Generalized Method of Moments Introductory Notes

Laura Magazzini

Sant'Anna School of Advanced Studies laura.magazzini@santannapisa.it

The OLS estimator

$$y_i = x_i'\beta + u_i; i = 1, ..., N$$

• The OLS estimator is unbiased and consistent if all variables in x_i are uncorrelated with the error term

$$cov(regressors, error term) = 0$$

or

$$E(x_iu_i)=0$$

• For simplicity, let us assume that x_i only includes two regressors:

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + u_i$$

so we have:

$$E(x_{i1}u_i) = 0$$

$$E(x_{i2}u_i) = 0$$

• An orthogonality conditions on the mixed moments of x_i and u_i

The OLS estimator

$$E(x_{i1}u_i) = 0$$
 and $E(x_{i2}u_i) = 0$

• We can also write this conditions as:

$$E[x_{i1}(y_i - x_{i1}\beta_1 - x_{i2}\beta_2)] = 0$$

$$E[x_{i2}(y_i - x_{i1}\beta_1 - x_{i2}\beta_2)] = 0$$

 The OLS estimator can be obtained as the solution of the system of two equations where the population moment conditions above are replaced by the corresponding sample moments

$$\frac{1}{N} \sum_{i=1}^{N} x_{i1} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2) = 0$$

$$\frac{1}{N} \sum_{i=1}^{N} x_{i2} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2) = 0$$

- \triangleright System of two equations in two unknowns (β_1, β_2)
- ▶ These two equations are equivalent to the first order conditions derived from the minimization of the sum of squared residuals
- ightharpoonup The solution is the OLS estimator $\hat{\beta}_1$ and $\hat{\beta}_2$

The IV estimator

- Now suppose that $E(x_{i1}u_i) \neq 0$, while we retain the assumption $E(x_{i2}u_i) = 0$
- The OLS estimator is no longer consistent
- To get a consistent estimator, we search for an instrument (or instrumental variable)
- Suppose z_i is available that is correlated with the endogenous regressor, x_{1i} but not with the error term u_i
- The following orthogonality conditions (population moments) can therefore be written:

$$E[z_i(y_i - x_{i1}\beta_1 - x_{i2}\beta_2)] = 0$$

$$E[x_{i2}(y_i - x_{i1}\beta_1 - x_{i2}\beta_2)] = 0$$

The IV estimator

 The IV estimator can be obtained as a solution to the system of equation that replaces the population moment equations above with sample analogues:

$$\frac{1}{N} \sum_{i=1}^{N} z_i (y_i - x_{i1}\beta_1 - x_{i2}\beta_2) = 0$$

$$\frac{1}{N} \sum_{i=1}^{N} x_{i2} (y_i - x_{i1}\beta_1 - x_{i2}\beta_2) = 0$$

- \triangleright System of two equations in two unknowns (β_1, β_2)
- \triangleright The solution to the system is the IV estimator of β_1 and β_2
- The general solution can be written as

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y$$

$$= \left(\frac{1}{N}\sum_{i} z_{i}x'_{i}\right)^{-1} \left(\frac{1}{N}\sum_{i} z_{i}y_{i}\right)$$

$$= S_{XZ}^{-1}S_{ZY}$$

The GMM estimator

The general case

The model of interest is

$$y_i = x_i' \beta + u_i$$

with β of dimension $K \times 1$

• Let us assume that there are R instruments available in the vector z_i , which correspond to the following R moment conditions (in the population)

$$E(z_iu_i)=0$$

or

$$E[z_i(y_i - x_i'\beta)] = 0$$

• Let us now consider the R corresponding sample moments

$$g_N(\beta) = \frac{1}{N} \sum_{i=1}^{N} [z_i(y_i - x_i'\beta)] = 0$$

Identification

System of R equations in K unknowns

- If R < K the model is *not* identified
 - We need additional moment conditions!
- If R = K, the model is exactly identified
 - \triangleright We are back to the previous situation, and the IV estimator can be obtained from the sample moment conditions by solving the system of K equations in K unknowns $g_N(\beta) = 0$
- If R > K the model is overidentified
 - ▶ In this case it is not possible to solve for an estimate of β by solving the system defined by the sample moments $g_N(\beta) = 0$
 - ▶ The reason is that there are more equations than unknowns
 - ▶ Instead of dropping instruments one can choose β in such a way that the R sample moments $(g_N(\beta) = 0)$ are as close as possible to zero

7/1

If R > K...

- We choose β in such a way that the R sample moments $(g_N(\beta) = 0)$ are as close as possible to zero
- This is done by minimizing the following quadratic form

$$\min_{\beta} Q_N(\beta, W_N) = g_N(\beta)' W_N g_N(\beta)$$

$$= \left(\frac{1}{N} \sum_{i=1}^N [z_i (y_i - x_i'\beta)]\right)' W_N \left(\frac{1}{N} \sum_{i=1}^N [z_i (y_i - x_i'\beta)]\right)$$

where W_N is a positive definite symmetric matrix, known as weighting matrix, such that

$$W_N \stackrel{p}{\to} W$$

where W is itself a positive definite symmetric matrix

- To find the min we take first derivative wrt β and equate to 0
- In the case of linear moment conditions a closed form solution can be found:

$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'y$$

- \triangleright The solution exists if the matrix Z'X is of rank K
- ▶ In general, the GMM estimator, $\hat{\beta}_{GMM}$, is a function of the weighting matrix, W_N

Properties of $\hat{\beta}_{GMM}$

It can be proven that

(a) The GMM estimator converges in probability to the true parameter vector β

$$\hat{\beta}_{GMM} \stackrel{p}{\to} \beta$$

(b) The GMM estimator is asymptotically distributed as

$$\sqrt{N}(\hat{\beta}_{GMM} - \beta) \stackrel{d}{\rightarrow} N(0, V_{GMM}(W))$$

with

$$V_{GMM}(W) = (\Sigma_{XZ}W\Sigma_{ZX})^{-1}\Sigma_{XZ}W\Sigma W\Sigma_{ZX}(\Sigma_{XZ}W\Sigma_{ZX})^{-1}$$

- $\Sigma = E(u_i^2 z_i z_i')$ is the covariance matrix of the sample moments
- \triangleright Σ_{XZ} the probability limit of $S_{XZ} = X'Z$

Properties of $\hat{\beta}_{GMM}$

(c) In finite samples, it holds approximately that

$$\hat{\beta}_{GMM} \stackrel{\text{a}}{\sim} N \left[\beta, \frac{(\sum_{XZ} W \sum_{ZX})^{-1} \sum_{XZ} W \sum_{ZX} (\sum_{XZ} W \sum_{ZX})^{-1}}{N} \right]$$

(d) A consistent estimator for the covariance matrix is given by

$$\widehat{avar(\hat{\beta}_{GMM})} = \frac{(S_{XZ}W_NS_{ZX})^{-1}S_{XZ}W_NSW_NS_{ZX}(S_{XZ}W_NS_{ZX})^{-1}}{N}$$

with S consistent estimate of Σ : $S = \sum_{i} (\hat{u}_{i}^{2} z_{i} z_{i}')/N$

- ▶ This formula is robust to heteroskedasticity
- ▶ In case of heterosk & correlationa different formula can be applied

Efficient choice of W_N

$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'y$$

- Different weighting matrices lead to different consistent GMM estimators with generally different asymptotic covariance matrices
 It only affects efficiency of the estimator, not its consistency
- Recall the asy. var-cov matrix of GMM

$$\mathsf{avar}(\hat{\beta}_{\mathit{GMM}}) = (\Sigma_{\mathit{XZ}} W \Sigma_{\mathit{ZX}})^{-1} \Sigma_{\mathit{XZ}} W \Sigma W \Sigma_{\mathit{ZX}} (\Sigma_{\mathit{XZ}} W \Sigma_{\mathit{ZX}})^{-1} / \mathit{N}$$

- What is the **optimal choice** of W_N ?
- It can be shown that the optimal weighting matrix is proportional to the inverse of the covariance matrix of the sample moments

$$\Sigma = E(u_i^2 z_i z_i')$$

ullet When W_N is chosen optimally, the asy. var-cov matrix simplifies to

$$\operatorname{avar}(\hat{\beta}_{GMM}) = (\Sigma_{XZ}W\Sigma_{ZX})^{-1}/N = (\Sigma_{XZ}\Sigma^{-1}\Sigma_{ZX})^{-1}/N$$

Efficient choice of W_N

- The optimal choice is proportional to $\Sigma = E(u_i^2 z_i z_i')$ In general, this will be a function of β
- ullet A consistent estimator of Σ is

$$S = \frac{1}{N} \sum_{i} (\hat{u}_i^2 z_i z_i')$$

with \hat{u}_i estimated on the basis of a consistent $\hat{\beta}$

ullet The efficient choice therefore is $W_{N}=S^{-1}$

Efficient choice of W_N

• When W_N is chosen optimally $(W_N = S^{-1})$:

$$\hat{\beta}^*_{GMM} = (X'ZS^{-1}Z'X)^{-1}X'ZS^{-1}Z'y = (S_{XZ}S^{-1}S_{ZX})^{-1}S_{XZ}S^{-1}s_{Zy}$$

- It can be proven that
 - (a*) The efficient GMM estimator is consistent
 - (b*) $\sqrt{N}(\hat{\beta}_{GMM}^* \beta) \stackrel{d}{\rightarrow} N[0, (\Sigma_{XZ}W\Sigma_{ZX})^{-1}]$
 - (c*) In finite samples, it holds approximately that

$$\hat{\beta}_{GMM}^* \stackrel{\text{a}}{\sim} N \left[\beta, \frac{(\Sigma_{XZ} W \Sigma_{ZX})^{-1}}{N} \right]$$

(d*) A consistent estimator for the covariance matrix of $\hat{\beta}^*_{GMM}$ is given by

$$\widehat{avar(\hat{\beta}_{GMM}^*)} = \frac{(S_{XZ}W_NS_{ZX})^{-1}}{N}$$

One-step and two-step estimation

- ullet The choice of W_N only affects efficiency of the estimator, not its consistency
- Computation of optimal W_N requires an estimate of u_i
- Estimation can proceed in two steps
- In the first step, any W_N can be employed in estimation, e.g. the identity matrix I To be more general, let us denote this matrix by $W_N^{(1s)}$
- ullet The one-step estimator is obtained by minimizing $Q_N\left(eta,W_N^{(1s)}
 ight)$
- \bullet The one-step estimator, $\hat{\beta}_{GMM}^{1s},$ is consistent

One-step and two-step estimation

- Two-step estimation
 - ightarrow Use \hat{eta}^{1s}_{GMM} to obtain a consistent estimate of $S=rac{1}{N}\sum_i(\hat{u}_i^2 \mathbf{z}_i \mathbf{z}_i')$
 - ightharpoonup Set (estimate) the optimal weighting matrix to $S^{-1}=W_{N}^{(2s)}$
 - ightharpoonup The two-step estimator is obtained by minimizing $Q_N(eta,W_N^{(2s)})$
 - \triangleright The two-step estimator, $\hat{\beta}^{2s}_{GMM}$, is consistent and efficient in the case of non-spherical disturbances
- Under the more general case (heterosk. or correlation), an alternative strategy can be employed
 - ▶ Consider one-step estimation (consistent)
 - Use the formula for the variance-covariance matrix of $\hat{\beta}^{1s}_{GMM}$ that is robust to heteroskedasticity and correlation formula in (d) rather than (d*)

16/1

Special case

Spherical disturbances

- Under the assumption of homoskedasticity and uncorrelation of the error term, the first step estimation is also efficient
- ullet In this case, the optimal weighting matrix does not depend on eta

$$\Sigma = E(u_i^2 z_i z_i') = \sigma_u^2 E(z_i z_i')$$

- The optimal weighting matrix is therefore proportional to $E(z_i z_i')$
- It can be estimated by $S = \sum_i (z_i z_i')/N$
- Therefore, the weighting matrix can be chosen "optimally" in the first stage:

$$W_N = S^{-1}$$

The Sargan/Hansen test

- Consistency of the GMM estimator relies on the validity of moment conditions
 - \triangleright We evaluate if the length of the vector $\mathbf{z}'u$ is near to 0
- The Sargan/Hansen test allows you to check

$$H_0: E(\mathsf{z}_i \mathsf{u}_i) = 0$$

- Let $\hat{u}_i = y_i \mathbf{x}_i' \hat{\beta}_{GMM}^*$
- Consider the test statistics

$$\xi = N \left[\frac{1}{N} \sum_{i} z_{i} \hat{u}_{i} \right]' \left[\frac{1}{N} \sum_{i} (\hat{u}_{i}^{2} z_{i} z_{i}') \right]^{-1} \left[\frac{1}{N} \sum_{i} z_{i} \hat{u}_{i} \right]$$
$$= \left[\sum_{i} z_{i} \hat{u}_{i} \right]' \left[\sum_{i} (\hat{u}_{i}^{2} z_{i} z_{i}') \right]^{-1} \left[\sum_{i} z_{i} \hat{u}_{i} \right]$$

The Sargan/Hansen test

- In the case R = K, $\xi = 0$
- In this case, GMM reduces to IV: $\hat{\beta}_{GMM} = (z'x)^{-1}z'y$
- The test statistic is therefore given by:

$$z'\hat{u} = z'(y - x\hat{\beta}) = z'(y - x(z'x)^{-1}z'y) = 0$$

- When R > K, ξ will in general be positive
- Under H0: the instruments are valid, it should be small as

$$p \lim \left(\frac{1}{N} \sum_{i} z_{i} \hat{u}_{i}\right) = 0$$

- \triangleright One can expect all elements in $(\frac{1}{N}\sum_i z_i \hat{u}_i)$ to be close to zero
- It can be proven that, under H0

$$\xi \stackrel{d}{\to} \chi^2_{R-K}$$

• The associated test is commonly known as the Sargan-Hansen test or, alternatively, as the overidentifying restrictions test

19/1

 ${\sf Appendix}$

Solution to min Q

 Using matrix notation for convenience we can rewrite our objective function as

$$Q_{N}(\beta, W_{N}) = \left(\frac{1}{N} \sum_{i=1}^{N} [z_{i}(y_{i} - x_{i}'\beta)]\right)' W_{N} \left(\frac{1}{N} \sum_{i=1}^{N} [z_{i}(y_{i} - x_{i}'\beta)]\right)$$

$$= \left(\frac{1}{N} Z'(y - X\beta)\right)' W_{N} \left(\frac{1}{N} Z'(y - X\beta)\right)$$

$$= \frac{1}{N^{2}} \left(y'ZW_{N}Z'y - y'ZW_{N}ZX\beta\right)$$

$$- \beta'X'ZW_{N}Z'y + \beta'X'ZW_{N}Z'X\beta$$

$$= \frac{1}{N^{2}} \left(y'ZW_{N}Z'y - 2y'ZW_{N}ZX\beta + \beta'X'ZW_{N}Z'X\beta\right)$$

 \bullet The solution to the minimization problem gives us the GMM estimator for β

Solution to min Q (cont.d)

$$\frac{\partial Q_N(\beta, W_N)}{\partial \beta} = -2X'ZW_NZ'y + 2X'ZW_NZ'X\hat{\beta}_{GMM} = 0$$

• This in turn imply:

$$X'ZW_{N}Z'y = X'ZW_{N}Z'X\hat{\beta}_{GMM}$$

- This is a system with K equations and K unknowns
- Provided that the matrix Z'X is of rank K, the solution is given by

$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'y$$

• In general, the GMM estimator, $\hat{\beta}_{GMM}$, is a function of the weighting matrix, W_{N}

L. Magazzini (SSSA)