(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-25305

(43)公開日 平成9年(1997)1月28日

(51) Int.Cl. ⁶ C 0 8 F 2/02 220/18 220/40	設別記号 MAT MMC	庁内整理番号	FI C08F 2/02 220/18 220/40	MAT MMC	技術表示箇所
--	--------------------	--------	-------------------------------------	------------	--------

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出顧番号	特顧平7-174698	(71)出顧人	000002093 住友化学工業株式会社
(22) 出顧日	平成7年(1995)7月11日	(72)発明者	大阪府大阪市中央区北浜 4 丁目 5 番33号本多 聪 爱媛県新居浜市徳関町 5 番 1 号 住友化学
			工業株式会社内
		(74)代理人	弁理士 久保山 隆 (外1名)

(54) 【発明の名称】 アクリル系樹脂板の製造方法

(57)【要約】

【課題】 耐熱性が優れ、機械的強度の高いアクリル樹脂板を得る製造方法を提供する。

【解決手段】 メチルメタクリレートを主体とする単量体50~99.995重量%とアリル(メタ)アクリレートを0.005~50重量%とを、ラジカル重合開始剤として、10時間半減温度が75℃を境に高いものと低いものでその差が5℃以上隔たっている少なくとも2種を用いて注型重合するアクリル系樹脂板の製造方法。

1

【特許請求の範囲】

【請求項1】メチルメタクリレートを主体とする単量体50~99、995重量%とアリル(メタ)アクリレートを0、005~50重量%とを、ラジカル重合開始剤として、10時間半減温度が75℃を境に高いものと低いものでその差が5℃以上隔たっている少なくとも2種を用いて注型重合するアクリル系樹脂板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は耐熱性の優れたアク 10 リル樹脂板の製造方法に関する。

[0002]

【従来技術】アクリル樹脂板は美しい光沢、良好な機械的性質、加工性並びに成形品の外観の美麗さによって照明器具、看板、銘板、カバー類などに広く使用されている。しかしアクリル系樹脂板を自動車のメーターカバー等の車載用の部品として使用した場合や衣類乾燥機などの機器の部品等比較的高温となるところに使用した場合、耐熱性が不充分で変形するなどの問題がしばしば生じていた。

【0003】とれに対し、耐熱性を向上させたアクリル・ 樹脂板の製造方法として、酸樹脂を架橋構造として製造 する方法が提案されている。例えば、特開昭49-64691号 公報にはメチルメタクリレート70部とアリルメタクリ レート30部に重合開始剤として過酸化ベンゾイルを溶 解し、これを注型重合させた眼鏡レンズの製造方法が提 案されている。またポリマー プラスチックス テクノ ロジー アンド エンジニアリング (POLYMER PLASTICS TECHNOLOGY AND ENGINEERING)第34卷、3号、439 ~4.4.6頁には、アリルメタクリレート5~3.0 vo1% を含むメチルメタクリレートに過酸化ベンゾイルを溶解 し、加熱してプレポリマーを得た後、注型重合させた樹 脂板の製造方法が提案されている。また特公平4-75241 号公報にはメタクリル酸メチル単独重合体とメタクリル 酸メチル単量体とからなる組成物に特定構造の架橋剤を 4~30%添加したシロップに、開始剤として2、2

"-アゾビスイソブチロニトリルまたはt-ブチルパーオキシイソブチレートを溶解し、注型重合するアクリル樹脂板の製造方法が提案されている。

[0004]

【発明が解決しようとする課題】これまでの提案の有った、特開昭49-64691号公報に示した方法、ポリマー プラスチックス テクノロジー アンド エンジニアリングに配載の方法いずれも、多量のアリルメタクリレートを添加している割に耐熱性はあまり向上しない。また特公平4-75241号公報に示された方法の架橋剤を用いた場合、架橋剤の添加量が多い場合には、得られる樹脂板の機械的強度が低下する。そこで本発明は優れた耐熱性を有し、機械的強度の高いアクリル樹脂板が得られる製造方法を提供する。

[0005]

【課題を解決するための手段】本発明は、メチルメタクリレートを主体とする単量体50~99.995重量%とアリル(メタ)アクリレートを0.005~50重量%とを、ラジカル重合開始剤として、10時間半減温度が75℃を境に高いものと低いものでその差が5℃以上隔たっている少なくとも2種を用いて注型重合するアクリル系樹脂板の製造方法を提供するものである。

2

【発明の実施の形態】

【0006】本発明におけるメチルメタクリレートを主体とする単量体とは、メチルメタクリレート単独又はメチルメタクリレートの割合が50重量%以上好ましくは70重量%以上でそれと共重合可能な不飽和単量体の混合物を示す。そして、全単量体中50~99.995重量部である。

【0007】メチルメタクリレートと共重合可能な不飽 和単量体としては、例えばエチルメタクリレート、プロ ピルメタクリレート、ブチルメタクリレートなどのメタ クリル酸エステル類:メチルアクリレート、エチルアク 20 リレート、ブルビルアクリレート、ブチルアクリレー ト、2-エチルヘキシルアクリレートなどのアクリル酸 エステル類:アクリル酸、メタクリル酸、マレイン酸、 イタコン酸などの不飽和カルボン酸、無水マレイン酸、 無水イタコン酸などの酸無水物:2-ヒドロキシエチル アクリレート、2-ヒドロキシブロビルアクリレート、 テトラヒドロフルフリルアクリレート、モノグリセロー ルアクリレート、2-ヒドロキシエチルメタクリレー ト、2-ヒドロキシブロピルメタクリレート、テトラヒ ドロフルフリルメタクリレート、モノグリセロールメタ 30 クリレートなどのヒドロキシル基含有単量体:アクリル アミド、メタクリルアミド、アクリロニトリル、メタク リロニトリル、ジアセトンアクリルアミド、ジメチルア ミノエチルメタクリレートなどの窒素含有単量体:アリ ルグリジシルエーテル、グリジシルアクリレート、グリ ジシルメタクリレートなどのエポキシ基含有単量体:ポ リエチレングリコールモノメタクリレート、ポリプロピ レングリコールモノメタクリレート、ポリエチレングリ コールモノアリルエーテルなどのアルキレンオキサイド 基含有単量体、スチレン、α-メチルスチレンなどのス チレン系単量体、酢酸ビニル、塩化ビニル、塩化ビニリ デン、弗化ピニリデン、エチレンなどの単官能単量体が ある。これらの単量体は、2種以上併用出来る。

【0008】さらには、アリル(メタ)アクリレートより少ない量で、多官能単量体も用いることができる。このような多官能単量体としては、(ボリ)エチレングリコールジアクリレート、(ボリ)エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジアクリレートのごときアルキルジオールジアクリレート

やアルキルジオールジメタクリレート類:トリメチロー ルプロバントリアクリレート、トリメチロールプロパン トリメタクリレート、ペンタエリスリトールテトラアク リレート、ペンタエリスリトールテトラメタクリレート のどとき多価アルコールのメタクリレートやメタクリレ ート類:ジピニルベンゼン、ジアリルフタレートのごと き芳香族多官能単量体:アリルグリジシルエーテル、グ リジシルアクリレート、グリジシルメタクリレートなど のエポキシ基含有単量体などがある。

れらの単量体は、2種以上併用出来る。

[0009] アリル (メタ) アクリレートとはアリルメ タクリレートあるいはアリルアクリレートである。アリ ル (メタ) アクリレートの使用量は、全単量体中に0. 005~50重量%、好ましくは0.01~30重量 %、さらに好ましくは2重量%を越え30重量%までで 0.005重量%未満では耐熱性の向上が顕 **著ではない。また50重量%を超えて多くても得られる** アクリル樹脂板の機械的強度が低下するので好ましくな

【0010】重合開始剤は、その10時間半減温度が、 75℃を境に、高いものと、低いものとでしかも5℃以 上隔たっているものを2種組み合わせて用いる。なお、 高いもの1種以上、低いもの1種以上でもよい。 該重合 開始剤は、周知のアゾ化合物、過酸化物などのラジカル 重合開始剤でよく、上記の条件のものを選択し用いる。 【0011】 該ラジカル重合開始剤で10時間半減温度 が75℃以上のは、1、1′-アゾビス(シクロヘキサ ン-1-カルボニトリル)(10時間半減温度88 *C)、2,2'-アゾピス(2,4,4-トリメチルベ ンテン) (10時間半減温度110℃)、2,2'-ア 30 ル系開始剤などが上げられる。 ゾビス(2-メチルプロパン)(10時間半減温度16 0℃)、2-シアノ-2-プロピラゾホルムアミド(1 0時間半減温度104℃)、2,2'ーアゾビス(2-ヒドロキシーメチルプロピオネート)(10時間半減温 度77℃)、などのアゾ化合物:ジクミルパーオキサイ ド(10時間半減温度117°C) tーブチルクミルパー オキサイド (10時間半減温度121℃) ジーtーブチ ルパーオキサイド(10時間半減温度126℃)などの ジアシル、ジアルキルパーオキサイド系開始剤、t-ブ チルパーオキシー3.3.5-トリメチルヘキサノエー 40 ト (10時間半減温度100℃)、t - ブチルパーオキ シラウレート(10時間半減温度95℃)、t-ブチル パーオキシイソブチレート(10時間半減温度78 *C) t - ブチルパーオキシアセテート(10時間半減 温度103℃)、ジーt-ブチルパーオキシヘキサヒド ロテレフタレート(10時間半減温度83℃)、ジーt -ブチルバーオキシアゼレート(10時間半減温度99 °C)、などのパーオキシエステル系開始剤: t - ブチル パーオキシアリルカーボネート(10時間半減温度94 ullet C)、 $_{ullet}$ $_{ullet}$

(10時間半減温度97℃)、などのパーカーボネイト 系開始剤: 1, 1-ジ-t-ブチルパーオキシシクロへ キサン (10時間半減温度97℃)、1.1-ジ-t-ブチルパーオキシー3,3,5-トリメチルシクロヘキ サン (10時間半減温度95°C)、1, 1-ジ-t-へ キシルパーオキシー3、3、5 - トリメチルシクロヘキ サン(10時間半減温度87℃)などのパーオキシケタ

ール系開始剤などが挙げられる。 【0012】10時間半減温度が75℃以下のものとし 10 ては、2、2'-アゾピス(2-メチループチロニトリ ル) (10時間半減温度67℃)、2,2′-アゾビス イソブチロニトリル(10時間半減温度65℃)、2. 2'-アゾビス(2,4-ジメチルーバレロニトリル) (10時間半減温度51℃)、2,2°-アゾビス (2, 4-ジメチルー4メトキシバレロニトリル)(1 0時間半減温度30℃)、2,2'ーアゾビス[2-(2-イミダゾリン-2-イル)プロパン](10時間 半減温度61°C)、ジメチル2、2'-アゾビス(2-メチルプロピオネート) (10時間半減温度66℃)、 20 などのアゾ化合物:ベンゾイルパーオキサイド(10時 間半減温度72℃)、ラウロイルパーオキサイド(10 時間半減温度61℃)、などのジアシル、ジアルキルバ ーオキサイド系開始剤: t - ブチルパーオキシ-2-エ チルヘキサノエート(10時間半減温度72℃)、1, 1.3.3-テトラメチルブチルパーオキシー2-エチ ルヘキサノエート(10時間半減温度64°C)、t-ア ミルパーオキシー2-エチルヘキサノエート(10時間 半減温度65℃)、t-ブチルパーオキシピバレート (10時間半減温度56℃)、などのパーオキシエステ

【0013】上記開始剤は、メチルメタクリレートを主 体とする単量体成分100重量部に対して0.001~ 5重量部である。その内10時間半減温度の高いものと 低いものの重量比は前者1に対して後者0.1~10.

【0014】本発明の注型重合法は、周知の方法でよ く、なかでも板を製造することからいわゆるセルキャス ト、連続キャストなどのキャスト重合法が用いられる。 つまり、セルは2枚のガラス板の周辺をガスケットでシ ールしてなるガラスセル、またはステンレススチールの ごとき金属製の2枚のエンドレスベルトをガスケットで シールしてなる連続スチールセルなどを用いる方法であ

【0015】すなわち上記のメチルメタクリレートを主 体とする単量体あるいはその部分重合体にアリル(メ タ) アクリレートを混合し、さらに重合開始剤その他光 拡散剤、着色剤、補強剤、充填剤、離型剤、安定剤、紫 外線吸収剤、酸化防止剤、帯電防止剤、難燃化剤など各 種添加剤を添加混合したのち、所望の大きさのセルに注

5

レートを主体とする単量体の重合体をメチルメタクリレートを含む単量体に溶解したもの、あるいはメチルメタクリレートを主体とする単量体の一部を予め重合したものが挙げられる。

[0016] 重合反応は通常常温から150℃であるが、用いる重合開始剤の種類によって、2段階あるいはそれ以上温度条件を途中変更しても良い。

[0017] 本発明のアクリル樹脂板は概ね厚さ0.1 mmから100mm、大きさは一辺が数10cmから数百cmである。

[0018]

【発明の効果】本発明により、良好な耐熱性と強度を有したアクリル樹脂板の製造方法を提供することが可能になった。つまり、本発明の製造方法によって得られるアクリル樹脂板は、熱成形加工することにより所望の形状に加工したり、熱ブレスして表面に模様を形成させたりして使用することも可能である。そして、メーターカバー等の車載部品、車載用のオーディオ機器部品、車載用のディスプレイ装置部品、車載用ナビゲーションシステム部品などの車載材料、導光装置の導光体、白熱灯カバ 20一、ハロゲンランブカバー等の発熱光源の周辺材料、衣類乾燥機、電子レンジ、オーブンなどの加熱家電機器の部品、ブラズマディスブレイ装置、液晶ディスブレイ装置、ブロジェクション式ディスブレイ装置等、各種ディスブレイ装置の前面板等に適用することが出来る。

[0019]

【実施例】以下実施例によって本発明を更に詳しく説明 するが、本発明はこれら実施例によってなんら制限され るものではない。なお樹脂板の評価は下記方法で行っ た。

- ・耐熱性:ASTM D648に準じて熱変形温度を測定した。
- ・曲げ強度:ASTM D790に準じて曲げ強度を測定した。

【0020】実施例1

アリルメタクリレート 0. 1重量%を含むメチルメアクリレート 100重量部に 2. 2 -アゾビスイソブチロニトリル (10時間半減温度 65℃) 0. 10重量部、
t-ブチルパーオキシイソブロビルカーボネート (10時間半減温度 97℃) 0. 10重量部を溶解した。この溶液にポリ塩化ビニル製ガスケットと二枚のガラス板からなる重合用セルに注入し、70℃で5時間加熱した。重合ビーク温度は 73℃であった。120℃で2時間加熱重合して2mm厚のアクリル樹脂板を得た。評価結果を10表1に示した。

【0021】実施例2~6

アリルメタクリレートを表1に示す量使用した以外は実施例1と同様に行って2mm厚の外観の良好なアクリル 樹脂板を得た。評価結果を表1に示した。

[0022]

【表1】

実施例	アリルメタクリレート 重量%	交形温度	曲げ強度 Kgf/cm²
1	0. 1	110	1220
2	1.0	110	1240
2	2. 5	113	1250
4	5. 0	115	1265
5	10.0	118	1230
6	30.0	123	1230
1		1	

[0023]比較例1~5

実施例4において重合開始剤として表2に示す種類と量 30 使用した以外は同様に行ってアクリル樹脂板を得た。評 価結果を併せて表2に示す。

[0024]

【表2】

6

8

比較例 開始剤			アリルメタク	熟变形温度	曲げ 強度
	種類	油量部	重量%	°C	Kgf/cur
1	2, 2'-アゾビス イソプチロニトリル	0. 1	5. 0	108	1200
2	ベンゾイル パーオキサイド	0. 2	5. 0	108	1190
3	ロブチルバーオキシ イソプチレート	0. 1	5. 0 ⁻	108	1150
4	2, 2'-アゾビス イソプチロニトリル	0. 1	10.0	109	1050
5	2, 2'-アゾビス イソプチロニトリル	0. 1	30.0	110	990

【0025】比較例6~8

*示す。

実施例5 においてアリルメタクリレートに変えて表3 に示す架橋剤を、表3 に示す添加量を用いた以外は同様に

[0026]

【表3】

行ってアクリル樹脂板を得た。評価結果を合わせて表に*

	架橋剤		熱変形温度	曲げ強度	
比較例	種類	重量%	C	Kgi/cm²	
6	ネオペンチルグリコール ジメタクリレート	10	118	920	
7	トリメチロールプロバン トリメタクリレート	10	118	930	
8	エチレングリコール ジメタクリレート	10	118	930	

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分 【発行日】平成14年9月11日(2002.9.11)

【公開番号】特開平9-25305

【公開日】平成9年1月28日(1997.1.28)

【年通号数】公開特許公報9-254

[出願番号]特願平7-174698

MMC

【国際特許分類第7版】

COSF 2/02 MAT 220/18 MMC 220/40 [FI] COSF 2/02 MAT

220/18

220/40

【手続補正書】

【提出日】平成14年6月21日(2002.6.2 1)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】さらには、アリル(メタ)アクリレートより少ない量で、多官能単量体も用いることができる。このような多官能単量体としては、(ポリ)エチレングリコールジアクリレート、(ポリ)エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、ネオペンチルグ

リコールジアクリレート、ネオペンチルグリコールジメタクリレートのごときアルキルジオールジアクリレート やアルキルジオールジメタクリレート類:トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ベンタエリスリトールテトラメタクリレートのごとき多価アルコールのアクリレートやメタクリレート類:ジビニルベンゼン、ジアリルフタレートのごとき 芳香族多官能単量体:アリルグリジシルエーテル、グリジシルアクリレート、グリジシルメタクリレートなどのエポキシ基含有単量体などがある。これらの単量体は、2種以上併用出来る。