Introdução à Ciência da Computação Introdução à Engenharia de Computação

Codificação Binária

Profa. Ana Marilza Pernas Fleishmann Profa. Lisane Brisolara de Brisolara **Prof. Giovani Parente Farias** Prof. Rafael Iankowski Soares

Introdução

- Computadores trabalham com números binários
- No dia-a-dia, usamos o sistema decimal
- Obriga a conversão de números de decimal para binário e vice-versa

Introdução

- Computadores trabalham com números binários
- Qualquer informação seja numérica ou alfabética deve ser representada por bits
- Codificação é o mapeamento de símbolos para uma representação binária (em bits)
 - Ex. de codificação para números: complemento de 1, complemento de 2, sinal/magnitude
- Porém nem tudo são números...

Introdução

- Precisamos manipular caracteres alfanuméricos, símbolos especiais (pontuação, letras gregas, etc)
- Com n bits pode-se representar 2ⁿ símbolos distintos → 2ⁿ combinações
- O código pode não usar todas as combinações possíveis

 Cada sistema de codificação pode definir suas próprias regras de formação de códigos

Alguns Códigos Binários

- Ponderados (BCD, Excesso-de-3, ...)
- Gray
- Hamming
- Códigos Alfanuméricos:
 - EBCDIC
 - ASCII
 - Unicode...

BCD (BINARY CODED DECIMAL)

Sistema BCD

- BCD: Binary Coded Decimal ou Decimal Codificado em Binário
 - Cada algarismo decimal será representado por 4 bits (em binário)
 - Com 4 bits pode-se representar 16 combinações diferentes (0000-1111)
 - Mas, são somente 10 dígitos binários (0-9), então algumas combinações não serão usadas
 - Código ponderado: baseado em pesos

Sistema BCD

Exemplo

$$832_{(base 10)} = 1000 0011 0010_{BCD}$$

Ilustração do método de codificação: cada algarismo do número decimal é convertido para um número binário de 4 bits, usando pesos 1, 2, 4, 8 (da direita para a esquerda)

BCD ou Normal BCD

Também chamado BCD 8-4-2-1

8	3	2	_
,	0011	,	\rightarrow
			\rightarrow
84/1	8 4 2 1	0 4 Z I	

DECIMAL	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

códigos **inválidos** no BCD: 1010, 1011, 1100, 1101, 1110, 1111

Tabela com códigos BCD para algarismos de 0 a 9

Como ficam em BCD?

Como ficam em BCD?

■ 983 → 1001 1000 0011

 \bullet 372 \rightarrow 0011 0111 0010

■ 1633 → 0001 0110 0011 0011

Excesso de 3

- Ou Stibitz
- Ponderado: Usa mesmos pesos do BCD 8-4-2-1, mas subtrai 3 unidades
- Nenhum código utiliza a combinação "0000", "0001" e nem "0010"
- Se temos o código "0111", qual o correspondente em decimal?

$$0111 = 0*8 + 1*4 + 1*2 + 1*1 - 3 = 4_{base 10}$$

Excesso de 3

Decimal	BCD	Excesso de 3	
0	0000	0011 •	- 1*2+1*1 -3 =0
1	0001	0100	
2	0010	0101 ←	- 1*4+1*1 -3 =2
3	0011	0110	
4	0100	0111 ←	1*4+1*2+1*1 -3 =4
5	0101	1000	
6	0110	1001	
7	0111	1010	
8	1000	1011	
9	1001	1100	. «EDE»
	į.	<u>. </u>	OF FEDER

Tabela com códigos de 4 bits, BCD e Excesso de 3, correspondentes aos algarismos de 0 a 9

Tabela de códigos ponderados: Variações do BCD

Decimal	NBCD (8421)	Stibitz (8421-3) Execesso de 3	Aiken (2421)	Cod. 7421 (7421)
0	0000	0011	0000	0000
1	0001	0100	0001	0001
2	0010	0101	0010	0010
3	0011	0110	0011	0011
4	0100	0111	0100	0100
5	0101	1000	1011	0101
6	0110	1001	1100	0110
7	0111	1010	1101	1000
8	1000	1011	1110	1001
9	1001	1100	1111	1010

Tabela de códigos ponderados: Variações do BCD

Decimal	NBCD (8421)	Stibitz (8421-3) Execesso de 3	Aiken (2421)	Cod. 7421 (7421)	
0	0000	0011	0000	0000	
1	0001	0100	0001	Excesso de	9
2	0010	0101	0010	0010	
3	0011	0110	0011	0011	
4	0100	0111	0100	0100	
5	0101	1000	1011	0101	
6	0110	1001	1100	0110	
7	0111	1010	1101	1000	
8	1000	1011	1110	1001	
9	1001	1100	1111	1010	

0111: 0*8 + 1*4 + 1*2 + 1*1 = 7 - 3 = 4

Aiken: pesos diferenciados, códigos são diferentes a partir do 5 comparado ao NBCD

Decimal	NBCD (8421)	Stibitz (8421-3) Execesso de 3	Aiken (2421)	Cod. 7421 (7421)
0	0000	0011	0000	0000
1	0001	0100	0001	0001
2	0010	0101	0010	0010
3	0011	0110	0011	0011
4	0100	0111	0100	0100
5	0101	1000	1011	0101
6	0110	1001	1100	0110
7	0111	1010	1101	1000
8	1000	1011	1110	1001
9	1001	1100	1111	1010

7421: pesos diferenciados, códigos são Tabela de diferentes a partir do 7 (comparado ao NBCD)

Decimal	NBCD (8421)	Stibitz (8421-3) Execesso de 3	Aiken (2421)	Cod. 7421 (7421)
0	0000	0011	0000	0000
1	0001	0100	0001	0001
2	0010	0101	0010	0010
3	0011	0110	0011	0011
4	0100	0111	0100	0100
5	0101	1000	1011	0101
6	0110	1001	1100	0110
7	0111	1010	1101	1000
8	1000	1011	1110	1001
9	1001	1100	1111	1010

CÓDIGOS GRAY

Códigos Gray (ou cíclicos)

- NÃO muito usado para cálculos aritméticos
- São usados para indicar a variação de medidas analógicas (temperatura, ângulo, pressão) em forma digital
 - Estas grandezas variam seus valores de forma contínua, não brusca
- Quando avançamos de um número para o seu adjacente mudamos apenas 1 bit!
 - Códigos adjacentes se diferenciam por uma posição binária (variação de um único bit)

Código Gray 4 bits

 Todas as 16 combinações possíveis são usadas

Não	exist	e cor	mb	inaç	ões
que	indiq	luem	err	0	

 Código cíclico do 15 para o 0 também muda apenas um bit

Variação do 3	(0011)	para o 4	(0100)):
---------------	--------	----------	--------	----

Em binário mudaria 3 bits!

Em Gray apenas 1!

Decimal	Cód. Gray
0	0 0 0 0
1	0 0 0 1
2	0 0 1 1
3	0010
4	0 1 1 0
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
12	1010
13	1011
14	1001
15	1000

Binário para Código Gray

- Conversão a partir de decimal ou binário
- Decimal -> Binário -> Gray (4 bits)

$$5_{10} = 0 \ 1 \ 0 \ 1$$
 Código Binário Gray

Binário para Código Gray

- Conversão a partir de decimal ou binário
- Decimal -> Binário -> Gray

$$5_{10} = 0 \xrightarrow{+} 1 \xrightarrow{+} 0 \xrightarrow{+} 1$$
 Código Binário $0 \xrightarrow{-} 1 \xrightarrow{-} 1$ Código Gray

- 1) Repete o bit de mais alta ordem (MSB) do binário
- 2) Cada bit é somado em módulo 2 (sem vai-um) com o bit da direita (ou bits adjacentes iguais converte para 0 e diferentes para 1), começando da esquerda para direita.

Binário para Código Gray

Trabalhando com mais bits

Calcule 45₁₀ em código gray de 6 bits

Binário para Código Gray

Calcule 45₁₀ em código gray 6 bits

$$45_{10} = 1 \ 0 \ 1 \ 1 \ 0 \ 1$$
 Código Binário

Binário para Código Gray

Calcule 45₁₀ em código gray?

- 1) Repete o bit de mais alta ordem (MSB)
- 2) Cada bit do código binário é somado em módulo 2 (sem vai-um) com o bit da direita, começando pelo bit MSB e isso gera os próximos bits

Código Gray para Binário

■ Gray → Binário

Código Gray

Código Binário

- 1) Repete o bit de mais alta ordem (MSB)
- 2) Some cada bit do código binário gerado ao bit do código Gray na posição adjacente, gerando o próximo bit do binário.

- Quantos números diferentes podem ser representados em uma palavra binária de 6 bits?
- Qual é a representação BCD para 1049 base 10?
- O seguinte conjunto de bits 110010100011 representa um número usando codificação excesso de 3. Qual é o valor do número decimal representado neste código?
- Calcule o código Gray para o número 23 base 10

Quantos números diferentes podem ser representados em uma palavra binária de 6 bits?

$$2^n = 2^6 = 64$$

- Qual é a representação BCD para 1049 base10?
- O seguinte conjunto de bits 110010100011 representa um número usando codificação excesso de 3. Qual é o valor do número decimal representado neste código?
- Calcule o código Gray para o número 23 base 10

Quantos números diferentes podem ser representados em uma palavra binária de 6 bits?

$$2^n = 2^6 = 64$$

• Qual é a representação BCD para 1049 base10?

0001 0000 0100 1001

- O seguinte conjunto de bits 110010100011 representa um número usando codificação excesso de 3. Qual é o valor do número decimal representado neste código?
- Calcule o código Gray para o número 23 base 10

Quantos números diferentes podem ser representados em uma palavra binária de 6 bits?

$$2^n = 2^6 = 64$$

• Qual é a representação BCD para 1049 base10?

0001 0000 0100 1001

 O seguinte conjunto de bits 110010100011 representa um número usando codificação excesso de 3. Qual é o valor do número decimal representado neste código?

$$1100\ 1010\ 0011 = 970$$

Calcule o código Gray para o número 23 base 10

Quantos números diferentes podem ser representados em uma palavra binária de 6 bits?

$$2^n = 2^6 = 64$$

• Qual é a representação BCD para 1049 base10?

0001 0000 0100 1001

O seguinte conjunto de bits 110010100011 representa um número usando codificação excesso de 3. Qual é o valor do número decimal representado neste código?

$$1100\ 1010\ 0011 = 970$$

Calcule o código Gray para o número 23 base 10

$$23 \rightarrow 10111$$

11100

Códigos de Detecção de Erros

Códigos de detecção de erros

- Quando a informação é transmitida não é incomum a ocorrência de erros (ruídos, mau funcionamento de um componente)
- Se a codificação usa todas as combinações
 - Ou seja, se todas as combinações são válidas
 - Não pode detectar erros, nem corrigi-los
- Para detectar erros é preciso redundância
 - Bits extras
 - Combinações inválidas

Códigos de detecção de erros

- Técnicas de detecção de erros
 - Códigos m-de-n
 - Códigos de Paridade
 - Códigos de Hamming

CÓDIGO M DE N

Códigos de 7 bits (Código m de n)

- Dois grupos de bits:
 - um grupo com 2 bits e um outro com 5 bits
- Somente 2 bits em "um", os demais em "zero"
 - Sendo 1 desses bits está na esquerda (grupo de 2) e outro na direita (grupo dos 5)
 - Ex: 01 00001

Códigos diferentes disso significam um erro

Códigos de 7 bits (Código m de n)

 O grupo à esquerda indica se o número é

menor ou igual a 4

ou

maior ou igual a 5

Dec.	50	43210
0	01	00001
1	01	00010
2	01	00100
3	01	01000
4	01	10000
5	10	00001
6	10	00010
7	10	00100
8	10	01000
9	10	10000

Tabela com decimal e código correspondente com 7 bits

-

Códigos de 7 bits (Código m de n)

10 00111 : é válido?

01 00100 : é válido?

00 00110 : é válido?

Códigos de 7 bits (Código m de n)

10 00111 : é válido? NÃO

01 00100 : é válido? SIM

00 00110 : é válido? NÃO

CÓDIGOS DE PARIDADE

Códigos de Paridade

- Detecção de erros baseado na paridade
- Adição de 1 bit à palavra codificada para representar a paridade (0-par, 1-impar)
 - Indicando se o número de "uns" é par ou ímpar
- Se o código for de paridade par, todas as palavras com número ímpar de "uns" são rejeitadas
- Detecta erro simples (inversão de 1 bit)
- Não consegue detectar dois ou mais erros
- Nem consegue corrigir o bit errôneo

Códigos de Paridade

Ex: 8 bits (1 bit de paridade 0: par; 1: impar)

0 0000011: código válido

■ 1 0000011: código inválido

No exemplo, o código inválido tem 2 "uns" → Número par de "uns", mas bit de paridade indica que código tem número impar de uns!

Códigos de Paridade

Ex: 8 bits (1 bit de paridade 0: par; 1: impar)

Se for enviado o código

"1000001"

Mas for recebido o código

"10001001"

Detecta?

ERRO DETECTADO!

Códigos de Paridade

Ex: 8 bits (1 bit de paridade 0: par; 1: impar)

Se for enviado o código

"1000001"

E se for recebido o código

"10001000"

Detecta?

ERRO NÃO DETECTADO!

CÓDIGO DE HAMMING

- Introduzem vários bits de paridade
- Permitem tanto detecção quanto correção

 Distância de Hamming: o número de bits que são alterados entre dois códigos adjacentes

Exemplos:

0001 e 0100 – distância é 2

0000 e 1111 – distância é 4

- Se a distância for de 1:
 - não é possível <u>nem a detecção e nem a correção</u> de erros, pois cada erro é transformado em um código também válido.
 - Exemplo: 000, 100, 101, 001, 011, 111, 110 e 010
- Se a distância for 2, como por exemplo 000, 011, 110 e 101:
 - é possível detectar um erro, mas não corrigi-lo
 - Exemplo: 001 poderia ter sido originado de 000, de 011 ou de 101

Se a distância for de 3, como por exemplo em 011 e 100:

- erro simples (erro de apenas um bit) pode ser detectado e corrigido!
 - Exemplo: 000 só poderia ter sido originado de 100
- a correção é feita alterando a palavra para o código válido mais próximo (de menor distância).

Usando 3 bits de paridade

- Bit A: paridade das posições 1, 3, 5 e 7
- Bit B: paridade das posições 2, 3, 6 e 7
- Bit C: paridade das posições 4, 5, 6 e 7

Tabela com código Hamming com distância mínima de 3

Posição	1	2	3	4	5	6	7
Código	Α	В	8	С	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1
10	1	0	1	1	0	1	0
11	0	1	1	0	0	1	1
12	0	1	1	1	1	0	0
13	1	0	1	0	1	0	1
14	0	0	1	0	1	1	0
15	1	1	1	1	1	1	1

Tabela com código Hamming com distância mínima de 3

Bits de Paridade: posições 1,2 e 4 (da esquerda para direita)

Posição	1	2	3	4	5	6	7
Código	Α	В	8	С	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1
10	1	0	1	1	0	1	0
11	0	1	1	0	0	1	1
12	0	1	1	1	1	0	0
13	1	0	1	0	1	0	1
14	0	0	1	0	1	1	0
15	1	1	1	1	1	1	1

Tabela com código Hamming com distância mínima de 3

Bits de Paridade: posições 1,2 e 4 (da esquerda para direita)

Pesos: posições 3, 5, 6 e 7

Posição	1	2	3	4	5	6	7
Código	Α	В	8	С	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1
10	1	0	1	1	0	1	0
11	0	1	1	0	0	1	1
12	0	1	1	1	1	0	0
13	1	0	1	0	1	0	1
14	0	0	1	0	1	1	0
15	1	1	1	1	1	1	1

Tabela com código Hamming com distância mínima de 3

Bits de Paridade: posições 1,2 e 4 (da esquerda para direita)

Pesos: posições 3, 5, 6 e 7

Posição	1	2	3	4	5	6	7
Código	Α	В	8	С	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1
10	1	0	1	1	0	1	0
11	0	1	1	0	0	1	1
12	0	1	1	1	1	0	0
13	1	0	1	0	1	0	1
14	0	0	1	0	1	1	0
15	1	1	1	1	1	1	1

Tabela com código Hamming com distância mínima de 3

Ex: Do 8 para o 9 : distância de 4 bits

Representando o 8: 1*8+4*0+2*0+0*1=8

Posição	1	2	3	4	5	6	7
Código	Α	В	8	С	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1
10	1	0	1	1	0	1	0
11	0	1	1	0	0	1	1
12	0	1	1	1	1	0	0
13	1	0	1	0	1	0	1
14	0	0	1	0	1	1	0
15	1	1	1	1	1	1	1

Hamming: Detecção de Erros

- 3 bits de paridade, controlando posições diferentes (posições da esquerda para direita)
- Bit C (posição4): paridade das posições 4, 5, 6 e 7
- Bit B (posição 2): paridade das posições 2, 3, 6 e 7
- Bit A (posição 1): paridade das posições 1, 3, 5 e 7
- Avalia-se o valor dos bits de paridade e se todos forem 0, número recebido está correto, caso contrário há erro!

$$1\ 1\ 0\ 0\ 1\ 1\ 0 = 6_{10}$$

Hamming: Detecção de Erros

Exemplo 1100110 (6_{base10}):

- 1 1 0 0 1 1 0 recebido errado (1 1 0 0 0 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade ímpar: C = 1
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade ímpar: A = 1
 - CBA = $101 = 5_{10}$
- Posição 5 está errada e bit deve ser invertido
- Se CBA = 000 → código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido errado (1 1 0 0 0 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade ímpar: C = 1
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade ímpar: A = 1
 - CBA = $101 = 5_{10}$
- Posição 5 está errada e bit deve ser invertido
- Se CBA=000 -> código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido errado (1 1 0 0 0 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade ímpar: C = 1
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade ímpar: A = 1
 - CBA = $101 = 5_{10}$
- Posição 5 está errada e bit deve ser invertido
- Se CBA=000 -> código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido errado (1 1 0 0 0 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade ímpar: C = 1
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade ímpar: A = 1
 - CBA = $101 = 5_{10}$
- Posição 5 está errada e bit deve ser invertido
- Se CBA=000 -> código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido errado (1 1 0 0 0 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade ímpar: C = 1
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade ímpar: A = 1
 - CBA = $101 = 5_{10}$
- Posição 5 está errada e bit deve ser invertido
- Se CBA=000 -> código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido certo (1 1 0 0 1 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade par: C = 0
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade par: A = 0
 - CBA = 000 → código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido certo (1 1 0 0 1 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade par: C = 0
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade par: A = 0
 - CBA = 000 → código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido certo (1 1 0 0 1 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade par: C = 0
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade par: A = 0
 - CBA = 000 → código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido certo (1 1 0 0 1 1 0)
- - Verificando posições 4, 5, 6 e 7: paridade par: C = 0
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade par: A = 0
 - CBA = 000 → código recebido corretamente

Hamming: Detecção de Erros

- 1 1 0 0 1 1 0 recebido certo (1 1 0 0 1 1 0)
 - Verificando posições 4, 5, 6 e 7: paridade par: C = 0
 - Verificando posições 2, 3, 6 e 7: paridade par: B = 0
 - Verificando posições 1, 3, 5 e 7: paridade par: A = 0
 - CBA = 000 -> código recebido corretamente

Códigos Alfanuméricos

Códigos Alfanuméricos

- Os computadores não manipulam apenas informações numéricas - precisam representar também caracteres alfabéticos, pontuação, etc.
- ASCIIEBCDIC

Amplamente usado

- Unicode
 - UTF-8 (8-bit *Unicode Transformation Format*)

Código ASCII

- ASCII American Standard Code for Information Interchange
- Código mais usado em todas as plataformas
- 7 bits
- 8 bits (versão estendida ASCII extended)

Código ASCII 7 bits

- 7 bits (128 combinações)
- Códigos de 0 a 31 reservados para caracteres de controle (tabulação, retorno, ejeção de página, etc)
- Caracteres visíveis vão do 32 (espaço) ao 126 (til)
- Diferença de 32 entre letras maiúsculas e minúsculas
 - A: 100 0001 (65₁₀)
 - **a**: 110 0001 (97₁₀)
 - **97-65=32**

Tabela ASCII – 7 bits

Table 1–2
ASCII Code

Char-			ASC	n (Code			Char-			ASC	n c	ode	8		Char-		A	SCI	I Co	de		
acter	A	As	A4	A ₃	A,	A,	A ₀	acter	A						Ap	acter	A	As	A	A,	A ₂	A,	A
space	0	1	0	0	0	0	0	@	1	0	0	0	0	0	0	•	1	1	0	0	0	0	0
!	0	1	0	0	0	0	1	A	1	0	0	0	0	0	1	a	1	I	0	0	0	0	1
**	0	1	0	0	0	1	0	B	1	0	0	0	0	1	0	b	1	1	0	0	0	1	0
#	0	1	0	0	0	1	1	C	1	0	0	0	0	1	1	¢	1	1	0	0	0	1	1
5	0	1	0	0	1	0	0	D	1	0	0	0	1	0	0	d	1	1	0	0	1	0	0
%	0	1	0	0	1	0	1	E	1	0	0	0	1	0	1	e	1	1	0	0	1	0	1
&	0	1	0	0	1	1	0	F	1	0	0	0	1	1	0	f	1	1	0	0	1	1	0
,	0	1	0	0	1	1	1	G	1	0	0	0	1	1	1	g	1	1	0	0	1	1	1
(0	1	0	1	0	0	0	H	1	0	0	1	0	0	0	h	1	1	0	1	0	0	0
)	0	1	0	1	D	0	1	I	1	0	0	1	0	0	1	ī	1	1	0	1	0	0	1
*	0	1	0	1	0	1	0	1	1	0	0	1	0	1	0	j	1	1	0	1	0	1	0
+	0	1	0	1	0	1	1	K	1	0	0	1	0	1	1	k	1	1	0	1	0	1	1
	0	1	0	1	1	0	0	L	I	0	0	1	1	0	0	1	1	1	0	1	1	0	0
-	0	1	0	1	1	0	1	M	1	0	0	1	1	0	1	m	1	1	0	1	1	0	1
39	0	1	0	1	1	1	0	N	1	0	0	1	1	1	0	n	1	1	0	1	1	1	0
1	0	1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	1	1	0	1	1	1	1
0	0	1	1	0	0	0	0	P	1	0	1	0	0	0	0	p	1	1	1	0	0	0	0
1	0	1	1	0	0	0	1	Q	1	0	1	0	0	0	1	q	1	1	1	0	0	0	1
2	0	1	1	0	0	1	0	R	1	0	1	0	0	1	0	I	1	1	1	0	0	1	0
3	0	1	1	0	0	1	i	S	1	0	1	0	0	1	1	s	1	1	1	0	0	1	1
4	0	1	1	0	1	0	0	T	1	0	1	0	1	0	0	t	1	1	1	0	1	0	0
5	0	1	1	0	1	0	1	U	1	0	1	0	1	0	1	u	1	1	1	0	1	0	1
6	0	1	1	0	1	1	0	v	1	0	1	0	1	1	0	v	1	1	1	0	1	1	0
7	0	1	1	0	I	1	1	W	I	0	1	0	1	1	1	w	1	1	1	0	1	1	1
8	0	1	1	1	0	0	0	x	.1	0	1	1	Ö	0	0	x	1	1	1	1	0	0	0
9	0	1	1	1	0	0	1	Y	1	0	L	1	0	0	1	y	1	1	1	1	0	0	1
:	0	1	1	1	0	1	0	Z	1	0	1	1	0	1	0	z	1	1	1	1	0	1	0
;	0	1	t	I	0	1	1	1	1	0	1	1	0	1	1	{	1	1	1	1	0	1	1
<	0	1	1	1	1	0	0	Ñ	1	0	1	1	1	0	0	ì	1	1	1	1	1	0	0
-	0	1	1	1	1	0	1	3	1	0	1	1	1	0	1	}	1	1	1	1	1	0	1
>	0	1	1	1	1	1	0	-	1	0	1	1	1	1	0	~	1	1	1	1	1	1	0
?	0	1	1	1	1	1	1	and the same of	1	0	1	1	1	1	1	delete	1	1	1	1	1	1	1

Tabela ASCII 7 bits

Bits	HIS PACE OF THE PA		Bits sup	eriores (n	nais signifi	icativos)		
inferiores	000	001	010	011	100	101	110	111
0000	null	dle		0	@	P		p
0001	soh	dc1	!	1	Α	Q	a	q
0010	stx	dc2		2	В	R	b	r
0011	etx	dc3	#	3	C	S	c	s
0100	eot	dc4	\$	4	D	T	d	t
0101	enq	nak	%	5	E	U	e	u
0110	ack	syn	&	6	F	V	f	ν
0111	bell	etb	•	7	G	W	g	w
1000	bsp	can	(8	H	X	h	x
1001	ht	em) .	9	I	Y	i	У
1010	lf	sub	*	:	J	Z	j	Z
1011	vt	esc	+	;	K	[k	{
1100	ff	fs	,	<	L	١	1	1
1101	СГ	gs	_	=	M]	m	}
1110	so	rs		>	N	^	n	~
1111	si	us	1	?	O	_	O	del

ASCII de 8 bits (extended)

- 8 bits (256 combinações)
 - Permite representar caracteres acentuados (â,ã,á,à...) e símbolos específico de diversas línguas
 - Não existe definição única, cada fabricante definiu a sua

 Atualmente 8 bits já é considerado insuficiente, portanto existem propostas de uso de 16 bits – 65532 símbolos distintos (Unicode)

EBCDIC

- EBCDIC (Extended Binary Coded Decimal Interchange Code)
- Usado em plataformas de grande porte da IBM
- Padrão 8 bits
 - possibilidade de codificar 256 estados diferentes.

Unicode

- Unicode é um padrão que permite aos computadores representar e manipular, de forma consistente, texto de qualquer sistema de escrita existente.
- UTF-8 (8 bits)
 - Compatível com o ASCII
 - Utilizada para os sistemas latinos
- UTF-16 (16 bits)
 - Representação de até 65536 símbolos

Onde aprender mais?

[1] WEBER, Raul F. **Fundamentos de Arquiteturas de Computadores**. Porto Alegre: Sagra-Luzzato, 2000.

[2] MONTEIRO, M. A. **Introdução à Organização de Computadores**. Rio de Janeiro: Livros Técnicos e Científicos, 1996.

[3] UYEMURA. **Sistemas Digitais**. São Paulo: Pioneira Thomson Learning, 2002.

