Problem-1: Identify data dependency, if any in following instructions to be processed in a 5-stage pipeline RISC processor

LOAD R1, 64(R2); data read from memory and loaded to R1. R2 is base register, referring to starting of data memory

ADD R4, R1, R5; R1 is operand

There is data dependency between the pair of instructions. Here Add instruction depends on Load instruction. Dependency type: True Data dependency: RAW

Instructions/clock cycles	1	2	3	4	5	6
LOAD R1, 64(R2)	IF	ID	ALU	MA	WR	
					Result store to R1	
ADD R1, R4, R5		IF	ID	ALU	MA	WR
			R1 is read for 2 nd inst			
			CPU reads old value of R1			

Show the processing of above instructions on a 5-stage pipeline RISC processor (without data forwarding)

Solution: Interloack the pipeline

Instructions/clock cycles	1	2	3	4	5	6	7	8
LOAD R1, 64(R2)	IF	ID	ALU	MA	WR			
					Result store to R1			
ADD R1, R4, R5		IF		Interlock		ID	ALU	MA
				3-clock cycle	S	R1 is read for 2 nd		
						inst		
						R1(new value is		
						read		

Show the processing of above instructions on a 5-stage pipeline RISC processor (with data forwarding)

In Load instruction, CPU reads data from data memory and loads to R1 register at clock cycle 5.

However, the data is available at the MEM/WB buffer at clock cycle 4 which is later loaded to R1 and later clock cycle.

To save clock cycles/to reduce delay in pipeline architecture, data can be read earlier at clock cycle-4 from MEM/WB buffer instead of reading later from register R1. In that case. A data path should be created from MEM/WB buffer to one of the inputs of ALU. However, the ALU operation of succeeding ADD instruction should be delayed by one clock cycle, as shown in table below

Instructions/clock cycles	1	2	3	4	5	6	7
LOAD R1, 64(R2)	IF	ID	ALU	MA Data is in buffer	WR Result store to R1		
ADD R1, R4, R5		IF	ID R1 is NOT read	delay	ALU	MA	WR

Problem-2: Identify data dependency, if any in following instructions to be processed in a 5-stage pipeline RISC processor

ADD R3, R1, R2; R3 is result field

LOAD R3, 64(R4); data read from memory and loaded to R3. R4 is base register, referring to starting of data memory

There is no data dependency.

Show the processing of above instructions on a 5-stage pipeline RISC processor

INST/CLOCK	1	2	3	4	5	6
ADD R3, R1, R2	IF	ID	ALU	MA	WR	
					RESULT TO R3	
LOAD R3, 64(R4)		IF	ID	ALU	MA	WR
			READ R4	Calculate memory	Read data from data	DATA loaded to R3
				address	memory	

Problem-3: Identify the data dependency, if any in following instructions to be processed in a 5-stage pipeline RISC processor

ADD R3, R1, R2; R3 is result field

LOAD R1, 64(R3) ; data read from memory and loaded to R1. R3 is base register, referring to starting of data memory

True data dependency/Read after Write (RAW)

Result of Add instruction is used as base address in the succeeding Load instruction.

Show the hazard.

INST/CLOCK	1	2	<mark>3</mark>	4	5	6
ADD R3, R1, R2	IF	ID	ALU	MA	WR	
					RESULT TO R3	
LOAD R1, 64(R3)		IF	ID	ALU	MA	WR
			(READ R3	64 is added to		DATA STORED
			CPU reads old	content of R3	Data is read	TO R1
			value of R3)	and memory	from data	Wrong data
					memory	

		address is	
		generted	

How to overcome the hazard?

Resut of 1st instruction is saved to R3 at clock cycle-5. To use the updated value of R3 in 2nd instruction, Register R3 for the 2nd instruction should be read at clock cycle 6 or later.

It means that register read for 2nd instruction and subsequent operations should be delayed by at least 3 clock cycles.

INST/CLOCK	1	2	3	4	5	6	
ADD R3, R1, R2	IF	ID	ALU	MA	WR		
					RESULT TO R3		
LOAD R1, 64(R3)		IF		Stall 3 clock cycles		ID & Read R3	

How to reduce the delay:

It is noted that result of Add operation is stored to R3 at clock cycle 5.

However the result of ADD instruction is available in EX/MEM buffer at clock cycle 3.

To save clock cycles/to reduce delay in pipeline architecture, result of ADD instruction can be read for Load instruction earlier at clock cycle-3 from EX/MEM buffer instead of reading later from register R3. In that case, a data path should be created from EX/MEM buffer to one of the inputs of ALU. Processing of instructions is shown in table below.

INST/CLOCK	1	2	<mark>3</mark>	4	5	6
ADD R3, R1, R2	IF	ID	ALU	MA	WR	
			RESULT IN		RESULT TO R3	
			BUFFER			
LOAD R1, 64(R3)		IF	ID	ALU	MA	WR
			NOT READ R3	R3 AND 64		DATA STORED
				ADDED		TO R1