1、实验名称及目的

RflySim3D 自带特效使用方法:展示平台内置的一些模型特效生成和使用方法,如虚拟管道和一些固定翼飞机模型

2、实验原理

这些特效本质上都是平台内置的模型,它们的使用方法与其它模型相同,都可以通过 python 或 simulink 的外部接口去调用。

3、实验效果

本实验利用 RflySim3D 快捷键实现了仿真过程中的简单交互效果。

冬 1

4、文件目录

文件夹/文件名称	说明
----------	----

5、运行环境

序号	软件要求	硬件要求	
11, 4	が日文が	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台个人高级版		

推荐配置请见: https://doc.rflysim.com

6、实验步骤(各命令介绍及效果展示)

Step 1:通信特效

启动 RflySim3D

运行 3.RflySim3DUE\2.AdvExps\e0_AdvApiExps\e1_UEMapCtrl\11.EffectPlugins\Comm目录下的 CommDemo.py

该通信特效是通过一个 ClassID 为 802 的对象创建的,因此 python 中有一句代码就是创建它。

创建通讯特效 Actor

mav.sendUE4Pos(9, 802)

然后它调用了该对象的 16 维的蓝图接口,(要求完整版 RflySim)

mav.sendUE4ExtAct(9, [1,i+2,20,i,0,0,0,0,0,0,0,0,0,0,0,0])

其中第一个参数表示特效起点的飞机的 ID, 第二个参数表示终点飞机的 ID, 第三个参数表示效果持续的时间(等于 0 时会持续存在,小于 0 时会清除特效),第四个参数为特效的样式,可以取值为 0~6。

Step 2:

同样的方法,启动 RflySim3D,并运行相应控制脚本

7、参考资料

[1]. RflySim3D 常见特效接口总览 (见 API 文档)

8、常见问题

Q1: ****

A1: ****