$\phi, \psi, \theta, \dots$ Formulas (atoms, \rightarrow , \neg)

 $\Gamma, \Delta, \Sigma, \dots$ Sets of formulas

 $\mathfrak{C}, \mathfrak{D}, \dots$ Either a formula or nothing $\mathfrak{D} \leq \mathfrak{C}$ Either \mathfrak{D} is nothing or \mathfrak{D} is \mathfrak{C}

Conventions

Id:
$$\frac{\Gamma \succ \phi \quad \Delta, \psi \succ \mathfrak{C}}{\Gamma, \Delta, \phi \rightarrow \psi \succ \mathfrak{C}}$$
 $\neg L: \frac{\Gamma \succ \phi}{\Gamma, \neg \phi \succ}$

$$\rightarrow_{\mathbf{R}:} \quad \frac{\Gamma, \phi \succ \psi}{\Gamma \succ \phi \rightarrow \psi} \quad \rightarrow_{\mathbf{R}::} \quad \frac{\Gamma \succ \psi}{\Gamma \succ \phi \rightarrow \psi} \qquad \rightarrow_{\mathbf{R}::} \quad \frac{\Gamma, \phi \succ}{\Gamma \succ \phi \rightarrow \psi} \quad \neg_{\mathbf{R}:} \quad \frac{\Gamma, \phi \succ}{\Gamma \succ \neg \phi}$$

Core logic (?)

Let $\Gamma \vdash \mathfrak{C}$ iff there is some derivable $\Gamma' \succ \mathfrak{C}$ with $\Gamma' \subseteq \Gamma$.

Then $\Gamma \vdash \text{iff } \Gamma \vdash_{\text{Int}}$; and if $\Gamma \nvdash$, then $\Gamma \vdash \phi$ iff $\Gamma \vdash_{\text{Int}} \phi$.

Core logic is not closed under cut; $\neg \phi \vdash \phi \rightarrow \psi$ and $\phi \rightarrow \psi$, $\phi \vdash \psi$, but $\neg \phi$, $\phi \nvdash \psi$.

But if $\Gamma \vdash \phi$ and $\Delta, \phi \vdash \mathfrak{C}$, then $\Gamma, \Delta \vdash \mathfrak{D}$, for some $\mathfrak{D} \leq \mathfrak{C}$.

Adding cut to the sequent system gives a system that derives all and only Int-valid sequents.

Some facts

Variables $x^{\phi}, y^{\phi}, \dots$ for each formula ϕ .

$$(M^{\phi \to \psi} N^{\phi})^{\psi}$$
 $(\lambda x^{\phi}.M^{\psi})^{\phi \to \psi}$

$$(\lambda_-.M^{\psi})^{\phi \to \psi}$$
 $(\lambda! x^{\phi}.M^{\perp})^{\phi \to \psi}$

$$(M^{\neg\phi} \circ^{\bigcirc} N^{\phi})^{\perp}$$
 $(Rx^{\phi}.M^{\perp})^{\neg\phi}$

Terms: formation

$$((\lambda x^{\phi}.M^{\psi})^{\phi \to \psi}N^{\phi})^{\psi} \qquad (M[x \mapsto N])^{\psi}$$

$$((\lambda_-.M^{\psi})^{\phi \to \psi}N^{\phi})^{\psi}$$
 M^{ψ}

$$((\mathbf{R}x^{\phi}.M^{\perp})^{\neg\phi} \circ^{\bigcirc} N^{\phi})^{\perp} \qquad (M[x \mapsto N])^{\perp}$$

$$((\lambda! x^{\phi}.M^{\perp})^{\phi \to \psi} N^{\phi})^{\psi} \qquad (M[x \mapsto N])^{\perp}$$

This last kind is an explosive redex.

Terms: redexes and their reducts

A step of *gentle reduction* takes a term O[R] with indicated nonexplosive redex R, and yields O[R'], with R' the reduct of R.

A step of *reduction* is either a step of gentle reduction, or else takes a term O[R] with indicated explosive redex R, and yields R', with R' the reduct of R.

That's not a typo; reduction is not compatible, because explosive reduction discards context.

Terms: reduction

If M^{\perp} reduces to N, then N is a refutation term. If M^{ϕ} reduces to N^{ψ} , then the reduction is gentle. If M^{ϕ} gently reduces to N, then N has type ϕ .

Handy lemmas

Reduction (and so gentle reduction) is *strongly normalising*: every reduction sequence reaches a normal form, and every gentle reduction sequence reaches a gentle normal form.

Reduction is not confluent; gentle reduction is confluent.

Theorems: strong normalisation and confluence

$$\left((\lambda_-.w^\delta)^{\psi\to\delta}\ \left((\lambda!x^\phi.(y^{\neg\phi}{\scriptstyle \circlearrowleft}^0x^\phi)^\perp)^{\phi\to\psi}z^\phi\right)^\psi\right)^\delta$$

reduces to w^{δ} or $(y^{\neg \phi} \circ z^{\phi})^{\perp}$.

Nonconfluence type 1: _/!

$$\left(\left((\lambda! x^{\phi}.(y^{\neg\phi} \circ^{\bigcirc} x^{\phi})^{\bot})^{\phi \to \psi \to \theta} v^{\phi}\right)^{\psi \to \theta} \ \left((\lambda! s^{\delta}.(r^{\neg\delta} \circ^{\bigcirc} s^{\delta})^{\bot})^{\delta \to \psi} q^{\delta}\right)^{\psi}\right)^{\theta}$$

reduces to $(y^{\neg\phi} \circ^{\bigcirc} v^{\phi})^{\perp}$ or $(r^{\neg\delta} \circ^{\bigcirc} q^{\delta})^{\perp}$.

Nonconfluence type 2: !/!

A term is *forking* iff it contains either a λ_{-} redex with an explosive redex in its argument, or two nonoverlapping explosive redexes.

A term is hereditarily nonforking iff it does not reduce to a forking term.

Reduction is confluent on hereditarily nonforking terms.

Forking

Every term has a unique gentle normal form. Not every term has a unique normal form, but hereditarily nonforking terms do. Every term has at most one typed normal form.

Corollaries

Each derivation of $\Gamma \succ \mathfrak{C}$ determines a term of type \mathfrak{C} with free variables of types Γ . Each term of type $\mathfrak C$ with free variables of types Γ determines a derivation of $\Gamma \succ \mathfrak C$ with only principal cuts.

> A term is in normal form iff its associated derivation is cutfree. A derivation has no nonidentity cuts iff its associated term is in normal form.

Term \mapsto derivation \mapsto term is the identity. Derivation \mapsto term \mapsto derivation removes identity cuts, and pushes other cuts up to their principal steps.

Correspondence