Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{ \alpha} == 0$	1
$\tau_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\overline{\tau_1^{\#1}{}^{\alpha\beta} + i k \sigma_1^{\#2}{}^{\alpha\beta}} = 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^X \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{X}_{X} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	
Total constraints/gau	ge generators:	17

$\sigma_{1}^{\#1}$	$\sigma_{1}^{\#2}$	$t_1^{\#1}$	$\sigma_{1^-\alpha}^{\#1}$	$\sigma_{1}^{\#2}$	$t_{1^{-}}^{\#1} \alpha$	$\tau_{1}^{#2}$
	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
171	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
Ū.	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$-\frac{1}{\sqrt{2}(k^2+2k^4)(r_1+r_5)}$	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$
	0	0	$-\frac{1}{\sqrt{2}\;(k^2+2k^4)(r_1+r_5)}$	$\frac{6k^2(r_1+r_5)+t_1}{2(k+2k^3)^2(r_1+r_5)t_1}$	0	$\frac{i \left(6 k^2 (r_1 + r_5) + t_1\right)}{\sqrt{2} k \left(1 + 2 k^2\right)^2 (r_1 + r_5) t_1}$
	0	0	0	0	0	0
	0	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6k^2(r_1+r_5)+t_1}{(1+2k^2)^2(r_1+r_5)t_1}$

. 2										
1 :	$\sigma_{0}^{\#1}$	0	0	0	- 1	$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁
>	$\tau_{0}^{\#2}$	0	0	0	0	$f_{0}^{#2}$	0	0	0	0
	$t_{0}^{\#1}$	0	0	0	0	$f_{0}^{\#1}$	0	0	0	0
	$\sigma_{0}^{\#1}$	0	0	0	0	$\omega_{0}^{\#1}$	0	0	0	0
- 2~		$\sigma_{0}^{\#1}$	τ_{o+}^{*1} †	τ#2 †	$\sigma_{0}^{\#1}$ †		$\omega_{0}^{\#1}\dagger$	$f_{0}^{#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1}\dagger$
	$f_{1^-}^{\#2}$	C	>	0	0	<i>i kt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{2}$	ĸ
	$f_{1^-}^{\#1} \alpha$	C		0	0	0	0	0	C	>
	$\omega_{1}^{\#2}{}_{\alpha}$	C	>	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{l}\sqrt{2}kt_1$	
	$\omega_{1}^{\#1}{}_{\alpha}$	O	>	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	-1 ikt,	τ «
	$f_{1}^{\#1}$	<u>ikt1</u>	$\sqrt{2}$	0	0	0	0	0	C	>
	$\omega_{1+lphaeta}^{\#2}f_{1+lphaeta}^{\#1}$	- 1	-	0	0	0	0	0	c	,
	$\omega_{1}^{\#1}_{+\alpha\beta}$	$(u)^{\#\frac{1}{4}} + \alpha \beta \left[\chi^2 (2 r_1 + r_5) - \frac{t_1}{4} \right]$	2 (61.) 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_{1}}{\sqrt{2}}$	0	0	0	C	.
		$\omega^{*1} + \alpha\beta$	- 1	$\omega_1^{\#_2^2} +^{lphaeta}$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_1^{#1} + \alpha$	$f_{\frac{\pi}{2}}^{\#2} + \alpha$	- 1

Massive and massless spectra

Massive particle							
Pole residue:	$-\frac{1}{r_1} > 0$						
Polarisations:	5						
Square mass:	$-\frac{t_1}{2r_1} > 0$						
Spin:	2						
Parity:	Odd						

Unitarity conditions

 $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0$