

Conversor DC/DC abaixador – topologia Buck

Bruno Filipe Torres Costa Tiago Henrique Almeida de Sousa

Relatório do Trabalho Prático 1 realizado no âmbito da Unidade Curricular Conversão de Energia, da Licenciatura em Engenharia Eletrotécnica e Computadores

Declaramos que o presente trabalho/relatório é da nossa autoria e não foi utilizado previamente noutro curso ou unidade curricular, desta ou de outra instituição. As referências a outros autores (afirmações, ideias, pensamentos) respeitam escrupulosamente as regras da atribuição, e encontram-se devidamente indicadas no texto e nas referências bibliográficas, de acordo com as normas de referenciação. Temos consciência de que a prática de plágio e autoplágio constitui um ilícito académico.
In "Código Ético de Conduta Académica", art.14, Universidade do Porto.

1 Resumo

Este documento apresenta o estudo detalhado de um conversor DC/DC abaixador. Foi descrito o princípio de operação do conversor, apresentando o esquemático e as equações que regem o comportamento do sistema.

Palavras-chave: Conversor DC/DC, Topologia Buck, Eficiência energética, Controlo de Tensão, Regime Contínuo/Descontínuo

2 Índice

1 Resu	mo	1
2 Índice	e	1
3 Introd	dução	1
4 Análi	ise do Conversor Buck	1
4.1	Análise do funcionamento do conversor recorrendo ao simulador PSIM	1
4.2	Projeto parcial do conversor	10
4.3	Introdução de não idealidades no díodo, no transístor e na Bobine	12
5 Conclusões		15
6 Anexos		15
6.1	Esquema do conversor	15
6.2	Obtenção de uma onda quadrada	15
6.3		

3 Introdução

O conversor Buck é um circuito eletrônico de potência utilizado para transformar uma tensão de entrada mais alta em uma tensão de saída mais baixa. Também conhecido como conversor abaixador, o conversor Buck é amplamente utilizado em aplicações eletrônicas, incluindo fontes de alimentação, motores elétricos, lâmpadas LED entre outros.

O conversor Buck funciona utilizando um comando que liga e desliga com uma elevada frequência para controlar a energia que flui através do indutor, permitindo que a tensão de saída seja reduzida para uma tensão menor. Este conversor DC/DC abaixador é projetado para ser altamente eficiente apresentando perdas mínimas de energia sem comprometer a qualidade de energia na saída.

4 Análise do Conversor Buck

4.1 Análise do funcionamento do conversor recorrendo ao simulador PSIM

a) Valores de configuração de F1 e F2 para obter uma onde de comando quadrada (Explicação detalhada presente nos anexos secção 6.2)

Amplitude F1 = duty cycle =
$$\frac{5}{12}$$
 V \approx 42 %

Amplitude F2 = 1V

Frequência F2 = 50 khz

b) Formas de onda importantes no conversor (g), Vin, Iin, Vout, Vx, Iout, Vd, Id, VL, IL e IC

Figura 1 Onda de Comando (g), Vin = Vd e Iin, respetivamente

Figura 2 Vout, Vx e Iout, respetivamente

Figura 3 Corrente no díodo ID1

Figura 4 VL, IL e IC, respetivamente

c) Neste tipo de conversores o duty cycle é o fator que nos permite controlar a quantidade de energia que é transmitida para a saída e a respetiva tensão de saída. De acordo com o tempo em que o comando se encontra ligado, uma determinada quantidade de energia é transmitida para a bobine que é armazenada através do seu campo magnético. Quando o comando se encontra desligado, o díodo entra em condução e a energia armazenada na bobine é transferida para a resistência e o condensador. Este efeito está bem evidente na corrente IL, figura 4, em que a corrente na bobina aumenta quando o comando se encontra ligado e diminui quando este se encontra desligado.

É possível também fazer uma análise concisa para as outras ondas do sistema:

- A tensão Vx é igual a Vin quando o comando se encontra ligado e é igual ao contrário da queda de tensão no díodo quando o comando se encontra desligado, o que neste caso é zero uma vez que o díodo é ideal, como é possível identificar na figura 2.
- A tensão Vout e a corrente Iout esboçam a mesma curva uma vez que apenas diferem de um fator de escala, a resistência, como é possível identificar na figura 2.
- A corrente no díodo, ID1, é a corrente de entrada Iin subtraída da corrente da bobine IL.
- A tensão VL pode ser obtida derivando a corrente IL a menos de um fator, facto observável na figura 4.

Figura 5 Relação do valor médio de Vout com Vin e o duty cycle

$$\langle V_{\text{out}} \rangle = V_{\text{in}} \delta$$
 (1)

Como é possível observar através dos gráficos da figura 5, a relação presente na equação 1 é verdadeira.

Figura 6 Tensão de Ondulação de Vo (ΔVo)

$$\Delta V_{o_te\acute{o}rico} = \frac{T^2}{8LC} (1 - \delta) T \approx 0.1823 \, V \tag{2}$$

Como é possível observar através da figura 6, a tensão de ondulação da saída de simulação tem um valor próximo do valor teórico:

• $\Delta V_{o_te\acute{o}rico} \approx 0.1823 V$

• $\Delta V_{o_simulação} \approx 0.1846 V$

Figura 7 Ondulação da Corrente da Bobina (ΔΙL)

$$\Delta I_{L_te\acute{o}rico} = \frac{Vo}{L} (1 - \delta)T \approx 0.7292 A \tag{3}$$

Como é possível observar através da figura 7, a corrente de ondulação da bobine de simulação tem um valor próximo do valor teórico:

- $\Delta I_{L_te\'orico} \approx 0.7292 V$
- $\Delta I_{L_simulação} \approx 0.7304 V$

Figura 8 Pin (valor médio)

$$P_{in} = V_{in}(constante) < I_{in} > = 12 \times 0.41675 \approx 5.0010 W$$
 (4)

Figura 9 Potência Aparente (S)

$$S = V_{in}I_{in_Rms} = 12 \times 0,660 = 7.92 VA$$
 (5)

$$S = V_{in}I_{in_Rms} = 12 \times 0,660 = 7.92 VA$$

$$Pf = \frac{Pin}{S} = \frac{5.0010}{7.92} = 0.631$$
(6)

Figura 10 Rendimento (η)

$$P_{out} = 4.99 W \tag{7}$$

$$P_{out} = 4.99 W$$

$$\eta = \frac{P_{out}}{P_{in}} \approx 99.78\%$$
(8)

Figura 11 Vout e IL em modo descontínuo com Rload = 50Ω

Figura 12 Vx com Rload = 50Ω

A tensão Vx em regime contínuo deve variar entre Vin quando o comando SW se encontra ligado e o contrário da queda de tensão aos terminais do díodo D1 quando o comando SW se encontra desligado (figura13). Contudo, quando se varia a resistência de saída de 5Ω para 50Ω o mesmo já não acontece e a tensão Vx sofre uma alteração (figura 12). Este fenómeno deve-se ao facto da corrente mínima na bobine ter atingido o valor nulo e o sistema ter entrado num modo de funcionamento descontínuo, o que se verifica na figura 11 onde $< V_{out} > \neq 5V$ e $I_{L_min} = 0A$.

Figura 13 Vx com Rload = 5

Concluindo, após observar os gráficos das figuras 11,12 e 13 é possível concluir que o regime descontínuo acontece quando a resistência de saída é mudada, por isso é possível verificar que o conversor buck vai apresentar uma gama de valores de resistência onde vai operar.

Figura 14 Sweep de Vout e IL

Após executar o comando parameter sweep com um incremento de resistências de 2.5Ω de 0Ω até 50Ω é possível verificar que a tensão média de saída se mantém constante até ser atingida uma determinada resistência máxima, neste caso $R_{load_max} \approx 13 \Omega$, como é possível observar na figura 15. Este fenómeno deve-se ao facto de a corrente mínima na bobine ter atingido o valor nulo (figura 14), por isso, o conversor entra num regime de funcionamento descontinuo, pelo que não se rege pelas equações descritas anteriormente.

Figura 15 Relação Vout vs Rload

g) Colocou-se em paralelo uma segunda resistência, Rload, também de 5 ohm, e um switch comandado por um circuito que simula um degrau (informações mais detalhadas no anexo 6.3). Utilizou-se um degrau de 0 para 1 e de 1 para 0, que permitiu mudar os valores da carga. Quando o degrau é 0, o switch está aberto, pelo que R_{load} = 5 Ω. Quando o degrau é 1, o switch está fechado, e Rload passa a ser o paralelo das duas cargas, R_{load} = 2.5 Ω.

Figura 16 Degrau de 5Ω para 2.5Ω

No regime transitório de 5Ω para 2.5Ω , Vout tem um pico descendente e depois estabiliza a sua tensão média em 5V, valor para a qual foi projetado, Iout aumenta o seu valor médio até estabilizar.

Após a mudança de resistências, ao conjugar o gráfico da tensão de saída com o gráfico da corrente de saída, é possível verificar que o conversor adapta a sua corrente para que com a nova resistência continue a fornecer na saída a tensão média pretendida, neste caso os 5V.

Figura 17 Degrau de 2.5Ω para 5Ω

No regime transitório de 2.5Ω para 5Ω , Vout tem um pico ascendente e depois estabiliza a sua tensão média em 5V, valor para a qual foi projetado, Iout diminui o seu valor médio até estabilizar.

Após a mudança de resistências, ao conjugar o gráfico da tensão de saída com o gráfico da corrente de saída, é possível verificar que o conversor adapta a sua corrente para que com a nova resistência continue a fornecer na saída a tensão média pretendida, neste caso os 5V.

4.2 Projeto parcial do conversor

a)

Em regime contínuo foi provado anteriormente que $V_{out} = \delta V_{in} = 5V$.

Como é pretendido limitar a potência entre determinados valores e sabendo que $I_{out} = \frac{P_{out}}{V_{out}}$, temos que:

•
$$I_{out_max} = \frac{P_{out_max}}{V_{out}} = \frac{100}{5} = 20 A$$
 (10)

•
$$I_{out_min} = \frac{P_{out_min}}{V_{out}} = \frac{0.5}{5} = 0.1 A$$
 (11)

$$\bullet \quad \Delta V_{out} = 1\% V_{out} = 0.05V \tag{12}$$

•
$$V_{out} = [4.95; 5.05] V$$
 (13)

Como foi deduzido nas aulas teóricas sabe-se que no pior caso $\Delta I_L = \frac{2P_{out_min}}{V_{out}} = 0.2 A$:

$$T_S = \frac{1}{F_C} = \frac{1}{50Khz}$$

Através das fórmulas que foram deduzidas nas aulas teóricas e que se encontram na página 170 do livro *Power Eletronics – Converters Applications and Design (3ª edição)*, conseguimos obter o valor da bobina e do condensador.

•
$$\Delta I_L = \frac{V_{out}(1-\delta)T_S}{L} \iff 0.2 = \frac{5\times(1-\frac{5}{12})\times\frac{1}{50Khz}}{L} \iff L = 291\mu H$$
 (14)

•
$$\Delta V_{out} = \frac{\Delta I_L T_S}{8C} \iff 0.05 = \frac{0.2 \times \frac{1}{50 Khz}}{8C} \iff C = 10 \mu F$$
 (15)

Com esta informação por fim é possível calcular a gama de resistências:

$$\bullet \quad P = \frac{V^2}{R} \tag{16}$$

•
$$R_{min} = \frac{V^2}{P_{max}} = \frac{5^2}{100} = 0.25 \,\Omega$$
 (17)
• $R_{max} = \frac{V^2}{P_{min}} = \frac{5^2}{0.5} = 50 \,\Omega$ (18)

•
$$R_{max} = \frac{V^2}{P_{min}} = \frac{5^2}{0.5} = 50 \,\Omega$$
 (18)

b)

Figura 18 Vout, Iout e Pout com RLoad = 50Ω

Neste caso é possível verificar que a corrente máxima ($I_{out_max} \approx 20A$) fica limitada pela gama máxima de potência atribuída ($P_{max} \approx 100W$) e que os valores em regime permanente corroboram com os calculados $V_{out} \approx 5\,V$ e $I_{out} \approx 20\,A$.

Figura 19 Vout, Iout e Pout com RLoad = 0.25Ω

Neste caso é possível verificar que a corrente mínima ($I_{out_min} \approx 0.1A$) fica limitada pela gama mínima de potência atribuída ($P_{min} \approx 0.5W$) e que os valores em regime permanente corroboram com os calculados $V_{out} \approx 5V$ e $I_{out} \approx 0.1A$.

4.3 Introdução de não idealidades no díodo, no transístor e na Bobine

Nesta secção com a tentativa de simular a realidade, foi adicionado ao esquema anterior determinados parâmetros não ideais:

- Bobine L: indutância = 80 uH; resistência serie = $100 \text{ m}\Omega$
- Condensador C: capacidade 10 uF; resistência paralelo fugas = 1 k Ω :
- Díodo D1: Forward Voltage = 0.9 V; Resistência = 75 m Ω
- Interruptor SW: On Resistance = 60 mΩ; Diode Forward Voltage = 0.6 V; Diodo Resistance = 40 mΩ
- Carga: 5 Ω

Esquema resultante:

a)

Figura 20 Relação de <Vout> com δVin

Como é possível verificar pela figura a relação $< V_{out}> = V_{in}\delta$ já não se verifica uma vez que existem perdas de energia associadas, por isso $< V_{out}> \approx 4.33V$, um pouco mais baixo que o projetado.

Figura 21 Iin e Vin

Figura 22 Rendimento (η)

$$P_{out} = 3.7475 W$$
 (20)

$$\eta = \frac{P_{out}}{P_{in}} = \frac{3.7475}{4.368} \approx 84,79\%$$
 (21)

Como já foi referido anteriormente, o rendimento desce consideravelmente devido as perdas de energia envolvidas.

Figura 23 Sweep de Vout e IL

Figura 24 Relação Vout vs Rload

Ao contrário do que foi verificado anteriormente na figura 15, com a introdução dos parâmetros não ideais nos componentes a gama de resistências também é afetada para valores de RLoad baixos, ou seja, o conversor na realidade também tem uma resistência mínima de funcionamento, $R_{load_min} \approx 4~\Omega$ neste caso.

Caso em que o conversor é ideal:

• $R_{load} \approx [0; 13] \Omega$

Caso em que o conversor simula realidade:

• $R_{load} \approx [4; 11] \Omega$

5 Conclusões

Neste trabalho após explorar o método de funcionamento de um conversor Buck, ficamos familiarizados com o seu modo de funcionamento e possíveis limitações e atenções a ter quando o pretendemos projetar para uma determinada aplicação.

6 Anexos

6.1 Esquema do conversor

Figura 25 Circuito Eletrónico do Conversor Buck

6.2 Obtenção de uma onda quadrada

Figura 26 Gerador de onda quadrada

Figura 27 Onda moduladora(F1), portadora(F2) e comando (g)

Uma onda quadrada para funcionar como comando pode ser obtida utilizando uma onda DC moduladora (F1) e uma onda portadora do tipo dente de serra (F2).

Ao realizar a comparação entre as duas ondas através de um comparador é possível obter uma onda quadrada. O tempo que F1 é maior que F2 vai definir o tempo em que a onda de comando (g) se encontra ligada e vice-versa.

$$\delta = \frac{T_{ON}}{T} \tag{10}$$

- δ duty cycle onda de comando
- T_{ON} Tempo em que F1 é maior que F2
- T Período de F2

6.3 Esquema utilizado para variar as resistências entre 2.5 Ω e 5 Ω

Figura 28 Circuito gerador da onda de degrau no Psim

Figura 29 Onda de degrau V_quad