Nome:	N°:

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

2022-2023 TEORIA DA COMPUTAÇÃO

19/janeiro/2023 11.00h

<u>Duração: 120m</u> · 2ª Frequência

Leia atentamente:

- 1°- A prova é sem consulta.
- 2º- Responda na folha do enunciado.
- 3°- Não responda à sorte: respostas (de escolha) erradas têm pontuação negativa de 50%; respostas em branco têm pontuação nula.
- 4º- Para responder só pode utilizar os espaços do enunciado. Seja conciso e diga só o essencial. Quando a resposta for de escolha, assinale com X a que julgar certa.
- 5°- Coloque o nome e o nº de estudante em **todas** as folhas da prova.
- 1- Diga se as seguintes afirmações são verdadeiras ou falsas.

(a) Para uma gramática sem produções lambda nem produções unidad parsing exaustivo termina sempre num número finito de voltas.	le, o	V:	F:
Justifique detalhadamente.			
(b) Se uma CFG tem produções-unidade o <i>parsing</i> de uma cadeia tern em menos de $ 2n $ voltas em que n é o comprimento da cadeia	nina	V:	F:
. Sejam L_i linguagens livres de contexto não regulares para todo o i , e i , e L_iR a reversa de Li . Diga se a linguagem L é livre de contexto:	<u>Li</u> o cor	nplem	ento de
a) $L=L_1 L_2 (L_2 \cup L_3 R)$	Sim		Não
ustifique detalhadamente :			
b) $L=L_1 \cup (L_2 \cap L_3^*)$	Sim		Não
ustifique detalhadamente:			

Nome	 Nº:	

- 3. Concorda com as seguintes afirmações?
- a) O complemento de uma linguagem recursiva é sempre uma linguagem recursiva.

Sim	Não	
Sim	Nao	

b) Qualquer linguagem gerada por uma gramática regular é livre de contexto.

Sim Não

Justifique (b):

c) Qualquer linguagem aceite por uma Máquina de Turing(MT) com duas fitas é aceite por uma MT padrão.

Justifique (c):

4- Considere a linguagem gerada pela seguinte gramática matricial no alfabeto $\{a,b,c\}$:

P1:
$$S \rightarrow S_1S_2S_3$$

P2: $S_1 \rightarrow aS_1, S_2 \rightarrow bS_2, S_3 \rightarrow cS_3$
P3: $S_1 \rightarrow \lambda, S_2 \rightarrow \lambda, S_3 \rightarrow \lambda$

- a) Gere uma cadeia da sua linguagem com mais de 6 carateres.
- b) Identifique essa linguagem em notação de conjuntos.
- c) Comente a utilidade das gramáticas matriciais.

Nome:	N°:
5. Considere as seguintes produç	cões de uma gramática livre de contexto no alfabeto {0,1}:
	$S \rightarrow 1A1 \mid 0A$
	$A \rightarrow AB \mid B$
	$B \rightarrow 01 \mid 0B \mid C \mid \lambda$
	$C \rightarrow 1BC \mid 1C$
	$D \rightarrow 1B \mid 10$
	na Normal de Chomsky indicando todas as etapas necessárias luções unidade e das produções inúteis):

Nome:	N°:
6. a) Desenhe um autómato de pilha determinístic em Σ={a ,b, c}:	co (DPDA) que aceite a seguinte linguagem
$L = \{ab^m c^k b^m, m$	n>=1, k=>0}
h) Comente e efirmeção	
b) Comente a afirmação:	
"Um DPDA (Determinístico) é um caso particula	r de um NPDA (Não Deterministico)".

Uma rotação rotação for p outros. Para em binário s	uma Máquina de Turing (MT) o de um número binário consis positiva, ou o primeiro em último que isso seja possível, admita que isso seja possível, admita que separados por um carater brancos segundo número será aquele que	ste em colocar o úl o se a rotação for n ue inicialmente a fi o. O primeiro núm	ltimo caráter em primeiro se a egativa, mantendo a ordem dos ta da MT contem dois números nero será aquele que sofrerá as
Admita que o segundo número só poderá ser constituído por n 1's (um para cada rotação), precedidos por um 0 se a rotação for positiva. ou por um 1 se a rotação for negativa.			
Exemplos:	Duas rotações positivas (input) $1011\Box q_0011$ (output) q_f1110		Duas rotações negativas (input) $1110\Box q_0111$ (output) q_f1011
	Inicialmente o apontador da fita apontará para o primeiro bit do segundo número, e no final o apontador deverá apontar para o primeiro bit do número resultante como ilustrado nos exemplos.		

Nome:______ N°:_____