Supervised Learning Algorithms

- Gradient Descent (GD) Method

. weight update rule:

$$\underline{w}_{k+1} = \underline{w}_k - \mu \nabla_k$$

where \underline{w}_{k+1} represents the k+1th n-dimensional weight vector.

true gradient (batch mode): $\nabla_k = 2R\underline{w}_k - 2P$ stochastic gradient (on-line mode): $\widehat{\nabla}_k = -2\epsilon_k\underline{x}_k$

. convergence:

$$0<\mu<1/\lambda_{\mathrm{max}}$$
 or $\mu\!\propto\!1/k$

In general, this method is too slow.

. computational complexity:

$$O(n^2)/step$$
 in the batch mode

O(n)/step in the on-line mode

- Newton Method

. weight update rule:

$$\underline{w}_{k+1} = \underline{w}_k - \mu R^{-1} \nabla_k$$

Since $\nabla_k = 2R\underline{w}_k - 2P$ in the batch mode,

$$\underline{w}_{k+1} = (1-2\mu)\underline{w}_k + 2\mu R^{-1}P = (1-2\mu)\underline{w}_k + 2\mu\underline{w}^*, \text{ that is,}$$

$$\underline{w}_k = \underline{w}^* + (1-2\mu)^k(\underline{w}_0 - \underline{w}^*).$$

. convergence:

If $\mu = 1/2$, $\underline{w}_1 = \underline{w}^*$, that is, one-step convergence.

. computational complexity:

The inversion of R is required, that is,

$$O(n^3)/step$$

- Quasi-Newton Method

. weight update rule in Newton method:

$$\underline{w}_{k+1} = \underline{w}_k - \alpha_k R^{-1} \nabla_k$$

$$\alpha_k = 1/2$$
 for one-step convergence.

. Quasi-Newton method performs the recursive construction of \mathbb{R}^{-1} . Here, we assume that \mathbb{R} is symmetric and positive definite matrix.

. Let us consider the following equation:

$$Rp_i = q_i$$
, $i = 0, 1, \dots, n-1$.

Consider a matrix S_{k+1} such that

$$S_{k+1}q_i=p_i$$
, $i=0,1,\,\cdots,k$ (Quasi-Newton condition)

After n linearly independent steps, $S_n = R^{-1}$.

construction of S_{k+1} :

$$S_{k+1} = S_k + \alpha_k \underline{r}_k \underline{r}_k^T \quad \text{(rank one correlation)} \dots \text{(1)}$$

$$\underline{p}_k = S_{k+1} \underline{q}_k = S_k \underline{q}_k + \alpha_k \underline{r}_k \underline{r}_k^T \underline{q}_k \dots \text{(2)}$$

$$\underline{q}_k^T \underline{p}_k = \underline{q}_k^T S_{k+1} \underline{q}_k = \underline{q}_k^T S_k \underline{q}_k + \alpha_k \underline{q}_k^T \underline{r}_k \underline{r}_k^T \underline{q}_k \dots \text{(3)}$$

from (2),
$$\alpha_k \underline{r}_k \underline{r}_k^T q_k = \underline{p}_k - S_k q_k$$
 and

from (3),
$$\alpha_k q_k^T r_k r_k^T q_k = q_k^T p_k - q_k^T S_k q_k$$
.

Here, $\alpha_{k}\underline{r}_{k}\underline{r}_{k}^{T}$ can be written as

$$\begin{split} \alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} &= \frac{(\alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} \underline{q}_{k}) (\alpha_{k} \underline{r}_{k} \underline{r}_{k}^{T} \underline{q}_{k})^{T}}{\alpha_{k} \underline{q}_{k}^{T} \underline{r}_{k} \underline{r}_{k}^{T} \underline{q}_{k}} \\ &= \frac{(\underline{p}_{k} - S_{k} \underline{q}_{k}) (\underline{p}_{k} - S_{k} \underline{q}_{k})^{T}}{\underline{q}_{k}^{T} (\underline{p}_{k} - S_{k} \underline{q}_{k})} \end{split}$$

Therefore, from (1), S_{k+1} can be written as

$$S_{k+1} = S_k + \frac{(\underline{p}_k - S_k \underline{q}_k)(\underline{p}_k - S_k \underline{q}_k)^T}{\underline{q}_k^T (\underline{p}_k - S_k \underline{q}_k)}.$$

Let

$$\underline{y}_k = \frac{\underline{p}_k - S_k \underline{q}_k}{\underline{q}_k^T (\underline{p}_k - S_k \underline{q}_k)}.$$

Then,

$$S_{k+1}q_i = S_kq_i + y_k(p_k^Tq_i - q_k^TS_kq_i)$$
 for $i < k$.

By induction,

$$S_{k+1}q_i = p_i + y_k(p_k^Tq_i - q_k^Tp_i).$$

Since
$$q_k^T p_i = p_k^T R p_i = p_k^T q_i$$
, $S_{k+1} q_i = p_i$.

This implies that after n steps,

$$S_n q_i = p_i$$
 for $0 \le i \le n-1$.

Therefore, $S_n = R^{-1}$.

. Davidon-Fletcher-Powell method

Solution of rank two correlation procedure, that is,

$$S_{k+1} = S_k + \alpha_k \underline{u}_k \underline{u}_k^T + \beta_k \underline{v}_k \underline{v}_k^T.$$

The final form of S_{k+1} is described by

$$S_{k+1} = S_k + \frac{p_k p_k^T}{p_k^T q_k} - \frac{S_k q_k q_k^T S_k}{q_k^T S_k q_k}.$$

This method is more numerically stable than the rank one correlation method.

Quasi-Newton Algorithm

Step 1. Set k=0 and initialize \underline{w}_k and S_k .

(S_0 : any symmetric positive definite matrix)

Step 2. Set
$$\underline{d}_k$$
: $\underline{d}_k = -S_k \nabla_k$.

Step 3. Find α_k such that $\min_{\alpha_k \ge 0} E[\underline{w}_k + \alpha_k \underline{d}_k]$.

Step 4. Update
$$\underline{w}_{k+1}, \underline{p}_k, \underline{q}_k$$
:

$$\underline{w}_{k+1} = \underline{w}_k + \alpha_k \underline{d}_k \text{, } \underline{p}_k = \alpha_k \underline{d}_k \text{, and } \underline{q}_k = \nabla_{k+1} - \nabla_k \text{.}$$

Step 5. Update
$$S_{k+1}$$
: $S_{k+1} = S_k + \frac{p_k p_k^T}{p_k^T q_k} - \frac{S_k q_k q_k^T S_k}{q_k^T S_k q_k}$

Step 6. If $E[\underline{w}_{k+1}] < \theta$, stop. Otherwise, $k \leftarrow k+1$ and go to Step 2.

. convergence:

After n linearly independent steps, weight parameter can converge to $\boldsymbol{w}^*.$

. computational complexity:

Update of S_{k+1} is required, that is,

$$O(n^2)/step$$

- Lebenberg-Maquardat (LM) Method

- . The Levenberg-Marquardt algorithm was designed to approach second-order training speed without having to compute Hessian matrix.
- . The mean square error:

$$E(\underline{w}) = \frac{1}{N} \sum_{i=1}^{N} (d_i - y_i(\underline{w}))^2$$

. The Taylor series expansion of $E(\underline{w})$ around \underline{w}_k :

$$E(\underline{w}) \approx E(\underline{w}_k) + \nabla_k^T (\underline{w} - \underline{w}_k) + \frac{1}{2} (\underline{w} - \underline{w}_k)^T H(\underline{w}_k) (\underline{w} - \underline{w}_k)$$

where H is the Hessian matrix defined by $H(\underline{w}_k) \equiv [\frac{\partial E}{\partial w_i \partial w_j}]|_{\underline{w} = \, \underline{w}_k}$.

. Here, the Hessian matrix can be approximated as

$$H(\underline{w}_{k}) pprox J_{k}^{T} J_{k}$$

where J is the Jacobian matrix defined by

$$J_k \equiv \frac{\partial E}{\partial \underline{w}}|_{\underline{w} = \underline{w}_k}.$$

. The Lebenberg-Marquardt algorithm uses this approximation to the Hessian matrix:

$$\underline{w}_{k+1} = \underline{w}_k - [J_k^T J_k + \mu I]^{-1} \nabla_{k}.$$

- . μ is decreased after each successful step (reduction in performance function) and is increased only when a tentative step would increase the performance function.
- . convergence:

The behavior of LM algorithm is similar to the Newton method when $\mu=0$.

. computational complexity:

The inversion of $J_k^T J_k + \mu I$ is required, that is,

$$O(n^3)/step$$

- Recursive Least Square (RLS) Method

. Let the data can be represented by

$$y_k = \underline{x}_k^T \underline{w}^* + n_k$$

where \underline{x}_k represents the kth input vector, \underline{w}^* represents the optimal parameter vector, and n_k represents the white Gaussian noise.

. The update rule for the parameter vector:

$$\underline{w}_{k+1} = \underline{w}_k + \underline{a}_k (y_k - \underline{x}_k^T \underline{w}_k) \quad \dots \quad (1)$$

where \underline{a}_k represents the gain vector.

. What is the optimal gain? determine \underline{a}_k in the sense of minimizing the mean-square distance from \underline{w}_{k+1} to \underline{w}^* .

Let

$$B_k \equiv E[(\underline{w}_{k+1} - \underline{w}^*)(\underline{w}_{k+1} - \underline{w}^*)^T]. \quad \dots \quad (2)$$

Then.

$$E[\parallel\underline{w}_{k+1}-\underline{w}^*\parallel^2]=tr\big\{E[(\underline{w}_{k+1}-\underline{w}^*)(\underline{w}_{k+1}-\underline{w}^*)^T]\big\}, \text{ that is, }$$

 \underline{a}_k should be chosen to minimize $tr\{B_k\}$.

By substituting \underline{w}_{k+1} of (2) for \underline{w}_{k+1} of (1), we get a new matrix B_k which depends on \underline{a}_k .

Here, the trace of \mathcal{B}_{k} is determined by

$$tr\{B_{k}\} = tr\{B_{k-1}\} - \frac{\underline{x}_{k}^{T}B_{k-1}^{2}\underline{x}_{k}}{1 + \underline{x}_{k}^{T}B_{k-1}\underline{x}_{k}} + (1 + \underline{x}_{k}^{T}B_{k-1}\underline{x}_{k}) \parallel \underline{a}_{k} - \frac{B_{k-1}\underline{x}_{k}}{1 + \underline{x}_{k}^{T}B_{k-1}\underline{x}_{k}} \parallel^{2}$$

The above equation is minimized when

$$\underline{a}_k = \frac{B_{k-1}\underline{x}_k}{1 + \underline{x}_k^T B_{k-1}\underline{x}_k}.$$

In this case,

$$B_{k} = B_{k-1} - \frac{(B_{k-1}\underline{x}_{k})(B_{k-1}\underline{x}_{k})^{T}}{1 + \underline{x}_{k}^{T}B_{k-1}\underline{x}_{k}}.$$

Recursive Least Square (RLS) Algorithm

Step 1. Set \underline{w}_0 randomly, $B_0 = \epsilon I$ where ϵ is a small constant, and k=1.

Step 2. Update
$$\underline{a}_k$$
: $\underline{a}_k = \frac{B_{k-1}\underline{x}_k}{1 + \underline{x}_k^T B_{k-1}\underline{x}_k}$

Step 3. Update
$$B_k$$
: $B_k = B_{k-1} - \frac{(B_{k-1}\underline{x}_k)(B_{k-1}\underline{x}_k)^T}{1 + \underline{x}_k^T B_{k-1}\underline{x}_k}$

Step 4. Update the parameter vector: $\underline{w}_{k+1} = \underline{w}_k + \underline{a}_k (y_k - \underline{x}_k^T \underline{w}_k)$

Step 5. If $tr\{B_k\} < \theta$ (threshold value), stop. Otherwise, $k \leftarrow k+1$ and go to step 2.

. convergence:

The behavior of RLS algorithm is similar to the Quasi-Newton method. However, RLS algorithm finds \underline{w}^* asymptotically since it uses stochastic gradient $\widehat{\nabla}_k$.

. computational complexity:

The calculation of B_k is required, that is,

$$O(n^2)/step$$

. quick and dirty recursive linear regression: \underline{a}_k is updated by

$$\underline{a}_{k} = \frac{\underline{x}_{k}}{\sum_{j=1}^{k} \|\underline{x}_{k}\|^{2}}.$$

computational complexity: O(n)/step \underline{a}_k satisfies the convergence conditions of stochastic approximation.

- Conjugate Gradient (CG) Method

Let us consider the problem of solving simultaneous equations such as

$$Q\underline{x} = \underline{b}$$

This problem can be solved by minimizing the following quadratric function:

$$\min_{\underline{x}} \frac{1}{2} \underline{x}^T Q \underline{x} - \underline{b}^T \underline{x}$$

Given a symmetric matrix Q, two vectors \underline{d}_1 and \underline{d}_2 are said to be Q-orthogonal, or conjugate with respect to Q if $\underline{d}_1^T Q \underline{d}_2 = 0$ ($\underline{d}_1 \neq \underline{d}_2$).

Let

$$\underline{x}^* = Q^{-1}b$$

where Q is the positive definite matrix and

 $\underline{d}_0,\underline{d}_1,\,\cdots,\underline{d}_{n-1}$ be n non-zero $Q\!-orthogonal$ vectors. Then

 \underline{x}^* can be expanded as

$$\underline{x}^* = \alpha_0 \underline{d}_0 + \alpha_1 \underline{d}_1 + \cdots + \alpha_{n-1} \underline{d}_{n-1}$$

since

$$\underline{d}_i^{\,T} Q \underline{x}^* = \alpha_i \underline{d}_i^{\,T} Q \underline{d}_i$$
 , that is,

$$\alpha_i = \frac{\underline{d}_i^T \underline{b}}{\underline{d}_i^T Q \underline{d}_i}.$$

This implies that

$$\underline{x}^* = \sum_{i=0}^{n-1} \frac{\underline{d}_i^T \underline{b}}{\underline{d}_i^T Q \underline{d}_i} \underline{d}_i.$$

Conjugate Direction Theorem

Let $\{\underline{d}_i\}_{i=0}^{n-1}$ be a set of non-zero Q-orthogonal vectors. Then for any $\underline{x}_0 \in R^n$, the sequence $\{\underline{x}_k\}$ generated according to $\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k, \quad k \geq 0 \dots \text{ (1)}$

with

$$\alpha_k = - \frac{g_k^T \underline{d}_k}{\underline{d}_k^T Q \underline{d}_k} \text{ and } \underline{g}_k = Q \underline{x}_k - \underline{b}$$

converges to the unique solution \underline{x}^* of $Q\underline{x}=\underline{b}$ after n steps, that is, $\underline{x}_n=\underline{x}^*.$

(proof)

For some set of α_k s,

$$\begin{split} &\underline{x}^* - \underline{x}_0 = \alpha_0 \underline{d}_0 + \alpha_1 \underline{d}_2 + \, \cdots \, + \alpha_{n-1} \underline{d}_{n-1} \text{ and} \\ &\underline{d}_k^T Q(\underline{x}^* - \underline{x}_0) = \alpha_k \underline{d}_k^T Q \underline{d}_k. \quad \text{Then, } \alpha_k \text{ can be described by} \\ &\alpha_k = \frac{\underline{d}_k^T Q(\underline{x}^* - \underline{x}_0)}{\underline{d}_k^T Q \underline{d}_k}. \end{split}$$

By iterating (1) from \underline{x}_0 upto \underline{x}_k , we get $\underline{x}_k - \underline{x}_0 = \alpha_0 \underline{d}_0 + \alpha_1 \underline{d}_1 + \cdots + \alpha_{k-1} \underline{d}_{k-1}.$

From the Q-orthogonality,

$$\underline{d}_k^T Q(\underline{x}_k - \underline{x}_0) = 0, \text{ that is, } \underline{d}_k^T Q \underline{x}_k = \underline{d}_k^T Q \underline{x}_0.$$

Therefore, α_k can be redescribed by

$$\alpha_k = \frac{\underline{d}_k^T Q(\underline{x}^* - \underline{x}_0)}{\underline{d}_k^T Q \underline{d}_k} = \frac{\underline{d}_k^T Q(\underline{x}^* - \underline{x}_k)}{\underline{d}_k^T Q \underline{d}_k} = -\frac{\underline{g}_k^T \underline{d}_k}{\underline{d}_k^T Q \underline{d}_k}$$

Reference: Luenberger, "Introduction to Linear and Nonlinear Programming," chapter 8.

Conjugate Gradient Algorithm

Step 1. Set any $\underline{x}_0\in R^n$, $\underline{d}_0=-g_0=\underline{b}-Q\underline{x}_0$, and k=0.

Step 2. update
$$\alpha_k$$
: $\alpha_k = -\frac{g_k^T \underline{d}_k}{\underline{d}_k^T Q \underline{d}_k}$

Step 3. update
$$\underline{x}_{k+1}$$
: $\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k$

Step 4. update
$$g_{k+1}$$
: $g_{k+1} = Qx_{k+1} - b$

Step 5. update
$$\beta_k$$
: $\beta_k = \frac{g_{k+1}^T Q \underline{d}_k}{\underline{d}_k^T Q \underline{d}_k}$

Step 6. update
$$\underline{d}_{k+1}$$
: $\underline{d}_{k+1} = -g_{k+1} + \beta_k \underline{d}_k$

Step 7. If $\parallel g_{k+1} \parallel < \epsilon$, stop. Otherwise, $k \leftarrow k+1$ and go to step 2.

. convergence:

The CG algorithm finds the unique solution \underline{x}^* of $Q\underline{x} = \underline{b}$ after n steps, that is, $\underline{x}_n = \underline{x}^*$.

. computational complexity:

The calculation of the quadratic form of $\underline{d}_k^T Q \underline{d}_k$ is required, that is, $O(n^2)/step$

. In the learning algorithm, \underline{x}_k and \underline{d}_k are associated with the weight parameter and the gradient term respectively.

- Summary of Supervised Learning Algorithms

Algorithm	Gradient Descent (GD)	Conjugate Gradient (CG)	Recursive Least Square (RLS)	Lebenberg- Marquardat (LM)	Quasi- Newton	Newton
Convergence	∞	O(n)	O(n)	1	O(n)	1
Computationa I Complexity Per Step	O(n)	O(n)	$O(n^2)$	$O(n^3)$	$O(n^2)$	$O(n^3)$
Memory Requirement	O(n)	O(n)	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^2)$
Learning Mode	on-line	on-line	on-line	batch	batch	batch

n: the number of parameters