Постановка

Студенты готовят посвят для первокурсников. У них имеется k видов алкогольной продукции, каждый вид характеризуется концентрацией спирта $a_i/1000$. На праздник студенты решили приготовить коктель "Бомба"концентрацией алкоголя ровно n/1000. Они хотят, чтобы в "Бомбе"было целое число литров алкоголя каждого вида (алкогольной продукции некоторых видов может и вовсе не быть в коктеле). Кроме того, они хотят минимизировать общий объем алкоголя в "Бомбе".

Концентрацией спирта в алкоголе называется отношение объема спирта к общему объему напитка. При смешивании объем спирта в напитке равен суммарному объему спирта в смешиваемых компонентах; объем напитка также равен сумме объемов напитка в смешиваемых компонентах.

Найдите минимальное натуральное количество литров алкоголя, необходимое для получения "Бомбы" с концентрацией спирта ровно n/1000.

Входные данные

В первой строке входных данных содержится число $n, 0 \le n \le 1000$.

В следующей строке содержится k чисел $a_1..a_k$, $0 \le a_i \le 1000$

Выходные данные

Выведите минимальное натуральное количество литров алкоголя, необходимое для получения "Бомбы" с концентрацией спирта ровно n/1000, или -1, если это сделать невозможно.

Пример 1

Входные данные	Выходные данные
400	3
300 100 550 600	

Входные данные	Выходные данные
50 125 25	4

Постановка

Диме дана последовательность чисел $a_1...a_n$. Учитель сказал зачеркнуть число a_i и найти подпоследовательность с максимальной суммой, не содержащую ни одного зачёркнутого числа. Сумму чисел в пустой подпоследовательности считать равной 0. После повторять действия пока не будут зачеркнуты все числа. Помогите Диме выполнить задание учителя.

Входные данные

В первой строке записаны n чисел $a_1...a_n$. $0 \le n \le 100000$, $0 \le a_i \le 10^9$

Во второй строчке записано последовательность в которой зачеркиваются числа.

Выходные данные

Выведите n чисел каждое из которых - максимальная сумма на подпоследовательности, после выполнения очередного действия.

Пример 1

Входные данные	Выходные данные
1 3 2 5	5 4 3 0
3 4 1 2	0 4 0 0

Входные данные	Выходные данные
1 2 3 4 5	6 5 5 1 0
4 2 3 5 1	0 0 0 1 0

Постановка

На доске нарисованы точки. Стоимость соединения двух точек равняется Манхэттенскому расстоянию между ними. Найдите минимальную стоимость соединения всех точек.

Входные данные

nстрок содержащих два числа x и y - координаты точки. $0 \le n \le 1000, -10^6 \le x \le 10^6, -10^6 \le y \le 10^6.$

Выходные данные

Выведите минимальную стоимость соединения всех точек

Пример 1

Входные данные	Выходные данные
0 0	
2 2	
3 10	20
5 2	
7 0	

Пример 2

Входные данные	Выходные данные
3 12	
-2 5	18
-4 1	

Входные данные	Выходные данные
0 0	0

Постановка

Дана последовательность точек на плоскости. Значения отсортированы по координате x. Так же дано целое число k. Найдите максимальное значение выражения $y_i + y_j + |x_i - x_j|$, при условии что $|x_i - x_j| \le k$. Гарантируется, что существует хотя бы одна пара точек, удовлетворяющая ограничению.

Входные данные

```
nстрок содержащих два числа x и y - координаты точки. 2 \le n \le 10^5, -10^8 \le x \le 10^8, -10^8 \le y \le 10^8, \ 0 \le k \le 10^8
```

Выходные данные

Выведите максимальное значение выражения.

Пример 1

Входные данные	Выходные данные
1 3	
2 0	1
5 10	
6 -10	

Входные данные	Выходные данные
0 0	
0 3	3
9 2	

Постановка

В стране Турляндии n городов и m двунаправленных дорог. Все междугородние дороги платные. Также в Турляндии есть интересная особенность, нельзя останавливаться в первом по пути городе. Это означает, что нужно проехать из города x в город y и не останавливаясь в нем поехать в город z. Цена такой поездки будет равняться $(w_{xy}+w_{yz})^2$, где w_{xy} - цена проезда между городами x и y, w_{yz} - цена проезда между городами y и z. Для каждого города найдите, можно ли добраться до него из города 1, и какое наименьшее количество денег необходимо потратить на такой путь.

Входные данные

В первой строке находятся два целых числа n - количество городов, m - количество дорог.

В следующих m строках находятся по три целых числа x и y - номера городов , w_{xy} - цена проезда между городами. Гарантируется что если есть строка x y w_{xy} то не будет строки y x w_{yx} .

```
2 \le n \le 10^5

1 \le m \le min((n^2 - n)/2; 2 * 10^5)

-10^8 \le y \le 10^8

0 \le k \le 10^8

1 \le w_{xy} \le 50
```

Выходные данные

Для каждого города выведите одно целое число. Если нет корректного пути из 1 города выведите -1. Иначе выведите минимальное необходимое количество денег, чтобы добраться из 1 города.

Пример 1

Входные данные	Выходные данные
5 6	
1 2 3	
2 3 4	
3 4 5	0 98 49 25 114
4 5 6	
1 5 1	
2 4 2	

Входные данные	Выходные данные
3 2	
1 2 1	0 -1 9
2 3 2	