Alternative form of Isoperimetric Problem

To extremize.

I[
$$\forall(x)$$
] = $\int f(x, y, y) dx$.

And the conditions

 $\phi_i(x, y) = \sigma_i = 1, 2, -\infty$

Form

 $h = f + \sum_{i=1}^{m} \lambda_i \phi_i$, $\lambda_i (i=1, 2, -\infty)$ are.

Then h will satisfy the $E-L-E$:

 $h_y - \frac{h}{h_x} h_y = 0$.

Note: The geodesic problem can also be cast-juto an isoperimetric problem. Ea: Find the shortest distance between the points P(1,-1,0) and A(2,1,-1) lying on the snerface $PQ = \int \sqrt{1 + y'^2 + z'^2} dx., y = y(x), z = z(x)$ He have to find minimum of Pa provided. Q(2, 4,2) =0, where $\Phi(2,4,2) = 152 - 74+2-22$. Let us form the auxiliary fundtral $[X [Y] = \int [\sqrt{1+y'^2+2'^2} + x(x)^{\frac{9}{2}} | 52 - 7y + 2 - 22] dx$ The ELES afreing =0, \rightarrow (3) \Rightarrow (a) (-71) \rightarrow da $\sqrt{1+y'^2+z'^2}$ =0. \rightarrow (4) \Rightarrow (a) \Rightarrow da \Rightarrow \Rightarrow (4) = $\frac{y'+7z'}{\sqrt{1+z'^2+z'^2}}=C_1$

We have,
$$|52-74+2-22=0|$$
 $\Rightarrow 2'=74'-15\rightarrow (7)$

Gotof. This value but (5) , we get

 $y'+7(7y'-15)=C_1$
 $=7$
 $50y'-105$
 $=C_1$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$
 $=7$