分析-2 Lecture Notes

Instructor: 归斌 Notes Taker: 欧阳张腾

Qiuzhen College, Tsinghua University $2022~{\rm Spring}$

目录

第一章	偏导数	1
1.1	偏导数	1
第二章	Hilbert 空间	5
2.1	Fourier 级数	5
2.2	Hilbert 空间及其历史	9
2.3	Hilbert 空间中的正交分解	14
2.4	Hilbert 空间与弱拓扑	19
第三章	测度论	25
3.1		25
3.2		30
3.3		38
3.4		15
3.5	$p \longrightarrow r$	19
3.6		55
3.7	乘积测度	60
第四章	を 二、AMLIATA A、FreeTA	
	多元微积分与流形 6	7
4.1		57 57
4.1 4.2	反函数定理 6	
4.2	反函数定理	57 70
	反函数定理	67
4.2 4.3 4.4	反函数定理	57 70 73 77
4.2 4.3 4.4 4.5	反函数定理	57 70 73 77
4.2 4.3 4.4 4.5 4.6	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8	37 70 73 77 83
4.2 4.3 4.4 4.5 4.6 4.7	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8 Lebesgue 测度的坐标变换公式 9	57 70 73 77 83 86
4.2 4.3 4.4 4.5 4.6 4.7 4.8	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8 Lebesgue 测度的坐标变换公式 9 带边微分流形 9	57 70 73 77 83 86 90
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8 Lebesgue 测度的坐标变换公式 9 带边微分流形 9 张量场 9	70 73 77 83 86 90 92
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8 Lebesgue 测度的坐标变换公式 9 带边微分流形 9 张量场 9 黎曼流形和第一型积分 9	70 73 77 83 86 90 92
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	反函数定理 6 隐函数定理和微分流形 7 光滑结构,光滑映射,子流形 7 切向量和余切向量 7 流形的嵌入和浸入 8 欧式空间的平移不变测度 8 Lebesgue 测度的坐标变换公式 9 带边微分流形 9 张量场 9	57 70 73 77 83 86 90 92 96 99

第一章 偏导数

1.1 偏导数

我们记 $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Z}_+ = \{1, 2, 3, \dots\}.$ 我们固定一个 Banach 空间 V.

定义 1.1.1. 令 Ω 是 \mathbb{R}^N 开集, $p \in \Omega, v \in \mathbb{R}^N$. 若

$$\left(\nabla_{v}f\right)\left(p\right) := \left.\frac{d}{dt}f(p+tv)\right|_{t=0} \left(=\lim_{t\to0}\frac{f(p+tv)-f(p)}{t}\right)$$

极限存在, 则把 $(\nabla_v f)(p)$ 称为 f 在 p 处沿 v 的 (**方向**) 导数. 记 $\left(\frac{\partial}{\partial x_i} f\right)(p) = (\partial_{x_i} f)(p)$ 为 f 在 p 处沿第 i 个坐标轴的方向导数.

我们想计算 $f \circ \gamma$ 在 t = 0 处的导数, 若 $\gamma : (-\varepsilon, \varepsilon) \to \Omega$ 可导且 $\gamma(0) = p$, 我们想要 $f \circ \gamma$ 在 t = 0 处的导数也存在并计算其导数, 哪怕知道 f 在每个方向有导数也是不够的. 我们需要一个更强的定义:

定义 1.1.2. 给定开集 $\Omega \subset \mathbb{R}^N$ 和函数 $f:\Omega \to V$, 令 $p \in \Omega$. 假设存在 \mathbb{R} -线性映射 $A:\mathbb{R}^N \to V$, 使得对 $v \in \mathbb{R}^N$, 我们有

$$f(p+v) = f(p) + A \cdot v + o(v), \lim_{v \to 0} \frac{\|f(p+v) - f(p) - A \cdot v\|}{\|v\|} = 0$$

则称 f 在 p 处**可微**并称 A 是 f 在 p 处的**微分**. 我们记 $A=df|_p=df(p):\mathbb{R}^N\to V$. 若 f 处处可微, 则称 f 是**可微函数/映射**.

注记. 显然, 若 f 在 p 处可微, 则 f 在 p 处沿任何 $v \in \mathbb{R}^N$ 有方向导数 $(\nabla_v f)(p) = df|_p \cdot v$. 记 e_1, \dots, e_N 为 \mathbb{R}^N 的标准坐标向量, 则 $df|_p \cdot e_i = \partial_{x_i} f(p)$. 故由 $df|_p$ 的线性性, 若 V =

$$(a_1,\cdots,a_N)=\sum_{i=1}^N a_i e_i, \, \mathbb{M}$$

$$\left. df \right|_{p} \cdot v = \sum_{i=1}^{N} \partial_{x_{i}} f(p) \cdot a_{i}$$

或者简记为

$$df = (\partial_{x_1} f, \cdots, \partial_{x_N} f)$$

若 $V = \mathbb{R}^L$ 且 $f = \left(f^1, \cdots, f^L\right)$ 则 $df|_p$ 在标准坐标基下的矩阵表示是

$$(\partial_{x_j} f^i)_{\substack{1 \leqslant i \leqslant L \\ 1 \leqslant j \leqslant N}} = \begin{pmatrix} \partial_{x_1} f^1 & \partial_{x_2} f^1 & \cdots & \partial_{x_N} f^1 \\ \vdots & \vdots & & \vdots \\ \partial_{x_1} f^L & \partial_{x_2} f^L & \cdots & \partial_{x_N} f^L \end{pmatrix}$$

称为在 p 处的 **Jacobi 矩阵**并记为 $\mathbf{Jac}(f)(p)$. 因此, 若 $v = \begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix}$ 则 $df|_p \cdot v = \operatorname{Jac}(f)(p) \cdot v$.

命题 1.1.3. 若 I 是区间, $t_0 \in I, \gamma : I \to \Omega$ 在 t_0 处可导, 且 $f : \Omega \to V$ 在 $p = \gamma(t_0)$ 处可微, 则 $f \circ \gamma$ 在 t_0 处可导且

$$(f \circ \gamma)'(t_0) = df|_p \cdot \gamma'(t_0)$$
 (chain rule)

注记. 若记
$$\gamma(t) = (\gamma^1(t), \dots, \gamma^N(t))$$
,则 $(f \circ \gamma)'(t_0) = \sum_{i=1}^N \partial_{x_i} f(\gamma(t_0)) \cdot \partial_t \gamma^i(t_0)$.

证明:记 $A = df|_n$ 则

$$f(\gamma(t)) - f(p) = f(p + \gamma(t) - p) - f(p) = A(\gamma(t) - p) + o(\gamma(t) - p)$$

注意
$$\lim_{t \to t_0} \frac{\gamma(t) - p}{t - t_0} = \gamma'(t_0)$$
. 记 $\frac{o(\gamma(t) - p)}{\|\gamma(t) - p\|} = 0$, 若 $\gamma(t) - p = 0$. 则 $\lim_{t \to t_0} \frac{o(\gamma(t) - p)}{\|\gamma(t) - p\|} = 0$ 故

$$\lim_{t \to t_0^+} \frac{o(\gamma(t) - p)}{t - t_0} = \lim_{t \to t_0^+} \frac{o(\gamma(t) - p)}{\|\gamma(t) - p\|} \cdot \left\| \frac{\gamma(t) - p}{t - t_0} \right\| = 0 \cdot \left\| \gamma'(t_0) \right\| = 0$$

类似地,
$$\lim_{t \to t_0^-} \frac{o(\gamma(t) - p)}{t - t_0} = 0$$
. 故 $\lim_{t \to t_0} \frac{f(\gamma(t)) - f(p)}{t - t_0} = A\gamma'(t_0) + 0 = A\gamma'(t_0)$.

定义 1.1.4. 若 $\Omega \in \mathbb{R}^N$ 是开集,则记 $C^1(\Omega, V)$ 为所有满足 $\partial_{x_1} f, \dots, \partial_{x_N} f$ 存在且连续的 $f \in C(\Omega, V)$. 更一般地, 定义所有 **n** 次连续可微函数构成的空间

$$C^{n}(\Omega, V) = \{ f \in C(\Omega, V) : \partial_{x_{i_1}} \cdots \partial_{x_{i_k}} f \in C(\Omega, V), \forall 0 \leq k \leq n, \forall 1 \leq i_1, \cdots, i_k \leq N \}$$

这里 $n \in \mathbb{N} \cup \{\infty\}$. $C^{\infty}(\Omega, V)$ 中的元素称为光滑函数/映射.

注记. 与 1 维情形不同, 对于高维, 我们不对非开集的 Ω 定义 $C^N(\Omega,V)$. 对于开集 Ω , 则 $C^N(\Omega,V)$ 没有良好的范数.

以上定义中的"可微"来源于如下性质:

命题 1.1.5. 若 $f \in C^1(\Omega, V)$ 则 f 在 Ω 上可微, 且 $df = (\partial_{x_1} f, \dots, \partial_{x_N} f)$ 是 (显然) 连续的. 证明: 令 Ω 是 \mathbb{R}^N 中开集. 我们对 N 用归纳法.N = 1 时, 命题显然成立.

假设 \mathbb{R}^N 的情形已证, 我们考虑 \mathbb{R}^{N+1} 的情形. 任取 $p \in \Omega \subset \mathbb{R}^{N+1}$, 我们要证明 f 在 p 处可微. 不妨假设 p=0, 记 $v=(x_1,\cdots,x_N,y)=(x_\bullet,y)$, 记关于第 j 个分量的偏导数为 ∂_i , 则

$$f(x_{\bullet}, y) = f(x_{\bullet}, 0) + \int_{0}^{y} \partial_{N+1} f(x_{\bullet}, t) dt$$

$$= f(x_{\bullet}, 0) + \partial_{N+1} f(x_{\bullet}, 0) \cdot y + \int_{0}^{y} (\partial_{N+1} f(x_{\bullet}, t) - \partial_{N+1} f(x_{\bullet}, 0)) dt$$

$$= f(x_{\bullet}, 0) + \partial_{N+1} f(x_{\bullet}, 0) y + o(y)$$

$$= f(0, 0) + \sum_{i=1}^{N} \partial_{i} f(0, 0) \cdot x_{i} + o(x_{\bullet}) + \partial_{N+1} f(x_{\bullet}, 0) y + o(y)$$

$$= f(0, 0) + \sum_{i=1}^{N} \partial_{i} f(0, 0) x_{i} + \partial_{N+1} f(x_{\bullet}, 0) y + o(y)$$

命题 1.1.6 (链式法则 chain rule). 令 $\Gamma \subset \mathbb{R}^M, \Omega \subset \mathbb{R}^N$ 是开集, $f:\Omega \to V$ 和 $g:\Gamma \to \Omega$ 都是 C^1 的. 则 $f \circ g \in C^1(\Gamma, V)$ 且对任意 $p \in \Gamma$ 有

$$d(f \circ g)|_p = df|_{q(p)} \cdot dg|_p$$

注记. 以上条件可以放宽, 即只要求 g 在 p 处和 f 在 g(p) 处可微, 则有 $f \circ g$ 在 p 处可微. 且以上等式成立.

证明: 显然 $f \circ q$ 连续, 我们证明过如下形式的 chain rule:

记 $p = (p_1, \dots, p_M), \gamma(t) = g(p_1 + t, p_2, \dots, p_M),$ 则由

$$\gamma'(0) = \partial_{x_1} g(p), (f \circ \gamma)'(0) = \partial_{x_1} (f \circ g)(p), df|_{\gamma(0)} = df|_{q(p)}$$

因此

$$\partial_{x_1}(f \circ g)(p) = df|_{g(p)} \cdot \partial_{x_1}g(p)$$

由 $f,g \in C^1$ 知以上等式右边关于 p 连续, 故 $\partial_{x_1}(f \circ g)$ 连续. 类似地, $\forall i$ 有 $\partial_{x_i}(f \circ g)$ 连续, 这证明了 $f \circ g \in C^1(\Omega,V)$. 且我们有

$$\partial_{x_i}(f \circ g)(p) = df|_{g(p)} \cdot \partial_{x_i}g(p)$$

即 $d(f \circ g)|_{p} \cdot e_{i} = df|_{g(p)} \cdot dg|_{p} \cdot e_{i}$ 这里 $e_{i} = (0, \dots, 1, \dots, 0)$ (第i位). 因此

$$\left. d(f \circ g) \right|_p = \left. df \right|_{g(p)} \cdot dg \right|_p$$

我们接下来给几个 chain rule 的应用.

定理 1.1.7 (有限增量定理). 令 $f:\Omega \to V$ 处处可微. 取 $x,y \in \Omega$ 且假设 $[x,y] \subset \Omega$, 这里 $[x,y] = \{(1-t)x + ty : t \in [0,1]\}$. 则

$$||f(x) - f(y)|| \le \sup_{z \in [x,y]} ||df|_z|| \cdot ||y - x||.$$

注记. 这里 $\|df|_z\|$ 是 $A=df|_z:\mathbb{R}^N\to\mathbb{R}^N$ 的算子范数,

$$||A|| = \sup_{\|v\| \le 1} ||Av|| = \sup_{\|v\| = 1} ||Av|| = \sup_{v \ne 0} \frac{||Av||}{\|v\|}$$

我们有 $||Av|| \leq ||A|| \cdot ||v||$.

$$||f(y) - f(x)|| = ||f \circ \gamma(1) - f \circ \gamma(0)|| \le \sup_{0 \le t \le 1} ||(f \circ r)'(t)|| \cdot (1 - 0).$$

而

$$\left\| (f \circ \gamma)'(t) \right\| = \left\| df|_{\gamma(t)} \cdot \gamma'(t) \right\| = \left\| df|_{\gamma(t)} \cdot (y - x) \right\| \leqslant \sup_{z \in [x,y]} \| df|_z \| \cdot \| y - x \|.$$

推论 1.1.8. 假设 $\Omega \subset \mathbb{R}^N$ 连通, $f \in C(\Omega, V)$ 满足 $\partial_1 f, \dots, \partial_N f$ 在 Ω 上处处存在且为 θ (从而 $f \in C^1$ 且 df = 0), 则 f 是常值函数.

证明: 任取 $v \in f(\Omega)$, 则 $f^{-1}(v)$ 是 Ω 的非空闭子集.

 $\forall x \in f^{-1}(v)$, 由有限增量定理, 任取包含 x 的有界开球 $B \subset \Omega$, 则

$$y \in B \implies ||f(x) - f(y)|| \le 0 \cdot ||x - y|| = 0$$

定义 1.1.9. 子集 $E \subset W$ 称为凸集, 若 $x, y \in E \Longrightarrow [x, y] \in E$.

例子. $\forall p \in W, R \ge 0$, 开球 $B_W(p, R) = \{x \in W : ||x - p|| < R\}$ 及其闭包都是凸集.

第二章 Hilbert 空间

2.1 Fourier 级数

研究 Lebesgue 积分的一个主要动机是考虑 $C([a,b],\mathbb{C})$ 在 $||f||_p = \sqrt[p]{\int_a^b |f|^p} (称为 \mathbf{L}^p \ \mathbf{\overline{n}} \mathbf{\underline{w}})$ 下的完备化 $(1 \leq p < \infty)$,它会被记为 $L^p([a,b],\mathbb{C})$ 或简单地, $L^p([a,b])$.

回忆 Minkowski 不等式: 若 $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{C}$, 则

$$\sqrt[p]{\sum_{i=1}^{n} |x_i + y_i|^p} \leqslant \sqrt[p]{\sum_{i=1}^{n} |x_i|^p} + \sqrt[p]{\sum_{i=1}^{n} |y_i|^p}$$

因此若 $f,g \in C([a,b],\mathbb{C})$, 则对 [a,b] 上的任意带点分划 σ,ξ_{\bullet} 有 (记 $\sigma = \{a_0,\cdots,a_n\}$),

$$S(|f+g|^{p}, \sigma, \xi_{\bullet})^{\frac{1}{p}} = \sqrt{\sum_{i} |f(\xi_{i}) + g(\xi_{i})|^{p} \cdot (a_{i} - a_{i-1})}$$

$$\leq \sqrt{\sum_{i} |f(\xi_{i})|^{p} (a_{i} - a_{i-1})} + \sqrt{\sum_{i} |g(\xi_{i})|^{p} (a_{i} - a_{i-1})}$$

$$= S(|f|^{p}, \sigma, \xi_{\bullet})^{\frac{1}{p}} + S(|g|^{p}, \sigma, \xi_{\bullet})^{\frac{1}{p}}$$

取 $\lim_{(\sigma,\xi_{\bullet})}$ 则,

$$||f + g||_p \le ||f||_p + ||g||_p$$

在各 L^p 空间中, 首先引起人们兴趣的是 L^2 . 我们考虑连续**周期**函数 $f:[0,2\pi]\to\mathbb{C}$. 因为 $f(0)=f(2\pi),f$ 可以被看作单位圆 S^1 上的函数 $\widetilde{f}(e^{i\theta})=f(\theta)$. 故我们记 $f\in C([0,2\pi],\mathbb{C})$. 记号: $C(X,\mathbb{C})$ 简记为C(X).

命题 2.1.1. 定义 $e_n \in C([0,2\pi])$ 为 $e_n(x) = e^{inx} (n \in \mathbb{Z})$, 则 $\{e_n\}$ 满足正交关系:

$$\frac{1}{2\pi} \int_0^{2\pi} e_m \cdot \overline{e}_n = \delta_{m,n} = \begin{cases} 0 & \not \equiv m \neq n \\ 1 & \not \equiv m = n \end{cases}$$

这里 $\overline{e}_n(x) = \overline{e_n(x)} = \overline{e^{inx}} = e^{-inx} = e_{-n}(x)$.

证明:

以上正交关系可以用内积空间的几何来解释.

定义 2.1.2. 令 V 为 \mathbb{C} 上的线性空间, 考虑函数 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ 和以下条件:

(1) $\forall a, b \in \mathbb{C}, x, y, z \in V$ 有

$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$

 $\langle z, ax + by \rangle = \overline{a} \langle z, x \rangle + \overline{b} \langle z, y \rangle$

- (2) $\forall x, y \in V$ 有 $\overline{\langle x, y \rangle} = \langle y, x \rangle$.
- (3) $\forall x \in V$, $||x||^2 = \langle x, x \rangle$, 则 $||x||^2 \ge 0$ (我们记 $||x|| = \sqrt{\langle x, x \rangle}$).
- (3+) $\forall x \in V$, 则 $||x||^2 \ge 0$, 且 $||x|| = 0 \implies x = 0$ (注: 在条件 (1) 下, 有 $x = 0 \implies ||x|| = 0$).

(3+) 也被称为正定条件.

引理 2.1.3. 记 (2') 为 $\forall x \in V$ 有 $\langle x, x \rangle \in \mathbb{R}$, 则 $(1) + (2) \Longleftrightarrow (1) + (2')$. 特别地, $(1) + (3) \Longrightarrow (1) + (2)$.

证明: 假设 (1) + (2), 则 $\forall x \in V, \overline{\langle x, x \rangle} = \langle x, x \rangle$, 故 (2') 得证. 假设 $(1) + (2'), \forall x, y \in V$, 则

$$\forall \lambda \in \mathbb{C}, \mathbb{R} \ni \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \langle y, x \rangle + \langle y, y \rangle$$

故 $\lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle \in \mathbb{R}$. 取 $\lambda = 1$ 知 $\operatorname{Im} \langle y, x \rangle + \operatorname{Im} \langle x, y \rangle = 0$, 取 $\lambda = i$ 知 $\operatorname{Re} \langle y, x \rangle - \operatorname{Re} \langle x, y \rangle = 0$. 故 $\langle y, x \rangle = \overline{\langle x, y \rangle}$.

注记. 若 $\langle x,y\rangle=0$ 我们说 x 与 y 正交. 若 $S=(x_{\alpha})_{\alpha\in\mathcal{A}}$ 是 V 中一组元素满足

$$\langle x_{\alpha}, x_{\beta} \rangle = \delta_{\alpha, \beta} = \begin{cases} 1 & 若\alpha = \beta \\ 0 & 若\alpha \neq \beta \end{cases}$$

则称 S 是一个标准正交向量组.

例子. \mathbb{C}^n 上定义 $x = (x_1, \dots, x_n)$ 与 $y = (y_1, \dots, y_n)$ 之间的配对

$$\langle x, y \rangle = \lambda_1 x_1 \overline{y}_1 + \dots + \lambda_n x_n \overline{y}_n \quad (\lambda_1, \dots, \lambda_n \in \mathbb{C})$$

则 〈·,·〉 是半双线性型 (sesquilinear form)

- $\lambda_1, \dots, \lambda_n \in \mathbb{R} \iff \text{Hermite} \mathbb{P}$
- $\lambda_1, \dots, \lambda_n \ge 0 \iff$ 半正定
- $\lambda_1, \dots, \lambda_n > 0 \iff \text{EE} (\mathbb{P}_n \mathbb{P}_n \mathbb{P}_n)$

例子. C([a,b]) 上可定义标准内积

$$\langle f, g \rangle = \int_{a}^{b} f \overline{g} = \int_{a}^{b} f(x) \overline{g(x)} dx$$

若用上式定义 $\Re([a,b])=\{\mathrm{Riemann}$ 可积的 $f:[a,b]\to\mathbb{C}\},$ 则 $\langle\cdot,\cdot\rangle$ 是半正定的,它不是正定的,因为令

$$f(x) = \delta_{x,a} = \begin{cases} 1 & \nexists x = a \\ 0 & \nexists a < x \leq b \end{cases}$$

则 $f \neq 0$, 但 $||f||^2 = \int_a^b |f|^2 = 0$.

例子. 考虑 $C([0,2\pi])$, 则 $\{\frac{1}{\sqrt{2\pi}}e_n\}_{n\in\mathbb{Z}_+}$ 是一组标准正交向量.

等价地, 若定义 $\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f\overline{g}$, 则 $\{e_n\}_{n \in \mathbb{Z}_+}$ 是一组标准正交向量.

定义 2.1.4. 若 $f \in C(S^1) = \{$ 连续周期函数 $f : [0, 2\pi] \to \mathbb{C} \}$

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f \cdot \overline{e}_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

称为 f 的模 n 的 Fourier 系数.

我们接下来要理解一系列性质:

• 称 f 的 Fourier 级数展开为

$$f(x) = \sum_{n = -\infty}^{+\infty} \widehat{f}(n)e^{inx} = \sum_{n = -\infty}^{+\infty} c_n e^{inx}$$

其中 $c_n = \hat{f}(n)$. 这一级数一般不一致收敛 (若 $f \in \Re([0, 2\pi])$ 不连续,则由连续函数一致收敛到连续函数可证),也不一定逐点收敛. 但

$$\lim_{N \to \infty} \left\| f - \sum_{n=-N}^{N} c_n e_n \right\|_2 = 0$$

• Parseval 等式

$$||f||_2 = \sqrt{\sum_{n=-\infty}^{\infty} |c_n|^2}$$

即

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{+\infty} |\widehat{f}(n)|^2$$

$$\Leftrightarrow g_N = f - \sum_{n=-N}^N \widehat{f}(n)e_n$$
, 则

$$\widehat{g}_N(n) = \begin{cases} \widehat{f}(n) & \text{ } \ddot{\Xi}|n| > N \\ 0 & \text{ } \ddot{\Xi}|n| \leqslant N \end{cases}$$

则由 Parseval 等式,
$$||g_N||_2^2 = \sum_{|n|>N} |\widehat{f}(n)|^2$$
.

显然由
$$||f||_2 < +\infty$$
 知 $\sum_{n \in \mathbb{N}} |\widehat{f}(n)| < +\infty$.

故
$$\lim_{N\to+\infty}\|g_N\|_2^2=0$$
. 这证明了 $s_N=\sum_{|n|\leqslant N}\widehat{f}(n)e_n$ 在 L^2 范数下逼近 f .

• $\diamondsuit f \in C^1(S^1), \mathbb{N}$

$$\widehat{\partial_x f}(n) = \frac{1}{2\pi} \int_0^{2\pi} \partial_x f(x) e^{-inx} dx$$

$$= \frac{1}{2\pi} f(x) e^{-inx} \Big|_0^{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot (-in) e^{-inx} dx$$

$$= in\widehat{f}(n)$$

记线性算子

$$\mathcal{D}: \frac{C^1(S^1) \to C(S^1)}{\mathcal{D}f = \frac{1}{i}\partial_x f}, \quad \mathcal{N}: \frac{l^2(\mathbb{Z}) \to \mathbb{C}^{S^1}}{(\mathcal{N}g)(n) = n \cdot g(n)}$$

则 $\widehat{\mathbb{D}f} = \mathbb{N}\widehat{f}$, 或者令 $\mathfrak{F}: f \mapsto \widehat{f}$, 则 $\mathfrak{FD} = \mathbb{N}\mathfrak{F}$.

牙诱导了 D 和 N 之间的"等价".

N可以被理解为"对角矩阵",因此:

Fourier 级数给出了算子 $D = \frac{1}{i} \frac{d}{dx}$ 的对角化 (谱分解).

• 考虑满足**热方程** $\partial_x^2 f(x,t) = \partial_t f(x,t)$ 的周期解 (即满足 $f(x) = f(x+2\pi)$).

令
$$\widehat{f}(n,t) = \frac{1}{2\pi} \int_0^{2\pi} f(x,t)e^{-int}dx$$
. 则 $-n^2\widehat{f}(n,t) = \partial_t\widehat{f}(n,t)$. 解得 $\widehat{f}(n,t) = a_n e^{-n^2 t}$ $(a_n \in \mathbb{C})$.

故通解为
$$f(x,t) = \sum_{n=-\infty}^{+\infty} a_n e^{-n^2 t} \cdot e^{inx} = \sum_{n \in \mathbb{Z}} a_n e^{inx-n^2 t}$$
.

波动方程 $\partial_x^2 f(x,t) = \partial_t^2 f(x,t)$ 的周期解想法类似.

因此 Fourier 理论是解 PDE 的强大工具.

• 二元甚至多元周期函数也有 Fourier 级数:

若 $f \in C(S^1 \times S^1)$, 则

$$\widehat{f}(m,n) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} f(x,y) e^{-imx - iny} dx dy$$

$$f = \sum_{m,n \in \mathbb{Z}} \widehat{f}(m,n) e^{imx + iny} \quad (在L^2 下收敛)$$

它可以用来解 $\Delta f(x,y,t) = \partial_t f(x,y,t)$ (其中 $f \in C(S^1 \times S^1)$, $\Delta = \partial_x^2 + \partial_y^2$).

2.2 Hilbert 空间及其历史

约定: $C(X,\mathbb{C}), l^p(X,\mathbb{C})$ 简记为 $C(X), l^p(X)$.

定义 2.2.1. 若 $(\mathfrak{H}, \langle \cdot, \cdot \rangle)$ 是内积空间且作为度量空间 (范数 $\|\xi\| = \sqrt{\langle \xi, \xi \rangle}$, 度量 $d(\xi, \eta) = \|\xi - \eta\|$) 是完备的, 则称 \mathfrak{H} 是 Hilbert 空间.

本节 光 皆指代 Hilbert 空间.

例子. 令 X 是集合. 回忆 $l^2(X)=\{f:X\to\mathbb{C}:\|f\|_2^2<+\infty\}$. 这里

$$\|f\|_2^2 = \sum_{x \in X} |f(x)|^2 = \sup_{A \in \operatorname{fin}(2^X)} \sum_{x \in A} |f(x)|^2, \operatorname{fin}(2^X) = \{X \text{ of } \mathbb{R} \neq \$\}$$

回忆 Hölder 不等式:

$$\sum_{x \in X} |f(x)g(x)| \leqslant \sqrt{\sum_{x \in X} |f(x)|^2} \cdot \sqrt{\sum_{x \in X} |g(x)|^2}$$

因此若 $f, g \in l^2(X)$, 则 $f\overline{g} \in l^2(X)$. 故

$$\sum_{x \in X} f(x)\overline{g(x)} = \lim_{A \in fin(2^X)} \sum_{x \in A} f(x)\overline{g(x)}$$

收敛. 令 $\langle f, g \rangle = \sum_{x \in X} f(x) \overline{g(x)}$. 则 $\langle \cdot, \cdot \rangle$ 是 $l^2(X)$ 上的内积.

命题 2.2.2. $l^2(X)$ 完备, 即它是 Hilbert 空间. 我们会证明更一般的:

命题 2.2.3. 令 $1 \leq p \leq +\infty$, 则 $l^p(X)$ 完备.

证明: $p=1,+\infty$ 时证过, 对一般的 $1\leqslant p<+\infty$, 令 $\{f_n\}_{n\in\mathbb{Z}_+}$ 是 $l^p(X)$ 中的 Cauchy 列, 即

$$\lim_{m,n \to \infty} \sum_{x \in X} |f_m(x) - f_n(x)|^p = 0$$
 (1)

故 $\forall x \in X$, $\lim_{m,n\to\infty} |f_m(x) - f_n(x)|^p = 0$. 故 f_n 逐点收敛到函数 $f: X \to \mathbb{C}$. 由 (1)

$$\forall \varepsilon > 0, \exists N, \forall m, n \geqslant N, \sum_{x \in X} |f_m(x) - f_n(x)|^p < \varepsilon.$$

故 $\forall A \in \text{fin}(2^X)$ 有

$$\sum_{x \in A} |f_m(x) - f_n(x)|^p < \varepsilon$$

取 $\lim_{m\to\infty}$, 则 $\sum_{x\in A} |f(x)-f_n(x)|^p < \varepsilon$. 结合上述几点, $\forall \varepsilon > 0$, $\exists N, \forall n \geqslant N, \sum_{x\in X} |f(x)-f_n(x)|^p < \varepsilon$, 即 $\|f-f_n\|_p^p \leqslant \varepsilon$. 这证明了

$$||f||_p \le ||f - f_n||_p + ||f_n||_p < +\infty$$

从而
$$f \in l^p(X)$$
,以及 $\lim_{n \to \infty} ||f - f_n||_p = 0$.

命题 2.2.4. 令 $\langle \cdot, \cdot \rangle$ 是 V 上的半正定性, 则 $\forall \xi, \eta \in V$, 有 Cauchy-Schwartz 不等式 $|\langle \xi, \eta \rangle| \leq ||\xi|| \cdot ||\eta||$.

证明: 取 $\theta \in \mathbb{R}$ 使 $e^{i\theta} \langle \xi, \eta \rangle \in \mathbb{R}$. 只需证 $|\langle e^{i\theta} \xi, \eta \rangle| \leq ||e^{i\theta} \xi|| \cdot ||\eta||$. 故不妨假设 $\langle \xi, \eta \rangle \in \mathbb{R}$. 考虑

$$\langle \xi - t\eta, \xi - t\eta \rangle = \|\xi\|^2 - 2t \langle \xi, \eta \rangle + t^2 \|\eta\|^2$$

记为 p(t). 则 p(t) 是关于 t 的一元二次方程且 $\forall t \in \mathbb{R}$ 有 $p(t) \ge 0$,故其判别式 $\Delta = 4 \langle \xi, \eta \rangle^2 - 4 \|\xi\|^2 \|\eta\|^2 \le 0$.

注记. 以上证明想法如下. 假设 $\langle\cdot,\cdot\rangle$ 是内积. 假设 $\|\xi\|=\|\eta\|=1$, 则 C-S 不等式说的是 ξ 和 η 之间夹角的余弦 \leq 1. 我们想把 ξ 沿 η 投影. 即写成

$$\xi = (t\eta) + (\xi - t\eta), t\eta \perp \xi - t\eta$$

要使这一正交关系成立, 我们希望 t 是使 $\|\xi - t\eta\|$ 最小的值, 此时

 ξ 和 η 夹角余弦 $\leq 1 \iff \xi$ 在 η 上的投影 $t\eta$ 长度 ≤ 1

这可由 $\|\xi - t\eta\|^2 \ge 0$ 推得. 而 $\inf_{t \in \mathbb{R}} \|\xi - t\eta\|^2 \ge 0 \iff p(t)$ 判别式 ≤ 0 .

推论 2.2.5. 令 V 为内积空间,则 $\|\xi\| = \sqrt{\langle \xi, \xi \rangle}$ 是范数.

证明:

$$\begin{split} \|\xi + \eta\| \leqslant \|\xi\| + \|\eta\| &\iff \langle \xi + \eta, \xi + \eta \rangle \leqslant \|\xi\|^2 + \|\eta\|^2 + 2\|\xi\| \cdot \|\eta\| \\ &\iff \|\xi\|^2 + \|\eta\|^2 + \langle \xi, \eta \rangle + \langle \eta, \xi \rangle \leqslant \|\xi\|^2 + \|\eta\|^2 + 2\|\xi\| \cdot \|\eta\| \\ &\iff |\langle \xi, \eta \rangle| \leqslant \|\xi\| \cdot \|\eta\| \end{split}$$

我们留给读者验证 $||a\xi|| = |a| \cdot ||\xi||$ 以及 $||\xi|| = 0 \Longleftrightarrow \xi = 0$.

推论 2.2.6. $\mathcal{H} \times \mathcal{H} \to \mathbb{C}, \xi \times \eta \mapsto \langle \xi, \eta \rangle$ 连续.

推论 2.2.7. 令 V 是内积空间. $\forall \eta$, 线性映射

$$\Phi(\eta): \xi \mapsto \langle \xi, \eta \rangle \in \mathbb{C}$$

有界且范数为 ||η||.

证明:由

$$|\Phi(\eta) \cdot \xi| = |\langle \xi, \eta \rangle| \leqslant ||\xi|| \cdot ||\eta||$$

 $|\Phi(\eta)| \le ||\eta||$. $||\Phi(\eta)| \cdot \eta| = ||\eta||^2 \Re ||\Phi(\eta)|| = ||\eta||$.

回忆 $\mathfrak{H}^*=\{$ 有界线性映射 $\varphi:\mathfrak{H}\to\mathbb{C}\}, \|\varphi\|=\sup_{\|\xi\|=1}|\varphi(\xi)|=\sup_{\|\xi\|\leqslant 1}|\varphi(\xi)|.$ 则以上推论说了:

推论 2.2.8. 令 升 为 Hilbert 空间, 则

$$\Phi: \mathcal{H} \to \mathcal{H}^*, \xi \mapsto \langle \cdot, \xi \rangle$$

是反线性的等距映射. **反线性/共轭线性**指 $\forall \xi, \eta \in \mathcal{H}, a, b \in \mathbb{C}$ 有 $\Phi(a\xi+b\eta) = \overline{a}\Phi(\xi) + \overline{b}\Phi(\eta).$ (我们之后会证明 Φ 也是满射)

推论 2.2.9. 令 $\langle \cdot, \cdot \rangle$ 为 V 上的半正定型. 则 $\forall \xi \in V$ 有以下等价:

- (1) $\|\xi\| = 0$
- (2) $\xi \mapsto \langle \cdot, \xi \rangle$ 是零映射.

特别地, $V_0 = \{ \xi \in V : ||\xi|| = 0 \}$ 是 V 的子空间. V/V_0 上有一个良定义的内积:

$$\langle \xi + V_0, \eta + V_0 \rangle = \langle \xi, \eta \rangle \tag{*}$$

证明: 若 $\|\xi\| = 0$ 则 $\forall \eta$ 有 $|\langle \eta, \xi \rangle| \le \|\eta\| \cdot \|\xi\| = 0$,从而 $\langle \eta, \xi \rangle = 0$. 故 (1) \Longrightarrow (2). 反之若 (2) 成立,则 $\|\xi\|^2 = \langle \xi, \xi \rangle = 0$. 故 (1) 成立.

$$V_0 = \{ \xi \in V : \langle \eta, \xi \rangle = 0, \forall \eta \in V \} = \{ \xi \in V : \langle V, \xi \rangle = 0 \}$$

显然是 V 子空间. 由此定义、 $\langle V, V_0 \rangle = 0 = \langle V_0, V \rangle$. 故若 $\xi + V_0 = \xi' + V_0, \eta + V_0 = \eta' + V_0$, 则

$$\langle \xi, \eta \rangle - \langle \xi', \eta' \rangle = \langle \xi - \xi', \eta \rangle + \langle \xi', \eta - \eta' \rangle \in \langle V_0, \eta \rangle + \langle \xi', V_0 \rangle = 0$$

故 (*) 良定义. 不难验证 (*) 定义了 V/V_0 上的一个半正定型. 若 $\langle \xi + V_0, \xi + V_0 \rangle = 0$, 则 $\langle \xi, \xi \rangle = 0$. 则 $\xi \in V_0$. 故 $\xi + V_0$ 是 V/V_0 中的零向量, 故 V/V_0 是内积空间.

注记. 若 $\langle \cdot, \cdot \rangle$ 是 V 上的半正定型, 则它给出了 $V/\{\xi \in V : \|\xi\| = 0\}$ 上的一个内积. 因此, 半正定型的研究总能化为内积空间的研究.

定义 2.2.10. 若 $\varphi: V_1 \to V_2$ 是内积空间之间的线性映射, 则 φ 称为**等距映射**若它作为度量空间之间的映射等距, 即

$$\forall \xi, \eta \in V_1, \|\Phi(\xi) - \Phi(\eta)\| = \|\xi - \eta\|$$

等价地, $\forall \xi \in V_1$ 有 $\|\Phi(\xi)\| = \|\xi\|$. 等价地, $\forall \xi, \eta \in V_1$ 有 $\langle \varphi(\xi), \varphi(\eta) \rangle = \langle \xi, \eta \rangle$. 等距映射一定是单射.

定义 2.2.11. 若 $\varphi: V_1 \to V_2$ 是等距满射, 则 φ 称为等距同构或**酉算子 (unitory operator)**. 此时 V_1 和 V_2 称为 (酉) 等价.

考虑内积空间 V. 它有一个完备化,即一个等距映射 $\iota:V\to\mathfrak{H},\mathfrak{H}$ 是度量空间. 我们不妨把 V 看成 \mathfrak{H} 的子度量空间. 从而 V 在 \mathfrak{H} 中稠密. 我们能把 $\langle\cdot,\cdot\rangle:V\times V\to V,(\xi,\eta)\mapsto\langle\xi,\eta\rangle$

$$+: V \times V, (\xi, \eta) \mapsto \xi + \eta$$

•: $\mathbb{C} \times V \to V, (\lambda, \xi) \mapsto \lambda \xi$

从 V 唯一地连续地扩张到 \mathfrak{H} 上, 使 \mathfrak{H} 成为一个 Hilbert 空间. 称为 V 的**完备化**.V 是 \mathfrak{H} 的稠 密子空间.

例如 $\forall \xi, \eta \in \mathcal{H}$, 取 V 中点列 $\xi_n \to \xi, \eta_n \to \eta$, 则 $\langle \xi, \eta \rangle$ 定义为 $\lim_{n \to \infty} \langle \xi_n, \eta_n \rangle$. 由 Cauchy-Schwartz 不等式可知 $\{\langle \xi_n, \eta_n \rangle\}_{n \in \mathbb{Z}_+}$ 是 Cauchy 列. 实际上, $\forall r > 0, \langle \cdot, \cdot \rangle$ 在 $\overline{B_V(0,r)} \times \overline{B_V(0,r)}$ 上一致连续, 故可延拓到 $\overline{B_{\mathcal{H}}(0,r)} \times \overline{B_{\mathcal{H}}(0,r)}$. 数乘 $\mathbb{C} \times V \to V$ 的延拓类似.

例子.考虑 $l_0^2(X)=\{f:X\to\mathbb{C}, \mathrm{supp}(f)$ 是有限集 $\}, \langle f,g\rangle=\sum_{x\in X}f(x)\overline{g(x)}.$ 则 $l^2(X)$ 是 $l_0^2(X)$ 的完备化.

我们说过一般的赋范线性空间能完备化成 Banach 空间,Lebesgue 积分的一个主要动机是理解和"表示"C([a,b]) 在 $\|f\|_p = \sqrt[p]{\int_a^b |f|^p}$ 下的完备化 $L^p([a,b],m)$. 这里 m 代表 Lebesgue 测度. Hilbert 空间 $L^2([a,b],m)$ 尤其重要. 在 Fourier 级数理论中, 由 Parseval 等式

$$\frac{1}{2\pi} \int |f|^2 = \sum_{n=-\infty}^{\infty} |f(n)|^2$$

 l^2 和 L^2 范数已引起了人们的注意,但 Fourier 理论不足以催生 Hilbert 空间的概念,也就是不足以让人考虑完备的内积空间,也不足以让人考虑所有满足 $\sum_{n\in\mathbb{Z}}|f(n)|^2<+\infty$ 的函数 $f:\mathbb{Z}\to\mathbb{C}$ 构成的集合 $l^2(\mathbb{Z})$. 促使人们考虑这些概念的是如下问题:

例子. $\Diamond \Omega \in \mathbb{R}^2$ 内的一个有界区域, 边界 $\partial \Omega$. 考虑满足 Dirichlet 边界条件的波动方程

$$\begin{cases} \left(\partial_x^2 + \partial_y^2\right) f(x, y, t) = \partial_t^2 f(x, y, t) \\ f(x, y, t) = 0 \quad \not\Xi(x, y) \in \partial\Omega \end{cases}$$

这一问题不能直接用 Fourier 级数求解. 历史上, 数学家通过如下方法求解: **分离变量法:** 假设 f(x,y,t)=u(x,y)v(t), 求出满足以上 PDE 的解. 则一般解可写成 $\sum u_n(x,y)v_n(t)$ 的形式 (此处不严格). 将 f=uv 代入 $\Delta f=\partial_t^2 f$ 得 $(\Delta u)\cdot v=u\cdot\partial_t^2 v$. 故

$$\frac{\Delta u(x,y)}{u(x,y)} = \frac{\partial_t^2 v(t)}{v(t)}$$

左边只和 x,y 有关, 右边只和 t 有关. 故这一表达式是一个常数 $\lambda \in \mathbb{C}$. 由 $\partial_t^2 = -\lambda v$ 可得 $v = A \cdot e^{i\sqrt{\lambda}t}$ 或 $A \cdot e^{-i\sqrt{\lambda}t}$.

故只需解满足 Dirichlet 条件的 Helmholtz 方程

$$\begin{cases} -\Delta u = \lambda u \\ u|_{\partial\Omega} = 0 \end{cases}$$

注意若 $u,v \in C_c^{\infty}(\Omega)$ 由分部积分得

$$\int \partial_x u \bar{v} = -\int u \partial_x \bar{v}$$

从而 $\int \left(\partial_x^2 u\right) \cdot \bar{u} = -\int \left(\partial_x u\right) \cdot \overline{\partial_x u} \leqslant 0$. 类似地 $\int \left(\partial_y^2 u\right) \cdot \bar{u} \leqslant 0$. 故 $\int \left(-\Delta u\right) \cdot \bar{u} \geqslant 0$, 即 $\langle -\Delta u, u \rangle \geqslant 0$. 即 $-\Delta$ 是"正算子", 其特征值也 $\geqslant 0$. 故方程中的 $\lambda \geqslant 0$. 方程的解即转换为 $-\Delta$ 的谱分解 (对角化). 这里要注意几点:

我们一开始将 $-\Delta$ 定义在 $C_c^{\infty}(\Omega)$ 上. $-\Delta$ 一般是无界的,即 $\sup_{|f|_2 \leqslant 1} \|-\Delta f\|_2 = +\infty$. 这称为无界算子. 将 $-\Delta$ 定义在稍大的某个子空间 D 满足 $C_c(\Omega) \subset D \subset L^2(\Omega,m)$,则 $1-\Delta \geqslant 0$ 且 $T = \frac{1}{1-\Delta}$ 是 $L^2(\Omega,m)$ 上的一个有界正算子. 并且 $T: L^2(\Omega,m) \to L^2(\Omega,m)$ 是**紧算子**,即 T(单位球)是预紧的. 紧算子 T 有很好的对角化理论 (**Hilbert-Schmidt 定理**) 从而 $-\Delta$ 有很好的对角化. 历史上紧算子以更具体的方式出现: 在解

$$\begin{cases} -\Delta f = 0\\ f|_{\partial\Omega} = g \end{cases}$$

的问题时要解积分方程

$$g(x) = \lambda u(x) + \int_{a}^{b} K(x, y)u(y)dy$$

(参见《古今数学思想》章 45 节 1 或 Barry Simon 《Operator Theorey, A Comprehensive Course in Analysis, Part 4》定理 3.3.9)

这里
$$T: C([a,b]) \to C([a,b]), u \mapsto \int_a^b K(x,y)u(y)dy, K \in C([a,b]^2, \mathbb{R}).$$

引理 2.2.12. 给予 $C([a,b])L^2$ 范数,则 T 有界,故能扩张成完备化 $L^2([a,b]) \to L^2([a,b])$ 上的有界线性映射.

证明: 任取 $u \in C([a,b])$. 令 I = [a,b],则

$$|Tu(x)| \leqslant \int_{I} |K(x,y)u(y)| dy \leqslant \sqrt{\int_{I} |K(x,y)|^{2} dy} \cdot ||u||_{2}$$

故

$$||Tf||_2^2 = \int_I |Tu(x)|^2 dx \le ||u||_2^2 \cdot \int_I \int_I |K(x,y)|^2 dx dy$$

故 T 有界且 $||T|| \leqslant \iint_{I \times I} |K(x,y)|^2 dx dy$

由于 K 是实的, 不难看出 $\langle Tu, v \rangle = \langle u, Tv \rangle$, 即 T 是 "Hermite/自伴" 算子.

 $T:L^2(I)\to L^2(I)$ 实际上是紧算子, 这和证明 $T:C(I)\to C(I)(C(I)$ 给予 l^∞ 范数) 的证明一样.(分析一作业 14 补充题 4)

我们希望 T 有好的对角化理论 (特别地, $L^2(I)$ 应有一组"标准正交基"是 T 的特征向量) 这只有在考虑 T 作用在 $L^2([a,b])$ 而不只是在 C([a,b])(给予内积 $\int u\bar{v}$) 下才能做到. Hilbert 在 考虑这一问题时, 把 T 转换成作用在 u 的 Fourier 级数上, 即当 $[a,b]=[0,2\pi]$,

$$\widehat{T}: \widehat{u} \mapsto \widehat{T}\widehat{u}, (\widehat{T}\widehat{u})(m) = \sum_{n \in \mathbb{Z}_+} \widehat{K}(m, n)\widehat{u}(n)$$

这里 \hat{K} 是 K 的 Fourier 级数

$$\widehat{K}(m,n) = \langle Te_n, e_m \rangle = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} K(x,y) e^{iny - imx} dx dy$$

T 作用在 $L^2([0,2\pi])$ 等价于 \widehat{T} 作用在 $l^2(\mathbb{Z})$ 上. 因此, 最早 (紧) 有界算子是被当作 $\infty \times \infty$ 矩阵 $(\widehat{K}(m,n))_{m,n\in\mathbb{Z}}$ 来研究的.

Hilbert 和 Schmidt 发现, 只有把这个矩阵定义在整个 $l^2(\mathbb{Z})$ 上 (而不是比如连续函数的 Fourier 级数构成的子空间上) 时这个矩阵有很好的对角化理论. 这是他们第一次认识到考虑整个 $l^2(\mathbb{Z})$ 的重要性. $l^2(\mathbb{Z})$ 是最早的 Hilbert 空间.

小结:Hilbert 空间以及其 (紧) 算子来源于积分方程和算子

$$u \mapsto \int_a^b K(x,y)u(y)dy$$

的对角化问题. 通过 Fourier 级数, 人们转而研究 $l^2(\mathbb{Z})$ 和 $\infty \times \infty$ 矩阵的形式的 Hilbert 空间和 (紧) 算子、Fourier 级数对 $l^2(\mathbb{Z})$ 和 $\infty \times \infty$ 矩阵研究的.

我们以后会看到: 在 Hilbert 和 Schmidt 得到紧算子谱分解过程中, 包含很多重要概念的早期形式: 对偶空间, 弱 * 拓扑,Banach-Alaoglu 定理......("完备" 度量在当时都不是一个成熟概念) 脱离了(紧)算子, 谱分解, 对偶, 紧性...... 我们无法真正理解 Hilbert 空间, 就像脱离了群作用和群表示我们无法真正理解群.

2.3 Hilbert 空间中的正交分解

本节 牙 皆指代 Hilbert 空间.

定理 2.3.1 (平行四边形法则). $\forall \xi, \eta \in \mathcal{H}$ 有 $\|\xi + \eta\|^2 + \|\xi - \eta\|^2 = 2\|\xi\|^2 + 2\|\eta\|^2$.

定理 2.3.2. 令 $C \subset \mathcal{H}$ 是闭的凸子集. 任取 $\xi \in \mathcal{H}$, 则存在唯一的 $\eta \in C$ 满足

$$\|\xi - \eta\| = \inf_{\mu \in C} \|\xi - \mu\|$$

证明: 通过把 ξ 平移到 0,C 平移到 $C - \xi = \{ \eta - \xi : \eta \in C \}$, 不妨假设 $\xi = 0$. 令

$$D = \inf_{\eta \in C} \|\eta\|$$

取 $\{\eta_n\}_{n\in\mathbb{Z}_+}\subset C$ 使 $\lim_{n\to\infty}\|\eta_n\|=D$. 我们来证明 $\{\eta_n\}$ 是 Cauchy 列, 从而收敛到 $\eta\in C$ (由于 C 是闭的). 从而

$$\|\eta\| = \lim_{n \to \infty} \|\eta_n\| = D$$

存在性即可得证. $\forall \varepsilon > 0, \exists N \in \mathbb{Z}_+, \forall n \geq N,$ 有

$$\|\eta_n\| \leqslant D + \varepsilon$$

任取 $m, n \geqslant N$, 则 $\|\eta_m\|, \|\eta_n\| \leqslant D + \varepsilon$. 而由于 C 是凸的, $\eta_m + \eta_n \in C$, 故 $\left\|\frac{\eta_m + \eta_n}{2}\right\| \geqslant 0$. 从而

$$\|\eta_m - \eta_n\|^2 = 2\|\eta_m\|^2 + 2\|\eta_n\|^2 - 4\left\|\frac{\eta_m + \eta_n}{2}\right\|^2$$

$$\leq 4(D+\varepsilon)^2 - 4D^2 = 8D\varepsilon + \varepsilon^2$$

由此可知 $\{\eta_n\}$ 是 Cauchy 列.

类似地, 若 $\|\eta\| = \|\eta'\| = 0$ 则

$$\|\eta - \eta'\|^2 = 2\|\eta\|^2 + 2\|\eta'\| - 4\|\frac{\eta + \eta'}{2}\|^2 \le 4D^2 - 4D^2 = 0$$

故 $\eta = \eta'$.

注记. 以上定理是我们第一次用到 $\mathfrak X$ 的完备性. 而且我们并没用到紧性来求 C 中的最短向量.

例子. 令 X 是 Hilbert 空间 H 的线性子空间, $\xi \in H$. 则以下等价:

- (1) $\|\xi\| = \inf_{\eta \in \mathcal{K}} \|\xi \eta\|$
- (2) $\xi \perp \mathcal{K}$

证明: 假设 (2), 则 $\forall \eta \in \mathcal{K}$ 有

$$\|\xi - \eta\|^2 = \|\xi\|^2 + \|\eta\|^2 + \langle \xi, \eta \rangle - \langle \eta, \xi \rangle = \|\xi\|^2 + \|\eta\|^2 \geqslant \|\xi\|^2$$

故(1)成立.

假设 (1), 任取 $\eta \in \mathcal{K}$. 要证 $\eta \perp \xi$, 取 $\theta \in \mathbb{R}$ 使 $\langle \xi, e^{i\theta} \eta \rangle \in \mathbb{R}$. 通过把 η 换成 $e^{i\theta}$, 不妨假设 $\langle \xi, \eta \rangle \in \mathbb{R}$. 由 (1),

$$\|\xi\|^2 = \inf_{t \in \mathbb{R}} \|\xi - t\eta\|^2$$

即

$$p(t) = \|\xi - t\eta\|^2 = \|\xi\|^2 + t^2 \|\eta\|^2 - 2t\langle \xi, \eta \rangle$$

在 t=0 处取得最小值. 故 $\langle \xi, \eta \rangle = 0$.

定义 2.3.3. 令 $\mathfrak{H}_1, \mathfrak{H}_2$ 为 Hilbert 空间. 集合 $\mathfrak{H}_1 \times \mathfrak{H}_2$ 构成一个线性空间, 即直和 $\mathfrak{H}_1 \oplus \mathfrak{H}_2$. 定义内积: 若 $(\xi_1, \xi_2), (\eta_1, \eta_2) \in \mathfrak{H}_1 \oplus \mathfrak{H}_2$, 则记为 $\xi_1 \oplus \xi_2, \eta_1 \oplus \eta_2$, 则

$$\langle \xi_1 \oplus \xi_2, \eta_1 \oplus \eta_2 \rangle = \langle \xi_1, \eta_1 \rangle + \langle \xi_2, \eta_2 \rangle$$

易证 $\mathfrak{H}_1 \oplus \mathfrak{H}_2$ 完备, 我们把 **Hilbert 空间\mathfrak{H}_1 \oplus \mathfrak{H}_2** 称为 \mathfrak{H}_1 与 \mathfrak{H}_2 的**直和**. 有时也记作 $\mathfrak{H}_1 \oplus^{\perp} \mathfrak{H}_2$, 因为 $\forall \xi \in \mathfrak{H}_1, \eta \in \mathfrak{H}_2, \xi \oplus \bullet$ 与 $\bullet \oplus \eta$ 正交.

一般地 $\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$ 定义类似.

定理 2.3.4 (正交分解定理). 令 \mathfrak{X} 是 \mathfrak{X} 的闭子空间 (\mathfrak{X} 的内积限制在 \mathfrak{X} 上使 \mathfrak{X} 成为 Hilbert 空间) 定义 \mathfrak{X} 的**正交补**

$$\mathcal{K}^{\perp} = \{ \xi \in \mathcal{H} : \langle \xi, \mathcal{K} \rangle = 0 \}$$

显然 \mathcal{K}^{\perp} 也是 \mathcal{H} 的闭子空间. 定义线性映射

$$\Phi: \frac{\mathcal{K} \oplus \mathcal{K}^{\perp} \to \mathcal{H}}{\xi \oplus \eta \mapsto \xi + \eta}$$

则 Φ 是酉算子.

证明:显然 Φ 线性,

$$\langle \xi + \eta, \xi' + \eta' \rangle = \langle \xi, \xi' \rangle + \langle \eta, \eta' \rangle = \langle \xi \oplus \eta, \xi' \oplus \eta' \rangle$$

故 Φ 等距. 只需证 Φ 为满射, 即 $\forall \psi \in \mathcal{H}, \exists \xi \in \mathcal{K}, \eta \in \mathcal{K}^{\perp}$ 使 $\psi = \xi - \eta$. 取 $\xi \in \mathcal{K}$ 使

$$\|\psi - \xi\| = \inf_{\mu \in \mathcal{K}} \|\psi - \mu\|$$

注记. 以上定理等价于说 $\forall \psi \in \mathcal{H}$, 存在唯一 $\xi \in \mathcal{K}$, $\eta \in \mathcal{K}^{\perp}$ 满足 $\psi = \xi + \eta$.

注记. 以上结论常写成 $\mathfrak{H} = \mathfrak{X} \oplus \mathfrak{X}^{\perp}$.

推论 2.3.5. 令 X 为 升 线性闭子空间,则有

(a)
$$\mathcal{K}^{\perp\perp} = \mathcal{K}$$

(b)
$$\mathcal{K} = \mathcal{H} \iff \mathcal{K}^{\perp} = 0$$

证明: (a) 显然 $\mathfrak{K} \subset \mathfrak{K}^{\perp \perp}$. 对任意 $\psi \in \mathfrak{K}^{\perp \perp}$, 则 $\psi = \xi + \eta$, 其中 $\xi \in \mathfrak{K}, \eta \in \mathfrak{K}^{\perp}$. 由 $\psi \perp \eta$ 知

$$0 = \langle \psi, \eta \rangle = \langle \xi, \eta \rangle + \langle \eta, \eta \rangle = ||\eta||^2$$

故 $\eta = 0, \psi = \xi \in \mathcal{K}$.

(b) 若 $\mathfrak{X}^{\perp}=0$ 则显然 $\mathfrak{X}^{\perp\perp}=\mathfrak{H}$ 从而 $\mathfrak{X}=\mathfrak{H}$. 反之, 若 $\mathfrak{X}=\mathfrak{H}$, 若 $\xi\in\mathfrak{X}^{\perp}$, 则 $\xi\perp\xi,\langle\xi,\xi\rangle=0$. 故 $\xi=0$, 故 $\mathfrak{X}^{\perp}=0$.

注记. 若 V 是 \mathcal{H} 的线性子空间, 则 $V^{\perp} = \overline{V}^{\perp}($ 显然 $\overline{V}^{\perp} \subset V^{\perp},$ 若 $\xi \perp V, \forall \eta \in \overline{V},$ 取 $\eta_n \in V, \langle \eta_n, \xi \rangle = 0$, 则 $\langle \eta, \xi \rangle = 0$, 故 $\xi \in \overline{V}$) 因此 $V^{\perp} = 0 \iff \overline{V} = \mathcal{H}.($ 即 V 在 \mathcal{H} 中稠密)

定义 2.3.6. 令 $S = (e_i)_{i \in I}$ 为 \mathfrak{R} 中的一组向量. 若 S 是一组标准正交向量 (即满足 $\langle e_i, e_j \rangle = \delta_{i,j}$) 且

$$\operatorname{span}_{\mathbb{C}} S = \{ S \mapsto \mathbb{C} \}$$
 (有限) 线性组合

在 \mathcal{H} 中稠密, 则称 S 是 \mathcal{H} 的一组标准正交基.

命题 2.3.7. 任意 Hilbert 空间 升 一定存在标准正交基.

证明: 令 $P = \{\mathfrak{H}$ 的标准正交向量组}. 若 $S_1, S_2 \in P$, 定义 $S_1 \subset S_2$ 为偏序关系. 故 P 是非空偏序集. 若 $Q \subset P$ 是全序子集, 则 $\bigcup_{S \in Q} S$ 是 Q 的上界. 故由 Zorn 引理, P 有极大元, 记为 S. 只需证 $\overline{\operatorname{span} S} = \mathfrak{H}$ 即可. 若否, $(\operatorname{span} S)^{\perp} \neq 0$. 取非零 $\mu \in (\operatorname{span} S)^{\perp}$. 则

$$S \cup \{\mu/\|\mu\|\}$$

是一组标准正交基且严格大于 S, 矛盾.

例子. $l^2(A)$ 的一组标准正交基是 $\{\delta_a: a \in A\}$. 这里

$$\delta_a:A\to\mathbb{C}, \delta_a(b)=\delta_{a,b}= egin{cases} 1 & (b=a) \\ 0 & (b\neq a) \end{cases}$$

命题 2.3.8. 令 I 为集合, $(e_i)_{i\in I}$ 是 Hilbert 空间 $\mathfrak H$ 的一组标准正交基,若 $f\in l^2(I)$,则 $\xi=\sum_{i\in I}f(i)e_i$ 在 $\mathfrak H$ 中收敛且若 $g\in l^2(I)$, $\eta=\sum_{i\in I}g(i)e_i$,则 $\langle \xi,\eta\rangle=\sum_{i\in I}f(i)\overline{g(i)}$

证明: 因为 $\sum_i |f(i)|^2 < +\infty$, 由 Cauchy 条件, 任意 $\varepsilon > 0$, 存在 $A \in \text{fin}(2^I)$, 使得任意 $B \in \text{fin}(2^{I \setminus A})$, 有 $\sum_{i \in B} |f(i)|^2 < \varepsilon$. 从而

$$\left\| \sum_{i \in B} f(i)e_i \right\|^2 = \sum_{i \in B} |f(i)|^2 < \varepsilon$$

故 $\sum_{i\in I} f(i)e_i$ 在 \mathfrak{H} 中极限存在. 而由 $\langle\cdot,\cdot\rangle:\mathfrak{H}\times\mathfrak{H}\to\mathbb{C}$ 的连续性以及

$$\lim_{A \in \mathrm{fin}(2^I)} \left(\sum_{i \in A} f(i) e_i \right) \times \left(\sum_{i \in A} g(i) e_i \right) = \xi \times \eta \in \mathcal{H} \times \mathcal{H}$$

得

$$\begin{split} \langle \xi, \eta \rangle &= \lim_{A \in \operatorname{fin}(2^I)} \left\langle \sum_{i \in A} f(i) e_i, \sum_{i \in A} g(i) e_i \right\rangle \\ &= \lim_{A \in \operatorname{fin}(2^I)} \sum_{i \in A} f(i) \overline{g(i)} \\ &= \sum_{i \in I} f(i) \overline{g(i)} \end{split}$$

推论 2.3.9. 令 $(e_i)_{i \in I}$ 是 Hilbert 空间 \mathfrak{H} 的一组标准正交基, 则

$$\Phi: f \mapsto \sum_{i \in I} f(i)e_i$$

是酉算子.

证明: 前一命题已证明 Φ 是等距线性映射, 由等距性以及 $l^2(I)$ 完备性, $\mathcal{K} = \Phi(l^2(I))$ 是 \mathcal{H} 的完备子空间, 故是闭子集. 因为 \mathcal{K} 包含 \mathcal{H} 的稠密子集 $\mathrm{span}\ \{e_i:i\in I\}$. 故 $\mathcal{K} = \mathcal{H}$. Φ 是满射. \Box

定义 2.3.10. 若 $(e_i)_{i \in I}$ 是 \mathfrak{H} 的标准正交基, 对 $\xi \in \mathfrak{H}$

$$\widehat{\xi}(i) = \langle \xi, e_i \rangle$$

称为 ξ 在基 $(e_i)_{i \in I}$ 下的 Fourier 系数.

推论 2.3.11. 在以上定义中, 我们有

$$\xi = \sum_{i \in I} \widehat{\xi}(i) e_i = \sum_{i \in I} \langle \xi, e_i \rangle e_i$$

以及 Parseval 等式

$$\|\xi\|^2 = \sum_{i \in I} |\widehat{\xi}(i)|^2 = \sum_{i \in I} |\langle \xi, e_i \rangle|^2$$

证明: 由 $\Phi: l^2(I) \to \mathfrak{H}$ 的满射性, 存在 $c \in l^2(I)$ 满足 $\xi = \sum_{i \in I} c(i)e_i$. 而

$$\langle \xi, e_j \rangle = \sum_{i \in I} c(i) \, \langle e_i, e_j \rangle = \sum_{i \in I} c(i) \delta_{i,j} = c(j)$$

故 $\xi = \sum_{i \in I} \langle \xi, e_i \rangle e_i$. 由于 Φ 等距,

$$\|\xi\|^2 = \sum_{i \in I} |c(i)|^2 = \sum_{i \in I} |\langle \xi, e_i \rangle|^2$$

例子. 考虑 $C(S^1)$ 在 $\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f\overline{g}$ 下的完备化 $L^2\left([0,2\pi],\frac{m}{2\pi}\right)$.m 为 "Lebesgue 测度". 令 $e_n(x) = e^{inx}$,则 $\{e_n\}_{n \in \mathbb{Z}_+}$ 在 $C(S^1)$ 中张成稠密子空间 (由 Stone-Weierstrass 定理) 故是 $L^2([0,2\pi])$ 的标准正交基. 若 $f \in C(S^1)$,则

$$\langle f, e_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \widehat{f}(n)$$

故 $f = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e_n$ (在 L^2 范数下收敛) 且

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^2$$

注记. $C(S^1)$ 与 $C([0,2\pi])$ 有相同的完备化, 因为 $C(S^1)$ 在 $C([0,2\pi])$ 和 L^2 范数下稠密.

命题 2.3.12. $l^2(I)$ 可分当且仅当 I 可数. 因此,Hilbert 空间 $\mathfrak H$ 可分当且仅当 $\mathfrak H$ 酉等价于 $l^2(\mathbb Z)$ 或 $l^2(\{1,2,\cdots,n\})\cong\mathbb C^n$.

推论 2.3.13. C([a,b]) 的 L^2 完备化 $L^2([a,b])$ 可分.

证明:
$$L^2\left([0,2\pi],\frac{m}{2\pi}\right)$$
 有标准正交基 $\{e_n=e^{inx}:n\in\mathbb{Z}\}.$

2.4 Hilbert 空间与弱拓扑

本节 牙 皆指代 Hilbert 空间.

定理 2.4.1 (Riesz-Fréchet 表示定理). $\Diamond \Psi : \mathcal{H} \to \mathcal{H}^*, \eta \mapsto \langle \cdot, \eta \rangle$. 则反线性等距映射 Ψ 是满射.

证明: 不妨假设 $\mathfrak{H}=l^2(X),X$ 为集合. 令 $\varphi:\mathfrak{H}\to\mathbb{C}$ 是有界线性映射. 我们要证明存在 $g\in l^2(X)$ 使

$$\varphi(f) = \langle f, g \rangle = \sum_{x \in X} f(x) \overline{g(x)} (\forall f \in l^2(X))$$

注意若 g 存在, 则

$$\overline{g(x)} = \langle \delta_x, g \rangle = \varphi(\delta_x)$$

故定义 $g: X \to \mathbb{C}$ 为 $g(x) = \overline{\varphi(\delta_x)}$. 我们来证 $g \in l^2(X)$. 任取有限子集 $A \subset X$. 令

$$f = \sum_{x \in A} g(x) \delta_x$$

即
$$f(x) = \begin{cases} g(x) & (x \in A) \\ 0 & (x \notin A) \end{cases}$$
 ,则 $||f||_2^2 = \sum_{x \in A} |g(x)|^2$. 而

$$|\varphi(f)| = \left| \sum_{x \in A} g(x) \varphi(\delta_x) \right| = \sum_{x \in A} |g(x)|^2$$

由 $|\varphi(f)| \leq \|\varphi\| \cdot \|f\|_2$ 得 $\sqrt{\sum_{x \in A} |g(x)|^2} \leq \|\varphi\|$. 因为这对所有 $A \in \text{fin}(2^X)$ 成立, 故

$$\sum_{x \in X} |g(x)|^2 \leqslant \|\varphi\|^2$$

即 $||g||_2 \leq ||\varphi||, g \in l^2(X)$. 由 φ 的连续性,

$$\varphi(f) = \varphi\left(\sum_{x \in X} f(x)\delta_x\right) = \sum_{x \in X} f(x)\varphi\left(\delta_x\right) = \sum_{x \in X} f(x)\overline{g(x)}$$

故 $\varphi(f) = \langle f, g \rangle$.

Riesz 表示定理的一个重要应用如下:

若 $T: \mathcal{H}_1, \mathcal{H}_2$ 有界线性, 则 $\forall \eta \in \mathcal{H}_2$, 线性映射

$$\xi \in \mathcal{H}_1 \mapsto \langle T\xi, \eta \rangle$$

有界, 故能写成 $\langle \xi, T^* \eta \rangle$ 的形式. $T^* \eta \in \mathcal{H}_1$, 这给出了一个有界线性映射 $T^* : \mathcal{H}_2 \to \mathcal{H}_1$, 满足

$$\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$$

称为 T 的**伴随**.

命题 2.4.2. 令 $T: \mathcal{H} \to \mathcal{H}$ 为有界线性算子. 以下等价:

- (1) 对任意 $\xi \in \mathcal{H}$ 有 $\langle T\xi, \xi \rangle \in \mathbb{R}$
- (2) $T = T^*$, 即对任意 $\xi, \eta \in \mathcal{H}$ 有 $\langle T\xi, \eta \rangle = \langle \xi, T\eta \rangle$

若 (1) 或 (2) 成立, 我们说 T 自伴.

证明: (1) 和 (2) 都表明 $(\xi, \eta) \in \mathcal{H} \times \mathcal{H} \mapsto \langle T\xi, \eta \rangle$ 是 \mathcal{H} 上的 Hermite 型.

历史注记:Hilbert 考虑映射 $T: L^2\left(S^1, \frac{m}{2\pi}\right) \to L^2\left(S^1, \frac{m}{2\pi}\right)$, 若 $f \in C(S^1)$, 则

$$(Tf)(x) = \frac{1}{2\pi} \int_0^{2\pi} K(x, y) f(y) dy$$

这里 $K \in C([0,2\pi] \times [0,2\pi], \mathbb{R})$. 由于 K 取实值, 易知 $\langle Tf,g \rangle = \langle f,Tg \rangle$. 从而 T 自伴, $\langle Tf,f \rangle \in \mathbb{R}$. T 实际上是紧算子,即 T(单位球)预紧. 等价地,若 $\{\xi_n\}_{n \in \mathbb{Z}_+} \subset \mathcal{H}$ 满足 $\sup_{n \in \mathbb{Z}_+} \|\xi_n\| \leqslant 1$,则 $\{T\xi_n\}_{n \in \mathbb{Z}_+}$ 有收敛子列.

证明: "←": 若 T 紧, 对任意 $\{\xi_n\}_{n\in\mathbb{Z}_+}\subset l^2(\mathbb{Z})$ 的闭单位球 $\overline{B},T(\xi_n)$ 是预紧集 $T(\overline{B})$ 点列, 故有收敛子列.

"⇒":要证 $T(\overline{B})$ 预紧, 只需证其中任意点列 $\{T\xi_n\}$ 有收敛子列.

我们之前说过, 通过 Fourier 级数,T 被转化成了一个 $\infty \times \infty$ 矩阵. 实际上, 因为 $L^2([a,b]) \cong l^2(\mathbb{Z})$, 我们总能把 T 看成 $l^2(\mathbb{Z})$ 上的紧自伴算子. 令 $\overline{B_1}$ 为 $l^2(\mathbb{Z})$ 的单位闭球 $\overline{B_1} = \{\xi : \|\xi\| \le 1\}$. Hilbert 注意到:

- (1) 若给予 $\overline{B_1}$ 弱拓扑, 则 $\xi \in \overline{B_1} \mapsto \langle T\xi, \xi \rangle$ 连续.
- (2) $\overline{B_1}$ 在弱拓扑下是列紧的.

利用这两点, 他得到了关于紧自伴算子的谱分解. 也正是这一点让 Hilbert 和 Schmidt 意识到,T 对应的 $\infty \times \infty$ 矩阵应该作用在的线性空间是 $l^2(\mathbb{Z})$.

回忆若 V 是复 Banach 空间, $V^* = \{$ 有界线性映射 $V \to \mathbb{C} \}$, $(V^*, 算子范数)$ 是一个 Banach 空间. V^* 作为 \mathbb{C}^V 子集从乘积拓扑继承的拓扑称为**弱*-拓扑**. V^* 中的网 $(\varphi_{\alpha})_{\alpha \in I}$ 弱 *-收敛到 $\varphi \in V^*$ 当且仅当 $\forall v \in V$ 有 $\lim_{\alpha} \varphi_{\alpha}(v) = \varphi(v)$. V^* 中的闭单位球 $\{\varphi \in V^* : \|\varphi\| \le 1\}$ 是弱 *-紧的 (Banach-Alaoglu 定理).

定义 2.4.3. 令 升 为 Hilbert 空间. 考虑双射

$$\Psi:\mathcal{H}\to\mathcal{H}^*,\xi\mapsto\langle\cdot,\xi\rangle$$

 \mathfrak{H}^* 上的弱 *-拓扑通过 Ψ 拉回到 \mathfrak{H} 称为 \mathfrak{H} 的**弱拓扑**或 $\sigma(\mathfrak{H},\mathfrak{H})$ **拓扑**. 换言之, 弱拓扑是 \mathfrak{H} 上的唯一拓扑使双射 Ψ 成为同胚 (若 \mathfrak{H}^* 赋予弱 * 拓扑). 弱拓扑由弱收敛刻画: 若 $(\xi_{\alpha})_{\alpha \in I}$ 是 \mathfrak{H} 中的网, 则 ξ_{α} **弱收敛**到 $\xi \in \mathfrak{H}$ (即在弱拓扑下收敛到 ξ) 当且仅当对任意 $\eta \in \mathfrak{H}$ 有 $\lim \langle \xi_{\alpha}, \eta \rangle = \langle \xi, \eta \rangle$.

注记. 若把每个 $\xi \in \mathcal{H}$ 看作 \mathcal{H}^* 中的元素 $\langle \cdot, \xi \rangle$, 从而把集合 \mathcal{H} 与 \mathcal{H}^* 等同, 则 \mathcal{H} 上的弱拓扑等于 \mathcal{H}^* 上的弱 *-拓扑. 严格来说, 若给予 \mathcal{H} 弱拓扑, 给予 \mathcal{H}^* 弱 *-拓扑, 则

$$\Psi: \mathcal{H} \to \mathcal{H}^*, \xi \mapsto \langle \cdot, \xi \rangle$$

是同胚.

推论 2.4.4 (Hilbert 空间的 Banach-Alaoglu 定理). $\mathfrak X$ 的单位球 $\overline{B_1}$ 在弱拓扑下是紧的

证明: $\Psi: \mathcal{H} \to \mathcal{H}^*$ 是等距满射, 故 $\Psi: \overline{B_1} \to \overline{B_1^*}$ 是双射, 因而是同胚. 由 Banach-Alaoglu 定 理, $\overline{B_1^*}$ 在弱 *-拓扑下紧.

命题 2.4.5. 若 $T:\mathcal{H}\to\mathcal{H}$ 是有界紧算子, 令 $\overline{B_1}=\{\xi\in\mathcal{H}:\|\xi\|\leqslant 1\}$ 为闭单位球, 则

$$f: \mathcal{H} \to \mathbb{C}, f(\xi) = \langle T\xi, \xi \rangle$$

在弱拓扑下连续.

证明: \diamondsuit $(\xi_{\alpha})_{\alpha \in A}$ 是 $\overline{B_1}$ 中的网且收敛到 $\xi \in \overline{B_1}$. 注意

$$|f(\xi_{\alpha})| \leqslant ||T|| \cdot ||\xi_{\alpha}||^2 \leqslant ||T||$$

因此,要证 $f(\xi_{\alpha})$ 收敛到 $f(\xi)$,只需证 $f(\xi_{\alpha})$ 任意收敛子网收敛到 $f(\xi)$.(回忆紧空间中的网 x_{α} 收敛到 x 当且仅当 x_{α} 任意收敛子网收敛到 x) 因此,不妨假设 $\lim_{\alpha} f(\xi_{\alpha})$ 存在,并证明 $\lim_{\alpha} f(\xi_{\alpha}) = f(\xi)$. 由 T 是紧算子, $\{T\xi_{\alpha}\}_{\alpha \in A} \subset \overline{T(\overline{B_1})}$ 且 $\overline{T(\overline{B_1})}$ 紧. 故 $(T\xi_{\alpha})_{\alpha \in A}$ 有子网 $(T\xi_i)_{i \in I}$ 在 \mathcal{H} 中以及范数拓扑下收敛,我们计算极限:对任意 $\eta \in \mathcal{H}$,

$$\langle \lim_{i} T\xi_{i}, \eta \rangle = \lim_{i} \langle T\xi_{i}, \eta \rangle = \lim_{i} \langle \xi_{i}, T^{*}\eta \rangle$$
$$= \langle \xi, T^{*}\eta \rangle = \langle T\xi, \eta \rangle$$

故 $\lim_{i} T\xi_{i} = T\xi$. 由 ξ_{i} 弱收敛到 ξ , 若能证 $\langle T\xi_{i}, \xi_{i} \rangle$ 收敛到 $\langle T\xi, \xi \rangle$ 则证明了

$$\lim_{\alpha} f(\xi_{\alpha}) = \lim_{i} f(\xi_{i}) = \lim_{i} \langle T\xi_{i}, \xi_{i} \rangle = \langle T\xi, \xi \rangle = f(\xi)$$

证明完成.

引理 2.4.6. 令 $(\psi_i)_{i\in I}, (\xi_i)_{i\in I}$. 假设 $R=\sup_i \|\xi_i\|<+\infty$. 若 ψ_i 收敛到 $\psi\in\mathfrak{H}, \xi_i$ 弱收敛到 $\xi\in\mathfrak{H},$ 则 $\lim_i \langle \psi_i, \xi_i \rangle = \langle \psi, \xi \rangle$.

证明:

$$\begin{aligned} |\langle \psi, \xi \rangle - \langle \psi_i, \xi_i \rangle| &\leq |\langle \psi, \xi - \xi_i \rangle| + |\langle \psi - \psi_i, \xi_i \rangle| \\ &\leq |\langle \psi, \xi - \xi_i \rangle| + R \|\psi - \psi_i\| \to 0 \end{aligned}$$

在 $\mathfrak{H} = l^2(\mathbb{Z})$ 时, $\overline{B_1}$ 上弱拓扑的意义很具体.

引理 2.4.7. 令 $\overline{B_1}$ 为 $l^2(\mathbb{Z})$ 单位闭球, $(f_{\alpha})_{\alpha \in A}$ 为 $\overline{B_1}$ 中的网. 令 $f \in \overline{B_1}$, 则 f_{α} 弱收敛到 f 当且仅当对任意整数 n 有 $\lim_{\alpha} f_{\alpha}(n) = f(n)$.

证明: " \Longrightarrow ": 若 $f_{\alpha} \stackrel{w}{\rightarrow} f$, 则对任意整数 n,

$$f_{\alpha}(n) = \langle f_{\alpha}, \delta_n \rangle \to \langle f, \delta_n \rangle = f(n)$$

"←": 留为作业.

推论 2.4.8. 若 \mathfrak{H} 可分,则其单位闭球 $\overline{B_1}$ 的弱拓扑是可度量的.

证明: $\mathfrak{H} \cong l^2(\mathbb{N})$ 或 \mathbb{C}^n , 我们讨论 $\mathfrak{H} \cong l^2(\mathbb{N})$ 的情形, 后者类似. 不妨令 $\mathfrak{H} = l^2(\mathbb{N})$. 定义 $\overline{B_1}$ 上的度量 d_w 为

$$d_w(f,g) = \sum_{n \in \mathbb{N}} 2^{-n} |f(n) - g(n)|$$

若 $(f_{\alpha})_{\alpha \in A}$ 是 $\overline{B_1}$ 中的网且 $f \in \overline{B_1}$, 则有前一引理,

$$f_{\alpha} \stackrel{w}{\to} f \iff \forall n \in \mathbb{N}, f_{\alpha}(n) \to f(n)$$

 $\iff d_{w}(f_{\alpha}, f) \to 0$

故 d_w 诱导了 $\overline{B_1}$ 的弱拓扑.

由此我们能用对角线法证明如下 Banach-Alaoglu 定理. 这是最早被证明的 B-A 定理的版本.

定理 2.4.9 (可分 Hilbert 空间的 Banach-Alaoglu 定理 (又一证明)). 若 \mathfrak{H} 可分,则其单位闭球 $\overline{B_1}$ 预紧,即在弱拓扑下紧.

证明:不妨假设 $\mathfrak{H}=l^2(\mathbb{Z})$. 取 $\overline{B_1}$ 中点列 $\{f_m\}_{m\in\mathbb{Z}}$ 则对任意整数 $n,\{f_m(n)\}_{m\in\mathbb{Z}_+}$ 是 \mathbb{C} 中有界点列. 由对角线法, $\{f_m\}$ 有子列 $\{f_{m_k}\}_{k\in\mathbb{Z}_+}$ 逐点收敛于 $f:\mathbb{Z}\to\mathbb{C}$. 对任意正整数 N,\mathbb{Q}

$$\sum_{|n| \leqslant N} |f(n)|^2 = \lim_k \sum_{|n| \leqslant N} f_{m_k}(n) \cdot \overline{f_{m_k}(n)} \leqslant 1$$

故 $\sqrt{\sum_{|n| \leq N} |f(n)|^2} \leq 1$ 对任意 N 成立. 故 $f \in \overline{B_1}$. 由 f_{m_k} 逐点收敛到 f 可知 f_{m_k} 弱收敛到 f.

注记. 以上对 $l^2(\mathbb{Z})$ 的单位闭球 $\overline{B_1}$ 是弱列紧的证明是非常初等的. 而正是这个定理促使人们考虑,Hilbert 考虑整个 $l^2(\mathbb{Z})$ 中的元素. 因为, 比如, 当我们只考虑 $l^2(\mathbb{Z})$ 中所有由 $C(S^1)$ 中函数的 Fourier 级数得到的空间. 则它的单位闭球不再是弱紧的.

注记. $l^2(\mathbb{Z})$ 的单位球 (取弱拓扑) 是最早的一类抽象 (即不来源于 \mathbb{R}^n 的有限闭子集) 紧度量空 间/紧 Hausdorff 空间.

定理 2.4.10 (Hilbert-Schmidt 定理). 令 $T: \mathcal{H} \to \mathcal{H}$ 是紧算子. 假设 T 是正算子, 即 $\forall \xi \in \mathcal{H}$ 有 $\langle T\xi, \xi \rangle \geqslant 0$. 令 $N(T) = \{\xi \in \mathcal{H} : T\xi = 0\}$. 则存在递减列 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots > 0$ 和单位向量 $e_1, e_2, \cdots \in \mathcal{H}$ 使 $Te_n = \lambda_n e_n (\forall n \in \mathbb{Z}_+). \{e_n\}_{n \in \mathbb{Z}_+}$ 构成 $N(T)^{\perp}$ 的一组标准正交基. (因此 $\{e_n\}$ 和 N(T) 标准正交基组成了 \mathcal{H} 的一组标准正交基) 且要么 $\lambda_1, \lambda_2, \cdots$ 只有有限项,要么 $\lim_{n \to \infty} \lambda_n = 0$.

证明: 由 $\langle T\xi, \xi \rangle \in \mathbb{R}$ 知 $T = T^*$. 若 \mathfrak{K} 是闭子空间且 $T\mathfrak{K} \subset \mathfrak{K}$ 则 $T\mathfrak{K}^{\perp} \subset \mathfrak{K}^{\perp}$.

$$\left(\left\langle T\mathcal{K}^{\perp},\mathcal{K}\right\rangle = \left\langle \mathcal{K}^{\perp},T\mathcal{K}\right\rangle \subset \left\langle \mathcal{K}^{\perp},\mathcal{K}\right\rangle = 0\right)$$

故由 $TN(T) \subset N(T)$ 知 $TN(T)^{\perp} \subset N(T)^{\perp}$. 故 $T: N(T)^{\perp} \to N(T)^{\perp}$ 是有界算子且显然紧. 通过将 光 换成 $N(T)^{\perp}$, 不妨假设 N(T)=0.

Step 1: $\overline{B_1}$ 为 升 单位球. 令 $S = \{ \xi \in \mathcal{H} : ||\xi|| = 1 \}$, 令

$$\lambda_1 = \sup_{\xi \in S} \langle T\xi, \xi \rangle = \sup_{\xi \in \overline{B}_1} \langle T\xi, \xi \rangle$$

 $f: \xi \in \overline{B_1} \mapsto \langle T\xi, \xi \rangle$ 在 $\overline{B_1}$ 的弱拓扑下连续, 故能在某个 $e_1 \in \overline{B_1}$ 处取到最大值 λ_1 (因为 $\overline{B_1}$ 列 紧) 且由这一最大性知 $\|e_1\| = 1$.

Claim: $Te_1 \in \mathbb{C}e_1$, 从而由 $f(e_1) = \lambda_1$ 知 $Te_1 = \lambda_1e_1$, 从而 (由 N(T) = 0 知) $\lambda_1 > 0$.

事实上, 因 $\mathbb{C}e_1 = (\mathbb{C}e_1)^{\perp \perp}$, 只需证 $\forall \eta \in e_1^{\perp}$ 有 $\langle Te_1, \eta \rangle = 0$. 由 $\langle e_1, \eta \rangle = 0$ 知只需证 $\langle (\lambda_1 - T)e_1, \eta \rangle = 0$. 令

$$\omega: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$$
$$\omega(\xi, \psi) = \langle (\lambda_1 - T)\xi, \psi \rangle$$

则

$$\omega(\xi,\xi) = \langle \lambda_1 \xi, \xi \rangle - \langle T\xi, \xi \rangle \geqslant \lambda_1 \|\xi\|^2 - \lambda_1 \|\xi\|^2 = 0$$

故 ω 是半正定型. 而 $\omega(e_1, e_1) = \langle \lambda_1 e_1, e_1 \rangle - \langle T e_1, e_1 \rangle = \lambda_1 - \lambda_1 = 0$. 故由 Cauchy-Schwartz 不等式,

$$\left|\omega\left(e_{1},\eta\right)\right|^{2}\leqslant\omega\left(e_{1},e_{1}\right)\cdot\omega(\eta,\eta)=0$$

故 Claim 为真.

Step 2: 令 $\mathcal{K}_1 = \mathbb{C}e_1, T\mathcal{K}_1 \subset \mathcal{K}_1$,故 $T\mathcal{K}_1^{\perp} \subset \mathcal{K}_1^{\perp}, T : \mathcal{K}_1^{\perp} \to \mathcal{K}_1^{\perp}$ 是正的紧算子. 故存在 $e_2 \in \mathcal{K}_1^{\perp}, \|e_2\| = 1$ 使 $\langle Te_2, e_2 \rangle$ 最大. 记为 λ_2 . 显然 $\lambda_2 \leqslant \lambda_1$. 类似于 Step 1, 我们得证 $Te_2 = \lambda_2 e_2$, 从而 $\lambda_2 > 0$.

以此类推, 我们递归地构造 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots > 0$, 以及单位向量 $e_1, e_2, \cdots \in \mathfrak{X}$ 满足

$$e_n \perp \mathcal{K}_{n-1} = \operatorname{span}_{\mathbb{C}} \{e_1, \cdots, e_{n-1}\}$$

且

$$\lambda_n = \langle Te_n, e_n \rangle = \sup_{\|\xi\|=1, \xi \perp K_{n-1}} \langle T\xi, \xi \rangle$$

 $\coprod Te_n = \lambda_n e_n.$

Step 3: 我们证明 $\lim_{n\to\infty} \lambda_n = 0$. 若否, 则 $\lambda := \lim_{n\to\infty} \lambda_n > 0$. 对任意正整数 m, n,

$$||Te_m - Te_n||^2 = \langle \lambda_m e_m - \lambda_n e_n, \lambda_m e_m - \lambda_n e_n \rangle = \lambda_m^2 + \lambda_n^2 \geqslant 2\lambda^2$$

故 $\{Te_n\}_{n\in\mathbb{Z}_+}$ 任意子列都非 Cauchy 列, 与 T 是紧算子矛盾.

Step 4: 要证 $S = \{e_n\}_{n \in \mathbb{Z}_+}$ 是 光 的标准正交基, 只需证 $\overline{\operatorname{span}_{\mathbb{C}} S} = \mathcal{H}$. 令 $\mathcal{K} = \overline{\operatorname{span}_{\mathbb{C}} S}$. 由 $TS \subset S$ 知 $TX \subset \mathcal{K}$, 从而 $TX^{\perp} \subset X^{\perp}$. 故 $T : X^{\perp} \to X^{\perp}$ 是紧算子. 假设 $X^{\perp} \neq 0$. 令

$$\mu = \sup_{\xi \in \mathcal{K}^\perp, \|\xi\| = 1} \left\langle T\xi, \xi \right\rangle$$

则由 e_n 和 λ_n 的定义方式可知 $\mu \leq \lambda_n(\forall n)$, 故 $\mu = 0$. 由之前的 Claim, 存在 $\xi \in \mathcal{K}^{\perp}$ 使 $\|\xi\| = 1$ 且 $T\xi = \mu\xi = 0$, 这与 N(T) = 0 矛盾. 故 $\mathcal{K}^{\perp} = 0$, $\mathcal{K} = \mathcal{H}$.

定理 2.4.11. 令 $T: \mathcal{H} \to \mathcal{H}$ 为紧算子. 假设 T 自伴, 即 $T = T^*$, 则存在 $N(T)^{\perp}$ 的标准正交基 $\{e_1, e_2, \cdots, f_1, f_2, \cdots\}$ 满足

$$Te_n = \lambda_n e_n, Tf_n = -\mu_n f_n$$

这里 $\lambda_n, \mu_n \in \mathbb{R}, \lambda_1 \geqslant \lambda_2 \geqslant \cdots > 0, \mu_1 \geqslant \mu_2 \geqslant \cdots > 0.$

- 若 $\lambda_1, \lambda_2, \cdots$ 有无限项则 $\lim_{n \to \infty} \lambda_n = 0$
- 若 μ_1, μ_2, \cdots 有无限项则 $\lim_{n \to \infty} \mu_n = 0$

证明:用前一个定理的证法依次构造 $e_1, f_1, e_2, f_2, \cdots$ 和 $\lambda_1, \mu_1, \lambda_2, \mu_2, \cdots$:

$$\lambda_{1} = \sup_{\|\xi\|=1} \left\langle T\xi, \xi \right\rangle, \quad \mu_{1} = \sup_{\|\xi\|=1, \xi \perp e_{1}} \left\langle -T\xi, \xi \right\rangle, \lambda_{2} = \sup_{\|\xi\|=1, \xi \perp e_{1}, e_{2}} \left\langle T\xi, \xi \right\rangle, \cdots$$

Hilbert 空间, 尤其地, $l^2(\mathbb{Z})$ 和完备性的引入, 首先是为了解决自伴紧算子谱分解的问题. 完备性在如下两个地方起了关键作用:

- \mathfrak{H} 关于闭子空间 \mathfrak{K} 的正交分解 $\mathfrak{H} \cong \mathfrak{K} \oplus \mathfrak{K}^{\perp}$.
- \mathfrak{R} 的单位闭球 $\overline{B_1}$ 的弱紧性, 即在弱拓扑下的紧性.

在 Hilbert 空间下, 弱拓扑往往和函数逐点收敛挂钩, 只有在考虑一般 Banach 空间时, 抽象的弱拓扑概才得以建立起来.

第三章 测度论

测度论引论 3.1

令 $1 \le p < +\infty$, 我们考虑 C([0,1]) 在 L^p 范数 $||f||_p = \left(\int |f|^p\right)^{\frac{1}{p}}$ 下的完备化 $L^p([0,1])$. $L^p([0,1])$ 中的元素 φ 可由收敛到它的 C([0,1]) 中的 Cauchy 列 $\{f_n\}_{n\in\mathbb{Z}_+}$ 代表. 如果 f_n 逐 点收敛到 $f:[0,1]\to\mathbb{C}$, 我们希望用 f 来代表 φ , 但这有几个问题:

- 无法保证 f_n 逐点收敛. 例如, 一个 $L^2([0,1])$ 中的元素的 Fourier 展开总是在 L^2 范数下收 敛, 但不一定逐点收敛.
- 我们只能保证 $\{f_n\}$ 有子列是几乎处处逐点收敛的, 即有零测集 $\Delta \subset [0,1]$ 使子列在 $[0,1]\setminus$ Δ 上逐点收敛.
- $\{f_n\}$ 的两个逐点收敛子列收敛到的函数只是几乎处处 (a.e. almost everywhere) 相等.

注记. 我们可以用一个函数 $f:[0,1]\to\mathbb{C}$ 来代表 $L^p([0,1])$ 中的一个元素 φ , 但 f 不是唯一的, f和 f' 可同时代表 φ , 若 f 和 f' 几乎处处相等.f 的取法: 取 C([0,1]) 中点列在 L^p 下收敛到 φ , 则它有子列几乎处处收敛到 f.

不难验证, 若 f,g 代表 $\varphi,\phi\in L^p([0,1])$, 则 af+bg 代表 $a\varphi+b\phi$ (若 $a,b\in\mathbb{C}$).

问题 3.1.1. $L^p([0,1])$ 中元素的收敛性能否由函数列的 (几乎处处) 逐点收敛体现? (二者关系是 什么?)

注记. 网收敛与 a.e. 收敛之间没有强关联. 考虑函数网 $(\chi_A)_{A \in \text{fin}(2^{[0,1]})}$, 即 A 是 [0,1] 的有限子 集, χ_A 是 A 的特征函数. $\chi_A(x) = \left\{ \begin{array}{ll} 1 & x \in A \\ 0 & x \notin A \end{array} \right.$ 则网 $(\chi_A)_{A \in \mathrm{fin}(2^{[0,1]})}$ 处处收敛到常值函数 1. 而 $\chi_A = 0, \text{a.e.}$ 故 $\lim_A \|1 - \chi_A\|_p \neq 0$. 以上例子表明, **测度论是非常依赖可数性的理论**.

问题 3.1.2. Hilbert 空间 $L^2([0,1])$ 上的内积是否能由代表 $L^2([0,1])$ 中元素的函数 f,g 之间 的积分 $\int_0^1 f\overline{g}$ 来表达呢? 更一般地,令 $1 < q \leqslant +\infty$ 满足 $\frac{1}{p} + \frac{1}{q} = 1$. 回忆 **Hölder 不等** 式: $\left| \int fg \right| \leq \|f\|_p \cdot \|g\|_q$ (它可由离散求和版本的 $H\"{o}lder$ 不等式逼近得到).

因此, $\forall g \in C([0,1]), \Psi_g: f \in C([0,1]) \mapsto \int fg$ 在 L^2 范数下连续. 那么一般的 $L^p([0,1])$ 上 的有界线性泛函, 即有界线性映射 $L^p([0,1]) \to \mathbb{C}$ 能否由 $f \mapsto \int fg$ 刻画? (答案是是的)

测度论是代数结构的几何表示理论:

- 用具体的函数表示 C([0,1]) 在 L^p 范数下的 Cauchy 列 $(1 \le p < +\infty)$.
- 用函数列 a.e. 收敛来刻画 L^p 范数下的收敛.
- 用积分来表示 $L^2([0,1])$ 上的内积. 一般地, 表示 $L^p([0,1])$ 的对偶空间 $L^p([0,1])^*$ 及其元素是如何作用在 $L^p([0,1])$ 上的.
- 用函数列 a.e. 收敛来刻画 $L^2([0,1])$ 的弱收敛, 更一般地, 刻画 $L^p([0,1])^*$ 的弱 * 收敛. 这个问题约等于积分与极限的交换问题.
- 用测度来表示 C([0,1]) 在 l^{∞} 范数下的对偶空间 $C([0,1])^*$. 这一部分能够以**表示论**的形式 (*-代数的酉表示) 呈现, 并且与自伴算子谱理论直接相关.

测度论首先研究什么函数能代表 $L^p([0,1])$ 中的元素, 特别地, 什么特征函数 χ_A 能代表 $L^p([0,1])$ 中元素. 这样的 A 会被称为可测集.

• 若 $\Omega \subset I = [0,1]$ 是开集, 我们能找到递增的 $C_c(I,[0,1])$ 中序列 f_n 处处收敛到 χ_{Ω} . 若 Ω 有界, 则 $\{f_n\}$ 在 L^p 下收敛 (考虑 $N = 1,\Omega$ 是开区间作为例子).

因此, 我们希望 χ_{Ω} 能代表 f_n 所收敛到的 $L^p(I)$ 中的元素. 因此我们希望开集可测.

- 若 χ_A 能代表 $L^p(I)$ 中元素, 则 $1-\chi_A=\chi_{A^{\complement}}(A^{\complement}$ 是 A 的补集) 也能代表, 因此我们希望可测集的补集可测.
- $\ddot{A} \chi_A, \chi_B$ 可代表 $L^p(I)$ 中元素, 我们希望 $\chi_{A \cap B} = \chi_A \cdot \chi_B$ 也如此, 故希望可测集的有限 交集可测. 取补集, 则我们希望可测集的有限并可测.
- $\stackrel{\cdot}{Z}$ $A_1 \subset A_2 \subset A_3 \subset \cdots \subset [0,1]$ $\stackrel{\cdot}{\Pi}_{M}$, $\stackrel{\cdot}{\varphi}$ $B = \bigcup_n A_n$ $\stackrel{\cdot}{M}$ $\lim_n \chi_{A_n} = \chi_B$, $\mathop{\mathfrak{X}}$ $\mathop{$
- 以上两条告诉我们, 若 $\{A_n\}_{n\in\mathbb{Z}_+}$ 是 [0,1] 的一列可测子集, 我们希望 $\bigcup_n A_n$ 可测.

定义 3.1.3. 一个集合 X 的 σ -代数是 2^X 的一个子集 A 满足:

- $\varnothing \in \mathcal{A}$.
- $E \in \mathcal{A} \implies E^{\complement} = X \setminus E \in \mathcal{A}$.
- 若 $\{E_n\}_{n\in\mathbb{Z}_+}$ 是 \mathcal{A} 中一列元素, 则 $\bigcup_{n\in\mathbb{Z}_+} E_n \in \mathcal{A}$.

我们称 (X, A) 或 X 为一个**测度空间**.

若 σ -代数 A' 满足 $A' \subset A$, 则称 A' 为 A 的 σ -子代数. 若把 σ -代数定义的最后一条改为 $E_1, \dots, E_n \in X \implies E_1 \cup \dots \cup E_n \in A$, 则称 A 是一个**代数**.

注记. σ -代数 A 中可数个元素的交集显然也在 A 中. 一个 X 的 σ -代数必然包括 \varnothing 和 X.

例子. 若 $(A_i)_{i \in I}$ 是一族 X 的 σ -代数, 则 $\bigcap_{i \in I} A_i$ 也是 X 的 σ -代数.

定义 3.1.4. 若 $\mathcal{M} \subset 2^X$,

$$\sigma(\mathcal{M}) := \bigcap_{A$$
是包含 \mathcal{M} 的 σ -代数

称为**M** 生成的 σ -代数. 即包含 M 的最小 σ -代数.

定义 3.1.5. 若 X 是拓扑空间,则由 X 的所有开集生成的 σ -代数叫作 X 的 Borel σ -代数,记 为 $\mathcal{B}(X)$ 或 \mathcal{B}_X , 其中的元素称为 Borel 集.

例子. $[a,b)=(-\infty,b)\cap[a,+\infty)$ 是 \mathbb{R} 的 Borel 集.

定义 3.1.6. 若 (X, A), (Y, B) 是测度空间, $f: X \to Y$ 是映射, 易知 $f^{-1}(B) = \{f^{-1}(E) : E \in B\}$ 是 X 上的 σ -代数. 若 $f^{-1}(B) \subset A$, 我们说 f 是**可测的**.

注记. 显然, 若 $f: X \to Y$ 和 $g: Y \to Z$ 可测, 则 $g \circ f: X \to Z$ 可测.

命题 3.1.7. 以上定义中, 若 $B = \sigma(M)$, 则

$$f$$
可测(即 $f^{-1}(\sigma(\mathcal{M})) \subset \mathcal{A}$) $\Leftrightarrow f^{-1}(\mathcal{M}) \subset \mathcal{A}$

证明: " \Rightarrow " 显然; " \Leftarrow " 考虑 $\{E \subset Y : f^{-1}(E) \in A\}$ 是 σ -代数且包含 \mathfrak{M} , 因而它也包含 $\sigma(\mathfrak{M})$. 故 $f^{-1}(\sigma(\mathfrak{M})) \subset A$.

推论 3.1.8. 令 $f: X \to Y$ 为映射, $\mathcal{M} \subset 2^Y$, 则 $\sigma(f^{-1}(\mathcal{M})) = f^{-1}(\sigma(\mathcal{M}))$.

证明: 把前一命题中的 $f^{-1}(\mathcal{M}) \subset \mathcal{A} \implies f^{-1}(\sigma(\mathcal{M})) \subset \mathcal{A}$, 取 $\mathcal{A} = \sigma(f^{-1}(\mathcal{M}))$ 得 $f^{-1}(\sigma(\mathcal{M})) \subset \sigma(f^{-1}(\mathcal{M}))$.

而由
$$f^{-1}(\mathcal{M}) \subset f^{-1}(\sigma(\mathcal{M}))$$
 以及 $f^{-1}(\sigma(\mathcal{M}))$ 是一个 σ -代数,得 $\sigma(f^{-1}(\mathcal{M})) \subset f^{-1}(\sigma(\mathcal{M}))$.

定义 3.1.9. 若 (X, A) 是测度空间,Y 是拓扑空间,则映射 $f: X \to Y$ 称为**可测**若 $f: (X, A) \to (Y, \mathcal{B}_Y)$ 可测 (等价地 $f^{-1}(\{Y$ 的开子集 $\}) \subset A$, 等价地 $f^{-1}(\{Y\})$ 可测 (等价地 $f^{-1}(\{Y\})$) (等价地 $f^{-1}(\{Y\})$ (等价地 $f^{-1}(\{Y\})$ (等价地 $f^{-1}(\{Y\})$) (等价地 $f^{-1}(\{Y\})$ (等价地 $f^{-1}(\{Y\})$) (等价地 $f^{-1}(\{Y\})$ (等价地 $f^{-1}(\{Y\})$ (等价地 $f^{-1}(\{Y\})$) (等价地 f

命题 3.1.10. 若拓扑空间 Y 第二可数且 $\mathcal U$ 是 Y 的拓扑基, 则 $\sigma(\mathcal U)$ 是 Y 的 Borel σ -代数 $\mathcal B_Y$.

证明: 令 \mathfrak{I}_Y 为 Y 的拓扑, 即 $\mathfrak{I}_Y = \{Y$ 的开子集 $\}$, 则 $\mathfrak{U} \subset \mathfrak{I}_Y$, 故 $\sigma(\mathfrak{U}) \subset \sigma(\mathfrak{I}_Y) = \mathfrak{B}_Y$. 任取 $W \in \mathfrak{I}_Y$. 由 \mathfrak{U} 是拓扑基知 W 有开覆盖

$$W=\bigcup\{u\in \mathfrak{U}: u\subset W\}$$

从而有可数子覆盖.(回忆 Y 第二可数 \Longrightarrow W 第二可数 \Longrightarrow W 是 Lindelöf 空间) 故 $W \in \sigma(\mathfrak{U})$. 这证明了 $\mathfrak{I}_Y \subset \sigma(\mathfrak{U})$. \square

推论 3.1.11. 若 X 是测度空间,Y 是第二可数拓扑空间且 \mathcal{U} 是 Y 的一个拓扑基. 则 $f: X \to Y$ 可测当且仅当 $\forall u \in \mathcal{U}$ 有 $f^{-1}(u)$ 是 X 的可测集.

例子. $\sigma(\{(a, +\infty) : a \in \mathbb{Q}\}) = \mathcal{B}_{\mathbb{R}} = \sigma(\{[a, +\infty) : a \in \mathbb{Q}\}).$

证明: $\diamondsuit A = \sigma(\{(a, +\infty) : a \in \mathbb{Q}\})$. 则 $A \subset \mathcal{B}_{\mathbb{R}}$. 故

$$\forall a \in \mathbb{R}, [a, +\infty) = \bigcap_{\substack{b \in \mathbb{Q} \\ b < a}} (b, +\infty) \in \mathcal{A}$$
$$(a, +\infty) = \bigcup_{\substack{b \in \mathbb{Q} \\ b > a}} (b, +\infty) \in \mathcal{A}$$

故 $\forall b \in \mathbb{R}$ 有 $(-\infty, b) = \mathbb{R} \setminus [b, +\infty) \in \mathcal{A}$. 故 $(a, b) \in \mathcal{A}$.

由于 $\{(a,b): a < b, a, b \in \mathbb{R}\}$ 是 \mathbb{R} 的拓扑基且 \mathbb{R} 是第二可数的 (回忆第二可数 \Longrightarrow 可分,可分度量 \Longrightarrow 第二可数) 故 $\{(a,b)\}$ 生成的 σ -代数就是 \mathcal{B}_Y . 故 $\mathcal{A} = \mathcal{B}_Y$.

$$\sigma(\{[a,b):a\in\mathbb{Q}\})=\mathcal{B}_{\mathbb{R}}$$
 的证明类似.

我们定义 $[-\infty, +\infty]$ 上的拓扑使以下 f 是同胚:

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-\infty, +\infty], \quad f(x) = \begin{cases} \tan x & \left(x \neq \pm \frac{\pi}{2} \right) \\ -\infty & \left(x = -\frac{\pi}{2} \right) \\ +\infty & \left(x = \frac{\pi}{2} \right) \end{cases}$$

因此 $[-\infty, +\infty]$ 有拓扑基 $\{(a,b), [-\infty,c), (+\infty,d] : a,b,c,d \in [-\infty, +\infty]\}$.

命题 3.1.12. 以下集合每个都生成 $\mathcal{B}_{[-\infty,+\infty]}$.

- $\{(a, +\infty] : a \in \mathbb{Q}\}$
- $\{[a, +\infty] : a \in \mathbb{Q}\}$
- $\{[-\infty, a) : a \in \mathbb{Q}\}$
- $\{[-\infty, a] : a \in \mathbb{Q}\}$

推论 3.1.13. 令 X 为测度空间, $f: X \to [-\infty, +\infty]$ 则以下等价:

- f 可测
- $\forall a \in \mathbb{Q}, f^{-1}(a, +\infty)$ 可测
- $\forall a \in \mathbb{Q}, f^{-1}[a, +\infty]$ 可测
- $\forall a \in \mathbb{Q}, f^{-1}[-\infty, a)$ 可测
- $\forall a \in \mathbb{Q}, f^{-1}[-\infty, a]$ 可测

注记. $f: X \to \mathbb{R}$ 有类似结论.

定义 3.1.14. 若 (X,A) 是测度空间, $X' \subset X$, 则 $(X',A|_{X'})$ 自然的是一个**子测度空间**, 这里 $A|_{X'} = \{X' \cap E : E \in A\}$. 等价地, 若令 $\iota : \frac{X' \to X}{x \mapsto x}$ 为嵌入映射, 则 $A|_{X'} = \iota^{-1}(A)$.

例子. 若 X 是拓扑空间, $X' \subset X$ 赋予子空间拓扑 (即其开集为 $X' \cap X$ 的开集)则 (X', $B_{X'}$) 是 (X, B_{X}) 的子测度空间,即 $B_{X'} = B_{X}|_{X'}$.

证明: 令 $\iota: X' \to X$ 为嵌入, \Im_X 为 X 的拓扑. 故 $\iota^{-1}(\Im_X) = \Im_{X'}$.

我们要证 $\iota^{-1}(\mathfrak{B}_X) = \mathfrak{B}_{X'}$.

$$\mathcal{B}_{X'} = \sigma(\mathcal{T}_{X'})$$

$$= \sigma(\iota^{-1}(\mathcal{T}_X))$$

$$= \iota^{-1}(\sigma(\mathcal{T}_X))$$

$$= \mathcal{B}_X|_{X'}$$

命题 3.1.15. 令 X,Y 为测度空间, $Y' \subset Y$ 是子测度空间.f 满足 $f(X) \subset Y'$. 则以下等价:

- (1) $f: X \to Y$ 可测.
- (2) f 的限制 $f': X \to Y'$ 可测.

证明: 嵌入映射 $\iota: Y' \to Y$ 可测, 故由 $f = \iota \circ f'$ 知 f' 可测 $\Longrightarrow f$ 可测.

记 Y 的 σ -代数为 A. 则 Y' 的 σ -代数为 $A|_{Y'}=\iota^{-1}(A)$. 假设 f 可测. 任取 $A|_{Y'}$ 中元素 $E\cap Y', E\in A$. 则 $(f')^{-1}(E\cap Y')=f^{-1}(E)$ 可测. 故 f' 可测.

例子. 若 X 为测度空间, $A \subset X$, 则 A 可测当且仅当 $\chi_A: X \to \{0,1\}$ 可测.

证明: $\chi_A^{-1}\{1\} = A, \chi_A^{-1}\{0\} = X \setminus A, \chi_A^{-1}\{\emptyset\} = \emptyset, \chi_A^{-1}\{0,1\} = X$ 都可测当且仅当 A 可测. \square

定义 3.1.16. 若 X,Y 是拓扑空间, 映射 $f: X \to Y$ 称为 Borel(可测) 映射, 若 $f: (X, \mathcal{B}_X) \to (Y, \mathcal{B}_Y)$ 可测. 显然, f 连续 $\Longrightarrow f$ Borel 可测.

命题 3.1.17. 令 X 为测度空间, $f=(f_1,\cdots,f_N):X\to\mathbb{R}^N$ 可测当且仅当每个 $f_i:X\to\mathbb{R}$ 可测

证明: $\Leftrightarrow p_i : \mathbb{R}^N \to \mathbb{R}, (x_1, \dots, x_N) \mapsto x_i, \, \text{则} \, f_i = p_i \circ f. \,$ 考虑 p_i 连续从而 Borel 可测, 故 f 可测 $\Longrightarrow f_i$ 可测.

反之,假设 f_1,\cdots,f_N 可测. 由于形如 $I_1\times\cdots\times I_N$ 的 \mathbb{R}^N 子集 (这里 $I_i=(a_i,b_i)$) 构成 \mathbb{R}^N 的拓扑基, 故生成 $\mathcal{B}_{\mathbb{R}^N}$. 而

$$f^{-1}(I_1 \times \cdots \times I_N) = f_1^{-1}(I_1) \cap \cdots \cap f_N^{-1}(I_N)$$

故 f 可测.

推论 3.1.18. 若 $f,g:X\to\mathbb{C}$ 可测,则 $f+g,f\cdot g$ 可测. 若 g 处处非零,则 $\frac{f}{g}$ 可测.

证明:

$$F: X \to \mathbb{C} \times \mathbb{C}, x \mapsto (f(x), g(x))$$

可测. 且

$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}, (z_1, z_2) \mapsto z_1 + z_2$$

连续 (故 Borel 可测). 故二者的复合 f+g 可测. 类似地 fg 可测.

若 g 处处非零,则由

$$g: X \to \mathbb{C} \setminus \{0\}$$

可测和

$$\mathbb{C}\setminus\{0\}\to\mathbb{C},z\mapsto\frac{1}{z}$$

连续知 $\frac{1}{g}$ 可测. 故 $\frac{f}{g}$ 可测.

命题 3.1.19. 令 X 为测度空间, $\{f_n\}_{n\in\mathbb{Z}_+}$ 为一列可测函数. $f_n:X\to[-\infty,+\infty]$,则 $\sup_n f_n,\inf_n f_n$, $\lim\sup_n f_n,\liminf_n f_n$ 可测.

证明: 我们只讨论 sup 和 lim sup. 令 $F(x) = \sup_{n} f_n(x)$. 则

$$\forall a \in \mathbb{Q}, F^{-1}([-\infty, a]) = \bigcap_{n} f_n^{-1}([-\infty, a])$$

可测. 故 F 可测. 类似地, $\inf_n f_n$ 可测.

$$\limsup_{n} f_n(x) = \limsup_{n} \{ f_k : k \geqslant n \} = \inf_{n} F_n(x)$$

这里 $F_n = \sup_{k \ge n} f_k$ 可测. 故 $\limsup_n f_n$ 可测.

推论 3.1.20. 若 $f_n: X \to [-\infty, +\infty]$ 是一列可测函数且逐点收敛到 $f: X \to [-\infty, +\infty]$, 则 f 可测.

3.2 Lebesgue 测度

回忆我们想用函数和积分来表示 C([0,1]) 在 L^p 范数 $(1 \le p < +\infty)$ 下的完备化 $L^p([0,1])$ 以及其对偶空间,并且希望函数的逐点收敛能一定程度地表示 L^p 范数下的收敛和弱 *-收敛. 这意味着我们关心何时 $\lim_n \int f_n = \int \lim_n f_n$. 我们处理这一问题的方式是先证明一个特例,再由这一特例来证明一般情况. 这一特例是: 若 $A_1, A_2, \cdots \subset [0,1]$ 可测且两两不相交,令 $f_n = \chi_{A_1 \cup \cdots \cup A_n} = \chi_{A_1} + \cdots + \chi_{A_n}$,则 $\lim_n \int f_n = \int \lim_n f_n$. 意味着 $\sum_n \mu(A_n) = \mu\left(\bigcup_n A_n\right)$.

定义 3.2.1. \diamondsuit (X, A) 为测度空间, 函数 $\mu : A \to [0, +\infty]$ 称为**测度**若满足

- $\mu(\varnothing) = 0$.
- 可数可加性 (countable additivity). 若 $\{E_n\}_{n\in\mathbb{Z}_+}\subset\mathcal{A}$ 两两不相交,则 $\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\sum_{n=1}^{\infty}\mu\left(E_n\right)$.

我们也称 (X, A, μ) 或 (X, μ) 是**测度空间**.

例子. 令 X 是集合, $\forall E \subset X$, 令

$$\mu(E) = \sum_{x \in E} 1 = \begin{cases} |E| & (E \neq \mathbb{R}) \\ 0 & (E \neq \mathbb{R}) \end{cases}$$

 $(X, 2^X, \mu)$ 是测度空间. μ 称为**计数测度 (counting-measure)**.

命题 3.2.2. 令 (X, μ) 为测度空间.

1. 若
$$E_1, \dots, E_n \subset X$$
 可测且两两不交, 则 $\mu\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n \mu(E_i)$.

2. 单调性

若 $E \subset F \subset X$ 可测,则 $\mu(E) \leqslant \mu(F)$.

$$3.$$
 若 $E_1 \subset E_2 \subset E_3 \subset \cdots \subset X$ 可测,则 $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu\left(E_n\right)$.

4. 若
$$X \supset E_1 \supset E_2 \supset \cdots$$
 可测且 $\mu(E_1) < +\infty$, 则 $\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$.

5. 次可加性 (subadditivity)

若
$$\{E_n\}_{n\in\mathbb{Z}_+}$$
 可测, 则 $\mu\left(\bigcup_{n=1}^{\infty}E_n\right)\leqslant\sum_{n=1}^{\infty}\mu\left(E_n\right)$.

证明: 1. 令 $E_{n+1} = E_{n+2} = \cdots = \emptyset$ 并用可数可加性.

2.
$$\mu(F) = \mu(E) + \mu(F \setminus E) \geqslant \mu(E)$$
.

3.
$$\Leftrightarrow F_1 = E_1, F_n = E_n \setminus E_{n-1} (n \ge 2), \mathbb{M}$$

$$\mu\left(\bigcup_{n} E_{n}\right) = \mu\left(\bigcup_{n} F_{n}\right) = \sum_{n} \mu(F_{n})$$

$$= \lim_{n \to \infty} \mu(F_{1}) + \dots + \mu(F_{n})$$

$$= \lim_{n \to \infty} \mu(F_{1} \cup \dots \cup F_{n})$$

$$= \lim_{n \to \infty} \mu(E_{n})$$

4. $\diamondsuit F_n = E_1 \setminus E_n$, 则 $\mu(F_n) \leqslant \mu(E_1) < +\infty$. 由 3 知

$$\mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \lim_{n \to \infty} (\mu(E_1) - \mu(E_n))$$

又
$$\mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \mu\left(E_1 \setminus \left(\bigcap_{n=1}^{\infty} E_n\right)\right) = \mu\left(E_1\right) - \mu\left(\bigcap_{n=1}^{\infty} E_n\right)$$
故 $\mu(E_1) - \mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} (\mu(E_1) - \mu(E_n)).$

5. 假设 $\mu(E_1 \cup \cdots \cup E_n) \leq \mu(E_1) + \cdots + \mu(E_n)$, 则

$$\mu(E_1 \cup \dots \cup E_{n+1}) = \mu(E_1 \cup \dots \cup E_n) + \mu(E_{n+1} \setminus E_1 \cup \dots \cup E_n)$$

$$\leq \mu(E_1) + \dots + \mu(E_n) + \mu(E_{n+1})$$

故由归纳法,
$$\forall n$$
 有 $\mu\left(\bigcup_{j=1}^{n} E_{j}\right) \leqslant \sum_{j=1}^{n} \mu(E_{j}).$
对 n 取极限并利用 3 , 得 $\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leqslant \sum_{j=1}^{\infty} \mu(E_{j}).$

一个零测集外成立, 我们说它**几乎处处** (a.e.) 成立.

定义 3.2.3. 若 (X, μ) 的可测集 $E \subset X$ 满足 $\mu(E) = 0$ 则称 E 是零测集. 若某个命题在 X 的

定义 3.2.4. 我们说测度空间 (X, μ) 是**完备的**若 X 的 (可测的) 零测集的任意子集都可测 (从而)由单调性是零测的).

定理 3.2.5. 令 (X, A, μ) 为测度空间. 令

$$\mathbb{N} = \{ F \subset X :$$
 存在零测 $\widetilde{F} \subset \mathcal{A}$ 使 $F \subset \widetilde{F} \}$
$$\overline{\mathcal{A}} = \{ E \cup F : E \in \mathcal{A}, F \in \mathbb{N} \}$$

则 \overline{A} 是一个 σ -代数, 且 μ 能唯一地扩张成 \overline{A} 上的一个测度 $\overline{\mu}$, 且 $\overline{\mu}$ 完备. 我们称 $(X,\overline{A},\overline{\mu})$ 是 (X, \mathcal{A}, μ) 的完备化.

证明:显然 $\emptyset \in \overline{A}$.

若 $E_1, F_2, \dots \in \mathcal{A}, F_1, F_2, \dots \in \mathcal{N},$ 则 $\bigcup E_n \in \mathcal{A}, \bigcup F_n \in \mathcal{N}.$ 故 $\bigcup (E_n \cup F_n) \in \overline{\mathcal{A}}.$ 因此 $\overline{\mathcal{A}}$ 对可数并是封闭的. 若 $E\in\mathcal{A}, F\in\mathcal{N}$, 取 $\widetilde{F}\in\mathcal{A}$ 是 $\mu(\widetilde{F})=0$ 且 $F\subset\widetilde{\widetilde{F}}$, 则

$$(E \cup F)^{\complement} = (E \cup \widetilde{F})^{\complement} \cup (\widetilde{F} \setminus (E \cup F))$$

而 $E \cup \widetilde{F}^{\complement} \in \mathcal{A}, \widetilde{F} \setminus (E \cup F) \in \mathcal{N}$, 故 $(E \cup F)^{\complement} \in \overline{\mathcal{A}}$, 从而 $\overline{\mathcal{A}}$ 是 σ -代数.

 $\overline{\mu}$ 的唯一性:

若 $E \in \mathcal{A}, F \in \mathcal{N}$, 则

$$\overline{\mu}(E \cup F) = \overline{\mu}(E) + \overline{\mu}(F \setminus E) = \mu(E) + \overline{\mu}(F \setminus E)$$

这里, 取 $\widetilde{F} \in A$ 零测使 $F \subset \widetilde{F}$. 由 $\overline{\mu}$ 单调性,

$$0 \leqslant \overline{\mu}(F \setminus E) \leqslant \overline{\mu}(\widetilde{F}) = \mu(\widetilde{F}) = 0$$

故 $\overline{\mu}(E \cup F) = \mu(E)$.

 $\overline{\mu}$ 的存在性:

我们定义 $\overline{\mu}: \overline{A} \to [0, +\infty]$ 为 $\overline{\mu}(E \cup F) = \mu(E)$, 若 $E \in A, F \in \mathbb{N}$. 这是良定义的: 若 $E' \in A, F' \in \mathbb{N}$ 且 $E \cup F = E' \cup F'$, 取零测 $\widetilde{F}, \widetilde{F'}$ 使 $F \subset \widetilde{F}, F' \subset \widetilde{F'}$, 则 $E \subset E' \cup \widetilde{F'}$. 故

$$\mu(E) \leqslant \mu(E' \cup \widetilde{F'}) \leqslant \mu(E') + \mu(\widetilde{F'}) = \mu(E')$$

类似地, $\mu(E') = \mu(E)$. 得证.

显然 $\overline{\mu}(\emptyset) = 0$ 和 $\overline{\mu}$ 的可数可加性易得. 显然 $\overline{\mu}$ 完备.

我们接下来构造 \mathbb{R}^N 上的 Lebesgue 测度.

令 X 为 LCH(局部紧的 Hausdorff 空间).X 的任意闭子集显然 LCH. 回忆若 $V \subset X$ 是开集, $K \subset V$ 是紧集,则存在开集 U 在 X 中有紧闭包 \overline{U} 使 $K \subset U \subset \overline{U} \subset X$.

定义 3.2.6. 若 $V \subset X$ 是开集,记 $f \prec V$ 若 $f \in C_c(X), 0 \leq f \leq 1$ 且 $\operatorname{supp}(f) \subset V$. 若 $K \subset X$ 是紧集,记 $K \prec f$ 若 $f \in C_c(X), 0 \leq f \leq 1$,且 $f|_{K} = 1$.

回忆上学期证过:

定理 3.2.7 (Urysohn 引理). 令 X 为 LCH 空间, $V \subset X$ 是开集 (注意 V 也是 LCH 的), $K \subset V$ 为紧集,则存在 f 使 $K \prec f \prec V$.

定理 3.2.8 (单位分解定理). 令 X 为 LCH 空间, $K \subset X$ 为紧集,开集 $U_1, \dots, U_n \subset X$ 满足 $K \subset U_1 \cup \dots \cup U_n$,则存在 K 在 U_1, \dots, U_n 下的单位分解 h_1, \dots, h_n . 即 $h_1, \dots, h_n \in C_c(X, [0,1])$ 满足:

(1) $\forall 1 \leq i \leq n \ f \ h_i \prec U_i$.

(2)
$$K \prec \sum_{i=1}^{n} h_i$$
.

对任意 $f \in C_c(\mathbb{R}^N)$, 定义 Riemann 积分

$$\int_{\mathbb{R}^N} f = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f dx_1 \cdots dx_N$$

注意: $\int:C_c(\mathbb{R}^N)\to\mathbb{C}$ 是**正线性泛函**. 即它是 \mathbb{C} -线性的. 且 $f\geqslant 0 \implies \int f\geqslant 0$. 由此可得

$$f\leqslant g \implies \int f\leqslant \int g$$

我们将只用 \int 是正线性泛函这一点来构造 Lebesgue 测度.

定义 3.2.9. 若 $U \subset \mathbb{R}^N$ 是开集,定义其 Lebesgue 测度为

$$m(U) = \sup\{\int_{\mathbb{R}^N} f : f \prec U\}$$

并令 $m(\emptyset) = 0$. 我们在上学期作业 11 中证明过:

单调性 若 $U \subset V$ 为开集, 则 $m(U) \leq m(V)$.

次可加性 若 $(U_i)_{i \in I}$ 是一族 \mathbb{R}^N 开子集, 则有 $m\left(\bigcup_{i \in I} U_i\right) \leqslant \sum_{i \in I} m(U_i)$.

定义 3.2.10. 对任意 $E \subset \mathbb{R}^N$,

$$m^*(E) = \inf\{m(U) : E \subset U \subset \mathbb{R}^N\}$$

称为 E 的 Lebesgue 外测度 (outer measure). 显然对开集有 $m = m^*$.

我们的目标是去证明 m^* 是 $(\mathbb{R}^N, \mathcal{B}_{\mathbb{R}^N})$ 上的测度,并将其记为 m. 特别地, 若 $E, F \in \mathcal{B}_{\mathbb{R}^N}$ 不相交, 我们希望证明

$$m^*(E \cup F) = m^*(E) + m^*(F)$$

这对于任意不相交的 \mathbb{R}^N 子集不成立 (Banach-Tarski 定理). 对于一般集合, 我们只有如下性质: **定义 3.2.11.** 令 X 为集合, 函数 $\mu^*: 2^X \to [0, +\infty]$ 称为**外测度**若以下条件满足:

- $\mu^*(\varnothing) = 0.$
- 单调性: $\forall E, F \subset X, 若 E \subset F, 则 \mu^*(E) \leq \mu^*(F).$
- 次可加性: 令 $(E_n)_{n\in\mathbb{Z}_+}$ 为 X 的一列子集, 则 $\mu^*\left(\bigcup_{n=1}^\infty E_n\right)\leqslant \sum_{n=1}^\infty \mu^*(E_n)$.

引理 3.2.12. m* 是以上意义下的外测度.

证明: 单调性显然. 令 $(E_n)_{n\in\mathbb{Z}_+}$ 为一列 X 的子集. $\forall \varepsilon>0$, 取开集 $U_n,E_n\subset U_n\subset\mathbb{R}^N$, 满足

$$m(U_n) \leqslant m^*(E_n) + \frac{\varepsilon}{2^n}$$

则由 m 在开集上的次可加性

$$m^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant m \left(\bigcup_{n=1}^{\infty} U_n \right)$$

$$\leqslant \sum_{n=1}^{\infty} m \left(U_n \right)$$

$$\leqslant \sum_{n=1}^{\infty} m^* \left(E_n \right) + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \sum_{n=1}^{\infty} m^* \left(E_n \right) + \varepsilon.$$

由 ε 的任意性得证.

我们来证明特殊版本的 $m^*(E \sqcup F) = m^*(E) + m^*(F)$ (若 $E, F \in \mathfrak{D}_{\mathbb{R}^N}$).

例子. 若 $U, V \subset \mathbb{R}^N$ 是开集, 则 $m^*(V) = m^*(V \cap U) + m^*(V \setminus U)$.

证明: 由 m^* 的次可加性, " \leq " 成立. 故只需假设 $m^*(V) < +\infty$ 并证明 $m^*(V) \geqslant m^*(V \cap U) + m^*(V \setminus U)$. 由单调性, $V \cap U$ 和 $V \setminus U$ 有有限 m^* 值

$$m^*(V\cap U)=m(V\cap U)=\sup\{\int f:f\prec V\cap U\}$$

故只需证明 $\forall f \prec V \cap U$ 有

$$m(V) \geqslant \int f + m^*(V \setminus U)$$

即可.

令 $K = \text{supp}(f), W = V \setminus K$. 则 W 是包含 $V \setminus U$ 的开集. 只需证明

$$m(V) \geqslant \int f + m(W)$$

而 $m(W) = \sup \{ \int g : g \prec W \}$ 且 $\forall g \prec W$, 有 $f + g \prec V$. 故

$$m(V) \geqslant \int f + \int g$$

取 $\sup_{g \prec W}$ 得

$$m(V) \geqslant \int f + m(W)$$

例子. 令 $E \subset \mathbb{R}^N$, 令 $U \subset \mathbb{R}^N$ 是开集,则 $m^*(E) = m^*(E \cap U) + m^*(E \setminus U)$.

证明: 由 m^* 的次可加性, 只需假设 $m^*(E) < +\infty$, 并证 $m^*(E) \geqslant m^*(E \cap U) + m^*(E \setminus U)$

$$m^*(E) = \inf\{m(V) : V$$
为开集, $V \supset E\}$

 \forall 开集 V ⊃ E. 由前一例以及 m^* 单调性

$$m^*(V) \geqslant m^*(U \cap V) + m^*(V \setminus U) \geqslant m^*(E \cap U) + m^*(E \setminus U)$$

取 $\inf_{V\supset E,V$ 开集 完成证明.

定义 3.2.13. 令 μ^* 是集合 X 的一个外测度. 我们说子集 $A \subset X$ 是 μ^* -可测或 $Carath\'{e}odory$ 可测若对任意 $E \subset X$ 都有

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$$

因此 \mathbb{R}^N 的任意开子集都是 m^* -可测的.

注记. 显然 A 是 μ^* -可测的 $\Leftrightarrow A^{\mathbb{C}}$ 是 μ^* -可测的.

我们应当把" μ^* -可测"看作不只是关于 A, 而是关于 A 和 A^{\complement} 的共同性质. 或者说,从直观上,是关于 A 和 A^{\complement} 的"共同边界"的性质. 这个边界把任意 $E \subset X$ 分成两部分: $E \cap A$ 和 $E \cap A^{\complement}$,并且这一分割在 μ^* -外测度下是良好的,即满足

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^{\complement})$$

我们通过一个例子来感受 μ^* -可测的好处.

例子. 令 $A,B\subset X$ 为 μ^* -可测子集. 则 A,B 将 X 分成四个子集的不交并 $X=\Gamma\cup\Delta\cup\Sigma\cup\Omega$. 其中

则 $\Gamma, \Delta, \Sigma, \Omega$ 任意几个的不交并的 μ^* -外测度都能写成这些对应成员的 μ^* -外测度的和. 例如 (我们记 (A) 代表 "由于 A 是 μ^* -可测" ,(B) 代表 "由于 B 是 μ^* -可测"):

$$\mu^*(A) \stackrel{(B)}{=} \mu^*(\Gamma) + \mu^*(\Delta)$$

$$\mu^*(B) \stackrel{(A)}{=} \mu^*(\Delta) + \mu^*(\Sigma)$$

$$\mu^*(A^{\complement}) \stackrel{(B)}{=} \mu^*(\Sigma) + \mu^*(\Omega)$$

$$\mu^*(A \cup B) \stackrel{(A)}{=} \mu^*(A) + \mu^*(\Sigma) = \mu^*(\Gamma) + \mu^*(\Delta) + \mu^*(\Sigma)$$

$$\mu^*(X) \stackrel{(A)}{=} \mu^*(A) + \mu^*(A^{\complement}) = \mu^*(\Gamma) + \mu^*(\Delta) + \mu^*(\Sigma) + \mu^*(\Omega)$$

由此可得

$$\mu^*(X) = \mu^*(A \cup B) + \mu^*(\Omega) = \mu^*(A \cup B) + \mu^*(X \setminus (A \cup B))$$

我们总结两式,记 $M = \{A \subset X : A \neq \mu^*$ 可测的 $\}$.

引理 3.2.14. 若 $A, B \in \mathcal{M}$,则 $\mu^*(X) = \mu^*(A \cup B) + \mu^*(X \setminus (A \cup B))$,且若 $A \cap B = \emptyset$ 则 $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$.

定义 3.2.15. 若 $E \subset X$, 定义 $\mu_E^* : 2^E \to [0, +\infty]$, 若 $F \subset E$ 则 $\mu_E^*(F) = \mu^*(F).\mu_E^*$ 称为 μ^* 在 2^E 上的限制.

命题 3.2.16. 若 $A \subset X$ 是 μ^* -可测的, 则 $\forall E \subset X, A_E = E \cap A$ 是 μ_E^* -可测的.

证明:对任意的 $F \subset E$,

$$\mu_E^*(F \cap A_E) + \mu_E^*(F \setminus A_E) = \mu^*(F \cap A) + \mu^*(F \setminus A)$$
$$= \mu^*(F)$$
$$= \mu_E^*(F)$$

推论 3.2.17. M 是代数, 且 μ^* 在 M 上满足 (有限) 可加性: 若 $A_1, \cdots, A_n \in M$ 两两不交则

$$\mu^*(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n \mu^*(A_i)$$

证明: 可加性已证. 若 $A, B \in \mathcal{M}, \forall E \subset X,$ 则 $A_E = A \cap E$ 和 $B_E = B \cap E$ 是 μ_E^* -可测. 故由前一引理,

$$\mu_E^*(E) = \mu_E^*(A_E \cup B_E) + \mu_E^*(E \setminus (A_E \cup B_E))$$

即

$$\mu^*(E) = \mu^*(E \cap (A \cap B)) + \mu^*(E \setminus (A \cup B))$$

故 $A \cup B \in M$. □

引理 3.2.18. 令 $A_1, A_2, A_3, \dots \in M$ 两两不相交. 令 $A = \bigcup_{n=1}^{\infty} A_n$. 则 $\mu^*(A) = \sum_{n=1}^{\infty} \mu^*(A_n)$ 且 $\mu^*(X) = \mu^*(A) + \mu^*(X \setminus A)$.

证明:由可加性

$$\mu^*(A_1 \cup \dots \cup A_n) = \mu^*(A_1) + \dots + \mu^*(A_n)$$

且

$$\mu^*(X) = \mu^* \left(A_1 \cup \cdots \cup A_n \right) + \mu^* \left(X \setminus \left(A_1 \cup \cdots \cup A_n \right) \right)$$

故

$$\mu^*(A) \geqslant \mu^*(A_1 \cup \dots \cup A_n) = \mu^*(A_1) + \dots + \mu^*(A_n)$$

对任意 n 成立, 从而 $\mu^*(A) \geqslant \sum_{n=1}^{\infty} \mu^*(A_n)$. 故 $\mu^*(A) = \sum_{n=1}^{\infty} \mu^*(A_n)$.

因此,

$$\mu^*(X) \geqslant \mu^*(A_1) + \dots + \mu^*(A_n) + \mu^*(X \setminus A)$$

取 $n \to \infty$ 得

$$\mu^*(X) \geqslant \sum_{n=1}^{\infty} \mu^*(A_n) + \mu^*(X \setminus A) = \mu^*(A) + \mu^*(X \setminus A)$$

定理 3.2.19 (Carathéodory 定理). 令 μ^* 是集合 X 上的外测度. 则 $M = \{X$ 的所有 μ^* -可测子集} 是一个 σ -代数, 且 μ^* 是 M 上的一个完备测度, 记作 μ .

证明: 我们已证 M 是代数且 μ^* 满足可数可加性, 令 $A_1, A_2, \dots \in M$. 令

$$B_1 = A_1, B_{n+1} = A_{n+1} \setminus \bigcup_{i=1}^n A_i$$

由 \mathcal{M} 是代数和 $B_1, B_2, \dots \in \mathcal{M}$. 故 $\forall E \subset X, B_n \cap E$ 是 μ_E^* -可测. 令 $A = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, 则

$$A \cap E = \bigcup_{n=1}^{\infty} (B_n \cap E)$$
. 由前一引理

$$\mu_E^*(E) = \mu_E^* \left(\bigcup_{n=1}^{\infty} (B_n \cap E) \right) + \mu_E^* \left(E \setminus \bigcup_{n=1}^{\infty} (B_n \cap E) \right)$$

即

$$\mu^*(E) = \mu^*(A \cap E) + \mu^*(E \setminus A)$$

故 $A \neq \mu^*$ -可测的. 因此 $M \neq \sigma$ -代数.

若 $A \in \mathcal{M}, \mu^*(A) = 0, B \subset A, 则 \forall E \subset X$ 有

$$\mu^*(E \cap B) + \mu^*(E \setminus B) \le \mu^*(A) + \mu^*(E) = \mu^*(E)$$

故 $B \in \mathcal{M}$. 故 μ^* 在 \mathcal{M} 上完备.

推论 3.2.20. $\mathcal{B}_{\mathbb{R}^N}$ 中任意元素都 m^* -可测, 其完备化 $\overline{\mathcal{B}_{\mathbb{R}^N}}$ 中的元素称为 Lebesgue 可测集. $m=m^*|_{\overline{\mathcal{B}_{\mathbb{R}^N}}}$ 称为 Lebesgue 测度.m 在任意有界可测子集 $A\subset\mathbb{R}^N$ 上取值有限.

证明: 只剩下证明 $m(A) < +\infty$. 取开长方体 $R = I_1 \times \cdots \times I_N$ 包含 A, 则 $m(A) \leq m(R)$. 对任 意 $f \prec R$,

$$\int_{\mathbb{R}^N} f = \int_{I_1} \cdots \int_{I_N} f \leqslant |I_1| \cdots |I_N|$$

故 $m(R) \leq |I_1| \cdots |I_N| < +\infty$

显然 Lebesgue 可测 $\Longrightarrow m^*$ -可测. " \longleftarrow " 事实上也成立.

3.3 非负函数的积分

令 $(X,(A),\mu)$ 为测度空间. 我们先来定义非负简单函数的积分, 约定 $0\cdot(+\infty)=0$

定义 3.3.1. 若 $s: X \to [0, +\infty)$ 形如

$$s = a_1 \chi_{E_1} + \dots + a_n \chi_{E_n}, a_1, \dots, a_n \in [0, +\infty), E_1, \dots, E_n$$
 可测

则称 s 为**简单函数**. 等价地,s 是简单函数 \Leftrightarrow s 可测且 s(X) 是有限集. 我们能把 s 写成 $s=a_1\chi_{E_1}+\cdots+a_n\chi_{E_n}$ 满足可测集 E_1,\cdots,E_n 两两不相交. 定义

$$\int_X s d\mu = \sum_i a_i \mu(E_i)$$

引理 3.3.2. 若 $s = \sum_{i} a_{i} \chi_{E_{i}} = \sum_{j} b_{j} \chi_{E_{j}}$ (有限和),且每个 E_{i} , F_{j} 可测,假设 $\forall i \neq i', j \neq j'$ 有 $E_{i} \cap E_{i'} = F_{j} \cap F_{j'} = \emptyset$. 则 $\sum_{i} a_{i} \mu\left(E_{i}\right) = \sum_{j} b_{j} \mu\left(F_{j}\right)$.

证明: $\diamondsuit E_0 = X \setminus \bigcup_i E_i$, 则

$$s = 0 \cdot \chi_{E_0} + \sum_i a_i \chi_{E_i}$$

且 $0 \cdot \chi_{E_0} + \sum_i a_i \chi_{E_i} = \sum_i a_i \chi_{E_i}$. 因此,通过把 $s = \sum_i a_i \chi_{E_i}$ 换成 $0 \cdot \chi_{E_0} + \sum_i a_i \chi_{E_i}$ 可不妨假设 $X = \bigsqcup_i E_i$. 类似地,假设 $X = \bigsqcup_i F_j$. 则

$$\sum_{i} a_{i} \mu \left(E_{i} \right) = \sum_{i} a_{i} \sum_{j} \mu \left(E_{i} \cap F_{j} \right) = \sum_{i,j} a_{i} \mu \left(E_{i} \cap F_{j} \right)$$

类似地

$$\sum_{j} b_{j} \mu \left(F_{j} \right) = \sum_{i,j} b_{j} \mu \left(F_{i} \cap F_{j} \right)$$

若 $\mu(E_i \cap F_j) \neq 0$, 取 $x \in E_i \cap F_j$, 则若 $i \neq i'$ 或 $j \neq j'$ 则 $x \notin E_{i'} \cap F_{j'}$. 故 $s(x) = a_i = b_j$. 因此 $\sum_i a_i \mu(E_i) = \sum_j b_i \mu(F_j)$.

引理 3.3.3. 令 $s,t:X\to [0,+\infty)$ 为简单函数.c 为任意非负实数,则

$$\bullet \quad \int_X cs = c \int_X s$$

•
$$\int_{Y} (s+t) = \int_{Y} s + \int_{Y} t$$

证明: 显然 $\int_X cs = c \int_X s$.

若 $s,t:X\to\mathbb{C}$ 为简单函数, 则可把 s,t 写成有限和 $s=\sum a_iE_i$ 以及 $t=\sum b_iE_i$, 这里 E_1,E_2,\cdots 可测且两两不交. 故

$$\int_{X} (s+t) = \sum_{i} (a_i + b_i) \mu(E_i) = \sum_{i} a_i \mu(E_i) + \sum_{i} b_i \mu(E_i) = \int_{X} s + \int_{X} t.$$

推论 3.3.4. 若 $s,t:X\to [0,+\infty)$ 是简单函数且 $s\leqslant t$,则 $\int_X s\leqslant \int_X t$

证明:
$$\int_X t = \int_X s + \int_X (t - s) \geqslant \int_X s$$
.

 $\diamondsuit L^+(X) = L^+ = \{ 可测函数f : X \to [0, +\infty] \}$

定义 3.3.5. 若 $f \in L^+$, 定义:

$$\int_X f d\mu = \sup \{ \int_X s d\mu : s : X \to [0, +\infty)$$
 为简单函数且 $s \leqslant f \}$

显然, 当 $f \in L^+$ 是简单函数时, 这里积分的定义与之前的定义相同.

若 $A \subset X$ 可测, 定义:

$$\int_{A} f d\mu = \int_{A} f|_{A} d\mu$$

不难得知,

$$\int_{A} f|_{A} d\mu = \int_{X} f \cdot \chi_{A} d\mu$$

$$\mathbb{H} \ f \leqslant g \implies \int f \leqslant \int g.$$

命题 3.3.6. 对任意的 $f \in L^+$,

$$\int_X f = 0 \Longleftrightarrow f = 0 \quad \text{a.e.}(\operatorname{FP} \mu \{ \mathbf{x} \in \mathbf{X} : \mathbf{f}(\mathbf{x}) > 0 \} = 0)$$

证明: 记 $A = \{x \in X : f(x) > 0\}$. 若 $\mu(A) = 0$, 则对任意简单函数 $s : X \to [0, +\infty], 0 \le s \le f$, 记 $s = \sum_i a_i \chi_{E_i}$. 则 $s = \sum_i a_i \chi_{E_i \cap A}$. 而 $\mu(E_i \cap A) \le \mu(A) = 0$. 故

$$\int_{X} s d\mu = \sum_{i} a_{i} \mu \left(E_{i} \cap A \right) = 0$$

故
$$\int_X f d\mu = 0.$$

反之, 假设 $\mu(A) > 0$, 令 $A_n = \{x \in X : f(x) > \frac{1}{n}\}$, 则 $A = \bigcup_{n=1}^{\infty} A_n$. 故 $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

故存在 n 使 $\mu(A_n) > 0$. 由 $f \geqslant \frac{1}{n} \chi_{A_n}$ 知

$$\int_X f d\mu \geqslant \frac{1}{n}\mu(A_n) > 0.$$

类似地:

命题 3.3.7. 若 $f \in L^+$ 满足 $\int_X f < +\infty$, 则 $f < +\infty$ a.e.

证明: \diamondsuit $A = \{x \in X : f(x) = +\infty\}$, 则 $\forall n \in \mathbb{N}$ 有 $f \geqslant n \cdot \chi_A$. 故

$$\int_X f d\mu \geqslant n \cdot \mu(A)$$

故若 $\mu(A) \geqslant 0$, 则 $\int_X f d\mu = +\infty$.

定理 3.3.8 (单调收敛定理 (monotone convergence theorem/Beppo Levi theorem)). 令 $\{f_n\}_{n\in\mathbb{Z}_+}$ 是 L^+ 中一列元素满足 $f_n\leqslant f_{n+1}(\forall n)$. 令 $f(x)=\lim_{n\to\infty}f_n(x)=\sup\{f_n(x):n\in\mathbb{Z}_+\}$,则

$$\int_{Y} f = \lim_{n \to \infty} \int_{Y} f_n$$

证明: 因为 $f_1 \leq f_2 \leq \cdots$,故 $\int_X f_n d\mu$ 关于 n 递增. 故 $\lim_{n \to \infty} \int_X f_n$ 在 $[0, +\infty]$ 中存在. 对任意的 n, 有 $f_n \leq f$, 故 $\int_X f_n \leq \int_X f$. 故

$$\int_X f \geqslant \lim_{n \to \infty} \int_X f_n$$

要证 $\int_X f \leqslant \lim_{n \to \infty} \int_X f_n$,只需对任意简单函数 $s: X \to [0, +\infty)$ 满足 $s \leqslant f$ 来证明 $\int_X s \leqslant \lim_{n \to \infty} \int_X f_n$. 只需对 $\forall 0 < r < 1$ 证明

$$\int_X rs = r \int_X s \leqslant \lim_{n \to \infty} \int_X f_n$$

故通过把 s 换成 rs, 我们不妨假设 $\forall x \in X$ 有

$$s(x) > 0 \implies s(x) < f(x)$$

令
$$Y = \{x \in X : s(x) > 0\}$$
, 则 $x \in Y \implies s(x) < f(x)$. 只需证 $\int_Y s \leqslant \lim_{n \to \infty} \int_Y f_n$.

对任意的 n, 令 $A_n = \{x \in Y : f_n(x) > s(x)\}$, 则 $Y = \bigcup_{n=1}^{\infty} A_n$, 故 $\mu(Y) = \lim_{n \to \infty} \mu(A_n)$. 我们有:

$$\int_{Y} s = \lim_{n \to \infty} \int_{A_n} s = \lim_{n \to \infty} \int_{Y} \chi_{A_n} \cdot s$$

(记有限和 $s = \sum_i a_i \chi_{E_i}, E_i \subset Y$ 可测. 则由 $E_i = \bigcup_{n=1}^{\infty} E_i \cap A_n$ 知 $\mu(E_i) = \lim_{n \to \infty} \mu(E_i \cap A_n)$. 故

$$\int_{Y} s = \sum_{i} a_{i} \mu\left(E_{i}\right) = \lim_{n \to \infty} \sum_{i} a_{i} \mu\left(E_{i} \cap A_{n}\right) = \lim_{n \to \infty} \int_{Y} \chi_{A_{n}} \cdot s$$

而 $\chi_{A_n} \cdot s \leqslant f_n$, 从而

$$\int_{Y} \chi_{A_n} \cdot s \leqslant \int_{Y} f_n$$

取
$$n \to \infty$$
 得 $\int_Y s \leqslant \lim_{n \to \infty} \int_Y f_n$.

命题 3.3.9. 对任意 $f \in L^+$, 存在递增简单函数列 $s_n: X \to [0, +\infty)$ 满足

$$\forall x \in X, f(x) = \lim_{n \to \infty} s_n(x)$$

证明: 先假设 $f(X) \subset [0, +\infty)$, 对任意 n, 令

$$s_n(x) = \begin{cases} \frac{k}{2^n} & (\stackrel{\text{def}}{=} \frac{k}{2^n} \leqslant f(x) < \frac{k+1}{2^n}, \\ k = 0, 1, 2, \dots, 4^n) \\ 0 & (\stackrel{\text{def}}{=} 2^n + 2^{-n} \leqslant f(x)) \end{cases}$$

即若
$$A_k = \{x \in X : \frac{k}{2^n} \leqslant f(x) < \frac{k+1}{2^n}\}$$
(它可测), 则

$$s_n = \sum_{k=0}^{4^n} \frac{k}{2^n} \cdot \chi_{A_k}, \forall x \in X$$

若
$$f(x) \geqslant 2^n + 2^{-n}$$
,则显然 $s_n(x) = 0 \leqslant s_{n+1}(x)$. 若 $\frac{k}{2^n} \leqslant f(x) < \frac{k+1}{2^n}$,则 $\frac{2k}{2^{n+1}} \leqslant f(x) < \frac{2k+2}{2^{n+1}}$,故 $s_{n+1}(x) \geqslant \frac{2k}{2^{n+1}} = s_n(x)$. 因此 $s_n(x)$ 关于 n 递增,且有

因此 $s_n(x)$ 关于 n 递增且 $\lim_{n\to\infty} s_n(x) = f(x)$.

一般地, 若 $f(X)\subset [0,+\infty]$, 令 $A=f^{-1}([0,+\infty))$, 令 $t_n:X\to [0,+\infty)$ 为简单函数且逐点 递增收敛于 $f\cdot\chi_A$. 则

$$s_n = t_n + n \cdot \chi_{X \setminus A}$$

为所求函数列.

命题 3.3.10. 若 $f, g \in L^+, c \ge 0$, 则

•
$$\int cf = c \int f$$

•
$$\int (f+g) = \int f + \int g$$

证明: 取简单递增函数列 $s_n, t_n: X \to [0, +\infty)$ 满足:

$$\forall x \in X, \lim_{n \to \infty} s_n(x) = f(x), \lim_{n \to \infty} t_n(x) = g(x)$$

我们证过 $\int (s_n + t_n) = \int s_n + \int t_n$. 两边取极限并由单调收敛定理得

$$\int (f+g) = \int f + \int g$$

$$\int cf = c \int f \text{ 的证明类似.}$$

推论 3.3.11. 若 $A, B \subset X$ 可测且不相交, $f \in L^+$, 则

$$\int_{A \cup B} f = \int_{A} f + \int_{B} f$$

证明:

$$\int_{A \cup B} f = \int_{X} \chi_{A \cup B} \cdot f = \int_{X} \chi_{A} \cdot f + \int_{X} \chi_{B} \cdot f = \int_{A} f + \int_{B} f$$

推论 3.3.12. 若 $f_1, f_2, \dots \in L^+$, 则

$$\int_{X} \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int_{X} f_n$$

证明: $\Leftrightarrow g_n = f_1 + \cdots + f_n, g(x) = \lim_{n \to \infty} g_n(x)$. 则

$$\int_{X} \sum_{n=1}^{\infty} f_n = \int_{X} g = \int_{X} \lim_{n \to \infty} g_n = \lim_{n \to \infty} \int_{X} g_n$$

$$= \lim_{n \to \infty} \left(\int_{X} f_1 + \dots + \int_{X} f_n \right)$$

$$= \sum_{n=1}^{\infty} \int_{X} f_n$$

注记. 单调收敛定理对应了

$$A_1 \subset A_2 \subset \cdots \implies \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu\left(A_n\right)$$

以下命题对应了

$$\frac{A_1 \supset A_2 \supset \cdots}{\mu(A_1) < \infty} \} \implies \mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu\left(A_n\right)$$

命题 3.3.13. 若可测函数列 $f_n: X \to [0, +\infty]$ 关于 n 递减且 $\int_X f_1 < +\infty$, 则

$$\lim_{n \to \infty} \int_X f_n = \int_X \lim_{n \to \infty} f_n$$

证明: 令 $f(x) = \lim_{n \to \infty} f_n(x)$, 则 $\int f_n + \int (f_1 - f_n) = \int f_1 = \int f + \int (f_1 - f)$. 这五项中每一项都不超过 $\int_X f_1$ 属于 $[0, +\infty)$. 且 $\{f_1 - f_n\}$ 关于 n 递增. 故由单调收敛定理,

$$\lim_{n\to\infty} \int (f_1 - f_n) = \int (f_1 - f)$$

代回上式知

$$\lim_{n \to \infty} \int f_n = \int f$$

注记. 若 $\int_X f_1 = +\infty$ 则以上结论可能不成立, 例如

$$\lim_{n \to \infty} \int_{\mathbb{D}} \chi_{[n, +\infty)} = +\infty$$

$$\coprod_{\mathbb{R}} \int_{\mathbb{R}} \lim_{n \to \infty} \chi_{[n, +\infty)} = \int_{\mathbb{R}} 0 = 0.$$

命题 3.3.14. 令 $\{f_n\}\subset L^+$. 令 $\left(\sup_n f_n\right)(x)=\sup_n f_n(x), \left(\inf_n f_n\right)(x)=\inf_n f_n(x), \ \emptyset$

$$\sup_{n} \int_{X} f_{n} \leqslant \int_{X} \sup_{n} f_{n} \vee \mathcal{R} \inf_{n} \int_{X} f_{n} \geqslant \int_{X} \inf f_{n}$$

(注意特例 $\sup_{n}(a_n+b_n) \leqslant \sup_{n}a_n + \sup_{n}b_n, \inf_{n}(a_n+b_n) \geqslant \inf_{n}a_n + \inf_{n}b_n$)

证明: $\diamondsuit \varphi(x) = \sup_{n} f_n(x), \psi(x) = \inf_{n} f_n(x),$ 则对任意 n 有

$$\int_X f_n \leqslant \int_X \varphi 以及 \int_X f_n \geqslant \int_X \psi$$

分别取 \sup_{n} 和取 \inf_{n} 即可.

引理 3.3.15 (Fatou 引理). 令 $\{f_n\} \subset L^+$, 则

(1)
$$\liminf_{n\to\infty} \int_X f_n \geqslant \int_X \liminf_{n\to\infty} f_n$$

(2) 若
$$\int_X \sup_n f_n < +\infty$$
, 则 $\limsup_{n \to \infty} \int_X f_n \leqslant \int_X \limsup_{n \to \infty} f_n$

(回忆若
$$\{a_n\}\subset\mathbb{R}$$
 则 $\limsup_{n\to\infty}a_n=\lim_{n\to\infty}\left(\sup_{k\geqslant n}a_k\right)$ 以及 $\liminf_{n\to\infty}a_n=\lim_{n\to\infty}\left(\inf_{k\geqslant n}a_k\right)$)

证明: 我们只证明 (2),(1) 是类似的.

$$\forall n, \diamondsuit g_n(x) = \sup_{k \geqslant n} f_k(x),$$
则 $\int_X g_1 < +\infty$, 且 g_n 关于 n 递增, 故

$$\lim_{n \to \infty} \int_X g_n = \int_X \lim_{n \to \infty} g_n = \int_X \limsup_{n \to \infty} f_n$$

而

$$\int_X g_n = \int_X \sup_{k \geqslant n} f_k \geqslant \sup_{k \geqslant n} \int_X f_k$$

取极限得 $\lim_{n\to\infty}\int_X g_n \geqslant \limsup_{n\to\infty}\int_X f_n$.

注记. 一般 Fatou 引理仅指 (1), 因为 (2) 可由 (1) 推得.

推论 3.3.16 (Lebesgue 控制收敛定理的非负版本). 令 $\{f_n\} \subset L^+$ 逐点收敛到 $f: X \to [0, +\infty]$. 若存在 $g \in L^+$ 满足 $\int_X g < +\infty$ 且 $\forall n$ 有 $f_n \leqslant g$,则 $\lim_{n \to \infty} \int_X f_n$ 存在且等于 $\int_X \lim_{n \to \infty} f_n$.

证明: 由 Fatou 引理 (1),(2),

$$\begin{split} \int_X \lim_{n \to \infty} f_n &= \int_X \liminf_{n \to \infty} f_n \leqslant \liminf_{n \to \infty} \int_X f_n \\ &\leqslant \limsup_{n \to \infty} \int_X f_n \leqslant \int_X \limsup_{n \to \infty} f_n \\ &\leqslant \int_X \lim_{n \to \infty} f_n \end{split}$$

因此上式中不等号均为等号.

3.4复值函数的积分

 $令(X,\mu)$ 为测度空间.

定义 3.4.1. 令 $f: X \to \mathbb{R}$ 可测. 令

$$f^+ = \sup\{f(x), 0\}, f^- = f^+ - f = \sup\{-f(x), 0\}$$

分别称为 f 的**正部**和**负部**. 注意 $|f| = f^+ + f^-$. 我们说 f **可积**, 若 $\int_{Y} |f| < +\infty$. 此时我们定义

$$\int_X f = \int_X f^+ - \int_X f^-$$

记 $L^1(X,\mathbb{R}) = L^1(X,\mu,\mathbb{R}) = \{$ 可积 $f: X \to \mathbb{R} \}.$

命题 3.4.2. $L^1(X, \mathbb{R})$ 是 \mathbb{R} -线性空间, 且映射

$$\int_X: f \in L^1(X,\mathbb{R}) \mapsto \int_X f d\mu \in \mathbb{R}$$

是线性的.

证明: 若 $a, b \in \mathbb{R}, f, g \in L^1(X, \mathbb{R}), 则$

$$\int_X |af + bg| \le \int_X (|a| \cdot |f| + |b| \cdot |g|) = |a| \int_X |f| + |b| \int_X |g| < +\infty$$

因此 $af + bg \in L^1(X, \mathbb{R})$.

若 $a \ge 0$, 则

$$\int_{X} af = \int_{X} (af)^{+} - \int_{X} (af)^{-} = \int_{X} af^{+} - \int_{X} af^{-}$$
$$= a \left(\int_{X} f^{+} - \int_{X} f^{-} \right) = a \int_{X} f$$

显然 $\int_{Y} -f = \int_{Y} f^{-} - \int_{Y} f^{+} = - \int_{Y} f$, 因此

$$\int_X -af = -\int_X af = -a \int_X f$$

故
$$\int_X af = a \int_X f$$
 对任意 $a \in \mathbb{R}$ 成立. 令 $h = f + g$, 故 $h^+ - h^- = h = f + g = f^+ - f^- + g^+ - g^-$, 也即 $h^+ + f^- + g^- = h^- + f^+ + g^+$.

$$\int_{X} h^{+} + \int_{X} f^{-} + \int_{X} g^{-} = \int_{X} h^{-} + \int_{X} f^{+} + \int_{X} g^{+}$$
$$\int_{X} h^{+} - \int_{X} h^{-} = \int_{X} f^{+} - \int_{Y} f^{-} + \int_{X} g^{+} - \int_{X} g^{-}$$

故
$$\int_{\mathcal{X}} h = \int_{\mathcal{X}} f + \int_{\mathcal{X}} g.$$

定义 3.4.3. 若 $f: X \to \mathbb{C}$ 可测 (等价地,Ref,Imf 可测, 从而 $|f| = \sqrt{\operatorname{Re} f^2 + \operatorname{Im} f^2}$ 可测) 则称 f 可积若 $\int_X |f| < +\infty$ (注意由 $|\operatorname{Re} f|, |\operatorname{Im} f| \leqslant |f| \leqslant |\operatorname{Re} f| + |\operatorname{Im} f|$ 知 f 可积 \Longleftrightarrow Ref 和 Imf 都可积). 令

$$\int_X f = \int_X \operatorname{Re} f + i \int_X \operatorname{Im} f$$

 $\diamondsuit L^1(X) = L^1(X,\mathbb{C}) = L^1(X,\mu,\mathbb{C}) = \{ 可积 f : X \to \mathbb{C} \}.$

注记. 由于 \int_X 有界,且其算子范数 ≤ 1 . 故 $\|\int\|_{L^1} = \int_X |f| d\mu$ 是"半范数". 定义随后给出. 若 V 是 \mathbb{C} -线性空间, $\Lambda: V \to \mathbb{R}$ 是实线性算子,则

$$\Phi: V \to \mathbb{C}, v \mapsto \Lambda(v) - i\Lambda(iv)$$

是 \mathbb{C} -线性的. 若 V 是赋范线性空间, 则 $\|\Lambda\| = \|\Phi\|$. Φ 是 Λ 的复化 $\Lambda(v) = \operatorname{Re}\Phi(v)$. 即对 $r \geqslant 0, \forall u$ 有

(分析一作业 12 补充题 9)

定义 3.4.4. 映射 $\|\cdot\|: V \to [0, +\infty)$ 称为半范数若 $\forall a \in \mathbb{C}, \forall u, v \in V$ 有:

- $||au|| = |a| \cdot ||u||$
- $||u+v|| \le ||u|| + ||v||$

(即它和范数相比少了 $||u|| = 0 \implies u = 0$)

注记. 下划线式子对于 $\|\cdot\|$ 是半范数时也成立. 事实上, 取 $\theta \in \mathbb{R}$ 使 $e^{i\theta}\Phi(u) \in \mathbb{R}$, 则 $\|\Phi(u)\| = \|\Phi(e^{i\theta}u)\| \leqslant r\|e^{i\theta}u\| = r\|u\|$.

命题 3.4.5. $L^1(X)$ 是 \mathbb{C} -线性空间且 $||f||_1 = ||f||_{L^1} = \int_X |f|$ 定义了 $L^1(X)$ 上的半范数. 即满足 $\forall a \in \mathbb{C}, \forall f, g \in L^1(X)$ 有

$$||af||_1 = |a| \cdot ||f||_1, ||f + g||_1 \le ||f||_1 + ||g||_1$$

且映射

$$\int_X : L^1(X) \to \mathbb{C}, f \mapsto \int_X f$$

是 ℂ-线性的.

证明: 对任意 $a \in \mathbb{C}, f, g \in L^1(X)$,

$$||f+g||_1 = \int_X |f+g| \leqslant \int_X (|f|+|g|) = \int_X |f| + \int_X |g| = ||f||_1 + ||g||_1 < +\infty$$

$$||af||_1 = \int_X |af| = |a| \int_X f = |a| \cdot ||f||_1 < +\infty$$

故 $L^1(X)$ 是 \mathbb{C} -线性映射且 $\|\cdot\|_1$ 是半范数.

$$\Lambda:L^1(X)\to\mathbb{R},f\mapsto\int_X\mathrm{Re}f$$
 是 \mathbb{R} -线性的. 而

$$\Lambda(f) - i\Lambda(if) = \int_X \operatorname{Re} f - i \int_X \operatorname{Re}(if)$$
$$= \int_X \operatorname{Re} f - i \int_X (-\operatorname{Im} f) = \int_X f$$

故
$$f \mapsto \int_X f \ \mathbb{C}$$
-线性的.

命题 3.4.6. $\forall f \in L^1(X)$ 有 $|\int_X f| \leqslant \int_X |f|$.

证明: 为证明 $|\Phi(f)| \leq ||f||_{L^1}$, 只需证明 $|\Lambda(f)| \leq ||f||_{L^1}$. 而

$$\begin{split} |\Lambda(f)| &= \left| \int_X \operatorname{Re} f \right| \\ &= \left| \int_X \operatorname{Re} f^+ - \int_X \operatorname{Re} f^- \right| \\ &\leqslant \int_X \operatorname{Re} f^+ + \int_X \operatorname{Re} f^- = \int_X \operatorname{Re} f^+ + \operatorname{Re} f^- \\ &= \int_X |\operatorname{Re} f| \leqslant \int_X |f| \\ &= ||f||_{L^1} \end{split}$$

因此即有 $\left| \int_X f \right| \leqslant \int_X |f|.$

注记. 若 $\|\cdot\|$ 是 \mathbb{C} -线性空间 V 上的半范数,则

$$V_0 = \{ v \in V : ||v|| = 0 \}$$

是 V 的线性子空间. 则 $(V/V_0, \|\cdot\|)$ 是一个赋范 \mathbb{C} -线性空间. 这里 $v \in V$ 则 $\|v + V_0\| := \|v\|$. 我们常把 $(V, \|\cdot\|)$ 和 $(V/V_0, \|\cdot\|)$ 看作一样的对象.

例子. 若 $V = L^1(X, \mu)$, 半范数取作 $\|\cdot\|_{L^1}$, 则对 $f \in V$ 有

$$||f||_{L^1} = 0 \Longleftrightarrow \int_X |f| = 0 \Longleftrightarrow f = 0$$
 a.e.

令 $V_0 = \{f \in L^1(X,\mu) : f = 0 \quad \text{a.e.} \}$. 则 $(V/V_0, \|\cdot\|_{L^1})$ 是赋范线性空间.

事实上, 我们常常把 $L^1(X,\mu)$ 看作 V/V_0 . 即 $L^1(X,\mu)$ 中元素是可积的 $f:X\to\mathbb{C}$ 地等价类,等价关系为 $g\sim f\Longleftrightarrow g=f$ a.e.

则
$$\int_X : L^1(X,\mu) \to \mathbb{C}$$
 有算子范数 ≤ 1 .

定理 3.4.7 (控制收敛定理 (Dominated Convergence Theorem)). 令 $\{f_n\} \subset L^1(X,\mu)$, 几乎处处收敛到可测的 $f: X \to \mathbb{C}$ (即在一个零测集 A 外 f_n 逐点收敛到 f) 且存在 $g \in L^1(X,\mu)$, $g \geqslant 0$ 满足 $\forall n$ 有 $|f_n| \leqslant g$ a.e. 则

$$f \in L^1(X,\mu)$$
 $\mathbb{H} \int_X f = \lim_{n \to \infty} \int_X f_n$

证明: 取零测集 A, B_1, B_2, \dots , 在 A 外 $f_n \rightarrow f$, 在 B_n 外 $|f_n| \leq g$. 则

$$C = A \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$

是零测集. 令 $Y = X \setminus C$. 那么在 $Y \perp |f| = \lim_{n \to \infty} |f_n| \leq g$. 故

$$\int_X |f| = \int_Y |f| \leqslant \int_X g < +\infty$$

只需证 $\int_Y f = \lim_{n \to \infty} \int_Y f_n$. 我们证明过当 $f_n \ge 0$ 时这成立. 现在对于一般情况令 $h_n = f - f_n$. 注意

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le g(x)$$

故 $|h_n| \leqslant 2g$. 故

$$\lim_{n \to \infty} \int_X |h_n| = \int_X \lim_{n \to \infty} |h_n| = 0$$

而
$$\left| \int_X h_n \right| \leqslant \int_X |h_n|$$
,故 $\lim_{n \to \infty} \int_X h_n = 0$.
这就证明了 $\int_X f = \lim_{n \to \infty} \int_X f_n$.

命题 3.4.8. 假设 $\mu(X) < +\infty$, $(f_{\alpha})_{\alpha \in \mathbb{J}}$ 是 $L^{1}(X,\mu)$ 中的网且一致收敛到可测的 $f: X \to \mathbb{C}$, 则

$$f \in L^1(X,\mu)$$
 L $\lim_{\alpha} \int_X f_{\alpha} = \int_X f$

证明:

$$\lim_{\alpha} \int_{Y} |f - f_{\alpha}| \leq \lim_{\alpha} \mu(x) \|f - f_{\alpha}\|_{l^{\infty}} = 0$$

故存在 α 使 $\int_X |f - f_\alpha| < +\infty$, 故

$$\int_{X} |f| \leqslant \int_{X} |f - f_{\alpha}| + \int_{X} |f_{\alpha}| < +\infty$$

从而 $f \in L^1(X)$, 且

$$\left| \int_{X} f - \int_{X} f_{\alpha} \right| \leqslant \int_{X} \left| f - f_{\alpha} \right| \to 0$$

注记. 用以上命题和 Egoroff 定理可以证明控制收敛定理.

补充 (证明见第四次作业):

定理 3.4.9 (Egoroff 定理). 假设 μ 是有限测度, 即 $\mu(X) < +\infty$. 假设函数列 $\{f_n\}$ 逐点收敛. 证明对任意 $\delta > 0$ 都存在 X 的可测子集 A 满足 $\mu(X \setminus A) \leq \delta$ 且 $\{f_n\}$ 在 A 上一致收敛.

L_p 空间

令 (X,μ) 为测度空间. 考虑满足 $\frac{1}{p}+\frac{1}{q}=1$ 的 $p,q\in[1,+\infty]$. 若 $f:X\to\mathbb{C}$ 或 $f:X\to[0,+\infty]$. 若 $p<+\infty$ 令

$$||f||_{L^p} = ||f||_p = \left(\int_Y |f|^p\right)^{\frac{1}{p}}$$

命题 3.5.1. 假设 $\frac{1}{p} + \frac{1}{q} = 1, 1 . 则有$

- Hölder 不等式 $\int_X fg \leqslant ||f||_p \cdot ||g||_q$
- Minkowski 不等式 $||f + g||_p \le ||f||_p + ||g||_p$

证明: 若 f,g 是特征函数 $X \to [0,+\infty)$. 记 $f = \sum a_i \chi_{E_i}, g = \sum b_i \chi_{E_i}$, 这里 $E_i \cap E_j = \emptyset$ 若 $i \neq j$. 且 (由 $\int |f|^p, \int |g|^p < +\infty$) 可假设 $\mu(E_i) < +\infty$. $fg = \sum a_i b_i \chi_{E_i}$. 由有限求和的 Hölder 不等式:

$$\int_{X} fg = \sum_{i} a_{i}b_{i}\mu(E_{i})$$

$$= \sum_{i} a_{i}\mu(E_{i})^{\frac{1}{p}} \cdot b_{i}\mu(E_{i})^{\frac{1}{q}}$$

$$\leq \left(\sum_{i} a_{i}^{p}\mu(E_{i})\right)^{\frac{1}{p}} \left(\sum_{i} b_{i}^{q}\mu(E_{i})\right)^{\frac{1}{q}}$$

$$= \|f\|_{p} \cdot \|g\|_{q}$$

一般情况下, 取递增简单函数列 $s_n, t_n: X \to [0, +\infty), s_n \to f, t_n \to g$. 则由单调收敛定理,

$$\int_{X} fg = \lim_{n \to \infty} \int_{X} s_{n} t_{n}$$

$$\leq \lim_{n \to \infty} \left(\int_{X} s_{n}^{p} \right)^{\frac{1}{p}} \cdot \left(\int_{X} t_{n}^{q} \right)^{\frac{1}{q}}$$

$$= \left(\int_{X} f^{p} \right)^{\frac{1}{p}} \cdot \left(\int_{X} g^{q} \right)^{\frac{1}{q}}$$

Hölder 不等式得证.Minkowski 不等式的证明类似.

因此, 若 $f, g \in X \to \mathbb{C}$ 可测, 则

- Hölder 不等式 $\left| \int fg \right| \leq \int |fg| \leq ||f||_p \cdot ||g||_q$
- Minkowski 不等式 $||f+g||_p \leq |||f|+|g||_p \leq ||f||_p + ||g||_p$

显然若 $a \in \mathbb{C}$ 则 $||af||_p = |a| \cdot ||f||_p$. 因此

$$L^p(X,\mu) = \{ \overline{\Pi} / M f : X \to \mathbb{C} : \int_X |f|^p < +\infty \}$$

是 \mathbb{C} -线性空间, 且 $\|\cdot\|_p$ 是 $L^p(X,\mu)$ 上的半范数. 显然

$$||f||_n = 0 \iff f = 0$$
 a.e.

因此, 若把 $L^p(X,\mu)$ 中元素看作满足 $\int_X |f|^p < +\infty$ 的可测 $f: X \to \mathbb{C}$ 所处的 "几乎处处相等 等价类",则 $\|\cdot\|_p$ 是 $L^p(X,\mu)$ 上的范数.

我们常把 $L^p(X,\mu)$ 看成这些等价类构成的集合.

注记. $||f||_p$ 指 $||f||_{L^p}$, 除非测度是计数测度, 否则 $||f||_{l^p}$ 不会写成 $||f||_p$.

定理 3.5.2 (Riesz-Fischer 定理). 令 $1 \leq p \leq +\infty$, 则 $L^p(X,\mu)$ 完备. 且若 $\{f_n\}$ 在 $L^p(X,\mu)$ 中 $(L^p$ 范数下) 收敛到 $f \in L^p(X,\mu)$, 则 $\{f_n\}$ 有子列 a.e. 收敛到 f.

注记. (1) 若 f_n 在 L^p 范数下收敛到 $f,g \in L^p(X,\mu)$, 则 $||f-g||_p = 0$, 故 f = g a.e.

- (2) 若度量空间 Y 中点列 $\{y_n\}$ 是 Cauchy 列, 且有子列收敛到 y, 则 $\lim_{n\to\infty} y_n = y$.
- (3) L^{∞} 的定义及证明稍后给出. 并且当 $p = +\infty$ 时有 $\{f_n\}$ a.e. 收敛到 f.

证明: 我们先证 $1 \leq p < +\infty$ 的情况. 取 $L^p(X,\mu)$ 中的 Cauchy 列 $\{f_n\}_{n \in \mathbb{Z}_+}$. 构造子列 $\{f_{n_k}\}$ 如下: 令 $n_1 = 1$. 若 $n_1 < \cdots < n_{k-1}$ 已选好 (n > 1). 取 $n_k > n_{k-1}$ 使

$$\forall m \geqslant n_k \bar{\uparrow} \|f_m - f_{n_k}\| \leqslant \frac{1}{2^k}$$

这样取得的子列 $\{g_k = f_{n_k}\}_{k \in \mathbb{Z}_+}$ 满足 $\|g_{k+1} - g_k\| \leqslant \frac{1}{2^k}$. 我们下证明 g_k 几乎处处收敛.

令
$$h_1 = g_1, h_2 = g_2 - g_1, h_3 = g_3 - g_2, \cdots$$
, 则 $g_k = h_1 + h_2 + \cdots + h_k$. 要证 $\sum_{k=1}^{\infty} h_k$ 几乎处处

收敛, 只需证 $\sum_{k=1}^{\infty} |h_k|$ 几乎处处收敛. 注意 $\|h_k\|_p \leqslant \frac{1}{2^{k-1}} (k \geqslant 2)$, 由单调收敛定理,

$$\int_{X} \left(\sum_{k=1}^{\infty} |h_{k}| \right)^{p} = \int_{X} \lim_{n \to \infty} \left(\sum_{k=1}^{n} |h_{k}| \right)^{p} = \lim_{n \to \infty} \int_{X} \left(\sum_{k=1}^{n} |h_{k}| \right)^{p} = \lim_{n \to \infty} \left\| \sum_{k=1}^{n} |h_{k}| \right\|_{p}^{p} \\
\leq \lim_{n \to \infty} \left(\|h_{1}\| + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} \right)^{p} \\
\leq +\infty$$

故
$$\left(\sum_{k=1}^{\infty}|h_k|\right)^p<+\infty$$
 a.e.
$$\diamondsuit \ f(x)=\sum_{k=1}^{\infty}h_k(x)=\lim_{k\to\infty}g_k(x)$$
(若收敛, 不收敛则令 $f(x)=0$), 则

$$||f||_p^p = \int_X \left| \sum_{k=1}^\infty h_k \right|^p \leqslant \int_X \left(\sum_{k=1}^\infty |h_k| \right)^p < +\infty$$

最后, 用类似的计算可得

$$||f - g_m||_p^p = \left\| \sum_{k=m+1}^{\infty} h_k \right\|_p^p \le \int \left(\sum_{k=m+1}^{\infty} |h_k| \right)^p$$

$$\le \lim_{n \to \infty} \left(\frac{1}{2^m} + \frac{1}{2^{m+1}} + \dots + \frac{1}{2^{n-1}} \right)^p = \left(\frac{1}{2^{m-1}} \right)^p \to 0$$

故
$$\lim_{n\to\infty} ||f - f_n||_p = 0.$$

我们来讨论 L^{∞} 空间. 若 $f: X \to \mathbb{C}$ 可测, 令

$$||f||_{L^{\infty}} = \inf\{a \geqslant 0 : \mu(\{|f| > a\}) = 0\}$$

注意 $\|f\|_{L^{\infty}} \leq \|f\|_{l^{\infty}}$, 且若 f = g a.e., 则 $\|f\|_{L^{\infty}} = \|g\|_{L^{\infty}}$, 但 $\|f\|_{l^{\infty}}$ 与 $\|g\|_{l^{\infty}}$ 不一定相同. 对 测度空间, $\|f\|_{\infty}$ 一般指 $\|f\|_{L^{\infty}}$. 当 μ 是计数测度时 $l^{\infty} = L^{\infty}$.

引理 3.5.3. 令 $b = ||f||_{L^{\infty}}$,则 $\mu(\{|f| > b\}) = 0$. 特别地 $||f||_{L^{\infty}} = 0 \iff f = 0$ a.e.

证明:由

$$\{|f| > b\} = \bigcup_{n \in \mathbb{Z}_+} \{|f| > b + \frac{1}{n}\}$$

和 μ 的次可数可加性易得.

注记. 以上引理告诉我们, $b=\|f\|_{L^{\infty}}$ 是最小的满足 $\mu\{x\in X:|f(x)|>b\}=0$ 的非负数. 令 $A=\{x\in X:|f(x)|\leqslant \|f\|_{L^{\infty}}\},$ 则 $\|f|_A\|_{l^{\infty}}=\|f\|_{L^{\infty}}.$

引理 3.5.4. 令 $\{f_n\}$ 为一列可测函数 $f_n: X \to \mathbb{C}$, 则以下等价:

- (1) $\lim_{n \to \infty} ||f_n||_{L^{\infty}} = 0.$
- (2) 存在可测子集 $A \subset X$ 满足 $\mu(X \setminus A) = 0$ 且 $\lim_{n \to \infty} \sup_{x \in A} |f_n(x)| = 0$.

证明: $(2) \Longrightarrow (1)$ 是显然的, $(1) \Longrightarrow (2)$: 假设 (1), 令

$$A_n = \{x \in X : |f_n(x)| \leqslant ||f_n||_{L^{\infty}}\}$$

则 $\mu(X \setminus A_n) = 0$. $\diamondsuit A = \bigcap_{n=1}^{\infty} A_n$. 则

$$\mu(X \setminus A) \leqslant \sum_{n=1}^{\infty} \mu(X \setminus A_n) = 0$$

 $\coprod \lim_{n \to \infty} ||f_n||_{l^{\infty}(A)} = 0.$

定义 3.5.5. 令

$$L^{\infty}(X,\mu) = \{ \overline{\eta} Mf : X \to \mathbb{C}, \|f\|_{L^{\infty}} < +\infty \}$$

则 $\forall f \in L^{\infty}(X, \mu)$, 存在 $A \subset X$ 可测使

$$||f|_A||_{l^\infty(A)} = ||f||_{L^\infty}$$

由此易知 $\|\cdot\|_{L^{\infty}}$ 是 $L^{\infty}(X,\mu)$ 上的半范数.

若令 $L^{\infty}(X,\mu)$ 中元素为满足 $||f||_{L^{\infty}} < +\infty$ 的 f 的等价类, 其中

$$f$$
与 g 等价 \iff $||f - g||_{L^{\infty}} = 0 \iff f = g$ a.e.

则 $\|\cdot\|_{L^{\infty}}$ 是 L^{∞} 上的一个范数.

Riesz-Fischer 定理 $L^{\infty}(X,\mu)$ 版证明: 令 $\{f_n\}_{n\in\mathbb{Z}_+}$ 为 $L^{\infty}(X,\mu)$ 中 Cauchy 列. 对任意 $m,n\in\mathbb{Z}_+$, 取

$$A_{m,n} = \{x \in X : ||f_m(x) - f_n(x)|| \le ||f_m - f_n||_{L^{\infty}} \}$$

$$\diamondsuit A = \bigcap_{m,n} A_{m,n}, \ \mathbb{M} \ \mu(X \setminus A) = 0.$$

则 $\{f_n|_A\}$ 是 $l^{\infty}(A)$ 中的 Cauchy 列. 故在 l^{∞} 范数下收敛到

$$f \in l^{\infty}, f : A \to \mathbb{C}$$
可测

即 $||f_n - f||_{\infty} = 0$. 对于 $x \in X \setminus A$, 令 f(x) = 0, 则有 $\lim_{n \to \infty} f_n = f$ a.e. 且 $f \in L^{\infty}(X, \mu)$.

命题 3.5.6. 令 $1 \leq p \leq \infty$, 则对任意 $f \in L^p(X,\mu)$, 存在 $L^p(X,\mu)$ 内简单函数列 $s_n: X \to \mathbb{C}$ 满足 $\lim_{n \to \infty} \|f - s_n\|_p = 0$.(即简单函数在 L^p 空间内稠密)

证明: 通过考虑 $\operatorname{Re} f, \operatorname{Im} f,$ 只需证 $f: X \to \mathbb{R}$ 的情形. 考虑 $f^+, f^- \in L^p(X, \mu),$ 只需证 f^+, f^- 能被简单函数逼近. 故不妨设 $f \geqslant 0$.

若 $1\leqslant p<+\infty$, 取递增简单函数列 $s_n:X\to [0,+\infty), s_n\longrightarrow f$, 则 $0\leqslant s_n\leqslant f$. 故

$$\int |s_n|^p \leqslant \int |f|^p < +\infty$$

 $s_n \in L^p(X,\mu)$, 且 $|f-s_n|^p \leqslant f^p \in L^1(X,\mu)$, 故由控制收敛定理知:

$$\lim_{n \to \infty} \int |f - s_n|^p = \int \lim_{n \to \infty} |f - s_n|^p = 0$$

若 $p=+\infty$, 令 $\|f\|_{L^\infty}=M$. 令 $s_n(x)=\frac{i}{n}M$ 若 $\frac{i}{n}M\leqslant f(x)\leqslant \frac{i+1}{m}M(0\leqslant i\leqslant n)$, 其它 区域 s(x) 取为 0. 则

$$\lim_{n \to \infty} \|f - s_n\|_{L^{\infty}} = 0$$

注记. $L^2(X,\mu)$ 的 L^2 范数由内积 $\langle f,g\rangle=\int_X f\overline{g}$ 诱导 $(f,g\in L^2)$. 这里 $f\overline{g}\in L^1(X,\mu)$, 因为由 Hölder 不等式

$$\int_{X} |f\overline{g}| \le \sqrt{\int_{X} |f|^{2} \cdot \sqrt{\int_{X} |g|^{2}}} = ||f||_{2} \cdot ||g||_{2} < +\infty$$

因此 $\int_X f\overline{g}$ 可定义. 故在此内积下 $L^2(X,\mu)$ 是 Hilbert 空间. 由 Riesz-Fréchet 定理

$$f \in L^2(X,\mu) \mapsto \Psi_f \in L^2(X,\mu)^*, \Psi_f(g) = \int_X g\overline{f}$$

是反线性酉算子, 即**反酉算子** (anti unitary). 故

$$f \in L^2(X,\mu) \mapsto \int_X (\cdot \cdot) \cdot f \in L^2(X,\mu)^*$$

是酉算子. 简单来说,

$$L^2(X,\mu) \cong L^2(X,\mu)^*$$

在这个意义下, $L^2(X,\mu)$ 的弱拓扑和弱 * 拓扑 (作为 $L^2(X,\mu)$ 的对偶空间) 等价.

定义 3.5.7. 一个测度空间 (X,μ) 的可测子集 E 称为 σ -有限的, 若 $E = \bigcup_{n=1}^{\infty} E_n$, 其中 $\{E_n\}$ 是 一列 E 的可测子集, 且对任意 n 有 $\mu(E_n) < +\infty$.(注意通过把 E_n 换成 $\bigcup_{i=1}^{n} E_i$, 我们总能再要求 $E_1 \subset E_2 \subset \cdots$)

更一般地,若 $1 则有等距线性同构 <math display="block">L^p(X,\mu) \cong L^q(X,\mu)^*$

(当 $p = \infty, q = 1$ 时需假设 $X \in \sigma$ -有限的) 这个证明不容易. 我们只会讨论一些重要特例.

我们说过, 研究测度论的一个目标是用函数列逐点收敛来刻画 L^p 收敛和弱 * 收敛. 我们先看 L^2 的情况.

- 逐点收敛 $\Longrightarrow L^2$ 收敛 直接利用单调/控制收敛证明 $\int |f_n f|^p \to 0$.
- 逐点收敛 ⇒ 弱 * 收敛

定理 3.5.8. 令 $\{f_n\}_{n\in\mathbb{Z}_+}$ 为 $L^2(X,\mu)$ 中 L^2 有界的函数列. 假设 f_n a.e. 逐点收敛到 $f:X\to\mathbb{C}$, 则 $f\in L^2(X,\mu)$ 且 f_n 弱收敛到 f.

注记. $L^2(X,\mu)$ 中的弱收敛函数列一定 L^2 -有界. 这来源于泛函中所谓一**致有界定理**.

- 弱 * 收敛 $\Longrightarrow L^2$ 收敛 $\ddot{\Xi} \{f_n\} \subset L^2(X,\mu), f \in L^2(X,\mu) \ \underline{\Pi} \ f_n \overset{w}{\to} f, \lim_{n \to \infty} \int |f_n|^2 = \int |f|^2, \ \underline{M} \ f_n \to f.$ 注记. 这是根据一般 Hilbert 空间中, $\underline{M} \ \xi_\alpha \ \underline{W} \ \xi = \|\xi_\alpha\| \to \|\xi\|.$
- L^2 收敛 \Longrightarrow 逐点收敛 L^2 收敛函数列一定有子列 a.e. 收敛

类似地, 逐点收敛 $\implies L^1$ 收敛可由控制收敛定理, L^1 收敛 \implies 逐点收敛和 L^2 类似. 我们接下来讨论一般的 L^p 空间的对偶关系.

命题 3.5.9. 令 $1 \leqslant p < +\infty$, $\frac{1}{p} + \frac{1}{q} = 1$. 对任意 $f \in L^p(X, \mu)$, 令

$$\Lambda_f: L^q(X,\mu) \to \mathbb{C}, \Lambda_f(g) = \int_X fg d\mu$$

则 $\Lambda_f \in L^q(X,\mu)^*$, 且 $\Lambda: L^p(X,\mu) \to L^q(X,\mu)^*$, $f \mapsto \Lambda_f$ 是等距线性映射. (当 $p = +\infty$, q = 1, X 是 σ -有限时以上结论也对)

证明: 若 $f \in L^p(X,\mu), g \in L^q(X,\mu)$, 则由 Hölder 不等式

$$||fg||_{L^1} \leqslant ||f||_{L^p} ||g||_{L^q}$$

故 $|\Lambda_f(g)| \le \int_X |fg| \le ||f||_p ||g||_q$. 故 $||\Lambda_f|| \le ||f||_p$. 注意 Hölder 和 Minkowski 不等式对 $p=1, q=\infty$ 也成立.

Case 1:1 $, 取可测函数 <math>u: X \to S^1 = \{z: |z| = 1\}$ 使 uf = |f|. 令 $g = u \cdot |f|^{p-1}$ 故 $fg = |f|^p \in L^1(X, \mu)$. 故

$$\|g\|_q^q = \int_X |g|^q = \int_X |f|^{pq-q} = \int_X |f|^p = \|f\|_p^p$$

故 $||g||_q = ||f||_p^{p-1}$. 而

$$\Lambda_f(g) = \int_X fg = \int_X |f|^p = ||f||_p^p = ||f||_p \cdot ||g||_q$$

故 $\|\Lambda_f\| = \|f\|_p$.

Case 2: $p = 1, q = \infty, \Leftrightarrow g = u|f|^{p-1} = u, \text{ } M ||g||_{\infty} = 1, \text{ } \overline{\text{m}}$

$$\Lambda_f(g) = \int_X |f| = ||f||_1 = ||f||_1 \cdot ||g||_{\infty}$$

故 $\|\Lambda_f\| = \|f\|_p$.

Case 3: $p = \infty, q = 1$. 要证 $\|\Lambda_f\| \geqslant \|f\|_{\infty}$, 只需证 $\forall 0 \leqslant a < \|f\|_{\infty}$, 有 $\|\Lambda_f\| \geqslant a$ 即可. 令

$$A = \{ x \in X : |f(x)| > a \}$$

则 $\mu(A) > 0$. 因 $X \in \sigma$ -有限的, 故 A 也 σ -有限. 因此存在可测集 $B \subset A, 0 < \mu(B) < +\infty$. 令 $|f| = uf, u: X \to S^1$ 可测, $g = u\chi_B$, 则 $||g||_{L^1} = \mu(B) < +\infty$, 有

$$\Lambda_f(g) = \int_B |f| \geqslant a \cdot \mu(B) = a \cdot ||g||_{L^1}$$

故 $\|\Lambda_f\| \geqslant a$.

推论 3.5.10. 令 $1 \le p \le +\infty$, $\frac{1}{p} + \frac{1}{q} = 1$ $(p = +\infty)$ 时假设 $X \not\in \sigma$ -有限的). 令 $f \in L^p(X, \mu)$. 若 $\forall g \in L^q(X, \mu)$ 都有 $\int_X fgd\mu = 0$, 则 f = 0 a.e.

证明:

$$\Lambda_f: L^q(X,\mu) \to \mathbb{C}, g \mapsto \int_X fg d\mu$$

是等距线性映射. 由假设, $\Lambda_f=0$, 故 f 是 $L^p(X,\mu)$ 中的零元素. 故 f=0 a.e.

定义 3.5.11. 令 $1 .<math>(p = +\infty)$ 时假设 X 是 σ -有限的) 我们说 $L^p(X,\mu)$ 中的网 $(f_{\alpha})_{\alpha \in A}$ 弱 *-收敛到 $f \in L^p(X,\mu)$, 若把 $L^p(X,\mu)$ 看作 $L^q(X,\mu)^*$ 闭线性子空间后在 $L^q(X,\mu)^*$ 的弱 *-拓扑下收敛. 即 $\forall g \in L^q(X,\mu)$ 有 $\lim_{\alpha} \int_X f_{\alpha}g = \int_X fg$. 当 $1 时,弱 *-收敛也 称为弱收敛,这是因为 <math>(L^p)^* \cong L^q$. $(-\text{般地,Banach} 空间 V 中的网 <math>(v_{\alpha})$ 称为弱收敛到 $v \in V$,若 $\forall \varphi \in V^*$ 有 $\lim_{\alpha} \varphi(v_{\alpha}) = \varphi(v)$

注记. 对 Banach 空间 V,V^* 的范数收敛强于弱 *-收敛. 故对 $L^p(1 收敛 <math>\Longrightarrow$ 弱 *-收敛. 不难看出在 L^1 中, L^1 收敛 \Longrightarrow 弱收敛.

定理 3.5.12. (X, μ) 为 σ -有限的. 则

$$\Lambda: L^{\infty}(X,\mu) \to L^{1}(X,\mu)^{*}, f \mapsto \Lambda_{f}\left(\Lambda_{f}(g) = \int_{X} fg\right)$$

是等距线性双射.

证明: 我们已经证明过 Λ 等距且显然线性, 要证 Λ 满射.

Case 1: 假设 $\mu(X) < +\infty$, 则 $\forall g \in L^2(X, \mu)$ 有

$$\int_{Y} |g| \leqslant \|g\|_{L^{2}} \cdot \sqrt{\mu(X)}$$

故 $L^2(X) \subset L^1(X)$. 令 $\varphi \in L^1(X,\mu)^*$, 则 $\forall g \in L^2$ 有

$$|\varphi(g)| \leqslant \|\varphi\| \cdot \|g\|_1 \leqslant \|\varphi\| \sqrt{\mu(x)} \cdot \|g\|_2$$

故 $\varphi:L^2(X)\to\mathbb{C}$ 有界线性. 故存在 $f\in L^2(X)$ 使 $\forall g\in L^2(X)$ 有 $\varphi(g)=\int_X fg$. 特别地, 对 $L^1(X)$ 中的简单函数 g 有 $\varphi(g)=\int_X fg$.

Case 2: 一般情况, 记 $X = \bigsqcup_{n=1}^{\infty} X_n, \mu(X_n) < +\infty$. 则存在可测函数 $f: X \to \mathbb{C}$ 满足 $f|_{X_n} \in$

 $L^2(X_n)$ 且使任意 X_n 上的简单函数 $g\in L^1$ 有 $\varphi(g)=\int_X fg$. 类似前一定理, 能证 $\|\varphi\|\geqslant \|f\|_\infty$. 故 $f\in L^\infty(X,\mu)$. 任取 $g\in L^1(X,\mu)$, 取 $L^1(X,\mu)$ 中简单函数列 $s_n:X\to\mathbb{C}$ 满足 $\|g-s_n\|_1\to 0$. 则由 φ 的连续性

$$\varphi(g) = \lim_{n \to \infty} \varphi(s_n) = \lim_{n \to \infty} \int f s_n$$

因为

$$||fg - fs_n||_1 \le ||f||_{\infty} \cdot ||g - s_n||_1 \to 0$$

故
$$|\int_X fg - \int_X fs_n| \to 0$$
. 故 $\varphi(g) = \int_X fg$.

3.6 Radon 测度

本节 X 都指 LCH 空间.

定义 3.6.1. 令 μ 是 X 上的 Borel 测度 (或更一般地, 定义在包含 Borel σ -代数 \mathcal{B}_X 的一个 σ -代数 \mathcal{A} 上的测度) 令 $E \subset X$ 可测.

定义 3.6.2. 令 μ 是 X 上的 Borel 测度. 我们称 μ 是 Radon 测度, 若

- (1) μ 在紧集上取值有限
- (2) μ 在任意 Borel 集上外正则
- (3) μ 在任意开集上内正则

我们称 μ 为**正则测度**, 若 μ 满足 (1),(2) 和

(3') μ 在任意 Borel 集上内正则

由外正则性, 一个 Radon 测度 μ 完全由其在开集上的取值决定, 这是一个非凡的性质, 因为一般测度并不由其在生成 σ -代数的集合上的取值决定. 回忆 $C_c(X) = \{f \in C(X, \mathbb{C}) : \operatorname{supp} f \S\}$. 则 "开集上内正则" 意味着 μ 完全由 $\int_X f d\mu (\forall f \in C_c(X))$ 决定.

引理 3.6.3. 令 μ 是 X 上的 Borel 测度. 令 $U \subset X$ 是开集, 则

$$\sup\{\mu(K): K \subset U, K \, \text{\ensuremath{\not|}{\$}} \} = \sup\{\int_X f d\mu: f \prec U\}$$

特别地, μ 在 U 上内正则 $\Longleftrightarrow \mu(U) = \sup\{\int_X f d\mu : f \prec U\}.$

证明: 若 $f \prec U$, 令 $K = \operatorname{supp}(f)$, 则 $K \subset U$, K 紧,且 $\int_X f d\mu = \int_X \chi_K d\mu = \mu(K)$. 反之,令 $K \subset U$, K 紧.由 Urysohn 引理,存在 $K \prec f \prec U$,故 $\mu(K) = \int_X \chi_K d\mu \leqslant \int_X f d\mu$.

实际上,Radon 测度 μ 和 $\int_X d\mu$ 之间——对应:

定义 3.6.4. 一个 $C_c(X)$ 上的泛函 (即线性映射 $\Lambda: C_c(X) \to \mathbb{C}$) 称为正泛函, $\mathrm{dddd} \forall f \in C_c(X)$, 有 $f \geqslant 0 \Longrightarrow \Lambda(f) \geqslant 0$.

定理 3.6.5 (Riese(-Markov) 表示定理). 对任意正泛函 $\Lambda: C_c(X) \to \mathbb{C}$, 存在 X 上的唯一一个 Radon 测度 μ 满足 $\forall f \in C_c(X)$ 有 $\Lambda(f) = \int_X f d\mu$. 并且任意 Radon 测度都来源于某个正泛函 Λ .

证明: 若 Radon 测度 μ, ν 都满足 $\forall f \in C_c(X)$ 有 $\int_X f d\mu = \Lambda(f) = \int_X f d\nu$,则由前一引理知 μ 和 ν 在开集上取值相同. 故由外正则性, $\mu = \nu$,唯一性得证.

Step 1: 给定正泛函 $\Lambda: C_c(X) \to \mathbb{C}$, 定义 μ 如下: 若 $U \subset X$ 是开集, 则

$$\mu(U) = \sup\{\Lambda(f): f \prec U\}$$

 $\forall E \subset X$, 令 $\mu^*(E) = \inf\{\mu(U) : E \subset U, U$ 是开集}, 则类似于 Lebesgue 测度的构造, μ^* 是 X 上的外测度, 且任意开集 μ^* -可测. 由 Carathéodory 定理, 所有 μ^* -可测集构成了 σ -代数, 在上面 μ^* 是测度, 故 μ^* 在 \mathfrak{B}_X 上是测度, 记为 μ , 则 μ 在任意 Borel 集上外正则.

Step 2: 我们要证 $\Lambda(f) = \int_{Y} f d\mu$, 首先证明:

Claim: 若 $K, L \subset X$ 紧, $f \prec X$, $f|_L = 1$, $f|_K = 0$, 则 $\mu(L) \leqslant \Lambda(f) \leqslant \mu(K)$.

事实上, 由 μ 在 K 上的外正则性, $\mu(K) = \inf\{\mu(U) : U \supset K$ 开集}, 而显然 $\mu(U) \geqslant \Lambda(f)$ (由 $\mu(U)$ 定义) 故 $\Lambda(f) \leqslant \mu(K)$. 要证 $\mu(L) \leqslant \Lambda(f)$, 只需对 $\forall \alpha > 1$ 证 $\mu(L) \leqslant \Lambda(\alpha f)$. 令 $V = \{x \in X : \alpha f(x) > 1\}$, 只需证 $\mu(V) \leqslant \Lambda(\alpha f)$. $\forall g \prec V$, 则 $g \leqslant \alpha f$, 故 $\Lambda(g) \leqslant \Lambda(\alpha f)$, 故 $\mu(V) \leqslant \Lambda(\alpha f)$.

Step 3: 我们证明 $\forall f \in C_c(X)$ 有 $\Lambda(f) = \int_X f d\mu$. 由 Λ 和 \int_X 的线性性, 不妨假设 f 取实值, 因 $f = f^+ - f^-$, 不妨假设 $f \geqslant 0, 0 \leqslant f \leqslant 1$.

任取 $N \in \mathbb{Z}_+$, 对 $0 \leqslant j \leqslant N$, $\diamondsuit g_j(x) = \min\{f(x), \frac{j}{N}\}$, 则 $g_i \prec X$, 且 $g_0 = 0, g_N = f$. 对 $1 \leqslant j \leqslant N$, $\diamondsuit f_j = g_j - g_{j-1}$, 则 $f = f_1 + f_2 + \dots + f_N$ 且 $0 \leqslant f_j \leqslant \frac{1}{N}$. \diamondsuit

$$K_j = \{x \in \text{supp}(f) : f(x) \geqslant \frac{j}{N}\}$$

则 $f_j|_{K_{j-1}^{\complement}} = 0, f_j|_{K_j} = \frac{1}{N},$ 故

$$\frac{1}{N}\mu\left(K_{j}\right)\leqslant\Lambda\left(f_{j}\right)\leqslant\frac{1}{N}\mu\left(K_{i-1}\right)$$

显然

$$\frac{1}{N}\mu\left(K_{j}\right) \leqslant \int_{X} f_{j} \leqslant \frac{1}{N}\mu\left(K_{i-1}\right)$$

对所有 $j = 1, 2, \dots, N$ 求和得

$$\frac{\mu\left(K_{1}\right)+\cdots+\mu\left(K_{N}\right)}{N}\leqslant\Lambda(f),\int_{Y}f\leqslant\frac{\mu\left(K_{0}\right)+\cdots+\mu\left(K_{N-1}\right)}{N}$$

故
$$\left| \Lambda(f) - \int_X f \right| \leq \frac{1}{N} (\mu(K_0) - \mu(K_N)) \leq \frac{\mu(\operatorname{supp} f)}{N}$$
, 因 N 任意, $\Lambda(f) = \int_X f$.

Step 4: 对任意开集 $U,\mu(U)=\sup\{\Lambda(f):f\prec U\}=\sup\{\int_X d\mu:f\prec U\}$ 故由前一引理, μ 在开集上内正则, 若 $K\subset X$ 紧, 由 Urysohn 引理, 存在 $K\prec f\prec X$, 则

$$\mu(K) = \int_X \chi_K d\mu \leqslant \int_X f d\mu = \Lambda(f) < +\infty$$

故 μ 是 Radon 测度.

Riemann 积分与 Lebesque 积分相同.

最后, \forall Radon 测度 ν , 令 $\Phi: C_c(X) \to \mathbb{C}$, $\Phi(f) = \int_X f d\nu$, 则 ν 是 (必然唯一的) 一个由正泛 函 Φ 给出的 Radon 测度. 这证明了正线性泛函 \Longrightarrow Radon 测度是满射. 它显然也是单射. \Box **例子.** 我们对 \mathbb{R}^N 上的 Lebesgue 测度的构造就是从 $f \in C_c(\mathbb{R}^N) \mapsto \int_{\mathbb{R}^N} f(Riemann \, Rightarrow Ag)$ 来的. 因此由 Lebesgue 测度 (限制在 $\mathcal{B}_{\mathbb{R}^N}$ 上) 是 Radon 测度. 且由 Riesz 表示定理, $C_c(\mathbb{R}^N)$ 上的

例子. 令 X 为集合, 任意子集为开集, 则 counting measure 是 Radon 测度.

定理 3.6.6. 令 μ 是 X 上的 Radon 测度, $1 \leq p < +\infty$, 则 $C_c(X)$ 在 $L^p(X,\mu)$ 中稠密.

证明: 因为简单函数在 $L^p(X,\mu)$ 中稠密, 只需证任意简单函数 $s=\sum a_i\chi_{A_i}\in L^p(X,\mu)$ 能被 $C_c(X)$ 中元素逼近, 这里 $A_i\cap A_j=\varnothing$ 若 $i\neq j$, 且 $a_i\neq 0$. 故由 $s\in L^p(X,\mu)$ 知 $\mu(A_i)<+\infty$. 故只需用 $C_c(X)$ 中元素逼近 χ_{A_i} 即可. 记 $A=A_i$, 因 $\mu(A)<+\infty$, 由 μ 在 A 上的外正则性, $\forall \varepsilon>0$,存在开集 $U\supset A$ 使 $\mu(U\setminus A)<\varepsilon$. 由 μ 在 U 上的内正则性,存在 $f\prec U$ 使 $\int_X fd\mu\leqslant \mu(U)\leqslant \int_X fd\mu+\varepsilon$. 故 $\|\chi_A-\chi_U\|_p^p=\mu(U\setminus A)<\varepsilon$, 由于 $0\leqslant \chi_U-f\leqslant 1$, 故

$$\|\chi_U - f\|_p^p = \int_X (\chi_U - f)^p d\mu \leqslant \int_X (\chi_U - f) d\mu \leqslant \varepsilon$$

故 $\|\chi_A - f\|_p \leq 2\sqrt[p]{\varepsilon}$.

我们知道对 Radon 测度 $\mu, \forall E \in \mathcal{B}_X$ 有 $\mu(E) = \inf\{\mu(U) : U \supset E\mathcal{H}\}$ 而 $\mu(U) = \sup\{\mu(K) : K \subset U \S\} = \sup\{\int_X f d\mu : f \prec U\}$. 但这里由 $\mu(K)$ 或 $\int_X f d\mu$ 逼近 $\mu(E)$ 的过程是不直接的,我们想找一个更直接的逼近过程. 例如,是否 E 有内正则性 $\mu(E) = \sup\{\mu(K) : K \subset E \S\}$. 另一个问题是 Borel 测度什么时候 Radon,本节接下来的目标就是研究这两个问题.

命题 3.6.7. 令 μ 是 X 上的 Borel 测度, 在紧集上有限, 且满足 Radon 测度剩下两个条件的其中之一. 即假设

- (a) μ 在任意 Borel 集上外正则
- (b) µ 在开集上内正则

中有一个成立. 假设 μ 在 X 上 σ -有限, 令 $E \in \mathcal{B}_X$, 则 $\forall \varepsilon > 0$, 存在开集 U, 闭集 F 满足 $F \subset E \subset U$ 且 $\mu(U \setminus F) < \varepsilon$.

证明: Case 1: 假设 (a), 只需找到开集 $U\supset E$ 使 $\mu(U\setminus E)<\frac{\varepsilon}{2}$, 则对 $X\setminus E$ 用相同操作能找到闭集 $F\subset E$ 使 $\mu(E\setminus F)<\frac{\varepsilon}{2}$, 得证.

若 $\mu(E)$ < +∞, 则这个 U 的存在性由 μ 在 E 上的外正则性所得.

一般情况下,E 作为 X 的 Borel 子集是 σ -有限的, 故可写成不交并

$$E = \bigsqcup_{n=1}^{\infty} E_n, E_n \in \mathcal{B}_X, \mu(E_n) < +\infty$$

故存在开集 $U_n \supset E_n$ 使 $\mu(U_n \setminus E_n) < \frac{\varepsilon}{2^{n+1}}$. 令 $U = \bigcup_{n=1}^{\infty} U_n$, 则 $U \setminus E \subset \bigcup_{n=1}^{\infty} U_n \setminus E \subset \bigcup_{n=1}^{\infty} U_n \setminus E_n$. 故 $\mu(U \setminus E) \leqslant \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}$.

Case 2: 假设 (b), 则 \forall 开集 $U \subset X$ 有 $\mu(U) = \sup\{\int_X f d\mu : f \prec U\}$. 令 ν 为由正泛函 $\Lambda : C_c(X) \to \mathbb{C}, f \mapsto \int_X f d\mu$ 定义的 Radon 测度 (注意 $\int_X |f| d\mu \leqslant \int_X \chi_{\operatorname{supp}(f)} d\mu = \mu(\operatorname{supp}(f)) < +\infty$) 则

$$\int_{X} f d\nu = \int_{X} f d\mu \underline{\mathbb{H}} \nu(U) = \sup \{ \int_{X} f d\nu : f \prec U \}$$

故 $\mu(U) = \nu(U)$, 即 μ 和 ν 在开集上相同. 由 Case $1, \forall E \in \mathcal{B}_X$, 存在开集 U, 闭集 F 使 $F \subset E \subset U$ 且 $\nu(V \setminus F) < \varepsilon$. 故因为 $U \setminus F$ 开, $\mu(U \setminus F) = \nu(U \setminus F) < \varepsilon$.

在给出此命题的应用之前, 我们来看几个 σ -有限的例子.

注记. 一个 Hausdorff 空间 X 称为 σ -**紧**, 若 X 是可数个紧子集的并: $X = K_1 \cup K_2 \cup \cdots$, 注意通过把 K_n 换成 $K_1 \cup \cdots \cup K_n$, 我们总能假设 $X_1 \subset X_2 \subset \cdots$. 显然若 X 是 σ -紧的 LCH 空间, 且 μ 是 X 上的 Borel 测度且在紧集上有限, 则 μ 是 σ -有限的, 故 μ 在任意 Borel 子集上 σ -有限. 特别地, σ -紧 LCH 空间上的 Radon 测度 σ -有限.

例子. 若 X 是第二可数的 LCH 空间,则 X 有一个预紧开覆盖,从而 (由于 X 是 Lindel"of 空间)有一个可数预紧开覆盖,故 σ -紧. 因为 LCH 的开/闭子集 LCH,故第二可数 LCH 空间的任意开/闭子集 σ -紧. 因此,Radon 测度在任意第二可数 LCH 空间上以及它们的开/闭子集上 σ -有限.

定理 3.6.8. 令 μ 是 X 上的 Borel 测度且在紧集上有限, 假设 X 的每个开子集 σ -紧 (例如当 X 第二可数时) 则 μ 是正则测度, 特别地, 是 Radon 测度.

证明: **Step 1:** 我们证明 μ 在任意开集 U 上内正则. 因为 U 是 σ -紧的, 存在紧集 $K_1 \subset K_2 \subset U$ 使 $U = \bigcup_n K_n$, 故由单调收敛定理

$$\mu(U) = \int_X \chi_U d\mu = \lim_{n \to \infty} \int_X \chi_{K_n} d\mu = \lim_{n \to \infty} \mu(K_n)$$

故 $\mu(U) \leq \sup\{\mu(K) : K \subset U, K\S\}$, 而 " \geqslant " 显然成立 (由 μ 单调性). 故 μ 在 U 上内正则. **Step 2:** $\forall E \in \mathcal{B}_X$, 我们证明 μ 在 E 上正则. 由前一命题, $\forall \varepsilon > 0$, 存在开集 U, 闭集 F 满足 $F \subset E \subset U$ 且 $\mu(E \setminus F)$, $\mu(U \setminus E) < \frac{\varepsilon}{2}$. 故由 $\mu(E) + \mu(U \setminus E) = \mu(U)$ 知

$$\mu(E) = \inf\{\mu(V), V \supset E \mathcal{H}\}$$

故 μ 在 E 上外正则. 因为 X 是 σ -紧, 取紧集 $K_1 \subset K_2 \subset \cdots \subset X$ 使 $X = \bigcup_{n=1}^{\infty} K_n$, 则 $F \cap K_n$ 紧且 $\mu(F) = \lim_{n \to \infty} \mu(F \cap K_n)$, 故由 $F \cap K_n \subset E$ 知

$$\mu(F) \leqslant \sup\{\mu(K) : K \subset E, K \$ \}$$

由 $\mu(F) + \mu(E \setminus F) = \mu(E)$ 知

$$\mu(E) \leqslant \mu(F) + \frac{\varepsilon}{2} \leqslant \sup\{\mu(K) : K \subset E, K / \} + \frac{\varepsilon}{2}$$

由 ε 任意性, $\mu(E) \leq \sup\{\mu(K) : K \subset E, K \mathbb{X}\}$. " \geqslant " 显然. 故 μ 在 E 上内正则.

我们说过, 网收敛不太适合测度论. 因此, 我们希望来源于测度论的 Banach 空间 V 是可分的, 从而其对偶空间 V^* 的单位闭球是紧度量空间 (分析一作业 12 补充题 13 及之后的阅读材料) 从而我们能用点列来研究弱 * 收敛性.

命题 3.6.9. 令 X 为第二可数的 LCH 空间, μ 是 X 上 Radon 测度, 则 $C_c(X)$ 在 l^{∞} 范数下可分. 令 $1 \leq p < +\infty$, 则 $L^p(X,\mu)$ (在 L^p 范数下)可分.

证明: 由分析一作业 12 补充题 $7,C_c(X)$ 存在可数子集 \mathcal{E} 在 X 任一点处不消失且分离 X 的点. 由 Stone-Weierstrass 定理, \mathcal{E} 生成的 (不含幺)*-子代数在 $C_c(X)$ 中稠密. 令 \mathcal{A} 为 \mathcal{E} 生成的 (不含幺) $\mathbb{Q}+i\mathbb{Q}$ 上的 *-子代数,则 \mathcal{A} 可数且在 $C_c(X)$ 中和 l^∞ 范数下稠密.

(\mathcal{E} 构造方法回顾: 取 X 一组可数拓扑基 U_1, U_2, \cdots , 满足每个 U_n 预紧. $\forall m, n \in \mathbb{Z}_+$, 若 $\overline{U_m} \subset U_n$, 取 $\overline{U_m} \prec f_{m,n} \prec U_n$, 取 $\overline{U_m} \nsubseteq U_n$, 取 $f_{m,n} = 0$, 令 $\mathcal{E} = \{f_{m,n} : m, n \in \mathbb{Z}_+\}$)

Case 1: 假设 X 紧, 则 A 在 $C_c(X)$ 中和 L^p 范数下稠密 (因为 $||f||_p^p \leq ||f||_{l^{\infty}} \cdot \mu(X)$) 而 $C_c(X)$ 在 $L^p(X,\mu)$ 中和 L^p 范数下稠密, 故 A 在 $L^p(X,\mu)$ 中稠密, $L^p(X,\mu)$ 可分.

Case 2: 一般情况, $X = \bigcup_{n=1}^{\infty} X_n, X_1 \subset X_2 \subset \cdots$ 紧. $\forall f \in L^p(X, \mu)$, 由控制收敛定理

$$\lim_{n \to \infty} \|f - f\chi_{X_n}\|_p^p = 0$$

故 $\bigcup_{n=1}^{\infty} L^p(X_n,\mu)$ 在 $L^p(X,\mu)$ 中稠密. 这里, $L^p(X_n,\mu)$ 看作 $L^p(X,\mu)$ 子集. 若 $g \in L^p(X_n,\mu)$, 则 g(x) = 0 若 $x \in X \setminus X_n$. 由 Case 1, 每个 $L^p(X_n,\mu)$ 可分, 故 $L^p(X,\mu)$ 可分.

注记. $X = \mathbb{R}^N$ 时 $L^p(\mathbb{R}^N, \mu)$ 可这样证可分: $X = \bigcup_{n=1}^{\infty} X_n, X_n = [-m, n] \times \cdots \times [-n, n]$. 由上面 Case 2 的论证,只需证 $L^p(X_n, \mu)$ 可分,只需证 $C(X_n)$ 在 l^∞ 下可分: $C(X_n)$ 中元素可由 $\{n$ 个变量的($\mathbb{Q} + i\mathbb{Q}$)-系数多项式 $\}$ 一致逼近,而后者可数 (由 Weierstrass 多项式逼近定理).

3.7 乘积测度

考虑 $f\in L^1(\mathbb{R}^2,m), f\geqslant 0$. 我们想知道何时 $\int_{\mathbb{R}}\int_{\mathbb{R}}f(x,y)dydx=\int_{\mathbb{R}}\int_{\mathbb{R}}dxdy$ 成立. 特别 地 $,x\mapsto\int_{\mathbb{R}}f(x,y)dy$ 是否可测? 因为 f 可被简单函数逼近, 不妨考虑 $f=\chi_E,E\subset\mathbb{R}^2$ 是 Borel 集. 令

$$E_x = \{ y \in \mathbb{R} : (x, y) \in E \}$$

$$E^y = \{x \in \mathbb{R} : (x, y) \in E\}$$

则 $\int_{\mathbb{R}} \chi_E(x,y) dy = m(E_x)$, $\int_{\mathbb{R}} \chi_E(x,y) dx = m(E^y)$. 简单起见, 假设 $E \subset [0,1]^2$.(一般情况可通过 $E = \bigcup_{m,n \in \mathbb{Z}} E \cap ([m,m+1] \times [n,n+1])$ 来处理) 考虑

 $\mathscr{C} = \{E \in \mathcal{B}_{[0,1]^2} : x \in \mathbb{R} \to m(E_x)$ 和 $y \in \mathbb{R} \to m(E^y)$ Borel 可测且 $\int_0^1 m(E_x) dx = \int_0^1 m(E^y) dy \}$

我们想证明 $\mathscr{C}=\mathfrak{B}_{[0,1]^2}.\mathscr{C}$ 显然包含所有形如 $A\times B(A,B\in\mathfrak{B}_{[0,1]})$ 的集合,因为若 $E=A\times B$,则 $m(E_x)=m(B)\chi_A(x), m(E^y)=m(A)\chi_B(y), \int m(E_x)dx=m(B)m(A)=\int m(E^y)dy$. 不难验证的是 $\mathfrak{B}_{[0,1]^2}$ 由所有形如 $A\times B$ 的集合生成. 不难验证 $E\in\mathscr{C}\Longleftrightarrow [0,1]^2\setminus E\in\mathscr{C}$. 但验证 \mathscr{C} 是一个 σ -代数不容易. 尤其难证明

$$E_1, E_2 \in \mathscr{C} \implies E_1 \cup E_2 \in \mathscr{C}$$
 (*)

但我们不难验证: 若 $E_1, E_2, \dots \in \mathscr{C}$ 且 $E_1 \subset E_2 \subset \dots$ (或 $E_1 \supset E_2 \supset \dots$), 则 $\bigcup_{n=1}^{\infty} E_n \in \mathscr{C}$ (或 $\bigcap_{n=1}^{\infty} E_n \in \mathscr{C}$), 即 \mathscr{C} 是一个单调类.

如果 (*) 能证明,则 $\forall E_1, E_2, \dots \in \mathscr{C}$ 有 $E_1 \cup \dots \cup E_n \in \mathscr{C}$, 故 $\bigcup_{n=1}^{\infty} E_n \in \mathscr{C}$ 从而 \mathscr{C} 是 σ -代数. 令 $\mathscr{E} = \left\{ \bigcup_{i=1}^{\infty} A_i \times B_i : n \in \mathbb{N}, A_i, B_i \in \mathfrak{B}_{\mathbb{R}} \right\}$, 不难想象 \mathscr{E} 中元素可以写成不交并 $\bigcup_{i=1}^{\infty} A_i \times B_i$ 的形式,显然 \mathscr{E} 是一个代数 (即 $\varnothing \in \mathscr{E}, \mathscr{E}$ 对取补集和有限并封闭) 且我们能证明 $\mathscr{E} \in \mathscr{C}$. 我们希望由 $\mathscr{E} \subset \mathscr{C} \implies \sigma(\mathscr{E}) \subset \mathscr{C}$, 哪怕 \mathscr{C} 只是一个单调类而不是 σ -代数.(因为从直觉上讲, σ -代数就是代数加上对可数递增并的封闭). 若如此,不难验证 $\sigma(\mathscr{E}) = \mathfrak{B}_{\mathbb{R}^2}$,故 $\mathfrak{B}_{\mathbb{R}^2} \subset \mathscr{C}$.

定义 3.7.1. 令 X 为集合, $\mathscr{C} \subset 2^X$. 我们称 \mathscr{C} 是**单调类 (monotone class)**, 若 \mathscr{C} 关于可数递增并和可数递减交封闭, 即若 $\{E_n\}_{n\in\mathbb{Z}_+}\subset\mathscr{C}$ 则 $E_1\subset E_2\subset\cdots$ \Longrightarrow $\bigcup_{n=1}^\infty E_n\in\mathscr{C}, E_1\supset E_2\supset$

 $\cdots \implies \bigcap_{n=1}^{\infty} E_n \in \mathscr{C}$. 若 $\mathscr{E} \subset 2^X, \mathscr{E}$ **生成的单调类**记为 $\operatorname{mon}(\mathscr{E})$,定义为" \bigcap 包含 \mathscr{E} 的单调类"

显然 $\sigma(\mathcal{E})$ 是包含 \mathcal{E} 的单调类. 故 $\operatorname{mon}(\mathcal{E}) \subset \sigma(\mathcal{E})$.

定理 3.7.2 (单调类定理). 令 $\mathcal{E} \subset 2^X$ 为集合 X 的一个代数, 则 $\operatorname{mon}(\mathcal{E}) = \sigma(\mathcal{E})$.

注记. 因此, 若 $\mathscr{E} \subset \mathscr{C}$ 且 \mathscr{C} 是 X 的单调类, 则 $\sigma(\mathscr{E}) \subset \mathscr{C}$.

证明:只需证 $\operatorname{mon}(\mathscr{E})$ 是 σ -代数,则有 $\operatorname{mon}(\mathscr{E}) \supset \sigma(\mathscr{E})$,从而 $\operatorname{mon}(\mathscr{E}) = \sigma(\mathscr{E})$.记 $\mathcal{M} = \operatorname{mon}(\mathscr{E})$.只需证 $\forall E, F \in \mathcal{M}$ 有 $E \cup F \in \mathcal{M}$, $X \setminus E \in \mathcal{M}$.则 $\varnothing \in \mathcal{M}$ (因为 $\varnothing \in \mathscr{E}$), \mathscr{M} 对补集封闭,且若 $E_1, E_2, \dots \in \mathcal{M}$ 则 $\forall n$ 有 $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$,从而 $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.故 \mathscr{M} 是 σ -代数.定义

$$u: 2^X \times 2^X \to 2^X, u(E, F) = E \cup F$$

则 $\forall F \subset X$

$$u(\cdot, F)^{-1}(\mathcal{M}) = \{E \in 2^X : u(E, F) \in \mathcal{M}\}\$$

 $u(F, \cdot)^{-1}(\mathcal{M}) = \{E \in 2^X : u(F, E) \in \mathcal{M}\}\$

是单调类. 因为 $u: \mathscr{E} \times \mathscr{E} \to \mathscr{E} \subset \mathcal{M}$. 故 $\forall F \in \mathscr{E}, u(\cdot, F)^{-1}(\mathcal{M})$ 是包含 \mathscr{E} 的单调类, 从而包含 \mathcal{M} . 故 $u: \mathcal{M} \times \mathscr{E} \to \mathcal{M}$. 类似地, $\forall E \in \mathcal{M}, u(E, \cdot)^{-1}(\mathcal{M})$ 是包含 \mathscr{E} 的单调类, 故包含 \mathcal{M} . 故 $u: \mathcal{M} \times \mathcal{M} \to \mathcal{M}$. 故 \mathcal{M} 对有限并封闭. 定义

$$\delta: 2^X \to 2^X, \delta(E) = X \setminus E$$

则 $\delta = \delta^{-1}$. 而 $\delta(\mathcal{M}) = \{X \setminus E : E \in \mathcal{M}\}$ 是单调类. 由 $E \in \mathscr{E} \iff X \setminus E \in \mathscr{E}$ 知 $\delta(\mathscr{E}) = \mathscr{E}$. 故 $\mathscr{E} \subset \sigma(\mathcal{M})$. 故 $\mathcal{M} \subset \delta(\mathcal{M}) = \delta^{-1}(\mathcal{M})$. 故 $E \in \mathcal{M} \implies \delta(E) \in \mathcal{M}$. 故 \mathcal{M} 对取补集封闭.

我们接下来研究一般地 Fubini 定理.

定义 3.7.3. \Leftrightarrow (X, M), (Y, N) 为可测空间. 则 M 和 N 的张量积为

$$\mathcal{M} \otimes \mathcal{N} = \sigma \{ A \times B : A \in \mathcal{M}, B \in \mathcal{N} \}$$

若不加说明则 $X \times Y \perp \sigma$ -代数取 $M \otimes N$.

命题 3.7.4. 令 $\mathcal{E} \subset 2^X$, $\mathscr{F} \subset 2^Y$ 满足 $X \in \mathcal{E}, Y \in \mathscr{F}$, 则

$$\sigma(\mathscr{E}) \otimes \sigma(\mathscr{F}) = \sigma(\{A \times B : A \in \mathscr{E}, B \in \mathscr{F}\})$$

证明:记右边为 \mathcal{A} ,因为 $\forall A \in \mathscr{E}, B \in \mathscr{F}$ 有 $A \times B \in \sigma(\mathscr{E}) \otimes \sigma(\mathscr{F})$,故 $\sigma(\mathscr{E}) \otimes \sigma(\mathscr{F}) \supset \mathcal{A}$. 要证 " \subset ",只需证 $\forall A \in \sigma(\mathscr{E}), B \in \sigma(\mathscr{F})$ 有 $A \times B \in \mathcal{A}$.我们证 $A \times Y \in \mathcal{A}$,则类似地也有 $X \times B \in \mathcal{A}$,从而 $A \times B = (A \times Y) \cap (X \times B) \in \mathcal{A}$.

$$\{A \in 2^X : A \times Y \in \mathcal{A}\} \ \text{包含} \ \mathscr{E}(因为 \ Y \in \mathscr{F}) \ \text{且是} \ \sigma\text{-代数}.(由 \ (A \times Y)^{\complement} = A^{\complement} \times Y, \left(\bigcup_n A_n\right) \times Y = \bigcup_n (A_n \times Y)) \ \text{故包含} \ \sigma(\mathscr{E}). \ \text{得证}.$$

推论 3.7.5. 令 X 和 Y 为第二可数的拓扑空间,则 $\mathcal{B}_X \otimes \mathcal{B}_Y = \mathcal{B}_{X \times Y}$. (回忆若 U 是 X 可数拓扑基则 $\mathcal{B}_X = \sigma(U)$)

证明: 令 $\mathfrak U$ 和 $\mathfrak V$ 分别是 X 和 Y 的一组可数拓扑基且假设 $X \in \mathfrak U, Y \in \mathfrak V$, 则 $\mathcal W = \{U \times V : U \in \mathfrak U, V \in \mathfrak V\}$ 是 $X \times Y$ 的一组可数拓扑基, 由 $\sigma(\mathfrak U) \otimes \sigma(\mathfrak V) = \sigma(\mathcal W)$ 知 $\mathfrak B_X \otimes \mathfrak B_Y = \mathfrak B_{X \times Y}$.

命题 3.7.6. 投影 $\pi_X: X \times Y \to X, \pi_Y: X \times Y \to Y$ 可测.

证明: 若 $A \subset X$ 可测, 则 $\pi_Y^{-1}(A) = A \times Y$ 可测.

命题 3.7.7. 令 $(X, \mathcal{M}), (Y, \mathcal{N}), (Z, \mathcal{P})$ 为可测空间. $f: Z \to X, g: Z \to Y$ 为映射. 令 $f \lor g: Z \to X \lor Y, z \mapsto (f(z), g(z))$. 则 $f \lor g$ 可测 (若 $X \lor Y$ 取 σ -代数 $\mathcal{M} \otimes \mathcal{N})$ 当且仅当 f 和 g 都可测.

证明: 若 $f \vee g$ 可测, 由 $\pi_X : X \times Y \to X$ 可测知 $f = \pi_X \circ (f \vee g)$ 可测. 反之, 假设 f 和 g 都可测. 则 $\forall A \in \mathcal{M}, B \in \mathcal{N}$ 有 $(f \vee g)^{-1}(A \times B) = f^{-1}(A) \cap g^{-1}(B)$ 可测. 故 $f \vee g$ 可测.

推论 3.7.8. 令 $(X,\mathcal{M}),(Y,\mathcal{N}),(Z,\mathcal{P})$ 为可测空间. 若 $E\subset X\times Y,f:X\times Y\to Z. \forall x\in X,y\in Y,$ 令

$$E_x = \{ y \in Y : (x, y) \in E \}, E^y = \{ x \in X : (x, y) \in E \}$$
$$f_x : Y \to Z, f_x(t) = f(x, t), f^y : X \to Z, f^y(s) = f(s, y)$$

- (1) 若 $E \in \mathcal{M} \otimes \mathcal{N}$ 则 $E_x \in \mathcal{N}, E^y \in \mathcal{M}$
- (2) 若 $f: X \times Y \to Z$ 可测 (取 $M \otimes N \to X \times Y$ 的一个 σ -代数), 则 f_x, f^y 可测则 f_x, f^y 可测.

证明: 令 $\alpha: Y \to X \times Y, t \mapsto (x, t)$. 则通过观察 α 每个分量可知 α 可测. 故 $f_x = f \circ \alpha$ 可测. $E_x = \alpha^{-1}(E)$ 可测. 类似地, f^y, E^y 可测.

我们把形如 $A \times B(A \in \mathcal{M}, B \in \mathcal{N})$ 的集合称为**可测长方形**.

命题 3.7.9. 令 $(X, \mathcal{M}), (Y, \mathcal{N})$ 为测度空间.

$$\mathscr{E} = \left\{ \bigcup_{i=1}^{\infty} A_i \times B_i : n \in \mathbb{N}, A_i \in \mathcal{M}, B_i \in \mathcal{N} \right\}$$

则 \mathscr{E} 是 $X \times Y$ 的一个代数, 且其中任一元素都能写成有限个可测长方形的不交并.

证明: 显然 $\emptyset \in \mathcal{E}$ 目 \mathcal{E} 对有限并封闭. 由

$$\left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right)^{\complement} = \bigcap_{i=1}^{n} \left(A_{i} \times B_{i}\right)^{\complement} = \bigcap_{i=1}^{n} \left(\left(A_{i}^{\complement} \times B_{i}\right) \cup \left(A_{i} \times B_{i}^{\complement}\right)\right)$$

$$= \bigcup_{i,j=1}^{n} \left(\left(A_{i}^{\complement} \times B_{i}\right) \cap \left(A_{j} \times B_{j}^{\complement}\right)\right) = \bigcup_{i,j=1}^{n} \left(A_{j} \setminus A_{i}\right) \times \left(B_{i} \setminus B_{j}\right)$$

知 $\mathscr E$ 对取补集封闭, 因为是一个代数. 我们证明 $\bigcup_{i=1}^n A_i \times B_i$ 可写成有限个可测长方形的并.n=1

时显然. 假设 case n-1 成立, 考虑 case n. 由 case n-1, 有不交并 $\bigcup_{i=1}^{n-1} (A_i \times B_i) = \bigcup_{i=1}^m C_i \times D_i$. 其中 $C_i \times D_i$ 是可测长方形. 故

$$\bigcup_{i=1}^{n} A_i \times B_i = \left(\bigsqcup_{i=1}^{m} C_i \times D_i\right) \cup \left(A_n \times B_n\right) = \left(\bigsqcup_{i=1}^{m} (C_i \times D_i) \setminus (A_n \times B_n)\right) \cup \left(A_n \times B_n\right)$$

而

$$(C_i \times D_i) \setminus (A_n \times B_n) = ((C_i \setminus A_n) \times D_i) \sqcup ((C_i \cap A_n) \times (D_i \setminus B_n))$$

定理 3.7.10 (Fubini 定理). 令 (X, \mathcal{M}, μ) 和 (Y, \mathcal{N}, ν) 为 σ -有限测度空间, $f: X \times Y \to [0, +\infty]$ 是 $(\mathcal{M} \otimes \mathcal{N})$ -可测的. 则

$$(1)$$
 $x \in X \mapsto \int_{Y} f(x,y) d\nu(y)$ 和 $y \in Y \mapsto \int_{X} f(x,y) d\mu(x)$ 可测

(2)
$$\int_{X} \int_{Y} f d\nu d\mu = \int_{X} \int_{Y} f d\mu d\nu$$

证明: \diamondsuit $\mathscr{L} = \{ 满足 (1) 和 (2) 的函数<math>f: X \times Y \to [0, +\infty] \}$. 我们证明 \mathscr{L} 包含所有 $(M \otimes N)$ -可测函数, 我们有:

- (a) $\forall f, g \in \mathcal{L}, a \in [0, +\infty), \text{ } \emptyset \text{ } af \in \mathcal{L}, f + g \in \mathcal{L}.$
- (b) 若 $\{f_n\}$ 是 $\mathscr L$ 中递增列, 逐点收敛到 $f: X \times Y \to [0, +\infty]$, 则由单调收敛定理得 $f \in \mathscr L$.
- (c) 若 $\mu(X), \nu(Y) < +\infty.\{f_n\}$ 是 \mathscr{L} 中函数列,逐点收敛到 $f: X \times Y \to [0, +\infty]$ 且存在 $a \in [0, +\infty)$ 使 $\forall n$ 有 $f_n \leqslant a$. 则由控制收敛定理得 $f \in \mathscr{L}$.

Case 1: 假设 $\mu(X), \nu(Y) < +\infty$, 因为对任意 $(\mathfrak{M} \otimes \mathfrak{N})$ -可测的 $f: X \times Y \to [0, +\infty]$, 存在递增简单函数列逐点收敛到 f, 故由 (a) 和 (b), 只需证明 $\forall E \in \mathfrak{M} \otimes \mathfrak{N}$ 有 $\chi_E \in \mathscr{L}$. 令 $\mathfrak{C} = \{E \in 2^{X \times Y} : \chi_E \in \mathscr{L}\}$. 则由 (b) 和 (c) 知 \mathfrak{C} 是单调类.

令 \mathcal{E} 为前一命题中的代数. $\forall E \in \mathcal{E}$,E 可写成 $E = \bigsqcup_{i=1}^{n} A_i \times B_i (A_i \in \mathcal{M}, B_i \in \mathcal{N})$. 故

 $\chi_E = \sum_{i=1}^n \chi_{A_i \times B_i}$. 显然 $\chi_{A_i \times B_i} \in \mathcal{C}$. 故由 (a) 知 $\chi_E \in \mathcal{C}$ 从而 $E \in \mathcal{E}$. 我们证了 $\mathcal{E} \subset \mathcal{C}$. 故由单调类定理, $\mathcal{M} \otimes \mathcal{N} = \sigma(\mathcal{E}) \subset \mathcal{C}$.

Case 2: 一般情况. 则 $X = \bigcup_{n=1}^{\infty} X_n, Y = \bigcup_{n=1}^{\infty} Y_n, X_n \in \mathcal{M}, Y_n \in \mathcal{N}, X_1 \subset X_2 \subset \cdots, Y_1 \subset Y_2 \subset \cdots$ 且 $\mu(X_n), \nu(Y_n) < +\infty$. 任取 $(\mathcal{M} \otimes \mathcal{N})$ -可测 $f: X \times Y \to [0, +\infty]$, 则由 case $1, f \cdot \chi_{X_i \times Y_i} \in \mathcal{L}$. 故由 (b) 知 $f \in \mathcal{L}$.

定义 3.7.11. \diamondsuit $(X, M, \mu), (Y, N, \nu)$ 为 σ -有限的. 定义 $M \otimes N$ 上的**乘积测度\mu \times \nu** 为: 若 $E \in M \otimes N$, 则

$$(\mu \times \nu)(E) = \int_X \int_Y \chi_E d\nu d\mu = \int_Y \int_X \chi_E d\mu d\mu$$

(由前一证明的 (a),(b) 可知 $\mu \times \nu$ 满足可数可加性, 故是测度)

命题 3.7.12. 若 $f: X \times Y \to [0, +\infty]$ 是 $(\mathcal{M} \otimes \mathcal{N})$ -可测, 则

$$\int_{X\times Y} fd(\mu\times\nu) = \int_X \int_Y fd\nu d\mu = \int_Y \int_X fd\mu d\nu$$

证明:由递增简单函数逼近和单调收敛定理约化为 f 是简单函数的情形,从而约化为 $f=\chi_E(E\in \mathbb{M}\otimes \mathbb{N})$ 的情形.

推论 3.7.13. \diamondsuit (X, M, μ) 和 (Y, N, ν) 为 σ -有限测度空间 $E \in M \otimes N$, 则以下等价:

- $(1) \ (\mu \times \nu)(E) = 0$
- (2) 函数 $x \in X \mapsto \nu(E_x)$ a.e.是零
- (3) 函数 $y \in Y \mapsto \mu(E^y)$ a.e.是零

证明:

$$(1) \iff \int_{X \times Y} \chi_E d(\mu \times \nu) = 0 \iff \int_X \int_Y \chi_E d\nu d\mu = 0$$
$$\iff \int_X \nu(E_x) d\mu(x) = 0 \iff (2)$$

类似地, $(1) \Longleftrightarrow (3)$.

定理 3.7.14 (Fubini 定理). 令 (X, \mathcal{M}, μ) , (Y, \mathcal{N}, ν) 为 σ -有限测度空间, 令 $f \in L^1(X \times Y, \mu \times \nu)$, 则 $f_x \in L^1(Y, \nu)$ 对 $a.e.x \in X$ 成立, $f^y \in L^1(X, \mu)$ 对 $a.e.y \in Y$ 成立, 通过在不成立处取值为 0, 则 $x \mapsto \int_{Y} f_x d\nu$ 和 $y \mapsto \int_{Y} f^y d\mu$ 是可积的. 且

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \int_Y f d\nu d\mu = \int_Y \int_X f d\mu d\nu$$

注记. 若 $f: X \times Y \to \mathbb{C}$ 可测,则 $f \in L^1(X \times Y, \mu \times \nu) \iff \int_X \int_Y |f| d\nu d\mu < +\infty \iff \int_Y \int_X |f| d\mu d\nu < +\infty.$

证明: 通过考虑取 f 的实虚部, 不妨假设 f 取实值. 由

$$\int_{X} \left(\int_{Y} |f_{x}| d\nu \right) d\mu(x) = \int_{X} \int_{Y} |f(x,y)| d\nu(u) d\mu(x) < +\infty$$

知 $\int_Y |f_x| d\nu < +\infty$ a.e. $x \in X$. 由 $x \mapsto \int_Y f_x^+ d\nu$ 和 $x \mapsto \int_Y f_x^- d\nu$ 在一个零测集外可积以及 $f = f^+ - f^-$ 知 $x \mapsto \int_Y \int_X f_x d\nu$ (以及类似地 $y \mapsto \int_X f^y d\mu$) 在零测集外可测且可积.

要证
$$\int_{X\times Y} fd(\mu \times \nu) = \int_X \int_Y fd\nu d\mu$$
, 通过考虑正负部, 不妨假设 $f\geqslant 0$, 则
$$\int_{X\times Y} f^+ d(\mu \times \nu) = \int_X \int_Y f^+ d\nu d\mu$$

$$\int_{X\times Y} f^- d(\mu \times \nu) = \int_X \int_Y f^- d\nu d\mu$$

两式相减得证.

注记. 若 X,Y 是第二可数的 LCH 空间, 我们知道 $\mathcal{B}_{X\times Y}=\mathcal{B}_X\otimes\mathcal{B}_Y$. 若 μ 和 ν 分别是 X 和 Y 上的 Radon 测度, 则 $\mu\times\nu$ 是 $X\times Y$ 上的 Borel 测度, 且 $\mu\times\nu$ 在紧集上有限.

(若 $K\subset X\times Y$ 紧, 令 $\pi_X:X\times Y\to X,\pi_Y:X\times Y\to Y$ 为投影, 则 $L_1=\pi_X(K)$ 和 $L_2=\pi_Y(K)$ 紧, $K\subset L_1\times L_2$. 从而

$$(\mu \times \nu)(K) = \int_{X \times Y} \chi_K d(\mu \times \nu) \leqslant \int_{X \times Y} \chi_{L_1 \times L_2} d(\mu \times \nu) = \mu(L_1)\nu(L_2) < +\infty)$$

因 $X \times Y$ 第二可数, 故 $\mu \times \nu$ 是 $X \times Y$ 上的正则 (从而 Radon) 测度.

例子. 由 \mathbb{R}^n 上 Lebesgue 测度 m_k 构造方式, 若 $f \in C_c(\mathbb{R}^n)$ 则

$$\int_{\mathbb{R}^n} f dm_n = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, \cdots, x_n) dx_1 \cdots dx_n$$

类似地, 若 $f \in C_c(\mathbb{R}^{n+k})$, 则

$$\int_{\mathbb{R}^{n+k}} f dm_{n+k} = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, \dots, x_{n+k}) dx_1 \cdots dx_{n+k}
= \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \left(\int_{\mathbb{R}^n} f dm_n (x_1, \dots, x_n) \right) dx_{n+1} \cdots dx_{n+k}
= \int_{\mathbb{R}^k} \int_{\mathbb{R}^n} f dm_n (x_1, \dots, x_n) dm_k (x_{n+1}, \dots, x_{n+k})
\stackrel{Fubini}{=} \int_{\mathbb{R}^n \times \mathbb{R}^k} f dm_n \times m_k$$

因为 Radon 测度由其对 C_c 中函数积分决定,因此 $m_{n+k}=m_n \times m_k$.

一般来说 $\overline{M} \otimes \overline{N} \subsetneq \overline{M \otimes N}$, 相应地 $\overline{B_{\mathbb{R}^m}} \otimes \overline{B_{\mathbb{R}^n}} \subsetneq \overline{B_{\mathbb{R}^{m+n}}}$.

定理 3.7.15. 令 (X, \mathcal{M}, μ) 和 (Y, \mathcal{N}, ν) 为 σ -有限测度空间, \mathcal{M} 和 \mathcal{N} 在 μ, ν 下完备, $\overline{\mathcal{M} \times \mathcal{N}}$ 是 $\mathcal{M} \times \mathcal{N}$ 在 $\mu \times \nu$ 下的完备化.

- (1) 令 $f: X \times Y \to [0, +\infty]$ 或 \mathbb{C} 是 $\overline{M \otimes N}$ 可测,且对 $a.e.x \in X, f_x$ 是 \mathbb{N} -可测的,对 $a.e.y \in Y, f^y$ 是 \mathbb{M} -可测的.
- (2) 若 $f: X \times Y \to [0, +\infty]$ 是 $\overline{\mathbb{M} \otimes \mathbb{N}}$ 可测,则 a.e. 定义的 $x \mapsto \int_Y f_x d\nu$ 和 $y \mapsto \int_X f^y d\mu$ 分 别 \mathbb{N} -可测和 \mathbb{M} -可测. 且

$$\int_{X\times Y} fd(\mu\times\nu) = \int_X \int_Y fd\nu d\mu = \int_Y \int_X fd\mu d\nu$$

(3) 若 $f: X \times Y \to \mathbb{C}$ 是 $\overline{\mathbb{M} \otimes \mathbb{N}}$ 可测且 $f \in L^1(X \times Y, \mu \times \nu)$, 则对 $a.e.x \in X$ 有 $f_x \in L^1(Y, \nu)$; $a.e.y \in Y$ 有 $f^y \in L^1(X, \mu)$.a.e. 定义的 $x \mapsto \int_Y f_x d\nu$ 和 $y \mapsto \int_X f^y d\mu$ 可积且

$$\int_{X\times Y} fd(\mu\times\nu) = \int_X \int_Y fd\nu d\mu = \int_Y \int_X fd\mu d\nu$$

证明:存在 $\Delta \in \mathcal{M} \otimes \mathcal{N}$, $(\mu \times \nu)(\Delta) = 0$ 使得若令 $\Omega = (X \times Y) \setminus \Delta$ 则 $g := f \cdot \chi_{\Omega}$ 是 $\mathcal{M} \otimes \mathcal{N}$ -可测的. 因此 g 满足 (1)(2)(3). 令 $h = f - g = f \cdot \chi_{\Delta}$. 则只需验证 h 也满足 (1)(2)(3) 即可. 而只需验证 (1) 和

- $(2') ~ \ddot{H} ~ h: X \times Y \to [0,+\infty], \, \, \bigcup \hspace{-.5cm} \bigwedge \hspace{-.5cm} \hspace{-.5cm} \bigwedge \hspace{-.$
- 则 (2) 显然成立, 故若 $h: X \times Y \to \mathbb{C}$ 则 $x \mapsto \int_Y h_x d\nu$ 和 $y \mapsto \int_X h^y d\mu$ a.e. 为 0.(因为 $\left| \int_Y h_x d\nu \right| \leqslant \int_Y |h_x| d\nu$) 从而

$$\int_{X\times Y} hd(\mu\times\nu) = \int_X \int_Y hd\nu d\mu = \int_Y \int_X hd\mu d\nu = 0$$

(3) 对 h 成立. 剩余 (1) 和 (2') 的证明留作作业.

第四章 多元微积分与流形

4.1 反函数定理

我们回到多变量微积分. 回忆若 $\Omega \subset \mathbb{R}^n$ 是开集, $f: \Omega \to \mathbb{R}^n$ 是 C^r 的, 若

$$\forall 1 \leq k \leq r, \forall 1 \leq i_1, \dots, i_k \leq n, \partial_{i_1} \dots \partial_{i_k} f$$
存在且连续

若 $f \in C^1(\Omega)$, 则 f 可微, 即 $\forall x \in \Omega$,

$$f(x+v) = f(x) + df|_x \cdot v + o(v)$$

这里 $v \in \mathbb{R}^n$, $\lim_{v \to 0} \frac{o(v)}{\|v\|} = 0$, $df|_x \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, 且若把 v 写成 \mathbb{R}^n 中的列向量, 则 $df|_x$ 是 $m \times n$ 矩阵:

$$df = \operatorname{Jac}(f) = \begin{pmatrix} \partial_1 f^1 & \partial_2 f^1 & \cdots & \partial_n f^1 \\ \vdots & \vdots & & \vdots \\ \partial_1 f^m & \partial_2 f^m & \cdots & \partial_n f^m \end{pmatrix}$$

若我们把
$$f$$
 写成 $f(x) = \begin{pmatrix} f^1(x) \\ \vdots \\ f^m(x) \end{pmatrix}, f^i: \Omega \to \mathbb{R}.$

我们接下来的学习目标是研究所谓隐函数定理. 考虑一个简单例子: 函数 $f: \mathbb{R}^3 \to \mathbb{R}, f = f(x,y,z)$. 考虑 $Z(f) = \{(x,y,z) \in \mathbb{R}^3: f(x,y,z) = 0\}$. 隐函数定理会告诉我们, 如果 $\partial_z(f) \neq 0$, 则 Z(f) 上我们能局部地解出 z = g(x,y), 其中 (x,y) 定义在 \mathbb{R}^2 的一个开集上.

例子. 考虑球面 $x^2 + y^2 + z^2 - 1 = 0$.

当 $z \neq 0$ 时, $\partial_z(f) = 2z \neq 0$, 则在 Z(f) 上.

$$z = \begin{cases} \sqrt{1 - x^2 - y^2} & \exists z > 0 \\ -\sqrt{1 - x^2 - y^2} & \exists z < 0 \end{cases}$$

我们要说清楚这里的"解"是什么意思,并严格证明这一结论.事实上,隐函数定理中隐含了微分流形概念的动机,而要证隐函数定理,我们要先证反函数定理.

定义 4.1.1. 令 $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ 为开集. 我们说映射 $f: U \to V$ 是 C^r -(微分) 同胚 $(r \ge 0)$ 若 $f \in C^r$ 的双射, 且其逆映射 f^{-1} 也是 C^r 的 (由 f 和 f^{-1} 连续可知 f 是同胚). C^{∞} -微分同胚简 称微分同胚.

注记. 令 $g = f^{-1}$, 令 $p \in U$, 则由 $f \circ g = \mathrm{id}_V$, $g \circ f = \mathrm{id}_U$ 得 $df|_p : \mathbb{R}^n \to \mathbb{R}^m$ 和 $dg|_{f(p)} : \mathbb{R}^m \to \mathbb{R}^n$ 互为逆线性映射. 因此对 C^r -同胚 $(r \geqslant 1)$ 一定有 m = n.

命题 4.1.2. C^r 函数的复合也是 C^r .

定理 4.1.3 (反函数定理). 令 $\Omega \subset \mathbb{R}^n$ 为开集, $\varphi : \Omega \to \mathbb{R}^n$ 是 C^r 映射 $(r \geqslant 1)$. 令 $p \in \Omega$, 假设 $d\varphi|_p : \mathbb{R}^n \to \mathbb{R}^n$ 是可逆线性映射, 则存在 p 的领域 $U \subset \Omega$ 和 f(p) 的领域 $V \subset \mathbb{R}^n$ 使 $\varphi : U \to V$ 是 C^r -同胚.

注记. 证明时不妨假设 p=0, f(p)=0(通过把 φ 换成 $\varphi(x+p)-\varphi(p)$). 令 $A=d\varphi|_0$, 则

$$d(A^{-1} \circ \varphi)|_0 = A^{-1} \cdot d\varphi|_0 = 1$$

因此只需对 $A^{-1} \circ \varphi$ 证明反函数定理, 再复合上 A 得 f 的反函数定理. 故不妨假设 $d\varphi|_0 = 1$. 因此

$$\varphi(x) = x + R(x)$$

这里 $\lim_{x\to 0}\frac{R(x)}{\|x\|}=0$. 我们要在 $\varphi(0)$ 的一个领域 V 上找到 $\psi:V\to\mathbb{R}^n$ 使 $\varphi\circ\psi(y)=y$, 即 $\psi(y)+R(\psi(y))=y$, 即

$$\psi(y) = y - R \circ \psi(y)$$

注意这个问题和解 ODE

$$\begin{cases} f'(t) = & \varphi \circ f(t) \\ f(0) = & \xi \end{cases}$$

即 $f(t) = \xi + \int_0^t \varphi \circ f(s) ds$ 的相似性. 因此它们的研究方法也类似, 即用:

引理 4.1.4 (压缩不动点定理). 令 X 是完备度量空间, $0 \le r < 1,T: X \to X$ 是压缩映射: 对 X 中任意 x_1,x_2 有

$$d(T(x_1), T(x_2)) \leqslant rd(x_1, x_2)$$

则存在唯一 $x \in X$ 满足 T(x) = x.

反函数定理的证明. 根据假设, $d\varphi$ 在 p 处可逆. 故 $\det(d\varphi)$ 在 p 处非零. 故在 p 附近非零 (因为 $\det(d\varphi)$ 可由 φ 的各分量的一阶偏导的乘法和加法得到). 故, 不妨缩小 Ω 使 $d\varphi$ 在 Ω 上处处可逆.

Step 1: 我们证明 $\varphi: \Omega \to \mathbb{R}^n$ 是开映射且在 p 的一个邻域 U 上是单射, 则 $V = \varphi(U)$ 是 \mathbb{R}^n 的 开子集且 $\varphi: U \to V$ 是同胚 (我们会在 Step 2 中证明 $\varphi^{-1} \in C^r$). 只需证:

Claim: 存在 p 邻域 $U \in \Omega$ 使 $\varphi|_U$ 是单射且 $\varphi(p)$ 是 $\varphi(U)$ (在 \mathbb{R}^n 中的) 内点.

则对 U 中其它点 p' 类似地也有 $\varphi(p')$ 是 $\varphi(U)$ 的内点, 故 $\varphi(U)$ 是开集. 根据前面讨论, 假设 $p=0, \varphi(0)=0, d\varphi|_0=I$.

Claim 的证明. 记 $\varphi(x) = x + R(x)$. 不妨假设 Ω 是包含 0 的开球. 由 $dR|_0 = d\varphi|_0 - I = 0$ 和 $dR|_x$ 关于 $x \in \Omega$ 的连续性, 对任意 $0 < \varepsilon < 1$, 存在 $\delta > 0$ 使得 $U = B_{\mathbb{R}^n}(0, \delta) \subset \Omega$ 且在 U 上 $||dR|| \leq \varepsilon$. 故 R 是 Lipschitz 连续的, 且 $\forall x_1, x_2 \in B(0, \delta)$ 有

$$||R(x_1) - R(x_2)|| \le \varepsilon ||x_1 - x_2||$$

故若 $R(x_1) = R(x_2)$ 则由

$$||x_1 - x_2|| \le ||R(x_1) - R(x_2)|| \le \varepsilon ||x_1 - x_2||$$

可知 $||x_1 - x_2|| = 0, x_1 = x_2$. 因此 φ 在 U 上是单射.

我们接下来证明 $\varphi(U)$ 包含一个以 0 为中心的开球. 即证当 $y\in\mathbb{R}^n$ 充分小时存在 $x\in U$ 使 $y=\varphi(x)=x+R(x)$, 即 x=y-R(x). 定义

$$T_y: U \to \mathbb{R}^n, T_y(x) = y - R(x)$$

注意 R(0) = 0, 故 $\forall x \in U$ 有 $\|R(x)\| \le \varepsilon \|x\|$. 若 $\|x\| \le \frac{\delta}{2}$, 则

$$||T_y(x)|| \le ||y|| + ||R(x)|| \le ||y|| + \frac{\varepsilon \delta}{2}$$

故若 $\|y\| \leqslant \frac{(1-\varepsilon)\delta}{2}$,则有 $\|x\| \leqslant \frac{\delta}{2}$,从而 $\|T_y(x)\| \leqslant \frac{\delta}{2}$.从而 $T_y: \overline{B\left(0,\frac{\delta}{2}\right)} \to \overline{B\left(0,\frac{\delta}{2}\right)}$,

$$||T_y(x_1) - T_y(x_2)|| = ||R(x_2) - R(x_1)|| \le \varepsilon ||x_1 - x_2||$$

故 T_y 是压缩映射. 故存在 $x \in \overline{B\left(0,\frac{\delta}{2}\right)}$ 使 $T_y(x) = x$ 即 $y - R(x) = x, y = \varphi(x)$. 因此 $\varphi(U) \supset B\left(0,\frac{(1-\varepsilon)\delta}{2}\right)$.

Step 2: 令 $\psi:V\to U$ 为同胚 $\varphi:U\to V$ 的逆映射. 我们要证 $\psi\in C^r$. 假设能证 ψ 在 $\varphi(p)$ 处可微且

$$d\psi|_{\varphi(p)} = (d\varphi|_p)^{-1} \tag{*}$$

则类似地 $\forall y \in V$ 有 $d\psi|_{y} = (d\varphi|_{\varphi^{-1}(y)})^{-1}$. 从而 $d\psi$ 在 V 上连续, 故 $\psi \in C^{1}$. 矩阵 $\left(d\psi|_{\varphi^{-1}(y)}\right)^{-1}$ 可由 Cramer 法则写出. 利用对 r 的归纳法可知: 若 C^{r-1} 的反函数定理成立 $(r \geq 2)$, 则 $\varphi^{-1} \in C^{r-1}$, 故 $(d\varphi|_{\varphi^{-1}})^{-1} \in C^{r-1}$ 故 $\psi \in C^{r}$. 因此只需证 (*). 类似于 Step 1, 可作如下简化:

$$p=0, \varphi(p)=0, \varphi: U \to V$$
是同胚. $d\varphi|_0=I$

Claim: $\psi = \varphi^{-1}: V \to U$ 在 0 处可微且 $d\psi|_0 = I$.

Claim 的证明. 回忆 $\varphi(x)=x+R(x), R\in C^1, dR|_0=0$, 通过缩小 U, 假设在 U 上 $\|dR\|\leqslant \frac{1}{2}$. 对任意 V 中元素 y, 有 $y=\varphi\circ\psi(y)=\psi(y)+R\circ\psi(y)$, 故 $\psi(y)=y-R\circ\psi(y)$. 只需证 $\lim_{y\to 0}\frac{R\circ\psi(y)}{\|y\|}=0$. 而,

$$\frac{R \circ \psi(y)}{\|y\|} = \frac{R \circ \psi(y)}{\|\psi(y)\|} \cdot \frac{\|\psi(y)\|}{\|y\|}$$

且 $\lim_{y\to 0} \frac{R\circ \psi(y)}{\|\psi(y)\|} = 0$,故只需证 $\sup_{y\in V} \frac{\|\psi(y)\|}{\|y\|} < +\infty$ 即可. $\forall x\in U$ 有,

$$\frac{\|\varphi(x)\|}{\|x\|} = \frac{\|x + R(x)\|}{\|x\|} \geqslant \frac{\|x\| - \frac{1}{2}\|x\|}{\|x\|} = \frac{1}{2}$$

П

故
$$\forall y \in V$$
 有 $\frac{\|y\|}{\|\psi(y)\|} \geqslant \frac{1}{2}$, 即 $\sup_{y \in V} \frac{\|\psi(y)\|}{\|y\|} \leqslant 2$.

因此反函数定理得到了证明.

4.2 隐函数定理和微分流形

我们引入常用记号 $x^i: \mathbb{R}^n \to \mathbb{R}, (a_1, \dots, a_n) \mapsto a_i$, 此外 $\partial_i, \partial_{x_i}, \partial_{x^i}$ 同义. 从今往后, 若不加特别说明, C^r 中的 r 都要求 $r \geq 1$.

定理 4.2.1 (隐函数定理). 令 Ω 是 \mathbb{R}^n 的开子集, 令 $0 \leq d \leq n$, 令 k = n - d. 令 $F = (f^1, \dots, f^k): \Omega \to \mathbb{R}^k$ 是 C^r 映射. 令 $p \in \Omega$ 满足

$$(\partial_{d+1}F^{\mathrm{T}}, \cdots, \partial_{n}F^{\mathrm{T}}) = \begin{pmatrix} \partial_{d+1}f^{1} & \cdots & \partial_{n}f^{1} \\ \partial_{d+1}f^{2} & \cdots & \partial_{n}f^{2} \\ \vdots & & \vdots \\ \partial_{d+1}f^{k} & \cdots & \partial_{n}f^{k} \end{pmatrix}$$

在 p 处可逆. 则存在 p 的领域 $U \subset \Omega$ 和开集 $V \subset \mathbb{R}^n$ 使

$$(x^1,\cdots,x^d,f^1,\cdots,f^k):U\to V$$

是 C^r -同胚.

例子. $f^1(x^1, x^2, x^3, x^4, x^5), f^2(x^1, x^2, x^3, x^4, x^5)$ 满足

$$\left(\begin{array}{cc} \partial_4 f^1 & \partial_5 f^1 \\ \partial_4 f^2 & \partial_5 f^2 \end{array}\right) \bigg|_p$$

可逆, 则 $(x^1, x^2, x^3, f^1, f^2)$ 是 p 一个邻域 U 到其像 V 的 C^r -同胚, $V \subset \mathbb{R}^5$ 是开集.

证明:我们就以此例子为例来证明隐函数定理,一般情况类似.

$$\Rightarrow \varphi = (x^1, x^2, x^3, f^1, f^2), 则$$

$$\operatorname{Jac}(\varphi) = \begin{pmatrix} 1 & & 0 & 0 \\ & 1 & & 0 & 0 \\ & & 1 & 0 & 0 \\ & & * & * & \partial_4 f^1 & \partial_5 f^1 \\ & * & * & * & \partial_4 f^2 & \partial_5 f^2 \end{pmatrix}$$

由假设知 $Jac(\varphi)|_p$ 可逆, 故由反函数定理完成证明.

注记. 我们想要理解"从 $f^1, f^2=0$ 解出 $x^4=g^1(x^1,x^2,x^3), x^5=g^2(x^1,x^2,x^3)$ "它的实际含义. 简单起见, 我们把 Ω 缩小到 U. 令

$$Z(F) = Z(f^1, f^2) = \{ q \in U : f^1(q) = f^2(q) = 0 \}$$

考虑 $x^4|_{Z(F)}, x^5|_{Z(F)}$. 更一般地, 考虑 $h|_{Z(F)}, h \in C^r(U, \mathbb{R})$, 则我们想证明存在 $g \in C^r(V \cap (\mathbb{R}^3 \times 0))$ 使 $h = g \circ (x^1, x^2, x^3)$.

我们现在从一般的角度讨论这个问题. 令 $r \ge 1$.

定义 4.2.2. 令 M 为 \mathbb{R}^n 的子集. 我们说 M 是 \mathbb{R}^n 的 C^r 的嵌入子流形 (embedded submanifold)/正则子流形 (regular submanifold), 或简称为子流形 (submanifold), 若 $\forall p \in M$, 存 在 p 在 \mathbb{R}^n 中邻域 $U,0 \leq d \leq n$, 以及 C^r -同胚 $\varphi = (\varphi^1, \cdots, \varphi^n) : U \to V(V$ 是 \mathbb{R}^n 开子集) 满足:

$$M \cap U = Z(\varphi^{d+1}, \varphi^{d+2}, \cdots, \varphi^n) := \{ p \in U : \varphi^{d+1}(p) = \varphi^{d+2}(p) = \cdots = \varphi^n(p) = 0 \}$$

我们说 M 在 p 处是d **维**的.

例子. 考虑比上一例稍强的例子: $\Omega \subset \mathbb{R}^5$ 是开集, $f^1, f^2: \Omega \to \mathbb{R}$ 是 C^r 的, $\begin{pmatrix} \partial_4 f^1 & \partial_5 f^1 \\ \partial_4 f^2 & \partial_5 f^2 \end{pmatrix}$ 在 Ω 上处处可逆, 则 $M = Z(f^1, f^2)$ 是 \mathbb{R}^5 的 C^r 子流形. 因为 $\forall p \in Z(f^1, f^2)$, 存在 p 邻域 $U \subset \Omega$ 使得

$$\varphi = (x^1, x^2, x^3, f^1, f^2) : U \to V$$

是 C^r -同胚 (注意 $(x^1, x^2, x^3, f^1, f^2)$ 在整个 Ω 上不一定是单射).

我们回到子流形的定义. $\varphi:U\to V$ 是 C^r -同胚意味着 φ 建立了 U 和 V 的某种 "等价". 它包括如下方面:

• $U \perp h C^r$ 函数和 $V \perp h C^r$ 函数之间的等价对应关系是

$$h \circ \varphi \in C^r(U, \mathbb{R}) \stackrel{\cong}{\longleftrightarrow} h \in C^r(V, \mathbb{R})$$

• U 的子集和 V 的子集之间的等价: $\varphi^1, \dots, \varphi^n \in C^r(U, \mathbb{R})$ 对应于 $x^1, \dots, x^n \in C^r(V, \mathbb{R})$. 因此 $M \cap U = Z\left(\varphi^{d+1}, \dots, \varphi^n\right)$ 作为 U 的闭子集对应于

$$Z\left(x^{d+1},\cdots,x^n\right)\cap V=V\cap\left(\mathbb{R}^d\times\{0\}\right)$$

作为 V 的子集.

现在取 $h \in C^r(U, \mathbb{R})$, 则 $g = h \circ \varphi^{-1} \in C^r(V, \mathbb{R})$. $g = g \circ (x^1, \dots, x^d, \dots, x^n)$. 令 $\widetilde{g}(a_1, \dots, a_d) = g(a_1, \dots, a_d, 0, \dots, 0)$. 则 $\widetilde{g} \in C^r(V \cap (\mathbb{R}^d \times \{0\}))$ (这里 $V \cap (\mathbb{R}^d \times \{0\})$) 看作 \mathbb{R}^d 的开子集)

$$g|_{V\cap(\mathbb{R}^d\times\{0\})} = \widetilde{g}\circ\left(x^1,\cdots,x^d\right)\Big|_{V\cap(\mathbb{R}^d\times\{0\})}$$

即 $g|_{V\cap\mathbb{R}^d}$ "能被 x^1,\cdots,x^d 解出". 复合上 φ , 我们得到图上的等价表达式:

$$h|_{M\cap U} = \widetilde{g} \circ (\varphi^1, \cdots, \varphi^d)|_{M\cap U}$$

因此我们证明了"在 $Z(\varphi^{d+1}, \cdots, \varphi^n) \cap U$ 上我们可以用 $\varphi^1, \cdots, \varphi^d$ 来解出 h".

例子. 回到之前的例子, 我们得到结论: 在 $Z(f^1,f^2)\cap U$ 上可以用 x^1,x^2,x^3 来解出 x^4,x^5 , 即存在 $g^4,g^5\in C^r(V\cap(\mathbb{R}^3\times\{0\}),\mathbb{R})$ 使得在 $Z(f^1,f^2)\cap U$ 上有 $x^4=g^4\circ(x^1,x^2,x^3),x^5=g^5\circ(x^1,x^2,x^3)$

定义 4.2.3. 为了方便讨论, 定义若 $\Omega \subset \mathbb{R}^n$ 是开集, $r \geq 0$, 则 $\varphi : \Omega \to \mathbb{R}^m$ 称为一个 C^r -开嵌人 (C^r -open embedding), 若 $\varphi(\Omega)$ 是 \mathbb{R}^m 开子集且 $\varphi : \Omega \to \varphi(\Omega)$ 是 C^r -同胚. C^0 -开嵌入即是 连续开单射, 也称**开嵌人**.

我们来把上面 $\varphi^1, \dots, \varphi^d$ 满足的性质抽象出来. 我们说 $(U \cap M, \varphi^1, \dots, \varphi^d)$ 是**坐标卡 (coordinate chart)**. 或者说 $\varphi^1, \dots, \varphi^d$ 是 $U \cap M$ 的**坐标**, 其含义如下:

定义 4.2.4. 令 M 是 \mathbb{R}^n 的 C^r -子流形, $r \ge 1$. 令 $U \subset \mathbb{R}^n$ 是开集, 若 $\varphi^1, \dots, \varphi^d \in C(U \cap M, \mathbb{R})$, 我们说 $(U \cap M, \varphi^1, \dots, \varphi^d)$ 是 M 的一个坐标卡. 若

$$\Phi = (\varphi^1, \cdots, \varphi^d) : U \cap M \to \mathbb{R}^d$$

是开嵌入, 且对任意开子集 $U_0 \subset U$ 和任意 $h \in C^r(U_0, \mathbb{R})$, 存在 $g \in C^r(\Phi(U_0 \cap M), \mathbb{R})$ 满足

$$h|_{U_0\cap M}=g\circ\Phi|_{U_0\cap M}$$

即在 $U_0 \cap M$ 上 h 能 "被 $\varphi^1, \dots, \varphi^d$ 解出".

例子. 在子流形的定义中, $(M \cap U, \varphi^1, \dots, \varphi^d)$ 是 M 的一个坐标卡.

例子. 在隐函数定理的论述中, $(M \cap U, \varphi^1, \dots, \varphi^d)$ 是 $M = Z(\varphi^{d+1}, \dots, \varphi^n)$ 的一个坐标卡.

命题 4.2.5. 令 M 为 \mathbb{R}^n 的 C^r -子流形. 若 $(U,\Phi)=(U,\varphi^1,\cdots,\varphi^d)$ 和 $(V,\Psi)=(V,\psi^1,\cdots,\psi^k)$ 是坐标卡. 则

$$\Psi \circ \Phi^{-1} : \Phi(U \cap V) \to \Psi(U \cap V)$$

是 C^r -同胚. 特别地, 若 $U \cap V \neq 0$ 则 d = k.

证明: 通过把 U,V 换成 $U \cap V$, 不妨假设 $U = V \neq \emptyset$. 显然

$$\Psi \circ \Phi^{-1} : \Phi(U) \to \Psi(U)$$

是 (拓扑) 同胚. 因为 ψ^j 能被 Φ 解出, 存在 $g^j \in C^r(\Phi(U), \mathbb{R})$ 使 $\psi^j = g^j \circ \Phi$, 因此

$$\Psi \circ \Phi^{-1} = (g^1, \cdots, g^n)$$

是 C^r 的. 类似地, $\Phi \circ \Psi^{-1} : \Psi(U) \to \Phi(U)$ 也是 C^r 的. 因此 $\Psi \circ \Phi$ 是 C^r -同胚.

定义 4.2.6. 一个 C^r -流形 M 是一个 Hausdorff 空间, 并且附带一个开覆盖 $M = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$, 其中每个 U_{α} 附带一个开嵌入 $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^{d_{\alpha}}(d_{\alpha} = 0, 1, 2, \cdots)$ 满足对任意 $\alpha, \beta \in \mathcal{A}, \varphi_{\alpha}$ 和 φ_{β} 是 C^r -相容 (C^r -compatible) 的, 即转移函数 (transition function)

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

是 C^r 的. 我们说 U_α 是 d_α 维的. 若存在 $d \in \mathbb{N}$ 使 $\forall \alpha \in A$ 有 $d = d_\alpha$, 我们说 M 是**d** 维的. C^∞ -流 形称为**微分流形**或**光滑流形**. 集合

$$\mathcal{U} = \{ (U_{\alpha}, \varphi_{\alpha}) : \alpha \in \mathcal{A} \}$$

称为一个图册 (atlas).

例子. 令 $f(x,y,z)=x^2+y^2+z^2-1.M=Z(f)$ 是单位球面. 由于 f 是 C^{∞} 的,且由于 $\forall p\in M, \partial_x f(p), \partial_y f(p), \partial_z f(p)$ 中至少一个非零,因此由隐函数定理,x,y,z 中的两个给出了 p 在 M 内邻域的一个坐标. 例如当 p=(a,b,c) 满足 $c\neq 0$,则 $\partial_z f(p)\neq 0$,故 (x,y) 是 p 在 M 内邻域内的一个坐标. 这些坐标卡一起构成了 M 的一个图册,使 M 成为一个 (\mathbb{F}) 微分流形,例 如若

$$V = M \cap \{(a, b, c) \in \mathbb{R}^3 : c > 0\}$$

则 (V, x, y) 就是 M 的一个坐标卡, 因为 $(x, y, f): U \to \mathbb{R}^3$ 是开嵌入且 $V = U \cap \{f$ 的零点\}.

4.3 光滑结构,光滑映射,子流形

简单起见, 我们考虑 C^{∞} 的情况.

微分流形 (简称流形) 的定义有一个缺陷: 对图册的选取不唯一. 若 $\mathfrak U$ 和 $\mathcal V$ 都是 Hausdorff 空间 M 上的图册, 使 M 成为微分流形. 我们希望若 $\mathcal U$ 的每个成员 (U,φ) 和 $\mathcal V$ 中的每个成员 (V,ψ) 是 C^{∞} -相容的 (即 $\psi \circ \varphi : \varphi(U \cap V) \to \psi(U \cap V)$ 是 C^{∞} -同胚), 则 $(M,\mathfrak U)$ 和 $(M,\mathcal V)$ 是 同一个流形, 即它们具有相同的光滑结构.

定义 4.3.1. 令 $M \in C^{\infty}$ 流形, \mathcal{U} 是一个图册. 我们说 (V, ψ) 是 M 的一个**坐标卡 (chart)** 若 (V, ψ) 和 \mathcal{U} 中每个成员都 C^{∞} 相容. 所有和 \mathcal{U} 中成员 C^{∞} 相容的坐标卡显然互相间 C^{∞} 相容,故构成了包含 \mathcal{U} 的更大图册, 称为**极大图册 (atlas)**, 也称为 M 的**微分/光滑**/ C^{∞} 结构.

例子. 若 U 和 V 是 M 上相容的图册,则它们有共同的极大图册.

我们可以把光滑结构和拓扑结构类比,M 的拓扑结构 \mathfrak{T}_M 是 M 的所有开集构成的集合. 而 M 的微分结构中的元素是开集 + 坐标.

这种对微分结构的定义有一个麻烦的地方: 我们不能仿照连续映射 (开集的原像是开集) 来定义光滑映射. 例如若 M 是 \mathbb{R}^3 中的单位球,(\mathbb{R}^3, x, y, z) 是 \mathbb{R}^3 中的一个坐标卡. 而若令 $\iota: M \to \mathbb{R}^3$ 为嵌入映射, 则 ($\iota^{-1}(\mathbb{R}^3), x \circ \iota, y \circ \iota, z \circ \iota$) = ($M, x|_M, y|_M, z|_M$) 不是 M 的坐标卡. 我们下面给出另一个微分结构的定义:

定义 4.3.2. 令 M 为 C^{∞} 流形, \mathcal{U} 为图册. 若 Ω 是 M 的开子集, 函数 $f:\Omega\to\mathbb{R}$ 称为**光滑**的, 若 $\forall (U,\varphi)\in\mathcal{U}, f\circ\varphi^{-1}:\varphi(U\cap\Omega)\to\mathbb{R}$ 光滑. 令

$$\mathscr{C}_M^{\infty}(U,\mathbb{R}) = C^{\infty}(U,\mathbb{R}) = \{ \text{光滑函数} f : U \to \mathbb{R} \}$$

注记. 若 $f \in C^{\infty}(\Omega, \mathbb{R}), (V, \psi)$ 是 M 的坐标卡 (即 (V, ψ) 与 $\mathfrak U$ 中成员 C^{∞} 相容), 则 $f \circ \psi^{-1}$: $\psi(V \cap \Omega) \to \mathbb{R}$ 是 C^{∞} 的.

例子. 令 (U,φ) 是坐标卡,则 φ 的每个分量 $\varphi^i:U\to\mathbb{R}$ 是 C^∞ 的.

定义 4.3.3. 令 M 为 C^{∞} 流形. 定义 $\mathscr{C}_{M,\mathbb{R}}^{\infty}$ 或 \mathscr{C}_{M}^{∞} 为集合

$$\{(\Omega, f): \Omega \in M$$
开子集 $, f \in C^{\infty}(\Omega, \mathbb{R})\}$

 \mathscr{C}_M^{∞} 称为 M 的 (局部) 光滑函数层 (sheaf of smooth functions). \mathscr{C}_M^{∞} 称为 M 的微分/光滑结构.

我们看到,图层 $\stackrel{\not \in \mathbb{Y}}{\longrightarrow} \mathscr{C}_M^\infty$. 且用图层和极大图册定义的 \mathscr{C}_M^∞ 相同. 接下来我们说明 \mathscr{C}_M^∞ 极大图册.

命题 4.3.4. 令 $V \subset M$ 为开子集, $\psi: V \to \mathbb{R}^d$ 为映射,以下等价:

- (1) (V, ψ) 是坐标卡, 即它与 M 的图册 U 是 C^{∞} -相容的.
- (2) $\psi: V \to \mathbb{R}^d$ 是开嵌入,且任意开集 $\Omega \subset V, \forall f \in C^{\infty}(\Omega, \mathbb{R})$,存在 $g \in C^{\infty}(\psi(\Omega), \mathbb{R})$ 满足 $f = g \circ \psi|_{\Omega}$ (即 f 在 Ω 上能被 ψ 解出).

证明: 假设 (1), 则由 f 光滑可知 $f \circ \psi^{-1} : \psi(\Omega) \to \mathbb{R}$ 光滑, 将此映射定义为 g, 则 (2) 得证. 假设 (2), 任取 $(U,\varphi) \in \mathcal{U}$. 令 $\Omega = U \cap V$. 不妨假设 $\Omega \neq \emptyset$, 记 $\varphi = (\varphi^1, \cdots, \varphi^d)$, 其中 $\varphi^i : U \to \mathbb{R}$ 光滑. 则存在 $g^i \in C^\infty(\psi(\Omega), \mathbb{R})$ 满足

$$\varphi^i = g^i \circ \psi|_{U \cap V}$$

因此 $\varphi^i \circ \psi^{-1} : \psi(U \cap V) \to \mathbb{R}$ 光滑, 从而 $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \mathbb{R}^d$ 光滑. 类似地, 由于 (U,φ) 满足条件 (2), 若记 $\psi = (\psi^1, \cdots, \psi^k)$, 则每个 ψ^j 在 $U \cap V$ 上能被 φ 解出. 由此知 $\psi \circ \varphi : \varphi(U \cap V) \to \mathbb{R}^d$ 光滑. 因此 (U,φ) 和 (V,ψ) 是 C^{∞} -相容的.

注记. 我们得到极大图册 $\overset{定义}{\underset{\ker}{\rightleftarrows}}\mathscr{C}^\infty_M$. 且决定。定义 = id. 因此用极大图册和 \mathscr{C}^∞_M 定义的微分结构具有相同的同一性.

记号: 若 $\varphi: X \to Y$ 为集合间的映射, $f: Y \to \mathbb{R}$, 则 $\varphi^* f = f \circ \varphi$.

命题 4.3.5. 令 $F: M \to N$ 为 C^{∞} -流形之间的连续映射. 令 \mathcal{U}, \mathcal{V} 分别为 M, N 的坐标卡. 则以下等价:

- $(1)\ F^*\mathscr{C}_N^\infty\subset\mathscr{C}_M^\infty.\ \text{\mathbb{P} }\forall\Omega\ \ \mathcal{Y}\ \ N\ \ \text{\emptyset } \ \ f\in C^\infty(\Omega,\mathbb{R}), \\ F^*f=f\circ F:F^{-1}(\Omega)\to\mathbb{R}\ \ \mathcal{E}\ \ C^\infty\ \ \text{\emptyset }.$
- $(2) \ \forall (U,\varphi) \in \mathcal{U}, \forall (V,\psi) \in \mathcal{V},$ 有:

$$\psi \circ F \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V)) \to \mathbb{R}^n$$

是 C^{∞} 的.

若以上任意一条满足, 我们说 $F \not\in C^{\infty}$ -映射.

证明: 假设 (1), 记 $\psi = (\psi^1, \psi^2, \cdots), \varphi = (\varphi^1, \varphi^2, \cdots)$. 则 $\psi^j \in \mathscr{C}_N^{\infty}$. 由 (1) 知

$$\psi^j \circ F \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V)) \to \mathbb{R}^n$$

是 C^{∞} 的,(2) 得证.

假设 $(2), \forall f \in C^{\infty}(\Omega, \mathbb{R})$ 要证 $f \circ F : F^{-1}(\Omega) \to \mathbb{R}$ 光滑,意味着证 $\forall (U, \varphi) \in \mathcal{U}, f \circ F \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V \cap \Omega)) \to \mathbb{R}$ 光滑即可 (因为所有 $F^{-1}(V)$ 组成了 M 的开覆盖). 在 $\varphi(U \cap F^{-1}(V) \cap F^{-1}(\Omega))$ 上

$$f \circ F \circ \varphi^{-1} = f \circ \psi^{-1} \circ \psi \circ F \circ \varphi^{-1}$$

由于 $\psi \circ F \circ \varphi^{-1}$ 光滑, 且 $f \circ \psi^{-1}$ 也光滑, 因此命题得证.

命题 4.3.6. 若 $F: M \to N, G: N \to P$ 是 C^{∞} 流形的 C^{∞} 映射, 则 $G \circ F: M \to P$ 光滑.

定义 4.3.7. 若 $F: M \to N$ 是双射, 且 F 和其逆映射 $F^{-1}: N \to M$ 是 C^{∞} 的, 则说 F 是一个 微分同胚 (diffeomorphism).

定义 4.3.8. 令 $M \in C^{\infty}$ 流形 N 的子集, 称 $M \in N$ 的 (正则/嵌入) 子流形, 若 $\forall p \in M$, 存 在 N 的坐标卡 (V, ψ) 满足 $p \in V$, 且若记 $\psi = (\psi^1, \dots, \psi^n)$ 则

$$M \cap V = Z(\psi^{d+1}, \cdots, \psi^n)$$

用 \mathscr{C}_{M}^{∞} 作为微分结构的定义很容易处理子流形 \mathbb{C}^{∞} -结构的唯一性问题:

定理 4.3.9. 令 M 是 C^{∞} 流形 N 的子集,假设 $\{(V_{\alpha},\psi_{\alpha}):\alpha\in A\}$ 是 N 的一族坐标卡 $(X_{\alpha},\psi_{\alpha})$ 满足 $M\subset\bigcup_{\alpha}V_{\alpha}$,且 $\forall\alpha\in A$,若记 $\psi_{\alpha}=(\psi_{\alpha}^{1},\cdots,\psi_{\alpha}^{n_{\alpha}})$,则存在 $0\leqslant d_{\alpha}\leqslant n_{\alpha}$ 使

$$M \cap V_{\alpha} = Z(\psi_{\alpha}^{d_{\alpha}+1}, \cdots, \psi_{\alpha}^{n_{\alpha}})$$

则 M 是 C^{∞} 流形, $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ 是 M 的一个图册,其中 $U_{\alpha} = M \cap V_{\alpha}, \varphi_{\alpha} = (\psi_{\alpha}^{1}, \cdots, \psi_{\alpha}^{d_{\alpha}})|_{U_{\alpha}}$. 且对任意 M 内开集 Ω 和函数 $f: \Omega \to \mathbb{R}$,以下等价:

- (a) $f \in \mathscr{C}_M^{\infty}$
- $(b) \ \forall p \in \Omega, \ \text{存在} \ p \ \text{在} \ N \ \text{内邻域} \ V \ \text{和} \ \widetilde{f} \in C^{\infty}(V,\mathbb{R}) = \mathscr{C}^{\infty}_{N}(V) \ \text{满足} \ f|_{\Omega \cap V} = \widetilde{f}|_{\Omega \cap V}.$

由此命题可知, 不同 $(V_{\alpha}, \psi_{\alpha})$ 的选取定义出来的 \mathscr{C}_{M}^{∞} 的微分结构 \mathscr{C}_{M}^{∞} 唯一. 因此我们能谈论 N 的一个子集的唯一的微分结构.

证明: 我们令满足 (b) 的所有 f 构成的集合记为 $\mathscr{C}_N^{\infty}|_M$. 简单起见, 假设 $n=n_{\alpha}$ 和 $d=d_{\alpha}$ 与 α 无关 (证法相同).

Step 1: 我们先证 $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ 是 M 的图册. 这与 \mathbb{R}^{n} 子流形的证法基本相同; 若 Ω 是 $U_{\alpha} = V_{\alpha} \cap M$ 的开子集且 $f : \Omega \to \mathbb{R}$ 属于 $\mathscr{C}_{N}^{\infty}|_{M}$, 则 f 能被 $\psi_{\alpha}^{1}, \cdots, \psi_{\alpha}^{d}$ 解出. (这是因为: 由于 ψ_{α} 是 V_{α} 到 \mathbb{R}^{n} 开子集 $\psi_{\alpha}(V_{\alpha})$ 的微分同胚, 我们不妨把 V_{α} 和 $\psi_{\alpha}(V_{\alpha})$ 通过 ψ_{α} 等同起来. 从而 V_{α} 是 \mathbb{R}^{n} 开子集, $(\psi_{\alpha}^{1}, \cdots, \psi_{\alpha}^{n}) = (x^{1}, \cdots, x^{n})$ 从而

$$M \cap V_{\alpha} = Z(\psi_{\alpha}^{d+1}, \cdots, \psi_{\alpha}^{n}) = V_{\alpha} \cap (\mathbb{R}^{n} \times \{0\})$$

 Ω 是 $V_{\alpha}\cap(\mathbb{R}^d\times\{0\})$ 的开子集, 从而可看成 \mathbb{R}^d 开子集. 由 $f\in\mathscr{C}_M^{\infty}$ 知 f 局部地来源于 \mathbb{R}^d 某开集上的 C^{∞} 函数限制在 $V_{\alpha}\cap(\mathbb{R}^d\times\{0\})$ 上. 从而 f 局部地 (从而整体地) 是属于 $\mathscr{C}_{\mathbb{R}^d}^{\infty}$ 的. 故 f 能被 x^1,\cdots,x^d 解出, 即 $f=g\circ(x^1,\cdots,x^d),g:V_{\alpha}\cap(\mathbb{R}^d\times\{0\})\to\mathbb{R}$ 光滑, 故 $f=g\circ(\psi_{\alpha}^1,\cdots,\psi_{\alpha}^d)$. 记 $\varphi_{\alpha}^i=\psi_{\alpha}^i|_{U_{\alpha}},\varphi_{\alpha}=(\varphi_{\alpha}^1,\cdots,\varphi_{\alpha}^d)$. 则 $\psi_{\alpha}=(\psi_{\alpha}^1,\cdots,\psi_{\alpha}^n):V_{\alpha}\to\psi_{\alpha}(V_{\alpha})$ 是同胚知 $\psi_{\alpha}:V_{\alpha}\cap M\to\psi_{\alpha}(V_{\alpha})\cap(\mathbb{R}^d\times\{0\})$ 是同胚,即

$$\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha})$$

是同胚, 且 $\varphi_{\alpha}(U_{\alpha})$ 是 \mathbb{R}^d 开子集. 类似地, $\varphi_{\beta}: U_{\beta} \to \varphi_{\beta}(U_{\beta})$ 是同胚. 由每个 φ_{β}^i 可被 φ_{α} 解出知

$$\varphi_{\beta} \circ \varphi_{\alpha}^{i} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

是 C^{∞} 的. 类似地, 其逆映射也是 C^{∞} 的. 故 $(U_{\alpha}, \varphi_{\alpha})$ 和 $(U_{\beta}, \varphi_{\beta})$ 是 C^{∞} 相容的, 故 \mathcal{U} 是 M 图册.

Step 2: 要证任意开集 $\Omega \subset M$ 和 $f: \Omega \to \mathbb{R}$ 有 $f|_U \in \mathscr{C}_M^\infty \iff f|_U \in \mathscr{C}_N^\infty|_M$. 因此,通过缩小 N 到 p 的一个邻域,通过 C^∞ 同胚不妨假设 $N \subset \mathbb{R}^n$,且 $M = N \cap (\mathbb{R}^d \times \{0\})$ 且有 α 使 $V_\alpha = N, \psi_\alpha = (x^1, \cdots, x^n)$. 因为 (M, x^1, \cdots, x^d) 是 M 坐标卡,故 $f \in \mathscr{C}_M^\infty$ 意味着 f 作为通常意义下的 \mathbb{R}^d 开子集上的函数是 C^∞ 的。而 $f \in \mathscr{C}_N^\infty|_M$ 意味着 f 局部的是 \mathbb{R}^n 开子集上 C^∞ 函数限制到 $\mathbb{R}^d \times \{0\}$ 上.显然这两种光滑性等价.

例子. 令 $\Omega \subset \mathbb{R}^n$ 是开集, $0 \le d \le n, k = n - d, F = (f^1, \dots, f^k) : \Omega \to \mathbb{R}^k$ 是 C^∞ 的. 假设 Jac(F) 处处 (作为 $k \times n$ 矩阵) 满秩. 令 $M = Z(F). \forall p \in M, Jac(F)$ 的某 k 列 (不妨假设是最后 k 列) 和 k 行组成 $k \times k$ 可逆矩阵. 故由隐函数定理, 存在 p 在 Q 内邻域 $V \subset Q$ 使

$$(x^1, \cdots, x^d, F): V \to \mathbb{R}^n$$

是 C^{∞} 是开嵌入. 从而由 $M \cap V = Z(F|_V)$ 和前一定理知 M 是 \mathbb{R}^n 子流形. $(M \cap V, x^1, \cdots, x^d)$ 是 M 的一个坐标卡, 且 $\mathscr{C}^{\infty}_{M \cap V}$ 中所有元素能被 x^1, \cdots, x^d 解出. 故 $\forall h \in \mathscr{C}^{\infty}_{\mathbb{R}^n}(V)$, 存在 g:

$$g \in \mathscr{C}^{\infty}_{\mathbb{R}^d}((x^1, \cdots, x^d)(M \cap V)) = \mathscr{C}^{\infty}_{\mathbb{R}^d}(\pi_d(M \cap V))$$

使 $h|_{M\cap V}=g\circ\pi_d$. 把 V 换成 V 的开子集也类似.

注记. 隐函数定理给了一个有效的办法来证明 \mathbb{R}^n 开集 Ω 上一些光滑函数 f^1,\cdots,f^k 的零点集 M 是 \mathbb{R}^n 子流形 (其光滑结构唯一:M 上的光滑函数局部地由 \mathbb{R}^n 光滑函数的限制得到) 并且表明 \mathbb{R}^n 本身的标准坐标中的 n 个 x^1,\cdots,x^d 给出 M 的局部坐标, 从而 M 上的光滑函数能局部 地 "用 x^1,\cdots,x^d 解出". 特别地, $x^{d+1}|_M,\cdots,x^n|_M$ 能 "用 x^1,\cdots,x^d 解出". 若解出

$$x^{d+1}|_{M} = g^{d+1}(x^{1}, \dots, x^{d})|_{U}, \dots, x^{n}|_{M} = g^{n}(x^{1}, \dots, x^{d})|_{U}$$

其中 U 是 M 开集. $(a_1, \dots, a_d) \mapsto (a_1, \dots, a_d, g^{d+1}(a_{\bullet}), \dots, g^n(a_{\bullet}))$ 给出了坐标 $(x^1, \dots, x^d)|_U : U \to \pi_d(U)$ 的逆映射.

更一般地, 反函数定理表明, 若 $\varphi^1, \cdots, \varphi^d: \Omega \to \mathbb{R}$ 光滑, $p \in \Omega$, 且 $\mathrm{Jac}(\varphi^1, \cdots, \varphi^d, f^1, \cdots, f^k)|_p$ 可逆, 则 $\varphi^1, \cdots, \varphi^d$ 给出了 M 在 p 处一个邻域的坐标. 因此, M 的参数化不必非得从 \mathbb{R}^n 的标准坐标 x^1, \cdots, x^n 中选.

4.4 切向量和余切向量

定义 4.4.1. 令 M 为微分流形. 一个 C^{∞} 映射 $\gamma:(a,b)\to M$ 称为 (光滑) 道路. 令 $p\in M$, 令

$$T_pM = \{ \text{光滑道路} \gamma : (-\varepsilon, \varepsilon) \to M$$
满足 $\varepsilon > 0, \gamma(0) = p \} / \sim$

其中 $\gamma_1 \sim \gamma_2$ 若对某个包含 p 的坐标卡 (U,φ) 有 $(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0).T_pM$ 称为 M 在 p 处的**切空间**. 其中元素称为**切空间**. 我们把光滑道路 γ (若 $\gamma(0) = p$) 在 T_pM 中的等价类记作 $\gamma'(0)$. 更一般地, 若 $\gamma: (a,b) \to M$ 是光滑道路, $t_0 \in (a,b)$, 我们把 $\gamma(t+t_0)$ (定义在 $(a-t_0,b-t_0) \to M$) 在 $T_{\gamma(t_0)}M$ 中的等价类记为

$$\gamma'(t_0) = \frac{d}{dt}\gamma\bigg|_{t_0}$$

称为 γ 在 t_0 处的导数.

注记. 若在一个包含 p 的坐标卡 (U,φ) 中有 $(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0)$,则对另一个 (V,ψ) 也 有 $(\psi \circ \gamma_1)'(0) = (\psi \circ \gamma_2)'(0)$. 这是因为

$$(\psi \circ \gamma_i)'(0) = (\psi \circ \varphi^{-1} \circ \varphi \circ \gamma_i)'(0) = \operatorname{Jac}(\psi \circ \varphi^{-1})_{\varphi(p)} (\varphi \circ \gamma_i)'(0)$$

现在, 若 γ 是 \mathbb{R}^n 中的光滑道路, 则 $\gamma'(t_0)$ 有两种含义: 作为 $T_{\gamma(t_0)}\mathbb{R}^n$ 中元素, 作为 \mathbb{R}^n 中元

素 (每个分量求导). 在说明这两个意义相同之前, 我们把后者记为
$$\mathrm{Jac}\,\gamma|_{t_0}$$
 或 $\left(\begin{array}{c}\partial_t\gamma^1\\ \vdots\\ \partial_t\gamma^n\end{array}\right)\Big|_{t_0}$. 如

上定义方式的难点在于定义 T_pM 的线性结构.

定义 4.4.2.

$$\mathscr{C}^{\infty}_{M,p} = C^{\infty}_{p}M = \{f \in C^{\infty}(U,\mathbb{R}) : U \stackrel{}{\rightleftharpoons} p$$
邻域 $\}/\sim$

其中 $f \sim g(g \in C^{\infty}(V,\mathbb{R}))$ 若存在 p 邻域 $W \subset U \cap V$ 使 $f|_{W} = g|_{W}.C_{p}^{\infty}(M)$ 称为光滑函数层 \mathscr{C}_{M}^{p} 在 p 处的**茎** (stalk). $\mathscr{C}_{M,p}^{\infty}$ 中元素称为**芽** (germ). 用函数的加法和数乘显然能使 $\mathscr{C}_{M,p}^{\infty}$ 成为一个 \mathbb{R} -线性空间.

定义 4.4.3. 若 $f \in \mathscr{C}_{M,p}^{\infty}$, 我们称 $df|_{p} = 0$ (称为f 在p 处的微分是 0) 若对于某个包含 p 的坐标卡 (U,φ) 且满足 $f \in C^{\infty}(U,\mathbb{R})$, 我们有 $\mathrm{Jac}(f \circ \varphi^{-1})|_{\varphi(p)} = 0$. 利用 chain rule 不难得知此定义与坐标卡的选取无关. 且 $\{f \in \mathscr{C}_{M,p}^{\infty} : df|_{p} = 0\}$ 是 $\mathscr{C}_{M,p}^{\infty}$ 的 \mathbb{R} -线性子空间. 我们定义 M 在 p 处的余切空间为

$$T_p^*M = \mathscr{C}_{M,p}^{\infty} / \{ f \in \mathscr{C}_{M,p}^{\infty} : df|_p = 0 \}$$

若 $f \in \mathscr{C}_M^{\infty}$ 定义在 p 附近,则其在 T_p^*M 中的等价类称为 f 在 p 处的**微分df**|p.

例子. 令 M 是 \mathbb{R}^n 开子集, (x^1,\cdots,x^n) 为 \mathbb{R}^n 的标准坐标. 令 $p\in M$, 则 $dx^1|_p,\cdots,dx^n|_p$ 是 $T_p\mathbb{R}^n$ 的一组基. 若 $f\in\mathscr{C}_{M,n}^\infty$, 则

$$df|_{p} = \sum_{i=1}^{n} \partial_{i} f(p) \cdot dx^{i}|_{p} = \operatorname{Jac} f|_{p} \cdot \begin{pmatrix} dx^{1} \\ \vdots \\ dx^{n} \end{pmatrix} \Big|_{p}$$

证明: $\forall f \in \mathscr{C}_{M,p}^{\infty}$, $\operatorname{Jac}(f - f(p))|_{p} = (\partial_{1} f(p), \cdots, \partial_{n} f(p))$. 令

$$g = f - f(p) - \sum_{i=1}^{n} \partial_i f(p) x^i$$

则 $\partial_i g(p) = 0$. 故 $\operatorname{Jac} g|_p = 0$. 故 $f - \sum_{i=1}^n \partial_i f(p) x^i = f(p) + g$ 有零微分, 故

$$df|_{p} - \sum_{i=1}^{n} \partial_{i} f(p) dx^{i}|_{p} = 0$$

故 $dx^1|_p, \dots, dx^n|_p$ 张成 T_p^*M . 假设 $a_1dx^1|_p + \dots + a_ndx^n|_p = 0$. 则 $f = a_1x^1 + \dots + a_nx^n$ 在 p 处有零微分. 故 $0 = \partial_i f|_p = a_i$. 这证明了 $dx^1|_p, \dots, dx^n|_p$ 线性无关.

命题 4.4.4. 对任意 $\gamma'(t_0) \in T_pM$, 则 $\gamma'(t_0)$ 给出了 $T_p^*(M)$ 上一个 (良定义的) 线性泛函

$$T_p^*(M) \to \mathbb{R}, df|_p \mapsto \frac{d}{dt}(f \circ \gamma)\Big|_{t=t_0}$$

这给出了映射 $T_p(M) \to T_p^*(M)^*$,它是双射. 我们把 $T_p(M)$ 和 $T_p^*(M)$ 的对偶空间 $T_p^*(M)^*$ 等同,并记

$$\frac{d}{dt}(f \circ \gamma) \bigg|_{t=t_0} = df|_p(\gamma'(t_0)) = df(\gamma'(t_0)) = \left\langle df|_p, \gamma'(t_0) \right\rangle$$

这里 $\langle \cdot, \cdot \rangle$ 是线性空间 $T_p^*(M)$ 与其对偶空间之间的标准的双线性配对.

证明: 通过缩小 M, 假设 M 同胚与 \mathbb{R}^n 的开子集, 不妨假设 M 就是 \mathbb{R}^n 的开子集. 若 $f \in \mathscr{C}_{M,n}^{\infty}$

$$\left. \frac{d}{dt} (f \circ \gamma) \right|_{t=t_0} = \operatorname{Jac} f|_p \cdot \operatorname{Jac} \gamma|_{t=t_0} = \sum_{j=1}^n \partial_j f(p) \left. \frac{d\gamma^j}{dt} \right|_{t=t_0} \tag{*}$$

由 (*) 可知若把 f 换成 \widetilde{f} 满足 $\mathrm{Jac}(f-\widetilde{f})|_p=0$ 或把 γ 换成 $\widetilde{\gamma}$ 满足 $\mathrm{Jac}\,\gamma|_{t_0}=\mathrm{Jac}\,\widetilde{\gamma}|_{t_0},$ 则 (*) 的值不变. 因此我们有良定义的映射 $\Phi:T_pM\to (T_p^*M)^*$. 若 $\Phi(\gamma)=\Phi(\widetilde{\gamma}),$ 则 $\forall f\in\mathscr{C}_{M,p}^\infty$ 有 $(f\circ\gamma)'|_{t_0}=(f\circ\widetilde{\gamma})'|_{t_0}.$ 取 $f=x^i,$ 得:

$$\left. \frac{d}{dt} \gamma^i \right|_{t_0} = \left. \frac{d}{dt} \widetilde{\gamma}^i \right|_{t_0}$$

故 Jac $\gamma|_{t_0}=$ Jac $\widetilde{\gamma}|_{t_0}$. 故 $\frac{d}{dt}\gamma\Big|_{t_0}$ 和 $\frac{d}{dt}\widetilde{\gamma}\Big|_{t_0}$ 是 T_pM 中相同元素. 因此 Φ 是单射. 下证 Φ 是满射. 回忆 $dx^1\Big|_p$, \cdots , $dx^n\Big|_p$ 是 T_p^*M 一组基, 取 $\Lambda\in (T_p^*M)^*$. 令 $a^i=\Lambda(dx^i|_p)$. 取 $\gamma(t)=\begin{pmatrix} a^1t\\ \vdots\\ a^nt \end{pmatrix}$, 则有

$$\left\langle \left. \frac{d\gamma}{dt} \right|_0, dx^i \right\rangle = \left. \frac{d}{dt} x^i \circ r \right|_0 = \left. \frac{dr^i}{dt} \right|_0 = a^i$$
 因此 $\Phi\left(\left. \frac{d\gamma}{dt} \right|_1 \right) = \Lambda$.

若 V 是有限维线性空间, $e_1,\cdots,e_n\in V$ 是一组基. 则其**对偶基**为 V^* 一组基 $e^{\check{i}},\cdots,e^{\check{n}},$ 唯一地由

$$e^{i}(e^{j}) = \delta^{i}_{j} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

确定. 若 $v \in V$, 则 $v = \sum_{i} \check{e^{i}}(v)e_{i} = \left\langle v, \check{e^{i}} \right\rangle e_{i}$. 这里 $\langle \cdot, \cdot \rangle$ 是 V 和 V^{*} 之间自然的双线性配对.

定义 4.4.5. 令 $(U,\varphi)=(U,\varphi^1,\cdots,\varphi^n)$ 为 M 的坐标卡. 则 $d\varphi^1\big|_p,\cdots,d\varphi^n\big|_p\in T_p^*M$ 在 T_pM 中的对偶基记为

$$\left. \frac{\partial}{\partial \varphi^1} \right|_p, \cdots, \left. \frac{\partial}{\partial \varphi^n} \right|_p$$

从而 $\left\langle \frac{\partial}{\partial \varphi^i}, d\varphi^j \right\rangle \Big|_p = \delta_{i,j}$. 注意 $df|_p$ 只依赖于 f, 而 $\left. \frac{\partial}{\partial \varphi^1} \right|_p$ 不只依赖于 φ^1 , 也依赖于 $\varphi^2, \cdots, \varphi^n$.

定义 4.4.6. $TM = \bigsqcup_{p \in M} T_p M$ 和 $T^*M = \bigsqcup_{p \in M} T_p^*M$ 分别称为 M 的切处和余切处. 若 $U \subset M$ 是 开集, 一个函数 $X : p \in U \mapsto X_p \in T_p M$ 称为 (光滑切) 向量场若 \forall 开集 $V \subset U, \forall f \in C^{\infty}(V, \mathbb{R})$ 有

$$Xf \equiv \langle df, X \rangle : p \in V \mapsto \langle df|_p, X_p \rangle \in \mathbb{R}$$

是 C^∞ 的. 这样的函数构成的集合记为 TM(U). 则 TM(U) 是 $C^\infty(U,\mathbb{R})$ -模: 若 $g\in C^\infty(U,\mathbb{R})$, 则 $gX:p\in U\mapsto g(p)X_p$ 是向量场.

定义 4.4.7. 若 $f \in C^{\infty}(U,\mathbb{R})$, 定义 $df: U \to T^*M, p \in U \mapsto df|_p \in T_p^*M$.

注记. 由对偶基性质, 若 $p \in U, (U, \varphi)$ 是 M 坐标卡, 则 $df|_p = \sum_i \left\langle df, \frac{\partial}{\partial \varphi^i} \right\rangle \Big|_p \cdot d \varphi^i|_p$, 因此

$$df = \sum_{i} \frac{\partial}{\partial \varphi^{i}} f \cdot d\varphi^{i}$$

命题 4.4.8. 令 $(U,\varphi)=(U,\varphi^1,\cdots,\varphi^n)$ 为 M 的坐标卡. 则 $\frac{\partial}{\partial \varphi^i}:p\in U\mapsto \frac{\partial}{\partial \varphi^i}\Big|_p\in T_pM$ 是向量场. 且若 $f\in C^\infty(U,\mathbb{R})$,则

$$\frac{\partial f}{\partial \varphi^{i}}\Big|_{p} \equiv \left\langle df, \frac{\partial}{\partial \varphi^{i}} \right\rangle\Big|_{p} = \left. \partial_{i} \left(f \circ \varphi^{-1} \right) \right|_{\varphi(p)} \tag{*}$$

故
$$\frac{\partial f}{\partial \varphi^i} = \partial_i (f \circ \varphi^{-1})|_{\varphi}.$$

证明: 任取开集 $V \subset U, f \in C^{\infty}(V, \mathbb{R})$, 我们来证明 $\left\langle df, \frac{\partial}{\partial x^i} \right\rangle$ 光滑, 并由 (*) 给出. $\varphi : V \stackrel{\cong}{\to} \varphi(V)$ 建立了 $\varphi(V)$ 上函数 $f \circ \varphi^{-1}, \varphi^i$ 和 V 上函数 f, x^i 的等价. 因此

$$\left\langle df, \frac{\partial}{\partial \varphi^i} \right\rangle \bigg|_{p} = \left\langle d\left(f \circ \varphi^{-1}\right), \frac{\partial}{\partial x^i} \right\rangle \bigg|_{q}$$

这里 $q = \varphi(p)$. 令 $g = f \circ \varphi^{-1} \in C^{\infty}(\varphi(V), \mathbb{R})$, 则要证 $\left\langle dg, \frac{\partial}{\partial x^i} \right\rangle = \partial_i g$. 我们在前面例子中算过 $dg|_q = \sum_i \partial_i g(p) \cdot dx^i$, 因此

$$\left\langle dg, \frac{\partial}{\partial x^i} \right\rangle \bigg|_q = \sum_j \partial_j g(q) \left\langle dx^j, \frac{\partial}{\partial x^i} \right\rangle \bigg|_q = \partial_i g(p)$$

例子. 令 M 为 \mathbb{R}^n 开子集, $f \in C^\infty(M,\mathbb{R})$, 则 $\frac{\partial}{\partial x^i} f(\mathbb{R} \left\langle df, \frac{\partial}{\partial x^i} \right\rangle$ 定义) 和 $\partial_i f$ 是相同的 M 上的光滑函数 $\frac{\partial}{\partial x^i} f = \partial_i f$. 令 $p \in M$, 令 $\gamma(t) = (p^1, \cdots, p^i + t, \cdots, p^n)^T$, 则

$$\left\langle df|_{p}, \gamma'(0) \right\rangle = \left. \frac{df \circ r}{dt} \right|_{t=0} = \left. \partial_{i} f|_{p} = \left\langle df, \frac{\partial}{\partial x^{i}} \right\rangle$$

因此
$$\left. \frac{\partial}{\partial x^i} \right|_p = \left. \frac{d}{dt} \left(p^1, \cdots, p^i + t, \cdots, p^n \right) \right|_{t=0}$$
.

命题 4.4.9. 令 $(U,\varphi),(V,\psi)$ 是 M 的两个坐标卡,则在 $U \cap V$ 上任意点有

$$\begin{aligned} d\psi^{j}\big|_{p} &= \sum_{i} \frac{\partial}{\partial \varphi^{i}} \psi^{j}(p) \cdot d\varphi^{i}\big|_{p} \\ \frac{\partial}{\partial \varphi^{i}}\big|_{p} &= \sum_{j} \frac{\partial}{\partial \varphi^{i}} \psi^{j}(p) \cdot \frac{\partial}{\partial \psi^{j}}\big|_{p} \end{aligned}$$

这里 $\frac{\partial}{\partial \varphi^i} \psi^j(p) = \partial_i \left(\psi^j \circ \varphi^{-1} \right) \big|_{\varphi(p)}$. 故

$$\begin{pmatrix} d\psi^{1} \\ \vdots \\ d\psi^{n} \end{pmatrix}_{p} = \operatorname{Jac}(\psi \circ \varphi^{-1})_{\varphi(p)} \begin{pmatrix} d\varphi^{1} \\ \vdots \\ d\varphi^{n} \end{pmatrix}_{p}$$
$$\left(\frac{\partial}{\partial \varphi^{1}}, \cdots, \frac{\partial}{\partial \varphi^{n}}\right)_{p} = \left(\frac{\partial}{\partial \psi^{1}}, \cdots, \frac{\partial}{\partial \psi^{n}}\right)_{p} \cdot \operatorname{Jac}(\psi \cdot \varphi^{-1})_{\varphi(p)}$$

证明:第一个已证,第二个也是用对偶基的基本性质

$$\frac{\partial}{\partial \varphi^i} = \sum_j \left\langle \frac{\partial}{\partial \varphi^i}, d\psi^j \right\rangle \frac{\partial}{\partial \psi^j} = \sum_j \frac{\partial}{\partial \varphi^i} \psi^j \cdot \frac{\partial}{\partial \psi^j}$$

注记. $df = \sum_{i} \frac{\partial f}{\partial \varphi^{i}} d\varphi^{i}$ 也可改写成

$$df_p = \operatorname{Jac} (f \circ \varphi^{-1})_{\varphi(p)} \begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix}_p$$

注记. 有
$$\left(\frac{\partial}{\partial \varphi^1}, \cdots, \frac{\partial}{\partial \varphi^n}\right)_p \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \left(\frac{\partial}{\partial \psi^1}, \cdots, \frac{\partial}{\partial \psi^n}\right)_p \operatorname{Jac}\left(\psi \circ \varphi^{-1}\right)_{\varphi(p)} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
 因此同

一个
$$T_pM$$
 向量在基 $(\frac{\partial}{\partial \varphi^1}, \cdots, \frac{\partial}{\partial \varphi^n})$ 下坐标是 $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. 则在基 $(\frac{\partial}{\partial \psi^1}, \cdots, \frac{\partial}{\partial \psi^n})$ 下坐标是

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \operatorname{Jac}(\psi \circ \varphi^{-1})|_{\varphi(p)} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

若 $f,g \in C^{\infty}(U)$. 令

$$gdf: p \in U \mapsto g(p)df|_p \in T_p^*(U)$$

则不难验证有 Leibniz 公式:d(fg) = fdg + gdf. 即

$$|d(fg)|_p = |f(p)dg|_p + |g(p)df|_p$$

证明: 不妨假设 $U \in \mathbb{R}^n$ 的开子集, 则 $\forall 1 \leq i \leq n$ 有

$$\left\langle d(fg), \frac{\partial}{\partial x^i} \right\rangle = \partial_i(fg) = (\partial_i f) \cdot g + f \cdot \partial_i g$$

$$= g \cdot \left\langle df, \frac{\partial}{\partial x^i} \right\rangle + f \cdot \left\langle dg, \frac{\partial}{\partial x^i} \right\rangle$$

$$= \left\langle fdg + gdf, \frac{\partial}{\partial x^i} \right\rangle$$

定义 4.4.10. 令 $F:M\to N$ 为光滑映射. $p\in M,q=F(p)$. 定义线性映射 $F^*:T^*_qN\to T^*_pM$ 为 (若 $f\in\mathscr{C}^\infty_{N,q}$)

$$F^* \left(\left. df \right|_q \right) = \left. d(f \circ F) \right|_p$$

这个映射是良定义的且显然线性.

良定义的证明. 不妨假设 M,N 分别是 $\mathbb{R}^m,\mathbb{R}^n$ 开子集, 则

$$\begin{split} d\left(f\circ F\right)|_{p} &= \sum_{i} \frac{\partial}{\partial x^{i}} (f\circ F) \bigg|_{p} \cdot dx^{i} \bigg|_{p} \\ &= \operatorname{Jac}(f\circ F) \left(\begin{array}{c} dx^{1} \\ \vdots \\ dx^{n} \end{array} \right) \bigg|_{p} \\ &= \operatorname{Jac}(f)|_{q} \cdot \operatorname{Jac}(F)|_{p} \cdot \left(\begin{array}{c} dx^{1} \\ \vdots \\ dx^{n} \end{array} \right) \bigg|_{q} \end{split}$$

只依赖于 $\mathrm{Jac}(f)|_q$.

定义 4.4.11. 在以上定义中,令dF: $T_pM \to T_qN$ 为 F^* 的转置,称为 F 的微分. 即 $\forall f \in \mathscr{C}_{M,p}^{\infty}, \gamma'(t_0) \in T_pM$,有

$$\left\langle dF \cdot \gamma'(t_0), df \right|_p \right\rangle = \left\langle \gamma'(t_0), F^* df \right|_\rho \right\rangle$$

等价定义. $dF \cdot \gamma'(t_0) = (F \circ \gamma)'(t_0)$.

命题 4.4.12. 令 $F:M\to N$ 为光滑映射, $p\in M,q=F(p)$. 令 $(U,\varphi)=(U,\varphi^1,\cdots,\varphi^m)$ 和 $(V,\psi)=(V,\psi^1,\cdots,\psi^n)$ 分别为 p 和 q 附近的坐标卡,且 $F(U)\subset V$,则

$$F^* \begin{pmatrix} d\psi^1 \\ \vdots \\ d\psi^n \end{pmatrix}_q = \operatorname{Jac} \left(\psi \circ F \circ \varphi^{-1} \right)_{\varphi(p)} \cdot \begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^m \end{pmatrix}_p$$
$$dF \cdot \left(\frac{\partial}{\partial \varphi^1}, \cdots, \frac{\partial}{\partial \varphi^m} \right)_p = \left(\frac{\partial}{\partial \psi^1}, \cdots, \frac{\partial}{\partial \psi^n} \right)_q \cdot \operatorname{Jac} \left(\psi \circ F \circ \varphi^{-1} \right)_{\varphi(p)}$$

证明:由

$$F^*df|_q = d(f \circ F)|_p = \operatorname{Jac}\left(f \circ F \circ \varphi^{-1}\right)_{\varphi(p)} \begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix}_p$$

把 f 换成 φ^i 即得第一个公式.

(也可由
$$F^*d\psi^i = d\left(\psi^i \circ F\right) = \sum_j \left(\frac{\partial}{\partial \varphi^j} \psi^i \circ F\right) \cdot d\varphi^j = \sum_j \partial_j \left(\psi^i \circ F \cdot \varphi^{-1}\right) \cdot d\varphi^j$$
 计算得)

第二个公式由 $\left\langle dF \cdot \frac{\partial}{\partial \varphi^j} \cdot d\psi^i \right\rangle = \left\langle \frac{\partial}{\partial \varphi_j}, F^*d\psi^i \right\rangle$ 以及上面关于 $F^*d\psi^i$ 的计算公式得到.
也可由如下事实得到.

命题 4.4.13. 令 $T:X\to Y$ 为有限维线性空间之间的线性映射. 令 e_1,\cdots,e_m 为 X 一组 基, f_1,\cdots,f_n 为 Y 一组基. 对偶基分别为 $\check{e_1},\cdots,\check{e_m}\in X^*,\check{f_1},\cdots,\check{f_n}\in Y^*$. 假设 $m\times n$ 矩阵 A 满足

$$T\left(\begin{array}{c} e_1 \\ \vdots \\ e_m \end{array}\right) = A\left(\begin{array}{c} f_1 \\ \vdots \\ f_n \end{array}\right)$$

则 T 的转置 $T^{\mathrm{T}}:Y^*\to X^*$ 满足 $T^{\mathrm{T}}(\check{f}_1,\cdots,\check{f}_m)=(\check{e_1},\cdots,\check{e_m})A$.

注记. 以上结论告诉我们: 若 T_pM 中取基 $\left(\frac{\partial}{\partial \varphi^1}, \cdots, \frac{\partial}{\partial \varphi^m}\right)_p, T_qN$ 中取基 $\left(\frac{\partial}{\partial \psi^1}, \cdots, \frac{\partial}{\partial \psi^n}\right)_{\varphi(p)}$. 其转置给出了 $F^*: T_qN \to T_pM$ 在相应对偶基下的矩阵表示.

例子. 若 $M \subset \mathbb{R}^m, N \subset \mathbb{R}^n$ 是开集, $F: M \to N$ 光滑, $p \in M, q = F(q)$, 则 $dF|_p$ 在 $T_p\mathbb{R}^m$ 的基 $\left(\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^m}\right)$ 和 T_qN 的基 $\left(\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}\right)$ 下的矩阵表示是 $Jac(F)_p$. 在这个意义下, $dF|_p$ 和 $Jac(F)_p$ 相同.

命题 4.4.14. 令 $F: M \to N, G: N \to P$ 光滑, $p \in M, p' = F(p), p'' = G(p')$, 则有 chain rule

$$(G \circ F)_{p''}^* = F_{p'}^* \cdot G_{p''}^*$$
$$d(G \circ F)_p = dG_{p'} \cdot dF_p$$

证明:对任意 $f \in \mathscr{C}_p^{\infty}$,有

$$(G \circ F)^* df = d(f \circ G \circ F) = F^* d(f \circ G) = F^* G^* df$$

故 $(G \circ F)^* = F^* \cdot G^*$. 取转置得 $d(G \circ F) = dG \cdot dF$.

4.5 流形的嵌入和浸入

我们用更几何的语言来运用反函数定理.

定理 4.5.1. 令 $F: M \to N$ 为光滑映射, $p \in M$, q = F(p). 若 $dF|_p: T_pM \to T_qN$ 是线性空间的同构,则存在 p 的邻域 U 和 q 的邻域 V 使 $F: U \to V$ 是微分同胚.

证明:不妨缩小M和N使它们同胚与欧式空间的开子集,则本定理即是反函数定理.

定理 4.5.2. 令 $F: M \to N$ 光滑, $q \in N$. 假设 $\forall p \in F^{-1}(q)$ 有 $dF|_p: T_pM \to T_qN$ 是满射,则 $F^{-1}(q)$ 是 M 的子流形,且 $\dim_p F^{-1}(q) = \dim_p M - \dim_q N$.

证明: 任取 $p \in F^{-1}(q)$. 取 p 邻域 U,q 邻域 V. 通过微分同胚, 不妨假设 $U \subset \mathbb{R}^m, V \subset \mathbb{R}^n$ 是开集, q = 0. 则 $Jac F|_p$ 是满秩的 $n \times m$ 矩阵. 特别地 $m \geqslant n$. 令 k = m - n, 通过调整 U 标准坐标 x^1, \dots, x^m 次序, 不妨假设 $Jac F|_p = (A_{n \times k}, B_{n \times n})$ 的后 n 列和 n 行 $B_{n \times n}$ 是可逆 n 阶矩阵. 则

$$(x^1, \cdots, x^k, F) : U \to \mathbb{R}^k \times V$$

是 p 处局部微分同胚,因为其 Jacobian 矩阵 $\begin{pmatrix} I_{k \times k} & 0 \\ A_{n \times k} & B_{n \times n} \end{pmatrix}$ 可逆,且 $U \cap F^{-1}(q) = U \cap F^{-1}(0)$ 是 F 在 U 中零点. x^1, \dots, x^k 给出 $F^{-1}(0)$ 在 p 附近的坐标,故 $\dim_p F^{-1}(0) = k$.

我们接下来关注: 若光滑映射 $F:M\to N$ 是单射.F(M) 何时是 N 的子流形, 若是, $F:M\to N$ 是否是微分同胚. 特别地, 若 M 是 \mathbb{R}^m 开子集, 我们想知道 $F:M\to F(M)$ 是否给出 F(M) 的参数化.

定义 4.5.3. 光滑映射 $F: M \to N$ 称为**光滑嵌入**若 F(M) 是 N 子流形, 且 $F: M \to F(M)$ 是 微分同胚.

命题 4.5.4. 令 $F: M \to N$ 是 C^{∞} 嵌入, 则 $\forall p \in M, q = F(p)$, 有 $dF|_p: T_pM \to T_qM$ 是单射. 证明: 不妨假设 M 是 N 子流形. 通过缩小 M 和 N 到 p,q 邻域, 并经过微分同胚, 不妨假设 p = q = 0, N 是 \mathbb{R}^n 开子集, $m \leq n$.

$$F: x \in M \mapsto (x, \cdots, 0, \cdots, 0) \in N$$

则 $\operatorname{Jac} F$ 是单射.

注记. 若 $M \in \mathbb{R}$ 子流形, $p \in M$, $\iota : M \to N$ 是子集的嵌入映射 $x \in M \mapsto x \in N$. 则

$$d\iota: T_pM \to T_pN$$

是单射. 我们通常把 T_pM 和 $d\iota|_p(T_pM)$ 等同, 从而把 T_pM 看作 T_pN 的线性子空间. 特别地, 若 $N=\mathbb{R}^n$, 且若把 N 的切空间和 \mathbb{R}^n 等同, 则 T_pM 是 \mathbb{R}^n 线性子空间, 因此, \mathbb{R}^n 子流形的切空间自然地是 \mathbb{R}^n 的线性子空间.

定理 4.5.5. 令 $F: M \to N$ 是光滑映射, $p \in M$, q = F(p). 假设 F 在 p 处是**浸入** (immersion), 即 $dF|_p: T_pM \to T_qN$ 是单射. 则 F 是 p 处的局部 C^{∞} 嵌入, 即存在 p 邻域 U, 使 $F: U \to N$ 是 C^{∞} 嵌入.

证明: 通过缩小 N 和 M, 不妨假设 M 和 N 分别是 \mathbb{R}^m , \mathbb{R}^n 开子集, 且 p=0,q=0. 矩阵 $\operatorname{Jac} F|_p$ 是单射的 $n\times m$ 矩阵, 因此 $n\geqslant m$. 令 k=n-m, 不妨令 $\operatorname{Jac} F|_0=\left(\begin{array}{c}A_{m\times m}\\B_{k\times m}\end{array}\right)$ 的前 m 行和 m 列 $A_{m\times m}$ 可逆. 令

$$G(x_1, \dots, x_n) = F(x_1, \dots, x_m) + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ x_{m+1} \\ \vdots \\ x_n \end{pmatrix}$$

则 $\operatorname{Jac} G|_0 = \begin{pmatrix} A_{m \times m} & 0 \\ B_{k \times m} & I_{k \times k} \end{pmatrix}$ 可逆. 取 $0 \in \mathbb{R}^k$ 充分小邻域 Ω 使 $G(U \times \Omega) \subset N$. 有反函数定理,G 是 0 处的局部微分同胚, 通过缩小 U,Ω,N , 有 $G:U \times \Omega \to V$ 是微分同胚. $G^{-1} \circ F:U \to U \times \Omega$ 把 (x_1,\cdots,x_m) 送到 $(x_1,\cdots,x_m,0,\cdots,0)$. 显然 $G \circ F^{-1}$ 是 C^∞ 嵌入. 因此 F 是 C^∞ 嵌入.

定理 4.5.6. 令光滑映射 $F: M \to N$ 是**浸人**, 即在 M 每个点处是浸入. 若以下条件之一满足,则 F 是 C^{∞} 嵌入:

- (1) F 是单射, 且 F(M) 是 N 的子流形. 且 $\forall p \in M, \dim_p M = \dim_{F(p)} F(M)$.
- (2) 赋予 F(M) 来自于 N 的子集拓扑, 则 $F: M \to F(M)$ 是拓扑空间的同胚.

证明: (1),F(M) 是 N 子流形,则 F(M) 上光滑函数来源于 N 上光滑函数 h 的限制,因为 $h \circ F \in \mathscr{C}_M^M$,故连续映射 $F: M \to F(M)$ 光滑.只需证明对任意 $p \in M$,

$$dF_p: T_pM \to T_{F(p)}F(M)$$
是线性同构 (*)

则 F 是 p 一个邻域到 F(p) 在 F(M) 中一个邻域的微分同胚,从而 F 是开映射(从而是拓扑同胚)且 $F^{-1}: F(M) \to M$ 处处光滑。故 F 是微分同胚。选定 $p \in M$,要证(*),通过缩小 M 和 N,不妨假设 N 是 \mathbb{R}^n 开子集,F(p) = 0, $m = \dim_p M = \dim_{F(p)} F(M) \leqslant n$, $F(M) = N \cap (\mathbb{R}^m \times \{0\})$,M 是 \mathbb{R}^m 开子集.则 $\operatorname{Jac} F|_p$ 是单射且形如 $\begin{pmatrix} A_{m \times m} \\ 0_{k \times m} \end{pmatrix}$ (k = n - m).故 $A_{m \times m}$ 可逆.故限制 $F: M \to F(M)$ 在 p 处的 Jacobian 为可逆矩阵 A,得证.

(2), 由 (1), 只需证 $\forall p \in M$, 存在 F(p) 在 N 中邻域 V 使 $F(M) \cap V$ 是 N 子流形 (从而 F(M) 是 N 子流形且 $\dim_p M = \dim_p F(M)$). 令 $m = \dim_p M$. 因 F 在 p 处是浸入,存在 p 邻域 U 使 $F: U \to N$ 是 C^∞ 嵌入. 故 F(U) 是 N 子流形且 $\dim_p F(U) = m$. 因为 $F: M \to F(M)$ 是同胚,故 F(U) 是 F(M) 开子集,故存在 N 开子集 V 使 $F(U) = F(M) \cap V$. 而 $F(p) \in V$, 因此 $F(M) \cap V$ 是 N 子流形且 $\dim_p F(M) = \dim_p F(U) = m$.

推论 4.5.7. 令 $F: M \to N$ 为光滑单射且是浸入. 若 M 是紧流形, 则 F 是 C^{∞} 嵌入.

证明: $F: M \to F(M)$ 连续且 M 紧, 因此 $F: M \to F(M)$ 是同胚.

例子. 令 $G: \mathbb{R}^3 \to \mathbb{R}, G(x,y,z) = x^2 + y^2 + z^2 - 1.$ 则在 M = Z(G) 上,Jac G = (2x,2y,2z) 处 处满秩, 因此 M 是 \mathbb{R}^3 的二维子流形. 定义 $F: \mathbb{R}^2 \to \mathbb{R}^3, F(x,y) = \frac{(2x,2y,x^2+y^2-1)}{x^2+y^2+1}.$

则 F 是单射, $F(\mathbb{R}^3) = M \setminus \{(0,0,1)\}$ 是 \mathbb{R}^3 的二维子流形,且 3×2 矩阵 $\mathrm{Jac}\, F$ 在每个 (x,y) 处是单射.因此由前一命题 $F:\mathbb{R}^2 \to \mathbb{R}^3$ 是 C^∞ 嵌入. $F:\mathbb{R}^2 \to M \setminus \{(0,0,1)\}$ 是微分同 胚, 称为 $M \setminus \{(0,0,1)\}$ 的球极坐标 (stereographic coordinate).

4.6 欧式空间的平移不变测度

注意若 (X,μ) 是测度空间 $,f:X\to[0,+\infty]$ 可测,则 $f\cdot\mu$ 或 $fd\mu$ 是测度,若对任意可测 $A\subset X$ 有

$$(f \cdot \mu)(A) = \int_A f d\mu$$

可数可加性由单调收敛定理得到: 若 A_1, A_2, \cdots 为两两不交可测集, $A = \bigcup_{n=1}^{\infty} A_n$, 则

$$\int_{A} f d\mu = \int_{X} f \cdot \chi_{A} d\mu = \int_{X} f \cdot \sum_{n} \chi_{A_{n}} d\mu$$
$$= \sum_{n} \int_{X} f \cdot \chi_{A_{n}} d\mu = \sum_{n} \int_{A_{n}} f d\mu$$

等价地, 对任意可测函数 $g:X\to [0,+\infty)$ 有 $\int g\cdot (fd\mu)=\int fgd\mu$. (等价性用简单函数递增逼近 g 得到)

引理 4.6.1. 令 μ 为 X 上 σ -有限测度, $f,g:X\to [0,+\infty)$ 可测, 且 $fd\mu=gd\mu$. 则 $\nu=fd\mu$ 是 σ -有限的, 且 f=g ($\mu-a.e.$).

证明: 令 $X = \bigcup_{n=1}^{\infty} X_n$, 其中 $X_1 \subset X_2 \subset \cdots$ 可测且 $\mu(X_n) < +\infty$. 对任意正整数 k, 令

$$X_{n,k} = \{x \in X_n : f(x) \leqslant k\}$$

则 $\nu(X_{n,k}) < +\infty$, 故 ν 是 σ -有限的. 令

$$X_{n,k}^+ = \{ x \in X_{n,k} : f(x) \geqslant g(x) \}$$

则 $\int_{X_{n,k}^+} (f-g)d\mu = \nu(X_{n,k}^+) - \nu(X_{n,k}^+) = 0$. 故在 $X_{n,k}^+$ 上 f=g (μ – a.e.). 类似地,在 $X_{n,k}^- = X_{n,k} \setminus X_{n,k}^+$ 上也有 f=g (μ – a.e.).

定义 4.6.2. 若 μ, ν 是 X 上测度, 记 $\nu \ll \mu$ 若对于任意可测集 $A \subset X$ 有 $\mu(A) = 0 \implies \nu(A) = 0$.

定理 4.6.3 (Radon-Nikodym). 若 μ, ν 是 X 上 σ -有限测度, $\nu \ll \mu$, 则存在可测函数 $f: X \to [0, +\infty)$ 使 $\nu = f \cdot \mu$. 其中 f 称为 ν 关于 μ 的 Radon-Nikodym 导数, 记为 $\frac{d\nu}{d\mu}$. 且若 $\nu \leqslant \mu$ 时可取 $f: X \to [0, 1]$.

证明: Case 1: 假设 $\nu \leqslant \mu$, 即 $\nu(A) \leqslant \mu(A)$. 则由简单函数逼近知 $\forall g \in L^+(X)$ 有 $\int_X g d\nu \leqslant \int_X g d\mu$. 因此

$$\Lambda: L^1(X,\mu) \to \mathbb{C}, g \mapsto \int_X g d\nu$$

是有界线性映射, $\|\Lambda\| \leqslant 1$. 由于 μ 是 σ -有限的, 存在 $f \in L^\infty(X,\mu)$, $\|f\| \leqslant 1$ 使得 $\forall g \in L^1(X)$ 有

$$\int_X g d\nu = \int_X f g d\mu$$

现令 $g \geqslant 0$, 则 $\int_X g d\nu \geqslant 0$. 故

$$\int_X fgd\mu = \int_X (\operatorname{Re} f) \cdot gd\mu$$

故不妨假设 f 取实值. 现在考虑 $\int_X fgd\mu = \int_X f^+gd\mu - \int_X f^-gd\mu$. 若 $\int_X f^-gd\mu > 0$, 令 $\Delta = \{x \in X: f^-(x) > 0\}, \, \text{则 } \Lambda(g \cdot \chi_\Delta) = -\int_X f^-gd\mu < 0 \,\, \text{矛盾! } \text{th } \forall g \in L^1(X,[0,\infty)) \,\, \text{有}$

$$\Lambda(g) = \int_X fgd\mu = \int_X f^+gd\mu$$

通过把 f 换成 f^+ , 则可不妨假设 $f\geqslant 0. \forall A\subset X$ 为可测集, 记 $A=\bigcup_{n=1}^\infty A_n$, 其中 $A_1\subset A_2\subset \cdots$

可测, $\mu(A_n) < +\infty$, 则 $\nu(A_n) = \Lambda(\chi_{A_n}) = \int_A f d\mu$. 取 $n \to \infty$ 得 $\nu(A) = \int_A f d\mu$.

Case 2: 一般情况, 因 $\omega = \mu + \nu$ 是 σ -有限的, 由 Case 1, 存在可测 $\alpha, \beta : X \to [0, +\infty)$ 使 $\mu = \alpha \cdot \omega, \nu = \beta \cdot \omega$, 我们证明 $\Delta = \{x \in X : \alpha(x) = 0\}$ 是 ω -零测的:

$$\mu(\Delta) = \int_{X} \chi_{\Delta} \cdot \alpha \omega = 0$$

又由于 $\nu \ll \mu$, 因此 $\nu(\Delta) = 0$, 进而 $\omega(\Delta) = \mu(\Delta) + \nu(\Delta) = 0$. 令 $f: X \to [0, +\infty)$ 为

$$f(x) = \begin{cases} \frac{\beta(x)}{\alpha(x)} & (\stackrel{.}{\text{Ta}} x \notin \Delta) \\ 0 & (\stackrel{.}{\text{Ta}} x \in \Delta) \end{cases}$$

则 $\forall g: X \to [0, +\infty)$ 可测有

$$\int_{X} g d\nu = \int_{X} g \cdot \beta d\omega = \int_{X \setminus \Delta} g \cdot \beta d\omega$$

$$= \int_{X \setminus \Delta} g \cdot f \cdot \alpha d\omega = \int_{X \setminus \Delta} g \cdot f d\mu$$

$$= \int_{X} g \cdot f d\mu$$

定义 4.6.4. 令 $\Phi: X \to Y$ 为测度空间之间的可测映射, μ 是 X 上的测度. 对任意可测集 $B \subset Y$ 定义

$$\mu_*\Phi(B) = \mu(\Phi^{-1}(B))$$

则 $\mu_*\Phi$ 是 Y 上测度, 称为 μ 在 Φ 下的**推出 (pushforward)**.

注记. 由单调递增简单函数逼近, 可知对任意 $f \in L^+(Y)$ 有 $\int_Y f d\Phi_* \mu = \int_X f \circ \Phi d\mu$.

例子. 若 $\Phi: X \to Y$ 是 LCH 空间之间的同胚, 若 μ 是 X 上的 Radon 测度, 则 $\Phi_*\mu$ 是 Y 上的 Radon 测度.

定义 4.6.5. \mathbb{R}^N 上的 Borel 测度 μ 称为平移不变, 若对任意 $y \in \mathbb{R}^N$, 平移映射 $\tau_y : \mathbb{R}^N \to \mathbb{R}^N$, $x \mapsto x + y$ 满足 $\tau_{y,*}\mu = \mu$.

定理 4.6.6. 令 μ 是 \mathbb{R}^N 的 Radon 测度 (等价地, 在紧集上有限的 Borel 测度), 则以下等价:

- (1) µ 是平移不变的.
- (2) 存在 $c \ge 0$ 使 $\mu = cm, m$ 是 Lebesgue 测度.

证明: (2) \Longrightarrow (1): 若 $f \in C_c(\mathbb{R}^N)$, 则对任意 $y \in \mathbb{R}^N$, 由 Riemann 积分平移不变性可知 $\int_{\mathbb{R}^N} f \circ \tau_y dm = \int_{\mathbb{R}^N} f dm$. 故

$$\int_{\mathbb{R}^N} f d\tau_{y,*} m = \int_{\mathbb{R}} f dm$$

由于 Radon 测度由 C_c 中元素的积分决定, 故 $\tau_{y,*}m=m$. 故 $\mu=cm$ 平移不变.

(1) \Longrightarrow (2): 令 $\omega = \mu + m$, 则 ω 也是平移不变的. 由 Radon-Nikodym 定理, 存在 Borel 可 测 $\alpha : \mathbb{R}^N \to [0,1]$ 使 $\alpha = \frac{d\mu}{d\omega}$. 则 $\forall f \in L^+(\mathbb{R}^N)$ 有

$$\int f d\mu = \int f \alpha d\omega$$

由于 μ 和 ω 平移不变, $\forall y \in \mathbb{R}^N$,

$$\int f\alpha d\omega = \int fd\mu = \int f \circ \tau_y d\mu = \int (f \circ \tau_y) \cdot \alpha d\omega = \int f \cdot (\alpha \circ \tau_{-y}) d\omega$$

故

$$\int f(x)\alpha(x)dx = \int f(x)\alpha(x+y)dx \tag{a}$$

特别地,对任意紧集 $K \subset \mathbb{R}^N$ 使 m(K) = 1, 取 $f = \chi_K$ 得 $\int_K \alpha(x) dx = \int_K \alpha(x+y) dx \ (\forall y \in \mathbb{R}^N)$, 我们改写成

$$\int_{K} \alpha(y)dy = \int_{K} \alpha(x+y)dy \quad (\forall x \in \mathbb{R}^{N})$$
 (b)

因此由 (a) 得

$$\int_{\mathbb{R}^N} f(x)\alpha(x)dx = \int_K \int_{\mathbb{R}^N} f(x)\alpha(x)dxdy$$

$$= \int_K \int_{\mathbb{R}^N} f(x)\alpha(x+y)dxdy = \int_{\mathbb{R}^N} \int_K f(x)\alpha(x+y)dydx$$

$$\stackrel{(b)}{=} \int_{\mathbb{R}^N} \int_K f(x)\alpha(y)dydx = \int_{\mathbb{R}^N} fdm \cdot \int_K \alpha dm$$

 $\diamondsuit \ a = \int_K \alpha dm \leqslant 1, \ \text{则} \ \int_X f \cdot \alpha dm = \int_x f \cdot a dm. \ \text{故可把} \ \alpha \ \text{换成} \ a \in [0,1], \ \text{故} \ \mu = a \cdot \omega = a \cdot (\mu + m),$ 即 $(1-a)\mu = am.$ 若 a = 1 则 m = 0, 不可能. 因此 $0 \leqslant a < 1, \mu = \frac{a}{1-a}m$.

令 $T: \mathbb{R}^N \to \mathbb{R}^N$ 是可逆线性映射, 则显然 T_*m 是平移不变的. 我们接下来来确定 $\frac{dT_*m}{dm}$.

例子. 若 T 是交换 \mathbb{R}^N 两行, 则 $T_*m = m$.

证明: 我们以 T 交换前两行为例. $\forall f \in C_c(\mathbb{R}^N)$,

$$\int f \circ T(x_1, x_2, x_3, \cdots, x_N) dm = \int f(x_2, x_1, x_3, \cdots, x_N) dm = \int f(x_1, x_2, x_3, \cdots, x_N) dm$$

例子. 若 T 把某一行乘以 $a \neq 0$, 则 $T_*m = |a|^{-1}m$.

证明: 不妨令 T 把第一行乘以 a, 则 $\forall f \in C_c(\mathbb{R}^N)$, 有单变量的积分换变量公式,

$$\int_{\mathbb{R}} f(ax_1, x_2, \cdots, x_N) dx_1 = |a|^{-1} \int_{\mathbb{R}} f(x_1, x_2, \cdots, x_N) dx_1$$

对 x_2, \dots, x_N 积分得证.

例子.若
$$T$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} x_1 \\ ax_1 + bx_2 \\ x_3 \\ \vdots \\ x_N \end{pmatrix}$,则 $T_*m = m$.

证明: 由累次积分, 可化为证明 $\forall f \in C_c(\mathbb{R}^2)$ 则 $\iint_{\mathbb{R}^2} f(x,y) dm = \iint_{\mathbb{R}^2} f(x,x+y) dm$. 由 Fubini 定理,

$$\iint_{\mathbb{R}^2} f(x, x + y) dm = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, x + y) dy dx$$

$$\stackrel{u=x+y}{=} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, u) du dx = \iint_{\mathbb{R}^2} f(x, y) dm$$

定理 4.6.7. 令 $T: \mathbb{R}^N \to \mathbb{R}^N$ 为可逆线性映射,则 $T_*m = |\det(T)|^{-1}$. 即 $\forall f \in L^+(\mathbb{R}^N)$,有 $\int_{\mathbb{R}^N} (f \circ T) dm = |\det(T)|^{-1} \int_{\mathbb{R}^N} f dm.$

证明: 把T 写成初等行变换的复合, $T = S_n \circ \cdots \circ S_1$. 若 $(S_{n-1} \circ \cdots \circ S_1)_* m = |\det(S_{n-1} \cdots S_1)|^{-1} m$ 成立, 由前几例,

$$T_* m = S_{n,*} \cdot (S_{n-1} \circ \dots \circ S_1)_* m$$

$$= |\det (S_{n-1} \dots S_1)|^{-1} \cdot S_{n,*} m = |\det (S_{n-1} \dots S_1)|^{-1} \cdot |\det S_n|^{-1} m$$

$$= |\det T|^{-1} m$$

故由归纳法知命题得证.

推论 4.6.8. 若 $T: \mathbb{R}^N \to \mathbb{R}^N$ 为线性变换, 则任意 Lebesgue 可测集 $A \subset \mathbb{R}^N$ 有 $m(T(A)) = |\det T| m(A)$.

证明: 若 T 可逆,则由

$$m(T(A)) = \int_{\mathbb{R}^N} \chi_A \circ T^{-1} dm = \int_{\mathbb{R}^N} \chi_A d\left(T_*^{-1} m\right) = |\det T| \int_{\mathbb{R}^N} \chi_A$$

得证.

若 T 不可逆, 取可逆线性 $S:\mathbb{R}^N\to\mathbb{R}^N$ 使 $S\circ T(\mathbb{R}^N)\subset\mathbb{R}^{N-1} imes\{0\}$. 易知 $m(\mathbb{R}^{N-1} imes\{0\})=0$, 则

$$m(T(A)) = m(S \circ T(A)) \leqslant m(\mathbb{R}^{N-1} \times \{0\}) = 0$$

4.7 Lebesgue 测度的坐标变换公式

定理 4.7.1 (主定理). 令 $\Phi: \Omega \to \Gamma$ 是 \mathbb{R}^n 中开集的 C^1 -同胚. 令 m_{Ω}, m_{Γ} 分别为 Ω, Γ 上的 Lebesgue 测度. 记 $J(\Phi) = \det(\operatorname{Jac}\Phi)$, 则 $\Phi_*^{-1}m_{\Gamma} = |J(\Phi)|m_{\Omega}$. 等价地, $\forall f \in L^+(\Omega, m)$, 有

$$\int_{\Gamma} f \circ \Phi^{-1} dm = \int_{\Omega} f \cdot |J(\Phi)| dm$$

等价地, $\forall g \in L^+(\Gamma, m)$, 有

$$\int_{\Gamma} g dm = \int_{\Omega} (g \circ \Phi) \cdot |J(\Phi)| dm$$

引理 4.7.2. 在主定理中, 只需证明 $g \in C_c(\Gamma), g \ge 0$ (等价地, $f \in C_c(\Omega), f \ge 0$) 的情形.

证明: $\Phi_*^{-1}m_{\Gamma}$ 和 $|J(\Phi)|m_{\Omega}$ 都是在第二可数空间 Ω 上的 Borel-测度且在紧集上取值 $<+\infty$, 故都是 Radon 测度, 因此其取值由其在 $C_c(\Omega)$ 上的积分决定.

引理 4.7.3. $\forall \Omega, \Gamma$ 以及 C^1 同胚 $\Phi: \Omega \to \Gamma$ 和 $g \in C_c(\Gamma), g \geqslant 0$ 有

$$\int_{\Gamma} g dm \leqslant \int_{\Omega} (g \circ \Phi) |J(\Phi)| dm \tag{*}$$

引理 4.7.3 \Longrightarrow 主定理的证明. 假设 " \leqslant " 永远成立. 则把 (*) 中 Γ, Ω, Φ, g 换成 $\Omega, \Gamma, \Phi^{-1}, g \circ \Phi$ 也有 " \leqslant " 成立. 故

$$\int_{\Omega} (g \circ \Phi) |J(\Phi)| dm \leqslant \int_{\Omega} \left(g \circ \Phi \circ \Phi^{-1} \right) (y) \cdot \left| J(\Phi)_{\Phi^{-1}(y)} \cdot J(\Phi^{-1})_{y} \right| dm(y)$$

故
$$\int_{\Gamma} g dm \leqslant \int \Omega \left(g \circ \Phi\right) |J(\Phi)| dm \leqslant \int_{\Gamma} g dm.$$

引理 4.7.4. $\forall g \in C_c(\Gamma), g \geqslant 0$,若 $f = g \circ \Phi$ 的支集 $\mathrm{supp}(f)$ 满足存在 Ω 中开立方体 Q 使 $\mathrm{supp}(f) \subset Q \subset \overline{Q} \subset \Omega$,则

$$\int_{\Gamma} g dm \leqslant \int f |\operatorname{Jac}(\Phi)| dm$$

引理 4.7.4 ⇒ 引理 4.7.3 的证明. 令 $f = g \circ \Phi$. 取 $K = \operatorname{supp}(f)$ 在 Ω 中开覆盖 Q_1, \dots, Q_N 使 $\overline{Q_i} \subset \Omega$. 取 K 在此开覆盖下的单位分解 h_1, \dots, h_N , 则 $f = f_1 + \dots + f_N$, 其中 $f_N = h_i \cdot f$. 令 $g_i = f_i \circ \Phi^{-1}$. 由引理假设 $\int_{\Gamma} g_i \leqslant \int f_i |\operatorname{Jac}(\Phi)| dm$, 对 i 求和得

$$\int_{\Gamma} g \leqslant \int f|\operatorname{Jac}(\Phi)|dm|$$

引理 4.7.3 得证. □

为了证明引理 4.7.4, 我们要将 Q 分成若干小立方体的不交并, 这里的**立方体**形如 $I_1 \times \cdots I_n$, 其中 I_1, \cdots, I_N 是长度有限且相同的 (不一定开或闭) 的区间.

约定: 接下来, 线性空间 \mathbb{R}^n 中取得范数为

其"单位开球"为 $\{x \in \mathbb{R}^n : |x_1|, \dots, |x_n| < 1\}$,它是开立方体. 若 $A : \mathbb{R}^n \to \mathbb{R}^n$ 是线性的,||A|| 指 A 在 \mathbb{R}^n 的这一范数下的算子范数.

注记. 若 V 是线性空间, $C \subset V$, $0 \in C$ 满足

- C 是凸的.
- $C \neq \text{Balanced } 0$, $\mathbb{P}(C = \lambda C, \mathbb{E}(\lambda) = 1)$.
- $C \neq \text{Bassorbing in}$, $\exists x \in V, \exists t \geq 0 \notin x \in tC$.

则

$$||x|| = \inf_{t>0} \{t : x \in tC\} = \inf_{t>0} \{t : t^{-1}x \in C\}$$

是半范数, 且 $\{x: \|x\| < 1\} \subset C \subset \{x: \|x\| \leqslant 1\}$. 若 $\forall x \neq 0, \exists t > 0$ 使 $x \notin tC$, 则 $\|\cdot\|$ 是 范数. $\|\cdot\|$ 称为 C 的 **Minkowski 泛函**. 上一例中, $\|\cdot\|$ 是立方体 $\{x \in \mathbb{R}^n : \sup_i |x_i| < 1\}$ 的 Minkowski 泛函.

引理 4.7.5. 若 Q 是 Ω 内立方体, 且 $\overline{Q} \subset \Omega$, 则

$$m(\Phi(Q)) \leqslant \left(\sup_{x \in Q} \|\operatorname{Jac}(\Phi)_x\|\right)^n m(Q)$$

证明: $\diamondsuit M = \sup_{x \in Q} \|\operatorname{Jac}(\Phi)_x\|$. 由 $\overline{Q} \subset \Omega$ 知 $M < +\infty$.

Case 1: 假设 Q 是开的, 令其边长为 2a, 中心为 p, 即 $Q = \{x \in \mathbb{R}^n : ||x - p|| < a\}$. 则 $\forall x \in Q$, 对 $F(t) = \Phi(p + t(x - p))$ 用微积分基本定理

$$\|\Phi(x) - \Phi(p)\| = \left\| \int_0^1 \operatorname{Jac}(\Phi)_{p+t(x-p)} \cdot (x-p) dt \right\| \le M \cdot \|x-p\| < Ma$$

故 $\Phi(Q)$ 被包含在以 $\Phi(p)$ 为中心, 边长 2Ma 的开立方体中. 故 $m(Q)=2^na^n, m(\Phi(Q))\leqslant 2^nM^na^n.$

Case 2: 一般情况, 由于 $\overline{Q} \subset \Omega, \forall \varepsilon$, 存在开立方体 Q' 满足 $Q \subset Q' \subset \overline{Q'} \subset \Omega$ 且 $m(Q') \leq m(Q) + \varepsilon$, 则

$$m(\Phi(Q)) \leqslant m(\Phi(Q')) \leqslant M^n m(Q') + M^n \varepsilon$$

由 ε 任意性和 $M < +\infty$ 得证.

引理 4.7.4 的证明. 由于 $\operatorname{Jac}(\Phi)$ 在 \overline{Q} 上一致连续, 对于 $x,y\in\overline{Q}$ 有 $\lim_{\|x-y\|\to 0}\|\operatorname{Jac}(\Phi)_y-\operatorname{Jac}(\Phi)_x\|=0$, 故

$$\left\| \left(\operatorname{Jac} \Phi_x \right)^{-1} \left(\operatorname{Jac} \Phi_y \right) - 1 \right\| \leqslant \sup_{z \in \bar{Q}} \left\| \operatorname{Jac} \left(\Phi_x \right)^{-1} \right\| \cdot \left\| \operatorname{Jac} (\Phi)_y - \operatorname{Jac} (\Phi)_x \right\| \to 0$$

因此 $\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in \overline{Q},$ 若 $|x - y| < \delta, 则$

$$\left\| \operatorname{Jac} \left(T_x^{-1} \Phi \right)_y \right\| = \left\| T_x^{-1} \operatorname{Jac} \left(\Phi_y \right) \right\| \leqslant \left(1 + \varepsilon \right)^{\frac{1}{n}}$$

故若 $B \subset \overline{Q}$ 是边长 $\leq 2\delta$ 的立方体, 中心为 x, 则应用引理 4.7.5 得

$$m(T_x^{-1}\Phi(B)) \leqslant (1+\varepsilon)m(B)$$

由 Lebesgue 测度在线性映射下的变换公式,

$$m(\Phi(B)) = |J(\Phi)_x| \cdot m\left(T_x^{-1}\Phi(B)\right) \leqslant (1+\varepsilon) \left|J(\Phi)_x\right| m(B)$$

将 \overline{Q} 分成若干立方体的不交并 $\overline{Q}=B_1\sqcup\cdots\sqcup B_n$,每个 B_i 的边长 $\leqslant \delta$,且由一致连续性, $\sup_{x,y\in B_i}|f(x)|J(\Phi)_x|-f(y)|J(\Phi)_y||\leqslant \varepsilon$. 令 x_i 为 B_i 中心,令 $a_i=\sup_{x\in B_i}f(x)=\sup_{y\in\Phi(B_i)}g(y)$,则 $g\leqslant\sum_{i=1}^Na_i\chi_{\Phi(B_i)}$,

$$\int_{\Gamma} g dm \leqslant \sum_{i} a_{i} m \left(\Phi \left(B_{i} \right) \right) \leqslant (1 + \varepsilon) \sum_{i} a_{i} \left| J(\Phi)_{x_{i}} \right| m \left(B_{i} \right)$$

$$= (1 + \varepsilon) \int_{\overline{Q}} \left(\sum_{i} a_{i} \chi_{B_{i}} \cdot J(\Phi)_{x_{i}} \right) dm$$

若 $x \in Q_i$, 由已证式子 $|f(x)J(\Phi)_x - a_iJ(\Phi)_{x_i}| \leq \varepsilon$, 故

$$\left\| f - \sum_{i} a_{i} \chi_{B_{i}} J(\Phi)_{x_{i}} \right\|_{l^{\infty}} (\overline{Q}) \leqslant \varepsilon$$

进而

$$\begin{split} \int_{\Gamma} g dm &\leqslant (1+\varepsilon) \left(m(\overline{Q}) \varepsilon + \int_{\overline{Q}} f |J(\Phi)| dm \right) \\ &= (1+\varepsilon) \left(m(\overline{Q}) \varepsilon + \int_{\Omega} f |J(\Phi)| dm \right) \end{split}$$

由 $\varepsilon > 0$ 任意性得 $\int_{\Gamma} g dm \leqslant \int_{\Omega} f |J(\Phi)| dm$. 综上, 主定理证明完成.

4.8 带边微分流形

定义 4.8.1. 若 M 是微分流形, $E \subset M$. 定义:

 $\mathscr{C}_E^{\infty} = \{ \text{函数} f: U \to \mathbb{R}, U \not\in E \mathcal{H} \mathcal{F} \notin \mathcal{Y}, \forall p \in U,$ 存在p在M内邻域V和 $g \in C^{\infty}(V,)$ 使 $f|_{U \cap V} = g|_{U \cap V} \}$

$$C^{\infty}(U,\mathbb{R}) = \mathscr{C}_{E}^{\infty}(U) = \{f: U \to \mathbb{R}, f \in \mathscr{C}_{M}^{\infty}|_{E}\}$$

 $C^{\infty}(E,\mathbb{R})=\mathscr{C}_{E}^{\infty}(E)$ 中的函数称为 E 上的**光滑函数**, \mathscr{C}_{E}^{∞} 称为 E 的**光滑函数层**. 若 F 是 C^{∞} 流 形 N 的子集, 我们说连续映射 $\Phi:E\to F$ 是**光滑**的, 若 $\Phi^*\mathscr{C}_F^{\infty}\subset\mathscr{C}_E^{\infty}$, 即

$$\forall f \in \mathscr{C}_F^{\infty}, \Phi^* f = f \circ \Phi \in \mathscr{C}_E^{\infty}$$

若 Φ 是双射且 $\Phi^{-1}: F \to E$ 光滑, 我们说 Φ 是**微分同胚**.

注记. 显然光滑映射的复合光滑. 若 E 有开覆盖 $E = \bigcup_{\alpha} U_{\alpha}$, 则

$$\Phi: E \to F$$
光滑 $\iff \forall \alpha, \Phi|_{U_{\alpha}} \to F$ 光滑

注记. 若 $\Phi: E \to F$ 是映射, 则 $\Phi: E \to F$ 光滑 $\iff \Phi: E \to N$ 光滑.

注记. $\Phi: E \to \mathbb{R}^n$ 光滑 $\iff \Phi$ 每个分量 $\Phi^i: E \to \mathbb{R}$ 属于 $C^{\infty}(E, \mathbb{R})$.

证明: " \Longrightarrow " : $x^i:\mathbb{R}^n\to\mathbb{R}$ 属于 $\mathscr{C}^\infty_{\mathbb{R}^n}$. 故 $\Phi^i=x^i\circ\Phi\in\mathscr{C}^\infty_E$.

"←": 任意开集 $W \subset \mathbb{R}^n, \forall f \in C^\infty(W,\mathbb{R}),$ 要证 $f \circ \Phi \in \mathscr{C}_E^\infty$. 对任意 $p \in E$ 使得 $\Phi(p) \in W$, 由于 $\Phi^1, \cdots, \Phi^n \in \mathscr{C}_E^\infty$, 存在 p 在 M 内邻域 V 和 $\Psi^1, \cdots, \Psi^n \in C^\infty(V,\mathbb{R})$ 使在 $\Phi^{-1}(W) \cap V$ 上有 $\Phi^i = \Psi^i,$ 故 $f \circ \Phi = f \circ (\Psi^1, \cdots, \Psi^n)$. 而 $f \circ (\Psi^1, \cdots, \Psi^n) \in C^\infty(V,\mathbb{R})$, 这证明了 $f \circ \Phi \in \mathscr{C}_E^\infty$. \square

定义 4.8.2.

$$\mathbb{H}^n = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : x_n \geqslant 0\}$$

Int
$$\mathbb{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n > 0\}, \partial \mathbb{H}^n = \mathbb{R}^{n-1} \times \{0\}$$

Int \mathbb{H}^n 和 $\partial \mathbb{H}^n$ 分别称为 \mathbb{H}^n (相对于 \mathbb{R}^n 的) **内部**和**边界**.

定义 4.8.3. 令 M 为 Hausdorff 空间. 若 M 有开覆盖 $M = \bigcup_{\alpha} U_{\alpha}$ 以及开嵌入 $\varphi_{\alpha} : U \to \mathbb{R}^{n}$ 或 $\varphi_{\alpha} : U \to \mathbb{H}^{n}$ 满足 $\forall \alpha, \beta,$ 有 $(U_{\alpha}, \varphi_{\alpha})$ 和 $(U_{\beta}, \varphi_{\beta})$ 是 C^{∞} -相容的. 即

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

是微分同胚, 则称 M 为**带边微分流形**或 ∂ -(微分) 流形. 若 $V \subset M$ 是开集, $\psi : V \to \mathbb{R}^n$ 或 \mathbb{H}^n 是开嵌入且与每个 $(U_\alpha, \varphi)C^\infty$ 相容, 则称 (V, ψ) 是一个坐标卡. \mathscr{C}_M^∞ 的定义与普通 C^∞ 流形相同, 即

$$f \in \mathscr{C}_M^{\infty} \iff \forall \alpha \, f \circ \varphi_{\alpha}^{-1} \in \mathscr{C}_{\varphi_{\alpha}(U)}^{\infty}$$

 \mathscr{C}_M^{∞} 称为 M 的**光滑函数层或光滑结构**.

注记. \mathbb{R}^n 微分同胚于开单位球, 通过映射 $x\in\mathbb{R}^n\mapsto \frac{1}{1+\|x\|}x$, 故我们总可以假设坐标卡形如 $\varphi:U\to\mathbb{H}^n$.

定义 4.8.4. 若 Ω 是 \mathbb{H}^n 开子集, $\Phi: \Omega \to \mathbb{R}^n$ 光滑, $p \in \partial \Omega := \Omega \cap \partial \mathbb{H}^n$. 我们能用单侧导数定义 $\partial_n \Phi|_p$, 且若取 p 在 \mathbb{R}^n 内邻域 V, 取 $\widetilde{\Phi}: V \to \mathbb{R}^n$ 光滑使 $\widetilde{\Phi}|_{V \cap \Omega} = \Phi|_{V \cap \Omega}$, 则 $\partial_n \widetilde{\Phi}|_p = \partial_n \Phi|_p$. 因此我们能用 Φ 在 p 附近一个光滑延拓来刻画 $\partial_n \Phi|_p$, 从而刻画 $\operatorname{Jac} \Phi|_p$.

引理 4.8.5. 若 M 是 ∂ -流形, 坐标卡 $(U,\varphi),(V,\psi)$ 包含 $p\in M$. 则 $\varphi(p)$ 是边界点 $\Longleftrightarrow \psi(p)$ 是 边界点.

证明: 把 U,V 换成 $U\cap V$, 不妨假设 U=V. 则 $\varphi,\psi:U\to \mathbb{H}^n$. 令 $W_1=\varphi(U),W_2=\psi(U),F=\psi\circ\varphi^{-1}$. 则要证 $F:W_1\to W_2$ 给出了 W_1 边界点和 W_2 边界点之间的双射.

令 $x \in W_1, y = F(x)$. 我们证 $x \in \operatorname{Int} \mathbb{H}^n \iff y \in \operatorname{Int} \mathbb{H}^n$. 假设 $x \in \operatorname{Int} \mathbb{H}^n$. 因为 F 是 C^{∞} -同胚, $G = F^{-1}$ 是 C^{∞} -同胚. 故 $1 = \operatorname{Jac}(G)_y \cdot \operatorname{Jac}(F)_x, \operatorname{Jac}(F)_x : \mathbb{R}^n \to \mathbb{R}^n$ 是单射, 从而是 双射. 由反函数定理,y 是 W_2 在 \mathbb{R}^n 中的内点, 故 $y \notin \partial \mathbb{H}^n$. "←—" 得证, 另一边类似.

定义 4.8.6. 若 M 是 ∂ -流形, 我们说 $p \in M$ 是**边界点**若有一个包含 p 的坐标卡 (U, φ) , 使 $\varphi(p)$ 是边界点. 所有 M 的边界点构成集合记为 ∂M .

命题 4.8.7. 令 $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}$ 为 n 维 ∂ -流形 M 的图册. 则 ∂M 是一个以 $\mathcal{U}|_{\partial M} = \{(U_{\alpha} \cap \partial M, \varphi_{\alpha}|_{U_{\alpha} \cap \partial M}) : \alpha \in A\}$ 为图册的 (不带边)n-1 维微分流形.

证明: 留给思考. 注意证明若 Ω, Γ 是 \mathbb{H}^n 开子集, $F: \Omega \to \Gamma$ 是 C^{∞} -同胚, 则 $F: \partial \Omega \to \partial \Gamma$ 是 C^{∞} -同胚, 这里 $\partial \Omega = \Omega \cap \partial \mathbb{H}^n$, $\partial \Gamma = \Gamma \cap \partial \mathbb{H}^n$.

定义 4.8.8. ∂ -流形之间的映射 $\Phi: M \to N$ 称为**光滑**若 Φ 连续, 且 $\Phi^*\mathcal{C}_N^\infty \subset \mathcal{C}_M^\infty$. 若 Φ 是双射 且 Φ^{-1} 光滑, 则称 Φ 是微分同胚.

类似无边情况, 映射 $\Phi:M\to N$ 光滑性可以对每个 $\psi\circ\Phi\circ\varphi^{-1}$ 验证, 若 φ,ψ 分别是 M,N 的坐标卡.

若 $p \in M$, $\mathscr{C}^{\infty}_{M,p} = \{f \in \mathscr{C}^{p}_{M}, f : U \to \mathbb{R}, U \not\in p$ 邻域 $\}$ / ~. 这里 $f \sim g$ 若 f 和 g 在一个更小的 p 的邻域上相等. 记 $df|_{p} = 0$ 或 $\mathrm{Jac}(f \circ \varphi^{-1})|_{\varphi(p)} = 0$,若 φ 是任一定义在 p 附近的坐标.

$$T_p^*M=\mathscr{C}_{M,p}^\infty/\{f\in\mathscr{C}_{M,p}^\infty,df|_p=0\}$$

 $T_pM = (T_p^*M)^*$. 各概念和无边情况相等.

定义 4.8.9. 令 N 为 (不带边) C^{∞} 流形.N 的子集 M 称为 N 的 ∂ -子流形, 若 $\forall p$, 存在 N 的包含 p 的坐标卡 $(V,\psi),\psi=(\psi^1,\cdots,\psi^n):V\to\mathbb{R}^n$ 以及 $0\leqslant d\leqslant n,k=n-d$, 使

$$M \cap V = \{ x \in V : \psi^{1}(x) = \dots = \psi^{k}(x) = 0, \psi^{n}(x) \ge 0 \}$$
$$= Z(\psi^{1}, \dots, \psi^{k}) \cap \psi^{-1}(\mathbb{H}^{n}) = \psi^{-1}(\{0_{\mathbb{R}^{k}}\} \times \mathbb{H}^{d})$$

定义 4.8.10. 若 $M \in \partial$ -流形, $N \in \mathbb{R}$ 是不带边流形. \mathbb{C}^{∞} 映射 $F: M \to N$ 称为(∂ -流形的) \mathbb{C}^{∞} 嵌入, 若 $F(M) \in \partial$ -子流形, 且 $F: M \to F(M)$ 是 \mathbb{C}^{∞} -同胚.

命题 4.8.11. 令 $F:M\to N$ 光滑,M 是 ∂ -流形,N 是微分流形. 假设 F 在 p 处是浸入, 即 $dF|_p:T_pM\to T_{F(p)}N$ 是单射. 则存在 p 邻域 U 使 $F|_U:U\to N$ 是 C^∞ -开嵌入.

证明: 不妨假设 M 是 \mathbb{H}^d 开子集, $p \in \partial \mathbb{H}^d$.N 是 \mathbb{R}^n 开子集. 通过缩小 M, 能找到 p 在 \mathbb{R}^d 内邻域 U 使 $M = U \cap \mathbb{H}^d$, 且 F 能扩张至 C^{∞} 的 $F: U \to N$. 由 $\mathrm{Jac}(F)|_p$ 是单射, 可缩小 U 使 $F: U \to N$ 是 C^{∞} -嵌入. 故能缩小 N 使存在 C^{∞} 开嵌入 $G: N \to \mathbb{R}^n$ 使 $G \circ F: U \to \mathbb{R}^n$ 的 前 n-d 个分量为 0. 记后 d 个分量为 $\Phi = (\varphi^1, \cdots, \varphi^d): U \to \mathbb{R}^d$. Jac $\varphi|_p$ 单射, 故双射. 由反函数定理, 通过缩小 U 使 Φ 是 C^{∞} -开嵌入. 令 $V = \Phi(U)$, 令

$$\Psi: \mathbb{R}^{n-d} \times V \to \mathbb{R}^n, (y_1, \dots, y_n) \mapsto (y_1, \dots, y_{n-d}, \Phi^{-1}(y_1, \dots, y_d))$$

则 $\Psi \circ G \circ F : U \to \mathbb{R}^n, (x_1, \cdots, x_d) \mapsto (0, \cdots, 0, x_1, \cdots, x_d)$ 是 C^{∞} -嵌入.

命题 4.8.12. 令 M 为 ∂ -流形,N 为不带边流形, $F: M \to N$ 是 C^{∞} 的浸入且是单射.

- (1) 若 F(M) 是 N 的 ∂ -子流形且 $\forall p \in M$ 有 $\dim_p M = \dim_p F(M)$. 则 F 是 ∂ -子流形的 C^{∞} 嵌入.
- (2) 若 $F:M\to F(M)$ 是同胚,F(M) 赋予子集拓扑,则 F 是 ∂ -子流形的 C^∞ 嵌入.证明和不带边情形类似.

命题 4.8.13. 令 N 为 n 维的 C^{∞} -流形, $0 \le k \le n-1, F = (f^1, \cdots f^k, f^{k+1}) : N \to \mathbb{R}^{k+1}$ 光滑.

$$M = \{x \in N : f^{1}(x) = \dots = f^{k}(x) = 0, f^{k+1}(x) \ge 0\}$$

假设 F 在任意 $p \in M$ 处是**淹没** (submersion). 即 $dF|_p: T_pN \to T_{F(p)}\mathbb{R}^{k+1} \cong \mathbb{R}^{k+1}$ 是满射. 则 $M \in \mathbb{R}$ 的 d = n - k 维 ∂ -流形, 且 $\partial M = \{x \in M: f^{k+1}(x) = 0\}$.

证明: $\forall p \in M$, 取邻域 U 使 $U \cong \mathbb{R}^n$ 开子集. 构造 f^{k+2}, \dots, f^n 使 $\Phi = (f^1, \dots, f^n) : U \to \mathbb{R}^n$ 满足 $d\Phi|_p$ 可逆. 运用反函数定理. 细节留作思考.

例子. 令 $F: \mathbb{R}^3 \to \mathbb{R}^2$, $F(x,y,z) = (x^2 + y^2 + z^2 - 1, z)$, $M = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \geqslant 0\}$. 则

$$\operatorname{Jac} F = \left(\begin{array}{ccc} 2x & 2y & 2z \\ 0 & 0 & 1 \end{array}\right)$$

在 $M \setminus \{z=1\}$ 上处处可逆, 故 $M \setminus \{z=1\}$ 是 \mathbb{R}^3 的 ∂ -子流形, 且边界为 $M \cap \{z=0\}$. 又

$$M \setminus \{z = 0\} = \{x^2 + y^2 + z^2 - 1 = 0, z > 0\}$$

是 \mathbb{R}^3 的不带边子流形 (由隐函数定理). 故 M 是 \mathbb{R}^3 子流形, $\partial M = \{(x,y,0): x^2 + y^2 = 1\}$

例子. 令 $N \not\in C^{\infty}$ -流形, $f \in C^{\infty}(N, \mathbb{R})$, 令 $M = \{x \in N : f(x) \ge 0\}$. 若 $\forall p \in M, df|_p \ne 0$, 则 $M \not\in N$ 的 ∂ -子流形, $\partial M = \{x \in N : f(x) = 0\}$.

回忆我们上学期证明过 $\forall 0 < a < b < +\infty$,存在 $f \in C_c^{\infty}(\mathbb{R}), 0 \leqslant f \leqslant 1$,且 $[-a, a] \prec f \prec (-b, b)$. 由此易知 \forall 有界区间 $I_i, J_i (1 \leqslant i \leqslant n)$,若 $\overline{I_i} \subset J_i$,则存在 $f \in C_c^{\infty}(\mathbb{R}^n)$,使得

$$\overline{I_1} \times \cdots \overline{I_n} \prec f \prec J_1 \times \cdots J_n$$

定理 4.8.14. 令 M 为紧 ∂ -流形. 令 $M = U_1 \cup \cdots \cup U_n$ 的开覆盖,则它有 \mathbb{C}^{∞} 单位分解,即存在 $h_i \in \mathbb{C}^{\infty}(M), 0 \leq h_i \leq 1$, supp $h_i \subset U_i$ 满足 $h_1 + \cdots + h_n = 1$.

证明: $\forall p \in M$, 取 i_p 使 $p \in U_{i_p}$. 则由以上讨论,存在光滑 $f_p \prec U_{i_p}, f_p(p) > 0$ (取开集 \widetilde{U} 使 $p \in \widetilde{U} \subset U_{i_p}$ 且 $\widetilde{U} \cong \mathbb{H}^m$ 开子集 Ω . 构造 Ω 上 ≥ 0 紧支集光滑函数在 p 对应的 Ω 中点上 > 0),则开覆盖

$$M = \bigcup_{p \in M} \{x \in M : f_p(x) > 0\} := \bigcup_{p \in M} W_p$$

有有限子覆盖 $M = \bigcup_{p \in E} W_p(E \text{ } E \text{ } M \text{ }$ 的有限子集). $\forall i,$ 令

$$g_i = \sum_{p \in E, \text{supp } f_p \subset U_i} f_p$$

则 $\sup g_i \subset U_i$, 且 $\forall x \in M$, 因为存在 $p \in E$ 使 $x \in W_p$, 故 $f_p(x) > 0$ 而 $\sup f_p \subset U_{i_p}$, 故

$$\sum_{i} g_i(x) \geqslant g_{i_p}(x) > 0$$

故
$$\inf_{x \in M} \sum_{i} g_i(x) > 0$$
. 令 $h_i = \frac{g_i}{\sum_{i} g_i}$ 即可.

我们给出 C^{∞} 单位分解的一个有意思的应用, 它和我们上学期证 stone-weierstrass 定理时用到的嵌入思想相近.

定理 4.8.15. 令 M 为紧 ∂ -流形. 则存在 $N \in \mathbb{Z}_+$ 以及 $(C^{\infty}$ 的) ∂ -流形嵌入映射 $F: M \to \mathbb{R}^N$.

证明: Claim: 存在 $f_1, \dots, f_N \in C^{\infty}(M, \mathbb{R})$ 分离 M 的点, 且若令 $F = (f_1, \dots, f_N) : M \to \mathbb{R}^N$, 则 F 是浸入.

这样一来,F 是单射,从而 $F: M \to F(M)$ 是同胚. 故 $F: M \to \mathbb{R}^N$ 是同胚.

Claim 的证明: $\forall p \in M$,存在邻域 U, V 使 $\overline{U} \subset V, (V, \psi)$ 是坐标卡,且存在 $\overline{U} \prec f \prec V, f$ 光滑. 故 M 有有限开覆盖 $M = \bigcup_{\alpha \in A} U_{\alpha}, \overline{U_{\alpha}} \subset V_{\alpha}, (V_{\alpha}, \varphi_{\alpha}) = (V_{\alpha}, \varphi_{\alpha}^{1}, \cdots, \varphi_{\alpha}^{n_{\alpha}})$ 是坐标卡且有 $\overline{U_{\alpha}} \prec f_{\alpha} \prec V_{\alpha}, f_{\alpha}$ 光滑. 则

$$\{\varphi_{\alpha}^{i} \cdot f_{\alpha} : \alpha \in \mathcal{A}, 1 \leqslant i \leqslant n_{\alpha}\} \cup \{f_{\alpha} : \alpha \in \mathcal{A}\}$$

满足 Claim 中的条件.

推论 4.8.16. 紧 ∂-流形是度量空间.

4.9 张量场

本节开始, 所有 ∂ -流形要求是**第二可数的**. **我们回**忆在作业中做过的关于张量积的内容. 本节线性空间都指有限维 \mathbb{R} -线性空间. 我们需要 $V_1 \otimes \cdots \otimes V_N$ 的性质. 以 N=3 为例. **性质**:

• $*v_i \in V_i, \ \ \, \bigcup \ \ v_1 \otimes v_2 \otimes v_3 \in V_1 \otimes V_2 \otimes V_3, \ \,$

$$(av_1 + bv_1') \otimes v_2 \otimes v_3 = a \cdot (v_1 \otimes v_2 \otimes v_3) + b \cdot (v_1' \otimes v_2 \otimes v_3)$$

(若 $v_1' \in V_1, a, b \in \mathbb{R}$). 形如 $v_1 \otimes v_2 \otimes v_3$ 的向量张成 $V_1 \otimes V_2 \otimes V_3$.

• 若 $\{e_{\alpha}\}_{\alpha\in\mathcal{A}}$, $\{f_{\beta}\}_{\beta\in\mathcal{B}}$, $\{g_{\gamma}\}_{\gamma\in\mathcal{C}}$ 分别是 V_1,V_2,V_3 基, 则 $\{e_{\alpha}\otimes f_{\beta}\otimes g_{\gamma}: \alpha\in\mathcal{A}, \beta\in\mathcal{B}, \gamma\in\mathcal{C}\}$ 是 $V_1\otimes V_2\otimes V_3$ 一组基. 故

$$\dim(V_1 \otimes V_2 \otimes V_3) = \dim(V_1)\dim(V_2)\dim(V_3)$$

• 任意 3-线性映射 $T:V_1\times V_2\times V_3\to W$ 都存在唯一线性 $\tilde{T}:V_1\otimes V_2\otimes V_3\to W$ 使以下图 交换

$$V_1 \times V_2 \times V_3 \xrightarrow{\Phi} V_1 \otimes V_2 \otimes V_3$$

$$V_1 \otimes V_2 \otimes V_3$$

这给出了"3-线性映射 $V_1 \times V_2 \times V_3 \to W$ "和"线性映射 $V_1 \otimes V_2 \otimes V_3 \to W$ "之间的一一对应.

• 有唯一的同构 $(V_1 \otimes V_2) \otimes V_3 \stackrel{\cong}{\to} V_1 \otimes V_2 \otimes V_3$ 满足 $(v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes v_2 \otimes v_3$ (证: 定义 这个线性映射在基上的作用). 结合律

$$(V_1 \otimes V_2) \otimes V_3 \cong V_1 \otimes V_2 \otimes V_3 \cong V_1 \otimes (V_2 \otimes V_3)$$

$$(v_1 \otimes v_2) \otimes v_3 = v_1 \otimes v_2 \otimes v_3 = v_1 \otimes (v_2 \otimes v_3)$$

推论 4.9.1. "所有 N-线性映射 $V_1 \times \cdots \times V_N \to \mathbb{R}$ " 和对偶空间 $(V_1 \otimes \cdots \otimes V_N)^*$ 中元素有自然的一一对应. 我们接下来会把二者等同. 一个 N-线性的 $\varphi: V_1 \times \cdots \times V_N \to \mathbb{R}$ 会把 $\varphi(v_1, \cdots, v_N)$ 写成 $\varphi(v_1 \otimes \cdots \otimes v_N)$

注记. 若 $v \in V, \varphi \in V^*$, 记 $\langle \varphi, v \rangle = \langle v, \varphi \rangle = \varphi(v)$.

例子. 若 $\varphi_1 \in V_1^*, \dots, \varphi_N \in V_N^*$, 则 $V_1 \times \dots \times V_N \to \mathbb{R}, (v_1, \dots, v_N) \mapsto \varphi_1(v_1) \dots \varphi_N(v_N)$ 是 N-线性的. 实际上, 这些映射的线性组合给出所有 N-线性映射:

命题 4.9.2. 存在线性同构 $\Psi: V_1^* \otimes \cdots \otimes V_N^* \to (V_1 \otimes \cdots \otimes V_N)^*$ 满足 $\forall \varphi_i \in V_i^*$,

$$\langle \Psi \left(\varphi_1 \otimes \dots \otimes \varphi_N \right), v_1 \otimes \dots \otimes v_N \rangle = \varphi_1 \left(v_1 \right) \dots \varphi_N \left(v_N \right) \tag{(*)}$$

证明: 以 N=3 为例. 取 V_1,V_2,V_3 基 $(e_{\alpha})(f_{\beta})(g_{\gamma})$, 对应 V_1^*,V_2^*,V_3^* 中对偶基 $(e^{\check{\alpha}})(\check{f}^{\check{\beta}})(\check{g}^{\check{\gamma}})$. 定义线性映射 Ψ 唯一地满足

$$\left\langle \Psi\left(\check{e^{\alpha}}\otimes\check{f^{\beta}}\otimes\check{g^{\gamma}}\right),v_{1}\otimes v_{2}\otimes v_{3}\right\rangle =\left\langle \check{e_{\alpha}},v_{1}\right\rangle \left\langle \check{f_{\beta}},v_{2}\right\rangle \left\langle \check{g_{\gamma}},v_{3}\right\rangle$$

则 Ψ 满足 (*). 由

$$\left\langle \Psi\left(\check{e^{\alpha}}\otimes\check{f^{\beta}}\otimes\check{g^{\gamma}}\right),e_{\alpha'}\otimes f_{\beta'}\otimes g_{\gamma'}\right\rangle =\delta_{\alpha'}^{\alpha}\cdot\delta_{\beta'}^{\beta}\cdot\delta_{\gamma'}^{\gamma}$$

 $\mathfrak{P}\left\{\Psi\left(\check{e^{\alpha}}\otimes\check{f^{\beta}}\otimes\check{g^{\gamma}}\right):\forall\alpha,\beta,\gamma\right\} \overset{}{\not=} \left\{e_{\aleph}\otimes f_{\beta}\otimes g_{\gamma}:\forall\alpha,\beta,\gamma\right\} \text{ 的对偶基. 故 }\Psi\text{ 是线性同构.} \quad \Box$

约定: 我们把 $V_1^* \otimes \cdots \otimes V_N^*$ 和 $(V_1 \otimes \cdots \otimes V_N)^*$ 等同. 例如 $\varphi_1 \otimes \varphi_2 + \psi_1 \otimes \psi_2 \in V_1^* \otimes V_2^*$ 对应 的双线性映射为 $(v_1, v_2) \mapsto \varphi_1(v_1)\varphi_2(v_2) + \psi_1(v_1)\psi_2(v_2)$, 故

$$\langle \varphi_1 \otimes \varphi_2 + \psi_1 \otimes \psi_2, u_1 \otimes u_2 + v_1 \otimes v_2 \rangle$$

= $\varphi_1 (u_1) \varphi_2 (u_2) + \psi_1 (u_1) \psi_2 (u_2) + \varphi_1 (u_1) \varphi_2 (v_2) + \psi_1 (v_1) \psi_2 (v_2)$

定义 4.9.3. $(V \otimes V)^* \cong V^* \otimes V^*$ 中元素 ω 称为对称 (双线性) 型若它满足 $\forall u, v \in V$ 有 $\omega(u, v) = \omega(v, u)$. 对称的 ω 称为

半正定 若 $\forall v \in V$ 有 $\omega(v,v) \geq 0$

正定 若半正定且 $\omega(v,v)=0 \implies v=0$

若 $\omega \in V^* \otimes V^*$ 是对称型, 取 V 一组基 $\{e_1, \dots, e_n\}$ 则 $n \times n$ 矩阵 $(\omega(e_i \otimes e_j))_{1 \leq i,j \leq n}$ 是 对称矩阵, 即 ω 是 **Gram 矩阵**. 令 $\{\check{e^i}\} \subset V^*$ 为 $\{e_i\}$ 的对偶基, 则 $\omega = \sum_{i,j} \omega(e_i \otimes e_j)\check{e^i} \otimes \check{e^j}$.

(证: 验证左和右作用在 $e_i \otimes e_j$ 上相同)

我们有

$$\omega = \sum_{i,j} \omega(e_i \otimes e_j) \check{e}^i \cdot \check{e}^j$$

若定义:

定义 4.9.4. 若 $\varphi, \psi \in V^*$, 则 $\varphi \cdot \psi = \frac{1}{2} (\varphi \otimes \psi + \psi \otimes \varphi)$. 则 $\varphi \cdot \psi$ 是对称型.

记 $G = (\omega(e_i \otimes e_j))_{1 \leqslant i,j \leqslant n}$, 则上式可写成

$$\omega = (\check{e^1}, \cdots, \check{e^n})G \begin{pmatrix} \check{e^1} \\ \vdots \\ \check{e^n} \end{pmatrix}$$

注意 ω 正定/半正定 \Longleftrightarrow Gram 矩阵正定/半正定.

例子. 若 $\dim V = 3,\check{e}_2\check{e}_3 = \frac{1}{2}\check{e}_2\check{e}_3 + \frac{1}{2}\check{e}_3\check{e}_2$ 对应 Gram 矩阵为 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$. $4\check{e}_1\check{e}_1 - 6\check{e}_2\check{e}_3 = \frac{1}{2}\check{e}_3\check{e}_3$

$$4\check{e_1}\check{e_1} - 3\check{e_2}\check{e_3} - 3\check{e_3}\check{e_2}$$
 对应的 $Gram$ 矩阵为 $\left(egin{array}{ccc} 4 & 0 & 0 \\ 0 & 0 & -3 \\ 0 & -3 & 0 \end{array}
ight).$

例子. 若 ω 是 V 上内积, $\{e_1,\cdots,e_n\}$ 是 ω 下标准正交基,则 Gram 矩阵为 $I_{n\times n}.\omega=\check{e_1}\check{e_1}+\cdots+\check{e_n}\check{e_n}.$

定义 4.9.5. \diamondsuit M 为 ∂ -流形. \diamondsuit $\bigotimes^k T^*M = \bigsqcup_{p \in M} \bigotimes^k T_p^*M$ 称为 M 的k 阶协变张量丛 (bundle

of covariant k-tensors). 函数 $A: M \to \bigotimes^{r} T^*M$ 称为(k 阶协变) 张量场, 若 $\forall p \in M$ 有 $A_p \in \bigotimes^{k} T_p^*M$.

例子. 令 U 为 \mathbb{R}^n 开子集. 则 U 上的 k 阶协变张量场形如

$$A = \sum_{1 \leqslant i_1, \dots, i_k \leqslant n} f_{i_1, \dots, i_k} dx^{i_1} \otimes \dots \otimes dx^{i_k}, f_{i_1, \dots, i_k} : U \to \mathbb{R}$$

 $\forall p, dx^1|_p, \cdots dx^n|_p$ 是 $\frac{\partial}{\partial x^1}|_p, \cdots, \frac{\partial}{\partial x^n}|_p$ 的对偶基. 因此

$$\left\langle A_p, \left. \frac{\partial}{\partial x^{i_1}} \right|_p \otimes \cdots \otimes \frac{\partial}{\partial x^{i_k}} \right|_p \right\rangle = f_{i_1, \cdots, i_k}(p)$$

我们说 A 是 Borel 的/ C^r 的, 若每个 f_{i_1,\cdots,i_k} 都是 Borel 的/ C^r 的. 更一般地:

定义 4.9.6. ∂ -流形 M 上的 k 阶协变张量场 A 称为 **Borel 的**/ C^r **的**若 M 上存在图册 \mathfrak{U} 使 $\forall (U,\varphi) \in \mathfrak{U}$, 有

$$A|_{U} = \sum_{1 \leq i_{1}, \dots, i_{k} \leq n} f_{i_{1}, \dots, i_{k}} d\varphi^{i_{1}} \otimes \dots \otimes d\varphi^{i_{k}}$$

其中每个 f_{i_1,\dots,i_k} 都是 Borel 的/ C^r 的.

注记. 若 (U,ψ) 是坐标卡, 则 $d\varphi^i = \sum_i \frac{\partial \varphi^i}{\partial \psi^j} d\psi^j$, 故

$$A|_{u} = \sum_{i_{1}, \dots, i_{k}, j_{1}, \dots, j_{k}} f_{i_{1}, \dots, i_{k}} \frac{\partial \varphi_{1}^{i}}{\partial \psi_{1}^{j}} \cdots \frac{\partial \varphi_{k}^{i}}{\partial \psi_{k}^{j}} d\psi^{j_{1}} \otimes \cdots \otimes d\psi^{j_{k}}$$

故 $A|_U$ 在 (U,ψ) 下也是 Borel/ C^r 的. 由此可知:

命题 4.9.7. M 上的协变张量场 A 的 Borel 性/ C^{T} 性与图册的选取无关.

回忆若 $T_i: V_i \to V_i^*$ 是线性映射, $1 \le i \le k$,则有唯一的线性映射

$$T_1 \otimes \cdots \otimes T_k : V_1 \otimes \cdots \otimes V_k \to V_1' \otimes \cdots \otimes V_k', v_1 \otimes \cdots \otimes v_k \mapsto T_1 v_1 \otimes \cdots \otimes T_k v_k$$

(可以先把它定义在一组基上, 再进行线性扩张)

$$(F^*A)_p = (F^* \otimes \cdots \otimes F^*)(A_{F(p)})$$

这里 $F^* \otimes \cdots \otimes F^* : T^*_{F(p)} N \otimes \cdots \otimes T^*_{F(p)} N \to T^*_p M \otimes \cdots \otimes T^*_p M$. 特别地,k = 0 时 A 是函数 $A: N \to \mathbb{R}$, 则 $(F^*A)_p = A_{F(p)}$, 即 $F^*A = A \circ F$.

例子. 对以上 $F: M \to N$, 令 $(U, \varphi) = (U, \varphi^1, \cdots, \varphi^m)$ 和 $(V, \psi) = (V, \psi^1, \cdots, \psi^n)$ 分别为 M, N 坐标卡且 $F(U) \subset N$. 取 A 为 V 上 k 阶协变张量场. 若 $A = \sum_{1 \leqslant j_1, \cdots, j_k \leqslant n} f_{j_1, \cdots, j_k} d\psi^{j_1} \otimes \cdots \otimes d\psi^{j_k}$ 则

$$\forall p \in U, F^* \left(\left. d\psi^j \right|_{F(p)} \right) = \left. d \left(\psi^j \circ F \right) \right|_p = \left. \sum_i \frac{\partial \left(\psi^j \circ F \right)}{\partial \varphi^i} d\varphi^i \right|_p$$

简记为 $F^*d\psi^j = \sum_i \frac{\partial (\psi^j \circ F)}{\partial \varphi^i} d\varphi^i$. 回忆 $\frac{\partial \left(\psi^j \circ F\right)}{\partial \varphi^i} = \left(\partial_i \left(\psi^j \circ F \circ \varphi^{-1}\right)\right) \circ \varphi$. 由此可知

$$F^*A = \sum_{\substack{1 \leq j_1, \dots, j_k \leq n \\ 1 \leq i_1, \dots, i_k \leq m}} (f_{j_1, \dots, j_k} \circ F) \cdot \frac{\partial (\psi^{j_1} \circ F)}{\partial \psi^{i_1}} \cdots \frac{\partial (\psi^{j_k} \circ F)}{\partial \varphi^{i_k}} \cdot d\varphi^{i_1} \otimes \cdots \otimes d\varphi^{i_n}$$

由此可得:

命题 4.9.9. 令 $F: M \to N$ 为光滑的 ∂ -流形映射, 令 $A \neq N$ 上的协变张量场. 若 $N \neq Borel/C^r$ 的, 则 $F^*A \neq Borel/C^r$ 的.

4.10 黎曼流形和第一型积分

定义 4.10.1. 令 M 为 ∂ -流形,M 上的一个光滑 2 阶协变的 (对称) 正定张量场 g 称为 **Riemann** 度量.(M,g) 称为 ∂ -Riemann 流形.

因此, $\forall p \in M, g|_p \in T_p^*M \otimes T_p^*M = (T_pM \otimes T_pM)^*$. 若 $\xi, \eta \in T_pM$ 为切向量,则 $g(\xi, \eta) = g(\eta, \xi)$ 是它们之间的内积, $\|\xi\| = \sqrt{g(\xi, \xi)}$ 是 ξ 的**长度**.

例子. 若 $(U, \varphi^1, \dots, \varphi^n)$ 是 M 的坐标卡, 则

$$g|_{U} = \sum_{1 \leq i, j \leq n} g_{ij} d\varphi^{i} d\varphi^{j} = (d\varphi^{1}, \dots, d\varphi^{n}) G \begin{pmatrix} d\varphi^{1} \\ \vdots \\ d\varphi^{n} \end{pmatrix}$$

$$G = (g_{ij})_{1 \leqslant i,j \leqslant n}$$
 是 $Gram$ 矩阵. $g\left(\frac{\partial}{\partial \varphi^i} \otimes \frac{\partial}{\partial \varphi^j}\right) = g_{ij}$. 注意 (若 $i \leqslant j, i' \leqslant j'$)

$$\left\langle d\varphi^i d\varphi^j, \frac{\partial}{\partial \varphi^{i'}} \otimes \frac{\partial}{\partial \varphi^{j'}} \right\rangle = \begin{cases} \delta^i_{i'} \delta^j_{j'} & \not \exists i = j \\ \frac{1}{2} \delta^i_{i'} \delta^j_{j'} & \not \exists i \neq j \end{cases}$$

例子. \mathbb{R}^n 上的标准 Riemann 度量为 $dx^1 dx^1 + \cdots + dx^n dx^n$.

命题 **4.10.2.** 令 $F: M \to N$ 为 ∂ -流形的光滑浸入, $g \neq N$ 上的 Riemann 度量, 则 $F^*g \neq M$ 上的 Riemann 度量.

证明: F^*q 光滑, $\forall p \in M, \xi, \eta \in T_pM$, 有

$$(F^*g)(\xi \otimes \eta) = g(dF \cdot \xi \otimes dF \cdot \eta)$$

由 $dF: T_pM \to T_{F(p)}N$ 是单射知 $F^*g|_p: T_pM \otimes T_pM \to \mathbb{R}$ 是对称正定型.

定义 4.10.3. 若 $(M,g),(N,\tilde{g})$ 是 ∂ -Riemann 流形,一个微分同胚 $F:M\to N$ 称为等距微分同胚 (isometry) 若 $F^*\tilde{g}=g$. 注意 $F^{-1}:N\to M$ 也是 isometry. 我们说 M 和 N 是 isometric.

例子. 令 M 是 ∂ -流形,(N,g) 是 Riemann 流形, $F:M\to N$ 是 ∂ -流形的嵌入映射. 则 F(M) 是 N 的 ∂ -子流形. 令 $\iota:F(M)\to N, F(p)\mapsto F(p)$ 则 F(M) 有标准的来源于 N 的 Riemann 度 量, 即 ι^*g . 称 $(F(M),\iota^*g)$ 是 (N,g) 的 ∂ -Riemann 于流形. 我们说过若 $p\in M$, 则 $T_{F(p)}F(M)$ 自然地是 $T_{F(p)}N$ 的线性子空间 (通过 $d\iota$ 对应). 则 $\forall \xi,\eta\in T_{F(p)}N$ 有 $\iota^*g(\xi,\eta)=g(\xi,\eta)$.

$$F:(M,F^*g)\to (F(M),\iota^*g)$$

是等距 C^{∞} 同胚. 因此我们可以通过 (M, F^*g) 来研究 (N, g) 的 ∂ -Riemann 子流形 $(F(M), \iota^*g)$.

例子. 令 Ω 为 \mathbb{R}^m 或 \mathbb{H}^m 开子集, $F:\Omega\to\mathbb{R}^n$ 是 ∂ -流形嵌入.(特别地, $\mathrm{Jac}\,F:\mathbb{R}^m\to\mathbb{R}^n$ 是单射的 $n\times m$ 矩阵) 我们通过计算 $F^*(dx^1dx^1+\cdots+dx^ndx^n)$ 来计算 $F(\Omega)$ 上的标准 Riemann 度

量. 回忆
$$F^* \begin{pmatrix} dx^1 \\ \vdots \\ dx^n \end{pmatrix} = \operatorname{Jac} F \begin{pmatrix} dx^1 \\ \vdots \\ dx^m \end{pmatrix}$$
, 故

$$F^* \left(dx^1 dx^1 + \dots + dx^n dx^n \right) = \left(F^* dx^1 \right)^2 + \dots + \left(F^* dx^n \right)^2$$

$$= \left(F^* dx^1, \dots, F^* dx^n \right) \begin{pmatrix} F^* dx^1 \\ \vdots \\ F^* dx^n \end{pmatrix}$$

$$= \left(dx^1, \dots, dx^m \right) \left(\operatorname{Jac} F \right)^{\mathsf{T}} \left(\operatorname{Jac} F \right) \begin{pmatrix} dx^1 \\ \vdots \\ dx^m \end{pmatrix}$$

因此 Ω 作为 \mathbb{R}^n 的 Riemann 子流形的 Riemann 度量在 $\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^m}$ 下的 Gram 矩阵是 $(\operatorname{Jac} F)^{\mathrm{T}}(\operatorname{Jac} F)$.

考虑如何定义一个 Riemann 流形 M 的体积 $\operatorname{Vol}(M)$. 若 M 带边, 令 $\operatorname{Int} M = M \setminus \partial M$, 则 $\operatorname{Vol}(M) = \operatorname{Vol}(\operatorname{Int} M)$. 若 M 是 \mathbb{R}^n 中开子集 $(0,1)^n$, 且 M 给予内积 g, 其在标准坐标基 e_1, \cdots, e_n 下 Gram 矩阵为 G, 则 $G: M \to \mathbb{R}^{n \times n}$ 光滑. 假设 G 是常量, 令 $\xi_1, \cdots, \xi_n \in \mathbb{R}^n$ 为内积 g 下的一组标准正交基,即 $g(\xi_i, \xi_j) = \delta_{i,j}$. 记 $(e_1, \cdots, e_n) = (\xi_1, \cdots, \xi_n) A, A \in \mathbb{R}^{n \times n}$, 则我们

希望 M 作为 $e_1, \dots e_n$ 张成平行多面体的体积是 $\operatorname{Vol}(M) = |\det A|$. 由 $A \begin{pmatrix} \check{e_1} \\ \vdots \\ \check{e_n} \end{pmatrix} = \begin{pmatrix} \check{\xi_1} \\ \vdots \\ \check{\xi_n} \end{pmatrix}$,

$$g = (\check{\xi_1}, \cdots, \check{\xi_n}) \begin{pmatrix} \check{\xi_1} \\ \vdots \\ \dot{\xi_n} \end{pmatrix} = (\check{e_1}, \cdots, \check{e_n}) A^{\mathrm{T}} A \begin{pmatrix} \check{e_1} \\ \vdots \\ \check{e_n} \end{pmatrix}$$

故 g 在 e_1, \dots, e_n 下的 Gram 矩阵为 $G = A^{\mathrm{T}}A$, 故 $|\det A| = \sqrt{\det G}$. 故 $\mathrm{Vol}(M) = \sqrt{\det G} = \int_{(0,1)^n} \sqrt{\det G} dm$.

因此,一般情况下,若 M 是 \mathbb{R}^n 开子集,在 $e_1, \cdots e_n$ 下 g 的 Gram 矩阵为 G,则希望 $\operatorname{Vol}(M) = \int_M \sqrt{\det M} dx_1 \cdots dx_n$. 更一般地,若 $f: M \to \mathbb{R}$,我们希望定义积分

$$\int_{M} f dV_{g} = \int_{M} f \sqrt{\det G} dx^{1} \cdots dx^{n}$$

定义 4.10.4. 令 (M,g) 为 Riemann 流形, $f: M \to [0, +\infty]$ 为 Borel 函数. 若 $\{x \in M: f(x) > 0\}$ 被包含在坐标卡 $(U,\varphi) = (U,\varphi^1,\cdots,\varphi^n)$ 中,记光滑映射 $G: U \to \mathbb{R}^{n \times n}$ 为

$$g|_{p} = (d\varphi^{1}, \cdots, d\varphi^{n})G(p)\begin{pmatrix} d\varphi^{1} \\ \vdots \\ d\varphi^{n} \end{pmatrix}, p \in U$$

则定义

$$\int_{M} f dV_{g} = \int_{\varphi(U)} f \circ \varphi^{-1} \sqrt{\det(G \circ \varphi^{-1})} dm$$

 $(m \in \mathbb{R}^n \perp \text{homega})$

注记. 实际计算时常把 U 等同于 \mathbb{R}^n 开子集, 算出 g 在 U 上的表达式, 即 $\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}$ 下的 Gram 矩阵 G, 则 $\int_M f dV_g = \int_{\varphi(U)} f \sqrt{\det G} dm$.

引理 4.10.5. 以上定义与 (U,φ) 的选取无关.

证明: 令 (V,ψ^1,\cdots,ψ^n) 为包含 $\{x\in M:f(x)>0\}$ 的坐标卡. 通过把 U,V 换成 $U\cap V$, 不妨假设 U=V. 令 $F=\varphi\circ\psi^{-1}:\psi(U)\to\varphi(U)$, 则由积分换元公式

$$\begin{split} \int_{\varphi(U)} f \circ \varphi^{-1} \sqrt{\det{(G \circ \varphi^{-1})}} dm &= \int_{\psi(U)} f \circ \varphi^{-1} \circ F \cdot \sqrt{\det{(G \circ \varphi^{-1} \circ F)}} \cdot |\operatorname{J}(F)| dm \\ &= \int_{\psi(U)} f \circ \psi^{-1} \sqrt{\det{(G \circ \psi^{-1})} \cdot (\operatorname{J}(F))^2} dm \end{split}$$

注意
$$\begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix} = (\mathrm{Jac}(F) \cdot \psi) \circ \begin{pmatrix} d\psi^1 \\ \vdots \\ d\psi^n \end{pmatrix}, \ \, \square \, \forall p \in V, \ \, \begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix}_p = \left. \mathrm{Jac} \left(\varphi \circ \psi^{-1} \right) \right|_{\psi(p)} \begin{pmatrix} d\psi^1 \\ \vdots \\ d\psi^n \end{pmatrix},$$

妆

$$g = (d\varphi^{1}, \dots, d\varphi^{n})G\begin{pmatrix} d\varphi^{1} \\ \vdots \\ d\varphi^{n} \end{pmatrix}$$

$$= (d\psi^{1}, \dots, d\psi^{n})(\operatorname{Jac}(F) \circ \psi)^{\mathrm{T}} \cdot G \cdot (\operatorname{Jac}(F) \circ \psi) \begin{pmatrix} d\psi^{1} \\ \vdots \\ d\psi^{n} \end{pmatrix}$$

$$:= (d\psi^{1}, \dots, d\psi^{n})\widetilde{G}\begin{pmatrix} d\psi^{1} \\ \vdots \\ d\psi^{n} \end{pmatrix}$$

因此

$$\int_{\psi(U)} f \circ \psi^{-1} \sqrt{\det(G \circ \psi^{-1}) \cdot (\operatorname{J}(F))^2} dm = \int_{\psi(U)} f \circ \psi^{-1} \sqrt{\det(\widetilde{G} \circ \psi^{-1})} dm = \operatorname{H}(V, \psi)$$
算的积分

引理 4.10.6. 令 M 为 (第二可数) 微分流形. 则 $M = \bigsqcup_{n=1}^{\infty} E_n$,其中每个 E_n 都是 Borel 集,且存在包含 E_n 的坐标卡.

证明: $\forall x \in M$, 存在包含 x 的坐标卡 (U_x, φ_x) , 则 $M = \bigcup_{x \in M} U_x$. 因为 M 是 Lindelöf 空间, 存在

$$x_1, x_2, \dots \notin M = \bigcup_{n=1}^{\infty} U_{x_n}. \Leftrightarrow E_1 = U_{x_1}, E_{n+1} = U_{x_{n+1}} \setminus (U_{x_1} \cup \dots \cup U_{x_n}).$$

定义 4.10.7. 令 M 为 Riemann 流形, $f:M\to [0,+\infty]$ 是 Borel 函数, 则定义

$$\int_{M} f dV_{g} = \sum_{n=1}^{\infty} \int_{M} f \cdot \chi_{E_{n}} dV_{g}$$

这里, $M = \bigsqcup_{n=1}^{\infty} E_n.E_n$ 是 Borel 的且被包含在 M 的某个坐标卡里.

引理 4.10.8. 以上定义与分解 $M = \bigsqcup_{n=1}^{\infty} E_n$ 的选取无关.

证明: 若有类似分解 $M = \bigsqcup_{n=1}^{\infty} \widetilde{E_n}$, 则

$$\sum_{i=1}^{\infty} \int_{M} f \cdot \chi_{E_{i}} dV_{g} = \sum_{i,j=1}^{\infty} \int_{M} f \cdot \chi_{E_{i} \cap \widetilde{E_{j}}} dV_{g} = \sum_{j=1}^{\infty} \int_{M} f \cdot \chi_{\widetilde{E_{j}}} dV_{g}$$

引理 4.10.9. 若 $f_n: M \to [0, +\infty]$ 是一列关于 n 递增的 Borel 函数,则 $\lim_{n \to \infty} \int_M f_n dV_g = \int_M (\lim_{n \to \infty} f_n) dV_g$.

证明: 若 $\{x \in M : f(x) > 0\}$ 被包含在坐标卡内,则由单调收敛定理可得. 一般情况,令 $M = \bigcup_{i=1}^{\infty} E_i, E_i$ 是 Borel 集且包含在坐标卡内. 令 $f = \lim_{n \to \infty} f_n$,则

$$\lim_{n \to \infty} \int_{M} f_{n} dV_{g} = \lim_{n \to \infty} \sum_{i=1}^{\infty} \int_{M} f_{n} \cdot \chi_{E_{i}} dV_{g}$$

$$\stackrel{\text{単調收敛}}{=} \sum_{i=1}^{\infty} \lim_{n \to \infty} \int_{M} f_{n} \chi_{E_{i}} dV_{g}$$

$$= \sum_{i=1}^{\infty} \int_{M} f \chi_{E_{i}} dV_{g}$$

$$= \int_{M} f dV_{g}$$

引理 4.10.10. 若 $f_1, f_2: M \to [0, +\infty]$ 是 Borel 的且 $a_1, a_2 \in [0, +\infty]$,则 $\int_M (a_1 f_1 + a_2 f_2) dV_g = a_1 \int_M f_1 dV_g + a_2 \int_M f_2 dV_g$.

证明: 化成 $\{x: f_1(x), f_2(x) > 0\}$ 在坐标卡内的情形.

命题 4.10.11. $m_g: \mathcal{B}_M \to [0, +\infty], E \to \int_M \chi_E dV_g$ 是 M 上的 Radon 测度.

证明: 可数可加性由以上两个引理可得. 故 m_g 是 Borel 测度. 令 $K \subset M$ 为紧集, 则 K 在 M 内有有限开覆盖 $K \subset U_1 \cup \cdots \cup U_k, (U_i, \varphi_i)$ 是 M 的坐标卡. 令 $h_1, \cdots, h_k \in C_c(M)$ 为此开覆盖下的单位分解, 则 $m_g(K) = \sum_{j=1}^k \int_M \chi_K \cdot h_j dV_g$. 而 $\int_M \chi_K \cdot h_j dV_g = \varphi_j(K \cap \operatorname{supp} h_j)$ 上有界 Borel 函数的 Lebesgue 积分 $< +\infty$. 故 m_g 在紧集上取值有限, 故由 M 第二可分知 m_g 是 Radon 测度.

命题 4.10.12. 令 $f:M \to [0,+\infty]$ 是 Borel 可测函数. 则

$$\int_{M} f dV_g = \int_{M} f dm_g \tag{*}$$

因此我们不区分 dV_g 和 dm_g , 并把 V_g 称为 M 上的**体积测度**.

证明: (*) 在 f 是特征函数时成立, 故在 f 是 $M \to [0, +\infty]$ 的简单函数时成立. 一般情况取递增非负简单函数列逼近即可. \square

我们把 $\int_M 1dV_g$ 称为 M 的**体积**.

定义 4.10.13. 若 $f: M \to \mathbb{R}$ 是 Borel 可测的,且 $||f||_1 = \int_M |f| dV_g < +\infty$,则 $\int_M f dV_g = \int_M f^+ dV_g - \int_M f^- dV_g$. 当 M 带边时, $\int_M f dV_g$ 定义为 $\int_{\operatorname{Int} M} f dV_g$.

例子. 令 $\Omega \subset \mathbb{R}^m$ 为开集, $F:\Omega \to \mathbb{R}^n$ 为 C^∞ 嵌入. $M=F(\Omega)$ 看作 \mathbb{R}^m 的 Riemann 子流 $\mathcal{B}.V \supset M$ 是 \mathbb{R}^n 开子集, $f:V \to \mathbb{R}$ 是 Borel 的. 计算 $\int_M f dV_g$.

证明:

$$F^* \left(dx^1 dx^1 + \dots + dx^n dx^n \right) = \left(dx^1, \dots, dx^m \right) \left(\operatorname{Jac} F \right)^{\mathrm{T}} \left(\operatorname{Jac} F \right) \begin{pmatrix} dx^1 \\ \vdots \\ dx^m \end{pmatrix}$$

故
$$\int_M f dV_g = \int_{\Omega} (f \circ F) \cdot \sqrt{\det(\operatorname{Jac} F)^{\mathrm{T}}(\operatorname{Jac} F)} dx_1 \cdots dx_n.$$

我们来讨论曲线上的积分. 回忆若 M 是 C^{∞} 流形, $\gamma:[a,b]\to M$ 光滑, $a\leqslant t_0\leqslant b$, 则 $\gamma'(t_0)=\frac{d\gamma}{dt}|_{t_0}\in T_{\gamma(t_0)}M$ 定义为: $\forall f\in\mathscr{C}^{\infty}_{M,\gamma(t_0)}$ 有 $\langle\gamma',df\rangle|_{t_0}=(f\circ\gamma)'(t_0)$. 而

$$\left\langle d\gamma \cdot \frac{\partial}{\partial t}, df \right\rangle = \left\langle \frac{\partial}{\partial t}, \gamma^* df \right\rangle = \left\langle \frac{\partial}{\partial t}, d(f \circ \gamma) \right\rangle = (f \circ \gamma)'$$

故 $\gamma'(t_0) = d\gamma \cdot \frac{\partial}{\partial t}|_{t_0}$.

例子. 令 $\gamma:(a,b)\to M$ 为 C^{∞} -嵌入,(M,g) 是 Riemann 流形, $f:M\to [0,+\infty]$ 是 Borel 函数. 令 $C=\gamma([a,b])$, 则 $\int_C f=\int_a^b (f\circ\gamma(t))\cdot\sqrt{g(\gamma'(t),\gamma'(t))}dt$.

证明: 我们来计算 γ^*g : 令 $t: x \in \mathbb{R} \to x \in \mathbb{R}$ 为 \mathbb{R} 的标准坐标, 则 $\forall t_0 \in \mathbb{R}$,

$$\left\langle \gamma^* g, \frac{\partial}{\partial t} \otimes \frac{\partial}{\partial t} \right\rangle \bigg|_{t_0} = \left\langle g, d\gamma \cdot \frac{\partial}{\partial t} \otimes d\gamma \cdot \frac{\partial}{\partial t} \right\rangle \bigg|_{t_0} = g(\gamma'(t_0), \gamma'(t_0))$$

故 $\gamma^* g = g(\gamma'(t), \gamma'(t)) dt^2 \cdot g(\gamma'(t), \gamma'(t))$ 是 1×1 Gram 矩阵函数, 得证.

定义 **4.10.14.** 令 $\gamma:(a,b)\to M$ 为 C^∞ 映射,(M,g) 是 Riemann 流形.(即 γ 是 M 中的 C^∞ 道路) $f:M\to\mathbb{R}$ 是 Borel 函数, 即 f 沿 γ 的积分定义为

$$\int_{\gamma} f = \int_{a}^{b} (f \circ \gamma) \cdot \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

特别地, $\int_{\gamma} 1$ 称为 γ 的**长度**.

4.11 微分形式

Faraday 定律告诉我们, 若 \vec{B} , \vec{E} 分别是 \mathbb{R}^3 中的磁场和电场, 则对 \mathbb{R}^3 中的曲面 Σ 有

$$\oint_{\partial \Sigma} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_{\Sigma} \vec{B} \cdot \vec{S}$$

 $\iint_{\Sigma} \vec{B} \cdot d\vec{S}$ 是磁通量. 若取 Σ 为两个向量 $\xi, \eta \in \mathbb{R}^3$ 张成的**有向**平行四边形 $\Sigma_{\xi,\eta}, \vec{B}$ 是常量,则 $\omega(\xi,\eta) = \iint_{\Sigma_{\xi,\eta}} \vec{B} \cdot d\vec{S}$ 是关于 ξ,η 的线性双线性函数,且 $\Sigma_{\eta,\xi}$ 与 $\Sigma_{\xi,\eta}$ 有相反的方向. 故

 $\omega(\eta,\xi) = -\omega(\xi,\eta)$. 我们把这样的 ω 称为 \mathbb{R}^3 的 2-形式. 这启发我们定义一般的微分形式. 令 V 为有限 \mathbb{R} -线性空间, $V^{\otimes k} = V \otimes \cdots \otimes V(k \uparrow)$. $S_k = \{ \chi \} \{1, \cdots, k \} \to \{1, \cdots k \} \}$.

$$\forall \sigma \in S_k, V \times \cdots \times V \to V \otimes \cdots \otimes V, (v_1, \cdots, v_k) \mapsto v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}$$

是 k-线性的, 故给出线性映射

$$\sigma: V^{\otimes k} \to V^{\otimes k}, \sigma(v_1 \otimes \cdots \otimes v_k) = v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}$$

也可以先用上式定义 σ 在一组基上的作用, 再线性扩张.

定义 4.11.1. 若 $\xi \in V^{\otimes k}$ 满足 $\forall \sigma \in S_k$ 有 $\sigma(\xi) = \operatorname{sgn}(\sigma) \cdot \xi$, 则称 ξ 为交错 (alternating) 张 量或者反对称 (skew-symmetric) 张量. 这样的向量构成的子空间记为 $\Lambda^k(V) = \Lambda^k V$.

例子. 若 $u, v \in V$, 则 $u \wedge v := u \otimes v - v \otimes u \in \Lambda^2(V)$.

例子. 令 $\psi \in (V^*)^{\otimes k} = (V^{\otimes k})^*$,则 $\psi \in \Lambda^k(V^*)$ 当且仅当 $\forall \sigma \in S_k, \forall v_1, \cdots, v_k \in V$,有

$$\psi\left(v_1\otimes\cdots\otimes v_k\right)=\operatorname{sgn}(\sigma)\psi\left(v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma(k)}\right)$$

证明: $\forall \sigma \in S_k$ 有 $\langle \psi, \xi \rangle = \langle \sigma(\psi), \sigma(\xi) \rangle$. 而以上条件说的是

$$\forall \xi \in V^{\otimes k}, \forall \sigma \in S_k, \langle \psi, \xi \rangle = \operatorname{sgn}(\sigma) \langle \psi, \sigma^{-1} \xi \rangle$$

$$\iff \forall \xi \in V^{\otimes k}, \forall \sigma \in S_k, \langle \psi, \xi \rangle = \operatorname{sgn}(\sigma) \langle \sigma(\psi), \xi \rangle$$

$$\iff \psi = \operatorname{sgn}(\sigma) \sigma(\psi)$$

定义 4.11.2. 线性映射 Alt: $V^{\otimes k} \to V^{\otimes k}$ 定义为

$$Alt(\xi) = \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma) \cdot \sigma(\xi)$$

若 $v_1, \dots v_k \in V$, 记 $v_1 \wedge \dots \wedge v_k = k! \operatorname{Alt}(v_1 \otimes \dots \otimes v_k) = \sum_{\sigma} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \dots \otimes v_{\sigma(k)}$, 称为 v_1, \dots, v_k 的外积 (exterior product)/楔积 (wedge product).

命题 4.11.3. Alt 是 $V^{\otimes k}$ 上的投影算子, 即 Alt \circ Alt = Alt, 且 Alt $(V^{\otimes k}) = \Lambda^k(V)$.

证明:由 $sgn: S_k \to \{\pm 1\}$ 是群同态可得: 若 $\sigma \in S_k$,则

$$\sigma(\operatorname{Alt}(\xi)) = \frac{1}{k!} \sigma \cdot \sum_{\tau} \operatorname{sgn}(\tau) \tau(\xi) \stackrel{\theta = \sigma \tau}{=} \frac{1}{k!} \sum_{\theta} \operatorname{sgn}(\sigma^{-1}\theta) \theta(\xi)$$
$$= \operatorname{sgn}(\sigma^{-1}) \cdot \frac{1}{k!} \sum_{\theta} \operatorname{sgn}(\theta) \theta(\xi) = \operatorname{sgn}(\sigma) \cdot \operatorname{Alt}(\xi)$$

故 Alt $\xi \in \Lambda^k(V)$. 故 Alt $(V^{\otimes k}) \subset \Lambda^k(V)$. 反之, 若 $\xi \in \Lambda^k(V)$, 则 $\sigma(\xi) = \operatorname{sgn}(\sigma)\xi$. 故

$$Alt(\xi) = \frac{1}{k!} \sum_{\theta} sgn(\sigma)\sigma(\xi) = \frac{1}{k!} \sum_{\sigma \in S_k} \xi = \xi$$

故 $\xi = \operatorname{Alt} \xi \in \operatorname{Alt}(V^{\otimes k})$. 故 $\operatorname{Alt}(V^{\otimes k}) = \Lambda^k(V)$. 由 $\eta = \operatorname{Alt} \eta(\forall \eta \in \Lambda^k(V))$, 把 η 换成 $\operatorname{Alt} \xi (\forall \xi \in V^{\otimes k})$ 知 $\operatorname{Alt} \xi = \operatorname{Alt} \circ \operatorname{Alt} \xi$.

推论 4.11.4. 形如 $v_1 \wedge \cdots \wedge v_k$ 的向量张成 $\Lambda^k(V)$.

注记. $V \times \cdots \times V \to \Lambda^k(V), (v_1, \cdots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k$ 是 k-线性映射, 因为它是张量积映射 $V \times \cdots \times V \to V^{\otimes k}$ 和 $k! \cdot \text{Alt}$ 的复合.

命题 4.11.5. 令 $e_1, \dots e_n$ 为 n 维空间 V 的一组基, 则

$$\mathscr{E} = \{ e_{i_1} \wedge \dots \wedge e_{i_k} : 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n \}$$

是 $\Lambda^k(V)$ 的一组基. 因此 $\dim \Lambda^k(V) = \binom{n}{k}$. 特别地, 若 k > n, 则 $\dim \Lambda^k(V) = 0$.

证明: 已知形如 $\xi = e_{i_1} \wedge \cdots \wedge e_{i_k} (1 \leqslant i_1 \leqslant i_k \leqslant n)$ 的向量张成 $\Lambda^k(V)$ 且对 $1, \cdots, k$ 的 置换 σ 有 $\xi = (-1)^{\operatorname{sgn}(\sigma)} e_{i_{\sigma(1)}} \wedge \cdots \wedge e_{i_{\sigma(k)}}$. 故 $\operatorname{span} \mathscr{E} = \Lambda^k(V)$. 只需证 \mathscr{E} 中元素线性无 \mathfrak{Z} . $\forall 1 \leqslant i_1, j_1, \cdots, i_k, j_k \leqslant n$,

$$\left\langle e_{i_1} \otimes \cdots \otimes e_{i_k}, e^{\check{j}_1} \otimes \cdots \otimes e^{\check{j}_k} \right\rangle = \delta_{i_1}^{j_1} \cdots \delta_{i_k}^{j_k}$$

由此得若 $1 \leq i_1 < \dots < i_k \leq n, 1 \leq j_1 < \dots < j_k \leq n,$ 则

$$\left\langle e_{i_1} \wedge \dots \wedge e_{i_k}, e^{\check{j}_1} \otimes \dots \otimes e^{\check{j}_k} \right\rangle = \delta_{i_1}^{j_1} \dots \delta_{i_k}^{j_k}$$

若 $\psi = \sum_{1 \leq i_1 < \dots < i_k \leq n} a_{i_1 \dots i_k} e_{i_1} \wedge \dots \wedge e_{i_k} = 0,$ 则

$$a_{i_1\cdots i_k} = \left\langle \psi, e^{\check{i}_1} \otimes \cdots \otimes e^{\check{i}_k} \right\rangle = 0$$

命题 **4.11.6.** 令 $k_1, \dots k_m \in \{0, 1, 2 \dots\}$, 则存在 m-线性映射

$$\Phi: \Lambda^{k_1}(V) \times \cdots \times \Lambda^{k_m}(V) \to \Lambda^{k_1 + \cdots + k_m}(V)$$

满足 $\forall v_1^1, \dots v_{k_1}^1, \dots, v_1^m, \dots, v_{k_m}^m \in V$ 有

$$\Phi\left(v_1^1 \wedge \dots \wedge v_{k_1}^1, \dots, v_1^m \wedge \dots \wedge v_{k_m}^m\right) = v_1^1 \wedge \dots \wedge v_{k_1}^1 \wedge \dots \wedge v_1^m \wedge \dots \wedge v_{k_m}^m \tag{*}$$

证明: 我们要构造 $\Phi: \Lambda^{k_1}(V) \otimes \cdots \otimes \Lambda^{k_m}(V) \to \Lambda^{k_1+\cdots+k_m}(V)$ 满足 (*). 先定义 Φ 在一组基上 满足 (*), 再进行线性扩张即可.

命题 4.11.7. 若 $\omega \in \Lambda^k(V), \eta \in \Lambda^l(V),$ 记 $k = \deg(\omega), l = \deg(\eta),$ 则 $\omega \wedge \eta = (-1)^{k+l} \eta \wedge \omega.$

证明: 对
$$\omega = v_1 \wedge \cdots \wedge v_k, \eta = u_1 \wedge \cdots \wedge u_l$$
 的形式验证即可.

回忆若 $F: V \to W$ 是线性映射, 则因为

$$V \times \cdots \times V \to W^{\otimes k}, (v_1, \cdots v_k) \mapsto Fv_1 \otimes \cdots \otimes Fv_k$$

是 k-线性的, 我们有线性映射

$$F^{\otimes k}: V^{\otimes k} \to W^{\otimes k}, v_1 \otimes \cdots \otimes v_k \mapsto F_{v_1} \otimes \cdots \otimes F_{v_k}$$

易知 $\forall \sigma \in S_k$ 有 $F^{\otimes k} \cdot \sigma = \sigma \cdot F^{\otimes k}$, 从而有:

命题 4.11.8. $F^{\otimes k} \cdot \text{Alt} = \text{Alt} \cdot F^{\otimes k}$. 因此 $F^{\otimes k}$ 限制到映射 $F^{\otimes k} : \Lambda^k(V) \to \Lambda^k(W)$.

证明:

$$F^{\otimes k}(\Lambda^k(V)) = F^{\otimes k} \operatorname{Alt}(V^{\otimes k}) = \operatorname{Alt} F^{\otimes k}(V^{\otimes k})$$
$$\subset \operatorname{Alt}(W^{\otimes k}) = \Lambda^k(W)$$

我们接下来研究 $\Lambda^n(V)$, $n=\dim V$. 我们知道 $\dim \Lambda^n(V)=1$, 因此, 若 $e_1, \cdots e_n$ 是 V 一组 基, $v_1, \cdots v_n \in V$, 则 $\exists \lambda \in \mathbb{R}$ 使 $1 \wedge \cdots \wedge v_n = \lambda e_1 \wedge \cdots \wedge e_n$. 我们想确定 λ 的值. 简单起见, 把 λ 记为 $\frac{v_1 \wedge \cdots \wedge v_n}{e_1 \wedge \cdots \wedge e_n}$.

命题 4.11.9. 令 e_1, \dots, e_n 为 V 的一组基, $v_1, \dots v_n \in V$ 在此基下的矩阵表示是 $A \in \mathbb{R}^{n \times n}$, 即 $(v_1, \dots, v_n) = (e_1, \dots, v_n)A$, 则 $v_1 \wedge \dots \wedge v_n = \det A \cdot e_1 \wedge \dots \wedge e_n$.

证明: 通过线性同构 $V \cong \mathbb{R}^n$, 不妨假设 $V = \mathbb{R}^n, e_1, \cdots, e_n$ 是 \mathbb{R}^n 的标准坐标向量. 把 v_1, \cdots, v_n 看成列向量, 则 v_i 是 A 的第 j 列, 即 $A = (v_1, \cdots, v_n)$. 定义

$$\lambda: \mathbb{R}^{n \times n} \to \mathbb{R}, A = (v_1, \cdots, v_n) \mapsto \lambda(A)$$
满足 $v_1 \wedge \cdots \wedge v_n = \lambda(A)e_1 \wedge \cdots \wedge e_n$

则 λ 关于 n 个列向量是 n-线性的, 且是反对称的 (交换 A 两列改变 $\lambda(A)$ 正负号), 而由线性代数知识可知这样的函数 λ 正比于行列式函数 \det , 显然 $A = I_{n \times n}$ 时 λ 和 \det 取值都是 1. 故 $\lambda(A) = \det A$.

定义 4.11.10. n 维线性空间 V 中两组基 $\{e_1, \dots, e_n\}, \{f_1, \dots, f_n\}$ 称为**同向**的,若 $\frac{e_1 \wedge \dots \wedge e_n}{f_1 \wedge \dots \wedge f_n}$ 大于 0.

同向关系是等价关系, 其等价类称为 V 的**方向**. 显然 V 只有两个方向, e_1, \dots, e_n 的方向记为 $[e_1, \dots, e_n]$.

注记. 若 $\{e_1, \dots, e_n\}$ 和 $\{f_1, \dots, f_n\}$ 是 V 两组基,对偶基为 $\{e^{\check{1}}, \dots, e^{\check{n}}\}, \{\check{f}^1, \dots, \check{f}^n\}$. 令 $(e_1, \dots, e_n) = (f_1, \dots, f_n)A$ 则 $(\check{f}^1, \dots, \check{f}^n) = (\check{e}^{\check{1}}, \dots, \check{e}^{\check{n}})A^{\mathsf{T}}$, 由 det $A = \det A^{\mathsf{T}}$ 进而可知:

命题 4.11.11. $\frac{e_1 \wedge \cdots \wedge e_n}{f_1 \wedge \cdots \wedge f_n} = \frac{\check{f}^1 \wedge \cdots \wedge \check{f}^n}{\check{e}^1 \wedge \cdots \wedge \check{e}^n}$. 特别地, $\{e_1, \cdots, e_n\}$ 和 $\{f_1, \cdots, f_n\}$ 同向 \iff $\{\check{e}^1, \cdots \check{e}^n\}$ 和 $\{\check{f}^1, \cdots \check{f}^n\}$ 同向. 因此 V 的方向和 V^* 的方向有自然的一一对应.

定义 4.11.12. 令 M 为 ∂ -流形. 令 $\Lambda^k T^* M = \bigsqcup_{p \in M} \Lambda^k T^*_p M$, 一个 k-阶协变张量场 ω 称为k-形式 (k-form), 若 ω 取值在 $\Lambda^k T^* M$ 中,即 $\forall p \in M$ 有 $\omega|_p \in \Lambda^k T^*_p M$. 若 (U, φ) 是 M 的坐标卡,则 $\omega|_U$ 可写成

$$\sum_{i_1 < \dots < i_k} \omega_{i_1 \dots i_k} d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_k}, \omega_{i_1 \dots i_k} : U \to \mathbb{R}$$

若 (V, ψ) 也是坐标卡, 则在 $U \cap V$ 上 ω 可写成

$$\sum_{\substack{i_1 < \dots < i_k \\ j_1, \dots, j_k}} \omega_{i_1 \dots i_k} \frac{\partial \varphi^{i_1}}{\partial \psi^{j_1}} \dots \frac{\partial \varphi^{i_k}}{\partial \psi^{j_k}} d\psi^{j_1} \wedge \dots \wedge d\psi^{j_k}$$

若 $F: M \to U$ 光滑, (U,φ) , (V,ψ) 是 M,N 坐标卡, $F(U) \subset V,\omega$ 是 V 是 k-形式,且

$$\omega = \sum_{j_1 < \dots < j_k} \omega_{j_1 \dots j_k} d\psi^{j_1} \wedge \dots \wedge d\psi^{j_k}$$

则

$$F^*\omega = \sum_{\substack{i_1, \dots, i_k \\ j_1 < \dots < j_k}} \omega_{j_1 \dots j_k} \circ F \cdot \frac{\partial \psi^{j_1} \circ F}{\partial \varphi^{i_1}} \cdots \frac{\partial \psi^{j_k} \circ F}{\partial \varphi^{i_k}} \cdot d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_k}$$

定义 4.11.13. 若 $\omega^1, \dots, \omega^m$ 是 ∂ -流形 M 上的 k_1, \dots, k_m -形式,则定义 $\omega^1 \wedge \dots \wedge \omega^m$ 为 $(k_1 + \dots + k_m)$ 形式,满足 $\forall p \in M, \omega^1 \wedge \dots \wedge \omega^m|_p = \omega^1|_p \wedge \dots \wedge \omega^m|_p$.

例子. 在 \mathbb{R}^n 上,

$$(fdx^{1} \wedge dx^{3} + gdx^{2} \wedge dx^{4}) \wedge (hdx^{2} \wedge dx^{5}) = fh \cdot dx^{1} \wedge dx^{3} \wedge dx^{2} \wedge dx^{5}$$
$$= -fhdx^{1} \wedge dx^{2} \wedge dx^{3} \wedge dx^{5}$$

4.12 定向流形和第二型积分

定义 4.12.1. 令 M 为 ∂ -流形. 若 (U,φ) 和 (V,ψ) 是坐标卡, 我们说它们是**同向**的, 若 $J(\psi \circ \varphi^{-1}) = \det \operatorname{Jac}(\psi \circ \varphi^{-1})$ 在 $\varphi(U \cap V)$ 上处处大于 0.

命题 4.12.2. 对坐标卡 $(U, \varphi^1, \dots, \varphi^n)$ 和 $(V, \psi^1, \dots, \psi^n)$ 以下等价:

(1) (U,φ) 和 (V,ψ) 同向

(2) 在
$$U \cap V \perp \frac{d\varphi^1 \wedge \cdots \wedge d\varphi^n}{d\psi^1 \wedge \cdots \wedge d\psi^n}$$
 处处大于 0

(3) 在
$$U \cap V \perp \frac{\partial}{\partial \varphi^1} \wedge \dots \wedge \frac{\partial}{\partial \varphi^n} / \frac{\partial}{\partial \psi^1} \wedge \dots \wedge \frac{\partial}{\partial \psi^n} > 0$$

证明: (2)
$$\iff$$
 (3): $\frac{d\varphi^1 \wedge \cdots \wedge d\varphi^n}{d\psi^1 \wedge \cdots \wedge d\psi^n} = \frac{\frac{\partial}{\partial \varphi^1} \wedge \cdots \wedge \frac{\partial}{\partial \varphi^n}}{\frac{\partial}{\partial \psi^1} \wedge \cdots \wedge \frac{\partial}{\partial \psi^n}} > 0.$

$$\frac{d\psi^1 \wedge \dots \wedge d\psi^n}{d\varphi^1 \wedge \dots \wedge d\varphi^n} \bigg|_p = \det \operatorname{Jac} \left(\psi \circ \varphi^{-1} \right)_{\varphi(p)}$$

定义 4.12.3. 若 M 上有图册 $\mathcal{U} = \{(u_{\alpha}, \varphi_{\alpha})\}$, 其中任意两个坐标卡之间同向 (注意不相交的坐标卡自动同向) 则把 \mathcal{U} 称为**定向图册**. 两个定向坐标卡 \mathcal{U}, \mathcal{V} 称为**同向**, 若 \mathcal{U}, \mathcal{V} 之间成员两两同向 (等价地, $\mathcal{U} \cup \mathcal{V}$ 是定向图册). M 的**方向**指定向图册所在的同向等价类 (等价地,指 M 的一个极大定向图册). M 和一个方向一起被称为**定向** ∂ -流形 (oriented ∂ -manifold). 其极大定向图册中的一个坐标卡 (U, φ) 称为**保向坐标卡** (orientation-preserving chart). 若不加说明,定向 ∂ -流形的坐标卡指保向坐标卡.

注记. 若 M 是定向 ∂ -流形,则 $\forall p \in M, T_p^*M$ 和 T_pM 都有对应的方向: 取 (保向) 坐标卡 (U,φ) 包含 p, 则 $[d\varphi^1|_p, \cdots, d\varphi^n|_p]$ 和 $\left[\frac{\partial}{\partial \varphi^1}\Big|_p, \cdots, \frac{\partial}{\partial \varphi^n}\Big|_p\right]$ 给出了方向,且这与坐标卡的选取 无关. 因此,我们能用 TM 中一组基来直观理解 M 的方向,我们也能用一个 n 阶协变张量场 $\omega: M \to \Lambda^n T^*M$ 或 n 阶**反变张量场** $\xi: M \to \Lambda^n T^*M$ 描述,这里, $\forall p \in M$,若 (U,φ) 是保向坐

标卡且包含
$$p$$
, 则 $\left. \frac{\omega}{d\varphi^1 \wedge \cdots \wedge d\varphi^n} \right|_p > 0$, $\left. \frac{\xi}{\frac{\partial}{\partial \varphi^1} \wedge \cdots \wedge \frac{\partial}{\partial \varphi^n}} \right|_p > 0$, 我们归纳如下:

命题 4.12.4. 令 M 是 n 维 ∂ -流形,则 M 的一个方向是一个 M 的 n-形式 $\omega: M \to \Lambda^n T^* M$ 所在等价类,这里 ω 要求满足: 存在 M 的图册 $\mathbb U$ 使 $\forall (U,\varphi) \in \mathbb U$ 有 $\frac{\omega}{d\varphi^1 \wedge \cdots \wedge d\varphi^n} \Big|_U > 0.\omega$ 和 ω' 等价 $\Longleftrightarrow \frac{\omega}{\omega'} > 0$. 把 ω 换成 n 阶反变张量场, $d\varphi^1 \wedge \cdots \wedge d\varphi^n$ 换成 $\frac{\partial}{\partial \varphi^1} \wedge \cdots \wedge \frac{\partial}{\partial \varphi^n}$ 则结论也成立.

命题 4.12.5. 令 M 为 n 维 ∂ -流形. ω_1, ω_2 为 M 上两个 n-形式且给出了 M 上的两个方向 O_1 和 O_2 . 令 $U = \left\{ \frac{\omega_1}{\omega_2} \bigg|_p > 0 \right\}$,则 U 是 M 的开和闭子集. 特别地,若 M 连通,则 ω_1, ω_2 要么处处同向,要么处处反向。因此连通 ∂ -流形只有最多两个方向。

证明: $\forall p \in U$, 我们证 $p \neq U$ 内点. 由前一命题, 存在包含 p 的坐标卡 (V, φ) 使 $\frac{\omega_1}{d\varphi^1 \wedge \cdots \wedge d\varphi^n}\Big|_V > 0$. 通过缩小 V, 有坐标卡 (V, ψ) 使 $\frac{\omega_2}{d\psi^1 \wedge \cdots \wedge d\psi^n}\Big|_V > 0$ 且 V 连通. 而

$$\frac{d\psi^{1} \wedge \dots \wedge d\psi^{n}}{d\varphi^{1} \wedge \dots \wedge d\varphi^{n}} = \det\left(\operatorname{Jac}\left(\psi \circ \varphi^{-1}\right)\right) \circ \varphi$$

是 V 上连续函数,要么恒正要么恒负. 故由 $\left.\frac{\omega_1}{\omega_2}\right|_p>0$ 知 $\left.\frac{\omega_1}{\omega_2}\right|_V>0$. 故 $V\subset U$. 类似地, $M\setminus U=\left\{p\in M: \left.\frac{\omega_1}{\omega_2}\right|_p<0\right\}$ 也是开集.

例子. $M\ddot{o}bius$ 带 $M=U\cup V, U\cong V\cong (0,1)^2, U\cap V$ 有两个连通分支,取 U,V 上方向 ω_1,ω_2 ,则 $\frac{\omega_1}{\omega_2}\bigg|_{\omega_1}$ 与 $\frac{\omega_1}{\omega_2}\bigg|_{\omega_2}$ 反号. 不妨令 $\frac{\omega_1}{\omega_2}\bigg|_{\omega_1}>0, \frac{\omega_1}{\omega_2}\bigg|_{\omega_2}<0$. 若 M 上有方向 ω , 因 U,V 连通, $\frac{\omega}{\omega_1}\bigg|_{U}$ 处处同号,故 $\frac{\omega}{\omega_1}\bigg|_{\omega_1\cup\omega_2}$ 处处同号,数 $\frac{\omega}{\omega_1}\bigg|_{\omega_1\cup\omega_2}$ 处处同号,这与假设矛盾. 故 M 不可定向.

定义 4.12.6. 令 M 为 n 维定向 ∂ -流形, ω 是 M 上的 n-形式. 我们说 $\omega \geqslant \mathbf{0}$, 若 $\forall p \in M, \forall T_p^* M$ 上的方向 $[\alpha_1, \cdots, \alpha_n]$, 有 $\frac{\omega|_p}{\alpha_1 \wedge \cdots \wedge \alpha_n} \geqslant 0$.

注记. 令 M 为 n 维定向 ∂ -流形, ω 是 n-形式. \mathcal{U} 是 M 的一个保向图册, 则 $\forall (U, \varphi^1, \cdots, \varphi^n) \in \mathcal{U}$ 有 $\omega|_U = f_U d\varphi^1 \wedge \cdots \wedge d\varphi^n$, 这里 $f_U : U \to \mathbb{R}$, 则不难看出:

- $\omega \geqslant 0 \Longleftrightarrow \forall U, f_U \geqslant 0$
- $\omega \in B$ Borel $b \iff \forall U, f_U \in B$ Borel $b \iff \omega \in B$

• $\omega \not\in C^r$ 的 $\Longleftrightarrow \forall U, f_U \not\in C^r$ 的

且 $\omega = \omega^+ - \omega^-, \omega^+, \omega^- \geqslant 0, \forall U$ 有

$$\omega^+|_U = f_U^+ d\varphi^1 \wedge \dots \wedge d\varphi^n, \omega^-|_U = f_U^- d\varphi^1 \wedge \dots \wedge d\varphi^n$$

且 ω 是 Borel/ C^r 的 $\iff \omega^+, \omega^-$ 是 Borel/ C^r 的.

定义 4.12.7. 令 Ω 为 \mathbb{R}^n 开子集,给予**标准方向**,即标准坐标 $x^1, \cdots x^n$ 定义的方向,亦即 $[dx^1, \cdots dx^n]$,或 $[\frac{\partial}{\partial x^1}, \cdots, \frac{\partial}{\partial x^n}]$ 定义的方向. 令 Ω 上 n-形式 $\omega = f dx^1 \wedge \cdots \wedge dx^n, f: \Omega \to \mathbb{R}$ 是 Borel 的,则

$$\int_{\Omega} f dx^1 \wedge \dots \wedge dx^n = \int_{\Omega} f dm$$

$$\mathbb{H} \int_{\Omega} \omega = \int_{\Omega} \frac{\omega}{dx^1 \wedge \dots \wedge dx^n} dm.$$

定义 4.12.8. 令 ω 为 n 维定向流形的 Boreln-形式且 $\omega \ge 0$. 若 $\{p \in M : \omega_p \ne 0\}$ 被包含在一个保向坐标卡 (U,φ) 内,则定义 $\int_M \omega = \int_{\omega(U)} (\varphi^{-1})^* \omega$.

注记. 记 $\omega = f d\varphi^1 \wedge \cdots \wedge f d\varphi^n$, 则 $(\varphi^{-1})^* \omega = f \circ \varphi^{-1} dx^1 \wedge \cdots \wedge dx^n$, 从而

$$\int_{M} \omega = \int_{\varphi(U)} \left(f \circ \varphi^{-1} \right) dm = \int_{\varphi(U)} \frac{\omega}{d\varphi^{1} \wedge \dots \wedge d\varphi^{n}} \circ \varphi^{-1} dm$$

引理 4.12.9. 以上定义不依赖于 (U,φ) 的选取.

证明: \diamondsuit (V,ψ) 包含 $\{p \in M : \omega_p \neq 0\}$, 通过把 U,V 换成 $U \cap V$, 不妨假设 U = V. \diamondsuit $F = \varphi \circ \psi^{-1} : \psi(U) \to \varphi(U)$. 由 \mathbb{R}^n 积分换元公式:

$$\int_{\varphi(U)} \frac{\omega}{d\varphi^1 \wedge \dots \wedge d\varphi^n} \circ \varphi^{-1} dm = \int_{\psi(U)} \frac{\omega}{d\varphi^1 \wedge \dots \wedge d\varphi^n} \circ \psi^{-1} \cdot J(F) dm \tag{*}$$

由
$$\begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix} = (\operatorname{Jac}(F)) \circ \psi \cdot \begin{pmatrix} d\psi^1 \\ \vdots \\ d\psi^n \end{pmatrix}$$
 得 $J(F) \circ \psi = \frac{d\varphi^1 \wedge \dots \wedge d\varphi^n}{d\psi^1 \wedge \dots \wedge d\psi^n}$. 故

$$(*) = \int_{\psi(U)} \left(\frac{\omega}{d\varphi^{1} \wedge \dots \wedge d\varphi^{n}} \circ \psi^{-1} \right) \left(\frac{d\varphi^{1} \wedge \dots \wedge d\varphi^{n}}{d\psi^{1} \wedge \dots \wedge d\psi^{n}} \circ \psi^{-1} \right) dm$$
$$= \int_{\psi(U)} \left(\frac{\omega}{d\psi^{1} \wedge \dots \wedge d\psi^{n}} \circ \psi^{-1} \right) dm$$

定义 4.12.10. 令 ω 为 n 维定向流形 M 的 Boreln-形式. 若 $\omega \geqslant 0$, 定义 $\int_{M} \omega = \sum_{i=1}^{\infty} \int_{M} \omega \cdot \chi_{E_{i}}$, 这里 $M = \bigsqcup_{i=1}^{\infty} E_{i}, E_{i}$ 是 Borel 集且被包含在某个(保向)坐标卡内. 类似于第一型积分,易知此定义与 E_{1}, E_{2}, \cdots 的选取无关. 一般地,我们记 $|\omega| = \omega^{+} + \omega^{-}$,若 $\int_{M} |\omega| < +\infty$,则令 $\int_{M} \omega = \int_{M} \omega^{+} - \int_{M} \omega^{-}$. 若 M 带边,则 $\int_{M} \omega$ 定义为 $\int_{\operatorname{Int} M} \omega$.

命题 4.12.11. 令 M 为 n 维定向 ∂ -流形, ω 是连续 n-形式且有紧支集, 则 $\int_{M} |\omega| < +\infty$.

证明: 对 $\operatorname{supp} \omega = \overline{\{p \in M : \omega_p \neq 0\}}$, 取 M 内有限开覆盖 \mathfrak{U} , 每个是 M 的坐标卡. 利用 $\operatorname{supp} \omega$ 在 \mathfrak{U} 下的单位分解, 化为 $\operatorname{supp} \omega \subset U$, (U,φ) 是坐标卡的情形. 易证此时 $\int_U |\omega| < +\infty$.

定义 4.12.12. 若 M, N 为 n 维定向 ∂ -流形, 微分同胚 $F: M \to N$ 称为**保向**的, 若如下等价条件之一成立:

- (1) 对任意 N 的 (保向) 坐标卡 (V,ψ) , 有 $(F^{-1}(V),\psi\circ F)$ 是 M 的 (保向) 坐标卡.
- (2) $\forall p \in M$, 令 q = F(p), 若 $\alpha_1 \wedge \cdots \wedge \alpha_n$ 给出 T_q^*N 的方向, 则 $F^*\alpha_1 \wedge \cdots \wedge F^*\alpha_n$ 给出 T_p^*M 的方向.
- (3) $\forall p \in M$, 令 q = F(p), 若 $v_1 \wedge \cdots \wedge v_n$ 是 $T_p M$ 的方向, 则 $dF \cdot v_1 \wedge \cdots \wedge dF \cdot v_n$ 给出 $T_q N$ 的方向.
- (4) \forall 开集 $V \subset N, \forall V \perp C^{\infty}$ 的 n-形式 ω , 若 $\omega \geqslant 0$, 则 $F^*\omega \geqslant 0$.

我们留给大家自己思考等价性。

命题 4.12.13. 令 M,N 为 n 维定向 ∂ -流形, $F:M\to N$ 是保向微分同胚, ω 是 N 上的 Boreln-形式,则 $\int_N |\omega| = \int_M F^* |\omega|$. 且若此式 $<+\infty$,则 $\int_N \omega = \int_M F^* \omega$.

证明: 由线性性, 不妨假设 $\omega \geq 0$, 不妨假设 $\{p \in N : \omega_p \neq 0\}$ 被包含在 N 某个坐标卡 (V, ψ) 内. 则 $\int_N \omega = \int_{\psi(V)} (\psi^{-1})^* \omega$. 令 $U = F^{-1}(V), \varphi = \psi \circ F$, 则 (U, φ) 是 M 坐标卡且包含 $F^* \omega$ 非零点. 故

$$\int_M F^*\omega = \int_{\varphi(U)} (\varphi^{-1})^* F^*\omega = \int_{\psi(V)} (\psi^{-1})^*\omega$$

例子. 令 Ω 是 \mathbb{R}^m 开子集, $F:\Omega\to\mathbb{R}^n$ 是 C^∞ 嵌入. Ω 上的方向是标准方向,给予 $M=F(\Omega)$ 方向使 $F:\Omega\to M$ 保向. 令 $\omega=\sum_{1\leqslant i_1<\dots< i_m\leqslant n}\omega_{i_1\dots i_m}dx^{i_1}\wedge\dots\wedge dx^{i_m}$ 为 M 一个邻域 V 上的有紧支集的连续 m-形式. 计算 $\int_M \omega$, 准确来说,令 $\iota:M\to\mathbb{R}^n,p\mapsto p$, 计算 $\int_M \iota^*\omega$.

证明:
$$\int_{M} \omega = \int_{M} \iota^{*}\omega = \int_{\Omega} F^{*}\iota^{*}\omega = \int_{\Omega} F^{*}\omega. \overline{\mathbb{M}}$$

$$F^{*}\omega = \sum_{\substack{1 \leq i_{1} < \dots < i_{m} \leq n \\ 1 \leq j_{1} < \dots < j_{m} \leq m}} (\omega_{i_{1} \dots i_{m}} \circ F) \partial_{j_{1}} F^{i_{1}} \dots \partial_{j_{m}} F^{i_{m}} dx^{j_{1}} \wedge \dots \wedge dx^{j_{m}}$$

$$= \sum_{\substack{1 \leq i_{1} < \dots < i_{m} \leq n \\ 1 \leq \dots \leq i_{m} \leq n}} (\omega_{i_{1} \dots i_{m}} \circ F) \cdot \det((\operatorname{Jac} F)_{i_{1}, \dots, i_{m}} \overline{\gamma_{j}}) dx^{1} \wedge \dots \wedge dx^{m}$$

$$= \sum_{\substack{1 \leq i_{1} < \dots < i_{m} \leq n \\ 1, \dots, m \neq j}} (\omega_{i_{1} \dots i_{m}} \circ F) \cdot \det((\operatorname{Jac} F)_{i_{1}, \dots, i_{m}} \overline{\gamma_{j}}) dx^{1} \wedge \dots \wedge dx^{m}$$

故
$$\int_{M} \omega = \sum_{1 \leqslant i_{1} < \dots < i_{m} \leqslant n} \int_{\Omega} (\omega_{i_{1} \dots i_{m}} \circ F) \cdot \det((\operatorname{Jac} F)_{i_{1}, \dots, i_{m}} \widetilde{\tau_{\mathsf{J}}}) dm.$$

$$\square$$

在一些具体问题中,M 作为 \mathbb{R}^n 子流形出现, 其方向由 \mathbb{R}^n 中指向 M 一侧的某个向量表示. 例如 \mathbb{R}^3 球面的 "向外" 和 "向内", 我们来理解其含义.

定义 4.12.14. 令 N 是 n 维定向流形,M 是**连通**的 n-1 维子流形. 令 $p \in M$, 令 $\xi \in T_pN \setminus T_pM$.(回忆若 $\iota: M \to N$ 是嵌入,我们把 T_pM 和 $d\iota(T_pM)$ 等同从而看作 T_pM 子空间) 取 M 上的方向,由 n-1 阶反变张量 $\eta: M \to \Lambda^{n-1}T_pM$ 给出,且 $\xi \wedge \eta \in \Lambda^nT_pM$ 与 N 在 p 处的方向同向,则称 η 为 ξ 给出的M 的方向.

注记. 对于 N 是 ∂ -流形, $M=\partial N$ 的情况我们也作此定义. 我们规定 $TN|_{\partial N}$ 指向 M 的外部的方向给出的 ∂N 的方向为 ∂N 的标准方向. 因此, 若 (U,φ) 是 N 的保向坐标卡, $\varphi(U)$ 是 $\widetilde{\mathbb{H}^n}=\{(x_1,\cdots,x_n):x_1\geqslant 0\}$ 的开子集 (给予标准方向 $\frac{\partial}{\partial x^1}\wedge\cdots\wedge\frac{\partial}{\partial x^n}$), 则 $U\cap\partial N$ 上的方向由 $-\frac{\partial}{\partial x^2}\wedge\cdots\wedge\frac{\partial}{\partial x^n}$ 或等价地 $dx^2\wedge\cdots\wedge dx^n$ 给出 (我们留给大家验证这是良定义的). 等价地, 若 $\varphi(U)$ 是 \mathbb{H}^n 开子集, 则 $U\cap\partial V$ 上方向由 $(-1)^n\frac{\partial}{\partial x^1}\wedge\cdots\wedge\frac{\partial}{\partial x^{n-1}}$ 或等价地 $(-1)^ndx^1\wedge\cdots\wedge dx^{n-1}$ 给出.

由此可知: $\varphi(U)$ 是 $\widetilde{\mathbb{H}^n}$ 开子集 $\implies (\varphi^2,\cdots,\varphi^n)|_{U\cap\partial N}$ 给出 ∂N 的反向坐标卡. $\varphi(U)$ 是 \mathbb{H}^n 开子集 $\implies (\varphi^1,\cdots,\varphi^{n-1})|_{U\cap\partial N}$ 给出 ∂N 的改变 n-1 次方向后的坐标卡.

例子. 令 Ω 为 \mathbb{R}^{n-1} 连通子集, $F:\Omega\to\mathbb{R}^n$ 为 C^∞ 的嵌入映射, $v\in\mathbb{R}^n\setminus\{0\}$ 指向 $F(\Omega)$ 一侧.(特别地, 假设 v 不与 $F(\Omega)$ 任一切空间平行) $F(\Omega)$ 的方向由 v 给出.

令 ω 为定义在 $F(\Omega)$ 某邻域上的 \mathbb{R}^n 的 Borel(n-1)-形式 (必然形如 $f_1dx^2\wedge\cdots\wedge dx^n+f_2dx^1\wedge dx^3\wedge\cdots\wedge dx^n+\cdots+f_ndx^1\wedge\cdots\wedge dx^{n-1}$) 记 $F^*\omega=fdx^1\wedge\cdots\wedge dx^{n-1}$. 若 $\det(v,\operatorname{Jac})$ 处处大于 $0,\$ 则 $\nu\wedge dF\frac{\partial}{\partial x^1}\wedge\cdots\wedge dF\frac{\partial}{\partial x^{n-1}}$ 是 \mathbb{R}^n 中标准方向. 故 $\int_{F(\Omega)}\omega=\int_{\Omega}fdm$. 若 $\det(v,\operatorname{Jac}F)$ 处处小于 $0,\$ 则 $\int_{F(\Omega)}\omega=-\int_{\Omega}fdm$.

例子. 令 $M = \{x^2 + y^2 + z^2 = 1\}, \Omega = \{x^2 + y^2 < 1\}.M$ 的方向向外. 则

$$(x,y)\in\Omega\mapsto\sqrt{1-x^2-y^2}\in M\cap\mathbb{H}^3$$

是正向的.

$$(x,y) \in \Omega \mapsto -\sqrt{1-x^2-y^2} \in M \cap (-\mathbb{H}^3)$$

是负向的. 这直接通过几何观察可知, 无需计算 det(v, Jac) 正负性.

我们接下来讨论第一型和第二型积分的关系. 首先, 若 n 维 \mathbb{R} -线性空间 V 有 (实) 内积, 则有线性同构 $\Phi: V \to V^*, v \mapsto \langle \cdot, v \rangle$. 因此我们能够给 V^* 引入唯一内积使 Φ 保内积. 若 $e_1, \cdots e_n$ 是 V 一组标准正交基, 则对偶基 $e^{\check{1}}, \cdots, e^{\check{n}}$ 是 V^* 标准正交基.

由正交变换 det 值为 ± 1 可知: 若 V 有同向的两组标准正交基 $\{e_1, \dots, e_n\}, \{f_1, \dots, f_n\}$ 则 $e_1 \wedge \dots \wedge e_n = f_1 \wedge \dots \wedge f_n$,称其为 V 的 (由内积决定的) **体积张量**.V 有两个体积张量,和 V 的 两个方向对应.

命题 4.12.15. 令 (M,g) 为 n 维定向 ∂ -Riemann 流形. 定义 n 形式 ω_g 如下: $\forall p \in M, \omega_g|_p = e^1 \wedge \cdots \wedge e^n$,这里 $\{e_1, \cdots, e_n\}$ 是 T_pM 一组与方向一致的 (内积 g 下) 标准正交基,其对偶基 为 $\{e^1, \cdots e^n\}$. 即 $\omega_g|_p$ 是 T_p^*M 的与方向吻合的体积张量. 则 ω_g 是光滑的 n-形式,称为 (M,g) 的**体积形式**.

证明: 任意 (保向) 坐标卡 (U,φ) , 则

$$g|_{U} = (d\varphi^{1}, \cdots, d\varphi^{n}) G \begin{pmatrix} d\varphi^{1} \\ \vdots \\ d\varphi^{n} \end{pmatrix}$$

G 正定,则 $\forall p \in U$, $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = (\sqrt{G})_p \cdot \begin{pmatrix} d\varphi^1 \\ \vdots \\ d\varphi^n \end{pmatrix}_p$ 是 T_p^*M 的与方向吻合的标准正交基.则 $\omega_g|_p = \alpha_1 \wedge \cdots \wedge \alpha_n = \det \sqrt{G_p} d\varphi^1 \wedge \cdots \wedge d\varphi^n|_p$,故

$$\omega_g|_U = \sqrt{\det G} d\varphi^1 \wedge \dots \wedge d\varphi^n$$

 $\sqrt{\det G}$ 光滑.

在以上证明中,若 $f:U\to\mathbb{R}$ 是 Borel 函数,则我们知道 $\int_U f dV_g = \int_{\varphi(U)} (f\circ\varphi^{-1})\cdot\sqrt{\det G}\circ\varphi^{-1}dm$,而

$$\int_{U} f\omega_{g} = \int_{U} f\sqrt{\det G} d\varphi^{1} \wedge \cdots \wedge d\varphi^{n}$$

$$= \int_{\varphi(U)} (f \circ \varphi^{-1}) \cdot \sqrt{\det G} \circ \varphi^{-1} dm = \int_{U} f dV_{g}$$

故得:

命题 4.12.16. 令 (M,g) 为 n 维定向 ∂ -Riemann 流形, $f:M\to\mathbb{R}$ 是 Borel 函数, 则 $\int_M |f|dV_g=\int_M |f|d\omega_g$. 若此式 $<+\infty$, 则 $\int_M fdV_g=\int_M f\omega_g$.

注记. 反过来, 对 M 上 Boreln-形式 ν 有 $\int_M \nu = \int_M \frac{\nu}{\omega_g} dV_g$. 故第一型与第二型积分可互相转化.

例子. 令 $F: \Omega \to \mathbb{R}^n$ 为流形嵌入, Ω 是 \mathbb{R}^m 开子集. $M = F(\Omega)$ 是 \mathbb{R}^n 的 Riemann 子流形, 取 Ω 上度量 g 使 $F: \Omega \to M$ 是等距的, 则

$$g = (dx^{1}, \cdots, dx^{m})(\operatorname{Jac} F)^{\mathrm{T}}(\operatorname{Jac} F) \begin{pmatrix} dx^{1} \\ \vdots \\ dx^{m} \end{pmatrix}$$

$$\mathbb{M} \ \omega_g = \sqrt{\det(\operatorname{Jac} F)^{\mathrm{T}} \operatorname{Jac} F} dx^1 \wedge \cdots \wedge dx^m.$$

4.13 外微分和 Stokes 公式

Faraday 定律告诉我们, 对电场 $\vec{E} = (E_1, E_2, E_3)$ 和磁场 $\vec{B} = (B_1, B_2, B_3)$ 有 $\int_{\Omega \setminus \vec{E}} \vec{E} \cdot d\vec{l} =$ $-\frac{d}{dt}\int_{M}\vec{B}\cdot d\vec{S}.M$ 是 \mathbb{R}^{3} 中可定向紧 ∂ -曲面, 其含义如下: 将 \vec{E},\vec{B} 看作 1-形式 $\mathcal{E}=E_{1}dx+$ $E_2dy + E_3dz$, $\beta = B_1dx + B_2dy + B_3dz$, 定义 **Hodge*** 算子,* 为线性映射, 满足

$$*dx = dy \wedge dz, *dy = dz \wedge dx, *dz = dx \wedge dy$$

从而 $*\beta = B_1 dy \wedge dz - B_2 dx \wedge dz + B_3 dx \wedge dy$,则 $\int_{\partial M} \mathcal{E} = -\frac{d}{dt} \int_M *\beta$. 我们将看到对一般 n 维可定向紧 ∂ -流形 M,以及 C^1 的 (n-1)-形式 ω ,存在一个 n 形式 $d\omega$ 满足"电场 ω 由某个磁场的负变化率 $d\omega$ 生成",即 $\int_{\partial M}\omega=\int_{M}d\omega(\operatorname{Stokes}\,\Delta \operatorname{CC})$ 如果 ω 是 \mathbb{R}^{n} 上的 (k-1)-形式, $p\in\mathbb{R}^{n},v_{1},\cdots,v_{k}\in\mathbb{R}^{n}$ 线性无关. 令 M 为以 p 为起

点, v_1, \cdots, v_k 张成的平行多面体

$$M = p + \{t_1v_1 + \dots + t_kv_k : 0 \le t_1, \dots, t_k \le 1\}$$

则当 v_1, \dots, v_k 很小时, $d\omega_p(v_1 \otimes \dots \otimes v_k) \approx \int_M d\omega$. 因此, 不严格地来说, $d\omega$ 在 $p \in \mathbb{R}^n$ 处的取 值 "定义" 为 $d\omega|_p(v_1\otimes\cdots\otimes v_k)\approx\int_{\partial M}\omega.$

下面我们给出严格定义:

定义 4.13.1. 令 M 为 ∂ -流形, $(U,\varphi^1,\cdots,\varphi^n)$ 为坐标卡, ω 是 U 上 C^1 的 k-形式, 则 ω 能唯一 地写成

$$\omega = \sum_{1 \leq i_1 < \dots < i_k \leq n} \omega_{i_1 \dots i_k} \wedge d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_k}, \omega_{i_1 \dots i_k} \in C^1(U, \mathbb{R})$$

定义 ω 关于坐标卡 (U,φ) 的**外微分** (exterior derivative) 为

$$d\omega = \sum_{1 \leq i_1 < \dots < i_k \leq n} d\omega_{i_1 \dots i_k} \wedge d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_k}$$

显然若 η 也是 $U \perp C^1$ 的 k-形式, 则 $d(\omega + \eta) = d\omega + d\eta$.

引理 4.13.2. 若 $1 \leqslant i_1 < \cdots < i_k \leqslant n$, 则 $d\left(fd\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}\right) = df \wedge d\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}$.

证明: i_1, \dots, i_k 有重复时两边 = 0. 若无重复, 把顺序换成从小到大, 做计算, 再换成原顺序即 可.

命题 4.13.3. 令 ω, η 为 C^1 的 k-形式和 l-形式,则 $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$.

证明: 由线性性, 不妨假设 $\omega = f d\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}, \eta = g d\varphi^{j_1} \wedge \cdots \wedge d\varphi^{j_l}$. 记 $\alpha = d\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}, \beta = d\varphi^{j_1} \wedge \cdots \wedge d\varphi^{j_l}$. 则

$$d(\omega \wedge \eta) = d(fg \cdot \alpha \wedge \beta) = d(fg) \wedge \alpha \wedge \beta$$
$$= (gdf + fdg) \wedge \alpha \wedge \beta = (df \wedge \alpha) \wedge (g\beta) + (-1)^k f\alpha \wedge (dg \wedge \beta)$$
$$= d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$

命题 **4.13.4.** $d(d\omega) = 0$.

证明: 不妨令 $\omega = f d\varphi^{i_1} \wedge \cdots \wedge d\varphi^{i_k}$. 简单起见, 令 $\omega = f d\varphi^1 \wedge \cdots \wedge d\varphi^k$, 则

$$d\omega = df \wedge d\varphi^{1} \wedge \dots \wedge d\varphi^{k}$$

$$= \sum_{i=k+1}^{n} \frac{\partial f}{\partial \varphi^{i}} d\varphi^{i} \wedge d\varphi^{1} \wedge \dots \wedge d\varphi^{k}$$

$$d^{2}\omega = \sum_{j \neq 1, \dots, k, i} \sum_{i > k} \frac{\partial}{\partial \varphi^{j}} \frac{\partial f}{\partial \varphi^{i}} d\varphi^{j} \wedge d\varphi^{i} \wedge d\varphi^{1} \wedge \dots \wedge d\varphi^{k}$$

$$= \sum_{j > k} \sum_{i > k} \frac{\partial}{\partial \varphi^{j}} \frac{\partial}{\partial \varphi^{i}} f d\varphi^{j} \wedge d\varphi^{i} \wedge d\varphi^{1} \wedge \dots \wedge d\varphi^{k}$$

注意 $\frac{\partial}{\partial \varphi^j} \frac{\partial}{\partial \varphi^i} f = \frac{\partial}{\partial \varphi^i} \frac{\partial}{\partial \varphi^j} f$, 因为 $(\partial_j \partial_i (f \circ \varphi^{-1})) \circ \varphi = (\partial_i \partial_j (f \circ \varphi^{-1})) \circ \varphi$, 故

$$d^{2}\omega = \sum_{i,i>k} \frac{\partial}{\partial \varphi^{i}} \frac{\partial}{\partial \varphi^{j}} f d\varphi^{j} \wedge d\varphi^{i} \wedge \dots \wedge d\varphi^{1} \wedge \dots \wedge d\varphi^{k} = -d^{2}\omega$$

故 $d^2\omega=0$.

命题 4.13.5. 令 $F: M \to N$ 为 ∂ -流形的 C^{∞} 映射,M,N 上分别有坐标卡 $(M,\varphi^1,\cdots,\varphi^m)$ 以及 (N,ψ^1,\cdots,ψ^n) . 令 ω 为 N 上 C^1 的 k-形式. 则 $F^*(d\omega)=d(F^*\omega)$.

证明: 对 k 用归纳法.k=0 时显然. 假设对某个 $k \in \mathbb{N}$ 成立. 我们证 ω 是 (k+1)-形式的情形. 由线性性, 不妨假设 $\omega = \eta \wedge d\varphi^i, \eta$ 是 N 上的 C^1 的 k-形式, 则

$$F^*d(\eta \wedge d\varphi^i) = F^*(d\eta \wedge d\varphi^i + (-1)^k \eta \wedge d^2\varphi^i)$$
$$= F^*(d\eta \wedge d\varphi^i) = (F^*d\eta) \wedge F^*(d\varphi^i)$$

由情形 k 知 $F^*d\eta = dF^*\eta$. 而由 F^* 定义, $F^*d\varphi^i = d(\varphi^i \circ F) = d(F^*\varphi^i)$. 故 $F^*d(\eta \wedge d\varphi^i) = (dF^*\eta) \wedge (dF^*\varphi^i)$, 而

$$\begin{split} dF^*(\eta \wedge d\varphi^i) &= d(F^*\eta \wedge F^*d\varphi^i) = d(F^*\eta \wedge dF^*\varphi^i) \\ &= dF^*\eta \wedge dF^*\varphi^i + (-1)^k F^*\eta \wedge d^2 F^*\varphi^i \\ &= dF^*\eta \wedge dF^*\varphi^i \end{split}$$

推论 4.13.6. 外微分的定义与坐标卡选取无关. 故任意 ∂ -流形上的 C^1 微分形式都能定义外微分.

证明: 以上命题中取 $M=N, F=\mathrm{id}$.

注记. 我们解释 $dF^*\omega = F^*d\omega$ 的几何意义:

注意 $F \not\in C^{\infty}$ 同胚时 $dF^* = F^*d$ 说的是 d 的定义只依赖于 C^{∞} 同胚等价类. 现不假设 F 是 C^{∞} 同胚,令 $F: M \to N$ 为 ∂ -流形的 C^{∞} 映射, $M \not\in M$ 为定向的. $\eta \not\in N$ 的 m-形式. 把 F(M) 看作 N 中的 m 维 (广义) 参数化定向流形 (其方向由 M 而非 N 给出)(例:M = (a,b),则 F(M) 是 N 中参数化曲线,可自相交) 定义

$$\int_{F(M)} \eta = \int_M F^* \eta \tag{*}$$

我们假设 Stokes 定理成立, ω 是 N 上的 C^1 的 m-1 形式, 则 $\int_M dF^*\omega = \int_{\partial M} F^*\omega \stackrel{(*)}{=} \int_{F(\partial M)} \omega$, $\int_M F^*d\omega = \int_{F(M)} d\omega$. 定义 $\partial F(M) = F(\partial M)$, 则 $dF^* = F^*d$ 告诉我们 $\int_{F(M)} d\omega = \int_{\partial F(M)} \omega$, 即 Stokes 定理对一般的 (退化的或自相交的) 参数化流形成立.

定理 4.13.7 (Stokes 定理). 令 M 为 n 维定向紧 ∂ -流形, ω 是 M 上的 C^1 的 (n-1)-形式,则 $\int_{\partial M} \omega = \int_{M} d\omega.$

注记. 把 M 紧换成 $\operatorname{supp}(\omega)$ 紧则结论也成立. 证明只需对 $\operatorname{supp}(\omega)$ 作在 M 中开覆盖的单位分解. 我们没证过这一结论, 故不证这一版本的 Stokes 定理.

证明: 由 M 上的 C^{∞} -单位分解, ω 是有限个 C^{1} 的 (n-1)-形式的和, 其中每个的支集在坐标卡中. 因此不妨假设 M 有坐标卡 $(U,\varphi),\varphi:U\to \widetilde{\mathbb{H}^{n}}=\{(x_{1},\cdots,x_{n}):x_{1}\geqslant 0\}$ 是 C^{∞} 嵌入. 且 $\mathrm{supp}(\omega)\subset U$, 因此通过把 M 换成 $\varphi(U)$, 不妨假设 M 是 $\widetilde{\mathbb{H}^{n}}$ 开子集. 通过扩大 M, 不妨假设 $M=[0,a)\times (-a,a)\times \cdots \times (-a,a)$, 则

$$\omega = \sum_{i=1}^{n} f_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

这里 $f_i \in C_c^{\infty}(M, \mathbb{R})$. 由线性性, 不妨假设 $\omega = f \cdot dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^n$, 则 $d\omega = df \wedge dx^1 \wedge \cdots \wedge d\widehat{x^i} \wedge \cdots \wedge dx^n$, 则 $d\omega = df \wedge dx^1 \wedge \cdots \wedge d\widehat{x^i} \wedge \cdots \wedge dx^n$, 则

$$\int_{M} d\omega = \int_{[0,a)\times(-a,a)^{n-1}} (-1)^{i-1} \partial_{i} f dx_{1} \cdots dx_{n}$$

当 i > 1 时.

$$\int_{-1}^{a} \partial_{i} f(x_{1}, \dots, x_{n}) dx_{i} = f(x_{1}, \dots, a, \dots, x_{n}) - f(x_{1}, \dots, -a, \dots, x_{n}) = 0 - 0 = 0$$

当 i = 1 时,

$$\int_0^a \partial_i f dx_1 = f(a, x_2, \cdots, x_n) - f(0, x_2, \cdots, x_n)$$

故 $\int_M d\omega = -\delta_{i,1} \int_{(-a,a)^{n-1}} f(0,x_2,\cdots,x_n) dx_2 \cdots dx_n$. 接下来我们计算 $\int_{\partial M} \omega$. 回忆 $\partial M = \{0\} \times (-a,a)^{n-1}$ 上的方向由 $-\frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n}$ 给出. 令

$$\iota: (-a,a)^{n-1} \to M, (x_2, \cdots, x_n) \mapsto (0, x_2, \cdots, x_n)$$

则 ι 是对 ∂M 的反向的参数化. 故由 $\iota^*\omega = \delta_{i,1}f(0,x^2,\cdots,x_n)dx^2\wedge\cdots\wedge dx^n$ 知

$$\int_{\partial M} \omega = -\int_{(-a,a)^{n-1}} \delta_{i,1} f(0, x_2, \cdots, x_n) dx_2 \cdots dx_n$$

注记. 在 Stokes 定理中可要求 M 比 ∂ -流形更不光滑一些. 例如 M 是 \mathbb{R}^n 中的紧长方体. 则可用 ∂ -流形逼近 M,Stokes 定理也对这样的几何对象成立.

更一般地,我们可以考虑 C^{∞} 带角流形. 其局部 C^{∞} 同胚于 $\coprod_{k=1}^{n} = \{(x_{1}, \cdots, x_{n}) \in \mathbb{R}^{n}: x_{1}, \cdots, x_{k} \geq 0\}$. ∂ -流形的许多性质都能用同样方法推广到带角流形. 对定向紧带角流形 M, 我们也能给 ∂M 予 "向外"的方向,从而 Stokes 定理也成立. 其证法有两种:(1) 模仿 ∂ -流形 Stokes 定理证法,化为 $\coprod_{k=1}^{n}$ 上的情形,直接计算 $\int_{\partial \coprod_{k=1}^{n}} \omega$ 与 $\int_{\coprod_{k=1}^{n}} d\omega$ 并证明相同;(2) 化为 $\coprod_{k=1}^{n}$ 情形,用 ∂ 流形序列 M_{m} 逼近 $\coprod_{k=1}^{n}$ 使

$$\lim_{m \to \infty} \int_{\partial M_m} \omega = \int_{\partial M_m} \omega, \lim_{m \to \infty} \int_{M_m} d\omega = \int_{\mathbb{H}^n_h} d\omega$$

然后证明, 我们把细节留作思考.

推论 4.13.8 (梯度定理). 令 $\gamma:[a,b]\to\mathbb{R}^n$ 为 C^∞ 映射.f 是包含 $\gamma([a,b])$ 某开集 U 上的 C^∞ 函数, 则

$$f \circ \gamma(b) - f \circ \gamma(a) = \int_{\gamma([a,b])} \partial_1 f dx^1 + \dots + \partial_n f dx^n$$
$$= \int_a^b (\partial_1 f(\gamma^1)' + \dots + \partial_n f(\gamma^n)') dt$$

推论 4.13.9 (Green 定理). 令 D 为 \mathbb{R}^2 的紧 ∂ -子流形.f,g 是 \mathbb{R}^2 内含 D 一个开集上的 C^1 函数. 取 D 方向为 \mathbb{R}^2 标准方向, 则

$$\int_{\partial D} (fdx + gdy) = \iint_{D} (\partial_{x}g - \partial_{y}f)dxdy$$

我们接下来讲散度定理.

令 V 为 n 维实内积空间,则有同构 (Riesz 表示定理) $\Phi: V \to V^*$ 满足 $\Phi(v) = \langle v, \cdot \rangle$. 取 $0 \le k \le n$. 注意 $\Lambda^k V$ 是 $\otimes^k V$ 子空间. $\otimes^k V$ 有内积,使得若 $e_1, \cdots, e_n \in V$ 是 V 标准正交基,则 $\{e_{i_1} \otimes \cdots \otimes e_{i_k} : 1 \le i_1, \cdots, i_k \le n\}$ 是 $\otimes^k V$ 标准正交基, $\{e_{i_1} \wedge \cdots \wedge e_{i_k} : 1 \le i_1 < \cdots < i_k \le n\}$ 是子空间 $\Lambda^k V$ 一组基,且不难知 $\left\{\frac{1}{\sqrt{k!}}e_{i_1} \wedge \cdots \wedge e_{i_k} : 1 \le i_1 < \cdots < i_k \le n\right\}$ 是 $\Lambda^k V$ 标准正交基.

约定: 取 $\Lambda^k V$ 上内积为使 $\{e_{i_1} \wedge \cdots \wedge e_{i_k} : 1 \leq i_1 < \cdots < i_k \leq n\}$ 为一组标准正交基 (若 e_1, \cdots, e_n 是 V 标准正交基)

定义 4.13.10. 令 U,V 为有限维线性空间. 双线性映射 $\varphi: U \times V \to \mathbb{R}$ 称为完美配对 (perfect pairing) 若线性映射 $U \to V^*, u \mapsto \varphi(u,\cdot)$ 是线性同构. 注意其转置是 $V \to U^*, v \mapsto \varphi(v,\cdot)$. 故完美配对的定义关于 U,V 对称.

引理 4.13.11. 令 V 为 n 维内积空间且取定方向. 令 $\omega \in \Lambda^n V$ 为此方向下的体积形式. 取 $0 \leq k \leq n$, 则 $\Lambda^k V \times \Lambda^{n-k} V \to \mathbb{R}, (\alpha,\beta) \mapsto \frac{\alpha \wedge \beta}{\omega}$ 是完美配对.

证明: $\dim \Lambda^k V = \binom{n}{k} = \binom{n}{n-k} = \dim \Lambda^{n-k} V$. 只需证

$$\Lambda^k(V) \to \Lambda^{n-k}(V)^*, \alpha \mapsto (\alpha, \beta) = \frac{\alpha \wedge \beta}{\omega}$$

是单射. 令 e_1, \cdots, e_n 为 V 一组基, $\alpha = \sum_{1 \leqslant i_1 < \cdots < i_k \leqslant n} a_{i_1 \cdots i_k} \cdot e_{i_1} \wedge \cdots \wedge e_{i_k}$. 若 $\forall \beta \in \Lambda^{n-k}(V)^*$ 有 $\alpha \wedge \beta = 0$, 则取 $j_1 < \cdots < j_{n-k} \in \{1, \cdots, n\} \setminus \{i_1, \cdots, i_k\}, \beta = e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}$ 知 $a_{i_1 \cdots i_k} = 0$. \square

定义 4.13.12. 令 V 为定向内积空间, ω 为 $\Lambda^n V$ 体积形式. 线性同构 $\Lambda^{n-k}V \to (\Lambda^k V)^*, \gamma \mapsto \frac{\cdot \wedge \gamma}{\omega}$ 的逆映射复合上线性同构 $\Phi: \Lambda^k V \to (\Lambda^k V)^*, \beta \mapsto \langle \cdot, \beta \rangle$ 得到的同构

$$*: \Lambda^k V \to \Lambda^{n-k} V$$

称为 **Hodge*-**算子. 它由关系 $\alpha \wedge *\beta = (\alpha, \beta)\omega$ 刻画. $(\forall \alpha, \beta \in \Lambda^k V)$

例子. 在 \mathbb{R}^n 中,* $(e_1 \wedge \cdots \wedge e_k) = e_{k+1} \wedge \cdots \wedge e_n$. 一般地,* 可由如下计算:

命题 4.13.13. 令 e_1, \dots, e_n 为 V 一组标准正交基且 $e_1 \wedge \dots \wedge e_n$ 给出了 V 的方向,则

$$*(e_1 \wedge \cdots \wedge e_k) = e_{k+1} \wedge \cdots \wedge e_n$$

特别地, 回忆 $\Lambda^0 V = \mathbb{R}$, 我们有 *1 = $e_1 \wedge \cdots \wedge e_n$, *($e_1 \wedge \cdots \wedge e_n$) = 1. 更一般地, 若 1 $\leq i_1, \cdots, i_k \leq n, 1 \leq j_1, \cdots, j_{n-k} \leq n, n = \{i_1, \cdots, i_k\} \cup \{j_1, \cdots, j_{n-k}\}$, 则

$$*(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \pm e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}$$

 \pm 由 $e_{i_1} \wedge \cdots \wedge e_{i_k} \wedge e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}$ 方向决定.

回忆 $\Phi: \Lambda^k V \to (\Lambda^k V)^*$.

例子. 令 e_1, \dots, e_n 为 V 标准坐标基且 $e_1 \wedge \dots \wedge e_n$ 给出 V 方向. 令 $e^{\check{i}}, \dots, e^{\check{n}}$ 为对偶标准正交基. 令 $v \in V$, 则 $v = \sum_i \langle v, e_i \rangle e_i$, 故 $\Phi v = \sum_i \langle v, e_i \rangle \check{e^i}$. 由此可知

$$*\Phi v = \sum_{i=1}^{n} (-1)^{i+1} \langle v, e_i \rangle \, \check{e^1} \wedge \dots \wedge e^{\check{i}-1} \wedge e^{\check{i}+1} \wedge \dots \wedge e^{\check{n}}$$
$$= \langle v, e_1 \rangle \, \check{e^2} \wedge \dots \wedge e^{\check{n}} + \check{e^1} \wedge (\dots)$$

推论 4.13.14. 令 H 为 V 的 n-1 维子空间, $\nu \in V$ 为 H 的单位法向量 (即 $\langle \nu, V \rangle = 1$ 且 $\langle \nu, H \rangle = 0$).H 方向由 ν 决定 (故 $\Lambda^{n-1}H$ 中体积形式 ξ 满足 $\nu \wedge \xi$ 是 H 正方向). 令 $\omega_H \in \Lambda^{n-1}H^*$ 为体积形式. 令 $\iota: H \to V$ 为嵌入, 诱导了 $\iota^T: V^* \to H^*$, 从而 $\iota^T: \Lambda^{n-1}V^* \to \Lambda^{n-1}H^*$. 则 $\forall u \in V$ 有 $\iota^T(*\Phi u) = \langle u, \nu \rangle \omega_H$.

证明: 前一例中, 取 V 标准正交基 e_1, \cdots, e_n 使 $e_1 = \nu$ (从而 $H = \mathrm{span}(e_2, \cdots, e_n)$), 则 $\Lambda^{n-1}H$ 体积形式为 $e_2 \wedge \cdots \wedge e_n$. 故 $\Lambda^{n-1}H^*$ 体积形式为 $\omega_H = \check{e^2} \wedge \cdots \wedge \check{e^n}$, 准确来说

$$\omega_H = \iota^{\mathrm{T}} \check{e^2} \wedge \cdots \wedge \iota^{\mathrm{T}} \check{e^n}$$

由前一例,* $\Phi(u) = \langle u, e_1 \rangle \, \check{e^2} \wedge \cdots \wedge \check{e^n} + \check{e^1} \wedge (\cdots), \, 以及 \, \iota^T \check{e^1} = 0 \, 知 \, \iota^T (*\Phi u) = \langle u, e_1 \rangle \, \omega_H.$

定义 4.13.15. 令 M 为定向 ∂ -Riemann 流形. 则 $*: \Lambda_p^k M \to \Lambda_p^{n-k} M (\forall p \in M)$ 给出了 M 的 Borel/ C^r 的 k-形式与 (n-k)-形式之间的 $(C^{\infty}(M,\mathbb{R})$ -线性的) ——对应.

例子. \mathbb{R}^3 中

$$*(fdx + gdy + hdz) = fdy \wedge dz + gdz \wedge dx + hdx \wedge dy$$

$$*(fdx \wedge dy + gdy \wedge dz + hdz \wedge dx) = fdz + gdx + hdy$$

推论 4.13.16. 令 N 为 n 维定向 Riemann 流形,M 为定向 n-1 维子流形, $\nu: p \in M \mapsto T_pN$ 为 $M \perp C^{\infty}$ 的单位法向量场. 令 M 方向由 ν 定义. 令 X 为 M 在 N 某邻域上的 Borel 向量场, 则

$$\int_{M} *\Phi X = \int_{M} \langle X, \nu \rangle \, dV$$

把 N 换成 n 维 ∂ -定向 Riemann 流形, $M = \partial N$, 则结论仍成立.

证明: $\Leftrightarrow \omega_M : M \to \Lambda^{n-1}T^*M \to M$ 的体积形式, 则

$$\int_{M} *\Phi X = \int_{M} \frac{\iota^{*}(*\Phi X)}{\omega_{M}} dV$$

这里 $\iota: M \to N$ 是嵌入映射. 前一推论应用到 $d\iota: T_pM \to T_pN$ 及其转置 $\iota^*: T_p^*N \to T_p^*M$ 得

$$\iota^*(*\Phi X) = \langle X, \nu \rangle \, \omega_M$$

或 * $\Phi X|_M = \langle X, \nu \rangle \omega_M$.

注记. 类似地, 若 C 是 N 的一维定向子流形, $\nu: p \in C \to T_pC \subset T_pN$ 满足 $\forall p \in C$ 有 ν_p 正向且 $\langle \nu_p, \nu_p \rangle = 1$ 则 $\int_C \Phi X = \int_C \langle X, \nu \rangle dV_c$.

定义 4.13.17. 令 M 为可定向 ∂ -Riemann 流形 X 是 M 上 C^1 -向量场, 则 X 的**散度** $\mathrm{div}\,X$ 是 连续函数, 定义为 $d*\Phi X=(\mathrm{div}\,X)\cdot M$ 的体积形式.

例子. 令 Ω 为 \mathbb{R}^n 开子集,X 是 Ω 上 C^1 向量场, $X = \sum_{i=1}^n X^i \frac{\partial}{\partial X^i}$, 则 $\operatorname{div} X = \sum_{i=1}^n \frac{\partial}{\partial X^i} X^i$.

定理 4.13.18 (散度定理). 令 M 为紧定向 ∂ -Riemann 流形.X 是 M 上 C^1 -向量场. 令 ν : $\partial M \to TM$ 为 ∂M 的方向向外 (相较于 Int M) 的单位法向量场. 则

$$\int_{\partial M} \langle X, \nu \rangle \, dV_{\partial M} = \int_{M} \operatorname{div} X \, dV_{M}$$

证明:由前一推论,

$$\begin{split} \int_{\partial M} \left\langle X, nu \right\rangle dV_{\partial M} &= \int_{\partial M} *\Phi X \\ &\stackrel{Stokes}{=} \int_{M} d(*\Phi X) = \int_{M} \operatorname{div} X \cdot dV_{M} \end{split}$$

问题 4.13.19. 令 N 为 3 维定向 Riemann 流形.M 是 N 的 2 维定向紧 ∂ -子流形. 令 X 为 M 上 C^1 的向量场. 定义 curl X 为 ($^{\mathbf{u}}$ -) 满足 $d\Phi X = *\Phi \, curl X$ 的向量场. 从而 $curl X = \Phi^{-1} * d\Phi X$ ($\dot{\mathbf{x}}$: $\dot{\mathbf{x}}$ $\alpha \in \Lambda^k(V)$, $\dim V = n$, 则 $**\alpha = (-1)^{k(n-k)}\alpha$). 证明经典 Stokes 定理:

$$\int_{\partial M} \langle X, \iota \rangle \, dV_{\partial M} = \int_{M} \langle \operatorname{curl} X, \nu \rangle \, dV_{M}$$

这里 ν 是给出 M 方向的单位法向量场, ℓ 是给出 ∂M 方向的单位切向量场.

4.14 de Rham 上同调引论

定义 4.14.1. 令 M 为 ∂ -流形, $k \in \mathbb{Z}$. 令 $\Omega^k(M) = \{C^{\infty} \text{的} k$ -形式 $\omega : M \to \Lambda^k M\}$. 这里 $\Omega^{<0}(M)$ 定义为 0. 则 $d = d^k : \Omega^k(M) \to \Omega^{k+1}(M)$ 为外微分. 我们把

$$(\Omega(M), \dot{d}) = \cdots \longrightarrow C^{k-1}(M) \xrightarrow{d^k} C^k(M) \xrightarrow{d^{k+1}} C^{k+1} \longrightarrow \cdots$$

称为上链复形 (cochain complex). 意为 $\forall k$ 有 $d^{k+1} \circ d^k = 0$. 我们称 $\omega \in \Omega^k(M)$ 是 closed*k*-form 若 $d\omega = 0$. 称 $\omega \in \Omega^k(M)$ 为 exact*k*-form 若 $\exists \eta \in \Omega^{k-1}(M)$ 使 $\omega = d\eta$. 显然 exact \Longrightarrow closed. 定义 M 的k \mathfrak{N} de Rham 上同调为

$$H_{DR}^{k}(M) = \frac{\ker(\Omega^{k}(M) \xrightarrow{d^{k}} \Omega^{k+1}(M))}{\operatorname{Im}(\Omega^{k-1}(M) \xrightarrow{d^{k-1}} \Omega^{k}(M))}$$

以下简便起见, 记 H_{DR}^k 为 H^k .

命题 4.14.2. 若 $F: M \to N$ 为 ∂ -流形的光滑映射,则 $F^*: \Omega^k(N) \to \Omega^k(M)$ 诱导了良定义的 $F^*: H^k(N) \to H^k(M)$.

证明: 由
$$F^*d = dF^*$$
 易得.

注记. 若 $F:M\to N,G:N\to P$ 光滑, 则 $G^*:H^k(P)\to H^k(N)$ 与 $F^*:H^k(N)\to H^k(M)$ 复合 $F^*\cdot G^*$ 等于 $(G\circ F)^*.$

命题 4.14.3. 若 M 是连通 ∂ -流形, 则 $H^0(M) \cong \mathbb{R}$.

证明: d^{-1} 是零映射. 故 $H^0(M) = \ker(d^0: C^\infty(M, \mathbb{R}) \to \Omega^1(M))$. 我们证明

$$\forall f \in C^{\infty}(M, \mathbb{R}) \neq f df = 0 \iff f \mathring{\pi} df$$

从而 $H^0(M) = \{M \bot 常值函数\} \cong \mathbb{R}$.

"←" 显然. "→" $\forall p,q\in M,$ 因为 M 连通且任意 ∂ -流形局部道路连通, 故 M 道路连通, 故存在分段 C^∞ 的 $\gamma:[0,1]\to M$ 使 $\gamma(0)=p,\gamma(1)=q$. 则,

$$f(q) - f(p) = f(\gamma(1)) - f(\gamma(0)) = \int_0^1 (f \circ \gamma)' dt = \int_0^1 d(f \circ \gamma) = \int_0^1 \gamma^* df = 0$$

命题 **4.14.4.** 若 dim M = n, 则 $\forall k > n$ 有 $H^k(M) = 0$.

证明: 若 k > n 则 $\Lambda^k TM = 0$, 故 $\Omega^k(M) = 0$.

定义 4.14.5. 令 M 为紧无边的定向 n 维流形. 则

$$\int_{M} : \omega \in \Omega^{n}(M) \mapsto \int_{M} \omega \in \mathbb{R}$$

给出了良定义的线性映射 $\int_M: H^n(M) \to \mathbb{R}.$ 这是因为若 $\omega = d\eta, \eta \in H^{n-1}(M),$ 则 $\int_M \omega = \int_{\partial M} \eta = 0.$

推论 4.14.6. 若 M 是紧的不带边的定向 n 维流形, 则 $\dim H^n(M) \ge 1$.

证明:
$$\int_M: H^n(M) \to \mathbb{R}$$
 非零. 取 M 的体积形式 ω 则 $d\omega = 0$ 但 $\int_M \omega > 0$.

引理 4.14.7. 令 M 为紧定向 n 维 ∂ -流形, $\iota:\partial M\to M$ 为嵌入. 则 $\iota^*:H^{n-1}(M)\to H^{n-1}(\partial M)$ 和 $\int_{\partial M}:H^{n-1}\to\mathbb{R}$ 的复合 $\int_{\partial M}\iota^*:H^{n-1}(M)\to\mathbb{R}$ 为零.

证明: 取 $\omega \in \Omega^{n-1}(M)$ 使 $d\omega = 0$. 则

$$\int_{\partial M} \iota^* \omega = \int_{\partial M} \omega = \int_M d\omega = 0$$

推论 4.14.8. 令 M 为紧定向 n 维 ∂ -流形. 则不存在 M 到 ∂M 的光滑收缩 (retraction), 即不存在光滑映射 $\varphi: M \to \partial M$ 使 $\varphi|_{\partial M} = \mathrm{id}_{\partial M}$.

证明: $\Diamond \iota : \partial M \to M$ 为嵌入. 若 $\varphi : M \to \partial M$ 是光滑收缩, 考虑

$$H^{n-1}(\partial M) \xrightarrow{\varphi^*} H^{n-1}(M) \xrightarrow{\iota^*} H^n(\partial M) \xrightarrow{\int_{\partial M}} \mathbb{R}$$

则 $int_{\partial M} \circ \iota^* = 0$, 故

$$\int_{\partial M} = \int_{\partial M} \circ (\mathrm{id}_{\partial M})^* = \int_{\partial M} \circ \iota^* \circ \varphi^* : H^{n-1}(\partial M) \to \mathbb{R}$$

是零映射. 矛盾!

定理 4.14.9 (Brower 不动点定理). 令 B^n 为 \mathbb{R}^n 中闭单位球. $F:B^n\to B^n$ 连续. 则 F 至少存在一个不动点.

证明: **Step 1:** 先假设 F 光滑. 若 F 无不动点, 则 $\varphi: B^n \to \partial B^n, \forall x \in B^n, \varphi(x)$ 是以 F(x) 为起点穿过 x 的射线与 ∂B^n 的交点, 则 φ 是 C^∞ 收缩, 不可能.

Step 2: 只假设 F 连续. 令 $\mathcal{E}=\inf_{x\in B^n}\|x-F(x)\|>0$. 由 Weierstrass 逼近定理, $\forall \delta>0$, 存在 C^∞ 的 $G:B^n\to\mathbb{R}^n$ 使 $\sup_{x\in B^n}\|F(x)-G(x)\|\leqslant\delta$. 特别地, $\|G(x)\|\leqslant1+\delta$. 令 $K(x)=(1+\delta)^{-1}G(x)$, 故

$$||F(x) - K(X)|| \le \delta + (1 - \frac{1}{1 + \delta}) < 2\delta$$

故 $\|x - K(x)\| \ge \varepsilon - 2\delta > 0$ (当 $\delta < \frac{\varepsilon}{2}$). 故 $\delta < \frac{\varepsilon}{2}$ 时 $G: B^n \to B^n$ 光滑且无不动点. 矛盾. **定义 4.14.10.** 令 $F_0, F_1: M \to N$ 为 ∂ -流形的 C^∞ 映射. 若存在 C^∞ 映射,

$$K: [0,1] \times M \to N \not \in K(0,\cdot) = F_0, K(1,\cdot) = F_1$$

则称 $K \in \mathbb{C}^{\infty}$ 同伦映射, $F_0, F_1 \in \mathbb{C}^{\infty}$ -同伦的, 并记 $F_0 \simeq F_1$. 同伦关系是等价关系.

注记. $[0,1] \times M$ 的 C^{∞} 结构局部地由 $[0,1] \times \mathbb{H}^n$ 给出, 从而由 $\mathbb{R} \times \mathbb{R}^n$ 给出.

定义 4.14.11. ∂ -流形 M, N 称为(\mathbb{C}^{∞} -) 同伦等价, 若存在 \mathbb{C}^{∞} 的 $F: M \to N, G: N \to M$ 使

$$G \circ G \simeq \mathrm{id}_M$$
, $F \circ G \simeq \mathrm{id}_M$

定义 4.14.12. ∂ -流形 M 称为(\mathbb{C}^{∞} -) 可收缩, 若存在 \mathbb{C}^{∞} 的 K,

$$K: [0,1] \times M \to M 使 K(0,\cdot) = \mathrm{id}_M, K(1,\cdot)$$
的像为一个点 $\{p\}(p \in M)$

令 $F:\{p\}\to M, p\mapsto M, G:M\to \{p\}, x\mapsto p,$ 则 $G\circ F=\mathrm{id}_{\{p\}}, F\circ G=K(1,\cdot)$ 与 id_{M} 同伦. 从而 M 与 $\{p\}$ 同伦等价.

接下来的主要目标是:

定理 4.14.13 (同伦不变定理). 令 $F_0, F_1: M \to N$ 为 ∂ -流形的同伦的 C^∞ 映射. 则 $\forall k, F_0^*$ 与 $F_1^*: H^k(N) \to H^k(M)$ 相等.

推论 4.14.14. 若 $F: M \to N, G: N \to M$ 满足 $G \circ F \simeq \mathrm{id}_M, F \circ G \simeq \mathrm{id}_N, \, \mathrm{id}_N, \, \mathrm{id}_N \in H^k(N) \to H^k(M)$ 是线性同构, 其逆映射为 $G^*: H^k(M) \to H^k(N)$.

推论 4.14.15 (Poincaré 引理). 若 ∂ -流形 M 是 C^{∞} 可收缩的, 则 $\dim H^k(M) = \delta_{k,1}$.

同伦不变定理的证明: 令 $K:[0,1]\times M\to N$ 光滑, $K(0,\cdot)=F_0,J(1,\cdot)=F_1,\omega\in\Omega^k(N)$. 假设 $d\omega=0$. 要证 $F_1^*\omega-F_0^*\omega$ 是 exact 的. 令 $\widetilde{\omega}=K^*\omega$, 则 $d\widetilde{\omega}=dK^*\omega=K^*d\omega=0$, 而 $F_1^*-F_0^*=\widetilde{\omega}|_{1\times M}-\widehat{\omega}|_{0\times M}$. 因此只需证:

引理 4.14.16 (引理 A). 令 M 为 ∂ -流形, $\omega \in \Omega^k([0,1] \times M)$ 且 $d\omega = 0$. 则 $\exists \eta \in \Omega^{k-1}(M)$ 使 $\omega|_{1\times M} - \omega|_{0\times M} = d\eta$.

定义 4.14.17. 对任意 n 维带角流形 M, 定义 $\mathfrak{I}: \Omega^k([0,1] \times M) \to \Omega^{k-1}(M)$ 如下. 令 $\omega \in \Omega^k([0,1] \times M), t: [0,1] \to [0,1], x \mapsto x, (U, \varphi^1, \cdots, \varphi^n)$ 是 U 坐标卡.

$$\omega = \sum_{1 \leqslant i_1 < \dots < i_{k-1} \leqslant n} \omega_{i_1 \dots i_{k-1}} dt \wedge d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_{k-1}} + \sum_{1 \leqslant j_1 < \dots < j_k \leqslant n} \widetilde{\omega}_{j_1, \dots, j_k} d\varphi^{j_1} \wedge \dots \wedge d\varphi^{j_k}$$

这里 $\omega_{\bullet}, \widetilde{\omega_{\bullet}} \in C^1([0,1] \times U)$. 记 $\int_0^1 \omega_{i_1 \cdots i_{k-1}} dt : x \in U \to \int_0^1 \omega_{i_1 \cdots i_{k-1}}(t,x) dt$. 则

$$\Im \omega|_U = \sum_{1 \leq i_1 < \dots < i_{k-1} \leq n} \left(\int_0^1 \omega_{i_1 \cdots i_{k-1}} dt \right) d\varphi^{i_1} \wedge \dots \wedge d\varphi^{i_{k-1}}$$

不难验证此定义与坐标卡选取无关, 故可全局地定义.

注记. 对于非 ∂ -流形的带角流形, 我们主要关心的例子是由 n 个线性无关向量张成的平行多边形的情况.

注记. 3ω 有一个更坐标无关的定义方式.

注意 $\forall (s,p) \in [0,1] \times M, \omega_{(s,p)}$ 可看作反对称线性映射 $T_s \mathbb{R} \bigotimes^{n-1} T_p M \to \mathbb{R}$ 定义 interior product

$$\frac{\partial}{\partial t} \Box \omega|_{(s,p)} : \bigotimes^{k-1} T_p M \to \mathbb{R}, \xi \mapsto \omega \left(\frac{\partial}{\partial t} \otimes \xi\right)|_{(s,p)}$$

则 $\frac{\partial}{\partial t} \omega|_{(s,p)} \in \Lambda^{k-1} T_p M$. 能够验证

$$\Im \omega|_p = \int_0^1 \left(\frac{\partial}{\partial t} \bot \omega|_{(s,p)}\right) ds$$

我们不会用到这个定义, 我们只会用命题 B,C 作为 $J\omega$ 的等价刻画方式.

命题 4.14.18 (命题 B). 令 M 为 C^{∞} 流形,N 为带角 C^{∞} 流形,令 $F:N\to M$ 为 C^{∞} 映射.则以下图交换.

$$\Omega^{k}([0,1] \times M) \xrightarrow{\Im} \Omega^{k-1}(M)$$

$$\downarrow^{(\mathrm{id} \times F)^{*}} \qquad \downarrow^{F^{*}}$$

$$\Omega^{k}([0,1] \times N) \xrightarrow{\Im} \Omega^{k-1}(N)$$

证明: 选取 M 上坐标卡计算可得.

定义 4.14.19. 若 M, N 为定向的 m, n 维带角流形, 则带角流形 $M \times N$ 方向如下: 取 $M \perp m$ 形式 ω 处处非零且给出 M 方向, $N \perp n$ 形式 η 处处非零且给出 N 方向, 则 $\omega \wedge \eta$ 给出 $M \times N$ 方向.

注记. 我们有 $\partial(M \times N) = \partial M \times N + (-1)^m M \times \partial N$. 只需对 M 形如 $\{(x_1, \dots, x_m) : x_1, \dots, x_k \ge 0\}$ 开子集,N 形如 $\{(y_1, \dots, y_n) : y_1, \dots, y_l \ge 0\}$ 开子集验证.

命题 4.14.20 (命题 C). 令 N 为 k-1 维紧定向带角流形, $\omega \in \Omega^k([0,1] \times N)$,则 $\int_N \Im \omega = \int_{[0,1] \times N} \omega$.

证明: 由单位分解化为 $N = \{(x_1, \dots, x_{k-1}) : x_1, \dots, x_l \ge 0\}$ 且 ω 有紧支集的情况. 具体计算可得.

注记. 若 M 是 \mathbb{R}^n 开子集, ω 是 M 上连续 k-形式. $v_1, \dots, v_k \in T_p M \cong \mathbb{R}^n$. 则若 v_1, \dots, v_k 线性相关, 则 $\omega(v_1 \otimes \dots \otimes v_k) = 0$. 若线性无关, 令

$$N_{\varepsilon} = p + \{t_1v_1 + \dots + t_kv_k : 0 \leqslant t_1, \dots, t_k \leqslant \varepsilon\}$$

则 $\omega(v_1 \otimes \cdots \otimes v_k) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^k} \cdot \int_{N_\varepsilon} \omega$. 故 取值由其在平行多面体上积分决定.

引理 A 由如下命题立即得:

命题 4.14.21. 令 M 为 C^{∞} 带角流形, $\omega \in \Omega^k([0,1] \times M)$, 有

$$\omega|_{1\times M} - \omega|_{0\times M} = d\Im\omega + \Im d\omega$$

准确地说,令

$$\iota_0: M \to [0,1] \times M, x \mapsto (0,x)$$

$$\iota_1: M \to [0,1] \times M, x \mapsto (1,x)$$

 $\mathfrak{N} \iota_1^* \omega - \iota_0^* \omega = d \mathfrak{I} \omega + \mathfrak{I} d \omega.$

证明: 只需对 M 每点邻域验证即可, 而 $\{(x_1,\cdots,x_n):x_1,\cdots,x_l\geqslant 0\}$ 上 C^∞ 函数/形式总能局部扩张成 \mathbb{R}^n 上 C^∞ 函数/形式. 故不妨假设 M 是 \mathbb{R}^n 开子集, $k\leqslant n$. 只需对任意 $p\in M$ 以及足够小的线性无关 $v_1,\cdots,v_k\in T_pM\cong\mathbb{R}^n$ 证明若

$$N = p + \{t_1v_1 + \dots + t_kv_k : 0 \le t_1, \dots, t_k \le 1\}$$

则

$$\int_{1\times N} \omega - \int_{0\times N} \omega = \int_{N} d\Im\omega + \int_{N} \Im d\omega \tag{*}$$

由命题 B, 若 $\iota: N \to M$ 是嵌入映射, $\lambda = (\mathrm{id} \times \iota)^* \omega$, 则 $d\mathfrak{I} = d\iota^* \mathfrak{I} \omega = \iota^* d\mathfrak{I} \omega$,

$$\Im d\lambda = \Im(\mathrm{id} \times \iota)^* \omega = \iota^* \Im \omega$$

即 $d\Im\lambda = d\Im\omega|_N, \Im d\lambda = \Im d\omega|_N,$ 故 (*) 等价

$$\int_{1\times N} \lambda - \int_{0\times N} \lambda = \int_{N} d\Im\lambda + \int_{N} \Im d\lambda \tag{**}$$

 $\lambda \in C^1([0,1] \times N)$. 由命题 C,

$$\begin{split} \int_{N} \Im d\lambda &= \int_{[0,1]\times N} d\lambda = \int_{\partial([0\times 1]\times N)} \lambda \\ &= \int_{\partial[0,1]\times N} \lambda - \int_{[0,1]\times \partial N} \lambda \\ &= \int_{1\times N} \lambda - \int_{0\times N} \lambda - \int_{\partial N} \Im \lambda \\ &= \int_{1\times N} \lambda - \int_{0\times N} \lambda - \int_{N} d\Im \lambda \end{split}$$

(**) 得证. □

注记. 命题 C 告诉我们 $\omega\mapsto\Im\omega$ 是 $N\mapsto[0,1]\times N$ 的对偶, 从而 $\omega|_{1\times N}-\omega|_{0\times N}=d\Im\omega+\Im d\omega$ 是 $1\times N-0\times N=\partial([0,1]\times N)+[0,1]\times\partial N$ 的对偶. 这是以上证明的核心思想.

同伦不变定理证明完成. 我们也有:

定理 4.14.22. 令 M, N 为 ∂ -流形, $K: [0,1] \times M \to N$ 为 C^{∞} 映射, 令

$$\mathcal{J}: \Omega(N) \to \Omega^{-1}(M), \mathcal{J}\omega = \Im K^*\omega$$

 $F_1 = K(1,\cdot): M \to N, F_0 = K(0,\cdot): M \to N, M$

$$F_1^* - F_0^* = d\mathfrak{J} + \mathfrak{J}d : \Omega(N) \to \Omega(M)$$

成立

$$\Omega^{k}(N) \xrightarrow{d} \Omega^{k+1}(N)$$

$$\Gamma^{k} - F_{0}^{*} \xrightarrow{d} \Omega^{k}(M)$$

$$\Gamma^{k} - M - M + M - \Omega(N) = \Omega \cdot 1/M \cdot M \cdot M \cdot M$$

在同调代数中, 满足 $F_1^*-F_0^*=d\mathcal{J}+\mathcal{J}d$ 的 $\mathcal{J}:\Omega(N)\to\Omega^{-1}(M)$ 称为 F_0^* 和 F_1^* 之间的 **cochain** homotopy.

证明: 由前一命题运用到 $K^*\omega$ 即得.

我们来给同伦不变定理一些初步应用:

引理 4.14.23. 令 S^n 为 n 维单位球面, 定义 antipodal $map,A:S^n\to S^n,x\mapsto x$. 若 n 是偶数,则 A 不与 id_{S^n} 光滑同伦.

证明:令 $\omega=*(x^1dx^1+\cdots+x^{n+1}dx^{n+1})=\sum_{i=1}^{n+1}(-1)^{i+1}x^idx^1\wedge\cdots\wedge\widehat{dx^i}\wedge\cdots\wedge dx^{n+1}$. 令 ν 为 S^n 上向外法向量场,则

$$\int_{S^n} \omega = \int_{S^n} \langle X, \nu \rangle \, d\nu = \operatorname{vol}(S^n) > 0$$

这里 $X=x^1\frac{\partial}{\partial x^1}+\cdots+x^{n+1}\frac{\partial}{\partial x^{n+1}}$. 令 $\eta=\omega|_{S^n}$. 若 $A\simeq \mathrm{id}_{S^n}$,则由 $d\eta=0$ 知 $\eta-A^*\eta=d\mu,\mu\in\Omega^{n-1}(S^n)$. 从而

$$\int_{S^n} (\eta - A^* \eta) = \int_{\partial S^n} \mu = 0$$

但易知 $A^*\eta = -\eta$ (这里用到 n 是偶数). 故 $\int_{S^n} \eta = \int_{S^n} \omega = 0$. 矛盾!

定理 4.14.24. 令 n 为偶数, $F:S^n \to S^n$ 连续, 则存在 $x \in S^n$ 使 F(x) = x 或 F(x) = -x.

证明: 假设 $\forall x \in S^n$ 有 $F(x) \neq x, F(x) \neq -x$. 由多项式逼近, 存在 C^{∞} 的 $G: S^n \to \mathbb{R}^n \setminus \{0\}$ 使 $\left| \frac{\langle G(x), x \rangle}{\|G(x)\|} \right| < 1$ 对所有 $x \in S^n$ 成立. 故 $\frac{G(x)}{\|x\|} \neq \pm x$. 通过把 F(x) 换成 $\frac{G(x)}{\|G(x)\|}$, 不妨假设 $F: S^n \to S^n$ 光滑且 $\forall x \in S^n$ 有 $F(x) \neq \pm x$.

 $\forall x \in S^n$, 取 $\gamma(\cdot,x): t \in [0,2\pi] \to S^n$ 为匀速的大圆 (半径为 1) 运动, 且 $\gamma(0,x) = x.\gamma(t,x) = F(x)$ 若 $t \in S^n$ 上 x 到 F(x) 最短距离. 则 $\gamma: [0,2\pi] \times S^n \to S^n$ 光滑.

$$\gamma(0,\cdot) = \mathrm{id}_{S^n}, \gamma(\pi,\cdot) = A$$

故 A 与 id_{S^n} 同伦. 矛盾!

推论 4.14.25 (毛球定理). 若 n 是偶数,X 是 S^n 上连续向量场,则 X 有零点.

证法 1: 把 X 看作函数 $X: S^n \to \mathbb{R}^n$. 故 $\forall p \in S^n, p \in X(p)$ 垂直. 假设 X 处处非零, 则

$$F: S^n \to S^n, p \mapsto \frac{X(p)}{\|X(p)\|}$$

连续且 p 与 F(p) 正交. 特别地, $F(p) \neq \pm p$. 不可能.

证法 2: 通过光滑逼近, 不妨假设 X 光滑且 X 处处非零, $\forall p \in S^n$, 令

$$\gamma(t, p) = p \cos t + \frac{X_p}{\|X_p\|} \sin t$$

则 $\gamma(0,\cdot) = \mathrm{id}_{S^n}, \gamma(\pi,\cdot) = -\mathrm{id}_{S^n},$ 即 $\mathrm{id}_{S^n} \simeq -\mathrm{id}_{S^n}.$ 矛盾!