# Lab 7

Zara Waheed

March 31, 2022

### Question 12.3

**a**)

```
set.seed(100)
x = cbind(c(1, 1, 0, 5, 6, 4), c(4, 3, 4, 1, 2, 0))
plot(x[,1], x[,2])
```



```
b)
```

```
labels = sample(2, nrow(x), replace=T)
labels

## [1] 2 1 2 2 1 1

c)

centroid1 = c(mean(x[labels==1, 1]), mean(x[labels==1, 2]))
centroid2 = c(mean(x[labels==2, 1]), mean(x[labels==2, 2]))
```

#### centroid1

```
## [1] 3.666667 1.666667
```

centroid2

#### ## [1] 2 3

```
plot(x[,1], x[,2], col=(labels+1), pch=20, cex=2)
points(centroid1[1], centroid1[2], col=2, pch=4)
points(centroid2[1], centroid2[2], col=3, pch=4)
```



d)

```
euclid = function(a, b) {
    return(sqrt((a[1] - b[1])^2 + (a[2]-b[2])^2))
}
assign_labels = function(x, centroid1, centroid2) {
    labels = rep(NA, nrow(x))
    for (i in 1:nrow(x)) {
        if (euclid(x[i,], centroid1) < euclid(x[i,], centroid2)) {
            labels[i] = 1
        } else {
            labels[i] = 2
        }
    }
    return(labels)
}
labels = assign_labels(x, centroid1, centroid2)
labels</pre>
```

## [1] 2 2 2 1 1 1

**e**)

```
last_labels = rep(-1, 6)
while (!all(last_labels == labels)) {
  last_labels = labels
  centroid1 = c(mean(x[labels==1, 1]), mean(x[labels==1, 2]))
  centroid2 = c(mean(x[labels==2, 1]), mean(x[labels==2, 2]))
  print(centroid1)
  print(centroid2)
  labels = assign_labels(x, centroid1, centroid2)
}
## [1] 5 1
## [1] 0.6666667 3.6666667
labels
## [1] 2 2 2 1 1 1
f)
plot(x[,1], x[,2], col=(labels+1), pch=20, cex=2)
points(centroid1[1], centroid1[2], col=2, pch=4)
points(centroid2[1], centroid2[2], col=3, pch=4)
```



### Question 12.5

1)

Least socks and computers (3, 4, 6, 8) versus more socks and computers (1, 2, 7, 8).

## 2)

Purchased computer (5, 6, 7, 8) versus no computer purchase (1, 2, 3, 4). The distance on the computer dimension is greater than the distance on the socks dimension.

## 3)

Purchased computer (5, 6, 7, 8) versus no computer purchase (1, 2, 3, 4).

### Question 12.8

### **a**)

```
rm(list=ls())
attach(USArrests)
pr.out <- prcomp(USArrests,scale=TRUE)</pre>
pr.var <- pr.out$sdev^2</pre>
pve <- pr.var / sum(pr.var)</pre>
plot(pve, xlab="Principal Component", ylab=" Proportion of Variance Explained ",ylim=c(0,1) ,type='b')
Proportion of Variance Explained
       0.8
       9.0
       0.4
       0.2
                                                                                                0
       0.0
               1.0
                            1.5
                                         2.0
                                                       2.5
                                                                                  3.5
                                                                                               4.0
                                                                    3.0
                                            Principal Component
```

```
plot(cumsum(pve), xlab = "Principal Component",
ylab = "Cumulative Proportion of Variance Explained", ylim = c(0, 1), type = "b")
```



b)

```
loadings<-pr.out$rotation
USArrests2 <- scale(USArrests)
sum <-sum(as.matrix(USArrests2)^2)
num <-(as.matrix(USArrests2)%*%loadings)^2
col <-c()
for (i in 1:length(num[1,])){
   col[i]<-sum(num[,i])
}
pve1 <- col/sum
pve1</pre>
```

## [1] 0.62006039 0.24744129 0.08914080 0.04335752

#### Question 12.9

a)

```
library(ISLR)
arrests = USArrests
hc = hclust(dist(arrests), method = "complete")
```

```
b)
plot(hc, main = "Complete Linkage", xlab = "", sub = "", cex = 0.9)
```

## **Complete Linkage**



```
hc_3_clust = cutree(hc, 3)
# To see clearly
sort(hc_3_clust)
```

```
Alabama
                            Alaska
                                                        California
##
                                           Arizona
                                                                          Delaware
##
##
          Florida
                          Illinois
                                         Louisiana
                                                          Maryland
                                                                          Michigan
##
                                       New Mexico
##
      Mississippi
                           Nevada
                                                          New York North Carolina
##
                                 1
##
   South Carolina
                         Arkansas
                                         Colorado
                                                           Georgia
                                                                    Massachusetts
##
##
         Missouri
                       New Jersey
                                         Oklahoma
                                                            Oregon
                                                                      Rhode Island
##
##
        Tennessee
                            Texas
                                         Virginia
                                                        Washington
                                                                           Wyoming
##
##
      Connecticut
                                             Idaho
                                                           Indiana
                           Hawaii
                                                                              Iowa
##
                                                                 3
                                                                                  3
                 3
                                 3
                                                 3
                         Kentucky
##
           Kansas
                                             Maine
                                                         Minnesota
                                                                           Montana
##
##
         Nebraska
                                     North Dakota
                                                              Ohio
                    New Hampshire
                                                                      Pennsylvania
##
                                                    West Virginia
##
     South Dakota
                              Utah
                                           Vermont
                                                                         Wisconsin
##
```

**c**)

```
# Scale the data
scaled_arrests = scale(arrests)
apply(scaled_arrests, 2, mean)
```

```
## Murder Assault UrbanPop Rape
## -7.663087e-17 1.112408e-16 -4.332808e-16 8.942391e-17
```

```
apply(scaled_arrests, 2, var)

## Murder Assault UrbanPop Rape
## 1 1 1 1

# Cluster
scaled_hc = hclust(dist(scaled_arrests), method = "complete")

d)
```

## Complete Linkage, Scaled



plot(scaled\_hc, main = "Complete Linkage, Scaled", xlab = "", sub = "", cex = 0.9)

The variables should be scaled before the inter-observation because the tree looks better after scaling

#### Question 12.10

**a**)

```
x = matrix(rnorm(20*3*50, mean=0, sd=0.001), ncol=50)
x[1:20, 2] = 1
x[21:40, 1] = 2
x[21:40, 2] = 2
x[41:60, 1] = 1
```

b)

```
pca_unscaled = prcomp(x, scale = FALSE)
pca_scaled = prcomp(x, scale = TRUE)
```

**c**)

```
k = 3
kmeans3 = kmeans(x, k, nstart = 20)
```

```
plot(x,
    col = (kmeans3$cluster + 1),
    main = paste0("K - Means Clustering Results with K = ", k),
    xlab = "",
    ylab = "",
    pch = 20,
    cex = 2)
```

## K – Means Clustering Results with K = 3

```
0.0 0.5 1.0 1.5 2.0 table(kmeans3$cluster, c(rep(1, 20), rep(2, 20), rep(3, 20)))
```

```
##

##

1 2 3

## 1 0 0 20

## 2 0 20 0

## 3 20 0 0

sort(kmeans3$cluster)
```

**d**)

## **K - Means Clustering Results with K = 2**

```
2.0
1.5
0.5
0.0
    0.0
                0.5
                             1.0
                                         1.5
                                                     2.0
table(kmeans2$cluster, c(rep(1, 20), rep(2, 20), rep(3, 20)))
##
##
     1 2 3
   1 20 0 20
##
   2 0 20 0
sort(kmeans2$cluster)
e)
k = 4
kmeans4 = kmeans(x, k, nstart = 20)
   col = (kmeans4$cluster + 1),
   main = pasteO("K - Means Clustering Results with K = ", k),
   xlab = "",
   ylab = "",
   pch = 20,
   cex = 2)
```

## K - Means Clustering Results with K = 4



Just like the first c - a perfect match.

 $\mathbf{g})$