Data Mining and Data Warehousing

Unit 7

Association Rule

Instructor: Suresh Pokharel

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
 that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, Web log (click stream) analysis, and DNA sequence analysis.

Association Rule Mining

■ Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```


Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form X →
 Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

Support (s)

Fraction of transactions that contain both
 X and Y

Confidence (c)

 Measures how often items in Y appear in transactions that contain X

 ${Milk, Diaper} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- •Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - ■confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset:
 {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

Brute-force approach:

Each itemset in the lattice is a candidate frequent itemset Count the support of each candidate by scanning the database

Match each transaction against every candidate Complexity \sim O(NMw) => Expensive since M = 2^d !!!

Reducing Number of Candidates

Apriori principle:

If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Support of an itemset never exceeds the support of its subsets This is known as the anti-monotone property of support

Anti-monotone: if a set can't pass a test, all of its superset will fail the same test as well

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Count
3
2
3
2
3
3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,	
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$	
With support-based pruning,	
6 + 6 + 1 = 13	

Itemset	Count
{Bread,Milk,Diaper}	3

•••

Q: Total number of possible frequent itemsets ???

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate(prune) candidates that are infrequent, leaving only those that are frequent

Data Mining and Data Warehousing

By: Suresh Pokharel

Frequent Pattern Tree

Generating Association Rule (Example)

Given a frequent itemset L

- Find all non-empty subsets F in L, such that the association rule F ⇒ {L-F} satisfies the minimum confidence
- Create the rule F ⇒ {L-F}

□ If L={A,B,C}

- The candidate itemsets are: AB⇒C, AC⇒B, BC⇒A, A⇒BC, B⇒AC, C⇒AB
- In general, there are 2^K-2 candidate solutions, where k is the length of the itemset L

Recap: A Concept Hierarchy

TID	Items Purchased
T100	IBM-ThinkPad-T40/2373, HP-Photosmart-7660
T200	Microsoft-Office-Professional-2003, Microsoft-Plus!-Digital-Media
T300	Logitech-MX700-Cordless-Mouse, Fellowes-Wrist-Rest
T400	Dell-Dimension-XPS, Canon-PowerShot-S400
T500	IBM-ThinkPad-R40/P4M, Symantec-Norton-Antivirus-2003

Multiple-Level Association Rules

- Items often form hierarchy.
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- We can explore shared multilevel mining

Mining Multi-Level Associations

- A top_down, progressive deepening approach:
 - First find high-level strong rules:

```
milk \rightarrow bread [20%, 60%].
```

— Then find their lower-level "weaker" rules:

```
2% milk \rightarrow wheat bread [6%, 50%].
```

- Variations at mining multiple-level association rules.
 - Association rules with multiple, alternative hierarchies:

```
2\% milk \rightarrow Wonder bread
```

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - Lower level items do not occur as frequently. If support threshold
 - too high ⇒ miss low level associations
 - too low ⇒ generate too many high level associations
- Reduced Support: reduced minimum support at lower levels

Uniform Support

Multi-level mining with uniform support

Level 1 min_sup = 5%

Level 2 min_sup = 5%

Reduced Support

Multi-level mining with reduced support

Level 1 min_sup = 5%

Level 2 min_sup = 3%

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.

Multi-Dimensional Association: Concepts

- Single-dimensional rules:
 - buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules: **Q** 2 dimensions or predicates
 - Inter-dimension association rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")
```

hybrid-dimension association rules (repeated predicates)

```
age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
```


Interestingness Measurements

Objective measures

Two popular measurements:

- ☆ support; and
- **Occupie** confidence
- Subjective measures

A rule (pattern) is interesting if

- ☆ it is *unexpected* (surprising to the user); and/or
- **Comparison of the user can do something with it)

