IN THE SPECIFICATION

Please replace the paragraph beginning on page 4, line 6 with the following replacement paragraph:

Note that the feedback from differential amplifier 205 is both negative and positive in that differential amplifier 205 receives the voltage from node A at its positive input and the voltage from node B at its negative input. If the voltage at node A is too high with respect to a desired operating voltage, differential amplifier 205 increases its output voltage so that the current through transistors M1 through M3 is reduced, thereby reducing the voltage across resistor R2 to bring the voltage at node A down. Similarly, if the voltage at node B is too low, differential amplifier decreases its output voltage so that the current in transistors M1 through M3 is increased, thereby increasing the voltage across resistor R3 to bring the voltage at node B up. In this fashion, equilibrium is reached such that the voltages of nodes A and B are kept substantially equal.

Please replace the paragraph beginning on page 5, line 11 with the following replacement paragraph:

These two voltages V_{BE1} and V_{BE2} may be used to derive the value of I_1 (and hence I_2 and I_3) as follows. Current I_1 must equal the sum of the current through resistance R_2 , which equals V_{BE1}/R_2 , and the current through diode D_1 . Because the diode currents are the same, the current through diode D_1 equals the current through variable resistance R_1 . In turn, the current through variable resistance R_1 equals ($V_{BE1} - V_{BE2}$)/ R_1 . Thus, the currents I_1 , I_2 , and I_3 may be expressed as:

$$I_1 = I_2 = I_3 = (1/R_2) * [V_{BE1} + \Delta V_{BE} * R_2/R_1]$$
 Eq. (1)

Page 2 of 10

Appl. No. 10/724,440

where $\Delta V_{BE2} = V_{BE1} - V_{BE2}$. As discussed above, a voltage such as V_{BE1} will have a CTAT dependency whereas a voltage such as ΔV_{BE} will have a PTAT dependency. In particular, the voltage ΔV_{BE} equals V_T in (n), which in turn equals (kT/q) * ln(n), where V_T is the thermal voltage, k is Boltzmann's constant, n is the cross sectional ratio (area of D_2)/(area of D_1), and q is the electronic charge. Thus, the bracketed component in equation (1) depends upon the summation of a PTAT voltage and a CTAT voltage. By proper compensation of these PTAT and CTAT components, currents I_1 through I_3 may be made stable with respect to changes in temperature. The output voltage V_{out} , which depends upon the product of a variable resistance R_4 and current I_3 , becomes:

$$V_{out} = (R_4/R_2) * [V_{BE1} + \Delta V_{BE} * R_2/R_1]$$
 Eq. (2)

Thus, by varying the resistance R_1 , the balance between the PTAT and CTAT voltage contributions may be changed to ensure that V_{out} is stable with respect to changes in temperature. Similarly, by varying the resistance R_4 , the output voltage level for V_{out} may be changed. The variation of R_1 will be discussed first.