

Lecture 6: Statistical Inference

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

May 13, 2021

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

- Inference
 - Using data, probabilistic models or parameters for models are determined.

- Inference
 - Using data, probabilistic models or parameters for models are determined.
- Why building up models?
 - Analysis is possible, so that predictions and decisions are made.

- Inference
 - Using data, probabilistic models or parameters for models are determined.
- Why building up models?
 - Analysis is possible, so that predictions and decisions are made.
- Recently, deep learning
 - Connecting big data and big model building

•
$$X = aS + W$$

- X = aS + W
- Modeling building
 - \circ know the original signal S, observe X
 - infer the model parameter a

- X = aS + W
- Modeling building
 - \circ know the original signal S, observe X
 - infer the model parameter a
- Variable estimation
 - know a, observe X
 - \circ infer the original signal S

- X = aS + W
- Modeling building
 - \circ know the original signal S, observe X
 - infer the model parameter a
- Variable estimation
 - know a, observe X
 - \circ infer the original signal S
- Same mathematical structure, because the parameters in models are variables in many cases

Hypothesis testing

Estimation

- Hypothesis testing
 - Unknown: a few possible ones

- Estimation
 - · Unknown: a value included in an infinite, typically continuous set

- Hypothesis testing
 - Unknown: a few possible ones
 - Goal: small probability of incorrect decision

- Estimation
 - · Unknown: a value included in an infinite, typically continuous set
 - Goal: Finding the value close to the true value

- Hypothesis testing
 - Unknown: a few possible ones
 - Goal: small probability of incorrect decision
 - (Ex) Something detected on the radar. Is it a bird or an airplane?
- Estimation
 - Unknown: a value included in an infinite, typically continuous set
 - Goal: Finding the value close to the true value
 - (Ex) Biased coin with unknown probability of head $\theta \in [0,1]$. Data of heads and tails. What is θ ?

- Hypothesis testing
 - Unknown: a few possible ones
 - Goal: small probability of incorrect decision
 - (Ex) Something detected on the radar. Is it a bird or an airplane?
- Estimation
 - Unknown: a value included in an infinite, typically continuous set
 - Goal: Finding the value close to the true value
 - (Ex) Biased coin with unknown probability of head $\theta \in [0,1]$. Data of heads and tails. What is θ ?
 - (Note) If you have the candidate values of $\theta = \{1/4, 1/2, 3/4\}$, then it's a hypothesis testing problem

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|\big(\textit{HHH}\big)\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|\big(\textit{HHH}\big)\Big] = \frac{1}{28}$$

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|(\textit{HHH})\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|(\textit{HHH})\Big] = \frac{1}{28}$$

• Choose θ with larger posterior probability.

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

• Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|\big(HHH\big)\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|\big(HHH\big)\Big] = \frac{1}{28}$$

• Choose θ with larger posterior probability.

• Find the probability of (H, H, H), if $\theta = \frac{1}{4}$ or $\frac{3}{4}$ (likelihood)

$$\mathbb{P}\Big[(HHH)|\theta=\frac{3}{4}\Big]=\left(\frac{3}{4}\right)^3$$

$$\mathbb{P}\Big[(HHH)| heta=rac{1}{4}\Big]=\left(rac{1}{4}
ight)^3$$

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|\big(HHH\big)\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|\big(HHH\big)\Big] = \frac{1}{28}$$

• Choose θ with larger posterior probability.

• Find the probability of (H, H, H), if $\theta = \frac{1}{4}$ or $\frac{3}{4}$ (likelihood)

$$\mathbb{P}\Big[(HHH)| heta=rac{3}{4}\Big]=\left(rac{3}{4}
ight)^3$$

$$\mathbb{P}ig[(\mathit{HHH})| heta=rac{1}{4}ig]=ig(rac{1}{4}ig)^3$$

• Choose θ with a larger likelihood.

- Biased coin with parameter θ (probability of head). Assume that $\theta \in \{1/4, 3/4\}$.
- Throw the coin 3 times and get (H, H, H). Goal: infer θ , 1/4 or 3/4?
- Distribution of θ (prior) e.g.,

$$\mathbb{P}(\theta = \frac{3}{4}) = 1/2, \quad \mathbb{P}(\theta = \frac{1}{4}) = 1/2$$

Use Bayes' rule and find the posterior:

$$\mathbb{P}\Big[\theta = \frac{3}{4}\Big|(HHH)\Big] = \frac{27}{28}, \ \mathbb{P}\Big[\theta = \frac{1}{4}\Big|(HHH)\Big] = \frac{1}{28}$$

- Choose θ with larger posterior probability.
- Bayesian approach (Chapter 8)

• Find the probability of (H, H, H), if $\theta = \frac{1}{4}$ or $\frac{3}{4}$ (likelihood)

$$\mathbb{P}\Big[(HHH)|\theta=\frac{3}{4}\Big]=\left(\frac{3}{4}\right)^3$$

$$\mathbb{P}ig[(extit{HHH})| heta=rac{1}{4}ig]=igg(rac{1}{4}igg)^3$$

- Choose θ with a larger likelihood.
- Classical approach (Chapter 9)

Bayesian approach

Bayesian approach

Unknown: random variable with some distribution (prior)

Classical approach

• Unknown: deterministic value

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models

Bayesian approach

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class
- Observed data x gives: posterior distribution p_{Θ|X}(θ|x)

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models
- Observed data x gives: likelihood p(X; θ)

Bayesian approach

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class
- Observed data x gives: posterior distribution $p_{\Theta|X}(\theta|x)$
- Choose θ with larger posterior probability

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models
- Observed data x gives: likelihood $p(X;\theta)$
- Choose θ with larger likelihood

Bayesian approach

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class
- Observed data x gives: posterior distribution p_{Θ|X}(θ|x)
- Choose θ with larger posterior probability

Classical approach

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models
- Observed data x gives: likelihood p(X; θ)
- Choose θ with larger likelihood

- Who is the winner? A century-long debate (see p. 409 for discussion)

Bayesian approach

- Unknown: random variable with some distribution (prior)
- Unknown model as chosen randomly from a give model class
- Observed data x gives: posterior distribution $p_{\Theta|X}(\theta|x)$
- Choose θ with larger posterior probability (other methods exist)

Classical approach

- Unknown: deterministic value
- Unknown model as one of multiple probabilistic models
- Observed data x gives: likelihood $p(X;\theta)$
- Choose θ with larger likelihood (other methods exist)

- Who is the winner? A century-long debate (see p. 409 for discussion)

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - \circ prior distribution p_{Θ} and f_{Θ}

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - prior distribution p_{Θ} and f_{Θ}
- Observations or measurements X
 - \circ observation model $p_{X|\Theta}$ and $f_{X|\Theta}$

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - prior distribution p_{Θ} and f_{Θ}
- Observations or measurements X
 - \circ observation model $p_{X|\Theta}$ and $f_{X|\Theta}$
- That is, the joint distribution of X and Θ , $p_{X,\Theta}$ and $f_{X,\Theta}$, is given

Framework of Bayesian Inference

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - prior distribution p_{Θ} and f_{Θ}
- Observations or measurements X
 - \circ observation model $p_{X|\Theta}$ and $f_{X|\Theta}$
- That is, the joint distribution of X and Θ , $p_{X,\Theta}$ and $f_{X,\Theta}$, is given

- Find the posterior distribution $p_{X|\Theta}$ and $f_{X|\Theta}$.
 - Use Bayes' rule

Framework of Bayesian Inference

- Unknown Θ
 - physical quantity or model parameter
 - random variable
 - prior distribution p_{Θ} and f_{Θ}
- Observations or measurements X
 - \circ observation model $p_{X|\Theta}$ and $f_{X|\Theta}$
- That is, the joint distribution of X and Θ , $p_{X,\Theta}$ and $f_{X,\Theta}$, is given

- Find the posterior distribution $p_{X|\Theta}$ and $f_{X|\Theta}$.
 - Use Bayes' rule
- Using the posterior distribution, apply one of the methods of choosing the final $\hat{\theta}$ for estimation and hypothesis testing.

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

• Given observation x, which θ are you going to choose?

- Given observation x, which θ are you going to choose?
- M1. Choose the largest: Maximum a posteriori probability (MAP) rule

- Given observation x, which θ are you going to choose?
- M1. Choose the largest: Maximum a posteriori probability (MAP) rule

$$\hat{ heta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{ heta} p_{\Theta|X}(heta|x), \quad \hat{ heta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{ heta} f_{\Theta|X}(heta|x)$$

- Given observation x, which θ are you going to choose?
- M1. Choose the largest: Maximum a posteriori probability (MAP) rule

$$\hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} p_{\Theta|X}(heta|x), \quad \hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} f_{\Theta|X}(heta|x)$$

M2. Choose the mean: Conditional expectation, aka LMS (Least Mean Square)

- Given observation x, which θ are you going to choose?
- M1. Choose the largest: Maximum a posteriori probability (MAP) rule

$$\hat{ heta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{ heta} p_{\Theta|X}(heta|x), \quad \hat{ heta}_{\mathsf{MAP}} = \operatorname{arg\,max}_{ heta} f_{\Theta|X}(heta|x)$$

M2. Choose the mean: Conditional expectation, aka LMS (Least Mean Square)

$$\hat{ heta}_{\mathsf{LMS}} = \mathbb{E}[\Theta|X=x]$$

- Given observation x, which θ are you going to choose?
- M1. Choose the largest: Maximum a posteriori probability (MAP) rule

$$\hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} p_{\Theta|X}(heta|x), \quad \hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} f_{\Theta|X}(heta|x)$$

M2. Choose the mean: Conditional expectation, aka LMS (Least Mean Square)

$$\hat{ heta}_{\mathsf{LMS}} = \mathbb{E}[\Theta|X=x]$$

Why MAP and LMS are good? Not mathematically clear yet (later)

Estimator as a function

Random observation: X

Observation instance: x

• Estimate as a mapping from x to a number

$$\hat{\theta} = g(x), \quad \hat{\theta}_{MAP} = g_{MAP}(x), \quad \hat{\theta}_{LMS} = g_{LMS}(x)$$

Estimator as a function

Random observation: X

Observation instance: x

• Estimate as a mapping from x to a number

$$\hat{\theta} = g(x), \quad \hat{\theta}_{MAP} = g_{MAP}(x), \quad \hat{\theta}_{LMS} = g_{LMS}(x)$$

• Estimator as a mapping from X to a random variable

$$\hat{\Theta} = g(X), \quad \hat{\Theta}_{MAP} = g_{MAP}(X), \quad \hat{\Theta}_{LMS} = g_{LMS}(X)$$

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \textit{U}[0,1].$

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = egin{cases} rac{1}{ heta}, & 0 \leq x \leq \theta \ 0, & ext{otherwise} \end{cases}$$

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$
$$= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1,$$

and
$$f_{\Theta|X}(\theta|x) = 0$$
, $\theta < x$ or $\theta > 1$.

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$
$$= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1,$$

and $f_{\Theta|X}(\theta|x) = 0$, $\theta < x$ or $\theta > 1$.

- MAP rule
 - Given x, $f_{\Theta|X}(\theta|x)$ is decreasing in θ over [x,1].
 - $-\hat{\theta}_{\mathsf{MAP}} = x.$

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(\theta) = \begin{cases} 1, & 0 \leq \theta \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$
$$= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1,$$

and $f_{\Theta|X}(\theta|x) = 0$, $\theta < x$ or $\theta > 1$.

- MAP rule
 - Given x, $f_{\Theta|X}(\theta|x)$ is decreasing in θ over [x,1].
 - $\hat{\theta}_{\mathsf{MAP}} = x$.
- Conditional expectation estimator

$$\hat{\theta}_{\mathsf{LMS}} = \mathbb{E}[\theta|X = x] = \int_{x}^{1} \theta \frac{1}{\theta|\log x|} d\theta$$
$$= (1 - x)/|\log x|$$

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$
$$= \frac{1/\theta}{\int_0^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1,$$

and $f_{\Theta|X}(\theta|x) = 0$, $\theta < x$ or $\theta > 1$.

- MAP rule
 - Given x, $f_{\Theta|X}(\theta|x)$ is decreasing in θ over [x,1].
 - $\hat{\theta}_{\mathsf{MAP}} = x$.
- Conditional expectation estimator

$$\hat{\theta}_{\mathsf{LMS}} = \mathbb{E}[\theta|X = x] = \int_{x}^{1} \theta \frac{1}{\theta|\log x|} d\theta$$
$$= (1 - x)/|\log x|$$

• Biased coin with probability of head θ

- Biased coin with probability of head θ
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$

- Biased coin with probability of head θ
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses

- Biased coin with probability of head θ
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses
- Posterior PDF

$$f_{\Theta|X}(\theta|k) = cf_{\Theta}(\theta)p_{X|\Theta}(k|\theta) = c\binom{n}{k}f_{\Theta}(\theta)\theta^{k}(1-\theta)^{n-k}, c \text{ the normalizing constant}$$

- Biased coin with probability of head θ
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses
- Posterior PDF

$$f_{\Theta|X}(\theta|k) = cf_{\Theta}(\theta)p_{X|\Theta}(k|\theta) = c\binom{n}{k}f_{\Theta}(\theta)\theta^{k}(1-\theta)^{n-k}, c \text{ the normalizing constant}$$

• If $\Theta \sim Beta(\alpha, \beta)$, what is $\hat{\theta}_{MAP}$?

- Biased coin with probability of head θ
- Unknown θ : modeled by Θ with some prior $f_{\Theta}(\theta)$
- Observation X: number of heads out of n tosses
- Posterior PDF

$$f_{\Theta|X}(\theta|k) = cf_{\Theta}(\theta)p_{X|\Theta}(k|\theta) = c\binom{n}{k}f_{\Theta}(\theta)\theta^{k}(1-\theta)^{n-k}, c \text{ the normalizing constant}$$

- If $\Theta \sim Beta(\alpha, \beta)$, what is $\hat{\theta}_{MAP}$?
- What is $Beta(\alpha, \beta)$?

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(heta) = egin{cases} rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}, & 0 < heta < 1, \ 0, & ext{otherwise}, \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha,\beta) = \int_0^1 \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$$

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(heta) = egin{cases} rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}, & 0 < heta < 1, \ 0, & ext{otherwise}, \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha,\beta) = \int_0^1 \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$$

• A special case of Beta(1,1) is Uniform[0,1]

- If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta|\{X = k\} \sim Beta(k + \alpha, n k + \beta)$
 - Very useful: Beta prior \Longrightarrow Beta posterior

- If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta|\{X = k\} \sim Beta(k + \alpha, n k + \beta)$
 - Very useful: Beta prior \Longrightarrow Beta posterior
- Proof. For $Beta(\alpha, \beta)$ prior,

$$f_{\Theta}(heta) = rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}$$

$$f_{\Theta|X}(heta|k) = cinom{n}{k}f_{\Theta}(heta) heta^k(1- heta)^{n-k} = rac{d}{B(lpha,eta)}\cdot heta^{lpha+k-1}(1- heta)^{eta+n-k-1}$$

where
$$d = c \binom{n}{k}$$
.

- If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta | \{X = k\} \sim Beta(k + \alpha, n k + \beta)$ - Very useful: Beta prior \Longrightarrow Beta posterior
- Proof. For $Beta(\alpha, \beta)$ prior,

$$f_{\Theta}(heta) = rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}$$

$$f_{\Theta|X}(heta|k) = cinom{n}{k}f_{\Theta}(heta) heta^k(1- heta)^{n-k} = rac{d}{B(lpha,eta)}\cdot heta^{lpha+k-1}(1- heta)^{eta+n-k-1}$$

where $d = c \binom{n}{k}$.

• Taking the logarithm,

$$\hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} \Big[(lpha + k - 1) \log heta + (eta + n - k + 1) \log (1 - heta) \Big] = rac{lpha + k - 1}{lpha + eta - 2 + n}$$

- If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta | \{X = k\} \sim Beta(k + \alpha, n k + \beta)$ - Very useful: Beta prior \Longrightarrow Beta posterior
- Proof. For $Beta(\alpha, \beta)$ prior,

$$f_{\Theta}(heta) = rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}$$

$$f_{\Theta|X}(heta|k) = cinom{n}{k}f_{\Theta}(heta) heta^k(1- heta)^{n-k} = rac{d}{B(lpha,eta)}\cdot heta^{lpha+k-1}(1- heta)^{eta+n-k-1}$$

where $d = c\binom{n}{k}$.

• Taking the logarithm,

$$\hat{ heta}_{\mathsf{MAP}} = rg \max_{ heta} \Bigl[(lpha + k - 1) \log heta + (eta + n - k + 1) \log (1 - heta) \Bigr] = rac{lpha + k - 1}{lpha + eta - 2 + n}$$

• When $\alpha = \beta = 1$ (i.e., U[0,1] prior), $\hat{\theta}_{MAP} = \frac{k}{n}$

Example 3: Spam Filtering

• E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.

Example 3: Spam Filtering

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".

Example 3: Spam Filtering

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.

Example 3: Spam Filtering

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.
- Observation model $p_{X_i|\Theta(x_i|1)}$ and $p_{X_i|\Theta(x_i|2)}$ are known. Conditioned on Θ , X_i are independent.

Example 3: Spam Filtering

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.
- Observation model $p_{X_i|\Theta(x_i|1)}$ and $p_{X_i|\Theta(x_i|2)}$ are known. Conditioned on Θ , X_i are independent.
- Posterior PMF

$$\mathbb{P}\Big(\Theta = m|(x_1,\ldots,x_n)\Big) = \frac{p_{\Theta}(m) \prod_{i=1}^n p_{X_i|\Theta}(x_i|m)}{\sum_{j=1,2} p_{\Theta}(j) \prod_{i=1}^n p_{X_i|\Theta}(x_i|j), \quad m = 1,2}$$

Example 3: Spam Filtering

- E-mail: spam (1) or legitimate (2), $\Theta \in \{1,2\}$, with prior $p_{\Theta}(1)$ and $p_{\Theta}(2)$.
- $\{w_1, w_2, \dots, w_n\}$: a collection of words which suggest "spam".
- For each i, a Bernoulli $X_i = 1$ if w_i appears and 0 otherwise.
- Observation model $p_{X_i|\Theta(x_i|1)}$ and $p_{X_i|\Theta(x_i|2)}$ are known. Conditioned on Θ , X_i are independent.
- Posterior PMF

$$\mathbb{P}\Big(\Theta = m|(x_1, \dots, x_n)\Big) = \frac{p_{\Theta}(m) \prod_{i=1}^n p_{X_i|\Theta}(x_i|m)}{\sum_{i=1,2} p_{\Theta}(j) \prod_{i=1}^n p_{X_i|\Theta}(x_i|j), \quad m = 1, 2}$$

• MAP rule for this hypothesis testing problem. Decided that the message is spam if

$$p_{\Theta}(1) \prod_{i=1}^{n} p_{X_{i}|\Theta}(x_{i}|1) > p_{\Theta}(2) \prod_{i=1}^{n} p_{X_{i}|\Theta}(x_{i}|2)$$

• MAP estimate is intuitive, but we need more mathematical support.

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof.

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

$$\mathbb{E}[I|X=x] =$$

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

$$\mathbb{E}[I|X=x] = \mathbb{P}\Big[g(X) = \Theta|X=x\Big] \le$$

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

$$\mathbb{E}[I|X=x] = \mathbb{P}\Big[g(X) = \Theta|X=x\Big] \leq \mathbb{P}\Big[g_{map}(X) = \Theta|X=x\Big] =$$

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

$$\mathbb{E}[I|X=x] = \mathbb{P}\Big[g(X) = \Theta|X=x\Big] \leq \mathbb{P}\Big[g_{map}(X) = \Theta|X=x\Big] = \mathbb{E}[I_{map}|X=x]$$

- MAP estimate is intuitive, but we need more mathematical support.
- Claim 1. For a given x, the MAP rule minimizes the probability of an incorrect decision.
- Claim 2. The MAP rule minimizes the overall probability of an incorrect decision, averaged over x.
- Proof. Let I and I_{map} be the indicator rv, representing the correct decision by any general estimator and the MAP, respectively.

$$\mathbb{E}[I|X=x] = \mathbb{P}\Big[g(X) = \Theta|X=x\Big] \leq \mathbb{P}\Big[g_{map}(X) = \Theta|X=x\Big] = \mathbb{E}[I_{map}|X=x]$$

Thus, Claim 1 holds. We now take the expectation of the above equations, the law of iterated expectations leads to Claim 2.

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

• Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim \textit{Uniform}[4, 10]$.

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available
- MAP estimate
 - Any value $\hat{ heta}_{map} \in [4,10]$ (why? posterior = prior), not very useful

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available
- MAP estimate
 - Any value $\hat{ heta}_{map} \in [4,10]$ (why? posterior = prior), not very useful
- What is your other choice?

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available
- MAP estimate
 - Any value $\hat{ heta}_{map} \in [4,10]$ (why? posterior = prior), not very useful
- What is your other choice?
 - Expectation: $\hat{\theta} = \mathbb{E}[\Theta] = 7$
 - looks reasonable, but why?

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available
- MAP estimate
 - Any value $\hat{ heta}_{\it map} \in [4,10]$ (why? posterior = prior), not very useful
- What is your other choice?
 - Expectation: $\hat{\theta} = \mathbb{E}[\Theta] = 7$
 - looks reasonable, but why?
- Because it minimizes mean squared error (MSE)

$$\min_{\hat{\theta}} \mathbb{E} \Big[(\Theta - \hat{\theta})^2 \Big] = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta - \hat{\theta}) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right) = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right)$$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$. Assume $\Theta \sim Uniform[4, 10]$.
- No observations available
- MAP estimate
 - Any value $\hat{ heta}_{map} \in [4,10]$ (why? posterior = prior), not very useful
- What is your other choice?
 - Expectation: $\hat{\theta} = \mathbb{E}[\Theta] = 7$
 - looks reasonable, but why?
- Because it minimizes mean squared error (MSE)

$$\min_{\hat{\theta}} \mathbb{E} \Big[(\Theta - \hat{\theta})^2 \Big] = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta - \hat{\theta}) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right) = \min_{\hat{\theta}} \left(\mathsf{var}(\Theta) + \left(\mathbb{E}[\Theta - \hat{\theta}] \right)^2 \right)$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta]$.

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- · Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

• minimized when $\hat{\theta} = \mathbb{E}[\Theta|X = x]$.

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta|X = x]$.
- LMS estimator $\hat{\Theta} = \mathbb{E}[\Theta|X]$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x \Big]$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta|X = x]$.
- LMS estimator $\hat{\Theta} = \mathbb{E}[\Theta|X]$
- Performance (MSE: Mean Squared Error)

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- · Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta|X = x]$.
- LMS estimator $\hat{\Theta} = \mathbb{E}[\Theta|X]$
- Performance (MSE: Mean Squared Error)
 - When X = x, $\mathbb{E} \Big[(\Theta \mathbb{E}[\Theta|X = x])^2 | X = x \Big] = \mathsf{var} \Big(\Theta | X = x \Big)$

- Unknown: θ modeled by Θ with prior $f_{\Theta}(\cdot)$.
- Observation X = x with model $f_{X|\Theta}(x|\theta)$
- Minimizing conditional mean squared error

$$\min_{\hat{\theta}} \mathbb{E}\Big[(\Theta - \hat{\theta})^2 | X = x\Big]$$

- minimized when $\hat{\theta} = \mathbb{E}[\Theta|X = x]$.
- LMS estimator $\hat{\Theta} = \mathbb{E}[\Theta|X]$
- Performance (MSE: Mean Squared Error)
 - When X = x, $\mathbb{E}\Big[(\Theta \mathbb{E}[\Theta|X = x])^2|X = x\Big] = \text{var}\Big(\Theta|X = x\Big)$
 - Averaged over X: $\mathbb{E}\Big[(\Theta \mathbb{E}[\Theta|X])^2\Big] = \mathbb{E}\Big[\mathsf{var}(\Theta|X = x)\Big]$

Example: Romeo and Juliet

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'}$$
$$= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1,$$

and $f_{\Theta|X}(\theta|x) = 0$, $\theta < x$ or $\theta > 1$.

• MAP rule - $\hat{\theta}_{MAP} = x$.

Example: Romeo and Juliet

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{split} f_{\Theta|X}(\theta|x) &= \frac{f_{\Theta}(\theta) f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta') f_{X|\Theta}(x|\theta') d\theta'} \\ &= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'} d\theta'} = \frac{1}{\theta |\log x|}, \ x \leq \theta \leq 1, \end{split}$$

and
$$f_{\Theta|X}(\theta|x) = 0$$
, $\theta < x$ or $\theta > 1$.

- MAP rule
 - $\hat{\theta}_{MAP} = x$.
- LMS estimator

$$\hat{\theta}_{LMS} = \mathbb{E}[\theta|X = x] = \int_{x}^{1} \theta \frac{1}{\theta|\log x|} d\theta$$
$$= \frac{(1-x)}{|\log x|}$$

Example: Romeo and Juliet

- Romeo and Juliet start dating.
 - Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.

$$f_{\Theta}(heta) = egin{cases} 1, & 0 \leq heta \leq 1 \ 0, & ext{otherwise} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = egin{cases} rac{1}{ heta}, & 0 \leq x \leq \theta \ 0, & ext{otherwise} \end{cases}$$

$$\begin{split} f_{\Theta|X}(\theta|x) &= \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{\int_0^1 f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'} \\ &= \frac{1/\theta}{\int_x^1 \frac{1}{\theta'}d\theta'} = \frac{1}{\theta|\log x|}, \ x \le \theta \le 1, \end{split}$$

and $f_{\Theta|X}(\theta|x) = 0$, $\theta < x$ or $\theta > 1$.

MAP rule

-
$$\hat{\theta}_{\mathsf{MAP}} = x$$
.

LMS estimator

$$\hat{\theta}_{LMS} = \mathbb{E}[\theta|X = x] = \int_{x}^{1} \theta \frac{1}{\theta|\log x|} d\theta$$
$$= \frac{(1-x)}{|\log x|}$$

• Remind. If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta|\{X = k\} \sim Beta(k + \alpha, n - k + \beta)$

- Remind. If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta | \{X = k\} \sim Beta(k + \alpha, n k + \beta)$
- Fact. If $\Theta \sim Beta(\alpha, \beta)$,

$$\mathbb{E}[\Theta] = \frac{1}{B(\alpha,\beta)} \int_0^1 \theta \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{B(\alpha+1,\beta)}{B(\alpha,\beta)} = \frac{\alpha}{\alpha+\beta}$$

- Remind. If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta|\{X = k\} \sim Beta(k + \alpha, n k + \beta)$
- Fact. If $\Theta \sim Beta(\alpha, \beta)$,

$$\mathbb{E}[\Theta] = rac{1}{B(lpha,eta)} \int_0^1 heta heta^{lpha-1} (1- heta)^{eta-1} d heta = rac{B(lpha+1,eta)}{B(lpha,eta)} = rac{lpha}{lpha+eta}$$

• Using the above fact,

$$\mathbb{E}[\Theta|X=k] = \frac{k+\alpha}{k+\alpha+n-k+\beta} = \frac{k+\alpha}{\alpha+\beta+n}$$

- Remind. If $\Theta \sim Beta(\alpha, \beta)$, then $\Theta | \{X = k\} \sim Beta(k + \alpha, n k + \beta)$
- Fact. If $\Theta \sim Beta(\alpha, \beta)$,

$$\mathbb{E}[\Theta] = rac{1}{B(lpha,eta)} \int_0^1 heta heta^{lpha-1} (1- heta)^{eta-1} d heta = rac{B(lpha+1,eta)}{B(lpha,eta)} = rac{lpha}{lpha+eta}$$

• Using the above fact,

$$\mathbb{E}[\Theta|X=k] = \frac{k+\alpha}{k+\alpha+n-k+\beta} = \frac{k+\alpha}{\alpha+\beta+n}$$

• For $\alpha = \beta = 1$ ($\Theta = \textit{Uniform}[0, 1]$),

$$\mathbb{E}[\Theta|X=k] = \frac{k+1}{n+2}$$

Example: Signal Recovery from Noisy Measurement (1)

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim \textit{Uniform}[-1,1]$

$$X = \Theta + W$$

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim \textit{Uniform}[-1,1]$

$$X = \Theta + W$$

• Given
$$\Theta = \theta$$
, $X = \theta + W \sim \textit{Uniform}[\theta - 1, \theta + 1]$.

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim Uniform[-1,1]$

$$X = \Theta + W$$

• Given $\Theta = \theta$, $X = \theta + W \sim \textit{Uniform}[\theta - 1, \theta + 1]$.

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim Uniform[-1,1]$

$$X = \Theta + W$$

• Given $\Theta = \theta$, $X = \theta + W \sim \textit{Uniform}[\theta - 1, \theta + 1]$.

$$f_{\Theta,X}(\theta,x) = f_{\Theta}(\theta)f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}, & \text{if } 4 \leq \theta \leq 10, \ \theta - 1 \leq x \leq \theta + 1, \\ 0, & \text{otherwise} \end{cases}$$

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim Uniform[-1,1]$

$$X = \Theta + W$$

• Given $\Theta = \theta$, $X = \theta + W \sim \textit{Uniform}[\theta - 1, \theta + 1]$.

$$f_{\Theta,X}(\theta,x) = f_{\Theta}(\theta)f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}, & \text{if } 4 \leq \theta \leq 10, \ \theta - 1 \leq x \leq \theta + 1, \\ 0, & \text{otherwise} \end{cases}$$

- $\hat{\theta}_{\rm LMS} = \mathbb{E}[\Theta|X=x] = {\rm midpoint}$ of the corresponding vertical section

- Unknown: $\Theta \sim Uniform[4, 10]$
- Observe Θ with random error W as X. $W \sim Uniform[-1,1]$

$$X = \Theta + W$$

• Given $\Theta = \theta$, $X = \theta + W \sim Uniform[\theta - 1, \theta + 1]$.

$$f_{\Theta,X}(\theta,x) = f_{\Theta}(\theta)f_{X|\Theta}(x|\theta) = \begin{cases} \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}, & \text{if } 4 \leq \theta \leq 10, \ \theta - 1 \leq x \leq \theta + 1, \\ 0, & \text{otherwise} \end{cases}$$

- Conditional MSE

$$\mathbb{E}\Big[(\Theta - \mathbb{E}[\Theta|X=x])^2|X=x\Big]$$

$$f_{\Theta|X}(\theta|x) = rac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
 $f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$$

• Observation model $f_{X|\Theta}(x|\theta)$ may not be always available

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$$

- Observation model $f_{X|\Theta}(x|\theta)$ may not be always available
- ullet Finding the posterior distribution is hard for multi-dimensional Θ

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$$

- Observation model $f_{X|\Theta}(x|\theta)$ may not be always available
- Finding the posterior distribution is hard for multi-dimensional Θ
- Θ is very often high-dimensional, especially in the era of big data and deep learning
 - AlexNet in image recognition: 61M parameters (though not a Bayesian inference)

$$f_{\Theta|X}(\theta|x) = \frac{f_{\Theta}(\theta)f_{X|\Theta}(x|\theta)}{f_{X}(x)}$$
$$f_{X}(x) = \int f_{\Theta}(\theta')f_{X|\Theta}(x|\theta')d\theta'$$

- Observation model $f_{X|\Theta}(x|\theta)$ may not be always available
- Finding the posterior distribution is hard for multi-dimensional Θ
- \bullet $\,\Theta$ is very often high-dimensional, especially in the era of big data and deep learning
 - AlexNet in image recognition: 61M parameters (though not a Bayesian inference)
- Any alternative to LMS estimator?

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

• Give up optimality, but choose a simple, but good one.

- Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$

- Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$
- We consider a restricted class of g(X): $\hat{\Theta} =$

- Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$
- We consider a restricted class of g(X): $\hat{\Theta} = \begin{vmatrix} aX + b \end{vmatrix}$.

- Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$
- We consider a restricted class of g(X): $\hat{\Theta} = \begin{vmatrix} aX + b \end{vmatrix}$.
- Our goal is:

$$\min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

- Give up optimality, but choose a simple, but good one.
- General estimators $\hat{\Theta} = g(X)$, LMS estimator $\hat{\Theta}_{LMS} = \mathbb{E}[\Theta|X]$
- We consider a restricted class of g(X): $\hat{\Theta} = \begin{vmatrix} aX + b \end{vmatrix}$.
- Our goal is:

$$\min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

• Linear models are always the first choice for a simple design in engineering.

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

LLMS

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

• No distributions on Θ and X: only means, variances, and covariances

$$\hat{\Theta}_{L} = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$$

- No distributions on Θ and X: only means, variances, and covariances
- MSE $\mathbb{E}[(\hat{\Theta}_L \Theta)^2]$? Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$.

$$\hat{\Theta}_{L} = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$$

- No distributions on Θ and X: only means, variances, and covariances
- MSE $\mathbb{E}[(\hat{\Theta}_L \Theta)^2]$? Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$. $\mathbb{E}\Big[(\Theta \rho \frac{\sigma_{\Theta}}{\sigma_X} X)^2\Big] = (1 \rho^2) \text{var}[\Theta]$
 - Uncertainty about Θ decreases by the factor of $1-\rho^2$

$$\hat{\Theta}_{L} = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$$

- No distributions on Θ and X: only means, variances, and covariances
- MSE $\mathbb{E}[(\hat{\Theta}_L \Theta)^2]$? Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$. $\mathbb{E}\Big[(\Theta \rho \frac{\sigma_{\Theta}}{\sigma_X} X)^2\Big] = (1 \rho^2) \text{var}[\Theta]$
 - Uncertainty about Θ decreases by the factor of $1-\rho^2$
 - What happens if |
 ho|=1 or ho=0?

$$\hat{\Theta}_{L} = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$$

- No distributions on Θ and X: only means, variances, and covariances
- MSE $\mathbb{E}[(\hat{\Theta}_L \Theta)^2]$? Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$. $\mathbb{E}\left[(\Theta \rho \frac{\sigma_{\Theta}}{\sigma_X} X)^2\right] = (1 \rho^2) \text{var}[\Theta]$
 - Uncertainty about Θ decreases by the factor of $1-\rho^2$
 - What happens if |
 ho|=1 or ho=0?
- If *ρ* > 0 :
 - Baseline $(\mathbb{E}[\Theta])$ + correction term
 - If $X > \mathbb{E}[X] \Longrightarrow \hat{\Theta}_L > \mathbb{E}[\Theta]$
 - If $X < \mathbb{E}[X] \Longrightarrow \hat{\Theta}_L < \mathbb{E}[\Theta]$

$$\hat{\Theta}_{L} = \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) = \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_{X}} \Big(X - \mathbb{E}(X) \Big)$$

- No distributions on Θ and X: only means, variances, and covariances
- MSE $\mathbb{E}[(\hat{\Theta}_L \Theta)^2]$? Assume $\mathbb{E}[\Theta] = \mathbb{E}[X] = 0$. $\mathbb{E}\Big[(\Theta \rho \frac{\sigma_{\Theta}}{\sigma_X} X)^2\Big] = (1 \rho^2) \text{var}[\Theta]$
 - Uncertainty about Θ decreases by the factor of $1 \rho^2$
 - What happens if $|\rho| = 1$ or $\rho = 0$?
- If $\rho > 0$:
 - Baseline ($\mathbb{E}[\Theta]$) + correction term
 - If $X > \mathbb{E}[X] \stackrel{f}{\Longrightarrow} \hat{\Theta}_L > \mathbb{E}[\Theta]$
 - If $X < \mathbb{E}[X] \Longrightarrow \hat{\Theta}_L < \mathbb{E}[\Theta]$

- If $\rho = 0$ (uncorrelated):
- Just baseline $(\mathbb{E}[\Theta])$
- $\hat{\Theta}_L = \mathbb{E}[\Theta]$
- No use of data X

$$egin{aligned} \hat{\Theta}_L &= \mathbb{E}(\Theta) + rac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) \ &= \mathbb{E}(\Theta) +
ho rac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big) \end{aligned}$$

)

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} \Big(X - \mathbb{E}(X) \Big)$$

$$= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E} \Big[(\Theta - aX - b)^2 \Big]$$

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\text{cov}(\Theta, X)}{\text{var}(X)} (X - \mathbb{E}(X))$$

$$= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} (X - \mathbb{E}(X))$$

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E} \Big[(\Theta - aX - b)^2 \Big]$$

- Assume *a* was found.

$$\mathbb{E}\Big[(Y-b)^2\Big], \quad Y=\Theta-aX$$

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + rac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) \ = \mathbb{E}(\Theta) +
ho rac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

(2)

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E} \Big[(\Theta - aX - b)^2 \Big]$$

- Assume *a* was found.

$$\mathbb{E}\left[(Y-b)^2\right], \quad Y=\Theta-aX$$

- Minimized when
$$b = \mathbb{E}(Y) = \mathbb{E}(\Theta) - a\mathbb{E}(X)$$
.

May 13, 2021

$$egin{aligned} \hat{\Theta}_L &= \mathbb{E}(\Theta) + rac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) \ &= \mathbb{E}(\Theta) +
ho rac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big) \end{aligned}$$

(2)

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

$$\mathbb{E}\big[(Y-b)^2\big], \quad Y=\Theta-aX$$

- Minimized when
$$b = \mathbb{E}(Y) = \mathbb{E}(\Theta) - a\mathbb{E}(X)$$
.

$$ERR(a, b) = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = var(Y)$$

$$\mathbb{E}[(A, b)] = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = \text{var}(Y)$$
$$= \text{var}[\Theta] + a^2 \text{var}[X] - 2a \text{cov}(\Theta, X)$$

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} \Big(X - \mathbb{E}(X) \Big)$$

$$= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

(2)

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

- Assume a was found.

$$\mathbb{E}\left[(Y-b)^2\right], \quad Y=\Theta-aX$$

- Minimized when $b = \mathbb{E}(Y) = \mathbb{E}(\Theta) - a\mathbb{E}(X)$.

$$ERR(a, b) = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = var(Y)$$

$$= \mathsf{var}[\Theta] + a^2 \mathsf{var}[X] - 2a \mathsf{cov}(\Theta, X)$$

- (3) is minimized when
$$a = \frac{\text{cov}(\Theta, X)}{\text{var}[X]}$$
.

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} \Big(X - \mathbb{E}(X) \Big)$$

$$= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E} \Big[(\Theta - aX - b)^2 \Big]$$

- (3) is minimized when $a = \frac{\text{cov}(\Theta, X)}{\text{var}[X]}$. Then,

- Assume a was found.

$$\hat{\Theta}_L = aX + b = aX + \mathbb{E}(\Theta) - a\mathbb{E}(X)$$

$$\mathbb{E}\Big[(Y-b)^2\Big], \quad Y=\Theta-aX$$

- Minimized when $b = \mathbb{E}(Y) = \mathbb{E}(\Theta) - a\mathbb{E}(X)$.

$$ERR(a, b) = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = var(Y)$$
$$= var[\Theta] + a^2 var[X] - 2acov(\Theta, X)$$

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} \Big(X - \mathbb{E}(X) \Big)$$

$$= \mathbb{E}(\Theta) + \rho \frac{\sigma_{\Theta}}{\sigma_X} \Big(X - \mathbb{E}(X) \Big)$$

$$\min_{a,b} \mathsf{ERR}(a,b) = \min_{a,b} \mathbb{E}\Big[(\Theta - aX - b)^2\Big]$$

- Assume a was found.

$$\mathbb{E}\Big[(Y-b)^2\Big], \quad Y=\Theta-aX$$

- Minimized when $b=\mathbb{E}(Y)=\mathbb{E}(\Theta)-a\mathbb{E}(X).$

$$\operatorname{ERR}(a, b) = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = \operatorname{var}(Y)$$
$$= \operatorname{var}[\Theta] + a^2 \operatorname{var}[X] - 2a \operatorname{cov}(\Theta, X)$$

- (3) is minimized when
$$a = \frac{\text{cov}(\Theta, X)}{\text{var}[X]}$$
. Then,

$$\hat{\Theta}_L = aX + b = aX + \mathbb{E}(\Theta) - a\mathbb{E}(X)$$

- Using
$$\rho = \frac{\text{cov}(\Theta, X)}{\sigma_{\Theta}\sigma_{X}}$$
, we get:

$$a = \frac{\rho \sigma_{\Theta} \sigma_{X}}{\sigma_{X}^{2}} = \frac{\rho \sigma_{\Theta}}{\sigma_{X}}$$

- Then, we have (2).

Example: Romeo and Juliet

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: heta modeled by a rv $\Theta \sim U[0,1].$

Example: Romeo and Juliet

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \textit{U}[0,1].$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: heta modeled by a rv $\Theta \sim U[0,1]$.
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$
- Using $\mathbb{E}[\Theta] = 1/2$ and $\mathbb{E}[\Theta^2] = 1/3$,

$$\operatorname{var}[X] = \mathbb{E}[\operatorname{var}[X|\Theta]] + \operatorname{var}[\mathbb{E}[X|\Theta]]$$

$$= \frac{1}{12}\mathbb{E}[\Theta^2] + \frac{1}{4}\operatorname{var}[\Theta] = \frac{7}{144}$$

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: heta modeled by a rv $\Theta \sim U[0,1]$.
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$
- Using $\mathbb{E}[\Theta] = 1/2$ and $\mathbb{E}[\Theta^2] = 1/3,$

$$\operatorname{var}[X] = \mathbb{E}[\operatorname{var}[X|\Theta]] + \operatorname{var}[\mathbb{E}[X|\Theta]]$$

$$= \frac{1}{12}\mathbb{E}[\Theta^2] + \frac{1}{4}\operatorname{var}[\Theta] = \frac{7}{144}$$

• $cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X]$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[\Theta^2 / 2] = 1/6$$

$$cov(\Theta, X) = 1/6 - 1/2 \cdot 1/4 = 1/24$$

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$
- Using $\mathbb{E}[\Theta]=1/2$ and $\mathbb{E}[\Theta^2]=1/3,$

$$egin{aligned} \mathsf{var}[X] &= \mathbb{E}[\mathsf{var}[X|\Theta]] + \mathsf{var}[\mathbb{E}[X|\Theta]] \ &= rac{1}{12}\mathbb{E}[\Theta^2] + rac{1}{4}\mathsf{var}[\Theta] = rac{7}{144} \end{aligned}$$

• $cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X]$

$$\begin{split} \mathbb{E}[\Theta X] &= \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]] \\ &= \mathbb{E}[\Theta^2 / 2] = 1/6 \end{split}$$

$$cov(\Theta, X) = 1/6 - 1/2 \cdot 1/4 = 1/24$$

LLMS estimator is:

$$\hat{\Theta}_L = \mathbb{E}(\Theta) + \frac{\operatorname{cov}(\Theta, X)}{\operatorname{var}(X)} \left(X - \mathbb{E}(X) \right)$$
$$= \frac{1}{2} + \frac{1/24}{7/144} (X - \frac{1}{4}) = \frac{6}{7} X + \frac{2}{7}$$

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim \textit{U}[0,1].$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta/2] = 1/4$
- Using $\mathbb{E}[\Theta] = 1/2$ and $\mathbb{E}[\Theta^2] = 1/3$,

$$egin{aligned} \mathsf{var}[X] &= \mathbb{E}[\mathsf{var}[X|\Theta]] + \mathsf{var}[\mathbb{E}[X|\Theta]] \ &= rac{1}{12}\mathbb{E}[\Theta^2] + rac{1}{4}\mathsf{var}[\Theta] = rac{7}{144} \end{aligned}$$

• $cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X]$

$$\begin{split} \mathbb{E}[\Theta X] &= \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]] \\ &= \mathbb{E}[\Theta^2 / 2] = 1/6 \\ \cos(\Theta, X) &= 1/6 - 1/2 \cdot 1/4 = 1/24 \end{split}$$

LLMS estimator is:

$$\begin{split} \hat{\Theta}_L &= \mathbb{E}(\Theta) + \frac{\mathsf{cov}(\Theta, X)}{\mathsf{var}(X)} \Big(X - \mathbb{E}(X) \Big) \\ &= \frac{1}{2} + \frac{1/24}{7/144} (X - \frac{1}{4}) = \frac{6}{7} X + \frac{2}{7} \end{split}$$

- Biased coin with probability of head θ
- Unknown $\Theta \sim \textit{uniform}[0,1],$
 - $\mathbb{E}[\Theta] = 1/2$, $\mathsf{var}[X] = 1/12$
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)

- Biased coin with probability of head θ
- Unknown $\Theta \sim \textit{uniform}[0,1],$
 - $\mathbb{E}[\Theta] = 1/2$, $\mathsf{var}[X] = 1/12$
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

- Biased coin with probability of head θ
- Unknown $\Theta \sim \textit{uniform}[0,1],$
 - $\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- n tosses, X: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$

$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$

$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

- Biased coin with probability of head θ
- Unknown $\Theta \sim \textit{uniform}[0,1],$
 - $-\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- n tosses, X: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$
$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$
$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

 $\mathsf{cov}(\Theta,X) = \mathbb{E}[\Theta X] \!-\! \mathbb{E}[\Theta] \mathbb{E}[X] = \mathbb{E}[\Theta X] \!-\! n/4$

- Biased coin with probability of head θ
- Unknown $\Theta \sim uniform[0,1]$, - $\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$
$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$
$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

$$cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X] = \mathbb{E}[\Theta X] - n/4$$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[n\Theta^2] = n/3$$

- Biased coin with probability of head θ
- Unknown $\Theta \sim uniform[0,1]$, - $\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$

$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$

$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

$$cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X] = \mathbb{E}[\Theta X] - n/4$$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[n\Theta^2] = n/3$$

$$cov(\Theta, X) = \frac{n}{3} - \frac{n}{4} = \frac{12}{n}$$

- Biased coin with probability of head θ
- Unknown $\Theta \sim uniform[0,1]$, - $\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$

$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$

$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

$$cov(\Theta, X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X] = \mathbb{E}[\Theta X] - n/4$$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[n\Theta^2] = n/3$$

$$cov(\Theta, X) = \frac{n}{3} - \frac{n}{4} = \frac{12}{n}$$

$$\hat{\Theta}_L = \frac{1}{2} + \frac{n/12}{n(n+2)/12}(X - \frac{n}{2}) = \frac{X+1}{n+2}$$

- Biased coin with probability of head θ
- Unknown $\Theta \sim uniform[0,1]$,

$$-\mathbb{E}[\Theta] = 1/2$$
, $var[X] = 1/12$

- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$

$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$

$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

$$\mathsf{cov}(\Theta,X) = \mathbb{E}[\Theta X] \!-\! \mathbb{E}[\Theta] \mathbb{E}[X] = \mathbb{E}[\Theta X] \!-\! n/4$$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[n\Theta^2] = n/3$$

$$cov(\Theta, X) = \frac{n}{3} - \frac{n}{4} = \frac{12}{n}$$

$$\hat{\Theta}_L = \frac{1}{2} + \frac{n/12}{n(n+2)/12}(X - \frac{n}{2}) = \frac{X+1}{n+2}$$

- What was the LMS estimator? $\frac{X+1}{n+2}$
- Same! Intuitive?

- Biased coin with probability of head θ
- Unknown $\Theta \sim uniform[0,1]$,
 - $-\mathbb{E}[\Theta] = 1/2$, var[X] = 1/12
- *n* tosses, *X*: number of heads.
- $p_{X|\Theta}(k|\theta)$: Binomial (n,θ)
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[n\Theta] = n/2$

$$var(X) = \mathbb{E}[var(X|\Theta)] + var(\mathbb{E}[X|\Theta])$$

$$= \mathbb{E}[n\Theta(1-\Theta)] + var[n\Theta]$$

$$= \frac{n}{2} - \frac{n}{3} + \frac{n^2}{12} = \frac{n(n+2)}{12}$$

$$\mathsf{cov}(\Theta,X) = \mathbb{E}[\Theta X] - \mathbb{E}[\Theta]\mathbb{E}[X] = \mathbb{E}[\Theta X] - n/4$$

$$\mathbb{E}[\Theta X] = \mathbb{E}[\mathbb{E}[\Theta X | \Theta]] = \mathbb{E}[\Theta \mathbb{E}[X | \Theta]]$$
$$= \mathbb{E}[n\Theta^2] = n/3$$

$$cov(\Theta, X) = \frac{n}{3} - \frac{n}{4} = \frac{12}{n}$$

$$\hat{\Theta}_L = \frac{1}{2} + \frac{n/12}{n(n+2)/12}(X - \frac{n}{2}) = \frac{X+1}{n+2}$$

- What was the LMS estimator? $\frac{X+1}{n+2}$
- Same! Intuitive?

Yes, because the LMS esitmator was linear.

Roadmap

- Basics on Statistic Inference
- Framework of Bayesian Inference
- MAP (Maximum A Posteriori) Estimator
- LMS (Least Mean Squares) Estimator
- LLMS (Linear LMS) Estimator
- Framework of Classical Inference
- ML (Maximum Likelihood) Estimator

• Unknown θ

• Observations or measurements X

- Unknown θ
 - deterministic (not random) quantity (thus, no prior distribution)
 - No prior, No posterior probabilities
- Observations or measurements X

- Unknown θ
 - deterministic (not random) quantity (thus, no prior distribution)
 - No prior, No posterior probabilities
- Observations or measurements X
 - \circ Random observation X's distribution just depends on heta

- Unknown θ
 - deterministic (not random) quantity (thus, no prior distribution)
 - No prior, No posterior probabilities
- Observations or measurements X
 - \circ Random observation X's distribution just depends on heta
 - Notation: $p_X(x;\theta)$ and $f_X(x;\theta)$, θ -parameterized distribution of observations

- Unknown θ
 - deterministic (not random) quantity (thus, no prior distribution)
 - No prior, No posterior probabilities
- Observations or measurements X
 - \circ Random observation X's distribution just depends on heta
 - Notation: $p_X(x;\theta)$ and $f_X(x;\theta)$, θ -parameterized distribution of observations
- Choosing one among multiple probabilistic models
 - $\circ~$ Each θ corresponds to a probabilistic model

- Problem types
 - Estimation
 - Hypothesis testing
 - Significance testing

- Problem types
 - Estimation
 - Hypothesis testing
 - Significance testing
- Key inference methods
 - ML (Maximum Likelihood) estimation
 - Linear regression
 - Likelihood ratio test
 - Significant testing

- Problem types
 - Estimation
 - Hypothesis testing
 - Significance testing
- Key inference methods
 - ML (Maximum Likelihood) estimation
 - Linear regression
 - Likelihood ratio test
 - Significant testing
- Just a taste in this course due to time constraint.

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of observation in this lecture.

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of observation in this lecture.

- $\circ p_X(x_1,x_2,\ldots,x_n;\theta)$
 - NOT the probability that the unknown parameter is equal to θ .
 - but, the probability that the observed value x arises when the parameter is θ .

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of observation in this lecture.
- Likelihood $p_X(x_1, x_2, \ldots, x_n; \theta)$
 - $\circ p_X(x_1,x_2,\ldots,x_n;\theta)$
 - NOT the probability that the unknown parameter is equal to θ .
 - but, the probability that the observed value x arises when the parameter is θ .

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of observation in this lecture.
- Likelihood $p_X(x_1, x_2, \ldots, x_n; \theta)$
 - $\circ p_X(x_1,x_2,\ldots,x_n;\theta)$
 - NOT the probability that the unknown parameter is equal to θ .
 - but, the probability that the observed value x arises when the parameter is θ .
 - ML (Maximum Likelihood) estimation

$$\hat{\theta}_{ml} = \arg\max_{\theta} p_X(x_1, x_2, \dots, x_n; \theta)$$

- Random observation $x = (x_1, x_2, \dots, x_n)$ of $X = (X_1, X_2, \dots, X_n)$
 - Assume a scalar θ and a vector of observation in this lecture.
- Likelihood $p_X(x_1, x_2, \ldots, x_n; \theta)$
 - $\circ p_X(x_1,x_2,\ldots,x_n;\theta)$
 - NOT the probability that the unknown parameter is equal to θ .
 - but, the probability that the observed value x arises when the parameter is θ .
 - ML (Maximum Likelihood) estimation

$$\hat{\theta}_{ml} = \arg \max_{\theta} p_X(x_1, x_2, \dots, x_n; \theta)$$

• Very often, X_i are independent. Then, ML equals to maximizing the log-likelihood:

$$\log p_X(x_1, x_2, \dots, x_n; \theta) = \log \prod_{i=1}^n p_{X_i}(x_i; \theta) = \sum_{i=1}^n \log p_{X_i}(x_i; \theta)$$

ML vs. MAP

• ML and MAP: How are they related?

ML vs. MAP

- ML and MAP: How are they related?
- MAP in the Bayesian inference

$$\hat{\theta}_{map} = \arg\max_{\theta} p_{\Theta|X}(\theta|x) = \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)} = \frac{1}{p_{X}(x)} \arg\max_{\theta} p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)$$

ML vs. MAP

- ML and MAP: How are they related?
- MAP in the Bayesian inference

$$\hat{\theta}_{map} = \arg\max_{\theta} p_{\Theta|X}(\theta|x) = \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)} = \frac{1}{p_{X}(x)} \arg\max_{\theta} p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)$$

ML in the classical inference

$$\hat{\theta}_{ml} = \arg\max_{\theta} p_X(x; \theta)$$

- ML and MAP: How are they related?
- MAP in the Bayesian inference

$$\hat{\theta}_{map} = \arg\max_{\theta} p_{\Theta|X}(\theta|x) = \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)} = \frac{1}{p_{X}(x)} \arg\max_{\theta} p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)$$

ML in the classical inference

$$\hat{\theta}_{ml} = \arg\max_{\theta} p_X(x;\theta)$$

• $p_{X|\Theta}(x|\theta)$ in the Bayesian setting corresponds to $p_X(x;\theta)$ in the classical setting.

- ML and MAP: How are they related?
- MAP in the Bayesian inference

$$\hat{\theta}_{map} = \arg\max_{\theta} p_{\Theta|X}(\theta|x) = \arg\max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)} = \frac{1}{p_{X}(x)} \arg\max_{\theta} p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)$$

• ML in the classical inference

$$\hat{\theta}_{ml} = \arg\max_{\theta} p_X(x; \theta)$$

- $p_{X|\Theta}(x|\theta)$ in the Bayesian setting corresponds to $p_X(x;\theta)$ in the classical setting.
- When Θ is uniform (complete ignorance of Θ), MAP == ML

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.
- MAP: $\hat{\theta}_{MAP} = x$
- LMS: $\hat{\theta}_{\mathsf{LMS}} = (1 x)/|\log x|$
- LLMS: $\hat{\theta}_{L} = \frac{6}{7}x + \frac{2}{7}$
- ML:

- Romeo and Juliet start dating. Romeo: late by $X \sim U[0, \theta]$.
- Unknown: θ modeled by a rv $\Theta \sim U[0,1]$.
- MAP: $\hat{\theta}_{MAP} = x$
- LMS: $\hat{\theta}_{\mathsf{LMS}} = (1 x)/|\log x|$
- LLMS: $\hat{\theta}_{L} = \frac{6}{7}x + \frac{2}{7}$
- ML: $\hat{\theta}_{ML} = \hat{\theta}_{MAP} = x$

• *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?
- Reminder. $X \sim \exp(\lambda)$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases} \quad \mathbb{E}[X] = 1/\lambda$$

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?
- Reminder. $X \sim \exp(\lambda)$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} \quad \mathbb{E}[X] = 1/\lambda$$

Any guess?

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?
- Reminder. $X \sim \exp(\lambda)$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} \quad \mathbb{E}[X] = 1/\lambda$$

• Any guess? $\hat{\theta}_{ML} = \frac{n}{x_1 + x_2 \dots x_n}$

- *n* identical, independent exponential rvs, X_1, X_2, \ldots, X_n with parameter θ .
- Observation x_1, x_2, \ldots, x_n
- What is the ML estimate of θ ?
- Reminder. $X \sim \exp(\lambda)$

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} \quad \mathbb{E}[X] = 1/\lambda$$

• Any guess? $\hat{\theta}_{ML} = \frac{n}{x_1 + x_2 \dots x_n}$

$$\arg\max_{\theta} f_X(x;\theta) = \arg\max_{\theta} \prod_{i=1}^n \theta e^{-\theta x_i} = \arg\max_{\theta} \left(n \log \theta - \theta \sum_{i=1}^n x_i \right)$$

Questions?

Review Questions

- 1) What is statistical inference?
- 2) Draw the building blocks of Bayesian inference and explain how it works.
- 3) What are MAP and LMS estimators and their underlying philosophies?
- 4) What is LLMS estimator and why is it useful?
- 5) Compare the classical and Bayesian inference.
- 6) What is the ML estimator and how is it related to the MAP estimator?