

GEOMETRÍA

Capítulo 10 SESIÓN 1

POLÍGONOS

MOTIVATING | STRATEGY

POLÍGONOS

<u>Definición</u>: Es la reunión de tres o más segmentos consecutivos coplanares tal que cada dos segmentos consecutivos solo se intersecan en un extremo y sean no colineales.

- NOTACIÓN:
 POLÍGONO ABCDEFG
- VÉRTICES : A; B; C; D; E; F; G; H
- LADOS: AB; BC; CD; DE; EF; FG; GH; AH
- DIAGONALES: BD; BE; BF; BG; ...

CLASIFICACIÓN DE LOS POLÍGONOS

I. SEGÚN LA REGIÓN QUE LIMITAN.

1. Polígono convexo

Es aquel cuya región interior es un conjunto convexo.

2. Polígono no convexo

Es aquel cuya región interior es un conjunto no convexo.

II. SEGÚN EL NÚMERO DE LADOS O ÁNGULOS.

Número de lados	Nombre de los Polígonos
3	TRIÁNGULO
4	CUADRILÁTERO
5	PENTÁGONO
6	HEXÁGONO
7	HEPTÁGONO
8	OCTÁGONO o OCTÓGONO
9	NONÁGONO o ENEÁGONO
10	DECÁGONO
11	ENDECÁGONO o UNDECÁGONO
12	DODECÁGONO
15	PENTADECÁGONO
20	ICOSÁGONO

III. SEGÚN LA MEDIDA DE SUS LADOS Y ÁNGULOS

1.-Polígono equilátero

Es aquel cuyos lados tienen la misma longitud.

Ejemplo: a a a

Octágono Equilátero

2.-Polígono equiángulo

Es aquel cuyos ángulos internos son de igual medida.

Pentágono Equiángulo

3.-polígono regular

Es aquel que es equilátero y equiángulo.

TEOREMAS PARA TODO POLÍGONO CONVEXO

n = número de lados del polígono

Ejemplos:

Triángulo

n = 3

Cuadrilátero

$$n = 4$$

1. Suma de las medidas de los ángulos internos:

$$S_{m \le i} = 180^{\circ}(n - 2)$$

Ejemplo:

Calcule la suma de la medidas de los ángulos internos de un hexágono.

$$S_{m \le i} = 180^{\circ}(n - 2)$$

$$S_{m \le i} = 180^{\circ}(6 - 2)$$

$$S_{m \le i} = 180^{\circ}(4)$$

TEOREMAS PARA TODO POLÍGONO CONVEXO

2. Suma de las medidas de los ángulos externos:

Ejemplos:

3. Número total de diagonales:

$$N_{TD} = \frac{n(n-3)}{2}$$

Ejemplo: Calcule el número total de diagonales de un heptágono.

TEOREMAS SOLO PARA POLÍGONOS REGULARES O EQUIÁNGULOS.

1. Medida de un ángulo interno.

$$m \not < i = \frac{180^{\circ}(n-2)}{n}$$

Ejemplo:

Calcule el valor de α en el siguiente polígono.

2. Medida de un ángulo externo.

m∢e =
$$\frac{360^{\circ}}{n}$$

Ejemplo:

Calcule el valor de β en el siguiente polígono.

1. Halle el valor de x.

RESOLUCIÓN

Piden: x

Sabemos: Sm

Del grafico:

$$x + 2x + x + x + 80^{\circ} = 360^{\circ}$$

$$5x + 80^{\circ} = 360^{\circ}$$

$$5x = 280^{\circ}$$

$$x = 56^{\circ}$$

2. Halle el valor de x.

RESOLUCIÓN

Piden: x

Del grafico: n = 5

$$x + 2x + 100^{\circ} + 2x + 130^{\circ} = 180^{\circ}(5 - 2)$$

$$5x + 230^{\circ} = 540^{\circ}$$

$$5x = 310^{\circ}$$

$$x = 62^{\circ}$$

3. Halle el número total de diagonales de un polígono convexo, cuya suma de las medidas de los ángulos internos es 1440°.

RESOLUCIÓN

Piden: Número total de diagonales: N_{TD}

$$N_{TD} = \frac{n(n-3)}{2}$$

Del enunciado:

$$S_{m < i}$$
 = 1440°
 $180^{\circ}(n - 2)$ = 1440°
 $n - 2$ = 8
 $n = 10$

Entonces:

$$N_{TD} = \frac{10(10-3)}{2}$$

$$N_{TD} = \frac{10(7)}{2}$$

$$N_{TD} = 35$$

-125

4. ¿Cómo se llama el polígono en el cual su número de diagonales es igual al triple de su número de lados?

RESOLUCIÓN

Piden: nombre del polígono

número de lados (n)

Del enunciado:

$$N_{DT} = 3n$$

$$\frac{n(n-3)}{2} = 3n$$

$$n - 3 = 6$$

$$n = 9$$

$$N_{TD} = \frac{n(n-3)}{2}$$

Nonágono

5. ¿En qué polígono regular se cumple que la medida de un ángulo interior es el cuádruple de la medida de un ángulo exterior?

RESOLUCIÓN

Piden: nombre del polígono

número de lados (n)

$$m \neq i = 4m \neq e$$

$$\frac{180^{\circ}(n-2)}{n} = 4(\frac{360^{\circ}}{n})$$

$$n-2 = 8$$

$$n = 10$$

m∢e =
$$\frac{360^{\circ}}{n}$$

Decágono

6. Halle el valor de x, si ABCDE es un pentágono regular y además, \overrightarrow{AP} y \overrightarrow{DP} son bisectrices de un ángulo interior y exterior, respectivamente.

HELICO | PRACTICE

7. Un soldador para reforzar una estructura metálica suelda una barilla en el punto A y D. Halle el valor de x, si ABC y BCDE son polígonos regulares.

