ΑP	Compu	ıter	Scien	ıce

Introduction and Chapter 1

Name Per

Introduction

Computer Science is the science of ______ where the solutions happen to use a computer.

A computer program is a set of _______ to a computer to allow it to ______ some data. These programs are generically known as ______.

Hardware Basics

Memory

Memory is where actively running ______ reside. Access to this area is very fast and is referred to as ______ or ______. Any information stored in this area is ______ when the computer is turned _____.

Each memory location is 8 ______ or 1 _____ long. Each bit is either a _____ or ____. Data that cannot fit in one byte can use consecutive locations. Each memory location has a unique address represented by a hexadecimal number. The memory address is like the address of your home. With the address, the software can locate the information it needs.

0109	
010A	
010B	
010C	
010D	
:	

:	
5851	
5851	
5853	
5854	
:	

Number Systems

					ry	Bina			
					2)	base	(
Decimal					1	0 or			
(base 10)		2°	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	27
		۷	۷	۷	۷	۷			۷.
		1	2	4	8	16	32	64	128
	=	1	0	1	0	0	1	1	0
123	=								

	Oct	al			
0,1	(base	-	5,7		Decimal
8 ³	8 ²	8 ¹	80		(base 10)
512	64	8	1		
0	0	2	7	=	
				=	257

	Hexadecimal					
		16)	(base			
Decimal	0,1,2,3,4,5,6,7,					
(base 10)	, F	C,D,E	Э,А,В,	8,9		
	16°	16 ¹	16 ²	16 ³		
	1	16	256	4096		
=	В	F	0	4		
= 321						

Solve and express answer as a decimal:

1.
$$12(\text{octal}) + 42(\text{decimal}) =$$

$$2. 1E(hex) + 17 (octal) + 2 (decimal) =$$

Algorithms		
Algorithms are a	for	a problem. These
solutions will be the core of t	he programs you write. At fi	rst the algorithms will be simple and come right to
mind. As you move through	the course, they will become	more complex and will require more thought and
planning. Write an algorithm	n to print the minimum of two	numbers, x & y:
Programming Process		
There are two steps to the pro	ogramming process:	
1 Develop on shoose so	n aniatina alaquithan Thia ia	11J
_		called
2. Express the algorithm	n as a computer program in a	programming language. This is called
At first, coding will seem to l	be the most difficult part of pr	rogramming. You are learning a new language whose
and	are unfam	niliar. DO NOT GIVE UP!! Please be reassured that
coding will become easier as	you learn more about the pro	gramming process.
Computer programs can be w	vritten in several different pro	gramming languages. In this class you will learn
to illustrate the m	ore general concepts of progr	ramming and computer science. Java is called an
		ning language. Other languages include: Objective-C
(iPhone), C++, Pascal, Fortra		
Java was written by James G	osling at Sun Microsystems (now Oracle) in 1975
sava was written by sames C	osing at san interosystems (now Gracie, in 1973.
"Write once, run anywhere" i	s a slogan created by Sun Mi	crosystems to illustrate the
benefits of the Java language	. Ideally, this means Java can	be developed on any device, compiled into a standard
a	nd be expected to run on any	device equipped with a
(J	VM). The installation of a JV	M or Java interpreter on chips, devices or software
packages has become an indu	stry standard practice.	
This is intended to save softw	vare developers the effort of v	writing a different version of their software for each
or		they intend to deploy on.

Programming languages are made up of English words which have meaning to the computer. There are
when writing the words into a program. The rules () let the
compiler change the words into instructions (or
) the computer can understand.
When you compile a program, the compiler first checks to see whether your program is
correct. If you have violated the syntactic rules, the compiler displays an error
message. These errors are called
but your biggest source of frustration will occur when your program compiles but fails to operate correctly. This
type of mistake is called a and the process of finding and fixing such mistakes is called
. All programmers make logic errors. You will make logic errors and it is your
job as a programmer to find and fix the bugs!
Some of the English words (called) have special meaning in Java, these are called
words. Some examples are public, static, and class. Below are the Java
reserved words:

abstract else interface super assert enum long switch boolean extends synchronized native break false this new byte final null throw finally case package throws catch float transient private char for protected true goto class public try if const void return implements continue volatile short default import while static do instanceof strictfp double int

Other identifiers are made up by other programmers or yourself and can represent	
or Identifiers can be made up of	letter, digits, underscore and
dollar sign characters, are case sensitive and cannot begin with a digit.	

Which of the following identifiers are legal in Java?

ILoveAPCS2_names\$myNumiloveapcs!my\$numMY\$NUMI_love_apcsAccount_2account^num

Every Java program is made up of _______. Classes are usually small and are created for a specific function. Classes are like blueprints, they define what something is going to look like (called _______) and how it will behave (called _______).

Imagine a blueprint for a house. You know what the house will look like and how it will function by looking at the blueprint, but the house doesn't exist yet. You cannot live in a blueprint. You have to create the house (_______) from the blueprint (_______). This creation is called _______.

The house object is _______ from the house blueprint (class). In other words, the house is an ______ of the house blueprint. Many houses can be built (instantiated) from one blueprint.

Class Creation

Each class is written in a separate class	ss file with a file extension	n	. The convention is to	
start class names with a	are identical.	Each class		
is defined with a class heading using t	this syntax (rules for decl	aring a class):		
Classes contain information specific to	o the class, called		Inst	tance
variables must be defined with a				
primitive types (int	, boolean	or do	uble)
Classes also contain behavior called _				
a function. The set of instructions is t				
in the method is a specific instruction. declarations follow this syntax:	. Statements end with a		Method	
Each program you write will contain a				
for this method when you run your proclasses in your program, but will not be		also create	fron	n the other

Write a class named MyMessage that will print the message I love computer science!:

Java API

The Java API contains all of the class information for the many classes that come with Java. You will need to become familiar with the Java API.

Open the Java API up (https://docs.oracle.com/javase/7/docs/api/) and look at the instance variables and methods for the following classes that you will be required to know for the AP Exam and answer the questions in the space provided.

Integer	What are the MAX_VALUE and MIN_VALUE for this object?
Double	Look under the "Method Summary" section. What does the method <code>longBitsToDouble()</code> do?
String	Look under the "Method Summary" section. What does the method length () do?
Math	Look under the "Method Summary" section. What does the method max (double a, double b) do?
ArrayList	Look under the "Method Detail" section. What does the method is Empty() return?
System	Look under the "Field Detail" section. What does it say under the field in?

Comments

Comme	ents are a very important part of your program. They are written for
not the	The compiler ignores comments. The three types of comments in Java are:
1.	<pre>/* * File: MyMessage.java * This program prints out a simple message to the console */</pre>
2.	// Use this type for short, one-line comments.
3.	<pre>/** * File: CallOfDuty.java * @author Mrs. Allen * This program simulates war time fighting. */</pre>

A few words on JCreator

JCreator is an IDE ()
which allows programmers to,	and	Java programs.

- write Using the Java commands and syntax, create class files and save with the .java file extension.
- **compile** Invoke the Java compiler to read the class files and if there are no syntax errors, convert the Java language into bytecode or machine code (.class file) which can be read only by computers.
- **execute** Invoke the JVM (Java Virtual Machine) to read the .class bytecode file and carry out the instructions of the program.

You can set up your file structure in many different ways. To help organize your programs, you will need to create an \APCS folder in your student director. Each chapter will have a .zip file to download from Moodle, containing the chapter lab manual and any lab files. Keep each chapter separate by using the folders created during the unzip. They will be named \Chapter 1, \Chapter 2, etc.

The first time you start JCreator, you will need to do the following:

- 1. Start JCreator.
- 2. Make sure there is no workspace open (choose File/Close Workspace if one is open). From the Configure menu, choose Options... In the dialog box that pops up expand the Editor node and click on Java.
- 3. Set the tab size to 2 and select the Insert spaces option.
- 4. Create an \APCS folder in your student directory each chapter will have a separate folder containing the chapter lab manual and lab files.
- 5. Click on the Directories node and enter the path of the \APCS in your student directory in the Default Project Directory line.
- 6. Click on the Code Insertion node and check the Start open brace on new line box.
- 7. Then click ok.