Laplaceova transformacija (1. dio)

Zadaci za vježbu

by Vedax

1. Laplaceova transformacija

63. str.

1. Računajući preko definicije Laplaceovog transformata, odredi slike sljedećih funkcija. Za svaki transformat naznači njegovo područje definicije.

Prema definiciji, Laplaceov transformat se definira ovako: $F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$, i tu formulu ćemo koristiti u ovom zadatku.

A. 2t + 1

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} (2t+1) dt = 2 \int_{0}^{\infty} e^{-st} t dt + \int_{0}^{\infty} e^{-st} dt = \begin{vmatrix} u = t & dv = e^{-st} dt \\ du = dt & v = -\frac{e^{-st}}{s} \end{vmatrix} =$$

$$= 2 \left(-\frac{te^{-st}}{s} \Big|_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} dt \right) - \frac{e^{-st}}{s} \Big|_{0}^{\infty} = -\frac{2}{s} \lim_{t \to \infty} \left(te^{-st} \right) - \frac{2}{s^{2}} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{2}{s^{2}} - \frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{1}{s}$$

Ovi limesi će postojati onda i samo onda ako je s > 0.

$$F(s) = -\frac{2}{s} \lim_{t \to \infty} \left(t e^{-st} \right) - \frac{2}{s^2} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{2}{s^2} - \frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{1}{s} = \frac{2}{s^2} + \frac{1}{s}$$

I to zapisujemo kao: $2t + 1 \longrightarrow \frac{2}{s^2} + \frac{1}{s}$

B. e^t

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} e^{t} dt = \int_{0}^{\infty} e^{(1-s)t} dt = \frac{e^{(1-s)t}}{1-s} \Big|_{0}^{\infty} = \frac{1}{1-s} \lim_{t \to \infty} e^{(1-s)t} - \frac{1}{1-s}$$

Ovaj limes će postojati onda i samo onda ako je 1 - s < 0.

$$F(s) = \frac{1}{1-s} \lim_{t \to \infty} e^{(1-s)t} - \frac{1}{1-s} = \frac{1}{s-1}$$

Pa pišemo:
$$e^t \longrightarrow \frac{1}{s-1}$$

C. e^{-3t}

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} e^{-3t} dt = \int_{0}^{\infty} e^{-(s+3)t} dt = -\frac{e^{-(s+3)t}}{s+3} \Big|_{0}^{\infty} = -\frac{1}{s+3} \lim_{t \to \infty} e^{-(s+3)t} + \frac{1}{s+3} \Big|_{s=0}^{\infty} e^{-(s+3)t} = -\frac{1}{s+3} \lim_{t \to \infty} e^{-$$

Ovaj limes će postojati onda i samo onda ako je s + 3 > 0.

$$F(s) = -\frac{1}{s+3} \lim_{t \to \infty} e^{-(s+3)t} + \frac{1}{s+3} = \frac{1}{s+3}$$

Pa pišemo:
$$e^{-3t} \longrightarrow \frac{1}{s+3}$$

D. *te*^{*t*}

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} t e^{t} dt = \int_{0}^{\infty} e^{-(s-1)t} t dt = \begin{vmatrix} u = t & dv = e^{-(s-1)t} dt \\ du = dt & v = -\frac{e^{-(s-1)t}}{s-1} \end{vmatrix} =$$

$$= -\frac{te^{-(s-1)t}}{s-1} \begin{vmatrix} \infty + \frac{1}{s-1} \int_{0}^{\infty} e^{-(s-1)t} dt = -\frac{1}{s-1} \lim_{t \to \infty} \left(te^{-(s-1)t} \right) - \frac{1}{(s-1)^{2}} e^{-(s-1)t} \end{vmatrix}^{\infty} =$$

$$= -\frac{1}{s-1} \lim_{t \to \infty} \left(te^{-(s-1)t} \right) - \frac{1}{(s-1)^{2}} \lim_{t \to \infty} \left(e^{-(s-1)t} \right) + \frac{1}{(s-1)^{2}}$$

Ovi limesi će postojati onda i samo onda ako je s-1>0.

$$F(s) = -\frac{1}{s-1} \lim_{t \to \infty} \left(t e^{-(s-1)t} \right) - \frac{1}{(s-1)^2} \lim_{t \to \infty} \left(e^{-(s-1)t} \right) + \frac{1}{(s-1)^2} = \frac{1}{(s-1)^2}$$

Pa pišemo:
$$te^t \longrightarrow \frac{1}{(s-1)^2}$$

E. te^{-t}

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} t e^{-t} dt = \int_{0}^{\infty} e^{-(s+1)t} t dt = \begin{vmatrix} u = t & dv = e^{-(s+1)t} dt \\ du = dt & v = -\frac{e^{-(s+1)t}}{s+1} \end{vmatrix} =$$

$$= -\frac{te^{-(s+1)t}}{s+1} \Big|_{0}^{\infty} + \frac{1}{s+1} \int_{0}^{\infty} e^{-(s+1)t} dt = -\frac{1}{s+1} \lim_{t \to \infty} \left(te^{-(s+1)t} \right) - \frac{1}{(s+1)^{2}} e^{-(s+1)t} \Big|_{0}^{\infty} =$$

$$= -\frac{1}{s+1} \lim_{t \to \infty} \left(te^{-(s+1)t} \right) - \frac{1}{(s+1)^{2}} \lim_{t \to \infty} \left(e^{-(s+1)t} \right) + \frac{1}{(s+1)^{2}}$$

Ovi limesi će postojati onda i samo onda ako je s + 1 > 0.

$$F(s) = -\frac{1}{s+1} \lim_{t \to \infty} \left(t e^{-(s+1)t} \right) - \frac{1}{(s+1)^2} \lim_{t \to \infty} \left(e^{-(s+1)t} \right) + \frac{1}{(s+1)^2} = \frac{1}{(s+1)^2}$$

Pa pišemo:
$$te^{-t} \longrightarrow \frac{1}{(s+1)^2}$$

F. 2sin3t

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} 2 \sin 3t dt = 2 \int_{0}^{\infty} e^{-st} \sin 3t dt$$

$$\int e^{-st} \sin 3t dt = \begin{vmatrix} u = \sin 3t & dv = e^{-st} dt \\ du = 3\cos 3t dt & v = -\frac{e^{-st}}{s} \end{vmatrix} = -\frac{\sin 3t \cdot e^{-st}}{s} + \frac{3}{s} \int e^{-st} \cos 3t dt =$$

$$= \begin{vmatrix} u = \cos 3t & dv = e^{-st} dt \\ du = -3\sin 3t dt & v = -\frac{e^{-st}}{s} \end{vmatrix} = -\frac{\sin 3t \cdot e^{-st}}{s} + \frac{3}{s} \left(-\frac{\cos 3t \cdot e^{-st}}{s} - \frac{3}{s} \int e^{-st} \sin 3t dt \right) =$$

$$= -\frac{\sin 3t \cdot e^{-st}}{s} - \frac{3\cos 3t \cdot e^{-st}}{s^2} - \frac{9}{s^2} \int e^{-st} \sin 3t dt$$

$$\left(1 + \frac{9}{s^2}\right) \int e^{-st} \sin 3t dt = -\frac{\sin 3t \cdot e^{-st}}{s} - \frac{3\cos 3t \cdot e^{-st}}{s^2}$$
$$\int e^{-st} \sin 3t dt = \frac{-s\sin 3t \cdot e^{-st} - 3\cos 3t \cdot e^{-st}}{s^2 + 9}$$

$$F(s) = 2 \frac{-s\sin 3t \cdot e^{-st} \Big|_{0}^{\infty} - 3\cos 3t \cdot e^{-st} \Big|_{0}^{\infty}}{s^{2} + 9} = 2 \frac{-s\lim_{t \to \infty} \left(\sin 3t \cdot e^{-st}\right) - 3\lim_{t \to \infty} \left(\cos 3t \cdot e^{-st}\right) + 3}{s^{2} + 9}$$

Ovi limesi će postojati onda i samo onda ako je s > 0.

$$F(s) = 2 \frac{-s \lim_{t \to \infty} \left(\sin 3t \cdot e^{-st}\right) - 3 \lim_{t \to \infty} \left(\cos 3t \cdot e^{-st}\right) + 3}{s^2 + 9} = \frac{6}{s^2 + 9}$$

Pa pišemo: $2\sin 3t \circ - \frac{6}{s^2 + 9}$

G. $e^t \sin t$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t)dt = \int_{0}^{\infty} e^{-st} e^{t} \sin t dt = \int_{0}^{\infty} e^{-(s-1)t} \sin t dt$$

$$\int e^{-(s-1)t} \sin t dt = \begin{vmatrix} u = \sin t & dv = e^{-(s-1)t} dt \\ du = \cos t dt & v = -\frac{e^{-(s-1)t}}{s-1} \end{vmatrix} = -\frac{\sin t e^{-(s-1)t}}{s-1} + \frac{1}{s-1} \int e^{-(s-1)t} \cos t dt =$$

$$\begin{vmatrix} u = \cos t & dv = e^{-(s-1)t} dt \\ du = -\sin t dt & v = -\frac{e^{-(s-1)t}}{s-1} \end{vmatrix} = -\frac{\sin t e^{-(s-1)t}}{s-1} + \frac{1}{s-1} \left(-\frac{\cos t \cdot e^{-(s-1)t}}{s-1} - \frac{1}{s-1} \int e^{-st} \sin t dt \right) =$$

$$= -\frac{\sin t e^{-(s-1)t}}{s-1} - \frac{\cos t \cdot e^{-(s-1)t}}{(s-1)^2} - \frac{1}{(s-1)^2} \int e^{-st} \sin t dt$$

$$\left(1 + \frac{1}{(s-1)^2}\right) \int e^{-(s-1)t} \sin t dt = -\frac{\sin t e^{-(s-1)t}}{s-1} - \frac{\cos t \cdot e^{-(s-1)t}}{(s-1)^2}$$

$$\int e^{-(s-1)t} \sin t dt = \frac{-(s-1)\sin t e^{-(s-1)t} - \cos t \cdot e^{-(s-1)t}}{(s-1)^2 + 1}$$

$$F(s) = \frac{-(s-1)\sin t e^{-(s-1)t} \Big|_{0}^{\infty} - \cos t \cdot e^{-(s-1)t} \Big|_{0}^{\infty}}{(s-1)^{2} + 1} = \frac{-(s-1)\lim_{t \to \infty} \left(\sin t e^{-(s-1)t}\right) - \lim_{t \to \infty} \left(\cos t \cdot e^{-(s-1)t}\right) + 1}{(s-1)^{2} + 1}$$

Ovi limesi će postojati onda i samo onda ako je s-1>0.

$$F(s) = \frac{-(s-1)\lim_{t \to \infty} \left(\sin t e^{-(s-1)t}\right) - \lim_{t \to \infty} \left(\cos t \cdot e^{-(s-1)t}\right) + 1}{(s-1)^2 + 1} = \frac{1}{(s-1)^2 + 1} = \frac{1}{s^2 - 2s + 2}$$

Pa pišemo: $e^t \sin t \sim \frac{1}{s^2 - 2s + 2}$

H. $e^t \cos t$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} e^{t} \cos t dt = \int_{0}^{\infty} e^{-(s-1)t} \cos t dt$$

$$\int e^{-(s-1)t} \cos t dt = \begin{vmatrix} u = \cos t & dv = e^{-(s-1)t} dt \\ du = -\sin t dt & v = -\frac{e^{-(s-1)t}}{s-1} \end{vmatrix} = -\frac{\cos t \cdot e^{-(s-1)t}}{s-1} - \frac{1}{s-1} \int e^{-(s-1)t} \sin t dt =$$

$$\begin{vmatrix} u = \sin t & dv = e^{-(s-1)t} dt \\ du = \cos t dt & v = -\frac{e^{-(s-1)t}}{s-1} \end{vmatrix} = -\frac{\cos t \cdot e^{-(s-1)t}}{s-1} - \frac{1}{s-1} \left(-\frac{\sin t \cdot e^{-(s-1)t}}{s-1} + \frac{1}{s-1} \int e^{-(s-1)t} \cos t dt \right) =$$

$$= -\frac{\cos t \cdot e^{-(s-1)t}}{s-1} + \frac{\sin t \cdot e^{-(s-1)t}}{(s-1)^2} - \frac{1}{(s-1)^2} \int e^{-(s-1)t} \cos t dt$$

$$\left(1 + \frac{1}{(s-1)^2}\right) \int e^{-(s-1)t} \cos t dt = -\frac{\cos t \cdot e^{-(s-1)t}}{s-1} + \frac{\sin t \cdot e^{-(s-1)t}}{(s-1)^2}$$

$$\int e^{-(s-1)t} \sin t dt = \frac{-(s-1)\cos t e^{-(s-1)t} + \sin t \cdot e^{-(s-1)t}}{(s-1)^2 + 1}$$

$$F(s) = \frac{-(s-1)\cos t e^{-(s-1)t} \Big|_{0}^{\infty} + \sin t \cdot e^{-(s-1)t} \Big|_{0}^{\infty}}{(s-1)^{2} + 1} = \frac{-(s-1)\lim_{t \to \infty} \left(\cos t e^{-(s-1)t}\right) + (s-1) + \lim_{t \to \infty} \left(\sin t \cdot e^{-(s-1)t}\right)}{(s-1)^{2} + 1}$$

Ovi limesi će postojati onda i samo onda ako je s-1>0.

$$F(s) = \frac{-(s-1)\lim_{t\to\infty} \left(\cos t e^{-(s-1)t}\right) + (s-1) + \lim_{t\to\infty} \left(\sin t \cdot e^{-(s-1)t}\right)}{(s-1)^2 + 1} = \frac{s-1}{s^2 - 2s + 1}$$

Pa pišemo: $e^t \cos t \longrightarrow \frac{s-1}{s^2 - 2s + 1}$

ı

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{\infty} e^{-st} (1 - \sin t) dt = \int_{0}^{\infty} e^{-st} dt - \int_{0}^{\infty} e^{-st} \sin t dt$$

$$\int e^{-st} \sin t dt = \begin{vmatrix} u = \sin t & dv = e^{-st} dt \\ du = \cos t dt & v = -\frac{e^{-st}}{s} \end{vmatrix} = -\frac{\sin t e^{-st}}{s} + \frac{1}{s} \int e^{-st} \cos t dt =$$

$$\begin{vmatrix} u = \cos t & dv = e^{-st} dt \\ du = -\sin t dt & v = -\frac{e^{-st}}{s} \end{vmatrix} = -\frac{\sin t e^{-st}}{s} + \frac{1}{s} \left(-\frac{\cos t \cdot e^{-st}}{s} - \frac{1}{s} \int e^{-st} \sin t dt \right) =$$

$$= -\frac{\sin t e^{-st}}{s} - \frac{\cos t \cdot e^{-st}}{s^2} - \frac{1}{s^2} \int e^{-st} \sin t dt$$

$$\left(1 + \frac{1}{s^2}\right) \int e^{-st} \sin t dt = -\frac{\sin t e^{-st}}{s} - \frac{\cos t \cdot e^{-st}}{s^2}$$
$$\int e^{-st} \sin t dt = \frac{-s \sin t e^{-st} - \cos t \cdot e^{-st}}{s^2 + 1}$$

$$F(s) = -\frac{e^{-st}}{s} \Big|_{0}^{\infty} - \frac{-s\sin t e^{-st} \Big|_{0}^{\infty} - \cos t \cdot e^{-st} \Big|_{0}^{\infty}}{s^{2} + 1} = -\frac{1}{s} \lim_{t \to \infty} \left(e^{-st}\right) - \frac{-s\lim_{t \to \infty} \left(\sin t e^{-st}\right) - \lim_{t \to \infty} \left(\cos t \cdot e^{-st}\right) + 1}{s^{2} + 1}$$

Ovi limesi će postojati onda i samo onda ako je s-1>0.

$$F(s) = -\frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{1}{s} - \frac{-s \lim_{t \to \infty} \left(\sin t e^{-st} \right) - \lim_{t \to \infty} \left(\cos t \cdot e^{-st} \right) + 1}{s^2 + 1} = \frac{1}{s} - \frac{1}{s^2 + 1}$$

Pa pišemo:
$$1-\sin t \longrightarrow \frac{1}{s} - \frac{1}{s^2 + 1}$$

2. Računajući preko definicije Laplaceovog transformata, odredi slike sljedećih funkcija. Za svaki transformat naznači njegovo područje definicije.

$$\mathbf{A.} \ f(t) = \begin{cases} 1, & t \ge T, \\ 0, & t < T \end{cases}$$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{T}^{\infty} e^{-st} dt = -\frac{e^{-st}}{s} \Big|_{T}^{\infty} = -\frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{e^{-sT}}{s}$$

Ovaj limes će postojati onda i samo onda ako je s > 0.

$$F(s) = -\frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) + \frac{e^{-sT}}{s} = \frac{e^{-sT}}{s}$$

Pa pišemo:
$$f(t) \longrightarrow \frac{e^{-sT}}{s}$$

$$\mathbf{B.} \ f(t) = \begin{cases} 1, & t \le T, \\ 0, & t > T \end{cases}$$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{T} e^{-st} dt = -\frac{e^{-st}}{s} \Big|_{0}^{T} = -\frac{e^{-sT}}{s} + \frac{1}{s}$$

Pa pišemo:
$$f(t) \longrightarrow \frac{1}{s} - \frac{e^{-sT}}{s}$$

C.
$$f(t) = \begin{cases} t, & 0 \le t \le 1, \\ 1, & t > 1 \end{cases}$$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{1} e^{-st} t dt + \int_{1}^{\infty} e^{-st} t dt = \begin{vmatrix} u = t & dv = e^{-st} dt \\ du = dt & v = -\frac{e^{-st}}{s} \end{vmatrix} =$$

$$= -\frac{te^{-st}}{s} \begin{vmatrix} 1 \\ 0 + \frac{1}{s} \int_{0}^{1} e^{-st} dt - \frac{e^{-st}}{s} \end{vmatrix}^{\infty} = -\frac{e^{-s}}{s} + \frac{1}{s^{2}} e^{-st} \begin{vmatrix} 1 \\ 0 - \frac{1}{s} \lim_{t \to \infty} (e^{-st}) + \frac{e^{-s}}{s} =$$

$$= \frac{1}{s^{2}} - \frac{1}{s^{2}} e^{-s} - \frac{1}{s} \lim_{t \to \infty} (e^{-st})$$

Ovaj limes će postojati onda i samo onda ako je s > 0.

$$F(s) == \frac{1}{s^2} - \frac{1}{s^2} e^{-s} - \frac{1}{s} \lim_{t \to \infty} \left(e^{-st} \right) = \frac{1}{s^2} \left(1 - e^{-s} \right)$$

Pa pišemo:
$$f(t) \longrightarrow \frac{1}{s^2} (1 - e^{-s})$$

D.
$$f(t) = \begin{cases} 0, & 0 \le t < 1, \\ 1, & 1 \le t \le 2, \\ 0, & t > 2 \end{cases}$$

$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{1}^{2} e^{-st} dt = -\frac{e^{-st}}{s} \Big|_{1}^{2} = -\frac{e^{-2s}}{s} + \frac{e^{-s}}{s} = \frac{1}{s} \Big(e^{-s} - e^{-2s} \Big)$$

Pa pišemo:
$$f(t) \longrightarrow \frac{1}{s} (e^{-s} - e^{-2s})$$

2. Primjeri Laplaceovih transformata

68./69. str.

1. Provjeri jesu li ove funkcije originali ili nisu. Ako jesu, odredi eksponent rasta a_0 .

A. t^2

$$\lim_{t\to\infty} \left(e^{-at}f(t)\right) = \lim_{t\to\infty} \left(\frac{t^2}{e^{at}}\right) = \frac{\infty}{\infty} = L.H. = \lim_{t\to\infty} \left(\frac{2t}{ae^{at}}\right) = \frac{\infty}{\infty} = L.H. = 2\lim_{t\to\infty} \left(\frac{1}{a^2e^{at}}\right) = 0$$

Funkcija je original. $a_0 = 0$

B. sin2t

$$\lim_{t \to \infty} \left(e^{-at} f(t) \right) = \lim_{t \to \infty} \left(\frac{\sin t}{e^{at}} \right) = \lim_{t \to \infty} \left(\frac{C}{e^{at}} \right) = 0$$

Funkcija je original. $a_0 = 0$

Uglavnom vam se ovi zadaci rade tako, da ne pišem bezveze sad i ostale primjere kad je doslovno sve isto. Eventualno još da riješim sljedeća dva, mislim da bi vam se mogli učiniti "teškima".

$$1. \frac{1}{t}$$

Kod ovog zadatka morate obratiti pažnju na to da je funkcija prekinuta u 0. Međutim, taj prekid nije prve vrste (jer su $\lim_{t\to 0-}\frac{1}{t}=-\infty$ i $\lim_{t\to 0+}\frac{1}{t}=\infty$, to jest, bježe u beskonačnost a ne u neke konstante koje su manje od ∞). Znači, funkcija nije original.

L. $3 \cdot 2^{2t}$

$$\lim_{t\to\infty} \left(e^{-at} f(t) \right) = 3 \lim_{t\to\infty} \left(e^{-at} \cdot 2^{2t} \right) = 3 \lim_{t\to\infty} \left(e^{-at} \cdot e^{2t \ln 2} \right) = 3 \lim_{t\to\infty} \left(e^{t(2\ln 2 - a)} \right)$$

Da bi limes bio definiran, $2\ln 2 - a < 0$, iz čega proizlazi da je $a > 2\ln 2$, a kako je $a_0 \le a$, onda je $a_0 = 2\ln 2$.

4. Koristeći linearnost Laplaceove transformacije i tablicu elementarnih transformata, odredi slike sljedećih funkcija:

Vrijedi da je
$$\alpha f(t) + \beta g(t) \longrightarrow \alpha F(s) + \beta G(s)$$
 i $t^n \longrightarrow \frac{n!}{s^{n+1}}$.

A.
$$t^3 - 3t^2 + 2$$

$$t^3 - 3t^2 + 2 \longrightarrow \frac{3!}{s^{3+1}} - 3\frac{2!}{s^{2+1}} + 2\frac{0!}{s^{0+1}} = \frac{6}{s^4} - \frac{6}{s^3} + \frac{2}{s}$$

B.
$$(t+1)^3$$

$$(t+1)^3 = t^3 + 3t^2 + 3t + 1 \longrightarrow \frac{3!}{s^{3+1}} + 3 \cdot \frac{2!}{s^{2+1}} + 3 \cdot \frac{1!}{s^{1+1}} + 1 \cdot \frac{0!}{s^{0+1}} = \frac{6}{s^4} + \frac{6}{s^3} + \frac{3}{s^2} + \frac{1}{s}$$

Vrijedi da je
$$e^{\alpha t} \circ - \frac{1}{s - \alpha}$$
.

C. 3e^t sh2t

$$3e^{t}sh2t = 3e^{t}\frac{e^{2t} - e^{-2t}}{2} = \frac{3}{2}e^{3t} - \frac{3}{2}e^{-t} \longrightarrow \frac{3}{2}\frac{1}{s-3} - \frac{3}{2}\frac{1}{s+1} = \frac{3}{2}\left(\frac{1}{s-3} - \frac{1}{s+1}\right)$$

D. ch2t · sht

$$ch2t \cdot sht = \frac{1}{4} \left(e^{3t} - e^t + e^{-t} - e^{-3t} \right) \longrightarrow \frac{1}{4} \left(\frac{1}{s-3} - \frac{1}{s-1} - \frac{1}{s+1} - \frac{1}{s+3} \right)$$

Vrijedi da je
$$\sin \omega t \circ - \frac{\omega}{s^2 + \omega^2}$$
 i $\cos \omega t \circ - \frac{s}{s^2 + \omega^2}$.

E. $\cos^{2}(2t)$

$$\cos^2(2t) = \frac{1}{2}(1 + \cos 4t) \longrightarrow \frac{1}{2}(\frac{1}{s} + \frac{s}{s^2 + 16}).$$

F. $sint \cdot sin2t$

$$\sin t \cdot \sin 2t = \frac{1}{2} (\cos t - \cos 3t) \longrightarrow \frac{1}{2} \left(\frac{s}{s^2 + 1} + \frac{s}{s^2 + 9} \right).$$

G. $\cos 5t \cdot \sin 3t$

$$\cos 5t \cdot \sin 3t = \frac{1}{2} (\sin 8t - \sin 2t) \longrightarrow \frac{1}{2} \left(\frac{8}{s^2 + 64} - \frac{2}{s^2 + 4} \right) = \frac{4}{s^2 + 64} - \frac{1}{s^2 + 4}.$$

H. $\cos^3 t$

$$\cos^3 t = \cos t \cdot \cos^2 t = \frac{\cos t}{2} \left(1 + \cos 2t \right) = \frac{\cos t}{2} + \frac{\cos t \cdot \cos 2t}{2} = \frac{\cos t}{2} + \frac{\cos 3t + \cos t}{4}$$

$$\cos^3 t \circ - \frac{1}{2} \frac{s}{s^2 + 1} + \frac{1}{4} \left(\frac{s}{s^2 + 9} + \frac{s}{s^2 + 1} \right) = \frac{1}{4} \left(\frac{s}{s^2 + 9} + \frac{3s}{s^2 + 1} \right).$$

3. Svojstva Laplaceove transformacije

84./85./86. str.

1. Množenje varijable konstantom

$$f(at) \longrightarrow \frac{1}{a} F\left(\frac{s}{a}\right)$$

$$F(bs) \longrightarrow \frac{1}{b} f\left(\frac{t}{b}\right)$$

2. Teorem o prigušenju originala

$$e^{-at}f(t) \longrightarrow F(s+a)$$

3. Teorem o pomaku originala

$$f(t-a)u(t-a) \longrightarrow e^{-as}F(s)$$

4. Step funkcija

$$u(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0 \end{cases}$$

$$u(t) \longrightarrow \frac{1}{s}$$

5. Gate funkcija

$$g_{[a,b]}(t) = \begin{cases} 1, & a \le t \le b, \\ 0, & inace \end{cases}$$

$$g_{[a,b]}(t) = u(t-a) - u(t-b)$$

6. Teorem o deriviranju originala

$$f^{(n)}(t) \longrightarrow s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

7. Teorem o deriviranju slike

$$t^n f(t) \longrightarrow (-1)^n F^{(n)}(s)$$

8. Teorem o integriranju slike

$$\frac{f(t)}{t} \longrightarrow \int_{0}^{\infty} F(s) ds$$

9. Teorem o integriranju originala

$$\int_{0}^{t} f(\tau)d\tau \sim \frac{F(s)}{s}$$

10. Slika periodične funkcije

$$F(s) = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$$

1. Koristeći tablicu Laplaceovih transformata i pravila objašnjena u ovom poglavlju, odredi slike sljedećih funkcija:

A.
$$3(t-3)u(t-3)$$

Koristit ćemo teorem o pomaku $f(t-a)u(t-a) \longrightarrow e^{-as}F(s)$. Iz ovoga nam najprije proizlazi da je f(t-a)=f(t-3), a to nam onda daje da je naša funkcija f(t)=t. Najprije odredimo sliku te funkcije (to će biti F(s) u gornjoj formuli):

$$t \longrightarrow \frac{1}{s}$$

Sada vidimo da nam je a = 3. I to samo uvrstimo u gornju formulu.

$$3(t-3)u(t-3) \longrightarrow e^{-3s} \frac{1}{s} = \frac{e^{-3s}}{s}$$

B.
$$5u(t-2)-2u(t-3)$$

Ponovno ćemo koristiti teorem o pomaku. Primjenjujemo da nam kraj u(t-2) i kraj u(t-3) nema nikakvih funkcija f(t). Međutim to ćemo riješiti na način da kraj tih funkcija dopišemo njih same, i onda primijenimo teorem o pomaku.

$$5u(t-2)u(t-2)-2u(t-3)u(t-3)$$

I sad, za prvi dio imamo:

$$5u(t-2)u(t-2) \Rightarrow 5u(t-2) \Rightarrow 5u(t) \longrightarrow 5\frac{1}{s} = \frac{5}{s}$$

I sad se vraćamo unatrag:

$$5u(t) \longrightarrow \frac{5}{s}$$

$$5u(t-2)u(t-2) \longrightarrow e^{-2s} \frac{5}{s} = \frac{5e^{-2s}}{s}$$

Isto napravimo i za drugi dio:

$$2u(t-3)u(t-3) \Rightarrow 2u(t-2) \Rightarrow 2u(t) \longrightarrow 2\frac{1}{s} = \frac{2}{s}$$

I sad se vraćamo unatrag:

$$2u(t) \longrightarrow \frac{2}{s}$$

$$2u(t-3)u(t-3) \circ e^{-3s} \frac{2}{s} = \frac{e^{-3s}}{s}$$

c.
$$3(t-1)^3 u(t-1)$$

$$3(t-1)^3u(t-1) \Rightarrow 3(t-1)^3 \Rightarrow 3t^3$$

$$3t^3 \longrightarrow 3\frac{3!}{s^{3+1}} = \frac{18}{s^4}$$

I vraćamo se unatrag:

$$3(t-1)^3 u(t-1) \longrightarrow e^{-s} \frac{18}{s^4} = \frac{18e^{-s}}{s^4}$$

D.
$$(2t+1)u(t-1)$$

Najprije moramo prilagoditi funkciju njezinoj step funkciji.

$$(2t+1)u(t-1) = (2t-1+2)u(t-1) = (2t+2)u(t-1) - u(t-1) = 2(t+1)u(t-1) - u(t-1)$$

I sad, najprije napravimo prvi dio:

$$2(t+1)u(t-1) \Rightarrow 2(t+1) \Rightarrow 2t$$

$$2t \circ - 2\frac{1}{s^2} = \frac{2}{s^2}$$

I vratimo to unatrag:

$$2(t+1)u(t-1) \longrightarrow e^{s} \frac{2}{s^{2}} = \frac{2e^{s}}{s^{2}}$$

Zatim drugi dio:

$$u(t-1) \Rightarrow u(t-1)u(t-1) \Rightarrow u(t-1) \Rightarrow u(t)$$

$$u(t) \longrightarrow \frac{1}{s}$$

Vratimo unatrag:

$$u(t-1) \longrightarrow e^{-s} \frac{1}{s} = \frac{e^{-s}}{s}$$

I ukomponiramo to u rješenje:

$$(2t+1)u(t-1) \longrightarrow \frac{2e^s}{s^2} - \frac{e^{-s}}{s}$$

E.
$$t^2u(t-2)$$

Prilagodimo funkciju step funkciji.

$$t^{2}u(t-2) = \left[(t-2)^{2} + 4t - 4 \right]u(t-2) = (t-2)^{2}u(t-2) + 4tu(t-2) - 4u(t-2) =$$

$$= (t-2)^{2}u(t-2) + 4(t-2+2)u(t-2) - 4u(t-2) =$$

$$= (t-2)^{2}u(t-2) + 4(t-2)u(t-2) + 8u(t-2) - 4u(t-2) =$$

$$= (t-2)^{2}u(t-2) + 4(t-2)u(t-2) + 4u(t-2)$$

I transformiramo dio po dio.

$$(t-2)^2u(t-2) \Rightarrow (t-2)^2 \Rightarrow t^2$$

$$t^2 \circ - \frac{2!}{s^{2+1}} = \frac{2}{s^3}$$

$$(t-2)^2 u(t-2) \longrightarrow e^{-2s} \frac{2}{s^3} = \frac{2e^{-2s}}{s^3}$$

$$4(t-2)u(t-2) \Rightarrow 4(t-2) \Rightarrow 4t$$

$$4t - 4\frac{1!}{s^{1+1}} = \frac{4}{s^2}$$

$$4(t-2)u(t-2) \longrightarrow e^{-2s} \frac{4}{s^2} = \frac{4e^{-2s}}{s^2}$$

$$4u(t-2) \Rightarrow 4u(t-2)u(t-2) \Rightarrow 4u(t-2) \Rightarrow 4u(t)$$

$$4u(t) \longrightarrow 4\frac{1}{s} = \frac{4}{s}$$

$$4u(t-2) \longrightarrow e^{-2s} \frac{4}{s} = \frac{4e^{-2s}}{s}$$

I ukomponiramo u rješenje:

$$t^{2}u(t-2) \longrightarrow \frac{2e^{-2s}}{s^{3}} + \frac{4e^{-2s}}{s^{2}} + \frac{4e^{-2s}}{s} = e^{-2s} \left(\frac{2}{s^{3}} + \frac{4}{s^{2}} + \frac{4}{s}\right)$$

F.
$$e^{2t}u(t-3)$$

Najprije zanemarimo eksponencijalnu funkciju.

$$e^{2t}u(t-3) \Rightarrow u(t-3)$$

Nađemo transformat ove funkcije.

$$u(t-3) \Rightarrow u(t-3)u(t-3) \Rightarrow u(t-3) \Rightarrow u(t)$$

$$u(t) \longrightarrow \frac{1}{s}$$

Vratimo natrag:

$$u(t-3) \longrightarrow e^{-3s} \frac{1}{s} = \frac{e^{-3s}}{s}$$

I vratimo se na eksponencijalnu funkciju i primijenimo teorem o prigušenju.

$$e^{2t}u(t-3) \longrightarrow e^{-3(s+3)} \frac{1}{s+3} = \frac{e^{-3(s+3)}}{s+3}$$

G.
$$t^3e^{-2t} + t^2$$

Najprije napravimo prvi dio, t^3e^{-2t} .

Zanemarimo eksponencijalnu funkciju.

$$t^3e^{-2t} \Rightarrow t^3$$

Odredimo transformat.

$$t^3 \sim \frac{3!}{s^{3+1}} = \frac{6}{s^4}$$

Vratimo i primijenimo teorem o prigušenju.

$$t^3e^{-2t} \longrightarrow \frac{6}{(s+2)^4}$$

Zatim, drugi dio.

$$t^2 \circ - \frac{2!}{s^{2+1}} = \frac{2}{s^3}$$

I ukomponiramo u rješenje.

$$t^3e^{-2t}+t^2 \longrightarrow \frac{6}{(s+2)^4}+\frac{2}{s^3}$$

H. $e^{2t} \sin 3t$

Zanemarimo eksponencijalnu funkciju.

$$e^{2t} \sin 3t \Rightarrow \sin 3t$$

Odredimo transformat.

$$\sin 3t \longrightarrow \frac{3}{s^2 + 9}$$

Vratimo i primijenimo teorem o prigušenju.

$$e^{2t} \sin 3t \longrightarrow \frac{3}{(s-2)^2+9} = \frac{3}{s^2-4s+13}$$

1.
$$1-t^2e^{-2t}u(t-3)$$

Najprije odredimo transformat od 1.

$$1 \longrightarrow \frac{1}{s}$$

Zatim, od drugog dijela. Najprije zanemarujemo eksponencijalnu funkciju.

$$t^2e^{-2t}u(t-3) \Rightarrow t^2u(t-3)$$

Zatimo prilagodimo funkciju step funkciji.

$$\begin{aligned} & \left[(t-3)^2 + 6t - 9 \right] u(t-3) = (t-3)^2 u(t-3) + 6t u(t-3) - 9u(t-3) = \\ & = (t-3)^2 u(t-3) + 6(t-3+3)u(t-3) - 9u(t-3) = \\ & = (t-3)^2 u(t-3) + 6(t-3)u(t-3) + 18u(t-3) - 9u(t-3) = \\ & = (t-3)^2 u(t-3) + 6(t-3)u(t-3) + 9u(t-3) \end{aligned}$$

Zatim radimo sa svaki dio posebno.

$$(t-3)^2u(t-3) \Rightarrow (t-3)^2 \Rightarrow t^2$$

$$t^2 \longrightarrow \frac{2}{s^3}$$

$$(t-3)^2 u(t-3) \longrightarrow \frac{2e^{-3s}}{s^3}$$

$$6(t-3)u(t-3) \Rightarrow 6(t-3) \Rightarrow 6t$$

$$6t \longrightarrow \frac{6}{s^2}$$

$$6(t-3)u(t-3) \longrightarrow \frac{6e^{-3s}}{s^2}$$

$$9u(t-3) \Rightarrow 9u(t-3)u(t-3) \Rightarrow 9u(t-3) \Rightarrow 9u(t)$$

$$9u(t) \longrightarrow \frac{9}{s}$$

$$9u(t-3) \circ \longrightarrow \frac{9e^{-3s}}{s}$$

I to sve ukomponiramo u rješenje.

$$1 - t^2 e^{-2t} u(t-3) \longrightarrow \frac{1}{s} - \frac{2e^{-3s}}{s^3} - \frac{6e^{-3s}}{s^2} - \frac{9e^{-3s}}{s}$$

J.
$$3e^{-t}t^2 - 2tu(t-2)$$

Najprije napravimo za $3e^{-t}t^2$.

Zanemarimo eksponencijalnu funkciju.

$$3e^{-t}t^2 \Rightarrow t^2$$

Odredimo transformat.

$$t^2 \longrightarrow \frac{2}{s^3}$$

Vratimo i primijenimo teorem o prigušenju.

$$3e^{-t}t^2 \longrightarrow \frac{2}{(s+1)^3}$$

Sada napravimo za 2tu(t-2).

Prilagodimo funkciju step funkciji.

$$2tu(t-2) = 2(t-2+2)u(t-2) = 2(t-2)u(t-2) + 2u(t-2)$$

Idemo redom.

$$2(t-2)u(t-2) \longrightarrow \frac{2e^{-2s}}{s^2}$$

$$2u(t-2) \longrightarrow \frac{2e^{-2s}}{s}$$

I ukomponiramo u rješenje.

$$3e^{-t}t^2 - 2tu(t-2) \longrightarrow \frac{2}{(s+1)^3} - \frac{2e^{-2s}}{s^2} - \frac{2e^{-2s}}{s}$$