Laboratory 2

Resistor Combinations, KCL, KVL, Voltage and Current Dividers

Objectives

- Verify KCL and KVL
- Measure resistor combinations
- Measure branch currents and node voltages

Equipment and components

- A computer
- Matlab software

Preliminary

- 1. Refer to Chapters 2 and 3 of the textbook if necessary.
- 2. Complete the theoretical calculations related to this lab.

Procedure

- 1. Open Matlab
- 2. Create Simulink model of the circuit shown below by following the procedure in Lab 1
- 3. Fill up your simulation results in the following table.

Table 1 (The source = 200 V)

	Simulation Results	Theoretical Results
i		
\overline{i}_a		
i_b		
v		
v_o		

- a. What is the sum of i_a and i_b ? Sum = _____. What is i ? Explain. b. What is the sum of v and v_o ? Sum = _____. Explain.
- c. Are your simulation results consistent with your theoretical results of Problem 2.18 in Assignment 2?
- d. Set the voltage source to be 100 V and repeat the above steps. Fill up the table below. Comparing the results in Table 2 with those in Table 1, what do you find?

Table 2 (The source = 100 V)

(
	Simulation Results	Theoretical Results		
i				
i_a				
i_b				
v				
v_o				

e. Set the voltage source to be -200 V repeat the above steps 1, 2, and 3. Fill up the table below. Comparing the results in Table 3 with those in Table 1, what do you find?

Table 3 (The source = -200 V)

	Simulation Results	Theoretical Results
i		
i_a		
i_b		
\overline{v}		
v_o		

1. Create the Simulink model of the following circuit and find i_g and i_o . Fill up the table shown below. Are the simulation solutions consistent with your theoretical solutions of Problem 3.28 in Assignment 2?

Table 4

	Simulation Results	Theoretical Results
i_g		
i_0		

2. Create the Simulink model of the following circuit and find v_1 and v_2 . Are the simulation solutions consistent with your theoretical solutions of Problem 3.30 in Assignment 2? Fill up the table shown below.

Table 5

	Simulation Results	Theoretical Results
v_1		
v_2		

Questions and conclusions

- Use tables and graphs to explain your results.
- Summarize your findings and explanations in response to the questions posed in this lab.