

Pharmacology of Diabetes Mellitus (DM)

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

Diabetes Mellitus

classification (Expert Comittee; 2003)

□ oral antidiabetics – CI!!!

diabetic neuropathy

■ Type 1 Diabetes Mellitus (IDDM) □ severe and/or absolute insulin deficiency □ <30 years (childhood, young adulthood) □ viral infection, immunological dysfunction (autoAB) □ insulin replacement!!! □ life-threatening complications Type 2 Diabetes Mellitus (NIDDM) (90-95%) □ relative insulin deficiency □ adulthood, elderly □ multifactorial (genetic-, environmental factors) □ insulin oversecretion! - tissue resistance! – impaired insulin action □ "metabolic X" syndrome Complications of DM (AGE/AGP) ■ Type 3 Diabetes Mellitus macroangiopathy □ elevated glucose levels stroke pancretectomia, pancreatitis, drug induced, etc. •ACS Type 4 Diabetes Mellitus microangiopathy gestational DM •diabetic nephropaty □ 4-5% of all pregnancies •diabetic retinopathy □ insulin therapy

Insulin

- anti-diabetic hormone
- chemistry
 - □ contains 51 amino acids –
 - □ 2 chains (A,B) disulfide bridges
 - □ proinsulin (Golgi apparatus) − insulin + C-peptide (equimolar dose!)

- \square pancreatic β cells
 - stimulated by
 - □ glucose
 - □ hormones: incretines (GLP-1, GIP), CCK, vagal activity
 - inhibited by
 - □ somatostatin, leptin, FFA, triglycerides↑

□ liver (60%), kidney (35-40%)

Pancreatic secretion

Cell types	Appr. percent of islet mass	Secretory product
A cell	20	Glucagon, proglucagon
B cell	75	Insulin, proinsulin, C-peptide, amylin
D cell	3-5	Somatostatin
G cell	1	Gastrin
F cell	1	Pancreatic polypeptide

Insulin receptor

- represented in "target cells"
 - liver, muscle, adipose tissue
- \Box heterodimer structure $2\alpha 2\beta$ subunits
- □ autophosphorylation, Tyr-kinase activity
- phosphorilation pathways (IRS, PI3 kinase, MAP kinase)

Effects of insulin

- anabolic hormone, antidiabetic!, lipogenetic! effects
- □ liver
 - promotes glucose storage as glycogen (induces glucokinase, glycogen synthetase, inhibits glycogen phosphorylase)
 - increase glucose transport (GLUT-4)
 - stimulates TG synthesis
 - inhibits of glycogenolysis
 - inhibits conversion of fatty acids and amino acids to ketoacids
 - inhibits converion of aminoacids to glucose

muscle

- increases protein synthesis
 - □ increases amino acid transport
- increased glycogen synthesis
- increased glucose transport (GLUT-4)

adipose tissue

- increased triglycerid storage
- induce LPL (lipoprotein lipase), hydrolyze triglycerides from lipoproteins
- glycerol-3-phosphate↑ TG synthesis↑
- inhibits i.c. lipase (hormone-sensitive-lipase)

- daily insulin demand: 40 IU (1IU=28mg)
- circulating insulin:
 - □ basal insulin value: 5-15µU/mL
 - Dostprandial insulin value: 60-90 μU/mL
- application: subcutaneously!!!
- Aim: to reproduce the normal, physiologic insulin secretion, (to replace the background-, basal overnight-, fasting-, prandial (mealtime) insulin)
- Insulin production: recombinant DNA techniques
- Classification
 - rapid acting
 - insulin LisPro (Humalog)
 - insulin Aspart (Novolog)
 - insulin GluLisine (Apidra)
 - □ short acting
 - Regular Novolin R
 - Regular Humulin R
 - □ intermediate acting
 - NPH insulin (Humulin N)
 - □ long acting
 - insulin detemir (Levemir)
 - insulin glargine (Lantus)
 - premixed insulins

Insulin therapy

only one that allowed iv. application – dilution!

Insulin therapy

- Intermediate acting insulin
 - □ NPH insulin (neutral protamine Hagedorn, isophane)
 - □ combination of insulin and protamine
 - □ variability of absorption $\approx 50\%$
 - mixed forms
- Long acting insulin
 - □ insuline glargine
 - peakless action, broad plateau
 - background insulin replacement
 - low pH
 - slow dissolve at neutral pH prolonged effect
 - □ not mixed with other prep.!
 - insuline detemir
 - myristic acid (C-14 fatty acid) attached
 - increased self aggregation slow absorption

- Mixtures of insulin
 - □ rapid acting insulines are often mixed with NPH (no effect on absorption)
 - □ NPL (NPH+lispro) 50-50%, 75-25%
 - □ NPA (NPH+aspart) 70-30%

- Insulin regimens
 - ☐ Intensive Insulin Therapy
 - exact det.of daily insulin requirement
 - □ 50% basal, background, insulin requir.
 - □ 50% prandial, postprandial, high gl.level corrections
 - formulas food types CALCULATION
 - intensive glucose control
 - ☐ Conventional Insulin Therapy
 - insulin application evidence based (fix doses)
 - □ IIT vs. CIT ???
 - ☐ Insulin delivery systems (insulin pumps)
 - sc. application
 - CSII (continuous subcutan insulin infusion)
 - □ open-loop system
 - □ closed loop system???

Insulin therapy

Complications

- □ hypoglycaemia
 - background:
 - □ inadaequte carbohydrate consumption
 - □ unusal physical exertion
 - □ large doses of insulin
 - symptoms:
 - sweating, tachycardia, palpitations, altered behaviour (agression), nausea, hunger
 - treatment
 - □ glucose administration CAVE: unconsciousness! i.v.!!!
 - □ 1 mg glucagon s.c., i.m.
- □ insulin allergy
 - rare condition
- □ immune insulin resistance
- □ lipodistrophy
 - injection sites

Regulation of insulin release in humans

- stimulants of insulin release
 - □ glucose, mannose
 - □ leucin
 - □ vagal stimulation
 - \Box SUs
- amplifiers of glucose induced insulin release
 - □ hormones (incretin effect!!!)
 - GLP-1 (glucagon like peptide)
 - GIP (gastric inhibitory peptide)
 - secretin, gastrin, glucagon
 - neural amplifiers
 - lacksquare eta adrenoceptor stimulation
 - □ amino acids
 - Arg
- inhibitors of insulin release
 - neural
 - α adrenerg drugs
 - humoral
 - somatostatine, leptine
 - □ diazoxide,
 - □ phenytoin,
 - □ vinblastin, colchicin

Classification of oral antidiabetics

- •Insulin secretagogues
 - •SUs
 - •meglitinide derivatives
 - •D-phenylalanine derivatives
- •biguanides
 - •metformin
- •thiazolidendiones
- •α-glucosidase inhibitors
- •incretin based therapy
- •amylin analogues
- •Na+-glucose cotransport inhibitors

Oral antidiabetic agents Insulin secretagogues

DEBRECO MEDICAL MEDICA

- Sulfonylureas
 - mechanism of action
 - ↑insulin release from pancreatic B cells
 - □ inhibits ATP sensitive K+ channels B cell depolarization
 - long term action reduces serum glucagon levels
 - □ drug class
 - first generation SU
 - □ tolbutamide
 - UGDP (Univ. Group Diab. Progr.) ↑cardiavascular risk
 - UKPDS no such findings
 - safe for elderly patients
 - chlorpropamide
 - CI in patients with hepatic or renal failure
 - a.e.: prolonged hypoglycaemia (t1/2: 32 hours)
 - □ tolazamide
 - shorter half life, than chlorpropamide
 - second generation SU
 - □ glibenclamid (Gilemal)
 - safer, than 1st generation SU
 - lower CV risk/ hypoglycaemic effect
 - □ glimepirid (Amaryl)
 - potent and effective
 - 1mg p.o.
 - glipizide
 - short half life

Oral antidiabetic agents Insulin secretagogues

- meglitinide derivatives
 - mechanism of action
 - ↑insulin release from pancreatic B cells
 - □ inhibits ATP sensitive K+ channels − B cell depolarization
 - two binding sites on channel (SU-one b.s.)
 - □ drug types
 - repaglinide
 - □ rapid onset of action
 - □ metabolized in liver: CYP3A4
 - □ dose: before each meal 0,25-4mg
 - □ coappl: biguanides
 - □ appl.: allergy to SUs
- D-phenylalanine derivative
 - □ mechanism of action
 - ↑insulin release from pancreatic B cells
 - □ inhibits i.r. ATP sensitive K+ channels − B cell depolarization
 - nateglinide
 - rapid onset of action

Oral antidiabetic agents Biguanides

- □ mechanism of action
 - reduce hepatic glucose production
 - □ activating AMPK (AMP activated protein kinase)
 - facilitating glucose uptake (liver, muscle)
 - stimulating glycolysis
 - slow glucose absorption from GIT
 - reduction of plasma glucagon levels
 - ↓food intake (appetite lowering effect)
 - ↓insulin resistance
 - ↑HDL ↓LDL
- □ drug types
 - metformin
 - not metabolized
 - □ impair the metabolism of lactic acid! lactate acidosis
 - ☐ first line th. of Type 2 DM
 - UKPDS
 - \risk of macroangiopathy/microangiopathy
 - □ dose 500mg-2000mg/day
 - □ a.e.: nausea, diarrhea, impaired Vit. B12 absorption, not recommended with contrast-material (X-ray)

Oral antidiabetic agents Thiazolidendiones

DEGREE OF THE PARTY OF THE PART

- mechanism of action
 - agonism of PPAR-γR (fat, muscle, liver endothel, ovarium, imm.cells)
 - effects mainly on adipocytes
 - □ ↑ glucose uptake and utilization
 - □ ↓ synthesis of resistin
 - □ ↓ synthesis of cytokines and lipid hormones
 - □ slow onset nuclear receptor
 - drug types
 - pioglitazone
 - metabolized by CYP2C8, CYP3A4 (CAVE: OAC!)
 - reduces CV mortality (macroangiopathia)
 - triglyceride lowering effect (anti-obesity drug)
 - 15-30mg/day
 - increased risk of heart failure
 - □ rosiglitazone
 - 4-8 mg/day
 - fluid retention
 - monotherapy in type 2 DM
 - coapplication.: biguanides, SU
 - □ troglitazone
 - withdrawn (hepatotoxicity)
 - beneficial effects in PCOS

Oral antidiabetic agents α -glucosidase inhibitors

- □ mechanism of action
 - competitive inhibition of intestinal α -glucosidase enzymes (sucrase, maltase, dextranase, glucoamylase)
 - □ only monosacharids can be transported out of the intestinal lumen
 - □ ↓ monosacharid absorption, ↓ postprandial hyperglycaemia
 - acarbose, miglitol
 - 25-50 mg/day
 - a.e.: flatulence, diarrhea, abdominal pain (undigested carbohydr.)
 - STOP-NIDDM great success

Incretin based therapy

Oral antidiabetic agents Incretin based therapy

- exenatide, liraglutide
 - □ mechanism of action
 - synthetic analog of GLP-1
 - multiple actions
 - □ enhance glucose-mediated insulin secretion
 - □ supression of postprandial glucagon release
 - □ slow gastric emptying
 - □ central loss of appetite
 - appl.: sc. injection
 - injected 60 min before meal
 - a.e.: nausea, vomiting, weight loss
 - coapplication: biguanides, sulfonylureas (hypoglycaemia!!!)
- sitagliptin, saxagliptin
 - mechanism of action
 - inhibitor of DPP-4 (dypeptidil-peptydase-4)
 - inhibiting degradation og incretines (GLP-1, GIP↑)
 - □ increase glucose mediated insulin secretion
 - □ decrease glucagon levels
 - appl.: p.o. (OA=85%)
 - 100mg/day
 - a.e.: headache
 - coapplication: biguanides, thiazolidendiones

Oral antidiabetic agents Amylin analogues

Pramlintide

- □ mechanism of action
 - synthetic analog of amylin (IAPP-Islets Amyloid Polypeptide)
 - □ suppress glucagon release
 - □ delay gasric emptying
 - □ anorectic effects in CNS
 - metabolized by kidneys
 - appl.: sc. (immediat. before eating)
 - ☐ Type 1 and Type 2 DM
 - **a.e.**:
 - □ hypoglycaemia
 - nausea

Oral antidiabetic agents Na+-glucose cotransport inhibitor

- dapagliflozine
 - □ mechanism of action
 - inhibits SGLT2 (proximal tubule-90% of glucose reabsorption)
 - decreased glucose reapsorption (excreted with urine)
 - □ insulin-independent action
 - □appl.: p.o.
 - □ a.e.: safe and well-tolearated
 - □ coapplication: biguanides, sulfonylureas, insulin

Complex therapy of DM

- Type 1 DM
 - □ insulin therapy
- Type 2 DM
 - ☐ CHANGE IN LIFESTYLE (glycaemic index!!!)
 - □ oral antidiabetics
 - biguanides
 - SU
 - TZD's
 - □ insulin
- Type 4 DM
 - □ insulin