Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_mate-info* Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z \cdot \overline{z} - z - \overline{z} = (4 - i)(4 + i) - (4 - i) - (4 + i) =$	2p
	$=4^2-i^2-8=9$	3 p
2.	$\Delta = (2m+1)^2 - 4(m^2 - m + 2) = 8m - 7$	2p
	Axa Ox este tangentă graficului funcției $f \Leftrightarrow \Delta = 0 \Leftrightarrow 8m - 7 = 0 \Leftrightarrow m = \frac{7}{8}$	3 p
3.	$3\log_x 5 + \log_5 (5x) = 5 \Rightarrow \frac{3}{\log_5 x} + \log_5 5 + \log_5 x = 5 \Rightarrow (\log_5 x - 1)(\log_5 x - 3) = 0$	3p
	x = 5 sau $x = 125$, care verifică ecuația	2 p
4.	Sunt 900 de numere naturale de trei cifre, deci numărul cazurilor posibile este egal cu 900	2p
	Numerele naturale de trei cifre, care sunt multipli de 11, sunt 10·11, 11·11,, 90·11, deci	2p
	numărul cazurilor favorabile este egal cu 81	p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{81}{900} = \frac{9}{100}$	1n
	nr. cazuri posibile 900 100	1p
5.	$\overrightarrow{BN} = \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{BM} \right) = \frac{1}{2} \overrightarrow{BA} + \frac{1}{4} \overrightarrow{BC} =$	2p
	2 4	
	$= \frac{1}{2}\overrightarrow{BA} + \frac{1}{4}\left(\overrightarrow{BA} + \overrightarrow{AC}\right) = -\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$	3p
6.	$\sin^2 x + 6\sin x \cos y + 9\cos^2 y + \cos^2 x - 6\cos x \sin y + 9\sin^2 y = 10 \Leftrightarrow 6\sin(x - y) = 0$	3p
	$x, y \in \left(0, \frac{\pi}{2}\right) \Rightarrow x - y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, deci obținem $x - y = 0$, adică $x = y$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\Delta(0,2) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 0 & 6 & 2 \end{vmatrix} =$	2p
	=6+6+0-0-2-12=-2	3 p
b)	$\Delta(x,y) = \begin{vmatrix} 0 & 0 & 1 \\ x-1 & y-1 & 2 \\ x^2+x-2 & y^2+y-2 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ x-1 & y-1 & 2 \\ (x-1)(x+2) & (y-1)(y+2) & 2 \end{vmatrix} =$	3p
	$= (x-1)(y-1)\begin{vmatrix} 1 & 1 \\ x+2 & y+2 \end{vmatrix} = (x-1)(y-1)(y-x), \text{ pentru orice numere reale } x \text{ şi } y$	2 p

c)	$\Delta(m,n) = \begin{vmatrix} 1 & 1 & 1 \\ m+1 & n+1 & 2 \\ m^2+m & n^2+n & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ m+1 & n+1 & 2 \\ m(m+1) & n(n+1) & 2 \end{vmatrix}$	1p
	Cum numerele m și n sunt întregi, numerele $m(m+1)$ și $n(n+1)$ sunt divizibile cu 2, deci există numerele întregi k și l astfel încât $m(m+1)=2k$ și $n(n+1)=2l$	2 p
	$\Delta(m,n) = \begin{vmatrix} 1 & 1 & 1 \\ m+1 & n+1 & 2 \\ 2k & 2l & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 & 1 \\ m+1 & n+1 & 2 \\ k & l & 1 \end{vmatrix}, \text{ deci numărul } \Delta(m,n) \text{ este divizibil cu 2}$	2p
2.a)	$A(0) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ A(2) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$	2p
	$A(0) + A(2) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	3 p
b)	$A(a)A(b) = \begin{pmatrix} a & 0 & a-1 \\ 0 & 1 & 0 \\ a-1 & 0 & a \end{pmatrix} \begin{pmatrix} b & 0 & b-1 \\ 0 & 1 & 0 \\ b-1 & 0 & b \end{pmatrix} = \begin{pmatrix} 2ab-a-b+1 & 0 & 2ab-a-b \\ 0 & 1 & 0 \\ 2ab-a-b & 0 & 2ab-a-b+1 \end{pmatrix} = $	3p
	$= \begin{pmatrix} 2ab - a - b + 1 & 0 & (2ab - a - b + 1) - 1 \\ 0 & 1 & 0 \\ (2ab - a - b + 1) - 1 & 0 & 2ab - a - b + 1 \end{pmatrix} = A(2ab - a - b + 1), \text{ pentru orice numere}$ reale $a \neq b$	2p
c)	$A\left(\frac{1}{2}\right)A(a) = A\left(2 \cdot \frac{1}{2} \cdot a - \frac{1}{2} - a + 1\right) = A\left(\frac{1}{2}\right), \text{ pentru } a \text{ număr real}$	2p
	$A\left(\frac{1}{2}\right)A\left(\frac{3}{2}\right)A\left(\frac{5}{2}\right)\cdots A\left(\frac{2017}{2}\right) = \left(A\left(\frac{1}{2}\right)A\left(\frac{3}{2}\right)\right)A\left(\frac{5}{2}\right)\cdots A\left(\frac{2017}{2}\right) =$ $= \left(A\left(\frac{1}{2}\right)A\left(\frac{5}{2}\right)\right)\cdots A\left(\frac{2017}{2}\right) = \cdots = A\left(\frac{1}{2}\right)A\left(\frac{2017}{2}\right) = A\left(\frac{1}{2}\right)$	3 p

(30 de puncte) SUBIECTUL al III-lea

1.a)	$f(x) = \frac{x^3 + 3x^2 + 3x + 1 - x^3}{x^3 (x+1)^3} = \frac{(x+1)^3 - x^3}{x^3 (x+1)^3} =$	3 p
	$= \frac{(x+1)^3}{x^3(x+1)^3} - \frac{x^3}{x^3(x+1)^3} = \frac{1}{x^3} - \frac{1}{(x+1)^3}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x^3} - \frac{1}{(x+1)^3} \right) = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p

Simulare pentru clasa a XI-a

c)	$\lim_{n \to +\infty} (f(1) + f(2) + \dots + f(n)) = \lim_{n \to +\infty} \left(\frac{1}{1^3} - \frac{1}{2^3} + \frac{1}{2^3} - \frac{1}{3^3} + \dots + \frac{1}{n^3} - \frac{1}{(n+1)^3} \right) = 1$	1p
	$\lim_{n \to +\infty} (f(1) + f(2) + \dots + f(n))^{2n^{3}} = \lim_{n \to +\infty} \left(\left(1 + \frac{-1}{(n+1)^{3}} \right)^{\frac{(n+1)^{3}}{-1}} \right)^{\frac{-2n^{3}}{(n+1)^{3}}} = 0$	2 p
	$= e^{\lim_{n \to +\infty} \frac{-2n^3}{(n+1)^3}} = \frac{1}{e^2}$	2p
2.a)	$\lim_{x \to -\infty} \frac{f(x)}{x^3} = \lim_{x \to -\infty} \frac{x^3 + 3x^2 - x + a}{x^3} = \lim_{x \to -\infty} \frac{x^3 \left(1 + \frac{3}{x} - \frac{1}{x^2} + \frac{a}{x^3}\right)}{x^3} =$	3 p
	$= \lim_{x \to -\infty} \left(1 + \frac{3}{x} - \frac{1}{x^2} + \frac{a}{x^3} \right) = 1$	2 p
b)	f este continuă în $x = 0 \Leftrightarrow \lim_{\substack{x \to 0 \ x < 0}} f(x) = \lim_{\substack{x \to 0 \ x > 0}} f(x) = f(0)$	1p
	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \left(x^3 + 3x^2 - x + a\right) = a , \lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{e^{4x} - 1}{e^{3x} - 1} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\left(e^x + 1\right)\left(e^{2x} + 1\right)}{e^{2x} + e^x + 1} = \frac{4}{3} ,$ $f(0) = a$	3 p
	$a = \frac{4}{3}$	1p
c)	Pentru $a \in (-6, -3)$, avem $f(-3) = 3 + a < 0$, $f(-1) = 3 + a < 0$ și $f(-2) = 6 + a > 0$	3p
	Funcția f este continuă pe $(-\infty,0)$, deci ecuația $f(x)=0$ are cel puțin o soluție reală în intervalul $(-3,-2)$ și cel puțin o soluție reală în intervalul $(-2,-1)$	2 p