- **Опр. 1.** Пусть $f: X \to Y$ отображение топологических пространств. Отображение f называется непрерывным в точке $x \in X$, если для всякой окрестности $V \ni f(x)$ существует такая окрестность $U \ni x$, что $f(U) \subset V$. Отображение f называется непрерывным, если оно непрерывно в каждой точке $x \in X$.
 - 1. Пусть X,Y и Z топологические пространства, $f\colon X\to Y,h\colon Y\to Z$ и $g\colon X\to Z$ отображения. Докажите, что
 - (a) если отображение $f(\cdot)$ непрерывно в точке $a \in X$, а отображение $h(\cdot)$ в точке $b = f(a) \in Y$, то композиция $h \circ f$ непрерывна в точке a;
 - (b) если отображения $f(\cdot)$ и $g(\cdot)$ непрерывны в точке $a \in X$, то декартово произведение отображения $f \times g \colon X \to Y \times Z$ (определяемое формулой $(f \times g)(x) = (f(x), g(x))$) непрерывно в точке a.
 - 2. Пусть X и Y топологические пространства, $f: X \to Y$. Докажите, что отображение f непрерывно тогда и только тогда, когда для всякого открытого подмножества $V \subset Y$ его прообраз $f^{-1}(V) \subset X$ также открыт.
- Опр. 2. Пусть X и Y топологические пространства. Отображение $f\colon X\to Y$ называется гомеоморфизмом, если оно непрерывно, взаимно однозначно и обратное отображение $f^{-1}(\cdot)$ также непрерывно. Топологические пространства, между которыми существует гомеоморфизм, называются гомеоморфными.
- Опр. 3. Пусть X и Y топологические пространства, $a \in X$, и f отображение из X в Y или из $X \setminus \{a\}$ в Y. Говорят, что точка $b \in Y$ является пределом f при x, стремящемся κ a, если функция $\tilde{f} \colon X \to Y$, определенная по правилу

$$\tilde{f}(x) = \begin{cases} f(z), & z \neq a; \\ b, & z = a \end{cases}$$

является непрерывной в точке a. Обозначение: $b=\lim_{x \to a} f(x).$

Пример 1. Рассмотрим пространство $\bar{\mathbb{N}} \stackrel{\text{def}}{=} \mathbb{N} \cup \{\infty\}$, базу открытых множеств в котором составляют все одноточечные множества $\{n\}, n \in \mathbb{N}$, и множества $[n, \infty] \stackrel{\text{def}}{=} \{m \in \mathbb{N} \colon n \leq m\} \sqcup \{\infty\}$. Последовательность точек $a_n \in X$, где X — топологическое пространство — не что иное, как функция $f \colon \mathbb{N} \to X$, для которой $f(n) = a_n$. Поэтому, будем говорить, что последовательность $(a_n)_{n \in \mathbb{N}}$ сходится к a, если функция $f(\cdot)$ имеет предел, равный a, при n, стремящемся к ∞ .

Первая аксиома отделимости. Для любых двух различных точек x и y топологического пространства X существует окрестность U_x точки x, не содержащая точку y, и окрестность U_y точки y, не содержащая точки x.

Вторая аксиома отделимости (аксиома Хаусдорфа). Для любых двух различных точек x и y топологического пространства X существуют непересекающиеся окрестности $U_x \ni x$ и $U_y \ni y$.

- **Опр. 4.** Топологические пространства, удовлетворяющие второй аксиоме отделимости, называют хаусдорфовыми пространствами.
- **Пример 2.** Пусть X = [0, 1], а открытыми множествами считаются пустое множество и все множества, получающиеся из отрезка выбрасыванием не более чем счетного числа точек. Пространство X удовлетворяет первой аксиоме отделимости, но не является хаусдорфовым.
 - 3. Докажите, что всякое метрическое пространство хаусдорфово.
 - 4. Пусть X и Y топологическое пространства. Предположим, что пространство Y

хаусдорфово и что $a \in X$ — неизолированная точка. Докажите, что для всякого отображения $f \colon X \setminus \{a\} \to Y$ предел $\lim_{x \to a} f(x)$ единствен (если он существует).

Опр. 5. Отображение топологических пространств называется открытым, если оно переводит каждое открытое множество снова в открытое. Отображение, переводящее каждое замкнутое множество в замкнутое, называется замкнутым.

Упражнения

- 1. Пусть X пространство с дискретной топологией, а Y произвольное топологическое пространство. Докажите, что произвольная функция $f\colon X\to Y$ является непрерывной.
- 2. Пусть X и Y произвольные множества и f отображение X в Y. Докажите, что если в Y задана некоторая топология τ , то прообраз топологии τ , т. е. совокупность всех множеств $f^{-1}(G)$, где $G \in \tau$, является топологией в X.
- 3. Топологическое пространство называется нормальным, если в нем всякие два непересекающихся замкнутых множества имеют непересекающиеся окрестности. Докажите, что всякое метрическое пространство является нормальным.
- 4. Пусть X и Y топологические пространства, при этом Y хаусдорфово. Докажите, что для произвольных непрерывной функции $f\colon X\to Y$ и элемента $y\in Y$ множество $C_y=\{x\in X\colon f(x)=y\}$ замкнуто.
- 5. Пусть X топологическое пространство, а $f, g: X \to \mathbb{R}$ непрерывные функции. Докажите, что множество $U \stackrel{\mathrm{def}}{=} \{x \in X : f(x) > g(x)\}$ открыто.
- 6. Пусть $X = A \cup B$, где A и B замкнутые подмножества X. Пусть функции $f \colon A \to Y$ и $g \colon B \to Y$ непрерывны и совпадают на $A \cap B$. Докажите, что функция $h \colon X \to Y$, определяемая равенством

$$h(x) = \begin{cases} f(x), & \text{если } x \in A; \\ g(x), & \text{иначе,} \end{cases}$$

является непрерывной функцией.

- 7. Пусть топологическое пространство $X = \bigcup_{\alpha} X_{\alpha}$ представимо в виде объединения открытых множеств X_{α} . Докажите, что функция $f \colon X \to A$, для которой сужения $f|_{X_{\alpha}}$ непрерывны, является непрерывной.
- 8. Докажите, что X является хаусдорфовым топологическим пространством тогда и только тогда, когда диагональ $\{(x,x)\in X\times X\}$ замкнута в $X\times X$.
- 9. Докажите, что функция $f\colon \mathbb{R} \to \mathbb{Q}_{\geq 0}$, заданная равенством

$$f(x) = \begin{cases} \frac{1}{n}, & \text{ если } x = \frac{m}{n}, \ m \in \mathbb{Z}, \ n \in \mathbb{N}, \ \text{HOД}(m,n) = 1, \\ 0, & \text{ если } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

непрерывна во всех иррациональных точках и разрывна во всех рациональных точках.

10. Пусть X — топологическое пространство, а $f, g: X \to \mathbb{R}$ — непрерывные функции. Докажите, что функция, действующая по правилу $x \mapsto \max(f(x), g(x))$, непрерывна.