#### ВГРАДЕНИ СИСТЕМИ

- 1. Дефинира и обяснява основни понятия във вградените системи. Посочва и различава основни компоненти във вградените системи. Обяснява характеристиките и особеностите на вградените системи.
  - Понятието "вградени" (*embedded*) се използва като характеристика на определен клас технологии и системи за управление.

Автономни системи за управление с фиксирани цели и задачи, които са поставени в други се определят като "вградени системи", а използваните за изграждането им технологии – като "вградени технологии".



- Обект за управление, който включва:
- □ Датчици (източници за информация или сензори)

Дават информация за:

- о Състояние
- о Стойност
- о Положение
- Изпълнителни механизми

Обезпечават управлението на възлите за движение, индикация и преработка на информацията.

• Силови буфери

Обезпечават електрическия интерфейс за съгласуване на работните напрежения и необходимата товароспособност.

Вградена микрокомпютърна система включва следните основни възли:

| Специализиран ЕМК (едночипов микрокомпютър) или наречен още |  |
|-------------------------------------------------------------|--|
| микроконтролер                                              |  |
| Входни буфери (съгласуващи електрически) за въвеждане на    |  |
| информацията от датчиците                                   |  |

Изходни буфери (съгласуващи електрически) за управление на изпълнителните механизми.

Основни характеристики:

#### А) по отношение на структурата

- Вградените системи се различават както по апаратна реализация, така и по програмно осигуряване.
- Вградените системи се вграждат в конкретно устройство, имат малък обем и се характеризират с ниска консумация. Много често използват акумулаторно захранване.

Вградените системи обикновено разполагат с ограничена захранваща мощност и трябва да имат ефективно управление на захранването.

#### Б) по отношение на предназначението

• В зависимост от предназначението си, се характеризират с различна сложност — от елементарни с един микроконтролерен чип, до комплексни системи, съставени от множество устройства, периферни и мрежови модули, монтирани на общо шаси или дори интегрирани в общ шкаф.

#### В) по отношение на функционалността им

- Отличителна характеристика на вградените системи е ограниченият брой предварително дефинирани функции, които са проектирани да изпълняват.
- Системите са тясно специализирани и решават само определена задача или сравнително ограничен брой задачи.
- Ресурсите им никога не трябва да се използват напълно и винаги трябва да има резерви.

- 2. Прави заключения и изводи за разликите между микропроцесор и микроконтролер.
  - Микропроцесорът се състои от силиконов чип с аритметично логическо устройство (ALU), контролен блок (CU) и регистри. Обратно, микроконтролерът включва свойствата на микропроцесора, заедно с RAM, ROM, броячи, I / О портове и т.н.
  - Микропроцесорът изисква група други чипове, като таймери, контролери за прекъсване и паметта на програмата и данните, което я прави зависима. За разлика от това, микроконтролерът не изисква други хардуерни единици, тъй като вече е активиран с него.
  - Неявните I / О портове са осигурени в микроконтролера, докато микропроцесорът не използва вградени I / О портове.
  - Микропроцесорът изпълнява операции с общо предназначение. За разлика от това, микроконтролерът изпълнява операции, ориентирани към приложения.
  - В микропроцесора основният акцент е върху производителността, поради което се стреми към пазара на висок клас. От друга страна, целта на микроконтролера за вградения пазар.
  - Използването на енергия в микроконтролера е по-добро от микропроцесора.
- 3. Обяснява и различава видовете архитектури.

Архитектура Фон-Нойман:



Основни елементи:

- централен процесор;
- памет и периферни устройства;
- три типа линии за връзка между тях.

#### Особености:

- обща памет за инструкции и данни;
- обща, двупосочна шина за инструкции и данни;
- еднопосочна адресна шина;
- двупосочна управляваща шина.

### Архитектура тип "Харвард":



#### Основни елементи:

- централен процесор;
- програмна памет;
- памет за данни;
- периферни устройства;
- линии за връзка между тях.

#### Особености:

• физическо разделяне на паметта на две части – за инструкции и данни, със собствени шини за адреси и данни.

## СРАВНВНИЕ МЕЖДУ АРХИТЕКТУРИТЕ НА ФОН НОЙМАН И ХАРВАРД

- **Бързодействие**: при архитектурата тип "Харвард" могат да се извличат едновременно инструкции и данни, което осигурява по-голямо бързодействие.
- Надеждност: при архитектурата тип "Харвард" не може да се записва в програмната памет т.е. Да се повреди програмата.
- Гъвкавост: при архитектурата на Фон Нойман може да се променя съотношението програмна памет/ памет за данни, а при тип "Харвард" са твърдо зададени.
- **Апаратна част**: наличието на две памети с отделни магистрали за адреси и данни предполага по-сложна апаратна част.

RISC архитектурата е компютър с намален набор от инструкции. Това е тип микропроцесорна архитектура, която използва малък оптимизиран набор от инструкции.

Технологията CISC (Complex Instruction Set Computer) е свързана с традиционните процесори, при които се поддържат множество инструкции, изпълнявани за различно време. Това време е в зависимост от типа на инструкцията, дължината, метода за адресиране на операндите и пр.

#### Сравнителна таблица:

| CISC архитектура                                                                          | RISC архитектура                                                           |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1. CISC означава компютър с комплексни                                                    | RISC означава компютър с намалена                                          |
| инструкции.                                                                               | инструкция.                                                                |
| 2. Процесорът CSIC има сложни инструкции, които заемат множество часовници за изпълнение. | Процесорите RISC имат прости инструкции, отнемащи около един тактов цикъл. |
| 3. Производителността се оптимизира с                                                     |                                                                            |
| повече фокус върху хардуера.                                                              | Производителността се оптимизира с                                         |
|                                                                                           | повече фокус върху софтуера                                                |
| 4. Разполага с блок памет за изпълнение                                                   |                                                                            |
| на сложни инструкции.                                                                     | Той няма модул памет и използва                                            |
|                                                                                           | отделен хардуер за изпълнение на                                           |
|                                                                                           | инструкции                                                                 |

4. Демонстрира знания за архитектурата на съвременен микропроцесор.

Суперскаларна архитектура — изпълнява по 2 инструкции на такт чрез 2 паралелни ковейера(U и V). Възможност за динамично предсказване на преходите и разделена кеш памет за инструкции и за данни. Използва се RISC ядро при запазване на

CISC архитектура за "външния свят". Усъвършенствани са средствата за работа в многопроцесорна конфигурация – протокол за поддържане консистентността на вътрешните кеш памети (MESI) и интелигентен програмируем контролер на прекъсванията (APIC).



#### Съвременни технологии:

**Мултимедийни инструкции на процесора** са специализирана технология за мултимедийна обработка на данни, която разширява възможностите на процесора, без да променя взаимодействието му с вече съществуващите x86 инструкции.

#### Основни принципи на мултимедийни инструкции:

• Включва нови команди, с цел ускоряване обработката на мултимедийни данни.

Разширява възможностите на процесора без да променя поведението му при работа със съществуващите инструкции.

#### MMX технология

• MMX (Multi-Media eXtension) – това е SIMD-разширение за потокова обработка на целочислени данни.

**SIMD** - single-instruction multiple-data (една инструкция - множество данни) — подход, който използва алгоритм за работа с мултимедийни данни, който се базират на паралелното изпълнение на една операция над няколко числа. За пръв път тази технология се използва при процесорите Pentium MMX.

#### SSE (Streaming SIMD Extensions) технология

Развитие на идеите SIMD става технология SSE (Streamed SIMD Extensions), за пръв път представена в процесорите Pentium III.

- 5. Модифицира принципна електрическа схема на микроконтролер по зададена задача.
- 6. Изброява базови и периферни компоненти на микроконтролер.

Микроконтролерният чип е силно интегриран с процесор, памет (RAM и ROM), регистри, прекъсващи контролни единици и специални I / О портове.

Базови компоненти:

#### Централен процесор

Централния процесор се състои от:

- Аритметично & Логическо устройство (АЛУ)
- Регистри
- Управляващо Устройство (УУ).

Процесорът е отговорен за обработката на данни. Как ще се обработват данните, зависи от програмата, която му е зададена да изпълнява. От гледна точка на процесора, програмата е набор от инструкции, които му указват какво да прави.

#### Програмна памет

- Програмната памет, както подсказва името, служи за съхранение на инструкциите, които изграждат програмата.
- Програмната памет се нарича още ROM (Read Only Memory).

#### Памет за данни

Служи за съхранение на временни данни, използвани в програмата и резултати, получени от изпълнението й. Паметта за данни се нарича още памет с произволен достъп (RAM - Random Access Memory). Информацията в RAM се пази само докато е налично захранване. При изключване на захранването, данните в RAM се губят.

#### Контролер на прекъсванията

Контролерът на прекъсванията приема сигналите за прекъсване, получени от периферните модули, и известява процесора, че е възникнало някакво събитие.

Всеки източник на прекъсване се характеризира със следните атрибути:

- Флаг на прекъсване IF (Interrupt Flag);
- Локален бит за разрешаване на прекъсването IE (Interrupt Enable);
- Подпрограма за обработка на прекъсването (ISR Interrupt Service Routine).

#### Генераторен блок

**Генераторният блок** служи да генерира всички необходими **тактови сигнали**, необходими за работата на компонентите на микроконтролера. Типично в микроконтролерите се използват следните видове генератори:

- RC генератор;
- Кварцов или керамичен генератор;

PLL (Phase-locked loop) генератор.

# Периферни компоненти: портове, таймери, ШИМ, аналого-цифров преобразувател, аналогов компаратор

7. Обяснява и модифицира блок-схема на вградена система. Свързва компоненти в схема при зададена задача за моделиране на вградена система. Представя графично блок-схема на вградена система.

Блок - схема на вградена система



Електрическа схема с бутон, така че при натискане на бутона да светне светодиода.



8. Избира необходимите хардуерни компоненти при реализирането на вградена система, така че да реши поставената задача.

Дадена е готова верига. Кои хардуерни компоненти ще ви бъдат необходими за да изградите веригата, така че да осветява светодиод в SOS модел. Светодиодът се включваше и изключваше, отново и отново, винаги в един и същ модел.



#### Хардуерни компоненти:

- 1 светодиод
- 1 220 ома резистор (червен, червен, кафяв, златен)
- 3 10К Ом резистор (кафяв, черен, оранжев, златен)
- 3 моментен бутонен превключвател
- 1 високоговорител
- Джъмперни проводници
- Макет
- Arduino Uno

- 9. Прави заключения и изводи за захранването и енергийната ефективност.
  - Съвременните цифрови устройства, в това число **микроконтролерите**, се произвеждат по т.нар. **CMOS** (Complementary Metal-Oxid-Semiconductor) **технология**.
  - Градивните елементи, използвани в тази технология, са MOS транзистори.
  - **MOS** транзисторът може да се разглежда като 3-изводно устройство, което работи като управлявано с напрежение съпротивление.
  - Напрежението, приложено към единия извод, управлява съпротивлението между другите два.
  - В цифровите схеми, където се използват напрежения с две нива, ниско (0V) и високо (например 5V), MOS транзисторите работят в ключов режим.

#### Захранващо напрежение:

- CMOS устройствата използват различни захранващи напрежения: +5V, +3.3V, +2.5V и +1.2V.
- Микроконтролерите използват първите две захранващи напрежения (+5V и +3.3V).

Технология като CMOS се използва в различни чипове като микроконтролери, микропроцесори, SRAM (статична RAM) и други цифрови логически схеми. Тази технология се използва в широк спектър от аналогови схеми, които включват преобразуватели на данни, сензори за изображения и силно вградени приемопредаватели за няколко вида комуникация.

#### Предимства:

- CMOS технология В цифровите схеми, където се използват напрежения с две нива, ниско (0V) и високо (например 5V)
- Много ниска статична консумация на енергия
- Висока устойчивост на шум
- Намалете сложността на веригата
- 10. Анализира и модифицира програмен код, така че да реши поставена задача.

Задача 1 Напишете програма която да реализира мигане на външен светодиод с честота 1 секунда по даденото свързване чрез използване на монтажна платка. Анализирайте задачата и свържете схемата на фиг.1, използвайки необходимите електронни компоненти и правилните изводи за свързването им.





Фиг.1

# Хардуерни компоненти:

- 1 светодиод
- 1 220 ома резистор (червен, червен, кафяв, златен)
- Джъмперни проводници
- Макет
- Arduino Uno

# Правилно свързана електрическа схема:



```
Решение:
void setup()
                                                         int svetodiod = 13;
                                                         void setup () {
  pinMode(LED_BUILTIN, OUTPUT);
                                                              pinMode(svetodiod, OUTPUT);
void loop() {
                                                         void loop () {
    digitalWrite(LED_BUILTIN, HIGH);
                                                               digitalWrite (svetodiod, HIGH);
    delay(1000);
                                                               delay (1000);
    digitalWrite(LED_BUILTIN, LOW);
                                                               digitalWrite (svetodiod, LOW);
    delay(1000);
                                                               delay (1000);
}
                                                         }
```