Music Genre Classification

Wesam Alsohle

Frame the problem and look at the big picture.

CONTENTS

Explore the data to gain insights.

O3 Prepare the data.

Train different models

CONTENTS

Fine tune the model

Evaluation and solution.

Frame the problem and look at the big picture

The main aim of this problem is to predict Genre of the track. This problem comes under supervised Machine Learning C I a s s i f i c a t i o n .

Explore the data to gain insights

Data Description

This classic dataset contains the Genre of the track and other attributes of almost 14,000 tracks. It's a great dataset to work with data analysis and visualization.

Features

artist: Name of the Artist.

song: Name of the Track.

popularity: popular the song.

danceability: how suitable a track is for dancing

energy: measure of intensity and activity.

key: The key of the track.

loudness: loudness of a track in (dB).

mode: Mode (major or minor) of a track.

speechiness: presence of spoken words in a track.

acousticness: A confidence measure of the track.

instrumentalness: Predicts a track contains no vocals.

liveness: Higher liveness values represent an increased

probability that the track was performed live.

valence: describing the musical positiveness

tempo: the speed or pace of a given piece and derives

directly from the average beat duration.

duration in milliseconds: Time of the song

time_signature : how many beats (pulses).

Target

Class Genre of the track

df.describe()

	Id	Popularity	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration_in min/ms	time_signature	Class
count	14396.000000	14063.000000	14396.000000	14396.000000	12787.000000	14396.000000	14396.000000	14396.000000	14396.000000	10855.000000	14396.000000	14396.000000	14396.000000	1.439600e+04	14396.000000	14396.000000
mean	7198.500000	44.525208	0.543105	0.662422	5.953781	-7.900852	0.640247	0.080181	0.246746	0.178129	0.195782	0.486379	122.695372	2.000942e+05	3.924354	6.695679
std	4155.911573	17.418940	0.165517	0.235967	3.200013	4.057362	0.479944	0.085157	0.310922	0.304266	0.159258	0.239476	29.538490	1.116891e+05	0.359520	3.206170
min	1.000000	1.000000	0.059600	0.001210	1.000000	-39.952000	0.000000	0.022500	0.000000	0.000001	0.011900	0.021500	30.557000	5.016500e-01	1.000000	0.000000
25%	3599.750000	33.000000	0.432000	0.508000	3.000000	-9.538000	0.000000	0.034800	0.004280	0.000088	0.097275	0.299000	99.799000	1.654458e+05	4.000000	5.000000
50%	7198.500000	44.000000	0.545000	0.699000	6.000000	-7.013500	1.000000	0.047100	0.081450	0.003920	0.129000	0.480500	120.060000	2.089410e+05	4.000000	8.000000
75%	10797.250000	56.000000	0.658000	0.861000	9.000000	-5.162000	1.000000	0.083100	0.432250	0.201000	0.256000	0.672000	141.988250	2.522470e+05	4.000000	10.000000
max	14396.000000	100.000000	0.989000	1.000000	11.000000	1.342000	1.000000	0.955000	0.996000	0.996000	0.992000	0.986000	217.416000	1.477187e+06	5.000000	10.000000

df.duplicated().any()

False

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14396 entries, 0 to 14395 Data columns (total 18 columns): Column Non-Null Count Ιd 14396 non-null int64 14396 non-null object Artist Name Track Name 14396 non-null object Popularity 14063 non-null float64 danceability 14396 non-null float64 14396 non-null float64 energy 12787 non-null float64 key loudness 14396 non-null float64 mode 14396 non-null int64 speechiness 14396 non-null float64 acousticness 14396 non-null float64 11 instrumentalness 10855 non-null float64 12 liveness 14396 non-null float64 valence 14396 non-null float64 13 tempo 14396 non-null float64 duration_in min/ms 14396 non-null float64 16 time_signature 14396 non-null int64 17 Class 14396 non-null int64 dtypes: float64(12), int64(4), object(2)

df.info()

memory usage: 2.0+ MB

	data_type	missing_val	missing_val_ratio
ld	int64	0	0
Artist Name	object	0	0
Track Name	object	0	0
Popularity	float64	333	2
danceability	float64	0	0
energy	float64	0	0
key	float64	1609	11
loudness	float64	0	0
mode	int64	0	0
speechiness	float64	0	0
acousticness	float64	0	0
instrumentalness	float64	3541	25
liveness	float64	0	0
valence	float64	0	0
tempo	float64	0	0
duration_in min/ms	float64	0	0
time_signature	int64	0	0
Class	int64	0	0

<pre>df.nunique()</pre>	
Id	14396
Artist Name	7913
Track Name	12455
Popularity	100
danceability	887
energy	1156
key	11
loudness	8051
mode	2
speechiness	1177
acousticness	3725
instrumentalness	3945
liveness	1407
valence	1268
tempo	11392
duration_in min/ms	11805
time_signature	4
Class	11
dtype: int64	

Exploratory Data Analysis

Visualize distribution of all the Continuous Predictor variables in the data using histograms

Visualize The Correlations between numerical features specally with target (class)

Class	1.000000
acousticness	0.240609
energy	0.215611
duration_in min/ms	0.203822
loudness	0.174111
Popularity	0.159484
danceability	0.101152
valence	0.080036
speechiness	0.062784
liveness	0.040101
mode	0.040092
time_signature	0.040053
tempo	0.034496
instrumentalness	0.028631
key	0.004175
Name: Class, dtype:	float64

Prepare the data

2

3

4

5

6

Split Data

- Into test&train
- test size = **0.25**

Encoder

OrdinalEncoder:

Artist Name

LabelEncoder:

Track Name

Missing

values

Clean data with fill all missing

values

outliers

Outliers all feature
by interquartile
range

Scaling

Apply

StandardScaler

on features

Feature engineering

drop id, kay that
have very low
effect to predict
Genre of the track

Before

After

fill with min value

fill with min value

fill with mean value

Outliers

Distribution of Track Name

Before

2500 5000 7500 10000 12500 Distribution of energy 0.2 0.4 0.6 0.8 1.0 Distribution of speechiness 0.4 0.6 0.8 Distribution of liveness 0.2 0.4 0.6 0.8 Distribution of duration in min/ms 1000000 1500000 500000

After

0.8

0.3

150

200

Scaling

Train different models

Evaluation Metric

The evaluation metric for this competition is Root Mean Squared Error (**F1-score**).

The F1-score can be interpreted as a harmonic mean of the precision and recall.

F1 = 2 * (precision * recall) / (precision + recall)

Logistic Regression F1: 0.51 KNeighbors Classifier F1: 0.523

Random Forest Classifier F1: 0.47

Decision Tree Classifier F1: 0.47 Gradient Boosting Classifier F1: 0.49

XGB Classifier F1: 0.55

Fine tune the model

Choose XGBoostingClassifier model with best parameter.

XGBClassifier(learning_rate=0.3, n_estimators = 100, max_depth=2)

Fine tune the model

Choose XGBoostingClassifier model with best parameter.

XGBClassifier(learning_rate=100=srotamitse_n, 0.3, max_depth=2)

Thanks For Listening^^

Any questions!