N Isotropic Point Sources of Equal Amplitude and Spacing

Radiation Pattern of N Isotropic Elements Array

Radiation Pattern for array of n isotropic radiators of equal amplitude and spacing.

Null Directions for Arrays of N Isotropic Point Sources

$$E_{\text{norm}} = \frac{\sin(n\psi/2)}{n\sin(\psi/2)}$$

For Finding Direction of Nulls:

$$\sin\left(\frac{n\psi}{2}\right) = 0 \rightarrow \frac{n\psi}{2} = \pm k\pi \text{ where, } k=1,2,3....$$

$$\psi = \pm \frac{2k\pi}{n}$$

For Broadside Array, $\delta = 0$

$$\frac{2\pi d}{\lambda}\cos\phi_0 = \pm \frac{2k\pi}{n} \to \phi_0 = \pm \cos^{-1}\left(\frac{k\lambda}{nd}\right)$$

Null Direction and First Null Beamwidth

Null directions and beam width between first nulls for linear arrays of n isotropic point sources of equal amplitude and spacing

Type of array	Null directions (array any length)	Null directions (long array)	Beam width between first nulls(long array)
General case	$\phi_0 = \arccos\left[\left(\pm \frac{2K\pi}{n} - \delta\right) \frac{1}{d_r}\right]$		
Broadside	$\gamma_0 \simeq \arcsin\left(\pm \frac{K\lambda}{nd}\right)$	$\gamma_0 \simeq \pm \frac{K\lambda}{nd}$	$2\gamma_{01} \simeq \frac{2\lambda}{nd}$
Ordinary end-fire	$\phi_0 = 2\arcsin\left(\pm\sqrt{\frac{K\lambda}{2nd}}\right)$	$\phi_0 \simeq \pm \sqrt{\frac{2K\lambda}{nd}}$	$2\phi_{01} \simeq 2\sqrt{\frac{2\lambda}{nd}}$
End-fire with increased directivity	$\phi_0 = 2 \arcsin \left[\pm \sqrt{\frac{\lambda}{4nd} (2K - 1)} \right]$	$\phi_0 \simeq \pm \sqrt{\frac{\lambda}{nd}(2K-1)}$	$2\phi_{01} \simeq 2\sqrt{\frac{\lambda}{nd}}$

First Null Beamwidth (FNBW)

For long array, (n-1)d is equal to array length L

Directions of Max SLL for Arrays of N Isotropic Point Sources

$$\sin \frac{n\psi}{2} = \pm 1 \rightarrow \frac{n\psi}{2} = \pm \frac{(2k+1)\pi}{2} \text{ where } k=1,2,3...$$

$$\psi = \pm \frac{(2k+1)\pi}{n}$$
Magnitude of SLL: $AF = |\frac{\sin \frac{n\psi}{2}}{n\sin \frac{\psi}{2}}| = |\frac{1}{n\sin \left(\frac{(2k+1)\pi}{2n}\right)}|$
For very large n:
$$AF = |\frac{1}{n \times \left(\frac{(2k+1)\pi}{2n}\right)}| = \frac{2}{(2k+1)\pi} = 0.212 \text{ for } k=1 \text{ (First SLL)}$$

SLL in $dB = 20Log\ 0.212 = -13.5dB$

Direction of Minor Lobe Maxima

Type of array	Direction of minor lobe maxima
General case	$\phi_m = \arccos\left[\left(\pm \frac{(2K+1)\pi}{n} - \delta\right) \frac{1}{d_r}\right]$
Broadside	$\phi_m \simeq \arccos\left(\pm \frac{(2K+1)\lambda}{2nd}\right)$
Ordinary end-fire	$\phi_m \simeq \arccos\left(\pm \frac{(2K+1)\lambda}{2nd} + 1\right)$
End-fire with increased directivity	$\phi_m \simeq \arccos\left[\frac{\lambda}{2nd}\left[1\pm(2K+1)\right]+1\right]$

Half-Power Beamwidth (HPBW) of Array

For calculating HPBW, find Ψ , where radiated power is reduced to half of its maximum value

$$AF = \left| \frac{\sin \frac{n\psi}{2}}{n \sin \frac{\psi}{2}} \right| = 1/\sqrt{2}$$
For large n, HPBW is small: $AF \simeq \left| \frac{\sin \frac{n\psi}{2}}{n \frac{\psi}{2}} \right| = 1/\sqrt{2}$ Solution: $n\Psi/2 = 1.3915$
For Broadside: $\psi = \frac{2\pi d}{\lambda} \cos \phi = 2.783/n$

$$Cos \phi = Sin (90 - \phi) = 1.3915/(\pi n d/\lambda) = 0.443/L_{\lambda} (radian)$$
HPBW $\simeq 2 \times (90 - \phi) = 50.8^{0}/L_{\lambda}$

Aperture, Directivity and Beamwidth

	D:	Directivity for L ₁ or d ₂ equal to				
Array (or aperture);	Directivity formula	1	10	100	1000	Half-power beam widths
Linear broadside array of length L ₁	2L,	2	20	200	2000	$\frac{50.8^{\circ}}{L_{\lambda}} \times 360^{\circ}$
Ordinary end-fire array of length L ₂	$2\pi L_1$	6.3	63	630	6300	$\frac{108^{\circ}}{\sqrt{L_{\lambda}}}$
Increased-directivity end-fire array of length L_{λ}	4πL ₂	12.6	126	1 260	12 600	$\frac{52^{\circ}}{\sqrt{L_{\lambda}}}$
Square broadside aperture with side length L ₁	4πL ² _λ	12.6	1260	126 000	1.26 × 10 ⁷	$\frac{50.8^{\circ}}{L_{\lambda}} \times \frac{50.8^{\circ}}{L_{\lambda}}$
Circular broadside aperture with diameter d_1	$\pi^2 d_1^2$	9.9	990	99 000	9.9 × 10 ⁶	$\frac{58^{\circ}}{d_{\lambda}}$

Grating Lobes for Arrays of N Isotropic Point Sources

To Avoid Grating Lobes:

$$\psi = \frac{2\pi d}{\lambda} (\cos \phi - \cos \phi_m) < 2\pi \quad \text{where } \frac{\phi_m}{\phi_m} \text{ is direction of }$$

$$\frac{d}{\lambda} < \frac{1}{\cos \phi - \cos \phi_m} \rightarrow \frac{\frac{d}{\lambda}}{\frac{1}{1 + |\cos \phi_m|}}$$

For Broadside Array:
$$\frac{d}{\lambda} < 1 \rightarrow d < \lambda$$

For Endfire Array:
$$d < \frac{\lambda}{2}$$

Arrays with Missing Source

Radiation Pattern of linear array of 5 isotropic point sources of equal amplitude and $\lambda/2$ spacing (a) all 5 sources ON (b) one source (next to the edge) OFF (c) one source (at the centre) OFF, and (d) one source (at the edge) OFF

Radiation Pattern of Broadside Arrays with Non-Uniform Amplitude (5 elements with spacing = $\lambda/2$, Total Length = 2λ)

All 5 sources are in same phase but relative amplitudes are different

Binomial Amplitude Distribution Arrays

Binomial Amplitude Coefficients are defined by

$$(1+x)^{m-1} = 1 + \frac{(m-1)x}{1!} + \frac{(m-1)(m-2)x^2}{2!} + \dots$$

$$m = 1 \qquad 1$$

$$m = 2 \qquad 1 \quad 1$$

$$m = 3 \qquad 1 \quad 2 \quad 1$$

$$m = 4 \qquad 1 \quad 3 \quad 3 \quad 1$$

$$m = 5 \qquad 1 \quad 4 \quad 6 \quad 4 \quad 1$$

$$m = 6 \qquad 1 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1$$

No side lobe level but broad beamwidth

→ Gain decreases (practically not used)

Non-Uniform Amplitude Distribution

Non-Uniform Amplitude Distribution (Contd.)

Current Distribution for Line-Sources and Linear Array

Distribution	Uniform	Triangular	Cosine	Cosine-Squared
Distribution I _n (analytical)	I_0	$I_1\left(1-\frac{2}{l} z' \right)$	$I_2 \cos\left(\frac{\pi}{l}z'\right)$	$I_3\cos^2\left(\frac{\pi}{l}z'\right)$
Distribution (graphical)	, i			+
Space factor (SF) $u = \left(\frac{\pi l}{\lambda}\right) \cos \theta$	$I_0 l \frac{\sin(u)}{u}$	$I_1 \frac{l}{2} \left[\frac{\sin\left(\frac{u}{2}\right)}{\frac{u}{2}} \right]^2$	$I_2 l \frac{\pi}{2} \frac{\cos(u)}{(\pi/2)^2 - u^2}$	$I_3 \frac{l}{2} \frac{\sin(u)}{u} \left[\frac{\pi^2}{\pi^2 - u^2} \right]$
Space factor SF	Ass.	A ISFI	ISFI	(SF)

Radiation Characteristics for Line-Sources and Linear Array

Distribution	Uniform	Triangular	Cosine	Cosine-Squared
Half-power beamwidth (degrees) $l \gg \lambda$	$\frac{50.6}{(l/\lambda)}$	$\frac{73.4}{(l/\lambda)}$	$\frac{68.8}{(l/\lambda)}$	$\frac{83.2}{(l/\lambda)}$
First-null beamwidth (degrees) $l \gg \lambda$	$\frac{114.6}{(l/\lambda)}$	$\frac{229.2}{(l/\lambda)}$	$\frac{171.9}{(l/\lambda)}$	$\frac{229.2}{(l/\lambda)}$
First sidelobe max. (to main max.) (dB)	-13.2	-26.4	-23.2	-31.5
Directivity factor (l large)	$2\left(\frac{l}{\lambda}\right)$	$0.75\left[2\left(\frac{l}{\lambda}\right)\right]$	$0.810\left[2\left(\frac{l}{\lambda}\right)\right]$	$0.667\left[2\left(\frac{l}{\lambda}\right)\right]$

Radiation Characteristics for Circular Aperture and Circular Array

Distribution	Uniform	Radial Taper	Radial Taper Squared
Distribution (analytical)	$I_0 \left[1 - \left(\frac{\rho'}{a} \right)^2 \right]^0$	$I_1 \left[1 - \left(\frac{\rho'}{a} \right)^2 \right]^1$	$I_2 \left[1 - \left(\frac{\rho'}{a} \right)^2 \right]^2$
Distribution (graphical)	20 - p	An + p'	
Space factor (SF) $u = \left(2\pi \frac{a}{\lambda}\right) \sin \theta$	$I_0 2\pi a^2 \frac{J_1(u)}{u}$	$I_1 4\pi a^2 \frac{J_2(u)}{u}$	$I_2 16\pi a^2 \frac{J_3(u)}{u}$
Half-power beamwidth (degrees) $a \gg \lambda$	$\frac{29.2}{(a/\lambda)}$	$\frac{36.4}{(a/\lambda)}$	$\frac{42.1}{(a/\lambda)}$
First-null beamwidth (degrees) $a \gg \lambda$	$\frac{69.9}{(a/\lambda)}$	$\frac{93.4}{(a/\lambda)}$	$\frac{116.3}{(a/\lambda)}$
First sidelobe max. (to main max.) (dB)	-17.6	-24.6	-30.6
Directivity factor	$\left(\frac{2\pi a}{\lambda}\right)^2$	$0.75 \left(\frac{2\pi a}{\lambda}\right)^2$	$0.56 \left(\frac{2\pi a}{\lambda}\right)^2$

Rectangular Planar Array

Rectangular Planar Array

$$\tan\phi_0 = \frac{\beta_y d_x}{\beta_x d_y}$$
 and
$$\sin^2\theta_0 = \left(\frac{\beta_x}{k d_x}\right)^2 + \left(\frac{\beta_y}{k d_y}\right)^2 \text{ where } \mathbf{k} = 2\pi/\lambda$$

The principal maximum(m = n = 0) and grating lobes can be located by:

$$kd_x(\sin\theta\cos\phi - \sin\theta_0\cos\phi_0) = \pm 2m\pi$$
 $\mathbf{m} = 0, 1, 2,...$
 $kd_y(\sin\theta\sin\phi - \sin\theta_0\sin\phi_0) = \pm 2n\pi$ $\mathbf{n} = 0, 1, 2,...$

Radiation Pattern of 5x5 Planar Array

Directivity of Planar Array

Directivity of Rectangular Array

$$D = \pi D_x D_y \cos \theta_0$$

For Broadside Array:
$$D = \pi D_x D_y$$

Directivity of Circular Array

$$G = \frac{4\pi A}{\lambda^2}, \qquad A = \pi a^2 \qquad D = \left(\frac{2\pi a}{\lambda}\right)^2$$