Lecture 2 Time Domain Representation of Discrete Time Signals

Digital Signal Processing by Yu Yajun @ SUSTech

Discrete Time Signal

• Samples of a Continuous Time (CT) Signal $x[n] = x_a(nT), n = ..., -1, 0, 1, 2, ...$

- The spacing *T* between two consecutive samples is called the sampling interval or sampling period
- Reciprocal of sampling interval T, denoted as F_T , is called the sampling frequency:

$$F_T=1/T$$

38

Discrete Time Signal

Or, inherently discrete

• Examples?

Digital Signal Processing by Yu Yajun @ SUSTech

39

Discrete Time Signal

- Signals represented as sequences of numbers, called samples.
- Sample value of a typical signal or sequence denoted as x[n] with n being an integer in the range $-\infty \le n \le \infty$.
- x[n] is called the n^{th} sample of the sequence.

Digital Signal Processing by Yu Yajun @ SUSTech

40

Discrete Time Signal

- {x[n]} defined only for integer values of n and undefined for non-integer values of n.
- Discrete-time signal may also be written as a sequence of numbers inside braces:

$${x[n]} = {\dots, -0.2, 2.2, 1.1, 0.2, -1.9, 2.9, \dots}$$

placed under the sample at time index $n = 0$

Digital Signal Processing by Yu Yajun @ SUSTech

4

42

Real and Complex Sequences

- $\{x[n]\}$ is a real sequence, if x[n] is real for all values of n, otherwise, $\{x[n]\}$ is a complex sequence
- A complex sequence $\{x[n]\}$ can be written as

$${x[n]} = {x_{re}[n]} + j {x_{im}[n]}$$

Its complex conjugate is

$${x^*[n]} = {x_{re}[n]} - j {x_{im}[n]}$$

Example:

- $\{x[n]\}=\{\cos 0.25n\}$ is a real sequence, while $\{y[n]\}=\{e^{j0.3n}\}$ is a complex sequence
- We can write

$${y[n]}={\cos 0.3n + j\sin 0.3n} = {\cos 0.3n} + j{\sin 0.3n}$$

where ${y_{re}[n]}={\cos 0.3n}$ and ${y_{im}[n]}={\sin 0.3n}$

Digital Signal Processing by Yu Yajun @ SUSTech

43

Length of a Discrete-Time Signal

- Finite Length (also called finite duration or finite extent)
 - Defined only for a finite time interval: $N_1 \le n \le N_2$, where $-\infty < N_1$ and $N_2 < \infty$ with $N_1 \le N_2$

- Length of the above finite-length sequence is $N=N_2-N_1+1$
- Example: $x[n]=n^2$, $-3 \le n \le 4$ is a finite-length sequence of length 4-(-3)+1=8

Infinite Length

• A right-sided sequence $\{x[n]\}$ has zero-valued samples for $n < N_1$

- If $N_1 \ge 0$, a right-sided sequence is usually called a causal sequence.
- A left-sided sequence $\{x[n]\}$ has zero-valued samples for $n > N_2$.
 - If $N_2 \le 0$, a left-sided sequence is usually called an anti-causal sequence.
- A general two-sided sequence is defined for all values of n in the range $-\infty < n < \infty$
 - Example: $\{y[n]\}=\{\cos 0.4n\}$ is a general infinite-length sequence

Digital Signal Processing by Yu Yajun @ SUSTech

45

Operations on Sequences

 A discrete-time system operates on one (or more) sequence, called the input sequence, according some prescribed rules and develops another one (or more) sequence, called the output sequence, with more desirable properties

Operations on Sequences

- For example, the input may be a signal corrupted with additive noise
- Discrete-time system is designed to generate an output by removing the noise component from the input
- In most cases, the operation defining a particular discrete-time system is composed of some elementary operations

Digital Signal Processing by Yu Yajun @ SUSTech

47

x[n]

Elementary Operations

• Product (modulation) operation:

Modulator $y[n] = x[n] \cdot w[n]$ $x[n] \qquad y[n] \qquad y[n]$

- An application is in forming a finitelength sequence from an infinitelength sequence by multiplying the latter with a finite-length sequence called a window sequence
- Process called windowing

d windowing $y_1[n]$ $y_2[n]$ Digital Signal Processing by Yu Yajun @ SUSTech

Which one ??

Elementary Operations

• Multiplication operation:

Multiplier
$$x[n]$$
 α $y[n] = \alpha x[n]$

• Addition operation:

Adder

$$y[n] = x_1[n] + x_2[n]$$

• Subtraction operation:

Subtractor

$$x_1[n]$$
 $x_2[n]$ $y[n] = x_1[n] - x_2[n]$

$$y[n] = x_1[n] - x_2[n]$$

Digital Signal Processing by Yu Yajun @ SUSTech

Elementary Operations

- Time-shifting Operation: $y[n] = x[n n_0]$, where n_0 is an integer
- If $n_0 > 0$, it is delaying operation **Unit Delay**

$$x[n] \qquad y[n] \qquad y[n] = x[n-1]$$

$$x[n] \qquad y[n]$$

• If $n_0 < 0$, it is an advance operation **Unit Advance**

$$x[n] \qquad y[n] \qquad y[n] = x[n+1]$$

Elementary Operations

Time-reversal (folding) operation:

$$y[n] = x[-n]$$

 Branching operation: Used to provide multiple copies of a sequence

Digital Signal Processing by Yu Yajun @ SUSTech

51

Combinations of Basic Operations

• Example:

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

Classification of Sequences

- Based on Symmetry
 - Conjugate-symmetric: $x[n] = x^*[-n]$
 - Even sequence: a real conjugate-symmetric sequence
 - Conjugate-antisymmetric: $x[n] = -x^*[-n]$
 - Odd sequence: a real conjugate-antisymmetric sequence

Digital Signal Processing by Yu Yajun @ SUSTech

53

• Any complex sequence x[n] can be expressed as

$$x[n] = x_{cs}[n] + x_{ca}[n],$$

where

$$x_{cs}[n] = \frac{1}{2}(x[n] + x^*[-n]),$$
 Conjugate Symmetric part $x_{ca}[n] = \frac{1}{2}(x[n] - x^*[-n]),$ Conjugate anti-symmetric part

• Any real sequence x[n] can be expressed as

$$x[n] = x_{ev}[n] + x_{od}[n],$$

where

$$x_{ev}[n] = \frac{1}{2}(x[n] + x[-n]),$$
 Even part $x_{od}[n] = \frac{1}{2}(x[n] - x[-n]),$ Odd part

Example 1: Generation of Symmetric Parts of a Complex Sequence

• Sequence:
$$\{g[n]\} = \{0, 1+j4, -2+j3, 4-j2, -5-j6, -j2, 3\}$$

• A: We form
$$\{g^*[n]\} = \{0, 1-j4, -2-j3, 4+j2, -5+j6, j2, 3\}, \text{ and } \{g^*[-n]\} = \{3, j2, -5+j6, 4+j2, -2-j3, 1-j4, 0\},$$
• Thus:
$$g_{cs}[n] = \frac{1}{2}(g[n] + g^*[-n])$$

$$= \{1.5, 0.5 + j3, -3.5 + j4.5, 4, -3.5 - j4.5, 0.5 - j3, 1.5\}$$

$$g_{ca}[n] = \frac{1}{2}(g[n] - g^*[-n])$$

$$= \{-1.5, 0.5 + j, 1.5 - j1.5, -2j, -1.5 - j1.5, -0.5 + j, 1.5\}$$

Classification of Sequences

Digital Signal Processing by Yu Yajun @ SUSTech

- Base on Periodicity
 - A sequence $\tilde{x}[n]$ satisfying

$$\tilde{x}[n] = \tilde{x}[n+kN]$$
 for all n

is called a periodic sequence with a period N.

• The fundamental period N_f of a periodic signal is the smallest value of N for which the above equation holds.

Basic Sequences

Unit impulse

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Unit Step

$$\mu[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Digital Signal Processing by Yu Yajun @ SUSTech

57

Basic Sequences

Exponential

$$x[n] = \begin{cases} A\alpha^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Bounded

Unbounded

Representing an arbitrary sequence

 as a weighted sum of unit impulse and its delayed versions.

$$x[n] = 1.75\delta[n+3] - 2.25\delta[n+1] - 1.5\delta[n] + \delta[n-2] - 1.75\delta[n-3]$$

A general form

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Digital Signal Processing by Yu Yajun @ SUSTech

59

Discrete Sinusoids

$$x[n] = A\cos(\omega_0 n + \varphi)$$

or
$$x[n] = Ae^{j\omega_0 n + j\varphi}$$

• Q: Period or not? x[n] = x[n + N] for N integer.

Discrete Sinusoids

$$x[n] = A\cos(\omega_0 n + \varphi)$$
 or $x[n] = Ae^{j\omega_0 n + j\varphi}$

- Q: Period or not? x[n] = x[n + N] for N integer.
- A: Yes only if ω_0/π is rational (Different from CT!)
- To find fundamental period N
 - Find smallest integers *K* and *N*, satisfying:

$$\omega_0 N = 2\pi K$$

Digital Signal Processing by Yu Yajun @ SUSTech

61

Discrete Sinusoids

• Example:

$$\cos\left(\frac{5}{7}\pi n\right) \qquad N = 14 \quad (K = 5)$$

$$\cos\left(\frac{1}{5}\pi n\right) \qquad N = 10 \quad (K = 1)$$

$$\cos\left(\frac{5}{7}\pi n\right) + \cos\left(\frac{1}{5}\pi n\right) \implies N = \text{SCM}(14, 10) = 70$$

Discrete Sinusoids

- Another difference:
- Q: Which one is a higher frequency signal for $sin(\omega_0 n)$?

$$\omega_0 = \pi$$
 or $\omega_0 = \frac{3}{2}\pi$

Digital Signal Processing by Yu Yajun @ SUSTech

63

Discrete Sinusoids

- Another difference:

• Q: Which one is a higher frequency signal?
$$\omega_0 = \pi \qquad \text{or} \qquad \omega_0 = \frac{3}{2}\pi$$

Discrete Sinusoids

- Another difference:
- Q: Which one is a higher frequency signal?

$$\omega_0 = \pi$$
 or $\omega_0 = \frac{3}{2}\pi$

• A: $\omega_0 = \pi$

$$--- \cos\left(\frac{7}{4}\pi t\right) \qquad \circ --- \cos\left(\frac{7\pi}{4}n\right) \text{ and } \cos\left(\frac{\pi}{4}n\right)$$
$$--- \cos\left(\frac{1}{4}\pi t\right)$$

此题未设置答案,请点击右侧设置按钮

Is $x[n] = A\cos(\omega_0 n + \varphi)$ periodic or not?

- (A) Yes
- B No
- \bigcirc It depends on ω_0
- \Box It depends on φ

DSP 2016 by Yu Yajun @ SUSTech

提交

69

单选题 1分

设置

此题未设置答案,请点击右侧设置按钮

Determine the fundamental frequency of $\cos\left(\frac{5}{7}\pi n\right) + \cos\left(\frac{1}{5}\pi n\right)$

- (A) 14
- B 10
- (C) 2
- (D) 70

此题未设置答案,请点击右侧设置按钮

For $cos(\omega_0 n)$, which one is a higher frequency signal?

$$\bigcirc A \quad \omega_0 = \pi$$

A
$$\omega_0 = \pi$$

$$\omega_0 = \frac{3}{2}\pi$$

提交