Przepływ stacjonarny cieczy lepkiej nieściśliwej

19 maja 2022

Lepka nieściśliwa ciecz płynie przez rurę (rysunek) ze strony lewej na prawą. Do rury wstawiona jest zastawka (patrz rysunek). Znajdziemy linie strumienia cieczy (styczne do prędkości w każdym punkcie cieczy) dla danego gradientu ciśnienia na rurze.

Rysunek 1: Rura z zastawką. Rozwiązania będziemy poszukiwać na siatce $[-100, 150] \times [-40, 40]$ punktów. Punkt siatki (i, j) odpowiada współrzędnym (x, y) = (idz, jdz), dz = 0.01. Liczby podają numery punktów siatki na rogach pudła obliczeniowego. Przegroda mieści się na punktach od $-i_k$ do i_k siatki w kierunku x oraz na punktach od -40 do j_k siatki w kierunku y.

Funkcja strumienia ψ definiuje pole prędkości $u=\frac{\partial \psi}{\partial y},\,v=-\frac{\partial \psi}{\partial x}$, a składowa z-owa rotacji pola prędkości wirowość $\zeta=\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}$. Stacjonarny przepływ opisują dwa równania

$$\nabla^2 \psi = \zeta \tag{1}$$

oraz

$$\frac{\mu}{\rho} \nabla^2 \zeta = \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y}.$$
 (2)

Równania (1,2) rozwiążemy przy pomocy przepisu relaksacyjnego. W każdym kroku będziemy poprawiać rozwiązania na ψ i ζ

$$\psi(i,j) := \left[\psi(i+1,j) + \psi(i-1,j) + \psi(i,j-1) + \psi(i,j+1) - \zeta(i,j)dz^2 \right] / 4$$
(3)

(dz jest krokiem siatki, przyjmiemy dz = 0.01) oraz

$$\zeta(i,j) := \left[\zeta(i+1,j) + \zeta(i-1,j) + \zeta(i,j-1) + \zeta(i,j+1) \right] / 4$$

$$- \left\{ \left[\psi(i,j+1) - \psi(i,j-1) \right] \left[\zeta(i+1,j) - \zeta(i-1,j) \right] \right.$$

$$- \left[\psi(i+1,j) - \psi(i-1,j) \right] \left[\zeta(i,j+1) - \zeta(i,j-1) \right] \right\} / 16. (4)$$

Zad. 1 Przepływ w rurze bez zastawki (przepływ Poiseuille). Bez zastawki brzeg to cały prostokąt przedstawiony na rysunku, a równania posiadają rozwiązania analityczne. Ze względu na symetrię prędkość pionowa znika wszędzie v=0, a prędkość pozioma zależy tylko od y i dana jest przez $u=\frac{Q}{2\mu}(y-y_1)(y-y_2)$, gdzie Q jest gradientem ciśnienia $Q=\frac{\partial P}{\partial x}, y_1$ i y_2 dają położenie dolnego i górnego końca rury (u nas $y_2=-y_1=0.4$). Dla takiego rozkładu prędkości funkcja strumienia i wirowość dane są odpowiednio przez

$$\psi_0(x,y) = \frac{Q}{2\mu} \left(\frac{y^3}{3} - \frac{y^2}{2} (y_1 + y_2) + y_1 y_2 y \right)$$
 (5)

oraz

$$\zeta_0(x,y) = \frac{Q}{2\mu}(2y - y_1 - y_2). \tag{6}$$

Zadać warunki brzegowe, wg. danych analitycznych na brzegu pudła. Przyjąć Q=-1. Wewnątrz pudła startujemy od $\psi=0$ oraz $\zeta=0$. Przeiterować równania (3-4) aż wartości funkcji strumienia i wirowości w punkcie o współrzędnych ($50\times dz, 0\times dz$) z iteracji na iterację zaczną się zmieniać o mniej niż 10^{-7} (uwaga: aby sprawdzać ten warunek, należy odczekać np. 100 iteracji. na samym starcie wartości są równe 0 i się nie zmieniają aż informacja z brzegów dotrze do tego punktu). Po uzyskaniu zbieżności: Narysować funkcję strumienia oraz wirowości na przekrojach x=0 oraz x=0.7. Porównać z rozwiązaniem analitycznym (5-6). Wyliczyć i narysować u(y) dla x=0. (50 pkt).

Zad. 2. Wstawiamy zastawkę. Górny i dolny brzeg są liniami strumienia cieczy. Na cały dolny brzeg łącznie z obrysem zastawki przyjmujemy wartość $\psi_0(x,y)$ dla $y=y_1$. Na górnym brzegu - bez zmian. Warunki na wirowość na

górnym i dolnym brzegu wynikają ze znikania obydwu składowych prędkości oraz pochodnej stycznej składowej prędkości normalnej do brzegu (patrz wykład). W przeciwieństwie to warunków na ψ , warunki na ζ nie są one ustalone raz na zawsze. Zależą od ψ . Należy je wyliczyć od nowa w każdej iteracji. I tak: na górnym brzegu przyjmujemy

$$\zeta(i,40) = 2(\psi(i,39) - \psi(i,40))/dz^2,\tag{7}$$

na dolnym (odcinek A i B)

$$\zeta(i, -40) = 2(\psi(i, -39) - \psi(i, -40))/dz^2, \tag{8}$$

na przeszkodzie – line C i D – odpowiednio

$$\zeta(-i_k, j) = 2(\psi(-i_k - 1, j) - \psi(-i_k, j))/dz^2 \tag{9}$$

oraz

$$\zeta(i_k, j) = 2(\psi(i_k + 1, j) - \psi(i_k, j))/dz^2, \tag{10}$$

na górnym końcu przegrody (odcinek E)

$$\zeta(i, j_k) = 2(\psi(i, j_k + 1) - \psi(i, j_k))/dz^2.$$
(11)

Na kantach przegrody (styk C/E, D/E) rozsądnie przyjąć średnią arytmetyczną warunków brzegowych danych dla odpowiednich odcinków. Start dla iteracji oraz warunki **brzegowe** wstawiamy z przepływu Poiseuille (5-6).

Zadania do wykonania Przyjąć $i_k = 5$ oraz $j_k = 10$. Rozwiązać równania (6) i (7) dla gradientu ciśnienia Q = -1, -10, -100, -200 oraz -400. Narysować linie strumienia ($\psi = const$). rozkład prędkości poziomej i pionowej dla wszystkich Q. (50 pkt).

Do podejrzenia kod w jezyku fortran:

```
program viscous
dimension psi(-200:200,-40:40)
dimension dze(-200:200,-40:40)
dimension psin(-200:200,-40:40)
dimension dzen(-200:200,-40:40)
dimension p(-200:200,-40:40)
dimension u(-200:200,-40:40)
dimension pn(-200:200,-40:40)
```

```
Q = -10
      eta=1
      rho=1
      dz=.01
      jdo=30
      ido=5
      v1 = -40 * dz
      y2=40*dz
      do 1 i=-100,150
      do 1 j=-40,40
      x=i*dz
      y=j*dz
      psi(i,j)=0.5*Q/eta*(1.0/3*y**3-0.5*y**2*(y1+y2)+y1*y2*y)
      dze(i,j)=0.5*Q/eta*(2*y-y1-y2)
1
      continue
      do 100 iter=1,30000
c warunki brzegowe na funkcję strumienia
      do 2 j=-39, jdo
      psi(-ido, j) = psi(-100, -40)
      psi(ido,j)=psi(-100,-40)
2
      continue
      do 3 i=-ido,ido
      psi(i,jdo)=psi(-100,-40)
3
      continue
c warunki brzegowe na wirowosc
       do 101 i=-99,149
       dze(i,-40)=2*(psi(i,-39)-psi(i,-40))/dz**2
       dze(i,40)=2*(psi(i,39)-psi(i,40))/dz**2
101
       continue
       do 102 j=-39, jdo
       dze(-ido, j)=2*(psi(-ido-1, j)-psi(-ido, j))/dz**2
       dze(ido,j) = 2*(psi(ido+1,j)-psi(ido,j))/dz**2
102
       continue
       do 103 i=-ido+1,ido-1
       dze(i,jdo)=2*(psi(i,jdo+1)-psi(i,jdo))/dz**2
```

```
103
       continue
       dze(-ido,jdo)=dze(-ido,jdo)/2+
     >(psi(-ido, jdo+1)-psi(-ido, jdo))/dz**2
       dze(ido, jdo)=dze(ido, jdo)/2
     >+(psi(ido,jdo+1)-psi(ido,jdo))/dz**2
       do 104 i = -99,149
       do 104 j=-39,39
c rownanie na psi
       psin(i,j)=(psi(i+1,j)+psi(i-1,j)+psi(i,j-1)+psi(i,j+1))/4
     >-dze(i,j)/4*dz**2
       dzen(i,j)=(dze(i+1,j)+dze(i-1,j)+dze(i,j-1)+dze(i,j+1))/4-
     >rho/eta/16*((psi(i,j+1)-psi(i,j-1))*(dze(i+1,j)-dze(i-1,j))
                 -(psi(i+1,j)-psi(i-1,j))*(dze(i,j+1)-dze(i,j-1)))
     >
104
       continue
       do 105 i = -99,149
       do 105 j=-39,39
       psi(i,j)=psin(i,j)*1+psi(i,j)*.0
       dze(i,j)=dzen(i,j)*1+dze(i,j)*.0
105
       continue
       if(mod(iter,100).eq.0) write(*,*) psi(50,0),psi(60,20)
100
       continue
      do 33 i=-100,150
      do 33 j=-40,40
      write(2,*) i,j,psi(i,j),dze(i,j)
33
      continue
      do 34 j=jdo+1,39
      write(3,*) j,(psi(0,j+1)-psi(0,j-1))/dz
34
      continue
       do 201 i=-99,149
       do 201 j=-39,39
       u(i,j)=(psi(i,j+1)-psi(i,j-1))/2/dz
       v(i,j)=-(psi(i+1,j)-psi(i-1,j))/2/dz
       write(4,*) i,j,u(i,j)**2+v(i,j)**2
201
       continue
       do 333 j=-39,39
       write(1,*) j,u(0,j)
```

```
333 continue c stop do 200 i=-40,40 p(-100,i)=0 200 p(100,i)=dz*200*q
```

end