Метод фазовых траекторий в анализе отраженного от ионосферы электромагнитного поля

Волков О.Ю., Федоров В.А., Московский государственный университет им. М.В. Ломоносова, физический факультет

Аннотация

Представлен анализ экспериментальных временных рядов, характеризующих динамику изменения параметров отраженного от F2 слоя радиоимпульса декаметрового диапазона на односкачковой вертикальной ионосферной трассе. Получены оценки значений корреляционной размерности и спектра показателей Ляпунова, позволяющие реконструировать аттрактор системы. Предложены нелинейно-динамические аппроксимации для описания эволюции отражённых сигналов различного состояния поляризации Рассмотрены фазовые траектории, соответствующие различным состояниям ионосферы и типам распространения радиосигнала.

Актуальность и цель работы

Изучение случайно-неоднородной структуры высокоширотной верхней ионосферы представляют большой интерес как для теоретических исследований динамики магнитоактивной плазмы с открытыми границами, так и для решения прикладных задач трансионосферной связи и загоризонтной радиолокации. Распространение радиоволн зависит исключительно от неоднородного распределения электронной концентрации в ионосфере. То есть анализ поля радиосигнала, отраженного от слоя F2, позволяет восстановить динамику магнитоактивной плазмы верхней ионосферы. Интерес представляет рассмотрение влияния ионосферных возмущений и эффекта многолучовости на характер распространения сигнала.

Цель работы состоит в оценке эффективности метода фазовых траекторий для анализа отраженного от ионосферы радиосигнала

Нелинейно-динамический анализ

Возможно восстановление параметров динамической системы по отдельной реализации процесса путем изучения траектории системы в фазовом пространстве, координатами которого являются компоненты вектора

$$Z_i^{\ m} = \{x_i, x_{i+\tau}, ..., x_{i+(m+1)\tau}\},$$
где $x_i = x(t_i)$ значения временной ряда.

Временной шаг τ принято называть *интервалом* задержки, а m – вложенной размерностью, которая соответствует количеству независимых переменных, однозначно определяющее установившееся движение динамической системы.

Корреляционную размерность оценим так $D_2(N,\varepsilon) = \frac{\partial lnC(N,\varepsilon)}{\partial ln\varepsilon}$, здесь $C(\varepsilon,N) = \frac{1}{N(N-1)} \sum_{i}^{N} \sum_{j=i+1}^{N} \theta(\varepsilon - \left| \left| p_i - p_j \right| \right|)$

корреляционная сумма, равная отношению количества пар точек, расстояние между которыми не превышает значения ε , к полному числу пар точек.

Значение параметров реконструкции , при котором значения D_2 достигают насыщения, является оценкой минимальной размерности вложения и интервала задержки, а сами значение D_2 — оценкой корреляционной размерности аттрактора.

Экспериментальные данные

Схема вертикального зондирования ионосферы

Технические характеристики установки: Рабочий диапазон частот от 1.5 до15 МГц Длительность импульса 100 мкс (одна XB) 400 мкс (смесь XB)

Интервал последовательных измерений 160 мс Чувствительность пиемников не хуже 1 мкв

В качестве данных использовались временные ряды реальной $ReE_{\xi,\eta}$ и мнимой $ImE_{\xi,\eta}$ компоненты сигнала с двух скрещенных под прямым углом антенн ξ и η , полученные при вертикальном зондировании ионосферы.

Изучалось поведение первой и второй характеристических волн (обыкновенной и необыкновенной) по отдельности и их смеси при длительности выборки не менее 2000 отсчетов.

Результаты

Определение параметров реконструкции

Зависимость корреляционной размерности D_2 от размерности вложения m и интервала задержки τ для смеси характеристических волн и ее проекция на плоскость (D_2, τ) . Сверху представлены вариации исследуемого временного ряда

Типичные состояния ионосферы

Nº2	XB1	XB2	смесь	Nº4	XB1	XB2	смесь
τ	70	70	70	τ	29	29	29
m	5	7	7	m	5	6	7
D2	4.61	5.78	5.67	D2	3.61	3.97	4.24
T	3.95	3.23	2.96	T	6.03	5.44	6.56

Значения среднего времени возврата фазовых траекторий *T*, определяющие характерный временной масштаб динамики системы, варьируются от 1.3 до 6.6 секунд.

При анализе вариаций квадратурных составляющих сигнала получены дробные значения корреляционной размерности в интервале $3.63 < D_2 < 6.23$ и размерности вложения в интервале 3 < m < 10.

Значения D_2 определяют степенной закон зависимости спектральной плотности отраженного от ионосферы радиоимпульса от доплеровской частоты смещения $S(\Omega) \sim (1/\Omega)^{D_2-m}$, характерный диапазон $-2.06 < D_2 - m < -1.02$.

Фазовые траектории

Временные развертки двумерных проекций реконструкции аттрактора на две первые главные компоненты (a1, a2) для первой (a), второй (b) характеристических волн и их смеси (c)

Заключение

Продемонстрирована результативность использования метода фазовых траекторий в задачах анализа отраженного от ионосферы радиосигнала

Определены характерные значения размерности вложения для различных состояний ионосферы. Минимальные полученные значения m (3-6) соответствуют слабо возмущенной ионосфере, в остальных случаях наблюдается увеличение значений размерности вложения при усилении нестационарности вплоть до m=10

Установлены значения корреляционной размерности D_2 и характерного времени возврата фазовых траекторий T. Для значений T наблюдается тенденция к уменьшению, при усилении эффекта многолучевого распространения. Значения D_2 , напротив, возрастают от $D_2 \approx 3.5$ (отсутствие многолучевости) до $D_2 \approx 6.3$

При рассмотрении стационарной ионосферы корреляционная размерности принимает целые значения и отраженный сигнал может быть аппроксимирован гармоникой на соответствующей доплеровской частоте. В остальных случаях значения корреляционной размерности дробные и динамика системы может быть описана только нелинейными уравнениями.