Project 2

Canyu Lei, Ryan Gao, Conor Moore, and Shay Ladd
12/10/23

Load data and impute missing values

```
setwd(datadir)
airquality = read.csv('AirQualityUCI.csv')
# replace -200 with NA
airquality[airquality == -200] <- NA
# convert integer type to numeric
intcols = c(4,5,7,8,9,10,11,12)
for(i in 1:length(intcols)){
  airquality[,intcols[i]] <- as.numeric(airquality[,intcols[i]])</pre>
setwd(sourcedir)
# create new data frame with just CO and NO2
AQdata = airquality[,c(3,10)]
# impute missing air quality data
f <- ~ CO.GT. + NO2.GT.
t <- c(seq(1,dim(AQdata)[1],1))
i <- mnimput(f, AQdata, eps=1e-3, ts=TRUE, method='gam', ga.control=lis</pre>
t(formula=paste(names(AQdata)[c(1:2)], '~ns(t,2)')))
# set airquality to imputed data
AQdata <- i$filled.dataset
# aggregate to daily maxima for model building
dailyAQ <- aggregate(AQdata, by=list(as.Date(airquality[,1],"%m/%d/%Y</pre>
")), FUN=max)
```

#Building Univariate Time Series Models

a) How you discovered and modeled any seasonal components, if applicable. (5 points)

Seasonal components for CO and NO2 were discovered and modeled using sine and cosine functions within linear regression models. This suggests distinct seasonal

behaviors in CO and NO2 concentrations, effectively captured by the frequencies chosen for the sine and cosine terms in the models.

b) How you discovered and modeled any trends, if applicable. (5 points)

Trends in CO and NO2 data were discovered and modeled using linear regression. These trends were modeled as part of the linear regression equations, which included both the time index (representing linear trend) and sine and cosine functions (capturing seasonal variations).

c) How you determined autoregressive and moving average components, if applicable. Compare at least two models. (5 points)

Shown as the 1c) part below

d) How you assessed your models (e.g. adjusted R2, AIC, diagnostics, etc.) to select one model for each pollutant. Assessments should discuss diagnostics and at least one metric. Show and discuss diagnostics of both the linear models of trends and seasonality, and the ARIMA models of the residuals. (15 points)

Shown as the 1d) part below

e) What problems, if any, remain in the diagnostics of the selected models. (5 points)

Shown as the 1e) part below

Part 1

```
# Create time series for CO and NO2
co.ts <- ts(dailyAQ$CO.GT.)</pre>
no2.ts <- ts(dailyAQ$NO2.GT.)</pre>
# Build univariate time series
time.index <- c(1:length(co.ts))</pre>
co.lm <- lm(co.ts[time.index] ~ time.index + sin(2*pi*time.index/400) +</pre>
                 cos(2*pi*time.index/400))
no2.lm <- lm(no2.ts[time.index] ~ time.index + sin(2*pi*time.index/200)</pre>
 +
                 cos(2*pi*time.index/200))
summary(co.lm)
##
## Call:
## lm(formula = co.ts[time.index] ~ time.index + sin(2 * pi * time.inde
x/400) +
   cos(2 * pi * time.index/400))
```

```
##
## Residuals:
      Min
               10 Median
                               3Q
                                      Max
## -3.6606 -1.4324 -0.1678 1.2835 6.7503
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
                                5.222420
                                           0.279942 18.655 < 2e-16 *
## (Intercept)
**
                                           0.001351 -3.285 0.00111 *
## time.index
                               -0.004439
## sin(2 * pi * time.index/400) -1.365226
                                           0.213025 -6.409 4.27e-10 *
## cos(2 * pi * time.index/400) 0.024715
                                           0.130034 0.190 0.84935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.79 on 387 degrees of freedom
## Multiple R-squared: 0.1168, Adjusted R-squared: 0.1099
## F-statistic: 17.06 on 3 and 387 DF, p-value: 2.01e-10
summary(no2.lm)
##
## Call:
## lm(formula = no2.ts[time.index] ~ time.index + sin(2 * pi * time.ind
ex/200) +
##
      cos(2 * pi * time.index/200))
##
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -87.794 -32.118 -1.004 29.638 134.827
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                               118.61624
                                            4.58043 25.896
                                                              <2e-16 *
**
## time.index
                                 0.23440
                                            0.02066 11.343
                                                              <2e-16 *
## sin(2 * pi * time.index/200) -3.60165
                                            3.25858 -1.105
                                                              0.2697
## cos(2 * pi * time.index/200) -10.94162
                                            3.06368 -3.571
                                                              0.0004 *
**
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 42.28 on 387 degrees of freedom
```

```
## Multiple R-squared: 0.3219, Adjusted R-squared: 0.3167
## F-statistic: 61.25 on 3 and 387 DF, p-value: < 2.2e-16</pre>
```

a) Seasonality

Get periods and peak of both co and no2 model, the find the seasonality.

```
# Get the periodogram for co.ts and no2.ts
pg.co <- spec.pgram(co.ts,spans=9,demean=T,log='no')</pre>
```

Series: co.ts Smoothed Periodogram

pg.no2 <- spec.pgram(no2.ts,spans=9,demean=T,log='no')</pre>

Series: no2.ts Smoothed Periodogram


```
spec.co <- data.frame(freq=pg.co$freq, spec=pg.co$spec)
ggplot(spec.co) + geom_line(aes(x=freq,y=spec)) +
    ggtitle("Smooth Periodogram of CO")</pre>
```

Smooth Periodogram of CO


```
spec.no2 <- data.frame(freq=pg.no2$freq, spec=pg.no2$spec)
ggplot(spec.no2) + geom_line(aes(x=freq,y=spec)) +
    ggtitle("Smooth Periodogram of NO2")</pre>
```

Smooth Periodogram of NO2


```
# What are the periods of the next biggest peaks?
# sort spectrum from largest to smallest and find index
sorted.spec <- sort(pg.co$spec, decreasing=T, index.return=T)
names(sorted.spec)
## [1] "x" "ix"
# corresponding periods (omegas = frequences, Ts = periods)
sorted.omegas <- pg.co$freq[sorted.spec$ix]
sorted.Ts <- 1/pg.co$freq[sorted.spec$ix]
# use next biggest peaks?
sorted.spec <- sort(pg.no2$spec, decreasing=T, index.return=T)
names(sorted.spec)
## [1] "x" "ix"
# corresponding periods (omegas = frequences, Ts = periods)
sorted.omegas <- pg.no2$freq[sorted.spec$ix]
sorted.Ts <- 1/pg.no2$freq[sorted.spec$ix]</pre>
```

The peak is approximately 0.15 The period of seasonality is \sim 7 days (1 / 0.15) for both CO and NO2

1b) Trends

To model the trend, we use time as a predictor.

```
# co trend
co.trend<-lm(co.ts ~ time.index)</pre>
summary(co.trend)
##
## Call:
## lm(formula = co.ts ~ time.index)
##
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -3.3326 -1.6511 -0.0703 1.0938 7.3925
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8595756 0.1903894 20.272 < 2e-16 ***
## time.index 0.0025015 0.0008418 2.972 0.00315 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.879 on 389 degrees of freedom
## Multiple R-squared: 0.0222, Adjusted R-squared: 0.01968
## F-statistic: 8.831 on 1 and 389 DF, p-value: 0.003146
# time is significant in predicting
# Plot co.trend model
ggplot(dailyAQ, aes(x=Group.1,y=CO.GT.)) + geom_line() +
  stat_smooth(method="lm",col="red") + xlab("") + ylab("CO")
## `geom_smooth()` using formula = 'y ~ x'
```



```
# no2 trend
no2.trend<-lm(no2.ts ~ time.index)</pre>
summary(no2.trend)
##
## Call:
## lm(formula = no2.ts ~ time.index)
##
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                        Max
## -85.674 -34.168
                     1.771
                           28.437 139.893
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 116.40204
                                       26.76
                            4.34936
                                               <2e-16 ***
                                               <2e-16 ***
## time.index
                            0.01923
                                       12.84
                 0.24692
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 42.92 on 389 degrees of freedom
## Multiple R-squared: 0.2977, Adjusted R-squared: 0.2959
## F-statistic: 164.9 on 1 and 389 DF, p-value: < 2.2e-16
# time is significant in predicting
# Plot no2.trend model
```

```
ggplot(dailyAQ, aes(x=Group.1,y=NO2.GT.)) + geom_line() +
    stat_smooth(method="lm",col="red") + xlab("") + ylab("NO2")
## `geom_smooth()` using formula = 'y ~ x'
```


For co, if we use a cut off at time 190, the trend of co will be better modeled. For no2, if we use a cutoff point at timestep 147, the trend of no2 will be better modeled.

```
# add new variable to time series reflecting cutoff

# co
x_1 <- c(1:length(time.index))
for (i in 1:190) {
    x_1[i] <- 1
}
for (i in 191:391) {
    x_1[i] <- 0
}

co.trend.cutoff <- lm(co.ts ~ time.index + x_1 + time.index:x_1)
summary(co.trend.cutoff)

##
## Call:
## Tall:
## Im(formula = co.ts ~ time.index + x_1 + time.index:x_1)
##</pre>
```

```
## Residuals:
##
      Min
               10 Median
                               30
                                     Max
## -3.6401 -1.2614 -0.2778 1.2164 6.8964
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             0.642761
                                       9.419
                                              <2e-16 ***
                  6.054129
## time.index
                 -0.004056
                             0.002166 -1.872
                                               0.0619 .
## x 1
                 -1.359050
                             0.693196 -1.961
                                               0.0506 .
## time.index:x_1 -0.005363
                             0.003201 -1.675
                                               0.0947 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.782 on 387 degrees of freedom
## Multiple R-squared: 0.1249, Adjusted R-squared: 0.1181
## F-statistic: 18.41 on 3 and 387 DF, p-value: 3.469e-11
AIC(co.trend.cutoff)
## [1] 1567.345
# no2
x_2 \leftarrow c(1:length(no2.ts))
for (i in 1:147) {
 x_2[i] < -1
for (i in 148:391) {
 x_2[i] <- 0
no2.trend.cutoff <- lm(no2.ts ~ time.index + x_1 + time.index:x_1)</pre>
summary(no2.trend.cutoff)
##
## Call:
## lm(formula = no2.ts \sim time.index + x_1 + time.index:x_1)
##
## Residuals:
      Min
               10 Median
                               3Q
                                     Max
## -103.84 -32.23
                    -2.48
                            25.11 129.72
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 59.61378
                           14.72216  4.049  6.21e-05 ***
## time.index
                 0.44445
                            0.04961
                                      8.958 < 2e-16 ***
                 82.93795 15.87733 5.224 2.87e-07 ***
## x 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 40.81 on 387 degrees of freedom
## Multiple R-squared: 0.3681, Adjusted R-squared: 0.3632
## F-statistic: 75.16 on 3 and 387 DF, p-value: < 2.2e-16

AIC(no2.trend.cutoff)
## [1] 4016.05</pre>
```

After cut off, the model shows better AIC and adj r^2

Combine trend predictors and seasonality predictors for co and no2

```
# co trend.seasonality
co.trend.seasonal <- lm(co.ts \sim time.index + x_1 + time.index:x 1 + sin)
(2*pi*time.index/7) + cos(2*pi*time.index/7))
summary(co.trend.seasonal)
##
## Call:
## lm(formula = co.ts \sim time.index + x_1 + time.index:x_1 + sin(2 *
       pi * time.index/7) + cos(2 * pi * time.index/7))
##
## Residuals:
               10 Median
      Min
                                3Q
                                      Max
## -3.8901 -0.9926 -0.0396 0.9700 6.4986
##
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              6.024139
                                         0.599235 10.053 < 2e-16 ***
## time.index
                              -0.003931
                                         0.002019 -1.946 0.052323 .
                              -1.340679
                                         0.646213 -2.075 0.038681 *
## x 1
## sin(2 * pi * time.index/7) 0.833059
                                         0.118669 7.020 1.01e-11 ***
## cos(2 * pi * time.index/7) 0.395380
                                         0.118975 3.323 0.000975 ***
## time.index:x 1
                              -0.005416
                                         0.002984 -1.815 0.070335 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.661 on 385 degrees of freedom
## Multiple R-squared: 0.2435, Adjusted R-squared: 0.2336
## F-statistic: 24.78 on 5 and 385 DF, p-value: < 2.2e-16
AIC(co.trend.seasonal)
## [1] 1514.424
# Plot co.trend.seasonal model
ggplot(dailyAQ, aes(x=time.index,y=CO.GT.)) + geom line() +
  geom_line(aes(x=time.index,y=co.trend.seasonal$fitted.values),color="
red") +
xlab("") + ylab("CO")
```


diagnostics
autoplot(co.trend.seasonal, labels.id = NULL)


```
# no2 trend seasonality
no2.trend.seasonal <- lm(no2.ts ~ time.index + x 1 + time.index:x 1 + s
in(2*pi*time.index/7) + cos(2*pi*time.index/7))
summary(no2.trend.seasonal)
##
## Call:
## lm(formula = no2.ts \sim time.index + x 1 + time.index:x 1 + sin(2 *
      pi * time.index/7) + cos(2 * pi * time.index/7))
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -89.859 -27.867 -2.021 20.546 128.056
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                            59.00922 14.14690 4.171 3.75e-05 ***
## (Intercept)
## time.index
                                        0.04768 9.373 < 2e-16 ***
                             0.44689
## x 1
                            ## sin(2 * pi * time.index/7) 15.32820 2.80158
                                                 5.471 8.06e-08 ***
## cos(2 * pi * time.index/7) 5.78404
                                        2.80878 2.059
                                                         0.0401 *
## time.index:x_1
                                        0.07045 -6.809 3.78e-11 ***
                            -0.47974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39.22 on 385 degrees of freedom
## Multiple R-squared: 0.4197, Adjusted R-squared: 0.4121
## F-statistic: 55.68 on 5 and 385 DF, p-value: < 2.2e-16
AIC(no2.trend.seasonal)
## [1] 3986.793
# Plot no2.trend.seasonal model
ggplot(dailyAQ, aes(x=time.index,y=NO2.GT.)) + geom_line() +
  geom line(aes(x=time.index,y=no2.trend.seasonal$fitted.values),color=
"red") +
xlab("") + ylab("N02")
```


Model diagnostics for no2.trend.seasonal
autoplot(no2.trend.seasonal, labels.id = NULL)

For both co and no2 trend.seasonal model, the diagnostic plot looks good, no pattern in the residuals vs. fitted and good qq(only slight upper tail and lower tail)

1c) AR and MA models

```
#AR MA ARIMA models
e.ts.co<-ts(co.trend.seasonal$residuals)
e.ts.no2<-ts(no2.trend.seasonal$residuals)

##Plot the residuals for the co.trend.seasonal model
autoplot(e.ts.co, ylab = "CO Residuals")</pre>
```


autoplot(e.ts.no2, ylab = "NO2 Residuals")


```
# plot ACF, PACF
co.acf <- ggAcf(e.ts.co)
co.pacf <- ggPacf(e.ts.co)
ggarrange(co.acf,co.pacf,nrow=2,ncol=1)</pre>
```

Series: e.ts.co

Series: e.ts.co


```
# from this plot choose p = 1, q = 3

# plot ACF PACF FOR NO2
no2.acf <- ggAcf(e.ts.no2)
no2.pacf <- ggPacf(e.ts.no2)
ggarrange(no2.acf,no2.pacf,nrow=2,ncol=1)</pre>
```


- 1. For co, based on acf and pacf plots. For MA model, we choose q = 3 For AR model, we choose p = 1 For ARMA model, we choose q = 3, p = 1.
- 2.For no2, based on acf and pacf plots. the acf plot shows slow, liner decay, indicating that the time series is nonstationary. we need to take first difference

```
# Check first order difference
no2.diff.acf <- ggAcf(diff(e.ts.no2))
no2.diff.pacf <- ggPacf(diff(e.ts.no2))
ggarrange(no2.diff.acf,no2.diff.pacf,nrow=2,ncol=1)</pre>
```


For no2, After take first difference, The ACF and PACF plots both appear to have sinusoidal decay, we choose p = 2, q = 2, d = 1. ARIMA(2,1,2) model.

```
# build the model
# co
# ar(1) p=1
co.ar1 <- arima(e.ts.co, order=c(1,0,0), include.mean=FALSE)</pre>
summary(co.ar1)
##
## Call:
## arima(x = e.ts.co, order = c(1, 0, 0), include.mean = FALSE)
##
## Coefficients:
##
            ar1
##
         0.4119
## s.e.
         0.0462
## sigma^2 estimated as 2.258: log likelihood = -714.12, aic = 1432.2
3
##
## Training set error measures:
##
                          ME
                                 RMSE
                                           MAE
                                                     MPE
                                                             MAPE
                                                                       MA
## Training set 0.001641399 1.502621 1.152933 125.7687 180.3853 0.88191
82
```

```
##
                       ACF1
## Training set -0.03084152
AIC(co.ar1)
## [1] 1432.235
\# ma(3) p=0, q=3
co.ma3 <- arima(e.ts.co, order=c(0,0,3), include.mean=FALSE)</pre>
summary(co.ma3)
##
## Call:
## arima(x = e.ts.co, order = c(0, 0, 3), include.mean = FALSE)
## Coefficients:
##
            ma1
                    ma2
                             ma3
##
         0.3499 0.1854 0.1638
## s.e. 0.0501 0.0494 0.0536
##
## sigma^2 estimated as 2.244: log likelihood = -712.95, aic = 1433.9
## Training set error measures:
                                           MAE
                                                    MPE
                                                            MAPE
##
                         ME
                                 RMSE
                                                                       MA
SE
## Training set 0.001926119 1.498103 1.155294 121.5587 186.7825 0.88372
46
##
                      ACF1
## Training set 0.01865256
AIC(co.ma3)
## [1] 1433.898
# arma(1,3) p=1, q=3
co.arma13 <- arima(e.ts.co, order=c(1,0,3), include.mean=FALSE)</pre>
summary(co.arma13)
##
## Call:
## arima(x = e.ts.co, order = c(1, 0, 3), include.mean = FALSE)
##
## Coefficients:
##
            ar1
                             ma2
                                      ma3
                     ma1
         0.3857
                 -0.0151 0.0598
                                  0.1153
##
                  0.1972 0.0905 0.0638
## s.e. 0.2011
##
## sigma^2 estimated as 2.226: log likelihood = -711.33, aic = 1432.6
7
##
## Training set error measures:
                                                    MPE
##
                         ME
                                 RMSE
                                           MAE
                                                            MAPE
                                                                       MA
```

```
SE
## Training set 0.002054205 1.491879 1.145394 118.0271 185.3006 0.87615
16
                      ACF1
##
## Training set 0.00210354
AIC(co.arma13)
## [1] 1432.667
# no2
# we need to use first difference model
no2.diff <- diff(e.ts.no2)</pre>
\# ar(2) p = 2
no2.ar2 <- arima(no2.diff, order=c(2,0,0), include.mean=FALSE)</pre>
summary(no2.ar2)
##
## Call:
## arima(x = no2.diff, order = c(2, 0, 0), include.mean = FALSE)
##
## Coefficients:
##
             ar1
                       ar2
##
         -0.4221
                  -0.2778
          0.0488
                   0.0487
## s.e.
##
## sigma^2 estimated as 1059: log likelihood = -1911.65, aic = 3829.3
1
##
## Training set error measures:
##
                          ME
                                 RMSE
                                           MAE
                                                     MPE
                                                             MAPE
                                                                       MA
SE
## Training set -0.02780589 32.53714 25.23126 352.3704 420.1196 0.57840
21
##
                        ACF1
## Training set -0.01907731
# ma(2) p=0, q=2
no2.ma2 <- arima(no2.diff, order=c(0,0,2), include.mean=FALSE)</pre>
summary(no2.ma2)
##
## Call:
## arima(x = no2.diff, order = c(0, 0, 2), include.mean = FALSE)
## Coefficients:
##
             ma1
                       ma2
##
         -0.4994
                  -0.2063
## s.e. 0.0503
                  0.0551
##
```

```
## sigma^2 estimated as 1013: log likelihood = -1903.14, aic = 3812.2
8
##
## Training set error measures:
                                                 MPE
##
                        ME
                              RMSE
                                        MAE
                                                         MAPE
                                                                    MASE
## Training set -0.2898495 31.8216 24.48985 319.5645 408.1458 0.5614058
                       ACF1
## Training set 0.007123302
\# arma(2,1,2)
no2.arma22 <- arima(no2.diff, order=c(2,1,2), include.mean=FALSE)
summary(no2.arma22)
##
## Call:
## arima(x = no2.diff, order = c(2, 1, 2), include.mean = FALSE)
##
## Coefficients:
            ar1
                                     ma2
##
                    ar2
                             ma1
##
         0.3411 0.0336 -1.8432 0.8433
## s.e. 0.0784 0.0654
                          0.0616 0.0613
##
## sigma^2 estimated as 1010: log likelihood = -1902.14, aic = 3814.2
7
##
## Training set error measures:
                                         MAE
                                                  MPE
                                                          MAPE
                                                                     MAS
##
                        ME
                               RMSE
## Training set -0.6769693 31.74191 24.43748 246.8975 342.2234 0.560205
4
##
                         ACF1
## Training set -0.0003262038
```

based on best AIC, generate the auto model

```
co.auto <- auto.arima(e.ts.co,approximation=FALSE)</pre>
summary(co.auto) \#(1, 0, 1)
## Series: e.ts.co
## ARIMA(1,0,1) with zero mean
##
## Coefficients:
##
            ar1
                    ma1
##
         0.5878
                -0.2158
## s.e. 0.0999
                 0.1222
## sigma^2 = 2.255: log likelihood = -712.83
## AIC=1431.66 AICc=1431.72
                               BIC=1443.57
##
## Training set error measures:
                        ME
                               RMSE
                                         MAE
                                                  MPE
                                                          MAPE
                                                                    MA
```

```
SE
## Training set 0.001734336 1.497658 1.150629 121.6782 183.4999 0.88015
65
##
                      ACF1
## Training set 0.00260201
no2.auto <- auto.arima(e.ts.no2,approximation=FALSE)</pre>
summary(no2.auto) \#(1, 0, 2)
## Series: e.ts.no2
## ARIMA(1,0,2) with zero mean
##
## Coefficients:
            ar1
                    ma1
                              ma2
         0.8679 -0.4010 -0.1135
##
## s.e. 0.0507 0.0731 0.0688
##
## sigma^2 = 977.1: log likelihood = -1899.5
## AIC=3807 AICc=3807.11 BIC=3822.88
## Training set error measures:
##
                        ME
                               RMSE
                                         MAE
                                                  MPE
                                                          MAPE
                                                                     MAS
## Training set -0.1183307 31.13892 23.87463 80.62341 179.7894 0.881708
8
##
                        ACF1
## Training set -0.004175665
#3 1d) assessment
# BIC
# co
BIC(co.ar1) # 1440
## [1] 1440.172
BIC(co.ma3) # 1449
## [1] 1449.773
BIC(co.arma13) # 1452
## [1] 1452.51
BIC(co.auto) # 1443
## [1] 1443.568
# no2
BIC(no2.ar2) # 3841
## [1] 3841.205
```

```
BIC(no2.ma2) # 3824

## [1] 3824.175

BIC(no2.arma22) # 3834

## [1] 3834.089

BIC(no2.auto) # 3822

## [1] 3822.877
```

Check the BIC for all models of co and no2

For co, the ar(1) model shows best BIC, but it;s very close to co.auto

For no2, the no2.auto model shows best BIC.

1d: Diagnostic plots

```
# co
# assess residuals vs. fitted
model1 = ggplot() + geom_point(aes(x=fitted(co.ar1), y=co.ar1$residual
s)) + ggtitle("AR1")
model2 = ggplot() + geom point(aes(x=fitted(co.ma3), y=co.ma3$residual
s)) + ggtitle("MA3")
model3 = ggplot() + geom point(aes(x=fitted(co.arma13), y=co.arma13$res
iduals)) + ggtitle("ARMA13")
model4 = ggplot() + geom_point(aes(x=fitted(co.auto), y=co.auto$residua
ls)) + ggtitle("Auto")
ggarrange(model1, model2, model3, model4, ncol=2, nrow=2)
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
```

```
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
```



```
# assess normality of residuals
model1 = qplot(sample=co.ar1$residuals) + stat_qq_line(color="red") + g
gtitle("AR1")

## Warning: `qplot()` was deprecated in ggplot2 3.4.0.

## This warning is displayed once every 8 hours.

## Call `lifecycle::last_lifecycle_warnings()` to see where this warning
g was

## generated.

model2 = qplot(sample=co.ma3$residuals) + stat_qq_line(color="red") + g
gtitle("MA3")
model3 = qplot(sample=co.arma13$residuals) + stat_qq_line(color="red")
+ ggtitle("ARMA13")
model4 = qplot(sample=co.auto$residuals) + stat_qq_line(color="red") +
ggtitle("Auto")
```

ggarrange(model1, model2, model3, model4, ncol=2, nrow=2) ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting ## to continuous. ## Don't know how to automatically pick scale for object of type <ts>. Defaulting

to continuous.


```
# no2
# assess residuals vs. fitted
model1 = ggplot() + geom point(aes(x=fitted(no2.ar2), y=no2.ar2$residua
ls)) + ggtitle("AR2")
model2 = ggplot() + geom point(aes(x=fitted(no2.ma2), y=no2.ma2$residua
ls)) + ggtitle("MA2")
model3 = ggplot() + geom_point(aes(x=fitted(no2.arma22), y=no2.arma22$r
esiduals)) + ggtitle("ARMA22")
model4 = ggplot() + geom point(aes(x=fitted(no2.auto), y=no2.auto$resid
uals)) + ggtitle("Auto")
ggarrange(model1, model2, model3, model4, ncol=2, nrow=2)
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
## Don't know how to automatically pick scale for object of type <ts>.
Defaulting
## to continuous.
```


Don't know how to automatically pick scale for object of type <ts>.
Defaulting
to continuous.
Don't know how to automatically pick scale for object of type <ts>.
Defaulting
to continuous.
Don't know how to automatically pick scale for object of type <ts>.
Defaulting
to continuous.


```
# Ljung Box

# co
# Ljung Box
ggtsdiag(co.ar1,gof.lag=20)
```


ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(co.ma3,gof.lag=20)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(co.arma13,gof.lag=20)

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(co.auto,gof.lag=20)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(no2.ma2,gof.lag=20)

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(no2.arma22,gof.lag=20)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(no2.auto,gof.lag=20)

ACF of Residuals

p values for Ljung-Box statistic

Based on AIC BIC, diagnose plots and Ljung Box plots above

For co, we choose auto ARIMA(1,0,1) as the best model, because it has best AIC and good BIC, and shows good results in diagnose plots and Ljung Box plots

For no2, we choose auto ARIMA(1,0,2) as the best model, because it has best AIC and BIC, and shows good results in diagnose plots and Ljung Box plots

```
# Best model

# co arima(1,0,2)

co_P1 <- ggAcf(co.auto$residuals)
co_P2 <- ggPacf(co.auto$residuals)
ggarrange(co_P1,co_P2,nrow=2,ncol=1)</pre>
```

Series: co.auto\$residuals

Series: co.auto\$residuals

no2 arima(1,0,2)

no2_P1 <- Acf(no2.auto\$residuals)</pre>

Series no2.auto\$residuals

Series no2.auto\$residuals


```
ggarrange(no2_P1,no2_P2,nrow=2,ncol=1)
## Warning in as_grob.default(plot): Cannot convert object of class acf
into a
## grob.
## Warning in as_grob.default(plot): Cannot convert object of class acf
into a
## grob.
```

Plot the fitted values vs. true values of best model for co and no2

```
# co
co.fit <- co.trend.seasonal$fitted.values + fitted(co.auto)

ggplot() + geom_line(aes(x=time.index,y=co.ts[1:length(time.index)],col
or="True")) +
   geom_line(aes(x=time.index,y=co.fit,color="Fitted")) + xlab("Time") +
   ylab("CO")</pre>
```



```
# no2
no2.fit <- no2.trend.seasonal$fitted.values + fitted(no2.auto)

ggplot() + geom_line(aes(x=time.index,y=no2.ts[1:length(time.index)],co
lor="True")) +
    geom_line(aes(x=time.index,y=no2.fit,color="Fitted")) + xlab("Time")
+
    ylab("NO2")</pre>
```


Both plots shows good results.

1e)

For both co and no2, the qq plots show little problem only(slight upper tail and lower tail); the Ljung Box plots shows some significant points, which means the model can't reflect auto-correlation perfectly.

2: Multivariate Time Series Models

2a) & 2b)

For 2a and 2b, we used the same models and approach as in part 1.

2c)

```
e.co.lm <- auto.arima(co.lm$residuals,approximation=FALSE)
e.no2.lm <- auto.arima(no2.lm$residuals,approximation=FALSE)
summary(e.co.lm) # ARIMA(1,0,1)

## Series: co.lm$residuals
## ARIMA(1,0,0) with zero mean
##
## Coefficients:
## ar1</pre>
```

```
##
        0.4513
## s.e. 0.0452
## sigma^2 = 2.533: log likelihood = -736.15
## AIC=1476.3
              AICc=1476.33
                               BIC=1484.24
##
## Training set error measures:
                                RMSE
                                                    MPE
##
                         ME
                                          MAE
                                                           MAPE
                                                                     MA
SE
## Training set 0.002218077 1.589639 1.277884 -33.91342 252.268 0.91915
49
##
                     ACF1
## Training set 0.0123567
summary(e.no2.lm) # ARIMA(1,0,2)
## Series: no2.lm$residuals
## ARIMA(2,0,1) with zero mean
##
## Coefficients:
##
                     ar2
            ar1
                              ma1
         1.3287 -0.3705 -0.8112
##
## s.e. 0.0935 0.0760
                          0.0732
## sigma^2 = 1086: log likelihood = -1920.18
## AIC=3848.36 AICc=3848.46
                                BIC=3864.23
##
## Training set error measures:
                        ME
                               RMSE
                                         MAE
                                                  MPE
                                                         MAPE
                                                                   MASE
      ACF1
## Training set -0.1626036 32.82693 25.85169 76.97745 189.326 0.9376907
 0.0145908
# See if the residuals are correlated
allResiduals <- data.frame(co.trend.seasonal$residuals, no2.trend.seaso
nal$residuals)
colnames(allResiduals) <- c("CO","NO2")</pre>
cor(allResiduals)
##
              CO
                       NO2
## CO 1.0000000 0.6243741
## NO2 0.6243741 1.0000000
```

we can see the residuals are highly correlated

Examine a number of potential VARMA models with different p and q values

The model with lowest AIC is VARMA(2,3)

```
# Pick the model with the lowest AIC
AICmatrix
```

```
[,1] [,2] [,3] [,4]
## [1, ] 7.154400 7.173316
                            7.315219 7.118306
## [2,] 7.322403 8.205151
                            7.114808 7.115987
## [3,] 7.416771 8.457797 120.500278 7.128826
# Build the model with best AIC p=2,q=3
varma.model <- VARMACpp(allResiduals, p=2, q=3, include.mean=F) # aic =</pre>
 7.21
## Number of parameters: 20
## initial estimates: 0.4539 -0.0037 -0.3087 0.0072 1.9958 0.7533 -11.
8677 0.1692 -0.0754 0.0039 0.3161 -0.0032 0.2019 -0.0025 -3.5625 -0.268
8 9.3598 -0.1757 5.3921 -0.0218
## Par. lower-bounds: -0.137 -0.0313 -0.7589 -0.0177 -10.2769 0.1796 -
21.2181 -0.3488 -0.6815 -0.0244 -0.0521 -0.018 0.0029 -0.0109 -16.1503
-0.8573 1.7136 -0.4819 1.2581 -0.1972
## Par. upper-bounds: 1.0448 0.0239 0.1415 0.0321 14.2684 1.3269 -2.51
73 0.6872 0.5307 0.0322 0.6842 0.0115 0.401 0.006 9.0253 0.3196 17.0061
 0.1304 9.5262 0.1535
           Estimates: 0.4539208 -0.003692827 -0.3086913 0.007204856 1.
## Final
995758 0.7532815 -11.86771 0.1691811 -0.07538718 0.003903814 0.3160796
-0.003222334 0.201938 -0.002474412 -3.562457 -0.268843 9.359844 -0.1757
359 5.392146 -0.02182656
##
## Coefficient(s):
##
         Estimate Std. Error t value Pr(>|t|)
## CO
         0.453921
                          NaN
                                   NaN
                                             NaN
## NO2 -0.003693
                          NaN
                                   NaN
                                             NaN
## CO
        -0.308691
                          NaN
                                   NaN
                                             NaN
## NO2
         0.007205
                          NaN
                                   NaN
                                             NaN
## CO
         1.995758
                          NaN
                                   NaN
                                             NaN
## NO2
         0.753281
                          NaN
                                   NaN
                                             NaN
## CO -11.867715
                          NaN
                                   NaN
                                             NaN
## NO2
         0.169181
                          NaN
                                   NaN
                                             NaN
##
        -0.075387
                          NaN
                                   NaN
                                             NaN
##
                                   NaN
         0.003904
                          NaN
                                             NaN
##
         0.316080
                          NaN
                                   NaN
                                             NaN
##
        -0.003222
                          NaN
                                   NaN
                                             NaN
##
                          NaN
                                   NaN
         0.201938
                                             NaN
##
        -0.002474
                          NaN
                                   NaN
                                             NaN
##
        -3.562457
                          NaN
                                   NaN
                                             NaN
##
        -0.268843
                          NaN
                                   NaN
                                             NaN
##
        9.359844
                          NaN
                                   NaN
                                             NaN
##
        -0.175736
                          NaN
                                   NaN
                                             NaN
##
         5.392146
                          NaN
                                   NaN
                                             NaN
##
        -0.021827
                          NaN
                                   NaN
                                             NaN
## Estimates in matrix form:
## AR coefficient matrix
## AR( 1 )-matrix
```

```
## [,1] [,2]
## [1,] 0.454 -0.00369
## [2,] 1.996 0.75328
## AR( 2 )-matrix
##
           [,1]
                  [,2]
## [1,] -0.309 0.0072
## [2,] -11.868 0.1692
## MA coefficient matrix
## MA( 1 )-matrix
##
          [,1]
                  [,2]
## [1,] 0.0754 -0.0039
## [2,] 3.5625 0.2688
## MA( 2 )-matrix
##
          [,1]
                  [,2]
## [1,] -0.316 0.00322
## [2,] -9.360 0.17574
## MA( 3 )-matrix
                  [,2]
          [,1]
## [1,] -0.202 0.00247
## [2,] -5.392 0.02183
##
## Residuals cov-matrix:
##
             [,1]
                       [,2]
## [1,] 2.187621 30.28428
## [2,] 30.284284 927.43747
## ----
## aic= 7.115987
## bic= 7.318989
# Build another model (next best AIC) and compare diagnostics
varma.model2 <- VARMACpp(allResiduals, p=2, q=4, include.mean=F)</pre>
## Number of parameters: 24
## initial estimates: 0.2668 -0.0117 -0.6127 0.0198 1.1712 0.7362 -12.
9591 0.213 0.113 0.0119 0.6759 -0.0119 0.3568 -0.0057 0.2668 -0.0061 -2.
7334 -0.252 10.7264 -0.2109 6.0167 -0.0365 1.2044 -0.0387
## Par. lower-bounds: -0.3337 -0.0419 -1.1344 -0.0076 -11.4335 0.1022
-23.9097 -0.3639 -0.5022 -0.019 0.2064 -0.0279 0.1273 -0.0143 0.0815 -0.
0136 -15.6457 -0.8993 0.8731 -0.5468 1.2008 -0.2178 -2.6851 -0.197
## Par. upper-bounds: 0.8674 0.0185 -0.091 0.0473 13.7758 1.3702 -2.00
85 0.7898 0.7282 0.0427 1.1453 0.0041 0.5862 0.003 0.4521 0.0015 10.178
8 0.3953 20.5796 0.125 10.8326 0.1448 5.0939 0.1195
## Final
           Estimates: 0.2700046 -0.003596812 -0.5859131 -0.00761801 1.
546748 0.7815061 -13.19801 0.2031516 -0.4975751 -0.01267062 0.2362696 0.
004107754 0.2428389 -0.001100103 0.08698114 -0.006881578 -1.81065 -0.06
604994 10.90949 -0.5225777 1.200788 0.02287232 -0.9116242 0.1065261
## Warning in sqrt(diag(solve(Hessian))): 产生了 NaNs
##
## Coefficient(s):
```

```
Estimate Std. Error
                                 t value Pr(>|t|)
## CO
        2.700e-01
                    9.206e+00
                                   0.029
                                           0.9766
## NO2 -3.597e-03
                    2.053e-01
                                  -0.018
                                           0.9860
## CO -5.859e-01
                                     NaN
                          NaN
                                              NaN
## NO2 -7.618e-03
                          NaN
                                     NaN
                                              NaN
## CO
        1.547e+00
                    3.819e+01
                                   0.041
                                           0.9677
## NO2 7.815e-01
                    2.653e+00
                                   0.295
                                           0.7683
## CO
      -1.320e+01
                           NaN
                                     NaN
                                              NaN
## NO2 2.032e-01
                           NaN
                                     NaN
                                              NaN
##
       -4.976e-01
                    1.641e-02
                                 -30.316 < 2e-16 ***
##
       -1.267e-02
                    1.229e-03
                                 -10.311 < 2e-16 ***
##
        2.363e-01
                    2.018e-01
                                   1.171
                                           0.2417
##
        4.108e-03
                    1.294e-02
                                   0.317
                                           0.7509
                                         < 2e-16 ***
##
        2.428e-01
                    5.965e-03
                                  40.714
       -1.100e-03
                    4.546e-04
                                  -2.420
                                           0.0155 *
##
##
       8.698e-02
                    5.784e-02
                                  1.504
                                           0.1326
##
       -6.882e-03
                    6.126e-03
                                  -1.123
                                           0.2613
                    1.198e-03 -1511.212 < 2e-16 ***
##
       -1.811e+00
##
       -6.605e-02
                    3.108e-04
                               -212.531 < 2e-16 ***
##
        1.091e+01
                    5.992e-02
                                 182.064 < 2e-16 ***
       -5.226e-01
##
                    9.758e-03
                                 -53.557
                                          < 2e-16 ***
                                          < 2e-16 ***
##
        1.201e+00
                    1.554e-02
                                 77.250
                                  17.484 < 2e-16 ***
##
        2.287e-02
                    1.308e-03
##
       -9.116e-01
                    1.997e-01
                                  -4.565 4.98e-06 ***
                                   6.242 4.31e-10 ***
##
        1.065e-01
                    1.706e-02
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## ---
## Estimates in matrix form:
## AR coefficient matrix
## AR( 1 )-matrix
##
        [,1]
                [,2]
## [1,] 0.27 -0.0036
## [2,] 1.55 0.7815
## AR( 2 )-matrix
           [,1]
##
                    [,2]
## [1,]
       -0.586 -0.00762
## [2,] -13.198 0.20315
## MA coefficient matrix
## MA( 1 )-matrix
##
         [,1]
               [,2]
## [1,] 0.498 0.0127
## [2,] 1.811 0.0660
## MA( 2 )-matrix
           [,1]
## [1,] -0.236 -0.00411
## [2,] -10.909 0.52258
## MA( 3 )-matrix
##
          [,1]
                  [,2]
## [1,] -0.243 0.0011
```

check the diagnostics

```
# independence of residuals
MTSdiag(varma.model)
## [1] "Covariance matrix:"
       CO NO2
## CO 2.19 30.4
## NO2 30.36 929.8
## CCM at lag: 0
       [,1] [,2]
## [1,] 1.000 0.672
## [2,] 0.672 1.000
## Simplified matrix:
## CCM at lag: 1
## . .
## . .
## CCM at lag: 2
## . .
## . .
## CCM at lag: 3
## . .
## . .
## CCM at lag: 4
## . .
## . .
## CCM at lag: 5
## . .
## . .
## CCM at lag: 6
## . +
## . .
## CCM at lag: 7
## . .
## . .
## CCM at lag: 8
```

```
## . .
## . .
## CCM at lag: 9
## . .
## . .
## CCM at lag: 10
## . .
## . .
## CCM at lag: 11
## + +
## . .
## CCM at lag: 12
## - -
## - .
## CCM at lag: 13
## . .
## . .
## CCM at lag: 14
## . .
## . .
## CCM at lag: 15
## . .
## . .
## CCM at lag: 16
## - .
## . .
## CCM at lag: 17
## . .
## . .
## CCM at lag: 18
## . .
## . .
## CCM at lag: 19
## . .
## . .
## CCM at lag: 20
## . .
## . .
## CCM at lag: 21
## . .
## + .
## CCM at lag: 22
## . .
## . .
## CCM at lag: 23
## - -
## - -
## CCM at lag: 24
## + .
## . .
```


Hit Enter for p-value plot of individual ccm:

Significance plot of CCM


```
## Hit Enter to compute MQ-statistics:
##
## Ljung-Box Statistics:
##
                                 df
                                       p-value
                       Q(m)
              m
                                4.000
                                          0.99
##
    [1,]
            1.000
                       0.208
##
            2.000
                       0.472
                               8.000
                                          1.00
    [2,]
##
            3.000
                       0.581
                              12.000
                                          1.00
    [3,]
##
    [4,]
            4.000
                       7.996
                              16.000
                                          0.95
##
                      10.843
                              20.000
                                          0.95
    [5,]
            5.000
##
    [6,]
            6.000
                      24.307
                              24.000
                                          0.44
                      26.908
                                          0.52
##
    [7,]
            7.000
                              28.000
##
            8.000
                      32.158
                              32.000
                                          0.46
    [8,]
##
    [9,]
            9.000
                      32.439
                              36.000
                                          0.64
## [10,]
           10.000
                      37.257
                              40.000
                                          0.59
## [11,]
           11.000
                     44.735
                              44.000
                                          0.44
## [12,]
           12.000
                      65.900
                              48.000
                                          0.04
## [13,]
           13.000
                      67.164
                              52.000
                                          0.08
## [14,]
           14.000
                      76.205
                              56.000
                                          0.04
## [15,]
           15.000
                      81.007
                              60.000
                                          0.04
## [16,]
           16.000
                      87.673
                              64.000
                                          0.03
## [17,]
           17.000
                      92.394
                              68.000
                                          0.03
## [18,]
                      95.978
           18.000
                              72.000
                                          0.03
## [19,]
           19.000
                      97.628
                              76.000
                                          0.05
## [20,]
           20.000
                     97.846
                              80.000
                                          0.09
## [21,]
           21.000
                     107.314
                              84.000
                                          0.04
## [22,]
           22.000
                     109.975
                              88.000
                                          0.06
## [23,]
           23.000
                     124.673
                              92.000
                                          0.01
                             96.000
## [24,]
           24.000
                     133.675
                                          0.01
```

p-values of Ljung-Box statistics

Hit Enter to obtain residual plots:

MTSdiag(varma.model2)

```
## [1] "Covariance matrix:"
## CO NO2
## CO 7.44 42.7
## NO2 42.73 1787.3
## CCM at lag: 0
##
       [,1] [,2]
## [1,] 1.000 0.371
## [2,] 0.371 1.000
## Simplified matrix:
## CCM at lag: 1
## + +
## - .
## CCM at lag: 2
## + +
## - +
## CCM at lag: 3
## . +
## - -
## CCM at lag: 4
## - .
## - -
## CCM at lag: 5
## - -
## - -
## CCM at lag: 6
## - -
## . -
## CCM at lag: 7
## . .
## + .
## CCM at lag: 8
## + .
## + +
## CCM at lag: 9
## + +
## + +
## CCM at lag: 10
## + +
## . .
## CCM at lag: 11
## . +
## . .
## CCM at lag: 12
## . .
## - .
## CCM at lag: 13
## - .
## . .
## CCM at lag: 14
## - .
```

```
## . .
## CCM at lag: 15
## . .
## . -
## CCM at lag: 16
## . .
## . .
## CCM at lag: 17
## . .
## + .
## CCM at lag: 18
## . .
## . .
## CCM at lag: 19
## . .
## . .
## CCM at lag: 20
## . .
## . .
## CCM at lag: 21
## . .
## . .
## CCM at lag: 22
## . .
## . .
## CCM at lag: 23
## . .
## . -
## CCM at lag: 24
## . .
## . .
```


Hit Enter for p-value plot of individual ccm:

Significance plot of CCM


```
## Hit Enter to compute MQ-statistics:
##
## Ljung-Box Statistics:
                              df
                                     p-value
##
                    Q(m)
            m
##
    [1,]
              1
                      289
                                 4
                                           0
##
    [2,]
              2
                      506
                                 8
                                           0
                                           0
              3
                      661
                                12
##
    [3,]
##
    [4,]
              4
                      768
                                16
                                           0
              5
##
                                20
                                           0
    [5,]
                      841
                      872
                                24
                                           0
##
    [6,]
              6
              7
                                28
                                           0
##
                      899
    [7,]
              8
                      928
                                32
                                           0
##
    [8,]
##
    [9,]
              9
                      956
                                36
                                           0
                                40
                                           0
## [10,]
             10
                      970
## [11,]
             11
                      989
                                44
                                           0
                                48
                                           0
## [12,]
             12
                     1004
## [13,]
                                           0
             13
                     1015
                                52
                                56
                                           0
## [14,]
             14
                     1023
## [15,]
             15
                     1035
                                60
                                           0
                                64
                                           0
## [16,]
             16
                     1042
## [17,]
             17
                     1051
                                68
                                           0
## [18,]
             18
                     1055
                                72
                                           0
## [19,]
             19
                     1060
                                76
                                           0
## [20,]
             20
                     1061
                                80
                                           0
                                84
                                           0
## [21,]
             21
                     1062
             22
## [22,]
                                           0
                     1067
                                88
             23
                                92
                                           0
## [23,]
                     1074
## [24,]
             24
                     1080
                                96
                                           0
```

p-values of Ljung-Box statistics

Hit Enter to obtain residual plots:

 $$\operatorname{\textsc{The}}$ CCFs are patternless, and the Ljung Box test indicates the model is adequate up to and including lag 11.

check the diagnostics of varma.model2. The CCFs show significance, indicating the model is not as good as the previous varma.model. The Ljung Box test shows no significant lags.

We choose VARMA(2,3) model as it has better diagnostics and AIC.

2d & 2e

As shown above, the VARMA(2,3) has better AIC and diagnose plots than VARMA(2,4) model We also check the QQ plots and Residuals vs Fitted for both CO and NO2 to enhance our conclusion

```
# Diagnostics
# compute fitted values (true - residual; lose 1st 2 observations becau
se p=2)
CO.fitted = allResiduals[3:dim(allResiduals)[1],1] - varma.model$residu
als[,1]
## Warning in allResiduals[3:dim(allResiduals)[1], 1] - varma.model$res
iduals[, :
## 长的对象长度不是短的对象长度的整倍数
NO2.fitted = allResiduals[3:dim(allResiduals)[1],2] - varma.model$resid
uals[,2]
## Warning in allResiduals[3:dim(allResiduals)[1], 2] - varma.model$res
iduals[, :
## 长的对象长度不是短的对象长度的整倍数
# Residuals vs Fitted
CO resid v fitted = ggplot() + geom point(aes(x=CO.fitted+co.lm$fitted.
values[3:length(co.lm$fitted.values)],
                         y=varma.model$residuals[,1])) +
                         xlab("CO Fitted Values") + ylab("CO Residuals
")
NO2_resid_v_fitted = ggplot() + geom_point(aes(x=NO2.fitted+no2.lm$fitt
ed.values[3:length(no2.lm$fitted.values)],
                         y=varma.model$residuals[,2])) +
                         xlab("NO2 Fitted Values") + ylab("NO2 Residua
1s")
# QQ plot of residuals
coQQ = qplot(sample=varma.model$residuals[,1]) +
  stat qq line(color="red") + ggtitle("CO Residuals QQ")
```

```
no2QQ = qplot(sample=varma.model$residuals[,2]) +
    stat_qq_line(color="red") + ggtitle("NO2 Residuals QQ")

ggarrange(coQQ, no2QQ, nrow=2, ncol=1)
```


Diagnostics for model 1 look good, there is a slight tail on the QQ plots, but nothing too strong. Residual vs Fitted looks good, with even spread and \sim 0 slope. actually the diagnose for both model looks seem

3: Simulating from Univariate and Multivariate Models

1. simulate 1 year data for univariate models

```
next.yr <- data.frame(time.index = next.yr.time)</pre>
# remove x-1 from model for simulating as x=0
co.trend.seasonal.predict <- lm(co.ts ~ time.index + sin(2*pi*time.inde
x/7) + cos(2*pi*time.index/7))
next.yr.co.predictions <- predict(co.trend.seasonal.predict, newdata=ne</pre>
xt.yr)
next.yr.co.predictions
          1
                    2
                             3
                                      4
                                                5
                                                          6
                                                                   7
##
 8
## 4.745610 4.588922 3.877465 3.148916 2.953823 3.441031 4.245597 4.763
602
##
          9
                   10
                            11
                                      12
                                               13
                                                         14
                                                                  15
 16
## 4.606914 3.895457 3.166908 2.971815 3.459023 4.263589 4.781594 4.624
906
##
         17
                   18
                            19
                                      20
                                               21
                                                         22
                                                                  23
 24
## 3.913449 3.184900 2.989808 3.477015 4.281581 4.799587 4.642898 3.931
441
##
         25
                   26
                            27
                                      28
                                               29
                                                         30
                                                                  31
 32
## 3.202892 3.007800 3.495007 4.299573 4.817579 4.660890 3.949433 3.220
885
##
         33
                   34
                            35
                                      36
                                               37
                                                         38
                                                                  39
40
## 3.025792 3.512999 4.317565 4.835571 4.678882 3.967425 3.238877 3.043
784
##
         41
                   42
                            43
                                      44
                                               45
                                                         46
                                                                  47
48
## 3.530991 4.335557 4.853563 4.696875 3.985418 3.256869 3.061776 3.548
984
##
         49
                   50
                            51
                                      52
                                               53
                                                         54
                                                                  55
56
## 4.353550 4.871555 4.714867 4.003410 3.274861 3.079768 3.566976 4.371
542
##
         57
                            59
                   58
                                      60
                                               61
                                                         62
                                                                  63
## 4.889547 4.732859 4.021402 3.292853 3.097760 3.584968 4.389534 4.907
539
##
         65
                   66
                            67
                                      68
                                               69
                                                         70
                                                                  71
72
## 4.750851 4.039394 3.310845 3.115752 3.602960 4.407526 4.925531 4.768
843
##
         73
                   74
                            75
                                      76
                                               77
                                                        78
                                                                  79
 80
## 4.057386 3.328837 3.133745 3.620952 4.425518 4.943523 4.786835 4.075
378
##
         81
                   82
                            83
                                     84
                                               85
                                                        86
                                                                  87
```

88 ## 3.346829	2 151727	2 628044	A AADE10	4 061E16	1 001027	4 002270	2 264
822	3.131/3/	3.030944	4.443310	4.901310	4.004027	4.033370	3.304
## 89	90	91	92	93	94	95	
96							
## 3.169729	3.656936	4.461502	4.979508	4.822819	4.111362	3.382814	3.187
721	20	0.0	100	404	100	400	
## 97	98	99	100	101	102	103	
104 ## 3.674928	1 179191	1 997500	A 8A0812	/ 12035/	3 100806	3 205713	3 692
920	4.47.3434	4.997300	4.040012	4.123334	3.400000	3.203/13	3.032
## 105	106	107	108	109	110	111	
112							
## 4.497487	5.015492	4.858804	4.147347	3.418798	3.223705	3.710913	4.515
479		445	446	44=	440	440	
## 113 120	114	115	116	117	118	119	
## 5.033484	4 876796	<i>A</i> 165339	3 436790	3 241697	3 728905	<i>A</i> 533 <i>A</i> 71	5 051
476	4.070750	4.105555	3.430730	J. 2410J/	3.720303	4.333471	3.031
## 121	122	123	124	125	126	127	
128							
## 4.894788	4.183331	3.454782	3.259689	3.746897	4.551463	5.069468	4.912
780							
## 129	130	131	132	133	134	135	
136 ## 4.201323	3 472774	3 277682	3 764889	4 569455	5 087460	<i>A</i> 930772	<i>A</i> 219
315	3.4/2//4	3.277002	J.70400J	4.505455	3.007400	4.730772	4.217
## 137	138	139	140	141	142	143	
144							
## 3.490766	3.295674	3.782881	4.587447	5.105453	4.948764	4.237307	3.508
759	4.46	4.47	4.40	4.40	450	454	
## 145 152	146	147	148	149	150	151	
## 3.313666	3.800873	4.605439	5.123445	4.966756	4.255299	3.526751	3 . 331
658	3.000073	4.005455	J.12J++J	4.700730	4.233233	3.320731	3.331
## 153	154	155	156	157	158	159	
160							
## 3.818865	4.623431	5.141437	4.984748	4.273291	3.544743	3.349650	3.836
857	163	163	164	165	166	167	
## 161 168	162	163	164	165	166	167	
## 4.641423	5.159429	5.002741	4.291284	3.562735	3.367642	3.854850	4.659
416	3,123			5,150=,55			
## 169	170	171	172	173	174	175	
176							
## 5.177421	5.020733	4.309276	3.580727	3.385634	3.872842	4.677408	5.195
413	170	170	100	101	100	103	
## 177 184	178	179	180	181	182	183	
## 5.038725	4.327268	3.598719	3.403626	3.890834	4.695400	5.213405	5.056
5.050725		3.330/13	3.403020	J. 0 J 0 0 J 4	022 7 00	J. ZIJ-0J	5.050

717 ## 185	186	187	188	189	190	191	
192							
## 4.345260 252	3.616711	3.421618	3.908826	4.713392	5.231397	5.074709	4.363
## 193	194	195	196	197	198	199	
200 ## 3.634703	3 439611	3 926818	4 731384	5 249390	5 092701	4 381244	3 652
695	3. 133011	3.320010	1., 52501	3.2 13330	3.032,01	1.301211	3.032
## 201 208	202	203	204	205	206	207	
## 3.457603	3.944810	4.749376	5.267382	5.110693	4.399236	3.670688	3.475
595 ## 209	210	211	212	213	214	215	
216	210	211	212	213	214	213	
## 3.962802	4.767368	5.285374	5.128685	4.417228	3.688680	3.493587	3.980
794 ## 217	218	219	220	221	222	223	
224	5 202266	F 446670	4 425220	2 706672	2 544570	2 000707	4 000
## 4.785360 353	5.303366	5.1466/8	4.435220	3./066/2	3.5115/9	3.998/8/	4.803
## 225	226	227	228	229	230	231	
232 ## 5.321358	5.164670	4.453213	3.724664	3.529571	4.016779	4.821345	5.339
350	3.10.107.0		31,21001	31323372	11020775		3.333
## 233 240	234	235	236	237	238	239	
## 5.182662	4.471205	3.742656	3.547563	4.034771	4.839337	5.357342	5.200
654 ## 241	242	243	244	245	246	247	
241	242	243	244	243	240	247	
## 4.489197	3.760648	3.565555	4.052763	4.857329	5.375334	5.218646	4.507
189 ## 249	250	251	252	253	254	255	
256	2 502540	4 070755	4 075224	F 202226	F 226620	4 525404	2 706
## 3.778640 632	3.583548	4.0/0/55	4.8/5321	5.393326	5.236638	4.525181	3.796
## 257	258	259	260	261	262	263	
264 ## 3.601540	4.088747	4.893313	5.411319	5.254630	4.543173	3.814625	3.619
532							
## 265 272	266	267	268	269	270	271	
## 4.106739	4.911305	5.429311	5.272622	4.561165	3.832617	3.637524	4.124
731 ## 273	274	275	276	277	278	279	
280	2/4	273	270	211	270	219	
## 4.929297 290	5.447303	5.290615	4.579157	3.850609	3.655516	4.142723	4.947
## 281	282	283	284	285	286	287	

```
288
## 5.465295 5.308607 4.597150 3.868601 3.673508 4.160716 4.965282 5.483
287
                 290
                           291
                                    292
                                              293
                                                       294
                                                                 295
##
        289
296
## 5.326599 4.615142 3.886593 3.691500 4.178708 4.983274 5.501279 5.344
591
##
        297
                 298
                           299
                                    300
                                              301
                                                       302
                                                                 303
304
## 4.633134 3.904585 3.709492 4.196700 5.001266 5.519271 5.362583 4.651
126
##
        305
                 306
                           307
                                    308
                                              309
                                                       310
                                                                311
312
## 3.922577 3.727485 4.214692 5.019258 5.537263 5.380575 4.669118 3.940
569
##
        313
                 314
                           315
                                              317
                                                       318
                                                                 319
                                    316
320
## 3.745477 4.232684 5.037250 5.555256 5.398567 4.687110 3.958562 3.763
469
##
        321
                 322
                           323
                                    324
                                              325
                                                       326
                                                                 327
328
## 4.250676 5.055242 5.573248 5.416559 4.705102 3.976554 3.781461 4.268
668
##
        329
                 330
                           331
                                    332
                                              333
                                                       334
                                                                 335
336
## 5.073234 5.591240 5.434551 4.723094 3.994546 3.799453 4.286660 5.091
226
##
        337
                 338
                           339
                                    340
                                              341
                                                       342
                                                                 343
344
## 5.609232 5.452544 4.741087 4.012538 3.817445 4.304653 5.109219 5.627
224
##
        345
                 346
                           347
                                    348
                                              349
                                                       350
                                                                 351
352
## 5.470536 4.759079 4.030530 3.835437 4.322645 5.127211 5.645216 5.488
528
##
        353
                 354
                           355
                                    356
                                              357
                                                       358
                                                                 359
360
## 4.777071 4.048522 3.853429 4.340637 5.145203 5.663208 5.506520 4.795
063
##
        361
                 362
                           363
                                    364
## 4.066514 3.871421 4.358629 5.163195 5.681200
# remove x-2 from model for simulating as x=0
no2.trend.seasonal.predict <- lm(no2.ts ~ time.index + sin(2*pi*time.in
dex/7) + cos(2*pi*time.index/7))
next.yr.no2.predictions <- predict(no2.trend.seasonal.predict, newdata=</pre>
next.yr)
next.yr.no2.predictions
```

## 1	2	3	4	5	6	7	
8 ## 131.9349	130.3955	118.5180	105.4333	101.1814	109.1508	123.5274	133.6
721 ## 9	10	11	12	13	14	15	
16 ## 132.1327	120.2552	107.1705	102.9186	110.8880	125.2646	135.4093	133.8
699 ## 17	18	19	20	21	22	23	
24 ## 121.9924	108.9077	104.6558	112.6252	127.0018	137.1465	135.6071	123.7
296 ## 25	26	27	28	29	30	31	
32 ## 110.6449	106.3930	114.3624	128.7390	138.8837	137.3443	125.4668	112.3
821 ## 33	34	35	36	37	38	39	
40 ## 108.1302	116.0996	130.4762	140.6209	139.0815	127.2040	114.1193	109.8
674 ## 41	42	43	44	45	46	47	
48 ## 117.8368	132.2134	142.3581	140.8187	128.9412	115.8565	111.6046	119.5
740 ## 49	50	51	52	53	54	55	
56 ## 133.9506	144.0953	142.5559	130.6784	117.5937	113.3418	121.3112	135.6
878 ## 57	58	59	60	61	62	63	
64 ## 145.8325	144.2931	132.4156	119.3309	115.0790	123.0484	137.4250	147.5
697 ## 65	66	67	68	69	70	71	
72 ## 146.0303		-					147.7
675 ## 73		75	76		78	79	1 17 . 7
80 ## 135.8900							137 6
272 ## 81			84		86	87	137.0
88							126.2
## 124.5426 798							126.2
## 89 96	90	91	92	93	94	95	422 7
## 122.0278 650							123./
## 97 104	98	99	100	101	102	103	

## 131.7344 717	146.1110	156.2557	154.7163	142.8388	129.7542	125.5022	133.4
## 105 112	106	107	108	109	110	111	
## 147.8482	157.9929	156.4535	144.5760	131.4914	127.2394	135.2089	149.5
854 ## 113	114	115	116	117	118	119	
120 ## 159.7301	158 1907	146 3132	133 2286	128 9766	136 9461	151 3226	161 4
673	150.1507	140.3132	133.2200	120.5700	130.3401	131.3220	101.4
## 121	122	123	124	125	126	127	
128 ## 159.9279	148.0504	134.9658	130.7138	138.6833	153.0598	163.2045	161.6
651							
## 129	130	131	132	133	134	135	
136 ## 149.7876	136.7030	132.4510	140.4205	154.7970	164.9417	163.4023	151.5
248							
## 137 144	138	139	140	141	142	143	
## 138.4402	134.1882	142.1577	156.5342	166.6789	165.1395	153.2620	140.1
774							
## 145 152	146	147	148	149	150	151	
## 135.9254	143.8949	158.2714	168.4161	166.8767	154.9992	141.9146	137.6
626							
## 153 160	154	155	156	157	158	159	
## 145.6321	160.0086	170.1533	168.6139	156.7364	143.6518	139.3998	147.3
693	162	4.53	464	4.55	1.55	4.57	
## 161 168	162	163	164	165	166	167	
## 161.7458	171.8905	170.3511	158.4736	145.3890	141.1370	149.1065	163.4
830	170	171	170	170	174	175	
## 169 176	170	171	172	173	174	175	
## 173.6277	172.0883	160.2108	147.1262	142.8742	150.8437	165.2202	175.3
650 ## 177	178	170	180	181	182	183	
184	1/0	1/9	100	101	102	103	
## 173.8255 627	161.9480	148.8634	144.6114	152.5809	166.9574	177.1022	175.5
## 185 192	186	187	188	189	190	191	
## 163.6852	150.6006	146.3486	154.3181	168.6946	178.8394	177.2999	165.4
224 ## 193	194	195	196	197	198	199	
200							
## 152.3378	148.0858	156.0553	170.4318	180.5766	179.0371	167.1596	154.0
750							

##	201	202	203	204	205	206	207	
208 ## 149.	8230	157.7925	172.1690	182.3138	180.7743	168.8968	155.8122	151.5
602 ##	209	210	211	212	213	214	215	
216	F207	172 0062	104 0510	100 5115	170 6240	157 5404	152 2074	161 2
## 159. 669	5297	173.9002	184.0510	102.3113	1/0.6340	157.5494	153.2974	101.2
## 224	217	218	219	220	221	222	223	
	6434	185.7882	184.2487	172.3712	159.2866	155.0346	163.0041	177.3
##	225	226	227	228	229	230	231	
232 ## 187.	5254	185.9859	174.1084	161.0238	156.7718	164.7413	179.1178	189.2
626 ##	233	234	235	236	237	238	239	
240								
## 187.	7231	175.8457	162.7610	158.5090	166.4785	180.8550	190.9998	189.4
## 248	241	242	243	244	245	246	247	
_	5829	164.4982	160.2462	168.2157	182.5922	192.7370	191.1975	179.3
201 ##	249	250	251	252	253	254	255	
256	2254	161 0024	160 0530	104 2204	104 4742	102 0247	101 0573	167.0
## 166. 726	2354	161.9834	169.9529	184.3294	194.4/42	192.9347	181.0573	167.9
## 264	257	258	259	260	261	262	263	
## 163.	7206	171.6901	186.0666	196.2114	194.6719	182.7945	169.7098	165.4
578 ##	265	266	267	268	269	270	271	
272 ## 173.	4273	187.8039	197.9486	196.4091	184.5317	171.4470	167.1950	175.1
645								2,312
## 280	273	274	275	276	277	278	279	
## 189. 783	5411	199.6858	198.1463	186.2689	173.1842	168.9322	176.9017	191.2
##	281	282	283	284	285	286	287	
288 ## 201.	4230	199.8835	188.0061	174.9214	170.6694	178.6389	193.0155	203.1
602 ##	289	290	291	292	293	294	295	
296								
## 201. 579	6207	189.7433	176.6586	172.4066	180.3761	194.7527	204.8974	203.3
## 304	297	298	299	300	301	302	303	
304								

```
## 191.4805 178.3958 174.1438 182.1133 196.4899 206.6346 205.0951 193.2
177
##
        305
                 306
                           307
                                    308
                                              309
                                                       310
                                                                311
312
## 180.1330 175.8810 183.8505 198.2271 208.3718 206.8323 194.9549 181.8
702
##
        313
                 314
                           315
                                    316
                                              317
                                                       318
                                                                319
320
## 177.6182 185.5877 199.9643 210.1090 208.5695 196.6921 183.6074 179.3
554
##
        321
                 322
                           323
                                    324
                                              325
                                                       326
                                                                327
328
## 187.3249 201.7015 211.8462 210.3067 198.4293 185.3446 181.0927 189.0
621
##
        329
                 330
                           331
                                    332
                                              333
                                                       334
                                                                335
336
## 203.4387 213.5834 212.0440 200.1665 187.0818 182.8299 190.7993 205.1
759
##
        337
                 338
                                    340
                                              341
                           339
                                                       342
                                                                343
344
## 215.3206 213.7812 201.9037 188.8190 184.5671 192.5365 206.9131 217.0
578
##
        345
                 346
                           347
                                    348
                                              349
                                                       350
                                                                351
352
## 215.5184 203.6409 190.5562 186.3043 194.2737 208.6503 218.7950 217.2
556
                           355
##
        353
                 354
                                    356
                                              357
                                                       358
                                                                359
360
## 205.3781 192.2934 188.0415 196.0109 210.3875 220.5322 218.9928 207.1
153
        361
                 362
                           363
                                    364
                                              365
## 194.0306 189.7787 197.7481 212.1247 222.2694
```

2. simulate 1 year data for multivariate models

```
sim_muti = VARMAsim(365,phi=varma.model$Phi,theta=varma.model$Theta,sig
ma=varma.model$Sigma)
```

```
time.next.yr \leftarrow c(1:365)
next.yr.df <- data.frame(time.index = time.next.yr)</pre>
mean.co <- predict(co.trend.seasonal.predict, newdata=next.yr.df)</pre>
mean.co
##
          1
                    2
                              3
                                        4
                                                  5
                                                            6
                                                                     7
## 4.745610 4.588922 3.877465 3.148916 2.953823 3.441031 4.245597 4.763
602
          9
##
                   10
                                       12
                                                          14
                                                                    15
                             11
                                                 13
## 4.606914 3.895457 3.166908 2.971815 3.459023 4.263589 4.781594 4.624
```

906 ## 17	18	19	20	21	22	23	
24 ## 3.913449	3.184900	2.989808	3.477015	4.281581	4.799587	4.642898	3.931
441 ## 25 32	26	27	28	29	30	31	
## 3.202892 885	3.007800	3.495007	4.299573	4.817579	4.660890	3.949433	3.220
## 33 40	34	35	36	37	38	39	
## 3.025792 784	3.512999	4.317565	4.835571	4.678882	3.967425	3.238877	3.043
## 41 48	42	43	44	45	46	47	
## 3.530991 984							3.548
## 49 56 ## 4.353550	50	51	52	53	54	55	A 271
542 ## 57	58	59	60	61	62	63	4.3/1
64 ## 4.889547							4.907
539 ## 65	66	67	68	69	70	71	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
72 ## 4.750851	4.039394	3.310845	3.115752	3.602960	4.407526	4.925531	4.768
843 ## 73	74	75	76	77	78	79	
80 ## 4.057386	3.328837	3.133745	3.620952	4.425518	4.943523	4.786835	4.075
378 ## 81 88	82	83	84	85	86	87	
## 3.346829 822	3.151737	3.638944	4.443510	4.961516	4.804827	4.093370	3.364
## 89 96	90	91	92	93	94	95	
## 3.169729 721	3.656936	4.461502	4.979508	4.822819	4.111362	3.382814	3.187
## 97 104	98	99	100	101	102	103	
## 3.674928 920					3.400806		3.692
## 105 112	106	107	108		110	111	
## 4.497487 479							4.515
## 113	114	115	116	117	118	119	

120 ## 5.033484	4.876796	4.165339	3.436790	3.241697	3.728905	4.533471	5.051
476	1.070750	1.105555	3. 130730	3.212037	31,20303	1.555171	3.031
## 121	122	123	124	125	126	127	
128	4 402224	2 45 4702	2 250600	2 746007	4 554463	5 060460	4 042
## 4.894788 780	4.183331	3.454/82	3.259689	3./4689/	4.551463	5.069468	4.912
## 129	130	131	132	133	134	135	
136							
## 4.201323	3.472774	3.277682	3.764889	4.569455	5.087460	4.930772	4.219
315	120	120	1.40	1.41	1.40	1.42	
## 137 144	138	139	140	141	142	143	
## 3.490766	3.295674	3.782881	4.587447	5.105453	4.948764	4.237307	3.508
759							
## 145	146	147	148	149	150	151	
152 ## 3.313666	2 000072	4 60E420	E 122//E	4 066756	4 255200	2 526751	2 221
658	3.0000/3	4.005455	5.123443	4.900/30	4.233233	3.320/31	3.331
## 153	154	155	156	157	158	159	
160							
## 3.818865	4.623431	5.141437	4.984748	4.273291	3.544743	3.349650	3.836
857 ## 161	162	163	164	165	166	167	
168	102	103	104	105	100	107	
## 4.641423	5.159429	5.002741	4.291284	3.562735	3.367642	3.854850	4.659
416							
## 169	170	171	172	173	174	175	
176 ## 5.177421	5.020733	4.309276	3.580727	3.385634	3.872842	4.677408	5.195
413	3.020733		3.300727	3.30303.	3.072012	,	3.233
## 177	178	179	180	181	182	183	
184	4 227260	2 500740	2 402626	2 000024	4 605400	E 24240E	F 0F6
## 5.038725 717	4.32/268	3.598/19	3.403626	3.890834	4.695400	5.213405	5.056
## 185	186	187	188	189	190	191	
192							
## 4.345260	3.616711	3.421618	3.908826	4.713392	5.231397	5.074709	4.363
252 ## 193	104	105	106	107	100	100	
## 193 200	194	195	196	197	198	199	
## 3.634703	3.439611	3.926818	4.731384	5.249390	5.092701	4.381244	3.652
695							
## 201	202	203	204	205	206	207	
208 ## 3.457603	3 9//210	1 7/10376	5 267392	5 110602	/ 300236	3 670680	3 /175
595	J. 344010	7./433/0	3.20/302	J. TIMO33	7.333230	3.070000	3.4/3
## 209	210	211	212	213	214	215	
216							
## 3.962802	4.767368	5.285374	5.128685	4.417228	3.688680	3.493587	3.980

794							
## 217	218	219	220	221	222	223	
224 ## 4.785360	E 202266	E 1/6670	4 425220	2 706672	2 511570	2 000707	1 902
353	3.303300	3.140076	4.433220	3.700072	3.3113/3	3.930/0/	4.003
## 225	226	227	228	229	230	231	
232							
## 5.321358	5.164670	4.453213	3.724664	3.529571	4.016779	4.821345	5.339
350 ## 233	234	235	236	237	238	239	
240	234	233	250	237	230	233	
## 5.182662	4.471205	3.742656	3.547563	4.034771	4.839337	5.357342	5.200
654							
## 241	242	243	244	245	246	247	
248 ## 4.489197	3.760648	3.565555	4.052763	4.857329	5.375334	5.218646	4.507
189	3.700010	3.303333	1.032703	1.037323	3.373331	3.210010	1.307
## 249	250	251	252	253	254	255	
256	2 502540		4 0==004	- 202224		. 505404	2 =04
## 3.778640 632	3.583548	4.070755	4.875321	5.393326	5.236638	4.525181	3.796
## 257	258	259	260	261	262	263	
264							
## 3.601540	4.088747	4.893313	5.411319	5.254630	4.543173	3.814625	3.619
532	0.55	0.4=	2.50	2.50	0=0	0=4	
## 265 272	266	267	268	269	270	271	
## 4.106739	4.911305	5.429311	5.272622	4.561165	3.832617	3.637524	4.124
731							
## 273	274	275	276	277	278	279	
280	F 447202	F 20064F	4 570457	2 050600	2 (5554)	4 442722	4 0 4 7
## 4.929297 290	5.44/303	5.290615	4.5/915/	3.850609	3.655516	4.142/23	4.947
## 281	282	283	284	285	286	287	
288							
## 5.465295	5.308607	4.597150	3.868601	3.673508	4.160716	4.965282	5.483
287	200	201	202	202	204	205	
## 289 296	290	291	292	293	294	295	
## 5.326599	4.615142	3.886593	3.691500	4.178708	4.983274	5.501279	5.344
591							
## 297	298	299	300	301	302	303	
304	2 004505	2 700402	4 106700	F 001366	E E10271	E 262E02	A 6E1
## 4.633134 126	3.304363	3.703432	4.130/00	J.801200	J.J13Z/1	J.J0ZJ63	4.031
## 305	306	307	308	309	310	311	
312							
## 3.922577	3.727485	4.214692	5.019258	5.537263	5.380575	4.669118	3.940
569 ## 313	314	315	316	317	318	319	
## 513	514	212	210	21/	218	219	

```
320
## 3.745477 4.232684 5.037250 5.555256 5.398567 4.687110 3.958562 3.763
469
                          323
                                    324
                                             325
                                                      326
##
        321
                 322
                                                                327
328
## 4.250676 5.055242 5.573248 5.416559 4.705102 3.976554 3.781461 4.268
668
        329
                 330
                          331
                                    332
                                             333
                                                      334
                                                               335
##
336
## 5.073234 5.591240 5.434551 4.723094 3.994546 3.799453 4.286660 5.091
226
##
        337
                 338
                          339
                                    340
                                             341
                                                      342
                                                               343
344
## 5.609232 5.452544 4.741087 4.012538 3.817445 4.304653 5.109219 5.627
224
        345
                 346
                          347
                                    348
                                             349
                                                      350
                                                                351
##
352
## 5.470536 4.759079 4.030530 3.835437 4.322645 5.127211 5.645216 5.488
528
##
        353
                 354
                          355
                                    356
                                             357
                                                      358
                                                                359
360
## 4.777071 4.048522 3.853429 4.340637 5.145203 5.663208 5.506520 4.795
063
        361
                 362
                          363
                                    364
                                             365
## 4.066514 3.871421 4.358629 5.163195 5.681200
mean.no2 <- predict(no2.trend.seasonal.predict, newdata=next.yr.df)</pre>
mean.no2
##
          1
                   2
                            3
                                      4
                                               5
                                                        6
                                                                 7
## 131.9349 130.3955 118.5180 105.4333 101.1814 109.1508 123.5274 133.6
721
          9
                  10
                                     12
                                                       14
##
                           11
                                              13
                                                                15
 16
## 132.1327 120.2552 107.1705 102.9186 110.8880 125.2646 135.4093 133.8
699
##
         17
                  18
                           19
                                     20
                                              21
                                                       22
                                                                23
 24
## 121.9924 108.9077 104.6558 112.6252 127.0018 137.1465 135.6071 123.7
296
##
         25
                           27
                                     28
                                              29
                  26
                                                       30
                                                                 31
 32
## 110.6449 106.3930 114.3624 128.7390 138.8837 137.3443 125.4668 112.3
821
##
         33
                  34
                           35
                                     36
                                              37
                                                       38
                                                                 39
40
## 108.1302 116.0996 130.4762 140.6209 139.0815 127.2040 114.1193 109.8
674
##
                  42
                           43
                                    44
                                              45
                                                       46
                                                                47
         41
```

48 ## 117	8368	132 2134	142 3581	140 8187	128 9412	115 8565	111.6046	119 5
740	.0500	132.2134	142.5501	140.0107	120.7412	119.0505	111.0040	110.0
## 56	49	50	51	52	53	54	55	
## 133. 878	9506	144.0953	142.5559	130.6784	117.5937	113.3418	121.3112	135.6
## 64	57	58	59	60	61	62	63	
## 145. 697		144.2931	132.4156		115.0790	123.0484	137.4250	147.5
## 72	65	66	67	68	69	70	71	
## 146. 675	.0303	134.1528	121.0682	116.8162	124.7856	139.1622	149.3069	147.7
## 80	73	74	75	76	77	78	79	
## 135. 272	.8900	122.8054	118.5534	126.5228	140.8994	151.0441	149.5047	137.6
## 88	81	82	83	84	85	86	87	
## 124. 798	.5426	120.2906	128.2600	142.6366	152.7813	151.2419	139.3644	126.2
## 96	89	90	91	92	93	94	95	
650	.0278	129.9972	144.3738			141.1016	128.0170	123.7
## 104	97	98	99	100	101	102	103	
	7344	146.1110	156.2557	154.7163	142.8388	129.7542	125.5022	133.4
## 112	105	106	107	108	109	110	111	
## 147. 854	.8482	157.9929	156.4535	144.5760	131.4914	127.2394	135.2089	149.5
## 120	113	114	115	116	117	118	119	
## 159. 673	.7301	158.1907	146.3132	133.2286	128.9766	136.9461	151.3226	161.4
## 128	121	122	123	124	125	126	127	
## 159. 651	.9279	148.0504	134.9658	130.7138	138.6833	153.0598	163.2045	161.6
## 136	129	130	131	132	133	134	135	
## 149. 248	.7876	136.7030	132.4510	140.4205	154.7970	164.9417	163.4023	151.5
## 144	137	138	139	140	141	142	143	
## 138.	4402	134.1882	142.1577	156.5342	166.6789	165.1395	153.2620	140.1

774							
774 ## 145	146	147	148	149	150	151	
152	140	147	140	149	130	1)1	
## 135.9254	143.8949	158.2714	168.4161	166.8767	154, 9992	141 9146	137.6
626	143.0545	130.2714	100.4101	100.0707	154.5552	141.7140	137.0
## 153	154	155	156	157	158	159	
160	154	133	130	137	130	133	
## 145.6321	160.0086	170.1533	168.6139	156.7364	143.6518	139.3998	147.3
693	200.000	2,012555	100.0133	2301,301	1.5.0510	233,3330	, .,
## 161	162	163	164	165	166	167	
168	102	103	101	103	100	107	
## 161.7458	171.8905	170.3511	158.4736	145.3890	141.1370	149.1065	163.4
830	1,1.0303	170.3311	130.1730	113.3030	11111370	113.1003	103.1
## 169	170	171	172	173	174	175	
176	2,0	_,_	_,_	_,,	_, .	_,,	
## 173.6277	172.0883	160.2108	147.1262	142.8742	150.8437	165.2202	175.3
650	1,2.0003	100.2100	117.1202	112.0712	130.0137	103.2202	1,3.3
## 177	178	179	180	181	182	183	
184	1,0	1,5	100	101	102	103	
## 173.8255	161.9480	148.8634	144.6114	152.5809	166.9574	177.1022	175.5
627	101.5 100	110.0031	111.0111	192.9009	100.337	177.1022	1,3.3
## 185	186	187	188	189	190	191	
192	100	107	100	103	100	171	
## 163.6852	150.6006	146.3486	154.3181	168 6946	178.8394	177, 2999	165.4
224	130.0000	110.5100	131.3101	100.03.0	1,0.0331	1,,,2,,,	103.1
## 193	194	195	196	197	198	199	
200	25.	100	100	10,	130	100	
## 152.3378	148.0858	156.0553	170.4318	180.5766	179.0371	167,1596	154.0
750			_, _, _,		_,,,,,,,,		
## 201	202	203	204	205	206	207	
208							
## 149.8230	157.7925	172.1690	182.3138	180.7743	168.8968	155.8122	151.5
602							
## 209	210	211	212	213	214	215	
216							
## 159.5297	173.9062	184.0510	182.5115	170.6340	157.5494	153.2974	161.2
669							
## 217	218	219	220	221	222	223	
224							
## 175.6434	185.7882	184.2487	172.3712	159.2866	155.0346	163.0041	177.3
806							
## 225	226	227	228	229	230	231	
232						<u>-</u>	
## 187.5254	185.9859	174.1084	161.0238	156.7718	164.7413	179.1178	189.2
626				· · · · - ·			
## 233	234	235	236	237	238	239	
240	23.			,			
## 187.7231	175.8457	162,7610	158,5090	166,4785	180.8550	190,9998	189.4
603	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_0_0,010		_000.1700			
## 241	242	243	244	245	246	247	
271	272	273	4 77	277	270	27/	

248 ## 177.5829	164 4982	160 2462	168 2157	182 5922	192 7370	191 1975	179 3
201	104.4702	100.2402	100.2157	102.3322	172.7570	101.10/0	1/0.5
## 249	250	251	252	253	254	255	
256							
## 166.2354	161.9834	169.9529	184.3294	194.4742	192.9347	181.0573	167.9
726							
## 257	258	259	260	261	262	263	
264	171 (001	100 000	106 2114	104 (710	102 7045	160 7000	165 4
## 163.7206 578	1/1.0901	190.000	190.2114	194.0/19	102./945	109.7098	105.4
## 265	266	267	268	269	270	271	
272	200	20,	200	205	2,0	_,_	
## 173.4273	187.8039	197.9486	196.4091	184.5317	171.4470	167.1950	175.1
645							
## 273	274	275	276	277	278	279	
280							
## 189.5411	199.6858	198.1463	186.2689	173.1842	168.9322	176.9017	191.2
783 ## 281	282	202	284	285	286	207	
## 281 288	202	283	204	200	280	287	
## 201.4230	199 8835	188 0061	174 9214	170 6694	178 6389	193 0155	203 1
602	100.0000	100.0001	174,7214	170.0054	170.0303	100.0100	203.1
## 289	290	291	292	293	294	295	
296							
## 201.6207	189.7433	176.6586	172.4066	180.3761	194.7527	204.8974	203.3
579							
## 297	298	299	300	301	302	303	
304 ## 191.4805	170 2050	17/ 1/20	100 1100	106 4000	206 6246	205 0051	102.2
177	1/0.3930	1/4.1436	102.1133	190,4099	200.0340	203.0931	193.2
## 305	306	307	308	309	310	311	
312							
## 180.1330	175.8810	183.8505	198.2271	208.3718	206.8323	194.9549	181.8
702							
## 313	314	315	316	317	318	319	
320	405 5055	400 0440	040 4000		404 4004	400 4074	4=0 0
## 177.6182	185.58//	199.9643	210.1090	208.5695	196.6921	183.60/4	1/9.3
554 ## 321	322	323	324	325	326	327	
328	322	323	324	323	320	327	
## 187.3249	201.7015	211.8462	210.3067	198.4293	185.3446	181.0927	189.0
621							
## 329	330	331	332	333	334	335	
336							
## 203.4387	213.5834	212.0440	200.1665	187.0818	182.8299	190.7993	205.1
759	222	222	2.42		2.42	2.45	
## 337	338	339	340	341	342	343	
344 ## 215.3206	213 7912	201 9027	188 8100	184 5671	192 5365	206 9121	217 0
ππ 213.3200	217./012	201.303/	100.0130	104.JU/I	172.7303	200.3131	21/.0

```
578
##
        345
                 346
                           347
                                    348
                                              349
                                                       350
                                                                351
352
## 215.5184 203.6409 190.5562 186.3043 194.2737 208.6503 218.7950 217.2
556
##
        353
                 354
                           355
                                    356
                                              357
                                                       358
                                                                359
360
## 205.3781 192.2934 188.0415 196.0109 210.3875 220.5322 218.9928 207.1
153
##
        361
                 362
                           363
                                    364
                                             365
## 194.0306 189.7787 197.7481 212.1247 222.2694
#3a)
# Univariate CO
ggplot() +
  geom_line(aes(x=1:365,y=next.yr.co.predictions),color="black") +
  geom_line(aes(x=1:365,y=co.ts[1:365]),color="red") +
```

Univariate CO Trend and Seasonality Model + VARM

ggtitle("Univariate CO Trend and Seasonality Model + VARMA of Residua

xlab("") + ylab("CO") +

1s")


```
# Univariate NO2
ggplot() +
  geom_line(aes(x=1:365,y=next.yr.no2.predictions),color="black") +
  geom_line(aes(x=1:365,y=no2.ts[1:365]),color="red") +
  xlab("") + ylab("NO2") +
```

ggtitle("Univariate NO2 Trend and Seasonality Model + VARMA of Residu
als")

Univariate NO2 Trend and Seasonality Model + VARN


```
# Multivariate CO
ggplot() +
   geom_line(aes(x=1:365,y=sim_muti$series[,1]+mean.co),color="black") +
   geom_line(aes(x=1:365,y=co.ts[1:365]),color="red") +
   xlab("") + ylab("CO") +
   ggtitle("Multivariate CO Trend and Seasonality Model + VARMA of Residuals")
```

Multivariate CO Trend and Seasonality Model + VARM


```
# Multivariate NO2
ggplot() +
   geom_line(aes(x=1:365,y=sim_muti$series[,2]+mean.no2),color="black")
+
   geom_line(aes(x=1:365,y=no2.ts[1:365]),color="red") +
   xlab("") + ylab("NO2") +
   ggtitle("Multivariate NO2 Trend and Seasonality Model + VARMA of Residuals")
```

Multivariate NO2 Trend and Seasonality Model + VAR

While the univariate models show the overall trend of the series, they lack the resolution to model the seasonality with the accuriacy of the multivariate models.

#3b)

```
# Original Data
pg.co <- spec.pgram(co.ts[1:365],spans=9,demean=T,log='no')</pre>
```

Series: co.ts[1:365] Smoothed Periodogram


```
pg.co
## $freq
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.026666667 0.029333333 0.
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.0426666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
080000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.106666667 0.109333333 0.
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.1226666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.170666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
```

```
## [73] 0.194666667 0.197333333 0.200000000 0.2026666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
## [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
   [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.266666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.394666667 0.397333333 0.
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.426666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.442666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
##
## $spec
##
    [1] 33.4068928 29.7923025 24.2594087 20.3541235 16.8476099 11.1661
331
##
        6.4906741 5.8206726 5.6507687 6.6996715 8.4348383 9.6374
     [7]
367
## [13] 9.7303679 9.4634122 9.4043079 9.2838359 8.8550135 6.8010
016
   [19] 4.8521438 3.7924240 3.0767493 2.9238570 3.0279981 3.2242
##
576
## [25] 3.3563208 4.3898205 5.5470322 5.7973802 5.8375563 6.0236
```

```
528
##
                     6.6225338 7.1870765 6.3393258
                                                                   5.6646
    [31]
          6.0162083
                                                       5.3371935
483
##
                     6.2123924
                                6.2712804
                                           5.6830319
                                                        5.2577176
                                                                   5.1811
          6.3565682
    [37]
489
                                 3.6456021
##
    [43]
          4.6222630
                     3.9317396
                                            3.8665882
                                                       3.5838492 3.3585
479
                     9.0948844 11.6137819 11.9773613 11.9914738 11.7074
##
    [49]
          5.0598277
366
##
    [55] 11.9973054 12.2063704
                                9.8312195
                                            5.2587787
                                                       2.8461259
                                                                   2.4844
719
##
                     1.8977327
                                 1.4067664
                                            0.9985561
                                                       1.1422096
    [61]
          2.0460697
                                                                   1.3561
512
##
    [67]
          1.2865196
                     1.1083075
                                 1.1824506
                                            1.3310059
                                                       1.4878340
                                                                   1.7284
698
    [73]
##
          1.8178385
                     1.6421472
                                 1.4769213
                                            1.4809235
                                                       1.8769393
                                                                   2.2244
029
                                                       1.9378814
##
                     2.1777995
                                 1.9925543
                                            1.9948278
    [79]
          2.2916562
                                                                   1.8236
668
##
    [85]
          1.3730325
                     0.8990701
                                 0.7521747
                                            0.6799232
                                                       0.6747660
                                                                   0.7442
144
                     0.9127938
                                0.9284668
                                            0.9061261
##
    [91]
          0.8390481
                                                       1.0058706
                                                                   1.1641
189
## [97]
          1.1829857
                     1.0902904
                                 1.2262218
                                            1.3764281
                                                       1.5550109
                                                                   1.9015
840
## [103]
          3.0722748
                     4.1939073
                                4.4790806
                                            4.6464907
                                                       4.4511777
                                                                   4.2959
352
## [109]
          4.1594329
                     4.0878306
                                3.1406174
                                            2.0543490
                                                       2.0730928
                                                                   2.1918
297
## [115]
          2.2656342
                     2.4114962
                                 2.6053621
                                            2.5132788
                                                       2.2383065
                                                                   2.1112
089
## [121]
          1.8690284
                     1.5641922
                                 1.5307766
                                            1.5185077
                                                        1.3525303
                                                                   1.2093
037
## [127]
          1.2186609
                     1.1528720
                                 1.1218806
                                            1.2386514
                                                        1.2245317
                                                                   1.0079
247
## [133]
          0.9213242
                     1.0334144
                                 1.1132609
                                            1.2691796
                                                       1.3526824
                                                                   1.5262
473
## [139]
          1.7268640
                     1.7259787
                                 1.7169653
                                            1.6386816
                                                       1.5486119
                                                                   1.4598
666
## [145]
                     1.1289271
                                 1.0056550
                                            1.0868979
                                                       1.0974177
                                                                   0.9703
          1.3113832
477
## [151]
          1.0074372
                     1.0423840
                                 1.0533460
                                            0.9651490
                                                       0.8480325
                                                                   0.8867
830
                     0.8708807
                                 0.7223604
                                            0.5609828
                                                       0.5387092
                                                                   0.5506
## [157]
          0.8867912
609
## [163]
          0.5596977
                     0.4868711
                                 0.5450492
                                            0.8677397
                                                       1.1225085
                                                                   1.2229
856
                                 2.4977409
                                            2.9318335
                                                       2.9130943
                                                                   2.7065
## [169]
          1.4566900
                     1.8521784
474
## [175]
          2.4595701 2.3789910 2.1906136 1.7872251 1.1351416 0.7449
```

```
723
## [181] 0.7706477 0.7394935 0.7564253 0.8348201 0.8060831 0.8350
103
         0.9828717
## [187]
##
## $coh
## NULL
##
## $phase
## NULL
##
## $kernel
## mDaniell(4)
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[ 0] = 0.1250
## coef[ 1] = 0.1250
## coef[ 2] = 0.1250
## coef[3] = 0.1250
## coef[ 4] = 0.0625
##
## $df
## [1] 14.88055
##
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "co.ts[1:365]"
##
## $snames
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
```

```
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
##
## attr(,"class")
## [1] "spec"

pg.no2 <- spec.pgram(no2.ts[1:365],spans=9,demean=T,log='no')</pre>
```

Series: no2.ts[1:365] Smoothed Periodogram


```
pg.no2
## $freq
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.0266666667 0.029333333 0.
##
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.042666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
08000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.106666667 0.109333333 0.
```

```
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.122666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.1706666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
## [73] 0.194666667 0.197333333 0.200000000 0.202666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
## [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
## [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.2666666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.3946666667 0.397333333 0.
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.426666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.4426666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
```

## ## \$cpoc						
## \$spec ## [1]	19903.1576	22479.3287	21508.8672	18114.2072	14373.0088	11662.8
224 ## [7]	10375.1663	9821.4436	7889.3427	5311.4449	4476.4084	4088.3
938 ## [13]	3978.1249	4060.2416	4105.6146	4295.3032	4038.1761	2983.2
473 ## [19]	2260.3058	2083.3963	2019.0559	1905.2124	1796.4206	1678.3
685 ## [25]	1516.1425	1401.4690	1536.8090	1725.8089	1621.7385	1636.9
148 ## [31]	1769.1546	2150.7363	2504.2930	2476.1290	2421.7859	2559.1
665 ## [37]	2755.1376	2728.7686	2748.7469	2588.1984	2451.5000	2451.4
297 ## [43]	2111.1585	1623.6166	1431.4683	1608.6107	1604.1687	1224.9
890 ## [49]	1569.9378	2966.0461	3909.9620	4157.2148	4172.9011	4001.8
053 ## [55]	3993.2210	4118.7053	3487.1100	1983.8421	1079.2155	892.1
594 ## [61]	751.5273	685.9692	558.0284	423.3135	342.8464	374.6
862 ## [67]	429.5188	420.4474	497.7056	623.2079	726.4400	810.2
326 ## [73]	814.4986	748.0641	662.9261	623.7611	799.0745	920.2
897 ## [79]	825.8371	790.2810	879.0923	983.8556	1000.6271	993.4
081 ## [85]	875.7054	734.9866	705.9363	719.6938	665.7479	536.4
099	469.3262	491.2547	403.9674	298.0545	374.2355	366.8
016	474.8047	688.7364	777.1448	792.8953	771.4145	804.4
852 ## [103]						
393 ## [109]						
346	793.0356					
949 ## [121]						
616	353.5228		378.1545			
877	388.4768					
535						
## [139] 968	930.5967	911.0808	857.7769	719.1080	643.0735	682.9

```
## [145]
           697.8642 563.4078
                                 409.9163
                                            435.0813
                                                       449.9438
                                                                  453.4
096
                      492.9446
                                                                  648.0
## [151]
           490.2808
                                 501.5675
                                            535.5106
                                                       560.5622
060
## [157]
           740.3719
                      759.2247
                                 680.5511
                                            590.1319
                                                       580.5424
                                                                  612.5
729
## [163]
           646.4193
                      530.9854
                                 431.1169
                                            452.9863
                                                       520.9940
                                                                  581.3
465
## [169]
           537.8220
                      479.9736
                                 523.8813
                                            610.6501
                                                       603.6429
                                                                  534.8
652
                                 433.0011
                                            464.2171
                                                       373.5799
                                                                  294.1
## [175]
           436.0115
                      371.2106
896
                      345.5674 407.9972
## [181]
           281.0479
                                            425.8582
                                                       433.6705
                                                                  420.2
213
## [187]
           419.9945
##
## $coh
## NULL
##
## $phase
## NULL
##
## $kernel
## mDaniell(4)
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[0] = 0.1250
## coef[ 1] = 0.1250
## coef[2] = 0.1250
## coef[ 3] = 0.1250
## coef[ 4] = 0.0625
##
## $df
## [1] 14.88055
##
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "no2.ts[1:365]"
##
## $snames
```

```
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
## attr(,"class")
## [1] "spec"
# Univariate Simulations
pg.co.uni <- spec.pgram(next.yr.co.predictions, spans=9, demean=T, log='no
```

Series: next.yr.co.predictions Smoothed Periodogram


```
## $frea
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.0266666667 0.029333333 0.
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.0426666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
08000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.1066666667 0.109333333 0.
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.122666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.1706666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
## [73] 0.194666667 0.197333333 0.200000000 0.202666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
   [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
## [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.266666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.394666667 0.397333333 0.
```

```
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.4266666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.442666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
##
## $spec
##
     [1] 2.818130e-04 2.726003e-04 2.248711e-04 1.441796e-04 6.333352e-
05
##
     [6] 1.523651e-05 5.586881e-06 3.052548e-06 2.332548e-06 1.921381e-
96
    [11] 1.487518e-06 1.105021e-06 8.633852e-07 7.318281e-07 6.537416e-
##
07
    [16] 6.817100e-07 9.252496e-07 1.347729e-06 1.720981e-06 1.875190e-
##
06
##
    [21] 1.909304e-06 1.995665e-06 2.050352e-06 1.902792e-06 1.841466e-
06
    [26] 2.506045e-06 3.856438e-06 4.846469e-06 5.206236e-06 7.284491e-
##
96
##
    [31] 1.402058e-05 2.393710e-05 3.078950e-05 3.163410e-05 3.212360e-
05
    [36] 3.593910e-05 3.910666e-05 9.127860e-05 4.530248e-04 1.727071e-
##
03
##
    [41] 4.683924e-03 9.589251e-03 1.534145e-02 1.948691e-02 2.081367e-
02
##
    [46] 2.696444e-02 7.446148e-02 3.140622e-01 2.324614e+00 6.901041e+
00
    [51] 9.806166e+00 9.960396e+00 9.973614e+00 9.970106e+00 9.930409e+
##
00
    [56] 9.700598e+00 7.696537e+00 3.121032e+00 2.127774e-01 5.519244e-
##
02
##
    [61] 4.076969e-02 3.808517e-02 2.994306e-02 1.889079e-02 9.442323e-
03
##
    [66] 3.614185e-03 9.948332e-04 2.039157e-04 8.023183e-05 6.836654e-
05
    [71] 4.431091e-05 2.631338e-05 2.363603e-05 2.390100e-05 1.972008e-
##
05
##
    [76] 1.468143e-05 1.264484e-05 1.211084e-05 1.016636e-05 6.794775e-
96
##
    [81] 4.016918e-06 2.924303e-06 2.913649e-06 3.053128e-06 3.072944e-
96
```

```
[86] 3.053369e-06 2.888137e-06 2.391466e-06 1.657100e-06 1.016723e-
06
##
    [91] 6.858971e-07 6.048733e-07 6.074702e-07 6.111846e-07 6.092439e-
07
## [96] 5.785652e-07 4.799899e-07 3.252991e-07 1.820559e-07 1.029515e-
07
## [101] 8.076959e-08 7.906852e-08 7.976747e-08 8.516611e-08 9.190539e-
## [106] 8.657540e-08 6.542567e-08 4.181311e-08 2.929038e-08 2.673201e-
98
## [111] 2.519359e-08 2.231668e-08 2.286949e-08 2.844253e-08 3.405267e-
## [116] 3.540897e-08 3.406868e-08 3.327179e-08 3.245479e-08 2.901153e-
80
## [121] 2.348227e-08 1.961952e-08 1.956813e-08 2.159455e-08 2.304553e-
## [126] 2.339960e-08 2.330768e-08 2.229148e-08 1.922782e-08 1.460227e-
98
## [131] 1.062747e-08 8.860486e-09 8.770443e-09 9.000833e-09 9.068865e-
09
## [136] 9.151643e-09 8.929284e-09 7.686763e-09 5.484444e-09 3.388869e-
## [141] 2.295342e-09 2.058655e-09 2.056772e-09 2.123000e-09 2.461707e-
## [146] 2.939653e-09 3.049064e-09 2.602223e-09 2.011276e-09 1.715440e-
## [151] 1.661562e-09 1.578944e-09 1.508084e-09 1.724705e-09 2.238940e-
09
## [156] 2.705258e-09 2.871001e-09 2.846042e-09 2.820122e-09 2.743714e-
## [161] 2.484438e-09 2.157157e-09 2.052960e-09 2.258782e-09 2.552761e-
09
## [166] 2.712441e-09 2.744803e-09 2.728656e-09 2.599138e-09 2.256253e-
## [171] 1.805751e-09 1.505793e-09 1.467315e-09 1.552470e-09 1.600861e-
09
## [176] 1.613664e-09 1.636602e-09 1.589035e-09 1.354852e-09 9.928800e-
10
## [181] 7.089161e-10 6.103249e-10 6.126513e-10 6.205968e-10 6.727936e-
10
## [186] 8.224735e-10 9.747731e-10
##
## $coh
## NULL
##
## $phase
## NULL
##
## $kernel
## mDaniell(4)
```

```
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[ 0] = 0.1250
## coef[1] = 0.1250
## coef[ 2] = 0.1250
## coef[3] = 0.1250
## coef[4] = 0.0625
##
## $df
## [1] 14.88055
##
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "next.yr.co.predictions"
##
## $snames
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
##
## attr(,"class")
## [1] "spec"
pg.no2.uni <- spec.pgram(next.yr.no2.predictions,spans=9,demean=T,log='</pre>
no')
```

Series: next.yr.no2.predictions Smoothed Periodogram


```
pg.no2.uni
## $freq
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.026666667 0.029333333 0.
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.0426666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
080000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.106666667 0.109333333 0.
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.1226666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.170666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
```

```
## [73] 0.194666667 0.197333333 0.200000000 0.2026666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
## [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
   [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.2666666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.394666667 0.397333333 0.
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.426666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.442666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
##
## $spec
##
     [1] 1.405408e-01 1.363125e-01 1.124281e-01 7.159576e-02 3.068557e-
02
     [6] 6.623622e-03 2.217749e-03 1.232648e-03 9.982823e-04 8.270427e-
##
04
##
    [11] 6.106518e-04 4.135117e-04 2.899017e-04 2.303556e-04 2.038549e-
04
    [16] 2.151178e-04 2.937807e-04 4.279697e-04 5.462591e-04 5.951899e-
##
04
   [21] 6.059004e-04 6.327271e-04 6.493343e-04 6.022345e-04 5.824240e-
```

```
04
    [26] 7.910522e-04 1.215306e-03 1.526396e-03 1.639301e-03 2.290153e-
##
03
##
    [31] 4.399505e-03 7.503376e-03 9.645516e-03 9.906029e-03 1.005783e-
02
    [36] 1.125340e-02 1.224592e-02 2.858626e-02 1.418819e-01 5.408863e-
##
01
    [41] 1.466881e+00 3.003042e+00 4.804385e+00 6.102558e+00 6.518036e+
##
00
##
    [46] 8.444206e+00 2.331835e+01 9.835188e+01 7.279806e+02 2.161147e+
03
    [51] 3.070924e+03 3.119223e+03 3.123363e+03 3.122264e+03 3.109833e+
##
03
##
    [56] 3.037865e+03 2.410269e+03 9.773914e+02 6.663368e+01 1.728387e+
01
##
    [61] 1.276720e+01 1.192651e+01 9.376747e+00 5.915664e+00 2.956852e+
00
    [66] 1.131771e+00 3.115275e-01 6.385524e-02 2.512431e-02 2.140850e-
##
02
##
    [71] 1.387449e-02 8.236917e-03 7.397561e-03 7.481239e-03 6.173652e-
03
    [76] 4.597079e-03 3.959756e-03 3.792590e-03 3.183757e-03 2.127910e-
##
03
    [81] 1.257672e-03 9.150375e-04 9.114182e-04 9.550697e-04 9.613200e-
##
04
##
    [86] 9.552096e-04 9.035457e-04 7.482022e-04 5.184185e-04 3.179243e-
04
    [91] 2.142377e-04 1.887688e-04 1.895439e-04 1.907029e-04 1.901086e-
##
04
    [96] 1.805695e-04 1.498423e-04 1.015601e-04 5.680231e-05 3.205411e-
##
05
## [101] 2.510000e-05 2.456274e-05 2.477715e-05 2.646039e-05 2.858363e-
05
## [106] 2.696652e-05 2.041542e-05 1.307437e-05 9.172773e-06 8.373957e-
## [111] 7.891075e-06 6.980806e-06 7.131670e-06 8.855095e-06 1.060808e-
05
## [116] 1.104553e-05 1.063857e-05 1.039315e-05 1.013894e-05 9.064613e-
## [121] 7.332137e-06 6.108799e-06 6.071749e-06 6.691165e-06 7.140858e-
06
## [126] 7.251770e-06 7.223862e-06 6.911038e-06 5.963736e-06 4.527117e-
06
## [131] 3.285154e-06 2.725686e-06 2.690497e-06 2.759823e-06 2.780772e-
06
## [136] 2.807390e-06 2.742961e-06 2.366201e-06 1.691516e-06 1.045160e-
06
## [141] 7.052550e-07 6.304908e-07 6.294781e-07 6.489952e-07 7.521474e-
07
## [146] 9.005158e-07 9.388700e-07 8.069295e-07 6.284153e-07 5.382177e-
```

```
07
## [151] 5.216245e-07 4.956113e-07 4.712436e-07 5.332886e-07 6.874074e-
07
## [156] 8.297042e-07 8.819095e-07 8.754966e-07 8.678785e-07 8.446431e-
07
## [161] 7.651827e-07 6.632169e-07 6.272391e-07 6.855484e-07 7.725287e-
## [166] 8.205020e-07 8.303674e-07 8.256325e-07 7.871316e-07 6.844388e-
07
## [171] 5.484224e-07 4.564975e-07 4.429865e-07 4.674773e-07 4.817560e-
07
## [176] 4.855575e-07 4.925087e-07 4.788995e-07 4.100379e-07 3.029347e-
07
## [181] 2.185948e-07 1.891889e-07 1.898483e-07 1.921630e-07 2.074234e-
07
## [186] 2.514823e-07 2.964108e-07
## $coh
## NULL
##
## $phase
## NULL
##
## $kernel
## mDaniell(4)
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[ 0] = 0.1250
## coef[1] = 0.1250
## coef[ 2] = 0.1250
## coef[3] = 0.1250
## coef[4] = 0.0625
##
## $df
## [1] 14.88055
##
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "next.yr.no2.predictions"
```

```
## $snames
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
##
## attr(,"class")
## [1] "spec"
# Multivariate Simulations
pg.co.uni <- spec.pgram(sim_muti$series[,1]+mean.co,spans=9,demean=T,lo
g='no')
```

Series: sim_muti\$series[, 1] + mean.co Smoothed Periodogram


```
## $frea
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.0266666667 0.029333333 0.
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.0426666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
08000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.1066666667 0.109333333 0.
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.122666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.1706666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
## [73] 0.194666667 0.197333333 0.200000000 0.202666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
   [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
## [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.266666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.394666667 0.397333333 0.
```

```
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.426666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.442666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
##
## $spec
##
    [1]
         2.3497142
                    2.6686524 3.2532144 3.7377650 3.6838294 4.0054
460
##
    [7]
         4.2980919
                   4.3579136 4.1512522 3.8276852 3.3920844
                                                               2.9563
298
##
                    2.6365111 2.7480454 2.8383318 2.7158684 2.8357
   [13]
         2.9004899
518
##
   [19]
         2.8675027 3.2624106 3.9210800 4.0335631 3.5969604 3.4391
926
##
   [25]
         3.3804713
                    3.0821177
                               2.7769126 2.3955547
                                                    2.1118963
                                                               2.0229
191
## [31]
         2.0729369
                    2.1515549
                              2.8423114 3.5656726 3.6616470 3.6095
851
                                         2.6342939
##
         3.2891116
                    3.0810304
                               2.9476620
                                                    1.9751113
                                                               1.5536
   [37]
762
##
         1.6042532 1.4554564 1.4613878 1.6317150 1.7727543
   [43]
                                                               2.0572
319
##
   [49]
         3.8623497 8.5759242 11.6641695 11.7178073 11.6920630 11.7798
722
   [55] 11.7325668 11.4727192 9.6997563 4.9511218 1.9125010 2.0714
##
511
## [61]
         2.2571295 2.1509352 2.0689659
                                         2.0146812 1.8705265
                                                               2.2207
113
   [67]
         2.5486717 2.4740964 3.0410593 3.7718320 4.0012388 4.0200
##
363
##
         3.9095407
                    3.7060979 3.6000731 3.6573797 3.0623587 2.4336
   [73]
362
##
   [79]
         2.3777895
                    2.3345589
                               2.3839419
                                         2.1688632
                                                    1.8878628
                                                               1.6978
968
                              1.2318770
                                         1.1944517
                                                    1.2289599 1.0671
##
         1.5585331
                   1.4466112
   85
343
##
   [91]
         0.9079714
                    0.8574722
                               0.8867484
                                         0.8854825
                                                    0.9425912
                                                               1.0836
912
##
   [97]
         1.0688457
                    1.1290639 1.3023574 1.5043440 1.4089171 1.4595
027
```

```
## [103]
         1.6582524 1.6410028 1.6200229 1.5925108 1.6218121 1.6638
115
         1.7829714 2.1167424 2.4319315 2.5007033 2.4900263 2.4435
## [109]
564
## [115]
         2.3228423 2.1497918 2.1839374 2.0128929 1.6870086 2.0849
980
## [121]
         2.5289828 2.8005361 3.3636702 3.5883050 3.5458508 3.4004
219
## [127]
         3.3718614 3.0733378 3.1865603 3.4386555 3.0619551 3.0635
887
         3.3878400 3.6933381 3.5613856 3.9859799 4.4150634 4.3866
## [133]
861
## [139]
         4.3099751 4.0884021 3.7082690 3.2647200 3.1986806 2.5424
172
## [145]
         1.5583294 1.0693568 1.1481298 1.5475610 1.7356464 1.7217
233
## [151]
         2.0631719 2.4787268 2.6008060 2.9740749 3.1985827 3.0392
612
## [157]
         3.1565945 3.3787616 2.9704270 2.5895337 2.5073075 2.0791
443
## [163]
         1.5491707 1.3373787 1.2285617 1.2252731 1.4552118 1.9610
040
## [169]
         2.3883989 2.7608002 3.1503592 3.3221342 3.2628937 2.9543
102
         2.8506998 2.5849840 2.4886149 2.4897946 2.3186771 2.5231
## [175]
341
         2.8258950 3.0571368 3.2810185 3.4723326 3.4115141 3.2700
## [181]
263
         3.6592810
## [187]
##
## $coh
## NULL
##
## $phase
## NULL
##
## $kernel
## mDaniell(4)
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[ 0] = 0.1250
## coef[ 1] = 0.1250
## coef[2] = 0.1250
## coef[3] = 0.1250
## coef[ 4] = 0.0625
##
## $df
## [1] 14.88055
```

```
##
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "sim_muti$series[, 1] + mean.co"
##
## $snames
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
##
## attr(,"class")
## [1] "spec"
pg.no2.uni <- spec.pgram(sim_muti$series[,2]+mean.no2,spans=9,demean=T,</pre>
log='no')
```

Series: sim_muti\$series[, 2] + mean.no2 Smoothed Periodogram


```
pg.no2.uni
## $freq
     [1] 0.002666667 0.005333333 0.008000000 0.010666667 0.013333333 0.
016000000
     [7] 0.018666667 0.021333333 0.024000000 0.0266666667 0.029333333 0.
032000000
## [13] 0.034666667 0.037333333 0.040000000 0.0426666667 0.045333333 0.
048000000
## [19] 0.050666667 0.053333333 0.056000000 0.058666667 0.061333333 0.
064000000
## [25] 0.066666667 0.069333333 0.072000000 0.074666667 0.077333333 0.
080000000
## [31] 0.082666667 0.085333333 0.088000000 0.090666667 0.093333333 0.
096000000
## [37] 0.098666667 0.101333333 0.104000000 0.106666667 0.109333333 0.
112000000
## [43] 0.114666667 0.117333333 0.120000000 0.1226666667 0.125333333 0.
128000000
## [49] 0.130666667 0.133333333 0.136000000 0.138666667 0.141333333 0.
144000000
## [55] 0.146666667 0.149333333 0.152000000 0.154666667 0.157333333 0.
160000000
## [61] 0.162666667 0.165333333 0.168000000 0.170666667 0.173333333 0.
176000000
## [67] 0.178666667 0.181333333 0.184000000 0.186666667 0.189333333 0.
192000000
```

```
## [73] 0.194666667 0.197333333 0.200000000 0.2026666667 0.205333333 0.
208000000
## [79] 0.210666667 0.213333333 0.216000000 0.218666667 0.221333333 0.
224000000
## [85] 0.226666667 0.229333333 0.232000000 0.234666667 0.237333333 0.
240000000
   [91] 0.242666667 0.245333333 0.248000000 0.250666667 0.253333333 0.
256000000
## [97] 0.258666667 0.261333333 0.264000000 0.2666666667 0.269333333 0.
272000000
## [103] 0.274666667 0.277333333 0.280000000 0.282666667 0.285333333 0.
288000000
## [109] 0.290666667 0.293333333 0.296000000 0.298666667 0.301333333 0.
304000000
## [115] 0.306666667 0.309333333 0.312000000 0.314666667 0.317333333 0.
320000000
## [121] 0.322666667 0.325333333 0.328000000 0.330666667 0.333333333 0.
336000000
## [127] 0.338666667 0.341333333 0.344000000 0.346666667 0.349333333 0.
352000000
## [133] 0.354666667 0.357333333 0.360000000 0.362666667 0.365333333 0.
368000000
## [139] 0.370666667 0.373333333 0.376000000 0.378666667 0.381333333 0.
384000000
## [145] 0.386666667 0.389333333 0.392000000 0.394666667 0.397333333 0.
400000000
## [151] 0.402666667 0.405333333 0.408000000 0.410666667 0.413333333 0.
416000000
## [157] 0.418666667 0.421333333 0.424000000 0.426666667 0.429333333 0.
432000000
## [163] 0.434666667 0.437333333 0.440000000 0.442666667 0.445333333 0.
448000000
## [169] 0.450666667 0.453333333 0.456000000 0.458666667 0.461333333 0.
464000000
## [175] 0.466666667 0.469333333 0.472000000 0.474666667 0.477333333 0.
480000000
## [181] 0.482666667 0.485333333 0.488000000 0.490666667 0.493333333 0.
496000000
## [187] 0.498666667
##
## $spec
     [1] 1252.4414 1207.4102 1278.9467 1187.0762 1022.7562 1016.9597 10
##
18.6029
    [8] 993.5793 1108.4952 1043.1165 876.1073 796.4737 792.3247 8
##
29.3095
## [15] 794.9914 813.5872 941.9328 1049.9491 1095.5833 1253.8665 15
08.3768
## [22] 1514.8629 1466.2623 1414.5954 1220.7050 1051.8545 1059.9177 10
75.7207
## [29] 938.0577 817.9112 752.3161 712.0262 927.7580 1196.6357 11
```

```
79.9504
## [36] 1028.8673 913.1140 921.4283 948.7140 907.5519 681.8434 4
70.3617
## [43] 458.4264 430.8307 447.6990 497.0123 478.6394
                                                        551.7247 12
36.6366
## [50] 3072.6133 4283.9814 4271.9387 4249.7561 4200.0236 4255.4728 42
85.7512
## [57] 3684.3372 1888.0147 659.8148 685.8307 759.9325 806.7417 7
29.4306
## [64] 846.1670 1003.9378 1001.0572 1053.5711 1072.4277 1215.3386 13
87.9196
## [71] 1409.8622 1263.9293 1067.3500 1053.5780 1054.9304 1118.5652 9
97.4305
## [78]
        878.6337 983.5039 887.2599 904.8078 964.3534 905.3777 8
67.5502
## [85]
        828.6684 852.0674 903.2838 945.1979 878.3697 771.9798 7
40.5995
## [92]
                  688.9976 560.8338 403.5983 388.5667 361.3656 3
        701.8685
89.0861
## [99]
         467.2402 452.0705 436.5406 512.5776 666.0353 818.1830 8
95.6164
         958.7523 1157.3160 1399.1895 1441.9608 1496.9051 1459.4512 12
## [106]
90.0128
## [113] 1201.8902 1093.2690 847.0716 586.0619 554.1662 457.8962 3
57.9431
## [120] 449.0960 520.3314 655.9346 760.9166 781.6401 817.1004 8
15.0729
                  903.2561 976.4144 968.0877
                                               868.9839 854.9768 7
## [127]
        875.3930
93.8912
## [134]
        762.6898 701.8483 724.8129 753.6306 734.5333 810.0170 8
65.5339
## [141]
         995.0664 1138.1196 1131.7528 1080.9429 1087.4376 1107.7795 12
56.2536
## [148] 1496.5105 1453.8769 1319.3355 1300.2957 1244.5339 1102.6580 9
74.8315
## [155]
        762.1579 508.8771 486.4098 526.4892 512.6502 539.8754 5
54.5627
         547.7829
                  541.6518 578.6516 540.9459
                                               503.5870 615.9758 7
## [162]
38.5291
        797.4536 848.7852 887.9587 910.4614
                                               950.9762 939.2861 8
## [169]
51.0859
## [176]
        794.2733
                  829.7005 778.2815 750.0531 683.9954 673.8838 7
30.3031
        805.5230 887.8444 839.8326 925.3854 979.9456
## [183]
##
## $coh
## NULL
##
## $phase
## NULL
```

```
##
## $kernel
## mDaniell(4)
## coef[-4] = 0.0625
## coef[-3] = 0.1250
## coef[-2] = 0.1250
## coef[-1] = 0.1250
## coef[0] = 0.1250
## coef[1] = 0.1250
## coef[ 2] = 0.1250
## coef[3] = 0.1250
## coef[ 4] = 0.0625
##
## $df
## [1] 14.88055
## $bandwidth
## [1] 0.006301088
##
## $n.used
## [1] 375
##
## $orig.n
## [1] 365
##
## $series
## [1] "sim_muti$series[, 2] + mean.no2"
##
## $snames
## NULL
##
## $method
## [1] "Smoothed Periodogram"
##
## $taper
## [1] 0.1
##
## $pad
## [1] 0
##
## $detrend
## [1] TRUE
##
## $demean
## [1] TRUE
##
## attr(,"class")
## [1] "spec"
```

Here again, the univariate models capture the main seasonality (highest peak) of the original data, but the multivariate models also capture some of the smaller peaks that the original data contains. However, the multivariate data seems to contain several additional peaks as well, showing that they may be overestimating some of the seasonality in the data.

#3c)

```
# Original CO
co.365.acf <- ggAcf(co.ts[1:365])
co.365.acf</pre>
```

Series: co.ts[1:365]


```
co.365.pacf <- ggPacf(co.ts[1:365])
co.365.pacf</pre>
```


Original NO2
no2.365.acf <- Acf(no2.ts[1:365])</pre>

Series no2.ts[1:365]

Series no2.ts[1:365]


```
# Univariate CO
co.uni.acf <- ggAcf(next.yr.co.predictions)
co.uni.acf</pre>
```

Series: next.yr.co.predictions

co.uni.pacf <- ggPacf(next.yr.co.predictions)
co.uni.pacf</pre>

Series: next.yr.co.predictions

Series next.yr.no2.predictions

no2.uni.pacf <- Pacf(next.yr.no2.predictions)</pre>

Series next.yr.no2.predictions


```
# Multivariate CO
co.multi.acf <- ggAcf(sim_muti$series[,1]+mean.co)
co.multi.acf</pre>
```



```
co.multi.pacf <- ggPacf(sim_muti$series[,1]+mean.co)
co.multi.pacf</pre>
```

Series: sim_muti\$series[, 1] + mean.co

Multivariate NO2 no2.multi.acf <- Acf(sim_muti\$series[,2]+mean.no2)</pre>

Series sim_muti\$series[, 2] + mean.no2

no2.multi.pacf <- Pacf(sim_muti\$series[,2]+mean.no2)</pre>

Series sim_muti\$series[, 2] + mean.no2

Neither the univariate nor multivariate CO model captures the ACF or PACF plots of the original

data. Both NO2 models seem to do a decent job getting the overall shape of the plots, but the multivariate model better captures the magnitude of the correlations.

#3d)

```
cor(co.ts[1:365],no2.ts[1:365]) # 0.605

## [1] 0.6053903

cor(next.yr.co.predictions, next.yr.no2.predictions) # 0.721

## [1] 0.7212431

cor(sim_muti$series[,1]+mean.co, sim_muti$series[,2]+mean.no2) # 0.616

## [1] 0.6159244
```

The multivariate model much more closely resembles the cross correlation value of the original data when compared to the univariate data.