《数值分析》4

主要内容:

Newton迭代格式

Newton迭代法的收敛性

Newton迭代法收敛速度

弦截法迭代格式

Newton迭代格式

设 x^* 是方程 f(x)=0 的根, x_0 是 x^* 的近似值。在 x_0 附近,对函数做局部线性化 (Taylor展开)

Newton迭代格式

牛顿迭代格式
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, \cdots)$

给定初值 x_0 , 迭代产生数列

$$x_0, x_1, x_2, \dots, x_n, \dots$$

应用——求正数平方根算法

设
$$C > 0$$
, $x = \sqrt{C}$ \Longrightarrow $x^2 - C = 0$

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n}$$
 $x_{n+1} = \frac{1}{2}[x_n + \frac{C}{x_n}]$

Newton迭代格式

引例. 平方根算法求 $\sqrt{2}$

初值: $x_0=1.5$

迭代格式: $x_{n+1}=0.5(x_n+2/x_n)$ $(n=0,1,2,\cdots)$

表1 平方根算法实验

\boldsymbol{x}_n	Error
1.416666666666667	2.45e-003
1.414215686274510	2.12e-006
1.414213562374690	1.59e-012
1.414213562373095	2.22e-016
1.414213562373095	2.22e-016

Newton迭代法的收敛性

$$x_{n+1} - \sqrt{2} = \frac{1}{2} [x_n + \frac{2}{x_n}] - \sqrt{2}$$

$$= \frac{1}{2x_n} [x_n^2 - 2x_n \sqrt{2} + 2] = \frac{1}{2x_n} (x_n - \sqrt{2})^2$$

$$\frac{x_{n+1} - \sqrt{2}}{(x_n - \sqrt{2})^2} = \frac{1}{2x_n}$$

$$\lim_{n \to \infty} \frac{|x_{n+1} - \sqrt{2}|}{|x_n|^2} = \frac{1}{2\sqrt{2}}$$

由此可知,平方根算法具有2阶收敛速度

牛顿迭代法是否都收敛? 条件?

Newton迭代法的收敛性

Newton迭代法的局部收敛性

定理2.7 设 f(x) 在点x*的某邻域内具有二阶连续导数,且设 f(x*)=0, $f'(x*)\neq 0$,则对<u>充分靠近点x*的初值 x_0 </u>, Newton迭代法 至少平方收敛.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow \varphi(x) = x - \frac{f(x)}{f'(x)}$$

$$\varphi'(x^*) = f(x^*)f''(x^*)/[f'(x^*)]^2 = 0$$

$$\varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}$$

所以, Newton迭代法至少平方收敛(第3讲定理2.6)

Newton迭代法的收敛性

例2.求 $x^3 + 10x - 20 = 0$ 在 $x_0 = 1.5$ 附近的根

解:取
$$f(x) = x^3 + 10x - 20$$

则有 $f'(x) = 3x^2 + 10$

牛顿迭代格式
$$x_{n+1} = x_n - \frac{x_n^3 + 10x_n^2 - 20}{3x_n^2 + 10}$$
 表2 牛顿迭代法实验

n	\boldsymbol{x}_n	$ x_{n+1}-x_n $
0	1.5	
1	1.59701492537313	9.7015e-002
2	1.59456374876881	2.4512e-003
3	1.59456211663188	1.6321e-006
4	1.59456211663115	7.2298e-013

和不动点比,速度如何?(第3讲例2)

缺陷

1.被零除错误

$$f(x) = x^3 - 3x + 2 = 0$$

在
$$x*=1$$
附近, $f'(x) \approx 0$

2.程序死循环

对 $f(x) = \arctan x$

存在 x_0 , 使Newton迭代法陷入死循环

3.其它

Web. Link

IX
$$x_0=0$$
, $x_{n+1}=x_n-\frac{x_n^3-x_n-3}{3x_n^2-1}$ $(n=0,1,\cdots)$

Newton迭代法陷入死循环的另一个例子(可能若干步后 才陷入死循环)

牛顿迭代法收敛的四种情况

定理2.8 若函数f(x) 在[a, b] 上满足条件

- (1) f(a) f(b) < 0;
- (2) f'(x), f''(x) 在[a, b]上<u>连续且不变号</u>(恒为正或恒为负);
- (3) 取 $x_0 \in [a, b]$ 使得 $f(x_0)f''(x_0) > 0$ (不证)

则方程 f(x) = 0 在 [a, b] 上有 $\frac{\mathbf{l} \cdot \mathbf{l} \cdot \mathbf{l}}{\mathbf{l} \cdot \mathbf{l}}$,且由初值 x_0 按牛顿迭代公式求得的序列 $\{x_n\}$ 二阶收敛于 x^* 。

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{1}{2}f''(\xi_k)(x^* - x_k)^2 = 0$$

$$x^* - \left[x_k - \frac{f(x_k)}{f'(x_k)}\right] = -\frac{f''(\xi_k)}{2f'(x_k)}(x^* - x_k)^2$$

$$x^* - x_{k+1} = -\frac{f''(\xi_k)}{2f'(x_k)}(x^* - x_k)^2$$

$$\lim_{k\to\infty} \frac{|x_{k+1}-x^*|}{(x_k-x^*)^2} = \lim_{k\to\infty} \frac{|f''(\xi_k)|}{2|f'(x_k)|} \neq \frac{|f''(x^*)|}{2|f'(x^*)|}$$

例3. 已知方程 $x^3 - 3x + 2 = 0$

有两根: $x_1^* = -2$ $x_2^* = 1$

取根附近值做初值,分析牛顿迭

表3 初值取-1.5 时牛顿

n	\mathcal{X}_n	
0	-1.5	
1	-2.33333333333	
2	-2.055555555	
3	-2.00194931773	
4	-2.00000252829	
5	-2.0000000000	

表4 初值取 1.5 时牛顿迭代法速度

为什么这么慢?

n	\boldsymbol{x}_n	$ \phi_n $	$ e_{n+1} / e_n $
0	1.5	5.00e-001	
1	1.2666666	2.66e-001	0.5333
2	1.1385620	1.38e-001	0.5196
3	1.0707773	7.07e-002	0.5108
4	1.0357918	3.57e-002	0.5057
5	1.0180008	1.80e-002	0.5029
6	1.0090271	9.02e-003	0.5015
7	1.0045203	4.52e-003	0.5007
8	1.0022618	2.26e-003	0.5004
9	1.0011313	1.13e-003	0.5002
10	1.0005657	5. 65e-004	0.5001
11	1.0002829	2.82e-004	0.5000

引理1 设 x^* 是 f(x)=0 的二重根,则牛顿迭代法只具有一阶收敛

证:
$$x^*$$
是二重根 $\rightarrow f(x)=(x-x^*)^2g(x)$

$$f'(x) = (x-x^*)[2g(x)+(x-x^*)g'(x)]$$

$$\varphi(x) = x - \frac{(x-x^*)g(x)}{2g(x)+(x-x^*)g'(x)}$$

→
$$\varphi'(x^*) = 1 - \frac{1}{2}$$
 牛顿迭代法只是一阶收敛.

表明: 当有重根时, 传统牛顿法二阶收敛性质不成立!

怎么办?

引理2 若 x^* 是 f(x)=0 的 m 重根,修正的牛顿迭代法

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

为至少二阶收敛

回到例3:
$$m = 2$$
 \rightarrow $x_{n+1} = x_n - 2 \frac{f(x_n)}{f'(x_n)}$

表5 x*为二重根时修正的牛顿迭代实验 (例3)

n	\mathcal{X}_n	$ e_n $	$ e_{n+1} / e_n ^2$
0	1.5	5.00e-001	
1	1.03333333333	3.33e-002	0.1333
_2	1.00018214936	1.85e-004	0.1639
3	1.0000000552	5.52e-009	0.1667

总结

优点:

- → 牛顿法有 $\lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|^2} = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$, $f'(x^*) \neq 0$ (无重根)就有 $p \geq 2$ 。 重根是线性收敛的。
- ▶ 相对简单。

缺点:

- 牛顿法收敛性依赖于x₀ 的选取。初值充分接近 根以保证局部收敛性。
- \rightarrow 公式中需要求 f(x) 的导数。若 f(x)比较复杂,则 使用牛顿公式就大为不便。
- ▶ 零除、死循环

弦截法迭代格式

Newton迭代法的变形一弦截法(为避免计算导数)

由于
$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

代入牛顿迭代格式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$\Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1})$$

弦截法迭代格式

Web. Link

表6 弦截法收敛速度实验(解例3)

n	\boldsymbol{x}_n	$ e_n $	$ e_{n+1} / e_n ^{1.618}$
1	-1.5	5.00e-001	
2	-2.5	5.00e-001	1.5347
3	-1.83783783783	1.62e-001	0.4978
4	-1.95420890762	4.57e-002	0.8691
5	-2.00552244119	5.52e-003	0.8109
6	-1.99982796307	1.72e-004	0.7742
7	-1.99999936831	6.31e-007	0.7785
8	-2.0000000007	7.24e-011	0.7778

学到了什么?

Newton迭代格式

Newton迭代法的收敛性

Newton迭代法收敛速度

弦截法迭代格式