Rappels de quelques résultats en calcul des probabilités

1) Généralités :

Un espace de probabilité est un triplet (Ω, a, P) ou :

- a) Ω est un ensemble qui décrit l'espace des réalisations possibles d'une expérience aléatoire.
- b) a est une tribu de sous-ensembles de Ω , c.a.d telle que :
 - 1. Φ et $\Omega \in \mathbf{a}$.
 - 2. $\operatorname{si} A \in \mathbf{a} \operatorname{alors} \overline{\mathbf{A}} \in \mathbf{a}$
 - 3. $\operatorname{si} A_1, A_2, \ldots \in a \operatorname{alors} \bigcup_{k \ge 1} A_k \in a$

Les éléments de a sont appelés événements (aléatoires). En particulier Φ désigne l'événement dit impossible et Ω l'événement dit certain.

- c) P(.) est une application de $a \rightarrow [0, 1]$ vérifiant les propriétés suivantes :
 - 1. $P(\Omega)=1$

$$2. \quad P\!\!\left(\bigcup_{k\geq 1} A_k\right) = \sum_{k\geq 1} P\!\!\left(A_k\right) \; \text{ pour toute suite } \left(A_k\right)_{k\geq 1} \; \text{dans a avec } A_i \cap A_j = \Phi \; \text{ si } i\neq j.$$

2) Variables aléatoires :

- Si $X(\Omega) = \{x_0, x_1, \dots, x_n\}$ on dit que X est une variable aléatoire discrète finie.
- Si $X(\Omega)=\{x_0,x_1,\ldots,x_n,\ldots\}$ on dit que X est une variable aléatoire discrète (v.a.d)
- Si $X(\Omega)=(a,b)$ (éventuellement $a=-\infty$, $b=+\infty$) on dit que X est une v.a continue.

3) Loi de probabilité d'une v.a discrète :

 $X(\Omega) = \{x_0, x_1, \dots, x_n, \dots\}$

$$[X=x]=X^{-1}(\{x\})=\{\omega\in\Omega ; X(\omega)=a \}$$

Pour déterminer la loi de X, il suffit de calculer :P[X=x] pour tout $x \in X(\Omega)$.

3.1) Espérance mathématique d'une v.a discrète (moyenne) :

$$E(X) = \sum_{x_i \in X(\Omega)} x_i P[X = x_i]$$

3.1.1) Propriétés:

- 1. Si X est une v.a constante égale à λ alors $E(X) = \lambda$
- 2. E(X+Y)=E(X)+E(Y) et $E(\lambda.X)=\lambda E(X)$ (λ constante).
- 3. Soit f une application de IR \rightarrow IR, si f(X)=foX est une v.a.d :

$$E[f(X)] = \sum_{x_i \in X(\Omega)} f(x_i) P[X = x_i]$$

4. Le moment d'ordre $k (k \ge 1)$:

$$E[X^{k}] = \sum_{x_{i} \in X(\Omega)} x_{i}^{k} P[X = x_{i}]$$

3.2) Variance d'une v.a discrète :

$$V(X) = E[(X-E(X))^{2}]=E(X^{2}) - (E(X))^{2}$$

3.2.1) Propriétés:

- 1. Si X est une v.a constante égale à λ alors $V(X)=V(\lambda)=0$
- 2. $V(\lambda X) = \lambda^2 V(X)$ (λ constante)
- 3. Si X et Y sont deux v.a indépendantes : V(X+Y)=V(X)+V(Y)

4) Exemples de v.a discrètes :

1. Variable aléatoire de Bernoulli :

Soit une expérience aléatoire qui a deux résultats possibles.

On note e= échec ; s= sucée

 $\Omega = \{e, s\}$ avec P(s) = p et P(e) = 1 - p = q, (0

 $X: \Omega \rightarrow \{0,1\}$

X(e)=0 et X(s)=1

X v.a de Bernoulli, $X \rightarrow B(p)$

Loi de X : P[X=0]=q ; P[X=1]=p

E(X)=p ; V(X)=pq

2. Loi Binomiale B(n,p):

Il s'agit de la répétition de n épreuves indépendantes, de même loi de Bernoulli de paramètres p.

 $\Omega = \{e, s\}^n$

 $X^{:} \Omega \rightarrow \{0, 1, 2, \dots, n\}$

 $\omega \rightarrow X(\omega)$ = nombre de succès dans les épreuves.

X suit une loi Binomiale de paramètres n et p et on note : $X \rightarrow B(n,p)$

Loi de X:

$$P[X=k]=C_n^k p^k q^{n-k}$$
 $k \in \{0, 1, 2,, n\}$

L'espérance et la variance sont :

$$E(X) = np$$
 et $V(X) = npq$

3. Variable aléatoire de Poisson :

Une variable aléatoire de Poisson de paramètre λ (λ >0), est une v.a.d à valeurs dans IN ($X(\Omega)$ =IN) avec la loi de probabilité :

$$P[X=k] = \lambda^k \, \frac{e^{-\lambda}}{k!} \quad , \ k \in IN$$

on note $X \rightarrow P(\lambda)$

$$E(X)=V(X)=\lambda$$

5) Variables aléatoires continues :

 $X(\Omega)=(a,b)$

 $F(x)=P[X \le x]$ est appelée fonction de répartition de X.

S'il existe $f \ge 0$ tq $F(x) = \int_{-\infty}^{x} f(t)dt$ alors X est dite absolument continue de densité f(.).

Si X est absolument continue : $\forall \lambda \in IR$, $P[X=\lambda]=0$.

Remarque:

Par la suite, on dira que X est continue.

5.1) Moment d'ordre m de X :

$$E(X^{m}) = \int_{IR} x^{m} f(x) dx$$

Si m=1, $E(X) = \int_{\mathbb{R}} \mathbf{x} \mathbf{f}(\mathbf{x}) d\mathbf{x}$ c'est la moyenne ou l'espérance de X.

5.2) Le moment centré d'ordre m de X :

C'est le nombre : $E[(X-E(X))^m]$

Si m=2, $E[(X-E(X))^2] = E(X^2) - (E(X))^2$ on retrouve la variance de X.

Remarque:

Les propriétés vues dans les parties (3.1.1) et (3.2.1) sont valables dans le cas continu.

5.3) Exemples de v.a continues ::

1. Loi uniforme:

On dit que la v.a X suit une loi uniforme sur [a, b] et on note X→U[a, b] si sa fonction densité est

1. Loi uniforme:
On dit que la v.a X suit une loi uniform
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

L'espérance et la variance sont :

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$

2. Loi normale:

On dit que la variable aléatoire X suit une loi normale de paramètres μ et σ et on note X \rightarrow N(μ , σ) si sa fonction

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, x \in \mathbb{IR}$$

$$E(X) = \mu \quad \text{et} \quad V(X) = \sigma^{2}$$

3. Loi exponentielle:

Une v.a X de f.d.r F définie par :

$$F(t)=1-e^{-\lambda t} \ \forall t \ge 0$$
 , $(\lambda > 0)$

s'appelle v.a exponentielle de paramètre λ la densité est :

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda t} & \text{si } t \geq 0 \\ 0 & \text{sinon} \end{cases}$$

$$E(X) = \frac{1}{\lambda}$$
 ; $V(X) = \frac{1}{\lambda^2}$

4) Théorème des probabilités totales :

soit $\{B_1, B_2, \dots\}$ une partition de l'ensemble fondamental Ω , alors :

$$P(A) = \sum_{k} P(A/B_k) \cdot P(B_k)$$

Si la partition $\{B_1, B_2, \dots\}$ est engendré par une variable aléatoire discrète Y on a :

$$P(A) = \sum_{k} P(A/Y = y_k) \cdot P(Y = y_k)$$

Dans le cas ou la v.a Y est continu de densité f(y), on a :

$$P(A) = \int P(A/Y = y) \cdot f(y) dy$$

Cette version est appelée version continue du théorème des probabilités totales.

5) Théorème de multiplication :

Si les événements A_1, A_2, \dots, A_n sont de probabilités non nulle, on a :

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1/A_2 \cap \cdots \cap A_n) \times P(A_2/A_3 \cap \cdots \cap A_n) \times \cdots \times P(A_{n-1}/A_n) P(A_n)$$

D'autre part, si A,B et C sont de probabilités non nulle, on a :

$$P(A \cap B/C) = P(A/B \cap C) \times P(B/C)$$

6)Espérance mathématique conditionnelle :

Soit $\{B_1, B_2, \dots\}$ une partition de Ω et X une variable aléatoire discrète de distribution : $P_n=P[X=x_n]$. alors:

$$p_n = \sum_k P[X = x_n / B_k] \cdot P(B_k)$$

Si d'autre part X est continue de densité f(x), on obtient :

$$f(x) = \sum_{k} f(x/B_{k}) \cdot P(B_{k})$$

ou $f(x/B_k)$ est la densité conditionnelle de X sachant que l'événement B_k s'est réalisé.

Pour calculer l'espérance mathématique de X, on a :

$$E(X) = \sum_{k} E(X/B_k) \cdot P(B_k)$$

ou $E(X/B_k) \ est \ l'espérance \ mathématique \ conditionnelle \ de \ X \ sachant \ que \ B_k \ s'est \ produit, \ elle \ est \ définie \ par :$

$$E(X/B_k) = \begin{cases} \sum_{k} x_n P[X = x_n / B_k] & \text{si } X \text{ est discréte} \\ \int_{x} x f(x/B_k) dx & \text{si } X \text{ est continue} \end{cases}$$

6) Quelques propriétés de la loi exponentielle :

La loi exponentielle est très employée dans les problèmes de fiabilité, les files d'attente, elle est aussi connue sous le nom de v.a sans mémoire (ou de Markov).

Définition:

Une v.a X est dite sans mémoire si elle vérifie : P[X>t+s/X>t]=P[X>s] pour tout t, s>0 (ou encore $P[X>t+s]=P[X>t]\times P[X>s]$)

La v.a $T \rightarrow Exp(\lambda)$ est sans mémoire, en effet, pour s , t >0, on a :

$$\begin{split} P[T>s+t/T>t] &= \frac{P[T>s+t,T>t]}{P[T>t]} \\ &= \frac{P[T>s+t]}{P[T>t]} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = P[T>s] \end{split}$$

Remarque:

La loi exponentielle est la seule loi continue qui possède cette propriété.

Proposition:

Soient T_1, T_2, \ldots, T_n des v.a indépendantes et identiquement distribuées selon des lois exponentielles de paramètres $\lambda_1, \lambda_2, \ldots, \lambda_n$. Alors $T=\min(T_1, T_2, \ldots, T_n)$ suit une loi exponentielle de paramètre $\lambda_1 + \lambda_2 + \ldots + \lambda_n$

Preuve: Exercice.

8) Loi Gamma:

La loi gamma est généralisation de la loi exponentielle. Supposons T_1, T_2, \ldots, T_n sont des variables aléatoires indépendantes obéissant à la même loi exponentielle de paramètre λ . La somme $S_n = T_1 + T_2 + \ldots + T_n$ est distribuée suivant une loi gamma de paramètres λ et n, cette distribution est également connue sous le nom loi d'Erlang d'ordre n. la densité de probabilité correspondante s'écrit :

$$f_{\lambda,n}(t) = \lambda \cdot (\lambda \cdot t)^{n-1} \frac{e^{-\lambda t}}{(n-1)!}$$
 $(t \ge 0)$

9) Fonctions génératrices :

Soit X une variable aléatoire à valeurs entières non négatives. La fonction génératrice de X est définie par :

$$\mathbf{G}(\mathbf{z}) = \mathbf{E}(\mathbf{z}^{\mathbf{X}}) = \sum_{k=0}^{\infty} \mathbf{p}_k \mathbf{z}^k$$
 ou $\mathbf{p}_k = P[\mathbf{X} = k]$ $(k \ge 0)$

et ou z est une variable complexe. La fonction G(z) est définie au moins pour $|z| \le 1$ et on a : $G(0)=p_0$ et G(1)=1

9.1) Propriétés des fonctions génératrices :

1. la loi de probabilité p_n ($n \ge 0$) est caractérisée de façon unique par la fonction génératrice associée G(z) et l'on a :

$$p_k = \frac{G^{(k)}(0)}{k!}$$
 ou $G^{(k)}(0) = \left[\frac{d^k G(z)}{dz^k}\right]_{z=0}$ $(k \ge 0)$

2. E(X) = G'(1) et $E(X^2) = G''(1) + G'(1)$

3. Si X et Y sont deux variables aléatoires indépendantes à valeurs entières non négatives. La fonction génératrice de X+Y est le produit des fonctions génératrices de X et de Y:

$$G_{X+Y}(z)=G_X(z)\times G_Y(z)$$

4. X et Y ont la même loi $\Leftrightarrow G_X(.) = G_Y(.)$

10) Transformée de Laplace :

lorsque la variable aléatoire positive X est continue, sa distribution peut être caractérisée par la transformée de Laplace de la densité f(x)

$$\overline{f}(x) = L[f(x)](s) = E[e^{-sX}] = \int_{0}^{\infty} f(x)e^{-sx} dx$$

ou s est une variable complexe.

10.1) Propriétés:

- 1) Si X et Y sont indépendantes, la transformée de X+Y est le produit des transformées de X et de Y.
- 2) L[f'(x)](s) = L[f(x)](s) f(0).
- 3) $L[f''(x)](s) = s^2 L[f(x)](s) sf(0)-f'(0)$

4)
$$L\begin{bmatrix} \int_{0}^{x} f(u)du \end{bmatrix}$$
 $(s) = \frac{\overline{f}(s)}{s} = \frac{L[f(x)](s)}{s}$

11) La fonction o(h):

o(h) est une fonction de h, définie dans un intervalle autour de l'origine et telle que $\lim_{h\to 0} \frac{o(h)}{h} = 0$ ce qui signifie que pour h $\to 0$, la fonction o(h) sera négligeable par rapport à h.

Exemples:

$$h^3 - h = o(h)$$

$$1 - \cos h = o(h)$$

mais
$$\sin h \neq o(h)$$
 car $\frac{\sin h}{h} \rightarrow 1$ quand $h \rightarrow 0$.