学院		班	年级	学号	姓名	A 卷 共三页 第1页
	2008~2009 学年第	一学期期末考试试卷		5. 若用线性最小二乘	族法拟合数学模型 $y = \frac{t}{at + b}$,其	中 a, b 是待定参数,那么如何将其线性化:
		atlab》(A 卷 共三页) 08 年 12 月 30 日)		$y^{-1} = a + bt^{-1}, 2u$	$u = y^{-1}, x = t^{-1}, \underline{H} u = a + bx \underline{*}$	<u></u> 。 <u> 拟合</u>
	(- 3 m/u jinj. 200	уо — 12 / ј 30 Д /		6. 利用三点 Gauss-Lego	endre 求积公式计算积分 $\int_{1}^{2} x e^{-x}$	dx 的數值计算公式为
	題 号 一 二 得 分	三 成 绩 核分人签	学	$\frac{1}{2} \left[\frac{5}{9} \left(-\frac{1}{2} \sqrt{\frac{3}{5}} + \frac{3}{2} \right) \right]$	$e^{\frac{-\sqrt{\frac{3}{2}}+3}{2}} + \frac{8}{9} \left(\frac{3}{2}e^{\frac{-3}{2}}\right) + \frac{5}{9} \left(\frac{1}{2}\sqrt{\frac{1}{2}}\right)$	$\left[\frac{3}{5} + \frac{3}{2}\right)e^{-\frac{\sqrt{3}}{5}t^3}$
		V		7.在科学与工程计算	中,常常使用分段低次插值,这	是为了避免。
	题: (共 42 分,每空 3 分)按要 学与工程计算中,不可避免地要;			8.设 $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$= \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbb{M} cond_{\infty}(A) = \underline{3} $	(写出精确值)。当 b 有误差 $\delta b = \begin{pmatrix} \varepsilon^2 \\ \varepsilon \end{pmatrix}$
理的误差	是 	。舍 <i>)</i> ————————————————————————————————————	人与截断误差	时,其中 $0,$	引起解向量 x 的为误差 δx ,则	$\frac{\ \delta x\ _{\infty}}{\ x\ _{\infty}}$ 的上界为 <u>3</u> ϵ 。
	函数 y = f(x) 的三对数据(0 2]= , 过此三点的 Lagran		训二阶差商	二、解下列各题:	(共36分,每小题9分)	
	z j =,		。 7和18.1741。	1. 确定下列求积公式中	中的待定参数,使其代数精度尽量 $\int_{-1}^{1} f(x) \mathrm{d} x \approx A_0 f(-1)$	\hat{t} 高,并指出所确定的求积公式的代数精度。 (\hat{t})
若用三点	i数值微分公式计算,则在 x = 2. ^x 和({f	7 处的函数一阶和二阶导数的证 呆留 5 位有效数字)。	丘似值分别为	解: 分别取 <i>f</i> (x) = 1, x	7.x ² 代入上面的积分公式使之准。	
4. 建立常	常微分方程初值问题 y'(x) = f(x,	y),y(x ₀) = y ₀ 的计算格式有三	种基本方法,	$2 = A_0 + A_1$ 得到: $0 = -A_0 + A_1 x_1$		(3分)
它们是_			Euler 公式为	$\frac{2}{3} = A_0 + A_1 x_1^2$		
	,它是	阶方法。		解得: $x_1 = \frac{1}{3}, A_0 = \frac{1}{2}$	$,A_{1}=\frac{3}{2}.$	(3分)

将 $f(x) = x^3$ 代入上面的积分公式,左边等于 0,而右边等于 -4/9,积分公式不准确成立,所以

(3分)

代数精度为2。

年级 学号

姓名

A 卷 共三页 第2页

2.写出用 Gauss-Seidel 迭代法求解线性代数方程组 $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 的迭代格式,并判断它

的敛散性。

解: Gauss-Seidel 迭代格式的分量形式

$$\begin{split} x_1^{(k+1)} &= 1 - 2x_2^{(k)} + 2x_3^{(k)} \\ x_2^{(k+1)} &= 1 - x_1^{(k+1)} - x_3^{(k)} \\ x_3^{(k+1)} &= 1 - 2x_1^{(k+1)} - 2x_2^{(k+1)} \end{split} \tag{5 $\frac{h}{h}$})$$

其迭代矩阵为

$$\mathbf{B}_{GS} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 2 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix} (7 \frac{1}{12})$$

其特征方程为

$$\det(\lambda \mathbf{I} - \mathbf{B}_{GS}) = \det\begin{bmatrix} \lambda & 2 & -2 \\ 0 & \lambda - 2 & 3 \\ 0 & 0 & \lambda - 2 \end{bmatrix} = \lambda (\lambda - 2)^2 = 0$$

故特征值 $\lambda_1=0$, $\lambda_2=\lambda_3=2$ 其谱半径 $ho(\mathbf{B}_{GS})=2$,所以 Gauss-Seidel 迭代法发散。(9 分)

3. 已知函数 f(x) 在 x=0,1,2,3 处的数值分别为 1,3,5,12。试用 3 次 Newton 插值公式计算 f(0.5)

和 f(2.5) 的近似值。

解: 因为是等距节点(步长 h = 1), 所以先构造差分表如下:

X	f(x)	一阶差分	二阶差分	三阶差分
0	1			
1	3	2		
2	5	2	0	
3	12	7	5	5

由于x=0.5介于0与1之间(在表头),故取 $x_0=0$ 。此时 $t=(x-x_0)/h=0.5$,利用三次 Newton

$$N_3(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 f_0$$

$$f(0.5) \approx N_3(0.5) = 1 + 0.5 \times 2 + \frac{1}{2} \times 0.5 \times (0.5 - 1) \times 0 + \frac{1}{6} \times 0.5 \times (0.5 - 1)(0.5 - 2) \times 5$$

$$= 2.3125$$

由于 x = 2.5 介于 2 与 3 之间 (在表末),故取 $x_3 = 0$ 。此时 $t = (x - x_3)/h = -0.5$,利用三次 Newton

后插公式有:

$$N_{3}(x_{3}+th) = f_{3}+t\nabla f_{3} + \frac{t(t+1)}{2!}\nabla^{2}f_{3} + \frac{t(t+1)(t+2)}{3!}\nabla^{3}f_{3}$$

$$f(2.5) \approx N_{3}(2.5) = 12 + (-0.5) \times 7 + \frac{(-0.5) \times (-0.5+1)}{2} \times 5 + \frac{(-0.5) \times (-0.5+1) \times (-0.5+2)}{3!} \times 5$$

$$= 12 - 3.5 - \frac{0.5 \times 0.5}{2} \times 5 - \frac{0.5 \times 0.5 \times 1.5}{6} \times 5$$

$$= 7.5625$$

4.用 \mathbf{n} =4 的复化 Simpson 公式计算积分 $\int_{1}^{9} \sqrt{x} \ dx$ 的近似值;与真值比较它有几位有效数字。

解: 依题意将区间[1,9]四等分, h=2, 节点为 $x_k=x_0+kh=1+2k$, k=0,1,2,3,4. 由复化

Simpson 公式,得

$$S_{4} = \frac{h}{6} \left[f(a) + 4 \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(b) \right]$$

$$= \frac{1}{3} \left[f(1) + 4 \sum_{k=0}^{3} f(2k+2) + 2 \sum_{k=1}^{3} f(2k+1) + f(9) \right]$$

$$= \frac{1}{18} \left[\sqrt{1} + 4 \left(\sqrt{2} + \sqrt{4} + \sqrt{6} \right) + 2 \left(\sqrt{3} + \sqrt{5} + \sqrt{7} \right) + \sqrt{9} \right] \approx 17.332087$$

$$(7 \frac{1}{12})$$

其真值为
$$\int_{1}^{9} \sqrt{x} \, dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_{x=1}^{x=0} = \frac{2}{3} \left(9^{\frac{3}{2}} - 1 \right) = \frac{52}{3} = 17.3$$

绝对误差满足: $|17.332087-17.3| \le 0.00125=0.125\times10^2=0.125\times10^{24}$,

根据有效数字的定义,知近似值有 4 位有效数字。 (9 分)

前插公式有:

三、 应用题: (共 22 分,每小题 11 分)

1.已知离散数据如下:

Xk	0.1	0.2	0.3	0.4	0.5
Уk	80.4	53.9	36.1	24.2	16.2

试用最小二乘法求出经验公式 $v = a e^{-bx}$ 中的a, b。(结果保留 3 位小数)

解: 对 $y=ae^{-ba}$ 两边取自然对数,得 $\ln y=\ln a-bx$ 。令 $u=\ln y$, $a_0=\ln a$ 和 $a_1=-b$,则知原

问题等价于在空间 $span\{1, x\}$ 中求拟合函数 $u(x) = a_0 + a_1 x$ 。

Xk	0.1	0.2	0.3	0.4	0.5
u_k	4.38701	3.98713	3.58629	3.18635	2.78501

此时 n=1, m=4, 权函数 $\omega(x) \equiv 1$, $\varphi_0(x) = 1$, $\varphi_1(x) = x$ 。则拟合函数中的系数 a_0 和 a_1 满足正规方

程组:

$$\begin{pmatrix} (\varphi_0, \varphi_0) & (\varphi_1, \varphi_0) \\ (\varphi_0, \varphi_1) & (\varphi_1, \varphi_1) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} (u, \varphi_0) \\ (u, \varphi_1) \end{pmatrix} \circ (7 \frac{1}{27})$$

$$(\varphi_0, \varphi_0) = \sum_{i=0}^4 1 = 5,$$
 $(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = \sum_{i=0}^4 x_i = 1.5,$

$$(\varphi_1, \varphi_1) = \sum_{i=0}^{3} x_i^2 = 0.55$$
, $(u, \varphi_0) = \sum_{i=0}^{3} u_i = 17.9318 \, \text{FM}(u, \varphi_1) = \sum_{i=0}^{3} u_i x_i = 4.97906$

故有
$$\begin{cases} 5a_0 + 1.5a_1 = 17.9318 \\ 1.5a_0 + 0.55a_1 = 4.97906 \end{cases}$$
 (10 分)

解得 a0= 4.7878, a1= -4.0048,

曲此 $a = \exp(a_0) \approx 120.0370$, $b = -a_1 = 4.0048$,

所以最小二乘解为 $y = 120.037e^{4.0048x}$ 。(11 分)

2. 隧道二极管电路的状态模型由下式给出:

$$\dot{x}_1 = 0.5[-h(x_1) + x_2]$$

 $\dot{x}_2 = 0.2[-x_1 - 1.5x_2 + 1.2]$

其中 $\dot{x}_k, k=1,2$ 表示 x_k 对时间t的导数,该系统的右边项不显含时间t,称之为自治系统, $h(x_1)$ 是

一给定函数。初始条件取 x0=[1,0]。写出用经典四阶 Runge-Kutta 方法解此初值问题的计算格式。解:

记
$$x_n = \begin{pmatrix} x_{1,n} \\ x_{2,n} \end{pmatrix}$$
 为 精 确 解 $x(t_n) = \begin{pmatrix} x_1(t_n) \\ x_2(t_n) \end{pmatrix}$ 的 数 值 近 似 , t_n 为 节 点 。 设

由标准四阶 Runge-Kutta 公式,得

$$x_{n+1} = x_n + \frac{\delta t}{6} (K_1 + 2K_2 + 2K_3 + K_4),$$

$$\begin{pmatrix} x_{1,n+1} \\ x_{2,n+1} \end{pmatrix} = \begin{pmatrix} x_{1,n} \\ x_{2,n} \end{pmatrix} + \frac{\delta t}{6} \begin{pmatrix} k_{1,1} \\ k_{2,1} \end{pmatrix} + 2 \begin{pmatrix} k_{1,2} \\ k_{2,2} \end{pmatrix} + 2 \begin{pmatrix} k_{1,3} \\ k_{2,3} \end{pmatrix} + \begin{pmatrix} k_{1,4} \\ k_{2,4} \end{pmatrix}$$

$$K_1 = \begin{pmatrix} k_{11} \\ k_{21} \end{pmatrix} = f(t_n, x_n) = \begin{bmatrix} 0.5(-h(x_{1,n}) + x_{2,n}) \\ 0.2(-x_{1,n} - Rx_{2,n} + 1.2) \end{bmatrix},$$

$$K_{2} = \begin{pmatrix} k_{1,2} \\ k_{2,2} \end{pmatrix} = f(t_{n} + \frac{\delta t}{2}, x_{n} + \frac{\delta t}{2}K_{1}) = \begin{bmatrix} 0.5 \left(-h \left(x_{1,n} + \frac{\delta t}{2} k_{1,1} \right) + x_{2,n} + \frac{\delta t}{2} k_{2,1} \right) \\ 0.2 \left(-\left(x_{1,n} + \frac{\delta t}{2} k_{1,1} \right) - R \left(x_{2,n} + \frac{\delta t}{2} k_{2,1} \right) + u \right) \end{bmatrix},$$

$$K_{3} = \begin{pmatrix} k_{1,3} \\ k_{2,3} \end{pmatrix} = f(t_{n} + \frac{\delta t}{2}, x_{n} + \frac{\delta t}{2}K_{2}) = \begin{bmatrix} 0.5 \left(-h \left(x_{1,n} + \frac{\delta t}{2} k_{1,2} \right) + x_{2,n} + \frac{\delta t}{2} k_{2,2} \right) \\ 0.2 \left(-\left(x_{1,n} + \frac{\delta t}{2} k_{1,2} \right) - R \left(x_{2,n} + \frac{\delta t}{2} k_{2,2} \right) + 1.2 \right) \end{bmatrix},$$

$$K_4 = \begin{pmatrix} k_{1,4} \\ k_{2,4} \end{pmatrix} = f(t_n + \delta t, x_n + \delta t \cdot K_3) = \begin{bmatrix} 0.5 \left(-h(x_{1,n} + \delta t \cdot k_{1,3}) + (x_{2,n} + \delta t \cdot k_{2,3}) \right) \\ 0.2 \left(-(x_{1,n} + \delta t \cdot k_{1,3}) - R(x_{2,n} + \delta t \cdot k_{2,3}) + u \right) \end{bmatrix}.$$

学院 专业

班

年级 学号

姓名

共 页 第 页

$$x_{1,n+1} = x_{1,n} + \frac{\delta t}{6} (k_{1,1} + 2k_{1,2} + 2k_{1,3} + k_{1,4}),$$

$$x_{2,n+1} = x_{2,n} + \frac{\delta t}{6} (k_{2,1} + 2k_{2,2} + 2k_{2,3} + k_{2,4}),$$

$$k_{1,1} = 0.5(-h(x_{1,n}) + x_{2,n}), k_{2,1} = 0.2(-x_{1,n} - Rx_{2,n} + 1.2)$$

$$k_{1,2} = 0.5 \left(-h \left(x_{1,n} + \frac{\delta t}{2} k_{1,1} \right) + x_{2,n} + \frac{\delta t}{2} k_{2,1} \right),$$

$$k_{2,2} = 0.2 \left(-\left(x_{1,n} + \frac{\delta t}{2} k_{1,1}\right) - R\left(x_{2,n} + \frac{\delta t}{2} k_{2,1}\right) + 1.2 \right),$$

$$k_{1,3} = 0.5 \left(-h \left(x_{1,n} + \frac{\delta t}{2} k_{1,2} \right) + x_{2,n} + \frac{\delta t}{2} k_{2,2} \right),$$

$$k_{2,3} = 0.2 \left(-\left(x_{1,n} + \frac{\delta t}{2}k_{1,2}\right) - R\left(x_{2,n} + \frac{\delta t}{2}k_{2,2}\right) + 1.2 \right),$$

$$k_{1,4} = 0.5(-h(x_{1,n} + \delta t \cdot k_{1,3}) + (x_{2,n} + \delta t \cdot k_{2,3})),$$

$$k_{2,4} = 0.2 \left(-(x_{1,n} + \delta t \cdot k_{1,3}) - R(x_{2,n} + \delta t \cdot k_{2,3}) + 1.2 \right).$$

将初值 x_0 , n=0 代入上面各式,可依次计算出函数 x_1 和 x_2 的数值解 $x_{1,n},x_{2,n},$ n=1,2,3,...。

(11分)