Reproducción de Durlauf y Johnson (1995)

Ignacio Sarmiento-Barbieri

4/20/2022

Introduccion

Durlauf y Johnson (1995) investigan el crecimiento través de paises usando el modelo de crecimiento de Solow extendido de MRW (1992)

Modelo

Parten asumiendo que el producto agregado del pais i en el periodo t, Y_{it} sigue una función Cobb Douglas

$$Y_{it} = \phi K_{it}^{\alpha} H_{it}^{\gamma} (A_t L_{it}^{1-\alpha-\gamma}) \tag{1}$$

Las ecuaciones de acumulación de capital son:

$$\frac{dK_{it}}{dt} = s_i^k Y_{it} - \delta K_{it} \tag{2}$$

$$\frac{dH_{it}}{dt} = s_i^h Y_{it} - \delta H_{it} \tag{3}$$

Esto implica que el cambio de producto entre T y $T+\tau$ por trabajador esta dado por

$$\ln\left(\frac{Y}{L}\right)_{iT+\tau} - \ln\left(\frac{Y}{L}\right)_{iT} = \xi + \beta \ln\left(\frac{Y}{L}\right)_{iT} + \Pi X_i + \epsilon_i \tag{4}$$

donde $X_i = (\ln(s_i^h), \ln(s_i^k), \ln(n_i + g + \delta))$. (g es la tasa de crecimiento de la tecnología, δ la tasa de depreciación de K, n tasa de crecimiento de L)

Data

Las variables en la regression son:

- GDP per member of working-age population, Y/L (separately for 1960 and 1985);
- fraction of real GDP devoted to investment, I/Y (annual average 1960–1985);
- growth rate of working-age population, n (annual average 1960–1985);

- fraction of working-age population enrolled in secondary school, SCHOOL (annual average 1960–1985);
- the adult literacy rate, LR in 1960.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

NUMBER 121 61.000 35.074 1 31 91 121

NONOIL 121 0.810 0.394 0 1 1 1 INTER 121 0.620 0.487 0 0 1 1

OECD 121 0.182 0.387 0 0 0 1

 $\begin{array}{l} {\rm GDP60\ 116\ 3,681.819\ 7,492.878\ 383.000\ 973.250\ 4,274.500\ 77,881.000\ GDP85\ 108\ 5,683.259\ 5,688.671\ 412.000\ 1,209.250\ 7,718.750\ 25,635.000\ GDPGRO\ 117\ 4.094\ 1.891\ -0.900\ 2.800\ 5.300\ 9.200} \end{array}$

 ${\bf POPGRO~107~2.279~0.999~0.300~1.700~2.900~6.800}$

IONY 121 18.157 7.853 4.100 12.000 24.100 36.900

 ${\tt SCHOOL~118~5.526~3.532~0.400~2.400~8.175~12.100}$

LIT60 103 48.165 35.354 1.000 15.000 83.500 100.000

Gdp60 tiene media 3,681 y varianza..

Regressions

Table II. Cross-section regressions: initial output and literacy-based sample breaks: dependent variable: $\ln(Y/L)_{i.1985} - \ln(Y/L)_{i.1960}$

	M-R-W	$(Y/L)_{i,1960} < 1950$ and $LR_{i,1960} < 54\%$	$1950 \le (Y/L)_{i,1960}$ and $54\% \le LR_{i,1960}$	
Observations	98	42	42	
		Unconstrained regression	ns	
Constant	3·04ª	1.40	0.450	
	(0.831)	(1.85)	(0.723)	
$ln(Y/L)_{i,1960}$	-0.289^a	-0.444^{a}	-0.434a	
. , , , , , , , , , , , , , , , , , , ,	(0.062)	(0.157)	(0.085)	
$ln(I/Y)_i$	0.524a	0.310a	0.689a	
. , , ,	(0.087)	(0.114)	(0.170)	
$\ln(n+g+\delta)_i$	-0.505	-0.379	-0.545	
0 7	(0.288)	(0.468)	(0.283)	
$ln(SCHOOL)_i$	0.233°a	0.209 ^a	0.114	
\(\frac{1}{2} = \frac{1}{2} \)	(0.060)	(0.094)	(0.164)	
$ar{R}^2$	0.46	0.27	0.48	
σ_{ϵ}	0.33	0.34	0.30	
	Constrained regressions			
Θ	$-2.56^{a,b}$	2.29	-0.395	
	(1.14)	(1.17)	(1.24)	
α	0.431a	0.275ª	0.509ª	
	(0.061)	(0.097)	(0.098)	
γ	0.241a	0.217ª	0.108	
•	(0.046)	(0.061)	(0.094)	
\overline{R}^2	0.42	0.28	0.50	
σ_{ϵ}	0.34	0.34	0.29	
-				

^a Significance at asymptotic 5% level.

^b This equation has been reestimated under the restriction $\lambda_i = (1 - \alpha - \gamma)(n_i + g + \delta)$, where λ_i is the rate of convergence toward the steady state. This restriction was not imposed by M-R-W. Their estimates are constant = 2.46 (0.48); $\alpha = 0.48$ (0.07); $\gamma = 0.23$ (0.05); $\overline{R}^2 = 0.46$; and $\sigma_{\epsilon} = 0.33$.

Warning in log(DJ\$GDPGRO): NaNs produced

Table 1: Reproducción Table II

	Dependent variable: I(log(GDP85) - log(GDP60))			
	(1)	(2)	(3)	
Constant	3.022	1.400	0.450	
	$(0.827)^{***}$	(1.846)	(0.723)	
log(GDP60)	-0.288	-0.444	-0.435	
- ,	$(0.062)^{***}$	$(0.157)^{***}$	$(0.085)^{***}$	
$\log(IONY/100)$	0.524	, ,	,	
, ,	$(0.087)^{***}$			
log(IONY)	,	0.310	0.689	
J()		$(0.114)^{**}$	$(0.170)^{***}$	
log(POPGRO + 0.05)	-0.506	-0.379	-0.545	
,	$(0.289)^*$	(0.468)	(0.283)	
$\log(SCHOOL/100)$	0.231	, ,	,	
0(, ,	$(0.059)^{***}$			
log(SCHOOL)	,	0.209	0.114	
		$(0.094)^{**}$	(0.164)	
Observations	98	42	42	
R^2	0.485	0.345	0.527	
Adjusted R ²	0.463	0.275	0.476	
Residual Std. Error	0.327 (df = 93)	0.341 (df = 37)	0.295 (df = 37)	

Note:

p<0.1; **p<0.05; ***p<0.01