Сходимость преобразователей программ в метрическом пространстве деревьев

Екатерина Вербицкая

Лаборатория языков инструментов JetBrains

16 сентября 2019

Конкатенация трех списков

$$a([], vs) = vs$$

 $a(u:us, vs) = u:a(us, vs)$

$$\widehat{\left(a(a(xs,ys),zs)
ight)}$$

Прогонка: переменная на месте шаблона

$$a([], vs) = vs$$

 $a(u:us, vs) = u:a(us, vs)$

Прогонка: шаблон инстанциирован

Прогонка: конструктор на внешнем уровне

Прогонка: конкатенация двух списков

Остаточная программа

$$aa([], ys, zs) = a'(ys, zs)$$

$$aa(u:us, ys, zs) = u:aa(us, ys, zs)$$

$$a'([], zs) = zs$$

$$a'(u:us, zs) = u:a'(us, zs)$$

Разрастание третьего аргумента

Обобщение

$$($$
let $zs=xs$ in $a(a(xs,ys),zs))$

После обобщения прогонка, как раньше

Язык

$$\mathcal{Q} \ni q ::= d_1 \dots d_m$$
 $\mathcal{Q} \ni d ::= f(x_1, \dots, x_n) \triangleq e \quad \text{(f-function)}$
 $\mid g(p_1, x_1, \dots, x_n) \triangleq e_1$
 $\vdots \quad \text{(g-function)}$
 $g(p_m, x_1, \dots, x_n) \triangleq e_m$
 $\mathscr{E} \ni e ::= x \quad \text{(variable)}$
 $\mid c(e_1, \dots, e_n) \quad \text{(constructor)}$
 $\mid f(e_1, \dots, e_n) \quad \text{(f-function call)}$
 $\mid g(e_0, e_1, \dots, e_n) \quad \text{(g-function call)}$
 $\mathscr{P} \ni p ::= c(x_1, \dots, x_n)$

Семантика языка

$$f(x_{1}, \dots, x_{n}) \stackrel{\triangle}{=} e \in q$$

$$f(e_{1}, \dots, e_{n}) \rightarrow_{\{\}} e\{x_{1} := e_{1}, \dots, x_{n} := e_{n}\}$$

$$g(c(x_{1}, \dots, x_{m}), x_{m+1}, \dots, x_{n}) \stackrel{\triangle}{=} e \in q$$

$$g(c(e_{1}, \dots, e_{m}), e_{m+1}, \dots, e_{n}) \rightarrow_{\{\}} e\{x_{1} := e_{1}, \dots, x_{n} := e_{n}\}$$

$$g(p, x_{1}, \dots, x_{n}) \stackrel{\triangle}{=} e \in q$$

$$g(y, e_{1}, \dots, e_{n}) \rightarrow_{\{y := y\}} e\{x_{1} := e_{1}, \dots, x_{n} := e_{n}\}$$

$$\stackrel{e \rightarrow_{\theta} e'}{g(e, e_{1}, \dots, e_{n}) \rightarrow_{\theta} g(e', e_{1}, \dots, e_{n})}$$

$$\stackrel{e \rightarrow_{\theta} e'}{g(e, e_{1}, \dots, e_{n}) \rightarrow_{\theta} g(e', e_{1}, \dots, e_{n})}$$

$$\stackrel{e \rightarrow_{\theta} e'}{e \Rightarrow e'\theta}$$

$$\stackrel{i \in \{1, \dots, n\}}{c(e_{1}, \dots, e_{n}) \Rightarrow e_{i}}$$

$$\stackrel{i \in \{1, \dots, n+1\}}{\text{let } x_{1} = e_{1}, \dots, x_{n} = e_{n} \text{ in } e_{n+1} \Rightarrow e_{i}}$$

Операции суперкомпиляции

Обращение списка с аккумулирующим параметром

$$rev(xs) = r(xs, [])$$

 $r([], vs) = vs$
 $r(u: us, vs) = r(us, u: vs)$

Предок вложен в лист

Обощение вверх

Правый нижний узел — инстанс предка

Обобщение вниз

Результирующее дерево процессов

Обращение списка со вспомогательной функицией

$$rev([]) = []$$

 $rev(u:us) = l(rev(us), u)$
 $l([], v) = [v]$
 $l(u:us, v) = u:l(us, v)$

Предок вложен в лист, нет общей структуры

Обобщение: split

Результирующее дерево процессов

Псевдокод суперкомпилятора

```
if \forall \alpha \in \operatorname{relanc}(t,\beta) : t(\alpha) \not \leq t(\beta) then P(t) = \operatorname{drive}(t,\beta) else begin

let \alpha \in \operatorname{relanc}(t,\beta) and t(\alpha) \leq t(\beta).

if t(\alpha) \leqslant t(\beta) then P(t) = \operatorname{abstract}(t,\beta,\alpha) else if t(\alpha) \leftrightarrow t(\beta) then P(t) = \operatorname{split}(t,\beta) else P(t) = \operatorname{abstract}(t,\alpha,\beta).
```

Операции суперкомпиляции

Терминируемость суперкомпилятора

Суперкомпилятор должен:

- Завершить работу на любой входной программе
 - ▶ Построить конечное дерево
- Построить замкнутое дерево: все листья имеют следующий вид:
 - ▶ Конструктор без аргументов c()
 - Переменная х
 - Переименование какого-то предка

Дерево

Дерево: $t:\mathbb{N}_1^* o E$

- Не пусто
- Префиксно-замкнуто (предки всегда есть)
- Конечно ветвится
- Упорядочено (все левые братья есть)
- Множество конечных деревьев: T(E)
- Множество деревьев (в том числе бесконечных): $T_{\infty}(E)$

Абстрактный преобразователь программ

- AПП *M* : *T*(*E*) → *T*(*E*)
- АПП M терминируется на $t \in T(E)$, если $\exists i : M^i(t) = M^{i+1}(t)$
- АПП M терминируется, если он терминируется на всех деревьях из одного узла

Метрическое пространство деревьев

- d(t, t') = 0, если t = t'
- $d(t,t')=2^{-\min\{k|t[k]\neq t'[k]\}}$, где t[k] корневое поддерево глубины не больше k

d — метрика на деревьях:

- Симметрична
- Выполняется аксиома тождества
- Выполняется неравенство треугольника

Сходяшиеся последовательности

- ullet Последовательность деревьев сходится к $t \Leftrightarrow \exists \mathit{N} : orall \mathit{n} \geq \mathit{N} : t_\mathit{n} = t$
- Последовательность деревьев сходится к $t \Leftrightarrow \forall k : \exists N : \forall n > N : t_n[k] = t[k]$
- Последовательность деревьев называется последовательностью Коши $\Leftrightarrow \forall k: \exists N: \forall n \geq N: t_n[k] = t_{n+1}[k]$
- АПП M является АПП Коши, если для каждого дерева с одним узлом t последовательность $t, M(t), M^2(t), \ldots$ является последовательностью Коши

Метрическое пространство деревьев является полным: любая последовательность Коши имеет предел.

Предикаты на деревьях

Предикат на деревьях: $p:T_{\infty}(E)
ightarrow \{1,0\}$

- Предикат p непрерывен \Leftrightarrow для любой сходящейся последовательности $t_0, t_1, \dots \in T_{\infty}(E)$ с бесконечным пределом t последовательность $p(t_0), p(t_1), \dots$ сходится к p(t)
- АПП M сохраняет (maintains) предикат p, если для любого дерева с одним узлом t и любого $i: p(M^i(t)) = 1$
- ullet Предикат p конечен, если p(t)=0 для всех бесконечных деревьев

Главная теорема Терминируемость АПП

Пусть АПП $M:T(E) \to T(E)$ сохраняет предикат $p:T_{\infty}(E) \to \{1,0\}.$ Если

- М является АПП Коши и
- р конечен и непрерывен,

тогда M терминируется

Доказательство теоремы

Пусть t — дерево из одного узла, рассмотрим последовательность t_0, t_1, \ldots , где $t_i = M^i(t)$. По предположению она — последовательность Коши.

От противного: предполагаем, что последовательность не ограничена, тогда $|t_i|>k$. Значит, ее предел \hat{t} бесконечен и $p(\hat{t})=0$. По непрывности $\exists N: \forall n\geq N: p(t_n)=0$. Это противоречит сохранению предиката. Значит, последовательность ограничена:

$$\exists k, I : \forall i \geq I : |t_i| \leq k$$

Последовательность Коши, следовательно $\exists J: \forall j \geq J: t_j[k] = t_{j+1}[k].$ Возьмем $N = \max\{I, J\}$, тогда $\forall n \geq N$:

$$t_n = t_n[k]$$
 $(|t_n| \le k)$
 $= t_{n+1}[k]$ $(t_n[k] = t_{n+1}[k])$
 $= t_{n+1}$ $(|t_{n+1}| \le k)$

To есть последовательность сходится, а M терминируется

Послабления: слабое сохранение

АПП слабо сохраняет предикат, если $p(M^i(t)) = 0$ только для конечного числа i

В Главной теореме можно использовать слабое сохранение

Терминируемость АПП суперкомпиляции

- АПП Коши: только конечное число обобщений
- Предикат: только конечное число шагов прогонки

АПП Коши

- (E, \leq) предпорядок, если он рефлексивен и транзитивен
- (E, \leq) well-founded, если нет бесконечных строгоупорядоченных последовательностей $e_0 > e_1 > \dots$
- (E, \leq) well-quasi-order, если в любой последовательности $e_0, e_1, \ldots \exists i < j : e_i \leq e_j$

АПП является АПП Коши, если он либо добавляет потомков к листу, либо заменяет поддерево на новое, корень которого строго меньше листа.

- $\gamma \in leaf(t) \& t(\gamma) = t'(\varepsilon)$
- $t(\gamma) > t'(\varepsilon)$

Непрерывность предиката

- Предикат имеет конечный характер (finite character), если $p(t) = 1 \Leftrightarrow \forall k : p(t[k]) = 1$
- Предикат непрерывен, если он конечный и имеет конечный характер

Если p конечный и непрерывный предикат, то предикат $q(t)=p(s_1)\wedge\cdots\wedge p(s_n)$, где $\{s_1\dots s_n\}$ — непосредственные потомки t, является конечным и непрерывным

Важность wqo и wfqo

 (E,\leq) — wqo, тогда предикат p является конечным и непрерывным:

- p(t)=0, если $\exists lpha, lpha ieta \in \mathit{dom}(t): t(lpha) \leq t(lpha ieta)$
- p(t) = 1, иначе

 (E,\leq) — wfqo, тогда предикат p является конечным и непрерывным:

- p(t) = 0, если $\exists \alpha, \alpha i \in dom(t) : t(\alpha) \not> t(\alpha i)$
- p(t) = 1, иначе

Все узлы в деревьях можно разбить на классы и на каждом классе применять или wqo, или wfqo

Можно игнорировать листья

АПП в суперкомпиляции: АПП Коши

Используем теорему про добавление в листья или замену на нечто строго меньшее

Используем wfqo $e\succcurlyeq e'\Leftrightarrow e$ — выражение $\wedge e'$ — let-выражение

Прогонка добавляет предок к листу, а любое из трех видов обобщения заменяет выражение некоторым let-выражением.

Предикат в суперкомпиляции: конечность и непрерывность

Рассматриваем предикат $q(t)=p(s_1)\wedge\dots p(s_n)$, где $\{s_1,\dots,s_n\}$ — непосредственные потомки t

- p(t)=0, if $\exists \alpha, \alpha i \beta \in dom(t): t(\alpha), t(\alpha i \beta)$ нетривиальны $^1 \land t(\alpha) \trianglelefteq t(\alpha i \beta)$
- $p(t)=0, if \exists \alpha, \alpha i \in dom(t) : t(\alpha), t(\alpha i)$ тривиальны² $\land not(t(\alpha) \sqsupset t(\alpha i))$
- p(t) = 1 иначе

$$sub(let \ x_1 = e_1 \dots x_n = e_n \ in \ e) = e\{x_1 := e_1 \dots x_n := e_n\}$$
 $e \supseteq e' \Leftrightarrow |sub(e)| > |sub(e')| \lor (|sub(e)| = |sub(e')| \land sub(e) = sub(e')\theta)$

¹не тривиальны

²либо конструктор, либо let-выражение