Homework for Friday, October 27. Remember, class is at 9:15.

- 1. A universal (\forall_1) formula is one of the form $\forall x_1 \cdots \forall x_n \theta$, where θ is quantifier-free. An existential (\exists_1) formula is of the dual form $\exists x_1 \cdots \exists x_n \theta$. Let \mathfrak{A} be a substructure of \mathfrak{B} , and let $s: V \to |\mathfrak{A}|$.
 - (a) Show that if $\models_{\mathfrak{B}} \varphi[s]$ and φ is universal, then $\models_{\mathfrak{A}} \varphi[s]$. And if $\models_{\mathfrak{A}} \psi[s]$ and ψ is existential, then $\models_{\mathfrak{B}} \psi[s]$.
 - (b) Conclude that the sentence $\forall x \, Px$ is not logically equivalent to any existential sentence, nor $\exists x \, Px$ to any universal sentence.
- 2. An \exists_2 formula is one of the form $\exists x_1 \cdots \exists x_n \theta$, where θ is universal.
 - (a) Show that if an \exists_2 sentence not containing function symbols is true in \mathfrak{A} , then it is true in some finite substructure of \mathfrak{A} .
 - (b) Conclude that $\forall x \,\exists y \, Pxy$ is not logically equivalent to any \exists_2 sentence.
- 3. Assume the language has equality and a two-place predicate symbol P. Consider the two structures $(\mathbb{N}, <)$ and $(\mathbb{R}, <)$ for the language. Find a sentence true in one structure and false in the other.
- 4. Let a and b be two distinct objects. Consider the set of all possible structures \mathfrak{A} such that $|\mathfrak{A}| = \{a, b\}$ and $P^{\mathfrak{A}}$ is a binary relation on $\{a, b\}$. (We assume the language consists only of equality and P.) List all such structures, and determine which of them are isomorphic.