

Instrumentation de motos pour l'étude de comportement

Stéphane ESPIÉ, Bruno LARNAUDIE

Instrumentation de deux roues à moteur

Objectif : Mesurer les actions du conducteur lors de la conduite d'une moto

- Exemple de motos instrumentées
- Les capteurs utilisés pour l'instrumentation des motos
- L'architecture autour du BUS CAN (1 Mbits/s)
- Les outils de post-traitement CANVECTOR

Contraintes:

• Taille, poids, vibrations, consommation électrique

Variété de deux roues instrumentés

Yamaha MT07

Honda CBF1000

Scooter Peugeot

Kawazaki ER6

ZERO SR/F

Aprilia RSV4

05/10/2023

Université Paris Saclay - SATIE MOSS

Choix pour l'architecture d'instrumentation : « nœuds » sur BUS CAN

Instrumentation de l'angle guidon

Objectif : Mesure de la rotation de l'angle guidon

- Utilisation d'un capteur magnétique (AMS)
- Encombrement faible
- Bonne précision des mesures
- Carte électronique « maison » pour minimiser la taille prise par cette instrumentation

Mesure des angles

- (a) (b) (c) (d)
- Objectif : Mesure des angles de roulis, tangage, lacet
- Utilisation de 2 capteurs laser industriels pour calculer l'angle de roulis
- Utilisation d'IMU Xsens: 3 accéléromètres, 3 gyromètres, 3 magnétomètres + filtres et algorithme de positionnement dans l'espace
- Récupération des données issues du capteur d'inclinaison Bosch: 3 accéléromètres,
 2 gyromètres (nouvelles motos « haut de gamme » en sont équipées)

Mesure des tours de roues réalisés (distance parcourue)

Objectif : Mesure de la rotation des roues (distance parcourue et/ou vitesse de la moto)

- Utiliser les disques des capteurs ABS des motos pour la mesure de distance parcourue
- Pas de repiquage sur capteur existant pour une raison de sécurité
- Ajout de 2 capteurs à effet hall en quadrature pour augmenter la précision et obtenir le sens
- Fabrication de « disques ABS » lorsque c'est nécessaire

Mesure de la position absolue au sol (GPS)

Objectif: avoir un positionnement absolu sur une carte

- Utilisation de GPS RTK → enregistrements :
 - Des données de la Base positionnée en un point fixe connu
 - des données Rover sur les motos
- Synchronisation des données GPS sur le BUS CAN
 - Enregistrement de la position GPS non RTK
 - Enregistrement de l'heure GPS
- Travail en post-traitement pour obtenir des positions RTK et pour synchroniser les données grâce à l'heure GPS

Mesure de la posture du conducteur

Objectif : Mesure du positionnement du conducteur sur la moto (influence sur la trajectoire de la moto?)

- Mesure par centrales inertielles TEA
 - Positionnement sur le pilote : dos (2) tête (1) et moto (1)
 - Synchronisation des données
- Mesure par tapis de pression
 - Interactions du pilote avec la selle et le corps de la moto

Mesure des actions du pilote

Objectif: Mesurer l'action du pilote sur le guidon et les reposepieds

- Instrumentation les demi-guidons et des repose-pieds à l'aide de jauges de contraintes
- Enregistreur des signaux des jauges
 - Architecture FPGA + microcontrôleur avec écran
 - Faible bruit

Caméra d'action

Objectif : Voir les actions du pilote et les corréler avec les données

capteurs

Caméra d'action type Garmin ou Gopro

Synchronisation des images par heure GPS

Outils CAN VECTOR

Objectif : Enregistrer les données CAN des bus motos (si existant) et de notre instrumentation

- Enregistreur CAN (2 ou 4 voies)
- Tenir la cadence d'enregistrement
- Utilisation des databases pour l'export des données en Matlab
- Contrôle des données et recherche des valeurs de capteurs grâce à CANanalyser:
- 1. Fenêtre Trace pour une vue brute et données transformées
- 2. Graphic pour analyse de données
- 3. Statistiques des données (dont erreur de protocole CAN)
- 4. Data pour une visualisation des valeurs

Difficulté: Récupération des dataBases CAN des véhicules

Quelques résultats

- Contribution à la réalisation d'un gilet gonflable sans fil (Bering)
- Étude et modification épreuves permis « moto »
- Étude sur la remontée de file en 2RM
- Mise au point du simulateur moto
- •

Travaux réalisés et/ou utilisés dans le cadre des projets :

- ANR (SUMOTORI, SIMACOM, DAMOTO, VIROLO++, SIM2CO, eMC2),
- Européens (2BeSafe, Drive2TheFuture, SimuSafe),
- DSR (CSC, CSC Scoot, 2RLS)

Merci à tous les gens qui ont collaboré sur ces instrumentations moto dont notamment:

Samir BOUAZIZ
Abderrahmane BOUBEZOUL
Flavien DELGEHIER
Stéphane ESPIÉ
Bruno LARNAUDIE
Pauline MICHEL
Sergio RODRIGUEZ
Bastien VINCKE

Des questions?

	GPS RTK LC	GPS RTK	GPS LC	IMU HG	IMU LC	IMU Moto	IMU Hgw	Lasers	Hall encoder	Angular sensor	Camera 360	Camera	Strain gauge	Pressure matrix
Latitude	10	25	5								10			
Longitude	10	25	5								10			
Altitude	10	25	5								10			
Yaw	10		5	100			128				10			
Steering angle										500				
Acceleration X	100			100	100	200					250			
Acceleration Y	100			100	100	200					250			
Acceleration Z	100			100	100	200					250			
Rotation Speed X	100			100	100	200					250			
Rotation Speed Y	100			100	100						250			
Rotation Speed Z	100			100	100	200					250			
Magnetic field X	25			100	100						250			
Magnetic field Y	25			100	100						250			
Magnetic field Z	25			100	100						250			
Roll				100			128	100						
Pitch				100			128							
Speed	10		5						500		10			
Pressure right bracket													250	
Pressure left bracket													250	
Pressure footrest													250	
Pressure seat														10
Pressure tank														10
Front image											24	200		
360° image											24			