Artificial Intelligence I 2023/2024 Week 8 Tutorial and Additional Exercises

Hierarchical Clustering and Evaluation of Clustering Algorithms

School of Computer Science

4th of March 2024

In this tutorial...

In this tutorial we will be covering

- Hierarchical Clustering.
- Cutting the Dendrogram.
- Supervised and unsupervised clustering validation criteria.
- Silhouette coefficient.
- Classification-oriented validation criteria
- Similarity-oriented validation criteria.

Inter-Cluster Dissimilarity Metrics

- Distance metrics can be generalised for clusters to define inter-cluster dissimilarity measures. Let C_1 and C_2 be clusters containing n_1 and n_2 examples respectively. Some examples of distance metrics between C_1 and C_2 are:
 - Single linkage is defined as

$$d_{SL}(C_1, C_2) := \min_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

2 Complete linkage is defined as

$$d_{CL}(C_1, C_2) := \max_{\mathbf{x}^{(1)} \in C_1, \mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

Group Average linkage is defined as

$$d_{GL}(C_1, C_2) := \frac{1}{n_1 n_2} \sum_{\mathbf{x}^{(1)} \in C_1} \sum_{\mathbf{x}^{(2)} \in C_2} Dist(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}).$$

• *Dist*(·) can be any distance function between vectors.

Hierarchical Clustering

Recall the formal algorithm of *Hierarchical Clustering*.

Algorithm 1: Hierarchical clustering.

Input: Distance matrix corresponding to the data set $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ **Output:** Dendrogram.

1 repeat

2

3

4

Find two clusters C_1 , C_2 with the smallest inter-cluster dissimilarity. That is,

$$\arg\min_{C_1,C_2}d_A(C_1,C_2)$$

where $A \in \{SL, CL, GL\}$ denotes single linkage (SL), complete linkage (CL) or group linkage (GL);

- Merge together C_1 , C_2 into a single cluster;
- Note the clusters merged and their corresponding linkage $d_A(\cdot, \cdot)$ in a dendrogram.
- 5 until Only one cluster remains.;
- 6 return Dendrogram.

Exercise 1

 Consider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$x^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 1 to merge all examples into a single cluster.
- Use single linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way clearly depicting the height at which two clusters fuse.

Exercise 1: Solution

 We start with each example in its own cluster and calculate the distance matrix for these clusters.

	$\{\mathbf{x}^{(1)}\}$	$\{x^{(2)}\}$	$\{x^{(3)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{x^{(1)}\}$	0	0.20	0.15	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.89	0.18	0.66	0.27
$\{x^{(3)}\}$	0.15	0.89	0	0.82	0.73	0.56
$\{x^{(4)}\}$	0.76	0.18	0.82	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.73	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}\}$ and $\{\mathbf{x}^{(3)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\},\{\boldsymbol{x}^{(2)}\},\{\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{x^{(2)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.20	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.18	0.66	0.27
$\{x^{(4)}\}$	0.76	0.18	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}\}$ and $\{\mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}, \{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}, \{\mathbf{x}^{(5)}\}, \{\mathbf{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.20	0.54	0.31
$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	0.20	0	0.42	0.27
$\{x^{(5)}\}$	0.54	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$ and $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	$\{\mathbf{x}^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$	0	0.42	0.27
$\{x^{(5)}\}$	0.42	0	0.51
$\{x^{(6)}\}$	0.27	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}$ and $\{\mathbf{x}^{(6)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}, \{\mathbf{x}^{(5)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(6)}\}$	$\{x^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	0	0.42
$\{x^{(5)}\}$	0.42	0

- \bullet The closest clusters are $\{\textbf{x}^{(1)},\textbf{x}^{(2)},\textbf{x}^{(3)},\textbf{x}^{(4)},\textbf{x}^{(6)}\}$ and $\{\textbf{x}^{(5)}\}.$
- The new clusters are

$$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(5)},\mathbf{x}^{(6)}\}.$$

• Finally, we construct the dendrogram.

The dendrogram is the following:

Exercise 2

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	x ⁽²⁾	x ⁽³⁾	x ⁽⁴⁾	x ⁽⁵⁾	x ⁽⁶⁾
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$x^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$x^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering in algorithm 1 to merge all examples into a single cluster.
- Use complete linkage as the inter-cluster dissimilarity metric.
- Sketch the dendrogram you found along the way.

Exercise 2: Solution

 We start with each example in its own cluster and calculate the distance matrix for these clusters.

	$\{\mathbf{x}^{(1)}\}$	$\{x^{(2)}\}$	$\{x^{(3)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{x^{(1)}\}$	0	0.20	0.15	0.76	0.54	0.31
$\{x^{(2)}\}$	0.20	0	0.89	0.18	0.66	0.27
$\{x^{(3)}\}$	0.15	0.89	0	0.82	0.73	0.56
$\{x^{(4)}\}$	0.76	0.18	0.82	0	0.42	0.39
$\{x^{(5)}\}$	0.54	0.66	0.73	0.42	0	0.51
$\{x^{(6)}\}$	0.31	0.27	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(1)}\}$ and $\{\mathbf{x}^{(3)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\},\{\boldsymbol{x}^{(2)}\},\{\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{x^{(2)}\}$	$\{x^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.82	0.73	0.56
$\{x^{(2)}\}$	0.89	0	0.18	0.66	0.27
$\{x^{(4)}\}$	0.82	0.18	0	0.42	0.39
$\{x^{(5)}\}$	0.73	0.66	0.42	0	0.51
$\{x^{(6)}\}$	0.56	0.27	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}\}$ and $\{\mathbf{x}^{(4)}\}$.
- The new clusters are

$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}, \{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}, \{\mathbf{x}^{(5)}\}, \{\mathbf{x}^{(6)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	$\{x^{(5)}\}$	$\{x^{(6)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.73	0.56
$\{\mathbf{x}^{(2)},\mathbf{x}^{(4)}\}$	0.89	0	0.66	0.39
$\{x^{(5)}\}$	0.73	0.66	0	0.51
$\{x^{(6)}\}$	0.56	0.39	0.51	0

- The closest clusters are $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}\}$ and $\{\mathbf{x}^{(6)}\}$.
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\}, \{\boldsymbol{x}^{(2)},\boldsymbol{x}^{(4)},\boldsymbol{x}^{(6)}\}, \{\boldsymbol{x}^{(5)}\}.$$

	$\{\mathbf{x}^{(1)},\mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	$\{\mathbf{x}^{(5)}\}$
$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	0	0.89	0.73
$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}$	0.89	0	0.66
$\{x^{(5)}\}$	0.73	0.66	0

- The closest clusters are $\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}\}\$ and $\{\mathbf{x}^{(5)}\}.$
- The new clusters are

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(3)}\}, \{\boldsymbol{x}^{(2)},\boldsymbol{x}^{(4)},\boldsymbol{x}^{(5)},\boldsymbol{x}^{(6)}\}.$$

• We then recalculate the distance matrix for the new clusters.

	$\{\mathbf{x}^{(1)}, \mathbf{x}^{(3)}\}$	$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}\}$
$\{ \mathbf{x}^{(1)}, \mathbf{x}^{(3)} \}$	0	0.89
$\{\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}\}$	0.89	0

- \bullet The closest clusters are $\{\textbf{x}^{(1)},\textbf{x}^{(3)}\}$ and $\{\textbf{x}^{(2)},\textbf{x}^{(4)},\textbf{x}^{(5)},\textbf{x}^{(6)}\}.$
- The new clusters are

$$\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(5)},\mathbf{x}^{(6)}\}.$$

• Finally, we construct the dendrogram.

The dendrogram is the following:

Cutting the Dendrogram

- In Hierarchical Clustering, we can impose a threshold on the inter-cluster distance or on the number of clusters.
- When this threshold is surpassed, the algorithm terminates without forming any further clusters, and returns the clusters formed so far.
- Different thresholds can result in different clusters.

Exercise 3

 Reconsider the set with 6 examples and the following distance matrix (for some choice of distance function).

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$	$x^{(6)}$
$\mathbf{x}^{(1)}$	0	0.20	0.15	0.76	0.54	0.31
$x^{(2)}$	0.20	0	0.89	0.18	0.66	0.27
$\mathbf{x}^{(3)}$	0.15	0.89	0	0.82	0.73	0.56
$\mathbf{x}^{(4)}$	0.76	0.18	0.82	0	0.42	0.39
$x^{(5)}$	0.54	0.66	0.73	0.42	0	0.51
$x^{(6)}$	0.31	0.27	0.56	0.39	0.51	0

- Use Hierarchical clustering but impose a threshold of 0.35 on the inter-cluster distance. Write the final clusters.
- Use Hierarchical clustering but impose a threshold of 3 on the number of clusters. Write the final clusters.
- Use **single linkage** as the inter-cluster dissimilarity metric.

Exercise 3: Solution

 If we impose a threshold of 0.35 on the inter-cluster distance, the final clusters will be

$$\{\boldsymbol{x^{(1)}},\boldsymbol{x^{(2)}},\boldsymbol{x^{(3)}},\boldsymbol{x^{(4)}},\boldsymbol{x^{(6)}}\},\{\boldsymbol{x^{(5)}}\}.$$

• We next draw the dendrogram with the horizontal cut.

The dendrogram with the horizontal cut is the following:

 If we impose a threshold of 3 on the number of clusters, the final clusters will be

$$\{\boldsymbol{x}^{(1)},\boldsymbol{x}^{(2)},\boldsymbol{x}^{(3)},\boldsymbol{x}^{(4)}\},\{\boldsymbol{x}^{(5)}\},\{\boldsymbol{x}^{(6)}\}.$$

• We next draw the dendrogram with the horizontal cut.

The dendrogram with the horizontal cut is the following:

Silhouette Coefficient

- Let $\mathbf{x}^{(i)}$ be an example in cluster C, and define
 - **1** a_i to be the average distance of $\mathbf{x}^{(i)}$ to all other examples in C, i.e.,

$$a_i := rac{\sum_{\mathbf{x} \in C, \mathbf{x}
eq \mathbf{x}^{(i)}} d(\mathbf{x}^{(i)}, \mathbf{x})}{(\text{no. of examples in cluster } C) - 1}.$$

② b_i to be the minimum of the average distance of $\mathbf{x}^{(i)}$ to examples in other clusters, i.e.

$$b_i := \min_{\substack{k=1,\ldots,K\\C_k \neq C}} \frac{\sum_{\mathbf{x} \in C_k} d(\mathbf{x}^{(i)}, \mathbf{x})}{\text{no. of examples in } C_k}.$$

• The SC for $\mathbf{x}^{(i)}$ is defined as

$$s_i := \frac{b_i - a_i}{\max\{a_i, b_i\}}.$$

Silhouette Coefficient (continued)

• The SC of a cluster C is defined as

$$s_C := \frac{\sum_{\{i: \mathbf{x}^{(i)} \in C\}} s_i}{\text{no. of examples in cluster } C}.$$

 \bullet The SC of a clustering structure ${\cal C}$ with N examples is defined as

$$s_{\mathcal{C}} := \frac{\sum_{i=1}^{N} s_i}{N}.$$

Exercise 4

Consider a dataset with 4 examples, clustered by an algorithm as

$$C_1 = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}, \qquad C_2 = \{\mathbf{x}^{(3)}, \mathbf{x}^{(4)}\}.$$

• The distance matrix for these examples is the following

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	x ⁽⁴⁾
$x^{(1)}$	0	0.10	0.65	0.55
$x^{(2)}$	0.10	0	0.70	0.60
$x^{(3)}$	0.65	0.70	0	0.90
$x^{(4)}$	0.55	0.60	0.90	0

- Compute the SC for each point, for each cluster, and for the overall clustering structure $C = \{C_1, C_2\}$.
- Comment on the suitability of examples assigned to C_1 .

Exercise 4: Solution

We first find the a_i's and the b_i's

$$a_1 = 0.1, a_2 = 0.1, a_3 = 0.9, a_4 = 0.9.$$

$$b_1 = 0.6, b_2 = 0.65, b_3 = 0.675, b_4 = 0.575.$$

We then find the SC of each example

$$s_1 = 0.8333, s_2 = 0.8461, s_3 = -0.25, s_4 = -0.3611.$$

We then find the SC of each cluster

$$s_{C_1} = 0.8397, s_{C_2} = -0.3055.$$

We then find the SC of the clustering structure

$$s_C = 0.2670$$
.

Classification-oriented validation criteria

- Consider a set of L different classes, clustered into K clusters.
- Precision of cluster i with respect to class j

$$precision(i, j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in cluster } i}.$$

• Recall of cluster i with respect to class j

$$recall(i, j) := \frac{\text{no. of examples of class } j \text{ in cluster } i}{\text{no. of examples in class } j}.$$

• F-measure of cluster i with respect to class j

$$F(i,j) := \frac{2 \cdot precision(i,j) \cdot recall(i,j)}{precision(i,j) + recall(i,j)}.$$

Classification-oriented validation criteria (continued)

• The *entropy* of cluster *i* is defined as

$$e_i := -\sum_{j=1}^{L} precision(i, j) \cdot \log_2(precision(i, j)),$$

where $-x \log_2 x := 0$, when x = 0.

• The total entropy of the set of clusters is defined as

$$e := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} e_i.$$

We want a low entropy.

Classification-oriented validity measures (continued)

• The *purity* of cluster *i* is defined as

$$p_i := \max_{j} precision(i, j).$$

• The overall purity of the set of clusters is defined as

$$p := \sum_{i=1}^{K} \frac{\text{no. of examples in cluster } i}{\text{total no. of examples}} p_i.$$

We want a high purity.

Exercise 5

• Consider the set with 10 examples and 3 classes, clustered into 3 clusters (classes and clusters are not the same)

Example	Class	Cluster	Example	Class	Cluster
$\mathbf{x}^{(1)}$	1	1	x ⁽⁶⁾	3	1
$x^{(2)}$	3	2	$x^{(7)}$	2	2
$x^{(3)}$	2	3	x ⁽⁸⁾	2	2
x ⁽⁴⁾	1	1	$x^{(9)}$	1	3
x ⁽⁵⁾	3	2	x ⁽¹⁰⁾	2	1

- Write down the confusion matrix.
- Compute the following
 - \bullet precision(1,3).
 - 2 recall(1,3).
 - \bullet F(1,3).
 - e_2 .

Exercise 5: Solution

• The confusion matrix is the following

	Cluster 1	Cluster 2	Cluster 3	Total
Class 1	2	0	1	3
Class 2	1	2	1	4
Class 3	1	2	0	3
Total	4	4	2	10

- We also compute the following
 - precision(1,3) = 1/4.
 - ② recall(1,3) = 1/3.
 - F(1,3) = 2/7.
 - $e_2 = 1$.
 - $p_2 = 1/2$.

Similarity-oriented validation criteria

- Consider a set of N examples of different classes, clustered into clusters.
- The ideal cluster similarity matrix is an N × N matrix whose ij-th element equals 1 if examples i and j are in the same cluster, and 0 otherwise.
- The *ideal class similarity matrix* is an $N \times N$ matrix whose ij-th element equals 1 is examples i and j are in the same class, and 0 otherwise.
- We can compute the correlation between these two matrices.
- We can also use binary similarity-based measures.

Binary similarity-based measures

- Consider a set of N examples of different classes, clustered into clusters and define the following
 - $f_{00} := \text{no.}$ of pairs having different class and different cluster.

 - \bullet $f_{11} := no.$ of pairs having same class and same cluster.
- The Rand statistic is defined as

Rand statistic =
$$\frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$
.

• The Jaccard coefficient is defined as

$$\textit{Jaccard coefficient} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}.$$

Exercise 6

 Reconsider the first five examples of the previous set with 3 classes, clustered into 3 clusters

Example	Class	Cluster
$x^{(1)}$	1	1
$x^{(2)}$	3	2
$x^{(3)}$	2	3
$x^{(4)}$	1	1 1
$x^{(5)}$	3	2

- Write down the ideal cluster similarity matrix and the ideal class similarity matrix.
- Compute the Rand statistic and the Jaccard coefficient.

Exercise 6: Solution

• The ideal cluster similarity matrix is the following

	$\mathbf{x}^{(1)}$	$x^{(2)}$	x ⁽³⁾	x ⁽⁴⁾	$x^{(5)}$
$\mathbf{x}^{(1)}$	1	0	0	1	0
$x^{(2)}$	0	1	0	0	1
$\mathbf{x}^{(3)}$	0	0	1	0	0
$x^{(4)}$	1	0	0	1	0
$x^{(5)}$	0	1	0	0	1

• The ideal class similarity matrix is the following

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$	$x^{(5)}$
$\mathbf{x}^{(1)}$	1	0	0	1	0
$x^{(2)}$	0	1	0	0	1
$x^{(3)}$	0	0	1	0	0
$x^{(4)}$	1	0	0	1	0
$x^{(5)}$	0	1	0	0	1

- We first compute the following
 - **1** $f_{00} = 8$.
 - $f_{01} = 0.$
 - $f_{10} = 0.$
 - $f_{11} = 2$.
- Therefore, $Rand\ statistic = 1$.
- Also, *Jaccard coefficient* = 1.

Up next...

Advanced Material

(OPTIONAL) Advanced Exercise 1

- Let C_1 , C_2 and C_3 be clusters. Prove the following:

 - $d_{CL}(C_1, C_2 \cup C_3) = \max\{d_{CL}(C_1, C_2), d_{CL}(C_1, C_3)\}.$
- Recall that
 - **1** $C \cup C' = \{ \mathbf{x} : \mathbf{x} \in C \lor \mathbf{x} \in C' \}.$
 - $d_{SL}(C,C') = \min_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - $d_{CL}(C,C') = \max_{\mathbf{x} \in C, \mathbf{x}' \in C'} Dist(\mathbf{x},\mathbf{x}').$
 - **1** Dist (\cdot, \cdot) is some distance function for vectors.
- Hint: $\min_{\mathbf{x} \in C \lor \mathbf{x} \in C'} f(\mathbf{x}) = \min\{\min_{\mathbf{x} \in C} f(\mathbf{x}), \min_{\mathbf{x} \in C'} f(\mathbf{x})\}$, for any sets C, C', and real-valued function $f(\cdot)$. The same holds if we replace all the min's with max's.

(OPTIONAL) Advanced Exercise 1: Solution

- **1** $d_{SL}(C_1, C_2 \cup C_3) = \min_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \cup C_3} Dist(\mathbf{x}, \mathbf{x}') = \min_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \lor \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}') = \min_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2} Dist(\mathbf{x}, \mathbf{x}'), \min_{\mathbf{x} \in C_1, \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}')\} = \min_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2} d_{SL}(C_1, C_2), d_{SL}(C_1, C_3)\}.$
- ② $d_{CL}(C_1, C_2 \cup C_3) = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \cup C_3} Dist(\mathbf{x}, \mathbf{x}') = \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2 \lor \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}') = \max\{\max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_2} Dist(\mathbf{x}, \mathbf{x}'), \max_{\mathbf{x} \in C_1, \mathbf{x}' \in C_3} Dist(\mathbf{x}, \mathbf{x}')\} = \max\{d_{CL}(C_1, C_2), d_{CL}(C_1, C_3)\}.$

Any questions?

Until the next time...

Thank you for your attention!