1502.03959 SUSY "search" at the LHC

by Higgs decay BR.

10 Hisss mass

$$m_{h}^{2} = m_{z}^{2} \cos^{2} 2\beta + \frac{3 m_{t}^{2}}{2\pi^{2} v^{2}} \left[log \frac{m_{z}^{2}}{m_{t}^{2}} + \alpha \left(1 - \frac{1}{12} \alpha \right) \right]$$

o quark mass

Non-holomorphic terms forbidden by SUST,

Radiative corrections

V=246GeV

0	· Hbb coupling	
	-2 = 76 br HdQ + DJ6 br HdQ + Yetr HuQ + DYEt	RHAQ
	- I hsind I h cosd Hiss max	' P.C.
	$\cos(\beta - \alpha) = \frac{m_{2}^{2} \sin 4\beta}{2m_{A}^{2}} \left(1 + \frac{\xi M_{11}^{2} - \xi M_{22}^{2}}{2m_{2}^{2} \cos 2\beta} - \frac{\xi M_{12}^{2}}{m_{2}^{2} \sin 2\beta}\right) + \epsilon$	$O\left(\frac{m_2}{m_d}\right)^4$
	$(\sim 0)(10^{\circ})$	(2 - 4)
	h bb coupling mb	· (*
	h bb coupling $ \frac{g_{hbb}}{=} = \frac{\sin \alpha}{\cos \beta} \frac{1 - 0b \cot \alpha \cot \beta}{1 + 0b} $ The sinal	
	COSB 1+Db	
	= (sin(B-d) - (tanB-Db cotB cos(B-d)) gsm	
	2 h EE = (sin(B-d) - cot(B-d)) & sm	
Similar for T DE 2 - 30/2 M2 M2 Manl	<u>, β</u>	
(E. H W log)	$\frac{g_{hgg}}{g_{hgg}} \simeq \frac{g_{hff}}{g_{hff}} + \sum_{crosh} \frac{m_{f}^2}{4(1+O_f)^2} \left(\frac{m_{f_1}^2 + m_{f_1}^2}{m_{f_2}^2} + m_{f_1}^2 \right)$	$\begin{pmatrix} \chi_{\mathbf{f}}^{2} \end{pmatrix}$
	· · · · · · · · · · · · · · · · · · ·	•

	· Constraints
B ₃ O(0-)	$B_s \rightarrow \mu^{\dagger}\mu^{-}$
b	SM: helicity suppressed > MSSM H(H)contribution
40	br ti
The solution	
LT RI	5 tr
PP	(can 265 (23) 10-9 tangs
	Br (Bs -) MM) {HCb: 2.8+0.0 × 10-9 } YE MAEtanBy loop
	tans enhancement
	· b → 5 γ
cf. stawshottom	· Vacuum stability (stop)
(ms mg Mtans	
	CK 7717 7/10 < 1.5
	Or. With semiclassical approx with bounce solution. (Mil + Mix)
	· Yo flow-up
	V D /N COV

	Numerical evaluation o Feyn Higgs (properly modified) o M3 = 3 M2 = 6 M1 = MA = -M = M7 @ M2 M2
not "BR"	$P(h \rightarrow F) \qquad (A \in tuned)$
	$o M_3 = 3M_2 = 6M_1 = M_{Q,U}$ $At = Ab = Az \text{ funed.}$
	$m_{D,L,E} = max(M_3, M)$ sit. avoid law mixing in $m_{D} << M$ m_{A} , ton β , M varied $(0.5(\frac{ M }{m_s} < 5.))$