Fundamentos de Bancos de Dados

Aula 1

Prof. Me. Marco Aurelio M. Antunes

Marco Aurelio Migliorini Antunes

Formação:

Curso Técnico: Técnico em Contabilidade Graduação: Análise de Sistemas – USC

Graduação: Matemática - FAEL

Pós Graduação: Recursos Humanos com Sistemas de Informação - FIB

Mestrado: Tv Digital – FAAC – UNESP

- Lógica de Programação
- Banco de Dados
- Desenvolvimento de Sistemas
- Desenvolvimento de Sites
- Pós Graduação FIB
- Professor/Coordenador Curso Técnico em Informática ABFA/INSSC
- Professor/Coordenador Fibonline/Atividade Complementar FIB

Contato:

- prof_antunes@outlook.com
- https://www.linkedin.com/in/marco-aurelio-m-antunes-85826027/
- http://lattes.cnpq.br/0148514838383451

Fundamentos de Bancos de Dados

Ementa:

Conceitos de Sistema Gerenciador de Banco de Dados. Conceitos de Banco de Dados. Conceitos, arquitetura e modelos de dados. Estudar modelos de Entidade-Relacionamento e modelo Relacional. Estudar Normatização e Normalização de Arquivos de Dados. Utilizar ferramentas de administração e segurança de Banco de Dados.

Objetivos Gerais:

Preparar e capacitar os alunos a planejarem e desenvolverem sistemas de gerenciamento de banco de dados de forma interativa e programada. E realizar análise e modelagem de dados na programação contida em um sistema, buscando sua otimização e a prevenção de falhas que podem ocorrer durante a sua utilização.

Objetivos Específicos:

- Proporcionar ao aluno o conhecimento necessário para o criar e gerenciar banco de dados em sistemas completos utilizando scripts e funções.
- Desenvolver a capacidade de realizar a análise, modelagem de dados e otimização de banco de dados, tabelas e relacionamentos.
- Capacitar os alunos com comandos e técnicas de operação, proporcionando assim, condições de gerenciar banco de dados de forma interativa e programada.
- Estudos de exemplos práticos e simulações de recuperação de dados, segurança de banco de dados e backup de dados.

CONTEÚDO PROGRAMÁTICO

Conceitos Básicos

- Terminologia básica de banco de dados
- Dados e Informações
- Definição de Banco de Dados, tabelas e campos
- Gerência de Banco de Dados
- Inserir/Consultar informações

Organização de Arquivos

- Tipos de organização de arquivos
- Montagem de Banco de Dados
- Manutenção de Arquivos
- Recuperação de Dados
- Relacionamento entre tabelas
- Pesquisar/Filtrar informações

Banco de Dados

- Criação do banco de dados
- Ambiente de Trabalho
- Criação de tabelas
- Inclusão de Dados registros
- Manutenção de Dados
- Operações com arquivos
- Excluir/Alterar informações

Fundamentos de Bancos de Dados

Bibliografia:

MANZANO, J. A. N. G., Microsoft SQL Server 2014 Express. Guia Prático e Interativo, 1^a ed. Erica, 2014, 224p.

GONCALVES, R.R., **T-SQL com Microsoft SQL Server 2012 Express na prática**, 1^a ed. Erica, 2013, 120p.

BAPTISTA, L. F., Linguagem SQL - Guia Prático de Aprendizagem, 1^a ed., Erica, 2011, 160p.

MANZANO, J. A. N. G., Microsoft SQL Server 2008 R2 Express - Guia **Prático**, 1^a ed., Erica, 2011, 208p.

MANZANO, J. A. N. G., Microsoft SQL Server 2012 Express - Guia Prático e Interativo, 1^a ed., Erica, 2012, 208p.

Fundamentos de Bancos de Dados

Planejamento: 1º Bimestre

```
9 aulas
28/04 - Avaliação Bimestral - Prova Escrita
TODAS as listas de exercício - 1 ponto
```

Planejamento: 2º Bimestre

```
5 aulas
02/06 - Avaliação Bimestral - Prova Escrita - peso 7
09/06 - Avaliação Bimestral - Prova Escrita - peso 3
TODAS as listas de exercício - 1 ponto
```

2ª Chamada

23/06 - 1º Bimestre e/ou 2º Bimestre

Exame Final

30/06 - Matéria do semestre

Informações Importantes

Sistema Acadêmico:

http://www.fibbauru.br/alunos

Calendário Acadêmico:

https://fibbauru.br/custom/561/uploads/calendario-academico/calendario-academico-2022-primeiro-semestre.pdf

Jornada Científica:

http://www.fibbauru.br/site/conteudo/174-como-participar.html

Atividades Complementares:

Atendimento presencial – toda segunda-feira das 19h as 20h30

Banco de Dados

O que é um Banco de Dados?

São **coleções de informações que se relacionam** de forma que crie um sentido. São de vital importância para empresas, e há duas décadas se tornaram a **principal peça** dos sistemas de informação.

São conjuntos de arquivos relacionados entre si com registros sobre **pessoas**, **lugares**, **ocorrências**, **comportamento**, **preferências ou tendências**.

São coleções organizadas de dados que **se relacionam de forma a criar algum sentido (Informação)** e dar mais eficiência durante uma pesquisa ou estudo científico.

É um ambiente onde é possível armazenar dados de forma organizada, gerando conjuntos de arquivos. Ele permite o **agrupamento de informações** que, posteriormente, podem ser extraídas para outras funções.

Um sistema de gerenciamento de banco de dados **(SGBD)** é um software que possui recursos capazes de manipular as informações do banco de dados e interagir com o usuário – SQL Server / Oracle / MySQL.

Para que serve um Banco de Dados?

1. Bancos de dados armazenam e dão acesso rápido às informações

É por meio dos bancos de dados que os analistas de suporte ao cliente/usuário têm acesso às bases de dados de uma empresa para trazer à tona **informações**. Além disso, eles ajudam a evitar os custos e a inconveniência de lidar com registros em papel.

2. Permitem automatizar processos

Os bancos de dados também são muito úteis porque eles podem **automatizar uma série de procedimentos**. Em vez de verificar as transações financeiras manualmente, por exemplo, os responsáveis podem trabalhar com bases de dados e parametrizar (definir) comandos para que elas gerem relatórios automáticos.

3. São fundamentais para nortear planos de ação e tomada de decisão Os bancos de dados podem determinar várias iniciativas. Da política de promoções personalizada à segmentação de ações de marketing, passando por projetos de expansão dos negócios, entre outras.

DEFINIÇÕES IMPORTANTES

Muitos consideram *dados e informações* como palavras sinônimas, mas na verdade não são. Para entender o que é um banco de dados é muito importante saber a diferença entre essas duas palavras.

Dados são registros soltos, aleatórios, sem quaisquer análise, que constituem a matéria prima da informação, ou seja, é a informação não tratada que ainda não apresenta relevância.

Exemplos de dados

Dados do estudante: sobre os formulários de admissão: quando os alunos recebem admissão em uma faculdade. Eles preenchem o formulário de admissão. Este formulário contém fatos em bruto (dados do aluno) como nome, nome do pai, endereço do aluno etc.

Dados dos cidadãos: durante o recenseamento, os dados de todos os cidadãos são coletados.

Dados do levantamento: diferentes empresas coletam dados por pesquisa para conhecer a opinião das pessoas sobre seu produto.

Informação é a ordenação e organização dos dados de forma a transmitir significado e compreensão dentro de um determinado contexto. Seria o conjunto ou consolidação dos dados de forma a fundamentar o conhecimento.

Exemplos de informações

Etiquetas de endereço do estudante/clientes: os dados armazenados dos alunos/clientes podem ser usados para imprimir rótulos de endereços dos alunos/clientes.

Relatório do Censo: os dados do Censo são utilizados para obter relatórios / informações sobre a população total de um país e a taxa de alfabetização, costumes de gastos.

Relatórios de pesquisa e resultados: os dados da pesquisa são resumidos em relatórios / informações para apresentar ao gerenciamento da empresa que buscam obter **CONHECIMENTO**.

Metadados - são dados sobre dados - mais especificamente, informações sobre um determinado conteúdo. São **informações estruturadas que descrevem, explicam, localizam**, ou seja, tornam fácil recuperar, usar ou gerenciar uma fonte de informação. Como exemplo, no contexto de uma biblioteca, onde os dados são o conteúdo dos títulos em estoque, os metadados a respeito de um título normalmente incluem uma descrição do conteúdo, o autor, a data de publicação e sua localização física.

Os tipos mais comuns de metadados são:

- Número de telefones, endereços de e-mail e os nomes das pessoas que usam serviços;
- Dados de Localização: onde está o seu telefone celular;
- Data e hora em que foram feitas as ligações, e-mails, arquivos e fotos;
- Informações do aparelho que você está usando;
- Os títulos (assuntos) de seus e-mails;

A gestão dos bancos de dados

A fim de poder controlar os dados bem como os usuários, é necessário um sistema de gestão. A gestão do banco de dados faz-se graças a um sistema chamado **SGBD** (**Sistema de Gestão de Bancos de Dados**). O SGBD é um conjunto de serviços (aplicações software) que permitem gerenciar os bancos de dados, quer dizer:

- permitir o acesso aos dados de maneira simples;
- autorizar um acesso às informações a múltiplos usuários;
- manipular os dados presentes no banco de dados (inserção, supressão, modificação).

DB2

http://db-engines.com/en/ranking

383 systems in ranking, February 2022

	Rank				Score		
Feb 2022	Jan 2022	Feb 2021	DBMS	Database Model	Feb 2022	Jan 2022	Feb 2021
1.	1.	1.	Oracle 🕂	Relational, Multi-model 🔞	1256.83	-10.05	-59.84
2.	2.	2.	MySQL 🚹	Relational, Multi-model 👔	1214.68	+8.63	-28.69
3.	3.	3.	Microsoft SQL Server 🚹	Relational, Multi-model 🚺	949.05	+4.24	-73.88
4.	4.	4.	PostgreSQL 🚦 🗐	Relational, Multi-model 🔞	609.38	+2.83	+58.42
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🚺	488.64	+0.07	+29.69
6.	6.	↑ 7.	Redis 😷	Key-value, Multi-model 🔞	175.80	-2.18	+23.23
7.	7.	4 6.	IBM Db2	Relational, Multi-model 👔	162.88	-1.32	+5.26
8.	8.	8.	Elasticsearch	Search engine, Multi-model 🚺	162.29	+1.54	+11.29
9.	9.	1 11.	Microsoft Access	Relational	131.26	+2.31	+17.09
10.	10.	4 9.	SQLite :	Relational	128.37	+0.94	+5.20
11.	11.	4 10.	Cassandra 🚹	Wide column	123.98	+0.43	+9.36
12.	12.	12.	MariaDB 🚹	Relational, Multi-model 🔞	107.11	+0.69	+13.22
13.	13.	13.	Splunk	Search engine	90.82	+0.37	+2.28
14.	14.	1 5.	Microsoft Azure SQL Database	Relational, Multi-model 👔	84.95	-1.37	+13.67
15.	1 7.	↑ 35.	Snowflake 😷	Relational	83.18	+6.36	+64.96
16.	4 15.	4 14.	Hive 😷	Relational	81.88	-1.57	+9.56
17.	4 16.	17.	Amazon DynamoDB 😷	Multi-model 👔	80.36	+0.50	+11.21
18.	18.	4 16.	Teradata 😷	Relational, Multi-model 📵	68.57	-0.56	-2.33
19.	19.	↑ 20.	Solr	Search engine, Multi-model 👔	58.53	+0.00	+7.84
20.	20.	4 19.	Neo4j 🚹	Graph	58.25	+0.21	+6.08
21.	21.	21.	SAP HANA 🖪	Relational, Multi-model 📵	56.31	-0.61	+6.09
22.	22.	22.	FileMaker	Relational	54.14	-1.72	+7.94
23.	23.	4 18.	SAP Adaptive Server	Relational, Multi-model 📵	49.54	-1.52	-2.71
24.	24.	24.	Google BigQuery 😷	Relational	45.10	-0.52	+9.21
25.	25.	4 23.	HBase ⊕ ⊜	Wide column	43.62	-0.37	-0.87
26.	26.	4 25.	Microsoft Azure Cosmos DB 🖪	Multi-model 👔	39.95	-0.09	+8.29

Microsoft SQL Server

Um Sistema Gerenciador de Banco de Dados(SGDB) necessita de uma linguagem que permita aos usuários acesso aos dados.

SQL(Structured Query Language) – Linguagem Estruturada de Consultas é a linguagem utilizada por muitos sistemas de banco de dados relacionais.

Principais Características

- Compartilhamento de dados;
- Recuperação de dados;
- Inserir, atualizar e excluir registros de uma tabela;
- Criar, modificar e excluir objetos do banco de dados;
- Controlar acesso ao banco de dados;
- Garantir consistência de dados;
- Cópias segurança.
- Evitar redundância de dados.

Banco de Dados

Após a instalação SQL Server Management Studio Express New Query – Nova Consulta

Criando um Banco de Dados

Um banco de dados é um conjunto coerente e lógico de dados relacionados. Esses dados representam aspectos do mundo real e devem ser mantidos para atender aos requisitos da empresa e estão dispostos em uma ordem pré-definida para atender a determinadas necessidades dos usuários.

Para iniciar o trabalho de criação do banco de dados, deve-se inicialmente transformar o modelo lógico, representado pelo modelo de Entidade-Relacionamento, no modelo físico que será implementado.

O processo básico consiste em atribuir tipo de dado e tamanho para cada um dos atributos identificados.

Sintaxe

CREATE DATABASE nome_do_banco_de_dados;

REGRAS: Nome_do_banco_de_dados

- Deve ser único.
- Não pode usar nome composto.
- Não pode começar com número.
- Não pode usar acentos, cedilhas e símbolos e caracteres especiais.

Obs. O terminador de comando específico utilizado pelo SQL é ponto e vírgula (;) e os comentários de sintaxe é utilizado dois traços (--).

IMPORTE!!! Fique atento aos bons costumes da programação!

-- criando banco de dados FIB create database fib;

Obs. Mensagem esperada **Command(s) completed successfully.**

Obs. Tentativa de duplicação do banco de dados

Msg 1801, Level 16, State 3, Line 2

O banco de dados 'fib' já existe. Selecione um nome de banco de dados diferente.

Selecionando banco de dados

Para conectar-se a um Banco de dados, utilize:

USE nome_do_banco_de_dados;

use fib;

TIPOS DE DADOS

VARCHAR(N): Armazena N caracteres (até 8.000). Se a quantidade de caracteres armazenada no campo for menor que o tamanho total especificado em N, **o resto do campo não é preenchido.**

DECIMAL(I,D): Armazena valores numéricos inteiros com casas decimais utilizando precisão. I deve ser substituído pela quantidade de dígitos total do número e D deve ser substituído pela quantidade de dígitos da parte decimal (após a vírgula).

OBS. Lembrando sempre que o SQL Server internamente armazena o separador decimal como ponto (.) e o separador de milhar como vírgula (,).

INT: Valores numéricos inteiros variando de -2.147.483.648 até 2.147.483.647

DATETIME: Armazena hora e data variando de 1 de janeiro de 1753 até 31 de Dezembro de 9999. A precisão de hora é armazenada até os centésimos de segundos.

Integridade e Criação de Tabelas

Integridade Referencial – Constraints

Constraints são regras agregadas a colunas ou tabelas. Assim, pode-se definir como obrigatório o preenchimento de uma coluna que tenha um valor-padrão quando uma linha for incluída na tabela ou quando aceitar apenas alguns valores preenchidos. No caso de regras aplicadas a tabelas, tem-se a definição de chaves primárias e estrangeiras.

Criação de Tabelas

Tabelas são as estruturas mais importantes no banco de dados. Nas tabelas estará o conteúdo que representa cada objeto do mundo real, cuja importância para o funcionamento do sistema justifica a sua criação.

Entende-se por tabela como um conjunto de linhas e colunas que qualificam cada elemento com informações relacionadas ao objeto.

Utilizando esses conceitos, é possível armazenar dados em uma ou várias tabelas, dependendo do que e como desejamos as informações.

Sintaxe básica:

CREATE TABLE nome_da_tabela
(nome_coluna1 tipo_dado_coluna1 coluna1_constraints,
(nome_coluna2 tipo_dado_coluna2 coluna2_constraints,
(nome_colunaN tipo_dado_colunaN colunaN_constraints,
Constraint_da_tabela);

bons costumes da programação!

Figue atento aos

REGRAS: Nome da tabela

- Deve ser única no banco de dados.
- Não pode usar nome composto.
- Não pode começar com número.
- Não pode usar acentos, cedilhas, símbolos e caracteres especiais.

IMPORTE!!!

REGRAS: Nome_coluna

- Deve ser única na tabela.
- Não pode usar nome composto.
- Não pode começar com número.
- Não utilizar comandos como nome de campo.
- Não pode usar acentos, cedilhas, símbolos e caracteres especiais.

Tipo_dado_coluna - Utilizar tipo e tamanho de dado conforme tabela de tipo de dados.

Coluna_constraints - Regras agregadas a coluna.

Constraints_da_tabela - Regras agregadas a tabela inteira.

Constraints

NOT NULL

Indica que o conteúdo de uma coluna não poderá ser nulo. Dessa forma, uma coluna com a restrição Not Null, retornará uma mensagem de erro e não incluirá a linha que não apresente valor.

NULL

Indica que o conteúdo de uma coluna poderá ser nulo. Dessa forma, uma coluna com a restrição null, incluirá uma linha que não apresente valor e não retornará mensagem de erro.

Chave primária

Chave primária é a coluna ou grupo de colunas, que permite identificar um único registro na tabela. Para especificar que uma coluna ou grupo de colunas representa a chave primária de uma tabela, deve-se acrescentar a palavra-chave PRIMARY-KEY seguida do nome da(s) coluna(s).

-- Criando tabela de clientes utilizando constraint not null / primary key

```
create table clientes(
idcli
             not null,
         int
nomecli varchar(40) not null,
fonecli varchar(18) null
primary key(id cli)
);
-- Inserindo dados na tabela clientes
insert into clientes values (1, 'Marco', '014 3262-0000');
-- verificando os dados cadastrados
select * from clientes;
Obs. Possibilidade de erro
- Tentar criar tabela ja criada
Msg 2714, Level 16, State 6, Line 2
Já existe um objeto com nome 'CLIENTES' no banco de dados.
```

- Inserir registro com mesma chave primária
Msg 2627, Level 14, State 1, Line 1
Violação da restrição PRIMARY KEY 'PK__CLIENTES__4830B400'. Não é possível inserir a chave duplicada no objeto 'dbo.CLIENTES'.
A instrução foi finalizada.

-- Criando tabela de clientes2 com auto-incremento

```
create table clientes2(
codcli int identity not null,
cliente varchar(60) not null,
Dtnasc datetime
                          not null
primary key(cliente)
);
-- inserindo dados na tabela de clientes2
insert into clientes2 values ('Marco','11/03/1967');
-- verificando dados cadastrados
select * from clientes2;
```

Obs. Como o campo CODIGO_CLI é auto-incremento, ele NÃO deve ser preenchido na inclusão do registro.

-- Criando tabela de clientes3 SEM chave primária e SEM auto-incremento

```
create table clientes3(
idcli
             not null,
     int
cliente varchar(60) not null,
dtnasc datetime null
);
-- inserindo dados na tabela de clientes3
insert into clientes3 values (1, 'Marco', '11/03/1967');
insert into clientes3 values (1, 'Marco', '11/03/1967');
-- verificando dados cadastrados
select * from clientes3;
```

Obs. Nesse caso a redundância de dados é permitida.

Exercícios - Aula 1

Leia com ATENÇÃO !!! — TODOS os exercícios devem ser desenvolvidos em um único banco de dados e em um único script.

- 1- Criar o banco de dados fib2022.
- 2- Criar uma tabela agenda com pelo menos 5 campos com dados de seus amigos e inserir 3 registros. **Utilizar SOMENTE chave primária**
- **3-** Acessar um site de compras online, verificar os campos necessários para criar um cadastro de clientes e criar uma tabela, inserir 3 registros. **Utilizar chave primária e auto incremento**
- **4-** Acessar um site de e-mails, verificar os campos necessários para fazer o cadastro e criar uma tabela, inserir 3 registros. **Utilizar somente auto incremento**
- **5-** Um professor pretende fazer um levantamento de dados dos alunos da sala de aula com informações pessoais, profissionais e acadêmicas. Analise os campos necessários e crie uma tabela com pelo menos 10 campos. Inserir 3 registros. **NÃO utilizar chave primária NÃO utilizar auto incremento.**
- **6** Criar um tabela de produtos com pelo menos 6 campos e utilizando as constraints regras que você julgar necessária para cada campo. Inserir 3 registros.

Postar lista1.sql