

微服务统一配置中心介绍

扫码试看/订阅《分布式缓存高手课》视频课程

常用开源统一配置中心介绍

Apollo

Apollo (阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境、不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限、流程治理等特性,适用于微服务配置管理场景。

Qconf

• QConf 是一个分布式配置管理工具。 用来替代传统的配置文件,使得配置信息和程序代码分离,同时配置变化能够实时同步到客户端,而且保证用户高效读取配置,这使的工程师从琐碎的配置修改、代码提交、配置上线流程中解放出来,极大地简化了配置管理工作。

常用开源统一配置中心介绍

- Disconf
 - 专注于各种「分布式系统配置管理」的「通用组件」和「通用平台」,提供统一的「配置管理服务」

- Spring Cloud Config
 - Spring Cloud Config为分布式系统中的外部配置提供服务器和客户端支持。

对比项目	diamond	disconf
配置存储	存储在MySQL	存储在MySQL
推拉模型	拉模型,默认每15秒拉一次	基于ZK的推模型
配置读写	支持实例对配置读写	只支持实例对配置读
容灾	多级容灾,配置数据会 Dump 在本地,避免中心服务器挂掉无法使用	多级容灾,优先读取本地配置
配置数据模型	只支持 KV 结构的数据	支持传统的配置文件方式,也支持 KV 结构
数据同步	基于数据库和本地文件 server 写数据时,先将数据写入数据库,再写入本地文件 client 订阅数据时,访问的是本地文件,不查询数据库,即使数据库 出问题也不影响	基于 ZK 实时对数据进行推送, 系统异常时主备切换

对比项目	Apollo	Spring Cloud Config
静态配置管理	支持	基于文件
动态配置管理	支持	支持
多环境	支持	无
配置生效时间	实时	重启生效,手动刷新
配置更新推送	支持	手动触发
配置版本管理	支持	无
灰度发布	支持	不支持
告警通知	支持	不支持
用户权限	支持	无

如何利用缓存来保存配置数据

- 理想中的配置中心具有哪些特点:
 - 配置的增删改查
 - 不同环境配置隔离(开发、测试、预发布、灰度/线上)
 - 高性能、高可用性
 - 请求量多、高并发
 - 读多写少

电商秒杀业务的架构介绍

• 秒杀与其他业务最大的区别在于:

• 秒杀与其他业务最大的区别在于:

- 秒杀的瞬间
 - 系统的并发量会非常的大
 - 并发量大的同时,网络的流量也会瞬间变大。

核心思路:

- 核心问题就在于如何在大并发的情况下能保证 DB 能扛得住压力,因为大并发的瓶颈在于 DB。如果说请求直接从前端透传到 DB,显然,DB 是无法承受几十万上百万甚至上千万 的并发量的。所以,我们能做的只能是减少对 DB 的访问,前端发出了100万个请求,通 过我们的处理,最终只有10个会访问 DB,这样就可以了!
- 针对秒杀这种场景,因为秒杀商品的数量是有限的,这种做法刚好适用。

整体架构要求:

• 概括为: "稳、准、快",即对应"高可用、一致性、高性能",其介绍分别如下:

• 高可用:保证系统的高可用和正确性,设计PlanB进行兜底。

• 一致性: 保证秒杀减库存中的数据一致性。

高性能:涉及大量并发读写,所以需要支持高并发,从动静分离、热点发现与隔离、请求 削峰与分层过滤、服务端极致优化来介绍。

常用的技术手段:

- 数据预热(预加载)
 - 将秒杀商品提前加入到缓存系统如 ES、Redis 等,防止商品超卖和缓存穿透甚至雪崩。
- 限流
 - 通过网络代理层(如 Nginx)、SLB 负载均衡层、程序限流组件与算法(如 Guava 限流)、前端逻辑过滤等多种手段,防止大流量而造成服务拒绝或阻塞。
- 削峰
 - 通过异步通信的设计与解决方案如 RPC、MQ等具体的实现。
- 隔离
 - 通过部署隔离方案,在网络拓扑将秒杀系统独立部署,即使异常或宕机,至少不会导致主营业务系统受损或瘫痪,库表分区。

电商秒杀业务的架构介绍

扣减库存有几种方式:

• 下单减库存

• 付款减库存

• 预扣库存

高并发的情况下如何扣减库存

• Redis 本来就是单线程的, 所以可以考虑把"检查库存-扣减库存-返回结果"的动作写成 lua 脚本去调用, 一个调用就能原子化地操作库存了。

高并发的情况下如何扣减库存

• 利用SQL事务

```
beginTranse(开启事务)
try {
   //quantity为请求减掉的库存数量
    'update s_store set amount = amount - quantity where amount>=quantity and postID =
12345
} catch(Exception e){
   rollBack(回滚)
commit(提交事务)
```


库存数据放到缓存中

支付中台架构介绍

什么是中台?

• 2019年初到现在,我们经常听到的一个词就是"中台",那么什么是中台呢?在我看来,中台是提取各业务方的共性需求,形成共享复用能力,并提供灵活多变的定制化能力,为前台业务方提供了快速创新能力的平台。

中台是一种战略,涉及到组织、业务、技术、运营、数据等多方面,而其中又有两个非常重要的关键特性,那就是能力复用和灵活多变,灵活多变之中又包括服务编排和插件扩展点,而在今天的分享中,我将重点和你探讨下服务编排,进一步帮助你灵活地复用服务来定制自己的流程。

中台边界确定

扫码试看/订阅《分布式缓存高手课》视频课程