Week 10: Daily Morning Challenge

Day 2: Thursday 12th March 2020

Question 1: Describe the concept of connectionist computing approach as regards biological neural networks

Connectionism is a movement in cognitive science that hopes to explain intellectual abilities using artificial neural networks (also known as "neural networks" or "neural nets"). Neural networks are simplified models of the brain composed of large numbers of units (the analogs of neurons) together with weights that measure the strength of connections between the units. These weights model the effects of the synapses that link one neuron to another. Experiments on models of this kind have demonstrated an ability to learn such skills as face recognition, reading, and the detection of simple grammatical structure.

Connectionist networks are made up of interconnected processing units which can take on a range of numerical activation levels (for example, a value ranging from 0 – 1). A given unit may have incoming connections from, or outgoing connections to, many other units. The excitatory or inhibitory strength (or weight) of each connection is determined by its positive or negative numerical value. One common sort of connectionist system is the two-layer feed-forward network. In these networks, units are segregated into discrete input and output layers such that connections run only from the former to the latter. Often, every input unit will be connected to every output unit, so that a network with 100 units, for instance, in each layer will possess 10,000 inter-unit connections. Let us suppose that in a network of this very sort each input unit is randomly assigned an activation level of 0 or 1 and each weight is randomly set to a level between -0.01 to 0.01.

Question 2: Illustrate with a table the benefits and limitations of the following data mining techniques

Linear Regression

Benefits	Limitations
It is very easy and intuitive to use and	The algorithm assumes data is normally
understand	distributed in real they are not.
Being a parametric algorithm, Linear	Prone to outliers and over fitting
Regression can work well when the data	
available is very limited	
Advanced techniques of regularisation	Linear regression only models
can be easily used for feature selection,	relationships between dependent and
which improves model interpretability	independent variables that are linear. It
drastically	assumes there is a straight-line
-	relationship between them which is

incorrect sometimes.

Multivariate Regression

Benefits	Limitations
The ability to determine the relative	Collinearity or multicollinearity.
influence of one or more predictor	
variables to the criterion value.	
The ability to identify outliers, or	
anomalies	
Multiple regression model allows us to	
examine the causal relationship between	
a response and multiple predictors	

Concept learning (List-then-Eliminate)

Benefits	Limitations
A good concept learning algorithm	Inconsistent sets of training examples
should be able to backtrack the choice of	can mislead the finds algorithm as it
hypothesis found so that the resulting	ignores negative data samples, so an
hypothesis can be improved over time.	algorithm that can detect inconsistency
	of training data would be better to use.
many concept learning algorithms	No way to determine if the only final
organize the search through the	hypothesis (found by Find-S) is
hypothesis space by relying on the	consistent with data or there are more
general-to-specific ordering	hypothesis that is consistent with data.
description of the set of all hypotheses	performs poorly with noisy data
consistent with D without explicity	
enumerating them	

Decision tree

Benefits	Limitations
Are simple to understand and interpret.	They are unstable, meaning that a small
People are able to understand decision	change in the data can lead to a large
tree models after a brief explanation.	change in the structure of the optimal
_	decision tree
Help determine worst, best and expected	Calculations can get very complex,
values for different scenarios.	particularly if many values are uncertain
	and/or if many outcomes are linked.
Can be combined with other decision	They are often relatively inaccurate.
techniques.	Many other predictors perform better
	with similar data

Naive Bayes

Benefits	Limitations
----------	-------------

. When assumption of independent	Main imitation of Naive Bayes is
predictors holds true, a Naive Bayes	the assumption of independent
classifier performs better as compared to	predictors. Naive Bayes implicitly
other models.	assumes that all the attributes are
	mutually independent. In real life, it is
	almost impossible that we get a set of
	predictors which are completely
	independent
Naive Bayes requires a small amount of	If categorical variable has a category in
training data to estimate the test data.	test data set, which was not observed in
So, the training period is less.	training data set, then model will assign a
	o (zero) probability and will be unable to
	make a prediction. This is often known
	as Zero Frequency
Naive Bayes is also easy to implement.	

Artificial Neural Networks

Benefits	Limitations
The ability to work with inadequate	Hardware dependence: Artificial neural
knowledge: After ANN training, the data	networks require processors with parallel
may produce output even with	processing power, by their structure. For
incomplete information. The lack of	this reason, the realization of the
performance here depends on the	equipment is dependent.
importance of the missing information.	
It has fault tolerance: Corruption of one	The difficulty of showing the problem to
or more cells of ANN does not prevent it	the network: ANNs can work with
from generating output. This feature	numerical information. Problems have to
makes the networks fault-tolerant.	be translated into numerical values
	before being introduced to ANN. The
	display mechanism to be determined
	here will directly influence the
	performance of the network. This
	depends on the user's ability.
Parallel processing ability: Artificial	Assurance of proper network
neural networks have numerical strength	structure: There is no specific rule for
that can perform more than one job at	determining the structure of artificial
the same time.	neural networks. The appropriate
	network structure is achieved through
	experience and trial and error.