Apprentissage par renforcement

Cours 8 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université - Université Pierre et Marie Curie (UPMC)

S2 (2017-2018)

Plan

Introduction

Pormalisation et outils

Introduction

Qui a-t-il de commun entre :

- Chien de Pavlolv
- Boite de Skinner
- Un drone/véhicule autonome
- jeu d'echecs

Principe

Lexique

- Agent, Environnement
- Etat (state): ce que perçoit l'agent
- Action : une interaction de l'agent avec l'environnement
- Récompense (reward): une quantité perçue après chaque action
- Politique (policy): une fonction de sélection de l'action selon l'état

Objectif : trouver une politique qui permet de maximiser l'ensemble des récompenses reçues

Objectif : adaptation du système à son environnement

Reproduction artificielle du comportement du "conditionnement"

Comment:

- enseigner un comportement à l'aide de récompenses ?
- réagir à une situation donnée ?
- agir de manière à maximiser les récompenses ?

Problèmatique

Comment choisir une action?

- regarder la récompense liée à chaque action
- Mais aussi les récompenses futurs!
- ⇒ fonction de valeur d'états (ou d'état/action) : indication sur le long terme des récompenses attendues (≠ récompenses immédiates)

Dilemme Exploration/Exploitation

A chaque état :

- Décision de l'action sur l'estimation de la fonction de valeurs
- A-t-on confiance ou non en cette estimation ?
 - ightharpoonup oui ightarrow exploitation
 - ightharpoonup non ightharpoonup exploration des autres actions possibles
- L'exploration peut-être dangereuse
- A-t-on assez explorer ? (récompenses relatives ...)

Dilemme Exploration/Exploitation

A chaque état :

- Décision de l'action sur l'estimation de la fonction de valeurs
- A-t-on confiance ou non en cette estimation ?
 - ightharpoonup oui ightharpoonup exploitation
 - ightharpoonup non ightharpoonup exploration des autres actions possibles
- L'exploration peut-être dangereuse
- A-t-on assez explorer ? (récompenses relatives ...)

Algorithmes

- greedy (glouton),
- ullet ϵ -greedy : glouton avec une probabilité de $1-\epsilon$ au hasard sinon
- La famille UCB.

En résumé

Apprentissage par renforcement :

- Représenter le système comme un ensemble d'états, d'actions et de récompenses
- Apprendre à évaluer un état/une action en fonction des récompenses
- Trouver la meilleure séquence d'actions
- Explorer quand peu d'informations disponibles
- Exploiter pour rester dans des sénarios viables

On peut également chercher :

- à modéliser ou non l'environnement (model-free, model-based),
- apprendre online (en interagissant directement avec l'environnement)
- ou offline à partir de sénarios déjà joués.

Plan

1 Introduction

Pormalisation et outils

Markov Decision Process (MDP)

Définition du modèle

- \bullet S: un espace d'états
- ullet $\mathcal A$: un espace d'actions
- $T: \mathcal{S} \times \mathcal{A} \to \Pi(\mathcal{S})$: fonction de transition
- ullet $r:\mathcal{S}\times\mathcal{A}\to\mathbb{R}$: récompense

Hypothèse markovienne : la récompense et la fonction de transition ne dépendent que de l'état (et action) en cours, pas de l'historique.

10 / 14

N. Baskiotis (LIP6, UPMC) ARF S2 (2017-2018)

Formalisation

Définitions

- Une politique $\pi: \mathcal{S} \to \mathcal{A}$ (ou dans le cas probabiliste dans $\Pi(\mathcal{A})$
- Une fonction de valeur d'états : $V^{\pi}: \mathcal{S} \to \mathbb{R}$
- Une fonction de valeur d'actions : $Q^{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Une séquence (un scénario) : $[(s_1, a_1, r_1), (s_2, a_2, r_2), \dots, (s_n, a_n, r_n)], (s_i, a_i, r_i) \in S \times A \times \mathbb{R}$

Fonctions valeur

- ullet Reflète la récompense à moyen terme o aggrégation des récompenses
- ullet Sur une séquence : $R_{t_0} = \sum_{t=t_0}^{t_T} \gamma^t r_t$
- $V^{\pi}(s) = \mathbb{E}_{\pi}(R_{t_0}|s_{t_0} = s) = \mathbb{E}_{\pi}\left[\sum_{t=t_0}^{t_T} \gamma^t r(s_t, \pi(s_t)) \middle| s_{t_0} = s\right]$
- $Q^{\pi}(s,a) = \mathbb{E}_{\pi}(R_{t_0}|s_{t_0} = s, a_{t_0} = a)$

11 / 14

Equation de Bellman

Quelques relations

- π et MDP déterministe : $V^{\pi}(s) = r(s, \pi(s)) + \gamma V^{\pi}(s')$
- MDP non déterministe : $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V^{\pi}(s')$
- non déterministe : $V^{\pi}(s) = \sum_{a} \pi(s, a) [r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi}(s')]$
- même relation pour Q(s, a)

Comparaison de politiques

- $\bullet \ \pi \geq \pi' \iff \forall s \in \mathcal{S}V^{\pi}(s) \geq V^{\pi'}(s)$
- Il existe une politique optimale, noté π^*
- $V^*(s) = max_{\pi}V^{\pi}(s) = max_a \ r(s,a) + \gamma \sum_{s'} p(s'|s,a)V^*(s')$
- $Q^*(s,a) = max_{\pi}Q^{\pi}(s,a) = \mathbb{E}(r_{t+1} + \gamma V^*(s_{t+1}|s_t = s, a_t = a))$ = $r(s,a) + \gamma max_a \sum_{s'} p(s'|s,a)Q^*(s',a')$

Différentes approches

- Le MDP est donné : problème d'optimisation et de planification (programmation dynamique).
- Apprentissage par renforcement : le MDP est inconnu (seules les actions sont connues).
 - on cherche uniquement à trouver une politique π : model-free
 - on estime le MDP puis on en déduit π : model-based
- Value iteration : itère uniquement sur la fonction de valeur d'actions, puis en déduit une politique
- Policy iteration : mise-à-jour simultanée de la politique et la fonction valeur
- Et pour les états continus ? actions continus ?
- ⇒ approximation par apprentissage.

Résolution exacte : Programmation dynamique

- Opérateur de Bellman : T^{π} , opérateur de mise-à-jour de V sur un pas : $V(s) = r(s,\pi(s)) + \gamma \sum_{s'} p(s'|s,\pi(s)) V^{\pi}(s')$
- Opérateur d'optimalité de Bellman : T^* : $V(s) = max_a[r(s,a) + \gamma \sum_{s'} p(s'|s,a)V(s')]$
- Opérateur contractant → existence d'un point fixe
- Value iteration : trouver V^* par iteration sur $T*: V_{i+1} \leftarrow T^*V_i$
- Policy iteration :
 - $V_{i+1}^{\pi} \leftarrow T^{\pi} V_i^{\pi}$
 - $\forall s \ \pi'(s) \leftarrow argmax_a \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^{\pi}(s')]$