矩阵外积展开式

2025年4月17日 19:41

 $m{A}$ 的奇异值分解也可以由外积的形式表示,可以写成下面的形式:

$$\boldsymbol{A} = \sum_{k=1}^{n} \boldsymbol{A}_k = \sum_{k=1}^{n} \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T$$

其中, $m{A}_k = \sigma_k m{u}_k m{v}_k^T \pm m imes n$ 矩阵。上式将矩阵 $m{A}$ 分解为矩阵的有序加权和,展开可得到:

$$\boldsymbol{A} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T + \dots + \sigma_n \boldsymbol{u}_n \boldsymbol{v}_n^T$$

每个矩阵都可分解为n个秩为一的矩阵和,n为奇异值个数

3	1	4	1		-0.21	0.3	37 -0	0.13	0.89	21.	2				-0.55	-0.52	-0.49	-0.43
5	9	2	6		-0.52	-0	7 0	43	0.23		6.4				0.26	-0.4	0.65	-0.59
5	3	5	8	=	-0.48	-0.	21 -0	0.84	0.15			4.9			0.07	0.7	-0.22	-0.68
9	7	9	3		-0.67	0.5	57 0	.31	0.36			1	0.1	5	0.79	-0.29	-0.54	-0.04
1,2		55 -0.1	52 -0.	49 -0.43			0.26	-0.4	.65 -0.59		0.13 0.43	0.07	0.7 -0.2	2 -0.68		-0.89 -0.23	0.79 -0.4	29 -0.54
1.2	1.52	55 -0.1	52 -0.	49 -0.43		0.3 -0 -0	0.26	-0.4	.65 -0.59		0.43 0.43		0.7 -0.2	2 -0.68		-0.89 -0.23 0.15	0.79 -0.4	29 -0.54
1.2	1.52	.55 -0.1	52 -0.	49 -0.43		0:	0.26	-0.4	.65 -0.59		0.43		0.7 -0.2	2 -0.68		-0.89 -0.23	0.79 -0.2	29 -0.54
1.2	1.52	2.2		49 -0.43 1.97	+ 6.	0.3 -0 -0	0.26	3.79	0.56		0.43 0.43		3.93	0.99	+ 0.	-0.89 -0.23 0.15	0.79 -0.1	4
.51	1.52 1.48		2		+ 6.	0:1	0.26				-0.13 0.43 -0.84 0.31				+ 0.	-0.89 -0.23 0.15 0.36		
51	1.48 1.67 2.37	2.2	2 7	1.97	+ 6.	4 0:	0.26	3.79	0.56 7.43		0.43 0.43 0.31	0.96	3.93	0.99	+ 0.	-0.89 -0.23 0.15 0.36	1	4