

怎样散步才能 不重复地走过 每座桥? 定义 通过图的全部边及全部顶点的简单通路 (简单回路)称为欧拉通路(欧拉回路);有欧拉回路(欧拉通路)的图称为欧拉图(半欧拉图)。

设G为欧拉图,则G中有欧拉回路,设之为

$$C = v_0 e_1 v_1 e_2 v_2 \cdots v_{m-2} e_{m-1} v_{m-1} e_m v_0$$

其中边 e_1,e_2,\cdots,e_m 互不相同。因C包含了图G的所有边和所有顶点,故G是连通的。任取其上顶点 v_i ,设其在C上出现 k_i 次

$$(v_i =)v_{i_1} = v_{i_2} = \cdots = v_{i_{k_i}}$$

于是,在C上有

$$\cdots e_{i_1}v_{i_1}e_{i_1+1}\cdots e_{i_2}v_{i_2}e_{i_2+1}\cdots e_{i_{k_i}}v_{i_{k_i}}e_{i_{k_i+1}}\cdots$$

故每个顶点 v_{i_s} (= v_i)都涉及2条边或1个环。因C包含了图G的所有边和所有顶点,且2条边和1个环对顶点度的贡献都是2,于是 $d(v_i)$ =2 k_i ,即G没有奇度点。

由此得

定理 设G是一个无向图,则G是欧拉图的充要条件是G连通且无奇度点。

证明 因为平凡图自然满足定理的结论,所以设G为非平凡图。

必要性: 根据上一页讨论得到的结果。

充分性: 先引入记号

简单回路 $C = v_0 e_1 v_1 e_2 v_2 \cdots v_{l-1} e_l v_l e_{l+1} v_0$ 中的一段 $v_s e_{s+1} v_{s+1} e_{s+2} v_{s+2} \cdots v_{t-1} e_t v_t$ 称为 $C - (v_s, v_t)$ 段。

因G为非平凡连通图,故G的边数 $m \ge 1$ 。下面对m做归纳法:

m=1时,G是1阶图,有1个环。这个环就是G的欧拉回路,故G是欧拉图。

设m≤k (k≥1)时,G是欧拉图。

若m=k+1,设C是G的一个圈。从G中删除C上 的边得到生成子图G'。因为删除C上的边,使得G中的相应顶点的度减少2,故G'也没有奇度点。设 G'有p个连通分支 G_1, G_2, \dots, G_p ,若 G_i 是平凡图,则 因其顶点在C上,故行遍C的边时,也必然行遍该 点,所以下面假设 G_1, G_2, \dots, G_p 都是非平凡的。

因为每个 G_i 都没有奇度点、连通,且所含边数均小于等于k,所以根据归纳假设,每个 G_i 都是欧拉图。设 C_i 是 G_i 的欧拉回路。因G连通,故每个 C_i 都与C有公共顶点,设为 v_i 。不妨设 v_1,v_2,\cdots,v_p 顺时针分布在C上,则

$$v_1 \rightarrow C_1 \rightarrow v_1 \rightarrow C - (v_1, v_2)$$
段 $\rightarrow v_2 \rightarrow C_2 \rightarrow v_2 \rightarrow$

 $C-(v_2,v_3)$ 段 $\rightarrow v_3 \rightarrow \cdots \rightarrow v_p \rightarrow C_p \rightarrow v_p \rightarrow C-(v_p,v_1)$ 段 $\rightarrow v_1$ 是包含G的所有边和所有顶点的简单回路,即欧拉回路。因此,G是欧拉图。

推论设G是一个无向图,则G是半欧拉图的充要条件是G连通且恰有两个奇度点。

一笔画问题由此解决,哥尼斯堡七桥问题由此解决。

定理设D是一个有向图,则D是欧拉图的充要条件是G连通且每个顶点的出度都与入度相等。

定理 非平凡连通图G是欧拉图的充要条件为G是圈的边不重并。

例 设D是一个有向图,则D是半欧拉图的充要条件是D连通且存在 $u,v \in V(D)$,使

$$d^+(u)=d^-(u)+1$$
, $d^-(v)=d^+(v)+1$

而对 $\forall w=V(D)-\{u,v\}$,均有 $d^+(w)=\mathbf{d}^-(w)$ 。

例 考虑图G是否为欧拉图?

$$C_1$$
: $v_1v_2\cdots v_8v_1$, C_2 : $v_2v_4v_6v_8v_2$

$$C_3$$
: $v_2v_9v_6v_2$, C_4 : $v_4v_9v_8v_4$

$$G = C_1 \cup C_2 \cup C_3 \cup C_4$$

例设G是一个非平凡不含环的无向欧拉图,则G不含割边。

证明 因为G是欧拉图,故G存在欧拉回路C',设 $C'=v_1v_2\cdots v_lv_1$ 。

任取 $e \in E(G)$,因C'包含G的所有边,故存在 $v_i, v_{i+1} \in V(G)$,使 $e = (v_i, v_{i+1})$ 。此时

$$C'-e=v_{i+1}v_{i+2}\cdots v_lv_1v_2\cdots v_i$$

是G-e的欧拉通路,故G-e连通,即e不是割边。

Fleury算法:

设G是非平凡无向欧拉图

步骤1:
$$v_0 \in V(G)$$
, 令 $P_0 = v_0$

步骤2: 设已得 $P_i = v_0 e_1 v_1 e_2 v_2 \cdots v_{i-1} e_i v_i$, 在

$$E(G) - \{e_1, e_2, \dots, e_i\}$$

中选与 v_i 关联的边 e_{i+1} ,要求:

除非别无选择,否则 e_{i+1} 不能是

$$G_i = G - \{e_1, e_2, \cdots, e_i\}$$

中的割边

步骤3: 重复步骤2, 当无法进行时, 算法停止。

最后得到的 $P_m = v_0 e_1 v_1 e_2 \dots e_m v_m (=v_0)$ 必是欧拉回路。

例用Fleury算法求下图的欧拉回路。

解选择v2为初始点:

步骤1: $P_0=v_2$, $G_0=G$

步骤2: $P_1=v_2e_2v_3$, $G_1=G-\{e_2\}$

步骤3: $P_2=v_2e_2v_3e_3v_4$, $G_2=G-\{e_2,e_3\}$

步骤4: $P_3=v_2e_2v_3e_3v_4e_{11}v_9$, $G_3=G-\{e_2,e_3,e_{11}\}$

步骤5: $P_4 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2$

 $G_4 = G - \{e_2, e_3, e_{11}, e_{10}\}$

步骤6: $P_5 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2 e_1 v_1$

 $G_5 = G - \{e_2, e_3, e_{11}, e_{10}, e_1\}$

步骤7: $P_6 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2 e_1 v_1 e_8 v_8$

 $G_6 = G - \{e_2, e_3, e_{11}, e_{10}, e_1, e_8\}$

构成 P_7 时,可选 e_7 或 e_{14} ,但不能选 e_9 ,因为 e_9 是割边。

步骤8: $P_7 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2 e_1 v_1 e_8 v_8 e_{14} v_9$ $G_7 = G - \{e_2, e_3, e_{11}, e_{10}, e_1, e_8, e_{14}\}$

步骤9: $P_8 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2 e_1 v_1 e_8 v_8 e_{14} v_9 e_{13} v_6$ $G_8 = G - \{e_2, e_3, e_{11}, e_{10}, e_1, e_8, e_{14}, e_{13}\}$

构成 P_9 时,可选 e_5 或 e_{12} ,但不能选 e_6 ,因为 e_6 是割边。

步骤10: $P_9 = v_2 e_2 v_3 e_3 v_4 e_{11} v_9 e_{10} v_2 e_1 v_1 e_8 v_8 e_{14} v_9 e_{13} v_6 e_{12} v_4$ $G_9 = G - \{e_2, e_3, e_{11}, e_{10}, e_1, e_8, e_{14}, e_{13}, e_{12}\}$

步骤11: $P_{10}=v_2e_2v_3e_3v_4e_{11}v_9e_{10}v_2e_1v_1$ $e_8v_8e_{14}v_9e_{13}v_6e_{12}v_4e_4v_5$

 $G_{10}=G-\{e_2,e_3,e_{11},e_{10},e_1,e_8,e_{14},e_{13},e_{12},e_4\}$

步骤12: $P_{11}=v_2e_2v_3e_3v_4e_{11}v_9e_{10}v_2e_1v_1$ $e_8v_8e_{14}v_9e_{13}v_6e_{12}v_4e_4v_5e_5v_6$ $G_{11}=G-\{e_2,e_3,e_{11},e_{10},e_1,e_8,e_{14},e_{13},e_{12},e_4,e_5\}$ 步骤13: $P_{12}=v_2e_2v_3e_3v_4e_{11}v_9e_{10}v_2e_1v_1$ $e_8v_8e_{14}v_9e_{13}v_6e_{12}v_4e_4v_5e_5v_6e_6v_7$ $G_{12}=G-\{e_2,e_3,e_{11},e_{10},e_1,e_8,e_{14},e_{13},e_{12},e_4,e_5,e_6\}$

步骤14: $P_{13}=v_2e_2v_3e_3v_4e_{11}v_9e_{10}v_2e_1v_1$ $e_8v_8e_{14}v_9e_{13}v_6e_{12}v_4e_4v_5e_5v_6e_6v_7e_7v_8$ $G_{13}=G-\{e_2,e_3,e_{11},e_{10},e_1,e_8,e_{14},e_{13},e_{12},e_4,e_5,e_6,e_7\}$

步骤15: $P_{14}=v_2e_2v_3e_3v_4e_{11}v_9e_{10}v_2e_1v_1$ $e_8v_8e_{14}v_9e_{13}v_6e_{12}v_4e_4v_5e_5v_6e_6v_7e_7v_8e_9v_2$