Network Visualization Part 2

1. Network Metrics

a. Betweeness Centrality can be calculated for nodes as well as edges.

The betweenness centrality of a node $oldsymbol{v}$ is given by the expression:

$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$

where σ_{st} is the total number of shortest paths from node s to node t and $\sigma_{st}(v)$ is the number of those paths that pass through v.

Calculate nodal betweenness centrality for the graph shown here:

b. Can you imagine any other good metrics for determining importance of nodes or edges?

Nodal degree

Closeness Centrality $C(x) = \sum_{y} \frac{1}{d(x,y)}$

where d(x,y) is the shortest path distance between vertices x and y

Create an adjacency matrix for the graph below.

	Mike	Bob	John	Leah	Shane	Liz	Emm	Jill	Allen	Lisa
Mike										
Bob										
John										
Leah										
Shane										
Liz										
Emma										
Jill										
Allen										
Lisa										