Database Management Systems

March 18, 2025

1 ERD

1.1 Thực thể (Entity)

- Thực thể
- Thực thể yếu (Weak)

1.2 Thuộc tính (Attribute)

- Đơn trị
- Đa trị
- Kết hợp
- Suy diễn
- Khoá chính

1.3 Mối quan hệ (Relationship)

- 1-1
- 1-n
- n-n
- Vòng

2 RDM

2.1 Thành phần

- Lược đồ quan hệ (Schema Relational)
- Thuộc tính (Attributes)
- Miền giá trị (Domain)
- Bộ (Tuples)
- Lược đồ CSDL (Schema DBMS)
- Mô hình dữ liệu quan hệ (RDM)

2.2 Ký hiệu

$$R(A1, A2, \dots, An)$$

$$DOM(A)$$
 or $MGT(A)$

$$t[A]$$
 or $t.A$

3 ERD to RDM

3.1 Mối quan hệ

IDEA: Lấy khoá của Rx làm khoá chính Ry

3.1.1 1-1

Đối xứng.

3.1.2 1-n

Khoá chính bên **nhiều** đặt làm khoá ngoại bên **ít**.

3.1.3 n-n

R(< Khoá ngoại 1>,< Khoá ngoại $2>,\ldots,<$ Thuộc tính của quan hệ (nếu có) $>,\ldots)$

3.2 Thực thể yếu

R(<key chính của entity phụ thuộc vào >, A1, A2, ...)

3.3 Thuộc tính đa trị

$$R(< \text{Key chính của Tuple} >, A1, A2, ...)$$

3.4 Liên kết đa ngôi

 $R(< KEY1>, < KEY2>, < KEY3>, \dots, <$ Thuộc tính của quan hệ (nếu có) >, ...)

4 Relational Algebra

4.1 Tính khả hợp (Union compatibility)

$$R(A_1, A_2, \dots, A_n)S(B_1, B_2, \dots, B_n)$$

- Cùng bậc n (n attribute).
- $DOM(A_i) = DOM(B_i) \quad \forall i \in \overline{1, n}$

4.2 Phép toán

4.2.1 Phép giao

- Tập hợp: \cap
- Mệnh đề: ∧

4.2.2 Phép hợp

- Tập hợp: \cup
- Mệnh đề: ∨

4.2.3 Phép trừ

• Tập hợp, mệnh đề: —

4.2.4 Phép chọn

$$\sigma_p(R)$$

- p: Điều kiện (Mệnh đề \leftarrow Phép giao hợp trừ).
- Có tính giao hoán.

4.2.5 Phép chiếu

$$\pi_{A_1,A_2,\dots,A_k}(R)$$

- Trong quá trình chiếu loại bỏ bộ (tuples) trùng nhau. $\left(t[\pi_{A_1,A_2,\dots,A_k}(R)] \leq t[R]\right)$
- Không có tính giao hoán.

4.2.6 Phép gán

 \leftarrow

• VD: $S \leftarrow \sigma_p(R), S \leftarrow \pi_{A_1, A_2, \dots, A_n}(R)$.

4.2.7 Phép đổi tên

 $\rho_S(R)$

- R: Quan hệ, với R(B, C, D).
- S: Tên thay thế cho R.
- $R(B,C,D) \rightarrow S(B,C,D)$.

 $\rho_{X,C,D}(R)$

• $R(B,C,D) \rightarrow R(X,C,D)$.

 $\rho_{S(X,C,D)}(R)$

• $R(B,C,D) \rightarrow S(X,C,D)$.

4.3 Cách thực hiện phép toán

4.3.1 Lồng

$$\sigma_p(\pi_{A_1,A_2,\dots,A_k}(\sigma_p(R)))$$

4.3.2 Thực hiện từng bước

B1: $R2 \leftarrow \sigma_p(R1)$

B2: $R3 \leftarrow \pi_{A_1,A_2,\dots,A_k}(R2)$

:

B $_n$