Intégration et Probabilités

ENS Paris, 2023/2024

Benoît Laslier laslier@dma.ens.fr

TD2 : Mesures additives et σ -additives.

Exercice 1. Soit (E, \mathcal{A}, μ) un espace mesuré, et (A_n) une suite d'ensembles mesurables, montrer que $\mu(\bigcup A_n) \leq \sum \mu(A_n)$.

Solution de l'exercice 1. On définit $B_1 := A_1$ puis $B_{n+1} := A_{n+1} \setminus (A_1 \cup \ldots \cup A_n)$. Alors les ensembles $(B_n)_n$ sont disjoints et l'on a

$$\mu\left(\bigcup A_n\right) = \mu\left(\bigcup B_n\right) = \sum \mu(B_n) \le \sum \mu(A_n)$$
.

Exercice 2. [Retour sur les tribus] Soit E un espace et C une famille de parties de E.

- 1. On pose $\mathcal{G} = \{A \in \sigma(C) : \text{ il existe une partie dénombrable } \mathcal{D} \text{ de } \mathcal{C} \text{ vérifiant } A \in \sigma(\mathcal{D})\}.$ Montrer que \mathcal{G} est une tribu sur E.
- 2. En déduire que pour tout $B \in \sigma(\mathcal{C})$, il existe une famille dénombrable $\mathcal{D} \subset \mathcal{C}$ telle que $B \in \sigma(\mathcal{D})$.

Solution de l'exercice 2.

- 1. On montre aisément que \mathcal{G} vérifie les 3 axiomes.
- 2. Puisque $\mathcal{C} \subset \mathcal{G}$, on a $\sigma(\mathcal{C}) \subset \mathcal{G} \subset \sigma(\mathcal{C})$. Par conséquent, $B \in \mathcal{G}$.

Exercice 3. [Limsup et liminf d'ensembles] On considère un ensemble E et $(A_n)_{n\geq 1}$ une suite de sous-ensembles de E. On pose $\liminf_{n\to\infty}A_n=\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k$ et $\limsup_{n\to\infty}A_n=\bigcap_{n\geq 1}\bigcup_{k\geq n}A_k$.

- 1. Décrire ces ensembles avec des mots.
- 2. Montrer que $(\liminf_{n\to\infty} A_n)^c = \limsup_{n\to\infty} A_n^c$.
- 3. Relier leurs fonctions indicatrices aux fonctions indicatrices des A_n .
- 4. Calculer $\liminf_{n\to\infty} A_n$ et $\limsup_{n\to\infty} A_n$ dans les cas suivants.
 - (i) $A_{2n} = F$ et $A_{2n+1} = G$, où $F, G \subset E$ sont fixés.
 - (ii) $A_{2n} =]0, 3 + 1/(2n)[$ et $A_{2n+1} =] 1 1/(3n), 2].$

On se donne maintenant une tribu \mathcal{E} et une mesure μ sur E, et on suppose que les A_n sont tous mesurables.

- 5. Montrer que $\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)$, et montrer par un exemple que l'inégalité peut-être stricte.
- 6. Montrer que si de plus μ est une mesure finie on a aussi $\mu\left(\limsup_{n\to\infty}A_n\right)\geq \limsup_{n\to\infty}\mu(A_n)$, mais que l'inégalité est fausse en général.

- 7. On suppose que $\sum_{n\geq 1} \mu(A_n) < \infty$. Montrer que $\mu\left(\limsup_{n\to\infty} A_n\right) = 0$. On appelle ce résultat le Lemme de Borel-Cantelli.
- 8. (Une application du lemme de Borel-Cantelli) Soit $\varepsilon > 0$. Montrer que pour presque-tout $x \in [0,1]$ (pour la mesure de Lebesgue), il n'existe qu'un nombre fini de couple (p,q) avec $q \in \mathbb{N}^*$ et $p \in \mathbb{N}$ tels que $\left| x \frac{p}{q} \right| < \frac{1}{q^{2+\varepsilon}}$, c'est-à-dire presque tout x est "mal approchable par des rationnels à l'ordre $2 + \varepsilon$ ".

Solution de l'exercice 3.

- 1. Liminf : éléments qui sont dans tous les A_n à partir d'un certain rang. Limsup : éléments qui sont dans une infinité de A_n .
- 2. On a $\left(\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k\right)^c=\bigcap_{n\geq 1}\bigcup_{k\geq n}A_k^c$.
- 3. On veut montrer que

$$\mathbbm{1}_{\{\limsup_{n\to\infty}A_n\}}=\limsup_{n\to\infty}\mathbbm{1}_{A_n}\;,\quad \mathbbm{1}_{\{\liminf_{n\to\infty}A_n\}}=\liminf_{n\to\infty}\mathbbm{1}_{A_n}\;.$$

Il suffit de montrer la première identité. En effet, on a alors

$$\mathbb{1}_{\{\lim \inf_{n \to \infty} A_n\}} = \mathbb{1}_{\{(\lim \sup_{n \to \infty} A_n^c)^c\}} = 1 - \mathbb{1}_{\{\lim \sup_{n \to \infty} A_n^c\}}
= 1 - \lim \sup_{n \to \infty} \mathbb{1}_{A_n^c} = \lim \inf_{n \to \infty} (1 - \mathbb{1}_{A_n^c})
= \lim \inf_{n \to \infty} \mathbb{1}_{A_n}.$$

Prouvons à présent la première identité. Pour tout x, les deux membres de l'égalité ne peuvent prendre que les valeurs 0 et 1: vérifions qu'ils prennent la valeur 1 pour les mêmes valeurs de x. On a $\mathbb{1}_{\{\lim\sup_{n\to\infty}A_n\}}(x)=1$ si et seulement si x appartient à une infinité de A_n . Par ailleurs $\limsup_{n\to\infty}\mathbb{1}_{A_n}(x)=1$ si et seulement si $\mathbb{1}_{A_n}(x)=1$ pour une infinité de n. On en déduit l'égalité.

- 4. Calculer $\liminf_{n\to\infty} A_n$ et $\limsup_{n\to\infty} A_n$ dans les cas suivants.
 - (i) On a $\limsup_{n\to\infty} A_n = F \cup G$ et $\liminf_{n\to\infty} A_n = F \cap G$.
 - (ii) On a $\limsup_{n\to\infty} A_n = [-1,3]$ et $\liminf_{n\to\infty} A_n = [0,2]$.
- 5. On note que $(\bigcap_{k\geq n} A_k)_{n\geq 1}$ est une suite croissante pour l'inclusion. Ainsi

$$\mu\left(\liminf_{n\to\infty} A_n\right) = \mu\left(\bigcup_{n>1} \bigcap_{k>n} A_k\right) = \lim_{n\to\infty} \mu(\bigcap_{k>n} A_k) .$$

On a alors $\mu(\bigcap_{k\geq n} A_k) \leq \mu(A_n)$, donc $\lim_{n\to\infty} \mu(\bigcap_{k\geq n} A_k) \leq \liminf_{n\to\infty} \mu(A_n)$. On peut prendre $A_n = [n, n+1[$ et μ la mesure de Lebesgue. La liminf est vide, mais $\mu(A_n) = 1$.

6. Si μ est une mesure finie alors

$$\mu\left(\limsup_{n\to\infty} A_n\right) = \mu(E) - \mu\left(\liminf_{n\to\infty} A_n^c\right) \ge \mu(E) - \liminf_{n\to\infty} \mu(A_n^c) = \limsup_{n\to\infty} \mu(A_n) .$$

En revanche, si l'on prend μ la mesure de Lebesgue et $A_n = [n, \infty)$ alors la limsup est vide mais $\mu(A_n) = \infty$.

7. (Lemme de Borel-Cantelli) On a pour tout $n \ge 1$

$$\mu\left(\limsup_{n\to\infty}A_n\right) \le \mu(\bigcup_{k\ge n}A_k) \le \sum_{k\ge n}\mu(A_k)$$
.

Or le membre de droite tend vers 0 quand $n \to \infty$ (par la convergence de la série).

8. On détermine la mesure de l'ensemble

$$\limsup_{q\to\infty}\left\{x\in[0,1]:\inf_{p\in\mathbb{N}}\left|x-\frac{p}{q}\right|<\frac{1}{q^{2+\epsilon}}\right\},$$

puis on conclut en utilisant l'invariance par translation de la mesure de Lebesgue.

Exercice C. Soit $(a_n, n \in \mathbb{N})$ une suite positive convergente. On pose

$$a(x) = \sum_{n \in \mathbb{N}} a_n x^n.$$

1. Soit Y une variable aléatoire sur \mathbb{N} telle que $\mathbb{P}(Y=n)=a_n/a(1)$ et G une variable aléatoire de loi géométrique de paramètre p. Montrer que

$$\forall n \in \mathbb{N}, \quad \mathbb{P}(Y = k | Y \le G) = a_k p^k / a(p).$$

2. On pose Y(p) une variable ayant la loi de Y conditionné à $Y \leq G$. Déterminer la loi de Y(p) lorsque Y est de loi Géométrique de paramètre 1/2, Poisson de paramètre 1, Binomiale de paramètres n et p.

Pour aller plus loin

Exercice 4. On dit qu'une partie $A \subseteq \mathbb{R}$ est symétrique si A = -A, où on a posé

$$-A = \{x \in \mathbb{R} : \exists y \in A, x = -y\}.$$

Soit $\mathcal{A} = \{A \in \mathcal{P}(\mathbb{R}) : A = -A\}$ l'ensemble des parties symétriques de \mathbb{R} .

- 1. Montrer que $\mathcal{A} = \{A \cup (-A) : A \in \mathcal{P}(\mathbb{R})\}.$
- 2. Montrer que \mathcal{A} est une tribu de \mathbb{R} .
- 3. Caractériser les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{A})$.
- 4. Caractériser les fonctions mesurables de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$.
- 5. Montrer que \mathcal{A} est la tribu image réciproque de la tribu grossière $\mathcal{P}(\mathbb{R})$ de \mathbb{R} par la fonction valeur absolue $V: \mathbb{R} \to \mathbb{R}$.
- 6. Décrire la tribu engendrée par $\{a, -a\} : a \in \mathbb{R}$.

Solution de l'exercice 4.

1. Il est clair que A = -A implique $A = A \cup (-A)$. Réciproquement, l'ensemble $A \cup (-A)$ vérifie bien $-(A \cup (-A)) = A \cup (-A)$.

- 2. $\emptyset \in \mathcal{A}$. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$. $\bigcup_n A_n \in \mathcal{A}$.
- 3. Soit f mesurable de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{A})$. Soit $x \in \mathbb{R}$ et y = f(x). On a alors $-x \in f^{-1}(\{y, -y\})$. Ainsi |f(-x)| = |f(x)| pour tout $x \in \mathbb{R}$. Réciproquement soit f une fonction telle que |f(-x)| = |f(x)| pour tout $x \in \mathbb{R}$. Soit $A \in \mathcal{A}$, montrons que $f^{-1}(A) \in \mathcal{A}$. Si $x \in f^{-1}(A)$ alors $f(x) \in A$ mais alors $f(-x) \in A \cup (-A) = A$ et donc $-x \in f^{-1}(A)$.
- 4. Soit f mesurable de $(\mathbb{R}, \mathcal{A})$ dans $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$. Alors pour tout $y \in \mathbb{R}$, on a $f^{-1}(\{y\}) \in \mathcal{A}$. Ainsi pour tout $x \in \mathbb{R}$, f(x) = f(-x) et la fonction f est paire. Réciproquement si f est paire alors pour tout $B \in \mathcal{P}(\mathbb{R})$, on a $x \in f^{-1}(B) \Rightarrow -x \in f^{-1}(B)$, et donc $f^{-1}(B) \in \mathcal{A}$.
- 5. Soit $A \in \mathcal{A}$. Alors $V^{-1}(A) = A$.
- 6. Notons \mathcal{T} la tribu engendrée recherchée. Comme $\{a, -a\}$ est inclus dans la tribu engendrée par les singletons, \mathcal{T} est incluse dans la tribu engendrée par les singletons. De même, \mathcal{T} est incluse dans \mathcal{A} . Ainsi \mathcal{T} est incluse dans l'intersection des ces deux tribus. On notera que la tribu engendrée par les singletons n'est rien d'autre que la tribu des parties dénombrables ou co-dénombrables. L'intersection des deux tribus est donc la tribu des parties dénombrables ou co-dénombrables, et symétriques. Il reste à montrer que \mathcal{T} coïncide avec cette intersection. On remarque que toute partie symétrique dénombrable est une union dénombrable de $\{a, -a\}$, ce qui termine la preuve.

Définition. On appelle algèbre sur E un sous-ensemble \mathcal{A} de $\mathcal{P}(E)$ tel que $E \in \mathcal{A}$, et \mathcal{A} est stable par intersections finies et passage au complémentaire.

Exercice 5. [Algèbres et tribus] Soit \mathcal{A} une algèbre sur E. Montrer que \mathcal{A} est une tribu si et seulement si pour toute suite $(A_n)_n$ d'éléments deux à deux disjoints de \mathcal{A} on a $\cup_n A_n \in \mathcal{A}$.

Solution de l'exercice 5. Le sens direct est évident. Supposons que pour toute suite $(A_n)_n$ d'éléments deux à deux disjoints de \mathcal{A} on a $\bigcup_n A_n \in \mathcal{A}$. Soit $(B_n)_n$ une suite quelconque d'éléments de \mathcal{A} . On pose alors

$$A_n := B_n \setminus \{B_1 \cup \ldots \cup B_{n-1}\} , \quad n \ge 1 .$$

On a $\bigcup_n A_n = \bigcup_n B_n$, et les A_n sont deux à deux disjoints.

Exercice 6. [Algèbre et mesure additive] Soit \mathcal{A} une algèbre d'ensembles sur un ensemble E. Soit μ une mesure σ -additive sur (E, \mathcal{A}) , c'est-à-dire, une mesure additive sur (E, \mathcal{A}) telle que pour toute suite d'éléments deux-à-deux disjoints $A_n \in \mathcal{A}$ telle que $\cup_n A_n \in \mathcal{A}$ on a

$$\mu(\cup_n A_n) = \sum_n \mu(A_n) .$$

- 1. Montrer que la condition " μ est une mesure additive" pourrait être relaxée en " $\mu(\emptyset) = 0$ " sans changer la classe des mesures σ -additives sur (E, A).
- 2. De même, montrer que la condition $\mu(\cup_n A_n) = \sum_n \mu(A_n)$, pourrait être relaxée en la condition $\mu(\cup_n A_n) \leq \sum_n \mu(A_n)$.
- 3. Montrer que si l'on combine les deux relaxations précédentes alors on obtient des objets qui ne sont pas forcément des mesures σ -additives.

Solution de l'exercice 6.

- 1. Soit μ vérifiant $\mu(\emptyset) = 0$ et la propriété de σ -additivité sur \mathcal{A} . Alors il s'agit de vérifier la propriété d'additivité (finie) : il suffit d'appliquer la propriété de σ -additivité en choisissant des ensembles vides à partir d'un certain rang.
- 2. Soit μ une mesure additive vérifiant la sous- σ -additivité sur \mathcal{A} . Soit une suite d'éléments deux-à-deux disjoints disjoints $A_n \in \mathcal{A}$ telle que $\cup_n A_n \in \mathcal{A}$. Il s'agit de montrer que

$$\mu(\cup_n A_n) \ge \sum_n \mu(A_n)$$
.

Si le terme de gauche est infini, il n'y a rien à montrer. Supposons donc qu'il est fini. Pour tout k on a

$$\bigcup_{n>k} A_n = \bigcup_{n>1} A_n \cap (A_1 \cup \ldots \cup A_k)^c \in \mathcal{A} .$$

On obtient alors pour tout k

$$\mu(\cup_n A_n) = \mu(\cup_{n>k} A_n) + \mu(\cup_{n\leq k} A_n) \ge \mu(\cup_{n\leq k} A_n) = \sum_{n\leq k} \mu(A_n).$$

En passant à la limite sur k on obtient la majoration voulue.

3. On considère $E = \mathbb{N}$, $A = \mathcal{P}(\mathbb{N})$ et pour tout $A \in \mathcal{P}(\mathbb{N})$

$$\mu(A) = \begin{cases} \#A \text{ si } A \text{ est fini} \\ 0 \text{ sinon} \end{cases}$$

Alors $\mu(\emptyset) = 0$ et pour toute suite A_n d'éléments deux-à-deux disjoints, si $\cup_n A_n$ est infini alors on a bien $\mu(\cup_n A_n) = 0 \le \sum_n \mu(A_n)$ et si $\cup_n A_n$ est fini alors tous les A_n sont finis et l'on a

$$\mu(\cup_n A_n) = \#(\cup_n A_n) = \sum_n \#A_n = \sum_n \mu(A_n) .$$

L'application μ vérifie les deux hypothèses mais n'est pas additive.

Exercice 7. [Tribu borélienne produit]

- 1. Montrer que $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- 2. On pose $(F_{\infty}, \|\cdot\|_{\infty})$ l'ensemble des fonctions réelles bornées, muni de la norme infinie.
 - (a) Soit U un ensemble mesurable de $\mathcal{B}(F_{\infty}) \otimes \mathcal{B}(F_{\infty})$. Montrer qu'il existe une suite (A_n) de boréliens de F_{∞} telle que $U \in \sigma(A_m \times A_n, m, n \in \mathbb{N})$
 - (b) Pour $\mathbf{x} \in \{0,1\}^{\mathbb{N}}$, on pose $B_{\mathbf{x}} = \bigcap_{n \geq 0} C_n$, où $C_n = A_n$ si $\mathbf{x}_n = 1$, et $C_n = A_n^c$ sinon. Montrer que l'ensemble des éléments pouvant s'écrire comme union des ensembles de la forme $B_{\mathbf{x}} \times B_{\mathbf{x}'}$ est une tribu.
 - (c) En déduire qu'il existe des familles de boréliens $(A_i)_{i\in\mathbb{R}}$ et $(B_i)_{i\in\mathbb{R}}$ telles que

$$U = \cup_{i \in \mathbb{R}} A_i \times B_i$$

(d) En déduire que $\Delta = \{(f, f), f \in F_{\infty}\}$ est un élément de $\mathcal{B}(F_{\infty} \times F_{\infty})$ mais pas un élément de $\mathcal{B}(F_{\infty}) \otimes \mathcal{B}(F_{\infty})$.

Solution de l'exercice 7.

1. On rappelle que $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ est la tribu engendrée par $A \times B$, avec A et B dans $\mathcal{B}(\mathbb{R})$. On pose $S(x,r) = \{y \in \mathbb{R}^2 : |x_1 - y_1| < r, |x_2 - y_2| < r\}$. Alors, pour tout O ouvert de \mathbb{R}^2 , on a

$$O = \bigcup_{z \in \mathbb{O}^2 : z \in O} \bigcup_{n \in \mathbb{N} : S(z, 1/n) \subset O} O.$$

Dès lors $O \in \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$, donc $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$. Réciproquement, $(x_1, x_2) \mapsto x_1$ et $(x_1, x_2) \mapsto x_2$ étant continues ces applications sont mesurables par rapport à la tribu $\mathcal{B}(\mathbb{R}^2)$. On en conclut que $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) \subset \mathcal{B}(\mathbb{R}^2)$.

- 2. (a) On utilise le résultat de l'exercice 2. Puisque $U \in \sigma(A \times A', A, A' \in \mathcal{B}(F_{\infty}))$, il existe des familles dénombrables d'ensembles mesurables (B_n) et (B'_n) telles que $U \in \sigma(B_n \times B'_n, n \in \mathbb{N})$. On pose alors $(A_n, n \in \mathbb{N})$ une énumération de l'ensemble $\{B_n, B'_n, n \in \mathbb{N}\}$.
 - (b) La question ne le demande pas mais l'idée est de remarquer que les $B_{\mathbf{x}}$ définissent une partition de F_{∞} (la preuve est évidente une fois qu'on a l'énoncé). On peut alors penser essentiellement à chaque $B_{\mathbf{x}}$ comme à un point et vérifier en particulier que pour $X \subset \{0,1\}^{\mathbb{N}}$, $\left(\bigcup_{\mathbf{x} \in X} B_{\mathbf{x}}\right)^c = \bigcup_{\mathbf{x} \in X^c} B_{\mathbf{x}}$. Les axiomes de tribus sont alors facile à vérifier.
 - (c) La tribu définie ci-dessus contient tous les ensembles $A_i \times A_j$, donc elle contient également U. En utilisant que $\{0,1\}^{\mathbb{N}}$ peut être mis en bijection avec \mathbb{R} , on montre le résultat ci-dessus.
 - (d) On a $\Delta \in \mathcal{B}(F_{\infty} \times F_{\infty})$, car c'est un ensemble fermé. Supposons par l'absurde que $\Delta \in \mathcal{B}(F_{\infty}) \otimes \mathcal{B}(F_{\infty})$. Il existerait alors, par la propriété précédente, une famille $(A_i, B_i)_{i \in \mathbb{R}}$ telle que $\Delta = \bigcup_{i \in \mathbb{R}} A_i \times B_i$. Par ailleurs, on sait que $\mathcal{P}(\mathbb{R})$ s'injecte dans F_{∞} mais pas dans \mathbb{R} donc F_{∞} ne peut pas s'injecter dans \mathbb{R} . En particulier, il doit exister un i tel que $A_i \otimes B_i$ contient deux paires (u, u) et (v, v) pour $u \neq v \in F_{\infty}$. On a donc $(u, v) \in A_i \otimes B_i$ et $(u, v) \in \Delta$ ce qui est une contradiction.

Remarque. Cette preuve montre que si (X,Y) sont des espaces métriques dont le cardinal est strictement plus grand que \mathbb{R} , alors $\mathcal{B}(X \times Y) \neq \mathcal{B}(X) \otimes \mathcal{B}(Y)$.