

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 035 219 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:13.09.2000 Bulletin 2000/37

(51) Int Cl.7: C12Q 1/68, A61K 31/70

(21) Application number: 99870035.5

(22) Date of filing: 25.02.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

- (71) Applicant: UNIVERSITEIT GENT B-9000 Gent (BE)
- (72) Inventors:
 - Ducatelle, Richard
 9700 Oudeaarde (BE)
 - De Groote, Dominique 9820 Merekbeke (BE)
 - Haesebrouck, Freddy 9820 Merelbeke (BE)

- Quint, Wilhelmus
 2631 Nootdorp (NL)
- Van Doorn, Leendert-Jan 2986 Ridderkerk (NL)
- (74) Representative: De Clercq, Ann Ann De Clercq & Co B.V.B.A., E. Gevaertdreef 10a 9830 Sint-Martens-Latem (BE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.
Claims 11 to 12 are deemed to be abandoned due to non-payment of the claims fees (Rule 31 (2) EPC).

(54) Gastric helicobacter 16 S rDNA sequences from cattle and pigs and their use for detection and typing of Helicobacter strains

Printed by Jouve, 75001 PARIS (FR)

(57) The present invention relates to new *Helicobacter* 16S rRNA or rDNA polynucleotide sequences useful for detection and typing of *Helicobacter* infected human and animal samples. The present invention relates more particularly to new "Candidatus Helicobacter bovis" and "Candidatus Helicobacter suis" sequences

as defined in SEQ ID NO 1 and 2, sequence variants and fragments thereof. These new *Helicobacter* sequences allow the design of sequence specific probes and primers for detection and typing of the strains they are derived from. Diagnostic methods and kits employing such new bovine and porcine *Helicobacter* sequences are also disclosed.

Description

[0001] The present invention relates to the field of detection and typing of *Helicobacter* infection in clinical samples from humans and other mammals. The present invention relates more particularly to bovine and porcine 16 rDNA polynucleotide sequences as well as their use in diagnostic applications.

[0002] In the 19th century, gastric spiral organisms were described for the first time in different animals (Rappin, 1881; Bizzozero, 1893; Salomon, 1896). Salomon observed spiral organisms in the stomachs of dogs, cats and the brown Norwegian rat but not in humans, monkeys, pigs, mice, pigeons, crows and cattle (Salomon, 1896). It was only in 1984 that a renewed interest emerged for similar organisms after the isolation of Helicobacter pylori from the human stomach (Marshall & Warren, 1984). The association of H. pylori with chronic gastritis, peptic ulceration and gastric cancer (Cover & Blaser, 1992; Blaser et al., 1991; Parsonnet et al., 1991) resulted in intensive research worldwide. Various Helicobacter species were isolated from the gastrointestinal tract of different animals. To date, the genus Helicobacter consists of 18 different species (On, 1996; Franklin et al., 1996; Mendes et al., 1996; Jalava et al., 1997; Trivett-Moore et al., 1997; Shen et al., 1997) and constitutes together with the genera Wolinella, Campylobacter and Arcobacter, the epsilon subdivision of the Proteobacteria, also known as rRNA superfamily VI (Vandamme et al., 1991). [0003] In 1992, two different groups almost simultaneously reported the presence of helically shaped bacteria in the abomasum of calves and adult cattle based on histological data (Günther & Schulze, 1992; Haringsma & Mouwen, 1992). Both groups described large numbers of spiral-shaped bacteria in the gastric crypts of the pyloric region and considered them as putative Helicobacter species. Further indirect evidence of the presence of Helicobacter-like organisms in adult cattle and calves was given by serological studies. Seidel et al. (1996) found significant titers of antibodies against H. pylori epitopes in the serum of calves after absorption with Campylobucter jejuni, Wolinella succinogenes, Escherichia coli and Proteus mirabilis strains. One report described a bactericidal activity of bovine serum, colostrum and milk against H. pylori (Korhonen et al., 1995). In vitro isolation of these organisms has not been successful so far (Jelinski et al., 1995; Braun et al., 1997) and the taxonomic status of these putative Helicobacter-like bacteria is unknown.

[0004] The pathogenic role of *H. pylori* led to speculations about the association of bovine *Helicobacter*-like bacteria with abomasal ulcer disease, although no conclusive evidence has been provided to date (Gunther & Schulze, 1992; Haringsma & Mouwen, 1992). Other bacteria such as *Campylobacter* species and *Clostridium perfringens* have also been studied in association with the occurrence of abomasal lesions (Al Mashat & Taylor, 1980; Mills et al., 1990, Jelinski et al., 1995).

[0005] Within the genus *Helicobacter*, a phylogenetic subgroup of morphologically similar bacteria can be distinguished. These bacteria, characterized by their long and tightly coiled (gastrospirillum-like) appearance, have been observed in gastric biopsies of humans, cats, lemurs, dogs, pigs and exotic carnivores (Dent et al., 1987; Lee et al., 1988; O'Rourke et al., 1992; Hänninen et al., 1996; Jalava et al., 1997; Queiroz et al., 1990; Eaton et al., 1993; Jakob et al., 1997). Three species with this morphology (*H. felis*, *H. bizzozeronii*, *H. salomonis*) have been isolated and characterised from gastric samples of cats and dogs (Paster et al., 1991; Hänninen et al., 1996; Jalava et al., 1997). [0006] The observation of gastrospirillum-like organisms in humans was described for the first time in 1987 by Dent et al (Dent et al., 1987). Although initially referred to as "*Gastrospirillum hominis*" (McNulty et al., 1989), this organism was later renamed "*Helicobacter heilmannii*" as 16S rDNA sequence analysis revealed that these human gastrospirilla belonged to the genus *Helicobacter* (O'Rourke et al., 1992; Solnick et al., 1993). From these results, it also became clear that there were at least two different types of "*Helicobacter heilmannii*", referred to as type 1 and type 2. This observation was based on a 3.5 % sequence difference, suggesting that the two sequences represented two different species. The first isolation of a "*Helicobacter heilmannii*" - like bacterium from humans was recently reported by Andersen *et al.* (1996).

[0007] In pigs, gastrospirillum-like bacteria were observed in the antral pits and at the mucosal surface of the stomach (Quieroz et al., 1990) and have provisionally been named "Gastrospirillum suis" (Mendes et al., 1990). Histopathological studies associated this bacterium with pyloric lymphonodular gastritis (Mendes et al., 1991) and gastric ulcer disease of the pars oesophagea in pigs (Barbosa et al., 1995, Quieroz et al., 1996). Although in vitro cultivation of "Gastrospirillum suis" has been unsuccessful (Queiroz et al., 1990), in vivo cultivation in mice and rats has been reported (Moura et al., 1993; Mendes et al., 1996). In one case, a Helicobacter was isolated from the faeces of swine (Seymour et al., 1994) which was later characterised as Helicobacter pametensis (Dewhirst et al., 1994). Other members of rRNA superfamily VI, Campylobacter hyointestinalis subsp. Lawsonii (On et al., 1995), Arcobacter butzleri and Arcobacter cryaerophilus (Suarez et al., 1997), have also been isolated from the stomach of swine.

[0008] As "Gastrospirillum suis" remains unculturable, an official species designation is impossible according to the guidelines of the International Code of Nomenclature of Bacteria which are stating the necessity of a broad range of phenotypic and phylogenetic data. Murray and Schleifer (1994) anticipated this problem, and proposed a provisional status to record the properties of putative taxa of prokaryotes. This proposal was implemented in 1995 by the International Committee on Systematic Bacteriology by the introduction of the provisional status Candidatus for the description

of uncultivable organisms based upon genomic data and to a certain extent structural, metabolic, reproductive and environmental characteristics (Murray and Stackebrandt, 1995).

[0009] It is an aim of the present invention to provide new *Helicobacter* nucleotide sequences of the 16S rRNA coding gene.

5 [0010] It is also an aim of the present invention to provide new probes and primers for detection of Helicobacter species.

[0011] It is also an aim of the present invention to provide methods and kits for detection and/or typing of *Helicobacter* species present in cattle and pigs.

[0012] It is further an aim of the present invention to provide methods and kits for detection of zoönoses in human samples.

[0013] It is also an aim of the present invention to provide new nucleotide sequences for studying and detecting the occurrence of pathogenic *Helicobacter* strains in mammals, more particularly in cattle and pigs.

[0014] All the aims of the present invention are met by the following embodiments.

10

20

[0015] According to one embodiment, the present invention relates to an isolated 16S rDNA *Helicobacter* polynucleic acid sequence selected from any of the following

- (a) a sequence represented in any of SEQ ID NO 1 or 2, or the RNA version thereof,
- (b) a sequence which hybridizes under stringent conditions to any of the sequences set out in (a).

[0016] The term "16S ribosomal polynucleic acid sequences" as used in the present invention refers to 16S rRNA or 16S rDNA polynucleic acid sequences.

[0017] According to a first aspect of the present invention, seven abomasal biopsies of adult cattle were sampled from different Belgian and Dutch farms. In all samples the presence of *Helicobacter*-like organisms was demonstrated by biochemical, immunohistochemical and electronmicroscopical data. Bacterial 16S rDNA was amplified from each sample by PCR and sequences were determined either by direct or indirect sequence analysis. Pairwise comparisons revealed all sequences to be more than 99 % homologous. Phylogenetic analysis placed the organism, corresponding to the reference sequence R2XA, within the genus *Helicobacter*. A diagnostic PCR-assay was designed, differentiating the bovine 16S rDNA sequences from those of 15 different *Helicobacter* strains and *Wolinella succinogenes*. These results indicated the corresponding organism to represent a single taxon. The low similarity level towards *H. bilis* (92.8 %), its closest validly named neighbour, strongly suggests that this novel taxon indeed is a novel *Helicobacter* species. An *in situ* hybridisation procedure associated the bovine sequences to the *Helicobacter*-like organisms in the abomas-

[0018] According to a second aspect, the present invention relates to new *Helicobacter* sequences from pigs. Stomachs of five slaughterhouse pigs originating from different Belgian and Dutch farms were selected based on the presence of "Gastrospirillum suis" -like bacteria as demonstrated by biochemical, immunohistochemical and electronmicroscopical data. Using broad range primers, bacterial 16S rDNA was amplified by PCR and five *Helicobacter*-like sequences were determined either by direct or indirect sequence analysis. An intersequence homology of 99.7 % was observed, suggesting that the sequences originated from strains belonging to a single species. Phylogenetic analysis of the consensus sequence placed the organism within the genus *Helicobacter*, where it formed a distinct subgroup together with other gastrospirillum-like bacteria (*H. felis, H. bizzozeronii, H. salomonis*, "H heilmannii" type 1 and type 2). Diagnostic PCR-primers and a probe were developed, differentiating the porcine sequences from all known *Helicobacters*. These results indicate that the porcine sequences represent a single taxon within the genus *Helicobacter*. The low similarity level towards *H. salomonis* (96.6 %), its closest validly named neighbour, strongly suggests that this novel taxon indeed is a novel *Helicobacter* species. *In situ* hybridisation experiments linked the reference sequence to the "Gastrospirillum suis"-like bacteria. On the basis of these results, the name "Candidatus Helicobacter suis" for this new gastric *Helicobacter* from pigs is proposed.

[0019] These sequences are commonly characterized by the fact that they can be used to study and most probably detect pathogenic *Helicobacter* strains in mammals, more particularly in cattle and pigs. Such pathogenic strains cause for instance gastric ulcers and chronic gastritis.

[0020] The present invention relates more particularly to an isolated polynucleic acid sequence as defined above represented by any of SEQ ID NO 1 or 2 or 15 to 24.

[0021] The present invention also relates to an isolated polynluceic acid sequence as defined above which is more than 92.8%, preferably more than 93.5%, more preferably more than 95% and most preferably more than 97.5% homologous to SEQ ID NO 1. Other preferred ranges of homology include 93, 94, 94.5, 95.5, 96, 96.5, 97, 98, 98.5, 99 or 99.5%.

[0022] Sequences which have a homology of more than 92.8% to SEQ ID NO 1 are considered to belong to the same group of organisms as the one where SEQ ID NO 1 has been derived from.

[0023] According to the present invention, the homologies of SEQ ID NO 1 were calculated by means of the GE-NESCAN program (Applied Maths byba, Risquons-toutstraat 38, B-8511 Kortrijk, Belgium).

[0024] The term "homology" refers to a sequence identity as calculated by the above-given program.

[0025] SEQID NO 2 is 99.5% homologous to the closest found sequence. Sequences of more than 99.5% homology compared to SEQID NO 2 are also within the scope of the present invention.

[0026] Preferred sequences according to the present invention are set out in Figures 1, 2, 4 and 5: SEQ ID NO 1 to 2 and 15 to 24. Also unique parts and fragments of these sequences are part of the present invention. Preferred unique parts are set out in Table 2.

[0027] Since SEQ ID NO 2 shows 96.6% homology to its closest found validly named neighbour, the use of sequences of more than 96.6% homology to SEQ ID NO 1 for identification or typing of *Helicobacter* species is also within the scope of the present invention. Preferably sequences of more than 97%, 97.5%, 98%, 98.5%, 99% or 99.5% homology to SEQ ID NO 2 are used for this goal.

[0028] According to another embodiment, the present invention relates to a part of an isolated polynucleic acid as defined above, more particularly part or a fragment of SEQ ID NO 1 or 2, wherein said part is unique to the polynucleic acid sequence it is derived from.

[0029] According to the present invention, the term "unique" implies that at least one nucleotide of the fragment or part is different from a nucleotide present at the same nucleotide position in a known 16S rRNA sequence or the corresponding gene. Such a nucleotide can be deduced theoretically by looking at an alignment of the new sequences of this invention with other closely related *Helicobacter* 16S rDNA gene nucleotide sequences (see Figures 1, 2, 4 and 5). Said type of nucleotides are unique to the sequence they are derived from. These fragments are thus not part of any known 16S rRNA or gene sequence encoding the same. The fragments according to this embodiment of the present invention may be of any length between 10 to the maximum number of nucleotides of SEQ ID NO 1 or 2 or its variants. Preferred lengths are 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, etc. nucleotides.

[0030] According to another embodiment, the present invention relates to a probe which specifically hybridizes to a polynucleic acid sequence as defined above.

[0031] Preferred probes are given in Table 2. Probe *R628f* is a preferred "*Candidatus* Helicobacter bovis" specific probe. Probe *V100f* is a preferred "*Candidatus* Helicobacter suis" specific probe. Other suitable probes may be derived from a visual inspection of the alignment shown in Figure 1 or 2.

[0032] According to another embodiment, the present invention relates to a primer which specifically amplifies a polynucleic acid sequence as defined above.

[0033] Preferred primers according to the present invention are given in Table 2. Primers R574f and R832r are preferred "Candidatus Helicobacter bovis" specific primers and are suited for a specific PCR and in situ hybridisation assays. Primers V832f and V1621r are preferred "Candidatus Helicobacter suis" specific primers for a specific PCR and in situ hybridisation assays. Other suitable primers according to the present invention may be derived from a visual inspection of the alignment shown in Figure 1 or 2.

[0034] Relying on the principles well kown in the art, the skilled man will be able to select primers that allow specific amplification of SEQ ID NO 1 or 2 or the claimed variants thereof under given or experimental conditions, such as temperature, buffer composition, polymerase chain reaction cycle etc. Likewise the skilled man will be able to select probes that specifically hybridize to either SEQ ID NO 1 or 2 or the claimed variants under given experimental conditions such as temperature, buffer composition etc. Having chosen primers and/or probes, the skilled man will furthermore be able to assess the efficacy of these primers or probes without undue experimentation. It is also obvious that the skilled man may chose to combine more than one primer pair or more than one probe to carry out the method defined above

[0035] In some cases, one may not wish to detect all SEQ ID NO 1 or 2 variants as specified above, for instance if one intends to detect alleles found in a certain geographic region.

[0036] According to another embodiment, the present invention relates to a method for detection and/or typing of Helicobacter strains present in a biological sample comprising hybridizing the 16S rRNA or 16S rDNA target region polynucleotides of said Helicobacter strains present in said biological sample with at least one probe as defined above.

[0037] Preferably said method may be used to study and detect the occurrence of pathogenic *Helicobacter* strains. [0038] According to another embodiment, the present invention relates to a method for detection and/or typing of *Helicobacter* strains present in a biological sample comprising specifically amplifying the 16S rRNA or 16S rDNA target region polynucleotides of said *Helicobacter* strains present in said biological sample with at least one primer as defined above.

[0039] Preferably said method may be used to study and detect the occurrence of pathogenic *Helicobacter* strains.

[0040] A preferred embodiment according to the present invention involves a method for detection and/or typing of *Helicobacter* strains present in a biological sample comprising first amplifying a specific target region encompassed in or comprising the 16S rRNA region of said *Helicobacter* strains present in said biological sample and subsequently hybridizing the 16S rRNA or 16S rDNA target region polynucleotides of said *Helicobacter* strains present in said bio-

logical sample with at least one (or more than one) probe as defined above.

[0041] Different techniques can be applied to perform the methods of the present invention. These techniques may comprise immobilizing the target polynucleic acids, possibly after amplification, on a solid support and performing a hybridization with labelled oligonucleotide probes of the present invention. Alternatively, said probes may be immobilized on a solid support and hybridization may be performed with labelled target polynucleic acids, possibly after amplification (i.e. a reverse hybridization).

[0042] A preferred method according to the present invention is an *in situ* hybridisation assay (see Examples section). [0043] The well-known technique of Southern blotting is one example of a hybridization assay that can be used to perform the methods of the present invention. Another example of a hybridization technique is the DNA enzyme immuno assay (DEIA). According to this method, PCR products are generated by a primer set, of which either the forward or the reverse primer contain biotin at the 5' end. This allows binding of the biotinylated amplimers to streptavidin-coated microtiter wells. PCR products are denatured by sodium hydroxide, which allows removal of the non-biotinylated strand. Specific digoxigenin (DIG)-labelled oligonucleotide probes are hybridized to the single-stranded immobilized PCR product and hybrids are detected by enzyme-labelled conjugate and colorimetric methods.

[0044] A convenient reverse hybridization technique is the LiPA assay. The LiPA uses oligonucleotide probes immobilized as parallel lines on a solid support strip (Stuyver et al. 1993; international patent application WO 94/12670). This approach is particularly advantageous since it is fast and simple to perform.

[0045] It is to be understood that any other type of hybridization assay or hybridization format using any of the selected probes as described further in the invention, is also covered by the present invention.

[0046] According to another embodiment, the present invention relates to a diagnostic kit for detection and/or typing of *Helicobacter* strains comprising:

- at least one probe as defined above and/or,
- at least one primer as defined above.

25

35

[0047] According to another embodiment, the present invention relates to a medicament comprising a polynucleic acid sequence as defined above.

[0048] According to another embodiment, the present invention relates to a polynucleic acid sequence as defined above for use as a medicament.

[0049] The following definitions and explanations will permit a better understanding of the present invention.

[0050] The target material in the samples to be analysed may either be DNA or RNA, e.g. genomic DNA, messenger RNA, viral RNA or amplified versions thereof. These molecules are in this application also termed "polynucleic acids" or "polynucleotides". More particularly, the target material according to the present invention will be 16S ribosomal RNA or DNA or amplified versions thereof.

[0051] Well-known extraction and purification procedures are available for the isolation of RNA or DNA from a sample (e.g. in Sambrook et al., 1989).

[0052] The term "probe" according to the present invention refers to a single-stranded oligonucleotide which is designed to specifically hybridize to "Candidatus Helicobacter bovis or suis" polynucleic acids.

[0053] The term "primer" refers to a single stranded oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. The length and the sequence of the primer must be such that they allow to prime the synthesis of the extension products. Preferably the primer is about 5-50 nucleotides long. Specific length and sequence will depend on the complexity of the required DNA or RNA targets, as well as on the conditions at which the primer is used, such as temperature and ionic strength. It is to be understood that the primers of the present invention may be used as probes and vice versa, provided that

It is to be understood that the primers of the present invention may be used as probes and vice versa, provided that the experimental conditions are adapted.

[0054] The expression "suitable primer pair" in this invention refers to a pair of primers allowing specific amplification of a "Candidatus Helicobacter bovis or suis" polynucleic acid fragment.

[0055] The term "target region" of a probe or a primer according to the present invention is a sequence within the "Candidatus Helicobacter bovis or suis" polynucleic acids to which the probe or the primer is completely complementary or partially complementary (i.e. with some degree of mismatch). It is to be understood that the complement of said target sequence is also a suitable target sequence in some cases.

[0056] "Specific hybridization" of a probe to a target region of respectively the "Candidatus Helicobacter bovis" or Candidatus Helicobacter suis" polynucleic acids means that said probe forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions said probe does not form a duplex with other regions of the polynucleic acids present in the sample to be analysed.

[0057] "Specific hybridization" of a primer to a target region of respectively the "Candidatus Helicobacter bovis" or "Candidatus Helicobacter suis" polynucleic acids means that, during the amplification step, said primer forms a duplex

with part of this region or with the entire region under the experimental conditions used, and that under those conditions said primer does not form a duplex with other regions of the polynucleic acids present in the sample to be analysed. It is to be understood that "duplex" as used hereby, means a duplex that will lead to specific amplification.

[0058] "Specific amplification" of a fragment of respectively the "Candidatus Helicobacter bovis" or Candidatus Helicobacter suis" polynucleic acids means amplification of the fragment for which the primers were designed, and not of any other fragment of the polynucleic acids present in a sample.

[0059] The fact that amplification primers do not have to match exactly with the corresponding target sequence in the template to warrant proper amplification is amply documented in the literature (Kwok et al., 1990). However, when the primers are not completely complementary to their target sequence, it should be taken into account that the amplified fragments will have the sequence of the primers and not of the target sequence. Primers may be labelled with a label of choice (e.g. biotine). The amplification method used can be either polymerase chain reaction (PCR; Saiki et al., 1988), ligase chain reaction (LCR; Landgren et al., 1988; Wu & Wallace, 1989; Barany, 1991), nucleic acid sequence-based amplification (NASBA; Guatelli et al., 1990; Compton, 1991), transcription-based amplification system (TAS; Kwoh et al., 1989), strand displacement amplification (SDA; Duck, 1990) or amplification by means of Qß replicase (Lomeli et al., 1989) or any other suitable method to amplify nucleic acid molecules known in the art.

[0060] Preferably, the probes of the invention are about 5 to 50 nucleotides long, more preferably from about 10 to 25 nucleotides. Particularly preferred lengths of probes include 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides. The nucleotides as used in the present invention may be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridization characteristics.

[0061] Probe and primer sequences are represented throughout the specification as single stranded DNA oligonucleotides from the 5' to the 3' end. It is obvious to the man skilled in the art that any of the below-specified probes can be used as such, or in their complementary form, or in their RNA form (wherein T is replaced by U).

[0062] The probes according to the invention can be prepared by cloning of recombinant plasmids containing inserts including the corresponding nucleotide sequences, if need be by excision of the latter from the cloned plasmids by use of the adequate nucleases and recovering them, e.g. by fractionation according to molecular weight. The probes according to the present invention can also be synthesized chemically, for instance by the conventional phospho-triester method.

[0063] The oligonucleotides used as primers or probes may also comprise nucleotide analogues such as phosphorothiates (Matsukura et al., 1987), alkylphosphorothiates (Miller et al., 1979) or peptide nucleic acids (Nielsen et al., 1991; Nielsen et al., 1993) or may contain intercalating agents (Asseline et al., 1984). As most other variations or modifications introduced into the original DNA sequences of the invention these variations will necessitate adaptions with respect to the conditions under which the oligonucleotide should be used to obtain the required specificity and sensitivity. However, the eventual results of hybridization will be essentially the same as those obtained with the unmodified oligonucleotides. The introduction of these modifications may be advantageous in order to positively influence characteristics such as hybridization kinetics, reversibility of the hybrid-formation, biological stability of the oligonucleotide molecules, etc.

[0064] The term "solid support" can refer to any substrate to which an oligonucleotide probe can be coupled, provided that it retains its hybridization characteristics and provided that the background level of hybridization remains low. Usually the solid substrate will be a microtiter plate, a membrane (e.g. nylon or nitrocellulose) or a microsphere (bead) or a chip. Prior to application to the membrane or fixation it may be convenient to modify the nucleic acid probe in order to facilitate fixation or improve the hybridization efficiency. Such modifications may encompass homopolymer tailing, coupling with different reactive groups such as aliphatic groups, NH₂ groups, SH groups, carboxylic groups, or coupling with biotin, haptens or proteins.

[0065] The term "labelled" refers to the use of labelled nucleic acids. Labelling may be carried out by the use of labelled nucleotides incorporated during the polymerase step of the amplification such as illustrated by Saiki et al. (1988) or Bej et al. (1990) or labelled primers, or by any other method known to the person skilled in the art. The nature of the label may be isotopic (32P, 35S, etc.) or non-isotopic (biotin, digoxigenin, etc.).

[0066] The "biological sample" may be for instance cultured *Helicobacter* strains, gastric, abomasal stomachs, omasal stomachs, reticulum and rumen, or duodenal biopsies (fresh or parafine material), faeces, saliva, mouth mucosa, gastric juice or urine. Preferably these samples may be taken from piglets, pigs, humans, calves, cattle, etc.

[0067] For designing probes with desired characteristics, the following useful guidelines known to the person skilled in the art can be applied.

[0068] Because the extent and specificity of hybridization reactions such as those described herein are affected by a number of factors, manipulation of one or more of those factors will determine the exact sensitivity and specificity of a particular probe, whether perfectly complementary to its target or not. The importance and effect of various assay conditions are explained further herein.

[0069] **The stability of the [probe : target] nucleic acid hybrid should be chosen to be compatible with the assay

conditions. This may be accomplished by avoiding long AT-rich sequences, by terminating the hybrids with G:C base pairs, and by designing the probe with an appropriate Tm. The beginning and end points of the probe should be chosen so that the length and %GC result in a Tm about 2-10EC higher than the temperature at which the final assay will be performed. The base composition of the probe is significant because G-C base pairs exhibit greater thermal stability as compared to A-T base pairs due to additional hydrogen bonding. Thus, hybridization involving complementary nucleic acids of higher G-C content will be more stable at higher temperatures.

[0070] **Conditions such as ionic strength and incubation temperature under which a probe will be used should also be taken into account when designing a probe. It is known that the degree of hybridization will increase as the ionic strength of the reaction mixture increases, and that the thermal stability of the hybrids will increase with increasing ionic strength. On the other hand, chemical reagents, such as formamide, urea, DMSO and alcohols, which disrupt hydrogen bonds, will increase the stringency of hybridization. Destabilization of the hydrogen bonds by such reagents can greatly reduce the Tm. In general, optimal hybridization for synthetic oligonucleotide probes of about 10-50 bases in length occurs approximately SEC below the melting temperature for a given duplex. Incubation at temperatures below the optimum may allow mismatched base sequences to hybridize and can therefore result in reduced specificity.

[0071] **It is desirable to have probes which hybridize only under conditions of high stringency. Under high stringency conditions only highly complementary nucleic acid hybrids will form; hybrids without a sufficient degree of complementarity will not form. Accordingly, the stringency of the assay conditions determines the amount of complementarity needed between two nucleic acid strands forming a hybrid. The degree of stringency is chosen such as to maximize the difference in stability between the hybrid formed with the target and the non-target nucleic acid.

[0072] **Regions in the target DNA or RNA which are known to form strong internal structures inhibitory to hybridization are less preferred. Likewise, probes with extensive self-complementarity should be avoided. As explained above, hybridization is the association of two single strands of complementary nucleic acids to form a hydrogen bonded double strand. It is implicit that if one of the two strands is wholly or partially involved in a hybrid that it will be less able to participate in formation of a new hybrid. There can be intramolecular and intermolecular hybrids formed within the molecules of one type of probe if there is sufficient self complementarity. Such structures can be avoided through careful probe design. By designing a probe so that a substantial portion of the sequence of interest is single stranded, the rate and extent of hybridization may be greatly increased. Computer programs are available to search for this type of interaction. However, in certain instances, it may not be possible to avoid this type of interaction.

[0073] **Standard hybridization and wash conditions are disclosed in the Examples section. Other conditions are for instance 3X SSC (Sodium Saline Citrate), 20% deionized FA (Formamide) at 50EC. Other solutions (SSPE (Sodium saline phosphate EDTA), TMAC (Tetramethyl ammonium Chloride), etc.) and temperatures can also be used provided that the specificity and sensitivity of the probes is maintained. When needed, slight modifications of the probes in length or in sequence have to be carried out to maintain the specificity and sensitivity required under the given circumstances. [0074] The term "hybridization buffer" means a buffer allowing a hybridization reaction between the probes and the polynucleic acids present in the sample, or the amplified products, under the appropriate stringency conditions.

[0075] The term "wash solution" means a solution enabling washing of the hybrids formed under the appropriate stringency conditions.

[0076] The Examples as set out below only serve to illustrate the present invention. The contents of all references referred to in this text are hereby incorporated by reference.

FIGURE AND TABLE LEGENDS

[0077]

40

45

50

55

Figure 1 represents an alignment of the reference sequence R2XA of *Candidatus* Helicobacter bovis* (SEQ ID NO 1) with sequences of strains belonging to the epsilon subdivision (Table 3) which were retrieved from the EMBL data library and were aligned with reference sequence R2XA

Figure 2 represents an alignment of the reference sequence V2BXA of "Candidatus Helicobacter suis" (SEQ ID NO 2) sequence with the sequences of strains belonging to the same phylogenetic lineage (Table 3).

Figure 3A represents a phylogenetic tree based on the phylogenetic analysis of "Candidates Helicobacter bovis" as set out in the Examples section. The scale bar represents a one % difference in nucleotide sequences as determined by measuring the length of horizontal lines connecting any two species.

Figure 3B represents a a phylogenetic tree based on the phylogenetic analysis of "Candidatus Helicobacter suis" as set out in the Examples section. The scale bar represents a one % difference in nucleotide sequences as determined by measuring the length of horizontal lines connecting any two species.

Figure 4 represents an alignment of the different "Candidatus Helicobacter bovis" sequences. The reference sequence is R2XA001 (SEQ ID NO 1). The other sequences are R5XE001 (SEQ ID NO 15), R3XA001 (SEQ ID NO 16), R6XA001 (SEQ ID NO 17), R13D001INV (SEQ ID NO 18), R27TOTAAL (SEQ ID NO 19) and R28TOTAAL (SEQ ID NO 20).

Figure 5 represents an alignment of the different "Candidatus Helicobacter suis" sequences. The reference sequence is RBXA001 (SEQ ID NO 2). The other sequences are 4AXA001 (SEQ ID NO 21), 6W06001 (SEQ ID NO 22), V14D001 (SEQ ID NO 23), V19DINV001 (SEQ ID NO 24).

10 EXAMPLES

5

25

Material and Methods

Samples from cattle

15

[0078] Seven abomasal stomachs from clinically healthy slaughterhouse cattle originating from different Belgian and Dutch farms, were selected. The stomachs were opened longitudinally along the greater curvatura and rinsed gently with tap water. Two small mucosal fragments were taken from each stomach, one near the torus pyloricus and one in the fundic region, and were tested for urease activity (CUTest, Temmler Pharma) for h at 37 °C. Three mucosal biopsies from the pyloric region were taken for immunchistochemistry and *in situ* hybridisation and placed into 4 % buffered formaline for 24 hours. For electronmicroscopy, a pyloric sample was taken from the same region and fixed in cacodylate buffer (0.1 M, pH 7.0) containing 5 % glutaraldehyde and 0.15 % (wt/vol) ruthenium red. From each stomach a mucosal fragment was also taken for PCR analysis, placed into sterile PBS and frozen in liquid nitrogen. Special care was taken during sampling to avoid cross-contamination.

Samples from pigs

[0079] Stomachs from 5 healthy slaughterhouse pigs were selected, all originating from different farms in Belgium and the Netherlands. The stomachs were opened longitudinally along the greater curvatura and rinsed gently with tap water. A small mucosal fragment was taken from each stomach near the torus pyloricus and placed into an urease test tube (CUTest, Temmler Pharma) for 2 hours at 37 °C. Mucosal biopsies from the antral part of the stomach were taken along the curvatura major (n=2) and the curvatura minor (n=2) for immunohistochemical evaluation and placed into 4 % buffered formalin. For electronmicroscopy, samples were taken from the same places and fixed in 0.1 M cacodylate buffer (pH 7.0) containing 5% glutaraldehyde and 0.15% (wt/vol) ruthenium red. Of each stomach a mucosal fragment was also taken for PCR, placed into sterile PBS and frozen in liquid nitrogen. Special care was taken during sampling to avoid cross-contamination.

Reference strains for "Candidatus Helicobacter bovis"

[0080] A total of 15 Helicobacter strains and 1 Wolinella succinogenes strain were used to test the specificity of the "Candidatus Helicobacter bovis" specific PCR (Table 1). Strains were grown on a 5 % Mueller-Hinton blood agar and incubated at 37 °C in a microaerophilic atmosphere containing approximately 5 % O₂, 3.5 % CO₂, 7.5 % H₂ and 84 % N2. Bacteriological purity was checked by plating and Gram-staining.

45 Reference strains for "Candidatus Helicobacter suls"

[0081] A total of 15 *Helicobacter* strains were used to test the specificity of the "*Candidatus* Helicobacter suis"-specific PCR assay (Table 1). Strains were grown on a 5% Mueller-Hinton blood agar and incubated at 37 °C in a microaerobic atmosphere containing approximately 5 % O₂, 3.5 % CO₂, 7.5 % H₂ and 84 % N₂. Bacteriological purity was checked by plating and Gram-staining.

Immunohistochemistry

[0082] Immunohistochemical staining was performed to assess the presence of *Helicobacter*-like organisms. Formalin-fixed samples were dehydrated and paraffin-embedded. Sections of 4 µm were made of the paraffin-embedded tissues and were placed on 3-aminopropyltriethoxysilane-coated slides (APES, Sigma-Aldrich) and dried overnight at 60 °C. After dewaxing with xylene and rehydration in graded series with ethanol and distilled water, sections were placed in citrate buffer (0.1M with 2% ureum) and were boiled (1 x 3 min, 2 x 5 min) in a 800 Watt microwave oven

(Whirlpool M611) to elicit antigen retrieval. Slides were then incubated with 12 % hydrogenperoxide in methanol (30 min) in order to block endogenous peroxidase activity. Thereafter the slides were pre-incubated with 30 % normal goat serum in PBS for 30 min to reduce non-specific antibody binding. A mouse polyclonal antibody directed against *H. pylori* (DAKO), diluted 1/20 in PBS, was incubated overnight at 21 °C in a moist chamber. The sections were washed and incubated with biotinylated swine anti-rabbit immunoglobulins at 21 °C for 30 min and after rinsing covered with peroxidase conjugated streptavidin-biotin-complex (ABC). Peroxidase activity was developed using H₂O₂ with diaminobenzidine (DAB) as a chromogen (Fast DAB Tablet Set, Sigma-Aldrich). Subsequently, the sections were counterstained with Mayer's hematoxylin and mounted. As a negative control, the primary antibody was replaced with fetal calf serum in Tris-HCl buffer (pH 7.6). As a positive control, a section of a mouse stomach experimentally infected with *Helicobacter pylori* LMG 7539^T was used.

Transmission electronmicroscopy

[0083] For "Candidatus Helicobacter bovis", three different pyloric samples were selected for electronmicroscopic evaluation based upon the high presence of Helicobacter-like organisms in the corresponding immunostained sections.

[0084] For "Candidatus Helicobacter suis", two different antral biopsies were selected for electronmicroscopic evaluation based on the high presence of gastrospirillum-like organisms in the corresponding immunostained slides.

[0085] After dehydration in a graded series of acetone washes, the samples were embedded in Spurr low-viscosity resin. Ultrathin sections were poststained with uranyl acetate and lead citrate and examined with an electronmicroscope (Phillips 201 TEM) at an accelerating voltage of 60 kV.

DNA-extraction

20

25

30

35

[0086] DNA was isolated from the scrapings of the gastric biopsies and from the reference strains by lysis with quanidinium isothiocyanate and DNA was bound to silica particles according to the method of Boom et al. (1990).

Primers and PCR amplification of 16S rDNA

[0087] Broadrange primers H33f, H61f and H1368r were selected from rRNA superfamily VI (Helicobacter, Campylobacter, Arcobacter, Wolinella) specific regions of the 16S rRNA gene (Table 2).

[0088] The use of broad range primer 1492RPL was suggested by Weissburg et al. (1991). A genus Helicobacter-specific primer H274f was adapted from primer 274r described by Dewhirst et al. (1994) (Table 2). Primer combinations H33F-H1368r, H274f-1492RPL and H61f-1492RPL were used to amplify a ~ 1.3-Kb, ~ 1.2-Kb and a ~1.4-Kb fragment of "Candidatus Helicobacter suis" respectively.

[0089] PCR reactions were performed in a volume of 50 pl containing 10mM Tris HCl (pH 8.3), 50 mM KCl, 3.5 mM MgCl₂, 200 pM of each deoxynucleoside triphosphate, 1.5 U of AmpliTaq Gold (Perkin-Elmer, Roche Molecular Systems) and 25 pmol of both forward and reverse primer (Eurogentec). Reactions were covered with mineral oil and PCR was performed in a Biomed-60 thermocycler under the following conditions: 9 min preincubation at 94 °C to activate AmpliTaq Gold, followed by 50 cycles of 30 s at 94 °C, 45 s at 55 °C and 45 s at 72 °C. Final extension was performed for 5 min at 72 °C. DNA-extractions of *Helicobacter acinonychis* LMG 12684^T and *Helicobacter mustelae* LMG 8776 were used as positive controls.

Analysis of amplified samples

[0090] PCR products were separated on 1 % agarose gels and stained with ethidium bromide.

[0091] DNA-extractions of *H. acinonychis* LMG 12684^T and *H. mustelae* LMG 8776 were used as positive controls. [0092] In order to determine whether PCR products were derived from *Helicobacter*-like organisms, the desired DNA-bands were cut from the gels, diluted 1/2 in distilled water and sequenced using the *H33f* and *H1368r* 5'-Indocarbocyanin (Cy5) for "*Candidatus* Helicobacter bovis" and respectively *H61f* and *1492RPL* Indocarbocyanin (Cy5) labeled for "*Candidatus* Helicobacter suis". Partial sequences were screened for homologous sequences using the NCBI GENINFO ® BLAST Network service (http://www.ncbi.nlm.nih.gov/BLAST/) (Altshul et al., 1997).

DNA cloning and sequence analysis for "Candidatus Helicobacter bovis"

[0093] PCR amplimers comprising the 16S rDNA-sequences derived from four different stomach samples (R2, R3, R5, R6) were each cloned into plasmid vector pGEM-T (Promega Biotech) according to the manufacturer's instructions and transformed into Escherichia coli JM109 using standard procedures. Plasmids were purified using the Easy Prep Plasmid Preparation Kit (Pharmacia Biotech). Sequences were determined by the T7-sequencing system (Pharmacia)

Biotech). Two primers flanking the multiple cloning sites (T7, SP6) as well as internal primers H390f and H1053r were used (Table 2). The sequence derived from the clone of the R2 sample (R2XA) was used as reference sequence. This sequence was has been asigned Genbank Accession No. AF127028. Sequence analysis was performed with the PCGene software (Intelligenetics)

[0094] PCR amplicons of three other gastric samples (R13, R27, R28) were sequenced without prior cloning (referred to below as direct sequence analysis).

DNA cloning and sequencing for "Candidatus Helicobacter suis"

[0095] PCR amplimers comprising the 16S rDNA-sequences from 2 different stomachs (V2B, V4A) were cloned into plasmid vector pGEM-T (Promega Biotech) according to the manufacturer's instructions and transformed into Escherichia coli JM109 using standard procedures. Plasmids were purified using the Easy Prep Plasmid Prep Kit (Pharmacia Biotech). Sequences were determined by the T7-sequencing system (Pharmacia Biotech). Two primers flanking the multiple cloning sites (T7 and SP6) as well as internal primers H390f and H1053r were used (Table 2). Sequence analysis was performed with the PCGene software (Intelligenetics). A reference sequence was determined based on its high length and was compared to the new sequence and the other derived sequences, to check its integrity (see Figures 4 and 5). The reference sequence V2BXA was assigned Genbank Accession No. AF127028. [0096] PCR amplicons of three other gastric samples (V5, V14, V19) were sequenced without prior cloning (referred

to below as direct sequence analysis).

Phylogenetic analysis for "Candidatus Helicobacter bovis"

20

30

[0097] Phylogenetic analysis was performed using the GeneCompar 2.0 software package (Applied Maths). Sequences of strains belonging to the epsilon subdivision (Table 3) were retrieved from the EMBL data library and were aligned with reference sequence R2XA. A similarity matrix was constructed from the aligned sequences and was corrected for multiple base changes by the method of Jukes & Cantor (1969). Unknown bases and gaps were not considered in the numerical analysis. A phylogenetic tree was constructed using the neighbour-joining method of Saitou & Nei (1987).

Phylogenetic analysis for "Candidatus Helicobacter suis"

[0098] Phylogenetic analysis was performed using the GeneCompar 2.0 software package (Applied Maths). All five "Candidatus Helicobacter suis" sequences and the sequences of strains belonging to the same phylogenetic lineage (Table 3) were aligned. Using the neighbour-joining method, a phylogenetic tree and corresponding similarity matrix was constructed. Unknown bases and gaps were not considered in the numerical analysis

"Candidatus Helicobacter bovis" specific PCR-assay

[0099] "Candidatus Helicobacter bovis" specific oligonucleotides R574f and R832r (Table 2), were selected from variable rDNA regions of the sequences determined by direct and indirect sequence analysis. These primers comprised a 259 bp 16S rDNA-fragment and were used to develop a specific PCR and an in situ hybridisation procedure. Within this fragment an internal "Candidatus Helicobacter bovis" specific probe R628f (Table 2) was selected for southern blot hybridisation purposes.

[0100] PCR reactions were performed in a volume of 50 µl containing 10 mM Tris HCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl₂ 200 μM of each deoxynucleoside triphosphate, 1.5 U of AmpliTaq Gold, and 25 pmol of both forward and reverse primer. PCR amplification was performed under the following conditions: 9 min preincubation at 94 °C to activate AmpliTaq Gold, followed by 40 cycles of 30 s at 94 °C, 45 s at 60 °C and 90 s at 72 °C. Final extension was performed for 5 min at 72 °C. All gastric DNA-extracts were tested with this PCR. For positive controls, plasmid DNA was used from the cloned 16S rDNA fragments (R2XA). As a negative control a DNA-extract was used from an abomasum lacking of Helicobacter-like organisms.

[0101] Specificity of the "Candidatus Helicobacter bovis" specific oligonucleotides R574f and R832r was tested by PCR using DNA-extracts of 15 different Helicobacter strains and a Wolinella succinogenes strain (Table 1).

[0102] PCR products were separated on 2% agarose gels, stained with ethidium bromide and transferred to Hybond N+ (Amersham) by electro-elution. Southern blot hybridisation was performed with the [\gamma^{32P}] ATP labelled probe R628f (Table 2) according to standard procedures (Amersham Pharmacia Biotech). In order to ensure the specificity of the probe hybridisation, blots were washed twice with 0.1 x SSC + 0.1 % SDS at 55°C.

"Candidatus Helicobacter suis" specific diagnostic PCR-assay and Southern blot hybridisation

[0103] "Candidatus Helicobacter suis"- specific primers (V832f and V1261r) were selected from variable rDNA regions of the sequences determined by direct and indirect sequence analysis, comprising a ~0.4-Kb 16S rDNA-fragment. Within this fragment a "Candidatus Helicobacter suis"-specific probe V1000f (Table 2) was selected for hybridisation purposes. PCR reactions were performed in a volume of 50 pl containing 10 mM Tris HCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl₂, 200 µM of each deoxynucleoside triphosphate, 1.5 U of AmpliTaq Gold (Perkin-Elmer), and 25 pmol of both forward and reverse primer (Eurogentec). PCR amplification was performed under the following conditions: 9 min preincubation at 94 °C to activate AmpliTaq Gold, followed by 40 cycles of 30 s at 94 °C, 45 s at 60 °C and 90 s at 72 °C. Final extension was performed for 5 min at 72 °C. As a positive control, plasmid DNA was used from the cloned 16S rDNA fragments (V2B, V4A). As a negative control DNA extracted from the stomach of a gnotobiotic piglet was used.

[0104] To test the specificity of the primers, PCR was also performed on DNA-extracts of 15 different *Helicobacter* species. (Table 1).

[0105] PCR products were separated on 2% agarose gels, stained with ethidium bromide and transferred to Hybond N+ (Amersham) by electro-blotting. Southern blot hybridisation was performed with the [γ^{32P}] ATP-labelled probe V1000f according to standard procedures (Amersham Pharmacia Biotech). In order to ensure the specificity of the probe hybridisation, blots were washed twice with 0.1 x SSC + 0.1 % SDS at 55°C.

In situ hybridisation for "Candidatus Helicobacter bovis"

20

50

[0106] In order to make the link between the "Candidatus Helicobacter bovis" specific probe and the bacterial spiral cells observed in the tissue sections, an in situ hybridisation procedure was performed on the formalin fixed and paraffin embedded pyloric samples of each animal. A 259-base digoxigenin-labeled probe was synthezised using the "PCR Dig Probe Synthesis Kit" (Boehringer Mannheim) in combination with the "Candidatus Helicobacter bovis" specific primers R574f and R832r (Table 2). PCR conditions were identical to those described in the diagnostic PCR assay. The resulting PCR product was purified using the "High Pure PCR Product Purification Kit" (Boehringer Mannheim) following manufacturer's instructions.

[0107] To avoid RNA'se activity, all glassware was heated at 180°C for 3 hours. Further precautions included the use of RNA'se-free water, and the use of sterile disposable materials whenever possible. Sections of the paraffinembedded tissues (4 μm thick) were mounted on RNA'se-free, APES-coated slides (Sigma-Aldrich) and fixed by heating for 1 hour at 60 °C. The sections were deparaffinized in xylene (2x5 min), rehydrated through graded ethanol, and washed twice in PBS for 5 min each. Sections were then treated with proteinase K (DAKO) for 15 min each at 37 °C in a humidified chamber. The enzyme was inactivated by treatment with 0.2 % glycine in PBS for 3 min. Sections were washed twice in PBS for 5 min each, dehydrated in graded ethanol and air dried. Tissues were circumlined with a DAKO Pen (DAKO) to avoid liquid spillage during further processing and to ensure an efficient sealing of the coverslip. For the hybridisation step, sections were covered with 5 to 15 pl solution, containing 5 ng/μl labeled probe in 50 % deionized formamide, 2x SCC, 10 % dextran sulfate, 0.25 μg/μl yeast t-RNA, 0.5 μg/μl heat denatured salmon sperm DNA, and tx Denhart's solution. Sections were covered with a piece of coverslip to avoid evaporation. To denature the probe, sections were heated for 10 min at 95 °C and chilled on ice for 10 min. Slides were then hybridised overnight at 37 °C in a humidified chamber. To remove the unbound probe, the coverslips were removed and the sections were washed in 2x SCC and 1x SCC at room temperature for 10 min each followed by two washes of 0.3x SCC at 40 °C for 10 min and at room temperature for 10 min, respectively.

[0108] All steps involving the immunological detection of the hybridised probe were performed at room temperature. The sections were treated first for 30 minutes in Buffer 1 (100mM Tris HCI, 150 mM NaCI, pH 7.5) containing 2 % normal goat serum and 0.3 % Triton X-100. An incubation step followed for 3 hours with diluted (1:30 in the same solution) anti-digoxigenin antibodies conjugated to horse-radish peroxidase (DAKO). Unbound antibodies were washed gently on a shaker with Buffer 1 followed by Buffer 2 (100 mM Tris HCI, 100 mM NaCI, 50 mM MgCl₂, pH 9.5) for 15 min each. To optimize the detection level, the "Tyramid Signal Amplification System" (NEN Life Science Products) was applied on each section, following manufacturer's instructions. The hybridised probe was then visualized, using H₂O₂ with diaminobenzidine as a chromogen (Fast DAB Tablet Set, Sigma-Aldrich). Thereafter the sections were counterstained with Mayer's hematoxylin and mounted.

In situ hybridisation for "Candidatus Helicobacter suis"

[0109] To link the derived sequence to the corresponding organism, an *in situ* hybridisation procedure was performed on the formalin fixed and paraffin embedded pyloric samples of each animal. A -0.4 Kb digoxigenin-labeled probe was synthezised using the "PCR Dig Probe Synthesis Kit" (Boehringer Mannheim) in combination with the "Candidatus

Helicobacter suis"-specific primers *V832f* and *V1261r* (Table 2). The rest of the method was performed as mentioned above for "Candidatus Helicobacter bovis".

Nucleotide sequence accession numbers

[0110] Accession numbers of the 16S rDNA gene sequences used for the phylogenetic analysis are listed in table 3. [0111] The 16S rDNA nucleotide sequence of "Candidatus Helicobacter bovis" has been deposited in the Genbank database under accession number AF127027.

[0112] The 16S rDNA nucleotide sequence of "Candidatus Helicobacter suis" has been deposited in the Genbank database under accession number AF127028.

Results

5

15

Urease activity and immunohistochemical evaluation for the cattle samples

[0113] Urease activity was observed in all pyloric samples (7/7). In the fundic samples, urease activity was absent (0/7). Spiral immunostained organisms were observed in the pyloric samples of all animals. The highest concentration was seen in the most distal pyloric samples. They were mostly situated in the mucus layer and in the lumen of the proximal part of the gastric crypts where they formed small clusters. In some samples, coccoid organisms, were observed between the spiral bacteria, which also crossreacted with the *H. pylori* polyclonal antibodies. In the positive control only *Helicobacter pylori* - like bacteria were stained while in the negative controls no staining was observed.

Urease activity and Immunohistochemical evaluation for the pig samples

[0114] Tightly coiled immunostained spiral organisms, morphologically similar to "Gastrospirillum suis" (Queiroz et al., 1990) were observed in all stomachs (5/5), which was consistent with the presence of urease activity (5/5). The gastrospirillum-like organisms were seen laying separately or in small clusters with a patchy distribution over the sample, and were found mostly in the superficial part of the gastric crypts. Some bacteria revealed bipolar immunostained flagellae. Immunostained coccoid-like organisms were also observed in the pyloric crypts. In the positive control, only Helicobacter pylori-like bacteria were stained while in the negative controls no labeling was observed.

Transmission electronmicroscopy for "Candidatus Helicobacter bovis"

[0115] Large groups of multiple spiral bacteria were seen within the crypts of the gastric mucosa. There was no obvious cell association between the bacteria and the gastric cells, neither were there any intracellular bacterial inclusions. The bacteria were helical-shaped and had 1-3 complete spiral turns per cell with a wavelength of approximately 750 nm. Cells were 1 - 2.5 µm long and 0.3 µm wide. At least four flagelles were seen at one end. It was unclear whether these flagellae were uni- or bipolar, neither could the presence or absence of a flagella sheath be noted.

Transmission electronmicroscopy for "Candidatus Helicobacter suis"

[0116] Within the gastric crypts of the antral region, longitudinal and transversal sections of spiral organisms could be seen. All bacteria had the same characteristic tightly coiled appearance, typical of Helicobacters with the gastrospirillum morphology. The length of cells varied from 2.5 to 3.5 pm and they were approximately 0.6 pm wide. Multiple complete spiral turns with a wavelength of \pm 600 nm were seen in all longitudinal sections. As only few longitudinal sections of the bacteria were obtained, the number and implantation of the flagellae could not be studied although partial fragments were observed. The bacteria were not seen intracellularly nor was there any obvious cell association with the surrounding epithelial cells. The presence or absence of a flagella sheath could not be noted.

50 Amplification, cloning and sequencing of Helicobacter-like 16S rDNA fragments from cattle samples

[0117] PCR amplification of the 16S rRNA gene using the *H33f and H1368r* primers, produced a fragment of the expected size range (± 1.3 Kbp) in all seven samples examined. Partial direct sequence analysis of four of these bands (R2, R3, R5, R6) and subsequent database comparison (BLAST) confirmed the PCR products to be *Helicobacter*-like 16S rDNA fragments. Four PCR products (R2, R3, R5, R6) were cloned followed by partial screening. In one clone a *Clostridium*-like 16S rDNA fragment was found. In all other clones *Helicobacter*-like fragments were inserted. The 16S rDNA sequences of four clones derived from different animals (R2XA, R3XA, R5XE, R6XA), were determined. Additional sequences of three other samples (R13, R27, R28) were characterized by direct sequence analysis using the

primers H33f, H1368r, H390f and H1053r.

Amplification, cloning and sequencing of Helicobacter-like 16S rDNA fragments from pig samples

5 [0118] Several combinations of PCR primers yielded sequences of the expected size. The length of these amplified fragments varied between 1.2 Kb (H274f-1492RPL) and 1.4 Kb (H61f-1492RPL). The latter primer combination was used to examine all samples. The 16S rDNA sequences of two different clones were determined (V2BXA, V4AXA). Additional sequences of 3 other samples (V5, V14, V19) were determined by direct sequence analysis.

50 Sequences and phylogenetic analysis for cattle samples

[0119] Sequence length varied from 1267 to 1335 basepairs. Pairwise comparisons between these 7 sequences revealed a sequence homology of more than 99 %. One reference sequence (R2XA) of 1335 bp (see Figure 1: SEQ ID NO 1) was selected for phylogenetic evaluation. A similarity matrix based on comparisons of 16S rRNA sequences of 23 strains representing all validly named *Helicobacter* species, "*Helicobacter heilmannii*" (type1, type2), *Campylobacter jejuni, Arcobacter cryaerophilus* and *Wollinella succinogenes* was calculated. By this analysis it was shown that the sequences of the bovine *Helicobacter*-like organisms form a distinct group within the genus *Helicobacter* with *Helicobacter bilis* as closest taxonomic relative (level of similarity 92.8 %). The reference sequence was clearly distinct from sequences belonging to other superfamily VI genera, as shown by a 85.6, 85.1 % and 89.7 % homology with *Campylobacter jejuni, Arcobacter butzleri* and *Wolinella succinogenes* respectively. A phylogenetic tree based on this analysis is shown in Fig. 3A.

Sequences and phylogenetic analysis for pig samples

[0120] The 5 sequences that were determined had lengths varying from 1345 to 1421 basepairs. Pairwise comparisons between 1345 bp consensus fragments of these sequences, revealed a minimum homology of 97.7 %. One reference sequence of 1421 bp, obtained from PCR product 2BXA (see Figure 2: SEQ ID NO 2), was used for phylogenetic analysis. A similarity matrix was calculated based on comparisons of 16S rDNA sequences of all *Helicobacter* species, "*Helicobacter heilmannii*" type 1 and type 2, *Campylobacter jejuni, Arcobacter butzleri* and *Wollinella succinogenes* (Table 3). In this analysis, the sequence of the porcine gastrospirillum-like organism formed a distinct subgroup within the *Helicobacter* lineage together with other gastrospirilla: *Helicobacter felis*, H. *bizzozeronii*, H. salomonis, "H. heilmannii" type 1 and type 2. The sequence was highly similar to that of "H. heilmannii" type 1 (level of similarity 99.5 %). The similarity level of other gastrospirillum-like bacteria, H. *felis*, H. *bizzozeronii*, H. salomonis and H. heilmannii type 2 was 96.4 %, 96.5 %, 96.6 % and 96.8 % respectively. The reference sequence was clearly distinct from sequences belonging to other superfamily VI-genera, as shown by a 86.2 %, 84.7 % and 89.6 % homology with *Campylobacter jejuni*, *Arcobacter butzleri* and *Wolinella succinogenes* respectively.

Diagnostic PCR-assay for "Candidatus Helicobacter bovis"

40

45

55

[0121] A phylogenetic tree based on this analysis is shown in Figure 3B.

[0122] A 259 base fragment was produced for all seven stomach samples with primer pair *R574f-R832r*. All PCR products crosshybridised with the *R628f* probe after southern blot hybridisation. No amplification product was obtained using DNA preparations from any of the *Helicobacter* strains, nor from the bovine *Wolinella succinogenes* strain (Table 1). The positive control yielded a ~0.3 Kb product as expected. There was no DNA-amplification using the negative control material.

"Candidatus Helicobacter suis"-specific PCR and Southern blot hybridisation

[0123] Amplification of *Helicobacter* DNA using the primers *V832f* and *V1261r* produced a 433-base fragment from all five stomach samples. All PCR products hybridised with the *V1000f* probe after Southern blot hybridisation. No amplification product was obtained using DNA preparations from any of the *Helicobacter* strains including *H. felis*, *H. bizzozeronii* and *H. salomonis* (Table 1), nor from the negative control. PCR with the cloned reference material (2BXA) yielded a ~0.4 Kb product as expected.

In situ hybridisation for "Candidatus Helicobacter bovis"

[0124] In situ hybridisation of the bovine Helicobacter-like bacteria with the "Candidatus Helicobacter bovis"- specific probe was seen in sections from all (7/7) stomachs. These bacteria were observed as darkbrown spiral organisms,

organised in small clusters, situated in the gastric crypts of the pyloric part of the abomasal stomach. Not all spiral bacteria were stained. Sometimes a faint background, seen as fine stained strings, was observed in the surrounding cells. This background staining was also observed in the *H. pylori*-infected mouse stomach which was used as a negative control. The *H. pylori* cells in this control though did not hybridise with the "Candidatus Helicobacter bovis"-specific probe.

In situ hybridisation for "Candidatus Helicobacter suis"

[0125] In situ hybridisation of "Gastrospirillum suis"-like bacteria with the "Candidatus Helicobacter suis"- specific probe was seen in sections from all (5/5) stomachs. Bacteria were observed as darkbrown spiral organisms in the superficial mucus layer and the gastric crypts. In some cases, helical organisms located deeply in the crypts, were weakly labeled or were negative. Sometimes a faint background, seen as fine stained strings, was observed in the surrounding cells. This background staining was also observed in the H. pylori-infected mouse stomach which was used as a negative control. The H. pylori cells in this control though did not hybridise with the "Candidatus Helicobacter suis"- specific probe.

REFERENCES

- [0126] Rappin, J. (1881). Contribution à l'étude de bactéries de la bouche à l'état normal. Ph.D. thesis. Collège de France, Nantes.
- [0127] Bizzozero, G. (1893). Ueber die schlauchformigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut. *Arch Mikrosk Anat* 42, 82.
- [0128] Salomon, H. (1896). Ueber das Spirillum des Säugentiermagens und sein Verhalten zu den Belegzellen. Zentralb! Bakt 19, 433.
- [0129] Marshall, B.J. & Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1(8390), 1311-1315.
 - [0130] Cover, T.L. & Blaser M.J. (1992). Helicobacter pylori and gastroduodenal disease. Annu Rev Med 43, 135-145.
 - [0131] Blaser, M.J., Perez-Perez, G.I., Lindenbaum, J., Schneldman, D., Van Deventer, G., Marin-Sorensen, M. & Weinstein, W.M. (1991). Association of infection due to *Helicobacter pylori* with specific upper gastrointestinal pathology. *Rev Infect Dis* 13 Suppl 8, S704-708.
 - [0132] Parsonnet, J., Friedman, G.D., Vandersteen, D.P., Chang, Y., Vogelman, J.H., Orentreich, N. & Sibley, R.K. (1991). *Helicobacter pylori* infection and the risk of gastric carcinoma [see comments]. *N Engl J Med* 325, 1127-1131.
- 35 [0133] On, S.L. (1996). Identification methods for campylobacters, Helicobacters, and related organisms. Clin Microbiol Rev 9, 405-422.
 - [0134] Franklin, C.L., Beckwith, C.S., Livingston, R.S., Riley, L.K., Gibson, S.V., Besch-Williford, C.L. & Hook, R.R., Jr. (1996). Isolation of a novel *Helicobacter* species, *Helicobacter cholecystus* sp. nov., from the gallbladders of Syrian hamsters with cholangiofibrosis and centrilobular pancreatitis. *J Clin Microbiol* 34, 2952-2958.
- 40 [0135] Mendes, E.N., Queiroz, D.M., Dewhirst, F.E., Paster, B.J., Moura, S.B. & Fox, J.G. (1996). Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Bacterial 46, 916-921.
 - [0136] Jalava, K., Kaartinen, M., Utriainen, M., Happonen, I. & Hanninen, M.L. (1997). Helicobacter salomonis sp. nov., a canine gastric Helicobacter sp. related to Helicobacter felis and Helicobacter bizzozeronii. hit J Syst Bacteriol 47, 975-982.
- 45 [0137] Trivett-Moore, N.L., Rawlinson, W.D., Yuen, M. & Gilbert, G.L. (1997). Helicobacter westmeadii sp. nov., a new species isolated from blood cultures of two AIDS patients. J Clin Microbiol 35, 1144-1150.
 - [0138] Shen, Z., Fox, J.G., Dewhirst, F.E., Paster, B.J., Foltz, C.J., Yan, L., Shames, B. & Perry, L. (1997). *Helicobacter rodentium* sp. nov., an urease-negative *Helicobacter* species isolated from laboratory mice. *Int J Syst Bacteriol* 47, 627-634.
- [0139] Vandamme, P., Falsen, E., Rossau, R., Hoste, B., Segers, P., Tytgat, R. & De Ley, J. (1991). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41, 88-103.
 - [0140] Dent, J.C., McNulty, C.A.M., Uff, J.C., Wilkinson, S.P. & Gear, M.W.L. (1987). Spiral organisms in the gastric antrum [Letter]. Lancet 2 (8550), 96.
- 65 [0141] Günther, H. & Schulze, F. (1992). Histologische Untersuchungen zum Vorkommen von Campylobacter-ahnlich geformten Keimen im Labmagen von Kälbern. Zentralbl Veterinarmed B 39, 737-745.
 - [0142] Haringsma, P.C. & Mouwen, J.M. (1992). Mogelijke betekenis van spirilvormige bacteriën bij het ontstaan van lebmaagzweren bij het volwassen rund. *Tijdschr Diergeneeskd* 117, 485-487.

- [0143] Seidel, K.E., Kampschulte, J., Lehn, N. & Bauer, J. (1996). *Helicobacter pylori:* Antikörper in Seren von Schweinen und Kälbern. *Berl Munch Tierarztl Wschr* 109, 434-439.
- [0144] Korhonen, H., Syväoja, E.-L., Ahola-Lutila, H., Sivelä, S., Kopola, S., Husu, J. & Kosunen, T.U. (1995). Bactericidal effect of bovine normal and immune serum, colostrum and milk against *Helicobacter pylori. J Appl Bacteriol* 78, 655-662.
- [0145] Jelinski, M.D., Ribble, C.S., Chirino-Trejo, M., Clark, E.G. & Janzen, E.D. (1995). The relationship between the presence of *Helicobacter pylori*, *Clostridium perfringens* type A, *Campylobacter* spp., or fungi and fatal abomasal ulcers in unweaned beef calves. *Can Vet J* 36, 379-382.
- [0146] Braun, U., Anliker, H., Corboz, L. & Ossent, P. (1997). Untersuchungen über das Vorkommen von spiralformigen Bakterien im Labmagen das Rindes. *Schweiz Arch Tierheilkd* 139, 507-516.
- [0147] Al-Mashat, R.R. & Taylor, D.J. (1980). Campylobacter spp. in enteric lesions in cattle. Vet Rec 107, 31-34. [0148] Mills, K.W., Johnson, J.L., Jensen, R.L., Woodard, L.F. & Doster, A.F. (1990). Laboratory findings associated with abomasal ulcers/tympany in range calves. J Vet Diagn Invest 2, 208-212.
- [0149] Boom, R., Sol, C.J.A., Salimans, M.M.M., Jansen, C.L., Wertheim van Dillen, P.M.E. & van der Noorda J. (1990). Rapid and simple method for purification of nucleic acids. *J Clin Microbiol* 28, 495-503.
 - [0150] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zheng Zhang, J.Z., Miller W. & Lipman D.J. (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". *Nucleic Acids Res* 25, 3389-3402.
 - [0151] McNuity, C.A., Dent, J.C., Curry, A., Uff, J.S., Ford, G.A., Gear, M.W. & Wilkinson, S.P. (1989). New spiral bacterium in gastric mucosa [see comments]. J Clin Pathol 42, 585-591.
- [0152] Solnick, J.V., O'Rourke, J., Lee, A., Paster, B.J., Dewhirst F.E. & Tompkins L.S. (1993). An uncultured gastric spiral organism is a newly identified *Helicobacter* in humans. *J Infect Dis* 168, 379-385.
 - [0153] Andersen, L.P., Norgaard, A., Holck, S., Blom, J. & Elsborg, L. (1996). Isolation of a "Helicobacter heilmanii"-like organism from the human stomach [letter]. Fur J Clin Microbiol Infect Dis 15, 95-96.
 - [0154] Jukes, T. & Cantor, C. (1969). Evolution of protein molecules. In *Mammalian protein metabolism*, vol 3. Edited by H. Munro. New York: Academic Press.
 - [0155] Saltou, N. & Nel, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* **4**, 406-425.
 - [0156] Wolin, M.J. & Jacobs, N.J. (1961). Cytochrome-producing anaerobic vibrio, *Vibrio succinogenes*, sp. nov. *J Bacteriol* 81, 911-917.
- [0157] Paster, B.J. & Canale-Parola, E. (1985). Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl Environ Microbiol 50, 212-219.
 - [0158] Stanton, T.B. & Canale-Parola, E. (1980). *Treponema bryantii sp. nov.*, a rumen spirochete that interacts with cellulolytic bacteria. *Archiv Microbiol* 127, 145-156.
- [0159] Lee, A., Hazell, S.L., O'Rourke, J. & Kouprach, S. (1988). Isolation of a spiral-shaped bacterium from the cat stomach. *Infect Immun* 56, 2843-2850.
 - [0160] O'Rourke, J., Solnick, J., Lee, A. & Tompkins, L. (1992). Helicobacter heilmanii (previously Gastrospirillum), a new species of Helicobacter in humans and animals [abstract]. J Med Science 101, 31.
 - [0161] Hänninen, M.-L., Happonen, I., Saari, S. & Jalava, K. (1996). Culture and characteristics of *Helicobacter bizzozeronii*, a new canine gastric *Helicobacter sp* [published erratum appears in Int J Syst Bacteriol 1996 Jul;46(3): 839]. Int J Syst Bacteriol 46, 160-166.
 - [0162] Queiroz, D.M.M., Rocha, G.A., Mendes, E.N., Lage, A.P., Carvalho, A.C.T. & Barbosa, A.J.A. (1990). A spiral microorganism in the stomach of pigs. *Vet Microbiol* 24, 199-204.
 - [0163] Mendes, E.N., Queiroz, D.M.M., Rocha, G.A., Moura, S.B., Leite, V.H.R. & Fonseca, M.E.F. (1990). Ultrastructure of a spiral micro-organism from pig gastric mucosa ("Gastrospirillum suis"). J Med Microbiol 33, 61-66.
- 45 [0164] Mendes, E.N., Queiroz, D.M.M., Rocha, G.A., Nogueira, A.M., Carvalho, A.C., Lage, A.P. & Barbosa, A. J. (1991). Histopathological study of porcine gastric mucosa with and without a spiral bacterium ("Gastrospirillum suis"). J Med Microbiol 35, 345-348.
 - [0165] Barbosa, A.J., Silva, J.C., Nogueira, A.M., Paulino, Junior, E. & Miranda, C.R. (1995). Higher incidence of *Gastrospirillum* sp. in swine with gastric ulcer of the pars oesophagea. *Vet Pathol* 32, 134-139.
- [0166] Queiroz, D.M.M., Rocha, G.A., Mendes, E.N., De Moura, S.B., De Oliveira, A.M. & Miranda, D. (1996). Association between *Helicobacter* and gastric ulcer disease of the pars esophagea in swine [see comments]. *Gastro-enterology* 111, 19-27.
 - [0167] Moura, S.B., Queiroz, D.M., Mendes, E.N., Nogueira, A.M. & Rocha, G.A. (1993). The inflammatory response of the gastric mucosa of mice experimentally infected with "Gastrospirillum suis". J Med Microbiol 39, 64-68.
- [0168] Mendes, E.N., Queiroz, D.M.M., Coimbra, R.S., Moura, S.B., Barbosa, A.J. & Rocha G.A. (1996). Experimental infection of Wistar rats with "Gastrospirillum suis". J Med Microbiol 44, 105-109.
 - [0169] Seymour, C., Lewis, R.G., Kim, M., Gagnon, D.F., Fox, J.G., Dewhirst, F.E. & Paster, B.J. (1994). Isolation of *Helicobacter* strains from wild bird and swine feces. *Appl Env Microbiol* 60, 1025-1028.

- [0170] Dewhirst, F.E., Seymour, C., Fraser, G.J., Paster, B.J. & Fox, J.G. (1994). Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp.nov. Int J Syst Bacteriol 44, 553-560. [0171] On, S.L.W., Bloch, B., Holmes, B., Hoste, B. & Vandamme P. (1995). Campylobacter hyointestinalis subsp. Lawsonii subsp. nov. isolated from the porcine stomach, and an emended description of Campylobacter hyointestinalis,
- Int J Syst Bacteriol 45, 767-774.
- [0172] Suarez, D.L., Wesley, I.V. & Larson, D.J. (1997). Detection of Arcobacter species in gastric samples from swine. Vet Microbiol 57, 325-336
- [0173] Eaton, K.A., Radin, M.J., Kramer, L., Wack, R., Sherdino, R., Krakowka, S., Fox, J.G. & Morgan, D.R. (1993). Epizootic gastritis associated with gastric spiral bacilli in cheetas (Acinonyx jubatus). Vet Pathol 30, 55-63.
- [0174] Jakob, W., Stolte, M., Valentin, A. & Schroder, H.D. (1997). Demonstration of Helicobacter pylori-like organisms in the gastric mucosa of captive exotic carnivores. J Comp Pathol 116, 21-33.
 - [0175] Stackebrandt, E. & Goebel, B.M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Sys Bacter 44, 846-849.
 - [0176] Murray, R.G., Stackebrandt, E. (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procarvotes. Int J Syst Bacteriol 45, 186-187.
 - [0177] Murray, R.G.E. & Schleifer, K.H. (1994). Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44, 174-176.
 - [0178] Stuyver L, Rossau R, Wyseur A, et al. (1993) Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J. Gen. Virol. 74: 1093-1102.
- [0179] Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
 - [0180] Matsukura M, Shinozuka K, Zon G, Mitsuya H, Reitz M, Cohen J, Broder S (1987) Phosphorothicate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 84(21):7706-10.
- [0181] Miller P, Yano J, Yano E, Carroll C, Jayaram K, Ts'o P (1979) Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry 18(23):513-43.
 - [0182] Nielsen P, Egholm M, Berg R, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497-500.
 - [0183] Nielsen P, Egholm M, Berg R, Buchardt O (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic-Acids-Res. 21(2):197-200.
 - [0184] Asseline U, Delarue M, Lancelot G, Toulme F, Thuong N (1984) Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 81(11):3297-301.

Table 1:

Bacterial strains used for the evaluation of the "Candidatus Helicobacter bovis" specific PCR						
Taxon	Source	Collection N° or Strain				
Helicobacter acinonychis	Cheetah gastric mucosa	LMG 12684 ^T				
Helicobacter cinaedi	Human feces	LMG 7543 ^T				
Helicobacter sp. strain CLO-3	Human rectal swab	LMG 7792				
Helicobacter fennelliae	Human feces	LMG 11759				
Helicobacter pametensis	Tern feces	LMG 12678 ^T				
Helicobacter sp. strain Bird B	Bird feces	LMG 12679				
Helicobacter sp. strain Bird C	Bird feces	LMG 13642				
Helicobacter hepaticus	Murine liver	LMG 16316 ^T				
Helicobacter pullorum	Chicken lower bowel	LMG 16318				
Helicobacter mustelae	Ferret gastric mucosa	LMG 18044 ^T				
Helicobacter canis	Canine feces	LMG 18086 ^T				
Helicobacter muridarum	Murine intestinal mucosa	LMG 14378 ^T				
Helicobacter bizzozeronii	Canine gastric mucosa	Strain 12A				
Helicobacter salonionis	Canine gastric mucosa	CCUG 37845 T				
Helicobacter felis	Feline gastric mucosa	CCUG 28539 T				

35

40

45

Table 2: Oligonucleotide primers and probe used for PCR amplification, sequencing of genes coding for 16S rRNA and Southern blot hybridisation

5	

10	Primers	Sequences (5'-3')	Escherichia coli 16S rRNA position		
	H33f	ACG CTG GCG GCG TGC CTA ATA CAT GCA AGT CG		(SEQ ID	
15	H1368r	GGT GAG TAC AAG ACC CGG GAA CGT ATT CAC CG	1368-1388 (SEQ 1 NO 4)		
20	H390f	GCA GCA ACG CCG CGT GGA GGA TGA		(SEQ ID	
25	H1053r ACG AGC TGA CGA CAG CCG TG		1053-1072 (SEQ ID NO 6)		
3 0	R574f	AGA GCG TGT AGG CGG AAT GAT		(SEQ ID	
	R628f	AAC TGC GTT TGA AAC TAT CAT T		(SEQ ID	
35	H61f	TGC AAG TCG AAC GAT GAA GC		(SEQ ID	
10	H274f	AGG CTA TGA CGG GTA TCC GGC CTG AGA		(SEQ ID	
15	1492RPL	GCC GCC CGG GTT ACC TTG TTA CGA CTT		(SEQ ID	
50	V832f	TTG GGA GGC TTT GTC TTT CCA		0 (SEQ ID) 12)	
~	V1261r	GAT TAG CTC TGC CTC GCG GCT		1 (SEQ ID)	

5	V1000f	AGG AAT TCC CTA GAA ATA GGG	1000-1020 (SEQ ID NO 26)
10	R832r	CGA GGA GAC AAG CCC CCC GA	832-851 (SEQ ID NO 14)

15			
		Table 3:	
	Sources and accession nu	umbers of strains used for ph	ylogenetic analysis.
20	Taxon	Source	Genbank Accession Nº
	"Gastrospirillum hominis" type 1	Human gastric mucosa	L10079
	"Gastrospirillum hominis" type 2	Human gastric mucosa	L10080
	Helicobacter acinonychis	Cheetahgastric mucosa	M88148
25	Helicobacter bilis	Murine liver	U18766
	Helicobacter bizzozeronii	Canine gastric mucosa	Y09404
	Helicobacter canis	Canine feces	L13464
	Helicobacter cholecystus	Murine liver	U46129
30	Helicobacter cinaedi	Human feces	M88150
**	Helicobacter felis	Feline gastric mucosa	M57398
	Helicobacter fennelliae	Human feces	M88154
	Helicobacter hepaticus	Murine liver	U07574
	Helicobacter muridarum	Murine intestinal mucosa	M80205
35	Helicobacter mustelae	Ferret gastric mucosa	M35048
	Helicobacter nemestrinae	Macaque gastric mucosa	X67854
	Helicobacter pametensis	Swine feces	M88155
	Helicobacter pullorum	Broiler chicken cecum	L36141
40	Helicobacter pylori	Human gastric mucosa	M88157
	Helicobacter salomonis	Canine gastric mucosa	Y09405
	Helicobacter trogontum	Rat colon mucosa	U65103
	Helicobacter rodentium	Murine intestinal mucosa	U96297
	Arcobacter butzleri	Human	L14626
45	Campylobacter jejuni	Human feces	L14630
	Wolinella succinogenes	Cattle abomasal mucosa	M88159

Annex to the application documents - subsquently filed sequences listing

[0185]

55

```
5
                                               SEQUENCE LISTING
                <110> Universiteit Gent
10
                <120> New gastric Helicobacter 16 S rDNA sequences from
                      cattle and pigs and their use for detection and typing
                      of Helicobacter strains
                <130> EP.99.UG.01.DUCA
15
                <140> 99870035.5
                <141> 1999-02-25
                <160> 25
                <170> PatentIn Ver. 2.1
20
                <210> 1
                <211> 1335
                <212> DNA
                <213> Helicobacter sp.
25
                <400× 1
                acgctggcgg cgtgcctaat acatgcaagt cgaacgatga aatttctagc ttgctaggaa 60
                tggattagtg gcgcacgggt gagtaacgca taggaatgtg ccctttagtc tgggatagcc 120
                accggaaaca gtgattaata ctagatacgc cctaaggggg aaagaatttc gctaaaggat 180
                cagectatgt cetateaget agttggtgag gtaaatgett accaaggeta tgacgggtat 240
                ccqqcctgaq agggtgaacg gacacaccgg aactgagaca cggtccggac tcctacggga 300
30
                ggcagcagta gggaatattg ctcaatgggg gaaaccctga agcagcaacg ccgcgtggag 360
                gatgaaggtt ctaggattgt aaactccttt tctgagagaa gataatgacg gtatctcagg 420
                aataagcacc ggctaactcc gtgccagcag ccgcggtaat acggagggtg caagcgttac 480
                toggaatcac tgggcgtaaa gagcgtgtag gcggaatgat aagtcaggcg tgaaatcccg 540
                tggcttaact gcggaactgc gtttgaaact atcattctgg agtgtgggag aggcaggtgg 600
                aactottggt gtaggggtaa aatoogtaga tatoaagaag aatactoatt gogaaggoga 660
35
                cctgctggaa catcactgac gctgatgcgc gaaagcgtgg ggagcaaaca ggattagata 720
                ccctggtagt ccacgcccta aacgatggat gctaattgtc ggggggcttg tctcctcggt 780
                aatgcageta acgcattaag catcccgcct ggggagtacg atcgcaagat taaaactcaa 840
                aggaatagac ggggacccgc acaagcggtg gagcatgtgg tttaattcga agatacgcga 900
                agaaccttac ccaggettga cattgatgga atctacccca aaaggtggag tgccagttta 960
                ctggagcctg aaaacaggtg ctgcacggct gtcgtcagct cgtgtcgtga gatgttgggt 1020
40
                taagtcccgc aacgagcgca accetegtcc ttagttgcca tcagttcggc tgggcactct 1080
                aaggagactg cettegtaag gaggaggaag gegaggatga egteaagtea teatggeeet 1140
                tatgtccggg gctacgcacg tgctacaatg ggatgtacaa agagatgcaa tgtcgtaaga 1200
                tgqaqcaaaa ctcaaaaaca tctcccagtt cggattgtgg tctgcaactc gaccacatga 1260
                agcaggaatc gctagtaatc gtgaatcagc catgtcacgg tgaatacgtt cccgggtctt 1320
                gtactcacca atcac
45
                <210>2
                 <211> 1423
                <212> DNA
                <213> Helicobacter sp.
50
                tgcaagtcga acgatgaagc ctagcttgct aggttgatta gtggcgcacg ggtgagtaat 60
                gcatagatga catgcccttt agtttggaat agccactaga aatggtgatt aataccaaat 120
```

19

actaccttac gagggaaaga tttatcgcta aaggattggt ctatgtccta tcagcttgtt 180 ggtqaqgtaa aggctcacca aggctatgac gggtatccgg cctgagaggg tgagcggaca 240

```
cactggaact gagacacggt ccagactect acgggaggca gcagtaggga atattgctca 300
          atgggggaaa ccctgaagca gcaacgccgc gtggaggatg aaggttttag gatcgtaaac 360
5
          tccttttgtt agagaagata atgacggtat ctaacgaata agcaccggct aactccgtgc 420
          cagcageege ggtaataegg agggtgeaag egttaetegg aateaetggg egtaaagagt 480
          gcgtaggcgg ggaggacaag tcaggtgtga aatcctatgg cttaaccata gaactgcatt 540
          tgaaactatc cttctggagt gtgggggagg taggtggaat tcttggtgta gggggtaaaa 600
          tccqtagaga tcaagaggaa tacccattgc gaaggcgacc tgctggaaca tcactgacgc 660
          tgattgcacg aaagcgtggg gagcaaacag gnattagata ccctggtagt ccacgcccta 720
10
          aacgatggat getagttgtt gggaggettt gtetttecag taatgeagst acgeettaag 780
          catcccgcct ggggagtacg gtcgcaagat taaaactcaa aggaatagac ggggacccgc 840
          acaagcggtg gagcatgtgg tttaattcga agttacacga agaaccttac ctaggcttga 900
          cattgaagga attccctaga aataggggag tgtctagctt gctagaccct gaaaacaggt 960
          gctgcacggc tgtcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg caacgagcgc 1020
15
          aaccettttt ettagttget aacaggttat getgegeact etaagaagae tgeetgegta 1080
          agcaggagga aggtgaggac gacgtcaagt catcatggcc cttacgccta gggctacaca 1140
          cgtgctacaa tggggtgcac aaagagatgc aaagccgcga ggcagagcta atctataaaa 1200
          cacctectag theggattge aggetgeaac tegeotgeat gaagetggaa tegetagtaa 1260
          tegeaaatea getatgttge ggtgaataeg tteeegggte ttgtacteae egecegteae 1320
           accatgggag ttgtgtttgc cttaagtcag gatgctaaag cagctactgc ccacggcaca 1380
20
          cacagogact ggggtgaagt cgtaacaagg taaccogggc ggc
           <210> 3
           <211> 32
           <212> DNA
25
           <213> Helicobacter sp.
                                                                              32
           acgctggcgg cgtgcctaat acatgcaagt cg
           <210> 4
30
           <211> 32
           <212> DNA
           <213> Helicobacter sp.
           <400> 4
                                                                              32
35
           ggtgagtaca agacccggga acgtattcac cg
           <210> 5
           <211> 24
           <212> DNA
           <213> Helicobacter sp.
40
           <400> 5
                                                                              24
           gcagcaacgc cgcgtggagg atga
           <210> 6
           <211> 20
45
           <212> DNA
           <213> Helicobacter sp.
           <400> 6
                                                                              20
           acgagetgae gacageegtg
50
           <210> 7
           <211> 21
           <212> DNA
           <213> Helicobacter sp.
```

_	<400> 7	
5	agagcgtgta ggcggaatga t	21
	<210> 8	
	<211> 22	
	<212> DNA	
10	<213> Helicobacter sp.	
	<400> 8	
	aactgcgttt gaaactatca tt	22
15	<210> 9	
, •	<211> 20	
	<212> DNA	
	<213> Helicobacter sp.	
	<400> 9	
20	tgcaagtcga acgatgaagc	20
	<210> 10	
	<211> 27	
	<212> DNA	
25	<213> Helicobacter sp.	
	<400> 10	
	aggetatgae gggtateegg eetgaga	27
	<210> 11	
30	<211> 27	
-	<212> DNA	
	<213> Helicobacter sp.	
	<400> 11	
	gccgcccggg ttaccttgtt acgactt	27
35		
	<210> 12	
	<211> 21	
	<212> DNA	
	<213> Helicobacter sp.	
40	<400> 12	
	ttgggaggct ttgtctttcc a	21
	<210> 13	
	<211> 21	
45	<212> DNA	
	<213> Helicobacter sp.	
	<400> 13	
	gattagetet geetegegge t	21
50	<210> 14	
	<211> 20	
	<212> DNA	
	<213> Helicobacter sp.	

```
<400> 14
                                                                            20
          cgaggagaca agccccccga
          <210> 15
          <211> 1331
          <212> DNA
          <213> Helicobacter sp.
10
          <400> 15
          acgctggcgg cgtgcctaat acatgcaagt cgaacgatga aatttctagc ttgctaggaa 60
          tggattagtg gcgcacgggt gagtaacgca taggaatgtg ccctttagtc tgggatagcc 120
          accggaaaca gtgattaata ctagatacgc cctaaggggg aaagaatttc gctaaaggat 180
          cagcctatgt cctatcagct agttggtgag gtaaatgctt accaaggcta tgacgggtat 240
15
          ccggcctgag agggtgaacg gacacaccgg aactgagaca cggtccggac tcctacggga 300
          ggcagcagta gggaatattg ctcaatgggg gaaaccctga agcagcaacg ccgcgtggag 360
          gatgaaggtt ctaggattgt aaactccttt tctgagagaa gataatgacg gtatctcagg 420
          aataageace ggctaactee gtgccageag cegeggtaat acggagggtg caaacgttac 480
          tcggaatcac tgggcgtaaa gagcgtgtag gcggaatgat aagtcaggcg tgaaatcccg 540
20
          tggcttaacc gcggaactgc gtttgaaact atcattctgg agtgtgggag aggcaggtgg 600
          aactettggt gtaggggtaa aateegtaga tatcaagaag aatacteatt gegaaggeaa 660
          cctgctggaa cattactgac gctgatgcgc gaaagcttgg ggagcaaaca ggattagata 720
          ccetqqtaqt ccacqcccta aacqatggat gctaattgtc ggggggcttg tctcctcggt 780
          aatgcagcta acgcattaag catcccgcct ggggagtacg atcgcaagat taaaactcaa 840
          aggaatagac ggggacccgc acaagcggtg gagcatgtgg tttaattcga agatacgcga 900
25
          agaaccttac ccaggettga cattgatgga atctacccca aaaggtggag tgccagttta 960
          ctggagcttg aaaacaggtg ctgcacggct gtcgtcagct cgtgtcgtga gatgttgggt 1020
          taagtcccgc aacgagcgca accetegtee ttagttgcca teagtteggc tgggcactet 1080
          aaqqaqactq ccttcqtaaq qaqqaqqaaq qcqaqqatqa cqtcaaqtca tcatgqcct 1140
          tacgcctggg gctacacacg tgctacaatg ggatgtacaa agagatgcaa tgtcgtaaga 1200
          tggagcaaaa ctcaaaaaca tctcccagtt cggattgtgg tctgcaactc gaccacatga 1260
30
          agcaggaatc gctagtaatc gtgaatcagc catgtcacgg tgaatacgtt cccgggtctt 1320
          gtactcacca a
          <210> 16
          <211> 1299
35
          <212> DNA
          <213> Helicobacter sp.
          <400> 16
          acgctggcgg cgtgcctaat acatgcaagt cgaacgatga aatttctagc ttgctaggaa 60
          tggattagtg gcgcacgggt gagtaatgca taggaatgtg ccctttagtc tgggatagcc 120
40
          accggaaaca gtgattaata ctagatacgc cctaaggggg aaagaatttc gctaaaggat 180
          cagcctatgt cctatcagct agttggtgag gtaaatgctt accaaggcta tgacgggtat 240
          ccqqcctqaq aggqtqaacq qacacaccqq aactqaqaca cgqtccqqac tcctacqqqa 300
          ggcagcagta gggaatattg ctcaatgggg gaaaccetga agcagcaacg ccgcgtggag 360
          gatgaaggtt ctaggattgt aaactccttt tctgagagaa gataatgacg gtatctcagg 420
45
          aataagcacc ggctaactcc gtgccagcag ccgcggtaat acggagggtg caagcgttac 480
          teggaateae tgggegtaaa gagegtgtag geggaatgat aagteaggeg tgaaateeeg 540
          tggcttaact gcggaactgc gtttgaaact atcattctgg agtgtgggag aggcaggtgg 600
          aactettggt gtaggggtaa aateegtaga tateaagaag aatacteatt gegaaggega 660
          cctgctggaa catcactgac gctgatgcgc gaaagcgtgg ggagcaaaca ggattagata 720
          ccctggtagt ccacgcccta aacgatggat gctaattgtc ggggggcttg tctcctcggt 780
50
          aatgcagcta acgcattaag catcccgcct ggggagtacg atcgcaagat taaaactcaa 840
          aggaatagac ggggacccgc acaagcggtg gagcatgtgg tttaattcga agatacgcga 900
          agaaccttac ccaggcttga cattgatgga atctacccca aaaggtggag tgccagttta 960
           ctqqaqcctq aaaacaggtg ctgcacggct gtcgtcagct cgtgtcgtga gatgttgggt 1020
           taagtcccgc aacgagcgca accetcgtcc ttagttgcca tcagttcggc tgggcactct 1080
55
```

```
aaggagactg ccttcgtaag gaggaggaag gcgaggatga cgtcaagtca tcatggccct 1140
           tacgcctggg gctacacacg tgctacaatg ggatgtacaa agagatgcaa tgtcgtaaga 1200
5
           tggagcaaaa ctcaaaaaca tctcccagtt cggattgtgg tctgcaactc gaccacatga 1260
          agcaggaatc gctagtaatc gtgaatcagc catgtcacg
                                                                             1299
          <210> 17
           <211> 1267
           <212> DNA
10
           <213> Helicobacter sp.
           <400> 17
          aacgatgaaa tttctagctt gctagaagtg gattagtggc gcacgggtga gtaatgcata 60
           ggaatgtgcc ctttagtctg ggatagccac cggaaacagt gattaatact agatacgccc 120
15
           taagggggaa agaatttege taaaggatea geetatgtee tateagetag ttggtgaggt 180
          aaatgcttac caaggctatg acgggtatcc ggcctgagag ggtgaacgga cacaccggaa 240
           ctgagacacg gtccggactc ctacgggagg cagcagtagg gaatattgct caatggggga 300
          aaccetgaag cagcaacgce gegtggagga tgaaggttet aggattgtaa acteetttte 360
          tgagagaaga taatgacggt atctcaggaa taagcaccgg ctaactccgt gccagcagcc 420
           geggtaatac ggagggtgca agcgttactc ggaatcactg ggcgtaaaga gcgtgtaggc 480
20
          ggaatgataa gtcaggcgtg aaatcccgtg gcttaactgc ggaactgcgt ttgaaactat 540
           cattctggag tgtgggagag gcaggtggaa ctcttggtgt aggggtaaaa tccgtagata 600
           tcaagaagaa tactcattgc gaaggcgacc tgctggaaca tcactgacgc tgatgcgcga 660
          aagcgtgggg gagcaaacag gattagatac cctggtagtc cacgccctaa acgatggatg 720
           ctaattgtcg gggggcttgt ctcctcggta atgcagctaa cgcattaagt atcccgcctg 780
25
           gggagtacga tcgcaagatt aaaactcaaa ggaatagacg gggacccgca caagcggtgg 840
           agcatgtggt ttaattcgaa gatacgcgaa gaaccttacc caggcttgac attgatggaa 900
           tetaccetaa aaggiggagi gecagtitae iggageeiga aaacaggige igcacggeig 960
          tegteagete gtgtegtgag atgttgggtt aagteeegea acgagegeaa ecetegteet 1020
           tagttgccat cagttcggct gggcactcta aggagactgc cttcgtaagg aggaggaagg 1080
           cgaggatgac gtcaagtcat catggccctt acgcctgggg ctacacacgt gctacaatgg 1140
30
           gatgtacaaa gagatgcaat gtcgtaagat ggagcaaaac tcaaaaacat ctcccagttc 1200
           ggattgtggt ctgcaactcg accacatgaa gcaggaatcg ctagtaatcg tgaatcagcc 1260
           atgtcac
           <210> 18
           <211> 1236
35
           <212> DNA
           <213> Helicobacter sp.
           ctagcttgct aggagtggat tagtggcgca cgggtgagta acgcatagga atgtgccctt 60
40
           tagtetggga tagecaeegg aaacagtgat taatactaga taegecetaa gggggaaaga 120
           atttcgctaa aggatcagcc tatgtcctat cagctagttg gtgaggtaaa tgcttaccaa 180
           ggctatgacg ggtatccgcc ctgagagggt gaacggacac accggaactg agacacggtc 240
           cggactccta cgggaggcag cagtagggaa tattgctcaa tgggggaaac cctgaagcag 300
           caacgccgcg tggaggatga aggttctagg attgtaaact ccttttctga gagaagataa 360
           tgacggtatc tcaggaataa gcaccggcta actccgtgcc agcagccgcg gtaatacgga 420
45
           gggtgcaagc gttactcgga atcactgggc gtaaagagcg tgtaggcgga atgataagtc 480
           aggogtgaaa tocogtggot taactgogga actgogtttg aaactatoat totggagtgt 540
           gggagaggca ggtggaactc ttggtgtagg ggtaaaatcc gtagatatca agaagaatac 600
           tcattgcgaa ggcgacctgc tggaacatca ctgacgctga tgcgcgaaag cgtggggagc 660
           aaacaggatt agataccctg gtagtccacg ccctaaacga tggatgctaa ttgtcggggg 720
50
           gettgtetee teggtaatge agetaacgea ttaagcatee egeetgggga gtaegatege 780
           aagattaaaa ctcaaaggaa tagacgggga cccgcacaag cggtggagca tgtggtttaa 840
           ttcgaagata cgcgaagaac cttacccagg cttgacattg atggaatcta ccccaaaagg 900
           tggagtgcca gtttactgga gcctgaaaac aggtgctgca cggctgtcgt cagctcgtgt 960
           cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct cgtccttagt tgccatcagt 1020
55
```

```
teggetggge actetaagga gactgeette gtaaggagga ggaaggegag gatgaegtea 1080
           agtcatccat ggccccttac gcctggggct acacacgtgc tacaatggga tgtacaaaga 1140
5
          gatgcaatgt cgtaagatgg agcaaaactc aaaaggrtct cccagttcgg attgtggtct 1200
          gcaactcgac cacatgaagc agaatcgcta gtaatc
                                                                             1236
          <210> 19
           <211> 1194
10
           <212> DNA
           <213> Helicobacter sp.
           <400> 19
           tggcgcacgg gtgagtaacg cataggaatg tgccctttag tctgggatag ccaccggaaa 60
           cgatgattaa tactagatac gccctaaggg ggaaagaatt tcgctaaagg atcagcctat 120
15
           gtcctatcag ctagttggtg aggtaaatgc ttaccaaggc tatgacgggt atccgccctg 180
           agagggtgaa cggacacacc ggaactgaga cacggtccgg actcctacgg gaggcagcag 240
           tagggaatat tgctcaatgg gggaaaccct gaagcagcaa cgccgcgtgg aggatgaagg 300
           ttctaggatt gtaaactcct tttctgagag aagataatga cggtatctca ggaataagca 360
           coggetaact cogtgecage ageogoggta atacggaggg tgcaagcgtt actoggaate 420
20 .
          actgggcgta aagagcgtgt aggcggaatg ataagtcagg cgtgaaatcc cgtggcttaa 480
          ctgcggaact gcgtttgaaa ctatcattct ggagtgtggg agaggcaggt ggaactcttg 540
           gtgtaggggt aaaatccgta gatatcaaga agaatactca ttgcgaaggc gacctgctgg 600
          aacatcactg acgctgatgc gcgaaagcgt ggggagcaaa caggattaga taccctggta 660
          gtecaegeee taaacgatgg atgetaattg tegggggget tgteteeteg gtaatgeage 720
           taacgcatta agcatcccgc ctggggagta cgatcgcaag attaaaactc aaaggaatag 780
25
           acggggaccc gcacaagcgg tggagcatgt ggtttaattc gaagatacgc gaagaacctt 840
           acccaggett gacattgatg gaatctaccc caaaaggtgg agtgccagtt tactggagcc 900
           tgaaaacagg tgctgcacgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 960
           gcaacgagcg caaccctcgt ccttagttgc catcagttcg gctgggcact ctaaggagac 1020
           tgccttcgta aggaggagga aggcgaggat gacgtcaagt catcatggcc cttacgcctg 1080
           gggctacaca cgtgctacaa tgggatgtac aaagagatgc aatgtcgtaa gatggagcaa 1140
30
           aactcaaaaa catctcccag ttcggattgt ggtctgcaac tcgaccacat gaag
                                                                             1194
           <210> 20
           <211> 1172
           <212> DNA
35
           <213> Helicobacter sp.
          gcataggaat gtgcccttta gtctgggata gccaccggaa acagtgatta atactagata 60
           cgccctaagg gggaaagaat ttcgctaaag gatcagccta tgtcctatca gctagttggt 120
           gaggtaaatg cttaccaagg ctatgacggg tatccggcct gagagggtga acggacacac 180
40
           cggaactgag acacggtccg gactcctacg ggaggcagca gtagggaata ttgctcaatg 240
           ggggaaaccc tgaagcagca acgccgcgtg gaggatgaag gttctaggat tgtaaactcc 300
           ttttctgaga gaagataatg acggtatctc aggaataagc accggctaac tccgtgccag 360
           caaccgcggt aatacggagg gtgcaaacgt tactcggaat cactgggcgt aaagagcgtg 420
           taggeggaat gataagteag gegtgaaate eegtggetta aetgeggaae tgegtttgaa 480
45
           actatcattc tggagtgtgg gagaggcagg tggaactctt ggtgtagggg taaaatccgt 540
           agatatcaag aagaatactc attgcgaagg cgacctgctg gaacatcact gacgctgatg 600
           egegaaageg tggggageaa acaggattag ataccetggt agtecaegee ctaaacgatg 660
           gatgctaatt gtcggggggc ttgtctcctc ggtaatcgag ctaacgcatt aagcatcccg 720
           cctggggagt acgatcgcaa gattaaaact caaaggaata gacggggacc cgcacaagcg 780
           gtggagcatg tggtttaatt cgaagatacg cgaagaacct tacccaggct tgacattgat 840
50
           gcaatctacc ccaaaaggtg gagtgccagt ttactggagc ctgaaaacag gtgctgcacg 900
           gctgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc gcaaccctcg 960
           teettagttg ccatcagtte ggetgggeae tetaaggaga etgeettegt aaggaggagg 1020
           aaggegagga tgaegtcaag tcatcatgge cettaegeet ggggetacae aegtgetaca 1080
           atgggatgta caaagagatg caatgtcgta agatggagca aaactcaaaa acatctccca 1140
55
```

```
gttcggattg tggtctgcaa ctcgaccaca tg
                                                                             1172
5
           <210> 21
           <211> 1400
           <212> DNA
           <213> Helicobacter sp.
10
           <400> 21
           tgcaagtcga acgatgaagc ctagcttgct aggttgatta gtggcgcacg ggtgagtaat 60
           gcatagatga catgcccttt agtttggaat agccactaga aatggtgatt aataccaaat 120
           actaccttac gagggaaaga tttatcgcta aaggattggt ctatgtccta tcagcttgtt 180
           ggtgaggtaa aggctcacca aggctatgac gggtatccgg cctgagaggg tgagcggaca 240
15
           cactggaact gagacacggt ccagactect acgggaggca gcagtaggga atattgctca 300
           atgggggaaa ccctgaagca gcaacgccgc gtggaggatg aaggttttag gatcgtaaac 360
           tecttttgtt agagaagata atgaeggtat etaaegaata ageaeegget aacteegtge 420
           cagcagccgc ggtaatacgg agggtgcaag cgttactcgg aatcactggg cgtaaagagt 480
           gcgtaggcgg gaggacaagt caggtgtgaa atcctatggg cttaaccata gaactgcatt 540
20
           tgaaactatc cttctggagt gtgggagagg taggtggaat tcttggtgta gggggtaaaa 600
           tccgtagaga tcaagaggga tactcattgc gaaggcgacc tgctggaaca tcactgacgc 660
           tgattgcacg aaagcgtggg ggagcaaaca gggattagat accctggtag tccacgccct 720
           aaacgattgg atgctagttg ttgggaaggc tttgtctttc cagtaatgca gctaacgcct 780
           taagcatccc gcctggggag tacggtcgca agattaaaac tcaaaggaat agacggggac 840
           ccgcacaagc ggtggagcat gtggtttaat tcgaggatac acgaagaacc ttacctaggc 900
25
           ttgacattga aggaattccc tagaaatagg ggagtgtcta gcttgctaga ccctgaaaac 960
           aggtgctgca cggctgtcgt cagctcgtgt cgtgagatgt tgggttaagt cccgcaacga 1020
           gcgcaaccct ttttcttagt tgctaacagg ttatgctgcg cactctaaga agactgcctg 1080
           cgtaagcagg aggaaggtga ggacgacgtc aagtcatcat ggcccttacg cctagggcta 1140
           cacacgtgct acaatggggt gcacaaagag atgcaaagcc gcqaqqcaga gctaatctat 1200
           aaaacacctc ctagttegga ttgcaggetg caactegect gcatgaaget ggaategeta 1260
30
           gtaategeaa ateagetatg ttgeggtgaa taegtteeeg ggtettgtae teaeegeeeg 1320
           tcacaccatg ggagttgtgt ttgccttaag tcaggatgct aaagcagcta ctgcccacgg 1380
           cacacacage gactggggtg
                                                                             1400
           <210> 22
35
           <211> 1353
           <212> DNA
           <213> Helicobacter sp.
           gattagtggc gcacgggtga gtaatgcata gatgacatgc cctttagttt ggaatagcca 60
40
           ctagaaatgg tgattaatac caaatactac cttacgaggg aaagatttat cgctaaagga 120
           ttggtctatg tcctatcagc ttgttggtga ggtaaaggct caccaaggct atgacgggta 180
           teeggeetga gagggtgage ggacacaetg gaactgagae aeggteeaga eteetaeggg 240
           aggcagcagt agggaatatt gctcaatggg ggaaaccctg aagcagcaac gccgcgtgga 300
           ggatgaaggt tttaggatcg taaactcctt ttgttagaga agataatgac ggtatctaac 360
45
           gaataagcac cggctaactc cgtgccagca gccgcggtaa tacggagggt gcaagcgtta 420
           ctcggaatca ctgggcgtaa agagtgcgta ggcgggagga caagtcaggt gtgaaatcct 480
           atggettaac catagaactg catttgaaac tateettetg gagtgtggga gaggtaggtg 540
           gaattettgg tgtaggggta aaateegtag agateaagag gaataeteat tgegaaggeg 600
           acctgctgga acatcactga cgctgattgc acgaaagcgt ggggrgcaaa caggdttaga 660
           taccctggta gtccacgccc taaacgatgg atgctagttg ttgggaggct ttgtctttcc 720
50
           agtaatgcag ctaacgcctt aagcateeeg eetggggagt aeggtegcaa gattaaaact 780
           caaaggaata gacggggacc cgcacaagcg gtggagcatg tggtttaatt cgatgataca 840
           cgaagaacct tacctaggct tgacattgaa ggaatteecc tagaaatagg ggagtgtcta 900
           gcttgctaga ccctgaaaac aggtgctgca cggctgtegt cagctcgtgt cgtgagatgt 960
           tgggttaagt cccgcaacga gcgcaaccct ttttcttagt tgctaacagg ttatgctgcg 1020
```

```
cactctaaga agactgcctg cgtaagcagg aggaaggtga ggacgacgtc aagtcatcat 1080
          ggcccttacg cctagggcta cacacgtgct acaatggggt gcacaaagag atgcaaagcc 1140
5
          gcgaggcaga gctaatctat aaaacacctc ctagttcgga ttgcaggctg caactcgcct 1200
          gcatgaagct ggaatcgcta gtaatcgcaa atcagctatg ttgcggtgaa tnacgtkccc 1260
          gggtcttgta ctcaccgccc gtcacaccat gggagttgtg tttgccttaa gtcaggatgc 1320
          taaagcagct actgcccacg cacacacagc gac
10
          <210> 23
          <211> 1355
          <212> DNA
          <213> Helicobacter sp.
          <400> 23
15
          gattagtggc gcacgggtga gtaatgcata gatgacatgc cctttagttt ggaatagcca 60
          ctagaacatg gtgattaata ccaaatacta ccttacgagg gaaagattta tcgctaaagg 120
          attggtctat gtcctatcag cttgttggtg aggtaaaggc tcaccaaggc tatgacgggt 180
          atcoggootg agagggtgag cggacacact ggaactgaga cacggtocag actootacgg 240
          gaggcagcag tagggaatat tgctcaatgg gggaaaccct gaagcagcaa cgccgcgtgg 300
20
          aggatgaagg ttttaggatc gtaaactcct tttgttagag aagataatga cggtatctaa 360
          cgaataagca ccggctaact ccgtgccagc agccgcggta atacggaggg tgcaagcgtt 420
          acteggaate actgggegta aagagtgegt aggegggagg acaagteagg tgtgaaatec 480
          tatggcttaa ccatagaact gcatttgaaa ctatccttct ggagtgtggg agaggtaggt 540
          ggaattettg gtgtaggggt aaaateegta gagateaaga ggaataetea ttgegaagge 600
          gacctgctgg aacatcactg acgctgattg cacgaaagcg tggggagcaa acaggattag 660
25
          ataccctggt agtccacgcc ctaaacgatg gatgctagtt gttgggaggc tttgtctttc 720
          cagtaatgca nctaacgcct taagcatccc gcctggggag tacggtcgca agattaaaac 780
          tcaaaggaat agacggggac ccgcacaagc ggtggagcat gtggtttaat tcgaagttac 840
          acgaagaacc ttacctaggc ttgacattga aggaattccc ctagaaatag gggagtgtct 900
          agcttgctag accctgaaaa caggtgctgc acggctgtcg tcagctcgtg tcgtgagatg 960
          ttgggttaag tcccgcaacg agcgcaaccc ctttttctta gttgctaaca ggtttatgtg 1020
30
          cgcactctaa gaagactgcc tgcgtaagca ggaggaaggt gaggacgacg tcaagtcatc 1080
          atggccctta cgcctagggc tacacacgtg ctacaatggg gtgcacaaag agatgcaaag 1140
          ccgcgaggca gagctaatct ataaaacacc tcctagttcg gattgcaggc tgcaactcgc 1200
          ctgcatgaag ctggaatcgc tagtaatcgc aaaatcagct atgttgcggt gaatacgttc 1260
          cccgggtctt gtactcaccg ccccgtcaca ccatgggagt tgtgtttgcc ttaagtcagg 1320
35
          atgctaaagc agctactgcc cacgcacaca cagcg
          <210> 24
          <211> 1358
          <212> DNA
           <213> Helicobacter sp.
40
          <400> 24
          agtgdhgcac gggtgagtaa tgcatagatg acatgccctt tagtttggaa tagccactag 60
          adatggtgat taataccaaa tactacctta cgagggvnag attatcgcta aaggattggt 120
          ctatgtccta tcagcttgtt gggtgaggta aaggctcacc aagggctatg acgggtatcc 180
45
          ggcctgagag gktgagcgga cacactggaa ctgagacacg gtccagactc ctacgggagg 240
          cagcagtagg gaatattgct caatgggggg aaaccctgaa gcagcaacgc cgcgtggagg 300
          atgaaggttt taggatcgka aactcctttt gttagagaag ataatgacgg tatctaacga 360
           ataagcaccg gctaactccg tgccagcagc cgcggtaata cggagggtgc aagcgttact 420
          cggaatcact gggcgtaaag agtgcgtagg cgggaggaca agtcaggtgt gtgaaatcct 480
          atggcttaac catagaactg catttbaaac tatcettetg gagtgtggga gaggtaggtg 540
50
          gaattcttgg tgtaggggta aaatccgtag agatcaagag ggatactcat tggcgaaggc 600
           gacetgetgg aacatcactg acgetgattg cacgaaagcg tggggagcaa acaggattag 660
          ataccetggt agtecacgce ctamacgatg gatgetagtt gttgggagge tttgtettte 720
           cagtaatgca gctaacgcct taagcatccc gcctggggag tacggtcgca agattaaaac 780
           tcaaarggaa tagacgggga cccgcacaag cggtggagca tgtggtttaa ttcgargwta 840
55
```

-	cacgaagaac	ccttacctag	gccttgacat	tgaaggaatt	cccctagaaa	taggggagtg	900
5	tctagcttgc	tagaccctga	aaacaggtgc	tgcacggctg	tcgtcagctc	gtgtcgtgag	960
	atgttgggtt	aagtcccgca	acgagcgcaa	ccctttttct	tagttgctaa	caggttatst	1020
	gcgcactcta	agaagactgc	ctgcgtaagc	aggaggaagg	tgaggacgac	gtcaagtcat	1080
	catggccctt	acgcctaggg	ctacacacgt	gctacaatgg	ggtgcacaaa	gagatgcaaa	1140
	gccgcgaggc	agagctaatc	tataaaacac	ctcctagttc	ggattgcagg	ctgcaactcg	1200
10	cctgcatgaa	gctggaawtc	gctagtaaat	cgcaaattca	gctatgttgc	ggtgaatdmg	1260
	tkccccgggt	cttgtactca	ccgccccgtc	acacccatgg	gagttgtgtt	tgccttaagt	1320
	caggatgcta	aagcagctac	tgcccacgca	cacacagc			1358
	<210> 25						
15	<211> 21						
	<212> DNA						
	<213> Helio	cobacter sp	•				
	<400> 25						
20	aggaattccc	tagaaatagg	g				21

Claims

25

30

35

- 1. An isolated 16S rDNA Helicobacter polynucleic acid sequence selected from any of the following
 - (a) a sequence represented in any of SEQ ID NO 1 to 2, or, the 16S rRNA sequence encoded thereby,
 - (b) a sequence which hybridizes under stringent conditions to any of the sequences defined in (a).
- 2. An isolated polynucleid acid sequence according to claim 1 represented by any of SEQ ID NO 1 to 2 or 15 to 24.
- 3. An isolated polynucleic acid sequence according to claim 1 which is more than 92.8%, preferably more than 93.5%, more preferably more than 95% and most preferably more than 97.5% homologous to SEQ ID NO 1.
- 4. A part of an isolated polynucleic acid according to any of claims 1 to 3, wherein said part is unique to the polynucleic acid sequence it is derived from.
 - 5. A probe which specifically hybridizes to a polynucleic acid sequence according to any of claims 1 to 4.
 - 6. A primer which specifically amplifies a polynucleic acid sequence according to any of claims 1 to 4.
 - 7. A method for detection and/or typing of Helicobacter strains present in a biological sample comprising hybridizing the 16S rRNA gene target region polynucleotides of said Helicobacter strains present in said biological sample with at least one probe according to claim 5.
- 8. A method for detection and/or typing of Helicobacter strains present in a biological sample comprising specifically amplifying the 16S rRNA gene target region polynucleotides of said Helicobacter strains present in said biological sample with at least one primer according to claim 6.
- 9. A method for detection and/or typing of Helicobacter strains present in a biological sample comprising specifically hybridizing or specifically amplifying the 16S rRNA gene target region polynucleotides of said Helicobacter strains present in said biological sample with at least one sequence which is more than 96.6% homologous to SEQ ID NO 2, or a sequence specific primer or a sequence specific probe derived thereof.

	10. A diagnostic kit for detection and/or typing of Helicobacter strains comprising:
	- at least one probe according to claim 5 or 9, and/or,
5	- at least one primer according to claim 6 or 9.
	11. A medicament comprising a polynucleic acid sequence according to any of claims 1 to 6.
10	12. A polynucleic acid sequence according to any of claims 1 to 6 for use as a medicament.
10	
15	
00	
20	
25	
20	v
30	
35	
40	
45	
50	
55	

Figure 1 - 1

		40	*	60	*		
HbovisR2XA	:	GGCGGCGT	GCCTAATAC	CATGCAAGTCG	AACGATGAAA	:	42
Hpylori gb	:	GGCGGCGT	GCCTAATAG	CATGCAAGTCG	AACGATGAAG	:	74
Hbilis gb	:	GGCGGCGT	GCCTAATAC	CATGCAAGTC	RACGATGAAG	:	65
Hcanis gb	:	GGCGGCGT	GCCTAATAG	CATGONAGTO	BAACGATGAAG	:	65
Hcinaedi g	:	GGCGGCGT	GCCTAATAG	CATGCAAGTCG	AACGATGAAG	:	73
Hacinonych	:	GGCGGCGT	GCCTAATA	CATGCAAGTCG	BAACGATGAAG	:	74
Hnemestrin	:				AACGATGAAA	:	74
Hcholescys	:	GGCGGCGT	GCCTAATAG	CATGCAAGTCC	BAACGATGAAG	:	55
Hpamatensi	:				SNACGATGAAG	:	73
Hmustelae	:	GGCGGCGT	GCCTAATA(CATGCAAGTCC	SAACGATGAAG	:	74
Hrodentium	:	GGCGGCGT	GCCTAATA(CATGCAAGTO	GAACGATGAAG	:	51
Hpullorum	:				GAACGATGAAG	:	66
Hfennellia	:	GGCGGCGT	GCCTAATA	CATGCAAGTC	BAACGATGAAG	:	74
Htrogontum	:				BAACGATGAAG	:	51
Hmuridarum	:				SNACGATGAAG	:	71
Hhepaticus	:				SAACGATGAA <mark>T</mark>	:	50
Ghominisl	:				GAACGATGAAG	:	47
Ghominis21	:				GAACGATGAAG	:	47
Hfelisigbi	:				GAACGATGAAG	:	74
Hbizzozero	:	GGCGGCGT	GCCTAATA	CATGCAAGTC	BAACGATGAAG	:	47
Hsalomonis	:				GAAG	:	4
Abutzleri	:				GAACGA <mark>GA</mark> ACG	:	71
Cjejunilgb	:				GNACGATGAAG	:	72
Wsuccinoge	:				GAACGGTAACA	:	73
		agcaacat	gcctaata	catgcaagtc	gaacgatgAag		

Figure 1 - 2

Figure 1 3

Figure 1 - 4

Figure 1 -5

Figure 1 -6

		*		240	*	26		
HbovisR2XA	:						:	-
Hpylori gb	:						:	-
Hbilis gb	:	CAATAAAG	ATTTCI	CTTTTTAGT	GCTTTGT	GTTGTT	:	232
Hcanis gb	;						:	_
Hcinaedi g	:						:	-
Hacinonych	:						:	-
Hnemestrin	:		 -				:	-
Hcholescys	:						:	-
Hpamatensi	:						:	-
Hmustelae	:						:	-
Hrodentium	:				-		:	-
Hpullorum	:						:	-
Hfennellia	:						:	_
Htrogontum	:						:	-
Hmuridarum	:						:	_
Hhepaticus	:						:	_
Ghominis1	:						:	-
Ghominis2	:						:	-
Hfelis gb	:		-				:	-
Hbizzozero	:						:	-
Hsalomonis	:		-				:	_
Abutzleri	:						:	-
Cjejuni gb	:						:	-
Wsuccinoge	:						:	-

Figure 1 - 7

		0	*	280	*	
HbovisR2XA	:					: -
Hpylorilgb	:					: -
Hbilis gb	:	GGCACAAAA'	TCTAGTA	TTTGGAATGAGA	AATTGATG	: 269
Hcanis qb	:					: -
Hcinaedilg	:					: -
Hacinonych	:					: -
Hnemestrin	:					: -
Hcholescys	:		- -			: -
Hpamatensi	:					: -
Hmustelae	:					: -
Hrodentium	:					: -
Hpullorum	:					: -
Hfennellia	:					: -
Htrogontum	:			 -		: -
Hmuridarum	:					: ,-
Hhepaticus	:					: -
Ghominis1	:					: -
Ghominis2	:					: -
Hfelis gb	:					: -
Hbizzozero	:					: -
Hsalomonis	:					: -
Abutzleri	:					: -
Cjejunilgb	:					: -
Wsuccinoge	:					: -

Figure 1 - 8

		300	*	320	*	
HbovisR2XA	:					: -
Hpylori gb	:					: -
Hbilis gb	:	TTGTGAAGC	AATTTGTGCG	GAGACTAGA	CTTAGTGTC	: 306
Hcanis gb	:					: -
Hcinaedilg	:					: -
Hacinonych	:					: -
Hnemestrin	:					: -
Hcholescys	:					; -
Hpamatensi	:					: -
Hmustelae	:					: -
Hrodentium	:					: -
Hpullorum	:					: -
Hfennellia	:					: -
Htrogontum	:					: -
Hmuridarum	:					: -
Hhepaticus	:					: -
Ghominisl	:					: -
Ghominis2	:			. 		: -
HfelisIgbI	:					: -
Hbizzozero	:					: -
Hsalomonis	:					: -
Abutzleri	:					; -
Cjejunilgb	:					: -
Wsuccinoge						

		340	*	360	*	
HbovisR2XA	:				:	: -
Hpylori gb	:					: -
Hbilis gb	:	TGTCGCACAAGG	CAAATTGCGA	ACTCATCGAT	TTATCG :	343
Hcanis gb	:				:	: -
Heinaedilg	:				;	: -
Hacinonych	:					: -
Hnemestrin	:				;	: -
Hcholescys	:				;	: -
Hpamatensi	:				;	: -
Hmustelael	:				;	: -
Hrodentium	:					: -
Hpullorum	:					: -
Hfennellia	:					: -
Htrogontum	:					: -
Hmuridarum	:					: -
Hhepaticus	:					: -
Ghominisl	:					: -
Ghominis2	:		-			: -
Hfelis gb	:					: -
Hbizzozero	:					: -
Hsalomonis	:					: -
Abutzleril	:					: -
Cjejunilgb	:					: -
Wsuccinoge	:					: -

Figure 1 - 11

		*	420	*	440		
HbovisR2XA	:	GGATERG	CTATGTCCT	ATCAGCTAGT	TGGTGAGGTA	:	213
Hpylori gb	:	AGAT AG	SCTATGTCCT	ATCAGCTTGT	TOGTAAGGTA	:	247
Hbilis gb	:	GGATIA	MCTATGTCCT	ATCAGCTTGT	TGGTGAGGTA	:	417
Hcanis gb	:	GGATAN	CCTATGTCC	ATCAGCTIGE	TEGTGAGGTA	:	237
Hcinaedila	:	GGAT	HOTATGTCCT	ATCAGCTTGT	TOGTGAGGTA	:	245
Hacinonych	:	ACAT: C	SCTATECCCT	ATCAGCTTGT	TEGTAAGGTA	:	246
Hnemestrin	:	GGATJASC	CCTATGTCCI	ATCAGOTTGT	TGGT <mark>A</mark> AGGTA	:	243
Hcholescys	:				TGGTGAGGTA	:	227
Hpamatensi	:	GGAT	:#CTATGTCC:	'ATCAGCTTGT	TOGTGAGGTA	:	247
Hmustelae	:	GGAT	CTAIGTCCI	TATCAGCTTGT	TGGTGAGGTA	:	246
Hrodentium	:	GGAT 280	CTATGTCC	ATCAGCTTGT	TGGTGAGGTA	:	221
Hpullorum	:	GGATTG	CTATGTCCI	ATCAGCTTGI	TGGTGAGGTA	:	238
Hfennellia	:	GGATTG	TCTATGTCCT	PATCAGCTTGT	TGGTGAGGTA	:	246
Htrogontum	:	GGATTG		'ATCAGCTTG'	TGGTGAGGTA	:	223
Hmuridarum	:	GGAT,通	SECTATOTCCT	TATCAGCTTG"	TGGTGAGGTA	:	242
Hhepaticus	:	GGAT E	SECTATOTCC!	TATCAGCTTGT	TGGTGAGGTA	:	222
Ghominis1	:	GGATTG	TCTATGTCC	TATCAGCTTGT	TGGTGAGGTA	:	216
Ghominis2	:	GGATTG	TCTATGTCCT	'ATCAGCTTG'	TGGTGAGGTA	:	217
Hfelis gb	:				TGGTGAGGTA	:	242
Hbizzozero	:	GGATTG	E <mark>T</mark> CTATGTCCI	PATCAGCTTGT	TTGGTGAGGTA	:	217
Hsalomonis	:				TEE <mark>C</mark> GGGGTA	:	174
Abutzleri	:				TEGTEGETA	:	262
Cjejuni gb	:				TTGGT <mark>A</mark> AGGTA	:	258
Wsuccinoge	:				TGGTGAGGTA	:	247
		gGAT (G CTaTgtcc?	PATCAGeTtG1	rTGGtgaGGTA		

Figure I - 12

		*	460	*	480		
HbovisR2XA	:	AATGCTT	ACCAAGGCTATGA	OGGTATOC		:	250
Hpylorilgb	:		ACCARGGCTATGA:			:	284
Hbilis gb	:	ALGGOT:	ACCAAGGCTATGA:	COGGTATIC	GOCTGAG	:	454
Hcanis gb	:		ACCRAGG TEATIGA			:	274
Hcinaedilg	:	A GUCT	ACNAAGGCTAIGA:	COGGTATIC	GCCTGAG	:	282
Hacinonych	;	AF/GGCTT	ACCAAGGCTATGA	CGGGTATCC	SCCTGAC	:	283
Hnemestrin	:	ANGGOTT	ACCAAGGCTATGA	COGGTATOO	GCCTGAG	:	280
Hcholescys	:	A/ GUCT	ACCAAGGCTATGA	DEGGTATOO	GCCTGAG	:	264
Hpamatensi	:	AMGGCT	accaaggotatga	COGGTATCO	GGCCTGAG	:	284
Hmustelae	:	A GGCT	ACNMAGGCTATGA	CGGGTATCC	SGCC PNAG	:	283
Hrodentium	:	AMGGCT.	ACCAAGGCTATGA	CGGGTATCC	GGCCTGAG	:	258
Hpullorum	:	AEGGCT:	ACCAAGGCTATGA	COGGTATCC	GGCCTGAC	:	275
Hfennellia	:	A真GGCT)	ACNHAGGCTATGA	UGGGTATCC	GCCTGAG	:	283
Htrogontum	:	AMGGCT	accaaggetatga	CGGGTATCC	GGCCTGAG	:	260
Hmuridarum	:	A@GGCT:	ACCHAGGCTATGA	COGGTATCC	GGCCTGAG	:	279
Hhepaticus	:		ACCAAGGCTATGA			:	259
Ghominis1	:	AAGGCT	ACCAAGGCTATGA	CGGGTATCC	GGCCTGAG	:	253
Ghominis2!	:	AAGGCT:	ACCAAGGCTATGA	CUGGTATCC	GGCCTGAG	:	254
Hfelis gb	:	AAGGCT.	ACHNAGGCTATGA	CUGGTATCC	GGCCTGAG	:	279
Hbizzozero	:		ACCAAGGC <mark>A</mark> A I'GA			:	254
Hsalomonis	:		ACCAAGGC <mark>A</mark> ATGA			:	211
Abutzleril	:		ACCAAG <mark>A</mark> CTATGA			:	299
Cjejunilgb	:		ACCAAGGCTATGA			:	295
Wsuccinoge	:	AMGGCT	ACNAAGGCTATGA	CGGGTATCC	GGCCTGAG	:	284
		A gGCt	ACCAAGGCTATGA	CGggTAtCc	GGCCTGAG		

```
500
                        AGGGTGA<sup>M</sup>OGGACACAC<mark>C</mark>GGAACTGAGACACGGTCC<mark>G</mark>
                                                                                                    287
HbovisR2XA :
                        AGGGTGAPOGGACACACTGGAACTGAGACACGGTCCA
                                                                                                    321
Hpylori|gb :
                        AGGGTGA<mark>T</mark>CGGACACACTGGAACTGAGACACGG1.CCA
AGGGTGA<mark>T</mark>CGGACACACTGGAACTGAGACACGGTCCA
                                                                                                    491
Hbilis|gb| :
                                                                                                    311
Hcanis|gb| :
                        AGGGTGA<mark>T</mark>OGGACACACTGGAACTGAGACACGGTCCA
                                                                                                    319
Hcinaedilg :
                         agggtga<sup>M</sup>oggacacactscractgagacacggtcca
                                                                                                    320
Hacinonych :
Hnemestrin :
                        AGGGTGA YOGGACACACTGGAACTGAGACACGGTCCA
                                                                                                    317
                        AGGGTGANGGGACACACTGGAACTGAGACACGGTCCA
AGGGTGANGGACACACTGGAACTGAGACACGGTCCA
Hcholescys :
                                                                                                     301
Hpamatensi :
                                                                                                     321
                        AGGGTGA<mark>T</mark>CGGACACACTGGAACTGAGACACGGTCCA
Hmustelae! :
                                                                                                     320
                        AGGGTGAMCGGACACTGGAACTGAGACACGGTCCA
Hrodentium :
                                                                                                     295
Hpullorum :
                        AGGGTGA<mark>T</mark>CGGACACACTUGAAUTGAGACACGGTCCA
                                                                                                     312
Hfennellia : AGGGTGA@CGGACACTGGAACTGAGACACGGTCCA
                                                                                                     320
Htrogontum : AGGGTGATCGGACACACTGGAACTGAGACACGGTCCA
                                                                                                     297
Hmuridarum : AGGGTGARCGGACACACTGGAACTGAGACACGGTCCA
Hhepaticus : AGGGTGATCGGACACTGGAACTGAGACACGGTCCA
                                                                                                     316
                                                                                                     296
Ghominis1| : AGGGTGACGGACACACTGGAACTGAGACACGGTCCA
Ghominis2| : AGGGTGACGGGACACACTGGAACTGAGACACGGTCCA
Hfelis|gb| : AGGGTGACGGGACACACTGGAACTGAGACACGGTCCA
Hbizzozero : AGGGTGACGGACACACTGGAACTGAGACACGGTCCA
Hsalomonis : AGGGTGACGGACACACTGGAACTGAGACACGGTCCA
Abutzleri| : AGGATGATCAGTCACACTGGAACTGAGACACGGTCCA
Cjejuni|gb : AGGATGATCAGTCACACTGGAACTGAGACACGGTCCA
Wsuccinoge : AGGGTGATCGGACACACTGGAACTGAGACACGGTCCA
AGGGTGATCGGACACACTGGAACTGAGACACGGTCCA
AGGGTGATCGGACACACTGGAACTGAGACACGGTCCA
AGGGTGATCGGACACACTGGAACTGAGACACGGTCCA
                                                                                                     290
                                                                                                     291
                                                                                                     316
                                                                                                     291
                                                                                                     248
                                                                                                     336
                                                                                                     332
                                                                                                     321
                         AGGGTGA CGGaCACACtGGAACTGAGACACGGTCCa
```

		20	*	540	*		
HbovisR2XA	:				GAATATTGCTCA		324
Hpylori gb	:	GACTCCTAC	:aggagg	CAGCAGTAGG	GAATATTGCTCA	:	358
Hbilis gb	:	GACTOCTAC	COGGAGO	CAGCAGTAGG	GAATATTGCTCA	:	528
Hcanis gb	:	GACTOCTAC	GGGAG	CAGCAGTAGG	GAATATTOOTCA	:	348
Hcinaedi g	:	GACTOCTAC	GGGAG(GCAGCAGTAGG	GANTATTGCTCA	:	356
Hacinonych	:	GACTOCTRO	CGGGAG	CAGCAGTAGG:	GAATATTGUTCA	:	357
Hnemestrin	:	GACTCCTAC	:GGGAG	SCAGCAGTAGG	GAATATIGCTCA	:	354
Hcholescys	:	GACTOCTAC	CGGGAGG	GCAGCAGTAGG	GAATATTGCTCA	:	338
Hpamatensi	:	GACTCCTAC	CGCGAG	GCAGCAGTAGG	GAATATTGCTCA	:	358
Hmustelae	:	GACTCCTAC	GGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	357
Hrodentium	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	332
Hpullorum	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	349
Hfennellia	:	GNCTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	3 57
Htrogontum	:	GACTOCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	334
Hmuridarum	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	353
Hhepaticus	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	333
Ghominis1	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	327
Ghominis2	:	GACTCCTA	CGGGAG	GCAGCAGTAGG	GAATATTECTCA	:	328
Hfelis gb	:	GACTCCNN	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	353
Hbizzozero	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	328
Hsalomonis	:	GACTCCTAC	CGGGAG	GCAGCAGTAGG	GAATATTGC <u>T</u> CA	:	285
Abutzleril	:	GACTCCTAC	CGGGAG	GCAGCAGT <mark>G</mark> GG	GAATATTGC <mark>A</mark> CA	:	373
Cjejunilgb	:	GACTCCTA	CGGGAG	GCAGCAGTÄGG	GAATATTGC <mark>G</mark> CA	:	369
Wsuccinoge	:	GACTCCTA	CGGGAG	GCAGCAGTAGG	GAATATTGCTCA	:	358
		GACTCCTA	CGGGAG	GCAGCAGTaGG	GAATATTGCtC	Ą	

		560	*	580	*		
HbovisR2XA	:	ATGGG <mark>G</mark> GAAA	CCTGAAGC	AGCAACGCCG	CGTGGAGG	:	361
Hpylori gb	:	ATGGG <mark>G</mark> GAAA	CCFGAAGC	AGCAACGCCG	DOADOTOD	:	395
Hbilis gb	:	ATGGG <mark>G</mark> GAAA	COCTGAAGO	AGCAACGCCG	CGTGGAGG	:	565
Hcanis gb	:	AIGGG <mark>G</mark> GAAA	CCTGAAGO	AGCAACGCCG	COTGGAGG	:	385
Hcinaedilg	:	ATGOG <mark>G</mark> GAAA	COTGAAGO	AGCAACGCCG	CGTGGAGG	:	393
Hacinonych	:	ATGGGSGCAA	SCCTGLAGO	AGCAAGGCCG	CGTGGAGG	:	394
Hnemestrin	:	ATGGGGAAA	C <mark>CC</mark> TGHAGO	AGCAACGCCG	CGTGGAGG	:	391
Hcholescys	:	ATGGE <mark>CGA</mark> AA	GCCTG#AGC	AGCANCNOCG	CGTGGAGG	:	375
Hpamatensi	:	ATGGGCGAAA	GCCTGAAGC	AGCAACGCCG	CGTGGAGG	:	395
Hmustelael	:	ATGGGCGAAA	GCCTGAAGC	AGCAACGCCG	CGTGGAGG	:	394
Hrodentium	:	ATGGG <mark>G</mark> GAAA	COCTGAAGO	AGCAACGCCG	CGTGGAGG	:	369
Hpullorum	:	ATGGG <mark>G</mark> GAAA	COTGAAGO	:AGCAACGCCG	CGTGGAGG	:	386
Hfennellia	:	ATGGGGGAAA	CCCTGAAGG	AGCAACGCCG	CGTGGAGG	:	394
Htrogontum	:	ATGGGCGAAA	GCTGLAGO	AGCAACGCCG	CGTGGAGG	:	371
Hmuridarum	:	ATGGG <mark>C</mark> GAAA	<mark>G</mark> CCTGAAGC	AGCAACGCCG	CGTGGAGG	:	390
Hhepaticus	:	ATGGG <mark>G</mark> GAAA	C <mark>CC</mark> TGAAGC	AGCAACGCCG	CGTGGAGG	:	370
Ghominisl	:	ATGGG <mark>GGA</mark> AA				:	364
Ghominis2	:	ATGGG <mark>C</mark> GCAA	<mark>G</mark> CC	CAGCAACGCCG	CGTGGAGG	:	365
Hfelis gb	:	ATGGG <mark>C</mark> GCAA				:	390
Hbizzozero	:	ATGGGCCAA				:	365
Hsalomonis	:	ATGGGCGCAA				:	322
Abutzleri	:	ATGG <mark>AC</mark> GAAA				:	410
Cjejuni!gb	:	ATGGG <mark>G</mark> GAAA				:	406
Wsuccinoge	:	ATGG <mark>C</mark> GAAA				:	395
		ATGGg GaAA	ccTGAaG	CAGCAACGCCG	CGTGGAGG		

		600	*	(520			
HbovisR2XA	:	ATGAAGGTTC	'AGGATTG'	AAACTO	CIG	AGAG	:	398
Hpylori gb	:	ATGAAGGTTTT	'AGGATTG'	CAAACTC	n tin ir	AGAG	:	432
Hbilis gb	:	ATGAAGGTTT:	AGGATTG	TAAACTC	TTTT IA	AGAC	:	602
Hcanis gb	:	ATGAAGGTTT	AGGATTS"	CAAACTO	AT TTTT	AGAG	:	422
Hcinaediig	:	ATGAAGGTTT	'AGGATTG'	CAAACTC	ATTE A	AGAG	:	430
Hacinonych	:	ATCAAGGTTT	AGGATTG	CAAACIC	CTTTTTTTTT	AGAC	:	431
Hnemestrin	:	ATGAAGGTTT					:	428
Hcholescys	:	ATGAAGGTTT1					:	412
Hpamatensi	:	ATGAAGGTTT					:	432
Hmustelae	:	ATGAAGGTTT:	_				:	431
Hrodentium	:	ATGAAGGTTT:					:	406
Hpullorum	:	ATGAAGGTTT					:	423
Hfennellia	:	ATGAAGGTTT:			_		:	431
Htrogontum	:	ATGAAGGTTT:			1		:	408
Hmuridarum	:	ATGAAGGTTT			* 2		:	427
Hhepaticus	:	ATGAAGGTTT"					:	407
Ghominisl	:	ATGAAGGTTT	'AGGATTG'	PAAACTC	TENTER	AGAG	:	401
Ghominis2	:	ATGAAGGTTT	AGGATTG'	PAAACTO	CHATTER	AGAC	:	402
Hfelis gb	:	ATGAAGGTTT	AGGATTG	TAAACTC	CHATRETC	AGAG	:	427
Hbizzozero	:	ATGAAGGTTT			- Contract of the Contract of		:	402
Hsalomonis	:	ATGAAGGTTT				_	:	359
Abutzleril	:	ATGA CACATT					:	447
Cjejunilgb	:	ATGACACTTT					:	443
Wsuccinoge	:	ATGAAGGTCT	CGGATTG	PAAACTC	CTTTTCTA	AGAG	:	432
		ATGAaggttt'	[aGGattG	TAAACTC	CTTTT T	aσaG		

		*	680	*	700		
HbovisR2XA	:	AACTICG	TGCCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	471
Hpylori gb	:	AACTCCC	TOCCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	505
Hbilis gb	:	AACTCCG	TGCCAGCAGCCG	CGGTAAT	ACGGAGGGTGC	:	675
Hcanis gb	:	AACTCCG	TGCCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	495
Hcinaedi g	:		TGCCAGCAGCCG			:	503
Hacinonych	:		TGCCAGCAGCCG			:	504
Hnemestrin	:	AACTCCC	TIGOCAGCAGCCG	CGGTAAT	ACGGAGGGTGC	:	501
Hcholescys	:	AACTCCC	TGCCAGCAGCCG	CGGTAAT	ACGGAGGGTGC	:	485
Hpamatensi	:		TGCCAGCAGCCG				505
Hmustelae	:		TGCCAGCAGCCG				504
Hrodentium	:		TGCCAGCAGCCG				479
Hpullorum	:		STGCCAGCAGCCG				496
Hfennellia	:		TGCCAGCAGCCG				504
Htrogontum	:		TGCCAGCAGCCG				481
Hmuridarum	:		TGCCAGCAGCCG				500
Hhepaticus	:		STGCC				464
Ghominis1	:		STGCCAGCAGC C G				474
Ghominis2	:		ETGCCAGCAGCCG				475
Hfelis gb	:		ETGCCAGCAGCCG				500
Hbizzozero	:		TGCCAGCAGCCG				474
Hsalomonis	:		STGCCAGCAGCCG				432
Abutzleri	:		STGCCAGCAGCCG				520
Cjejunilgb	:		ETGCCAGCAGCCG				517
Wsuccinoge	:		GTGCCAGCAGCCG			•	505
		AACTCC	GTGCCagcagccg	cggtaat	aCGGAGGGTGC	:	

		*	720	*	740		
HbovisR2XA	:	AAGCGTTACT	CGGAATCACTEG	GCGTAAAGAG	CTGT	:	508
Hpylori gb	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAG	GCGT	:	542
Hbilis gb	:	AAGCUTTACT	COGRATURCTOS	BOGTARAGAS	PGCGT	:	712
Hcanis gb	:	AAGCGTTACT	CGGAATCACTGG	CONTARAGAC	GCGT	:	532
Hcinaedi g	:	AAGCGTTACT	CGGRATERCIGO	GOGTKAAGAG	TGCGT	:	540
Hacinonych	:	AAGCGTTACT	CGGAATUACI GG	GOGTAAAGAG	GCGT	:	541
Hnemestrin	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAG	GCGT	:	538
Hcholescys	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAG	GCGT	:	522
Hpamatensi	:	NAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	GCGT	:	542
Hmustelae	:	NAGCGTTACT	CGGAATCACTGG	GCGTNAAGAG	GCGT	:	541
Hrodentium	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGĀC	GCGT	:	516
Hpullorum	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	GCGT	:	533
Hfennellia	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGC	:	541
Htrogontum	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	GCGT	:	518
Hmuridarum	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TECEC	:	537
Hhepaticus	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGT	:	501
Ghominis1	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGT	:	511
Ghominis2	:	AAGCOTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGT	:	512
Hfelis gb	:	NAGCGTTACT	CGGAATCMCTGG	GCGTAAAGAC	TGCGT	:	537
Hbizzozero	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGT	:	511
Hsalomonis	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGAC	TGCGT	:	469
Abutzleri	:	AAGCGTTACT	CCGAATCACTGG	GCGTAAAGAC	iggtot	:	557
Cjejunilgb	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAG <mark>G</mark> Ó	GCGT	:	554
Wsuccinoge	:	AAGCGTTACT	CGGAATCACTGG	GCGTAAAGĀ	ACGT	:	542
		AAGCGTTACT	CGGAATCACTGG	GCGTAAAGaC	gcGt		

Figure 1 - 21

		820	*	840	*		
HbovisR2XA	:	TFTGGGAGAGG	AGGTGGA.	CTCTTGGTGT	AGGGGTA	:	619
Hpylori gb	:	Theogragage	rag g tgga	AT COTTGGTGT	AGGGGTA	:	653
Hbilis gb	:	TATGGGAGAGG	TAGGTGGA	ATTOTTUGTGT	AGGGGTA	:	823
Hcanis gb	:	TATGGGAGAGG	fag <mark>g</mark> icga.	ATTOTTGGTGT	AGGGGTA	:	643
Hcinaedilg	:	TATEGERGAGG	PAGGTGGA	ATTCTTGGTG!	AGGGGTA	:	651
Hacinonych	:	TPTGGGAGAGGG				:	652
Hnemestrin	:	TiggeGAGAGG	Paggtgga.	ATTOTTGGTGT	ACACCTA	:	649
Hcholescys	:	TATGGGAGAGG	PAGGTGGA.	ATTCTTGGTGI	AGGGGTA	:	633
Hpamatensi	:	TATGGGAGAGG	PAGGTGGA.	ATICTTGGIGI	AGGGGTA	:	653
Hmustelae	:	TgTGGGAGAGG	Paggtgga.	ATTCTTGGTGT	AGGGGTN	:	652
Hrodentium	:	TATGGGAGAGG	PAGGIGGA.	at icttggigi	'AGGGGTA	:	627
Hpullorum	:	TATGGGAGAGG	TAGGI CGA.	AT I CTTGGTGI	AGGGGTA	:	644
Hfennellia	:	TSTEGGAGAGG				:	652
Htrogontum	:	TETGGGAGAGG				:	629
Hmuridarum	:	TETGUGAGAGG				:	648
Hhepaticus	:	TATGGGAGAGG	TAGGTEGA	ATTOTTGGIGT	ACGGGTA	:	612
Ghominis1	:	T@TGGGAGAGG				:	622
Ghominis2	:	T受TGGGAGAGG				:	623
Hfelis gb	:	Taggagagag				:	648
Hbizzozero	:	THTGGGAGAGG				:	622
Hsalomonis	:	T@TGGGAGAGG				:	580
Abutzleri	:	TETGGGAGAGG				:	668
Cjejuni gb	:	T@AGGAGAGG				:	665
Wsuccinoge	:	TATGGGAGAGG				:	653
		T tGGGAGAGG	tAGqTGGA	${f AtTcttGGTGT}$	l'AGqGGTA		

		860	*	880	_	
HbovisR2XA	:	AAATCCGTAGATA'	TCAAGL <mark>A</mark> GA.	ATACTCATTGCGA	:C :	656
Hpylori gb	:	aaatccstaga <u>g</u> a	rcaaga g ga.	ATACTCATTGCGAR	:C:	690
Hbilis gb	:	AAATCCGTAGAGA'	DOAAGAGGA.	ATACTCATTGCGA	:C :	860
Hcanis gb	:	AAATCCGTAGAGA	TCAAGA G GA	ATACTCATTGCGA/	: 3	680
Hcinaedilg	:	AAATOCOTAGAGA	TCAAGAGJA	ATACTCATTGCGA	: 20	688
Hacinonych	:	AAATCCCTACAGA	TCAAGAGGA	ATACTCATTGCGA.	 :	689
Hnemestrin	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATIGCGAR	KG :	686
Hcholescys	:	aaatcce <mark>c</mark> agaga	TCAAGAGGA	ATACTCATTGCGA	₹C :	670
Hpamatensi	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA	AG :	690
Hmustelael	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	AC :	689
Hrodentium	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATIGCGA	AG :	664
Hpullorum	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA	AG :	681
Hfennellia	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	AC :	689
Htrogontum	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	4G :	666
Hmuridarum	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	AG :	685
Hhepaticus	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	AC :	649
Ghominisl	:	AAATCCGTAGAGA	TCAAGAGGA	ATACTCATTGCGA.	4C :	659
Ghominis2	:	AAATCCGTAGAGA				660
Hfelis gb	:	AAATCCGTAGAGA				685
Hbizzozero	:	AAATCCGTAGAGA				659
Hsalomonis	:	AAATCCGTAGAGA		and the same of th		617
Abutzleri	:	AAATCCGTAGA <mark>G</mark> A				705
Cjejuni gb	:	AAATCCGTAGA <mark>T</mark> A				702
Wsuccinoge	:	AAATCCGTAGAGA				690
		AAATCCGtAGAgA	TCaagAgGA	ATACtcATTGCGA	AG	

		*	940	*	960		
HbovisR2XA	:	AAGCGTGGG	GAGCAAACAG	BATTAGATAC	CCTGGTAG	:	729
Hpylori gb	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	764
Hbilis qb	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	COTGGTAG	:	933
Hcanis qb	:		GAGDAAAGAG			:	752
Hcinaedilg	:	AAGCGTGGC	GAGCARACES	GATTAGATAC	CCTGGTAC	:	761
Hacinonych	:	AAGCGTGGG	CAGCAAACAG	GATTAGATAC	COTEGTAG	:	763
Hnemestrin	:	AAGCGTGGG	GAGCAAACAG	CATTAGATAC	CCTGGTAG	:	760
Hcholescys	:	AAGCGTCGC	GAGCAAACAG	GATTAGATAC	CCTUGTAG	:	743
Hpamatensi	:	AAGCGTGGC	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	763
Hmustelae	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	762
Hrodentium	:		GAGCAAACAG			:	737
Hpullorum!	:		GAGCAAACAG			:	753
Hfennellia	:	AAGCGTGGC	BGAGCAAACAG	GATTAGATAC	CCTGGTAG	:	762
Htrogontum	:		GAGCAAACAG			:	739
Hmuridarum	:		GAGCAAACAG			:	758
Hhepaticus	:		PGAGCAAACAG				722
Ghominisl	:		GAGNAAACAG				733
Ghominis2	:		GAGCAAACAG				734
Hfelis gb	:		GAGCAAACAG				758
Hbizzozero	:		GGAGCAAACAG				733
Hsalomonis	:		GGAGCAAACAG			ľ	691
Abutzleri	:		GGAGCAAACAG				778
Cjejunilgb	:		GGAGCAAACAG				775
Wsuccinoge	:		GGAGCAAACAG				763
		AAGCaTGG	GGAGCAAACAG	GATTAGATAC	CCTGGTAC	ì	

		*	980	*	100		
HbovisR2XA	:	TOCACGCCCT	AAACGATG <mark>G</mark>	ATGCTAATTGT	GGGGG	:	766
Hpylori gb	:	TOCACGCCCT	`AAACGATG <mark>G</mark>	atgetagttet:	regagge	:	801
Hbilis gb	:	TOCACGOCCO	'AAACGATG <mark>A</mark>	ATGCTAGTTGT:	CCCTC	:	970
Hcanis gb	:			ATGCTAGTTGT:		:	789
Hcinaedilg	:			ATGCTHGTTGT		:	798
Hacinonych	:			ATGCTAGTTGT"		:	800
Hnemestrin	:			ATGCTAGTTGT		:	797
Hcholescys	:			atgctagttgi		:	780
Hpamatensi	:			ATGCTAGTTGT'		:	800
Hmustelae	:			ATGCTAGTTGT'		:	799
Hrodentium	:			ATGCTAGTTGT		:	774
Hpullorum	:			ATGCTAGTTGT		:	790
Hfennellia	:			ATGCTAGTIGT		:	799
Htrogontum	:			ATGCTAGTTGT		:	776
Hmuridarum	:			ATGCTAGTTGT		:	795
Hhepaticus	:			ATGCTAGTTGT		:	759
Ghominis1	:			ATGCTAGTTGT		:	769
Ghominis2	:			atgetagtigt		:	771
Hfelis gb	:			ATGCTAGITGT		:	795
Hbizzozero	:			ATGCTAGTTGT		:	770
Hsalomonis	:			atgetagtten		:	728
Abutzleri	:			aca <mark>ctagtigt</mark>		:	815
Cjejunilgb	:			ACACTAGTTGT		:	812
Wsuccinoge	:			ATGCTAGTTGT		:	800
		TCCACGCCC'	TAAACGATG	AtgCTAgTTGT	'tG G		

		0	*	1020	*		
HbovisR2XA	:	CTT-GTCTC	CTE	GTAATGCAGCTA	ACGCHTTAAGCA	:	802
Hpylorilgb	:			AGTAATGCAGCTA		:*	838
Hbilis gb	:	CHT-GTCAC	GGC	AGTAATGCAGCTA	ACGCS TTAAGCA	:	1006
Hcanis gb	:			AGTAATGCAGCTA		:	825
Hcinaedilg	:			AGTAATGCAGCTA		:	834
Hacinonych	:			AGTAATGCAGCTA		:	837
Hnemestrin	:	CHTACTOT	TCC	agtaateda <mark>cg</mark> ta	ACGONTTAAGCA	:	834
Hcholescys	:			AGTA ATGCAGCIA			816
Hpamatensi	:	CTT-GTCT	CTGC	AGTAATGCAGCTA	ACGC TTAACCA	:	836
Hmustelae	:			agtaatgcae <mark>t</mark> ta			835
Hrodentium	:			<mark>AGTAATGCAG</mark> CTA			810
Hpullorum	:	CTT-GTCC	TGC	AGTAATGCAGCTA	ACGCATTAAGCA	:	826
Hfennellia	:	CTC-GTCA	GGG.	AGTAATGCAGCTA	ACGCHTTAAGCA	:	835
Htrogontum	:	CTT-GTCAG	GGC.	AGTAATGCAGCTA	ACGCÁTTAAGCA	:	812
Hmuridarum	:	CTT-GACA	GGGC.	AGTAATGCAGCTA	ACGCÁTTAAGCA	:	831
Hhepaticus	:	CTT-GTCA	GGC.	<mark>A</mark> GTAATGCAGCTA	ACGCUTTAAGCA	:	795
Ghominis1	:	CTTTGTCT'	TTCC	agtaateca <mark>cg</mark> ta	acge <mark>c</mark> ttaanna	:	806
Ghominis2	:	CTT TGTCC	rccc	AGTAATGCA <mark>GC</mark> TA	ACGC <mark>C</mark> TTAAGCA	:	808
Hfelis gb	:	CTT-GTCC	rccc	AGTAATGCAGCTA	ACGC <mark>C</mark> TTAAGCA	:	831
Hbizzozero	:	CTTTGTCC	CCC	AGTAATGCAGCTA	IACGC <mark>C</mark> TTAAGCA	:	807
Hsalomonis	:			agtaatgcag <u>c</u> ta			765
Abutzleri	:			agtaatgcag <mark>t</mark> ta			851
Cjejunilgb	:			agtaatgcag <u>c</u> ta			848
Wsuccinoge	:			AGTAATGCAG <mark>T</mark> TA		•	836
		CTt GtC	C	aGTAATGCAgcTA	ACgC TTAAGca	l	

Figure 1 - 28

		1080	*	110	·0 <u>*</u>		
HbovisR2XA	:	AAGGAATA	ACGOGGAC	COGCACAAG	CGGTGGAGCAT	:	876
Hpylori gb	:	AAGGAATA	BACGGGGGAC	CCGCACAAG	CGGTGGAGCAN	:	912
Hbilis gb	:				CGGTGGAGCAT		1080
Hcanis gb	:				BOGGTGGAGCAT		899
Hcinaedilg	:				COGTOGAGCAT		908
Hacinonych	:				COUTGGAGNN		911
Hnemestrin	:				SCGGTGGAGCA1		908
Hcholescys	:				CGGTGGAGCAT		890
Hpamatensi	:				CGGTGGAGCNN		910
Hmustelae	:				GCGGTGGAGCAT		909
Hrodentium	:				GCGGTGGAGCAT		884
Hpullorum	:				BOGGTGGAGCAT		900
Hfennellia	:				GCGGTGGAGCAT		909
Htrogontum	:				GCGGTGGAGCA1		886
Hmuridarum	:				GCGGTGGAGNN		905
Hhepaticus	:				GCGGTGGAGCA		869
Ghominis1	:				GCGGTGGAGCA		878
Ghominis2	:				GCGGTGGAGCA'		882
Hfelis gb	:				GCNRNNNNNNN		905
Hbizzozero	:				GCGGTGGAGCA'		881
Hsalomonis	:				GCGGTGGAGCA'		839
Abutzleri	:				GCGGTGGAGCA'		925
Cjejunilgb	:				GCGGTGGAGCA'		922
Wsuccinoge	:				GCGGTGGAGCA'		910
		AAGGAATA	GACGGGGAC	CCGCACAA	GCGGTGGAGCA'	Г	

		1120	*	1140			
HbovisR2XA	:	GTGGTTTAATTCGAA	GATACEC	GAAGAACCTIA	CCCE	:	913
Hpylorilgb	:	GTGGTTTAAT FCGAM	INNNAC <mark>A</mark> C	GAAGAACCTTA	ACCTA	:	949
Hbilis gb	:	GTGGTTTAATTCGAA	.GATAC∭C	GAAGAACCTTA	CCTA	:	1117
Hcanis gb	:	GTGGTTTAAHTCGAA	GATACIJO	GAAGAACCTT	CCLY	:	936
Hcinaedi g	:	GTGGTTTAATTCGAG	TATACAC	GAAGAACCTT	ATOOM	:	945
Hacinonych	:	GTGGTTTAATTCGAN				:	948
Hnemestrin	:	GTGGTTTAATFCGAA	⊾e <mark>g</mark> TAC [©] C	GARGARCOTTA	ACCTA	:	945
Hcholescys	:	GTGGTTTAATTCGAA	iGĀTAC¦⊣C	GAAGAACCTT	ACCTA	:	927
Hpamatensi	:	GTGGTTTAATTCGAN	inhtaciic	GAAGAACCTT:	ACCTA	:	947
Hmustelae	:	GTGGTTTAATTCGAN	имтасфс	GAAGAACCTT	ACCTA	:	946
Hrodentium	:	GTGGTTTAATTCGAF	AGATAC <mark>A</mark> C	GAAGAACCTT.	ACCTA	:	921
Hpullorum	:	GTGGTTTAATTCGAA	ŧGATAC्रिC	GAAGAACCTI	ACCTA	:	937
Hfennellia	:	GTGGTTTAATTCGAA				:	946
Htrogontum	:	GTGGTTTAATTCGAA	AGATAC((jC	GAAGAACETT	ACCTA	:	923
Hmuridarum	:	GTGGTTTAATTCGAN				:	942
Hhepaticus	:	GTGGTTTAATTUGAA				:	906
Ghominisl!	:	GTGGTTTAATTCGAF				:	915
Ghominis2	:	GTGGTITAATTCGAA				:	919
Hfelis gb	:	GTGGTTTAATTCGAN				:	942
Hbizzozero	:	GTGGTTTAAT TCGA				:	918
Hsalomonis	:	GTGGTTTAATTCGA	r GC T AC AC	GAAGAACCTT.	ACCTA	:	876
Abutzleri	:	GTGGTTTAATTCGA				:	962
Cjejuni gb	:	GTGGTTTAATTCGA	3.0			:	959
Wsuccinoge	:	GTGGTTTAATTCGA				:	947
		GTGGTTTAATTCGA	agaTAC (GAAGAACCTT	ACCta		

		*	1160		*	1180			
HbovisR2XA	:	GGCTTGA	CATTGA	GGAATCE	ACCC A	AGCT	GGAG	:	950
Hpylori gb	:	GGCTTGA	CATTGAG	AGAATCC	CTAGA	ATAGT	GGAC	:	986
Hbilis gb	:	GGCTTGA	CATTGA	AGAATCC	(CTAGA)	ATAGT	SGAG	:	1154
Hcanis gb	:	GGCTTGA	CATTGA	AGAATCEA	CTAGA	ATAGC	GGAG	:	973
Hcinaedi g	:			AGAATOC				:	982
Hacinonych	:			RGAATCE				:	985
Hnemestrin	:			AGAATC <mark>C</mark>				:	982
Hcholescys	:			AGAATO				:	964
Hpamatensi	:			'AGAATC管				:	984
Hmustelae	:			AGAATC <u>A</u>				:	983
Hrodentium	:			AGAATOC				:	958
Hpullorum	:			AGAATC				:	974
Hfennellia	:			AGAATC				:	983
Htrogontum	:			AGAATC				:	960
Hmuridarum	:			AGAATCC				:	979
Hhepaticus	:			AGARTC				:	943
Ghominis1	:			AGGAATTC				:	952
Ghominis2	:			AGGAATC				:	956
Hfelis gb	:			ANGAATCÄ				:	979
Hbizzozero	:			AGGAATCC				:	955
Hsalomonis	:			AGGAATC				:	913
Abutzleri	=			AAGAATGA				:	999
Cjejunilgb	:			AAGAACCE				:	996
Wsuccinoge	:			JAGAATCC				:	984
		GgCTTGA	cATtga	aGAAtc	ctagA	Atag	ggaG		

Figure 1 - 33

```
1240
                                                    : 1023
HbovisR2XA : GGUTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                    : 1060
             GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
Hovlorilab :
                                                    : 1227
Hbilis|qb| :
             GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                    : 1047
Hcanis|gb| :
             GGC FGTCGTUAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                    : 1055
             GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
Hcinaedi|g :
             ggotgtogtoayotogtgtogtgagatattgggtTM/
                                                    : 1059
Hacinonych :
             GGCTGTCGTCAGCTCGTGTCGTGA<mark>C</mark>ATGTTGGGTTAA
                                                    : 1056
Hnemestrin :
             GGCTGTCGTCAGCTCGTGTGTGAGATGTTGGGTTAA
                                                     : 1037
Hcholescys :
             GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                    : 1057
Hpamatensi :
Hmustelae| : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1057
                                                     : 1031
Hrodentium : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
Hpullorum | : GGCTGTCGTCAGCTCGTGTGGTGAGATGTTGGGTTAA
                                                     : 1047
Hfennellia : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1056
Htrogontum : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1031
Hmuridarum : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTNA
                                                     : 1052
Hhepaticus : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1013
                                                     : 1026
Ghominis1| : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
Ghominis2| : GGCNGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1030
Hfelis|gb| : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
                                                     : 1053
                                                     : 1029
Hbizzozero : GGCTGTCGTCAGCTCGTGTCCTGAGATGTTGGGTTAA
                                                       987 (
Hsalomonis : GGCTCTCGTCAGCTCGTGTGGGAGATGTTGGGTTAA
Abutzleri : GGCTGTCGTCAGCTCGTGTGGGAGATGTTGGGTTAA
                                                     : 1072
                                                     : 1069
Cjejunilgb : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTNA
Wsuccinoge : GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA : 1057
             GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA
```

		60	*	1280	*		
HbovisR2XA	:	GTCCCGC	ACGAGCGC	AACCCTC T	CCTTAGTTGCCA	:	1060
Hpylori gb	:				TCTTASTTGCTA	:	1097
Hbilis gb	:				CCTTAGTTGCTA	:	1264
Hcanis gb	:				COTTAGTTGCTA	:	1084
Hcinaedilg	:				COTTAGTTGCTA	:	1092
Hacinonych	:				TCTTAGTTGCTA	•	1096
Hnemestrin	:				TOTTAGTTGCTA	:	1093
Hcholescys	:				CCTTAGTTGCTA	:	1074
Hpamatensi	:				CCTTAGTTGCTA	:	1094
Hmustelae	:				TCTTAGTTGCTA	:	1094
Hrodentium	:				CCTTAGTTGCTA	:	1068
Hpullorum	:				COTTAGTTGCTA	:	1084
Hfennellia	:				CCTTAGTTGTTA	:	1093
Htrogontum	:	GTCCCGCA	ACGAGCGC	AACCCTC	CCTTAGTTGCTA	:	1068
Hmuridarum	:	GTCCCGCA	ACGAGCGC	AACCCTCET	CCTTAGTTGCTA	:	1089
Hhepaticus	:	N				:	1015
Ghominis1	:				TCTTACTTCCTA	:	1063
Ghominis2	:				TCTTAGTTGCTA	:	1067
Hfelis gb	:				TCTTAGTTGCTA	:	1090
Hbizzozero	:				TOTTAGTTGCTA	:	1066
Hsalomonis	:	GTCCCGCA	ACGAGCGC	AACCCTCTT	TCTTAGTTGCTA	:	1024
Abutzleri	:	GTCCCGCA	ACGAGCGC	AACCCTCET	CCTTAGTTGCTA	:	1109
Cjejuni gb	:				at <mark>ttagttgeta</mark>	:	1106
Wsuccinoge	:				CACTACTTCCTA	:	1094
		Gtcccgca	acgagcgc	aaccctc t	cttaGttgcta		

				1262		
		1340	*	1360	-	
HbovisR2XA	:	TAACGAGGAGGAAGG	GAGGA	TEACSTCRAGTCATC	2	1133
Hpylori gb	:	Taag ^y aggaggaagg				1171
Hbilis gb	:	Taagyaggaggaagg				1337
Hcanis gb	:	TARG. (AGGAGGARGG	rdadga	CGACGTCAAGTCATC	2 :	1157
Hcinaedilg	:	TAAG AGGAGGAAGG				1165
Hacinonych	:	TAACQAGGAGGAAGG	Te <mark>g</mark> ega	CGACGUCAAGTCATC	<u> </u>	1170
Hnemestrin	:	TAACHAGGAGGAAGG	TO <mark>G</mark> GGA	CGACGTCAAGTCATC	A :	1166
Hcholescys	:	Taachaggaggaagc	TUĀGGA	CGACGTCAAGTCATC	A :	1147
Hpamatensi	:	THAGGAGGAGGAAGG	TGAGGA	CGACGTCAAGTCATC	A :	1167
Hmustelae	:	TNAGBAGGAGGAAGG	TGAGGA	CGACGTTAAGTCATC	본 :	1167
Hrodentium	:	C AAG@AGGAGGAAGG	TGAGGA	TGACGTCAAGTCATC	A :	1141
Hpullorum!	:	TAAGSAGGAGGAAGG	TGAGGA	TGACGTCAAGTCATC	4 :	1157
Hfennellia	:	CANGEAGGAGGAAGG	TGAGGA	GGACGTCAAGTCATC	A :	1166
Htrogontum	:	TAAGGAGGAAGG	TGAGGA	CGACGTCAAGTCATC	是 :	1141
Hmuridarum	:	TAAGHAGGAGGAAGG	TGAGGA	CGACGTCAAGTCATC	A :	1163
Hhepaticus	:	ийимикимин	NERNAM	PROPRINTE	- :	1053
Ghominis1!	:	TAANAGGAAGG	TGAGGA	ACGACGTCAAGTCATC	A :	1133
Ghominis2	:	TAAG <mark>C</mark> ANGAGGAAGG	TGAGG/	ACGACGTCRAGTCATO	A :	1141
Hfelis gb	:	TAAG <mark>C</mark> AGGAGGAAGG	TGAGG!	CGACGTCAAGTCATC	A :	1164
Hbizzozero	:	TAAG <mark>C</mark> AGGAGGAAGG				1140
Hsalomonis	:	TAAG <mark>C</mark> AGGAGGAAGG				1030
Abutzleri	:	CAAGTAGGAGGAAGG	TCAGG	TGACGTCAAGTCAT(.A. :	1182
Cjejuni gb	:	TNAGGAGGAGGAAGG	TOTEGA	ACGACGTCAAGTCAT(A :	1179
Wsuccinoge	:	C AAG\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TGAGG	ACGACGTCAAGTCAT	A :	1167
		taaG aggAGGAAGG	tGaGG	AcGACGTcAagtcato	a	

```
1400
                     1380
HbovisR2XA : TGGCCCTTATGTCCGGGGCTACGCACGTGCTACAATC : 1170
                                                    : 1208
             TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hpylori|qb :
             TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG : 1374
Hbilis|gb| :
             TGGCCCTTACGCCTAGGGCTACACGCGTGCTACAATC : 1194
Hcanis|qb| :
             TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                    : 1202
Hcinaedilg :
             TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATC : 1207
Hacinonych :
                                                    : 1203
Hnemestrin : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hcholescys : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                     : 1184
                                                     : 1204
Hpamatensi : TGGCCCTT+CGCCTAGGGCTACACACGTGCTACAATG
                                                     : 1204
Hmustelae| : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hrodentium : TGGCCCTTACGCCTAGGGCTACACGCGCTGCTACAATG
                                                     : 1178
Hpullorum : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                     : 1194
Hfennellia: TGGCCCTTACGCCTAGGGCTACACGCGTGCTACAATG
                                                     : 1203
                                                     : 1178
Htrogontum : TGGCCCTTACGCCTAGGCCTACACACGTGCTACAATG
                                                     : 1200
Hmuridarum : TGGCCCTTACGCCTAGGGCTACACGCGTGCTACAATG
                                                     : 1057
Hhepaticus : -----
             TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Ghominisl| :
                                                     : 1170
Ghominis2| : TGGCCCTTACNCCTAGGGCTACACACGTGCTACAATG
                                                     : 1178
Hfelis|gb| : TGGCCCTTACGCCTAGGCCTACACACGTGCTACAATG
                                                     : 1201
Hbizzozero : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                     : 1177
Hsalomonis: TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                     : 1135
Abutzleri| : TGGCCCTTACGTCCAGGGCTACACACGTGCTACAATGCjejuni|gb : TGGCCCTTATGCCCAGGGCGACACACGTGCTACAATG
                                                     : 1219
                                                     : 1216
Wsuccinoge : TGGCCCTTACGCCYAGGGCTACACACGTGCTACAATC
                                                     : 1204
              tgqcccttAcqcctaqqqctacacacqtgctacaATG
```

		*	1420	*	1440		
HbovisR2XA	:	GGARGTA	CARAGAGAT	SCAAT GT	CTAA ATGGAGC	:	1207
Hpylorilgb	:	GG(: GC)	.CAAAGAGA <mark>A</mark>	GCAAT ** T	et <mark>gaa</mark> gtggage	c :	1245
Hbilis gb	:	GGACAT:	.CAMANAGA <mark>T</mark>	GCAAT : 💥	GTGARGTGGAGC	4 :	1411
Hcanis gb	:	GG CAT	CAA <mark>T</mark> GAGA <mark>A</mark>	GCAAT 433	GAUGTGGAGC	C :	1231
Hcinaedilg	:	GGACAT	TADA <mark>A</mark> AGAT	GCAAT T	G GAD <mark>A</mark> TGGAGC	:	1239
Hacinonych	:	GG GG	CAPAGAGA	CGETT	remer <mark>a</mark> etegage	c:	1244
Hnemestrin	:	GG G	CAAAGAGA <mark>C</mark>	GCAATTS	GEGERGET GENERAL	:	1240
Hcholescys	:				GA_GTGGAGC		1221
Hpamatensi	:				GGGAGGTGGAGC		1241
Hmustelae	:				<u>io@gasi</u> gtgcagc		1241
Hrodentium	:				ic <mark>tglaa</mark> tggagc		1215
Hpullorum	:				ictgr <mark>a</mark> gtggagc		1231
Hfennellia	:				G GA ATGGAGO		1240
Htrogontum	:	GG', CG,	CAAAGAG <mark>G</mark> A	GCAAT# T	gg <mark>tga.a</mark> tggagc	:	1215
Hmuridarum	:	GG EGG	ACAAAGAG <mark>G</mark> A	GCAAT: T	GTG/ASCTGGAGC	:	1237
Hhepaticus	:	NUMBERIO	MANAMANAN	NNNNNE	MANARANA	a :	1094
Ghominis1	:				GGA-GCAGAGC		1207
Ghominis2	:	GGAUGU	ACAAAGAGA <mark>T</mark>	GCAATG	G GA MNNGAGO	C :	1215
Hfelis gb	:		\CAAAGAGA <mark>T</mark>				1238
Hbizzozero	:	GGA G	ACAAAGAGA <mark>T</mark>	GCAATGE	GGGAGG <mark>CT</mark> GAGC	C :	1214
Hsalomonis	:	ececes/	ACAAAGAGA <mark>T</mark>	GCAATG\$	Tegga <mark>a</mark> gctgage	c:	1172
Abutzleri	:				G <mark>CTGA</mark> CGTGGAGC	7 :	1256
Cjejunilgb	:	CCALAT	ACAA <mark>TGAGA</mark> C	GCAAT	GG GARGTGGAGC	a :	1253
Wsuccinoge	:	CTEET.	ACAAAGAGAA	GCAAT	ggggaggtggagc	選 :	1241
		Gg g I	ACAAagAGa	GCaAt	G gA gtgGAGC	:	


```
1500
                 CAACTOGMO<mark>C</mark>MCATGAAGC<mark>A</mark>GGAATCGCTAGTAATCG
                                                                     : 1281
HbovisR2XA :
                                                                     : 1319
                 CAACTCC<mark>C</mark>OT<mark>G</mark>CATGAAGCTGGAATCGCTAGTAATCG
Hpylori|qb :
                 CAACTOOFOT CAT AAAUCTGGAATOGCTAGTAATCG
                                                                     : 1485
Hbilis|gb| :
                 CAACTOCACT CATGAAGCTGGAATCGCTAGTAATCG
CAACTCGACT CAT<mark>A</mark>AAGCTGGAATCGCTAGTAATCG
                                                                      : 1305
Hcanis|qb| :
                                                                      : 1313
Hcinaedi|g :
                 CAACTCC<mark>C</mark>CT<mark>G</mark>CATGAAGC<mark>C</mark>GGAATCGCTAGTAATCG
                                                                     : 1318
Hacinonych :
                 CAACTOS<mark>C</mark>OT<mark>G</mark>CATGAAGOTGGAATCCCTAGTAATCG
                                                                     : 1314
Hnemestrin :
                 CAACTUCACTACATGAAGCTGGAATCGCTAGTAATCG
CAACTCG~CT~CATGAAGCTGGAATCGCTAGTAATCG
                                                                     : 1295
Hcholescys:
                                                                     : 1315
Hpamatensi :
                 CAACTCGSCT $2ATGAAGCTGGAATCGCTAGTAATCG
Hmustelae! :
                                                                     : 1315
                 CAACTCGACTACATGAAGCTGGAATCGCTAGTAATCG
Hrodentium :
                                                                     : 1289
Hpullorum! :
                 CAACTCGACTACATGAAGCTGGAATCGCTAGTAATCG
                                                                     : 1305
                 CAACTCG CT CATAAASCTGGAATCGCTAGTAATCG : 1314
CAACTCG CT CATAAASCTGGAATCGCTAGTAATCG : 1289
CAACTCG CT CATGAAGCTGGAATCGCTAGTAATCG : 1311
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN : 1168
Hfennellia:
Htrogontum:
Hmuridarum :
Hhepaticus:
CAACTCG ct CATGAAGCtGGAATCGCTAGTAATCG
```

		520	*	1540	*		
HbovisR2XA	:	TGAATCAGCA	ATGTCA	CGGTGAATACO	STICCGGGTC	:	1318
Hpylori gb	:	CAATGAGGE	ATCIAG	CGGTGAATACC	TTCCCGGGTC	:	1356
Hbilis gb	:	TGAATCAGCA	ATGTCA	CGGIGAATACA	PTCCCGGGGTC	:	1522
Hcanis gb	:	TGAATCAGCA	ATGTCA	CGGTGAATAC	OTPORPORETTS	:	1342
Hcinaedi g	:			CGGTGAATACC		:	1350
Hacinonych	:			CGCTGAATACC		:	1355
Hnemestrin	:			CGGTGAATAC		:	1351
Hcholescys	:			CGGTGAATAC		:	1332
Hpamatensi	:			COGTGRATACO		:	1352
Hmustelae	:			COGTGAATAC		:	1352
Hrodentium	:	634		CGGTGAATAC		:	1326
Hpullorum	:			CGGTGAATAC		:	1342
Hfennellia	:	1400	100	CGGTGAATAC		:	1351
Htrogontum	:	- 1E - 1		CGGTGAATAC		:	1326
Hmuridarum	:			CGGTGAATAC		:	1348
Hhepaticus	:			ACGGTGAATAC		:	1205
Ghominisl	:			CGGTGAATAC		:	1318
Ghominis2	:			CGGTGAATAC		:	1326
Hfelis gb	:				GTTCCCGGGTC	:	1349
Hbizzozero	:				GTTCCCGGGTC	:	1325
Hsalomonis	:	400			GTTCCCGGGTC		1283
'Abutzleri	:				GTTCCCGGGTC		1367
Cjejunilgb	:				GTTCCCGGGTC		1364
Wsuccinoge	:				GTTCCCGGGTC		1352
		aATCAGC	ATGt	CGGTGAATAC	GTTCCCGGGTC		

		*	1640	*	1660		
HbovisR2XA	:					• :	_
Hpylori gb	:	GCAC	ACACAGCGACTO	GC		:	1450
Hbilis gb	:	@GC ⊲€	TGCAGCGACTC	GG(§		:	1616
Hcanis gb	:					· :	-
Hcinaedilg	:	©GC ∂G	TGCAGCGACTC	GG2		· :	1444
Hacinonych	:	GCAC	a <mark>ca</mark> cagegaete	GG%		· :	1449
Hnemestrin	:	CGCAC	CA <mark>CAGCGACT</mark> C	GG TGAAGT	CGTAACAAGGT	· :	1462
Hcholescys	:	GC 🛒	TG <mark>CAGCGACT</mark>			• :	1425
Hpamatensi	:	€GC	A <mark>TG</mark> CAGCGACTO	GG		٠:	1446
Hmustelae!	:	ãGC ∰,				٠:	1435
Hrodentium	:	gcc g	TGCAGCGACT	CG@TGA		· :	1423
Hpullorum	:	€GC 🚖	TGCAGC			• :	1428
Hfennellia	:		A <mark>TG</mark> CAGCGACT(<u></u>		•	1445
Htrogontum	:		A <mark>TG</mark> CAGCGACT(1333		• :	1422
Hmuridarum	:		TGCAGCGACT(• :	1442
Hhepaticus	:		a <mark>tg</mark> cagcgact(- C - L - C - 1		•	1302
Ghominis1	:		a <mark>ca</mark> cagegact:				1414
Ghominis2	:	©GCAC	A <mark>CA</mark> CAGCGACT(•	1422
Hfelis gb	:		a <mark>ca</mark> cagogact(JC 023		•	1443
Hbizzozero	:	©GC AC	ACACAGCGACT(GG TG		- :	1421
Hsalomonis	:					- :	-
Abutzleri	:		A <mark>TT</mark> CAGYGACT(- :	1461
Cjejunilgb	:	AGTEG	a <mark>at</mark> cagcgact(GGର୍ଲ୍ଧ		- :	1458
Wsuccinoge	:	GC (A <mark>TG</mark> CAGCGACT(GGG =		- :	1446
		gc i	a cagcgacto	3 9 9			

Figure 1 - 45

		*		
HbovisR2XA	:		:	-
Hpyloriigb	:		:	-
Hbilis gb	:		:	-
Hcanis gb	:		:	-
Hcinaedi g	:		:	-
Hacinonych	:		:	-
Hnemestrin	:	A	:	1463
Hcholescys	:		:	-
Hpamatensi	:		:	-
Hmustelae	:		:	-
Hrodentium	:		:	-
Hpullorum	:		:	-
Hfennellia	:		:	_
Htrogontum	:		:	-
Hmuridarum	:		:	
Hhepaticus	:		:	-
Ghominis1	:		:	-
Ghominis2	:		:	-
Hfelis gb	:		:	-
Hbizzozero	:		:	_
Hsalomonis	:		:	-
Abutzleri!	:		:	-
Cjejunilgb	:		:	-
Wsuccinoge	:		:	_

Figure 1 - 46

		40	*	60	*		
Hsuis2BXA0	:			TGCAAGTCC	BAACGATGAAG	:	19
Ghominis1	:	GCGGCGT	GCCTAATAC	CATGCAAGTCC	BAACGATGAAG	:	47
Ghominis2	:	GGCGGCGT	GCCTAATAC	CATGCAAGTCC	GAACGATGAAG	:	47
Hfelis gb	:	GGCGGCGT	GCCTAATAC	CATGCAAGTCC	BAACGATGAAG	:	74
Hbizzozero	:	GGCGGCGT	GCCTAATAC	CATGCAAGTCC	SAACGATGAAG	:	47
Hbilis gb	:	GGCGGCGT	GCCTAATA	CATGCAAGTCC	SAACGATGAAG	:	65
Hsalomonis	:				GAAG	:	4
Hpylorilgb	:	GGCGGCGT	GCCTAATA	CATGCAAGTCC	GAACGATGAAG	:	74
Hcanis gb	:	GGCGGCGI	GCCTAATAC	CATGCMAGTCC	GAACGATGAAG	:	65
Hcinaedilg	:	GGCGGCGT	GCCTAATAC	CATGCAAGTC	SAACGATGAAG	:	73
Hacinonych	:	GGCGGCGT	GCCTAATA	CATGCAAGTC	SAACGATGAAG	:	74
Hnemestrin	:	GGCGGCGT	GCCTAATA	CATGCAAGTC	GAACGATGAA <mark>A</mark>	:	74
Hcholescys	:	GGCGGCGT	GCCTAATA	CATGCAAGTC	GAACGATGAAG	:	55
Hpamatensi	:	GCCGCGT	GCCTAATA	CATGCAAGTC	GNACGATGAAG	:	73
Hmustelael	:	GGCGGCSI	GCCTAATAG	CATGCAAGTC	GAACGATGAAG	:	74
Hrodentium	:	GGCGGCGI	GCCTAATA(CATGCAAGTC	GAACGATGAAG	:	51
Hpullorum	:	GGCGGCG'I	GCCTAATAG	CATGCAAGTC	SAACGATGAAG	:	66
Hfennellia	:				GAACGATGAAC	:	74
Htrogontum	:				GAACGATGAAG	:	51
Hmuridarum	:				SNACGATGAAG	:	71
Hhepaticus	:				SAACGATGAAT	:	50
Abutzleri	:				GAACGA <mark>GA</mark> ACG		71
Cjejunilgb	:				SNACG <u>A</u> TGA <u>AG</u>		72
Wsuccinoge	:				GAACGGTA <mark>A</mark> CA	:	73
		ggcggcgt	gcctaata	catgcaagtc	gaacgatgAag		

Figure 2 - 3

Figure 2 - 4

		*	160	*	180			
Hsuis2BXA0	:	GCAAT.	GCCA TAG	AAA <mark>T</mark> GGTGAT	TAATACSAAAT	AC	:	122
Ghominis1	:	GGAAT	GCCA TAG	<i>N</i> AA <mark>T</mark> GGTGAT	TAATACTAAAT	AC	:	149
Ghominis2	:	GGGATA	AGCCA: T <mark>A</mark> G	aaa <mark>t</mark> ggtgat	taatacü <mark>aa</mark> at	ÀΤ	:	150
Hfelis gb	:	GGGATA	kgcca 🤁 ag.	aaa <mark>t</mark> ggtgat	TAATAT AAAT	-C	:	177
Hbizzozero	:	GGGAT/	GCCAST AG	aaa <mark>t</mark> egtgat	TAATACE <mark>AA</mark> AT	AC	:	150
Hbilis gb	:	GCGAT	GCCA TOG	aaa@ggtgat	TAATAOTGAA	AC	:	172
Hsalomonis	:	GGGATA	AGCCA ĜI <mark>A</mark> G	aaa <mark>t</mark> ggtgat	TAATACEAA	AC	:	107
Hpylorilgb	:	GGGAT:	AGCCATIEGA	MAAK GATGAT	TAATAC: A AT	'AC	:	182
Hcanis gb	:	GGGAT	GCCA国T常G	aaaiggtgat	TAATAC <mark>TG</mark> AT	'AC	:	172
Hcinaedilg	:	GGGAT	\GCCA∄T∦G/	aaagggtgat	TAATACTGEAT	'AC	:	180
Hacinonych	:	GGGAT	GCCA <mark>T</mark> T &GA	aaagggtgat	TAATACEASAT	ΈT	:	181
Hnemestrin	:				TAATACAAGAT		:	178
Hcholescys	:	GCGAT:	-GCCA.∰T∰G/	aaa§g <mark>gtsat</mark>	TAATAC GAT	'AC	:	162
Hpamatensi	:				TAATACTA A1		:	182
Hmustelael	:				TAATAC <mark>TG</mark> ZAT		:	181
Hrodentium	:				TAATACTGEAT		:	156
Hpullorum	:				ТААТАС <mark>ТА</mark> ЁМ		:	173
Hfennellia	:	AGGAT:	/инии <u>в</u> и <u>в</u> в.	aaa; ggtgat	TAATAC <mark>E</mark> NŽIM	AND.	:	181
Htrogontum	:				TAATACE GEA1		:	158
Hmuridarum	:	GGGAT!	agcca@t@g.	aaa@ggtgat	TAATAC <mark>TG</mark>	CAC	:	178
Hhepaticus	:				TAATAC <mark>TG</mark> AT		:	157
Abutzleri	:				TAATACETTAT		:	182
Cjejuni gb	:				TNATACTCTAT		:	179
Wsuccinoge	:				TAATAC	AΤ	:	182
		gGgAt	AgCca T G	AAA Ggtgat	TAATAC A	ΓAc		

Figure 2 - 5

Figure 2 - 6

		:	*	240	*	26	
Hsuis2BXA0	:					:	-
Ghominis1	:					;	-
Ghominis2	:					:	-
Hfelis gb	:					:	-
Hbizzozero	:					:	-
Hbilis qb	:	CAATAAA	GAATTTC	TCTTTTTAG	TGCTTTGTG	TTGTT :	232
Hsalomonis	:					:	
Hpylorilqb	:					:	_
Hcanis gb	:					:	-
Hcinaedilg	:					:	-
Hacinonych	:					:	-
Hnemestrin	:					:	-
Hcholescys	:					:	-
Hpamatensi	:					:	-
Hmustelael	:					:	-
Hrodentium	:					· :	_
Hpullorum!	:					:	-
Hfennellia	:					· :	_
Htrogontum	:					:	-
Hmuridarum	:					:	_
Hhepaticus	:					· :	_
Abutzleri	:					· :	-
Cjejunilgb	:					:	-
Wsuccinoge	:					:	_

		0	*	280	*	
Hsuis2BXA0	:					: -
Ghominisl	:					: -
Ghominis2	:					: -
Hfelis qb	:					: -
Hbizzozero	:					: -
Hbilis qb	:	GGCACAAAAT	TCTAGTAT	TTTGGAATGAGA	AATTGATG	: 269
Hsalomonis	:					; -
Hpylorilgb	:					: -
Hcanis gb	:			·		: -
Hcinaedilg	:					: -
Hacinonych	:					: -
Hnemestrin	:	. – – – – – – – – -				: -
Hcholescys	:					: -
Hpamatensi	:					: -
Hmustelae	:					: -
Hrodentium	:					: -
Hpullorum	:					: -
Hfennellia	:					: -
Htrogontum	:					: -
Hmuridarum	:					: -
Hhepaticus	:					: -
Abutzleri!	:					: -
Cjejunilgb	:					: -
Wsuccinoge	•					• -

		300	*	320	*		
Hsuis2BXA0	:					:	-
Ghominisl	:					:	-
Ghominis2	:					:	-
Hfelis gb	:			-		:	-
Hbizzozero	:					:	-
Hbilis gb	:	TTGTGAAGCA	ATTTGT	SCGGAGACTA	GACTTAGTGTC	:	306
Hsalomonis	:		. – – – – -	-		:	-
Hpylori gb	:					:	-
Hcanis gb	:					:	-
Hcinaedilg	:					:	-
Hacinonych	:					:	-
Hnemestrin	:					:	-
Hcholescys	:					:	-
Hpamatensi	:					:	-
Hmustelael	:					:	-
Hrodentium	:					:	~
Hpullorum	:					:	_
Hfennellia	:					:	-
Htrogontum	:					:	-
Hmuridarum	:					:	_
Hhepaticus	:					:	-
Abutzleri	:					• :	-
Cjejuni gb	:					• :	_
Wsuccinoge	•					. :	-

		340	*	360	*	
Hsuis2BXA0	:					: -
Ghominis1	:					: -
Ghominis2	:					: -
Hfelis qb	:					: -
Hbizzozero	:					: -
Hbilis qb	:	TGTCGCACAAG	CAAATTGCGA	ACTCATCGAT	TTATCG	: 343
Hsalomonis	:					: -
Hpylori qb	:					: -
Hcanis gb	:					: -
Hcinaedilq	:					: -
Hacinonych	:					: -
Hnemestrin	:				-	: -
Hcholescys	:				 -	: -
Hpamatensi	:					: -
Hmustelae	:					: -
Hrodentium	:					: -
Hpullorum!	:					: -
Hfennellia	:					: -
Htrogontum	:					: -
Hmuridarum	:					: -
Hhepaticus	:		·			: -
Abutzleri	:			·		: -
Cjejunilgb	:					: -
Wsuccinoge	:					: -

Figure 2 - 11

		* '	420	*	440		
Hsuis2BXA0	:	GGATTG	GTCTATGTCCTA	TCAGCTTG	TTGGTGAGGTA	:	189
Ghominis1	:	GGATTG	GTOTATGTCCTA	TCAGCTTG	TIGGTGAGGTA	:	216
Ghominis2	:	GGATTG	GTCTATGTCCTA	CAGCTTG	TTGGTGAGGTA	:	217
Hfelis gb	:	GGATTG	GTCTATGTCCTA	TCAGCITS	TTGGTGAGGTA	:	242
Hbizzozero	:	GGATTG	E <mark>T</mark> CTATGTCCT#	TCAGCTTG	TTGGTGAGGTA	:	217
Hbilis gb	:	GGATC	SACTATGTCCTA	TCAGCITG	TTGGTGAGGTA	:	417
Hsalomonis	:	GGATTG	TOTA IGTOOTA	TCAGCITG	TTEE <mark>C</mark> EGGGTA	:	174
Hpylori gb	:	AGATC	g∏CTATGTCCT/	TCAGCTTG	TYGGTAAGGTA	:	247
Hcanis gb	:	GGATC	GECTATGTCCT	TCAGCTTG	TTGGTGAGGTA	:	237
Hcinaedi g	:	GGATC	GÄCTATGTCCT#	KTCAGCTTG	TTGGTGAGGTA	:	245
Hacinonych	:		GECTATE <mark>C</mark> CCTF			:	246
Hnemestrin	:		GECTATGTCCTA			:	243
Hcholescys	:	GGATC	GECTATGTCCTA	VICAGCITO	TTGGTGAGGTA	:	227
Hpamatensi	:	GGAT C鹽	GECTATGTCCT	ATCAGCTT6	TTGGTGAGGTA	:	247
Hmustelae	:	GGATC	GSCTATGTCCT	ATCAGCITO	TTGGTGAGGTA	:	246
Hrodentium	:		GGCTATGTCCT#			:	221
Hpullorum	:		G∭CTATGTCCT/			:	238
Hfennellia	:		GTOTATGTCCT			:	246
Htrogontum	:		GECTATGTCCT				223
Hmuridarum	:	23	GCTATGTCCT				242
Hhepaticus	:		GCTATGTCCT/				222
Abutzleri	:		GÖCT GTATTGTA				262
Cjejuni gb	:		GACTATATAGTA				258
Wsuccinoge	:		GECTATGTCCTA				247
		gGAT	G CTaTqtccT/	ATCAGcTt C	STTGGtqaGGTA		

```
480
                                                                                    460
                                        AAGGCTGACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                             226
Hsuis2BXA0 :
                                                                                                                                                                             253
                                         A<mark>A</mark>GGOT CACCAAGGOTAT GACGGGT AT UCGGCCTGAG
Ghominisl :
                                         A<mark>a</mark>ggotcaccaaggotatgacg<mark>gg</mark>tatcccgcct<mark>ga</mark>g
                                                                                                                                                                             254
Ghominis2|:
                                                                                                                                                                             279
                                            AGGCTCACHMAGGCTATGACGGGTATCCGGCCTGAG
Hfelis|gb| :
                                         A<mark>A</mark>BBCTCACCAAGGC<mark>A</mark>ATGACGGGTATCCGGCCTGAG
A<u>BGCCT</u>CACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                             254
Hbizzozero:
                                                                                                                                                                              454
Hbilis|qb| :
                                         A<mark>ga</mark>go<mark>o</mark>accaaogl<mark>a</mark>atgacgggtatccsgcctgac
                                                                                                                                                                              211
Hsalomonis :
                                         A GGOTTRICORACOTATGROURT TOOR ACCORTTO GROUP ACCORDANCE OF THE SECOND OF THE SECOND ACCORDANCE O
                                                                                                                                                                              284
Hpylori|qb:
                                                                                                                                                                              274
Hcanis|qb| :
                                         AZ GGCTCACNAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                              282
Hcinaedilg:
                                         ANGGOT<mark>T</mark>ACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                              283
Hacinonych :
                                           aggct<mark>t</mark>accaaggctatgacgggtatccggcctgag
                                                                                                                                                                              280
Hnemestrin :
                                           a\(\)GGCT\(\)CACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                              264
Hcholescys :
                                         AFGGCTCACCAAGGCTATGACGGGTATCCGGCCTGAG
AFGGCTCACNNAGGCTATCAGGGTATCCGGCCTGAG
                                                                                                                                                                              284
Hpamatensi :
                                                GGCTCACNNAGGCTATGACGGGTATCCGGCCTNAG
                                                                                                                                                                              283
Hmustelae| :
                                          ANGGCTCACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                              258
Hrodentium :
                                          A) GGCTCACCAAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                              275
Hpullorum :
                                         AAGGCTCACNMAGGCTATGACGGTATCCGGCCTGAG
AAGGCTCACCAAGGCTATGACGGTATCCGGCCTGAG
                                                                                                                                                                              283
Hfennellia :
                                                                                                                                                                               260
Htrogontum:
                                          AMOGOTCACCNAGGCTATGACGGGTATCCGGCCTGAG
                                                                                                                                                                               279
Hmuridarum :
                                         AMBGCTCACCHAGGCTATOACGGTATCCGGCCTGAC
AMGGCCTACCAAGGCTATGACGCATAACTGGTTTCAC
AMGGCTTACCAAGGCTATGACGCTNAACTGGTCTGAC
AMGGCTCACNAAGGCTATGACGCTATCCGGCCTGAG
                                                                                                                                                                              259
Hhepaticus :
                                                                                                                                                                              299
Abutzleri| :
                                                                                                                                                                               295
Cjejunilgb :
                                                                                                                                                                               284
Wsuccinoge:
                                           A gGCtcACCAAGgCtATGACGggTAtCcGGccTGAG
```

			*	500	*	5		
Hsuis2BXA0	:	AGGGTGAG	CGC	ACACACTEGAACT	GAGACACC	GTCCA	:	263
Ghominisl	:			ACACACTGGAACT			:	290
Ghominis2	:	AGGGTGAP	CGC	ACACACTGGAACT	rgagacac	GTOCA	:	291
Hfelis gb	:	AGGGTGA	CG0	ACACACTGGAACT	TGAGACACC	GTCCA	:	316
Hbizzozero	:	AGGGTGA	OG:	ACACACTGGAAC"	rgagacaco	GGTCCA	:	291
Hbilis gb	:	AGGGTGAT	::GC	MACACACTGGAACT	rgagadack	GGTCCA	:	491
Hsalomonis	:			ACACACTGGAACT			:	248
Hpylori gb	:			BACACACTGGAACT			:	321
Hcanis gb	:			BACACACTGGAAC'			:	311
Hcinaedilg	:			FACACACTGGAAC			:	319
Hacinonych	:			BACACACTGGAAC'			:	320
Hnemestrin	:			GACACACTGGAAC			:	317
Hcholescys	:			PACACACTGGAAC			:	301
Hpamatensi	:			GACACACTGGAAC			:	321
Hmustelae	:			FACACACTGGAAC			:	320
Hrodentium	:			JACACACTGGAAC'			:	295
Hpullorum	:			FACACACTGGAAC			:	312
Hfennellia	:			GACACACTGGAAC			:	320
Htrogontum	:			GACACACTUGAAC			:	297
Hmuridarum	:			GACACACTGGAAC			:	316
Hhepaticus	:			GACACACTGGAAC			:	296
Abutzleri	:			e <mark>T</mark> CACACTGGAAC			:	336
Cjejunilgb	:			G <mark>T</mark> CACACTGGAAC				332
Wsuccinoge	:			GACACACTGGAAC				321
		AGGGTGA	Сg	GaCACACTGGAAC	TGAGACAC	GGTCCA		

Figure 2 - 14

		20	*	540	*		
Hsuis2BXA0	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	300
Ghominis1	:	GACTCUT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	327
Ghominis2	:	GACICCI	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	328
Hfelis qb	:	GACICCH	MOGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	353
Hbizzozero	:	GACTOCT	ACGGGAGG	CAGCAGTAGGG	AATATTGGTGA	:	328
Hbilis gb	:	GACTOCT	ACCGRIAGG	CAGCAGTAUGG	AATATTUCTCA	:	528
Hsalomonis	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	285
Hpylori gb	:	GACTOOT	ACGGGAGG	CAGCAGTAGGG	aa fatigotoa	:	358
Hcanis gb	:	GACTCCT	ACGOGAGG	CAGCAGTAGGG	AATATTGCTCA	:	348
Hcinaedilg	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	356
Hacinonych	:	GACTCCT	ROGGGAGG	CAGCAGTAGGC	AATATTGCTCA	:	357
Hnemestrin	:	GACTOOT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	354
Hcholescys	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	338
Hpamatensi	:	GACTCCT	ACGCGAGG	CAGCAGTAGGC	AATATTGCTCA	:	358
Hmustelae	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	357
Hrodentium	:	GACTCCT	ACGGGAGG	CAGCAGTAGGG	AATATTGCTCA	:	332
Hpullorum!	:	GACTCCT	ACGGGAGG	CAGCAGTAGGC	GAATATTGCTCA	:	349
Hfennellia	:	GNCTCCT	'ACGGGAGG	CAGCAGTAGGC	AATATIGCTCA	:	357
Htrogontum	:	GACTCCT	'ACGGGAGC	CAGCAGTAGGO	BAATATTGCTCA	:	334
Hmuridarum	:	GACTCCT	'ACGGGAGC	CAGCAGTAGG	BAATATTGCTCA	:	353
Hhepaticus	:				SAATATTGC <u>T</u> CA		333
Abutzleri	:				Baatattgc <mark>a</mark> ca		373
Cjejunilgb	:	GACTCCT	'ACGGGAGG	CAGCAGTAGG(GAATATTGO <mark>G</mark> CA	:	369
Wsuccinoge	:	GACTCCI	'ACGGGAGC	CAGCAGTAGG	GAATATTGCTCA	:	358
		GACTCCT	ACGGGAGG	CAGCAGTaGG	SAATATTGCtCA		

Figure 2 - 15

		560		*	580		*		
Hsuis2BXAO			1 2 3 C	CCTGSA	GCAGCAACG	CCGCGTC	GAGG	:	337
Ghominis1	:	ATTERCO	2220	oDTG≗A TTG≗A	GCAGCAACG	CCGCGTC	GAGG	:	364
Ghominis2!	:	AMERICA	a a G	CCTGAA	GCAGCAACG	COGCGTC	GAGG	:	365
Hfelis qb	:				GCAGCAACC			:	390
Hbizzozero	:				GCAGCAACG			:	365
Hbilis qb	:				GCAGCAACC			:	565
Hsalomonis	:				GCAGCAACG			:	322
Hpylori gb	:				COAGCAACC			:	395
Hcanis qb	:				GCAGCAACC			:	385
Hcinaedilg	:				GCAGCAACG			:	393
Hacinonych	:		_		GCAGCAACO			:	394
Hnemestrin	:	ATGGGGG.	AAAC	CCTGAA	GCAGCAACC	CCGCGT	GGAGG	:	391
Hcholescys	:	ATGGGCG.	A.A.A.G	CCTGAA	GCAGCANCE	CCGCGT	GGAGC	:	375
Hpamatensi	:	ATGGGCG.	AAAG	CCTGAA	GCAGCAACC	CCGCGT	GGAGG	:	395
Hmustelae	:	ATGGGCG.	AAA G	CCTGAP	GCAGCAACC	CCGCGT	GGAGG	:	394
Hrodentium	:				AGCAGCAACC			:	369
Hpullorum	:				AGCAGCAAC(:	386
Hfennellia	:				AGCAGCAACO			:	394
Htrogontum	:				NGCAGCAAC			:	371
Hmuridarum	:				AGCAGCAAC			:	390
Hhepaticus	:				<u>I</u> GCAGCAAC(:	370
Abutzleri	:				GCAGCAAC			:	410
Cjejunilgb	:				GCAGCAAC			:	406
Wsuccinoge	:				AGCAGCAAC			:	395
		ATGGg G	aAA	CCTGA	GCAGCAAC	GCCGCGT	GGAGG		

		600	*	620			
Hsuis2BXA0	:	ATGAAGGTTTTAGGA:	CEN	AAACTCCTTTT	TTAGAG	:	374
Ghominis1	:	ATGAAGGTTTTAGGA				:	401
Ghominis2	:	ATGAAGGTT FTAGGA!				:	402
Hfelis gb	:	ATGAAGGTTTTAGGA'	rrgti	RAACTCCTTTIA	TCAGAC	:	427
Hbizzozero	;	ATGRAGGTTTTAGGA:	rtgt	RAACTCCTTTT	TCAGAG	:	402
Hbilis gb	:	ATGAAGGTTTTAGGA'	TTGT!	AAACTCCTTTT [©]	TAAGAG	:	602
Hsalomonis	:	ATGAAGGTTTTAGGA	TTGT:	AAACTCCTTTI	GAGAG	:	359
Hpylori gb	:	ATGAAGGTTTTAGGA				:	432
Hcanis gb	:	ATGAAGGTTTTAGGA	TTGT:	AAACTCCTTTT	TAAGAC	:	422
Hcinaedi g	:	ATGAAGGTTTTAGGA				:	430
Hacinonych	:	ATGAAGGTTTTAGGA				:	431
Hnemestrin	:	ATGAAGGTTTTAGGA				:	428
Hcholescys	:	ATGAAGGTTTTAGGA	TTGT.	AAACTCCTTT[TGAGAG	:	412
Hpamatensi	:	ATGAAGGTTTTAGGA				:	432
Hmustelae	:	ATGAAGGTTTTAGGA				:	431
Hrodentium	:	ATGAAGGTTII <mark>C</mark> GGA				:	406
Hpullorum	:	ATGAAGGTTTT <mark>C</mark> GGA				:	423
Hfennellia	:	ATGAAGGTTTTĀGGA		-	~	:	431
Htrogontum	:	ATGAAGGTTTTAGGA				:	408
Hmuridarum	:	ATGAAGGTTTTAGGA				:	427
Hhepaticus	:	ATGAAGGTTTTAGGA				:	407
Abutzleri	:	ATGACACATTTCGGT				:	447
Cjejuni gb	:	ATGACACTTTTCGGA				:	443
Wsuccinoge	:	ATGAAGGTCTTCGGA				:	432
		ATGAaggttTTaGGa	ttGT	AAACTCCTTTT	T agaG		

Figure 2 - 17

Figure 2 - 18

		*	680	*	700		
Hsuis2BXA0	:	AACTCCGT	CCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	447
Ghominisl	:	AACTCCGT:	GCCAGCAGCCG	CGGTAATA	ACGGREGGTGC	:	474
Ghominis2	:	AACTCCGT	GCCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	475
Hfelis qb	:	ANCTOCGTO	GCCAGCAGCCG	CGGTAAT	ACGSACGGTGC	:	500
Hbizzozero	:	AACTCCUT	GCCAGCAGCCG	CGGTAATI	ACGGAGGGTGC	:	474
Hbilis gb	:	AACTCCGT:	GUCAGCAGCCG	CGGTAATA	ACGGAGGGTGC	:	675
Hsalomonis	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ADGGAGGGTGC	:	432
Hpylori gb	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGTGC	:	505
Hcanis gb	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGTG	:	495
Hcinaedilg	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGIG(:	503
Hacinonych	:	NACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGTG	:	504
Hnemestrin	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGTG(:	501
Hcholescys	:	AACTCCGT	GCCAGCAGCCG	CGGTAAT	ACGGAGGGTG	:	485
Hpamatensi	:	NACTCCGT	GCCAGCAGCCG	CGGTAAT.	ACCCAGGGTG	3 :	505
Hmustelae	:		GCCAGCAGCC				504
Hrodentium	:		GCCAGCAGCC				479
Hpullorum	:		GCCAGCAGCC				496
Hfennellia	:	AACTCCGT	GCCAGCAGCC	CGGTAAT.	ACGGAGGGTG(:	504
Htrogontum	:		GCCAGCAGCC				481
Hmuridarum	:		GCCAGCAGCC				500
Hhepaticus	:	AACTCCGT			-CGGAGGGTG		464
Abutzleril	:		GCCAGCAGCC				520
Cjejunilgb	:		GCCAGCAGCC				517
Wsuccinoge	:		GCCAGCAGCC				505
		AACTCCGT	GCCagcagcc	gcggtaat	aCGGAGGGTG	С	

		* 720	*	740		
Hsuis2BXA0	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	TGCGT	:	484
Ghominis1	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	TGCGT	:	511
Ghominis2	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	TGCGT	:	512
Hfelis gb	:	NAGOGTTACTOGGAATCHCTGG	GCGTAAAGAG	TGCGT	:	537
Hbizzozero	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	TGCGT	:	511
Hbilis gb	:	AAGCGTTACTCGGAATCACTGG	GCGTARAGAG	GCGT	:	712
Hsalomonis	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	TGCGT	:	469
Hpylori gb	:	AAGOGTTACTCGCAATCACTGC			:	542
Hcanis gb	:	AAGCGTTACTCGGAATCACTGG			:	532
Hcinaedilg	:	AAGCGTTACTCGGAATCACTGG	GCGTNAAGAG	<u>i</u> gcet	:	540
Hacinonych	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	GCGT	:	541
Hnemestrin	:	AAGCGTTACTCGUAATCACTGG	GCGTAAAGAG	₫GCGT	:	538
Hcholescys	:	AAGCGTTACTCGGAATCACTGG	GCGTAAAGAG	GCGT	:	522
Hpamatensi	:	NAGCGTTACTCGGAATCACTGC			:	542
Hmustelae	:	NAGCGTTACTCGGAATCACTGG		.77	:	541
Hrodentium	:	AAGCGTTACTCGGAATCACTGC		4.45	:	516
Hpullorum	:	AAGCGTTACTCGGAATCACTGC			:	533
Hfennellia	=	AAGCGTTACTCGGAATCACTGC			:	541
Htrogontum	:	AAGCGTTACTCGGAATCACTGC		_	:	518
Hmuridarum	:	AAGCGTTACTCGGAATCACTGC			:	537
Hhepaticus	:	AAGCGTTACTCGGAATCACTGC			:	501
Abutzleri	:	AAGCGTTACTCGCAATCACTGC			:	557
Cjejunilgb	:	AAGCGTTACTCGGAATCACTGC			:	554
Wsuccinoge	:	AAGCGTTACTCGGAATCACTGC			:	542
		AAGCGTTACTCGGAATCACTG	3GCGTAAAGa G	gcGt		

		* 760 *		
Hsuis2BXA0	:	AGGCGGGAGGACAAGTCAGGTGTGAAATCCTATEGCT	:	521
Ghominis1	:	AGGGGGEAGGACAAGTCAGGTGTGAAATCCT T/GCT	:	548
Ghominis2	:	AGGGGGG <mark>GNTEGA</mark> AGTCAG <mark>G</mark> TGTGAAATCCTMTHGCT	:	549
Hfelis gb	:	AGGCGCGTT AAGTCAGTTGGAAATCCT TAGCC	:	574
Hbizzozero	:	AGGCGGG <mark>GTT@MAAGTCAGG</mark> TGTGAAATCCT&TSGCT	:	548
Hbilis gb	:	AGGCGGGAG AAGTCAG TGTGAAATCCTGTAGCT	:	749
Hsalomonis	:	AGGCGGG <mark>GTT</mark> AMAAGTOAGATGTGAAATCCTATAGCT	:	506
Hpylori gb	:	AGGCGGGAT CAGICAGGTGTGAAATCCT TGGCT	:	579
Hcanis gb	:	AGGCGGGAAG AAGTCAGGTGTGAAATCCTGT <mark>A</mark> GCT	:	569
Hcinaedilg	:	AGGCGGGTAGTCAAGTCAGATGTGAAATCCTGTAGCT	:	577
Hacinonych	:	AGGCGGGRT MAGTCAGATGTGAAATCCT TEGCT	:	578
Hnemestrin	:	AGGCGGGATAGGCAGTCAGGTGTGAAATCCTATTGCT	:	575
Hcholescys	:	AGGCGCCGT AAGTCAG TOTGAAATCCT T GCT	:	55 9
Hpamatensi	:	AGGCGGGGT####AAGTCAGHTGTGAAATCCTHTEGCT	:	579
Hmustelae	:	AGGCGGAGT#AWAAGTCAGHTSTGAAATCCTGTAGCT	:	578
Hrodentium	:	AGGCGGG <mark>A</mark> TŠG <mark>C</mark> AAGTCAG ŠTGTGAAATCCTŠTŠGCT	:	553
Hpullorum	:	aggcggg <mark>g</mark> t@ <u>@</u> aagtcag@tgtgaaat <u>c</u> ct%t@gct	:	570
Hfennellia	:	AGGCCEG <mark>AT EC</mark> AAGTCAG TGTGAAAT GCTETEGCT		578
Htrogontum	:	AGGCGGG <mark>GT&A</mark> CAAGTCAG&TGTGAAATCCT <mark>GTA</mark> GCT		555
Hmuridarum	:	AGGCGGGCTARAAGTCAGATGTGAAATCCTATAGCT		574
Hhepaticus	፡	AGGCGGGGTAAAAGTCAGTTGTGAAATCCTGTAGCT		538
Abutzleril	:	AGGCGGATT A GAGTTTGA AGTGAAATCCT TAGCT		594
Cjejuni gb	:	AGGCGGATTETCAAGTCTCTTGTGAAATCTAETEGCT		591
Wsuccinoge	:	AGGCGGCCTTGCAAGTCAGATGTGAAATCCAGCT	:	579
		AGGCGGg t aAGTcag tGTGAAATcct t GCT		

Figure 2 -21

Figure 2 - 22

		820	*	840	*		
Hsuis2BXAO	:	TETGGGAGAGG	TAGGTGGAA	TTCTTGGTGT	'AGGGGTA	:	595
Ghominis1	:	TMTGGGAGAGG	TAGGTGGAA	TTCTTGGTGT	'AGGGGTA	:	622
Ghominis2	:	THTGGGAGAGG	TAGGTGGAF	ATTCTTGGTGT	'AGGGGTA	:	623
Hfelis gb	:	TGTGGGAGAGG	TAGGTGGAA	TTCTTGGTGT	AGGGGTA	:	648
Hbizzozero	:	TSTGGGAGAGG	TAGGTGGAZ	TTCTTGGTGT	AGGGGTA	:	622
Hbilis gb	:	TATGGGAGAGA	TAUGIGGAA	ATTCTTGGTGT	'AGGGGTA	:	823
Hsalomonis	:	TATGGGAGAGG	TAGGIGGA	TTCTTGGTGT	'ACGESTA	:	580
Hpylori gb	:	T製TGGGAGAGG	TAGGIGGA	ATTCTTGGTGT	'AGGGGTA	:	653
Hcanis gb	:	TATGGGAGAGO	TAGGTGGAA	ATTCTTGGTGT	'AGGGGTA	:	643
Hcinaedilg	:	TATGGGAGAGG	TAGGTGGA	TTCTTGGTGT	AGGGGTA	:	651
Hacinonych	:	TTGGGAGAGG	YAGGTGGA	ATTCTTGGTGT	AGGGGTA	:	652
Hnemestrin	:	TETGGGAGAGG	TAGGTGGA	TTCTTGGTGT	AG <mark>A</mark> GGTA	:	649
Hcholescys	:	TATGGGAGAGG	TAGGTGGA	ATTCTTGGTGT	'AGGGGTA	:	633
Hpamatensi	:	TATGGGAGAGG	TAGGTGGA	ATTOTTGGTGT	'AGGGGTA	:	653
Hmustelae	:	TETGGGAGAGC	TAGGTGGA	ATTCTTGGTGT	AGGGGTN	:	652
Hrodentium	:	TATGGGAGAGG	TACGTGGA	ATTCTTGGTGT	TAGGGGTA	:	627
Hpullorum	:	TATGGGAGAG	TAGGTGGA	ATT CTTGGTGI	AGGGGTA	:	644
Hfennellia	:	TETGGGAGAGG	TAGGTGGA	ATTCTTGGTGI	AGGGGTA	:	652
Htrogontum	:	THTGGGAGAGG	TAGGTGGA	VTTCTTGGTGT	TAGGGGTA	:	629
Hmuridarum	:	0.50		ATTCTTGGTGT		:	648
Hhepaticus	:	TgTGGGAGAGG				:	612
Abutzleri	:	TETGGGAGAGG				:	668
Cjejuni gb	:	T <mark>@</mark> AGGGAGAGG				:	665
Wsuccinoge	:	TATGGGAGAGC				:	653
		T tGGGAGAGG	StAGgTGGA	ATTcttGGTGT	PAGGGTA		

		860	*	880		
Hsuis2BXA0	:	AAATCCGTAGAGATC	AAGAGG	AATACTCATTGCGAAG	:	632
Ghominis1	:	AAATCCGTAGAGATC	AAGAGG	AATACTCAT (GCGAAG	:	659
Ghominis2	:	AAATCCGTAGAGATC	CAAGAGG	AATACTCATTGCGARG	:	660
Hfelis gb	:	AAATCCGTAGAGATC	CAAGAGG	AATACTCATTGCGAAG	:	685
Hbizzozero	:	AAATCCGTAGAGATC	(AAGAGG	AATACTCATTGCGAAG	:	659
Hbilis gb	:	AAATOOGTAGAGATO	CAAGAGG	AATACTCATTGCGAAG	:	860
Hsalomonis	:	AAATCCGTAGAGAT	JAAGAGG:	AATACTCATTGCGAAG	:	617
Hpylori gb	:	AAATCCGTAGAGATC	CAAGAGG	NATACTCATTGCGAAG	:	690
Hcanis gb	:	AAATCCGTAGAGATC	CAAGAGG	AATACTCATTGCGAAG	:	680
Hcinaedi g	:	AAATCCGTAGAGATC	CAAGAGG	AATACTCATTGCGAAG	:	688
Hacinonych	:	AAATCCGTAGAGATC	CAAGAGG	AATACTCATTGCGAAG	:	689
Hnemestrin	:			AATACTCATTGCGAAG		686
Hcholescys	:	AAATCCG <mark>C</mark> AGAGATC	CAAGAGG	AATACTCATTGCGAAG	:	670
Hpamatensi	:	AAATCCGTAGAGATC	CAAGAGG.	AATACTCATTGCGAAC	:	690
Hmustelae	:	AAATCCGTAGAGAT	CAAGAGG.	AATACTCATTGCCAAG	:	689
Hrodentium	:	AAATCCGTAGAGAT	DAAGAGG!	AATACTCATTGCGAAC	:	664
Hpullorum	:			AATACTCATTGCGAAG	-	681
Hfennellia	:			AATACTCATTGCGAAC		689
Htrogontum	:			AATACTCATTGCGAAG		666
Hmuridarum	:			AATACTCATTGCGAAC		685
Hhepaticus	:			AATAC <u>TC</u> ATTGCGAAC		649
Abutzleri	:			AATAC <mark>CG</mark> ATTGCGAAC		705
Cjejunilgb	:			aatac <mark>c</mark> cattgcgaac		702
Wsuccinoge	:			AATACTCATTGCGAAC	•	690
		- AAATCCGEAGAGAT(LaagAgG.	AATACtcATTGCGAAG	,	

Figure 2 - 25

		*	940	*	960		
Hsuis2BXA0	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	706
Ghominis1	:		GAGNAAACAG			:	733
Ghominis2	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	734
Hfelis gb	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	758
Hbizzozero	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	733
Hbilis gb	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAS	COTGGTAG	:	933
Hsalomonis	:	AAGCGTG3G	GAGCAAACAG	GATTAGATAC	COTGGTAG	:	691
Hpylori gb	:	AAGOGTGG 3	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	764
Hcanis gb	:	AAGC-TGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	752
Hcinaedilg	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	761
Hacinonych	:	AAGCGTGGG:	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	763
Hnemestrin	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAC	CCTGGTAG	:	760
Hcholescys	:	AAGCGTGGG:	GAGCAAACAG	GATTAGATA(CCTGGTAG	:	743
Hpamatensi	:		GAGCAAACAG			:	763
Hmustelae	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAG	CCTGGTAG	:	762
Hrodentium	:		GAGCAAACAG			:	737
Hpullorum	:	AAGC-TGCG	DAGCAAACAG	GATTAGATAG	CCCTGGTAG	:	753
Hfennellia	:	AAGCGTGGG	GAGCAAACAG	GATTAGATA	CCTGGTAG	:	762
Htrogontum	:	AAGCGTGGG	GAGCAAACAG	GATTAGATA(CCCTGGTAG	:	739
Hmuridarum	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAG	CCTGGTAG	:	758
Hhepaticus	:	AAGCGTGGG	GAGCAAACAG	GATTAGATA	CCCTGGTAG	:	722
Abutzleri	:	AAGCGTGGG	GAGCAAACAG	GATTAGATAG	CCTGGTAG	:	778
Cjejuni gb	:	AAGCGTGGG	GAGCAAACA <mark>G</mark>	GATTAGATA	CCTGGTAG	:	775
Wsuccinoge	:	AAGCGTGGG	GAGCAAACAG	GATTAGATA	CCCTGGTAG	:	763
		AAGCgTGGG	GAGCAAACAG	GATTAGATA	CCTGGTAG		

		*	980	*	100	
Hsuis2BXA0	:	TCCACGCCCTAA	ACGATG <mark>G</mark> AT(SCTAGTTGTTG	GGAGG:	743
Ghominis1	:	TCCACGCCCTAA.	ACGATE <mark>G</mark> AT(CTAGTTGTTG	G-AG <mark>E</mark> :	769
Ghominis2	:	TCCACGCCCTAA.	ACGATU <mark>G</mark> AT(CTACTTGTTG	GGGG <mark>G</mark> :	771
Hfelis gb	:	TCCACGCCCTAA	ACGATG <mark>G</mark> AT(SCIAGITGITG	GGGGC:	795
Hbizzozero	:	TCCACGCCCTAA	acgato <mark>g</mark> at(SCTAGTIGTIG	GGGGG :	770
Hbilis gb	:	TCCACGCCCTAA.	ACCATC <mark>A</mark> AT(SCTAGTTGT"FG	CCCTC:	970
Hsalomonis	:	TOCACGCCCTAA	ACGATG <mark>G</mark> AT(CTAGTTGTTG	GGGGG :	728
Hpylori gb	:	TCCACGCCCTAA	ACGATO <mark>G</mark> ATO	SCTACTTGTTG	GAGG <mark>C</mark> :	801
Hcanis gb	:	TCCACGCCCTAA	ACGATG <mark>A</mark> AT(SCTAGTTGTTG	CCCTC:	789
Hcinaedilg	:	TCCACGCCCTAA	ACGATE <mark>A</mark> AT(SCTNGTTGTTG	CCCTG:	798
Hacinonych	:	TCCACGCCCTAA	ACGATG <mark>G</mark> AT(SCTAGTTGTTG	GRGGC :	800
Hnemestrin	:	TCCACGCCCTAA				797
Hcholescys	:	TCCACGCCCTAA	acgate <mark>a</mark> at(GCTAGTTGTTG	GGGTC :	780
Hpamatensi	:	TCCACGCCCTAA				800
Hmustelae	:	TCCACGCCCTAA				799
Hrodentium	Ξ	TCCACGCCCTAA	acgate <mark>a</mark> at(GCTAGTTGTTG	CGAGC :	774
Hpullorum	:	TCCACGCCCTAA				790
Hfennellia	:	TCCACGCCCTAA				799
Htrogontum	:	TCCACGCCCTAA	ACGATC <mark>A</mark> AT(GCTAGTTGTTG	CCCTC:	776
Hmuridarum	:	TCCACGCCCTAA				795
Hhepaticus	:	TCCACGCCCTAA				759
Abutzleri	:	TCCACGCCCTAA				815
Cjejuni gb	:	TCCACGCCCTNA	acgatg <mark>t</mark> a <mark>c</mark> i	ACTAGTTGTTG	GGGTC :	812
Wsuccinoge	:	TCCACGCCCTAA				800
		TCCACGCCCTAA	ACGATG Ato	CTAGTTGTTG	G	

Figure 2 - 27

		0	*	1:	020		*		
Hsuis2BXAO	:	CTTTGTC	TTTC	CAGTAAT	GCAGCT	AACGC	TTARGCA	:	780
Ghominis1	:	CTTTGTC	TTTC	CACTAAT	CCACGT	AACGC	TTAANNA	:	806
Ghominis2	:	CTTTCTC	CTCC	CAGTAAT	GCAGCT	AAC G CC	TTAAGCA	:	808
Hfelis gb	:	CTT-CTC	CTCC	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	831
Hbizzozero	:	CTTTGTC	cccc	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	807
Hbilis gb	:	CTT-GTG	AGGG	CAGTAAT	GOAGOT	AACGO	TTAAGCA	:	1006
Hsalomonis	:	CTTTGTC	cccc	CACTAAT	GORGOT	AACGC	TTAAGCA	:	765
Hpylori gb	:	CTTAGTO	TCTC	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	838
Hcanis gb	:	CTT-GTO	AGGG	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	825
Hcinaedi g	:	CIT-NTO	AGGG	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	834
Hacinonych	:	CTTTGTC	YYYC	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	837
Hnemestrin	:	CTTAGTO	TCTC	CAGTAAT	GCA <mark>CG</mark> T	AACGC	TTAAGCA	:	834
Hcholescys	:	CTT-GT0	ACTC	CAGTAAT	GCA <mark>GC</mark> T	AACGC	TTAAGCA	:	816
Hpamatensi	:	CTT - STC	TCTG	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	836
Hmustelae	:	CTT-GTC	ACTC	CAGTAAT	GCAGTT	aac <mark>a</mark> c?	ITTAAGCA	:	835
Hrodentium	:	CTT-STO	CTTG	CACTAAT	GCAGCT	AACGC/	TTAAGCA	:	810
Hpullorum	:						TTAAGCA		826
Hfennellia	:	CTC-CTC	AGGG	CACTAAT	GCAGCT	AACGC?	TTAAGCA	:	835
Htrogontum	:					1.	TTAAGCA		812
Hmuridarum	:		AGGG	CAGTAAT	GCAGCT	AACGC	TTAAGCA	:	831
Hhepaticus	:						TTAAGCA		795
Abutzleri	:	CTC-GAC	CTTG	CAGTAAT	GCAG <mark>T</mark> T	AACAC	TTAAGTG	:	851
Cjejuni gb	:						TTAACTG		848
Wsuccinoge	:		_				TTAAGCA	:	836
		CTt GtC	:	CAGTAAT	GCAgcT	AACgC	TTAAGca		

Figure 2 - 28

		1040	*	1060	*		
Hsuis2BXA0	:	TCCCGCC	regegaetac	GGTCGCAAGA	TTAAAACTCA	:	817
Ghominis1	:	TCT-GCC	TGGGGAGTAC	CGCCAAGA	TTAAAACTCA	:	842
Ghominis2	:			CGGTCGCAAGA		:	845
Hfelis gb	:	TCCCCCCC	TOGGRAGTAC	COCTOCCAAGA	TTAAAACTCA	:	868
Hbizzozero	:	TCCCCCC	recogaetak	:GGTCGCAAGA	TTAAAACTCA	:	844
Hbilis gb	:	TTCCGCC	TOGOGAGTAC	DEGTOGORAGA	TTAAAACTCA	:	1043
Hsalomonis	:	TCCCCCC	recesactac	CGGTCGCAAGA	TTAAAACTCA	:	802
Hpylori gb	:	TCCCGCC	TGGGGAGTA	COCTOCCAAGA	TTAAAACTCA	:	875
Hcanis gb	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	862
Hcinaedilg	:	TTCCGCC	TGGGGAGTA	CGGTCCCAAGA	TTAAAACTCA	:	871
Hacinonych	:	TCCCGCC	TGGGGAGTAG	CGGTCGCAAGA	TTAAAACTCA	:	874
Hnemestrin	:	TCCCGCC	TGGGGAGTAG	CGGTCGCAAGA	ATTAAAACTCA	:	871
Hcholescys	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	853
Hpamatensi	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	873
Hmustelae!	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	872
Hrodentium	:	TTECSEC	TGGGGAGTA	CGGTCGCAAGA	TAAAACTCA	:	847
Hpullorum	;	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	863
Hfennellia	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	TTAAAACTCA	:	872
Htrogontum	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACTCA	:	849
Hmuridarum	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACTCA	:	868
Hhepaticus	:	TCCCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACICA	:	832
Abutzleri	:	TACCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACTCA	:	888
Cjejuni gb	:	TACCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACTCA	:	885
Wsuccinoge	:	TTCCGCC	TGGGGAGTA	CGGTCGCAAGA	ATTAAAACTCA	:	873
		T CcGCC	TGGGGAGTA	CGGTCGCAAGA	ЧТТААААСТСА		

		1080		*	11	00	*		
Hsuis2BXA0	:	AAGGAATA	AGACGGGG.	ACCCC	CACAA	GCGGT	GGAGCAT	:	854
Ghominis1	:	AAGGAATA	NGACGGGG	400-0	CACAA	GCGGT	GGAGCAT	:	878
Ghominis2	:	AAGGAAT/	AGACOGGG;	àccē.	CACAA	GCGGT	GGAGCAT	:	882
Hfelis gb	:	AAJGAATA	AGACGGGG,	400 0 0	AADADI	GCHHN	BINNINDE	:	905
Hbizzozero	:	AAGGAATA	AGACGGGG.	400 0 0	CACAA	GCGGT	GGAGCAT	:	881
Hbilis gb	:	AAGGAAT	RGACGGGG	10000	CACAA	GOGGT	GGAGCAT	:	1080
Hsalomonis	:	AAGGAAT!	NGACGGGG!	NOCOL	CACAA	GCGGT	GGAGCAT	:	839
Hpylori gb	:	AAGGAAT!	AGACGGGG!	ACCCC	CACAA	GCGGT	GGAGCAN	:	912
Hcanis gb	:	AAGGAAT:	AGACGGGG.	10004	GCACAA	GCGGT	GGAGCAT	:	899
Hcinaedilg	:	AAGGAATA	AGACGGGG/	30006	GCACAA	GCGGT	GGAGCAT	:	908
Hacinonych	:	AAGGAAT	AGACGGGG:	FCCC(FCACAA	GCGGT	GGAGNNN	:	911
Hnemestrin	:	AAGGAAT	AGACGGGG!	ACCC	GCACAA	GCGGT	GGAGCAT	:	908
Hcholescys	:	AAGGAA'F.	AGACGGGG.	ACCC(GCACAA	GCGGT	'GGAGCAT	:	890
Hpamatensi	:	AAGGAAT.	AGACGGGG:	ACCC	GCACAA	GOGGT	GGAGCNN	:	910
Hmustelael	:	AAGGAAT	AGACGGGG.	ACCC(JCACAA	GCGGT	'GGAGCA'T	:	909
Hrodentium	:	AAGGAAT.	AGACGGGG.	ACCC.	CACAA	.GCGGT	GGAGCA'I	:	884
Hpullorum	:	AAGGAAT.	AGACGGGG.	ACCC	GCACAA	rdedo.	GGAGCAT	:	900
Hfennellia	:	AAGGAAT.	AGACGGGG.	ACCC(CACAA	GOGGT	'GGAGCAT	:	909
Htrogontum	:	AAGGAAT	AGACGGGG.	ACCC	GCACAA	TDDDDD.	GGAGCAT	:	886
Hmuridarum	:	AAGGAAT.	AGACGGGG.	ACCC	GCACAA	COGGT	GGAGNNN	:	905
Hhepaticus	:	AAGGAAT.	AGACGGGG.	ACCC	GCACAA	.GCGGT	'GGAGCAT'	:	869
Abutzleri	:	AAGGAAT.	AGACGGGG.	ACCC	GCACAA	GCGGT	'GGAGCAT	:	925
Cjejunilgb	:	AAGGAAT.	AGACGGGG.	ACCC,	CACAA	.GCGGT	GGAGCAT	:	922
Wsuccinoge	:	AAGGAAT.	AGACGGGG.	ACCC:	GCACAA	GCGGT	GGAGCAT	:	910
		AAGGAAT.	AGACGGGG.	ACCc	GCACAA	GCGGT	GGAGCAT		

		1120 * 1140			
Hsuis2BXAO			T.COTA	_	891
	:	GTGGTTTAATTCGAAG <mark>T</mark> TAC <mark>A</mark> CGAAGAACCT		•	
Ghominis1	:	GTGGTTTAATTCGAAGATAC <mark>A</mark> CGAAGAACCT	The state of the s	:	915
Ghominis2	:	gtggtttaat togaagafad <mark>a</mark> ogaagaacct		:	919
Hfelis gb	:	gtggttaattggannnnn <u>M</u> ggaagaacct		:	942
Hbizzozero	:	GTGGTTTAATTCGAAGATAC <mark>A</mark> CGAAGAACCT	TACCTA	:	918
Hbilis gb	:	gtggttmaiicgaagatac@cgaagaacct	TACCIA	:	1117
Hsalomonis	:	GTGGTTTAATTCGA <mark>TCC</mark> TAC <mark>A</mark> CGAAGAACCT	TACCTA	:	876
Hpylori gb	:	GTGGTTTAAITCGANNNAC <mark>A</mark> CGAAGAACCT	TACCIA	:	949
Hcanis gb	:	geggttaantcgaagatackogaagaacct	TACCTA	:	936
Hcinaedilg	:	GTGGTTTAATTCGA <mark>GT</mark> ATAC #CGAAGAACCT	TACCTA	:	945
Hacinonych	:	GTGGTTTAATTCGANNNNNC <mark>A</mark> CGAAGAACCT		:	948
Hnemestrin	:	GTGGTTTAATTCGAAG <mark>G</mark> TACADGAAGAACCT	TACCTA	:	945
Hcholescys	:	gtggttaattcgaagātac∰cgaagaacct	TACCTA	:	927
Hpamatensi	:	GTGGTTTAA1 TCGANNNTACHCGAAGAACCT	TACCTA	:	947
Hmustelae	:	GTGGTTTAATTCGAKNNTACÄCGAAGAACCT	TACCTA	:	946
Hrodentium	:	GTGGTTTAATTCGAAGATAC <mark>A</mark> CGAAGAACCT	TACCTA	:	921
Hpullorum	:	GTGGTTTAATTCGAAGATAC GCGAAGAACCT	TACCTA	:	937
Hfennellia	:	GTGGTTTAATTCGAANMTACGCGAAGAACCT	TACCTA	:	946
Htrogontum	:	GTGGTTTAATTCGAAGATAC%CGAAGAACCT	TACCTA	:	923
Hmuridarum	:	GTGGTTTAATTCGANNNNAC CGAAGAACCT	TACCTA	:	942
Hhepaticus	:	GTGGTTTAATTCGAAGATAC\\CGAAGAACCT	TACCTA	:	906
Abutzleri	:	GTGGTTTAATTCGANNNNAC <mark>A</mark> CGAAGAACCT	TACCTG	:	962
Cjejuni gb	:	GTGGTTTAATTCGAAGNTAC CAAGAACCT	TACCT	:	959
Wsuccinoge	:	GTGGTTTAATTCGANNNAC@CGAAGAACCT	TACCTG	:	947
		GTGGTTTAATTCGAagaTAC CGAAGAACCT	TACCTa		

Figure 2 - 32

Figure 2 - 33

		*	1240	*	12		
Hsuis2BXA0	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1002
Ghominis1	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1026
Ghominis2	:	GGCEGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1030
Hfelis gb	:	GGCTGTCGICA	ASTESTETESTER	GATGTTGG	GTTAA	:	1053
Hbizzozero	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAR	:	1029
Hbilis gb	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAE	:	1227
Hsalomonis	:	GGCTGTCGTCA	GCTCG1GTCGTGA	GATGTTGG	GITAA	:	987
Hpylori gb	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAR	:	1060
Hcanis gb	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1047
Hcinaedi g	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATCTTGG	GTTAA	:	1055
Hacinonych	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTNA	:	1059
Hnemestrin	:	GGCTGTCGTCA	GCTCGTGTCGTGA	CATGITGG	GTTAA	:	1056
Hcholescys	:	GGCTGTCGTCA	CCTCGTGTCGTGA	G ATGTTGG	GTTAA	:	1037
Hpamatensi	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1057
Hmustelae	:	GGCTGTCGTCA	ADTOSTOTODOS.	GATGTTGG	GTTAA	:	1057
Hrodentium	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1031
Hpullorum	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1047
Hfennellia	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATG ITGG	GTTAA	:	1056
Htrogontum	:	GGCTGTCGTCA	GCTCGTCTCGTGA	GATGTTGG	GTTAA	:	1031
Hmuridarum	:	GGCTGTCGTCA	ADTEDTEDTODA	GATGTTGG	GTTNA	:	1052
Hhepaticus	:	GGCTGTCGTCA	GCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1013
Abutzleri	:		AGCTCGTGTCGTGA			:	1072
Cjejunilgb	:	GGCTGTCGTCA	AGCTCGTGTCGTGA	GATGTTGG	GITNA	:	1069
Wsuccinoge	:	GGCTGTCGTCA	AGCTCGTGTCGTGA	GATGTTGG	GTTAA	:	1057
		GGCTGTCGTCA	GCTCGTGTCGTGA	gATGTTGG	GTTAA		

Figure 2 - 35

Figure 2 - 36

		1340	*	1360		
Hsuis2BXAO	:	TAAGCAGGA	GGAAGGTGAGGACG?	ACGTCAAGTCATCA	:	1113
Ghominisl	:	TAANR	GGAAGGTGAGGACG	ACGTCAAGTCATCA	:	1133
Ghominis2	:	TAAGCANGA	GGAAGGTGAGGACG2	ACGTCAAGTCATCA	:	1141
Hfelis gb	:	TAAGCAGGA	GGAAGGTGAGGACG	ACGTCAAGTCATCA	:	1164
Hbizzozero	:	TAAGCAGGA	GGAAGGTGAGGACG!	ACGTCAAGTCATCA	:	1140
Hbilis gb	:	TAAGGAGGA	GGAAGGTGAGGACG	ACGTCAAGTCATCA	:	1337
Hsalomonis	:		GGAAGGTGAGGACGA		:	1098
Hpylori gb	:	TAAU AGGA	.GGAAGGTU <mark>G</mark> GGACG.	ACGTCAAGTCATCA	:	1171
Hcanis gb	:	TAAGMAGGA	.GGAAGGTGĀGGACG.	ACGTCAAGTCATCA	:	1157
Hcinaedilg	:	TAAGGAGGA	.GGAAGGTGAGGACG.	ACGTCAAGTCATCA	:	1165
Hacinonych	:	TAAG\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.GGAAGGTG <mark>G</mark> GGACG.	ACGTCAAGTCATCA	:	1170
Hnemestrin	:	TAAGAAGGA	.GGAAGGTG <mark>G</mark> GGACG.	ACGTCAAGTCATCA	:	1166
Hcholescys	:	TAAGAAGGA	.ggaaggtgAggacg.	ACGTCAAGTCATCA	:	1147
Hpamatensi	:	TNAC@AGGA	GGAAGGTGAGGACG	ACGTCAAGTCATCA	:	1167
Hmustelae	:	TNAG\$AGGA	GGAAGGTGAGGACG	ACGTTAAGTCATCA	:	1167
Hrodentium	:	CAAG AGGA	.GGAAGGTGAGGA <mark>T</mark> G	ACGTCAAGTCATCA	:	1141
Hpullorum	:	TAAGAAGGA	.GGAAGGTGAGGA <mark>T</mark> G.	ACGTCAAGTCATCA	:	1157
Hfennellia	:	CANGMAGGA	NGGAAGGTGAGGACG	ACGTCAAGTCATCA	:	1166
Htrogontum	:	TAAC SAGGA	kGGAAGGTGAGGACG	ACCTCAAGTCATCA	:	1141
Hmuridarum	:		AGGAAGGTGAGGACG		:	1163
Hhepaticus	:	NEWNN	ийикимиминиими		:	1053
Abutzleril	:		kGGAAGGTCAGGA <mark>T</mark> G		:	1182
Cjejuni gb	:	TNAGAAGGA	kogaaggtg <mark>t</mark> gga c g	ACGTCAAGTCATCA	:	1179
Wsuccinoge	:	V2	AGGAAGGTGAGGACG		:	1167
		taaG aggA	AGGAAGGTGaGGAcG	ACGTcAagtcatca		

Figure 2 - 37

```
1380
                                                   1400
Hsuis2BXA0 : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATC : 1150
Ghominis1| : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG : 1170
Ghominis2| : TGGCCCTTACNCCTAGGGCTACACACGTGCTACAATC : 1178
Hfelis|gb| : TGGCCCTTACGCCTAGGGCTACACGTGCTACAATC : 1201
Hbizzozero : TGGCCCTTACGCCTAGGGCTACACGCGCTACAATG : 1177
Hbilis|qb| : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG : 1374
Hsalomonis: TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG: 1135
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATC : 1208
Hpylorilgb:
Hcanis|gb| :
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG : 1194
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATC: 1202
TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG: 1207
Hcinaedilg :
Hacinonych :
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG : 1203
Hnemestrin :
                TGGCCCTACGCCTAGGGCTACACACGTGCTACAATG
                                                                : 1184
Hcholescys :
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hpamatensi:
                                                                : 1204
                TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hmustelae| :
                                                                : 1204
Hrodentium :
                TEGCCCTTACGCCTAGGGCTACACACGTGCTACAATC
                                                                 : 1178
Hpullorum| : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
Hfennellia : TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG
                                                                 : 1194
                                                                 : 1203
Htrogontum: TGGCCCTTACGCCTACGGCTACACACGTGCTACAATG: 1178
Hmuridarum: TGGCCCTTACGCCTAGGGCTACACACGTGCTACAATG: 1200
Hhepaticus: ----NNN: 1057
Abutzleri|: TGGCCCTTACGTCCAGGGCTACACACGTGCTACAATG: 1219
Cjejunilgb: TGGCCCTTATGCCCAGGGCGACACACGTGCTACAATC: 1216
Wsuccinoge : TGGCCCTTACGCCYAGGGCTACACACGTGCTACAATG : 1204
                 tggcccttAcqcctaqgqctacacacqtqctacaATG
```

Figure 2 - 38

Figure 2 - 39

Figure 2 -40

```
1500
                   CAACTOCOCTGCATGAAGCTGGAATCGCTAGTAATCG : 1261
Hsuis2BXA0 :
                  CAACTOC<mark>C</mark>CTGCATGAAGCTGGAATCGCTAGTAATCG
CAACTOCCTGCATGAAGCTGGAATCGCTAGTAATCU
CAACTOC<mark>CCTG</mark>CATGAAGCTGGAATCGCTAGTAA FCC
                                                                            : 1281
Ghominisl :
                                                                            : 1289
Ghominis21:
                                                                            : 1312
Hfelis|ab| :
                   CARCTOGCTGCATGAAGCTGGAATCGCTAGTAATCC: 1288
Hbizzozero :
                   CAACTCOM<mark>CTSCAT<mark>A</mark>AAGCTGGAATCGCTAGTAATCG
CAACTCO<mark>COTG</mark>CATGAAGCTGGAATCGCTAGTAATCG</mark>
                                                                            : 1485
Hbilis|qb| :
                                                                            : 1246
Hsalomonis:
                   CAACTOC<mark>CCTG</mark>CATGAAGCTGGAATCGCTAGTAATCG
CAACTCGCCTPCATGAAGCTGGAATCGCTAGTAATCC
CAACTCGCCT<u>A</u>CAT<mark>A</mark>AAGCTGGAATCGCTAGTAATCG
                                                                            : 1319
Hpyloriiqb:
                                                                            : 1305
Hcanis|qb| :
                                                                            : 1313
Hcinaedilg :
                   CAACTOG<mark>C</mark>CT<mark>G</mark>CATGAAGC<mark>C</mark>GGAATCGCTAGTAATCG
CAACTOG<mark>C</mark>CT<mark>G</mark>CATGAAGCTGGAATCGCTAGTAATCG
                                                                            : 1318
Hacinonych :
                                                                             : 1314
Hnemestrin :
                   CAACTCGACTACATGAAGCTGGAATCGCTAGTAATCG
CAACTCGACTACATGAAGCTGGAATCGCTAGTAATCG
                                                                             : 1295
Hcholescys :
                  : 1315
Hpamatensi :
Hmustelae| :
                                                                             : 1315
                                                                             : 1289
Hrodentium :
Hpullorum :
                                                                             : 1305
Hfennellia :
                                                                             : 1314
                                                                             : 1289
Htrogontum :
Hmuridarum :
                                                                             : 1311
Hhepaticus :
                                                                             : 1168
Abutzleri| :
                                                                             : 1330
Cjejunilab :
                                                                             : 1327
Wsuccinoge :
                                                                             : 1315
                    CAACTCG ct CATGAAGctGGAATCGCTAGTAATCG
```

Figure 2 - 41

		520	*	1540	*		
Hsuis2BXAO	:	MAATCAGCT	ATGTE	CGGTGAATAC	GTTCCCGGGTC	:	1298
Ghominisl	:	MAATCAGCT	ATGT	CGGTGAATAC	GTTCCCGGGTC	:	1318
Ghominis2	:	AATCAGC	AYGTEC	CGGTGAATAC	GTTCCCGGGTC	:	1326
Hfelis qb	:				GTTCCCGGGGTC	:	1349
Hbizzozero	:	AATCAGC	ATGTNO	CGGTGAATAC	GTTCCCGGGTC	:	1325
Hbilis gb	:	TGAATCAGCA	ATGTCA	CGGTGAATAC	GTTCCCGGGGTC	:	1522
Hsalomonis	:	AATCAGC.	ATOT C	CGGTGAATAC	GTTCCCGGGGTC	:	1283
Hpylori gb	:	WAATCAGC'	AIGTEC	CGGTGAATAC	GTTCCCGGGGTC	:	1356
Hcanis gb	:	TGAATCAGCA	ATGTCA	CGGTGAATAC	GTTCCCGGGTC	:	1342
Hcinaedilg	:	BAATCAGC	ATGT	CGGTGAATAC	GTTCCCGGGTC	:	1350
Hacinonych	:	AATCAGC	ATCT	CGGTGAATAC	GTTCCCGGGTC	:	1355
Hnemestrin	:	TATCAGC	ATGTE	GEGGTGAATAC	GTTCCCGGGTC	:	1351
Hcholescys	:	TGAATCAGC	ATGTC	ACGCTGAATAC	GTTCCCGGGTC	:	1332
Hpamatensi	:	TGAATCAGC	ATGTC	A <mark>CGGTGAATAC</mark>	GTTCCCGGGTC	:	1352
Hmustelae!	:				GTTCCCGGGTC		1352
Hrodentium	:	TEGATCAGC	MICCO!	ACGGTGAATAC	GTTCCCGGGTC	:	1326
Hpullorum	:				GTTCCCSGGTC		1342
Hfennellia	:	AATCAGO	ATOTA	GCGGTGAATAC	GTTCCCGGGTC	:	1351
Htrogontum	:	D-RELIAN.			GTTCCCGGGTC		1326
Hmuridarum	:				GTTCCCGGGTC		1348
Hhepaticus	:				GTTCCCGGGTN		1205
Abutzleri	:				GTTCCCGGGTC		1367
Cjejuni gb	:				GTTCCCGGGTC		1364
Wsuccinoge	:				GTTCCCGGGTC	•	1352
		aATCAGC	ATGt	CGGTGAATAC	GTTCCCGGGTC		

Figure 2 - 42

		1560	*	1580	*		
Hsuis2BXA0	:	TTGTAUTCACC	GCCCGTCAC	CACCATGGGA	STIGIGIT	:	1335
Ghominis1	:	TTGTACTCACC	GCCCGTCAC	CACCATGGGA	STTETETT	:	1355
Ghominis2	:	TIGTAUTCACC	GCCCGTCAC	CACCATGGGAG	ettet ett	:	1363
Hfelis gb	:	TIGIACTCACC	GNNCGTCAC	CACCATGGGA	entet gitt	:	1386
Hbizzozero	:	TTGTACTCACC	GCCCGTCAC	CACCATGGGA	GTTGTGTT	:	1362
Hbilis gb	፡	PTGTACTCACC	GCCCGTCAC	CACCATGGGA	STTGTATI	:	1559
Hsalomonis	:	TTGTACT				:	1290
Hpylori gb	:	TTGTACTCACC	GCCCGTCAC	CACCATGGGA	STRETGRE	:	1393
Hcanis gb!	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	STIGITIE	:	1379
Hcinaedilg	=	TTGTACTCACC	GCNCGTCA(CACCATGGGA	GTTGT TT	:	1387
Hacinonych	:	TIGTACICACC	GCNCGTCA	CACCATGGGA	GTTGTGTT	:	1392
Hnemestrin	:	TTGTAC <mark>A</mark> CACC				:	1388
Hcholescys	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	GTTGT#TT	:	1369
Hpamatensi	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	GTTGTTT	:	1389
Hmustelael	:	TTGTACTCACC	GNCCGTCA	CACCATGGGA	GTTGTGTT	:	1389
Hrodentium	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	GTTGT	:	1363
Hpullorum	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	GTTGT:§TT	:	1379
Hfennellia	:	TTGTACTCACC	GCCCGTCA:	CACCATGGGA	GTTGT TT	:	1388
Htrogontum	:	TTGTACTCACC				:	1363
Hmuridarum	:	TTGTACTCACC	GCCCGTCA	CACCATGGGA	GTTGT <u>\$</u> TT	:	1385
Hhepaticus	:	TTGTACTCACC				:	1242
Abutzleril	:	TTGTACTCACC				:	1404
Cjejuni gb	:	TTGTACTCACC				:	1401
Wsuccinoge	:	TTGTACTCACC				:	1389
		TTGTACtcacc	gcccgtca	caccatggga	gttgt tt		

Figure 2 - 43

Figure 2 - 44

		*		1640	*	•	1660	ł		
Hsuis2BXA0	:	GGCAC	ACA	CAGCGACT	GGGGTG	AAGT	CGTAAC	AAGGT	:	1409
Ghominis1	:	GGC AC	CACA	CAGCGACT	rgegg _T g	;			:	1414
Ghominis21	:	GGCA	CACA	CAGOGACI	CGGGGTC	; -			:	1422
Hfelis gb	:	GGCAC	ACA	CAGCGACT	regee				:	1443
Hbizzozero	:	GGCAC		CAGCGACT	rggggtg	;			:	1421
Hbilis gb	:	GGC	返TG	CAGCGACT	rgggg				:	1616
Hsalomonis	:								:	-
Hpylori gb	:	GGCA	ACA	CAGCGACT	GGGG				:	1450
Hcanis gb	:								:	-
Hcinaedilg	:			CAGCGAC					:	1444
Hacinonych	:	GGCAC	ACA	CAGCGAC	rgggg				:	1449
Hnemestrin	:			CAGCGAC'		SAAGT	CGTAAC	AAGGT	:	1462
Hcholescys	:			CAGCGAC'					:	1425
Hpamatensi	:	GGC 🎉	ÆΤG	CAGCGAC	rgggg				:	1446
Hmustelael	:	GGC							:	1435
Hrodentium	:			CAGCGAC					:	1423
Hpullorum	:			~~~					:	1428
Hfennellia	:			CAGCGAC'					:	1445
Htrogontum	:			CAGOGAC'					:	1422
Hmuridarum	:			CAGCGAC'					:	1442
Hhepaticus	:			CAGCGAC'					:	1302
Abutzleril	:			CAGYGAC					:	1461
Cjejuni gb	:		38	CAGCGAC'					:	1458
Wsuccinoge	:	GGC	ATG	CAGCGAC'					:	1446
		aac	a	cagcgact	taaaa					

Figure 2 - 45

Hsuis2BXA0	:	AACCCGGGCGGC	:	1421
Ghominis1	:		:	-
Ghominis2	:		:	-
Hfelis gb	:		:	_
Hbizzozero	:		:	-
Hbilis gb	:		:	_
Hsalomonis	:		:	-
Hpylorilgb	:		:	_
Hcanis gb	:		:	-
Hcinaedilg	:		:	-
Hacinonych	:		:	_
Hnemestrin	:	A	:	1463
Hcholescys	:		:	-
Hpamatensi	:		:	-
Hmustelae	:		:	-
Hrodentium	:		:	-
Hpullorum	:		:	_
Hfennellia	:		:	-
Htrogontum	:		:	-
Hmuridarum	:		:	-
Hhepaticus	:		:	-
Abutzleri	:		:	-
Cjejunilgb	:		:	-
Wsuccinoge	:		•	-

Figure 2 - 46

Fig 3A

Fig 3B

R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	ACGCTGGCGG ACGCTGGCGG ACGCTGGCGG	CGTGCCTAAT	ACATGCAAGT	CONTOUR CONT	A THE CANE
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	THE TRACEAC THE TAGEA THE TAGEA THE TAGEA THE TAGEAC THE TAGEAC	Tee Tree Tree Tree TeenTree TeenTree Tree Tree	res Sain Sain	GGCA GGCA TGCA TGCA GGCA GCA	TAGGAATGTG TAGGAATGTC TAGGAATGTC TAGGAATGTC TAGGAATGTC TAGGAATGTC TAGGAATGTC
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	CCCTTTAGTC CCCTTTAGTC CCCTTTAGTC CCCTTTAGTC CCCTTTAGTC CCCTTTAGTC CCCTTTAGTC	TGGGATAGCC TGGGATAGCC TGGGATAGCC TGGGATAGCC TGGGATAGCC TGGGATAGCC TGGGATAGCC	ACCGGAAAC ACCGGAAAC ACCGGAAAC ACCGGAAAC ACCGGAAAC ACCGGAAAC	TGATTAATA TGATTAATA TGATTAATA TGATTAATA TGATTAATA TGATTAATA TGATTAATA	etagatacge étagátacge etagatacge étagatacge etagataege etagatacge etagatacge
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	CCTAAGGGGG CCTAAGGGGG CCTAAGGGGG CCTAAGGGGG CCTAAGGGGG CCTAAGGGGG	AĀAGAATTTC AAAGAATTTC AĀAGAATTTC AAAGAATTTC AAAGAATTTC AAAGAATTTC	GCTAAAGGAT GCTAAAGGAT GCTAAAGGAT GCTAAAGGAT GCTAAAGGAT GCTAAAGGAT	CAGCCTATGT CAGCCTATGT CAGCCTATGT CAGCCTATGT CAGCCTATGT CAGCCTATGT CAGCCTATGT	CCTATCAGCT CCTATCAGCT CCTATCAGCT CCTATCAGCT CCTATCAGCT CCTATCAGCT CCTATCAGCT
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AGTTGGTGAG AGTTGGTGAG AGTTGGTGAG AGTTGGTGAG AGTTGGTGAG AGTTGGTGAG	GTAAATGCTT GTAAATGCTT GTAAATGCTT GTAAATGCTT GTAAATGCTT GTAAATGCTT GTAAATGCTT	ACCAAGGCTA ACCAAGGCTA ACCAAGGCTA ACCAAGGCTA ACCAAGGCTA ACCAAGGCTA ACCAAGGCTA	TGACGGTAT TGACGGTAT TGACGGTAT TGACGGTAT TGACGGTAT TGACGGTAT TGACGGTAT	CCG CCTGAG CCG CCTGAG CCG CCTGAG CCG CCTGAG CCG CCTGAG CCG CCTGAG
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AGGGTGAACG AGGGTGAACG AGGGTGAACG AGGGTGAACG AGGGTGAACG AGGGTGAACG	CACACACCO GĂCACACCO GACACACACO GACACACACO GACACACACO GACACACACO GACACACACO GACACACACO GACACACACO GACACACACO GACACACACO	AACTGAGACA AACTGAGACA AACTGAGACA AACTGAGACA AACTGAGACA	CGGTCCGAC CGGTCCGAC CGGTCCGAC CGGTCCGAC CGGTCCGAC CGGTCCGAC	TECTACGGA TÜÜTÄCĞĞÄ TECTACGGA TÜÜTÄCĞĞA TÜÜTÄCĞGA TÜÜTÄCĞGA TÜÜTÄCĞGA TÜÜTÄCĞGA

Figure 4 - 1

R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GGCAGCAGTA GGCAGCAGTA GGCAGCAGTA GGCAGCAGTA GGCAGCAGTA GGCAGCAGTA GGCAGCAGTA	GGGAATATTG GGGAATATTG GGGAATATTG GGGAATATTC GGGAATATTC GGGAATATTC GGGAATATTC	CTCAATGGGG CTCAATGGGG CTCAATGGGG CTCAATGGGG CTCAATGGGG CTCAATGGGG CTCAATGGGG	GAAACCCTGA GAAACCCTGA GAAACCCTGA GAAACCCTGA GAAACCCTGA GAAACCCTGA GAAACCCTGA	AGCAGCAACG AGCAGCAACG AGCAGCAACG AGCAGCAACG AGCAGCAACG AGCAGCAACG AGCAGCAACG
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	OCOCOTODO OCOCOTODO	GATGAAGGTT GATGAAGGTT GATGAAGGTT GATGAAGGTT GATGAAGGTT GATGAAGGTT GATGAAGGTT	ETAGGATTGT CTAGGATTGT CTAGGATTGT CTAGGATTGT CTAGGATTGT CTAGGATTGT CTAGGATTGT	AAACTCCTT AAACTCCTT TTCCTTAAAA TTCCTTT AAACTCCTTT AAACTCCTTT AAACTCCTTT	TCTGAGAGAA TCTGAGĀĞĀĀ TCTGAGAGAA TCTGAGAGAA TCTGAGAGAA TCTGAGAGAA TCTGAGAGAA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GATAATGACC GATAATGACC GATAATGACC GATAATGACC GATAATGACC GATAATGACC GATAATGACC	GTATCTCAGG GTATCTCAGG GTATCTCAGG GTATCTCAGG GTATCTCAGG GTATCTCAGG GTATCTCAGG	ATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC	GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC	GTGCCAGCA GTGCCAGCA GTGCCAGCA GTGCCAGCA GTGCCAGCA GTGCCAGCA GTGCCAGCA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	TAATOOOOOO TAATOOOOOO TAATOOOOOO TAATOOOOOO TAATOOOOOO TAATOOOOO	ACGGAGGTG ACGGAGGTG ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG	CAARCGTTAC CAARCGTTAC CAARCGTTAC CAARCGTTAC CAARCGTTAC CAARCGTTAC CAARCGTTAC	TCGGAATCAC TCGGAATCAC TCGGAATCAC TCGGAATCAC TCGGAATCAC TCGGAATCAC	TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GAGCGTGTAG GAGCGTGTAG GAGCGTGTAG GAGCGTGTAG GAGCGTGTAG GAGCGTGTAG GAGCGTGTAG	GCGGAATGAT GCGGAATGAT GCGGAATGAT GCGGAATGAT GCGGAATGAT GCGGAATGAT GCGGAATGAT	AAGTCAGGCG AAGTCAGGCG	TGAAATCCCG TGAAATCCCG TGAAATCCCG TGAAATCCCG TGAAATCCCG TGAAATCCCG TGAAATCCCG	TGGCTTAAC TGGCTTAAC TGGCTTAAC TGGCTTAAC TGGCTTAAC TGGCTTAAC
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GCGGAACTGC GCGGAACTGC GCGGAACTGC GCGGAACTGC GCGGAACTGC GCGGAACTGC GCGGAACTGC	GTTTGAAACT GTTTGAAACT GTTTGAAACT GTTTGAAACT GTTTGAAACT GTTTGAAACT GTTTGAAACT	ATCATTCTGG ATCATTCTGG ATCATTCTGG ATCATTCTGG ATCATTCTGG	AGTGTGGAA AGTGTGGAA AGTGTGGAA AGTGTGGAA AGGGTGTGA	AGGCAGGTGG AGGCAGGTGG AGGCAGGTGG AGGCAGGTGG AGGCAGGTGG AGGCAGGTGG

Figure 4 - 2

R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AACTCTTGGT AACTCTTGGT AACTCTTGGT AACTCTTGGT AACTCTTGGT AACTCTTGGT AACTCTTGGT	CTAGGGTAA CTAGGGCTAA CTAGGGCTAA CTAGGGCTAA CATGGGGTAA CATGGGGTAA	AATCCGTAGA AATCCGTAGA AATCCGTAGA AATCCGTAGA AATCCGTAGA AATCCGTAGA	TATCAAGAAG TATCAAGAAG TATCAAGAAG TATCAAGAAG TATCAAGAAG TATCAAGAAG TATCAAGAAG	AATACTCATT AATACTCATT AATACTCATT AATACTCATT ÄATACTCATT AATACTCATT AATACTCATT AATACTCATT
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	A DODAGOOD	CCTGCTGGAA CCTGCTGGAA CCTGCTGGAA CCTGCTGGAA CCTGCTGGAA CCTGCTGGAA CCTGCTGGAA	CAT ACTGAC CAT ACTGAC CAT ACTGAC CAT ACTGAC CAT ACTGAC CAT ACTGAC CATCACTGAC CATCACTGAC	GCTGATGCGC GCTGATGCGC GCTGATGCGC GCTGATGCGC GCTGATGCGC GCTGATGCGC GCTGATGCGC	GAAAGC TGC GAAAGC TGG GAAAGC TGG GAAAGC TGG GAAAGC TGG GAAAGC TGG GAAAGC TGG
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GG AGCAARC	AGGATTAGAT AGGATTAGAT AGGATTAGAT AGGATTAGAT AGGATTAGAT AGGATTAGAT AGGATTAGAT	ACCCIGGTAG ACCCTGGTAG ACCCTGGTAG ACCCTGGTAG ACCCTGGTAG ACCCTGGTAG ACCCTGGTAG	TCCACGCCT TCCACGCCT TCCACGCCT TCCACGCCT TCCACGCCCT TCCACGCCCT TCCACGCCCT	AAACGATGGA AAACGATGGA AAACGATGGA AAACGATGGA AAACGATGGA AAACGATGGA AAACGATGGA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	TGCTAATTGI TGCTAATTGI TGCTAATTGI TGCTAATTGI TGCTAATTGI TGCTAATTGI TGCTAATTGI	COSSOSSION CONTROL CON	GTCTCCTCGG GTCTCCTCGG GTCTCCTCGG GTCTCCTCGG GTCTCCTCGG GTCTCCTCGG	TAAT AGCT	AACGCATTAA AACGCATTAA AACGCATTAA AACGCATTAA AACGCATTAA AACGCATTAA AACGCATTAA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	G#ATCCCGCC G#ATCCCGCC G#ATCCCGCC G#ATCCCGCC G#ATCCCGCC G#ATCCCGCC	TGGGGAGTAC TGGGGAGTAC TGGGGAGTAC TGGGGAGTAC TGGGGAGTAC TGGGGAGTAC TGGGGAGTAC	GATCGCAAGA GATCGCAAGA GATCGCAAGA GACACCCAGA GAACACCAGA GAACACCAGA GAACACCAGAGA GAACACCAGAGA	ATTAAAACTCA TTAAAACTCA TTAAAACTCA TTAAAACTCA TTAAAACTCA TTAAAACTCA TTAAAACTCA	AAGGAATAGA AAGGAATAGA AAGGAATAGA AAGGAATAGA AAGGAATAGA AAGGAATAGA AAGGAATAGA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	CGGGGACCCG CGGGGACCCG CGGGGACCCG CGGGGACCCG CGGGGACCCG CGGGGACCCG CGGGGACCCG	CACAAGCGGT CACAAGCGGT CACAAGCGGT CACAAGCGGT CACAAGCGGT CACAAGCGGT CACAAGCGGT	GGAGCATGTG GGAGCATGTG GGAGCATGTG GGAGCATGTG GGAGCATGTG GGAGCATGTG GGAGCATGTG	GTTTAATTCG GTTTAATTCG GTTTAATTCG GTTTAATTCG GTTTAATTCG GTTTAATTCG GTTTAATTCG	AAGATACGCG AAGATACGCG AAGATACGCG AAGATACGCG AAGATACGCG AAGATACGCG AAGATACGCG

Figure 4 - 3

R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AAGAACCTTA AAGAACCTTA AAGAACCTTA AAGAACCTTA AAGAACCTTA AAGAACCTTA AAGAACCTTA	CCCAGGCTTG CCCAGGCTTG CCCAGGCTTG CCCAGGCTTG CCCAGGCTTG CCCAGGCTTG CCCAGGCTTG	ACATTGATG ACATTGATG ACATTGATG ACATTGATG ACATTGATG ACATTGATG ACATTGATG	AATCTACCC AATCTACCC AATCTACCCT AATCTACCCT AATCTACCCC AATCTACCCC AATCTACCCC	AAAAGGTGGA AAAAGGTGGA AAAAGGTGGA AAAAGGTGGA AAAAGGTGGA AAAAGGTGGA AAAAGGTGGA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GTGCCAGTTT GTGCCAGTTT GTGCCAGTTT GTGCCAGTTT GTGCCAGTTT GTGCCAGTTT	ACTGGAGC TACTGGAGC TACTGAGC TACTGAGC TACTGAGC TACTGAGAGC TACTGAGC	GAAACAGGT GAAAACAGGT GAAAACAGGT GAAAACAGGT GAAAACAGGT GAAAACAGGT GAAAACAGGT	GCTGCACGGC GCTGCACGGC GCTGCACGGC GCTGCACGGC GCTGCACGGC GCTGCACGGC GCTGCACGGC	TGTCGTCAGC TGTCGTCAGC TGTCGTCAGC TGTCGTCAGC TGTCGTCAGC TGTCGTCAGC TGTCGTCAGC
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	TCGTGTCGTG TCGTGTCGTG TCGTGTCGTG TCGTGTCGTG TCGTGTCGTG TCGTGTCGTG	AGATGTTGGG AGATGTTGGG AGATGTTGGG AGATGTTGGG AGATGTTGGG AGATGTTGGG	TTAAGTCCCG TTAAGTCCCG TTAAGTCCCG TTAAGTCCCG TTAAGTCCCG TTAAGTCCCG	CAACGAGCGC CAACGAGCGC CAACGAGCGC CAACGAGCGC CAACGAGCGC CAACGAGCGC	AACCCTOGTO AACCCTOGTO AACCCTOGTO AACCCTOGTO AACCCTOGTO AACCCTOGTO AACCCTOGTO AACCCTOGTO
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	CTTAGTTGCC CTTAGTTGCC CTTAGTTGCC CTTAGTTGCC CTTAGTTGCC CTTAGTTGCC CTTAGTTGCC	ATCAGTTCGG ATCAGTTCGG ATCAGTTCGG ATCAGTTCGG ATCAGTTCGG ATCAGTTCGG	CTGGGCACTC CTGGGCACTC CTGGGCACTC CTGGGCACTC CTGGGCACTC CTGGGCACTC	TAAGGAGACT TAAGGAGACT TAAGGAGACT TAAGGAGACT TAAGGAGACT TAAGGAGACT TAAGGAGACT	GCCTTEGTAA GCCTTCGTAA GCCTTCGTAA GCCTTCGTAA GCCTTCGTAA GCCTTCGTAA GCCTTCGTAA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AADDAGDAGD AADDAGDAGD AADDAGDAGD AADDAGD AADDAGD AADDAGDAGD AADDAGDAGD	GGCGAGGATG GGCGAGGATG GGCGAGGATG GGCGAGGATG GGCGAGGATG GGCGAGGATG	ACGTCAAGTC ACGTCAAGTC ACGTCAAGTC ACGTCAAGTC ACGTCAAGTC ACGTCAAGTC ACGTCAAGTC	ATC .ATGGCC ATC .ATGGCC ATC .ATGGCC ATC .ATGGCC ATC .ATGGCC ATC .ATGGCC	C.TTATGTCC C.TTA.G.C. C.TTA.G.C. C.TTA.G.C. C.TTA.G.C. C.TTA.G.C. C.TTA.G.C. C.TTA.G.C.
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	GGGGCTAC CC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGCTAC LC GGGGGCTAC LC GGGGGCTAC LC GGGGCTAC LC GGGGCTAC LC	ACGTGCTACA ACGTGCTACA ACGTGCTACA ACGTGCTACA ACGTGCTACA ACGTGCTACA ACGTGCTACA ACGTGCTACA	ATGGGÄTGTA ATGGGÄTGTA ATGGGÄTGTA ATGGGÄTGTÄ ATGGGÄTGTÄ ATGGGÄTGTÄ ATGGGÄTGTÄ	CAÀAGAGATG CAÀAGAGATG CAÀAGAGATG CAAAGAGATG CÀAAGAGATG CAAAGAGATG CAAAGAGATG	CAATGTCGTA CAATGTCGTA CAATGTCGTA CAATGTCGTA CAATGTCGTA CAATGTCGTA CAATGTCGTA CAATGTCGTA

Figure 4 - 4

R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	AGATGGAGCA AGATGGAGCA AGATGGAGCA AGATGGAGCA AGATGGAGCA AGATGGAGCA AGATGGAGCA	AAACTCAAAA AAACTCAAAA AAACTCAAAA AAACTCAAAA AAACTCAAAA AAACTCAAAA AAACTCAAAA	ACATCTCCA ATCTCCA ATCTCCCA ATCTCCCA GCRTCTCCCA ATCTCCCA ATCTCCCA	GTTCGGATTG GTTCGGATTG GTTCGGATTG GTTCGGATTG GTTCGGATTG GTTCGGATTG	TGGTCTGCAA TGGTCTGCAA TGGTCTGCAA TGGTCTGCAA TGGTCTGCAA TGGTCTGCAA TGGTCTGCAA
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA CTCGACCACA	TG CACCA TG CACCA TG CACCA TG CACCA TG CACCA TG CACCA TG	ATTEMPSONS BATTEMPSONS ATTEMPSONS	AFRICATION ARCESTS AFRICATION AR	WOOTH TO THE
R2XA001 R5XE001 R3XA001 R6XA001 R13D001INV R27TOTAAL R28TOTAAL	ÇGGTGAATAC GGGTGAATAC GG	GTTCCCGGGT GTTCCCGGGT	CTTGTACTCA		1335 1331 1299 1267 1236 1194 1172

Figure 4 - 5

	1				50
2BXA001		ACGATGAAGC		AGGTT	GTGGCGCACG
4AXA001	TGCAAGTCGA	ACGATGAAGC	CTAGCTTGCT	AGGTT	GTGGCGCACG
6W06001	• • • • • • • • • •	• • • • • • • • •		A	GTGGCGCACG
V14D001	• • • • • • • • •	• • • • • • • • • •			GTGGCGCACG
V19DINV001	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		GTGDHGCACG
	51				100
2BXA001	GGTGAGTAAT	GCATAGATGA	CATGCCCTTT	AGTTTGGAAT	AGCCACTAGA
4AXA001	GGTGAGTAAT	GCATAGATGA	CATGCCCTTT	AGTTTGGAAT	AGCCACTAGA
6W06001	GGTGAGTAAT	GCATAGATGA	CATGCCCTTT	AGTTTGGAAT	AGCCACTAGA
V14D001	GGTGAGTAAT	GCATAGATGA	CATGCCCTTT	AGTTTGGAAT	AGCCACTAGA
V19DINV001	GGTGAGTAAT	GCATAGATGA	CATGCCCTTT	AGTTTGGAAT	AGCCACTAGA
2011.003	101 B.ANGGTGAT		m)	7010001110	150
2BXA001		TAATACCAAA	TACTACCTTA	CGAGGGAAAG	ATT ATCGCT
4AXA001	A ATGGTGAT	TAATACCAAA	TACTACCTTA	CGAGGGAAAG	ATT ATCGCT
6W06001	A.ATGGTGAT	TAATACCAAA	TACTACCTTA	CGAGGGAAAG	ATTATCGCT
V14D001	ACATGGTGAT	TAATACCAAA	TACTACCTTA	CGAGGGAAAG	ATT ATCCCT
V19DINV001	D. ATGGTGAT	TAATACCAAA	TACTACCTTA	CGAGGGVNAG	ATT. ATCCCT
	151				200
2BXA001	AAAGGATTGC	TCTATGTCCT	ATCAGCTTGT	TGG . TGAGGT	AAAGGCTCAC
4AXA001	AAAGGATTGG	TCTATGTCCT	ATCAGCTTGT	TGG TGAGGT	AAAGGCTCAC
6M0600T	AAAGGATTGG	TCTATGTCCT	ATCAGCTTGT	TGG . TGAGGT	AAAGGCTCAC
V14D001	AAAGGATTGC	TCTATGTCCT	ATCAGCTTGT	TGG. TGAGGT	AAAGGCTCAC
V19DINV001	AAAGGATTGC	TETATGTECT	ATCAGCTTGT	TGGGTGAGGT	AAAGGCTCAC
	201				250
2BXA001	CAAGG.CTAT	GACGGGTATC	CGGCCTGAGA	GGGTGAGCGG	250 ACACACTGGA
4AXA001	CAAGG.CTAT	GACGGGTATC	CGGCCTGAGA	GGGTGAGCGG	ACACACTGGA
6W06001	CAAGG . CTAT	GACGGGTÄTC	CGGCCTGAGA	GGGTGAGCGG	ACACACTGGA
V14D001	CAAGG.CTAT	GACGGGTATC	CGGCCTGAGA	GGGTGAGCGG	ACACACTGGA
V19DINV001	CAAGGGCTAT	GACGGGTATC	CGGCCTGAGA	GGKTGAGCGG	ACACACTGGA
			SALES CONTRACTOR	5511.0.10055	Meriene ree.
2222 224	251		-		300
2BXA001	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTAG	GGAATATTGC
4AXA001	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTAG	GGAATATTGC
6W06001	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTAG	GGAATATTGC
V14D001	ACTGAGAÇAC	GGTCCAGACT	CCTACGCGAG	GCAGCAGTAG	GGAATATTGC
V19DINV001	ACTGAGACAC	GGTCCAGACT	CCTACGGGAG	GCAGCAGTAG	GGAATATTGC
	301				350
2BXA001	TUAATGGGGG	AAACCCTGA	AGCAGCAACG	CCGCGTGGAG	GATGAAGGTT
4AXA001	TCAATGGGGG	AAACCCTGA	AGCAGCAACG	CCGCGTGGAG	GATGAAGGTT
6W06001	TCAATGGGGG	. AAACCCTGA	AGCAGCAACG	CCGCGTGGAG	GATGAAGGTT
V14D001	TCAATGGGGG	AAACCCTGA	AGCAGCAACG	CCGCGTGGAG	GATGAAGGTT
V19DINV001	TCAATGGGGG	GAAACCCTGA	AGCAGCAACG	CCGCGTGGAG	GATGAAGGTT
	351				400
2BXA001	TTAGGATCGT	AAACTCCTTT	TGTTAGAGAA	GATAATGACG	GTATCTAACG
4AXA001	TTAGGATCGT	AAACTCCTTT	TGTTAGAGAA	GATAATGACC	GTATCTAACG
6W06001	TTÄGGÄTCGT	AAACTCCTTT	TGTTAGAGAA	GATAATGACC	GTATCTAACG
V14D001	TTAGGATCGT	AAACTEETTT	7GTTAGAGAA	CATAATGACG	GTATCTAACG
V19DINV001	TTAGGATCGK	AAACTCCTTT	TGTTAGAGAA	GATAATGACC	GTATCTAACG

Figure 5 - 1

2BXA001 4AXA001 6W06001 V14D001 V19DINV001	401 AATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC AATAAGCACC	GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC GGCTAACTCC	GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG	CCGCGGTAAT CCGCGGTAAT CCGCGGTAAT CCGCGGTAAT CCGCGGTAAT	450 ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG ACGGAGGGTG
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	451 CAAGCGTTAC CAAGCGTTAC CAAGCGTTAC CAAGCGTTAC CAAGCGTTAC	TCGGAATCAC TCGGAATCAC TCGGAATCAC TCGGAATCAC TCGGAATCAC	TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA TGGGCGTAAA AAATGGGCGTAAA	GAGTGCGTAG GAGTGCGTAG GAGTGCGTAG GAGTGCGTAG GAGTGCGTAG	500 GCGGGCAGGA GCGGC AGGA GCGGC AGGA GCGGC AGGA
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	501 CAAGTCAGGT CAAGTCAGGT CAAGTCAGGT CAAGTCAGGT	GTG . AAATC GTG . AAATC GTG . AAATC GTG . AAATC GTGTGAAATC	CTATGG.CTT CTATGGCTT CTATGG.CTT CTATGG.CTT	AACCATAGAA AACCATAGAA AACCATAGAA AACCATAGAA AACCATAGAA	550 CTGCATTTGA CTGCATTTGA CTGCATTTGA CTGCATTTGA CTGCATTTBA
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	551 AACTATCCTT AACTATCCTT AACTATCCTT AACTATCCTT AACTATCCTT AACTATCCTT	CTGGAGTGTG CTGGAGTGTG CTGGAGTGTG CTGGAGTGTG	GGEGAGGTAG GGEGAGGTAG GGEGAGGTAG GGEGAGGTAG GGEGAGGTAG	GTGGAATTCT GTGGAATTCT GTGGAATTCT GTGGAATTCT GTGGAATTCT	600 TGGTGTAGGG TGGTGTAGGG TGGTGTAGGG TGGTGTAGGG
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	601 GGTAAAATCC GGTAAAATCC G.TAAAATCC G.TAAAATCC G.TAAAATCC	GTAGAGATCA GTAGAGATCA GTAGAGATCA GTAGAGATCA GTAGAGATCA	AGAGGÄATAC AGAGG <mark>G</mark> ATAC AGAGGÄATAC AGAGGÄATAC AGÄĞG <mark>G</mark> ATÄC	CCATTC . CGA CCATTG . CGA CCATTG . CGA CCATTG . CGA CCATTG . CGA	650 AGGCGACCTG AGGCGACCTG AGGCGACCTG AGGCGACCTG AGGCGACCTG
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	651 CTGGAACATC CTGGAACATC CTGGAACATC CTGGAACATC	ACTGACGCTG ACTGACGCTG ACTGACGCTG ACTGACGCTG ACTGACGCTG	ATTGCACGAA ATTGCACGAA ATTGCACGAA ATTGCACGAA ATTGCACGAA	AGCGTGGGG AGCGTGGGG AGCGTGGGG AGCGTGGGG AGCGTGGGG	700 AGEAAAEAGG AGCAAACAGG RGCAAACAGG AGCAAACAGG AGCAAACAGG
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	701 ATTAGATAC GLATAGATAC TTAGATAC TTAGATAC	CCTGGTAGTC CCTGGTAGTC CCTGGTAGTC CCTGGTAGTC CCTGGTAGTC	CACGCCCAA CACGCCTAA CACGCCCAA CACCCCAAA CACCCCAAA	ACGAT GGAT ACGAT ACGAT ACGAT ACGAT ACGAT ACGAT	750 GCTAGTTGTT GCTAGTTGTT GCTAGTTGTT GCTAGTTGTT GCTAGTTGTT
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	751 GGGA GGCTT GGGA GGCTT GGGA GGCTT GGGA GGCTT	TGTCTTTCCA TGTCTTTCCA TGTCTTTCCA TGTCTTTCCA	GTAATGCAGC GTAATGCAGC	TA CGCCTTA TA CGCCTTA TA CGCCTTA TA CGCCTTA TA CGCCTTA	800 AGCATCCCGC AGCATCCCGC AGCATCCCGC AGCATCCCGC

Figure 5 - 2

	801				850
2BXA001	CTGGGGAGTA	CGGTCGCAAG	ATTAAAACTC	AAAGG.AATA	GACGGGGACC
4AXA001	CTGGGGAGTA	CGGTCGCAAG	ATTAAAACTC	AAAGG.AATA	GACGGGGACC
6W06001	CTGGGGAGTA	CGGTCGCAAG	ATTAAAACTC	AAAGG.AATA	GACGGGGACC
V14D001	CTGGGGAGTA	CGGTCGCAAG	ATTAAAACTC	AAAGG AATA	GACGGGGACC
V19DINV001	CTGGGGAGTA	CGGTCGCAAG	ATTAAAACTC	AAARGCAATA	GACGGGGACC
	851				900
2BXA001	CGCACAAGCG	GTGGAGCATG	TGGTTTAATT	CGAÄGÄTACA	CGAAGAACC.
4AXA001	CGCACAAGCG	GTGGAGCATG	TGGTTTAATT	CGA <mark>G</mark> GÀTACA	CGAAGAACC.
6W06001	CGCACAAGCG	GTGGAGCATG	TGGTTTAATT	CGATGATACA	CGAAGAACC -
V14D001 V19DINV001	CGCACAAGCG CGCACAAGCG	GTGGAGCATG GTGGAGCATG	TGGTTTAATT	CGAGGATACA	CGAAGAACC.
ATADIMAGOT	CGCACAAGCG	GIGGAGCAIG	TGGTTTAATT	CGAEGTACA	CGAAGAACCC
	901				950
2BXA001	TTACCTAGGC	FTGACATTC	AAGGAATTCC	C. TAGAAATA	GGGGAGTGTC
4AXA001	TTACCTAGGC	TTGACATTG	AAGGAATTCC	C.TAGAAATA	GGGGAGTGTC
6W06001	TTACCTAGGC	TTGACATTC	AAGGAATTCC	CETAGAAATA	GGGGAGTGTC
V14D001	TTACCTAGGC	TTGACATTG	AAGGAATTCC	CETAGAAATA	GGGGAGTGTC
V19DINV001	TTACCTAGGC	CTTGACATTG	AAGGAATTCC	COTAGAAATA	GGGGAGTGTC
	_				
0.0143.6.04	951				1000
2BXA001	TAGCTTCCTA	GAÇÇÇTGAAA	ACAGGTGCTG	CACGGCTGTC	GTCAGCTCGT
4AXA001 6W06001	TAGCTTGCTA TAGCTTGCTA	GACCETGAAA	ACAGGTGCTG	CACGGCTGTC	GTCAGCTCGT
V14D001	TAGCTTGCTA	GACCCTGAAA GACCCTGAAA	ACAGGTGCTG ACAGGTGCTG	CACGGCTGTC	GTCAGCTCGT
V19DINV001	TAGCTTGCTA	GACCCTGAAA	ACAGGTGCTG	CACGGCTGTC	GTCAGCTCGT
V1321NV001	PROCEECTA	GACCC GATA	ACACCA CONC	CACOGCIGIC	GTCAGCTCGT
	1001				1050
2BXA001	GTCGTGAGAT	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	C. TTTTTCTT
4AXA001	GTCGTGAGAT	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	C. TTTTTCTT
6W06001	GTCGTGAGAT	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	C.TTTTTCTT
V14D001	GTCGTGAGAT	GTTGGGTTAA	GTCCCGCAAC	GAGCGCAACC	CCTTTTTCTT
V19DINV001	GTCGTGAGAT	GTTGGGTTAL	GTCCCGCAAC	GAGCGCAACC	C. TTTTTCTT
	1051				1100
2BXA001	AGTTGETAAC	AGGTT - E	GCGCACTCTA	AGAAGACTGC	1100 CTGCGTAAGC
4AXA001	ÂGTŢĠĊŢĀĀĊ	AGGTT	ĞČGČÂCTČĪA	AGAAGACTGC	CTGCGTAAGC
6W06001	AGTTGETAAC	AGGTT + E T	GCGCACTETA	AGAAGACTGC	CTGEGTAAGE
V14D001	AGTTGCT Ā ĀC	ÂĞĞT: TATCT	GČGCÁČTĆTA	AGAÄĞÄÖTĞÖ	CTĠĊĠŦAAĠĊ
V19DINV001	AGTTGCTAAC	AGGTT = . T	GCGCACTCTA	AGAAGACTGC	CTGCGTAAGC
08*** 00-	1101		_		1150
2BXA001	AGGAGGAAGG	TGAGGACGAC	GTCAAGTCAT	CATGGCCCTT	ACÇCCTAGGC
4AXA001 6W06001	AGGAGGAAGG AGGAGGAAGG	TGAGGACGAC TGAGGACGAC	GTCAAGTCAT	CATGGCCCTT	ACGCCTAGGG
V14D001	AGGAGGAAGG	TGAGGACGAC	GTCAAGTCAT	CATGGCCCTT	ACÇCCTAGGG
V19DINV001	AGGAGGAAGG		GTCAAGTCAT GTCAAGTCAT	CATGGCCCTT CATGGCCCTT	ACGCCTAGGC ACGCCTAGGC
			-1-1-1-1-1		ACOCC I AGGC
	1151				1200
2BXA001	CTACACACGT	GCTACAATGG	GGTGCACAAA	GAGATGCAAA	GCCGCGAGGC
4AXA001	CTACACACGT	GCTACAATGC	GGTGCACAAA	GAGATGCAAA	GCCGCGAGGC
6W06001	CTACACACGI	GCTACAATGG	GGTGCACAAA	GAGATGCAAA	GCCGCGAGGC
V14D001	CTACACACGT	GCTACAATGG	GGTGCACAAA	GAGATGCAAA	GCCGCGAGGC
V19DINV001	CTACACACGT	GCTACAATGG	GGTGCACAAA	GAGATGCAAA	GCCGCGAGGC

Figure 5 - 3

2BXA001 4AXA001 6W06001 V14D001 V19DINV001	AGAGCTAATC AGAGCTAATC AGAGCTAATC	TATAAACAC TATAAAACAC TATAAAACAC TATAAAACAC TATAAAACAC	CTCCTAGTTC CTCCTAGTTC CTCCTAGTTC CTCCTAGTTC CTCCTAGTTC	GGATTGCAGG GGATTGCAGG GGATTGCAGG GGATTGCAGG GGATTGCAGG	1250 CTGCAACTCG CTGCAACTCG CTGCAACTCG CTGCAACTCG CTGCAACTCG	
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	CCTGCATGAA CCTGCATGAA CCTGCATGAA	OCTGGAAT.C CACAGTORCO CACAGTORCO CACAGTORCO CACAGORCO CA	GCTAGTAA.T GCTAGTAA.T GCTAGTAA.T GCTAGTAA.T GCTAGTAA <mark>A</mark> T	CGCAAA . TCA CGCAAA . TCA CGCAAA . TCA CGCAAAATCA CGCAAATTCA	1300 GCTATGTTGC GCTATGTTGC GCTATGTTGC GCTATGTTGC GCTATGTTGC	
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	CTGAATA.C CAMBABTES CATAASTES	GTTCCC.GGG GTTCCC.GGG GTKCCC.GGG GTTCCCGGGG GTKCCCGGGG	TCTTGTACTC TCTTGTACTC TCTTGTACTC TCTTGTACTC TCTTGTACTC	ACCGCCC.GT ACCGCCC.GT ACCGCCGGT ACCGCCGGT ACCGCCGGT	1350 CACACC ATG CACACC ATG CACACC ATG CACACC ATG CACACC ATG	
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	GGAGTTGTGT GGAGTTGTGT GGAGTTGTGT	TTGCCTTAAG TTGCCTTAAG TTGCCTTAAG TTGCCTTAAG TTGCCTTAAG	TCAGGATGCT TCAGGATGCT TCAGGATGCT TCAGGATGCT TCAGGATGCT	AAAGCAGCTA AAAGCAGCTA AAAGCAGCTA AAAGCAGCTA AAAGCAGCTA	1400 CTGCCCACGG CTGCCCACGG CTGCCCACG. CTGCCCACG.	
2BXA001 4AXA001 6W06001 V14D001 V19DINV001	CACACACAGC CACACACAGC	AGTGGGGTG AGTGGGGTG AG	AAGTCGTAAC	AAGGTAACCC	1447 GGGCGGC	1423 1400 1353 1355 1358

Figure 5 - 4

EUROPEAN SEARCH REPORT

Application Number EP 99 87 0035

Category X	felis sp. nov., Hel	ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION	
x	felis sp. nov., Hel	James of Halisahastan			
	related bacteria." INTERNATIONAL JOURN, BACTERIOLOGY, vol. 41, no. 1, Januages 31-38, XP0021 * the whole document	uary 1991 (1991-01), 10981	1-10	C12Q1/68 A61K31/70	
X	sequence of its rRN/ JOURNAL OF CLINICAL	cus based on nucleotide A gene" MICROBIOLOGY, 1995 (1995-05), pages 982	1-10		
X,D	Helicobacter isolat feces and description pametensis sp. nov. INTERNATIONAL JOURNA	RNATIONAL JOURNAL OF SYSTEMATIC ERIOLOGY, (1994 JUL) 44 (3) 553-60. , 02110983		TECHNICAL FIELDS SEARCHED	
X	from HTLV-III, LAV XP002110984 * abstract *	0072; 09 april 1991 of gp 160 glycoprotein and ARV. UTHWEST FOUND BIOMED E (US))	1,5,6,10		
···	The present search report has t	peen drawn up for all claims			
-	Place of search	Date of completion of the search		Examiner	
X : part Y : part doc	THE HAGUE ATEGORY OF CITED DOCUMENTS idularly relevant if taken alone idularly relevant if combined with anotil ument of the same category nological background	T: theory or princip E: earlier patent do after the filing da D: document cited t	le underlying the i curnent, but publi te in the application or other reasons	shed on, of	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.