

## **Solution of Right Triangles**

For Angle A. 
$$\sin = \frac{a}{c}$$
,  $\cos = \frac{b}{c}$ ,  $\tan = \frac{a}{b}$ ,  $\cot = \frac{b}{a}$ ,  $\sec = \frac{c}{b}$ ,  $\csc = \frac{c}{a}$ 

| Given | Required |                                                                                      |
|-------|----------|--------------------------------------------------------------------------------------|
| a,b   | A,B,c    | $\tan A = \frac{a}{b} = \cot B, c = \sqrt{a^2 + b^2} = a\sqrt{1 + \frac{b^2}{a^2}}$  |
| a,c   | A,B,b    | $\sin A = \frac{a}{c} = \cos B, b = \sqrt{(c+a)(c-a)} = c\sqrt{1 - \frac{a^2}{c^2}}$ |
| A,a   | B,b,c    | $B = 90^{\circ} - A, b = a \cot A, c = \frac{a}{\sin A}$                             |
| A,b   | В,а,с    | $B = 90^{\circ} - A, a = b \tan A, c = \frac{b}{\cos A}$                             |
| A,c   | B,a,b    | $B = 90^{\circ} - A, a = c \sin A, b = c \cos A$                                     |

## **Solution of Oblique Triangles**

| Given   | Required |                                                                                                                                     |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| A,B,a   | b,c,C    | $b = \frac{a \sin B}{\sin A}, C = 180^{\circ} - (A + B), c = \frac{a \sin C}{\sin A}$                                               |
| A,a,b   | B,c,C    | $\sin B = \frac{b \sin A}{a}, C = 180^{\circ} - (A + B), c = \frac{a \sin C}{\sin A}$                                               |
| a,b,C   | A,B,c    | $A + B = 180^{\circ} - C$ , $\tan \frac{1}{2} (A - B) = \frac{(a - b) \tan \frac{1}{2} (A + B)}{a + b} c = \frac{a \sin C}{\sin A}$ |
| a,b,c   | A,B,C    | $s = \frac{a+b+c}{2}$ , $\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}$ , $\sin B = \frac{1}{2}\sqrt{\frac{(s-a)(s-c)}{ac}}$ ,   |
|         |          | $C = 180^{\circ} - (A + B)$                                                                                                         |
| a,b,c   | Area     | $s = \frac{a+b+c}{2} , \text{ area} = \sqrt{s(s-a)(s-b)(s-c)}$                                                                      |
| A,b,c   | Area     | $area = \frac{b c \sin A}{2}$                                                                                                       |
| A,B,C,a | Area     | $area = \frac{a^2 \sin B \sin C}{2 \sin A}$                                                                                         |

## **CURVE FORMULA**

D = Degree of Curve

1° = 1-Degree of Curve

2° = 2-Degree of Curve

P.C. = Point of Curve

P.T. = Point of Tangent

P.I. = Point of Intersection

I = Intersection of Angle,

Angle between to Tangents

L = Length of Curve

T = Tangent Distance

E = External Distance

R = Radius

L.C. = Length of Cord

M = Length of Middle Ordinate

c = Length of Sub-Cord

d = Angle of Sub-Cord



$$\frac{\text{L.C.}}{2}$$
 = R sin  $\frac{\text{I}}{2}$ , D 1° = R = 5730, D 2° =  $\frac{5730}{2}$ , D =  $\frac{5730}{R}$ 

$$M = R(1 - \cos \frac{1}{2} I), = R - R \cos \frac{I}{2}$$

$$\frac{E+R}{R} = \sec \frac{I}{2}, \frac{R-M}{R} = \cos \frac{I}{2}$$

$$c = 2 R \sin \frac{1}{2} t$$

L.C. = 
$$2 R \sin \frac{1}{2} I$$
,  $E = R (\sec \frac{1}{2} I - 1)$ ,  $= R \sec \frac{I}{2} - R$ 



## MISCELLANEOUS CONVERSION FACTORS

1 Meter = 3.280833 feet

1 Foot = 0.304801 meters

1 Link = 0.66 feet

1 Chain = 66 feet

80 Chains = 5280 feet = 1 mile

1 Acre = 43,560 square feet

640 Acres = 1 square mile

1 Kilometer = 0.621 miles

1 Mile = 1.609 kilometers

1 Hectare = 2.471 or 2 1/2 acres

 $\pi = 3.14159$ 

1 Radian = 57.2958 degrees