Fractional quantum Hall effect on an infinite cylinder: Characterization of topological order using iDMRG

Frank Pollmann

Max-Planck-Institut für komplexer Systeme, Dresden, Germany

Mike Zaletel
UC Berkeley

Roger Mong

Introduction

- Different phases of matter are usually understood using local order parameters ("symmetry breaking")
 - Magnets: spin rotation and TR symmetry broken

 Crystals: translation and rotation symmetry broken

• Phase diagram of an Ising model (magnetization as oder parameter)

Introduction

- In the last years several "new kinds" of phases have been discovered which cannot be described by
 - local order parameters
 - Quantum Hall effect [Klitzing '80]

- Fractional Quantum Hall effect [Tsui, Stormer '82, Laughlin '83]
- Topological spin liquids [Anderson '87]
- **—** ...
- How to characterize topological order?
- How to tell what kind of topological order we have from numerical simulations?

Outline

- Fractional quantum Hall on a cylinder
- Efficient simulations of infinite ID system:
 Matrix product states (MPS) and density matrix renormalization group (DMRG)
- Characterization of topological order using MPS and the entanglement spectrum
 - Charge distribution of a quasi particle
 - Topological entanglement entropy
 - Quantum dimensions
 - Topological spin

Fractional quantum Hall on a cylinder

- Two-dimensional electron gas in a strong magnetic field
- Lowest Landau Level on an infinite cylinder with circumference ${\cal L}$

Landau gauge $\mathbf{A} = \ell_B^{-2}(-y, 0)$

• Degenerate orbitals take the form (with $k_j = \frac{2\pi j}{L}$)

$$\varphi_j(x,y) = \frac{e^{ik_j x - \frac{1}{2\ell_B^2} (y - k_j \ell_B^2)^2}}{\sqrt{L\ell_B \pi^{1/2}}}$$

Fractional quantum Hall on a cylinder

• Orbitals are localized at $y_j = k_j \ell_B^2$: **ID model** using an occupation number basis $|N_j\rangle$, $N_j = 0, 1$

Degenerate states in the orbital basis represented as

```
\dots | \dots 0010101011\dots \rangle, | \dots 1000101011\dots \rangle, \dots
```

Fractional quantum Hall on a cylinder

The most general interaction allowed by symmetry is

$$\hat{H} = \sum_{n} \sum_{k \ge |m|} V_{km} c_{n+m}^{\dagger} c_{n+k}^{\dagger} c_{n+m+k} c_n$$

- We are using the Haldane pseudo potentials V_i (Trugman-Kivelson $\nabla^2\delta(r)$: $V_{km}\propto e^{-\frac{1}{2}4\pi^2(k^2+m^2)/L^2}$): [Haldane '83; Trugman & Kivelson '85]
- Total charge $\hat{C}=\sum_{j}\hat{N}_{j}$ and momentum $\hat{K}=\sum_{j}j\hat{N}_{j}$ are conserved

• Consider local Hamiltonians acting on a Hilbert space \mathcal{H} :

- Ground states live in a very small corner of the Hilbert space as they generically fulfill the area law (proven for ID, gapped systems [Hastings '07])
- Efficiently constrain our simulations to this subspace: In ID we represent the state as matrix-product state (MPS)
- Main idea: Truncate the Schmidt decomposition

• Example: Entanglement spectrum (Schmidt spectrum) of the Spin-I Heisenberg chain $H = \sum_j \vec{S}_j \cdot \vec{S}_{j+1}$

• Schmidt values decay rapidly: Almost the entire weight is contained in only few important states (AREA LAW!)

Useful way to represent tensors

• A generic quantum state for a N site system has a d^N dimensional Hilbert space ($j_n = 1 \dots d$)

$$|\psi\rangle = \sum_{i_1...i_N} \psi_{j_1...j_N} |j_1\rangle \cdot \cdots \cdot |j_N\rangle$$

Coefficients are given by a rank N tensor:

$$\psi_{j_1...j_N} = \boxed{ }$$

 In an MPS representation we write the rank-N tensor as a product of rank-3 tensors

[Fannes et al. '92]

$$B_{\alpha,\beta}^{[n]j_n} = \alpha - \beta \quad \text{with dimensions} \quad j_n = 1 \dots d \\ \alpha,\beta = 1 \dots \chi_n$$

- Dimension χ generically grows exponentially with system size: But If we represent $|\psi\rangle$ in terms of the **Schmidt** basis at each bond we know how to truncate it!
- Variational wave function for which the number of parameters depends only on entanglement $(Nd\chi^2)$

- ullet Local expectation values calculated efficiently ($\propto N\chi^3 d$)
- Operators can be expressed in terms of matrixproduct operators (MPO) as a generalization of MPS
- For infinite systems we assume a finite unit cell such that $B^{[n]} = B^{[n+M]}$

$$\psi_{...j_1...j_N...} = \cdots 1 - 2 - 3 - 1 - 2 - 3 - \cdots$$

- FQH:Matrix dimension χ needed to represent the ground state grows $\propto \exp(L)$: This is bad but not as bad as a $\propto \exp(L^2)$ growth :-)
- Same scaling with L as in finite system DMRG... [Shibata '01; Feiguin '08; Hu '12; Zhao '12;...]

 The ground state is found using an infinite system variant of the DMRG algorithm [White '92; McCulloch '08]

Iterative minimization of the energy

- Optimizing some tensors while keeping the environment fixed (e.g., Lanczos)

- After each optimization, the wave function is truncated back to the original variational space of MPS's (SVD)
- Sufficient number of iterations yields a fixed point and we can read off the tensors $B^{[1]}\dots B^{[M]}$ which approximate the ground state

iDMRG results: Quasiparticles

- How can we characterize topological order using iDMRG?
- Topologically ordered states are characterized by their quasiparticle (QP) excitations: GS degeneracy equal to the number of QP types a [Wen '90; Kitaev '05]
- We choose a basis such that each GS corresponds to a specific QP type $\mathcal{H}=\bigoplus_a \mathcal{V}_a$: minimally entangled states (MES) for the bipartition of the cylinder $|\Xi_a\rangle$ [Zhang et al.'12; Grover et al.'12; Cincio & Vidal'12]
- Choose a specific "pattern of zeros"
 (e.g., ...0|0|...) as initial state [Wen & Wang '08; Bernevig '08]
 Ergodicity: Two-site update not sufficient

iDMRG results: Quasiparticles

• Example: **Moore-Read phase** (six different quasi-particle sectors with different initial configurations)

[Moore & Read '91; Fendley '06; Bergholtz '06; Fradkin '08; ...]

QP type	Charge	Seed
1	0	0110
$V_{+1/\sqrt{2}}$	e/2	0011
$V_{-1/\sqrt{2}}$	e/2	1100
ψ	0	1001
$\sigma V_{+1/2\sqrt{2}}$	-e/4	0101
$\sigma V_{-1/2\sqrt{2}}$	e/4	1010

iDMRG results: Quasiparticles

 Creating a QP by glueing together two ground states with different charges at the boundary

- Example: Charge density for the $\nu=1/3$ state
- QP charge by measuring expectation values of the charge in Schmidt states

iDMRG results: Entanglement

• The entanglement entropy for a topologically ordered ground state $|\Xi_a\rangle$

$$S = sL - \gamma_a$$
 with $\gamma_a = -\log\left(d_a/\sqrt{\sum_b d_b^2}
ight)$

 \bullet For abelian QP $\,d_a=1\,\mathrm{and}$ the topological entanglement entropy does not depend on $\,a$

• Sum rule allows us to check if we found all ground states $\sum_i e^{-2\gamma_i} = 1$

iDMRG results: Entanglement

 \bullet Example: Entanglement entropy for an (abelian) $\nu=2/5$ state

 \Rightarrow Extracted topological entanglement entropy: $\gamma \approx 0.83$

iDMRG results: Entanglement

ullet Phase diagram of the u=1/2 state by varying the Haldane pseudo potentials

- Difference in topological entropy $\Delta S = \gamma_{\sigma V_{-1/2\sqrt{2}}} \gamma_1$
 - ightharpoonup Non-abelian anyons with $d_a \approx 1.43$

iDMRG results: From a cylinder to a torus

• Put the ground state of the infinite cylinder onto a torus (correlation length ξ is short compared to the length)

ullet The operator $ar{G}$ determines the boundary conditions

iDMRG results: From a cylinder to a torus

 Fluxes and modular parameter can be accounted for by inserting a diagonal matrix • when connecting the two edge auxiliary bonds

$$\bar{G} = (-1)^{(N_e - 1)\frac{\bar{C}}{q}} \exp\left[-2\pi i \tau_x \frac{\bar{K}}{q} + i\Phi_y \frac{\bar{C}}{q}\right]$$

- Inserting a flux Φ_y (Shifting between GS's): **QP** charge
- Dehn Twist (Modular T):

Topological spin of QP

 Numerical verifications in progress...

Summary

- Simulating FQH systems using infinite MPS allows us to extract many relevant quantities
 - Clean entanglement spectra (both in real and orbital space)
 - Topological entanglement entropy and individual quantum dimensions
 - Quasiparticle charges
 - Topological spin

