

Introdução à Ciência da Computação - 113913 Gabarito da Lista de Exercícios 2 Funções, Condicionais e Recursividade

Observações:

- As listas de exercícios serão corrigidas por um corretor automático, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, a não ser que seja pedido na questão, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As Instâncias de Entrada serão as usadas pelo corretor e suas saídas devem estar **iguais** às apresentadas em Instâncias de Saída.

Questão 1.

```
def multiplica_string(variavel_string, entrada):
    print(variavel_string*entrada) #Usando '*' imprimimos 'texto' x vezes
#Note que a identação determina o escopo da função multiplica_string
texto = "Eric, the half a bee. "
x = int(input())
multiplica_string(texto, x)
```

In at 2 mais and a Francisco	Instâncias de Caíde
Instâncias de Entrada	Instâncias de Saída
0	
4	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
5	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee.
6	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
7	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee.
8	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
9	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee.
10	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
11	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee.
12	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.
	Eric, the half a bee. Eric, the half a bee.

Questão 2.

```
ief imprimeParidade(x):
    if(x%2 == 0): #Se o resto da divisão por 2 for 0, então o número é par
        print(x, "é par")
    else: #Caso contrário é impar
        print(x, "é impar")
    print(x+2)

n = int(input())
imprimeParidade(n)
```

Instâncias de Entrada	Instâncias de Saída
1	1 é ímpar
	3
0	0 é par
	2
-5	-5 é ímpar
	-3
7	7 é ímpar
	9
9	9 é ímpar
	11
-85	-85 é ímpar
	-83
-50	-50 é par
	-48
20	20 é par
	22
-1	-1 é ímpar
	1
-2	-2 é par
	0

Questão 3.

```
def imc(h, peso pessoa):
    indice = peso_pessoa/(h**2)
    print("%.2f"%indice)
    return indice
def classificacao(indice, peso_pessoa, h):
    if(indice < 18.5):</pre>
        print("Baixo peso")
    elif(indice <= 24.9):
        print("Peso normal")
    elif(indice <= 29.9):
        print ("Sobrepeso")
        peso_necessario = 24.9*h*h
        print("%.2f"%(peso_pessoa-peso_necessario))
        #Peso mínimo necessário será aquele suficiente para atingir IMC 24.9
    elif(indice <= 34.9):</pre>
        print("Obesidade grau I")
        peso necessario = 24.9*h*h
        print("%.2f"%(peso_pessoa-peso_necessario))
    elif(indice <= 39.9):
        print("Obesidade grau II")
        peso necessario = 24.9*h*h
       print("%.2f"%(peso pessoa-peso necessario))
    else:
        print("Obesidade grau III")
        peso_necessario = 24.9*h*h
        print("%.2f"%(peso_pessoa-peso_necessario))
#Note que poderíamos fazer tudo em função só, mas usaremos duas funções
peso = float(input())
altura = float(input())
indice pessoa = imc(altura, peso)
classificacao (indice pessoa, peso, altura)
```

Instâncias de Entrada	Instâncias de Saída
80	23.63
1.84	Peso normal
55	55.00
1	Obesidade grau III
	30.10
90	24.93
1.90	Sobrepeso
	0.11
100	27.70
1.90	Sobrepeso
	10.11
85.54	25.27
1.84	Sobrepeso
	1.24
60	26.67
1.50	Sobrepeso
	3.98
62.5	22.41
1.67	Peso normal

50	25.51
1.40	Sobrepeso
	1.20
50	16.33
1.75	Baixo peso
45	21.40
1.45	Peso normal

Questão 4.

```
A = float(input())
maior = A
teste = 0
B = float(input())
if (B > maior):
    maior = B
   teste = 1
C = float(input())
if(C > maior):
    maior = C
   teste = 2
""" Além de sabermos o valor da maior lado, também precisamos saber qual é.
Através da variável teste saberemos qual o maior lado """
if(teste == 0): #Nesse caso A é o maior lado
    if (maior > B + C or maior == B + C):
        print("NAO FORMA TRIANGULO")
    elif(maior*maior == B*B + C*C):
       print ("TRIANGULO RETANGULO")
    elif(A == B and B == C):
       print("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
        print ("TRIANGULO ISOSCELES")
    else:
        print ("TRIANGULO ACUTANGULO OU OBTUSANGULO")
elif(teste == 1): #Aqui B é o maior lado
    if (maior > A + C or maior == B + C):
        print("NAO FORMA TRIANGULO")
    elif(maior*maior == A*A + C*C):
        print ("TRIANGULO RETANGULO")
    elif(A == B and B == C):
       print("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
       print("TRIANGULO ISOSCELES")
    else:
       print("TRIANGULO ACUTANGULO OU OBTUSANGULO")
else: #Caso contrário C será o maior
    if (maior > A + B or maior == B + C):
       print("NAO FORMA TRIANGULO")
    elif(maior*maior == B*B + A*A):
       print("TRIANGULO RETANGULO")
    elif(A == B and B == C):
       print("TRIANGULO EQUILATERO")
    elif(A == B or A == C or B == C):
       print ("TRIANGULO ISOSCELES")
    else:
       print ("TRIANGULO ACUTANGULO OU OBTUSANGULO")
""" Podemos usar elif, visto que não é possivel entrar com raiz quadrada
no Python Shell, seja x o valor de dois lados do triângulo e y do terceiro.
Para que y^2 seja igual a 2*(x^2), é necessário que y seja igual a
(2^(1/2)) * x"""
```

Instâncias de Entrada	Instâncias de Saída
7.0	TRIANGULO EQUILATERO
7.0	
7.0	
3.0	TRIANGULO RETANGULO
4.0	
5.0	
3	NAO FORMA TRIANGULO
2	
1	
1.50	TRIANGULO ACUTANGULO OU
1.45	OBTUSANGULO
1.30	
3.0	TRIANGULO ACUTANGULO OU
3.5	OBTUSANGULO
4.95	
3.0	TRIANGULO ACUTANGULO OU
3.5	OBTUSANGULO
4.25	
7.5	NAO FORMA TRIANGULO
3	
4.5	
4	TRIANGULO EQUILATERO
4	
4	
5	TRIANGULO ISOSCELES
5	
4	
3.0	TRIANGULO ISOSCELES
3.0	
1.5	

Questão 5.

```
hi, mi, hf, mf = input().split()
hi, mi, hf, mf = [int(hi), int(mi), int(hf), int(mf)]
""" Vamos resolver esse problema por casos.
Note que não é possivel ter um caso em que hf == hi e mf > mi, pois o jogo
tem duração máxima de 24 horas.
if(hf <= hi and mf < mi): #Exemplo: 7 5 6 4 - 22h59m ou 7 5 7 4 - 23h59m
    """Vamos transformar as horas para minutos e retirarmos os minutos
    já calculados assim é possível ter as horas certas nos dois exemplos acima,
   fazendo a divisão inteira por 60 """
   minutos = (60-mi)+mf
   horas = ((24 - hi) + hf) * 60 - minutos
    print("O jogo durou %d hora(s) e %d minuto(s)."%(horas//60, minutos))
elif(hf == hi and mf == mi):
    print("O jogo durou 24 hora(s) e 0 minuto(s).")
elif(hf < hi and mf >= mi): #Exemplo: 7 5 6 5 - 23h0m ou 7 5 6 6 - 23h1m
   horas = (24 - hi) + hf
    print("O jogo durou %d hora(s) e %d minuto(s)."%(horas, mf-mi))
else: # Exemplo: 7 5 8 4 - 0h59m ou 7 8 9 10 - 2h2m
    """Vamos seguir o mesmo raciocínio para o primeiro caso, aqui teremos
    os casos em que: hi < hf and mi < mf(simples) ou hi < hf and mi >= mf """
   minutoi = hi * 60 + mi
    minutof = hf * 60 + mf
    horas = (minutof - minutoi)//60
    minutos = (minutof - minutoi) %60
    print("O jogo durou %d hora(s) e %d minuto(s)."%(horas, minutos))
```

Instâncias de Entrada	Instâncias de Saída
6564	O jogo durou 23 hora(s) e 59 minuto(s).
7564	O jogo durou 22 hora(s) e 59 minuto(s).
8888	O jogo durou 24 hora(s) e 0 minuto(s).
8 10 8 5	O jogo durou 23 hora(s) e 55 minuto(s).
8593	O jogo durou O hora(s) e 58 minuto(s).
6471	O jogo durou O hora(s) e 57 minuto(s).
7565	O jogo durou 23 hora(s) e 0 minuto(s).
7566	O jogo durou 23 hora(s) e 1 minuto(s).
7584	O jogo durou O hora(s) e 59 minuto(s).
7 8 9 10	O jogo durou 2 hora(s) e 2 minuto(s).

Questão 6.

```
ief fatorial(num):
    if (num == 1 or num == 0):
        return 1
    else:
        return num*fatorial(num-1)
""" Após fazer as subtrações, quando num chegar a 1 então terminaremos as chamadas, pois não há necessidade de fazer fatorial de 0. Considerando, é claro, que o num seja maior que 1, caso seja 0 ou 1 então já retornaremos 1.
Enquanto num for maior que 1, precisamos fazer num*fatorial(num-1) e após finalizar todos as chamadas de funções encadeadas teremos o fatorial de num."""
num1 = int(input())
num2 = int(input())
print("%d! + %d! ="%(num1, num2), fatorial(num1) + fatorial(num2))
```

Instâncias de Entrada	Instâncias de Saída
0	0! + 0! = 2
0	
1	1! + 5! = 121
5	
4	4! + 7! = 5064
7	
0	0! + 5! = 121
5	
10	10! + 10! = 7257600
10	
7	7! + 6! = 5760
6	
1	1! + 1! = 2
1	
1	1! + 0! = 2
0	
3	3! + 3! = 12
3	
7	7! + 13! = 6227025840
13	

Questão 7.

```
def Fibonacci(n):
    if(n == 1 or n == 2):
       return 1
       return Fibonacci(n-1) + Fibonacci(n-2)
""" Para a função recursiva Fibonacci foi aplicada a definição, da mesma
forma para o cálculo do fatorial vamos fazendo chamadas de funções dentro da
chamada da função e retornando até que n chegue a 1 ou 2 """
n = int(input())
quantidade casais = Fibonacci(n)
if(quantidade casais % 2 == 0): #Nesse caso a quantidade é par
    print(quantidade_casais)
   print (Fibonacci (n-1))
   print (quantidade casais)
""" Note que a quantidade de casais que irão nascer no próximo mês, pela
definição de Fibonacci é justamente a quantidade de casais do mês anterior,
ou seja, Fibonacci(n-1). Pois Fibonacci(n+1) = Fibonacci(n) + Fibonacci(n-1),
assim Fibonacci(n+1) - Fibonacci(n) = Fibonacci(n-1) """
```

Instâncias de Entrada	Instâncias de Saída
2	1
4	3
11	89
12	144
	89
13	233
8	21
9	34
	21
17	1597
3	2
	1
5	5