Non-life — Assignment NL2

Niels Keizer* and Robert Jan Sopers[†]

September 22, 2016

1 Simulating an insurance portfolio-App. A3

$\mathbf{Q}\mathbf{1}$

How many bytes does it take to store 1,..., 10, 1000, 100000 logical values TRUE/FALSE?

We assume that 1, ..., 10 means all the integers from 1 to 10. To how many bytes are needed in R, we use the function object.size().

```
> for (n_values in c(1,2,3,4,5,6,7,8,9,10,1000,100000)){
    hh <- rep(TRUE,n_values)</pre>
    rr <- sample(c(TRUE,FALSE),n_values,repl=TRUE,prob=c(1,1))</pre>
    af <- as.factor(rr)
    print(c(n_values, object.size(hh), object.size(rr), object.size(af)))
+ }
[1]
      1
         48
              48 464
[1]
      2
         48
              48 464
[1]
      3
              56 528
         56
[1]
      4
              56 528
         56
Γ17
      5
         72
              72 544
         72
[1]
             72 488
      6
[1]
      7
         72
             72 544
[1]
         72
              72 544
[1]
      9
         88
              88 560
[1]
     10
         88
             88 560
[1] 1000 4040 4040 4512
[1] 100000 400040 400040 400512
```

The first column of the output is the length of the vector. The second column indicates the size in bytes of a vector filled with only TRUE values. The third with a random selection of TRUE and FALSE. The final column represents the size of the randomized vector, after it has been turned into a factor object.

^{*}Student number: 10910492 †Student number: 0629049

To obtain the y vector, we first need to run the following code:

```
> n.obs <- 10000; set.seed(4)
> # n.obs <- 10000; set.seed(4) # Gebruik deze regel voor een grotere sample size.
> sx <- as.factor(sample(1:2, n.obs, repl=TRUE, prob=c(6,4)))
> jb <- as.factor(sample(1:3, n.obs, repl=TRUE, prob=c(3,2,1)))</pre>
> re.tp <- sample(1:9, n.obs, repl=TRUE, prob=c(.1,.05,.15,.15,.1,.05,.1,.1,.2))
> tp <- as.factor(c(1,2,3,1,2,3,1,2,3)[re.tp])
> re \leftarrow as.factor(c(1,1,1,2,2,2,3,3,3)[re.tp])
> mo <- 3 * sample(1:4, n.obs, repl=TRUE, prob=c(1,1,0,8))
> mu <- 0.05 * c(1,1.2)[sx] *
               c(1,1,1)[jb] *
               c(1,1.2,1.44)[re] *
               1.2^{(0:2)}[tp] * mo/12
> y <- rpois(n.obs, mu)
> table(y)
у
   0
        1
             2
                  3
9276 702
            20
                  2
```

Which is then inspected by calculating mean(y), var(y) and the overdispersion factor var(y)/mean(y).

The overdispersion factor is smaller than 1. This is possible because we are looking at a relatively small sample, with low probabilities. If we would take a much larger sample, the value would be larger than 1. We check this by running the same code, but with a sample 100 times larger. This gives a result with an overdispersion factor larger than 1.

```
> table(y)
у
     0
                    2
                           3
                                   4
             1
931128 66053
                 2734
                          82
                                   3
> cbind(mean=mean(y), variance=var(y), phi=var(y)/mean(y))
                 variance
                                phi
         mean
[1,] 0.071779 0.07262285 1.011756
```

$\mathbf{Q3}$

We create a dataframe by using the function aggregate().

```
> aggr <- aggregate(list(Expo=mo/12,nCl=y,nPol=1), list(Jb=jb,Tp=tp,Re=re,Sx=sx), sum)
```

Then we compare the sizes.

```
> object.size(aggr)
5336 bytes
> object.size(mo)
80040 bytes
> object.size(y)
40040 bytes
> object.size(jb) + object.size(tp) + object.size(re) + object.size(sx)
162240 bytes
```

The amount of memory gained is equal to 80040 + 40040 + 162240 - 5336 = 276984 bytes.

$\mathbf{Q4}$

According to MART Sec. 3.9.3, the maximum likelihood estimate $\hat{\lambda}_{3,3,3,2}$ is equal to the number of claims divided by the exposure.

```
> aggr[54,]
   Jb Tp Re Sx   Expo nCl nPol
54   3   3   2 115.75   13   130
> lambda3332 <- aggr$nCl[54]/aggr$Expo[54]
> lambda3332
[1] 0.112311
```

In the first command, we show that observation 54 contains the desired aggregated values to calculate the estimate, which is then determined at 0.112.

2 Exploring the automobile portfolio of Sec. 9.5