第1章 习题及答案

- 1.1 选择合适的答案填入空内。
- (1) 在本征半导体中加入____元素可形成 N 型半导体,加入____元素可形成 P 型半导体。
 - A. 五价
- B. 四价
- C. 三价
- (2) PN 结加正向电压时,空间电荷区将____。
- A. 变窄
- B. 基本不变
- C. 变宽
- (3) 当温度升高时,二极管的反向饱和电流将____。
- A. 增大
- B. 不变
- C. 减小
- (4) 稳压管要起稳压作用应工作在____ 状态。
- A. 正向导通
- B.反向截止
- C.反向击穿

- **解:** (1) A、C
- (2) A
- (3) A
- (4) C
- 1.2 写出图 P1.2 所示各电路的输出电压值,设二极管是理想的。

- **解:** (1) 二极管 D 导通 Uo₁=2V
 - (2) 二极管 D 截止 U_{O2}=2V
 - (3) 二极管 D 导通 U_{O3}=2V
- **1.3** 写出图 P1.3 所示各电路的输出电压值,设二极管导通电压 $U_D = 0.7 \text{V}$ 。

- **解:** (1) 二极管 D 截止 U_{O1}=0V
 - (2) 二极管 D 导通 U_{O2}= -1.3V
 - (3) 二极管 D 截止 Uo3= -2V
- **1.7** 电路如图 P1.7 所示,已知 $u_i = 5\sin\omega t$ (V),二极管导通电压 $U_D = 0.7$ V。试画出 u_i 与 u_O 的波形,并标出幅值。

图 P1.7

解: 当 *u*_i >3.7V 时,D₁ 导通,D₂ 截止,*u*₀=3.7V; 当-3.7V ≤ *u*_i ≤3.7V 时,D₁ 和 D₂ 均截止,*u*₀=*u*_i; 当 *u*_i <-3.7V 时,D₁ 截止,D₂ 导通,*u*₀=-3.7V; *u*_i 和 *u*₀ 的波形如解图 1.7 所示。

解图 1.7

- 1.8 现有两只稳压管,它们的稳定电压分别为 6V 和 8V,正向导通电压为 0.7V。试问:
 - (1) 若将它们串联相接,可得到几种稳压值?各为多少?
 - (2) 若将它们并联相接,又可得到几种稳压值?各为多少?
 - **解:**(1)两只稳压管串联时可得 1.4V、6.7V、8.7V 和 14V 四种稳压值。
 - (2) 两只稳压管并联时可得 0.7V 和 6V 两种稳压值。
- **1.9** 已知稳压管的稳定电压 $U_Z=6V$,稳定电流的最小值 $I_{Zmin}=5mA$,最大功耗 $P_{ZM}=150mW$ 。试求图 P1.9 所示电路中电阻 R 的取值范围。

解: 稳压管的最大稳定电流

$$I_{\rm ZM} = P_{\rm ZM}/U_{\rm Z} = 150 \,\mathrm{mW/6\,V} = 25 \,\mathrm{mA}$$

电阻 R 的电流 I_Z 为 $I_{ZM} \sim I_{Zmin}$,所以其取值范围为

$$R = \frac{U_{\rm I} - U_{\rm Z}}{I_{\rm Z}} = 0.36 \sim 1.8 \text{k}\Omega$$

1.12 已知两只三极管的电流放大系数 β 分别为 50 和 100,现测得放大电路中每个管子两个电极的电流分别如图 P1.12 (a) 和(b)所示。试分别求出另一电极的电流,标出其实际方向,并将管子画在圆圈中。

图 P1.12

解: 答案如解图 1.12 所示。

解图 1.12

1.14 已测得放大电路中四个三极管的直流电位如图 P1.14 所示。试在圆圈中画出管子的符号,并分别说明它们是硅管还是锗管。

图 P1.14

解:晶体管三个极分别为上、中、下管脚,答案如解表 1.14 所示。

解表 1.14

管号	T_1	T ₂	T ₃	T ₄
上	Е	С	В	В
中	В	В	E	E

下	С	Е	С	С
管型	PNP	NPN	NPN	PNP
材料	Si	Si	Ge	Ge

- **1.15** 电路及参数如图 P1.15 图所示,三极管的 U_{BE} =0.7V, β =60。
- (1) 当 u_I =3V 时判断三极管的工作状态,并求出 i_C 和 u_O 的值。
- (2) 当 u_I =-2V 时判断三极管的工作状态,并求出 i_C 和 u_O 的值。

解: (1) 当 u_1 =3V 时,发射结正偏,集电结反偏,三极管处于放大或饱和状态。

先求三极管的集电极临界饱和电流 $i_{\rm C}$

$$i_{\rm CS} = \frac{V_{\rm CC}}{R_{\rm c}} = \frac{5}{10} = 0.5 \,\text{mA}$$

基极临界饱和电流

$$i_{\text{BS}} = \frac{i_{\text{CS}}}{\beta} = \frac{0.5}{60} = 8.33 \,\mu\text{A}$$

假设三极管处于放大状态, 根据电路可知

$$I_{\rm B} = \frac{(u_{\rm I} - U_{\rm BE})}{R_{\rm b}} = \frac{3 - 0.7}{10} = 230 \,\mu\text{A}$$

由于 $I_{\rm B} > i_{\rm BS}$, 所以三极管工作在饱和状态,此时 $u_{\rm O} = U_{\rm CES} = 0.3\,{
m V}$ 。

(2) 当 $u_{\rm I}$ =-2V 时,发射结反偏,集电结反偏,三极管处于截止状态。此时, $I_{\rm B}=0$,

$$I_{\rm C} = 0$$
, $u_{\rm O} = V_{\rm CC} - I_{\rm C} R_{\rm c} = 5 \,\mathrm{V}_{\odot}$