CHL8010: Statistical Programming and Computation in Health Data

Week 4 In-class Assignment 2024-09-30

```
library(here)
here() starts at C:/Users/temoo/OneDrive/Desktop/Uni/Year MPH 1/Year 2/Stat computation/Armedibrary(ggcorrplot)

Loading required package: ggplot2
library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

source(here("R", "merged_dataset.R"))
```

```
[1] "Columns with NA values:"
     gdp1000
                  popdens
                                  urban
                                             male_edu
                                                               temp rainfall1000
          62
                        20
                                     20
                                                   20
                                                                 20
                                                                               20
      MarMor
                  InfMort NeonatalMort
                                           Under5Mort
                                                            Drought
                                                                      Earthquake
         426
                        20
                                                               3132
                                     20
                                                   20
                                                                             3132
# A tibble: 0 x 2
# i 2 variables: ISO <chr>, count <int>
```

Perfect your GitHub repo

Some of you may still need to organize your GitHub repo. Use this time to do that. When you are confident with your repo, let me know – I will try to reproduce your code.

Your final data should have the following variables (you might have slightly different variable names).

```
finaldata <- read.csv(here("data", "analytical", "finaldata.csv"), header = TRUE)
names(finaldata)</pre>
```

```
[1] "country_name" "ISO"
                                     "region"
                                                    "Year"
                                                                    "gdp1000"
 [6] "OECD"
                     "0ECD2023"
                                    "popdens"
                                                    "urban"
                                                                    "agedep"
[11] "male edu"
                                    "rainfall1000" "MarMor"
                                                                    "InfMort"
                     "temp"
[16] "NeonatalMort" "Under5Mort"
                                    "total_deaths" "conflict"
                                                                    "Drought"
[21] "Earthquake"
```

Observations from Canada should look like this...

```
finaldata %>%
  dplyr::filter(country_name == "Canada")
```

```
country_name ISO
                              region Year gdp1000 OECD OECD2023 popdens
1
         Canada CAN Northern America 2000 24.27100
                                                                 1 66.19704
                                                       1
2
         Canada CAN Northern America 2001 23.82206
                                                       1
                                                                 1 66.45361
3
         Canada CAN Northern America 2002 24.25534
                                                       1
                                                                 1 66.71112
4
         Canada CAN Northern America 2003 28.30046
                                                                1 66.96384
5
         Canada CAN Northern America 2004 32.14368
                                                                1 67.21715
                                                       1
         Canada CAN Northern America 2005 36.38251
                                                                1 67.47283
6
                                                       1
         Canada CAN Northern America 2006 40.50406
7
                                                       1
                                                                1 67.73674
8
         Canada CAN Northern America 2007 44.65990
                                                       1
                                                                 1 67.99444
         Canada CAN Northern America 2008 46.71051
                                                       1
                                                                1 68.25765
9
10
         Canada CAN Northern America 2009 40.87631
                                                       1
                                                                 1 68.53354
```

```
11
         Canada CAN Northern America 2010 47.56208
                                                                   1 68.80739
                                                         1
12
         Canada CAN Northern America 2011 52.22370
                                                         1
                                                                   1 69.04842
13
         Canada CAN Northern America 2012 52.66909
                                                         1
                                                                   1 69.27604
14
         Canada CAN Northern America 2013 52.63517
                                                         1
                                                                   1 69.50772
         Canada CAN Northern America 2014 50.95600
15
                                                         1
                                                                   1 69.76876
         Canada CAN Northern America 2015 43.59614
16
                                                         1
                                                                   1 69.98853
17
         Canada CAN Northern America 2016 42.31560
                                                         1
                                                                   1 70.21484
18
         Canada CAN Northern America 2017 45.12943
                                                         1
                                                                   1 70.40863
         Canada CAN Northern America 2018 46.54864
                                                                   1 70.63614
19
                                                         1
20
         Canada CAN Northern America 2019 46.32867
                                                         1
                                                                   1 70.83794
                                    temp rainfall1000 MarMor InfMort NeonatalMort
              agedep male_edu
      urban
  56.14335 46.34463 12.30281 5.486244
                                                            9
                                                                   5.3
1
                                            0.9971559
                                                                                 3.8
  56.40270 45.89632 12.35258 6.469105
                                                                   5.3
                                                                                 3.8
                                            0.8644873
                                                           10
  56.67093 45.46660 12.40182 5.979147
                                            0.9460938
                                                           10
                                                                   5.3
                                                                                 3.9
   56.94365 45.07468 12.45053 5.416964
                                            1.0189234
                                                           10
                                                                   5.3
                                                                                 3.9
  57.20020 44.67374 12.49870 5.556961
                                                                   5.3
                                            1.0008237
                                                           10
                                                                                 3.9
  57.41671 44.26641 12.54635 6.187472
                                            1.0367199
                                                                   5.2
                                                                                 3.9
6
                                                           11
7
  57.59143 43.96370 12.59349 6.895084
                                                                   5.2
                                                                                 3.9
                                            1.0917386
                                                           11
  57.75691 43.83612 12.64015 5.900051
                                                                   5.1
8
                                            1.0134091
                                                           11
                                                                                 3.8
  57.97905 43.85426 12.68634 5.650118
                                            1.0693435
                                                                   5.1
                                                                                 3.8
                                                           12
10 58.24228 43.94937 12.73207 5.398867
                                            0.9928497
                                                           12
                                                                   5.0
                                                                                 3.8
11 58.52809 44.13587 12.77735 6.781766
                                            1.0379754
                                                           11
                                                                   5.0
                                                                                 3.8
12 58.81437 44.53578 12.82218 6.269133
                                            1.1343442
                                                           11
                                                                   4.9
                                                                                 3.7
13 59.05573 45.18393 12.86660 7.249497
                                            0.9747708
                                                           11
                                                                   4.9
                                                                                 3.7
14 59.19713 45.95404 12.91059 5.954381
                                            1.0282075
                                                                   4.8
                                                                                 3.6
                                                           11
15 59.30361 46.75493 12.95414 5.584650
                                                                   4.7
                                            1.0377695
                                                                                 3.6
                                                           11
16 59.42627 47.59164 12.99723 6.436884
                                                                   4.7
                                            0.9632446
                                                                                 3.6
                                                           11
17 59.50521 48.41410 13.03988 7.184514
                                            0.9677826
                                                           10
                                                                   4.6
                                                                                 3.5
18 59.59325 49.14806 13.08210 6.539669
                                            1.0995322
                                                           10
                                                                   4.6
                                                                                 3.4
19 59.68433 49.80166 13.12388 6.539677
                                            1.0991469
                                                                   4.5
                                                                                 3.3
                                                           NA
20 59.75984 50.47739 13.16522 6.539633
                                            1.0987523
                                                                   4.4
                                                                                 3.3
                                                           NA
   Under5Mort total_deaths conflict Drought Earthquake
1
          6.2
                         11
                                    0
                                            0
                                                        0
2
          6.2
                         23
                                    0
                                            0
                                                        0
          6.2
                                                        0
3
                          1
                                    0
                                            0
          6.2
4
                          0
                                    0
                                            0
                                                        0
5
          6.1
                          0
                                    0
                                            0
                                                        0
6
          6.1
                          0
                                    0
                                            0
                                                        0
7
                          0
          6.0
                                    0
                                            0
                                                        0
8
          6.0
                          0
                                    0
                                            0
                                                        0
9
          5.9
                          0
                                    0
                                            0
                                                        0
                          0
                                                        0
10
          5.8
                                    0
                                            0
          5.7
                          0
                                    0
                                                        0
11
```

12	5.7	0	0	0	0
13	5.6	0	0	0	0
14	5.5	0	0	0	0
15	5.4	0	0	0	0
16	5.4	0	0	0	0
17	5.3	0	0	0	0
18	5.2	0	0	0	0
19	5.1	0	0	0	0
20	5.1	0	0	0	0

Observations from Ecuador should look like this...

```
finaldata %>%
  dplyr::filter(country_name == "Ecuador")
```

```
country_name ISO
                                              region Year gdp1000 OECD OECD2023
        Ecuador ECU Latin America and the Caribbean 2000 1.451531
1
2
        Ecuador ECU Latin America and the Caribbean 2001 1.904814
                                                                       0
                                                                                0
3
        Ecuador ECU Latin America and the Caribbean 2002 2.184209
                                                                       0
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2003 2.438344
4
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2004 2.703566
5
                                                                                0
6
        Ecuador ECU Latin America and the Caribbean 2005 3.014310
                                                                                0
7
        Ecuador ECU Latin America and the Caribbean 2006 3.340841
                                                                                0
8
        Ecuador ECU Latin America and the Caribbean 2007 3.579032
                                                                       0
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2008 4.260433
9
                                                                       0
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2009 4.240703
                                                                                0
10
                                                                       0
11
        Ecuador ECU Latin America and the Caribbean 2010 4.640246
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2011 5.202656
12
                                                                       0
                                                                                0
13
        Ecuador ECU Latin America and the Caribbean 2012 5.678456
                                                                                0
14
        Ecuador ECU Latin America and the Caribbean 2013 6.050355
                                                                                0
15
        Ecuador ECU Latin America and the Caribbean 2014 6.374631
                                                                                0
16
        Ecuador ECU Latin America and the Caribbean 2015 6.130587
                                                                       0
                                                                                0
17
        Ecuador ECU Latin America and the Caribbean 2016 6.079089
                                                                       0
                                                                                0
        Ecuador ECU Latin America and the Caribbean 2017 6.246404
18
                                                                       0
                                                                                0
19
        Ecuador ECU Latin America and the Caribbean 2018 6.321349
                                                                       0
                                                                                0
20
        Ecuador ECU Latin America and the Caribbean 2019 6.233258
                                                                                0
   popdens
                       agedep male_edu
                                            temp rainfall1000 MarMor InfMort
               urban
  23.27432 36.19963 67.44216 7.738627 19.54855
                                                    1.4201653
                                                                  122
                                                                         24.7
  23.39372 36.67994 66.57356 7.843942 19.66622
                                                    1.1667746
                                                                  117
                                                                         23.4
3
  23.52087 37.08903 65.65488 7.949449 20.24695
                                                                         22.4
                                                    1.4577981
                                                                  110
  23.58358 37.23792 64.71472 8.055240 20.05016
                                                    1.5781807
                                                                  100
                                                                         21.5
  38.43743 37.39268 63.78049 8.161433 20.10136
                                                    1.0683450
                                                                   94
                                                                         20.7
```

	6	38.55361	37.36968	62.86530	8.268176	19.88163	0.8555447	94	19.9
	7	38.65018	37.47567	61.97042	8.375587	20.07087	1.1114502	90	19.2
	8	38.76505	37.68172	61.11422	8.483729	19.49536	1.0899082	85	18.5
	9	38.83977	37.67445	60.31015	8.592603	19.85711	1.6184816	82	17.7
	10	38.92613	37.39437	59.55262	8.702180	20.39298	1.0870796	80	17.0
	11	39.03066	37.26838	58.83793	8.812409	20.11160	1.7045703	78	16.3
	12	39.09586	37.61553	58.16553	8.923172	19.86633	1.4518388	76	15.6
	13	39.13343	38.00733	57.51051	9.034284	20.19000	1.7520003	71	14.9
	14	39.18619	38.22511	56.84804	9.145523	19.85177	1.3735605	67	14.3
	15	39.27871	38.12421	56.17001	9.256679	20.42252	1.2572257	65	13.7
	16	39.38824	38.15633	55.46511	9.367582	20.95595	1.7284273	63	13.2
	17	39.46201	38.45745	54.73369	9.478071	20.77476	1.3168761	61	12.8
	18	39.53609	38.65993	53.99096	9.587993	20.53262	1.9544485	59	12.4
	19	39.58380	38.87253	53.12249	9.697221	20.53714	1.9573265	NA	12.0
	20	39.75109	39.05144	52.29278	9.805670	20.54169	1.9602443	NA	11.6
NeonatalMort Under5Mort total_deaths conflict Drought Earthquake									
	1	-	14.1	29.5	(0 0	0	0	
	2	-	13.4	28.0	(0 0	0	0	
	3	1	12.7	26.6	2	2 0	0	0	
	4	1	12.1	25.4	(0 0	0	0	
	5	1	11.6	24.4	26	5 1	0	0	
	6	-	11.1	23.5	(0 0	0	0	
	7	-	10.6	22.6	(0 0	0	0	
	8	-	10.2	21.7	(0 0	0	0	
	9		9.7	20.8	(0 0	0	0	
	10		9.3	19.9	25	5 1	1	0	
	11		8.9	19.0	(0 0	0	0	
	12		8.5	18.1	(0 0	0	0	
	13		8.1	17.3	(0 0	0	0	
	14		7.8	16.6	(0 0	1	0	
	15		7.5	15.9	(0 0	0	1	
	16		7.3	15.4	(0 0	0	0	
	17		7.1	14.8	(0 0	0	1	
	18		6.9	14.4	(0 0	0	0	
	19		6.9	13.9	(0 0	0	0	
	20		6.8	13.4	(0 0	0	1	

Exploratory data analysis

Use the rest of the class time to explore the final data that will be used for analysis starting next week. At the end of the class, write a summary of your findings and push your **Quarto document (pdf)** to your repo.

summary(finaldata)

country_name	ISO	region	Year	
Length:3720	Length: 3720	Length: 3720	Min. :2000	
Class :character	Class :characte	r Class :charac	ter 1st Qu.:2005	
Mode :character	Mode :characte	r Mode :charac	ter Median :2010	
			Mean :2010	
			3rd Qu.:2014	
			Max. :2019	
gdp1000	OECD	OECD2023	popdens	
Min. : 0.1105	Min. :0.000	Min. :0.0000	Min. : 0.00	
1st Qu.: 1.2383	1st Qu.:0.000	1st Qu.:0.0000	1st Qu.:14.79	
Median : 4.0719	Median :0.000	Median :0.0000	Median :27.52	
Mean : 11.4917	Mean :0.171	Mean :0.1882	Mean :30.57	
3rd Qu.: 13.1531	3rd Qu.:0.000	3rd Qu.:0.0000	3rd Qu.:40.72	
Max. :123.6787	Max. :1.000	Max. :1.0000	Max. :99.86	
NA's :62			NA's :20	
urban	agedep	male_edu	temp	
Min. : 0.1025	Min. : 16.17	Min. : 1.067	Min. :-2.405	
1st Qu.:17.2872	1st Qu.: 47.94	1st Qu.: 5.904	1st Qu.:12.928	
Median :30.2535	Median : 55.51	Median : 8.368	Median :21.958	
Mean :30.6948	Mean : 61.94	Mean : 8.258	Mean :19.625	
3rd Qu.:41.6558	3rd Qu.: 77.11	3rd Qu.:10.849	3rd Qu.:25.869	
Max. :93.4135	Max. :111.48	Max. :14.441	Max. :29.676	
NA's :20		NA's :20	NA's :20	
rainfall1000	MarMor	InfMort	NeonatalMort	
Min. :0.01993	Min. : 2.0	Min. : 1.60	Min. : 0.80	
1st Qu.:0.59146	1st Qu.: 17.0	1st Qu.: 7.60	1st Qu.: 4.90	
Median :1.01288	Median: 66.0	Median : 18.90	Median :12.10	
Mean :1.20216	Mean : 210.6	Mean : 28.90	Mean :16.18	
3rd Qu.:1.68706	3rd Qu.: 299.8	3rd Qu.: 44.52	3rd Qu.:25.32	
Max. :4.71081	Max. :2480.0	Max. :138.10	Max. :60.90	
NA's :20	NA's :426	NA's :20	NA's :20	
Under5Mort	total_deaths	conflict	Drought	
Min. : 2.00	Min. : 0.0	Min. :0.0000	Min. :0.00000	
1st Qu.: 9.00	1st Qu.: 0.0	1st Qu.:0.0000	1st Qu.:0.00000	
Median : 22.20	Median: 0.0	Median :0.0000	Median :0.00000	
Mean : 40.50	Mean : 361.1	Mean :0.1892	Mean :0.08737	
3rd Qu.: 61.33	3rd Qu.: 2.0	3rd Qu.:0.0000	3rd Qu.:0.00000	
Max. :224.90	Max. :78644.0	Max. :1.0000	Max. :1.00000	
NA's :20				

Earthquake

Min. :0.00000 1st Qu.:0.00000 Median :0.00000 Mean :0.08333 3rd Qu.:0.00000 Max. :1.00000

```
# Check for missing values
colSums(is.na(finaldata))
```

country_name	ISO	region	Year	gdp1000	OECD
0	0	0	0	62	0
0ECD2023	popdens	urban	agedep	male_edu	temp
0	20	20	0	20	20
rainfall1000	MarMor	${\tt InfMort}$	NeonatalMort	Under5Mort	total_deaths
20	426	20	20	20	0
conflict	Drought	Earthquake			
0	0	0			

gdp1000, popdens, urban, male_edu, temp, rainfall1000, MarMor, InfMort, NeonatalMort all have missing data

MarMor has a lot of missing data

```
#Bivariate analysis

#GDP and Population density
ggplot(finaldata, aes(x=gdp1000, y=popdens)) +
    geom_point() +
    labs(title="GDP vs Population Density")
```

Warning: Removed 82 rows containing missing values or values outside the scale range (`geom_point()`).

GDP vs Population Density

#note missing values were removed

```
#Bivariate analysis

#temp vs. rainfall1000
ggplot(finaldata, aes(x=temp, y=rainfall1000)) +
    geom_point() +
    labs(title="Temperature vs Rainfall")
```

Warning: Removed 20 rows containing missing values or values outside the scale range (`geom_point()`).

Temperature vs Rainfall

Lower temperature countries have less rainfall whereas for higher temperature, it varies

```
#Bivariate analysis

#gdp1000 vs. Under5Mort
ggplot(finaldata, aes(x=gdp1000, y=Under5Mort)) +
   geom_point() +
   labs(title="GDP vs Under 5 mortality")
```


Countries with low GDP have substantially greater mortality rates for children under 5.

```
#Bivariate analysis

#gdp1000 vs. NeonatalMort

ggplot(finaldata, aes(x=gdp1000, y=NeonatalMort)) +
    geom_point() +
   labs(title="GDP vs Neonatal Mortality")
```

GDP vs Neonatal Mortality

Countries with lower GDP have substantially higher neonatal mortality rates

```
#Bivariate analysis

#gdp1000 vs. InfMort
ggplot(finaldata, aes(x=gdp1000, y=InfMort)) +
    geom_point() +
    labs(title="GDP vs Infant Mortality")
```


Countries with lower GDP have substantially higher infant mortality rates