# Distinct spatial patterns of flanker

# 2 interference differentiate visual

# 3 crowding from flanker compatibility

# 4 effects in the Eriksen task

- 5 Danai Papadaki<sup>1</sup>, Rama Chakravarthi<sup>1</sup> & Søren K. Andersen<sup>1,2</sup>
- 6 (1. School of Psychology, University of Aberdeen, UK, 2. Department of
- 7 Psychology, University of Southern Denmark, Denmark)
- 8 danai.papadaki3@abdn.ac.uk

## 9 Abstract

28

Recognising and responding to task-relevant stimuli may be hindered by 10 nearby task-irrelevant flanker stimuli. Such effects occur both in visual 11 12 crowding and in Flanker Compatibility Effects (FCE). Whereas crowding is a visual phenomenon that reflects a breakdown of object recognition in 13 clutter, the FCE in the Eriksen flanker task is thought to be due to conflict 14 during decision-making. In two experiments we investigated if and how 15 these two seemingly independent phenomena are related. We employed an 16 17 orientation categorisation task that allowed us to concurrently quantify 18 crowding and FCEs. Specifically, we examined whether the spatial arrangement of stimuli affects the FCE in a similar way as in crowding. 19 20 Interestingly, even when flankers were outside the crowding range, larger 21 FCEs were observed for radially placed flankers compared to tangentially 22 placed ones and for two compared to one flanker, corresponding to 23 established patterns in crowding. However, inner flankers produced larger 24 FCEs than outer flankers - the opposite of what is observed in crowding. In 25 Experiment 2, we further investigated this reversed inner-outer asymmetry while manipulating the magnitude of crowding through varying 26 27 target-flanker spacings. As expected, the outer flankers produced stronger

crowding than inner ones. Crucially, the inner flankers produced a larger

reaction time FCE and this inner-flanker interference was highest at the largest spacing. These findings demonstrate that the spatial layout of visual stimuli modulates conflict at both visual and decision-making stages, but the opposite patterns of the inner-outer asymmetry in the two phenomena provide a clear demarcation between the processes underlying them.

### Introduction

The visual environment is frequently cluttered. To successfully navigate and interact in it, irrelevant information needs to be filtered out from relevant. However, irrelevant, and potentially conflicting, nearby information ('flankers') often interferes with the processing of relevant information in the visual field. Such interference is thought to arise at both the visual processing and decision-making stages. Two phenomena associated with flanker interference at each of these processing stages are visual crowding (Bouma, 1970) and the flanker compatibility effect (FCE) as demonstrated by the Eriksen flanker task (Eriksen & Eriksen, 1974), respectively. While these phenomena have conceptual and experimental similarities, they have been studied independently. As a result, there is no overarching framework for understanding the combined consequences of flanker interference across the entire processing hierarchy, potentially limiting the applicability of lab findings to real-life settings where decision-making may be based on sub-optimal sensory information.

### Crowding

Crowding is a breakdown of object recognition in clutter, i.e., an object that can be accurately identified in isolation becomes unrecognisable when flanked by other similar objects (Bouma, 1970; Chakravarthi & Cavanagh, 2007; Pelli & Tillman, 2008). Crowding is thought to be a fundamental constraint on how much information we can utilise from peripheral vision (Levi, 2008a; Pelli & Tillman, 2008) and is thought to result from interference at the visual processing stage

60 (Greenwood et al., 2009; Harrison & Bex, 2015; Parkes et al., 2001). Some of the salient characteristics of crowding are that its strength increases 61 with a) decreasing target-flanker distance (e.g., Wolford & Chambers, 62 63 1983; Pelli et al., 2004; Toet & Levi, 1992) and b) increasing eccentricity (Bouma, 1970; Toet and Levi, 1992). Flankers beyond a certain distance 64 65 from the target no longer interfere with it. This distance is commonly termed as critical spacing (Pelli & Tillman, 2008). Critical spacing is 66 67 largely proportional to eccentricity and has been estimated to be roughly half the eccentricity of the target from fixation (Bouma, 1970). This 68 69 proportionality has been recognised in the literature as the Bouma Law 70 (Pelli and Tillman, 2008). However, critical spacing is not constant: it is systematically affected by various manipulations and can be substantially 71 72 larger or smaller than half the eccentricity under certain conditions (Soo et al., 2018; Scolari et al., 2007; for a review see Strasburger, 2020). 73

74 Numerous accounts attempt to capture the mechanisms underlying 75 visual crowding (Strasburger et al., 1991). However, the main proposals associated with crowding are *pooling*, *substitution* and *selective attention* 76 (Tyler & Likova, 2007). Pooling theories posit that under crowded 77 conditions target and flanker features are averaged (Balas et al., 2009; 78 79 Keshvari & Rosenholtz, 2016; Parkes et al., 2001; Pelli et al., 2004). Each visual area has neurons with receptive fields that increase in size with 80 increasing eccentricity. Therefore, the further out in the periphery a 81 stimulus is presented, the bigger on average, the receptive fields of the 82 83 neurons responding to it (Fang & He, 2008; Levi et al., 1985; Pelli, 2008; 84 for review see Strasburger et al., 2011). When multiple stimuli fall within the same receptive field, their features are "pooled" resulting in crowding 85 (Dayan & Solomon, 2010; Motter & Simoni, 2007; Van Den Berg et al., 86 2010; Wolford, 1975). Crowding is stronger in the periphery than at 87 88 fixation, as targets and flankers need to be much farther apart in order not to fall within the same receptive field (Freeman & Simoncelli, 2011; 89 90 however see Wallis et al., 2019). In contrast, substitution theories argue 91 that crowding results from mistaking the location of a target or its features and reporting a flanker instead (Chastain, 1983; Estes et al., 1976; Ester et 92

93 al., 2014; Strasburger, 2005; 2014; Strasburger et al., 1991). Evidence for substitution is apparent when examining the types of errors participants 94 make, where participants often report the identity of a flanker instead of 95 the target (Freeman et al., 2012; Ester et al., 2014; Hanus & Vul, 2013; 96 Harrison & Bex, 2015). The last account is selective attention. Selective 97 98 attention serves to focus processing resources on relevant stimuli and attenuate the influence of irrelevant stimuli. It is thought to play a role in 99 crowding, either as the source of the processing bottleneck (He et al., 100 1996; Chakravarthi & Cavanagh, 2007; 2009; Põder, 2007) or as a 101 102 modulating influence (Huckauf & Heller, 2002; Scolari et al., 2007; 103 Strasburger, 2005; Strasburger & Malania, 2013; Yeshurun & Rashal, 2010; Kewan-Khalayly et al., 2022; Mareschal et al., 2010; LaBerge et al., 104 1991; Bowen et al., 2023). 105

### Eriksen Flanker Task

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

The Eriksen flanker task (Eriksen & Eriksen, 1974) is a conflict task in which a target stimulus and nearby flankers may evoke the same or opposing behavioural responses. The Stroop task (Stroop, 1935), Simon task (Simon & Rudell, 1967) and Navon's hierarchical letters (Navon, 1977) are other prominent examples of conflict tasks. A common aspect of these is the occurrence of longer reaction times when task-irrelevant information is associated with an incompatible response (incongruent) than when it invokes a compatible response (congruent) or is neutral. The difference in reaction times between congruent and incongruent trials in the Eriksen flanker task is known as the flanker compatibility effect (FCE) where the bigger the FCE, the stronger the interference induced by the flankers on the target (e.g., Miller, 1991). The Eriksen flanker task has been adapted in a large number of experimental settings to study a range of topics such as conflict monitoring (Gratton et al., 1988), creative intelligence during problem-solving (e.g., Rowe et al., 2007), executive control (Davelaar & Stevens, 2009), the breadth of attentional selection (Rowe et al., 2007) and ageing (Reuter-Lorenz & Cappell, 2008). In contrast to crowding, in the Eriksen flanker task, the identity of both target and flankers can be accurately identified. Since the identities of the target

126 and flankers have been processed and the conflict results from the congruency (or its lack) between them, this conflict has been interpreted to 127 occur during the decision-making stage (Eriksen & Eriksen, 1974). Even 128 though most of the tested perceptual properties do not modulate the FCE 129 (Miller, 1991), certain stimulus properties such as target-flanker spacing 130 131 and colour similarity seem to do so (Baylis & Driver, 1992; however see: Harms & Bundesen, 1983). Therefore, the visual processing stage might 132 play a more important role in the FCE than originally considered (Eriksen 133 & Schultz, 1979). 134

## The relationship between crowding and the FCE

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

Crowding and the FCE in the Eriksen flanker task have been treated and examined separately in the literature. However, when comparing them, it is clear that they share several characteristics. Even though they are used in different contexts, both examine how irrelevant information interferes with relevant information in our visual field and have employed comparable experimental approaches. Additionally, both fields of research have tested the role of target-flanker spacing. In both crowding (e.g. Bouma, 1970; Pelli et al., 2004; Toet & Levi, 1992; for reviews see Levi, 2008; Whitney & Levi, 2011), and the FCE in the Eriksen flanker task (Eriksen & Eriksen, 1974; Kelber et al., 2023; Kramer & Jacobson, 1991), interference is stronger at closer than farther target-flanker spacings. Moreover, both phenomena appear to be modulated by target-flanker similarity, where interference is stronger between more similar objects (Crowding: Kooi et al., 1994; Chakravarthi & Cavanagh, 2007; Kennedy & Whitaker, 2010; Scolari et al., 2007; FCE: Eriksen & Schultz, 1979; Baylis & Driver, 1992), although this relationship is well established in crowding, it is still debated in the FCE (Harms & Bundesen, 1983).

Nevertheless, the conditions under which the two phenomena have been studied also differ in some critical ways, suggesting that they might indeed have different boundary conditions where it is possible to observe only one or the other. Specifically, crowding has been predominantly studied in the visual periphery, using unspeeded identification responses and measured through identification accuracy (for a review see Whitney & Levi, 2011). In contrast, the FCE has been predominantly studied with stimuli presented at or close to fixation, using speeded categorisation responses measured with reaction times (for review see Ridderinkhof et al., 2021). Consequently, a clear separating line is that the Eriksen flanker task typically involves situations where flankers are outside the critical spacing of crowding i.e., where object identification is unproblematic, whereas crowding typically investigates situations in which flankers are close enough to impair object identification. The identification of both targets and flankers is a necessary condition for the FCE as the effect results from the potential conflict between the responses evoked by the two. Thus, the FCE might be attenuated or absent when identification becomes difficult, as when stimuli are crowded. However, since the two phenomena are typically studied separately it is unclear whether this is the case.

As mentioned above, crowding is thought to be due to interference during visual processing (Anderson et al., 2012; Chen et al., 2014; Chen et al., 2018; Freeman et al., 2011; Pelli, 2008; Strasburger, 2020) whereas the FCE is due to conflict during decision-making (Eriksen & Eriksen; Eriksen & Schultz, 1979). It is therefore likely that flanker interference in the two phenomena occurs sequentially, but their inter-dependence is currently unknown. Thus, it is not clear whether the specificities of visual processing leave any imprint on the later response selection stage when visual identification itself is unproblematic (e.g., no crowding). If the two types of flanker interference are linked, then stimulus manipulations that affect crowding should also affect the FCE. If this were the case, investigations of one phenomenon might be highly informative for the other, and much could be gained from integrating knowledge across both.

## The current study

To examine the relationship between crowding and the FCE in the Eriksen flanker task, we studied the effect of spatial configuration of targets and flankers, as aspects of this are known to affect both

phenomena. Importantly, certain spatial effects have been argued to be unique to crowding and thus to be diagnostic in distinguishing it from other related phenomena (for a review see Strasburger, 2020). For example, flanker interference in crowding depends not only on the target-flanker distance but also on the position of the flankers relative to the target. First, there is a radial-tangential anisotropy in peripheral vision for crowding (Toet & Levi, 1992): radially presented flankers induce more crowding than tangential ones (e.g., Greenwood et al., 2017; Kurzawski et al., 2023; Kwon et al., 2014; Petrov & Meleshkevich, 2011; Toet & Levi, 1992; Van Den Berg et al., 2010, Wolford & Chambers, 1983). A second key property, which is considered to be a diagnostic criterion of crowding, is the inner-outer asymmetry (Banks et al., 1979; Chakravarthi et al., 2021; Petrov et al., 2007; Shechter & Yashar, 2021; for a review see Strasburger, 2020). In particular, flankers that are presented between the target and fixation (inner) induce less crowding than flankers presented further away from fixation than the target (outer). It has also been noted that crowding is stronger with two flankers compared to one (Bouma, 1970; Pelli et al., 2004). 

In Experiment 1, we examined whether the FCE in a modified Eriksen flanker task also demonstrates (1) the inner-outer asymmetry, (2) the radial-tangential anisotropy, and (3) if two flankers interfere more than one. To ensure that these asymmetries and anisotropies were not simply due to crowding, crowding was eliminated by placing the flankers well outside the critical spacing. This allowed us to test whether the spatial organisation of the scene continues to interfere with decision-making, even when the targets (and flankers) are accurately identified. If the FCE results exclusively from response conflict, the visual organisation of the scene should not influence the magnitude of the effect, as long as both the targets and flankers are adequately identifiable. Therefore, we would not expect to see any anisotropies or asymmetries in the FCE. However, if asymmetries follow the pattern seen in crowding, we would expect more flanker interference from 1) outer compared to inner, 2) radial compared to tangential and 3) two compared to one flanker. This would suggest that

223 the specifics of visual processing influence the FCE even when stimulus identification is unproblematic. In Experiment 2, we further examined the 224 inner-outer asymmetry and tested it across multiple target-flanker 225 spacings. Since the inner-outer asymmetry has been used as a diagnostic 226 tool for crowding, we wanted to test this asymmetry in the FCE both with 227 228 and without crowding. This manipulation not only allowed us to examine 229 the two under the same experimental settings but also provided insight 230 into situations where decision-making is based on sub-optimal visual 231 information.

232

233

235

243

# Experiment 1

### 234 Method

### **Participants**

Experiment 1 tested eighteen volunteer participants (self-reported: 4 males; 2 left-handed; mean age = 26.8 years; age range = 23-39). All participants reported having normal or corrected-to-normal visual acuity. Participants were reimbursed £8 for their time. They provided informed written consent prior to the study and the experiment was approved by the ethics committee of the School of Psychology at the University of Aberdeen.

#### Sample size calculation

We computed the required sample size based on previously reported 244 effect sizes for three distinct effects: the 1) flanker compatibility effect 245 (Barzykowski et al., 2022), 2) radial tangential anisotropy (Kurzawski et 246 al., 2023) in crowding, and 3) inner-outer asymmetry (Chakravarthi et al., 247 248 2021) in crowding. We desired the sample size that would yield a power of at least 95% to detect the *smallest* of these effects. Specifically, for the 249 250 FCE, the mean difference in RT between correct congruent and incongruent trials (n=466, mean=-44.2 ms, SD=23.9 ms; Barzykowski et 251 al., 2022) has a standardised effect size ('delta', a standardised effect size 252 253 in the Cohen's d family in which the standard deviation of the difference

254 between conditions is used as the denominator) of 1.85, and hence n=7yields a power of 95% to detect the FCE. For the radial-tangential 255 anisotropy, the mean difference between radial and tangential critical 256 257 spacing at 5 degrees eccentricity (n=50, mean= 0.65, SD=0.21; Kurzawski et al., 2023) gives a delta effect size of 3.1; therefore, n=4 will provide a 258 259 power of 95% to detect the anisotropy. For the inner-outer asymmetry, the mean difference between in and out critical spacing at 7.5 degrees 260 261 eccentricity (n= 38, mean=1.35, SD = 0.72; Chakravarthi et al., 2021) gives a 'delta' effect size of 1.87 where n=6 yields power of 95%. Previous 262 263 studies have typically used participant numbers in the range of 4-12. Here, 264 we sought to determine if there would be any spatial asymmetries. Hence, to ensure that we were adequately powered, we chose to triple the number 265 of participants suggested by the power analysis, and hence we tested at 266 least 18 individuals. These calculations were done using the power 267 calculator provided 268 by Gregory Francis (http://www1.psych.purdue.edu/~gfrancis/calculators/means\_dependent\_ 269 power.shtml). 270

#### Materials and Stimuli

271

272 The experiment was conducted on a Dell computer, using PsychToolbox extensions (Brainard, 1997; Kleiner et al., 2007) for 273 MATLAB (Mathworks, Natick, MA). A Cambridge Research Systems 32" 274 Display++ LCD monitor set to 1920 x 1080 pixels resolution and 120 Hz 275 refresh rate was used for stimulus presentation and viewed at 57 cm. 276 277 Participants' head position was secured with a chin rest. The target and flanker stimuli were clock-like objects: a circle with an oval hand along the 278 radius. The thickness of the widest point of the hand was equal to the 279 thickness of the circle. A target clock with a diameter of 1.5° of visual angle 280 (dva) was presented at an eccentricity of 4° on the horizontal meridian to 281 282 the left or the right of the fixation cross. Two stimulus groups ('up' and 'down') were created based on the orientation of the clock hand (Figure 283 1C). Each stimulus group had three orientations: up (45°, 90°, 135°) and 284

down (225°, 270°, 315°)¹. The target appeared in isolation, with one, or with two flanking clocks.

To ensure that modulation of flanker compatibility effects could not be attributed to crowding, we presented flankers outside the critical spacing, i.e., ensured that accuracy in all conditions was above 90%. Pilot data were collected to find a stimulus configuration that satisfied the above condition while also producing stable reaction time FCEs. Based on this, we reduced target-flanker similarity to reduce crowding (Kooi et al., 1994; Rashal & Yeshurun, 2014; Scolari et al., 2007) by decreasing the size of the flankers to two thirds that of the target (1° diameter). This allowed us to present flankers at a centre-to-centre distance of 2° from the target without inducing crowding. Note that, while we could have reduced crowding by instead moving flankers further away, it would have moved the inner flanker close to or on top of the fixation cross.

Flankers were either from the same response group as the target (congruent) or from the other group (incongruent). Flankers were never identical to each other or to the target. Four flanker locations were used relative to the target (inner, outer, above, and below), which were combined with the manipulation of the number of flankers (one or two) to yield 6 flanker position conditions: three tangential (above, below, above & below) and three radial (inner, outer, inner & outer). To clearly indicate the target location and avoid ambiguity due to its changing relative location across flanker configurations, its position was indicated by four diagonal straight lines with a dot at the end (length 2°, thickness 0.15°). This location cue was of opposite luminance polarity to the target and flanker stimuli to prevent it from inducing crowding.

The luminance of target and flanker stimuli, the location cue, and the background were 9.03 cd/m<sup>2</sup>, 66.76 cd/m<sup>2</sup>, and 37.86 cd/m<sup>2</sup>, respectively. Accordingly, Weber contrast<sup>2</sup> of targets, flankers, and the location cue was

<sup>1</sup> ¹ Angles are given relative to the x-axis (0°) and increase in counterclockwise direction, as is usual in Cartesian coordinate systems.

<sup>&</sup>lt;sup>2</sup> Weber Contrast C was calculated as , where I is the luminance of the stimulus and I<sub>b</sub> is the luminance of the background.

314 ±0.76, with targets and flankers having a negative, and the location cue 315 having a positive contrast.

#### Procedure

316317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

The fixation cross and location cues (one on each side of fixation) were presented on the screen throughout the experiment. In each trial, one of the six target clocks was presented unpredictably to the left or the right side of the fixation cross for 208 ms in isolation or surrounded by one or two flankers, in one of the six flanker position conditions. The flankers, when presented, were either both congruent or both incongruent. The inter-trial interval was randomly sampled between 808-1208 ms. Participants were asked to perform a categorisation task and indicate, by pressing the 'up' or 'down' arrow key, the group of the target letter (Figure 1). Participants were instructed to fixate at the centre of the screen and respond as quickly and as accurately as possible. The short stimulus presentation duration was chosen to prevent eye movements. Maximum response time was set to 1500 ms; if a response was not made within that time window, the next trial was presented, and the trial was counted as an error. At the end of each trial, participants received auditory feedback in the form of a beep for error responses. At the end of each block, average accuracy and reaction times for that block were presented to participants. Participants proceeded to the next block after a self-paced break.

Each participant completed 1176 trials across 7 blocks. There were 168 different types of trials: 2 presentation sides (left, right), 2 response groups (up, down), 3 target identities within each group, 2 flanker congruency (congruent, incongruent) types, and 7 flanker positions (above, below, above & below, inner, outer, inner & outer, no flanker). Each block included a single presentation of each type of trial and all trials in each block were shown in random order. For calculation of accuracy and median reaction time, we pooled responses across presentation side, response group and target identity. Accordingly, behavioural data were analysed in terms of flanker position and congruency with 84 trials per condition, except for the no-flanker condition, which was tested with 168

trials. For each condition, the median reaction time was calculated from correct trials (93.7% of all trials).

Prior to the experiment, participants completed two sets of practice blocks. First, 72 trials with no flankers were presented to ensure participants became familiar with the response groups. A second practice block with 168 trials identical to a block from the main experiment including all experimental conditions was then completed. If participants scored less than 90% accuracy across all trials, this block was repeated. All participants were able to perform above 90% accuracy within a maximum of two blocks of practice.



Figure 1: A. Example trial from Experiments 1 & 2 showing the sequence of events: fixation, stimulus presentation and screen until response. Experiment 1: an incongruent trial showing flanker location 'inner & outer'. The correct response would be "up". Experiment 2: an incongruent trial showing flanker location "inner" at 2.7 degrees target-flanker spacing. The correct response would be "up". B. Representation of flanker positions. C. Target groups and corresponding key responses. Participants were asked to perform a categorisation task and indicate, by pressing an arrow key, the group of the target.

### Results

As intended, each participant's categorisation accuracy reached or exceeded 90% in all conditions. Thus, flankers were presented outside the critical spacing defined as 90% of asymptote (Coates et al., 2018; Kurzawski et al., 2023) and any effects found, therefore, cannot be attributed to crowding. Categorisation accuracy and median reaction times, averaged over participants, as well as the difference between congruent and incongruent conditions for both measures, at all flanker positions, are plotted in Figure 2.



Figure 2: Results from Experiment 1. Accuracy and median reaction times averaged across participants as a function of flanker position with within-subjects 95% confidence intervals as error bars (Cousineau, 2005) (Morey, 2008). Plots A&B show average performance where black filled circles represent performance in the congruent trials and grey open squares performance in the incongruent trials. The solid red line with the shaded area is performance in the no flanker condition. Plots C&D show the difference in performance in the incongruent and congruent conditions (incongruent – congruent), for each flanker position. Here, more negative values for accuracy, and more positive values for reaction times represent stronger FCE. Zero represents no FCE which is indicated with a solid grey line. For the flanker positions coded as (1F), we pooled trials across single flanker presentations where inner and outer locations yield a 'Radial (1F)' condition and above and below locations yield a 'Tangential (1F)' condition.

388 In Experiment 1, we examined: (1) the inner-outer asymmetry, (2) the radial-tangential anisotropy and (3) interference from two compared to 389 one flanker, in the FCE, as tested by the Eriksen flanker task. To evaluate 390 the inner-outer asymmetry we computed a two-way repeated measures 391 ANOVA with factors congruency (congruent, incongruent) and flanker 392 393 position (inner, outer) for accuracy and s. As expected, accuracy was higher in congruent than in incongruent trials (F(1,17) = 34.11, p < 0.001, 394 = 0.67) and interestingly it was higher with the outer than with the inner 395 flanker (F(1,17) = 7.56, p = 0.01, = 0.31). However, there was no 396 397 significant interaction between the two factors (F(1,17) = 3.03, p = 0.10,398 = 0.15). Therefore, in terms of accuracy, there was no significant innerouter asymmetry for the FCE. However, it should be noted that accuracy 399 was, as aimed for, near ceiling (Figure 2A, first panel), and thus the 400 sensitivity to detect such an interaction, if it were there, would have been 401 limited. Reaction times were also faster in congruent than in incongruent 402 trials (F(1,17) = 99.86, p < 0.001, = 0.85) and with outer than with inner 403 flanker (F(1,17) = 20.21, p < 0.001, = 0.54). However, here a two-way 404 interaction between the factors showed that the FCE was stronger for the 405 inner than for the outer flanker (F(1,17) = 5.02, p = 0.04, = 0.23) (see 406 Figure 2D, first panel). That is, (a) there was an inner-outer asymmetry for 407 408 the FCE, observed in reaction times, even when there was no crowding and 409 (b) surprisingly, this asymmetry was in the opposite direction to the one we 410 would expect from crowding. For the full set of comparisons see Table 1A.

411 To test for the radial-tangential anisotropy and the effect of number of flankers, a three-way repeated-measures ANOVA with factors *congruency* 412 (congruent, incongruent), flanker position (radial, tangential) and flanker 413 414 number (one, two) was computed. Accuracy and reaction times for radial and tangential for one flanker were computed by averaging across inner 415 416 and outer and above and below flanker positions, respectively. Accuracy was again higher in congruent compared to incongruent trials (F(1,17) = 417 418 17.81, p < 0.001, = 0.51) and there was an interaction between 419 congruency and flanker location where the FCE was stronger for radial compared to tangential flanker positions (F(1,17) = 11.23, p = 0.003, 420

0.40) (see Figure 2A, middle panel). That is, a radial-tangential anisotropy was found in the same direction as seen in crowding. Reaction times were faster in congruent compared to incongruent trials (F(1,17) = 160.03, p <0.001, = 0.90) and with one compared to two flankers (F(1,17) = 67.27, p< 0.001, = 0.80). A three-way interaction was found between congruency, flanker position, and number of flankers where the FCE, in terms of reaction times, was larger in the presence of radial flankers compared to tangential flankers, and this effect was even more pronounced when there were two flankers present compared to one (F(1,17) = 5.04, p = 0.04, =0.23) (see Figure 2D, middle panel). For the full set of comparisons see Table 1B. Therefore, we observed a radial-tangential anisotropy in the FCE with stronger interference from radial than tangential flankers; we also observed that FCE was stronger in the presence of two compared to one flanker. These findings were in line with what we would expect from crowding experiments. 

Single flankers above or below the target induced slower reaction times when they were incongruent compared to congruent (F(1,17) = 6.05, p = 0.02, = 0.26). Reaction times did not differ depending on whether flankers were above or below the target and there was no interaction (Figure 2D, last panel). Accuracy showed neither main effects nor interactions for this manipulation. For the full set of comparisons please see (Table 1C).

Table 1: Statistics for data from Experiment 1. *A) Two-way repeated measures ANOVA with factors Congruency (congruent, incongruent) and Flanker position (inner, outer flankers). B) Three-way repeated measures ANOVA with factors Congruency (congruent, incongruent), Flanker position (radial, tangential), and Number of flankers (one, two). C) Two-way repeated measures ANOVA with factors Congruency (congruent, incongruent) and Flanker position (above, below).* 

|                                | Accuracy |         |      | Reaction Time |         |      |  |  |
|--------------------------------|----------|---------|------|---------------|---------|------|--|--|
|                                | F(1,17)  | р       |      | F(1,17)       | p       |      |  |  |
| A. Inner-Outer (I/O) Asymmetry |          |         |      |               |         |      |  |  |
| Congruency                     | 34.11    | < 0.001 | 0.67 | 99.86         | < 0.001 | 0.85 |  |  |

| Flanker Position<br>(I/O)                                    | 7.56  | =0.01   | 0.30 | 20.21  | < 0.001 | 0.54 |  |  |
|--------------------------------------------------------------|-------|---------|------|--------|---------|------|--|--|
| Congruency x Fl.<br>Position (I/O)                           | 3.03  | 0.10    | 0.15 | 5.02   | 0.04    | 0.23 |  |  |
| B. Radial-Tangential (R/T) Anisotropy & One vs. Two Flankers |       |         |      |        |         |      |  |  |
| Congruency                                                   | 17.81 | < 0.001 | 0.51 | 160.03 | < 0.001 | 0.90 |  |  |
| Flanker Position<br>(R/T)                                    | 1.25  | 0.28    | 0.07 | 2.15   | 0.16    | 0.11 |  |  |
| Number of<br>Flankers                                        | 1.22  | 0.29    | 0.07 | 67.27  | < 0.001 | 0.80 |  |  |
| Congruency x Fl.<br>Position (R/T)                           | 11.23 | 0.003   | 0.40 | 23.27  | < 0.001 | 0.58 |  |  |
| Congruency x<br>Num of Flankers                              | 0.21  | 0.65    | 0.01 | 30.39  | < 0.001 | 0.64 |  |  |
| Fl. Position (R/T)<br>x Num of<br>Flankers                   | 0.14  | 0.71    | 0.01 | 0.56   | 0.46    | 0.03 |  |  |
| Cong x Fl.<br>Position (R/T) x<br>Num of Flankers            | 0.74  | 0.40    | 0.04 | 5.04   | 0.04    | 0.23 |  |  |
| C. Above-Below (A/B) Flanker Positions                       |       |         |      |        |         |      |  |  |
| Congruency                                                   | 1.15  | 0.30    | 0.06 | 6.05   | 0.02    | 0.26 |  |  |
| Flanker Position<br>(A/B)                                    | 7.81  | 0.39    | 0.04 | 0.61   | 0.44    | 0.03 |  |  |
| Congruency x Fl. Position (A/B)                              | 2.66  | 0.61    | 0.02 | 0.42   | 0.53    | 0.02 |  |  |

In Experiment 1 we examined whether the spatial layout of targets and flankers affects FCEs in the same or similar way as the well-established counterparts in crowding. We tested conditions in which accuracy was well above 90% to ensure that any observed effects were not due to crowding. Radial flankers produced a larger FCE than tangential flankers and two flankers produced a larger FCE than one flanker. These effects are consistent with corresponding effects in crowding (Toet & Levi, 1992; Pelli et al., 2004). We also observed an inner-outer asymmetry for the FCE, with inner flankers producing a larger FCE than outer flankers, which is the opposite pattern to that commonly observed in crowding (Chakravarthi et al., 2021; Petrov et al., 2007). In conclusion, we found that spatial organisation of the flankers does modulate the FCE and that it had a specific pattern. There were some similarities between crowding and the

- 463 FCE, but there was also one major difference, which signifies a clear
- 464 demarcation between the two phenomena and possible underlying
- 465 mechanisms.

466

# Experiment 2

- 467 Crowding exhibits an inner-outer asymmetry where flanker interference
- by the outer flanker is stronger compared to that by the inner flanker.
- 469 Even though in Experiment 1 we did find an inner-outer asymmetry for
- 470 the FCE in the Eriksen task, the direction of that asymmetry was the
- 471 opposite of the one typically reported in crowding experiments (e.g.
- 472 Chakravarthi et al., 2021; Petrov, 2007; Shechter & Yashar, 2021). In
- 473 Experiment 2, we sought to verify this unexpected finding and test
- 474 whether it is affected by crowding. This was done by manipulating the
- 475 magnitude of crowding by varying the target-flanker spacing.

#### 476 Method

483

### 477 Participants:

- Experiment 2 tested twenty-three participants, one was excluded
- 479 due to performance being near chance in the 'no flanker' condition, leaving
- 480 twenty-two participants (self-reported: 8 males, 2 left-handed, mean
- 481 age = 25 years, age range = 18-47). The same ethics criteria and
- reimbursement as in Experiment 1 were implemented.

#### Stimuli and Procedure

- The design of Experiment 2 was identical to that of the previous
- 485 experiment except for a few differences: 1) we manipulated centre to
- 486 centre target-flanker spacing (1.3°, 2°. 2.7°), 2) we tested only two flanker
- 487 locations (inner, outer), 3) the target and flanker stimuli had the same size
- 488 (1° of visual angle), and 4) we adjusted stimulus duration individually for
- 489 participants to equate the overall level of accuracy.
- 490 Prior to the main experiment, participants underwent a staircase
- 491 procedure in which stimulus duration was adjusted to ensure the selected
- 492 spacings corresponded to points close to the critical spacing. This

493 leverages the finding that critical spacing for crowding is modulated by stimulus duration, with longer exposure leading to a smaller zone of 494 interference (Tripathy and Cavanagh, 2002; Tripathy et al., 2014; Soo et 495 al., 2018). We used an adaptive staircase driven by the QUEST algorithm 496 (Watson & Pelli, 1983) to estimate the stimulus duration at which each 497 participant's average performance across conditions (excluding the no 498 flanker condition) was 85% correct (duration mean = 106 ms, range: 42-499 500 200 ms). The estimate was computed with 80 trials, with the flanker configuration randomly drawn from the possible set of combinations 501 502 excluding the no flanker condition. The maximum stimulus duration used 503 was 200 ms to prevent eye movements. If QUEST indicated that a duration over 200 ms was required for a participant, then the staircase procedure 504 was repeated. If this again yielded a display duration above 200 ms, the 505 participant completed the main experiment at the maximum duration. 506 During the main experiment, display duration was re-evaluated after each 507 508 block and if accuracy was below 80% display duration was increased by one frame (8.3 ms) and if it was above 90% it decreased by one frame. Each 509 condition was tested with 84 trials. 510

#### 511 Results

- 512 Accuracy and reaction times across spacings and the corresponding
- 513 FCEs are shown in Figure 3.



Figure 3: Results from Experiment 2. Average accuracy and reaction times across participants as a function of target-flanker spacing with within-subjects 95% confidence intervals as error bars (Cousineau, 2005; Morey, 2008). Plots A&B show average performance where blue lines with square symbols represent performance in the presence of inner flankers and the green lines with the circle symbols represent performance in the presence of outer flankers. Solid lines and filled symbols represent the congruent trials and dashed lines with open symbols represent the incongruent trials. The solid red line with the shaded area is performance in the no flanker condition. Plots C&D show the difference in performance between the congruent and the incongruent conditions (incongruent-congruent). Here, more negative values for accuracy, and more positive values for reaction times represent stronger interference from incongruent flankers. Zero (no congruency effect) is represented with a solid grey line.

We computed a three-way repeated measures ANOVA with factors congruency (congruent, incongruent), flanker position (inner, outer), and target-flanker spacing (1.3°, 2°, 2.7°) for accuracy and reaction times. Greenhouse-Geisser (GG) correction was applied for the factor spacing and its interactions due to the multiple levels of the factor. As expected, accuracy was higher in congruent trials compared to incongruent (F(1,21) = 112.59, p < 0.001, = 0.84) (see solid lines compared to dashed lines in Fig. 3A), in the presence of inner compared to outer flankers (F(1,21) = 14.63, p < 0.001, = 0.41) (see blue lines compared to green lines in Fig. 3A) and when target-flanker spacing increased (F(1.48, 31.01) = 43.84, p

540 < 0.001, = 0.68). Accuracy was near ceiling in congruent trials, and thus effects of *flanker position* and *target-flanker spacing* were mainly observed 541 in incongruent trials (see two-way interactions with *congruency* in Table 542 2). Accuracy dropped faster when outer flankers were closer to the target 543 (interaction flanker position x target-flanker spacing F(1.82, 38.16) =544 20.39, p < 0.001, = 0.49), but this was the case only in incongruent trials 545 (three-way interaction: F(1.33, 27.93) = 29.96, p < 0.001, = 0.59). This 546 drop in accuracy at closer target-flanker distances, which is more 547 pronounced for the outer flanker, is the typical pattern observed in 548 549 crowding. The fact that this was only observed for incongruent trials (and 550 that it therefore shows up as an interaction with congruency in the analysis) is most likely because pooling or substitution was likely to yield a 551 percept associated with the incorrect response only with incongruent, but 552 not congruent, flankers: in congruent trials, the "clock hands" of target 553 and flankers all point in the same overall direction, but in incongruent 554 555 trials this is not the case).

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Reaction times were also faster in congruent compared to incongruent trials (F(1,21) = 21.09, p < 0.001, = 0.50) (see solid lines compared to dashed in Fig. 3B). Surprisingly, they were also faster in trials with outer compared to inner flankers (F(1,21) = 23.34, p < 0.001, = 0.52) (see green lines compared to blue in Fig. 3B). The FCE was stronger in the presence of inner compared to outer flankers (interaction congruency x flanker position: F(1,21) = 14.21, p < 0.001, = 0.40). Increasing spacing had opposite effects on reaction time FCE with inner and outer flankers (interaction congruency x flanker position x spacing: F(1.92, 40.39) = 3.33, p = 0.007, = 0.23): in the presence of outer flankers, increasing spacing reduced the reaction time FCE whereas it increased for inner flankers (see blue line compared to green in Fig. 3D). This unexpected pattern seems easier to comprehend when considering the data in terms of flanker eccentricity (i.e., the largest spacing for the inner flanker corresponds to the smallest flanker eccentricity and the largest spacing for the outer flanker to the largest eccentricity), as opposed to target-flanker spacing:

the larger the flanker eccentricity, the smaller the FCE (Fig. 3D). For the full set of comparisons see Table 2.

In summary, our data confirmed that we successfully manipulated crowding: accuracy decreased with decreasing target-flanker spacing. This effect was more pronounced for outer flankers, reflecting the established inner-outer asymmetry in crowding. We also confirmed the unexpected finding of Experiment 1, that the inner-outer asymmetry is reversed for the congruency effect in terms of reaction times, with inner flankers producing stronger interference. Finally, Experiment 2 revealed a new, unexpected effect in the form of an interaction: target-flanker spacing had opposite effects on reaction time FCE for inner and outer flankers: whereas smaller spacings led to larger reaction time FCE for outer flankers, it led to smaller reaction time FCE for inner flankers.

Table 2: Statistics for data from Experiment 2. *Three-way repeated measures*ANOVA with factors Congruency (congruent/incongruent), Flanker position

(inner/outer), and Target-flanker spacing (1.3°, 2°. 2.7°)}. Greenhouse-Geisser (GG)

correction has been applied for spacing and its interactions.

|                                                    | Accuracy       |            |         |      | Reaction Time (correct) |       |         |      |
|----------------------------------------------------|----------------|------------|---------|------|-------------------------|-------|---------|------|
|                                                    | DFn, DFd       | F          | р       |      | DFn, DFd                | F     | р       |      |
| Congruency                                         | 1, 21          | 112.5<br>9 | < 0.001 | 0.84 | 1, 21                   | 21.09 | < 0.001 | 0.50 |
| Flanker Position<br>(I/O)                          | 1, 21          | 14.63      | < 0.001 | 0.41 | 1, 21                   | 23.34 | < 0.001 | 0.52 |
| TF Spacing                                         | 1.48,<br>31.01 | 43.84      | < 0.001 | 0.68 | 1.46,<br>30.72          | 0.21  | 0.74    | 0.01 |
| Congruency x Fl.<br>Position (I/O)                 | 1, 21          | 8.14       | < 0.001 | 0.28 | 1, 21                   | 14.21 | < 0.001 | 0.40 |
| Congruency x TF<br>Spacing                         | 1.53,<br>32.13 | 53.25      | < 0.001 | 0.72 | 1.84, 38.7              | 0.02  | 0.97    | 0.00 |
| Fl. Position (I/O)<br>x TF Spacing                 | 1.82,<br>38.16 | 20.39      | < 0.001 | 0.49 | 1.78,<br>37.39          | 6.12  | 0.007   | 0.23 |
| Congruency x<br>Fl. Position (I/O)<br>x TF Spacing | 1.33,<br>27.93 | 29.96      | < 0.001 | 0.59 | 1.92,<br>40.39          | 3.33  | 0.047   | 0.14 |

### General Discussion

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

We examined the differences and similarities between crowding and the Flanker Compatibility Effect (FCE) in the Eriksen flanker task over two experiments where the spatial arrangement of flankers was manipulated. In line with established effects in crowding, larger reaction time FCEs were found for radial compared to tangential flankers and for two compared to one flanker. These observations were made under conditions without crowding and thus do not simply signify a downstream effect of difficulties in object recognition. In sharp contrast, inner flankers produced a larger reaction time FCE than outer flankers, a pattern opposite to that commonly observed in crowding (Chakravarthi et al., 2021; Petrov et al., 2007; Shechter & Yashar, 2021). Interestingly, this pattern persisted even when flankers were moved close enough to cause crowding, although the difference in reaction time FCEs between inner and outer flankers was reduced under such conditions. Even more surprisingly, the reaction time FCE decreased when the inner flanker was closer to the target; that is, it produced less, not more, interference. This is the opposite of what was observed for the outer flanker. It is also contrary to what has been previously reported for both crowding (Wolford & Chambers, 1983; Pelli et al., 2004; Toet & Levi, 1992) and the Eriksen flanker task (Eriksen & Eriksen, 1975). As will be discussed later, this unexpected finding can possibly be explained by flanker eccentricity, rather than target-flanker spacing, being the more relevant factor here. In summary, our findings show similarities, and also pronounced differences, in the effects of the spatial layout of the stimuli on flanker interference in crowding and the Eriksen flanker task. Although it is possible to observe both phenomena under the same conditions, these differences present a clear demarcation between them.

Our results from Experiment 2 show that substantial flanker interference both in the form of crowding and FCEs can occur concurrently, as seen at the closest target-flanker spacing. That both phenomena can be observed together was not clear a priori: the Eriksen

flanker task is commonly conducted under conditions without crowding and crowding studies typically neither manipulate flanker compatibility nor report reaction times, thus providing no information on FCEs. One could argue that crowding should attenuate the FCE, since it degrades target identification at the very least, and the FCE depends on targets and flankers being identified and categorised to opposite responses. Instead, both effects seemed to be largely independent here, as the conditions with the strongest crowding did not show an overall different level of FCE.

The radial-tangential anisotropy found in the FCE was in line with the anisotropy found in crowding (e.g., Greenwood et al., 2017; Toet & Levi, 1992). Interestingly, the radial-tangential anisotropy is present in other visual phenomena such as surround suppression (Petrov & McKee, 2006) and redundancy masking (Yildirim et al., 2020, 2021). This asymmetry therefore might be a more general property of peripheral processes (Greenwood et al., 2017; Nandy & Tjan, 2012). An alternative explanation is that it is easier to process stimuli along the horizontal meridian compared to other locations (Abrams et al., 2012; Carrasco et al., 2001, 2002, 2004). In our stimulus set up, radial flankers were presented on the horizontal meridian, but tangential ones were not. Hence, the radial flankers might have been processed better than tangential ones leading to a stronger FCE. This horizontal advantage might be due to the visual system's inherent propensity for improved processing of a variety of stimuli in specific spatial locations (for a review see Yashar & Carrasco, 2024) or might be reading related, which prioritises horizontal processing (Martelli et al., 2009; Pelli et al., 2007).

An inner-outer asymmetry for the FCE was observed in our study but with stronger interference from the inner than the outer flanker, which was unexpected and contrary to that found in crowding. The presence of these two asymmetries, radial-tangential and inner-outer, provides evidence that flanker interference effects most likely arising in retinotopically organised visual cortex affect the FCE, even when there is no crowding. However, in contrast to radial-tangential anisotropy, the inner-outer asymmetry

appears to be unique to crowding and indeed has been used as a diagnostic tool for crowding to distinguish it from other visual phenomena (Pelli et al., 2004). Taken together, the above findings suggest that the FCE may partially result from stimulus interactions in the visual cortex, but that this interference is distinct from that in crowding.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

One of the few perceptual properties that has been known to modulate the FCE is the spacing between the target and its flankers: as the separation between them increases, the FCE decreases (Eriksen & Eriksen, 1974). However, not many other perceptual factors seem to influence the phenomenon. Miller (1991) tested the role of target-flanker spacing, attentional focus, visual transients, and perceptual load and found that the FCE is only dependent on the target-flanker spacing. Additionally, conflicting findings have been reported on whether the FCE is affected by colour similarity (Baylis & Driver, 1992) or not (Harms & Bundesen, 1983) and grouping between target and nearby flankers, which have wellestablished effects on crowding(Herzog & Manassi, 2015; Herzog et al., 2016; Kooi et al., 1994; Rashal & Yeshurun, 2014; Scolari et al., 2007). Therefore, the extent to which conflict during decision-making is affected by perceptual manipulations in situations where identification is intact, remains unclear. Since not many perceptual manipulations affect the FCE, the radial-tangential anisotropy found in the current paper, is surprising. It is plausible that there is something distinctive regarding spatial properties, including target-flanker separation and spatial organisation, in the FCE that is not translatable to other visual properties. It could be that the spatial layout of targets and flankers affects the speed and strength of identification processes, which then modulates decision-making.

Another intriguing finding of our study was that, in Experiment 2, the FCE decreased with increasing spacing for the outer flanker but increased for the inner flanker. On the face of it, this finding seems inexplicable. However, this unexpected finding can be accounted for if we consider the changes to the representation of the flanker stimulus at various eccentricities as it changes with different target-flanker spacings. As the

target-flanker spacing increases for the inner flanker, it moves closer to the fovea, resulting in a stronger neural representation due to cortical magnification. However, when the target-flanker spacing increases for the outer flanker, it moves further into the visual periphery, and hence its representation is weakened. If one assumes that the FCE results from a competition between target and flanker stimuli for response selection, then the observed changes in the magnitude of the FCE are consistent with the changes in the strength of the representation of the flanker stimulus as a function of its eccentricity. The same explanation could also account for the stronger FCE from two flankers and from radial than tangential flankers in experiment 1, as the former benefit from being placed along the horizontal meridian.

686

687

688

689

690

691

692

693

694

695

696

697

698 By comparison, in crowding, pooling theories provide an explanation 699 for the inner-outer asymmetry, where the outer flanker leads to more interference than the inner one. Each visual area has neurons with 700 701 receptive fields that increase in size with increasing eccentricity. Therefore, the further out in the periphery a stimulus is presented, the 702 703 bigger on average are the receptive fields of the neurons responding to it (Freeman & Simoncelli, 2011). Consequently, the outer flanker is more 704 705 likely to fall within the same receptive field as the target compared to the inner one (Chen et al., 2023; Dayan & Solomon, 2010; Pelli & Tillman, 706 2008; Shechter & Yashar, 2021; for review see: Rosenholtz et al., 2019). 707 When stimuli fall within the same receptive field of a neuron, their features 708 709 are "pooled" leading to crowding (Dayan & Solomon, 2010; Motter & Simoni, 2007; Van Den Berg et al., 2010), which explains the stronger 710 crowding by the outer flanker than the inner one. Equivalently, the outer 711 712 flanker is closer to the target in terms of cortical distance than the inner flanker and hence interferes more strongly (Pelli, 2008). Note that the 713 714 substitution theory of crowding can potentially also explain this asymmetry by positing more spatial uncertainty for the outer, more peripheral, flanker 715 716 than for the inner one. Increased spatial uncertainty leads to more confusion of features or whole objects leading to stronger crowding. 717 However, there is no consensus on whether there are more substitution 718

errors for the inner or the outer flanker. Strasburger and colleagues (Strasburger, 2014; Strasburger, 2020) show that even though the outer flanker might induce more crowding, more substitution errors are present for the inner flanker. That is, there seems to be more positional uncertainty for the inner flanker. These substitution errors for the inner flanker depend on eccentricity where the higher the eccentricity, the more substitution errors (Strasburger & Malania, 2013; Strasburger, 2014; Strasburger, 2020). However, more substitution errors have also been reported for the outer flanker compared to the inner as positional uncertainty is greater with increased eccentricity (Shechter & Yashar, 2021).

Our findings have practical value for studies investigating cognitive control using the Eriksen flanker task: placing the flanker, rather than the target, at or near fixation increases the magnitude of the FCE. This can yield higher power to detect interactions of the FCE with other factors, as is commonly studied in performance Yildirim(Debener et al., 2005; Steinhauser & Andersen, 2019) or conflict monitoring (Yeung et al., 2004) experiments, where the FCE is modulated by errors or response conflict (incongruent stimuli) on preceding trials. However, unlike the present experiments, it may be desirable to allow participants to focus attention on target positions under such circumstances, as the effects of interest may depend on selective attention (e.g. McDermott et al., 2017; Steinhauser & Andersen, 2019).

# Conclusion

In conclusion, we studied interference from task-irrelevant visual stimuli ('flankers') through the Eriksen flanker task and visual crowding. In order to explore possible links between them, we examined whether well-established characteristics of crowding are also observable in the Eriksen flanker task. In line with crowding, we found that radial flankers induce stronger FCEs compared to tangential, and two flankers lead to stronger FCEs compared to one flanker. In contrast, we observed an inner-outer asymmetry where interference was stronger from the inner compared to

- 750 the outer flanker, which is the opposite direction of the asymmetry
- observed in crowding. This highlights the differences in the mechanisms
- 752 that lead to the two phenomena. We propose that changes in the strength
- 753 of flanker representation due to its position in retinotopic space can
- account for its potency to induce a FCE. Consequently, unlike in crowding
- 755 where outer flankers interfere most with visual processing, inner flankers
- 756 drive stronger response selection conflicts. These findings show that the
- visuo-spatial configuration of objects affects downstream response conflict
- 758 while also highlighting a clear demarcation between crowding and
- 759 response compatibility effects.

# 760 References

- 761 Abrams, J., Nizam, A., & Carrasco, M. (2012). Isoeccentric locations are
- 762 not equivalent: The extent of the vertical meridian asymmetry. Vision
- 763 Research, 52(1), 70-78. https://doi.org/10.1016/j.visres.2011.10.016
- 764 Anderson, E. J., Dakin, S. C., Schwarzkopf, D. S., Rees, G., & Greenwood,
- 765 J. A. (2012). The Neural Correlates of Crowding-Induced Changes in
- 766 Appearance. Current Biology, 22(13), 1199-1206.
- 767 https://doi.org/10.1016/j.cub.2012.04.063
- 768 Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic
- 769 representation in peripheral vision explains visual crowding. *Journal of*
- 770 *Vision*, *9*(12), 13. https://doi.org/10.1167/9.12.13
- 771 Banks, W. P., Larson, D. W., & Prinzmetal, W. (1979). Asymmetry of visual
- interference. Perception & Psychophysics, 25(6), 447-456.
- 773 https://doi.org/10.3758/BF03213822
- 774 Barzykowski, K., Wereszczyński, M., Hajdas, S., & Radel, R. (2022).
- 775 Cognitive inhibition behavioral tasks in online and laboratory settings:
- 776 Data from Stroop, SART and Eriksen Flanker tasks. Data in Brief, 43,
- 777 108398. https://doi.org/10.1016/j.dib.2022.108398
- 778 Baylis, G. C., & Driver, J. (1992). Visual parsing and response
- 779 competition: The effect of grouping factors. In *Perception &*
- 780 *Psychophysics* (Vol. 51, Issue 2, pp. 145–162).
- 781 Bouma, H. (1970). Interaction effects in parafoveal letter recognition.
- 782 *Nature, 228*(October 17th), 227-231.
- 783 Bowen, J. D., Alforque, C. V., & Silver, M. A. (2023). Effects of involuntary
- 784 and voluntary attention on critical spacing of visual crowding. *Journal of*
- 785 *Vision, 23*(3), 2. https://doi.org/10.1167/jov.23.3.2

- 786 Carrasco, M., Marie Giordano, A., & McElree, B. (2004). Temporal
- 787 performance fields: Visual and attentional factors. Vision Research,
- 788 44(12), 1351-1365. https://doi.org/10.1016/j.visres.2003.11.026
- 789 Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing
- 790 visual performance fields: Effects of transient covert attention, spatial
- 791 frequency, eccentricity, task and set size. Spatial Vision, 15(1), 61-75.
- 792 Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention
- 793 increases spatial resolution with or without masks: Support for signal
- 794 enhancement. Journal of Vision, 2(6), 4. https://doi.org/10.1167/2.6.4
- 795 Chakravarthi, R., & Cavanagh, P. (2007). Temporal properties of the
- 796 polarity advantage effect in crowding. Journal of Vision, 7(2), 11.
- 797 https://doi.org/10.1167/7.2.11
- 798 Chakravarthi, R., & Cavanagh, P. (2009). Recovery of a crowded object by
- 799 masking the flankers: Determining the locus of feature integration.
- 800 Journal of Vision, 9(10), 4. https://doi.org/10.1167/9.10.4
- 801 Chakravarthi, R., Rubruck, J., Kipling, N., & Clarke, A. D. F. (2021).
- 802 Characterizing the in-out asymmetry in visual crowding. *Journal of*
- 803 *Vision, 21*(11), 10. https://doi.org/10.1167/jov.21.11.10
- 804 Chastain, G. (1983). Task and contrast effects on performance with
- 805 parafoval stimulus pairs. *Psychological Research*, 45(2), 147-156.
- 806 https://doi.org/10.1007/BF00308666
- 807 Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014).
- 808 Attention-Dependent Early Cortical Suppression Contributes to
- 809 Crowding. *Journal of Neuroscience*, *34*(32), 10465–10474.
- 810 https://doi.org/10.1523/JNEUROSCI.1140-14.2014
- 811 Chen, N., Bao, P., & Tjan, B. S. (2018). Contextual-Dependent Attention
- 812 Effect on Crowded Orientation Signals in Human Visual Cortex. *Journal*
- 813 of Neuroscience, 38(39), 8433-8440.
- 814 https://doi.org/10.1523/JNEUROSCI.0805-18.2018
- 815 Chen, Y.-R., Zhang, Y.-W., & Zhang, J.-Y. (2023). The impact of training on
- 816 the inner-outer asymmetry in crowding. *Journal of Vision*, 23(8), 3.
- 817 https://doi.org/10.1167/jov.23.8.3
- 818 Coates, D. R., Levi, D. M., Touch, P., & Sabesan, R. (2018). Foveal
- 819 Crowding Resolved. Scientific Reports, 8(1), Article 1.
- 820 https://doi.org/10.1038/s41598-018-27480-4
- 821 Cousineau, D. (2005). Confidence intervals in within-subject designs: A
- 822 simpler solution to Loftus and Masson's method. Tutorials in Quantitative
- 823 Methods for Psychology, 1. https://doi.org/10.20982/tgmp.01.1.p042

- 824 Davelaar, E. J., & Stevens, J. (2009). Sequential dependencies in the
- 825 Eriksen flanker task: A direct comparison of two competing accounts.
- 826 Psychonomic Bulletin and Review, 16(1), 121-126.
- 827 https://doi.org/10.3758/PBR.16.1.121
- 828 Dayan, P., & Solomon, J. A. (2010). Selective Bayes: Attentional load and
- 829 crowding. Vision Research. https://doi.org/10.1016/j.visres.2010.04.014
- 830 Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Cramon, D. Y. von, &
- 831 Engel, A. K. (2005). Trial-by-Trial Coupling of Concurrent
- 832 Electroencephalogram and Functional Magnetic Resonance Imaging
- 833 Identifies the Dynamics of Performance Monitoring. Journal of
- 834 Neuroscience, 25(50), 11730-11737.
- 835 https://doi.org/10.1523/JNEUROSCI.3286-05.2005
- 836 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the
- 837 identification of a target letter in a nonsearch task. *Perception &*
- 838 Psychophysics, 16(1), 143-149. https://doi.org/10.3758/BF03203267
- 839 Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual
- 840 search: A continuous flow conception and experimental results.
- 841 *Perception & Psychophysics*, *25*(4), 249–263.
- 842 https://doi.org/10.3758/BF03198804
- 843 Ester, E. F., Klee, D., & Awh, E. (2014). Visual crowding cannot be wholly
- 844 explained by feature pooling. Journal of Experimental Psychology:
- 845 Human Perception and Performance, 40(3), 1022–1033.
- 846 https://doi.org/10.1037/a0035377
- 847 Estes, W. K., Allmeyer, D. H., & Reder, S. M. (1976). Serial position
- 848 functions for letter identification at brief and extended exposure
- 849 durations. Perception & Psychophysics, 19(1), 1-15.
- 850 https://doi.org/10.3758/BF03199379
- 851 Fang, F., & He, S. (2008). Crowding alters the spatial distribution of
- 852 attention modulation in human primary visual cortex. Journal of Vision,
- 853 8(9), 6. https://doi.org/10.1167/8.9.6
- 854 Freeman, J., Chakravarthi, R., & Pelli, D. G. (2012). Substitution and
- 855 pooling in crowding. Attention, Perception, and Psychophysics, 74(2),
- 856 379-396. https://doi.org/10.3758/s13414-011-0229-0
- 857 Freeman, J., Donner, T. H., & Heeger, D. J. (2011). Inter-area correlations
- 858 in the ventral visual pathway reflect feature integration. *Journal of*
- 859 Vision, 11(4), 15. https://doi.org/10.1167/11.4.15
- 860 Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E.
- 861 (1988). Pre- and poststimulus activation of response channels: A
- 862 psychophysiological analysis. *Journal of Experimental Psychology:*

- 863 Human Perception and Performance, 14(3), 331-344.
- 864 https://doi.org/10.1037/0096-1523.14.3.331
- 865 Greenwood, J. A., Szinte, M., Sayim, B., & Cavanagh, P. (2017). Variations
- 866 in crowding, saccadic precision, and spatial localization reveal the shared
- topology of spatial vision. Proc. Natl. Acad. Sci. U. S. A., 3573-3582(114).
- 868 https://www.pnas.org/doi/abs/10.1073/pnas.1615504114
- 869 Greenwood, J., Bex, P., & Dakin, S. (2009). Crowding-induced changes in
- appearance: Bringing signal to the noise. *Journal of Vision*, 9(8), 985.
- 871 https://doi.org/10.1167/9.8.985
- 872 Hanus, D., & Vul, E. (2013). Quantifying error distributions in crowding.
- 873 Journal of Vision, 13(4), 17. https://doi.org/10.1167/13.4.17
- 874 Harms, L., & Bundesen, C. (1983). Color segregation and selective
- attention in a nonsearch task. *Perception & Psychophysics, 33*(1), 11-19.
- 876 https://doi.org/10.3758/BF03205861
- 877 Harrison, W. J., & Bex, P. J. (2015). A Unifying Model of Orientation
- 878 Crowding in Peripheral Vision. Current Biology, 25(24), 3213-3219.
- 879 https://doi.org/10.1016/j.cub.2015.10.052
- 880 He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and
- the locus of visual awareness. *Nature*, *383*(6598), Article 6598.
- 882 https://doi.org/10.1038/383334a0
- 883 Herzog, M. H., & Manassi, M. (2015). Uncorking the bottleneck of
- 884 crowding: A fresh look at object recognition. In Current Opinion in
- 885 Behavioral Sciences. https://doi.org/10.1016/j.cobeha.2014.10.006
- 886 Herzog, M. H., Sayim, B., Manassi, M., & Chicherov, V. (2016). What
- 887 crowds in crowding? Journal of Vision, 16(11), 25.
- 888 https://doi.org/10.1167/16.11.25
- 889 Huckauf, A., & Heller, D. (2002). Spatial selection in peripheral letter
- 890 recognition: In search of boundary conditions. *Acta Psychologica*, 111(1),
- 891 101-123. https://doi.org/10.1016/S0001-6918(02)00045-8
- 892 Kelber, P., Gierlich, M., Göth, J., Jeschke, M. G., Mackenzie, I. G., &
- 893 Mittelstädt, V. (2023). A Diffusion Model Analysis of Object-Based
- 894 Selective Attention in the Eriksen Flanker Task.
- 895 Experimental Psychology, 70(3), 155-170. https://doi.org/10.1027/1618-
- 896 3169/a000588
- 897 Kennedy, G. J., & Whitaker, D. (2010). The chromatic selectivity of visual
- 898 crowding. Journal of Vision, 10(6), 15. https://doi.org/10.1167/10.6.15
- 899 Keshvari, S., & Rosenholtz, R. (2016). Pooling of continuous features
- 900 provides a unifying account of crowding. *Journal of Vision*, 16(3), 39.
- 901 https://doi.org/10.1167/16.3.39

- 902 Kewan-Khalayly, B., Migó, M., & Yashar, A. (2022). Transient attention
- 903 equally reduces visual crowding in radial and tangential axes. Journal of
- 904 *Vision, 22*(9), 3. https://doi.org/10.1167/jov.22.9.3
- 905 Kooi, F., Toet, A., Tripathy, S., & Levi, D. (1994). The effect of similarity
- 906 and duration on spatial interaction in peripheral vision. Spatial Vision, 8,
- 907 255-279. https://doi.org/10.1163/156856894X00350
- 908 Kramer, A. F., & Jacobson, A. (1991). Perceptual organization and focused
- 909 attention: The role of objects and proximity in visual processing.
- 910 *Perception & Psychophysics*, *50*(3), 267–284.
- 911 https://doi.org/10.3758/BF03206750
- 912 Kurzawski, J. W., Burchell, A., Thapa, D., Winawer, J., Majaj, N. J., & Pelli,
- 913 D. G. (2023). The Bouma law accounts for crowding in 50 observers.
- 914 Journal of Vision, 23(8), 6. https://doi.org/10.1167/jov.23.8.6
- 915 Kwon, M., Bao, 2, \*, Millin, R., Arman, A. C., Chung, S. T. L., & Tjan, B. S.
- 916 (2014). Radial-tangential anisotropy of crowding in the early visual areas.
- 917 Cerebral Cortex, 24(12), 3107-3115.
- 918 https://doi.org/10.1093/cercor/bht159
- 919 LaBerge, D., Brown, V., Carter, M., Bash, D., & Hartley, A. (1991).
- 920 Reducing the effects of adjacent distractors by narrowing attention.
- 921 Journal of Experimental Psychology: Human Perception and Performance,
- 922 *17*(1), 65–76. https://doi.org/10.1037/0096-1523.17.1.65
- 923 Levi, D. M. (2008a). Crowding-An essential bottleneck for object
- 924 recognition: A mini-review. Vision Research.
- 925 https://doi.org/10.1016/j.visres.2007.12.009
- 926 Levi, D. M. (2008b). Crowding-An essential bottleneck for object
- 927 recognition: A mini-review. In *Vision Research*.
- 928 https://doi.org/10.1016/j.visres.2007.12.009
- 929 Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985). Vernier acuity,
- 930 crowding and cortical magnification. *Vision Research*, 25(7), 963-977.
- 931 https://doi.org/10.1016/0042-6989(85)90207-X
- 932 Mareschal, I., Morgan, M. J., & Solomon, J. A. (2010). Attentional
- 933 modulation of crowding. *Vision Research*, 50(8), 805-809.
- 934 https://doi.org/10.1016/j.visres.2010.01.022
- 935 Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding,
- 936 reading, and developmental dyslexia. Journal of Vision, 9(4), 14.
- 937 https://doi.org/10.1167/9.4.14
- 938 McDermott, T. J., Wiesman, A. I., Proskovec, A. L., Heinrichs-Graham, E.,
- 939 & Wilson, T. W. (2017). Spatiotemporal oscillatory dynamics of visual
- 940 selective attention during a flanker task. NeuroImage, 156, 277-285.
- 941 https://doi.org/10.1016/j.neuroimage.2017.05.014

- 942 Miller, J. (1991). The flanker compatibility effect as a function of visual
- 943 angle, attentional focus, visual transients, and perceptual load: A search
- 944 for boundary conditions. Perception & Psychophysics, 49(3), 270-288.
- 945 https://doi.org/10.3758/BF03214311
- 946 Morey, R. D. (2008). Confidence Intervals from Normalized Data: A
- 947 correction to Cousineau (2005). Tutorials in Quantitative Methods for
- 948 *Psychology*, 4(2), 61-64. https://doi.org/10.20982/tqmp.04.2.p061
- 949 Motter, B. C., & Simoni, D. A. (2007). The roles of cortical image
- 950 separation and size in active visual search performance. *Journal of*
- 951 *Vision*, 7(2), 6. https://doi.org/10.1167/7.2.6
- 952 Nandy, A. S., & Tjan, B. S. (2012). Saccade-confounded image statistics
- 953 explain visual crowding. *Nature Neuroscience*, 15(3), 463-469.
- 954 https://doi.org/10.1038/nn.3021
- 955 Navon, D. (1977). Forest before trees: The precedence of global features
- 956 in visual perception. *Cognitive Psychology, 9*(3), 353-383.
- 957 https://doi.org/10.1016/0010-0285(77)90012-3
- 958 Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001).
- 959 Compulsory averaging of crowded orientation signals in human vision.
- 960 Nature Neuroscience, 4(7), 739-744. https://doi.org/10.1038/89532
- 961 Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition.
- 962 Current Opinion in Neurobiology, 18(4), 445-451.
- 963 https://doi.org/10.1016/j.conb.2008.09.008
- 964 Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike
- 965 ordinary masking: Distinguishing feature integration from detection.
- 966 Journal of Vision, 4(12), 1136–1169. https://doi.org/10.1167/4.12.12
- 967 Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object
- 968 recognition. Nature Neuroscience, 11(10), 1129-1135.
- 969 https://doi.org/10.1038/nn.2187
- 970 Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J.
- 971 (2007). Crowding and eccentricity determine reading rate. *Journal of*
- 972 *Vision, 7*(2), 20. https://doi.org/10.1167/7.2.20
- 973 Petrov, Y., & McKee, S. P. (2006). The effect of spatial configuration on
- 974 surround suppression of contrast sensitivity. *Journal of Vision*, 6(3), 4.
- 975 https://doi.org/10.1167/6.3.4
- 976 Petrov, Y., & Meleshkevich, O. (2011). Locus of spatial attention
- 977 determines inward-outward anisotropy in crowding. Journal of Vision,
- 978 11(4), 1-11. https://doi.org/10.1167/11.4.1

- 979 Petrov, Y., Popple, A. V., & McKee, S. P. (2007). Crowding and surround
- 980 suppression: Not to be confused. *Journal of Vision*, 7(2), 12.
- 981 https://doi.org/10.1167/7.2.12
- 982 Poder, E. (2007). Effect of colour pop-out on the recognition of letters in
- 983 crowding conditions. *Psychological Research*, 71(6), 641-645.
- 984 https://doi.org/10.1007/s00426-006-0053-7
- 985 Rashal, E., & Yeshurun, Y. (2014). Contrast dissimilarity effects on
- 986 crowding are not simply another case of target saliency. Journal of Vision,
- 987 14(6), 9. https://doi.org/10.1167/14.6.9
- 988 Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive Aging and
- 989 the Compensation Hypothesis. Current Directions in Psychological
- 990 Science, 17(3), 177-182. https://doi.org/10.1111/j.1467-
- 991 8721.2008.00570.x
- 992 Ridderinkhof, K. R., Wylie, S. A., van den Wildenberg, W. P. M., Bashore,
- 993 T. R., & van der Molen, M. W. (2021). The arrow of time: Advancing
- 994 insights into action control from the arrow version of the Eriksen flanker
- 995 task. Attention, Perception, & Psychophysics, 83(2), 700-721.
- 996 https://doi.org/10.3758/s13414-020-02167-z
- 997 Rosenholtz, R., Yu, D., & Keshvari, S. (2019). Challenges to pooling
- 998 models of crowding: Implications for visual mechanisms. *Journal of*
- 999 *Vision, 19*(7), 1-25. https://doi.org/10.1167/19.7.15
- 1000 Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases
- 1001 the breadth of attentional selection. Proceedings of the National
- 1002 Academy of Sciences of the United States of America, 104(1), 383-388.
- 1003 https://doi.org/10.1073/pnas.0605198104
- 1004 Scolari, M., Kohnen, A., Barton, B., & Awh, E. (2007). Spatial attention,
- 1005 preview, and popout: Which factors influence critical spacing in crowded
- 1006 displays? *Journal of Vision*, 7(2), 1-23. https://doi.org/10.1167/7.2.7
- 1007 Shechter, A., & Yashar, A. (2021). Mixture model investigation of the
- 1008 inner-outer asymmetry in visual crowding reveals a heavier weight
- 1009 towards the visual periphery. *Scientific Reports*, 11(1), 1-12.
- 1010 https://doi.org/10.1038/s41598-021-81533-9
- 1011 Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect
- of an irrelevant cue on information processing. *Journal of Applied*
- 1013 *Psychology*, *51*(3), 300–304. https://doi.org/10.1037/h0020586
- 1014 Soo, L., Chakravarthi, R., & Andersen, S. K. (2018). Critical resolution: A
- 1015 superior measure of crowding. Vision Research, 153(August), 13-23.
- 1016 https://doi.org/10.1016/j.visres.2018.08.005
- 1017 Steinhauser, M., & Andersen, S. K. (2019). Rapid adaptive adjustments of
- 1018 selective attention following errors revealed by the time course of steady-

- 1019 state visual evoked potentials. *NeuroImage*.
- 1020 https://doi.org/10.1016/j.neuroimage.2018.10.059
- 1021 Strasburger, H. (2005). Unfocussed spatial attention underlies the
- 1022 crowding effect in indirect form vision. Journal of Vision, 5(11), 1024-
- 1023 1037. https://doi.org/10.1167/5.11.8
- 1024 Strasburger, H. (2014a). Dancing letters and ticks that buzz around
- aimlessly: On the origin of crowding. *Perception*, 43(9), 963-976.
- 1026 https://doi.org/10.1068/p7726
- 1027 Strasburger, H. (2014b). Dancing letters and ticks that buzz around
- aimlessly: On the origin of crowding. *Perception*, 43(9), 963-976.
- 1029 https://doi.org/10.1068/p7726
- 1030 Strasburger, H. (2020a). Seven Myths on Crowding and Peripheral
- 1031 Vision. *I-Perception*, 11(3), 1-47.
- 1032 https://doi.org/10.1177/2041669520913052
- 1033 Strasburger, H. (2020b). Seven Myths on Crowding and Peripheral
- 1034 Vision. *I-Perception*, 11(3), 204166952091305.
- 1035 https://doi.org/10.1177/2041669520913052
- 1036 Strasburger, H., Harvey, L. O., & Rentschler, I. (1991). Contrast
- 1037 thresholds for identification of numeric characters in direct and eccentric
- 1038 view. *Perception & Psychophysics*, 49(6), 495-508.
- 1039 https://doi.org/10.3758/BF03212183
- 1040 Strasburger, H., & Malania, M. (2013). Source confusion is a major cause
- 1041 of crowding. *Journal of Vision*, 13(1), 1-20.
- 1042 https://doi.org/10.1167/13.1.25
- 1043 Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and
- 1044 pattern recognition: A review. Journal of Vision, 11(5), 13.
- 1045 https://doi.org/10.1167/11.5.13
- 1046 Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
- 1047 Journal of Experimental Psychology, 18(6), 643-662.
- 1048 https://doi.org/10.1037/h0054651
- 1049 Toet, A., & Levi, D. M. (1992). The two-dimensional shape of spatial
- interaction zones in the parafovea. *Vision Research*, 32(7), 1349–1357.
- 1051 https://doi.org/10.1016/0042-6989(92)90227-A
- 1052 Tyler, C. W., & Likova, L. T. (2007). Crowding: A neuroanalytic approach.
- 1053 Journal of Vision, 7(2), 16. https://doi.org/10.1167/7.2.16
- 1054 Van Den Berg, R., Roerdink, J. B. T. M., & Cornelissen, F. W. (2010). A
- neurophysiologically plausible population code model for feature
- integration explains visual crowding. *PLoS Computational Biology, 6*(1).
- 1057 https://doi.org/10.1371/journal.pcbi.1000646

- 1058 Wallis, T. S., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., &
- 1059 Bethge, M. (2019). Image content is more important than Bouma's Law
- 1060 for scene metamers. *eLife*, 8, e42512. https://doi.org/10.7554/eLife.42512
- 1061 Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit
- on conscious perception and object recognition. *Trends in Cognitive*
- 1063 Sciences, 15(4), 160-168. https://doi.org/10.1016/j.tics.2011.02.005
- 1064 Wolford, G. (1975). Perturbation model for letter identification.
- 1065 Psychological Review, 82(3), 184-199. https://doi.org/10.1037/0033-
- 1066 295X.82.3.184
- 1067 Wolford, G., & Chambers, L. (1983). Lateral masking as a function of
- 1068 spacing. Perception & Psychophysics, 33(2), 129-138.
- 1069 https://doi.org/10.3758/BF03202830
- 1070 Yashar, A., & Carrasco, M. (2024). When periphery rules: Enhanced
- sampling weights of the visual periphery in crowding across dimensions.
- 1072 Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-024-
- 1073 02580-7
- 1074 Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target
- 1075 location diminishes crowding and reduces the critical distance. *Journal of*
- 1076 *Vision, 10*(10), 16. https://doi.org/10.1167/10.10.16
- 1077 Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of
- 1078 Error Detection: Conflict Monitoring and the Error-Related Negativity.
- 1079 Psychological Review, 111(4), 931-959. https://doi.org/10.1037/0033-
- 1080 295X.111.4.931
- 1081 Yildirim, F. Z., Coates, D. R., & Sayim, B. (2020). Redundancy masking:
- 1082 The loss of repeated items in crowded peripheral vision. *Journal of*
- 1083 *Vision, 20*(4), 14. https://doi.org/10.1167/jov.20.4.14
- 1084 Yildirim, F. Z., Coates, D. R., & Sayim, B. (2021). Hidden by bias: How
- standard psychophysical procedures conceal crucial aspects of peripheral
- 1086 visual appearance. Scientific Reports, 11(1), 4095.
- 1087 https://doi.org/10.1038/s41598-021-83325-7