TRƯỜNG ĐH KỸ THUẬT - CÔNG NGHỆ CẦN THƠ

Chủ đề báo cáo Tìm hiểu Động cơ không đồng bộ

Môn học: Cơ sở Truyền động điện

Lớp: Công nghệ, kỹ thuật điện, điện tử

GVHD: Hồ Minh Nhị Nhóm SVTH: Nhóm 1

Ngày 24 tháng 08 năm 2016

Danh sách thành viên

- Nguyễn Văn Bảy
- Nguyễn Văn Đình
- Nguyễn Hoàng Hận
- Thi Minh Nhựt
- Phạm Thanh Quý
- Hồ Minh Thành

- Nguyễn Văn Tiến
- Liên Thái Trường
- Trần Thanh Tú
- Bùi Trọng Tuấn
- Lư Anh Tuấn
- Nguyễn Bá Vọng

Nội dung báo cáo

- Cấu tạo động cơ không đồng bộ
- Nguyên lý hoạt động động cơ không đồng bộ
- Các phương pháp khởi động động cơ không đồng bộ

Nội dung báo cáo

- Cấu tạo động cơ không đồng bộ
- Nguyên lý hoạt động động cơ không đồng bộ
- Các phương pháp khởi động động cơ không đồng bộ

Cấu tạo của ĐC không đồng bộ

Gồm 2 phần chính

- Stato: là phần tĩnh.
- Roto: là phần chuyển động: rotor lồng sóc hoặc rotor dây quấn.

Nội dung báo cáo

- Cấu tạo động cơ không đồng bộ
- Nguyên lý hoạt động động cơ không đồng bộ
- Các phương pháp khởi động động cơ không đồng bộ

Nguyên lý hoạt động của ĐC KĐB

- Dòng AC, f_1 qua dây quấn stator \rightarrow từ trường $n_1 \rightarrow$ cắt thanh dẫn của rotor, và cảm ứng suất điện động.
- Dòng trong thanh dẫn rotor (dây quấn rotor ngắn mạch) kết hợp với từ trường quay của máy \rightarrow rotor quay theo chiều từ trường n.

Nội dung báo cáo

- Cấu tạo động cơ không đồng bộ
- Nguyên lý hoạt động động cơ không đồng bộ
- Các phương pháp khởi động động cơ không đồng bộ

Yêu cầu khi khởi động động cơ

- Có moment khởi động đủ lớn.
- Dòng khởi động nhỏ.
- Phương pháp khởi động dùng thiết bị đơn giản, rẻ tiền và chắc chắn.
- Tổn hao công suất trong quá trình khởi động nhỏ.

Các phương pháp khởi động động cơ không đồng bộ ba pha

- Khởi động trực tiếp.
- Khởi động sao tam giác.
- Khởi động dùng máy biến áp tự ngẫu.
- Khởi động dùng cuộn kháng phụ (hoặc điện trở phụ) cho mạch stator hoặc mạch rotor.
- Khởi động mềm.

Mạch động lực và mạch điều khiển

Đặc tính moment của động cơ

Ưu, nhược điểm và ứng dụng

Ưu điểm

- Moment khởi động lớn.
- Sơ đồ đơn giản.
- Chi phí thấp.

Đặc tính dòng khởi động của động cơ

Ưu, nhược điểm và ứng dụng

Nhược điểm

- Dòng khởi động lớn, gây sụt áp.
- Dông cơ chạy không êm.

Ứng dụng

Cho ứng dụng có lực quán tính nhỏ.

Mạch động lực và mạch điều khiển

Sự chuyển đổi sao – tam giác

Đặc tính dòng khởi động

Ưu, nhược điểm và ứng dụng

Ưu điểm

- Dòng khởi động qua stator giảm đi √3.
- Dòng qua lưới giảm đi 3 lần.

Đặc tính của moment

Ưu. nhược điểm và ứng dụng

Nhược điểm

Moment giảm đi 3 lần.

Úng dung

Dùng khởi đông đông cơ ở chế độ không tải: máy bơm, các máy trong ngành gỗ.

Mạch động lực

Mạch điều khiển

Nguyên lý hoạt động

Khởi động, K1 và K3 đóng.

Nguyên lý hoạt động

Sau một thời gian, K3 ngắt ra.

22 / 35

Nguyên lý hoạt động

Ong K2.

Ưu, nhược điểm và ứng dụng

- Ưu điểm
 - Lựa chọn được các giá trị điện áp, moment quay.
 - Khởi động được với tải trọng tương đối nặng.
- Nhược điểm: Chi phí đầu tư ban đầu cao.
- Úng dụng: Bơm thủy lực, băng tải,...

Khởi động dùng điện trở phụ cho mạch stator

Mạch động lực

Khởi động dùng điện trở phụ cho mạch stator

Mạch điều khiển

Dùng điện trở phụ cho mạch stator

Ưu, nhược điểm và ứng dụng

- Ưu điểm: Giảm dòng khởi động, tăng tốc êm.
- Nhược điểm:
 - Moment khởi động nhỏ, hiệu suất thấp, chi phí cao.
 - Dòng khởi động lớn hơn so với khởi động $Y-\Delta$.
- Úng dụng: quạt, bơm ly tâm,...

Khởi động dùng điện trở phụ cho mạch rotor

Mạch động lực

KĐ dùng điện trở phụ cho mạch rotor

Mạch điều khiển

Dùng điện trở phụ cho mạch rotor

Ưu, nhược điểm và ứng dụng

- Uu điểm: Đặc tính moment tốt, tăng tốc
 êm.
- Nhược điểm: Đầu tư lớn, thực hiện công tác bảo trì.
- Úng dụng: Dùng cho tải có quán tính lớn:
 máy nén, máy cắt,...

Khởi động mềm

Đặc điểm

- Thay đổi điện áp (giữa nguyên tần số).
- Điều chỉnh được chính xác lực khởi động mong muốn.
- Điều khiển điện áp vào stator thông qua các *SCR*.

Khởi động mềm

Mạch biển đổi điện áp

Khởi động mềm

Ưu điểm và ứng dụng

• Ưu điểm:

- Dừng tự do theo quán tính, tiết kiệm điện năng khi non tải.
- Tránh sụt áp, tích hợp tính năng bảo vệ.
- Điều khiển tăng tốc mịn.
- Hạn chế dòng khởi động và điều chỉnh tăng moment mở máy.
- Úng dụng: ĐC chuyên chở vật liệu, bơm, vận hành non tải, các bộ chuyển đổi, quán tính lớn,...

Tài liệu tham khảo

- [1]. Nguyễn Văn Nhờ, *Cơ sở truyền động điện*, NXB ĐH Quốc gia HCM.
- [2]. Đặng Văn Đào, Lê Văn Doanh *Kỹ thuật điện*, NXB: ĐH Khoa học và Kỹ thuật
- [3]. Kênh Youtube, *Phương pháp khởi động động co 3 pha*, https://www.youtube.com/watch?v=6NdOxK7yvYo

Cảm ơn Thầy và các bạn đã quan tâm theo dõi phần trình bày của nhóm!