65558592	C28	0,6523263426	0,085	0,03333	0,166667	224,9868	52,41424587
V29	27,65289564	C29	0,6558625488	0,085	0,03333	0,166667	224,9868	52,41424587
V30	28,65528105	C30	0,6594786831	0	0,03333	0,166667	224,9868	0
V31	28,51068206	C31	0,6631703947	0	0,03333	0,166667	224,9868	0
V32	28,36624119	C32	0,6667871001	0	0,03333	0,166667	224,9868	0
V33	28,22195845	C33	0,6703305304	0	0,03333	0,166667	224,9868	0

V250	0,6528136412	C250	0,8546120113	0	0,03333	0,166667	224,9868	0
V251	0,5430038725	C251	0,8546278821	0	0,03333	0,166667	224,9868	0
V252	0,4333522517	C252	0,8546410787	0	0,03333	0,166667	224,9868	0
V253	0,3238587788	C253	0,8546516074	0	0,03333	0,166667	224,9868	0
V254	0,2145234541	C254	0,854659474	0	0,03333	0,166667	224,9868	0
V255	0,1053462778	C255	0,8546646839	0	0,03333	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 7,500 horas.

Para la **sexta lluvia** $(I = 0.0417 \frac{m}{h}, D = 3h, \Delta t = \frac{D}{12} = 0.25h)$

				54 . 64 .	•••			
				Datos + Calculos	s auxiliares			
dV/dt		dC/dt		I (m/h)	△t (h)	Constante auxilia	A_sot * 3m (m^3 /	A_terr * I (m^3/h
V0	0	C0	0,6	0,0417	0,25000	0,166667	224,9868	25,71381238
V1	3,040575277	C1	0,6	0,0417	0,25000	0,166667	224,9868	25,71381238
V2	6,048692183	C2	0,6036644416	0,0417	0,25000	0,166667	224,9868	25,71381238
V3	9,049431374	C3	0,6108651636	0,0417	0,25000	0,166667	224,9868	25,71381238
V4	12,06664899	C4	0,6213763686	0,0417	0,25000	0,166667	224,9868	25,71381238
V5	15,12241665	C5	0,6348826385	0,0417	0,25000	0,166667	224,9868	25,71381238
V6	18,23650429	C6	0,65098873	0,0417	0,25000	0,166667	224,9868	25,71381238
V7	21,42592012	C7	0,6692315255	0,0417	0,25000	0,166667	224,9868	25,71381238
V8	24,70452307	C8	0,689094613	0,0417	0,25000	0,166667	224,9868	25,71381238
V9	28,0827253	C9	0,7100258522	0,0417	0,25000	0,166667	224,9868	25,71381238
V10	31,56730413	C10	0,7314579435	0,0417	0,25000	0,166667	224,9868	25,71381238
V11	35,16134247	C11	0,7528314894	0,0417	0,25000	0,166667	224,9868	25,71381238
V12	38,86431329	C12	0,7736194142	0	0,25000	0,166667	224,9868	0
V13	37,6991402	C13	0,7933510075	0	0,25000	0,166667	224,9868	0
V14	36,54289069	C14	0,8095027357	0	0,25000	0,166667	224,9868	0

١	/47	3,394782602	C47	0,8941820316	0	0,25000	0,166667	224,9868	0
١	/48	2,542126811	C48	0,8942613756	0	0,25000	0,166667	224,9868	0
١	/49	1,698407258	C49	0,8943199808	0	0,25000	0,166667	224,9868	0
١	/50	0,8636244454	C50	0,8943587353	0	0,25000	0,166667	224,9868	0
١	/51	0,03777888422	C51	0,8943783072	0	0,25000	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 9,750 horas.

Para la **séptima lluvia** $(I = 0.0264 \frac{m}{h}, D = 6h, \Delta t = \frac{D}{18} = 0.33h)$

				Datos + Calculos auxiliares					
dV/dt		dC/dt		I (m/h)	△t (h)	Constante auxilia	A_sot * 3m (m^3	A_terr * I (m^3/h)	
V0	0	C0	0,6	0,0264	0,33333	0,166667	224,9868	16,27924813	
V1	2,167187518	C1	0,6	0,0264	0,33333	0,166667	224,9868	16,27924813	
V2	4,303357264	C2	0,6034824691	0,0264	0,33333	0,166667	224,9868	16,27924813	
V3	6,428669353	C3	0,6103172927	0,0264	0,33333	0,166667	224,9868	16,27924813	
V4	8,562211727	C4	0,6202922993	0,0264	0,33333	0,166667	224,9868	16,27924813	

-

V15	35,99891983	C15	0,8220196828	0,0264	0,33333	0,166667	224,9868	16,27924813
V16	38,93540298	C16	0,8370560872	0,0264	0,33333	0,166667	224,9868	16,27924813
V17	41,92333046	C17	0,8501831615	0,0264	0,33333	0,166667	224,9868	16,27924813
V18	44,95240204	C18	0,861369848	0	0,33333	0,166667	224,9868	0
V19	43,33809525	C19	0,8706712594	0	0,33333	0,166667	224,9868	0
V20	41,73966997	C20	0,8774794666	0	0,33333	0,166667	224,9868	0
V21	40,15712699	C21	0,8825144404	0	0,33333	0,166667	224,9868	0

V47	4,588714262	C47	0,8993786673	0	0,33333	0,166667	224,9868	0
V48	3,435362743	C48	0,8993939389	0	0,33333	0,166667	224,9868	0
V49	2,297924401	C49	0,899405091	0	0,33333	0,166667	224,9868	0
V50	1,176400792	C50	0,8994124135	0	0,33333	0,166667	224,9868	0
V51	0,07079351988	C51	0,899416116	0	0,33333	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 11,000 horas.

Para la **octava Iluvia** $(I = 0.0167 \frac{m}{h}, D = 12h, \Delta t = \frac{D}{24} = 0.5h)$

				Datos + Calculos auxiliares					
dV/dt		dC/dt		I (m/h)	△t (h)	Constante auxilia	A_sot * 3m (m^3	A_terr * I (m^3/h)	
V0	0	C0	0,6	0,0167	0,50000	0,166667	224,9868	10,29785772	
V1	1,456364153	C1	0,6	0,0167	0,50000	0,166667	224,9868	10,29785772	
V2	2,881318748	C2	0,603510363	0,0167	0,50000	0,166667	224,9868	10,29785772	
V3	4,294179203	C3	0,6103741154	0,0167	0,50000	0,166667	224,9868	10,29785772	
V4	5,712989097	C4	0,6203667114	0,0167	0,50000	0,166667	224,9868	10,29785772	

-

V20	35,8822057	C20	0,8800859487	0,0167	0,50000	0,166667	224,9868	10,29785772
V21	38,12931516	C21	0,8858271073	0,0167	0,50000	0,166667	224,9868	10,29785772
V22	40,37127184	C22	0,8901689921	0,0167	0,50000	0,166667	224,9868	10,29785772
V23	42,60146085	C23	0,8933578213	0,0167	0,50000	0,166667	224,9868	10,29785772
V24	44,8146083	C24	0,8956313259	0	0,50000	0,166667	224,9868	0
V25	42,39517236	C25	0,8972043307	0	0,50000	0,166667	224,9868	0
V26	40,01155927	C26	0,898156607	0	0,50000	0,166667	224,9868	0

V41	8,559197825	C41	0,8999370214	0	0,50000	0,166667	224,9868	0
V42	6,749403239	C42	0,8999413524	0	0,50000	0,166667	224,9868	0
V43	4,975522637	C43	0,8999445328	0	0,50000	0,166667	224,9868	0
V44	3,237563384	C44	0,8999467501	0	0,50000	0,166667	224,9868	0
V45	1,535533154	C45	0,8999481353	0	0,50000	0,166667	224,9868	0

El tiempo de desagote para esta lluvia fue de: 10,500 horas.

Para la **novena Iluvia** $(I = 0.0109 \frac{m}{h}, D = 24h, \Delta t = \frac{D}{48} = 0.5h)$

				Datos + Calculos	s auxiliares			
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxilia	A_sot * 3m (m^3 /	A_terr * I (m^3/h
V0	0	C0	0,6	0,0109	0,50000	0,166667	224,9868	6,721356235
V1	0,3834137085	C1	0,6	0,0109	0,50000	0,166667	224,9868	6,721356235
V2	0,7585000005	C2	0,6009241653	0,0109	0,50000	0,166667	224,9868	6,721356235
V3	1,128586245	C3	0,6027467919	0,0109	0,50000	0,166667	224,9868	6,721356235
V4	1,496838789	C4	0,6054421849	0,0109	0,50000	0,166667	224,9868	6,721356235
V/AE	20.02700475	Q.IF	0.0074022004	-	0.50000	0.400007	224 0000	0.704050005
V45	30,02780475		0,8974622864				224,9868	•
V46	30,85251661	C46	0,8980745339	0,0109	0,50000	0,166667	224,9868	6,721356235 6,721356235
V45 V46 V47		C46	· '	0,0109	0,50000	0,166667		•
V46	30,85251661	C46 C47	0,8980745339	0,0109 0,0109	0,50000	0,166667 0,166667	224,9868	6,721356235

V49 30,23728453 C49 0,8992019366 0 0.50000 0,166667 224,9868 0 V50 28,04251809 C50 0,8993958201 0,50000 0,166667 224,9868 0 25,8836021 C51 V51 0,8995319471 0,50000 0,166667 224,9868

8,067504561 C60 V60 0 0 0.8998838074 0,50000 0,166667 224,9868 V61 6,267396359 C61 0,8998913388 0 0,50000 0,166667 224,9868 0 4,503204098 C62 V62 0,8998968105 0 0,50000 0,166667 224,9868 0 2,774935224 C63 0,899900544 224,9868 V63 0 0,50000 0,166667 0 1,0825975 C64 0,8999027614 0,50000 0,166667 224,9868 V64

19

El tiempo de desagote para esta lluvia fue de 8,000 horas.

Para la **décima lluvia** $(I=0.0052\frac{m}{h}, D=72h, \Delta t \rightarrow 0)$

				Datos + Calculos auxiliares						
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxiliar	A_sot * 3m (m^3)	A_terr * I (m^3/h)		
V0	0	C0	0,6	0,0052	0,00000072	0,166667	224,9868	3,206518571		
V1	-0,0000009662941305	C1	0,6	0,0052	0,00000072	0,166667	224,9868	3,206518571		

En esta última lluvia, decidimos que el Δt tendiera a 0 para observar en detalle lo que sucede instante a instante. En la primera iteración, el volumen de agua, que resulta de la diferencia entre el caudal entrante y el saliente, al dar negativo indica que el caudal saliente es mayor que el entrante. Sabemos que esto es un absurdo, este comportamiento se debe a que al ser una intensidad tan baja, la bomba puede sacar la totalidad de la lluvia a medida que va entrando, dando como resultado que el volumen de agua en el sótano sea prácticamente 0. Podemos concluir entonces que cuando las lluvias son tan leves, por más de que tengan una larga duración, el sótano nunca llegará a tener un volumen de agua considerable.

Finalmente a modo ilustrativo, tenemos un gráfico comparativo entre todas las Iluvias, donde se puede apreciar la cantidad de pasos necesarios en cada una hasta que se vacié el sótano:

Dimensionamiento de la bomba

B) Redimensionar la bomba adoptando un nuevo Qmax para que la altura de agua sobre el piso del sótano no exceda los 0,25m para ninguna de las precipitaciones de la tabla.

Solución:

El objetivo de este redimensionamiento es que la altura del agua dentro del sótano no supere los 0.25m en ningún momento. Por lo tanto:

$$H = \frac{V}{A_{\text{out}}} < 0.25m$$

$$\frac{V}{75m^2} < 0.25m$$

$$V < 18.75m^3$$

La nueva bomba debe ser lo suficientemente eficiente para que en ninguna lluvia, en ningún momento el volumen de agua del sótano exceda los $18.75m^3$.

Realizamos comparaciones entre las distintas lluvias para encontrar aquella con el mayor Qmax, buscando en cada una de ellas el mínimo que cumpla la consigna.

 V29
 17,89808946
 C29
 0,6380135182
 0,085
 0,03333
 0,166667
 0,2386551939
 SI

 V30
 18,51658539
 C30
 0,6405251449
 0
 0,03333
 0,166667
 0,2469022901
 SI

 V31
 18,01761902
 C31
 0,643098654
 0
 0,03333
 0,166667
 0,2402490149
 SI

En el caso de elegir $Q_{max} < 30 \frac{m^3}{h}$, la bomba ya no cumple su objetivo, pues en algún momento durante la lluvia el volumen de agua sobrepasa los 0.25m. Veamos tomando por ejemplo $Q_{max} = 25 \frac{m^3}{h}$:

Q_max	25	Para esta Iluvia						
Duracion (h)	1							
Intensidad (m/h)	0,085							
Lluvia n°	5							
				Datos + Calcu	los auxiliares			
dV/dt		dC/dt		I (m/h)	∆t (h)	Constante auxiliar	H = V / A_sot	H es menor a 0,25
V0	0	C0	0,6	0,085	0,03333	0,166667	0	SI
V1	0,7080780086	C1	0,6	0,085	0,03333	0,166667	0,009441594022	SI
V2	1,412958944	C2	0,6001137816	0,085	0,03333	0,166667	0,0188405579	SI
V3	2,114885327	C3	0,6003407448	0,085	0,03333	0,166667	0,02820012543	SI

-

V27	18,64283402	C27	0,6367481646	0,085	0,03333	0,166667	0,248585704	SI
V28	19,33904956	C28	0,6393769363	0,085	0,03333	0,166667	0,2578691225	NO
V29	20,03728473	C29	0,6420766487	0,085	0,03333	0,166667	0,2671794709	NO
V30	20,73767178	C30	0,6448448589	0	0,03333	0,166667	0,2765185129	NO
V31	20,31370285	C31	0,6476790808	0	0,03333	0,166667	0,2708652621	NO

Por otro lado, en los casos en los que la altura del agua dentro del sótano no exceda los 0,25 m, no sería necesario el uso de una bomba. Este comportamiento se debe al caudal de entrada, dado tanto por la intensidad como por la duración de la lluvia.

Veamos un ejemplo:

Comparación con Runge-Kutta de orden 2

C) Experimentación con distintos esquemas Discretizar las ec. 1 y ec. 6 con el método de Runge-Kutta de orden 2, considerando esta solución como "exacta". Correr el modelo para la precipitación de 60 min con el método de RK-2, y luego con Euler con dos pasos de tiempo distintos. Verificar que Euler es de orden 1 analizando la diferencia con la solución "exacta". Utilizar el Qmax obtenido en el punto B.

Solución:

El método de Runge-Kutta de orden 2 nos presenta las siguiente fórmulas para la resolución de sistemas de ecuaciones diferenciales:

$$V_{n+1} = V_n + \frac{V_{q1} + V_{q2}}{2}$$

$$C_{n+1} = C_n + \frac{C_{q1} + C_{q2}}{2}$$

Donde:

$$V_{q1} = \Delta t * f(V_n; C_n; t_n)$$

 $C_{q1} = \Delta t * f(V_n; C_n; t_n)$

Aplicados al problema:

$$\begin{split} V_{q1} &= \Delta t * (C_n * A_{terr} * I - Q_{max} * \sqrt{\frac{\Delta H_{max} - \Delta H}{\Delta H_{max} - \Delta H_{min}}}) \\ V_{q2} &= \Delta t * \left[(C_n + C_{q1}) * A_{terr} * I - Q_{max} * \sqrt{\frac{\Delta H_{max} - (H_s - \frac{(V_n + V_{q1})}{A_{sot}})}{\Delta H_{max} - \Delta H_{min}}} \right] \\ \\ C_{q1} &= \Delta t * \frac{V_n}{V_{sot} * t_k} * (C_{sat} - C_n) \\ \\ C_{q2} &= \Delta t * \frac{V_n + V_{q1}}{V_{sot} * t_k} * \left[C_{sat} - (C_n + C_{q1}) \right] \end{split}$$

Reemplazando los datos y aplicado a la primera lluvia:

$$\Delta t = \frac{D}{5} = \frac{1}{5} * 0.0833h = 0.01667h$$

$$V_{q1} = 0.01667h * (0.6 * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{\frac{4m - (3.5m - \frac{0m^3}{75m^2})}{4m - 1m}})$$

$$V_{q1} = 1.434 m^3$$

$$C_{q1} = 0.0083 h * (\frac{0}{262.5 m^3 * 0.237h} * (0.9 - 0.6))$$

$$C_{q1} = 0$$

$$V_{q2} = 0.01667h * \left[(0.6 + 0) * 0.2414 \frac{m}{h} * 616,64m^2 - 8 \frac{m^3}{h} * \sqrt{\frac{4m - (3.5m - \frac{0m^3+1.434m^3}{75m^2})}{4m - 1m}} \right]$$

$$V_{q2} = 1.433 m^3$$

$$C_{q2} = 0.0083 h * (\frac{0 + 1.434m^3}{262.5 m^3 * 0.237h} * (0.9 - (0.6 + 0)))$$
 Por lo tanto:

$$V_{1} = V_{0} + \frac{V_{q1} + V_{q2}}{2}$$

$$V_{1} = 0m^{3} + \frac{1.434m^{3} + 1.433m^{3}}{2}$$

$$V_{1} = 1.4335m^{3}$$

$$C_{1} = C_{0} + \frac{C_{q1} + C_{q2}}{2}$$

$$C_{1} = 0.6 + \frac{0 + 0.0000574}{2}$$

$$C_{1} = 0.6000287$$

Nota: Si bien no se pide en la consigna, como un extra, abajo decidimos correr nuestro modelo de RK2 para todas las lluvias. Así, podemos obtener una comparación más precisa al utilizar ambos modelos. Utilizamos pasos de tiempo distintos que con Euler.

Entonces, resolvemos las Iluvias con excel:

Para la **primer Iluvia** ($I=0,2414\frac{m}{h},\ D=0.0833h,\ \Delta t=\frac{D}{5}=0.01667h$)

				Datos + Calculo	c auviliaroc				
dV/dt		dC/dt		L(m/h)	∆t (h)	V_q1	V_q2	C q1	C_q2
V0	0	C0	0.6	0,2414	. ,	1,434418304	1,433386742		0,00011527190
V1	1,433902523		0,600057636	0,2414	,	1,43353013	,	0.000115208314	
V2	2.867069538		0,6002303892	0,2414		1,432946948		0,000230224859	
V3	4,299805182		0,6005180141	0,2414		1.43266692		0.000344941834	
V4	5,73241167		0,6009201573	0,2414		1.432688039		0,000459251835	*
V5	7,165189126		0.6014363582	0,2111		,		0,000573047949	
V6	7,105790493		0,6020064848	0	-,			0,000567212244	
			,		,	,			
V7	7,046431385	C7	0,6025707918	0	0,01667	-0,00900900200	-0,05929981492	0,000361406618	0,00033303032
V7	7,046431385	C7	0,6025707918	_	0,01667	-0,03933930236	-0,05929981492	0,000301406618	0,00033303032
V7	7,046431385		0,6025707918	- 0	,			. 0,000361408618	
	·	C125		-	0,01667	-0,05467548606	-0,05463594747		0,00001881027
V125 V126	0,3195567276	C125 C126	. 0,634872464	-	0,01667 0,01667	-0,05467548606 -0,05463596177	-0,05463594747 -0,05459642317	. 0,00002269494	0,00001881027 0,00001493081
V125 V126 V127	0,3195567276 0,2649010108	C125 C126 C127	0,634872464 0,6348932166	- 0 0	0,01667 0,01667 0,01667	-0,05467548606 -0,05463596177 -0,05459643748	-0,05463594747 -0,05459642317 -0,05455689887	0,00002269494 0,00001881182	0,00001881027 0,00001493081 0,00001105481
V125	0,3195567276 0,2649010108 0,2102848184	C125 C126 C127 C128	0,634872464 0,6348932166 0,6349100879	- 0 0 0	0,01667 0,01667 0,01667 0,01667	-0,05467548606 -0,05463596177 -0,05459643748 -0,05455691319	-0,05463594747 -0,05459642317 -0,05455689887 -0,05451737456	0,00002269494 0,00001881182 0,00001493232	0,00001881027 0,00001493081 0,00001105481 0,00000718208

Para la **segunda Iluvia** ($I = 0.1907 \frac{m}{h}$, D = 0.1667h, $\Delta t = \frac{D}{5} = 0.0333h$)

				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,1907	0,03333	2,242969403	2,239760749	0	0,00036042075
V1	2,241365076	C1	0,6001802104	0,1907	0,03333	2,240469386	2,238764333	0,000359946606	0,00071888528
V2	4,480981936	C2	0,6007196263	0,1907	0,03333	2,239468973	2,239252042	0,000718317783	0,00107472713
V3	6,720342443	C3	0,6016161488	0,1907	0,03333	2,2399507	2,241203449	0,001074068318	0,00142691007
V4	8,960919518	C4	0,602866638	0,1907	0,03333	2,241894153	2,244595034	0,001426163054	0,00177441090
V5	11,20416411	C5	0,604466925	0	0,03333	-0,1240678077	-0,1239096761	0,001773579833	0,00174341443
V6	11,08017537	C6	0,6062254221	0	0,03333	-0,1239097769	-0,1237516452	0,001743516384	0,00171378677
V7	10,95634466	C7	0,6079540737	0	0,03333	-0,1237517462	-0,1235936143	0,001713886375	0,00168458363
				_					
V96	0,5683247359	C96	0,6769961706	0	0,03333	-0,1096870113	-0,1095288665	0,000067885038	0,00005476650
V96 V97	0,5683247359 0,4587167971		0,6769961706 0,6770574964	0	,	,		0,000067885038 0,000054777562	
	- '	C97			0,03333	,	-0,1093708356		0,00004168793
V97	0,4587167971	C97 C98	0,6770574964	0	0,03333 0,03333	-0,1095289806 -0,1093709498	-0,1093708356 -0,1092128047	0,000054777562	0,00004168793 0,00002863556
V97 V98	0,4587167971 0,349266889	C97 C98 C99	0,6770574964 0,6771057291	0	0,03333 0,03333 0,03333	-0,1095289806 -0,1093709498 -0,1092129191	-0,1093708356 -0,1092128047 -0,1090547738	0,000054777562 0,000041698603	0,00004168793 0,00002863556 0,00001560707

Para la **tercera lluvia** $(I = 0.1626 \frac{m}{h}, D = 0.25h, \Delta t = \frac{D}{5} = 0.05h)$

				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,1626	0,05000	2,844661758	2,838580863	0	0,000685666101
V1	2,841621311	C1	0,6003428331	0,1626	0,05000	2,84030596	2,83787439	0,000684150518	0,001364861092
V2	5,680711486	C2	0,6013673389	0,1626	0,05000	2,83958315	2,840746066	0,001363015601	0,002035007285
V3	8,520876094	C3	0,6030663503	0,1626	0,05000	2,842429361	2,847117328	0,002032845891	0,00269241144
V4	11,36564944	C4	0,605428979	0,1626	0,05000	2,848766146	2,85689463	0,00268995532	0,003333463635
V5	14,21847983	C5	0,6084406884	0	0,05000	-0,1917763772	-0,1914204706	0,003330741069	0,003248279811
V6	14,0268814	C6	0,6117301989	0	0,05000	-0,1914208011	-0,1910648938	0,003248785689	0,003168336458
V7	13,83563856	C7	0,61493876	0	0,05000	-0,191065225	-0,1907093171	0,003168824358	0,003090324898

V80 0,8353225913 C80 0,7128834488 0,05000 -0,1651081727 -0,1647522126 0,000125581949 0,000100692051 V81 0,05000 -0,1647525967 -0,1643966357 0,000100725494 0,000075930732 0,6703923986 C81 0,7129965858 V82 0,5058177824 C82 0.7130849139 0 0,05000 -0,1643970207 -0,1640410589 0,000075962498 0,000051252911 V83 0,3415987426 C83 0,7131485216 0 0,05000 -0,1640414447 -0,1636854821 0,000051283015 0,000026648737 0,1777352792 C84 0,7131874875 0,05000 -0,1636858687 -0,1633299052 0,0000266772090,000002108447 V84 0,01422739225 C85 0,05000 -0,1633302927 -0,1629743284 0,000002135298 -0,00002237764 0,7132018803

Para la **cuarta Iluvia** $(I = 0.1196 \frac{m}{h}, D = 0.5h, \Delta t = \frac{D}{5} = 0.1h)$

				Datos + Calculo	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,1196	0,10000	4,098396995	4,081011597	0	0,00197572304
V1	4,089704296	C1	0,6009878615	0,1196	0,10000	4,088333013	4,086315211	0,001965040529	0,003903598899
V2	8,177028408	C2	0,6039221812	0,1196	0,10000	4,093467619	4,10635339	0,003890381261	0,005761219796
V3	12,27693891	C3	0,6087479818	0,1196	0,10000	4,113227747	4,140364018	0,005745790989	0,007519513446
V4	16,40373479	C4	0,615380634	0,1196	0,10000	4,146855327	4,187401662	0,00750236124	0,00915120447
V5	20,57086329	C5	0,6237074168	0	0,10000	-0,4064268414	-0,4050020383	0,009132980497	0,008656606238
V6	20,16514885	C6	0,6326022102	0	0,10000	-0,4050045401	-0,4035797282	0,008664630175	0,008215480885
V7	19,76085672	C7	0,6410422657	0	0,10000	-0,4035822389	-0,4021574181	0,008222908187	0,007799192749

-

V57	1,359689753	C57	0,7864674824	0	0,10000	-0,3324672248	-0,3310418637	0,000248056652	0,000186993135
V58	1,027935209	C58	0,7866850073	0	0,10000	-0,3310449257	-0,3296195514	0,000187173302	0,000126684829
V59	0,6976029702	C59	0,7868419363	0	0,10000	-0,3296226266	-0,3281972391	0,000126848289	0,000066836516
V60	0,3686930374	C60	0,7869387787	0	0,10000	-0,3282003276	-0,3267749267	0,000066983740	0,000007352311
V61	0,04120541025	C61	0,7869759468	0	0,10000	-0,3267780287	-0,3253526142	0,000007483692	-0,00005186202

Para la **quinta lluvia** $(I=0.085\frac{m}{h},\,D=1h,\,\Delta t=\frac{D}{5}=0.2h)$

				Datos + Calculo	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,085	0,20000	5,636512239	5,5891373	0	0,00543441112
V1	5,61282477	C1	0,6027172056	0,085	0,20000	5,617813744	5,629791857	0,005362558461	0,01053633162
V2	11,23662757	C2	0,6106666506	0,085	0,20000	5,656864041	5,724362211	0,01044853165	0,01514136658
V3	16,9272407	C3	0,6234615997	0,085	0,20000	5,748715322	5,865901344	0,01504396786	0,01905674987
V4	22,73454903	C4	0,6405119586	0,085	0,20000	5,886531276	6,045769109	0,01895939492	0,02212450744
V5	28,70069922	C5	0,6610539098	0	0,20000	-0,8678917002	-0,8621837072	0,02204008105	0,01940212871
V6	27,83566152	C6	0,6817750146	0	0,20000	-0,8622025394	-0,8564944218	0,01952211204	0,01722509281
V7	26,97631304	C7	0,7001486171	0	0,20000	-0,8565133795	-0,8508051355	0,01732648758	0,01532190378

-

V38	3,158364837	C38	0,853341958	0	0,20000	-0,6801499454	-0,6744367274	0,000473597702	0,000367837045
V39	2,481071501	C39	0,8537626754	0	0,20000	-0,674460824	-0,6687474018	0,000368682699	0,000266318438
V40	1,809467388	C40	0,854080176	0	0,20000	-0,6687717042	-0,6630580745	0,000267037194	0,000167362391
V41	1,143552499	C41	0,8542973758	0	0,20000	-0,6630825863	-0,6573687453	0,000167964702	0,000070311938
V42	0,4833268327	C42	0,8544165141	0	0,20000	-0,6573934702	-0,6516794142	0,000070805863	-0,00002546060

Para la **sexta Iluvia** $(I = 0.0417 \frac{m}{h}, D = 3h, \Delta t = \frac{D}{5} = 0.6h)$

dV/dt V0	dC/dt	lt	1. (may lle)					
V0			I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
	0 C0	0,	0,0417	0,60000	7,297380664	7,115175171	0	0,02110718381
V1 7,206	277917 C1	0,610553591	0,0417	0,60000	7,280178082	7,422794553	0,02011042309	0,03761824835
V2 14,55	776423 C2	0,639417927	0,0417	0,60000	7,556270501	7,958658281	0,0365747403	0,04776087305
V3 22,31	522863 C3	0,681585734	0,0417	0,60000	8,040783755	8,604680506	0,0469920485	0,05017112797
V4 30,63	796076 C4	0,730167322	0,0417	0,60000	8,623733407	9,235549054	0,05016757953	0,04529795251
V5 39,56	760199 C5	0,777900088	6 0	0,60000	-2,809263277	-2,757584944	0,04657974592	0,02676460537
V6 36,78	417788 C6	0,814572264	2 0	0,60000	-2,758064685	-2,70637736	0,03029716456	0,01808618092
V7 34,05	195685 C7	0,838763936	9 0	0,60000	-2,706866262	-2,655169598	0,02010441183	0,01243047458

-

V17	9,545917761	C17	0,8920145306	0	0,60000	-2,194893922	-2,143079328	0,000734954030	0,000513876486
V18	7,376931136	C18	0,8926389458	0	0,60000	-2,143698222	-2,09186866	0,000523549535	0,000344992563
V19	5,259147695	C19	0,8930732169	0	0,60000	-2,092502884	-2,040657603	0,000351227888	0,000200758443
V20	3,192567451	C20	0,89334921	0	0,60000	-2,041307935	-1,989446127	0,000204717679	0,000071550131
V21	1,17719042	C21	0,893487344	0	0,60000	-1,990113407	-1,938234197	0,000073917436	-0,00005046522

Para la **séptima lluvia** $(I = 0.0264 \frac{m}{h}, D = 6h, \Delta t = \frac{D}{10} = 0.6h)$

				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,0264	0,60000	3,900937532	3,801529705	0	0,0112832
V1	3,851233618	C1	0,6056416	0,0264	0,60000	3,857870712	3,870775119	0,01092995398	0,02106635482
V2	7,715556534	C2	0,6216397544	0,0264	0,60000	3,920125474	4,031038262	0,02070696763	0,02890477226
V3	11,6911384	C3	0,6464456243	0,0264	0,60000	4,069808959	4,257967327	0,02858050823	0,03418664078
V4	15,85502655	C4	0,6778291989	0,0264	0,60000	4,283284649	4,522995732	0,03396221371	0,036543027
V5	20,25816674	C5	0,7130818192	0,0264	0,60000	4,533075095	4,796036749	0,03650847755	0,03595143021
V6	24,92272266	C6	0,7493117731	0,0264	0,60000	4,790652095	5,049098346	0,03620902604	0,03279597944
V7	29,84259788	C7	0,7838142758	0,0264	0,60000	5,029908966	5,260126177	0,0334296194	0,02782436392
V8	34,98761545	C8	0,8144412675	0,0264	0,60000	5,230587222	5,415905663	0,02886162122	0,0219849573
V9	40,31086189	C9	0,8398645567	0,0264	0,60000	5,38064032	5,512957559	0,0233719332	0,01619550305
V10	45,75766083	C10	0,8596482749	0	0,60000	-2,919907425	-2,868247428	0,01780196559	0,009313451076
V11	42,86358341	C11	0,8732059832	0	0,60000	-2,8687085	-2,817040197	0,01107307742	0,006062124782

-

V24	9,900058896	C24	0,8988601092	0	0,60000	-2,20313992	-2,15132767	0,000108803548	0,000076516370
V25	7,7228251	C25	0,8989527692	0	0,60000	-2,151944165	-2,100117063	0,000077975946	0,000052059969
V26	5,596794487	C26	0,8990177871	0	0,60000	-2,100748767	-2,04890607	0,000053001360	0,000031320863
V27	3,521967068	C27	0,8990599482	0	0,60000	-2,049553753	-1,997694664	0,000031921191	0,000012891993
V28	1,49834286	C28	0,8990823548	0	0,60000	-1,998359155	-1,946482809	0,000013256473	-0,00000435994

Para la **octava Iluvia** $(I = 0.0167 \frac{m}{h}, D = 12h, \Delta t = \frac{D}{10} = 1.2h)$

				Datos + Calculo	s auxiliares				
dV/dt		dC/dt		I (m/h)	△t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,0167	1,20000	3,495273968	3,316683989	0	0,02021969074
V1	3,405978978	C1	0,6101098454	0,0167	1,20000	3,4460812	3,512414922	0,01903914584	0,0357868652
V2	6,885227039	C2	0,6375228509	0,0167	1,20000	3,614300845	3,87472242	0,0348483161	0,04608600628
V3	10,62973867	C3	0,6779900121	0,0167	1,20000	3,938146451	4,322393784	0,04550583967	0,04958193325
V4	14,76000879	C4	0,7255338985	0,0167	1,20000	4,339066096	4,764432981	0,04965576811	0,04596580879
V5	19,31175833	C5	0,773344687	0,0167	1,20000	4,732595351	5,118516008	0,04716472015	0,03685537845
V6	24,23731401	C6	0,8153547363	0,0167	1,20000	5,046952425	5,334299328	0,03956026419	0,02545883054
V7	29,42793988	C7	0,8478642837	0,0167	1,20000	5,241547493	5,405969092	0,02958470457	0,0150759776
V8	34,75169818	C8	0,8701946247	0,0167	1,20000	5,313227831	5,363556746	0,01997297035	0,007596195465
V9	40,09009046	C9	0,8839792077	0,0167	1,20000	5,286169886	5,250333101	0,01238491582	0,003181338334
V10	45,35834196	C10	0,8917623347	0	1,20000	-5,825793241	-5,617248612	0,00720498935	0,000787210533
V11	39,63682103	C11	0,8957584347	0	1,20000	-5,621049227	-5,4123634	0,003241880541	0,000655715491
V12	34,12011472	C12	0,8977072327	0	1,20000	-5,416310454	-5,207472325	0,001508490209	0,000434091245

V15 18 79888684 C15 0.8994470928 1 20000 -4 802132423 -4 592755923 0 000200427086 0 000095133614 V16 14,10144266 C16 0,8995948731 0 1,20000 -4,597422081 -4,387832634 0,000110160680 0,000054056959 V17 9,608815305 C17 0,899676982 0 1,20000 -4,392721441 -4,182898205 0,000059850618 0,000026469731 V18 5,321005482 C18 0.8997201421 0 1,20000 -4,188031962 -3,977950877 0,0000287146310,000005486725 V19 1,238014062 C19 0,8997372428 0 1,20000 -3,983355409 -3,772988499 0,000006272666 -0,00001357780

Para la **novena Iluvia** $(I = 0.0109 \frac{m}{h}, D = 24h, \Delta t = \frac{D}{30} = 0.8h)$

				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	△t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,0109	0,80000	0,6134619337	0,592176097	0	0,002365863294
V1	0,6028190153	C1	0,6011829316	0,0109	0,80000	0,5989046415	0,5907371498	0,002315651056	0,004580492293
V2	1,197639911	C2	0,6046310033	0,0109	0,80000	0,5969663235	0,6010234664	0,004547491967	0,00670928842
V3	1,796634806	C3	0,6102593935	0,0109	0,80000	0,6067665079	0,6221782177	0,006691907763	0,008745169457
V4	2,411107169	C4	0,6179779321	0,0109	0,80000	0,6274382564	0,6533352166	0,008741387636	0,01067469403
V5	3,051493905	C5	0,627685973	0,0109	0,80000	0,6580991493	0,6935792296	0,01068226363	0,01247663616
				,		,			

-

V27	28,92385842	C27	0,8952291043	0,0109	0,80000	1,336309668	1,311042126	0,001773931797	0,001165825674
V28	30,24753432	C28	0,8966989831	0,0109	0,80000	1,309734656	1,282850949	0,001283566879	0,000818432703
V29	31,54382712	C29	0,8977499829	0,0109	0,80000	1,281945523	1,254088543	0,000912390978	0,000564456505
V30	32,81184415	C30	0,8984884066	0	0,80000	-3,577741055	-3,485525062	0,000637597195	0,00032845818€
V31	29,28021109	C31	0,8989714343	0	0,80000	-3,486729006	-3,394481149	0,000387156910	0,000212679513
V32	25,83960602	C32	0,8992713525	0	0,80000	-3,395717799	-3,303436323	0,000242038322	0,00014039743
V33	22,49002896	C33	0,8994625704	0	0,80000	-3,304707506	-3,212390506	0,000155379021	0,000094225995

-

V36	12,98746628	C36	0,8997261529	0	0,80000	-3,031682943	-2,93924617	0,000045720753	0,000029196559
V37	10,00200173	C37	0,8997636115	0	0,80000	-2,940677191	-2,848195391	0,000030394427	0,000018699137
V38	7,107565437	C38	0,8997881583	0	0,80000	-2,849672855	-2,757143056	0,000019355885	0,000010535960
V39	4,304157481	C39	0,8998031042	0	0,80000	-2,758670077	-2,666089002	0,000010894449	0,000003695406
V40	1,591777941	C40	0,8998103992	0	0,80000	-2,66766902	-2,575033045	0,000003879747	-0,00000256868

Para la **décima lluvia** $(I=0.0052\frac{m}{h}, D=72 h, \Delta t \rightarrow 0)$

Verificación de orden 1

El orden de un método numérico para resolver ecuaciones diferenciales se refiere a la velocidad con la que el error del método disminuye a medida que se reduce el tamaño del paso (Δt).

A continuación, demostraremos esta afirmación a partir de la comparación del modelo RK2 y Euler con dos pasos de tiempo distintos. Se tomará la solución de RK2 como exacta para

medir el error que sugiere el método de Euler. Los resultados no son iguales a los obtenidos anteriormente, ya que ahora se utiliza la bomba calculada en el punto B: $Q_{max} = 30 \frac{m^3}{h}$.

Método Runge-Kutta de orden 2:

$$D = 1h$$
, $\Delta t = \frac{D}{15} = 0.0667h$

RK2				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,085	0,06667	1,280073254	1,266253714	0	0,00041139177
V1	1,273163484	C1	0,6002056959	0,085	0,06667	1,267046454	1,255018017	0,000408890553	0,000814703860
V2	2,53419572	C2	0,6008174931	0,085	0,06667	1,2557904	1,245498428	0,000812224108	0,001211414344
V3	3,784840133	C3	0,6018293123	0,085	0,06667	1,246249263	1,237638546	0,001208960227	0,00160052345
				_					
				,					
V12	14,83246014		0,6274597613	0,085	0,06667	1,227964956	1,231845764	0,00433055290	0,00461456768
V13	16,0623655	C13	0,6319323216	0,085	0,06667	1,232324301	1,237280144	0,00461268166	0,004881111666
V14	17,29716772	C14	0,6366792182	0,085	0,06667	1,237726812	1,24369134	0,00487932401	0,00513158855
V15	18,5378768	C15	0,6416846745	0	0,06667	-0,9981223654	-0,9891930133	0,00512990935	0,00475731294
V16	17,54421911	C16	0,6466282857	0	0,06667	-0,9892331344	-0,9803034202	0,00476202530	0,00440906390
V17	16,55945083	C17	0,6512138303	0	0,06667	-0,9803439068	-0,9714138237	0,00441338373	0,00407844795
				-					
V32	2,854656148	C32	0,6865686986	0	0,06667	-0,8470059544	-0,8380694003	0,000652696738	0,00045763109
V33	2,012118471	C33	0,6871238625	0	0,06667	-0,838116794	-0,8291797345	0,000458859846	0,000267151786
V34	1,178470207	C34	0,6874868683	0	0,06667	-0,829227639	-0,8202900631	0,000268289641	0,000079407924
V35	0.3537113557	C35	0,6876607171	0	0,06667	-0,8203384896	-0,811400386	0,000080459786	-0,00010610485

Usando el mismo paso de tiempo, aplicamos el método de Euler:

Euler				Datos + Calculos	s auxiliares
dV/dt		dC/dt		I (m/h)	∆t (h)
V0	0	C0	0,6	0,085	0,06667
V1	1,280073254	C1	0,6	0,085	0,06667
V2	2,546326968	C2	0,6004113918	0,085	0,06667
V3	3,800570518	C3	0,6012286118	0,085	0,06667
V4	5,044557558	C4	0,6024450424	0,085	0,06667

16,03975897 C13 0,629798704 V13 0,06667 0,085 V14 17,26483377 C14 0,6344415555 0,085 0,06667 V15 18,49503281 C15 0,6393531448 0 0,06667 17,49729209 C16 0,6445173931 V16 0 0,06667 0,6493062484 V17 16,50848074 C17 0,06667

	,		,		,
V32	2,748099406	C32	0,6864586185	0	0,06667
V33	1,902212514	C33	0,6870872759	0	0,06667
V34	1,065262239	C34	0,6875211465	0	0,06667
V35	0,2372490914	C35	0,6877636241	0	0,06667

Calculamos los errores en dos momentos claves del proceso: donde el volumen es máximo, y al final (sótano prácticamente sin agua), para corroborar que el error no se incrementa demasiado a lo largo del tiempo.

$$e_{Euler} = \left| \frac{V_{Euler} - V_{RK2}}{V_{RK2}} \right|$$

Para el volumen máximo:

$$e_{Euler} = \left| \frac{18,4950m^3 - 18,5378m^3}{18,5378m^3} \right| = 0,002311 = 0.2311\%$$

Para la última iteración (sótano prácticamente sin agua):

$$e_{Euler} = \left| \frac{0.2372m^3 - 0.3537m^3}{0.3537m^3} \right| = 0,3292 = 32.92\%$$

Nuevamente el método Runge-Kutta de orden 2 (con otro paso de tiempo):

$$D = 1h$$
, $\Delta t = \frac{D}{30} = 0.0333h$

RK2				Datos + Calculos	s auxiliares				
dV/dt		dC/dt		I (m/h)	∆t (h)	V_q1	V_q2	C_q1	C_q2
V0	0	C0	0,6	0,085	0,03333	0,6400366269	0,6365672461	0	0,000102847943
V1	0,6383019365	C1	0,600051424	0,085	0,03333	0,6366664546	0,6334232017	0,00010255161	0,000204770430
V2	1,273346765	C2	0,600205085	0,085	0,03333	0,6335211783	0,6305006172	0,00020447512	40,000305997655
V3	1,905357662	C3	0,6004603214	0,085	0,03333	0,6305973244	0,6277960092	0,00030570349	0,000406463893
V4	2,534554329	C4	0,6008164051	0,085	0,03333	0,6278914098	0,6253058808	0,00040617099	0,000506104724
V5	3,161152974	C5	0,6012725429	0,085	0,03333	0,6253999382	0,6230267181	0,00050581323	10,000604857013
\/28	17 20007700	C28	0.6366814166	0.085	0 03333	0.6188586485	0.6203425473	0.00243991094	130 00250377051
V28	17,29907709	C28	0,6366814166	0,085	0,03333	0,6188586485	0,6203425473	0,00243991094	3 0,00250377951
V29	17,91867769	C29	0,6391532618	0,085	0,03333	0,6203950187	0,6219988017	0,00250357668	37 0,00256539656
			0.6416877484	0	0,03333	-0,4990700789	-0 4968427561	0.00256520057	10 00247136030
V30	18,5398746	C30	0,0410077404		0,00000	-,	0,1000121001	,	0,002 11 100000
	18,5398746 18,04191818		0,6442060288	0					0,00238066103
V30	,		,						
V30	,	C31	,			-0,4968477375	-0,4946203923	0,00247196629	
V30 V31	18,04191818	C31	0,6442060288	0	0,03333	-0,4968477375	-0,4946203923 -0,4146152147	0,00247196629	0,00238066103
V30 V31 V67	18,04191818 1,595574018	C31 C67 C68	0,6442060288	0	0,03333 0,03333 0,03333	-0,4968477375 -0,4168435232	-0,4946203923 -0,4146152147 -0,4123928459	0,00247196629 0,00018174554 0,00013429163	0,00238066103

Usando el mismo paso de tiempo, aplicamos el método de Euler:

Euler				Datos + Calculos	s auxiliares
dV/dt		dC/dt		I (m/h)	∆t (h)
V0	0	C0	0,6	0,085	0,03333
V1	0,6400366269	C1	0,6	0,085	0,03333
V2	1,276603873	C2	0,6001028479	0,085	0,03333
V3	1,909928992	C3	0,600307916	0,085	0,03333

-

V26	16,05113166	C26	0,6308701894	0,085	0,03333
V27	16,66548929	C27	0,6331840489	0,085	0,03333
V28	17,28109896	C28	0,6355658166	0,085	0,03333
V29	17,89808946	C29	0,6380135182	0,085	0,03333
V30	18,51658539	C30	0,6405251449	0	0,03333
V31	18,01761902	C31	0,643098654	0	0,03333
V32	17,52087999	C32	0,6455779782	0	0,03333

-

V67	1,538416403	C67	0,6873275465	0	0,03333
V68	1,12187772	C68	0,6875027951	0	0,03333
V69	0,7075673504	C69	0,6876304885	0	0,03333
V70	0,2954853259	C70	0,6877109761	0	0,03333

Calculamos los errores en la iteración donde el volumen es máximo y en la última.

$$e_{Euler} = \left| \frac{V_{Euler} - V_{RK2}}{V_{RK2}} \right|$$

Para el volumen máximo:

$$e_{Euler} = \left| \frac{18,5165m^3 - 18,5398m^3}{18,5398m^3} \right| = 0,001256 = 0.1256\%$$

Para la última iteración (sótano prácticamente sin agua):

$$e_{Euler} = \left| \frac{0.2954m^3 - 0.3550m^3}{0.3550m^3} \right| = 0, 1677 = 16.77\%$$

A continuación, vemos la comparación entre el error en Euler tanto en la última iteración, cuando el sótano está prácticamente vacío, como en la que se produce el volumen máximo.

	Error Euler volumen máximo	Error Euler última iteración
△t =D/15	0,002311159478	0,3292579173
△t =D/30	0,001256168686	0,1677711454
(∆t =D/15) / (∆t =D/30)	1,839848026	1,962541989

La relación entre los errores de distinto paso de tiempo, es aproximadamente de 2:1. Esto permite dilucidar que el método de Euler es de orden 1, ya que al reducir el paso de tiempo a la mitad, el error también se reduce aproximadamente a la mitad.

Aunque reducir el paso de tiempo mejora la precisión, también incrementa el tiempo de cálculo y los recursos computacionales necesarios, lo que debe ser considerado al elegir el tamaño del mismo.

Observamos gráficamente cómo se comportan ambos errores:

Error relativo del método de Euler para △t = D/30

Conclusiones

D) Presente sus conclusiones del trabajo práctico. En particular, comente sobre la relación problema físico-problema numérico, los tipos de errores involucrados en la resolución del problema numérico, la importancia/efecto de cada uno, estabilidad y consistencia.

Solución:

En el contexto de la resolución de problemas físicos mediante métodos numéricos, es crucial establecer una correspondencia precisa entre el problema físico y su formulación numérica. Esto implica traducir las leyes y principios físicos (como las ecuaciones de conservación de masa y del coeficiente de infiltración) en un conjunto de ecuaciones matemáticas que puedan ser resueltas con métodos numéricos.

Durante la resolución de este trabajo pudieron surgir errores en distintas instancias:

- Modelado: Cuando el modelo numérico no representa correctamente el sistema físico, pueden surgir errores. Una de las principales razones por las que se da, es la simplificación del problema para facilitar su resolución. Entendemos que el dimensionamiento de una bomba resulta un cálculo mucho más complejo, teniendo en cuenta variables que aquí no tuvieron relevancia. Por ejemplo, datos topográficos del área, los materiales con los que está construido el sótano, modelos hidráulicos que simulan el movimiento del agua dentro del sótano, calidad de la bomba, entre otros. A su vez, en este modelo calculamos una entrada uniforme del caudal con lluvias de intensidades constantes que no siempre es así en la realidad.
- Paso de tiempo elegido: A mayor paso de tiempo, mayor será el error. Por lo tanto, cuanto mayor sea este menos información proporciona ya que analiza el

comportamiento en puntos más espaciados de tiempo. Inclusive, si se utiliza un método explícito, podría generar inestabilidad (si se toma un paso de tiempo demasiado grande).

- <u>Redondeo</u>: Van a darse errores debido a la pérdida de decimales. Se ve claramente, cuando se resolvieron las cuentas manuales el resultado tuvo un mayor error por redondeo que cuando se resolvieron con el excel, gracias a la precisión del mismo.
- <u>Estabilidad</u>: Un método numérico es estable si los errores introducidos en cada paso no crecen exponencialmente a medida que avanza el cálculo. La estabilidad depende de la elección del paso de tiempo y del método numérico.

Con lo cual podemos arribar a las siguientes conclusiones:

- La precisión de los resultados numéricos depende significativamente del equilibrio entre el tamaño del paso de tiempo y el orden del método utilizado.
- Un paso de tiempo pequeño reduce los errores de discretización pero aumenta el costo computacional.
- Métodos de mayor orden como RK-2 permiten usar pasos de tiempo más grandes sin comprometer la precisión, mejorando la eficiencia computacional.
- La estabilidad garantiza que las simulaciones a largo plazo sean fiables.

Pudimos analizar cómo los distintos métodos transmiten el error entre iteraciones. Un método numérico es consistente si el error de truncamiento tiende a cero a medida que el tamaño del paso de discretización tiende a cero. La consistencia asegura que la solución numérica se aproxima a la solución exacta del problema conforme se refine la discretización.

En resumen, los métodos numéricos aplicados en este trabajo (Euler y RK-2) permiten modelar de manera efectiva el problema de inundación y desagote, con un balance adecuado entre precisión y eficiencia computacional. La elección del método y el tamaño del paso de tiempo son cruciales para garantizar resultados precisos y estables, lo que es esencial para dimensionar adecuadamente la bomba de desagote y mitigar los efectos de inundaciones extremas.