Homework 2

ALECK ZHAO

February 16, 2018

Chapter 14: The Riemann-Stieltjes Integral

1. If $f, g \in \mathcal{R}_{\alpha}[a, b]$ with $f \leq g$, show that $\int_a^b f \, d\alpha \leq \int_a^b g \, d\alpha$.

Proof. We first show that $L(f, P) \leq L(g, P)$ for any fixed partition P. We have

$$L(f, P) = \sum_{i=1}^{n} \inf \{ f(x) : x_{i-1} \le x \le x_i \} \Delta \alpha_i$$

$$\le \sum_{i=1}^{n} \inf \{ g(x) : x_{i-1} \le x \le x_i \} \Delta \alpha_i = L(g, P)$$

as desired. Now, fix partitions P and Q. We have

$$L(f,P) \leq L(f,P \cup Q) \leq U(g,P \cup Q) \leq U(g,Q)$$

Since P and Q were arbitrary, and since $f, g \in \mathcal{R}_{\alpha}[a, b]$, we have

$$\int_a^b f \, d\alpha = \int_{\underline{a}}^b f \, d\alpha = \sup_P L(f, P) \le \inf_Q U(g, Q) = \overline{\int_a^b} g \, d\alpha = \int_a^b g \, d\alpha$$

3. If $f \in \mathcal{R}_{\alpha}[a, b]$, show that $|f| \in \mathcal{R}_{\alpha}[a, b]$ and that $\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$. (Hint: $U(|f|, P) - L(|f|, P) \leq U(f, P) - L(f, P)$. Why?)

Proof. Since $f \in \mathcal{R}_{\alpha}[a,b]$, given any $\varepsilon > 0$, we can find a partition P such that $U(f,P) - L(f,P) < \varepsilon$. Let P be such a partition of [a,b]. We have

$$U(|f|, P) = \sum_{i=1}^{n} \sup \{|f(x)| : x_{i-1} \le x \le x_i\} \, \Delta \alpha_i$$
$$L(|f|, P) = \sum_{i=1}^{n} \inf \{|f(x)| : x_{i-1} \le x \le x_i\} \, \Delta \alpha_i$$

Now, on any interval $[x_{i-1}, x_i]$, we have

$$\sup |f(x)| - \inf |f(x)| \le \sup f(x) - \inf f(x)$$

which is clear by checking signs. Thus,

$$U(|f|, P) - L(|f|, P) < U(f, P) - L(f, P) < \varepsilon$$

so |f| is RS-integrable by Riemann's condition.

6. Define increasing functions α, β , and γ on [-1,1] by $\alpha = \chi_{(0,1]}, \beta = \chi_{[0,1]}$, and $\gamma = \frac{1}{2}(\alpha + \beta)$. Given $f \in B[-1,1]$, show that:

(a) $f \in \mathcal{R}_{\alpha}[-1,1]$ if and only if f(0+) = f(0).

Proof. (\Longrightarrow): If $f \in \mathcal{R}_{\alpha}[-1,1]$, then given $\varepsilon > 0$, there exists a partition P WLOG with $x_k = 0$ such that

$$U(f, P) - L(f, P) < \varepsilon$$

Now, $\Delta \alpha_i = 1$ only when i = k + 1, so we havee

$$U(f,P) = \sup_{[0,x_{k+1}]} f(x)$$

$$L(f,P) = \inf_{[0,x_{k+1}]} f(x)$$

$$U(f,P) - L(f,P) < \varepsilon \implies |f(x) - f(0)| < \varepsilon, \forall x \in [0,x_{k+1}]$$

Thus, given ε , we have $|f(x) - f(0)| < \varepsilon$ whenever $0 < x < \frac{x_{k+1}}{2}$, so f(0+) = f(0). $(\longleftarrow) : \text{If } f(0+) = f(0)$, then given $\varepsilon > 0$, there exists a $\delta > 0$ such that $f(0) - \frac{\varepsilon}{2} < f(x) < f(0) + \frac{\varepsilon}{2}$ whenever $0 < x < \delta$. Let P be a partition of [-1,1], with $0 = x_k \in P$ and $\delta/2 = x_{k+1}$. Then $\Delta \alpha_i = 1$ only when i = k+1, so

$$U(f,P) = \sup_{[0,\delta/2]} f(x) < f(0) + \frac{\varepsilon}{2}$$

$$L(f,P) = \inf_{[0,\delta/2]} f(x) > f(0) - \frac{\varepsilon}{2}$$

$$\implies U(f,P) - L(f,P) < \left(f(0) + \frac{\varepsilon}{2}\right) - \left(f(0) - \frac{\varepsilon}{2}\right) = \varepsilon$$

so $f \in \mathcal{R}_{\alpha}[-1,1]$.

(b) $f \in \mathcal{R}_{\beta}[-1, 1]$ if and only if f(0-) = f(0).

Proof. (\Longrightarrow): If $f \in \mathcal{R}_{\beta}[-1,1]$, then given $\varepsilon > 0$, there exists a partition P WLOG with $x_k = 0$ such that

$$U(f, P) - L(f, P) < \varepsilon$$

Now, $\Delta \beta_i = 1$ only when i = k, so we havee

$$U(f,P) = \sup_{[x_{k-1},0]} f(x)$$

$$L(f,P) = \inf_{[x_{k-1},0]} f(x)$$

$$U(f,P) - L(f,P) < \varepsilon \implies |f(x) - f(0)| < \varepsilon, \forall x \in [x_{k-1},0]$$

Thus, given ε , we have $|f(x) - f(0)| < \varepsilon$ whenever $\frac{x_{k-1}}{2} < x < 0$, so f(0-) = f(0). $(\longleftarrow) : \text{If } f(0-) = f(0)$, then given $\varepsilon > 0$, there exists a $\delta > 0$ such that $f(0) - \frac{\varepsilon}{2} < f(x) < f(0) + \frac{\varepsilon}{2}$ whenever $-\delta < x < 0$. Let P be a partition of [-1,1], with $0 = x_k \in P$ and $-\delta/2 = x_{k-1}$. Then $\Delta \beta_i = 1$ only when i = k, so

$$U(f,P) = \sup_{[-\delta/2,0]} f(x) < f(0) + \frac{\varepsilon}{2}$$

$$L(f,P) = \inf_{[-\delta/2,0]} f(x) > f(0) - \frac{\varepsilon}{2}$$

$$\implies U(f,P) - L(f,P) < \left(f(0) + \frac{\varepsilon}{2}\right) - \left(f(0) - \frac{\varepsilon}{2}\right) = \varepsilon$$

so $f \in \mathcal{R}_{\beta}[-1,1]$.

(c) $f \in \mathcal{R}_{\gamma}[-1,1]$ if and only if f is continuous at 0.

Proof. (\Longrightarrow): If $f \in \mathcal{R}_{\gamma}[-1,1]$, then given $\varepsilon > 0$, there exists a partition P WLOG with $x_k = 0$ such that

$$U(f,P) - L(f,P) < \varepsilon$$

Now, $\Delta \gamma_i = \frac{1}{2}$ when i = k, k + 1, so we have

$$U(f,P) = \frac{1}{2} \left(\sup_{[x_{k-1},0]} f(x) + \sup_{[0,x_{k+1}]} f(x) \right) \le \sup_{[x_{k-1},x_{k+1}]} f(x)$$

$$L(f,P) = \frac{1}{2} \left(\inf_{[x_{k-1},0]} f(x) + \inf_{[0,x_{k+1}]} f(x) \right) \ge \inf_{[x_{k-1},x_{k+1}]} f(x)$$

$$U(f,P) - L(f,P) < \varepsilon \implies |f(x) - f(0)| < \varepsilon, \forall x \in [x_{k-1},x_{k+1}]$$

If we let $\delta = \frac{1}{2} \min\{|x_{k-1}|, |x_{k+1}|\}$, we get the necessary condition for continuity of f at 0. (\Leftarrow) : If f is continuous at 0, then given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(0)| < \frac{\varepsilon}{2}$ whenever $|x| < \delta$. Let P be a partition of [-1,1], with $0 = x_k \in P$ and $-\delta/2 = x_{k-1}$ and $\delta/2 = x_{k+1}$. Then $\Delta \gamma_i = \frac{1}{2}$ when i = k, k+1, so

$$\begin{split} U(f,P) &= \frac{1}{2} \left(\sup_{[-\delta/2,0]} f(x) + \sup_{[0,\delta/2]} f(x) \right) \leq \sup_{[-\delta/2,\delta/2]} f(x) < f(0) + \frac{\varepsilon}{2} \\ L(f,P) &= \frac{1}{2} \left(\inf_{[-\delta/2,0]} f(x) + \inf_{[0,\delta/2]} f(x) \right) \geq \inf_{[-\delta/2,\delta/2]} f(x) > f(0) - \frac{\varepsilon}{2} \\ \Longrightarrow U(f,P) - L(f,P) < \left(f(0) + \frac{\varepsilon}{2} \right) - \left(f(0) - \frac{\varepsilon}{2} \right) = \varepsilon \end{split}$$

so
$$f \in \mathcal{R}_{\gamma}[-1,1]$$
.

(d) If $f \in \mathcal{R}_{\gamma}[-1, 1]$, then $\int_{-1}^{1} f \, d\alpha = \int_{-1}^{1} f \, d\beta = \int_{-1}^{1} f \, d\gamma = f(0)$.

Proof. If $f \in \mathcal{R}_{\gamma}[-1,1]$, then f is continuous at 0 by part (c), so it is right and left continuous at 0, so all three integrals exist by parts (a) and (b).

Let P be a partition WLOG with $0 = x_k$. Then

$$L_{\alpha}(f, P) = \inf_{[0, x_{k+1}]} f(x) \implies \int_{-1}^{1} f \, d\alpha = \sup_{x_{k+1}} \left(\inf_{[0, x_{k+1}]} f(x) \right) \ge \inf_{[0, 0]} f(x) = f(0)$$

$$U_{\alpha}(f, P) = \sup_{[0, x_{k+1}]} f(x) \implies \int_{-1}^{1} f \, d\alpha = \inf_{x_{k+1}} \left(\sup_{[0, x_{k+1}]} f(x) \right) \le \sup_{[0, 0]} f(x) = f(0)$$

$$\implies \int_{-1}^{1} f \, d\alpha = f(0)$$

Where we can take any sequence $x_{k+1} \to 0$. Similarly, $\int_{-1}^{1} f \, d\beta = f(0)$. For $\int_{-1}^{1} f \, d\gamma$, we have

$$L_{\gamma}(f, P) = \frac{1}{2} \left(\inf_{[x_{k-1}, 0]} f(x) + \inf_{[0, x_{k+1}]} f(x) \right) \ge \inf_{[x_{k-1}, x_{k+1}]} f(x)$$

$$\implies \int_{-1}^{1} f \, d\gamma = \sup_{x_{k-1}, x_{k+1}} \left(\inf_{[x_{k-1}, x_{k+1}]} f(x) \right) \ge \inf_{[0, 0]} f(x) = f(0)$$

and similarly with $U_{\gamma}(f, P)$, so we get $\int_{-1}^{1} f \, d\gamma = f(0)$.

7. Let $P = \{x_0, \dots, x_n\}$ be a (fixed) partition of [a, b], and let α be an increasing step function on [a, b] that is constant on each of the open intervals (x_{i-1}, x_i) and has jumps of size $\alpha_i = \alpha(x_i +) - \alpha(x_i -)$ at each of the x_i , where $\alpha_0 = \alpha(a+) - \alpha(a)$ and $\alpha_n = \alpha(b) - \alpha(b-)$. If $f \in B[a, b]$ is continuous at each of the x_i , show that $f \in \mathcal{R}_{\alpha}$ and $\int_a^b f d\alpha = \sum_{i=1}^n f(x_i)\alpha_i$.

Proof. We have

$$L(f, P) = \sum_{i=1}^{n} \inf \{ f(x) : x_{i-1} \le x \le x_i \} \alpha_i = \sum_{i=1}^{n} f(x_i) \alpha_i$$
$$U(f, P) = \sum_{i=1}^{n} \sup \{ f(x) : x_{i-1} \le x \le x_i \} \alpha_i = \sum_{i=1}^{n} f(x_i) \alpha_i$$

since f(x) is constant on each interval $[x_{i-1}, x_i]$. Thus, for any $\varepsilon > 0$, we have $U(f, P) - L(f, P) = 0 < \varepsilon$ so $f \in \mathcal{R}_{\alpha}[a, b]$ by Riemann's condition.

If $\sup_Q L(f,Q) > L(f,P) = U(f,P)$, then we would have a contradiction since $L(f,P) \leq U(f,Q)$ for any partitions P and Q. Thus, $\sup_Q L(f,Q) = L(f,P) = \int_a^b f \, d\alpha = \sum_{i=1}^n f(x_i)\alpha_i$.

9. If f is monotone and α is continuous (and still increasing), show that $f \in \mathcal{R}_{\alpha}[a,b]$.

Proof. Let P be a partition of [a, b]. Then WLOG f is monotone increasing, so we have

$$L(f, P) = \sum_{i=1}^{n} \inf \{ f(x) : x_{i-1} \le x \le x_i \} \, \Delta \alpha_i = \sum_{i=1}^{n} f(x_{i-1}) \left(\alpha(x_i) - \alpha(x_{i-1}) \right)$$

$$U(f, P) = \sum_{i=1}^{n} \sup \{ f(x) : x_{i-1} \le x \le x_i \} \, \Delta \alpha_i = \sum_{i=1}^{n} f(x_i) \left(\alpha(x_i) - \alpha(x_{i-1}) \right)$$

$$\implies U(f, P) - L(f, P) = f(x_n) \left(\alpha(x_n) - \alpha(x_{n-1}) \right) = f(b) \left(\alpha(b) - \alpha(x_{n-1}) \right)$$

Since α is continuous, given $\varepsilon > 0$, we can find δ such that

$$|b - x_{n-1}| < \delta \implies |\alpha(b) - \alpha(x_{n-1})| < \frac{\varepsilon}{f(b)}$$

Thus, as long as the partition P has $|b - x_{n-1}| < \delta$, we will have

$$U(f, P) - L(f, P) = f(b) \left(\alpha(b) - \alpha(x_{n-1})\right) < f(b) \cdot \frac{\varepsilon}{f(b)} = \varepsilon$$

so $f \in \mathcal{R}_{\alpha}[a, b]$ by Riemann's condition.

10. If $f \in \mathcal{R}_{\alpha}[a,b]$, show that $f \in \mathcal{R}_{\alpha}[c,d]$ for every subinterval [c,d] of [a,b]. Moreover, $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$ for every a < c < b. In fact, if any two of these integrals exist, then so does the third and the equation above still holds.

Proof. Fix $\varepsilon > 0$. Since $f \in \mathcal{R}_{\alpha}[a,b]$, there exists a partition P of [a,b] with $U(f,P) - L(f,P) < \varepsilon$. Now, let $P' = P \cup \{c,d\}$ and $Q = P' \cap [c,d]$, so P' is a refinement of P and Q is a partition of [c,d]. Then we have

$$U(f, P') - L(f, P') \le U(f, P) - L(f, P) \le \varepsilon$$

since $P' \supset P$. Then since Q is a partition of [c,d] contained in P', we have

$$U(f,Q) - L(f,Q) < U(f,P') + L(f,P') < \varepsilon \implies f \in \mathcal{R}_{\alpha}[c,d]$$

Let P,Q be partitions of [a,c] and [c,b], respectively. Then $P \cup Q$ is a partition of [a,b]. We have

$$L(f, P) + L(f, Q) = L(f, P \cup Q) \le \int_a^b f \, d\alpha$$

Taking supremums over P and Q, we find that $\int_a^c f \, d\alpha + \int_c^b f \, d\alpha \leq \int_a^b f \, d\alpha$.

If R is a partition of [a,b], then let $R'=R\cup\{c\}$ be a refinement. Then if $P=R'\cap[a,c]$ and $Q=R'\cap[c,b]$, we have

$$L(f,R) \le L(f,R') = L(f,P) + L(f,Q)$$

then taking supremums, we have $\int_a^b f \, d\alpha \leq \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$, so combining with the inequality from above, we have equality.

Suppose $\int_a^c f d\alpha$ and $\int_c^b f d\alpha$ exist, so $f \in \mathcal{R}_{\alpha}[a,c]$ and $f \in \mathcal{R}_{\alpha}[c,b]$. Fix $\varepsilon > 0$. Then there exist partitions P, Q of [a,c] and [c,b], respectively, such that

$$\begin{split} U(f,P) - L(f,P) &< \frac{\varepsilon}{2} \\ U(f,Q) - L(f,Q) &< \frac{\varepsilon}{2} \\ \implies \left[U(f,P) + U(f,Q) \right] - \left[L(f,P) + L(f,Q) \right] &= U(f,P \cup Q) - L(f,P \cup Q) \\ &< \varepsilon \end{split}$$

Thus, since $P \cup Q$ is a partition of [a, b], it follows that $f \in \mathcal{R}_{\alpha}[a, b]$, so $\int_a^b f \, d\alpha$ exists.

If $\int_a^c f \, d\alpha$ and $\int_a^b f \, d\alpha$ exist, then for a fixed $\varepsilon > 0$, there exists a partition P of [a, b] and Q partition of [a, c] such that

$$U(f, P) - L(f, P) < \varepsilon$$

$$U(f, Q) - L(f, Q) < \varepsilon$$

Then let $Q' = (P \cap [a, c]) \cup Q$ be a partition of [a, c] refining Q. Then we have

$$U(f,Q') - L(f,Q') \le U(f,Q) - L(f,Q) < \varepsilon$$

Now, take $R = P \setminus Q' \cup \{c\}$ be a partition of [c, b]. We have

$$[U(f,R) + U(f,Q')] - [L(f,R) + L(f,Q')] = U(f,P) - L(f,P)$$

$$\implies U(f,R) - L(f,R) = [U(f,P) - L(f,P)] - [U(f,Q') - L(f,Q')]$$

$$< \varepsilon$$

so $f \in \mathcal{R}_{\alpha}[c,b]$, so the integral exists. A similar argument shows that $f \in \mathcal{R}_{\alpha}[a,c]$ when the other two integrals exist.

23. Suppose that φ is a strictly increasing continuous function from [c,d] onto [a,b]. Given $f \in \mathcal{R}_{\alpha}[a,b]$, show that $g = f \circ \varphi \in \mathcal{R}_{\beta}[c,d]$, where $\beta = \alpha \circ \varphi$. Moreover, $\int_{c}^{d} g \, d\beta = \int_{a}^{b} f \, d\alpha$.

Proof. Fix $\varepsilon > 0$. Since $f \in \mathcal{R}_{\alpha}[a,b]$, there exists a partition $P = \{a = x_0 < \dots < x_n = b\}$ of [a,b] such that $U_{\alpha}(f,P) - L_{\alpha}(f,P) < \varepsilon$. Then since φ is strictly increasing and continuous and onto [a,b], it has a well defined inverse φ^{-1} , and $Q = \{c = \varphi^{-1}(x_0) < \dots < \varphi^{-1}(x_n) = d\}$ is a partition of [c,d].

Now, we have

$$U_{\beta}(f \circ \varphi, Q) = \sum_{i=1}^{n} \sup \left\{ f(\varphi(y)) : \varphi^{-1}(x_{i-1}) \right\} \leq y \leq \varphi^{-1}(x_i) \left\{ \alpha \circ \varphi \circ \varphi^{-1}(x_i) - \alpha \circ \varphi \circ \varphi^{-1}(x_{i-1}) \right\}$$
$$= \sum_{i=1}^{n} \sup \left\{ f(x) : x_{i-1} \leq x \leq x_i \right\} (\alpha(x_i) - \alpha(x_{i-1})) = U_{\alpha}(f, P)$$

and similarly, $L_{\beta}(f \circ \varphi, Q) = L_{\alpha}(f, P)$, so

$$U_{\beta}(f \circ \varphi, Q) - L_{\beta}(f \circ \varphi, Q) = U_{\alpha}(f, P) - L_{\alpha}(f, P) < \varepsilon$$

so $g = f \circ \varphi \in \mathcal{R}_{\beta}[c, d]$.

Suppose the integrals were not equal, and WLOG $\int_c^d g \, d\beta > \int_a^b f \, d\alpha$. That is,

$$\sup_{P} L_{\alpha}(f, P) < \sup_{Q} L_{\beta}(f \circ \varphi, Q)$$

$$\implies \sup_{P} L_{\alpha}(f, P) < L_{\beta}(f \circ \varphi, Q)$$

for some partition Q of [c,d]. But then applying φ to every element of Q, we will obtain a partition Q' of [a,b], with $L_{\alpha}(f,Q') = L_{\beta}(f \circ \varphi,Q)$. This is a contradiction, because then $L_{\alpha}(f,Q') > \sup_{P} L_{\alpha}(f,P)$, so we cannot have $\int_{a}^{d} g \, d\beta > \int_{a}^{b} f \, d\alpha$. By a similar argument, we cannot have the reverse inequality, so the two integrals must be equal.

27. Give an example of a sequence of Riemann integrable functions on [0, 1] that converges pointwise to a non-integrable function.

Solution. Let $f_n = x^n$ on [0, 1]. Each of these is RS integrable. Then $f_n \to f$ where

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1) \\ 1 & \text{if } x = 1 \end{cases}$$

which is not RS-integrable because the greatest value on the final interval including 1 is 1, while the smallest value is 0, and the greatest and smallest values everywhere else are all 0. \Box