Bayesian Neural Network

By Marc Pedersen, Daniel Dalsgaard Jonsson and Gustav Stolberg-Larsen

University of Copenhagen - The Niels Bohr Institute - Advanced Methods in Applied Statistics 2022

Outline

Introduction

Review

Discussion

Conclusion

References

Introduction

Introduction

Review

Discussion

Conclusion

References

Traditional Artificial neural networks (ANN) tend to overfit. $\boldsymbol{l}_i = s_i(\boldsymbol{W}_i \boldsymbol{l}_{i-1} + \boldsymbol{b}_i)$

Bayesian neural networks (BNN) are NNs in a Bayesian framework

BNNs can better estimate confidence levels

$$p(\theta|D) = \frac{p(D_y|D_x, \theta) p(\theta)}{\int p(D_y|D_x, \theta') p(\theta) d\theta'} \propto p(D_y|D_x, \theta) p(\theta)$$

BNN

Introduction

Review

Discussion

Conclusion

References

Variational posterior Prior (if needed) $p(\boldsymbol{\theta})$ $q_{\phi}(\boldsymbol{\theta})$ $p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})$

Functional model

$$\boldsymbol{y} = \Phi_{\boldsymbol{\theta}}(\boldsymbol{x})$$

Training data

$$D = \{(m{x}_1, m{y}_1), ..., (m{x}_n, m{y}_n)\}$$

(c)

Input

 \boldsymbol{x}

MCMC and Variational Inference

Introduction

Review

Discussion

Conclusion

References

	Benefits	Limitations	Use cases	
MCMC (V.A)	Directly samples the posterior	Requires to store a very large number of samples	Small and average models	
Classic methods (HMC, NUTS)(§V-A)	State of the art samplers limit autocorrelation between samples	Do not scale well to large models	Small and critical models	Can b
SGLD and derivates (§V-E2a)	Provide a well behaved Markov Chain with minibatches	Focus on a single mode of the posterior	Models with larger datasets	\
Warm restarts (§V-E2a)	Help a MCMC method explore different modes of the posterior	Requires a new burn-in sequence for each restart	Combined with a MCMC sampler	combined
Variational inference (V.B)	The variational distribution is easy to sample	Is an approximation	Large scale models	
Bayes by backprop (§V-C)	Fit any parametric distribution as posterior	Noisy gradient descent	Large scale models	Can
Monte Carlo-Dropout (§V-E1)	Can transform a model using dropout into a BNN	Lack expressive power	Dropout based models	\
Laplace approximation (§V-E2b)	By analyzing standard SGD get a BNN from a MAP	Focus on a single mode of the posterior	Unimodals large scale models	combined
Deep ensembles (§V-E2b)	Help focusing on different modes of the posterior	Cannot detect local uncertainty if used alone	Multimodals models and combined with other VI methods	/ E

Bayes-by-backprop

Introduction

Review

Discussion

Conclusion

References

Draw epsilon from q

Deterministic transformation

Loss function with variational inference

Normal backpropagation

Algorithm 5 Bayes-by-backprop algorithm.

```
\begin{aligned} & \boldsymbol{\phi} = \boldsymbol{\phi}_0; \\ & \textbf{for } i = 0 \textbf{ to } N \textbf{ do} \\ & \text{Draw } \boldsymbol{\varepsilon} \sim q(\boldsymbol{\varepsilon}); \\ & \boldsymbol{\theta} = t(\boldsymbol{\varepsilon}, \boldsymbol{\phi}); \\ & f(\boldsymbol{\theta}, \boldsymbol{\phi}) = \log(q_{\boldsymbol{\phi}}(\boldsymbol{\theta})) - \log(p(D_{\boldsymbol{y}}|D_{\boldsymbol{x}}, \boldsymbol{\theta})p(\boldsymbol{\theta})); \\ & \Delta_{\boldsymbol{\phi}} f = \text{backprop}_{\boldsymbol{\phi}}(f); \\ & \boldsymbol{\phi} = \boldsymbol{\phi} - \alpha \Delta_{\boldsymbol{\phi}} f; \\ & \textbf{end for} \end{aligned}
```

Performance Metrics

Introduction

Review

Discussion

Conclusion

References

Distribution, not point Estimate

Calibration graph:

- predicted probability p
- observed probability q

If q > p – underconfident If q < p – overconfident If $q \approx p$ – well calibrated

Discussion

Introduction

Review

Discussion

Conclusion

References

Conclusion

Introduction

Review

Discussion

Conclusion

References

Appropriate confidence intervals

Always use the right tool for the task

- BNN
- ANN

References

Introduction

Review

Discussion

Conclusion

References

Laurent Valentin Jospin, Wray L. Buntine, Farid Boussaïd, Hamid Laga, Mohammed Bennamoun: "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users".

Submitted on 14 Jul 2020 (v1). Last revised 3 Jan 2022 (v3).

https://arxiv.org/abs/2007.06823

Figure slide 2:

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

Acknowledgements

Introduction

Review

Discussion

Conclusion

References

Extras

D. Jason Koskinen for feedback on the relevance of the topic.