CS 5/7320 Artificial Intelligence

Local Search
AIMA Chapters 4.1 & 4.2

Slides by Michael Hahsler based on slides by Svetlana Lazepnik with figures from the AIMA textbook.

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

Recap: Uninformed Search/informed search

Tries to find the best path from a given initial state to a given goal state.

- Typically searches a large portion of the search space (needs time and memory).
- Often comes with optimality guarantees.

Local search algorithms

- Goal: Search only a small portion of the search space to identify a good state.
 - a) Often no initial state
 - b) Path to solution and path cost are often not important
- We need an objective function over the states hat defines what "good" means → optimization problem.
- Idea: search neighboring states is fast and needs little memory.

Example applications in AI:

- Use for effective search in continuous space (with an infinite state space).
- Identify a good goal state (objective function might be utility).
- Each state might encode a complete plan (a solution).

 Goal: Put n queens on an n × n board with no two queens on the same row, column, or diagonal

 State space: all possible n-queen configurations. How many are there?

What is the objective function?

2 conflicts

O conflicts

Example: *n*-queens problem

 Goal: Put n queens on an n × n board with no two queens on the same row, column, or diagonal

• **State space:** all possible *n*-queen configurations

 $16 \times 15 \times 14 \times 13 = 43,680$

What is the objective function?

Number of pairwise conflicts

- Goal: Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
- **State space:** all possible *n*-queen configurations. We can restrict the state space: Only one queen per column.
- Objective function: minimize the number of pairwise conflicts.

State space is reduced to $4^4 = 256$

What is a possible local improvement strategy?

Move one queen within its column to reduce conflicts

- Goal: Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
- **State space:** all possible *n*-queen configurations. We can restrict the state space: Only one queen per column.
- Objective function: minimize the number of pairwise conflicts.

What is a possible local improvement strategy?

Move one queen within its column to reduce conflicts

h = 17 best local improvement has h = 12

Optimization problem: find the best arrangement a

 $\operatorname{argmin}_a(\operatorname{conflicts}(a))$

s.t. a has one queen per column

This makes the problem easier.

Example: Traveling Salesman Problem

- Goal: Find the shortest tour connecting n cities
- State space: all possible tours
- Objective function: length of tour

What's a possible local improvement strategy?

• Start with any complete tour, perform pairwise exchanges.

Example: Traveling Salesman Problem

Optimization problem: Find the best tour π argmin $_{\pi}$ (tourLength(π))

s.t. π is a valid permutation

Hill-climbing search (= Greedy local search)

Many variants

Steepest-ascend hill climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow problem.INITIAL

while true do

neighbor \leftarrow a highest-valued successor state of current

if VALUE(neighbor) \leq VALUE(current) then return current
current \leftarrow neighbor
```

- Stochastic hill climbing
 - choose randomly among all uphill moves, or
 - generate randomly new states until a better one is found (firstchoice hill climbing)
- Random-restart hill climbing to deal with local optima

Hill-climbing search

Hill-climbing search is similar to a best-first greedy search without backtracking.

Is it complete/optimal?

No – can get stuck in local optima

Example: local optimum for the 8queens problem. No single queen can be moved to improve the objective function.

$$h = 1$$

The state space "landscape"

How to escape local maxima?

→ Random restart hill-climbing can help.

What about "shoulders" ("ridges" in higher dimensional space)?

What about "plateaux"?

→ Allow sideways moves.

Non-convex/convex Optimization Problems

Convex Problem

One global optimum + smooth function → easy

Non-convex Problem

Many local optima → hard

Many discrete optimization problems are like this.

A Note on Minimization vs. Maximization

- Hill climbing implies maximizing a function.
- Optimizers like to state problems as minimization problems.
- Both types of problems are equivalent:

$$\max(f(x)) \Leftrightarrow \min(-f(x))$$

Simulated annealing

- Idea: First-choice stochastic hill climbing + escape local minima by allowing some "bad" moves but gradually decrease their frequency.
- Inspired by the process of tempering or hardening metals by decreasing the temperature gradually.

Simulated annealing

- Idea: First-choice stochastic hill climbing + escape local minima by allowing some "bad" moves but gradually decrease their frequency.
- Inspired by the process of tempering or hardening metals by decreasing the temperature gradually.
- The probability of accepting "bad" moves follows an annealing schedule that reduces the temperature T over time t.

```
\begin{array}{l} \textbf{function SIMULATED-ANNEALING}(\textit{problem}, \textit{schedule}) \textbf{ returns} \text{ a solution state} \\ \textit{current} \leftarrow \textit{problem}. \textbf{INITIAL} \\ \textbf{for } t = 1 \textbf{ to} \infty \textbf{ do} \\ \textit{T} \leftarrow \textit{schedule}(t) \\ \textbf{if } T = 0 \textbf{ then return } \textit{current} \\ \textit{next} \leftarrow \text{a randomly selected successor of } \textit{current} \\ \Delta E \leftarrow \text{VALUE}(\textit{next}) - \text{Value}(\textit{current}) \\ \textbf{if } \Delta E \leq 0 \textbf{ then } \textit{current} \leftarrow \textit{next} \\ \textbf{else } \textit{current} \leftarrow \textit{next} \text{ only with probability } e^{-\Delta E/T} \end{array}
```

Effect of temperature

The lower the temperature, the less likely the algorithm will accept a worse state.

Cooling Schedule

The cooling schedule is very important. Popular schedules for the temperature at time t:

- Classic simulated annealing: $T_t = T_0 \frac{1}{\log(1+t)}$
- Fast simulated annealing (Szy and Hartley; 1987) $T_t = T_0 \frac{1}{1+t}$

$$T_t = T_0 \frac{1}{1+t}$$

$$T_t = T_0 \alpha^t$$
 for $0.8 < \alpha < 1$

Notes:

- The best schedule is typically determined by trial-and-error.
- Choose T_0 to provide a high probability that any move will be accepted at time t=0.
- T_t will not be come 0 but very small. Stop when $T < \epsilon$ (ϵ is a very small constant).

Simulated annealing search

- Guarantee: If temperature decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching one.
- However:
 - This usually takes impractically long
 - The more downhill steps you need to escape a local optimum, the less likely you are to make all of them in a row.
- More modern techniques: general family of *Markov Chain Monte Carlo* (MCMC) algorithms for exploring complicated state spaces.

Evolutionary Algorithms

A Population-based Metaheuristics

Evolutionary algorithms / Genetic Algorithms

- A population-based metaheuristic optimization algorithm.
- Uses mechanisms inspired by biological evolution (genetics):
 - Reproduction: Random selection with probability based on a fitness function.
 - Random recombination (crossover)
 - Random mutation
 - Repeated for many generations
- Example: 8-queens states

each column

Search in Continuous Spaces

Discretization of the continuous space

Use atomic states

• Use a grid with spacing of size δ Note: You probably need a way finer grid!

Discretization of the continuous space

How did we discretize this space?

Initial state

Search in continuous spaces: Gradient

Maximize $f(\mathbf{x}) = f(x_1, x_2, ..., x_k)$

Gradient at point
$$x$$
:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_1}, ..., \frac{\partial f(\mathbf{x})}{\partial x_1}\right)$$

Find maximum by solving: $\nabla f(x) = 0$

• Steepest-ascend hill climbing ("gradient descend" for minimization) with step size α

$$x \leftarrow x + \alpha \nabla f(x)$$

Newton-Raphson method

uses the inverse of the Hessian matrix of second derivative $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$ for the step size α

$$\pmb{x} \leftarrow \pmb{x} + \pmb{H}_f^{-1}(\pmb{x}) \nabla f(\pmb{x})$$

May get stuck in a local optimum if the search space is non-convex! Use simulated annealing.

Search in continuous spaces: Empirical Gradient Methods

- What if the mathematical formulation of the objective function is not known?
- We may have objective values at fixed points, called the training data.
- In this case we can use **empirical gradient search**. This is related to steepest ascend hill climbing in the discretized state space.

→ We will talk more about search in continuous spaces with loss functions using gradient descend when we talk about **parameter learning for machine learning.**