

Exploiting low-rank SDP methods for solving Max-Cut

Joint work with Valentin Durante, Federal University of Toulouse

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^E$

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^{E}$

Definition: induced cut

For $S \subseteq V$, the set of edges

$$\delta(S) := \{ ij \in E : i \in S, j \notin S \}$$

is called the *cut* induced by *S*.

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^{E}$

Definition: induced cut

For $S \subseteq V$, the set of edges

$$\delta(S) := \{ ij \in E : i \in S, j \notin S \}$$

is called the *cut* induced by *S*.

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^{E}$

Max-Cut Problem

Find a maximum cut in G, i.e., an optimal solution of

$$\max_{S \subseteq V} \sum_{i \in S(S)} a_{ij}. \tag{MC}$$

Given: undirected graph G = (V, E) with edge weights $a \in \mathbb{R}^{E}$

Max-Cut Problem

- $\triangleright \mathcal{NP}$ -hard
- polynomial time solvable in special cases (e.g., planar graphs)
- ▶ 0.878-approximation algorithm for $a \ge 0$ (Goemans & Williamson, 1995) (Mahajan & Ramesh, 1995)
- ► LP-based approaches efficient for sparse graphs

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - ▶ all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{c} \max & \frac{1}{4}x^{\top} Lx \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{c} \max & \frac{1}{4}x^{\top} L x \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization

Given $C \in \mathbb{R}^{n \times n}$, solve

Quadratic unconstrained binary optimization (QUBO)

- ▶ Laplacian matrix L := Diag(Ae) A
 - weighted adjacency matrix $A = (a_{ij})_{ij}$
 - ▶ all-ones vector e

Formulation of Max-Cut

$$(MC) \Leftrightarrow \begin{array}{c} \max & \frac{1}{4}x^{\top} L x \\ \text{s.t.} & x \in \{-1, 1\}^n \end{array}$$

Quadratic unconstrained binary optimization

Given $C \in \mathbb{R}^{n \times n}$, solve

$$\begin{array}{ll} \max & x^\top C x \\ \text{s.t.} & x \in \{-1,1\}^n. \end{array} \tag{QUBO}$$

Goal: branch-and-cut solver for (MC) and (QUBO)

(QUBO) is quite general...

- **▶** minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- ightharpoonup linear constraints Ax = b

(QUBO) is quite general...

- ▶ minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- linear constraints Ax = b

Linearly constrained binary quadratic problems

min
$$x^{\top}Qx + q^{\top}x$$

s. t. $Ax = b$
 $x \in \{0, 1\}^n$ (BQP)

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

(QUBO) is quite general...

- **▶** minimization ↔ maximization
- ▶ linear quadratic objective $x^{\top}Qx + q^{\top}x$
- ightharpoonup variables in $\{0,1\}^n \leftrightarrow \{-1,1\}^n$
- ightharpoonup linear constraints Ax = b

Linearly constrained binary quadratic problems

min
$$x^{\top}Qx + q^{\top}x$$

s.t. $Ax = b$ (BQP)
 $x \in \{0,1\}^n$

where $Q \in \mathbb{R}^{n \times n}$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Any BQP instance in n variables can be reformulated as a QUBO instance in n+1 variables! (Lasserre, 2016)

We introduce $X := xx^{\top}$:

$$\blacksquare x^{\top} Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succeq 0$$

$$\blacksquare$$
 diag(X) = e

$$X \succeq 0$$

$$ightharpoonup$$
 rank $(X) = 1$

We introduce $X := xx^{\top}$:

- $\blacksquare x^{\top} Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succeq 0$

Equivalent formulations (Laurent & Poljak, 1995)

$$\max x^{\top} Cx \Leftrightarrow s.t. x \in \{-1, 1\}^n$$

$$\max_{\mathsf{s.t.}} \begin{array}{l} \langle \mathcal{C}, X \rangle \\ \mathsf{s.t.} & \mathsf{diag}(X) = e \\ X \succeq 0 \\ \mathsf{rank}(X) = 1 \end{array}$$

We introduce $X := xx^{\top}$:

- $\blacksquare x^{\top} Cx = \langle C, xx^{\top} \rangle = \langle C, X \rangle \qquad \blacksquare X \succeq 0$

Semidefinite programming relaxation

$$\max_{\mathbf{s.t.}} x^{\top} Cx$$

$$\mathbf{s.t.} x \in \{-1, 1\}^n \leq$$

$$\max_{s. t.} \langle C, X \rangle$$

$$s. t. \quad \operatorname{diag}(X) = e$$

$$X \succeq 0$$

$$\frac{\operatorname{Tank}(X) = 1}{\operatorname{Tank}(X)}$$

We introduce $X := xx^{\top}$:

Semidefinite programming relaxation

$$\max_{\mathbf{x}} x^{\top} C \mathbf{x}$$
s. t. $x \in \{-1, 1\}^n$

$$\leq \max_{\mathbf{x}} \langle C, X \rangle$$
s. t. $\operatorname{diag}(X) = e$

$$X \succeq 0$$

$$\operatorname{rank}(X) = 1$$

Optimal value of SDP relaxation is at most...

- ▶ 57% larger if $C \succeq 0$. (Nesterov, 1998)
- ▶ 13.83% larger for (MC) if $a \ge 0$. (Goemans & Williamson, 1995)

- ► SDP-based solvers in the literature:
 - ▶ BiqMac (2010)
 - ► MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

- ► SDP-based solvers in the literature:
 - ▶ BiqMac (2010)▶ MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

 \triangleright $\mathcal{O}(n^3)$ triangle inequalities:

$$X_{ij} + X_{ik} + X_{jk} \ge -1, \quad i < j < k$$
 $X_{ij} - X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} + X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} - X_{ik} + X_{jk} \ge -1, \quad i < j < k$

- ► SDP-based solvers in the literature:
 - ▶ BiqMac (2010)▶ MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

 \triangleright $\mathcal{O}(n^3)$ triangle inequalities:

$$X_{ij} + X_{ik} + X_{jk} \ge -1, \quad i < j < k$$
 $X_{ij} - X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} + X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} - X_{ik} + X_{jk} \ge -1, \quad i < j < k$

- ▶ MADAM & BiqBin: $\mathcal{O}(n^5)$ pentagonal, $\mathcal{O}(n^7)$ heptagonal cuts
- exact separation only for triangle inequalities

- ► SDP-based solvers in the literature:
 - ▶ BiqMac (2010)
 ▶ MADAM (2021)

- ▶ BiqCrunch (2016)
- ▶ BiqBin (2022)

 \triangleright $\mathcal{O}(n^3)$ triangle inequalities:

$$X_{ij} + X_{ik} + X_{jk} \ge -1, \quad i < j < k$$
 $X_{ij} - X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} + X_{ik} - X_{jk} \ge -1, \quad i < j < k$
 $-X_{ij} - X_{jk} + X_{ik} \ge -1, \quad i < j < k$

- ▶ MADAM & BiqBin: $\mathcal{O}(n^5)$ pentagonal, $\mathcal{O}(n^7)$ heptagonal cuts
- exact separation only for triangle inequalities

Today: new solver called MixCut

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s. t. $X \in \mathcal{E} \ (\Leftrightarrow \operatorname{diag}(X) = e, \ X \succeq 0)$
 $A(X) \leq b$

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s. t. $X \in \mathcal{E} \quad (\Leftrightarrow \operatorname{diag}(X) = e, \ X \succeq 0)$
 $\mathcal{A}(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle - \gamma^{\top} (\mathcal{A}(X) - b)$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

• adjoint operator: $\mathcal{A}^{\top}(\gamma) := \sum_{i=1}^{m} \gamma_i A_i$

SDP with a subset of *m* triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max \langle C, X \rangle$$

s. t. $X \in \mathcal{E} \quad (\Leftrightarrow \operatorname{diag}(X) = e, \ X \succeq 0)$
 $\mathcal{A}(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle - \gamma^{\top} (\mathcal{A}(X) - b)$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

- adjoint operator: $\mathcal{A}^{\top}(\gamma) \coloneqq \sum_{i=1}^{m} \gamma_i A_i$
- weak duality: $f^* \leq f(\gamma)$ for all $\gamma \in \mathbb{R}_+^m$

SDP with a subset of m triangle inequalities $\langle A_i, X \rangle \leq b_i$:

$$f^* := \max_{X \in \mathcal{E}} \langle C, X \rangle$$

s.t. $X \in \mathcal{E} \ (\Leftrightarrow \operatorname{diag}(X) = e, \ X \succeq 0)$
 $\mathcal{A}(X) \leq b$

Dualizing $A(X) \leq b$ yields:

partial Lagrangian:
$$\mathcal{L}(X, \gamma) := \langle C, X \rangle - \gamma^{\top} (\mathcal{A}(X) - b)$$

dual function: $f(\gamma) := \max_{X \in \mathcal{E}} \mathcal{L}(X, \gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$

- adjoint operator: $\mathcal{A}^{\top}(\gamma) \coloneqq \sum_{i=1}^{m} \gamma_i A_i$
- weak duality: $f^* \leq f(\gamma)$ for all $\gamma \in \mathbb{R}_+^m$
- dual problem:

$$f^* = \min_{\gamma > 0} f(\gamma)$$

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$$

ightharpoonup for $\tilde{C} = C - A^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{\mathcal{C}}, X \rangle \\ \text{s. t.} & X \in \mathcal{E} \end{array} \tag{*}$$

▶ BiqMac & BiqBin use interior-point methods

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$$

ightharpoonup for $\tilde{C} = C - A^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{\mathcal{C}}, X \rangle \\ \text{s. t.} & X \in \mathcal{E} \end{array} \tag{*}$$

▶ BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize $X = V^{\top}V \succeq 0$, $V = (v_1|...|v_n) \in \mathbb{R}^{k \times n}$, $k \leq n$, and solve

$$\max_{\mathbf{S}, \mathbf{t}, \mathbf{V}^{\top} \mathbf{V} \in \mathcal{E}} \langle \tilde{C}, \mathbf{V}^{\top} \mathbf{V} \rangle$$
s.t. $\mathbf{V}^{\top} \mathbf{V} \in \mathcal{E}$. (SDP-vec)

Evaluating f

$$f(\gamma) = b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle$$

ightharpoonup for $\tilde{C} = C - A^{\top}(\gamma)$, we have to solve

$$\begin{array}{ll} \max & \langle \tilde{\mathcal{C}}, X \rangle \\ \text{s. t.} & X \in \mathcal{E} \end{array} \tag{*}$$

► BiqMac & BiqBin use interior-point methods

Burer-Monteiro factorization for SDPs (Burer & Monteiro, 2003)

Factorize $X = V^{\top}V \succeq 0$, $V = (v_1|...|v_n) \in \mathbb{R}^{k \times n}$, $k \leq n$, and solve

$$\max_{\mathbf{S}} \quad \langle \tilde{C}, \mathbf{V}^{\top} \mathbf{V} \rangle$$
 s. t. $\mathbf{V}^{\top} \mathbf{V} \in \mathcal{E}$. (SDP-vec)

- $V^{\top}V \in \mathcal{E} \Leftrightarrow ||v_i|| = 1, i = 1, \ldots, n$
- (*) \Leftrightarrow (SDP-vec) for $k = \lceil \sqrt{2n} \rceil$ (Barvinok, 1995; Pataki, 1998)

Geometric interpretation

Optimization problem (SDP-vec)

$$\max \quad \langle \tilde{C}, V^\top V \rangle = \sum_{i,j=1}^n \tilde{C}_{ij} v_i^\top v_j$$
 s.t. $\|v_i\| = 1, \ i = 1, \dots, n$ (SDP-vec)

$$v_i^{\top} v_j = ||v_i|| \cdot ||v_j|| \cdot \cos \angle (v_i, v_j)$$
$$= \cos \angle (v_i, v_j)$$

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\begin{array}{ll} \max & \sum_{i,j=1}^n \tilde{C}_{ij} v_i^\top v_j \\ \text{s.t.} & \|v_i\|=1, \ i=1,\dots,n \end{array} \tag{SDP-vec}$$

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\max \quad \sum_{i,j=1}^n \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s.t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate ascent

We fix all columns except v_i .

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate ascent

We fix all columns except v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\top} \mathbf{v}_{i}$$
s. t. $\|\mathbf{v}_{i}\| = 1$, $\mathbf{v}_{i} \in \mathbb{R}^{k}$

where
$$g = \sum_{j=1, j \neq i}^{n} \tilde{C}_{ij} v_j = V \cdot \tilde{C}_{(i)} - \tilde{C}_{ii} v_i$$
.

The Mixing Method (Wang et al., 2018)

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} \tilde{C}_{ij} v_i^\top v_j$$
 (SDP-vec) s. t. $\|v_i\| = 1, \ i = 1, \dots, n$

Coordinate ascent

We fix all columns except v_i . (SDP-vec) reduces to

$$\max \quad g^{\top} v_i = \|g\| \cdot \|v_i\| \cdot \cos \measuredangle(g, v_i)$$

s. t.
$$\|v_i\| = 1, \ v_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1, j \neq i}^{n} \tilde{C}_{ij} v_j = V \cdot \tilde{C}_{(i)} - \tilde{C}_{ii} v_i$$
.

Optimization problem (SDP-vec)

$$\max \sum_{i,j=1}^{n} \tilde{C}_{ij} v_i^{\top} v_j$$
 (SDP-vec) s.t. $\|v_i\| = 1, i = 1, \dots, n$

Coordinate ascent

We fix all columns except v_i . (SDP-vec) reduces to

$$\max \quad \mathbf{g}^{\top} \mathbf{v}_i = \|\mathbf{g}\| \cdot \|\mathbf{v}_i\| \cdot \cos \measuredangle(\mathbf{g}, \mathbf{v}_i)$$

s. t.
$$\|\mathbf{v}_i\| = 1, \ \mathbf{v}_i \in \mathbb{R}^k$$

where
$$g = \sum_{j=1, j \neq i}^{n} \tilde{C}_{ij} v_j = V \cdot \tilde{C}_{(i)} - \tilde{C}_{ii} v_i$$
.

▶ closed-form solution: $v_i = \frac{g}{\|g\|}$ if $g \neq 0$

Algorithm 1: Mixing Method (Wang et al., 2018)

while not yet converged do

Algorithm 1: Mixing Method (Wang et al., 2018)

Theorem: Local linear convergence (Wang et al., 2018)

Let $k > \sqrt{2n}$. If the iterates do not degenerate, then the Mixing Method converges locally to the global optimum of (SDP-vec) at a linear rate.

Algorithm 1: Mixing Method (Wang et al., 2018)

```
Input: \tilde{C} \in \mathbb{R}^{n \times n} with \operatorname{diag}(\tilde{C}) = 0, k \in \mathbb{N}_{\geq 1} Output: approximate solution V = (v_1 | \dots | v_n) \in \mathbb{R}^{k \times n} of (SDP-vec) for i \leftarrow 1 to n do v_i \leftarrow random vector on the unit sphere \mathcal{S}^{k-1};
```

while not yet converged do

Theorem: Local linear convergence (Wang et al., 2018)

Let $k > \sqrt{2n}$. If the iterates do not degenerate, then the Mixing Method converges locally to the global optimum of (SDP-vec) at a linear rate.

- ▶ block-coordinate maximization (Erdogdu et al, 2022)
- ▶ momentum-based acceleration (Kim et al., 2021)
- bilinear decomposition, ADMM (Chen & Goulart, 2023)

Approximately solving the dual problem

Dual problem

$$\min_{\gamma \geq 0} f(\gamma) = \min_{\gamma \geq 0} \left\{ b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle \right\}$$

- ► f is nonsmooth
- ▶ evaluation of f at $\gamma \in \mathbb{R}_+^m$ yields
 - function value $f(\gamma)$
 - ▶ subgradient $g(\gamma) = b A(X^*)$ of f at γ
- ▶ dynamic bundle approach for SDPs by Fischer et al. (2003)

Approximately solving the dual problem

Dual problem

$$\min_{\gamma \geq 0} f(\gamma) = \min_{\gamma \geq 0} \left\{ b^{\top} \gamma + \max_{X \in \mathcal{E}} \langle C - \mathcal{A}^{\top}(\gamma), X \rangle \right\}$$

- ▶ f is nonsmooth
- evaluation of f at $\gamma \in \mathbb{R}^m_+$ yields
 - ▶ function value $f(\gamma)$
 - ▶ subgradient $g(\gamma) = b A(X^*)$ of f at γ
- dynamic bundle approach for SDPs by Fischer et al. (2003)

Model of f using trial points $\gamma_i \in \mathbb{R}_+^m$ for i = 1, ..., k:

(Proximal) cutting plane model

$$\hat{f}_k(\gamma) = \max_{1 \le i \le k} \left\{ f(\gamma_i) + \langle g(\gamma_i), \gamma - \gamma_i \rangle \right\} + \frac{1}{2t} \|\gamma - \hat{\gamma}\|^2$$

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $ightharpoonup \Delta_k = \langle \tilde{C}, V_k^\top V_k V_{k-1}^\top V_{k-1} \rangle$, improvement in iteration k
- $ightharpoonup r_k = \frac{\Delta_k}{\Delta_{k-1}}, \ k \ge 2, \ {\sf ratio of improvements}$

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $lackbox{}\Delta_k = \langle \tilde{C}, V_k^{\top} V_k V_{k-1}^{\top} V_{k-1} \rangle$, improvement in iteration k
- $ightharpoonup r_k = \frac{\Delta_k}{\Delta_{k-1}}, \ k \ge 2, \ {\rm ratio\ of\ improvements}$

Relative step tolerance

▶ stop if $\frac{\|V_{k-1}-V_k\|_F}{1+\|V_{k-1}\|_F} < 0.01$

When do we stop the mixing method?

Notation

- \triangleright V_k : matrix V after iteration k
- $lackbox{}\Delta_k = \langle \tilde{C}, V_k^{\top} V_k V_{k-1}^{\top} V_{k-1} \rangle$, improvement in iteration k
- $ightharpoonup r_k = \frac{\Delta_k}{\Delta_{k-1}}, \ k \ge 2, \ {\rm ratio\ of\ improvements}$

Relative step tolerance

▶ stop if $\frac{\|V_{k-1}-V_k\|_F}{1+\|V_{k-1}\|_F} < 0.01$

Practical observation

- \blacktriangleright $(\Delta_k)_{k\in\mathbb{N}_{\geq 2}}$ is strictly decreasing
- $ightharpoonup (r_k)_{k \in \mathbb{N}_{>2}}$ is strictly increasing: $0 < r_{k-1} < r_k < 1$

Assuming that $(r_k)_{k \in \mathbb{N}_{>2}}$ is strictly increasing, we have

$$\frac{\Delta_p}{\Delta_k} = \prod_{i=-k}^{p-1} \frac{\Delta_{i+1}}{\Delta_i} \ge r_k^{p-k}, \quad \forall p > k,$$

Assuming that $(r_k)_{k \in \mathbb{N}_{>2}}$ is strictly increasing, we have

$$\frac{\Delta_p}{\Delta_k} = \prod_{i=k}^{p-1} \frac{\Delta_{i+1}}{\Delta_i} \ge r_k^{p-k}, \quad \forall p > k,$$

$$\sum_{p=k+1}^{\infty} \Delta_p = \Delta_k \sum_{p=k+1}^{\infty} \frac{\Delta_p}{\Delta_k} \ge \Delta_k \left(\frac{1}{1-r_k} - 1 \right) = \frac{\Delta_k^2}{\Delta_{k-1} - \Delta_k}.$$

Assuming that $(r_k)_{k \in \mathbb{N}_{>2}}$ is strictly increasing, we have

$$\frac{\Delta_p}{\Delta_k} = \prod_{i=k}^{p-1} \frac{\Delta_{i+1}}{\Delta_i} \ge r_k^{p-k}, \quad \forall p > k,$$

$$\sum_{p=k+1}^{\infty} \Delta_p = \Delta_k \sum_{p=k+1}^{\infty} \frac{\Delta_p}{\Delta_k} \ge \Delta_k \left(\frac{1}{1-r_k} - 1 \right) = \frac{\Delta_k^2}{\Delta_{k-1} - \Delta_k}.$$

Lower bound

$$f_k + \frac{\Delta_k^2}{\Delta_{k-1} - \Delta_k} \le f^*$$

Assuming that $(r_k)_{k \in \mathbb{N}_{>2}}$ is strictly increasing, we have

$$\frac{\Delta_{p}}{\Delta_{k}} = \prod_{i=k}^{p-1} \frac{\Delta_{i+1}}{\Delta_{i}} \ge r_{k}^{p-k}, \qquad \forall p > k,$$

$$\sum_{p=k+1}^{\infty} \Delta_p = \Delta_k \sum_{p=k+1}^{\infty} \frac{\Delta_p}{\Delta_k} \ge \Delta_k \left(\frac{1}{1-r_k} - 1 \right) = \frac{\Delta_k^2}{\Delta_{k-1} - \Delta_k}.$$

Lower bound

$$f_k + \frac{\Delta_k^2}{\Delta_{k-1} - \Delta_k} \le f^*$$

Estimated upper bound (see MIXSAT solver, Wang & Kolter, 2019)

$$f_k + \frac{\Delta_{k-1}\Delta_k}{\Delta_{k-1}-\Delta_k} \approx f^*$$

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^{\top} y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (SDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

lacktriangle approximate but non-feasible dual variables: $ilde{y}_i = \| ilde{V} \cdot ilde{\mathcal{C}}_{(i)}\|_2$

Primal-dual pair

$$\begin{array}{lll} \max & \langle \tilde{C}, X \rangle & \min & e^\top y \\ \text{s. t.} & \operatorname{diag}(X) = e & \text{s. t.} & \operatorname{Diag}(y) - \tilde{C} \succeq 0 \\ & X \succeq 0 & y \in \mathbb{R}^n \end{array}$$
 (DSDP)

Proposition (see Wang et al., 2018)

Let
$$V^* = \lim_{k \to \infty} V_k$$
. Then $y_i = \|V^* \cdot \tilde{C}_{(i)}\|_2$ is optimal for (DSDP).

After stopping the Mixing Method with approximate \tilde{V} :

- lacktriangle approximate but non-feasible dual variables: $ilde{y}_i = \| ilde{V} \cdot ilde{\mathcal{C}}_{(i)}\|_2$
- lacktriangledown feasible dual variables: $y = ilde{y} \lambda_{\mathsf{min}} \left(\mathsf{Diag}(ilde{y}) ilde{\mathcal{C}}
 ight) e$

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ at most one eigenvalue computation per B&B node
- tradeoff between number of B&B nodes and overall time spent

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ at most one eigenvalue computation per B&B node
- tradeoff between number of B&B nodes and overall time spent

Branching:

- decision based on dual information
- ► active cutting planes are passed down in B&B tree

Solver features

Speed:

- fast approximate function and subgradient evaluation
- ▶ at most one eigenvalue computation per B&B node
- ▶ tradeoff between number of B&B nodes and overall time spent

Branching:

- decision based on dual information
- ► active cutting planes are passed down in B&B tree

Primal heuristic:

- Goemans-Williamson hyperplane rounding
 - one-opt and two-opt local search
 - 'biased' hyperplanes

- ▶ local search to improve solution (one-opt and two-opt)
- ▶ good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small

- ▶ local search to improve solution (one-opt and two-opt)
- ▶ good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- ▶ construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^\top h\|^2$

- ▶ local search to improve solution (one-opt and two-opt)
- ▶ good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- ightharpoonup construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^{\top}h\|^2$
- \blacktriangleright h* is eigenvector to largest eigenvalue of VV^{\top}

- local search to improve solution (one-opt and two-opt)
- ▶ good candidates are close to hyperplane, i.e., $|h^{\top}v_i|$ small
- lacktriangle construct a 'biased hyperplane' $h^* \in \arg\max_{\|h\|=1} \|V^\top h\|^2$
- \blacktriangleright h* is eigenvector to largest eigenvalue of VV^{\top}

Computational results I

- ▶ implementation in C, linked against Intel MKL
- ▶ all solvers are run in single-threaded mode on same hardware

Computational results I

- ▶ implementation in C, linked against Intel MKL
- ▶ all solvers are run in single-threaded mode on same hardware

Instance	BiqCrunch		BiqBin		MADAM		MixCut	
	Time	Nodes	Time	Nodes	Time	Nodes	Time	Nodes
g05_100.0	253.89	325	107.48	99	88.09	195	14.20	743
g05_100.1	1447.89	1779	554.74	465	522.70	863	66.06	3615
g05_100.2	92.26	97	33.03	29	36.99	55	4.19	193
g05_100.3	454.63	659	195.09	209	127.56	389	24.39	1253
g05_100.4	31.85	31	12.43	7	12.85	11	2.05	87
g05_100.5	103.74	93	30.42	19	24.48	25	4.77	219
g05_100.6	99.20	99	36.37	25	43.01	33	5.42	245
g05_100.7	212.91	205	86.21	65	84.37	85	9.27	453
g05_100.8	143.52	165	60.57	41	48.29	79	7.22	361
g05_100.9	169.25	237	61.87	57	52.47	155	8.02	393

- ightharpoonup Erdős–Rényi graphs $G_{100,\frac{1}{2}}$ (unweighted)
- ▶ time in seconds

Root node bounds for g05_100.1

Computational results II

▶ average CPU times (s) and B&B nodes for n = 120

Instance	BiqCrunch		BiqBin		MADAM		MixCut	
	Time	Nodes	Time	Nodes	Time	Nodes	Time	Nodes
g05	1102.90	2039	750.59	1419	477.77	1390	70.38	3109
pm1d	1998.67	2792	1105.18	1772	652.46	1471	93.63	4373
pm1s	110.63	202	77.20	148	64.70	179	6.00	219
pw01	49.02	44	25.88	34	18.75	23	2.95	97
pw05	2040.15	2533	1013.91	1907	743.24	1369	84.98	3721
pw09	2064.74	2446	1009.16	1691	757.77	1268	103.71	4300
w01	26.87	22	17.95	23	16.68	15	2.02	64
w05	1199.89	1339	623.85	974	532.44	730	44.50	1909
w09	1832.45	1897	812.77	1754	743.84	1188	65.28	2882

Comparison on 270 instances with $n \in \{80, 100, 120\}$

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- further improvements by
 - branching decision based on dual information
 - reducing number of cutting plane iterations

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- further improvements by
 - branching decision based on dual information
 - reducing number of cutting plane iterations

Future work:

- use parallelization
- apply to general binary quadratic problems

Conclusion and future work

Conclusion:

- significant speedup of 'traditional' approaches by recent low-rank methods
- further improvements by
 - branching decision based on dual information
 - reducing number of cutting plane iterations

Future work:

- use parallelization
- apply to general binary quadratic problems

Thank you!