Übungsblatt 10 zur Algebra I

Abgabe bis 24. Juni 2013, 17:00 Uhr

Aufgabe 1. Weitere Gradformelaufgaben

a) Sei z eine algebraische Zahl und seien $x, y \in \mathbb{Q}(z)$. Zeige, dass

$$[\mathbb{Q}(z):\mathbb{Q}(x)]\cdot[\mathbb{Q}(x):\mathbb{Q}] = [\mathbb{Q}(z):\mathbb{Q}(y)]\cdot[\mathbb{Q}(y):\mathbb{Q}],$$

und gib ein Diagramm zur Veranschaulichung an.

- b) Sei a eine algebraische Zahl und $y \in \mathbb{Q}(a)$. Sei f ein normiertes Polynom mit Koeffizienten aus $\mathbb{Q}(y)$, das über $\mathbb{Q}(y)$ auch irreduzibel ist. Sei der Grad von f mindestens 2 und teilerfremd zu $\deg_{\mathbb{Q}(y)} x$. Zeige, dass keine Zahl aus $\mathbb{Q}(a)$ Nullstelle von f sein kann.
- c) Beweise oder widerlege: Sei z ein primitives Element zu algebraischen Zahlen x, y. Dann ist $\deg_{\mathbb{Q}} z$ ein Teiler von $\deg_{\mathbb{Q}} x \cdot \deg_{\mathbb{Q}} y$.

Aufgabe 2. Galoissche Konjugierte

- a) Finde zwei algebraische Zahlen, die nicht zueinander galoissch konjugiert sind.
- b) Wie viele galoissch Konjugierte hat die Zahl $x_1 = \sqrt[3]{1+\sqrt{2}}$?
- c) Seien p und q zwei verschiedene Primzahlen. Finde alle galoissch Konjugierten von $\sqrt{p} + \sqrt{q}$.
- d) Sei t eine algebraische Zahl. Zeige, dass die Summe von t mit all seinen galoisschen Konjugierten eine rationale Zahl ist. Wie steht es mit dem Produkt?
- e) Seien x, y, z algebraische Zahlen sodass x zu y und y zu z galoissch konjugiert ist. Zeige, dass dann auch x galoissch konjugiert zu z ist.

Lösung.

- a) Es gibt [abzählbar] unendlich viele Beispiele. Eines ist (x, y) = (0, 1) mit den Minimalpolynomen X bzw. X 1.
- b) Die Zahl x_1 hat insgesamt genau so viele galoissch Konjugierte, wie ihr Grad angibt. Dieser ist 6, relativ schmerzlos kann man das wie folgt erkennen: Es gilt $x_1^3 1 = \sqrt{2}$, also gilt $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(x_1)$. Folglich ist die Gradformel anwendbar, sie liefert die Beziehung...

Aufgabe 3. Polynome sind blind für galoissch Konjugierte

a) Zeige, dass eine algebraische Zahl t genau dann zu einer weiteren algebraischen Zahl t' galoissch konjugiert ist, wenn jedes Polynom mit rationalen Koeffizienten, welches t als Nullstelle hat, auch t' als Nullstelle hat.

b) Seien t und t' zueinander galoissch konjugierte algebraische Zahlen und f ein Polynom mit rationalen Koeffizienten. Zeige, dass dann auch die Zahlen x := f(t) und x' := f(t') zueinander galoissch konjugiert sind.

Lösung.

- a) " \Leftarrow ": Sei m_t das Minimalpolynom von t. Dieses hat sicherlich t als Nullstelle. Nach Voraussetzung ist daher auch t' eine Nullstelle. Also haben t und t' beide m_t als Minimalpolynom und sind daher galoissch Konjugierte.
 - " \Longrightarrow " (schon im Skript als Proposition 4.2): Sei m_t das gemeinsame Minimalpolynom von t und t' und sei $f \in \mathbb{Q}[X]$ ein Polynom, das t als Nullstelle hat. Dann haben f und m_t also die gemeinsame Nullstelle t. Da m_t irreduzibel ist, folgt mit dem abelschen Irreduzibilitätssatz (Satz 3.10), dass f ein Vielfaches von m_t ist. Somit ist jede Nullstelle von m_t , insbesondere t', auch Nullstelle von f.
- b) Sei $m_{f(t)}$ das Minimalpolynom von x = f(t). Dann gilt also

$$m_{f(t)}(f(t)) = (m_{f(t)} \circ f)(t) = 0,$$

das Polynom $m_{f(t)} \circ f$ besitzt also t als Nullstelle. Nach Teilaufgabe a) besitzt dieses Polynom dann auch t' als Nullstelle, also gilt

$$m_{f(t)}(f(t')) = (m_{f(t)} \circ f)(t') = 0.$$

Somit ist f(t') ebenfalls Nullstelle des Minimalpolynoms von f(t) und somit zu f(t) galoissch Konjugiert.

Aufgabe 4. Gegenbeispiele

Zeige an jeweils einem Beispiel, dass

- a) Hilfssatz 4.3 auf Seite 118
- b) Proposition 4.4 auf Seite 119

falsch werden, wenn man von den dort vorkommenden Zahlen x_1, \ldots, x_n nicht voraussetzt, dass sie die gesamten Lösungen (mit Vf.) einer Polynomgleichung mit rationalen Koeffizienten sind, sondern stattdessen beliebige algebraische Zahlen erlaubt.

Lösung.

a) Hilfssatz 4.3 lautet:

Seien x_1, \ldots, x_n die Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten. Ist dann $V(X_1, \ldots, X_n)$ ein Polynom mit rationalen Koeffizienten, so sind die galoissch Konjugierten von $t = V(x_1, \ldots, x_n)$ alle von der Form $t' = V(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$, wobei σ eine n-stellige Permutation ist.

Es gibt zahlreiche Gegenbeispiele, wenn man die Voraussetzung, dass die x_i alle Lösungen einer Polynomgleichung mit rationalen Koeffizienten sind, fallen lässt. Sei etwa $n=1, x_1=\mathrm{i}$ und $V(X_1)=X_1$. Dann stimmt es nicht, dass alle galoissch Konjugierten von $t=V(x_1)=\mathrm{i}$ von der (wegen n=1 einzig möglichen) Form $t'=V(x_1)$ sind. Denn $-\mathrm{i}$ ist ja auch noch ein galoissch Konjugiertes von t.

Ein komplizierteres Gegenbeispiel ist n = 2, $x_1 = 17$, $x_2 = i$, $V(X_1, X_2) = X_2$.

b) Proposition 4.4 lautet:

Seien x_1, \ldots, x_n die Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten. Ist dann t ein primitives Element zu x_1, \ldots, x_n , so ist auch jedes galoissch Konjugierte t' von t ein primitives Element von x_1, \ldots, x_n .

Auch hier gibt es zahlreiche Gegenbeispiele, wenn man die Voraussetzung fallen lässt. Sei etwa $n=1, x_1=\omega\sqrt[3]{2}$ und $t=x_1$, wobei $\omega=\exp(2\pi i/3)$ eine primitive dritte Einheitswurzel ist. Dann stimmt es nicht, dass das galoissch Konjugierte $t'=\sqrt[3]{2}$ ebenfalls ein primitives Element von $\mathbb{Q}(x_1)$ ist: Denn $\mathbb{Q}(t')\subseteq\mathbb{R}$, aber $\mathbb{Q}(x_1)\not\subseteq\mathbb{R}$.