一、存储系统 00:05

1. 存储系统的层次结构 00:10

1.2.2 存储系统

- 1. 存储系统的层次结构
- 存储器分级的目的: 构建容量大、 速度快、

成本低的存储系统。

- **目的**: 构建容量大、速度快、成本低的存储系统。
- **层次关系**: 从下到上速度由慢到快,包括寄存器、CPU内cache、主存储器、磁盘、光盘、磁带等。
- 2. 存储器的分类 01:51
- 1) 随机存取存储器 02:03

1.2.2 存储系统

- 2. 存储器的分类
- 按存储器的工作方式可分为:
 - ●随机存取存储器 (RAM)
 - ①静态随机存储器SRAM,用于Cache;
 - ②动态随机存储器DRAM,用于主存。

	特性	SRAM	DRAM	
N	存储元	触发器	电容器	
	主要用途	Cache	主存	
	操作	读/写	读/写/周期性刷新	
	存取速度	快	稍慢	
	存储容量	小	大	
	成本	稍高	低	
	芯片集成率	高	低	

- 分类: 随机存取存储器(RAM)分为静态随机存储器(SRAM)和动态随机存储器(DRAM)。
 - o SRAM:
 - 存储元: 触发器
 - 特性: 存取速度快、存储容量小、成本高、芯片集成率高
 - 主要用途: Cache
 - O DRAM:
 - 存储元: 电容器
 - 特性: 存取速度稍慢、存储容量大、成本低、芯片集成率低、需要周期性刷 新
 - 主要用途: 主存
- SRAM与DRAM存储元对比

SRAM和DRAM的存储元

○ ○ SRAM存储元:

■ 物理结构: 触发器

■ 速度: 快 DRAM存储元:

■ 物理结构: 电容器

■ 速度:慢(需充电放电过程)

■ 刷新:需要周期性刷新以保持电荷不丢失

● 特性对比总结

0

1.2.2 存储系统

- 2. 存储器的分类
- 按存储器的工作方式可分为:
 - ●随机存取存储器 (RAM)

①静态随机存储器SRAM,用于Cache;✓

②动态随机存储器DRAM,用于主存~

	特性	SRAM	DRAM	
	▽ 存储元 ▽	態发器→ 67.品~	电容器 トカナーケラン	
В	€ 主要用途 V	Cache	<u>+</u> 4	
	操作	读/写	读/写/周期性刷新	
	存取速度	. 快. ノ	稍慢	
	存储容量	<u></u> <u></u>	大 小	
	成本	1 高レ	低	
	芯片集成率	高✓	低	

- o 存取速度: SRAM快, DRAM稍慢。
- o 存储容量: SRAM小, DRAM大。
- o 成本: SRAM高, DRAM低。
- o 芯片集成率: SRAM高, DRAM低。
- 操作: SRAM仅读写,DRAM需读写及周期性刷新。

2) 题型

本节练习

- (10)以下存储器中, _____使用电容存储信息且需要周期性地进行刷新。
 - A.DRAM
 - B.EPROM
 - C.SRAM
 - D.EEPROM

- 题目解析
 - o 题目: 以下存储器中,使用电容存储信息且需要周期性地进行刷新。
 - 选项分析:
 - A. DRAM: 符合题目描述,使用电容器存储信息且需要周期性刷新。

- B. EPROM: 可编程只读存储器,不符合。
- C. SRAM: 使用触发器存储信息,不需要刷新,不符合。
- D. EEPROM: 电擦除可编程只读存储器,不符合。
- 答案: A
- 3) 只读存储器

●只读存储器存储器 (ROM)

8			
ROM分类	擦除方式	擦除速度	可编程次数
固定只读存储器(ROM)	无	无	无
可编程只读存储器(PROM)	=	较慢	一次
可擦除可编程只读存储器(EPROM)	紫外线照射	较慢	较少
电擦除可擦除可编程储存器(EEPROM)	电擦除	较快	100w次左右
闪速存储器(闪存)	电擦除	最快	较少

● ● 分类:

- **固定只读存储器(ROM)**: 不可改写内容。
- **可编程只读存储器(PROM)**: 可编程一次。
- **可擦除可编程只读存储器(EPROM)**: 通过紫外线照射擦除。
- o 电擦除可编程只读存储器(EEPROM): 通过电擦除,擦除速度快,可编程次数多。
- o **闪速存储器(闪存)**: 常用于U盘,电擦除,速度快,可编程次数较少。
- 闪存特性题目

本节练习

- (11)以下关于闪存(Flash Memory)的叙述中,错误的是__
 - A.掉电后信息不会丢失,属于非易失性存储器
 - B.以块为单位进行删除操作
 - C.采用随机访问方式,常用来代替主存
 - D.在嵌入式系统中可以用 Flash 来代替 ROM 存储器

0

o 题目解析

- 题目: 以下关于闪存(Flash Memory)的叙述中,错误的是哪一个?
- 选项分析:
 - A. 掉电后信息不会丢失,属于非易失性存储器: 正确。
 - B. 以块为单位进行删除操作: 正确,符合闪存特性。
 - C. 采用随机访问方式,常用来代替主存:错误,闪存不用来代替主存。
 - D. 在嵌入式系统中可以用Flash来代替ROM存储器: 正确,闪存是ROM的一种。
- 答案: C
- 3. 高速缓存 15:41
- 1) Cache的原理 15:50

- · 3. 高速缓存Cache
- (1) Cache的原理
- 高速缓存Cache位于CPU与主存之间,用于存储当前活跃的程序和数据。
 - ●Cache的功能:解决CPU和主存之间的速度不匹配的问题
 - ●Cache的理论依据:程序的局部性原理

CPU对主存中的指令和数据的访问,在一小段时间内,总是集中在一小块存储空间里。

①时间局部性: 最近被访问过的指令和数据很可能会被再次访问;

②空间局部性:最近访问过的指令和数据往往集中在一小片存储区域中。

- 功能定位: 位于CPU与主存之间,存储当前活跃的程序和数据,解决CPU和主存速度不 匹配问题(CPU速度比主存快5-10倍)。
- 理论依据: 程序的局部性原理,表现为:
 - 时间局部性:最近访问的指令/数据很可能被再次访问(如循环变量i在for循环中被 连续访问100次)
 - 空间局部性: 访问过的指令/数据往往集中在小片存储区域(如访问数组元素a/20/ 后,可能继续访问a[19]或a[21])

块号

2) 主存与Cache的地址映射 21:08

1.2.2 存储系统

(2) 主存与Cache的地址映射

在CPU工作时,送出的是主存单元的地址,而应从Cache存储器中读/写信息。这就需要将主存地 址转换成Cache的地址,这种地址的转换称为地址映像。由硬件自动完成映射。

- ●全相联映像:主存中的任意一个块可以与Cache中的任意一行相对应。
- ●直接映像: Cache中一行固定对应主存中的多行。如主存块号对Cache总行数求模。
- ●组相联映像:前两种方式的结合。将Cache进行分组,组间采用直接映射方式,组内采用全相联

映射方式。

12

- 映射本质:由硬件自动完成主存地址到Cache地址的转换
- 全相联映像 24:04

全相联映像

映射规则: 主存任意块可放入Cache任意行(多对多关系)

- 实现特点:
 - 采用遍历算法 (时间复杂度 $O(n^2)$)
 - 需要高速相连存储器支持
- 优劣分析:

优点:冲突概率小,利用率高

缺点: 硬件实现困难, 适合小容量Cache

直接映像 27:24

0

- o 映射规则: Cache行固定对应主存多行(主存块号对Cache总行数求模)
- o **典型场景**: 访问数组元素a[1]、a[9]、a[17]会映射到同一Cache行
- 优劣分析:
 - 优点:硬件易实现(求模运算),成本低
 - 缺点:冲突概率高(如h1、h9、h17都映射到m1行),适合大容量Cache
- 组相联映像 30:03

0

○ 混合策略:

- 组间直接映射(主存块对组数求模)
- 组内全相联映射(组内行任意放置)
- o 设计优势: 平衡前两种方式的优缺点, 实际应用最广泛
- 3) 应用案例 31:44
- 例题:高速缓存设置目的

- (12)在 CPU 内外常需设置多级高速缓存(Cache),主要目的是___
 - A.扩大主存的存储容量
 - B.提高 CPU 访问主存数据或指令的效率
 - C.扩大存储系统的存量
 - D.提高 CPU 访问内外存储器的速度

2

- 题目解析
 - o 核心考点: Cache解决CPU与主存速度不匹配问题
 - 选项分析:
 - 正确项B:提高CPU访问主存数据/指令的效率(根本目的)
 - 错误项辨析:
 - A/D: Cache不改变存储容量(主存几十GB vs Cache几十MB)
 - C: CPU无法直接访问外存

- o **易错提醒**:注意区分"提高效率"与"扩大容量"的本质区别
- 4. 虚拟存储器、磁盘 33:22
- 1) 虚拟存储器 33:25

- 4.虚拟存储器、磁盘
- 虚拟存储器由主存、辅存和软件组成。
- 磁力
 - ●存取时间: 寻道时间+旋转等待时间+数据传送时间
 - •寻道时间:将磁头定位至所要求的磁道上所需的时间
 - ●旋转等待时间: 寻道完成后至磁道上需要访问的信息 到达磁头下的时间,平均等待时间为磁盘旋转一周所需时间的一些
 - ●数据传送时间: 读取数据所需的时间

•

- 背景: 主存容量(8G/16G等)常不足以满足现代软件需求
- **实现原理**: 操作系统将辅存当作主存使用,但实际数据可能并未真正存入主存
- 组成要素: 主存+辅存+管理软件三者协作完成
- **用户视角**:操作系统向用户"虚拟"呈现程序和数据已存入主存的假象
- 核心目的: 解决主存容量不足的问题, 扩展可用内存空间
- 2) 磁盘 35:03
- 机械硬盘结构

1.2.2 存储系统

- 0
- o **盘片组件**: 多个盘片叠层组成,每个盘片有上下两个盘面
- 读写机构:
 - 移动臂带动磁头在盘面移动
 - 每个盘面对应独立磁头
- 数据组织:
 - 磁道: 盘面上的同心圆轨迹
 - 扇区:磁道上存储数据的最小单位(通常512B或4KB)
 - 柱面:不同盘面相同半径磁道组成的虚拟圆柱面
- 存取时间构成

- 4.虚拟存储器、磁盘
- 虚拟存储器由主存、辅存和软件组成。
- 磁盘:
 - ●存取时间: 寻道时间+旋转等待时间+数据传送时间
 - •寻道时间:将磁头定位至所要求的磁道上所需的时间
 - ●旋转等待时间: 寻道完成后至磁道上需要访问的信息

到达磁头下的时间, 平均等待时间为磁盘旋转一周所需时间的一

●数据传送时间: 读取数据所需的时间

0

- **寻道时间**:磁头移动到目标磁道所需时间(机械臂径向移动)
- o **旋转等待时间**:盘片旋转使目标扇区到达磁头下方的时间
 - 平均需旋转半周 $(t_{avg} = 1/2r, r)$ 下为转速)
 - 与转速成反比关系
- o 数据传输时间:实际读写数据的时间
- \circ 总时间公式: $T_{access} = T_{seek} + T_{rotation} + T_{transfer}$
- 3) 应用案例 42:31
- 例题:磁盘转速提高的影响

本节练习

- (13)若磁盘的转速提高一倍,则____。
 - A.平均存取时间减半
 - B.平均寻道时间加倍
 - C.旋转等待时间减半
 - D.数据传输速率加倍

2

本节练习

- (13)若磁盘的转速提高一倍,则____
 - A.平均存取时间减半
 - B.平均寻道时间加倍
 - C.旋转等待时间减半
 - D.数据传输速率加倍

2

● 题目解析

- \circ **关键分析**:转速r加倍直接影响旋转等待时间 $T_{rotation}$ = 1/2r
- 选项验证:
 - A: 平均存取时间包含不受转速影响的寻道时间
 - B: 寻道时间与机械臂移动速度相关, 与转速无关
 - C: 正确, 旋转等待时间与转速成反比
 - D: 传输速率取决于接口带宽,不受转速直接影响
- o 结论: 仅旋转等待时间减半 (选项C正确)

二、知识小结

一、和以小结	1.5.5.1.5.		I -n -> vu
知识点	核心内容	考试重点/易混	难度系数
		淆点	
存储系统层	计算机存储系统金字塔(寄存器	寄存器与Cache	**
次结构	→Cache→主存→磁盘/光盘/磁	的区别: 寄存器	
77.419	一带),速度由快到慢,成本由高	集成 于	
	到低	CPU,Cache分多	
		级(L1/L2/L3)	
存储器分类	- RAM(随机存取):SRAM(触	DRAM刷新机制	***
(RAM vs	发器存储,用于	vs SRAM 无需刷	
ROM)	Cache)、DRAM(电容器存储,	_ 新	
		 闪存特性 : 电擦	
	- ROM (只读):	除、块删除、非	
	PROM/EPROM/EPROM/闪存(U		
	A	<i>M</i>	
→ は <i>図 ナ し</i> 。		┸╟┸╢╖╫┇┸╧╌┺╼┸	
高速缓存(C	解决CPU与主存速度不匹配,基	地址映射方式对	***
ache)原理	于 局部性原理 (时间局部性:循	比	
	环变量复用; 空间局部性: 数组	- 全相连(冲突	
	连续访问)	小,硬件复杂)	
		- 直接映射(易	
		冲突, 硬件简	
		单)	
		' <i>'</i> - 组相连(折中	
		方案)	
净孙≠盆 唧			
虚拟存储器	通过软件+主存+辅存组合,解决	虚拟存储本质是	*
	主存容量不足 ,操作系统将辅存	 逻辑扩展 ,非物	
	"虚拟化"为主存	理扩容	
机械硬盘结	盘片→磁道→扇区(最小存储单	转速提高一倍→	***
构	位); 存取时间= 寻道时间+旋转	旋转等待时间减	
	等待时间(与转速相关)+数据	半	
	传输时间	· 柱面=同半径磁	
		道的虚拟集合	
		~ 17/25/7// 1	
左· 同元品 分为高频考			
点或易混淆			
概念。			