	AULD 08-03/04	
	Micagoes Differenciavers	
	Se, a USIR" aberb e F: U-112" uma aplicação. Persona, em uma "Anção"	- lotação no conso: letre maisisale.
	à vabres reforiais à escrevemo, F(x)=(F,(x),, Fm(x)), com Fr: V-R	
	funças (à i-o'sima componente).	
Eκ.	Un cominho en 12 / una aplicação: I = 12 interest; C: I - 12 -	· versão dual de uma lungo: (no-no) v. (no-no")
		Frequentemente Conseguimos redizir
DET.	Seja pEU. A apl. F: Warr e' DIFERENCIAVEL em p se existe una transf.	Os problemos os funções e comintos.
	linear L: R"- R" +9. F(p+v) = F(p) + L·v + O(11111) grendo v-0.	- Luckes O() duots o aribso
	Intuitionente, Le's transf. liver que mellor aprox. F(p+v)-F(p) quado	en R ^m
	V~0.	
ाष्ट्र	O rest $v(u) = F(p+v) - F(p) - Lv$ toma valores em 112 . Além disp,	
	r(u) = Ø(v k) <=> 1 v k → 0 5word voo,	
	ishor, se r(v) = (r,(v),,r(v)), enho r(v)=0(v k) <=> r;(v)=0(v k) ti.	
LEMA	Se F=(F ₁ ,, F _m) e'dif. em p, com L=(L ₁ ,, L _m) como no def. Endo	
	F; e' dif. en p e L: = dF:(p) \(\forall i = 1,, m.	
	Ném disto, vele à volte: se cada Fi édifiem p, entato F édifien p.	
D <i>€M</i> .	(=) Temos que Li: 12" -> 12 e' un funcional linear e, olhando p/ i-ésima como. da def.	
	dif. de F, levos F: (p+v) = F; (p) + L; V + + (v), V-10 #	
	(E) Exercício	
On.	Le única!	
D4F.	Se F: U-RM édif. em P, 2 DERIVADA de F em p e'a vinica	
	transf. linear DF(p): R" - R" 1. q. F(p+v)=F(p)+DF(p).V+O(IIVII)	
	quando v.o.	
OBJ.	Outros nomes e notação: "APLICAÇÃO TANGENTE", "DIFERENCIAL"	Jo Mais comum resensarmo, esse
	ToF, F, F'(p)	/ nove/votorso p/ furfor
	No caro m=1, i.e., tenos f: WM entro DF(p)=df(p).	(m=2) diferencial = derivada

RESUMO	F= (Fi,, Fm) ('dif. em p = cado F; e'dif. emp. Nesse caso DF=(dFi,, dFm)	
(EMD	1 = (1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
č ×.	se F: IR"-IR" e'afin, digano, F(x)=Lx +b, entro DF(p)=L.	
	De Bb, F(ptu) = (Lp+b) + L·V = F(p)+ L·V + 0"	
Phop.	Se F: U- Rm i'dil. en p, entor F e' cont. em p.	
DEM.	EXERCÃO	
pq.,	EXBIGGO	
	Podemo, defivir DERIVADA DIRECIONAL de una apl. nuna dir. VETRA de	
	maneira analoga (também sen pedir d.f.), whilizando a limile (se existro):	
	lin <u>F(patu)-F(P)</u> 6-0 t	
	Ab = a + b + c	
	No case goe $F \in d_i f$ en p , kinds $\frac{\partial F}{\partial v}(p) = DF(p) \cdot V = \left(dF_i(p) \cdot V_i \cdot \dots \cdot dF_m(p) \cdot V\right) = \left(\frac{\partial F_i}{\partial v}(p)_i \cdot \dots \cdot \frac{\partial F_m}{\partial v}(p)\right) \in \mathbb{R}^m$	
	av (p) or () or (ar, (p) o,, arm (p) o) o (av (p) 1 ···/ av (p) / e ic	
	En perhicular, au DERIVADAS PARCIDIS São	
	$\frac{\partial F}{\partial x_{j}}(p) = DF(p) \cdot e_{j} = \left(\frac{\partial F_{i}}{\partial e_{j}}(p), \dots, \frac{\partial F_{m}}{\partial x_{j}}(p)\right) = \sum_{i=1}^{m} \frac{\partial F_{i}}{\partial x_{j}}(p) \cdot e_{i}$	
DŁr	A MATRIT JKOBIANA de F: Un R" en pregnesenta a denivade DF(p): R"-R"	
	Not boses conduicas: $JF(p) = \left(\frac{\partial F_i}{\partial x_j}(p)\right)_{1 \le i \le m}, 1 \le j \le n \in \mathcal{M}_{m \times n}(\mathbb{R})$	
	Nos bases (auduica): UT (PT Cax; * 715, cm; 15jen C / mxn (IR) $\partial(F_1,,F_m)$	
	·	- hotogo comum p) mudença de
A	No caso m=n, algun autores usam JF(p) p/ to DETERMINANTE JACOBIANO	Variable, goods não queremos
	det JF(p).	haver (Fi,, Fm).
	4 Distinger ne lingue: A (MATRIZ) JACOBIANA US. O (DET.) JACOBIANO.	
<i>0</i> 101	As linhar de JF 550 dF; as column são ar;	
. ي	Facenos as identificações: Matriz linha ~ fucional linear (1:0, Ma, n(1/2) = (1/2")")	
	Mahiz Coluna ~ Lebor (i.e., Mu,1(R) ≥ Pr)	
	6Miru(R)	
E×.	Consider f: U-R, ender $Jf(p) = \left(\frac{\partial f}{\partial x_1}(p) \dots \frac{\partial f}{\partial x_m}(p)\right)^m = \nabla f(p)^T$	
	ባ¹ ℝ* ≅ Mωκ1 (ኪ)	

έ¥.	Consider ICR intrusto aberto e C:I-R" um caminho diferenciated.	
	C(€)=(C1(€),, Cm(€)) ; C;: ±→R.	
	Teno, Jc(6)= (c,'(6) ··· (m'(6)) 「EMmx,(凡)=1九m	[lúnico) el-bo de bete cen. de TIL
	≥: c'(ε) ∈ 12 ^m	Dc(€)· L = d(6)
	C'(E) ('chamach UETOR TANGENTS / VETOR VELOCIGADE.	
Ē¥,	$U = \{(r, \theta) \in \mathbb{R}^{2} : r > 0, -\pi < \theta < \pi\} \in (\gamma, \eta) : U \to \mathbb{R}^{2} \int \chi(r, \theta) = \gamma \cos(\theta)$ $\chi(r, \theta) = r \sin(\theta)$	
	Y(x a) - x(en(a)	
	Teno, $\frac{\partial(x_{1})}{\partial(r_{1}\partial)}$; $\left(\begin{array}{c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array}\right) = \left(\begin{array}{c} c_{0}(\theta) & -r J e_{n}(\theta) \\ \\ J e_{n}(\theta) & r c_{0}(\theta) \end{array}\right)$	
	$\partial(r_i\partial)$ ∂r $\partial \varphi$ $\partial \varphi$ $\partial \varphi$ $\partial \varphi$	
DEF.	Uma apl. F: U- 12" "DE CLASSE Ex se cada una das suas componentes	
	Uma apl. F: U- IR" « DE CLASSE Ex se cada una das suas componendes são funçãos de classe Cx.	
	ر «(U; ۳)	
1001,000		
LEMO	Se FEC*(U; R*), entro F r'dif. en (todo pomb de) U.	
	seque do resultado auxiliza po funçãos (m=1) e do cemo (dif.c=s componento, di!)	
	Derivadas de ordem superior	
MotaçãO	L(Viw) = espaço de hans. lin. V-w	
	·	menfileiramos as linhas
	T A=(a;j) 1.g. 5 (an,, an, azi,, amn)	
	Tej= Σ ^a ije;	
	uma aplicação dif. F: U-IR" jutur uma appl. dF: U - L(IR"; IR")	
	P ~ DF(p)	
	Wis Components (sol 2 identificação L(IR"; IR") ~ IT") são OF;	
	losp, "componente continos"	
	· FECY(V; R") <=> Fe' dif. on Ve DF + continus	
	· Fe 2'(U; n=) <=> F < 2'(0, n=) . DF < 2'(U, L(n=; n=))	
	,	

	Segunda derivada: DIF: U - L(th"; L(th"; th"))	
	ρ H D(DF)(ρ)	
	Temol a identificação: L(v, , L(vi, w)) ≈ L(v, ⊗vi, w)	
	(apl. bilin. Vikun or)	
	Em gersl, a K-essima der de Fem peruma apl multilinear	
	NKE(a): Maranama mm	- PU: Units linear lig
	$V^{(1)} \otimes \cdots \otimes V^{(K)} \qquad \qquad \frac{\partial V^{(K)}}{\partial F} (\rho) = \sum_{i_1, \dots, i_K = 1}^{j_K - 1} \frac{\partial x_{i_1} \dots \partial x_{i_K}}{\partial F} (\rho) V^{(1)}_{i_1} \cdots V^{(K)}_{i_K}$	
<i>О</i> вз.	Se f: U - R & una fugar, a K-ésima diformial que defininos é ligeremente	
	differente: duf(p). Vox = Df(p). Vomov	